

Data Driven Engineering II: Advaced Topics

Image processing and analysis

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Term Projects

Welcome to DDE II projects!

If you are interested in the group projects for fun or planning to take the final exam for credits, you need to register to a topic before 14.05.021. Note that each topic has a number of maximum participants. You may find the details in Lecture 1.

Particle Image Density Analysis in PIV Recordings

An object detection study for PIV analysis

Free places: 1

Physical interpretation of LCSs

Data driven model discovery in air blast atomizers

Free places: 5

Time resolved flow field analysis in film cooling

PIV data will be used for flow analysis.

Free places: 5

Others

for HPC access

Period of Event: Today - 14. May 2021

Outline of the week:

Conv. Neural Networks

- What is CNN?
- Why convolution is useful?
- where is it useful?
- CNN How does it work?
- * "Hall of Fame,: Popular Arch. } Next week

 * Transfer Learning with CNN

The soul never thinks without a picture.

Conv. Neural Networks: Basics

Convolutional Naval Network Training Specialized Flag ship of Deep Learning In Image / Video processing Benchmark datasets Best solutions ~ weekly morthly

Conv. Neural Networks: Basics

Datasets

3,749 Machine Learning Datasets

paperswith code n

CIFAR-10

The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The images are labelled with...

5,634 PAPERS • 44 BENCHMARKS

ImageNet

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge...

5,565 PAPERS • 56 BENCHMARKS

MNIST

The MNIST database (Modified National Institute of Standards and Technology database) is a large collection of handwritten digits. It has a training set of 60,000 examples, and a test set of...

3,881 PAPERS • 36 BENCHMARKS

COCO (Microsoft Common Objects in Context)

The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K im-...

3,804 PAPERS • 58 BENCHMARKS

What is convolution operation?

Mulli mise >

W:= wisdom

"Convolution,

Averaging ~ integration

Recent data is more relevont of weighted averaging

Convolution in CNN:

$$\Rightarrow \sum$$

$$S = \sum_{i=1}^{n} x_i$$

• Discrete;
$$\int \Rightarrow \sum \Rightarrow S = \sum x(a) w(t-a)$$

$$I(m+i, n+j) \times (m,n) \star$$

$$(a+b=b+a)$$

Wait a minute... Is it you MLP?

- * What is special here?

 Operation > " Multiplication by a matrix,
- * Kernel is smaller that input $m \times n \implies k \times n$; $k \ll m$

$$\begin{bmatrix} 1 & 3 & 4 \\ 9 & 6 & 7 \\ 5 & 0 & 2 \end{bmatrix} * \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+3b+ & 3a+4b+ \\ 9c+6d & 6c+7d \\ & & \\ 9a+6b+ & 6a+7b+ \\ 5c+p & p+2d \end{bmatrix}$$

Wait a minute... Is it you MLP?

06.05.2021

Advantage #1

Sparse interactions

MCP: Densly connected $x_3 \rightarrow (s_1, ..., s_n)$ o(mxn) runtime/example

CNN
$$\Rightarrow$$
 k=3 \times_3 affects only (s_2, s_3, s_4)
O(kxn) runtime/example

Advantage # 1 Sparse interactions

Receptive field in deeper layers

indirectly
connected
to most of
phoson layer

Advantage # L

Sparse interactions

Receptive field in deeper layers

Visualizing and understanding convolutional networks

Advortage # 1 Sparse interactions

Receptive field in deeper layers

Visualizing and understanding convolutional networks

Advantage # 1 Sparse interactions

Receptive field in deeper layers

Visualizing and understanding convolutional networks

Advortage # 2 Shared parameters

- * In MLP; each elevent in matrix W is least 4 wed only once
 - * In CNN; we learn filters (kernels)

 Les used at every position of the input
- * 11 memory eff. I statistical eff.

Eg . Pmage of 280 x 320 px. • k=2

280 × 319 px.

CNN; 280 x 319 x 3 operation (xx+)

MLP; [280x320x280x319]

· CNN ~ 60k compt. more efficient

06.05.2021

16

Conv. Layer

* "Grid-like, // spatial structure

2D Same

06.05.2021

How to move of the kernel

$$W \Rightarrow 224 - 3 + 1 = 222$$

 $H \Rightarrow 224 - 3 + 1 = 222$

Conv. Layer * "Grid-like, // spatial structure

0 0 7 0 2 3 4 5 2 0 0

0 0 8 0 1 0 6 0 0 0 0

Solution: padding

6	3	4	4	5	0	3	
4	7	4	0	4	0	4	
7	0	2	3	4	5	2	PAD
3	7	5	0	3	0	7	
5	8	1	2	5	4	2	
8	0	1	0	6	0	0	
6	4	1	3	0	4	5	

* valid > no padding

🖊 same > keep dim, same

* "Grid-like, // spatial structure

Gan I skip some px. ?

Conv. Layer

* Stride: granularity of conv. operation

Output;
$$(224-3)/2+1$$

Pooling

subsample the Proput data

* Replace the output with summary statistics

Max.

1 Mean

Dela norm

operations (eg. distance based)

The pooling operation used in convolutional neural networks is a big mistake, and the fact that it works so well is a disaster.

Geoffrey Hinton

Pooling

$$(3 \times 3), S = 1$$

Applications of CNN:

#	Single feature	Multifeature
10	Audio signal Univariate Hme-señes	Josnt-movement Multiv. time-series
2D	Audio + FFT (v, t) Imageo (intensity)	Color Image Analysis — RGB — St. Transport Phen.
3D	Medical Pmagny Volumetric data	Color-video analy. Tr. Trosport Phen.

◀ All Topics

Sort by Posts

Order by Date

Cihan Ates | em0787 | 04. May 2021, 14:41 Edited on: 04. May 2021, 14:43 - by Cihan Ates | em0787

Interesting CNN projects

Dear all,

Below you will find links to some interesting / useful CNN projects. I may update the list later on:

Build a CNN network to predict 3D bounding box of car from 2D image:

food image to recipe with deep convolutional neural networks

Case study: Melanona classification

- Annual cose ~ ↑ 53% btw. 2008 2018
 → UV exposure
- Diagnosis -> visual examination by a dermatologist

O CNN for binary classification

EARLY DETECTION MAKES A DIFFERENCE

5-year survival rate for patients in the U.S. whose melanoma is detected early. The survival rate drops to 66% if the disease reaches the lymph nodes and 27% if it spreads to distant organs.

25

Case study: Melanona classification

an updated database

Dutline of a ML Project

Basic Steps to Follow =

- O.) Understand the business/task-
- 1.) Understand the data.
- 2.) Explore & prepare the data.
- 3.) Shortlist candidate models.
- 4.) Training the model 5.) Evaluate the model predictions.
- 6.) "Serve, the model ?

colab

29

A Walk-through of the Mammalian Visual System

Imagery Debate: The Role of the Brain

