Звіт до лабораторної роботи

Ярослав Грунда Фі-21, ФТІ КПІ

13 жовтня 2024 р.

Зміст

1	Мета роботи	2
2	Алгоритм Дейкстри 2.1 Опис роботи алгоритму Дейкстри	
3	Алгоритм Беллмана-Форда 3.1 Опис роботи алгоритму Беллмана-Форда	
4	Гіпотези	3
5	Таблички порівняння	4
6	Графіки	10
7	Висновок	14

1 Мета роботи

Реалізувати алгоритми пошуку шляхів найменшої ваги від заданої вершини до усіх інших вершин: алгоритм Дейкстри та алгоритм Беллмана-Форда; порівняти їх між собою.

2 Алгоритм Дейкстри

2.1 Опис роботи алгоритму Дейкстри

Алгоритм Дейкстри шукає найкоротші шляхи від стартової вершини до всіх інших у графі з невід'ємними вагами.

Ініціалізація:

Відстані до всіх вершин — ∞ , до стартової вершини — 0. Попередники для відновлення шляху ініціалізуються як None. Використовується масив для позначення відвіданих вершин.

Основний цикл:

Оновлюються відстані для сусідів поточної вершини. Якщо нова відстань коротша, оновлюється значення та попередник. Вершина позначається як відвідана. Наступна вершина вибирається серед невідвіданих із найменшою відстанню.

Завершення:

Алгоритм завершується, коли оброблено всі доступні вершини.

2.2 Особливості алгоритму Дейкстри

Для представлення графа у вигляді списків суміжності:

У найпростішому випадку, коли для пошуку вершини з мінімальною відстанню проглядаються всі вершини, тобто використовується лінійний пошук, складність алгоритму зростає до $O(V^2 + E)$, оскільки:

- Щоб вибрати наступну вершину, ми переглядаємо всі невідвідані вершини. Цей процес займає O(V) часу для кожної вершини.
- Оскільки цей пошук виконується для кожної з V вершин, загальна складність для цього пошуку $O(V^2)$.
- Для кожної вершини алгоритм перевіряє всі її сусіди (ребра) і оновлює відстані. Оновлення сусідів виконується за O(E), де E кількість ребер.

Якщо використовувати чергу з пріоритетом, де операції вилучення та додавання елементів дорівнюють $O(\log V)$, то складність алгоритму зменшується і становить $O((V+E)\log V)$, оскільки:

- Кожну вершину обробляємо один раз, додаючи її в чергу. Для всіх V вершин це дає $O(V \log V)$.
- Для кожного ребра ми можемо виконати оновлення відстані, що супроводжується з додаванням до черги ребра. Для всіх E ребер це дає $O(E \log V)$.

Для представлення графа у вигляді матриці суміжності:

Алгоритм Дейкстри не є ефективним, оскільки замість того, щоб проглядати тільки існуючі ребра, ми проглядаємо всі можливі ребра: $O(V^2 + V^2)$ для лінійного пошуку, $O(V^2 + E \log V)$ з використанням пріоритетної черги.

3 Алгоритм Беллмана-Форда

3.1 Опис роботи алгоритму Беллмана-Форда

Алгоритм Беллмана-Форда — це метод для знаходження найменших відстаней від однієї вершини (стартової) до всіх інших вершин у графі. Він працює навіть у випадках, коли граф може містити ребра з від'ємними вагами, проте не допускає наявності від'ємних циклів.

Ініціалізація:

Створюється словник distances, у якому для кожної вершини зберігається відстань від стартової вершини. Усі значення ініціалізуються значенням ∞ (нескінченність), окрім стартової вершини, для якої відстань дорівнює 0. Ініціалізується словник previous, у якому для кожної вершини зберігається попередник на найкоротшому шляху.

Основний цикл:

Алгоритм виконує n-1 ітерацій (де n- кількість вершин у графі). На кожній ітерації:

- Для кожної вершини у графі перевіряються всі сусіди.
- Якщо нова обчислена відстань до сусіда менша за вже відому, то відстань оновлюється, а також оновлюється попередник для цього сусіда.

Перевірка на від'ємні цикли:

Після основного циклу алгоритм перевіряє наявність від'ємних циклів. Якщо є можливість ще зменшити відстань до якоїсь вершини, це означає, що граф містить від'ємний цикл.

3.2 Особливості алгоритму Беллмана-Форда

Складність для представлення у вигляді списків суміжності: $O(V \cdot E)$ - алгоритм проходить по всіх ребрах n-1 разів. У вигляді матриці суміжності: $O(V^3)$ - алгоритм проходить по всіх можливих ребрах, навіть якщо вони не існують.

4 Гіпотези

1. Алгоритми Дейкстри з лінійним пошуком працює повільніше ніж з використанням пріоритетної черги. 2. Алгоритми Дейкстри та Беллмана-Форда працюють швидше при представленні списками щільності ніж при представленні матрицею не зважаючи на щільність. 3. Алгоритми Дейкстри та Беллмана-Форда працюють швидше при зменшені щільності графа для представлення списками суміжності. (Дейкстра з Чергою) 4. Алгоритм Дейкстри працює швидше за алгоритм Беллмана-Форда при будь-якому представленні та щільності.

5 Таблички порівняння

Табл. 1: Час виконання алгоритмів для щільності 0.7 (в мікросекундах)

num vertices	dijkstra	dijkstra_h	${\tt dijkstra_m}$	${\tt dijkstra_mh}$	$bellman_ford$	bellman_ford_matrix
5	39.96	0.0	0.0	0.0	20.00	40.67
25	59.37	0.0	59.10	20.02	1606.00	3845.00
45	344.30	39.83	915.50	402.00	9020.00	23770.00
65	636.60	586.60	813.00	705.00	19700.00	75170.00
85	1238.00	482.60	1484.00	2460.00	55310.00	179300.00
105	1494.00	986.70	2705.00	3386.00	110800.00	351800.00
125	2392.00	1023.00	3791.00	4179.00	170800.00	548300.00
145	3262.00	2309.00	4991.00	4909.00	277800.00	895400.00
165	3750.00	1783.00	5911.00	6723.00	367700.00	1199000.00
185	4048.00	1988.00	7121.00	8326.00	539700.00	1697000.00
205	5801.00	3062.00	8995.00	9847.00	739700.00	2335000.00
225	7925.00	3619.00	12590.00	13400.00	1059000.00	3115000.00
245	7914.00	3735.00	11920.00	14070.00	1214000.00	3738000.00
265	6688.00	3309.00	12720.00	15500.00	1844000.00	5687000.00
285	10600.00	3309.00	16430.00	17560.00	1844000.00	5687000.00

Табл. 2: Час виконання алгоритмів для щільності 0.5 (в мікросекундах)

num vertices	dijkstra	dijkstra_h	dijkstra_m	dijkstra_mh	bellman_ford	bellman_ford_matrix
5	0.0	0.0	40.06	0.0	0.0	40.41
25	66.74	23.06	59.97	382.00	629.00	3567.00
45	18.55	19.96	682.00	20.00	4797.00	21432.00
65	599.00	644.00	709.00	650.00	13378.00	61518.00
85	707.00	43.14	1752.00	1932.00	30474.00	138442.00
105	1259.00	723.00	1761.00	4709.00	55494.00	260767.00
125	61.76	939.00	4482.00	3272.00	96618.00	437384.00
145	401.00	1579.00	3074.00	6883.00	152296.00	678539.00
165	2058.00	962.00	5897.00	7011.00	225676.00	1004252.00
185	2887.00	711.00	7759.00	7056.00	321905.00	1417299.00
205	4532.00	2457.00	7553.00	8218.00	444437.00	1919609.00
225	4644.00	2265.00	9893.00	11734.00	596086.00	2539369.00
245	6944.00	1242.00	12232.00	14663.00	778600.00	3284394.00
265	4754.00	3621.00	13749.00	14889.00	955996.00	4111243.00
285	7138.00	3326.00	15393.00	17886.00	1206444.00	5165551.00

Табл. 3: Час виконання алгоритмів для щільності 0.3 (в мікросекундах)

num vertices	dijkstra	dijkstra_h	dijkstra_m	dijkstra_mh	bellman_ford	bellman_ford_matrix
5	0.0	0.0	0.0	0.0	0.0	40.01
25	60.01	333.40	74.20	383.00	509.00	3082.00
45	19.65	20.00	536.00	83.73	2701.00	19763.00
65	351.00	36.00	376.00	699.00	11173.00	54182.00
85	1634.00	66.19	1096.00	1671.00	19006.00	122267.00
105	1393.00	389.00	2151.00	1575.00	35040.00	230251.00
125	959.00	1303.00	3812.00	2826.00	57803.00	387029.00
145	1467.00	1549.00	4971.00	3251.00	89826.00	603464.00
165	1986.00	342.00	4456.00	6327.00	136656.00	883919.00
185	4170.00	485.00	4856.00	8680.00	190919.00	1245473.00
205	3573.00	853.00	8052.00	7912.00	268458.00	1699241.00
225	5224.00	1358.00	7701.00	11846.00	351941.00	2237124.00
245	3796.00	1980.00	9938.00	15312.00	459773.00	2880579.00
265	4983.00	1485.00	12669.00	15273.00	543336.00	3631257.00
285	5366.00	1851.00	14433.00	16382.00	692946.00	4553235.00

Табл. 4: Час виконання алгоритмів для ${\bf p}=0.1$

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	10.1	9.87
25	1.62	316.0
45	24.4	1015.0
65	161.0	3054.0
85	110.0	9273.0
105	244.0	13703.0
125	271.0	24410.0
145	415.0	36035.0
165	424.0	52259.0
185	661.0	74374.0
205	629.0	98660.0
225	728.0	133009.0
245	940.0	173012.0
265	1527.0	248335.0
285	1518.0	319260.0

Табл. 5: Час виконання алгоритмів для p=0.2

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд ($bellman_ford$) (мкс)
5	10.0	9.61
25	1.42	285.0
45	23.5	896.0
65	159.0	2895.0
85	120.0	7894.0
105	256.0	13054.0
125	298.0	22388.0
145	430.0	34011.0
165	440.0	49112.0
185	670.0	70729.0
205	640.0	94430.0
225	745.0	122300.0
245	950.0	162400.0
265	1590.0	218770.0
285	1550.0	319750.0

Табл. 6: Час виконання алгоритмів для ${\bf p}=0.3$

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	12.0	11.3
25	1.82	345.0
45	30.0	1150.0
65	189.0	3500.0
85	145.0	8900.0
105	290.0	14500.0
125	340.0	24500.0
145	490.0	36700.0
165	500.0	53000.0
185	740.0	77100.0
205	710.0	103200.0
225	840.0	134700.0
245	1100.0	178900.0
265	1740.0	236700.0
285	1700.0	348200.0

Табл. 7: Час виконання алгоритмів для p=0.4

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд $(bellman_ford)$ (мкс)
5	13.5	12.0
25	1.90	356.0
45	31.0	1180.0
65	192.0	3580.0
85	150.0	9000.0
105	295.0	14700.0
125	350.0	24900.0
145	500.0	37000.0
165	510.0	54000.0
185	760.0	78000.0
205	720.0	104200.0
225	860.0	136700.0
245	1120.0	180200.0
265	1760.0	239000.0
285	1730.0	351300.0

Табл. 8: Час виконання алгоритмів для p=0.5

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	14.0	13.0
25	2.20	400.0
45	34.0	1250.0
65	200.0	4000.0
85	160.0	9500.0
105	310.0	16000.0
125	370.0	27000.0
145	530.0	39000.0
165	540.0	55000.0
185	800.0	80000.0
205	770.0	105000.0
225	900.0	139000.0
245	1150.0	183000.0
265	1800.0	242000.0
285	1770.0	354000.0

Табл. 9: Час виконання алгоритмів для p=0.6

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	19.0	18.0
25	3.50	460.0
45	58.0	1500.0
65	310.0	4200.0
85	290.0	11000.0
105	410.0	17000.0
125	480.0	28000.0
145	740.0	40000.0
165	800.0	60000.0
185	1050.0	88000.0
205	950.0	116000.0
225	1120.0	150000.0
245	1370.0	195000.0
265	2200.0	259000.0
285	2150.0	350000.0

Табл. 10: Час виконання алгоритмів для p=0.7

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	32.0	31.0
25	5.50	700.0
45	92.0	2500.0
65	510.0	6500.0
85	490.0	16000.0
105	710.0	25000.0
125	800.0	38000.0
145	1250.0	55000.0
165	1400.0	80000.0
185	1800.0	110000.0
205	1600.0	145000.0
225	1860.0	190000.0
245	2200.0	250000.0
265	3600.0	315000.0
285	3500.0	420000.0

Табл. 11: Час виконання алгоритмів для p=0.8

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	36.0	34.0
25	6.10	800.0
45	98.0	2600.0
65	520.0	6700.0
85	500.0	17000.0
105	730.0	26000.0
125	850.0	40000.0
145	1300.0	57000.0
165	1500.0	82000.0
185	1900.0	115000.0
205	1700.0	150000.0
225	2000.0	200000.0
245	2350.0	260000.0
265	3700.0	330000.0
285	3600.0	440000.0

Табл. 12: Час виконання алгоритмів для p=0.9

Кількість вершин	Дейкстра $(dijkstra_h)$ (мкс)	Беллман-Форд (bellman_ford) (мкс)
5	200.0	190.0
25	30.0	4000.0
45	480.0	11000.0
65	2500.0	28000.0
85	2400.0	72000.0
105	3700.0	110000.0
125	4600.0	170000.0
145	7100.0	240000.0
165	8600.0	340000.0
185	10500.0	470000.0
205	9500.0	600000.0
225	11500.0	800000.0
245	13500.0	1000000.0
265	21000.0	1300000.0
285	20500.0	1500000.0

6 Графіки

Умовні позначення:

- Дейкстра списками суміжності з лінійним пошуком = dijkstra
- Дейкстра списками суміжності з пріоритетною чергою = dijkstra_h
- Дейкстра матрицею суміжності з лінійним пошуком = dijkstra_m
- Дейкстра матрицею суміжності з пріоритетною чергою = dijkstra_mh
- Беллмана-Форда списками суміжності = bellman_ford
- Беллмана-Форда матрицею суміжності = bellman_ford_matrix

Порівняння швідкості різних реалізацій алгоритну Дейкстри р=0.5

оліто війкта, війкта

Рис. 1: p=0.3

Рис. 2: p=0.5

Рис. 3: p=0.7

Для кожної кількості вершин було проведено 50 ітерацій і взято середнє значення. Як бачимо, не зважаючи на щільність чи кількість вершин, в будь якому випадку швидкості йдуть як: dijkstra_h <dijkstra_mh & dijkstra <dijkstra_m. Гіпотеза 1 підтверджена. Також підтверджено гіпотеза 2 для Дейкстри.

Беллмана-Форд: представлення списками суміжності та матрицею p=0.5

| Deliman_ford | Deliman_fo

Рис. 4: p=0.3

Рис. 5: p=0.5

Рис. 6: p=0.7

Для кожної кількості вершин було проведено 50 ітерацій і взято середнє значення. Як бачимо, з ростом кількості вершин відрив представлення списками від матричного збільшується. Підтверджена гіпотеза 2 для Беллмана-Форда.

Рис. 7: Для кожної кількості вершин було проведено 100 ітерацій і взято середнє значення. Як бачимо зі збільшенням кількості вершин з'являється чітка різниця між щільностю графа: зі збільшенням щільності збільшується час. Підтверджена гіпотеза 3 для Беллмана-Форда.

Рис. 8: Для кожної кількості вершин було проведено 100 ітерацій і взято середнє значення. Бачимо менш чітку різницю ніж для беллмана але вона все таки проглядається: зі збільшенням щільності збільшується час роботи. Підтверджена гіпотеза 3 для Дейкстри.

Дейкстра vs Беллман-Форд p=0.5

— dijkstra — dijkstra

Рис. 9: p=0.3

Рис. 10: p=0.5

Рис. 11: p=0.7

Для кожної кількості вершин було проведено 50 ітерацій і взято середнє значення. Як бачимо, не зважаючи на щільність чи кількість вершин, в будь якому випадку час Дейкстри набагато менше ніж Беллмана-Форда. Підтверджено гіпотезу 4.

7 Висновок

У цій лабораторній роботі були реалізовані алгоритми Дейкстри та Беллмана-Форда для пошуку шляхів найменшої ваги в графі. Результати показали, що найкраще для цих алгоритмів граф представлений у вигляді списків суміжності. Алгоритм Дейкстри значно швидше Беллмана-Форда. Єдиним плюсом алгоритму Беллмана-Форда є його вміння працювати з від'ємними вагами ребер. Для більш детальної інформації, будь ласка, відвідайте наступний ресурс: Перейти до репозиторію.