ANÀLISI MATEMÀTICA (AMA)

UT3 - Problemes proposats: INTEGRACIÓ APROXIMADA

- 1. a) Aproxima el valor de la integral $\int_0^1 \frac{dx}{1+x}$ mitjançant la fórmula de trapezis amb deu subdivisions de l'interval d'integració
 - b) Troba una cota per a l'error comés en l'aproximació anterior
 - c) Compara els valors exacte i aproximat de la integral.
- 2. a) Fent ús del mètode de trapezis aproxima $\frac{\pi}{4} = \int_0^1 \frac{dx}{1+x^2}$ amb dos decimals exactes, almenys. Trobes en realitat la precisió que esperes?
 - b) Treballa com en a) pero aplicant la regla de Simpson i aproximant amb quatre decimals exactes, almenys.
- 3. a) Verifica que si apliques la regla de Simpson, amb quatre subdivisions de l'interval d'integració, pots aproximar $\log(2) = \int_1^2 \frac{dx}{x}$ amb dos decimals exactes, almenys. Troba l'aproximació en qüestió
 - b) Acota l'error comés quan subdividim l'interval d'integració en deu parts iguals i compara el valor exacte de la integral amb l'aproximació, en aquest cas. Són ara compatibles la cota d'error i l'error que s'obté realment?
 - c) Determina el nombre de subdivisions a realitzar en [1,2] per a aproximar log(2) amb set decimals exactes, almenys i troba, si és posible, l'aproximació en questió. Si ho fas verifica que és compatible amb el valor exacte.
- 4. Considera la corba d'equació $y = x^3 1$
 - a) Calcula l'àrea tancada per f(x) i els eixos coordenats
 - b) Aproxima l'àrea de a) amb dues xifres decimals correctes fent ús del mètode de trapezis

ANÀLISI MATEMÀTICA (AMA)

UT3 - Exercicis addicionals: INTEGRACIÓ APROXIMADA

- *1. a) Troba l'equació de la paràbola que passa pels punts (-h, f(-h)), (0, f(0)) i (h, f(h))
 - b) Integra la paràbola en [-h, h] per a obtenir la fórmula de Simpson que aproxima $\int_{-h}^{h} f(x) dx$ amb dues subdivisions
 - c) Comprova que si f(x) és un polinomi de tercer grau l'aproximació trobada en b) és exacta
 - d) Verifica que si $f(x) = \cos(x)$, per exemple, l'aproximació ja no és exacta.
- 2. Calcula el valor exacte de $\int_0^1 \frac{dx}{(1+x)(2+x)}$ i les aproximacions que trobes amb els mètodes de trapezis i de Simpson, considerant l'interval d'integració dividit en quatre subintervals.
- 3. Considera la integral $\int_{1}^{2} x^{3} \log(\sqrt{x}) dx$
 - a) Calcula el seu valor exacte fent servir integració per parts
 - b) Aproxima aquest valor mitjançant la regla de Simpson, amb tres decimales exactes, almenys
 - c) Verifica que aquest darrer resultat és compatible amb el valor trobat en a).
- *4. Considera la integral $\int_{1/4}^{1/2} \arcsin(\sqrt{x}) dx$
 - a) Calcula el seu valor exacte mitjançant un canvi de variable i integració per parts
 - b) Aproxima aquest valor fent ús de la regla de trapezis amb un error menor que 10⁻⁴
 - c) Aproxima la integral mitjançant la regla de Simpson, amb tres decimals exactes, almenys.
- 5. a) Aproxima $\int_{1.8}^{2.6} f(x)dx$, mitjançant trapezis i Simpson, tenint en compte que l'integrant es defineix a partir de la tabla:

ſ	x	1.8	2.0	2.2	2.4	2.6	
Ī	f(x)	3.12014	4.42569	6.04241	8.03014	10.46675	

b) Si la velocitat d'un objecte es coneix a través de la taula de valors

$t_{(s)}$	0	5	10	15	20	25	30
$v_{(m/s)}$	0	1	3	6	9	12.5	15

determina el valor aproximat de l'espai recorregut els primers 30 segons, fent ús dels mètodes de trapezis i de Simpson.