Exercise 2c

Question 1.

Prove that the function f: $R \rightarrow R$: f(x)=2x is one-one and onto.

Answer:

To prove: function is one-one and onto

Given: $f: R \rightarrow R: f(x) = 2x$

We have,

f(x) = 2x

For, $f(x_1) = f(x_2)$

 \Rightarrow 2x₁ = 2x₂

 $\Rightarrow x_1 = x_2$

When, $f(x_1) = f(x_2)$ then $x_1 = x_2$

 \therefore f(x) is one-one

f(x) = 2x

Let f(x) = y such that $y \in \mathbb{R}$

 \Rightarrow y = 2x

 $\Rightarrow x = \frac{y}{2}$

Since $y \in \mathbb{R}$,

 $\Rightarrow \frac{y}{2} \in R$

 \Rightarrow x will also be a real number, which means that every value of y is associated with some x

 \therefore f(x) is onto

Hence Proved

Question 2.

Prove that the function $f: N \rightarrow N : f(x)=3x$ is one-one and into.

Answer:

To prove: function is one-one and into

Given: $f: N \rightarrow N : f(x) = 3x$

We have,

$$f(x) = 3x$$

For, $f(x_1) = f(x_2)$

$$\Rightarrow$$
 3x₁ = 3x₂

$$\Rightarrow x_1 = x_2$$

When, $f(x_1) = f(x_2)$ then $x_1 = x_2$

 \therefore f(x) is one-one

$$f(x) = 3x$$

Let f(x) = y such that $y \in N$

$$\Rightarrow$$
 y = 3x

$$\Rightarrow x = \frac{y}{3}$$

If
$$y = 1$$
,

$$\Rightarrow x = \frac{1}{3}$$

But as per question $X \in \mathbb{N}$, hence x can not be $\frac{1}{3}$

Hence f(x) is into

Hence Proved

Question 3.

Show that the function $f : R \to R : f(x) = x^2$ is neither one-one nor onto.

Answer:

To prove: function is neither one-one nor onto

Given: $f: R \rightarrow R: f(x) = x^2$

Solution: We have,

 $f(x) = x^2$

For, $f(x_1) = f(x_2)$

 $\Rightarrow x_1^2 = x_2^2$

 $\Rightarrow x_1 = x_2 \text{ or, } x_1 = -x_2$

Since x₁ doesn't has unique image

∴ f(x) is not one-one

 $f(x) = x^2$

Let f(x) = y such that $y \in \mathbb{R}$

 \Rightarrow y = x^2

 $\Rightarrow x = \sqrt{y}$

If
$$y = -1$$
, as $y \in \mathbb{R}$

Then x will be undefined as we cannot place the negative value under the square root

Hence f(x) is not onto

Hence Proved

Question 4.

Show that the function $f: N \to N: f(x) = x^2$ is one-one and into.

Answer:

To prove: function is one-one and into

Given: $f: N \rightarrow N: f(x) = x^2$

Solution: We have,

 $f(x) = x^2$

For, $f(x_1) = f(x_2)$

 $\Rightarrow x_1^2 = x_2^2$

 $\Rightarrow x_1 = x_2$

Here we can't consider $x_1 = -x_2$ as $\mathbf{x} \in \mathbb{N}$, we can't have negative values

 \therefore f(x) is one-one

$$f(x) = x^2$$

Let f(x) = y such that $y \in \mathbb{N}$

$$\Rightarrow y = x^2$$

$$\Rightarrow x = \sqrt{y}$$

If y = 2, as $y \in \mathbb{N}$

Then we will get the irrational value of x, but $x \in N$

Hence f(x) is not into

Hence Proved

Question 5.

Show that the function $f : R \to R : f(x) = x^4$ is neither one-one nor onto.

Answer:

To prove: function is neither one-one nor onto

Given: $f: R \rightarrow R: f(x) = x^4$

We have,

$$f(x) = x^4$$

For, $f(x_1) = f(x_2)$

$$\Rightarrow x_1^4 = x_2^4$$

$$\Rightarrow (x_1^4 - x_2^4) = 0$$

$$\Rightarrow (x_1^2 - x_2^2) (x_1^2 + x_2^2) = 0$$

$$\Rightarrow$$
 (x₁ - x₂) (x₁ + x₂) (x₁² + x₂²) = 0

$$\Rightarrow$$
 x₁ = x₂ or, x₁ = -x₂ or, x₁² = -x₂²

We are getting more than one value of x_1 (no unique image)

∴ f(x) is not one-one

$$f(x) = x^4$$

Let f(x) = y such that $y \in \mathbb{R}$

$$\Rightarrow$$
 y = x^4

$$\Rightarrow x = \sqrt[4]{y}$$

If
$$y = -2$$
, as $y \in \mathbb{R}$

Then x will be undefined as we can't place the negative value under the square root

Hence f(x) is not onto

Hence Proved

Question 6.

Show that the function $f: Z \rightarrow Z: f(x) = x^3$ is one-one and into.

Answer:

To prove: function is one-one and into

Given: $f: Z \rightarrow Z: f(x) = x^3$

Solution: We have,

$$f(x) = x^3$$

For,
$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^3 = x_2^3$$

$$\Rightarrow x_1 = x_2$$

When, $f(x_1) = f(x_2)$ then $x_1 = x_2$

 \therefore f(x) is one-one

$$f(x) = x^3$$

Let f(x) = y such that $y \in Z$

$$\Rightarrow y = x^3$$

$$\Rightarrow x = \sqrt[3]{y}$$

If
$$y = 2$$
, as $y \in Z$

Then we will get an irrational value of x, but $x \in Z$

Hence f(x) is into

Hence Proved

Question 7.

Let R₀ be the set of all nonzero real numbers. Then, show that the function

$$f: R_0 \to R_0: f(x) = \frac{1}{x}$$
 is one-one and onto.

Answer:

To prove: function is one-one and onto

Given:
$$f: R_0 \rightarrow R_0: f(x) = \frac{1}{x}$$

We have,

$$f(x) = \frac{1}{x}$$

For,
$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{1}{x_1} = \frac{1}{x_2}$$

$$\Rightarrow x_1 = x_2$$

When, $f(x_1) = f(x_2)$ then $x_1 = x_2$

 \therefore f(x) is one-one

$$f(x) = \frac{1}{x}$$

Let f(x) = y such that $y \in R_0$

$$\Rightarrow$$
 y = $\frac{1}{x}$

$$\Rightarrow x = \frac{1}{y}$$

Since $y \in \mathbb{R}_0$,

$$\Rightarrow \frac{1}{y} \in R_0$$

 \Rightarrow x will also $\in \mathbf{R}_0$, which means that every value of y is associated with some x

 \therefore f(x) is onto

Hence Proved

Question 8.

Show that the function $f : R \to R : f(x) = 1 + x^2$ is many-one into.

Answer:

To prove: function is many-one into

Given: $f : R \to R : f(x) = 1 + x^2$

$$f(x) = 1 + x^2$$

For,
$$f(x_1) = f(x_2)$$

$$\Rightarrow 1 + x_1^2 = 1 + x_2^2$$

$$\Rightarrow x_1^2 = x_2^2$$

$$\Rightarrow x_1^2 - x_2^2 = 0$$

$$\Rightarrow$$
 $(x_1 - x_2) (x_1 + x_2) = 0$

$$\Rightarrow x_1 = x_2 \text{ or, } x_1 = -x_2$$

Clearly x₁ has more than one image

∴ f(x) is many-one

$$f(x) = 1 + x^2$$

Let f(x) = y such that $y \in \mathbb{R}$

$$\Rightarrow$$
 y = 1 + x^2

$$\Rightarrow$$
 $x^2 = y - 1$

$$\Rightarrow$$
 x = $\sqrt{y-1}$

If
$$y = 3$$
, as $y \in \mathbb{R}$

Then x will be undefined as we can't place the negative value under the square root

Hence f(x) is into

Hence Proved

Question 9.

Let $f: R \to R: f(x) = \frac{2x-7}{4}$ be an invertible function. Find f⁻¹.

Answer:

To find: f⁻¹

Given: **f**: **R**
$$\to$$
 R : **f**(**x**) = $\frac{2x-7}{4}$

We have,

$$f(x) = \frac{2x-7}{4}$$

Let f(x) = y such that $y \in \mathbb{R}$

$$\Rightarrow y = \frac{2x-7}{4}$$

$$\Rightarrow$$
 4y = 2x - 7

$$\Rightarrow$$
 4y + 7 = 2x

$$\Rightarrow x = \frac{4y + 7}{2}$$

$$\Rightarrow f^{-1} = \frac{4y + 7}{2}$$

Ans)
$$f^{-1}(y) = \frac{4y+7}{2}$$
 for all $y \in R$

Question 10.

Let f : R \rightarrow R : f(x) = 10x + 3. Find f⁻¹.

Answer:

To find: f⁻¹

Given: $f: R \rightarrow R: f(x) = 10x + 3$

We have,

$$f(x) = 10x + 3$$

Let f(x) = y such that $y \in \mathbb{R}$

$$\Rightarrow$$
 y = 10x + 3

$$\Rightarrow$$
 y $-$ 3 = 10x

$$\Rightarrow x = \frac{y - 3}{10}$$

$$\Rightarrow f^{-1} = \frac{y - 3}{10}$$

Ans)
$$f^{-1}(y) = \frac{y - 3}{10}$$
 for all $y \in R$

Question 11.

$$f: R \to R: f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is rational} \end{cases}$$

Show that f is many-one and into.

Answer:

To prove: function is many-one and into

Given:
$$f: R \rightarrow R: f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is irrational} \end{cases}$$

We have,

$$f(x) = 1$$
 when x is rational

It means that all rational numbers will have same image i.e. 1

$$\Rightarrow$$
 f(2) = 1 = f (3), As 2 and 3 are rational numbers

Therefore f(x) is many-one

The range of function is [{-1},{1}] but codomain is set of real numbers.

Therefore f(x) is into

Question 12.

Let f (x) = x + 7 and g(x) = x - 7, $x \in R$. Find (f o g) (7).

Answer:

To find: (f o g) (7)

Formula used: $f \circ g = f(g(x))$

Given: (i) f(x) = x + 7

(ii)
$$g(x) = x - 7$$

We have,

f o g =
$$f(g(x)) = f(x-7) = [(x-7) + 7]$$

 $\Rightarrow X$

$$(f \circ g)(x) = x$$

$$(f \circ g) (7) = 7$$

Ans). $(f \circ g)(7) = 7$

Question 13.

Let $f : R \to R$ and $g : R \to R$ defined by $f(x) = x^2$ and g(x) = (x + 1). Show that g o f \neq f o g.

Answer:

To prove: g o f ≠ f o g

Formula used: (i) $f \circ g = f(g(x))$

(ii)
$$g \circ f = g(f(x))$$

Given: (i) $f: R \rightarrow R: f(x) = x^2$

(ii)
$$g : R \to R : g(x) = (x + 1)$$

$$f \circ g = f(g(x)) = f(x + 7)$$

fog =
$$(x + 7)^2 = x^2 + 14x + 49$$

$$g \circ f = g(f(x)) = g(x^2)$$

g o f =
$$(x^2 + 1) = x^2 + 1$$

Clearly g o f ≠ f o g

Hence Proved

Question 14.

Let f: R \rightarrow R: f(x) = (3 - x³)^{1/3}. Find f o f.

Answer:

To find: f o f

Formula used: (i) f o f = f(f(x))

Given: (i) $f : R \to R : f(x) = (3 - x^3)^{1/3}$

We have,

fof =
$$f(f(x)) = f((3 - x^3)^{1/3})$$

fof =
$$[3 - {(3 - x^3)^{1/3}}]^{3}$$

$$=[3-(3-x^3)]^{1/3}$$

$$=[3-3+x^3]^{1/3}$$

$$=[x^3]^{1/3}$$

= x

Ans)
$$f \circ f(x) = x$$

Question 15.

Let $f : R \rightarrow R : f(x) = 3x + 2$, find $f\{f(x)\}$.

Answer:

To find: $f\{f(x)\}$

Formula used: (i) f o f = f(f(x))

Given: (i) $f : R \to R : f(x) = 3x + 2$

We have,

$$f{f(x)} = f(f(x)) = f(3x + 2)$$

$$f \circ f = 3(3x + 2) + 2$$

$$= 9x + 6 + 2$$

$$= 9x + 8$$

Ans)
$$f\{f(x)\} = 9x + 8$$

Question 16.

Let $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down g o f.

Answer:

To find: g o f

Formula used: $g \circ f = g(f(x))$

Given: (i) $f = \{(1, 2), (3, 5), (4, 1)\}$

(ii)
$$g = \{(1, 3), (2, 3), (5, 1)\}$$

$$gof(1) = g(f(1)) = g(2) = 3$$

$$gof(3) = g(f(3)) = g(5) = 1$$

$$gof(4) = g(f(4)) = g(1) = 3$$

Ans) g o f =
$$\{(1, 3), (3, 1), (4, 3)\}$$

Question 17.

Let $A = \{1, 2, 3, 4\}$ and $f = \{(1, 4), (2, 1), (3, 3), (4, 2)\}$. Write down (f o f).

Answer:

To find: f o f

Formula used: $f \circ f = f(f(x))$

Given: (i) $f = \{(1, 4), (2, 1), (3, 3), (4, 2)\}$

We have,

$$fof(1) = f(f(1)) = f(4) = 2$$

$$fof(2) = f(f(2)) = f(1) = 4$$

$$fof(3) = f(f(3)) = f(3) = 3$$

$$fof(4) = f(f(4)) = f(2) = 1$$

Ans) f o f =
$$\{(1, 2), (2, 4), (3, 3), (4, 1)\}$$

Question 18.

Let $f(x) = 8x^3$ and $g(x) = x^{1/3}$. Find g o f and f o g.

Answer:

To find: g o f and f o g

Formula used: (i) $f \circ g = f(g(x))$

(ii)
$$g \circ f = g(f(x))$$

Given: (i) $f(x) = 8x^3$

(ii)
$$g(x) = x^{1/3}$$

We have,

$$g \circ f = g(f(x)) = g(8x^3)$$

g o f =
$$(8x^3)^{\frac{1}{3}} = 2x$$

f o g =
$$f(g(x)) = f(x^{1/3})$$

fog =
$$8\left(x^{\frac{1}{3}}\right)^3 = 8x$$

Ans) $g \circ f = 2x$ and $f \circ g = 8x$

Question 19.

Let $f: R \to R: f(x) = 10x + 7$. Find the function $g: R \to R: g \circ f = f \circ g = I_g$.

Answer:

To find: the function $g : R \rightarrow R : g \circ f = f \circ g = I_g$

Formula used: (i) g o f = g(f(x))

(ii)
$$f \circ g = f(g(x))$$

Given: $f: R \rightarrow R: f(x) = 10x + 7$

$$f(x) = 10x + 7$$

Let
$$f(x) = y$$

$$\Rightarrow$$
 y = 10x + 7

$$\Rightarrow$$
 y - 7 = 10x

$$\Rightarrow x = \frac{y - 7}{10}$$

Let
$$g(y) = \frac{y-7}{10}$$
 where g: R \rightarrow R

g o f = g(f(x)) = g(10x + 7)
=
$$\frac{(10x + 7) - 7}{10}$$

= x

 $=I_g$

fog = f(g(x)) =
$$\mathbf{f}\left(\frac{x-7}{10}\right)$$

$$= 10 \left(\frac{x-7}{10} \right) + 7$$

$$= x - 7 + 7$$

= x

Clearly g o f = f o g = I_g Ans). g(x) = $\frac{x-7}{10}$

Question 20.

Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2,5), (3, 6)\}$ be a function from A to B. State whether f is one-one.

Answer:

To state: Whether f is one-one

Given: $f = \{(1, 4), (2,5), (3, 6)\}$

Here the function is defined from $A \rightarrow B$

For a function to be one-one if the images of distinct elements of A under f are distinct

i.e. 1,2 and 3 must have a distinct image.

From $f = \{(1, 4), (2, 5), (3, 6)\}$ we can see that 1, 2 and 3 have distinct image.

Therefore f is one-one

Ans) f is one-one