第六章 序数*

定理 **6.1** 设 $\langle A, \prec \rangle$ 为拟线序集¹, \prec 为 $A \neq \varnothing$ 上的良序关系,当且仅当不存在函数 $f: \mathbb{N} \to A$,使得对于任意 $n \in \mathbb{N}$,有 $f(n^+) \prec f(n)$.

定理 **6.2** 设 $\langle A, \prec_1 \rangle, \langle B, \prec_2 \rangle, \langle C, \prec_3 \rangle$ 为三个拟序集,则

- (1) $\langle A, \prec_1 \rangle \cong \langle A, \prec_1 \rangle$;
- (2) $(A, <math> <_1$ $) \cong \langle B, <_2 \rangle$ $(B, <math> <_2$ $) \cong \langle A, <_1 \rangle$ $(B, <math> <_2$ $) \cong \langle A, <_1 \rangle$

定理 **6.3** 设 $f: A \to B$ 且为单射, \prec_B 为 B 上的拟序关系,在 A 上定义关系 \prec_A 如下,对于任意的 $x,y \in A$, $x \prec_A y \Leftrightarrow f(x) \prec_B f(y)$,则

- (1) \prec_A 为 A 上的拟序关系;
- (2) 若 \prec_B 为 B 上的拟线序(拟全序)关系,则 \prec_A 为 A 上的拟线序关系;
- (3) $\overline{A} \prec_B \overline{A}$ B上的良序关系,则 $\prec_A \overline{A}$ A上的良序关系.

定理 **6.4** 设 A, B 为二集合, 且 $B \subset A$.

- (1) $\overrightarrow{A} \prec_A \rightarrow A$ 上的拟序关系,则 $\prec_A \upharpoonright B \rightarrow B$ 上的拟序关系;
- (2) 若 \prec_A 为 A 上的拟线序关系,则 $\prec_A \upharpoonright B$ 为 B 上的拟线序关系;
- (3) 若 \prec_A 为 A 上的良序关系,则 $\prec_A \upharpoonright B$ 为 B 上的良序关系.

定理 6.5 (超限归纳原理) 设 \prec 为 A 上的良序, B 是 A 关于 \prec 的归纳子集,则 B = A.

定理 6.6 设 \prec 为 A 上的拟线序,如果 A 上任何关于 \prec 的归纳子集都与 A 是相等的,则 \prec 为 A 上的良序.

超限递归定理模式 对于任意的公式 $\gamma(x,y)$,下面叙述的是一条定理:

设 \prec 为集合 A 上良序,若 $\forall f \exists ! y \gamma(f,y)$ 成立,则存在惟一的一个以 A 为定义域的函数 F, $\forall t \in A, \gamma(F \upharpoonright \operatorname{seg} t, F(t))$ 成立.

定理 **6.7** 设 $\langle A, \prec_A \rangle$, $\langle B, \prec_B \rangle$ 为两个良序集,则下面三种情况至少成立其一:

- (1) $\langle A, \prec_A \rangle \cong \langle B, \prec_B \rangle$;
- (2) $\langle A, \prec_A \rangle \cong \langle \operatorname{seg} b, \prec_B^0 \rangle, b \in B;$

 $^{^1} 教材中的原文是"设 <math>\langle A, \prec \rangle$ 是拟序集"。然而,易于验证,若 $\langle A, \prec \rangle$ 不是拟线序集,上述定理不成立(一个最简单的反例是 $\prec=\varnothing$ 的情况,注意到, \varnothing 是在任何非空集合上都是拟序,但不是拟线序,更不是良序)。为说明"拟线序"这一条件的必要性,下面再举一个 nontrivial 的反例: 令 $A=\mathbb{N}, \prec=\{\langle 0,x\rangle \mid x\in\mathbb{N}_+\}$ 。则 $\langle \mathbb{N}, \prec \rangle$ 显然是拟序集,且 $\mathrm{dom}(\prec)=\{0\}$, $\mathrm{ran}(\prec)=\mathbb{N}_+$,从而 $\mathrm{dom}(\prec)\cap\mathrm{ran}(\prec)=\varnothing$,也即,对任意 $x,y,z\in\mathbb{N}$,若有 $y \prec x$ (从而 $y\in\mathrm{dom}(\prec)$),则不可能有 $z \prec y$ (因为 $y \not\in\mathrm{ran}(\prec)$)。这样一来,就不可能存在定理所描述的 $f:\mathbb{N}\to\mathbb{N}$ (因为无论 f(1) 取何值, $f(1) \prec f(0)$ 和 $f(2) \prec f(1)$ 都不可能同时成立)。所以, $\langle \mathbb{N}, \prec \rangle$ 满足定理所述的条件。但 \mathbb{N} 的非空子集 \mathbb{N}_+ 却没有最小元,从而 $\langle \mathbb{N}, \prec \rangle$ 不是良序集。(事实上,教材中此定理证明的充分性部分用到:"任取 $b_0 \in B$,则 b_0 不是 B 的最小元,因而存在 $b_1 \in B$,使 $b_1 \prec b_0$ 。" 而" b_0 不是最小元"只表明"存在 $b_1 \in B$,使 $b_0 \neq b_1 \wedge b_0 \not\prec b_1$ ",若 \prec 不是拟线序,就不能由此推出 $b_1 \prec b_0$ 。)