Литий-ионные аккумуляторы

Литий-ионные аккумуляторы

Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили. В 2019 году Уиттингем, Гуденаф и Ёсино получили Нобелевскую премию по химии с формулировкой «За развитие литий-ионных аккумуляторов».

Процесс зарядки и разрядки

Во время разрядки ионы лития (Li+) переносят ток внутри элемента батареи от отрицательного к положительному электроду через не-водный электролит и сепараторную диафрагму.[61]

Во время зарядки внешний источник питания подаёт на аккумулятор повышенное напряжение (напряжение, превышающее собственное напряжение элемента), заставляя электроны перемещаться от положительного электрода к отрицательному. Ионы лития также перемещаются (через электролит) от положительного электрода к отрицательному, где они встраиваются в пористый материал электрода в процессе, известном как интеркаляция.

Процесс зарядки и разрядки

Устройство

- Катод обычно состоит из: алюминиевой подложки, на которую нанесен основной материал (LiCoO2 или др), связующее вещество и высокопроводящая сажа. Высокопроводящая сажа это углеродный материал, который улучшает распределение ионов лития во время процесса разрядки, а также увеличивает проводимость катодного материала [1].
- Анод обычно состоит из: медной подложки, на которую нанесен чистый графит, графен или другие вещества обладающие хорошей электропроводимостью, например кремний. Функция графита, нанесенного на анодную подложку, состоит в том, чтобы во время зарядки аккумулятора распределять на своей поверхности ионы лития.
- Электролит является важным компонентом литий-ионных аккумуляторов, так как он обеспечивает проводимость ионов лития между катодом и анодом. В качестве электролита могут использоваться различные вещества, такие как соли лития в органических растворителях или полимерные материалы [2].
- Сепаратор представляет собой тонкую мембрану, которая разделяет катод и анод, предотвращая короткое замыкание и обеспечивая безопасность и надежность работы аккумулятора.

Типы литий-ионных аккумуляторов

Figure 1.6. Schematic illustration of (a) coin, (b) cylindrical, (c) prismatic, and (d) pouch cell. Adopted from [27], copyright 2019 The Authors. InfoMat published by John Wiley & Sons Australia, Ltd on behalf of UESTC.

Cathode

- LiCoO₂, Lithium cobalt oxide (LCO);
- LiMn₂O₄, Spinel manganese oxide;
- LiFePO₄, Lithium iron phosphate (LFP);
- LiMn₂O₄, Lithium manganese oxide (LMO);
- LiNiMnCoO₂, Lithium nickel/manganese/cobalt oxide (NMC);
- LiNi_{0.8}Co_{0.15}Al_{0.05}O₂, Nickel cobalt aluminum oxide (NCA);
- Layered dichalcogenides.

Anode

- Carbon, graphitic and non-graphitic carbon;
- Silicon-based alloys;
- Tin based alloys: Cu–Sn (Cu₆Sn₅), Ni–Sn (Ni₃Sn₂), Co–Sn (Co₃Sn₂), and Sn–Ag alloy;
- Transition metal oxides: Titanium-based anodes (Li₄Ti₅O₁₂ and TiO₂).

Electrolyte

- Conventional LIB models: an organic electrolyte;
- Polymer LIBs: a gel polymer electrolyte;
- Solid LIBs: a solid electrolyte.

Electrolyte

- Salt of lithium hexafluorophosphate (LiPF₆), or LiBF₄, lithium perchlorate (LiClO₄), lithium hexafluoroarsenate (LiAsF₆) in a mixture of organic solvents (propylene carbonate (PC), ethylene carbonate (EC). Dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC));
- In the case of a lithium polymer battery, gel electrolyte is used, which
 involves a polymer such as: polyethylene oxide (PEO), polyacrylonitrile
 (PAN), polyvinylidene fluoride (PVDF), poly methyl methacrylate
 (PMMA).

_

Рис. 2-11. Графитирующиеся (слева) и неграфитирующиеся (справа) вещества после высокотемпературной термообработки

Графитируемость

Рис.2-17. Принципиальная схема трансформации кристаллической структуры ароматических веществ в графит в процессе термообработки на примере пека

Рис. 2-10. Зависимость межслоевого расстояния d_{002} , диаметра (латерального размера) L_a и высоты кристаллитов L_c от ТТО для УМ с различной графитируемостью: (а) изменение d_{002} для различных УВ в сравнении с нефтяным коксом; (б) изменение L_a для различных УВ в сравнении с нефтяным коксом; (в) изменение межслоевого расстояния d_{000} , L_a и L_c для карбонизованной ФФС

Mesocarbon microbeads

Мезофазные превращения при карбонизации

Рис. 2-14. Строение жидкокристаллических частиц мезофазы: (а) общее строение ароматической молекулы мезофазного пека; (б) микроструктура частицы мезофазы и химическая структура типичного фрагмента (приведены молекулярная масса, соотношение атомов углерода и водорода, а также атомов углерода и водорода в ароматических и алифатических фрагментах); (в) модели укладки слоёв ароматических молекул в сферолитах мезофазы

Mesocarbon microbeads

Сферолизованный графит

• Сферолизованный графит, или сферический графит, — это вид графита, измельченного до мелких сферических частиц (обычно 5—15 микрон в диаметре) для улучшения его свойств, таких как проводимость и уплотнение в аккумуляторных батареях, а также для применения в качестве смазочного материала в литейном производстве. Его получают из натурального чешуйчатого графита путем обработки, что придает ему лучшую электропроводность и делает его предпочтительным материалом для анодов литийионных аккумуляторов.

Анодные материалы на основе ЕГ и ИГ

Flake graphite

Graphite Anode Microstructur

Сажа -перспективный катодный материал

Рис. 8-2. Иерархическая структура технического углерода: (a) типичный кристаллит первичной сажевой частицы; (б) расположение кристаллитов внутри сажевой частицы; (в) агрегаты частиц сажи

Технология

Этап 1. Изготовление электродов.

Figure 1.7. Schematic of a coin cell assembly with all of the components.

Na-ion Battery

A sodium-ion accumulator stack (Germany, 2019)

Сравнение аккумуляторов

Сравнение аккумуляторов			
	Натриево-ионный аккумулятор	Литий-ионный аккумулятор	Свинцово- кислотный аккумулятор
Стоимость киловатт- часа мощности	40-77 долларов (теоретически в 2019 году) ^[62]	137 долларов (в среднем в 2020 году) ^[63]	100-300 долларов ^[64]
Объемная плотность энергии	250–375 Вт·ч/л, на основе прототипов ^[2]	200–683 Вт·ч/л ^[65]	80–90 Вт·ч/л ^[66]
Гравиметрическая плотность энергии (удельная энергия)	75–200 Вт·ч/кг, согласно прототипам и анонсам продуктов ^{[2][67][68]} Нижний предел для водных растворов, верхний — для углеродных батарей ^[60]	120–260 Вт·ч/кг (без защитного корпуса, необходимого для аккумуляторной батареи в транспортном средстве) [65]	35–40 Вт·ч/кг ^[66]
Соотношение мощности и веса	~1000 Вт/кг ^[69]	~340–420 BT/KF (NMC), ^[69] ~175–425 BT/KF (LFP) ^[69]	180 Вт/кг [70]
Циклы с глубиной разряда 80 % ^[а]	От сотен до тысяч ^[1]	3,500 ^[64]	900 ^[84]
Безопасность	Низкий риск для водных аккумуляторов, высокий риск для натрий-углеродных аккумуляторов, [60] включая тепловой разгон при уровне заряда выше 50%[71]	Высокий риск ^[b]	Умеренный риск
Материалы	Изобильный	Дефицитный и токсичный	Обильный и токсичный
Циклическая стабильность	Высокий (с пренебрежимо малым саморазрядом) ^[требуется ссылка]	Высокий (с пренебрежимо малым саморазрядом) [требуется ссылка]	Умеренный (высокий саморазряд) ^[72]
КПД при постоянном токе в обоих направлениях	до 92% ^[1]	85–95 %% ^[73]	70–90% ^[74]
Диапазон температур ^[c]	От -20 °C до 60 °C ^[1]	Допустимый диапазон: от -20 °C до 60 °C. Оптимальная температура: от 15 °C до 35 °C ^[75]	От -20 °C до 60 °C ^[76]

