Electrical Quantities Their Units, and Resistors

Current:

Ampere:

Current: the flow of charge (electrons) in a wire (C/sec)

Ampere: the unit of current (amp, A)

1 A = 1 C/sec

Voltage: the common way we describe the tendency of charge to move; energy/charge or work/charge

Volt: the unit of voltage (V) 1V = 1 Joule/C

Voltage Sources: batteries, dams, solar panels, generators, etc...

Analogy:

Moving Mass

A mass that falls converts GPE into KE (or other)

A mass falls through a height (feet, meters, etc...)

Gravity does work on mass and transfers energy to it when the mass goes from high to low elevation

Moving Charge

A charge in an electric field "falls" converting EPE into KE (or other)

A charge falls through a potential difference (voltage)

The E-field does work on a + charge and transfers energy to it when the charge goes from a high voltage to a low voltage.

Voltage is always describing a difference in the EPE that *any* charge would have between two points.

There is only going to be a voltage between two points if there are other charges somewhere nearby that can push or pull other charge (our flowng electrons, current) around.

Circuit:

Resistance:

Ohm:

Circuit: a grouping of wires and devices that provide for the controlled flow of current.

Resistance: the characteristic of a material (like a wire) that resists the flow of current when a potential difference is placed across the material.

Ohm: the unit of resistance (Ω)

Power:

Watt:

The rate at which energy is transformed or work is done.

P = Energy/time or

P = Work / time

Watt: the unit of power

1 W = 1 Joule/sec = 1 J/sec

Variables used in Electronics:

Quantity	Symbol	Unit of Measure	
Charge	Q	Coulomb (C)	
Current		Ampere (A)	
Voltage	V	Volt (V)	
Resistance	R	Ohm (Ω)	
Power	Р	Watt (W)	
		-	

Resistor Labeling -- Using Colors

COLOR	First Number	Second Number	Multiplier	Tolerance
Black	0	0	1	
Brown	1	1	10	
Red	2	2	100	
Orange	3	3	1,000	
Yellow	4	4	10,000	
Green	5	5	100,000	
Blue	6	6	1,000,000	
Violet	7	7	10,000,000	
Gray	8	8		
White	9	9		
Gold			0.1	+/- 5%
Silver			0.01	+/- 10%
No Color				+/- 20%

Resistor Labeling -- Example

TODAY

- ON A PIECE OF PAPER, EVERTONE MUST DO THE FOLLOWING FOR 10 RESISTORS:
 - 1) DIRAW THE COLORS

2) DETERMINE THE R WITH THE TABLE

- 3) MEASURE THE R WITH 237 12 THE DMM
- 4) COMMENT DOES THE DMM & COLOR CODE

 AGREE? YES = (1)

 NO = (1)
 - MUST USE 10 DIFFERENT RESISTORS.

Resistor Labeling -- Example

Digital Multimeters (DMM)

We will use them to measure:

- 1. Resistance
- 2. Voltage
- 3. Current
- 4. To test for continuity (see if a wire is broken).

MEASURING RESISTANCE

1) PLACE LEADS:

- OIOA V RED
- 300mA Com BLACK
- 2) TURN THE DIAL TO "I"
- 3) ISOLATE THE COMPONENT WHOSE RESISTANCE YOU WANT TO MEASURE (TAKE IT OUT OF THE CIRCUIT)
- 4) TOUCH THE LEADS TO EITHER END OF THE COMPONENT.
- 5) READ THE VALUE
- 6. TURN OFF

RESISTOR ACTIVITY

Sharing a DMM in your groups, EVERYONE AS AN INDIVIDUAL SHOULD do the following:

- Obtain a resistor.
- 2. On a piece of paper, indicate the four color bands by writing the names of each color in order. (Remember to start from the correct end -- gold or silver is usually the fourth band, but never the first).
- 3. Below each color, place the number each color represents.
- 4. Below this, determine the size of the resistor, including the tolerance.
- 5. Use the DMM to measure the actual resistance.
- 6. Comment on whether the bands and your reading match.
- 7. Repeat for 10 total resistors.
- 8. Turn your paper in for scoring.