6.002 CIRCUITS AND ELECTRONICS

State and Memory

Review

Recall

$$v_C = V_I + (v_C(0) - V_I) e^{\frac{-t}{RC}}$$
 — 1

Reading: Sections 10.3, 10.5, and 10.7

This lecture will dwell on the memory property of capacitors.

For the RC circuit in the previous slide

Notice that the capacitor voltage for $t \ge 0$ is independent of the form of the input voltage before t=0. Instead, it depends only on the capacitor voltage at t=0, and the input voltage for $t \ge 0$.

State

State: summary of past inputs relevant to predicting the future

State

Back to our simple RC circuit (1)

$$v_{C} = f(v_{C}(0), v_{I}(t))$$

$$v_{C} = V_{I} + (v_{C}(0) - V_{I}) e^{\frac{-t}{RC}}$$

Summarizes the past input relevant to predicting future behavior

State

We are often interested in circuit response for

zero state
$$v_C(0) = 0$$

■ zero input
$$v_I(t) = 0$$

Correspondingly,

zero state response or ZSR

$$v_C = V_I - V_I e^{\frac{-t}{RC}} \qquad - \bigcirc$$

zero input response or ZIR

$$v_C = v_C(0)e^{\frac{-t}{RC}} \qquad \qquad \boxed{3}$$

One application of STATE

DIGITAL MEMORY

Why memory?

Or, why is combinational logic insufficient?

Examples

Consider adding 6 numbers on your calculator

"Remembering" transient inputs

Memory Abstraction

Remembers input when store goes high. Like a camera that records input (d_{IN}) when the user presses the shutter release button. The recorded value is visible at d_{OUT} .

A First attempt

$$v_{C} = 5 \cdot e^{\frac{-t}{R_{L}C}} \qquad \text{from } (2)$$

$$T = -R_{L}C \ln \frac{V_{OH}}{5}$$

store pulse width $>> R_{ON} C$

B Second attempt → buffer

Input resistance R_{IN}

$$T = -R_{IN}C \ln \frac{V_{OH}}{5}$$

$$R_{IN} >> R_{L}$$

Better, but still not perfect.

(C) Third attempt \rightarrow buffer + refresh

Does this work?

No. External value can influence storage node.

Works!

A Memory Array

4-bit memory

Truth table for decoder

a_0	a_1	A	В	\boldsymbol{C}	D
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	B 0 1 0 0	0	1

Agarwal's top 10 list on memory

- 10 I have no recollection, Senator.
 - 9 I forgot the homework was due today.
 - 8 Adlibbing \equiv ZSR
 - 7 I think, therefore I am.
 - 6 I think that was right.
 - 5 I forgot the rest ...