

分辨何種動物的決策樹

炸雞的數據

編號	油溫	油炸時間	好不好吃
1	50	80	好
2	45	60	不好
3	19	100	不好
4	100	30	好
5	100	70	不好
6	70	30	?

- 分割原則-資訊增益(Information gain, 簡稱IG)
 - 熵(Entropy)
 - Gini不純度(Gini Impurity)

資訊增益

獲得的資訊量 原本的資訊量 經由分割後的資訊量

$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$

二元分類資訊增益

獲得的資訊量 原本的資訊量 分割後左邊資訊量 分割後右邊資訊量

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

- 分割原則-資訊增益(Information gain, 簡稱IG)
- 有80筆資料,有40是1類別、40筆是2類別。使用兩種不同的切割方法A與B

範例練習

- 以下的範例是鳶(口弓)尾花的分類資料集。
- 共有4個欄位,150筆資料。
- sepal length (cm): 花萼的長度。
- sepal width (cm): 花萼的寬度。
- petal length (cm): 花瓣的長度。
- petal width (cm): 花瓣的寬度。

- Setosa
- Versicolor
- Virginica

鳶尾花的花瓣長寬和花萼長寬

- Entropy:使用每種特徵分類後的資訊量,資訊量越多就越優先作為決策條件
- Gini Impurity:指的是分類器的分錯機率,越小代表錯誤機率越小故選為決 策的條件。

隨機森林樹(Random Forest)

隨機森林樹(Random Forest)

範例練習

- 接續上一節決策樹的範例,一樣使用鳶尾花的資料集。
- 此處的隨機森林使用 Random Forest Classifier () 建構隨機森林訓練模型, n_estimators = 10代表使用 10個決策樹形成隨機森林。

K-最近鄰居法 (K-NN)

• k-Nearest Neighbor

• 時間複雜度為 $O(n^2)$

K-最近鄰居法 (K-NN)

- 距離計算方法
 - 歐幾里得距離: $X(x_1, y_1)$ 和 $Y(x_2, y_2)$, $D(X, Y) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$
 - 曼哈頓距離: $X(x_1, y_1)$ 和 $Y(x_2, y_2)$, $D(X, Y) = |x_1 x_2| + |y_1 y_2|$
 - 餘弦距離: $X(x_1, y_1)$ 和 $Y(x_2, y_2)$, $1 \cos \theta = 1 \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$
 - 傑卡德距離: $D(X,Y) = 1 \frac{|X \cap Y|}{|X \cup Y|}$

K-最近鄰居法 (K-NN)

• K值的重要性

• K-means 分群 (K-means Clustering), 其實就有點像是以前學數學時, 找重心的概念。

- 1. 先決定要分k組,並隨機選k個點做群集中心。
- 2. 將每一個點分類到離自己最近的群集中心(可用直線距離)。
- 3. 重新計算各組的群集中心(常用平均值)直到不再變化分群結束。
- 4. 繼續執行2、3步驟

• 時間複雜度O(NKT), N 是數據數量, K 是群集數量, T 是重複次數

1. 先決定要分k組,並隨機選k個點做群集中心。

(a)資料集各點座標

點	座標
A	(0, 0)
В	(1, 1)
С	(2, 1)
D	(1, 3)
Е	(2, 4)
F	(3, 3)

(b)各點到群中心 B 和 C 的距離

	В	С
A	1.4	2.2
D	2	2.2
Е	3.2	3
F	2.8	2.2

(c)各點到群中心(0.7, 1.3)和(2.3, 2.7)的距離

	(0.7, 1.3)	(2.3, 2.7)
A	1.5	3.5
В	0.4	2.1
С	1.3	1.7
D	1.7	1.3
Е	3	1.3
F	2.9	0.8

(d)各點到群中心(1,0.7)和(2,3.3)的距離

	(1, 0.7)	(2, 3.3)
A	1.2	3.9
В	0.3	0.5
С	1	2.3
D	2.3	1
Е	3.6	0.7
F	3	1

(a) K-平均分群法的範例

- 2. 將每一個點分類到離自己最近的群集中心(可用直線距離)。
- 3. 重新計算各組的群集中心(常用平均值)直到不再變化分群結束。

第一群
$$((0+1+1)/3, (0+1+3)/3)=(0.7, 1.3)$$

第二群((2+2+3)/3, (1+4+3)/3)=(2.3, 2.7)

(a)資料集各點座標

座標
(0, 0)
(1, 1)
(2, 1)
(1, 3)
(2, 4)
(3, 3)

(b)各點到群中心 B 和 C 的距離

	В		С		
A		1.4		2.2	
D		2		2.2	
Е		3.2		3	
F	2.8			2.2	

(c)各點到群中心(0.7, 1.3)和(2.3, 2.7)的距離

	(0.7, 1.3)	(2.3, 2.7)
A	1.5	3.5
В	0.4	2.1
С	1.3	1.7
D	1.7	1.3
Е	3	1.3
F	2.9	0.8

(d)各點到群中心(1,0.7)和(2,3.3)的距離

	(1, 0.7)	(2, 3.3)
A	1.2	3.9
В	0.3	0.5
С	1	2.3
D	2.3	1
Е	3.6	0.7
F	3	1

(b)第一回合分群結果

3. 重新計算各組的群集中心(常用平均值)直到不再變化分群結束。

(a)資料集各點座標

點	座標
A	(0, 0)
В	(1, 1)
C	(2, 1)
D	(1, 3)
Е	(2, 4)
F	(3, 3)

(c)各點到群中心(0.7, 1.3)和(2.3, 2.7)的距離

	(0.7, 1.3)	(2.3, 2.7)
A	1.5	3.5
В	0.4	2.1
С	1.3	1.7
D	1.7	1.3
Е	3	1.3
F	2.9	0.8

(b)各點到群中心 B 和 C 的距離

	В	С
A	1.4	2.2
D	2	2.2
Е	3.2	3
F	2.8	2.2

(d)各點到群中心(1, 0.7)和(2, 3.3)的距離

	(1, 0.7)	(2, 3.3)
A	1.2	3.9
В	0.3	0.5
С	1	2.3
D	2.3	1
Е	3.6	0.7
F	3	1

(c)第二回合分群結果

K-means VS K-NN

K-means: K代表設定集群的類別中心點數量

K-NN: K是設定鄰居的數量採多數決作為輸出的依據

K-means VS K-NN

範例練習

• 以下的範例是使用 make_blobs()產生300個亂數點的資料 集,分成三群,每群的標準差為1。

- Density-based spatial clustering of applications with noise
- 1. DBSCAN是所謂Density-Based的方法,也就是他最重視的是data的密度
- 2. DBSCAN能夠自動處理noise
- DBSCAN會依據data性質自行決定最終Cluster的數量

- eps: neighborhood radius
- min_samples: 4
- A: Core
- B, C: not core
- N: noise

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

DBSCAN-參數設置

- eps: neighborhood radius
- Min_sample
 - 1. 依照noise的數量調整
 - 2. 依據Domain Knowledge
 - 3. 依據k_distance
 - 4. 持續做Data Analysis

- eps: neighborhood radius
- min_samples: 4
- A: Core
- B, C: not core
- N: noise

範例練習

- 此處的資料集產生是以原點為同心圓,在圓周上使用自訂的函數 CreatePointsInCircle(r, n=100)產生資料集,其中r代表同心圓的半徑,n代表 產生資料集的數量。
- 首先算出在半徑r的圓周上,平均分成n個點,第i點的座標為(cos(2π/n*i)*r, sin(2π/n*i)*r),為了產生亂數的效果,所以每個點x和y座標分別加上(-30, 30)間的亂數