

Inverse Problems 1: convolution and deconvolution

Lesson 7: Tikhonov regularization, part I

Luca Ratti September 24, 2019

University of Helsinki

Table of contents

- 1. Review
- 2. Regularization Theory
- 3. Tikhonov regularization
- 4. Tikhonov regularization implementation

Review

Singular Value Decomposition

Linear inverse problems

Deconvolution can be seen as a linear inverse problem:

given $m \in \mathbb{R}^n$, find $f \in \mathbb{R}^n$ such that Af = m, being $A \in \mathbb{R}^{n \times n}$

Singular Value Decomposition

Linear inverse problems

Deconvolution can be seen as a linear inverse problem:

given
$$m \in \mathbb{R}^n$$
, find $f \in \mathbb{R}^n$ such that $Af = m$, being $A \in \mathbb{R}^{n \times n}$

Singular Value Decomposition is a tool to analyze the well-posedness of a linear inverse problem:

Singular Value Decomposition

$$A = UDV^{T}$$

$$U, V \text{ orthogonal matrices } (U^{T} = UU^{T} = V^{T}V = VV^{T} = I),$$

$$D = diag\{d_{1}, \dots, d_{n}\}, \qquad d_{1} \geq d_{2} \geq \dots \geq d_{n}$$

Singular Value Decomposition

Linear inverse problems

Deconvolution can be seen as a linear inverse problem:

given $m \in \mathbb{R}^n$, find $f \in \mathbb{R}^n$ such that Af = m, being $A \in \mathbb{R}^{n \times n}$

Singular Value Decomposition is a tool to analyze the well-posedness of a linear inverse problem:

Singular Value Decomposition

$$A = UDV^{T}$$

$$U, V \text{ orthogonal matrices } (U^{T} = UU^{T} = V^{T}V = VV^{T} = I),$$

$$D = diag\{d_{1}, \dots, d_{n}\}, \qquad d_{1} \geq d_{2} \geq \dots \geq d_{n}$$

- if $d_n > 0$, the problem is well posed: $\forall m \in \mathbb{R}^n \exists ! f \in \mathbb{R}^n$ s.t. Af = m. Moreover, $f = A^{-1}m$ and $||f f_{\delta}|| \le ||A^{-1}|| ||m m_{\delta}||$.
- if $d_r > 0$ and $d_{r+1} = \ldots = d_n = 0$, then existence, uniqueness and stability fail.

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n\times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n\to\infty$, A converges to \mathcal{A} (in a suitable sense).

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n\times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n\to\infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n \times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n \to \infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

• The approximation by discretization causes "stabilty". In theory, for the discretized problem in \mathbb{R}^n , $d_n > 0$.

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n \times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n \to \infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

- The approximation by discretization causes "stabilty". In theory, for the discretized problem in \mathbb{R}^n , $d_n > 0$.
- The approximation of \mathcal{A} implies that $d_n \to 0$ as $n \to \infty$.

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n \times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n \to \infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

- The approximation by discretization causes "stabilty". In theory, for the discretized problem in \mathbb{R}^n , $d_n > 0$.
- The approximation of \mathcal{A} implies that $d_n \to 0$ as $n \to \infty$.
- The arithmetric of the computer is finite: if d_n is too small, it is indistinguishable from 0 (machine epsilon)

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n\times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n\to\infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

- The approximation by discretization causes "stabilty". In theory, for the discretized problem in \mathbb{R}^n , $d_n > 0$.
- The approximation of \mathcal{A} implies that $d_n \to 0$ as $n \to \infty$.
- The arithmetric of the computer is finite: if d_n is too small, it is indistinguishable from 0 (machine epsilon)

Conclusions

The matrix A is, in theory, always invertible. Nevertheless, $||A^{-1}|| = \frac{1}{d_n} \to \infty$ as $n \to \infty \Rightarrow$ ill-conditioning.

Main issue

The convolution matrix is an approximation in $\mathbb{R}^{n \times n}$ of a continuous operator \mathcal{A} operating on real-valued function. As $n \to \infty$, A converges to \mathcal{A} (in a suitable sense). The operator \mathcal{A} is associated to an ill-posed problem

- The approximation by discretization causes "stabilty". In theory, for the discretized problem in \mathbb{R}^n , $d_n > 0$.
- The approximation of \mathcal{A} implies that $d_n \to 0$ as $n \to \infty$.
- The arithmetric of the computer is finite: if d_n is too small, it is indistinguishable from 0 (machine epsilon)

Conclusions

The matrix A is, in theory, always invertible. Nevertheless, $\|A^{-1}\| = \frac{1}{d_n} \to \infty$ as $n \to \infty \Rightarrow$ ill-conditioning. For large n, due to finite precision, $d_n = 0$. \Rightarrow ill-posedness.

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$

Solution

Problem

$$f = A^{-1}m$$

find f s.t. Af = m

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$
Solution
$$f = A^{-1}m$$
Find f s.t. $Af = m$

$$f^{+} = A^{+}m$$

$$f^{+} = \underset{g \in \mathbb{R}^{n}}{arg \min\{\|g\|, g \in arg \min\{\|Ah - m\|\}\}}$$

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$
Solution
$$f = A^{-1}m$$
Find f s.t. $Af = m$

$$f^{+} = A^{+}m$$

$$f^{+} = \underset{g \in \mathbb{R}^{n}}{\min\{\|g\|, g \in \underset{h \in \mathbb{R}^{n}}{\min\{\|Ah - m\|\}\}}}$$

 the first problem can be ill-posed, the second one is always well-posed

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$
Solution
$$f = A^{-1}m$$
Find
$$f^{+} = A^{+}m$$

$$f^{+} = \underset{g \in \mathbb{R}^{n}}{\min\{\|g\|, g \in \underset{h \in \mathbb{R}^{n}}{\min\{\|Ah - m\|\}\}}}$$

- the first problem can be ill-posed, the second one is always well-posed
- if A is invertible, $A^{-1} = A^+$ (the second problem is a generalization of the first one)

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$
Solution
$$f = A^{-1}m$$
Find f s.t. $Af = m$

$$f^{+} = \underset{g \in \mathbb{R}^{n}}{\min\{\|g\|, g \in \underset{h \in \mathbb{R}^{n}}{\arg\min\{\|Ah - m\|\}\}}}$$

- the first problem can be ill-posed, the second one is always well-posed
- if A is invertible, $A^{-1} = A^+$ (the second problem is a generalization of the first one)
- even the second problem can be ill-conditioned: $||A^+|| = \frac{1}{d_r}$ can be very large

The cure of ill-posedness is represented by the pseudoinverse:

$$A^{+} = VD^{+}U^{T}, \quad D^{+} = diag\left(\frac{1}{d_{1}}, \dots, \frac{1}{d_{r}}, 0, \dots, 0\right)$$
Solution
$$Problem$$

$$f = A^{-1}m$$
find f s.t. $Af = m$

find
$$f^+ = A^+ m \qquad \qquad f^+ = \underset{g \in \mathbb{R}^n}{\arg\min}\{\|g\|, g \in \underset{h \in \mathbb{R}^n}{\arg\min}\{\|Ah - m\|\}\}$$

- the first problem can be ill-posed, the second one is always well-posed
- if A is invertible, $A^{-1} = A^+$ (the second problem is a generalization of the first one)
- even the second problem can be ill-conditioned: $||A^+|| = \frac{1}{d_r}$ can be very large

from now on, we will not distinguish between f and f^+

Pseudoinverse - interpretation

If A is not invertible, ill-posedness can be treated by relying on:

Pseudoinverse - interpretation

If A is not invertible, ill-posedness can be treated by relying on:

1. Data fidelity

Existence fails: $range(A) \neq \mathbb{R}^n \Rightarrow \exists m \in \mathbb{R}^n : \exists f \in \mathbb{R}^n : Af = m$ (you might never notice it if you do inverse crime). What to do? Extract any possible information from the data

$$g \in \underset{h \in \mathbb{R}^n}{\arg\min} \{ \|Ah - m\| \}$$

Pseudoinverse - interpretation

If A is not invertible, ill-posedness can be treated by relying on:

1. Data fidelity

Existence fails: $range(A) \neq \mathbb{R}^n \Rightarrow \exists m \in \mathbb{R}^n : \exists f \in \mathbb{R}^n : Af = m$ (you might never notice it if you do inverse crime). What to do? Extract any possible information from the data

$$g \in \underset{h \in \mathbb{R}^n}{\arg\min} \{ \|Ah - m\| \}$$

2. A priori knowledge

Uniqueness fails: $ker(A) \neq \{0\} \Rightarrow \exists k \in \mathbb{R}^n : Af = A(f+k)$. What to do? Use any a priori information at disposal on the solution E.g. the solution is smooth, has a known average, has small norm.

$$f^+ = \underset{g \in \mathbb{R}^n}{\arg\min}\{\|g\|, g \in \underset{h \in \mathbb{R}^n}{\arg\min}\{\|Ah - m\|\}\}$$

Regularization Theory

The theory of Regularization of (linear, finite-dimensional) inverse problems is based on:

The theory of Regularization of (linear, finite-dimensional) inverse problems is based on:

1. a family of regularization functionals $R_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ varying with $\alpha > 0$ s.t.

$$R_{\alpha}m \to A^+m$$
 as $\alpha \to 0$, $\forall m \in \mathbb{R}^n$.

We will mainly focus on linear regularization functionals, which can therefore be represented by a matrix in $\mathbb{R}^{n \times n}$.

The theory of Regularization of (linear, finite-dimensional) inverse problems is based on:

1. a family of regularization functionals $R_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ varying with $\alpha > 0$ s.t.

$$R_{\alpha}m \to A^+m$$
 as $\alpha \to 0$, $\forall m \in \mathbb{R}^n$.

We will mainly focus on linear regularization functionals, which can therefore be represented by a matrix in $\mathbb{R}^{n \times n}$.

2. a suitable parameter choice rule $\alpha = \alpha(\delta)$ ensuring

$$R_{\alpha(\delta)}m_{\delta} \to A^+m$$
 as $\delta \to 0$, $\forall m_{\delta} : \|m_{\delta} - m\| \le \delta$, $\forall m \in \mathbb{R}^n$

The theory of Regularization of (linear, finite-dimensional) inverse problems is based on:

1. a family of regularization functionals $R_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ varying with $\alpha > 0$ s.t.

$$R_{\alpha}m \to A^+m$$
 as $\alpha \to 0$, $\forall m \in \mathbb{R}^n$.

We will mainly focus on linear regularization functionals, which can therefore be represented by a matrix in $\mathbb{R}^{n \times n}$.

2. a suitable parameter choice rule $\alpha = \alpha(\delta)$ ensuring

$$R_{\alpha(\delta)}m_{\delta} \to A^+ m$$
 as $\delta \to 0$, $\forall m_{\delta} : ||m_{\delta} - m|| \le \delta$, $\forall m \in \mathbb{R}^n$

A desirable property is that R_{α} are better-conditioned than A^+ :

$$||R_{\alpha}|| \le ||A^+|| \quad \forall \alpha > 0$$

The theory of Regularization of (linear, finite-dimensional) inverse problems is based on:

1. a family of regularization functionals $R_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ varying with $\alpha > 0$ s.t.

$$R_{\alpha}m \to A^+m$$
 as $\alpha \to 0$, $\forall m \in \mathbb{R}^n$.

We will mainly focus on linear regularization functionals, which can therefore be represented by a matrix in $\mathbb{R}^{n \times n}$.

2. a suitable parameter choice rule $\alpha = \alpha(\delta)$ ensuring

$$R_{\alpha(\delta)}m_{\delta} \to A^+ m$$
 as $\delta \to 0$, $\forall m_{\delta} : ||m_{\delta} - m|| \le \delta$, $\forall m \in \mathbb{R}^n$

A desirable property is that R_{α} are better-conditioned than A^+ :

$$||R_{\alpha}|| \le ||A^+|| \quad \forall \alpha > 0$$

Remark: a parameter choice $\alpha = \alpha(\delta)$ is defined a priori, since it holds for any m and any perturbation m_{δ} . We will focus more on a posteriori (heuristic) rules $\alpha = \alpha(\delta, m_{\delta})$.

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

$$\|f^+ - A^+ m_\delta\| \le \|A^+\|\delta, \quad \|f^+ - R_\alpha m_\delta\| \le \|f^+ - R_\alpha m\| + \|R_\alpha\|\delta.$$

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

Graphical interpretation

Compute $f_{\alpha,\delta}=R_{\alpha}m_{\delta}$ instead of $f_{\delta}=A^+m_{\delta}$. Error bound for the approximation of $f=f^+=A^+m$ (remember $\|m-m_{\delta}\|\leq \delta$):

$$||f^+ - A^+ m_\delta|| \le ||A^+||\delta, \quad ||f^+ - R_\alpha m_\delta|| \le ||f^+ - R_\alpha m|| + ||R_\alpha||\delta.$$

Tikhonov regularization consists in a specific choice of the regularization functionals, denoted by T_{α} .

Tikhonov regularization consists in a specific choice of the regularization functionals, denoted by T_{α} .

Motivation: the pseudoinverse relies on a combination of data fidelity (minimize ||Af - m||) and a priori knowledge (in particular, minimize ||f||).

Tikhonov regularization consists in a specific choice of the regularization functionals, denoted by T_{α} .

Motivation: the pseudoinverse relies on a combination of data fidelity (minimize ||Af - m||) and a priori knowledge (in particular, minimize ||f||).

Tikhonov regularization

$$T_{\alpha}m = \underset{f \in \mathbb{R}^n}{\arg\min} \{ \|Af - m\|^2 + \alpha \|f\|^2 \}$$

Tikhonov regularization consists in a specific choice of the regularization functionals, denoted by T_{α} .

Motivation: the pseudoinverse relies on a combination of data fidelity (minimize ||Af - m||) and a priori knowledge (in particular, minimize ||f||).

Tikhonov regularization

$$T_{\alpha}m = \underset{f \in \mathbb{R}^n}{\arg\min} \{ \|Af - m\|^2 + \alpha \|f\|^2 \}$$

Our goals:

- find an explicit expression for the matrix representing T_{α} ;
- · check that this choice is a regularization strategy;
- · implement and see the benefits of regularization.

A first explicit expression

Theorem

Let $A = UDV^T$, being U, V orthogonal matrices and $D = diag(d_1, \ldots, d_n)$, such that $d_1 \ge \ldots \ge d_n$. Suppose that $\exists r \le n$: $d_r > 0$ and $d_{r+1} = \ldots = d_n = 0$. Let

$$\mathcal{D}_{\alpha}^{+} = diag\left(\frac{d_1}{d_1^2 + \alpha}, \dots, \frac{d_n}{d_n^2 + \alpha}\right).$$

Then, $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{T}$

A first explicit expression

Theorem

Let $A = UDV^T$, being U, V orthogonal matrices and $D = diag(d_1, \ldots, d_n)$, such that $d_1 \ge \ldots \ge d_n$. Suppose that $\exists r \le n$: $d_r > 0$ and $d_{r+1} = \ldots = d_n = 0$. Let

$$\mathcal{D}_{\alpha}^{+} = diag\left(\frac{d_1}{d_1^2 + \alpha}, \dots, \frac{d_n}{d_n^2 + \alpha}\right).$$

Then, $T_{\alpha} = V \mathcal{D}_{\alpha}^+ U^{\mathsf{T}}$

Preliminary remarks:

- · in case $d_k = 0$, then $\frac{d_k}{d_k^2 + \alpha} = 0$;
- if $\alpha \to 0$ and $d_k \neq 0$, $\frac{d_k}{d_k^2 + \alpha} \to \frac{1}{d_k}$;

A first explicit expression

Theorem

Let $A = UDV^T$, being U, V orthogonal matrices and $D = diag(d_1, \ldots, d_n)$, such that $d_1 \ge \ldots \ge d_n$. Suppose that $\exists r \le n$: $d_r > 0$ and $d_{r+1} = \ldots = d_n = 0$. Let

$$\mathcal{D}_{\alpha}^{+} = diag\left(\frac{d_1}{d_1^2 + \alpha}, \dots, \frac{d_n}{d_n^2 + \alpha}\right).$$

Then, $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{\mathsf{T}}$

Comparison with TSVD:

we use a different manipulation on the singular values:

$$d_{\alpha}^{Tikh}(d) = \frac{d}{d^2 + \alpha}$$
,

whereas in TSVD we have:

$$d_{\alpha}^{TSVD}(d) = \frac{1}{d}\chi_{(\alpha,\infty)}(d)$$

• Since the matrix V is orthogonal, its columns consist in an orthonormal basis of \mathbb{R}^n . Hence, every vector $f \in \mathbb{R}^n$ can be expressed as f = Va, being $a \in \mathbb{R}^n$.

- Since the matrix V is orthogonal, its columns consist in an orthonormal basis of \mathbb{R}^n . Hence, every vector $f \in \mathbb{R}^n$ can be expressed as f = Va, being $a \in \mathbb{R}^n$.
- Let $T_{\alpha}m = Va^*$. Then, we can reformulate Tikhonov regularization as follows: find

$$a^* = \underset{a \in \mathbb{R}^n}{\operatorname{arg\,min}} \{ \|AVa - m\|^2 + \alpha \|Va\|^2 \}$$

- Since the matrix V is orthogonal, its columns consist in an orthonormal basis of \mathbb{R}^n . Hence, every vector $f \in \mathbb{R}^n$ can be expressed as f = Va, being $a \in \mathbb{R}^n$.
- Let $T_{\alpha}m = Va^*$. Then, we can reformulate Tikhonov regularization as follows: find

$$a^* = \underset{a \in \mathbb{R}^n}{\arg \min} \{ \|AVa - m\|^2 + \alpha \|Va\|^2 \}$$

• By the orthogonality of *U* and *V*, we notice that

$$||AVa - m||^2 + \alpha ||Va||^2 = ||UDV^TVa - m||^2 + \alpha a^T V^TVa$$

= $||UDa - UU^Tm||^2 + \alpha ||a||^2 = ||Da - U^Tm||^2 + \alpha ||a||^2$
= $||Da - m'||^2 + \alpha ||a||^2$,

where we have defined $m' = U^T m$.

$$||Da - m'||^2 + \alpha ||a||^2 = \sum_{j=1}^n (d_j a_j - m'_j)^2 + \alpha \sum_{j=1}^n a_j^2$$

$$||Da - m'||^2 + \alpha ||a||^2 = \sum_{j=1}^n (d_j a_j - m'_j)^2 + \alpha \sum_{j=i}^n a_j^2$$

$$= \sum_{j=1}^r (d_j^2 a_j^2 - 2d_j a_j m'_j + m'_j^2) + \sum_{j=r+1}^n m'_j^2 + \alpha \sum_{j=1}^n a_j^2$$

$$||Da - m'||^2 + \alpha ||a||^2 = \sum_{j=1}^n (d_j a_j - m'_j)^2 + \alpha \sum_{j=i}^n a_j^2$$

$$= \sum_{j=1}^r (d_j^2 a_j^2 - 2d_j a_j m'_j + m'_j^2) + \sum_{j=r+1}^n m'_j^2 + \alpha \sum_{j=1}^n a_j^2$$

$$= \sum_{j=1}^r \left((d_j^2 + \alpha) a_j^2 - 2d_j a_j m'_j \right) + \alpha \sum_{j=r+1}^n a_j^2 + \sum_{j=1}^n m'_j^2$$

$$||Da - m'||^{2} + \alpha ||a||^{2} = \sum_{j=1}^{n} (d_{j}a_{j} - m'_{j})^{2} + \alpha \sum_{j=i}^{n} a_{j}^{2}$$

$$= \sum_{j=1}^{r} (d_{j}^{2}a_{j}^{2} - 2d_{j}a_{j}m'_{j} + m'_{j}^{2}) + \sum_{j=r+1}^{n} m'_{j}^{2} + \alpha \sum_{j=1}^{n} a_{j}^{2}$$

$$= \sum_{j=1}^{r} \left((d_{j}^{2} + \alpha)a_{j}^{2} - 2d_{j}a_{j}m'_{j} \right) + \alpha \sum_{j=r+1}^{n} a_{j}^{2} + \sum_{j=1}^{n} m'_{j}^{2}$$

$$= \sum_{j=1}^{r} (d_{j}^{2} + \alpha) \left(a_{j}^{2} - 2\frac{d_{j}a_{j}m'_{j}}{d_{j}^{2} + \alpha} \right) + \alpha \sum_{j=r+1}^{n} a_{j}^{2} + \sum_{j=1}^{n} m'_{j}^{2}$$

$$\begin{split} \|Da - m'\|^2 + \alpha \|a\|^2 &= \sum_{j=1}^{n} (d_j a_j - m'_j)^2 + \alpha \sum_{j=i}^{n} a_j^2 \\ &= \sum_{j=1}^{r} (d_j^2 a_j^2 - 2d_j a_j m'_j + m'_j^2) + \sum_{j=r+1}^{n} m'_j^2 + \alpha \sum_{j=1}^{n} a_j^2 \\ &= \sum_{j=1}^{r} \left((d_j^2 + \alpha) a_j^2 - 2d_j a_j m'_j \right) + \alpha \sum_{j=r+1}^{n} a_j^2 + \sum_{j=1}^{n} m'_j^2 \\ &= \sum_{j=1}^{r} (d_j^2 + \alpha) \left(a_j^2 - 2\frac{d_j a_j m'_j}{d_j^2 + \alpha} \right) + \alpha \sum_{j=r+1}^{n} a_j^2 + \sum_{j=1}^{n} m'_j^2 \\ &= \sum_{j=1}^{r} (d_j^2 + \alpha) \left(a_j - \frac{d_j m'_j}{d_j^2 + \alpha} \right)^2 - \sum_{j=1}^{r} \frac{d_j^2 m'_j^2}{(d_j^2 + \alpha)^2} + \alpha \sum_{j=r+1}^{n} a_j^2 + \sum_{j=1}^{n} m'_j^2 \end{split}$$

• We are looking for a vector $a^* \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{r} (d_j^2 + \alpha) \left(a_j - \frac{d_j m_j'}{d_j^2 + \alpha} \right)^2 + \alpha \sum_{j=r+1}^{n} a_j^2 + R(D, m', \alpha),$$

where we collected in $R(D, m', \alpha)$ all the terms independent of a.

• We are looking for a vector $a^* \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{r} (d_j^2 + \alpha) \left(a_j - \frac{d_j m_j'}{d_j^2 + \alpha} \right)^2 + \alpha \sum_{j=r+1}^{n} a_j^2 + R(D, m', \alpha),$$

where we collected in $R(D, m', \alpha)$ all the terms independent of a.

· The solution can be computed by hand selecting

$$a_j = \frac{d_j m_j'}{d_j^2 + \alpha}$$
 for $j = 1, \dots, r;$ $a_j = 0$ for $j = r + 1, \dots, n;$

the first formula can be used in both cases $(d_{r+1} = \ldots = d_n = 0)$.

• We are looking for a vector $a^* \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{r} (d_j^2 + \alpha) \left(a_j - \frac{d_j m_j'}{d_j^2 + \alpha} \right)^2 + \alpha \sum_{j=r+1}^{n} a_j^2 + R(D, m', \alpha),$$

where we collected in $R(D, m', \alpha)$ all the terms independent of a.

· The solution can be computed by hand selecting

$$a_j = \frac{d_j m_j'}{d_j^2 + \alpha}$$
 for $j = 1, \dots, r;$ $a_j = 0$ for $j = r + 1, \dots, n;$

the first formula can be used in both cases $(d_{r+1} = \ldots = d_n = 0)$.

· We conclude $a^* = \mathcal{D}_{\alpha}^+ m' = \mathcal{D}_{\alpha}^+ U^{\mathsf{T}} m$, hence $T_{\alpha} m = V \mathcal{D}_{\alpha}^+ U^{\mathsf{T}} m$.

Employing the explicit representation $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{T}$, we are able to prove the following results:

Employing the explicit representation $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{T}$, we are able to prove the following results:

• the matrix T_{α} is better-conditioned than A^+ . Indeed,

$$||T_{\alpha}|| = \frac{d_r}{d_r^2 + \alpha} \le \frac{1}{d_r};$$

Employing the explicit representation $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{T}$, we are able to prove the following results:

• the matrix T_{α} is better-conditioned than A^+ . Indeed,

$$||T_{\alpha}|| = \frac{d_r}{d_r^2 + \alpha} \le \frac{1}{d_r};$$

• the operators T_{α} are regularization operators. Indeed,

$$||T_{\alpha}m-f^+|| \leq \frac{\alpha}{d_r(d_r^2+\alpha)}||m||,$$

hence, for any $m \in \mathbb{R}^n$, $T_\alpha \to A^+$ as $\alpha \to 0$.

Employing the explicit representation $T_{\alpha} = V \mathcal{D}_{\alpha}^{+} U^{T}$, we are able to prove the following results:

• the matrix T_{α} is better-conditioned than A⁺. Indeed,

$$||T_{\alpha}|| = \frac{d_r}{d_r^2 + \alpha} \le \frac{1}{d_r};$$

• the operators T_{α} are regularization operators. Indeed,

$$||T_{\alpha}m-f^+|| \leq \frac{\alpha}{d_r(d_r^2+\alpha)}||m||,$$

hence, for any $m \in \mathbb{R}^n$, $T_\alpha \to A^+$ as $\alpha \to 0$.

• an a priori parameter choice is available for α , but we are not interested on it (theoretically demanding, sub-optimal with respect to the a posteriori rules we will learn)

Tikhonov regularization - implementation

Implementation

Example

1. Set n = 200. Define in Matlab the signal $f \in \mathbb{R}^n$ such that:

$$f = \begin{cases} 1 & \text{if } n_1 \le n \le n_2, \\ 3\frac{n - n_3}{n_4 - n_3} & \text{if } n_3 \le n \le n_4, \\ -1 - \cos\left(\frac{2\pi n}{n_6 - n_5}\right) & \text{if } n_5 \le n \le n_6, \end{cases}$$

being
$$n_1 = 2\lfloor \frac{n}{15} \rfloor$$
, $n_2 = 3\lfloor \frac{n}{15} \rfloor$, $n_3 = 4\lfloor \frac{n}{15} \rfloor$, $n_4 = 8\lfloor \frac{n}{15} \rfloor$, $n_5 = 10\lfloor \frac{n}{15} \rfloor$, $n_6 = 14\lfloor \frac{n}{15} \rfloor$.

Implementation

Example

1. Set n=200. Define in Matlab the signal $f \in \mathbb{R}^n$ such that:

$$f = \begin{cases} 1 & \text{if } n_1 \le n \le n_2, \\ 3\frac{n - n_3}{n_4 - n_3} & \text{if } n_3 \le n \le n_4, \\ -1 - \cos\left(\frac{2\pi n}{n_6 - n_5}\right) & \text{if } n_5 \le n \le n_6, \end{cases}$$

being

$$n_1 = 2\lfloor \frac{n}{15} \rfloor, n_2 = 3\lfloor \frac{n}{15} \rfloor, n_3 = 4\lfloor \frac{n}{15} \rfloor, n_4 = 8\lfloor \frac{n}{15} \rfloor, n_5 = 10\lfloor \frac{n}{15} \rfloor, n_6 = 14\lfloor \frac{n}{15} \rfloor.$$

Implementation

Example

- 2. Define the point spread function by normalizing the vector [1, 4, 8, 16, 19, 15, 10, 7, 1]. Create the convolution matrix associated to the zero-padding case.
- 3. Generate the noisy measurement $m_{\delta} = Af + \delta r$, being r a Gaussian random vector of n dimensions, ||r|| = 1. Consider $\delta = 10^{-5}$.
- 4. Compute the pseudoinverse A^+ of A and find $f_{\delta} = A^+ m_{\delta}$.
- 5. Select $\alpha = 0.1$. Compute T_{α} and find $f_{\alpha,\delta} = T_{\alpha} m_{\delta}$.
- 6. Compare $f_{\alpha,\delta}$ and f_{δ} by graphical inspection and by computing their normalized error with respect to $f^+ = f$.
- 7. Repeat the previous experiment with the following couples (δ, α) : $(10^{-5}, 10), (10^{-5}, 10^{-6}), (10^{-5}, 10^{-14}); (10^{-1}, 0.1), (10^{-3}, 0.1), (10^{-8}, 0.1).$

Results interpretation

