something old something new

Vivian Dai Julie Helenek Connie Tsang

our goal

use a genetic algorithm to create new, abstract pieces of art

our inspiration

Chris Cummins Generative Art

Shahriar Shahrabi Procedural Paintings

step 1: research

What is a genetic algorithm? How can we use this algorithm to produce art?

key components of a genetic algorithm

population

create a population of randomly generated individuals

selection

evaluate the fitness of individuals in the population and select the most fit to join the mating pool

reproduction

create a child individual with crossover and mutation

step 2: mvp

What is our minimal viable product based on our research?

components of mvp

individual

a 2D-matrix the size of the image population

a list of individuals

gene

a single gene corresponds to a **pixel**

early outputs

tuning parameters

of generations, population size, mutation rate

fitness: 65.6% time: 62.9s

generations: 3500 population size: 75 mutation rate: 0.10

fitness: 80.4% time: 67.6s

generations: 3500 population size: 75 mutation rate: 0.01

fitness: 71.9% time: 8.2s

generations: 350 population size: 75 mutation rate: 0.01

challenges
didn't perform well with larger pictures

step 3a: brushstrokes

Can we use brushstrokes instead of individual pixels?

outline

- Original idea was to use brushstrokes as individuals, similar to polygons' first iteration
 - Made use of the concept of "mutation" in genetic algorithms
- Changed the algorithm to more resemble the pixels and polygons implementation

components of brushstrokes

individual

a list of brushstrokes (i.e., a canvas) population

a list of individuals (a list of many canvases) gene

a single gene
corresponds to a
brushstroke. each
brushstroke has its own
individual attributes, such
as color and type.

early outputs

Next steps

- Add transparency
- Optimize runtime because it runs slowly

step 3b: polygons

Can we use shapes instead of individual pixels?

components of polygons

individual

a list containing sets of vertices

polygons drawn onto it

population

a list of individuals

gene

a single gene corresponds to a **polygon**

early outputs

fitness: 40.2% time: 142.2s generations: 300 population size: 75 mutation rate: 0.01 fitness: 84.4% time: 197.6s generations: 300 population size: 75 mutation rate: 0.01

fitness: 91.8% time: 376.8s generations: 300 population size: 75 mutation rate: 0.01

tuning parameters

of generations, population size, mutation rate, opacity

fitness: 95.24% time: 301.5s generations: 400 population size: 51 mutation rate: 0.02

fitness: 95.24

another example

fitness: 93.07% time: 241s generations: 300 population size: 75 mutation rate: 0.01 # polygons: 125

challenges

after a while, the best individual seemed to stop changing

challenges

didn't perform well with even larger pictures

challenges

struggles with light images

Thank you.