ELiC11: Transductores

Clase 3: Transductores (2nda Parte) y Pesos

Carlos Areces carlos.areces@gmail.com

La clase pasada

- Autómatas Finitos
 - Operaciones sobre Autómatas
- Relaciones Regulares
 - Transductores finitos
 - Operaciones sobre TF
 - Granularidad
 - Reversion
 - Inversión
 - Pushing

La clase de hoy

- Repaso
- Operaciones sobre Transductores
 - Determinización
 - Eliminación de épsilon
 - Composición
 - Ejemplos
- Pesos
 - Autómatas
 - Transductores

Repaso

Relaciones Regulares

 Una relación de cadenas es un conjunto de pares de cadenas.

input : output

- La clase de las relaciones regulares es la clase de relaciones de cadenas más pequeña que incluye
 - La relación vacía: {}.
 - Las relaciones unitarias: $\{\epsilon:\epsilon\}$, $\{\epsilon:a\}$, $\{a:\epsilon\}$, $\{a:b\}$, ...
 - Cerradas bajo
 - Unión
 - Concatenación $\{(xx',yy') \mid (x,y) \in R, (x',y') \in R'\}$
 - Iteración

Transductores Finitos

Función de transición

$$q_0 a \vdash q_0 \qquad q_0 \vdash q_1$$

$$q_1 bb \vdash c q_1 \qquad q_1 \vdash q_2$$

$$q_2 a \vdash q_2 \qquad q_2 \sharp \vdash \sharp$$

Una derivación:

$$\begin{aligned} &\mathsf{q}_{\scriptscriptstyle{0}}aaabba\#\vdash \mathsf{q}_{\scriptscriptstyle{0}}aabba\#\vdash \mathsf{q}_{\scriptscriptstyle{0}}abba\#\vdash \\ &\vdash \mathsf{q}_{\scriptscriptstyle{0}}bba\#\vdash \mathsf{q}_{\scriptscriptstyle{1}}bba\#\vdash c\mathsf{q}_{\scriptscriptstyle{1}}a\#\\ &\vdash c\mathsf{q}_{\scriptscriptstyle{2}}a\#\vdash c\mathsf{q}_{\scriptscriptstyle{2}}\#\vdash c\# \end{aligned}$$

Def. de aceptación: aceptar s:t sii $q_0s\# \vdash^* t\#$

Operaciones sobre transductores

- Varias de las operaciones sobre autómatas también funcionan sobre transductores (más o menos). Y aparecen algunas nuevas:
 - Granularidad (de entrada y salida)
 - Reversión izquierda-derecha
 - Inversión
 - Pushing

Fin de repaso

No se puede determinizar más sin pushing.

Pushing

• Pushing puede hacerse no sólo sobre ϵ :

- Si todos los ejes de entrada terminan en x:
 - Remover x de los ejes de entrada
 - Agregar x a los ejes de salida

Pushing

Pushing puede hacerse también sobre loops:

- Si todos los ejes de entrada terminan en x:
 - Remover x de los ejes de entrada
 - Agregar x a los ejes de salida

Limitaciones

• Los transductores determinísticos no reconocen todas las relaciones regulares. Lo mismo pasa con los transductores sin ϵ .

Limitaciones

- Los transductores determinísticos no reconocen todas las relaciones regulares. Lo mismo pasa con los transductores sin ϵ .
- Dar un transductor para los siguientes lenguajes:

L1 = $\{w:v \mid w \in ab^*a, v \in aa\}$ (eliminación de b)

L2 = $\{v:w \mid v \in aa, w \in ab^*a\}$ (insersión de b)

Limitaciones

- Los transductores determinísticos no reconocen todas las relaciones regulares. Lo mismo pasa con los transductores sin ϵ .
- Dar un transductor para los siguientes lenguajes:

L1 = $\{w:v \mid w \in ab^*a, v \in aa\}$ (eliminación de b)

L2 = $\{v:w \mid v \in aa, w \in ab^*a\}$ (insersión de b)

Composición

Dados dos autómatas sin transiciones ϵ

T1 =
$$\langle Q, \Sigma, \Sigma', \Delta, q_0 \rangle$$

T2 = $\langle Q', \Sigma', \Sigma'', \Delta', q_0' \rangle$

la composición de T1 y T2 (T1oT2) se define como

Composición

• Dados dos autómatas sin transiciones ϵ

T1 =
$$\langle Q, \Sigma, \Sigma', \Delta, q_0 \rangle$$

T2 = $\langle Q', \Sigma', \Sigma'', \Delta', q_0' \rangle$

la composición de T1 y T2 (T1oT2) se define como

$$T1_0T2 = \langle QxQ', \Sigma, \Sigma'', \Delta'', (q_0, q_0') \rangle$$

donde

Composición

Dados dos autómatas sin transiciones ϵ

T1 =
$$\langle Q, \Sigma, \Sigma', \Delta, q_0 \rangle$$

T2 = $\langle Q', \Sigma', \Sigma'', \Delta', q_0' \rangle$

la composición de T1 y T2 (T1oT2) se define como

$$T1_0T2 = \langle QxQ', \Sigma, \Sigma'', \Delta'', (q_0, q_0') \rangle$$

donde

$$\Delta'' = \{ (\mathsf{q}_{\mathsf{s}}, \mathsf{q}_{\mathsf{s}}') a \vdash b(\mathsf{q}_{\mathsf{d}}, \mathsf{q}_{\mathsf{d}}') \mid \\ \mathsf{q}_{\mathsf{s}} a \vdash c \mathsf{q}_{\mathsf{d}}, \, \mathsf{q}_{\mathsf{s}}' c \vdash b \mathsf{q}_{\mathsf{d}}' \, \text{para algún } c \in \Sigma' \}$$

Fun with FST

 Construir un FST que dado un número en binario retorne el resultado de dividirlo por 2 si la división es exacta.

- Construir un FST que dado un número en binario retorne el resultado de dividirlo por 2 si la división es exacta.
- Construir un FST que dado un número en binario retorne el resultado de dividirlo por 3 si la división es exacta.

- Construir un FST que dado un número en binario retorne el resultado de dividirlo por 2 si la división es exacta.
- Construir un FST que dado un número en binario retorne el resultado de dividirlo por 3 si la división es exacta.
- Construir un FST que dado un número en binario retorne el resultado de dividirlo por 9 si la división es exacta.

- Spelling:
 - Supongamos que queremos modelar la regla que permite agregar CO a otras palabras. Ej.
 - <CO> + design => codesign

Spelling:

- Supongamos que queremos modelar la regla que permite agregar CO a otras palabras. Ej.
 - <CO> + design => codesign
 - <CO> + author => coauthor

Spelling:

- Supongamos que queremos modelar la regla que permite agregar CO a otras palabras. Ej.
 - <CO> + design => codesign
 - <CO> + author => coauthor
 - <CO> + organizer => co-organizer

- Spelling:
 - Supongamos que queremos modelar la regla que permite agregar CO a otras palabras. Ej.
 - <CO> + design => codesign
 - <CO> + develop => codevelop
 - <CO> + author => coauthor
 - <CO> + organizer => co-organizer
- Este es un caso típico de reglas con excepciones: Hacer un FST T_g para el caso general, y un T_e para la excepción y componerlos: T_g o T_e.

Cada vez que enviamos un SSM estamos usando un transductor:

-
$$\{a,b,c\} => 2$$
 $\{d,e,f\} => 3$ $\{g,h,i\} => 4$
- $\{j,k,l\} => 5$ $\{m,n,o\} => 6$ $\{p,q,r,s\} => 7$
- $\{t,u,v\} => 8$ $\{w,x,y,z\} => 9$ $\{a,b,c\} => 4$

• Es fácil construir este transductor T_{cel} y tenemos, por ejemplo:

_ En
$$T_{cel}$$
: $q_0 casa\# \vdash^* 2272\#$

Cada vez que enviamos un SSM estamos usando un transductor:

-
$$\{a,b,c\} => 2$$
 $\{d,e,f\} => 3$ $\{g,h,i\} => 4$
- $\{j,k,l\} => 5$ $\{m,n,o\} => 6$ $\{p,q,r,s\} => 7$
- $\{t,u,v\} => 8$ $\{w,x,y,z\} => 9$ $\{a,b,c\} => 4$

• Es fácil construir este transductor T_{cel} y tenemos, por ejemplo:

_ En
$$T_{cel}$$
: $q_0 casa \# \vdash^* 2272 \#$

Como hacemos al reves? (de números a palabras).

Cada vez que enviamos un SSM estamos usando un transductor:

-
$$\{a,b,c\} => 2$$
 $\{d,e,f\} => 3$ $\{g,h,i\} => 4$
- $\{j,k,l\} => 5$ $\{m,n,o\} => 6$ $\{p,q,r,s\} => 7$
- $\{t,u,v\} => 8$ $\{w,x,y,z\} => 9$ $\{a,b,c\} => 4$

• Es fácil construir este transductor T_{cel} y tenemos, por ejemplo:

_ En
$$T_{cel}$$
: $q_0 casa\# \vdash^* 2272\#$

Como hacemos al reves? (de números a palabras).

_ En inv(
$$T_{cel}$$
): $q_0^{2272}\#\vdash^* casa\#$

Cada vez que enviamos un SSM estamos usando un transductor:

-
$$\{a,b,c\} => 2$$
 $\{d,e,f\} => 3$ $\{g,h,i\} => 4$
- $\{j,k,l\} => 5$ $\{m,n,o\} => 6$ $\{p,q,r,s\} => 7$
- $\{t,u,v\} => 8$ $\{w,x,y,z\} => 9$ $\{a,b,c\} => 4$

• Es fácil construir este transductor T_{cel} y tenemos, por ejemplo:

_ En
$$T_{cel}$$
: $q_0 casa\# \vdash^* 2272\#$

Como hacemos al reves? (de números a palabras).

_ En inv(
$$T_{cel}$$
): $q_0^{2272\# \vdash^* casa\#}$ $q_0^{2272\# \vdash^* bbqb\#}$

Cada vez que enviamos un SSM estamos usando un transductor:

-
$$\{a,b,c\} => 2$$
 $\{d,e,f\} => 3$ $\{g,h,i\} => 4$
- $\{j,k,l\} => 5$ $\{m,n,o\} => 6$ $\{p,q,r,s\} => 7$
- $\{t,u,v\} => 8$ $\{w,x,y,z\} => 9$ $\{a,b,c\} => 4$

• Es fácil construir este transductor T_{cel} y tenemos, por ejemplo:

_ En
$$T_{cel}$$
: $q_0 casa\# \vdash^* 2272\#$

Como hacemos al reves? (de números a palabras).

_ En inv(T_{cel}):
$$q_0^{2272\# \vdash^* casa\#}$$
 $q_0^{2272\# \vdash^* bbqb\#}$

Componer con un diccionario: T_{dic} o inv(T_{cel})

Pesos

Autómatas con pesos

- Volvamos a autómatas
- Un autómata tiene diferentes caminos (uno para cada palabra que reconoce, y en el caso de un autómata no determinístico, más de uno).
- Si queremos asignar probabilidades a las palabras de un lenguaje, una opción natural es asignarle pesos a los caminos del autómata que genera el lenguaje

Miremos este autómata

Miremos este autómata

 El lenguaje que reconoce tiene sólo tres cadenas

Cuál es la más probable?

Miremos este autómata

a
 bb
 ab
 1

Miremos este autómata

a .02

bb

ab

1

Miremos este autómata

a .02

bb .5

ab

1

Miremos este autómata

a .02

bb .5

ab .48

1

Miremos este autómata

a .02

bb .5

ab .48

1

Qué estamos haciendo?

Miremos este autómata

a .02

bb .5

ab .48

1

Qué estamos haciendo?

- Multiplicamos sobre el camimo
- Sumamos entre caminos

Transductores otra vez

- El autómata con pesos que acabamos de ver, es un transductor, pero que genera *probabilidades* en vez de cadenas.
- Los transductores pueden generar en cualquier semi-anillo (semi-ring).

Semi-Anillos

 Un conjunto K con operaciones de suma y producto que satisfagan las siguientes propiedades

- Asociatividad +:
$$(x + y) + z = x + (y + z)$$

- Conmutatividad +:
$$x + y = y + x$$

- Asociatividad *:
$$(x * y) * z = x * (y * z)$$

- **Identidad +**:
$$x + 0 = 0 + x = x$$

- **Idempotencia 0**:
$$x*0 = 0*x = 0$$

- Los conjuntos de cadenas forman un semi-anillo:
 - Suma:
 - Producto:
 - 0:
 - 1:

 Los conjuntos de cadenas forman un semi-anillo:

- Suma: unión

- Producto: concatenación

- 0: {}

- 1: $\{\epsilon\}$

Producto (.): sobre caminos Suma (U): entre caminos

 Las probabilidades sobre [0..1] forman un semi-anillo:

- Suma: +

- Producto: *

- O: 0

- 1: 1

Producto (*): sobre caminos Suma (+): entre caminos

- Resumiendo entonces:
 - Un autómata con pesos no es otra cosa que un transductor generando sobre un semi-anillo particular.
 - Todas las propiedades de transductores se aplican a los autómatas con pesos.

Camino más corto

- Los autómatas con pesos son usados para calcular "best guess" en forma eficiente.
 - Si el autómata representa un conjunto de posibles opciones (e.g., alternativas de generación, scoring, etc).
 - Podemos usar el algoritmo de Dijkstra de camino más corto para encontrar la mejor opción.

Camino más corto

Transductores con pesos

- Vimos entonces que los autómatas con pesos son transductores
- Qué seran entonces los transductores con pesos?

Transductores con pesos

- Vimos entonces que los autómatas con pesos son transductores
- Qué seran entonces los transductores con pesos?
- Ayudita:
 - Siempre podemos ver una tripla como un par donde la primer componente es un par:

$$(a,b,c) \sim ((a,b),c)$$