DOCUMENTO	TIPO DE DATOS	PREPROCESAMIENT O	CLASIFICADORES	RESULTADOS (Precisión)	ESCALA DIFICULTAD
Machine Learning Methods for Climbing Route Classification	n = 142 presas en un marco de 18x11 Ruta especificada con presas de inicio y final	Para Naive Bayes y Softmax regression se utilizaron vectores $x^{(i)} \in \{0, 1\}^n$ Para CNN se utilizaron matrices $x^{(i)} \in \{0, 1\}^{18 \times 11}$ 11,095 training routes 1,388 validation routes 1,388 test routes	Naive Bayes> Softmax regression> Convolutional neural network (CNN)>	34% 36.5% 34%	Fontainebleau (6B+ a 8B+) Aquí representado del 1 al 13
Recurrent Neural Network for MoonBoard Climbing Route Classification and Generation	Se toma el problema como una secuencia de movimientos desde la presa de inicio hasta la de fin Cada movimiento es un vector de 22 dimensiones	BetaMove produce secuencias de movimientos. Para encontrar la mejor secuencia utiliza beam search algorithm 20,157 training routes 2,442 dev routes 2,497 test routes	DeepRouteSet generador de rutas que utiliza LSTM (tipo de RNN) basadas en las generadas por BetaMove Human level performance (HLP)> GradeNet Training> (Clasificador entrenado utilizando mapeo entre secuencias de movimientos preprocesadas por BetaMove y sus dificultades correspondientes)	El segundo valor es con ±1 accuracy (si es v5 da como correcto de v4 a v6) 45% / 87.5% 64.3% / 91.3%	Heuco (V4 a V14)
Difficulty Classification of Moonboard Bouldering Problems	Video datasets: cut into 224 individual video examples Skeleton dataset: undirected graph consisting of 16 nodes (joints) and 15 edges (bones) Topo dataset: image representation of a MoonBoard boulder (2019 hold setup with 40°)	Finetuning and ImageNet-1K dataset are used as techniques of training Data normalization methods: Left Top Corner, Mid Top, First Root and All Root	X3D deep convolutional network is used for videos Recurrent bidirectional LSTM network for skeleton sequences ResNet for topolimage classification HRNet for extraction of skeletons from the videos	> 86.18% > 72.22%	Fontainebleau (6B+ a 8B+)

Climb a-GAN: Generation of Rock Climbing Problems	Array tridimensional [x, y, z] x e y coordenadas en cuadrícula 11x18 z profundidad 0 presas inicio (verde) 1 presas intermedias (azul) 2 presas finales (rojo) Cada punto del vector marcado con un 0 o un 1 si está presente o no. Moonboard de 2016	One-sided label smoothing Noise on the ground truth data fed to the generator Passing the training data as binary Ordinal regression en el entrenamiento del clasificador	Auxiliary Classifier Generative Adversarial Network (ACGAN) para generar nuevas rutas de escalada y asignar nivel de dificultad	Todos los modelos sufren de mode collapse, lo que indica que los resultados obtenidos no son satisfactorios en términos de diversidad en la generación de problemas de escalada Está sin terminar	Fontainebleau (6B+ a 8B+) Aquí representado del 1 al 13
--	---	--	--	--	---