Introduction to

Convolutional Neural Networks

이영기 서울대학교 컴퓨터공학부

Convolutional Neural Network

- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- They can recognize patterns with extreme variability (such as handwritten characters).
- CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.

Feed-Forward Networks

Information flow is unidirectional
Data is presented to *Input layer*Passed on to *Hidden Layer*Passed on to *Output layer*Information is distributed
Information processing is parallel

Input Hidden Output weights node Information

Internal representation (interpretation) of data

Each Node is a Perceptron!

Identifying a Bird in an Image

- Let's assume "beak" is unique to birds.
- "beak" exists in a small sub-region of an image.

"Beak" in Different Parts of Images

Convolutional Layer

A Convolutional Neural Network (CNN) is a neural network with "convolutional layers", which has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	~	0	0	~	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

~	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

 1
 -1
 -1

 -1
 1
 -1

 -1
 -1
 1

Filter 1

stride=1

6 x 6 image

-2

-1

-2

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color Image: RGB 3 Channels

How to Form a Feed Forward Network

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	~	0
0	0	1	0	1	0

The Whole CNN

cat dog

Feedforward network

Flattened

Can repeat many times

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

3 -1	-3 (-1
-3 1	0 -3
-3 -3	0 1
3 -2	-2 -1

-1 -1 -1 -1 -2 1 -1 -1 0 -4 3

Why Pooling

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

Max Pooling

Each filter

is a channel

The Whole CNN

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The Whole CNN

cat dog

Activation Layer

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Fully Connected Layer

Conceptually, this can be understood as the voting process to see which input values contribute more to the output.

Tools and APIs

- Tensorflow (https://www.tensorflow.org/)
 - √ Tensorflow light for Mobile and IoT
- PyTorch (https://pytorch.org)
- Caffe2 (https://caffe2.ai)
- Keras (https://keras.io/)

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

AlphaGo

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward net work can be used

But CNN performs much better

AlphaGo's Policy Network

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

CNN in Speech Recognition

CNN in Text Classification

CNN Optimization Techniques (Model Training)

이영기 서울대학교 컴퓨터공학부

References

- Stanford CS231n Lecture Notes
 - ✓ Lecture 7 "Training Neural Networks, Part 1"
 - ✓ Lecture 8 "Training Neural Networks, Part 2"
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville, "Deep Learning" MIT Press 2016.
- And many other papers and blogs in the Internet...

Data Preprocessing

- Biased input degrades training performance
 - ✓ e.g., negative-biased input to ReLU activation "kills" the gradient, whereas positive-biased input makes ReLU meaningless
- Normalizing the data enhances training stability

- Common preprocessing methods (for images)
 - ✓ Subtract per-channel mean (e.g., x [123.68, 116.78, 103.94])
 - ✓ Normalize to [0,1] range (e.g., (x 127.5)/128)

Weight Initialization

- "Where do we start climbing down the hill?"
- Why is it important?

- ✓ When activations are all zero, model is not trained
- ✓ We want "well-distributed" activations!

Common initialization methods

- ✓ Xavier initialization [1] (for sigmoid or tanh activation)
 - tf.contrib.layers.xavier_initializer(), torch.nn.init.xavier_normal()
- ✓ He initialization [2] (for ReLU activation)
 - tf.initializers.he_normal(), torch.nn.init.kaiming_normal()

[1] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," AISTAT 2010. [2] He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Optimizers & Learning Rate Decay

· "How can we go down the hill efficiently?"

- ✓ Stepping policy (i.e., optimizer)
- ✓ Step size (i.e., learning rate)
- Various methods have been proposed (refer to Stanford CS231n Lecture 8 for details)
 - ✓ Optimizers
 - SGD, Adagrad, RMSprop, Adam, ... etc.
 - ✓ Learning rate decay
 - Step, cosine, linear, ... etc.

Common practice

- ✓ Use Adam/RMSprop
- ✓ Start with learning rate between 1e-3 ~ 1e-4
- ✓ Use step decay (period heavily depends on task & loss function)

Batch Normalization

- We want "well-distributed" activations ...
 - → Why don't we intentionally make them so?
- For a batch of activations at a layer, make each dimension close to zero-mean, unit variance

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

Batch Normalization

- We want "well-distributed" activations ...
 - → Why don't we intentionally make them so?
- For a batch of activations at a layer, make each dimension close to zero-mean, unit variance

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
```

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i})$$
 // scale and shift

At test time, use (running) average of values seen during training

c.f.) be careful for this in implementation! tf.layers.batch_normalization(training=True)

Batch Normalization

- We want "well-distributed" activations ...
 - → Why don't we intentionally make them so?
- For a batch of activations at a layer, make each dimension close to zero-mean, unit variance

Benefits

- ✓ Normalizing activations prevent small changes to the parameters from amplifying into larger and sub-optimal changes
 - → Enables higher learning rates (and thereby training speed)
- ✓ Each training sample is seen in conjunction with others in the same mini-batch
 - → Prevents model overfitting

Regularization

- Goal: prevent model from overfitting to training data
- How?
 - \checkmark Add additional loss term $\tilde{L} = L + \lambda R(W)$
 - \blacktriangleright L2 regularization (also known as weight decay) $R(W) = \sum \sum W_{k,l}^2$
 - \succ L1 regularization $R(W) = \sum \sum |W_{k,l}|$
 - ✓ Dropout [4]
 - Randomly set some neurons to zero at training time (e.g., with prob. 0.5)
 - Effect of training a large number of models (ensemble)

Data Augmentation

- How can we make the model more robust?
 - → Add various changes to the data
- Mimicking "real-world" variations remain a challenging question!

Model Ensemble

- Use multiple models to enhance accuracy!
 - (e.g., by averaging the results at test time)
 - ✓ Multiple "snapshots" of a same model during training
 - ✓ Multiple independent model
- Very common for challenges and competitions

Figure from *G. Huang et al., "SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREE," ICLR 2017.*

Efficient Convolutional Layers

Dilated convolution [5]

✓ Efficient for tasks that require a "global view" of the image (e.g., image segmentation)

Standard convolution

Dilated convolution

Efficient Convolutional Layers

- **Dilated convolution** [5]
 - ✓ Efficient for tasks that require a "global view" of the image (e.g., image segmentation)
- Depthwise separable convolution [6]
 - ✓ Commonly used in lightweight CNNs (e.g., MobileNet, Xception)

Depthwise separable convolution

Efficient Convolutional Layers

- Dilated convolution [5]
 - ✓ Efficient for tasks that require a "global view" of the image (e.g., image segmentation)
- Depthwise separable convolution [6]
 - ✓ Commonly used in lightweight CNNs (e.g., MobileNet, Xception)
- Sub-pixel convolution [7]
 - ✓ Computationally efficient alternative of transposed convolution

Transposed convolution

