Lezione del 3 Ottobre del prof. Frigerio

Proposizione 0.1. $f:(X,\tau)\to (Y,\tau')$ e siano S e $\mathfrak B$ una prebase e base di τ . I sequenti fatti sono tra loro equivalenti

(i) f è continua

(ii)
$$f^{-1}(A)$$
 è aperto $\forall A \in S$

(iii)
$$f^{-1}(A)$$
 è aperto $\forall A \in \mathfrak{B}$

Dimostrazione.

- (i) \Rightarrow (ii) Ogni elemento di S è aperto ed essendo f continua la controimmagine di aperti è un aperto
- (ii) \Rightarrow (i) Sia $\overline{\mathfrak{B}} = \{$ intersezione finite di elementi di $S \cup \{Y\}\}$ Dalla distributività di f^{-1} rispetto all'intersezione e dal fatto che un' intersezione finite di aperti è un aperto

$$\forall B \in \overline{\mathfrak{B}} \quad f^{-1}(B)$$
 è un aperto di X

Dalla definizione di prebase $\forall A \in \tau'$

$$A = \bigcup_{i \in I} B_i \text{ dove } B_i \in \mathfrak{B}$$

Ora se A = Y allora $f^{-1}(A) = X$ che è aperto altrimenti

$$f^{-1}(A) = f^{-1}\left(\bigcup_{i \in I} B_i\right)$$

ora essendo f^{-1} distributiva rispetto all'unione

$$f^{-1}(A) = \bigcup_{i \in I} f^{-1}(B_i)$$

Ma l'unione arbitraria di aperti è un aperto

• (i)⇔(iii) Ogni base è in particolare una prebase

Proposizione 0.2. Sia (X, τ) uno spazio topologico e $B \subseteq X$ allora

$$X = B^{\circ} \coprod \partial B \coprod (X \backslash B)^{\circ}$$

Dimostrazione. Poichè \overline{B} è il più piccolo chiuso che contiene Ballora $X\backslash \overline{B}$ è il piu grande aperto contenuto in $X\backslash B$ dunque

$$(X\backslash B)^{\circ} = X\backslash \overline{B}$$

Inoltre, per definizione di frontiera e poichè $B^\circ\subseteq \overline{B}$

$$\overline{B} = B^{\circ} \coprod \partial B$$

Da cui segue

$$X = \overline{B} \coprod (X \backslash \overline{B}) = B^{\circ} \coprod \partial B \coprod (X \backslash B)^{\circ}$$

Definizione 0.1. $Y \subseteq X$ si dice denso se $\overline{Y} = X$

Osservazione 1.

Y denso \Leftrightarrow $Y \cap A \neq \emptyset$ $\forall A$ aperto non vuoto

Dalla decomposizione mostrata precedentemente $X=\overline{Y} \amalg (X\backslash Y)^\circ$

$$Y$$
è denso \Leftrightarrow $(X \backslash Y)^{\circ} = \emptyset$

L'ultima è equivalente a dire che gli unici aperti contenuti in $X \setminus Y$ sono vuoti che è equivalente alla tesi.

Definizione 0.2. X si dice separabile se ammette un sottoinsieme denso e numerabile

Proposizione 0.3. $X \not e a base numerabile <math>\Rightarrow X separabile$

Dimostrazione. Sia $\mathfrak{B} = \{B_i\}_{i \in \mathbb{N}}$ una base numerabile di X (posso supporre che B_i non vuoto per ogni i)

 $\forall i \text{ scegliamo } x_i \in B_i \text{ e sia } Y = \{x_i \mid i \in \mathbb{N}\}$

Osserviamo che Y è al più numerabile, resta da provare che è denso.

Sia A un aperto non vuoto, dunque, A è unione di elementi della base \mathfrak{B} dunque

$$\exists j \ B_j \subseteq A \ \Rightarrow \ \{x_j\} \subseteq A \cap Y$$

Dunque grazie all'osservazione precedente Y è denso

Proposizione 0.4. Se (X, τ) è metrizzabile.

X separabile \Leftrightarrow X è a base numerabile

Dimostrazione. ← è vera per un qualsiasi spazio topologico \Rightarrow Sia Y un denso numerabile su X e sia d la distanza che induce τ Consideriamo l'insieme

$$\mathfrak{B} = \{ B(x,R) \, | \, x \in Y, \, R \in \mathbb{Q}_+ \}$$

osserviamo che \mathfrak{B} è numerabile infatti è in bigezione con $\mathbb{N} \times \mathbb{N}$ (\mathbb{Q} è in bigezione con \mathbb{N} e Yessendo numerabile è in bigezione con \mathbb{N})

Occorre provare che \mathfrak{B} è una base.

Sia A aperto, allora, per definzione $\exists R > 0$ tale che $B(x,R) \subseteq A$.

L'insieme $A' = B\left(x, \frac{R}{3}\right)$ è un aperto per cui essendo Y denso $A \cap Y \neq \emptyset$ dunque $\exists y \in Y$ tale che $d(x,y) < \frac{R}{3}$

Sia $R' \in \mathbb{Q}$ tale che $\frac{R}{3} < R' < \frac{2}{3}R$ allora $B(y,R') \in \mathfrak{B}$ Osserviamo che $x \in B(y,R')$ e infatti $d(x,y) < \frac{R}{3} < R'$.

Sia $z \in B(y, R')$ allora

$$d(x,z) \le d(x,y) + d(y,z) < \frac{R}{3} + R' < R$$

dunque $z \in B(x,R) \subseteq A$ e perciò $B(y,R') \subseteq A$

Definizione 0.3. Sia (X, τ) uno spazio topologico e $x_0 \in X$.

Un insieme $U \subseteq X$ è un intorno di x_0 se $x_0 \in U^{\circ}$.

In modo equivalente, se $\exists V$ aperto con $x_0 \in V \subseteq U$.

Denoteremo con $I(x_0)$ l'insieme degli intorni di x_0

Definizione 0.4. Un sistema fondamentale di intorni per x_0 è una famiglia $\mathfrak{F} \subseteq I(x_0)$ tale che

$$\forall U \in I(x_0) \quad \exists V \in \mathfrak{F} \quad V \subseteq U$$

Osservazione 2. Se X è metrico.

$$U$$
 intorno di $x_0 \Leftrightarrow \exists R > 0 \quad B(x_0, R) \subseteq U$

Dunque la famiglia

$$\mathfrak{F} = \left\{ B\left(x_0, \frac{1}{n}\right), n \in \mathbb{N}_+ \right\}$$

è un sistema fondamentale (numerabile) di intorni di x_0

Definizione 0.5 (Primo numerabile).

Xsoddisfa il primo assioma di numerabilità se ogni $x_0 \in X$ ha un sistema fondamentale di intorni numerabili

Fatto 0.5.

$$X metrizzabile \Rightarrow X primo numerabile$$

Proposizione 0.6.

II assioma di numerabilità ⇒ I assioma di numerabilità

Dimostrazione. Se \mathfrak{B} è una base numerabile, sia $x_0 \in X$

$$\mathfrak{F} = \{B \in \mathfrak{B}, | x_0 \in B\}$$

osserviamo che \mathfrak{F} è un sistema fondamentale di intorni per x_0 . Sia U un intorno di x_0 , essendo U° un aperto

$$\exists I \subseteq \mathbb{N} \quad \exists B_i \in \mathfrak{B} \quad U^\circ = \bigcup_{i \in I} B_i$$

Dunque $\exists i_0$ tale che

$$x_0 \in B_{i_0} \subseteq U^{\circ} \subseteq U$$
 in quanto $x_0 \in U^{\circ}$

Da ciò segue la tesi in quanto $B_{i_0} \in \mathfrak{F}$ ed inoltre $\mathfrak{F} \subseteq \mathfrak{B}$ dunque è numerabile

Proposizione 0.7 (Aperti e intorni).

$$A \subseteq X$$
 è aperto \Leftrightarrow è intorno di ogni suo punto

Dimostrazione.

$$A \stackrel{.}{\circ} apeto \Leftrightarrow A = A^{\circ} \Leftrightarrow (x \in A \Leftrightarrow x \in A^{\circ}) \Leftrightarrow$$

 $\Leftrightarrow (x \in A \Leftrightarrow A \text{ intorno di } x) \Leftrightarrow A \text{ intorno di ogni suo punto}$

Proposizione 0.8. Sia $C \subseteq X$ generico

$$x \in \overline{C} \quad \Leftrightarrow \quad \forall U \in I(x) \quad U \cap C \neq \emptyset$$

Dimostrazione. $\Rightarrow x \in \overline{C} \Rightarrow x \notin (C \setminus X)^{\circ} \Rightarrow X \setminus C$ non è un intorno di XSe $\exists U \in I(x_0)$ tale che $U \cap C = \emptyset$ allora $U \subseteq X \setminus C$ ovvero $X \setminus C$ è un intorno di x (assurdo). $\Leftarrow x \notin \overline{C} \Rightarrow x \in (X \setminus C)^{\circ}$ dunque $\exists U \in I(x_0)$ tale che $U \subseteq X \setminus C$ dunque $X \setminus C$ è l'intorno disgiunto cercato Sia $X = \mathbb{R}$ e $\mathfrak{B} = \{[a, b), a < b\}$ allora

- 1. $\mathfrak B$ è una base di una topologia τ
- 2. τ è la più fine della topologia euclidea
- 3. τ è separabile
- 4. τ non è a base numerabile
- 5. τ non è metrizzabile
- 1. Mostriamo che la base ricopre \mathbb{R}

$$\mathbb{R} = \bigcup_{n \in \mathbb{Z}} [n, n+1)$$

inoltre

$$[a,b) \cap [c,d) = \begin{cases} \emptyset \\ [e,f) \text{ con } e = \max\{a,c\} \text{ e } f = \min\{b,d\} \end{cases}$$

Valgono entrambi le richieste del criterio dunque ${\mathfrak B}$ è una base

2. Basta vedere che ogni aperto della topologia euclidea è anche un aperto di τ

$$B(x_0, R) = (x_0 - R, x_0 + R) = \bigcup_{n \in \mathbb{N}_+} = \left[x_0 - R + \frac{1}{n}, x_0 + R\right]$$

- 3. $\mathbb Q$ incontra tutti gli aperti non vuoti di $\mathfrak B$, dunque di τ da ciò segue che è denso
- 4. Sia \mathfrak{B}' una qualsiasi base di τ . $\forall B \in \mathfrak{B}'$ sia $f(B) = \inf B \in \mathbb{R} \cup \{-\infty\}$ Si dimostra che $\mathbb{R} \subseteq Imf$ perciò \mathfrak{B}' non è numerabile
- 5. Uno spazio separabile e a base numerabile se e solo se τ è metrizzabile. Dunque τ non è metrizzabile