Lezione 4 Algebra 1

Federico De Sisti 2025-03-13

0.1 Divisibilità

Notazione 1 (Divisibilità)

 $R\ dominio\ d'integrit\grave{a}\ a,b\in R$

- Diremo che:
 - a divide b se esiste $q \in R$ tale che $a \cdot q = b$ (scriviamo a|b)
 - se a|b allora a è <u>divisore</u> di b e b è multiplo di a

Esercizio

Rdominio d'integrità $a,b,c\in R$

- 1. se $a|b \in b|c \Rightarrow a|c$
- 2. se $a|b \in a|c \Rightarrow a|(b \pm c)$
- 3. se a|b allora a|b
- 4. se $a|b \in b|a$

5. se
$$a|b \in b|a \implies \exists u, v \in R$$
 :
$$\begin{cases} a = ab \\ b = va \\ uv = 1 \end{cases}$$

Soluzione 4

 $\Rightarrow u \cdot v = 1$

per definizione esistono $u,v\in R$ tali che $\begin{cases} a=ub\\b=va \end{cases}$ se b=0 allora $a=0 \Rightarrow$ avremmo potuto scegliere u=v=1 se $b\neq 0$ Allora $b=va=vub\Rightarrow b(10vu)=0$ $\Rightarrow 1-vu=0$ perché R dominio

Definizione 1

R dominio d'integrità:

- 1. $a \in R$ si dice unità se a|1.
- 2. $a, b \in R$ si dicono associati se a|b| e b|a|

Osservazione

- 1. $a \in R$ è unità se e solo se ammette inverso moltiplicativo.
- 2. dall'esercizio segue che a, b sono associati se si ottengono l'uno dall'altro moltiplicando per un invertibile.

Esercizio

R dominio d'integrità, dimostrare che:

- 1. $a,b\in\mathbb{Z}$ sono associati se e solo se $a=\pm b$
- 2. \mathbb{K} campo. $f,g\in\mathbb{K}[x]$ sono associati se e solo se $f=\lambda g$ con $\lambda\in\mathbb{K}\setminus\{0\}$

Definizione 2

R dominio d'integrità. $a \in \mathbb{R} \setminus \{0\}$

- 1. diremo che a è irriducibile se $a = b \cdot c \Rightarrow a, b$ associati oppure a, c associati
- 2. diremo che a è primo $a|b \cdot x \Rightarrow a|b$ oppure a|c

Esercizio

determinare tutti gli irriducibile e i primi in $\mathbb Z$

Osservazione

R dominio d'integrità $a \in R$ primo

$$\Rightarrow$$
 (a) $\subseteq R$ è un ideale primo

Se
$$b, c \in R$$
 tali che $b \cdot c \in (a)$ allora $b \in (a)$ oppure $c \in (a)$

Ma
$$b \cdot c \in (a)$$
 se e solo se $a|b \cdot c$

L'ipotesi chi primalità implica che a|b oppure $a|c \Rightarrow b \in (a)$ oppure $c \in (a)$

Esercizio:

R dominio ad ideali principali. Allora $a \in R$ irriducibile $\Rightarrow (a) \subseteq R$ massimale.

Soluzione

Sia $J\subseteq R$ ideale tale che $(a)\in J.$ Per ipotesiJ=(b) pewr qualche $b\in R$

$$(a) \subseteq (b) \Rightarrow b|a \Rightarrow \exists p \in R : a = b \cdot q$$

Abbiamo due casi:

primo caso: a, b associati

Allora $\exists q \in R$ invertibile tale che $b = ua \implies (b) \subseteq (a)$

$$J = (b) = (a)$$

secondo caso: a, q associati

 \Rightarrow esiste $v \in R$ invertibile tale che $q = v \cdot a$

$$\Rightarrow a = bq = bva$$

$$\Rightarrow a(1 - bv) = 0$$

$$\Rightarrow 1 - bv = 0$$

$$\Rightarrow b$$
 invertibile

$$\Rightarrow J = (b) = R$$

Quindi $(a) \subseteq R$ è massimale

Esercizio:

R dominio a ideali principali, allora se a è primo, a è irriducibile

Soluzione

 $a \in \mathbb{R} \setminus \{0\}$ a primo verifichiamo che a irriducibile se a = bc allora : $\begin{cases} b|a\\c|a\\a|b \end{cases}$

Deduciamo che a, b associati oppure a, c associati => a irriducibile

Corollario 1

In \mathbb{Z} a è primo se e solo se a è irriducibile

Dimostrazione

 (\Rightarrow) $(\mathbb{Z},+,\cdot)$ è dominio a ideali principali quindi per l'esercizio a primo $\Rightarrow a$ irriducibile

 (\Leftarrow) a $irriducibile \Rightarrow (a) \subseteq \mathbb{Z}$ $massimale \Rightarrow (a) \subseteq \mathbb{Z}$ è ideale $primo \Rightarrow a$ è primo $in \mathbb{Z}$

esercizio:

 $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$

- 1) dimostrare che R è un dominio d'integrità
- 2) $3 \in R$ non è primo
- 3) $3 \in R$ è irriducibile **Soluzione**
- 1) $\mathbb{Z}[\sqrt{-5}]$ è un sottoanello di \mathbb{C} ma \mathbb{C} è un campo $\Rightarrow \mathbb{C}$ dominio d'integrità, Quindi anche $\mathbb{Z}[\sqrt{-5}]$ è un dominio d'integrità.

Quindi anche
$$\mathbb{Z}[\sqrt{-5}]$$
 e un dominio d'integ
2) $3 \cdot 7 = (4 + \sqrt{-5})(4 - \sqrt{-5})$.

3 divide $(4+\sqrt{-5})(4-\sqrt{-5})$

D'altra parte $\nmid (4 \pm \sqrt{-5})$

Infatti.

 $3(a+b\sqrt{-5}) = 3a + 3b\sqrt{-5} \text{ Ma } 3 \nmid 4 \text{ in } \mathbb{Z}$

3) Verifichiamo che $3 \in R$ è irriducibile

Supponiamo che $3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$

Vogliamo verificare che 3 e il primo termine oppure 3 e il secondo termine sono associati.

Considero $||\cdot||$ norma in \mathbb{C}

$$\Rightarrow 9 = ||a + b\sqrt{-5}||^2 + ||c + d\sqrt{-5}||^2$$
$$= (a^2 + 5b^2) \cdot (c^2 + 5a^2)$$

Quindi
$$a^2 + 5b^2 = \begin{cases} 1\\ 3\\ 9 \end{cases}$$

 $a^2 + 5b^2 = 3$ \Rightarrow impossibile. se $a^2 + 5b^2 = 9$

$$a^2 \pm 5b^2 = 0$$

$$\Rightarrow c^2 + 5d^2 = 1 \Rightarrow \begin{cases} c = \pm 1 \\ d = 0 \end{cases}$$

 $3=\alpha+\beta$ allora $\alpha=\pm 1 \leadsto 3, \beta$ associati oppure $\beta = \pm 1 \rightsquigarrow 3, \alpha$ associati

0.2 UFD

Definizione 3

R dominio d'integrità, R si dice dominio a fattorizzazione unica se:

- 1. per ogni $R \setminus \{0\}$ esiste una "fattorizzazione" $a = u \cdot b_1 \cdot \ldots \cdot b_h$ tale che
 - u unità in R
 - b_i irriducibile per ogni $i \in \{1, ..., h\}$
- 2. Se $a \cdot b_1 \cdot \ldots \cdot b_h = v \cdot c_1 \cdot \ldots \cdot c_k$ con
 - \bullet h = k
 - $\exists \omega \in S_h$ tale che $b_i, c_{\sigma(i)}$ associati per ogni $i \in \{1, \ldots, h\}$

Teorema 1

R dominio d'integrità,

Allora R è UFD se e solo se valgono le seguenti condizioni:

- 1. Ogni elemento irriducibile è primo
- 2. Data una successione in R di elementi

 $a_1,\ldots,a_2,\ldots,a_r,\ldots$

 $tali\ che\ a_{i+1}\mid a_i \quad \forall i$

si ha che esiste $i \in \mathbb{Z}_{>1}$ tale che a_j, a_h siano associati $\forall h, k > 1$

Dimostrazione

 $Supponiamo\ che\ R\ sia\ UFD$

Verifichiamo (1):

Sia $a \in R \setminus \{0\}$ irriducibile.

Considero $b, c \in R$ tali che a|bc

Allora $\exists q \in R \ tale \ che$.

 $a \cdot q = b \cdot c$

Sfrutto l'ipotesi UFD

$$q = \varepsilon \cdot t_1, \dots, t_m.$$

$$b = \eta \cdot r_1, \dots, r_n.$$

$$c = \delta \cdot s_1, \dots, s_h$$
.

dove $\varepsilon, \eta, \delta$ unità in R

 t_i, s_i, r_i irriducibili in R

$$\Rightarrow \varepsilon \cdot a \cdot t_1 \dots t_m = (\delta \eta) r_1, \dots, r_n \cdot s_1, \dots, s_h$$

Per unicità della fattorizzazione a è associato a un qualche r_i (se a|b) oppure s_i (se a|c)

quindi a è primo

```
Verifichiamo\ che\ UFD\Rightarrow 2
Sia\ a_1,\ldots,a_i,\ldots
una successione in R tale che a_{i+1} \mid a_i \quad \forall i
Denotiamo: n_i = numero di irriducibili in una (qualsiasi) fattorizzazione di <math>a_i
\Rightarrow n_{i+1} \le n_i
Ho una successione n_1, n_2, \ldots, n_i, \ldots monotona decrescente
\Rightarrow \ definitivamente \ costante
\Rightarrow \exists \underline{i} \in \mathbb{Z}_{\geq 1} \ tale \ che \ n_j = n_{\underline{i}} \ \forall j \geq i
Allora\ l'ipotesi
a_k \mid a_i \quad per \ k \geq \underline{i}
\Rightarrow a_k \cdot q_k = a_{\underline{i}}
e\ UFD \Rightarrow q_k\ invertibile.
Quindi\ a_k, a_i\ associati
\forall k \ge i \Rightarrow (2)
Supponiamo ora che esistano valgano (1) e (2) verifichiamo che R è UFD
Esistenza: sia\ a_1 \in R non invertibile e non irriducibile
\Rightarrow a_1 = a_2 \cdot b_2 \ tale \ che
a_1, a_2 non associati
a_1, b_2 non associati
Se per assurdo a_1 non ammette fattorizzazione lo stesso vale per a_2 oppure b_2
abbiamo\ costruito\ a_2\ che
```

- \bullet $a_2 \mid a_1$
- \bullet a_2 non ammette fattorizzazione e non è invertibile e non è associato ad a_1