Let α be a set of attributes. We call the set of all attributes functionally determined by α under a set F of functional dependencies the closure of α under F; we denote it by α^+ . Figure 7.8 shows an algorithm, written in pseudocode, to compute α^+ . The input is a set F of functional dependencies and the set α of attributes. The output is stored in the variable *result*.

To illustrate how the algorithm works, we shall use it to compute $(AG)^+$ with the functional dependencies defined in Section 7.4.1. We start with result = AG. The first time that we execute the **repeat** loop to test each functional dependency, we find that:

- $A \to B$ causes us to include B in result. To see this fact, we observe that $A \to B$ is in $F, A \subseteq result$ (which is AG), so result := result $\cup B$.
- $A \rightarrow C$ causes result to become ABCG.
- $CG \rightarrow H$ causes result to become ABCGH.
- $CG \rightarrow I$ causes result to become ABCGHI.

The second time that we execute the **repeat** loop, no new attributes are added to *result*, and the algorithm terminates.

Let us see why the algorithm of Figure 7.8 is correct. The first step is correct because $\alpha \to \alpha$ always holds (by the reflexivity rule). We claim that, for any subset β of result, $\alpha \to \beta$. Since we start the **repeat** loop with $\alpha \to result$ being true, we can add γ to result only if $\beta \subseteq result$ and $\beta \to \gamma$. But then result $\to \beta$ by the reflexivity rule, so $\alpha \to \beta$ by transitivity. Another application of transitivity shows that $\alpha \to \gamma$ (using $\alpha \to \beta$ and $\beta \to \gamma$). The union rule implies that $\alpha \to result \cup \gamma$, so α functionally determines any new result generated in the **repeat** loop. Thus, any attribute returned by the algorithm is in α^+ .

It is easy to see that the algorithm finds all of α^+ . Consider an attribute A in α^+ that is not yet in *result* at any point during the execution. There must be a way to prove that $result \to A$ using the axioms. Either $result \to A$ is in F itself (making the proof trivial and ensuring A is added to result) or there must a proof step using transitivity to show

```
 \begin{aligned} \textit{result} &:= \alpha; \\ \textbf{repeat} & \textbf{for each} \text{ functional dependency } \beta \rightarrow \gamma \textbf{ in } F \textbf{ do} \\ \textbf{begin} & \textbf{if } \beta \subseteq \textit{result then } \textit{result} := \textit{result} \cup \gamma; \\ \textbf{end} & \textbf{until } (\textit{result} \text{ does not change}) \end{aligned}
```

Figure 7.8 An algorithm to compute α^+ , the closure of α under F.