CPT_S 260 Intro to Computer Architecture Lecture 23

Digital Design II March 4, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Announcements

- Homework 4 due next week
- No quiz this week

Recap: NAND and NOR

■ NAND: NOT of AND: A nand B = A.B

■ NOR: NOT of OR: A nor B = A + B

 NAND and NOR are universal gates, i.e., they can be used to construct any complex logical function

Recap: Stateful (Sequential) Digital Circuits

- This circuit utilizes one of the wire loops from the right to the left providing feedback
- "flip flop" building blocks to preserve state.

R-S Latch

Input		Output	
R	S	Q	
1	1	Q_{prev}	
1	0	1	
0	1	0	
0	0	Invalid	

Truth Tables

- *Truth table* a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND					
X	$ \mathbf{Y} \mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$				
0	0	0			
0	1	0			
1	0	0			
1	1	1			

OR			
$\begin{array}{ c c c c c } \hline X & Y & Z = X + Y \\ \hline \end{array}$			
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT				
X	$z = \overline{X}$			
0	1			
1	0			

Checkpoint – Truth tables

•
$$S=(A+B)\cdot(\bar{A}+\bar{B})$$

$$\blacksquare$$
 C= $A \cdot B$

1

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ..., I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with m
 2ⁿ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$Y = \bar{S}I_0 + SI_1$$

The circuit:

Decoders

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called n-to-m line decoders, where $m \le 2^n$, and
- Example: 2-to-4 decoder:

Decoder

Truth Table					
Α	В	Q ₀	Q ₁	Q_2	Q ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

3-to-8 Decoder

Memory Address Decoding

Encoder

• Encoding - the opposite of decoding - the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code

■ An encoder has 2ⁿ (or fewer) input lines and *n* output lines which generate the binary code corresponding to the input values

 Takes ALL its data inputs one at a time and then converts them into a single encoded output.

Encoder

	Inp	uts		Out	tputs
D_3	D_2	D_1	D ₀	Q ₁	Q ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
0	0	0	0	Х	X

Encoder Digital Circuit

Logic Simplification

Rules of Boolean Algebra

Associative Law of multiplication

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributive Law of multiplication

$$A + BC = (A + B) \cdot (A + C)$$

Annulment law:

$$A \cdot 0 = 0$$
$$A + 1 = 1$$

Identity law:

$$A \cdot 1 = A$$
$$A + 0 = A$$

Rules of Boolean Algebra

Complement law:

$$A + \bar{A} = 1$$
$$A \cdot \bar{A} = 0$$

Double negation law:

$$\bar{\bar{A}} = A$$

Absorption law:

$$A \cdot (A + B) = A$$

 $A + AB = A$
 $A + \bar{A}B = A + B$

• Idempotent law:

$$A + A = A$$

 $A \cdot A = A$

De Morgan's Laws

- Transformation rules that help simplification of negations
- Statement:

$$\frac{\overline{AB} = \overline{A} + \overline{B}}{(A+B)} = \overline{A} \cdot \overline{B}$$

20

Simplification Using Boolean Algebra

 A simplified Boolean expression uses the fewest gates possible to implement a given expression.

Simplification Using Boolean Algebra

AB+A(B+C)+B(B+C)

- (distributive law)
 - » AB+AB+AC+BB+BC
- (BB=B)
 - » AB+AB+AC+B+BC
- (AB+AB=AB)
 - » AB+AC+B+BC
- (B+BC=B)
 - » AB+AC+B
- (AB+B=B)
 - » B+AC

Examples

$$\blacksquare [A\overline{B}(C+BD)+\overline{A}\overline{B}]C$$

$$\blacksquare \bar{A}BC + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C + ABC$$

$$\blacksquare \overline{AB + AC} + \overline{AB}C$$

Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms:
 - The sum-of-products (SOP) form (minterms)
 - The product-of-sums (POS) form (maxterms)
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier

Sum of Products

- Minterm Expressions
- If input is 0 we take the complement of the variable
- If input is 1 we take the variable as is
- To get the desired canonical SOP expression we will add the minterms (product terms) for which the output is 1

$$F = \bar{A}B + A\bar{B} + AB$$

A	В	F	Minterm
0	0	0	A'B'
0	1	1	A'B
1	0	1	AB'
1	1	1	AB

Product of Sums

- Maxterm Expressions
- If input is 1, we take the complement of the variable
- If input is 0, we take the variable as is
- To get the desired canonical POS expression we will multiply the maxterms (sum terms) for which the output is 0

$$F = (A + B) \cdot (\bar{A} + \bar{B})$$

A	В	F	Minterm
0	0	0	A'B'
0	1	1	A'B
1	0	1	AB'
1	1	1	AB