Modelos de Mortalidad, aplicación en R

Riskcenter

Universidad de Barcelona http://www.ub.edu/riskcenter

24 de noviembre de 2015

Base de datos

Los datos usados en este caso práctico han sido obtenidos de:

www.mortality.org

o bien de

▶ www.ine.es

Datos para la exposición al riesgo de www.mortality.org

Spain Exposure to risk (period 1v1)

Spain, Exposure to risk (period 1x1)							
Last modified: 11—Feb—2014, MPv5 (May07)							
Year	Age	Female	Male	Total			
1908	0	293136.40	305312.99	598449.39			
1908	1	265517.70	269814.83	535332.53			
1908	2	249101.89	253585.43	502687.32			
1908	3	243622.12	247645.45	491267.57			
1908	4	243224.34	245105.81	488330.15			
1908	5	241190.99	244505.48	485696.48			
1908	6	228430.37	232363.62	460794.00			
1908	7	225766.30	227997.71	453764.01			
1908	109	0.33	0.00	0.33			
1908	110+	0.04	0.00	0.04			
2012	107	49.58	9.95	59.53			
2012	108	21.54	5.30	26.84			
2012	109	9.78	2.11	11.90			
2012	110+	4.04	3.60	7.64			

Tasas brutas de mortalidad www.mortality.org

Spain, Death	rates	(period 1x1)		
Last modifie	d: 11-l	Feb - 2014, MPv5	(May07)	
Year	Age	Female	Male	Total
1908	0	0.161112	0.190865	0.176291
1908	1	0.082262	0.085870	0.084081
1908	2	0.045397	0.045655	0.045527
1908	3	0.024595	0.025669	0.025137
1908	4	0.016370	0.016680	0.016526
1908	5	0.011140	0.010852	0.010995
1908	6	0.009253	0.008692	0.008970
1908	7	0.006117	0.005696	0.005905
•				
•				
1908	109	2.467005		2.467005
1908	110 +	6.000000		6.000000
•				
2012	107	0.746344	0.603015	0.722386
2012	108	0.464360	0.377003	0.447094
2012	109	0.919932	0.946372	0.924629
2012	110 +	1.238646	1.388889	1.309472

Lectura de los datos y gráfico

```
#INSTALL.PACKAGES ('DEMOGRAPHY')
library (demography)
#DIRECTAMENTE DE LA WEB A R.
spain <- hmd.mx("ESP", 'usuario', 'password', "Spain")</pre>
#BAJANDO PREVIAMENTE EL * TXT
spain <-read . demogdata ("Mx_1x1SPAIN . txt" ,</pre>
    "Exposures_1x1.txt", type="mortality", label="Spain",
    skip = 2, popskip = 2)
#GRÁFICO DE LAS TASAS BRUTAS DE MORTALIDAD POR SEXO
par(mfrow=c(1,2),las=1)
plot(spain, series="male", plot.type="functions")
plot(spain, series="female", plot.type="functions")
```

Gráficos de tasa brutas

Subset por edad y año

```
#SELECCIONANDO POBLACIÓN CON EDAD MAYOR O IGUAL A 1965 Y
   TASAS DE 1975 A 2012
spain.mas65 <- extract.ages(spain,65:105,FALSE)</pre>
spain.mas65.desde1975 <-
    extract.years(spain.mas65,1975:2012)
#OTRA MANERA DE VER EL LOG DE LAS TASAS BRUTAS
year <-c (1975:2012)
                       #YEARS
age <-c (65:105) #AGES
z<-log(t(as.matrix(spain.mas65.desde1975$rate$male)))</pre>
#GRÁFICO DEL LOGARÍTMO DE LAS TASAS DE MORTALIDAD
par(las=1)
filled.contour(year, age, z, color = terrain.colors,
   nlevels=15.
    plot.title = title(main = "Log death rate",
    xlab = "Years", ylab = "Age"),
    plot.axes = {axis(1, seq(year[1], max(year), by = 5))}
                  axis(2, seq(min(age), max(age), by = 10))
    key.title = title(main="Log"),
    key.axes = axis(4, seq(-10, 1, by = 0.5))
```

Gráficos de tasa brutas

Tasas brutas de mortalidad www.mortality.org

```
#LIFE TABLE
lifetable (spain, series="male", year= 2012)
par(las=1)
Period lifetable for Spain: male Year: 2012
               qx
                      Ιx
                             dx
                                     Lx
                                             Τ×
        mx
                                                     ex
    0.0032 0.0032 1.0000 0.0032 0.9970 79.3311 79.3311
0
    0.0003 \ 0.0003 \ 0.9968 \ 0.0003 \ 0.9967 \ 78.3341 \ 78.5838
    0.0002 0.0002 0.9966 0.0002 0.9965 77.3374 77.6034
3
    0.0001 0.0001 0.9964 0.0001 0.9964 76.3409 76.6150
4
    0.0001 0.0001 0.9963 0.0001 0.9963 75.3445 75.6238
5
    0.0001 0.0001 0.9962 0.0001 0.9961 74.3483 74.6323
98
    0.3880 0.3250 0.0244 0.0079 0.0204
                                         0.0559
                                                 2.2946
99
    0.4183 0.3460 0.0164 0.0057 0.0136
                                         0.0355
                                                 2.1585
   0.4912 1.0000 0.0108 0.0108 0.0219
                                         0.0219
                                                 2.0358
```

Esperanza de vida

Life expectancy: Spain female (1908-2012)

Esperanza de vida

```
###CASO ALEJADO DEL RESTO
plot(lifetable(spain, series="female", year=1918))
    #PANDEMIA DE GRIPE EN 1908

#ESPERANZA DE VIDA DESDE EL NACIMIENTO
par(mfrow=c(1,2), las=1)
plot(life.expectancy(spain.desde1975,
    series="male"),ylab="Life expectancy at birth", col=3,
    lwd=2, ylim=c(70,85))
lines(life.expectancy(spain.desde1975, series="female"),
    col=4, lwd=2)
```

Gráficos de tasa brutas

Modelo Lee-Carter

```
#INSTALL . PACKAGES ('DEMOGRAPHY')
library (demography)
#DIRECTAMENTE DE LA WEB A R.
spain <- hmd.mx("ESP", 'usuario', 'password', "Spain")</pre>
#BAJANDO PREVIAMENTE EL *.TXT
spain <-read.demogdata("Mx_1x1SPAIN.txt",</pre>
    "Exposures_1x1.txt", type="mortality", label="Spain",
    skip = 2, popskip = 2)
#GRÁFICO DE LAS TASAS BRUTAS DE MORTALIDAD POR SEXO
par(mfrow=c(1,2),las=1)
plot(spain, series="male", plot.type="functions")
plot(spain, series="female", plot.type="functions")
```

Modelo Lee-Carter - Parámetros estimados

Modelo Lee-Carter - Parámetros estimados

Modelo Lee-Carter - Tasas de Mortalidad estimadas

```
#"LABEL" "AGE" "YEAR" "MALE" "AX" "BX" "KT" "RESIDUALS"
"FITTED" "VARPROP" "Y" "MDEV" "CALL" "ADJUST" "TYPE"

#PARÁMETROS ESTIMADOS
spain.desde1975.LC$ax
```

Modelo Lee-Carter - Tasas de Mortalidad estimadas

Log Mortality rates LC, Males 1975 - 2012

Modelo Lee-Carter - Forecasts

```
spain.desde1975.LC$kt
Forecasts for Spain
Data type: mortality
 Call: forecast.lca(object = spain.desde1975.LC, h = 30)
  Based on model: Ica(data = spain.desde1975, series =
     "male", max.age = 105, adjust = "dt")
  Adjustment method: dt
 Jump-off method: fit
    Years: 2013 - 2042
   Ages: 0 - 105
```

Modelo Lee-Carter - Tasas de Mortalidad estimadas

spain.desde1975.LC\$residuals\$y

Predicción Lee-Carter de la esperanza de vida

Predicción Lee-Carter de la esperanza de vida

Forecast Life expectancy, age 65 22 20 18 16 14

2000 2010 2020 2030 2040

Modelo Lee-Carter - Residuales

Modelo Lee-Carter - Residuales

LifeMetrics Open Source R code for Stochastic Mortality Modelling

```
http://www.macs.hw.ac.uk/~andrewc/lifemetrics/
#CARGANDO LIFEMETRICS
source("fitModels.r")
```

Funciones R:

- a) fit701 \leftarrow Lee-Carter (LC) \leftarrow M1
- b) fit702 \leftarrow Renshaw-Haberman (RH) \leftarrow M2
- c) fit703 ← Currie Age-Period-Cohort (APC) ← M3
- d) fit705 ← Cairns-Blake-Dowd (CBD) ← M5
- e) fit706 ← 1ra Generalización CBD ← M6
- f) fit707 \leftarrow 2da Generalización CBD \leftarrow M7
- g) fit708 ← 3ra Generalización CBD ← M8

Para hacer simulaciones de los modelos LC y CDB:

```
source("simModels.r")
```

LifeMetrics Open Source R code for Stochastic Mortality Modelling

Todos las funciones necesitan los siguientes argumentos:

```
# INPUTS:

# XV = VECTOR OF AGES, LENGTH N

# YV = VECTOR OF YEARS, LENGTH M

# ETX = M X N MATRIX OF EXPOSURES

# DTX = M X N MATRIX OF DEATHS

# WA = M X N MATRIX OF WEIGHTS (0 OR 1)
```

Internamente la función calcula:

```
mtx=dtx/etx  # matrix of death rates
qtx=1-exp(-mtx)  # matrix of mortality rates
```

LifeMetrics Open Source R code for Stochastic Mortality Modelling

Usando los datos de España de 1975 a 2012 y edades de 0 a 105, se tiene:

```
#ARGUMENTOS DE LAS FUNCIONES
age <- spain .1975.0.105 $ age
year <- spain .1975.0.105 $ year
etx <- t (spain .1975.0.105 $ pop $ male )
dtx <- t (spain .1975.0.105 $ pop $ male * spain .1975.0.105 $ rate $ male )
wa <- etx * 0+1
```

Modelo Renshaw-Haberman

```
############# MODELO M2 - RENSHAW-HABERMAN ###############
mod. M2<-fit 702 (age, year, etx, dtx, wa)
names(mod.M2)
#"BETA1" "BETA2" "BETA3" "KAPPA2" "GAMMA3" "X" "Y" "CY"
    "WA" "EPSILON" "MHAT" "LL" "BIC" "NPAR"
#PARÁMETROS ESTIMADOS
mod. M2$ beta1
mod M28 beta 2
mod. M2$ beta3
mod. M2$kappa2
mod . M2$gamma3
#TASAS ESTIMADAS Y RESIDUALES
mod M28mhat
```

Modelo Renshaw-Haberman - Parámetros estimados

Modelo Renshaw-Haberman - Parámetros estimados

Modelo Renshaw-Haberman - Tasas de Mortalidad estimadas

Modelo Renshaw-Haberman - Tasas de Mortalidad estimadas

Log Mortality rates RH, Males 1975 - 2012

Modelo Renshaw-Haberman - Goodness of fit

Modelo Renshaw-Haberman - Residuales

Modelo Age-Period-Cohort

```
######### MODELO M3 - CURRIE AGE-PERIOD-COHORT ##########
mod.M3<-fit703 (age, year, etx, dtx, wa)
names (mod.M3)
#"BETA1" "BETA2" "BETA3" "KAPPA2" "GAMMA3" "X" "Y" "CY"
    "WA" "EPSTION" "MHAT" "I.I." "BTC" "NPAR"
#PARÁMETROS ESTIMADOS
mod. M3$ beta1
mod. M3$ kappa2
mod. M3$gamma3
#TASAS ESTIMADAS Y RESIDUALES
mod M3$mhat
mod. M3$ epsilon
```

Modelo Age-Period-Cohort - Parámetros estimados

```
#GRÁFICO DE LOS PARÁMETROS ESTIMADOS
op<-par(mfrow=c(3,1), las=1)
plot(mod.M3$x, mod.M3$beta1, xlab='Age (x)', ylab='Beta
        1(x)', pch=19)
plot(mod.M3$y, mod.M3$kappa2, xlab='Years (t)',
        ylab='Kappa 2 (t)', pch=19)
plot(mod.M3$cy, mod.M3$gamma3, xlab='Years', ylab='Gamma 3
        (t)', pch=19)
par(op)
mtext('Males', side=3, line=2, font=2)</pre>
```

Modelo Age-Period-Cohort - Parámetros estimados

Modelo Age-Period-Cohort - Tasas de Mortalidad estimadas

Modelo Age-Period-Cohort - Tasas de Mortalidad estimadas

Log Mortality rates APC, Males 1975 - 2012

Modelo Age-Period-Cohort - Goodness of fit

```
#RESIDUALES
levelplot(mod.M3$epsilon, colorkey=list(space='right'),
    xlab='Year', ylab='Age',
          col.regions=cm.colors, main='Residuals APC
              Males', pretty=T, aspect='fill')
#BAYES INFORMATION CRITERION (BIC) & LOG-LIKELIHOOD (LL)
mod M3$BIC
mod . M3$ 11
> mod.M3$BIC
[1] -30363.34
> mod . M3$ 11
[1] -29185.3
```

Modelo Age-Period-Cohort - Residuales

Modelo CBD

```
############# MODELO M5 - CAIRNS-BLAKE-DOWD ##############
mod. M5<-fit 705 (age, year, etx, dtx, wa)
names (mod.M5)
#"КАРРА1" "КАРРА2" "КАРРА4" "ВЕТА2" "ВЕТА3" "ВЕТА4"
    "GAMMA3" "X0" "X" "Y" "CY" "EPSILON" "MHAT" "MTX"
    "NPAR" "I.I." "BTC" "WA"
#PARÁMETROS ESTIMADOS
mod M5$beta2
mod. M5$ beta3
mod. M5$kappa1
mod. M5$ kappa2
\hat{\beta}_3 = 1 \text{ y } \hat{\beta}_2 = (x - \bar{x})
#TASAS ESTIMADAS Y RESIDUALES
mod M5$mhat
mod. M5$ epsilon
```

Modelo CBD - Parámetros estimados

```
#GRÁFICO DE LOS PARÁMETROS ESTIMADOS

op<-par(mfrow=c(2,2), las=1)
  plot(mod.M5$x, mod.M5$beta2, xlab='Age (x)', ylab='Beta 2(x)', pch=19)
  plot(mod.M5$x, mod.M5$beta3, xlab='Age (x)', ylab='Beta 3(x)', pch=19)
  plot(mod.M5$y, mod.M5$kappa1, xlab='Years (t)', ylab='Kappa 1 (t)', pch=19)
  plot(mod.M5$y, mod.M5$kappa2, xlab='Years', ylab='Kappa 2 (t)', pch=19)
  par(op)
  mtext('Males', side=3, line=2, font=2)
```

Modelo CBD - Parámetros estimados

Modelo CBD - Tasas de Mortalidad estimadas

```
#GRÁFICO DE LAS TASAS ESTIMADAS
persp(mod.M5\$y, mod.M5\$x, log(mod.M5\$mhat), phi=30,
    theta=55, col ="chartreuse2",
      main=paste('Log Mortality rates RH, Males',
          min(year), '-', max(year)),
      ylab=paste('Age',0,'-',105),
          xlab=paste('Years',min(year),'-',max(year)),
          zlab='Log Mortality rate')
x11()
plot(age, log(mod.M5$mhat)[1,], col= rainbow(1), type='l',
    vlim=c(-11,0), vlab=paste('Age',0,'-',105), vlab='Log
    Mortality rate')
for(i in 1:38){
      lines(age, log(mod.M5$mhat)[i,], col= rainbow(38)[i],
          tvpe='l')
```

Modelo CBD - Tasas de Mortalidad estimadas

Modelo CBD - Goodness of fit

Modelo CBD - Residuales

