Foundations of Data Science

For Ph.D. Qualifying Exam at DaSE (2020)

Name:	 Student I	ID:	Credits:	

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers whenever possible to ensure full credit. When you do use your calculator, sketch all relevant graphs and explain all relevant mathematics.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 8 problems and is worth 100 points, plus some extra credit at the end. It is your responsibility to make sure that you have all of the pages!
- Good luck!
- 1. (10 points) Let following matrix A be the adjacency matrix of graph G. Please write down the transition probability of the random walk, Laplacian matrix and normalized Laplacian matrix corresponding to G.

$$\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)$$

- **2.** (10 points) In n tosses of a fair coin, let X be # heads, what is the upper bound of $P(X > \frac{5n}{6})$ given by following inequalities?
 - a. Markovs inequality;
 - b. Chebyshevs inequality;
 - c. Chernoff bound.

- **3.** (10 points) As shown in the following table, given a universal set U of five elements, there are three subsets S_1, S_2 and S_3 .
 - a. Compute the Jaccard similarity of each pair of columns.
 - b. Compute the minhash signature for each column if we use the following hash functions: $h_1(x) = 7x + 1 \mod 6$; $h_2(x) = 11x + 3 \mod 6$; $h_3(x) = 5x + 2 \mod 6$, where $x \in U$.
 - c. Compute similarity of each pair of sets via using the minhash signatures.

Element	S_1	S_2	S_3
0	1	1	1
1	0	0	0
2	1	1	0
3	0	1	1
4	1	0	1
5	0	0	0

4. (10 points) Let A be the adjacency matrix of graph G, where

$$A = \left(\begin{array}{cccc} 0 & 4 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 4 & 0 \end{array}\right)$$

Once we have community structure, the modularity of the community can be computed as

$$Q = \frac{1}{2m} \sum_{i,j} (A_{ij} - \frac{k_i k_j}{2m}) \delta(C_i, C_j),$$

where m and C_i denote # edges and the i-th community in the graph, k_i is the degree of vertex v_i , and

$$\delta(C_i, C_j) = \begin{cases} 1, & \text{if } C_i = C_j; \\ 0, & \text{otherwise.} \end{cases}$$

- a. If there are two communities: $C_1 = \{1, 2\}$ and $C_2 = \{3, 4\}$, please compute the modularity of the partition;
- b. Is there any way to increase the value of modularity via adjusting the community structure?
- **5.** (10 points) Given a universal set $U = \{a, b, c, d, e, f, g, h, i, j, k, l\}$, the set $S = \{A_1, \dots, A_7\}$ contains the following subsets of U, i.e., $A_i \subset U$.

$$A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\}, A_3 = \{i, j, k, l\}$$

$$A_4 = \{a, e\}, A_5 = \{i, b, f, g\}, A_6 = \{c, d, g, h, k, l\}, A_7 = \{l\}$$

- a. Please find a cover of set U;
- b. Using Hill-Climbing algorithm to find minimal cover of universal set U.

- **6.** (10 points) A certain experiment is believed to be described by a two-state Markov chain with the transition matrix P, where $P = \begin{pmatrix} 0.5 & 0.5 \\ p & 1-p \end{pmatrix}$ and the parameter p is unknown. When the experiment is performed many times, the chain ends in state one approximately 20 percent of the time and in state two approximately 80 percent of the time.
 - a. Compute a sensible estimate for the unknown parameter p and explain how you found it;
 - b. Whether is the Markov chain irreducible, or not? Why?
 - c. Whether is the Markov chain aperiodic, or not? Why?
- **7.** (20 points) Given a set V and $A \subseteq V$, let f(A) be a set function. If f(A) is a submodular
 - a. What conditions does f(A) satisfy?
 - b. Fixing set $S \subset V$, prove that $g(A) = f(A \cap S)$ is a submodular.
 - c. Fixing set $S \subset V$, prove that $h(A) = f(A \cup S)$ is also a submodular.
- **8.** (20 points) Given an input stream < 4, 1, 3, 5, 1, 3, 2, 6, 7, 1, 8, 1 > and hash functions in the form of $h(x) = (ax + b) \mod 4$, where a and b are two arbitrary integers. If there are three following hash functions:
 - (1) $h(x) = (3x + 2) \mod 4$;
 - (2) $h(x) = (7x + 5) \mod 4$;
 - (3) $h(x) = (5x+3) \mod 4$;

Please address the following questions:

- a. Find the frequency count of every item given by Count-Min sketch;
- b. According to the example, analyze the pros and cons of Count-Min sketch;
- c. Analyze the accurate of counting result in a.;
- d. If we try to find the (ϵ, δ) -approximations of the frequencies, how to modify the algorithm;