Bài 1: Vectơ ngẫu nhiên rời rạc hai chiều

1) Bảng phân bố xác suất của vectơ ngẫu nhiên rời rạc hai chiều

Bài 1: Vectơ ngẫu nhiên rời rạc hai chiều

- 1) Bảng phân bố xác suất của vectơ ngẫu nhiên rời rạc hai chiều
- ullet Vectơ ngẫu nhiên hai chiều (X,Y) được gọi là rời rạc nếu tất cả các biến ngẫu nhiên thành phần X,Y là rời rạc.

Bài 1: Vectơ ngẫu nhiên rời rạc hai chiều

- 1) Bảng phân bố xác suất của vectơ ngẫu nhiên rời rạc hai chiều
- ullet Vectơ ngẫu nhiên hai chiều (X,Y) được gọi là rời rạc nếu tất cả các biến ngẫu nhiên thành phần X,Y là rời rạc.
- \bullet Bảng phân bố xác suất của vectơ ngẫu nhiên rời rạc hai chiều (X,Y) (hay còn gọi là bảng phân bố xác suất đồng thời của hai biến ngẫu nhiên $X,\,Y)$ là

X Y	y_1	y_2	• • •	y_j	• • •	y_m
x_1	$p(x_1,y_1)$	$p(x_1, y_2)$	• • •	$p(x_1, y_j)$	• • •	$p(x_1, y_m)$
x_2	$p(x_2,y_1)$	$p(x_2,y_2)$	• • •	$p(x_2,y_j)$	• • •	$p(x_2,y_m)$
:	• • •	• • •	• • •	• • •	• • •	• • •
x_i	$p(x_i, y_1)$	$p(x_i, y_2)$	• • •	$p(x_i, y_j)$	• • •	$p(x_i,y_m)$
:	• • •	• • •	• • •	• • •	• • •	• • •
x_n	$p(x_n,y_1)$	$p(x_n, y_2)$	• • •	$p(x_n,y_j)$	• • •	$p(x_n,y_m)$

• x_1, x_2, \ldots, x_n là các giá trị của biến ngẫu nhiên X,

- $\bullet x_1, x_2, \ldots, x_n$ là các giá trị của biến ngẫu nhiên X,
- y_1, y_2, \ldots, y_m là các giá trị của biến ngẫu nhiên Y,

- x_1, x_2, \ldots, x_n là các giá trị của biến ngẫu nhiên X,
- y_1, y_2, \ldots, y_m là các giá trị của biến ngẫu nhiên Y,
- $p(x_i, y_j) = \mathbb{P}(X = x_i, Y = y_j)$ là xác suất để X bằng x_i và Y bằng y_j .

- x_1, x_2, \ldots, x_n là các giá trị của biến ngẫu nhiên X,
- $\bullet y_1, y_2, \ldots, y_m$ là các giá trị của biến ngẫu nhiên Y,
- $p(x_i, y_j) = \mathbb{P}(X = x_i, Y = y_j)$ là xác suất để X bằng x_i và Y bằng y_j .
- Ta có

$$\begin{cases} 0 \le p(x_i, y_j) \le 1, & i = 1, 2, \dots, n, j = 1, 2, \dots, m, \\ \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = 1. \end{cases}$$

2) Bảng phân bố xác suất của X, Y

2) Bảng phân bố xác suất của X, Y

Biến ngẫu nhiên X có bảng phân bố xác suất

X	$ x_1 $	$ x_2 $	• • •	x_n	
\mathbb{P}	$\boxed{\mathbb{P}(X=x_1)}$	$\mathbb{P}(X=x_2)$	• • •	$\mathbb{P}(X=x_n)$,

trong đó $\mathbb{P}(X = x_i) = p(x_i, y_1) + p(x_i, y_2) + \cdots + p(x_i, y_m).$

2) Bảng phân bố xác suất của X, Y

Biến ngẫu nhiên X có bảng phân bố xác suất

X	x_1	$ x_2 $	• • •	x_n
\mathbb{P}	$\boxed{\mathbb{P}(X=x_1)}$	$\mathbb{P}(X=x_2)$	• • •	$\mathbb{P}(X=x_n)$

trong đó $\mathbb{P}(X = x_i) = p(x_i, y_1) + p(x_i, y_2) + \cdots + p(x_i, y_m).$

Tương tự biến ngẫu nhiên Y có bảng phân bố xác suất

Y	y_1	y_2	• • •	y_m	
\mathbb{P}	$\mathbb{P}(Y=y_1)$	$\mathbb{P}(Y=y_2)$		$\mathbb{P}(Y=y_m)$	

trong đó
$$\mathbb{P}(Y = y_j) = p(x_1, y_j) + p(x_2, y_j) + \cdots + p(x_n, y_j).$$

• Nhắc lại rằng hai biến ngẫu nhiên rời rạc X và Y độc lập khi và chỉ khi $\mathbb{P}(X=a,Y=b)=\mathbb{P}(X=a)\mathbb{P}(Y=b)$ với a,b là hai giá trị bất kỳ của X,Y.

• Nhắc lại rằng hai biến ngẫu nhiên rời rạc X và Y độc lập khi và chỉ khi $\mathbb{P}(X=a,Y=b)=\mathbb{P}(X=a)\mathbb{P}(Y=b)$ với a,b là hai giá trị bất kỳ của X,Y.

Trong trường hợp này thì hai biến ngẫu nhiên X và Y độc lập khi và chỉ khi

$$\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i)\mathbb{P}(Y = y_j)$$

với mọi $i = 1, 2, \dots, n, j = 1, 2, \dots, m$.

• Nhắc lại rằng hai biến ngẫu nhiên rời rạc X và Y độc lập khi và chỉ khi $\mathbb{P}(X=a,Y=b)=\mathbb{P}(X=a)\mathbb{P}(Y=b)$ với a,b là hai giá trị bất kỳ của X,Y.

Trong trường hợp này thì hai biến ngẫu nhiên X và Y độc lập khi và chỉ khi

$$\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i)\mathbb{P}(Y = y_j)$$

với mọi i = 1, 2, ..., n, j = 1, 2, ..., m.

Do đó nếu tồn tại i, j nào đó mà

 $\mathbb{P}(X = x_i, Y = y_j) \neq \mathbb{P}(X = x_i)\mathbb{P}(Y = y_j)$ thì hai biến ngẫu nhiên X, Y không độc lập.

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

trong đó
$$\mathbb{E}(XY) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i y_j p(x_i, y_j).$$

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

trong đó
$$\mathbb{E}(XY) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i y_j p(x_i, y_j).$$

ullet Hệ số tương quan giữa hai biến ngẫu nhiên X,Y

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$\mathrm{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

trong đó
$$\mathbb{E}(XY) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i y_j p(x_i, y_j).$$

ullet Hệ số tương quan giữa hai biến ngẫu nhiên X,Y

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}(X)}\sqrt{\mathbb{D}(Y)}}$$

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$\mathrm{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

trong đó
$$\mathbb{E}(XY) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i y_j p(x_i, y_j).$$

ullet Hệ số tương quan giữa hai biến ngẫu nhiên X,Y

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}(X)}\sqrt{\mathbb{D}(Y)}}$$

khi $\mathbb{D}(X) > 0$ và $\mathbb{D}(Y) > 0$.

 \bullet Hiệp phương sai (hay còn gọi là Covariance) của hai biến ngẫu nhiên X,Y

$$\operatorname{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

trong đó
$$\mathbb{E}(XY) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i y_j p(x_i, y_j).$$

ullet Hệ số tương quan giữa hai biến ngẫu nhiên X,Y

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}(X)}\sqrt{\mathbb{D}(Y)}}$$

khi $\mathbb{D}(X) > 0$ và $\mathbb{D}(Y) > 0$.

Nếu $\mathbb{D}(X) = 0$ hoặc $\mathbb{D}(Y) = 0$ thì ta quy ước $\rho(X, Y) = 0$.

• Với mọi $a, b \in \mathbb{R}$, ta có

• Với mọi $a, b \in \mathbb{R}$, ta có

$$\mathbb{D}(aX + bY) = a^2 \mathbb{D}(X) + b^2 \mathbb{D}(Y) + 2ab \operatorname{cov}(X, Y).$$

ullet Bảng phân bố xác suất của X với điều kiện $(Y=y_j)$

ullet Bảng phân bố xác suất của X với điều kiện $(Y=y_j)$

$X Y=y_j$	x_1		$ x_n $	
\mathbb{P}	$\mathbb{P}(X = x_1 Y = y_j)$	• • •	$ \mathbb{P}(X=x_n Y=y_j) $,

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_i)}.$$

ullet Bảng phân bố xác suất của X với điều kiện $(Y=y_j)$

$X Y=y_j$	$ x_1 $	• • •	$ x_n $	
\mathbb{P}	$\boxed{\mathbb{P}(X = x_1 Y = y_j)}$	• • •	$\boxed{\mathbb{P}(X = x_n Y = y_j)}$,

trong đó

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)}.$$

ullet Kỳ vọng của X với điều kiện $(Y=y_j)$

ullet Bảng phân bố xác suất của X với điều kiện $(Y=y_j)$

$X Y=y_j$	$ x_1 $	• • •	$ x_n $	
\mathbb{P}	$\boxed{\mathbb{P}(X = x_1 Y = y_j)}$	• • •	$\boxed{\mathbb{P}(X = x_n Y = y_j)}$,

trong đó

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)}.$$

ullet Kỳ vọng của X với điều kiện $(Y=y_j)$

$$\mathbb{E}[X|Y = y_j] = \sum_{i=1}^{n} x_i \mathbb{P}(X = x_i|Y = y_j).$$

$Y X=x_i$	y_1	• • •	y_m	
\mathbb{P}	$\mathbb{P}(Y = y_1 X = x_i)$		$\mathbb{P}(Y = y_m X = x_i)$,

$Y X=x_i$	y_1	 y_m
\mathbb{P}	$\boxed{\mathbb{P}(Y=y_1 X=x_i)}$	 $\boxed{\mathbb{P}(Y = y_m X = x_i)}$

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(X = x_i)}.$$

$Y X=x_i$	y_1	• • •	y_m
\mathbb{P}	$\boxed{\mathbb{P}(Y=y_1 X=x_i)}$	• • •	$P(Y = y_m X = x_i)$

trong đó

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(X = x_i)}.$$

ullet Kỳ vọng của Y với điều kiện $(X=x_i)$

$Y X=x_i$	y_1	• • •	y_m	
\mathbb{P}	$\boxed{\mathbb{P}(Y=y_1 X=x_i)}$	• • •	$P(Y = y_m X = x_i)$,

trong đó

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(X = x_i)}.$$

ullet Kỳ vọng của Y với điều kiện $(X=x_i)$

$$\mathbb{E}[Y|X=x_i] = \sum_{j=1}^{\infty} y_j \mathbb{P}(Y=y_j|X=x_i).$$

Ví dụ 1

Cho X,Y là hai biến ngẫu nhiên rời rạc có bảng phân bố xác suất đồng thời

	X	0	2	3	5		
	-2	0, 1	0, 15	0, 1	0	•	
	1	5k	3k	0,05	0,07		
	4	0	2k	0	0, 13		
a) Tìm k và lập bản	ng phâr	n bố	xác s	uất ci	la các	z biến ngẫu nhiên X	-

và Y. Hai biến ngẫu nhiên X và Y có độc lập không?

b) Tính phương sai $\mathbb{D}(2X - 3Y)$.
c) Tìm bảng phân bấ vác quất của V với điều kiến Y - 1 tính

c) Tìm bảng phân bố xác suất của Y với điều kiện X=1, tính $\mathbb{E}[Y|X=1]$.

Lời giải

a) Ta có $k \ge 0$ và

$$0, 1 + 0, 15 + 0, 1 + 0 + 5k + 3k + 0, 05 + 0, 07 + 0 + 2k + 0 + 0, 13 = 1.$$

Do đó

$$10k = 0, 4 \iff k = 0, 04.$$

Ta có

$$\mathbb{P}(X = -2) = 0, 1 + 0, 15 + 0, 1 + 0 = 0, 35,$$

$$\mathbb{P}(X = -2) = 0, 1 + 0, 15 + 0, 1 + 0 = 0, 35,$$
$$\mathbb{P}(X = 1) = 5k + 3k + 0, 05 + 0, 07 = 0, 44,$$

$$\mathbb{P}(X = -2) = 0, 1 + 0, 15 + 0, 1 + 0 = 0, 35,$$

$$\mathbb{P}(X = 1) = 5k + 3k + 0, 05 + 0, 07 = 0, 44,$$

$$\mathbb{P}(X = 4) = 0 + 2k + 0 + 0, 13 = 0, 21.$$

$$\mathbb{P}(X = -2) = 0, 1 + 0, 15 + 0, 1 + 0 = 0, 35,$$

$$\mathbb{P}(X = 1) = 5k + 3k + 0, 05 + 0, 07 = 0, 44,$$

$$\mathbb{P}(X = 4) = 0 + 2k + 0 + 0, 13 = 0, 21.$$

Do đó bảng phân bố xác suất của X

X	-2	1	4	
\mathbb{P}	0,35	0,44	0,21	

$$\mathbb{P}(Y=0) = 0, 1 + 5k + 0 = 0, 3,$$

$$\mathbb{P}(Y = 0) = 0, 1 + 5k + 0 = 0, 3,$$

 $\mathbb{P}(Y = 2) = 0, 15 + 3k + 2k = 0, 35,$

$$\mathbb{P}(Y = 0) = 0, 1 + 5k + 0 = 0, 3,$$

 $\mathbb{P}(Y = 2) = 0, 15 + 3k + 2k = 0, 35,$
 $\mathbb{P}(Y = 3) = 0, 1 + 0, 05 + 0 = 0, 15,$

$$\mathbb{P}(Y = 0) = 0, 1 + 5k + 0 = 0, 3,$$

$$\mathbb{P}(Y = 2) = 0, 15 + 3k + 2k = 0, 35,$$

$$\mathbb{P}(Y = 3) = 0, 1 + 0, 05 + 0 = 0, 15,$$

$$\mathbb{P}(Y = 5) = 0 + 0, 07 + 0, 13 = 0, 2.$$

$$\mathbb{P}(Y = 0) = 0, 1 + 5k + 0 = 0, 3,$$

$$\mathbb{P}(Y = 2) = 0, 15 + 3k + 2k = 0, 35,$$

$$\mathbb{P}(Y = 3) = 0, 1 + 0, 05 + 0 = 0, 15,$$

$$\mathbb{P}(Y = 5) = 0 + 0, 07 + 0, 13 = 0, 2.$$

Vậy Y có bảng phân bố xác suất

Y	0	2	3	5
\mathbb{P}	0,3	0,35	0, 15	0, 2

$$\mathbb{P}(X = -2, Y = 0) = 0, 1,$$

$$\mathbb{P}(X = -2, Y = 0) = 0, 1,$$
$$\mathbb{P}(X = -2) = 0, 35,$$

$$\mathbb{P}(X = -2, Y = 0) = 0, 1,$$

$$\mathbb{P}(X = -2) = 0, 35,$$

$$\mathbb{P}(Y = 0) = 0, 3.$$

$$\mathbb{P}(X = -2, Y = 0) = 0, 1,$$

$$\mathbb{P}(X = -2) = 0, 35,$$

$$\mathbb{P}(Y = 0) = 0, 3.$$

Do đó

$$\mathbb{P}(X = -2, Y = 0) \neq \mathbb{P}(X = -2)\mathbb{P}(Y = 0).$$

$$\mathbb{P}(X = -2, Y = 0) = 0, 1,$$

$$\mathbb{P}(X = -2) = 0, 35,$$

$$\mathbb{P}(Y = 0) = 0, 3.$$

Do đó

$$\mathbb{P}(X = -2, Y = 0) \neq \mathbb{P}(X = -2)\mathbb{P}(Y = 0).$$

Vậy hai biến ngẫu nhiên X và Y không độc lập.

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X^2) = (-2)^2 \cdot 0,35 + 1^2 \cdot 0,44 + 4^2 \cdot 0,21$$

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X^2) = (-2)^2 \cdot 0,35 + 1^2 \cdot 0,44 + 4^2 \cdot 0,21$$

= 5, 2.

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X^2) = (-2)^2 \cdot 0,35 + 1^2 \cdot 0,44 + 4^2 \cdot 0,21$$

= 5, 2.

Phương sai của X

$$\mathbb{D}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X^2) = (-2)^2 \cdot 0,35 + 1^2 \cdot 0,44 + 4^2 \cdot 0,21$$

= 5, 2.

Phương sai của X

$$\mathbb{D}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

= 5, 2 - 0, 58²

$$\mathbb{E}(X) = (-2) \cdot 0,35 + 1 \cdot 0,44 + 4 \cdot 0,21$$
$$= 0,58.$$

$$\mathbb{E}(X^2) = (-2)^2 \cdot 0,35 + 1^2 \cdot 0,44 + 4^2 \cdot 0,21$$

= 5, 2.

Phương sai của X

$$\mathbb{D}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$
= 5, 2 - 0, 58²
= 4, 8636.

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

= 2, 15.

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$
$$= 2, 15.$$

$$\mathbb{E}(Y^2) = 0^2 \cdot 0, 3 + 2^2 \cdot 0, 35 + 3^2 \cdot 0, 15 + 5^2 \cdot 0, 2$$

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

= 2, 15.

$$\mathbb{E}(Y^2) = 0^2 \cdot 0, 3 + 2^2 \cdot 0, 35 + 3^2 \cdot 0, 15 + 5^2 \cdot 0, 2$$

= 7,75.

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

= 2, 15.

$$\mathbb{E}(Y^2) = 0^2 \cdot 0, 3 + 2^2 \cdot 0, 35 + 3^2 \cdot 0, 15 + 5^2 \cdot 0, 2$$

= 7,75.

Phương sai của Y

$$\mathbb{D}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2$$

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

= 2, 15.

$$\mathbb{E}(Y^2) = 0^2 \cdot 0, 3 + 2^2 \cdot 0, 35 + 3^2 \cdot 0, 15 + 5^2 \cdot 0, 2$$

= 7,75.

Phương sai của Y

$$\mathbb{D}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2$$

= 7,75 - 2,15²

$$\mathbb{E}(Y) = 0 \cdot 0, 3 + 2 \cdot 0, 35 + 3 \cdot 0, 15 + 5 \cdot 0, 2$$

= 2, 15.

$$\mathbb{E}(Y^2) = 0^2 \cdot 0, 3 + 2^2 \cdot 0, 35 + 3^2 \cdot 0, 15 + 5^2 \cdot 0, 2$$

= 7,75.

Phương sai của Y

$$\mathbb{D}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2$$
= 7,75 - 2,15²
= 3,1275.

$$\mathbb{E}(XY) = (-2) \cdot 0 \cdot 0, 1 + (-2) \cdot 2 \cdot 0, 15 + (-2) \cdot 3 \cdot 0, 1$$

$$+ (-2) \cdot 5 \cdot 0 + 1 \cdot 0 \cdot 5k + 1 \cdot 2 \cdot 3k$$

$$+ 1 \cdot 3 \cdot 0, 05 + 1 \cdot 5 \cdot 0, 07 + 4 \cdot 0 \cdot 0$$

$$+ 4 \cdot 2 \cdot 2k + 4 \cdot 3 \cdot 0 + 4 \cdot 5 \cdot 0, 13$$

$$\mathbb{E}(XY) = (-2) \cdot 0 \cdot 0, 1 + (-2) \cdot 2 \cdot 0, 15 + (-2) \cdot 3 \cdot 0, 1$$

$$+ (-2) \cdot 5 \cdot 0 + 1 \cdot 0 \cdot 5k + 1 \cdot 2 \cdot 3k$$

$$+ 1 \cdot 3 \cdot 0, 05 + 1 \cdot 5 \cdot 0, 07 + 4 \cdot 0 \cdot 0$$

$$+ 4 \cdot 2 \cdot 2k + 4 \cdot 3 \cdot 0 + 4 \cdot 5 \cdot 0, 13$$

$$= 0 - 0, 6 - 0, 6 + 0 + 0 + 6k$$

$$+ 0, 15 + 0, 35 + 0 + 16k + 0 + 2, 6$$

$$\mathbb{E}(XY) = (-2) \cdot 0 \cdot 0, 1 + (-2) \cdot 2 \cdot 0, 15 + (-2) \cdot 3 \cdot 0, 1$$

$$+ (-2) \cdot 5 \cdot 0 + 1 \cdot 0 \cdot 5k + 1 \cdot 2 \cdot 3k$$

$$+ 1 \cdot 3 \cdot 0, 05 + 1 \cdot 5 \cdot 0, 07 + 4 \cdot 0 \cdot 0$$

$$+ 4 \cdot 2 \cdot 2k + 4 \cdot 3 \cdot 0 + 4 \cdot 5 \cdot 0, 13$$

$$= 0 - 0, 6 - 0, 6 + 0 + 0 + 6k$$

$$+ 0, 15 + 0, 35 + 0 + 16k + 0 + 2, 6$$

$$= 22k + 1, 9$$

$$\mathbb{E}(XY) = (-2) \cdot 0 \cdot 0, 1 + (-2) \cdot 2 \cdot 0, 15 + (-2) \cdot 3 \cdot 0, 1$$

$$+ (-2) \cdot 5 \cdot 0 + 1 \cdot 0 \cdot 5k + 1 \cdot 2 \cdot 3k$$

$$+ 1 \cdot 3 \cdot 0, 05 + 1 \cdot 5 \cdot 0, 07 + 4 \cdot 0 \cdot 0$$

$$+ 4 \cdot 2 \cdot 2k + 4 \cdot 3 \cdot 0 + 4 \cdot 5 \cdot 0, 13$$

$$= 0 - 0, 6 - 0, 6 + 0 + 0 + 6k$$

$$+ 0, 15 + 0, 35 + 0 + 16k + 0 + 2, 6$$

$$= 22k + 1, 9$$

$$= 22 \cdot 0, 04 + 1, 9$$

$$\mathbb{E}(XY) = (-2) \cdot 0 \cdot 0, 1 + (-2) \cdot 2 \cdot 0, 15 + (-2) \cdot 3 \cdot 0, 1$$

$$+ (-2) \cdot 5 \cdot 0 + 1 \cdot 0 \cdot 5k + 1 \cdot 2 \cdot 3k$$

$$+ 1 \cdot 3 \cdot 0, 05 + 1 \cdot 5 \cdot 0, 07 + 4 \cdot 0 \cdot 0$$

$$+ 4 \cdot 2 \cdot 2k + 4 \cdot 3 \cdot 0 + 4 \cdot 5 \cdot 0, 13$$

$$= 0 - 0, 6 - 0, 6 + 0 + 0 + 6k$$

$$+ 0, 15 + 0, 35 + 0 + 16k + 0 + 2, 6$$

$$= 22k + 1, 9$$

$$= 22 \cdot 0, 04 + 1, 9$$

$$= 2, 78.$$

$$\operatorname{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$
$$= 2,78 - 0,58 \cdot 2,15$$

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

= 2, 78 - 0, 58 \cdot 2, 15
= 1, 533.

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

= 2, 78 - 0, 58 \cdot 2, 15
= 1, 533.

Do đó

$$\mathbb{D}(2X - 3Y) = 4\mathbb{D}(X) + 9\mathbb{D}(Y) - 12\operatorname{cov}(X, Y)$$

Hiệp phương sai

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

= 2, 78 - 0, 58 \cdot 2, 15
= 1, 533.

$$\mathbb{D}(2X - 3Y) = 4\mathbb{D}(X) + 9\mathbb{D}(Y) - 12\operatorname{cov}(X, Y)$$
$$= 4 \cdot 4,8636 + 9 \cdot 3,1275 - 12 \cdot 1,533$$

Hiệp phương sai

$$cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

= 2, 78 - 0, 58 \cdot 2, 15
= 1, 533.

$$\mathbb{D}(2X - 3Y) = 4\mathbb{D}(X) + 9\mathbb{D}(Y) - 12\operatorname{cov}(X, Y)$$
$$= 4 \cdot 4,8636 + 9 \cdot 3,1275 - 12 \cdot 1,533$$
$$= 29,2059.$$

c) Ta có

$$\mathbb{P}(Y = 0 | X = 1) = \frac{\mathbb{P}(X = 1, Y = 0)}{\mathbb{P}(X = 1)}$$

c) Ta có

$$\mathbb{P}(Y = 0 | X = 1) = \frac{\mathbb{P}(X = 1, Y = 0)}{\mathbb{P}(X = 1)}$$
$$= \frac{5k}{0,44}$$

$$\mathbb{P}(Y = 0|X = 1) = \frac{\mathbb{P}(X = 1, Y = 0)}{\mathbb{P}(X = 1)}$$

$$= \frac{5k}{0,44}$$

$$= \frac{0,2}{0,44}$$

$$\mathbb{P}(Y = 0|X = 1) = \frac{\mathbb{P}(X = 1, Y = 0)}{\mathbb{P}(X = 1)}$$

$$= \frac{5k}{0,44}$$

$$= \frac{0,2}{0,44}$$

$$= \frac{20}{44},$$

$$\mathbb{P}(Y = 2 | X = 1) = \frac{\mathbb{P}(X = 1, Y = 2)}{\mathbb{P}(X = 1)}$$

$$\mathbb{P}(Y = 2|X = 1) = \frac{\mathbb{P}(X = 1, Y = 2)}{\mathbb{P}(X = 1)}$$
$$= \frac{3k}{0,44}$$

$$\mathbb{P}(Y = 2|X = 1) = \frac{\mathbb{P}(X = 1, Y = 2)}{\mathbb{P}(X = 1)}$$

$$= \frac{3k}{0,44}$$

$$= \frac{0,12}{0,44}$$

$$\mathbb{P}(Y = 2|X = 1) = \frac{\mathbb{P}(X = 1, Y = 2)}{\mathbb{P}(X = 1)}$$

$$= \frac{3k}{0,44}$$

$$= \frac{0,12}{0,44}$$

$$= \frac{12}{44},$$

$$\mathbb{P}(Y = 3 | X = 1) = \frac{\mathbb{P}(X = 1, Y = 3)}{\mathbb{P}(X = 1)}$$

$$\mathbb{P}(Y = 3|X = 1) = \frac{\mathbb{P}(X = 1, Y = 3)}{\mathbb{P}(X = 1)}$$
$$= \frac{0,05}{0,44}$$

$$\mathbb{P}(Y = 3|X = 1) = \frac{\mathbb{P}(X = 1, Y = 3)}{\mathbb{P}(X = 1)}$$

$$= \frac{0,05}{0,44}$$

$$= \frac{5}{44},$$

$$\mathbb{P}(Y = 5 | X = 1) = \frac{\mathbb{P}(X = 1, Y = 5)}{\mathbb{P}(X = 1)}$$

$$= \frac{0,07}{0,44}$$

$$= \frac{7}{44}.$$

Y X=1	0	2	3	5
П	20	12	5	7
	$\frac{1}{44}$	$\frac{1}{44}$	$\frac{1}{44}$	$\left \frac{1}{44} \right $

Y X=1	0	2	3	5
П	20	12	5	7
Щ	44	44	44	$\left \frac{1}{44} \right $

$$\mathbb{E}[Y|X=1] = 0 \cdot \frac{20}{44} + 2 \cdot \frac{12}{44} + 3 \cdot \frac{5}{44} + 5 \cdot \frac{7}{44}$$

Y X=1	0	2	3	5	
TD	20	12	5	7	•
	$\frac{1}{44}$	$\frac{1}{44}$	$\frac{1}{44}$	$\frac{1}{44}$	

$$\mathbb{E}[Y|X=1] = 0 \cdot \frac{20}{44} + 2 \cdot \frac{12}{44} + 3 \cdot \frac{5}{44} + 5 \cdot \frac{7}{44}$$
$$= \frac{74}{44}$$

Y X=1	0	2	3	5
TD	20	12	5	7
11	$\overline{44}$	$\overline{44}$	$\frac{\overline{44}}{44}$	$\overline{44}$

$$\mathbb{E}[Y|X=1] = 0 \cdot \frac{20}{44} + 2 \cdot \frac{12}{44} + 3 \cdot \frac{5}{44} + 5 \cdot \frac{7}{44}$$

$$= \frac{74}{44}$$

$$= \frac{37}{44}$$

1) Hàm mật độ xác suất của vectơ ngẫu nhiên liên tục hai chiều

1) Hàm mật độ xác suất của vectơ ngẫu nhiên liên tục hai chiều

ullet Vectơ ngẫu nhiên hai chiều (X,Y) được gọi là liên tục nếu tồn tại hàm $f(x,y)\geq 0$ sao cho

$$F(u,v) = \int_{-\infty}^{u} \int_{-\infty}^{v} f(x,y) dx dy, \quad \forall (u,v) \in \mathbb{R}^{2},$$

trong đó $F(x,y)=\mathbb{P}(X\leq x,Y\leq y)$ là hàm phân bố xác suất của vectơ ngẫu nhiên hai chiều (X,Y).

1) Hàm mật độ xác suất của vectơ ngẫu nhiên liên tục hai chiều

ullet Vectơ ngẫu nhiên hai chiều (X,Y) được gọi là liên tục nếu tồn tại hàm $f(x,y)\geq 0$ sao cho

$$F(u,v) = \int_{-\infty}^{u} \int_{-\infty}^{v} f(x,y) dx dy, \quad \forall (u,v) \in \mathbb{R}^{2},$$

- trong đó $F(x,y)=\mathbb{P}(X\leq x,Y\leq y)$ là hàm phân bố xác suất của vectơ ngẫu nhiên hai chiều (X,Y).
- ullet Hàm f(x,y) được gọi là hàm mật độ xác suất của vecto ngẫu nhiên liên tục hai chiều (X,Y).

2) Một số tính chất

• $f(x,y) \ge 0$ và $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$ với mọi $(x,y) \in \mathbb{R}^2$.

2) Một số tính chất

- $f(x,y) \ge 0$ và $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$ với mọi $(x,y) \in \mathbb{R}^2$. $\mathbb{P}((X,Y) \in D) = \iint f(x,y) dx dy$ với $D \subset \mathbb{R}^2$.

2) Một số tính chất

 $+\infty +\infty$

- $f(x,y) \ge 0$ và $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$ với mọi $(x,y) \in \mathbb{R}^2$.
- $\mathbb{P}((X,Y)\in D)=\iint\limits_D f(x,y)dxdy$ với $D\subset\mathbb{R}^2$.

 \bullet Hàm mật độ xác suất của biến ngẫu nhiên X

ullet Hàm mật độ xác suất của biến ngẫu nhiên X

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \quad x \in \mathbb{R}$$

ullet Hàm mật độ xác suất của biến ngẫu nhiên X

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \quad x \in \mathbb{R}$$

ullet Hàm mật độ xác suất của biến ngẫu nhiên Y

 \bullet Hàm mật độ xác suất của biến ngẫu nhiên X

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \quad x \in \mathbb{R}$$

ullet Hàm mật độ xác suất của biến ngẫu nhiên Y

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx, \quad y \in \mathbb{R}.$$

• Các hàm mật độ xác suất có điều kiện

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)},$$
 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}.$

 \bullet Hai biến ngẫu nhiên X,Y là độc lập khi và chỉ khi

$$f(x,y) = f_X(x)f_Y(y) \ \forall (x,y) \in \mathbb{R}^2.$$

Ví dụ 1

Cho vectơ ngẫu nhiên 2 chiều (X,Y) có hàm mật độ xác suất

$$f(x,y) = \begin{cases} \frac{1}{2}\sin(x+y) & \text{n\'eu } 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}, \\ 0 & \text{n\'eu tr\'ai l\'ai.} \end{cases}$$

Tìm hàm mật độ xác suất của biến ngẫu nhiên X.

Lời giải

Nếu x < 0 hoặc $x > \frac{\pi}{2}$ thì f(x,y) = 0 với mọi $y \in \mathbb{R}$, do đó

Lời giải

Nếu x < 0 hoặc $x > \frac{\pi}{2}$ thì f(x,y) = 0 với mọi $y \in \mathbb{R}$, do đó

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

Lời giải

Nếu
$$x < 0$$
 hoặc $x > \frac{\pi}{2}$ thì $f(x,y) = 0$ với mọi $y \in \mathbb{R}$, do đó

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{+\infty}^{+\infty} 0 dy$$

$$= \int_{-\infty}^{+\infty} 0 dy$$

Lời giải

Nếu x < 0 hoặc $x > \frac{\pi}{2}$ thì f(x,y) = 0 với mọi $y \in \mathbb{R}$, do đó

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{-\infty}^{+\infty} 0 dy$$

$$= \int_{-\infty}^{-\infty} 0 dy$$

Nếu
$$0 \le x \le \frac{\pi}{2}$$
, ta có

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

Nếu
$$0 \le x \le \frac{\pi}{2}$$
, ta có

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{-\infty}^{0} f(x,y)dy + \int_{0}^{\frac{\pi}{2}} f(x,y)dy + \int_{\frac{\pi}{2}}^{+\infty} f(x,y)dy$$

$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin(x+y) dy + \int_{\frac{\pi}{2}}^{+\infty} 0 dy$$

$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin(x+y) dy + \int_{\frac{\pi}{2}}^{+\infty} 0 dy$$

$$= 0 + \left[-\frac{1}{2}\cos(x+y) \right]_{y=0}^{y=\frac{\pi}{2}} + 0$$

$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin(x+y) dy + \int_{\frac{\pi}{2}}^{+\infty} 0 dy$$

$$= 0 + \left[-\frac{1}{2} \cos(x+y) \right]_{y=0}^{y=\frac{\pi}{2}} + 0$$

$$= -\frac{1}{2} \cos\left(x + \frac{\pi}{2}\right) + \frac{1}{2} \cos x$$

$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin(x+y) dy + \int_{\frac{\pi}{2}}^{+\infty} 0 dy$$

$$= 0 + \left[-\frac{1}{2} \cos(x+y) \right]_{y=0}^{y=\frac{\pi}{2}} + 0$$

$$= -\frac{1}{2} \cos\left(x + \frac{\pi}{2}\right) + \frac{1}{2} \cos x$$

$$= \frac{1}{2} \sin x + \frac{1}{2} \cos x$$

$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin(x+y) dy + \int_{\frac{\pi}{2}}^{+\infty} 0 dy$$

$$= 0 + \left[-\frac{1}{2} \cos(x+y) \right]_{y=0}^{y=\frac{\pi}{2}} + 0$$

$$= -\frac{1}{2} \cos\left(x + \frac{\pi}{2}\right) + \frac{1}{2} \cos x$$

$$= \frac{1}{2} \sin x + \frac{1}{2} \cos x$$

$$= \frac{1}{2} (\sin x + \cos x).$$

Vậy hàm mật độ xác suất của X

$$f_X(x) = \begin{cases} \frac{1}{2}(\sin x + \cos x) & \text{n\'eu } 0 \le x \le \frac{\pi}{2}, \\ 0 & \text{n\'eu } x \notin \left[0; \frac{\pi}{2}\right]. \end{cases}$$

Ví dụ 2

Cho vectơ ngẫu nhiên 2 chiều (X,Y) có hàm mật độ xác suất

$$f(x,y) = \begin{cases} k(x^2 + y^2) & \text{n\'eu } x^2 + y^2 \le 4, \\ 0 & \text{n\'eu } x^2 + y^2 > 4. \end{cases}$$

Tìm hằng số k và hàm mật độ xác suất của biến ngẫu nhiên X.

Lời giải

Đặt $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$, khi đó

$$f(x,y) = \begin{cases} k(x^2 + y^2) & \text{v\'oi } (x,y) \in D, \\ 0 & \text{v\'oi } (x,y) \in \mathbb{R}^2 \backslash D. \end{cases}$$

Sử dụng tính chất $\iint f(x,y) dx dy = 1$ của hàm mật độ xác suất

ta có

$$1 = \iint\limits_{\mathbb{R}^2} f(x, y) dx dy = \iint\limits_{D} f(x, y) dx dy + \iint\limits_{\mathbb{R}^2 \setminus D} f(x, y) dx dy$$
$$= \iint\limits_{D} k(x^2 + y^2) dx dy$$

$$1 = \iint\limits_{\mathbb{R}^2} f(x, y) dx dy = \iint\limits_{D} f(x, y) dx dy + \iint\limits_{\mathbb{R}^2 \setminus D} f(x, y) dx dy$$
$$= \iint\limits_{D} k(x^2 + y^2) dx dy + \iint\limits_{\mathbb{R}^2 \setminus D} 0 dx dy$$

$$1 = \iint\limits_{\mathbb{R}^2} f(x, y) dx dy = \iint\limits_{D} f(x, y) dx dy + \iint\limits_{\mathbb{R}^2 \backslash D} f(x, y) dx dy$$
$$= \iint\limits_{D} k(x^2 + y^2) dx dy + \iint\limits_{\mathbb{R}^2 \backslash D} 0 dx dy$$
$$= k \iint\limits_{D} (x^2 + y^2) dx dy + 0$$

$$1 = \iint_{\mathbb{R}^2} f(x, y) dx dy = \iint_D f(x, y) dx dy + \iint_{\mathbb{R}^2 \setminus D} f(x, y) dx dy$$
$$= \iint_D k(x^2 + y^2) dx dy + \iint_{\mathbb{R}^2 \setminus D} 0 dx dy$$
$$= k \iint_D (x^2 + y^2) dx dy + 0$$
$$= k \iint_D (x^2 + y^2) dx dy.$$

Đặt $I = \iint (x^2 + y^2) dx dy$, với $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.

Khi đó kI = 1, như vậy để tìm k thì ta cần tính tích phân I.

Đặt
$$I = \iint_D (x^2 + y^2) dx dy$$
, với $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.

Khi đó kI=1, như vậy để tìm k thì ta cần tính tích phân I. Chuyển sang tọa độ cực

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$$

Đặt
$$I = \iint (x^2 + y^2) dx dy$$
, với $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.

Khi đó kI=1, như vậy để tìm k thì ta cần tính tích phân I. Chuyển sang tọa độ cực

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$$

Khi đó

$$I = \iint_{\Lambda} r^3 dr d\varphi,$$

Với

$$\Delta = \{ (r, \varphi) : 0 \le r \le 2, 0 \le \varphi \le 2\pi \}.$$

Do đó

$$I = \int_{0}^{2} \left[\int_{0}^{2\pi} r^{3} d\varphi \right] dr$$

Do đó

$$I = \int_{0}^{2} \left[\int_{0}^{2\pi} r^{3} d\varphi \right] dr = \int_{0}^{2} 2\pi r^{3} dr$$

Do đó

$$I = \int_{0}^{2} \left[\int_{0}^{2\pi} r^{3} d\varphi \right] dr = \int_{0}^{2} 2\pi r^{3} dr = 2\pi \int_{0}^{2} r^{3} dr = 8\pi.$$

Từ kI = 1, ta suy ra $k = \frac{1}{8\pi}$.

Hàm mật độ xác suất của biến ngẫu nhiên X

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy.$$

Hàm mật độ xác suất của biến ngẫu nhiên X

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy.$$

• Nếu |x| > 2 thì $x^2 + y^2 > 4$ với mọi $y \in \mathbb{R}$. Do đó f(x,y) = 0 với

mọi
$$y \in \mathbb{R}$$
. Vậy $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = 0$.

• Nếu $|x| \le 2$, khi đó bất phương trình $x^2 + y^2 \le 4$ tương đương với $-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}$

• Nếu $|x| \le 2$, khi đó bất phương trình $x^2 + y^2 \le 4$ tương đương với $-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}$ còn bất phương trình $x^2 + y^2 > 4$ tương đương với $y \notin [-\sqrt{4-x^2}, \sqrt{4-x^2}]$.

• Nếu $|x| \le 2$, khi đó bất phương trình $x^2 + y^2 \le 4$ tương đương với $-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}$ còn bất phương trình $x^2 + y^2 > 4$ tương đương với $y \notin [-\sqrt{4-x^2}, \sqrt{4-x^2}]$.

Do đó

$$f(x,y) = \begin{cases} \frac{1}{8\pi} (x^2 + y^2) & \text{n\'eu } -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \\ 0 & \text{n\'eu } y \notin [-\sqrt{4 - x^2}, \sqrt{4 - x^2}]. \end{cases}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{-\infty}^{-\sqrt{4-x^2}} f(x, y) dy + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y) dy + \int_{\sqrt{4-x^2}}^{+\infty} f(x, y) dy$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y)dy$$

$$= \int_{-\infty}^{-\sqrt{4-x^2}} f(x,y)dy + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x,y)dy + \int_{\sqrt{4-x^2}}^{+\infty} f(x,y)dy$$

$$= \int_{-\infty}^{-\sqrt{4-x^2}} 0dy + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{8\pi} (x^2 + y^2)dy + \int_{\sqrt{4-x^2}}^{+\infty} 0dy$$

$$= 0 + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{8\pi} (x^2 + y^2) dy + 0$$

$$= 0 + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{8\pi} (x^2 + y^2) dy + 0$$

$$= \left[\frac{1}{8\pi} \left(x^2 y + \frac{y^3}{3} \right) \right]_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}}$$

$$= 0 + \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{8\pi} (x^2 + y^2) dy + 0$$

$$= \left[\frac{1}{8\pi} \left(x^2 y + \frac{y^3}{3} \right) \right]_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}}$$

$$= \frac{1}{6\pi} (x^2 + 2) \sqrt{4 - x^2}.$$

$$f_X(x) = \begin{cases} \frac{1}{6\pi} (x^2 + 2)\sqrt{4 - x^2} & \text{n\'eu } |x| \le 2, \\ 0 & \text{n\'eu } |x| > 2. \end{cases}$$