AES Encryption Algorithm

By M.V. Ganesh Raju Networking and Security Enthusiast

ABSTRACT

We all know that as per the prevailing trend, Advanced Encryption standard (AES) is the latest and most widely used encryption algorithm.

Almost every security audit recommends using the AES for the encryption purpose.

This is because the aging Data Encryption Standard (DES) that was used earlier became too vulnerable to brute-force attacks.

So the purpose of the seminar is to present the Advanced Encryption standard.

INTRODUCTION

The **Advanced Encryption Standard (AES)** is a most important and widely used symmetric-key encryption standard.

It uses the same key for both encryption and decryption process.

Block cipher with 128-bit block size

Three supported key lengths: 128, 192 and 256 bit

Key length (bits)	Number of rounds
128	10
192	12
256	14

In each round, it performs four transformations, namely SubBytes(), ShiftRows(), MixColumns() and AddRoundKey().

Among the four transformations, SubBytes() and MixColumns() are used to perform simple substitution operations.

The ShiftRows() transformation is used to perform the permutation operation.

The AddRoundKey() transformation is used to perform the XOR operation in the encryption and decryption process.

Encryption process

The encryption process

AddRoundKey()

	St	ate		С	iphe	r key	/
32	88	31	e0	2b	28	ab	09
43	5a	31	37	7e	ae	f7	cf
f6	30	98	07	15	d2	15	4f
a8	8d	a2	34	16	a6	88	3с

This is a block from the plaintext message to be encrypted.

SubBytes()

19	a0	9a	е9
3d	f4	С6	f8
е3	e2	8d	48
be	2b	2a	08

he										y							
he	24.	0	1	2	3	4	5	6	7	8	9	a.	b	C	d	e	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	ď7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	8.2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	£7	cc	34	a.5	e5	fl	71	d8	31	15
	3	04	c7	23	C3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	la	1b	6e	5a	a.0	52	3b	d6	b3	29	e3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	88	fb	43	4d	33	85	45	£9	02	7£	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	be	b6	da	21	10	ff	f3	d2
х	8	cd	0c	13	ec	5£	97	44	17	c4	a.7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	а	e0	32	3а.	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e 7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	le	a6	b4	c6	e8	dd.	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	cl	1d	9e
	e	el	f8	98	11	69	d9	8e	94	9b	le	87	e9	ce	55	28	df
	£	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Fig:- Before appyling the SubBytes()

S-BOX / Byte Substitution table

SubBytes()

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

he	ar.									ŕ							
he	*	0	1	2	3	4	5	6	7	8	9	a.	b	c	d	e	f
	0	63	7c	77	7b	£2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	Cā	82	c9	7d	fa	59	47	fO	ad	d4	a.2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3£	£7	cc	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	la	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	88	fb	43	4d	33	85	45	£9	02	7£	50	3c	9f	a8
	7	51	a.3	40	8f	92	9d	38	f5	be	b6	da	21	10	ff	f3	d2
×	8	cd	0c	13	ec	5£	97	44	17	C4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	P8	14	de	5e	0b	db
	а	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e 7	C8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	c	ba	78	25	2e	lc	a6	b4	C6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	Зе	b5	66	48	03	f6	0e	61	35	57	b9	86	cl	ld	9e
	e	el	f8	98	11	69	d9	8e	94	9b	le	87	e9	ce	55	28	df
	£	8c	al	89	0d	bf	e6	42	6-8	41	99	2d	0f	ь0	54	bb	16

Fig:- After appyling the SubBytes()

ShiftRows()

ShiftRows()

	1e	b8	e0	d4
rotate over 1 byte				
rotate over 2 bytes	52	5d	98	11
rotate over 3 bytes	30	e5	f1	ae

d4	e0	b8	1e
bf	b4	41	27
5d	52	11	98
30	ae	f1	e5

MixColumns()

The constant matrix that is used is based on a code which gives good mixing of the bytes within each column

Steps for finding the values: We know that,

The irreducible polynomial that we have selected for the AES algorithm is $p(x) = x^8 + x^4 + x^3 + x + 1$ (Galois field)

SI. No.	String	Polynomials $\{p(x)\}$	16.	101011111	$x^8 + x^6 + x^4 + x^3 + x^2 + x^1 + 1$
1.	100011101	$x^8 + x^4 + x^3 + x^2 + 1$	17.	111111001	$x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + 1$
2.	101110111	$x^8 + x^6 + x^5 + x^4 + x^2 + x^1 + 1$	18.	111000011	$x^8 + x^7 + x^6 + x^1 + 1$
3.	111110011	$x^8 + x^7 + x^6 + x^5 + x^4 + x^1 + 1$	19.	100111001	$x^8 + x^5 + x^4 + x^3 + 1$
4.	101101001	$x^8 + x^6 + x^5 + x^3 + 1$	20.	110101001	$x^8 + x^7 + x^5 + x^3 + 1$
5.	110111101	$x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + 1$	21.	110000111	$x^8 + x^7 + x^2 + x^1 + 1$
6.	111100111	$x^8 + x^7 + x^6 + x^5 + x^2 + x^1 + 1$		110110001	$x^8 + x^7 + x^5 + x^4 + 1$
7.	100101011	$x^8 + x^5 + x^3 + x^1 + 1$	23.	101001101	$x^8 + x^6 + x^3 + x^2 + 1$
8.	111010111	$x^8 + x^7 + x^6 + x^4 + x^2 + x^1 + 1$		111001111	$x^8 + x^7 + x^6 + x^3 + x^2 + x^1 + 1$
9.	101100101	$x^8 + x^6 + x^5 + x^2 + 1$	24.	111001111	x +x +x +x +x +x +1
10.	110001011	$x^8 + x^7 + x^3 + x^1 + 1$	25.	111011101	$x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1$
11.	101100011	$x^8 + x^6 + x^5 + x^1 + 1$	26.	1 1 0 1 0 0 0 1 1	$x^8 + x^7 + x^5 + x^1 + 1$
12.	100011011	$x^8 + x^4 + x^3 + x^1 + 1$	27.	111110101	$x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + 1$
13.	100111111	$x^8 + x^5 + x^4 + x^3 + x^2 + x^1 + 1$	28.	110011111	$x^8 + x^7 + x^4 + x^3 + x^2 + x^1 + 1$
14.	1 1 0 0 0 1 1 0 1	$x^8 + x^7 + x^3 + x^2 + 1$	29.	101111011	$x^8 + x^6 + x^5 + x^4 + x^3 + x^1 + 1$
15.	100101101	$x^8 + x^5 + x^3 + x^2 + 1$	30.	101110001	$x^8 + x^6 + x^5 + x^4 + 1$

Step 1:

```
02.04
= 10-11010100
= (11 XOR 01).11010100
= 1001111100 XOR 11010100
    10101000
The output is XOR with oociloll
    10101000
                          02.04 = 10110011
    000 11011
    10110011
```

Step 2:

```
03.bf
 = 11.1011111
 = (10 x0x 01) . 10111111
 = 101111110
XOR DIOI 1111)
    0110000001
 The olp is XOR with 00011011
     011000001
  YOK
     00011011
                        .. 03. bf = 11011010
      11011010
```

```
MixColumns()
```

Step 3:

Step 4:

```
1/2= {02.d4} + {03.bf} + {01.5d} + {01.30}

= 10110011 xor 11011010 xor

Offiliol xor 00110000

= 00000100

= 04(in Hex)
```

MixColumns()

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

So, this is the output of MixColumns() after similarly calculating for all the values

AddRoundKey()

				R	oun	d k	еу
e5	9a	7a	4c	17	b1	39	05
81	19	d3	26	fe	2c	39	76
66	cb	f8	06	fa	54	a3	6c
04	e0	48	28	a0	88	23	2a

AddRoundKey()

Final output after AddRoundKey()

a4	68	6b	02
9c	9f	5b	6a
7f	35	ea	50
f2	2b	43	49

These transformations are applied to the state for 9 more rounds. The final round does not include the MixColumns transformation.

	Start of	After	After	After	_	
	round	SubBytes	ShiftRows	MixColumns	Round key	
Input	32 88 31 e0 43 5a 31 37 f6 30 98 07 a8 8d a2 34				2b 28 ab 09 7e ae f7 cf 15 d2 15 4f 16 a6 88 3c	
Round 1	19 a0 9a e9 3d f4 c6 f8 e3 e2 8d 48 be 2b 2a 08	d4 e0 b8 le 27 bf b4 41 11 98 5d 52 ae f1 e5 30	d4 e0 b8 le bf b4 41 27 5d 52 11 98 30 ae f1 e5	04 e0 48 28 66 cb f8 06 81 19 d3 26 e5 9a 7a 4c	### a0 88 23 2a fa 54 a3 6c fe 2c 39 76 17 b1 39 05	
Round 2	a4 68 6b 02 9c 9f 5b 6a 7f 35 ea 50 f2 2b 43 49	49 45 7f 77 de db 39 02 d2 96 87 53 89 f1 1a 3b	49 45 7f 77 db 39 02 de 87 53 d2 96 3b 89 f1 1a	58 1b db 1b 4d 4b e7 6b ca 5a ca b0 f1 ac a8 e5	f2 7a 59 73 c2 96 35 59 95 b9 80 f6 f2 43 7a 7f	
Round 3	aa 61 82 68 8f dd d2 32 5f e3 4a 46 03 ef d2 9a	ac ef 13 45 73 c1 b5 23 cf 11 d6 5a 7b df b5 b8	ac ef 13 45 c1 b5 23 73 d6 5a cf 11 b8 7b df b5	75 20 53 bb ec 0b c0 25 09 63 cf d0 93 33 7c dc	3d 47 1e 6d 80 16 23 7a 47 fe 7e 88 7d 3e 44 3b	
Round 4	48 67 4d d6 6c 1d e3 5f 4e 9d b1 58 ee 0d 38 e7	52 85 e3 f6 50 a4 11 cf 2f 5e c8 6a 28 d7 07 94	52 85 e3 f6 a4 11 cf 50 c8 6a 2f 5e 94 28 d7 07	0f 60 6f 5e d6 31 c0 b3 da 38 10 13 a9 bf 6b 01	ef a8 b6 db 44 52 71 0b a5 5b 25 ad 41 7f 3b 00	
Round 5	e0 c8 d9 85 92 63 b1 b8 7f 63 35 be e8 c0 50 01	e1 e8 35 97 4f fb c8 6c d2 fb 96 ae 9b ba 53 7c	e1 e8 35 97 fb c8 6c 4f 96 ae d2 fb 7c 9b ba 53	25 bd b6 4c d1 11 3a 4c a9 d1 33 c0 ad 68 8e b0	### d4 7c ca 11 d1 83 f2 f9 c6 9d b8 15 f8 87 bc bc #### = ##########################	

		ab													
		f7													
		15										_			
16	a6	88	3c	17	b1	39	05	f2	43	7a	7f	7d	3e	44	3b

Round key 2

Round key 3

Round key 1

Cipher key

d0	c9	e1	b6
14	ee	3f	63
f9	25	0c	0c
a8	89	c8	a6

. . .

Round key 10

SBOX Generation Example

- Suppose we begin with (hexadecimal) {53}, which is 01010011 in binary.
- The corresponding field element is:

$$x^6 + x^4 + x + 1$$
.

• The multiplicative inverse (in F_{28}) can be shown to be

$$x^7 + x^6 + x^3 + x$$
.

Therefore, in binary notation, we have

$$(a_7a_6a_5a_4a_3a_2a_1a_0) = (11001010).$$

SBOX Generation

• Next, we compute

$$b_0 = a_0 + a_4 + a_5 + a_6 + a_7 + c_0 \mod 2$$

$$= 0 + 0 + 0 + 1 + 1 + 1 \mod 2$$

$$= 1$$

$$b_1 = a_1 + a_5 + a_6 + a_7 + a_0 + c_1 \mod 2$$

$$= 1 + 0 + 1 + 1 + 0 + 1 \mod 2$$

$$= 0$$
:

• The result is: $(b_7b_6b_5b_4b_3b_2b_1b_0) = (11101101)$, which is $\{ED\}$ in hexadecimal notation.

Fig:- SBOX General														erati		
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	вв	16

A Simple implementation of AES

These are the steps I have followed to implement AES-128

- 1. Python is by default installed in Linux. To check, type *python -v*
- 2. In linux, I had installed the PyCrypto The Python Cryptography Toolkit by typing *pip install pycrypto*
- 3. Then we type python to go to the python command line.
- 4. In the prompt we type *from Crypto.Cipher import AES*

```
ganesh@ubuntu:~$ python
Python 2.7.12 (default, Dec  4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from Crypto.Cipher import AES
```

Encryption

- 5. Next we give the key and plain text and generate the cipher using *AES.new(key)* method and ciphertext using *cipher.encrypt(plain)* method.
- 6. We encode the ciphertext to hex using encode function (*ciphertext.encode*("hex"))because in binary it is very long (128 bits).

```
>>> key = "Sixteen byte key"
>>> plain = "Secret: 16 bytes"
>>> cipher = AES.new(key)
>>> ciphertext = cipher.encrypt(plain)
>>> print ciphertext.encode("hex")
433811598181fed6d59e265249f8c6a8
```

Decryption

7. Then we decrypt the cipher using *cipher.decrypt(ciphertext)* method.

```
>>> cipher.decrypt(ciphertext)
'Secret: 16 bytes'
```

8. A one bit change in the key changes half the output bits.

```
>>> key = "Sixteen byte kex"
>>> cipher = AES.new(key)
>>> cipher.encrypt("Secret: 16 bytes").encode("hex")
'91d3ec81c4abf91d68fc026353f26d7f'
>>>
>>> key = "Sixteen byte key"
>>> cipher = AES.new(key)
>>> cipher.encrypt("Secret: 16 bytet").encode("hex")
'90c106728883ece4a2470a352c0865d2'
```

This property is called 'Confusion'

AES Implementation

8. A one bit change in the plaintext changes half the output bits. (Diffusion).

```
>>> from Crypto.Cipher import AES
>>> cipher = AES.new(key)
>>> cipher.encrypt("Secret: 16 bytes").encode("hex")
'433811598181fed6d59e265249f8c6a8'
>>> cipher.encrypt("Secret: 16 bytet").encode("hex")
'90c106728883ece4a2470a352c0865d2'
```

References

- AES Encryption algorithm <u>https://www.youtube.com/watch?v=evjFwDRTmV0</u>
- 2. Understanding AES Mix-Columns Transformation Calculation, Kit Choy Xintong, University of Wollongong, Year 3 Student www.angelfire.com/biz7/atleast/mix_columns.pdf
- 3. Cryptography and Network Security- NPTEL Course https://onlinecourses.nptel.ac.in/noc18_cs07/announcements?fo
- 4. Cryptography and Network Security by Ajay Kumar; S. Bose Published by Pearson Education India, 2016
- 5. Cryptography with Python, Sam Bowne
- 6. Cryptography and Network Security, 5/e, William Stallings

Thank you

By Malyala Venkata Ganesh Raju, Visakhapatnam, AP, India