ELEMENTS OF COMPUTATION THEORY

Chapter 2

Undergraduate Course College of Computer Science **Zhejiang University** Fall-Winter, 2014

P 60

2.1.1 Let M be a deterministic finite automaton. Under exactly what circumstances is $e \in L(M)$? Prove your answer.

Solution:
$e \in L(M)$ if and only if $s \in F$.
\square Suppose $e \in L(M)$. Then, by definition of $L(M)$, $(s,e) \vdash_M^* (q,e)$, where $q \in F$.
Because it is not the case that $(s,e) \vdash_M (q,w)$ for any configuration (q,w) ($w \neq e$).
$(s,e) dash_M^* (q,e)$ must be in the reflexive transitive closure of $dash_M$ by virtue of reflexivity
- that is, $(s,e)=(q,e)$.
Therefore, $s=q$ and thus $s\in F$.
\square Suppose $s \in F$. Because \vdash_M^* is reflexive, $(s,e) \vdash_M^* (s,e)$. Because $s \in F$, we have
$e \in L(M)$ by definition of $L(M)$.

2.1.2 Describe informally the languages accepted by the following DFA.

Solution:

- (c) All strings with the same number of as and bs and in which no prefix has more than two bs than as, or as than bs.
- (d)All strings with the same number of as and bs and in which no prefix has more than one more a than b, or vice-versa.

2.1.3 Construct DFA accepting each of the following languages.

- (c) $\{w \in \{a,b\}^* : w \text{ has neither } aa \text{ nor } bb \text{ as a substring}\}.$
- (e) $\{w \in \{a,b\}^* : w \text{ has both } ab \text{ and } ba \text{ as a substring}\}.$

Solution: (c)
$$M = (K, \Sigma, \delta, sF)$$
, where

$$K = \{q_0, q_1, q_2, q_3\}\text{, } \Sigma = \{a, b\}\text{, } s = q_0\text{, } F = \{q_0, q_1, q_2\}$$

q	а	$\delta(q,a)$
q_0	a	q_1
q_0	b	q_2
q_1	a	q_3
q_1	b	q_2
q_2	a	q_1
q_2	b	q_3
q_3	a	q_3
q_3	b	q_3

(e)
$$M=(K,\Sigma,\delta,sF)$$
, where

$$K = \{q_0, q_1, q_2, q_3, q_4, q_5\}, \ \Sigma = \{a, b\}, \ s = q_0, \ F = \{q_5\}$$

q	а	$\delta(q,a)$	
q_0	a	q_1	
q_0	b	q_2	
q_1	a	q_1	
q_1	b	q_3	
q_2	a	q_4	
q_2	b	q_2	
q_3	a	q_5	
q_3	b	q_3	
q_4	a	q_4	
q_4	b	q_5	
q_5	a	q_5	
q_5	b	q_5	

P 74

2.2.2 Which regular expression for the languages accepted by the NFA of Problem 2.2.1 .

Solution:

- a) a^*
- b) $a(ba \cup baa)^*(b \cup ba)$
- **2.2.6** (a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- (b) Convert the NFA of part (a) to a DFA by the method in section 2.2.

Solution:

$$(a)$$
 $M=(K,\Sigma,\Delta,sF)$, where $K=\{q_0,q_1,q_2,q_3\}$, $\Sigma=\{a,b\}$, $s=q_0$, $F=\{q_0\}$

(b) Determinizing the above machine results in the following DFA:

$$K = \{\{q_0\}, \{q_1\}, \{q_3\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_3\}, \emptyset\}, \ \Sigma = \{a, b\}, \ s = \{q_0\}, \{q_0, q_1\}, \{q_0, q_2\}\}$$

$\{q\}$	σ	$\{\delta(q,\sigma)\}$
$\{q_0\}$	a	$\{q_1\}$
$\{q_0\}$	b	Ø
$\{q_1\}$	a	$\{q_3\}$
$\{q_1\}$	b	$\{q_0,q_2\}$
$\{q_0,q_2\}$	a	$\{q_0,q_1\}$
$\{q_0, q_2\}$	b	Ø
$\{q_0,q_1\}$	a	$\{q_1,q_3\}$
$\{q_0,q_1\}$	b	$\{q_0,q_2\}$
$\{q_3\}$	a	Ø
$\{q_3\}$	b	$\{q_0\}$
$\{q_1,q_3\}$	a	$\{q_3\}$
$\{q_1,q_3\}$	b	$\{q_0,q_2\}$
Ø	a	Ø
Ø	b	Ø

2.2.10 Describe exactly what happens when the construction of this section

applied to a FA that is already deterministic.

Solution:

Only |K| of the $2^{|K|}$ states of the new automaton will be reachable.

Each of these states will have $\{q\}$ for some $q \in K$. If we identify $\{q\}$ with q, we have a bijection between the states of the old automata and the reachable states of the new one. With respect to this bijection, δ, s , and F will be identical between the old machine and the new. Since \sum is the same, there is a natural isomorphism between the old and the automaton formed from the new one by discarding unreachable states.

P 83-84

2.3.4 Using the construction in the proof of theorem 2.3.1, construct FA accepting these languages.

```
(b) ((a \cup b)^*(e \cup c)^*)^*.
```

Solution: (b) Ommited.

2.3.7 Apply the construction in Example 2.3.2 to obtain regular expressions responding to each of the FA above. Simplify the resulting regular expressions as much as you can.

Solution:

- $(a) a^*b(ba^*b \cup a)^*$
- (b) $((a \cup b)(a \cup b))^*$
- $(c) (a \cup b)^*abaa(a \cup b)^*$
- $(d) (a \cup \emptyset^*)(ba^*a)^*b(b \cup a)^*$

P 90

2.4.5 Using the pumping theorem and closure under intersection, show that the following are not regular.

```
(a) \ \{ww^R : w \in \{a,b\}^*\}
```

Solution:

Assume L is regular, by the closure property under intersection so is $L_1 = L \cap a^*bba^*$.

Consider language L_1 .

Let k be the constant whose existence the pumping theorem guarantees.

Choose string $w = a^k b b a^k \in L_1$.

Clearly $|w| \ge k$. So the pumping theorem must hold.

Let w = xyz such that $|xy| \le k$ and $y \ne e$, then $y = a^i$ where i > 0.

But then $xy^nz=a^{k+(n-1)i}bba^k$, which is clearly asymmetric for any $n\neq 1$.

The theorem fails, and thus that L_1 is not regular, therefore L is not regular.

2.4.8 Are the following statements true od false? Explain you answer in each case.

- (a) Every subset of a regular language is regular.
- (b) Every regular language has a regular proper subset.
- (c) If L is regular, then so is $\{xy \mid x \in L \text{ and } y \notin L\}$.
- (d) $\{w \mid w = w^R\}$ is regular.
- (e) If L is regular, then so is $\{w \mid w \in L \text{ and } w^R \in L\}$.
- (f) If C is any set of regular languages, then $\cup C$ is a regular language.
- $(g) \{xyx^R \mid x, y \in \Sigma^*\}$ is regular.

Solution:

- (a) False. Every language, including those we know not to be regular, is a subset of the regular language $\sum_{i=1}^{8}$.
- (b) False. The empty set, which is a regular language, has no proper subsets at all, so it certainly cannot have a proper subset which is also a regular.
- (c) True. $\{xy \mid x \in L \text{ and } y \notin L\} = L \circ \overline{L}$. Since L is regular, so is its complement, and thus their concatenation is regular.
- (d) False. This can be shown by trying to pump the string a^kba^k . y will have to consist only of as and the resulting xy^2z will unbalanced. Note, however, that this language is regular over an alphabet of one symbol.(It is true when C is required to be finite).
- (e) True. This language is $L \cap L^R$. If L is regular, then so is L^R . Since both L and L^R are regular, so is their intersection.

Solution:

- (f) False. Any language can be written as the (possibly infinite) union of the singleton sets containing its individual elements. Since not every language is regular, this claim is false.
- (g) True. $\{xyx^R \mid x,y \in \Sigma^*\} = \Sigma^*$. By letting x=e, y can vary over all the strings of Σ^* .)