第七章方程练习题解答(15分钟)

1. 求微分方程 $y' + y \cos x = e^{-\sin x}$ 的通解(2004 春)

解: 对应齐次方程为
$$y' + y \cos x = 0$$

齐次方程通解为 $y = ce^{-\sin x}$
令 $y = ue^{-\sin x}$ 为 $y' + y \cos x = e^{-\sin x}$ 解,将其代入得,
 $u' = 1$,得 $u(x) = x + c$
故, $y' + y \cos x = e^{-\sin x}$ 的通解为 $y = (x + c)e^{-\sin x}$
或 $y = e^{-\int P(x)dx} [\int Q(x)e^{\int P(x)dx} dx + C]$

2. 设 $f(x) = \sin x - \int_0^x (x-t)f(t)dt$ 其中 f 为连续函数,求 f(x). (2005 春)

 $=(x+c)e^{-\sin x}$

解 原方程可化为 $f(x) = \sin x - x \int_0^x f(t) dt + \int_0^x t f(t) dt$ 两端对 x 求导得

$$f'(x) = \cos x - \int_0^x f(t)dt - xf(x) + xf(x) = \cos x - \int_0^x f(t)dt$$
两端再对 x 求导得
$$f''(x) = -\sin x - f(x)$$
即
$$f''(x) + f(x) = -\sin x$$

这是一个二阶线性常系数非齐次方程, 由原方程知 f(0)=0,由(*)式知 f'(0)=1.

特征方程为 $\lambda^2 + 1 = 0$, 特征根为 $\lambda = \pm i$, 对应齐次方程通解为 $\overline{Y} = C_1 \sin x + C_2 \cos x$

设非齐次方程特解为 $y^* = x(a \sin x + b \cos x)$,

代入
$$f''(x) + f(x) = -\sin x$$
 得 $a = 0, b = \frac{1}{2}$

则非齐次方程通解为 $f(x) = C_1 \sin x + C_2 \cos x + \frac{x}{2} \cos x$

由初始条件 f(0) = 0 和 f'(0) = 1 可知, $C_1 = \frac{1}{2}$, $C_2 = 0$

所求函数为
$$f(x) = \frac{1}{2}\sin x + \frac{x}{2}\cos x$$