Cryptography: Homework 1

(Deadline: 10am, 2021/10/15)

1. (20 points) Suppose that the following ciphertext c is generated using the Vigenère cipher. KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUDDKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZ AKFTLEWRPTYCQKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRLSVSKCGCZQQDZXGSFRLSWC WSJTBHAFSIASPRJAHKJRJUMVGKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFSPEZQNRWXC VYCGAONWDDKACKAWBBIKFTIOVKCGGHJVLNHIFFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKF QIYCWHJVLNHIQIBTKHJVNPIST

Determine the plaintext m and the secret key k. Show your programs.

- 2. (30 points) Let Π denote the Vigenère cipher where the message space consists of all 3-character strings (over the English alphabet), and the key is generated by first choosing the period t uniformly from $\{1,2,3\}$ and then letting the key be a uniform string of length t.
 - (a) Define \mathcal{A} as follows: \mathcal{A} outputs $m_0 = \mathsf{aab}$ and $m_1 = \mathsf{abb}$. When given a ciphertext c, it outputs 0 if the first character of c is the same as the second character of c, and outputs 1 otherwise. Compute $\Pr[\mathsf{PrivK}_{\mathcal{A}.\Pi}^{\mathsf{eav}} = 1]$.
 - (b) Construct and analyze an adversary \mathcal{A}' for which $\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A}',\Pi} = 1]$ is greater than your answer from part (a).