Université de Franche Comté

Architecture des Ordinateurs - Fiche TP 1

Les TP sont effectués en utilisant Linux.

Vous utiliserez le simulateur logisim-evolution-3.8.0-all.jar disponible ici

https://github.com/logisim-evolution/logisim-evolution#download

Pour lancer le simulateur, depuis un terminal ouvert dans le dossier contenant le fichier cidessus, utilisez la commande suivante (java 16 ou supérieur)

/opt/jdk-17.0.3.1/bin/java -jar logisim-evolution-3.8.0-all.jar

Exercice 1 — Débuter avec Logisim

1. Tutoriel

Effectuez en détail les tutoriels intégrés suivants :

- Guide du débutant (Etapes 0 à 4)
- Design hiérarchique (Créez des circuits et utilisez des sous-circuits)
- Caractéristiques supplémentaires (Créez des faisceaux de câbles, répartiteurs et couleurs des câbles)

2. Additionneur

Sur le modèle du cours, créez un nouveau projet contenant un demi-additionneur(2 bits), un additionneur complet (3 bits) et un additionneur à propagation ayant deux entrées 4 bits.

3. Comparateur non signé

Avec la table de vérité vue en TD, utilisez l'outil d'analyse pour implémenter le circuit de calcul de ai < bi (2 bits).

Exercice 2 — Composants du processeur

Vous compléterez les circuits présents dans le fichier MIPS-ENONCE.circ

1. **Décodeur CO**. Complétez le circuit qui décode les signaux suivant en fonction de l'entrée nommé Co.

Со	Sortie Activée
0	zero
3	ijal
4	ibeq
5	ibne
9	iaddiu
10	islti

Со	Sortie Activée
11	isltiu
12	iandi
13	iori
14	ixori
15	ilui
37	ilbu
40	isb

2. **Décodeur NF**. Complétez le circuit qui décode les signaux suivant en fonction de l'entrée nommé Nf. Une sortie est validée seulement si le signal en=1. Pour cela utiliser l'entrée d'activation du décodeur.

Nf	Sortie Activée
0	isll
2	isrl
3	isra
4	isllv
6	isrlv
7	israv
8	ijr
33	iaddu

Nf	Sortie Activée
35	isubu
36	iand
37	ior
38	ixor
39	inor
42	islt
43	isltu
42	islt

- 3. **ENCODEUR**. Complétez le circuit qui place dans un nombre 4 bits les valeurs des indices des entrées e0 à a11.
- 4. \mathbf{UAL} . Complétez le circuit qui réalise les opérations suivantes sur a et b en fonction de du signal Op :

Op	Opération
0	A+B
1	A.B
2	A OR B
3	A NOR B
4	A XOR B
5	B SLL A

Op	Opération
6	B SRL A
7	B SRA A
8	A-B
9	A SLL 16
11	A - B < 0 (signé)
12	A < B (non signé)

5. Comparateur à zéro

Complétez le circuit ZERO qui renvoie 1 si l'entrée 32 bits est à zéro. Vous utiliserez une porte logique et un séparateur.