Operating Manual

OM WGZC-1

Group: Chiller

Part Number: **331975301**

Effective: June 2009
Supercedes: OM WGZC

Water-Cooled Scroll Compressor Chillers

WGZ 030CW To WGZ 200CW, Packaged Water-Cooled Chiller WGZ 030CA To WGZ 200CA, Chiller with Remote Condenser 30 to 200 Tons, 105 to 700 kW

Software Version WGZD20102E

Table of Contents

Introduction	3
General Description	3
Nomenclature	
Water Pressure Drop	3
Operating Limits	
Components	
Unit Configuration	7
Field Wiring Diagrams	8
Control Panel Layout	10
Motor Protection Module	. 10
Start-Up and Shutdown	11
Sequence of Operation	14
Start-up/Compressor Staging	
MicroTech II Controller	18
Controller Software Version	18
General Description	
Expansion I/O Controller	
Setpoints	

Automatic Adjusted Limits	. 24
Dynamic Defaults	. 25
Events & Alarms	25
Unit Stop Alarms	. 25
Limit Events	. 30
Controller Operation	33
EXV Control	
Using the Controller	55
Menu Screens	. 57
Menu Descriptions	. 58
BAS Interface	. 77
Optional Controls	79
Phase/Voltage Monitor (Optional)	. 79
Hot Gas Bypass (Optional)	. 79
Troubleshooting Chart	. 80
Warranty Statement	81

Manufactured in an ISO Certified facility

©2007 McQuay International. Illustrations and data cover the McQuay International product at the time of publication and we reserve the right to make changes in design and construction at anytime without notice. TM® The following are trademarks or registered trademarks of their respective companies: BACnet from ASHRAE; LONMARK, LonTalk, LONWORKS, and the LONMARK logo are managed, granted and used by LONMARK International under a license granted by Echelon Corporation; Compliant Scroll from Copeland Corporation; Modbus from Schneider Electric; FanTrol, MicroTech II, Open Choices, and SpeedTrol from McQuay International

Introduction

General Description

McQuay Type WGZ water chillers are designed for indoor installations and are available with water-cooled condensers (Model CW), or arranged for use with remote air-cooled or evaporative condensers (Model CA). Each water-cooled unit is completely assembled and factory wired before evacuation, charging and testing. They consist of hermetic scroll compressors, brazed-plate evaporator, water-cooled condenser (WGZ-CW), and complete refrigerant piping.

Units manufactured for use with remote condensers (Models WGZ-CA) have all refrigerant specialties factory-mounted and connection points for refrigerant discharge and liquid lines.

Liquid line components that are included are manual liquid line shutoff valves, charging valves, filter-driers, liquid line solenoid valves, sight glass/moisture indicators, and thermal expansion valves. Other features include compressor crankcase heaters, and a MicroTech II™ microprocessor controller.

The electrical control center includes all equipment protection and operating controls necessary for dependable automatic operation.

NOTE: This manual contains information on the chiller unit control software operating with various refrigerant as follows:

- R-410A, used with the current "C" vintage of the WGZ chiller.
- R-22 and R-407C, used with older "A" and "B:" vintage chillers. A replacement controller in one of these units would be loaded with this software version.
- R-134a, used with only with Model TGZ Templfiers. The operating manual devoted exclusively to Templifiers is OMM TGZ-1.

BOOT & BIOS

BOOT Version: 3.0F BIOS Version 3.56

Manuals: Information in unit initial installation and routine maintenance is contained in Installation and Maintenance Manual IMM WGZC.

Water flow rates should be maintained as closely as possible to job design values. The vessel flow rates must fall between the minimum and maximum values shown on the appropriate evaporator and condenser curves.

Measure the water pressure drop through the vessels at field-installed pressure taps and check the flow rate using the following tables. Do not include valves or strainers in these readings.

The evaporator flow rates and pressure drops shown on the following page are for full load design purposes. The maximum flow rate and pressure drop are based on a 6-degree temperature drop. Avoid higher flow rates with resulting lower temperature drops to prevent potential control problems resulting from very small control bands and limited start up/shut off temperature changes.

The minimum flow and pressure drop is based on a full load evaporator temperature drop of 16-degrees.

Figure 1, Evaporator Pressure Drop, WGZ 030C - WGZ 200C

Flow Rate (GPM)

			Minimu	m Flow			Nomina	l Flow			Maxim	um Flow	
WGZ-C Model	Ref #	Inch-F	Pound	9	S.I.	Inch-F	Pound	9	S.I.	Inch-P	ound	S	.l.
		GPM	Ft.	L/S	kPa	GPM	Ft.	L/S	kPa	GPM	Ft.	L/S	kPa
WGZ030C	Α	45	4.7	2.8	14.1	72	11	4.5	32.9	120	27.6	7.6	82.4
WGZ035C	В	51.9	4.9	3.3	14.6	83	11.4	5.2	34	138.3	28.5	8.7	85.4
WGZ040C	С	61.1	5.1	3.9	15.2	97.8	11.8	6.2	35.4	163	29.7	10.3	88.8
WGZ045C	D	68.2	5.2	4.3	15.5	109.1	12.1	6.9	36.1	181.8	30.2	11.5	90.4
WGZ050C	E	76.7	5.8	4.8	17.2	122.6	13.4	7.7	40.1	204.4	33.6	12.9	100.6
WGZ055C	F	84.6	6.1	5.3	18.1	135.4	14.1	8.5	42.2	225.6	35.4	14.2	105.9
WGZ060C	G	90.8	6.6	5.7	19.7	145.2	15.6	9.2	46.5	242	39.2	15.3	117.1
WGZ070C	Н	106.3	3.7	6.7	10.9	170	8.6	10.7	25.6	283.4	21.2	17.9	63.3
WGZ080C	- 1	117.5	4.3	7.4	12.8	187.9	10	11.9	29.9	313.2	25	19.8	74.9
WGZ090C	J	132.1	4.5	8.3	13.3	211.3	10.5	13.3	31.3	352.1	26.1	22.2	78.1
WGZ100C	K	146.6	4.9	9.3	14.6	234.6	11.4	14.8	34.1	391.1	28.7	24.7	85.8
WGZ115C	L	169.3	4.5	10.7	13.5	270.9	10.5	17.1	31.4	451.5	26.4	28.5	78.9
WGZ130C	М	188.1	4.2	11.9	12.6	301	9.8	19	29.5	501.6	24.7	31.6	73.9
WGZ150C	N	219.9	5	13.9	14.9	351.8	12.8	22.2	38.3	586.4	35.5	37	106.1
WGZ170C	0	254	7.2	16	21.5	406.3	18.5	25.6	55.3	677.2	51.4	42.7	153.6
WGZ200C	Р	282.2	8.6	17.8	25.7	451.4	22	28.5	65.8	752.4	61	47.5	182.3

Notes: Minimum, nominal, and maximum flows are at a 16° F, 10° F, and 6° F chilled water temperature range respectively at ARI tons.

Figure 2, Condenser Pressure Drop, WGZ 030C - WGZ 200C

	Min. Flow & PD			N	om. Flov	w & PD		ı	Max. Flo	w & PD				
Unit Model	Ref #	IP		SI		IP	IP		SI		IP		SI	
		GPM	Ft.	L/S	kPa	GPM	Ft.	L/S	kPa	GPM	Ft.	L/S	kPa	
WGZ030C	Α	56.1	2.4	3.5	7.2	89.7	6.3	5.7	18.8	149.5	17.4	9.4	52.0	
WGZ035C	В	64.9	3.4	4.1	10.2	103.8	8.6	6.5	25.7	173.0	23.9	10.9	71.4	
WGZ040C	С	76.3	2.7	4.8	8.1	122.1	6.9	7.7	20.6	203.5	19.3	12.8	57.7	
WGZ045C	D	85.3	3.6	5.4	10.8	136.5	9.2	8.6	27.5	227.5	25.7	14.4	76.8	
WGZ050C	Е	96.4	2.9	6.1	8.7	154.2	7.5	9.7	22.4	257.0	20.7	16.2	61.9	
WGZ055C	F	105.8	3.8	6.7	11.4	169.2	9.7	10.7	29.0	282.0	26.8	17.8	80.1	
WGZ060C	G	113.4	4.5	7.2	13.5	181.5	11.6	11.5	34.7	302.5	32.3	19.1	96.5	
WGZ070C	Н	132.8	4.1	8.4	12.3	212.4	10.4	13.4	31.1	354.0	29.0	22.3	86.7	
WGZ080C	ı	146.8	3.7	9.3	11.1	234.9	9.5	14.8	28.4	391.5	26.5	24.7	79.2	
WGZ090C	J	165.0	3.4	10.4	10.2	264	8.8	16.7	26.3	440.0	24.5	27.8	73.2	
WGZ100C	K	183.4	3.4	11.6	10.2	293.4	8.8	18.5	26.3	489.0	24.4	30.9	72.9	
WGZ115C	L	211.7	4.8	13.4	14.3	338.7	12.3	21.4	36.8	564.5	34.1	35.6	101.9	
WGZ130C	М	235.1	6.1	14.8	18.2	376.2	15.5	23.7	46.3	627.0	43.1	39.6	128.8	
WGZ150C	N	274.9	6.2	17.3	18.5	439.8	15.8	27.7	47.2	733.0	43.8	46.2	130.9	
WGZ170C	0	317.4	5.5	20.0	16.4	507.9	14.0	32.0	41.8	846.5	38.9	53.4	116.3	
WGZ200C	Р	352.7	7.4	22.3	22.1	564.3	18.8	35.6	56.2	940.5	52.3	59.3	156.3	

Operating Limits

- Maximum allowable condenser water pressure is 232 psig (1599 kPa).
- Maximum allowable cooler water pressure is 653 psi (4500 kPa) for models 030 through 130 and 150 psig (2509 kPa) for models 150 through 200.
- Maximum design saturated discharge temperature is 140°F (60°C).
- Maximum allowable water temperature to cooler in a non-operating cycle is 100°F (37.8°C). Maximum entering water temperature for operating cycle is 90°F (32.2°C) (during system changeover from heating to cooling cycle).
- Minimum leaving water temperature from the cooler without freeze protection is 40°F (4.4°C).
- Minimum entering tower condenser water temperature is 60°F (15.6°C).

Components

Figure 3, Compressor Locations

NOTE: Models WGZ 150 to 200 add a #5 compressor to circuit #1 and a #6 compressor to circuit #2.

Table 1, Major Components

WGZ-C	Syste	em #1	Syste	em #2	Evap. Vessel	Cond. Vessel	Expansi	on Valve
Unit Size	Comp. #1 Comp.		Comp. #2 Comp. #4		Size	Size	System #1	System #2
30	ZP90KCE	ZP90KCE	ZP90KCE	ZP90KCE	ACH130-90DQ	C1010-47	OZE-20-GA-BP15	OZE-20-GA-BP15
35	ZP103KCE	ZP103KCE	ZP103KCE	ZP103KCE	ACH130-102DQ	C1010-47	OZE-20-GA-BP15	OZE-20-GA-BP15
40	ZP120KCE	ZP120KCE	ZP120KCE	ZP120KCE	ACH130118DQ	C1010-57	OZE-20-GA-BP15	OZE-20-GA-BP15
45	ZP137KCE	ZP137KCE	ZP137KCE	ZP137KCE	ACH130-138DQ	C1010-57	OZE-25-GA-BP15	OZE-25-GA-BP15
50	ZP154KCE	ZP154KCE	ZP154KCE	ZP154KCE	ACH130-158DQ	C1010-70	OZE-25-GA-BP15	OZE-25-GA-BP15
55	ZP154KCE	ZP154KCE	ZP182KCE	ZP182KCE	ACH130-178DQ	C1010-70	OZE-25-GA-BP15	OZE-35-GA-BP15
60	ZP182KCE	ZP182KCE	ZP182KCE	ZP182KCE	ACH130-198DQ	C1010-70	OZE-35-GA-BP15	OZE-35-GA-BP15
70	ZP182KCE	ZP235KCE	ZP182KCE	ZP235KCE	ACH250-122DQ	C1410-88	OZE-35-GA-BP15	OZE-35-GA-BP15
80	ZP235KCE	ZP235KCE	ZP235KCE	ZP235KCE	ACH350-126DQ	C1410-98	OZE-50-GA-BP15	OZE-50-GA-BP15
90	ZP235KCE	ZP235KCE	ZP295KCE	ZP295KCE	ACH350-142DQ	C1410-113	OZE-50-GA-BP15	OZE-50-GA-BP15
100	ZP295KCE	ZP295KCE	ZP295KCE	ZP295KCE	ACH350-152DQ	C1410-128	OZE-50-GA-BP15	OZE-50-GA-BP15
115	ZP295KCE	ZP385KCE	ZP295KCE	ZP385KCE	ACH350-182DQ	C1410-128	OZE-60-GA-BP15	OZE-60-GA-BP15
130	ZP385KCE	ZP385KCE	ZP385KCE	ZP385KCE	ACH350-210DQ	C1410-128	OZE-60-GA-BP15	OZE-60-GA-BP15
150	(3) ZP2	95KCE	(3) ZP2	95KCE	EV34191111/9NS	C1612-156	SEHI100-30-S	SEHI100-30-S
170	(3) ZP2	95KCE	(3) ZP3	85KCE	EV34191212/7NS	C1612-186	SEHI100-30-S	SEHI100-30-S
200	(3) ZP385KCE		(3) ZP3	85KCE	EV34191212/7NS	C1612-186	SEHI100-30-S	SEHI100-30-S

Unit Configuration

The chiller units have two refrigerant circuits, Models 030 to 130 have two tandem scroll compressors (total of four), a single two-circuited brazed plate evaporator, a single two-circuited water-cooled condenser, interconnecting refrigerant piping and a control panel with associated sensors and transducers.

Models 150 to 200 have two refrigerant circuits, two trio scroll compressors (total of six), a single two-circuited shell-and-tube evaporator, a single two-circuited water-cooled condenser, interconnecting refrigerant piping and a control panel with associated sensors and transducers.

Chilled Evaporator Water Comp Comp #2 Condenser Condenser Water (S) F-D Legend: Temperature Sensor Relief Valve Pressure Transducer Schrader Fitting Pressure (High Pressure Cutout) Thermal Expansion Valve Temperataure Sensor, Leaving Sight Glass / Moisture Indicator Chilled Water Control Charging Valve Solenoid Valve Angle Valve Ball Valve Filter-Drier

Figure 4, Schematic Piping Diagram (One of Two Circuits)

NOTE: WGZ 150 to 200 have a shell-and-tube evaporator, three compressors per circuit, and electronic expansion valves.

Field Wiring Diagrams

Figure 5, WGZ 030CW - 300CW Field Wiring Diagram

DISCONNECT UNIT MAIN
(BY OTHERS) TERMINAL BLOCK | GND LUG 3 PHASE TO COMPRESSOR(S) FUSED CONTROL CIRCUIT TRANSFORMER 120 VAC DISCONNECT (BY OTHERS) TB1-20 **Ø** FIELD TB1 SUPPLIED 120VAC CONTROL CONTROL POWER (BY OTHERS) Ø₂ FUSE 120 VAC Ø₁₁ CHW PUMP RELAY (BY OTHERS) 120 VAC 1.0 AMP MAX Ø___ FACTORY SUPPLIED ALARM FIELD WIRED ALARM BELL 120 VF Ø<u>−</u> 120VAC Ø₁₅ GND TB2 REMOTE STOP SWITCH <u>=</u> IF REMOTE STOP CONTROL IS USED, REMOVE LEAD 897 FROM TERM 40 TO 53. (BY OTHERS) MANUAL AUTO OFF Ø 53 ICE MODE SWITCH -Ø₄₂ IF ICE MODE IS USED 900 REMOVE LEAD FROM TERM 42 TO 55. (BY OTHERS) MANUAL -Ø___ CHW FLOW SWITCH --MANDATORY--(BY OTHERS) CONTROLLER -ø₃₃ J11 Rx-/Tx- Ø--Ø₄₃ *COMMUNICATION PORT Rx+/Tx+Ø-_2 -Ø₃₈ GND Ø--Ø 48 -Ø₄₉ -Ø₃₈ 4-20 MA FOR DEMAND LIMIT (BY OTHERS) GND -Ø₅₀ Θ Ø₅₁ Ţ GND TB3 Ø₆₂ - 24 VAC Ø 65 Ν LIQUID LINE #1 SOLENOID 24 VAC AMP MAX Ø₆₃ LIQUID LINE #2 SOLENOID 24 VAC AMP MA - N Ø 65 -Ø₆₇ _ 24 VAC HOT GAS BYPASS #1 SOLENOID 24 VAC AMP MAX Ø₇₀ Ν OPTIONAL -Ø₆₈ 24 VAC HOT GAS BYPASS #2 SOLENOID 24 VAC AMP MAX Ø₇₀ CONTROLLER J15-N08 FAN MOTOR #1 COIL (BY OTHERS) 120 VAC 1.0 AMP MAX - N TB1-12 120 VAC __**@**___ J16-N09 FAN MOTOR #2 COIL (BY OTHERS)
120 VAC 1.0 AMP MAX - 120 VAC J16-N010 FAN MOTOR #3 COIL (BY OTHERS) 120 VAC 1.0 AMP MAX - 120 VAC ___**@**____ J16-N011 FAN MOTOR #4 COIL (BY OTHERS) _ 120 VAC ___**@** J18-N013 FAN MOTOR #5 COIL (BY OTHERS)
120 VAC 1.0 AMP MAX NOTE: CONDENSER FAN MOTORS CAN ALSO BE CONTROLLED BY PRESSURE SWITCHES - 120 VAC __@ J22-N01€ FAN MOTOR #6 COIL (BY OTHERS) ON THE CONDENSER. **■** 120 VAC ___@___ J22-N01 FAN MOTOR #7 COIL (BY OTHERS 120 VAC 1.0 AMP MAX **■** 120 VAC ___<u>Ø</u> J22-<u>N</u>018 FAN MOTOR #8 COIL (BY OTHERS) 330259001-R4 120 VAC 1.0 AMP MAX

Figure 6, WGZ 030CA - 200CA Field Wiring Diagram (Remote Condenser)

Control Panel Layout

Table 2, Typical Control Panel, 4-Compressor Unit

NOTES:

- 1. Additional space provided in the upper right section for extra components required for optional multiple point power connection and optional circuit breakers.
- 2. Front door has opening on top for access to the MicroTech II controller for viewing display and making keypad entries without opening the panel door.

Motor Protection Module

The motor protection system consists of an external control module, located on each compressor, connected to a series of thermistors located in the motor windings and the compressor discharge port. If the windings experience an over-temperature condition or the discharge temperature is excessive, the module will trip and shut off the compressor for a 30-minute time delay.

Start-Up and Shutdown

Pre Start-up

- 1. The chilled-water system should be flushed and cleaned. Proper water treatment is required to prevent corrosion and organic growth.
- 2. With main disconnect open, check all electrical connections in control panel and starter to be sure they are tight and provide good electrical contact. Although connections are tightened at the factory, they can loosen enough in shipment to cause a malfunction.
- 3. Check and inspect all water piping. Make sure flow direction is correct and piping is made to correct connection on evaporator and condenser.
- 4. Open all water flow valves to the condenser and evaporator.
- 5. Flush the cooling tower and system piping to be sure the system is clean. Start evaporator pump and manually start condenser pump and cooling tower. Check all piping for leaks. Vent the air from the evaporator and condenser water circuit, as well as from the entire water system. The cooler circuit should contain clean, treated, non-corrosive water.
- 6. Check to see that the evaporator water thermostat sensor is securely installed.
- 7. Making sure control stop switch S1 is open (off) and pumpdown switches PS1 and PS2 are on "manual pumpdown," place the main power and control disconnect switches to "on." This will energize the crankcase heaters. Wait a minimum of 12 hours before starting the unit.
- 8. Check compressor oil level. Prior to start-up, the oil level should cover at least one-third of the oil sight glass located in the equalizing line between the compressors or on the compressor.
- 9. Note the water pressure drop across evaporator and condenser on pages **Error! Bookmark not defined.** and **Error! Bookmark not defined.** and check that water flow is correct per the system design flow rates.
- 10. Check the actual line voltage to the unit to make sure it is the same as called for on the compressor nameplate, within + 10%, and that phase voltage unbalance does not exceed 3%. Verify that adequate power supply and capacity is available to handle load.
- 11. Make sure all wiring and fuses are of the proper size. Also make sure that all interlock wiring is completed per McQuay diagrams.
- 12. Verify that all mechanical and electrical inspections by code authorities have been completed.
- 13. Make sure all auxiliary load and control equipment is operative and that an adequate cooling load is available for initial start-up.

Start-up

- 1. Open the compressor discharge shutoff valves until backseated. Always replace valve seal caps.
- 2. Open the two manual liquid line shutoff valves.
- 3. Check to see that the unit circuit breakers are in the "off" position.
- 4. Check to see that the pumpdown switches, PS1 and PS2, are in the "manual pumpdown" position and the control system switch S1 is in the "off" position.

- 5. Put the main power and control circuit disconnects to the "on" position.
- 6. Verify crankcase heaters have operated for at least 12 hours prior to start-up. Crankcase should be warm to the touch.
- 7. Check that the MicroTech II controller is set to the desired chilled water temperature.
- 8. Start the system auxiliary equipment for the installation by turning on the time clock, ambient thermostat and/or remote on/off switch and water pumps.
- 9. Check resets of all equipment protection controls.
- 10. Switch on the unit circuit breakers.
- 11. Set pumpdown switches PS1 and PS2 to "auto" for restart and normal operation.
- 12. Start the system by setting the system switch S1 to on.
- 13. After running the unit for a short time, check the oil level in each compressor crankcase, rotation of condenser fans (if any), and check for flashing in the refrigerant sight glass.
- 14. After system performance has stabilized, it is necessary that the "Compressorized Equipment Warranty Form" (Form No. 206036A) be completed to establish commencement of the warranty period. Be sure to list the pressure drop across both vessels. This form is shipped with the unit and after completion should be returned to the McQuayService Department through your sales representative.

Weekend or Temporary Shutdown

Move pumpdown switches PS1 and PS2 to the "manual pumpdown" position. *After* the compressors have pumped down, turn off the chilled water pump. Note: With the unit in this condition, it will not restart until these switches are turned back on. The unit has one-time pumpdown. It is important that the compressors pump down before the water flow to the unit is interrupted to avoid freeze-up in the evaporator.

Leave S1 on and power to the unit so that the crankcase heaters will remain energized.

Start-up after Temporary Shutdown

- 1. Start the water pumps.
- 2. With the control system switch S1 in the "on" position, move the pumpdown switches PS1 and PS2 to the "auto pumpdown" position.
- 3. Observe the unit operation for a short time, noting unusual sounds or possible cycling of compressors.
- 4. Check compressor crankcase heaters.

Extended Shutdown

Close the manual liquid line shutoff valves.

After the compressors have pumped down, turn off the water pumps.

Turn off all power to the unit.

Move the control service switch S1 to the "off" position.

Close the discharge shutoff valves on the compressor(s) and the liquid outlet valves at the condenser.

Tag all opened disconnect switches to warn against start-up before opening the compressor suction and discharge valves.

Drain all water from the unit evaporator, condenser, and chilled water piping if the unit is to be shut down during the winter and exposed to below freezing temperatures. Do not leave the vessels or piping open to the atmosphere over the shutdown period.

Start-up after Extended Shutdown

- 1. Inspect all equipment to see that it is in satisfactory operating condition.
- 2. Remove all debris that has collected on the surface of the condenser coils (remote condenser models) or check the cooling tower, if present.
- 3. Backseat the compressor discharge valves. Always replace valve seal caps.
- 4. Open the manual liquid line shutoff valves.
- 5. Check circuit breakers. They must be in the "off" position.
- 6. Check to see that the pumpdown switches PS1 and PS2 are in the "manual shutdown" position and the control system switch S1 is in the "off" position.
- 7. Put the main power and control circuit disconnects to the "on" position.
- 8. Allow the crankcase heaters to operate for at least 12 hours prior to start-up.
- 9. Start the chilled water pump and purge the water piping as well as the evaporator in the unit.
- 10. Start the system auxiliary equipment for the installation by turning on the time clock, ambient thermostat and/or remote on/off switch.
- 11. Check that the MicroTech II controller is set to the desired chilled water temperature.
- 12. Check resets of all equipment protection controls.
- 13. Switch the unit circuit breakers to "on."
- 14. Start the system by setting the system switch S1 to "on."

△ CAUTION

Most relays and terminals in the control center are powered when S1 is closed and the control circuit disconnect is on. Therefore, do not close S1 until ready for start-up or serious equipment damage can occur.

- 15. Set pumpdown switches PS1 and PS2 to the "auto pumpdown" position for restart and normal operation.
- 16. After running the unit for a short time, check the oil level in the compressor oil sight glass or in the compressor's equalizing lines for flashing, indicating possible refrigerant in the oil.

Low Ambient Start

The low ambient start logic is for starting units with remote air-cooled condensers during periods of low ambient air temperatures.

A low ambient start takes place if the saturated condenser temperature is less than 85.0°F when the first compressor starts. The low ambient start is active for a time defined by the Low OAT Start Timer set point. This set point is found on screen three in the alarm set points menus.

During the low ambient start, the freezestat logic for the low-pressure stop alarm and the low-pressure events are disabled. The low-pressure stop alarm can still be triggered if the evaporator pressure drops below 5.0 psi at any time while the circuit is in the 'Run' state. Also, during the low ambient start, the second compressor is not allowed to start. The evaporator pressure is checked at the end of the low ambient start time frame. If the pressure is less than the Low Pressure Unload set point, then the low ambient start is not successful and the compressor will shut off. This will not be a manual reset alarm until three consecutive attempts have failed. The circuit alarm triggered after the third failed attempt is a Low OAT Restart fault. The Low OAT Restart faults are Circuit alarms so each circuit will attempt to start either compressor three times before the Low OAT Restart fault is indicated.

Fan High Ambient Rapid Start

The following logic exists to get condenser fans started earlier than normal during unit starts with warm ambient air temperatures.

- If the outside air temperature higher than 75.0°F the condenser fan staging logic changes to bring on the first fan on when the condenser pressure is greater than 140 psi.
- The standard condenser fan staging logic would start the first condenser fan when the condenser pressure is higher than 200.0 psi.
- The last condenser fan on each circuit will not shut down until the condenser pressure drops below 140.0 psi regardless of the outside air temperature

Sequence of Operation

The following sequence of operation is typical for WGZ water chiller models. The sequence can vary slightly depending upon options.

Compressor Heaters

With the control circuit power on and the control stop switch S1 off, 115V power is applied through the control circuit fuse Fl to the compressor crankcase heaters HTR1, HTR2, HTR3, and HTR4.

Start-up/Compressor Staging

When compressors start and stop.

Stage Up Temp is the LWT temperature at which the next compressor to start will stage up (start) after at least one compressor on the unit has started and is running.

Start Up Temp is the LWT at which the first compressor starts. The start up temperature equals the stage up temperature plus the Start Delta temperature. A high Start Delta will keep the unit off longer and reduce unit cycling at low loads. However, this high Start Delta will cause a larger excursion from the LWT setpoint before the unit starts.

Stated another way, the Start Delta is the number of degrees *above* the Evap LWT setpoint, plus ½ the Dead Band, that determines when the *first* compressor starts. The Start Delta is in effect for only the first start after *all* compressors have been off. Additional compressor starts and stops are determined by the LWT in respect to the dead band only. The dead band is automatically set of 30% of the EvapDeltaT selected in menu 3. The following sequence would occur for the settings shown below:

EvapDelta T=10.0°F Dead Band=3.0°F StartDelta=5.0°F StopDelta=2.0°F LWT=40.0°F

Figure 7, Staging/Starting Temperatures

For a warm start-up (no compressors running), the first compressor will start at any temperature above 46.5°F. Each subsequent compressor will start after the Stage Up Timer has timed out and if the temperature is above the dead band, 41.5°F in this case.

If the LWT stays above 41.5°F, all of three (or 5) remaining compressors will eventually stage on after the Stage Up Timer times out between each stage.

At some point, the chilled water temperature will be dropping and begin to approach the point when compressors should begin staging off, which is the LWT setpoint minus ½ of the Dead Band, 38.5°F in this case. If the LWT remains below LWT setpoint minus ½ Dead Band and the Stage Down Timer times out, additional compressors will stage off. The *last* compressor will stage off when the LWT falls below the LWT Setpoint minus ½ the Dead Band minus the Stop Delta T. The stop Delta T is in effect for only the last compressor running.

If the temperature climbs above 38.5°F all running compressors will remain on. No compressor staging occurs within the Dead Band. The next-on compressor will start when the chilled water temperature reaches 41.5°F and the Stage Up Timer times out.

However, in some circumstances this methodology can cause the LWT to drop to dangerously low levels, with the evaporating temperature below the freeze point, before stopping. In the example shown in Figure 7, the Shutdown Temp (last compressor off) would be 36°F.

This would result in a refrigerant evaporating temperature approaching freezing, so the rule is amended to read:

If the Cool Leaving Water Temperature (LWT) set point is less than half the Control Band above 39.0° F the Stage Down temperature is calculated as:

```
Stage Down Temperature = Cool\ LWT - (Cool\ LWT - 39.0\ ^{\circ}F), and the Shutdown Temperature = Cool\ LWT - (Cool\ LWT - 39.0\ ^{\circ}F) - Stop\ Delta\ T
```

This keeps the Stage Down Temp above 39°F and the Shutdown Temp above 36°F, as the maximum Stop Delta T allowed is 3-degrees.

Which compressor starts and stops. One compressor per circuit will start before starting the second compressor (or third) on any circuit. In other words, the compressor with the lowest number of starts will start first. The compressor with the lowest number of starts on the *other* circuit will start next, so that one compressor on each circuit will be running. The third compressor on will be the compressor on *either* circuit with the fewest starts. The remaining compressor will be the last on. If a circuit is unavailable for any reason, the second compressor. on the operating circuit will stage on. Only two (or three) compressors (on the one circuit) will be operating.

There is a 150 second delay after power-up before any compressor is allowed to start.

When staging down, one compressor on each circuit will be left on until each circuit has only one compressor running. In other words, the compressor, on either circuit, with the most run-hours will stop first. The compressor with the most run-hours on the *other* circuit will stop next. One compressor on each circuit will be running. The third compressor off will be the one, on *either* circuit, with the most run-hours. The remaining compressor will be the last off. See the following description of pumpdown.

Table 3. Staging in Cool and Glycol Mode

<u> </u>	raisie e, etagnig in eeer and enjeer meae								
Description	Occurs When:	Action Taken							
Stage #1 ON (See Notes Below)	Lvg Evap T > Evap LWT SP + (DB/2) + Startup Delta T	Available compressor with least starts, ON							
Stage #2 ON	After Stage Up Delay times out then, LVG Evap T > Evap LWT SP + (DB/2)	Available compressor on the other circuit with least starts, ON							
Stage #3 ON	After Stage Up Delay times out, then LVG Evap T > Evap LWT SP + (DB/2)	Available compressor on either circuit with least starts, ON							
Stage #4 ON	After Stage Up Delay times out then, LVG Evap T > Evap LWT SP + (DB/2)	Remaining compressor, ON							

Continued next page.

Description	Occurs When:	Action Taken
Stage #4 OFF	After Stage Down Delay times out then, LVG Evap T < Evap LWT SP – (CB/2)	Compressor with most run hours, OFF
Stage #3 OFF	After Stage Down Delay times out then, LVG Evap T < Evap LWT SP – (DB/2)	Compressor on the other circuit with most run hours, OFF
Stage #2 OFF	After Stage Down Delay times out then, LVG Evap T < Evap LWT SP – (DB/2)	Compressor on either circuit with most run hours, OFF
Stage #1 OFF	After Stage Down Delay times out then, LVG Evap T < Evap LWT SP – (DB/2)-StopDelta T	Remaining compressor, OFF

Note 1: DB (Dead Band) = Evap Water Delta T x .3

Manual Compressor Disable Logic

Logic is available that allows the operator to manually enable and disable compressors. When a compressor is disabled, it is considered unavailable to start in the staging logic. This allows a damaged compressor to be taken offline while the remaining compressor can still provide some cooling

- The Compressor Disable set points are found on Compressor Set Points screens three and four.
- A running compressor cannot be disabled until it has been shutdown.
- If all of the compressors on a circuit are disabled, then the circuit will be disabled.
- If both circuits have all of their compressors disabled, then the Unit State will remain Off

Automatic Pumpdown

WGZ units are equipped with single pumpdown control. When the last compressor running on either circuit is ready to shut off, the liquid line solenoid valve (LLSV) is closed first and the compressor continues to run until the pumpdown pressure is reached, at which time the compressor shuts off. The shut off pressure is set at 15 psi below the Low Evaporator pressure Unload setpoint.

When the first compressor on a circuit starts, the LLSV opens simultaneously.

Manual Pumpdown

When the Pumpdown Switch is in the pumpdown position, all compressors except #1 and #2 will shut off. Then the Liquid Line and Hot Gas Bypass Valves will close. The operating compressor will pump out the refrigerant. When the Suction Pressure is at 40 psig, the compressors will stop.

Chilled Water and Condenser Water Pumps

The chiller MicroTech II controller can be programmed to start and stop the system chilled water and condenser water pumps. They may also be controlled by the BAS or manually. Programming directions and the sequence of operation can be found beginning on page 41.

Cooling Tower Control

The cooling tower fans and/or the tower bypass valve can be controlled by the MicroTech II controller. This provides a simple and direct method to control the unit's discharge pressure. Programming directions and the sequence of operation can be found on page 70. Some means of discharge pressure control must be installed if the condenser water temperature can fall below 60°F (16°C).

Condenser Fan Control

Model AC chillers equipped with air-cooled or evaporative-cooled condensers usually require some form of discharge pressure control. The MicroTech II controller can be programmed to provide this function by cycling condenser fans based on the unit discharge pressure. Directions on the pressure settings can be found on page 70.

ICE

In ICE mode, the compressors stage to 100% load until the LWT is less than the ICE LWT SP. Then Compressors #3 and #4 shut down. Following that, Compressors #1 and #2 shut down after going through normal pumpdown on both circuits. There is a programmable, start-to-start, Ice Mode Start Delay that limits the frequency of starts when in the ice mode. The timer can be manually cleared to force a restart.

Controller Software Version

This manual is based on software version WGZD20102E. The "02E" is the version descriptor. The version installed in a unit can be viewed by pressing the MENU and ENTER keys simultaneously, then pressing MENU to return to the regular menu screen.

General Description

The MicroTech II controller's state-of-the-art design will not only permit the chiller to run more efficiently but will also simplify troubleshooting if a system failure occurs. Every MicroTech II controller is programmed and tested prior to shipment to assist in a trouble-free start-up. The MicroTech II controller can be used to cycle fans on remote air-cooled condensers for head pressure control when the setpoint Water Cooled=N is selected in one of the setpoint menu screens. Water Cooled=Y sets the chiller for operation with the water-cooled condenser.

Operator Friendly

The MicroTech II controller menu structure is separated into three distinct categories, which provide the operator or service technician with a full description of 1) current unit status, 2) control parameters (setpoints), and 3) alarms. Security protection prevents unauthorized changing of the setpoints and control parameters.

The MicroTech II controller continuously performs self-diagnostic checks, monitoring all system temperatures, pressures and protection devices, and will automatically shutdown a compressor, a refrigerant circuit or the entire unit should a fault occur. The cause of the shutdown and date stamp are retained in memory and can be easily displayed in plain English for operator review, which is an extremely useful feature for troubleshooting. In addition to displaying alarm diagnostics, the MicroTech II chiller controller also provides the operator with a warning of pre-alarm conditions.

Staging

The four scroll (or six) compressors are staged on and off as a function of leaving chilled water temperature, number of starts and run-hours. See Sequence of Operation.

Equipment Protection

The unit is protected by alarms that shut it down and require manual reset, and also by limit alarms that limit unit operation in response to some out-of-limit condition. Shut down alarms activate an alarm signal that can be wired to a remote device.

Unit Enable Selection

Enables unit operation from local keypad or digital input.

Unit Mode Selection

Selects standard cooling, ice, glycol, or test operation mode.

Keypad/Display

A 4-line by 20-character/line liquid crystal display and 6-key keypad is mounted on the unit controller. Its layout is shown below.

Figure 8, Keypad and Display in MENU Mode

The four arrow keys (UP, DOWN, LEFT, RIGHT) have three modes of use.

Scroll between data screens as indicated by the arrows (default mode).

Select a specific data screen in a hierarchical fashion using dynamic labels on the right side of the display (this mode is entered by pressing the MENU key).

Change field values in edit mode according to the following table:

LEFT Default RIGHT Cancel UP Increment DOWN Decrement

These four edit functions are indicated by one-character abbreviation on the right side of the display (this mode is entered by pressing the ENTER key).

Inputs/Outputs

Table 4, Analog Inputs

C1 = Refrigerant Circuit #1, C2 = Refrigerant Circuit #2, UT = Unit, *n = Refrig. Dependent

#	Description	Туре	Signal Source	Range
*1	Evaporator Refrigerant Pressure #1 (R134a,R22,R407c)	C1	0.1 to 0.9 VDC	0 to 132 psi
*1	Evaporator Refrigerant Pressure #1 (R410a)	C1	0.1 to 0.9 VDC	0 to 350 psi
*2	Evaporator Refrigerant Pressure #2 (R134a,R22,R407c)	C2	0.1 to 0.9 VDC	0 to 132 psi
*2	Evaporator Refrigerant Pressure #2 (R410a)	C2	0.1 to 0.9 VDC	0 to 350 psi
*3	Condenser Refrigerant Pressure #1 (R134a,R22,R407c)	C1	0.1 to 0.9 VDC	3.6 to 410 psi
*3	Condenser Refrigerant Pressure #1 (R410a)	C1	0.1 to 0.9 VDC	0 to 700 psi
4	Leaving Evaporator Water Temperature	UT	NTC Thermister (10k@25℃)	-58 to 212°F
5	Condenser Entering Water Temperature or Outside Ambient Temperature (See Note below)	UT	NTC Thermister (10k@25℃)	-58 to 212°F
*6	Condenser Refrigerant Pressure #2 (R134a,R22,R407c)	C2	0.1 to 0.9 VDC	3.6 to 410 psi
*6	Condenser Refrigerant Pressure #2 (R410a)	C2	0.1 to 0.9 VDC	0 to 700 psi
7	Reset of Leaving Water Temperature	UT	4-20 mA Current	0-(10 to 80°F)
8	Demand Limit (R22,R-407CR410A)	UT	4-20 mA Current	0-100 % Load
9	Compressor Suction Temperature #1	C1	NTC Thermister (10k@25℃)	-58 to 212°F
10	Compressor Suction Temperature #2	C2	NTC Thermister (10k@25℃)	-58 to 212°F

Note:

- 1. If Water Cooled = Y, then Entering Condenser. If Water Cooled = N, then Outside Ambient.
- 2. Selection of R134a in unit setpoint screen will modify unit operation for Templifier application.

Table 5, Analog Outputs

#	Description	Output Signal	Range
1	Cooling Tower Bypass Valve Position	0 to 10 VDC	0 to 100% Open
2	Cooling Tower VFD Speed	0 to 10 VDC	0 to 100%
3	Circuit #1 Electronic Expansion Valve	0 to 10 VDC	0 to 100%
4	Circuit #2 Electronic Expansion Valve	0 to 10 VDC	0 to 100%

NOTE: Analog outputs 3 & 4 are for R410A and R134a units only.

Table 6, Digital Inputs

The following parameters are digital inputs to this controller.

C1 = Refrigerant Circuit #1, C2 = Refrigerant Circuit #2, UT = Unit, *n = Refrigerant Dependent

#	Description	Туре	Signal	Signal
1	Unit OFF Switch	UT	0 VAC (Stop)	24 VAC (Auto)
2	Pump Down Switch #1	C1	0 VAC (Stop)	24 VAC (Start)
3	Evaporator Water Flow Switch	UT	0 VAC (No Flow)	24 VAC (Flow)
*4	Motor Protection #1 (R22, R407c)	C1	0 VAC (Fault)	24 VAC (No Fault)
*4	Open (R134a,R410a)			
5	Open			
6	Pump Down Switch #2	C2	0 VAC (Stop)	24 VAC (Start)
*7	Motor Protection #2 (R22,R407c)	C2	0 VAC (Fault)	24 VAC (No Fault)
*7	Open (R134a,R410a)			
*8	Open (R22,R407c)			
*8	Condenser Water Flow Switch (R134a,R410a)	UT	0 VAC (No Flow)	24 VAC (Flow)
9	Phase Voltage Fault #1 (See Note 1 Below)	C1	0 VAC (Fault)	24 VAC (No Fault)
10	Phase Voltage Fault #2 (See Note 1 Below)	C2	0 VAC (Fault)	24 VAC (No Fault)
11	Ground Fault Prot. #1 (See Note 2 Below)	C1	0 VAC (Fault)	24 VAC (No Fault)
12	Ground Fault Prot. #2 (See Note 2 Below)	C2	0 VAC (Fault)	24 VAC (No Fault)
13	Remote Start/Stop	UT	0 VAC (Stop)	24 VAC (Start)
*14	Condenser Water Flow Switch(R22,R407c)	UT	0 VAC (No Flow)	24 VAC (Flow)
*14	Open (R134a,R410a)			
*15	Open (R22,R407c)			
*15	Motor Protection #1 (R134a,R410a)	C1	0 VAC (Fault)	24 VAC (No Fault)
*16	Open (R22,R407c)			
*16	Motor Protection #2 (R134a,R410a)	C2	0 VAC (Fault)	24 VAC (No Fault)
17	Ice Mode Switch	UT	0 VAC (Normal)	24 VAC (Ice)
18	Heat Mode Switch	UT	0 VAC (Normal)	24 VAC (Heat)

Note 1: See Safety Alarms Table for "Phase Voltage Protection". Units with single point electrical connection will have one PVM with Inputs 9 and 10 wired together. Units with multiple point connection will have two PVM's with Input 9 for Electrical Circuit #1 and Input 10 for Electrical Circuit #2.

Note 2: See Safety Alarms Table for "Ground Fault Protection". Units with single point electrical connection will have one GFP with Inputs 11 and 12 wired together. Units with multiple point connection will have two GFP's with Input 11 for Electrical Circuit #1 and Input 12 for Electrical Circuit #2.

Table 7, Digital Outputs

The following parameters are digital outputs from this controller.

C1 = Refrigerant Circuit #1, C2 = Refrigerant Circuit #2, UT = Unit, *n = Refrigerant Dependent

-						
	#	Description	Туре	Load	Output OFF	Output ON
ĺ	1	Alarm	C1,C2,UT	Alarm Indicator	Alarm OFF	Alarm ON
	2	Evaporator Water Pump	UT	Pump Contactor	Pump OFF	Pump ON
	•	Condenser Fan #1 - Water Cooled = N /	C1 / UT	Fan Contactor/	F== 0FF	Fan ON
3	3	Condenser Water Pump – Water Cooled = Y	C1/01	Pump Contactor	Fan OFF	Fan ON
	4	Motor Control Relay #1 = Compr#1	C1	Starter	Compressor OFF	Compressor ON

Continued next page.

Table 7, Continued

#	Description	Туре	Load	Output OFF	Output ON
5	Motor Control Relay #3 = Compr#3	C1	Starter	Compressor OFF	Compressor ON
*6	Condenser Fan #3- Water Cooled =N /Tower Fan #2-Water Cooled=Y (R22,R407C)	C1 / UT	Fan Contactor	Fan OFF	Fan ON
*6	Motor Control Relay #5 = Compr#5 (R134a,R410a)	C1	Starter	Compressor OFF	Compressor ON
7	Liquid Line #1	C1	Solenoid	Cooling OFF	Cooling ON
8	Condenser Fan #2 – Water Cooled =N /Tower Fan #1-Water Cooled=Y	C2 / UT	Fan Contactor	Fan OFF	Fan ON
9	Motor Control Relay #2 = Compr#2	C2	Starter	Compressor OFF	Compressor ON
10	Motor Control Relay #4 = Compr#4	C2	Starter	Compressor OFF	Compressor ON
*11	Condenser Fan #4 (R22,R407c)	C2	Fan Contactor	Fan OFF	Fan ON
*11	Motor Control Relay #6 = Compr#6 (R134a,R410a)	C2	Starter	Compressor OFF	Compressor ON
12	Liquid Line #2	C2	Solenoid	Cooling OFF	Cooling ON
13	Condenser Fan #5	C1	Fan Contactor	Fan OFF	Fan ON
14	Hot Gas Bypass #1	C1	Solenoid	Cooling OFF	Cooling ON
15	Hot Gas Bypass #2	C2	Solenoid	Cooling OFF	Cooling ON
*16	Condenser Fan #6 (R22,R407c)	C2	Fan Contactor	Fan OFF	Fan ON
*16	Condenser Fan #4 (R134a,(R410a)	C2	Fan Contactor	Fan OFF	Fan ON
*17	Condenser Fan #7 (R22,R407c)	C1	Fan Contactor	Fan OFF	Fan ON
*17	Condenser Fan #5&7 (R134a,R410a)	C1	Fan Contactor	Fan OFF	Fan ON
18	Condenser Fan #8	C2	Fan Contactor	Fan OFF	Fan ON
18	Condenser Fan #6&8	C2	Fan Contactor	Fan OFF	Fan ON

Expansion I/O Controller

Digital Outputs

The following parameters are digital outputs from this controller.

Types: C1 = Refrigerant Circuit #1, C2 = Refrigerant Circuit #2, UT = Unit

#	Description	Туре	Output Off	Output On
1	Evap Water Pump Output #2	UT	Pump Off	Pump On
2	Cond Water Pump Output #2	UT	Pump Off	Pump On
3	Condenser Fan #9	C1	Fan OFF	Fan ON
4	Condenser Fan #10	C2	Fan OFF	Fan ON

Analog Inputs

The following parameters are digital outputs from this controller for Templifier operation only.

Types: C1 = Refrigerant Circuit #1, C2 = Refrigerant Circuit #2, & UT = Unit

#	Description	Туре	Output Off	Output On
1	Entering Evaporator Water Temperature (R134a)	UT	NTC Thermister (10k@25°C)	-58 to 212°F
2	Demand Limit (R134a)	UT	4-20 mA Current	0-100 % Load
3	Liquid Line Temperature #1 (R134a)	C1	NTC Thermister (10k@25°C)	-58 to 212°F
4	Liquid Line Temperature #2 (R134a)	C2	NTC Thermister (10k@25℃)	-58 to 212°F

Setpoints

The following parameters are remembered during power off, are factory set to the **Default** value, and can be adjusted to any value in the **Range** column.

The **PW** (password) column indicates the password level that must be active in order to change the setpoint. Passwords are as follows:

O = Operator [0100]

M = Manager [2001]

Table 8, Setpoints

Description	Default	Range	PW
Unit Enable	Off	Off, On	0
*Unit Mode (R22, R407C, R410A	Cool	Cool, Cool w/Glycol, Ice w/Glycol, Test	0
&Unit Mode (R134a)	Cool	Cool, Cool w/Glycol, Heat, Test	
Control source	Switches	Keypad, Network, Switches	0
*Available Modes (R22,R407C,R410A)	Cool	Cool, Cool w/Glycol, Cool/Ice w/Glycol Ice w/Glycol, Test	М
*Available Modes (R134a)	Cool	Test, Cool, Cool w/Glycol, Cool/Heat, COOL/HEAT w/Glycol, Heat w/Glycol,	М
Evap LWT	44. 0 °F	Without Glycol: 40.0 to 60.0°F 40.0 to 85.0°F (R134a Only) With Glycol: 20.0 to 60.0°F (R22,R407C) 10.0 to 60.0°F (R410A) 20.0 to 85.0°F (R134a)	0
Ice LWT	40. 0 °F	20.0 to 40.0 °F	0
Heat LWT (R134a only)	110.o°F	110 to 165°F	0
Evap Delta T	10.0 °F	6.0 to 16.0 °F	0
Startup Delta T	10.0 °F	1.0 to 15.0 °F	0
Stop Delta T	0.5 °F	0 to 3.0 °F	0
Max Pulldown Rate	1.0 °F	0.5 to 5.0 °F	M
Evap Recirculate Timer	30	15 to 300 seconds	M
Evap Pump (Refrigerant = R410a,R134a)	#1 Only	#1 Only, #2 Only, Auto, #1 Prim, #2 Prim	M
Cond Delta T (R134a only)	20.0°F	5.0 to 40.0°F	
Cond Pump Recirculate Timer (Water-cooled = Yes)	30	15 to 90 seconds	М
Cond Pump (Water-cooled=Yes & Ref=R410A or R134a	#1 Only	#1 Only, #2 Only, Auto, #1 Prim, #2 Prim	М
Low Ambient Lockout(Water-Cooled = No)	35.0 °F	35 to 70 °F If Speedtrol = Yes -2.0 to70.0°F (R22,R407C) -10.0 to 70.0 (R410A) N/A (R134a)	М
Demand Limit	Off	Off, On	М
* Water Cooled	Off	Off, On	М
Ice Time Delay	12 hrs	1 to 23 hrs	М
Clear Ice Delay	No	No, Yes	M
Hot Gas Delay Time	30 sec.	30 to 180 seconds	M
BAS Protocol	Modbus	BACnet, LonWorks, Modbus	M
Ident number	001	000-200	M
Baud rate	9600	1200,2400,4800,9600,19200	M
Units	F/psi	F/psi (only)	
Language	English	English (only)	
* Refrigerant Select	None	R22, R407C, R410A, R134a	
Compressor			
# of Compressors (Refrig = R410A or R134a to select 6)	4	4, 6	М
Clear Cycle Tmr	Off	On/Off	М
Stage Up Delay	240 sec	90 to 480 seconds	М
Stage Down Delay	30	20 to 60 sec	М
Start-Start Start	15 min	10 to 60 min	М
Stop-Start	5 min	3 to 20 min	М

Continued next page.

Table 8. Continued

Table 8, Continued			
Description	Default	Range	PW
Expansion Valve Type	Electronic	Thermal, Electronic	М
Circuit 1 EXV Control	Auto	Auto, Manual	М
Circuit 1 EXV Position	N/A	0-100%	М
Circuit 2 EXV Control	Auto	Auto, Manual	М
Circuit 2 EXV Position	N/A	0-100%	M
Alarms	IN/A	0-10078	IVI
Low Evap Pressure-Hold			
	See Dynamic		M
Low Evap Pressure-Unload	Defaults	See following section; Automatic Adjusted	M
High Cond Pressure – Unload	(following)	Limits	M
High Cond Pressure – Stop	(9/		М
Evap. Freeze	38.0 °F	37.0 to 42.0 °F Glycol: 17.5 to 42.0°F (R134a,R22, R407C) 7.5 to 42.0°F (R410A)	M
Cond. Freeze	34.0 °F	18 to 42 °F	M
High Condenser Pressure Stop	280 psi	260 to 380 psi (R22, R407C)	
(Water-Cooled = Y	420 psi	375 TO 425 psi (R410A)	M
High Condenser Pressure Stop	380 psi	260 to 380 psi (R22, R407C)	
(Water Cooled = N)	565 psi	425 to 570 psi (R410A)	M
High Condenser Pressure Stop (R134a)	185 psi	170 to 425 psi	M
Evap Flow Proof	5 sec.	5 to 15 seconds	M
Cond Flow Proof			
	5 sec.	5 to 15 seconds	M
Recirc Timeout	3 min.	1 to 10 minutes	M
* Phase Voltage Protection	N	N,Y	М
* Ground Fault Protection	N	N,Y	М
Low OAT Start Time	60 sec.	30 to 240 seconds	М
Condenser Fans (Water Cooled = N)			
Number of fans	4	4 to 8 (10 for R410a)	М
Speedtrol Option	No	No.Yes	М
Stg on Deadband Stg 2	15 ℉	15 to 25 °F	M
Stg on Deadband Stg 3	10°F	10 to 15°F	M
	10 ℃	10 to 15 °F	M
Stg on Deadband Stg 4			
Stg Off Deadband Stg 1	20°F	15 to 20 °F	M
Stg Off Deadband Stg 2	15°F	10 to 15°F	M
Stg Off Deadband Stg 3	10°F	6 to 10°F	М
Stg Off Deadband Stg 4	10 <i>°</i> F	6 to 10°F	М
Cond Sat Temp Target	100℉	80 to 120°F	М
Forced Fan 1 (>75°F)			
Forced Fan 2 (>90°F)			
Forced Fan 3 (>105°F)			
Cooling Tower (Water Cooled = Y)			
Tower Control	None	None, Temperature	М
Tower Stages	2	0 to 2	M
Stage Up Time	2 min	1 to 60 min	M
Stage Down Time	5 min	1 to 60 min	М
Stage Differential	3.0 °F	1.0 to 10.0 °F	M
Stage #1 On	70 °F	40 to 120 °F	М
Stage #2 On	75 °F	40 to 120 °F	M
Valve/VFD Control	None	None, Valve Set point, Valve Stage, VFD Stage, Valve SP/VFD Stage	М
Valve Setpoint	65 °F	60 to 120 °F	М
Valve Deadband	2.0 °F	1.0 to 10.0 °F	М
Stage Fan Down @	20%	0 to 100%	М
Stage Fan Up @	80%	0 to 100%	M
Valve Control Range (Min)	10%	0 to 100%	M
Valve Control Range(Max)	90%	0 to 100%	M
rairo contion hango(max)	NC to tower	NC, NO	M
Valve Type		INO, INO	
Valve Type Minimum Start Position		0 to 1000/	N/I
Minimum Start Position	0%	0 to 100%	M
Minimum Start Position Minimum Position @	0% 60 °F	0 to 100 °F	М
Minimum Start Position Minimum Position @ Maximum Start Position	0% 60 °F 100%	0 to 100 °F 0 to 100%	M M
Minimum Start Position Minimum Position @ Maximum Start Position Maximum Position @	0% 60 °F	0 to 100 °F 0 to 100% 0 to 100 °F	М
Minimum Start Position Minimum Position @ Maximum Start Position	0% 60 °F 100%	0 to 100 °F 0 to 100%	M M

^{*} Set at McQuay .factory.

Automatic Adjusted Limits

The following are set points that will be limited based on the option selected.

Evaporator Leaving Water Temperature

Mode	Refrigerant Type	Range
Unit Mode = Cool	R134a,R22, R407C, R410A	40 to 60°F
Unit Mode = Cool w/Glycol	R134a,R22, R407C	20 to 60°F
Unit Mode = Cool w/Glycol	R410a	15 to 60°F
Unit Mode = Ice	R22, R407C,R410A	20 to 40°F

Condenser Leaving Water Temperature

Mode	Refrigerant Type	Range
Unit Mode= HEAT	R134a	110 to 160ºF

Evaporator Freeze Temperature

Mode	Refrigerant Type	Range
Unit Mode = Cool	R134a,R22, R407C, R410A	36 to 42°F
Unit Mode = Cool w/Glycol, Ice w/Glycol	R134a,R22, R407c	18 to 42°F
Unit Mode = Cool w/Glycol, Ice w/Glycol	R410A	12.5 to 42°F

Ice Leaving Water Temperature

Refrigerant Type	Range
R134a	N/A
R22, R407C	20 to 40°F
R410A	15 to 40°F

Low Evaporator Pressure Inhibit Loading and Unloading

Low Evaporator Fressure minor Loading and Chloading				
Mode	Refrigerant Type	Range		
	R134a	26 to 54 psi		
Heit Mada Cool	R22	55 to 65 psi		
Unit Mode = Cool	R407C	58 to 75 psi		
	R410A	97 to 115 psi		
	R134a	12 to 54 psi		
Unit Mode = Cool w/Glycol, Ice	R22	24 to 65 psi		
w/Glycol	R407C	20 to 75 psi		
	R410A	48 to 115 psi		

Low Ambient Lockout Temperature

Low Ambient Lockout Temperature			
Speedtrol	Range		
Speedtrol = N	35 – 70°F		
Speedtrol = Y	-2 – 70°F		

Dynamic Defaults

Some set points will have a particular default value loaded when another setting is changed.

Refrigerant Dependent Defaults

Set Point	Refrigerant Type			
Set Point	R134a	R22	R407C	R410A
Low Evaporator Pressure Hold	29 psi	59 psi	60 psi	101 psi
Low Evaporator Pressure Unload	28 psi	58 psi	59 psi	100 psi
High Condons on Business Halond	170:	370 psi AC	370 psi AC	550 psi AC
High Condenser Pressure Unload	170 psi	265 psi WC	265 psi WC	405 psi WC
Lligh Condonor Drocours	105 '	380 psi AC	380 psi AC	565 psi AC
High Condenser Pressure	185 psi	280 psi WC	280 psi WC	420 psi WC

AC = Air Cooled, WC = Water Cooled (R134a is water cooled ONLY)

Number of Fans Dependent Defaults

When the number of fans setting is changed, the forced fan set points will default to values as shown in the following table:

Set Point	Number of Fans Set Point				
Set Follit	4	6	8	10	
Forced Fan 1 (>75°F)	1	1	1	1	
Forced Fan 2 (>90°F)	1	1	2	2	
Forced Fan 3 (>105°F)	2	2	3	3	

Events & Alarms

Situations may arise that require some action from the chiller or that should be logged for future reference. Conditions that cause a shutdown and require manual reset is known as a stop alarm. Other conditions can trigger what is known as an event, which may or may not require action in response. All stop alarms and events are logged.

Unit Stop Alarms

The alarm output and red button is turned ON when any stop alarm occurs and turned off when all alarms have been cleared.

Evaporator Flow Loss

Alarm description (as shown on screen): Evaporator Flow Loss

Trigger:

- 1: Evaporator Pump State = Run AND Evaporator Flow Digital Input = No Flow for time > Evap Flow Proof Set Point AND at least one compressor running.
- 2: Evaporator Pump State = Start for time greater than Recirc Timeout Set Point AND all pumps have been tried AND Evaporator Flow Digital Input = No Flow.

Action Taken: Rapid stop all circuits.

Reset:

This alarm can be cleared at any time manually via the keypad or via the BAS clear alarm signal.

If active via trigger condition 1:

When the alarm occurs due to this trigger, it can auto reset the first two times each day, with the third occurrence being manual reset.

For the auto-reset occurrences, the alarm will reset automatically when the evaporator state is Run again. This means the alarm stays active while the unit waits for flow, then it goes through the recirculation process after flow is detected. Once the recirculation is complete, the evaporator goes to the Run state which will clear the alarm. After three occurrences, the count of occurrences is reset and the cycle starts over if the manual reset flow loss alarm is cleared.

If active via trigger condition 2:

If the flow loss alarm has occurred due to this trigger, it is always a manual reset alarm.

Condenser Flow Loss (Note: WaterCooled = On & TGZ units Only)

Alarm description (as shown on screen): Condenser Flow Loss

Trigger:

- 1: Condenser Pump State = Run AND Condenser Flow Digital Input = No Flow for time > Cond Flow Proof Set Point AND at least one compressor running.
- 2: Condenser Pump State = Start for time greater than Recirc Timeout Set Point AND all pumps have been tried AND Condenser Flow Digital Input = No Flow.

Action Taken: Rapid stop all circuits.

Reset:

This alarm can be cleared at anytime manually via the keypad or via the BAS clear alarm signal.

If active via trigger condition 1:

When the alarm occurs due to this trigger, it can auto reset the first two times each day, with the third occurrence being manual reset.

For the auto-reset occurrences, the alarm will reset automatically when the condenser pump state is Run again. This means the alarm stays active while the unit waits for flow, then it goes through the recirculation process after flow is detected. Once the recirculation is complete, the condenser pump goes to the Run state which will clear the alarm. After three occurrences, the count of occurrences is reset and the cycle starts over if the manual reset flow loss alarm is cleared.

If active via trigger condition 2:

If the flow loss alarm has occurred due to this trigger, it is always a manual reset alarm.

Low Evaporator Pressure

Alarm description (as shown on screen): Evap Press Low Cir N

Trigger: [Circuit State = Run AND Freezestat trip AND Low OAT Start not active]
OR Evaporator Press < Absolute Low Pressure Limit AND Circuit State = Run

The absolute low pressure limit is 5 psi with R134a, R22, and R407C refrigerants and 20 psi with R410A refrigerant.

Freezestat logic allows the circuit to run for varying times at low pressures. The lower the pressure, the shorter the time the compressor can run. This time is calculated as follows:

Freeze error = Low Evaporator Pressure Unload – Evaporator Pressure Freeze time =

[60 – 2.7 x freeze error] with R134a refrigerant, limited to a range of 20-60 seconds

[60 – 1.6 x freeze error] with R22 and R407C refrigerant, limited to a range of 20-60 seconds

[60 – freeze error] with R410A refrigerant, limited to a range of 20-60 seconds

When the evaporator pressure goes below the Low Evaporator Pressure Unload set point, a timer starts. If this timer exceeds the freeze time, then a 'Evap Press Low Cir N' alarm trip occurs. If the evaporator pressure rises to the unload set point or higher, and the freeze time has not been exceeded, the timer will reset.

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad if the evaporator pressure is above the absolute low-pressure limit.

High Condenser Pressure

Alarm description (as shown on screen): Cond Press High Cir N **Trigger:** Condenser Pressure > High Condenser Pressure Set Point

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad.

Mechanical High Pressure/Motor Protect

Alarm description (as shown on screen): MHP or Motor Prot N

Trigger: MHP/MP input is low and over 150 seconds lapsed since controller boot-up

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad if the MHP/MP input is high.

Phase Voltage Protection

Alarm description (as shown on screen): Phase/Voltage Cir N **Trigger:** PVM input is low and Phase Voltage set point = enable.

Action Taken: Rapid stop circuit

Reset: Auto reset when PVM input is high

Ground Fault Protection

Alarm description (as shown on screen): Ground Fault Cir N **Trigger:** GFP input is low and Ground Fault set point = enable.

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad.

Low OAT Restart Fault

Alarm description (as shown on screen): Low OAT Start Fail N

Trigger: Circuit has failed three low OAT start attempts

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad.

Evaporator Water Freeze Protect

Alarm description (as shown on screen): Evap Water Freeze

Trigger: Evaporator LWT drops below evaporator freeze protect set point AND Unit

State = Auto

Action Taken: Rapid stop all circuits

Reset: This alarm can be cleared manually via the keypad or via the BAS clear alarm

signal, but only if the alarm trigger conditions no longer exist.

Leaving Evaporator Water Temperature Sensor Fault

Alarm description (as shown on screen): Evap LWT Sens Fault

Trigger: Sensor shorted or open

Action Taken: Normal stop all circuits

Reset: This alarm can be cleared manually via the keypad, but only if the sensor is

back in range.

Leaving Condenser Water Temperature Sensor Fault

Alarm description (as shown on screen): CondLWT Sens Fault

Trigger: Sensor shorted or open AND TGZ unit (refrig = R134a) AND operating in

'heat' mode.

Action Taken: Normal stop all circuits

Reset: This alarm can be cleared manually via the keypad, but only if the sensor is

back in range.

Suction Temperature Sensor Fault

Alarm description (as shown on screen): SuctT Sensor Fail N

Trigger: Sensor shorted or open AND Expansion Valve Type = Electronic

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad, but only if the sensor is

back in range.

Evaporator Pressure Sensor Fault

Alarm description (as shown on screen): EvapP Sensor Fail N

Trigger: Sensor shorted or open. If failing high (open), logic has been added that requires the Leaving Evaporator Temperature to be below 75°F. This will prevent nuisance trips due to conditions where the evaporator water temperature is high which could cause false alarms.

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad, but only if the sensor is

back in range.

Condenser Pressure Sensor Fault

Alarm description (as shown on screen): CondP Sensor Fail N

Trigger: Sensor shorted or open **Action Taken:** Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad, but only if the sensor is

back in range.

Condenser Entering or Outdoor Air Temperature Sensor Fault

Alarm description (as shown on screen): OAT Sensor Fault

Trigger: Sensor shorted or open

Action Taken: Normal stop all circuits **Reset:** This alarm can be cleared manually via the keypad, but only if the sensor is

back in range

Evaporator Water Freeze Protect

Alarm description (as shown on screen): Evap Water Freeze

Trigger: Evaporator LWT drops below evaporator freeze protect set point AND Unit

State = Auto

Action Taken: Rapid stop all circuits

Reset: This alarm can be cleared manually via the keypad or via the BAS clear alarm

signal, but only if the alarm trigger conditions no longer exist.

No Evaporator Pressure Drop

Alarm description (as shown on screen): No Evap Press Drop N

Trigger: After start of first compressor on the circuit, either a 1 psi drop in evaporator pressure OR a 5 psi rise in condenser pressure has not occurred after 15 seconds

Action Taken: Rapid stop circuit

Reset: This alarm can be cleared manually via the keypad.

EXB Comm Failure on CP1

Alarm description (as shown on screen): No EXB comm CP1

Trigger: CP1 does not have communication with either EXB1 for 60 seconds after power up. This alarm will only occur if 10 Fan, evaporator pump #2, or condenser pump #2 operation is selected. After communication is established, when communication is lost to either EXB an immediate shutdown occurs.

Action Taken: Rapid stop all circuits

Reset: Auto clear when EXB1 is communicating with CP1.

Alarm Log

An alarm log stores the last 25 alarms and/or events to occur. When an alarm or event occurs, it is put into the first slot in the alarm log and all others are moved down one, dropping the last entry. In the alarm log, the date and time the alarm occurred are stored, as well as a list of other parameters. These parameters include compressor states, evaporator pressure, condenser pressure, number of fans on, OAT, and evaporator LWT.

Active Alarms

When an alarm occurs, it appears in the active alarm list. The active alarm list holds a record of all active alarms, which includes the date and time each occurred.

Clearing Alarms

A password is NOT required to clear an active alarm. Active alarms must be cleared at the unit controller. To clear active alarms scroll down to the end of the Active Alarm list press Enter to clear all active alarms. If the user attempts to clear an alarm while the alarm condition still exists, a new alarm will be generated immediately.

Limit Events

The following events do not cause a rapid stop but limit operation of the chiller in some way as described in the Action Taken. All limit events do NOT appear in the Active Alarm window and are NOT logged in the Alarm Log

Low Evaporator Pressure - Hold

Event description (as shown on screen): Evap Press Low HoldN **Trigger:**

This event is triggered if all of the following are true:

- circuit state = Run
- circuit is not currently in a low OAT start
- has been at least 30 seconds since a compressor has started on the circuit.
- evaporator pressure <= Low Evaporator Pressure Hold set point

Action Taken: Inhibit staging on of additional compressors on the circuit.

Reset: While still running, the event will be reset if evaporator pressure > (Low Evaporator Pressure - Hold set point + 8psi for R134a/R22/R407C or 13 psi for R410A). The event is also reset if the circuit state is no longer run.

Low Evaporator Pressure - Unload

Event description (as shown on screen): EvapPressLow Unload N **Trigger:**

This event is triggered if all of the following are true:

- circuit state = Run
- more than one compressor is running on the circuit
- circuit is not currently in a low OAT start
- has been at least 30 seconds since a compressor has started on the circuit.
- evaporator pressure <= Low Evaporator Pressure Unload set point for a time greater than half of the current freezestat time

Action Taken: Stage off one compressor on the circuit every 10 seconds, except the last one

Reset: While still running, the event will be reset if evaporator pressure > (Low Evaporator Pressure - Hold set point + 8psi for R134a/R22/R407C or 13 psi for R410A). The event is also reset if the circuit state is no longer run.

High Condenser Pressure - Unload

Event description (as shown on screen): CondPressHighUnloadN **Trigger:**

This event is triggered if all of the following are true:

- circuit state = Run
- more than one compressor is running on the circuit
- condenser pressure > High Condenser Pressure Unload set point

Action Taken: Stage off one compressor on the circuit every 10 seconds, except the last one.

Reset: While still running, the event will be reset if condenser pressure drops below the "Hold Clear @" value which is displayed on that circuit's VIEW CIRCUIT n (1) screen. The "Hold Clear @" is calculated based on number of compressors, refrigerant, and number of High Condenser Pressure – Unload occurrences since the circuit has cycled off or since midnight. See table below:

Condenser Configuration	Compressor s	R410A	R22 R407C	R134a	Step Increase
Water-Cooled	4	40 psi	30 psi	30 psi	10 psi
	6	30 psi	N/A	20 psi	10 psi
Air-Cooled	4	100 psi	70 psi	N/A	15 psi
	6	80 psi	N/A	N/A	15psi

Failed Pumpdown

Event description (as shown on screen): Pumpdown Fail Cir N

Trigger: Circuit state = pumpdown for time > 60 seconds

Action Taken: Shutdown circuit

Reset: N/A

Condenser Freeze Event

Event description (as shown on screen): Cond Freeze Circ N

Trigger: Cond Sat Refr Temperatre < Condenser Freeze Set Point AND Condenser

Pump State = OFF

Action Taken: Start condense pump.

Reset: N/A

Condenser Freeze Event (Water Cooled = Y Only)

Event description (as shown on screen): Cond Freeze Circ N

Trigger: Cond Sat Refr Temp < Condenser Freeze Set Point AND Condenser Pump

State = OFF

Action Taken: Start condenser pump.

Reset: Cond Sat Refr Temp > Condenser Freeze Set Point plus 2°F.

Suction Temperature Sensor Fail

Event description (as shown on screen): SuctT Sensor Fail N

Trigger: Sensor shorted or open.

Action Taken: None.

Reset: N/A

Entering Evaporator Water Temperature Sensor Fail (TGZ unit only)

Event description (as shown on screen): Evap EWT Sensor Fail

Trigger: Sensor shorted or open.

Action Taken: None.

Reset: N/A

Liquid Line Temperature Sensor Fail (TGZ unit only)

Event description (as shown on screen): Low Source Temp

Trigger: Sensor shorted or open.

Action Taken: None.

Reset: N/A

Low Source Water Temperature (TGZ unit in 'heat' mode only)

Event description (as shown on screen): LiqL Sensor Fail N

Trigger: Unit is in heat mode and the leaving evaporator water temperature drops below the Low Source Temperature set point.

Action Taken: Stage off one compressor immediately and the remaining being staged off based upon the "InterStage Dn" set point time interval.

Reset: N/A

EXB Comm Failure on CP1 (TGZ unit only)

Event description (as shown on screen): No EXB comm CP1

Trigger: CP1 does not have communication with either EXB1 for 60 seconds after power up. This event is only active when the expansion board is not intended to operate evaporator or condenser pump #2.

Action Taken: None.

Reset: N/A.

Event Log

An Event Log similar to the Alarm Log stores the last 25 Event occurrences. There must be an active password for access to the Event Log. To navigate to the Event log press the Left Arrow key from any Alarm Log screen. When an event occurs, it is recorded in the first slot in the Event Log. All other entries are moved down in the Event Log and the last entry is dropped if 25 earlier event occurrences have been logged. Each Event Log entry includes an event description and a time and date stamp for the event occurrence.

Controller Operation

Calculations

The Control Band defines the temperatures around the Controlling Leaving Water Temperature set point where compressors will be staged on or off. In cool mode, the controlling leaving water temperature set point will be Evap LWT. In heat mode, the controlling leaving water temperature set point will be Heat LWT.

In cooling mode, the Control Band is calculated as follows:

Control Band = Evap Delta Temperature Set Point * 0.3 Four compressor

units

Control Band = Evap Delta Temperature Set Point * 0.2 Six compressor units

In heating mode, the Control Band is calculated as follows:

Control Band = Cond Delta Temperature Set Point * 0.3 Four compressor units

Control Band = Cond Delta Temperature Set Point * 0.2

Six compressor units

If the Unit mode is Cool:

When the Cool Leaving Water Temperature set point is more than half the Control Band above 39.0° F the Stage Up temperature is calculated as follows: $Stage\ Up\ Temperature = Cool\ LWT + (Control\ Band/2)$

The Stage Down temperature is calculated as:

 $Stage\ Down\ Temperature = Cool\ LWT - (Control\ Band/2)$

If the Cool Leaving Water Temperature set point is less than half the Control Band above 39.0° F the Stage Down temperature is calculated as:

Stage Down Temperature = $Cool\ LWT - (Cool\ LWT - 39.0\ ^{\circ}F)$

Stage Up temperature is calculated as:

Stage Up temperature = $Cool LWT + Control Band - (Cool LWT - 39.0 \,^{\circ}F)$

In all other Unit modes the compressor staging temperatures are calculated as shown below:

Stage Up Temperature = Cool LWT + (Control Band/2) Stage Down Temperature = Cool LWT - (Control Band/2)

The Cool Start up and Shutdown temperatures are calculated from the Control Band. The Start Up temperature determines when the first compressor on the unit will start. The Start Up temperature calculation is shown below:

Start Up Temperature = Stage Up Temperature + Start Up Delta Temperature

The Shutdown temperature defines when the last running compressor will shutdown. The Shutdown temperature calculation is:

Shutdown Temperature = Stage Down Temperature - Shutdown Delta Temperature If the Unit mode is Heat:

Stage Up temperature is calculated as follows:

Stage Up Temperature = Heat LWT - (Control Band/2)

The Stage Down temperature is calculated as:

Stage Down Temperature = Heat LWT + (Control Band/2)

The Heat Start up and Shutdown temperatures are calculated from the Control Band. The Start Up temperature determines when the first compressor on the unit will start. The Start Up temperature calculation is shown below:

Start Up Temperature = Stage Up Temperature - Start Up Delta Temperature

The Shutdown temperature defines when the last running compressor will shutdown. The Shutdown temperature calculation is:

Shutdown Temperature = Stage Down Temperature + Shutdown Delta Temperature

Leaving Water Temperature (LWT) Reset

The active leaving water set point is set to the current Leaving Water Temperature (LWT) set point unless the unit is in either cool or heat mode and any of the reset methods below are selected. The type of reset in effect is determined by the LWT Reset Type set point.

Reset Type = NONE

The Active Leaving Water Temperature set point is set equal to the current LWT set point. IN cool mode, this will be Evap LWT and in heat mode this will be Heat LWT.

Reset Type = 4-20 mA

The Active Leaving Water set point is adjusted by the 4 to 20 mA reset analog input. **Cooling Mode**

The Active Leaving Water set point is adjusted by the 4 to 20 mA reset analog input.

Parameters used:

- 1. Evaporator Leaving Water Temperature set point (Evap LWT)
- 2. Cooling Maximum Reset set point (Clg MaxRes)
- 3. LWT Reset signal 4-20mA

Reset is 0°F and the active leaving water set point is equal to the Evap LWT set point if the reset signal is less than or equal to 4 mA. Reset is equal to the Max Reset set point and the active leaving water set point is equal to the Evap LWT plus Max Reset set points if the reset signal equals or exceeds 20 mA. The amount of reset will vary linearly between these extremes if the reset signal is between 4 mA and 20 mA. An example of the operation of 4-20 reset in Cool mode is shown below.

Heating Mode (only for TGZ unit Refrig = R134a)

The Active Leaving Water set point is adjusted by the 4 to 20 mA reset analog input.

Parameters used:

- 1. Heating Leaving Water Temperature set point (Heat LWT)
- 2. Heating Maximum Reset set point (Htg MaxRes)
- 3. LWT Reset signal 4-20mA

Reset is 0°F and the active leaving water set point is equal to the Heat LWT set point if the reset signal is less than or equal to 4 mA. Reset is equal to the Max Reset set point and the active leaving water set point is equal to the Heat LWT minus Max Reset set points if the reset signal equals or exceeds 20 mA. The amount of reset will vary linearly between these extremes if the reset signal is between 4 mA and 20 mA. An example the operation of 4-20 mA reset in Heat mode is shown below.

Reset Type = Return (only for TGZ unit, Refrig = R134a)

Cooling Mode

The Active Cooling Leaving Water set point is adjusted based upon the difference between the chiller's entering and leaving evaporator water temperatures.

Evaporator Delta Temperature

The active cooling leaving water set point is reset using the following parameters:

- 1. Evaporator Leaving Water Temperature set point (Evap LWT)
- 2. Cooling Maximum Reset set point (Clg MaxRes)
- 3. Cooling Start Reset Delta Temperature (Clg StrtResDT)
- 4. Evaporator Delta Temperature (evaporator entering water temperature minus leaving temperature)

Reset is accomplished by changing the Active Cooling Leaving Water set point from the Evap LWT set point to the sum of Evap LWT (+) Cooling Maximum Reset set points as the evaporator delta temperature (entering minus leaving) varies from the Cooling Start Reset Delta T set point towards 0° F delta temperatures.

Heating Mode

The Active Heating Leaving Water set point is adjusted based upon the difference between the chiller's entering and leaving condenser water temperatures.

The active heating leaving water set point is reset using the following parameters:

- 1. Heating Leaving Water Temperature set point (Heat LWT)
- 2. Heating Maximum Reset set point (Htg MaxRes)
- 3. Heating Start Reset Delta Temperature (Htg StrtResDT)
- 4. Condenser Delta Temperature (condenser leaving water temperature minus entering temperature)

Reset is accomplished by changing the Active Heating Leaving Water set point from the Heat LWT set point to the value of [Heat LWT (-) Heating Maximum Reset set points] as the condenser delta temperature (leaving minus entering) varies from the Heating Start Reset Delta T set point towards 0°F delta temperature.

Active LWT Set Point

The active LWT set point represents the current control set point based on unit mode and reset. If unit mode is ice, then the active set point is equal to the ice set point. If the unit mode is cool, the active set point is the cool set point plus the leaving water reset value. If the unit mode is heat, the active set point is the heat set point minus the leaving water reset value.

LWT Error

LWT error compares the actual LWT to the active LWT set point.

The equation for cool mode is:

LWT error = LWT - active LWT set point

The equation for heat mode is:

LWT error = active LWT set point - LWT

LWT Slope

LWT slope is calculated such that the slope represents a time frame of one minute.

Every 12 seconds, the current LWT is subtracted from the value 12 seconds back. This value is added to a buffer containing values calculated at the last five intervals. The final result is a slope value that is an average over the past 60 seconds.

Pull Down Rate

The slope value calculated above will be a negative value as the water temperature is dropping. For use in some control functions, the negative slope is converted to a positive value by multiplying by -1.

Evaporator Saturated Temperature

Evaporator saturated temperature is calculated from the evaporator pressure for each circuit.

R134a Evaporator Saturated Temperatures

When R134a refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 12 straight-line segments. The accuracy of calculated saturated temperatures is +/- 0.5° F when compared to standard look up tables for R134a refrigerant.

R22 Evaporator Saturated Temperatures

When R22 refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 12 straight-line segments. The accuracy of calculated saturated temperatures is +/- 0.5° F when compared to standard look up tables for R22 refrigerant.

R407c Evaporator Saturated Temperatures

When R407c refrigerant is selected the saturated temperature is calculated from the refrigerant pressure using a second order polynomial algorithm. For pressures less than 120 psi the calculated saturated temperature follows the dew point saturated temperature. The accuracy of calculated saturated temperatures is +/- 1.0° F when compared to standard lookup tables for R407c refrigerant

R410a Evaporator Saturated Temperatures

When R410a refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 24 straight-line segments. The accuracy of calculated saturated temperatures are less than +/- 0.5°F when compared to standard look up tables for R410a.

Condenser Saturated Temperature

Condenser saturated temperature shall be calculated from the condenser pressure for each circuit.

R134a Evaporator Saturated Temperatures

When R134a refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 12 straight-line segments. The accuracy of calculated saturated temperatures is +/- 0.5° F when compared to standard look up tables for R134a refrigerant.

R22 Condenser Saturated Temperature

When R22 refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 12 straight-line segments. The accuracy of calculated saturated temperatures is +/- 0.5° F when compared to standard look up tables for R22 refrigerant.

R407c Condenser Saturated Temperature

When R407c refrigerant is selected the saturated temperature is calculated from the refrigerant pressure using a second order polynomial algorithm. For pressures greater than 120 psi the calculated saturated temperature follows the mid-point saturated temperature. The mid-point saturated temperature is the average between the dew and bubble point saturated temperatures. The accuracy of calculated saturated temperatures is +/- 1.0° F when compared to standard lookup tables for R407c refrigerant

R410a Evaporator Saturated Temperatures

When R410a refrigerant is selected the refrigerant pressure will be fitted to a curve made up of 24 straight-line segments. The accuracy of calculated saturated temperatures are less than +/- 0.5°F when compared to standard look up tables for R410a.

Evaporator Approach

The evaporator approach is calculated for each circuit. For R134a, R22, and R410A refrigerant the equation is:

Evaporator Approach = LWT - Evaporator Saturated Temperature

For R407c refrigerant the equation is:

Evaporator Approach = LWT – Evaporator Saturated Temperature + 4.0° F

Suction Superheat

Suction superheat is calculated for each circuit using the following equation:

Suction superheat = Suction Temperature – Evaporator Saturated (Dew for R407c) Temperature

Pumpdown Pressure

The pressure to which a circuit will pump down is based on the Low Evaporator Pressure Unload set point. The equation is as follows:

Pumpdown pressure = Low evap pressure unload - 15 psi

The low limit for the calculated Pumpdown Pressure set point is 10.0 psi

Unit Enable

The Unit Enable Set Point controls enabling and disabling the unit. The Unit Enable Set Point has options of OFF and ON. The Unit OFF input, Remote input, keypad entry, and BAS request can alter this set point. The Control Source Set Point determines which sources can change the Unit Enable Set Point with options of SWITCHES, KEYPAD or NETWORK.

Changing the Unit Enable Set Point is accomplished according to the following table. NOTE: An "x" indicates that the value is ignored.

Unit Off Input	Control Source Set Point	Remote Input	Key- pad Entry	BAS Request	Unit Enable
OFF	Х	Х	х	х	OFF
Х	SWITCHES	OFF	x	X	OFF
ON	SWITCHES	ON	х	Х	ON
ON	KEYPAD	Х	OFF	х	OFF
ON	KEYPAD	Х	ON	X	ON
ON	NETWORK	Х	x	OFF	OFF
ON	NETWORK	OFF	x	х	OFF
ON	NETWORK	ON	х	ON	ON

Unit Mode

The overall operating mode of the chiller is set by the Unit Mode Set Point with options of COOL, COOL w/Glycol, ICE w/Glycol, and TEST. This set point can be altered by the keypad, BAS, and Mode input. Changes to the Unit Mode Set Point are controlled by two additional set points.

- Available Modes Set Point: Determines the operational modes available at any time with options of COOL, COOL w/Glycol, COOL/ICE w/Glycol, ICE w/Glycol and TEST
- Control Source Set Point: Determines the source that can change the Unit Mode Set Point with options of KEYPAD, NETWORK, or SWITCHES.

When the Control source is set to KEYPAD, the Unit Mode shall stay at its previous setting until changed by the operator. When the Control source is set to BAS, the most recent BAS mode request shall go into effect even if it changed while the Control source was set to KEYPAD or DIGITAL INPUTS.

Changing the Unit Mode Set Point can be accomplished according to the following table.

NOTE: An "x" indicates that the value is ignored.

Control Source Set Point	Mode Input	Keypad Entry	BAS Request	Available Modes Set Point	Unit Mode
Х	Х	X	х	COOL	COOL
Х	Х	Х	Х	COOL w/Glycol	COOL w/Glycol
SWITCHES	OFF	Х	Х	COOL/ICE w/Glycol	COOL w/Glycol
SWITCHES	ON	Х	x	COOL/ICE w/Glycol	ICE w/Glycol
KEYPAD	Х	COOL w/Glycol	Х	COOL/ICE w/Glycol	COOL w/Glycol
KEYPAD	Х	ICE w/Glycol	x	COOL/ICE w/Glycol	ICE w/Glycol
NETWORK	Х	Х	COOL	COOL/ICE w/Glycol	COOL w/Glycol
NETWORK	Х	Х	ICE	COOL/ICE w/Glycol	ICE w/Glycol
Х	Х	Х	Х	ICE w/Glycol	ICE w/Glycol
Х	Х	Х	Х	TEST	TEST

Unit Test Mode

The unit test mode allows manual testing of controller outputs. Entering this mode requires the following conditions:

- Unit Switch = OFF
- Manager password active.
- Available Unit Mode set point = TEST

A test menu can then be selected to allow activation of the outputs. It shall be possible to switch each digital output ON or OFF and set the analog outputs to any value.

Circuit Available

A circuit is available if the circuit switch is in the on position and no circuit alarms are active. Timers that delay startup or staging of a circuit do not render it unavailable.

Power Up Start Delay

After powering up the unit, the motor protector modules may not reset for up to 150 seconds. After the control is powered up, no compressor can start for 150 seconds. Motor protect inputs are ignored during this time so as to avoid tripping a false alarm.

Ice Mode Start Delay

An adjustable start to start ice delay timer will limit the frequency with which the chiller may start in Ice mode. The timer starts when the first compressor starts while the unit is in ice mode. While this timer is active, the chiller cannot restart in Ice mode. The time delay is user adjustable.

The ice delay timer may be manually cleared to force a restart in ice mode. A set point specifically for clearing the ice mode delay is available. In addition, cycling the power to the controller will clear the ice delay timer.

Low Ambient Lockout

This feature is only available on air cooled units (WaterCooled=Off).

If the OAT drops below the low ambient lockout set point, then all running circuits will do a normal stop. Once the lockout has been triggered, no compressors will start until the OAT rises to the lockout set point plus 5°F.

Unit State

The Unit will always be in one of three states. These states are <u>Off</u>, <u>Auto</u>, and <u>Pumpdown</u>. Transitions between these states are shown in the diagram on the following page.

T1: Off to Auto

Unit Enable = True AND

No Unit Alarm AND

IF Unit Mode = Cir 1 Available OR Cir 2 Available

T2: Auto to Pumpdown

Keypad Enable = Off OR

BAS Enable = Off OR

Remote Switch = Off OR

T3: Pumpdown to Off

Unit Alarm OR

Unit Switch Off OR

No Compressors Running

T4: Auto to Off

Unit Alarm OR

Unit Switch Off OR

No Compressors Running AND [Unit Mode = Ice AND Ice Delay Active] OR

No Compressors Running AND [No Circuit Available]

Unit State Diagram

Evaporator Water Pump State Control (Evap State)

The state-transition diagram shown below controls operation of the evaporator pump.

Off Unit State = Off AND No Evap Water Freeze Alarm Unit State = Off AND No Evap Water Freeze Alarm Unit State = Off AND No Evap Water Freeze Alarm [Evap Pump State = Start AND Flow Switch Closed] for time > Evap Recirc Tmr

Evaporator Pump State Diagram

Pump Selection

The pump output used will be determined by the Evap Pump Control set point. The setting allows the following configurations:

#1 only – Pump 1 will always be used.

#2 only – Pump 2 will always be used.

Auto – The primary pump is the one with the least run hours, the other is used as a backup.

#1 Primary – Pump 1 is used normally, with pump 2 as a backup.

#2 Primary – Pump 2 is used normally, with pump 1 as a backup.

Primary/Standby Pump Staging

The pump designated as primary will start first. If the evaporator state is start for a time greater than the recirculate timeout set point and there is no flow, then the primary pump will shut off and the standby pump will start. When the evaporator is in the run state, if flow is lost for more than half of the flow proof set point value, the primary pump will shut off and the standby pump will start. Once the standby pump is started, the flow loss alarm logic will apply if flow cannot be established in the evaporator start state, or if the flow is lost in the evaporator run state.

Auto Control

If auto pump control is selected, the primary/standby logic above is till used. When the evaporator is not in the run state, the run hours of the pumps will be compared. The pump with the least hours will be designated as the primary at this time.

Evaporator Water Flow Loss

The Evaporator Water Flow Loss logic allows the Unit to shutdown compressors on a loss of flow up to two times every twenty-four hours before locking the unit out on a Evaporator Flow Loss Alarm.

- If there are no compressors running when Evaporator Water Flow Loss is indicated the Unit Status changes to Auto: Wait for flow. The evaporator water pump state changes to Start and no alarms are indicated.
- If an Evaporator Water Flow Loss occurs while a compressor is running all of the running compressors will be shutdown. The alarm indicators are turned On and the Circuit Status for any circuit with running compressors becomes Off: Ready, the Unit Status becomes Auto: Wait For Flow and the evaporator water pump state changes to Start
- When flow is reestablished the Unit Status becomes Auto: Recirculate while the
 Evaporator Flow Recirculation Timer counts down. If there is continuous
 evaporator water flow while the Evaporator Recirculation Timer counts down the
 Alarm indicator is turned off, and the unit resumes normal start up procedures
 based on water temperature and cycle timers.
- If second Evaporator Water Flow Loss occurs within twenty-four hours the process described above is repeated.
- If a third loss of flow is indicated in a twenty-four hour time frame the unit will shut down on an Evaporator Water Flow Loss alarm and it will be locked out until this alarm is manually cleared.
- The twenty-four hour timer that limits the auto restart is reset when the control clock rolls over 00:00 each night.

Condenser Fans – Air Cooled

Air-cooled condenser fan control is active only when the water cooled set point is set to off.

Fantrol

Fans 1, 3, 5, 7, 9, 11 are for circuit #1, and fans 2, 4, 6, 8, 10, 12 are for circuit 2. Fans 1 and 2 start with the first compressor on the respective circuit when the ambient temperature is greater than 75°F. Below 75°F, these fans start when the condenser saturated temperature gets up to the condenser saturated temperature target. The compressor must be running in order to run any fans. R22 and R407C units are limited to 8 fans.

Fan Stages

There are 2, 3, 4, 5 or 6 fans available per circuit. On 8, 10, and 12 fan units, fans 5/7, 6/8, 9/11 and 10/12 are controlled by one contactor for each pair, using virtual stages to allow a difference of only one fan between stages, See tables below:

4 and 6-Fan Remote Condenser

Stage	Fans Operating on Circuit 1	Fans Operating on Circuit 2	
1	Fan 1	Fan 2	
2	Fans 1 & 3	Fans 2 & 4	
3	Fans 1, 3, 5	Fans 2, 4, 6	

8-Fan Remote Condenser, R22, R407C

Stage	Fans Operating on Circuit 1	Fans Operating on Circuit 2	
1	Fan 1	Fan 2	
2	Fans 1, 3	Fans 2, 4	
3	Fans 1, 3, 5	Fans 2, 6, 8	
4	Fans 1, 3, 5, 7	Fans 2, 4, 6, 8	

8-Fan Remote Condenser, R410A

Stage	Fans Operating on Circuit 1	Fans Operating on Circuit 2
1	Fan 1	Fan 2
2	Fans 1, 3	Fans 2, 4
3	Fans 1, 5, 7	Fans 2, 6, 8
4	Fans 1, 3, 5, 7	Fans 2, 4, 6, 8

10 Fan Remote Condenser, R410A

Stage	Fans Operating on Circuit 1	Fans Operating on Circuit 2	
1	Fan 1	Fan 2	
2	Fans 1, 3	Fans 2, 4	
3	Fans 1, 5, 7	Fans 2, 6, 8	
4	Fans 1, 3, 5, 7	Fans 2, 4, 6, 8	
5	Fans 1, 3, 5, 7, 9	Fans 2, 4, 6, 8, 10	

12Fan Remote Condenser, R410A

Stage	Fans Operating on Circuit 1	Fans Operating on Circuit 2	
1	Fan 1	Fan 2	
2	Fans 1, 3	Fans 2, 4	
3	Fans 1, 5, 7	Fans 2, 6, 8	
4	Fans 1, 3, 5, 7	Fans 2, 4, 6, 8	
5	Fans 1, 3, 5, 7, 9	Fans 2, 4, 6, 8, 10	
6	Fans 1, 3, 5, 7, 9, 11	Fans 2, 4, 6, 8, 10, 12	

Normal Operation – Staging Up

At startup, the first fan will start when the saturated condenser temperature rises above the target. After this, the stage up deadbands apply.

When the saturated condenser temperature is above the Target + the active deadband, a Stage Up error is accumulated.

Stage Up Error Step = Saturated Condenser Refrigerant temperature – (Target + Stage Up dead band)

The Stage Up Error Step is added the Stage Up Accumulator once every Stage Up Error Delay seconds. When Stage Up Error Accumulator is greater than the Stage Up Error Set Point another stage is started.

When a stage up occurs or the saturated condenser temperature falls back within the Stage Up dead band the Stage Up Accumulator is reset to zero.

Normal Operation – Staging Down

There are four Stage Down dead bands, one for each stage.

When the saturated condenser refrigerant temperature is below the condenser saturated temperature target – the active dead band, a Stage Down error is accumulated.

Stage Down Error Step = (Target – Stage Down dead band) – Saturated Condenser Refrigerant temperature

The Stage Down Error Step is added to Stage Down Accumulator once every Stage Down Error Delay seconds. When the Stage Down Accumulator is greater than the Stage Down Error Set Point another stage of condenser fans turn off. The last stage on will not shut off until the circuit is in an off state.

When stage down occurs or the saturated temperature rises back within the Stage Down dead band the Stage Down Error Accumulator is reset to zero.

Forced Fan Stage At Start

Fans may be started simultaneously with the compressor based on outdoor ambient temperature. When the compressor starts, a Fantrol stage is forced based on the following table.

OAT	Fantrol Stage At Start
>75℉	Forced Fan 1 SP
>90°F	Forced Fan 2 SP
>105°F	Forced Fan 3 SP

Up to four fans may be forced on when the compressor starts.

After forcing fans on, the saturated condenser temperature may temporarily stay below the target by some amount. In order to keep the fans from staging off, no stage down error can be accumulated until either the OAT drops below 75°F or the saturated condenser temperature goes above the target.

Condenser Pump and Tower Control – Water Cooled

Condenser pump and cooling tower control logic requires that the unit be configured as water-cooled in order to be active.

Condenser Water Pump State Control (Cond State)

If the unit is configured as water-cooled, then the state-transition diagram shown below defines the condenser pump control logic.

Condenser Pump State Diagram

Pump Selection

The pump output used will be determined by the Cond Pump Control set point. The setting allows the following configurations:

#1 only – Pump 1 will always be used.

#2 only – Pump 2 will always be used.

Auto – The primary pump is the one with the least run hours, the other is used as a backup.

#1 Primary – Pump 1 is used normally, with pump 2 as a backup.

#2 Primary – Pump 2 is used normally, with pump 1 as a backup.

Primary/Standby Pump Staging

The pump designated as primary will start first. If the condenser state is start for a time greater than the re-circulate timeout set point and there is no flow, then the primary pump will shut off and the standby pump will start. When the condenser is in the run state, if flow is lost for more than half of the flow proof set point value, the primary pump will shut off and the standby pump will start. Once the standby pump is started, the flow loss alarm logic will apply if flow cannot be established in the condenser start state, or if the flow is lost in the condenser run state.

Auto Control

If auto pump control is selected, the primary/standby logic above is till used. When the condenser is not in the run state, the run hours of the pumps will be compared. The pump with the least hours will be designated as the primary at this time

Condenser Water Flow Loss

The Condenser Water Flow Loss logic allows the Unit to shutdown compressors on a loss of flow up to two times every twenty-four hours before locking the unit out on a Condenser Flow Loss Alarm.

- If there are no compressors running when Condenser Water Flow Loss is indicated the Unit Status changes to Auto: Wait for flow. The condenser water pump state changes to Start and no alarms are indicated.
- If a Condenser Water Flow Loss occurs while a compressor is running all of the running compressors will be shutdown. The Alarm indicators are turned On and the Circuit Status for any circuit with running compressors becomes Off: Ready, the Unit Status becomes Auto: Wait For Flow and the condenser water pump state changes to Start
- When flow is reestablished the Unit Status becomes Auto: Recirculate while the Condenser Flow Recirculation Timer counts down. If there is continuous evaporator water flow while the Condenser Recirculation Timer counts down the Alarm indicator is turned off, and the Unit resumes normal start up procedures based on water temperature and cycle timers.
- If second Condenser Water Flow Loss occurs within twenty-four hours the process described above is repeated.
- If a third loss of flow is indicated in twenty-four hour time frame the Unit will shut down on an Condenser Water Flow Loss alarm and it will be locked out until this alarm is manually cleared.
- The twenty-four hour timer that limits the auto restart is reset when the control clock rolls over 00:00 each night.

Tower Fans

Tower fan control is active when the unit is set up as water cooled (WaterCooled=On), Tower Control is set to Temperature, and the condenser pump is in the RUN state. Staging is based on Entering Condenser Water Temperature (ECWT). Operation depends on the following parameters.

Condenser pump state

ECWT

Stage up and stage down timer values

Tower set points (Tower Control, Tower Stages, Stage Up Time, Stage Down Time, Stage Differential, Stage #1 ON, Stage #2 ON, Stage Down @, Stage Up @)

When the condenser pump starts, the stage up timer shall start. The first stage shall turn ON when the following conditions are met:

The stage up timer completes

The ECWT is > Stage #1 ON set point

Bypass valve position is > the Stage Up @ set point (only if Valve/VFD Control set point = Valve Stage)

Additional stages can turn on (up to the number specified by the Tower Stages set point) when above conditions are met for the next stage plus the following condition:

VFD Speed is > the Stage Up @ set point (only if Valve/VFD Control set point = VFD Stage OR Valve SP/VFD Stage)

Down staging shall occur when the following conditions are met:

The stage down timer completes

The ECWT is < Stage #X ON (Temp) set point – Stage Differential (Temp) set point

Bypass valve position is < the Stage Down @ set point (only if Valve/VFD Control set point = Valve Stage)

VFD Speed is < the Stage Down @ set point (only if Valve/VFD Control set point = VFD Stage OR Valve SP/VFD Stage)

Each stage up or stage down event will restart both the stage up and stage down timers. Only one fan output will be switched at a time (except that all outputs switch OFF when the condenser pump state equals OFF).

Cooling Tower Bypass Valve

When the Valve/VFD Control set point is set to None OR VFD Stage, this output will be set to 0. Otherwise, it shall be controlled as described below.

Initial Valve Position

When the condenser pump is not in the RUN state, the valve output will be set as a function of entering condenser water temperature (ECWT)) per the following graph.

Operation After Start

When the condenser pump is in the RUN state, the valve output will be controlled in one of two modes as specified by the Valve/VFD Control set point. The controlled parameter will be the condenser entering water temperature. When the desired output signal varies from 0 to 100%, the output voltage will vary as shown below.

0 to 10 VDC (Valve Type = NC to tower) 10 to 0 VDC (Valve Type = NO to tower)

Valve Set Point Mode

This mode is operational when the Valve/VFD Control set point is set to Valve Set Point OR Valve SP/VFD Stage. In this mode the valve output is varied with a proportional-derivative (PD) algorithm (with dead band) in order to maintain the controlled parameter (CP) at the desired value. The output is always limited between the Valve Control Range (Min) set point and the Valve Control Range (Max) set point. A valve increment shall be computed once every 5 seconds according to the following equation.

Increment = [(Error) * (Error Gain set point)] + [(Slope) * (Slope Gain set point)] Where: Error = ECWT - Valve Set Point Slope = (Present CP) - (Previous CP)

When the Error is > the Valve Deadband set point, the valve position analog output (% of full scale) is updated according to the following equation.

New %Position = Old %Position + Increment/10.

Valve Stage Mode

This mode is only operational when the Valve/VFD Control set point is set to Valve Stage. In this mode the valve output is controlled as for Valve Set Point mode (above) except that the active set point for the controlled parameter is selected according to the following table.

Number Of Fans ON	Active Set Point
0	Valve Set Point
1	Stage #1 ON
2	Stage #2 ON

Cooling Tower Fan VFD

When the Valve/VFD Control set point is set to None, Valve Setpoint, OR Valve Stage, this output will be set to 0. Otherwise, it will be controlled in a manner identical to Valve Stage Mode (above) except that (1) it will be kept at zero until the first fan stage is ON and (2) the following set points do not apply.

Valve Control Range (Min) Valve Control Range (Max) Valve Type

Compressor Start/Stop Timing

This section determines when to start or stop a compressor. There are two separate functions used, one for staging up and one for staging down.

Stage Up Now

The **Stage Up Now** flag is set based on the following tests:

If Unit mode = Cool AND
no compressors are running AND
LWT error > Start delta + 0.5 * Control Band AND
Motor Protect Timer expired AND
Stage up timer expired THEN
Stage Up Now = True

If Unit Mode = Cool AND
At least one compressor is running AND
LWT error > 0.5 * Control band AND
Pulldown rate <= Max pulldown rate AND
Compressors running < unit capacity limit AND
Stage up timer expired THEN
Stage Up Now = True

If Unit mode = Heat AND
no compressors are running AND
LWT error > Start delta + 0.5 * Control Band AND
Motor Protect Timer expired AND
Stage up timer expired THEN

Stage Up Now = True

If Unit Mode = Heat AND
At least one compressor is running AND
LWT error > 0.5 * Control band AND
Pulldown rate <= Max pulldown rate AND
Compressors running < unit capacity limit AND
Stage up timer expired THEN
Stage Up Now = True

Stage Down Now

The **Stage Down Now** flag is set based on the following tests:

If Unit Mode = Cool AND LWT error < -0.5 * Control band AND More than one compressor running AND Stage down timer expired THEN Stage Down Now = True

If Unit Mode = Cool AND LWT error < (-0.5 * Control band - stop delta) AND One compressor running AND Stage down timer expired THEN Stage Down Now = True

If Unit Mode = Cool AND
Number of compressors running > Demand limit AND
Stage down timer expired THEN
Stage Down Now = True

If Unit Mode = Heat AND LWT error < -0.5 * Control band AND More than one compressor running AND Stage down timer expired THEN Stage Down Now = True

If Unit Mode = Heat AND LWT error < (-0.5 * Control band - stop delta) AND One compressor running AND Stage down timer expired THEN Stage Down Now = True

Compressor Sequencing

Compressor staging is based primarily on compressor run hours and starts. Compressors that have less starts will normally start before those with more starts. Compressors that have more run hours will normally shut off before those with less run hours. In the event of a tie on number of starts, the lower numbered compressor starts first. In the event of a tie on run hours, the lower numbered compressor shuts off first. Run hours are compared in terms of tens of hours.

If possible, only one compressor per circuit will start before starting the second compressor on any circuit. If a circuit is unavailable for any reason, the other circuit shall be allowed to stage the second compressor on. When staging down, one compressor on each circuit shall be left on until each circuit has only one compressor running.

Low Ambient Start (WaterCooled = NO)

In order to avoid low evaporator pressure alarms at startup, low OAT start logic allows for running at low evaporator pressures for a longer time than normal as well allowing multiple compressor restart attempts before locking out the circuit.

Low Ambient Start Procedure

A low OAT start is initiated if the condenser refrigerant saturated temperature is less than 85.0°F when the first compressor starts. Once the compressor starts the circuit is in a low OAT start state for a time equal to the Low OAT Start Time set point. During Low OAT Starts, the freezestat logic and low evaporator pressure events are disabled. The absolute limit for low evaporator pressure is enforced and the compressor will shutdown if the evaporator pressure gets down to 5.0 psi. For R410a, the absolute limit for low evaporator pressure is 20.0 psi.

When the Low OAT Start Timer has expired, if the evaporator pressure is greater than or equal to the Low Evaporator Pressure Unload set point, the start is considered successful and normal alarm and event logic is reinstated. If the evaporator pressure is less than the Low Evaporator Pressure Unload set point when the Low OAT Start Timer expires, the start is unsuccessful and the compressor will shutdown.

Three compressor restarts per circuit are allowed when a circuit fails to start a compressor in a Low Ambient Start attempt. On the third failed Low Ambient Start attempt the Restart Alarm is triggered and the circuit will not attempt to restart a compressor until the Restart alarm has been cleared.

Circuit Capacity Overrides

The following conditions shall override the automatic capacity control when the chiller is in cool mode only. These overrides keep a circuit from entering a condition in which it is not designed to run.

Low Evaporator Pressure

If a compressor in a circuit is running and the evaporator pressure drops below the Low Evaporator Pressure Hold set point, no more compressors will be allowed to start on that circuit. The limit shall be active until the evaporator pressure reaches the hold Low Evaporator Hold set point plus 8.0 psi for R134a, R22, and R407C or 13.0 psi for R410A. On that circuit's VIEW CIRCUITn (1) screen is displayed the "Hold Clear @" value which is the limit by which the evaporator pressure must reach to allow for additional loading. A Low Evaporator Pressure Hold event will be recorded in the Event Log.

If two or more compressors are running in a circuit and the evaporator pressure drops below the Low Evaporator Pressure Unload set point, the circuit will begin reducing capacity. If two compressors are running, one of the compressors will be stopped after a time delay has expired which is one-half the calculated freeze time (lower pressure then shorter time). If three compressors are running, one compressor will stop after a this time delay which is one-half the calculated freeze time and, ten seconds later, if the pressure has not risen above the unload set point an additional compressor will be stopped. The last compressor on a circuit will not stop due to the unload condition. The low evaporator pressure unload event will clear when the evaporator pressure rises either 8.0 psi for R134a, R22, and R407C or 13.0 psi for R410A above the Low Evaporator Pressure Hold set point. A Low Evaporator Pressure Unload event will be recorded in the Event Log.

If the evaporator pressure drops below the Low Evaporator Pressure Unload set point and one compressor on the circuit is running then the following table applies.

Description	Low Evap Press Time	Requirement to continue
Check #1	15 seconds after start	Evap Press >(0.48*Low Evap Press SP)
Check #2	30 seconds after start	Evap Press >(0.66*Low Evap Press SP)
Check #3	45 seconds after start	Evap Press >(0.83*Low Evap Press SP)
Check #4	60 seconds after start	Evap Press > Low Evap Press SP

High Condenser Pressure – Unload Logic

If the discharge pressure rises above the High Condenser Pressure Unload set point and more than one compressor on the circuit is running, the circuit will stage down. One compressor will shut down as soon as the pressure rises above the unload set point and if two remain running then one more will shut down 10 seconds later if the pressure is still above the unload set point. On that circuit's VIEW CIRCUITn (1) screen is displayed the "Hold Clear @" value which is the limit by which the condenser pressure must drop to allow for additional loading. A High Condenser Pressure Unload event will be recorded in the Event Log.

No stage up will be allowed on the circuit until the condenser pressure drops below the unload set point less an offset value which is calculated based on 1) type refrigerant, 2) number of compressors, 3) condenser configuration, and 4) how many high pressure unload occurrences since the previous mid-night. See below for initial offset value and step-increase for each additional occurrence.

Hold Clear Reset Value =

High Pressure Unload set point — ["Initial Offset" + ["Step-Increase" x ["number of occurrence"-1]]]

Initial Offset & Step Increase

Condenser Configuration	No. of Compressors	R410A	R22, R407C	R134a	Step Increase
Water-Cooled	4	40 psi	30 psi	30 psi	10 psi
	6	32 psi	N/A	20 psi	10 psi
Air-Cooled	4	100 psi	70 psi	N/A	15 psi
	6	80 psi	N/A	N/A	15 psi

Example of Operation: Assume a packaged water-cooled WGZ unit with 4 compressors using R410A as the refrigerant. Circuit number one is fully loaded (both compressors running) when that circuit's condenser pressure exceeds the High Condenser Pressure Unload set point. Circuit number one will unload by turning one of the two compressors off immediately. This circuit will not be allowed to load back up until its condenser pressure decreases below the "Hold Clear @" value which is displayed on the "VIEW CIRCUIT 1 (1)" screen. Since this is the first High Condenser Pressure – Unload occurrence for that circuit, the circuit will be allowed to load once the condenser pressure drops below the High Condenser Pressure Unload set point minus 40 psi. If using default value (405 psi) this will be 365 psi. After some time, the condenser pressure is allowed to decrease below this value and circuit number one is again allowed to load up. Again its condenser pressure exceeds the High Condenser Pressure Unload set point and it unloads. Because this is the second High Condenser Pressure – Unload occurrence for that circuit, the circuit will not be allowed to load until the condenser pressure drops below the High Condenser Pressure Unload set point minus 50 psig (40 psi plus step-increase 10psi). If using default values, this will be 355 psi. As you can see, for each occurrence the discharge pressure must get lower and lower (based on Step-Increase value) before the circuit is allowed to again load. This logic is intended to prevent excessive cycling of compressors.

Unit Capacity Overrides

The following conditions shall override the automatic capacity control when the chiller is in cool mode only.

Demand Limit

The maximum unit capacity can be limited by a 4 to 20 mA signal on the Demand Limit analog input. This function is only enabled if the Demand Limit set point is set to ON. The maximum unit capacity stage is determined as shown in the following graph.

Any signal less than 4 mA does not limit the chiller capacity.

Network Limit

The maximum unit capacity can be limited by a network signal. This function is only enabled if the unit control source is set to network. The maximum unit capacity stage is based on the network limit value received from the BAS, and is determined as shown in the following graph.

In order to allow all stages to run, a signal of 100.0% is required.

Maximum LWT Rate

The maximum rate at which the leaving water temperature can drop is limited by the Maximum Pull Down Rate set point when the unit mode is cool. If the rate exceeds this set point, no more compressors shall be started until the pull down rate is less than the set point. Running compressors will not be stopped as a result of exceeding the maximum pull down rate.

Low Ambient Lockout (Water Cooled = NO Only)

If the OAT drops below the low ambient lockout set point, then all running circuits will do a normal stop, after the compressors have stopped the evaporator water pump will stop. Once the lockout has been triggered, the evaporator water pump will remain off and no compressors will start until the OAT rises to the lockout set point plus 5°F.

Manual Compressor Control

The operator can manually enable and disable individual compressors. When a compressor has been disabled it is considered unavailable to start in the staging logic. With Manual Compressor control it is possible to take a damaged compressor offline while the remaining compressors on the circuit can still provide some cooling.

A running compressor can not be disabled until it has been shutdown. If both of the compressors on a circuit have been disabled then the circuit is disabled. If both circuits have all of their compressors disabled, the Unit state will remain "Off".

Normal Circuit Shutdown

If a condition arises that requires a circuit to shut down, but it is not an emergency situation, then the circuit will do a pump down. A normal circuit shutdown will be initiated when any of the following occur:

- Unit State = Pump Down
- Circuit Switch = Off
- Low Ambient Lockout
- A normal stage down occurs, and only one compressor on the circuit is running
- Unit mode = Ice AND the ice set point is reached

Pump Down Procedure

- If both compressors are running, shut off the appropriate compressor based on sequencing logic
- With one compressor left running, turn off hot gas output and liquid line output
- Keep running until evaporator pressure reaches the pump down pressure, then stop compressor
- If evaporator pressure does not reach pump down pressure within two minutes, stop compressor and record a Failed Pumpdown event in the Event Log.

Rapid Circuit Shutdown

A situation may arise that requires a circuit to shut down immediately, without doing a pumpdown. This rapid shutdown will be triggered by any of the following:

Unit State = Off Circuit Alarm Low ambient start attempt failed

All compressors, hot gas, and liquid line outputs should be turned off immediately for a rapid shutdown.

Liquid Line Solenoid

The liquid line output shall be on any time a compressor on the circuit is running and the circuit is not performing a pump down. This output should be off at all other times.

Hot Gas Bypass Solenoid

This output shall be on when one compressor on the circuit is running and the circuit is not performing a pump down. The output should be off at all other times including the delay time described below.

The hot gas bypass valve opening will be delayed for Hot Gas Bypass Time set point seconds (the default is 30 seconds) when the first compressor starts on each circuit.

EXV Control

The EXV control logic is active regardless of the expansion valve type setting. While a circuit is in the run state, the EXV controls suction superheat. The superheat target is 8°F. PID logic will be used to control the superheat to the target value.

Any time the circuit is not in the run state, the EXV position should be 0.

EXV Control Range

The table below shows the EXV range based on the number of compressors running and number of compressors on unit.

Number of	Valve	Co	mpressors Running	
Compressors	Position	1	2	3
4	EXV Min	8%	8%	-
4	EXV Max	60%	100%	-
	EXV Min	8%	8%	8%
6	EXV Max	35%	45%	65%

Manual EXV Control

The EXV position can be set manually. Manual control can only be selected when the circuit is in the run state. At any other time, the EXV control set point is forced to auto.

When EXV control is set to auto, the manual EXV position setting follows the auto control position. When EXV control is set to manual, the EXV position is equal to the manual EXV position setting.

Maximum EXV Operating Pressure

This logic only applies to TGZ units (Refrig = R134a) equipped with electronic expansion valves. The purpose of this logic is to prevent the operating circuit's evaporator pressure from exceeding the 'MaxOpPress' set point (found on "SET COMP SPs (6) screen) and overloading the compressors. The electronic expansion valves (EEV) will close to prevent the operating circuit's evaporator pressure from exceeding the 'MaxOpPress' set point.

Using the Controller

Getting Started

There are two basic procedures to learn in order to utilize the MicroTech II controller:

- Navigating through the menu matrix to reach a desired menu screen and knowing where a particular screen is located.
- Knowing what is contained in a menu screen and how to read that information or how to change a setpoint contained in the menu screen.

Navigating Through the Menus

The menus are arranged in a matrix of screens across a top horizontal row. Some of these top-level screens have sub-screens located under them. The general content of each screen and its location in the matrix are shown in Figure 10. (A detailed description of each menu begins on page 58.) There are two ways to navigate through the menu matrix to reach a desired menu screen.

One is to scroll through the matrix from one screen to another using the four ARROW keys.

The other way is to use shortcuts to work through the matrix hierarchy. From any menu screen, pressing the MENU key will take you to the top level of the hierarchy. The display will show ALARM, VIEW, and SET as shown in Figure 8. This corresponds to the second row of screens on Figure 10. One of these groups of screens can then be selected by pressing the key connected to it via the pathway shown in Figure 8 on page 19.

For example, selecting ALARM will go the next row of menus under ALARM (ALARM LOG or ACTIVE ALARM). Selecting VIEW will go the next level of screens under VIEW (VIEW UNIT STATUS or VIEW UNIT TEMP). Selecting SET will go to a series of screens for looking at and changing setpoints.

After pressing the MENU button, the top-level menu screen will show:

```
< ALARM
< VIEW
< SET
<
```

After pressing the "VIEW" menu button, a menu screen will show:

```
VIEW < COMPRESSOR
< UNIT
< EVAPORATOR
< FANS
```

After pressing the "EVAPORATOR" menu button, the selected data screen will show:

```
VIEW EVAP
(screen data)
(screen data)
(screen data)
```

The arrow keys will automatically return to the "scroll" mode at this time.

MENU Key

The MENU key is used to switch between the shortcut method (known as the MENU mode and as shown in Figure 8) and scrolling method (known as the SCROLL mode). The MENU mode is the shortcut to specific groups of menus used for checking ALARMS, for VIEWING information, or to SET setpoint values. The SCROLL mode allows the user to move about the matrix (from one menu to another, one at a time) by using the four ARROW keys. A typical menu screen is shown in the following figure. Pressing the MENU key from any menu screen will automatically return you to the MENU mode.

Figure 9, Display in the Shortcut (SCROLL) Mode and Keypad Layout

ENTER Key

Pressing the ENTER key changes the function of the ARROW keys to the editing function as shown below:

LEFT key <u>Default</u>, changes a value to the factory-set default value.

RIGHT key <u>Cancel</u>, cancels any change made to a value and returns to the original setting.

UP key <u>Increment</u>, increases the value of the setting

DOWN key <u>Decrement</u> decreases the value of a setting.

These four edit functions are indicated by one-character abbreviation on the right side of the display (this mode is entered by pressing the ENTER key).

Most menus containing setpoint values have several different setpoints shown on one menu. When in a setpoint menu, the ENTER key is used to proceed from the top line to the second line and on downward. The cursor will blink at the entry point for making a change. The ARROW keys (now in the edit mode) are used to change the setpoint as described above. When the change has been made, press the ENTER key to enter it. Nothing is changed until the ENTER key is pressed.

For example, to change the chilled water setpoint:

- 1. Press MENU key to go to the MENU mode.
- 2. Press SET (the UP Key) to go to the setpoint menus.
- 3. Press UNIT SPs (the Right key) to go to setpoints associated with unit operation.
- 4. Press the DOWN key to scroll down through the setpoint menus to the third menu which contains Evap LWT=XX.X°F.
- 5. Press the ENTER key to move the cursor down from the top line to the second line in order to make the change.
- 6. Use the ARROW keys (now in the edit mode as shown above) to change the setting.
- 7. When the desired value is achieved, press ENTER to enter it and also move the cursor down.

At this point, the following actions can be taken:

- 1. Change another setpoint in this menu by scrolling to it with the ENTER key.
- 2. Using the ENTER key, scroll to the first line in the menu. From there the ARROW keys can be used to scroll to different menus.

Menu Screens

Various menus are shown in the controller display. Each menu screen shows specific information, in some cases menus are only to *view* status of the unit, in some cases for checking *alarms*, and in some cases they are used to *set* setpoint values that can be changed.

The menus are arranged in a matrix of screens across a top horizontal row. Some of these top-level screens have sub-screens located under them. The content of each screen and its location in the matrix are shown in Figure 10. A description of each menu begins on page 58.

The arrow keys on the controller are used to navigate through the menus. The keys are also used to change numerical setpoint values contained in certain menus.

Figure 10, Menu Matrix

							"MENU"
"VIEW" MENUS							
UI	NIT	CIRC	CUITS	REFRIGI	ERANT	FANS	EVENTS
VIEW UNIT STATUS (1)	VIEW UNIT TEMP (1)	VIEW CIRC #1 STATUS (1)	VIEW CIRC #2 STATUS (1)	VIEW REFRIGERANT CIRCUIT #1 (1)	VIEW REFRIGERANT CIRCUIT #2 (1)	VIEW FAN/TOWER (1)	VIEW EVENT (1)
VIEW UNIT STATUS (5)	VIEW UNIT TEMP (2)	VIEW COMP #1 STATUS (3)	VIEW CIRC #2 STATUS (3)	VIEW EVAP (2)	VIEW EVAP (2)	VIEW FAN/TOWER (n)	VIEW EVENT (n)

 \leftarrow Continued \leftarrow (Right side of matrix continued from above)m

"ALAR	"ALARM" MENUS		"SET" MENUS					
ALARM LOG	ACTIVE ALARM (1)	SET UNIT	SET COMP	SET LIMIT	SET FANS (1)	SET	TEST	
(LAST)	TYPE, TIME	SPs, (1)	SPs (1)	ALARMS (1)	STAGES	TOWER	UNIT (1)	
TYPE, TIME					FANTROL	(1)		
ALARM LOG	ACTIVE ALARM (2)	SET UNIT SPs,	SET COMP	SET LIMIT	SET FANS (2)	SET		
(NEXT TO LAST)	TYPE, TIME	(2)	SPs	ALARMS (2)	STAGE ON	TOWER		
	ADDITIONAL		(2)			(2)		
ALARM LOG	ACTIVE ALARM (3)	SET UNIT SPs,		SET LIMIT	SET FANS (3)	SET		
(SECOND TO	CLEAR/VIEW	(3)		ALARMS (3)	STAGE OFF	TOWER		
LAST)						(3)		
ALARM LOG		SET UNIT SPs,				SET TOWER	TEST	
LAST 25 SHOWN		(4)				(to n)	UNIT (7)	
		(to 13)						

Selection can be made within the matrix by using the LEFT/RIGHT keys to move between columns and the UP/DOWN keys to move between rows.

Menu Descriptions

This section contains information on each screen. The menu screens are in order of the matrix in Figure 10 going from left to right and down when there are sub-menus. Many menus are self-explanatory. A Setpoint menu allows selection of whether the unit has a water-cooled condenser, WaterCooled = Y(Yes) or a remote condenser, WaterCooled = Y(Yes) or a remote condenser, WaterCooled = Y(Yes)0. This selection will alter some menus as appropriate to the type of condenser.

Screen Definitions – MENU

Top level menu:

			<	ALARM
			<	VIEW
			<	SET
			<	

ALARM menu:

ALARM	<	ACTIVE
	<	LOG
	<	
	<	

VIEW menu:

VIEW	<	COMPRESSOR
	<	UNIT
	<	EVAPORATOR
	<	FANS/TOWER

VIEW UNIT menu:

	<u> </u>	
VIEW	<	TEMP
UNIT	<	STATUS
	<	REFRIGERANT

SET menu:

SET	<	ALARM LIN	1ITS
	<	UNIT	SPs
	<	COMPRESSOR	SPs
	<	FANS/TOWER	SPs

Screen Definitions - VIEW

View Unit Status

```
VIEW UNIT STATUS (1)
Auto
Cooling Stage = 0
Evap Pump = RUN
```

Unit states can be OFF, COOL, GYLCOL, ICE, or ALARM as determined from the Unit Mode setpoint, the Unit Enable, and the presence of an alarm.

Circuit states can be OFF/OFF, ON/OFF, OFF/ON, and ON/ON.

Evaporator Pump States can be OFF, STRT, or RUN.

When more than one screen are stacked (i.e., relate to each other on the same subject), they are numbered sequentially with the numbers appearing in the upper-right corner.

```
VIEW UNIT STATUS (2)
Demand Limit=Stg 4
Network Limit=Stg 4
```

VIEW UNIT STATUS (3) Stg Up Delay=XXX sec Stg Dn Delay=XXX sec Ice Delay=XXh

VIEW UNIT STATUS (4) D.O. 111111111 123456789012345678 0000000000000000000

This menu gives the status of digital outputs (D.O.), 1=ON, 0=OFF. Numbers are 1 through 18. See Error! Reference source not found. on page Error! Bookmark not defined. for number reference.

VIEW UNIT STATUS (5) D.I. 111111111 123456789012345678 000000000000000000

This menu gives the status of digital inputs (D.I.), 1=ON, 0=OFF. Numbers are 1 through 18. See Table 6 on page 20 for number reference.

VIEW UNIT STATUS (6) Analog Output (volts \times 100) 1 = 000.0 2 =000.0

VIEW UNIT STATUS (7) Analog Output (volts \times 100) 3 = 000.0 4 =0.00

VIEW UNIT STATUS (8) EXB1 Online D.O. 1 2 3 4 0 0 0 0

View Unit Tempertures

Water Cooled = Y TGZ in Cool Mode

VIEW UNIT TEMP (1) Evap LWT = $XX.X^{\circ}F$ Cond EWT = $XXX.X^{\circ}F$ LWT Target = XX.X°F

Water Cooled = N

VIEW UNIT TEMP (1)Evap LWT $= XX.X^{\circ}F$ $OAT = XXX.X^{\circ}F$ LWT Target = XX.X°F

TGZ Unit in Heat Mode (R134a)

VIEW UNIT TEMP (1)
Evap LWT = XX.X°F
Cond EWT = XXX.X°F
LWT Target = XX.X°F

The difference between the three screens above is that water-cooled units and the TGZ units will give the entering condenser water temperature and air-cooled units will give the outside air temperature (OAT). The outside-air temperature sensor is furnished with the unit, inside the control panel, wired to the correct terminals. It must be installed outdoors in a location that will give the true outdoor temperature that the condenser coils will see. Splicing of the sensor lead may be required. The unit will not operate without the sensor installed.

WGZ unit

VIEW UNIT TEMP (2) LWT Pulldn= XX.X °F Control Band= XX.X°F

TGZ Unit (R134a)

VIEW UNIT TEMP (2) LWT Pulldn= XX.X °F Control Band= XX.X°F

```
VIEW UNIT TEMP (3)
Control Temps
Start Up XX.X°F
Stage Up XX.X°F
```

```
VIEW UNIT TEMP (4)
Control Temps
Stage Down XX.X°F
Shut Down XX.X°F
```

TGZ Unit Only in Cool Mode

VIEW	UNIT	TEMP	(5)
Cond	LWT	XX.X	F
Evap	EWT	XX.X	F

TGZ Unit Only in Heat Mode

VIEW UNIT TEMP (5) Cond LWT XX.X°F Evap EWT XX.X°F

View Circuit

VIEW CIRCUIT#1 (1) OFF

```
VIEW CIRCUIT#1 (2)
Comp 1 = OFF
Hours = XXXXX
Starts = XXXXX
```

VIEW CIRCUITt#1 (3)
Comp 3 = OFF
Hours = XXXXX
Starts = XXXXX

If # of Compresors = 6 Only for R410A or R134a

VIEW CIRCUIT 1 (4) Comp5=Off

Hours = XXXXX Starts = XXXXX

VIEW CIRCUIT 2 (1) Off

VIEW CIRCUIT#2 (2)
Comp 2 = OFF
Hours = XXXXX
Starts = XXXXX

VIEW CIRCUIT#2 (3)
Comp 4 = OFF
Hours = XXXXX
Starts = XXXXX

If # of Compresors = 6 Only for R410A or R134a

VIEW CIRCUIT 1 (4) Comp6=Off Hours = XXXXX Starts = XXXXX

View Refrigerant

VIEW REFRG Cir 1 (1) Evap Press XXX.X psi Cond Press XXX.X psi

R 134a, R22, R410A

VIEW REFRG Cir 1 (2) Sat Evap XXX.X °F Sat Cond XXX.X °F i R407C

VIEW REFRG Cir 1 (2) Evap Dew XXX.X °F Cond. Mid XXX.X °F

VIEW REFRG Cir 1 (3) SuctionTemp=XXX.X°F Surperheat = XXX.X°F EvapApproach= XX.X°F

TGZ Only (R134a)

VIEW REFRG Cir 1 (4) LiqLineTemp=XXX.X°F Subcooling = XXX.X°F CondApproach= XX.X°F

Units with EEV only

VIEW REFRG Cir 1 (5) EXV Ctrl = XXX EXV Pos = XXX.X% SH Target = XX.X°F

TGZ Units Only (R134a)

VIEW REFRG Cir 1 (6) EXV Ctrl Range XX.X% ---XX.X%

VIEW REFRG Cir 2 (1) Evap Press XXX.X psi Cond Press XXX.X psi

R 134a, R22, R410A

VIEW REFRG Cir 2 (2)
Sat Evap XXX.X °F
Sat Cond XXX.X °F i

VIEW REFRG Cir 2 (3) SuctionTemp=XXX.X°F Surperheat = XXX.X°F

EvapApproach= XX.X°F

TGZ Only (R134a)

VIEW REFRG Cir 2 (4) LiqLineTemp=XXX.X°F Subcooling = XXX.X°F CondApproach= XX.X°F

R407C

VIEW REFRG Cir 2 (2) Evap Dew XXX.X °F Cond. Mid XXX.X °F

Units with EEV only

```
VIEW REFRG Cir 2 (5)

EXV Ctrl = XXX

EXV Pos = XXX.X%

SH Target = XX.X°F
```

TGZ Units Only (R134a)

```
VIEW REFRG Cir 2 (6)
EXV Ctrl Range
XX.X% ---XX.X%
```

Water Cooled = Y Only or TGZ Unit (R134a)

```
VIEW TOWER (1)
Stages ON = 1 of 2
EntCondTemp = XXX °F
Setpoint = XXX °F
```

The first Stages ON value is the number of fan stages ON. The second number is the Tower Stages setpoint (0 if Tower Control = None). This screen shows the number of tower fans "on" for each circuit. This screen will show the fans "on" whether they are actually connected to and controlled by the MicroTech II controller or not.

Water Cooled = Y Only or TGZ Unit (R134a)

```
VIEW TOWER (2)
Bypass Valve = XXX%
VFD Speed = XXX%
```

The Bypass Valve value shall be "None" (in place of XXX%) if the Valve/VFD Control setpoint = None or VFD Stage. The VFD Speed value shall be "None" if the Valve/VFD Control setpoint = None, Valve Setpoint, or Valve Stage.

Water Cooled = N Only

```
VIEW FANS (1)
Fans On Circuit#1 =XX
Fans On Circuit#2 =XX
```

This screen shows the number of air-cooled condenser fans "on" for each circuit. This screen will show the fans "on" whether they are actually connected to and controlled by the MicroTech II controller or not.

VIEW FANS	(2)	
Stg Error	Uр	Down
Cir 1 =	XXX	XXX
Cir 2 =	XXX	XXX

VIEW FANS (3) Sat Cond Target = XXX.X

Screen Definitions – ALARM

ALARM	ACTIVE	(X)
Time	Dat	:e
Alarm	Dat Descrip	tion

OR

ALARM ACTIVE (X)

No more alarms

Press ENTER to clear
all active alarms

If the unit is off on a shutdown alarm or running, but in a <u>limit</u> alarm condition, the cause and date will appear in the upper screen. If there is a simultaneous occurrence of more than one alarm, the others will appear in additional screens below the first one, accessed by the DOWN ARROW.

Either type alarm will light a red light in back of the LEFT-ARROW KEY. The light will go out when the fault is cleared. To clear the fault, scroll down to the last screen and press ENTER. If other faults have appeared, they will all be cleared at the same time. It is not necessary to have a password open to clear alarms.

ALARM LOG (X)
Alarm Description
Time Date
Data Edit and scroll

The last 25 alarms, either shutdown or limit, are shown in this menu and subsequent menus located under it. ARROW DOWN from this menu will go to the next-to-last alarm, ARROW DOWN again will go to the second from last, and so on through the last 25 occurrences. The screens are numbered (1), (2), (3), etc.

Screen Definitions – EVENT LOG

EVENT LOG (X)
Event Description
Time Date

Screen Definitions – SET

Set Unit Setpoints

SET UNIT SPs (1)
Unit Enable = OFF
Unit Mode = COOL
Source = KEYPAD

Unit Enable settings can be OFF and ON as determined from the Unit Enable setpoint.

Unit Enable is an external signal or a keypad setting that keeps the unit off when the setting is OFF and *allows* it to run if there is a call for cooling when the setting is ON. The source for the signal is selected in the 4th line and can be:

• KEYPAD, in which case the selection is made in line 2 and would be normally selected as ON. This is the normal setting when no external signals are controlling the unit.

- SWITCHES, in which an external switch is wired across terminals #40 and #53. (See wiring diagram page 8 or 9.)
- NETWORK, used with BAS signal, which is wired to the three communication ports.
- Unit Mode settings can be
- COOL, normal setting used with chilled water air-condition applications.
- COOL w/GLYCOL, used with low temperature, glycol applications. It allows a lower LWT setpoint to be used.
- ICE w/GLYCOL, used with ice storage systems, allows changing from chilled glycol operation to lower temperature ICE operation. In ICE, the unit runs at full load until the ICE setpoint is reached, at which time the unit shuts off. A three-position switch wired to terminals #28 and #38 initiates the change from glycol cooling to making ice. (See wiring diagrams on page 8 or 9.)

Unit Mode settings can be COOL COOLw/Glycol, or ICEw/Glycol, as determined from the Unit Mode setpoint.

Source settings can be KEYPAD, SWITCHES, or NETWORK as determined from the Mode Source setpoint.

```
SET UNIT SPs (2)
Available Modes
=COOL
Set w/Unit Switch Off
```

```
SET UNIT SPs (3)

Evap LWT = XX.X°F

Ice LWT = XX.X°F

EvapDeltaT= XX.X°F
```

```
SET UNIT SPs (4)
Start Delta= XX.X°F
Stop Delta= XX.X°F
Demand Limit = ON
```

See page 14 for an explanation of compressor staging.

WGZ Units Only SET UNIT SPs (5) Max Pulldn=X.X°F/min Evap Recirc= XXX sec Evap Pump = #1 Only

TGZ Units Only (R134a)

SET UNIT SPs (5)

Max Pulldn=X.X°F/min

Evap Recirc= XXX sec

Evap Pump = #1 Only

Evap Pump choices are; #1 Only, #2 Only, Auto, #1 Primary, #2 Primary.

Water-Cooled = ON SET UNIT SPs (6) Water Cooled = ON Cond Recirc=XXX sec Cond Pump = #1 Only

Water-Cooled = OFF SET UNIT SPs (6) Water Cooled = Off LowAmbLock XXX.X °F

TGZ Units (R134a)

```
SET UNIT SPs (6)
Water Cooled = Off
LowAmbLock XXX.X °F
```

Water Cooled = On is the setting for units with on-board water-cooled condensers. Pump choices are; #1 Only, #2 Only, Auto, #1 Primary, #2 Primary.

WaterCooled = OFF is used for units with remote condensers, usually air cooled.

SET UNIT SPs (7)
Ice Time Delay=Xxsec
Clear Ice Delay=No
H.G. Delay = XX sec

H.G. Delay, hot gas bypass delay, keeps the hot gas solenoid valve closed when the first compressor on a circuit starts. This delay allows sufficient condenser pressure to build up.

SET UNIT SPs (8)
CLOCK
dd/mmm/yyyy
hh:mm:ss

SET UNIT SPS (9) SET UNIT SPS (9) SET UNIT SPS (9)
Units = °F/psi Units = °F/psi Units = °F/psi
Lang = ENGLISH Lang = ENGLISH Lang = ENGLISH
Refrig = None Refrig = R22 Refrig = R407C

SET UNIT SPS (9) SET UNIT SPS (9)
Units = °F/psi Units = °F/psi
Lang = ENGLISH Lang = ENGLISH
Refrig = R410A Refrig = R134a

Refrigerant type is factory-set.

SET UNIT SPs (10)
Protocol = Modbus
Ident Number=001
Baud Rate=9600

BAS interface settings, available mid-2003.

SET UNIT SPs (11) Evap Press Sensor Cir 1 Offset XX.X psi Cir 2 Offset XX.X psi

The pressure offsets on menus 11 and 12 and the temperature offsets on menus 10, 11 and 12 correct the controller's display of the parameters. The sensors used in these units have a high degree of repeatability but may need correction (offset). An accurate pressure gauge or thermometer is used to determine the correct temperature or pressure. A positive or negative offset value is then entered to make the controller reading agree with the measured value.

SET UNIT SPs (12)
Cond Press Sensor
Cir 1 Offset XX.X psi
Cir 2 Offset XX.X psi

SET UNIT SPs (13) Evap Leaving Water Temperature Sensor Offset= 00.0 °F SET UNIT SPs (13) LWT Sensors Evap Offset = 00.0 °F Cond Offset = 00.0 °F

SET UNIT SPs (14)
OAT/Cond Lvg Water
Temperature Sensor
Offset= 00.0 °F

TGZ Units (Refrig = R134a)

SET UNIT SPS (14)

LWT Sensors

Evap Offset = 00.0 °F

Cond Offset = 00.0 °F

SET UNIT SPs (15) Suction Temp Sensor Cirl Offset 00.0 °F Cir2 Offset 00.0 °F

WGZ Unit (R22,R407C,R410A)

SET UNIT SPs (16) Clg ResType = X Clg MaxRes = XX.X ^oF TGZ Unit (Refrig = 134a)

SET UNIT SPs (16) Liq Line Temp Sensors Circ1 Offset = 00.0° F Circ2 Offset = 00.0° F

WGZ Unit (R22,R407C,R410A)

SET UNIT SPs (17) ENTER PASSWORD: XXXX Active Password Level: None TGZ Unit (Refrig = 134a)

SET UNIT SPS (17) Clg ResType = X Clg MaxRes = XX.X ^oF Clg StrtRes = XX.X ^oF

TGZ Unit in Cooling Mode.

SET UNIT SPs (17) ENTER PASSWORD: XXXX Active Password

Level: None

TGZ Unit in Heat Mode.

SET UNIT SPs (17) Htg ResType = X Htg MaxRes = $XX.X^{\circ}F$ Htg StrtRes = $XX.X^{\circ}F$

TGZ Unit Heat Mode.

SET UNIT SPs (18) ENTER PASSWORD: XXXX Active Password Level: None

Two four-digit passwords provide OPERATOR and MANAGER levels of access to changeable parameters. The passwords are preprogrammed into the controller. Either password must be entered using the ENTER PASSWORD (12) screen before a protected setting can be changed. The operator password is 0100. The manager level is 2001.

This screen can be accessed either through the SET OTHER menu or by simply pressing the ENTER key while on one of the SET screens. The controller will automatically go from the screen with the setting change to this screen. After the correct password has been entered, the controller will automatically return to the original set screen.

Once a password has been entered, it remains valid for 15 minutes after the last keypress.

Set Compressor Setpoints

SET COMP SPs (1)
of Compressors = X
Stop-Start = XXmin
Start-Start = XXmin

This menu sets the anti-recycle timers. Stop-Start is the time required before starting a compressor after it has *stopped*. Start-Start is the time required before starting a compressor after the last time it has *started*. It is recommended that the default values of 5 minutes and 15 minutes not be changed.

SET COMP SPs (2)
InterStgUp =XXXsec
InterStgDown= XXsec
Clear Cycle Tmr = NO

InterStageUp is the time delay since the last stage change before a compressor can stage on, default is 120 sec.

InterStageDn is the time delay since the last stage change before a compressor can stage off normally (not by an alarm). Default is 30 sec. It is recommended that these settings not be changed.

of Compressors = 4

SET COMP SPs (3) Comp 1 = Enable Comp 3 = Enable

of Compressors = 6

SET COMP	SPs (3)
Comp 1 =	Enable
Comp 3 =	Enable
Comp 5 =	Enable

of Compressors = 4

SET COM	ĪΡ	SPs	(4)
Comp 2	=	Enable	
Comp 4	=	Enable	

of Compressors = 6

SET COMP	SPs (4)
Comp 2 =	Enable
Comp 4 =	Enable
Comp 6 =	Enable

Enable screens #3 and #4 require the manager password to change.

SET COMP SPs (5) Expansion Valve Type = Thermal

TGZ Units Only (R134a) SET COMP SPs (5) Expansion Valve Type = Electronic MaxOpPress=XXX.X psi

Expansion Valve Type = Electronic

```
SET COMP SPs (6)
Cir 1 EXV
EXV Control = Auto
Manual EXV Pos=XXX.X
```

Expansion Valve Type = Electronic

```
SET COMP SPs (7)
Cir 2 EXV
EXV Control = Auto
Manual EXV Pos=XXX.X
```

SET ALARM LIMITS

```
SET ALARM LMTS (1)
Low EVAP Pressure
Hold=XXXpsi
Unload=XXXpsi
```

The Hold and Unload have the same default value of 59 psi. If two compressors are running, the LowEvPrUnld is in effect and the lag compressor will be shut off to unload the unit. If one compressor is running, the LowEvPrHold is in effect and the lag compressor is prevented from starting, thereby holding the unit capacity.

The last action to take place is the shutoff of all compressors running when the LowEvPrStop setting is reached (default is 58 psi). Reducing these time intervals will increase detrimental compressor cycling. It is recommended that these settings not be changed.

SET ALARM LMTS (2) High Cond Pressure Unload= XX.X°F Stop=XXXsec

Unload is a limit alarm that unloads the unit at 370 psi in an attempt to prevent total shutdown from the HighCondPr at 380 psi. The stage down is set at 370 psi. It is recommended that these settings not be changed.

Stop (the unit high-discharge-pressure shutdown) is a stop alarm that shuts off the unit when the discharge pressure reaches the setting. The default setting is 380 psi.

LowEvPrDelay is a time delay on the low pressure trip that reduces nuisance low-pressure trips. The default setting is 30 seconds.

SET ALARM LMTS (3)
GroundFault = N
PhaseVoltage = N
Low OATStartTMR=XXsec

GroundFault and PhaseVoltage entries are Y (Yes) or N (No) depending on whether the options are on the unit.

CondFreeze is an alarm that reduces the chance of freezing the water in the condenser (when compressors are not running). An alarm is registered and the condenser pump is energized at the same time. The alarm setpoint is $34^{\circ}F$ saturated condenser temperature and it resets at $+2^{\circ}F$ above the setpoint.

SET ALARM LMTS (4) Evap Freeze = XX.X°F EvapFlowProff=XXXsec Recirc Timeout=XXmin

Evap Freeze (the unit freeze protection shutdown) is actually a stop alarm and shuts off the unit when the LWT reaches 36°F. It is cleared by going to the CLEAR ALARM menu in the ACTIVE ALARM hierarchy.

EvapFlowProof is the flow switch interlock. Closing the flow switch and therefore proving the existence of chilled water flow resets this trip. It is recommended that these settings not be changed.

LowAmbientLock applies to units with air-cooled condensers and prevents unit operation below the setting. The available range is -2°F to 60°F with a default of 35°F.

WaterCooled=ON

SET ALARM LIMITS (5)
Cond Freeze= XX.X °F
CondFlowProof= XX sec

TGZ in Heat Mode

SET ALARM LIMITS (6)
LowSourceTmp = XX.X°F
LowSourceDif = XX.X°F

Set Air-Cooled Condenser Fans

Water-cooled = Off

```
SET FANS SPs (1)
Fan Stages=X
Speedtrol=Yes/No
```

Water-cooled = Off

SET F	ANS SPs	(2)
Stage	ON Deadb	and (°F)
Stg2 XXX	Stg3	Stg4
XXX	XXX	XXX

Water-cooled = Off

110000	99100		
SET F	ANS SPs		(3)
Stage	Off Dea	adband	(°F)
Stg2	Stg3	Stg4	
XXX	XXX	XXX	

The SET FANS SP screens 2 through 5 establish the temperature that will stage the condenser fans on and off. These screens apply only to units set up for use with air-cooled condensers (WaterCooled=No). On such units, the settings do not have to be entered if the unit controller is not used to stage condenser fans for head pressure control. If the MicroTech II unit controller is not used to control the fans, some other method must be used.

Water cooled=Off

SET FANS SPs	(4)
Cond Sat Temp Tar	get
Set Point= XXX.X	٥F

Water cooled=Off

SET FAI	NS SPs	(5)
# Fans	On At	Startup >105°F
>75°F	>90°F	>105°F
X	X	X

Set Cooling Tower Control

The MicroTech II controller is capable of controlling cooling tower water temperature on chillers using water-cooled condensers. Output wiring connection points are shown on the field wiring diagrams.

[Water Cooled = Y] - Condenser Pump on with first Compressor on. Tower fan control is active when the Tower Control setpoint is set to Temperature and the condenser pump is in the RUN state. Staging is based on Entering Condenser Water Temperature (ECWT). Operation depends on the following parameters.

Condenser pump state

ECWT OR Lift pressure

Stage up and stage down timer values

Tower setpoints (Tower Control, Tower Stages, Stage Up Time, Stage Down Time, Stage Differential, Stage #1 ON, Stage #2 ON, Stage Down @, Stage Up @)

When the condenser pump starts, the stage up timer shall start. The first stage shall turn ON when the following conditions are met:

The stage up timer completes

The ECWT is > Stage #1 ON setpoint

Bypass valve position is > the Stage Up @ setpoint (only if Valve/VFD Control setpoint = Valve Stage)

Additional stages can turn on (up to the number specified by the Tower Stages setpoint) when above conditions are met for the next stage plus the following condition:

VFD Speed is > the Stage Up @ setpoint (only if Valve/VFD Control setpoint = VFD Stage OR Valve SP/VFD Stage)

Down staging shall occur when the following conditions are met:

The stage down timer completes

The ECWT is < Stage #X ON (Temp) setpoint – Stage Differential (Temp) setpoint point

Bypass valve position is < the Stage Down @ setpoint (only if Valve/VFD Control setpoint = Valve Stage)

VFD Speed is < the Stage Down @ setpoint (only if Valve/VFD Control setpoint = VFD Stage OR Valve SP/VFD Stage)

Each stage up or stage down event shall restart both the stage up and stage down timers. Only one fan output shall be switched at a time (except that all outputs switch OFF when the condenser pump state equals OFF).

Water-cooled On

```
SET TOWER SPs (1)
Tower Control= None
Tower Stages = X
StageUP/DN=XXX/XXX%
```

When Tower Control is None the control of condenser water temperature is not by the MicroTech II controller and assumed to be furnished elsewhere.

Tower Stages is the number of tower fans to be staged by the controller, choices are 0, 1, or 2. "0" indicates control will be by a bypass valve or variable speed pump controlled by the MicroTech II controller.

StageUP/DN imposes a time delay between fan stages when turning on or turning off.

Water-cooled On

```
SET TOWER SPs (2)
Stage ON (Temp)°F
#1 #2
XXX XXX
```

Stage ON Temp is the entering condenser water temperature (ECWT) that will turn on tower fan #1 and #2. Default settings are 70°F and 75°F. Cold condenser water will improve unit efficiency but too cold can cause erratic operation. Settings below 60°F are not recommended.

Water-cooled On

```
SET TOWER SPs (3)
StageDiff = XX.X°F
Stage Up Tmr=XX min
StageDn Tmr=XX min
```

StageDiff is the number of degrees below the Stage ON that will turn off the tower fans. For example, if Stage ON #1 is 70°F and StageDiff is 5°F, tower fan #1 will stage off when the ECWT drops to 65°F and stage the fan on when the ECWT rises to 70°F. The same is true for fan #2.

Stage Up timer is the number of minutes that must elapse between the condenser pump starting (it starts with the unit) and fan #1 starting or the time between fan #1 starting and fan #2 starting.

StageDown is the elapsed time between staging down the fan motors.

Water-cooled = Y

```
SET TOWER SPs (4)
Valve/VFD Control=
ValveSP/VFDStage
Valve Type=NC to Twr
```

Valve/VFD Control settings are None, Valve Setpoint, Valve Stage, VFD Stage, or ValveSP/VFDStage. Default is None which results in no control of the tower from the MicroTech II controller.

<u>Valve Setpoint</u>, the valve will control (bypass tower) to hold the minimum temperature as established by the Set Tower SPs in screen (5) below.

This mode is operational when the Valve/VFD Control setpoint is set to Valve Setpoint OR Valve SP/VFD Stage. In this mode the valve output is varied with a proportional-derivative (PD) algorithm (with deadband) in order to maintain the controlled parameter (CP) at the desired value. The output is always limited between the Valve Control Range (Min) setpoint and the Valve Control Range (Max) setpoint. A valve increment shall be computed once every 5 seconds according to the following equation. (Error Gain and Slope Gain are set in menu screen #8.)

```
Increment = [(Error) * (Error Gain setpoint)] + [(Slope) * (Slope Gain setpoint)]
Where: Error = ECWT - Valve Setpoint
Slope = (Present CP) - (Previous CP)
```

When the Error is > the Valve Deadband setpoint, the valve position analog output (% of full scale) is updated according to the following equation.

New %Position = Old %Position + Increment/10

<u>Valve Stage</u>, controls from the fan stage setpoint in use. It is recommended that the Valve Setpoint method explained above be used rather than this mode.

This mode is only operational when the Valve/VFD Control setpoint is set to Valve Stage. In this mode the valve output is controlled as for Valve Setpoint mode (above), except that the active setpoint for the controlled parameter is selected according to the following table.

# Of Fans ON	Active Setpoint
0	Valve Setpoint
1	Stage #1 ON
2	Stage #2 ON
3	Stage #3 ON
4	Stage #4 ON

<u>VFD Stage</u>, <u>ValveSP/VFDStage</u>, When the Valve/VFD Control setpoint is set to None, Valve Setpoint, OR Valve Stage, this output is set to 0. Otherwise, it will be controlled in a manner identical to Valve Stage Mode (above) except that (1) it shall be kept at zero until the first fan stage is ON, and (2) the following setpoints do not apply.

```
Valve Control Range (Min)
Valve Control Range (Max)
Valve Type
```

Valve Type settings are NC (normally closed to tower) or NO (normally open). These settings establish the operation of a tower bypass valve (must be a 3-way valve).

Initial Valve Position

When the condenser pump is not in the RUN state, the valve output shall be set as a function of entering condenser water temperature (ECWT) per the following graph.

Figure 11, Initial Valve Position

Operation After Start

When the condenser pump is in the RUN state, the valve output shall be controlled in one of two modes as specified by the Valve/VFD Control setpoint. The controlled parameter shall be the condenser entering water temperature. When the desired output signal varies from 0 to 100%, the output voltage shall vary as shown below.

```
0 to 10 VDC (Valve Type = NC)
10 to 0 VDC (Valve Type = NO)
```

```
Water-cooled = Y

SET TOWER SPs (5)

Valve SP = XXX °F

Valve DB = XX.X °F
```

Valve SP is the minimum tower water temperature acceptable, default is 65°F.

Valve DB is the dead-band in degrees, default is 2.0°F.

Water-cooled = Y

SET TOWER SPs (6)
ValveStartPosition
Min = XXX% @XXX°F
Max = XXX% @XXX°F

The ValveStartposition is the position of the valve when the unit starts. Default for minimum start position is 0%, and 100% for maximum position.

Water-cooled = Y

SET TOWER SPs (7)
Valve Control Range
Min = XXX%
Max = XXX%

Defaults are 10% minimum and 90% maximum.

Water-cooled = Y

SET TOWER SPs (8)
PD Control Loop
Error Gain = XX
Slope Gain = XX

Defaults are 25 for both error and slope.

TEST

The test screens are only available when the unit is in TEST mode. Using these screens, any digital output can be controlled manually.

R22, R407C

TEST UNIT (1)
Alarm Signal =OFF
Evap Pump 1 = OFF

R410A

TEST UNIT (1)
Alarm Signal =OFF
Evap Pump 1 = OFF
Evap Pump 2 = OFF

of Compressors = 4

TEST UNIT (2)
Liq Line Sol #1= OFF
CompressorHG1 = OFF
1= OFF 3= OFF

of Compressors = 6

TEST UNIT (1)
Liq Line Sol #1= OFF
Compressor HG1 = OFF
1= OFF 3= OFF 5= OFF

of Compressors = 4

TEST UNIT (3)
Liq Line Sol #2=OFF
Compressor HG2 = OFF
2= OFF 4= OFF

of Compressors = 6

TEST UNIT (3)
Liq Line Sol #2=OFF
Compressor HG2 = OFF
2= OFF 4= OFF 6= OFF

Water Cooled = ON

TEST UNIT (4)
Cond Pump 1 = OFF
Cond Pump 2 = OFF
TwrFan1=OFF Fan2=OFF

Water Cooled = OFF

TEST UNIT (4)
Fan 1=OFF Fan 3=OFF
Fan 5/7=OFF
Fan 9=OFF

```
Water Cooled = ON

TEST UNIT (5)

Twr Bypass= XXX.X %

Twr VFD= XXX.X %
```

```
Water Cooled = OFF
TEST UNIT (5)
Fan 2=OFF Fan 4=OFF
Fan 6/8=OFF
Fan 10=OFF
```

```
TEST UNIT (6)
EXV Cir 1= XXX.X %
EXV Cir 2= XXX.X %
```

Editing Review

Editing shall be accomplished by pressing the ENTER key until the desired field is selected. This field shall be indicated by a blinking cursor under it. The arrow keys shall then operate as defined below.

CANCEL (Right) Reset the current field to the value it had when editing began.

DEFAULT (Left) Set value to original factory setting.

INCREMENT (Up) Increase the value or select the next item in a list.

DECREMENT (Down) Decrease the value or select the previous item in a list.

During edit mode, the display shall show a two-character wide menu pane on the right as shown below.

SET	UNIT	SPs	(X)	< D
	(dat	:a)		<c< td=""></c<>
	(dat	:a)		<+
	(dat	:a)		<-

Additional fields can be edited by pressing the ENTER key until the desired field is selected. When the last field is selected, pressing the ENTER key switches the display out of "edit" mode and returns the arrow keys to "scroll" mode.

Alarms

When an alarm occurs, the alarm type, limit value (if any), date, and time are stored in the active alarm buffer corresponding to that alarm (viewed on the Alarm Active screens) and also in the alarm history buffer (viewed on the Alarm Log screens). The active alarm buffers hold a record of the last occurrence of each alarm and whether or not it has been cleared. The alarm can be cleared by pressing the Edit key. A separate buffer is available for each alarm (High Cond Pressure, Evaporator Freeze Protect, etc.). The alarm history buffer holds a chronological account of the last 25 alarms of any type.

Security

Two four-digit passwords provide OPERATOR and MANAGER levels of access to changeable parameters. Either password can be entered using the ENTER PASSWORD screen which can be accessed either through the SET OTHER menu or by simply pressing the ENTER key while on one of the SET screens. The password can then be entered by pressing the ENTER key, scrolling to the correct value with the UP and DOWN arrow keys, and pressing ENTER again. Once the correct password has been entered, the previously selected screen will reappear. Once a password has been entered, it will remain valid for 15 minutes after the last key-press.

BAS Interface

The BAS interface will use the supervisor port on the controller as a connection point.

Protocols Supported

The following building automation system (BAS) protocols are supported. It is possible to change the building automation interface without loading different software.

BACnet

When protocol is set to BACnet, the baud rate and ident set points are not accessible. The ident setting is locked at 1 for BACnet, and the baud rate is locked to 19200.

LONworks

With protocol set to LON, the baud rate and ident set points are not accessible. The ident setting is locked at 1 for LON, and the baud rate is locked to 4800.

Modbus

With the protocol set to Modbus, the baud rate and ident set points are accessible.

Available Parameters

Types: A = Analog, I= Integer, D= Digital

I/O: I = Input only, O = Output only, I/O = Input/Output

Туре	Index	I/O	Description	LONWORKS	BACnet	Modbus
Α	1	I/O	Network Cool LWT set point	х	х	х
Α	2	0	Active LWT set point	х	х	х
Α	3	I/O	Network limit set point	х	х	х
Α	6	0	Evap LWT	x	х	х
Α	7	0	Cond EWT	х	х	х
Α	10	0	Unit capacity (%)	х	х	х
Α	11	1	Network Cool LWT set point default	х		
Α	15	0	Suction temp	х	X	x
Α	16	0	Evap sat temp	x	X	x
Α	17	0	Evap pressure	x	X	x
Α	20	0	Cond sat temp	x	X	x
Α	21	0	Cond pressure	x	X	x
Α	39	0	OAT	x	x	х
Α	42	0	Active Capacity Limit	x	X	x
Α	50	I/O	Network Ice LWT set point	x	x	x
- 1	1	0	Active alarms 1	x	X	x
- 1	2	0	Active alarms 2	x	X	x
I	3	0	Active alarms 3	x	X	x
- 1	4	0	Active alarms 4	x	X	x
I	5	0	Active alarms 5	x	X	x
I	6	0	Active alarms 6	x	X	x
I	7	0	Active alarms 7	x	X	x
I	8	0	Active alarms 8	x	X	x
I	9	0	Active alarms 9	x	X	x
I	10	0	Active alarms 10	x	X	x

Continued next page.

Table continued

Туре	Index	I/O	Description	LONworks	BACnet	Modbus
I	11	0	Active alarms 11	х	X	х
1	12	0	Active alarms 12	x	X	х
	13	0	Active alarms 13	x	X	х
1	14	0	Active alarms 14	x	X	х
1	15	0	Active alarms 15	x	X	х
	16	0	Active alarms 16	x	X	х
-	17	1	Network chiller mode set point	x	X	x
_	18	0	LON Chiller run mode	x		x
- 1	19	0	Active chiller mode	х	X	х
1	20	Į	Network demand limit default set	х		
			point			
1	21	1	Network chiller mode default set point	x		
1	22	0	Sequence Status	x	X	x
			Bit 1 - Unit Full Load Flag			
			Bit 2 – Circuit One Available Flag			
			Bit 3 - Circuit Two Available Flag			
- 1	28	0	Unit model type, refrigerant	x	Х	x
1	29	0	Unit language	X	X	х
- 1	30	0	Unit software version	x	X	x
- 1	32	1	Compressor select	x	X	x
- 1	35	I/O	Clock year		X	x
- 1	36	I/O	Clock month		x	x
- 1	37	I/O	Clock day of month		X	х
- 1	38	I/O	Clock day of week		X	х
- 1	39	I/O	Clock hours		x	X
- 1	40	I/O	Clock minutes		X	х
- 1	45	0	Compressor starts		x	X
I	46	0	Compressor run hours		X	х
D	1	I/O	Network chiller enable set point	x	x	x
D	2	0	Chiller enable status	X	х Х	X
D	3	0	Active alarm indicator	X	x x	
D	4	0	Chiller run enabled			X
D	5	0	Chiller local control	X	×	X
D	6	0	Chiller capacity limited	X X	x x	X
D	7	0	Evap flow			X
D	8	0	Cond flow	X	x x	X
D	9		Network chiller enable default set	X	X	Х
ט	9	'	point	Х		
D	10	I	Ignore network defaults	х		
D	24	ı	Network clear alarm signal	X	x	х

Optional Controls

Phase/Voltage Monitor (Optional)

The phase/voltage monitor is a device that provides protection against three-phase electrical motor loss due to power failure conditions, phase loss, and phase reversal. Whenever any of these conditions occur, an input relay is deactivated, disconnecting power to the thermostatic control circuit. The compressor does a rapid shutdown including a pump down cycle.

The input relay remains deactivated until power line conditions return to an acceptable level. Trip and reset delays have been provided to prevent nuisance tripping due to rapid power fluctuations.

When three-phase power has been applied, the input relay should close and the "run light" should come on. If the relay does not close, perform the following tests.

- 1. Check the voltages between L1-L2, L1-L3, and L2-L3. These voltages should be approximately equal and within +10% of the rated three-phase line-to-line voltage.
- 2. If these voltages are extremely low or widely unbalanced, check the power system to determine the cause of the problem.
- 3. If the voltages are good, turn off the power and inter-change any two of the supply power leads at the disconnect switch.

This may be necessary, as the phase/voltage monitor is sensitive to phase reversal. Turn on the power. The relay should now close after the appropriate delay.

Factory settings are as follows:

Voltage Setting, set at nameplate voltage.

Trip Delay Time, 2 seconds

Restart Delay Time, 60 seconds

Hot Gas Bypass (Optional)

This option allows passage of discharge gas to the evaporator, permitting operation at lower loads than available with compressor unloading. It also keeps the velocity of refrigerant gas high enough for proper oil return at light load conditions.

The pressure regulating valve is a Sporlan SHGBE-8 and factory set to begin opening at 69 psig and can be changed by changing the pressure setting. The adjustment range is 0 to 100 psig. To raise the pressure setting, remove the cap on the bulb and turn the adjustment screw clockwise. To lower the setting, turn the screw counterclockwise. Do not force the adjustment beyond the range it is designed for, as this will damage the adjustment assembly. The regulating valve opening point can be determined by slowly reducing the system load while observing the suction pressure. When the bypass valve starts to open, the refrigerant line on the evaporator side of the valve will begin to feel warm to the touch.

The hot gas line can become hot enough to cause personal injury in a very short time; care should be taken during valve checkout.

Troubleshooting Chart

PROBLEM		POSSIBLE CAUSES		POSSIBLE CORRECTIVE STEPS
	1.	Main switch, circuit breakers open.	1.	Close switch
	2.	Fuse blown.	2.	Check electrical circuits and motor
				winding for shorts or grounds.
				Investigate for possible overloading.
				Replace fuse or reset breakers after
	3.	Thormal avarianda trippad or funas	3.	fault is corrected. Overloads are auto reset. Check unit
	٥.	Thermal overloads tripped or fuses blown.	٥.	closely when unit comes back on line.
Compressor Will	4.	Defective contactor or coil.	4.	Repair or replace.
Not Run	5.	System shut down by equipment	5.	Determine type and cause of shutdown
		protection devices.		and correct it before resetting protection
				switch.
	6.	No cooling required.	6.	None. Wait until unit calls for cooling.
	7.	Liquid line solenoid will not open.	7.	Repair or replace coil.
	8.	Motor electrical trouble.	8.	Check motor for opens, short circuit, or burnout.
	9.	Loose wiring.	9.	Check all wire junctions. Tighten all
	0.	Loose Willing.	•	terminal screws.
		Flooding of refrigerant into crankcase.		Check superheat setting of expansion
Compressor		Improper piping augment on auction or		valve.
Noisy or Vibrating		Improper piping support on suction or liquid line.		Relocate, add or remove hangers.
		Worn compressor.		Replace.
	1	Condenser water insufficient or		Readjust temperature control or water
		temperature too high.		regulating valve. Investigate ways to
				increase water supply.
		Fouled condenser tubes (water-cooled		Clean.
		condenser). Clogged spray nozzles		
High Discharge		(evaporative condenser). Dirty tube and fin surface (air cooled condenser).		
Pressure		Noncondensables in system.		EPA purge the noncondensables.
1 1000010		System overcharge with refrigerant.		Remove excess refrigerant.
		Discharge shutoff valve partially closed.		Open valve.
		Condenser undersized (air-cooled).		Check condenser rating tables against
		10.1		the operation.
		High ambient conditions.		Check condenser rating tables against the operation.
		Faultly condenser temp. regulation.		Check condenser control operation.
		Insufficient refrigerant in system.		Check for leaks. Repair and add charge.
		Low suction pressure.		See corrective steps for low suction
Low Discharge				pressure below.
Pressure		Condenser too large.		Check condenser rating table against the
		Low ambient conditions.		operation. Check condenser rating tables against
		LOW AMDIGNIC CONGINUINS.	1	the operation.
11: 1 0 1:	1	Excessive load.		Reduce load or add additional
High Suction Pressure			1	equipment.
1 1699016	<u> </u>	Expansion valve overfeeding.	1	Check remote bulb. Regulate superheat.
	1.	Lack of refrigerant.	1.	Check for leaks. Repair and add charge.
	2.	Evaporator dirty.	2.	Clean chemically.
	3. 4.	Clogged liquid line filter-drier. Clogged suction line or compressor	3. 4.	Replace cartridge(s). Clean strainers.
			4.	Olean Strainers.
	4.	suction gas strainers		
Low Suction	5.	suction gas strainers. Expansion valve malfunctioning.	5.	Check and reset for proper superheat.
Low Suction Pressure	5.	Expansion valve malfunctioning.		Replace if necessary.
			5. 6.	Replace if necessary. Check means for regulating condensing
	5. 6.	Expansion valve malfunctioning. Condensing temperature too low.	6.	Replace if necessary. Check means for regulating condensing temperature.
	5.	Expansion valve malfunctioning.		Replace if necessary. Check means for regulating condensing
	5. 6.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow.
	5. 6. 7. 8.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow. Clogged suction oil strainer.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow. Clean.
	5. 6. 7.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow. Clean. Check crankcase heater. Reset
Pressure Little or No Oil	5. 6. 7. 8.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow. Clogged suction oil strainer.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow. Clean. Check crankcase heater. Reset expansion valve for higher superheat.
Pressure	5. 6. 7. 8.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow. Clogged suction oil strainer.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow. Clean. Check crankcase heater. Reset expansion valve for higher superheat. Check liquid line solenoid valve
Pressure Little or No Oil	5. 6. 7. 8.	Expansion valve malfunctioning. Condensing temperature too low. Compressor will not unload. Insufficient water flow. Clogged suction oil strainer.	6. 7. 8.	Replace if necessary. Check means for regulating condensing temperature. See corrective steps for failure of compressor to unload. Adjust flow. Clean. Check crankcase heater. Reset expansion valve for higher superheat.

PROBLEM	POSSIBLE CAUSES	POSSIBLE CORRECTIVE STEPS
0	Lack of refrigerant.	Check for leaks and repair. Add refrigerant.
Compressor Loses Oil	Velocity in risers too low (A-C only). Oil trapped in line.	Check riser sizes. Check pitch of lines and refrigerant velocities.
	Low voltage during high load conditions.	Check supply voltage for excessive line drop.
	Defective or grounded wiring in motor or power circuits.	Replace compressor-motor.
Motor Overload	Loose power wiring.	Check all connections and tighten.
Relays or Circuit	High condensing temperature.	See corrective steps for high discharge pressure.
Breakers Open	Power line fault causing unbalanced voltage.	Check Supply voltage. Notify power company. Do not start until fault is corrected.
	High ambient temperature around the overload relay	Provide ventilation to reduce heat.
Compressor Thermal Switch	Operating beyond design conditions.	Add facilities so that conditions are within allowable limits.
Open	Discharge valve partially shut.	Open valve.
Freeze Protection	Thermostat set too low.	Reset to $42^{\circ}F$ (6 $^{\circ}C$) or above.
Opens	Low water flow.	Adjust flow.
'	Low suction pressure.	See "Low Suction Pressure."

Warranty Statement

Limited Warranty

Consult your local McQuay Representative for warranty details. Refer to Form 933-430285Y. To find your local McQuay Representative, go to www.mcquay.com.

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.mcquay.com .
All McQuay equipment is sold pursuant to McQuay's Standard Terms and Conditions of Sale and Limited Product Warranty. Consult your local McQuay Representative for warranty details. Refer to form 933-430285Y-00-A (09/08). To find your local representative, go to www.mcquay.com
McQuay®

(800) 432-1342 • www.mcquay.com OM WGZC-1 (6/09)