EXERCICES — CHAPITRE 13

Exercice 1 $(\star\star)$ – Simplifier les écritures suivantes.

1.
$$(e^x)^2 - \frac{1}{e^{-2x}}$$

2.
$$(e^x + e^{-x})^2 - (e^x - e^{-x})^2$$

$$3. e^{-x} \left(e^{2x} - \frac{1}{e^x} \right)$$

4.
$$\frac{e^{2x+1}}{e^{1-x}}$$

5. $\frac{(e^{x+2})^2}{e^{2x-1}}$

6.
$$\ln(e^{2x+1} \times e^{2-x})$$

7.
$$\frac{e^{2x+\ln(2)}}{e^{-x}}$$

8.
$$\frac{e^{x+\ln(8)}}{e^{x-\ln(2)}}$$

Exercice 2 $(\star\star)$ – Résoudre dans \mathbb{R} les équations suivantes.

1.
$$e^{x^2+2x-3}=1$$

2.
$$\frac{e^{x^2-3}}{e^{2x+1}} = e^{-3x+8}$$

3.
$$2e^{2x} - e^x - 1 = 0$$

4.
$$\ln(e^{x+1}) = e^{x+1} + x$$

5.
$$e^{\ln(x^2+1)} - \ln(e^{1-x^2}) = \frac{1}{2}$$

6.
$$\ln(e^{-x}) + e^{-\ln(x)} = 0$$

Exercice 3 $(\star\star)$ – Résoudre dans \mathbb{R} les inéquations suivantes.

1.
$$e^{\frac{1}{x}} \geqslant e$$

2.
$$e^{2x} \le e^x$$

3.
$$e^{2x}e^{x^2}$$
 < 1

3.
$$e^{2x}e^{x^2} < 1$$

4. $e^{x^2 - 10x + 21} \ge 1$

Exercise 4 $(\star\star)$ – Déterminer les limites des fonctions suivantes en $+\infty$ et en $-\infty$.

1.
$$f(x) = e^{2x} - 1$$

5.
$$f(x) = e^{-x}$$

9.
$$f(x) = e^{x^2 - 3x + 1}$$

2.
$$f(x) = xe^x - 2$$

6.
$$f(x) = \frac{1}{x} + 1 - 3e^{x}$$

10
$$f(x) = (1 - 2x)e^x$$

3.
$$f(x) = 4 - 2x + e^x$$

7.
$$f(x) = \frac{e^x + 1}{x^2 - x}$$

$$4. \ f(x) = \frac{e^x - 1}{x}$$

1.
$$f(x) = e^{2x} - 1$$

2. $f(x) = xe^{x} - 2$
3. $f(x) = 4 - 2x + e^{x}$
4. $f(x) = \frac{e^{x} - 1}{x}$
5. $f(x) = e^{-x}$
6. $f(x) = \frac{1}{x} + 1 - 3e^{x}$
7. $f(x) = \frac{e^{x} + 1}{x^{2} - x}$
8. $f(x) = \exp\left(\frac{2x + 1}{x + 3}\right)$
10. $f(x) = (1 - 2x)e^{x}$
11. $f(x) = x + 1 + xe^{x}$
12. $f(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$

12.
$$f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Exercice 5 ($\star \star \star$) – Déterminer les limites des fonctions suivantes en 0.

1.
$$f(x) = \frac{e^x - 1}{2e^x}$$

1.
$$f(x) = \frac{e^x - 1}{2e^x}$$
 2. $f(x) = \frac{2x}{e^x - 1}$ 3. $f(x) = \frac{e^{x^2} - 1}{x}$

3.
$$f(x) = \frac{e^{x^2} - 1}{x}$$

Exercice 6 $(\star\star)$ – Calculer les dérivées des fonctions suivantes.

- 1. f est définie sur \mathbb{R} par $f(x) = e^{x^2} (e^x)^2$
- 2. f est définie sur \mathbb{R} par $f(x) = \frac{e^{x^2}}{e^{1-x}}$
- 3. f est définie sur \mathbb{R} par $f(x) = e^{-x^2} \times e^{x^2 2x + 1}$

Exercice 7 (**) – Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x^3 - 15x^2 + 36x - 25}$.

- 1. Calculer les limites de f en $-\infty$ et $+\infty$.
- 2. Étudier les variations de la fonction f.

Exercice 8 $(\star \star \star)$ – On a tracé ci-dessous, la courbe C_f représentative de la fonction fdéfinie sur \mathbb{R} par $f(x) = \frac{4}{1 + \rho^x} - 2$.

- 1. (a) Calculer $f(-\ln(7))$ et $f(\ln(3))$.
 - (b) Résoudre dans \mathbb{R} l'équation f(x) = 0.
- 2. La courbe C_f représentative de la fonction f admet-elle des asymptotes?
- (a) On note f' la dérivée de la fonction f. Calculer f'(x).
 - (b) Étudier les variations de la fonction *f* .
- 4. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse ln(3).

Exercice 9 (* * *) – Soit f la fonction définie pour tout réel x par $f(x) = e^x + \frac{1}{e^x}$.

- 1. On note f' la dérivée de la fonction f. Calculer f'(x).
- 2. Donner le tableau de variation de f.
- 3. En déduire que pour tout réel x, $e^x + e^{-x} \ge 2$.

Exercice 10 $(\star \star \star)$ – Soit f la fonction définie pour tout réel x par $f(x) = \frac{3-2x}{e^x}$.

- 1. (a) Montrer que pour tout nombre réel x, $f'(x) = (2x 5) \times e^{-x}$.
 - (b) Étudier les variations de la fonction f.
- 2. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

Exercice 11 $(\star \star \star)$ – Soit f la fonction définie sur \mathbb{R} par $f(x) = (4-x)e^x - 2$.

- 1. (a) Déterminer, en justifiant avec soin, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - (b) La courbe C_f représentative de la fonction f admet-elle des asymptotes?
- 2. (a) On note f' la fonction dérivée de la fonction f. Calculer f'(x).
 - (b) Étudier les variations de la fonction f.
- 3. Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point d'abscisse 2.
- 4. Tracer les asymptotes, la tangente \mathcal{T} et la courbe \mathcal{C}_f .

 Indication numérique: $e^2 \approx 7.4$ et $e^3 \approx 20.1$

Exercice 12 $(\star \star \star)$ – Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4e^x}{1+e^x}$. On note \mathcal{C}_f sa courbe représentative.

- 1. Calculer f'(x). En déduire le sens de variation de f.
- 2. Montrer que $f(x) = \frac{4}{1 + e^{-x}}$, puis calculer les limites de f en $+\infty$ et en $-\infty$. En déduire l'existence d'éventuelles asymptotes.
- 3. Résumer les résultats précédents dans un tableau de variation.
- 4. On appelle \mathcal{T} la tangente à \mathcal{C}_f au point d'abscisse 0. Déterminer une équation de \mathcal{T} .
- 5. Soit *d* la fonction définie sur \mathbb{R} par d(x) = f(x) (x+2).
 - (a) Vérifier que $d'(x) = \frac{-(e^x 1)^2}{(e^x + 1)^2}$ et en déduire les variations de d.
 - (b) Calculer d(0) puis étudier le signe de d(x).
 - (c) En déduire la position relative de C_f et de T.
- 6. Tracer les asymptotes trouvées à la question **2.**, la tangente en 0 et la courbe C_f .

Exercice 13 $(\star \star \star)$ – [BSB 2012 / Ex2]

Soit g la fonction définie sur \mathbb{R} par

$$g(x) = e^x - 1 + x.$$

- 1. (a) Montrer que g est croissante sur \mathbb{R} .
- (b) Calculer g(0). En déduire, pour tout réel x, le signe de g(x) selon les valeurs de x. On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = x + 1 - \frac{x}{e^x}.$$

On note $\mathcal C$ sa représentation graphique dans un repère orthonormé d'unité 2cm.

- 2. (a) Calculer $\lim_{x \to +\infty} f(x)$.
 - (b) Montrer que la droite \mathcal{D} d'équation y = x + 1 est asymptote à \mathcal{C} en $+\infty$.
 - (c) Justifier que $\lim_{x \to -\infty} f(x) = +\infty$.
- 3. (a) Montrer que la dérivée de f vérifie, pour tout réel x, la relation

$$f'(x) = \frac{g(x)}{e^x}.$$

- (b) Dresser le tableau des variations de f en y faisant figurer les limites calculées à la question **2.**.
- 4. Tracer l'allure de la courbe C et de la droite D.

Exercice 14 $(\star \star \star)$ – Calculer les intégrales suivantes.

1.
$$I_1 = \int_0^1 e^{3x} dx$$

3.
$$I_3 = \int_0^1 e^{2x} + \frac{e^x}{4} dx$$

2.
$$I_2 = \int_{-2}^{2} e^x - e^{-x} dx$$

$$4. \quad I_4 = \int_1^2 \frac{e^{\sqrt{t}}}{\sqrt{t}} \, \mathrm{d}t$$