Classical Monte Carlo simulation of Many body Systems

- Detailed balance condition and Metropolis algorithm
- Calculation of properties

Classical Monte Carlo simulation of Many Body systems

- N atoms/molecules in a box
- With periodic boundary conditions
- A molecular model& force field is assumed
- Several configurations are generated at random using a Metropolis algorithm
- Properties are calculated within the framework of Statistical Physics

Where the Monte Carlo method (MC) comes in

Some concepts from statistical mechanics

If a system in equilibrium can be in N states, the probability of the system having energy E_n is:

$$\frac{1}{Q}\exp(-E_n/k_BT)$$

Where *Q* is the partition function:

D. A. McQuarrie, "Statistical Mechanics", University Science Books, 2000

$$Q = \sum_{n=1}^{N} \exp(-E_n/k_B T)$$

The expected value of a observable A is:

$$< A > = \frac{1}{Q} \sum_{|i>} \exp(-E_i/k_B T) < i|A|i>$$

✓ The classical expression for the partition function Q
of a systems of N identical atoms is:

$$Q = \frac{1}{h^{3N}N!} \int d\vec{p}^{\,N} d\vec{r}^{\,N} \exp(-H(\vec{r}^{\,N}, \vec{p}^{\,N})/k_B T)$$

Where \vec{r}^N , \vec{p}^N stand for the coodinates and momenta of all N particles and $H(\vec{r}^N, \vec{p}^N)$ is the hamiltonian:

$$H(\vec{r}^{\,N}, \vec{p}^{\,N}) = \sum_{i=1}^{N} \frac{\vec{p}_i^{\,2}}{2m} + U(\vec{r}^{\,N})$$

The classical expression for $\langle A \rangle$ is:

$$< A > = \frac{\int d\vec{p}^{\,N} d\vec{r}^{\,N} A(\vec{p}^{\,N}, \vec{r}^{\,N}) \exp(-\beta H(\vec{r}^{\,N}, \vec{p}^{\,N}))}{\int d\vec{p}^{\,N} d\vec{r}^{\,N} \exp(-\beta H(\vec{p}^{\,N}, \vec{r}^{\,N}))}$$

$$A(\vec{p}^{N}) \rightarrow$$
 analytical computation (easy)

 $A(\vec{r}^{N}) \rightarrow \text{numerical computation (very difficult and costly !!)}$

✓ We must then focus on the calculation of averages of the type:

$$\langle A \rangle = \frac{\int d\vec{r}^{\,N} A(\vec{r}^{\,N}) \exp(-\beta U(\vec{r}^{\,N}))}{\int d\vec{r}^{\,N} \exp(-\beta U(\vec{r}^{\,N}))}$$

$$\beta = \frac{1}{k_B T}$$

$$\exp(-\beta U(\vec{r}^N)) \equiv \text{Boltzmann factor}$$

We denote the configurational part of the partition function by Z:

$$Z \equiv \int d\vec{r}^{\,N} \exp(-\beta U(\vec{r}^{\,N}))$$

• The probability density of finding the system in a configuration around \vec{r}^N is

$$\mathcal{N}(\vec{r}^{\,N}) = \frac{\exp(-\beta U(\vec{r}^{\,N}))}{Z}$$

The Metropolis method

Let's go back to the averages we are interested in:

$$< A > = \frac{\int d\vec{r}^N A(\vec{r}^N) \exp(-\beta U(\vec{r}^N))}{\int d\vec{r}^N \exp(-\beta U(\vec{r}^N))}$$

■ This is in fact the ratio of two integrals. In a pioneering work, Metropolis *et al.* showed that it is possible to devise an efficient Monte Carlo squeme to sample such a ratio:

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys. 21, 1087-1092 (1953)

✓ The probability density of finding the system in a configuration around \vec{r}^N is

$$\mathcal{N}(\vec{r}^{\,N}) \propto \exp(-\beta U(\vec{r}^{\,N}))$$

Look at the picture to illustrate the idea of the Metropolis method:

Figure 3.1: Measuring the depth of the Nile: a comparison of conventional quadrature (left), with the Metropolis scheme (right).

From Frenkel&Smit book

Let 's consider how to generate points in configuration space with a relative probability proportional to the Boltzmann factor:

- We prepare the system in a configuration \vec{r}^N , which we denote by o (old), that has a nonvanishing Boltzmann factor $\exp[-\beta U(o)]$
- Next, we generate a new trial configuration \vec{r}'^N , which we denote by n (new), by adding a small random displacement Δ

The Boltzman factor of this trial configuration is $\exp[-\beta U(n)]$

We must decide whether we accept or reject the trial configuration

Detailed balance condition:

In equilibrium, the average number of accepted trial moves that result leaving state o must be exactly equal to the number of accepted trial moves from all other states n to state o

$$\mathcal{N}(o)\pi(o \to n) = \mathcal{N}(n)\pi(n \to o)$$

 $\mathcal{N}(o)$: probability of being in configuration o

 $\pi(o \to n) \equiv$ Transition probability from configuration o to n It can be written as:

$$\pi(o \to n) = \alpha(o \to n) \times \mathrm{acc}(o \to n)$$

 $\alpha(o \to n) \equiv \quad$ Transition matrix that determines the probability of performing a trial move from $\,$ o to n

 $acc(o \rightarrow n) \equiv$ Probability of accepting a trial move from o to n

If we ssume that α is symmetric (in general, it is not necesary):

$$\alpha(o \to n) = \alpha(n \to o)$$

The detailed balance condition can be written as:

$$\mathcal{N}(o) \operatorname{acc}(o \to n) = \mathcal{N}(n) \operatorname{acc}(n \to o)$$

From this equation if follows:

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\mathcal{N}(n)}{\mathcal{N}(o)} = \exp\{-\beta[U(n) - U(o)]\}$$

The Metropolis *et al.* choice:

$$\operatorname{acc}(o \to n) = \frac{\mathcal{N}(n)}{\mathcal{N}(o)} \quad \text{if} \quad \mathcal{N}(n) < \mathcal{N}(o)$$

 $\operatorname{acc}(o \to n) = 1 \quad \text{if} \quad \mathcal{N}(n) \ge \mathcal{N}(o)$

A basic Monte Carlo Algorithm

- 1. Select a particle at random, and calculate its energy $U(\vec{r}^N)$.
- 2. Give the particle a random displacement, $r'=r+\Delta$, and calculate its new energy $U(\vec{r}'^N)$.
- 3. Accept the move from \vec{r}^N to \vec{r}'^N with probability

$$acc(o \rightarrow n) = min(1, exp(-\beta[U(\vec{r}'^N) - U(\vec{r}^N)])$$

This means:

$$U(\vec{r}^{\;\prime N}) \leq U(\vec{r}^{\;N}) \Rightarrow \; {
m We \; accept \; the \; trial}$$

$$U(\vec{r}^{\;\prime N}) > U(\vec{r}^{\;N}) \Rightarrow \; {
m We \; generate \; a \; random \; number \; from \; a \; uniform \; distribution \; [0,1]}$$

- If smaller than $exp(-\beta[U(\vec{r}'^N) U(\vec{r}^N)]) \Rightarrow$ We accept the trial
- If larger than $exp(-\beta[U(\vec{r}'^N) U(\vec{r}^N)]) \Rightarrow$ We reject the trial

Trial moves

How to generate a trial displacement:

$$x'_{i} \rightarrow x_{i} + \Delta(Randf - 0.5)$$

 $y'_{i} \rightarrow y_{i} + \Delta(Randf - 0.5)$
 $z'_{i} \rightarrow z_{i} + \Delta(Randf - 0.5)$

Randf: a random number uniformly distributed from [0,1]

A criterium to choose the value of Δ : to obtain an acceptance of 50 %

Basic Monte Carlo Algorithm

PROGRAM mc	basic Metropolis algorithm
Do icycl=1,ncycl call mcmove	perform ncycl MC cycles displace a particle
if (mod(icycl,nsamp).eq.0)	displace a particle
+ call sample enddo end	sample averages

Attempt to displace a particle

SUBROUTINE mcmove	Attempts to displace a particle
<pre>o=int (ranf () *npart)+1 call ener(x(o),eno) xn = x(o)+ (ranf ()-0.5)*delx call ener(xn,enn) if (ranf().lt.exp(-beta + *(enn-eno)) x(o)=xn return end</pre>	select a particle at random energy old configuration give particle random displacement energy new configuration acceptance rule acceptance replace x(o) by xn

Simulating a Many Body system

- Structure: The radial distribution function (RDF)
- The **radial distribution function (RDF)** describes how density varies as a function of distance from a reference particle. It can be defined as

$$g(r) = \frac{1}{\rho} \frac{n(r)}{4\pi r^2 dr} = \frac{n(r)}{n_{id}(r)}$$

 $ho = rac{N}{V}$ average number density of particles

n(r) Mean number of particles within a distance of r and r+dr away from a particle.

 $n_{id}(r)$ Mean number of particles for an ideal gas

calculation of g(r)

 The RDF is usually determined by calculating the distance between all particle pairs and binning them into a histogram.

Algorithm for the calculation of the RDF

```
radial distribution function
subroutine gr (switch)
                                                     switch = 0 initialization,
                                                     = 1 sample, and =2 results
                                                     initialization
if (switch, eq.0) then
 ngr = 0
 delg=box/(2*nhis)
                                                      bin size
                                                     nhis = total number of bins
 do i = 1, nhis
     g(i) = 0
 enddo
else if (switch.eq.1) then
                                                     sample
ngr = ngr + 1
do i=1,npart-1
   do j=i+1,npart
                                                    loop over all pairs
       xr = x(i)-x(j)
       xr = xr-box*nint(xr/box)
                                                     periodic boundary conditions
       r = sqrt(xr^*2)
                                   Ш
       if (r.lt.box/2) then
                                                     only within half the box length
         ig = int(r/delg)
         g(ig) = g(ig) + 2
                                                     contribution for particle i and j
       endif
    enddo
 endo
                                                                                   15
```

```
else if (switch.eq.2) then
                                                          determine g(r)
  do i=1,nhis
      r=delg^*(i + 0.5)
                                                             distance r
      vb = ((i+1)**3-i**3)*delg**3
                                                   volume between bin i+1 and i
      nid = (4/3)*pi*vb*rho
                                                   number of ideal gas part . in vb
     g(i) =g(i) /(ngr*npart*nid)
                                                             normalize g(r)
   enddo
   endif
endif
return
end
```

Comment: The factor pi=3.14159

From Frenkel&Smit book

Lennard-Jones interaction potential

$$U_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

In reduced units:

$$U_{LJ}^*(r^*) = 4\left[\left(\frac{1}{r^*}\right)^{12} - \left(\frac{1}{r^*}\right)^6\right]$$

$$U_{LJ}^* = \frac{U_{LJ}}{\varepsilon} \qquad r^* = \frac{r}{\sigma}$$

Phase diagram of a L-J system: Comparison between theoretical predictions and computer simulation results

from K. Yosuke, Y. Yuri, J. Comput. Chem. Jpn. 12, 2 (2013)

The radial distribution function: comparison between a solid and a fcc lattice

The radial distribution function: comparison between a solid and a liquid

The solid exhibits a long range order !!

Simulating a Many Body system

- · Thermodynamic properties: Energy
- Energy

$$E = \frac{3}{2}Nk_BT + \langle U_N \rangle$$

Potential Energy (interaction energy)

$$< U_N > = < U_N(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N) >$$

We assume pairwise interactions and we truncate the potential at a distance r_c :

$$< U_N > = < \sum_{i=1}^{N} \sum_{j>i, r_{ij} < r_c}^{N} U(r_{ij}) >$$