1. In this problem $y = xe^x + x^2$.

(a)
$$\frac{dy}{dx} = 1e^{x} + xe^{x} + 2x = \left[e^{x} + xe^{x} + 2x\right]$$

(b)
$$\frac{d^2y}{dx^2} = e^x + 1e^x + xe^x + 2 = \left[2e^x + xe^x + 2\right]$$

2. Find the derivative of $y = \cot(3x^2 + x)$.

$$y' = \left[-\csc^2(3x^2 + x)(6x + 1) \right]$$

(chain rule)

3. Find the derivative of $y = x^2 \cos(\pi x)$.

$$y' = 2x \cos(\pi x) + x^{2}(-\sin(\pi x)\pi)$$

$$= 2x \cos(\pi x) - \pi x^{2} \sin(\pi x)$$

Let h(x) = f(g(x)). 4. Information about functions f(x), f'(x), g(x) and g'(x) is tabulated below.

(a)
$$h(2) = f(g(2)) = f(5) = 3$$

(33)	113(21)-F(3)-13	$\int f(x)$	-4	-2	0	1	1	3
		f'(x)	2	1	1	3	5	-1
(b)	$h'(2) = \int /g(3) \setminus g(3) = \int (5)g(3)$	g(x)	8	9	5	4	0	-4
(-)	h'(2) = f'(g(2))g'(2) = f'(5)g'(2)	g'(x)	0	-1	-1	-3	-4	-4
	= (1)(-1) = (1)		•					

(c) Find the equation of the tangent line to y = h(x) at (2, h(2)) = (2, 3)

Point on line: (2,3). Slope of line: h'(2) = 1. Point-slope formula for line $y-y_0 = m(x-x_0)$ y-3 = 1(x-2)Answer y=x+1

Answer
$$\longrightarrow y = x + 1$$

1. In this problem $y = 3x^2 + \cos(5x)$.

(a)
$$\frac{dy}{dx} = 6x - \sin(5x) \cdot 5 = \left[6x + 5\sin(5x)\right]$$

(b)
$$\frac{d^2y}{dx^2} = 6 - 5 \cos(5x) \cdot 5 = 6 - 25 \cos(5x)$$

2. Find the derivative of $y = \frac{\tan(\pi x)}{x}$.

$$y' = \frac{\sec^2(\pi x)\pi \cdot x - \tan(\pi x) \cdot 1}{x^2}$$
$$= \frac{\pi x \sec^2(\pi x) - \tan(\pi x)}{x^2}$$

3. Find the derivative of $y = \sin(3x^2 + x)$.

$$y' = \cos(3x^2 + x)(6x + 1)$$

4. Information about functions f(x), f'(x), g(x) and g'(x) is tabulated below. Let h(x) = f(g(x)).

(a)
$$h(3) = f(g(3)) = f(4) = \Box$$

i	x	U			ა	4	0
1	f(x)	-4	-2	0	1	1	3
	f'(x)	2	1	1	3	5	-1
)	g(x)	8	9	5	4	0	-4
	g'(x)	0	-1	-1	-3	-4	-4

- (b) h'(3) = f'(g(3))g'(3) = f(4)g'(3)
- $= 5 \cdot (-3) = \boxed{-15}$ (c) Find the equation of the tangent line to y = h(x) at (3, h(3)) = (3, 1)

Point on line: (Xo Yo) = (3,1) Slope of line: M = h(3) = -15 Point-slope formula for line:

mula for line:
$$y-y=m(x-x_0)$$

 $y-1=-15(x-3)$

$$19 = -15x + 46$$