Binning scheme for γ measurement in $B^{\pm} \to (K^+K^-\pi^+\pi^-)_D K^{\pm}$ decays

Martin Tat

Oxford LHCb

16th December 2020

Outline

Background

2 Unbinned fit with amplitude model

3 Binned fit of $D \to K^+K^-\pi^+\pi^-$

Current progress

- Events generated in AmpGen using amplitude model arXiv:1811.08304
 - Assumed event yield: 2000 (1000 B⁺, 1000 B⁻)
 - Assumed parameters in toy model: $\gamma = 75^{\circ}$, $\delta_B = 130^{\circ}$, $r_B = 0.1$
- Unbinned fit using SimFit in AmpGen
- Binned fit and pull studies
- Develop suitable binning scheme

Unbinned fit with amplitude model

$$\mathcal{A}(B^- \to (K^+ K^- \pi^+ \pi^-)_D K^-) = \mathcal{A}_B \mathcal{A}(D^0 \to K^+ K^- \pi^+ \pi^-) + \mathcal{A}_B \mathcal{A}(\bar{D^0} \to K^+ K^- \pi^+ \pi^-) r_B e^{i(\delta_B - \gamma)}$$

- $\mathcal{A}(D \to K^+K^-\pi^+\pi^-)$ obtained from amplitude model
- Fit with γ , δ_B and r_B as free parameters
- Results from unbinned fit of 2×10^3 events:
 - $\gamma = (69 \pm 11)^{\circ}$
 - $\delta_B = (115 \pm 11)^\circ$
 - $r_B = 0.098 \pm 0.017$

Unbinned fit of 2×10^3 events with amplitude model

Binned fit of $D \rightarrow K^+K^-\pi^+\pi^-$

$$\begin{split} \mathcal{A}(B^- \to (K^+ K^- \pi^+ \pi^-)_D K^-) = & \mathcal{A}_B \mathcal{A}(D^0 \to K^+ K^- \pi^+ \pi^-) \\ & + & \mathcal{A}_B \mathcal{A}(\bar{D^0} \to K^+ K^- \pi^+ \pi^-) r_B e^{i(\delta_B - \gamma)} \end{split}$$

Event yield in bin i

$$N_{i}^{-} = h_{B^{-}} \left(K_{i} + (x_{-}^{2} + y_{-}^{2}) \bar{K}_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} (x_{-} c_{i} + y_{-} s_{i}) \right)$$

$$N_{i}^{+} = h_{B^{+}} \left(\bar{K}_{i} + (x_{+}^{2} + y_{+}^{2}) K_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} (x_{+} c_{i} - y_{+} s_{i}) \right)$$

CP-violating observables

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma), \quad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

Pull studies

- Used an arbitrary and naive binning scheme with 4 bins
- x_{\pm} pulls show asymmetric tails for 2×10^3 events
- Pulls for γ , δ_B , r_B are rubbish

Naive binning scheme

Split phase space along the boundaries $E_{K^+}=E_{K_-}$ and $E_{\pi^+}=E_{\pi^-}$ Bin 1: $E_{K^+}>E_{K^-}, \quad E_{\pi^+}>E_{\pi^-}, \ldots$

D decay hadronic parameters

$$c_i = \frac{\int_i \mathrm{d}\Phi \, |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi \, |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \, \left|\mathcal{A}(\bar{D^0})\right|^2}}, \quad \mathcal{K}_i = \frac{\int_i \mathrm{d}\Phi \, |\mathcal{A}(D^0)|^2}{\sum_j \int_j \mathrm{d}\Phi \, |\mathcal{A}(D^0)|^2}$$

Pull study with $2 imes 10^3$ events

Need a more sophisticated binning scheme!

- 4-body phase space is 5-dimensional
- Convenient to choose rectangular coordinates

Phase space parameterisation

$$\begin{aligned} x_1 &= m(K^+\pi^+) + \alpha \\ x_2 &= m(K^-\pi^-) + \alpha, \quad \alpha = \min \left(m(K^+\pi^+), m(K^-\pi^-) \right) - m_\pi - m_K \\ x_3 &= \cos(\theta_+), \quad \text{(Helicity angles)} \\ x_4 &= \cos(\theta_-) \\ x_5 &= \phi \end{aligned}$$

- Define binning scheme in terms of these coordinates
- Ideally have a constant strong phase difference in each bin
- Determine binning scheme based on amplitude model, but final fit is model independent

Summary and next steps

Summary:

- Unbinned fit: 11° precision with 2000 events
- Binned fit: 15.3° with 8 bins
- Can reach 14.8° with > 30 bins

Any suggestions for improving the binning scheme?