Zadanie: Aplikacja dwu przetworników DAC - sterowanie X-Y

W mikroprocesorowym systemie laboratoryjnym znajdują się trzy przetworniki typu DAC. Dwa w procesorze (DAC_0 i DAC_1) oraz jeden zewnętrzny (AD7524) dołączony do portu P2.

Należy napisać procedurę umożliwiającą narysowanie (przesuwanie plamki) na ekranie oscyloskopu wskazanej przez prowadzącego figury geometrycznej np. **romb, trójkąt, inicjał** itd.

Ponieważ wskazane figury składają się z odcinków linii prostych (równania liniowe 1-go rzędu) to nasuwającą się i <u>polecaną</u> metodą rysowania jest obliczanie wartości Y na podstawie równania odpowiedniego odcinka f(X) w odpowiednich przedziałach zmiennej X.

Możliwe są też do zastosowania inne metody np.: korzystanie z tablic zawierających współrzędne punktów opisujących na płaszczyźnie XY wybraną figurę.

Pełny zakres zmienności danych X i Y to przedziały:

- X 00h-FFh lub 000h-FFFh zależnie od wybranej rozdzielczości przetwornika DAC_1
- Y 00h-FFh, wynika on z rozdzielczość przetwornika AD7524 (8-b)

Oczywiście możliwa jest zamiana przetworników sterujących osiami X i Y.

Pierwszym krokiem zadania laboratoryjnego będzie narysowanie linii prostej zgodnie z poniższym rysunkiem:

Uwagi

1) Obraz na ekranie oscyloskopu będzie widoczny jeśli plamka będzie się przesuwała po kreślonej trajektorii cyklicznie, z jak największą częstotliwością. Z tego powodu należy ustawić maksymalną częstotliwość używanego zegara systemowego DCO lub przełączyć sygnały zegarowe MCLK i SMCLK do uruchomionego oscylatora kwarcowego XT2, zgodnie z poniżej podaną procedurą.

```
;----- Basic Clock Module Initialisation -----
        - switch from DCO to XT2
        - MCLK & SMCLK supplied from XT2, ACLK = n/a
        - the DCO is left runing
                #OSCOFF,SR
                                    ;turn OFF osc.1
        bis.b
        bic.b
                #XT2OFF,BCSCTL1
                                    ;turn ON osc.2
BCM0
        bic.b
                #OFIFG,&IFG1
                                    ;clear OFIFG
                                    ;delay (waiting for oscilator start)
        mov
                #0FFFFh,R15
BCM1
        dec
                R15
                                    ;delay
                BCM1
        inz
                                    ;delay
        bit.b
                #OFIFG,&IFG1
                                    test OFIFG;
        jnz
                BCM0
                                    ;repeat test if needed
                                    ;MCLK
                                    ;slelect XT2CLK as source
        bic.b
                #040h,&BCSCTL2
        bis.b
                #080h,&BCSCTL2
        bic.b
                #030h,&BCSCTL2
                                    ;MCLK=source/1 (8MHz)
                                    ;SMCLK
        bis.b
               #SELS,&BCSCTL2
                                    ;slelect XT2CLK as source
        bic.b
              #006h,&BCSCTL2
                                    ;SMCLK=source/1 (8MHz)
```

2) Poniżej podano przykład konfiguracji (przedstawiony również na wykładzie) przetwornika DAC_0. Należy zgodnie z nim dokonać konfiguracji przetwornika DAC_1 używanego w zadaniu.

;		;DAC_0 initialisation
bis.w	#REFON+REF2_5V,&ADC12CTL0	;Reference generator ON, VRef+=2.5V
bic	#DAC12SREF0,&DAC12_0CTL	;set Vref=VREF+
bic	#DAC12SREF1,&DAC12_0CTL	;
bic	#DAC12RES,&DAC12_0CTL	;12-bit resolution
bic	#DAC12LSEL0,&DAC12_0CTL	;Load mode 0
bic	#DAC12LSEL1,&DAC12_0CTL	;
bis	#DAC12IR,&DAC12_0CTL	;Full-Scale=1xVref
bis	#DAC12AMP0,&DAC12_0CTL	;High speed amplifier output
bis	#DAC12AMP1,&DAC12_0CTL	;
bis	#DAC12AMP2,&DAC12_0CTL	;
bic	#DAC12DF,&DAC12_0CTL	;Data format - straight binary
bic	#DAC12IE,&DAC12_0CTL	;Interrupt disabled
bis	#DAC12ENC,&DAC12_0CTL	;DAC_0 conversion enabled
;		

Zakładam, że o aplikacjach sterowania X-Y nie muszę pisać.