(iii) There exists a closed subgroup G of K such that

$$N \cong L^{\infty}(^{K}/_{G}, dm/) \otimes R ,$$

where R is as in (ii) and dm $_{/}$ the normalized Haar measure on $^{\rm K}/_{\rm G}$ [l.c., Theorem 5.15].

So far we have studied weak*-semigroups on general W*-algebras. We now want to apply the results of this section to weak*-semigroup on B(H). This is of interest in view of the results in [Davies (1976)]. To do this we call a triple (M, ϕ, T) a W*-dynamical system if M is a W*-algebra, a weak*-semigroup of identity preserving Schwarz maps on M and ϕ a faithful family of T-invariant normal states. We call (M, ϕ, T) <u>irreducible</u>, if the preadjoint semigroup is irreducible (alternatively, if the fixed space of T is one dimensional).

<u>Proposition</u> 3.7. Let $(B(H), \Phi, T)$ be a W*-dynamical system on the W*-algebra B(H) of all bounded linear operators on a Hilbert space H. Then the following assertions are equivalent:

- (a) $P\sigma(A) \cap i\mathbb{R} = \{0\}$.
- (b) $\lim_{s\to\infty} T(s)_* = P_*$ in the strong operator topology on $L(B(H)_*)$.

<u>Proof.</u> Obviously (b) implies (a). Suppose that (a) is fulfilled. Then the ergodic projection P_{\star} of the preadjoint semigroup is equal to the associated semigroup projection. Consequently there exists an ultrafilter U on \mathbb{R}_{+} such that $\lim_{\mathcal{U}} T(t) = P$ in the weak operator topology. We claim that the convergence holds even in the strong operator topology. Taking this for granted it follows, since for every $t \in \mathbb{R}_{+}$ T(t) is a contraction, that

$$\lim_{t\to\infty} \|T(t)_{\star}\phi\| = 0$$

for all $\phi \in \ker(P_*)$. Since $T(t)_* \psi = \psi$ for every $\psi \in \operatorname{im}(P_*)$ and because

$$B(H)_{+} = im(P_{+}) \oplus ker(P_{+})$$

the assertion is proved.

It remains to show that $\lim_{\mathcal{U}} T(t)_{\star} = P_{\star}$ in the strong operator topology. Choose $0 \le \phi \in B(H)_{\star}$, $\|\phi\| \le 1$, let $\phi_{t} := T(t)_{\star}\phi$ (t>0),