$\begin{array}{c} {\bf L3} \\ {\bf ELI62~Th\'{e}orie~des~langages~et~compilation} \\ {\bf dur\'{e}e~2h} \end{array}$

Les notes de cours et TD sont autorisées.

Chaque candidat doit, en début d'épreuve, porter son nom dans le coin de la copie réservé à cet usage; il le cachettera par collage après la signature de la feuille d'émargement. Sur chacune des copies intercalaires, il portera son numéro de place.

Exercice I. Automate Fini

On considère l'alphabet $\Sigma = \{a, b\}$ et le langage L formé de tous les mots sur Σ contenant le facteur aab.

Question 1. Donner une expression régulière correspondant au langage L.

Question 2. Donner un automate fini non déterministe \mathcal{A} qui reconnaît L.

Question 3. Construire un automate fini déterministe équivalent à A.

Exercice II. Arbre de syntaxe abstraite

On considère la grammaire des expressions arithmétiques suivante :

$$\left\{ \begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid nb \end{array} \right.$$

On souhaite l'enrichir de l'opérateur puissance (†).

Question 4. À cet effet modifier la grammaire en respectant la précédence des opérateurs $(\uparrow > * > +)$ et l'associativité droite de la puissance $(2 \uparrow 3 \uparrow 2 = 2 \uparrow (3 \uparrow 2))$.

Question 5. Décorer la grammaire de règles sémantiques pour calculer l'arbre de syntaxe abstraite. (Les règles seront écrites avec la syntaxe ANTLR ou en pseudo-code.)

Question 6. Illustrer le calcul de l'arbre de syntaxe abstraite sur l'arbre de dérivation de l'expression $2 \uparrow 3 \uparrow 2 + 1$.

Exercice III. Analyse LL

Soit la grammaire G d'axiome D et de terminaux {int,float, ,,id} définie par :

$$\left\{ \begin{array}{ll} \textbf{D} & \rightarrow & \textbf{TL} \\ \textbf{T} & \rightarrow & \textbf{int} \mid \textbf{float} \\ \textbf{L} & \rightarrow & \textbf{L} \,, \, \textbf{id} \mid \textbf{id} \end{array} \right.$$

Question 7. Pourquoi cette grammaire n'est pas LL(1)?

Question 8.

- a. Proposer une grammaire LL(1) équivalente G.
- **b.** Construire sa table d'analyse pour le prouver.

Exercice IV. Analyse SLR

Soit la grammaire G d'axiome E et de terminaux $\{et, non, id\}$ définie par :

$$\left\{ \begin{array}{ll} \texttt{E} & \rightarrow & \texttt{E} \; \texttt{et} \; \texttt{T} \; | \; \texttt{T} \\ \texttt{T} & \rightarrow & \texttt{non} \; \texttt{T} \; | \; \texttt{id} \end{array} \right.$$

Question 9. Donner un arbre d'analyse et la dérivation droite associée pour le mot suivant : non id et id .

On donne l'automate fini caractéristique des items LR(0) de la grammaire G et sa table d'analyse SLR.

	\$	et	non	id	E	Т
0			d 3	d 4	1	2
1	accepter	d 5				
2	$\texttt{r}\: \texttt{E} \to \texttt{T}$	$\texttt{r}\: \texttt{E} \to \texttt{T}$				
3			d 3	d 4		6
4	$ exttt{r} exttt{T} o exttt{id}$	$ exttt{r} exttt{T} o exttt{id}$				
5			d 3	d 4		7
6	$\texttt{r} \; \texttt{T} \to \texttt{non} \; \texttt{T}$	$\texttt{r} \; \texttt{T} \to \texttt{non} \; \texttt{T}$				
7	$ exttt{rE} ightarrow exttt{E} ext{ et T}$	$ exttt{rE} ightarrow exttt{E} ext{ et T}$				

Question 10. Dérouler l'analyse SLR sur l'entrée non id et id .

Question 11. Expliquer de façon claire et précise comment sont obtenues les lignes relatives aux états 0, 1 et 2 dans la table SLR.