HT9170 双音频 (DTMF) 接收器

特征

- 工作电压: 2.5V-5.5V
- 最少外围元件
- 无需外围滤波器
- 待机电流低 (在下电模式)
- 优异的性能
- 为µC 接口的三态数据输出
- 3.58MHz 晶体或陶瓷振荡器
- 通过 INH 引脚可抑制为 1633Hz
- HT9170B:18-引脚 DIP 封装; HT9170D:18-引脚 SOP 封装

概述

HT9170 系列是综合了数字解码器和多带滤波器功能的双音频(DTMF)接收器. HT9170B 和 HT9170D 都可工作在下电模式和抑制模式. HT9170 系列的各种型号都是用数字化计算方法来识别的, 把 16 倍的 DTMF 音频解码,并转化为 4 位代码输出. 高精度的转换电容滤波器把音频(DTMF)信号分离为: 低频信号和高频信号. 自带拨号音频阻波电路,可省略前置滤波器所需的阻波电路。

选择表 1-1

性能	工作电压	工作时钟	三态数据输	下电	抑 制	DV	DVB	封装
型号		(OSC)	出		1633Hz			
HT9170B	2 V-5.5V	3.58MHz	√	√	√	√	√	18 引脚 DIP
HT9170D	2V-5.5V	3.58MHz	√	√	√	√	√	1 引脚 SOP

结构框图

如图 1-1

图 1-1

引脚分布

图 1-2

引脚说明

表 1 - 2

引脚名	I/0	内部连接	说明
VP	Ι	工作放大器	运算放大器无转换输入
VN	Ι		运算放大器转换输入
GS	0		运算放大器输出端
VREF	0	VREF	参考电压输出,正常为 VDD/2
X1	Ι	振荡器	系统振荡器包括:一个反转器,一个偏置电阻和必须的负载电容
X2	0		标准的 3. 579545MHZ 晶振连在 X1, X2 之间起振荡器的作用.
PWDN	Ι	COMS 输入 下拉	高电平有效,它使能器件进入下电模式并抑制振荡器,此引脚是内部下拉.
INH	Ι	COMS 输入 下拉	逻辑高. 能抑制音频模拟特性 A, B, C, D 的识别. 此引脚为内部下拉.
VSS	_	_	电源负极
0E	Ι	COMS 输入 上拉	D0-D3 输出使能,高电平有效.
D0-D3	0	COMS 输出 三态	接收数据输出端
			OE="H",输出使能; OE="L" 高阻态
DV	0	COMS 输出	数据有效输出
			当芯片接收到一个有效音频(DTMF)信号时,DV 置高;否则保持低.
EST	0	COMS 输出	早期操纵输出(见功能说明)
RT/GT	I/0	COMS 输入/输出	通过连接外为电阻和电容可设置音频获得和释放时间
VDD	_	_	电源正极,正常工作状态为 2.5-5.5V
DVB	0	COMS 输出	一次性数据有效输出.通常为高,当芯片接收到一个有效时间信号(DTMF)
			时,DVB 置低并保持 10MS.

内部连接概图

图1-3

最大极限参数

电源电压	
存储温度	
运行温度	
输入电压	VSS-0.3到VDD+0.3V

注:这些是限参数,超出这些范围可导致器件内部损坏。器件在推荐参数以外的条件下运行时,其工作性能将得不到保证。在极限条件长时间运行会影响器件的可靠性。

直流特性

表 1-3 Ta=25℃

符号	参数	测试条件	‡	最小	典型值	最大	单位
		V _{IN}	条件				
V_{DD}	工作电压	_	_	2.5	5	5.5	V
I_{DD}	工作电流	5V	_	_	3.0	7	mA
I _{Stb}	备用电流	5 V	PWDN = 5V	_	10	25	μА
V _{IL}	输入电压"低"	5 V	_	_	_	1.0	V
V _{IH}	输入电压"高"	5 V	_	4.0	_	_	V
R _{OE}	上拉电阻(OE)	5V	V _{OL} =0V	60	100	150	ΚΩ
RIN	输入阻抗	5V	_	_	10	_	ΜΩ
ЮН	源电流	5V	VOUT=4.5V	-0.4	-0.8	_	mA
	(D0-D3,EST,DV)						
I _{TOL}	吸收电流	5V	V OUT=0.5V	1.0	2.5	_	mA
	(D0-D3,EST,DV)						
fOSC	系统频率	5V	晶振=3.5795MHz	3.5859	3.5795	3.5831	MHz

交流特性

表 1 **-** 4

fosc=3.5795MHz,Ta=25 $^{\circ}\!\mathrm{C}$

表」一個	±				1080-3.3	/95MHz,1	1a-25 C
符号	参数		测试条件	最小	典型值	最大	单位
		V _{IN}	条件				
DTMF 信	· · · · · · · · · · · · · · · · · · ·						
	输入信号电平	3V		-36	_	- 6	V
		5V		-29	_	1	=
	扭矩接受极限 (正极)	5V		-	10	_	dBm
	扭矩接受极限 (负极)	5 V		_	10	_	dB
	拨号音频公差	5 V		_	18	_	dB
	噪声公差	5 V		_	-12	_	dB
	三分之一音频公差	5V		-	-16	_	dB
	接受频率偏差	5V		_	_	±1.5%	%
	拒受频率偏差	5V		±3.5	_	_	%
	上电时间(tPU)(见图 1-7)	5V		-	30	_	mS
放大器增	曾 益	•		•	•		•
RIN	输入电阻	5V	_	=	10	=	ΜΩ
IIN	输入泄漏电流	5V	VSS<(VP,VVN) <vdd< td=""><td>_</td><td>0.1</td><td>-</td><td>μА</td></vdd<>	_	0.1	-	μА
VOS	偏移电压	5V	_	_	±25	_	mV
PSRR	电源拒波	5V	100Hz	_	60	_	dB
CMRR	共态模式拒波	5V	-3V <vin<v< td=""><td>_</td><td>60</td><td>-</td><td>dB</td></vin<v<>	_	60	-	dB
AVO	开环增益	5V		_	65	_	dB
FT	带宽增益	5V	_	_	1.5	_	MHz
VOUT	输出电压波动	5V	RL>100 KΩ	_	4.5	_	VPP
RL	负载电阻 (GS)	5V	_	_	50	_	ΚΩ
CL	负载电容 (GS)	5V	_	_	100	_	PF
VCM	共态范围	5V	无负载	_	3.0	_	VPP
操纵控制	ıl .						_
tDP	出现音频的识别时间			5	16	22	ms
tDA	音频消失的识别时间			_	4	8.5	ms
tACC	接受音频的保持时间			_	_	42	ms
tREJ	拒受音频保持时间			20	_	_	ms
tIA	接受数字的间歇			_	_	42	ms
tIR	拒受数字的间歇			20	_	_	ms
tPDO	传输延时(RT/GT 到 D0)			_	8	11	μs
tPDV	传输延时(RT/GT 到 DV)			-	12	_	μs
tDOV	重建输出数据时间(D0 到 DV)			-	4.5	_	μs
tDDO	失效延时(OE 到 DO)			-	300	-	ns
tEDO	使能延时(OE 到 DO)			-	50	60	ns

注: DO=D0~D3

图 1 一 4 测试电路

功能概述

概况

HT9170 系列的双音频解码器由三个带通滤波器和两个数字解码电路组成,由它们把双音频 (DTMF) 信号转变为数字代码并输出。运算放大器自行调整输入信号 (参考图 1-5)。

(a)标准输入电路

(b) 多路輸入电路

图 1-5 放大器应用电路的输入形式

前置滤波器是一个带阻滤波器,能减少从 350Hz 到 400Hz 的拨号音频。低通滤波器能使低频信号输出,高通滤波器能使高频信号输出。每个滤波器输出的后面都跟有一个带滞后的零跨越的检测器。当一个输出信号的振幅超出设定值时,就转变为全摇摆逻辑信号。输入信号一旦被识别为有效,DV 置高,并传送正确地双音频代码 (DTMF) 数字。

操纵控制电路

操纵控制电路是用来测量有效信号保持时间和防止有效信号变弱的。它利用由 EST 控制时间常数的外围 RC 来作相应延时。

时序如图 1-6。EST 引脚通常为低,而且通过外围 RC 放电使 RT/GT 引脚也保持低。EST 置高,通过 RC 给 RT/GT 充电。

当 RT/GT 的充电电压从 0 变到 VTRT(2.35V,5V 供电)时,输入信号为有效,代码检测器产生正确的代码。D0-D3 被锁存后,DV 输出置高。当 RT/GT 的电压从 VDD 下降到 VTRT 时(等等,没有输入音频时)DV 输出置低,D0-D3 上的数据保持到下一个有效音频输入。

通过选择合适的外围 RC 值,可设定最少的输入音频持续时间(TACC)和最少的拒受间歇时间(TIR)。可根据下面的公式来选择外围元件(R, C)(参照图 1-8)

tACC=tDP+tGTP

tIR=tDA+tGTA

其中: tACC: 音频接受的持续时间

tDP: EST 输出延时 ("L" - "H")

tGTP: 音频出现时间

tIR: 数字间歇的拒受时间

tDA: EST 输出延时 ("H" - "L")

tGTA: 音频消失时间

(a)基本电路

 t_{GTP} = R ×0C ×1Ln (V_{DD} / (V_{DDT} V_{TRT})) t_{GTA} = R ×10C ×1Ln (V_{DD} / V_{TRT})

(c)t_{GTP} > t_{GTA}: t_{GTP} = R1 x C x0Ln (V_{DD} / (V_{DD} - 101_{TRT})) t_{GTA} = (R1 // R2) x0C x1Ln (V_{DD} / V_{TRT})

 $\begin{array}{l} (b)t_{GTP} < t_{GTA}; \\ t_{GTP} = (R1 \# R2) \times DC \times DLn \ (V_{DDT}V_{TRT})) \\ t_{GTA} = R1 \times DC \times DLn \ (V_{DD} / V_{TRT}) \end{array}$

图 1-8 操纵时间调制电路

DTMF 拨号矩阵

列 1	列 2	列3	列4
行1 1	(2)	(3)	\overline{A}
行24	(5)	(<u>6</u>)	B
行3(7)	(8)	(9)	(
行4 (*)	▣	(#)	
图 1-9			

DTMF 数据输出表

表 1-5

低通 (Hz)	高通 (Hz)	数字	OE	D3	D2	D1	D0
697	1209	1	Н	L	L	L	Н
697	1336	2	Н	L	L	Н	L
697	1477	3	Н	L	L	Н	Н
770	1209	4	Н	L	Н	L	L
770	1336	5	Н	L	Н	L	Н
770	1477	6	Н	L	Н	Н	L
852	1209	7	Н	L	Н	Н	Н
852	1336	8	Н	Н	L	L	L
852	1477	9	Н	Н	L	L	Н
941	1336	0	Н	Н	L	Н	L
941	1209	*	Н	Н	L	Н	Н
941	1477	#	Н	Н	Н	L	L
697	1633	А	Н	Н	Н	L	Н
770	1633	В	Н	Н	Н	Н	L
852	1633	O	Н	Н	Н	Н	Н
941	1633	D	Н	L	L	L	L
_	_	ANY	L	Z	Z	Z	Z

Z: 表示高阻态

数据输出

数据输出(D0~D3)是三态输出,OE输入置低时,数据输出(D0~D3)为高阻态。

应用电路

注: (a) XTAL=3.579545MHz 晶体振荡器

C1=C2=20pF

(b) XTAL=3.58MHz 陶瓷振荡器

C1=C2=39pF

图 1 **-** 8