A. COMVOLUTION.

G IS A LOCALLY COMPACT GROUP WITH HAAR LEASURE m.

Let α denote the multiplication map $G \times G \to G$. If $k \in C_{\infty}(G)$, then $k \circ \alpha$ is a bounded continuous function on $G \times G$. For $\mu, \nu \in \Gamma(G)$, $\mu \times \nu$ is a finite complex measure on the Borel sets of $G \times G$, so the <u>convolution</u> of μ and ν defined by $(\mu \times \nu)(k) := \int k \circ \alpha \ d(\mu \times \nu)$ $(k \in C_{\infty}(G))$

exists. We have

$$(\mu + \nu)(\mathbb{R}) = \iint \mathbb{R}(\mathbb{R}y) \, \mathrm{d}\mu(\mathbb{R}) \, \mathrm{d}\nu(y) = \iint \mathbb{R}(\mathbb{R}y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(\mathbb{R})$$

so that $I(\mu*\nu)(k) | \leq \| \| u \|_{\infty} \| \mu \| \| v \|$. It follows that for fixed $\mu, \nu \in \mathbb{H}(G)$, $\mu*\nu$ is an element of $\mathbb{H}(G)$ and $\| \mu*\nu \| \leq \| \mu \| \| v \|$.

From Exercise 4.A and the Fubini Theorem one obtains $\mu*(v*\pi) = (\mu*v)*\pi \qquad (\mu,\nu,\pi\in M(G)).$

Thus, the multiplication * turns M(G) into a Banach algebra. If $\delta \in M(G)$ is defined by

$$\delta(k) := k(1) \qquad (k \in C_{on}(G))$$

where 1 is the identity element of G, then $\mu*\delta = \delta*\mu = \mu \quad (\mu \in M(G)),$

so that M(G) has an identity element.

Clearly, if G is commutative, then so is M(G). The converse is also easy to prove: if, for $x \in G$ we define $\delta_x \in M(G)$ by

$$\delta_{\mathbf{x}}(\mathbf{k}) := \mathbf{k}(\mathbf{x}) \qquad (\mathbf{k} \in C_{\infty}(\mathbf{G})),$$

then

$$S_{x} * S_{y} = S_{xy}$$
 (x,y \in G).

The following formula is easy to verify.

$$(\mu*\nu)^* = \nu^!*\mu^! \qquad (\mu,\nu\in\mathbb{M}(G)).$$

By Lemma 1.13 we have a linear isometry $f \longmapsto fm$ of $L^1(G)$ into M(G) given by

$$(fm)(k) = \int kfdm.$$

We indicate the set $\{fm: f \in L^{1}(G)\}$ by $M_{p}(G)$. By a general form of the Radon-Nikodym Theorem it can be proved that $M_{a}(G) = \{ \mu \in M(G) : \mu \ll m \}$, but we shall not need this fact.

Let $\mu \in M(G)$, $g \in L^{1}(G)$, $\mu \geq 0$, $g \geq 0$. By Exercise 3.F, G has a ϵ -compact open subgroup G_0 such that g = 0 off G_0 and $\mu(G \setminus G_0) = 0.$

If $k \in C(G)$ and k = 0 on G_0 then $\int k(xy)d\mu(x) = 0$ for all $y \in G_0$, so that (Exercise 4.A) $\int kd(\gamma *gm) = \int \int k(xy)d\gamma(x)g(y)dy = 0$. Now take any $k \in C^+(G)$. Then

where we define

$$h(y) := \int g(x^{-1}y) d\mu(x) \qquad (y \in G).$$

 $h(y) := \int g(x^{-1}y) d\mu(x) \qquad (y \in G).$ It is easy to see that $(x,y) \longmapsto g(x^{-1}y)$ is Borel measurable $G \times G \rightarrow [0,\infty]$. Then, according to Fubini Theorem, h is Borel measurable $G \rightarrow [0,\infty]$. Clearly h vanishes off G_0 . $\int kd(\mu * gm) = \int kh \qquad (k \in C^+(G)).$

Taking k = 1 we see that h is m-integrable. Apparently, $\mu * gm = hm \in M_{a}(G)$.

A posteriori we see that $\mu*gm\in M_{\mathbf{a}}(G)$ for all $\mu\in M(G)$ and $g \in L^{1}(G)$; if $h \in L^{1}(G)$ and $\mu * gm = hm$ then $h(y) = \int g(x^{-1}y) d\mu(x)$ for almost every y. We have proved part of the following theorem, the rest of which we leave to the reader.

4.1. THEOREM. $M_a(G)$ is a (closed) two-sided ideal in M(G). For $\mu, \nu \in M(G)$ and $f, g \in L^1(G)$ we can define elements $\mu * g$, $f * \nu$ and f * g of $L^1(G)$ by

$$(\mu * g)m := \mu * gm,$$

 $(f*v)m := fm*v,$
 $(f*g)m := fm*gm.$

Then

$$(\mu * g)(y) = \int g(x^{-1}y) d\mu(x) \qquad (almost all y \in G)$$

$$\begin{split} (f \star \vee)(y) &= \int f(yx^{-1}) \Delta(x^{-1}) d\nu(x) & \text{(almost all } y \in G), \\ (f \star g)(y) &= \int f(x)g(x^{-1}y) dx = \\ &= \int f(yx)g(x^{-1}) dx \end{split} \qquad \text{(almost all } y \in G). \end{split}$$

For
$$f,g \in L^1(G)$$
, $a \in G$, we have $(f*g)' = g'*f'$, $f_a = \delta_a * f$, $(f*g)_a = f_a * g$.

The mapping $(f,g) \longmapsto f * g$ defines a multiplication (the convolution) in $L^1(G)$ that turns $L^1(G)$ into a Banach algebra.

If G is commutative, so is $L^1(G)$. The converse statement is also true, but harder to prove. (See Exercise 4.G. or 4.B.)

In general, $L^1(G)$ will not have an identity. But it does have an approximate identity. A net $(e_{\lambda})_{\lambda \in \Lambda}$ in a Banach algebra A is a <u>left (right)</u> approximate identity if $\lim e_{\lambda} x = x$ ($\lim xe_{\lambda} = x$) for all $x \in A$. A net that is both a left and a right approximate identity is a <u>two-sided approximate identity</u>. An approximate identity $(e_{\lambda})_{\lambda \in \Lambda}$ is <u>bounded</u> if there exists a number s such that $\|e_{\lambda}\| \leq s$ for every λ ; such an s is called a <u>bound</u> for the approximate identity.

4.2. THEOREM. L¹(G) has a two-sided approximate identity of bound 1. The elements of this approximate identity can be chosen from C_{OO}⁺(G).

This theorem is an easy consequence of Lemma 4.3.

4.3. LEMMA. Let $f \in L^1(G)$, $\epsilon > 0$. There exists a neighborhood U of 1 with the following property. If $u \in L^1(G)$, $u \ge 0$, ||u|| = 1 and u = 0 off U, then $||u*f - f|| \le \epsilon$.

Proof. By Theorem 3.13 there is a neighborhood U of 1 such that $\|f_x - f\| \le \varepsilon$ for all $x \in U$. Now let $u \in L^1(G)$, $u \ge 0$, $\|u\| = 1$, u = 0 on $G \setminus U$. Then $\{u(x)dx = 1\}$ and

$$\|u * f - f\| = \| \| u(x) f(x^{-1}y) dx - f(y) \| dy =$$

$$= \| \| u(x) \| \| f(x^{-1}y) - f(y) \| dx \| dy.$$

By Exercise 3.F, G has a 5-compact open subgroup G_0 outside of which u=f=0. Now $(x,y) \longmapsto u(x)|f(x^{-1}y)-f(y)|$ is a measurable function on $G \times G$ that vanishes off $G_0 \times G_0$. By the Fubini Theorem 1.14 we obtain

$$\|\mathbf{u} \cdot \mathbf{f} - \mathbf{f}\| \leq \|\mathbf{u}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}^{-1} \mathbf{y}) - \mathbf{f}(\mathbf{y}) \cdot \mathbf{d} \mathbf{x} d\mathbf{y} =$$

$$= \|\mathbf{u}(\mathbf{x}) \cdot \mathbf{f}_{\mathbf{x}}(\mathbf{y}) - \mathbf{f}(\mathbf{y}) \cdot \mathbf{d} \mathbf{y} d\mathbf{x} =$$

$$= \|\mathbf{u}(\mathbf{x}) \cdot \mathbf{f}_{\mathbf{x}} - \mathbf{f} \cdot \mathbf{d} \mathbf{x} \leq (\|\mathbf{u}(\mathbf{x}) \cdot \mathbf{d} \mathbf{x}) \cdot \mathbf{sup} \|\mathbf{f}_{\mathbf{x}} - \mathbf{f} \| \leq \varepsilon.$$

$$\mathbf{x} \in \mathbf{U}$$

Proof of THEOREM 4.2. Let Λ be the set of all compact neighborhoods of 1. For each $V \in \Lambda$ choose $e_V \in C_{oo}^+(G)$ so that $e_V=0$ outside V and $\int e_V(x) dx=1$. For $V_1, V_2 \in \Lambda$ define $V_1 \prec V_2$ if $V_1 \supset V_2$. Thus, $\{e_V: V \in \Lambda\}$ is a net. From Lemma 4.3 it follows that $\lim_V e_V *f = f$; and also that $\lim_V e_V *f' = f'$, so that $\lim_V e_V = f$.

4.4. LEMMA. For all
$$\varphi \in L^1(G)^*$$
 we have
$$\varphi(f * g) = \int f(x) \varphi(g_x) dx \qquad (f,g \in L^1(G)).$$

Proof. Let $\varphi \in L^1(G)^$ and $\mathbf{f}, g \in L^1(G)$. Take a 6-compact open subgroup G_0 of G outside which f=g=0. Then \mathbf{f}_{G} m is a 6-finite measure on the Borel sets of G. From Theorem 0.10 it follows that there exists a bounded Borel function j such that

$$\varphi(h) = \int h j dm$$
 (h $\in L^1(G)$; h=0 off G_0).

Therefore,

$$\varphi(f*g) = \int (f*g) j dm$$

and

$$\varphi(g_x) = \int g_x j dm \quad (x \in G_o).$$

Applying the Fubini Theorem 1.14 to the function $(x,y) \longrightarrow f(x)g(x^{-1}y)j(y)$ (which vanishes outside $G_0 \times G_0$) we obtain

- $\varphi(f*g) = \iint f(x)g(x^{-1}y)j(y)dxdy =$ $= \iint f(x) \iint g(x^{-1}y)j(y)dydx = \iint f(x)\varphi(g_x)dx.$
- 4.B. EXERCISE. If $f,g \in C_{00}(G)$, then $f*g \in C_{00}(G)$, and supp $f*g \subset (\sup f)(\sup g)$.
 - 4.C. EXERCISE. If $\mu, \nu \in M(G)$ then $\int h \ d(\mu * \nu) = \iint h(xy) d\mu(x) d\nu(y)$
- for every bounded Borel measurable function h on G.

Hint. Use Exercise 1.B.

- 4.D. EXERCISE. For $\mu \in M(G)$ and $x \in G$ set $\mu_x := \delta_x * \mu$.
- (a) $\mu_{\mathbf{x}}(\mathbf{A}) = \mu(\mathbf{x}^{-1}\mathbf{A})$ ($\mu \in \mathbb{N}(\mathbf{G})$; $\mathbf{x} \in \mathbf{G}$; $\mathbf{A} \subset \mathbf{G}$ Borel).
- (b) $(fm)_x = f_x m$ $(f \in L^1(G); x \in G).$
- (c) For every x, $\mu \mapsto \mu_{x}$ is a surjective linear isometry M(G) \rightarrow M(G). For all x,y and μ , $\mu_{xy} = (\mu_{y})_{x}$.
 - (d) For $\mu \in M(G)$ the following are equivalent. 1) $\mu \in M_B(G)$.
 - 2) For all $\epsilon > 0$ there exists a neighborhood U of 1 such that $\| \mu_x \mu \| \le \epsilon$ (x ϵ U).
 - 3) $x \mapsto \mu_x \xrightarrow{is} \underline{a} \xrightarrow{continuous} \underline{map} G \longrightarrow M(G)$.
- 4.E. EXERCISE. If H is a closed subgroup of G that is of positive 6-finite (Haar) measure, then H is open in G.
- (Hint. Let U be a compact neighborhood of $1 \in G$. As H is contained in a 6-compact set (Exercise 3.F (d)), $0 < m(U \cap H) < \infty$. Put B:= $U \cap H$ and $f := \xi_B^* \xi_B^*$. Then $f(x) = \left(\xi_B(\xi_{B^{-1}})_x^{dm} \quad (x \in G)\right).$

f is continuous, $f(1)\neq 0$, and f vanishes off H.)

 $T_{\mu} : L^{1}(G) \longrightarrow L^{1}(G) \xrightarrow{\text{by}} T_{\mu}(f) := \mu * f.$

 $\underline{\text{We have}} \quad \underline{\text{T}}_{\mu*\nu} = \underline{\text{T}}_{\mu}\underline{\text{T}}_{\nu} \quad \underline{\text{and}} \quad \|\underline{\text{T}}_{\mu}\| = \|\mu\|.$

Hint for the last part: Let \$\&>0\$, choose $k \in C_{\infty}(G)$ so that $\|k\|=1$ and $\|\mu(k)\| \ge \|\mu\| - \epsilon$. The function $j: x \longmapsto \mu(k_x)$ is an element of $C_{\infty}(G)$ and $(\mu*f)(k) = \{fjdm \text{ for all } f \in L^1(G)\}$. Choose f so that $\|f\|=1$ and $\|f|=1$ and $\|f|=1$.

4.G. EXERCISE. If $L^1(G)$ is abelian, then G is abelian. Hint. Let a,b $\in G$. Show that $\delta_{ab}*f*g = \delta_{ba}*f*g$ for all $f,g \in L^1(G)$, and apply Exercise 4.F with $\mu = \delta_{ab} - \delta_{ba}$.