AES	2(4)
HHH	(1,3)
HATH	(0,2)
HTT	(0,1)
THT	(0,1)
TTT	(d,0)

Defn: Bivariate / Joint CDF

the joint CDF is a function

 $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ So that for $(x,y) \in \mathbb{R}^2$

Probat

$$F(x,y) = P(X \leq x, Y \leq y)$$

Univariate:
$$F(x) = P(X \le x)$$

Properties of Joint CDF

- F(x,y) > 0
 - $(2) \lim_{\chi,y\to\infty} F(\chi,y) = |$

Uni:
$$\lim_{x\to\infty} F(x) = 1$$

 $\lim_{\chi \to -\infty} F(x,y) = 0$ $\lim_{\chi \to -\infty} F(x,y) = 0$ $y \to -\infty$

$$\begin{array}{c}
\text{mi: lim } F(x) = 0 \\
x \to -\infty
\end{array}$$

4) F is non-decreasing and right-continuous in argument

Defn: Marginal RVs/Distributions

If (X, Y) is a biv. RV then X and Y are called the marginal RVs and their properties are also called marginal e.g. their PMts/PDFs one called the marginal PMFs/PPFs --

Theorem: Relation between Joint/Marginal CDFs

$$\frac{1}{\sum_{x} f(x)} = \lim_{y \to \infty} f(x,y) = \lim_{x \to \infty} f(x,y)$$
The proof $f(x)$ is the configuration of the configura

$$2F_{y}(y) = \lim_{\chi \to \infty} F(\chi, y)$$

$$\frac{Pf'}{F_{\chi}(x)} = P(\chi \leq \chi) = P(\chi \leq \chi, \chi = \text{onything})$$

$$= P(\chi \leq \chi, \chi < \infty)$$

$$= \lim_{y \to \infty} P(\chi \leq \chi, \chi \leq y)$$

$$y \rightarrow \infty$$

=
$$\lim F(x,y)$$

Onivariate P(x > x) = 1 - F(x)

Bivariate Case:

$$P(x>x,y>y) = 1 - F_x(x) - F_y(y) + F(x,y)$$

$$F_y(y)$$

$$F_y(y)$$

$$F_y(y)$$

Defu: Joint PMF

If X and 1/ me discrete RVs then the joint PMF is defined as

$$f(x,y) = P(x=x, 1/=y)$$

[Univariate Analg: f(x) = P(X=x)]

[Univariate maig. f(x)-11 /x-1)] Theorem: Valid PMF A function & is a valid PMF iff $(1) f(x,y) > 0 \quad \forall x,y$ $(2) \sum_{x} \sum_{y} f(x,y) = 1$ Theorem: Rel. blun joint/marginal PMF marsinal f(x) = Z f(x,y)

marsinal x

prof x (2) $f_{\gamma}(y) = \sum_{x} f(x,y)$ Pf. Notice Ay= \$ 1/2 = y 3 for all possible y, These Ay partition S

So let 13 = "X = x"then $f_{(X)} = P(X=x) = P(T3) = ZP(B \cap Ay)$

$$= \sum_{y} P('X = x'' \cap ''Y = y'')$$

$$= \sum_{y} P(X = x, Y = y)$$

$$= \sum_{y} f(x,y)$$

$$\frac{EX}{E}$$
, Perist previous,

$$F(ip 3 coins,$$

$$X = \begin{cases} 0 & if last T \\ l & H \end{cases}$$

	£(4,4)			Y		
	'			2	3	
	\rightarrow 0 (P(0,0)	f(0,1)	f(0,2)	f(0,3)	fx(0)=sim
2		1/8	= 48	8/1	0/	= 1/2
	1	0	1/8	48	/8	$f_{x}(1) = 1/2$
		fy(0)	fy(1)	fy(2)	fy(3)	
		= 1/8	3/8	3/8	1/8	

Defu: Joint PDF

Defu: Joint PDF

If X and Y are continuous we call the function $f: \mathbb{R}^2 \to \mathbb{R}$ the joint PDF if $YCC\mathbb{R}^2$

$$\mathbb{P}((X,Y)\in C) = \iint f(x,y) dxdy$$

Universate; Aneclogy $P(X(A) = \int_A f(x) dx$

$$(1) F(x,y) = \iint_{-\infty}^{\infty} f(u,v) du dv$$

$$\frac{\text{Univi}}{\text{F(x)}} = \int_{-\infty}^{\infty} f(x) dt$$

$$(2) f(x,y) = \frac{\partial^2 F}{\partial x \partial y}$$

$$f(x) = \frac{dF}{dx}$$

- 7 is a could go in a 1 mg $\int f(x,y) = 0 \quad \forall x,y$ Theorem: Rel. between joint/marginal PDFs $\int_{X} f(x,y) dy$ markingly in the PDF $(2) f_{y}(y) = \int_{D} f(x,y) dx$ (0, x<0 or y<0 xy, 0<x<1 and 0<y<1 \ 1/- -- y, x71 and 02451 What's the joint PDF f?

what's the joint PDT
$$f$$
?

$$f(x,y) = \frac{\partial^2 f}{\partial x^2}$$

$$f(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ ad } 0 < y < 1 \end{cases}$$

$$f(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ ad } 0 < y < 1 \end{cases}$$

$$else$$
What is the maggiral dist of X ?

$$f_{x}(x) = \int f(x,y) \, dy$$

$$R$$
If $x < 0 \text{ or } x > 1 \text{ then } f(x,y) = 0$

$$so f_{x}(x) = \int 0 \, dy = 0$$
If $0 < x < 1 \text{ for } f(x,y) = 1 \text{ for } 0 < y < 1 \text{ fo$

	I.			
	0.	Y~ U(01)		
	Similarly	1, a(o(1)		
_				