FACE ANALYSIS CHALLENGE

SOLUTION FOR FACE ANALYSIS

A3N1 Team Nguyễn Trọng Anh HCMUT Nguyễn Đăng Khoa VGU Nguyễn Văn Quân UIT

Ho Chi Minh, Jan 2024

I. Introduction

- Face analysis is the process of using technology to analyze human facial features to understand information such as age, gender, mood, and many other factors
- => applied in many fields. ranging, including industrial, medical, security, and entertainment

 The competition poses a challenge to build ideas and apply technology to identify all facial features such as: Gender, Age, Ethnicity, Skin color, Wearing a mask/ Not wearing a mask, Feeling emoji, Face recognition, ...

II. Proposed method

Overview of our pipeline

II. Proposed method a. Face detector

Face detector: YOLOv8

II. Proposed method

b. Face Attributes Classifier

Multi-model for classification task:

- Enormous memory
- Difficult to implement for real application

=> Using single model with multi-task classifier

Overview Face Attributes classifier

II. Proposed methodb. Face Attributes Classifier

Type of classifier:

- Custom SVM: $K(x, x') = (-\gamma ||x x'||_2^2 + c)^d$
- Transformer: 4 layers (encoder) 8 heads
- Fully Connected Layer (MLP): 3 layers

Training strategy:

- Freeze VIT backbone and train Face Attributes Classifier
- Do not use augment data or extra data
- Use Balanced Binary Cross Entropy Loss for ViT (CVPR2023) for 6 attributes

II. Proposed methodb. Face Attributes Classifier

$$\mathcal{L}_{\text{Bal-BCE}} = -\sum_{\mathbf{y}_i \in \mathcal{C}} w_i [\mathbb{1}(\mathbf{y}_i) \cdot \log \frac{1}{1 + e^{-[\mathbf{z}_{\mathbf{y}_i} + \log \pi_{\mathbf{y}_i} - \log(1 - \pi_{\mathbf{y}_i})]}} + (1 - \mathbb{1}(\mathbf{y}_i)) \cdot \log(1 - \frac{1}{1 + e^{-[\mathbf{z}_{\mathbf{y}_i} + \log \pi_{\mathbf{y}_i} - \log(1 - \pi_{\mathbf{y}_i})]}})]$$

Bal-BCE loss for ViT (adapted from [1])

[1] Zhengzhuo Xu et al. Learning Imbalanced Data with Vision Transformers. In CVPR, pages 15793 – 15800, IEEE, 2023.

III. Results a. Results on scoreboard

We use VIT base for all following model with different classifier

Type of classifier	Training time (RTX 4090 24g)	Public test	Private test
Custom SVM	2 m/epoch	26.08	25.30
Transformer	3 m/epoch	26.06	25.37
Fully Connected Layer	2 m/epoch	26.13 (2)	25.06
			//IIAIN

III. Resultsb. Performance and inference time

Model	mAP50/avg dev acc	Capacity	params	Time (s) on CPU i5 1135g7	Time (s) on GPU Tesla T4	Time (s) on GPU Tesla T4(quantized)
Yolov8 n	~0.9401	6mb	~3m	~0.45	~0.06	-
Yolov8 m	~0.9484	50mb	~26m	~0.61	~0.10	0.015 ± 0.005 (640 scale)
Yolov8 x	~0.9525	130mb	~68m	~1.45	~0.23	
VIT small + SVM	0.9088	85mb	~22m	~0.10	~0.02	-
VIT base + SVM	0.9123	140mb	~87m	~0.21	~0.04	-
VIT large +SVM	0.9096	1.2gb	~305m	~0.81	~0.19	// II A > B

IV. Self-evaluation

Aspect	Our method
Accuracy	 Top 2 on public test Achieve 25.37 final score on private test
Business	 Both Yolov8 (face detector) and VIT(face attributes classifier) have commercial use license Can improve performance with augment or extra data Smaller variants can optimize capacity and inference time
Creativity	 Design custom SVM kernel for face attributes classifier with competitive result and save resources
Possibility	 Face detector has been quantized for faster inference time Pipeline can run on CPU in less than 1s/frame

V. Limitations

- Challenge in imbalanced data
- Having difficulty in challenging attributes such as age, emotion, especially skintone.
- Face Attributes Classifier is not designed to automatically augment data.
- Face Attributes Classifier has not been quantized.
- Faces with mask are still impossible to predict emotion (bias to neutral)
- => Addressed in the future

Quantization step: reduce **about 74.07%** inference time of YOLO (jetson Xavier) Achieve > 30 FPS for Face detection only

```
root@tronganh-jetsonxavier:/home/tronganh/AIChallenge# yolo detect val model=/home/tronganh/AIChallenge/log/checkpoint yolov8m/
best.pt data=/home/tronganh/AIChallenge/datasets/mydataset.yaml batch=1 imgsz=640
Ultralytics YOLOv8.0.200 & Python-3.8.10 torch-2.0.0a0+ec3941ad.nv23.02 CUDA:0 (Xavier, 6857MiB)
Model summary (fused): 218 layers, 25840339 parameters, 0 gradients, 78.7 GFLOPs
val: Scanning /home/tronganh/AIChallenge/datasets/data yolo/dev/labels.cache... 703 images, 0 backgrounds, 0 corrupt: 100%
                                                                        mAP50 mAP50-95): 100%
                 Class
                           Images Instances
                                                  Box(P
                                                                        0.995
Speed: 1.4ms preprocess, 121.5ms inference, 0.1ms loss, 4.4ms postprocess per image
Results saved to runs/detect/vais
Q Learn more at <a href="https://docs.ultralytics.com/modes/val">https://docs.ultralytics.com/modes/val</a>
root@tronganh-jetsonxavier:/home/tronganh/AIChallenge# yolo detect val model=/home/tronganh/AIChallenge/log/checkpoint yolov8m/
bestt.pt data=/home/tronganh/AIChallenge/datasets/mydataset.yaml batch=1 imgsz=640
best.onnx
                                    best fp16.engine
                  best.pt
root@tronganh-jetsonxavier:/home/tronganh/AIChallenge# yolo detect val model=/home/tronganh/AIChallenge/log/checkpoint_yolov8m/
best fp16.engine data=/home/tronganh/AIChallenge/datasets/mydataset.yaml batch=1 imgsz=640
Ultralvtics YOLOv8.0.200 & Python-3.8.10 torch-2.0.0a0+ec3941ad.nv23.02 CUDA:0 (Xavier, 6857MiB)
Loading /home/tronganh/AIChallenge/log/checkpoint volov8m/best fp16.engine for TensorRT inference...
[01/23/2024-10:50:19] [TRT] [I] Loaded engine size: 51 MiB
[01/23/2024-10:50:22] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +343, GPU +325, now: CPU 741, GPU 3360 (MiB)
[01/23/2024-10:50:22] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +49, now: C
[01/23/2024-10:50:23] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 690, GPU 3312 (MiB)
[01/23/2024-10:50:23] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0. GPU +32. no
w: CPU 0, GPU 81 (MiB)
val: Scanning /home/tronganh/AIChallenge/datasets/data volo/dev/labels.cache... 703 images, 0 backgrounds, 0 corrupt: 100%
                 Class
                           Images Instances
                                                  Box(P
                                                                        mAP50 mAP50-95): 100%
                                                                                                           703/703 [01:22<00:00
                   all
                              703
Speed: 1.2ms preprocess, 31.4ms inference 0.1ms loss, 4.2ms postprocess per image
Results saved to runs/detect/val6

    Q Learn more at https://docs.ultralytics.com/modes/val
```


Quantization and optimization using TensorRT

Layer fusion method optimization

Quantization step: reduce **about 74.07%** inference time of YOLO (jetson Xavier)

Face classifier model has not been quantized yet

Achieve 17 FPS (including pre-processing and post-processing steps)

GPU cost: 2.2 GB RAM cost: 4.8GB

> Thời gian yolov8 thực hiện: 0.019832611083984375 s Thời gian face analysis model thực hiện: 0.03839540481567383 s Tổng thời gian thực hiện: 0.059618473052978516 s

Make a simple website that can detect faces in image and analyze face attributes (age, race, masked, skintone, emotion, gender)

To get the best result, please upload a vertical photo, without tilt or angle, and with good lighting conditions

Choose File No file chosen

Upload

Highest Confidence Score Cropped Face

Face Attributes

age: 20-30s, race: Caucasian, masked: unmasked, skintone: mid-dark, emotion: Anger, gender: Male

Thank you for listening!

