Prisoners' Dilemma

PARADOX AND INFINITY
Benjamin Brast-McKie
April 29, 2024

Two Prisoners

Setup: Two separated prisoners are each offered \$1,000. They will be given an additional \$1,000,000 *iff* the other prisoner does not take the \$1,000.

- The prisoners' choices are causally independent.
- $P(\mathsf{Take}_A \hookrightarrow \mathsf{Take}_B) = P(\neg \mathsf{Take}_A \hookrightarrow \mathsf{Take}_B) = P(\mathsf{Take}_B)$.
- $P(\mathsf{Take}_A \ \Box \rightarrow \neg \mathsf{Take}_B) = P(\neg \mathsf{Take}_A \ \Box \rightarrow \neg \mathsf{Take}_B) = P(\neg \mathsf{Take}_B).$
- We know that $P(\neg Take_B) = 1 P(Take_B)$, but don't know $P(Take_B)$.
- Something similar may be said swapping 'A' and 'B' above.
- The prisoner's know everything except for the other's choice.
- What is it rational for prisoner *A* (similarly *B*) to do?

Dominant: Taking the \$1,000 is a *dominant strategy* for prisoner *A* (similarly *B*).

- Whether Take_B or not, $v(Take_A) > v(\neg Take_A)$ for prisoner A.
- We get the following alternatives:

	${\sf Take}_B$	$ eg$ Take $_B$
\mathtt{Take}_A	(A, B: \$1,000)	(A:\$1,001,000), (B:\$0)
$\neg \mathtt{Take}_A$	(A:\$0), (B:\$1,001,000)	(A, B: \$1,000,000)

- The setup assumes that neither prisoner cares about the other.
- If the prisoners cared about each other, that would be a different case.

Predictor: Given the circumstances, each prisoner is a good predictor of the other.

- Take_A predicts that Take_B, i.e., $P(\text{Take}_B \mid \text{Take}_A)$ is high.
- Thus $P(\neg Rich_A \mid Take_A)$ is high since $Take_B$ iff $\neg Rich_A$.
- So if Take_A, then prisoner A has good reason to bet \neg Rich_A.
- We don't know what the probabilities $P(Take_A)$ or $P(Take_B)$.
- Does $\neg Take_A$ change the probability $P(\neg Take_B) = P(Rich_A)$?

Newcomb: Rich_A iff it is predicted that $\neg Take_A$ (by $\neg Take_B$).

- \neg Take^B is a *prediction instance* (a way of predicting \neg TakeA).
- The predication amounts to probabilistic dependence (not causal).
- When the prediction happens does not matter to the case.
- Is the prisoners' dilemma a Newcomp problem?

Dominance Calculations

Expected Causal Utility: Recall that: (a) Rich_A iff \neg Take_B; and (b) Rich_B iff \neg Take_A.

- What are the *expected causal utilities* of Take_A and \neg Take_A?
- $ECU(\neg Take_A) = \$1,000,000 \times P(\neg Take_A \rightarrow Rich_A) + \$0 \times P(\neg Take_A \rightarrow \neg Rich_A)$ = $\$1,000,000 \times P(\neg Take_B)$ by (a).

•
$$ECU(\mathsf{Take}_A) = \$1,001,000 \times P(\mathsf{Take}_A \implies \mathsf{Rich}_A) + \$1,000 \times P(\mathsf{Take}_A \implies \neg \mathsf{Rich}_A).$$

$$= \$1,001,000 \times P(\neg \mathsf{Take}_B) + \$1,000 \times P(\mathsf{Take}_B) \text{ by (a)}.$$

$$= \$1,001,000 \times P(\neg \mathsf{Take}_B) + \$1,000 \times (1 - P(\neg \mathsf{Take}_B)).$$

$$= \$1,000,000 \times P(\neg \mathsf{Take}_B) + \$1,000.$$

$$= ECU(\neg \mathsf{Take}_A) + \$1,000.$$

• Taking the money is better for prisoner *A* (and similarly for *B*).

Accuracy

Clash: The predication does not have to be very accurate for the expected utility calculation to clash with causal expected utility (i.e. > .5005).

- Suppose $P(\mathsf{Take}_B \mid \mathsf{Take}_A) = P(\neg \mathsf{Take}_B \mid \neg \mathsf{Take}_A) = .5006$.
- So $P(\text{Rich}_A \mid \neg \text{Take}_A) = P(\neg \text{Take}_B \mid \neg \text{Take}_A) = .5006$.
- And $P(\text{Rich}_A \mid \text{Take}_A) = P(\neg \text{Take}_B \mid \text{Take}_A) = 1 P(\text{Take}_B \mid \text{Take}_A) = .4994$.
- $EV(\neg \mathtt{Take}_A) = \$1,000,000 \times P(\mathtt{Rich}_A \mid \neg \mathtt{Take}_A) + \$0 \times P(\neg \mathtt{Rich}_A \mid \neg \mathtt{Take}_A)$ = $\$1,000,000 \times P(\mathtt{Rich}_A \mid \neg \mathtt{Take}_A)$ = \$500,600.
- $EV(\mathtt{Take}_A) = \$1,001,000 \times P(\mathtt{Rich}_A \mid \mathtt{Take}_A) + \$1,000 \times P(\lnot\mathtt{Rich}_A \mid \mathtt{Take}_A)$ = $\$1,000,000 \times P(\mathtt{Rich}_A \mid \mathtt{Take}_A) + \$1,000$ = \$500,400.
- Even if prisoner *A* is an inaccurate predictor of prisoner *B*, the expected utility and expected causal utility calculations are bound to come apart.

Upshot

Common: Newcomb's problem is fanciful, but prisoners' dilemmas are common.

- Prisoners' dilemmas support *causal decision theory* on their own.
- No need to appeal to Newcomb cases to motivate CDT.

Comparison: Should a oneboxer also avoid taking the money?

• Does comparing the cases put any pressure on the oneboxer to twobox?