## Week - 5

## Tutorial

## Algebra of polynomials

Mathematics for Data Science - 1

- 1. Let p(x) and g(x) be quadratic equations having roots -1,+1 and -5,+6 respectively. Which of the following is(are) true?
  - A. The degree of polynomial p(x)g(x) is 3.
  - B. The degree of polynomial p(x)g(x) is 4
  - C.  $p(x) + g(x) = 2x^2 x 31$
  - D.  $p(x) + g(x) = 2x^2 + x 31$
  - E. p(x) g(x) = x + 31
  - F. p(x) g(x) = x + 29
- 2. If a polynomial  $3x^4 8x^3 + 16x^2 10$  is divided by another polynomial  $x^2 p$  the remainder comes out to be -8x c find the value of p and c, where p and c are the constants?
  - A. p = 1 and c = -19
  - B. p = -1 and c = 19
  - C. p = 1 and c = -19
  - D. p = -4/5 and c cannot be determined.
- 3. Which of the following polynomials (may also be monomial or constant) should be added to the polynomial  $P(x) = 2x^3 + 23x^2 + 40x$  to make it divisible by x + 9?
  - A.  $2x^2 + 9x$
  - B. -45
  - C. 5x
  - D.  $x^2 126$
- 4. Let P(x), Q(x), and R(x) be the polynomials of degree 2, 3, and 4 respectively. Which are the most suitable (not exact) representation of h(x) where h(x) is known to be a polynomial in x, and if  $h(x) = \frac{P(x)Q(x) Q(x)R(x) + R(x)P(x)}{P(x) + P(x)Q(x)}$ ?



- 5. Six flat thick iron sheets each of length, breadth, and thickness as (x + 4), (x + 3), and x respectively are melted to make solid boxes of dimensions  $\frac{x}{2}$ ,  $\frac{(2x+6)}{3}$ , and  $\frac{(x+4)}{5}$ . How many solid boxes can be made this way?
- 6. Let x be the number of years since 2000 (i.e. x = 0 denotes the year 2000). The total amount generated (in Lakhs  $\mathfrak{T}$ ) by selling a product is given by the function  $T(x) = 5x^4 + 3x^3 + x^2 + x$ . The different costs for that particular year are given in the table. What will the profit be for the particular year?

| Cost type      | Cost (in Lakhs ₹) |
|----------------|-------------------|
| Purchase       | $x^4 + x^3 + x^2$ |
| Transportation | $x^3 + x^2 + x$   |
| Miscellaneous  | $0.5x^2 + 0.5x$   |

Table T-6.1

7. A company is planning to produce a product A through three available processes. Cost of production through  $1^{st}$ ,  $2^{nd}$  and  $3^{rd}$  processes are  $M_1(x) = 100x^3 + 20x^2 + 10$ ,  $M_2(x) = 20x^4 + 10x^2 - 20$  and  $M_3(x) = x^3 + 20$  and the waste management cost for each of the processes are  $W_1(x) = 0.01x^2 - 0.008x$ ,  $W_2(x) = 0.01x^4 - 0.001x^3 + 0.001x^2$  and  $W_3(x) = 0.01x^2$  respectively, where x is the cost of raw material per kg.

- (a) What will be the effective manufacturing cost  $E_1(x)$ ,  $E_2(x)$ ,  $E_3(x)$  for each of the processes?
- (b) What will be the ratio of effective manufacturing cost of  $1^{st}$  and  $3^{rd}$  process when the cost of raw material per kg is  $\mathbf{7}$  1?
- (c) Which of the process among  $M_1$ ,  $M_2$ , and  $M_3$  should the company choose when the cost of raw material per Kg is  $\mathbf{\xi}$  10.
- 8. What will the value of c if  $y = 2x^5 4x^4 3x + c$  is the best fit using SSE for the given table ???

| y   | $\boldsymbol{x}$ |
|-----|------------------|
| 0   | 0                |
| -4  | 1                |
| -7  | 2                |
| 151 | 3                |

Table T-6.2