Nama : Arzaka Raffan Mawardi Kode Asdos: RAI

NPM : 2306152393 Kelas : PSD-C

TUGAS MANDIRI 4

1. Gambarkanlah rancangan (sertakan pula screenshot rangkaian) dari:

A. 4-to-16 line decoder dengan hanya menggunakan AND gate, NOT gate, dan 2-to-4 decoder (maksimal 4 buah)

Truth Table

A3 A2[10]	A1 A0[10]	F0	F1	F2	F3	F4	F5	F6	F 7	F8	F9	F10	F11	F12	F13	F14	F15
0 0	0 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	0 1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	1 0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0	1 1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0 1	0 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0 1	0 1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0 1	1 0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0 1	1 1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1 0	0 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1 0	0 1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1 0	1 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1 0	1 1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1 1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1 1	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1 1	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

B. 8-to-1 multiplexer dengan menggunakan AND gate, NOT gate, serta menggunakan enabler.

- 2. Buatlah masing-masing rangkaian berikut dengan menggunakan **4-to-1 line multiplexer**, dengan disertai tahapan *specification*, *formulation*, beserta *technology mapping*: (sertakan *screenshot* masing-masing rangkaian)
 - a. Rangkaian yang mengubah input 4-bit Binary Code menjadi 4-bit Gray Code.
 - 1. Specification
 - a. 4-bit Binary Code to 4-bit Gray Code
 - b. Transforms Binary code to Gray Code
 - c. 4-bit Binary code from 0 through 15: 4-bit patterns from 0000 to 1111, respectively.
 - d. 4-bit Gray Code from 0 trough 15: 4-bit patterns from 0000 to 1000, Gray code is an unweighted code
 - e. Implementation:
 - Using 4-to-1 Line Multiplexers, OR gates, AND Gates, and NOT Gates
 - Multiple-level circuit

2. Formulations

- Conversions of any 4-bit code can be formulated by truth table
- Variables:
 - Binary Code: A, B, C, DGray Code: W, X, Y, Z

Truth Table

		Input Bin	ary Code		Gray Code					
Index	Α	В	С	D	W	Χ	Υ	Z		
0	0	0	0	0	0	0	0	0		
1	0	0	0	1	0	0	0	1		
2	0	0	1	0	0	0	1	1		
3	0	0	1	1	0	0	1	0		
4	0	1	0	0	0	1	1	0		
5	0	1	0	1	0	1	1	1		
6	0	1	1	0	0	1	0	1		
7	0	1	1	1	0	1	0	0		
8	1	0	0	0	1	1	0	0		
9	1	0	0	1	1	1	0	1		
10	1	0	1	0	1	1	1	1		
11	1	0	1	1	1	1	1	0		
12	1	1	0	0	1	0	1	0		
13	1	1	0	1	1	0	1	1		
14	1	1	1	0	1	0	0	1		
15	1	1	1	1	1	0	0	0		

Optimization: For a more simplified conversion, make a rudimentary function. For this case, D is used to be a rudimentary function for X, Y, and Z

Binary	Gray Code	Rudimentary	Rudimentary	Rudimentary	
ABCD	WXYZ	Function of	Functions of	Functions of	
		D for X	D for Y	D for Z	
0000	0000	F = 0	F = 0	F = D	
0001	0001				
0010	0011	F = 0	F = 1	F = D'	
0011	0010				
0100	0110	F = 1	F = 1	F = D	
0101	0111				
0110	0101	F =1	F = 0	F = D'	
0111	0100				
1000	1100	F = 1	F = 0	F = D	
1001	1101				
1010	1111	F = 1	F = 1	F = D'	
1011	1110				
1100	1010	F = 0	F = 1	F = D	
1101	1011				
1110	1001	F = 0	F = 0	F = D'	
1111	1000				

3. Technology Mapping

Truth Table

16 of	16 ro	WS	shov	vn
301	$ \mathbf{w} $	X	v	7

a[30]	$ \mathbf{w} $	X	Y	Z
0000	0	0	0	0
0001	0	0	0	1
0010	0	0	1	1
0 0 1 1	0	0	1	0
0100	0	1	1	0
0 1 0 1	0	1	1	1
0 1 1 0	0	1	0	1
0 1 1 1	0	1	0	0
1000	1	1	0	0
1001	1	1	0	1
1010	1	1	1	1
1011	1	1	1	0
1 1 0 0	1	0	1	0
1 1 0 1	1	0	1	1
1 1 1 0	1	0	0	1
1111	1	0	0	0

Note:

For Y and Z, only one 4-to-1 multiplexers that is needed and necessary because the rudimentary for A = 0 and A = 1 is exactly the same.

But for X, the rudimentary shows that A = 0 isn't the same as A = 1. Therefore, gates such as OR, AND, and NOT gates are needed to make the functions work and suit the truth table.

- **b.** Rangkaian yang menerima **4-bit Binary Code** kemudian mengubahnya menjadi **3-bit output XYZ**, dengan masing-masing fungsi sebagai berikut:
 - $X(A, B, C, D) = \sum m(0, 1, 6, 7, 8, 9, 14, 15)$
 - $Y(A, B, C, D) = \Sigma m(2, 3, 10, 11)$
 - $Z(A, B, C, D) = \sum m(0, 2, 5, 7, 9, 11, 12, 14)$

1. Specification

- a. 4-bit Binary code to 3-bit output
- b. Transform 4-bit Binary code to 3-bit output as shown before in the functions.
- c. 4-bit Binary code from 0 through 15: 4-bit patterns from 0000 to 1111, respectively
- d. Implementation:
 - Using 4-to-1 Line Multiplexers, OR gates, AND Gates, and NOT Gates
 - Multiple-level circuit

2. Formulations

- Conversions of any 4-bit code can be formulated by truth table
- Variables:

a. Binary Code: A, B, C, Db. 3-bit Output: X, Y, Z

		Input Bin	ary Code		Output				
Index	Α	В	С	D	Х	Υ	Z		
0	0	0	0	0	1	0	1		
1	0	0	0	1	1	0	0		
2	0	0	1	0	0	1	1		
3	0	0	1	1	0	1	0		
4	0	1	0	0	0	0	0		
5	0	1	0	1	0	0	1		
6	0	1	1	0	1	0	0		
7	0	1	1	1	1	0	1		
8	1	0	0	0	1	0	0		
9	1	0	0	1	1	0	1		
10	1	0	1	0	0	1	0		
11	1	0	1	1	0	1	1		
12	1	1	0	0	0	0	1		
13	1	1	0	1	0	0	0		
14	1	1	1	0	1	0	1		
15	1	1	1	1	1	0	0		

Optimization:

For a more simplified conversion, make a rudimentary function. For this case, D is used to be a rudimentary function for X, Y, and Z

Binary	Output	Rudimentary	Rudimentary	Rudimentary	
ABCD	XYZ	Function of	Functions of	Functions of	
		D for X	D for Y	D for Z	
0000	101	F = 1	F = 0	F = D'	
0001	100				
0010	011	F = 0	F = 1	F = D'	
0011	010				
0100	000	F = 0	F = 0	F = D	
0101	001				
0110	100	F = 1	F = 0	F = D	
0111	101				
1000	100	F = 1	F = 0	F = D	
1001	101				
1010	010	F = 0	F = 1	F = D	
1011	011				
1100	001	F = 0	F = 0	F = D'	
1101	000				
1110	101	F = 1	F = 0	F = D'	
1111	100				

3. Technology Mapping

Truth Table

16 of 16 r	ows	sho	wn
ABCD[30]	X	\mathbf{Y}	\mathbf{Z}
0 0 0 0	1	0	1
0 0 0 1	1	0	0
0 0 1 0	0	1	1
0 0 1 1	0	1	0
0 1 0 0	0	0	0
0 1 0 1	0	0	1
0 1 1 0	1	0	0
0 1 1 1	1	0	1
1 0 0 0	1	0	0
1 0 0 1	1	0	1
1 0 1 0	0	1	0
1 0 1 1	0	1	1
1 1 0 0	0	0	1
1 1 0 1	0	0	0
1 1 1 0	1	0	1
1111	1	0	0

Note:

For X and Y, only one 4-to-1 multiplexers that is needed and necessary because the rudimentary for A = 0 and A = 1 is exactly the same.

But for Z, the rudimentary shows that A = 0 isn't the same as A = 1. Therefore, gates such as OR, AND, and NOT gates are needed to make the functions work and suit the truth table.

- 3. Lakukan tahapan *formulation*, *optimization*, dan *technology mapping* untuk masing-masing fungsi berikut: (sertakan *screenshot* masing-masing rangkaian)
 - a. $F(A, B, C, D) = \sum m(0, 2, 8, 9, 10, 14),$ $d(A, B, C, D) = \sum m(1, 4, 5, 7, 15)$

Formulation

Truth Table

Index	А	В	С	D	F
0	0	0	0	0	1
1	0	0	0	1	Х
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	Х
5	0	1	0	1	X
6	0	1	1	0	0
7	0	1	1	1	Х
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	Х

Optimization Making the K-Map for optimizing the functions

	C'				(
A'	1	0	Х	1	0	3	1	2	B'
	Х	4	Х	5	X	7	0	6	В
А	0	12	0	13	Х	15	1	14	
	1	8	1	9	0	11	1	10	B'
	D'	D' D		D		D'			

Optimized functions will be:

Technology Mapping

Truth Table

A	В	\mathbf{C}	D	\mathbf{F}
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

$$F = B \cdot D + B \cdot C + A \cdot C \cdot D$$

b.
$$F(A, B, C, D) = \prod M(3, 4, 5, 7, 8, 10, 11)$$

 $d(A, B, C, D) = \sum m(1, 2, 6, 9, 15)$

Formulation Truth Table

Index	А	В	С	D	F
0	0	0	0	0	1
1	0	0	0	1	X
2	0	0	1	0	X
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	Х
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	Х
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	X

Optimization

Making the K-Map for optimizing the functions

		(2		C'				
А	1	0	Х	1	0	3	Х	2	В
	0	4	0	5	0	7	Х	6	B'
A'	1	12	1	13	Х	15	1	14	
	0	8	Х	9	0	11	0	10	В
	D			D) [']		D		

Optimized functions will be:

$$F = (A+B').(A'+B).(C'+D')$$

Technology Mapping

Truth Table

Α	В	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$F = (A+B) \cdot (A+B) \cdot (C+D)$$

Link to author's Logisim file: Link to Logisim (Google drive)

