Math 130B

Liam Hardiman

July 31, 2022

Abstract

I'm writing these lecture notes for UC Irvine's Math 130B course, taught in the summer of 2022. This is a five-ish week course where I plan to get through chapters 6-8 of Ross' book [1]. The class structure consists of a two hour lecture followed by a one hour discussion section three days a week. I'm aiming to get through one or two sections of the book per lecture with a midterm soon after chapter 6, maybe partway into chapter 7.

Contents

1	Jointly Distributed Random Variables]
	1.1 Joint Distribution Functions	-

1 Jointly Distributed Random Variables

1.1 Joint Distribution Functions

Remember that every (real-valued) random variable X gives us a function $F_X : \mathbb{R} \to [0,1]$ called its (cumulative) distribution function:

$$F_X(t) = \Pr[X \le t]. \tag{1}$$

Likewise, if we have two random variables X and Y, we can define their joint (cumulative) distribution function.

Definition 1.1. Let X and Y be two random variables. Then their *joint cumulative distribution* function, $F : \mathbb{R}^2 \to [0, 1]$ is defined by

$$F(s,t) = \Pr[X \le s, Y \le t].$$

If there's any possibility for ambiguity, we might write $F_{X,Y}$ to remind us that F is the cumulative distribution function for X and Y.

References

[1] Ross, Sheldon. A First Course in Probability. Ninth Edition. Pearson. 2014.