Data warehouse and

Knowledge mining

Assignment - 1

Name: R.R. Devapousad

US N! ENU 20DS0033

SEM! 5

SEC! H

course cooc! 20 053501

Module - 1

(i) choose a real time domain and apply all the OLAP operations on the cube.

(ans) pataset on sales of phone and earphones.

	unnamed	month	year	location	Product	value	quarter	country
0	18	1	2017	cA	PS 5	420	Q ₁	USA
1	39	1	2017	44	PS5	510	Qı	USA
2	11	1	2017	c A	Y R	400	Qi	USA
3	80	. 1	2017	₩A	· VR	560	Q ₁	usA
ч	114	1	2017	N7	PS5	600	Q,	A2U

(i) Dice:

each dimension to a certain range of values, while keeping the numbers of dimensions the same is the sexulting cube.

we can jows in sales happening in [son/Feb/Mas]

year	Product	mont h	amount
0-	PSS	1 2 3	7100 6890 6622
2017	√R	1 2 3	5600 4960 6920

(ii) Rollup!

applying an aggregation function to collapse a number of dimension, we want to jows in the annual revenue for each product and whapse the location dimension.

year	amount
2018	200801
2019	199867

(iii) slice:

dimensions, we can jows in the sales happening in 2019 or can jows on sales happening in 2019

	month	quarter	year	location	Product	amount
263	2	91	2019	CA	v R	2100
264	2	Qi	2019	QU	PS5	620
265	2	01	2019	ωA	VR	2560
2 6 6	2	Qı	2019	NY	PS5	590
267	2	Qı	2019	CA	PS5	6 6 0

(iv) Drilldown!

in the reverse of rollup and opplying an oggregation for a fines level of granularity we want to fown in the annual and monthly revenue for each product

year	amount
2018	12340
2019	210129

(v) Pivot:

analyzing the combination of a pair of selected dimensions. we want to analyze the revenue by year and month.

Product	cA.	KJ	QU	wa
VR	1219.1111	2291.3076	1410.000	1436,1020
Ps 5	629.4769	6612.419	2169.2120	1120-1211

-> applying this on cude:

(i) Dice:

(ii) Rollup:

N" CA	1 /200	0/	7/1	
CA			7	
Q,	1000			\mathcal{Y}
Qz				\mathcal{M}
Q3 Q4				\mathcal{W}
Q५				\int

(iii) Slice:

	wA/	440/		/	
(3 υ /[5	560/			
N,	Y /395				7///
N'					TYXXI.
Q, Q2	605	8 25	14	400	
Q3 Q4				,	//
Q५					\bigvee

(iv) Drille down:

(v) <u>Pivot</u>:

_		
YR	1.00	203
PS 5		825

(27 Design a data warehouse for parallel processing.

(pomain-setail).

- · Pata wasehouse aschitecture of retail industry helps to understand the basic overview which can be optimised for retail stores
- · Data in obtained from multiple sources for ecomple sources for ecomple
- · The data is extracted from the sources and data cleaning operations are implemented on this data

- · This transformed data is jed to data storage and aggregation layer which was istall of data were house and scueral data made
- · The data is then presented to the decision making in the Jorn of operational reports canalysis, bash board.

schema diagram

- (3) Multidimentional data model for amazon
- · a multi dimensional model views data in the form of data cube. A data whe enables data to be modeled and viewed in multiple dimensions. It is defined by dimensions and fact
- The dimensions are the perspective or entities concerning which an organisation keeps record. For example Amazon may create a sales data warehouse to keep records of the sales for the dimension time.
- · The dimension allow to sauce and keep track of things for oscample monthly sales of items and location at which the items were sold.
- · consider the data of amazon for items sold per quarter in the city of delhi. The data is shown in the table. The fact or measure displayed in rupee-sold.

				CIN 1 contract
Time	Fresh	da shion	Electro	ni tchen
Q,	260	508	15	60
Qr	390	256	20	90
Q3	436	396	50	40
Qy	528	483	35	50

Hird dimension. Suppose the data with a time and item, as well as the location is considered for the cities chennoi. The 3D data are shown below.

4	111	chenna	Kol Kata			
Time	Frenh	Jachion	electronic	Frenh	Jashion	oteczonic
۵٫	340	360	20	435	4 60	20
Qr	490	490	16	389	385	45
Q3	680	283	46	684	વવ૦	39
Qu	535	694	39	335	365	83

		/		-/-	20	/ /5/3
Time	a1	260	508	15	60	(8)
41	Q2	390	256	20	90	19 19
	Q3	436	396	50	40	199
	Qu	528	483	85	50	

item (typen)

- (4) Design a data cube jos market basket analysis.
- · First lest under stand market bosket analysis
- · a data mining technique that gives the careful study of purchase done by a wistomer is a supermarket.
- · This concept identifies the pattern of frequent purchase items by customers. This analysis can help to promote deals, offer by the company and data mining techinique.

· example:

pata mining concept are in use Jos sales and marketing to provide better customer service, to improve cross -selling opportunity to increose direct mail response rate

- · watomer retention in the form of paltern identificate and prediction to prkely detection in possible in possible by data mining.
- · RIAK assumed and France area also use the data mining concept for identifying innoppropriate or unusual behaviours etc.

· 2 D data:

Bargalore					pune			
Time	egg	milk	hread	Biswit	egg	milk	psead	Biscuit
Q,	400	360	20	10	500	460	20	15
Qr	300	490	16	50	200	3.85	45	35
Q_3	200	583	46	43	100	490	39	48
Qų	100	699	39	38	600	365	83	35

· 3D data:

ion	Bangolo	ore /400/860/20/10/									
tocation	Pune 500 460 20 15										
٦	Solapur 600 385 20 39										
Vijaypux / 700/											
	a,	260	508	15	60	34					
	02	390	256	20	90						
	Qz	436	396	50	40	80					
	Q ι	528	483	35	56	<i>//</i>					

item.

Module - 2

(1) Design a KDD model for credit card froud detection

(2) Explain the data preprocessing jor information retrival application.

6nns

(i) <u>Pata cleaning:</u>

- · in defined an removal of noisy and irrelevant data from wilection
- · cleaning in case of missing value
- · cleaning noisy data, where noise is a random or variance error.
- · cleaning with data discrepancy detection and data transformation tooks.

(ii) Data integration:

- · hetrogenous data from multiple source combined in a common source.
- · Data integration using data mining tools
- · Data integration using data synchronization
- · nata integration using EIL process

(iii) parta selection:

- · process where data relevant to the analysis in decided and retained from the data whether
- · pato collection using neuralnetwork

- · pata selection using decision tree
- · Data relection using natue bayes
- · pata selection using clustering regression.

(iv) Data Transformation

- · process of loansforming data into appropriate required form by miming
 - · data mapping
- · code generation

(U) <u>Data miming</u>.

cleves techiniques that are applied to esetsuct puttern potentially useful

- · Transforms task relevant data into pattern
- · Decides purpose of model using classification or characteristics.

(vi) <u>pattern</u> evalution:

- · identifying strictly increasing pattern representic
- · Find internaing score of each puttern

(111) unowledge representation,

- · utilized usualization tooks to represent data mining results.
- . generate report
- · generate table

(3) Evaluate the statistical description for stock market analysis with duta visualization.

t - 6 t

ter 4.5 miles

 $x = \frac{1}{2} = -12 = x$

1 1 1 1

1.