Problem definition: Vertex Cover

Given a graph G = (N, E) and an integer k, does there exist a subset Sof at most k vertices in N such that each edge in E is touched by at least one vertex in S?

- No polynomial-time algorithm is known
- Is in NP (short and verifiable solution):
- ullet If a graph is "k-coverable", there exists k-subset $S\subseteq N$ such that each edge is touched by at least one of its vertices
- Length of S encoding is polynomial in length of G encoding
- There exists a polynomial-time algorithm that verifies whether S is a valid k-cover
- Verify that $|S| \le k$
- Verify that, for any $(u, v) \in E$, either $u \in S$ or $v \in S$

- Reduction of 3-Sat to Vertex Cover:
- Technique: component design
- For each variable a gadget (that is, a sub-graph) representing its truth value
- For each clause a gadget representing the fact that one of its literals
- Edges connecting the two kinds of gadget
- Gadget for variable u:

- One vertex is sufficient and necessary to cover the edge
- Gadget for clause c:

- Two vertices are sufficient and necessary to cover the three edges
- k = n + 2m, where n is number of variables and m is number of

- Connections between variable and clause gadgets
- First (second, third) vertex of clause gadget connected to vertex corresponding to first (second, third) literal of clause
- Example: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

first (second, third) vertex of clause gadget has not to be taken in • Idea: if first (second, third) literal of clause is true (taken), then order to cover the edges between the gadgets

Proof of correctness

- Show that Formula satisfiable ⇒ Vertex cover exists:
- Include in S all vertices corresponding to true literals
- For each clause, include in S all vertices of its gadget but the one corresponding to its first true literal
- Example
- $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$
- x_1 true, x_2 and x_3 false

- Show that Vertex cover exists ⇒ Formula satisfiable:
- Assign value true to variables whose p-vertices are in S
- Since k = n + 2m, for each clause at least one edge connecting its gadget to the variable gadgets is covered by a variable vertex
- Clause is satisfied

October 2011

Problem definition: Subset Sum

there exist a subset of A such that the sum of its elements is equal to s? Given a (multi)set A of integer numbers and an integer number s, does

- No polynomial-time algorithm is known
- Is in NP (short and verifiable certificates):
- ullet If a set is "good", there exists subset $B\subseteq A$ such that the sum of the elements in B is equal to s
- Length of B encoding is polynomial in length of A encoding 0
- There exists a polynomial-time algorithm that verifies whether B is a set of numbers whose sum is s:
- Verify that $\sum_{a \in B} a = s$

NP-completeness

Reduction of 3-Sat to Subset Sum:

• n variables x_i and m clauses c_i

For each variable x_i , construct numbers t_i and f_i of n+m digits:

The *i*-th digit of t_i and f_i is equal to 1

For $n+1 \le j \le n+m$, the j-th digit of t_i is equal to 1 if x_i is in clause c_{j-n}

For $n+1 \le j \le n+m$, the j-th digit of f_i is equal to 1 if $\overline{x_i}$ is in clause c_{i-n}

• All other digits of t_i and f_i are 0

Example:

 $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$ Number

- For each clause c_j , construct numbers x_j and y_j of n+m digits:
- The (n+j)-th digit of x_j and y_j is equal to 1
 - All other digits of x_i and y_j are 0
- Example:

X	
>	
12/2	
>	
(x_1)	Г
<	
<u>x</u> 3	
>	
×2×	
>	H
X V	
<	
(x_3)	
>	
12/2	
>	
$\frac{x}{1}$	
<	
x3)	
>	
24	
>	
(x_1)	

					1					
j	4	0	0	0	0	0	0	1	1	
	3	0	0	0	0	Н	1	0	0	
	2	0	0	1	г	0	0	0	0	
	1	1	1	0	0	0	0	0	0	
!	3	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	
	н	0	0	0	0	0	0	0	0	
	Number	x ₁	У1	x2	72	x3	уз	X4	9,4	
,	لــــا			لب						

- Finally, construct a sum number s of n+m digits:
- For $1 \le j \le n$, the j-th digit of s is equal to 1• For $n+1 \le j \le n+m$, the j-th digit of s is equal to 3

Show that Formula satisfiable ⇒ Subset exists:

• Take t_i if x_i is true

• Take f_i if x_i is false

Take x_j if number of true literals in c_j is at most 2

Take y_j if number of true literals in c_j is 1

Example

• $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$

All variables true

, ,	4	1	0	1	0	0	0	0	1	3
	3	0	7	0	0	0	1	1	0	3
	2	0	0	1	1	П	0	0	0	3
	П	T		H	0	0	0	0	0	3
j	3	0	0	1	0	0	0	0	0	1
	2	0	1	0	0	0	0	0	0	1
	1	1	0	0	0	0	0	0	0	1
	Number	t_1	t2	t3	x ₂	372	<i>x</i> 3	73	X4	S
- 1										_

October 2011

- Show that Subset exists ⇒ Formula satisfiable:
- Assign value true to x_i if t_i is in subset
- Assign value false to x_i if f_i is in subset
- Exactly one number per variable must be in the subset
- \bullet Otherwise one of first n digits of the sum is greater than 1
- Assignment is consistent
- At least one variable number corresponding to a literal in a clause must be in the subset
- Otherwise one of next m digits of the sum is smaller than 3
- Each clause is satisfied