THE SPLITTING FIELD OF $X^3 - 6$ OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$K = \mathbf{Q}(\sqrt[3]{6}, \omega),$$

where $\omega = (-1 + \sqrt{-3})/2$ is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

$$k = \mathbf{Q}(\sqrt[3]{6}),$$

$$K = \mathbf{Q}(\sqrt[3]{6}, \omega),$$

$$F = \mathbf{Q}(\omega) = \mathbf{Q}(\sqrt{-3}),$$

$$G = \operatorname{Gal}(K/\mathbf{Q}) \cong S_3,$$

$$N = \operatorname{Gal}(K/F) \cong A_3,$$

$$H = \operatorname{Gal}(K/k).$$

First we work out the basic invariants for the fields F and k.

Theorem 1. The field $F = \mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1, discriminant -3, and unit group $\{\pm 1, \pm \omega, \pm \omega^2\}$. The ramified prime 3 factors as $3 = -(\sqrt{-3})^2$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega] = \mathbf{Z}[X]/(X^2 + X + 1)$ is identical to the way $X^2 + X + 1$ factors mod p, so p splits if $p \equiv 1 \mod 3$ and p stays prime if $p \equiv 2 \mod 3$.

We now turn to the field k.

Since $\operatorname{disc}(\mathbf{Z}[\sqrt[3]{6}]) = -\operatorname{N}_{k/\mathbf{Q}}(3(\sqrt[3]{6})^2) = -3^36^2$, only 2 and 3 can ramify in k. Since $X^3 - 6$ is Eisenstein at 2 and 3, both 2 and 3 are totally ramified: $(2) = \mathfrak{p}_2^3$, $(3) = \mathfrak{p}_3^3$. So $\mathcal{O}_k = \mathbf{Z}[\sqrt[3]{6}]$ and $\operatorname{disc}(\mathcal{O}_k) = -2^23^5$.

The Minkowski bound on k is

$$\frac{3!}{3^3} \left(\frac{4}{\pi}\right) 2 \cdot 3^2 \sqrt{3} \approx 8.82.$$

So we want to factor the primes 2, 3, 5, 7. We already know 2 and 3 are totally ramified. Mod 5, $X^3 - 6 \equiv (X - 1)(X^2 + X + 1)$, so $(5) = \mathfrak{p}_5\mathfrak{p}_5'$, where N $\mathfrak{p}_5 = 5$, N $\mathfrak{p}_5' = 25$. Since $X^3 - 6 \equiv (X + 1)(X + 2)(X - 3)$ mod 7, 7 splits completely.

The norm form for k is

(1)
$$N_{k/\mathbf{Q}}(a+b\sqrt[3]{6}+\sqrt[3]{36}) = a^3+6b^3+36c^3-18abc,$$

so

$$(1+\sqrt[3]{6}) = \mathfrak{p}_7, \quad (-1+\sqrt[3]{6}) = \mathfrak{p}_5, \quad (2+\sqrt[3]{6}) = \mathfrak{p}_2\mathfrak{p}_7', \quad (2-\sqrt[3]{6}) = \mathfrak{p}_2,$$

$$(1+2\sqrt[3]{6}) = (\mathfrak{p}_7'')^2, \quad (3-\sqrt[3]{6}) = \mathfrak{p}_3\mathfrak{p}_7'', \quad (4+\sqrt[3]{6}) = \mathfrak{p}_2\mathfrak{p}_5\mathfrak{p}_7'', \quad (-3+\sqrt[3]{36}) = \mathfrak{p}_3^2.$$

Therefore all prime factors of 2, 3, 5, 7 are principal, so h(k) = 1. The ratio

$$\frac{(2-\sqrt[3]{6})^3}{2} = 1 - 6\sqrt[3]{6} + 3\sqrt[3]{36} \approx .003$$

is a unit, and its reciprocal is

$$u \stackrel{\text{def}}{=} 109 + 60 \sqrt[3]{6} + 33 \sqrt[3]{36} \approx 326.99.$$

The minimal polynomial of $2-\sqrt[3]{6}$ is $T^3+6T^2+12T-2$, while the minimal polynomial of $u \text{ is } T^3 - 327T^2 + 3T - 1.$

Other explicit principal ideals also give rise to u. For instance, \mathfrak{p}_3 is generated by

$$\frac{3}{-3 + \sqrt[3]{36}} = 3 + 2\sqrt[3]{6} + \sqrt[3]{36} \approx 9.9,$$

which has norm 3, and we get a unit > 1 from

$$\frac{(3+2\sqrt[3]{6}+\sqrt[3]{36})^3}{3} = 109+60\sqrt[3]{6}+33\sqrt[3]{36}.$$

The ideal \mathfrak{p}_7'' is generated by

$$\frac{3 - \sqrt[3]{6}}{3 + 2\sqrt[3]{6} + \sqrt[3]{36}} = -5 + \sqrt[3]{6} + \sqrt[3]{36} \approx .119.$$

and also by

$$\frac{4+\sqrt[3]{6}}{(2-\sqrt[3]{6})(-1+\sqrt[3]{6})} = 13+7\sqrt[3]{6}+4\sqrt[3]{36} \approx 38.9$$

So the ratio is a unit of \mathcal{O}_k . To get a unit > 1, we compute

$$\frac{13 + 7\sqrt[3]{6} + 4\sqrt[3]{36}}{-5 + \sqrt[3]{6} + \sqrt[3]{36}} = 109 + 60\sqrt[3]{6} + 33\sqrt[3]{36}$$

It turns out that u is a fundamental unit of \mathcal{O}_k , but [2, Lemma 2] does not apply, since for the fundamental unit $U, U^2 > (3^5 - 7)^{2/3} \approx 38.189$, a lower bound which is too small to conclude $U^2 > u$.

Theorem 2. The fundamental unit of $\mathbb{Z}[\sqrt[3]{6}]$ is $u = 109 + 60\sqrt[3]{6} + 33\sqrt[3]{36}$.

Proof. We follow the same approach as [3, Thm. 2], essentially just replacing 123 in [3] by 327. Write $u = \rho^j$ with $\rho^3 + a\rho^2 + b\rho + c$, c = -1. If $u = \rho^2$ then $327 = a^2 - 2b$, $3 = b^2 + 2a$. Solving for a in the second equation turns the

first one into

$$b^4 - 6b^2 - 8b - 1299 = 0.$$

so $b|1299 = 3 \cdot 433$. No divisor works.

If $u=\rho^3$ then $327=-a^3+3ab+3$ and $3=b^3+3ab+3$, and there is no solution by the same method as in [3].

If $u = \rho^p$ for p an odd prime, then $N_{k/\mathbb{Q}}(\rho+1) = 2-a+b$ is a positive integer which divides $N_{k/\mathbf{Q}}(u+1) = 332 = 2^2 83, N_{k/\mathbf{Q}}(\rho-1) = -a-b$ is a positive integer which divides $N_{k/\mathbf{Q}}(u-1) = 324 = 2^2 3^4$, and

$$327 \equiv -a \mod p$$
, $3 \equiv b \mod p$.

This is the same as

$$2-a+b \equiv 332 \mod p$$
, $-a-b \equiv 324 \mod p$.

Here is the table of values of 2-a+b and -a-b along with the corresponding primes p:

2-a+b	1	2	4	83	166	332
\overline{p}	331	2,3,5,11	2, 41	3,83	2, 83	arb.

-a-b	1	2	3	4	6	9	12	18
p	17, 19	2, 7, 23	3, 107	2, 5	2,3, 53	3, 5, 7	2, 3, 13	2, 3, 17
-a-b	27	36	54	81	108	162	324	
	9 11	2, 3	0.25	2	0.0	0.0	l.	

Following the same procedure as in [3], we eliminate primes $p \geq 7$ by checking the resulting cubic polynomial for a putative ρ has discriminant not divisible by $\operatorname{disc}(\mathcal{O}_k) = 2^2 3^5$ (it also must be a divisor of $\operatorname{disc}(\mathbf{Z}[u]) = -2^4 3^{11} 7^2$, but this won't be needed). We already eliminated p = 2, 3. The prime 5 appears often in the above tables, so we handle it instead by finding a residue field $\mathcal{O}_k/\mathfrak{p} \cong \mathbf{F}_p$ where u is not a fifth power. Choose $p \equiv 1 \mod 5$, say p = 11. Since $X^3 - 6 \equiv (X + 3)(X^2 + 8X + 9) \mod 11$, there is \mathfrak{p} with norm 11. Then

$$u = \rho^5 \Rightarrow u \equiv \rho^5 \mod \mathfrak{p} \equiv \pm 1.$$

However, neither $N_{k/\mathbf{Q}}(u+1)$ nor $N_{k/\mathbf{Q}}(u-1)$ is divisible by 11, so $u \neq \rho^5$.

Theorem 3. The field $k = \mathbf{Q}(\sqrt[3]{6})$ has ring of integers $\mathbf{Z}[\sqrt[3]{6}]$, class number 1, discriminant -2^23^5 , and fundamental unit $u = 109 + 60\sqrt[3]{6} + 33\sqrt[3]{36}$. The ramified primes 2 and 3 factor as

$$2 = (2 - \sqrt[3]{6})^3 u, \quad 3 = \pi^3 v,$$

where $\pi = 3 + 2\sqrt[3]{6} + \sqrt[3]{36}$ and v = 1/u. The minimal polynomial of u over \mathbf{Q} is $T^3 - 327T^2 + 3T - 1$ and of π is $T^3 - 9T^2 - 9T - 3$.

We now turn to K. Following [2],

(2)
$$\operatorname{disc}(K) = \operatorname{disc}(F)\operatorname{disc}(k)^2 = -2^4 3^{11}, \ h(K)R(K) = (h(k)R(k))^2 = (\log u)^2.$$

The prime 3 is totally ramified: $3\mathcal{O}_K = (\eta)^6$, where $\eta \stackrel{\text{def}}{=} \sqrt{-3}/\pi$. The (principal) prime factor of 2 in \mathcal{O}_k remains prime in \mathcal{O}_K : $2\mathcal{O}_K = (2-\sqrt[3]{6})^3$.

As in [2], $\mathcal{O}_K = \mathcal{O}_k \oplus \mathcal{O}_k \theta$, where $\theta \stackrel{\text{def}}{=} (\omega - 1)/\pi$. Since

$$\theta \overline{\theta} = \frac{3}{\pi^2} = \pi v = 3 + 2\sqrt[3]{6} - 2\sqrt[3]{36}, \quad \theta + \overline{\theta} = -\frac{3}{\pi} = -\pi^2 v = 3 - \sqrt[3]{36},$$

the minimal polynomial of θ over k is $f(T) = T^2 - (3 - \sqrt[3]{36})T + (3 + 2\sqrt[3]{6} - 2\sqrt[3]{36})$, so the minimal polynomial of θ over \mathbf{Q} is

$$g(T) = f\sigma(f)\sigma^2(f) = T^6 - 9T^5 + 36T^4 - 81T^3 + 72T^2 + 27T + 3.$$

Since $\operatorname{disc}(g(T)) = -2^8 3^{11} 5^2 7^2$, $\mathcal{O}_K \neq \mathbf{Z}[\theta]$.

The Minkowski bound for K is

$$\frac{6!}{6^6} \left(\frac{4}{\pi}\right)^3 2^2 3^5 \sqrt{3} = \frac{960\sqrt{3}}{\pi^3} \approx 53.626.$$

So we want to factor all primes ≤ 53 , hopefully many will have principal ideal factors.

We already checked the ramified primes 2 and 3 have principal prime factors in \mathcal{O}_K , so we turn to unramified primes p. The only time p might not have a principal prime factor in \mathcal{O}_K is if $p \equiv 1 \mod 3$ and $X^3 - 6 \mod p$ has a root (hence 3 roots). For $p \leq 53$, this happens only for p = 7, 37:

$$X^3 - 6 \equiv (X+1)(X+2)(X+4) \mod 7$$
, $X^3 - 6 \equiv (X+6)(X+8)(X+23) \mod 37$.

Thus 7 and 37 split completely in \mathcal{O}_K . To determine if they have principal prime factors, we compute $N_{K/k}(\theta - m) = g(m)$ for various integers m, hoping to see a 7 or 37 arise. This would correspond to $m \mod 7$ or $m \mod 37$ being a root of g(T). Since $g(-1) \equiv 0 \mod 7$, we compute $N_{K/\mathbb{Q}}(\theta + 1) = g(-1) = 5^27$. Therefore 7 factors principally. Since $g(-2) \equiv 0 \mod 37$, we compute $N_{K/\mathbb{Q}}(\theta + 2) = 7^237$. Thus 37 factors principally, so h(K) = 1.

By (2), $R(K) = (\log u)^2$, so u and σu generate a subgroup of index 3 in the units of \mathcal{O}_K (mod torsion). To find a unit which together with u forms a pair of fundamental units, consider

$$\delta \stackrel{\text{def}}{=} \frac{\sigma \eta}{\eta} = \frac{\pi}{\sigma \pi}.$$

By exactly the same calculations as in [3], $\{u, \delta\}$ and $\{\delta, \overline{\delta}\}$ are both pairs of fundamental units.

Theorem 4. The field $K = \mathbf{Q}(\sqrt[3]{6}, \omega)$ has class number 1, discriminant -2^43^{11} , and regulator $(\log u)^2$, where $u = 109 + 60\sqrt[3]{6} + 33\sqrt[3]{36}$. The ramified primes 2 and 3 factor as

$$2 = (2 - \sqrt[3]{6})^3, \quad 3 = (\eta)^6,$$

where $\eta = \sqrt{-3}/\pi$, $\pi = 3 + 2\sqrt[3]{6} + \sqrt[3]{36}$. The ring of integers of K is

$$\mathcal{O}_K = \mathcal{O}_k \oplus \mathcal{O}_k \,\theta,$$

where $\theta = (\omega - 1)/\pi$. The unit group of \mathcal{O}_K has six roots of unity, rank 2, and bases $\{u, \delta\}$ and $\{\delta, \overline{\delta}\}$, where $\delta = \pi/\sigma(\pi)$.

There is no power basis for \mathcal{O}_K . See [1].

References

- [1] Chang, M-L., Non-monogeneity in a family of sextic fields, J. Number Theory 97 (2002), 252–268.
- [2] CONRAD, K. The Splitting Field of $X^3 2$ over **Q**.
- [3] CONRAD, K. The Splitting Field of $X^3 5$ over **Q**.