

SD UHSII PHY IP

PCS Family Datasheet

SLDE-DS-0059 Rev. 1.8 Sep. 13, 2013

TABLE OF CONTENTS

1 INTRODUCTION	1
2 FEATURES	2
3 PIN DESCRIPTIONS	3
3.1 LINK INTERFACE SIGNALS	3
3.2 PCS CONFIGURATION SIGNALS	5
3.3 TEST CONTROL SIGNALS	6
3.4 MISC SIGNALS	8
3.5 PMA INTERFACE SIGNALS	9
4 BLOCK DIAGRAM	10
5 FUNCTIONAL DESCRIPTION	11
5.1 HIGH SPEED DATA LANE (D0, D1)	11
5.2 REFERENCE CLOCK LANE (RCLK)	12
5.2.1 Overview	12
5.2.2 RCLK Driver/Terminator Control for UHS-II HOST	12
5.2.3 RCLK Receiver/Terminator Control for UHS-II DEVICE	12
5.3 SYMBOL CODING	13
5.4 PHY-LINK INTERFACE	14
5.4.1 MODE and Power Consumption of PHY	14
5.4.2 PCLK	
5.4.3 PINIT/PCMD/PACK	
5.4.4 TD/TDM/TDS	16
5.4.5 RDT/RDTM/RDTS	
5.4.6 TDR/TDRM/TDRS	19
5.4.7 RD/RDM/RDS	20
5.4.8 Error Handling	22
5.5 LANE SKEW ALIGNER FOR 2L-HDIN	23
5.5.1 Overview	23
5.5.2 Related Pins	23
5.5.3 Block Diagram	24
5.5.4 Error Handling	25

5.5.5 Example Timing Diagram	26
5.6 PLL LOCK DETECTOR	31
5.6.1 Overview	31
5.6.2 Related Pins	31
5.6.3 Functional Description	
5.7 Rx FIFO	33
5.7.1 Overview	
5.7.2 Related Pins	
5.7.3 Functional Description	
5.7.3.1 Normal Operation	35
5.7.3.2 Error Handling	35
5.8 PCS Manufacturing Test	36
5.8.1 Related Pins	
5.9 PMA MANUFACTURING TEST	37
5.9.1 Test Item List	
5.9.2 Related Pins	
5.9.3 Example Test Environment	39
5.9.4 Example Test Procedures	40
5.9.4.1 Dormant Supply Current Test	40
5.9.4.2 Pin Leakage Current Test	41
5.9.4.3 Normal Supply Current Test	42
5.9.4.4 VCO Gain Test	43
5.9.4.5 PLL Frequency Acquisition Test	44
5.9.4.6 Driver Differential "H" Voltage Test	45
5.9.4.7 Driver Differential "L" Voltage Test	46
5.9.4.8 Tx Terminator Resistance Test	47
5.9.4.9 Rx Terminator Resistance Test	48
5.9.4.10 Amplitude Detector Function Test	49
5.9.4.11 Forward SERDES Loopback BIST	50
5.9.4.12 Backward SERDES Loopback BIST	51
5.9.5 Reserved Test Modes	53
5.9.5.1 Forward/Backward Driver Loopback BIST	53
5.9.5.2 Forward/Backward Loopback TEST	54
5.9.5.3 Forward/Backward Receiver Loopback TEST	54
5.10 PHY TEST MODE FOR SD UHS-II COMPLIANCE	55
5.10.1.1 Related Pins	55

5.10.1.2 State Transition	55
5.10.1.3 Supported TMDs	57
5.10.1.4 Loopback path	58
6 RECOMMENDED PARAMETERS	59
7 TIMING SPECIFICATION	60
8 TIMING DIAGRAM	61
8.1 RESET AND ACTIVATION (EXITING FROM DORMANT STATE)	61
8.1.1 For UHS-II DEVICE (HOST_MODE=0)	61
8.1.2 For UHS-II HOST (HOST_MODE=1)	62
8.2 PACKET TRANSFER IN LOW POWER MODE	63
8.3 LOOPBACK CONTROL FOR DATA BURST STREAMING	64
8.4 8B10B DECODE ERROR OCCURENCE DURING PACKET TRANSFER	65
8.5 DISPARITY ERROR OCCURENCE DURING PACKET TRANSFER	66
8.6 SWITCHING OF DUPLEX MODE	67
8.6.1 Switching from FD to HDIN	67
8.6.2 Switching from FD to HDOUT	68
8.6.3 Switching from HDIN to FD	69
8.6.4 Switching from HDOUT to FD	70
8.7 Enter to Dormant	71
8.7.1 For UHS-II DEVICE (HOST_MODE=0)	71
8.7.2 For UHS-II HOST (HOST_MODE=1)	72
8.8 PHY TEST MODE	73
8.8.1 Disconnect Mode At Once, Backward Loopback	73
8.8.2 Normal Mode At Once, Forward Loopback	74
8.8.3 Disconnect Mode through Re-Sync, Backward Loopback	75
9 DESIGN INFORMATION	76
9.1 Estimated Gate Count	76
9.2 Deriverables	76
9.3 USED VERILOG MACRO	76
9.4 RTL Structure	77
9.5 CLOCK DISTRIBUTION	78
9.6 CLOCK TABLE	80
9.6.1 Input Clocks	80

9.6.2 Generated Clocks	81
9.7 TIMING CONSTRAINTS	82
9.7.1 Clock uncertainty	82
9.7.2 In each clock domain	
9.7.3 Output delay	82
9.7.4 Clock skew requirement	
9.7.5 Clock edge	82
10 LIMITATIONS	83
11 REVISION HISTORY	84

FIGURES

Figure 1 Block Diagram of SD UHS-II PHY	1
Figure 2 PCS Block Diagram	10
Figure 3 Functional Overview of Lane Skew Aligner	23
Figure 4 Block Diagram of Lane Skew Aligner	24
Figure 5 Example Timing (No Skew)	26
Figure 6 Example Timing (with Skew)	27
Figure 7 Example Timing (with Skew, 1'st SDB is corrupted on faster lane)	28
Figure 8 Example Timing (with Skew, 1'st SDB is corrupted on later lane)	29
Figure 9 Example Timing (with Skew, All LSSes are corrupted on later lane)	30
Figure 10 Block Diagram	31
Figure 11 Example Timing Diagram	32
Figure 12 Block Diagram of Rx FIFO	33
Figure 13 Thresholds for Error Detecting	
Figure 14 Example of Test Environment	39
Figure 15 Procedure of Dormant Supply Current Test	40
Figure 16 Procedure of Pin Leakage Current Test	41
Figure 17 Procedure of Normal Supply Current Test	42
Figure 18 Procedure of VCO Gain Test	43
Figure 19 Procedure of PLL Frequency Acquisition Test	44
Figure 20 Procedure of Driver Differential "H" Voltage Test	45
Figure 21 Procedure of Driver Differential "L" Voltage Test	46
Figure 22 Procedure of Tx Terminator Resistance Test	47
Figure 23 Procedure of Rx Terminator Resistance Test	48
Figure 24 Procedure of Amplitude Detector Function Test	49
Figure 25 Procedure of Forward SERDES Loopback BIST	50
Figure 26 Procedure of Backward SERDES Loopback BIST	51
Figure 27 Block Diagram of SERDES Loopback path for BIST	52
Figure 28 Block Diagram of Driver Loopback path for BIST	53
Figure 29 Diagram of Receiver Loopback path	54
Figure 30 State Transition of PHY Test Mode (HOST_MODE=0)	55
Figure 31 State Transition of PHY Test Mode (HOST_MODE=1)	56
Figure 32 Diagram of Forward/Backward Loopback path	58
Figure 33 Reset and Activation (HOST_MODE=0)	61
Figure 34 Reset and Activation (HOST_MODE=1)	62

Figure 35 Packet Transfer in Low Power Mode	63
Figure 36 Loopback Control for DATA Burst Streaming	64
Figure 37 Example of 8B10B decode error occurrence	65
Figure 38 Example of Disparity error occurrence	66
Figure 39 Switching from FD to HDIN	67
Figure 40 Switching from FD to HDOUT	68
Figure 41 Switching from HDIN to FD	69
Figure 42 Switching from HDOUT to FD	70
Figure 43 Enter to Dormant (HOST_MODE=0)	71
Figure 44 Enter to Dormant (HOST_MODE=1)	72
Figure 45 Disconnect Mode At Once, Backward Loopback	73
Figure 46 Normal Mode At Once, Forward Loopback	74
Figure 47 Disconnect Mode through Re-Sync, Backward Loopback	75
Figure 48 RTL Hierarchy	77
Figure 49 Clock Diagram	78
Figure 50 Details of PCLK generator	79

1 INTRODUCTION

SD UHS-II PCS Family is SLI's Physical Coding Sublayer (PCS) IP for SD 4.0 UHS-II HOST and DEVICE. This IP is a synthesizable digital part. SLI provides this IP and Physical Media Attachment blocks (PMA) which is hard macro optimized for UHS-II HOST or DEVICE.

It supports the speed from 390Mbps to 1.56Gbps for the data rate per lane and both Full Duplex/Half Duplex modes for its operation mode. This document describes the basic specification of PCS part.

Figure 1 Block Diagram of SD UHS-II PHY

2 Features

- ♦ SD UHS-II compliant Physical Coding Sublayer for host and device
 - Compliant to the following specifications
 - "SD Specifications Part 1 Physical Layer Specification Version 4.10"
 - "SD Specifications Part 1 UHS-II Addendum Version 1.01"
- ◆ Fully-synthesizable part (Verilog HDL)
- ♦ Supports both 16bit and 8bit interface to Link layer
- ♦ Supports both Full Duplex mode and Half Duplex mode
- ♦ Power saving mode
- ♦ Various test modes (BIST, loopback, etc)
- ♦ Corresponds to all of SLI's PMA variation

3 PIN DESCRIPTIONS

3.1 Link Interface Signals

Table 1 Link Interface Signals

		ıa	ble 1 Link I	nterrace Si	ignais
Pin name	Direction	Sync/ Async	Active	At Reset	Descriptions
PCLK	output	-			System clock for PHY-LINK I/F.
CLK	input	-			PLL reference clock (26 to 52MHz) for UHS-II HOST mode. This is used only SD UHS-II HOST with PMA for HOST. Fix to 0 while this IP works as UHS-II DEVICE with
NRST	input	Λονρο	0		PMA for DEVICE. System reset for PHY.
	input	Async	0		
TD[15:0]	input	PCLK			TX data input for default-Tx lane. Only TD[7:0] is valid when BUSIF16=0.
TDM[1:0]	input				TX K-line inputs for default-Tx lane. Only TDM[0] is valid when BUSIF16=0.
TDR[15:0]	input				TX data input for default-Rx lane. Only TDR[7:0] is valid when BUSIF16=0.
TDRM[1:0]	input				TX K-line inputs for default-Rx lane. Only TDRM[0] is valid when BUSIF16=0.
CT[7:0]	input				PHY control signal. Bit[3:0]: PINIT/PCMD(depending on MODE) [When MODE=0] PHY Initialization parameter in Dormant state.(PINIT) bit[1:0]: Selected PHY Major Revision -Reserved(set 00b for UHS156) bit[3:2]: Selected Transmission Speed Range 00: Range A (390-780 Mbps per Lane at UHS156) 01: Range B (780-1,560 Mbps per Lane at UHS156) others: Reserved [When MODE=1] PHY Command(PCMD)
					0000: No Command Operation 0001: Enter to Loopback mode for DB Streaming 0011: Exit from Loopback mode for DB Streaming 0101: Enter to (2L-)HDIN mode(Default Tx->Rx) 0110: Enter to (2L-)HDOUT mode (Default Rx->Tx) 0111: Exit from (2L-)HD mode 11XX: Reserved for Vendor Unique Command (Not support)

					SLDE-DS-0059 Rev. 1.8
MODE	input				others: Reserved Bit[5:4]: TDS[1:0] state control for default-Tx lane. 2'b00: EIDL 2'b01: OFF 2'b10: STB 2'b11: VLD Bit[7:6]: TDRS[1:0] state control for default-Rx lane 2'b00: EIDL 2'b01: OFF 2'b10: STB 2'b11: VLD PHY power mode
RCLKOE	input	PCLK	1		1: Active 0: Dormant RCLK output enable
			'		1: RCLK active (while PLL is locked) 0: RCLK is stopped (EIDL)
RDT[15:0]	output	PCLK		16'h0000	RX data outputs for default-Tx lane. Only RDT[7:0] is valid when BUSIF16=0.
RDTM[1:0]	output			2'b00	RX k-line outputs for default-Tx lane. Only RDTM[0] is valid when BUSIF16=0.
RD[15:0]	output			16'h0000	RX data outputs for default-Rx lane. Only RD[7:0] is valid when BUSIF16=0.
RDM[1:0]	output			2'b00	RX k-line outputs for default-Rx lane. Only RDM[0] is valid when BUSIF16=0.
ST[7:0]	output			8'h40	PHY Status. Bit[0]: DET Amplitude detector output (asynchronous). 1: Differential amplitude is detected on default-Rx lane. 0: No differential amplitude is detected on default-Rx lane. Bit[1]: LOCK PLL lock status 1: Locked 0: Unlocked Bit[2]: PACK Acknowledge for PCMD 1: Ack 0: Not acknowledge Bit[3]: ERR Receive error status 1: Error occurs at least one lane 0: No error Bit[5:4]: RDS[1:0] RD status 00: EIDL 01: OFF 10: STB 11: VLD Bit[7:6]: RDTS[1:0] RDT status 00: EIDL 01: OFF 10: STB 11: VLD

3.2 PCS Configuration Signals

Table 2 Configuration Signals

_			ne z Conng		
Pin name	Direction	Sync/	Active	At	Descriptions
		Async		Reset	
BUSIF16	input	PCLK	1		LINK-PHY Bus width select
					1:Bus width=16bit (Recommended)
					0:Bus width=8bit This signal should be fixed at PHY startup
					sequence.
HOST_MODE	input	1	1		Mode select for PHY digital
11001052	" Pat				1: PHY digital works as UHS-II HOST
					-RCLK lane is handled as output port by
					this IP.
					-D0 lane is handled as default-Tx lane
					by this IP -D1 lane is handled as default-Rx lane
					by this IP
					0: PHY digital works as UHS-II DEVICE
					-RCLK lane is handled as input port by
					this IP
					-D1 lane is handled as default-Tx lane by this IP
					-D0 lane is handled as default-Rx lane
					by this IP
					This pin shall be fixed to dedicated level on
					PHY TOP module provided by SLI.
DET_EN	input	Async	1		Controls Amplitude detector on default-Rx
					lane 1: Enable
					0: Disable(Power down)
					LINK can set this pin to 0 for reduction of
					power consumption of PHY only while
					dormant of UHS-II HOST as required.
RCLKTRMEN	input		1		Controls Termination resistor on RCLK lane
					1: Enable 0: Disable(Make hi-z)
					When the card controller does not select
					UHS-II I/F, this signal is used for RCLK lane
					becomes to high impedance by LINK or
01150 1 001/ 0501		_			upper layer.
CNFG_LOCK_PERI	input				Configuration of sampling duration for PLL lock detector.
OD[1:0]					2'b00 :103us@26MHz / 51.5us@52MHz
					2'b01 :256us@26MHz / 128us@52MHz
					2'b10:502us@26MHz/251us@52MHz
					2'b11 :1004us@26MHz / 502us@52MHz
					Note that these durations are made by frequency of CLK.
CNFG_LOCK_MAR	input	1			Configuration of permissible error range for
GIN[1:0]	input				PLL lock detector.
J. (1.0)					2'b00 :+/- 1CLK
					2'b01 :+/- 4CLK
					2'b10 :+/- 8CLK
CNFG ALIGN EN	input	PCLK	1		2'b11 :+/- 15CLK Enables Lane Skew Aligner.
CINFO_ALIGN_EIN	input	FOLK	'		1: Enable(Normal)
					0: Disable
	1				U. Disable

3.3 Test Control Signals

Table 3 TEST Control Signals (1/2)

Din name	Direction		Active	At	
Pin name	Direction	Sync/	Active		Descriptions
		Async		Reset	
SCAN_CLK	input	-			SCAN shift clock input for SCAN test mode.
					This clock drive all F/Fs in this IP during the
OCAN MODE		1	+		SCAN_MODE is 1.
SCAN_MODE	input	Async	1		Controls SCAN Test mode of PCS.
					1: SCAN Test enable
TEGT NIDOT		1			0: Normal operation
TEST_NRST	input	Async			System reset for TEST mode.
TEST_CLK	input	-			PLL reference clock for TEST mode.
					Supply constant clock (26 to 52MHz) for
		1	+ .		using each TEST mode.
TEST_CLK_EN	input	Async	1		Enables TEST_CLK
TEST_EN	input	Async	1		Enables each test mode selected by
					TEST_MODE[3:0].
TEST_PLLSEL	input	PCLK	1		PLL multiplication factor select in test mode.
					0: x15
					1: x30
TEST_PAT[1:0]	input				BIST data pattern select
					2'b00: PRBS with 8B10B coding
					2'b01: Fixed K28.5
					2'b10: Fixed D10.2
					2'b11: Repeated "LIDL0" (K28.5+K28.3)
TEST_MODE[3:0]	input				Test mode select.
					4'b0000: Dormant Supply Current Test
					4'b0001: Normal Supply Current Test
					4'b0010: Differential Voltage "H" Test
					4'b0011: Differential Voltage "L" Test
					4'b0100: Tx Terminator Resistance Test
					4'b0101: Rx Terminator Resistance Test
					4'b0110: Detector Function Test
					4'b0111: Reserved (Do not use)
					4'b1000: Forward SERDES Loopback BIST
					4'b1001: Backward SERDES Loopback
					BIST
					4'b1010: Forward Driver Loopback BIST
					4'b1011: Backward Driver Loopback BIST
					4'b1100: Forward Loopback Test
					4'b1101: Backward Loopback Test
					4'b1110: Forward Receiver Loopback Test
					4'b1111: Backward Receiver Loopback Test
TEGT BLLL GOL	 	+.	+.		For more details, see chapter 5.8.
TEST_PLLLOCK	input	Async	1		Make LOCK signal H for test.
TEOT TOWA OFF	 	1	+		Fix to 0 while normal operation.
TEST_TRM_OFF	input	Async	1		Disables terminator of all lanes to make high
TEOT MONEO O	+	1	1	011.00	impedance state.
TEST_MON[2:0]	output	Async	 	2'b00	Indicates result of the test.
TEST_TXD	input	PCLK	1		Controls TX serial data format (for debug
			1		purpose).
		1	1		1: MSB first
		1	1		0: LSB first
		1	1		Fix to 0 this signal for conforming to SD
					UHS-II specification.

Table 4 TEST Control Signals (2/2)

Pin name	Direction	Sync/	Active	At	Descriptions	
		Async		Reset		
PTM_EN	input		1		Enables to enter to PHY Test Mode compliant to SD UHS-II Addendum. When this pin is set to 1 while HOST_MODE=0, PHY enters to the PHY Test Mode when it detects the dedicated packet automatically. When this pin is set to 1 while HOST_MODE=1, PHY enters to "Slave Mode" described in SD UHS-II Addendum.	
PHY_TEST_MODE	output		1	0	Indicates that PHY enters to PHY Test Mode. During PHY Test Mode, this IP asserts this signal to 1.	
PTM_SSCE	output		1	0	Indicates that SSC enable bit which is set by TMD2[6] while PHY Test Mode	

3.4 Misc Signals

Table 5 Misc Signals

Pin name	Direction	Sync/ Async	Active	At Reset	Descriptions
RD_FIFO_NRST	input	Async	0		Rx FIFO reset for default-Rx lane. 1: Normal 0: Reset FIFO status and read/write pointers.
RDT_FIFO_NRST	input		0		Rx FIFO reset for default-Tx lane. 1: Normal 0: Reset FIFO status and read/write pointers.
RD_FIFO_ST[1:0]	output	PCLK		2'b00	Rx FIFO status for default-Rx lane. 00: Normal 01: Almost full or empty 10: FIFO Overflow 11: FIFO Underflow
RDT_FIFO_ST[1:0]	output			2'b00	Rx FIFO status for default-Tx lane. 00: Normal 01: Almost full or empty 10: FIFO Overflow 11: FIFO Underflow

3.5 PMA Interface Signals

Table 6 PMA Interface Signals

Pin name	Direction	Sync/	Active	Descriptions
·	<u> </u>	Async	7101110	
PHY_PCLK	input	rioynio		This is the symbol interval clock.
PHY_PLL_FBCK	input			This is the feedback clock from PLL which is used
1111_1 22_1 3610	"iput			for PLL lock detection.
PHY_RXC	input			This is the reference clock for PLL from RCLK
				receiver.
PHY_RX_CLK0	input			This is synchronous clock for D0 receive data from CDR.
PHY_RX_CLK1	input			This is synchronous clock for D1 receive data from CDR.
PHY TRMCAL TRG	output	Async	0	Trigger of calibration for termination resistors.
PHY_NSLP_REG	output			Sleep control signal for regulator.
PHY_NSLP_BGR	output			Sleep control signal for BGR.
PHY_NSLP_VCO	output			Sleep control signal for VCO.
PHY_NSLP_PLL	output			Sleep control signal for PLL.
PHY_NSLP_PLLCLK	output			Sleep control signal for clock driver of PLL.
PHY_NSLP_TXC	output			Sleep control signal for RCLK driver. This is used
	'			for only UHS-II HOST mode.
PHY_NSLP_RXC	output			Sleep control signal for RCLK receiver.
PHY_NSLP_TXD0	output			Sleep control signal for D0 driver.
PHY_NSLP_TXD1	output			Sleep control signal for D1 driver.
PHY_NSLP_RXD0	output			Sleep control signal for D0 receiver.
PHY_NSLP_RXD1	output			Sleep control signal for D1 receiver.
PHY_NSLP_DET0	output			Sleep control signal for D0 amplitude detector.
PHY_NSLP_DET1	output			Sleep control signal for D1 amplitude detector.
PHY_TRMEN_TXC	output		1	Termination resistor enable signal for RCLK driver. This is used for only UHS-II HOST mode.
PHY_TRMEN_RXC	output			Termination resistor enable signal for RCLK
DUNCTOMENT TYPE				receiver.
PHY_TRMEN_TXD0	output			Termination resistor enable signal for D0 driver.
PHY_TRMEN_TXD1	output			Termination resistor enable signal for D1 driver.
PHY_TRMEN_RXD0	output			Termination resistor enable signal for D0 receiver.
PHY_TRMEN_RXD1	output	DUN DOLL	4	Termination resistor enable signal for D1 receiver.
PHY_TX_EIDL0	output	PHY_PCLK	1	Driver output disable for D0.
PHY_TX_EIDL1	output		<u> </u>	Driver output disable for D1.
PHY_RX_EIDL0	input	Async	1	Status of differential signal for D0.
PHY_RX_EIDL1	input			Status of differential signal for D1.
PHY_TX_STBL1	output		1	Driver control signal for D1.
PHY_PLLSEL	output			Controls PLL multiplication ratio.
PHY_TX_D0[9:0]	output	PHY_PCLK		D0 transmit data
PHY_TX_D1[9:0]	output	5107 577 577		D1 transmit data
PHY_RX_D0[9:0]	input	PHY_RX_CLK0		D0 receive data
PHY_RX_D1[9:0]	input	PHY_RX_CLK1		D1 receive data
PHY_TEST_LB[1:0]	output	Async		Test control signal for PHY internal loopback.

4 Block Diagram

Figure 2 PCS Block Diagram

5 Functional Description

5.1 High Speed Data Lane (D0, D1)

This IP handles each high speed data lanes (D0 and D1) as the default-Tx/Rx lane according to the HOST_MODE pin as shown below.

Table 7 Truth Table of Data Lane Handling

HOST_MODE	PCS mode	Declaration of data lane
0	UHS-II DEVICE	D0: Default-Rx lane
		D1: Default-Tx lane
1	UHS-II HOST	D0: Default-Tx lane
		D1: Default-Rx lane

In both case, this IP connects following signals of PHY-LINK interface to default-Tx lane.

- -TD[15:0]
- -TDM[1:0]
- -TDS[1:0](CT[5:4])
- -RDT[15:0]
- -RDTM[1:0]
- -RDTS[1:0](ST[7:6])
- -RDT_FIFO_NRST
- -RDT_FIFO_ST[1:0]
- -TEST_RDT_TRM_OFF

Similarly, this IP connects following signals of PHY-LINK interface to default-Rx lane.

- -TDR[15:0]
- -TDRM[1:0]
- -TDRS[1:0](CT[7:6])
- -RD[15:0]
- -RDM[1:0]
- -RDS[1:0](ST[5:4])
- -RD_FIFO_NRST
- -RD_FIFO_ST[1:0]
- -TEST_RD_TRM_OFF

Each data lane supports half duplex (2L-HD) mode.

For more details, see chapter 5.4.

5.2 Reference Clock Lane (RCLK)

5.2.1 Overview

This IP handles RCLK lane as the input/output port according to the HOST_MODE pin as shown below.

Table 8 Truth Table of RCLK Lane Handling

HOST_MODE	PCS mode	Direction of RCLK lane
0	UHS-II DEVICE	Input (RCLK is supplied by RCLK receiver in PMA to this IP. The RCLK is used for generating PCLK.)
1	UHS-II HOST	Output (This IP supplies PLL reference clock from CLK pin on PHY-LINK interface to PMA. The CLK is used for generating PCLK.)

5.2.2 RCLK Driver/Terminator Control for UHS-II HOST

This IP controls RCLK driver and terminator while UHS-II HOST mode as following.

Table 9 Truth Table of RCLK Driver Status

RCLKTRMEN	ST[1] (LOCK)	RCLKOE	Status of RCLK lane	
0	X	X Driver is inactivated		
			(RCLK lane is high impedance)	
1	0	X	Driver is inactivated	
	1	0	(RCLK lane is EIDL)	
		1	Driver is activated	
			(RCLK is running)	

5.2.3 RCLK Receiver/Terminator Control for UHS-II DEVICE

This IP controls RCLK receiver and terminator while UHS-II DEVICE mode as following.

Table 10 Truth Table of RCLK Receiver Status

NRST	RCLKTRMEN	ST[0](DET)	Status of RCLK lane
0	0	Х	Receiver is inactivated
			(RCLK lane is high impedance)
	1	X	Receiver is inactivated
			(RCLK lane is EIDL)
1	0	X	Receiver is inactivated
			(RCLK lane is high impedance)
	1	0	Receiver is inactivated
			(RCLK lane is EIDL)
		1	Receiver is activated
			(RCLK is running)

Note that ST[0] is asserted by receiving STB.L on D0 lane.

5.3 Symbol Coding

This IP includes an 8b/10b symbol coder and decoder which comply with ANSI X3.230-1994, clause 11 and also IEEE 802.3z, 36.2.4.

For more details about coding rule, refer to SD UHS-II Addendum.

5.4 PHY-LINK Interface

5.4.1 MODE and Power Consumption of PHY

MODE is used for controlling power consumption of PHY.

When MODE is turn to "L", all of components in PHY analog is inactive except DET. Also DET can be inactive by DET_EN pin as needed in only UHS-II HOST mode.

Table 11 Truth Table of PHY Power Mode

Components of PHY Analog	Dormant (MODE=0)	Active (MODE=1)	Note
Regulator	Inactive	Active	
BGR			
VCO			
PLL			
RCLK	Inactive		
Driver/Receiver	(until DET=1)		
Receiver for	Inactive	Depends on RDS	
default-Rx lane			
Receiver Terminator for default-Rx lane	Depends on RDS		
Amplitude Detector for default-Rx lane	DET_EN=1:Active DET_EN=0:Inactive		While UHS-II DEVICE mode (HOST_MODE=0), DET_EN
TOT GETAGILETEX TAILE	DL1_LIN=0.IIIactive		should be set to 1 even if PHY
			enters to Dormant.
Driver sleep for	Inactive	Active	
default-Rx lane			
Driver output enable	Disable	Depends on TDRS	
for default-Rx lane			
Driver Terminator for	Depends on TDRS		
default-Rx lane			
Receiver for	Inactive	Depends on RDTS	
default-Tx lane	B 1 BBT0		
Receiver Terminator	Depends on RDTS		
for default-Tx lane	la a ationa		
Amplitude Detector for default-Tx lane	Inactive		
Driver sleep for	Inactive	Active	
default-Tx lane	IIIaclive	Active	
Driver output enable	Disable	Depends on TDS	
for default-Tx lane	Disabic	Doponus on 100	
Driver Terminator for	Depends on TDS	1	
default-Tx lane	_ 55535 5 20		

When MODE is turned to 1, common components in PHY analog are active, but components of related each data lane are depends on the state of data lane..

5.4.2 PCLK

PCLK is used for synchronous clock of PHY-LINK interface.

The frequency of PCLK depends on PLL status and/or bus width setting as shown below.

Table 12 Truth Table of PCLK

Status/setting	PLLLOCK	BUSIF16	PCLK
PLL is unlocked	0	х	RCLK or CLK
			(Depends on
			HOST_MODE)
PLL is locked	1	1	1/20 * data rate
Bus width = 16-bit			(78MHz max.)
PLL is locked		0	1/10 * data rate
Bus width = 8-bit			(156MHz max.)

5.4.3 PINIT/PCMD/PACK

PINIT is used for selecting transmission speed range during Dormant state (MODE=0).

This IP supports only Range A and Range B.

PACK is used for acknowledge of PCMD. When PHY completes switching internal circuit after PCMD input from LINK, PHY asserts PACK. PCMD should keep the command until PACK is asserted from PHY.

PCMD is used for selecting PHY command operation during PHY is activated (MODE=1).

This IP supports following commands.

Table 13 Supported PCMDs

PCMD[3:0]	Description
4'b0000	No Command Operation
4'b0001	Enter to Loopback mode for DB streaming
	(PHY guarantees disparity continuity of stream)
4'b0011	Exit from Loopback mode for DB streaming
	(PHY guarantees disparity continuity of stream)
4'b0101	Enter to 2L-HDIN mode
4'b0110	Enter to 2L-HDOUT mode
4'b0111	Exit from 2L-HD mode

Other commands are not supported in this IP, so, when PHY received these command, PHY works as "No Command Operation" and does not assert PACK.

5.4.4 TD/TDM/TDS

TD/TDM/TDS are used for controlling the transmitting data and driver of default-Tx lane.

The default-Tx lane is controlled by Link via these signals according to the following table.

Table 14 Truth Table of Default-Tx Lane

NRST	TDS[1:0]	TD[15:0]	TDM[1:0]	Line State	Driver / Serializer	Driver Output	Driver Terminator
0	Any	Any	Any	EIDL (DIF_PD)	Inactive	Disable	Enable
1	2'b00	Any	Any	EIDL (DIF-PD)	Active	Disable	Enable
	2'b10	bit[0]=0, bit[15:1]: Any	Any	STB.L (DIF-L)		Enable	
		bit[0]=1, bit[15:1]: Any		STB.H (DIF-H)		Enable	
	2'b11	Any	Any	VLD (depends		Disable	
				on TD/TDM)			
	2'b01	Any	Any	OFF (DIF-Z)		Disable	Disable

5.4.5 RDT/RDTM/RDTS

RDT and RDTM are used for receiving the data. RDTS indicates the PHY receiver status of default-Tx lane as shown below.

Table 15 Details of RDTS

NRST	Line State	RDTS [1:0]	RDT [15:0]	RDTM [1:0]	ERR	Receiver / CDR	Receiver Terminator	Amplitude Detector
0	Any	2'b01	00H	2'b00	0	Inactive	Disable	Inactive
1	OFF (FD)	2'b01	00H	2'b00	0			
	EIDL	2'b00	00H	2'b00	0]	Enable	Active
	STB.L	2'b10	00H	2'b00	0	Active		
	STB.H		01H	2'b00	0			
	-8B10B decode		Note-2		1			
	error happens							
	before VLD							
	state after							
	STB.L.							
	or -8B10B decode							
	error happens at VLD state							
	(See Note 1)							
	VLD	2'b11	8B10B de	coded	0	1		Inactive
	(RDT/RDTM		symbol					
	are depend on							
	receiving data.)							
	Disparity error				1]		
	happens during							
	VLD state.							
	(RDT/RDTM							
	are depend on							
	decoded							
	result.)							

Note 1)When 8B10B decode error happens at VLD state, RDTS is turned to STB and ERR is asserted until symbol re-lock. When PHY detects symbol re-lock, RTDS is turned to VLD and ERR is negated.

Note 2) When PHY detects 8B10B decode error, RDT indicates 00H, and RDTM indicates 1'b0.

For example, when 8B10B decode error happens at receiving MSB symbol of 16-bit lane, and LSB symbol is correct, RDT/RDTM indicates each symbol as following;

RDT = 16'h00xx, RDTM = 2'b0x ("x": depends on decoded result)

Conditions of RDTS transition are shown below.

Table 16 State Transition of RDTS

Current state	Next State						
	EIDL	OFF	STB	VLD			
EIDL	-	PACK for Exit from HDIN	Detects STB.L	Never			
OFF	Never	-	PACK for Enter to HDIN	Never			
STB	End of STB.H receiving	Never	-	Symbol (re)lock			
VLD	Never	Never	8B10B decode error / STB.H	-			

5.4.6 TDR/TDRM/TDRS

These signals are used for controlling the transmitting data and driver of default-Rx lane.

The default-Rx lane is controlled by Link via these signals according to the following table.

Table 17 Truth Table for Default-Rx Lane (Driver)

NRST	TDRS [1:0]	TDR [15:0]	TDRM [1:0]	Line State	Driver / Serializer	Driver Output	Driver Terminator
0	Any	Any	Any	OFF (DIF-Z)	Inactive	Disable	Disable
1	2'b00	Any	Any	EIDL (DIF-PD)	Active	Disable	Enable
	2'b10	bit[0]=0, bit[15:1]: Any	Any	STB.L (DIF-L)		Enable	
		bit[0]=1, bit[15:1]: Any		STB.H (DIF-H)		Enable	
	2'b11	Any	Any	VLD (depends		Disable	
				on TD/TDM)			
	2'b01	Any	Any	OFF (DIF-Z)		Disable	Disable

5.4.7 RD/RDM/RDS

RD and RDM are used for receiving the data. RDS indicates the PHY receiver status of default-Rx lane as shown below.

Table 18 Details of RDS

NRST	Line State	RDS [1:0]	RD [15:0]	RDM [1:0]	ERR	Receiver / CDR	Receiver Terminator	Amplitude Detector
0	Any	2'b01	00H	2'b00	0	Inactive	Enable	Active (Note-3)
1	OFF (2L-HDOUT)	2'b01	00H	2'b00	0		Disable	Inactive
	EIDL	2'b00	00H	2'b00	0		Enable	Active
	STB.L	2'b10	00H	2'b00	0	Active		(Note-3)
	STB.H		01H	2'b00	0			
	-8B10B decode error happens before VLD state after STB.L. or -8B10B decode error happens at VLD state (See Note 1)		Note-2		1			
	VLD (RDT/RDTM are depend on receiving data.) Disparity error happens during	2'b11	8B10B decoded symbol		1			Inactive
	VLD state. (RDT/RDTM are depend on decoded result.)							

Note 1)When 8B10B decode error happens at VLD state, RDS is turned to STB and ERR is asserted until symbol re-lock. When PHY detects symbol re-lock, RDS is turned to VLD and ERR is negated.

Note 2) When PHY detects 8B10B decode error, RD indicates 00H, and RDM indicates 1'b0.

For example, when 8B10B decode error happens at receiving MSB symbol of 16-bit lane, and LSB symbol is correct, RD/RDM indicates each symbol as following;

RD = 16'h00xx, RDM = 2'b0x ("x": depends on decoded result)

Note-3) Only while dormant of UHS-II HOST, the amplitude detector can be inactivated by setting DET_EN to 0 as required. But in other case, LINK always shall set DET_EN to 1.

Conditions of RDS transition are shown below.

Table 19 State Transition of RDS

Current state	Next State				
	EIDL	OFF	STB	VLD	
EIDL	-	PACK for Enter to HDOUT	Detects STB.L	Never	
OFF	Never	-	PACK for Exit from HDOUT	Never	
STB	End of STB.H receiving	Never	-	Symbol (re)lock	
VLD	Never	Never	8B10B decode error STB.H	-	

5.4.8 Error Handling

Basically, PHY-LINK interface of this IP is compliant with SD UHS-II Addendum Appendix-F.

And when PHY receives the packet which violates to the spec from HOST as shown below, this IP handles it as follows.

Table 20 Error Handling Table

Item	Definition By Spec	Handling by this IP	Note
STB.H duration (T_EIDL_ENTRY)	Fixed 4SI	-When this IP receives STB.H at least 2SI, this IP converts STB.H status as 4SI periodWhen this IP receives STB.H longer than 5SI, this IP converts STB.H status as 4SI period.	

5.5 Lane Skew Aligner for 2L-HDIN

5.5.1 Overview

This IP includes lane skew aligner for 2L-HDIN mode. This function guarantees synchronism of the packet from SDB to EDB between RD/RDM and RDT/RDTM, even if skew occurs between D0 and D1 lane by input data jitter, etc.

Figure 3 Functional Overview of Lane Skew Aligner

5.5.2 Related Pins

Related pins of this function are shown below.

-CNFG_ALIGN_EN: Configuration of bypassing lane skew aligner.

This is used for debug purpose, fix to 1 while using PHY.

5.5.3 Block Diagram

Block diagram of this component is shown below.

Figure 4 Block Diagram of Lane Skew Aligner

This module monitors SDB/SOP LSS on each data lane during 2L-HDIN mode.

When skew of LSS on between both lanes is detected, this module stores the packet which is started from SDB/SOP on faster lane into the buffer until SDB/SOP is received on another lane, and inserts DIR/SDB LSS onto faster lane as output data.

When SDB/SOP is detected on later lane, this module outputs stored packet from the buffer.

5.5.4 Error Handling

Regarding SD4.0 UHS-II spec, LINK shall handles following packet as the "No error" at 2L-HDIN.

- -Includes at least one SDB
- -Includes one SOP

Therefore, this module aligns all of "No error" packets even if corrupted symbols are included in received packet.

When receiving packet has corrupted symbols, lane skew aligner output the packet according to following table.

Table 21 Error Handling Table for Lane Skew Aligner

Lane	1'st SDB	2'nd SDB	SOP	Result
D0	Any	Any	SOP	Aligned
D1	Any	Any	SOP	
D0	SDB	Any	Any	Aligned
D1	SDB	Any	Any	
D0	!SDB	Any	!SOP	Not aligned
D1	Any	Any	Any	(This case is handled as the error by LINK)
D0	Any	Any	Any	Not aligned
D1	!SDB	Any	!SOP	(This case is handled as the error by LINK)

^{1) &}quot;!SOP" and "!SDB" indicates corrupted symbols.

5.5.5 Example Timing Diagram

Example timing diagrams are shown below.

Figure 5 Example Timing (No Skew)

Figure 6 Example Timing (with Skew)

Figure 7 Example Timing (with Skew, 1'st SDB is corrupted on faster lane)

Figure 8 Example Timing (with Skew, 1'st SDB is corrupted on later lane)

Figure 9 Example Timing (with Skew, All LSSes are corrupted on later lane)

In this case, the packet has no SOP and SDB. Therefore aligner does not align the packet because this packet is handled by LINK as the error.

5.6 PLL Lock Detector

5.6.1 Overview

This IP includes PLL lock detector. This function provides lock status of PLL to LINK layer.

This block monitors frequency of PHY_PLL_FBCK while PHY is activated (MODE=1), and it asserts LOCK signal (ST[1]) when both frequency will be same between PHY_PLL_FBCK and PLL reference clock (CLK or RCLK).

Figure 10 Block Diagram

5.6.2 Related Pins

Related pins of this function are shown below.

Table 22 Description of Related Pins

Name	Description
CNFG_LOCK_PERIOD[1:0]	Configuration of sampling duration for PLL lock detector.
	2'b00 :103us@26MHz / 51.5us@52MHz
	2'b01:256us@26MHz/128us@52MHz
	2'b10:502us@26MHz/251us@52MHz
	2'b11:1004us@26MHz/502us@52MHz
	Note that these durations are made by frequency of CLK.
CNFG_LOCK_MARGIN[1:0]	Configuration of permissible error range for PLL lock detector.
	2'b00 :+/- 1CLK
	2'b01 :+/- 4CLK
	2'b10 :+/- 8CLK
	2'b11 :+/- 15CLK

5.6.3 Functional Description

The lock detector monitors the counter value of PHY_PLL_FBCK at the overflow of reference clock timer.

If the difference of counter and timer is within the permissible error range which is given by

CNFG_LOCK_MARGIN[1:0], lock detector asserts LOCK status(ST[1]).

Otherwise, detector will negates LOCK status.

Following figure shows example timing of lock detector.

Figure 11 Example Timing Diagram

5.7 Rx FIFO

5.7.1 Overview

This IP includes two FIFO buffers on both Rx data paths for re-timing receive data from CDR in PHY mixed.

Figure 12 Block Diagram of Rx FIFO

When PHY receives the data, CDR recovers data and clock (PHY_RX_CLK) which is synchronized to the data. Rx FIFO uses this clock to store the received data into itself. Then Rx FIFO outputs the stored data which is synchronized to system clock of PHY digital (sysclk: symbol interval clock (same as PHY_PCLK)).

5.7.2 Related Pins

The related pins of Rx FIFO are shown below.

Table 23 Description of Related Pins

Name	Description
RDT_FIFO_NRST	This is used as partial reset signal for Rx FIFO on default-Tx lane. When this signal is asserted, the status (RDT_FIFO_ST[1:0]) and internal pointers of Rx FIFO are cleared. When the RDT_FIFO_ST[1:0] indicates the status except "Normal", LINK can clear the status by asserting this signal during RDTS=OFF.
RD_FIFO_NRST	This is used as partial reset signal for Rx FIFO on default-Rx lane. When this signal is asserted, the status (RD_FIFO_ST[1:0]) and internal pointers of Rx FIFO are cleared. When the RD_FIFO_ST[1:0] indicates the status except "Normal", LINK can clear the status by asserting this signal during RDS=EIDL or OFF.
RDT_FIFO_ST[1:0]	PHY indicates the status of Rx FIFO on default-Tx lane via these pins. Each status are shown below; -2'b00: Normal (default) -2'b01: Almost full or empty2'b10: FIFO Overflow2'b11: FIFO Underflow.
RD_FIFO_ST[1:0]	PHY indicates the status of Rx FIFO on default-Rx lane via these pins. Each status are shown below; -2'b00: Normal (default) -2'b01: Almost full or empty. -2'b10: FIFO Overflow. -2'b11: FIFO Underflow.

5.7.3 Functional Description

As mention above, this FIFO generates some error status.

The mechanism of error detection is shown below.

Figure 13 Thresholds for Error Detecting

5.7.3.1 Normal Operation

When PHY starts the data receiving on each lane, Rx FIFO starts to store the data into itself. Then, when the remaining (stored) data counter reaches to 8, FIFO starts to output stored data and starts detecting errors. Typically, the frequency of both reading and writing clock are same, so the remaining data will be always 8 and FIFO does not assert the error status.

5.7.3.2 Error Handling

When PHY receives the data which is injected very large jitter, the frequency of the clock from CDR is skewed by jittered data. In such case, frequency will be differ between reading and writing clocks, so remaining data counter might be moves from typical location to each error thresholds.

When the counter reaches to either error thresholds, FIFO detects it and changes RD(T)_FIFO_ST[1:0] to 2'b01. Then in the next cycle, FIFO changes RD(T)_FIFO_ST[1:0] to 2'b10 or 2'b11 depends on the previous status. For example, if the counter reached to "Almost empty threshold" when RD(T)_FIFO_ST[1:0] indicated 2'b01, FIFO changes to 2'b11. Afterward, FIFO resets the internal pointer and stops storing the received data. After the reset, FIFO starts storing the data same as the normal operation.

5.8 PCS Manufacturing Test

This IP supports SCAN test for manufacturing test.

5.8.1 Related Pins

Related pins about SCAN test are shown below.

Table 24 Description of Related Pins for SCAN Test

Name	I/O	Description
NRST	Input	System reset for PCS.
SCAN_CLK	Input	SCAN shift clock input for SCAN test mode. This clock drive all F/Fs in this IP during the SCAN_MODE is 1.
SCAN_MODE	Input	Controls SCAN Test mode of PCS. 1: SCAN Test enable 0: Normal operation

To start SCAN test, assert SCAN_MODE pin.

All SCAN F/Fs are driven by SCAN_CLK (positive edge), and reset by NRST while SCAN_MODE = 1.

For more details, see the SoC Design Guideline for each IP.

5.9 PMA Manufacturing Test

This IP provides various test methods for manufacturing test of PHY.

In these test modes, this IP controls driver, receiver, and terminator automatically according to direction of each differential lane.

5.9.1 Test Item List

Following list shows the supported test items by this IP.

Table 25 Test Item List

Test	Major	Minor	Measurement	Measurement	Unit	Notes
No.	Category	Category	Pins	Item		
1	Supply Current	Dormant	Analog VDD	I	[uA]	IP Spec
2	Pin Leakage		D0_P/M, D1_P/M, RCLK_P/M	1	[uA]	UHS-II Spec
3	Supply Current	Normal Operation	Analog VDD	I	[mA]	IP Spec
4	VCO Gain	Min/Max	TEST_MON[1]	Freq.	[MHz]	
5	PLL Frequency Acquisition	Min/Max	TEST_MON[0]	Level		
6	Driver	Diff "H" Voltage	D0_P/M, D1_P/M, RCLK_P/M (Note-1)	V	[mV]	UHS-II Spec
7		Diff "L" Voltage	D0_P/M, D1_P/M, RCLK_P/M (Note-1)	V	[mV]	UHS-II Spec
8	Terminator Resistance	Тх	D0_P/M, D1_P/M, RCLK_P/M (Note-1)	1	[mA]	UHS-II Spec
9	Terminator Resistance	Rx	D0_P/M, D1_P/M, RCLK_P/M (Note-1)	I	[mA]	UHS-II Spec
10	Amplitude Detector	Detector Function	TEST_MON[2:1]	Level		UHS-II Spec
11	SERDES	Forward SERDES Loopback	TEST_MON[1]	Level		
12		Backward SERDES Loopback	TEST_MON[1]	Level		

Note-1) When this IP is used with the PMA for UHS-II HOST, RCLK_P/M are excepted from measurement pins of test #9. Similarly, when this IP is used with the PMA for UHS-II DEVICE, RCLK_P/M are excepted from measurement pins of test #5, 6, and 7.

5.9.2 Related Pins

Related pins about Test Method are shown below.

Each test modes are not affected by other input pins of this IP. Therefore, user shall control only these pins for handling manufacturing test except PHY_TEST_PLL[2:0] and external pins of PMA.

Table 26 Description of Related Pins for PMA Manufacturing Test

Name	I/O	Description
TEST_NRST	Input	System reset for PCS while test mode.
TEST_INICST	Imput	This pin is enabled while TEST_EN = 1. Otherwise, this pin does not affect to
		PHY.
TEST_CLK	Input	PLL reference clock for TEST mode.
_		Supply constant clock (26 to 52MHz) for using each TEST mode while
		HOST_MODE=1.
TEST_CLK_EN	Input	PLL reference clock source select.
		0: CLK (HOST_MODE=1) / RCLK(HOST_MODE=0)
		1: TEST_CLK
TEST_EN	Input	Enables manufacturing test mode.
TEST_PLLSEL	Input	PLL multiplication factor select in test mode.
		0: x15 (Range-A: 390 to 780Mbps)
TEOT MODEIO O	1	1: x30 (Range-B: 780 to 1560Mbps)
TEST_MODE[3:0]	Input	Test mode select. 4'b0000: Dormant Supply Current Test
		4'b0001: Normal Supply Current Test
		4'b0010: Differential Voltage "H" Test
		4'b0011: Differential Voltage "L" Test
		4'b0100: Tx Terminator Resistance Test
		4'b0101: Rx Terminator Resistance Test
		4'b0110: Detector Function Test
		4'b0111: Reserved (Do not use)
		4'b1000: Forward SERDES Loopback BIST
		4'b1001: Backward SERDES Loopback BIST
		4'b1010: Forward Driver Loopback BIST (*)
		4'b1011: Backward Driver Loopback BIST (*)
		4'b1100: Forward Loopback Test (*)
		4'b1101: Backward Loopback Test (*)
		4'b1110: Forward Receiver Loopback Test (*)
		4'b1111: Backward Receiver Loopback Test (*)
		Each test modes marked asterisk (*) are not used in current version of PMA
TEOT DATE OF	1	test.
TEST_PAT[1:0]	Input	BIST data pattern select
		2'b00: PRBS with 8B10B coding
		2'b01: Fixed K28.5 2'b10: Fixed D10.2
		2 b10. Fixed b10.2 2'b11: Repeated "LIDL0" (K28.5+K28.3)
		These pins affect to only BIST modes.
		Fix to 2'b00 except debugging purpose.
TEST_PLLLOCK	Input	Make LOCK signal H for test.
		Fix to 0 while normal operation.
TEST_TRM_OFF	Input	Disables terminator of all lanes to make high impedance state.
TEST_TXD	Input	Tx Serial data format select for debug purpose.
		Fix to 0 while all test modes.
TEST_MON[2:0]	Output	Indicates result/status of the test.

5.9.3 Example Test Environment

Following figure shows example environment for manufacturing test of PMA.

Figure 14 Example of Test Environment

5.9.4 Example Test Procedures

Procedures of each test mode are shown below.

5.9.4.1 Dormant Supply Current Test

Figure 15 Procedure of Dormant Supply Current Test

5.9.4.2 Pin Leakage Current Test

Figure 16 Procedure of Pin Leakage Current Test

5.9.4.3 Normal Supply Current Test

Figure 17 Procedure of Normal Supply Current Test

5.9.4.4 VCO Gain Test

Figure 18 Procedure of VCO Gain Test

5.9.4.5 PLL Frequency Acquisition Test

Figure 19 Procedure of PLL Frequency Acquisition Test

5.9.4.6 Driver Differential "H" Voltage Test

Figure 20 Procedure of Driver Differential "H" Voltage Test

5.9.4.7 Driver Differential "L" Voltage Test

Figure 21 Procedure of Driver Differential "L" Voltage Test

5.9.4.8 Tx Terminator Resistance Test

Figure 22 Procedure of Tx Terminator Resistance Test

5.9.4.9 Rx Terminator Resistance Test

Figure 23 Procedure of Rx Terminator Resistance Test

5.9.4.10 Amplitude Detector Function Test

Figure 24 Procedure of Amplitude Detector Function Test

5.9.4.11 Forward SERDES Loopback BIST

Figure 25 Procedure of Forward SERDES Loopback BIST

5.9.4.12 Backward SERDES Loopback BIST

Figure 26 Procedure of Backward SERDES Loopback BIST

Figure 27 Block Diagram of SERDES Loopback path for BIST

Note that while BIST mode, both D0 and D1 lane should be floated because the direction of both D0 and D1 lanes are set as output.

5.9.5 Reserved Test Modes

This IP has several reserved test modes as shown below.

Table 27 List of Reserved Test Modes

TEST_MODE[3:0]	Description
4'b1010	Forward Driver Loopback BIST
4'b1011	Backward Driver Loopback BIST
4'b1100	Forward Loopback Test
4'b1101	Backward Loopback Test
4'b1110	Forward Receiver Loopback Test
4'b1111	Backward Receiver Loopback Test

Each modes are mentioned below.

5.9.5.1 Forward/Backward Driver Loopback BIST

In this mode, PHY execute BIST via driver/receiver of each data lane as shown below.

Figure 28 Block Diagram of Driver Loopback path for BIST

To prevent the reflection by stub on the data lanes, do not attach any loads to both D0 and D1 lane.

Otherwise, the driver loopback BIST might be failed by the reflection of data lane.

5.9.5.2 Forward/Backward Loopback TEST

This mode provides loopback test same as UHS-II Compliance test mentioned in section 5.10.

It is useful to enter to PHY Test Mode for UHS-II Compliance without receiving dedicated packet.

For details of loopback path, see section 5.10.1.4.

5.9.5.3 Forward/Backward Receiver Loopback TEST

The loopback paths of this test mode is shown below.

Figure 29 Diagram of Receiver Loopback path

This mode provides loopback function without SERDES function for debug purpose.

5.10 PHY Test Mode for SD UHS-II Compliance

This IP supports the PHY Test Mode described in "SD Specifications Part1 UHS-II Addendum Version 1.00 Draft 1.00".

Basically, PHY controls internal logics automatically that depends on the TMD1 and 2 (i.e. Entering/exiting Dormant, changing loopback direction, etc) with COM and K30.7 which is included with the received packet from test equipment.

5.10.1.1 Related Pins

Related pins about PHY Test Mode are shown below.

Table 28 Description of Related Pins for PHY Test Mode

Name	I/O	Description
PTM_EN	Input	This is used for enabling packet encoder which is used to enter to PHY Test Mode. If this pin is set to 1 while UHS-II DEVICE mode (HOST_MODE=0), PHY enters to the PHY Test Mode when PHY detects the dedicated packet (TMDs) automatically. And if this pin is set to 1 while UHS-II HOST mode (HOST_MODE=1), PHY enters to "Slave Mode" for detecting the sequence for Test Mode entry. Set to 0 this pin for normal operation of PHY while HOST_MODE=1.
PHY_TEST_MODE	Output	This is used to monitoring the mode of PHY. 0: Normal mode (except PHY Test Mode) 1: PHY Test Mode When PHY enters to the PHY Test Mode, PHY asserts this pin and handles receiving packet for controlling the Test Mode.
PTM_SSCE	Output	Enables SSC generator for CLK on LINK or upper layer. 0: Disable 1: Enable This signal is asserted by TMD2 bit[6] in received TEST-MODEs. After reset, this pin is turned to 0.

5.10.1.2 State Transition

State transition of PHY Test Mode is shown below.

Figure 30 State Transition of PHY Test Mode (HOST_MODE=0)

Figure 31 State Transition of PHY Test Mode (HOST_MODE=1)

5.10.1.3 Supported TMDs

Supported format of TMD1 and TMD2 are shown below.

Table 29 TMD1 Bit Map

TMD1							
[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0	0	0	0	0	Dis-	Timing
						connect	

bit[7:2]: This IP supports only all 0 in this field.

bit[1]: This bit determines disconnect mode.

-0: Normal (Non-Disconnect)

-1: Disconnect Mode

bit[0]: This bit determines timing of test mode entry.

-0: Effective Immediately

-1: When exiting Dormant or Re-Sync state

Table 30 TMD2 Bit Map

TMD2							
[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Loopback Direction	SSCE	0	0	0	PLL Multi	plication Fa	actor

bit[7]: This bit determines the direction of loopback

-0: Forward Loopback

-1: Backward Loopback

bit[6]: This bit enables the SSC generator on external this IP(HOST only)

-0: Disable

-1: Enable

bit[5:3]: This IP supports only all 0 in this field.

bit[2:0]: These bits select the PLL multiplication factor.

-000: x15

-Others: Unsupported

When PHY detects unsupported TMDs, PHY disregards the packet and does not enter to PHY Test Mode.

5.10.1.4 Loopback path

The loopback path for PHY Test Mode is shown below.

Figure 32 Diagram of Forward/Backward Loopback path

For more details about the sequence and procedure of PHY Test Mode, refer to chapter 8.8.

6 Recommended Parameters

Recommended value of each PCS configuration pins are shown below.

Table 31 Recommended Parameters

Pin name	Sync/	Recommended Setting
	Async	
CNFG_LOCK_PERIOD[1:0]	Async	Duration of PLL lock sampling : Set to 2'b00
CNFG_LOCK_MARGIN[1:0]		Configuration for PLL lock detector: Set to 2'b00
CNFG_FORCE_LOCK		Set to 0
CNFG_ALIGN_EN		Set to 1
CNFG_CDRCLK_SLP	PCLK	Set to 0
CNFG_TX_EIDL		Set to 0
PTM_EN		HOST_MODE=0 : Set to 1
		HOST_MODE=1 : Set to 0

Note that each recommended value may be changed by evaluation result of PHY. Therefore, we recommend these configuration pins are able to control by software.

7 Timing Specification

Table 32 Timing Specification of PHY

Item	Condition	Va	llue[unit]	Note
		Min	Max	
tNRST	All	20[ns]		See Chapter 8.1
tACT_REG	RCLK=26MHz	10[us]		See Chapter 8.1
	RCLK=52MHz	5[us]		
tACT_PLL	RCLK=26MHz	4[us]		
	RCLK=52MHz	2[us]		
tCNFG_LOCK_PERIO	CNFG_LOCK_PE	103[us]		
D	RIOD=2'b00			
	RCLK=26MHz			
	CNFG_LOCK_PE	51.5[us]		
	RIOD=2'b00			
	RCLK=52MHz			
Teidl_stb	RCLK=26MHz		12[us]	Time from first STB,
	RCLK=52MHz		6[us]	after EIDL, on Device
				Rx to STB on Device
Tactivate	CNFG LOCK PE		750[up]	Tx. Time from first STB
Tactivate	RIOD=2'b00		750[us]	on Device Tx to first
	RCLK=26MHz			SYN LSS on Device
	CNFG_LOCK_PE		380[us]	Tx.
	RIOD=2'b00		Jooquaj	17.
	RCLK=52MHz			
Tlidl_lidl	All		40[SI]	Time from LIDL on
			1.0[0.1]	Device Rx to LIDL on
				Device Tx.
N_LSS_SYN/	All	8[LSSes]		
N_LSS_DIR				
Required COMs for	All	3[Symbols]		See Chapter 8.2,
Symbol lock				8.6.1, and 8.6.4
tLB_ACK	BUSIF16=1		10[SI]	See Chapter 8.3
	BUSIF16=0		9[SI]	
tDIR_SW	BUSIF16=1		8[SI]	See Chapter 8.6.1,
	BUSIF16=0		7[SI]	8.6.2, 8.6.3, and 8.6.4

8 Timing Diagram

8.1 Reset and Activation (Exiting from Dormant state)

8.1.1 For UHS-II DEVICE (HOST_MODE=0)

Figure 33 Reset and Activation (HOST_MODE=0)

8.1.2 For UHS-II HOST (HOST_MODE=1)

Figure 34 Reset and Activation (HOST_MODE=1)

8.2 Packet Transfer in Low Power Mode

Figure 35 Packet Transfer in Low Power Mode

8.3 Loopback Control for DATA Burst Streaming

Figure 36 Loopback Control for DATA Burst Streaming

8.4 8B10B decode error Occurence during Packet Transfer

Figure 37 Example of 8B10B decode error occurrence

8.5 Disparity error Occurence during Packet Transfer

Figure 38 Example of Disparity error occurrence

8.6 Switching of Duplex Mode

8.6.1 Switching from FD to HDIN

Figure 39 Switching from FD to HDIN

8.6.2 Switching from FD to HDOUT

Figure 40 Switching from FD to HDOUT

8.6.3 Switching from HDIN to FD

Figure 41 Switching from HDIN to FD

8.6.4 Switching from HDOUT to FD

Figure 42 Switching from HDOUT to FD

8.7 Enter to Dormant

8.7.1 For UHS-II DEVICE (HOST_MODE=0)

Figure 43 Enter to Dormant (HOST_MODE=0)

8.7.2 For UHS-II HOST (HOST_MODE=1)

Figure 44 Enter to Dormant (HOST_MODE=1)

8.8 PHY Test Mode

During PTM_EN=1, PHY enters each test mode without controlling by LINK as following.

8.8.1 Disconnect Mode At Once, Backward Loopback

Figure 45 Disconnect Mode At Once, Backward Loopback

8.8.2 Normal Mode At Once, Forward Loopback

Figure 46 Normal Mode At Once, Forward Loopback

8.8.3 Disconnect Mode through Re-Sync, Backward Loopback

Figure 47 Disconnect Mode through Re-Sync, Backward Loopback

9 Design Information

9.1 Estimated Gate Count

Excluding interconnect area: T.B.D gates (SCAN synthesis is not performed)

9.2 Deriverables

```
-RTL source codes
-Liberty library (.lib/.db), LEF and Verilog simulation model for PMA part
```

-Documentation (this file)

9.3 Required Verilog Macro

-Example of SDC file for Synopsys Design Compiler

Since clock generator in this IP has the clock divider, each F/Fs in this IP use verilog macro "UD" as the delay time of sequential cells as shown below.

```
always @(posedge sysclk or negedge rst_n)begin
    if(!rst_n)begin
        xxx_reg <= #`UD 1'b0;
end
else begin
        xxx_reg <= #`UD xxx_in;
end
end</pre>
```

Therefore, user shall define the value of "UD" on simulation and/or synthesis tool as follows;

```
[In case of NC-Verilog]

ncvlog xxx.v -define UD=1

[In case of Design Compiler]

analyze -f verilog -lib WORK $module_name -define {UD=1}
```

9.4 RTL Structure

Figure 48 RTL Hierarchy

9.5 Clock Distribution

Clock distribution of this IP is shown below.

Figure 49 Clock Diagram

Figure 50 Details of PCLK generator

As shown above, there are several clocks from external pins, Analog hard macro (PMA part), or gated clock. All clocks have to be specified as "create_clock" or "create_generated_clock" at synthesis.

When SCAN mode (SCAN_MODE =1), all clock domain is driven by positive edge of the "SCAN_CLK", so in this mode, test equipment shall supply dedicated clock to this pin.

9.6 Clock Table

The table of clocks which are used in this IP is shown below.

9.6.1 Input Clocks

Table 33 Input Clocks

Clock Name	Min freq. [MHz]	Max freq. [MHz]	descriptions
PHY_PCLK	39	156	This is the symbol interval clock from PLL in PHY analog (PLL).
PHY_PLL_FBCK	DC	200	This is feedback clock from PLL which is used for detecting lock status of PLL.
PHY_RX_CLK0	DC	172	This is the recovery clock from CDR.
PHY_RX_CLK1	DC	172	This is the recovery clock from CDR.
PHY_RXC	26	52	This is the reference clock for PLL of UHS-II DEVICE.
CLK	26	52	This is the reference clock for PLL of UHS-II HOST.

The constraint of timing is not required about crossing clock domain because each clocks written in this table are asynchronously.

9.6.2 Generated Clocks

The generated clocks by this IP are shown below.

Table 34 Generated Clocks

Clock Name	Min freq. [MHz]	Max freq. [MHz]	descriptions
PCLK	19.5	156	This is the synchronous clock for PHY-LINK interface. This clock is supplied to LINK by this IP.
sysclk	26	156	This is the system clock for PHY digital.

The data path between PCLK and sysclk should be synchronized each other.

The truth tables for generating each clock are shown below.

Table 35 Truth Table for PCLK

Status/setting	LOCK(ST[1])	BUSIF16	Source clock
PLL is unlocked	0	Х	CLK/PHY_RXC
			(26 MHz to 52 MHz)
PLL is locked	1	1	PHY_PCLK (divided by 2)
Bus width = 16-bit			(19.5 MHz to 78 MHz)
PLL is locked		0	PHY_PCLK
Bus width = 8-bit			(39 MHz to 156 MHz)

Table 36 Truth Table for sysclk

Status	LOCK(ST[1])	Source clock
PLL is unlocked	0	CLK/PHY_RXC
		(26 MHz to 52 MHz)
PLL is locked	1	PHY_PCLK
		(39 MHz to 156 MHz)

As shown above, these generated clocks require the case analysis by STA.

Required case settings for "slipsdu2_pclk_gen" are shown below.

 $LOCK = 0: pll_lock_in = 0, TEST_PLLLOCK = 0$

LOCK=1: pll_lock_in = 1, TEST_PLLLOCK = 0

BUSIF16 = 0 BUSIF16 = 1

9.7 Timing Constraints

9.7.1 Clock uncertainty

"set_clock_uncertainty" 0.1 is required for all clock sources.

9.7.2 In each clock domain

Static timing check is required in each clock domains by maximum clock frequency + 10% margin.

9.7.3 Output delay

There is no output delay timing requirement.

9.7.4 Clock skew requirement

No clock skew requirement for each clock domain.

9.7.5 Clock edge

In normal mode, all of modules are clocked by "positive edge" clocks except PCLK generator.

In SCAN mode, all of modules are clocked by "positive edge" of SCAN_CLK.

10 Limitations

No known limitations and errata.

11 REVISION HISTORY

Date	Rev.	Changes Made	Section Effected
May 9, 2012	1.0	Initial release	-
June 6, 2012	1.1	Modified timing specification about "symbol re-lock"	7
August 15, 2012	1.2	Modified block diagram	1
January 7, 2013	1.3	Modified function title from "Symbol Alinger" to "Lane Skew Aligner"	1, 5.4
February 4, 2013	1.4	Modified timing diagram of "Reset and Activation".	8.1
July 26, 2013	1.5	Added "RCLKOE" pin. Added descriptions about PLL lock detector. Added timing specification of Teidl_stb, Tactivate, Tlidl_lidl.	3, 4, 5.2 5.6 7
July 31, 2013	1.6	Added State transition diagram of PHY Test Mode. Modified recommended parameter for PTM_EN.	5.8.1.2 6
August 28, 2013	1.7	Modified specification of Test controller. Added procedures of manufacturing test for PMA.	3.3, 5.9
September 13, 2013	1.8	Added design information for implementation to ASIC.	9

SD UHSII PHY IP PCS Family Datasheet

©Silicon Library Inc, All rights reserved.

Duplication of this document and disclosure are strictly prohibited without express written approval of Silicon Library Inc

The contents of this document are subject to change without prior notice.

Silicon Library Inc.

301, Center for Collaborative Innovation and Incubation, Meiji University 2-3227,

Mita, Tama-ku, Kawasaki, Kanagawa, Japan, 214-0034

Phone: 81-50-5527-7974 Fax: 81-50-3737-7299

Silicon Library's home page can be found at:

http://www.siliconlib.com