

Machine Learning 410

Lesson 12

Introduction to Neural Machine Translation with RNNs

Steve Elston

Reminders

- Discussion get an easy 5 points!
 - Discussion 8 closes Tonight, Nov 21.
 - Discussion 9 closes Thursday, Dec 5.
- Homework Updated homework is in Canvas
 - Homework 7 due December 2

Outline

- Review of recurrent neural network (RNN) architectures
- The long-short term memory (LSTM) unit
- Bidirectional RNNs (BiRNN)
- Introduction to statistical machine translation (SMT)
- Evaluation of STM models
- Overview of neural machine translation (NMT)
- The attention mechanism for NMT
- Google translate

Feedforward network

Generative model where input vector generates output sequence

Classification of input sequence

Sequence-to-sequence model – Generative

Sequence-to-sequence model with **context** and embedding

Sequence Generation with RNNs

- Given an input value **x**, we want to generate an output sequence **y**.
 - Activation is function of input and last output: $Y_t = h_{t-1}(y_{t-1},x)$
 - Is a generative model
- Train by minimizing the loss with respect to the desired response
 - Loss function = J(U, V, W)
- Applications:
 - Response to question chat bots
 - Caption images
 - Machine translation

Sequence Generation with RNNs

- Problems training simple recurrent architectures have led to the development of better approaches
 - Vanishing and exploding gradients common
 - Consider the following recurrent relationship:

$$s^{(t+n)} = f(f(\dots,f(f(s^{(t)};\theta));\theta)$$

For a long recurrence, large n:

If $f(s; \Theta) > 1.0$ the gradient grows exponentially

If $f(s; \Theta) < 1.0$ the gradient vanishes

- How can one create a neural net for modeling sequences with stable gradients?
 - Memory lets the NN operate at multiple time scales
 - Forget gates break the recurrence relationship and stabilize the gradient
- The Long-Short Term Memory (LSTM) neural network was an early architecture using memory and forget gates
- LSTM used for speech recognition, handwriting generation, machine translation, etc.

Bidirectional RNNs

- Not all sequential relationships are causal
 - A natural language phrase can be parsed in both directions
 - Hand writing recognition can proceed from either end
 - Figure captioning has no preferred direction
- For non-causal sequences we can use bidirectional RNNs
- Bidirectional RNNs trained using BPTT in both directions

Bidirectional RNNs

Statistical Machine Translation

How to build a statistical model to translate from one language to another?

- Statistical machine translation has a long history, starting in the 1950s
- Goal:
 - Given an **input sequence**, $\mathbf{x} = x_1, x_2, \dots, x_n$, of tokens in a first language
 - Find the most probable or **target output sequence**, $\mathbf{y} = y_1, y_2, \dots, y_m$, in a second lanuage

Statistical Machine Translation

How to build a statistical model to translate from one language to another?

• The most probability of the output sequence y, given the input sequence x follows this relationship

$$p(\mathbf{y}|\mathbf{x}) \propto p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$$

• Where,

 $p(\mathbf{x}|\mathbf{y})$ is the **translation model**, or likelihood of sequence \mathbf{x} given sequence \mathbf{y}

p(y) is the language model, or probability of sequence y in the target lanuage

Statistical Machine Translation

How to build a statistical model to translate from one language to another?

Find most probably tartget sequence

$$p(\mathbf{y}|\mathbf{x}) \propto p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$$

• Can find weights for the maximum likelihood expression $\mathbf{w} = w_1, w_2, \dots, w_N$

$$log p(\mathbf{y}|\mathbf{x}) = \sum_{n=1}^{N} w_n p(\mathbf{y}|\mathbf{x}) + log Z(\mathbf{x})$$

• Where $Z(\mathbf{x})$ is the normalization constant not dependent on $oldsymbol{y}$

Evaluation of SMT Models

The BLEU score

- The Bilingual Translation Understudy or BLEU score is used to compare SMT models.
- BLEU is a comparison between results of an SMT model and results of expert human translators
- The BLEU compares a hypothesis of *i-gram* tuples, *H(i)*
- The BLEU is the average proportion of *i-gram* matches
- A model with a higher BLEU is considered superior

Evaluation of SMT Models

The BLEU score

The **BLEU score** for a sequence length N is computed:

$$BLEU = \{\prod_{i=1}^{N} P(i)\}^{\frac{1}{N}}$$

Where,

$$P(i) = \frac{Matched(i)}{H(i)}$$

Evaluation of SMT Models The BLEU score

- H(i) is the number of i-gram tuples in each hypothesis For hypothesis of length n, examples are: H(1) = n, H(2) = n-1, H(3) = n-2
- And the number of matches:

$$Matched(i) = \sum_{t_i} min\{C_h(t_i), \max_j C_{hj}(t_i)\}$$

Where, for i-gram tuple ti

 $C_h(t_i)$ = number of times t_i occurs in the hypothesis to be tested $C_{hi}(t_i)$ = number of times t_i occurs in the j-th reference

Evaluation of SMT Models

The BLEU score

- The **BLEU score** is dependent on the sequence length
- A commonly used adjustment is the brevity penalty, ρ
- The adjusted BLEU score is then:

$$BLEU_{\rho} = exp\left(min(0, \frac{n-L}{n})\right) \left\{ \prod_{i=1}^{N} P(i) \right\}^{\frac{1}{N}}$$

Where:

n = length of the hypothesis

L = length of the reference sequence

Evaluation of SMT Models BLEU score example

• Start with French sentence:

La voiture est dans l'allée.

An expert English translation is:

The car is in the drive.

Evaluation of SMT Models

BLEU score example

- Start with the expert English translation:
 The car is in the drive.
- There are 6 1 = 5, 2-grams for this sentence:

Reference 2-grams

The car

Car is

Is in

In the

The drive

A perfect MT is identical so:

Matched = 5

$$H(2) = 5$$

$$\rho = 1.0$$

BLEU = 100.0%

Evaluation of SMT Models

BLEU score example

- A possible MT is:
 The drive contains the car.
- There are 5 1 = 4, 2-grams for this sentence:

Reference 2-grams	MT 2-grams	Match
The car	The drive	1
Car is	Drive contains	0
Is in	Contains the	0
In the	The car	1
The drive		

Matched = 2

$$H(2) = 5$$

 $n = 6$
 $l = 5$
 $\rho = 1.18$
 $BLEU = 47.3\%$

Use neural networks as function approximators for machine translators

- Architecture has three components:
 - Encoder for the input sequence
 - Context vector a hidden state
 - Decoder generates output sequence
- Finds maximum likelihood target sequence

NMT Architectures

Encoder-decoder model with context vector

Use neural networks as function approximators for machine translators

• The hidden state updates as a function current hidden state and input

$$h_t = f(h_{t-1}, x_t)$$

Where, *f()* is the activation function of the LSTM

 The encoder creates a sequence of hidden states given the input sequence

$$h_1, h_2, \ldots, h_n = Encoder_{RNN}(x_1, x_2, \ldots, x_n)$$

Use neural networks as function approximators for machine translators

- The first layers of a NMT encoder network are a bidirectional RNN (BiRNN)
- The hidden states of the forward layer are:

$$\{\overrightarrow{h_1}, \overrightarrow{h_2}, \dots, \overrightarrow{h_T}\}$$

• The hidden states of the reverse layer are:

$$\{\overleftarrow{h_T}, \overleftarrow{h_{T-1}}, \dots, \overleftarrow{h_1}\}$$

• And, the context is:

$$c_t = \left[\overrightarrow{h_t}; \overleftarrow{h_t}\right]$$

Use neural networks as function approximators for machine translators

• Given weights, $\mathbf{w} = w_1, w_2, \dots, w_N$, the encoder uses the context and its hidden state

$$p(y_1, y_2, \dots, y_m) = \prod_{t=1}^m p(y_t | \{y, c, h\}_{\leq m})$$

Taking logs of both sides, gives:

$$log p(y_1, y_2, ..., y_m) = \sum_{t=1}^{m} log p(y_t | \{y, c, h\}_{\leq m})$$

Attention Mechanism

- Context is the input to decoder
- A fixed context vector has limited representation
 - May compress information required for sequence generation
 - Translation accuracy decreases with sequence length
- Need a better representation!
- Use a **context set**: $c = \{c_1, c_2, ..., c_M\}$
- The **weights** of the context give **attention** to the correct sequence in the decoder

Attention Mechanism

How to compute the attention weights?

• Compute **attention score** for context c_i as a function of pervious hidden state, context and previous attention weights:

$$e_i^t = f_{ATT}(h_{t-1}, c_i, \{\alpha_j^{t-1}\}_{j=1}^M)$$

The attention weights are updated:

$$\alpha_i^t = \frac{exp(e_i^t)}{\sum_{j=1}^{M} exp(e_j^t)}$$

 The attention weights are the probability that decoder should attend to the context c_i

Attention Mechanism

Example of attention weights

- Attention weights can be readily visualized
- For the input sequence
- And, the output sequence
- Probabilities of attending the output sequence given the input sequence

Cho, et. al, Describing Multimedia Content using Attention-based Encoder-Decoder Networks, 2015

Attention Mechanism

How to compute the **attention weights**?

 The scores used to update the context weight are a function of the current context set and the attention weights:

$$e_i^t = \phi(\{c_i^t\}_{i=1}^M, \{\alpha_i^t\}_{i=1}^M)$$

One possibility is to use linear combination of weighted context:

$$e_i^t = \phi(\{c_i^t\}_{i=1}^M, \{\alpha_i^t\}_{i=1}^M) = \sum_{i=1}^M \alpha_i c_i$$

Attention Mechanism

How to compute the **attention weights**?

- Use a neural network as a function approximator
- The neural network has parameters, ⊕, which maximize the loglikelihood

$$\mathcal{L}(D,\Theta) = \frac{1}{N} \sum_{n=1}^{N} \log p(y^{n} | x^{n}, \Theta)$$

- Where the data are the N input and output sequences of the training data; $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- For linear model, can compute all the derivatives and use backpropagation to train neural network with stochastic gradient decent

Beam Search in Decoder

Use the beam search method to find the most probable output sequence

- Given the attention probabilities, α_i^t , how can the decoder find the most probable output sequence?
- Use a search heuristic known as beam search
- Beam search is a classic AI method originating in the 1970s
- Beam search is a breath first search method
 - Search along k highest probability paths
 - Uses less memory than full breath search
- Beam search used to find the sequence with the highest probability or likelihood

Google Translate architecture: Encoder

Google Translate Google Translate architecture

Details of the biRNN layer

Google Translate architecture: Decoder

Beam search for the attention mechanism

- Need a decoder which does not favor particular output sequence
- Standard likelihood score needs adjustments
 - Do not want to favor short sequences resulting from the summation of negative log likelihoods
 - Need to ensure that the entire input sequence is reflected in the output sequence

Beam search for the attention mechanism

The modified likelihood score becomes:

$$\mathcal{L}(D,\Theta) = \frac{1}{lp(Y)} \frac{1}{N} \sum_{n=1}^{N} log \ p(y^n | x^n, \Theta) + cp(D)$$

$$lp(Y) = \frac{(5+|Y|)^{\gamma}}{(5+1)^{\gamma}}$$

$$cp(D) = \beta \sum_{i=1}^{|X|} log \left(min(\sum_{i=1}^{|Y|} \alpha_{i,j}, 1.0) \right)$$

Where

 γ = strength of the normalization

 β = extent to which translations that fully cover the source sentence are favored

How to train deep LSTM RNNs?

- Stacking many LSTM layers is problematic
- Gradient vanishes
- Solution: use residual connections!

How to train deep LSTM RNNs?

 The following relations govern the update between the i-th and i+1-th standard LSTM layers:

$$\begin{split} h_t^i, m_t^i &= LSTM_i(h_{t-1}^i, m_{t-1}^i, x_t^{i-1}, \mathbf{W}^i) \\ x_t^i &= h_t^i \\ h_t^{i+1}, m_t^{i+1} &= LSTM_{i+1}(h_{t-1}^{i+1}, m_{t-1}^{i+1}, x_t^i, \mathbf{W}^{i+1}) \\ \text{Where, for the i-th layer:} \\ m_i &= \text{the LSTM memory} \\ h_i &= \text{hidden state} \\ x_i &= \text{input} \\ \boldsymbol{W}_i &= \text{weight tensor} \end{split}$$

RNN with residual connections

Google Translate architecture

How to deal with vanishing gradient in deep RNN?

How to train deep LSTM RNNs?

 The following relations govern the update between the i-th and i+1-th standard LSTM layers:

$$\begin{aligned} h_t^i, m_t^i &= LSTM_i(h_{t-1}^i, m_{t-1}^i, x_t^{i-1}, \mathbf{W}^i) \\ x_t^i &= h_t^i + x_t^{i-1} < \text{residual connection} \\ h_t^{i+1}, m_t^{i+1} &= LSTM_{i+1}(h_{t-1}^{i+1}, m_{t-1}^{i+1}, x_t^i, \mathbf{W}^{i+1}) \end{aligned}$$