Spirale de Cornu

On se propose dans ce problème d'étudier la courbe Γ admettant, par rapport à un repère orthonormal du plan la

$$\text{représentation paramétrique}: \begin{cases} x(t) = \int_0^t \cos\left(u^2\right) \mathrm{d}\,u \\ y(t) = \int_0^t \sin\left(u^2\right) \mathrm{d}\,u \end{cases} \text{ avec } t \in \mathbb{R} \;.$$

Cette courbe est appelée spirale de Cornu au encore clothoïde.

On note M(t) le point de Γ de paramètre t.

- 1.a La courbe Γ admet-elle des éléments de symétries ?
- 1.b Pour quelles valeurs de t, le point M(t) est-il régulier ? birégulier ?
- 1.c Etudier γ au voisinage du point M(0).
- 1.d Etudier les variations sur de $t \mapsto x(t)$ et $t \mapsto y(t)$ sur \mathbb{R}^+ . Pour quelles valeurs de t la tangente en M(t) est-elle verticale? horizontale?
- 1.e On admet que $\lim_{t \to +\infty} x(t) = \lim_{t \to +\infty} y(t) = \frac{\sqrt{\pi}}{2\sqrt{2}}$.
 - Donner l'allure l'arc Γ .
- 2. Déterminer en fonction de t:
- 2.a l'abscisse curviligne s d'origine M(0),
- 2.b la distance curviligne entre les points $M(t_0)$ et $M(t_1)$ avec $t_0, t_1 \in \mathbb{R}$,
- 2.c les vecteurs \vec{T} et \vec{N} du repère de Frénêt au point M(t),
- 2.d la courbure λ au point M(t) lorsque $t \neq 0$.
- 3. Pour tout réel k non nul donné, on considère la courbe C_k régulière de classe C^2 vérifiant :
 - +O est le point origine des abscisses curvilignes.
 - + En O, le vecteur tangent de la base de Frénêt égal à \vec{i}
 - + En tout point, on a $\lambda = ks$ où s est l'abscisse curviligne et λ la courbure.
- 3.a Donner le paramétrage de C_k en fonction du paramètre s.
- 3.b Comment la courbe C_{i} se déduit-elle de la courbe Γ ?
- Rq: Si la jonction de deux segments d'autoroutes était réalisée par un arc de cercle de rayon R, la courbure passerait subitement de 0 à 1/R. L'accélération normale passerait alors « instantanément » d'une valeur nulle à une valeur significative. Pour éviter ce problème, dans la pratique, on joint deux segments en exploitant la spirale de Cornu. En effet, elle permet de passer régulièrement d'une courbure nulle à toute valeur donnée.