Mohó algoritmusok

Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján oldjuk meg, de előfordul, hogy a dinamikus programozás túl sok esetet vizsgál annak érdekében, hogy az optimális választást meghatározza.

A mohó algoritmus mindig az adott lépésben optimálisnak látszó választást teszi. Vagyis, a lokális optimumot választja abban a reményben, hogy ez globális optimumhoz fog majd vezetni.

Mohó algoritmus nem mindig ad optimális megoldást, azonban sok probléma megoldható mohó algoritmussal.

Eseménykiválasztási probléma

Tegyük fel, hogy adott események egy $S = \{a_1, a_2, \dots, a_n\}$ n elemű halmaza, amelyek egy közös erőforrást, például egy előadótermet kívánnak használni. A teremben egy időben csak egy esemény folyhat. Az a_i esemény az s_i kezdő időpont és az f_i befejezési időpont által adott, ahol $s_i < f_i$. A cél egy maximális halmazát kiválasztani kompatibilis eseményeknek (i,j kompatibilis, ha $s_i \ge f_i$ vagy $s_i \ge f_i$).

Feltesszük, hogy az S eseményhalmaz elemeit a befejezési idejük szerint nemcsökkenő sorrendbe rendeztünk.

Példa:

1. táblázat. Az eseménykiválasztási probléma egy inputja

	•										
i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Mohó algoritmus

Példa: $A = \{1, 4, 8, 11\}$

A helyesség igazolása

1. Lemma Létezik olyan optimális megoldás, amely az 1 eseménnyel kezdődik.

Bizonyítás Legyen A egy tetszőleges optimális megoldás, legyen k a legkisebb indexű esemény. Ha k=1, akkor az állítás nyilvánvaló, egyébként legyen A' az a halmaz, amit A-ból kapunk úgy, hogy k-t kicseréljük 1-re. A Lemma teljesül, mert A' is optimális.

2. Lemma Ha A tartalmazza 1-et és A optimális megoldása az S problémának, akkor $A \setminus \{1\}$ optimális megoldása az S' problémának, ahol $S' = \{i \in S : s_i \ge f_1\}$

Bizonyítás Ha nem lenne optimális megoldása S'-nek, akkor egy jobb megoldást kiegészítve 1-el, A-nál jobb megoldását kapnánk az S problémának.

A mohó megoldó stratégia elemei

- 1. Fogalmazzuk meg az optimalizációs feladatot úgy, hogy minden egyes választás hatására egy megoldandó részprobléma keletkezzék.
- 2. Bizonyítsuk be, hogy mindig van olyan optimális megoldása az eredeti problémának, amely tartalmazza a mohó választást, tehát a mohó választás mindig biztonságos.
- 3. Mutassuk meg, hogy a mohó választással olyan részprobléma keletkezik, amelynek egy optimális megoldásához hozzávéve a mohó választást, az eredeti probléma egy optimális megoldását kapjuk.

Kapcsolat a dinamikus programozással

A feladat megoldható lenne dinamikus programozással is.

Legyen $S_{i,j} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$, tehát $S_{i,j}$ azokat az S-beli eseményeket tartalmazza, amelyek a_i befejeződése után kezdődnek, és befejeződnek a_j kezdete előtt, azaz kompatibilisek mind a_i -vel mind pedig a_j -vel.

Tegyük fel, hogy $A_{i,j}$ egy optimális megoldása az $S_{i,j}$ részproblémának és $a_k \in A_{i,j}$. Ekkor az $A_{i,k}$ megoldás optimális megoldása kell legyen az $S_{i,k}$ részproblémának, és az $A_{k,j}$ megoldás optimális megoldása kell legyen az $S_{k,j}$ részproblémának.

Legyen c[i,j] az $S_{i,j}$ részprobléma optimális megoldásában az események száma, ekkor

$$c[i, j] = 0$$
, ha $S_{i, j} = 0$ és

$$c[i, j] = \max_{i < k < j, a_k \in S_{i,i}} \{c[i, k] + c[k, j] + 1\}$$
 egyébként.

A rekurziónak a mohó megoldás mindig optimális megoldását adja.

Hátizsák feladat

Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke (f[i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk. Az s[i] és S értékek egészek. Szeretnénk úgy választani tárgyakat, hogy az összfontosság maximális legyen. Tehát feladatunk, hogy kiválasszuk a tárgyaknak olyan halmazai közül, amelyekre az összsúly nem haladja meg S-t azt, amelyre maximális az összfontosság.

A töredékes változat abban különbözik az előzőtől, hogy a tárgyak töredéke is választható, nem kell 0-1 bináris választást tenni.

Megoldó algoritmusok

A töredékes hátizsák feladatot optimálisan megoldja egy mohó algoritmus. A feladat megoldásához számítsuk ki minden tárgyra a f[i]/s[i] fontosság per súly hányadost. A mohó stratégia szerint mindig a legnagyobb hányadosú tárgyból választunk amennyit csak lehet. Ha elfogyott, de még nem telt meg a hátizsák, akkor a következő legnagyobb hányadosú tárgyból választunk amennyit csak lehet, és így tovább, amíg a hátizsák meg nem telik. Mivel a tárgyakat az érték per súly hányados szerint kell rendeznie, a mohó algoritmus futási ideje $O(n \log n)$ lesz.

Ez a mohó algoritmus nem ad feltétlenül optimális megoldást a 0-1 hátizsák feladatra. Ezt igazolja a következő példa: s = [10, 20, 30], f = [60, 100, 120], S = 50.

Huffman kód

A Huffman-kód széles körben használt és nagyon hatékony módszer adatállományok tömörítésére. Az elérhető megtakarítás 20%-tól 90%-ig terjedhet, a tömörítendő adatállomány sajátosságainak függvényében. A kódolandó adatállományt karaktersorozatnak tekintjük. A Huffman féle mohó algoritmus egy táblázatot használ az egyes karakterek előfordulási gyakoriságára, hogy meghatározza, hogyan lehet a karaktereket optimálisan ábrázolni bináris jelsorozattal.

Kódolási módszerek

2. táblázat. Karakterek kódolása

2. thornzatt Harantoron nodornsa										
karakter	a	b	c	d	e	f				
gyakoriság	45	13	12	16	9	5				
fix hosszú kód	000	001	010	011	100	101				
változó hosszú kód	0	101	100	111	1101	1100				

Kézenfekvő megoldás fix hosszú kódokat használni, ekkor a betűk kódolásához 3 bit kell, így a teljes kód hossza: 300.

A változó hosszú kód alkalmazása tekintélyes megtakarítást eredményez, ha gyakori karaktereknek rövid, ritkán előforduló karaktereknek hosszabb kódszavat feleltetünk meg. A fenti példában szereplő kód esetén a kódoláshoz szükséges bitek száma: $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) = 224$.

A kódot vissza is kell tudnunk fejteni. A továbbiakban csak olyan kódszavakat tekintünk, amelyekre igaz, hogy egyik sem kezdőszelete a másiknak. Az ilyen kódolást prefix-kódnak vagy prefix mentes kódnak nevezzük.

Kódok ábrázolása

Az olyan bináris fa, amelynek levelei a kódolandó karakterek, egy alkalmas ábrázolása a prefixmentes kódoknak. Ekkor egy karakter kódját a fa gyökerétől az adott karakterig vezető út ábrázolja, a 0 azt jelenti, hogy balra megyünk, az 1 pedig, hogy jobbra megyünk az úton a fában.

Ekkor minden karakter kódjának hossza a fában a megfelelő levél mélysége, így a teljes állomány kódolásának várható hossza egy adott *T* fára:

$$B_T = \sum_{c \in C} f(c) d_T(c),$$

ahol C a karakterek halmaza, f(c) a c karakter gyakorisága, $d_T(c)$ pedig a c-nek megfelelő levél mélysége a T fában.

Huffman kód algoritmusa

A kód fájának megszerkesztéséhez egy prioritási sort használunk, amely a fa pontjait az f érték alapján tárolja. Eredményképpen a fa gyökerét adja az algoritmus vissza.

Az algoritmus futási ideje $O(n \log n)$.

Megjegyzés: A fenti pszeudókód által kapott algoritmus nem alkalmas arra, hogy az egyes pontók kódját hatékonyan megkapjuk belőle. Egy hatékony megvalósítás során, a fa konstruálásánál, az adot pont fiainál meg kell jegyeznünk, hogy bal vagy jobb fiúk.

Példa:

1. ábra.

Helyesség

1. Lemma Legyen C tetszőleges karakter halmaz, és legyen f[c] a $c \in C$ karakter gyakorisága. Legyen x és y a két legkisebb gyakoriságú karakter C -ben. Ekkor létezik olyan optimális prefix-kód, amely esetén az x-hez és y-hoz tartozó kódszó hossza megegyezik, és a két kódszó csak az utolsó bitben különbözik.

Bizonyítás: A bizonyítás alapötlete az, hogy vegyünk egy optimális prefix-kódot ábrázoló T fát és módosítsuk úgy, hogy a fában x és y a két legmélyebben lévő testvércsúcs legyen. Ha ezt meg tudjuk tenni, akkor a hozzájuk tartozó kódszavak valóban azonos hosszúságúak lesznek és csak az utolsó bitben különböznek.

Legyen a és b a T fában a két legmélyebb testvércsúcs. Az általánosság megszorítása nélkül feltehetjük, hogy $f[a] \le f[b]$ és $f[x] \le f[y]$. Mivel $f[x] \le f[y]$ a két legkisebb gyakoriság, ezért azt kapjuk, hogy $f[x] \le f[a]$ és $f[y] \le f[b]$.

Cseréljük ki az a és x pontokat T-ben, legyen a kapott fa T'. Majd cseréljük ki a b és y pontokat T'-ben a kapott fa legyen T".

Ekkor kiszámolva a költségeket:

$$B(T) - B(T') = (f[a] - f[x])(d_T(a) - d_T(x)) \ge 0$$

$$B(T') - B(T'') = (f[b] - f[y])(d_{T'}(b) - d_{T'}(y)) \ge 0.$$

Következésképpen T" is optimális.

A konstrukció teljesíti az optimális részproblémák tulajdonságot.

2. Lemma Legyen C tetszőleges ábécé, és minden $c \in C$ karakter gyakorisága f[c]. Legyen x és y a két legkisebb gyakoriságú karakter C-ben. Tekintsük azt a C' ábécét, amelyet C-ből úgy kapunk, hogy eltávolítjuk az x és y karaktert, majd hozzáadunk egy új z karaktert, tehát $C' = C \setminus \{x,y\} \cup \{z\}$. Az f gyakoriságok C'-re megegyeznek a C-beli gyakoriságokkal, kivéve z esetét, amelyre f[z] = f[x] + f[y]. Legyen T' olyan fa, amely optimális prefix-kódját ábrázolja a C' ábécének. Ekkor az a T fa, amelyet úgy kapunk, hogy a z levélcsúcshoz hozzákapcsoljuk gyerek csúcsként x-et és y-t, olyan fa lesz, amely a C ábécé optimális prefix-kódját ábrázolja.

Bizonyítás: A formulák behelyettesítésével adódik, hogy B(T) = B(T') + f[x] + f[y].

Ezt követően indirekt bizonyítunk. Tegyük fel, hogy T nem optimális prefix-kódfa a C ábécére. Ekkor létezik olyan T" kódfa C-re, hogy B(T) < B(T). Az általánosság megszorítása nélkül (az 1. lemma alapján) feltehetjük, hogy x és y testvérek. Legyen T^* az a fa, amelyet T"-ből úgy kapunk, hogy eltávolítjuk az x és y csúcsokat, és ezek közös z szülőjének gyakorisága az f[z] = f[x] + f[y] érték lesz.

Ekkor $B(T^*) = B(T^*) - f[x] - f[y] < B(T) - f[x] - f[y] = B(T')$, ami ellentmondás.

Kiskérdések a ZH utáni hétre

- Eseményválasztás algoritmusa
- Huffman kód algoritmusa
- Huffman kód algoritmusának végrehajtása, az optimális fa felépítése, a kódok megadása egy megadott példán