

Aula 7 MEIO SOMADOR E SOMADOR COMPLETO

Projeto de Ensino

Material didático para lógica digital I: circuitos combinacionais

Bolsista: Everaldina Guimarães Barbosa

Orientador: César Alberto Bravo Pariente

UESC - 2022/23

Sumário

1.	Aritmética binária: Adição.	3	4.	F
2.	Meio Somador			E
	2.1. Introdução	8		
	2.2. Circuito combinacional	9		
	2.3. Simulação	11		
3.	Somador Completo			
	3.1. Introdução	12		
	3.2. Circuito combinacional	13		
	3.3. Simulação	15		
	3.4. A partir de "Meio Somador"	17		
	3.5. Adição de 4 bits	31		

4.	REFERÊNCIAS	
	BIBLIOGRÁFICAS	33

- No sistema decimal, é possível fazer 100 operações de adição distintas, já que possui 10 dígitos. Se levado em conta a comutatividade, esse número cai para 55.
- O quadro ao lado ilustra o resultado das somas entre os 10 dígitos do sistema decimal.

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

• No sistema numérico binário há apenas quatro combinações possíveis na adição, são elas:

• No sistema numérico binário há apenas quatro combinações possíveis na adição, são elas:

• No sistema numérico binário há apenas quatro combinações possíveis na adição, são elas:

• No sistema numérico binário há apenas quatro combinações possíveis na adição, são elas:

• Na adição 1₂ + 1₂ o resultado é zero e "vai um" para a casa logo à esquerda. Esse "um" é chamado de transporte (carry).

Meio Somador – Introdução

- Utilizando essas noções de adição entre dois bits, é possível criar um circuito combinacional que corresponda a tal operação.
- Na tabela ao lado estão as possíveis combinações aditivas de dois bits A e B, a saída (S) e o transporte de saída (T_s).
- O transporte de saída representa o bit carry da soma. Ele só é verdadeiro na soma 1₂ + 1₂.

A	В	S	T_{s}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio Somador - Circuito Combinacional

- Analisando a tabela verdade da operação é possível obter a expressão para cada saída.
- A saída (S) possui a mesma tabela verdade da operação A XOR B. Logo:

$$S = A \oplus B$$

• O T_s só é verdadeiro quando os dois bits de entrada são verdadeiros, então podemos concluir que:

$$T_s = A.B$$

A	В	S	T_{s}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio Somador - Circuito Combinacional

• Isso também poderia ser percebido com a ajuda dos mapas de Karnaugh correspondentes.

S	$\overline{\mathbf{B}}$	В
$\overline{\mathbf{A}}$	0	
A	$\begin{bmatrix} 1 \end{bmatrix}$	0

$$S = \overline{A}B + A\overline{B}$$
$$S = A \oplus B$$

T_s	$\overline{\mathbf{B}}$	В
$\overline{\mathbf{A}}$	0	0
A	0	(1)

$$T_s = A.B$$

A	D	C	T
A	В	S	T_{s}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio Somador – Simulação

• Abaixo a simulação do circuito "Meio Somador" e sua versão encapsulada.

• Disponível em: https://circuitverse.org/users/166835/projects/somador-929841eb-6954-4a67-8643-d3a1ac3b5c3c

Somador Completo – Introdução

- O "Meio Somador" faz a adição de dois bits. Porém, para um caso geral, em uma soma são necessárias três entradas: os dois bits que serão somados e o transporte de entrada.
- Caso não haja carry, o transporte de entrada (T_e) será igual a "zero". Se houver, o T_e será igual "um".
- Ao lado a tabela verdade da adição de A, B e T_e.

A	В	T_{e}	S	T_{s}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador Completo – Circuito Combinacional

• É possível obter a expressão de saída com o auxílio do mapa de Karnaugh abaixo:

\mathbf{S} $\overline{\mathbf{B}}$			В		
Ā	0		0		
A		0		0	
	$\overline{T_e}$	Т	e e	$\overline{T_e}$	

$$\mathbf{S} = \overline{A}\overline{B}T_{e} + \overline{A}B\overline{T_{e}} + A\overline{B}\overline{T_{e}} + ABT_{e}$$

$$\mathbf{S} = \overline{A}(\overline{B}T_{e} + B\overline{T_{e}}) + A(\overline{B}\overline{T_{e}} + BT_{e})$$

$$\mathbf{S} = \overline{A}(B \oplus T_{e}) + A(B \odot T_{e})$$

$$\mathbf{S} = A \oplus B \oplus T_{e}$$

A	В	T_{e}	S	T_{s}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador Completo – Circuito Combinacional

• O mapa de Karnaugh abaixo é utilizado para se obter a expressão do "Transporte de saída" da tabela.

T_s	Ē	3	F	3
$\overline{\mathbf{A}}$	0	0	(1)	0
A	0		1	1
	$\overline{T_e}$	$\left T_{\mathrm{e}} \right \overline{T_{\mathrm{e}}}$		
	$T_s =$	+ AB +	BT _e	

A	В	T_{e}	S	T_{s}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador Completo – Simulação

• A seguir a simulação do circuito combinacional do "Somador Completo":

$$T_s = AT_e + AB + BT_e$$

 $S = A \oplus B \oplus T_e$

• Disponível em: https://circuitverse.org/users/166835/projects/somador-929841eb-6954-4a67-8643-d3a1ac3b5c3c

Somador Completo – Simulação

• Versão encapsulada:

• Disponível em: https://circuitverse.org/users/166835/projects/somador-929841eb-6954-4a67-8643-d3a1ac3b5c3c

- O "Meio Somador" faz a adição de dois bits, sem a presença do bit de carry, porém é possível combinar mais de um componente "Meio Somador" de forma que ele funcione como "Somador Completo".
- Para isso podemos analisar as saídas do "Meio Somador" e do "Somador Completo".

• Observando o Transporte de saída do "Somador Completo", é possível fazer algumas operações booleanas.

• Observando o Transporte de saída do "Somador Completo", é possível fazer algumas operações booleanas.

$$\begin{array}{lll} \mathbf{T_s} = \mathbf{AT_e} + \mathbf{AB} + \mathbf{BT_e} \\ = \mathbf{A(T_e + B)} + \mathbf{BT_e} \\ = \mathbf{A(T_e + BT_e)} + \mathbf{BT_e} \\ = \mathbf{AT_e} + \mathbf{ABT_e} + \mathbf{BT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} + \mathbf{ABT_e} \\ = \mathbf{ABT_e} + \mathbf{ABT_e}$$

- A saída S, equivale à operação XOR das duas entradas.
- Tendo dois Meio Somadores, MS1 e MS2. Se alimentarmos no MS2, a entrada A, com a saída de MS1 e, a entrada B, com o Transporte de Entrada, teremos:

- A saída S, equivale à operação XOR das duas entradas.
- Tendo dois Meio Somadores, MS1 e MS2. Se alimentarmos no MS2, a entrada A, com a saída de MS1 e, a entrada B, com o Transporte de Entrada, teremos:

- A saída S, equivale à operação XOR das duas entradas.
- Tendo dois Meio Somadores, MS1 e MS2. Se alimentarmos no MS2, a entrada A, com a saída de MS1 e, a entrada B, com o Transporte de Entrada, teremos:

- A saída S, equivale à operação XOR das duas entradas.
- Tendo dois Meio Somadores, MS1 e MS2. Se alimentarmos no MS2, a entrada A, com a saída de MS1 e, a entrada B, com o Transporte de Entrada, teremos:

• Então temos por fim o "Somador Completo" por meio de "Meio Somador".

• Disponível em: https://circuitverse.org/users/166835/projects/somador-929841eb-6954-4a67-8643-d3a1ac3b5c3c

Somador Completo – Adição de 4 bits

- Os circuitos até aqui somam apenas um bit, obtendo a saída e o carry.
- É possível somar mais de um bit, nesse caso o Transporte de entrada recebe o carry de saída de outro "Somador Completo". Com exceção do primeiro "Somador Completo" que tem 0 como Transporte de entrada.

Somador Completo – Adição de 4 bits

- Ao lado, o circuito para a adição de 4 bits.
- Na imagem a soma:

$$\begin{array}{r}
1 & 1 \\
0 & 0 & 1 & 1 \\
+ & 0 & 0 & 1 & 1 \\
\hline
0 & 0 & 1 & 1 & 0
\end{array}$$

• Disponível em: https://circuitverse.org/users/166835/projects/soma dor-929841eb-6954-4a67-8643-d3a1ac3b5c3c

Referências Bibliográficas

- IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de Eletrônica Digital. 40. ed. São Paulo: Érica, 2008.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. **Sistemas digitais:** princípios e aplicações. 12. ed. São Paulo, SP: Pearson, 2018. E-book.
- NELSON, Victor P. et al. Digital logic circuit analysis and design. 1. ed. Englewood Cliffs: Prentice-Hall, 1995.