深度学习三步 神经网络

1.确定神经网络的连接方法

前馈神经网络 (Fully Connect Feedforward Network)

矩阵运算(Matrix Operation)

如何神经网络结构的设计

- 2.判断函数的好坏
- 3.使用梯度下降

深度学习三步

而在第一步设置的函数大部分是神经网络 (Neural Network) 。

神经网络

我们可以将神经网络看成,多个逻辑回归交叉转换形成的一个算法模型。单一的一个逻辑回归我们将其视为一个神经。不同的连接方法将会生成不同的神经网络结构。

神经网络参数:神经网络中所有的权重 (weight) 和偏差(biases)

1.确定神经网络的连接方法

前馈神经网络 (Fully Connect Feedforward Network)

这个就是一个简单的函数模型。而一个简单的神经网络例子如下所示:

矩阵运算(Matrix Operation)

神经网络的运算我们往往会用矩阵运算来进行操作。

而对于整个神经网络的计算方式,可以视为下图的计算方式

如何神经网络结构的设计

- Q: How many layers? How many neurons for each layer?
 Trial and Error + Intuition
- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

2.判断函数的好坏

通过使用损失函数,计算预测结果与样本标签的交叉熵。从而判断函数的好坏。

这是计算一个样本的损失函数,而整个样本集的损失函数则如下图所示

Total Loss

For all training data ...

http://www.camdemy.com

3.使用梯度下降

在选择确定了函数之后,则进行梯度下降来确定最优参数。

