Chapitre 9

Produit scalaire

Dans tout le cours, on se place dans un plan muni d'un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

1 Norme d'un vecteur

Définition

Soient \overrightarrow{u} un vecteur et deux points A et B tels que $\overrightarrow{u} = \overrightarrow{AB}$. On appelle **norme** de \overrightarrow{u} le réel positif ou nul noté $\|\overrightarrow{u}\|$, défini par $\|\overrightarrow{u}\| = AB$.

Propriété

Soient λ un réel et \overrightarrow{u} un vecteur. On a $\|\lambda\overrightarrow{u}\| = |\lambda| \times \|\overrightarrow{u}\|$.

Propriété

Dans un repère orthonormé, la norme d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$.

Exemple

Soient
$$A(-1; 2)$$
 et $B(3; -1)$. On a $\overrightarrow{AB}\begin{pmatrix}3-(-1)\\-1-2\end{pmatrix}$, donc $\overrightarrow{AB}\begin{pmatrix}4\\-3\end{pmatrix}$. Ainsi, $\left\|\overrightarrow{AB}\right\| = \sqrt{4^2+(-3)^2}$
$$= \sqrt{16+9}$$

$$= \sqrt{25}$$

$$= 5$$

2 Produit scalaire de deux vecteurs

Dans cette partie, on considère trois points A, B et C et \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

Définition - Avec des normes seulement (1)

Le **produit scalaire** de \overrightarrow{u} et \overrightarrow{v} est le réel noté $\overrightarrow{u}\cdot\overrightarrow{v}$ défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2 \right)$$

Propriété - Avec des normes seulement (2)

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right)$$

