Sémantique CM

12 mars 2018

1 ??

```
[[...]]: pour les instructions [[while \ E_b \ do \ S]]y = \lambda e \ si \ [[t_b]]_z e \ est \ vrai \ Alors [[while \ E_b \ do \ S]]
```

2 Sémantique dénotationnelle des boucles

Exemple avec une fonction récursive, ATTENTION : on n'est pas dans le langage des tant que. On considère $f: \mathbb{Z} \to \mathbb{Z}$ "définie" par $f(x) = si \ x = 0 alors \ 0 sinon \ f(x-1)$ En fait, f est solution d'une équation de point fixe. $f = Gf \ avec \ G: (\mathbb{Z} \to \mathbb{Z}) \to (\mathbb{Z} \to \mathbb{Z})$ (la fin manque)

On introduit $\perp_{\mathbb{Z}}$: indéterminé $\perp_{\mathbb{Z}} - 1 = \perp_{\mathbb{Z}}$: le genre de classe $\perp_{\mathbb{Z} \to \mathbb{Z}}$: fonction indéterminée $\perp_{\mathbb{Z} \to \mathbb{Z}}(x) = \perp_{\mathbb{Z}}$ On essaie de voir si certaines informations marchent avec $f_0 = \perp$ est-ce que $f = Gf_0$?

$$f_1 = Gf_0 = \lambda x six = 0 alors \ 0 sinon \ f_0(x-1)$$

$$f_1 = \lambda xsi \ x = 0alors \ 0sinon \ \bot \neq f_0$$

mais f_1 est plus déterminée que f_0 . $\gamma: E \to E$

 $x = \gamma(x)$: x point fixe.

$$f_2 = Gf_1$$

 $= \lambda x.si \ x = 0 alors \ 0$
 $sinon \ si \ x - 1 = 0 alors \ 0$
 $sinon \ \bot$
 $f_2 = \lambda x.si \ x \in [0, 1] alors \ 0$
 $sinon \ \bot$

On continue

$$f_k = G^k f_0 = G(f_{k-1})$$

$$f_k = \lambda x.si \ x \in [0, 1] alors \ 0$$

$$sinon \ \bot$$

En faisant tendre $k \to \infty$: $f_{\infty} = \lambda x.si \ x \in \mathbb{N} \ alors \ 0$ $sinon \ \bot$

Un peu de théorie : introduction de \mathbb{L} littéraux $\mathbb{B}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$. On ajoute un symbole d'indétermination : $\bot_{\mathbb{B}}, \bot_{\mathbb{N}}, \bot_{\mathbb{Z}}, \bot_{\mathbb{Q}}$.

. . . .

On étend cette notion aux fonctions E : ensemble avec \bot et \sqsubseteq .

$$f: E \to E \ et \ g: E \to E$$

$$f \sqsubseteq g$$

.

propriétés de \sqsubseteq :

— \sqsubseteq est une relation d'ordre :

$$\begin{split} f \sqsubseteq f \\ si \ f \sqsubseteq g \ et \ g \sqsubseteq f \ alors \ f = g \\ si \ f \sqsubseteq g \ et \ g \sqsubseteq h \ alors \ f \sqsubseteq h \end{split}$$

- c'est un ordre partiel
- toute suite croissante admet une borne supérieure (plus petit majorant)

$$f_0 \sqsubseteq f_1 \sqsubseteq f_2 ... \sqsubseteq f_k \sqsubseteq f_{k+1}$$

Il existe f_{∞} une borne sup définie par

$$\begin{cases} Df_{\infty} = \bigcup_{k} Df_{k} \\ f_{\infty}(x) = f_{k}(x) pour \ x \in Df_{k} \end{cases}$$

Notation : f_{∞} est notée $\lim_k \uparrow f_k$ ou $\lim \uparrow f_k$

Définitions :

- Soit E et F deux domaines et $f: E \to F$, on dit que f est monotone ssi $\forall x,y \in E, \exists x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$ — si E est un domaine, et $f: E \to E$, on dit que f est continue ssi
- - 1. f est monotone
 - 2. ta mère la catin