Meetup 1: Data Science Workflow and Toolkit

George I. Hagstrom 2024-08-28

What is Data Science?

. . .

• Data science is a "discipline that allows you to transform raw data into understanding, insight, and knowledge"

. . .

• I hear often: "Data Science is just statistics with a clever brand name"

. . .

• Is this a misconception?

Data Science Workflow

Figure 1: Figure from text

Data Science Workflow

Consider this visualization of the process for converting raw data into knowledge:

Figure 2: Figure from text

Load the data from files into software

Data Science Workflow

Consider this visualization of the process for converting raw data into knowledge:

Figure 3: Figure from text

Tidy the data so it is stored in a consistent way

Data Science Workflow

Figure 4: Figure from text

Transform the data to focus our analysis on observations of interest

Data Science Workflow

Consider this visualization of the process for converting raw data into knowledge:

Figure 5: Figure from text

Visualize the data to find relationships, problems, and pose questions

Data Science Workflow

Figure 6: Figure from text

Model the data to answer questions precisely using statistics

Data Science Workflow

Consider this visualization of the process for converting raw data into knowledge:

Figure 7: Figure from text

Communicate to share results with others

Data Science Workflow

Figure 8: Figure from text

This class will focus on everything but modeling, i.e. the part of Data Science that isn't statistics

Modeling can be small part of Data Science projects

It is said that 80% of time in data science projects is spent on data mining, cleaning, tidying, exploratory data analyse, etc

Figure 9: Figure from Forbes

Please forgive the Pie Chart

Intro/Case Study

Figure 10: Trait Correlations in Marine Bacteria

• Data on how bacteria get their food in the ocean

- Getting data for this plot took months.....
- Many sources, data formats, quality issues, processing

Learning objectives

By the end of the course, you will have a foundation of skills in the Data Science Workflow

- Find data you need and do all steps to prep it for analysis
- Build expertise in R and the tidyverse
- Use and understand relational databases and SQL
- Collaborate with Git and GitHub
- Introduce you to distributed computing and other tools for large datasets
- Improve your programming ability

Vignette: Electricity and CO2

Figure 11: Sources of Power, refs last slide

Electricity Generation Over Time

Change in Electricity Generation Share over time

Figure 12: Source: Our World in Data

Carbon Intensity of Electricity

Figure 13: Source: Our World in Data

Controls on Carbon Intensity

Figure 14: Source: Our World in Data

Link to the Vignette

You can download the vignette from my github by clicking here Remember to download the data if you want to render the file.

Syllabus and Course Site

- Full Syllabus on the course website:
 - https://georgehagstrom.github.io/DATA607/

- Course website contains links to weekly reading and homework assignments, meetup videos, course schedule, and other course materials
- Use the Brightspace page to submit assignments, either in pdf format or a link to an html on some site I can access (ie github or rpubs)

Meetups

- 6:45-7:45 on Wednesday evening. Attending live preferred, watch video after if you can't
- Office Hours: On Zoom by appointment
- Communication and collaboration: https://fall2024data607.slack.com

Assignments

- Labs (50%): Weekly Programming assignments
- TidyVerse Recipes (10%): Collaborative intro to Git
- Project (25%)
 - Assemble and explore a data set of your choosing
 - Explore your interests, build your portfolio!
- Data Science in Context Presentation (5%)
 - One 5 minute presentation, sign up for your presentation slot asap!
- Meetup Reflections and Introduction (10%)

Schedule

Date	Start Time	Module	Video	Main Deliverables
Aug 28	06:45PM	Data Science Workflows and Toolkit		
Sep 4	06:45PM	Visualizing Data		Sep 8 <u>Lab 1</u>
Sep 11	06:45PM	Data Tidying and Wrangling		Sep 15 <u>Lab 2</u>
Sep 18	06:45PM	Exploratory Data Analysis		Sep 22 <u>Lab 3</u>
Sep 25	06:45PM	<u>Data Transformations</u>		Sep 29 <u>Lab 4</u>
Oct 2	06:45PM	Text and Strings		Oct 6 Lab 5
Oct 9	06:45PM	Databases and SQL		Oct 13 <u>Lab 6</u>
Oct 16	06:45PM	Advanced R Programming		Oct 20 <u>Proj.</u> <u>Proposal</u>
Oct 23	06:45PM	Webscraping and APIs		Oct 27 <u>Lab 7</u>
Oct 30	06:45PM	Git and Collaboration		Nov 3 TV Create
Nov 6	06:45PM	Tidy Text and NLP		Nov 10 <u>Lab 8</u>
Nov 13	06:45PM	Graphs and Graph Data		Nov 17 <u>Lab 9</u>
Nov 20	06:45PM	Big Data		Nov 24 TV Extend
Nov 27		No Meetup (Thansgiving)		
Dec 4	06:45PM	Cloud Computing		Dec 8 <u>Lab 10</u>
Dec 11	06:45PM			Dec 15 <u>Final</u> <u>Project</u>

Textbooks

- 1. Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund. (2023). *R for Data Science* (2e). O'Reilly
- 2. Jennifer Bryan. Happy Git and GitHub for the R User.
- 3. Julia Silge and David Robinson (2017). Text Mining with R. O'Reilly

Recommended: Wickham, H. Advanced R. Baca Raton, FL: Taylor & Francis Group.

Tidyverse: Opinionated Ecosystem

- Collection of compatible packages
- Shared philosophy, common grammar
- Strong Core, Many Extensions
- Advantages and Disadvantages

What to do this week?

- 1. Readings:
 - i) Intro and Chapter 28 of R4DS
 - ii) Sections 1-15 of Happy Git
 - iii) Quarto Tutorial
 - iv) Appendix on R Help Files
- 2. Get software installed and configured:
- i) R, RStudio, git, latex
- 3. Write a post introducing yourself on Brightspace Discussions
- 4. Sign up for your Data Science in Context Presentation

Image References

- 1. Coal: By Morgre Own work, CC BY-SA 3.0
- 2. Gas/Methane: By Georg Slickers Self-photographed, CC BY-SA 3.0
- 3. Hydro: By Source file: Le Grand PortageDerivative work: Rehman File:Three_Gorges_Dam,_Yangtze_CC BY 2.0
- 4. Solar: By Parabel GmbH Own work, CC BY-SA 3.0
- 5. Wind: By Erik Wilde from Berkeley, CA, USA harvesting wind, CC BY-SA 2.0