• Der Wien-Filter kann verschiedene Massen aussortieren.

I/A	0	2	4	6	8	10.5
m/g	0	2.1	3.2	5.2	6.5	8.6
$\frac{F_G = F_L}{mN}$	0	21	32	52	65	86

l/m	0	0.0125	0.025	0.1
m/g	0	3.3	6	19.5
$\frac{F_G = F_L}{mN}$	0	33	60	195

$$F_L = \qquad \qquad {
m I} \, imes \qquad {
m L} \, imes \, {
m B} = \quad {
m e} \qquad \qquad imes rac{l}{t} \qquad \qquad imes B$$

(Stromstärke Weg, den das Elektron

$$=\frac{Ladung}{Zeit})$$
 in einer Zeit zurücklegt

 $= e \times v \times B$

1)
$$r = 5cm = m$$
; $B = 1,12mT = T$; $U_B = 240V \rightarrow m_e = T$

2)
$$r = 4cm = m$$
; $B = 1,5mT = T$; $U_B = 300V \rightarrow m_e = T$

3)
$$r=3cm=m; B=2,175mT=T; U_B=360V \rightarrow m_e=$$

4)
$$r = 3cm = m; B = 2,375mT = T; U_B = 400V \rightarrow m_e = 1000$$

Lorentz:
$$F_L = I \times l \times B \qquad \text{bzw.} \qquad F_L = e \times v \times B$$

Elektrisch:
$$F_E = E \times Q = \frac{U}{d} \times Q \quad \text{bzw.} \qquad \text{(siehe 1.3)}$$

siehe Beschreibung
$$F_L = F_E$$
 \Leftrightarrow $e \times v \times B = \frac{U}{d} \times e$

$$v = \frac{E}{B} = \frac{U_K}{B \times d}$$

aus 1.7:
$$F_E = F_L$$

$$v = \frac{U}{v \times d}$$

$$v = \frac{U}{B \times d}$$