University of Vienna Faculty of Physics

Notes on Noncommutative Geometry and Particle Physics

Milutin Popovic Supervisor: Dr. Lisa Glaser

Week 6: 19.03 - 26.03

Contents

1	Finite Real Noncommutative Spaces						
	1.1	Finite Real Spectral Triples	2				
	1.2	Morphisms Between Finite Real Spectral Triples	4				
		1.2.1 Construction of a Finite Real Spectral Triple from a Finite Real					
		Spectral Triple	5				

1 Finite Real Noncommutative Spaces

1.1 Finite Real Spectral Triples

Add on to finite real spectral triples a *real structure*. The requirement is that H is a A-A-bimodule (before only a A-left module).

For this we introduce a \mathbb{Z}_2 -grading γ with

$$\gamma^* = \gamma \tag{1}$$

$$\gamma^2 = 1 \tag{2}$$

$$\gamma D = -D\gamma \tag{3}$$

$$\gamma a = a \gamma \quad a \in A \tag{4}$$

Definition 1. A *finite real spectral triple* is given by a finite spectral triple (A, H, D) and a anti-unitary operator $J: H \to H$ called the *real structure*, such that

$$a^{\circ} := Ja^*J^{-1} \tag{5}$$

is a right representation of A on H, that is $(ab)^{\circ} = b^{\circ}a^{\circ}$. With two requirements

$$[a,b^{\circ}] = 0 \tag{6}$$

$$[[D,a],b^{\circ}]=0.$$
 (7)

They are called the *commutant property*, and mean that the left action of an element in A and $\Omega_D^1(A)$ commutes with the right action on A.

Definition 2. The *KO*-dimension of a real spectral triple is determined by the sings $\varepsilon, \varepsilon', \varepsilon'' \in \{-1, 1\}$ appearing in

$$J^2 = \varepsilon \tag{8}$$

$$JD = \varepsilon DJ \tag{9}$$

$$J\gamma = \varepsilon''\gamma J. \tag{10}$$

Table 1: KO-dimension k modulo 8 of a real spectral triple

\overline{k}	0	1	2	3	4	5	6	7
ϵ	1	1	-1	-1	-1	-1	1	1
$oldsymbol{arepsilon}'$	1	-1	1	1	1	-1	1	1
$oldsymbol{arepsilon}''$	1		-1		1	-1 -1	-1	

Definition 3. An opposite-algebra A° of a A is defined to be equal to A as a vector space with the opposite product

$$a \circ b := ba \tag{11}$$

$$\Rightarrow a^{\circ} = Ja^*J^{-1}$$
 defines the left representation of A° on H (12)

Example 1. Matrix algebra $M_N(\mathbb{C})$ acting on $H = M_N(\mathbb{C})$ by left matrix multiplication with the Hilbert Schmidt inner product.

$$\langle a, b \rangle = \text{Tr}(a^*b) \tag{13}$$

Then we define $\gamma(a) = a$ and $J(a) = a^*$ with $a \in H$. Since D mus be odd with respect to γ it vanishes identically.

Definition 4. We call $\xi \in H$ cyclic vector in A if:

$$A\xi := a\xi : a \in A = H \tag{14}$$

We call $\xi \in H$ separating vector in A if:

$$a\xi = 0 \Rightarrow a = 0; \ a \in A \tag{15}$$

Exercise 1

In the previous example, show that the right action on $M_N(\mathbb{C})$ on $H=M_N(\mathbb{C})$ as defined by $a\mapsto a^\circ$ is given by right matrix multiplication.

$$a^{\circ}\xi = Ja^{*}J^{-1}\xi = Ja^{*}\xi^{*} = J\xi a = \xi^{*}a \tag{16}$$

Exercise 2

Let $A = \bigoplus_i M_{n_i}(\mathbb{C})$, represented on $H = \bigoplus_i \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}$, meaning that the irreducible representation \mathbf{n}_i has multiplicity m_i .

- 1. Show that the commutant A' of A is $A' \simeq \bigoplus_i M_{m_i}(\mathbb{C})$. As a consequence show $A'' \simeq A$.
- 2. Show that if ξ is a separating vector for A than it is cyclic for A'.
- 1. We know the multiplicity space is $V_i = \mathbb{C}^{m_i}$. We know that for $T \in H$ and $a \in A'$ to work we need aT = Ta by laws of matrix multiplication we need $A' \simeq \bigoplus_i M_{m_i}(\mathbb{C})$ for this to work since $H = \bigoplus_i \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}$
- 2. Suppose ξ is cyclic for A then $A'\xi=\{0\}$. Under the action of A we then have $A'A\xi=AA'\xi=0 \Rightarrow A'=0$. Suppose now ξ is separating for A', we have $A'\xi=\{0\}$. We can define a projection in A', $A\xi=P'$. With this projection we have $(1-P')\xi=0 \Rightarrow 1-P'=0 \Rightarrow A\xi=H$.

Exercise 3

Suppose (A, H, D = 0) is a finite spectral triple such that H possesses a cyclic and separating vector for A.

- 1. Show that the formula $S(a\xi)=a*\xi$ defines a anti-linear operator $S:H\to H$.
- 2. Show that *S* is invertible

- 3. Let $J: H \to H$ be the operator in $S = J\Delta^{1/2}$ with $\Delta = S*S$. Show that J is anti-unitary
- 1. By composition $S(a\xi)=a*\xi$ this is literally anti-linearity. Does this mean $S\xi=\xi$?
- 2. Let $\xi \in H$ be cyclic then: $S(A\xi) = A * \xi = A\xi = H$. The same has to work for S^{-1} if not then ξ wouldn't exist. $S^{-1}(A * \xi) = S^{-1}(H) = H$.
- 3. Since *S* is bijective then $\Delta^{1/2}$ and *J* need to be bijective. Now let $\xi_1, \xi_2 \in H$.

$$\langle J\xi_1, J\xi_2 \rangle = \langle J^*J\xi_1, \xi_2 \rangle^* =$$
 (17)

$$= <(\Delta^{1/2})^* S^* S \Delta^{1/2} \xi_1, \xi_2 >^* =$$
 (18)

$$= <(SS^*)^{1/2}S^*S(SS^*)\xi_1, \xi_2>^* =$$
 (19)

$$= <(SS^*SS^*)^{1/2}\xi_1, \xi_2>^* =$$
 (20)

$$=<\xi_1,\xi_2>^*=<\xi_2,\xi_1>.$$
 (21)

1.2 Morphisms Between Finite Real Spectral Triples

Extend unitary equivalence of finite spectral triples to real ones (with J and γ)

Definition 5. We call two finite real spectral triples $(A_1, H_1, D_1; J_1, \gamma_1)$ and $(A_2, H_2, D_2; J_2, \gamma_2)$ unitarily equivalent if $A_1 = A_2$ and if there exists a unitary operator $U: H_1 \to H_2$ such

$$U\pi_1(a)U^* = \pi_2(a) \tag{22}$$

$$UD_1U^* = D_2 \tag{23}$$

$$U\gamma_1 U^* = \gamma_2 \tag{24}$$

$$UJ_1U^* = J_2 \tag{25}$$

Definition 6. Let E be a B-A bimodule. The *conjugate Module* E° is given by the A-B-bimodule.

$$E^{\circ} = \{ \bar{e} : e \in E \} \tag{26}$$

with

$$a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \quad \forall a \in A, b \in B$$
 (27)

 E° is not a Hilbert bimodule for (A,B) because it doesn't have a natural B-valued inner product. But there is a A-valued inner product on the left A-module E° with

$$\langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2, e_1 \rangle \quad e_1, e_2 \in E \tag{28}$$

and linearity in A:

$$\langle a\bar{e}_1,\bar{e}_2\rangle = a\langle \bar{e}_1,\bar{e}_2\rangle \quad \forall a \in A.$$
 (29)

Exercise 4

Show that E° is a Hilbert bimodule (B°, A°)

Straightforward show properties of the Hilbert bimodule and its B° valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^{\circ} \in A, b^{\circ} \in B$.

$$\langle \bar{e}_1, a^{\circ} \bar{e}_2 \rangle = \langle \bar{e}_1, J a^* J^{-1} \bar{e}_2 \rangle =$$
 (30)

$$= \langle \bar{e}_1, Ja^* e_2 \rangle = \tag{31}$$

$$= < J^{-1}e_1, a^*e_2 > = (32)$$

$$= \langle a^* e_1, e_2 \rangle = \langle J^{-1} (a^\circ)^* J e_1, e_2 \rangle =$$
 (33)

$$= < J^{-1}(a^{\circ})^* \bar{e}_1, e_2 > =$$
 (34)

$$=<(a^{\circ})^*\bar{e}_1,\bar{e}_2>.$$
 (35)

Next $<\bar{e}_1,\bar{e}_2b^{\circ}>=<\bar{e}_1,\bar{e}_2>b^{\circ}$.

$$\langle \bar{e}_1, \bar{e}_2 b^{\circ} \rangle = \langle \bar{e}_1, \bar{e}_2 J b^* J^{-1} \rangle =$$
 (36)

$$= <\bar{e}_1, \bar{e}_2 > Jb^*J^{-1} = \tag{37}$$

$$= \langle \bar{e}_1, \bar{e}_2 \rangle b^{\circ}. \tag{38}$$

Then:

$$(\langle \bar{e}_1, \bar{e}_2 \rangle)_{E^{\circ}})^* = (\langle e_2, e_1 \rangle)^* = (39)$$

$$= \langle e_1, e_2 \rangle_F^* = \langle \bar{e}_2, \bar{e}_2 \rangle_{E^{\circ}}$$
 (40)

And of course $\langle \bar{e}, \bar{e} \rangle = \langle e, e \rangle \geq 0$

1.2.1 Construction of a Finite Real Spectral Triple from a Finite Real Spectral Triple

Given a Hilbert bimodule E for (B,A) we construct a spectral triple $(B,H',D';J',\gamma')$ from $(A,H,D;J,\gamma)$

For the H' we make a \mathbb{C} -valued inner product on H' by combining the A valued inner product on E and E° with the \mathbb{C} -valued inner product on H.

$$H' := E \otimes_A H \otimes_A E^{\circ} \tag{41}$$

Then the action of B on H' is:

$$b(e_2 \otimes \xi \otimes \bar{e}_2) = (be_1) \otimes \xi \otimes \bar{e}_2 \tag{42}$$

The right action of B on H' defined by action on the right component E°

$$J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J\xi \otimes \bar{e}_1 \tag{43}$$

with $b^{\circ} = J'b^*(J')^{-1}$, $b^* \in B$ action on H'.

Exercise 5

Let $\nabla: E \Rightarrow E \otimes_A \Omega^1_d(A)$ be a right connection on E consider the following anti-linear map:

$$\tau: E \otimes_A \Omega_D^1(A) \to \Omega_D^1(A) \otimes_A E^{\circ} \tag{44}$$

$$e \otimes \omega \mapsto -\omega^* \otimes \bar{e}$$
 (45)

Show that the map $\bar{\nabla}: E^{\circ}\Omega_D^1(A)\otimes E^{\circ}$ with $\bar{\nabla}(\bar{e})=\tau\circ\nabla(e)$ is a left connection, that means show that it satisfied the left Leibniz rule:

$$\bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a\bar{\nabla}(\bar{e}) \tag{46}$$

Hagime:

$$\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^*\bar{e}) \tag{48}$$

$$\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ (e \otimes d(a)) = \tag{50}$$

$$= a^* \bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \tag{51}$$

$$= a^* \bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. \tag{52}$$

Then the connections

$$\nabla: E \to E \otimes_A \Omega_D^1(A) \tag{53}$$

$$\bar{\nabla}: E^{\circ} \to \Omega_D^1(A) \otimes_A E^{\circ} \tag{54}$$

give us the Dirac operator on $H' = E \otimes_A H \otimes_A E^{\circ}$

$$D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1)\xi \otimes \bar{e}_2 + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi(\bar{\nabla}\bar{e}_2)$$
 (55)

And the right action of $\omega \in \Omega^1_D(A)$ on $\xi \in H$ is defined by

$$\xi \mapsto \varepsilon' J \omega^* J^{-1} \xi \tag{56}$$

Finally for the grading

$$\gamma' = 1 \otimes \gamma \otimes 1 \tag{57}$$

Theorem 1. Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of KO-dimension k, let ∇ be like above satisfying the compatibility condition (like with finite spectral triples).

Then $(B,H',D';J',\gamma')$ is a finite spectral triple of KO-Dimension k. (H',D',J',γ') like above)

Proof. The only thing left is to check if the KO-dimension is preserved, for this we check if the ε 's are the same.

$$(J')^{2} = 1 \otimes J^{2} \otimes 1 = \varepsilon$$

$$J'\gamma' = \varepsilon''\gamma'J'$$
(58)
(59)

$$J'\gamma' = \varepsilon''\gamma'J' \tag{59}$$

and for ε'

$$J'D'(e_1 \otimes \xi \otimes \bar{e}_2) = J'((\nabla e_1)\xi \otimes \bar{e}_2 + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi(\tau \nabla e_2))$$
 (60)

$$= \varepsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2) \tag{61}$$

$$= \varepsilon' D' J' (e_1 \otimes \xi \bar{e}_2) \tag{62}$$