CHEM 121 Practice Exam #3

Spring 2012

PLE CHOICE. Choos	se the one afternativ	e triat best comple	tes the statement of	answers the questi	OII.
1) Convert 1.25 atm to	mm Hg.				1)
A) 875 mm Hg					
B) 1520 mm Hg					
C) 760 mm Hg					
D) 950 mm Hg					
E) 1000 mm Hg					
2) The volume of a ga	s is proportional to t	he temperature of	a gas is known as		2)
A) Ideal Gas Lav	V	•	_		
B) Charles's Law	I				
C) Dalton's Law					
D) Boyle's Law					
E) Avogadro's L	.aw				
3) What volume will a	. 3			6 L at 3.8 atm?	3)
A) 2.0 L	B) 35 L	C) 29 L	D) 5.0 L	E) 17 L	
4) A sample of 0.300 r	_	cupies 0.600 L. Und	der the same condition	ns, what number o	f 4)
moles occupies 1.20				D) 0 (00)	
A) 1.50 moles	B) 6.00 mo	les C) 0	0.33 moles	D) 0.600 moles	
5) To what volume w	ill a sample of gas ex	coand if it is heated	from 50.0 °C and 2.3	3.1. to 500.0°C?	5)
A) 5.58 L	B) 10.3 L	C) 4.38 L	D) 9.74 L	E) 17.9 L	٠,
,	,	,	,	,	
6) A gas is at 35.0°C a	nd 4.50 L. What is th	he temperature at 9	.00 L?		6)
A) 1.16°C	B) 343°C	C) 17.5°C	D) 70.0°C	E) 616°C	,
7) A overings initially b	halda a samanla af ma		205 mal at 255 M and	1 00 atms. To what	7\
7) A syringe initially h					7)
temberature must t	the gas in the syringe	e pe Heated/Cooled	in order to have a vo	iui ile di 435 me at	
•					
2.50 atm? A) 466 K	B) 721 K	C) 572 K	D) 139 K	E) 175 K	

9) Which of the following gas samples would be most likely to behave ideally under the stated						
conditions? A) CO at 200 atm ar B) O ₂ at 400 atm ar C) N ₂ at 1 atm and D) SO ₂ at 2 atm and E) Ne at STP	nd 25°C -70°C					
10) Using the graph belov	v, determine the gas	that has the lowest	density at STP.		10)	
B D) C E) All of the gases h	A 1000 1500 Molecular Speed	2000 2500 ty at STP.				
11) Determine the density	of CO ₂ gas at STP.				11)	
A) 1.80 g/L	B) 4.46 g/L	C) 1.96 g/L	D) 5.10 g/L	E) 2.24 g/L		
12) A 0.334 g sample of ar identity of the haloger		occupies 109 mL at	398 K and 1.41 atm.	What is the	12)	
A) Br ₂	B) Ge	C) Cl ₂	D) I ₂	E) F ₂		
13) A mixture of He, Ne and Ar has a pressure of 7.85 atm. If the Ne has a mole fraction of 0.47 and Ar has a mole fraction of 0.23, what is the pressure of He?						
A) 3.7 atm	B) 1.8 atm	C) 5.5 atm	D) 4.2 atm	E) 2.4 atm		
14) Determine the volume following reaction. The	-			ccording to the	14)	
2 KCI	$O_3(s) \rightarrow 2 \text{ KCI}(s) + 3$	3 O ₂ (g)				

C) 8.22 L D) 13.7 L

E) 9.14 L

A) 14.6 L

B) 12.3 L

15) Which of the followin surroundings, as well A) q = +, w = + B) q = -, w = - C) q = -, w = + D) q = +, w = - E) None of these re	as losing heat to th	e surroundings?	that is doing work on	the	15)
16) Calculate the change is performing 855 J of w A) -45.9 kJ B) -9.00 x 10 ² kJ C) -44.1 kJ D) 44.1 kJ E) 9.00 x 10 ² kJ	• • • • • • • • • • • • • • • • • • • •	. •	s giving off 45.0 kJ of	heat and is	16)
17) Define heat capacity.					17)
A) the quantity of hB) the quantity of hC) the quantity of h	leat required to rais leat required to rais leat required to rais	se the temperature of se the temperature of se the temperature of	of 1 g of a substance by of 1 liter of a substance of 1 mole of a substance of 1 gram of a substance oerature by 1°C	e by 1°C ce by 1°C	· · · · · · · · · · · · · · · · · · ·
18) Which of the followin temperature change u A) 10.0 g ethanol, C B) 10.0 g Fe, CFe = C) 10.0 g Au, CAu = D) 10.0 g H ₂ O, CH ₂ E) 10.0 g Ag, CAg =	pon absorbing 100. Sethanol = 2.42 J/g°C 0.449 J/g°C = 0.128 J/g°C 2O = 4.18 J/g°C	0 J of heat?	ty provided) would sl	now the greatest	18)
19) Calculate the amount				ample of ethanol	19)
from 298.0 K to 385.0 A) 57.0 kJ	B) 12.9 kJ	C) 28.4 kJ	D) 16.6 kJ	E) 73.6 kJ	
20) Determine the specific heat capacity of an alloy that requires 59.3 kJ to raise the temperature of					
150.0 g alloy from 298 A) 4.38 J/g°C	B) 2.29 J/g°C	C) 2.53 J/g°C	D) 1.87 J/g°C	E) 3.95 J/g°C	
21) Identify what a bomb A) measures ΔE for B) measures ΔH for C) measures ΔT for D) measures ΔE for E) measures ΔH for	combustion reaction coxidation solution hydrolysis solution reduction reaction	ons as ns s			21)
22) Calculate the change i		-	_		22)
expanding from 8.00 t A) +51.8 kJ	o 24.0 L in volume B) +34.2 kJ	at 1.00 atm. (Reme C) -29.3 kJ	mber that 101.3 J = 1 l D) -15.8 kJ	-`atm) E) -16.6 kJ	

23) A 21.8 g sample of ethanol (C₂H₅OH) is burned in a bomb calorimeter, according to the following reaction. If the temperature rises from 25.0 to 62.3°C, determine the heat capacity of the calorimeter. The molar mass of ethanol is 46.07 g/mol.

 $C_2H_5OH(I) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$

 $\Delta H^{\circ}_{rxn} = -1235 \text{ kJ}$

A) 15.7 kJ/°C

B) 5.65 kJ/°C

C) 33.1 kJ/°C

D) 4.99 kJ/°C

E) 63.7 kJ/°C

24) Using the following equation for the combustion of octane, calculate the heat of reaction for 100.0 g of octane. The molar mass of octane is 114.33 g/mole.

24)

 $2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O$ $\Delta H^{\circ}_{rxn} = -11018 kJ$

A) $9.64 \times 10^3 \text{ kJ}$

B) 4.82 x 10³ kJ

C) 1.26 x 10⁴ kJ

D) 4.82 kJ

25) A student is preparing to perform a series of calorimetry experiments. She first wishes to determine the calorimeter constant (C_{cal}) for her coffee cup calorimeter. She pours a 50.0 mL sample of water at 345 K into the calorimeter containing a 50.0 mL sample of water at 298 K. She carefully records the final temperature of the water as 317 K. What is the value of C_{Cal} for the calorimeter?

A) 99 J/K

B) 19 J/K

C) 76 J/K

D) 28 J/K

E) 21 J/K

26) Use the standard reaction enthalpies given below to determine ΔH°_{TXD} for the following reaction:

26)

25)

$$P_4(g) + 10 Cl_2(g) \rightarrow 4PCl_5(s)$$
 $\Delta H^{\circ}_{rxn} = ?$

$$\Delta H^{\circ}_{rxn} = ?$$

Given:

$$PCl_5(s) \rightarrow PCl_3(g) + Cl_2(g)$$

$$\Delta H^{\circ}_{rxn}$$
= +157 kJ

$$P_4(g) + 6 Cl_2(g) \rightarrow 4 PCl_3(g)$$
 $\Delta H^{\circ}_{TXN} = -1207 \text{ kJ}$

$$\Delta H^{\circ}_{rxn} = -1207 \text{ kJ}$$

E) -1050. kJ

27) Choose the reaction that illustrates ΔH°_{f} for Ca(NO₃)₂.

27) ____

A)
$$Ca(NO_3)_2(aq) \rightarrow Ca^{2+}(aq) + 2 NO_3^{-}(aq)$$

B)
$$Ca^{2+}(aq) + 2 NO_3^{-}(aq) \rightarrow Ca(NO_3)_2(aq)$$

C)
$$Ca(NO_3)_2(s) \rightarrow Ca(s) + N_2(g) + 3O_2(g)$$

D)
$$Ca(s) + N_2(g) + 3O_2(g) \rightarrow Ca(NO_3)_2(s)$$

E) Ca(s) + 2 N(g) + 6 O(g)
$$\rightarrow$$
 Ca(NO₃)₂(s)

28) Use the $\Delta H^{\circ}f$ information provided to calculate $\Delta H^{\circ}rxn$ for the following:					28)	
H ₂ O(I) - HCI(g) -	mol) SO ₂ CI ₂ (g 364 286 92 814)) + 2 H ₂ O(I) → 2 H	CI(g) + H ₂ SO4(I) ΔΙ	H° _{rxn} = ?		
A) -62 kJ	B) -422 kJ	C) +161 kJ	D) -256 kJ	E) +800. kJ		
29) Place the following	g types of electromag	netic radiation in c	rder of increasing wave	elength.	29)	
ι	ıltraviolet light g	amma rays	radio waves			
B) ultraviolet li C) gamma rays D) gamma rays	s < ultraviolet light < q ight < gamma rays < i s < ultraviolet light < r s < radio waves < ultr s < gamma rays < ultr	radio waves radio waves aviolet light				
30) Which of the follo	wing visible colors of B) red	Flight has the higher C) yellow	est frequency? D) orange	E) blue	30)	
31) Calculate the wavelength (in nm) of a the red light emitted by a neon sign with a frequency of 4.74 × 10 ¹⁴ Hz.						
A) 142 nm	B) 466 nm	C) 158 nm	D) 704 nm	E) 633 nm		
32) How many photo contains 609 kJ of A) 3.06 × 10 ³⁰ g B) 3.37 × 10 ¹⁹ g C) 1.80 × 10 ²⁴ g D) 4.03 × 10 ²⁸ g E) 2.48 × 10 ²⁵ g	energy? ohotons ohotons ohotons ohotons	burst of yellow ligh	nt (589 nm) from a sodi	um lamp that	32)	
33) Calculate the wavelength of an electron (m = 9.11×10^{-28} g) moving at 3.66×10^{6} m/s.					33)	
A) 5.03 × 10-10 B) 1.99 × 10-10 C) 2.76 × 10-9 r D) 5.52 × 10-9 r E) 1.81 × 10-10	m n n					
34) Which of the followavelength photo A) n = 1 to n = B) n = 3 to n = C) n = 3 to n = D) n = 5 to n = E) n = 4 to n =	on? 2 4 1	hydrogen atom) re	epresent <u>emission</u> of th	e longest	34)	

35) For $n = 3$, what are the possible sublevels?						
A) 0	B) 0, 1, 2	C) 0, 1	D) 0, 1,2, 3		
 36) Each of the following sets of quantum numbers is supposed to specify an orbital. Which of the following sets of quantum numbers contains an error? A) n = 3, I = 0, m_I = 0 B) n = 4, I = 2, m_I = 0 C) n = 2, I = 1, m_I = -1 D) n = 3, I = 3, m_I = -2 E) n = 1, I = 0, m_I = 0 						
37) How many o	orbitals are contained in t B) 5	the third principal C) 9	level (<i>n</i> =3) of a given D) 3	n atom? E) 18	37)	
 38) Which of the following quantum numbers describes the shape of an orbital? A) angular momentum quantum number B) Schrödinger quantum number C) spin quantum number D) magnetic quantum number E) principal quantum number 						
39) How many different values of <i>m_I</i> are possible in the 3d sublevel?						
A) 3	B) 2	C) 1	D) 5	E) 7		
40) Give the valu A) -2	ue of I for a 3p sublevel. B) 0	C) -1	D) 2	E) 1	40)	