Electronic Devices and Circuits & Pulse Techniques

Course Instructor

Md. Saklain Morshed Lecturer, EEE Green University of Bangladesh

MOSFET Current Voltage Characteristics

Modes of Operation

MOSFET Related Important Equations

MOSFET Related Ckt Problem

Video Link of this Lecture:

- Lecture-1: https://youtu.be/7CrDQtUQbwA
- Lecture-2: https://youtu.be/DSuMV-5ANr8
- Lecture-3: https://youtu.be/JE-UHIML3jw

Electronic Devices and Circuits & Pulse Techniques

OHM'S LAW

$$I_{D} = \frac{W}{L} \bullet \mu_{n} C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_{T} \right] \bullet V_{DS}$$

$$L$$
 μ_n

$$V_{GS}$$
 W V_{DS}

$$V_T$$
 I_D C_{ox}

$$I_{D} = \frac{W}{L} \bullet \mu_{n} C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_{T} \right] \bullet V_{DS}$$

$v_{\scriptscriptstyle DS}$ is kept small

$$V_{DS} << V_{GS} - V_{T}$$

$$I_{D} = \frac{W}{L} \bullet \mu_{n} C_{ox} \left| V_{GS} - \frac{V_{DS}}{2} - V_{T} \right| \bullet V_{DS}$$

$$I_{D} = \frac{W}{L} \bullet \mu_{n} C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_{T} \right] \bullet V_{DS}$$

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

Operating mode	Voltages		
Cut-off	$V_{GS} < V_{th}$		
Linear	$V_{GS} > V_{th}$	$V_{DS} < V_{GS} - V_{th}$	
Saturation	$V_{GS} > V_{th}$	$V_{DS} \geq V_{GS} - V_{th}$	

Electronic Devices and Circuits & Pulse Techniques

Operating mode	Voltages		Drain current
Cut-off	$V_{GS} < V_{th}$		$I_{DS}=0$
Linear	$V_{GS} > V_{th}$	$V_{DS} < V_{GS} - V_{th}$	$I_{D} = \frac{W}{L} \bullet \mu_{n} C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_{T} \right] \bullet V_{DS}$
Saturation	$V_{GS} > V_{th}$	$V_{DS} \geq V_{GS} - V_{th}$	$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$

Saturation

 $V_{GS} > V_{th}$ $V_{DS} \ge V_{GS} - V_{th}$ $I_{Dsat} = \frac{T}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$

Electronic Devices and Circuits & Pulse Techniques

Design the circuit of Fig. 5.21, that is, determine the values of R_D and R_S , so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_r = 0.7$ V, $\mu_n C_{rr} = 100 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $W = 32 \,\mu\text{m}$.

Electronic Devices and Circuits & Pulse Techniques

Design the circuit of Fig. 5.21, that is, determine the values of R_D and R_S , so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_r = 0.7$ V, $\mu_n C_{ov} = 100 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $W = 32 \,\mu\text{m}$.

Electronic Devices and Circuits & Pulse Techniques

Design the circuit in Fig. 5.23 to establish a drain voltage of 0.1 V. What is the effective resistance between drain and source at this operating point? Let $V_{tn} = 1$ V and $k'_n(W/L) = 1$ mA/V².

Solution

Since the drain voltage is lower than the gate voltage by 4.9 V and $V_{tn} = 1$ V, the MOSFET is operating in the triode region. Thus the current I_D is given by

$$I_D = k_n' \frac{W}{L} \left[(V_{GS} - V_{tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_D = 1 \times \left[(5 - 1) \times 0.1 - \frac{1}{2} \times 0.01 \right]$$
= 0.395 mA

The required value for R_D can be found as follows:

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

= $\frac{5 - 0.1}{0.395} = 12.4 \text{ k}\Omega$

Electronic Devices and Circuits & Pulse Techniques

Design the circuit in Fig. 5.23 to establish a drain voltage of 0.1 V. What is the effective resistance between drain and source at this operating point? Let $V_{tn} = 1$ V and $k'_n(W/L) = 1$ mA/V².

Electronic Devices and Circuits & Pulse Techniques

D5.9 For the circuit in Fig. E5.9, find the value of R that results in $V_D = 0.8$ V. The MOSFET has $V_{tn} = 0.5$ V, $\mu_n C_{ox} = 0.4$ mA/V², $W/L = \frac{0.72 \ \mu m}{0.18 \ \mu m}$, and $\lambda = 0$.

Ans. $13.9 \text{ k}\Omega$

Figure E5.9

