Program Reasoning

4. Propositional Logic

Kihong Heo

Logic

- What is logic? A tool for reasoning about truths
- Why logic for computer scientists? Reasoning about computation
- For example,
 - "Does this program accept an array of integers and produce a sorted array?"
 - "Does this program access an unallocated memory?"
 - "Does this function always halt?"
- This course: propositional logic (PL) and first-order logic (FOL)

Syntax

- Atom: basic elements
 - Truth symbols: T ("true") and ⊥ ("false")
 - Propositional variables: P, Q, R, \dots
- Literal: an atom α or its negation $\neg \alpha$
- Formula: a literal or the application of a logical connective to formulae

Semantics

- Give meaning to formulae
 - In propositional logic, the truth values
- ullet The semantics of a formula is defined with an interpretation I
 - An interpretation assigns to every propositional variable exactly one truth value
- For example, $F: P \land Q \rightarrow P \lor \neg Q$ and $I: \{P \mapsto \top, Q \mapsto \bot\}$

Inductive Definition of PL

- Notation:
 - $I \models F$ if F evaluates to true under I
 - $I \not\models F$ if F evaluates to false under I

```
\begin{split} I &\models \top \\ I \not\models \bot \\ I &\models P & \text{iff } I[P] = \text{true} \\ I \not\models P & \text{iff } I[P] = \text{false} \\ I &\models \neg F & \text{iff } I \not\models F \\ I &\models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I &\models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I &\models F_1 \to F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I &\models F_1 \leftrightarrow F_2 & \text{iff, if } I \models F_1 \text{ and } I \models F_2, \text{ or if } I \not\models F_1 \text{ and } I \not\models F_2 \end{split}
```

• $F: P \land Q \rightarrow P \lor \neg Q$ and $I: \{P \mapsto \mathsf{T}, Q \mapsto \bot\}$

Satisfiability and Validity

- Two important tasks in logic (why? when?)
- A formula F is satisfiable iff there exists an interpretation I such that $I \models F$
- A formula F is valid iff for all interpretations I, $I \models F$
- Satisfiability and validity are dual: F is valid iff $\neg F$ is unsatisfiable
- We are free to focus on either one; the other will follow

Valid, Satisfiable, Falsifiable and Unsatisfiable

8 / 25

Determining Validity and Satisfiability (1)

- Truth table method
 - For example, $F: P \land Q \rightarrow P \lor \neg Q$
- Impractical: 2ⁿ interpretations

P	Q	PΛQ	¬Q	PV¬Q	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

• Impossible: for any other logic where the domain is not finite (e.g., first-order logic)

Determining Validity and Satisfiability (2)

- Semantic argument method (proof by contradiction)
 - Assume F is invalid: I \(\mathbb{F} \)
 - Apply proof rules to derive new facts
 - Derive a contradiction in every branch of the proof
 - Then, F is valid

Proof Rules (1)

According to the semantics of negation,

$$\frac{I \models \neg F}{I \not\models F}$$

$$\frac{I \not\models \neg F}{I \models F}$$

According to the semantics of conjunction,

$$\frac{I \models F \land G}{I \models F, I \models G}$$

$$\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$$

Proof Rules (2)

According to the semantics of disjunction,

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

$$\frac{I \not\models F \lor G}{I \not\models F, \ I \not\models G}$$

According to the semantics of implication,

$$\frac{I \models F \to G}{I \not\models F \mid I \models G}$$

$$\frac{I \not\models F \to G}{I \models F, \ I \not\models G}$$

Proof Rules (3)

According to the semantics of iff,

$$\frac{I \models F \leftrightarrow G}{I \models F \land G \mid I \models \neg F \land \neg G}$$

$$\begin{array}{c|c} I \models F \leftrightarrow G \\ \hline I \models F \land G \mid I \models \neg F \land \neg G \end{array} & \begin{array}{c|c} I \not\models F \leftrightarrow G \\ \hline I \models F \land \neg G \mid I \models \neg F \land G \end{array} \\ \hline \end{array}$$

Contradiction

$$\frac{I \models F, \ I \not\models F}{I \models \bot}$$

• Prove $F: P \land Q \rightarrow P \lor \neg Q$ is valid

• Prove $F:(P\to Q)\land (Q\to R)\to (P\to R)$ is valid

Proof Tree

- Proof evolves as a tree rather than linearly
 - A branch of the tree is a sequence of lines descending from the root
 - A branch is closed if it contains a contradiction, otherwise open
 - A semantic argument is finished when no more proof rules are applicable
- ullet Proof of the validity of F: if every branch is closed
 - ullet Otherwise, each open branch describes a falsifying interpretation of F

Derived Rules

- The proof rules are theoretically sufficient
- However, derived proof rules can make proofs more concise (c.f., procedure, subroutine)
- Example: modus ponens

$$\frac{I \models F, \quad I \models F \to G}{I \models G}$$

• Prove $F:(P\to Q)\land (Q\to R)\to (P\to R)$ is valid

Proof of Satisfiability

- Dual of the validity proof: F is satisfiable iff $\neg F$ invalid
- Truth-table or semantic argument methods
- Example: $\neg (P \lor Q \rightarrow P \land Q)$

Р	Q	PVQ	PΛQ	F	⊐F
0	0	0	0	1	0
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	1	1	0

• Prove $G: \neg (P \lor Q \rightarrow P \land Q)$ is satisfiable

We prove that $P \lor Q \rightarrow P \land Q$ is invalid

Equivalence and Implication

- Important properties of pairs of formulae
- Two formulae F_1 and F_2 are equivalent iff $F_1 \leftrightarrow F_2$ is valid: $F_1 \iff F_2$
 - $F_1 \iff F_2$ is not a formula but a statement
- Formula F_1 implies formula F_2 iff $F_1 \to F_2$ is valid: $F_1 \implies F_2$
 - $F_1 \implies F_2$ is not a formula but a statement

• Prove $P \iff \neg \neg P$ (using the truth table method)

We prove that $P \leftrightarrow \neg \neg P$ is valid:

P	¬P	¬¬Р	$P \leftrightarrow \neg \neg P$
0	1	0	1
1	0	1	1

• Prove $P \to Q \iff \neg P \lor Q$ (using the truth table method)

We prove that $F: P \to Q \leftrightarrow \neg P \lor Q$ is valid:

P	Q	$P \rightarrow Q$	¬P	¬P V Q	F
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	1	0	1	1

• Prove that $R \wedge (\neg R \vee P) \implies P$

We prove that $R \wedge (\neg R \vee P) \rightarrow P$ is valid

Application: Hardware Verification

- The Pentium FDIV bug (1994): incorrect binary floating point division
 - Result: full recall (\$475M)
- Intel started using formal verification after the issue
- Turing Award (2007): Edmund Clarke

Summary

- Propositional logic: the simplest form of logic
- Interpretation: decide the meaning of a formula (either true or false)
- Satisfiability: is there any interpretation that makes the formula be true?
- Validity: does the formula evaluate to be true for all interpretations?
- Duality of satisfiability and validity
 - E.g., "no input can trigger this bug" = "work well with all inputs"
- Equivalence and implication: properties of two formulae