SÉRIE D'EXERCICES : RÉSOLUTION D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES

Exercice 2

Préparé par :

Unité Pédagogique de Mathématiques

Exercice 2

On considère le problème de Cauchy défini par :

(PC)
$$\begin{cases} x' = -\lambda x, & \lambda, t \ge 0 \\ x(0) = x_0. \end{cases}$$

- **1** Donner la solution analytique x(t) de (PC).
- 2 Calculer $\lim_{t \to +\infty} x(t)$.
- **1** Montrer que les solutions numériques du problème de Cauchy (PC) trouvées par la méthode d'Euler explicite x_n^E et par la méthode d'Euler implicite x_n^I , sont données respectivement par :

$$x_n^E = x_0(1 - \lambda h)^n$$
, et $x_n^I = x_0(1 + \lambda h)^{-n}$,

où h désigne le pas de discrétisation et n > 0.

• Calculer les limites $\lim_{n \to +\infty} x_n^E$ et $\lim_{n \to +\infty} x_n^I$.

Exercice 1

Solution

Question 1 : Donner la solution analytique x(t) de (PC).

La solution analytique de (PC) est donnée par

$$x(t) = K \exp(A(t))$$

avec $A(t) = \int -\lambda dt = -\lambda t$ et K constante. Par suite $x(t) = K \exp(-\lambda t)$

- D'une part pour t = 0 on a $x(0) = x_0$.
- D'autre part $x(0) = K \exp(-\lambda * 0) = K \exp(0) = K$.

Ainsi $K = x_0$, d'ou la solution analytique de (PC) est

$$x(t) = x_0 \exp(-\lambda t)$$

Question 2 : Calculer $\lim_{t\to +\infty} x(t)$.

On a
$$\lim_{t\to +\infty} x(t) = \lim_{t\to +\infty} x_0 \exp(-\lambda t) = 0$$

Question 3 : Trouver les solutions numériques du problème de Cauchy (PC) trouvées par les méthodes d'Euler explicite x_n^E et implicite x_n^I

On commence d'abord par la discrétisation de l'intervalle de temps avec un pas de temps h.

On pose: $t_0 = 0$, $t_1 = t_0 + h = h,...,t_n = t_0 + nh = nh,...$

La méthode d'Euler explicite :

- On note $x(t_n) = x_n^E$.
- En intégrant l'équation différentielle $x^{'}(t) = f(t, x(t))$ avec $f(t, x(t)) = -\lambda x(t)$ entre t_n et t_{n+1} , on obtient :

$$\int_{t_n}^{t_{n+1}} x'(t) dt = \int_{t_n}^{t_{n+1}} f(t, x(t)) dt$$

• On approcher $\int_{t_n}^{t_{n+1}} f(t,x(t)) dt$ par la méthode des rectangles à gauche : on a $\forall n \geq 0$

$$\begin{aligned} x(t_{n+1}) - x(t_n) &= (t_{n+1} - t_n) f(t_n, x(t_n)) \Leftrightarrow x(t_{n+1}) - x(t_n) = -h\lambda x(t_n) \\ &\Leftrightarrow x_{n+1}^E - x_n^E = -h\lambda x_n^E \\ &\Leftrightarrow x_{n+1}^E = (1 - h\lambda) x_n^E \end{aligned}$$

Finalement, on a $\forall n \geq 0$, $x_{n+1}^E = (1 - h\lambda)x_n^E$. Montrer par récurrence que: $\forall n \geq 0$ on a $x_n^E = (1 - h\lambda)^n x_0^E$. Principe de récurrence :

- Pour n = 0 on a $(1 h\lambda)^0 x_0^E = x_0^E$ donc vrai pour n = 0.
- Supposons pour *n* fixée on a $x_n^E = (1 h\lambda)^n x_0^E$.
- Montrons que $x_{n+1}^E = (1 h\lambda)^{n+1} x_0^E$: On a $x_{n+1}^E = (1 - h\lambda) x_n^E$ or d'après la supposition on $x_n^E = (1 - h\lambda)^n x_0^E$. Ainsi

$$x_{n+1}^{E} = (1 - h\lambda)(1 - h\lambda)^{n}x_{0}^{E} = (1 - h\lambda)^{n+1}x_{0}^{E}$$

D'où on a montrer par récurrence que $\forall n \geq 0$

$$x_n^E = (1 - h\lambda)^n x_0^E.$$

La méthode d'Euler implicite:

- On note $x(t_n) = x_n^I$.
- En intégrant l'équation différentielle $x^{'}(t) = f(t, x(t))$ avec $f(t, x(t)) = -\lambda x(t)$ entre t_n et t_{n+1} on obtient:

$$\int_{t_{n}}^{t_{n+1}} x^{'}(t)dt = \int_{t_{n}}^{t_{n+1}} f(t,x(t))dt.$$

• On approcher $\int_{t_n}^{t_{n+1}} f(t,x(t))dt$ par la méthode des rectangles à droite : $\forall n > 0$ on a

$$\begin{aligned} x(t_{n+1}) - x(t_n) &= (t_{n+1} - t_n) f(t_{n+1}, x(t_{n+1})) \Leftrightarrow x(t_{n+1}) - x(t_n) = -h\lambda x(t_{n+1}) \\ &\Leftrightarrow x_{n+1}^l - x_n^l = -h\lambda x_{n+1}^l \\ &\Leftrightarrow x_{n+1}^l (1 + h\lambda) = x_n^l \\ &\Leftrightarrow x_{n+1}^l = \frac{1}{(1 + h\lambda)} x_n^l \end{aligned}$$

Finalement, pour tout $n \ge 0$ on a $x'_{n+1} = \frac{1}{(1+h\lambda)}x'_n$.

Montrer par récurrence que: $\forall n \geq 0$ on a $x'_n = \frac{1}{(1+h\lambda)^n}x'_0$.

- Pour n=0 on a $\frac{1}{(1+h\lambda)^0}x_0^I=x_0^I$ donc vrai pour n=0.
- Supposons pour *n* fixée on a $x_n^I = \frac{1}{(1+h\lambda)^n} x_0^I$.
- Montrons que $x'_{n+1} = \frac{1}{(1+h\lambda)^{n+1}} x'_0$:

On a $x'_{n+1} = \frac{1}{(1+h\lambda)}x'_n$ or d'après la supposition on $x'_n = \frac{1}{(1+h\lambda)^n}x'_0$.

Ainsi

$$x'_{n+1} = \frac{1}{(1+h\lambda)} \frac{1}{(1+h\lambda)^n} x'_0 = \frac{1}{(1+h\lambda)^{n+1}} x'_0$$

D'où on a montrer par récurrence que $\forall n \geq 0$

$$x_n^I = \frac{1}{(1+h\lambda)^n} x_0^I$$

Question 4 : Calculer les limites $\lim_{n\to +\infty} x_n^E$ et $\lim_{n\to +\infty} x_n^I$.

• On a $\lim_{n\to+\infty} x_n^I = \lim_{n\to+\infty} \frac{1}{(1+h\lambda)^n} x_0^I = ?$.

On a h > 0 et $\lambda > 0$ donc $1 + h\lambda > 1$ par suite

$$\lim_{n\to+\infty} (1+h\lambda)^n = +\infty$$

Ainsi

$$\lim_{n \to +\infty} \frac{1}{(1+h\lambda)^n} = 0$$

If en result $\lim_{n \to +\infty} x_n^I = 0$.

•
$$\lim_{n \to +\infty} x_n^E = \lim_{n \to +\infty} (1 - h\lambda)^n x_0^E = ?$$

• Si $|1 - h\lambda| < 1$ alors

$$-1 < 1 - h\lambda < 1 \Leftrightarrow -2 < -h\lambda < 0 \Leftrightarrow 0 < h\lambda < 2$$

 $\Leftrightarrow 0 < h < \frac{2}{\lambda}$

Donc, $\lim_{n \to +\infty} (1 - h\lambda)^n = 0$ donc $\lim_{n \to +\infty} x_n^E = 0$.

- Si $|1 h\lambda| > 1$ alors $\lim_{n \to +\infty} (1 h\lambda)^n = \infty$ donc $\lim_{n \to +\infty} x_n^E = \infty$.
- Si $|1 h\lambda| = 1$ alors $h\lambda = 0$ par suite h = 0 ou $\lambda = 0$ imposible car h > 0 et $\lambda > 0$.

