Logic for Computer Science 2020-2021	Alexandru Ioa	n Cuza	University

Soundness

Like natural deduction, resolution is sound. This section shows that this is indeed the case.

Lemma 148. Let $\varphi \in \{\varphi_1, \dots, \varphi_n\}$. We have that

$$\varphi_1, \dots \varphi_n \models \varphi.$$

Exercise 149. Prove Lemma 148.

Lemma 150. Let C, D be two clauses and let $a \in A$ be a propositional variable. We have that $C \cup \{a\}, D \cup \{\neg a\} \models C \vee D.$

Exercise 151. Prove Lemma 150.

Theorem 152 (Soundness of Resolution). If there is a proof by resolution of φ from $\varphi_1, \ldots, \varphi_n$, then

$$\varphi_1, \ldots, \varphi_n \models \varphi.$$

Proof: Let ψ_1, \ldots, ψ_m be a proof by resolution of φ from $\varphi_1, \ldots, \varphi_n$.

We will prove by induction on $i \in \{1, 2, ..., m\}$ that

$$\varphi_1,\ldots,\varphi_n\models\psi_i.$$

Let $i \in \{1, 2, \dots, m\}$ be an integer. We assume by the induction hypothesis that

$$\varphi_1, \ldots, \varphi_n \models \psi_l \text{ for any } l \in \{1, 2, \ldots, i-1\}$$

and we prove that

$$\varphi_1,\ldots,\varphi_n\models\psi_i.$$

By the definition of a formal proof by resolution, we must be in one of the following two cases:

1. $\psi_i \in \{\varphi_1, \dots, \varphi_n\}$. In this case we have

$$\varphi_1,\ldots,\varphi_n\models\psi_i$$

by Lemma 148, which is what we had to show.

2. ψ_i was obtained by resolution from ψ_j, ψ_k with $1 \leq j, k < i$. In this case, ψ_j must be of the form $\psi_j = C \cup a$, ψ_k must be of the form $\psi_k = D \cup \{\neg a\}$ and $\psi_i = C \cup D$, where C, D are clauses and $a \in A$ is a propositional variable.

By the induction hypotheses that $\varphi_1, \ldots, \varphi_n \models \psi_j$ and that $\varphi_1, \ldots, \varphi_n \models \psi_k$. Replacing ψ_i and ψ_k as detailed above, we have that

$$\varphi_1, \ldots, \varphi_n \models C \cup \{a\}$$

and that

$$\varphi_1, \ldots, \varphi_n \models D \cup \{\neg a\}.$$

We prove that

$$\varphi_1, \ldots, \varphi_n \models C \cup D.$$

Let τ be a model of φ_1 , ..., and φ_n . We have that τ is a model of $C \cup \{a\}$ and of $D \cup \{\neg a\}$ by the semantical consequences above. By Lemma 150, it follows that τ is a model of $C \cup D$. But $\psi_i = C \cup D$ and therefore τ is a model ψ_i . As τ was any model of all of φ_1 , ..., and φ_n , it follows that

$$\varphi_1, \ldots, \varphi_n \models \psi_i,$$

which is what we had to prove.

In both cases, we have established

$$\varphi_1, \ldots, \varphi_n \models \psi_i$$

for all $1 \le i \le m$. As ψ_1, \dots, ψ_m is a proof of φ , it follows that $\psi_m = \varphi$ and therefore, for i = m, we have

$$\varphi_1,\ldots,\varphi_n\models\varphi,$$

which is what we had to prove.

q.e.d.