

ADAPTACIÓN DEL SISTEMA DE DRONES CRAZYSWARM AL ECOSISTEMA ROBOTAT

Trabajo de Graduación presentado por Julio Andrés Avila García-Salas

CRAZYSWARM SERVER

Paquete de Datos

	src	len	pty	pld
BYTES	1	1	1	8520
	Origan dal	Tama%a dal	Tipo do	Concatenación
	Origen del	Tamaño del	Tipo de	de las
	paquete	array	paquete	trayectorias
	205 - Matlab	Cantidad de CF o largo de	0-127 DATA 128-255	3 matrices de posiciones
		la		_
		trayectoria	CMD	espaciales

Trayectorias creadas en forma de matrices y concatenadas como vector para una comunicación eficiente

Funciones de Comunicación TCP en Matlab

- crazyswarm_connect()
- crazyswarm_goto()
- crazyswarm_traj()
- crazyswarm_test()
- crazyswarm_land()
- crazyswarm_disconnect()

```
>> tcp=crazyswarm_connect()

tcp =

tcpclient with properties:

Address: '192.168.50.170'

Port: 64183

NumBytesAvailable: 40

Show all properties, functions
```

```
>> crazyswarm_test(tcp)
ans =
   'Communication with Crazyswarm established'
```

>> crazyswarm_disconnect(tcp)
Disconnected from Crazyswarm

DISEÑO DE TRAYECTORIAS

$$x_k = A\cos[n + \frac{2\pi k}{N}]$$

$$y_k = Asin[n + \frac{2\pi k}{N}]$$