Tuesday, March 20, 2018 10:30

i) conversely: assume the $h(z) = \infty$. Consider the $h(z) = \frac{1}{f(z)}$. $z \to z$.

 $\exists b^*(z, s) \quad \text{s.t. h is analytic} \quad & \text{libs } h(z) = 0. \quad \text{So h analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analytic n} D(z_0, s)$ $\exists h(z) = 0. \quad \text{Analyt$

Thm (Caseati - Weierstrass)

If f is analytic i'n $D^* = D^*(Z_iY)$ for some f>0 and has an essential singularity $n^+ Z_0$, then $\widehat{f(\Delta^*)} = C$ (i.e. $C \setminus f(D^*)$ has no interior pts)

Proof Assume $w_0 \in (C \setminus f(\Delta^*))^\circ$. $\exists \delta > 0$, $\forall z \in \Delta^*$, $|f(z) - w_0| > \delta$. $h(z) := \frac{1}{f(z) - w_0}$ is bounded in Δ^* (by $\frac{1}{\delta}$) and analytic in Δ^* .

So he has a removable stryularity so can be extended to an analytic find of $\Delta(z_0, r)$. So $\frac{1}{h}$ is entry analytic or has a pole of sinite order to but this is $f(z) - w_0$.

Picardis Theorem. If f has an essential singularity at 20 then in a punctured disk $\Delta^* = \Delta^*(z_0, r)$ (for r>0), $|C| |f(\Delta^*)| \leq 1$.

Det a function of has 'no worse than a pole of 20 is it doesn't now an essential singularity at 20.

Theorem if I mo I have no worke than a pole at Zo then

f', f+9, fg mus ho worse than a pole at Zo. The same is the for t/g if g is not identically two.

Dehn f is meromorphic in UEC if it has no essential singularities in U.

y any rational function in $\frac{C[x]}{C[x]}$, meromorphic in C.

y tang Z meromorphic in C.