The voltage-current characteristics are identical at the two terminals. February 11 Vz and Rt are found by considering two operating extremes.

Determining a Therenin equivalent is two separate analysis problems: Find V_{ξ} , find R_{ξ} .

Example: Find the Thevenin equivalent at terminals x, y.

Find V_t , where $V_t = V_\infty$. Using node-voltage method, open-circuit voltage will be V_b .

Node a:
$$\frac{\sqrt{a-10}}{5} + \frac{\sqrt{a}}{10} + \frac{\sqrt{a-10}}{15} = 0$$

 $(\times 30)$ $6\sqrt{a} - 60 + 3\sqrt{a} + 2\sqrt{a} - 2\sqrt{b} = 0$

or
$$11V_a - 2V_b = 60$$
 (1)

Node b:
$$\frac{V_b - V_a}{15} + \frac{V_b}{20} = 0$$

$$(x60)$$
 $4V_b - 4V_a + 3V_b = 0$
or $-4V_a + 7V_b = 0$

or $-4v_a + 7v_b = 0$ (2)

Solving (1) and (2), $V_a = 6.087v$ $V_b = 3.478v$

Thus, $V_t = V_b = V_{oc} = 3.478$

Now find isc

- Notes: parallel combination of 2012 and a short circuit! (Equipment resistance short rincuit = 0.52)
 - What's happened to V_b? Now connected directly to reference node.
 V_b = 0.
 - $i_1 = 0$, since $V_6/20 = 0$. All current is in i_{SC} , none in 2002 resistor.

Node a:
$$\frac{V_{a-10}}{5} + \frac{V_{a}}{10} + \frac{V_{a}}{15} = 0$$

note this is is:

(x30) $6V_{a} - 60 + 3V_{a} + 2V_{a} = 0$
 $50 \quad V_{a} = 60/11 = 5.455 \text{ v}.$

Therefore, $i_{5c} = V_{a} = 0.364 \text{ A}$

Therefore,
$$i_{5c} = \frac{V_a}{15} = 0.364 \text{ A}$$

and $R_t = \frac{V_{0c}}{i_{5c}} = \frac{3.478}{0.364} = 9.56 \text{ C}$

The Thevenin equivalent circuit

Example 2: Find the Thevenin equivalent

Find Ve. Using node-voltage method, Vt = Vb

Note a:
$$\frac{V_{a}-10}{10} - 2 + \frac{V_{a}}{10} + \frac{V_{a}-V_{b}}{20} = 0$$

(x20) $2V_{a} - 20 - 40 + 2V_{a} + V_{a} - V_{b} = 0$
 $5V_{a} - V_{b} = 60$ (1)