数学サブゼミf 修了認定試験

1 複素関数論 I: 複素積分で揚力を求める

接線がその点における速度ベクトル $\mathbf{v}=(v_x,v_y,v_z)^T$ となるような曲線を流線という。任意の流線の流量 (単位時間あたりに移動する流体の体積) を Ψ で表し、流れ関数 (stream function) と呼ぶ。任意の流線は $\Psi=k(k)$ は任意の定数) で表される。2 次元の流れで考えると、速度の x,y 成分はそれぞれ $v_x=\frac{\partial\Psi}{\partial y},v_y=-\frac{\partial\Psi}{\partial x}$ のように流れ関数の位置偏微分として書ける 1 。

 $f=\Phi+i\Psi,z=x+iy$ とおくとき、f(z) を複素速度ポテンシャルといい、 $w=\frac{df}{dz}=v_x-iv_y$ を複素速度という。x 軸に平行な速度 U の一様流が半径 a の円柱にぶつかるような流れの複素速度ポテンシャルは $f(z)=U\left(z+\frac{a^2}{z}\right)+i\kappa\log z$ である。

- (1) 複素関数が正則であるとはどういう意味か簡潔に説明しなさい。
- (2) 一般の複素速度ポテンシャル $f(z)=\Phi+i\Psi$ が正則かどうかコーシー=リーマン条件で判定しなさい。
- (3) 複素速度 $w=rac{df}{dz}$ を求めなさい。
- (4) 流れの中に置かれた物体にかかる力を F(X,Y) とすると、 $X-iY=rac{i}{2}
 ho\int_C w^2dz$ である (ブラウジウスの第 1 公式)。これを利用して円柱が流れから受ける抵抗、揚力を求めたい。
 - (a) w^2 を計算し、ローラン級数の形に整理しなさい。
 - (b) (4a) の級数のうち特異点のない項について積分しなさい。コーシーの積分 定理 を適用すること。
 - (c) (4a) の級数のうち特異点のある項について積分しなさい。留数定理を適用すること。
 - (d) $\int_C w^2 dz$ を求めなさい。
 - (e) 円柱が流れから受ける抵抗、揚力はそれぞれいくらか。

2 多变量解析 II

- 2.1 主成分分析
- 2.2 因子分析
- 2.3 正準相関分析

¹: この流線から Δn だけ離れたところを流れている流線の流量を $\Psi+\Delta\Psi$ とすると、面 Δn を通過して入って来る質量は $\rho \mathbf{v} \Delta t \Delta n$ 。 単位時間に入って来る体積は $\mathbf{v} \Delta n = \Delta \Psi$ 。 \mathbf{x} 要素と \mathbf{y} 要素に分解して $v_x \Delta y + v_y (-\Delta x) = \Delta \Psi$ 。 極限をとって $d\Psi = v_x dy - v_y dx$ 。 また、 Ψ は \mathbf{x} と \mathbf{y} の関数なので $d\Psi = \frac{\partial \Psi}{\partial y} dy + \frac{\partial \Psi}{\partial x} dx$ 。 よって $v_x = \frac{\partial \Psi}{\partial y}, v_y = -\frac{\partial \Psi}{\partial x}$