Algorísmica Avançada Algorismes greedy l

Sergio Escalera

- Podem guanyar als escacs pensant només en la següent jugada?
- I al scrabble? → algorisme greedy?
- Algorismes greedy troben la millor "jugada" a cada pas

Exemple

- Volem connectar els ordinadors (nodes) d'una xarxa. Les connexions són les arestes. Cadascuna té un cost. Volem el mínim cost.
 - → llavors no volem cicles
 - → volem un graf no dirigit acíclic connectat
 - $\cdot \rightarrow$ arbre !!!
 - → de mínim cost: Minimum Spanning Tree (MST)

MST amb cost 16 (un dels possibles)

- Algorisme greedy: Kruskal
 - Començar amb arbre buit
 - Mentre no estiguin tots els nodes connectats:
 - Incloure aresta de cost mínim que no produeix un cicle

• Cost 14!

 $B-C,\ C-D,\ B-D,\ C-F,\ D-F,\ E-F,\ A-D,\ A-B,\ C-E,\ A-C.$

Aquest algorisme és òptim!

- ¿Per què? Propietat de tall "cut":
- Un tall és aquella aresta que si la traiem es genera una nova component connexa.
- El que fem amb Kruskal és anar connectant elements amb el tall de cost mínim.
- Cóm ho podem implementar eficientment?

```
procedure kruskal (G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the edges X
for all u \in V:
   makeset(u)
X = \{\}
Sort the edges E by weight
for all edges \{u,v\} \in E, in increasing order of weight:
   if find(u) \neq find(v):
      add edge \{u,v\} to X
      union(u, v)
                                                 V makeset,
```

• Representació dels conjunts: arbres dirigits

$$\frac{\text{function find}}{\text{while } x \neq \pi(x): \quad x = \pi(x)}$$

$$\text{return } x$$

 π punter rank: altura dins de l'arbre

- Makeset: temps constant
- Find: segueix punters dels pares als roots, per tant el temps és proporcional a l'altura
- **Union**: com l'altura ens defineix la complexitat, posem el punter de l'arbre més curt apuntant al punter de l'arbre amb més altura

```
\begin{array}{l} & \operatorname{procedure\ union}\left(x,y\right) \\ & r_x = \operatorname{find}(x) \\ & r_y = \operatorname{find}(y) \\ & \operatorname{if\ } r_x = r_y \colon \text{ return} \\ & \operatorname{if\ } \operatorname{rank}(r_x) > \operatorname{rank}(r_y) \colon \\ & \pi(r_y) = r_x \\ & \operatorname{else} \colon \\ & \pi(r_x) = r_y \\ & \operatorname{if\ } \operatorname{rank}(r_x) = \operatorname{rank}(r_y) \colon \text{ } \operatorname{rank}(r_y) = \operatorname{rank}(r_y) + 1 \end{array}
```

After makeset(A), makeset(B), ..., makeset(G):

After union(A, D), union(B, E), union(C, F):

After union(B, G):

After union(C, G), union(E, A):

Kruskal exemple

Kruskal exemple

Kruskal exemple

- Exemple: Algorisme de Prim
 - Alternativa a Kruskal
- La propietat de tall ens diu que qualsevol algorisme que segueix el següent procediment hauria de funcionar :

```
X=\{\ \} (edges picked so far) repeat until |X|=|V|-1 : pick a set S\subset V for which X has no edges between S and V-S let e\in E be the minimum-weight edge between S and V-S X=X\cup\{e\}
```

Prim: similar a kruskal però per nodes

$$\mathrm{cost}(v) \ = \ \min_{u \in S} \ w(u,v).$$

La complexitat és similar a l'algorisme de kruskal

```
procedure prim(G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the array prev
for all u \in V:
   cost(u) = \infty
   prev(u) = nil
Pick any initial node u_0
cost(u_0) = 0
H = makequeue(V) (priority queue, using cost-values as keys)
while H is not empty:
   v = deletemin(H)
   for each \{v,z\} \in E:
      if cost(z) > w(v, z):
          cost(z) = w(v, z)
         prev(z) = v
          decreasekey(H,z)
```


$\operatorname{Set} S$	A	B	C	D	E	F
{}	0/nil	∞ /nil	∞ /nil	∞/nil	∞/nil	∞/nil
A		5/A	6/A	4/A	∞/nil	∞/nil
A, D		2/D	2/D		∞/nil	4/D
A, D, B			1/B		∞ /nil	4/D
A, D, B, C					5/C	3/C
A, D, B, C, F					4/F	

Prim exemple

Prim exemple

Prim exemple

• Exercicis (1):

- A) Quin és el cost del MST?
- B) En quin ordre les arestes són incloses en el MST usant l'algorisme Kruskal?

• Exercicis (1):

$$(B,F) \rightarrow NO$$

 (G,H)

• Exercicis (1):

MST coste 19

• Exercicis (2):

- Aplica l'algorisme Prim (order alfabètic)
 - Escriu la taula de costos intermitjos
- Aplica l'algorisme Kruskal i mostra els diferents arbres intermitjos

Algorísmica Avançada Algorismes greedy II

Sergio Escalera

• Exemple: codificació Huffman

Imagina un text de quatre simbols codificat amb la següent taula de freqüències.

Symbol	Frequency				
A	70 million				
B	3 million				
C	20 million				
D	37 million				

En lloc de fer servir 2 bits per cadascun, podem pensar en una altra codificació?:

$$\{0,01,11,001\}$$

La decodificació de strings com 001 és ambígua
→ podria ser també 0 i 01 !!

Fem un arbre lliure de prefixe!

Symbol	Codeword
A	0
B	100
C	101
D	11

Hem aconseguit un 17% de millora en espai!

 Per trobar aquests arbres volem minimitzar la següent funció de cost:

cost of tree =
$$\sum_{i=1}^{n} f_i$$
 (depth of *i*th symbol in tree)

Tornem a un algorisme greedy!!

- En altres casos, els algorismes greedy obtenen respostes aproximades
 - → factor d'aproximació
- No són òptimes, però no existeixen algorismes lineals que solucionen el problema
 - □ → Ho veurem a problemes NP

- Exercici:
 - Freqüència de lletres de l'alfabet anglès

Quina es la codificació òptima de Huffman?

- Exercici: **Dijkstra**
- Començant a A: dibuixa la taula de distàncies immediates a tots els nodes a cada iteració.
- Mostra l'arbre de camins mínims

	A	В	С	D	E	F	G	Н	S
1									
2									
3									
4									
5									
6									
7									
8									

	Α	В	С	D	E	F	G	Н	S
1	0	8	8	∞	8	8	8	8	[A]
	-	-	-	-	-	-	-	-	
2	0	1	8	∞	4	8	8	8	[AB]
	-	А	-	-	Α	А	-	-	
3	0	1	3	8	4	7	7	8	[AC]
	-	А	В	-	Α	В	В	-	
4	0	1	3	4	4	7	5	8	[AD]
	-	А	В	С	Α	В	С	-	
5	0	1	3	4	4	7	5	8	[AE]
	-	А	В	С	А	В	С	D	
6	0	1	3	4	4	7	5	8	[EEG]
	-	А	В	С	А	В	С	D	
7	0	1	3	4	4	6	5	6	[AG]
	-	А	В	С	А	G	С	G	
8	0	1	3	4	4	6	5	6	[AH]
	-	А	В	С	А	G	С	G	

• Exercici: el mateix amb Bellman-Ford

