Name	Roll No	
Section		

National University of Computer and Emerging Sciences, Lahore Campus

SEMERGIND SERVES	SERVICE OF COMPANY
09:M3.0	

Course: Information Retrieval
Program: BS(Computer Science)
Duration: 25 Minutes
Paper Date: 3-Sept-18

Paper Date: 3-Section: B

Exam: Quiz 1

Course Code: CS317
Semester: Fall 2019
Total Marks: 10

Weight 3.3% Page(s): 2 Roll No:

Question 1 [4 marks]

Let V = Vocabulory size,

N= Total number of documents

AveD = Average Document Length

|q| = query length

|posting| = length of posting list of a word

Write time and space complexity of different indexing methods in this table.

	Forward Index	Inverted Index
Time Complexity for relevant document retrieval	q *N * AveD	q * posting OR constant OR q
space Complexity		
	N * AveD	N * AveD

Question 2

Suppose a company needs to store large number of financial figures. The value of numbers range from 1 to 7. Which of the following two options will be more space efficient for encoding these numbers. **Why?** [2 Mark]

- a) Elias Gamma Encoding
- b) 8 bit Fixed Length Encoding

Solution

Elias Gamma is more space efficient since largest number is 7 and it will take 5 bits whereas fixed length will assign 8 bits to each number

Name	Roll No	
Section		

Question 3

Decode following into integers using Elias Gamma decoding. [4 Marks]

11100100011001

How many numbers are encoded here?

Solution

4 numbers

1110010 | 0 | 0 | 11001

1110,010 | 0 | 0 | 110,01

First number = 1110010 = 1110,010 = 1010 = 10

Second number = 0 = 1

Third number = 0 = 1

Fourth number = 11001 = 110,01 = 101 = 5

So 4 numbers are 10,1,1,5