Face Analytics

Detecting Face, Emotion, Gender, Age from Images,

using Convolutional Neural Networks

Tan Shu Jun, GA DSI 11

Product Features

Face Detection

Emotion Detection

Gender Detection

Age Detection

Problem Statement

- This project aims to detect and classify human faces by emotions, gender and age, to allow companies to better customise user experience, improve customer loyalty and generate additional sales
- Improve understanding of emotions induced by products that customers interact with, and how these impact customer satisfaction and their decisions to purchase

- The Specs on Face (SoF) dataset (https://sites.google.com/view/sof-dataset)
 - Collection of images for 112 persons who wear glasses under different illumination conditions
 - Devoted to two main problems: face occlusions and harsh illumination environments

• Four emotion labels provided in dataset

No: Neutral

Hp: Happy

Sd: Sad/Angry/Disgusted

Sr: Surprised/Fearful

no 0.409771 hp 0.397807 sd 0.123629 sr 0.068794

Name: emotion, dtype: float64

Added CK+48 dataset

(https://www.kaggle.com/shawon10/ckplus) to increase size of train data for hp/sd/sr emotion classes

Gender and Age labels also provided in SoF dataset

- Resize to standardise all images (150x150 px)
- Convert to greyscale and normalise images to reduce effect of poor lighting
 - Tried Adaptive Thresholding, but did not improve results
- Image augmentation to increase size of train dataset (horizontal flipping)

CNN Models Implemented

- Face Detection Transfer Learning using pre-trained MTCNN model
- Emotion, Gender, Age Detection Reference from simple LeNet-5 architecture
 - Emotion classification accuracy = **60.0%**
 - Gender classification accuracy = 93.6%
 - Age regression MAE = **3.2**

Layer (type)	Output	Shape	Param #
	======		
conv2d_193 (Conv2D)	(None,	148, 148, 8)	80
max_pooling2d_193 (MaxPoolin	(None,	74, 74, 8)	0
conv2d_194 (Conv2D)	(None,	70, 70, 16)	3216
max_pooling2d_194 (MaxPoolin	(None,	35, 35, 16)	0
flatten_67 (Flatten)	(None,	19600)	0
dense_270 (Dense)	(None,	120)	2352120
dense_271 (Dense)	(None,	84)	10164
dense_272 (Dense)	(None,	4)	340
Total params: 2,365,920 Trainable params: 2,365,920 Non-trainable params: 0			

Emotion Detection Model: Initial Problems and Subsequent Improvements

- Imbalanced classes
 - Class weights to penalise the model more for wrong predictions on images from smaller classes
- Overfitting
 - Dropouts, Batch Normalization, Early Stopping methods
- Difficult to tune hyperparameters manually given time and resource constraints
 - Hyperas/Hyperopt (Bayesian Sequential Model-based Optimisation)
 - Uses information from past trials to inform next set of hyperparameters to explore

Emotion Detection Model: Further Optimisations

- With the above improvements, model accuracy improved to 72.8%
- However, model still performs poorly when detecting sd/sr emotion classes
 - Tried implementing ensemble with Machine Learning models (e.g. Random Forest, Naive Bayes) but did not improve results

Emotion Detection Model: Further Optimisations

- Ensemble three CNN models
 - Slightly different architectures and hyperparameters (combining Hyperas top performing models)
 - Grid search model weights

Emotion Detection Model: Ensemble Results

- Significant improvement in model accuracy for sd/sr emotions
 - 'macro' calculate metrics for each class and find unweighted mean

Accuracy: 0.781561 Precision: 0.750502

Recall: 0.714271

F1 score: 0.729428 ROC AUC: 0.900681

Emotion Detector Model: Examples of Wrongly Classified Emotions

name AbdA gender m age 31 emotion sr emotionCat 3

Name: 917, dtype: object Predicted Emotion: sd

[0.0511867 0.25644809 0.67576977 0.0165955]

name KhaS
gender m
age 35
emotion sd
emotionCat 2

Name: 3474, dtype: object

Predicted Emotion: no

[0.10623834 0.4575055 0.11356587 0.32269028]

Deployment to Telegram App using Heroku

- Telegram bot @FaceClassificationBot
- Real time prediction of a person's emotions, gender and age based on the image provided by the user

Project Limitations

- Models trained on SoF dataset, which is not representative of population
 - Most volunteers were from Egypt, very few Asians
 - Age range mostly from 20-35 years old model performs poorly on very young (e.g. babies) or very old people
- Emotions are complex, even humans get it wrong sometimes
- Challenging to judge someone's emotions just by their facial expressions
 - Consider body language, choice of words, tone of voice