

		Date:	1 1
	$\Rightarrow \begin{cases} a_2 = 0 \\ a_3 = 0 \end{cases}$		
	$a_3 = 0$		
	$ -a_1-a_2-a_3+a_4=0 $		
	$\Rightarrow a_1 = a_2 = a_3 = a_4 = 0$		
	⇒ S is linearly independent.		
	Remark 13: - 直利用及義未 check linear independence 是目	力較複	雅的.
	#D 較 "簡單" 的 る 弦 是 利用 (reduced) row echelon form	n:	
	Let 8 = 1 v1. vs, vk3.		
		R	
	(OK)		
\bigcirc	Conclusion: R 中有-31 為 o ← S is linearly depende		
	i.e., R 中 当·有 - 3·1 为 0 ↔ S is linearly indep	zendent	
	Example 14: (1) As in Example 12(1):		
	(18-42) [13-42] [13-	-42)
	2 2 -4 0 0 -4 4 -4	0 -4	4 -4
	1 -3 2 -4 0 - 6 6 - 6	0 3 -	-3 Q
U	(-1 0 1 0) (0 3 -3 2) (0	> 0	0 0)
	多用成到底! 2. 宴有 - ·	311是(の一個の
\bigcirc	现,部创业活3		
	⇒ S is linearly dependent		
	(2) As in Example (2)		
\bigcirc	: LERP tow echelon form		
	0 0 1 ~1		

	⇒ S is linearly independent.
Ren	$nark 15$: (11 3 03 is linearly independent $\Leftrightarrow v \neq 0$.
	(2) If $0 \in \{v_1, v_2,, v_k\}$, then $\{v_1, v_2,, v_k\}$ is linearly dependent
The	2018M16: 3 V1, V2,, VK3 & 3 V1. V2,, VK. VK+1,, Vm3 & 1R"
	(1) 3 v1. v2 vx3: linearly dependent
	⇒ 3 v1. v2, vk, vk+1, vm3: linearly dependent.
	(2) i v1. v2 vk. Vk+1,, vm3: linearly independent.
	⇒ 3 v1. v=, v+3: linearly independent
proc	f: (1) 3 U1. U2,, Uk3: linearly dependent
	\Rightarrow 3 a1, az, ak $\in \mathbb{R}$, not all zero, such that
	$a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = 0$
	⇒ a, v, + a≥ v≥ + ··· + a × v × + o · v × + + ··· + o · v m ≥ o
	⇒ 3 U1. U2, Uk, UkH, Um3: linearly dependent.
	(2) Suppose 3 U1. U2, UK, UK+1, Um 3: linearly independent. Consider
	$a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = 0$
	=> a1 v1 + a3 v3 + ··· + ak vk + 0. Vk+1 + 1 + 0. Vm = 0
	$\Rightarrow a_1 = a_2 = \dots = a_k = 0$
	⇒ 3 v1. v2, vx3: linearly independent.