Technical Note: ¹¹C Spallation Production Measurement

Hasung Song

September 21, 2025

Abstract

This technical note describes the $^{11}\mathrm{C}$ measurement in KLZ and how the rate is extracted.

Spallation Event Selection

- FBE muon selection cuts
- MoGURA neutron selection cuts
- Neutron Shower Cuts $(N_n = 1)$
- ¹¹C Candidate cuts
 - Energy Range
 - FBE Run Start Delay
 - Radius
- \bullet dR Cut

Fit to dT

dT of muon-event pairs where the neutron shower contained 1 observed neutron is shown in Figure 1.

Rate Calculation

- Exposure, Livetime
- MoGURA Deadtime
 - simply scale up based on the deadtime since muons that occur during deadtime will not be able to create accurate pairs.
 - Have to go through the MoGURA/FBE runs and check for overlap. (May be some function of the integral of ¹¹C half-life?)

Figure 1: dT of muon-event pairs where the neutron shower contained 1 observed neutron.

- Neutron Production : How many muons that create ¹¹C create exactly 1 **observed** neutron
 - Muons that create ¹¹C and create 1+ neutrons, some fraction of those have only one detected (Toy MC calculation using Neutron Tagging Efficiency)
 - The rate of muons creating other isotopes is not important, because those are not in the "good" exponential distribution of μ -¹¹C pairs.
- dR cut efficiency (from FLUKA tuned with ¹¹C), for each data period
- Fiducial Volume Cut Efficiency (from MC)
- Energy Cut Efficiency

Systematic Errors

- Exposure Uncertainty, from theses FV uncertainty 4%
- Neutron Tagging Efficiency Error: $74.5\% \pm 0.4\%$
- $\bullet\,$ FLUKA simulation Systematic : dR Cut, Neutron Production
- FLUKA simulation Statistical (small)
- Energy Scale Uncertainty? (use 1 sigma of kB, R contour)

Result