

Проверка связи

Отправьте «+», если меня видно и слышно

Если у вас нет звука или изображения:

- перезагрузите страницу
- попробуйте зайти заново
- откройте трансляцию в другом браузере (используйте Google Chrome или Microsoft Edge)
- с осторожностью используйте VPN, при подключении через VPN видеопотоки могут тормозить

Цели занятия

- 1. Вспомним принцип работы моделей кластеризации
- 2. Реализуем поиск оптимального количества кластеров
- 3. Кластеризуем изображение
- 4. Узнаем, как интерпретировать получившиеся кластеры

План занятия

- 1. Визуализация моделей кластеризации
- 2. Кластеризация MNIST
- 3. Метод локтя
- 4. Кластеризация изображения
- 5. Сегментация клиентов
- 6. Анализ кластеров
- 7. Итоги занятия

KMeans

Ставим три ларька с шаурмой оптимальным образом

(иллюстрируя метод К-средних)

1. Ставим ларьки с шаурмой в случайных местах

2. Смотрим в какой кому ближе идти

3. Двигаем ларьки ближе к центрам их популярности

4. Снова смотрим и двигаем

5. Повторяем много раз

6. Готово, вы великолепны!

KMeans. Метод локтя

Агломеративная

Агломеративная. Дендограмма

Все точки делятся на 3 типа:

- **ядра** (ключевые точки) (в eps-окрестности >= N точек)
- **достижимые из ядра** (граничные точки) (в ерѕ- окрестности < N точек, > 0 ядер)
- выбросы (остальные)

Визуализация моделей кластеризации

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Практика

Ваши вопросы?

Итоги занятия

Итоги занятия

- 1. Вспомнили принцип работы моделей кластеризации
- 2. Реализовали поиск оптимального количества кластеров
- 3. Кластеризовали изображение
- 4. Узнали, как интерпретировать получившиеся кластеры

Дополнительные материалы

- 1. Метрики sklearn для задач кластеризации http://scikit-learn.org/stable/modules/classes.html
- 2. Open Data Science, habrahabr: Обучение без учителя: РСА и кластеризация https://habrahabr.ru/company/ods/blog/325654/
- 3. Модель KMeans https://youtu.be/EHZJMz6zyFE
- 4. Метод локтя https://youtu.be/BEhLlqkL-f4

Пожалуйста, оставьте свой отзыв о семинаре

До встречи!

