Dissecting genetic and non-genetic sources of long-term yield trend in German official cultivar trials

Hans-Peter Piepho

Biostatistics Unit Universität Hohenheim Germany

BRRI, May 2018

This is joint work with:

Friedrich Laidig, Thomas Drobek, Uwe Meyer

Bundessortenamt, Germany

⇒ Authority responsible for official variety registration trials in Germany

⇒ Bundessortenamt are currently analysing long-term data from their trials for all major crops

BRRI, May 2018 Hans-Peter Piepho

2

Questions

- Contribution of plant breeding to yield increases (genetic trend)?
- Contribution of improved agronomic practices to yield increases?

Starting point:

Mackay IJ, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theoretical and Applied Genetics 122, 225-238.

"We find that since 1982, for the cereal crops and oil seed rape, at least 88% of the improvement in yield is attributable to genetic improvement, with little evidence that changes in agronomy have improved yields."

BRRI, May 2018 Hans-Peter Piepho

3

Table of contents

- 1. A basic mixed model
- 2. Incorporating regression terms
- 3. Application
- 4. Discussion
- 5. Summary

Data

- Registration trials in Germany
- Winter wheat and spring barley
- Yield (dt ha⁻¹, where 1 dt = 10^{-1} t) and mildew susceptibility (1-9 score)
- 1979 2012
- Varieties at least three years under test
- Two intensities:
 - Intensity 1 (no crop protection)
 - Intensity 2 (with crop protection)
- Split-plot design:
 - Intensity on main plots (RCBD)
 - Variety on sub-plots (completely randomized)

⇒ Variety means per trial and intensity, no weighting

Table 1: Basic information on the yield trial data for winter wheat and spring barley.

Crop	Trait	No. of observations	No. of genotypes	Average age of genotype	No. of locations	Percentage of GxYxL combinations
Winter wheat	Grain yield (dt/ha)	22820	286	3.51	115	2.13
	Mildew susceptibility (1-9)	17174	286	3.51	108	1.70
Spring barley	Grain yield (dt/ha)	15871	176	3.78	113	2.37
	Mildew susceptibility (1-9)	10533	176	3.78	108	1.68

BRRI, May 2018 Hans-Peter Piepho

6

Basic model for long-term MET data

$$y_{ijk} = \mu + G_i + L_j + Y_k + (LY)_{jk} + (GL)_{ij} + (GY)_{ik} + (GLY)_{ijk}$$
 (1)

 y_{ijk} = mean yield of the *i*-th genotype in the *j*-th location and *k*-th year

 μ = overall mean

 G_i = main effect of the *i*-th genotype

 L_i = main effect of the j-th location

 Y_k = main effect of the k-th year

 $(LY)_{jk} = jk$ -th location \times year interaction

 $(GL)_{ij}$ = ij-th genotype \times location interaction

 $(GY)_{ik}$ = ik-th genotype \times year interaction

 $(GLY)_{ijk}$ = residual comprising both genotype \times location \times year interaction as well as the error of a mean

Same model with error and interaction separated

$$y_{ijk} = \mu + G_i + L_j + Y_k + (LY)_{jk} + (GL)_{ij} + (GY)_{ik} + (GLY)_{ijk} + e_{ijk}$$
 (1)

Here:

 $(GLY)_{ijk}$ = pure genotype × location × year interaction

 e_{ijk} = error of a mean y_{ijk}

Weighted two-stage analysis

- (1) Compute genotype means from individual trials y_{ijk} and associated (approximate) variances $\mathrm{var}(y_{ijk})$
- (2) Fit model across years and sites, using $var(y_{ijk}) = var(e_{ijk})$ from stage (1)

Randomized complete block design (RCB):

$$\operatorname{var}(y_{ijk}) = \frac{\sigma_{jk}^2}{n_{jk}}$$

Incomplete block designs:

$$var(y_{1jk}, y_{2jk},...) = R_{jk}$$

Use diagonal elements of $R_{\it jk}^{-1}$ as weights $w_{\it ijk}$

Approximate $var(y_{ijk}) = w_{ijk}^{-1}$ (Smith et al. 2001)

Mackay et al. (2011)

- Take G_i and Y_k as fixed (can't take random because of time trend)
- All other effects random (i.i.d. normal with constant variance)
- \bullet Adjusted means for G_i assess genetic trend
 - ⇒ Plotted against year in which variety entered trial
- Adjusted means for Y_k assess non-genetic trend
 - ⇒ Plotted against calendar year
- ullet Estimate trend by linear regression based on adjusted means for G_i and Y_k
- Look at one intensity at a time

Fig. 1 Trends in variety and year effect for yield (t/ha) from 1948 to 2007. Ordinate and abscissa are on the same scale for all crops except oil seed rape. Variety and year means were estimated as described in

"Materials and methods" section. Variety effects (squares) are plotted against the year in which the variety first entered the trial. Year means are plotted as a *line*

(Mackay et al., 2011)

year meansvariety means

BRRI, May 2018 Hans-Peter Piepho 12

Grain yield (t/ha) winter wheat

Fig. 3: Trends in year effects in UK variety trials (Mackay et al. 2011)

--- Dotted line: analysis with treated trials only (from 1982 onwards).

Solid line: analysis with untreated trials only (from 1982 onwards).

Genetic trend

$$G_i = \beta r_i + H_i \tag{2}$$

 β = fixed regression coefficient for genetic trend r_i = year of first trial for *i*-th variety $H_i \sim N(0, \sigma_H^2)$

Non-genetic trend

$$Y_k = \gamma t_k + Z_k \tag{3}$$

 \mathcal{Y} = fixed regression coefficient for agronomic trend t_k = calendar year $Z_k \sim Nig(0,\sigma_Z^2ig)$

The fixed part of the model so far

$$\eta_{ik} = \mu + \beta r_i + \gamma t_k \tag{4}$$

 η_{ik} = expected response of the *i*-th genotype in the *k*-th year

BRRI, May 2018 Hans-Peter Piepho 15

Effect of disease resistance breakdown

- It has been noted that disease resistance decays with time for a number of years
- This is expected to have an effect on time trends for yield etc.

Extension of the fixed part of the model

• Use age at testing as another covariate in the model

$$\eta_{ik} = \mu + \beta r_i + \gamma t_k + \delta a_{ik} \tag{5}$$

 a_{ik} = age of *i*-th genotype in *k*-th year of testing

 δ = fixed regression coefficient for the age covariate a_{ik}

Effect of disease resistance breakdown cont'd

Age at testing for the i-th genotype in the k-th year:

$$a_{ik} = t_k - r_i \tag{6}$$

Extended regression model:

$$\eta_{ik} = \mu + \beta r_i + \gamma t_k + \delta(t_k - r_i)$$
(7)

Problem: Model over-parameterized (multi-collinearity)

$$\eta_{ik} = \mu + \beta r_i + \gamma t_k + \delta(t_k - r_i)$$
(7)

Can be rearranged:

$$\eta_{ik} = \mu + \widetilde{\beta} r_i + \widetilde{\gamma} t_k, \text{ where}$$
(8)

$$\widetilde{\beta} = \beta - \delta$$
 and $\widetilde{\gamma} = \gamma + \delta$ (10)

- \Rightarrow Regression on r_i and t_k may be biased due to disease resistance breakdown!
- ⇒ Can't separate out trend due to resistance breakdown

Apparent trends

Apparent genetic trend:
$$\widetilde{\beta} = \beta - \delta$$

Apparent non-genetic trend:
$$\widetilde{\gamma} = \gamma + \delta$$

Yield:
$$\delta < 0$$

$$\Rightarrow \stackrel{\sim}{\beta} > \beta \Rightarrow$$
 genetic trend over-estimated

$$\Rightarrow \widetilde{\gamma} < \gamma \Rightarrow$$
 non-genetic trend under-estimated

Estimation of an effect of resistance breakdown (δ)

 \Rightarrow Compare the two intensities

Intensity 1:
$$\eta_{ik1} = \mu_1 + \widetilde{\beta}_1 r_i + \widetilde{\gamma}_1 t_k$$
 (11)

Intensity 2:
$$\eta_{ik2} = \mu_2 + \widetilde{\beta}_2 r_i + \widetilde{\gamma}_2 t_k$$
 (12)

$$\widetilde{\beta}_m = \beta - \delta_m \quad (m = 1,2) \text{ and}$$
 (13)

$$\widetilde{\gamma}_m = \gamma + \delta_m \qquad (m = 1, 2) \tag{14}$$

Difference of response for both intensities

$$\eta_{ik2} - \eta_{ik1} = (\mu_2 - \mu_1) + \widetilde{\beta}_2 r_i + \widetilde{\gamma}_2 t_k - (\widetilde{\beta}_1 r_i + \widetilde{\gamma}_1 t_k)
= (\mu_2 - \mu_1) + \overline{\beta} r_i + \overline{\gamma} t_k$$
(15)

where

$$\overline{\beta} = \widetilde{\beta}_2 - \widetilde{\beta}_1$$
 and (16)

$$\overline{\gamma} = \widetilde{\gamma}_2 - \widetilde{\gamma}_1 \tag{17}$$

When relations (13) and (14) hold: $\overline{\beta} = \delta_1 - \delta_2$ and $\overline{\gamma} = \delta_2 - \delta_1$

Lack-of-fit test: $H_0: \overline{\beta} = -\overline{\gamma}$

Difference of response for both intensities (cont'd)

$$\eta_{ik2} - \eta_{ik1} = (\mu_2 - \mu_1) + (\delta_1 - \delta_2) r_i - (\delta_1 - \delta_2) t_k
= (\mu_2 - \mu_1) - (\delta_1 - \delta_2) a_{ik}$$
(18)

If we assume that $\,\delta_{\scriptscriptstyle 2}=0$, then regression on $\,a_{\scriptscriptstyle ik}\,$ estimates $\,-\,\delta_{\scriptscriptstyle 1}$

But: H_0 : $\delta_2 = 0$ is an untestable assumption!

Even so: If we find that $(\delta_1 - \delta_2) \neq 0$, we may conclude that there is indeed an ageing effect, although we cannot quantify that effect separately for the two intensities.

Figure 2:

GENETIC: variety group means

AGRONOMIC: year means

FRONTIER: frontier line

I1: Intensity 1I2: Intensity 2

Table 4: Estimates of regression coefficients for winter wheat

Trait	Int.	Slope estimates for regression on								
		Yr of first trial (r_i)		Calendar year (t_k)		Age at test (a _{ik})				
		Estimate (dt/ha)	s.e.	Estimate (dt/ha)	s.e.	Estimate (dt/ha)	s.e.			
Yield	1	+0.82	0.04	-0.20	0.11					
	2	+0.53	0.04	+0.16	0.12					
	2-1	-0.29 [§]	0.02	+0.36 [§]	0.07	0.29	0.02			
		$(\delta_1 - \delta_2)$		$-(\delta_1-\delta_2)$		$(\delta_1 - \delta_2)$				
Mildew	1	-0.095	0.006	+0.052	0.0092					
	2	-0.042	0.003	-0.002	0.0048					
	2-1	+0.053 [§]	0.005	-0.055 [§]	0.008	-0.054	0.004			
		$(\delta_1 - \delta_2)$		$-(\delta_1-\delta_2)$		$(\delta_1 - \delta_2)$				

§: Test of $H_0=\overline{\beta}=-\overline{\gamma}$ not significant at 5% level (Table 3).

Comparison of old and new varieties in joint trial

Ahlemeyer and Friedt (2010):

Genetic trend during 1996-2007: $\beta = 0.34$ dt ha⁻¹ yr⁻¹ (Intensity 2)

Our long-term analysis (Intensity 2):

Apparent genetic trend: $\widetilde{\beta}_2 = \beta - \delta_2 = 0.53$ dt ha⁻¹ yr⁻¹

From regression of differences on a_{ik} : $(\delta_1 - \delta_2) = -0.29$ dt ha⁻¹ yr⁻¹

Comparison of old and new varieties in joint trial

Ahlemeyer and Friedt (2010):

Genetic trend during 1996-2007: $\beta = 0.34$ dt ha⁻¹ yr⁻¹ (Intensity 2)

Our long-term analysis (Intensity 2):

Apparent genetic trend: $\widetilde{\beta}_{\rm 2}=\beta-\delta_{\rm 2}=0.53$ dt ha $^{\rm -1}$ yr $^{\rm -1}$

From regression of differences on a_{ik} : $(\delta_1 - \delta_2) = -0.29$ dt ha⁻¹ yr⁻¹

$$\Rightarrow \delta_2 = \beta - \widetilde{\beta}_2 = 0.34 - 0.53 = -0.19 \text{ dt ha}^{-1} \text{ yr}^{-1} \Rightarrow \delta_1 = -0.48 \text{ dt ha}^{-1} \text{ yr}^{-1}$$

Non-genetic trend

$$\widetilde{\gamma}_m = \gamma + \delta_m \qquad (m = 1,2)$$

Estimator 1:

$$\widetilde{\gamma}_1 = \gamma + \delta_1 \Longrightarrow \gamma = \widetilde{\gamma}_1 - \delta_1 = -0.20 + 0.48 = 0.28$$

Estimator 2:

$$\widetilde{\gamma}_2 = \gamma + \delta_2 \Longrightarrow \gamma = \widetilde{\gamma}_2 - \delta_2 = 0.16 + 0.19 = 0.35$$

Summary for wheat yield (trends in dt ha⁻¹ yr⁻¹)

(1) From long-term data:

$$\widetilde{\beta}_1 = 0.82$$
 , $\widetilde{\beta}_2 = 0.53$

$$\widetilde{\gamma}_1 = -0.20$$
 , $\widetilde{\gamma}_2 = 0.16$

(2) From single-year MET with old and new varieties (Ahlemeyer & Friedt):

$$\beta = 0.34$$

(3) Combining the information from both sources

$$\gamma = 0.28$$
 / $\gamma = 0.35$

Effect of resistance decay
$$\qquad \delta_{\rm l} = -0.48$$
 , $\, \delta_{\rm 2} = -0.19$

$$\delta_1 = -0.48$$
, $\delta_2 = -0.19$

4. Conclusion

- Basic 3-way linear mixed model can be used to dissect genetic and nongenetic sources of long-term trend
- Incorporating regression terms simplifies trend analysis
- Effects of disease breakdown cause an upward bias for genetic trend and downward bias for non-genetic trend estimates
- Can partly separate effects of disease breakdown by comparing two
 agronomic intensities (with and without crop protection), but can't make
 further progress without introducing untestable assumptions
- Full separation is possible by testing old and new varieties concomitantly
- Based on results for wheat, genetic and non-genetic trends seem to split fairly equally

BRRI, May 2018

5. References

- Ahlemeyer J, Friedt W (2010) Progress in winter wheat yield in Germany What's the share of the genetic gain? pp. 19-23. In: 61. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs.
- Mackay IJ, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theoretical and Applied Genetics 122:225-238.
- Laidig F, Piepho HP, Drobek T, Meyer U (2014) Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theoretical and Applied Genetics 127, 2599-2617.
- Piepho HP, Laidig F, Drobek T, Meyer U (2014) Dissecting genetic and non-genetic sources of long-term yield trend in German official cultivar trials. Theoretical and Applied Genetics 127:1009-1018.

BRRI, May 2018 Hans-Peter Piepho 30

Thanks!

BRRI, May 2018 Hans-Peter Piepho 31

Graphical displays

Overall trend: frontier line

$$\eta_k = \mu + (\beta + \gamma)t_k \tag{22}$$

⇒ realized trend if best new variety is planted each year

Genotype-specific regression lines:

$$\eta_{ik} = \mu + \beta r_i + \gamma t_k \tag{4}$$

$$\eta_{ik} = \mu + \beta r_i + H_i + \gamma t_k \tag{23}$$

(fixing age variable r_i at value of i-th genotype)

Figure 1: Plot for winter wheat grain yield (dt/ha).

——— Solid red line: eq. (22), frontier line: $\eta_k = \mu + (\beta + \gamma)t_k$

——— Solid black line (shown for 3 genotypes): $\eta_{ik} = \mu + eta r_i + \gamma t_k$

🗕 - - - Dashed black line (shown for 3 genotypes): $\eta_{ik} = \mu + eta r_i + H_i + \gamma t_k$

Two predictions from extended model

$$\eta_{ik1} = \mu_1 + \widetilde{\beta}_1 r_i + \widetilde{\gamma}_1 t_k \tag{11}$$

$$\eta_{ik2} = \mu_2 + \widetilde{\beta}_2 r_i + \widetilde{\gamma}_2 t_k \tag{12}$$

(1) Genetic and non-genetic trends should differ between intensities

$$\widetilde{\beta}_m = \beta - \delta_m \quad (m = 1,2)$$
 and

$$\widetilde{\gamma}_m = \gamma + \delta_m \quad (m = 1,2)$$

(2) Frontier lines should have about equal slopes for both intensities

$$\widetilde{\beta}_1 + \widetilde{\gamma}_1 = \widetilde{\beta}_2 + \widetilde{\gamma}_2 = \beta + \gamma$$

⇒ unbiased from disease resistance breakdown

Figure 2:

GENETIC: variety group means

AGRONOMIC: year means

FRONTIER: frontier line

I1: Intensity 1I2: Intensity 2

BRRI, May 2018 Hans-Peter Piepho

36

Grain spring barley intensity 2 and intensity 1

BRRI, May 2018 Hans-Peter Piepho

37

BRRI, May 2018 Hans-Peter Piepho

38

Two more predictions from extended model

$$\eta_{ik2} - \eta_{ik1} = (\mu_2 - \mu_1) + \overline{\beta} r_i + \overline{\gamma} t_k \tag{15}$$

(3) Difference of intensities should have zero slope for frontier line

$$\overline{\beta} = \delta_1 - \delta_2 \ \ \text{and} \ \ \overline{\gamma} = \delta_2 - \delta_1 \ \ \Rightarrow \ \ \overline{\beta} + \overline{\gamma} = 0$$

(4) Non-genetic and genetic trend should have opposing signs and equal absolute value

$$\overline{\beta} = -\overline{\gamma}$$

Figure 3:

GENETIC: variety group means

AGRONOMIC: year means

FRONTIER: frontier line

Difference I2 - I1

40

BRRI, May 2018 Hans-Peter Piepho 41

BRRI, May 2018 Hans-Peter Piepho 42

Silage maize

Total biomass (dt/ha):

Dry matter yield (dt/ha):

$$\widetilde{\beta} = 6.29$$

$$\widetilde{\gamma} = -4.13$$

$$\widetilde{\beta} = 1.92$$

$$\widetilde{\gamma} = -0.65$$

(Only one intensity)

 \Rightarrow Is this real, or are there any further biases in the agronomic trend?

One potential problem

- In early years silage maize may have been tested mainly in favourable locations
- In later years, more marginal locations may have been added to the system
- This may have caused a downward bias in agronomic trend

Small simulation to explore this

	location									
Year	1	2	3	4	5	6	7	8	9	10
1										
2										
3										
4										
5										

BRRI, May 2018 Hans-Peter Piepho 45

Simulation model

$$y_{jk} = L_j + Y_k + e_{jk}$$
 $(j = 1,...,34; k = 1,...,30)$

$$L_{j} = M_{j} + \lambda (j - 35/2)$$

$$M_{j} \sim N(0,1)$$

 λ : Trend for 'early' versus 'late' locations

$$Y_k \sim N(0,1)$$

$$e_{ii} \sim N(0,1)$$

Analysis model

$$y_{jk} = \gamma t_k + L_j + Y_k + e_{jk}$$

Note: $\gamma = 0$ for simulation model!

	Estimate of γ		
λ	L_j fixed	L_j random	
0.0	0.067 (se=0.065)	0.022 (se=0.029)	
-0.5	0.067 (se=0.065)	-0.500 (se=0.029)	

Silage maize: real long-term data

Total biomass (dt/ha):

 L_i random

$$L_i$$
 fixed

$$\widetilde{\beta} = 6.29 \, (s.e. = 0.50)$$
 $\widetilde{\gamma} = -4.13 \, (s.e. = 1.22)$

$$\widetilde{\beta} = 6.29 \ (s.e. = 0.50)$$
 $\widetilde{\gamma} = -4.44 \ (s.e. = 1.25)$

 \Rightarrow Trend in L_j does not seem to be a problem for silage maize

 \Rightarrow Comparing models with fixed and random L_j provided a good check for bias