Mathematik für Informatiker 1

Blatt 3¹

Prof. Dr. Theo de Jong Klaus Mattis

Übung 3.1

1. Wir definieren induktiv eine Folge a_n von natürlichen Zahlen:

$$a_0 = 1, a_1 = 3, a_n = 2a_{n-1} - a_{n-2}.$$

Zeigen Sie mit vollständiger Induktion, dass für alle n gilt:

$$a_n = 2n + 1$$

2. Wir definieren induktiv eine Folge a_n von natürlichen Zahlen:

$$a_0 = 2, a_1 = 5, a_n = 2a_{n-1} - a_{n-2}.$$

Zeigen Sie mit vollständiger Induktion, dass für alle n gilt:

$$a_n = 3n + 2$$

Übung 3.2

Seien $a, b, c \in \mathbb{Z}$ beliebige ganze Zahlen. Zeigen Sie folgende Aussagen:

- a + (-a) = 0.
- Falls a + b = a + c, dann b = c.
- a + 0 = a.
- Falls a + b = a, dann b = 0.
- $a \cdot 1 = a$.
- Falls $a \cdot b = a$, und $a \neq 0$, dann b = 1.

 $^{^1{\}rm Geben}$ Sie das Übungsblatt in der Woche vom 11.11. bis 15.11. in ihrem Tutorium ab

Übung 3.3

Seien $p,q,r\in\mathbb{Q}$ beliebige rationale Zahlen. Zeigen Sie:

- p + q = q + p.
- (p+q) + r = p + (q+r).
- $\bullet \ p \cdot q = q \cdot p$
- $(p \cdot q) \cdot r = p \cdot (q \cdot r)$.

Übung 3.4

Es sei \leq die in der Vorlesung definierte Relation auf $\mathbb Q.$ Zeigen Sie folgende Aussagen:

- $\bullet \le ist reflexiv.$
- $\bullet \le ist transitiv.$
- \leq ist antisymmetrisch.
- Seien $k,l,m,n\geq 0$ natürliche Zahlen. Dann ist $\frac{k}{l}\leq \frac{m}{n}$ genau dann, wenn $k\cdot n\leq l\cdot m.$
- Seien $p,q\in\mathbb{Q}$, mit p>0 und q>0. Dann ist p+q>0 und $p\cdot q>0$.