طراحي كامپايلرها

نيمسال دوم ۹۹_۸۹

نام و نام خانوادگی: حسن ذاکر، علیرضا دقیق، سپهر فعلی

دانشکدهی مهندسی کامپیو تر

موعد تحويل: ۹۹/۱۰/۲۷

بهینهسازی و تولید کد

پاسخ تمرین سری پنجم

مسئلەي ١.

پاسخ.

مسئلەي ۲.

پاسخ.

ابتذا مى آييم كد tac مربوط به آنرا مينويسيم:

₁ _main;

BeginFunc 20

t0 = 24

a = t0

t1 = 36

b = t1

7 pushParams t1

s pushParams t0

 $_{9}$ $t2 = Lcall _gcc$

```
popParams 8
     end func\\
11
   _gcc
12
    beginfunc 16
13
    t0 = x
14
    t1 = y
15
    ifz t0 goto L0
16
    t2 = y \ \sqrt{\%} \ x
17
    r\ =\ t\,2
18
    pushParams t0
19
    pushparams t2
20
    lcall gcc
21
    popParams 8
    endfunc
23
24
    L0:
     return t1
25
```

fp	•
locals	
param2	= 36
param1	= 24
fp of call er	

push اولین بار که خط یازده اجرا میشود با توجه به استک فریم در ۱۶ * ۴ تا پایین تر کال میشود و مسوول کردن push آن پارامتر ها تابع ای gcd است که اولین بار کال مبشود. اولین بار که خط هشت کال میشود fp ادر ۲۵ * ۴ تا پایین تر است و مسوول و بصدا کردن این تابع gcd ای است که قبل از آن کال شده است و مقدار را به تابع بالاتر میدهد و پاپ پارامز را انجام میدهد.

مسئلهي ٣.

پاسخ.

- call by value 1, 1, 0, 0, 1, 2, 3, 4 1, 0, 1, 2, 3, 4
- call by reference 1, 1, 0, 0, 1, 2, 3, 4 1, 0, 1, 2, 3, 4
- call by name 0, 0, 0, 0, 1, 2, 3, 4 1, 0, 1, 2, 3, 4
- call by value-result 1, 1, 0, 0, 1, 2, 3, 4 1, 0, 1, 2, 3, 4

مسئلهی ۲.

باسح.

مسئلەي ۵.

پاسخ

```
BeginFunc 28;
13
       _{t0} = *(this + 8);
       _{t1} = param + _{t0};
15
       _{t2} = *(this);
16
       _{t3} = *(_{t2});
17
        t4 = 6;
18
       PushParam _t4;
19
        _{t5} = ACall _{t3};
20
       PopParams 4;
21
       \_t6 = \_t1 * \_t5;
22
       _{v0} = _{t6};
23
       EndFunc;
24
   VTable B = A.methodA, B.methodB, ;
25
26
  main:
27
       BeginFunc 28;
28
        _{t0} = 12;
29
       PushParam _t0;
30
       b = LCall Alloc;
31
       PopParams 4;
32
        _{t1} = B();
33
        *b = _t1;
34
        t0 = 5;
35
        *(b + 4) = _t0;
36
        _{t0} = 10;
37
        *(b + 8) = _t0;
        _{t0} = 4;
39
       PushParam _t0;
40
       x = LCall_Alloc;
41
       PopParams 4;
42
       _{t1} = *(b) // pointer to vtable
       _{t2} = *(_{t1} + 4) //pointer to _B.methodB in vtable B
44
        _{t0} = 2;
45
       PushParam _t0;
46
        *x = ACall _t2;
47
       PopParams 4;
48
       EndFunc;
```

مسئلەى ۶. پاسخ.

Instruction	Live Variables
a = 1 + 2;	b, e, f
b = a + b;	a, b, e, f
z = a * 2;	a, b, e, f
c = b + e;	a, b, e, f
d = c + b;	a, b, c, f
x = b + 3;	a, b, c, d, f
z = a * 8;	a, c, d, f, x
t = c - 2;	c, d, f, x, z
f = x + f;	d, f, x, z
y = x - 2;	d, x, z
d = d - y;	d, x, y, z
	d, x, z

٠,١

۲. در دور اول، دستورات زیر به ترتیب حذف میگردند. (با توجه به آنالیز متغیرهای زنده بخش قبلی)

(آ) ابتدا دستور f = x + f حذف میگردد. زیرا بعد از آن، متغیر f زنده نخواهدبود.

(ب) سپس دستور t=c-2 حذف میگردد. زیرا بعد از آن، متغیر t زنده نخواهدبود.

(ج) سپس دستور z=a*2 زنده نخواهدبود. z=a*2 زنده نخواهدبود.

نتیجه این تغییرات و آنالیز دوباره متغیرهای زنده به شکل زیر خواهد بود:

Instruction	Live Variables
a = 1 + 2;	b, e
b = a + b;	a, b, e
c = b + e;	a, b, e
d = c + b;	a, b, c
x = b + 3;	a, b, d
z = a * 8;	a, d, x
y = x - 2;	d, x, z
d = d - y;	d, x, y, z
	d, x, z

در دور دوم، هیچ دستوری با لحاظ کردن متغیرهای زنده حذف نمی شود. پس به سراغ مقادیر ثابت میرویم و Copy Propagation

$${\rm a}=3;$$
 ابتدا ${\rm a}=1+2;$ ابتدا (آ)

$$b = 3 + b;$$
 بىيس مىشود بە b $= a + b;$ بىيس (ب)

z = 24; تبدیل میشود به z = a * 8 سپس (ج)

نتیجه این تغییرات و آنالیز دوباره متغیرهای زنده به شکل زیر خواهد بود:

Instruction	Live Variables
a = 3;	b, e
b = 3 + b;	b, e
c = b + e;	b, e
d = c + b;	b, c
x = b + 3;	b, d
z = 24;	d, x
y = x - 2;	d, x, z
d = d - y;	d, x, y, z
	d, x, z

a=3; در دور سوم و آخر، با توجه به متغیرهای زنده، فقط میتوان اولین جمله را حذف کرد. یعنی کد نهایی:

- V (cale....
 - پاسخ.

٠۴

مسئلەي ۸.

ياسخ.

Instruction	Live Variables
a = b	b, e
c = 7 + 7 * e	a, b, e
d = a	a, b, c
a = d * d	b, c, d
d = 5 * a	a, b, c
f = c * 5 + 10	b, c, d
f = d - f	b, d, f
c = f + 1	b, f
e = c * b	b, c
	b, c

١. باتوجه به جدول بالا، گراف تداخل رجيسترها به شكل زير خواهد بود:

۲. با توجه به این که در گراف، دور به طول ۳ داریم، در بهترین حالت سه رجیستر نیاز است. سه عدد رجیستر را امتحان میکنیم تا ببینیم کفایت میکند یا خیر. که خواهیم دید کفایت میکند.

ابتدا e را برمیداریم. سپس a را برمیداریم. بعد c و بعد d را برمیداریم. تا اینجا، هر راسی را که برداشتیم، دو عدد یال خروجی داشت. حال f و در آخر d را برمیداریم.

حال شروع به رنگ کردن میکنیم. ابتدا b را میاوریم و آبی میکنیم. سپس f را قرمز میکنیم و بعد آن، d را سبز. بعدی نوبت c است. آن را قرمز میکنیم. بعدی a است و سبز میشود. و آخری که e خواهدبود، قرمز میگردد.

تصویر پایین، نتیجه پایانی را نشان میدهد:

مسئلهی ۹. پاسخ.