ISEL – LEIM Processamento de Imagem e Visão

Inverno 2023-2024

Série de Exercícios 2

42 4 5 6 9 2 10 3 1 40 5 7 9 6 4 7 6 6 8 38 9 7 7 4 6 3 0 5

de circunferências de raio conhecido, obtém-se o seguinte troco do acumulador:

Considere que depois de aplicar o algoritmo da transformada de Hough para a detecção

-e	38	9	/	/	4	6	3	0	5
nac	36	4	2	2	2	3	6	4	7
rde	34	10	1	4	4	3	1	3	7
Coordenad	32	3	17	5	5	6	9	2	6
٥	30	7	2	10	1	3	9	2	0
		50	52	54	56	58	60	62	64
	Coordenada Y (pixel)								

Com base nesta porção do acumulador, quais os parâmetros da melhor circunferência (centro $C = [X_0; Y_0]$) que a transformada detectou?

|40:58|

32:521

[32;60]

42: 56L

Considere que as seguintes matrizes representam 3 imagens monocromáticas provenientes

(t)	(t+1)	(t+2)

195

210

Pretende-se realizar um algoritmo de detecção de objectos com base em subtracção de imagens. Determine a imagem de fundo com base na filtragem de mediana temporal.

101	120	140
105	125	130
101	135	135

101	105	101
120	125	135
140	130	135

100	105	101
120	125	135
140	130	195

101	105	101
120	125	200
140	200	195

Considere a seguinte matriz:

ter gerado este campo de movimento?

traço fraco. Qual o tipo de situação de movimento da câmara e/ou de objectos que pode

que representa o resultado do calculo do fluxo óptico, onde as setas indicam o sentido do deslocamento e as setas com traço forte indicam um descolamento maior que as setas a

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da direita para a esquerda.

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da esquerda para a direita.

Deslocamento horizontal da câmara no sentido da esquerda para a direita (pan right).

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left).

Considere a seguinte matriz:

e forte):

189	8	1//	97	114
100	71	81	195	165
167	12	242	203	181
44	25	9	48	192
180	210	112	125	70

que representa o módulo do gradiente de uma imagem, o limiar de 58 para determinar os pixeis de contorno e o limiar de 116 para decidir entre pixeis com contorno fraco ou forte. Qual o histograma normalizado da amplitude dos contornos com dois níveis (fraco

[0,08; 0,52]

[0,16; 0,44]

[0,32; 0,44]

[0,28; 0,48]

Considere uma câmara representada pelo modelo de projecção de perspectiva simples, que se conhecem os seguintes parâmetros intrínsecos, $k_y = k_y = 0.75$, que o eixo óptico intersecta o plano da imagem no píxel de coluna 320 e linha 240 e que a lente tem uma distância focal de 8mm. Determine qual o pixel que corresponde ao ponto 3D dado por [1000, 500, 40] (mm), representado no referencial da câmara ([X,Y,Z]).

[330; 235]

[323; 235]

[400; 200]

|470;165|

 175
 94

 47
 160

 21
 198

 111
 78

Considere a imagem a cores representada pelos seguintes planos de cor.

Plano R	Plano G	Plano B

Realize uma segmentação de cor no espaço RG normalizado, utilizando o algoritmo de distância ao centroide, considerando que existem duas cores dominantes representadas

distância ao centroide, considerando que existem duas cores dominantes representadas por: $C_1 \rightarrow (0, 31; 0, 46), C_2 \rightarrow (0, 26; 0, 12)$ $(R_n, G_n, \text{ respetivamente}).$

Considere que dispõem de uma câmara com um sensor de 1" e relação largura/altura de 4/3 (dimensões do sensor: altura 12,8mm e largura 16,0mm). Utilizando o modelo de projecção simples, qual a distância focal da lente para que, a 10 metros de distância, tenha um campo de visão vertical de 2 metros (considere que a distância é medida a partir do plano focal)?

32 mm.

64 mm.

10 mm.

15 mm.

X

ω	
$\hat{\omega}$	

dado por um classificador:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
3	3	1	3	2	1	2	2
3	3	1	3	3	2	3	1

Considere o seguinte conjunto de dados X com classe verdadeira ω e classe estimada $\hat{\omega}$,

Qual a probabilidade de erro?

Dada a seguinte matriz:

64	149	192	135	120
157	140	97	199	3
121	234	145	238	86
90	73	19	33	41
212	100	4.4	1.45	202

que representa o módulo do gradiente de uma imagem e um limiar de 79 para determinar os pixeis de contorno, a densidade de contornos desta imagem é: