Where are the bad guys?

Genome wide association studies

The human genome

Learning goals

- After my introduction you are able to
 - Explain why genome wide association studies are being performed
 - List the prerequisits of a genome wide association study
 - Design a genome wide association study for an arbitrary trait

Disease mechanisms

- 1. Invariable over time
- 2. Invariable over tissues
- Almost all traits have a genetic component
- 4. Potential insight in
 - a) Biology and mechanisms
 - b) Potential drug targets
 - c) Potential stratification of individuals according to lifetime risk
 - d) Potential stratification of patients according to the most effective treatment

Desoxyribo Nucleic Acid

Single Nucleotide Polymorphism

Genetic variation

Genotype
Consists of 2 alleles

Case – Control study (qualitative trait)

Biomarker study (quantitative trait)

Prerequisites for genetic association study

- Trait:
 - Genetic component
- Population
 - Sample size
- Genetic variation
 - Minor Allele Frequency

Genome wide genetic association study

- Trait:
 - Genetic component
- Population
 - Sample size
- Genetic variation
 - Minor Allele Frequency
 - Genome wide genetic variation

Minor allele frequency and effect size

TA Manolio et al. Nature 461, 747-753 (2009) doi:10.1038/nature08494

Prerequisites for GWAS

- Trait with an assumed/established genetic component
- Large population in which trait and genetic variation has been measured
 - Formation of large consortia
- Genetic variation
 - Common variants (MAF > 1%)
 - Localization of genetic variation
 - Technology
- Statistics and informatics

Some bad guys...

...have been identified

- Digestive system disease
- Cardiovascular disease
- Metabolic disease
- Immune system disease
- Nervous system disease
- Liver enzyme measurement
- Lipid or lipoprotein measurement
- Inflammatory marker measurement
- Hematological measurement
- Body measurement
- Cardiovascular measurment
- Other measurement
- Response to drug
- Biological process
- Cancer
- Other disease
- Other trait

Biological effects of genetic variants

Prerequisites for GWAS

- Trait with an assumed/established genetic component
- Large population in which trait and genetic variation has been measured
 - Formation of large consortia
- Genetic variation
 - Common variants (MAF > 1%)
 - Localization of genetic variation
 - Technology
- Statistics and informatics

Learning goals

- After the second part you are able to
 - Interpret linkage disequilibrium
 - Explain the difference between D' and R²
 - Understand the principle of genetic imputation

Genotyping technology

- Illumina Human OmniExpress
 - -~700k common SNPs
 - Copy Number Variations (CNV)
 - Very high data quality (call rate 99.84%)
 - Reasonable throughput (12 samples per chip)
 - Cost ~€ 200-300 per sample all in
- Other Illumina chips up to 2.5M SNPs

- Test all common genetic variation...
- ...by genotyping a small subset of SNPs only (efficient!)

- Two SNPs
- A/G with MAF=0.40
- 2. C/T with MAF=0.20
- Expectation combinations
- 1. A-C: 0.60x0.80=0.48
- 2. A-T: 0.60x0.20=0.12
- 3. G-C: 0.40x0.80=0.32
- 4. G-T: 0.40x0.20=0.08
- Frequently this does not hold for close by SNPs:
- → *DIS*EQUILIBRIUM

Exploit linkage disequilibrium

If no recombination:

If also equal allele frequencies:

International HapMap project

- Samples HapMap phases 1+2
 - Yoruba, Nigeria (YRI):
 - n=90 (30 parent-offspring trios)
 - Ceph Utah, USA (CEU):
 - n=90
 - Han Chinese, Beijing (CHB) + Japanese, Tokyo (JPT):
 - n=90
- Genotyping
 - 6,349,188 suspected SNPs assessed
 - 2,819,322 indeed polymorphic and MAF>0.05
 - No resequencing done but ENCODE regions (10 x 5Mb) sequenced as reference

Genetic variation is limited

Genetic imputation

Prediction of missing genotypes using LD

Imputation Reference Panels

- International HapMap project (2007)
 - CEU (European), YRB (African), JPT/CHB (Asian)
 - 270 samples
 - ~2.5M SNPs

- 1000 Genomes Project (2010)
 - EUR (European), AFR (African), ASN/SAN (Asian), AMR (Americas)
 - 2,535 samples
 - ~30M SNPs + Indels
- The Haplotype Reference Consortium (2015)
 - Mainly EUR ancestry
 - 32,611 samples
 - 39.2 M SNPs

The Haplotype Reference Consortium

Genotyping technology in the imputation era

- Illumina GSA array
 - -~640k common SNPs
 - Very high data quality (call rate 99.84%)
 - High throughput (24 samples per chip)
 - Cost ~€ 50 per sample all in
- => HRC imputation up to 40 Million SNPs!

HELP!

I generated 400 billion data points

- 40,000,000 SNPs
- 10,000 individuals

Practical

Genome-wide association study (GWAS)

Measure single nucleotide polymorphisms (SNPs)

Practical

- Investigate whether different genotypes are associated with different levels of a biomarker
- Successful approach for many complex diseases/traits

Conquer your fear of The Blinking Cursor

Plink R

File Edit View Misc Packages Windows Help R Console R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i386-pc-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'a()' to guit R.

Learning goals

- After this third part you are able to
 - Explain the principles of a genetic association analysis
 - Apply adjustment for multiple testing in genome wide association studies
 - Understand the importance of large sample size and replication of results

Statistical Analysis

- Keep it simple
 - Single SNP analysis
 - Easy to interpret
 - Minimal number of tests
 - All very basic statistical tests (X² or similar)

Statistical Analysis

- Cochrane-Armitage trend test
 - Same as linear-by-linear in SPSS
 - Additive effect: more risk alleles, more effect
 - Genotype coding: 0, 1, 2 (counting no. of rare alleles)
 - Plausible biological model
 - Robust against random fluctuations
 - Optimal power (df=1)

Alternatives

- Recessive test
 - Mendelian disease like Cystic Fibrosis
 - Assumes effect among rare homozygotes only

Alternatives

Dominant test

- Mendelian disease like Huntington's Disease
- A single rare allele is sufficient for disease trait
- Common homozygotes and heterozygotes same effect
- Often trend test has sufficient power

What if

Significance in GWAs

- Consensus on genome-wide significance in GWAs
 - 1 million independent tests
 - $P < 5x10^{-8} (0.05/10^6)$
 - But ignores 'enrichment' for low p-values

Bias and enrichment

 QQ plots allow to detect bias and enrichment for low pvalues

Prevent population stratification

 Detect heterogeneity in origin of participants by comparing genotyping results to HapMap data

Sampietro et al. Hum Mol Genet. 2011 Dec 1;20(23):4748-57

Visualization

Manhattan plots are standard way to display GWAS results

Not all is fancy

Check cluster plots of identified SNPs

Association of multiple SNPs (in LD) may be considered technical validation

State of the art Meta-GWAS

- Combine multiple GWAS (n > 50,000)
- Follow-up in multiple cohorts (n > 50,000)
- Genome wide significant loci (P<5x10-8)

Lambert et al Nat Genet 2014

Replication

- Without replication no one will believe you
 - Same SNP
 - Same allele
 - Same phenotype
 - Same genetic model
- Considerations
 - Often ≥2 large replications required nowadays: collaboration is key
 - Replication in cohorts that do not have GWAS data available

A Catalog of GWAS

- Database of all GWAS results https://www.ebi.ac.uk/gwas/
- 19/06/2017: 2982 publications and 36,948 unique SNP-Trait associations P<10⁻⁸

GWAS SNP-Trait discovery Timeline

BREAKBLAK BY BREAK S

A hierarchy of profound knowledge based on Russell Ackoff

Wisdom

is evaluated
understanding,
including philosophical
and ethical probing. It
depends on the previous four
levels, is usually future orientated
and it embodies an appreciation that
much will remain unknown and unknowable.

Insight and understanding,

a synthesis of new knowledge and information, an appreciation of why things are the way they are, and what would provide the highest leverage for intervention and whole system enhancement.

Knowledge requires the consideration of data and information in context to discover how things are working. Information is assembled as narrative that enables meaning for those working in and on a system. Prediction based on experimentation if well designed leads to new knowledge.

provide answers to: who, what, where, when, how and why questions. Information is data that has been given meaning by the making of relational connections, this meaning can be useful if correctly applied.

Data are mere symbols having no significance beyond their existence, sometimes they are useful. It has no meaning by itself, for instance a spreadsheet which has no explanation which may have duplications or wrong data within it.

Learning goals

- After this fourth part you are able to
 - Explain potential factors contributing to the missing heritability of traits
 - Understand that genetic loci associated with disease are no good predictors for disease
 - Provide an outlook how mechnisms underlying GWAS results may be investigated to establish causality

What we do not know after al those GWASes

Missing heritability

Disease	Number of loci	Proportion of heritability explained			
Age-related macular degeneration ⁷²	5	50%			
Crohn's disease ²¹	32	20%			
Systemic lupus erythematosus ⁷³	6	15%			
Type 2 diabetes ⁷⁴	18	6%			
HDL cholesterol ⁷⁵	7	5.2%			
Height ¹⁵	40	5%			
Early onset myocardial infarction ⁷⁶	9	2.8%			
Fasting glucose ⁷⁷	4	1.5%			

Incomplete detection genetic variation

Factors

- Common SNPs missed with (previous) arrays
- Structural variation, copy number variants, in/dels
 - Much fewer known than SNPs

Incomplete detection genetic variation

Factors

- Common SNPs missed with (previous) arrays
- Structural variation, copy number variants, in/dels
 - Much fewer known than SNPs
- Rare variants: Sequencing

Current state-of-the-art

- Genome of The Netherlands (Go.NL)
 - 769 samples
 - ~20M SNPs
 - Insertion and deletions (Indels)

Prediction

Limited or no prediction despite biological insight

	Region	Candidate gene(s)	Weight†	Reference†	Risk allele	Risk allele frequency	Other allele	Coronary heart dise (total n=19790)	ase
								Pooled HR (95% CI)‡	p value
rs17465637	1q41	MIA3	1.14	15	C	0.75	Α	0.99 (0.87-1.12)	0.854
rs11206510	1p32	PCSK9	1.15	15	T	0.84	C	0.94 (0.81-1.09)	0.431
rs646776	1p13	CELSR2- PSRC1- SORT1	1.19	15	T	0.79	С	0.96 (0.84-1.09)	0.512
rs6725887	2q33	WDR12	1.17	15	C	0.11	Т	1.14 (0.96-1.35)	0.126
rs9818870	3q22	MRAS	1.15	16	T	0.10	C	0-88 (0-73-1-06)	0.174
rs3798220	6q26	LPA	1.68	18	C	0.01	T	2.07 (1.39-3.09)	3.8×10
rs9349379	6p24	PHACTR1	1.12	15	C	0.44	T	1.16 (1.04-1.29)	0.008
rs4977574	9p21	CDKN2A- CDKN2B	1.29	15	G	0.43	Α	1-21 (1-08-1-34)	0.001
rs1746048	10q11	CXCL12	1.17	15	C	0.84	T	1.13 (0.97-1.33)	0.113
rs2259816	12q24	HNF1A	1.08	16	T	0.36	G	1.02 (0.91-1.14)	0.774
rs3184504	12q24	SH2B3	1.13	17	T	0.40	C	1.03 (0.92-1.15)	0.568
rs1122608	19p13	LDLR	1.15	15	G	0.79	Т	1.00 (0.87-1.14)	0.988
rs9982601	21q22	SLC5A3- MRPS6- KCNE2	1.20	15	Т	0.14	С	1-29 (1-07-1-57)	0.009

A gene is not what it used to be

- Multiple use of same sequence
 - Phosphatidylserine decarboxylase (PSID)

A gene is not what it used to be

- Up to 90% of genomic DNA is transcribed
 - 1-2% encodes exons, ~15% exons+introns
- Alternative initiation of trancription: ~60%
 - Alternative TSS 10s-100s kb away
 - Encode: 90% of genes have unannotated exon/TSS
- Alternative splicing: 60%
- Transcripts with anti-sense counterpart: 60%
- Alternative polyadenylation
- Gene fusions
- Trans splicing
- RNA synthesis at enhancers (eRNA)
- Relevant transcription factor binding occurs anywhere

Underlying Mechanism

- Pathway analyses:
- DAVID
 - Database for Annotation, Visualization and Integrated Discovery
 - Gene Functional Classification Tool Based on Gene Ontology
- STRING
 - Search Tool for the Retrieval of Interacting Genes/Proteins
 - Known and predicted protein-protein interactions
- DAPPLE
 - Disease Association Protein-Protein Link Evaluator
 - Physical connectivity among proteins encoded for by genes according to protein-

protein interactions reported in the literature.

Underlying Mechanism

STRING

Causality

- Combine knowledge from public databases using USCS genome browser
 - Databases with biological knowledge
 - ENCODE
 - Haploreg
 - Databases with functional knowledge
 - GTEX for eQTLs
 Entrez Gene for gene functions

Truly novel findings

- 'Gene deserts'
 - 8q24 region confers susceptibility to various cancers
 - Functional studies are very much required

Proven causality

Rarely causality is proven or even plausible

Brest et al Nat Genet 2011. Locus associated with Crohn's Disease: a synonymous variant in the *IRGM* coding region alters a binding site for miR-196 and modulates IRGM-dependent autophagy.

Challenges in GWAS studies

- Weaknesses of designs: cross-sectional, broad phenotypes
- Complex effects: interactions, allele specific effects
- Incomplete detection of genetic variation

Complex effects

Interaction

 Interactions within biomolecular networks: rare combinations of common variants (epistasis – as routinely seen in yeast)

Allele specific effects

 Estimate: ~15% of type 2 diabetes heritability due to known variants involves parent-of-origin effects.

Table 1 | Parental-origin-specific analyses of disease-susceptibility variants

Disease, SNP [alleles]* Standard case-control test			Tests of association with parental origins							
NCBI build 36 position, N	M, F _{con}	OR	P‡	Pate	rnal allele§	Maternal allele§		2-d.f. test	Paternal vs maternal (case only)	
				OR	Р	OR	Р	Р	n12:n21¶	P
T2D, rs2334499 [T/C] C11 1,653,425, 1,468 (discovery) 783 (replication) 2,251 (combined)	34,706, 0.412	1.11 1.02 1.08	0.017 0.71 0.034	1.41 1.23 1.35	4.3 × 10 ⁻⁹ 0.0055 4.7 × 10 ⁻¹⁰	0.87 0.84 0.86	0.020 0.023 0.0020	3.5×10^{-9} 0.0018 5.7×10^{-11}	437:276 222:157 659:433	7.0×10^{-9} 8.0×10^{-4} 4.1×10^{-11}

Life after genome-wide studies

- Go big: meta-analysis
- Increase genetic detail (rare variants)
- Smarter clinical end-points
- Detailed intermediate phenotypes (biomarkers) and system approaches (vertical genomics)
- Pathway analyses
- Acquire biological knowledge from public databases
- Re-analysis publicly available data (e.g. interactions)
- Functional studies to prove causality (!)
- General: more hypothesis-driven, more depth

Mail answers of this practical training to

M.Beekman@lumc.nl

Subject of message: FOS2018GWAS

Filename: Yourname_YourStudentnr_GWAS_24102018