2.7 A Série de Fourier Discreta (SFD)

EPUSP - PTC 3424, maio de 2017. Profa. Maria D. Miranda *

As definições da Série de Fourier Discreta (SFD) e da Transformada de Fourier Discreta (TFD) decorrem da amostragem do espectro da TFTD e do efeito dessa amostragem na correspondente sequência de tempo discreto.

A série de Fourier Discreta (SFD) é uma ferramenta para representar sinais periódicos de tempo discreto no domínio da frequência. Além disso, é útil para o entendimento da Transformada de Fourier Discreta (TFD), que por sua vez é muita usada para análise em frequência de sistemas e sinais de tempo discreto.

Definição da SFD

Seja uma sequência periódica $\tilde{x}(n)$ tal que

$$\tilde{x}(n) = \tilde{x}(n+N) \tag{1}$$

O menor N inteiro que satisfaz a igualdade (1) é o período fundamental de $\tilde{x}(n)$ e além disso,

$$\omega_o = \frac{2\pi}{N}$$

é a sua frequência angular fundamental.

Define-se a Série de Fourier Discreta de $\tilde{x}(n)$, para qualquer k inteiro, como

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j\frac{2\pi}{N}kn}.$$
 (2)

Nota-se que

• $\tilde{X}(k)$ também é uma sequência periódica de período N:

$$\tilde{X}(k+N) = \sum_{n=0}^{N-1} \tilde{x}(n) e^{-j\frac{2\pi}{N}(k+N)n} = \sum_{n=0}^{N-1} \tilde{x}(n) e^{-j\frac{2\pi}{N}kn} \underbrace{e^{-j\frac{2\pi}{N}n}}_{=1} = \tilde{X}(k).$$

Assim, a SFD relaciona sempre sequências periódicas de igual período em ambos os domínios:

$$\{\tilde{x}(0), \, \tilde{x}(1), \, \ldots, \, \tilde{x}(N-1)\} \Longleftrightarrow \{\tilde{X}(0), \, \tilde{X}(1), \, \ldots, \, \tilde{X}(N-1)\}.$$

- a SFD relaciona um sinal de tempo discreto periódico a uma representação periódica de frequência discreta. Em um período são tomadas N amostras de $X(e^{j\omega})$ espaçadas de $2\pi/N$.
- Usualmente, representamos a SFD em um período, ou seja, consideramos apenas $0 \le k \le N-1$ amostras no domínio da frequência. Estas N amostras estão no período de ω de comprimento 2π rad.

^{*}Partes do texto e figuras contaram com a colaboração do doutorando Flávio Renê M. Pavan

Definição da SFD inversa

Qualquer sequência periódica $\tilde{x}(n)$ pode ser obtida a partir dos coeficientes de sua SFD através da relação

$$\tilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn},$$
(3)

que representa a inversa da SFD, ou equação de síntese.

• Demonstração da relação (3):

$$\frac{1}{N}\sum_{k=0}^{N-1} \tilde{X}(k)e^{j\frac{2\pi}{N}kn} = \frac{1}{N}\sum_{k=0}^{N-1}\sum_{\ell=0}^{N-1} \tilde{x}(\ell)e^{-j\frac{2\pi}{N}k\ell}e^{j\frac{2\pi}{N}kn} = \sum_{\ell=0}^{N-1} \tilde{x}(\ell)\frac{1}{N}\sum_{k=0}^{N-1}e^{-j\frac{2\pi}{N}k(\ell-n)}$$

Observe que

$$\frac{1}{N} \sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}k(\ell-n)} = \delta(n-\ell-mN) = \begin{cases} 1, & \text{para } \ell-n = mN \\ 0, & \text{para } \ell-n \neq mN \end{cases}$$
(4)

Assim

$$\sum_{\ell=0}^{N-1} \tilde{x}(\ell) \frac{1}{N} \sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}k(\ell-n)} = \sum_{\ell=0}^{N-1} \tilde{x}(\ell) \delta(n-\ell-mN) = \tilde{x}(n-mN) = \tilde{x}(n). \blacktriangleleft$$

Notas importantes:

- ullet Como as sequências envolvidas são sempre periódicas com período N, os limites do somatório podem ser quaisquer desde que se considerem sempre N amostras.
- Notação compacta: É usual a notação $W_N=e^{-j\frac{2\pi}{N}}$. Assim, $e^{-j\frac{2\pi}{N}kn}=W_N^{kn}$

Exemplo 3: A SFD de uns intercalados com zeros

Caso 1: Seja x(n) uma sequência causal, tal que $x(n) = \delta(n)$. A sequência de tempo discreto

$$\left| \tilde{x}(n) = \sum_{\ell = -\infty}^{+\infty} x(n - \ell N) = \sum_{\ell = -\infty}^{+\infty} \delta(n - \ell N) \right|$$
 (5)

possui período N e em cada período temos apenas um 1 e N-1 zeros. A sua SFD é

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j\frac{2\pi}{N}kn} = \tilde{x}(0) = 1,$$

$$\tilde{X}(k) = 1,$$
(6)

para qualquer k. Note que as amostras $\tilde{X}(k)$ estão espaçadas de $2\pi/N$ e em um intervalo de $[0,2\pi)$ temos N amostras e todas possuem o mesmo valor.

$$\boxed{\tilde{x}(n) = 1} \tag{7}$$

para qualquer n. Aplicando a definição da SFD a $\tilde{x}(n)$ temos

$$\tilde{X}(k) = \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}kn} = \begin{cases} N, & \text{para } k = mN \\ 0, & \text{para } k \neq mN \end{cases}$$

portanto, a SFD de $\tilde{x}(n) = 1$ pode ser expressa como

$$\tilde{X}(k) = N\delta(k - mN)$$
(8)

para qualquer k inteiro. Note que neste caso as amostras estão também espaçadas de $2\pi/N$, mas temos a cada intervalo $[0,2\pi)$ apenas um amostra não nula.

Exemplo 4: A SFD da exponencial complexa

A exponencial complexa de tempo discreto com período N é

$$\tilde{x}(n) = e^{j\frac{2\pi}{N}k_o n}.$$
(9)

A sua SFD é

$$\tilde{X}(k) = \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}k_o n} e^{-j\frac{2\pi}{N}kn} = \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-k_o)n}.$$

Note que se $k - k_o = mN$, então $\tilde{X}(k) = N$, e se $k - k_o \neq mN$ então $\tilde{X}(k) = 0$. Portanto, uma forma compacta de representar a SFD da exponencial complexa de período N é

$$\tilde{X}(k) = N\delta((k - k_o) - mN). \tag{10}$$

A igualdade

$$\sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-k_o)n} = N\delta((k-k_o) - mN) = N\delta(\lfloor k-k_o \rfloor_N)$$
 (11)

será muito útil a seguir.◀

2.8 A SFD de sinais periódicos

Qualquer sinal periódico pode ser expresso como

$$\tilde{x}(n) = \sum_{\ell=-L}^{L} a_{\ell} e^{j\frac{2\pi}{N}\ell n}.$$
(12)

Para se convencer de tal afirmação considere, por exemplo, o sinal $\cos(\omega_o n)$, para o qual é possível verificar facilmente que $a_{-1} = a_1 = 1/2$ e $a_0 = 0$.

Aplicando a SFD em (12) temos

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \sum_{\ell=-L}^{L} a_{\ell} e^{j\frac{2\pi}{N}\ell n} e^{-j\frac{2\pi}{N}kn}.$$
(13)

Alterando a ordem dos somatórios, resulta

$$\tilde{X}(k) = \sum_{\ell=-L}^{L} a_{\ell} \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-\ell)n},$$

e usando a relação (11), temos

$$\tilde{X}(k) = \sum_{\ell=-L}^{L} a_{\ell} \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-\ell)n} = N \sum_{\ell=-L}^{L} a_{\ell} \, \delta(\lfloor k - \ell \rfloor_{N}).$$

Portanto, o par transformado da SFD para qualquer sinal periódico é

$$\tilde{x}(n) = \sum_{\ell=-L}^{L} a_{\ell} e^{j\frac{2\pi}{N}\ell n} \iff \tilde{X}(k) = N \sum_{\ell=-L}^{L} a_{\ell} \, \delta(\lfloor k - \ell \rfloor_{N}).$$
(14)

Os coeficientes a_{ℓ} representam os coeficientes da SFD de $\tilde{x}(n)$ e $\tilde{X}(k)$ representa os valores da SFD de $\tilde{x}(n)$. Para cada valor de $k = 0, \ldots, N-1$, temos um conjunto de 2L+1 coeficientes.

Exemplo 5: Seja o sinal de tempo discreto $\tilde{x}(n) = \sin(\omega_o n)$ em que $\omega_o = 2\pi/N$. Encontre a SFD de $\tilde{x}(n)$.

Exemplo 6: Seja o seguinte sinal de tempo contínuo $v_c(t) = 5\cos(\Omega_o t) + 2\cos(3\Omega_o t)$ em que $\Omega_o = 2\pi f_o$ e $f_o = 1000$ Hz. Considere que $v_c(t)$ é amostrado com uma frequência de amostragem $f_a = 9000$ Hz. Pede-se:

- 1. A representação do sinal de tempo discreto, ou seja, $v(n) = v_c(t)$ para $t = n/f_a$;
- 2. O período do sinal de tempo discreto;
- 3. Se o sinal for periódico, a sua representação como uma soma de exponenciais complexas;
- 4. Se o sinal for periódico, determine a sua SFD;
- 5. Se o sinal for periódico, esboce a SFD de $\tilde{x}(n)$, ou seja, $\tilde{X}(k)$.

Solução:

1. Representação do sinal de tempo discreto:

$$v(n) = 5\cos(2\pi \frac{f_o}{f_o}n) + 2\cos(3\times 2\pi \frac{f_o}{f_o}n) = 5\cos(2\pi \frac{1}{9}n) + 2\cos(3\times 2\pi \frac{1}{9}n).$$

- 2. A partir da expressão de v(n), é possível verificar facilmente que o sinal de tempo discreto é periódico com período N=9 amostras, isto é, $\tilde{v}(n)=v(n)=v(n+9)$, e sua frequência angular fundamental é $2\pi/9$.
- 3. Como o sinal é periódico e o maior múltiplo inteiro da frequência angular fundamental é 3, a sua representação como uma soma de exponenciais complexas é

$$\tilde{v}(n) = \sum_{\ell=-3}^{3} a_{\ell} e^{j\frac{2\pi}{9}\ell n},$$

sendo $a_{-3}=a_3=1;\; a_{-1}=a_1=5/2$ e $a_{-2}=a_2=a_0=0.$

4. Como já determinamos a representação do sinal em termos de exponenciais complexas, a sua representação em termos de SFD é a aplicação direta da equação (14), ou seja,

$$\tilde{x}(n) = \sum_{\ell=-3}^{3} a_{\ell} e^{j\frac{2\pi}{9}\ell n} \iff \tilde{X}(k) = 9 \sum_{\ell=-3}^{3} a_{\ell} \, \delta(\lfloor k - \ell \rfloor_{9}).$$

$$\tag{15}$$

5. Como $\tilde{X}(k)$ é periódico de período N=9, precisamos de 9 amostras de $\tilde{X}(k)$ e para cada valor de k precisamos de todos os a_{ℓ} , no caso $3\times 2+1=7$. Entretanto, em um período com $k=0,\ldots,8$, o termo $\delta(\lfloor k-\ell \rfloor_9)\neq 0$ quando o resto da divisão de $k-\ell$ por 9 for nulo, ou seja, quando $k=\{0,1,2,3,6,7,8\}$ e $\ell=\{0,1,2,3,-3,-2,-1\}$ respectivamente. Além disso, observando que $a_{-2}=a_2=a_0=0$ temos

$$\tilde{X}(k) = 9 \left[a_{-3} \, \delta(|k+3|_9) + a_{-1} \, \delta(|k+1|_9) + a_1 \, \delta(|k-1|_9) + a_3 \, \delta(|k-3|_9) \right].$$

Portanto, $\tilde{X}(k) \neq 0$ apenas para $k = \{1, 3, 6, 8\}$ e $\ell = \{1, 3, -3, -1\}$. Na tabela seguinte, colocamos na primeira linha os valores de $k = 0, \ldots, 8$, na primeira coluna os valores de ℓ excluindo os valores de ℓ em que $a_{\ell} = 0$, e na última linha $\tilde{X}(k)$.

	k=0	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8
$\overline{\ell = -3}$	0	0	0	0	0	0	a_{-3}	0	0
$\ell = -1$	0	0	0	0	0	0	0	0	a_{-1}
$\ell = 1$	0	a_1	0	0	0	0	0	0	0
$\ell = 3$	0	0	0	a_3	0	0	0	0	0
$\tilde{X}(k)$	0	$9a_1$	0	$9a_3$	0	0	$9a_{-3}$	0	$9a_{-1}$

Continuando os cálculos de $\tilde{X}(k)$ para k > 8, é possível verificar a periodicidade do sinal. Como no caso os a_{ℓ} são reais, o espectro também será real.

Repetir o exercício considerando o mesmo $v_c(t)$ e uma frequência de amostragem $f_a = 2500 Hz$.

Repetir o exercício considerando o mesmo $v_c(t)$ e uma frequência de amostragem $f_a = 3000 Hz$.

Faça o espectro em cada caso, compare e comente os resultados. ◀

Exemplo 7: Seja o sinal de tempo discreto

$$\tilde{x}(n) = 1 + \sin(\frac{2\pi}{N}n) + 3\cos(\frac{2\pi}{N}n) + \cos(\frac{4\pi}{N}n + \frac{\pi}{2})$$

Encontre a SFD de $\tilde{x}(n)$.

Solução: Note que $\tilde{x}(n)$ é um sinal periódico de período N, então, o primeiro passo é representar $\tilde{x}(n)$ em termos de uma soma de exponenciais complexas. Como o maior múltiplo inteiro de $2\pi/N$ é 2, podemos escrever

$$\tilde{X}(k) = N \sum_{\ell=-2}^{2} a_{\ell} \, \delta(\lfloor k - \ell \rfloor_N)$$

sendo

$$a_{0} = 1$$

$$a_{1} = \frac{3}{2} - j\frac{1}{2}$$

$$a_{-1} = \frac{3}{2} + j\frac{1}{2}$$

$$a_{2} = j\frac{1}{2}$$

$$a_{-2} = -j\frac{1}{2}$$
(16)

Em um período, ou seja, $k=\{0,1,\ldots,N-1\}$, a SFD de $\tilde{x}(n)$ é não nula para $k=\{0,1,2,N-2,N-1\}$, e assume os valores:

$$\tilde{X}(0) = Na_0 \ \delta(\lfloor k \rfloor_N);$$

$$\tilde{X}(1) = Na_1 \ \delta(\lfloor k - 1 \rfloor_N);$$

$$\tilde{X}(2) = Na_2 \ \delta(\lfloor k - 2 \rfloor_N);$$

$$\tilde{X}(N-2) = Na_{-2} \ \delta(\lfloor k + 2 \rfloor_N);$$

$$\tilde{X}(N-1) = Na_{-1} \ \delta(\lfloor k + 1 \rfloor_N).$$

Esboce o espectro para N=100;

Esboce o espectro para N=8;

Esboce o espectro para N=4;

Esboce o espectro para N=2;

Compare e comente os resultados.◀

Exemplo 8: Seja a sequência $\tilde{x}(n)$ da figura a seguir. Calcule os coeficientes de sua SFD.

Figura 1: Sinal periódico.

Solução: Os coeficientes da SFD de $\tilde{x}(n)$ para $0 \le k \le 9$ são dados por

$$X(k) = \begin{cases} 5, & k = 0\\ \frac{2}{1 - e^{-j\pi k/5}}, & k \text{ impar}\\ 0, & k \text{ par} \end{cases}$$

Figura 2: Gráfico de X(k).

2.9 Algumas propriedades da SFD

Propriedade	$\tilde{x}(n)$	$ ilde{X}(k)$	
Simetria	$\widetilde{x}^*(n)$	$\widetilde{X}^*(-k)$	
	$\widetilde{x}^*(-n)$	$\widetilde{X}^*(k)$	
	$\operatorname{Re}\{\widetilde{x}(n)\}$	$\frac{1}{2} \left(\widetilde{X}(k) + \widetilde{X}^*(-k) \right)$ $\frac{1}{2} \left(\widetilde{X}(k) - \widetilde{X}^*(-k) \right)$	
	$j\mathrm{Im}\{\widetilde{x}(n)\}$	$\frac{1}{2}\left(\widetilde{X}(k)-\widetilde{X}^*(-k)\right)$	
	$\frac{1}{2}\left(\widetilde{x}(n) + \widetilde{x}^*(-n)\right)$	$\operatorname{Re}\{\widetilde{X}(k)\}$	
	$\frac{1}{2}\left(\widetilde{x}(n) - \widetilde{x}^*(-n)\right)$	$j\mathrm{Im}\{\widetilde{X}(k)\}$	
Linearidade	$a\widetilde{x}_1(n) + b\widetilde{x}_2(n)$	$a\widetilde{X}_1(k) + b\widetilde{X}_2(k)$	
Deslocamento	$\widetilde{x}(n-m)$	$W_N^{km}\widetilde{X}(k)$	
	$W_N^{-\ell n}\widetilde{x}(n)$	$\widetilde{X}(k-\ell)$	
Dualidade	$\widetilde{X}(n)$	$N\widetilde{x}(-k)$	
Convol. Periódica	$\sum_{m=0}^{N-1} \widetilde{x}_1(m)\widetilde{x}_2(n-m)$	$\widetilde{X}_1(k)\widetilde{X}_2(k)$	
Modulação	$\widetilde{x}_1(n)\widetilde{x}_2(n)$	$\frac{1}{N} \sum_{\ell=0}^{N-1} \widetilde{X}_1(\ell) \widetilde{X}_2(k-\ell)$	

• Igualdade de Parseval:

$$\sum_{n=0}^{N-1} |\widetilde{x}(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |\widetilde{X}(k)|^2.$$

Propriedades da SFD em relação aos coeficientes na forma exponencial complexa

Considere $\tilde{x}(n) = \tilde{x}(n+N)$ e $\tilde{v}(n) = \tilde{v}(n+N)$ dois sinais periódicos de mesmo período fundamental N e $\{a_0, a_1, \cdots, a_{N-1}\}$ e $\{b_0, b_1, \cdots, b_{N-1}\}$ os conjuntos de coeficientes das respectivas SFD. Genericamente vamos representar

$$\begin{array}{ccc} \tilde{x}(n) & \longleftrightarrow a_k \\ \tilde{v}(n) & \longleftrightarrow b_k \end{array}$$

para os N valores de n e de k .

Propriedades	$\tilde{x}(n)$	\longleftrightarrow	a_k	
Simetria para sinais reais	$\tilde{x}(n)$ real	\longleftrightarrow	$\begin{cases} a_k^* = a_{-k} \\ a_k = a_{-k} \\ \operatorname{Fase}\{a_k\} = -\operatorname{Fase}\{a_{-k}\} \end{cases}$	
	\tilde{x} real e par	\longleftrightarrow	a_k é real e par	
	\tilde{x} real e ímpar	\longleftrightarrow	a_k é puramente imaginário e ímpar	
Linearidade	$\alpha x(n) + \beta v(n)$	\longleftrightarrow	$\alpha a_k + \beta b_k$	
Deslocamento no tempo	$\tilde{x}(n-m)$	\longleftrightarrow	$a_k e^{-jk \frac{2\pi}{N}m}$	
Deslocamento em frequência	$e^{jMrac{2\pi}{N}n} ilde{x}(n)$	\longleftrightarrow	a_{k-M}	
Convolução periódica	$\sum_{m=0}^{N-1} \tilde{x}(m)\tilde{v}(n-m)$	\longleftrightarrow	$N \ a_k \ b_k$	
Multiplicação	$\tilde{x}(n)\tilde{v}(n)$	\longleftrightarrow	$\sum_{m=0}^{N-1} a_m \ b_{k-m}$	

• Relação de Parseval para sinais periódicos:

$$\sum_{k=0}^{N-1} |a_k|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |\tilde{x}(n)|^2.$$