Find the value of R so that the power absorbed by the $10k\Omega$

resistor is 10 mW. Assume vs = 2V.

$$\frac{10}{2} = \frac{R + 40k}{40k}$$

$$\frac{10}{200k} = \frac{100k}{40k} = \frac{100k}{100k} = \frac{$$

COLLEGE OF ENGINEERING

Laplace Transform

S-Domain

- Learning Objectives:
 - Review impulse and pulse signal.
 - Compute the Laplace transform of a time-dependent function.

$$v_{\scriptscriptstyle S}(t) = 25 \, e^{-t} cos(2t)$$

On time-domain:

$$V_{s}(t) = A_{e}^{\sigma t} \cos(\omega t + \varphi)$$

$$L > \sigma = 0 \Rightarrow V_{s}(t) = A_{cos}(\omega t + \varphi) \leftarrow A_{c}$$

$$\rightarrow \omega = 0 \Rightarrow V_{s}(t) = A_{e}^{\sigma t} \cos(\varphi)$$

$$\rightarrow \sigma = 0, \quad \omega = 0 \Rightarrow V_{s}(t) = A_{cos}(\varphi) \leftarrow D_{c}$$

if we know the impulse response

what can we say about an arbitrary input?

Unit Step Function

Use to model switches in circuits.

Rectangular Pulse

Ramp Function

Laplace transform Definition

$$\mathcal{L}\{f(t)\} = \mathbf{F}(s) \qquad \qquad f(t) \leftrightarrow \mathbf{F}(s)$$

$$\underline{s} = \sigma + j\omega \text{ represents the Laplace variable.}$$

$$\mathbf{F}(s) = \int_0^\infty f(t)e^{-st} \, dt$$
Time domain
$$(75) \text{ Domain}$$

• Rule for convergence: magnitude of F(s) must be finite.

Unit Step Function:
$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Laplace Transform:
$$U(s) = \int_0^\infty u(t)e^{-st} dt = \int_0^\infty |e^{-st}| dt$$

For convergence

Real $\{s\}>0$
 $= \frac{e^{-st}}{-s} - \frac{e^{-st}}{-s}$

THE OHIO STATE UNIVERSITY

Property	f(t)		$\mathbf{F}(\mathbf{s}) = \mathcal{L}[f(t)]$
1. Multiplication by const	tant $K f(t)$	\leftrightarrow	K F(s)
2. Linearity $K_1 f_1$	$(t) + K_2 f_2(t)$	\leftrightarrow	$K_1 \mathbf{F}_1(\mathbf{s}) + K_2 \mathbf{F}_2(\mathbf{s})$
3. Time scaling	f(at), a > 0	\leftrightarrow	$\frac{1}{a} \mathbf{F} \left(\frac{\mathbf{s}}{a} \right)$
4. Time shift $f(t - t)$	-T) u(t-T)	\leftrightarrow	$e^{-Ts} \mathbf{F}(s)$
5. Frequency shift	$e^{-at} f(t)$	\leftrightarrow	$\mathbf{F}(\mathbf{s}+a)$
6. Time 1st derivative	$f' = \frac{df}{dt}$	\leftrightarrow	$\mathbf{s}\;\mathbf{F}(\mathbf{s})-f(0^-)$
7. Time 2nd derivative	$f'' = \frac{d^2 f}{dt^2}$	\leftrightarrow	s^2 F (s) - s $f(0^-)$ - $f'(0^-)$
8. Time integral	$\int_{0}^{t} f(t) dt$		7230
9. Frequency derivative	t f(t)	\leftrightarrow	$-\frac{d}{d\mathbf{s}}\mathbf{F}(\mathbf{s}) = -\mathbf{F}'(\mathbf{s})$
10. Frequency integral	$\frac{f(t)}{t}$	⇔	$\int_{0}^{\infty} \mathbf{F}(\mathbf{s}) \ d\mathbf{s}$
11. Initial value	$f(0^+)$	=	$\lim_{s\to\infty} s F(s)$
12. Final value	$f(\infty)$	=	$\lim_{s\to 0} s \ F(s)$
13. Convolution	$f_1(t) * f_2(t)$	\leftrightarrow	$\mathbf{F}_1(\mathbf{s}) \; \mathbf{F}_2(\mathbf{s})$

$$5u(t)$$

 $5\frac{1}{5} = \frac{5}{5}$

THE OHIO STATE UNIVERSITY

Laplace Transform Pairs				
	f(t)		$\mathbf{F}(\mathbf{s}) = \mathcal{L}[f(t)]$	
1	$\delta(t)$	\leftrightarrow	1	
1a	$\delta(t-T)$	\leftrightarrow	e^{-Ts}	
2	1 or $u(t)$	\leftrightarrow	$\frac{1}{\mathbf{s}}$	
2a	u(t-T)	\leftrightarrow	$\frac{e^{-Ts}}{s}$	
3	$e^{-at} u(t)$	\leftrightarrow	$\overline{\mathbf{s}+a}$	
3a	$e^{-a(t-T)}\ u(t-T)$	\leftrightarrow	$\frac{e^{-Ts}}{s+a}$	
4	t u(t)	\leftrightarrow	$\frac{1}{\mathbf{s}^2}$	
4a	(t-T) u(t-T)	\leftrightarrow	$\frac{e^{-Ts}}{s^2}$	
5	$t^2 u(t)$	\leftrightarrow	$\frac{\overline{s^2}}{2\overline{s^3}}$	
6	$te^{-at} u(t)$	\leftrightarrow	$\frac{1}{(\mathbf{s}+a)^2}$	
7	$t^2e^{-at} u(t)$	\leftrightarrow	$\frac{2}{(\mathbf{s}+a)^3}$	
8	$t^{n-1}e^{-at}\ u(t)$	\leftrightarrow	$\frac{(n-1)!}{(\mathbf{s}+a)^n}$	
9	$\sin \omega t \ u(t)$	+	$\mathbf{s}^2 + \omega^2$	
10	$\sin(\omega t + \theta) \ u(t)$	+	$\frac{\mathbf{s}\sin\theta + \omega\cos\theta}{\mathbf{s}^2 + \omega^2}$	
11	$\cos \omega t \ u(t)$	+	$\frac{\mathbf{s}}{\mathbf{s}^2 + \omega^2}$	
12	$\cos(\omega t + \theta) \ u(t)$	\leftrightarrow	$\frac{\mathbf{s}\cos\theta - \omega\sin\theta}{\mathbf{s}^2 + \omega^2}$	
13	$e^{-at}\sin\omega t\ u(t)$	+	$\frac{\omega}{(\mathbf{s}+a)^2+\omega^2}$	
14	$e^{-at}\cos\omega t\ u(t)$	\leftrightarrow	$\frac{\mathbf{s}+a}{(\mathbf{s}+a)^2+\omega^2}$	
15	$2e^{-at}\cos(bt-\theta)\ u(t)$	+	$\frac{e^{j\theta}}{\mathbf{s}+a+jb} + \frac{e^{-j\theta}}{\mathbf{s}+a-jb}$	
16	$\frac{2t^{n-1}}{(n-1)!} e^{-at} \cos(bt - \theta) u(t)$	+	$\frac{e^{j\theta}}{(\mathbf{s}+a+jb)^n} + \frac{e^{-j\theta}}{(\mathbf{s}+a-jb)^n}$	

)23 I. Fernandez