A density of ramified primes

Stephanie Chan

University of Michigan

Spins

Given a number field K, let $\mathcal{O}_{K,+}^{\times} := \{u \in \mathcal{O}_{K}^{\times} : u \text{ totally positive}\}.$

Friedlander, Iwaniec, Mazur, and Rubin studied, in number fields K satisfying

- (P1) K/\mathbb{Q} is Galois, K is totally real, $\mathcal{O}_{K,+}^{\times} = (\mathcal{O}_{K}^{\times})^2$, and
- (P2) $Gal(K/\mathbb{Q})$ is cyclic,

the behaviour of a quadratic residue symbol defined on any odd **principal** ideal \mathfrak{a} and any $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$,

$$spin(\mathfrak{a}, \sigma) := \left(\frac{\alpha}{\mathfrak{a}^{\sigma}}\right),$$

where α is any totally positive generator of $\mathfrak{a}.$

Spins

Given a number field K, let $\mathcal{O}_{K,+}^{\times} := \{u \in \mathcal{O}_{K}^{\times} : u \text{ totally positive}\}.$

Friedlander, Iwaniec, Mazur, and Rubin studied, in number fields K satisfying

- (P1) K/\mathbb{Q} is Galois, K is totally real, $\mathcal{O}_{K,+}^{\times} = (\mathcal{O}_{K}^{\times})^2$, and
- (P2) $Gal(K/\mathbb{Q})$ is cyclic,

the behaviour of a quadratic residue symbol defined on any odd **principal** ideal \mathfrak{a} and any $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$,

$$\mathsf{spin}(\mathfrak{a},\sigma) \coloneqq \left(\frac{\alpha}{\mathfrak{a}^{\sigma}}\right),\,$$

where α is any totally positive generator of $\mathfrak{a}.$

The assumption $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$ ensures that

- ▶ any principal ideal has a totally positive generator $(\mathcal{O}_{K,+}^{\times} = (\mathcal{O}_{K}^{\times})^2)$ if and only if $\mathsf{CI}^+ = \mathsf{CI}$, when K is totally real);
- ightharpoonup any two totally positive generators of α differ by a square, so the spin is independent of the choice of totally positive generator α .

Some applications of spins

▶ 2-Selmer group of elliptic curves (Friedlander-Iwaniec-Mazur-Rubin).

Example (Friedlander-Iwaniec-Mazur-Rubin)

Let $E: y^2 = x^3 + x^2 - 16x - 29$ and $K = \mathbb{Q}(E[2])$. Then K is a cyclic extension of \mathbb{Q} of degree 3. Take σ to be a generator of $Gal(K/\mathbb{Q})$. If p is a rational prime that splits completely in K, and a prime $\mathfrak p$ above p has a totally positive generator congruent to 1 mod 8, then

$$\dim_{\mathbb{F}_2} \operatorname{\mathsf{Sel}}_2(E^{(p)}) = \left\{ egin{array}{ll} 3 & ext{ if } \operatorname{\mathsf{spin}}(\mathfrak{p},\sigma) = 1 \\ 1 & ext{ if } \operatorname{\mathsf{spin}}(\mathfrak{p},\sigma) = -1. \end{array}
ight.$$

▶ 16-rank of class groups of quadratic fields (Koymans–Milovic).

Distribution of spins

Friedlander, Iwaniec, Mazur, and Rubin proved that if σ is a (fixed) generator of $Gal(K/\mathbb{Q})$, the density of principal prime ideals $\mathfrak p$ in K such that $spin(\mathfrak p,\sigma)=1$ is equal to 1/2, conditional to the following conjecture.

Conjecture C_{η}

Let η be a real number satisfying $0<\eta\leq 1$. Then there exists a real number $\delta=\delta(\eta)>0$ such that for all $\epsilon>0$ there exists a real number $C=C(\eta,\epsilon)>0$ such that for all integers $Q\geq 3$, all real non-principal characters χ of conductor $q\leq Q$, all integers $N\leq Q^\eta$, and all integers M, we have

$$\left|\sum_{M < a \le M+N} \chi(a)\right| \le CQ^{\eta(1-\delta)+\epsilon}.$$

A conjecture on short character sums

Conjecture C_{η}

Let η be a real number satisfying $0<\eta\leq 1$. Then there exists a real number $\delta=\delta(\eta)>0$ such that for all $\epsilon>0$ there exists a real number $C=C(\eta,\epsilon)>0$ such that for all integers $Q\geq 3$, all real non-principal characters χ of conductor $q\leq Q$, all integers $N\leq Q^{\eta}$, and all integers M, we have

$$\left|\sum_{M < a \le M+N} \chi(a)\right| \le CQ^{\eta(1-\delta)+\epsilon}.$$

Conjecture C_{η} is

- lacktriangle known for $\eta>1/4$, as a consequence of the classical Burgess's inequality;
- ▶ open for $\eta \le 1/4$;
- ▶ for sums as above starting at M = 0, a consequence of the Generalised Riemann Hypothesis for the L-function $L(s, \chi)$.

Theorem (Friedlander-Iwaniec-Mazur-Rubin)

Suppose K is a totally real number field, cyclic Galois over \mathbb{Q} , and satisfying $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$. Suppose $n = [K:\mathbb{Q}] \geq 3$. Assume Conjecture C_{η} holds for $\eta = \frac{1}{n}$ with $\delta = \delta(\eta) > 0$. Let σ be a generator of the Galois group $\operatorname{Gal}(K/\mathbb{Q})$. Then for all X > 3, we have

$$\left|\sum_{\substack{\mathfrak{p} \ \textit{principal} \\ \mathsf{Norm}(\mathfrak{p}) \leq X}} \mathsf{spin}(\mathfrak{p}, \sigma)\right| \ll_{\epsilon, K} X^{1-\theta+\epsilon}$$

where
$$\theta = \theta(n) = \frac{\delta}{2n(12n+1)}$$
.

The result still holds when congruence conditions are imposed.

The proof uses Vinogradov's method of sums of type I and type II.

By Burgess's inequality, Conjecture C_{η} holds for $\eta=1/3$ with $\delta=\frac{1}{48}$, so the theorem holds unconditionally for $[K:\mathbb{Q}]=3$ where $\theta=\frac{1}{10656}$.

Joint distribution of spins

Given $\sigma, \tau \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$ such that $\sigma \neq \tau$ and $\sigma \neq \tau^{-1}$, Koymans and Milovic proved that $\operatorname{spin}(\mathfrak{p}, \sigma)$ and $\operatorname{spin}(\mathfrak{p}, \tau)$ are distributed independently, i.e. that the product $\operatorname{spin}(\mathfrak{p}, \sigma) \operatorname{spin}(\mathfrak{p}, \tau)$ oscillates (still conditional on Conjecture C_n).

Joint distribution of spins

Given $\sigma, \tau \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$ such that $\sigma \neq \tau$ and $\sigma \neq \tau^{-1}$, Koymans and Milovic proved that $\operatorname{spin}(\mathfrak{p}, \sigma)$ and $\operatorname{spin}(\mathfrak{p}, \tau)$ are distributed independently, i.e. that the product $\operatorname{spin}(\mathfrak{p}, \sigma) \operatorname{spin}(\mathfrak{p}, \tau)$ oscillates (still conditional on Conjecture C_n).

More generally, they prove that the product of spins

$$\prod_{\sigma \in H} \mathsf{spin}(\mathfrak{p}, \sigma)$$

oscillates as long as the fixed non-empty $H \subset \operatorname{Gal}(K/\mathbb{Q})$ satisfies the property

$$\sigma \not\in H$$
 whenever $\sigma^{-1} \in H$.

Their result holds for number fields K satisfying

(P1) K/\mathbb{Q} is Galois, K is totally real, $\mathcal{O}_{K,+}^{\times} = (\mathcal{O}_{K}^{\times})^{2}$. (not necessarily cyclic)

Theorem (Koymans-Milovic)

Suppose K is a totally real number field, Galois over \mathbb{Q} , and satisfying $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$. Suppose $H \subset \operatorname{Gal}(K/\mathbb{Q})$ is nonempty and satisfies the property

 $\sigma \not\in H$ whenever $\sigma^{-1} \in H$.

Suppose $n = [K : \mathbb{Q}] \ge 3$. Assume Conjecture C_{η} holds for $\eta = \frac{1}{n|H|}$ with $\delta = \delta(\eta) > 0$. Then for all X > 3, we have

$$\left| \sum_{\substack{\mathfrak{p} \text{ principal} \\ \mathsf{Norm}(\mathfrak{p}) \leq X}} \prod_{\sigma \in H} \mathsf{spin}(\mathfrak{p}, \sigma) \right| \ll_{\epsilon, K} X^{1 - \theta + \epsilon}$$

where
$$\theta = \theta(n, |H|) = \frac{\delta}{54|H|^2n(12n+1)}$$
.

The relation between some spins

The assumption $\sigma \notin H$ whenever $\sigma^{-1} \in H$ is made because $spin(\mathfrak{p}, \sigma)$ and $spin(\mathfrak{p}, \sigma^{-1})$ are not independent.

Lemma (Friedlander-Iwaniec-Mazur-Rubin)

Suppose K is a totally real number field, cyclic Galois over \mathbb{Q} , and satisfying $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$. Suppose $\mathfrak{p} \subset \mathcal{O}_{K}$ is a prime ideal and $\sigma \in \mathsf{Gal}(K/\mathbb{Q})$ is such that \mathfrak{p} and \mathfrak{p}^{σ} are coprime. Then

$$spin(\mathfrak{p},\sigma)spin(\mathfrak{p},\sigma^{-1}) = \prod_{\nu|2} (\alpha,\alpha^{\sigma})_{\nu}, \tag{1}$$

where α is a totally positive generator of \mathfrak{p} .

This lemma is a consequence of Hilbert reciprocity and the fact that $(\alpha, \alpha^{\sigma})_{\mathfrak{p}} = \mathrm{spin}(\mathfrak{p}, \sigma^{-1})$ and $(\alpha, \alpha^{\sigma})_{\mathfrak{p}^{\sigma}} = \mathrm{spin}(\mathfrak{p}, \sigma)$.

Spins for non-principal ideals

We study the joint distribution of multiple spins spin(\mathfrak{p}, σ), $\sigma \in H = \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$, so there are many $\sigma \in H$ such that $\sigma^{-1} \in H$ as well.

Spins for non-principal ideals

We study the joint distribution of multiple spins spin(\mathfrak{p}, σ), $\sigma \in H = \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$, so there are many $\sigma \in H$ such that $\sigma^{-1} \in H$ as well.

Assuming the class number is odd, we can naturally extend the definition of spin to **all** odd ideals, not necessarily principal.

Definition

Suppose K is a cyclic Galois totally real number field satisfying $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$ and has odd class number. Given an odd ideal \mathfrak{a} , define the spin of \mathfrak{a} with respect to $\sigma \in \mathsf{Gal}(K/\mathbb{Q})$ to be

$$\mathsf{spin}(\mathfrak{a},\sigma)\coloneqq\left(\frac{lpha}{\mathfrak{a}^{\sigma}}\right),$$

where α is any totally positive generator of the principal ideal \mathfrak{a}^h .

We consider number fields K satisfying the following properties:

- (P1) K/\mathbb{Q} is Galois, K is totally real, $\mathcal{O}_{K,+}^{\times} = \left(\mathcal{O}_{K}^{\times}\right)^{2}$;
- (P2) $Gal(K/\mathbb{Q})$ is cyclic;
- (P3) the class number # CI of K is odd;
- (P4) $n := [K : \mathbb{Q}]$ is odd; and
- (P5) the prime 2 is inert in K/\mathbb{Q} .

We consider number fields K satisfying the following properties:

- (P1) K/\mathbb{Q} is Galois, K is totally real, $\mathcal{O}_{K,+}^{\times} = (\mathcal{O}_{K}^{\times})^{2}$;
- (P2) $Gal(K/\mathbb{Q})$ is cyclic;
- (P3) the class number # Cl of K is odd;
- (P4) $n := [K : \mathbb{Q}]$ is odd; and
- (P5) the prime 2 is inert in K/\mathbb{Q} .

The conditions are equivalent to

- (C1) K/\mathbb{Q} is Galois;
- (C2) $Gal(K/\mathbb{Q})$ is cyclic;
- (C3) the narrow class number $\# Cl^+$ of K is odd;
- (C4) $n := [K : \mathbb{Q}]$ is odd; and
- (C5) the prime 2 is inert in K/\mathbb{Q} , since (C1)+(C3)+(C4) implies (P1).

Density of primes satisfying a property of spins

$$\label{eq:S:posterior} \begin{split} \mathsf{Define} & \quad S \coloneqq \{ p \text{ prime} : p \text{ splits completely in } \mathcal{K}/\mathbb{Q} \}, \\ & \quad F \coloneqq \{ p \in S : \mathsf{spin}(\mathfrak{p}, \sigma) = 1 \text{ for all } \sigma \in \mathsf{Gal}(\mathcal{K}/\mathbb{Q}) \setminus \{1\} \}, \end{split}$$

where \mathfrak{p} denotes a prime ideal in K lying above p.

Notice that $p \in F$

$$\Leftrightarrow \qquad \qquad \mathfrak{p}^{\sigma} \text{ splits in } K(\sqrt{\alpha})/K \text{ for all } \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$$

$$\Leftrightarrow \qquad \qquad \mathfrak{p} \text{ splits in } K(\sqrt{\alpha^{\sigma}})/K \text{ for all } \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\},$$

where α is a totally positive generator of the ideal \mathfrak{p}^h .

Density of primes satisfying a property of spins

Define
$$S := \{p \text{ prime} : p \text{ splits completely in } K/\mathbb{Q}\},$$

$$F := \{p \in S : \text{spin}(\mathfrak{p}, \sigma) = 1 \text{ for all } \sigma \in \mathsf{Gal}(K/\mathbb{Q}) \setminus \{1\}\},$$

where \mathfrak{p} denotes a prime ideal in K lying above p.

Notice that $p \in F$

$$\Leftrightarrow \qquad \mathfrak{p}^{\sigma} \text{ splits in } K(\sqrt{\alpha})/K \text{ for all } \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$$

$$\Leftrightarrow \qquad \mathfrak{p} \text{ splits in } K(\sqrt{\alpha^{\sigma}})/K \text{ for all } \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\},$$

where α is a totally positive generator of the ideal \mathfrak{p}^h .

For sets of primes $A \subseteq B$, we define the restricted density

$$d(A|B) := \lim_{N \to \infty} \frac{\#\{p \in A : p < N\}}{\#\{p \in B : p < N\}}.$$

Goal: Find d(F|S).

If the spins of a fixed prime ideal $\text{spin}(\mathfrak{p},\sigma)$ and $\text{spin}(\mathfrak{p},\tau)$ were independent for all $\sigma \neq \tau \in \text{Gal}(K/\mathbb{Q}) \setminus \{1\}$, then one might expect the density of F restricted to S to be $2^{-(n-1)}$.

However, the relation

$$\mathsf{spin}(\mathfrak{p},\sigma)\,\mathsf{spin}(\mathfrak{p},\sigma^{-1})=\prod_{\nu|2}(\alpha,\alpha^{\sigma})_{\nu}$$

means that the density is not as straightforward.

Table: Densities computed for K of degree n satisfying the necessary hypotheses.

n	d(F S)	$1/2^{n-1}$	$2^{n-1}d(F S)$
3	1/4	1/4	1
5	3/64	1/16	0.75
7	11/512	1/64	1.375
9	7/2048	1/256	0.875
11	17/32768	1/1024	0.53125
13	33/262144	1/4096	0.51563
15	47/262144	1/16384	2.9375
17	145/16777216	1/65536	0.56640
19	257/134217728	1/262144	0.50195

Table: Densities computed for K of degree n satisfying the necessary hypotheses.

n	d(F S)	$1/2^{n-1}$	$2^{n-1}d(F S)$	order of 2 in $(\mathbb{Z}/n\mathbb{Z})^{\times}$
3	1/4	1/4	1	2
5	3/64	1/16	0.75	4
7	11/512	1/64	1.375	3
9	7/2048	1/256	0.875	6
11	17/32768	1/1024	0.53125	10
13	33/262144	1/4096	0.51563	12
15	47/262144	1/16384	2.9375	4
17	145/16777216	1/65536	0.56640	8
19	257/134217728	1/262144	0.50195	18

Theorem (C.-McMeekin-Milovic)

Let K be a cyclic number field of odd degree n over $\mathbb Q$ with odd narrow class number, and such that 2 is inert in $K/\mathbb Q$. Assume Conjecture C_η holds for $\eta = \frac{2}{n(n-1)}$. For $k \neq 1$ dividing n, let d_k be the order of 2 in $(\mathbb Z/k\mathbb Z)^\times$. Then

$$d(F|S) = \frac{s_+ + s_-}{2^{(3n-1)/2}}$$

where

$$s_+ \coloneqq 1 + \prod_{\substack{k \mid n, \ k \neq 1 \\ d_k \circ dd}} 2^{\frac{\phi(k)}{2d_k}} \left(\prod_{\substack{k \mid n, \ k \neq 1 \\ d_k \circ dd}} 2^{\frac{\phi(k)}{2}} - 1 \right),$$

and

$$s_{-} \coloneqq \prod_{\substack{k \mid n, \ k \neq 1 \\ d_k \, \text{even}}} (2^{\frac{d_k}{2}} + 1)^{\frac{\phi(k)}{d_k}} \prod_{\substack{k \mid n, \ k \neq 1 \\ d_k \, \text{odd}}} (2^{d_k} - 1)^{\frac{\phi(k)}{2d_k}},$$

where ϕ denotes the Euler's totient function.

The cubic case is unconditional due to Burgess's inequality.

In particular, when n = p is prime, writing d as the order of 2 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, we have

$$(s_+,s_-) = \left\{ \begin{array}{ll} \left(1 + 2^{\frac{p-1}{2d}}(2^{\frac{p-1}{2}} - 1), \ (2^d - 1)^{\frac{p-1}{2d}}\right) & \text{if d is odd,} \\ \left(1, \ (2^{\frac{d}{2}} + 1)^{\frac{p-1}{d}}\right) & \text{if d is even.} \end{array} \right.$$

When d = p - 1,

$$s_{+} + s_{-} = 2^{\frac{p-1}{2}} + 2,$$

$$d(F|S) = \frac{s_{+} + s_{-}}{2^{\frac{3p-1}{2}}} = \frac{1 + 2^{-\frac{p-1}{2}}}{2^{p}} \approx \frac{1}{2^{p}}.$$

Splitting up the density

Recall
$$S := \{p \text{ prime} : p \text{ splits completely in } K/\mathbb{Q}\},$$

$$F := \{p \in S : \text{spin}(\mathfrak{p}, \sigma) = 1 \text{ for all } \sigma \in \mathsf{Gal}(K/\mathbb{Q}) \setminus \{1\}\},$$

Define

$$R \coloneqq \{p \in S : \mathsf{spin}(\mathfrak{p}, \sigma) = \mathsf{spin}(\mathfrak{p}, \sigma^{-1}) \text{ for all } \sigma \in \mathsf{Gal}(K/\mathbb{Q}) \setminus \{1\}\},$$

where p is a fixed prime of K above p.

Since $F \subseteq R \subseteq S$, if the limits exist then

$$d(F|S) = d(F|R)d(R|S).$$

Splitting up the density

Recall
$$S := \{p \text{ prime} : p \text{ splits completely in } K/\mathbb{Q}\},$$
 $F := \{p \in S : \text{spin}(\mathfrak{p}, \sigma) = 1 \text{ for all } \sigma \in \text{Gal}(K/\mathbb{Q}) \setminus \{1\}\},$

Define

$$R := \{ p \in S : \operatorname{spin}(\mathfrak{p}, \sigma) = \operatorname{spin}(\mathfrak{p}, \sigma^{-1}) \text{ for all } \sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\} \},$$

where p is a fixed prime of K above p.

Since $F \subseteq R \subseteq S$, if the limits exist then

$$d(F|S) = d(F|R)d(R|S).$$

Proving the density

$$d(F|R) = 2^{-\frac{n-1}{2}},$$

requires a modification of previous result by Koymans and Milovic.

The Hilbert symbol condition

We want to find d(R|S).

Define a map $\star: S \to \{\pm 1\}$, such that

$$\begin{split} R &= \{ p \in \mathcal{S} : \mathsf{spin}(\mathfrak{p}, \sigma) = \mathsf{spin}(\mathfrak{p}, \sigma^{-1}) \text{ for all } \sigma \in \mathsf{Gal}(\mathcal{K}/\mathbb{Q}) \setminus \{1\} \} \\ &= \{ p \in \mathcal{S} : \star(p) = 1 \}. \end{split}$$

With

$$\mathsf{spin}(\mathfrak{p},\sigma)\,\mathsf{spin}(\mathfrak{p},\sigma^{-1})=\prod_{\nu|2}(\alpha,\alpha^{\sigma})_{\nu},$$

we know that

$$\star(p)=1$$
 if and only if $(\alpha,\alpha^{\sigma})_2=1$ for all $\sigma\in \mathsf{Gal}(K/\mathbb{Q})\setminus\{1\},$

where α is a totally positive generator of the ideal \mathfrak{p}^h .

The extra assumptions on K provide the following convenience:

- ▶ $Gal(K/\mathbb{Q})$ being cyclic allows us to restrict to one generator,
- ▶ 2 being inert means the product $\prod_{\nu|2} (\alpha, \alpha^{\sigma})_{\nu}$ is simply $(\alpha, \alpha^{\sigma})_2$;
- $ightharpoonup [K:\mathbb{Q}]$ being odd avoids involutions in $Gal(K/\mathbb{Q})$.

The Hilbert symbol $(\cdot, \cdot)_2$, when restricted to odd primes, factors through $\mathbf{M}_4 := (\mathcal{O}_K/4\mathcal{O}_K)^\times/((\mathcal{O}_K/4\mathcal{O}_K)^\times)^2$ (viewed as a multiplicative group), so $\star(p)$ only depends on the class of $\mathfrak p$ in \mathbf{M}_4 .

As an \mathbb{F}_2 -vector space,

$$\mathbf{M}_4 = (\mathcal{O}_K/4\mathcal{O}_K)^\times/((\mathcal{O}_K/4\mathcal{O}_K)^\times)^2 \cong \mathcal{O}_K/2\mathcal{O}_K \cong (\mathbb{Z}/2\mathbb{Z})^n.$$

By the Chebotarev Density Theorem,

$$d(R|S) = \frac{\#\{[\alpha] \in \mathbf{M}_4 : \star(\alpha) = 1\}}{2^n},$$

where $[\alpha]$ denotes the image of $\alpha \in \mathcal{O}_K$ in \mathbf{M}_4 , and

$$\star(\alpha) = 1 \Leftrightarrow (\alpha, \alpha^{\sigma})_2 = 1 \text{ for all } \sigma \in \mathsf{Gal}(K/\mathbb{Q}) \setminus \{1\}.$$

We want to find the number of elements in M_4 with a representative $\alpha \in \mathcal{O}_K$ satisfying

$$(\alpha, \alpha^{\sigma})_2 = 1$$
 for all $\sigma \in Gal(K/\mathbb{Q}) \setminus \{1\}$.

There exists some $y \in \mathcal{O}_K$ such that

$$\{[y^{\sigma}]: \sigma \in \mathsf{Gal}(K/\mathbb{Q})\}$$
 is a basis for \mathbf{M}_4 .

Fixing a generator σ of $Gal(K/\mathbb{Q})$,

$$\mathbf{M}_4 = \left\{ \prod_{i=0}^{n-1} [y_{(i)}]^{u_i} : (u_0, \dots, u_{n-1}) \in \mathbb{F}_2^n \right\}, \text{ where } y_{(i)} := y^{\sigma^i}.$$

The Hilbert symbol $(\cdot, \cdot)_2$ on \mathbf{M}_4 is

- multiplicatively bilinear,
- symmetric,
- non-degenerate,

so with respect to the basis $[y_{(i)}]$, $0 \le i \le n-1$, its matrix representation A is an $n \times n$ matrix over \mathbb{F}_2 , that is symmetric and invertible.

The (i, j)-entry of A satisfies

$$(-1)^{A_{ij}} = (y_{(i)}, y_{(j)})_2.$$

For any $\mathbf{u}=(u_0,\ldots,u_{n-1}), \mathbf{v}=(v_0,\ldots,v_{n-1})\in\mathbb{F}_2^n$, we have

$$\left(\prod_{i} y_{(i)}^{u_i}, \prod_{j} y_{(j)}^{\mathsf{v}_j}\right)_2 = (-1)^{\mathbf{u}^T A \mathbf{v}}.$$

Define the $n \times n$ upper shift \mathbb{F}_2 -matrix

$$T_1 \coloneqq \left(egin{array}{cccc} 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \dots & \vdots \ 1 & 0 & 0 & \dots & 0 \end{array}
ight), \quad T_k \coloneqq T_1^k.$$

Then
$$\alpha = \prod_i y_{(i)}^{u_i}$$
, $\mathbf{u} = (u_0, \dots, u_{n-1}) \in \mathbb{F}_2^n$ satisfies

$$(\alpha, \alpha^{\sigma})_2 = 1$$
 for all $\sigma \in \operatorname{Gal}(K/\mathbb{Q}) \setminus \{1\}$

$$\Leftrightarrow \qquad \mathbf{u}^T A T_1 \mathbf{u} = \mathbf{u}^T A T_2 \mathbf{u} = \cdots = \mathbf{u}^T A T_{n-1} \mathbf{u} = 0,$$

$$\Leftrightarrow A \begin{pmatrix} \mathbf{u}^T T_0 \mathbf{u} \\ \mathbf{u}^T T_1 \mathbf{u} \\ \vdots \\ \mathbf{u}^T T_{n-1} \mathbf{u} \end{pmatrix} \in \left\{ \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}.$$

There is the following one-to-one correspondence

$$\Psi : \mathbb{F}_2^n \to \mathbb{F}_2[x]/(x^n - 1)$$

$$\mathbf{u} = (u_0, \dots, u_{n-1}) \mapsto F_{\mathbf{u}}(x) = u_0 + u_1 x + u_2 x^2 + \dots + u_{n-1} x^{n-1}.$$

The map

$$B: \ \mathbb{F}_2[x]/(x^n-1) \to \mathbb{F}_2[x]/(x^n-1)$$
$$F \mapsto x^n \cdot F(x)F(1/x).$$

fits into

$$\mathbf{u} = (u_0, \dots, u_{n-1}) \xrightarrow{\Psi} F_{\mathbf{u}}(x)$$

$$\downarrow \qquad \qquad \downarrow_{B}$$

$$\mathbf{v} = (\mathbf{u}^T T_0 \mathbf{u}, \ \mathbf{u}^T T_1 \mathbf{u}, \dots, \ \mathbf{u}^T T_{n-1} \mathbf{u}) \xrightarrow{\Psi} F_{\mathbf{v}}(x) = x^n \cdot F_{\mathbf{u}}(x) F_{\mathbf{u}}(1/x)$$

Then

$$A \begin{pmatrix} \boldsymbol{u}^T \mathcal{T}_0 \boldsymbol{u} \\ \boldsymbol{u}^T \mathcal{T}_1 \boldsymbol{u} \\ \vdots \\ \boldsymbol{u}^T \mathcal{T}_{n-1} \boldsymbol{u} \end{pmatrix} \in \left\{ \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}.$$

if and only if

$$B(F_{\mathbf{u}}) \in \{0, h(x)\},$$

where $h(x) = \Psi(A^{-1}(1,0,\ldots,0))$.

Lemma

$$\begin{split} &\#\{[\alpha] \in \textbf{M}_4 : \star(\alpha) = 1\} \\ &= \#B^{-1}(0) + \#B^{-1}(h(x)) \\ &= \#\left\{F \in \mathbb{F}_2[x]/(x^n - 1) : x^n \cdot F(x)F(1/x) \equiv 0 \text{ or } h(x)\right\}. \end{split}$$

We want to find formulas for $\#B^{-1}(0)$ and $\#B^{-1}(h(x))$.

Any F in

$$B^{-1}(0) = \{ F \in \mathbb{F}_2[x]/(x^n - 1) : x^n \cdot F(x)F(1/x) \equiv 0 \},$$

satisfy

$$(x^{n}-1) | F(x)F^{*}(x),$$

where F^* denote the reciprocal of F, i.e. $F^*(x) = x^{\deg F} \cdot F(1/x)$.

Thus $\#B^{-1}(0)$ depends on the factorisation of x^n-1 in $\mathbb{F}_2[x]$.

Any F in

$$B^{-1}(0) = \{ F \in \mathbb{F}_2[x]/(x^n - 1) : x^n \cdot F(x)F(1/x) \equiv 0 \},$$

satisfy

$$(x^{n}-1) | F(x)F^{*}(x),$$

where F^* denote the reciprocal of F, i.e. $F^*(x) = x^{\deg F} \cdot F(1/x)$.

Thus $\#B^{-1}(0)$ depends on the factorisation of $x^n - 1$ in $\mathbb{F}_2[x]$.

$$x^{3} - 1 = (x+1)(x^{2} + x + 1)$$

$$x^{5} - 1 = (x+1)(x^{4} + x^{3} + x^{2} + x + 1)$$

$$x^{7} - 1 = (x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

Lemma

For any factor $k \neq 1$ of n, let d_k be the order of 2 in $(\mathbb{Z}/k\mathbb{Z})^{\times}$. Also set $d_1 = 1$. Consider the following factorisation in $\mathbb{F}_2[x]$,

$$x^{n}-1=f_{1}(x)\dots f_{r}(x)f_{m+1}^{*}(x)\dots f_{r}^{*}(x), \qquad (2)$$

where f_i are irreducible and $f_i=f_i^*$ for $i=1,\ldots,m$. Then $\sum_{i=1}^r \deg f_i=\sum_{k|n} r_k d_k$ and $r=\sum_{k|n} r_k$ and $m=\sum_{k|n} m_k$, where $r_1=m_1=1$, and

$$(r_k, m_k) = \left\{ egin{array}{ll} \left(rac{\phi(k)}{2d_k}, \ 0
ight) & ext{if } d_k ext{ is odd,} \\ \left(rac{\phi(k)}{d_k}, \ rac{\phi(k)}{d_k}
ight) & ext{if } d_k ext{ is even,} \end{array}
ight.$$

for $k \neq 1$.

Proposition

For each $k \neq 1$ dividing n, let d_k be the order of 2 in $(\mathbb{Z}/k\mathbb{Z})^{\times}$. Then

$$s_+ = 1 + \prod_{k \mid n, \ d_k \text{odd}, \ k \neq 1} 2^{\frac{\phi(k)}{2d_k}} \left(\prod_{k \mid n, \ d_k \text{odd}, \ k \neq 1} 2^{\frac{\phi(k)}{2}} - 1 \right),$$

and

$$s_{-} = \prod_{k \mid n, \ d_k \text{ even}, \ k \neq 1} (2^{d_k/2} + 1)^{\frac{\phi(k)}{d_k}} \prod_{k \mid n, \ d_k \text{ odd}, \ k \neq 1} (2^{d_k} - 1)^{\frac{\phi(k)}{2d_k}},$$

where ϕ denotes the Euler's totient function.

If n = p is a prime, then writing d as the order of 2 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$,

$$(s_+,s_-) = \left\{ egin{array}{ll} \left(1+2^{rac{p-1}{2d}}(2^{rac{p-1}{2}}-1),\; (2^d-1)^{rac{p-1}{2d}}
ight) & ext{if d is odd,} \ \left(1,\; (2^{rac{d}{2}}+1)^{rac{p-1}{d}}
ight) & ext{if d is even.} \end{array}
ight.$$

In particular, when n = 3, $s_+ = 1$ and $s_- = 3$.

Thank you!