Andrew Farabow

github.com/AndrewAF1 703-474-6270 linkedin.com/in/andrew-farabow contact@andrewfarabow.com

Education

Virginia Tech (2019 - present, graduating in 2023)

Major GPA: 3.3 B.S. in Computer Science w/ Stat Minor Elective Courses: Data-Centric Computing Capstone, Data Analytics and ML 1&2, Regression Analysis. Mathematical Statistics 1&2, Restricted Research Gonzaga College High School (2015 - 2019)

Skills

Programming: Python, C, Java, R

Frameworks: PyTorch, Tensorflow/Keras, Scikit-learn, Pandas, Numpy, Matplotlib, RLLib, OpenAI Gym Other: deep learning, recurrent and convolutional neural networks, reinforcement learning, GANs, autoencoders, data analytics, Linux, Git, Docker, Kubernetes

Work Experience

Research Assistant - Sanghani Center (Virginia Tech)

May. 2021 - present

- Spearheading the effort to create an open-source library of epidemiological models, datasets, and other tools for forecasting the COVID-19 pandemic and the seasonal flu, under the direction of Prof. Naren Ramakrishnan and funded by a NSF REU Supplement.
- Created a user-friendly, scikit-learn inspired interface and structured the library to maximize code reuse, simplifying the creation and use of new models and datasets.
- Implemented compartmental, statistical, and machine learning models, as well as datasets and evaluation metrics.
- Developed a RNN model using the library to contribute influenza case forecasts to the CDC FluSight Competition.

Research Assistant - BIST (Virginia Tech)

Nov. 2019 - present (school year)

- Working on a Center for Bioinspired Science and Technology project, led by Prof. Rolf Mueller, involving the use of bat-inspired biomimetic sonar and deep learning for robotic navigation in forested environments.
- Helped develop a ConvNet-based algorithm to predict the position of the sonar sensor within a forest area.
- Currently preparing a manuscript for submission in Summer 2022.

Research Assistant - Hume Center (Virginia Tech)

Sept. 2019 - Dec. 2021 (school year)

- Built a grid-based, OpenAI Gym-compatible simulation called SensorGrid that replicates key aspects of drone sensing and navigation challenges in a simplified environment, useful for testing reinforcement learning models before deployment to a more computationally-expensive environment, as part of the Raytheon RAAIDS project.
- Currently preparing a first-author manuscript for submission in Summer 2022.
- Designed and trained a Resnet-based object-detecting convolutional neural network architecture, which achieved 97% accuracy on the classification phase of the Lockheed Martin AlphaPilot Dataset.
- Participated in the IC CAE Scholars Program, which involves conducting research with the Hume Center and participating in a number of events (seminars, workshops, etc).

Machine Learning Engineer Intern - Decipher Technology Studios

2018 - 2020 (summers)

- Improved performance of a recurrent autoencoder used to identify anomalies in service logs by adding self-attention.
- Worked on a small team to develop a predictive autoscaler that uses deep reinforcement learning (RL) to control the resources allocated to a microservice, striking a balance between performance and hosting cost.
- Wrote PyTorch implementations of policy gradient, Q-Learning, and actor-critic deep RL algorithms.
- Wrote a simulator for offline training and a microservice for online training and deployment (on Openshift and EKS).
- Added recurrent and convolutional layers to the neural networks to better leverage autocorrelation within the data.

Awards

David Heilman Research Award

April 2022

Awarded by the VT CS department for excellence in undergraduate research.

Best Overall at HackBI

January 2017

• Wrote an app that makes use of machine learning and computer vision techniques to interpret hand-written text.

${f Activities}$

Head of Logistics - VTHacks Organizing Team

2019 - present

• Overseeing the team responsible for managing the budget, purchasing meals, recruiting faculty judges, and other tasks.

Stage Manager - Gonzaga Dramatic Association Stage Crew

2017 - 2019

• Led a team of over 20 students in the construction of a structure over 20 ft. wide and 8 ft. tall. Coded and designed circuits for custom Arduino and Raspberry Pi-based lighting effects and optical illusions.

Projects

Movie Neural Style Transfer - For the capstone project component of my degree, my team created a dataset of frames from Star Wars movies and trained a CycleGAN to modernize the visuals.

Computable AI - Co-author of a blog on machine learning, writing a Fundamentals of Deep RL series.

Machine Learning Templates - Flexible PyTorch implementations of a supervised learning neural network, autoencoder, GAN, and evolutionary algorithm designed for future machine learning projects.