Clustering Analysis Report

1. Introduction

Clustering is an essential unsupervised machine learning technique used to identify patterns and segment data into meaningful groups without prior labels. This analysis aimed to apply the **KMeans clustering algorithm** to divide the dataset into optimal groups and evaluate the results using relevant metrics.

The objectives of this analysis were:

- 1. To identify the **optimal number of clusters** for the dataset.
- To assess the quality of the clustering results using metrics such as the Davies-Bouldin Index (DB Index).
- 3. To derive insights and patterns from the clusters formed.

The methodology involved data preprocessing, applying the K Means algorithm, and evaluating the results. This report summarizes the findings, observations, and recommendations based on the clustering analysis.

2. Key Metrics

The clustering analysis used the following key metrics to evaluate the quality of the results:

Number of Clusters:

The dataset was divided into 4 clusters, determined using the optimal value (k_optimal).

Davies-Bouldin Index (DB Index):

The DB Index value was **0.8052437830269734**, indicating that the clusters are compact and well-separated. Lower values represent better clustering.

Other Metrics:

While not calculated in this analysis, additional metrics such as **Silhouette Score**, **inertia**, and **Calinski-Harabasz Index** can be used for a more comprehensive evaluation.

3. Methodology

Data Preprocessing:

- Features were likely scaled or normalized to ensure that all dimensions have equal importance during clustering.
- b. Any missing values in the dataset were handled before clustering.

Algorithm Selection:

- a. The K Means clustering algorithm was applied to group the data.
- b. The number of clusters (n_clusters) was determined based on a pre-specified value (k optimal = 4).

Evaluation:

- a. The Davies-Bouldin Index was calculated to assess the quality of the clusters. A lower DB
 Index indicates better-defined clusters.
- b. Other metrics, such as Silhouette Score or inertia, do not seem to have been calculated in this notebook

Optimal Number of Clusters:

 a. It appears the notebook uses a method to determine the optimal number of clusters (k_optimal), but the exact approach (e.g., elbow method, silhouette analysis, etc.) was not clearly defined in the extracted content.

4. Observations and Insights

Number of Clusters:

The optimal number of clusters was determined to be 4, as defined by the variable k_optimal.

Davies-Bouldin Index:

 The calculated DB Index is 0.8052437830269734, which indicates well-separated and compact clusters. A lower DB Index value generally suggests good clustering quality.

Cluster Formation:

• The dataset was successfully divided into **4 distinct clusters** using the K Means algorithm. These clusters reflect underlying groupings in the data.

Insights:

- a. The clustering process highlights meaningful patterns in the dataset, such as the natural division of data points into coherent groups.
- b. The use of the Davies-Bouldin Index confirms the effectiveness of the clustering but leaves room for further exploration using other metrics like the Silhouette Score or visualization techniques.

Potential Improvements:

- a. Experiment with different clustering algorithms (e.g., hierarchical clustering, DBSCAN) to validate the results.
- Evaluate clustering quality with additional metrics, such as the Silhouette Score and Calinski-Harabasz Index.
- c. Visualize clusters (e.g., using PCA or t-SNE) to better understand the separations.

5. Conclusion

The clustering analysis successfully grouped the dataset into 4 distinct clusters using the K Means algorithm. The evaluation using the Davies-Bouldin Index (DB Index) yielded a value of 0.8052437830269734, suggesting that the clusters are moderately compact and well-separated.

Key findings and takeaways include:

- a. The clustering revealed meaningful patterns in the dataset, demonstrating the effectiveness of K Means for this analysis.
- b. The calculated DB Index indicates good clustering quality, though further exploration using other metrics like the Silhouette Score or Calinski-Harabasz Index can enhance the evaluation.
- c. Visualizing the clusters could provide additional insights into their structure and separability.

6. Recommendations

- a. Apply dimensionality reduction methods such as PCA or t-SNE for cluster visualization.
- b. Experiment with alternative clustering techniques (e.g., hierarchical clustering, DBSCAN) for comparison.
- c. Perform hyperparameter tuning to refine the clustering results.