Range Optimal Trajectories Using GPOPS-II

Soven, Jason 09/09/19

Abstract—GPOPS-II optimal control software was used

To reproduce the results of a previous minimum time descent. Using the GPOPS-II software a longer duration of flight was capable of being optimized before solution divergence. This paper gives a brief overview of results obtained but is expected to be expanded upon in the future.

I. INTRODUCTION

The purpose of this research is to optimize the maximumrange trajectories for a fixed flight time using the GPOPS-II program. The aircraft model, initial and final conditions, along with constraints will be consistent with that used in the range optimal trajectory research by Hans Seywald [1]. In his paper the approach taken used the following equations of motion:

$$\dot{E} = (\eta T - D) \frac{v}{W} \tag{1}$$

$$\dot{h} = v \sin \gamma \tag{2}$$

$$\dot{h} = v \sin \gamma \tag{2}$$

$$\dot{\gamma} = \frac{g}{v} \left(\frac{L}{W} - \cos \gamma \right) \tag{3}$$

$$\dot{x} = v \cos \gamma \tag{4}$$

$$\dot{x} = v \cos \gamma \tag{4}$$

With State Variables:

Specific Energy	E
Altitude	h
Flight Path Angle	γ
Velocity	v
Range	X

With Control Variables:

Load Factor
$$n$$
 Power Setting η

The value of initial and final velocity was added by plugging in energy and altitude into (5).

$$v = \sqrt{2g(E - h)} \tag{5}$$

All boundary conditions and constants can be found in Table I.

TABLE I PROBLEM CONSTRAINTS AND CONSTANTS

Description	Value	Units
Mass (m)	16818	Kg
Gravity (g)	9.80665	m/s^2
Initial Specific Energy (E ₀)	38029.207	m

Initial Velocity (v_0)	712.866	m/s
Initial Altitude (h ₀)	12119.324	m
Initial Flight Path Angle (γ_0)	0	rad
Initial Range (x ₀)	0	m
Final Specific Energy (E _f)	9000	m
Final Velocity (v_f)	397.54	m/s
Final Altitude (h _f)	942.292	m
Final Flight Path Angle (γ_f)	-0.2	Rad
Final Range (x _f)	To be optimized	m
Final Time (t _f)	60	S

The other constraint imposed is a dynamic pressure limit. The only data available for this is a graphic shown below. The qlimit extracted roughly from

Fig. 9 Altitude-velocity chart for a typical extremal.

Extrapolating from the graph it's seen that there is a point on the q-limit line where velocity is equal to 741 m/s and altitude is equal to 12559 m. Using (6) and (7-9) a dynamic pressure limit of 74.95072 kPa was found.

$$q = \frac{1}{2}\rho(h)v^2 \tag{6}$$

$$\rho(h) = 1.225 e^{y}$$

$$y = -0.12122693 \cdot 10^{-3} h + r - 1.0228055$$
(7)

$$r = 1.0228055 e^{-z} (8)$$

 $z = -3.48643241 \ 10^{-5} h$ $+ 3.50991865 \ 10^{-9} h^{2}$ $+ -8.33000535 \ 10^{-14} h^{3}$ $+ 1.15219733 \ 10^{-18} h^{4}$ (9)