

Master in Digital Project Management & Digital Strategy

LLM & Ecology

What is the environmental impact of large language models (LLMs), and how can these same models be leveraged to reduce global carbon footprints?

Thomas Planchard
Academic Year 2024-2025

Introduction	1
CHAPTER 1 – Large Language Models (LLMs)	
Definition and Core Architecture	1
Evolution and Key Milestones	2
Capabilities and Applications	3
Toward Environmental Impact	4
CHAPTER 2 – Current Methods and Standards for Measuring the Environmental Impact of Computing	
Measuring Energy Consumption in Computing	5
Data-Center Overhead and PUE	5
Life-Cycle Considerations	5
Converting Energy Use to CO ₂ -Equivalent Emissions	6
Emission Factors and CO₂e Calculation	6
Origins and Adoption of the GHG Protocol	7
Legal Frameworks Referencing the GHG Protocol	7
Beyond Carbon	8
Tools and Frameworks for Carbon Accounting in Computing	9
Software Instrumentation Libraries	9
Carbon Calculators	9
Cloud Provider Sustainability Tools	10
Cross-Provider and Third-Party Frameworks	11
Observations and Limitations	12
Standards and Protocols for Environmental Impact Measurement	12
Application of These Methods and Standards to Al and LLMs	13
Training Phase Footprint	13
Inference and Deployment Footprint	15
Using Standards in Practice	
Challenges and Evolving Practice	

CHAPTER 3 – Carbon Footprint of ChatGPT vs. LLaMA Models

Iraining Phase: Energy Use and CO ₂ Emissions	. 16
GPT-series (OpenAl)	. 16
LLaMA-series (Meta)	. 18
Scaling to Newer Models	. 19
Inference Phase: Energy Consumption and Life-Cycle Impact	. 21
Architecture and Hardware Factors	. 21
Infrastructure and Deployment Differences	. 22
HAPTER 4 – Reducing the Carbon Footprint of Large Language	
odels Madel Efficiency and Compression Techniques	00
Model Efficiency and Compression Techniques	
Hardware and Infrastructure Optimizations	
Carbon-Aware Computing Practices	
Reusing Models and Emerging Approaches	. 20
HAPTER 5 – Leveraging Large Language Models to Reduce Carb otprints	on
Energy Management and Grid Operations	. 27
Corporate Carbon Accounting and Product Footprints	. 28
Climate Information and Decision Support	. 29
Making LLMs Themselves More Sustainable	. 31
HAPTER 6 – Companies and the Integration of Large Language odels	
Overview of Industry Adoption	. 32
The Startup Ecosystem and API-Native Business Models	
Retrofit Projects in Established Enterprises	
Regional and Sectoral Variation	
Practitioner Perspective: Insights from an Industry Interview	
Sustainability rarely drives Al adoption	
Data-governance rules often dictate model choice	
9	- '

Carbon accounting is not yet requested	35
Implications	35
Discussion: Toward Sustainable Corporate Al	35
CHAPTER 7 – Conclusion Personal Reflection	37
Bibliography	38