Package 'simStateSpace'

January 27, 2024
Title Simulate Data from State Space Models
Version 1.1.0.9000
Description Provides a streamlined and user-friendly framework for simulating data in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. For an introduction to state space models in social and behavioral sciences, refer to Chow, Ho, Hamaker, and Dolan (2010) <doi:10.1080 10705511003661553="">.</doi:10.1080>
<pre>URL https://github.com/jeksterslab/simStateSpace,</pre>
https://jeksterslab.github.io/simStateSpace/
<pre>BugReports https://github.com/jeksterslab/simStateSpace/issues</pre>
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R (>= $3.0.0$)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp
Suggests knitr, rmarkdown, testthat, Matrix
RoxygenNote 7.3.1
NeedsCompilation yes
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
R topics documented:
as.data.frame.simstatespace

```
SimSSMVARIVary
Index
 60
```

as.data.frame.simstatespace

Coerce an Object of Class simstatespace to a Data Frame

Description

Coerce an Object of Class simstatespace to a Data Frame

Usage

```
## $3 method for class 'simstatespace'
as.data.frame(
    x,
    row.names = NULL,
    optional = FALSE,
    eta = FALSE,
    long = TRUE,
    ...
)
```

х	Object of class simstatespace.
row.names	NULL or character vector giving the row names for the data frame. Missing values are not allowed.
optional	Logical. If TRUE, setting row names and converting column names is optional.
eta	Logical. If eta = TRUE, include eta. If eta = FALSE, exclude eta.
long	Logical. If long = TRUE, use long format. If long = FALSE, use wide format.
	Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec</pre>
beta <- diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
 }
)
# Type 0
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
head(as.data.frame(ssm))
head(as.data.frame(ssm, long = FALSE))
```

```
as.matrix.simstatespace
```

Coerce an Object of Class simstatespace to a Matrix

Description

Coerce an Object of Class simstatespace to a Matrix

Usage

```
## S3 method for class 'simstatespace'
as.matrix(x, eta = FALSE, long = TRUE, ...)
```

Arguments

```
    x Object of class simstatespace.
    eta Logical. If eta = TRUE, include eta. If eta = FALSE, exclude eta.
    long Logical. If long = TRUE, use long format. If long = FALSE, use wide format.
    ... Additional arguments.
```

Author(s)

Ivan Jacob Agaloos Pesigan

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
```

LinSDE2SSM 5

```
return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
 }
)
# Type 0
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
head(as.matrix(ssm))
head(as.matrix(ssm, long = FALSE))
```

LinSDE2SSM

Convert Parameters from the Linear Stochastic Differential Equation Model to State Space Model Parameterization

Description

This function converts parameters from the linear stochastic differential equation model to state space model parameterization.

Usage

```
LinSDE2SSM(b, a, q, delta_t)
```

b	Numeric vector. A term which is unobserved and constant over time (b).
а	Numeric matrix. The drift matrix which represents the rate of change of the solution in the absence of any random fluctuations (\mathbf{A}) .
q	Numeric matrix. The matrix of volatility or randomness in the process (\mathbf{Q}) .
delta_t	Numeric. Time interval (δ_t).

6 LinSDE2SSM

Details

The state space parameters as a function of the linear stochastic differential equation model parameters are given by

$$\boldsymbol{\beta} = \exp\left(\mathbf{A}\Delta_t\right)$$

$$\alpha = \mathbf{A}^{-1} \left(\boldsymbol{\beta} - \mathbf{I}_p \right) \mathbf{b}$$

$$\operatorname{vec}(\mathbf{\Psi}) = \{ [(\mathbf{A} \otimes \mathbf{I}_p) + (\mathbf{I}_p \otimes \mathbf{A})] \left[\exp\left([(\mathbf{A} \otimes \mathbf{I}_p) + (\mathbf{I}_p \otimes \mathbf{A})] \Delta_t \right) - \mathbf{I}_{p \times p} \right] \operatorname{vec}(\mathbf{Q}) \}$$

Value

Returns a list of state space parameters:

- alpha: Numeric vector. Vector of intercepts for the dynamic model (α) .
- beta: Numeric matrix. Transition matrix relating the values of the latent variables at time t_k
 1 to those at time t_k (β).
- psi: Numeric matrix. The process noise covariance matrix (Ψ) .

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Simulation of State Space Models Data Functions: OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMULinGrowthIVary(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
p <- k <- 2
a <- matrix(
  data = c(
   -0.10,
   0.05,
   0.05,
   -0.10
 ),
nrow = p
)
b < -c(0.317, 0.230)
q <- matrix(</pre>
  data = c(2.79, 0.06, 0.06, 3.27),
  nrow = p
delta_t <- 0.10
LinSDE2SSM(
```

OU2SSM 7

```
b = b,
a = a,
q = q,
delta_t = delta_t
)
```

OU2SSM

Convert Parameters from the Ornstein-Uhlenbeck Model to State Space Model Parameterization

Description

This function converts parameters from the Ornstein-Uhlenbeck model to state space model parameterization.

Usage

```
OU2SSM(mu, phi, sigma, delta_t)
```

Arguments

mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	Numeric matrix. The matrix of volatility or randomness in the process (Σ) .
delta_t	Numeric. Time interval (δ_t) .

Details

The state space parameters as a function of the Ornstein-Uhlenbeck model parameters are given by

$$\beta = \exp(-\Phi \Delta_t)$$

$$\alpha = -\Phi^{-1} \left(\beta - \mathbf{I}_n \right) \Phi \mu$$

$$\operatorname{vec}\left(\mathbf{\Psi}\right) = \left\{\left[\left(-\mathbf{\Phi} \otimes \mathbf{I}_{p}\right) + \left(\mathbf{I}_{p} \otimes -\mathbf{\Phi}\right)\right]\left[\exp\left(\left[\left(-\mathbf{\Phi} \otimes \mathbf{I}_{p}\right) + \left(\mathbf{I}_{p} \otimes -\mathbf{\Phi}\right)\right]\Delta_{t}\right) - \mathbf{I}_{p \times p}\right]\operatorname{vec}\left(\mathbf{\Sigma}\right)\right\}$$

Value

Returns a list of state space parameters:

- alpha: Numeric vector. Vector of intercepts for the dynamic model (α) .
- beta: Numeric matrix. Transition matrix relating the values of the latent variables at time t_k
 1 to those at time t_k (β).
- psi: Numeric matrix. The process noise covariance matrix (Ψ) .

8 OU2SVAR

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

Examples

```
p <- k <- 2
mu <- c(5.76, 5.18)
phi <- matrix(
    data = c(0.10, -0.05, -0.05, 0.10),
    nrow = p
)
sigma <- matrix(
    data = c(2.79, 0.06, 0.06, 3.27),
    nrow = p
)
delta_t <- 0.10

OU2SSM(
    mu = mu,
    phi = phi,
    sigma = sigma,
    delta_t = delta_t
)</pre>
```

OU2SVAR

Convert Parameters from the Ornstein-Uhlenbeck Model to the Structural Vector Autoregressive Model

Description

This function converts parameters from the Ornstein–Uhlenbeck model to the structural vector autoregressive model parameterization.

Usage

```
OU2SVAR(mu, phi, sigma, delta_t)
```

OU2SVAR 9

Arguments

mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	Numeric matrix. The matrix of volatility or randomness in the process (Σ) .
delta_t	Positive integer. Discrete time interval (δ_t).

Value

Returns a list of structural vector autoregressive model parameters:

- alphastar: Numeric vector. Vector of intercepts for the dynamic model (α^*) .
- betastar: Numeric matrix. Transition matrix relating the values of the latent variables at time t - delta_t to those at time t where delta_t is a positive integer. (β*).
- psistar: Numeric matrix. The process noise covariance matrix (Ψ^*) .

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
p <- k <- 2
mu <- c(5.76, 5.18)
phi <- matrix(
    data = c(0.10, -0.05, -0.05, 0.10),
    nrow = p
)
sigma <- matrix(
    data = c(2.79, 0.06, 0.06, 3.27),
    nrow = p
)
delta_t <- 1

OU2SVAR(
    mu = mu,
    phi = phi,
    sigma = sigma,
    delta_t = delta_t
)</pre>
```

10 OU2VAR

OU2VAR	Convert Parameters from the Ornstein–Uhlenbeck Model to the Vector
	Autoregressive Model

Description

This function converts parameters from the Ornstein–Uhlenbeck model to the vector autoregressive model parameterization.

Usage

```
OU2VAR(mu, phi, sigma, delta_t)
```

Arguments

mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	Numeric matrix. The matrix of volatility or randomness in the process (Σ) .
delta_t	Positive integer. Discrete time interval (δ_t).

Value

Returns a list of vector autoregressive model parameters:

- alpha: Numeric vector. Vector of intercepts for the dynamic model (α) .
- beta: Numeric matrix. Transition matrix relating the values of the latent variables at time t delta_t to those at time t where delta_t is a positive integer. (β).
- psi: Numeric matrix. The process noise covariance matrix $(\Psi).$

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

plot.simstatespace 11

Examples

```
p <- k <- 2
mu <- c(5.76, 5.18)
phi <- matrix(</pre>
  data = c(0.10, -0.05, -0.05, 0.10),
  nrow = p
sigma <- matrix(</pre>
  data = c(2.79, 0.06, 0.06, 3.27),
  nrow = p
delta_t <- 1
OU2VAR(
  mu = mu,
  phi = phi,
  sigma = sigma,
  delta_t = delta_t
p <- k <- 3
mu < -c(0, 0, 0)
phi <- matrix(</pre>
  data = c(-0.357, 0.771, -0.450, 0, -0.511, 0.729, 0, 0, -0.693),
  nrow = p
)
sigma <- diag(p)</pre>
delta_t <- 1
OU2VAR(
 mu = mu,
  phi = phi,
  sigma = sigma,
  delta_t = delta_t
)
```

plot.simstatespace

Plot Method for an Object of Class simstatespace

Description

Plot Method for an Object of Class simstatespace

Usage

```
## S3 method for class 'simstatespace'
plot(x, id = NULL, time = NULL, eta = FALSE, type = "b", ...)
```

12 plot.simstatespace

Arguments

X	Object of class simstatespace.
id	Numeric vector. Optional id numbers to plot. If id = NULL, plot all available data.
time	Numeric vector. Optional time points to plot. If time = NULL, plot all available data.
eta	Logical. If eta = TRUE, plot the latent variables. If eta = FALSE, plot the observed variables.
type	Character indicating the type of plotting; actually any of the types as in plot.default().
	Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
null_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec</pre>
beta <- diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
         ncol = k
# Type 0
ssm <- SimSSMFixed(</pre>
 n = n,
  mu0 = mu0,
```

print.simstatespace 13

```
sigma0 = sigma0,
alpha = alpha,
beta = beta,
psi = psi,
nu = nu,
lambda = lambda,
theta = theta,
type = 0,
time = time,
burn_in = burn_in
)
plot(ssm)
plot(ssm, id = 1:3, time = 1:10)
```

print.simstatespace

Print Method for an Object of Class simstatespace

Description

Print Method for an Object of Class simstatespace

Usage

```
## S3 method for class 'simstatespace' print(x, ...)
```

Arguments

x Object of Class simstatespace.

... Additional arguments.

Value

Prints simulated data in long format.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)
null_vec <- rep(x = 0, times = k)
n <- 5</pre>
```

```
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec</pre>
beta <- diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
 }
)
# Type 0
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
print(ssm)
```

SimSSM

Simulate Data from a State Space Model (n = 1)

Description

This function simulates data from a state space model.

Usage

```
SimSSM(
  mu0,
  sigma0,
  alpha,
  beta,
  psi,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL,
  type = 0,
  time,
  burn_in = 0
)
```

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi	Numeric matrix. The process noise covariance matrix (Ψ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta	Numeric matrix. The measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
x	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \quad \text{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables, $\boldsymbol{\eta}_t$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors, at time t. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$\boldsymbol{\eta}_{t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{t-1} + \boldsymbol{\zeta}_{t}, \text{ with } \boldsymbol{\zeta}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Psi}\right)$$

where η_t , η_{t-1} , and ζ_t are random variables, and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at time t-1, and ζ_t is a vector of dynamic noise at time t. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Type 1:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \quad \text{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$\eta_t = \alpha + \beta \eta_{t-1} + \Gamma_{\eta} \mathbf{x}_t + \zeta_t, \text{ with } \zeta_t \sim \mathcal{N}(\mathbf{0}, \Psi)$$

where x_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\Gamma}_{\mathbf{y}} \mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t}, \text{ with } \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{v}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$\eta_t = \alpha + \beta \eta_{t-1} + \Gamma_{\eta} \mathbf{x}_t + \boldsymbol{\zeta}_t, \text{ with } \boldsymbol{\zeta}_t \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Psi}\right).$$

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. data is a list with the following elements:
 - id: A vector of ones of length t.
 - time: A vector of time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 1000
burn_in <- 0</pre>
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- matrix(</pre>
  data = rnorm(n = k * (time + burn_in)),
  ncol = k
# Type 0
ssm <- SimSSM(
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
plot(ssm)
```

```
# Type 1
ssm <- SimSSM(
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSM(
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  type = 2,
  time = time,
  burn_in = burn_in
)
plot(ssm)
```

SimSSMFixed

Simulate Data using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMFixed(
 n,
 mu0,
 sigma0,
 alpha,
 beta,
 psi,
  nu,
 lambda,
  theta,
 gamma_y = NULL,
 gamma_eta = NULL,
 x = NULL,
  type = 0,
 time,
 burn_in = 0
)
```

n	Positive integer. Number of individuals.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi	Numeric matrix. The process noise covariance matrix (Ψ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta	Numeric matrix. The measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
x	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ is a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\zeta}_{i,t}, \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables, and α , β , and Ψ are model parameters. $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ is a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ is a vector of dynamic noise at time t and individual i. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of $\zeta_{i,t}$.

Type 1:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight).$$

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_{i,t} + oldsymbol{\zeta}_{i,t}, \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\Gamma}_{\mathbf{v}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where Γ_y is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$\eta_{i,t} = \alpha + \beta \eta_{i,t-1} + \Gamma_n \mathbf{x}_{i,t} + \zeta_{i,t}, \text{ with } \zeta_{i,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}).$$

Value

Returns an object of class simstatespace which is a list with the following elements:

- · call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:

- id: A vector of ID numbers of length t.
- time: A vector time points of length t.
- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSM(), SimSSM(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()

```
# prepare parameters
set.seed(42)
k < -p < -3
iden <- diag(k)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec
beta \leftarrow diag(x = 0.50, nrow = k)
psi <- iden
nu <- null_vec
lambda <- iden
theta \leftarrow diag(x = 0.50, nrow = k)
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
    )
```

```
}
# Type 0
ssm <- SimSSMFixed(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 1
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_y = gamma_y,
```

```
gamma_eta = gamma_eta,
x = x,
type = 2,
time = time,
burn_in = burn_in
)
plot(ssm)
```

SimSSMIVary

Simulate Data using a State Space Model Parameterization for n > 1 Individuals (Individual-Varying Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMIVary(
  n,
 mu0,
  sigma0,
  alpha,
 beta,
  psi,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL,
  type = 0,
  time,
  burn_in = 0
)
```

n	Positive integer. Number of individuals.
mu0	List of numeric vectors. Each element of the list is the mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	List of numeric matrices. Each element of the list is the covariance matrix of initial latent variable values ($\Sigma_{\eta 0}$).

alpha	List of numeric vectors. Each element of the list is the vector of intercepts for the dynamic model (α) .
beta	List of numeric matrices. Each element of the list is the transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi	List of numeric matrices. Each element of the list is the process noise covariance matrix (Ψ) .
nu	List of numeric vectors. Each element of the list is the vector of intercepts for the measurement model (ν) .
lambda	List of numeric matrices. Each element of the list is the factor loading matrix linking the latent variables to the observed variables (Λ).
theta	List of numeric matrices. Each element of the list is the measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y).
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}).
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0, alpha, beta, psi, nu, lambda, theta, gamma_y, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMUINSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- list(null_vec)</pre>
sigma0 <- list(iden)</pre>
alpha <- list(null_vec)</pre>
beta <- list(
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
psi <- list(iden)</pre>
nu <- list(null_vec)</pre>
lambda <- list(iden)</pre>
theta \leftarrow list(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- list(0.10 * diag(k))</pre>
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
  }
```

```
)
# Type 0
ssm <- SimSSMIVary(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 1
ssm <- SimSSMIVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSMIVary(</pre>
  n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
```

SimSSMLinGrowth 27

```
x = x,
type = 2,
time = time,
burn_in = burn_in
)
plot(ssm)
```

 ${\tt SimSSMLinGrowth}$

Simulate Data from a Linear Growth Curve Model

Description

This function simulates data from a linear growth curve model for n > 1 individuals.

Usage

```
SimSSMLinGrowth(
    n,
    mu0,
    sigma0,
    theta,
    gamma_y = NULL,
    gamma_eta = NULL,
    x = NULL,
    type = 0,
    time
)
```

n	Positive integer. Number of individuals.
mu0	Numeric vector. A vector of length two. The first element is the mean of the intercept, and the second element is the mean of the slope.
sigma0	Numeric matrix. The covariance matrix of the intercept and the slope.
theta	Numeric. The common measurement error variance.
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to y at time t $(\Gamma_y).$
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables (intercept and slope) at time t (Γ_{η}) .
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time.
type	Integer. State space model type. See Details for more information.
time	Positive integer. Number of time points to simulate.

Details

Type 0:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \boldsymbol{\varepsilon}_{i,t}, \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0,\theta\right)$$

where $y_{i,t}$, $\eta_{0_{i,t}}$, $\eta_{1_{i,t}}$, and $\varepsilon_{i,t}$ are random variables and θ is a model parameter. $y_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{0_{i,t}}$ and $\eta_{1_{i,t}}$ form a vector of latent random variables at time t and individual i, and $\varepsilon_{i,t}$ is a vector of random measurement errors at time t and individual i. θ is the variance of ε .

The dynamic structure is given by

$$\left(\begin{array}{c}\eta_{0_{i,t}}\\\eta_{1_{i,t}}\end{array}\right)=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\left(\begin{array}{c}\eta_{0_{i,t-1}}\\\eta_{1_{i,t-1}}\end{array}\right).$$

The mean vector and covariance matrix of the intercept and slope are captured in the mean vector and covariance matrix of the initial condition given by

$$oldsymbol{\mu_{\eta|0}} = \left(egin{array}{c} \mu_{\eta_0} \ \mu_{\eta_1} \end{array}
ight) \quad ext{and},$$

$$\boldsymbol{\Sigma_{\eta|0}} = \left(\begin{array}{cc} \sigma_{\eta_0}^2 & \sigma_{\eta_0,\eta_1} \\ \sigma_{\eta_1,\eta_0} & \sigma_{\eta_1}^2 \end{array} \right).$$

Type 1:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \boldsymbol{\varepsilon}_{i,t}, \text{ with } \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0,\theta\right).$$

The dynamic structure is given by

$$\left(\begin{array}{c} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} \eta_{0_{i,t-1}} \\ \eta_{1_{i,t-1}} \end{array}\right) + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t}$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \Gamma_{\mathbf{y}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \text{ with } \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0, \theta\right)$$

where Γ_y is the coefficient matrix linking the covariates to the observed variables. The dynamic structure is given by

$$\left(\begin{array}{c} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} \eta_{0_{i,t-1}} \\ \eta_{1_{i,t-1}} \end{array}\right) + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t}.$$

SimSSMLinGrowth 29

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowthIVary(), SimSSMULinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
# prepare parameters
set.seed(42)
n <- 10
mu0 <- c(0.615, 1.006)
sigma0 <- matrix(
    data = c(
        1.932,
        0.618,
        0.587
    ),
    nrow = 2
)
theta <- 0.6
time <- 10
gamma_y <- matrix(data = 0.10, nrow = 1, ncol = 2)
gamma_eta <- matrix(data = 0.10, nrow = 2, ncol = 2)</pre>
```

30 SimSSMLinGrowth

```
x <- lapply(
 X = seq_len(n),
 FUN = function(i) {
    return(
     matrix(
        data = rnorm(n = 2 * time),
        ncol = 2
   )
 }
)
# Type 0
ssm <- SimSSMLinGrowth(</pre>
 n = n,
 mu0 = mu0,
 sigma0 = sigma0,
 theta = theta,
 type = 0,
  time = time
)
plot(ssm)
# Type 1
ssm <- SimSSMLinGrowth(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time
plot(ssm)
# Type 2
ssm <- SimSSMLinGrowth(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
 x = x,
  type = 2,
  time = time
)
plot(ssm)
```

SimSSMLinGrowthIVary Simulate Data from a Linear Growth Curve Model (Individual-Varying Parameters)

Description

This function simulates data from a linear growth curve model for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMLinGrowthIVary(
    n,
    mu0,
    sigma0,
    theta,
    gamma_y = NULL,
    gamma_eta = NULL,
    x = NULL,
    type = 0,
    time
)
```

n	Positive integer. Number of individuals.
mu0	A list of numeric vectors. Each element of the list is a vector of length two. The first element is the mean of the intercept, and the second element is the mean of the slope.
sigma0	A list of numeric matrices. Each element of the list is the covariance matrix of the intercept and the slope.
theta	A list numeric values. Each element of the list is the common measurement error variance.
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to y at time t $(\Gamma_{\mathbf{y}}).$
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables (intercept and slope) at time t (Γ_{η}) .
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time.
type	Integer. State space model type. See Details for more information.
time	Positive integer. Number of time points to simulate.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0, mu, theta, gamma_y, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

- · call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
# prepare parameters # In this example, the mean vector of the intercept and slope vary. # Specifically, # there are two sets of values representing two latent classes. set.seed(42) n <- 10 mu0_1 <- c(0.615, 1.006) # lower starting point, higher growth mu0_2 <- c(1.000, 0.500) # higher starting point, lower growth mu0 <- list(mu0_1, mu0_2) sigma0 <- list(
```

```
matrix(
    data = c(
      1.932,
      0.618,
      0.618,
      0.587
    ),
    nrow = 2
  )
)
theta <- list(0.6)
time <- 10
gamma_y <- list(matrix(data = 0.10, nrow = 1, ncol = 2))</pre>
gamma_eta <- list(matrix(data = 0.10, nrow = 2, ncol = 2))</pre>
x \leftarrow lapply(
 X = seq_len(n),
 FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = 2 * time),
        ncol = 2
      )
    )
 }
)
# Type 0
ssm <- SimSSMLinGrowthIVary(</pre>
 n = n,
 mu0 = mu0,
 sigma0 = sigma0,
  theta = theta,
  type = 0,
  time = time
plot(ssm)
# Type 1
ssm <- SimSSMLinGrowthIVary(</pre>
 n = n,
 mu0 = mu0,
 sigma0 = sigma0,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time
)
plot(ssm)
# Type 2
```

34 SimSSMLinSDE

```
ssm <- SimSSMLinGrowthIVary(
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  type = 2,
  time = time
)
plot(ssm)</pre>
```

SimSSMLinSDE

Simulate Data from the Linear Stochastic Equation Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the linear stochastic equation model using a state space model parameterization.

Usage

```
SimSSMLinSDE(
 mu0,
  sigma0,
 b,
  a,
  q,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL,
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$. sigma0 Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta|0})$.

SimSSMLinSDE 35

b	Numeric vector. A term which is unobserved and constant over time (b).
a	Numeric matrix. The drift matrix which represents the rate of change of the solution in the absence of any random fluctuations (\mathbf{A}) .
q	Numeric matrix. The matrix of volatility or randomness in the process (\mathbf{Q}) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables ($\pmb{\Lambda}$).
theta	Numeric matrix. The measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y).
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
х	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
delta_t	Numeric. Time interval (δ_t).
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables, $\boldsymbol{\eta}_t$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors, at time t. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$d\boldsymbol{\eta}_t = (\mathbf{b} + \mathbf{A}\boldsymbol{\eta}_t) dt + \mathbf{Q}^{\frac{1}{2}} d\mathbf{W}_t$$

where \mathbf{b} A term which is unobserved and constant over time, \mathbf{A} is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, \mathbf{Q} is the matrix of volatility or randomness in the process, and $\mathrm{d} \boldsymbol{W}$ is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

36 SimSSMLinSDE

The dynamic structure is given by

$$d\boldsymbol{\eta}_t = (\mathbf{b} + \mathbf{A}\boldsymbol{\eta}_t) dt + \boldsymbol{\Gamma}_n \mathbf{x}_t + \mathbf{Q}^{\frac{1}{2}} d\mathbf{W}_t$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\Gamma}_{\mathbf{v}} \mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t}, \text{ with } \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{v}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$d\boldsymbol{\eta}_t = (\mathbf{b} + \mathbf{A}\boldsymbol{\eta}_t) dt + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_t + \boldsymbol{\Sigma}^{\frac{1}{2}} d\mathbf{W}_t.$$

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. data is a list with the following elements:
 - id: A vector of ones of length t.
 - time: A vector of time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()

SimSSMLinSDE 37

```
# prepare parameters
set.seed(42)
p < -k < -2
iden <- diag(p)</pre>
mu0 < -c(-3.0, 1.5)
sigma0 <- iden
a <- matrix(
 data = c(
    -0.10,
    0.05,
    0.05,
    -0.10
  ),
  nrow = p
)
b < -c(0.317, 0.230)
q <- matrix(
  data = c(2.79, 0.06, 0.06, 3.27),
  nrow = p
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta \leftarrow diag(x = 0.50, nrow = k)
delta_t <- 0.10
time <- 1000
burn_in <- 0</pre>
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- matrix(</pre>
  data = rnorm(n = k * (time + burn_in)),
  ncol = k
)
# Type 0
ssm <- SimSSMLinSDE(</pre>
  mu0 = mu0,
  sigma0 = sigma0,
  b = b,
  a = a,
  q = q,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
```

Description

This function simulates data from the Ornstein–Uhlenbeck model using a state space model parameterization.

Usage

```
SimSSMOU(
 mu0,
  sigma0,
 mu,
 phi,
  sigma,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL,
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	Numeric matrix. The matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables ($\pmb{\Lambda}$).
theta	Numeric matrix. The measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t $(\Gamma_{\mathbf{y}}).$
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .

x	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
delta_t	Numeric. Time interval (δ_t).
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \text{ with } \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables, $\boldsymbol{\eta}_t$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors, at time t. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_t$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$\mathrm{d} oldsymbol{\eta}_t = oldsymbol{\Phi} \left(oldsymbol{\mu} - oldsymbol{\eta}_t
ight) \mathrm{d} t + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_t + oldsymbol{\Sigma}^{rac{1}{2}} \mathrm{d} \mathbf{W}_t$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\Gamma}_{\mathbf{y}} \mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{y}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$d\boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) dt + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_t + \boldsymbol{\Sigma}^{\frac{1}{2}} d\mathbf{W}_t.$$

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. data is a list with the following elements:
 - id: A vector of ones of length t.
 - time: A vector of time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

```
Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()
```

```
# prepare parameters
set.seed(42)
p <- k <- 2
iden <- diag(p)
mu0 <- c(-3.0, 1.5)
sigma0 <- iden
mu <- c(5.76, 5.18)
phi <- matrix(
   data = c(0.10, -0.05, -0.05, 0.10),
   nrow = p
)
sigma <- matrix(
   data = c(2.79, 0.06, 0.06, 3.27),
   nrow = p
)</pre>
```

```
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta \leftarrow diag(x = 0.50, nrow = k)
delta_t <- 0.10
time <- 1000
burn_in <- 0</pre>
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- matrix(</pre>
 data = rnorm(n = k * (time + burn_in)),
 ncol = k
)
# Type 0
ssm <- SimSSMOU(
 mu0 = mu0,
  sigma0 = sigma0,
 mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
plot(ssm)
# Type 1
ssm <- SimSSMOU(
 mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSMOU(
 mu0 = mu0,
```

```
sigma0 = sigma0,
 mu = mu,
 phi = phi,
 sigma = sigma,
 nu = nu,
 lambda = lambda,
 theta = theta,
 gamma_y = gamma_y,
 gamma_eta = gamma_eta,
 x = x,
 type = 2,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
)
plot(ssm)
```

SimSSMOUFixed

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMOUFixed(
 n,
 mu0,
  sigma0,
 mu,
 phi,
  sigma,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
 gamma_eta = NULL,
  x = NULL
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	Numeric matrix. The matrix of volatility or randomness in the process (Σ).
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ).
theta	Numeric matrix. The measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y).
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
Х	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
delta_t	Numeric. Time interval (δ_t).
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables, $\eta_{i,t}$ is a vector of latent random variables, and $\varepsilon_{i,t}$ is a vector of random measurement errors, at time t and individual i. ν is a vector of intercepts, Λ is a matrix of factor loadings, and Θ is the covariance matrix of ε .

The dynamic structure is given by

$$\mathrm{d}oldsymbol{\eta}_{i,t} = oldsymbol{\Phi}\left(oldsymbol{\mu} - oldsymbol{\eta}_{i,t}
ight)\mathrm{d}t + oldsymbol{\Sigma}^{rac{1}{2}}\mathrm{d}\mathbf{W}_{i,t}$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$\mathrm{d} \boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t} \right) \mathrm{d} t + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \mathbf{\Gamma}_{\mathbf{y}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}\right)$$

where $\Gamma_{\mathbf{y}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi}\left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}.$$

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SVAR(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()

```
# prepare parameters
set.seed(42)
p < -k < -2
iden <- diag(p)</pre>
n <- 5
mu0 < -c(-3.0, 1.5)
sigma0 <- iden
mu < -c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma <- matrix(</pre>
  data = c(2.79, 0.06, 0.06, 3.27),
 nrow = p
nu < -rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta \leftarrow diag(x = 0.50, nrow = k)
delta_t <- 0.10
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- lapply(
 X = seq_len(n),
 FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
 }
)
# Type 0
ssm <- SimSSMOUFixed(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  delta_t = delta_t,
```

```
time = time,
 burn_in = burn_in
)
plot(ssm)
# Type 1
ssm <- SimSSMOUFixed(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSMOUFixed(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  type = 2,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
```

SimSSMOUIVary

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Individual-Varying Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMOUIVary(
 n,
 mu0,
  sigma0,
 mu,
 phi,
  sigma,
  nu,
  lambda,
  theta,
  gamma_y = NULL,
  gamma_eta = NULL,
 x = NULL
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
mu	List of numeric vectors. Each element of the list is the long-term mean or equilibrium level (μ) .
phi	List of numeric matrices. Each element of the list is the rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma	List of numeric matrices. Each element of the list is the matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ).
theta	Numeric matrix. The measurement error covariance matrix (Θ) .

gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t $(\Gamma_{\mathbf{y}}).$
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
X	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type. See Details for more information.
delta_t	Numeric. Time interval (δ_t) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0, mu, phi, sigma, nu, lambda, theta, gamma_y, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMVAR(), SimSSMVARFixed(), SimSSMVARIVary()

```
# prepare parameters
# In this example, phi varies across individuals
set.seed(42)
p <- k <- 2
iden <- diag(p)</pre>
n <- 5
mu0 <- list(c(-3.0, 1.5))
sigma0 <- list(iden)</pre>
mu \leftarrow list(c(5.76, 5.18))
phi <- list(</pre>
  as.matrix(Matrix::expm(diag(x = -0.1, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.2, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.3, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.4, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.5, nrow = k)))
)
sigma <- list(</pre>
  matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
nu \leftarrow list(rep(x = 0, times = k))
lambda <- list(diag(k))</pre>
theta \leftarrow list(diag(x = 0.50, nrow = k))
delta_t <- 0.10
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- list(0.10 * diag(k))</pre>
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
 }
)
# Type 0
ssm <- SimSSMOUIVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
```

```
sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 1
ssm <- SimSSMOUIVary(</pre>
 n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# Type 2
ssm <- SimSSMOUIVary(</pre>
 n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  mu = mu,
  phi = phi,
  sigma = sigma,
  nu = nu,
  lambda = lambda,
  theta = theta,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  type = 2,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
```

SimSSMVAR 51

```
plot(ssm)
```

SimSSMVAR Simulate Data from the Vector Autoregressive Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the vector autoregressive model using a state space model parameterization.

Usage

```
SimSSMVAR(
  mu0,
  sigma0,
  alpha,
  beta,
  psi,
  gamma_eta = NULL,
  x = NULL,
  time = 0,
  burn_in = 0
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\mathbf{\Sigma}_{oldsymbol{\eta} 0}).$
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time t – 1 to those at time t (β).
psi	Numeric matrix. The process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
Х	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

52 SimSSMVAR

Details

The measurement model is given by

$$\mathbf{y}_t = \boldsymbol{\eta}_t$$
.

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t, \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t, η_{t-1} , and ζ_t are random variables, and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at time t-1, and ζ_t is a vector of dynamic noise at time t. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Note that when gamma_eta and x are not NULL, the dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_t + oldsymbol{\zeta}_t, \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. data is a list with the following elements:
 - id: A vector of ones of length t.
 - time: A vector of time points of length t.
 - y: A t by k matrix of values for the manifest variables.
 - eta: A t by p matrix of values for the latent variables.
 - x: A t by j matrix of values for the covariates.
- fun: Function used.

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMUINSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVARFixed(), SimSSMVARIVary()

SimSSMVARFixed 53

Examples

```
# prepare parameters
set.seed(42)
k <- 3
iden <- diag(k)</pre>
null_vec <- rep(x = 0, times = k)
mu0 <- null_vec</pre>
sigma0 <- iden
alpha <- null_vec
beta \leftarrow diag(x = 0.5, nrow = k)
psi <- iden
time <- 1000
burn_in <- 0
gamma_eta <- 0.10 * diag(k)
x <- matrix(
 data = rnorm(n = k * (time + burn_in)),
  ncol = k
)
# No covariates
ssm <- SimSSMVAR(
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# With covariates
ssm <- SimSSMVAR(
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  gamma_eta = gamma_eta,
  x = x,
  time = time,
  burn_in = burn_in
plot(ssm)
```

SimSSMVARFixed

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

54 SimSSMVARFixed

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMVARFixed(
    n,
    mu0,
    sigma0,
    alpha,
    beta,
    psi,
    gamma_eta = NULL,
    x = NULL,
    time = 0,
    burn_in = 0
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	Numeric matrix. The covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi	Numeric matrix. The process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:

SimSSMVARFixed 55

- id: A vector of ID numbers of length t.
- time: A vector time points of length t.
- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMLinSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARIVary()

```
# prepare parameters
set.seed(42)
k <- 3
iden <- diag(k)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0 <- iden
alpha <- null_vec
beta \leftarrow diag(x = 0.5, nrow = k)
psi <- iden
time <- 50
burn_in <- 0
gamma_eta <- 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
    )
 }
)
```

```
# No covariates
ssm <- SimSSMVARFixed(</pre>
  n = n,
 mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  time = time,
  burn_in = burn_in
)
plot(ssm)
# With covariates
ssm <- SimSSMVARFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
  psi = psi,
  gamma_eta = gamma_eta,
  x = x,
  time = time,
  burn_in = burn_in
plot(ssm)
```

 ${\tt SimSSMVARIVary}$

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Individual-Varying Parameters)

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMVARIVary(
  n,
  mu0,
  sigma0,
  alpha,
  beta,
```

```
psi,
  gamma_eta = NULL,
  x = NULL,
  time = 0,
  burn_in = 0
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	List of numeric vectors. Each element of the list is the mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0	List of numeric matrices. Each element of the list is the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	List of numeric vectors. Each element of the list is the vector of intercepts for the dynamic model (α) .
beta	List of numeric matrices. Each element of the list is the transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi	List of numeric matrices. Each element of the list is the process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0, alpha, beta, psi, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns an object of class simstatespace which is a list with the following elements:

- call: Function call.
- args: Function arguments.
- data: Generated data which is a list of length n. Each element of data is a list with the following elements:
 - id: A vector of ID numbers of length t.
 - time: A vector time points of length t.

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- fun: Function used.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: LinSDE2SSM(), OU2SSM(), OU2SVAR(), OU2VAR(), SimSSM(), SimSSMFixed(), SimSSMIVary(), SimSSMLinGrowth(), SimSSMLinGrowthIVary(), SimSSMUINSDE(), SimSSMOU(), SimSSMOUFixed(), SimSSMOUIVary(), SimSSMVAR(), SimSSMVARFixed()

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- 3
iden <- diag(k)
null\_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- list(null_vec)</pre>
sigma0 <- list(iden)</pre>
alpha <- list(null_vec)</pre>
beta <- list(</pre>
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
)
psi <- list(iden)</pre>
time <- 50
burn_in <- 0</pre>
gamma_eta <- list(0.10 * diag(k))</pre>
x \leftarrow lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
         ncol = k
```

```
)
   )
 }
)
# No covariates
ssm <- SimSSMVARIVary(</pre>
 n = n,
 mu0 = mu0,
 sigma0 = sigma0,
  alpha = alpha,
 beta = beta,
 psi = psi,
 time = time,
 burn_in = burn_in
)
plot(ssm)
# With covariates
ssm <- SimSSMVARIVary(</pre>
 n = n,
 mu0 = mu0,
 sigma0 = sigma0,
  alpha = alpha,
  beta = beta,
 psi = psi,
 gamma_eta = gamma_eta,
 x = x,
 time = time,
 burn_in = burn_in
)
plot(ssm)
```

Index

* Simulation of State Space Models Data	OU2SVAR, 8
Functions	OU2VAR, 10
LinSDE2SSM, 5	SimSSM, 14
OU2SSM, 7	SimSSMFixed, 18
OU2SVAR, 8	SimSSMIVary, 23
OU2VAR, 10	SimSSMLinGrowth, 27
SimSSM, 14	SimSSMLinGrowthIVary, 31
SimSSMFixed, 18	SimSSMLinSDE, 34
SimSSMIVary, 23	SimSSMOU, 38
SimSSMLinGrowth, 27	SimSSMOUFixed, 42
SimSSMLinGrowthIVary, 31	SimSSMOUIVary, 47
SimSSMLinSDE, 34	SimSSMVAR, 51
SimSSMOU, 38	SimSSMVARFixed, 54
SimSSMOUFixed, 42	SimSSMVARIVary, 56
SimSSMOUIVary,47	* sim
SimSSMVAR, 51	LinSDE2SSM, 5
SimSSMVARFixed, 54	OU2SSM, 7
SimSSMVARIVary, 56	OU2SVAR, 8
* growth	OU2VAR, 10
SimSSMLinGrowth, 27	SimSSM, 14
SimSSMLinGrowthIVary, 31	SimSSMFixed, 18
* linsde	SimSSMIVary, 23
LinSDE2SSM, 5	SimSSMLinGrowth, 27
SimSSMLinSDE, 34	SimSSMLinGrowthIVary, 31
* methods	SimSSMLinSDE, 34
$\verb as.data.frame.simstatespace , 2 $	SimSSMOU, 38
as.matrix.simstatespace,4	SimSSMOUFixed, 42
plot.simstatespace, 11	SimSSMOUIVary, 47
print.simstatespace, 13	SimSSMVAR, 51
* ou	SimSSMVARFixed, 54
0U2SSM, 7	SimSSMVARIVary, 56
OU2SVAR, 8	* ssm
OU2VAR, 10	SimSSM, 14
SimSSMOU, 38	SimSSMFixed, 18
SimSSMOUFixed, 42	SimSSMIVary, 23
SimSSMOUIVary, 47	* var
* simStateSpace	SimSSMVAR, 51
LinSDE2SSM, 5	SimSSMVARFixed, 54
OU2SSM, 7	SimSSMVARIVary, 56

INDEX 61

```
as.data.frame.simstatespace, 2
as.matrix.simstatespace, 4
LinSDE2SSM, 5, 8–10, 17, 21, 25, 29, 32, 36,
         40, 45, 49, 52, 55, 58
OU2SSM, 6, 7, 9, 10, 17, 21, 25, 29, 32, 36, 40,
         45, 49, 52, 55, 58
OU2SVAR, 6, 8, 8, 10, 17, 21, 25, 29, 32, 36, 40,
         45, 49, 52, 55, 58
OU2VAR, 6, 8, 9, 10, 17, 21, 25, 29, 32, 36, 40,
         45, 49, 52, 55, 58
plot.default(), 12
plot.simstatespace, 11
print.simstatespace, 13
SimSSM, 6, 8–10, 14, 21, 25, 29, 32, 36, 40, 45,
         49, 52, 55, 58
SimSSMFixed, 6, 8–10, 17, 18, 25, 29, 32, 36,
         40, 45, 49, 52, 55, 58
SimSSMIVary, 6, 8–10, 17, 21, 23, 29, 32, 36,
         40, 45, 49, 52, 55, 58
SimSSMLinGrowth, 6, 8–10, 17, 21, 25, 27, 32,
         36, 40, 45, 49, 52, 55, 58
SimSSMLinGrowthIVary, 6, 8–10, 17, 21, 25,
          29, 31, 36, 40, 45, 49, 52, 55, 58
SimSSMLinSDE, 6, 8–10, 17, 21, 25, 29, 32, 34,
         40, 45, 49, 52, 55, 58
SimSSMOU, 6, 8–10, 17, 21, 25, 29, 32, 36, 38,
         45, 49, 52, 55, 58
SimSSMOUFixed, 6, 8–10, 17, 21, 25, 29, 32,
         36, 40, 42, 49, 52, 55, 58
SimSSMOUIVary, 6, 8–10, 17, 21, 25, 29, 32,
         36, 40, 45, 46, 52, 55, 58
SimSSMVAR, 6, 8–10, 17, 21, 25, 29, 32, 36, 40,
         45, 49, 51, 55, 58
SimSSMVARFixed, 6, 8–10, 17, 21, 25, 29, 32,
         36, 40, 45, 49, 52, 53, 58
SimSSMVARIVary, 6, 8–10, 17, 21, 25, 29, 32,
         36, 40, 45, 49, 52, 55, 56
```