

Filter Designing In Microphone Phase Mismatch Calibration 多麦克风相位不一致修正中滤波器的设计

Ma R. July 13, 2017

总览

第一部分多麦克风的相位不一致性

第二部分 录音数据的处理

第三部分滤波器系数的计算方法

第四部分 讨论

总览

第一部分多麦克风的相位不一致性

第二部分录音数据的处理

第三部分滤波器系数的计算方法

第四部分 讨论

多麦克风的相位不一致性

多麦克风的相位不一致性

多麦克风的相位不一致性

总览

第一部分多麦克风的相位不一致性

第二部分录音数据的处理

第三部分滤波器系数的计算方法

第四部分 讨论

扫频信号 20Hz ~ 20kHz

麦克风冲激相应与房间冲激相应

麦克风冲激相应与房间冲激相应

麦克风冲激相应

麦克风冲激相应

补零和截取

录音数据的处理

录音数据的处理

录音数据的处理

总览

第一部分多麦克风的相位不一致性

第二部分录音数据的处理

第三部分滤波器系数的计算方法

第四部分 讨论

$A(z, \boldsymbol{a}) = z^{-N} \frac{1 + a_1 z + \dots + a_{N-1} z^{N-1} + a_N z^N}{1 + a_1 z^{-1} + \dots + a_{N-1} z^{-(N-1)} + a_N z^{-N}}$

$$\theta_e(\omega, \mathbf{a}) = \theta(\omega, \mathbf{a}) - \theta_d(\omega)$$

$$\tan 0.5\theta_e(\omega, \boldsymbol{a}) = \frac{-\sin \beta_d(\omega) + \overline{S}^T(\omega)\boldsymbol{a}}{\cos \beta_d(\omega) + \overline{C}^T(\omega)\boldsymbol{a}}$$

Step 1. Let a(0) = 0 and k = 0.

Step 2. Solve the following problem for a(k+1):

$$a(k+1) = \arg\min_{\delta, a \in R(r)} \delta$$
,

s.t.:
$$-\delta \le \frac{-\sin \beta_d(\omega) + \overline{S}^T(\omega)a}{|\cos \beta_d(\omega) + \overline{C}^T(\omega)a(k)|} \le \delta, \ \omega \in \Omega.$$

Step 3. If

$$\frac{\max_{\boldsymbol{\omega} \in \Omega} |\boldsymbol{\theta}_{e}(\boldsymbol{\omega}, \boldsymbol{a}(k+1))| - \max_{\boldsymbol{\omega} \in \Omega} |\boldsymbol{\theta}_{e}(\boldsymbol{\omega}, \boldsymbol{a}(k))|}{\max_{\boldsymbol{\omega} \in \Omega} |\boldsymbol{\theta}_{e}(\boldsymbol{\omega}, \boldsymbol{a}(k))|} > \nu,$$

let k = k + 1 and go back to Step 2.

```
1. freqp = (0:320)*pi/400;
```

- 2. % frequency points
- 3. phred = -7.0615*freqp;
- 4. % phase response desired
- 5. coeff = eqrpgdr(freqp, phred, 16);
- 6. % equiripple grpdelay error designing

Mean = 7.5142 std = 7.0615

总览

第一部分多麦克风的相位不一致性

第二部分录音数据的处理

第三部分滤波器系数的计算方法

第四部分 讨论