Quang lượng tử

Lê Quang Nguyên www4.hcmut.edu.vn/~leqnguyen nguyenquangle59@yahoo.com

1. Mở đầu

- Các nhà thiên văn đo nhiệt độ của các vì sao như thế nào?
- Ngôi sao màu xanh và ngôi sao màu đỏ, sao nào nóng hơn?
- Nhiệt kế cảm ứng (đo nhiệt độ cơ thể qua lỗ tai) hoạt động ra sao?
- Tại sao lớp ozone bao quanh trái đất chống được các tia cực tím?

Nội dung

- 1. Mở đầu
- 2. Bức xạ nhiệt
- 3. Hiện tượng quang điện
- 4. Tán xạ Compton

Albert Einstein (1879-1955)

Arthur Compton (1892-1962)

2. Bức xạ nhiệt

- a. Một số định nghĩa
- b. Các định luật bức xạ nhiệt
- c. Thuyết lượng tử về bức xạ nhiệt
- d. Màu sắc và nhiệt độ các vì sao

2a. Một số định nghĩa - 1

- Bức xạ nhiệt là các bức xạ điện từ phát ra từ một vật được nung nóng.
- Ví dụ: bức xạ từ mặt trời, hơi ấm từ ngọn lửa ...
- Vật đen tuyệt đối là vật hấp thụ hết các bức xạ đi đến nó.
- Ví dụ: vật sơn đen, hốc sâu có miệng nhỏ ...

2a. Một số định nghĩa – 2

- Năng suất bức xạ toàn phần *R* là năng lượng bức xạ từ một đơn vị diện tích của vật, trong một đơn vị thời gian.
- R có đơn vị J/(m².s) hay W/m².

2a. Một số định nghĩa – 3

- Gọi dU là năng lượng bức xạ từ một đơn vị diện tích, trong một đơn vị thời gian, của các bước sóng trong khoảng $(\lambda, \lambda + d\lambda)$.
- Năng suất bức xạ đơn sắc R_{λ} ở bước sóng λ là:

$$R_{\lambda} = \frac{dU}{d\lambda}$$

• R_{λ} liên hệ với R qua:

$$R = \int_{0}^{\infty} dU = \int_{0}^{\infty} R_{\lambda} d\lambda$$

2a. Một số định nghĩa - 4

- Gọi dU là năng lượng bức xạ từ một đơn vị diện tích, trong một đơn vị thời gian, của các tần số trong khoảng (f, f + df).
- Năng suất bức xạ đơn sắc R_f ở tần số f là:

$$R_f = \frac{dU}{df}$$

• R_f liên hệ với R qua:

$$R = \int_{0}^{\infty} dU = \int_{0}^{\infty} R_{f} dy$$

2b. Các đinh luật bức xa nhiệt - 1

 Định luật Stefan-Boltzmann cho vật đen tuyệt đối ở nhiệt độ T:

$$R = \sigma T^4$$

- σ là hằng số Stefan-Boltzmann.
- $\sigma = 5.670 \times 10^{-8} \text{ W/(m}^2.\text{K}^4)$
- Với các vật khác:

$$R = \alpha \sigma T^4$$

• với α < 1 là hệ số hấp thụ của vật.

2c. Thuyết lượng tử về bức xạ nhiệt - 1

• Giả thuyết Planck (1900): Các nguyên tử, phân tử bức xạ năng lượng thành từng lượng tử, mỗi lượng tử có năng lượng:

$$\varepsilon = hf$$

- *h* là hằng số Planck.
- $h = 6,626 \times 10^{-34} \text{ J.s}$

2b. Các định luật bức xạ nhiệt – 2

• Định luật Wien cho vật đen tuyệt đối ở nhiệt độ T: $\lambda_m T = b$ b: hằng số Wien

- $b = 2.8978 \times 10^{-3} \text{ m.K} = 2897.8 \ \mu\text{m.K}$
- λ_m là bước sóng ứng với năng suất bức xạ đơn sắc lớn nhất vật bức xạ mạnh nhất ở bước sóng λ_m .
- Dùng để đo nhiệt độ của vật đen tuyệt đối các
 vì sao, hốc lỗ tai ...
- Vật nóng hơn thì bức xạ mạnh ở bước sóng ngắn hơn.

2c. Thuyết lượng tử về bức xa nhiệt – 2

• Từ giả thuyết Planck, tìm được biểu thức của năng suất bức xạ đơn sắc:

$$R_{\lambda} = \frac{2\pi hc^{2}}{\lambda^{5}} \cdot \frac{1}{e^{\frac{hc}{\lambda k_{B}T}} - 1} \longrightarrow \frac{hc}{\lambda k_{B}T}$$

$$R_f = \frac{2\pi h f^3}{c^2} \cdot \frac{1}{k_B T} \frac{hf}{-1}$$

- $k_{\rm B}$ là hằng số Boltzmann.
- $k_{\rm B} = 1.381 \times 10^{-23} \, {\rm J/K}$

2c. Thuyết lượng tử về bức xạ nhiệt – 3

- Ở nhiệt độ thấp, vật bức xạ chủ yếu trong vùng hồng ngoại.
- Đỉnh của năng suất bức xạ ứng với bước sóng vật bức xạ mạnh nhất $\lambda_{\rm m}$.
- Nhiệt độ tăng, $\lambda_{\rm m}$ giảm dần, phù hợp với ĐL Wien.

2c. Thuyết lượng tử về bức xạ nhiệt – 4

- Ở nhiệt độ cao, vật bắt đầu bức xạ trong vùng khả kiến.
- Nhiệt độ tăng, $\lambda_{\rm m}$ giảm dần từ đỏ đến xanh.
- Vật phát sáng màu xanh nóng hơn vật "nóng đỏ"!

2c. Thuyết lượng tử về bức xa nhiệt - 5

- Từ biểu thức của R_{λ} có thể suy ra các định luật Stefan-Boltzmann và Wien.
- Tích phân của R_{λ} theo λ từ 0 đến ∞ cho năng suất bức xạ toàn phần R.
- Bước sóng $\lambda_{\rm m}$ được xác định từ điều kiện cực đại của R_{λ} .

2d. Màu sắc và nhiệt độ các vì sao

• Applet minh hoa.

Bài tập 2.1

Nhiệt độ bề mặt của một ngôi sao ở cách xa trái đất 5.2×10^{18} m là 5400 K. Công suất nhận được trên một đơn vị diện tích ở trái đất là 1.4×10^{-4} W/m². Hãy ước lượng bán kính của ngôi sao.

Trả lời BT 2.1 (tt)

• Từ (1) và (2) suy ra bán kính ngôi sao:

$$R = \left(\frac{r^2 S_E}{\sigma T^4}\right)^{1/2} = \frac{r}{T^2} \left(\frac{S_E}{\sigma}\right)^{1/2}$$

• Thay bằng số ta được:

$$R = \frac{5.2 \cdot 10^{18}}{5400^2} \left(\frac{1.4 \cdot 10^{-4}}{5.67 \cdot 10^{-8}} \right)^{1/2} = 8.86 \cdot 10^{12} m$$

Trả lời BT 2.1

- Gọi r là khoảng cách từ ngôi sao đến trái đất, S_E là công suất nhân được trên mỗi m² ở trái đất.
- Nếu năng lượng phát xạ không bị mất mát dọc đường truyền, công suất phát xạ của ngôi sao bằng công suất nhận được trên mặt cầu bán kính r:

$$P = 4\pi r^2 S_E \qquad (1)$$

• Mặt khác, ta có công suất phát xạ:

$$P = 4\pi R^2 S = 4\pi R^2 \left(\sigma T^4\right) \qquad (2)$$

• *S* là năng suất phát xạ, theo định luật Stefan-Boltzman.

3. Hiện tượng quang điện

- a. Hiện tượng
- b. Thuyết photon của Einstein
- c. Giải thích hiện tượng
- d. Đo hằng số Planck và công thoát
- e. Ứng dụng

3a. Hiện tượng quang điện

- Chiếu ánh sáng đến bản kim loại.
- Có dòng quang điện khi bước sóng nhỏ hơn bước sóng ngưỡng.
- Bước sóng ngưỡng thay đổi theo kim loại.

3b. Thuyết photon của Einstein (1905)

 Mọi bức xạ điện từ đều cấu tạo từ những hạt nhỏ gọi là photon, mỗi photon có năng lượng và động lượng:

$$\varepsilon = hf$$

$$p = \frac{h}{\lambda}$$

• Giữa chúng có hệ thức:

$$\varepsilon = h \frac{c}{\lambda} = pc$$

• Phù hợp với thuyết tương đối:

$$\varepsilon^2 = (pc)^2 + (m_0c^2)^2 = (pc)^2$$

Khối lượng nghỉ của photon bằng không

3c. Giải thích hiện tượng

 Để tách được một electron ra khỏi kim loại, photon tới phải có năng lượng ít nhất bằng công thoát của kim loại đó:

$$hf = h\frac{c}{\lambda} \ge W \implies \lambda \le \frac{hc}{W}$$

• Vậy bước sóng ngưỡng là:

$$\lambda_t = \frac{hc}{W}$$

• Công thoát phụ thuộc vào kim loại, do đó bước sóng ngưỡng cũng thay đổi theo kim loại.

3d. Đo hằng số Planck và công thoát

• Đông năng cực đại của electron thoát:

$$K_{\rm max} = hf - W$$

 Áp một hiệu điện thế để cản electron thoát, khi dòng quang điện bằng không thì công của hiệu thế cản bằng động năng cực đại của electron:

$$e\Delta V = hf - W$$

- Vẽ đường thẳng ΔV theo f, suy ra h và W.
- Applet minh hoa.

Bài tập 3.1

Ánh sáng bước sóng 200 nm được chiếu tới bề mặt Cadmium. Người ta phải dùng một hiệu thế hãm bằng 2.15 V để ngăn hoàn toàn dòng quang điện. Hãy tìm công thoát của Cadmium bằng eV.

Trả lời BT 3.1 (tt)

• Đổi sang đơn vi eV:

$$W(eV) = \frac{\left(6,63 \cdot 10^{-34}\right)\left(3 \cdot 10^{8}\right)}{200 \cdot 10^{-9}\left(1.6 \cdot 10^{-19}\right)} - 2,15 = 4,07eV$$

Trả lời BT 3.1

 Khi dòng quang điện bằng không thì công của hiệu thế cản bằng động năng cực đại của electron:

$$e\Delta V = h\frac{c}{\lambda} - W$$

• Suy ra công thoát:

$$W = h\frac{c}{\lambda} - e\Delta V$$

$$W = \frac{\left(6.63 \cdot 10^{-34}\right)\left(3 \cdot 10^{8}\right)}{200 \cdot 10^{-9}} - \left(1.6 \cdot 10^{-19}\right) \cdot 2.15$$

4. Tán xa Compton

- a. Tán xạ Compton
- b. Giải thích hiện tượng
- c. Chứng tỏ công thức Compton
- d. Tầng ozone bảo vệ trái đất như thế nào?

4a. Tán xa Compton (1923) - 1

 Khi chiếu tia X đến một bia carbon, Compton thấy tia tán xạ có hai bước sóng : bước sóng λ bằng bước sóng tới, và bước sóng λ' > λ.

4b. Giải thích hiện tượng

- Khi va chạm với một electron liên kết yếu, photon truyền động năng cho electron, do đó năng lượng giảm, tức là bước sóng tăng.
- Khi va chạm với một electron liên kết chặt thì photon mất rất ít năng lượng và có bước sóng gần như không đổi.
- Do đó có hai bước sóng trong tán xạ Compton:
 λ bằng bước sóng tới, và λ' > λ.

4a. Tán xạ Compton (1923) – 2

 Độ chênh lệch giữa hai bước sóng phụ thuộc vào góc tán xạ θ theo công thức Compton:

$$\lambda' - \lambda = 2\lambda_c \sin^2 \frac{\theta}{2}$$

$$\lambda' - \lambda = \lambda_c \left(1 - \cos \theta \right)$$

$$\lambda_c = 2,43 \times 10^{-12} m$$

- λ_c là bước sóng Compton.
- θ là góc lệch của photon tán xạ.

4c. Chứng tỏ công thức Compton – 1

- Coi va chạm giữa photon và electron là đàn hồi, và electron ban đầu đứng yên.
- Năng lượng và động lượng trong va chạm được bảo toàn.
- Theo cơ tương đối, động năng và động lượng của một hạt có khối lượng nghỉ m, chuyển động với vân tốc v:

$$K = mc^{2} \left(\frac{1}{\sqrt{1 - (v/c)^{2}}} - 1 \right)$$
 $p = \frac{mv}{\sqrt{1 - (v/c)^{2}}}$

4c. Chứng tỏ công thức Compton – 2

4c. Chứng tỏ công thức Compton – 3

• Đinh luất bảo toàn đông lương trên phương ngang và phương thẳng đứng:

$$0 = \frac{h}{\lambda'} \sin \theta - \frac{mv}{\sqrt{1 - (v/c)^2}} \sin \phi$$

4c. Chứng tỏ công thức Compton – 4

• Đinh luật bảo toàn năng lương:

$$\frac{hc}{\lambda} = \frac{hc}{\lambda'} + m_e c^2 \left(\frac{1}{\sqrt{1 - (v/c)^2}} - 1 \right)$$

• Khử v, φ từ 3 phương trình trên, ta được công thức Compton:

$$\lambda' - \lambda = 2\lambda_c \sin^2 \frac{\theta}{2}$$
$$\lambda_c = \frac{h}{m_e c}$$

4d. Tầng ozone bảo vệ trái đất

- Các tia cực tím tán xa Compton trên tầng ozone, nên bước sóng của dài chúng ra, không nguy hiểm như lúc đầu nữa.
- Chất sinh hàn CFC làm tầng ozone mỏng đi, nhất là ở vùng cực.

Bài tập 4.1

Một tia gamma năng lượng 5,5 MeV đến va chạm với một electron đứng yên. Tìm năng lượng của photon tán xạ ở góc 60° (đo bằng MeV).

Trả lời BT 4.1 (tt)

• Năng lương của photon tán xa:

$$E = \frac{hc}{\lambda'}$$

$$E = \frac{\left(6,63 \cdot 10^{-34}\right) \left(3 \cdot 10^{8}\right)}{\left(1,44 \cdot 10^{-12}\right) \left(1,6 \cdot 10^{-19}\right)} = 0,86 \,\text{MeV}$$

Trả lời BT 4.1

• Bước sóng của photon tới:

$$\lambda = \frac{hc}{E} = \frac{\left(6,63 \cdot 10^{-34}\right)\left(3 \cdot 10^{8}\right)}{\left(5,5 \cdot 10^{6}\right)\left(1,6 \cdot 10^{-19}\right)} = 2,26 \cdot 10^{-13} m$$

• Bước sóng của photon tán xạ:

$$\lambda' = \lambda + \lambda_c (1 - \sin \theta)$$

$$\lambda' = 2,26 \cdot 10^{-13} + 2,43 \cdot 10^{-12} (1 - \cos 60^\circ)$$

$$= 1,44 \cdot 10^{-12} m$$