الدالة الأسية

<u>I- الدالة الأسية النيبرية</u>

<u>1- تعاريف و خاصيات أُولية</u>

 $]0;+\infty[$ نحو \mathbb{R} نحو التالي تقبل دالة عكسية من \mathbb{R} نحو انعلم أن دالة \mathbb{R} نحو انعلم أن دالة \mathbb{R}

أ- تعريف

الدالة العكسية لدالة اللوغاريتم النيبيري تسمى الدالة الأسية النيبيرية نرمز لها (مؤقتاً) بالرمز exp

$$\forall x \in \mathbb{R}$$
 $\forall y \in]0; +\infty[$ $\exp(x) = y \iff \ln y = x$

<u>ې- خاصيات اولية</u>

$$\exp(1) = e \qquad \exp(0) = 1$$

$$\forall x \in \mathbb{R}$$
 $\exp(x) > 0$

$$\forall x \in \mathbb{R}$$
 $\ln(\exp(x)) = x$ *

$$\forall x \in]0; +\infty[$$
 $\exp(\ln(x)) = x$ *

 $\mathbb R$ تزایدیة قطعا علی \exp

$$\forall (a;b) \in \mathbb{R}^2$$
 $\exp(a) = \exp(b) \Leftrightarrow a = b$

$$\forall (a;b) \in \mathbb{R}^2$$
 $\exp(a) \succ \exp(b) \Leftrightarrow a \succ b$

2- التمثيل المبياني لدالة exp

في معلم متعامد ممنظم منحنى الدالة ln و منحنى الدالة exp متماثلان بالنسبة للمنصف الأول

<u>3- خاصية أساسية</u>

$$\forall (a;b) \in \mathbb{R}^2$$
 $\exp(a+b) = \exp(a) \times \exp(b)$

البرهان

$$\ln(\exp(a) \times \exp(b)) = \ln \exp(a) + \ln \exp(b) = a + b$$

$$\ln \exp(a+b) = a+b$$

$$\ln(\exp(a) \times \exp(b)) = \ln \exp(a+b)$$

$$\exp(a+b) = \exp(a) \times \exp(b)$$

$$\forall (a;b) \in \mathbb{R}^2 \qquad \forall r \in \mathbb{Q} \qquad \exp(-a) = \frac{1}{\exp(a)}$$
$$\exp(a-b) = \frac{\exp(a)}{\exp(b)} \qquad \exp(ra) = \left[\exp(a)\right]^r$$

$$orall r \in \mathbb{Q}$$
 $\exp(r) = \left[\exp(1)\right]^r = e^r$ و بالتالي $\exp(1) = e$ نعلم أن $\exp(1) = e$ نعلم أن $\exp(x) = e^x$ نمدد هده الكتابة إلى \mathbb{R} أي $\exp(x) = e^x$

الخاصيات السابقة تصبح

$$\forall x \in \mathbb{R} \quad \forall y \in]0; +\infty[\qquad e^{x} = y \Leftrightarrow x = \ln y$$

$$\forall x \in \mathbb{R} \quad \ln e^{x} = x \qquad \forall x \in]0; +\infty[\quad e^{\ln x} = x$$

$$\forall (a;b) \in \mathbb{R}^{2} \quad \forall r \in \mathbb{Q} \quad e^{a+b} = e^{a} \cdot e^{b} \qquad e^{-a} = \frac{1}{e^{a}} \qquad e^{a-b} = \frac{e^{a}}{e^{b}} \qquad e^{rb} = \left(e^{a}\right)^{r}$$

$$\forall (a;b) \in \mathbb{R}^{2} \quad e^{a} = e^{b} \Leftrightarrow a = b$$

$$\forall (a;b) \in \mathbb{R}^{2} \quad e^{a} = e^{b} \Leftrightarrow a > b$$

$$\overline{S=\left]-\infty;0}\left[\,\cup\,\right]$$
اذن $S=\left[-\infty;0\right]$

$$e^{3x+1}-3e^{2x+1}+e^{x+1}\prec 0$$
 نحل في $\mathbb R$ المتراجحة $e^{3x+1}-3e^{2x+1}+e^{x+1}\prec 0\Leftrightarrow e^{x+1}\left(e^{2x}-3e^x+1
ight)\prec 0$
$$\Leftrightarrow e^{2x}-3e^x+1\prec 0$$
 نضع $e^x=t$ نضع $t\in\mathbb R^{+^*}$ $t^2-3t+2\prec 0$

t	0		1		2		$+\infty$
$t^2 - 3t + 2$		+	0	-	0	+	

$$t \in \mathbb{R}^{+*}$$
 $t^2 - 3t + 2 \prec 0 \Leftrightarrow 1 \prec t \prec 2$

$$0 \prec x \prec \ln 2$$
 ومنه $1 \prec e^x \prec 2$ و بالتالي

$$S =]0; \ln 2[$$
 إذن

<u>5- مشتقة الدالة الأسبة النبيرية</u>

أ- بما أن دالة $[0;+\infty [$ فان الدالة الأسية قابلة $]0;+\infty [$ و مشتقتها لا تنعدم على $[0;+\infty [$ فان الدالة الأسية قابلة

$$orall x \in \mathbb{R}$$
 $\left(e^x\right)' = \frac{1}{\ln'\left(e^x\right)} = \frac{1}{\frac{1}{e^x}} = e^x$ و \mathbb{R} و \mathbb{R} و \mathbb{R}

$$\forall x \in \mathbb{R} \qquad \left(e^x\right)' = e^x$$

 $(e^x)'=e^x$ و \mathbb{R} و الدالة $x o e^x$

I إذا كانت $x
ightarrow e^{u(x)}$ قابلة للاشتقاق على مجال الدالة $x
ightarrow e^{u(x)}$ $\forall x \in I \qquad \left[e^{u(x)}\right]' = u'(x)e^{u(x)}$

حدد الدالة المشتقة للدالة f في الحالتين التاليتين

$$f(x) = e^{3x^2 - x} \quad (a$$

$$\forall x \in \mathbb{R}$$
 $f'(x) = (3x^2 - x)'e^{3x^2 - x} = (6x - 1)e^{3x^2 - x}$

$$f(x) = e^{x - x \ln x} \quad (b$$

$$\forall x \in \mathbb{R}$$
 $f'(x) = (x - x \ln x)' e^{x - x \ln x} = (1 - \ln x - 1) e^{x - x \ln x} = (-\ln x) e^{x - x \ln x}$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
 $\lim_{x \to -\infty} xe^x = 0$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ $\lim_{x \to +\infty} e^x = +\infty$ $\lim_{x \to -\infty} \frac{e^x}{x} = +\infty$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 نبین

$$x = \ln t$$
 نضع $t = e^x$ نضع

$$\lim_{x \to +\infty} \frac{e^x}{x} = \lim_{t \to +\infty} \frac{t}{\ln t} = \lim_{t \to +\infty} \frac{1}{\frac{\ln t}{t}} = +\infty \quad \text{ فان } \quad \lim_{t \to +\infty} \frac{\ln t}{t} = 0^+ \text{ of } t$$

$$\lim_{x \to +\infty} x \left(\frac{1}{e^x} - 1 \right) \qquad \lim_{x \to +\infty} \frac{\sqrt{x}}{e^x} \qquad \lim_{x \to +\infty} \frac{e^x}{x^2} \qquad \text{حدد}$$

الجواب

$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} 4 \left(\frac{e^{\frac{x}{2}}}{\frac{x}{2}} \right)^2 = +\infty$$

$$\lim_{x \to +\infty} \frac{\sqrt{x}}{e^x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} \cdot \frac{x}{e^x} = 0 \times 0 = 0$$

$$\lim_{x \to +\infty} x \left(\frac{1}{e^x} - 1 \right) = \lim_{x \to 0^+} \frac{e^t - 1}{t} = 1$$
 ومنه $x = \frac{1}{t}$ ومنه $t = \frac{1}{x}$

$$g\left(x\right) = \frac{e^x - 1}{e^x}$$

$$f\left(x\right) = \frac{e^{x}}{x}$$
 شرین أدرس و مثل مبیانیا الدالتین $f\left(x\right) = \frac{e^{x}}{x}$

II- الدالة الأسبة للأساس، a

ليكن a عددا حقيقيا موجبا قطعا و مخالفا للعدد1

 \exp_a الدالة العكسية للدالة \log_a تسمى الدالة الأسية للأساس الدالة العكسية للدالة \log_a

$$\forall x \in \mathbb{R} \quad \forall y \in]0; +\infty[$$

$$\exp_a(x) = y \iff Log_a(y) = x$$

$$\forall x \in \mathbb{R} \quad \forall y \in]0; +\infty[$$

$$\forall x \in \mathbb{R} \quad \forall y \in \left] 0; +\infty \right[\qquad \exp_a\left(x\right) = y \Leftrightarrow Log_a\left(y\right) = x \Leftrightarrow x = \frac{\ln y}{\ln a} \Leftrightarrow \ln y = x \ln a \Leftrightarrow y = e^{x \ln a}$$

$$\forall x \in \mathbb{R}$$

$$\forall x \in \mathbb{R}$$
 $\exp_a(x) = e^{x \ln a}$ is

(هذا يعني أن دالة \exp_a هي تركيب الدالة الخطية $x o x \ln a$ و الدالة الأسية النيبيرية)

$$\forall (x; y) \in \mathbb{R}^2 \quad \forall r \in \mathbb{Q} \quad \exp_a(x + y) = \exp_a(x) \times \exp_a(y) \qquad \exp_a(-x) = \frac{1}{\exp_a(x)}$$

$$\exp_a\left(-x\right) = \frac{1}{\exp_a\left(x\right)}$$

$$\exp_a(x - y) = \frac{\exp_a(x)}{\exp_a(y)} \qquad \exp_a(rx) = (\exp_a(x))^r$$

$$\exp_a(rx) = (\exp_a(x))^r$$

3- كتابة أخرى للعدد <u>exp</u>

$$\forall a \in \mathbb{R}^{+*} - \{1\} \qquad \exp_a(1) = a$$

$$\left(Log_{a}\left(a\right)=1\right)$$

$$\forall r \in \mathbb{R} \quad \forall a \in \mathbb{R}^{+*} - \{1\}$$

$$\forall r \in \mathbb{R} \quad \forall a \in \mathbb{R}^{+*} - \{1\} \quad \exp_a(r) = \left[\exp_a(1)\right]^r = a^r$$

$$\forall x \in \mathbb{R}$$

$$\exp_a(x) = a^x$$

$$\exp_a\left(x
ight.
ight)\!=\!a^x$$
 نمدد هذه الكتابة الى $\mathbb R$ فنكتب

$$\forall x \in \mathbb{R}$$

$$\forall y \in]0; +\infty$$

$$\forall y \in]0; +\infty[$$
 $a^x = y \Leftrightarrow x = Log_a(y)$

$$\forall x \in \mathbb{R}$$

$$\forall a \in \mathbb{R}^{+^*} - \{1\} \qquad a^x = e^{x \ln a}$$

$$a^x = e^{x \ln a}$$

دراسة الدالة x→a^x

$$a \in \mathbb{R}^{+^*} - \{1\}$$
 ليكن

$$\forall x \in \mathbb{R}$$

$$(a^x)' = a^x \ln a$$

$$\left(a^{x}\right)'\!=\!a^{x}\,\ln a$$
 الدالة $x o a^{x}$ قابلة للاشتقاق على \mathbb{R}

 \mathbb{R} ومنه الدالة $x o a^x$ تزايدية قطعا على $a \succ 1$ الحالة ادا كان $a \succ 1$ تزايدية قطعا

$$\lim_{x \to \infty} a^x = 0$$

$$\lim_{x \to +\infty} a^x = +\infty$$
 9

$$x \to -\infty$$

$$\ln a \prec 0$$
 فان $0 \prec a \prec 1$ الحالة 2

$$\mathbb{R}$$
 ومنه الدالة $x \to a^x$ تناقصية قطعا على

$$\lim_{x \to \infty} a^x = +\infty \qquad \lim_{x \to \infty} a^x = 0$$

$$\lim_{x \to -\infty} a^x = +\infty$$

$$\lim_{x \to +\infty} a^x = 0$$
 و

$$(a=2)$$
 $a \succ 1$

$$\left(a = \frac{1}{2}\right) \qquad 0 \prec a \prec 1$$

 $orall a \in \mathbb{R}^{+*}$ $\forall x \in \mathbb{R}$ $a^x = e^{x \ln a}$ و بالتالي نكتب $\forall x \in \mathbb{R}$ $1^x = 1$ و بالتالي نكتب
