Ideas of mathematical proof

Slides Week 22

Mappings. Cardinalities.

Injective mappings

Definition

A mapping $f: A \rightarrow B$ is **injective** (or **one-to-one**)

if different elements are sent to different:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

(the same: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$).

Example

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2$$

is not injective, since, e.g., f(-2) = f(2).

 $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is injective:

Horizontal Line Test for functions

For $A, B \subseteq \mathbb{R}$, a mapping $f : A \to B$ is injective if it satisfies the "Horizontal Line Test":

every horizontal line has at most one intersection point with the graph.

Is
$$f: [-1,1] \to \mathbb{R}$$
, $f(x) = \sqrt{1-x^2}$, injective?

fails Horizontal Line Test: not injective.

Without picture: e.g. f(1) = f(-1).

Let T be the set of triangles and let $f:T\to\mathbb{R}$, where f(t)= area of t.

Then f is not injective, as \exists different triangles with equal areas.

Example

Let $S = \{ \text{all circles on the plane centred at } (0,0) \}$ and let $f: S \to \mathbb{R}$, where f(c) = area of c.

This f is injective: for every area there is only one radius giving this area, and only one circle with centre (0,0) with this radius.

Let $A = \mathscr{P}(\{a, b, c\})$ (all subsets of $\{a, b, c\}$), and let $f : A \to A$, where $f(X) = X \cap \{a\}$.

This f is not injective: e.g., $f({a}) = {a} = f({a,b})$.

Surjective mappings

Definition

A mapping $f: A \rightarrow B$ is **surjective** (or **onto**) if f(A) = B.

 $(\forall b \in B \ \exists a \in A \ \text{such that} \ b = f(a).)$

Example

 $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$ is not surjective, since $f(x) \ge 0$ for all x, so e.g. $-1 \not\in f(A)$.

 $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = x^3$, is surjective.

Remark: Any mapping $f: A \rightarrow B$, can be 'made surjective' by changing the codomain B to f(A), so the same rule, but for $f: A \rightarrow f(A)$.

E.g.: $f : \mathbb{R} \to \{x \in \mathbb{R} \mid x \ge 0\}$, $f(x) = x^2$ is now surjective.

Bijective mappings

Definition

A mapping $f: A \rightarrow B$ is **bijective**

(or is a one-to-one correspondence)

if it is both injective and surjective.

Example

 $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^3$ is bijective.

 $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = \sin x$ is neither surjective, nor injective.

Change codomain: $f : \mathbb{R} \to [-1,1]$, $f(x) = \sin x$ is now surjective, but not injective $(\sin(a+2\pi) = \sin a)$.

Change domain: $f: [-\pi/2, \pi/2] \rightarrow [-1, 1]$, then $f(x) = \sin x$ is now also injective, so a bijection:

Inverse images

Definition

Given a mapping $f: A \rightarrow B$,

the **full inverse image** of an element $b \in B$

is the <u>set</u> $f^{-1}(b) = \{a \in A \mid f(a) = b\}.$

Note: f^{-1} is not a mapping in general.

Example

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$.

Then $f^{-1}(4) = \{-2, 2\}.$

Full inverse image as full solution

Example

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$.

Find $f^{-1}(0.5)$.

Solutions of equation f(x) = 0.5, $\sin x = 0.5$ $f^{-1}(0.5) = \{k\pi + (-1)^k \pi/6 \mid k \in \mathbb{Z}\}.$

Let $A = \mathcal{P}(\{a, b, c\})$ (all subsets of $\{a, b, c\}$), and let $f: A \to A$, $f(X) = X \cap \{a\}$.

Find the full inverses images of all elements of f(A).

The image is $f(A) = \{\emptyset, \{a\}\}.$

Full inverse images:

$$f^{-1}(\varnothing) = \{\varnothing, \{b\}, \{c\}, \{b, c\}\}$$

(all subsets X with $X \cap \{a\} = \emptyset$, that is, $X \not\ni a$).

$$f^{-1}(\{a\}) = \{\{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$$

(all subsets Y with $Y \cap \{a\} = \{a\}$, that is, $Y \ni a$).

Definition

For $f: A \rightarrow B$

an **inverse image** (or a **pre-image**) of $b \in B$ is any $a \in f^{-1}(b)$ that is, any a such that f(a) = b.

Only makes sense for $b \in f(A)$, (sometimes they put $f^{-1}(b) = \emptyset$ for $b \notin f(A)$).

Example

For $f(x) = \sin x$,

a pre-image of 0.5 is $\pi/6$, and $5\pi/6$, etc.

Remark: injective means precisely that

 $|f^{-1}(b)| = 1$ for all $b \in f(A)$, a unique pre-image.

Example

Let $A = \mathcal{P}(\{u, v, w\})$ (all subsets of $\{u, v, w\}$), and let $f : A \to \{0, 1, 2, 3, 4, 5\}$, f(X) = |X|.

What is $f^{-1}(2)$? Answer: $= \{\{u, v\}, \{u, w\}, \{v, w\}\}.$

In particular, f is not injective.

$$f^{-1}(0) = \{\varnothing\}.$$

 $f^{-1}(5)$ undefined (or $f^{-1}(5) = \emptyset$).

Inverse mapping

Definition

Suppose that $f: A \rightarrow B$ is a bijection.

Then $f^{-1}: B \to A$ can be regarded as a mapping:

$$f^{-1}(b) = a$$
 such that $f(a) = b$

is well defined $\forall b$ since such a is unique for a bijection.

Then f^{-1} is called the **inverse mapping** of f.

Diagram for inverse mapping

On the diagram this means reversing those arrows:

Remark: So-called 'abuse of notation':

generally $f^{-1}(b)$ is the <u>set</u> of all pre-images.

Even for a bijection, when f(a) = b,

strictly speaking, $f^{-1}(b) = \{a\}.$

But the same notation is used to denote

the inverse mapping (when it exists!): $f^{-1}(b) = a$.

Verify that
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{5x+3}{8}$

is a bijection and find the inverse mapping.

Injective: if
$$\frac{5x_1 + 3}{8} = \frac{5x_2 + 3}{8}$$
, then

$$5x_1 + 3 = 5x_2 + 3$$
, $5x_1 = 5x_2$, $x_1 = x_2$, as req.

Surjective: for any $y \in \mathbb{R}$ find x such that f(x) = y,

$$\frac{5x+3}{8} = y$$
, easily solved: $x = \frac{8y-3}{5}$.

So,
$$f^{-1}(y) = \frac{8y - 3}{5}$$
.

We know that

$$f: [-\pi/2, \pi/2] \to [-1, 1], \ f(x) = \sin x,$$
 is a bijection.

Hence it has inverse $f^{-1}:[-1,1]\to[-\pi/2,\pi/2]$, denoted by \sin^{-1} or arcsin.

Show that the mapping

$$f:[2,\infty)\to[-3,0), \quad f(x)=\frac{3}{1-x}$$

is a bijection, and find the inverse mapping.

Injective: if
$$\frac{3}{1-x_1} = \frac{3}{1-x_2}$$
,

then
$$3(1-x_2) = 3(1-x_1)$$
, $1-x_2 = 1-x_1$,

$$x_2 = x_1$$
, as req.

Surjective: for any $y \in [-3,0)$

need $x \in [2, \infty)$ such that

$$f(x) = \frac{3}{1-x} = y; \quad 3 = y(1-x); \quad x = 1 - \frac{3}{y}$$

also need
$$\geq 2$$
, check: $1 - \frac{3}{y} \geq 2$, $-\frac{3}{y} \geq 1$,

(since
$$y < 0$$
) $\Leftrightarrow -3 \le y$, so true for $y \in [-3, 0)$.

Inverse mapping:
$$f^{-1}(y) = 1 - \frac{3}{y}$$
,

$$f^{-1}:[-3,0)\to[2,\infty).$$

Remark: Non-injective mapping has no inverse:

'Reversing arrows' is not a mapping, since pre-image is not unique.

Injective but not surjective mapping $f: A \to B$ has no inverse $B \to A$ since elements outside $f(A) \neq B$ have no pre-images:

But 'reversing arrows' makes a mapping $f^{-1}: f(A) \to A$, which is the inverse of $f: A \to f(A)$.

Let $C = \{\text{all circles on the plane centred at } (0,0)\}.$

Let $f: C \to \mathbb{R}$, f(c) = area of c.

Is injective, but not surjective (say, $-1 \notin \text{image}$).

Becomes bijective for $f: C \to (0, \infty)$,

since for b > 0 there is a circle centred at (0,0)

with area b: of radius $\sqrt{b/\pi}$.

Hence then there is inverse mapping:

$$f^{-1}:(0,\infty)\to C$$

 $f^{-1}(b)=$ circle of radius $\sqrt{b/\pi}$ centred at (0,0).

Proposition

The inverse of a bijection $f: A \to B$ is a bijection $f^{-1}: B \to A$.

Proof: f^{-1} is injective: $f^{-1}(b_1) = a = f^{-1}(b_2)$ means $b_1 = f(a) = b_2$. But f is a mapping, so must be well defined: $b_1 = b_2$, as required.

 f^{-1} is surjective: for any $a \in A$ we have $a = f^{-1}(f(a))$, so $a \in f^{-1}(B)$.

Proposition

If $f: A \to B$ is a bijection, then $(f^{-1})^{-1} = f$.

Note: $(f^{-1})^{-1}$ exists because f^{-1} is also a bijection.

Composite mappings

Definition

Let $f:A\to B$ and $g:B\to C$ be mappings such that the codomain of f is (in) the domain of g, then the **composite** mapping $g\circ f:A\to C$ is defined by the rule $(g\circ f)(a)=g(f(a))$ for all $a\in A$.

'Function of a function', or 'chain function':

Example

 $y = (\sin x)^2$ is the composite of $\sin x$ and x^2 .

Image of composite mapping

Yellow is f(A), blue and green g(B), green is the image of $g \circ f$, that is, $(g \circ f)(A) = g(f(A))$.

Useful notation

$$g \circ f : A \xrightarrow{f} B \xrightarrow{g} C$$
, $(g \circ f)(x) = g(f(x))$

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$,

and $g: \mathbb{R} \to \mathbb{R}$, $g(y) = y^2$.

What are $f \circ g$ and $g \circ f$ (if exist)?

What are their images?

$$g \circ f : \mathbb{R} \xrightarrow{\sin x} \mathbb{R} \xrightarrow{y^2} \mathbb{R}$$
. Then $(g \circ f)(x) = (\sin x)^2$.

The image of f is [-1,1].

The image of $g \circ f = (\sin x)^2$ is [0,1] as this is the image of [-1,1] under $g: x \to x^2$.

Different:
$$f \circ g : \mathbb{R} \xrightarrow{x^2} \mathbb{R} \xrightarrow{\sin y} \mathbb{R}$$

 $(f \circ g)(x) = \sin(x^2)$. Image is $[-1, 1]$

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 1$

and
$$g:[0,\infty)\to\mathbb{R}$$
, $g(x)=\sqrt{x}$.

Then
$$f \circ g : [0, \infty) \to \mathbb{R}$$
 is defined: $2\sqrt{x} + 1$.

But
$$g \circ f$$
 is not defined: $f(\mathbb{R}) = \mathbb{R} \not\subseteq$ domain of g .

Changing domain may help:
$$f_1:[-0.5,\infty) \to \mathbb{R}$$
,

$$f_1(x) = 2x + 1$$
; image of f_1 is $[0, \infty)$;

then
$$g \circ f_1$$
 is defined: $g \circ f_1 : [-0.5, \infty) \to \mathbb{R}$,

$$(g\circ f_1)(x)=\sqrt{2x+1}.$$

Remark: Usually, $f \circ g \neq g \circ f$. Moreover, often only one of these mappings is defined (exists).

Example

Let $A = \mathscr{P}(\{u, v, w\})$ (all subsets of $\{u, v, w\}$),

and let $f: A \to \mathbb{R}$, f(X) = |X|.

Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 3^x$.

Which of $f \circ g$ and $g \circ f$ exist?

Then $g \circ f : A \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R}$ exists.

E.g.,
$$(g \circ f)(\{u, v\}) = 3^2 = 9$$
,

$$(g \circ f)(\emptyset) = 3^0 = 1$$
, or $(g \circ f)(\{u, v, w\}) = 3^3 = 27$.

But, of course, $f \circ g$ is not defined: $g(\mathbb{R}) \not\subseteq A$.

Theorem

Let $f: A \to B$ and $g: B \to C$ be two mappings (such that the codomain of f is the domain of g).

- (a) If both f and g are injective, then the composite $g \circ f$ is also injective.
- (b) If both f and g are surjective, then the composite $g \circ f$ is also surjective.
- (c) If both f and g are bijective, then the composite $g \circ f$ is also bijective.

Proof: (a) f and g are injective, need $g \circ f$ injective:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
, since f is injective.

Then $g(f(x_1)) \neq g(f(x_2))$, since g is injective.

As required: $(g \circ f)(x_1) \neq (g \circ f)(x_2)$.

(b) f and g are surjective, need $g \circ f$ surjective:

For any $c \in C$ there is $b \in B$ such that g(b) = c, since g is surjective.

There is also $a \in A$ such that f(a) = b, since f is surjective.

Then g(f(a)) = g(b) = c, so $(g \circ f)(a) = c$, as req.

(c) f and g are bijective, need $g \circ f$ bijective:

follows from (a) and (b).

Slides Week 22 (Mappings, Cardinalities,) Ideas

Identity mapping

Definition

For a set A, the **identity mapping** $Id_A : A \rightarrow A$ is defined as $Id_A(x) = x$.

Proposition

Suppose that $f: A \rightarrow B$ is a bijection. Then

- (a) $f^{-1} \circ f = Id_A$;
- (b) $f \circ f^{-1} = Id_B$.

Proof: (a) For any $a \in A$

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = a$$
 by definition of f^{-1} .

(b) For any $b \in B$ there is $a \in A$

such that f(a) = b, since f is bijection.

Then
$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(f^{-1}(f(a)))$$

(by definition of f^{-1}) = f(a) = b.

Cardinalities

For a finite set A, its cardinality |A| = is the number of elements.

If $|A| = n < \infty$, then $A = \{a_1, a_2, \dots, a_n\}$, where all a_i are different.

This means a bijection $f: \{1, 2, ..., n\} \rightarrow A$ (so that we write $a_i = f(i)$).

Clearly, two finite sets A, B have the same cardinality |A| = |B| if there is a bijection $f : A \rightarrow B$.

Cardinalities of infinite sets

Definition

Two sets A, B have **the same cardinality** denoted |A| = |B| if there is a bijection $f: A \rightarrow B$.

Example

Let $A = \{2^i \mid i \in \mathbb{N}\}$ and $B = \{3k \mid k \in \mathbb{N}\}.$

Clearly, $2^i \rightarrow 3i$ is a bijection, so |A| = |B|.

Both have the same cardinality as \mathbb{N} .

For example, $i \to 2^i$ gives a bijection $\mathbb{N} \to A$.

Equal cardinalities as an equivalence

Remark. We know: if $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \to A$ is a bijection; symmetric if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $(g \circ f) : A \to C$ is a bijection; transitive $Id_A: A \to A$ (when $a \to a$) is a bijection. reflexive Hence |A| = |B| is an equivalence relation.

Equivalence classes are called **cardinal numbers**. For finite sets cardinal numbers are the same as positive integers. (Or numbers are thus defined...)

We can say bijection between A and B, since if there is a bijection $f: A \to B$, then we also have a bijection $f^{-1}: B \to A$.

Part 'equal' to the whole

Example

Let $A = \{2^i \mid i \in \mathbb{N}\} \subseteq \mathbb{N}$ and $A \neq \mathbb{N}$.

But $|A| = |\mathbb{N}|$, as we saw:

for example, $i \to 2^i$ gives a bijection $\mathbb{N} \to A$.

Example

Prove that any two closed segments on the real line (of non-zero length) have the same cardinality.

Bijection by geometry: arrange one above another, draw straight lines as on the picture. (For equal lengths, consider parallel lines.)

Bijection: injective: different \rightarrow different; surjective: every point on the lower segment covered.

Example

Prove that $|(0,1)| = |\mathbb{R}|$.

First a bijection f from the open interval (0,1) to a semicircle S of diameter 1 without endpoints as on the picture:

Stereographic projection

Then a bijection from the semicircle onto the whole real line (so-called stereographic projection):

As we proved above, the composite $g\circ f$ of bijections is a bijection: $(0,1)\stackrel{f}{\longrightarrow} S\stackrel{g}{\longrightarrow} \mathbb{R}$

from (0,1) onto \mathbb{R} . Hence, $|(0,1)| = |\mathbb{R}|$.

Countable sets

Definition

A set A is **countable infinite** if $|A| = |\mathbb{N}|$; that is, if there is a bijection $f : \mathbb{N} \to A$.

Then we often write $a_i = f(i)$, so that $A = \{a_1, a_2, ...\}$ is a sequence, where all a_i are different (= injective) and all elements of A occur (=surjective).

 $|A|=|\mathbb{N}|$ exactly when A can be written as a sequence

Definition

A set is **countable**,

if it is either finite, or countable infinite.

Notation. The cardinality of \mathbb{N} is denoted $|\mathbb{N}| = \aleph_0$ (read "aleph-naught").

So any countable infinite set has cardinality \aleph_0 .

E.g.:
$$|\{2^i \mid i \in \mathbb{N}\}| = \aleph_0$$

= $|\{3k \mid k \in \mathbb{N}\}| = |\mathbb{N}| = \aleph_0$.

Example

Prove that $|\mathbb{Z}| = \aleph_0$.

Proof: Need a bijection $\mathbb{N} \to \mathbb{Z}$,

that is: represent \mathbb{Z} as a sequence a_1, a_2, \ldots , where all a_i are different and all integers occur.

No need to produce a formula: it is sufficient to describe such a sequence, so that it is clear that every element occurs exactly once.

Here, for example: $0, 1, -1, 2, -2, 3, -3, 4, -4, \ldots$

This really means that we define a bijection

Remark: For this sequence

$$0, 1, -1, 2, -2, 3, -3, 4, -4, \dots$$

a formula can be easily produced:

$$f(k) = \begin{cases} 0 & \text{if } k = 1, \\ k/2 & \text{if } k \text{ is even,} \\ (1-k)/2 & \text{if } k \text{ is odd and } > 1. \end{cases}$$

But that sequence, or that table, is actually clearer than proving that this formula gives a bijection! Usually bijection is not unique: e.g. $0, 1, 2, -1, -2, 3, 4, -3, -4, 5, 6, -5, -6, \ldots$ is just as good.

Extra element

Example

Prove that $|\{w\} \cup \mathbb{N}| = |\mathbb{N}|$.

Proof: We need a bijection: $\mathbb{N} \to \{w\} \cup \mathbb{N}$:

E.g.: $1 \rightarrow w$, $2 \rightarrow 1$, $3 \rightarrow 2$, ...

Or simply a sequence

 $w, 1, 2, 3, \ldots$

which clearly contains all elements of $\{w\} \cup \mathbb{N}$ exactly once.

Extra point in geometry

Example

Prove that $|\{2\} \cup [0,1]| = |[0,1]|$.

Proof: Idea: isolate a sequence, which can be 'shifted' to accommodate extra point, and all the rest send 'to itself'.

Sequence: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$ (without 0)

Map by blue lines: $2 \to 1$, $1 \to \frac{1}{2}$, $\frac{1}{2} \to \frac{1}{3}$, ... and each of the other points to itself (by green arrows):

$$u \to u$$
 for all $u \neq \frac{1}{k}$.

Bijection: injective: different to different, surjective: all covered.

We can say: $1 + \infty = \infty$ (more precise later).

 \mathbb{Z} consists of 'two infinities': negative, positive but still $\aleph_0 + \aleph_0 = \aleph_0$, as we showed above.

Infinite hotel

'Infinite hotel': rooms $1, 2, 3, \ldots$

Even if all rooms are occupied, by guests a_1, a_2, \ldots ,

when one more guest arrives,

can still be accommodated:

every guest moves to the next room, so 1st room becomes available.

Now infinitely many more guests arrive b_1, b_2, \ldots

Can still be accommodated: a_i moves to room 2i, so all odd numbers become free, and each b_j is given room 2j-1.

$$|\mathbb{N} \times \mathbb{N}| = \aleph_0$$

Now suppose that we have 'infinitely many guests from each of infinitely many galaxies', Can the infinite hotel still accommodate them all?

'Infinitely many infinities':

Important Example

Prove that $|\mathbb{N} \times \mathbb{N}| = \aleph_0$,

by constructing a bijection from $\,\mathbb{N}\,$

to the set of pairs $\mathbb{N} \times \mathbb{N} = \{(i,j) \mid i,j \in \mathbb{N}\}.$

(Here, (i, j) is the jth guest from the ith galaxy.)

$$|\mathbb{N} \times \mathbb{N}| = \aleph_0$$

Need a bijection from $\mathbb{N} \to \mathbb{N} \times \mathbb{N} = \{(i,j) \mid i,j \in \mathbb{N}\}$ Arrange the pairs in the infinite table (matrix)

$|\mathbb{N} \times \mathbb{N}| = \aleph_0$ continued

...... and indicate a path going over this table such that <u>all</u> pairs are numbered in turn, without repetitions:

...

Meaning a mapping:
$$1 \to (1,1)$$
, $2 \to (1,2)$, $3 \to (2,1)$, $4 \to (3,1)$, $5 \to (2,2)$, ...

The whole infinite table of pairs is covered by this zig-zag path, so every pair is assigned unique number that is mapped to it. So this is a bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$, so. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}| = \aleph_0$.

Slides Week 22 (Mappings. Cardinalities.)

Properties of countable sets

Theorem

Let A be a countable infinite set, $|A| = \aleph_0$.

- (a) If $A_1 \subseteq A$, then A_1 is countable (either finite, or $|A_1| = \aleph_0$).
- (b) If $B \to A$ is an injection, then B is countable (either finite, or $|B| = \aleph_0$).

Proof of (a):

Given $|A| = \aleph_0$ and $A_1 \subseteq A$; need A_1 finite or $|A_1| = \aleph_0$. We have $A = \{a_1, a_2, \dots\}$ is a sequence, where all the *a_i* are different. Going consecutively over this sequence in order. we pick the first element that is in A_1 , say, a_i , then the next in A_1 , say, a_{i_2} , and so on. If at some step there are no more elements in A_1 , then A_1 is finite.

... If this process does not stop, we obtain a representation of A_1 as a sequence

 $A_1 = \{a_{i_1}, a_{i_2}, a_{i_3}, \dots\}$, where all the a_{i_k} are different, because all the a_i were different.

And every element of A_1 is eventually picked, since the sequence $A = \{a_1, a_2, \dots\}$ contains all elements of $A \supset A_1$.

This means we have a bijection $f: \mathbb{N} \to A_1$ by the rule $f(k) = a_{i_k}$, so $|A_1| = |\mathbb{N}| = \aleph_0$. **Proof of (b):** Given $|A| = \aleph_0$

and an injection $g: B \rightarrow A$; need: B is countable.

We know $g:B\to g(B)$ is a bijection onto the image, so that |B|=|g(B)|,

that is, B has the same cardinality as g(B).

The image $g(B) \subseteq A$ is countable by part (a).

Hence the result.

Theorem: $|\mathbb{Q}| = |\mathbb{N}| = \aleph_0$

The set of rational numbers \mathbb{Q} is countable infinite (that is, $|\mathbb{Q}| = |\mathbb{N}| = \aleph_0$).

Proof. First consider positive rational numbers \mathbb{Q}^+ .

Every number $r \in \mathbb{Q}^+$ has a unique representation as a reduced fraction r = m/n with $m, n \in \mathbb{N}$ coprime.

Then the mapping $f:\mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$ by the rule

$$f(m/n) = (m, n)$$

is well defined since these m, n are unique for r:

 $m_1/n_1 = m_2/n_2$ with $(m_1, n_1) \neq (m_2, n_2)$ only with reduction — impossible as we only use reduced.

The mapping f is clearly injective.

Thus, we have an injective mapping $f: \mathbb{Q}^+ \to \mathbb{N} \times \mathbb{N}$.

By Example above, $|\mathbb{N} \times \mathbb{N}| = \aleph_0$.

Recall part (b) of the preceding theorem:

If $B \to A$ is injective, and $|A| = \aleph_0$,

then B is countable.

By this theorem we now have $|\mathbb{Q}^+| = \aleph_0$.

The whole of \mathbb{Q} :

We proved
$$|\mathbb{Q}^+| = \aleph_0$$
,

so
$$\mathbb{Q}^+ = \{r_1, r_2, r_3, \dots\}$$
 is a sequence.

Now we can write the whole $\mathbb Q$ as the sequence: e.g.,

$$\{0, r_1, -r_1, r_2, -r_2, r_3, -r_3, \dots\}.$$

All positive and all negative rationals are here.

Hence
$$|\mathbb{Q}| = |\mathbb{N}| = \aleph_0$$
.

Remark. It may seem strange that $|\mathbb{Q}| = |\mathbb{N}|$, because \mathbb{Q} is 'dense' on the real line, while \mathbb{N} consists of 'separate' points. Indeed, if other properties are considered: closeness, or order, or convergence of subsequences, then \mathbb{O} and \mathbb{N} are different. But when \mathbb{Q} and \mathbb{N} are viewed as 'pure' ('bare') sets, without those additional properties, then we proved they indeed have 'the same number of elements'.

Counterintuitive fact (optional)

We know $|\mathbb{Q}| = \aleph_0$,

or \mathbb{Q} can be listed as a sequence: $\mathbb{Q} = \{a_1, a_2, \dots\}$.

Cover a_1 with interval of length 1 centred at a_1 ,

then cover a_2 with interval of length 1/2 centred at a_2 , then a_3 with interval of length 1/4 centred at a_3 , . . .

cover a_i with interval of length $1/2^{i-1}$ centred at a_i .

As a result all rational points will be covered with nonzero length intervals.

One might think, then the whole \mathbb{R} is covered by these intervals! But no: the sum of lengths is $1+1/2+1/4+\cdots=2$.