VECTOR CALCULUS, Week 6

9.3 Polar Coordinates; 9.4 Areas and Lengths in Polar Coordinates; 10.1 Three-Dimensional Coordinate Systems; 10.2 Vectors; 10.3 The Dot Product; 10.4 The Cross Product; 10.5 Equations of Lines and Planes; 10.6 Cylinders and Quadric Surfaces

9.3 Polar Coordinates

Fact: If $(x, y) \in \mathbf{R}^2$, then there is an $r \ge 0$ and $\theta \in [0, 2\pi)$ so that $(x, y) = (r \cos \theta, r \sin \theta)$.

- $r^2 = x^2 + y^2$
- If $x \neq 0$, then $\tan \theta = \frac{y}{x}$.

If x = 0 and y > 0, then $\theta = \frac{\pi}{2}$. If x = 0 and y < 0, then $\theta = \frac{3\pi}{2}$.

Def: Suppose $(x, y) \in \mathbf{R}^2$, and suppose $r, \theta \in \mathbf{R}$. If $(x, y) = (r \cos \theta, r \sin \theta)$, then we say $(r, \theta)_p$ are **polar coordinates** for (x, y).

- We call the plane with points represented by polar coordinates the **polar coordinate system**.
- We call the origin the **pole**.
- We call the positive x-axis the **polar axis**.

Note that we allow negative values of r, θ .

Ex: Plot and give Cartesian coordinates for the following points given in polar coordinates.

- 1. $(2, -2\pi/3)_p$
- 2. $(-3, 3\pi/4)_p$

Ex: Give polar coordinates for the following points given in Cartesian coordinates.

- 1. (1,-1)
- 2. $(2, 2\sqrt{3})$

Def: A **polar parametric plane curve** is a parametric plane curve of the form

$$C(\theta) = (x(\theta), y(\theta)) = (r(\theta)\cos\theta, r(\theta)\sin\theta) = (r(\theta), \theta)_p \text{ for } a \le \theta \le b.$$

We say the equation

$$r = r(\theta)$$
 for $a \le \theta \le b$

is a **polar parametric equation** for C.

Ex: Identify the images of the polar parametric plane curves given by the following polar parametric equations.

- 1. r = 2
- 2. $r = 2\cos\theta$, by finding a Cartesian equation for the curve.
- 3. $r = 1 + \sin \theta$, the cardioid

Ex: Find a polar parametric equation for the curve given by the Cartesian equation $(x+1)^2 + (y-2)^2 = 5$.

Ex: Consider the cardioid $r = 1 + \sin \theta$.

- 1. Find a Cartesian equation for the curve.
- 2. Compute the slope of the tangent line of C at $\theta = \frac{\pi}{3}, \frac{5\pi}{6}$.

9.4 Areas and Lengths in Polar Coordinates

Fact: The set $\{(r,\theta)_p : \theta = a\}$ is the line through the origin with angle = a counterclockwise from the positive x-axis.

Fact: Suppose C is the polar parametric plane curve given by the polar parametric equation $r = r(\theta)$ for $a \le \theta \le b$, and suppose r is continuous. The (unsigned) area A of the region bounded by C and the lines $\theta = a$ and $\theta = b$ is given by

$$A = \int_a^b \frac{1}{2} (r(\theta))^2 d\theta.$$

Ex: Give an integral for the area A of the following regions.

- 1. The region bounded by the polar parametric plane curve C given by the polar parametric equation r = R, and the lines $\theta = a$ and $\theta = b$.
- 2. One loop of the four-leaved rose $r = \cos 2\theta$.
- 3. The region inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

Fact: Suppose C is the polar parametric plane curve given by the polar parametric equation $r = r(\theta)$ for $a \le \theta \le b$, where r is continuously differentiable over [a, b]. If C has no self-intersections, then the arc length L of the image of C is given by

$$L = \int_{a}^{b} \sqrt{(x'(\theta))^{2} + (y'(\theta))^{2}} d\theta = \int_{a}^{b} \sqrt{r(\theta)^{2} + (r'(\theta))^{2}} d\theta.$$

The same is true if C only has isolated self-intersections.

Ex: Give an integral for the arc length L of the cardioid $r = 1 + \sin \theta$ for $0 \le \theta \le 2\pi$.

10.1 Three-Dimensional Coordinate Systems; 10.2 Vectors; 10.3 The Dot Product; 10.4 The Cross Product

Def: We use the following notation.

- We use x, y, z-coordinates in \mathbb{R}^3 , or space.
- Given a point P in space, P(x, y, z) means that P has coordinates (x, y, z).
- Given two points P_1 , P_2 in space, we let $|P_1P_2|$ denote the distance between P_1 , P_2 .
- The book uses bold letters to denote vectors. We will continue to use arrows, such as \vec{v} .

 $\vec{0}$ will denote the zero vector.

- If $\vec{v} \in \mathbf{R}^2$ has components v_1, v_2 , then we write $\vec{v} = \langle v_1, v_2 \rangle$. Similarly for $\vec{v} \in \mathbf{R}^3$, we write $\vec{v} = \langle v_1, v_2, v_3 \rangle$.
- Given points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, we denote the vector

$$\vec{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
.

- If $\vec{v} \in \mathbf{R}^2$ or $\vec{v} \in \mathbf{R}^3$, then we denote the length of \vec{v} by $|\vec{v}|$.
- The standard basis vectors in \mathbb{R}^3 shall be denoted by

$$\vec{i} = <1,0,0> \quad \vec{j} = <0,1,0> \quad \vec{k} = <0,0,1>$$

Def: The **dot product** between $\vec{v}, \vec{w} \in \mathbf{R}^3$ is

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3.$$

We similarly define the dot product between $\vec{v}, \vec{w} \in \mathbf{R}^2$.

Thm: If θ is the angle between \vec{v}, \vec{w} (in \mathbf{R}^2 or \mathbf{R}^3), then

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta.$$

In particular, $\vec{v} \perp \vec{w}$ if and only if $\vec{v} \cdot \vec{w} = 0$.

Def: Suppose \vec{v} is a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 . The vector/orthogonal projection of \vec{x} onto \vec{v} is

$$\operatorname{proj}_{\vec{v}} \vec{x} = \left(\frac{\vec{x} \cdot \vec{v}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|} = \left(\frac{\vec{x} \cdot \vec{v}}{|\vec{v}|^2}\right) \vec{v}.$$

Thm: $\vec{p} = \text{proj}_{\vec{v}}\vec{x}$ is the unique vector so that

- \vec{p} , \vec{v} are co-linear.
- $(\vec{x} \vec{p}) \perp \vec{v}$.

Def: Suppose $\vec{v}, \vec{w} \in \mathbf{R}^3$. We define the **cross product** between \vec{v}, \vec{w} in that order to be the vector given by computing the symbolic determinant

$$\vec{v} \times \vec{w} = \left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right|.$$

Thm: $\vec{v} \times \vec{w}$ is the unique vector so that

- $\vec{v} \times \vec{w} \perp \vec{v}, \vec{w}$
- $|\vec{v} \times \vec{w}|$ is the area of the parallelogram formed by \vec{v}, \vec{w} .
- $\vec{v}, \vec{w}, \vec{v} \times \vec{w}$ in that order satisfy the **right-hand rule**.

Fact: Suppose $\vec{u}, \vec{v}, \vec{w} \in \mathbf{R}^3$.

- $\vec{w} \times \vec{v} = -(\vec{v} \times \vec{w})$ (anti-commutative law)
- $|\vec{u} \cdot (\vec{v} \times \vec{w})|$ is the volume of the **parallelpiped formed by** $\vec{u}, \vec{v}, \vec{w}$.

10.5 Equations of Lines and Planes

Fact: The line ℓ in space through $P(x_0, y_0, z_0)$ in the direction of $\vec{v} = \langle a, b, c \rangle \neq \vec{0}$ is given by the point-direction parameterization

$$\ell(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$
 for $t \in \mathbf{R}$.

Ex: Suppose ℓ is the line through A(2,4,-3), B(3,-1,1). Give a point-direction parameterization for ℓ . At what point does ℓ pass through the horizontal xy-plane?

Ex: Consider the lines given by the point-direction parameterizations

$$\ell_1(t) = <1, -2, 4> +t < 1, 3, -1> \text{ for } t \in \mathbf{R}$$

 $\ell_2(s) = <0, 3, -3> +s < 2, 1, 4> \text{ for } s \in \mathbf{R}.$

Show that ℓ_1, ℓ_2 are **skew**: not parallel and do not intersect.

Fact: To describe a plane in space, we need a point in the plane and a **normal direction**. If $P(x_0, y_0, z_0)$ is a point in space and $\vec{n} = \langle a, b, c \rangle \neq \vec{0}$, then the plane \mathcal{P} through P with normal in the direction of \vec{n} is given by the **implicit/vector equation**

$$\mathcal{P}: \vec{n} \cdot (\langle x, y, z \rangle - \langle x_0, y_0, z_0 \rangle) = 0.$$

We also say \mathcal{P} is given by the scalar equation

$$\mathcal{P}: a(x-x_0) + b(y-y_0) + c(z-z_0) = 0,$$

or by the linear equation

$$\mathcal{P}: ax + by + cz + d = 0.$$

Ex: Find a linear equation for the plane \mathcal{P} through the points P(1,3,2), Q(3,-1,6), R(5,2,0).

Ex: Find a point-direction parameterization for the line ℓ of intersection between the planes given by the linear equations

$$\mathcal{P}_1: x + y + z - 1 = 0$$
 and $\mathcal{P}_2: x - 2y + 3z - 1 = 0$.

10.6 Cylinders and Quadric Surfaces

Def: A quadric surface is a surface in space given by a second-degree equation in x, y, z of the form

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$$

Ex: Some familiar quadric surfaces.

- 1. The unit cylinder centered around the z-axis, given by $x^2 + y^2 1 = 0$.
- 2. The unit sphere centered at the origin, given by $x^2 + y^2 + z^2 1 = 0$.

We as well have cylinders and spheres of different radii centered elsewhere.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Fact: Consider a quadric surface S given by the equation

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$$

To determine the type of S, and to sketch S, it is best to use the **level set method**: set a variable equal to a constant, and sketch the resulting curve. For example, set z = k and sketch the curve in the plane z = k given by the equation

$$Ax^{2} + By^{2} + Dxy + Eky + Fkx + Gx + Hy + Ck^{2} + Ik + J = 0.$$

This curve is the intersection between S and the plane z = k.

Ex: Use the level set method to determine the type and sketch the quadric surfaces given by the following equations.

1.
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} - 1 = 0$$

$$2. \ 4x^2 + y^2 - z = 0$$