

# **CS 3630**

# Robot Kinematics: *Planar Arms*



#### Robot Arms

- A robot arm (aka serial link manipulator) consists of a series of rigid links, connected by joints (motors), each of which has a single degree of freedom.
  - Revolute Joint: Single degree of freedom is rotation about an axis.
  - Prismatic joint: Single degree of freedom is translation along an axis.





Revolute Joint Prismatic Joint

# Other Types of Joints

There are several types of joint that have more than one degree of freedom – but we do not consider those in this class.

In fact, all of the higher degree-offreedom joints can be described by combinations of one degree-offreedom joints, so there is no need to explicitly consider these.



Prismatic (P)





Revolute (R)





Spherical (S)



Planar

# Describing Serial Link Arms

- Number the links in sequence.
- For a robot with n joints:
  - Base (which does not move) is Link 0.
  - End-effector (tool) is attached to Link *n*.
  - Joint i connects Link i-1 to Link i
  - We define the joint variable  $q_i$  for joint i as:

$$q_i = \begin{cases} \theta_i \text{ if joint } i \text{ is revolute} \\ d_i \text{ if joint } i \text{ is prismatic} \end{cases}$$

#### **Two-link Planar Arm:**

- n = 2,
- both links are always coplanar (no rotation out of the plane).
- $q_1 = \theta_1, \ q_2 = \theta_2$



#### Manipulator Kinematics

- Kinematics describes the position and motion of a robot, without considering the forces required to cause the motion.
- Forward Kinematics: Given the value for each joint variable,  $q_i$ , determine the position and orientation of the end-effector (gripper, tool) frame.

#### The basic idea:

Assign lots of coordinate frames, and express these frames in terms of the joint variables,  $q_i$ .





#### General Approach

- Each link is a rigid body.
- We know how to describe the position and orientation of a rigid body:
  - Attach a coordinate frame to the body.
  - Specify the position and orientation of the coordinate frame relative to some reference frame.
- If two links, say link i-1 and link i are connected by a single joint, then the relationship between the two frames can be described by a homogeneous transformation matrix  $T_i^{i-1}$  which will depend only on the value of the joint variable!

> Let's have a quick review of Homogeneous Transformations....

#### Specifying Orientation in the Plane

Given two coordinate frames with a common origin, we describe the orientation of Frame 1 w.r.t. Frame 0 by:

Specifying the directions of  $x_1$  and  $y_1$  w.r.t. Frame 0 by projecting onto  $x_0$  and  $y_0$ .



$$x_1^0 = \begin{bmatrix} x_1 \cdot x_0 \\ x_1 \cdot y_0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

Notation:  $x_1^0$  denotes the x-axis of Frame 1, specified w.r.t Frame 0.

$$y_1^0 = \begin{bmatrix} y_1 \cdot x_0 \\ y_1 \cdot y_0 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

We obtain  $y_1^0$  in the same way.

# Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a *rotation matrix*:

$$R_1^0 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

All rotation matrices have certain properties:

- 1. The two columns are each unit vectors.
- 2. The two columns are orthogonal, i.e.,  $c_1 \cdot c_2 = 0$ .

For such matrices  $R^{-1} = R^T$ 

- 3.  $\det R = +1$
- $\triangleright$  The first two properties imply that the matrix R is **orthogonal**.
- The third property implies that the matrix is **special**! (After all, there are plenty of orthogonal matrices whose determinant is -1, not at all special.)

The collection of  $2 \times 2$  rotation matrices is called the <u>Special Orthogonal Group of order 2</u>, or, more commonly  $\underline{SO(2)}$ .

This concept generalizes to SO(n) for  $n \times n$  rotation matrices.

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$P^1 = egin{bmatrix} p_\chi \ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P=p_{\chi}x_1+p_{\nu}y_1$ 



Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$P^1 = egin{bmatrix} p_\chi \ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P=p_{\chi}x_1+p_{\gamma}y_1$ 



Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$^1P = egin{bmatrix} p_\chi \ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P = p_x x_1 + p_y y_1$ 



To obtain the coordinates of P w.r.t. Frame 0, we project P onto the

$$x_1 P^0 = \begin{bmatrix} P \cdot x_0 \\ P \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0 \\ (p_x x_1 + p_y y_1) \cdot y_0 \end{bmatrix} = \begin{bmatrix} (p_x x_1 + p_y y_1) \cdot x_0$$

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$^1P = \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P = p_x x_1 + p_y y_1$ 



$$p_{y} x_{1} P^{0} = \begin{bmatrix} P \cdot x_{0} \\ P \cdot y_{0} \end{bmatrix} = \begin{bmatrix} (p_{x}x_{1} + p_{y}y_{1}) \cdot x_{0} \\ (p_{x}x_{1} + p_{y}y_{1}) \cdot y_{0} \end{bmatrix} = \begin{bmatrix} p_{x}(x_{1} \cdot x_{0}) + p_{y}(y_{1} \cdot x_{0}) \\ p_{x}(x_{1} \cdot y_{0}) + p_{y}(y_{1} \cdot y_{0}) \end{bmatrix}$$

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$^1P = egin{bmatrix} p_\chi \ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P = p_x x_1 + p_y y_1$ 



$$p_{y} \qquad x_{1} \qquad P^{0} = \begin{bmatrix} P \cdot x_{0} \\ P \cdot y_{0} \end{bmatrix} = \begin{bmatrix} (p_{x}x_{1} + p_{y}y_{1}) \cdot x_{0} \\ (p_{x}x_{1} + p_{y}y_{1}) \cdot y_{0} \end{bmatrix} = \begin{bmatrix} p_{x}(x_{1} \cdot x_{0}) + p_{y}(y_{1} \cdot x_{0}) \\ p_{x}(x_{1} \cdot y_{0}) + p_{y}(y_{1} \cdot y_{0}) \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 
$$P^1 = egin{bmatrix} p_\chi \ p_y \end{bmatrix}$$
 .

We can express the location of the point P in terms of its coordinates  $P = p_{x}x_{1} + p_{y}y_{1}$ 



$$p_{y} \qquad x_{1} \qquad p^{0} = \begin{bmatrix} P \cdot x_{0} \\ P \cdot y_{0} \end{bmatrix} = \begin{bmatrix} (p_{x}x_{1} + p_{y}y_{1}) \cdot x_{0} \\ (p_{x}x_{1} + p_{y}y_{1}) \cdot y_{0} \end{bmatrix} = \begin{bmatrix} p_{x}(x_{1} \cdot x_{0}) + p_{y}(y_{1} \cdot x_{0}) \\ p_{x}(x_{1} \cdot y_{0}) + p_{y}(y_{1} \cdot y_{0}) \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix} = \mathbf{R_1^0} \, \mathbf{P^1}$$

$$P^0 = R_1^0 P^1$$

# Specifying Pose in the Plane

Suppose we now translate Frame 1 (*no new rotatation*). What are the coordinates of P w.r.t. Frame 0?



#### Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

This is just our eqn from the previous page

$$\begin{bmatrix} P^0 \\ 1 \end{bmatrix} = \begin{bmatrix} R_1^0 P^1 + d^0 \\ 1 \end{bmatrix} = \begin{bmatrix} R_1^0 & d^0 \\ 0_2 & 1 \end{bmatrix} \begin{bmatrix} P^1 \\ 1 \end{bmatrix}$$

in which  $0_2 = \begin{bmatrix} 0 & 0 \end{bmatrix}$ 

The set of matrices of the form  $\begin{bmatrix} R & d \\ 0_n & 1 \end{bmatrix}$ , where  $R \in SO(n)$  and  $d \in \mathbb{R}^n$  is called

the **Special Euclidean Group of order** n**,** or SE(n).

### Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

$$\begin{bmatrix} P^0 \\ 1 \end{bmatrix} = \begin{bmatrix} R_1^0 P^1 + d^0 \\ 1 \end{bmatrix} = \begin{bmatrix} R_1^0 & d^0 \\ 0_2 & 1 \end{bmatrix} \begin{bmatrix} P^1 \\ 1 \end{bmatrix}$$

$$\tilde{P}^0 = \begin{bmatrix} P^0 \\ 1 \end{bmatrix}, \tilde{P}^1 = \begin{bmatrix} P^1 \\ 1 \end{bmatrix}$$

$$\tilde{P}^0 = T_1^0 \tilde{P}^1$$

- $\succ T_1^0$  is called a homogeneous transformation matrix
- $ightharpoonup \widetilde{P}^0$  are the homogeneous coordinates for  $P^0$

# Composition of Transformations



From our previous results, we know:

$$\tilde{P}^0 = T_1^0 \tilde{P}^1$$
 
$$\tilde{P}^1 = T_2^1 \tilde{P}^2$$
 But we also know: 
$$\tilde{P}^0 = T_1^0 T_2^1 \tilde{P}^2$$

This is the composition law for homogeneous transformations.

$$T_2^0 = T_1^0 T_2^1$$

#### What about robot arms??



### A special case

Suppose the axis  $x_i$  is collinear with the origin of Frame i-1:

- $x_1$  is collinear with the origin of Frame 0
- $x_2$  is collinear with the origin of Frame 1



$$T_1^0 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & a_1 \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 & a_1 \sin \theta_1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_2^1 = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & a_2 \cos \theta_2 \\ \sin \theta_2 & \cos \theta_2 & a_2 \sin \theta_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Use this to simplify link coordinate frames!

$$T_i^{i-1} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 \\ \sin \theta_i & \cos \theta_i & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & a_i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i & a_i \sin \theta_i \\ 0 & 0 & 1 \end{bmatrix}$$

### Assigning Coordinate Frames to Links

- Frame 0 (the base frame) has its origin at the center of Joint 1 (on the axis of rotation).
- Frame i is *rigidly attached* to Link i, and has it's origin at the center of Joint i-1.
- The  $x_i$ -axis is collinear with the origin of Frame i-1.
- The link length,  $a_i$  is the distance between the origins of Frames i and i-1.
- The homogeneous transformation that relates adjacent frames is given by:

$$T_i^{i-1} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i & a_i \sin \theta_i \\ 0 & 0 & 1 \end{bmatrix}$$



#### The Forward Kinematic Map

• The forward kinematic map gives the position and orientation of the end-effector frame as a function of the joint variables:

$$T_n^0 = F(q_1, \dots, q_n)$$

For the two-link planar arm, we have

$$T_{2}^{0} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_{2} & -\sin \theta_{2} & a_{2} \cos \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2} & a_{2} \sin \theta_{2} \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & a_{1} \cos \theta_{1} + a_{2} \cos(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & a_{1} \sin \theta_{1} + a_{2} \sin(\theta_{1} + \theta_{2}) \\ 0 & 0 & 1 \end{bmatrix}$$

# Simple Geometry...



# Simple Geometry...



$$T_2^0 = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) & a_1 \cos\theta_1 + a_2 \cos(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) & a_1 \sin\theta_1 + a_2 \sin(\theta_1 + \theta_2) \\ 0 & 0 & 1 \end{bmatrix}$$

# Three-Link Planar Arm

We can parameterize the end effector frame by  $(X_e, Y_e, \phi)$ 



$$T_2^0 = \begin{bmatrix} C_{123} & -S_{123} & a_1C_1 + a_2C_{12} + a_3C_{123} \\ S_{123} & C_{123} & a_1S_1 + a_2S_{12} + a_3S_{123} \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_{123} = \cos(\theta_1 + \theta_2 + \theta_3)$$
, etc.

$$T_2^0 = \begin{bmatrix} \cos \phi & -\sin \phi & X_e \\ \sin \phi & \cos \phi & Y_e \\ 0 & 0 & 1 \end{bmatrix}$$

#### About the Forward Kinematic Map

- For the two-link arm, we can **position** the end-effector origin anywhere in the arm's workspace: two inputs  $(\theta_1, \theta_2)$  and two "outputs"  $(X_e, Y_e)$ .
- For the three-link arm, we can position the end-effector origin anywhere in the arm's workspace, <u>and</u> we can choose the orientation of the frame: three inputs  $(\theta_1, \theta_2, \theta_3)$  and three "outputs"  $(X_e, Y_e, \phi)$ .
- Suppose we had a four-link arm?
  - Infinitely may ways to achieve a desired end-effector configuration  $(X_e, Y_e, \phi)$ .



#### More General Robot Arms

- With a bit of work, this can be generalized to arbitrary robot arms.
- We shall not do this bit of work in CS3630.



