$$h(-1) = (5.4)(-1)$$

$$= 3(5(-1))$$

$$= 3(1)$$

$$= 3(1)$$

$$= -4$$

$$= (5.4)(-1) = (9.4)(-1)$$

$$= 3(4)(-1) = (9.4)(-1)$$

$$= 3(4)(-1) = (9.4)(-1)$$

$$= 3(4)(-1) = (9.4)(-1)$$

$$= 3(1) \cdot (-1)$$

$$= 3(1) \cdot (-5)$$

$$= (-7)(-5)$$

Well,
$$h(x) = f(g(x))$$

 $f'(x) = f'(g(x)) \cdot g'(x)$
 $f'(x) = f'(g(x)) \cdot g'(x)$
 $f'(x) = f'(g(x)) \cdot g'(x)$
 $f'(x) = f'(x) = f'(x)$
 $f'(x) = f'(x) = f'(x)$
 $f'(x) = f'(x) = f'(x)$

$\lambda_{i} = 3 \langle x_{s} + x - \tau \rangle_{s} \langle 5 \times 1 \rangle$ $\lambda = \langle x_{s} + x - \tau \rangle_{s} + 3$

Now e(1,3), y'=3(0)(3)=0 So eg'n of tengent e(1,3) is y=3.

Method#1

When
$$y=3$$
, $(x^2+x-2)^3=0$
 $(x+2)(x-1)^3=0$
 $X=-2$ or 1

BUT @ $(-2,3)$, $y'=3(0)(-3)$
 $=0$

So eg'n of tangent at $(-2,3)$ is also $y=3$.

1.e. the tangent at $(1,3)$ is also the tangent $e(-2,3)$

Methol #2

 $x=-5' | ^{1} or -\frac{7}{2}$ $3(x+7)_{5}(x-1)_{5}(5x+1)=0$ $3(x_{5}+x-5)_{5}(5x+1)=0$ When $\lambda_{i}=0$

When x=-2, y=3 x=1, y=3 $x=-\frac{1}{2}$, $y \neq 3$

So, y=3 is tangent to the curve at (-2,3) and (1,3).

