

BCC241 – PROJETO E ANÁLISE DE ALGORITMOS 3º. LISTA DE EXERCÍCIOS

- 1. Para cada problema a seguir, forneça 1) a definição recursiva; 2) o algoritmo recursivo; 3) o algoritmo baseado em memoization; 4) o algoritmo iterativo baseado em programação dinâmica; e 5) o algoritmo para construir e retornar a solução.
 - a) Informar qual é o valor que está na posição n da sequência de Fibonacci.
 - b) Encontrar a menor distância a qualquer vértice, partindo de um determinado vértice, em um grafo dirigido acíclico.
 - c) Maior subsequência crescente.
 - d) Distância de edição.
 - e) Problema da mochila 0-1.
 - f) Ordem ótima de multiplicação de matrizes.
 - g) Maior subsequência palíndromo.
- 2. O que deve ser feito para provar que um problema pertence a:
 - Classe P;
 - Classe NP;
 - Classe NP-Difícil;
 - Classe NP-Completo.
- 3. Mostre que o problema "Arvore Geradora Mínima" pertence à classe P.
- 4. Mostre que o problema de decisão "Conjunto Independente" pertence a classe NP.
- 5. Explique como são realizadas as reduções com custo polinomial a seguir:
 - a) $3-SAT \leq_p Conjunto independente$
 - b) Conjunto independente ≤_p Cobertura de vértices
 - c) Conjunto independente ≤_p Clique
- 6. Para o problema das 4-rainhas, apresente as árvore de construção de soluções baseadas em Busca Exaustiva e em Backtracking.
- 7. Forneça um algoritmo baseado em backtracking para resolver o problema do passeio do cavalo em um tabuleiro de xadez.

8. Para o problema da mochila 0-1 com a mochila suportando no máximo 15 quilos e os pesos e valores dos itens mostrados na tabela a seguir, construa as árvores de execução usando Backtracking e Branch-and-bound.

Valor	Peso
45	3
45	9
30	5
10	2

9. Seja o problema de escalonamento de tarefas, onde cada tarefa deve ser executada por uma máquina, no qual se deseja minimizar o tempo total. Apresente as árvores de Busca Exaustiva, Backtracking e Branch-and-bound, explicando suas funções eConsistente e ePromissora.

T/M	1	2	3	4
а	11	12	18	40
b	14	15	13	22
С	11	17	19	23
d	17	14	20	28

10. Para o problema do caixeiro viajante, qual o clico encontrado para o grafo a seguir, usando o algoritmo de aproximação visto.

	4		_	4	
	1	2	3	4	5
0	3	10	11	7	25
1		8	12	9	26
2			9	4	20
3				5	15
4					18