Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTD224.W2 W37

ashington

Conservation Service

United States
Department of
Agriculture

Water Supply Outlook Report June 1, 2004

Water Supply Outlook Reports and Federal - State - Private **Cooperative Snow Surveys**

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684

Public Affairs Specialist Natural Resources Conservation Service 316 W. Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 323-2900

or

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70%) exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require an alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an Equal Opportunity provider and employer.

Washington Water Supply Outlook

June 2004

General Outlook

Cooler and wetter weather for most of May has helped alleviate some water shortage concerns by reducing snowmelt rates and recharging streams and reservoirs. However it may be too little too late for most of Eastern Washington with summer streamflow projections as low as 14% of average on Salmon Creek near Conconully. Many streams experienced peak flows a month earlier than normal that were considerably below average. Most reservoirs in the state are near average levels and should help sustain water use requirements for the summer. National weather forecasters are indicating a return to above normal temperatures and below normal precipitation for the coming summer months.

Snowpack

The June 1 statewide SNOTEL readings dropped still further from last month to 39% of average. Of the remaining basins with snow left on the ground the Wenatchee Basin snow surveys reported the lowest readings at 18% of average. Readings in the Cowlitz River Basin reported the highest at 75% of average. Westside averages from SNOTEL, and June 1 snow surveys, included the North Puget Sound river basins with 45% of average, the Central Puget river basins with 41%, and the Lewis-Cowlitz basins with 69% of average. Snowpack along the east slopes of the Cascade Mountains included the Yakima area with 36% and the Wenatchee area with 23%. Snowpack in the Spokane River Basin was at 39% of average. Maximum snow cover in Washington was at Paradise Park SNOTEL near Mt. Rainer, with water content of 55.2 inches. This site would normally have 61.6 inches of water content on June 1. Last year at this time Paradise Park had 51.6 inches of snow water. The highest average in the state was Lone Pine SNOTEL in the Lewis River Basin with 91% of average.

BASIN	PERCENT OF LAST YEAR	PERCENT OF AVERAGE
Spokane		
Pend Oreille		
Okanogan		
Methow		
Similkameen		
Wenatchee	·	•
Chelan		
Stemilt - Colockum		
Upper Yakima		
Lower Yakima	45	44
Ahtanum Creek	0	0
Walla Walla	0	0
Lower Snake	81	74
Cowlitz	99	75
Lewis	97	63
White	52	62
Green	0	0
Cedar		
Snoqualmie		· · ·
Skykomish		
Skagit		
Baker		55
Nooksack		
Olympic Peninsula	45	19

Precipitation

During the month of May, the National Weather Service and Natural Resources Conservation Service climate stations reported above average precipitation totals throughout most Washington river basins. The highest percent of average in the state was at Wenatchee which reported 282% of average for a total of 1.44 inches. The average for this site is .51 inches for May. The wettest spot in the state was reported at Alpine Meadows SNOTEL in the Tolt River Basin with a May accumulation of 12.80 inches and a total of 132.6 inches for the water-year. Basin averages for the water year held steady or improved slightly across the state but remain near average.

RIVER	MAY		WATER YEAR	
BASIN	PERCENT (OF AVERAGE	PERCENT OF	AVERAGE
Spokane		173		94
Colville-Pend Oreille .		129		86
Okanogan-Methow		98		91
Wenatchee-Chelan		133		90
Upper Yakima		133		94
Lower Yakima		115		88
Walla Walla		164		100
Lower Snake		199		102
Cowlitz-Lewis		134		84
White-Green-Puyallup		152		91
Central Puget Sound		166		97
North Puget Sound				100
Olympic Peninsula				105

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management, power generation and flood control. Reservoir storage in the Upper Yakima Basin was 688,000-acre feet, 95% of average and 229,200-acre feet, 112% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 67% of average for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 228,500 acre feet, 85% of average and 96% of capacity; Chelan Lake, 499,500-acre feet, 106% of average and 74% of capacity; and the Skagit River reservoirs at 118% of average and 89% of capacity.

BASIN	PERCENT OF	CAPACITY	CURRENT STORAGE AS
			PERCENT OF AVERAGE
Spokane		96	85
Colville-Pend Oreill			
Okanogan-Methow			
Wenatchee-Chelan			
Upper Yakima			
Lower Yakima			
North Puget Sound	• • • • • • • • • • • • • • • • • • • •	89	118

Streamflow

June forecasts for June-September flows vary from 132% of average for Mill Creek at Walla Walla to 14% of average for Salmon Creek near Conconully. June-September forecasts for some Western Washington streams include the Cedar River near Cedar Falls, 80%; Green River, 88%; and Skagit River, 73%. Some Eastern Washington streams include the Yakima River near Parker, 48%: Wenatchee River at Plain, 40%; and Spokane River near Post Falls, 72%. Some higher than expected forecasts may indicate a runoff period that would have included actual precipitation induced peak flow during the month of May. Volumetric forecasts are developed using current, historic and average snowpack, precipitation, streamflow and climatic data collected and coordinated by organizations cooperating with NRCS.

Statewide May streamflows varied from below to much above average. Many of the reported streamflow measurements are from regulated reservoir systems, therefore streamflow readings may not be indicative of actual runoff. Many streams did however show increased runoff due to above average rainfall events last month. The Walla Walla River near Milton-Freewater, OR had the highest reported flows with 186% of average. The Yakima River at Kiona with 42% of average was the lowest in the state.

BASIN	PERCENT OF AVERAGE
	MOST PROBABLE FORECAST
	(50 PERCENT CHANCE OF EXCEEDENCE)
Spokane	
Colville-Pend Oreille	
Okanogan-Methow	
Wenatchee-Chelan	
Upper Yakima	
Lower Yakima	
Walla Walla	
Lower Snake	
Cowlitz-Lewis	
White-Green-Puyallup	
Central Puget Sound	
North Puget Sound	73-84
Olympic Peninsula	72-83
STREAM	PERCENT OF AVERAGE
	MAY STREAMFLOWS ·
Pend Oreille Below Box Canyon	
Kettle at Laurier	
Columbia at Birchbank	
Spokane at Long Lake	
Similkameen at Nighthawk Okanogan at Tonasket	
Methow at Pateros	
	91
Chelan at Chelan	92
Chelan at Chelan	
Chelan at Chelan	
Chelan at Chelan	92
Chelan at Chelan	92
Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam	92 92 73 77 87 91
Chelan at Chelan	92 92 73 77 87 91 76
Chelan at Chelan	92 92 73 77 87 91 76 186
Chelan at Chelan	92 92 73 77 87 91 76 186 78
Chelan at Chelan	92 92 73 77 87 91 76 186 78

For more information contact your local Natural Resources Conservation Service office.

BASIN SUMMARY OF SNOW COURSE DATA

JUNE 2004

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW C	COURSE	EL	EVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00
ALPINE MEADOWS SN	TL 3500	6/01/04	32	15.0	12.8	31.4	MISSI	ON CREEK	CAN.	5840	6/01/04		11.5	12.1	. 13.0
BADGER PASS SNOTE		6/01/04		19.2	16.6	22.9			SNOTEL	5400	6/01/04		15.0	43.0	33.6
BARKER LAKES SNOT		6/01/04	24	8.2	11.5	9.5	MOSES		SNOTEL	4800	6/01/04	0	.0	.0	.1
BASIN CREEK SNOTE		6/01/04	1	.3	.0	4.1			SNOTEL	5200	6/01/04		3.2	4.3	11.0
BASSOO PEAK	5150	5/27/04		.0				BLUM CRAG	AM SNOTEL	5800 4050	6/01/04		31.0E 1.5	52.0 4.0	68.1 7.8
BEAVER CREEK TRAIS BEAVER PASS	L 2200 3680	5/28/04 5/28/04		.0	.0 5.5		MOWIC		SNOTEL	3150	6/01/04	Ö	.0	.0	7.0
BEAVER PASS SNOTE		6/01/04	22	3.8	9.5			GARDNER S		2860	6/01/04		. 0	.0	.0
BIG CREEK	6750	6/01/04	56	27.4		39.2	N.F.	ELK CR SNO	OTEL	6250	6/01/04	0	. 0	.0	.6
BLACK PINE SNOTEL	7100	6/01/04	0	.0	.0	1.9		A RIDGE SI		7020	6/01/04	0	.0	2.3	3.4
BLACKWALL PEAK C		6/01/04		10.6	17.4			ERCE CMP		2800 5650	5/27/04 6/01/04	0	.0	.0	.3
BLEWETT PASS#2SNOT BROWN TOP	TEL 4270 AM 6000	6/01/04 5/27/64	0 51	28.6	44.2	.0		BASIN SNO		6040	6/01/04	51	22.7	22.9	30.1
BUMPING RIDGE SNOT		6/01/04	0	.0	4.6	11.6		FORK JOCI		6330	6/01/04	20	8.6	18.1)
BUNCHGRASS MDWSNO		5/01/04		.0	14.4	9.7	OLALI	IE MDWS S	SNOTEL	3960	6/01/04	23	11.7E	18.9	31.8
BURNT MOUNTAIN PI		6/01/04	0	.0	.0			PARK		7150	6/01/04	0	.0	8.4	
CHICKEN CREEK	4060	6/01/04	0	.0	.0	.0		CK RIDGE S		5500 4600	6/01/04		55.2 .0	51.6 3.9	61.6
COMBINATION SNOTES COPPER BOTTOM SNOTES		6/01/04		.0	.0	.0		SON MDW SI		7200	6/01/04	0	.0	6.8	2.7
CORRAL PASS SNOT		6/01/04		20.3	25.2	23.1		IL PEAK S		5900	6/01/04	60	31.9	42.0	39.9
COUGAR MIN. SNOT	TEL 3200	6/01/04	0	.0	.0	1.5		CREEK SNOT		5930	6/01/04	0	.0	.0	7.3
DALY CREEK SNOTEL	5780	6/01/04	0	.0	.0	.0			SNOTEL	3540	6/01/04	0	.0	.0	.0
DEVILS PARK DISCOVERY BASIN	5900 7050	5/27/04 5/25/04	42	23.8	30.0	31.8			SNOTEL SNOTEL	4500 4700	6/01/04		.0	.6	2.7
DOCK BUTTE		6/01/04		21.0E	35.0	52.5			SNOTEL	4780	6/01/04	13	5.0	19.6	24.3
DUNGENESS SNOT		6/01/04	0	.0	.0		REX R		SNOTEL	1900	6/01/04	0	.0	.0	6.1
EASY PASS	AM 5200	6/01/04		55.0E	60.0	73.3		R PEAK SNO		8000	6/01/04	31	11.3	11.4	11.7
ELBOW LAKE SNOT		6/01/04	0	.0	.0	19.8		E MIN SNOT		7900	6/01/04	28	10.1	15.9	16.3
EMERY CREEK SNOTES ENDERBY CA	L 4350 AN. 5800	6/01/04 5/30/04	0 56	.0 25.2	.0 35.0	.0 37.8			SNOTEL SNOTEL	4500 4200	6/01/04	0	.0	.0	.0 5.9
FISH LAKE SNOT		6/01/04	0	.0	.0	7.5			SNOTEL	6170	6/01/04	16	.3	13.1	10.4
FLATTOP MIN SNOTE	£ 6300	6/01/04	52	25.2	33.6	36.5	SAWMI	LL RIDGE		4700	5/27/04	0	.0	.0	••
FREEZEOUT CK. TRAI		5/27/04	0	.0	.0			IBERS MDW	MA	3400	6/01/04		20.08	33.0	41.4
FROHNER MDWS SNOTE GRASS MOUNTAIN #2	3L 6480 2900	6/01/04 5/27/04	0	.0	.0	.7		NEL BT SNO CANYON S	OTEL SNOTEL	4920 4050	6/01/04	0	.0 6.1	.0	13.7
GRAVE CRK SNOTEL	4300	6/01/04	0	.0	.6	.0	SHERW		SNOTEL	3200	6/01/04		.0	.0	.0
GREEN LAKE SNOT		6/01/04	0	.0	6.3	6.6		AHO SNOTE	L	7260	6/01/04	26	10.0	17.9	14.6
GROUSE CAMP SNOT		6/01/04	0	.0	.0	.2		UM CREEK S		3920	6/01/04	0	.0	.0	1.5
HAND CREEK SNOTEL	5030	6/01/04	0	.0	.0	.0		OUGH GULCE		4000	6/01/04	0	.0	.0	3.0
HARTS PASS SNOT HELL ROARING DIVII		5/25/04	15 27	7.2 13.9	27.0 14.1	29.2 10.8			SNOTEL SNOTEL	3400 3100	6/01/04		.0	.0	3.0
HERRIG JUNCTION	4850	6/01/04	- 0	.0	6.8	5.4		E SPRINGS		5700	6/01/04	0	.0	.0	
HIGH RIDGE SNOT		6/01/04		.0	.0	1.2		PEAK SNOT		6030	6/01/04	42	19.3	28.7	28.0
HOODOO EASIN SNOTE		6/01/04	38	20.9	28.0	28.4		EDE PASS S		3860	6/01/04	5	6.0	12.2	18.6
HUCKLEBERRY SNOT		6/01/04 €/01/04	0	.0	.0			NS PASS S	SNOTEL	4070	6/01/04	0 23	.0 11.1	3.3 21.8	9.0 19.4
JUNE LAKE SNOT		6/01/04	0	.0	.0	10.1	SUNSE	ER BASIN	SNOTEL	6180 5540	6/01/04		.0	.0	13.5
KRAFT CREEK SNOTE		6/01/04	ō	. 6	.0	.0			NOTEL	4250	6/01/04		15.1	19.4	19.0
LESTER CREEK	3100	5/27/04	0	.0	.0				SNOTEL	4000	6/01/04	0	.0	.0	••
LOLO PASS SNOT		6/01/04	0	.0	2.9	4.9		ER BASIN S	SNOTEL	4200	6/01/04		.0	7.2	9.3
LONE PINE SNOT		6/01/04		16.8	13.5	18.4 8.0		ER BASIN AM CREEK S	ENOTEI.	4200 3000	5/28/04 6/01/04	0	.0	9.0	10.0
LOST HORSE SNOT		6/01/04	Ö	.0	.0	.2	TOUCH		SNOTEL	5530	6/01/04	0	.0	.0	2.5
LOST LAKE SNOT	TEL 6110	6/01/04		25.5	31.0	41.5	TROUG		SNOTEL	5310	6/01/04	0	. 0	.0	.0
LUBRECHT SNOTEL	4680	6/01/04	0	.0	.0	.0		UNTAIN		6800	6/01/04	0	.0	.0	-;
LYMAN LAKE SNOT	TEL 5900 4900	6/01/04 5/27/04		12.1	49.1	50.8	TWELV TWIN	EMILE SNOT	LEL	5600 4100	6/01/04 5/27/04	0	.0	.0	.4
MEADOWS CABIN	1900	5/28/04	0	.0	.0			LAKES SNOT	rri.	6400	6/01/04	15	7.3	23.3	22.3
MEADOWS PASS SNOT		6/01/04	ō	.0.	.0	.9		WHEELER S		4400	6/01/04	0	.0	.0	.0
M F NOOKSACK SNC		6/01/04	78	49.9	42.0		WARM	SPRINGS SM	NOTEL	7800	6/01/04	42	17.2	22.5	17.0
MICA CREEK SNOT		6/01/04	0	.0	. 0	.0		N LAKES	MA	4500	6/01/04		33.0E	55.0	57.4
WINDERS KINGE SMO.	TEL 6200	6/01/04		19.0	31.2	42.5	WATER WELLS		SNOTEL SNOTEL	5000 4200	6/01/04	14 0	10.1	22.0 4.1	
								PASS ES S		4500	6/01/04	ŏ	.0	.0	5.6

NRCS Natural Resources
Conservation Service

Snowpack, Precipitation and Reservoir Conditions at a Glance June 1, 2004 -

(Water Year = October 1, 2003 - Current Date)

Natural Resources Conservation Service

Washington State

Snow, Water and Climate Services

Program Contacts

RL "Gus" Hughbanks State Conservationist Spokane State Office W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2961 fax: 509-323-2979 gus.hughbanks@wa.usda.gov

Scott Pattee
Water Supply Specialist
Washington Snow Survey Office
2021 E. College Way, Suite 214
Mount Vernon, WA 98273-2873
phone: 360-428-7684
fax: 360-424-6172

Jon Lea
Assistant DCO Supervisor
Oregon Data Collection Office
101 SW Main St, Suite 1300
Portland, OR 97204
Phone: 503-414-3267
Fax: 503-414-3277
jon.lea@or.usda.gov

Chris Pacheco
Resource Conservationist
National Water and Climate Center
101 SW Main St., Suite 1600
Portland, OR 97204-3224
phone: 503-414-3056
fax: 503-414-3101
cpacheco@wcc.nrcs.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow/snow

Oregon:

scott.pattee@wa.usda.gov

http://www.or.nrcs.usda.gov/snow/snow

Idaho:

http://www.id.nrcs.usda.gov/snow

National Water and Climate Center (NWCC): http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov/nrcs

NRCS National: http://www.nrcs.usda.gov

Spokane River Basin

*Based on selected stations

The June 1 forecasts for summer runoff within the Spokane River Basin are 72% of average near Post Falls and 78% at Long Lake. The Chamokane River near Long Lake is forecasted to recieve 94% of the average 3,500 acre-feet base flows for the July-August period. The forecast is based on a basin snowpack that is 39% of average and precipitation that is 94% of average for the water year. Precipitation for May was much below above at 173% of average. Streamflow on the Spokane River at Long Lake was 69% of average for May. June 1 storage in Coeur d'Alene Lake was 228,500-acre feet, 85% of average and 96% of capacity. Snowpack at Quartz Peak SNOTEL site melted out about the 1st of May, almost a month early. Temperatures in the Spokane basin were near average for the past 28 days and 1 degree above normal for the water year.

Spokane River Basin

	SFU	KANE	KIAFL	,	DWOIN		
Streamf1	OW	Forec	asts	_	June	1.	2004

Forecast Point	Forecast Period		Drier ==== 70%			===== Wetter ==================================	=====>> =====>> 10% (1000AF)	30-Yr Avg. (1000AF)
SPOKANE near Post Falls (2)	JUN-SEP JUN-JUL	345 270	475 390	====================================	72 70	(1000AF) ====================================	775 680	775 675
SPOKANE at Long Lake (2)	JUN-JUL JUN-SEP	400 585	535 730	625 825	74 78	715 925	850 1065	840 1060
CHAMOKANE CREEK near Long Lake	JUL-AUG	2.90	3.20	3.30	94	3.40	3.70	3.50
				- :				=========

Reservoir Storage	(1000 AF) - End	of May		Watershed Snowpack Analysis - June 1, 2004					
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		ar as % of	
COEUR D'ALENE	238.5	228.5	216.5	270.4	SPOKANE RIVER	8	81	39	
					NEWMAN LAKE	1	0	0	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The June – September average forecast for the Kettle River streamflow is 42%, Colville at Kettle Falls is 46%, and Priest River near the Town of Priest River is 41%. May streamflow was 71% of average on the Pend Oreille River, 82% on the Columbia at the International Boundary and 85% on the Kettle River. June 1 snow cover was 58% of average in the Pend Oreille Basin River Basin. Bunchgrass Meadows SNOTEL site melted out before the 1st of June, almost three weeks early. Precipitation during May was 129% of average, bringing the year-to-date precipitation to 86% of average. Average temperatures were near normal for the past 28 days and 1 degree above normal for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts - June 1, 2004

		<<=====	Drier =====	= Future Co	nditions =:	===== Wetter	====>>	
	precast Period	90% (1000AF)	70% (1000AF)	Chance Of E 50% (Most (1000AF)	Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
(-,	N-JUL	1766	2036	2220	36	2730	3480	6120
	N-SEP	2319	2641	2860	39	3420	4250	7280
	IN-JUL	88	102	112	39	137	192	290
	IN-SEP	111	128	140	41	170	230	345
	N-JUL	1651	1996	2230	36	2880	3840	6190
	N-SEP	2243	2616	2870	39	3520	4480	7370
	IN-SEP	14.1	18.8	22	46	29	39	48
	IN-JUL	8.7	12.5	15.1	43	21	30	35
	N-SEP	283	332	365	42	445	565	880
	N-JUL	274	316	345	44	410	505	780
		15379 22124	17525 24858	18500 26100	84 85	19475 27340	21620 30080	22000 30600
		28125 20625	31959 23771	33700 25200	84 83	35440 26630	39270 29780	40300 30200

COLVILLE - PEND C Reservoir Storage (100		COLVILLE - PEND OREILLE RIVER BASINS Watershed Snowpack Analysis - June 1, 2004						
Reservoir	Usable Capacity		Storage *** Jast Cear Avg	Watershed	Number of Data Sites	This Yea: Last Yr		
ROOSEVELT		NO REPORT		COLVILLE RIVER	0	0	0	
BANKS		NO REPORT		PEND OREILLE RIVER	8	10	6	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

KETTLE RIVER

The second secon

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 28%, Similkameen River is 29%, Methow River is 30% and Salmon Creek is 14%. June 1 snow cover on the Okanogan was 48% of average, Omak Creek was melted out and the Methow was 23%. May precipitation in the Okanogan-Methow was 98% of average, with precipitation for the water year at 91% of average. May streamflow for the Methow River was 81% of average, 85% for the Okanogan River and 98% for the Similkameen. Harts Pass SNOTEL had 7.2 inches of snow water left on the snow pillow. Average for this site is 29.2 inches on June 1. Combined storage in the Conconully Reservoirs was 14,100-acre feet, which is 60% of capacity and 67% of the June 1 average. Temperatures were 2 degrees below average for the past 28 days and 1 degree above normal for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - June 1, 2004

		<<=====	<-==== Drier ====== Future Conditions ====== Wetter ====>>						
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)	= Chance Of I 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)	
SIMILKAMEEN near Nighthawk (1)	JUN-JUL JUN-SEP	161 188	196 222	220 245	30 29	300 325	470 500	735 835	
OKANOGAN near Tonasket (1)	JUN-JUL JUN-SEP	171 214	212 259	240 290	28 28	340 400	555 645	860 1050	
SALMON CREEK near Conconully	JUN-JUL JUN-SEP	0.95 1.2	1.04	1.10 1.4	12 14	1.59 1.9	2.32	9.20 10.2	
BEAVER CREEK below SF near Twisp	JUN-SEP JUN-JUL	0.58 0.36	0.89 0.62	1.10 0.80	18 15	2.30	4.10	6.30 5.30	
METHOW RIVER near Pateros	JUN-SEP JUN-JUL	130 105	151 121	165 132	3 0 27	215 172	285 232	560 490	

OKANOGAN - ME Reservoir Storage (10	OKANOGAN - METHOW RIVER BASINS Watershed Snowpack Analysis - June 1, 2004							
Reservoir	Usable *** Usable Storage *** Capacity This Last Watershed Year Year Avg		Number of Data Sites		ar as % of Average			
SALMON LAKE	10.5	5.8	4.5	9.7	OKANOGAN RIVER	3	52	48
CONCONULLY RESERVOIR	13.0	8.3	8.2	11.4	OMAK CREEK	1	0	0
					SANPOIL RIVER	0 :	0	0
					SIMILKAMEEN RIVER	0	0	0
					TOATS COULEE CREEK	0	0	0
					CONCONULLY LAKE	1	0	0
		•			METHOW RIVER	<i>:</i> 3	26	23

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during May was 133% of average in the basin and 90% for the year-to-date. Runoff for Entiat River is forecast to be 36% of average for the summer. The June-September average forecast for Chelan River is 50%, Wenatchee River at Plain is 40%, Stehekin is 58%, Icicle Creek is 61% and Stemilt Creek 91% for the May-September period. May average streamflows on the Chelan River were 92% and on the Wenatchee River 92%. June 1 snowpack in the Wenatchee River Basin was 18% of average; the Chelan, 28%; the Entiat River; Stemilt Creek, and Colockum Creek had all melted out prior to June 1. Reservoir storage in Lake Chelan was 499,500-acre feet, 106% of June 1 average and 74% of capacity. Miners Ridge SNOTEL had the most snow water with 19 inches of water. This site would normally have 42.5 inches on June 1. Temperatures were 1-2 degrees below normal for the past 28 days and near normal for the water year.

Wenatchee - Chelan River Basins

Streamflow Forecasts - June 1, 2004

				========				
		<<=====	Drier ====	= Future Co	onditions ===	===== Wetter	====>>	
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AF)	50% (Most	Exceeding * == Probable) (% AVG.)	30% (1000AF)	10%	30-Yr Avg. (1000AF)
=======================================	=======================================							,
CHELAN RIVER near Chelan	JUN-SEP	285	333	365	50	430	525	730
	JUN-JUL	215	254	280	48	335	420	590
STEHEKIN near STEHEKIN	TIDI CED	246	284	310	58	355	420	535
STEHERIN Hear STEHERIN	JUN-SEP JUN-JUL	185	284 215	235	57	270	325	410
	0014 002	103	213	233	3,	270	323	110
ENTIAT RIVER nr Ardenvoir	JUN-SEP	47	51	53	36	59	69	149
	JUN-JUL	37	39	41	32	47	54	127
WENATCHEE at Plain	JUN-JUL	. 161	184	200	35	245	310	575
WENAICHEE at Plain	JUN-SEP	225	258	280	40	335	420	695
	CON DEI	223	250	200	10	333	420	0,5
STEMILT CK nr Wenatchee (miner's in)	MAY-SEP	93	113	126	91	139	159	138
ICICLE CREEK near Leavenworth	JUN-SEP	97	111	121	61	136	161	199
	JUN-JUL	78	91	100	58	115	140	172
COLUMBIA R. bl Rock Island Dam (2)	JUN-SEP	31864	35220	37500	86	39780	43140	43500
	JUN-JUL	22764	26120	28400	86	30680	34040	33000
			1					
WENATCHEE - CHE						EE - CHELAN R		
Reservoir Storage (1000					Watershed Sno			
	Usable		e Storage **			Numbe		Year as % of
Reservoir	Capacity	This	Last	Water	rshed	of Data Si		Y
	 	Year	Year Av			Data Si		Yr Average
CHELAN LAKE	676.1		452.6 473		AN LAKE BASIN	4	35	28
				ENTIA	AT RIVER	· 1	0	0
				WENAT	CHEE RIVER	6	23	18
				STEMI	LT CREEK	1	9 0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

June 1 reservoir storage for the Upper Yakima reservoirs was 688,000-acre feet, 95% of average. Forecasts for the Yakima River at Cle Elum are 51% of average and the Teanaway River near Cle Elum is at 39%. Lake inflows are all forecasted to be in the 45% - 50% range this summer. May streamflows within the basin were Yakima near Cle Elum at 73% and Cle Elum River near Roslyn at 83%. June 1 snowpack was 28% based upon 6 SNOTEL readings within the Upper Yakima Basin. Precipitation was 133% of average for May and 94% year-to-date. Temperatures were 1-2 degrees below normal for the past 28 days and near average for the water year. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - June 1, 2004

***************************************		<<====== <<======	 Drier ====	== Future (Conditions ==	====== Wetter	=====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	JUN-JUL JUN-SEP	12.0 18.9	15.8 24	18.3	39 46	25 34	34 45	47 59
KACHESS LAKE INFLOW	JUN-JUL JUN-SEP	12.2 16.5	15.1 20	17.1	40 45	22 29	29 37	43 51
CLE ELUM LAKE INFLOW	JUN-JUL JUN-SEP	70 90	82 105	90 115	47 50	107 135	131 166	192 230
YAKIMA at Cle Elum	JUN-JUL JUN-SEP	124 164	149 194	166 215	49 51	201 255	251 315	340 420
TEANAWAY near Cle Elum	JUN-JUL JUN-SEF,	7.5	11.1 12.8	13.5 15.4	37 39	20 22	31 32	37 40
UPPER Reservoir Storage	YAKIMA RIVER FASI (1000 AF) - End					EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		L, 2004
Reservoir	Usable Capacity	*** Usabl	e Storage *	Wate	ershed	Numbe of	====:	Year as % of

NODEL TOTAL DEGI	age (1000 Al) Bild							
Reservoir	Usable Capacity		ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of
KEECHELUS	157.8	133.7	86.6	140.5	UPPER YAKIMA RIVER	6	57	28
KACHESS	239.0	158.1	227.9	207.6				
CLE ELUM	436.9	396.2	419.2	379.3				

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Yakima River Basin

*Based on selected stations

May average streamflows within the basin were: Yakima River near Parker, 77%; Naches River near Naches, 87%; and Yakima River at Kiona, 42%. June 1 reservoir storage for Bumping and Rimrock reservoirs was 229,200-acre feet, 112% of average. Forecast averages for Yakima River near Parker are 48%; American River near Nile, 57%; Ahtanum Creek, 77%; and Klickitat River near Glenwood, 80%. June 1 snowpack was 44% based upon 5 SNOTEL readings within the Lower Yakima Basin. Precipitation was 115% of average for May and 88% year-to-date for water. Temperatures were 1-2 degrees below normal for the past 28 days and near average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - June 1, 2004

=======================================				========	=========		==========	=========
		<<=====	Drier ====	== Future Co	onditions =:	===== Wetter	. ====>>	
Forecast Point	Forecast			Change Of E	vacadina t			
Forecast Point	Period	90%	70%	= Chance Of E 50% (Most		======================================	10%	30-Yr Avg.
	101100	(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
=======================================		========	========	==========	=========	=========	=========	========
BUMPING LAKE INFLOW	JUN-SEP	25	32	36	50	45	58	72
	JUN-JUL	20	26	30	49	38	50	61
AMERICAN RIVER near Nile	JUN-SEP	24	31	36	57	41	48	63
	JUN-JUL	16.0	23	28	52	33	40	54
	TID: 000				63			***
RIMROCK LAKE INFLOW	JUN-SEP	66	80	90	63	100	114	144
	JUN-JUL	47	54	58	55	66	77	105
NACHES near Naches	JUN-SEP	161	190	210	51	l l 250	305	410
WACIIDS IICAI NACIICS	JUN-JUL	128	151	167	51	197	247	330
	001-001	120	131	1	31	1	247	330
AHTANUM CREEK nr Tampico (2)	MAY-SEP	18.0	24	27	77	30	36	35
	MAY-JUL	15.0	20	23	74	26	31	31
YAKIMA near Parker	JUN-SEP	317	384	430	48	525	665	900
	JUN-JUL	243	298	335	47	415	530 -	715
KLICKITAT near Glenwood	אַטכ-אַטע	25	31	35	80	39	45	44
	JUN-SEP	45	55	62	80	69	79	78
******************************			==========		==========			

LOWER YAKIMA RIVER BASIN Reservoir Storage (1000 AF) - End of May

LOWER YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 2004

Reservoir	Usable Capacity	*** Usah This Year	le Storag Last Year	e ***	 Watershed	٠====	Number of Data Sites	This Year	
BUMPING LAKE	33.7	34.2	34.4		Lower Yakima River		· 5 °	45	44
RIMROCK	198.0	195.0	198.0	173.5	Ahtanum Creek		* 2 /	U	U

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

May precipitation was 164% of average, maintaining the year-to-date precipitation at 100% of average. Snowpack in the basin melted out prior to June 1. Streamflow forecasts are 132% of average for Mill Creek for the May-September period. Most of which ran off during the large precipitation events the occurred last month. SF Walla Walla near Milton-Freewater is forecasted to receive 109% average flows for the June-September period. May streamflow was 186% of average for the Walla Walla River. Average temperatures were 2 degrees below normal for the past 28 days and 1-2 degrees above average for the water year.

Walla Walla River Basin

	Str	eamflow	Forecast	s - June	1, 2004			
Forecast Point	Forecast Period	 ======= 90%	70%	= Chance Of 50% (Most	Probable)	30%	====== 10%	30-Yr Avg.
		(1000AF)	(1000AF)		(% AVG.)	(1000AF)		(1000AF)
MILL CREEK at Walla Walla	MAY-SEP MAY-JUL	8.70 8.60	10.60 10.50	11.90 11.80	132 133	13.20		9.00 8.90
SF WALLA WALLA near Milton-Freewater	JUN-JUL JUN-SEP	17.3 30	20 33	22 36	115	24 39	27 42	19.2 33
WALLA WALLA Reservoir Storage (1000					WALI Watershed Sno	LA WALLA RIVE Dwpack Analys		., 2004
Reservoir	Usable Capacity	*** Usabl This Year	e Storage ** Last Year A	Wate	rshed	Numbe of Data Si	====	Year as % of
	=======			WALL	A WALLA RIVER	2	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The June - September forecast is for 65% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 68% and 73% of normal respectively. May precipitation was 199% of average, bringing the year-to-date precipitation to 102% of average. June 1 snowpack readings averaged 74% of normal. May streamflow was 76% of average for Snake River below Lower Granite Dam and 91% for Grande Ronde River near Troy. Average temperatures were 1 degree below normal for the past 28 days and 2 degrees above normal for the water year.

Lower Snake River Basin

=======================================	Str	eamflow	Forecas	s - June	2004		=========	.=========
Forecast Point	Forecast Period	·	Drier ==== 70% (1000AF)	= Chance Of 50% (Most	Exceeding * = Probable) (% AVG.)	===== Wetter 30% (1000AF)		30-Yr Avg. (1000AF)
GRANDE RONDE at Troy (1)	JUN-JUL JUN-SEP	209 253	299 361	340	72 73	381 459	470 567	470 565
CLEARWATER at Spalding (1,2)	JUN-JUL JUN-SEP	1311 1556	1650 1927	1880 2180	64 65	2240 2570	3030 3420	2960 3370
SNAKE blw Lower Granite Dam (1,2)	JUN-JUL JUN-SEP	4653 6067	5765 7479	6270 8120	67 68	6775 8760	7890 10170	9340 11900
LOWER SNAKE Reservoir Storage (1000						ER SNAKE RIVE Nowpack Analys		., 2004
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A		rshed	Numbe of Data Si		Year as % of Yr Average
				LOWE	R SNAKE, GRAN	DE RONDE 9	81	74

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management. ψ

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for June – September streamflows within the basin are Lewis River at Ariel, 87% and Cowlitz River at Castle Rock, 76% of average. The Columbia River at The Dalles is forecasted to have 77% of average flows this summer. May average streamflow for Cowlitz River was 82% and 61% for Lewis River. The Columbia River at The Dalles was at 78% of average. May precipitation was 135% of average and the water-year average was 84%. June 1 snow cover for Cowlitz River was 75%, and Lewis River was 63% of average. Average temperatures were 2 degrees above normal during the past 28 days and 2 degrees above normal throughout the water year.

Cowlitz - Lewis River Basins

Streamflow Forecasts - June 1, 2004

			Drier ====	== Future Co	onditions =	====== Wetter	=====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of 1 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
LEWIS at Ariel (2)	JUN-JUL JUN-SEP	219 334	261 385	290 420	86 87	319 455	361 506	338 483
COWLITZ R. bl Mayfield Dam (2)	JUN-SEP	66	439	755	81	1071	1535	938
COWLITZ R. at Castle Rock (2)	JUN-SEP	50	557	960	76 .	1363	1957	1259
KLICKITAT near Glenwood	JUN-JUN JUN-SEP	25 45	31 55	35 62	8 0 8 0	39	45 79	4.4 78
COLUMBIA R. at The Dalles (2)	JUN-SEP JUN-JUL	32745 23544	39566 29234	44200 33100	77 76	48830 36970	55650 42660	57800 43 800

	COWLITZ - LEWIS I Reservoir Storage (1000 A)					- LEWIS RIVER BA pack Analysis -		2004
Reservoir		*** Usabl This Year	e Storage Last Year	a *** Avg	Watershed	Number of Data Sites		ear as % of ======= r Average
***********		 			LEWIS RIVER	4	97	63
					COWLITZ RIVER	5	99	75

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 88% of normal for the Green River below Howard Hanson Dam and 88% for the White River near Buckley. June 1 snowpack was 62% of average in both the White River and the Puyallup River basins and the Green River Basin had mostly melted out. Water content on June 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 20.3 inches. This site has a June 1 average of 23.1 inches. May precipitation was 152% of average, bringing the water year-to-date to 91% of average for the basins. Average temperatures in the area were 1-2 degrees above normal for the past 28 days and 1-2 degrees above normal for the water-year.

White - Green - Puyallup River Basins

Streamflow Forecasts - June 1, 2004 <<===== Drier ===== Future Conditions ====== Wetter ====>> ========== Chance Of Exceeding * Forecast Point Forecast 50% (Most Probable) 90% 70% 30% 10% 30-Yr Avg. Period (1000AF) (1000AF) (1000AF) (% AVG.) (1000AF) (1000AF) (1000AF) WHITE near Buckley (1,2) JUN-JUL 175 190 86 205 239 220 JUN-SEP 212 255 275 88 295 338 313 73 GREEN below Howard Hanson (1,2) JUN-JUL 36 65 89 94 87 JUN-SEP 54 88 98 121 99 WHITE - COPEN - DIVALLUD DIVER BACING WHITE - COPEN - DIVALLUD DIVED BASING

	torage (1000 AF) - End	Watershed Snowpack Analysis - June 1, 2004						
Reservoir	Usable Capacity			*** Avg	Watershed	Number of Data Sites		r as % of Average
**************************************					WHITE RIVER	2	52	62
					GREEN RIVER	1	0	0
					PUYALLUP RIVER	2	52	62
						_		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 79% for Cedar River near Cedar Falls; 79% for Rex River; 88% for South Fork of the Tolt River; and 80% for Cedar River at Cedar Falls. Basin-wide precipitation for May was 166% of average, bringing water-year-to-date to 97% of average. June 1 snow cover in Tolt River Basin was 46%, Snoqualmie River Basin was 39%, and Skykomish River Basin was 37%. The Cedar River Basin had melted out prior to June 1. Alpine Meadows SNOTEL site, at 3500 feet, had 15 inches of water content. Average June 1 water content is 31.4 inches at Alpine Meadows. Temperatures were 1-2 degrees above average for the past 28 days and 1 degree above normal for the water-year.

Central Puget Sound River Basins

Streamflow Forecasts - June 1, 2004

		<<=====	Drier ====	== Future Co	onditions =	===== Wetter	====>>	
Forecast Point	Forecast	=======	========	= Chance Of B	Exceeding *		======	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CEDAR near Cedar Falls	JUN-JUL	10.2	16.6	21	78	25	32	27
	JUN-SEP	13.8	22	27	79	32	40	34
REX near Cedar Falls	JUN-JUL	1.42	4.33	6.30	77	8.27	11.18	8.20
	JUN-SEP	2.5	6.1	8.5	79	10.9	14.5	10.8
CEDAR RIVER at Cedar Falls	JUN-JUL	6.7	11.4	14.6	80	17.8	23	18.2
	JUN-SEP	9.1	12.0	14.0	80	16.0	18.9	17.5
SOUTH FORK TOLT near Index	JUN-JUL	3.41	4.42	5.10	84	5.78	6.79	6.10
	JUN-SEP	5.49	6.57	7.30	88	8.03	9.11	8.30
				 		 ===========		

	AL PUGET SOUND RIVER F orage (1000 AF) - End				CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2004					
Reservoir	Usable Capacity	!			Watershed	Number of Data Sites	This Year as % of the state of			
	****************	.======	======		CEDAR RIVER	4	0	0		
					TOLT RIVER	2	117	46		
					SNOQUALMIE RIVER	4	74	39		
					SKYKOMISH RIVER	. 2	93	37		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 73% of average for the spring and summer period. May streamflow in Skagit River was 90% of average. Other forecast points included Baker River at 76% and Thunder Creek at 84% of average. Basin-wide precipitation for May was 109% of average, bringing water-year-to-date to 100% of average. June 1 average snow cover in Skagit River Basin was 34%, Baker River Basin was at 55% and Nooksack River Basin had melted out. Rainy Pass SNOTEL, at 4,780 feet, had 5 inches of water content. Average June 1 water content is 24.3 inches at Rainy Pass. June 1 Skagit River reservoir storage was 118% of average and 89% of capacity. Average temperatures for the past 28 days were 1 degree above normal for the basin and 1 degree above average for the water year.

North Puget Sound River Basins

			1010000		. 1, 2004			
<pre>conditions ====== Wetter ====>></pre>							=====>>	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	JUN-JUL	108	121	130	82	139	152	158
	JUN-SEP	186	203	215	84	227	244	257
SKAGIT at Newhalem (2)	JUN-JUL	577	671	735	70	799	893	1054
	JUN-SEP	848	954	1025	73	1096	1202	1407
BAKER RIVER near Concrete	JUN-JUL	283	311	330	71	349	377	465
	JUN-SEP	493	509	520	76	531	547	687

NORTH PUGET Reservoir Storage (:	NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2004							
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	age *** Avg	Watershed	Number of Data Sites		ear as % of
ROSS	1404.1	1240.6	1188.8	1031.4	SKAGIT RIVER	3	45	19
DIABLO RESERVOIR	90.6	84.4		86.9	BAKER RIVER	0	68	0
GORGE RESERVOIR	9.8	7.9		8.2	NOOKSACK RIVER	1	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow in the Dungeness River and Elwha River basins is 83% and 72% respectively. Big Quilcene and Wynoochee rivers should expect runoff in that same range this summer also. May precipitation was 120% of average. Precipitation has accumulated at 105% of average for the water year. May precipitation at Quillayute was 4.25 inches. The thirty-year average for May is 5.51 inches. Olympic Peninsula snowpack averaged 19% of normal on June 1. Temperatures were 1-2 degrees above average for the past 28 days and 1-2 degrees above average for the water year.

Olympic Peninsula River Basins

			=========	========			=======	
	Stre	eamflow	Forecast	s - June	1, 2004			
Forecast Point	Forecast Period		70% (1000AF)	Chance Of 1	Exceeding * =: Probable)		===>> ===== 10% 000AF)	30-Yr Avg. (1000AF)
DUNGENESS near Sequim	JUN-SEP JUN-JUL	70 51	77 56	82 59	83	87 62	94 67	99 71
ELWHA near Port Angeles	JUN-SEP JUN-JUL	185 131	206 147	220 158	72 71	234 169	255 185	306 222
OLYMPIC PENINSULA RIVER BASINS OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of May Watershed Snowpack Analysis - June 1								2004
Reservoir	Usable Capacity	*** Usabl This Year	e Storage ** Last Year Av	Water	rshed	Number of Data Sites	======	ear as % of Average
				OLYM	PIC PENINSULA	1	4 5	19

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

State of the second sec

GLACIER PAGE 2004

North Cascades National Park Glacier Monitoring Program

The National Park Service began monitoring glaciers in North Cascades National Park in 1993 and Mount Rainier glaciers in 2002 (see the Mount Rainier Glacier Page). Goals for this program and additional data can be found at North Cascades National Park home page at http://www.nps.gov/noca/massbalance.htm or contact Jon_Riedel@nps.gov or Rob_Burrows@nps.gov.

The four glaciers monitored are located at the headwaters of four watersheds, each with large hydroelectric operations (Figure 1). The glaciers represent a range in elevation from 8800 to 5600 feet, and a range in climatic conditions from maritime to continental. Methods include three visits annually to each glacier to measure winter accumulation and summer melt. Measurements are taken at a series of points down the centerline of each glacier (Table 1), then integrated across the entire glacier surface to determine mass balance for the entire glacier. Glaciers east of the hydrologic crest of the park (Silver and Sandalee) have recently had more positive mass balances than the west-side glaciers (Noisy, North Klawatti, South Cascade) due to their higher elevations, and north aspects (Figure 2). In addition to the accumulation

Figure 1. Glaciers monitored in North Cascades N.P.S. Complex.

Table 1.		Average	2004	2004
	Elevation	Accumulation	Accumulation	Percent of
Glacier:	(feet)	(inches W.E.)	(inches W.E.)	Average
Noisy	Entire Glacier	124	104	84
Creek	6061	130	105	81
Density=	6038	133	114	85
0.49	5900	121	84	72
@ 5900 ft	5760	115	106	92
4/26/04	5630	114	99	87
Silver	Entire Glacier	95	78	83
Density=	8550	117	98	84
0.43	8050	102	74	73
@ 8550 ft	7544	118	79	67
4/30/04	7050	63	65	103
N.Klawatti	Entire Glacier	118	84	71
Density=	7665	122	89	73
0.44@7665	7300	124	90	73
0.46@6080'	6900	124	85	69
4/22/04	6390	106	81	76
	6080	98	83	85
Sandalee	Entire Glacier	121	84	69
Density=	7360	114	89	78
0.48@7360'	7157	127	87	69
0.41@6780'	6900	114	77	75
4/22/04	6780	131	80	61

and ablation measurements each glacier was remapped in 2002 to quantify terminus and surface elevation changes. A 10-year data summary will be published this year.

Table 1 presents this spring's provisional winter accumulation data, along with average values and percent of the 12-year average. The 2004 snow depths were measured between April 21 and 30 on the four glaciers. Ice layers and cold temperatures within the snowpack made probing difficult on the upper Silver Glacier. These data are tentative and will be revised after a July visit. We measured snow densities at the top and bottom of Sandalee and N. Klawatti glaciers, at the top of Silver Glacier, and at the midpoint of Noisy Glacier. Densities are in fraction of water density.

Estimates of glacial contribution to runoff for three watersheds are based on the mass balance measurements and GIS analyses to determine glacier area within 165 ft elevation bands (Table 2). Glaciers reduce the variation of flow in these watersheds by providing meltwater during summer drought from ice in dry/warm years, and by storing water in excess snowpack during wet/cool years. Glacial contribution to stream flow in these watersheds varies by as much as 100% annually. Magnitude of glacial contribution to streamflow is large, but varies by the amount of glacial cover in each watershed. Thunder Creek is 13% glacierized, while Baker River and Stehekin River are 6% and 3% glacierized, respectively (Post and others, 1971; Granshaw, 2002).

Relative importance of glacial contribution to streamflow increases from west to east. For example, glaciers annually contribute a higher percentage of meltwater to streamflow in the Stehekin watershed than in the Baker, despite the fact that the Baker is more glaciated. This is due to lower snowfall east of the hydrologic crest of the North Cascades. In this below average accumulation year we anticipate that glacier contribution to summer runoff will be above average, particularly because of below average snowpack at elevations below the glaciers.

	Mean Glacial		of Glacial noff	Percent Glacial Runoff to Total	
	Runoff (1000s acre-feet)	(1000s acre-feet)		Summer Runoff Minimum Maximum	
	(1000s acre-leet)	Minimum	Maximum	Minimum	Maximum
Noisy Creek Glacier	1.4	1.1	1.9		
Baker River Watershed	68	50	87	6	15
North Klawatti Glacier	4.0	2.8	4.8		
Thunder Creek Watershed	103	78	132	23	44
Sandalee Glacier	0.5	0.4	0.6		
Stehekin River Watershed	74	52	134	5	19
Silver Glacier	. 0.9	0.7	1.0		to do to
Ross Lake Watershed	63	47	81	N/A	N/A

Table 2. Glacial contribution to summer stream flow (May 1 to Sept. 30) for three watersheds. Runoff units are thousands of acre-feet. Data from 1993-2003 except the Sandalee Glacier and Stehekin River Watershed (1995-2003).

Figure 2. Net annual mass balance for the five glaciers monitored in the North Cascades

MOUNT RAINIER GLACIER PAGE 2004

This year the National Park Service continues to collect snow depth and ablation data for monitoring mass balance annually on Mount Rainier glaciers. This program is a cooperative venture between Mount Rainier National Park, the US Geological Survey, and North Cascades National Park. The program includes field measurements on Nisqually Glacier and Emmons Glacier, annual air photography, and 10-year remapping of the glaciers below 10,000 feet.

Between March 30 and May 2 we measured bulk density of the snowpack, probed snow depths, and placed ablation stakes on the Nisqually and Emmons glaciers below 10,000 feet. Accumulation on the south side of the mountain (Muir Snowfield and Nisqually Glacier) may show an increasing trend with elevation to ~7200 feet and decreasing trend above (Table 1). However, the snow depth measurement at 7200 feet is based on one measurement that could be an overestimate. Depth measurements in June will help clarify this uncertainty.

Figure 1. Glacier cover of Mount Rainier, monitored glaciers, and measurement locations on Muir Snowfield, Emmons, and Nisqually Glaciers

Accumulation on Emmons Glacier generally increases with altitude to the ceiling of our spring measurements at ~9500 feet (Table 1). Nearby SNOTEL sites (Morse Lake, Corral Pass, and Paradise) indicate glacier measurements were taken near the time of maximum snowpack at these sites. Ablation stakes were placed at 7200, 6200, and 5500 feet on Nisqually Glacier, at 9840 and 8640 feet on the Muir Snowfield, and at 9470, 7300, 6460, and 5570 feet on Emmons Glacier. We will return in mid June to check ablation stakes, probe snow depths, and place additional stakes in debris covered ice on the lowermost part of each glacier. In addition we will probe snow depth above 10,000 feet on the mountain. On a fall visit (late September/early October) we will record final ablation measurements from the stakes. For more information contact Jon_Riedel @nps.gov or Rob_Burrows@nps.gov.

Table 1	Elevation	Accumulation (inches w.e.)				
	feet	2003	2004			
	9470	56	90			
	9200	na	102			
	7300	134	64			
Emmons	6460	65	63			
Glacier	5575	58	47			
	5590	na	35			
	5050	22	29			
	9840	71	87			
	8640	na	92			
Muir	7180	125	154*			
Snowfield	6200	106	99			
and	6150	100	84			
Nisqually	5500	48	67			
Glacier	5280	68	74			
	5120**	61	72			

*one measurement near crevasse depression, probably overestimate ** Paradise SNOTEL site. Table 1. Accumulation on Mount Rainier Glaciers, Spring 2003 and 2004. Determined from probing snow depth at 1 to 11 points on each elevation contour. Provisional Data.

Table 2. 2004 spring snow density measured on Mt. Rainier. Although the density was measured a month apart on the upper and lower Emmons Glacier we believe this represents the density at near maximum snow accumulation at each point. Provisional Data.

Glacier	Snow Density	Altitude (feet)	Snow Depth (inches)	Date
Emmons	0.43	9470	219	5/2/04
Emmons	0.38	7300	118	3/31/04
Emmons	0.40	6460	152	3/30/04
Emmons	0.43	5575	93	3/30/04
Emmons	0.47	5575	77	5/2/04
Muir Snowfield	0.41	9800	198	4/9/04
Nisqually	0.53	6820	271	4/8/04
Nisqually	0.47	5700	155	4/8/04
Paradise SNOTEL	0.50	5120	146	4/8/04

Mount Rainier Glacier Monitoring 2003 Summary

The 2003 season of glacier monitoring on Mount Rainier was extremely productive and provided interesting results and new insights about Emmons and Nisqually Glaciers. Eight visits each were made to the glaciers between April 1 and October 26 to assess the accumulation and ablation of snow, firn and ice at selected points. Accumulation was measured on lower Emmons Glacier on April 1 and near Camp Schurman, mid glacier, on May 1. Snow depth was measured above 10,000 feet on Emmons Glacier on June 18 along with snow density in the summit crater and at 9500 feet near Camp Schurman.

Ablation data versus altitude are fitted with a linear function from the stakes placed in May. This linear function is extrapolated to the upper mountain. Surface ablation losses based on this function are added to the average snow depth from June 18 at each location to find estimates for total winter snow depth. Winter balance (bw) is the product of snow density (also a linear relation with altitude) and total winter snow depth. These are cubic fits for both Nisqually and Emmons Glaciers. Because of the difficult access to upper Nisqually glacier no data were collected above 10,000 feet. Based on the near monotonic relationship of winter balance to altitude on the upper Emmons Glacier a similar relationship is assumed for the upper Nisqually (Figures 2 and 3).

Ablation magnitude and rates on lower Emmons Glacier separate out into two distinct zones; bare ice and debris covered ice (Figure 2). The debris is thick enough that it has a significant insulating effect thus reducing ablation by 38% compared to bare ice at the same altitude on the glacier. Debris on lower Emmons remains primarily from the huge 1963 rock avalanche, in addition to some medial and lateral moraine material. On lower Nisqually Glacier the debris cover seems to enhance melting except at the stake at 5820 feet (outlier in summer balance plot on Figure 3). A cubic function is fit to all the summer balance data up to 8850 feet and a linear above. Note that summer balance for Emmons Glacier (northeast aspect) reaches zero at 13,100 feet, while on Nisqually (south aspect) the zero value would occur above the top of the glacier. This is expected given the different amounts of solar radiation that the glaciers on the differing aspects of the mountain receive.

The end result of these seasonal measurements is an estimate of the health of each glacier. Table 1 shows glacier-wide winter (bw), summer (bs), and net (bn) balances for both glaciers. These values are the result of integrating the altitude-balance functions (or fits) discussed above and shown in Figures 2 and 3 with 10 meter altitude bands on each glacier. The 2003

Glacier	Balance (Balance (inches w.e.)		Measurement Date		
Emmons	bw=	86	21	April 1 and May 1		
	bs=	-197	33	October 14		
	bn=	-111	39			
Nisqually	bw=	67	15	April 21		
	bs=	-183	30	October 25		
	bn≐⊕	-94	33			
Table 1. Provisional glacier-wide balances for Water Year 2003						

Water Year was very negative for glaciers at Mt. Rainier and across the region. At Mount Rainier Emmons Glacier lost an average of 111 inches (almost 10 feet) of water across the surface and Nisqually lost an average of 94 inches (almost 8 feet) All data presented here are provisional.

Issued by

Bruce Knight

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

Released by

R.L. "Gus" Hughbanks
State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of Sustainable Resources

Snow Survey, River Forecast Centre, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakama Indian Nation Whatcom County

Pierce County

Private

Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

U. S. DEPT. OF AGRICULTURE

NATIONAL AGRICUL. LIBRARY **CURRENT SERIAL RECORDS ROOM 002 BELTSVILLE, MD 20705-2351**

Washington **Water Supply Outlook Report**

Natural Resources Conservation Service Spokane, WA

PB8706505

98273

060 JUN 09 04

MOUNT VERNON, WA