Lineare Algebra 1 Hausaufgabenblatt Nr. 6

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 7, 2023)

Problem 1. Entscheiden Sie, welche der folgenden Abbildungen linear sind.

(a)
$$f: \mathbb{R}^2 \to \mathbb{R} (x, y) \to x \cdot y$$

(b)
$$g: \mathbb{R}^2 \to \mathbb{R} \ (x,y) \to x+y$$

(c)
$$h: \mathbb{Q}[t] \to \mathbb{Q}[t] \ p(t) \to p(t^2)$$

(d)
$$k: \mathbb{Q} \to \mathbb{Q}$$
 mit $k(t) = t + 2$

(e)
$$l: \mathbb{C} \to \mathbb{C}$$
 mit $l(z) = \overline{z}$ mit \mathbb{C} als \mathbb{R} -Vektorraum

(f) *l*, aber mit ℂ als ℂ-Vektorraum

Proof. (a) Nein.
$$f((1,1)) = 1 \cdot 1 = 1$$
, aber $f(2(1,1)) = f((2,2)) = 2 \cdot 2 = 4 \neq 2(1)$.

(b) Ja. Sei $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. Es gilt

$$f((x_1, x_2) + (y_1, y_2)) = f((x_1 + y_1, x_2 + y_2))$$

$$= (x_1 + y_1) + (x_2 + y_2)$$

$$= (x_1 + x_2) + (y_1 + y_2)$$

$$= f((x_1, x_2)) + f((y_1, y_2))$$

Sei außerdem $\lambda \in \mathbb{R}$. Es gilt

$$f(\lambda(x_1, x_2)) = f((\lambda x_1, \lambda x_2))$$

$$= \lambda x_1 + \lambda x_2$$

$$= \lambda (x_1 + x_2)$$

$$= \lambda f((x_1, x_2))$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(c) Ja. Sei $p, q \in Q[t]$, $p = p_0 + p_1 t + p_2 t^2 + \dots + p_n t^n$ und $q = q_0 + q_1 t + q_2 t^2 + \dots + q_n t^n$. Es gilt

$$h(p(t)) = p_0 + p_1 t^2 + p_2 t^4 + \dots + p_n t^{2n}$$

$$h(q(t)) = q_0 + q_1 t^2 + q_2 t^4 + \dots + q_n t^{2n}$$

$$h(p(t)) + h(q(t)) = (p_0 + q_0) + (p_1 + q_1) t^2 + \dots + (p_n + q_n) t^{2n}$$

$$= h(p+q)$$

Sei außerdem $\lambda \in \mathbb{Q}$. Es gilt

$$h(\lambda p(t)) = \lambda p_0 + \lambda p_1 t^2 + \lambda p_2 t^4 + \dots + \lambda p_n t^{2n}$$
$$= \lambda \left(p_0 + p_1 t^2 + \dots + p_n t^{2n} \right)$$
$$= \lambda h(p(t))$$

- (d) Nein. Es gilt k(2) = 4, aber $k(2 \cdot 2) = k(4) = 6 \neq 2k(2) = 8$.
- (e) Ja. Sei $z_1, z_2 \in \mathbb{C}$, Es gilt $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$.

Sei außerdem $\lambda \in \mathbb{R}$. Es gilt dann

$$\overline{\lambda z_1} = \overline{\lambda} \overline{z}_1 = \lambda \overline{z}_1.$$

(f) Nein. Die erste Eigenschaft bleibt wie in (e), aber die zweite nicht. Sei $\lambda \in \mathbb{C}$. Es gilt

$$\overline{\lambda z_1} = \overline{\lambda} \overline{z}_1 \neq \lambda \overline{z_1}$$

solange $\lambda \notin \mathbb{R}$. Sei z.B. $\lambda = i$, $z_1 = i$. Dann gilt $\lambda z_1 = -1$ und $\overline{\lambda z_1} = -1$. Das ist aber ungleich $\lambda \overline{z}_1 = i(\overline{i}) = i(-i) = 1$.

Problem 2. Entscheiden Sie, welche der folgenden linearen Abbildungen injektiv, surjektiv bzw. bijektiv sind.

(a)
$$\mathbb{R}^3 \to \mathbb{R}^2$$
, $x \to Ax$ mit

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 42 & 0 \end{pmatrix}.$$

(b)
$$\mathbb{R}^3 \to \mathbb{R}^3$$
, $x \to Ax$ mit

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 42 & 0 \\ 4 & 3 & 2 \end{pmatrix}.$$

- (c) $\mathbb{Q}[t] \to \mathbb{Q}[t], p(t) \to p'(t)$
- (d) $\mathbb{C}^2 \to \mathbb{C}^2$ mit $(z, w) \to (z + w, z \overline{w})$, wobei wir \mathbb{C}^2 als \mathbb{R} -Vektorraum auffassen.
- (e) $\operatorname{End}_{\mathbb{R}}(\mathbb{C}) \to \operatorname{End}_{\mathbb{R}} \operatorname{mit} f \to \operatorname{Re}(f|_{\mathbb{R}}) + \operatorname{Im}(f|_{\mathbb{R}})$, wobei $f|_{\mathbb{R}} : \mathbb{R} \to \mathbb{R} \operatorname{mit} f|_{\mathbb{R}}(x) : + f(x)$ für $x \in \mathbb{R}$ und Re bzw. Im den Real bzw. Imaginärteil bezeichnen.

Proof. (a) Nicht injektiv, weil die Spalten nicht linear unabhängig sind. Insbesondere gilt

$$A \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} = A \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 15 \\ 0 \end{pmatrix}.$$

Es ist surjektiv, weil die erste zwei Spalten eine Basis sind.

(b)

$$\begin{pmatrix} 3 & 4 & 5 \\ 0 & 42 & 0 \\ 4 & 3 & 2 \end{pmatrix} \xrightarrow{R_1 \times \frac{1}{3}} \begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} \\ 0 & 42 & 0 \\ 4 & 3 & 2 \end{pmatrix} \xrightarrow{R_3 - 4R_1}$$

$$\begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} \\ 0 & 42 & 0 \\ 0 & -\frac{7}{3} & -\frac{14}{3} \end{pmatrix} \xrightarrow{R_3 \times 18} \begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} \\ 0 & 42 & 0 \\ 0 & -42 & -84 \end{pmatrix} \xrightarrow{R_3 + R_2} \begin{pmatrix} 1 & \frac{4}{3} & \frac{5}{3} \\ 0 & 42 & 0 \\ 0 & 0 & -84 \end{pmatrix}$$

also es ist injektiv und surjektiv, daher bijektiv.

- (c) Nicht injektiv. Sei p=x+1 und q=x+2. Dann ist p'=q'=1, aber $p\neq q$. Es ist aber surjektiv. Sei $\mathbb{Q}[t]\ni p=a_0+a_1t+a_2t^2+\cdots+a_nt^n$. Dann ist $q=a_0t+\frac{a_1}{2}t^2+\frac{a_2}{3}t^3+\cdots+\frac{a_n}{n+1}t^{n+1}$ ein Polynom, dessen Bild p ist.
- (d) Es ist injektiv. Sei $(z_1, w_1), (z_2, w_2) \in \mathbb{C}^2$ mit

$$(z_1 + w_1, z_1 - \overline{w}_1) = (z_2 + w_2, z_2 - \overline{w}_2).$$

Wir trennen es in zwei Gleichungen:

$$z_1 + w_1 = z_2 + w_2$$

$$z_1 - \overline{w}_1 = z_2 - \overline{w}_2$$

Wir subtrahtieren die zwei Gleichungen. Daraus folgt: $w_1 + \overline{w}_1 = w_2 + \overline{w}_2$. Dies zeigt, dass das Realteil für w_1 und daher z_1 gleich sein muss. Dann additieren wir die zwei Gleichungen:

$$2z_1 + (w_1 - \overline{w}_1) = 2z_2 + (w_2 - \overline{w}_2).$$

Weil $w_1 - \overline{w_1} = 2 \operatorname{Im}(w_1) \in \mathbb{R}$, müssen das Imaginärteil für die beide auch gleich sein. Dann ist $z_1 = z_2, w_1 = w_2$.

Es ist auch surjektiv. Sei $(z_3, w_3) \in \mathbb{C}^2$. Es ist zu zeigen, dass es (z_1, w_1) gibt, so dass

$$(z_1+w_1,z_1-\overline{w}_1)=(z_3,w_3),$$

also

$$z_1 + w_1 = z_3$$

Problem 3. Geben Sie je eine lineare Abbildung mit den folgenden Eigenschaften an. Sie müssen Ihre Aussagen ausnahmsweise nicht beweisen.

- (a) $L_1: \mathbb{R}^2 \to \mathbb{R}$ mit L(x) = x nur für x = (0,0).
- (b) $L_2: \mathbb{R}^3 \to \mathbb{R}^2$, sodass $L_2((1,1,1)) = L_2((1,1,0))$.
- (c) $L_3: \mathbb{Q}[t] \to \mathbb{Q}[t]$, sodass $\deg(L_3(p(t))) \ge 3\deg(p(t))$ für alle $p \in \mathbb{Q}[t]$.
- (d) $L_3:V\to V$, die injektiv, aber nicht surjektiv ist, für einen Q-Vektorraum Ihrer Wahl.
- (e) $L_5: (\mathbb{Z}/3\mathbb{Z})^2 \to (\mathbb{Z}/3\mathbb{Z})^2$, sodass es genau drei verschiedene Elemente $x, y, z \in (\mathbb{Z}/3\mathbb{Z})^2$ mit $L_5(x) = L_5(y) = L_5(z) = (1,0)$ gibt.

Proof. (a)
$$L_1((x,y)) = (2x,2y)$$
 ist linear, aber $L(x) = x$ nur für $x = (0,0)$.

(b) Projektor: $L_2((x, y, z)) = (x, y)$.

- (c) $p(t) \rightarrow p(t^3)$ (wie in 1)
- (d) Für Q als Q-Vektorraum: $L_4(q) = 2q$.

Problem 4. Die folgenden linearen Abbildungen können jeweils auch in der Form $x \to Ax$ mit einer Matrix A geschrieben werden. Bestimmen Sie für jede der Abbildungen eine geeignete Matrix.

(a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \to \begin{pmatrix} a+b \\ b-c \end{pmatrix}.$$

(b) $g: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x+y \\ x-y \\ x+y \end{pmatrix}.$$

- (c) $f \circ g$.
- (d) $g \circ f$.

Proof. (a)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

Wir verifizieren es:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a+b \\ b-c \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Noch einmal können wir direkt verifizieren:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \\ x+y \end{pmatrix}.$$

(c) Die Matrixdarstellung ist nur das Produkt:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix}.$$

(d) Noch einmal:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

Problem 5. Wir betrachten die Abbildung $S_n: \mathbb{Q}[t]_{\leq n} \to \mathbb{Q}[t]_{\leq n}$ mit $p(t) \to p'(t) + \tilde{p}(0)t^n$.

- (a) Beweisen Sie: S_n ist für jedes $n \in \mathbb{N}$ linear.
- (b) Untersuchen Sie S_n auf Injektivität, Surjektivität und Bijektivität.
- (c) Beweisen Sie: $S_n^k(t^k) = k!$ und $S_n^{n-k}(t^n) = n!/k!t^k$ für k = 0, ..., n.
- (d) Folgern Sie: $S_n^{n+1}(p(t)) = n!p(t)$ für alle $n \in \mathbb{N}$, $p(t) \in \mathbb{Q}[t]_{\leq n}$.

Proof. (a) Sei $q, p \in \mathbb{Q}[t]_{\leq n}$. Es gilt

$$S_{n}(q+p) = (q+p)'(t) + \widetilde{q+p}(0)t^{n}$$

$$= q'(t) + p'(t) + \widetilde{q}(0)t^{n} + \widetilde{p}(0)t^{n}$$

$$= (q'(t) + \widetilde{q}(0)t^{n}) + (p'(t) + \widetilde{p}(0)t^{n})$$

$$= S_{n}(q) + S_{n}(p).$$

Sei außerdem $\lambda \in \mathbb{Q}$. Es gilt

$$S_n(\lambda q) = (\lambda q)'(t) + \widetilde{\lambda q}(0)t^n$$

7

$$=\lambda q'(t) + \lambda \tilde{q}(0)t^{n}$$

$$=\lambda \left(q'(t) + \tilde{q}(0)t^{n}\right)$$

$$=\lambda S_{n}(q)$$

(b) ...