Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2018-2019

Prova scritta - 15 luglio 2019

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7
							SI NO

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

- 1. (15 punti)
 - Fornire la definizione di espressione regolare, indicando con chiarezza il linguaggio associato.
 - Fornire un'espressione regolare per il linguaggio L delle stringhe sull'alfabeto $\{a,b\}$ che contengono almeno una occorrenza del carattere a.
- 2. (15 punti)
 - (a) Definire l'operazione di intersezione di due linguaggi.
 - (b) Siano $L_1 = \{x \in \{a,b\}^* \mid x \text{ ha almeno un'occorrenza del carattere } a\}$ ed $L_2 = \{y \in \{a,b\}^* \mid y \text{ ha almeno un'occorrenza del carattere } b\}$. Definire un automa finito deterministico \mathcal{A} che riconosca $L = L_1 \cap L_2$ cioè tale che $L(\mathcal{A}) = L$.
- 3. (15 punti)

Fornire la definizione di funzione calcolabile. Definire una macchina di Turing deterministica M che calcoli la funzione f(x)=x+2, con x intero positivo. Si assuma che l'input sia la rappresentazione unaria di x e si definisca M in modo che f(x) sia ugualmente rappresentato in unario. Per esempio se x=4, l'input sarà 1111 ed f(x) sarà rappresentato da 111111. Non ci sono vincoli sulla posizione della testina all'arresto.

4. (15 punti)

Definire il concetto di riduzione mediante funzione di un linguaggio A a un linguaggio B. Per ognuna delle seguenti due affermazioni, provare che è vera o mostrare che è falsa. Occorre fornire gli enunciati dei risultati intermedi utilizzati.

- (a) Non esiste alcuna riduzione da A_{TM} a $\{ab, ba\}$.
- (b) Non esiste alcuna riduzione da $\{ab, ba\}$ al linguaggio \emptyset .
- 5. (15 punti)

Data la seguente espressione booleana in 3-CNF

$$\phi = (\overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee \overline{x}_3 \vee x_4)$$

definire il grafo G e l'intero k tali che $\langle G, k \rangle$ sia l'immagine di $\langle \Phi \rangle$ nella riduzione polinomiale di 3-SAT a CLIQUE

Prova scritta 2

6. (15 punti)

Sia G = (V, E) un grafo non orientato, con insieme V di nodi e insieme E di archi. Un sottoinsieme V' di nodi di G è un *independent set* in G se per ogni u, v in V', la coppia (u, v) non è un arco, cioè u e v non sono adiacenti.

(a) Definire il linguaggio INDEPENDENT-SET associato al seguente problema di decisione:

Sia G un grafo e k un intero positivo. G ha un independent set di cardinalità k?

(b) Dato un grafo G = (V, E), il grafo complemento di G è il grafo G' = (V, E'), dove

$$E' = \{(u, v) \in V \times V \mid u \neq v \in (u, v) \notin E\}.$$

Provare formalmente che la funzione f che associa alla stringa $\langle G, k \rangle$ la stringa $\langle G', k \rangle$, è una riduzione polinomiale da CLIQUE a INDEPENDENT-SET.

7. Dimostrare formalmente e con precisione l'affermazione seguente:

$$\forall L \in NP \quad L \leq_P \overline{L} \implies NP = coNP.$$