PCT

世界知的所有権機関 務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/55, 15/63, C12P 17/04, C12N 9/18, 1/21, C07D 307/04 // (C12N 15/55, C12R 1:77) (C12N 15/63, C12R 1:77) (C12N 9/18, C12R 1:19) (C12N 1/21, C12R 1:19)

(11) 国際公開番号

WO97/10341

(43) 国際公開日

1997年3月20日(20.03.97)

(21) 国際出願番号

PCT/JP96/02620

A1

(22) 国際出願日

1996年9月13日(13.09.96)

(30) 優先権データ

特願平7/259451

1995年9月13日(13.09.95)

(71) 出願人(米国を除くすべての指定国について)

富士薬品工業株式会社

(FUJI YAKUHIN KOGYO KABUSHIKI KAISHA)[JP/JP]

〒933 富山県高岡市長慶寺530番地 Toyama, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

坂本恵司(SAKAMOTO, Keiji)[JP/JP]

〒933 富山県高岡市長慶寺530番地

富士薬品工業株式会社内 Toyama, (JP)

山田秀明(YAMADA, Hideaki)[JP/JP]

〒606 京都府京都市左京区松ヶ崎木ノ本町19-1 Kyoto, (JP)

清水 昌(SHIMIZU, Sakayu)[JP/JP]

〒604 京都府京都市中京区西ノ京伯楽町14 Kyoto, (JP)

小林達彦(KOBAYASHI, Tatsuhiko)[JP/JP]

〒606 京都府京都市左京区净土寺下馬場町97 Kyoto (JP)

(74) 代理人

弁理士 水野昭宣(MIZUNO, Akinobu) 〒150 東京都渋谷区渋谷1丁目10番7号

グローリア宮益坂III 305 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG)、ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)、 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調查報告書

D-PANTOLACTONE HYDROLASE AND GENE ENCODING THE SAME (54) Title:

D-パントラクトン加水分解酵素およびそれをコードする遺伝子 (54)発明の名称

(57) Abstract

A novel enzyme which is useful in the optical resolution of D,L-pantolactone via D-selective asymmetric hydrolysis and a gene encoding the same. The invention discloses a gene encoding a natural D-pantolactone hydrolase (for example, one originating in Fusarium oxysporum) or a protein having substantially the same activity as the same, host cells transformed by a DNA containing a base sequence encoding the above-mentioned protein; a process for producing the protein with the use of the host cells, and uses of the protein and the host cells.

(57) 要約

D. LーパントラクトンのDー選択的不斉加水分解による光学分割に有用な新規な酵素およびそれをコードする遺伝子を提供する。天然のDーパントラクトン加水分解酵素、例えば、フサリウム・オキシスポルム(Fusarium oxysporum)由来の天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するタンパク質をコードする遺伝子を明らかにし、該タンパク質をコードする塩基配列を含有するDNAで形質転換せしめた宿主細胞、該宿主細胞を用いる該タンパク質の製造方法、さらにはそれらタンパク質および宿主細胞の用途。

明細書

D-パントラクトン加水分解酵素およびそれをコードする遺伝子

技術分野

5

10

15

20

本発明はD、LーパントラクトンのDー選択的不斉加水分解による光学分割に有用な新規な酵素およびそれをコードする遺伝子に関するものである。特に本発明は、フサリウム・オキシスポルム(Fusarium oxysporum)由来の天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するタンパク質およびそれをコードする遺伝子に関するものであり、さらに詳しくは、本発明は該タンパク質をコードする塩基配列を含有するDNA、該DNAで形質転換せしめた宿主細胞、該宿主細胞を用いる該Dーパントラクトン加水分解酵素の製造方法、さらにはそれらタンパク質および宿主細胞の用途に関するものである。

背景技術

D-パットラクトッは医学上または生理学上重要なビタミッとして有用な<math>D-パットテッ酸やパッテチッの製造における中間体として知られている。従来、<math>D-パットラクトッは化学的に合成された D. L-パットラクトッを光学分割することにより製造されている。しかしながら、この方法は、キニーネ、ブルシッ等の高価な分割剤を必要とするものであり、<math>D-パットラクトッの回収も容易でない等の欠点を有している。このような問題点を解決するため本発明者らは<math>D, L-パットラクトッの酵素的不斉加水分解による光学分割法を特開平3-65198号および特開平4-144681号各公報に提示した。

すなわち、フサリウム属、シリンドロカルポン属、ジベレラ属、アス

10

15

25

ペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロスポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロスリクス属、バーティシリウム属またはアルスロダーマ属に属する微生物より選ばれたラクトン加水分解能を有する微生物を用いてD、Lーパントラクトン中のDー体を選択的に不斉加水分解せしめることにより、Dーパントイン酸を生成せしめ、そのDーパントイン酸を分離し、Dーパントラクトンに変換することを特徴とするDーパントラクトンの製造法および上記した属に属する微生物によるDーパントラクトン加水分解酵素の製造法である。

しかし、これらの開示されている微生物の多くが直ちに工業的に利用可能なほどの加水分解活性を有しているとは必ずしもいえず、当該微生物がもつ酵素活性を工業可能なレベルまでに上昇させるためには、培養条件や活性誘導条件等について長時間を要する煩雑で難しい検討が必要とされる。またこれらの当該微生物は真菌であるため、菌体が様々な形態をもつ菌糸状を呈し、単一な形態を有する細菌などに比べ、工業的生産に有利な固定化菌体の調製がかなり難しいという問題がある。さらに酵素を菌体から精製する際にも、Dーパントラクトン加水分解酵素に関してはかなり回収率が悪いなどの問題がある。

20 発明の開示

本発明はこれらの問題点を解決し、さらにDーパントラクトン加水分解酵素そのものの改変により酵素活性の飛躍的な上昇を可能ならしめることを目的とする。すなわち、本発明は天然のDーパントラクトン加水分解酵素、例えば、フサリウム・オキシスポルム由来の天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するタン

10

15

20

25

パク質をコードする遺伝子を明らかにし、該タンパク質をコードする塩 基配列を含有するDNAで形質転換せしめた宿主細胞、該宿主細胞を用 いる該タンパク質の製造方法、さらにはそれらタンパク質および宿主細 胞の用途等を提供することにある。

本発明者らは、上記ラクトン加水分解能を有する微生物からDーパントラクトン加水分解酵素をコードする遺伝子を単離し、こうして単離したDーパントラクトン加水分解酵素遺伝子を利用して、効率よく且つより生産性に優れたDーパントラクトン生産システムを開発すれば、上記様々な問題点が解決できるだけでなく、更にはより新しい機能をも併せ持つラクトン加水分解能をもつところの酵素の開発及びそれを使用した技術の開発にも資するところが多いと考え、特にはDーパントラクトン加水分解酵素を産生するフサリウム属微生物、例えば、フサリウム・オキシスポルムからそれ由来のDーパントラクトン加水分解活性を有する加水分解酵素をコードする新規な遺伝子を単離することに成功し、本発明を完成させるに至った。

本発明は、天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するか、あるいは実質的に同等の一次コンフォメーションを持つタンパク質またはその塩、そのタンパク質の特徴的な部分ペプチドまたはその塩、それらをコードする遺伝子、例えばDNA、RNAなど、その遺伝子を遺伝子組換え技術で操作することが可能なように含有しているベクターあるいはプラスミド、こうしたベクターなどで形質転換された宿主細胞、その宿主細胞を、培養して該タンパク質またはその塩などを製造する方法、さらにこうして遺伝子操作された宿主細胞や組換えタンパク質またはその塩などを用いて、D、Lーパントラクトンの光学分割を行いDーパントラクトンを合成する方法及び固定化酵

素などといったDーパントラクトン生産システム手段に関する。

好ましくは、本発明では、配列表の配列番号:1で表されるアミノ酸配列またはそれと実質的に同等のアミノ酸配列を有することを特徴とするD-パントラクトン加水分解酵素またはその塩が挙げられる。

5 特に本発明は、

20

- (1) 天然のD-パントラクトン加水分解酵素またはそれと実質的に同等な活性を有するか、あるいは実質的に同等の一次コンフォメーションを持つものであることを特徴とするタンパク質またはその塩、
- (2) 該天然のDーパントラクトン加水分解酵素がフサリウム属、シリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロスポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロスリクス属、バーティシリウム属またはアルスロダーマ属に属する微生物由来のものであることを特徴とする上記第(1)項記載のタンパク質、
 - (3) 該天然のD-パントラクトン加水分解酵素がフサリウム属由来の ものであることを特徴とする上記第(1)項記載のタンパク質、
 - (4)配列表の配列番号: 1 で表されるアミノ酸配列またはそれと実質的に同等のアミノ酸配列を有するD-パントラクトン加水分解酵素またはその塩であることを特徴とする上記第(1)~(3)項のいずれか一記載のタンパク質、
 - (5) 外因性DNA配列を原核生物において発現して得たものであることを特徴とする上記第(1)~(4)項のいずれか一記載のタンパク質、
- (6)配列表の配列番号:1で表されるアミノ酸配列またはそれと実質 55 的に同一のアミノ酸配列を有することを特徴とする上記第(1)~(5) 項のいずれか一記載のタンパク質、

20

- (7)上記第(1)~(6)項のいずれか一記載のタンパク質の部分ペ プチドまたはその塩、
- (8)上記第(1)~(7)項のいずれか一記載のタンパク質またはその部分ペプチドをコードする塩基配列を有することを特徴とする核酸、
- 5 (9)配列表の配列番号:2で表される塩基配列のうちオープン・リーディング・フレーム部分またはそれと実質的に同等な活性を有する塩基 配列を有することを特徴とする上記第(8)項記載の核酸、
 - (10)上記第(8)又は(9)項記載の核酸を含有することを特徴と するベクター、
- 10 (11)上記第(10)項記載のベクターを保有することを特徴とする 形質転換体、
 - (12)上記第(11)項記載の形質転換体を増殖可能な栄養培地中で培養し、組換えタンパク質としてD-パントラクトン加水分解酵素またはその塩を包含する上記第(1)~(7)項のいずれか一記載のタンパク質又はその部分ペプチドを生成せしめることを特徴とする<math>D-パントラクトン加水分解酵素またはその塩を包含する上記第(1)~(7)項のいずれか一記載のタンパク質又はその部分ペプチドの製造方法、及び(13)上記第(1)~(7)項のいずれか一記載のタンパク質またはその部分ペプチドまたは上記第(11)項記載の形質転換体を用いての<math>D、L-パントラクトンの光学分割による<math>D-パントラクトンの製造法を提供する。

より具体的には、本発明は配列表の配列番号:1で表されるアミノ酸 配列を有することを特徴とするD-パントラクトン加水分解酵素または その塩を提供する。 WO 97/10341 PCT/JP96/02620

6

図面の簡単な説明

5

15

20

25

第1図は、Dーパントラクトン加水分解酵素の消化ペプチドの解析により得られたアミノ酸配列を示す。

第2図は、D-パントラクトン加水分解酵素の消化ペプチドのcDNAアミノ酸配列に対応する部位を示す。

第3図は、D-パントラクトン加水分解酵素のゲノムDNAを鋳型としたPCRに用いたプライマー構造を示す。

第4図は、Dーパントラクトン加水分解酵素発現ベクター構築に用いたPCRに使用したプライマーの構造を示す。

10 第 5 図は、D - パントラクトン加水分解酵素のアミノ酸配列とそれを コードする塩基配列を示す。

発明を実施するための最良の形態

本発明では、天然のDーパントラクトン加水分解酵素、例えば、フサリウム・オキシスポルム由来の天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するタンパク質をコードする遺伝子のクローニング、同定、そして特徴的な配列の決定(シークエンシング)、該遺伝子の発現ベクターへの組換えなどの操作、該タンパク質をコードする塩基配列を含有するDNAを用いての形質転換せしめた宿主細胞の作成及び培養・増殖、該宿主細胞を用いる該タンパク質の製造、さらにはそれらタンパク質および宿主細胞の用途等が提供され、それらは以下順次詳しく解説される。また本発明では上記Dーパントラクトン加水分解酵素をコードする遺伝子を利用する各種の手段が提供され、さらにこうして単離したDーパントラクトン加水分解酵素遺伝子を利用して、効率よく且つより生産性に優れたDーパントラクトン生産システムが提供される。

10

15

20

本発明では、天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するか、あるいは実質的に同等の一次コンフォメーションを持つタンパク質またはその塩、そのタンパク質の特徴的な部分ペプチドまたはその塩、それらをコードする遺伝子、例えばDNA、RNAなど、その遺伝子を遺伝子組換え技術で操作することが可能なように含有しているベクターあるいはプラスミド、こうしたベクターなどで形質転換された宿主細胞、その宿主細胞を、培養して該タンパク質またはその塩などを製造する方法、さらにこうして遺伝子操作された宿主細胞や組換えタンパク質またはその塩などを用いて、D、Lーパントラクトンの光学分割を行いDーパントラクトンを合成する方法及び固定化酵素などといったDーパントラクトン生産システム手段が提供されている。

本発明では、好ましくは、配列表の配列番号:1で表されるアミノ酸配列あるいはそれと実質的に同等のアミノ酸配列を有することを特徴とするDーパントラクトン加水分解酵素またはその塩が具体的に説明されているが、本発明のDーパントラクトン加水分解酵素としては、Dーパントラクトン加水分解能をもつ新規なアミノ酸配列を有するものであればよい。Dーパントラクトン加水分解能としてはその活性が同質のものであればよい。より好ましくは本発明のDーパントラクトン加水分解酵素は、配列表の配列番号:1で表されるアミノ酸配列またはそれと実質的に同等及び/又は同一のアミノ酸配列を有するものがすべて挙げられる。

本発明のDーパントラクトン加水分解酵素遺伝子は、例えば次の方法でクローニングできる。なお、遺伝子組換え技術は、例えば

T. Maniatis et al., "Molecular Cloning", 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N. T. (1989):

10

25

日本生化学会編、「続生化学実験講座1、遺伝子研究法 I I」、東京化学同人(1986);日本生化学会編、「新生化学実験講座2、核酸 I I I (組換えDNA技術)」、東京化学同人(1992);R. Wu ed. "Methods in Enzymology", Vol. 68, Academic Press. New York(1980);R. Wu et al. ed., "Methods in Enzymology",Vol. 100 & 101, Academic Press, New York(1983);R. Wu et al. ed., "Methods in Enzymology",Vol. 153, 154 & 155, Academic Press, New York(1987)などに記載の方法あるいはそこで引用された文献記載の方法あるいはそれらと実質的に同様な方法や改変法により行うことができる。それらの手法は、本発明の目的に合わせて公知の手法に独自の改変改良を加えたものであることもできる。

1) <u>D-パントラクトン加水分解酵素の部分ゲノムDNAの</u> クローニング

培養し、得られたフサリウム・オキシスポルムの菌体を破砕し、常法により染色体DNAを遠心分離後、RNAを分解除去し、除タンパク操作をおこなって、DNA成分を精製する。これらの操作については「植物バイオテクノロジー実験マニュアル:農村文化社、252頁」を参照されたい。またフサリウム属に属するDーパントラクトン加水分解酵素産生能をもつ微生物であれば、DNA源として好適に用いることが出来る。フサリウム属微生物としては、例えば、フサリウム・オキシスポルム IFO 5942、フサリウム・セミテクタム IFO 30200などを用いることが出来る。

同様にシリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロ

10

15

20

25

スポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロ スリクス属、バーティシリウム属またはアルスロダーマ属に属する微生 物であり、D-パントラクトン加水分解酵素産生能をもつ微生物もDN A源として用いることが出来よう。こうした微生物としては、例えば、 シリンドロカルポン・トンキネンス IFO 30561、ジベレラ・ フジクロイ IFO 6349、アスペルジラス・アワモリ IFO 4033、ペニシリウム クリソゲナム IFO 4626、リゾプス・ オリザエ IFO 4706、ボルテラ・ブクシ IFO 6003、 グリオクラディウム・カテヌラタム IFO 6121、ユーロティウ ム・シエバリエリ IFO 4334、ネクトリア・エレガンス IFO 7187、シゾフィラム・コムネ IFO 4928、ミロセ シウム・ロリダム IFO 9531、ノイロスポラ・クラツサ IFO 6067、アクリモニウム・フシデイオイデス IFO 6813、ツベルクリナ・ペルシシナ IFO 6464、アブシジア・ リヒセイミ IFO 4009、スポロスリクス・シエンキ IFO 5 9 8 3、バーティシリウム・マルトウセイ IFO 6 6 2 4 または アルスロダーマ・ウンシナトウム IFO 7865などが挙げられる ここで「IFO」は財団法人醱酵研究所〔(郵便番号532)大阪市 淀川区十三本町二丁目17番85号〕を示し、そこに記載の番号は 財団法人醱酵研究所のカタログ番号を示すものである。

2) プローブの作製

Dーパントラクトン加水分解酵素の内部ペプチドのアミノ酸情報に基づいて合成オリゴヌクレオチドプライマーを作製する。例えば、上記微生物であり、Dーパントラクトン加水分解酵素産生能をもつ微生物から得られた精製Dーパントラクトン加水分解酵素の内部ペプチドのアミノ

10

15

20

25

酸情報に基づいて合成オリゴヌクレオチドプライマーを作製することが できる。典型的な場合、アミノ酸配列を基に、デジェネレイテッド・プ ライマーなどを作製する。プライマーの作製は、当該分野で知られた方 法で行うことができ、例えばDNA自動合成装置を用い、フォスフォジ エステル法、フォスフォトリエステル法、フォスフォアミダイト法など により合成できる。具体的にはフサリウム・オキシスポルム IFO 5.942を栄養培地中で培養して得られた菌体からDーパントラクトン 加水分解酵素を精製し、必要に応じペプチド加水分解酵素などで断片化 し、その酵素の内部ペプチドのアミノ酸配列の情報を収集する。こうし て得られたアミノ酸配列の情報より好ましい合成オリゴヌクレオチドブ ライマーを作製する。このプライマーを用い、D-パントラクトン加水 分解酵素のゲノムDNAを鋳型にしてPCRをおこなう。PCR反応は、 当該分野で公知の方法あるいはそれと実質的に同様な方法や改変法によ り行うことができるが、例えば R. Saiki, et al., Science, Vol. 230, pp. 1350 (1985); R. Saiki, et al., Science, Vol. 239, pp. 487 (1988): Henry A. Erlich, PCR Technology, Stockton Press などに記 載された方法に従って行うことができる。反応は、例えば、市販のキッ トや試薬を利用して行うことが出来る。

得られた増幅DNA断片をシークエンスし、精製酵素の内部ペプチドのアミノ酸配列と相同な配列を含むことを確認し、それをアイソトープで標識しプローブとしてその後の実験などに使用する。塩基配列の決定は、ダイデオキシ法、例えばM13ダイデオキシ法など、Maxam-Gilbert法などを用いて行うことができるが、市販のシークエンシングキット、例えば Taqダイプライマーサイクルシークエンシングキットなどを用いたり、自動塩基配列決定装置、例えば蛍光DNAシーケンサー装置などを用いて行うことが出来る。プローブなどを放射性同位体などによって

標識するには、市販の標識キット、例えばランダムプライムドDNAラベリングキット (Boehringer Mannhaim)などを使用して行うことが出来る。

3) D-パントラクトン加水分解酵素 c DNAのクローニング

a) mRNAの調製およびcDNAライブラリーの作製

培養し、得られたフサリウム・オキシスポルムの菌体を破砕し、AGPC 法に従って全RNAを抽出し、ここから適当な方法、例えばオリゴ dT セルロースカラムを用いてmRNAを精製する。典型的にはmRNAの 単離は、当該分野で公知の方法あるいはそれと実質的に同様な方法や改 変法により行うことができるが、T. Maniatis et al., "Molecular 10 Cloning", 2nd Ed., Chapter 7, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. T. (1989); L. Grossman et al. ed., "Methods in Enzymology", Vol. 12, Part A & B, Academic Press. New York (1968); S. L. Berger et al. ed., "Methods in Enzymology". 15 Vol. 152, p. 33 & p. 215, Academic Press, New York (1987); Biochemistry, 18, 5294-5299, 1979 などに記載の方法、例えばグアニ ジン-塩化セシウム法、チオシアン酸グアニジン法、フェノール法など の方法で行うことが出来る。必要に応じ、得られた全RNAはオリゴ (dT) - セルロースカラムなどを使用して精製してポリ(A) mRNAを得ることが出来る。またフサリウム属に属するDーパントラ 20 クトン加水分解酵素産生能をもつ微生物であれば、mRNA源として好 適に用いることが出来る。フサリウム属微生物としては、例えば、フサ リウム・オキシスポルム IFO 5942、フサリウム・セミテクタ ム IFO 30200などを用いることが出来る。

25 同様にシリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニ

シリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロ ティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロ スポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロ スリクス属、バーティシリウム属またはアルスロダーマ属に属する微生 5 物であり、Dーパントラクトン加水分解酵素産生能をもつ微生物も mRNA源として用いることが出来よう。こうした微生物としては、 例えば、シリンドロカルポン・トンキネンス IFO 30561、 ジベレラ・フジクロイ IFO 6349、アスペルジラス・アワモリ IFO 4033、ペニシリウム クリソゲナム IFO 4626、 10 リゾプス・オリザエ IFO 4706、ボルテラ・ブクシ IFO 6003、グリオクラディウム・カテヌラタム IFO 6121、 ユーロティウム・シエバリエリ IFO 4334、ネクトリア・ エレガンス IFO 7187、シゾフィラム・コムネ IFO 4928、ミロセシウム・ロリダム IFO 9531、ノイロスポラ・ 15 クラツサ IFO 6067、アクリモニウム・フシデイオイデス IFO 6813、ツベルクリナ・ペルシシナ IFO 6464、 アブシジア・リヒセイミ IFO 4009、スポロスリクス・ シエンキ IFO 5983、バーティシリウム・マルトウセイ IFO 6624またはアルスロダーマ・ウンシナトウム IFO 20 7865などが挙げられる。

得られたmRNAを鋳型として逆転写酵素(リバース・トランスクリプターゼ)などを用いて c DNAを合成する。mRNA及び逆転写酵素を用いての c DNA合成は当該分野で公知の方法あるいはそれと実質的に同様な方法や改変法により行うことができるが、H. Land et al..

25 "Nucleic Acids Res.", Vol. 9, 2251 (1981); U. Gubler et al., "Gene", Vol. 25, 263-269 (1983); S. L. Berger et al. ed.,

10

15

20

"Methods in Enzymology", Vol. 152, p. 307, Academic Press, New York (1987) などに記載の方法が挙げられる。こうして得られた c DNAはこれを市販のファージベクターに挿入し、さらに常法により パッケージングする。こうして作製された c DNAを基に c DNAライブラリーを構築できる。

b) D-パントラクトン加水分解酵素 c DNAのクローニング

宿主細胞に上記パッケージングした c D N A ライブラリーを感染させ、プラークハイブリダイゼーションによりポジティブ・プラークを得る。得られたクローンをシークエンスし、アミノ酸配列を検討することにより、D-パントラクトン加水分解酵素遺伝子がクローニングされることが確認できる。またファージベクターを使用する以外で、大腸菌などの宿主細胞の形質転換をするには、例えばカルシウム法、ルビジウム/カルシウム法など当該分野で知られた方法あるいはそれと実質的に同様な方法で行うことができる(D. Hanahan. J. Mol. Biol., Vol. 166. p. 557 (1983)など)。

作製された c D N A を鋳型に P C R 増幅反応を行うこともできる。 典型的な場合、上記 2) で得られたプライマーを使用することが出来る。

Dーパントラクトン加水分解酵素遺伝子を組込むプラスミドとしては遺伝子工学的に常用される宿主細胞(例えば、大腸菌、枯草菌等の原核細胞宿主、酵母、等の真核細胞宿主)中で該DNAが発現できるプラスミドであればどのようなプラスミドでもよい。こうした配列内には、例えば選択した宿主細胞で発現するのに好適なコドンを導入することや、制限酵素部位を設けることも可能である。また、目的とする遺伝子の発現を容易にするための制御配列、促進配列など、目的とする遺伝子を結

25

合するのに役立つリンカー、アダプターなど、さらには抗生物質耐性などを制御したり、代謝を制御したりし、選別などに有用な配列等を含ませることが可能である。

好ましくは、適当なプロモーター、例えば大腸菌を宿主とするプラスミドでは、トリプトファン(trp)プロモーター、ラクトース(lac)プロモーター、トリプトファン・ラクトース(tac)プロモーター、リポプロテイン(lpp)プロモーター、λファージPLプロモーター等を、酵母を宿主とするプラスミドでは、GAL1、GAL1のプロモーター等を使用し得る。

大腸菌を宿主とするプラスミドとしては、例えばpBR322、 10 pUC18, pUC19, pUC118, pUC119, pSP64, pSP65, pTZ-18R/-18U, pTZ-19R/-19U, pGEM-3, pGEM-4, pGEM-3Z, pGEM-4Z, pGEM-5Zf (-), pBluescript KS^{TM} (Stratagene)などが挙げられる。大腸菌での発現に適したプラスミドベ 15 クターとしては、pAS、pKK223 (Pharmacia)、pMC1403、 pMC931、pKC30なども挙げられる。酵母を宿主とするプラス ミドとしては、YIp型ベクター、YEp型ベクター、YRp型ベクター、 YCp型ベクターなどが挙げられ、例えばpGPD-2などが挙げられ る。宿主細胞としては、宿主細胞が大腸菌の場合、例えば大腸菌K12 20 株に由来するものが挙げられ、例えばNM533 XL1-Blue、 C600、DH1、HB101、JM109などが挙げられる。

本発明の遺伝子工学的手法においては、当該分野で知られたあるいは 汎用されている制限酵素、逆転写酵素、DNA断片をクローン化するの に適した構造に修飾したりあるいは変換するための酵素であるDNA修 WO 97/10341

5

10

15

20

飾・分解酵素、DNAポリメラーゼ、末端ヌクレオチジルトランスフェラーゼ、DNAリガーゼなどを用いることが出来る。制限酵素としては、例えば、R. J. Roberts, Nucleic Acids Res. Vol. 13, r165 (1985):

S. Linn et al. ed. Nucleases, p. 109, Cold Spring Harbor Lab..

Cold Spring Harbor, New York, 1982などに記載のものが挙げられる。
逆転写酵素としては、例えばマウスモロネイ白血病ウイルス (mouse

Moloney leukemia virus; MMLV) 由来の逆転写酵素 (reverse

transcriptase)、ニワトリ骨髄芽球症ウイルス (avian myeloblastosis

virus: AMV) 由来の逆転写酵素などが挙げられ、特にはRNase H 欠損体

などは好ましく用いることが出来る。DNAポリメラーゼとしては、例

えば大腸菌DNAポリメラーゼ、その誘導体であるクレノウ・フラグメ

ント、大腸菌ファージT 4 DNAポリメラーゼ、大腸菌ファージT 7

DNAポリメラーゼ、耐熱菌DNAポリメラーゼなどが挙げられる。

末端ヌクレオチジルトランスフェラーゼとしては、例えばR. Wu et al. ed.. "Methods in Enzymology"、Vol. 100、p. 96、Academic Press. New York(1983)に記載の 3' - O H 末端にデオキシヌクレオチド (d N M P)を付加する T d T a s e などが挙げられる。 D N A 修飾・分解酵素としては、エキソヌクレアーゼ、エンドヌクレアーゼなどが挙 げられ、例えばヘビ毒ホスホジエステラーゼ、脾臓ホスホジエステラーゼ、大腸菌 D N A エキソヌクレアーゼ I I I、大腸菌 D N A エキソヌクレアーゼ I I I、大腸菌 D N A エキソヌクレアーゼ V I I、 λ エキソヌクレアーゼ、D N a s e I、ヌクレアーゼ S 1、ミクロコッカス(Mi crococcus)ヌクレアーゼなどが挙げられる。 D N A リガーゼとしては、例えば大腸菌 D N A リガーゼ、 T 4 D N A リガーゼなどが挙げられる。

DNA遺伝子をクローニングしてDNAライブラリーを構築するのに 適したベクターとしては、プラスミド、λファージ、コスミド、P1 ファージ、F因子、YACなどが挙げられ、好ましくはλファージ由来のベクターが挙げられ、例えばCharon 4A、Charon 21A、λgt10、λgt11、λDASHII、λFIXII、λEMBL3、λZAPII** (Stratagene) などが挙げられる。

5 さらに、本発明に係わるD-パントラクトン加水分解酵素の遺伝子塩 基配列を基に遺伝子工学的に常用される方法を用いることにより、D-パントラクトン加水分解酵素のアミノ酸配列中に適宜、1個ないし複数 個以上のアミノ酸の置換、欠失、挿入、転移あるいは付加したごとき変 異を導入した相当するタンパク質を製造することができる。こうした変 10 異・変換・修飾法としては、日本生化学会編、「続生化学実験講座1、 遺伝子研究法 I I 」、 p 1 0 5 (広瀬進)、東京化学同人(1986); 日本生化学会編、「新生化学実験講座2、核酸 I I I (組換え D N A 技 術)」、p233(広瀬進)、東京化学同人(1992):R. Wu, L. Grossman, ed., "Methods in Enzymology". Vol. 154, p. 350 & p. 367, 15 Academic Press, New York (1987): R. Wu, L. Grossman, ed.. "Methods in Enzymology", Vol. 100, p. 457 & p. 468, Academic Press, New York (1983); J. A. Wells et al., "Gene", Vol. 34. p. 315 (1985); T. Grundstroem et al., "Nucleic Acids Res", Vol. 13, p. 3305 (1985) ; J. Taylor et al., "Nucleic Acids Res.", 20 Vol. 13, p. 8765 (1985) ; R. Wu ed., "Methods in Enzymology". Vol. 155. p. 568, Academic Press, New York (1987) ; A. R. Oliphant et al., "Gene", Vol. 44, p. 177 (1986) などに記載 の方法が挙げられる。例えば合成オリゴヌクレオチドなどを利用する位 置指定変異導入法(部位特異的変異導入法)、 Kunkel 法、 $dNTP[\alpha S]$ 法 (Eckstein) 法、亜硫酸や亜硝酸などを用いる領域指定変異導入法等の 25

10

15

20

25

方法が挙げられる。

さらに得られた本発明のタンパク質は、化学的な手法でその含有されるアミノ酸残基を修飾することもできるし、ペプチダーゼ、例えばペプシン、キモトリプシン、パパイン、ブロメライン、エンドペプチダーゼ、エキソペプチダーゼなど酵素などを用いて修飾したり、部分分解したりしてその誘導体などにすることができる。また遺伝子組換え法で製造する時に融合タンパク質として発現させ、生体内あるいは生体外で天然のDーパントラクトン加水分解酵素と実質的に同等の生物学的活性を有しているものに変換・加工してもよい。遺伝子工学的に常用される融合産生法を用いることができるが、こうした融合タンパク質はその融合部を利用してアフィニティクロマトグラフィーなどで精製することも可能である。タンパク質の構造の修飾・改変などは、例えば日本生化学会編、「新生化学実験講座1、タンパク質VII、タンパク質工学」、東京化学同人(1993)を参考にし、そこに記載の方法あるいはそこで引用された文献記載の方法、さらにはそれらと実質的に同様な方法で行うことができる。

かくして本発明は、1個以上のアミノ酸残基が同一性の点で天然のものと異なるもの、1個以上のアミノ酸残基の位置が天然のものと異なるものであってもよい。本発明は、天然のD-パットラクトッ加水分解酵素に特有なアミノ酸残基が1個以上(例えば、1~80個、好ましくは1~60個、さらに好ましくは1~20個、特には1~10個など)欠けている欠失類縁体、特有のアミノ酸残基の1個以上(例えば、1~80個、好ましくは1~60個、さらに好ましくは1~10個など)が他の残基で置換されている置換類縁体、1個以上(例えば、1~80個、好ましくは1~60個、さらに好ましくは1~40個、さ

WO 97/10341 PCT/JP96/02620

1 8

らに好ましくは $1\sim20$ 個、特には $1\sim10$ 個など)のアミノ酸残基が付加されている付加類縁体も包含する。天然のD-パントラクトン加水分解酵素の特徴であるドメイン構造を有しているものも包含されてよい。また、同質の<math>D-パントラクトン加水分解酵素活性を有するものも挙げられる。

5 られる。

10

15

20

25

天然のDーパントラクトン加水分解酵素の特徴であるドメイン構造が維持されていれば、上記のごとき変異体は、全て本発明に包含される。また本発明の天然のDーパントラクトン加水分解酵素と実質的に同等の一次構造コンフォメーションあるいはその一部を有しているものも含まれてよいと考えられ、さらに天然のDーパントラクトン加水分解酵素と実質的に同等の生物学的活性を有しているものも含まれてよいと考えられる。さらに天然に生ずる変異体の一つであることもできる。こうした本発明のDーパントラクトン加水分解酵素は、下記で説明するように分離・精製処理されることができる。一方では、こうして本発明は上記したポリペプチドをコードするDNA配列、そして天然の特性の全部あるいは一部を有するDーパントラクトン加水分解酵素のポリペプチド、さらにその類縁体あるいは誘導体をコードするDNA配列も包含する。該Dーパントラクトン加水分解酵素の塩基配列は、修飾(例えば、付加、除去、置換など)されることもでき、そうした修飾されたものも包含されてよい。

本発明のDNA配列は、これまで知られていなかったDーパントラクトン加水分解酵素タンパク質のアミノ酸配列に関する情報を提供しているから、こうした情報を利用することも本発明に包含される。こうした利用としては、例えばDーパントラクトン加水分解酵素及び関連タンパク質をコードする微生物、特に好ましくはDーパントラクトン加水分解

10

15

20

酵素産生能をもつ微生物、例えば、フサリウム属、シリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロスポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロスリクス属、バーティシリウム属またはアルスロダーマ属に属する微生物であり、Dーパントラクトン加水分解酵素産生能をもつ微生物の、ゲノムDNA及びcDNAの単離及び検知のためのプロープの設計などが挙げられる。

本発明のDNA配列は、例えばDーパントラクトン加水分解酵素及び 関連タンパク質をコードするDーパントラクトン加水分解酵素産生能を もつ微生物、特に好ましくは上記フサリウム属をはじめとした微生物の、 ゲノムDNA及びcDNAの単離及び検知のためのプロープとして有用 である。遺伝子の単離にあたっては、PCR法、さらには逆転写酵素 (RT)を用いたPCR法(RT-PCR)を利用することが出来る。 Dーパントラクトン加水分解酵素及びその関連DNAは、クローニング され、配列決定されたDーパントラクトン加水分解酵素 cDNA配列 から推定されるアミノ酸配列に基づき特徴的な配列領域を選び、DNA プライマーをデザインして化学合成し、得られたDNAプライマーを用 いて、PCR法、RT-PCR、その他の方法を用いてDーパントラクトン加水分解酵素関連遺伝子の単離、検出などに利用することが出来る。

以上述べたように本発明に従えばDーパントラクトン加水分解酵素の遺伝子及び組換えDNA分子を宿主に移入し、Dーパントラクトン加水分解酵素を発現させ、目的とするDーパントラクトン加水分解酵素を得る方法が提供される。こうして本発明によれば、Dーパントラクトン加水分解酵素の遺伝子を実質的に発現する組換え体あるいはトランスフェ

10

15

20

25

クタント及びその製造法、さらにはその用途も提供される。

別の面では、本発明はDーパントラクトン加水分解酵素活性を有するタンパク質またはそれと実質的に同等な活性を有することを特徴とするタンパク質またはその塩、より好ましくはフサリウム・オキシスポルム由来のDーパントラクトン加水分解酵素またはその塩と、実質的に同等な活性を有するか、あるいは実質的に同等の一次構造コンフォメーションを持つ該タンパク質の少なくとも一部あるいは全部を有するポリペプチドを、大腸菌などの原核生物あるいは真核生物で発現させることを可能にするDNAやRNAなどの核酸に関するとすることができる。またこうした核酸、特にはDNAは、(a)配列表の配列番号:1で表されるアミノ酸配列をコードできる配列あるいはそれと相補的な配列、

(b) 該(a) のDNA配列またはその断片とハイブリダイズすることのできる配列、及び(c) 該(a) 又は(b) の配列にハイブリダイズすることのできる縮重コードを持った配列であることができる。こうした核酸で形質転換され、本発明の該ポリペプチドを発現できる大腸菌などの原核生物あるいは真核生物も本発明の特徴をなす。

本発明に従えば、Dーパントラクトン加水分解酵素活性を有するタンパク質またはそれと実質的に同等な活性を有することを特徴とするタンパク質をコードするDNA、あるいは該DNAを発現可能に含んでいるベクターなどのDNAを、Dーパントラクトン加水分解酵素産生能をもつ微生物、例えば、フサリウム属、シリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、シロセシウム属、ノイロスポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロスリクス属、バーティシリウム属またはアルスロダーマ属に属する微生物に導入して、Dーパントラクトン加水分解酵素

20

25

産生能を改変した微生物を得ることもできよう。こうした微生物として は、例えば、フサリウム・オキシスポルム IFO 5942、 フサリウム・セミテクタム IFO 30200、シリンドロカルポン・ トンキネンス IFO 30561、ジベレラ・フジクロイ IFO 6349、アスペルジラス・アワモリ IFO 4033、 5 ペニシリウム クリソゲナム IFO 4626、リゾプス・オリザエ IFO 4706、ボルテラ・ブクシ IFO 6003、 グリオクラディウム・カテヌラタム IFO 6121、 ユーロティウム・シエバリエリ IFO 4334、ネクトリア・ 10 エレガンス IFO 7187、シゾフィラム・コムネIFO 4928、ミロセシウム・ロリダム IFO 9531、 ノイロスポラ・クラツサ IFO 6067、アクリモニウム・ フシデイオイデス IFO6813、ツベルクリナ・ペルシシナ IFO 6464、アブシジア・リヒセイミ IFO 4009、

スポロスリクス・シエンキ IFO 5983、バーティシリウム・マルトウセイ IFO 6624、またはアルスロダーマ・ウンシナトウム IFO 7865などが挙げられる。

形質転換の方法としては、適当な細胞壁溶解酵素を用いて調製したブロトプラスト化した細胞に、塩化カルシウム、ポリエチレングリコールなどの存在下DNAを接触させるとか、エレクトロポレーション法(例えば、E. Neumann et al., "EMBO J", Vo. 1. pp.841 (1982) など)、マイクロインジェクション法、遺伝子銃により打ち込む方法などが挙げられる。

酵素は、各種原料、例えば細胞培養液、細胞培養破砕物など、形質転換体細胞などの酵素産生材料から従来公知の方法、例えば硫酸アンモニ

10

15

20

25

ウム沈殿法などの塩析、セファデックスなどによるゲルろ過法、例えば ジエチルアミノエチル基あるいはカルボキシメチル基などを持つ担体な どを用いたイオン交換クロマトグラフィー法、例えばブチル基、オクチ ル基、フェニル基など疎水性基を持つ担体などを用いた疎水性クロマト グラフィー法、色素ゲルクロマトグラフィー法、電気泳動法、透析、限 外ろ過法、アフィニティ・クロマトグラフィー法、高速液体クロマトグ ラフィー法などにより精製して得ることができる。また封入体として得 られた場合には、可溶化処理、例えば、塩酸グアニジン、尿素といった 変成剤、さらには必要に応じ、2-メルカプトエタノール、ジチオスレ イトールなどの還元剤存在下に処理して活性型酵素とすることもできる。 酵素としては酵素産生細胞をそのまま用いることが出来る。固定化酵素 としては、当該分野で知られた方法で酵素又は酵素産生細胞などを固定 化したものが挙げられ、共有結合法や吸着法といった担体結合法、架橋 法、包括法などにより固定化できる。例えばグルタルアルデヒド、ヘキ サメチレンジイソシアネート、ヘキサメチレンジイソチオシアネートな どの縮合剤を必要に応じて使用し、固定化できる。またモノマーを重合 反応でゲル化させて行うモノマー法、通常のモノマーよりも大きな分子 を重合させるプレポリマー法、ポリマーをゲル化させて行うポリマー法 などが挙げられ、ポリアクリルアミドを用いた固定化、アルギン酸、コ ラーゲン、ゼラチン、寒天、κーカラギーナンなどの天然高分子を用い た固定化、光硬化性樹脂、ウレタンポリマーなどの合成高分子を用いた 固定化などが挙げられる。微生物の培養、酵素を用いたDーパントラク トン加水分解をはじめとしたラクトン加水分解酵素利用の酵素的不斉加 水分解によるラクトン系化合物の光学分割反応及び生成物の処理は特開 平3-65198号および特開平4-144681号に記載のようにし て行うことができる。

10

15

20

25

例えば、液体培地で振盪培養した形質転換菌を集菌し、得られた菌体に D、Lーパントラクトン水溶液(2~60%濃度)を加え、pHを6~8に調整しながら温度10~40℃で数時間から1日反応させる。反応終了後、菌体を分離し、反応液中の未反応Lーパントラクトンを有機溶媒(酢酸エチルのようなエステル類、ベンゼンのような芳香族炭化水素類、クロロホルムのようなハロゲン化炭化水素等などが好ましい)を用いて抽出分離する。水層に残存しているDーパントイン酸を塩酸酸性下、加熱することによりラクトン化をおこない、上記した有機溶媒で抽出することにより生成したDーパントラクトンを得ることができる。このようにして、形質転換菌の処理菌体(乾燥菌体や固定化菌体等)や形質転換菌から得られた酵素や固定化酵素等も同様にしておこなうことが可能である。

本発明の前述した種々の態様を利用することにより、Dーパントラクトン加水分解をはじめとしたラクトン加水分解酵素利用の酵素的不斉加水分解によるラクトン系化合物の光学分割法に関わる合成研究に有用な手段として、あるいはその他の用途に適用される種々の技術手段を提供することができる。以下に実施例を掲げ、本発明を具体的に説明するが、本発明はこれら実施例に限定されず、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。なお、明細書及び図面において、塩基及びアミノ酸等を略号で表示する場合、IUPACーIUB Commission on Biochemical Nomenclatureによるか、あるいは当該分野において慣用的に使用される用語の意味に基づくものであり、アミノ酸に光学異性体が存在する場合は、特に断らないかぎりLー体を示す。

後述の実施例1で得られたD-パントラクトン加水分解酵素の遺伝子を導入したベクター(PFLC40E)を保有する大腸菌JM109

(EJM-ESE-1)は、平成7年8月30日(原寄託日)から茨城県つくば市東1丁目1番3号(郵便番号305)の通商産業省工業技術院生命工学工業技術研究所(NIBH)に寄託されており(受託番号FERM P-15141)、平成8年8月28日に原寄託よりブダペスト条約に基づく寄託への移管請求がなされ、受託番号FERMBP-5638としてNIBHに保管されている。

実施例

5

10

15

20

以下に実施例を挙げ、本発明を具体的に説明するが、本発明は実施例に限定されること無く様々な態様が含まれることは理解されるべきである。

実施例1

1)精製酵素のアミノ酸配列決定

特開平4 -144681号の実施例 1 に準じて調製した凍結乾燥 D-パントラクトン加水分解酵素 14.3 nmol (サブユニット分子量 6 万として)を 8 M 尿素を含む 5 0 mM Tris-HCl (pH9.0) 4 4 μ 1 に溶かし、 3 7 \mathbb{C} で 1 時間変性させる。これに 5 0 mM Tris-HCl (pH9.0) 4 4 μ 1 を添加して尿素濃度を 4 M とする。 12 nmol/mlのリジルエンドペプチダーゼ(和光純薬) 1 2 μ 1 (0.144 nmol,E/S=1/100) を添加し、 3 0 \mathbb{C} で 1 2 時間消化をおこなう。 得られた消化ペプチドを逆相カラム(ナカライテスク)で分取し、ABI 社 4 7 7 A プロテインシークエンサーでアミノ酸配列の分析をおこなった。

分取条件

カラム: Cosmosil 5C18-AR (4.6 x 250 mm)

流速:1 ml/min

温度:35℃

5 検出波長:210nm

溶離液: A. 0.1% TFA (トリフルオロ酢酸)

B, 0.1% TFA/80% CH₃CN

溶出条件: A →B のグラジエント溶出(15% /min)

アミノ酸配列の分析の結果は図1及び図2の通りであった。

10 2) ゲノムDNAの作製

a) Dーパントラクトン加水分解酵素のゲノムDNA抽出法

対数増殖期後期の菌体を減圧濾過で集菌した。液体窒素中に菌体を入 れ、ワーリングブレンダーで細かく破砕した。ある程度細かくなった菌 体を乳鉢に移し液体窒素を加えながらすりつぶした。 7 0 ℃に保温した 2 x CTAB液(2% CTAB (Cetyl trimethyl ammonium bromide, シグマ). 15 0.1 M Tris-HCl, pH8.0, 1.4 M NaCl, 1% PVP (Polyvinylpyrrolidone. シグマ)に懸濁し、65℃で3~4時間インキュベートした。遠心分離 した上清を順次、フェノール、フェノール/クロロホルム、クロロホル ムで処理し、等容のイソプロパノールでDNAを沈殿させた。70% エタノールで洗浄し、風乾後、TE(Tris 10mM-EDTA 20 1 m M、 p H 7. 8)に溶解した。リボヌクレアーゼA およびリボヌク レアーゼTIでRNAを分解し、フェノール、フェノール/クロロホルム、 クロロホルムで順次処理して除タンパク操作をおこなった。等容のイソ プロパノールでDNAを沈殿させた。70%エタノールで洗浄し、風乾 後、TEに溶解しゲノム標品を得た。 25

WO 97/10341 PCT/JP96/02620

2 6

b) <u>D-パントラクトン加水分解酵素遺伝子</u>の増幅

Dーパントラクトン加水分解酵素の内部ペプチドのアミノ酸配列の情報(図1及び図2)を基に、N-末端アミノ酸配列のセンスストランドに対応するセンスプライマーと内部ペプチド配列のアンチセンスストランドに対応するアンチセンスプライマーを各々合成した(図3)。

Dーパントラクトン加水分解酵素のゲノムDNAを鋳型として下記の条件でPCRをおこなった。PCR増幅は、例えば R. Saiki, et al., Science, Vol. 230, pp. 1350 (1985); R. Saiki, et al., Science, Vol. 239, pp. 487 (1988); PCR Technology, Stockton Press (1989)などに記載された方法に従って行われた。PCR増幅により、約1kbの増幅DNA断片を得た。

PCR条件

5

10

	染色体DNA		2.5 μ g	
	センスプライ	マー	250 pmol	(図3参照)
15	アンチセンス	プライマー	250 pmol	(図3参照)
	dNTP(2mM)		5 μ1	
	Tth ポリメラ	ーゼ緩衝液(x10)	5 μ1	•
	Tth DNA	ポリメラーゼ(東洋紡)	3 units	
	H_0			
20		合計	50 μ1	

本得られた増幅DNA断片をシークエンスし、アミノ酸配列に変換したところ、Dーパントラクトン加水分解酵素の内部ペプチドの部分アミノ酸配列の箇所が見いだされた。

92℃/1分、55℃/1分、73℃/3分:30サイクル

15

20

3) c DNAの作製

a) mRNAの作製

菌体は対数増殖期前期に集菌し、ただちに液体窒素で凍結後破砕し、AGPC (Acid Guanidinium Thiocyanate Phenol Chloroform) 法 (例えば、実験医学、Vol. No. 15, p99 (1991)) に従って全RNA を抽出した。得られた全RNAをオリゴdT- セルロースカラム (ファルマシア) にかけることにより精製した。

b) cDNAライブラリーの作製

得られたmRNA を鋳型として、cDNAラピッドアダプターライ がーションモジュール (cDNA rapido adaptor ligation module, cDNA synthesis module RPN 1256, 1994: アマシャム社 (Amersham International plc)) を用いてcDNAを合成した。

c) <u>D-パントラクトン加水分解酵素 c DNAのクローニング</u>

宿主大腸菌にcDNAライブラリーを感染させ、プラークハイブリダイゼーションによりポジティブプラークを得た。ただし、ここで用いたブローブはフサリウム・オキシスポルムのDーパントラクトン加水分解酵素遺伝子を含む約1kbの断片を鋳型とし、マルチプライム法で標識することにより作製した。得られたクローンをシークエンスし、アミノ酸配列に変換した結果、上記のDーパントラクトン加水分解酵素遺伝子全長のクローニングに成功したことが判明した。

こうして配列番号: 2 で表される塩基配列が得られた。この塩基配列によりコードされる配列番号: 1 で表されるアミノ酸配列と相同性を示す配列はNBRF (National Biomedical Research Foundation)

10

Protein Sequence Data Bank中には存在せず、この塩基配列を有する DNAは全く新規なものであることが認められた。

塩基配列を決定した c D N A には、N 末端部分が一部欠けていて、開始コドンを有していないことが判明したので、開始コドンを新たに人工的に挿入した発現ベクター (PFLC40E と命名) の構築を P C R 法によりおこなった。

図 4 で示される制限酵素サイトを有するセンスおよびアンチセンスプライマーの合成オリゴヌクレオチドを作製し、これらのプライマーを用い、以下の条件でPCR反応をおこなった。PCR増幅は、例えば R. Saiki, et al., Science, Vol. 230, pp. 1350 (1985); R. Saiki, et al., Science, Vol. 239, pp. 487 (1988); PCR Technology, Stockton Press (1989)などに記載された方法に従って行われた。

PCR条件

	Total DNA (cDNA)	1 0	μg
15	センスプライマー	1.0	nmol (図4参照)
	アンチセンスプライマー	0.1	nmol (図4参照)
	$dNTP \qquad (2 mM)$	1 0	μ 1
	Tth ポリメラーゼ緩衝液(x10)	1 0	μ 1
	Tth DNA ポリメラーゼ	4	units
20	H_O		
	合計	1 0 0	μ 1
	94℃/1分、55℃/1分、	7 5℃ / 3分	:30サイクル

こうして得られたPCR産物は両端にそれぞれEcoRIとXbalの制限酵素サイトをもつので、各制限酵素(EcoRI (宝酒造)とXbal(宝酒造))

処理をおこない、pUC18 とライゲーション反応を行う(宝ライゲーションキット)ことにより発現ベクター(PFLC40E)を構築した。

次に当該ベクターを "Molecular Cloning" second ed., 1989, ed. by J. Sambrook et al., Cold Spring Habor Laboratory Press に記載された方法に従い、E. coli JM 109 のコンピテントセルにトランスフォーメーションし、形質転換をおこなった。なお、当該形質転換体は50mg/1のアンピシリンを含む 2 x YT 培地(トリプトン1.5%、酵母エキス1%、NaCl 0.5%)上で選択した。形質転換処理は、塩化カルシウム法に従った。

5

10

15

20

25

こうして得られた組換え大腸菌を上記した50mg/1のアンピシリン含有 2 x YT 培地10mlを含む試験管で前培養をおこない、この前培養液 (計100μ1)を種菌として前培養液と同じ組成からなる本培養液 100mlで培養時間、培養温度、イソプロピルーβ-チオガラクトピ ラノシド(IPTG)添加時間等を検討した。培養結果を表1に示す。 培養後、得られた菌体を超音波破砕し、遠心上清を用いてDーパントラ クトン加水分解酵素活性を測定した。最適条件での比活性は2.25 U/mg であった。D-パントラクトン加水分解酵素の酵素活性の測定は次の条 件で行い、1分間に1μmolのD-パントラクトンを加水分解する酵素 活性を1単位(unit)とする。D-パントラクトン10%濃度の 0. 5 M PIPES 緩衝溶液 (pH7. 0) 2 0 0 μ 1 に酵素溶液 5 0 μ 1 を加え、 3 0 ℃で 1 2 0 分間反応させた後 2 m M EDTAの メタノール溶液 2 5 0 µ 1 を加え反応を停止させる。反応終了液を HPLC(Nucleosil 5C: 4.6×150mm 、溶離液10%メタノール、 流速 1 ml/min、検出波長230nm)を用いて加水分解率を求める。酵素活 性は例えば加水分解率が1%であれば、酵素溶液1ml当たりの活性は

1. 6×10 ²U/mlとなる。

PFLC40Eで形質転換された大腸菌JM109は2×YT培地中で培養した。IPTGは、最終濃度2mMとなるように加えた。

表 1

I P T G 供給時間	培養時間	培養温度	比活性
(hr)	(h r)	(°C)	(units/mg)
0 "	6	2 8	0.86
0 4	1 2	2 8	1. 9 4
4 0	7	2 8	1. 3 3
4 '	1 2	2 8	2. 25
0	6	3 7	1. 0 5
0 "	1 2	3 7	1. 73
4 :	7	3 7	1. 3 1
4	1 2	3 7	1.67

a: IPTGは、培養開始と同時に2×YT培地中に加えた。

b: IPTGは、培養開始後4時間して2×YT培地中に加えた。

SDS-PAGEをおこなった結果、遠心沈殿部の不溶性画分に予想分子量の太いバンドが検出されたのでこのバンドについてブロッティングをおこない、エドマン分解法によりN末端のアミノ酸配列を調べた結果、Dーパントラクトン加水分解酵素のそれと一致した。従ってDーパントラクトン加水分解酵素 c DNAの本大腸菌発現系においてDーパントラクト

WO 97/10341 PCT/JP96/02620

3 1

ン加水分解酵素の一部は可溶性で発現しているものの、大部分はinclusion body(封入体)として発現しているものと考えられる。上記Dーパントラクトン加水分解酵素の遺伝子を導入したベクター(PFLC40E)を保有する大腸菌JMI09(EJM-ESE-1)は、茨城県つくば市東1丁目1番3号(郵便番号305)の通商産業省工業技術院生命工学工業技術研究所(NIBH)に受託番号FERM BP-5638として寄託保存されている〔平成7年8月30日(原寄託日)に寄託された受託番号FERM P-15141(微工研菌寄第P-15141号;原寄託)よりブダペスト条約に基づく寄託への移管請求が平成8年8月28日になされた〕。

産業上の利用可能性

5

10

15

20

天然のDーパントラクトン加水分解酵素、例えば、フサリウム・オキシスポルム(Fusarium oxysporum)由来の天然のDーパントラクトン加水分解酵素またはそれと実質的に同等な活性を有するタンパク質をコードする遺伝子構造が明らかにされ、該タンパク質をコードする塩基配列を含有するDNAで形質転換せしめた宿主細胞、該宿主細胞を用いる該タンパク質の製造方法、さらにはそれらタンパク質および宿主細胞を用いてのDーパントラクトンの製造などの用途において飛躍的な発展を期待でき、さらにDーパントラクトン加水分解酵素そのものの改変により酵素活性の飛躍的な上昇を可能ならしめることが可能である。

【配列番号:1】

3 2

配 列 表

配歹	リの長	きさ:	: 380												
配歹	リの西	발 : 기	マミノ	酸											
トォ	キロシ	ジ ー :	直釗	貨状											
配歹	川の種	重類:	ペラ	プチト	· ·										
配歹	IJ														
Ala	Lys	Leu	Pro	Ser	Thr	Ala	Gln	He	lle	Asp	Gln	Lys	Ser	Phe	Asn
1				5					10					15	
Val	Leu	Lys	Asp	Val	Pro	Pro	Pro	Ala	Val	Ala	Asn	Asp	Ser	Leu	Val
			20					25					30		
Phe	Thr	Trp	Pro	Gly	Val	Thr	Glu	Glu	Ser	Leu	Val	Glu	Lys	Pro	Phe
		35					40					45			
His	Val	Tyr	Asp	Glu	Glu	Phe	Tyr	Asp	Val	He	Gly	Lys	Asp	Pro	Ser
	50					55					60				
Leu	Thr	Leu	Пе	Ala	Thr	Ser	Asp	Thr	Asp	Pro	lle	Phe	His	Glu	Ala
65					70					75					80
Val	Val	Trp	Tyr	Pro	Pro	Thr	Glu	Glu	Val	Phe	Phe	Val	Gln	Asn	Ala
				85					90					95	
Gly	Ala	Pro	Ala	Ala	Gly	Thr	Gly	Leu	Asn	Lys	Ser	Ser	He	He	GIn
			100					105					110		
Lys	He	Ser	Leu	Lys	Glu	Ala	Asp	Ala	Val	Arg	Lys	Gly	Lys	Gln	Asp
		115					120					125			
Glu	Val	Lys	Val	Thr	Val	Val	Asp	Ser	Asn	Pro	Gln	Val	He	Asn	Pro
	130					135					140				
Asn	Gly	Gly	Thr	Туг	Tyr	Lys	Gly	Asn	He	lle	Phe	Ala	Gly	Glu	G1y
145					150					155					160

Gln	Gly	Asp	Asp	Val	Pro	Ser	Ala	Leu	Tyr	Leu	Met	Asn	Pro	Leu	Pro
				165					170					175	
Pro	Tyr	Asn	Thr	Thr	Thr	Leu	Leu	Asn	Asn	Tyr	Phe	Gly	Arg	Gln	Phe
			180					185					190		
Asn	Ser	Leu	Asn	Asp	Val	Gly	Ιle	Asn	Pro	Arg	Asn	Gly	Asp	Leu	Tyr
		195					200					205			
Phe	Thr	Asp	Thr	Leu	Tyr	Gly	Tyr	Leu	Gln	Asp	Phe	Arg	Pro	Val	Pro
	210					215					120				
Gly	Leu	Arg	Asn	Gln	Val	Tyr	Arg	Tyr	Asn	Phe	Asp	Thr	Gly	Ala	Val
225					230					235					240
Thr	Val	Val	Ala	Asp	Asp	Phe	Thr	Leu	Pro	Asn	Gly	Пе	Gly	Phe	Gly
				245					250					255	
Pro	Asp	Gly	Lys	Lys	Val	Tyr	Val	Thr	Asp	Thr	Gly	He	Ala	Leu	Gly
			260					265					270		
Phe	Tyr	Gly	Arg	Asn	Leu	Ser	Ser	Pro	Ala	Ser	Val	Туг	Ser	Phe	Asp
		275					280					285			
Val	Asn	Gln	Asp	Gly	Thr	Leu	Gln	Asn	Arg	Lys	Thr	Phe	Ala	Tyr	Val
	290					295					300				
Ala	Ser	Phe	lle	Pro	Asp	Gly	Val	His	Thr	Asp	Ser	Lys	Gly	Arg	Val
305					310					315					320
Tyr	Ala	Gly	Cys	Gly	Asp	Gly	Val	His	Val	Trp	Asn	Pro	Ser	Gly	Lys
				325					330					335	
Leu	Ile	Gly	Lys	He	Tyr	Thr	Gly	Thr	Val	Ala	Ala	Asn	Phe	Gln	Phe
			340					345					350		
Ala	Gly	Lys	Gly	Arg	Met	lle	He	Thr	Gly	Gln	Thr	Lys	Leu	Phe	Tyr
		355					360					365			
Val	Thr	Leu	Gly	Ala	Ser	Gly	Pro	Lys	Leu	Tyr	Asp				
	370					375					380				

【配列番号:2】

配列の長さ:1140

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:cDNA

起源

生物名:フサリウム・オキシスポルム IFO 5942

配列

GCTAAGCTTCCTTCTACGGCTCAGATTATTGATCAGAAGTCGTTCAATGTCTTGAAGGAT	60
GTGCCACCTCCTGCAGTGGCCAATGACTCTCTGGTGTTCACTTGGCCTGGTGTAACTGAG	120
GAGTCTCTTGTTGAGAAGCCTTTCCATGTCTACGATGAAGAGTTTTACGATGTAATTGGA	180
AAAGACCCCTCTTTGACCCTCATCGCAACATCGGACACCGACCCAATCTTCCATGAGGCT	240
GTCGTATGGTATCCTCCTACTGAAGAGGTGTTCTTTGTGCAGAATGCTGGCGCTCCTGCC	300
GCAGGCACTGGCTTGAACAAGTCTTCCATCATTCAGAAGATTTCCCTCAAGGAGGCCGAT	360
GCTGTTCGCAAGGGCAAGCAGGATGAGGTCAAGGTCACAGTTGTTGACTCGAACCCTCAG	420
GTTATCAACCCAAATGGTGGTACTTACTACAAGGGCAACATCATCTTCGCTGGTGAGGGC	480
CAAGGCGACGATGTTCCCTCTGCGCTGTACCTCATGAACCCTCTCCCTCC	540
ACCACCCTTCTCAACAACTACTTCGGTCGCCAGTTCAACTCCCTCAACGACGTCGGTATC	600
AACCCCAGGAACGGTGACCTGTACTTCACCGATACCCTCTACGGATATCTCCAAGACTTC	660
CGTCCTGTTCCTGGTCTGCGAAACCAGGTCTATCGTTACAACTTTGACACTGGCGCTGTC	720
ACTGTTGTCGCTGATGACTTTACCCTTCCCAACGGTATTGGCTTTTGGCCCCGACGGCAAG	780
AAGGTTTATGTCACCGACACTGGCATCGCTCTCGGTTTCTACGGTCGCAACCTCTCTTCT	840
CCCGCTTCTGTTTACTCTTTCGACGTGAACCAGGACGGTACTCTTCAGAACCGCAAGACC	900
TTTGCTTATGTTGCCTCATTCATCCCCGATGGTGTCCACACTGACTCCAAGGGTCGTGTT	960
TATGCTGGCTGCGGTGATGGTGTCCATGTCTGGAACCCCTCTGGCAAGCTCATCGGCAAG	1020
ATCTACACCGGAACGGTTGCTGCTAACTTCCAGTTTGCTGGTAAGGGAAGGATGATAATT	1080
ACTGGACAGACGAAGTTGTTCTATGTCACTCTAGGGGCTTCGGGTCCCAAGCTCTATGAT	1140

請求の範囲

- 1. 天然のD-パントラクトン加水分解酵素またはそれと実質的に同等な活性を有するか、あるいは実質的に同等の一次コンフォメーションを持つものであることを特徴とするタンパク質またはその塩。
- 該天然のDーパントラクトン加水分解酵素がフサリウム属、シリンドロカルポン属、ジベレラ属、アスペルジラス属、ペニシリウム属、リゾプス属、ボルテラ属、グリオクラディウム属、ユーロティウム属、ネクトリア属、シゾフィラム属、ミロセシウム属、ノイロスポラ属、アクリモニウム属、ツベルクリナ属、アブシジア属、スポロスリクス属、バーティシリウム属またはアルスロダーマ属に属する微生物由来のものであることを特徴とする請求項1記載のタンパク質。
 - 3. 該天然のDーパントラクトン加水分解酵素がフサリウム属由来のものであることを特徴とする請求項1記載のタンパク質。
 - 4. 配列表の配列番号:1で表されるアミノ酸配列またはそれと実質的に同等のアミノ酸配列を有するD-パントラクトン加水分解酵素またはその塩であることを特徴とする請求項1~3のいずれか一記載のタンパク質。
 - 5. 外因性DNA配列を原核生物において発現して得たものであることを特徴とする請求項1~4のいずれか一記載のタンパク質。
- 20 6. 配列表の配列番号:1で表されるアミノ酸配列またはそれと実質的に同一のアミノ酸配列を有することを特徴とする請求項1~5のいずれか一記載のタンパク質。
 - 7. 請求項1~6のいずれか一記載のタンパク質の部分ペプチドまたはその塩。

- 8. 請求項1~7のいずれか一記載のタンパク質またはその部分ペプチドをコードする塩基配列を有することを特徴とする核酸。
- 9. 配列表の配列番号:2で表される塩基配列のうちオープンリーディングフレーム部分またはそれと実質的に同等な活性を有する塩基配列を有することを特徴とする請求項8記載の核酸。
- 10. 請求項8又は9記載の核酸を含有することを特徴とするベクター。
- 11. 請求項10記載のベクターを保有することを特徴とする形質転換体。
- 12. 請求項11記載の形質転換体を増殖可能な栄養培地中で培養し、 組換えタンパク質としてDーパントラクトン加水分解酵素またはその塩 を包含する請求項1~7のいずれか一記載のタンパク質又はその部分ペ プチドを生成せしめることを特徴とするDーパントラクトン加水分解酵 素またはその塩を包含する請求項1~7のいずれか一記載のタンパク質 又はその部分ペプチドの製造方法。
- 13. 請求項1~7のいずれか一記載のタンパク質またはその部分ペプチドまたは請求項11記載の形質転換体を用いてのD、Lーパントラクトンの光学分割によるDーパントラクトンの製造法。

S
Ω
*
A
>
¥
<u>م</u>
Д
Д
>
Ω
×
_
-
Z
1
S
¥
0
<u> </u>
\equiv
-
0
A
<u>_</u>
S
به
_
¥
¥
77
Ĕ.
E

Д,
Д
Д.
>
Ω
×
_
>
Z
1
S
¥
0
ID
_
_
O
K
_
S
Д
_
×
4
=
minal
Ē

ペプチド番号

QDEVK

×

EADAVI LIGK

LYD

No.5 No.6 No.7

SL

GRMIXTGQTK

STAQIIDQK

No.8 No.9

SFNVLK

VIVVDSNPQVINPNGG

No.10

z GRVYAGXGDGVHVW

×

IYTGTVAANFQFAG

LFYVTLGASGPK

No.11 No.12 No.13 No.14 No.15

TF A Y V A S F I P D G V H T D

×

S

V Y V T D T G I A L G F Y G R * L S S P A S V Y S F D V NQ D G T L Q N R K PFHVYDEEFYDVIGK

No.16

SLTLIATS DT DPIFHEAVVWYPPTE(E)VFFV QNAGAPAAGTGL* D V P P P A V A *D S L V F T (W) P G V T E E S L V E K No.17

GNIIF AG E GQG D D V P S A L Y L M N P L P(P) Y 🖈 T T T L X ...

X:不確定残基 ★: 糖鎖の付加したN残基

X

50	ESLVEKPFH	No.15		يت		150	H		000	QFNSLNDV		250	TVVADDFTLP			C D G I L Q N K K I	350	V V A D T AI				
40	DS LVFTWPGVTE	-	8	VVWYPPTEEV FFVONAGA		140	KVTVVDSN	No.10	190	TTLLNNYFGR		240	YRYNFDTGAV	Sec	7 N N N N		340	HIDSKGRV YAGCGDGVHV WNPSGKIIGK	No.3		0	Т
30	KSFNVLKD VPPPAVANDS	No.17	08	SDTDPIFHEA		130	AVRKGKQDEV	No.1	180	LMNPLPPYNT			RPVPGLRNQV	280	IN A C A H C T		330	YAGCGDGVH		380	LGASGPKLYD	No.4
20	-1	No.9	70	KDPSLTLIAT	No.18	120	AGTGLNKSSI 10KISLKEAD	No.6 No.2	170	OGDDVPSALY		i	DTLYGYLQDF	270	NGIGFGPDGK KVYVTDTGIA	No.16	320	GVHTDSKGRV	No.11	370	TGOTKLFYVT	No.13
10	AKLPSTAQII DQ	%.o.Z	09	Y D E E F Y DV I G K D P S L T L I		110	AGTGLNKSSI	No.5	160	K G N I I F AG E G O G	No.19	210	NPRNGDLYFT	260	NGIGFGPDGK		310	FAYVASFIPD	No.14	360	OFAGKGRMII TG	No.7

<u>※</u>

Sense primer (N-terminal sequence)

က Fhe His Val Tyr Asp Glu Glu Phe Tyr Asp 5' AAAAGC TTC CAC GTC TAC GAC GAA GAA TTC TAC GAC GT Hindiii T T G G T T T T

Antisense primer (Internal sequence)

က 5' GGCTTGCTGCA GGG GTT CCA AAC GTG AAC ACC GTC

Pst I
A
C
A
C
A
C
A
T
T
T
T

<u>図</u> 33

FL-El (Sense primer)

က , 5' GTGAATTCTAAGGAGGAATAGGTGATGGCTAAGCTTCCTACGGCTCAG Start Stop SD EcoRI

FL-E2 (Antisense primer)

5' GTAAG<u>TCTAGA</u>GAAGTGAACATTTCTAATCATAGAG Xba

<u>x</u>

ссятовтобстоставосттестаебостельнатательськой высетсь в достовной высети в в TCTTGAAGGĂTGTGCCACČŤCCTGCAGTĞĞCCAATGACŤČTCTGGTGŤŤČACTTGGCĆŤĞ GCGCTCCTGCCGCAGGCACTGGCTTGAACAAGTCTTCCATCATCATCAGAAGATTTCCC AGGAGGCCGATGCTGTTCGCAAGGCCAAGCAGGATGAGGTCAAGGTCACAGTTGTTG CTTACAACACCACCACCCTTCTCAACAACTACTTCGGTCGCCAGTTCAACTCCCTC CCGACGGCĂĂGAAGGTTTĂTGTCACCGĂCĂCTGGCATCĞCTCTCGGTŤŤCTACGGTC
D G K V V T D T G I A L G F G R ACCGCAAĞACCTTTGCTTÄTGTTGCCTCÄTTCATCCCĞÄTGGTGTCCÄCACTGACTČ R K T F A Y V A S F I P D G V H T D S 970 980 990 1000 1010 10 A G C T C T A T G A T T A G A A A T G T T C A C T T C T C T A T A C T T A C A T A G A T A A T A C A T G G C A T T T G A CTTTTGĀĀĀĀAAAAAĀĀĀĀĀAAACCAĪGĞ

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/02620

A. CLASSIFICATION OF SUBJECT MATTER Int C12P17/04, C12N9/18, C12N1/21, (C12N15/63, C12R1:77) (C12N9/18 According to International Patent Classification (IPC) or to bot	C07D307/04 // (C12N15/	55, C12R1:77)						
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed to Int. C16 C12N15/55, C12N15/63 C07D307/04	oy classification symbols) , C12P17/04, C12N9/18,	C12N1/21,						
Documentation searched other than minimum documentation to the	extent that such documents are included in th	e fields searched						
Electronic data base consulted during the international search (name BIOSIS PREVIEWS, CAS ONLINE, G	· ·	erms used)						
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.						
X JP, 4-144681, A (Fuji Chem A Ltd.), May 19, 1992 (19. 05. 92) & WO, 92/06182, A & EP, 50 & US, 5372940, A	·	1-7, 13 8 - 12						
Further documents are listed in the continuation of Box C.	See patent family annex.							
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance.	the principle of theory underlying the	ention but cited to understand invention						
"E" earlier document but published on or after the international filing dat "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or othe special reason (as specified)	considered novel or cannot be considered step when the document is taken along "Y" document of particular relevance; the	lered to involve an inventive e claimed invention cannot be :						
 "O" document referring to an oral disclosure, use, exhibition or othe means "P" document published prior to the international filing date but later that the priority date claimed 	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than							
Date of the actual completion of the international search	Date of mailing of the international sear	rch report						
December 5, 1996 (05. 12. 96)	December 17, 1996	(17. 12. 96)						
Name and mailing address of the ISA/	Authorized officer							
Japanese Patent Office	Telephone No							

国際調査報告	国際出願番号 PCT/JP96/02620
A. 発明の属する分野の分類(国際特許分類(IPC)) Int. C1 ⁶ C12N15/55, C12N15/63, C12P17/04, C12N9/18, C12N (C12N15/55, C12R1:77) (C12N15/63, C12R1:77) (C12	
B. 調査を行った分野	
調査を行った最小限資料(国際特許分類(IPC)) Int. C1 ⁶ C12N15/55, C12N15/63, C12P17/04, C12N9/18, C12N	11/21, CO7D307/04
最小限資料以外の資料で調査を行った分野に含まれるもの	
国際調査で使用した電子データベース(データベースの名称、 BIOSIS PREVIEWS, CAS ONLINE, (
C. 関連すると認められる文献	
引用文献の	関連する
カテゴリー* 引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示 請求の範囲の番号
X JP, 4-144681, A (富士薬品工業材A WO, 92-06182, A&EP, 5044A A	
□ C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献
国際調査を完了した日 05.12.96	国際調査報告の発送日 17.12.96

特許庁審査官(権限のある職員)

村上騎見高 印 [

電話番号 03-3581-1101 内線 3448

4B|8827

東京都千代田区霞が関三丁目4番3号

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100