Inteligência Artificial Aula 6 - Vídeo 1 - Métodos de Busca Informada

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

16 de setembro de 2020

Métodos de Busca

 Frequentemente existe conhecimento extra que pode ser utilizado para guiar a busca.

Métodos de Busca

- Frequentemente existe conhecimento extra que pode ser utilizado para guiar a busca.
- Os métodos anteriores não levam em conta este conhecimento sobre o problema específico que está sendo resolvido.

Métodos de Busca

- Frequentemente existe conhecimento extra que pode ser utilizado para guiar a busca.
- Os métodos anteriores não levam em conta este conhecimento sobre o problema específico que está sendo resolvido.
- Heurística: Pode ser vista como uma estimativa da distância do nó n até um nó solução . Ela é uma sub-estimativa se ele é menor ou igual ao custo real do caminho mais curto do nó n até um objetivo.

Buscas Informadas

Ideia: expandir o nó na fronteira que parece mais próximo a uma solução.

Buscas Informadas

Ideia: expandir o nó na fronteira que parece mais próximo a uma solução.

```
search([Node \mid \_]) := is\_goal(Node). search([Node \mid F_1]) := neighbors(Node, NN), add\_to\_frontier(NN, F_1, F_2), search(F_2). add\_to\_frontier(NN, F_1, F_3) := append(F_1, NN, F_2), sort\_by\_h(F_2, F_3).
```

Função de Avaliação (heurística) h(n) = estimativa do custo de n até objetivo.

Função de Avaliação (heurística) h(n) = estimativa do custo de n até objetivo.

Examina o nó que parece estar mais próximo da solução, ou seja, ordena (crescente) os nós a serem examinados pelo valor de h(n).

Função de Avaliação (heurística) h(n) = estimativa do custo de n até objetivo.

Examina o nó que parece estar mais próximo da solução, ou seja, ordena (crescente) os nós a serem examinados pelo valor de h(n).

Exemplo:

Função de Avaliação (heurística) h(n) = estimativa do custo de n até objetivo.

Examina o nó que parece estar mais próximo da solução, ou seja, ordena (crescente) os nós a serem examinados pelo valor de h(n).

Exemplo: Busca Custo-Uniforme: g(n) = custo do caminho que sai de Arad até a cidade n.

Figura: Fonte: Artificial Intelligence: A Modern Approach Russell and Norvig

Função de Avaliação (heurística) h(n) = estimativa do custo de n até objetivo.

Examina o nó que parece estar mais próximo da solução, ou seja, ordena (crescente) os nós a serem examinados pelo valor de h(n).

Exemplo : Busca Gulosa h(n) = distância em linha reta de n até Bucareste.

n	h(n)	n	h(n)
arad	366	mehadia	241
bucharest	0	neamt	234
cralova	160	oradea	380
dobreta	242	pitesti	100
etorie	161	rimnicu	193
fagaras	176	sibiu	253
glurgiu	77	timisoara	329
hirsova	151	urziceni	80
iasi	226	vaslul	199
lugoj	244	zerind	374

Exemplo : Busca Gulosa h(n) = distância em linha reta de n até Bucareste.

Figura: Fonte: Artificial Intelligence: A Modern Approach - Russell and Norvig

Exemplo : Busca Gulosa h(n) = distância em linha reta de n até Bucareste.

Figura: Fonte: Artificial Intelligence : A Modern Approach - Russell and Norvig

Exemplo: Busca Gulosa h(n) = distância em linha reta de n até Bucareste.

Figura: Fonte: Artificial Intelligence: A Modern Approach - Russell and Norvig

Exemplo: Busca Gulosa h(n) = distância em linha reta de n até Bucareste.

Figura: Fonte: Artificial Intelligence: A Modern Approach - Russell and Norvig

Completa: Não, pode ficar em loop (lasi → Neamt → lasi → Neamt → ···).
 Completa para espaço finito com verificação de estados repetidos.

- Completa: Não, pode ficar em loop (lasi → Neamt → lasi → Neamt → ···).
 Completa para espaço finito com verificação de estados repetidos.
- **Tempo**: $O(b^m)$, mas uma boa heurística pode melhorar muito.

- Completa: Não, pode ficar em loop (lasi → Neamt → lasi → Neamt → ···).
 Completa para espaço finito com verificação de estados repetidos.
- **Tempo**: $O(b^m)$, mas uma boa heurística pode melhorar muito.
- **Espaço**: $O(b^m)$, i.e. mantém todos os nós na memória.

- Completa: Não, pode ficar em loop (lasi → Neamt → lasi → Neamt → ···).
 Completa para espaço finito com verificação de estados repetidos.
- **Tempo**: $O(b^m)$, mas uma boa heurística pode melhorar muito.
- Espaço: $O(b^m)$, i.e. mantém todos os nós na memória.
- Ótima: Não.

$$A \frac{140}{S} = \frac{99}{F} = \frac{211}{B}$$
 Custo = 450
$$A \frac{140}{140} = \frac{8}{80} = \frac{211}{P} = \frac{101}{P} =$$

Ideia: evitar expandir caminhos que já estão caros.

Ideia: evitar expandir caminhos que já estão caros.

Função de Avaliação

$$f(n) = g(n) + h(n)$$
, onde:

- g(n): custo para chegar a n
- h(n): custo estimado de n até objetivo

f(n): custo total estimado do caminho mais barato até objetivo e que passa por n

Exemplo:
$$f(n) = g(n) + h(n)$$

Figura: Fonte: Artificial Intelligence : A Modern Approach - Russell and Norvig

Exemplo: f(n) = g(n) + h(n)

Figura: Fonte: Artificial Intelligence: A Modern Approach - Russell and Norvig

Figura: Fonte: Artificial Intelligence : A Modern Approach - Russell and Norvig

Figura: Fonte: Artificial Intelligence : A Modern Approach - Russell and Norvig

Figura: Fonte: Artificial Intelligence : A Modern Approach - Russell and Norvig

Figura: Fonte: Artificial Intelligence: A Modern Approach - Russell and Norvig

Inteligência Artificial Aula 6 - Vídeo 1 - Métodos de Busca Informada

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

16 de setembro de 2020