Зимний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год Дата последнего обновления: 04.12.2016

Билет 1

Совместное распределение двух случайных величин. Свойства функции распределения.

Совместное распределение двух случайных величин

Для начала напомним определение случайной величины.

Определение 1. ξ называется *случайной величиной*, если

$$\{\omega : \xi(\omega) \in \langle a, b \rangle\} \in \mathfrak{A},$$

то есть множество исходов таких, что случайная величина принадлежит некоторому промежутку, является событием. Можно доказать, что это верно не только для промежутков, но и для любых элементов из $\mathcal{B}(\mathbb{R})$.

Ранее мы рассматривали распределения и функции распределения случайных величин, взятых по отдельности. Теперь мы подросли, стали большими и сильными и поэтому можем перейти к более серьезным вещам. Рассмотрим вероятностное пространство $(\Omega, \mathfrak{A}, P)$ и две случайные величины $\xi: \Omega \to \mathbb{R}$ и $\eta: \Omega \to \mathbb{R}$.

Пусть $B_1, B_2 \in \mathcal{B}(\mathbb{R})$, рассмотрим множество $\{(\xi, \eta) \in B_1 \times B_2\} = \{(\xi \in B_1)\&(\eta \in B_2)\} = \{\xi \in B_1\} \cap \{\eta \in B_2\}$, а так как $\{\xi \in B_1\} \in \mathfrak{A}$ и $\{\eta \in B_2\} \in \mathfrak{A}$, то и $\{(\xi \in B_1)\&(\eta \in B_2)\} \in \mathfrak{A}$, то есть $\{(\xi, \eta) \in B_1 \times B_2\}$ является событием.

Так как $\mathcal{B}(\mathbb{R}^2)$ порождена всеми множествами вида $B_1 \times B_2$, где $B_1, B_2 \in \mathcal{B}(\mathbb{R})$, то $\{\omega : (\xi(\omega), \eta(\omega)) \in B\} \in \mathfrak{A}$, то есть для него можно определить вероятность.

Определение 2. Для любых $B \in \mathcal{B}(\mathbb{R}^2)$ мы можем определить вероятностную меру

$$\mu_{\mathcal{E}_n}(B) = P(\{\omega : (\xi(\omega), \eta(\omega)) \in B\}).$$

Такую меру называют совместным распределением случайных величин ξ и η .

Доказательство. Докажем, что $\mu_{\xi\eta}$ является вероятностной мерой:

- (a) $\mu_{\xi\eta}(\mathbb{R}^2) = P(\Omega) = 1$, очевидно
- (b) Пусть $B_1 \cap B_2 = \varnothing$, тогда $P(\omega : (\xi(\omega), \eta(\omega)) \in B_1 \cup B_2) = \mu_{\xi\eta}(B_1 \cup B_2) = \mu_{\xi\eta}(B_1) + \mu_{\xi\eta}(B_2) = P(\{\omega : (\xi(\omega), \eta(\omega)) \in B_1\}) + P(\{\omega : (\xi(\omega), \eta(\omega)) \in B_2\})$

Определение 3. Функцию

$$F_{\xi\eta}(x,y) = P(\xi \leqslant x, \eta \leqslant y) = \mu_{\xi\eta}((-\infty, x], (-\infty, y])$$

называют функцией совместного распределения случайных величин ξ и η или функцией распределения случайного вектора (ξ,η) .

ДИСКРЕТНЫЙ ака ебучий СЛУЧАЙ

Если случайная величина принимает конечное число значений, то совместным распределением является функция

$$\mu_{\xi\eta}(x_0, y_0) = P(\{\omega : (\xi(\omega), \eta(\omega)) = (x_0, y_0)\}),$$

или же можно определить распределение через индикаторную функцию:

$$\mu_{\xi\eta}(x,y) = \sum_{i,j} p_{ij} \cdot I_{(x=x_i,y=y_j)}(x,y),$$

где p_{ij} - вероятность, что случайный вектор (ξ, η) примет значение (x_i, x_j) .

Свойства функции распределения

Функция совместного распределения обладает рядом свойств, аналогичных свойствам функции распределения одной случайной величины:

Свойство 1. Для любых $a < c \ u \ b < d \ верно$

$$F_{\xi\eta}(c,d) - F_{\xi\eta}(a,d) - F_{\xi\eta}(c,b) + F_{\xi\eta}(a,b) \ge 0$$

Доказательство. $P((\xi,\eta)\in(a,c]\times(b,d])=F_{\xi\eta}(c,d)-F_{\xi\eta}(a,d)-F_{\xi\eta}(c,b)+F_{\xi\eta}(a,b)$ есть вероятность попадания в прямоугольник, а вероятность неотрицательна, что и требовалось доказать.

Свойство 2. $F_{\xi\eta}$ непрерывна справа по совокупности переменных, то есть

$$\lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi\eta}(x, y) = F_{\xi\eta}(x_0, y_0)$$

Сначала докажем лемму

Лемма 1. В вероятностном пространстве $(\Omega, \mathfrak{A}, P)$ верно:

(a)
$$C_1 \subseteq C_2 \subseteq \ldots \subseteq C_n \subseteq C_{n+1} \subseteq \ldots$$

 $C = \bigcup C_n \Rightarrow P(C_n) \to P(C)$

(b)
$$C_1 \supseteq C_2 \supseteq \ldots \supseteq C_n \supseteq C_{n+1} \supseteq \ldots$$

 $C = \bigcap_{n} C_n \Rightarrow P(C_n) \to P(C)$

Доказательство.

(a) Пусть $A_1=C_1$ и $A_n=C_n\setminus C_{n-1}$ для n>1.Тогда $C = \bigcup_n A_n$ и $P(C) = \sum_{n=1}^{\infty} P(A_n)$.

Но тогда $P(C_n)=\sum_{n=1}^n P(A_n)$ стремится к P(C) как частичная сумма ряда $\sum_{n=1}^\infty P(A_n)$. (b) Сведем к первому случаю, пусть $A_1=\Omega\setminus C_1$ и $A_n=\mathrm{C}_{n-1}\setminus C_n$ для n>1.

Тогда $C=\Omega\setminus\bigcup_n A_n$ и все рассуждения аналогичны.

Используя лемму, сможем доказать свойство

Доказательство. Так как функция распределения монотонна по обеим переменным (первое свойство) и ограничена (так как является вероятностью), то существует предел

$$\lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi \eta}(x, y) = L.$$

Тогда требуется доказать, что $L=F_{\xi\eta}(x_0,y_0)$. Пусть $C_n=\{\omega:\xi(\omega)\leqslant x_0+\frac{1}{n},\eta(\omega)\leqslant y_0+\frac{1}{n}\}$ и пусть $C=\bigcap_n C_n=\{\omega:\xi(\omega)\leqslant x_0,\eta(\omega)\leqslant y_0\}$, тогда из леммы 1 следует, что

$$L = \lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi\eta}(x, y) = \lim_{n \to \infty} P(C_n) = P(C) = F_{\xi\eta}(x_0, y_0)$$

Свойство 3. Если хотя бы одно из a или b равно $-\infty$, то

$$\lim_{\substack{x \to a \\ y \to b}} F_{\xi\eta}(x, y) = 0$$

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} F_{\xi\eta}(x,y) = 1$$

 \mathcal{A} оказательство. С очевидностью следует из леммы, в первом случае последовательность множеств C_n стремится к пустому множеству, тогда вероятность пересечения равна $P(\varnothing)=0$, а во втором случае C_n стремится ко всей плоскости, поэтому вероятность объединения равна $P(\Omega) = 1$.

Замечание 1. Если функция $F_{\xi\eta}(x,y)$ удовлетворяет свойствам 1-3, то существует единственная вероятностная мера $\mu_{\xi\eta}$ на $\mathcal{B}(\mathbb{R}^2)$ такая, что

$$F_{\xi\eta}(x,y) = \mu_{\xi\eta}((-\infty,x],(-\infty,y]).$$

Билет 2

Независимые случайные величины. Характеризация независимости в терминах функций распределения и плотностей. Плотность распределения суммы двух независимых случайных величин.

Независимые случайные величины, характеризация независимости в терминах функций распределения и плотностей

Определение 1. Случайные величины ξ_1, \dots, ξ_n называются независимыми, если выполняется

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_n \in B_n)$$

Замечание 1. Если у нас есть меры $\mu_{\xi}(B_1)$ и $\mu_{\eta}(B_2)$, где B_1, B_2 — полуинтервалы, то мы можем определить новую меру $\mu(B_1 \times B_2) = \mu_{\xi}(B_1) \cdot \mu_{\eta}(B_2) = \mu_{\xi} \otimes \mu_{\eta}$ и такую меру можно продолжить на $\mathcal{B}(\mathbb{R}^2)$.

Замечание 2. Определение независимости можно переписать в терминах распределения (для двух случайных величин):

$$\mu_{\xi\eta}(B_1 \times B_2) = \mu_{\xi}(B_1) \cdot \mu_{\eta}(B_2)$$

а значит, мы можем переписать определение, как

Теорема 1. Случайные величины ξ и η независимы $\Leftrightarrow F_{\xi\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$

Доказательство. В одну сторону (⇒):

$$F_{\mathcal{E}_n}(x,y) = P(\xi \leqslant x, \eta \leqslant y) = P(\xi \leqslant x) \cdot P(\eta \leqslant y) = F_{\mathcal{E}}(x) \cdot F_n(y)$$

В другую сторону (\Leftarrow):

Пусть $\mu(B) = \mu_{\xi} \otimes \mu_{\eta}(B)$, где B — углы, учитывая при этом, что определив такую меру на углах, можно определить с ее помощью прямоугольников, а после продолжить на любые множества из $\mathcal{B}(\mathbb{R}^2)$. Тогда

$$F_{\xi\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y) = \mu_{\xi}((-\infty,x]) \cdot \mu_{\eta}((-\infty,y]) = \mu((-\infty,x] \times (-\infty,y]) = \mu_{\xi} \otimes \mu_{\eta}((-\infty,x] \times (-\infty,y]),$$

а так как для $F_{\xi\eta}(x,y)$ существует единственная вероятностная мера $\mu_{\xi\eta}$ такая, что

$$F_{\varepsilon_n}(x,y) = \mu_{\varepsilon_n}((-\infty,x],(-\infty,y]),$$

то $\mu = \mu_{\xi\eta}$, а значит, ξ и η независимы.

Теорема 2. Пусть случайные величины ξ и η имеют плотности ρ_{ξ} и ρ_{η} соответственно, тогда ξ и η независимы $\Leftrightarrow \rho_{\xi\eta}(x,y) = \rho_{\xi}(x) \cdot \rho_{\eta}(y)$.

Доказательство. В одну сторону (⇒):

$$\rho_{\xi\eta}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi\eta}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi}(x) \cdot F_{\eta}(y) = \rho_{\xi}(x) \cdot \rho_{\eta}(y)$$

В другую сторону (\Leftarrow) :

$$F_{\xi\eta}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \rho_{\xi}(u)\rho_{\eta}(v)dudv = \int_{-\infty}^{x} \rho_{\xi}(u)du \cdot \int_{-\infty}^{y} \rho_{\eta}(v)dv = F_{\xi}(x) \cdot F_{\eta}(y)$$

Плотность распределения суммы двух независимых случайных величин

Теорема 3. Пусть случайные величины ξ и η имеют плотности ρ_{ξ} и ρ_{η} соответственно и являются независимыми. Тогда

$$\rho_{\xi+\eta}(t) = \int_{-\infty}^{+\infty} \rho_{\xi}(x) \rho_{\eta}(t-x) dx.$$

Доказательство.

$$F_{\xi+\eta}(t) = P(\xi+\eta \leqslant t) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{t-x} \rho_{\xi}(x) \rho_{\eta}(y) dy \right) dx = \int_{-\infty}^{+\infty} \rho_{\xi}(x) \left(\int_{-\infty}^{t-x} \rho_{\eta}(y) dy \right) dx = \left\{ \begin{aligned} y &= v-x \\ dy &= dv \end{aligned} \right\} = \\ &= \int_{-\infty}^{+\infty} \rho_{\xi}(x) \left(\int_{-\infty}^{t} \rho_{\eta}(v-x) dv \right) dx = \int_{-\infty}^{t} \left(\int_{-\infty}^{+\infty} \rho_{\xi}(x) \rho_{\eta}(v-x) dx \right) dv$$

Тогда

$$\rho_{\xi+\eta}(t) = F'_{\xi+\eta}(t) = \int_{-\infty}^{+\infty} \rho_{\xi}(x) \rho_{\eta}(t-x) dx.$$

Математическое ожидание случайной величины и его свойства: линейность, монотонность, неравенство Чебышёва. Математическое ожидание произведения двух независимых случайных величин.

Математическое ожидание случайной величины и его свойства: линейность и монотонность

Пусть дано вероятностное пространство $(\Omega, \mathfrak{A}, P)$ и пусть $\xi \colon \Omega \to \mathbb{R} -$ случайная величина, принимающая конечное число различных значений.

Пусть x_1, x_2, \ldots, x_n — различные значения ξ и пусть $A_i = \{\omega \colon \xi(\omega) = x_i\}$, где A_i — непересекающиеся множества и $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$.

Также определим $\xi = x_1 I_{A_1} + x_2 I_{A_2} + \ldots + x_n I_{A_n}$, где I_{A_i} — индикатор, который определяется как:

$$I_{A_i}(\omega) = \begin{cases} 1, \ \omega \in A_i \\ 0, \ \omega \notin A_i \end{cases}$$

Определение 1. Математическое ожидание ξ — это число, равное

$$\mathbb{E}[\xi] = x_1 P(A_1) + x_2 P(A_2) + \ldots + x_n P(A_n)$$

Утверждение 1. Если $\forall i \neq j \ B_i \cap B_j = \emptyset \ u$

$$\xi = y_1 I_{B_1} + y_2 I_{B_2} + \ldots + y_n I_{B_n},$$

где y_i могут быть равны (в отличие от сложности билетов), то

$$\mathbb{E}[\xi] = y_1 P(B_1) + y_2 P(B_2) + \ldots + y_n P(B_n)$$

Доказательство. x_1, x_2, \dots, x_m — различные значения случайной величины ξ и пусть $A_k = \{\omega \colon \xi(\omega) = x_k\}$. Пусть $M_k = \{i \colon y_i = x_k\}$ $(1 \leqslant k \leqslant m)$, тогда $\bigcup_{i \in M_k} B_i = A_k$ и $\sum_{i \in M_k} P(B_i) = P(A_k)$

$$\mathbb{E}[\xi] = \sum_{k=1}^{m} x_k P(A_k) = \sum_{k=1}^{m} x_k \left(\sum_{i \in M_k} P(B_i) \right) = \sum_{k=1}^{m} \sum_{i \in M_k} y_i P(B_i) = y_1 P(B_1) + y_2 P(B_2) + \dots + y_n P(B_n)$$

Свойства математического ожидания

(1) Линейность:

$$\mathbb{E}[\alpha\xi + \beta\eta] = \alpha\mathbb{E}[\xi] + \beta\mathbb{E}[\eta]$$

(2) Монотонность:

$$\xi \leqslant \eta \Rightarrow \mathbb{E}[\xi] \leqslant \mathbb{E}[\eta]$$

Доказательство. (1) Докажем линейность:

$$\xi = x_1 I_{A_1} + x_2 I_{A_2} + \ldots + x_n I_{A_n}, \forall i \neq j \ A_i \cap A_j = \varnothing$$

$$\Omega = \bigcup_n A_i$$

$$\eta = y_1 I_{B_1} + y_2 I_{B_2} + \ldots + y_m I_{B_m}, \forall i \neq j \ B_i \cap B_j = \varnothing$$

$$\Omega = \bigcup_m B_i$$

$$\alpha \xi + \beta \eta = \sum_{i,j} (\alpha x_i + \beta y_j) I_{A_i \cap B_j}$$

$$\mathbb{E}[\alpha \xi + \beta \eta] = \sum_{i,j} (\alpha x_i + \beta y_j) P(A_i \cap B_j) = \alpha \sum_{i,j} x_i P(A_i \cap B_j) + \beta \sum_{i,j} y_j P(A_i \cap B_j)$$

При фиксированном і сумма всех B_j равна Ω , при фиксированном ј сумма всех A_i равна Ω , поэтому получаем, что сумма равна

$$\alpha \sum_{i} x_{i} P(A_{i}) + \beta \sum_{j} y_{j} P(B_{j}) = \alpha \mathbb{E}[\xi] + \beta \mathbb{E}[\eta].$$

(2) Докажем монотонность:

Если $\xi \geqslant 0$, то $\mathbb{E}[\xi] \geqslant 0$. Из свойства линейности следует, что $\mathbb{E}[\xi - \eta] = \mathbb{E}[\xi] - \mathbb{E}[\eta]$, пусть $\xi \geqslant \eta$, это значит, что $\mathbb{E}[\xi - \eta] \geqslant 0$, тогда $\mathbb{E}[\xi] - \mathbb{E}[\eta] \geqslant 0 \Rightarrow \mathbb{E}[\xi] \geqslant \mathbb{E}[\eta]$.

Неравенство Чебышева

Неравенство Чебышёва является следствием из свойств математического ожидания.

Теорема 1. Пусть $\xi \geqslant 0$. Тогда верно следующее неравенство:

$$P(\xi \geqslant C) \leqslant \frac{\mathbb{E}[\xi]}{C}$$

для некоторого числа C > 0.

Доказательство. Пусть $A = \{\omega \colon \xi(\omega) \geqslant C\}$. Тогда

$$\xi \geqslant CI_A$$

Если $I_A=0$, то так как $\xi\geqslant 0$ неравенство выполненно. Если же $I_A=1$, то так как $\xi(\omega)\geqslant C$ неравенство выполнено. Воспользуемся свойствами монотонности и линейности

$$\mathbb{E}[\xi] \geqslant C\mathbb{E}(I_A) = CP(A) \Rightarrow \frac{\mathbb{E}[\xi]}{C} \geqslant P(A).$$

Математическое ожидание независимых случайных величин

Теорема 2. Пусть ξ и η - независимые случайные величины. Тогда $\mathbb{E}[\xi\eta] = \mathbb{E}[\xi] \cdot \mathbb{E}[\eta]$ (обратное утверждение неверно).

Доказательство. Пусть $A_i=\{\omega\colon \xi(\omega)=x_i\},\ B_j=\{\omega\colon \eta(\omega)=y_j\},$ тогда

$$\xi = \sum_i x_i I_{A_i}$$

$$\eta = \sum_j y_j I_{B_j}$$

$$\xi \cdot \eta = \sum_{i,j} x_i y_j I_{A_i} I_{B_j} = \sum_{i,j} x_i y_j I_{A_i \cap B_j}$$

$$\mathbb{E}[\xi \eta] = \sum_i x_i y_i P(A_i \cap B_i) = \sum_i x_i y_i P(A_i) P(B_i) = \left(\sum_i x_i P(A_i)\right) \cdot \left(\sum_i y_i P(B_i)\right)$$

 $\mathbb{E}[\xi\eta] = \sum_{i,j} x_i y_j P(A_i \cap B_j) = \sum_{i,j} x_i y_j P(A_i) P(B_j) = \left(\sum_i x_i P(A_i)\right) \cdot \left(\sum_j y_j P(B_j)\right) = \mathbb{E}[\xi] \cdot \mathbb{E}[\eta]$

Билет 4

Общее определение математического ожидания и его корректность. Математическое ожидание случайной величины, распределение которой задано плотностью.

Общее определение математического ожидания и его корректность

Все свойства математического ожидания в общем случае сохраняются, в отличие от определений.

Определение 1. Пусть ξ принимает значения $x_1, x_2, \ldots, x_k, \ldots$ на множествах $A_1, A_2, \ldots, A_k, \ldots$ и их вероятности равны $P(A_1), P(A_2), \ldots, P(A_k), \ldots$ соответственно. Тогда, если ряд $\sum\limits_n |x_n| P(A_n)$ сходится, то математическим ожиданием называется сумма ряда $\mathbb{E}[\xi] = \sum\limits_n x_n P(A_n)$ (она существует, так как этот ряд сходится абсолютно).

Замечание 1. Так как ряд сходится абсолютно, то слагаемые можно переставлять.

Замечание 2. $\mathbb{E}[\xi]$ существует, если существует $\mathbb{E}[|\xi|]$ (это следует из абсолютной сходимости ряда)

Утверждение 1. Пусть $\xi \colon \Omega \to \mathbb{R}$ - случайная величина (не обязательно дискретная). Тогда существует последовательность дискретных случайных величин (с не более чем счетным числом значений) ξ_n таких, что

$$\xi_n \stackrel{\Omega}{\Longrightarrow} \xi \colon (\sup_{\Omega} |\xi_n - \xi| \to 0)$$

Доказательство. $\xi_n = 10^{-n} \cdot [10^n \xi] \Rightarrow \{\text{т. к. целая часть отличается не более, чем на 1} \Rightarrow |\xi_n - \xi| \leqslant 10^{-n}$. Таким образом любую случайную величину можно приблизить с помощью ξ_n .

Утверждение 2. Пусть ξ_n - дискретная величина, $\exists \mathbb{E}[\xi_n]$ и $\xi_n \stackrel{\Omega}{\rightrightarrows} \xi$. Тогда $\exists \lim_{n \to \infty} \mathbb{E}[\xi_n]$.

Доказательство. Воспользуемся признаком Коши, рассмотрим модуль разности:

$$|\mathbb{E}[\xi_n] - \mathbb{E}[\xi_m]| = |\mathbb{E}[\xi_n - \xi_m]| \leqslant \mathbb{E}[|\xi_n - \xi_m|]$$

Так как ξ_n сходится равномерно, то $\forall \varepsilon>0, \exists N>0\colon \forall m,n>N\Rightarrow \sup|\xi_n-\xi_m|<\varepsilon.$ Это означает, что $|\mathbb{E}[\xi_n]-\mathbb{E}[\xi_m]|\leqslant \mathbb{E}[|\xi_n-\xi_m|]<\varepsilon,$ а значит, $\mathbb{E}[\xi_n]$ сходится по признаку Коши.

Определение 2. Предположим, что для последовательности ξ_n , где ξ_n — дискретная случайная величина и $\xi_n \stackrel{\Omega}{\rightrightarrows} \xi$, существует математическое ожидание $\mathbb{E}[\xi_n]$. Тогда $\exists \lim_{n \to \infty} \mathbb{E}[\xi_n]$ и он обозначается $\mathbb{E}[\xi]$.

Утверждение 3. Если $\xi_n \stackrel{\Omega}{\rightrightarrows} \xi$ и $\eta_n \stackrel{\Omega}{\rightrightarrows} \xi$, то из существования $\mathbb{E}[\xi_n]$ следует существование $\mathbb{E}[\eta_n]$ (начиная с некоторого n) и $\lim_{n \to \infty} \mathbb{E}[\xi_n] = \lim_{n \to \infty} \mathbb{E}[\eta_n]$

Доказательство.

$$\forall \varepsilon > 0, \exists N > 0 \colon \forall n > N \sup |\xi_n - \eta_n| = \sup |\xi_n - \xi - \eta_n + \xi| \leqslant \sup |\xi_n - \xi| + \sup |\xi - \eta_n| < 2\varepsilon$$

Из этого следует, что эти случайные величины отличаются не более чем на 2ε :

$$|\eta_n| \leqslant |\xi_n| + 2\varepsilon.$$

Ho $\mathbb{E}[|\xi_n|+2\varepsilon]=\mathbb{E}[|\xi_n|]+\mathbb{E}[2\varepsilon]=\mathbb{E}[|\xi_n|]+2\varepsilon$, и из существования $\mathbb{E}[\xi_n]$ по монотонности следует, что существует и $\mathbb{E}[\eta_n]$, а значит

$$|\mathbb{E}[\xi_n] - \mathbb{E}[\eta_n]| = |\mathbb{E}[\xi_n - \eta_n]| \leqslant \mathbb{E}[|\xi_n - \eta_n|] \leqslant 2\varepsilon.$$

А из этого следует, что предел разности $\mathbb{E}[\xi_n]$ и $\mathbb{E}[\eta_n]$ равен нулю, а так как их пределы по отдельности конечны, то имеем

$$\lim_{n\to\infty} \mathbb{E}[\xi_n] = \lim_{n\to\infty} \mathbb{E}[\eta_n].$$

Упражнение 1. Найти в доказательстве опечатку.

Так как мы приближаем с помощью дискретных величин, а для них известны все определения и доказаны все свойства, то для недискретных величин верны все выше указанные свойства.

Математическое ожидание случайной величины, распределение которой задано плотностью

Теорема 1. Пусть φ — кусочно-непрерывная функция на \mathbb{R} и $\xi \colon \Omega \to \mathbb{R}$ - случайная величина, распределение которой задано плотностью ρ_{ξ} , тогда

$$\exists \mathbb{E}[\varphi(\xi)] \Leftrightarrow \int\limits_{-\infty}^{\infty} |\varphi(x)\rho_{\xi}(x)| dx$$
 сходится

В случае сходимости $\mathbb{E}[\varphi(\xi)] = \int\limits_{-\infty}^{\infty} \varphi(x) \rho_{\xi}(x) dx.$

Доказательство. Так как мы не Боги тервера (я не Бог, и в матане я тоже не шарю), то мы докажем утверждение для кусочно-постоянной функции, а потом проведем некоторые приблизительные рассуждения касательно кусочно-непрерывной.

Пусть f — кусочно-постоянная функция, а это значит, что $f(\xi)$ — дискретная величина, тогда

$$\mathbb{E}[f(\xi)] = \sum_{n} C_n P(A_n) = \sum_{n} \int_{\Delta n} \rho_{\xi}(x) dx = \sum_{n} \int_{\Delta n} C_n \rho_{\xi}(x) dx = \sum_{n} \int_{\Delta n} f(x) \rho_{\xi}(x) dx = \int_{-\infty}^{+\infty} f(x) \rho_{\xi}(x) dx.$$

В общем случае мы можем разбивать числовую прямую на счетное число промежутков таким образом, чтобы каждое такое разбиение задавало кусочно-постоянную функцию $f_n(x)$, и при этом $f_n(\xi) \rightrightarrows \varphi(\xi)$, тогда получить то же утверждение для кусочно-непрерывной функции $\varphi(x)$.

Дисперсия и ее свойства. Ковариация и коэффициент корреляции двух случайных величин, геометрический смысл.

Дисперсия и ее свойства

Для начала определим важное понятие, без которого могут быть непонятны рассуждения, приведенные в этом билете.

Определение 1. Число $\mathbb{E}\xi^k$ называется моментом порядка k или k-м моментом случайной величины ξ .

Определение 2. Дисперсией случайной величины ξ называют число

$$\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$$

Утверждение 1. Дисперсия может быть вычислена по формуле: $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2$.

Доказательство. Пользуясь линейностью математического ожидания:

$$\begin{split} \mathbb{E}(\xi - \mathbb{E}\xi)^2 &= \mathbb{E}(\xi^2 - 2\xi \cdot \mathbb{E}\xi + (\mathbb{E}\xi)^2) = \mathbb{E}\xi^2 - 2 \cdot \mathbb{E}\xi \cdot \mathbb{E}\xi + (\mathbb{E}\xi)^2 = \\ &= \mathbb{E}\xi^2 - 2(\mathbb{E}\xi)^2 + (\mathbb{E}\xi)^2 = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2. \end{split}$$

Следствие 1. $\mathbb{D}\xi$ существует тогда и только тогда, когда $\mathbb{E}\xi^2 < \infty$.

Утверждение 2. При умножении случайной величины на постоянную c дисперсия увеличивается в c^2 раз:

$$\mathbb{D}(c\xi) = c^2 \mathbb{D}\xi.$$

Доказательство.

$$\mathbb{D}(c\xi) = \mathbb{E}[c^2\xi^2] - (\mathbb{E}[c\xi])^2 = c^2\mathbb{E}\xi^2 - (c\mathbb{E}\xi)^2 = c^2(\mathbb{E}\xi^2 - (\mathbb{E}\xi)^2) = c^2\mathbb{D}(\xi).$$

Утверждение 3.

- Дисперсия всегда неотрицательна: $\mathbb{D}\xi \geqslant 0$.

- Дисперсия обращается в нуль лишь для вырожденного распределения: $\mathbb{D}\xi=0 \Leftrightarrow \xi=const$ почти наверное.

Доказательство. Дисперсия есть математическое ожидание почти наверное неотрицательной случайной величины $(\xi - \mathbb{E}\xi)^2$, и неотрицательность дисперсии следует из свойства, данное в замечании 1.

Замечание 1. Если $\xi \geqslant 0$ почти наверное, то есть если $P(\xi \geqslant 0) = 1$, то $\mathbb{E}\xi \geqslant 0$.

Замечание 2. "Почти наверное" означает "с вероятностью 1".

Замечание 3. Если $\xi \geqslant 0$ почти наверное, и при этом $\mathbb{E}\xi = 0$, то $\xi = 0$ почти наверное, то есть $P(\xi = 0) = 1$.

По свойству математического ожидания из замечания 3, если $\mathbb{D}\xi=0$, то $(\xi-\mathbb{E}\xi)^2=0$ почти наверное, то есть $\xi=\mathbb{E}\xi$ почти наверное. И наоборот: если $\xi=c$ почти наверное, то $\mathbb{D}\xi=\mathbb{E}(c-\mathbb{E}c)^2=0$.

Утверждение 4. Если ξ и η независимы, то дисперсия их суммы равна сумме их дисперсий: $\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta$.

Доказательство. Действительно,

$$\mathbb{D}(\xi + \eta) = \mathbb{E}(\xi + \eta)^2 - (\mathbb{E}(\xi + \eta))^2 = \mathbb{E}\xi^2 + \mathbb{E}\eta^2 + 2\mathbb{E}(\xi\eta) - (\mathbb{E}\xi)^2 - (\mathbb{E}\eta)^2 - 2\mathbb{E}\xi\mathbb{E}\eta = \mathbb{D}\xi + \mathbb{D}\eta,$$

так как математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Замечание 4. Обратное утверждение неверно.

Следствие 2. Если ξ и η независимы, то дисперсия их разности равна сумме их дисперсий:

$$\mathbb{D}(\xi - \eta) = \mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta.$$

Доказательство. Из утверждения 4 и утверждения 2 получим:

$$\mathbb{D}(\xi - \eta) = \mathbb{D}(\xi + (-\eta)) = \mathbb{D}\xi + \mathbb{D}(-\eta) = \mathbb{D}\xi + (-1)^2 \mathbb{D}\eta = \mathbb{D}\xi + \mathbb{D}\eta.$$

Следствие 3. Для произвольных случайных величин ξ и η с конечными вторыми моментами имеет место равенство:

$$\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta + 2(\mathbb{E}(\xi\eta) - \mathbb{E}\xi\mathbb{E}\eta).$$

Доказательство.

$$\begin{split} \mathbb{D}(\xi+\eta) &= \mathbb{E}(\xi+\eta)^2 - (\mathbb{E}(\xi+\eta))^2 = \mathbb{E}(\xi^2+2\xi\eta+\eta^2) - (\mathbb{E}\xi+\mathbb{E}\eta)^2 = \\ &= \mathbb{E}\xi^2 + 2\mathbb{E}\xi\eta + \mathbb{E}\eta^2 - (\mathbb{E}\xi)^2 - 2\mathbb{E}(\xi)\mathbb{E}(\eta) - (\mathbb{E}\eta)^2 = \mathbb{D}\xi + \mathbb{D}\eta + 2(\mathbb{E}(\xi\eta) - \mathbb{E}\xi\mathbb{E}\eta). \end{split}$$

Утверждение 5. Дисперсия не зависит от сдвига случайной величины на постоянную: $\mathbb{D}(\xi+c)=\mathbb{D}\xi$.

Доказательство. Величины c и ξ независимы, поэтому, исходя из утверждения 4,

$$\mathbb{D}(\xi + c) = \mathbb{D}\xi + \mathbb{D}c.$$

В силу утверждения 3 $\mathbb{D}c = 0$. Следовательно,

$$D(\xi + c) = \mathbb{D}\xi.$$

Утверждение 6. (Неравенство Чебышева) Если $\mathbb{E}\xi^2<\infty$, то для любого c>0

$$P(|\xi - \mathbb{E}\xi| \geqslant c) \leqslant \frac{\mathbb{D}\xi}{c^2}.$$

 \mathcal{A} оказательство. Для c>0 неравенство $|\xi-\mathbb{E}\xi|\geqslant c$ равносильно неравенству $(\xi-\mathbb{E}\xi)^2\geqslant c^2$, поэтому

$$P(|\xi - \mathbb{E}\xi| \geqslant c) = P(|\xi - \mathbb{E}\xi|^2 \geqslant c^2) \leqslant \frac{\mathbb{E}(\xi - \mathbb{E}\xi)^2}{c^2} = \frac{\mathbb{D}\xi}{c^2}.$$

Замечание 5. В доказательстве при переходе $P(|\xi - \mathbb{E}\xi|^2 \geqslant c^2) \leqslant \frac{\mathbb{E}(\xi - \mathbb{E}\xi)^2}{c^2}$ было использовано обычное неравенство Чебышева.

Определение 3. Если дисперсия величины ξ конечна, то число $\sigma = \sqrt{\mathbb{D}\xi}$ называют *среднеквадратическим отклонением случайной величины* ξ .

Ковариация и коэффициент корреляции двух случайных величин

Определение 4. Ковариацией $cov(\xi, \eta)$ случайных величин ξ и η называется число

$$cov(\xi,\eta) = \mathbb{E}((\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta))$$

Она существует, если существуют $\mathbb{D}\xi$ и $\mathbb{D}\eta$.

Утверждение 7. Если ξ и η независимы, то $cov(\xi,\eta)=0$. Обратное в общем случае неверно!

Доказательство.

$$cov(\xi, \eta) = \mathbb{E}(\xi \eta) - 2\mathbb{E}\xi \cdot \mathbb{E}\eta + \mathbb{E}\xi \cdot \mathbb{E}\eta = \mathbb{E}(\xi \eta) - \mathbb{E}\xi \cdot \mathbb{E}\eta = 0$$

Замечание 6. Ковариацию часто используют как "индикатор наличия зависимости" между двумя случайными величинами.

Определение 5. Коэффициентом корреляции $\rho(\xi,\eta)$ случайных величин ξ и η , дисперсии которых существуют и отличны от нуля, называется число

$$\rho(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi}\sqrt{\mathbb{D}\eta}}.$$

Геометрический смысл

Чтобы разглядеть устройство коэффициента корреляции, распишем по определению числитель и знаменатель:

тель: $\rho(\xi,\eta) = \frac{\mathbb{E}((\xi-\mathbb{E}\xi)(\eta-\mathbb{E}\eta))}{\sqrt{\mathbb{E}(\xi-\mathbb{E}\xi)^2}\sqrt{\mathbb{E}(\eta-\mathbb{E}\eta)^2}}.$ Уместно провести аналогии с "косинусом угла" между двумя элементами $\xi-\mathbb{E}\xi$ и $\eta-\mathbb{E}\eta$ гильбертова пространства, образованного случайными величинами с нулевым математическим ожиданием и конечным вторым моментом, снабженного скалярным произведением $cov(\xi,\eta)$ и "нормой", равной корню из дисперсии, или корню из скалярного произведения $cov(\xi, \xi)$.

Билет 6

Математическое ожидание и дисперсия случайной величины, имеющей нормальное, показательное или равномерное распределение.

Равномерное распределение

 ξ имеет равномерное распределение на [a,b], если

$$\rho_{\xi}(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$

Рис. 1. График функции плотности равномерного распределения

$$F_{\xi}(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$$

Рис. 2. График функции равномерного распределения

Вычислим математическое ожидание случайной величины, имеющей равномерное распределение:

$$\mathbb{E}[\xi] = \int_{-\infty}^{\infty} x \rho_{\xi}(x) \ dx = \int_{a}^{b} x \frac{1}{b-a} \ dx = \frac{a+b}{2}.$$

Найдем дисперсию случайной величины, имеющей равномерное распределение:

$$\mathbb{E}[\xi^2] = \int_{-\infty}^{\infty} x^2 \rho_{\xi}(x) \ dx = \int_{a}^{b} x^2 \frac{1}{b-a} \ dx = \frac{b^3 - a^3}{3(b-a)} = \frac{a^2 + ab + b^2}{3}.$$

$$\mathbb{D}(\xi) = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2 = \frac{(b-a)^2}{12}.$$

Показательное распределение

 ξ имеет показательное распределение, если

$$\rho_{\xi}(x) = \begin{cases} 0, x < 0 \\ \lambda e^{-\lambda x}, x \geqslant 0 \end{cases}$$

Рис. 3. График функции плотности показательного распределения

$$F_{\xi}(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-\lambda x}, x \ge 0 \end{cases}$$

Рис. 4. График функции показательного распределения

Найдем для произвольного $k \in \mathbb{N}$ момент порядка k:

$$\mathbb{E}[\xi^k] = \int_{-\infty}^{\infty} x^k \rho_{\xi}(x) \ dx = \int_{0}^{\infty} x^k \lambda e^{-\lambda x} \ dx = \frac{1}{\lambda^k} \int_{0}^{\infty} (\lambda x)^k e^{-\lambda x} \ d(\lambda x) = \frac{k!}{\lambda^k}$$

В последнем равенстве мы воспользовались гамма-функцией Эйлера:

$$\mathbf{\Gamma}(k+1) = \int_{0}^{\infty} u^{k} e^{-u} \ du = k!.$$

Используя полученное равенство при k=1, получаем математическое ожидание случайной величины, имеющей показательное распределение:

$$\mathbb{E}[\xi] = \frac{1}{\lambda}$$

Найдем дисперсию случайной величины, имеющей показательное распределение:

$$\mathbb{D}(\xi) = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2 = \frac{1}{\lambda^2}.$$

Нормальное распределение

 ξ имеет нормальное распределение с параметрами μ и σ , если

$$\rho_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Рис. 5. График функции плотности нормального распределения

Рис. 6. График функции нормального распределения

Рассмотрим для начала **стандартное нормальное распределение** ($\mu = 0, \ \sigma = 1$). Математическое ожидание этого распределения существует в силу конечности $\mathbb{E}[|\xi|]$:

$$\mathbb{E}[|\xi|] = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^2}{2}} d\left(\frac{x^2}{2}\right) = \frac{2}{\sqrt{2\pi}} < \infty.$$

Математическое ожидание ξ равно

$$\mathbb{E}[\xi] = \int_{-\infty}^{\infty} x \rho_{\xi}(x) \ dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-\frac{x^2}{2}} \ dx = 0,$$

так как под сходящимся интегралом стоит нечетная функция. Найдем дисперсию:

$$\mathbb{E}[\xi^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^2 e^{-\frac{x^2}{2}} dx = -\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x d\left(e^{-\frac{x^2}{2}}\right) =$$

$$= -\frac{2x}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0 + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1.$$

Поэтому

$$\mathbb{D}(\xi) = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2 = 1 - 0 = 1.$$

Рассмотрим теперь нормальное распределение в общем виде.

(Первый вариант)

Докажем две очень важные вещи, а именно, что параметр μ есть **математическое ожидание**, а σ — среднее квадратическое отклонение нормального распределения (корень из **дисперсии**).

Доказательство.

1) По определению математического ожидания непрерывной случайной величины,

$$\mathbb{E}[\xi] = \int_{-\infty}^{\infty} x \rho_{\xi}(x) \ dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ dx.$$

Введем новую переменную $z=\frac{x-\mu}{\sigma}$. Отсюда $x=\sigma z+\mu,\ dx=\sigma dz$. Приняв во внимание, что новые пределы интегрирования равны старым, получим

$$\mathbb{E}[\xi] = \frac{\sigma}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (\sigma z + \mu) e^{-\frac{z^2}{2}} dz =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sigma z e^{-\frac{z^2}{2}} dz + \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz.$$

Первое из слагаемых равно нулю (под знаком интеграла нечетная функция; пределы интегрирования симметричны относительно начала координат). Второе из слагаемых равно $\mu \left(\text{интеграл Пуассона} \int\limits_{-\infty}^{\infty} e^{-\frac{z^2}{2}} \ dz = \sqrt{2\pi} \right).$

Итак, $\mathbb{E}[\xi]=\mu$, то есть математическое ожидание нормального распределения равно параметру μ .

2) По определению дисперсии непрерывной случайной величины, учитывая, что $\mathbb{E}[\xi] = \mu$, имеем

$$\mathbb{D}(\xi) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - \mu)^2 e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx.$$

Введем новую переменную $z=\frac{x-\mu}{\sigma}$. Отсюда $x-\mu=\sigma z,\ dx=\sigma dz$. Приняв во внимание, что новые пределы интегрирования равны старым, получим

$$\mathbb{D}(\xi) = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z \cdot z e^{-\frac{z^2}{2}} dz.$$

Интегрируя по частям, положив $u=z,\ dv=ze^{-\frac{z^2}{2}}dz,$ найдем

$$\mathbb{D}(\xi) = \sigma^2$$

Следовательно,

$$\sigma(\xi) = \sqrt{\mathbb{D}(\xi)} = \sqrt{\sigma^2} = \sigma.$$

Итак, среднее квадратическое отклонение нормального распределения равно параметру σ .

(Второй вариант)

Пусть ξ — случайная величина, имеющая нормальное распределение с параметрами μ_{ξ} и σ_{ξ} . Тогда случайная величина $\eta=\frac{\xi-\mu_{\xi}}{\sigma_{\xi}}$ — случайная величина, имеющая нормальное распределение с параметрами $\mu_{\eta}=0,\ \sigma_{\eta}=1.$

Тогда математическое ожидание равно

$$\mathbb{E}[\xi] = \mathbb{E}[\sigma_{\xi}\eta + \mu_{\xi}] = \sigma_{\xi}\mathbb{E}[\eta] + \mu_{\xi} = \mu_{\xi},$$

а дисперсия

$$\mathbb{D}(\xi) = \mathbb{D}(\sigma_{\xi}\eta + \mu_{\xi}) = \sigma_{\xi}^{2}\mathbb{D}(\eta) = \sigma_{\xi}^{2}.$$

Замечание 1. Почему η имеет нормальное распределение с параметрами $\mu_{\eta}=0$ и $\sigma_{\eta}=1$? Пусть φ — случайная величина, равная разности ξ и μ , то есть $\varphi=\xi-\mu$. Заметим, что

$$P(\xi \in \langle a, b \rangle) = F_{\xi}(a) - F_{\xi}(b) = \int_{-\infty}^{a} \rho_{\xi}(x) \ dx - \int_{-\infty}^{b} \rho_{\xi}(x) \ dx = \int_{a}^{b} \rho_{\xi}(x) \ dx.$$

Что значит, что $\varphi\in\langle c,d\rangle$? Это значит, что $\xi\in\langle c+\mu,d+\mu\rangle$. Тогда

$$P(\varphi \in \langle c, d \rangle) = P(\xi \in \langle c + \mu, d + \mu \rangle) = \int_{c+\mu}^{d+\mu} \rho_{\xi}(x) \ dx = \left\{ \begin{array}{l} y = x - \mu \\ x = y + \mu \\ dx = dy \end{array} \right\} =$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{y^2}{2\sigma^2}} dy.$$

То есть φ имеет нормальное распределение с параметрами $\mu=0$ и σ . Теперь рассмотрим случайную величину $\eta=\frac{\varphi}{\sigma}$. Что значит, что $\varphi\in\langle a,b\rangle$? Это значит, что $\eta\in\langle \frac{a}{\sigma},\frac{b}{\sigma}\rangle$. Тогда

$$P\left(\eta \in \left\langle \frac{a}{\sigma}, \frac{b}{\sigma} \right\rangle\right) = P(\varphi \in a, b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^{2}}{2\sigma^{2}}} dx = \left\{ \begin{aligned} y &= \frac{x}{\sigma} \\ dx &= \sigma dy \end{aligned} \right\} = \\ &= \int_{\frac{a}{\sigma}}^{\frac{b}{\sigma}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{y^{2}}{2}} \sigma dy = \int_{\frac{a}{\sigma}}^{\frac{b}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy.$$

To есть η имеет нормальное распределение с параметрами $\mu=0$ и $\sigma=1$.

Закон больших чисел в слабой форме. Сходимость по вероятности и сходимость почти наверное. Метод Монте-Карло.

Закон больших чисел в слабой форме

Теорема 1. Пусть случайная величина такова, что $\mathbb{E}\xi^2<\infty$. Тогда

$$P(|\xi - \mathbb{E}\xi| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}\xi}{\varepsilon^2}.$$

Доказательство. Применяя неравенство Чебышева к случайной величине $\left|\xi-\mathbb{E}\xi\right|^2$.

Теорема 2. (Закон больших чисел в слабой форме)

Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых случайных величин таких, что $\mathbb{E}\xi_n^2 < \infty$. Обозначим $\mathbb{E}\xi_n = \mu_n$ и $\mathbb{D}\xi_n = \sigma_n^2$. Если

$$\frac{\sigma_1^2 + \ldots + \sigma_n^2}{n^2} \xrightarrow[n \to \infty]{} 0,$$

то для всякого $\varepsilon > 0$

$$P\left(\left|\frac{\xi_1+\ldots+\xi_n}{n}-\frac{\mu_1+\ldots+\mu_n}{n}\right|\geqslant\varepsilon\right)\xrightarrow[n\to\infty]{}0.$$

Доказательство. Заметим, что

1)
$$\mathbb{E}\left(\frac{\xi_1 + \ldots + \xi_n}{n}\right) = \frac{\mu_1 + \ldots + \mu_n}{n}$$

2)
$$\mathbb{D}\left(\frac{\xi_1 + \ldots + \xi_n}{n}\right) = \frac{\sigma_1^2 + \ldots + \sigma_n^2}{n^2}.$$

Тогда для всякого $\varepsilon > 0$ имеет место неравенство

$$P\left(\left|\frac{\xi_1+\ldots+\xi_n}{n}-\frac{\mu_1+\ldots+\mu_n}{n}\right|\geqslant\varepsilon\right)\leqslant\frac{\sigma_1^2+\ldots+\sigma_n^2}{n^2\varepsilon^2}.$$

А, так как

$$\frac{\sigma_1^2 + \ldots + \sigma_n^2}{n^2} \xrightarrow[n \to \infty]{} 0,$$

$$0 \leqslant P\left(\left| \frac{\xi_1 + \ldots + \xi_n}{n} - \frac{\mu_1 + \ldots + \mu_n}{n} \right| \geqslant \varepsilon \right) \leqslant \frac{\sigma_1^2 + \ldots + \sigma_n^2}{n^2 \varepsilon^2} \xrightarrow[n \to \infty]{} 0.$$

Следовательно,

$$P\left(\left|\frac{\xi_1+\ldots+\xi_n}{n}-\frac{\mu_1+\ldots+\mu_n}{n}\right|\geqslant\varepsilon\right)\xrightarrow[n\to\infty]{}0.$$

Сходимость по вероятности и сходимость почти наверное

Напомним, что случайная величина есть (измеримая) функция из некоторого абстрактного множества Ω в множество действительных чисел. Последовательность случайных величин $\{\xi_n\}_{n=1}^{\infty}$ есть, тем самым, последовательность функций, определенных на одном и том же пространстве элементарных исходов Ω . Существуют разные виды сходимости последовательности функций.

В частности, при каждом новом $\omega \in \Omega$ мы имеем числовую последовательность $\xi_1(\omega), \xi_2(\omega), \xi_3(\omega), \ldots$ Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости "почти всюду", которую в теории вероятностей называют сходимостью "почти наверное".

Определение 1. Говорят, что последовательность $\{\xi_n\}$ *сходится почти наверное* к случайной величине ξ при $n \to \infty$, и пишут:

$$\xi_n o \xi$$
 п.н., если $P\left(\{w\colon \xi_n(\omega) o \xi(\omega) \text{ при } n o \infty\}\right) = 1.$

Иначе говоря, если $\xi_n(\omega) \to \xi(\omega)$ при $n \to \infty$ для всех $\omega \in \Omega$, кроме, возможно, $\omega \in A$, где A — событие нулевой вероятности.

Заметим сразу: чтобы говорить о сходимости "почти наверное", требуется (по крайней мере, по определению) знать, как устроены отображения $\omega \mapsto \xi_n(\omega)$. В задачах же теории вероятностей, как правило, известны не сами случайные величины, а лишь их распределения.

Можем ли мы, обладая только информацией о распределениях, говорить о какой-либо сходимости последовательности случайных величин $\{\xi_n\}$ к случайной величине ξ ?

Можно, например, потребовать, чтобы вероятность тех элементарных исходов ω , для которых $\xi_n(\omega)$ не попадает в " ε -окрестность" числа $\xi(\omega)$, уменьшалась до нуля с ростом n. Такая сходимость в функциональном анализе называется сходимостью "по мере", а в теории вероятностей — сходимостью "по вероятности".

Определение 2. Говорят, что последовательность случайных величин $\{\xi_n\}$ сходится по вероятности к случайной величине ξ при $n \to \infty$, и пишут:

$$\xi_n \stackrel{P}{\to} \xi$$
, если для любого $\varepsilon > 0$ $P\left(|\xi_n - \xi| \geqslant \varepsilon\right) \to 0$ при $n \to \infty$ (или $P\left(|\xi_n - \xi| < \varepsilon\right) \to 1$ при $n \to \infty$).

Замечание 1. Сходимость по вероятности слабее сходимости почти наверное.

МЕТОД МОНТЕ-КАРЛО

Предположим, требуется вычислить определенный интеграл $\int\limits_a^b f(x) \ dx.$

Рассмотрим случайную величину ξ , равномерно распределенную на отрезке [a,b]. Тогда $f(\xi)$ также будет случайной величиной, причем ее математическое ожидание выражается как

$$\mathbb{E}f(\xi) = \int_{a}^{b} f(x)\rho_{\xi}(x) \ dx,$$

где $\rho_{\xi}(x)$ — плотность распределения случайной величины ξ , равная $\frac{1}{b-a}$ на отрезке [a,b]. Таким образом, искомый интеграл выражается как

$$\int_{a}^{b} f(x) \ dx = (b - a)\mathbb{E}f(\xi).$$

Но математическое ожидание случайной величины $f(\xi)$ можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.

Итак, бросаем случайно и независимо N точек, для каждой точки x_i вычисляем $f(x_i)$. Затем вычисляем выборочное среднее: $\frac{f(x_1)+...+f(x_N)}{N}$.

В итоге получаем оценку интеграла: $\int\limits_a^b f(x) \ d pprox rac{b-a}{N} \sum\limits_{i=1}^N f(x_i).$

Точность оценки зависит от числа точек N.

Замечание 2. Этот метод имеет и геометрическую интерпретацию. Вместо того, чтобы равномерно разделять области на маленькие интервалы и суммировать площади получившихся столбиков (как мы это обычно делаем), мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же столбик, определяя его ширину как $\frac{b-a}{N}$, и суммируем их площади.