

Claire Mantel 09/07/2024

34269

#2 Intro to digital image processing 2/2

Outline

Spatial filtering

- Principle
- Process
- Applications: smoothing and sharpening with spatial filter

Frequency domain filtering

- Principle and process
- Classic design for smoothing/low-pass filtering, high-pass filtering, band-pass/band-reject filters

Neighbourood

- Neighbourood
- Linear combination

(i-1, j-1)	(i-1, j)	(i-1, j+1)
(i, j-1)	(i,j)	(i, j+1)
(i+1, j-1)	(i+1, j)	(i+1, j+1)

3x3 neighborhood of image I at pixel I(i,j)

$$\begin{split} g(i,j) &= w(-1,\,-1)I(i-1,\,j-1)\,+\,...\\ & w(0,\,-1)I(i,\,j-1)+\,w(0,\,0)I(i,\,j)\,+\,...\\ & \dots\,+\,w(1,\,1)I(i+1,\,j+1) \end{split}$$

- Neighbourood
- Linear combination

(i-1, j-1)	(i-1, j)	(i-1, j+1)
(i, j-1)	(i,j)	(i, j+1)
(i+1, j-1)	(i+1, j)	(i+1, j+1)

3x3 neighborhood of image I at (i,j)

$$g(i,j) = w(-1, -1)I(i-1, j-1) + ...$$

$$w(0, -1)I(i, j-1) + w(0, 0)I(i, j) + ...$$

$$... + w(1, 1)I(i+1, j+1)$$

w(-1,-1)	w(-1,0)	w(-1,1)
w(0, -1)	w(0,0)	w(0,1)
w(1,-1)	w(1, 0)	w(1,1)

Mask, or kernel, or filter

- Neighbourood
- Linear combination

(i-1, j-1)	(i-1,j)	(i-1, j+1)
(i, j-1)	(i,j)	(i, j+1)
(i+1, j-1)	(i+1, j)	(i+1, j+1)

3x3 neighborhood of image I at (i,j)

w(-1,-1)	w(-1,0)	w(-1,1)
w(0, -1)	w(0,0)	w(0,1)
w(1,-1)	w(1, 0)	w(1,1)

Mask (or kernel or filter)

$$g(i,j) = w(-1, -1)I(i-1, j-1) + ...$$

$$w(0, -1)I(i, j-1) + w(0, 0)I(i, j) + ...$$

$$... + w(1, 1)I(i+1, j+1)$$

$$g(i,j) = \sum_{-1}^{1} \sum_{-1}^{1} w(k,l)I(i+k,j+l)$$

w(-1,-1)	w(-1,0)	w(-1,1)
w(0, -1)	w(0,0)	w(0,1)
w(1,-1)	w(1, 0)	w(1,1)

Mask (or kernel or filter)

Correlation
$$g(i,j) = \sum_{-1}^{1} \sum_{-1}^{1} w(k,l)I(i+k,j+l)$$
 $g(i,j) = \sum_{-1}^{1} \sum_{-1}^{1} w(-k,-l)I(i-k,j-l)$ Convolution $g(i,j) = \sum_{-1}^{1} \sum_{-1}^{1} w_{180}(k,l)I(i-k,j-l)$

Process

1 2 3
 4 5 6
 7 8 9

Mask w

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Input image f (2D discrete unit impulse)

Mask size m x n
Padding m-1 rows at top and bottom
and n-1 colomns at left and right

Padded image

Mask w

1	2	3
4	5	6
7	8	9

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0 0 0 0
0	0	0	0	0
0	0	0	0	0

Input image f (2D discrete unit impulse)

0	0	0	0	0	0	0	0	0
0						0		
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
						0		
						0		
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Padded image

First location

Mask w

1	2	3
4	5	6
7	8	9

Input image f (2D discrete unit impulse)

0	0	0	0	0	0	0	0	0
		0						
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Padded image

0	1	2	3	0	0	0	0	0	
		5							
0	7	8	9	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Second location

Mask w

1	2	3
4	5	6
7	8	9

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Input image f (2D discrete unit impulse)

First non-zero location

Output padded image

Mask w

1	2	3
4	5	6
7	8	9

Input image f (2D discrete unit impulse)

Second non-zero location

Output padded image

Mask w

Input image f (2D discrete unit impulse)

Output padded image

Output filtered image (cropped)

Process - convolution

Mask w

Input image f (2D discrete unit impulse)

Output padded image

Output filtered image (cropped)

Convolution - Properties

• Notation
$$g(i,j) = \sum_{-1}^{1} \sum_{-1}^{1} m(k,l)I(i-k,j-l) = M * I$$

• Commutative $M \star I = I \star M$ (not true for correlation)

• Associative $M1 \star (M2 \star I) = (M1 \star M2) \star I$ (not true for correlation)

- Linearity $M \star (I+J) = (M \star I) + (M \star J)$ $(kM) \star I = k(M \star I) = M \star (kI)$
- Fully characterized by its impulse response

Technical University of Denmark

15

• Box filter (averaging)

$$g(i,j) = \frac{1}{MN} \sum_{-a}^{a} \sum_{-b}^{b} I(i+k,j+l)$$

with
$$M = 2a + 1$$

and $N = 2b + 1$

For M = N = 3, the convolution mask is

• Box filter (averaging)

$$g(i,j) = \frac{1}{MN} \sum_{k=-a}^{a} \sum_{l=-b}^{b} I(i+k,j+l)$$

with
$$M = 2a + 1$$

and $N = 2b + 1$

Box filter (averaging)

with
$$M = N = 5$$

$$g(i,j) = \frac{1}{MN} \sum_{k=-a}^{a} \sum_{l=-b}^{b} I(i+k,j+l) \quad \text{with } M = 2a+1 \text{ and } N = 2b+1$$

• Box filter (averaging)

with M = N = 9

$$g(i,j) = \frac{1}{MN} \sum_{k=-a}^{a} \sum_{l=-b}^{b} I(i+k,j+l) \quad \text{with } M = 2a+1 \text{ and } N = 2b+1$$

Box filter (averaging)

with
$$M = N = 15$$

$$g(i,j) = \frac{1}{MN} \sum_{k=-a}^{a} \sum_{l=-b}^{b} I(i+k,j+l) \quad \text{with } M = 2a+1 \text{ and } N = 2b+1$$

• Box filter (averaging)

$$g(i,j) = \frac{1}{MN} \sum_{k=-a}^{a} \sum_{l=-b}^{b} I(i+k,j+l)$$
 with $M = 2a + 1$ as

with M = N = 35

- Box filter
- Gaussian filter

$$g(i,j) = \frac{1}{\sum_{-a}^{a} \sum_{-b}^{b} e^{-\frac{k^{2}+l^{2}}{\sigma^{2}}}} \sum_{-a}^{a} \sum_{-b}^{b} I(i+k,j+l) e^{-\frac{k^{2}+l^{2}}{\sigma^{2}}}$$

Technical University of Denmark

22

- Box filter
- Gaussian filter

$$g(i,j) = \frac{1}{\sum_{-a}^{a} \sum_{-b}^{b} e^{-\frac{i^{2}+j^{2}}{\sigma^{2}}} \sum_{-a}^{a} \sum_{-b}^{b} I(i+k,j+l) e^{-\frac{i^{2}+j^{2}}{\sigma^{2}}}$$

For $\sigma = 0.75$ and a filter size of 5x5

0.0002	0.0033	0.0081	0.0033	0.0002
0.0033	0.0479	0.1164	0.0479	0.0033
0.0081	0.1164	0.2831	0.1164	0.0081
0.0033	0.0479	0.1164	0.0479	0.0033
0.0002	0.0033	0.0081	0.0033	0.0002

- Box filter
- Gaussian filter

$$g(i,j) = \frac{1}{\sum_{-a}^{a} \sum_{-b}^{b} e^{-\frac{i^{2}+j^{2}}{\sigma^{2}}}} \sum_{-a}^{a} \sum_{-b}^{b} I(i+k,j+l) e^{-\frac{i^{2}+j^{2}}{\sigma^{2}}}$$

- Box filter
- Gaussian filter

- Box filter
- Gaussian filter

- Box filter
- Gaussian filter

Second derivative - Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \qquad \frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0
1	-4	1
0	1	0

• Second derivative - Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Anisotropic

0	1	0
1	-4	1
0	1	0

• Second derivative - Laplacian

$$g(x,y) = f(x,y) + \nabla^2 f(x,y)$$

- Second derivative Laplacian
- Unsharp masking & highboost

$$g_{mask}(x,y) = f(x,y) - B_f(x,y)$$

$$g(x,y) = f(x,y) + k \cdot g_{mask}(x,y)$$

Unsharp masking for k=1
Highboost for k>1

Source: Digital Image Processing, Gonzales & Woods

- Second derivative Laplacian
- Unsharp masking & highboost

Gaussian blur (sigma = 1.25)

Mask

- Second derivative Laplacian
- Unsharp masking & highboost

End of spatial filtering part

_

Pause?

Outline - Frequency domain filtering

- Principle
- Smoothing/low-pass filtering
- High-pass filtering
- Band-pass/band-reject filters

Discrete Fourier Transform

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$
with $u \in [0, M-1]$ and $v \in [0, N-1]$

f(x,y) input image, u and v spatial frequencies

37

Inverse transform

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$
with $x \in [0, M-1]$ and $y \in [0, N-1]$

Complex result of DFT

$$F(u, v) = R(u, v) + jI(u, v) = |F(u, v)|e^{j\varphi(u, v)}$$

With Spectrum

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

And phase angle

$$\varphi(u,v) = tan^{-1} \left(\frac{R(u,v)}{I(u,v)} \right)$$

$$f(x,y)e^{j2\pi\left(\frac{u_0x}{M}+\frac{v_0y}{N}\right)} \Leftrightarrow F(u-u_0,v-v_0)$$

with
$$u_0 = \frac{M}{2}$$
 and $v_0 = \frac{N}{2}$: $f(x,y)(-1)^{(x+y)} \Leftrightarrow F(u - M/2, v - N/2)$

Discrete Fourier Transform

→ Equivalent to shifting the quadrants of F

• Discrete Fourier Transform

• Discrete Fourier Transform

log of centered spectrum

Phase

$$rect(a,b) \Leftrightarrow ab \frac{\sin \pi ua}{\pi ua} \frac{\sin \pi vb}{\pi vb} e^{-j\pi(ua+vb)}$$

spatial

translation

spatial

rotation

Principle

$$rect(a,b) \Leftrightarrow ab \frac{\sin \pi ua}{\pi ua} \frac{\sin \pi vb}{\pi vb} e^{-j\pi(ua+vb)}$$

$$f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi\left(\frac{ux_0}{M} + \frac{vy_0}{N}\right)}$$

$$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$$

$$with \ x = r \cos \theta, y = r \sin \theta$$

$$and \ u = \omega \cos \varphi, v = \omega \sin \varphi$$

- DFT
- Frequency resolution and padding

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$
with $u \in [0, M-1]$ and $v \in [0, N-1]$

The distance between the frequency samples of the DFT are function of the image resolution and spatial sampling

$$\Delta u = \frac{1}{M\Delta X}$$
, $\Delta v = \frac{1}{N\Delta Y}$ with M the number of rows, N number of columns and ΔX , ΔY the intervals between spatial samples

43

- DFT
- Frequency resolution and padding

64 x 64 image

256 x 256 image Same as 64 x 64 version with 0 padding

Image

Zero padding adds no extra information, only a smoother version of the spectrum

- DFT
- Convolution theorem

$$f(x,y) * h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$$

$$f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$$

$$f(x,y)h(x,y) \stackrel{\mathsf{DFT}}{\Leftrightarrow} F(u,v) * H(u,v)$$

- DFT
- Convolution theorem
- Link with spatial filtering

$$g(x,y) = \mathcal{F}^{-1}(H(u,v)F(u,v)]$$

- DFT
- Convolution theorem
- Link with spatial filtering

$$g(x,y) = \mathcal{F}^{-1} H(u,v) F(u,v)]$$

$$g(x,y) = \mathcal{F}^{-1}[H(u,v)R(u,v) + jH(u,v)I(u,v)]$$
 Zero-phase-shift filter
$$\varphi(u,v) = tan^{-1}\left(\frac{R(u,v)}{I(u,v)}\right)$$

- DFT
- Convolution theorem
- Link with spatial filtering

$$g(x,y) = \mathcal{F}^{-1} H(u,v) F(u,v)]$$

$$f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$$
$$if \ f(x,y) = \delta(x,y), then \ F(u,v) = 1 \ \Rightarrow g(x,y) = \mathcal{F}^{-1}[H(u,v)] = h(x,y)$$

$$f(x,y)h(x,y) \Leftrightarrow F(u,v) * H(u,v)$$
$$if \ F(u,v) = \delta(x,y), then \ f(x,y) = 1 \Rightarrow F(u,v) * H(u,v) = H(u,v) = \mathcal{F}[h(x,y)]$$

Principle - summary

- DFT is a discrete transform used to perform Fourrier analysis. It transforms image content from spatial domain f(x,y) to frequency domain F(u,v), separated into spectrum (magnitude) and phase
- The relation between the image content and its spectrum is straightforward, not the relation with its phase.
- The spectrum can be used for filtering because
 - a term-by-term multiplication in the frequency domain = convolution in spatial domain
 - filters are more intuitive to design in frequency domain
 Filters modifying only the spectrum are called zero-phase-shift filter

Process

Low-pass filtering - Ideal low-pass ("tube" filter)

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

$$D(u, v) = \sqrt{(u - c_u)^2 + (v - c_v)^2}$$

 D_0 : cutoff frequency

Low-pass filtering

• Ideal low-pass ("tube" filter)

image size 500x500

Low-pass filtering – Gaussian filter

$$H(u,v) = e^{-(D(u,v))^2/2\sigma^2}$$

$$D(u, v) = \sqrt{(u - c_u)^2 + (v - c_v)^2}$$

 σ : cutoff frequency

Low-pass filtering

Gaussian filter

Low-pass filtering – Butterworth filter

Filter with maximally flat frequency response

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

$$D(u, v) = \sqrt{(u - c_u)^2 + (v - c_v)^2}$$

 D_0 : cutoff frequency

n: order of the filter (steepness of the slope)

Low-pass filtering

Butterworth filter

High-pass filtering

 $H_{HP}(u,v) = 1 - H_{LP}(u,v)$

ideal

gaussian

Butterworth

Selective filters

Band-reject

$$H(u,v) = \begin{cases} 0 \ if D_0 - W/2 \le D(u,v) \le D_0 + W/2 \\ 1 \ otherwise \end{cases}$$
 Ideal

With D₀ cutoff frequency and W the width of the band

$$H(u, v) = e^{-\left(\frac{(D(u,v))^2 - D_0^2}{D(u,v)W}\right)^2/2\sigma^2}$$

Gaussian

$$H(u,v) = \frac{1}{1 + \left(\frac{D(u,v)W}{(D(u,v))^2 - D_0^2}\right)^{2n}}$$

Butterworth based

• Band-pass

$$H_{BP}(u, v) = 1 - H_{BR}(u, v)$$

Selective filters

- Band-reject/Band-pass
- Notch filters

$$H_{NR}(u,v) = \prod_{k=1}^{Q} H_k(u,v) H_{-k}(u,v)$$

High pass
Butterworth
centered in (u_k, v_k)

$$H_k(u, v) = \frac{1}{1 + (D_{0k}/D_k(u, v))^{2n}}$$

$$D_k(u, v) = \sqrt{(u - u_k)^2 + (v - v_k)^2}$$

Coming up:

- Now: Exercise on image filtering
- This afternoon: Topic 3 Sparse and redundant recovery and representation

Thank you!