Week 5: Poisson Regression MATH-516 Applied Statistics

Tomas Masak

March 20th 2023

Section 1

Log-linear Model

Poisson is Exponential Family

$$\begin{split} f(x) &= \frac{\lambda^x}{x!} e^{-\lambda} \quad \text{for} \quad x \in \{0, 1, 2 \ldots\} \text{ and } \lambda \in (0, \infty) \\ &= \exp \left(x \log \lambda + -\lambda + \log (1/x!) \right) \end{split}$$

hence

- $\theta = \log \lambda$, $\varphi = 1$, $b(\theta) = e^{\theta}$, and $c(x, \varphi) = \log(1/x!)$
- $var(Y) = \lambda$ and $\mu = \mathbb{E}X = \lambda \Rightarrow V(\mu) = \mu$
- ullet canonical link must satisfy $g(\mu)=\theta=\log\mu$
 - i.e. $\mu_n = e^{X_n^\top \beta}$ this is why Poisson regression is sometimes called log-linear model

Interpreting Parameters

- let $X_n^{\top} \beta = \beta_1 + X_{n,2} \beta_2 + \ldots + X_{n,p} \beta_p$
- the intercept captures the expected frequency (count) with zero regressors:
 - $\mathbb{E}[Y_n \mid X_{n,2} = \ldots = X_{n,p} = 0] =: \lambda_0$
 - $\Rightarrow \lambda_0 = e^{\beta_1} \dots$ expected frequency with all-zero regressors
- other coefficients capture proportional change in expected frequency (between two observations that differ by 1 in the corresponding regressor):
 - let $\overset{'}{x}=(x_1,\ldots,x_p)^{\top}$ and $\tilde{x}^{(j)}=(x_1,\ldots,x_{j-1},x_j+1,x_{j+1},\ldots,x_p)^{\top}$
 - $\mathbb{E}(Y_n \mid X_n = x) =: \lambda_n \Rightarrow \lambda_n = e^{\beta^\top x}$
 - $\mathbb{E}(Y_n \mid X_n = \tilde{x}^{(j)}) =: \tilde{\lambda}_n^{(j)} \Rightarrow \tilde{\lambda}_n^{(j)} = e^{\beta^\top \tilde{x}^{(j)}}$
 - ullet dividing: $e^{eta_j} = ilde{\lambda}_n^{(j)}/\lambda_n \dots$ proportional change when $X_{n,j} \mapsto X_{n,j} + 1$

Small Example

Noisy miners are small but aggressive native Australian birds. A study counted the birds in two hectare transects.

```
op <- par(mar=c(4,4,1,1))
plot(log(means),log(vars)) # looks linear with slope 1 and intercept 0, which is exc
gm1 <- glm(minerab ~ eucs, data=nminer, family=poisson(lin="log"))
sum(residuals(gm1, type="pearson")^2)/(31-2) # indicates that the model is not great
## [1] 2.327851
plot(jitter(minerab) ~ eucs, data=nminer)
abline(v=mybreaks, lty=2)
x <- seq(0,30,length=100)
points(x,exp(coef(gm1)[1] + x*coef(gm1)[2]),type="l")</pre>
```


Section 2

Contingency Tables

All Variables Binned

- often (e.g. sample surveys), all variables are categorical
- say we have two variables $Y \in \{1, \dots, I\}$ and $Z \in \{1, \dots, J\}$
- $(Y_1, Z_1)^{\top}, \dots, (Y_N, Z_N) \stackrel{\perp}{\sim} (Y, Z)^{\top}$ is our random sample
- then the frequencies $N_{ij} = \sum_n \mathbb{I}_{[Y=i,Z=j]}$ define a (two-way) contingency table

- ullet denote expected frequencies $m_{ij}=\mathbb{E} N_{ij}$
 - ullet and accordingly $m_{i+},\ m_{+j}$ and $m_{++}=1$
- denote probabilities of observing (i,j) by $\pi_{ij} = P(X = i, Z = j)$
 - and accordingly π_{i+} , π_{+i} and $\pi_{++}=1$
- if $(Y, Z) \perp N$, we have $m_{ii} = m_{++} \pi_{ii}$
 - what we observe does not depend on how many times we draw
 Tomas Masak

 Week 5: Poisson Regression

 March 20th 2023

Two Probabilistic Models

- - N itself is random here
 - no. of observations IJ is fixed (asymptotics?)
 - if $m_{ij} = e^{\alpha + X_{ij}^{\top}\beta}$, we have a log-linear model
 - elegant, exponential family, etc.
 - X_{ij} is the row of the design matrix (depends on the parametrization chosen for the factors)
- **2** $(N_{11},...,N_{IJ})^{\top} \sim Mult(N,\pi)$ with $\pi = (\pi_{11},...,\pi_{IJ})^{\top}$
 - *N* is fixed here and it is the no. of observations drawn from $Mult(1,\pi)$ \Rightarrow classical MLE asymptotics
 - not as elegant to work with, luckily we don't need to...
 - $\pi_{ij} = m_{ij}/m_{++} = e^{\alpha + X_{ij}^{\top}\beta} / \sum_{ij} e^{\alpha + X_{ij}^{\top}\beta}$ does not depend on α
 - α only affects the frequencies (either N or equivalently any single field such as N_{11}), not the probabilities
 - we often seek interpretation in terms of probabilities

Claim. Since, a vector of independent Poissons given their sum is Multinomial, likelihoods based on 1. and 2. are equivalent w.r.t. β .

Independence Model for Two-way Table

pseudo-contrast parametrization (no interaction)

$$\log m_{ij} = \alpha + \beta_i^Y + \beta_j^Z \quad \text{with} \quad \beta_1^Y = \beta_1^Z = 0$$

- how does the model matrix look like?
- $\log m_{11} = \alpha \Rightarrow e^{\alpha}$ is the expected frequency of the first entry

$$\pi_{ij} = m_{ij}/m_{++} \Rightarrow \log \pi_{11} = \alpha - \log m_{++}$$
$$\Rightarrow \log \pi_{ij} = \log \pi_{11} + \beta_i^{\mathbf{Y}} + \beta_j^{\mathbf{Z}}$$

- $e^{\beta_i^Y} = \pi_{ij}/\pi_{1j} = P(Y = i, Z = j)/P(X = 1, Z = j)$ for all $j \Rightarrow e^{\beta_i^Y}$ is odds of Y = i against Y = 1
 - ullet similarly $\mathrm{e}^{eta_j^{\mathcal{L}}}$ is odds of Z=j against Z=1 (irrespective of Y)
- clearly, Y and Z are independent
 - it can be calculated that $\pi_{ij} = \pi_{i+}\pi_{+i}$ (equivalent to independence)

Dependence Model for Two-way Table

pseudo-contrast again (with interaction this time)

$$\log(m_{ij}) = \alpha + \beta_i^Y + \beta_j^Z + \beta_{ij}^{YZ} \quad \text{with} \quad \beta_1^Y = \beta_1^Z = \beta_{i1}^{YZ} = \beta_{1j}^{YZ} = 0$$

ullet as before, e^lpha is the expected frequency of the first entry and

$$\log \pi_{ij} = \log \pi_{11} + \beta_i^{Y} + \beta_j^{Z} + \beta_{ij}^{YZ} =: \Delta_{ij}$$

- $e^{\beta_i^Y} = \pi_{i1}/\pi_{11} = P(Y = i, Z = 1)/P(X = 1, Z = 1)$
 - $\Rightarrow e^{\beta_i^Y}$ is odds of Y=i against X=1 given Z=1
 - similarly $e^{\beta_j^Z}$ is odds of $Z=1\mapsto Z=j\mid X=1$
- ullet to isolate eta_{ij}^{YZ} , one takes $\Delta_{ij}-\Delta_{1j}-\Delta_{i1}$ and obtains
 - $\Rightarrow \beta_{ij}^{YZ} = \frac{\pi_{ij}/\pi_{1j}}{\pi_{i1}/\pi_{11}}$ is the odds ratio
 - how many times the odds of Y = i against Y = 1 change when Z changes from 1 to j
 - or equivalently it is the change in odds of Z=j against Z=1 for $Y=1\mapsto Y=j$
- clearly, Y and Z are dependent now

Test of Independence in a Two-way Table

- \bullet in introductory statistics classes, two tests of independence for 2 \times 2 tables are usually taught:
 - Pearson χ^2 test (asymptotic, ROT: $m_{ij} \geq 5$)
 - Fisher factorial test (exact, applicable when expected frequencies are small)
- many other tests (McNemmar, Cochran-Mantel-Haenszel) exist, some of them able to handle larger tables
- deviance test: model-submodel test between the dependence and independence models above
 - asymptotic (ROT: $m_{ij} \geq 3(\vee 5)$)
 - can be easily generalized to multi-way tables
 - goodness of fit test
 - the larger model is saturated, i.e. it always holds
 - in case of all regressors discrete, the saturated model can be consistently estimated
 - the saturated model is rarely useful (what if the dependence is simply due to a confounder we missed? X dependent on Z and $X \perp Z \mid W$ for some W do not exclude each other)

Example: Wage & Race

```
tab1 <- table(Wage$wage_cat, Wage$race)</pre>
tab1
##
##
            white black other
##
    low
              609
                     93
                           66
##
    medium
              612
                     98
                           39
           629
##
    high
                     62 46
##
     extreme
              630
                     40
                           76
```

wage~race

mosaicplot(tab1,main="wage~race")

Example: Wage & Race

```
Data <- as.data.frame(tab1)
names(Data) <- c("wage", "race", "freq")
gm1 <- glm(freq ~ wage+race, data=Data, family=poisson(link="log"))
gm2 <- glm(freq ~ wage*race, data=Data, family=poisson(link="log"))
anova(gm1,gm2,test="LRT")</pre>
```

```
## Analysis of Deviance Table
##
## Model 1: freq ~ wage + race
## Model 2: freq ~ wage * race
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 48.041
## 2 0 0.000 6 48.041 1.16e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

wage and race are dependent, but could this be due to some other variables, e.g. education?

Three-way Tables

- we now have 3 variables: Y,Z and W
 - ullet assume we are interested mostly in Y and Z and their relationship, W is just something we need to control for to get the relationship right
- possible models (that depend on all the variables):
 - freq~Y+W+Z
 - $Y \perp W \perp Z$
 - freq~Y*W+Z (or similarly freq~Y+W*Z)
 - \bullet $(Y, W)^{\top} \perp Z$
 - freq~Y*W+W*Z*
 - Y and Z dependent through W, but $Y \perp \!\!\! \perp Z \mid W$
 - freq~Y*W+W*Z+X*Z (i.e. freq~(.)^2 in short)
 - Y dependent on Z, even when conditioning on W, but the conditional relationship is the same regardless of the value of W
 - freq~Y*W*Z (i.e. freq~(.)^3)
 - the saturated model

Interpretation in Three-way Tables

pseudocontrast parametrization for the three-way interaction model:

$$\log \pi_{ijk} = \log \pi_{111} + \beta_i^Y + \beta_j^Z + \beta_k^V + \beta_{ij}^{YZ} + \beta_{ik}^{YW} + \beta_{kj}^{WZ} + \beta_{ijk}^{YZW}$$

with constraints: β 's with at least one index being 1 are zero

- $e^{\beta_i^Y}$ is odds of Y = i against Y = 1
 - ullet irrespective of Z and W if there are no interactions
 - for Z = 1 if there is Y:Z interaction
 - ullet for Z=1 and W=1 if there are Y:Z and Y:W interactions
- ullet $e^{eta_{ij}^{YZ}}$ is the odds ratio how many times the odds of Y=i against
 - Y = 1 change when $Z = 1 \mapsto j$
 - ullet irrespective of W if the three-way interaction is not present
 - ullet given W=1 if the three-way interaction is present
- $e^{\beta_{ijk}^{YZW}}$ is the ratio of conditional odds ratios
 - a bit awkward interpretation
 - if this interaction is present, it implies that conditional relationships between Y and Z depend on the value of the conditioning variable W
- in the above, permute (Y, Z, W) to obtain the remaining interpretations

Model 2: freq ~ (education + income + race)^3
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

0 0.000 24 30.298 0.1751

30.298

```
tab2 <- table(Wage$education,Wage$wage_cat, Wage$race)
Data <- as.data.frame(tab2)
names(Data) <- c("education","income","race", "freq")
gm1 <- glm(freq ~ (.)^2, data=Data, family=poisson(link="log"))
gm2 <- glm(freq ~ (.)^3, data=Data, family=poisson(link="log"))
anova(gm1,gm2,test="LRT")

## Analysis of Deviance Table
##
## Model 1: freq ~ (education + income + race)^2</pre>
```

• go for the simpler model

24

• can we simplify further, in particular to a model without race*wage?

1

2

```
library(car)
Anova(gm1, type=2)
## Analysis of Deviance Table (Type II tests)
##
## Response: freq
##
                  LR Chisq Df Pr(>Chisq)
                    496.65 4 < 2.2e-16 ***
  education
                      0.68 3 0.8783807
## income
                   3112.41 2 < 2.2e-16 ***
## race
## education:income 802.34 12 < 2.2e-16 ***
## education:race 69.90 8 5.15e-12 ***
                  27.48 6 0.0001178 ***
## income:race
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- we cannot simplify any further, race and wage are still dependent
- the relationship between race and wage does not depend on education

summary(gm1) provides

Coefficients:

```
Estimate Std. Err. z value Pr(>|z|)
incomemedium:raceblack
                          0.02067
                                   0.15921
                                             0.130
                                                    0.896708
incomehigh:raceblack
                         -0.41332 0.18091
                                            -2.285
                                                    0.022331 *
incomeextreme:raceblack
                        -0.74089 0.21882
                                            -3.386
                                                   0.000710 ***
incomemedium:raceother
                         -0.54964 0.21585
                                            -2.546
                                                    0.010883 *
                       -0.61067
                                   0.21491
                                            -2.841
                                                   0.004491 **
incomehigh:raceother
                                                    0.045133 *
incomeextreme:raceother
                         -0.42511
                                   0.21219
                                            -2.003
```

showing that, for example:

- the odds of extreme salary (against the low bottomline) are more than double for whites as opposed to blacks ($e^{-0.74} \approx 0.48$) with the same education (regardless of the education level)
- the odds of medium salary (against the low bottomline) are about 2 % higher for blacks as opposed to whites ($e^{0.02} \approx 10.2$) again with the same education and regardless of the education level

Don't forget about stress-testing:

- the model has some mild issues, it doesn't fit well low-education low-income whites and high-education high-income non-whites
- otherwise all looks good
- sum(fitted(gm1)<5) shows there are 8 (out of 60) table entries with fitted frequencies lower than 5, which is not negligible
 - we could simulate from the fitted model (a.k.a. parametric bootstrap) to ascertain whether the residual deviance (30.298 on 24 df) is suspiciously high (it is not, so the model seems adequate)

Section 3

Project 3

The Goal

- home advantage is a real thing in football and other sports
- during Covid, English Premier League (EPL) games played behind closed doors for 18 months
 - for simplicity, let's say that fans weren't allowed into stadiums from March 12, 2020 until the beginning of the 2021-22 season

Question: Did home advantage persist through Covid?

- specifically, test whether the home advantage reduced during Covid
- secondarily, quantify the home advantage before Covid and probe the development after Covid

Data

Sub-folder Premier_League of folder Data contains match results for 4 EPL seasons:

- 2018-2019 pre-covid
- 2019-2020 pre-covid until March 12, 2020, then cancelled
- 2020-2021 in-covid
- 2021-2022 post-covid

freely available online and googlable.

Tasks for You

- Load and tidy up the data
 - combine the four .csv files into a single data frame
 - variable names, etc.
- Wrangle your data frame into one that we can analyze by a log-linear model.
 - every match should be coded twice, once from the home team perspective, once from the away team perspective, i.e. both scores from a single match would be the response
- Build a model and use it to answer the primary and the secondary question above.
 - quantify the home advantage by interpreting the coefficient and providing an interpreted confidence interval
- Perform basic residual and stability analyses.
 - w.r.t 2019-20 season
 - w.r.t. a larger model
 - promoted/relegated teams discarded?
 - shouldn't we include a draw effect?