

PORTAS LÓGICAS

Tabela Verdade Obtida de Expressão Booleana. Expressão Booleana Obtida de Circuito Lógico. Circuito Lógico Obtida de Expressão Booleana.

Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1 1
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A ◆ S=Ā	S=Ā S=A' S= ¬ A	A S=Ā 0 1 1 0
NE (NAND)	$A \longrightarrow S = \overline{A.B}$	S= A.B S=(A.B)' S= ¬(A.B)	A B S=AB 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ¬(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 1 0 1 1 0
XOR	$A \longrightarrow B \longrightarrow S = A \oplus B$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

Revisão

BLOCOS LÓGICOS BÁSICOS							
PORTA	Símbolo Usual	oolo Usual Tabela da Verdade		Expressão			
E AND	A———S	A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S=A.B			

BLOCOS LÓGICOS BÁSICOS							
PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão			
OU OR	$A \longrightarrow S$	A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função E: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B			

BLOCOS LÓGICOS BÁSICOS						
PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão		
NÃO NOT	A——>S	A S 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	$S=\overline{A}$		

BLOCOS LÓGICOS BÁSICOS						
PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão		
NE NAND	AS	A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(A.B)		

BLOCOS LÓGICOS BÁSICOS						
PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão		
NOU NOR	A———S	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)		

BLOCOS LÓGICOS BÁSICOS						
PORTA	Símbolo Usual Tabela da Verdade		Função Lógica	Expressão		
OU Exclusivo	A————S	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: Assume 1 quando as variáveis assumirem valores diferentes entre si.	S=A⊕B S=Ā.B+A.Ē		

BLOCOS LÓGICOS BÁSICOS							
PORTA	Símbolo Usual	nbolo Usual Tabela da Verdade		Expressão			
Coincidência	A———S	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: Assume 1 quando houver coincidência entre os valores das variáveis.	S=A⊙B S=Ā.Ē+ A.B			

TABELAS DA VERDADE OBTIDAS DE EXPRESSÕES BOOLEANAS

Uma maneira de se fazer o estudo de uma função booleana é a utilização da tabela da verdade.

Para extrair a tabela da verdade de uma expressão deve-se seguir alguns procedimentos:

PROCEDIMENTOS

- 1°) Montar o quadro de possibilidades;
- 2°) Montar colunas para os vários membros da equação;
- 3°) Preencher estas colunas com os seus resultados;
- 4°) Montar uma coluna para o resultado final e
- 5°) Preencher esta coluna com os resultados finais

PARA EXEMPLIFICAR ESTE PROCESSO, UTILIZA-SE A EXPRESSÃO:

$$S = A.\bar{B}.C + A.\bar{D} + \bar{A}.B.D$$

A expressão contém 4 variáveis: A, B, C e D, logo, existem 2⁴=16 possibilidades de combinação de entrada.

Desta forma, monta-se o quadro de possibilidades com 4 variáveis de entrada, três colunas auxiliares, sendo uma para cada membro da expressão, e uma coluna para o resultado final.

V	ariáveis	de entra	da	1º membro	2º membro	3º membro	Resultado
A	В	C	D	$A.\bar{B}.C$	$A.ar{D}$	Ā.B.D	Final
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	1	0	1
1	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	1	0	1
1	1	0	1	0	0	0	0
1	1	1	0	0	1	0	1
1	1	1	1	0	0	0	0

EXPRESSÕES BOOLEANAS OBTIDAS DE CIRCUITOS LÓGICOS

10/06/2020

CIRCUITO LÓGICO

Todo o circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer.

Para exemplificar, será obtida a expressão que o circuito abaixo executa:

Como ficaria a expressão booleana?

CIRCUITO LÓGICO (AND / E)

Analisa-se a porta lógica, observando a expressão booleana que se realiza, conforme ilustra o exemplo 1:

O nº de saídas possíveis. Resposta 2⁶= **64**

CIRCUITO LÓGICO (OR/ OU)

Analisa-se a porta lógica, observando a expressão booleana que se realiza, conforme ilustra o exemplo2:

O nº de saídas possíveis. Resposta 2⁴= **16**

CIRCUITO LÓGICO (OR/ OU)

Representação Gráfica do circuito lógico

Expressão Booleana

$$Y = A + B + C + D$$

O nº de saídas possíveis Resposta 2⁴= 16

Função Lógica

Assume "0" quando todas as variáveis forem "0" ou "1" nos outros casos.

Α	В	С	D	A + B + C + D = "X"
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

EXPRESSÕES BOOLEANAS OBTIDAS DE CIRCUITOS LÓGICOS — (REVISANDO)

Todo o circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas.

Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer.

Para exemplificar, será obtida a expressão que o circuito da Fig. 2.17 a seguir executa.

INTERLIGAÇÃO DAS PORTAS LÓGICAS BÁSICAS

Figura 2.17 – Circuito lógico.

Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo da Fig. 2.17

O exemplo da Fig. 2.18 visa evidenciar um símbolo de negação muito utilizado e que muitas vezes é esquecido e não considerado.

Ele pode ser utilizado na saída de uma porta lógica AND, como na entrada da porta NÃO E abaixo (variável C barra), e na entrada/saída de outras portas.

Figura 2.18 – Circuito lógico.

EXERCÍCIOS: OBTENHA A EXPRESSÃO BOOLEANA QUE É EXECUTADA PELOS CIRCUITOS LÓGICOS E SUA TABELA VERDADE...

RESPOSTAS EXERCÍCIOS — 10/06/2020

1 PORTA LÓGICA "AND/E" E 1 NOT (INVERSORA)

$$X = \overline{(A.B.C)}$$

Α	В	С	A . B. C	X = (A.B.C)'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

FUNÇÃO AND (E) -> ASSUME 1 QUANDO TODAS AS VARIÁVEIS FOREM 1 E ASSUME 0 EM OUTROS CASOS

1 PORTA NOT (INVERSORA) E 1 PORTA "AND/E"

$$Y = (\overline{A} \cdot B \cdot C)$$

A	A'	В	С	$Y = (A)^r \cdot B \cdot C$
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0

FUNÇÃO AND (E) -> ASSUME 1 QUANDO TODAS AS VARIÁVEIS FOREM 1 E ASSUME 0 EM OUTROS CASOS

4 FUNÇÕES NOT (INVERSORA)

Z	=	A

Α	A´	A´	A	A	Α΄΄΄
0	1	0	1	0	0
1	0	1	0	1	1

1 FUNÇÃO OR E 1 NOT (INVERSORA)

$$W = \overline{A + B + C}$$

A	В	С	A + B + C	$W = (A + B + C)^{\prime}$
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

FUNÇÃO OR (OU) -> ASSUME 0 QUANDO TODAS AS VARIÁVEIS FOREM 0 E ASSUME 1 NOUTROS CASOS

1 FUNÇÃO NOR E 1 NOT (INVERSORA)

$$V = \overline{A + B + C}$$

A	В	С	$(A + B + C)^{\prime}$	$W = (A + B + C)^{\prime\prime}$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

https://app.schoology.com/course/2410771679/materials/link/view/2555597489

No: Schoology

EXERCÍCIOS4: OBTENHA A EXPRESSÃO BOOLEANA QUE É EXECUTADA PELOS CIRCUITOS LÓGICOS E SUA TABELA VERDADE...

EXEMPLO: CIRCUITO LÓGICO (AND / E)

Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo:

$$X = (A . B) . C$$

CIRCUITO LÓGICO (AND / E)

Para facilitar, analisa-se cada porta lógica separadamente, observando a expressão booleana que cada uma realiza, conforme ilustra o exemplo:

Representação Gráfica do circuito lógico

Expressão Booleana

$$X = (A . B) . C$$

TABELA VERDADE

Α	В	С	(A . B)	(A.B).C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Função Lógica

Assume 1 quando todas as variáveis forem "1" e "0" nos outros casos.

EXERCÍCIO5:
OBTENHA A EXPRESSÃO
BOOLEANA QUE É
EXECUTADA PELOS
CIRCUITOS LÓGICOS,
CALCULAR O Nº DE
SAÍDAS POSSÍVEIS E SUA
TABELA VERDADE...

CIRCUITOS LÓGICOS OBTIDAS DE EXPRESSÕES BOOLEANAS

É possível desenhar um circuito lógico que executa uma função booleana qualquer, ou seja, pode-se desenhar um circuito a partir de sua expressão característica.

O método para a resolução consiste em se identificar as portas lógicas na expressão e desenhá-las com as respectivas ligações, a partir das variáveis de entrada. Deve-se sempre respeitar a hierarquia das funções da aritmética elementar, ou seja, a solução inicia-se primeiramente pelos parênteses.

EXEMPLO:

Obter o circuito que executa a expressão S=(A+B).C.(B+D)

Para o primeiro parêntese tem-se uma soma booleana A+B, logo o circuito que o executa será uma porta OU.

Para o segundo, tem-se outra soma booleana B+D, logo o circuito será uma porta OU.

Posteriormente tem-se a multiplicação booleana de dois parênteses juntamente com a variável C, sendo o circuito que executa esta multiplicação uma porta E.

Para finalizar, unem-se as respectivas ligações obtendo o circuito completo.

Resumindo

PRIORIDADES DE OPERADORES ARITMÉTICOS

Mais Alta "x"

Mais Baixa "+"

Parênteses garantem maior prioridade

Ex: 2x(4+2) o resultado será 12

Prioridades de operadores lógicos

Mais Alta: NOT

Média: AND

Baixa: OR, XOR

Na expressão (x=0) OR (x>=2) AND (x<=5), será resolvido primeiro o AND.

Assim, a expressão equivale a (x=0) OR [(x>=2) AND (x<=5)]

Exercício – 6°

Desenhe o circuito que execute a seguinte expressão:

a)
$$S=[(\overline{A} + B) + (\overline{C} + D)] \cdot \overline{D}$$

RESPOSTA "EXERCÍCIO-6º"

