Dominuojančioji grafo aibė

Gabrielė Buivydaitė

Vilniaus Universitetas

March 2020

Kas yra dominuojančioji grafo aibė (dominant set of graph)?

Dominuojančioji (arbastabilioji) aibė yra grafo viršūnių poaibis, kur kiekviena grafo viršūnė, nepriklausanti poaibiui A, yra gretima bent vienai poaibio A viršūnei.

Dominavimo skaičius yra mažiausios dominuojančios aibės elementų skaičius.

Nepriklausomoji aibė (arba vidiniai stabilioji aibė) tokia dominuojanti aibė A, kurią sudarančios viršūnės tarpusavyje nėra gretimos.

Jungi dominuojanti aibė - dominuojanti aibė, kurią sudarančios viršūnės sudaro taką.

Dominuojančiosios aibės pavyzdžiai

Jungios dominuojančios aibės pavyzdys

$$DS = \{1, 2\}$$

Dominavimo skaičius = 2

Nepriklausomosios dominuojančios aibės pavyzdys

$$DS = \{1, 5\}$$

Dominavimo skaičius = 2

Godaus DS (dominuojančiosios aibės) algoritmo žingsniai

- Pradedame pasižymėdami tuščią aibę DS
- Pasirenkame bet kurią briauną, jungiančią dvi viršūnes
- Pridedame vieną iš viršūnių į aibę DS
- Panaikiname visas briaunas incidenčias tai viršūnei
- Kartojame antrą žingsnį tol, kol dar yra likusių briaunų
- Gautoji aibė DS ir yra dominuojančioji grafo aibė

Pradedame pasižymėdami tuščią aibę DS

$$\mathsf{DS} = \{\}$$

Pasirenkame bet kurią briauną, jungiančią dvi viršūnes (tarkime "2" ir "7")

$$\mathsf{DS} = \{\}$$

Pridedame vieną iš pasirinktųjų viršūnių ("2") į aibę DS

 $DS = \{2\}$

Pasižymime visas briaunas incidenčias viršūnei "2"

$$DS = \{2\}$$

Panaikiname visas briaunas incidenčias viršūnei "2"

Pasirenkame bet kurią laisvą briauną, jungiančią dvi viršūnes (tarkime "4" ir "7")

Pridedame vieną iš pasirinktųjų viršūnių ("4") į aibę DS

Pasižymime visas briaunas incidenčias viršūnei "4"

Panaikiname visas briaunas incidenčias viršūnei "4"

Pasirenkame bet kurią laisvą briauną, jungiančią dvi viršūnes (tarkime "1" ir "3")

Pridedame vieną iš pasirinktųjų viršūnių ("1") į aibę DS

Panaikiname visas briaunas incidenčias viršūnei "1"

$$DS = \{2, 4, 1\}$$

3

2

Pasirenkame bet kurią laisvą briauną, jungiančią dvi viršūnes (tarkime "5" ir "6")

Pridedame vieną iš pasirinktųjų viršūnių ("6") į aibę DS

Panaikiname visas briaunas incidenčias viršūnei "6"

Pasirenkame bet kurią laisvą briauną, jungiančią dvi viršūnes (tarkime "7" ir "8")

Pridedame vieną iš pasirinktųjų viršūnių ("7") į aibę DS

Panaikiname visas briaunas incidenčias viršūnei "7"

 $DS = \{2, 4, 1, 7\}$

Galutinė grafo dominuojančioji viršūnių aibė

Kiti algoritmai

Lygiagretus godus DS

```
\begin{array}{l} {\sf DS:=\emptyset} \\ {\sf While \ v \ is \ adjacent \ to \ white \ vertices \ do} \\ {\sf span = number \ of \ white \ vertices \ to \ which \ v \ is \ adjacent} \\ {\sf send \ span \ to \ all \ vertices \ up \ to \ 2 \ hops} \\ {\sf If \ v \ has \ greatest \ span \ then} \\ {\sf DS:=}s \ \dot{\cup} \ v \\ {\sf End \ if} \end{array}
```

Algoritmų sudėtingumas

NP-complete

Ar duotas skaičius k yra didesnis už grafo dominavimo skaičių?

NP-hard

Grafo dominavimo skaičiaus radimas.

Šaltiniai

- https://www.geeksforgeeks.org/dominant-set-of-a-graph
- https://en.wikipedia.org/wiki/Dominating_set
- https://mathworld.wolfram.com/TotalDominatingSet.html