Bayesian Statistics & Probabilistic Programming Spring 2024

Jordi Abante

Department of Biomedical Sciences Department of Mathematics & Computer Science Universitat de Barcelona

February 2, 2024

Outline

- 1. Who am I?
- 2. Logistics
- 3. The Bayesian Paradigm
- 4. Goals and teaching blocks

Jordi Abante

Department of Biomedical Sciences

Department of Mathematics & Computer Science

jordi.abante@ub.edu

Logistics

- Lectures & reading
 - Slides
 - Handouts
- Activities
 - Pen & paper
 - Computational
- Programming environments
 - R 4.X.X / Rstudio
 - Jupyter notebooks with IRkernel
 - Python modules (e.g., Tensorflow)

Logistics

- Virtual Campus
 - Course materials
 - Additional literature
 - Discussion forum
 - Assignments and grades
- Grading
 - Class attendance & participation
 - 2 written/coding assignments (25% each)
 - Final course project (50%)

The Bayesian Paradigm

Frequentist statistics

 $Hypothesis \rightarrow Experiment \rightarrow New knowledge$

Bayesian statistics

A priori belief \rightarrow Evidence (data) \rightarrow Posterior belief

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

The Bayesian Paradigm

- Probability is treated as a measure of belief or confidence
 - Update probabilities based on new evidence
 - Incorporate prior beliefs and likelihood of the data
- One major criticism is the influence of prior information
 - Priors can introduce bias, impacting the conclusions
 - Objectivity might be compromised due to the subjectivity
 - Unbiased priors (Jeffrey's prior)

The Bayesian Paradigm

- Bayesian statistics finds applications in various fields
 - Medical research
 - Finance
 - Machine learning
- What can we do?
 - Parameter estimates with good statistical properties
 - Predictions of missing data and forecasts of future data
 - Framework for model estimation, selection, and validation

Goals and teaching blocks

- Vocabulary: probabilities, RVs, distributions
- Generating simulated data
- Easy models (conjugate priors)
- Computational approaches (MCMC, Approximations)
- Models (e.g., LM, GLM, Hierarchical)

