

پروتکل مسیریابی مبتنی بر وضعیت لینک

سوال اول – مثال زیر از شبکههای متصل به هم را در نظر بگیرید:

الف) نوع هر یک از لینکهای موجود در توپولوژی را مشخص کنید.

```
A to N6: stub

A, B and C to N4: Transient

B to F: Point-to-Point

B and G to N5: Transient

C and D to N3: Transient

D, E and F to N2: Transient

E to N1: Stub

F to G: Point-to-point
```

ب) هزینه انتقال بسته در هر یک از موارد زیر را با ذکر مسیر و هزینه گام به گام مشخص کنید.

- F از مسیریاب A به مسیریاب \bullet
- G از مسیریاب E از مسیریاب \bullet
- \mathbf{E} از مسیریاب \mathbf{A} به مسیریاب \bullet

¹ Link State


```
پاسخ:
A to F:
                                                                                        E to G:
                                            A to E:
A \rightarrow N4 \text{ (cost=4)}
                                           A \rightarrow N4 (cost=4)
                                                                                       E \rightarrow N2 (cost=3)
N4 \rightarrow C (cost=0)
                                           N4 \rightarrow C (cost=0)
                                                                                       N2 \rightarrow F (cost=0)
C \rightarrow N3 \quad (cost=1)
                                           C \rightarrow N3 (cost=1)
                                                                                       F \rightarrow G (cost=3)
N3 \rightarrow D (cost=0)
                                           N3 \rightarrow D (cost=0)
D \rightarrow N2 (cost=2)
                                           D \rightarrow N2 (cost=2)
N2 \rightarrow F (cost=0)
                                           N2 \rightarrow E (cost=0)
A to F: Path = A \rightarrow N4 \rightarrow C \rightarrow N3 \rightarrow D \rightarrow N2 \rightarrow F, Total Cost = 7
A to E: Path = A \rightarrow N4 \rightarrow C \rightarrow N3 \rightarrow D \rightarrow N2 \rightarrow E, Total Cost = 7
E to G: Path = E \rightarrow N2 \rightarrow F \rightarrow G, Total Cost = 6
```

ج) مسيرياب B چه Router Linkهايي را گزارش مي كند؟

پاسخ:

روتر B لینکهایی را که به آنها متصل است گزارش می کند. linkهایی که مستقیماً به آن وصل شدهاند و linkهایی که به طور غیرمستقیم از طریق transient و G و G از نوع ۱۳۸۰ به آن متصل می شوند را گزارش می دهد. بنابراین اتصال B به F، از نوع F، از نوع ۱۳۸۰ به F و C و G از نوع transient و Transient و C و R ، N4، ه و C نیز transient می باشد.

سوال دوم – با فرض استفاده از پروتکل OSPF، به صورت مرحله به مرحله روند یافتن کوتاه ترین مسیرها را در مسیریاب A با لحاظ استفاده از روش دیجسترا A روش دیجسترا A رسم کنید.

2

² Dijkstra

پاسخ:

از راس A شروع می کنیم. کم هزینه ترین مسیر بین همسایه های A، مسیر به F با هزینه 5 میباشد. بنابراین، لینک A و F را برقرار می کنیم.

سپس از بین همسایههای A و F به دنبال کم هزینه ترین مسیر تا A می گردیم و این بار، مسیر E به E با هزینه E انتخاب می شود.

سپس بین همسایههای A و A کم هزینه ترین مسیرها، مسیر A به C و C به C با هزینه کلی C تا راس C هستند که چون از C به C مسیری با هزینه و سپس بین همسایههای C کاریم، نیازی به اضافه کردن لینک C که هزینه C تا راس C را دارد، نیست. بنابراین لینک C داریم، نیازی به اضافه کردن لینک C که هزینه C تا راس C را دارد، نیست. بنابراین لینک C

بین همسایههای E ، C ، A و از راس A مسیر A به B با هزینه A و هزینه کلی B از راس A میباشد.

حال بین همسایههای visit نشده E ، C ، E و مورینه ترین مسیر E به E با هزینه کلی E از راس E میباشد. چون تمامی راسها به E به صورت مستقیم یا غیرمستقیم متصل هستند، الگوریتم متوقف می شود.

سوال سوم – جدول زیر را در بیان تفاوتهای میان پروتکلهای مسیریابی RIP و OSPF تکمیل کنید. در ردیف مربوط به قابلیتهای مورد پشتیبانی مواردی از قبیل پشتیبانی از چندین معیار 7 ، پشتیبانی از چند ناحیه 4 ، پشتیانی از مسیریابی بیندامنهای 6 ، احراز هویت 7 ، چندپخشی 7 ، آدرس دهی بدون کلاس 6 درج کنید.

<u>Reference1</u>

Reference2

³ Multiple metrics

⁴ Multiple areas

⁵ Inter-domain routing

⁶ Authentication

⁷ Multicasting

⁸ Classless addressing

	RIP	OSPF
نوع پروتکل مسیریابی	Distance Vector protocol	link-state protocol
الگوريتم مسيريابي (نحوه يافتن مسير)	Bellman-Ford algorithm	Dijkstra algorithm
قابلیتهای مورد پشتیبانی ^۹	It is Interior routing. RIP supports only 15 hops in a path. If a packet can't reach a destination in 15 hops, the destination is considered unreachable. RIP version 1 generally known as RIP is supports only classful network schema. While RIP version 2 supports the classless network schema also. RIP uses several timers and it has some techniques for instability.	It is Exterior routing. variable-length subnet masking and classless interdomain routing addressing models and Non-contiguous network support. OSPF supports subnet specific, classless routes, classful network specific routes and hosts. It also has support for authentication, which helps to secure the network.
مقیاسپذیری ^{۱۰}	Limited (15 hops), smaller size organizations. does not scale well with large networks or with networks that have frequent topology changes.	larger size organizations, No limitation
پیچیدگی ^{۱۱}	relatively simpler	much more complex
جلوگیری از ایجاد حلقه ^{۱۲}	RIP uses the following mechanisms to prevent routing loops: 1) Counting to infinity: A destination with a metric value of 16 is considered unreachable. When a routing loop occurs, the metric value of a route will increment to 16 to avoid endless looping's. 2) Split horizon: Disables RIP from sending routing information on the interface from which the information was learned to prevent routing loops and save bandwidth. 3) Poison reverse: Enables RIP to set the metric of routes received from a neighbor to 16 and sends back these routes to the neighbor so the neighbor can delete such information from its routing table 4) Triggered updates: RIP immediately advertises triggered updates for topology	OSPF uses the SPF algorithm, since inter-area OSPF is distance vector, it is vulnerable to routing loops. It avoids loops by manipulating a loop-free topology, in which traffic from one area can only reach another area through area 0.

 ⁹ Supports
 ¹⁰ Scalability
 ¹¹ Complexity
 ¹² Loop avoidance

changes to reduce the possibility of routing loops and to speed up network convergence.