Assignment 1

August 14, 2020

MAM2000W 2IA KDSMIL001

1. Let P_n be the statement $3|n^3-4n$ for all $n \in \mathbb{N}$. Another way of saying this is $n^3-4n=3t$ where $t \in \mathbb{Z}$.

Base Case:

$$P_n: 1^3 - 4(1) = 1 - 4 = -3$$

It's simple to see that 3|-3, so our base case is true.

Inductive Hypothesis:

We assume that the statement P_k is true, that is

$$3|k^3 - 4k$$

$$\implies k^3 - 4k = 3p, p \in \mathbb{Z}$$

We now look at the case P_{k+1} :

$$(k+1)^3 - 4(k+1) = k^3 + 3k^2 + 3k + 1 - 4k - 4$$
$$= (k^3 - 4k) + (3k^2 + 3k - 3)$$

By the Inductive Hypothesis, we know that $k^3 - 4k = 3p$. We can also easily see that

$$3k^2 + 3k - 3 = 3(k^2 + k - 1)$$

We know that k is a natural number, so $k^2 + k - 1$ is an integer and therefore we can say $3k^2 + 3k - 3 = 3q, q \in \mathbb{Z}$. Finally we can say

$$(k^3 - 4k) + (3k^2 + 3k - 3) = 3p + 3q = 3(p + q)$$

The sum of two integers is an integer and so we can say that P_{k+1} is true and by the principle of mathematical induction P_n is true for all $n \in \mathbb{N}$.