OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Uwagi dla sprawdzającego		1 pkt za wykonanie dzielenia	$(px-3): (x-p) = p(x-p) + p^2 - 3$ lub wykorzystanie innej metody , która doprowadzi do zapisania wyrażenia w postaci sumy, np. $f(x) = \frac{p(x-p) + p^2 - 3}{x-p}.$ I pkt za zapisanie funkcji w postaci homograficznej:	$f(x) = p + \frac{1}{x - p}$.				1 pkt przyznajemy za obliczenie pochodnej,	
Liczba punktów	1		7		1	1		7	
Etapy rozwiązania zadania	Przekształcenie wzoru funkcji do żądanej postaci 1.1 $f(x) = 1 + \frac{-2}{x-1}$ lub $f(x) = 1 - \frac{2}{x-1}$.	I sposób rozwiązania podpunktu b).	Tapisanie wzoru funkcji w postaci sumy $f(x) = p + \frac{p^2 - 3}{x - p}$.		1.3 Zapisanie nierówności $p^2 - 3 > 0$.	Rozwiązanie powyższej nierówności: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$	II sposób rozwiązania podpunktu b) Obliczenie pochodnej funkcji $f(x)$:	1.2 $f'(x) = \frac{3-p}{(x-p)^2}, x \neq p$	i zapisanie nierówności $\frac{3-p^2}{(x-p)^2}$ < 0 pozwalającej wyznaczyć szukany zbiór wartości parametru p .
er iia	1					1			
Numer zadania			:						

Rozwiązanie nierówności $3-p^2 < 0$: Rozwiązanie nierówności $3-p^2 < 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. III sposób rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. Dla dowolnych $x, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1)$: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)}$. Analiza znaku ułamka: $(x_2 - p) > 0$, $(x_1 - p) > 0$ i $(x_1 - x_2) < 0$ dla każdego $x_1, x_2 \in (p, \infty)$. Zapisanie nierówności $p^2 - 3 > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. IV sposób rozwiązania podpunktu b) Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $\frac{p(p+1)-3}{(p+1)-p} > p$.		,	Stwierdzenie, że $(x-p)^2 > 0$ i zapisanie nierówności		
Rozwiązanie nierówności $3-p^2 < 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. III sposób rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1) > 0$. $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)}$. Analiza znaku ułamka: $f(x_2 - p) > 0$, $f(x_1 - p) > 0$ i $f(x_1 - p) > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$: $f(x_2 - p) > 0$, $f(x_1 - p) > 0$ i $f(x_2 - p) > 0$. IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja $f(x_2 - p)$ zapisanie warunku $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $f(p+1) - p$ Rozwiązanie nierówności $f(x_2 - p) > 0$. Rozwiązanie nierówności $f(x_2 - p) > 0$. $f(x_2 - p) > 0$. Rozwiązanie nierówności $f(x_2 - p) > 0$. $f(x_2 - p) > 0$. Rozwiązanie nierówności $f(x_2 - p) > 0$.		1.3	$3-p^2 < 0$.	-	
III sposob rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - f(x_1)}{(x_2 - p)(x_1 - p)}$. $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)}$. Analiza znaku ułamka: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)}$. Rozwiązanie nierówności $p^2 - 3 > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$. IV sposób rozwiązania podpunktu b) Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1) - 3}{(p+1) - p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $\frac{p(p+1) - 3}{(p+1) - p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $\frac{p(p+1) - 3}{(p+1) - p} > p$.		1.4	Rozwiązanie nierówności $3-p^2 < 0$:	_	
III sposob rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1)$: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)}.$ Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego}$ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0.$ Ty sposób rozwiązania podpunktu b) $f(p+1) > p.$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja $f(p+1) > p.$ Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1) - 3}{(p+1) - p} > p.$ Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1) - 3}{(p+1) - p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0.$			$P \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, -\sqrt{3})$.		
Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, $2 \in x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1) :$ $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)}.$ Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego}$ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f Zapisanie warunku $f(p+1) > p$ w postaci: $p(p+1) - 3$ Zapisanie warunku $f(p+1) > p$ w postaci: $p(p+1) - 3$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$			punktu		
jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1)$: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)}.$ Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego}$ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $\frac{p(p+1)-3}{(p+1)-p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $f(p+1) - p$ $f(p+1) - p$ Rozwiązanie nierówności $p^2 - 3 > 0$:			Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f		1 pkt – zapisanie założeń.
Obliczenie różnicy $f(x_2) - f(x_1)$: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)(x_1 - p)}.$ Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego}$ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $p(p+1) - \frac{3}{p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p(p+1) - \frac{3}{p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ Rozwiązanie nierówności $p^2 - 3 > 0$:				7	1 pkt – doprowadzenie różnicy $f(x_2) - f(x_1)$ do postaci
$f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)}.$ Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego}$ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ Rozwiązanie nierówności $p^2 - 3 > 0$. $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f Zapisanie warunku $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $p(p+1) - \frac{p}{p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p(p+1) - \frac{p}{p} > p.$ Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$					iloczynowej.
Analiza znaku ułamka: $(x_2 - p) > 0, (x_1 - p) > 0 \text{ i } (x_1 - x_2) < 0 \text{ dla każdego} $ $x_1, x_2 \in (p, \infty). \text{ Zapisanie nierówności } p^2 - 3 > 0.$ $\text{Rozwiązanie nierówności } p^2 - 3 > 0.$ $\text{Rozwiązanie nierówności } p^2 - 3 > 0.$ $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ $\text{IV sposób rozwiązania podpunktu b)}$ $\text{Zapisanie warunku wystarczającego na to, żeby funkcja } f$ $\text{Zapisanie warunku wystarczającego na to, żeby funkcja } f$ $\text{Sapisanie warunku } f(p+1) > p \text{ w postaci:}$ $\frac{p(p+1)-3}{(p+1)-p} > p.$ $\frac{p(p+1)-3}{(p+1)-p} > p.$ $\text{Rozwiązanie nierówności } p^2 - 3 > 0.$ $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$			$f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)(x_1 - p)}.$		
$(x_2 - p) > 0$, $(x_1 - p) > 0$ i $(x_1 - x_2) < 0$ dla każdego $x_1, x_2 \in (p, \infty)$. Zapisanie nierówności $p^2 - 3 > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p, +\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.			Analiza znaku ułamka:		Zauważenie, że wyrażenie $f(x_*) - f(x_i)$ przyimuje
Rozwiązanie nierówności $p^2 - 3 > 0$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p, +\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.	.		$(x_2 - p) > 0$, $(x_1 - p) > 0$ i $(x_1 - x_2) < 0$ dla każdego	-	wartość ujemna gdv $n^2 - 3 > 0$.
Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p, +\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$			$x_1, x_2 \in (p, \infty)$. Zapisanie nierówności $p^2 - 3 > 0$.		
$P \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$ IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p, +\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$,	Rozwiązanie nierówności $p^2 - 3 > 0$:	,	
IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p,+\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.		1.4	$p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$	_	
Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p,+\infty)$: $f(p+1) > p$. Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p$. Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.			IV sposób rozwiązania podpunktu b)		
		1.2	Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p,+\infty)$: $f(p+1) > p$.	7	
			Zapisanie warunku $f(p+1) > p$ w postaci:		
		1.3	$\frac{p(p+1)-3}{(p+1)-p} > p.$	1	
			Rozwiązanie nierówności $p^2 - 3 > 0$:		
		1.4	$p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty).$	1	

	2.1	Wyznaczenie pierwiastków trójmianu $y = x^2 - 8x + 12$: $x_1 = 2, x_2 = 6$.	1	
5.	2.2	Rozważenie możliwych przypadków ciągów geometrycznych, które mogą być rosnące: $(k, 2, 6), (2, k, 6), (2, 6, k)$	3	1 pkt za rozwiązanie każdego z przypadków.
	2.3	Wyznaczenie wszystkich wartości k , dla których ciąg jest rosnący: $k = \frac{2}{3}$ lub $k = 2\sqrt{3}$ lub $k = 18$.	1	Jeśli zdający nie odrzucił rozwiązania $k = -2\sqrt{3}$, nie przyznajemy punktu.
	3.1	Zapisanie wzoru funkcji $f: f(x) = \log_{\frac{1}{2}} x$.	2	1 pkt za wykorzystanie definicji logarytmu i zapisanie równania $\log_p 4 = -2$. 1 pkt za wyznaczenie podstawy logarytmu . 2a bezpośrednie podanie wzoru funkcji przyznajemy 2 pkt.
ю.	3.2	Rozwiązanie równania $(f(x))^2 - 16 = 0$: f(x) = 4 lub $f(x) = -4$ z niewiadomą $f(x)$.	1	Zdający może od razu zapisać alternatywę równań : $\log_{\frac{1}{2}} x = -4$ lub $\log_{\frac{1}{2}} x = 4$.
	3.3	Podanie rozwiązań równania $(f(x))^2 - 16 = 0$ z niewiadomą x : $x = \frac{1}{16}$ lub $x = 16$.	1	

4 ;	4. 1.	Sporządzenie poprawnego rysunku, na którym, np.: D oznacza punkt styczności okręgu z przeciwprostokątną, E, F są punktami styczności przyprostokątnych AC i BC trójkąta z okręgiem. (odcinek CD nie zawiera średnicy okręgu wpisanego w dany trójkąt). C F B D A A		Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem.
	4.2	Wykorzystanie własności : środek okregu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. ΔFBO jest prostokątny i $ \langle FBO = 30^\circ$. $ OF = \sqrt{3}$ stąd $ OB = 2\sqrt{3}$.	1	
	4.3	Obliczenie długość odcinka $FB \neq AFBO$: $ FB = 3$.	1	
	4.4	Obliczenie długość odcinka <i>CB</i> : $ CB = CF + FB = 3 + \sqrt{3}$.	1	
	4.5	Obliczenie długość odcinka DB : $ DB = BF = 3$. Z własności trójkąta opisanego na okręgu.	1	

	4.6	Zastosowanie wzoru cosinusów w $\triangle CBD$ do obliczenie długości odcinka CD : $ CD ^2 = CB ^2 + DB ^2 - 2 CB \cdot DB \cos 60^\circ,$ $ CD ^2 = (3 + \sqrt{3})^2 + 3^2 - 2 \cdot (3 + \sqrt{3}) \cdot 3 \cdot \frac{1}{2} = 12 + 3\sqrt{3},$ $ CD = \sqrt{12 + 3\sqrt{3}}.$	2	Jeżeli błąd jest spowodowany tym, że punkty <i>C</i> , <i>O</i> , <i>D</i> są współliniowe i zdający korzysta z twierdzenia Pitagorasa w trójkącie <i>CBD</i> , wtedy nie przyznajemy punktów.
4.	4.1	Il sposób rozwiązania. Sporządzenie rysunku. C F B D A	-	
	4.2	Skorzystanie z tego, że $ CE = CF = r$ (czworokąt CFOE jest kwadratem) oraz ze wzoru na długość promienia okręgu wpisanego w trójkąt $ CE = AC + BC - AB $. Przyjęcie oznaczeń, np. $a = BC $ i zapisanie tej równości w postaci: $\sqrt{3} = \frac{a + a\sqrt{3} - 2a}{2} = \frac{a(\sqrt{3} - 1)}{2}.$	-	

	1	1	2		-
4.3 Obliczenie $ BC = a = \frac{2\sqrt{3}}{\sqrt{3} - 1} = 3 + \sqrt{3}$.	Obliczenie $ AC = 3\sqrt{3} + 3$, np. z wykorzystaniem funkcji trygonometrycznych w trójkącie ABC .	4.5 Obliczenie $ AE = AD = 3 + 2\sqrt{3}$.	Zastosowanie wzoru cosinusów w trójkącie <i>CDA</i> i obliczenie długości $ CD $: $ CD ^2 = AC ^2 + AD ^2 - 2 AC \cdot AD \cdot \cos 30^\circ,$ $ CD ^2 = (3+3\sqrt{3})^2 + (3+2\sqrt{3})^2 - 2(3+3\sqrt{3})(3+2\sqrt{3}) \frac{\sqrt{3}}{2} = 12+3\sqrt{3}$	$ CD = \sqrt{12 + 3\sqrt{3}}$.	Ill sposób rozwiązania (z wykorzystaniem $\angle COD$). Sporządzenie rysunku. E
4.3	4.4	4.5	4.6		1.7
					4

				Zdający może pozostawić wynik w takiej postaci: $9+6\sqrt{2}\cos 15^\circ$, lub odczytać wartość cosinusa z tablic i podać wynik liczbowy.
	1	1		7
Obliczenie miary $\angle FOD$: (wykorzystanie miary kątów czworokąta $FODB$) $ \angle FOD + 2.90^{\circ} + 60^{\circ} = 360^{\circ}$, $ \angle FOD = 120^{\circ}$.	Zauważenie, że $ \not \propto FOC = 45^\circ$ i obliczenie $ \not \propto COD = 45^\circ + 120^\circ = 165^\circ$.	Obliczenie długości odcinka OC . 4.4 (OC przekątna kwadratu o boku długości $\sqrt{3}$). $ OC = \sqrt{3} \cdot \sqrt{2} = \sqrt{6}$.	4.5 Wykorzystanie wzoru redukcyjnego: cos165° = -cos15°. Zastosowanie wzoru cosinusów w ΔCOD:	
2.4	4.3	4.4	4.5	4.6

-	-	-	-	1
IV sposób rozwiązania. Sporządzenie rysunku. F	Oznaczmy $ AB =a$. Z własności trójkąta ABC wynika, że $ BC =\frac{a}{2},\ AC =\frac{a\sqrt{3}}{2}.$	Wyznaczenie pola trójkąta ABC (z zastosowaniem wzoru: $S = pr$, $gdzie$ $p = \frac{1}{2}(a+b+c)$ i r jest promieniem okręgu wpisanego w ten trójkąt): $\frac{\sqrt{3}}{2}\left(a+\frac{a}{2}+\frac{a\sqrt{3}}{2}\right) = \frac{ AC \cdot BC }{2} = \frac{a^2\sqrt{3}}{8}$.		Wyznaczenie długości odcinka <i>BD</i> : $ BD = BF = \frac{a}{2} - CF = 3 + \sqrt{3} - \sqrt{3} = 3.$
4.1	4.2	4.3	4.4	4.5
	4.			

2	1	-	1	1
Zastosowanie wzoru cosinusów w trójkącie CBD do wyznaczenia długości odcinka CD : $ CD ^2 = CB ^2 + BD ^2 - 2 CB \cdot BD \cos 60^\circ$.	V sposób rozwiązania. Sporządzenie rysunku. C R R R B D A A	Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Wyznaczenie $ AD = \frac{ DD }{ AD } = \frac{\sqrt{3}}{ AD } = \frac{\sqrt{3}}{ AD } = \frac{\sqrt{3}}{ AD }$	Wyznaczenie $ BD $ z trójkąta BOD : $\frac{ DO }{ BD } = \frac{\sqrt{3}}{ BD } = \text{tg}30^\circ$ stąd $ BD = 3$.	$ PD = \frac{1}{2} AD = \frac{\sqrt{3}}{2 \operatorname{tgl} 5^{\circ}}$ (z trójkata prostokatnego PDA, w którym $ \not \sim PDA = 60^{\circ}$).
4.6	4.1	4.2	4.3	4.4
	4	į.		

	7						1		-	1
$ DR = \frac{ BD \cdot \sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$ $(z \text{ trójkata prostokatnego BDR, } w \text{ którym } \not \sim DBR = 60^\circ).$	Wyznaczenie długości odcinka CD z trójkąta prostokątnego CDR : $ CD = \sqrt{ RD ^2 + RC ^2} = \sqrt{\frac{3}{4 \text{tg}^2 15^\circ} + \frac{27}{4}}.$	VI sposób rozwiązania. Sporządzenie rysunku.	E	F		B	Obliczenie miary kąta DON : $ \not \subset DON = 30^\circ$.	Wyznaczenia $ DN $ z trójkąta prostokątnego OND : $\frac{ DN }{ OD } = \sin 30^{\circ}$,	$ DN = \frac{\sqrt{3}}{2} \text{ i } ON = \frac{1}{2} OD \cdot \sqrt{3} = \frac{3}{2}.$	4.4 $ CM = CF + FM = \sqrt{3} + ON = \frac{3}{2} + \sqrt{3}$.
5.4	4.6			4.1			4.2		4.3	4.4
					•	ť				

			Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okregiem.				
1	7			-	1		1
4.5 $ DM = DN + MN = \frac{\sqrt{3}}{2} + OF = \frac{3\sqrt{3}}{2}$.	Wyznaczenie $ CD $ z twierdzenia Pitagorasa w trójkącie CMD : 4.6 $ CD ^2 = CM ^2 + DM ^2 = \left(\frac{3}{2} + \sqrt{3}\right)^2 + \left(\frac{3\sqrt{3}}{2}\right)^2 = 12 + 3\sqrt{3}$,	$ CD = \sqrt{12 + 3\sqrt{3}}.$	VII sposób rozwiązania. Sporządzenie rysunku. C	$\frac{F}{B}$	Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. ΔFBO (lub ΔBDO) jest prostokątny i $ \not \propto FBO = 30^\circ$. $ OF = \sqrt{3}$ stąd $ OB = 2\sqrt{3}$.	Obliczenie długości odcinków FB z $\triangle FBO$ i BD z $\triangle BDO$: $ FB =3$ i $ BD =3$.	Obliczenie długość odcinka CB : $ CB = CF + FB = 3 + \sqrt{3}$.
4.5	4.6			4.1	2.4	4.3	4.4
				4			

		Obliczenie długości odcinków $BG i CG i DG$:		
	4.5	4.5 $ BG = \frac{1}{2} BC = \frac{3+\sqrt{3}}{2}, CG = \frac{\sqrt{3}}{2} BC = \frac{3+3\sqrt{3}}{2},$	1	
		$ GD = BD - BG = \frac{J - \sqrt{2}}{2}$.		
		Zastosowanie twierdzenia Pitagorasa ΔBGC do obliczenie długości odcinka CD : $ CD ^2 = CG ^2 + GD ^2$	Ó	
	4.6	$ CD ^2 = \left(\frac{3+3\sqrt{3}}{2}\right)^2 + \left(\frac{3-\sqrt{3}}{2}\right)^2 = 12+3\sqrt{3}, \ CD = \sqrt{12+3\sqrt{3}}.$	7	
	5.1	Sporządzenie wykresu funkcji (skorzystanie z definicji wartości bezwzględnej i sporządzenie	2	Zdający może rozpatrzyć dwa przypadki i za każdy poprawnie rozwiązany otrzymuje 1 pkt. Jeśli jest prawidłowy rysunek to zdający otrzymuje 2 pkt. Przyznajemy 1 punkt jeśli, np.
		wykresu anbo naszkicowanie wykresu funkcji $g(x) = 2x - x$, a następnie naszkicowanie wykresu funkcji $f(x) = g(x)$).	l	 rysunek jest prawidłowy tylko po jednej stronie osi Oy, gdy zdający nie wybrał tej części wykresu, która jest prawidłowa (pozostawił niepotrzebne części wykresu)
	5.2	Wskazanie każdego punktu, w którym istnieje ekstremum lokalne funkcji f i określenie rodzaju ekstremum: minimum lokalne dla $x=0$, maksimum lokalne dla $x=-1$ oraz $x=1$	1	
	6.1	Wyznaczenie współrzędnych punktu $D: D = (0,6)$.	1	
<u> </u>	6.2	Wyznaczenie współrzędnych punktów A i B : $A = (-3,0), B = (6,0)$	1	
<u> </u>	6.3	Wyznaczenie długości odcinka CD : $ CD = 3$.	1	
<u> </u>	6.4	6.4 Obliczenie pola trapezu: $P_{ABCD} = \frac{9+3}{2} \cdot 6 = 36$.	1	

	7.1	Wyznaczenie $\cos x$ z danego równania: $\cos x = 0$ lub $\cos x = \frac{1}{2}$.	1	Jeśli zdający podzieli równanie obustronnie przez $\cos x$, bez komentarza dostaje 0 pkt.
	7.2	Wybranie i zapisanie rozwiązań należących do przedziału $\langle 0, 2\pi \rangle$: $x_1 = \frac{\pi}{3}, \ x_2 = \frac{\pi}{2}, \ x_3 = \frac{3}{2}\pi, \ x_4 = \frac{5}{3}\pi$.	2	Jeśli zdający w 7.1 podzielił równanie przez cos x ale poprawnie rozwiązał otrzymane w ten sposób równanie otrzymuje 1 pkt. Zdający może podać odpowiedź w stopniach.
۲.	7.1	II sposób rozwiązania. Rozwiązanie równania gdy $\cos x = 0$: $x = \frac{\pi}{2} \text{lub } x = \frac{3\pi}{2}$.	1	
	7.7	Rozwiązanie równania gdy $\cos x \neq 0$: 1 pkt - za doprowadzenie równania do najprostszej postaci $\cos x = \frac{1}{x}$.	C	
	!	1 pkt – za rozwiązanie: $x = \frac{\pi}{3}$ lub $x = \frac{5\pi}{3}$.	I	
	8.1	Zaznaczenie w przedziale (2,3) poprawnego znaku pochodnej: (+).	1	
∞ਂ	8.2	Zapisanie, że mimo poprawienia błędu w tej tabeli umieszczone w niej dane nie pozwalają stwierdzić dokładnie ile miejsc zerowych ma funkcja f. mogą być 2, 3 albo 4 miejsca zerowe (zdający sporządza rysunki lub przedstawia słowne uzasadnienie).	8	1 pkt jeśli zdający poda odpowiedź – nie pozwala, 2 pkt jeśli poda odpowiedź – nie pozwala, bo może mieć 2 lub 3 lub 4 miejsca zerowe (poprawnie wskazuje dwie różne liczby miejsc zerowych, ale nie pokazuje, jak wygląda wykres funkcji). 3 pkt jeśli poda odpowiedź i narysuje dwa wykresy lub pokazuje, że np. w przedziale (3, +∞) funkcja może mieć 0 miejsc zerowych lub 1 miejsce zerowe.

iezależne: ch wyrazów w postaci ogólnej: że ciąg (a_n) jest arytmetyczny stu jeden wyrazów danego ciąg lub $\frac{a_{20} + a_{40}}{2} \cdot 21 = -1134$. (b_n) był stały: $p^2 + p - 2 = 0$. p , dla których ciąg (b_n) jest st anu kwadratowego: n , $2n$. erówności $x^2 - 3nx + 2n^2 < 0$:
Obliczenie iloczynu prawdopodobienstw $P(A) \cdot P(B)$ i zapisanie, że dane zdarzenia są niezależne: $P(A) \cdot P(B) = 0, \dots 2 \cdot 0, 4 = 0, \dots 2$ Obliczenie różnicy dwóch kolejnych wyrazów w postaci ogólnej: $a_{n+1} - a_n = 2 - p^2 \text{ i stwierdzenie, że ciąg } (a_n) \text{ jest arytmetyczny.}$ Obliczenie żądanej sumy dwudziestu jeden wyrazów danego ciągu: $10.2 S_{40} - S_{19} = -1400 + 266 = -1134 \text{ lub } \frac{a_{20} + a_{40}}{2} \cdot 21 = -1134.$ $10.3 \text{Zapisanie warunku na to aby ciąg } (b_n) \text{ był stały: } p^2 + p - 2 = 0.$ Wyznaczenie wszystkich wartości p , dla których ciąg (b_n) jest stały: $p = 1 \text{ lub } p = -2.$ $11.1 \text{Wyznaczenie pierwiastków trójmianu kwadratowego: } n, 2n.$ $Wyznaczenie zbioru rozwiązań nierówności x^2 - 3nx + 2n^2 < 0. (a, 2n)$
9.2 i 9.2 i 10.1 I 10.1 I 10.2 I 10.3 I 10.4 I I 10.4 I I I I I I I I I I I I I I I I I I I

	ol: 1	1	1
$\begin{array}{c} C \\ A \\ \hline \\ Zauważenie, że trójkąt ABC jest prostokątny i kąt ABC ma miarę 60^{\circ}.$	Zapisanie pola zacieniowanej figury jako odpowiedniej różnicy pól: np. deltoidu <i>ADBC</i> i wypukłego wycinka kołowego <i>DBC</i> .	Obliczenie pola deltoidu $ADBC$: $P_{ADBC} = 64\sqrt{3}$.	12.4 Obliczenie pola zacieniowanej figury: $P_f = 64\left(\sqrt{3} - \frac{\pi}{3}\right)$.
12.1	12.2	12.3	12.4
12.			

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.