Predicting the winner in CS:GO matches (STATS/CSE 780 course project)

Yan Min
Department of Electrical and Computer Engineering
McMaster University
400546093

2023-12-05

Outline

- Motivation
- ► EDA
- Methods
 - ▶ Random Forest
 - **DNN**
- Results
- Discussion

Motivation

- Try to predict the winner in a match
- Growing interest in eSports.
- Develop an advanced predictive Model basd on past data

Data

- ➤ The dataset("CS:GO Round Winner Classification" 2020) was originally published by Skybox as part of their CS:GO AI Challenge, running from Spring to Fall 2020.
- ▶ 122410 entries and 97 colums
 - dtypes: bool(1), float64(94), object(2)
 - n > p
- Results of EDA
 - ► Winnner: CT(60004), T(62406)
 - No null values
 - Scaling and PCA
- Feature selection
- Spliting
 - Train/test datasets(test_size=0.3)

Data

Figure 1: Correlation Matrix and Feature Importance

Methods

- Random forest
 - Classification(CT/T)
 - ▶ PCA
- **DNN**
 - ► Suitable for large datasets
 - n_layers = 4
 - n_nodes = 300
 - epochs = 28/50

Results

- ▶ Random forest
 - Accuracy: 0.753
- **DNN**
 - Accuracy: 0.743

Discussion

- ▶ The two accuracies are close.
- Features on health are more important.
- ▶ We can use this to predict the winner in today's matches.
- Game updates can significantly impact performance.
- Random forest:
 - Overfitting? 0.781
 - ► GridSearch? It takes resources.
 - more interpretable
- **DNN**
 - Compared to RM, more suitable for large datasets
 - less interpretable

Thank You!

References

"CS:GO Round Winner Classification." 2020. https://www.kaggle.com/datasets/christianlillelund/csgoround-winner-classification.