LAB 3 EEG Classification

謝宇恆 411551022

1. Introduction

本實驗藉由 EEGNet 以及 DeepConvNet 解決資料集:BCI competition 的分類問題。

2. Experiment Setup

a) EEGNet models:

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
}
(depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
)
(separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
)
(classify): Sequential(
    (0): Linear(in_features=736, out_features=2, bias=True)
)
)
```

在此模型中,我們使用了 depthwise-seperable convolution。depthwise-separable convolution 是 2017 年由 google 團隊提出的 MobileNet model [1]。隨著 DL 的快速發展,DL 模型變得深且巨大,該模型為了在維持其 performance 的情況下,同時降低其 convlution 的計算量。

b) DeepConvNet models:

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	mode = valid, max norm = 2
${\bf BatchNorm}$			2 * 50		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
${\bf BatchNorm}$			2 * 100		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
${\bf BatchNorm}$			2 * 200		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
${\bf MaxPool2D}$		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max norm = 0.5$

此模型為傳統的 CNN 架構,網路的架構如下圖。Conv 為 Convolution Layer,BN 為 BatchNormalized Layer,AF 為 Activation Function,DO 為 Drop Out,FC 為 Fully connectted Layer,最後即為 Output。

c) Activation Function:

此實驗我們使用了三種不同的 Activation Function,分別是 ReLU、LeakyReLU 和 ELU。下圖為三種 Activation Function 會產生的輸出。

這三種 Activation Function 都有不同的優缺點,ReLU 的運算速度較快,但是其會有 dying ReLu Problem,因為其在 X<0 時梯度即為 0,因此無法調整權重。 Leaky Relu 具有 Relu 的特點,但 X<0 時梯度不為 0,因此可以解決 dying ReLu Problem,但是其在 X<0 時為線性因此也不能在複雜的分類中使用。ELU 在 X>=0 時與 Lealy ReLU 還有 ReLU 可以產生相同的輸出,在 X<0 時,則是會形成一個曲線,因此奇的分類效果應比其他兩個還好。

3. Experimental Results:

在此實驗中, Epoch 皆設定為 300, Accuracy 都可達到 82%以上。

	ReLU	Leaky ReLU	ELU
EEGNet	87%	87%	83%
DeepConvNet	82%	83%	82%

EEGNet:

DeepConvNet:

4. Discuss:

a) Activation function 中的 ELU 有一個設定值 alpha,default 為 1,可以用來設定其的飽和點。ELU 的式子計算如下:ELU = $\begin{cases} x & ,x \geq 0 \\ \alpha \times (e^x - 1), x < 0 \end{cases}$ 。我將不同的 alpha 丟入 ELU 去訓練此模型,但是得出的 Accuracy 皆約等於 82%,在此分類模型中,alpha 的影響力不大,但是在不同的分類器中可能會有不同的影響,因此其為可以探討的一個問題。

Reference:

[1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." *arXiv preprint arXiv:1704.04861* (2017).