Twierdzenie 1. G zwarta, jeśli $U \subset X$ jest G-ekwiwariantnym otoczeniem Gx oraz istnieje G-ekwiwariantna rektrakcja $p: U \to Gx$, to U jest tubą wokół Gx oraz $p^{-1}(x)$ jest slajsem.

Twierdzenie (bez dowodu) 2 (Chevalley). Każdą orbitę G/H można zanurzyć ekwiwariantnie w pewną reprezentację liniową $G \to GL(V)$.

Twierdzenie (bez dowodu) 3 (Tietz-Gleason). X normalna, $X \supset A$ domknięty Gniezmienniczy, V reprezentacja G, $f: A \to V$ G-niezmiennicza. Wtedy istnieje F-niezmiennicze
rozszerzenie $\tilde{f}: X \to V$.

Twierdzenie (bez dowodu) 4 (Mostow). G zwarta grupa Lie, X ma skończenie wiele typów orbitowych, X metryczna skończonego wymiaru (tj. można zanurzyć w \mathbb{R}^n), to istnieje reprezentacja V grupy G taka, że X zanurza się ekwiwariantnie w V.

Twierdzenie 5. G zwarta grupa Lie, działa gładko na rozmaitości zwartej, to G ma skończenie wiele typów orbitowych.

Twierdzenie (bez dowodu) 6 (Luny o slajsie). X rozmaitość algebraiczna normalna (np. gładka), G grupa reduktywna, Gx domknięta. Wtedy istnieje G_x przestrzeń A oraz $G \times_{G_x} A \to X$ otoczenie w topologii etalnej, tzw. lokalnymi homeomorfizmami (topologia Grothendicka).

Twierdzenie (bez dowodu) 7 (Sumihiro o zanurzeniu). X rozmaitość rzutowa normalna, G grupa reduktywna, to istnieje reprezentacja G i G-niezmiennicze zanurzenie $X \to \mathbb{P}(Y)$.

Uniwersalne G-wiazki główne.

Twierdzenie 8. Niech $E \to B$ będzie wiązką główną taką, że E jest przestrzenią ściągalną. Wtedy dla każdego CW-kompleksu X i wiązki głównej $P \to X$ istnieje $f: X \to B$ takie, że $f^*E = P$. Poza tym f jest jednoznaczne z dokładnością do homotopii. Przestrzeń B oznaczamy BG, a E: EG.

Uwaga 9. P normalna, G zwarta Lie, działa wolno, to $P \to P/G$ jest wiązką główną.

Wniosek 10. Klasy izomorfizmów wiązek głównych dla X CW-kompleksu odpowiadają elementom [X, BG].

Wniosek 11. Jeśli G ma model BG będący CW-kompleksem, to BG jest zdefiniowane z dokładnością do homotopii.

Uwaga 12. Jeśli G Lie, to ma CW-model.