6.2 Volume: The Disk and Washer Method (Day 1)

Solid of Revolution: Obtained when a plan region is revolved about a line (axis of revolution)

The resulting solid is a solid of revolution. The most common is a right circular cylinder, a disk, that results from rotating a rectangle about the axis of revolution.

Recall: The volume of a disk

Therefore:

Horizontal Axis of Revolution:

(Vertical Rotation)

Vertical Axis of Revolution:

^{**} The representative rectangle is always perpendicular to the axis of revolution

Find the volume of the solid formed when the region defined by $y = 4 - x^2$, x = 0 and y = 0 is revolved about the

$$\pi \int_{0}^{2} \left[4 - x^{2} \right]^{2} dx = \pi \int_{0}^{2} \frac{1}{16} - 8x^{2} + x^{4} dx$$

$$= \pi \left[\frac{1}{16}x - 8\left(\frac{x^{2}}{3}\right) + \frac{1}{5}x^{5} \right] \left[-\pi \left[\frac{1}{16}x - \frac{2}{3}x^{3} + \frac{1}{5}x^{5} \right] \right]^{2}$$

$$= \pi \left[\frac{32 - \frac{64}{3} + \frac{32}{5}}{5} \right] = \frac{256}{15}\pi$$

Determine the volume of the solid formed when the region defined by $y = \sqrt{16 - x^2}$ in the first quadrant is revolved about the y-axis.

$$TI \int (\sqrt{16-y^2})^2 dy$$

Examples – Finding Volumes

Set up and evaluate the integral that gives the volume of the solid formed by revolving the region defined by

$$y = \sqrt{4 - x^2}$$
, $x = 0$ and $y = 0$ about the $x - axis$.

$$\frac{2}{11} \int_{0}^{2} (\sqrt{1+x^{2}})^{2} dx = \pi \int_{0}^{2} (\sqrt{1+x^{2}})^{2} dx$$

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x) = -x^2 + 4x - 3$ and the x - x - 3axis about the x - axis.

$$\sqrt{10}(-x^2+4x-3)^2 dx$$

$$Ti \int (-x^{2} + 4x - 3)^{2} dx$$

$$0 = -x^{2} + 4x - 3$$

$$0 = -1(x^{2} + 4x + 3)$$

$$0 = -1(x - 1)(x - 3)$$

$$Ti \int x^{4} - 4x^{3} + 3x^{2} - 4x^{3} + 10x^{2} - 12x + 3x^{2} - 12x + 9 dx$$

$$\pi \int_{X} x^{4} - 8x^{3} + 22x^{2} - 24x + 9 dx = \pi \left[\frac{1}{2} x^{5} - 8 \left(\frac{x^{4}}{4} \right) + 22 \left(\frac{x^{3}}{3} \right) + 24 \left(\frac{x^{3}}{3} \right) + 9x \right]$$

Find the volume of the solid formed by revolving the graphs of $y = \sqrt{x}$, y = 1 and x = 4 about the line y = 1.

$$T \left[\sqrt{x} - 1 \right]^{2} dx = T \left[x - 2\sqrt{x} + 1 dx \right]$$

$$= T \left[\frac{1}{2}x^{2} - 2\left(\frac{x^{3/2}}{3/2}\right) + x \right] = T \left[\frac{1}{2}x^{2} - \frac{4}{3}x^{3/2} + x \right]$$

$$= T \left[\frac{1}{2}x^{2} - 2\left(\frac{x^{3/2}}{3/2}\right) + x \right] = T \left[\frac{1}{2}x^{2} - \frac{4}{3}x^{3/2} + x \right]$$

$$= \pi \left[\left(\frac{1}{5} \left(\frac{16}{16} \right) - \frac{1}{3} \left(\frac{1}{4} \right)^{3/2} + 4 \right) - \left(\frac{1}{5} - \frac{1}{3} + 1 \right) \right]$$

$$= \pi \left[\left[8 - \frac{3^{2}}{3} + 4 \right] - \frac{1}{5} + \frac{1}{3} - 1 \right] = \frac{2}{6} \pi$$

Find the volume of the solid formed by revolving the region bound by $y = 4 - \frac{x^2}{4}$ and y = 2 about the line y = 2.

$$\frac{16-x^{2}}{4} = 2$$
 $16-x^{2} = 8$
 $8=x^{2}$
 $x=\pm 212$

$$\begin{cases} (4,0) & y=2 \\ 2\sqrt{12} & (700) & (Bottom) \\ 2\sqrt{11} & (4-\frac{x^2}{4}-2)^2 dx \end{cases}$$

$$2\pi \int (2-\frac{x^{2}}{4})^{2} dx = 2\pi \int 4-x^{2} + \frac{x^{4}}{16} dx = 2\pi \left[4x - \frac{1}{3}x^{3} + \frac{1}{16} \left(\frac{x^{5}}{5} \right) \right]$$