

1/1TSEC 2024

Introduction to HLA 4

Björn Möller & Fredrik Antelius
Pitch Technologies

Agenda

- > Introduction
- High-Level Architecture (HLA) for the Warfighter
- Technical capabilities of HLA
- Common federation object models
- HLA 4 Overview
- Common considerations
 - LVC gateways, performance, tools and security
- Summary and additional reading

Learning Objectives

After taking this tutorial you should be able to:

- Describe the requirements for interoperability in distributed simulation
- Explain the principles of the HLA standard
- Explain how the HLA standard is used for distributed training purposes
- Describe the new features of HLA 4
- > Describe some common Federation Object Models (FOMs) for defense training

Purpose of HLA

- Provide one single interoperability standard
 - Meet a broad set of distributed simulation requirements
 - Support training, analysis, test & evaluation, concept development, engineering, etc.
 - Support a variety of domains and sub-domains with different and evolving object models
- Enable reuse of simulation components, thus reducing cost
 - Vendor-neutral interoperability through open standardization
 - Facilitate an open eco-system for COTS, GOTS and in-house simulations

SISO = Simulation Interoperability Standards Organization

COTS = Commercial-off-the-shelf

GOTS = Government-off-the-shelf

Overview of HLA Capabilities

- Connect simulations running on different hosts
- Services for information exchange using publish-subscribe and filtering
- > Services for synchronization of startup, execution and simulation time
- > Services for managing and monitoring the simulations
- > Support for object models for different domains

HLA Timeline

- > HLA was initiated in the US DoD in the early 1990s
- After developing several proto-federations, HLA 1.3 was released in 1998.
- It was brought to open standardization through IEEE, resulting in HLA IEEE 1516-2000
- The standard was updated in 2010 with several new features "HLA Evolved"
- The standard is currently under revision "HLA 4"
 - Passed balloting 2023

What's new in HLA 4?

Easier Deployment

Enhanced Security

Increased Scalability

Key HLA Concepts

- Each participating member is called a <u>Federate</u>
- Information is exchanged using a Runtime Infrastructure (RTI)
- The information exchange follows a <u>Federation Object Model</u> (FOM)
- > The federates together with the FOM and the RTI are called a Federation
- > A session with a federation is called a Federation Execution

HLA for LVC Platform Training

Purpose:

 Platform training, communication skills, joint and combined exercises, mission rehearsal, etc

> Federates:

 Platform simulators, radio simulations, sensor simulations, visualizers/viewers, data loggers

Sample FOMs:

 Platforms, Warfare, Radio, Tactical Data Links (Link 16), Weather, Radar, Jamming, IFF, Enumerations (platform types), laser engagement

Examples:

- UK Royal Air Force "Gladiator"
- US Navy Continuous Training Environment

HLA for Command and Control Training

Purpose:

 Command post exercises, leadership and decision training, joint and multinational exercises, tactics development

Federates:

 Aggregate level simulations, interfaces to C2 systems, radio simulations, sensor/tracker simulations, visualizers/viewers, data loggers

Sample FOMs and standards:

- Aggregates, Order of battle, Platforms, Warfare, Radio,
 Tactical Data Links (Link 16), AIS, Weather, Cyber
- Military scenario description language

Examples:

■ Viking, US-Swedish lead training with 30 nations and NATO, United Nations and NGO participants

HLA for Space Simulation

Purpose:

- Simulation for concept, design, analysis, production, testing, training and ultimately flight.
- Simulate in any reference frame/coordinate system, not only geocentric systems

> Federates:

- Space vehicles, space environment, sensors, navigation
- Sample FOMs:
 - SpaceFOM, Radio, Environment, Navigation
- Examples:
 - NASA Artemis "Return to the Moon" with simulations from major contractors
 - ESA Harwell Robotics Lab, VV&A
 - Simulation Exploration Experience (Academic)

HLA Services

- The RTI provides simulation services to the federates:
 - Connect and join simulators together
 - Declare information interest and intent with publish & subscribe
 - Exchange information about entities and events
 - Transfer modeling responsibility between simulators
 - Run in faster or slower than real-time, or run as fast as possible
 - Handle large scale scenarios with filtering, e.g. geographical filtering

Objects vs. Interactions

The HLA shares data between federates via two mechanisms:

- Objects for entities
 - Persistent
 - Usually represent long-lived entities in the federation
 - State is represented by attributes
 - State can be partially updated by owning federate
 - Example: Aircraft, Human

- Interactions for events
 - Not persistent
 - Usually represent events in the federation
 - State is represented by parameters
 - Full state must be sent in the interaction
 - Example: Fire, Radio signal

HLA uses the Publish/Subscribe Pattern

- > A federate can publish the information that it produces to the federation
- > Another federate can subscribe to information that it requires.
 - Publishing and subscribing is based on the Federation Object Model (FOM)
- The RTI routes any relevant information to a subscribing federate no need for federates to connect directly to other federates.
 - Allows for multiple RTI implementations, including central server and peer-to-peer
- Enables interoperability and reuse

Overview of Federation Execution Lifecycle

Federate RTI

Startup

Operations

Shutdown

Create Federation Execution Join Federation Execution **Establish Initial Data Requirements** via Publish and Subscribe **Register Object Instances Update Attribute Values Discover Objects Update/Reflect Attribute Values Send/Receive Interactions Register/Discover Objects Delete/Remove Objects Resign Federation Execution Destroy Federation Execution**

Federation Management

- Purpose: Establish well-managed sessions with a controlled set of simulations.
- Functionality: Creating federation executions. Coordinated start-up. Synchronization points. Check pointing.
- Essential HLA Services
 - Connect to the RTI, create and join federation execution.
 - Resign. Destroy federation execution. Disconnect.
 - Synchronization points.
 - Save/restore.

Declaration Management

- Purpose: Declare what data each federate will send or wishes to receive, based on the federation object model (FOM), in order to optimize the data exchange.
- Functionality: Publish and subscribe object classes with attributes, and interaction classes with parameters.
- Essential HLA Services
 - Publish.
 - Subscribe.

Object Management

- Purpose: Data exchange.
- Functionality: Create and delete object instances that are shared between federates. Update their attributes. Send and receive interactions.
- Essential HLA Services
 - Register, discover, delete and remove object instances.
 - Update and reflect attribute values.
 - Send and receive interactions.
 - Request updates.

Ownership Management

- Sample use case: enable a constructive simulation to hand over the responsibility for simulating an aircraft to a virtual simulation.
- Functionality: Hand over the ownership (responsibility for updating) of attributes from one federate to another during execution. This can be either "push" or "pull," and with or without negotiation.
- Essential HLA Services:
 - Request ownership acquisition for an attribute.
 - Divest ownership for an attribute.
 - Query attribute ownership.

Time Management

- > Sample use case: run exercises in real-time, scaled real-time, varying speed, as-fast-as-possible. Run Monte-Carlo simulations as fast as possible.
- Functionality: Manage the time advancement for federates and time-stamped data exchange between federates for consistency and repeatability. This can be timestepped or event-driven.
- Essential HLA Services:
 - Enable/disable sending and receiving of time-stamped data.
 - Request and grant advancement to a given time.
 - Request and grant advancement to the time of the next message.
 - Query the RTI for current time values.

Data Distribution Management

- Sample use case: build large federations by enabling federates to focus on a smaller part of the battlefield or on entities belonging to a particular force.
- Functionality: Enable federates to filter data not only on class and attribute, but also on their static or dynamic data (like friendly/opposing or latitude/longitude).
- Essential HLA Services:
 - Create and modify regions that specify data ranges for filtering.
 - Send attribute updates and interactions with associated regions.
 - Subscribe to attributes and interactions with associated regions.

HLA Fault Tolerance

- HLA includes a mechanism for fault tolerance
 - Connected federates can discover that a federate has been lost
 - The lost federate can discover that it has lost connection
- Enables several design patterns (fail-over federates, reconnecting federates, ...)

Object Model Template – Minimal Version

- Identification
 - Name, version, purpose, etc.
- Object Classes with Attributes
- Interaction Classes with Parameters
- Data Types
 - Simple, records, enumerations, etc.
 - Used for Attributes and Parameters

Object Class

Aircraft

- Type
- Marking
- Position

Interaction Class

MunitionFire

- FiringObject
- TargetObject
- MunitionType

Data type

PositionRecord

- Latitude
- Longitude
- Altitude

Object Class Structure Table Example

A hierarchical visual representation

Object Model Template – Full Version

- Object model identification table
- Object class structure table
- Interaction class structure table
- Attribute table
- Parameter table
- Dimension table
- Time representation table

- User-supplied tag table
- Synchronization table
- Transportation type table
- Update rate table
- Switches table
- Datatype tables
- Notes table

FOM Modules

- The same FOM, but split into modules
 - Remember: It was a long time ago since we gave up developing computer programs as one large chunk of code.
- More efficient and flexible development, maintenance, reuse and standardization
- Projects/programs can reuse and extend standardized modules and add their own modules.

FOM Module Example

Common Aerospace and Defense FOMs

- The RPR FOM 2.0 is the most commonly used FOM for defense simulation
 - RPR FOM 3 now being finalized
 - IFF, InfOps, etc.
 - Download from www.sisostds.org
- NATO Education and Training Network FOM (NETN)
 - Builds on top of RPR FOM
 - Growing number of modules
 - Download from github.com/AMSP-04/
- SISO Space Reference FOM
- EUROCAE Air Traffic Management FOM
- Medical FOM (US Army)

NATO NETN FOM Modules

RPR FOM Modules

Cyber Data Exchange Model (DEM) and **Federation Object Model (FOM)**

- SISO is developing a Cyber FOM standard to represent cyber events and objects.
- The Cyber FOM will enable integration of cyber simulations, cyber ranges, and kinetic simulations.

Important New Features in HLA 4

HLA4

- More powerful modeling
 - Directed Interactions
 - Easier to extend reference FOMs
- Security
 - Secure authorization of federates
 - Secure communication
- Deployment
 - Support unreliable links, like 3G/4G/5G
 - Support more programming languages
 - Increased vendor-independence

- Scalability
 - Cloud-based simulation with local deployment
 - "Elastic cloud" scalability
 - Improved data distribution management
- Business models
 - Modeling and Simulation as a Service

HLA 4 passed IEEE Balloting in 2023

Object Modeling: Directed Interactions

Classic "Global" Interactions

Directed Interactions

Object Modeling: Easier to Extend Models

- Standardized "Reference Object Models" are one of the key benefits with HLA. They provide a baseline for interoperability. They are key for reuse.
- > HLA 4 adds several features that makes it easier to extend existing information models with application-specific data.
- Example: add attributes to already defined object classes

Standard Aircraft

Entity Type

Entity ID

Side

Spatial (position etc.)

Damage State

Extensions

Maintenance Date

Maintenance Type

Scalability: Improved DDM

Filter on Lat/Long

Filter on air, land, sea, space Filter on friendly, opposing, neutral

- Modern RTIs can deliver a million updates/second to a federate, but few, if any federates, can process that incoming data rate
- Reducing the data flow to each federate is the key to scalability
- HLA Data Distribution Management (DDM) provides powerful ways to filter data
- HLA 4 makes it possible to extend reference FOMs with tailored DDM

Federate Authentication

- Federates may be required to provide credentials to connect and join a federation
- Support for passwords, PKI certificates (X.509), etc.
- Flexible mechanism through plug-in
- May connect to existing authorization services
- May implement different policies
- Also useful for Zero Trust Architectures

Federate Protocol

- A federate can call the RTI using a protocol instead of calling a local library
- Separates the federate from the RTI
- Better support for Live with 4G/5G links
- More cloud-friendly (containers, etc.)
- Simplifies accreditation
- Additional languages/OS

Swift

Deployment Examples: Cloud and Live Training

Site B

Deploy large CPU consumers in the Cloud

Federate

- Deploy large GPU consumers locally
- Collect Big Data in the Cloud

- Connect live systems over 4G/5G
- Point-to-point communication
- > Fault tolerance and fast reconnect

Site A

Federate

HLA 4 Based Architecture for Cloud, Scalability and MSaaS

More New Features in HLA 4

- Better support for scalability through enhanced DDM
 - Easier to specify dimensions for entire object class, inheritance to subclasses
 - Add DDM to existing FOMs using separate module
 - More complete and flexible Dimension specification
 - Relaxed DDM
- Many minor improvements
 - Ownership management user supplied tags
 - Specify for what attributes values are required vs optional
 - Fault tolerance handling unplanned leaving federate
 - New datatypes to better support RPR FOM
 - Glyph that follows html conventions
 - Switches defaults
 - Exception handling
 - Updated sample FOM modules

HLA and LVC – Gateways

- > HLA can handle both Live, Virtual and Constructive simulation
- > In LVC settings, information may still need to be bridged between different architectures
- Standard FOMs exist for bridging
 - The RPR FOM matches the DIS information model
 - Tactical Data Link (TDL) such as Link 16
 - C2SIM connect to C2 systems
- Custom gateways may be needed

HLA and Performance

- HLA is a standard
 - It has no particular performance
- Actual RTI implementations exhibit performance
 - May be optimized for different use cases
- Sample RTI performance on regular Windows workstations in 2020
 - Hundreds of systems
 - 100 000's of updates per second, typically up to 90% of the network's raw bandwidth
 - 900 Mbps on Gigabit LAN
 - 100 000 object instances
 - Latency of 0.13 ms on 100 Mbps LAN

- Common federation bottlenecks:
 - LAN bandwidth
 - WAN latency and bandwidth
 - Federate processing time for incoming data
- Plan for performance!
 - Analyze performance requirements
 - Analyze federate and network capabilities

HLA and Tools

Sample tool chain

- A wide range of HLA compliant tools and federates are available
- Development tools (OMT editor, middleware, code generators, data loggers)
- Visualizers (2D, 3D, game based, ...)
- Federates (Computer Generated Forces, flight models, dynamics, ...)
- Bridges (HLA-DIS, HLA-HLA, HLA-TENA, HLA-games, HLA-DDS, ...)

TENA = Test and Training Enabling Architecture DDS = Data Distribution Services

HLA and Cross Domain Security/MLS

- It is possible to simulate with controlled data exchange between classification levels
- The federation is partitioned into different domains
 - May be different classifications within one nation or simulation between different nations
- There are security solutions that can connect to multiple domains, provide separation and release data based on a release policy
 - Different topologies: one host, several hosts, hardware/software guards, etc.
 - Different solutions meet different levels of assurance

HLA Benefits

Secure

Secure authentication
Secure transportation
Cross-domain security

Proven

Viking, the largest CiMiC exercise

UK Royal Air Force

Down-selected by NASA

Scalable

Millions of entities
Hundreds of systems
< 0.1 ms latency

Additional Reading

- The standard
 - HLA IEEE 1516-2010 www.ieee.org
- HLA podcast an introduction
 - https://www.warfighterpodcast.com/
- ➤ The HLA Tutorial for developers
 - Free, redistributable PDF
 - www.pitchtechnologies.com/hlatutorial
- Plenty of SISO papers
 - www.sisostds.org
 - ResearchGate
- The HLA Product Development Group discussion archives
 - www.sisostds.org

Learning Objectives Revisited

After taking this tutorial you should be able to:

- Describe the requirements for interoperability in distributed simulation
- Explain the principles of the HLA standard
- Explain how the HLA standard is used for distributed training purposes
- Describe the new features of HLA 4
- > Describe some common Federation Object Models (FOMs) for defense training

Questions?

Björn Möller

Fredrik Antelius

Bjorn.Moller@pitch.se

Fredrik.Antelius@pitch.se

