Basic

$$[-n^2, 0] = C[n]: y^2 = x^3 - n^2 *x.$$

$$pq = rs$$
, $s = p + q + r$.

$$xyw(x, y, w) : n^2 = x * w, w = x + y^2.$$

Relations

1
$$pqrs -> 2 xyw. -> 4 C[n] points.$$

 $xyw(pr, q+r, qs), xyw(qr, p+r, ps).$

$$1 pqrs -> 1 Triangle (p+r, q+r, p+q).$$

$$1 xyw -> 2 C[n] points.$$

 $P(-x, xy), P(w, wy).$

1
$$xyw(x, y, w) -> 1$$
 Triangle(y , $2n/y$, h),
 $h: h^2 = y^2 + (2n/y)^2$.

C[n] Point equivalence $P(-a,b) -> P(n^2/a, n^2*b/a^2)$ $P(+c,d)-> P(-n^2/c, n^2*d/c^2)$

1
$$pqrs -> 4 points C[n]$$

 $P(-pr, pr(q+r)), P(qs, qs(q+r))$
 $P(-qr, qr(p+r)), P(ps, ps*(p+r))$

1
$$pqrs -> 1$$
 triad squares [$q-p$, $p+q$, $r+s$]