高雄中學 107 學年度第 2 學期 高三第 1 次期中考數學科 試題卷 (自然組)

命題範圍:高三數學 3-1 數列的極限與無窮等比級數、3-2 函數的概念、3-3 函數的極限

- 說明:1. 請作答在答案卷上,須將答案填入正確欄位,否則不予計分。
 - 2. 若題目未特別註明,則本卷中之函數其變數值與函數值皆預設為實數,其定義域預設為能找得到對應函數值之所 有變數值形成的集合。
- 一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得5分,只答錯兩個選 項者得2分,其餘情形不給分。共32分。
 - 1. 設 $a_n = \frac{1}{x+3} \times (\frac{3x+6}{1-2x})^n$, $n \in \mathbb{N}$ 。則 x 為下列何者時,會使得數列 $\langle a_n \rangle$ 收斂?
 (1) -7 (2) -4 (3) -3 (4) -1 (5) 2

- 2. 下列選項何者必定正確?
 - (1) $\lim_{n\to\infty}\frac{(-1)^n\cdot n}{n+1}$ 不存在。
 - (2) 若數列 $\langle a_n \rangle$ 收斂, $\langle b_n \rangle$ 發散,則數列 $\langle a_n \cdot b_n \rangle$ 必發散。
 - (3) 若 $\lim(a_1 + a_2 + \dots + a_n)$ 存在,則 $\lim_{n \to \infty} a_n$ 必定為 0。
 - (4) $\lim_{n\to\infty} (1-\frac{1}{3^2})(1-\frac{1}{4^2})\cdots(1-\frac{1}{n^2})=\frac{1}{2}$
 - $(5) \quad \sum_{n=1}^{\infty} \frac{1}{C^n} = 2$
- 3. 設函數 $f(x) = \frac{1}{x-1} + \frac{1}{x-2}$, 則下列選項何者必定正確?
 - (1) $\lim_{x \to 1} f(x)$ 不存在
 - (2) f(x)在區間 $(-\infty,0)$ 為連續函數
 - (3) 無論 k 為任何實數 ,方程式 $\frac{1}{x-1} + \frac{1}{x-2} = k$ 在區間 (1,2) 必定有實根
 - (4) 無論 k 為任何實數, 方程式 $\frac{1}{x-1} + \frac{1}{x-2} = k$ 必定有兩個實根
 - (5) f(x)在區間(1,2)為遞減函數
- 4. 下列選項何者必定正確?

(1)
$$f(x) = \begin{cases} a, & \text{if } x = 0 \\ \frac{|x|}{x}, & \text{if } x \neq 0 \end{cases}$$
 , 無論實數 a 值為何, $f(x)$ 在 $x = 0$ 處都不連續。

(2) $f(x) = \begin{cases} 1, & \text{if } x \neq 0 \\ \frac{\sin x}{x}, & \text{if } x \neq 0 \end{cases}$ 為連續函數。

(2)
$$f(x) = \begin{cases} 1, & \text{if } x = 0 \\ \frac{\sin x}{x}, & \text{if } x \neq 0 \end{cases} \quad \text{ if } x \neq 0$$

- (3) 若 f(x) 是奇函數,則 f(x) 必定是一對一函數。
- (4) $f(x) = x \cdot (2^x \frac{1}{2^x})$ 是偶函數。
- (5) $f(x) = x^{\frac{1}{x}}$ 在區間 (0,∞) 是遞增函數。

二、填充題:依下列配分表計分,共60分。

答對格數	1	2	3	4	5	6	7	8	9	10	11
總得分	8	15	22	28	34	39	44	48	52	56	60

1.
$$\lim_{x\to 0} \frac{(1-x)(1-2x)(1-3x)(1-4x)-1}{x} = \underline{\qquad (A)}$$

2. 函數
$$f(x) = (-1)^{[x]}(x - [x] - \frac{1}{2})$$
 ,若 $\lim_{x \to 2^+} f(x) = a$, $\lim_{x \to 2^-} f(x) = b$, 則數對 $(a,b) = \underline{\qquad (B)}$ (其中[]為高斯符號)

3. 已知無窮等比級數
$$1+r+r^2+\cdots+r^n+\cdots=0.72^-$$
,則 $r=$ (C)

5. 當
$$n$$
 為正整數時,令 $x^2 + 2nx - 3n = 0$ 之兩根為 a_n 、 b_n ,且 $a_n > b_n$,則 $\lim_{n \to \infty} a_n = \underline{\qquad (E)}$

6. 函數
$$f(x) = \sqrt{-|x^2 - 4| + 3x}$$
 之定義域為 (F) (寫成集合或區間的形式都可以)

7. 如下圖,每個圖中 $\angle B$ 皆為 90 度且 $\overline{AB} = \overline{BC} = 1$ 。在圖(n)中沿著 \overline{AC} 有 n 個一模一樣的等腰直角小台階,其外沿轉折線段與 \overline{AB} 、 \overline{BC} 形成封閉圖形(也就是說,將三角形 ABC 之斜邊 \overline{AC} 等分成 n 小段,以每一小段為斜邊向外作等腰直角三角形)。下方呈現前四個圖的例子,依此類推。設圖(n)之周長為 T_n ,面積為 S_n ,則 $\lim (T_n + S_n) = \underline{\quad (G)}$

8. 實數
$$a \cdot b$$
 滿足 $\lim_{x \to -2} \frac{x^2 + x - 2}{\sqrt{ax} - \sqrt{b}} = 3$,則數對 $(a, b) = \underline{\qquad}$ (H)

9.
$$\lim_{x \to 0} \frac{\sin x - \tan x}{x^3} =$$
 (I)

10.
$$\frac{1}{2 \times 3 \times 4} + \frac{2}{3 \times 4 \times 5} + \frac{3}{4 \times 5 \times 6} + \dots = \underline{\qquad (J)}$$

11. 有一遊戲由甲乙雙方進行,每回合甲獲勝的機率皆為 $\frac{2}{3}$,乙獲勝的機率皆為 $\frac{1}{3}$,任一方若能連贏兩回合則遊戲結束並由該方贏得遊戲,若遊戲未結束則繼續進行下一回合。則甲贏得遊戲的機率為 ___(K)__

三、計算證明題:請使用黑色墨水筆在欄位內作答,並詳述過程,依作答內容完整度斟酌給分。共8分。

1. (1) 證明:對於任意正整數
$$k$$
,不等式 $\sqrt{k+1} - \sqrt{k} < \frac{1}{2\sqrt{k}} < \sqrt{k} - \sqrt{k-1}$ 必定成立。(3 分)

$$(2) \lim_{n\to\infty} \left(\frac{1}{\sqrt{1\times n}} + \frac{1}{\sqrt{2\times n}} + \dots + \frac{1}{\sqrt{n\times n}}\right) = ? (5 \ \hat{n})$$

													107下1	段高三	數學(自)	_第3頁(含答案卷	共3頁
高雄中	學	107	學年	度第	52學	期高	三第	1 次	期中表	新	學科	答第	卷	(自	然組)			
班級:	3年_		班		座號	:		姓	名:_									
							頁。每 32分。		完全答對	号得8	分,只	只答錯	一個主	選項ネ	皆得5分	_ ▶,只.	答錯雨	
1.			2				3.			4.								
二、填答對格	多數	:依 1 8	下列酉 2 15	己分才 3 22	麦計分 4 28	· , 共 (5 34	60分。 6 39	7 44	8 48	9 52	10 56	11 60						
(A)					(B)				(C)				.	(D)				
(E)					(F)				(G)					(H)				
(I)					(J)				(K)						ı			
1. (1)	證明	:對方	於任意.	正整數	$ oldsymbol{\xi} k$,不	等式	左欄位 成立。		李 ,並 自 1.	(2) li					· 度斟酌 $\frac{1}{n \times n}) =$			分。

高雄中學 107 學年度第 2 學期 高三第 1 次期中考數學科 〈〈參考解答〉〉 (自然組)

一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得5分,只答錯兩個選項者得2分,其餘情形不給分。共32分。

1.	24	2.	135	3.	1235	4.	124
----	----	----	-----	----	------	----	-----

二、填充題:依下列配分表計分,共60分。

答對格數	1	2	3	4	5	6	7	8	9	10	11
總得分	8	15	22	28	34	39	44	48	52	56	60

(A)	-10	(B)	$(-\frac{1}{2}, -\frac{1}{2})$	(C)	$-\frac{5}{13}$	(D)	$\frac{1}{9}$
(E)	$\frac{3}{2}$	(F)	$1 \le x \le 4$	(G)	$\frac{9}{2}$	(H)	(-8,16)
(I)	$-\frac{1}{2}$	(J)	$\frac{1}{4}$	(K)	$\frac{16}{21}$		

三、計算證明題:請使用黑色墨水筆在欄位內作答,並詳述過程,依作答內容完整度斟酌給分。共8分。

1.(1) 證明:對於任意正整數k,不等式	
$\sqrt{k+1} - \sqrt{k} < \frac{1}{2\sqrt{k}} < \sqrt{k} - \sqrt{k-1}$ 必定成立。	(3分)

答:對於任意大於或等於1的實數k(包含正整數),

都有
$$\sqrt{k+1} + \sqrt{k} > \sqrt{k} + \sqrt{k} > \sqrt{k} + \sqrt{k-1}$$
 ,
因此 $\frac{1}{\sqrt{k+1} + \sqrt{k}} < \frac{1}{2\sqrt{k}} < \frac{1}{\sqrt{k} + \sqrt{k-1}}$

分母有理化得
$$\sqrt{k+1}-\sqrt{k}<\frac{1}{2\sqrt{k}}<\sqrt{k}-\sqrt{k-1}$$
,得證。

1. (2)
$$\lim_{n \to \infty} (\frac{1}{\sqrt{1 \times n}} + \frac{1}{\sqrt{2 \times n}} + \dots + \frac{1}{\sqrt{n \times n}}) = ? (5 \%)$$

答:2。(若只有答案對,沒有過程或過程錯誤則只給1分)

由(1),
$$2(\sqrt{2}-\sqrt{1})<\frac{1}{\sqrt{1}}<2(\sqrt{1}-\sqrt{0})$$
 ……①

$$2(\sqrt{3}-\sqrt{2})<\frac{1}{\sqrt{2}}<2(\sqrt{2}-\sqrt{1})$$
(2)

.....

$$2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})\quad \cdots$$

將n個算式相加,分項對消得

$$2(\sqrt{n+1}-\sqrt{1})<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{0})$$

$$\frac{2(\sqrt{n+1}-\sqrt{1})}{\sqrt{n}} < \frac{1}{\sqrt{1\times n}} + \frac{1}{\sqrt{2\times n}} + \dots + \frac{1}{\sqrt{n\times n}} < \frac{2(\sqrt{n}-\sqrt{0})}{\sqrt{n}}$$

$$\operatorname{Fin} \lim_{n \to \infty} \frac{2(\sqrt{n+1} - \sqrt{1})}{\sqrt{n}} = \lim_{n \to \infty} \frac{2(\sqrt{n} - \sqrt{0})}{\sqrt{n}} = 2,$$

依夾擠定理,
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{1\times n}} + \frac{1}{\sqrt{2\times n}} + \dots + \frac{1}{\sqrt{n\times n}}\right) = 2$$

(若使用積分方法且過程正確也可以)