Abordaje Funcional a EDSLs

Alberto Pardo Marcos Viera

Instituto de Computación, Facultad de Ingeniería Universidad de la República, Uruguay

ECI 2024

Tipos de Datos Algebraicos Generalizados (GADTs)

Tipo de Datos Algebraico

```
data Tree \ a = Leaf \ a
| Node \ (Tree \ a) \ (Tree \ a)
```

o alternativamente,

```
data Tree :: * \rightarrow * where

Leaf :: Tree a

Node :: Tree a \rightarrow a \rightarrow Tree a \rightarrow Tree a
```

introduce:

- un nuevo tipo de datos *Tree* de kind $* \rightarrow *$
- Constructores Leaf y Node
- la posibilidad de usar los constructores en patterns

Restricciones

Los constructores de un tipo de datos *T* deben:

- resultar en el tipo T
- resultar en un tipo simple
 - $T a_1 ... a_n$ con $a_1, ..., a_n$ variables de tipo distintas

Restricciones

Los constructores de un tipo de datos *T* deben:

- resultar en el tipo T
- resultar en un tipo simple
 - $T a_1 ... a_n$ con $a_1, ..., a_n$ variables de tipo distintas

Vamos a levantar alguna de estas restricciones.

Deep embedding untyped

```
data Expr :: * where

Val :: Int \rightarrow Expr

Add :: Expr \rightarrow Expr \rightarrow Expr

IsZero :: Expr \rightarrow Expr

If :: Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr
```

Por ejemplo, podemos escribir:

que representa la sintaxis abstracta de la siguiente expresión escrita en una sintaxis concreta:

if
$$isZero(0+1)$$
 then 3 else 4

Pero podemos escribir también térmimos mal tipados de acuerdo al sistema de tipos del EDSL.

Deep embedding tipado

La idea es codificar el tipo del término que se representa en el propio tipo Haskell.

```
data Expr :: * where

Val :: Int \rightarrow Expr

Add :: Expr \rightarrow Expr \rightarrow Expr

IsZero :: Expr \rightarrow Expr

If :: Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr
```

Deep embedding tipado

La idea es codificar el tipo del término que se representa en el propio tipo Haskell.

```
data Expr :: * where
   Val :: Int \rightarrow Expr
   Add :: Expr \rightarrow Expr \rightarrow Expr
   IsZero :: Expr \rightarrow Expr
   If :: Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr
data Expr :: * \rightarrow * where
   Val :: Int \rightarrow Expr Int
   Add :: Expr Int \rightarrow Expr Int \rightarrow Expr Int
   IsZero :: Expr Int \rightarrow Expr Bool
   If :: Expr Bool \rightarrow Expr t \rightarrow Expr t \rightarrow Expr t
```

GADTs

Los GADTs levantan la restricción de que los constructores deben resultar en un tipo simple.

- Los constructores pueden resultar en un subconjunto del tipo
- Consecuencias interesantes en el pattern matching
 - cuando se analiza un Expr Int, éste no puede ser construido por IsZero
 - cuando se analiza un Expr Bool, éste no puede ser construido por Val o Add
 - cuando se analiza un *Expr Bool*, si encontramos *IsZero* en el pattern, sabemos que tenemos un *Expr Bool*
 - etc

Evaluación usando GADTs: evaluador tagless

```
eval :: Expr \ t \rightarrow t

eval \ (Val \ n) = n

eval \ (Add \ e1 \ e2) = eval \ e1 + eval \ e2

eval \ (IsZero \ e) = eval \ e \equiv 0

eval \ (If \ c \ e1 \ e2) = if \ eval \ c \ then \ eval \ e1 \ else \ eval \ e2
```

Evaluación usando GADTs: evaluador tagless

```
eval :: Expr t \to t

eval (Val n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (IsZero e) = eval e \equiv 0

eval (If c e1 e2) = if eval c then eval e1 else eval e2
```

- ullet No hay posibilidad de fallos en tiempo de ejecución (salvo ot)
- No se requieren tags
- El pattern matching sobre un GADT requiere signatura de tipo

GADTs incluyen existenciales

Si extendemos el lenguaje con la construcción y proyección de pares:

```
data Expr :: * \rightarrow * where

Val :: Int \rightarrow Expr Int

Add :: Expr Int \rightarrow Expr Int \rightarrow Expr Int

IsZero :: Expr Int \rightarrow Expr Bool

If :: Expr Bool \rightarrow Expr t \rightarrow Expr t \rightarrow Expr t

Pair :: Expr a \rightarrow Expr b \rightarrow Expr (a, b)

Fst :: Expr (a, b) \rightarrow Expr a

Snd :: Expr (a, b) \rightarrow Expr b
```

GADTs incluyen existenciales

Si extendemos el lenguaje con la construcción y proyección de pares:

```
data Expr :: * \rightarrow * where

Val :: Int \rightarrow Expr Int

Add :: Expr Int \rightarrow Expr Int \rightarrow Expr Int

IsZero :: Expr Int \rightarrow Expr Bool

If :: Expr Bool \rightarrow Expr t \rightarrow Expr t \rightarrow Expr t

Pair :: Expr a \rightarrow Expr b \rightarrow Expr (a, b)

Fst :: Expr (a, b) \rightarrow Expr a

Snd :: Expr (a, b) \rightarrow Expr b
```

Para *Fst* y *Snd* se esconde el tipo del componente no proyectado

GADTs incluyen existenciales

Si extendemos el lenguaje con la construcción y proyección de pares:

```
data Expr :: * \rightarrow * \text{ where}

Val :: Int \rightarrow Expr Int

Add :: Expr Int \rightarrow Expr Int \rightarrow Expr Int

IsZero :: Expr Int \rightarrow Expr Bool

If :: Expr Bool \rightarrow Expr t \rightarrow Expr t \rightarrow Expr t

Pair :: Expr a \rightarrow Expr b \rightarrow Expr (a, b)

Fst :: Expr (a, b) \rightarrow Expr a

Snd :: Expr (a, b) \rightarrow Expr b
```

Para *Fst* y *Snd* se esconde el tipo del componente no proyectado Es como tener un tipo *existencial*:

```
data Expr \ a = ... \mid \forall \ b.Fst \ (Expr \ (a, b))
```


Ejemplo: Vectores

Un vector es una lista con largo:

```
data Vec a n where

Nil :: Vec a Zero

Cons :: a \rightarrow Vec \ a \ n \rightarrow Vec \ a \ (Succ \ n)
```

Los números naturales los vamos a codificar como tipos vacíos:

```
data Zero data Succ a
```

De esta forma, en el tipo del vector tenemos codificado su largo:

```
Nil :: Vec Int Zero
Cons 3 Nil :: Vec Int (Succ Zero)
Cons 2 (Cons 3 Nil) :: Vec Int (Succ (Succ Zero))
```

head y tail

Las definiciones de *head* y *tail* son ahora seguras:

head :: Vec a
$$(Succ \ n) \rightarrow a$$

head $(Cons \times xs) = x$
tail :: Vec a $(Succ \ n) \rightarrow Vec$ a n
tail $(Cons \times xs) = xs$

El caso *Nil* es excluído porque no satisface el requerimiento de que la lista de entrada tenga largo mayor que cero.

Por lo tanto, las expresiones:

head Nil tail Nil

resultan en un error de tipo.

Funciones sobre vectores

```
map :: (a \rightarrow b) \rightarrow Vec \ a \ n \rightarrow Vec \ b \ n
map f \ Nil = Nil
map f \ (Cons \times xs) = Cons \ (f \times) \ (map \ f \times s)
```

Funciones sobre vectores

```
map\ f\ (Cons\ x\ xs) = Cons\ (f\ x)\ (map\ f\ xs)
zipWith:: (a \to b \to c) \to Vec\ a\ n \to Vec\ b\ n \to Vec\ c\ n
zipWith\ f\ Nil \qquad Nil \qquad = Nil
```

La función zipWith requiere que los vectores tengan el mismo largo

zipWith f (Cons x xs) (Cons y ys) = Cons $(f \times y)$

(zipWith f xs ys)

 $map :: (a \rightarrow b) \rightarrow Vec \ a \ n \rightarrow Vec \ b \ n$

map f Nil = Nil

Funciones sobre vectores (2)

```
snoc :: Vec a n \to a \to Vec a (Succ n)
snoc Nil y = Cons y Nil
snoc (Cons x \times xs) y = Cons \times (snoc \times s y)
```

Funciones sobre vectores (2)

```
snoc :: Vec a n \rightarrow a \rightarrow Vec a (Succ n)

snoc Nil y = Cons \ y \ Nil

snoc (Cons x \ xs) y = Cons \ x \ (snoc \ xs \ y)

reverse :: Vec a n \rightarrow Vec a n

reverse Nil = Nil

reverse (Cons x \ xs) = snoc \ (reverse \ xs) \ x
```

Concatenación de vectores

$$(++)$$
:: Vec a $m \rightarrow$ Vec a $n \rightarrow$ Vec a $(m \oplus n)$

Concatenación de vectores

$$(++):: Vec \ a \ m \rightarrow Vec \ a \ n \rightarrow Vec \ a \ (m \oplus n)$$

Podemos calcular $m \oplus n$ de la siguiente manera:

- o construir evidencia explícita
- utilizar una type family (función a nivel de tipos)

Evidencia explícita

Codificar la suma como otro GADT:

```
data Sum \ m \ n \ s \ where
SumZero :: Sum \ Zero \ n \ n
SumSucc :: Sum \ m \ n \ s \rightarrow Sum \ (Succ \ m) \ n \ (Succ \ s)
appV :: Sum \ m \ n \ s \rightarrow Vec \ a \ m \rightarrow Vec \ a \ n \rightarrow Vec \ a \ s
appV \ SumZero \qquad Nil \qquad ys = ys
appV \ (SumSucc \ p) \ (Cons \ x \ xs) \ ys = Cons \ x \ (appV \ p \ xs \ ys)
```

Evidencia explícita

Codificar la suma como otro GADT:

```
data Sum \ m \ n \ s \ where
SumZero :: Sum \ Zero \ n \ n
SumSucc :: Sum \ m \ n \ s \rightarrow Sum \ (Succ \ m) \ n \ (Succ \ s)
appV :: Sum \ m \ n \ s \rightarrow Vec \ a \ m \rightarrow Vec \ a \ n \rightarrow Vec \ a \ s
appV \ SumZero \qquad Nil \qquad ys = ys
appV \ (SumSucc \ p) \ (Cons \ x \ xs) \ ys = Cons \ x \ (appV \ p \ xs \ ys)
```

Desventaja: tenemos que construir la evidencia a mano

Type family

```
type family (m::*):+: (n::*)::*

type instance Zero :+: n = n

type instance (Succ m) :+: n = Succ (m:+: n)

(++):: Vec \ a \ m \rightarrow Vec \ a \ n \rightarrow Vec \ a \ (m:+: n)

Nil ++ys = ys

Cons \times xs + ys = Cons \times (xs + ys)
```

Convertir entre listas y vectores

Sin problemas:

```
toList :: Vec a n \rightarrow [a]
toList Nil = []
toList (Cons x xs) = x : toList xs
```

Convertir entre listas y vectores

Sin problemas:

```
toList :: Vec a n \rightarrow [a]
toList Nil = []
toList (Cons x xs) = x : toList xs
```

No funciona:

```
fromList :: [a] \rightarrow Vec a n
fromList [] = Nil
fromList (x : xs) = Cons x (fromList xs)
```

Convertir entre listas y vectores

Sin problemas:

```
toList :: Vec a n \rightarrow [a]
toList Nil = []
toList (Cons x xs) = x : toList xs
```

No funciona:

```
fromList :: [a] \rightarrow Vec a n
fromList [] = Nil
fromList (x : xs) = Cons \times (fromList \times s)
```

El tipo dice que el resultado tiene que ser polimórfico en n, pero no lo es.

De listas a vectores

Se puede:

- especificar el largo
- esconder el largo usando un tipo existencial

Especificando el largo

Los números naturales al nivel de los tipos los reflejamos al nivel de los valores usando un tipo **singleton**.

```
data SNat n where Zero :: SNat Zero Succ :: SNat n \rightarrow SNat (Succ n)
```

SNat n tiene solo un valor por cada *n*:

```
Zero :: SNat Zero
```

Succ Zero :: SNat (Succ Zero)

Succ (Succ Zero) :: SNat (Succ (Succ Zero))

Especificando el largo

data *SNat n* where

Los números naturales al nivel de los tipos los reflejamos al nivel de los valores usando un tipo **singleton**.

```
Zero :: SNat Zero
Succ :: SNat n \to SNat (Succ n)

SNat n tiene solo un valor por cada n:

Zero :: SNat Zero
Succ Zero :: SNat (Succ Zero)
Succ (Succ Zero) :: SNat (Succ (Succ Zero))
```

Conociendo el largo de antemano:

```
fromList :: SNat \ n \rightarrow [a] \rightarrow Vec \ a \ n

fromList Zero \ [] = Nil

fromList (Succ \ n) \ (x : xs) = Cons \ x \ (fromList \ n \ xs)

fromList \_ = error \ wrong \ length! \ "
```

Usando existenciales

```
data VecAny \ a \ where
VecAny :: Vec \ a \ n \rightarrow VecAny \ a
fromList :: [a] \rightarrow VecAny \ a
fromList [] = VecAny \ Nil
fromList \ (x : xs) = case \ fromList \ xs \ of
VecAny \ ys \rightarrow VecAny \ (Cons \ x \ ys)
```

Usando existenciales

```
data VecAny \ a where VecAny :: Vec \ a \ n \rightarrow VecAny \ a from List :: [a] \rightarrow VecAny \ a from List [] = VecAny \ Nil from List (x : xs) = case \ from \ List \ xs \ of \ VecAny \ ys \rightarrow VecAny \ (Cons \ x \ ys)
```

También podemos combinar ambas ideas e incluir un *SNat* en el tipo:

```
data VecAny \ a \ where
VecAny :: SNat \ n \rightarrow Vec \ a \ n \rightarrow VecAny \ a
```


Reflexión de tipos

Mediante el uso de un GADT que refleje (represente) tipos:

```
data Type t where

RInt :: Type Int

RChar :: Type Char

RList :: Type a \to Type [a]

RPair :: Type a \to Type b \to Type (a, b)
```

es posible escribir funciones genéricas (type-indexed functions) de tipo

```
f :: Type a \rightarrow ...a ...
```

que hagan recursión en la representación de los tipos.

Ejemplo: función de compresión

Queremos comprimir valores de tipos representados en *Type*.

```
\mathbf{data} \; \mathbf{Bit} = 0 \mid 1
```

```
compress :: Type t \to t \to [Bit]

compress (RInt) i = compressInt \ i

compress (RChar) c = compressChar \ c

compress (RList ra) [] = 0 : []

compress (RList ra) (a : as) = 1 : compress \ ra \ a

+ compress \ (RList \ ra) \ as

compress (RPair ra rb) (a, b) = compress \ ra \ a + compress \ rb \ b
```

donde

```
compressInt :: Int \rightarrow [Bit] compressChar :: Char \rightarrow [Bit]
```

son compresores para valores de *Int* y *Char*.

