TASO: Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions (SOSP'19)

Authors:

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, Alex Aiken

Presenters: Tianyi Ge, Haojie Ye, Lingyun Guo Feb 22, 2021

Overview

- Background
- Problems
- Contributions
- Methodologies
- Evaluations
- Conclusions
- Discussions

Background

- DNN frameworks represent NN as a computation graph
 - o node := tensor operator
- To optimize a huge computation graph
 - Equivalent subgraph substitution
- Rule-based optimization strategy
 - TensorFlow, PyTorch, TVM, etc.
 - Manually designed substitution
- Previous work
 - MetaFlow [Jia, SysML'19]
 - Cost model: automated cost evaluation

Problems

Limitations of Rule-based Optimizations

Robustness

Experts' manual heuristics do not apply to all models

Scalability

- Introducing new operators and properties require more rules
- TensorFlow XLA: ~4K LOC just for convolution

Performance

- Human's heuristics might miss subtle optimizations
- Some optimizations become worse!

Contributions

TASO: Tensor Algebra SuperOptimizer

- Manually-designed rule (X) Automated generation and verification (V)
- Better program performance: improve ML training/inference <u>up to 10x</u>
- Less effort: save codes of optimization <u>up to 38x</u>
 - LOC: 53K (★) => 1.4K (✔)
- Fast optimization search: minutes
- Framework-agnostic: high portability among different frameworks

Methodologies

- 1. Graph substitution generator
 - Operators
 - Graph Fingerprinting
 - Depth-first search
- 2. Graph substitution verifier
 - Operator Properties
- 3. Pruning
 - Input tensor renaming
 - Common subgraph
- 4. Joint Optimizer
 - Cost-based backtracking search

TASO workflow

Methodologies

- 1. Graph substitution generator
 - Operators
 - Graph Fingerprinting
 - Depth-first search
- 2. Graph substitution verifier
 - Operator Properties
- 3. Pruning
 - Input tensor renaming
 - Common subgraph
- 4. Joint Optimizer
 - Cost-based backtracking search

TASO workflow

Methodologies: Graph substitution generator

- What is graph substitution?
- Mathematically equivalent computations

Methodologies: Graph substitution generator

- Enumerate all possibilities over a set of DNN operators
 - Use DFS to find all possible graphs (n-level DFS)
 - Use <u>up to 4</u> operators for implementation (66M in total)
 - Need to find pairs of equivalent graphs
 - How?

Name	Description	Parameters		
Tensor Operators				
ewadd	Element-wise addition			
ewmul	Element-wise multiplication			
smul	Scalar multiplication			
transpose	Transpose			
matmul	Batch matrix multiplication#			
conv	Grouped convolution [%]	stride, padding, activation		
enlarge	Pad conv. kernel with zeros [†]	kernel size		
relu	Relu operator			
pool _{avg}	Average pooling	kernel size, stride, padding		
$pool_{max}$	Max pooling	kernel size, stride, padding		
concat	Concatenation of two tensors	concatenation axis		
$split_{\{0,1\}}$	Split into two tensors	split axis		
Constant Tensors				
C _{pool}	Average pooling constant	kernel size		
I _{conv}	Convolution id. kernel	kernel size		
I_{matmul}	Matrix multiplication id.			
I_{ewmul}	Tensor with 1 entries			

Methodologies: Graph fingerprinting

- Pairwise comparison $O(n^2)$? \times not scalable!
- Fingerprinting
 - Take hash value of output tensor with <u>small</u> input tensors
 - Roughly group the graphs by their fingerprint
 - Run <u>several rounds of random tests</u> to remove "lucky" cases (efficient and strong pruning)

E.g. 4 graphs with the same fingerprint

Output hash:

Methodologies: Graph fingerprinting

- Fingerprinting
- Details
 - a. Input tensors are integers to avoid <u>floating-point errors</u>
 - b. The fingerprint is independent of permutation of output tensors
 - hash₂ is symmetric: ignorant of output tensor order

FINGERPRINT(
$$\mathcal{G}$$
) = $hash_2(\{hash_1(t_i) \mid i \in Outputs(\mathcal{G})\})$

At this stage, TASO generates all <u>28744</u> substitutions <u><5 minutes</u>

Methodologies

- 1. Graph substitution generator
 - Operators
 - Graph Fingerprinting
 - Depth-first search
- 2. Graph substitution verifier
 - Operator Properties
- 3. Pruning
 - Input tensor renaming
 - Common subgraph
- 4. Joint Optimizer
 - Cost-based backtracking search

TASO workflow

Methodologies: Graph substitution verifier

- Multiple rounds of tests do not guarantee correctness of equivalence
- Automated theorem prover
 - Z3 prover
 - Given axioms, Z3 is able to prove/disprove equivalence
- What are the axioms here?

Methodologies: Graph substitution verifier

- What are the axioms here? <u>First-order logics</u>
- Z3 can tell if an argument is true based on the given axioms
 - E.g. element-wise addition is associative
- How to find the properties?

TASO source code for verifier

 $(ForAll([x,y,z], ewadd_0(x,ewadd_0(y, z)) == ewadd_0(ewadd_0(x,y),z)),$

lambda : [(s,s,s) for dim in [2,3,4] for s in product(N, repeat=dim)]),

Methodologies: Graph substitution verifier

- How to find the properties? Iteratively
 - First, manually verify the generated <u>candidate</u> substitutions
 - If failed to verify, use Z3 with bounded tensor size up to 4x4x4x4
 - Add newly verified properties to axioms
- Consistency & Redundancy check

Methodologies

- 1. Graph substitution generator
 - Operators
 - Graph Fingerprinting
 - Depth-first search
- 2. Graph substitution verifier
 - Operator Properties
- 3. Pruning
 - Input tensor renaming
 - Common subgraph
- 4. Joint Optimizer
 - Cost-based backtracking search

TASO workflow

Methodologies: Pruning techniques

Remove redundant substitutions but preserve all the possible ones

Two types Rename input tensors (rename C with A) matmul matmul

matmul matmul source graph: A x (B x C) target graph: (A x B) x C

Redundant substitution

Methodologies: Pruning techniques

- Two types
 - a. Rename input tensors
 - b. <u>Common subgraph</u>
 - i. E.g. Actually both are commutative laws!

Pruning Techniques	Remaining Substitutions	Reduction v.s. Initial
Initial	28744	1×
Input tensor renaming	17346	1.7×
Common subgraph	743	39×

Common output subgraph

Methodologies

- 1. Graph substitution generator
 - Operators
 - Graph Fingerprinting
 - Depth-first search
- 2. Graph substitution verifier
 - Operator Properties
- 3. Pruning
 - Input tensor renaming
 - Common subgraph
- 4. Joint Optimizer
 - Cost-based backtracking search

TASO workflow Operator Specifications Input Control

Methodologies: Search-based graph optimizer

- Combine <u>Data Layout</u> and <u>Substitution</u>
 - o Row-major vs. Col-major
 - Ex: Test function ewadd by row

Methodologies: Search-based graph optimizer

- Combine <u>Data Layout</u> and <u>Substitution</u>
- Enumerate <u>all</u> layout possibilities

Algorithm 2 Cost-Based Backtracking Search

```
1: Input: an input graph G_{in}, verified substitutions S, a cost
    mode. Cost(\cdot), and a hyper parameter \alpha.
 2: Output: an optimized graph.
 4: \mathcal{P} = \{G_{in}\} // \mathcal{P} is a priority queue sorted by Cost.
 5: while \mathcal{P} \neq \{\} do
        G = \mathcal{P}. dequeue()
        for substitution s \in S do
             // LAYOUT(G, s) returns possible layouts applying s on G
 8:
            for layout l \in \text{LAYOUT}(G, s) do
                 // APPLY(G, s, l) applies s on G with layout l.
10:
                 G' = Apply(G, s, l)
11:
                 if G' is valid then
12:
                     if Cost(G') < Cost(G_{opt}) then
13:
                          G_{opt} = G'
14:
                     if Cost(G') < \alpha \times Cost(G_{opt}) then
15:
                          \mathcal{P}.enqueue(\mathcal{G}')
16:
17: return G_{opt}
```

Methodologies: Search-based graph optimizer

- Combine <u>Data Layout</u> and <u>Substitution</u>
- α: controls the search range
 - ∘ α = 1 \Leftrightarrow greedy search
 - \circ Practically, $\alpha = 1.05$
- Better E2E inference performance

Algorithm 2 Cost-Based Backtracking Search

```
1: Input: an input graph G_{in}, verified substitutions S, a cost
    model Cost(\cdot), and a hyper parameter \alpha.
 2: Output: an optimized graph.
 4: \mathcal{P} = \{G_{in}\} // \mathcal{P} is a priority queue sorted by Cost.
 5: while \mathcal{P} \neq \{\} do
        G = \mathcal{P}. dequeue()
        for substitution s \in S do
             // LAYOUT(G, s) returns possible layouts applying s on G.
             for layout l \in LAYOUT(G, s) do
                 //APPLY(G, s, l) applies s on G with layout l.
10:
                 G' = Apply(G, s, l)
11:
                 if G' is valid then
12:
                     if Cost(G') < Cost(G_{opt}) then
13:
                          G_{opt} = G'
14:
                      if Cost(G') < \alpha \times Cost(G_{opt}) then
15:
                          \mathcal{P}.enqueue(\mathcal{G}')
16:
17: return \mathcal{G}_{opt}
```

Evaluations: examples

- TASO optimization of ResNeXt-50
 - Convolutions can be grouped
- TASO gives the best grouping solution in terms of execution time

Evaluations

- Case study
 - ResNeXt-50, NasNet-A, NasRNN, BERT
- Experiment setup
 - 8-core Intel E5-2600 CPU
 - o 64 GB DRAM
 - NVIDIA Tesla V100

Evaluations

- ResNet-50 has been well-optimized
- ResNeXt-50 has huge space for improvement!

Evaluations

- Each DNN optimization uses ~4-10 types of substitutions
- Implication: difficult for human experts to develop such optimization

Conclusions

- Components
 - Subgraph substitution generator
 - Substitution verifier
 - Search-based optimizer
- Better program performance: improve ML training/inference <u>up to 10x</u>
- Less engineering effort: <u>53K => 1.4K</u>
- Formal verifications
- TASO matches well-optimized DNNs, and <u>outperforms</u> the current solutions on other new DNNs

Discussions

- 1. Highly effective pruning strategies
 - a. Fingerprinting
 - b. Common subgraph
- Questions about formal verification
 - a. How does Z3 (SMT solver) prove a new operator property? Enumeration?
- 3. Scalability: how to enumerate > 4 operators?
 - a. From Jia's talk, distributed computing might exceed the limit of 4 operators
 - b. Distributed generator and verifier
 - c. Potential challenges?

References

[1] Jia, Zhihao, et al. "TASO: optimizing deep learning computation with automatic generation of graph substitutions." *Proceedings of the 27th ACM Symposium on Operating Systems Principles*. 2019.

[2] Jia, Zhihao, et al. "Optimizing dnn computation with relaxed graph substitutions." SysML 2019 (2019).

[3] Automated Discovery of Machine Learning Optimizations https://www.youtube.com/watch?v=YsJICemFBsQ

[4] Memory layout of multi-dimensional arrays https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

[5] https://github.com/Z3Prover/z3

[2] http://theory.stanford.edu/~nikolaj/programmingz3.html

Ansor: Generating High-Performance Tensor Programs for Deep Learning

Author

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, Ion Stoica

Presenter

Haojie Ye, Lingyun Guo, Tianyi Ge

Outline

Background

What is tensor program? / Challenges of generating high efficiency tensor program Current state-of-the-art of tensor program generator

Design

Sketch and Annotation – Decoupling coarse and fine-grained program sampling

Evolutionary Search – Mutating and tuning the program inspired by biological evolution

Task Scheduler – Task scheduling to meet the code generation latency requirement

Benchmark & Conclusion

Ansor finds high-performance programs that are *outside the search space of existing state-of-the-art compiler approaches*, achieving 3.8x and 1.7x over state-of-the-art tensor program generator on Intel CPU and NVIDIA GPUs.

Background

What is Tensor/Tensor programs?

A tensor may be represented as a (potentially multidimensional) array.

Modern DNNs can be represented as directed acyclic graph, or DAG. DAG involves executing tensor programs.

Why Optimizing tensor programs?

Converting these mathematical declaration to H/W execution is an open task for the compiler, thus may not be optimal if mapped naively.

```
* The mathmetical expression:
C[i,j] = \sum A[i,k] \times B[k,j]
D[i,j] = \max(C[i,j], 0.0)
where 0 \le i, j, k < 512
* The corresponding naive program:
for i in range(512):
  for j in range(512):
    for k in range(512):
      C[i, j] += A[i, k] * B[k, j]
for i in range(512):
  for j in range(512):
    D[i, j] = max(C[i, j], 0.0)
* The corresponding DAG:
```

```
 \label{eq:Cartinetic} \text{Matrix Multiplication} \quad C_{i,\,j} = \sum_k A_{i,\,k} B_{k,\,j}   \text{C = compute((N, M), lambda i, j: sum(A[i, k]*B[k, j], [k]))}
```

State-of-the-art tensor program compilers

Mathematical declaration to H/W execution is an open task for the compiler (Heterogeneity makes the exploration space even larger). Mutating and tuning the tensor program can make a big difference in computation throughput.

(a) Template-guided Search

Template-guided search (e.g., TVM)

Use **templates** to define the search space for every operator

Drawbacks

- Not fully-automated -> Requires huge manual effort, cannot adapt to flexible operations
- Limited search space -> Does not achieve optimal performance

State-of-the-art tensor program compilers

Sequential Construction Based Search (e.g., Halide)

Use **beam search** to generate the Sequential Construction Based Search

Drawbacks

- Intermediate candidates are pruned by analyzing incomplete programs -> The cost model cannot do accurate prediction
- Sequential order -> The error accumulates with increased number of layers in the network

Outline

Background

What is tensor program? / Challenges of generating high efficiency tensor program Current state-of-the-art of tensor program generator

Design

Sketch and Annotation – Decoupling coarse and fine-grained program sampling Evolutionary Search – Mutating and tuning the program inspired by biological evolution Task Scheduler – Task scheduling to meet the code generation latency requirement

Benchmark & Conclusion

Ansor finds high-performance programs that are *outside the search space of existing state-of-the-art approaches*, achieving 3.8x and 1.7x over state-of-the-art tensor program generator on Intel CPU and NVIDIA GPUs.

Design

How to allocate resource for many search tasks?

Utilize a task scheduler to prioritize important tasks

How to build a large search space automatically?

Use a hierarchical search space

How to search efficiently?

Sample complete programs and fine-tune them

Design

Goal:

 Automatically construct a large search space and uniformly sample from the design space

Approach:

- **Sketch**: a few good high-level structures
- Annotation: millions of low-level details

Rule-based Sketch

* The mathmetical expression: C[i,j] = ∑ A[i,k] × B[k,j] D[i,j] = max(C[i,j],0.0) where 0 ≤ i,j,k < 512 * The corresponding naive program: for i in range(512): for j in range(512): C[i, j] += A[i, k] * B[k, j] for i in range(512): C[i, j] = max(C[i, j], 0.0) * The corresponding DAG:</pre> A C D

```
Input 1 \to \sigma(S_0, i = 4) \xrightarrow{\text{Rule 1}} \sigma(S_1, i = 3) \xrightarrow{\text{Rule 4}} \sigma(S_2, i = 2) \xrightarrow{\text{Rule 1}} \sigma(S_3, i = 1) \xrightarrow{\text{Rule 1}} Sketch 1
```

Write naive tensor programs with nested loops. Start coarse-grained program sketch on DAG from backwards.

No	Rule Name	Condition	Application
1	Skip	$\neg IsStrictInlinable(S, i)$	S' = S; i' = i - 1
2	Always Inline	IsStrictInlinable(S, i)	S' = Inline(S, i); i' = i - 1
3	Multi-level Tiling	HasDataReuse(S, i)	S' = MultiLevelTiling(S, i); i' = i - 1
4	Multi-level Tiling with Fusion	$HasDataReuse(S, i) \land HasFusibleConsumer(S, i)$	S' = FuseConsumer(MultiLevelTiling(S, i), i); i' = i - 1
5	Add Cache Stage	$HasDataReuse(S, i) \land \neg HasFusibleConsumer(S, i)$	S' = AddCacheWrite(S, i); i = i'
6	Reduction Factorization	HasMoreReductionParallel(S, i)	S' = AddRfactor(S, i); i' = i - 1
	User Defined Rule	•••	•••

Rule-based Sketch


```
Input 2 \rightarrow \sigma(S_0, i = 5) \xrightarrow{\text{Rule } 5} \sigma(S_1, i = 5) \xrightarrow{\text{Rule } 4} 
\sigma(S_2, i = 4) \xrightarrow{\text{Rule } 1} \sigma(S_3, i = 3) \xrightarrow{\text{Rule } 1} 
\sigma(S_4, i = 2) \xrightarrow{\text{Rule } 2} \sigma(S_5, i = 1) \xrightarrow{\text{Rule } 1} \text{Sketch } 2
```

Multiple rules can be applied to one state to generate multiple succeeding states.

But the number of sketches is less than 10 for a typical subgraph.

```
Generated sketch 2
for i in range(8):
  for k in range(512):
   C[i, j] = max(A[i,k], 0.0) if k<400 else 0
 or i.0 in range(TILE I0):
  for j.0 in range(TILE J0):
    for i.1 in range(TILE I1):
      for j.1 in range(TILE J1):
        for k.0 in range(TILE K0):
          for i.2 in range(TILE I2):
            for j.2 in range(TILE J2):
              for k.1 in range(TILE I1):
                for i.3 in range(TILE I3):
                   for j.3 in range(TILE J3):
                    E.cache[...] += C[...] * D[...]
        for i.4 in range(TILE I2 * TILE I3):
          for j.4 in range(TILE J2 * TILE J3):
            E[...] = E.cache[...]
```

No	Rule Name	Condition	Application
1	Skip	$\neg IsStrictInlinable(S,i)$	S' = S; i' = i - 1
2	Always Inline	IsStrictInlinable(S,i)	S' = Inline(S, i); i' = i - 1
3	Multi-level Tiling	HasDataReuse(S, i)	S' = MultiLevelTiling(S, i); i' = i - 1
4	Multi-level Tiling with Fusion	$HasDataReuse(S, i) \land HasFusibleConsumer(S, i)$	S' = FuseConsumer(MultiLevelTiling(S, i), i); i' = i - 1
5	Add Cache Stage	$HasDataReuse(S, i) \land \neg HasFusibleConsumer(S, i)$	S' = AddCacheWrite(S, i); i = i'
6	Reduction Factorization	HasMoreReductionParallel(S, i)	S' = AddRfactor(S, i); i' = i - 1
	User Defined Rule		

Fine-grained Search for Best Annotation

Problem:

 Random annotation ensures a large search space, but does not guarantee the performance

Approach:

 Perform evolutionary search to find heuristically a better program

Evolutionary Search

Random sampling in the design space does not guarantee the performance

Mutation

- Randomly mutate tile size
- Randomly mutate parallel/unroll/vectorize factor and granularity
- Randomly mutate computation location

Crossover

Task Scheduler

Problem:

Tuning some layers may not **improve the end-to-end DNN performance**:

- (1) the subgraph is not a performance bottleneck
- (2) subgraph performance is not sensitive to tuning

Approach:

- Form an objective function
- Reschedule time budget after a time window

Task Scheduler

Let the subgraph i latency (the compiler has achieved so far) to be $g_i(t)$. Let the end-to-end cost of the DNNs be a function of the time of the sub-graphs $f(g_1(t),g_2(t),...,g_3(t))$. Our objective is to minimize the end-to-end cost:

$$f_{1} = \sum_{j=1}^{m} \sum_{i \in S(j)} w_{i} \times g_{i}(t)$$

$$\frac{\partial f}{\partial t_{i}} \approx \frac{\partial f}{\partial g_{i}} (\alpha \frac{g_{i}(t_{i}) - g_{i}(t_{i} - \Delta t)}{\Delta t} +$$

$$f_{2} = \sum_{j=1}^{m} \max(\sum_{i \in S(j)} w_{i} \times g_{i}(t), L_{j})$$

$$(1 - \alpha)(\min(-\frac{g_{i}(t_{i})}{t_{i}}, \beta \frac{C_{i}}{\max_{k \in N(i)} V_{k}} - g_{i}(t_{i}))))$$

Existing systems: sequential optimization with a fixed allocation

Ansor task scheduler: slice the time and prioritize important subgraphs

Outline

Background

What is tensor program? / Challenges of generating high efficiency tensor program Current state-of-the-art of tensor program generator

Design

Sketch and Annotation – Decoupling coarse and fine-grained program sampling

Evolutionary Search – Mutating and tuning the program inspired by biological evolution

Task Scheduler – Task scheduling to meet the code generation latency requirement

Benchmark & Conclusion

Ansor finds high-performance programs that are *outside the search space of existing state-of-the-art approaches*, achieving 3.8x and 1.7x over state-of-the-art tensor program generator on Intel CPU and NVIDIA GPUs.

Single Operator Benchmark

Parallelize reduction loops

Platform:

Intel-Platinum 8124M (18 cores)

Operators:

conv1d (C1D), conv2d (C2D), conv3d (C3D), matmul (GMM) group conv2d (GRP), dilated conv2d (DIL) depthwise conv2d (DEP), conv2d transpose (T2D), capsule conv2d (CAP), matrix 2-norm (NRM)

Takeaway: For most test cases, the best programs found by Ansor are outside the search space of existing search-based frameworks.

Explore more tiling levels and computation locations

Single Subgraph Benchmark

Platforms:

"@C" for Intel CPU (8124M)
"@G" for NVIDIA (V100)

Subgraphs:

ConvLayer = conv2d + bn + relu TBS = transpose + batch_matmul + softmax

Takeaway:

Comprehensive coverage of the search space gives 1.1x - 14.2x speedup against the best alternative.

End-to-End Network Performance

Platforms:

Intel CPU (8124M) NVIDIA GPU (V100)

Networks:

ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Takeaway:

Ansor performs best or equally the best in all test cases with up to 3.8x speedup on Intel CPU

End-to-End Network Performance

Platforms:

Intel CPU (8124M) NVIDIA GPU (V100)

Networks:

ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Takeaway:

Ansor performs best or equally the best in all test cases with up to 1.7x speedup on NVIDIA GPU

Ablation Study

Match the performance of AutoTVM with 10x less search time

Reference

Chen, Tianqi, et al. "{TVM}: An automated end-to-end optimizing compiler for deep learning." 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18). 2018.

Zheng, Lianmin, et al. "Ansor: Generating high-performance tensor programs for deep learning." 14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20). 2020. https://www.usenix.org/system/files/osdi20-zheng.pdf

Ragan-Kelley, Jonathan, et al. "Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines." *Acm Sigplan Notices* 48.6 (2013): 519-530.

Pytorch compiler: https://github.com/pytorch/glow

Kim, YeongSeog, W. Nick Street, and Filippo Menczer. "Feature selection in unsupervised learning via evolutionary search." *Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.* 2000.

Habana AI chip, https://newsroom.intel.com/news-releases/intel-ai-acquisition/