Exercice 1

	0	1
{S0}	/	{S1,S2}
{S1,S2}	{S0,S1}	{S2}
{S0,S1}	{S1}	{S1,S2}
{S2}	{S0}	/
{S1}	{S1}	{S2}

Exercice 2

1

Étape 1: décomposition des transitions complexes

Étape 2: Élimination des ϵ transitions ϵ -fermeture(S0)={S0} , ϵ -fermeture(S01)={S01} , ϵ -fermeture(S1)={S1}, ϵ -fermeture(S2)={S2}

	0	1
S0	S01, S0	/
S01	/	S0
S1	S11	S1
S11	S2	S1

Étape 3: : l'automate déterministe correspondant

	0	1
S0	{S01, S1}	/
{S01, S1}	S11	{S0, S1}
{S0, S1}	{S01, S1, S11}	S1
{S01, S1, S11}	{S11, S2}	{S0, S1}
S1	S11	S1
S11	S2	/
{S11, S2}	S2	S1
S2	/	S1

2ème méthode

On applique les transitions ensuite la fermeture pour chaque état

	0	1
S0	{S01,S1,S2}	/
{S01,S1,S2}	S11	{S0,S1,S2}
{S0,S1,S2}	{S01,S1,S11,S2}	{S1,S2}
{S01,S1,S11,S2}	{S11,S2}	{S0,S1,S2}
{S1,S2}	S11	{S1,S2}
{S11,S2}	S2	{S1,S2}
S11	S2	/
S2	/	{S1,S2}

2.

- on ajoute un état puits Sp
- on ajoute les transition {(S0,1,Sp), (S1,1,Sp), (S2,0,Sp)}

3.

Exercice 3

1. Automate A

2. Automate B

Exercice 4

1.

	a	b	
S0	{S0,S1}	S0	
{S0,S1}	{S0,S1}	{S0,S2}	
{S0,S2}	{S0,S1,S3}	S0	
{S0,S1,S3}	{S0,S1}	{S0,S2,S4}	
{S0,S2,S4}	{S0,S1,S3,S4}	{S0,S4}	
{S0,S4}	{S0,S1,S4}	{S0,S4}	
{S0,S1,S3,S4}	{S0,S1,S4}	{S0,S2,S4}	
{S0,S1,S4}	{S0,S1,S4}	{S0,S2,S4}	

2.

3.

4.

5.

	0≡[2]	A	1≡[2]	В
A			a,b,c	
В	a,b,c			

Exercice 5

1.

 $\begin{array}{ll} 2. & A \!\!<\!\! X, (S_0,\!...,\!S_{p\!-\!1},\!S_d,\!S_z), \, S_d, (S_0,\!S_z), \, II \!\!> \\ & II \!\!=\!\! \left\{ \, \left(S_d \,\,,\, 0 \,\,,\, S_z \right) \,; \, \left(S_d \,\,,\, 1 \,\,,\, S_1 \right) \,; \! \left(S_i \,\,,\, 0 \,\,,\, S_2 (2i \!\!=\!\! [p]) \right) \,; \, \left(S_i \,\,,\, 1 \,\,,\, \left(S_2 (2i \!\!+\! 1 \!\!=\!\! [p]) \right) \right) \, \text{avec} \,\, p \!\!>\! i \!\!\geq\! 0 \,. \end{array}$

Exercice 6

Exercice 7

Notation des états

'H' pour Homme, 'L' pour Loup, 'C' pour Chèvre et 'S' pour Salade

'/' pour déterminer la position sur les rives

Notation des conditions

'h' lorsque l'homme traverse seul,

'l' lorsque l'homme et le loup traversent

'c' lorsque l'homme et la chèvre traversent

's' lorsque l'homme et la salade traversent

10 états autorisés: HLCS/, LS/HC, HLS/C, S/HLC, L/HCS, HCS/L, HLC/S, C/HLS, HC/LS et /HLCS

6 états interdits: LC/HS, HS/LC, HL/CS, CS/HL, CLS/H et H/CLS

Exercice 8

2^{ème} méthode

((ab)*(baa)*)*aa

((a1b2)*(b3a4a5)*)*a6a7

begin={a1,b3,a6} end={a7}

	a	b
0	{a1, a6}	{b3}
1	Ø	{b2}
2	{a1, a6}	{b3}
3	{a4}	Ø
4	{a5}	Ø
5	{a1, a6}	{b3}
6	{a7}	Ø
7	Ø	Ø

3^{ème} méthode

$ b((ab)^*(baa)^*)^+aa \mid a \parallel a = \varepsilon b((ab)^*(baa)^*)^+aa \mid a \parallel b = ((ab)^*(baa)^*)^+aa $	
$\begin{vmatrix} aa(baa)^*((ab)^*(baa)^*)^*aa & & a = a(baa)^*((ab)^*(baa)^*)^*aa \\ aa(baa)^*((ab)^*(baa)^*)^*aa & & b = \emptyset \end{vmatrix}$	
$ \begin{vmatrix} a(baa)^*((ab)^*(baa)^*)^*aa & & a = (baa)^*((ab)^*(baa)^*)^*aa \\ a(baa)^*((ab)^*(baa)^*)^*aa & & b = \emptyset \end{vmatrix} $	
$\begin{array}{c} (baa)^*((ab)^*(baa)^*)^*aa \parallel a = b((ab)^*(baa)^*)^*aa \mid a \\ (baa)^*((ab)^*(baa)^*)^*aa \parallel b = aa(baa)^*((ab)^*(baa)^*)^*aa \end{array}$	
$((ab)*(baa)*)^+aa \equiv ((ab)*(baa)*)*aa$ $(baa)*((ab)*(baa)*)*aa \equiv ((ab)*(baa)*)*aa$ remplace q5 et q4 avec q0 dans le tableau	

	a	b
q0	q1	q2
q1	qf	q5
q2	q3	Ø
q3	q4	Ø
q4	q1	q5
q5	q1	q2

q0

q1

q2

q3

Exercice 9

a

1^{ère} méthode

L0=bL0 ∪ aL1 L1=bL2 ∪ ε	L2=bL2 U a(bL2 U ε) L2=bL2 U abL2 U a	L1=bL2 U ε L1=b((b U ab)*a) U ε	L0=b*a(b((b ∪ ab)*a) ∪ ε) L0=b*a b(b ∪ ab)*a ∪ b*a
L2=bL2 ∪ aL1	L2=(b ∪ ab)L2 ∪ a	$L0=bL0 \cup a(b((b \cup ab)*a) \cup \epsilon)$	Lo o a o(o o ao) a o o a
	L2=(b ∪ ab)*a		

2^{ème} méthode

b.

L0=cL0 ∪ aL1	L0=c*aL1	L2=aL3 υ ε
$L1=(a \cup b)L1 \cup bL0 \cup cL2$	$L1=(a \cup b)L1 \cup bc*aL1 \cup cL2$	$L3=b(a \cup b \cup bc*a)*cL2$
L2=aL3 U ε	$L1=(a \cup b \cup bc*a)L1 \cup cL2$	L3=b(a \cup b \cup bc*a)*c(aL3 \cup ε)
L3=bL1	$L1=(a \cup b \cup bc*a)*cL2$	L3=b(a \cup b \cup bc*a)*c(aL3 \cup ε)
		L3=b(a \cup b \cup bc*a)*caL3 \cup b(a \cup b \cup bc*a)*c
		$L3=(b(a \cup b \cup bc*a)*ca)*b(a \cup b \cup bc*a)*c$

L3= $(b(a \cup b \cup bc*a)*ca)*b(a \cup b \cup bc*a)*c$

 $L2=aL3=a((b(a \cup b \cup bc*a)*ca)*b(a \cup b \cup bc*a)*c)$

L1= $(a \cup b \cup bc*a)* \cup cL2=(a \cup b \cup bc*a)* \cup ca((b(a \cup b \cup bc*a)*ca)*b(a \cup b \cup bc*a)*c)$

 $L0=c*a((a \cup b \cup bc*a)* \cup ca((b(a \cup b \cup bc*a)*ca)*b(a \cup b \cup bc*a)*c))$

c

L0=aL1 ∪ bL2	L0=aL1 ∪ bL2	L2=(ab)*
L1=bL2	L1=bL2	L1=b(ab)*
L2=aL1 ∪ ε	L2=abL2 ∪ ε	$L0=ab(ab)* \cup b(ab)*=(ab \cup b)(ab)*$

Exercice : élimination transitions spontanées

élimination transitions spontanées arrière en utilisant E-fermeture

élimination transitions spontanées avant

