Diagnosis plots for all the statistical models used in "Impact of cropping system diversification on vegetative and reproductive characteristics of waterhemp (Amaranthus tuberculatus)" with ggResidpanel (Goode and Rey 2019).

Crop yield at the experiment site Crop identity in these yield models represented rotation system (2-year, 3-year or 4-year) for corn and soybean or 3-year and 4-year for oat.

```
## Did crop identity and corn weed management affect corn yield?
corn.lmer <- lmer(log(Standardized_yield_MgpHa) ~ Block +</pre>
                    Crop_ID*Corn_weed_management +
                    (1|Year) + (1|Year:Block) +
                    (1|Year:Crop ID) + (1|Year:Corn weed management) +
                    (1|Year:Crop_ID:Corn_weed_management) +
                    (1|Block:Year:Crop ID) ,
  data=corn) #corn was harvested on hafl-plot basis
resid_panel(corn.lmer, "all")
## Did crop identity and corn weed management affect soybean yield?
soy.lmer <- lmer(log(Standardized_yield_MgpHa) ~ Block +</pre>
                   Crop_ID*Corn_weed_management +
                   (1|Year) + (1|Year:Block) +
                   (1|Year:Crop_ID) + (1|Year:Corn_weed_management) +
                   (1|Year:Crop_ID:Corn_weed_management) +
                   (1|Block:Year:Crop_ID),
  data=soy) #soybean was harvested on hafl-plot basis
resid_panel(soy.lmer, "all")
## Did crop identity affect oat yield?
# crop identity represented rotation system (3-year or 4-year)
oat.lmer <- lmer(log(Standardized_yield_MgpHa) ~ Block + Crop_ID +
                   (1|Year) + (1|Year:Block) +
                   (1|Year:Crop_ID) + (1|Block:Year:Crop_ID),
 data=oat) #oat was harvested in whol-plot basis
resid_panel(oat.lmer, "all")
```

Community ecological indices Crop identities in these ecological indices models were the combinations of the crop species names' one-letter abbreviation and the rotation to which the crop belonged.

Figure 1: Diagnosis plot for the effect of crop identity and corn weed management on corn yield over four years with four blocks of replication.

Figure 2: Diagnosis plot for the effect of crop identity and corn weed management on soybean yield over four years with four blocks of replication.

Figure 3: Diagnosis plot for the effect of crop identity on oat yield over four years with four blocks of replication.

```
control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
# summary(dens_diversity.lmer1)$sigma #0.27
resid_panel(dens_diversity.lmer1, "all")
## Did crop identity and corn weed management affect weed community evenness index?
#min(dens ind 1720$Evenness[dens ind 1720$Evenness > 0]) #0.016156463
dens_even.lmer4 <- lmer(log(Evenness + 0.016156463) ~ Block +</pre>
                          Crop_ID * Corn_weed_management +
                          (1|Year) + (1|Year:Block) +
                          (1|Year:Crop_ID) + (1|Year:Corn_weed_management) +
                          (1|Year:Crop ID:Corn weed management) +
                          (1|Block:Year:Crop_ID) ,
                   data = dens_ind_1720,
                   control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
#summary(dens_even.lmer4)$sigma # 0.68 # second best sigma, better than arcsin sqrt transform and more
resid_panel(dens_even.lmer4, "all")
## Did crop identity and corn weed management affect weed community density richness index?
dens_rich.lmer2 <- lmer(log(Richness+1) ~ Block +</pre>
                          Crop_ID * Corn_weed_management +
                          (1|Year) + (1|Year:Block) +
                          (1|Year:Crop_ID) +
                         (1|Year:Corn_weed_management) +
                       (1|Year:Crop ID:Corn weed management) +
                         (1|Block:Year:Crop ID) ,
                   data = dens_ind_1720,
                   control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
# summary(dens_rich.lmer2)$sigma #0.288
resid_panel(dens_rich.lmer2, "all" )
## Did crop identity and corn weed management affect weed community biomass diversity index?
# min(biom_ind_1720$Diversity[biom_ind_1720$Diversity > 0])
biom_diversity.lmer1 <- lmer(log(Diversity + 1 ) ~ Block +</pre>
                               Crop_ID * Corn_weed_management +
                               (1|Year) + (1|Block:Year) +
                               (1|Year:Crop_ID) +
                               (1|Year:Corn_weed_management) +
                               (1|Year:Crop_ID:Corn_weed_management) +
                               (1|Block:Year:Crop_ID)
                   data = biom ind 1720,
                   control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
# summary(biom_diversity.lmer1)$sigma #0.25
resid_panel(biom_diversity.lmer1, "all")
## Did crop identity and corn weed management affect weed community aboveground mass evenness index?
min(biom_ind_1720$Evenness[biom_ind_1720$Evenness > 0])
## [1] 0.01510172
```


Figure 4: Diagnosis plot for the effect of crop identity and corn weed management on weed community density diversity index over four years with four blocks of replication.

Figure 5: Diagnosis plot for the effect of crop identity and corn weed management on weed community density evenness index over four years with four blocks of replication.

Figure 6: Diagnosis plot for the effect of crop identity and corn weed management on weed community density richness index over four years with four blocks of replication.

Figure 7: Diagnosis plot for the effect of crop identity and corn weed management on weed community aboveground mass diversity index over four years with four blocks of replication.

```
biom_even.lmer4 <- lmer(log(Evenness + 0.015101721 ) ~ Block +</pre>
                          Crop_ID * Corn_weed_management +
                        (1|Year) + (1|Year:Block) +
                       (1|Year:Crop_ID) + (1|Year:Corn_weed_management) +
                       (1|Year:Crop_ID:Corn_weed_management) +
                         (1|Block:Year:Crop_ID) ,
                   data = biom_ind_1720,
                   control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
#summary(biom_even.lmer4)$sigma # 0.72 # second best sigma, points more spread-out
resid_panel(biom_even.lmer4, "all")
## Did crop identity and corn weed management affect weed community aboveground mass richness index?
# min( biom_ind_1720$Richness[ biom_ind_1720$Richness > 0])
biom_rich.lmer2 <- lmer(log(Richness + 1) ~ Block +</pre>
                          Crop_ID * Corn_weed_management +
                        (1|Year) + (1|Year:Block) +
                       (1|Year:Crop_ID) + (1|Year:Corn_weed_management) +
                       (1|Year:Crop_ID:Corn_weed_management) +
                         (1|Block:Year:Crop_ID) ,
                   data = biom_ind_1720,
                   control=lmerControl(check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)))
#summary(biom_rich.lmer2)$sigma #0.2935
resid_panel(biom_rich.lmer2 , "all")
```

Total weed community density and aboveground mass

Figure 8: Diagnosis plot for the effect of crop identity and corn weed management on weed community aboveground mass evenness index over four years with four blocks of replication.

Figure 9: Diagnosis plot for the effect of crop identity and corn weed management on weed community aboveground mass richness index over four years with four blocks of replication.

Figure 10: Diagnosis plot for the effect of crop identity and corn weed management on weed community aboveground mass over four years with four blocks of replication.

Figure 11: Diagnosis plot for the effect of crop identity and corn weed management on weed community density over four years with four blocks of replication.

Top seven species individual density

```
biom_1720_long <- biom_1720_clean %>%
 pivot_longer(!c(Crop:Corn_weed_management),
               names to = "Species", values to = "Biomass")
\# min(biom\_1720\_long\$Biomass[biom\_1720\_long\$Biomass>0]) \# 0.0005396072
biom_result_t <- biom_1720_long %>%
  group_by(Species) %>%
  nest() %>%
  mutate(models=map(data,~lmer(log(Biomass + 0.0005396072) ~ Block +
                                 Crop_ID + Corn_weed_management +
                                 Crop_ID:Corn_weed_management +
                                 (1|Year) + (1|Year:Block) +
                                 (1|Year:Crop_ID) +
                                 (1|Year:Corn_weed_management) +
                                 (1|Year:Crop_ID:Corn_weed_management) +
                                 (1|Block:Year:Crop_ID),data =.x))) %>%
  ungroup %>%
  mutate(jts = map(models, joint_tests),
         diag plots = map(models, resid panel, "all"),
across(jts:diag_plots, setNames, .$Species))
```

Top seven species individual aboveground mass Goode, Katherine, and Kathleen Rey. 2019. "ggResidpanel: Panels and Interactive Versions of Diagnostic Plots Using 'Ggplot2'."

Figure 12: Diagnosis plot for the effect of crop identity and corn weed management on the aboveground mass of (A) - AMATA, (B) - CHEAL, (C) - DIGSA, (D) - ECHCG, (E) - SETFA, (F) - SETLU, and (G) - TAROF

Figure 13: Diagnosis plot for the effect of crop identity and corn weed management on the density of (A) - AMATA, (B) - CHEAL, (C) - DIGSA, (D) - ECHCG, (E) - SETFA, (F) - SETLU, and (G) - TAROF