Geometry, Algebra and Computation

Wai-Shing Luk

Fudan University

2016-11-06

Introduction

Geometry and Algebra

Geometry

- Points, lines, triangles, circles, conic sections...
- Collinear, concurrent, parallel, perpendicular. . .
- Distances, angles, areas, quadrance, spread, quadrea...
- Midpoint, bisector, orthocenter, pole/polar, tangent. . .

Algebra

- Addition, multiplication, inverse. . .
- Elementry algebra: integer/rational/real/complex... numbers.
- Abstract algebra: rings, fields...
- Linear algebra: vector, matrix, determinant, dot/cross product...
- Two subjects are related by coordinates.

Key points

- Our earth is not flat and our universe is non-Euclidean.
- Non-Euclidean geometry is much easier to learn than you might think.
- Our curriculum in school is completely wrong.
- Euclidean geometry is non-symmetric. Three sides determines a triangle, but three angles does not determines a triangle. It might not be true in general geometries. Euclidean geometry is just a special case.
- Yet Euclidean geometry is more computational efficient and is still useful in our small-scale daily life.
- Incidenceship promotes integer arithmetic; non-oriented measurement promotes rational aritmetric; oriented measurement promotes floating-point arithmetric. Don't kill a chicken with cow knife.

Projective Geometry

Projective Plane's Basic Elements

Projective Plane Concept

- Only involve "Points" P and "Lines" L.
- "Points" (or lines) are assumed to be distinguishable (Equality-Comparable).
- Unless mention specifically, objects in different names are assumed to be distinct, i.e. $A \neq B$.

Incidence

- A point either lies on a line, or not.
- If a point A lies on a line a, then $a \cdot A$ is true.
- For convenience, we also define $A \cdot a$ such that $A \cdot a = a \cdot A$
- In C++, define a boolean function incident(P,L)->bool.

Projective Point

- Exactly one line passes through two distinct points.
- In C++, define a function L(P,P) → L that returns a line joined by two points.
- Denote join(A,B), or simply AB as a line joined by A and B.
- We have:
 - AB = BA
 - \blacksquare $A \cdot AB$ and $B \cdot AB$ are always true.

Projective Line

- Exactly one point met by two distinct lines.
- In C++, define a function P(L,L) -> P that returns a point met by two lines.
- Denote meet(a,b), or simply ab as a point met by a and b.
- We have:
 - ab = ba
 - \blacksquare $a \cdot ab$ and $b \cdot ab$ are always true.

Relations with other Geometries:

- In Euclidean Geometry, parallel lines are met at points in *infinity*.
- In Hyperbolic Geometry, parallel lines are met at points outside the *null circle*.
- There is no parallel line in Elliptic/Spherical Geometry.

Example 1: Euclidean Geometry

■ Point: projection of 3D vector [x, y, z] to 2D plane z = 1:

$$(x', y') = (x/z, y/z)$$

- Vector [x, y, z] and $[\lambda x, \lambda y, \lambda z]$ for all $\lambda \neq 0$ are representing the same point (x', y').
- For instance, [1,5,6] and [10,50,60] are representing the same point (1/6,5/6)
- [p] = [x, y, 0] is a point at *infinity*.
- Line: $a \cdot x' + b \cdot y' + c = 0$, denoted by a vector [a, b, c].
- [a, b, c] and $[\lambda a, \lambda b, \lambda c]$ for all $\lambda \neq 0$ are representing the same line.
- [l] = [0,0,1] is the line at *infinity*.
- [0,0,0] is not a valid point or line.

Calculation by Vector Operations

- Let $v_1 = [x_1, y_1, z_1]$ and $v_2 = [x_2, y_2, z_2]$.
- The dot product $v_1 \cdot v_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$.
- The cross product $v_1 \times v_2 = [y_1z_2 z_1y_2, -x_1z_2 + z_1x_2, x_1y_2 y_1x_2].$
- lacksquare A point p lies on a line l if and only if $[p] \cdot [l] = 0$
- $lacksquare join(p_1, p_2) = [p_1] \times [p_2].$
- lacksquare meet $(l_1, l_2) = [l_1] \times [l_2]$.
- Two lines are parallel if and only if $a_1b_2 = b_1a_2$
- Exercise: calculate the line equation that joins the points (5/8, 7/8) and (-5/6, 1/6).

Example 2: Spherical/Elliptic Geometry

- It turns out that the vector notations and operators can also represent other geometries such as spherical/Elliptic geometry.
- "Point": projection of 3D vector [x, y, z] to the unit sphere.

$$(x', y', z') = (x/r, y/r, z/r)$$

where $r^2 = x^2 + y^2 + z^2$.

- Two points on the opposite poles are considered the same point here.
- "Line": [a, b, c] represents the *great circle* intersected by the unit sphere and the plane $a \cdot x + b \cdot y + c \cdot z = 0$.
- [x, y, z] is called *Homogeneous Coordinates*.

Example 3: Poker Card Geometry

- "coordinates" is **not** a necessary requirement of projective geometry.
- A "line" may contain finite number of "points".
- Consider the poker cards in the following arrangement:

$\overline{l_1}$	l_2	l_3	l_4	l_5	l_6	l_7	l_8	l_9	l_{10}	l_{11}	l_{12}	l_{13}
A	2	3	4	5	6	7	8	9	10	J	Q	K
2	3	4	5	6	7	8	9	10	J	Q	K	Α
4	5	6	7	8	9	10	J	Q	K	Α	2	3
10	J	Q	K	Α	2	3	4	5	6	7	8	9

- For example, $meet(l_2, l_5) = 5$, $join(J, 4) = l_8$.
- We call this *Poker Card Geometry* here.

Concept in C++17

```
template <class P>
concept bool ProjectivePlaneH =
    Equality_comparable<P> &&
    requires { typename P::dual; } &&
    requires (P p, P q, typename P::dual 1) {
        { incident(p, 1) } -> bool; // incidence
        { (p, q) } -> typename P::dual; // join or meet
   }:
template <class P, class L=typename P::dual>
concept bool ProjectivePlane =
    ProjectivePlaneH<P> && ProjectivePlaneH<L>;
```

Collinear, Concurrent and Coincidence

- Three points are called *collinear* if they all lie on the same line.
- Three lines are called *concurrent* if they all meet at the same point.
- In C++, define a boolean function coI(P,P,P)->bool.
- ullet col(A, B, C) is true if and only if $AB \cdot C$ is true.
- Similarly, col(a, b, c) is true if and only if $ab \cdot c$ is true.
- In general, $\operatorname{col}(\{A_1, A_2, ..., A_n\})$ is true if and only if $A_1A_2 \cdot X$ is true for all X in the rest of points $\{A_3, A_4, ..., A_n\}$.
- Unless mention specifically, *ABCD*... is assumed to be coincidence.

Pappus Theorem

- Given A, B, C and D, E, F are collinear. Let G=meet(AE, BD), H=meet(AF, CD), I=meet(BF, CE). Then G, H, I are collinear.
- Note: this theorem is only true for real projective geometry.
- Exercise: verify that this theorem holds for the poker card geometry.

Figure 1: An instance that Pappus' theorem holds

Figure 2: Another instance that Pappus' theorem holds

Triangles and Trilaterals

- If three points A, B, and C are not collinear, they form a triangle, denoted as $\{ABC\}$.
- If three lines *a*, *b*, and *c* are not concurrent, they form a trilateral, denoted as {*abc*}.
- Triangle $\{ABC\}$ and trilateral $\{abc\}$ are dual if A=bc, B=ac and C=ab.

Figure 3: Triangle

Projectivities and Perspectivities

Projectivities

- An ordered set (A, B, C) (either collinear or not) is called a projective of a concurrent set abc if and only if $A \cdot a$, $B \cdot b$ and $C \cdot c$.
- Denote Projectivity as $(A, B, C) \land abc$.
- An ordered set (a, b, c) (either concurrent or not) is called a projective of a collinear set ABC if and only if $A \cdot a$, $B \cdot b$ and $C \cdot c$.
- Denote Projectivity as $(a, b, c) \overline{\wedge} ABC$.
- If each ordered set is coincident, we may write:
 - \blacksquare $ABC \overline{\wedge} abc \overline{\wedge} A'B'C'$
 - Or simply $ABC \bar{\wedge} A'B'C'$

Perspectivities

- An ordered set (A, B, C) is called a perspectivity of an ordered set (A', B', C') if and only if $(A, B, C) \bar{\wedge} abc$ and $(A', B', C') \bar{\wedge} abc$ for some concurrent set abc.
- Denote Perspectivity as $(A, B, C) \stackrel{=}{\wedge} (A', B', C')$.
- An ordered set (a, b, c) is called a perspectivity of an ordered set (a', b', c') if and only if $(a, b, c) \bar{\wedge} ABC$ and $(a', b', c') \bar{\wedge} ABC$ for some collinear set ABC.
- Denote Perspectivity as $(a, b, c) \stackrel{=}{\wedge} (a', b', c')$.

Figure 4: An instance of perspectivity

Figure 5: Another instance of perspectivity

Perspectivity

- Similar definition for more than three points:
 - $(A_1, A_2, A_3, ... A_n) \stackrel{=}{\wedge} (A'_1, A'_2, A'_3, ... A'_n).$
- To check perspectivity:
 - First construct a point $O := meet(A_1A'_1, A_2A'_2)$.
 - For the rest of points, check if X, X', O are collinear.
- Note that (A,B,C) $\bar{\wedge}$ (D,E,F) and (D,E,F) $\bar{\wedge}$ (G,H,I) does not imply (A,B,C) $\bar{\wedge}$ (G,H,I).

Desargues's Theorem

- Let trilateral $\{abc\}$ be the dual of triangle $\{ABC\}$ and trilateral $\{a'b'c'\}$ be the dual of triangle $\{A'B'C'\}$. Then, $\{ABC\}$ $\overline{\wedge}$ $\{A'B'C'\}$ if and only if $\{abc\}$ $\overline{\overline{\wedge}}$ $\{a'b'c'\}$.
- Note: this theorem is only true for real projective geometry.

Figure 6: An instance that Desargues theorem holds

Figure 7: Another instance that Desargues theorem holds

Quadrangles

- If four points P, Q, R and S none of three are collinear, they forms a quadrangle, denoted as $\{PQRS\}$.
- Totally there are six lines formed by $\{PQRS\}$.
- Note that Quadrangle here does not needed to be convex.

Quadrilateral Sets

- Assume they meet another line l at A, B, C, D, E, F, where
 - \blacksquare A = meet(PQ, l), D = meet(RS, l)
 - $lacksquare B = \operatorname{meet}(QR, l), E = \operatorname{meet}(PS, l)$
 - lacksquare C = mett(PR, l), F = meet(QS, l)
- We call the six points as a quadrilateral set, denoted as (AD)(BE)(CF).

Figure 8: quadrilateral set

Harmonic Sets

- In a quadrilateral set (AD)(BE)(CF), if A=D and B=E, then it is called a harmonic set.
- The Harmonic relation is denoted by H(AB, CF).
- Then C and F is called a harmonic conjugate.
- Theorem: If $ABCF \stackrel{=}{\wedge} A'B'C'F'$, then H(AB, CF) = H(A'B', C'F').
- In other words, perspectivity preserves harmonic relation.
- Theorem: If $ABCF \bar{\wedge} A'B'C'F'$, then H(AB, CF) = H(A'B', C'F').
- In other words, projectivity preserves harmonic relation.

Polarities

- A polarity is a projective correlation of period 2.
- We call a the *polar* of A, and A the pole of a.
- Denote $a = A^{\perp}$ and $A = a^{\perp}$.
- Hence, $A = (A^{\perp})^{\perp}$ and $a = (a^{\perp})^{\perp}$.
- It may happen that A and a are incident, so that each is self-conjugate.

The Use of a Self-Polar Triangle

- Any projective correlation that relates the three vertices of one triangle to the respectively opposite sides is a polarity.
- Thus, any triangle $\{ABC\}$, any point P not on a side, and any line p not throughout a vertex, determine a definite polarity (ABC)(Pp).

The Conic

- Historically *ellipse* (including *circle*), *parabola*, and *hyperbola*.
- The locus of self-conjugate points is a *conic*.
- Their polars are its *tangents*.
- Any other line is called a secant or a nonsecant according as it meets the conic twice or not at all, i.e., according as the involution of conjugate points on it is hyperbolic or elliptic.

Construct the polar of a point

■ To construct the polar of a given point C, not on the conic, draw any two secants PQ and RS through C; then the polar joins the two points meet(QR, PS) and meet(RP, QS).

Figure 9: Construct the polar of a point

Figure 10: Another example of constructing the polar of a point

Construct the pole from a line

■ To construct the pole of a given secant *a*, draw the polars of any two points on the line; then the common point of two polars is the pole of *a*.

Figure 11: Constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Figure 12: Another example of constructing the pole of a line

Construct the tangent of a point on a conic

■ To construct the tangent at a given point P on a conic, join P to the pole of any secant through P.

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 13: Construct the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Figure 14: Another example of constructing the tangent of a point on a conic

Pascal's Theorem

• If a hexagon is inscribed in a conic, the three pairs of opposite sides meet in collinear points.

Figure 15: Pascal's theorem

Figure 16: Another instance that Pascal's theorem holds

Backup

```
> pandoc -s --mathjax -t revealjs -V theme=default -o proj_geo
```

- > pandoc -t beamer -o proj_geom.pdf proj_geom.md beamer.yaml
- > pandoc -o proj_geom.docx proj_geom.md