

Increasing intermolecular attractions

Particles are far apart; possess complete freedom of motion; kinetic energies of particles >> energies of particle-particle attraction.

Particles are closely packed but randomly oriented; retain freedom of motion; kinetic energies of particles similar to energies of particle–particle attraction. Particles are closely packed in an ordered array; positions are essentially fixed; energies of particle–particle attraction >> kinetic energies of particles.

Intermolecular forces are attractive forces between molecules.

Intramolecular forces hold atoms together in a molecule.

Intermolecular vs Intramolecular

- 41 kJ to vaporize 1 mole of water (inter)
- 930 kJ to break all O-H bonds in 1 mole of water (intra)

Generally, **inter**molecular forces are much weaker melathan **intra**molecular forces.

boiling point melting point $\Delta H_{
m vap}$ $\Delta H_{
m fus}$

"Measure" of intermolecular force

<u>Dispersion Forces</u> (London forces, induced dipole-induced dipole forces, London dispersion forces)

Attractive forces that arise as a result of **temporary dipoles induced** in atoms or molecules

In a nonpolar molecule, the charge is uniformly distributed over time. But in any one instant, the charge is not uniformly distributed. In that instant, there is an **instantaneous dipole**.

All molecules exhibit London forces.

Dispersion Forces

The instantaneous dipole of the neon atom induces an instantaneous dipole in adjacent atoms, resulting in an attractive force between them.

Dispersion Forces

In the next moments, the electrons move, and the instantaneous dipoles change. However, the instantaneous dipoles tend to change *together*, maintaining the attractive force between them.

Dispersion Forces: size

Polarizability is the ease with which the electron distribution in the atom or molecule can be distorted.

Polarizability increases with:

- greater number of electrons
- more diffuse electron cloud

Dispersion forces usually increase with molar mass.

TABLE 11.2		
Melting Points of Similar Nonpolar Compounds		
Melting Point		
Compound	(°C)	
CH ₄	-182.5	
CF ₄	-150.0	
$CC1_4$	-23.0	
CBr_4	9 <mark>0.0</mark>	
CI ₁	17 <mark>1</mark> .0	
*	*	

Dispersion Forces: size

Dispersion Forces: size

Dispersion Forces: shape

Dispersion Forces: shape

Linear molecule—larger surface area enhances intermolecular contact and increases dispersion force.

n-Pentane (C_5H_{12}) bp = 309.4 K

Spherical molecule—smaller surface area diminishes intermolecular contact and decreases dispersion force.

Neopentane (C_5H_{12}) bp = 282.7 K

Dipole-Dipole Forces

Attractive forces between **polar molecules**

Orientation of Polar Molecules in a Solid

Dipole-Dipole Forces

Attractive forces between polar molecules

Dipole-Dipole Forces

Ion-Dipole Forces

Attractive forces between an ion and a polar molecule

Interaction Between Water and Cations

What type(s) of intermolecular forces exist between each of the following molecules?

HBr

HBr is a polar molecule: dipole-dipole forces. There are also dispersion forces between HBr molecules.

CH₄

CH₄ is nonpolar: dispersion forces.

SO₂ is a polar molecule: dipole-dipole forces. There are also dispersion forces between SO₂ molecules.

Hydrogen Bond

The *hydrogen bond* is a special dipole-dipole interaction between they hydrogen atom in a polar N-H, O-H, or F-H bond and an electronegative O, N, or F atom.

or
$$A - H \cdots A$$

A & B are N, O, or F: smallest, most electronegative

Hydrogen Bond

Hydrogen bonding in water is illustrated here in three different formats: ball-and-stick model, electrostatic map showing electron density distributions, and Lewis formula.

Why is the hydrogen bond considered a "special" dipole-dipole interaction?

Identify the intermolecular forces that you would expect for each of the following substances:

- a. O_2
- b. H_2O_2
- c. CHBr₃
- a. Nonpolar molecule: London forces
- b. Polar molecule with O—H bond: London forces, dipole-dipole forces, hydrogen bonding
- c. Polar molecule: London forces, dipole-dipole forces

Type of intermolecular interaction	Atoms Examples: Ne, Ar	Nonpolar molecules Examples: BF ₃ , CH ₄	Polar molecules without OH, NH, or HF groups Examples: HCl, CH ₃ CN	Polar molecules containing OH, NH, or HF groups Examples: H ₂ O, NH ₃	Ionic solids dissolved in polar liquids Examples: NaCl in H ₂ O
Dispersion forces (0.1–30 kJ/mol)	1	√	√	√	1
Dipole–dipole interactions (2–15 kJ/mol)			√	√	
Hydrogen bonding (10–40 kJ/mol)				√	
Ion-dipole interactions (>50 kJ/mol)					1

Exercise 1: In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH₄), hydrazine (H₂NNH₂), methyl fluoride (CH₃F), hydrogen sulfide (H₂S)?

Exercise 2: List the substances BaCl₂, H₂, CO, HF, and Ne in order of increasing boiling point.

Surface Tension

Surface tension is the property that allows insects to walk on the surface of water or a pin to float.

Surface Tension

Surface tension is the amount of energy required to stretch or increase the surface of a liquid by a unit area.

Strong intermolecular forces

High surface tension

Surface Tension

Cohesion is the intermolecular attraction between like molecules

Adhesion is an attraction between unlike molecules

Viscosity

Viscosity is a measure of a fluid's resistance to flow.

Strong intermolecular forces

High viscosity

TABLE 11.3 Viscosity of Some Common Liquids at 20°C			
Liquid	Viscosity (N s/m²)*		
Acetone (C ₃ H ₆ O)	3.16×10^{-4}		
Benzene (C_6H_6)	6.25×10^{-4}		
Blood	4×10^{-3}		
Carbon tetrachloride (CCl ₄)	9.69×10^{-4}		
Diethyl ether $(C_2H_5OC_2H_5)$	2.33×10^{-4}		
Ethanol (C ₂ H ₅ OH)	1.20×10^{-3}		
Glycerol (C ₃ H ₈ O ₃)	1.49		
Mercury (Hg)	1.55×10^{-3}		
Water (H ₂ O)	1.01×10^{-3}		

^{*}The SI units of viscosity are newton-second per meter squared.

Viscosity

- Viscosity is the resistance of a liquid to flow.
 - -1 poise = 1 P = 1 g/cm · s
 - Often given in centipoise, cP
 - H₂O = 1 cP at room temperature
- Larger intermolecular attractions = higher viscosity

TABLE 11.3 Viscosities of a Series of Hydrocarbons at 20 °C

Substance	Formula	Viscosity (kg/m-s)
Hexane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	3.26×10^{-4}
Heptane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	4.09×10^{-4}
Octane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	5.42×10^{-4}
Nonane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	7.11×10^{-4}
Decane	CH ₃ CH ₂ CH ₃	1.42×10^{-3}

Viscosity

- Raising the temperature of a liquid reduces its viscosity.
 - Raising the temperature of the liquid increases the average kinetic energy of the molecules.
 - The increased molecular motion makes it easier to overcome the intermolecular attractions and flow.

TABLE 11.6 Viscosity of Liquid Water at Several Temperatures		
Temperature (°C)	Viscosity (cP)	
20	1.002	
40	0.653	
60	0.467	
80	0.355	
100	0.282	

Heat of Vaporization

- The amount of heat energy required to vaporize one mole of the liquid is called the heat of vaporization, ΔH_{vap}.
 - Sometimes called the enthalpy of vaporization
- It is always endothermic; therefore, ΔH_{vap} is +.
- It is somewhat temperature dependent.
- $\Delta H_{\text{condensation}} = -\Delta H_{\text{vaporization}}$

TABLE 11.7 Heats of Vaporization of Several Liquids at Their Boiling Points and at 25 °C

Liquid	Chemical Formula	Normal Boiling Point (°C)	$\Delta H_{ m vap}({ m kJ/mol})$ at Boiling Point	$\Delta H_{ m vap}({ m kJ/mol})$ at 25 °C
Water	H ₂ O	100	40.7	44.0
Rubbing alcohol (isopropyl alcohol)	C ₃ H ₈ O	82.3	39.9	45.4
Acetone	C ₃ H ₆ O	56.1	29.1	31.0
Diethyl ether	C ₄ H ₁₀ O	34.6	26.5	27.1

Effect of Intermolecular Forces on Evaporation and Condensation

- The weaker the attractive forces among molecules, the less energy they will need to vaporize.
- Also, weaker attractive forces means that more energy will need to be removed from the vapor molecules before they can condense.
- The net result will be more molecules in the vapor phase and a liquid that evaporates faster; the weaker the attractive forces, the faster the rate of evaporation.
- Liquids that evaporate easily are said to be volatile.
 - For example, gasoline, fingernail polish remover
- Liquids that do not evaporate easily are called nonvolatile.
 - For example, motor oil

Temperature Dependence of Vapor Pressure

- Increasing the temperature increases the number of molecules able to escape the liquid.
- The net result is that as the temperature increases, the vapor pressure increases.
- Small changes in temperature can make big changes in vapor pressure.
 - The rate of growth depends on the strength of the intermolecular forces.

Vapor Pressure Curves

Attractive Forces and Solubility

- Solubility depends, in part, on the attractive forces of the solute and solvent molecules.
 - Like dissolves like.
 - Miscible liquids will always dissolve in each other.
- Polar substances dissolve in polar solvents.
 - Hydrophilic groups = OH, CHO, C=O, COOH, NH₂, CI
- Nonpolar molecules dissolve in nonpolar solvents.
 - Hydrophobic groups = C—H, C—C
- Many molecules have both hydrophilic and hydrophobic parts; solubility in water becomes a competition between the attraction of the polar groups for the water and the attraction of the nonpolar groups for their own kind.

Immiscible Liquids

Pentane, C_5H_{12} , is a nonpolar molecule.

Water is a polar molecule.

The attractive forces among the water molecules are much stronger than their attractions for the pentane molecules. The result is that the liquids are immiscible.

C₅H₁₂(*l*)
H₂O(*l*)