DETAILS Name **VIKAS** FIBI **Roll Number** KUB23CSE159 **EXPERIMENT** Title DIWALI CONTEST Description Max is planning to take part in a Diwali contest at a Diwali Party that will begin at 8 PM and will run until midnight (12 AM) i.e., for 4 hours. He also needs to travel to the party venue within this time which takes him P minutes. The contest comprises of N problems that are arranged in order of difficulty, with problem 1 being the simplest and problem N being the most difficult. Max is aware that he will require 5*i minutes to solve the ith problem. Your task is help Max find and return an integer value, representing the number of problems Max can solve and reach the party venue within the given time frame of 4 hours. Note: Max will leave his home at exactly 8 PM to reach the party venue. Input Format: input1: An integer value N, representing the total number of problems. input2: An integer value P, Representing the time to travel in minutes from his home to the party venue. Example: Input: 180 **Output:** 4 **Explanation:** The amount of time left to solve the problems is 4*60-180=60 mins. 1st Problem - 5 mins, Time left = 60-5=55 mins 2nd Problem - 10 mins, Time left = 55-10=45 mins 3rd Problem - 15 mins, Time left = 45-15=30 mins 4th Problem - 20 mins, Time left = 30-20=10 mins 5th Problem - 25 mins

Source Code:

def max_problems_solved(N, P): # Total available time for solving problems (240 minutes minus travel time) remaining_time = 240 - P # Initialize counters for time and problems solved $time_spent = 0$ count = 0# Iterate over problems from 1 to N for i in range(1, N + 1): # Time to solve the ith problem time_to_solve = 5 * i # Check if there's enough time left to solve this problem if time_spent + time_to_solve > remaining_time: break # Max can't solve more problems # Update the time spent and count of problems solved time_spent += time_to_solve count += 1 return count N=int(input()) P=int(input()) result=max_problems_solved(N,P) print(result)

RESULT

5 / 5 Test Cases Passed | 100 %

6° × ×