MATÉRIA DE ESTUDO PARA EXAME - CATEGORIA 1

2017

Valdemar Piedade - CT1ESQ - zedorteio@gmail.com

- 1. Num circuito em paralelo, como se relaciona a corrente total com a corrente individual em cada uma das ramificações do referido circuito?
- A A corrente total é igual ao valor médio das correntes nas várias ramificações.
- B A corrente total diminui à medida que ramificações paralelas vão sendo adicionadas ao circuito.
- C A corrente total é igual à soma das correntes nas várias ramificações.
- D A corrente total é igual à soma do inverso de cada queda individual de tensão.
 - 2. No que respeita à Lei de Kirchhoff, qual da seguinte afirmação é verdadeira?
- A Existem duas leis: a lei dos nós e a lei das malhas.
- B Existem três leis: a lei dos nós, a lei das redes e a lei das malhas.
- C Existem duas leis: a lei das redes e a lei das fontes.
- D Nenhuma das afirmações está correta.
 - 3. Qual das seguintes afirmações é verdadeira no que respeita à Lei de Kirchhoff
- A Existem duas leis: a lei dos nós e a lei das malhas
- B Existem três leis: a lei dos nós, a lei das redes e a lei das malhas
- C Existem duas leis: a lei das redes e a lei das fontes
- D Nenhuma das afirmações está correta
 - 4. A lei das malhas de Kirchhoff, também se designa por:
- A lei das potências
- B lei das tensões
- C lei das correntes
- D lei das resistências
 - 5. A lei dos nós de Kirchhoff, também se designa por:
- A lei das potências
- B lei das resistências
- C lei das tensões
- D lei das correntes

- 6. De acordo com a Lei das malhas de Kirchhoff, qual das afirmações está correcta?
- A A soma algébrica das quedas de tensão numa malha é maior que zero
- B A soma algébrica das quedas de tensão numa malha é inferior a zero
- C A soma algébrica das quedas de tensão numa malha é igual a zero
- D Nenhuma das afirmações está correta
 - 7. De acordo com a Lei dos nós de Kirchhoff, qual das afirmações está correcta?
- A A soma algébrica das correntes no nó é maior que zero
- B A soma algébrica das correntes no nó é inferior a zero
- C A soma algébrica das correntes no nó é igual a zero
- D Nenhuma das afirmações está correta
 - 8. Qual das expressões define a efetividade da blindagem (S) para campos elétricos (sendo "Ei" a intensidade do campo elétrico incidente e "Et" a intensidade do campo elétrico transmitido através da blindagem)?
- A S=20 + log(Ei/Et)
- B S=1-log(Ei/Et)
- C S=20xlog(Ei/Et)
- D S=20-log(Ei/Et)
 - 9. A efetividade da blindagem S é definida para campos magnéticos de acordo com a seguinte expressão sendo "i" a intensidade do campo magnético incidente e "t" a intensidade do campo magnético transmitido através da blindagem)
- A S=20 + log(Hi/Ht)
- B S=1-log(Hi/Ht)
- C S=20xlog(Hi/Ht)
- D S=20-log(Hi/Ht)

10. Uma gaiola de Faraday

- A constitui uma proteção eficaz relativamente a campos eletromagnéticos
- B constitui uma proteção eficaz relativamente a ondas sonoras
- C constitui uma proteção eficaz relativamente a sismos
- D Nenhuma das respostas anteriores está correta

11. Duma forma geral, qual das seguintes linhas de transmissão possui a melhor blindagem a campos eletromagnéticos?

- A Cabo coaxial
- B PLC "Power Line Communications"
- C Par telefónico
- D Todas possuem blindagem
 - 12. Quais são os efeitos da blindagem sobre os campos magnéticos?
- A Reflexão e absorção
- B Reflexão e efeito de túnel
- C Absorção e efeito de túnel
- D Reflexão e aumento da velocidade de propagação
 - 13. Qual das seguintes linhas de transmissão possui blindagem de campos electromagnéticos?
- A Cabo coaxial
- **B PLC Power Line Communication**
- C Par telefónico
- D Todas possuem blindagem
 - 14. Diz-se que dois sinais sinusoidais estão em quadratura?
- A Quando o desfasamento entre eles é de 0 graus
- B Quando o desfasamento entre eles é de 60 graus
- C Quando o desfasamento entre eles é de 90 graus
- D Quando o desfasamento entre eles é de 180 graus
 - 15. Que tipo de onda tem um tempo de subida significativamente mais rápido que o tempo de descida (ou vice-versa)?
- A Uma onda co-sinusoidal
- B Uma onda quadrada
- C Uma onda dente de serra
- D Uma onda sinusoidal

16. Qual o equipamento mais adequado para efetuar a medição da diferença de fase entre dois sinais sinusoidais?

- A Wattimetro
- B Osciloscópio
- C Frequencímetro
- D Medidor de onda estacionária

17. Como se designam as figuras que representam num osciloscópio a relação de fase entre dois sinais sinusoidais?

- A Figuras de Lissajous
- B Figuras de Dirac
- C Figuras de mérito
- D Figuras de Watt

18. A potência de ruído é dada pela expressão Pn=kTB. Como se designa a constante k?

- A Constante de Kelvin
- B Constante de Lissajous
- C Constante de Dirac
- D Constante de Boltzman

19. Como podemos diminuir a potência de ruído de um sistema de receção?

- A Aumentando o mais possível a largura de banda efetiva do sistema
- B Aumentando o mais possível a temperatura de ruído do sistema, sem degradar o sinal desejado
- C Filtrando de forma a diminuir o mais possível a largura de banda efetiva do sistema, sem degradar o sinal desejado
- D Nenhuma das respostas anteriores está correta

20. O ruído térmico é um sinal

- A sinusoidal
- B contínuo
- C quadrático
- D aleatório

21. Em que medida é que a diminuição do fator de ruído afeita o desempenho do recetor?

- A Reduz a relação sinal-ruído
- B Aumenta a relação sinal-ruído
- C Reduz a largura de banda
- D Aumenta a largura de banda

22. O que têm em comum as modalidades RTTY, Código Morse, PSK31 e packet?

- A Todas necessitam da mesma largura de banda
- B são modos digitais
- C Usam o modo ligar/desligar
- D Usam a modulação por desvio de fase

23. Que tipo de transmissão provoca variação do nível instantâneo de potência do sinal de RF para transformação de informação?

- A Modulação por chaveamento de pulso
- B Modulação por pulsos
- C Modulação de frequência
- D Modulação de amplitude

24. Quais dos seguintes códigos digitais se compõem de elementos de comprimentos diferentes

- A ASCII
- B AX25
- C Baudot
- D Código de Morse

25. Identifique uma das vantagens do recurso ao código ASCII para fins de comunicação de dados?

- A Inclui uma função de correção de erros
- B Cada carácter contém um menor número de bits de informação do que os restantes códigos
- C É possível transmitir texto tanto em letras maiúsculas como minúsculas
- D Usa um carácter como código de alteração para enviar números e caracteres especiais

26. O que determina a razão da potência de pico envolvente em relação à potência média num sinal de fonia em banda lateral única?

- A A frequência do sinal modulado
- B As características do sinal modulado
- C O grau de supressão da portadora
- D O ganho do amplificador

27. O que quer dizer FSK?

- A "Frequency Shunt Kelvin"
- B "Frequency Shift Keying"
- C "Forward Shunt Keying"
- D "Forward Shift Keying"
 - 28. Que tipo de informação pode ser transmitido por meio de formas de onda digitais?
- A Voz humana
- B Sinais de vídeo
- C Dados
- D Todas as opções são válidas

29. Ao transmitir um sinal de dados, por que razão é importante saber qual o respetivo ciclo de trabalho ("duty cycle")?

- A Para ajudar a sintonizar o transmissor
- B Para evitar quaisquer danos no andar final de saída do transmissor
- C Para permitir que outras estações tenham tempo para interromper a transmissão
- D Todas as opções são válidas

30. O bit rate pode ser definido como

- A o número de bits por segundo
- B a taxa de erros por cada bit transmitido
- C o número de inversões de fase numa dada comunicação
- D a quantidade de informação associada a cada bit transmitido

- 31. Numa comunicação o bit rate é de 9600. Sabendo que o baud rate é de 4800, qual o número de bits por símbolo/palavra (conjunto de bits com comprimento fixo)?
- **4 2**
- B 4
- C 8
- D-16

32. Qual das afirmações está correta?

- A Duma forma geral e para um dado tipo de comunicação, quanto maior o bit rate menor é a largura de faixa necessária
- B Duma forma geral e para um dado tipo de comunicação, quanto maior o bit rate maior é a largura de faixa necessária
- C Duma forma geral e para um dado tipo de comunicação, a largura de faixa necessária não depende do bit rate
- D Duma forma geral, para um dado tipo de comunicação e para um dado bit rate, a largura de faixa necessária apenas depende da potência refletida pela antena
 - 33. Que parâmetro varia no sinal modulado num sistema de modulação por posição de pulso, vulgarmente designado por PPM ("Pulse-Position Modulation")?
- A O número de pulsos por segundo
- B A amplitude dos pulsos
- C A duração dos pulsos
- D O momento em que se produz cada pulso
 - 34. A que estão associadas as siglas CRC e FEC nas comunicações eletrónicas?
- A A diferentes técnicas de modulação analógicas e digitais
- B A sistemas de deteção de erros em transmissão de dados
- C A sistemas de amplificação de RF
- D A sistemas de adaptação de impedâncias
 - 35. Como é que uma medida de 20 dB acima de S9 lida num medidor S se compara a um sinal S9, assumindo uma calibração apropriada do medidor S?
- A É 10 vezes mais fraco
- B É 20 vezes mais fraco
- C É 20 vezes mais forte
- D É 100 vezes mais forte

36. Duma forma geral e no domínio do tempo, na face de amostragem duma conversão analógica/digital.

- A O sinal analógico é passado por um filtro passa baixo resultando um sinal digital de amplitude variável proporcional ao sinal amostrado, mas com uma menor gama espectral.
- B O sinal analógico é multiplicado por um trem de impulsos de amplitude constante, resultando um trem de impulsos de amplitude variável proporcional ao sinal amostrado
- C O sinal analógico é sujeito a uma amplificação não linear, passa por um filtro passa alto de forma a regenerar as componentes de mais altas frequências que constituirão o sinal digital.
- D O sinal analógico é misturado com outro sinal analógico padrão de frequência muito superior, resultando um sinal digital de amplitude variável proporcional ao sinal amostrado.

37. O teorema de Nyquist ou da amostragem estabelece que

- A a frequência de amostragem deve ser no mínimo igual à maior frequência associada ao sinal amostrado
- B a frequência de amostragem deve ser no mínimo o dobro da maior frequência associada ao sinal amostrado
- C a frequência de amostragem deve ser no mínimo quatro vezes superior à maior frequência associada ao sinal amostrado
- D a frequência de amostragem deve ser no mínimo dez vezes superior à maior frequência associada ao sinal amostrado

38. Numa conversão analógica/digital em que consiste o "aliasing"?

- A É a distorção resultante de não se utilizar componentes de qualidade no circuito
- B É uma distorção aleatória que se verifica na conversão de sinais de muito alta frequência
- C É uma distorção relacionada com não linearidades dos amplificadores utilizados no processo
- D É a distorção resultante do não cumprimento do teorema de Nyquist

39. A conversão analógica/digital pode ser dividida em três etapas que são

- A a diferenciação, a amostragem e a integração
- B a integração, a codificação e a quantificação
- C a amostragem, a quantificação e a codificação
- D a quantificação, a amostragem e a integração

40. A convolução de dois pulsos retangulares tem como resultado

- A um pulso retangular
- B um pulso triangular
- C um pulso de amplitude infinita
- D um pulso de amplitude nula

41. Pretende-se determinar o tempo de carga de um condensador num circuito RC série. Que equipamentos se devem utilizar?

- A Um gerador de sinal que aplica uma onda quadrada ao circuito e um analisador espectral para visualizar e medir a forma de onda aos terminais do condensador.
- **B** Um gerador de sinal que aplica uma tensão contínua ao circuito e um analisador espectral para visualizar e medir a tensão aos terminais do condensador.
- C Um gerador de sinal que aplica uma onda quadrada ao circuito e um analisador espectral para visualizar e medir a forma de ondas aos terminais do condensador.
- D Um gerador de sinal que aplica uma onda quadrada ao circuito e um osciloscópio para visualizar e medir a forma de ondas aos terminais do condensador.
 - 42. Num condensador plano constituído por duas superfícies metálicas, separadas por um isolante, a sua capacidade aumenta quando
- A aumenta a área das superfícies metálicas
- B diminui o afastamento entre as superfícies metálicas
- C aumenta a constante dielétrica do isolante
- D Todas as respostas estão corretas

43. Num condensador plano constituído por duas superfícies metálicas, separadas por um isolante, a sua capacidade aumenta quando

- A aumenta a área das superfícies metálicas
- B aumenta o afastamento entre as superfícies metálicas
- C diminui a constante dielétrica do isolante
- D Todas as respostas estão corretas

44. Como reage um condensador a uma corrente alternada?

- A À medida que aumenta a frequência da corrente alternada aplicada a reactância diminui
- B À medida que aumenta a frequência da corrente alternada aplicada a reactância aumenta
- C À medida que aumenta a amplitude da corrente alternada aplicada a reactância aumenta
- D À medida que aumenta a amplitude da corrente alternada aplicada a reactância diminui

45. A reactância de um condensador é tanto maior quanto

- A menor for a sua capacidade
- B maior for a sua capacidade
- C menor for a sua indutância
- D maior for a sua indutância

46. Como devem ser posicionadas duas bobinas de forma a minimizar a indutância mútua?

- A Com os seus eixos de enrolamento alinhados
- B Com os seus eixos de enrolamento em paralelo entre si
- C Com os seus eixos de enrolamento na perpendicular entre si
- D Ambas resguardadas num mesmo espaço blindado, não importando a orientação relativa dos seus eixos

47. O valor do coeficiente de auto-indução de uma bobina cilíndrica é tanto maior quanto

- A maior for a resistência interna da bobina
- B maior for a capacidade entre as espiras da bobina
- C maior for o número de espiras da bobina
- D Todas as hipóteses anteriores estão corretas

48. O valor do coeficiente de auto-indução de uma bobina cilíndrica depende, entre outros fatores,

- A do número de espiras e da permeabilidade magnética do material que constitui o seu núcleo
- B do número de espiras e da resistência associada a essa bobina
- C da permeabilidade magnética do material que constitui o seu núcleo e das capacidades entre as suas espiras
- D da constante dielétrica do material que constitui o seu núcleo e das capacidades entre as suas espiras

49. Porque razão é importante minimizar a indutância mútua de duas bobinas?

- A Para aumentar a transferência de energia entre os dois circuitos.
- B Para reduzir ou eliminar o acoplamento indesejado.
- C Para reduzir as emissões conduzidas.
- D Para aumentar a frequência de ressonância própria das duas bobinas.

50. Qual o motivo para a existência de tensão mo secundário de um transformador quando está ligada a fonte de tensão alternada no primário do transformador?

- A Acoplamento capacitivo.
- B Acoplamento através de corrente elétrica.
- C Indutância mútua.
- D Capacidade mútua.

51. Qual é o efeito provocado pelas capacidades parasitas entre as espiras numa bobina?

- A O campo magnético pode sofrer uma inversão
- B A bobina pode adquirir ressonância própria em determinadas frequências
- C A permeabilidade magnética pode aumentar
- D A tensão nominal pode ser excedida

52. Que razão importante existe para que numa bobina se usem toróides de ferro pulverizado em vez de toróides de ferrite?

- A Os toróides de ferro pulverizado têm normalmente maior permeabilidade inicial.
- B Os toróides de ferro pulverizado têm normalmente maior estabilidade de temperatura.
- C Os toróides de ferro pulverizado requerem normalmente um menor número de espiras para produzir uma determinada indutância.
- D Os toróides de ferro pulverizado apresentam a maior potência nominal.

53. Em que consiste a reactância numa bobina?

- A Oposição ao fluxo de corrente contínua causada pela resistência.
- B Oposição ao fluxo de corrente alternada causada pela sua indutância.
- C Uma propriedade de resistências ideais em circuitos de corrente alternada.
- D Produção de uma grande faísca nos contactos do interruptor quando a alimentação de energia da bobina é desligada.

54. Qual das seguintes frases está correta?

- A Numa bobina, à medida que aumenta a frequência da corrente alternada aplicada a reactância diminui
- B Numa bobina, à medida que aumenta a amplitude da corrente alternada aplicada a reactância aumenta
- C Numa bobina, à medida que aumenta a amplitude da corrente alternada aplicada a reactância diminui
- D Numa bobina, à medida que aumenta a frequência da corrente alternada aplicada a reactância aumenta

55. Qual das seguintes opções causa oposição ao fluxo de corrente alternada numa bobina?

- A Condutância.
- B Relutância.
- C Admitância.
- D Reactância.

56. Qual a unidade de medida da reactância?

- A Farad.
- B Ohm.
- C Ampere.
- D Siemens.

57. O fator de qualidade (Q) de uma bobina é tanto maior

- A quanto maior for a sua resistência parasita
- B quanto menor for a sua resistência parasita
- C quanto menor for o seu afastamento aos limites físicos do circuito em que está inserida
- D quanto maior for o seu afastamento aos limites físicos do circuito em que está inserida

58. Como se designa o mecanismo que leva a existência de tensão no secundário de um transformador, quando no primário está ligada uma fonte de tensão alternada?

- A Acoplamento capacitivo.
- B Acoplamento através de corrente dielétrica.
- C Indutância mútua.
- D Capacidade mútua.

59. Como se denomina a corrente no primário de um transformador se não houver carga no secundário?

- A Corrente de magnetização.
- B Corrente contínua.
- C Corrente de excitação.
- D Corrente estacionária.

- A Ao secundário do transformador
- B Ao primário do transformador
- C Ao núcleo do transformador
- D Às placas do transformador
 - 61. Num transformador ideal qual a relação entre as potências do primário (potência fornecida ao transformador) e do secundário (potência fornecida pelo transformador ao circuito que se pretende alimentar)?
- A São iguais
- B A potência do primário é maior que a potência do secundário
- C A potência do secundário é maior que a potência do primário
- D Não é possível estabelecer esta relação, pois dependerá de fatores que não são conhecidos
 - 62. O primário de um transformador com 100 espiras é percorrido por uma corrente de 10 A. Qual será a corrente no secundário do transformador se este tiver 1000 espiras?

- 63. Qual é a tensão no secundário de 500 espiras de um transformador se o primário de 2250 espiras do transformador tiver uma tensão alternada de 120 V?
- A 2,37 KV
- **B** 540 V
- <u>C 26,7 V</u>
- D 5,9 V
 - 64. Pretende-se adaptar um circuito cuja impedância de saída é de 15 Ohm, com a entrada de um amplificador cuja impedância de entrada é de 50 Ohm. Qual deverá ser a relação entre o número de espiras no primário e no secundário do transformador de impedâncias?
- A O número de espiras no secundário deverá ser maior que o número de espiras no primário
- B O número de espiras no primário deverá ser maior que o número de espiras no secundário
- C O número de espiras no primário deverá ser igual ao número de espiras no secundário
- D Nenhuma das hipóteses anteriores está correta, pois um transformador nunca poderá servir como transformador de impedâncias

65. Como se avaliam os díodos de junção?

- A Pela corrente directa máxima e capacidade.
- B Pela corrente inversa máxima e tensão de pico inversa.
- C Pela corrente inversa máxima e capacidade.
- D Pela corrente directa máxima e tensão de pico inversa.

66. Qual a queda tensão aos terminais de uma ligação em série de dois díodos de junção de silício?

- A É cerca de metade da tensão em cada um deles
- B É cerca do dobro da queda de tensão em cada um deles
- C Tem um valor fixo (independente da corrente no circuito) de cerca de 25 V
- D Tem um valor fixo (independente da corrente no circuito) de cerca de 12,5 V

67. Que dispositivo se costuma usar como referência estável de tensão num regulador linear de tensão?

- A Um díodo de Zener
- B Um díodo de túnel
- C Um retificador controlado de silício
- D Um díodo varactor ou varicap

nominais que não devem ser excedidas

68. Quais são as duas principais variáveis nominais que não devem ser excedidas em rectificadores com díodos de silício?

- A Tensão de pico inversa e corrente directa média.
- B Potência média e tensão média.
- C Reactância capacitiva e tensão de de avalanche.
- D Pico de impedância de carga e tensão de pico.

69. Quando é que ocorre a polarização inversa de um díodo?

- A A polarização inversa de um díodo ocorre quando o ânodo fica submetido a um potencial positivo relativamente ao cátodo
- B A polarização inversa de um díodo ocorre quando este é instalado na parte superior de um circuito impresso
- C A polarização inversa de um díodo ocorre quando este é instalado na parte inferior de um circuito impresso
- D A polarização inversa de um díodo ocorre quando o cátodo fica submetido a um potencial positivo relativamente ao ânodo

70. O que é corrente de fuga num díodo bipolar de germânio?

- A É a corrente que passa no díodo a muito altas frequências, devido a efeitos capacitivos parasitas
- B É a corrente que passa no díodo a muito baixas frequências, devido a efeitos indutivos parasitas
- C É a corrente que passa no díodo quando está inversamente polarizado
- D É a corrente que passa no díodo quando está diretamente polarizado

71. Um "display"de sete segmentos poderá ser contruído com um determinado tipo de díodos. A que tipo de díodos nos referimos?

- A Díodos varicaps
- **B** Díodos Schottky
- C Díodos LED
- D Díodos Zener

72. O que é um varicap?

- A É um díodo que emite luz
- B É um díodo habitualmente usado em pontes retificadoras
- C É um díodo com uma elevada velocidade de comutação
- D É um díodo com capacidade variável em função da tensão que lhe é aplicada

73. Que tipo de dispositivo semicondutor varia a sua capacidade interna à medida que ocorre uma variação na tensão aplicada aos seus terminais?

- A Díodo varactor ou varicap.
- B Díodo de túnel.
- C Rectificador controlado de silício.
- D Díodos de Zener.

74. Que tipo de circuito é apresentado na figura?

- A Regulador de tensão de comutação.
- B Amplificador com emissor ligado à terra.
- C Regulador de tensão linear.
- D Circuito seguidor de emissor.

75. Qual das seguintes opções constitui um teste de grande utilidade para um transístor de silício NPN, em que a junção PN está polarizada diretamente?

- A Medir a resistência entre a base e o emissor com um ohmímetro a medida deve ser cerca de 6 a 7 Ohm
- B Medir a resistência entre a base e o emissor com um ohmímetro a medida deve ser cerca de 0,6 a 0,7 Ohm
- C Medir a tensão entre a base e o emissor com um voltímetro a medida deve ser cerca de 6 a 7 Volt
- D Medir a tensão entre a base e o emissor com um voltímetro a medida deve ser cerca de 0,6 a 0,7 Volt

76. Qual o objetivo de Q1 no circuito da figura?

- A Fornece realimentação negativa para melhorar a regulação
- B Fornece uma carga constante à fonte de tensão
- C É o elemento regulador ou de controlo do circuito
- D Fornece corrente a D1

77. Qual o objetivo de C1 no circuito da figura?

- A Contribui para a ressonância do circuito à frequência de entrada
- B Fornece uma polarização fixa a Q1
- C Filtra a saída
- D Controla a tensão de saída

78. Qual o objetivo de R2 no circuito da figura?

- A Fornece uma polarização fixa a Q1
- B Fornece uma polarização fixa a D1
- C Reduz o ruído em D1
- D Fornece uma carga mínima constante a Q1

79. Na figura, qual o objetivo de R1 e R2?

- C Filtragem de componentes de alta frequência
- D Realimentação

80. Que tipo de circuito é apresentado na figura?

- A Regulador de tensão com comutação
- B Regulador de tensão linear
- C Amplificador com emissor comum
- D Amplificador seguidor de emissor

81. Na figura, qual o objectivo de R3?

- A Polarização fixa.
- B Bypass de emissor.
- C Resistência de carga à saída.
- D Polarização própria.

82.Qual o objectivo de C3 no circuito da figura?

A – Impede a oscilação própria.

- B Funciona como filtro de entrada do circuito
- C Fornece uma polarização fixa a Q1
- D Aumenta os picos de ondulação

83. Na figura, qual o objectivo de C2?

- A Acoplamento de saída.
- B Bypass de emissor.
- C Acoplamento de entrada.
- D Filtro de ruído.

84. Qual o fator de segurança que oferece uma resistência de drenagem da fonte de alimentação?

- A Funciona como fusível da tensão em excesso
- B Descarrega o condensador de filtragem
- C Exclui os riscos de choques elétricos produzidos pelas bobinas de indução
- D Elimina a corrente do "loop" de terra

85.Em que consiste o beta de um transístor de junção bipolar?

- A Na frequência na qual o ganho de corrente é reduzido a 1
- B Na variação da corrente do coletor em relação à corrente de base
- C Na tensão de rutura da junção base-coletor
- D Na velocidade de comutação do transístor

86. Qual das seguintes opções descreve a construção de um transístor MOSFET?

- A A porta é formada por uma junção de tensão inversa
- B A porta está separada do canal por uma camada fina isolante
- C A fonte está separada do dreno por uma camada fina isolante
- D A fonte forma-se pelo depósito de metal em silício

87. Qual dos seguintes dispositivos de estado sólido é mais semelhante a um tubo de vácuo quanto às suas características?

- **A** Um transístor bipolar.
- B Um transístor de efeito de campo.
- C Um díodo de túnel.
- D Um varicap.

88. A montagem em emissor comum caracteriza-se pela seguinte configuração:

- A Emissor à massa (em AC), sinal de entrada entre a base e o emissor e sinal de saída entre o coletor e o emissor (massa)
- B Coletor à massa (em AC), sinal de entrada entre a base e o emissor e sinal de saída entre o emissor e a massa
- C Base à massa (em AC), sinal de entrada entre o emissor e a base e sinal de saída entre o coletor e a base (massa)
- D Nenhuma das respostas anteriores está correta
 - 89. A montagem com um transístor, designada como "seguidor de emissor" ("ou coletor comum"), caracteriza-se por ter
- A Ganho unitário
- B Impedância de entrada elevada
- C Impedância de saída baixa
- D Todas as respostas anteriores estão corretas
 - 90. Como se compara a impedância de entrada DC na porta de um transístor de efeito de campo (FET) com a impedância de entrada DC de um transístor bipolar?
- A Não podem ser comparadas sem se saber o valor de tensão da fonte
- B O FET tem uma impedância de entrada baixa; o transístor bipolar tem uma impedância de entrada elevada
- C O FET tem uma impedância de entrada elevada; o transístor bipolar tem uma impedância de entrada baixa
- D A impedância de entrada de um FET é igual à de um transístor bipolar
 - 91. Qual a principal função de uma grelha de blindagem num tubo de vácuo?
- A Redução da capacidade entre a grelha e a placa
- B Aumento da eficiência
- C Melhor resposta em alta-frequência
- D Redução da resistência da placa

92. Que significa a sigla CMOS?

- A Common Mode Oscillating System
- **B** Complementary Mica-Oxide Silicon
- C Complementary Metal-Oxide Semiconductor
- D Complementary Metal-Oxide Substrate

93. Qual a vantagem de dispositivos lógicos CMOS sobre dispositivos TTL?

- A Capacidade de saída diferencial
- B Baixa distorção
- C Imune a danos causados por descargas estáticas
- D Baixo consumo de energia

94. Em que consiste um amplificador operacional?

- A Um amplificador diferencial de ganho elevado, cujas características são determinadas pelos componentes externos ao amplificador
- B Um amplificador de áudio, cujas características são determinadas pelos componentes internos do amplificador
- C Um amplificador usado no andar de potência de um emissor de FM do serviço de amador na faixa dos 10
 GHz
- D Um programa que calcula o ganho de um amplificador de RF

95. Num AMPOP teoricamente ideal, como varia o ganho com a frequência, dentro da sua gama de frequências de operação?

- A Aumenta linearmente com o aumento da frequência
- B Diminui linearmente com o aumento da frequência
- C Diminui logaritmicamente com o aumento da frequência
- D Não varia com a frequência

96. Qual é normalmente a impedância de entrada de um circuito integrado AMPOP?

- A 100 Ohm
- B 1000 Ohm
- C Muito baixa
- D Muito alta

97. Qual a vantagem do recurso a circuitos com AMPOP em comparação com a utilização de elementos LC num filtro?

- A Os AMPOP são mais resistentes e podem suportar mais excessos que os elementos LC.
- B Os AMPOP apenas funcionam com uma frequência.
- C Há mais variedades de AMPOP do que elementos LC.
- D Os AMPOP apresentam ganho em vez de perdas de inserção.
 - 98. Qual a tensão à saída do circuito da figura, em que R1=1000 Ohm e R2=10000 Ohm, se à entrada for aplicada uma tensão de 0,23 V?

99. Qual o ganho de tensão absoluto aproximado do circuito da figura, se R1=3300 Ohm e RF=47000 Ohm?

- A 28
- <mark>B 14.</mark>
- C 7.
- D 0.07.

100. Qual o ganho de tensão absoluto aproximado do circuito da figura, se R1=1800 Ohm e R2=68000 Ohm?

- A 1
- B 0.03
- **C** 38
- D 76
 - 101. O condensador real (portanto não ideal) pode ser modelado por uma associação de três componentes ideais. Quais são esses componentes?
- A Condensador ideal, bobina ideal e resistência ideal
- B Condensador ideal, bobina ideal e transístor ideal
- C Condensador ideal, resistência ideal e díodo ideal
- D Condensador ideal, díodo ideal e transístor ideal

- 102. Que tipo de condensador é normalmente utilizado em fontes de alimentação para filtrar os sinais retificados de corrente alternada?
- A Condensador cerâmico de disco
- B Condensador de vácuo variável
- C Condensador de mica
- D Condensador eletrolítico
 - 103. Qual é a capacidade equivalente de dois condensadores de 5000 pF e um condensador de 750 pF todos ligados em paralelo?
- **A** 576,9 pF
- **B** 1733 pF
- **C** 3583 pF
- D 10750 pF

104. Qual a capacidade de um condensador de 20 microfarad ligado em série a um condensador de 50 microfarad?

- A 70 nF
- B 14,3 microfarad
- C 70 microfarad
- D 1 mF

105. Os efeitos capacitivos parasitas entre as espiras das bobinas reais (portanto não ideais) manifestam-se mais

- A em corrente contínua
- B nas frequências mais elevadas
- C nas frequências mais baixas
- D Nenhuma resposta está correta, pois estes efeitos nunca se manifestam

106. Que componente se deverá adicionar a uma bobina de forma a aumentar a indutância do circuito?

- A Um condensador ligado em série
- B Uma resistência ligado em paralelo
- C Uma bobina ligada em paralelo
- D Uma bobina ligada em série

1ESQ

- 107. Qual a indutância de três bobinas de 10 mH ligados em paralelo?
- A 0,33 H
- **B** 3,33 H
- C 3,33 mH
- **D** 33 mH

108. Que tipo de circuitos ideais apresentam os sinais de corrente e de tensão em fase?

- A Circuitos puramente capacitivos
- B Circuitos puramente resistivos
- C Circuitos puramente indutivos
- D Qualquer tipo de circuito, seja ele puramente capacitivo, puramente resistivo ou puramente indutivo

109. Qual a relação de fase entre a corrente e a tensão através de um circuito ressonante em paralelo?

- A A tensão tem um avanço de 90° em relação à corrente
- B A corrente tem um avanço de 90° em relação à tensão
- C A tensão e a corrente estão em fase
- D A tensão e a corrente estão em oposição de fase

110. Qual o tipo de circuitos ideais que apresentam os sinais de corrente de tensão em fase?

- A Circuitos capacitivos
- B Circuitos resistivos
- C Circuitos indutivos
- D Qualquer tipo de circuito, seja ele capacitivo, resistivo ou indutivo.
 - 111. Qual dos seguintes filtros seria a melhor escolha para ser usado num duplexer de um repetidor de VHF?
- A Filtro de cristal.
- B Filtro de cavidade.
- C Filtro de DSP.
- D Filtro LC.
 - 112. Qual a frequência de ressonância aproximada de um circuito em série RLC se R=22 Ohm, L=0,05 mH e C=40 pF?
- **A** 44,72 MHz
- **B** 22,36 MHz
- C 3,56 MHz
- **D** 1,78 MHz
 - 113. Qual a frequência de ressonância de um circuito em paralelo RLC se R=47 Ohm, L=0,025 mH e C=10 pF?
- **A** 10,07 MHz
- **B** 63,24 MHz
- C 10,07 kHz
- **D** 63,24 kHz

114. Qual a frequência de ressonância de um circuito em paralelo RLC se R=56 Ohm, L=0,04 mH e C=200 pF?

- A 3,76 MHz
- B 1.78 MHz
- C 11.18 kHz
- D 22.36 kHz

115. Qual é o valor da impedância de um circuito em série RLC em ressonância?

- A Elevada, em comparação com a resistência do circuito
- B Aproximadamente igual à reactância capacitiva
- C Aproximadamente igual à reactância indutiva
- D Aproximadamente igual à resistência do circuito

116. Qual o valor da impedância de um circuito com um resistência, uma bobina e um condensador todos em paralelo, em ressonância?

- A Aproximadamente igual à resistência do circuito
- B Aproximadamente igual à reactância indutiva
- C Reduzida, em comparação com a resistência do circuito
- D Aproximadamente igual à reactância capacitiva

ESQ

117. Qual a relação de fase entre a corrente e a tensão através de um circuito ressonante em paralelo?

- A A tensão tem um avanço de 90º em relação à corrente.
- B A corrente tem um avanço de 90º em relação à tensão
- C A tensão e a corrente estão em fase.
- D A tensão e a corrente estão 180º fora de fase.

118. O fator de qualidade (Q) de um filtro passivo com uma dada frequência de ressonância (fr) é tanto maior

- A quanto maior for a largura de banda (B) a -3 dB
- B quanto maior for o número de transístores com ganho superior a 0 dB
- C quanto menor for a largura de banda (B) a -3 dB
- D quanto menor for o número de transístores com ganho superior a 0 dB

119. Qual das seguintes opções constitui um efeito indesejado da utilização de um filtro de largura de banda demasiado ampla na secção IF de um recetor?

- A "Overshoot" (sobre-passagem) do "offset" de saída
- B Som de timbre do filtro
- C Distorção por ruído térmico
- D Podem-se captar sinais indesejados
 - 120. Qual a largura de banda a -3 dB de um circuito ressonante em paralelo com frequência de ressonância de 7,1 MHz e fator Q=150?
- A 157,82 Hz
- **B** 315,66 Hz
- C 47,33 kHz
- D 23,67 kHz
 - 121. Qual a largura de banda preferível para ser usada num transmissor radiotelefónico de banda lateral única?
- A 6 KHz a -6 dB
- B 2,4 KHz a -6 dB
- C 500 Hz a -6 dB
- D 15 kHz a -6 dB
 - 122. Quais das seguintes características possui uma rede em T com condensadores em série e uma bobina de derivação (shunt) em paralelo?
- A Transforma impedâncias e é um filtro passa-baixo
- B Transforma reactâncias e é um filtro passa-baixo
- C Transforma impedâncias e é um filtro passa-alto
- D Transforma reactâncias e é um filtro notch de banda estreita
 - 123. Filtro de cristal de quartzo caracteriza-se por
- A ter um elevado fator de qualidade (Q)
- B ter uma largura de banda (B) muito estreita
- C ter uma boa estabilidade de temperatura
- D Todas as hipóteses anteriores estão corretas

124. Os filtros a cristal

- A têm a sua frequência de ressonância facilmente alterável por ajuste dos potenciómetros que são parte integrante dos seus cristais
- B têm um baixo Q
- C para uma mesma ordem, são mais baratos que os que são constituídos por bobinas e condensadores
- D têm um elevado Q

125. Qual das seguintes opções elimina portadoras interferentes de forma automática?

- A Sintonização passa banda.
- B Filtro de processamento digital de sinal (DSP).
- C Equilíbrio de mistura.
- D Limitador de ruído.

126. Qual a vantagem de um receptor com filtro de frequência intermédia criado com processamento digital de sinal (DSP) relativamente a um receptor com filtro analógico?

- A Pode-se obter uma basta gama de largura de banda e de formatos de filtros.
- B São necessários menos componentes digitais.
- C Grande redução dos dados misturados.
- D O filtro com processamento digital de sinal é mais eficaz em frequências de VHF.

127. Qual o objectivo de um circuito step-star numa fonte de alimentação de alta tensão?

- A Fornecer uma tensão dupla à saída para aplicações de potência reduzida.
- B Compensar as variações da tensão da linha de entrada.
- C Permitir o controlo remoto da fonte de alimentação.
- D Permitir o carregamento gradual do filtro dos condensadores.

128. Qual das seguintes características é apresentada por um regulador eletrónico linear de tensão?

- A Tensão de saída em rampa
- B Uma comutação mais rápida permite valores mais elevados de tensão de saída
- C O ciclo de trabalho do elemento de controlo é proporcional às condições da linha ou carga
- D A condução do elemento de controlo é variada de forma a manter constante a tensão à saída

129. Qual a vantagem de uma fonte de alimentação comutada relativamente a uma fonte de alimentação linear?

- A A fonte comutada permite valores mais elevados de tensão de saída
- B A fonte comutada envolve um número inferior de componentes nos circuitos
- C A fonte comutada, por operar em frequências mais elevadas, permite o recurso a componentes de circuito mais pequenos
- D Todas as opções são válidas

130. Qual a principal desvantagem das fontes de alimentação comutadas em relação às fontes lineares?

- A Mais baixo rendimento
- B Necessidade de maiores placas dissipadoras de calor
- C Geração de mais ruído eletromagnético
- D Maior volume físico para a mesma potência

131. Por que razão é que os produtos de intermodulação de 3ª ordem constituem um aspecto de interesse especial no que respeita aos amplificadores lineares de potência?

- A Porque, duma forma geral, estão bastante próximos do sinal desejado em termos de frequência
- B Porque, duma forma geral, se encontram relativamente distantes do sinal desejado, em termos de frequência
- C Porque, duma forma geral, invertem as bandas laterais, produzindo distorções
- D Porque, duma forma geral, mantêm as bandas laterais, causando assim múltiplas duplicações de sinal

132. Num amplificador de classe A

- A o transístor conduz durante menos de meio período
- B o transístor conduz durante meio período
- C o transístor conduz durante mais de meio período
- D o transístor conduz durante todo o período

133. Num amplificador de classe B

- A o transístor conduz durante um quarto do período
- B o transístor conduz durante meio período
- C o transístor conduz durante três quartos do período
- D o transístor conduz durante todo o período

134. Num amplificador de classe AB

- A o transístor conduz durante menos de meio período
- B o transístor conduz durante meio período
- C o transístor conduz durante mais de meio período
- D o transístor conduz durante todo o período

135. Qual a vantagem de um amplificador de classe C?

- A Elevada eficiência
- B Operação linear
- C Não requer circuitos de sintonização
- D Todas as opções são válidas

136. Qual a principal vantagem de se utilizar amplificadores em classe C?

- A Baixa distorção harmónica.
- B Elevada eficiência.
- C Baixo ruído.
- D A classe C não apresenta nenhuma vantagem em relação a outras classes de amplificação.
 - 137. Qual dos seguintes tipos de amplificadores se caracteriza por ter uma zona morta de funcionamento que causa distorção de cruzamento ("crossover distorsion")?
- A Amplificador "push-push"
- B Amplificador "push-pull"
- C Classe C
- D Classe A

138. Qual a principal desvantagem de se utilizar amplificadores em classe C?

- A Elevada distorção harmónica
- B Baixa eficiência
- C Elevado ruído
- D A classe C não apresenta nenhuma desvantagem relativamente a outras classes de amplificação

139. Qual a principal vantagem de se utilizarem amplificadores em classe A?

- A Baixa distorção harmónica
- B Elevada eficiência
- C Baixa linearidade
- D A classe A não apresenta nenhuma vantagem em relação a outras classes de amplificação

140. Em que região da linha de carga de um amplificador de classe A com emissor comum se deve ajustar a polarização?

- A Aproximadamente a meio entre as zonas de saturação e de corte.
- B Na região em que a linha de carga intersecta o eixo da tensão.
- C No ponto em que a resistência de polarização é igual à resistência de carga.
- D No ponto em que a linha de carga intersecta a curva de corrente de polarização zero.
 - 141. Qual a principal vantagem de se utilizar amplificadores em classe C?
- A Baixa distorção harmónica.
- B Elevada eficiência.
- C Baixo ruído.
- D A classe C não apresenta nenhuma vantagem em relação a outras classes de amplificação.

142. Qual das seguintes opções constitui uma característica de um amplificador de classe A?

- A Potência reduzida no modo de suspensão.
- B Elevada eficiência.
- C Não requer polarização.
- D Nível de distorção reduzida.

143. Qual das seguintes opções resulta do efeito de captura num recetor de FM?

- A Todos os sinais a uma dada frequência são desmodulados.
- B Não é possível ouvir qualquer dos sinais.
- C O sinal mais forte a ser recebido é o único sinal desmodulado.
- D O sinal mais débil a ser recebido é o único sinal desmodulado.

144. A figura representa

- A um detetor de produto
- B um detetor de frequência modulada
- C um detetor de envolvente
- D um detetor de fase

145. A figura representa

- A um detetor de produto
- B um detetor de frequência modulada
- C um detetor de amplitude modulada
- D um detetor de fase

146. Quais as principais vantagens de um detetor de produto sobre um detetor de envolvente?

- A O detetor de produto é mais simples que o detetor de envolvente e possui em geral menos componentes discretos
- B O detetor de produto comporta-se melhor em sinais sobre-modulados e tem uma melhor relação sinal/ruído que um detetor de envolvente
- C O detetor de produto desmodula todos os tipos de sinais, incluindo os sinais digitais e efetua em simultâneo a correção de erros, que o detetor de envolvente não faz
- D Todas as hipóteses de resposta estão erradas

147. O detetor de envolvente

- A É mais simples que o detector de produto.
- B Comporta-se melhor em sinais sobremodulados do que o detector de produto.
- C Tem uma melhor relação sinal/ruído do que o detector de produto.
- D Todas as hipóteses de resposta estão erradas

148. Como funciona um detector de díodo?

- A Pela rectificação e filtragem de sinais de RF.
- B Pela ruptura da tensão de zener.
- C Pela mistura e sinais com ruído na zona de transição do díodo.
- D Verificando a variação da reactância no díodo em relação à frequência.

149. Que tipo de circuito é utilizado em diversos recetores de FM para converter sinais de um amplificador de IF em áudio?

- A Detetor do produto
- B Inversor de fase
- C Detetor de envolvente
- D Todas as hipóteses de resposta estão erradas

150. Em que consiste um discriminador de frequência?

- A Um circuito gerador de FM
- B Um circuito que filtra dois sinais adjacentes muito próximos
- C Um circuito com comutação de bandas automático
- D Um circuito de deteção de sinais FM

151. Quais os componentes básicos de um oscilador?

- A Um amplificador e um divisor
- B Um multiplicador e um misturador de frequências
- C Um circulador e um filtro que funcione num "loop" por realimentação ("feed-back")
- D Um amplificador e um circuito de realimentação

152. Em eletrónica, duma forma geral, como pode ser definido um circuito oscilador?

- A É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com uma frequência dez vezes inferior
- **B** É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com o dobro da frequência
- C É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com mesma frequência
- D É um circuito que gera um sinal periódico sem necessidade de lhe ser aplicado um sinal externo
 - 153. Os osciladores RC ativos (com AMPlificadores OPeracionais AMPOP) não devem ser utilizados para frequências superiores a 1 MHz (e idealmente as frequências de trabalho não deverão ultrapassar os 100 kHz). Porquê?
- A Devido às indutâncias e capacidades parasitas das resistências
- B Devido às indutâncias e resistências parasitas dos condensadores
- C Devido às limitações de resposta em frequência dos AMPlificadoes OPeracionais AMPOP
- D Todas as hipóteses de resposta estão erradas

154. Como é fornecida a realimentação positiva a um oscilador Hartley?

- A Através de um divisor indutivo
- B Através de um divisor capacitivo
- C Através de uma ligação acoplada
- D Através de um condensador de neutralização

155. Como é fornecida a realimentação positiva a um oscilador Pierce?

- A Através de uma bobina de derivação
- B Através de uma ligação acoplada
- C Através de um condensador de neutralização
- D Através de um cristal de quartzo

156. Em que consiste um oscilador de díodo Gunn?

- A <u>Um oscilador cujo funcionamento se baseia nas propriedades de resistência negativa de semicondutores adequadamente dopados.</u>
- B Um oscilador baseado num díodo de gás argónio.
- C Um oscilador de referência muito estável baseado no princípio "tee-notch".
- D Um oscilador de referência muito estável baseado no efeito de portadora quente.

157. Quais dos componentes básicos de grande parte dos osciladores?

- A Um amplificador e divisor.
- B Um amplificador e um misturador de frequências.
- C Um circulador e um filtro que funciona num loop por antecipação (eed-forward).
- D Um filtro e um amplificador que funciona num loop por realimentação (feed-back).

158. O que determina a frequência de um oscilador LC?

- A O número de andares no contador
- B O número de andares no divisor
- C A indutância e a capacidade no circuito de tanque
- D Demora do circuito de atraso

159. **O que é um VCO?**

- A É um oscilador controlado por frequência
- B É um oscilador controlado por tensão
- C É um oscilador controlado por um sinal de luz coerente
- D É um oscilador controlado por um campo gravitacional

160. Num analisador espectral em que se traduz o ruído de fase, relativamente a uma portadora "ideal" à saída de um emissor?

- A Em sinais muito concentrados em torno da portadora, um pouco acima e um pouco abaixo desta
- B Em sinais nas exatas frequências múltiplas da portadora
- C Em sinais cujas frequências dependem não só da frequência da portadora como das frequências dos sinais emitidos na vizinhança do emissor em causa
- D Em sinais cujas frequências estão relacionadas com as frequências da portadora numa relação que resulta da sequência de Fibonacci

161. Duma forma geral, o que é uma malha de captura de fase PLL ("Phase Locked Loop")?

- A É uma malha em que o sinal de realimentação é usado para sincronizar a frequência (ou fase) instantânea do sinal de saída com a frequência (ou fase) instantânea do sinal de entrada
- B É uma malha em que o sinal de realimentação é usado para aumentar a potência instantânea do sinal de saída, proporcionalmente à potência Instantânea do sinal de entrada, garantindo sempre que estes dois sinais estão em fase
- C É uma malha em que o sinal de realimentação é usado para minimizar a frequência instantânea do sinal de saída, em função duma tensão em fase aplicada como sinal de entrada
- D É uma malha em que o sinal de realimentação é usado para maximizar a frequência instantânea do sinal de saída, em função duma tensão em fase aplicada como sinal de entrada

162. Qual dos seguintes circuitos não poderá fazer parte do diagrama de blocos de uma malha de captura de fase?

- A VCO
- B Detetor de envolvente
- C Comparador de fase
- D Filtro passa-baixo

163. Qual a gama de captura de um circuito com malha de captura de fase?

- A A gama de frequências que permite fechar o circuito.
- B A gama de tensão que permite fechar o circuito.
- C A gama de impedâncias à entrada que permite fechar o circuito.
- D O período de tempo que o circuito leva a fechar.

164. Uma malha de captura de fase que contém um oscilador controlado por tensão está associado a um modulador de

- A amplitude.
- B frequência.
- C amplitude com portadora suprimida.
- D onda contínua.

165. O que quer dizer PLL?

- A Phase Local Loop.
- B Power Local Loop.
- C Phase Locked Loop.
- D Power Locked Loop.

166. Num emissor de FM, a malha de captura de fase contém obrigatóriamente

- A um filtro passa alto para cortar as harmónicas do sinal modulado.
- B um amplificador de RF onde entra o sinal modulante.
- C um oscilador controlado por tensão onde entra o sinal modulante.
- D Nenhuma das respostas anteriores está correcta..

167. Por que razão se costuma usar um oscilador estável como parte de um sintetizador de frequência com malha de captura de fase?

- A Porque qualquer variação de amplitude no sinal do oscilador de referência vai evitar que o loop se feche no sinal desejado.
- B Porque qualquer variação de fase no sinal do oscilador de referência vai produzir ruído de fase à saída do sintetizador.
- C Porque qualquer variação de fase no sinal do oscilador de referência vai produzir distorção harmónica no sinal modulado.
- **D** Porque qualquer variação de amplitude no sinal do oscilador de referência vai evitar que o loop mude a frequência.

168. Que vantagem se obtém com o uso de um processador digital de sinais (DSP) numa estação de amador?

- A Boa ligação à terra
- B Supressão do ruído dos sinais recebidos
- C Maior ganho da antena
- D Maior largura de banda da antena

169. No processamento digital de sinais, são muitas vezes utilizados filtros que se designam por FIR. O que representa esta sigla?

- A "Filter, Infinite, Radio"
- B "Forward Impulse Radio"
- C "Fiiter of Impulse Response"
- D "Finite Impulse Response"

170. No processamento digital de sinais, são muitas vezes utilizados filtros que se designam por IIR. O que representa esta sigla?

- A "Infinite Input Radio"
- B "Infinite Impulse Radio"
- C "Infinite Impulse Response"
- D "Input Impulse Response"

171. Duma forma simplificada, poderemos dizer que o resultado da transformada de Fourier

- A é a representação no domínio da frequência S(f) dum sinal cuja representação no domínio do tempo é s(t)
- B é a representação no domínio do tempo s(t) dum sinal cuja representação no domínio da frequência é S(f)
- C é a representação no domínio espaço temporal s(x,y,z,t) dum sinal cuja representação no domínio da frequência é S(f)
- D é a representação no domínio complexo s(i) dum sinal cuja representação no domínio real é S(r)

172. A transformada de Fourier de um sinal periódico

- A é um sinal semelhante a ruído branco gaussiano
- B é composto por ondas quadradas sobrepostas
- C é composto por impulsos nas frequências harmónicas do sinal
- D é por uma onda sinusoidal, cuja frequência é inversamente proporcional ao maior período do sinal transformado

173. Qual das seguintes afirmações está incorreta?

- A Um recetor é anto melhor quanto maior for a sua sensibilidade.
- B Um recetor é tanto melhor quanto maior for a sua seletividade.
- C <u>Um recetor é tanto melhor quanto maior for a sua capacidade de amplificação global</u> (sinais úteis e sinais interferentes).
- D Um recetor é tanto melhor quanto maior for a sua rejeição da frequência imagem.

- 174. Que tipo de circuito se agrega a um transmissor FM para restabelecer as frequências de áudio mais baixas atenuadas ou as frequências de áudio mais altas amplificadas?
- A Uma rede de de-ênfase.
- B Um supressor heteródino.
- C Um prescaler de áudio.
- D Uma rede de pré-ênfase.
 - 175. Qual dos seguintes modos é mais afectado por uma resposta em fase não linear num filtro-IF de um receptor?
- A Dispersão por meteoritos.
- B Voz em banda lateral única. C – Digital. D - Vídeo.
 - Os amplificadores sintonizados
 - A são úteis apenas para a amplificação de sinais óticos
 - B são úteis apenas para a amplificação de sinais de áudio
 - C são úteis para a amplificação de sinais de banda larga
 - D são úteis para a amplificação de sinais de banda estreita
 - 177. Duma forma geral, os amplificadores sintonizados apresentam uma resposta tipicamente
 - A passa-baixo
 - B passa-alto
 - C passa- banda
 - D rejeita-banda

178. Que tipo de circuito é representado na figura (em que A é um amplificador operacional, R1 e R2 são resistências e D1 e D2 são díodos)?

- A PLL
- B VCO
- C Limitador
- D Fonte de alimentação
 - 179. Num recetor, para que os sinais sejam ajustados de forma a manter um nível médio na saída aproximadamente constante, devem utilizar-se circuitos
- A de alimentação estabilizados
- B de controlo automático de ganho
- C amplificadores de baixo ruído
- D sintetizadores de frequência a cristal

L5U

180. Duma forma geral para que serve o controlo automático de ganho no processamento de sinais?

- A Para manter o tratamento dos sinais numa zona linear.
- B Para evitar saturações no tratamento dos sinais.
- C Para que os sinais sejam ajustados de forma a manter um nível médio de saída.
- D Todas as hipóteses de resposta estão correctas.

181. Onde se pode encontrar o medidor S?

- A No receptor.
- B Na ponte SWR.
- C No transmissor.
- D Na ponte de condutância.

182. Onde se pode encontrar normalmente o medidor S?

- A No receptor.
- B Na ponte SWR.
- C No transmissor.
- D Na ponte de condutância.

183. O que mede o medidor S?

- A Condutância.
- B Impedância.
- C Intensidade do sinal recebido.
- D Potência do transmissor.

184. Qual o objectivo de um pré-selector num receptor de comunicações?

- A Armazenar as frequências usadas com mais regularidade.
- B Fornecer um leque de constantes de tempo de AGC.
- C Melhorar a rejeição de sinais indesejados.
- D Permitir a selecção do dispositivo ideal de amplificador de RF.

185. Como poderá ser definido, de forma simplificada, o conceito de seletividade de um recetor?

- A É a capacidade que o recetor tem de rejeitar sinais em frequências muito próximas da largura de banda necessária do sinal útil
- B É a capacidade que o recetor tem de desmodular sinais muito fracos
- C É a capacidade que um recetor tem de desmodular sinais utilizando técnicas de modulação digital
- D É a capacidade que um recetor tem de rejeitar o ruído da fonte da alimentação do próprio recetor

186. Qual a relação entre o fator de ruido e a figura de ruido?

- A A figura de ruído é o fator de ruído expresso em dB
- B A figura de ruído é o fator de ruído multiplicado pela relação sinal-ruído à entrada do recetor
- C A figura de ruído é o fator de ruído multiplicado pela relação sinal-ruído à saída do recetor
- D A figura de ruído é o fator de ruído expresso em Hz

187. Em que medida é que o aumento do factor de ruído afecta o desempenho do receptor?

- A Reduz a relação sinal-ruído.
- B Aumenta a relação sinal-ruído.
- C Reduz a largura de banda.
- D Aumenta a largura de banda.

188. O que significa o ruido de fundo de um receptor?

- A O nível mínimo à saída de áudio quando o ganho de RF adopta o valor mínimo possível.
- B A potência equivalente de ruído de fase gerado pelo oscilador local.
- C O nível mínimo de ruído que sobrecarrega o estágio o amplificador de RF.
- D A potência equivalente do ruído à entrada eu se produz ao substituir a antena por uma carga fictícia adaptada.
 - 189. Como se designa a redução da sensibilidade do recetor causada por um sinal forte próximo da frequência recebida?
- A Dessensibilização
- **B** Silenciamento
- C Interferência por modulação cruzada
- D "Squelch gain rollback"
 - 190. De que forma se podem reduzir as probabilidades de dessensibilização do

recetor?

- A Diminuindo a largura de banda de RF do recetor
- B Aumentando a frequência intermédia do recetor
- C Aumentando o ganho "front-end" do recetor
- D Passando de AGC rápido para lento

- 191. Como se designa o bloqueio de um sinal de fonia FM por outro sinal de fonia FM mais forte?
- A Dessensibilização
- B Interferência por modulação cruzada
- C Efeito de captura
- D Discriminação de frequências
 - 192. Como se designa o processo pelo qual sinais de dois transmissores se misturam num ou em ambos os amplificadores finais e se geram sinais indesejados às frequências de soma e diferença dos sinais originais?
- A Dessensibilização do amplificador
- B Neutralização
- C Bloqueio
- D Intermodulação

193. O que provoca a intermodulação num circuito eletrónico?

- A Um ganho demasiado baixo
- B Falta de neutralização
- C Circuitos ou dispositivos não lineares
- D Realimentação positiva

194. Duma forma geral, o ruído de fase expressa-se em

- A dBc/Hz
- B dBc/V
- C dBc/W
- D dBc/Ph

195. Em que consiste o processo de multiplexagem na frequência de vários sinais em banda base que se pretendem transmitir?

- A Na rotação de cada um dos sinais da banda base para frequências simétricas das originais.
- B Na translação de cada um dos sinais da banda base para frequências próximas das frequências das várias portadoras.
- C Na amostragem da banda base dos sinais que se pretendem transmitir, seguida de uma convolução entre eles no domínio da frequência.
- D Nenhuma das hipóteses está correta.

196. O que quer dizer QAM?

- A "Quadature Amplitude Modulation"
- B "Queue Amplitude Modulation"
- C "Quadature Algorithm Modulation"
- D "Queue Algorithm Modulation"

197. O que acontece quando uma quantidade excessiva de energia de sinal atinge um circuito misturador?

- A Geram-se produtos espúrios o misturador.
- B Produz-se um vazio no misturador.
- C Produzem-se limitações automáticas.
- D Produzem-se frequências de batimento.

198. Em eletrónica, duma forma geral, como pode ser definido um circuito oscilador?

- A É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com uma frequência dez vezes inferior.
- B É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com o dobro da frequência.
- C É um circuito que gera um sinal periódico a partir de um sinal externo que lhe é aplicado com mesma frequência.
- D É um circuito que gera um sinal periódico sem necessidades de lhe ser aplicado um sinal externo.

199. O andar final, amplificador em classe C, de um emissor de frequência modulada pode, de forma simplificada, ser dividido em três partes:

- A Malha de adaptação de entrada, transístores de amplificação e malha de adaptação de saída
- B Malha de adaptação de entrada, transístores de amplificação e malha de saída com PLL
- C Malha de entrada com VCO, transístores de amplificação e malha de adaptação de saída
- D Malha de entrada com VCO, transístores de amplificação e malha de saída com PLL

200. Qual das seguintes opções constitui motivo para utilizar um transformador de adaptação de impedâncias?

- A Para maximizar a relação sinal-ruído na emissão
- B Para maximizar a transferência de potência
- C Para maximizar o coeficiente de onda estacionária
- D Para maximizar o ganho do amplificador de saída

201. Duma forma geral, uma modulação de frequência é

- A uma rotação de frequência
- B uma adição da frequência modulante com o inverso do período da frequência da portadora
- C uma translação de frequência
- D Nenhuma das hipóteses está correta

202. Por que razão não se deve usar a modulação de frequência em fonia abaixo dos 29,5 MHz?

- A A eficiência do emissor é reduzida para este modo
- B Não é possível atenuar as frequências harmónicas a níveis práticos
- C A largura de banda excede os limites recomendados
- D A estabilidade da frequência não seria apropriada

203. A modulação de fase

- A nunca é utilizada em radiocomunicações
- B tal como a modulação de frequência, é um tipo de modulação angular
- C tal como a modulação de amplitude, é desmodulada com recurso a um detetor de envolvente
- D é expressamente proibida na regulamentação nacional aplicável
 - 204. Qual dos seguintes tipos de modulação designa uma modulação de fase?
- A PSK
- B-FSK
- C QAM
- D ASK
 - 205. Qual o princípio fundamental de um modulador de fase?
- A Varia a sintonização do pré-amplificador de microfone para gerar sinais modulados em fase.
- B Varia a sintonização do circuito de tanque do amplificador para gerar sinais modulados em amplitude.
- C Varia a sintonização do circuito de tanque do amplificador para gerar sinais modulados em fase.
- D Varia a sintonização do pré-amplificador de microfone para gerar sinais modulados em amplitude.
 - 206. Qual a vantagem de um transmissor controlado por cristal?
- A Estabilidade da frequência de saída.
- B Excelente nitidez da modulação.
- C Facilidade de comutação entre faixas.
- D Facilidade de alteração de frequências.
 - 207. Qual a largura de banda total de uma transmissão de fonia FM com 3 kHz de desvio e frequência máxima de modulação de 2,5 kHz?
- **A** 3 kHz
- B 11 kHz
- C 8 kHz
- D 16 kHz
 - 208. Qual a largura de banda total de uma transmissão de fonia FM com 5 kHz de desvio e frequência máxima de modulação de 3 kHz?
- A 3 kHz
- **B** 5 kHz
- C 8 kHz
- D 16 kHz

209. O que significa o processo flat-topping de uma transmissão de fonia de banda lateral única?

- A Distorção do sinal causado por insuficiência de corrente no colector.
- B O controlo automático de nível do transmissor está devidamente ajustado.
- C Distorção do sinal causado por um impulso excessivo.
- D A portadora do transmissor está devidamente suprimida.

210. Porque é que nas radiocomunicações os sinais não são emitidos na sua banda base, carecendo de uma translação de frequências resultante do processo de modulação?

- A Porque, duma forma geral, em banda base os sinais nunca poderiam ser recuperados
- <u>B Porque, duma forma geral, a banda base da maior parte dos sinais a serem transmitidos, se localiza numa zona do espectro não adequada para as radiocomunicações</u>
- C Porque, duma forma geral, a translação de frequências é imprescindível à implementação de técnicas de correção de erros na modulação analógica
- D Nenhuma das respostas está correta

211. Qual a frase que é verdadeira?

- A A modulação consiste na amostragem do sinal na sua banda base
- B A modulação traduz-se na translação de um sinal da sua gama de freguências para outra gama de

frequências

- C Num processo de modulação nunca existe qualquer translação de frequências
- D A modulação traduz-se na rotação de um sinal da sua gama de frequências no espaço real para outra gama de frequências no espaço complexo

212. Qual das seguintes afirmações está correta?

- A O índice de modulação dum sinal FM de banda estreita é maior que o de um sinal FM de banda larga.
- B Duma forma geral, considera-se que estamos em presença de um sinal FM de banda larga quando o seu índice de modulação é superior a 0,99.
- C O índice de modulação de um sinal de FM expressa-se em Hertz.
- O índice de modulação dum sinal FM de banda estreita é menor que o de um sinal
 FM de banda larga.

213. Qual das seguintes afirmações está correta?

- A A antena é um elemento recíproco, ou seja o seu princípio de funcionamento é idêntico na emissão e na receção
- B A antena é um elemento recíproco, ou seja o seu princípio de funcionamento faz com que tanto radie no plano horizontal como no plano vertical
- C A antena não é um elemento recíproco, ou seja o seu princípio de funcionamento confere-lhe características diferentes na emissão e na receção
- D A antena não é um elemento recíproco, ou seja o seu princípio de funcionamento faz com que radie muito menos no plano horizontal do que no plano vertical

214. A antena isotrópica

- A é utilizada em comunicações acima de 1 GHz
- B é utilizada em comunicações abaixo de 30 MHz
- C raramente é utilizada pois possui lóbulos secundários no diagrama de radiação que são difíceis de modelar teoricamente
- D não tem existência física servindo apenas como modelo de referência

215. Uma antena omnidirecional real

- A apresenta um diagrama de radiação omnidirecional em todos os planos
- B é na sua essência uma antena isotrópica
- C apenas pode ser utilizada abaixo de 30 MHz
- D apresenta um diagrama de radiação omnidirecional num dado plano

216. Qual das seguintes opções é uma aplicação de uma antena Beverage?

- A Transmissão direccional para faixas baixas de HF.
- B Recepção direccional para faixas baixas de HF.
- C Localização de direcção portátil a frequências altas de HF.
- D Localização de direcção portátil a frequências baixas de HF.

217. Que desvantagem apresenta uma antena de fio comprido com alimentação directa?

- A Tem de ser maior que um comprimento de onda.
- B O contacto físico com objectos de metal na estação pode produzir queimaduras de RF.
- C Produz apenas radiação polarizada verticalmente.
- D Não é eficaz para faixas HF mais elevadas.

218. Qual das seguintes opções descreve uma antena do tipo log-periódica?

- A O comprimento e a distância entre os elementos aumenta logaritmicamente de uma extremidade do boom à outra.
- B A impedância varia periodicamente em função da frequência.
- C O ganho varia logaritmicamente em função da frequência.
- D O coeficiente de onda estacionária varia periodicamente em função do comprimento do boom.
 - 219. Qual deverá ser aproximadamente o comprimento físico de uma antena dipolo de meia onda ajustada a uma frequência de 3,55 MHz?
- **A** 12 m
- B 25 m
- C 40 m
- D 80 m
 - 220. Qual a principal vantagem de um dipolo dobrado relativamente ao dipolo de Hertz?
- A Ocupa menos espaço, sendo mais fácil a sua instalação
- B Tem maior impedância, sendo mais fácil a sua adaptação ao emissor
- C Tem maior diretividade, o que permite a sua utilização nas comunicações de amador por satélite acima de 30 GHz
- D Todas as hipóteses estão corretas
 - 221. Qual é aproximadamente a impedância do ponto de alimentação no centro de uma antena de dipolo dobrado?
- A 300 Ohm
- B 6,28 vezes a frequência de operação
- C 50 Ohm
- D 1450 Ohm
 - 222. Duma forma geral, as antenas parabólicas são mais utilizadas em
- A LF
- B-HF
- C VHF
- D SHF

223. Como varia o ganho de uma antena parabólica com a duplicação da frequência de funcionamento?

- A O ganho não varia
- B O ganho é multiplicado por 0,707
- C O ganho aumenta 6 dB
- D O ganho aumenta 3 dB

224. Qual a desvantagem do uso de uma antena multibanda com traps?

- A Pode radiar harmónicos.
- B Apenas pode ser usada para o funcionamento numa banda.
- C É demasiado direccional a baixas frequências.
- D Tem de ser neutralizada.

225. Qual a vantagem do uso de uma antena com traps?

- A Tem uma maior directividade nas bandas de HF.
- B Tem um ganho elevado.
- C Minimiza as radiações de harmónicos.
- D Pode ser usada para o funcionamento em multibandas.

226. Qual seria uma forma eficiente de adaptar uma linha de alimentação a uma antena VHF ou UHF se não se conhecer a impedância nem da antena nem da linha de alimentação?

- A Usar um balun 1:1 de 50 ohm entre a antena e a linha de alimentação.
- B Usar a técnica de adaptação universal stub.
 - C Ligar a rede ressonante em série LC transversalmente aos terminais da alimentação da antena.
 - D Ligar a rede ressonante em paralelo LC transversalmente aos terminais da alimentação da antena.

227. Qual dos seguintes dispositivos pode ser utilizado para fins de adaptação de impedâncias em RF?

- A Um transformador.
- B Uma rede PI.
- C Um troço da linha de transmissão.
- D Todas as opções são válidas.

228. Qual o objectivo subjacente à utilização do acoplador gama em antenas Yagi?

- A Adaptação de uma impedância relativamente baixa do ponto de alimentação a uma impedância de 50 Ohms.
- **B** Adaptação de uma impedância relativamente alta do ponto de alimentação a uma impedância de 50 Ohms.
- C Aumento da relação frente/costas.
- D Aumento do ganho do lóbulo principal.
 - 229. Por que razão é necessário saber a impedância do ponto de alimentação de uma antena?
- A Para adaptar as impedâncias e assim obter a máxima transferência de potência da linha de alimentação.
- B Para medir a densidade de radiação do campo próximo de uma antena de transmissão.
- C Para calcular a relação frente/lado de uma antena.
- D Para calcular a relação frente/costas de uma antena.
 - 230. Se um dipolo de meia onda ressonante a uma dada frequência for encurtado fisicamente, a sua impedância, para essa frequência,
- A torna-se capacitiva
- B torna-se Indutiva
- C mantém-se resistiva pura
- D Todas as opções estão incorretas
 - 231. Quando a polarização de uma antena de receção não é mesma que a polarização da onda eletromagnética incidente (que se pretende receber), diz-se que
- A existe desadaptação de polarizações
- B que o campo elétrico e o campo magnético da onda incidente estão em fase
- C que o campo elétrico e o campo magnético da onda incidente estão em quadratura
- D existe uma prevalência do efeito pelicular de polarização
 - 232. Qual a polarização de uma onda eletromagnética se o campo magnético for paralelo à superfície da Terra?
- A Circular
- **B** Horizontal
- C Elíptica
- D Vertical

233. Como se designa a razão entre a potência radiada por uma antena e a potência que lhe é entregue?

- A Ganho de radiação da antena
- B Diretividade de radiação da antena
- C Eficiência de radiação da antena
- D Largura do feixe de radiação da antena

234. Como varia a largura de feixe de uma antena com o aumento do ganho?

- A Aumenta geometricamente
- B Aumenta aritmeticamente
- C Mantém-se essencialmente inalterada
- D Diminui

235. A eficiência de radiação de uma antena pode ser expressa como o quociente entre a

- A resistência de radiação e a resistência de perdas da antena
- B resistência de radiação e a resistência total da antena
- C resistência de perdas e a resistência de radiação da antena
- D resistência de total e a resistência de perdas da antena

236. Quais as componentes da resistência total de uma antena?

- A Resistência de radiação e resistência característica de onda
- B Resistência de perdas e resistência de dipolo
- C Resistência de perdas e resistência característica de onda
- D Resistência de radiação e resistência de perdas

237. De que forma se pode melhorar a eficiência de uma antena vertical HF de quarto de onda com ligação à terra?

- A Instalando um bom sistema radial de terra
- B Isolando a blindagem do cabo coaxial da terra
- C Encurtando a antena na vertical
- D Reduzindo o diâmetro do elemento de radiação

238. No padrão da radiação de antena da figura, qual é a relação aproximada frente/costas?

- A (10 dB)
- B (20 dB)
- C (30 dB)
- D (40 dB)

239. No padrão da radiação de antena da figura, qual é a largura aproximada do feixe a 3dB?

- $A (75^{\circ})$
- $B (50^{\circ})$
- $C (25^{\circ})$
- $D (30^{\circ})$

240. No padrão da radiação de antena da figura, qual é a relação aproximada frente/lado?

- A (10 dB)
- B (14 dB)
- C (24 dB)
- D (36 dB)

241. Por que razão é menor o comprimento físico e uma linha de transmissão de cabo coaxial do que o seu comprimento elétrico?

- A O efeito pelicular é menos significativo no cabo coaxial.
- B A impedância característica é maior numa linha de alimentação paralela.
- C Os sinais elétricos propagam-se mais rapidamente num cano coaxial do que no ar.
- D Os sinais elétricos propagam-se mais lentamente num cabo coaxial do que no ar.

242. Um cabo coaxial é um elemento

- A que é parte constituinte de um guia de ondas
- B balanceado
- C não balanceado
- D que é parte constituinte de um dipolo de Hertz

243. Duma forma geral como varia a atenuação de um cabo coaxial à medida que aumenta a frequência do sinal transmitido?

- A A atenuação é independente da frequência
- **B** Aumenta
- C Diminui
- D Atinge um máximo próximo dos 18 MHz

244. Qual a alteração sofrida pela atenuação do cabo coaxial à medida que aumenta a frequência do sinal transmitido?

- A A atenuação é independente da frequência
- **B** Aumenta
- C Diminui
- D Atinge um máximo próximo dos 18 MHz

245. O que é a frequência de corte num guia de ondas?

- A É a máxima frequência em que há propagação no quia de ondas
- B É a frequência abaixo da qual não existe propagação no guia de ondas
- C É a frequência cujo comprimento de onda, corresponde ao comprimento do guia de ondas
- D É a frequência cuja velocidade de propagação no guia de ondas é cerca de metade da velocidade da luz no vazio

246. Em que consiste o fator de velocidade de uma linha de transmissão?

- A Consiste na razão entre a impedância característica da linha e a impedância de terminação
- B Consiste no índice de blindagem do cabo coaxial
- C Consiste na velocidade da onda na linha de transmissão multiplicada pela velocidade da luz no vácuo
- D Consiste na razão entre a velocidade da onda na linha de transmissão e a velocidade da luz no vácuo
 - 247. Qual o comprimento físico de uma linha de transmissão coaxial que a nível elétrico apresenta 1/4 do comprimento de onda à frequência de 14,1 MHz (para um fator de velocidade de 0,66)?
- **A** 20 m
- **B** 2,3 m
- C 3,5 m
- **D** 0,2 m
 - 248. Como se designa a razão entre a velocidade real de um sinal numa linha de transmissão e a velocidade da luz no vácuo?
- A Fator de velocidade
- B Impedância característica
- C Impedância de surto
- D Coeficiente de onda estacionária

- 249. Qual o comprimento físico de uma linha de transmissão coaxial que a nível elétrico apresenta 1/4 do comprimento de onda à frequência de 7,2 MHz (para um fator de velocidade de 0,66)?
- A 10 m
- B 6,9 m
- C 24 m
- D-50 m

250. O que determina o fator de velocidade na linha de transmissão?

- A A impedância de terminação.
- B O comprimento da linha.
- C Os materiais dieléctricos usados a linha.
- D A resistência do condutor central.

251. O que é um "balun"?

- A É um dispositivo que permite a interligação entre estações instaladas em balões e satélites nãogeoestacionários
- B É um dispositivo que permite a interligação entre a saída dos emissores e os cabos coaxiais
- C É um dispositivo que permite a interligação entre elementos balanceados e não balanceados
- D É um dispositivo que permite a interligação entre os vários elementos parasitas de uma antena Yagi

252. Qual o número mínimo de componentes discretos (bobinas e condensadores) que utilizam os circuitos sintonizadores de antena em "T" e em "Pi"?

- A A topologia em "T" precisa de um mínimo de três componentes e a topologia em "Pi" precisa de um mínimo de quatro componentes
- B Ambas as topologias precisam no mínimo de dois componentes
- C Ambas as topologias precisam no mínimo de três componentes
- D A topologia em "T" precisa de um mínimo de três componentes e a topologia em "Pi" precisa de um mínimo de cinco componentes

253. Em que consistem os distúrbios geomagnéticos?

- A Queda súbita do índice do fluxo solar
- B Deslocamento do pólo magnético da Terra
- C Ondulações na camada ionosférica
- D Alteração significativa do campo magnético da Terra num curto período de tempo

254. Qual das seguintes vantagens para as radiocomunicações resulta de períodos de elevada atividade geomagnética?

A - Aurora que reflete sinais de VHF

- B Maior intensidade de sinais de HF ao passarem por regiões polares
- C Melhoria da propagação de longo percurso de sinais de alta-frequência
- D Redução dos ecos de longo atraso

255. Qual é provavelmente o tipo de propagação a decorrer quando os sinais de rádio percorrem a linha onde termina a luz do dia e começa a escuridão?

- A Propagação transequatorial.
- B Propagação Esporádica E.
- C Propagação long-path.
- D Propagação pela grey-line.

256. Qual a causa para a actividade auroral?

- A Reflexão no vento solar.
- B Nível reduzido de manchas solares.
- C Emissão pelo Sol de partículas carreadas electricamente.
- D Chuva de meteoros concentrada em latitudes setentrionais.

257. Em que medida é que o horizonte radiopath VHF/UHF excede a linha de horizonte geométrica?

A - E cerca de 15%.

- B Em cerca do dobro.
- C Em cerca de metade.
- D Em cerca de quatro vezes mais.

258. Que tipo de equipamento de receção é desejável para comunicações via reflexão lunar?

- A Equipamento de grande largura de banda.
- B Equipamento de margem dinâmica muito baixa.
- C Equipamento com ganho muito baixo.
- D Equipamento de baixo ruído.

259. Numa ligação hertziana, utilizando o modelo de propagação em espaço livre, a potência na antena de receção é

- A inversamente proporcional à distância que a separa da antena de emissão.
- B inversamente proporcional ao quadrado da distância que a separa da antena de emissão.
- C diretamente proporcional ao quadrado da distância que a separa da antena de emissão.
- D diretamente proporcional à distância que a separa da antena de emissão.

260. Numa ligação rádio, a atenuação em espaço livre é tanto maior quanto

- A maior for a potência de emissão.
- B menor for a distância de ligação.
- C menor for a frequência.
- D maior for a frequência.

261. Numa ligação hertziana, em que o primeiro elipsoide de Fresnel está desobstruído, a atenuação entre as duas estações envolvidas na ligação

- A é muito menor que a atenuação em espaço livre.
- B é muito maior que a atenuação em espaço livre.
- C é praticamente igual à atenuação em espaço livre.
- D Não existe qualquer relação entre a desobstrução do primeiro elipsoide de Fresnel e a atenuação do sinal na ligação entre as duas estações.

262. Como se designa a camada que se forma ocasionalmente na região E?

- A Transitória E.
- B Temporária E.
- C Esporádica E.
- D Ocasional E.

263. Qual a causa para a frequente distorção dos sinais de HF scatter?

- A Instabilidade da camada ionosférica envolvida.
- B Absorção de grande arte do sinal por ondas terrestres.
- C Ausência da camada E.
- D Dispersão da energia pela zona de silêncio através de vários percursos de ondas de rádio.

264. Ao contrário das faixas de HF, as faixas de VHF e de UHF são frequentemente usadas para comunicações via satélite porque

- A as ondas eletromagnéticas associadas às frequências de VHF e de UHF são pouco afetadas pela ionosfera no seu caminho de e para o satélite.
- **B** as alterações de frequência por efeito de Doppler provocadas pelo movimento do satélite são muito menores em VHF e em UHF do que em HF.
- C os satélites deslocam-se demasiado depressa para serem seguidos por ondas de HF.
- D o efeito Doppler faz com que as ondas HF sofram uma translação na frequência para SHF, tornando difícil a receção do sinal.

265. Qual a vantagem do recurso a um wattímetro de leitura de pico para monitorizar a saída de um transmissor de fonia de banda lateral única?

- A Facilita a determinação da sintonização correta do circuito à saída.
- B Permite visualizar os valores de potência de pico envolvente à saída com maior precisão na presença de

Modulação.

- C Facilita a deteção de coeficientes elevados de onda estacionária na linha de alimentação.
- D Permite a determinação da presença de ondas com "flat-topping" em momentos de pico de modulação.

266. Que medida se deve tomar para obter uma atenuação baixa nas transmissões de HF?

- 🖣 Selecionar uma frequência imediatamente inferior à frequência máxima utilizável (MUF).
- B Selecionar uma frequência imediatamente superior à frequência mínima utilizável (LUF).
- C Selecionar uma frequência imediatamente inferior à frequência crítica.
- D Selecionar uma frequência imediatamente superior à frequência crítica.

267. Em que consiste o índice do fluxo solar?

- A Medida da frequência mais elevada necessária à propagação ionosférica entre dois pontos na Terra.
- B Medida da atividade solar na faixa dos 28 MHz.
- C Outro nome pelo qual é conhecido o número de manchas solares.
- D Medida da atividade solar na faixa dos 2,8 GHz.

268. Qual o efeito sobre as radiocomunicações das partículas carregadas que atingem a Terra provindos dos buracos coronais do Sol?

- A Melhoria nas comunicações de HF.
- B Perturbação das comunicações de HF
- C Melhoria das ductificação VHF/UHF.
- D Perturbação da ductificação VHF/UHF.
 - 269. Qual a faixa que permite melhores possibilidades de uma boa ligação, se a frequência máxima utilizável (MUF) entre duas estações for de 22 MHz?
- A 28 MHz
- **B** 21 MHz
- C 14 MHz
- **D** 7 MHz
 - 270. O que significa a sigla LUF?
- <u> A "Lowest Usable Frequency"</u>
- B "Longest Usable Function"
- C "Lowest Universal Frequency"
- D "Longest Universal Function"
- 271. O que acontece à propagação de HF quando a frequência mínima utilizável (LUF) excede a frequência máxima utilizável (MUF)?
- A Não será possível manter comunicações em HF no percurso em causa.
- B Melhora a qualidade da propagação no percurso em toda a gama de HF.
- C A propagação com salto duplo (double hop) torna-se mais frequente no percurso.
- D Todas as hipóteses anteriores estão incorretas.
 - 272. O que acontece normalmente às ondas de rádio com frequências inferiores à frequência máxima utilizável (MUF) que são enviadas para a ionosfera?
- A São devolvidas à Terra.
- B Atravessam a ionosfera.
- C São totalmente absorvidas pela ionosfera.
- D São refractadas, ficam presas na camada ionosférica e circulam em torno da terra.

273. O que significa "ângulo crítico" no contexto da propagação de ondas de rádio?

- A Um percurso longo orientado em azimute de uma estação distante
- B Um percurso curto orientado em azimute de uma estação distante
- C O menor ângulo de partida que devolve uma onda de rádio à Terra sob condições ionosféricas específicas
- D O maior ângulo de partida que devolve uma onda de rádio à Terra sob condições ionosféricas específicas

274.	Qual o tipo de polariza	ção mais comum na	a propagação de	ondas terrestres?
------	-------------------------	-------------------	-----------------	-------------------

- <mark>A Vertical.</mark>
- **B** Horizontal.
- C Circular.
- D Elíptica.

275. Qual das seguintes afirmações está correta?

- A A ionosfera constitui uma blindagem à volta da Terra, a campos eletromagnéticos apenas para radiação ótica.
- B A ionosfera constitui uma blindagem à volta da Terra, a campos eletromagnéticos apenas acima de 1 GHz.
- C A ionosfera constitui uma blindagem à volta da Terra, a campos eletromagnéticos em todas as frequências.
- D A ionosfera constitui uma blindagem à volta da Terra, a campos eletromagnéticos em determinadas frequências.

276. Como se costuma designar frequência crítica da camada E da ionosfera?

- A fcE
- B feE
- C foE
- D fIE

277. Como poderá soar o sinal de ondas espaciais que seja recebido no receptor tanto em propagação de percurso curto como de percurso longo?

- A Amortecimento periódico a cerca de cada 10 s..
- B Aumento da energia do sinal em 3 dB.
- C O sinal é cancelado causando atenuação severa.
- D Pode ouvir-se um eco bem defenido.

- 278. Numa ligação rádio, verifica-se que existe uma variação no tempo do nível do sinal na receção, ainda que potência se mantenha constante. Que nome se dá a este fenómeno?
- A Atenuação em espaço livre
- B Desvanecimento
- C Variação síncrona
- D Todas as hipóteses anteriores estão incorretas
 - 279. Nas comunicações em onda curta, qual o significado da sigla NVIS?
- A "Narrow Vertical Incidence Skywave"
- B "Near Vertical Incidence Skywave"
- C "Near Vertical Incidence Source"
- D "Narrow Vertical Incidence Source"
 - 280. Numa ligação ponto a ponto, como se pode aumentar o horizonte rádio?
- A Por aumento da potência da estação emissora.
- B Por filtragem na receção, nomeadamente se estiverem situados em zonas com elevado ruído térmico.
- C Por aumento da altura das torres que suportam as antenas de emissão e de receção.
- D Por arrefecimento dos equipamentos de receção, se estiverem situados a altitudes acima dos 800 m.
 - 281. Como se designa a distância medida à superfície da Terra entre a base da antena e o ponto onde o raio emitido pela antena toca a superfície da Terra?
- A Geo rádio.
- B Distância máxima de feixe.
- C Horizonte rádio.
- D Interseção rádio.
 - 282. A receção satisfatória de comunicações nas faixas dos serviços de amador e de amador por satélite dependem da relação sinal/ruído. Qual dos seguintes tipos de ruído deve ser considerado?
- A Ruído do recetor (gerado internamente).
- B Ruído atmosférico.
- C Ruído cósmico.
- D Todas as hipóteses estão corretas.

283. Quando nos referimos a ondas rádio, qual das seguintes afirmações está correta?

- A A atenuação provocada pelos gases atmosféricos e pela chuva afeta significativamente a propagação abaixo de 1 GHz
- **B** A atenuação provocada pelos gases atmosféricos e pela chuva é independente das frequências de trabalho, afetando todas de igual forma
- C A atenuação provocada pelos gases atmosféricos e pela chuva afeta significativamente a propagação acima de 10 GHz
- D A atenuação provocada pelos gases atmosféricos e pela chuva afeta significativamente a propagação abaixo de 30 MHz

284. Qual é a potência média medida num ciclo completo de RF com uma tensão de pico de 30 V, sobre uma carga resistiva de 50 Ohm?

A - 4,5 W

B - 9 W

C - 16 W

D - 18 W

285. Qual é a potência média medida num ciclo completo de RF com uma tensão de pico de 35 V, sobre uma carga resistiva de 50 Ohm?

A - 12.25 W

B - 9.9 W

C - 24,5 W

D - 16,75 W

286. Por que razão é que a resistência de um condutor não é a mesma para correntes de RF e para correntes contínuas?

- A Porque o isolamento conduz a corrente a frequências altas.
- B Devido ao efeito Heisenberg.
- C Devido ao efeito peculiar.
- D Porque os condutores são dispositivos não lineares.

287. Que medições se pode fazer com um dip-meter?

- A A frequência de ressonância de um circuito.
- B A inclinação da ionosfera.
- C O ganho de uma antena.
- D A profundidade de corte de um filtro.

288. Qual dos seguintes instrumentos de ensaio pode ser utilizado para apresentar as condições dos pulsos num circuito lógico digital?

- A Uma sonda lógica.
- B Um ohmímetro.
- C Um osciloscópio.
- D Uma ponte de Wheatstone.

289. Para que efeito pode um medidor de impedância da antena ser usado?

- A Para determinar o ganho da antena em FBI.
- B Para pré-sintonizar um sintonizador de antena.
- C Para pré-sintonizar um amplificador linear.
- D Para determinar as perdas de linha do sistema de antena.

290. Qual a vantagem de se usar um circuito de ponte para medir impedâncias?

- A Permite uma adaptação excelente independentemente das condições.
- B É relativamente imune a desvios na fonte do gerador de sinais.
- C A medição é baseada na obtenção de um valor nulo de tensão, o que pode ser feito com muita precisão.
- D Os resultados podem ser apresentados directamente numa carta de Smith.

291. De forma a minimizar o erro numa medição de tensão, um voltímetro deverá ter uma impedância interna

- A o mais baixa possível, idealmente próxima de zero
- B o mais alta possível, idealmente tendendo para infinito
- C da mesma ordem de grandeza da impedância do circuito a medir
- D Todas as hipóteses anteriores estão incorretas, pois a impedância interna dum voltímetro não tem qualquer efeito no erro da medição

- 292. Pretende-se medir o valor eficaz de tensão de uma onda quadrada, sendo 10 MHz o valor da frequência principal. Dispondo-se de quatro equipamentos de medição de valor eficaz exatamente iguais, diferindo apenas na frequência máxima de operação: 1 MHz, 10 MHz, 20 MHz e 100 MHz. Qual dos equipamentos deverá ser utilizado?
- A O equipamento cuja frequência máxima de operação é 1 MHz, pois a maior parte da energia do sinal situase abaixo desta frequência
- B O equipamento cuja frequência máxima de operação é 10 MHz, pois existe ressonância e a medição é a mais correta
- C Tanto se poderá utilizar o equipamento cuja frequência máxima de operação é 20 MHz, como o equipamento cuja frequência máxima de operação é 100 MHz, pois o erro será exatamente igual
- D O equipamento cuja frequência máxima de operação é 100 MHz, pois o erro associado à medição é o menor das quatro hipóteses
 - 293. Que potência é absorvida pela carga se um medidor de potência direcional ligado entre um transmissor e uma carga terminal registar uma leitura de 100 W de potência transmitida e 25 W de potência refletida?

- 294. Na sua operação um "dip-meter" utiliza
- A uma ponte de díodos
- B um acoplador direcional
- C um gerador de frequência variável
- D um gerador de corrente contínua com amplitude variável
 - 295. Se um frequencímetro com um precisão de ±0,1 ppm registar 146520000 Hz, qual seria o máximo de diferença entre a frequência real medida e a leitura respetiva?

A - 14,652 Hz

B - 0,1 kHz

C - 1,4652 Hz

D - 1,4652 kHz

296. Que equipamento de teste inclui amplificadores no sistema horizontal e no sistema vertical?

- A Ohmímetro
- B Gerador de sinais
- C Amperímetro
- D Osciloscópio

297. Em que domínio são apresentados os sinais num osciloscópio?

- A No domínio da frequência
- B No domínio lógico
- C No domínio do espaço
- D No domínio do tempo

298. Qual das seguintes afirmações está correta?

- A Um analisador espectral mede a reflexão ionosférica; um osciloscópio apresenta graficamente os sinais elétricos
- B Um analisador espectral apresenta os picos de amplitude dos sinais; um osciloscópio apresenta a amplitude média dos sinais
- C Um analisador espectral apresenta os sinais no domínio da frequência; um osciloscópio apresenta os sinais no domínio do tempo
- D Um analisador espectral apresenta frequências de rádio; um osciloscópio apresenta frequências de áudio

299. Qual dos seguintes instrumentos de ensaio é utilizado para apresentar os produtos de distorção por intermodulação numa transmissão em banda lateral única, a uma determinada distância do emissor?

- A Um wattimetro
- B Um analisador espectral
- C Um analisador lógico
- D Um refletómetro no domínio do tempo

300. Qual dos seguintes procedimentos é uma precaução muito importante a tomar ao ligar um analisador espectral à saída de um transmissor?

- A Utilizar cabos coaxiais de blindagem dupla de alta qualidade
- B Atenuar o sinal de saída do transmissor que é fornecido ao analisador espectral
- C Adaptar a impedância de saída do emissor à impedância de entrada do analisador espectral
- D Todas as opções são válidas

- 301. Que equipamento de medição deve ser ligado à baixada da antena de receção para se ter uma ideia dos sinais que são recebidos na referida antena?
- A Um gerador de sinal
- B Um wattimetro
- C Um analisador espectral
- D Um osciloscópio
 - 302. Numa situação em que se estão a fazer testes a um emissor, ligou-se a saída do emissor sobre uma carga artificial, através de um cabo coaxial. Qual das afirmações seguintes está correta?
- A Nestas circunstâncias, não existe qualquer radiação de campos eletromagnéticos, pelo equipamento, cabo coaxial ou carga artificial.
- B Nestas circunstâncias, apenas são radiados campos eletromagnéticos pelo cabo coaxial e pela carga artificial, pois o equipamento não emite qualquer radiação.
- C Nestas circunstâncias, os campos radiados pelo sistema de teste, duma forma geral não são suscetíveis de provocar interferências prejudiciais noutros sistemas rádio que estejam em operação, nas proximidades.
- D Nestas circunstâncias, os campos radiados pelo sistema de teste, duma forma geral, terão uma grande probabilidade de provoca interferências prejudiciais noutros sistemas rádio que estejam em operação, nas proximidades.

303. Em sistemas de radiocomunicações o efeito de bloqueio dá-se

- A no emissor
- B no recetor
- C na fonte de alimentação dos equipamentos
- D nos filtros de saída do andar final do amplificador de radiofrequência do emissor
 - 304. A intermodulação de sinais de radiofrequência
- A é considerada uma distorção linear
- B é o mesmo que a distorção harmónica
- C é uma modulação interdigital
- D é considerada uma distorção não linear

305. Qual das afirmações é verdadeira?

- A Aos amadores da categoria 1 é emitida licença CEPT nos termos expressos na Recomendação CEPT T/R
 61-01
- B Os amadores da categoria 1 não têm direito a qualquer tipo de licença CEPT
- C Aos amadores da categoria 1 é emitida licença CEPT "novice" nos termos expressos na Recomendação CEPT ECC/REC/(05)06
- D Os amadores da categoria 1 apenas têm direito a licença CEPT se realizarem o seu exame para a categoria 1 num país que não pertença à União Europeia

306. Qual a potência de pico máxima permitida a um amador da categoria 1 que opere a frequência 14150 kHz?

- A 1500 W
- B 200 W
- C 750 W
- D 100 W

307. Qual das afirmações está correta

- A Um amador da categoria 1 poderá utilizar estações de outro amador de acordo com os seus próprios privilégios da categoria 1
- B Um amador da categoria 1 só pode usar a sua estação em modo de receção
- C Um amador da categoria 1 poderá utilizar a estação de outro amador de acordo com os privilégios que este detém
- Para utilizar uma estação do serviço de amador um amador da categoria 1 precisa de uma licença de estação

308. Qual das faixas seguintes não tem estatuto primário para o serviço de amador em Portugal?

- A 438 440 MHz.
- B <u>1240 1260 MHz.</u>
- C 7100 7200 KHz.
- **D** 24,00 24,05 GHz.

309. Como pode ser operada a faixa dos 7100-720 KHz por um amador de categoria 1?

- A Sem qualquer restrição.
- B Em nenhuma circunstância dado que não se trata de uma faixa do serviço de amador.
- C Só com uma autorização especial da ANACOM.
- D Respeitando as condicionantes expressas na regulação aplicável.

310. Sempre que um amador estabeleça comunicações em Portugal ao abrigo de uma licença CEPT emitida por outra Administração, deve emitir o IC da sua estação de amador antecedido do prefixo

- A CS7, se estiver a operar a estação na área geográfica POR
- B CR8, se estiver a operar a estação na área geográfica AZR
- C CQ9, se estiver a operar a estação na área geográfica MDR
- D CT7, se estiver a operar a estação na área geográfica POR

311. A licença CEPT, emitida nos termos da Recomendação CEPT T/R 61-01, permite

- A utilizar estações de amador em todos os países da CEPT e nos países de língua oficial portuguesa
- B <u>utilizar estações de amador em todos os países membros ou não membros da CEPT, cuja respetiva</u>

 Administração tenha adotado a referida Recomendação
- C utilizar estações de amador em todos os países da União Europeia e nos países de língua oficial portuguesa
- D utilizar estações de amador em todos os países da CEPT, nos Estados Unidos da América e na Austrália
 - 312. "Sempre que um amador de categoria 1 pretenda exercer a actividade temporariamente num país cuja Administração tenha adoptado a Recomendação CEPT/R 61-01 (licença "CEPT"),"
- A poderá as estações as faixas que utiliza em Portugal
- B Sem prejuízo de respeitar as condicionantes expressas na Recomendação referida, deverá respeitar as condicionantes aplicáveis nesse país.
- C terá de solicitar uma licença ao ICP-ANACOM
- D terá que solicitar autorização à CEPT.

313. Onde podem ser consultados os limites máximos para as espúrias aceitáveis para as emissões no serviço de amador?

- A No manual do fabricante da antena de emissão
- B Na Recomendação aplicável da CEPT
- C Na etiqueta colocada na traseira do equipamento de emissão
- D Não existem limites máximos, pois as emissões nas faixas de amador não poderão, em qualquer circunstância, emitir espúrias

314. Numa comunicação senti-me ofendido pelas palavras que me foram dirigidas por um colega amador. O que é mais correto fazer?

- A Queixar-me à ANACOM
- B Numa futura comunicação em que esse colega intervenha, falar sobre o ocorrido num tom cordial, no sentido que situações semelhantes não voltem a acontecer
- C Queixar-me a uma força policial
- D Não ligar
 - 315. Estou a ser interferido por outro amador. O que devo fazer?
- A Chegar a acordo com o outro amador no sentido de resolver as interferências.
- B Tentar interferir esse amador.
- C Comunicar a situação imediatamente ao ICP-ANACOM.
- D Esperar que a situação de interferência passe.
 - 316. Tenho sido interferido de forma intermitente. Mas após aturada investigação, com a ajuda de outros radioamadores, parece-me que a fonte interferente estará no prédio defronte de mim, onde não existe nenhuma estação de amador. O que é mais correto fazer?
- A Aumentar a potência de emissão nas faixas onde sou interferido, para ver se os interfiro a eles.
- B Comunicar a situação ao ICP-ANACOM fornecendo toda a informação que tiver e solicitando a resolução d problema.
- C Esperar que a interferência passe.
- D Queixar-me à Junta de Freguesia.
 - 317. Uma vizinha minha diz que, de vez em quando, tem interferências na recepção de televisão e veio perguntar se não seria das minhas emissões. O que é correto fazer?
- A Nada, pois eu estou a trabalhar nas faixas correctas e o problema deve ser da instalação de recepção de televisão.
- B Investigar a situação e se for problema dela, caberá a ela a resolução do problema.
- C Investigar a situação e se se concluir que o problema é das minhas emissões, emitir às horas que ela não veja televisão..
- D Investigar a situação e resolvê-la se o problema for da minha estação ou ajudar a resolver a situação se o problema for da instalação de recepção.

318. Qual das seguintes afirmações é verdadeira no que respeita a absorção ionosférica próxima da frequência máxima utilizável (MUF)?

A - A absorção será mínima.

- B A absorção é maior em ondas de polarização vertical.
- C A absorção atinge o ponto máximo.
- D A absorção é maior em ondas de polarização horizontal.

319. Se uma estação de amador interferir uma estação de pequena potência e de curto alcance na frequência 433,5 MHz, quem tem prioridade?

- A A estação de pequena potência.
- B A estação de amador.
- C Nem uma nem outra.
- D A estação que emitir com potência mais baixa.

320. Em que consiste uma antena com dipolo dobrado?

- A Um dipolo com um quarto do comprimento de onda.
- B Um tipo de antena "ground-plane".
- C Um dipolo construído a partir de um fio com um comprimento de onda formando um "loop" muito fino.
- Uma antena teórica, portanto não realizável fisicamente, usada para simulação de resistências da radiação.

321. Em sistemas rádio a intermodulação ocorre quando

- A dois ou mais sinais, com diferentes frequências, se combinam através de um sistema, componente ou dispositivo não linear.
- B dois ou mais sinais, na mesma frequência, se combinam através de um sistema, componente ou dispositivo não linear.
- C dois ou mais sinais, com diferentes frequências, se combinam através de um sistema, componente ou dispositivo perfeitamente linear.
- **D** dois ou mais sinais, na mesma frequência, se combinam através de um sistema, componente ou dispositivo perfeitamente linear.

322. Qual a capacidade de três condensadores de 100 microfarad ligados em série?

- A 0,30 microfarad.
- B 0,33 microfarad.
- C 33,3 microfarad.
- D 300 microfarad.

323. Qual o equipamento de medição mais indicado para visualização de formas de onda?

- A Medidor de onda estacionária.
- B Visualização de onda progressiva.
- C Espectroscópio.
- D Oscilóscópio.

324. Quais são os materiais mais usados na blindagem de campos eléctricos?

- A Alumínio e esferovite.
- B Alumínio e aço.
- C Teflon e aço.
- D Teflon e alumínio.

325. Qual o objetivo de C2 no circuito da figura?

- D Fornece uma polarização fixa DC a Q1.
 - 326. Por que razão é desejável que o recetor utilizado para fins de radiogoniometria possua um atenuador de RF?
- A Limita a largura de banda do sinal recebido.
- B Elimine os efeitos da radiação isotrópica.
- C Reduz a perda do sinal recebido causado pelo padrão de nulos da antena.
- D Evita a sobrecarga do recetor por sinais demasiado fortes.

327. Porque é que um sinal SSB não deve ser modulado a mais de 100%?

- A Porque deixa de ser um sinal modulado em AM passando a ser modulado em FM.
- B Porque a propagação do sinal fica dificultada.
- C Porque pode causar interferências nos canais adjacentes.
- D Todas as hipóteses estão corretas.

328. Qual a vantagem da utilização de um díodo Schottky num circuito de comutação de RF, relativamente a de um díodo de silício comum?

- A Maior rapidez de comutação.
- B Menor rapidez de comutação.
- C Emite luz por cada comutação efetuada.
- D Comporta-se como um varicap.

329. Que tipo de circuitos ideais apresentam os sinais de corrente e de tensão em quadratura?

- A Circuitos puramente resistivos.
- B Circuitos puramente resistivos com transístores.
- C Circuitos puramente indutivos.
- D Todas as hipóteses anteriores não estão corretas.

330. A grandeza que dá uma medida da qualidade de desempenho dos sistemas de comunicações analógicas pode designar-se por

- A <u>relação sinal ruído.</u>
- B relação frente-costas.
- C relação de onda estacionária.
- D relação de impedância.

331. Em que consiste um circuito com malha de captura de fase?

- A Um circuito realimentado constituído por um detetor (comparador de corrente), seguido de um modulador de reactâncias que por sua vez atua sobre um oscilador controlado por tensão e que na malha de realimentação possui um transformador de fase.
- B Um circuito eletrónico realimentado, também conhecido por multivibrador astável.
- C Um circuito realimentado constituído por um detetor (comparador de corrente), seguido de um filtro passabaixo que por sua vez atua sobre um oscilador estável controlado por tensão e possui uma malha de realimentação um divisor de frequências programável.
- **D** Um circuito eletrónico realimentado constituído por um amplificador de precisão "push-pull" (com entrada diferencial), seguido por oscilador controlado por tensão e que na malha de realimentação possui um circuito que iguala a fase dos sinais envolvidos.

332. Qual o significado da sigla AMTOR?

- A "Analogic Teleprinting Over Radio".
- B "Amateur Transmission Over Radio".
- C "Amateur Teleprinting Over Radio".
- D "Analogic Transmission Over Radio".

333. A potência de ruído num sistema de recepção é

- A directamente proporcional à temperatura de ruído efectiva do sistema e inversamente proporcional à largura de banda efectiva do sistema.
- B inversamente proporcional à temperatura de ruído efectiva do sistema e inversamente proporcional à largura de banda efectiva do sistema.
- C directamente proporcional à temperatura de ruído efectiva do sistema e directamente proporcional à largura de banda efectiva do sistema.
- D inversamente proporcional à temperatura de ruído efectiva do sistema e directamente proporcional à largura de banda efectiva do sistema.

334. Num circuito com bobinas e condensadores, como se comporta a potência reactiva?

- A Dissipa-se como calor no circuito.
- B Passa alternadamente do campo magnético para o campo eléctrico associado mas nunca se dissipa.
- C Dissipa-se como energia cinética no circuito.
- D Dissipa-se na formação de campos indutivos e capacitivos.

335. Qual a vantagem de uma antena do tipo Log-periódica?

- A Maior largura de banda.
- B Maior ganho por element do que uma antenna Yagi.
- C Supressão de harmónicos.
- D Diversificação da polarização.

336. Qual a vantagem de usar núcleo de ferrite numa bobina toroidal?

- A Podem obter-se valores elevados de indutância.
- B As propriedades magnéticas do núcleo podem optimizadas para uma gama específica de frequências.
- C A maior parte do campo magnético está contido no núcleo.
- D Todas as opções são válidas.

337. Em que consiste a largura de banda de uma antena?

- A O comprimento da antena dividido pelo número de elementos.
- B A gama de frequências em que uma antena cumpre um determinado requisito de desempenho.
- C O ângulo entre os pontos de radiação de meia onda.
- D O ângulo formado entre duas linhas imaginárias traçadas através das extremidades dos elementos.

338. Como se costuma designar um condensador ligado ao secundário de um transformador usado para absorver picos de tensão de curta duração?

- A Condensador clipper.
- B Condensador de compensação ou de ajuste.
- C Condensador feedback.
- D Supressor de picos.

339. Em que consiste o processo de detecção?

- A Extracção de sinais fracos do ruido.
- B Recuperação de informação de sinais modulados de RF.
- C Modulação da portadora.
- D Mistura de ruido com o sinal recebido.

340. Como é fornecida a realimentação positiva a um oscilador Colpitts?

- A Através de uma bobina de derivação.
- B Através de uma ligação acoplada.
- C Através de um divisor capacitivo.
- D Através de um condensador de neutralização.