Лабораторная работа 4.4.2 Фазовая дифракционная решётка

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится знакомство с работой и настройкой гониометра Г5, определение спектральных характеристик фазовой решётки (эшелетта) и исследование спектра ртутной лампы.

2 Теоретические сведения

В современных спектральных приборах широко используются отражательные решётки с треугольным профилем штриха (рис. 1), они способны концентрировать до 70–80% падающего излучения в рабочий порядок спектра. Отражательная решётка, в которой угол Ω между рабочей гранью и плоскостью решётки не превышает 20° , называется эшелеттом. Для эшелетта, варьируя угол скоса и шаг решётки, получают рабочий порядок $m_{\rm p} \leq 10$.

Найдём разность хода между лучами на рис. 1. Условие возникновения спектра порядка т

$$AC - BD = d(\sin\varphi m - \sin\psi) = m\lambda,\tag{1}$$

где ψ – угол падения от нормали к решётке, φ – угол дифракции. Для нулевого порядка $\varphi_0 = \psi$. В отличие от амплитудной решётки, нулевой порядок не будет самым ярким. Угол φ_6 – угол блеска, соответствующий максимуму интенсивности света, равен углу зеркального отражения падающей волны от одной ступеньки:

$$\varphi_6 = \psi + 2\Omega.$$

Для эшелетта рабочим порядком спектра $m_{\rm p}$ будет то целое число, которое соответствует минимальной ошибке решения уравнения $d\sin\varphi_m-\sin\psi=0$.

Считая, что эшелетт работает в автоколлимационном режиме, то есть свет падает перпендикулярно рабочей грани решётки ($\psi = -\Omega$) и отражается в обратном направлении ($\varphi = \Omega$), тогда

$$2d\sin\Omega = m_{\rm p}\lambda_{\rm p}.\tag{2}$$

В автоколлимационном режиме дифракция на одной ступеньке-зеркальце описывается так же, как и дифракция на отдельной щели амплитудной решётки с максимумом вблизи $\varphi \approx 0$. В отличие от амплитудной решётки, нумерацию порядков для амплитудной решётки, следует сместить на величину $m_{\rm D}$.

2.1 Расчётные формулы

Основные формулы, используемые в работе: (1), (2). Вторая часть формулы (1) используется для определния периода d в МНК на графике рис. 2.

3 Оборудование и инструментальные погрешности

Гониометр: $\Delta = \pm 1$ "

Эшелетт: $\lambda_{\rm p} = 500\,{\rm nm}$ в 1-м порядке.

Ртутная лампа

4 Результаты измерений и обработка данных

Все измерения и расчёты в СИ.

Линии спектра лампы были исследованы для угла $\phi = 45^{\circ}$. Результаты отображены в табл. 1.

По этим данным построим график на рис. 2. Отсюда

Рис. 1: Профиль фазовой дифракционной решётки; дифракция световой волны

Рис. 2: График $\sin \varphi - \sin \psi$ от λ

Цвет	$\sin \varphi - \sin \psi$	λ
Фиолетовый	-0.249	4047
Синий	-0.267	4358
Голубой	-0.301	4916
Зелёный	-0.331	5461
Жёлтый	-0.353	5770
Жёлтый	-0.354	5791

Таблица 1: Спектр ртути

φ	$ \Delta \varphi $	$\Delta \lambda$, Å	$\left \frac{d\varphi}{d\lambda} \right _{эксп}, \; (угл.\; c./\mathrm{Å})$	$\left \frac{d \varphi}{d \lambda} \right _{ ext{теор}}, ext{ (угл. c./Å)}$
30°	650 ± 10	21	31 ± 1	1.5 ± 0.05
30°	798 ± 10	21	38 ± 1	1.55 ± 0.05
45°	1286 ± 10	21	61 ± 1	2.5 ± 0.1
60°	1441 ± 10	21	68 ± 1	4.4 ± 0.2

Таблица 2: Угловая дисперсия при различных φ

$$\frac{1}{d} = 599 \pm 8 \text{ mtp/mm}.$$

$$d = 1.67 \pm 0.08 \text{ MKM/IIITP}.$$

Найдём угол скоса рабочей поверхности: $m_{\rm p}=1,\,\lambda_{\rm p}=500$ нм, тогда

$$\sin\Omega = \frac{m_{\rm p}\lambda_{\rm p}}{2d} = 0.150 \pm 0.005$$

$$\Omega = 8.61^{\circ} \pm 0.02^{\circ}$$

Найдём угловую дисперсию при различных ψ . Результат в табл. 2. Удалось снять только по 1 порядку для $\varphi=45^\circ$ и $\varphi=60^\circ$, и 2 порядка для $\varphi=30^\circ$, так как для остальных m, характерные углы превышают максимально измеримые.

Построим график для угловой дисперсии при $\varphi = 30^{\circ}$.

4.1 Оценка разрешающей способности

Найдём экспериментальную разрешающую способность системы при ширине щели 1.14 мм:

$$R = \frac{\lambda}{\delta \lambda} = 274.7.$$

Тогда N=275 штрихов освещены. Так как коллиматор даёт параллельный пучок, то на 1 мм приходится $n\approx 250$ штрихов. Оценка погрешности не имеет смысла, так как такой метод в принципе неточен и опирается на субъективную оценку.

4.2 Оценка погрешностей

Как и обычно, оценка инструментальных погрешностей проводится по общей формуле (с частными производными); в экспериментах с несколькими измерениями случайные погрешности существенно превалируют над инструментальными.

5 Вывод

Судя по расхождению экспериментальных данных с теоретическими, при снятии показаний гониометра, несмотря на его точность, были допущены ошибки, в частности, при измерении расстояния между жёлтыми спектральными линиями. Отчасти это связано с неудобством снятия показаний.

Тем не менее, удалось с неплохой точностью найти характеристики дифракционной решётки и исследовать спектр ртутной лампы.

Рис. 3: Угловая дисперсия для 30°

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н. А. Принципы оптики, 2014
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 2. Оптика: учебное пособие под ред. А. В. Максимычева