Kursus 02402/02323 Introducerende Statistik

Forelæsning 11: Tovejs variansanalyse, ANOVA

Klaus K. Andersen og Per Bruun Brockhoff

DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet 2800 Lyngby – Danmark

e-mail: klaus@cancer.dk

- Intro: Regneeksempel og TV-data fra B&O
- Model
- Beregning variationsopspaltning og ANOVA tabellen
- Hypotesetest (F-test)
- Post hoc sammenligninger
- Model kontrol

- Intro: Regneeksempel og TV-data fra B&O

Udvikling af TV hos Bang & Olufsen

Lyd- og billedkvalitet måles med det menneskelige måleinstrument:

Vi har udviklet et værktøj, som bla. bruges af B&O til variansanalyse:

PanelCheck (Viser Panelcheck programmet med TV data) DTU Compute

Bang & Olufsen data i R:

```
## # Getting the Bang and Olufsen data from the lmerTest-package:
library(lmerTest) # (Udviklet af os)
data(TVbo)
# Each of 8 assessors scored each of 12 combinations 2 times
# Let's look at only a single picture and one of the two reps:
# And let us look at the sharpness
TVbosubset <- subset(TVbo, Picture==1 & Repeat==1)[,c(1, 2, 9)]
sharp <- matrix(TVbosubset$Sharpness, nrow=8, byrow=T)</pre>
colnames(sharp) <- c("TV3", "TV2", "TV1")</pre>
rownames(sharp) <- c("Person 1", "Person 2", "Person 3",</pre>
                      "Person 4", "Person 5", "Person 6",
                      "Person 7", "Person 8")
library(xtable)
```

xtable(sharp)

Bang & Olufsen data i R:

TV3	TV2	TV1
9.30	4.70	6.60
10.20	7.00	8.80
11.50	9.50	8.00
11.90	6.60	8.20
10.70	4.20	5.40
10.90	9.10	7.10
8.50	5.00	6.30
12.60	8.90	10.70
	9.30 10.20 11.50 11.90 10.70 10.90 8.50	9.30 4.70 10.20 7.00 11.50 9.50 11.90 6.60 10.70 4.20 10.90 9.10 8.50 5.00

Toveis variansanalyse - eksempel

 Samme data som for envejs, dog ved vi nu at forsøget var inddelt i blokke

	Gruppe A	Gruppe B	Gruppe C
Blok 1	2.8	5.5	5.8
Blok 2	3.6	6.3	8.3
Blok 3	3.4	6.1	6.9
Blok 4	2.3	5.7	6.1

- dvs. tre grupper på fire blokke
- el. tre behandlinger på fire personer
- el. tre afgrøder på fire marker (deraf blokke)
- el. lign.

Toveis variansanalyse - eksempel

 Samme data som for envejs, dog ved vi nu at forsøget var inddelt i blokke

	Gruppe A Gruppe B		Gruppe C	
Blok 1	2.8	5.5	5.8	
Blok 2	3.6	6.3	8.3	
Blok 3	3.4	6.1	6.9	
Blok 4	2.3	5.7	6.1	

- dvs. tre grupper på fire blokke
- el. tre behandlinger på fire personer
- el. tre afgrøder på fire marker (deraf blokke)
- el. lign.
- Envejs vs. tovejs ANOVA
- Completely randomized design vs. Randomized block design

Tovejs variansanalyse - eksempel

• Samme data som for envejs, dog ved vi nu at forsøget var udført på fire blokke (personer)

	Behandling A	Behandling B	Behandling C
Blok 1	2.8	5.5	5.8
Blok 2	3.6	6.3	8.3
Blok 3	3.4	6.1	6.9
Blok 4	2.3	5.7	6.1

Toveis variansanalyse - eksempel

 Samme data som for envejs, dog ved vi nu at forsøget var udført på fire blokke (personer)

	Behandling A	Behandling B	Behandling C
Blok 1	2.8	5.5	5.8
Blok 2	3.6	6.3	8.3
Blok 3	3.4	6.1	6.9
Blok 4 2.3		5.7	6.1

- Besvar: Er der signifikant forskel (i middel) på grupperne A, B og C?
- Variansanalyse (ANOVA) kan anvendes til analysen såfremt observationerne i hver gruppe kan antages at være normalfordelte (dog med mange samples dækker CLT)

```
## Observationer
v \leftarrow c(2.8, 3.6, 3.4, 2.3,
       5.5, 6.3, 6.1, 5.7,
       5.8, 8.3, 6.9, 6.1)
## Behandlinger (grupper, afgrøder)
treatm <- factor(c(1, 1, 1, 1,
                    2, 2, 2, 2,
                    3, 3, 3, 3))
## Blokke (personer, marker)
block <- factor(c(1, 2, 3, 4,
                   1. 2. 3. 4.
                   1, 2, 3, 4))
## Til formler senere
(k <- length(unique(treatm)))</pre>
(1 <- length(unique(block)))
## Plots
par(mfrow=c(1,2))
## Plot histogrammer inddelt ved behandlinger
plot(treatm, y, xlab="Treatments", ylab="y")
## Plot histogrammer inddelt ved blokke
plot(block, v, xlab="Blocks", ylab="v")
```

- Model

Toveis variansanalyse, model

Opstil en model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

hvor afvigelsen

$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 og i.i.d.

- \bullet μ er middelværdi for alle målinger
- α_i angiver effekt for behandling i
- β_i angiver niveau for blok i
- der er k behandlinger og l blokke
- j tæller målinger i grupperne, fra 1 til n_i for behandling i

Estimater af parametrene i modellen

• Vi kan beregne estimater af parametrene ($\hat{\mu}$ og $\hat{\alpha}_i$, og $\hat{\beta}_i$)

$$\hat{\mu} = \bar{y} = \frac{1}{k \cdot l} \sum_{i=1}^{k} \sum_{j=1}^{l} y_{ij}$$

$$\hat{\alpha}_i = \left(\frac{1}{l} \sum_{j=1}^{l} y_{ij}\right) - \hat{\mu}$$

$$\hat{\beta}_j = \left(\frac{1}{k} \sum_{i=1}^{k} y_{ij}\right) - \hat{\mu}$$

```
## Sample mean
(muHat <- mean(y))
## Sample mean for hver behandling
(alphaHat <- tapply(y, treatm, mean) - muHat)
## Sample mean for hver blok
(betaHat <- tapply(y, block, mean) - muHat)
```

- 1) Intro: Regneeksempel og TV-data fra B&C
- Mode
- 3 Beregning variationsopspaltning og ANOVA tabellen
- 4 Hypotesetest (F-test)
- Post hoc sammenligninger
- Model kontrol

Tovejs variansanalyse, opspaltning og ANOVA tabellen

Med modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

kan den totale variation i data opspaltes:

$$SST = SS(Tr) + SS(Bl) + SSE$$

Tovejs variansanalyse, opspaltning og ANOVA tabellen

Med modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

kan den totale variation i data opspaltes:

$$SST = SS(Tr) + SS(Bl) + SSE$$

- Tovejs' hentyder til, at der er to faktorer i forsøget
- Metoden kaldes variansanalyse, fordi testningen foregår ved at sammenligne varianser

Formler for kvadratafvigelsessummer

Kvadratafvigelsessum ("den totale varians") (samme som for envejs)

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\mu})^2$$

Formler for kvadratafvigelsessummer

Kvadratafvigelsessum ("den totale varians") (samme som for envejs)

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\mu})^2$$

 Kvadratafvigelsessum for behandling ("Varians forklaret af behandlingdel af modellen")

$$SS(Tr) = l \cdot \sum_{i=1}^{k} \hat{\alpha}_i^2$$

Formler for kvadratafvigelsessummer

• Kvadratafvigelsessum for blokke (personer) ("Varians forklaret af blokdel af modellen")

$$SS(Bl) = k \cdot \sum_{j=1}^{l} \hat{\beta}_j^2$$

Kvadratafvigelsessum af residualer ("Varians tilbage efter model")

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\alpha}_i - \hat{\beta}_j - \hat{\mu})^2$$

- Hypotesetest (F-test)

Tovejs ANOVA: hypotese om forskellig effekt af behandling

• Vi vil nu sammenligne (flere end to) middelværdier $\mu + \alpha_i$ i modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

Opstil hypotesen

$$H_{0,Tr}: \quad \alpha_i = 0 \quad \text{for alle } i$$

$$H_{1,Tr}: \quad \alpha_i \neq 0 \quad \text{for mindst et } i$$

Tovejs ANOVA: hypotese om forskellig effekt af behandling

• Vi vil nu sammenligne (flere end to) middelværdier $\mu + \alpha_i$ i modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

Opstil hypotesen

$$H_{0,Tr}: \quad lpha_i = 0 \quad ext{for alle } i$$
 $H_{1,Tr}: \quad lpha_i
eq 0 \quad ext{for mindst et } i$

• Under $H_{0,Tr}$ følger

$$F_{Tr} = \frac{SS(Tr)/(k-1)}{SSE/((k-1)(l-1))}$$

en F-distribution med k-1 og (k-1)(l-1) frihedsgrader

Tovejs ANOVA: hypotese om forskelligt niveau for personer (blokke)

• Vi vil nu sammenligne (flere end to) middelværdier $\mu + \beta_i$ i modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

Opstil hypotesen

$$H_{0,Bl}: \quad \beta_i = 0 \quad \text{for alle } i$$

$$H_{1,Bl}: \quad \beta_i \neq 0 \quad \text{for mindst et } i$$

Tovejs ANOVA: hypotese om forskelligt niveau for personer (blokke)

ullet Vi vil nu sammenligne (flere end to) middelværdier $\mu+eta_i$ i modellen

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

Opstil hypotesen

$$H_{0,Bl}: \quad \beta_i = 0 \quad \mbox{for alle } i$$
 $H_{1,Bl}: \quad \beta_i \neq 0 \quad \mbox{for mindst et } i$

• Under $H_{0,Bl}$ følger

$$F_{Bl} = \frac{SS(Bl)/(l-1)}{SSE/((k-1)(l-1))}$$

en F-distribution med l-1 og (k-1)(l-1) frihedsgrader

F-fordeling og hypotese for behandlinger

```
## Husk, dette er under H0 (altså vi regner som om H0 er sand):
## Sekvens til plot
xseq < - seq(0, 10, by=0.1)
## Plot F fordelingens tæthedsfunktion
plot(xseq, df(xseq, df1=k-1, df2=(k-1)*(1-1)), type="1")
## Kritisk værdi for signifikans niveau 5 pct.
cr \leftarrow qf(0.95, df1=k-1, df2=(k-1)*(1-1))
## Tegn den i plottet
abline(v=cr, col="red")
## Test statistikkens værdi:
## Værdien
(Ftr \leftarrow (SSTr/(k-1)) / (SSE/((k-1)*(l-1))))
## p-værdien er da
(1 - pf(Ftr, df1=k-1, df2=(k-1)*(1-1)))
```

F-fordeling og hypotese for blokke

```
## Husk, dette er under H0 (altså vi regner som om H0 er sand):
## Sekvens til plot
xseq < - seq(0, 10, by=0.1)
## Plot F fordelingens tæthedsfunktion
plot(xseq, df(xseq, df1=1-1, df2=(k-1)*(1-1)), type="1")
## Kritisk værdi for signifikans niveau 5 pct.
cr \leftarrow qf(0.95, df1=1-1, df2=(k-1)*(1-1))
## Tegn den i plottet
abline(v=cr, col="red")
## Test statistikkens værdi:
## Værdien
(Fbl \leftarrow (SSB1/(1-1)) / (SSE/((k-1)*(1-1))))
## p-værdien er da
(1 - pf(Fbl, df1=l-1, df2=(k-1)*(l-1)))
```

Variansanalysetabel

	Variations-	Friheds-	Kvadrat-	Gns. kvadratafv.	Test-	p-
	kilde	grader	afvi. sum	sum	størrelse F	værdi
	Source of	Deg. of	Sums of	Mean sum of	Test-	<i>p</i> -
	variation	freedom	squares	squares	statistic F	value
	Behandling	k-1	SS(Tr)	$MS(Tr) = \frac{SS(Tr)}{k-1}$	$F_{\rm Tr} = \frac{MS(Tr)}{MSE}$	$P(F > F_{\mathrm{Tr}})$
	Block	l-1	SS(Bl)	$MS(Bl) = \frac{SS(Bl)}{l-1}$	$F_{\rm Bl} = \frac{MS(Bl)}{MSE}$	$P(F > F_{\rm Bl})$
	Residual	(k-1)(l-1)	SSE	$MSE = \frac{SSE}{(k-1)(l-1)}$		
	Total	n-1	SST			

- Post hoc sammenligninger

Post hoc konfidensinterval

- Som ved envejs, skift (n-k) frihedsgrader ud med (k-1)(l-1) (og brug MSE fra tovejs).
- Gøres med enten behandlinger eller blokke

Post hoc konfidensinterval

- Som ved envejs, skift (n-k) frihedsgrader ud med (k-1)(l-1) (og brug MSE fra toveis).
- Gøres med enten behandlinger eller blokke
- En enkelt forudplanlagt sammenligning af forskelle på behandling i og i findes ved

$$\bar{y}_i - \bar{y}_j \pm t_{1-\alpha/2} \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

hvor $t_{1-\alpha/2}$ er fra t-fordelingen med (k-1)(l-1) frihedsgrader.

Post hoc konfidensinterval

- Som ved envejs, skift (n-k) frihedsgrader ud med (k-1)(l-1) (og brug MSE fra tovejs).
- Gøres med enten behandlinger eller blokke
- ullet En enkelt forudplanlagt sammenligning af forskelle på behandling i og j findes ved

$$\bar{y}_i - \bar{y}_j \pm t_{1-\alpha/2} \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

hvor $t_{1-\alpha/2}$ er fra t-fordelingen med (k-1)(l-1) frihedsgrader.

• Hvis alle kombinationer af parvise konfidensintervaller brug formlen M gange, men med $\alpha_{\mathrm{Bonferroni}} = \alpha/M$

Post hoc parvis hypotesetest

 \bullet In enkelt forudplanlagt hypotesetest på α signifikansniveau om forskel af behandling i og j

$$H_0: \ \mu_i = \mu_j, \ H_1: \ \mu_i \neq \mu_j$$

udføres ved

$$t_{\text{obs}} = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \tag{1}$$

og

$$p - \mathsf{value} = 2P(t > |t_{\mathsf{obs}}|)$$

hvor t-fordelingen med (k-1)(l-1) frihedsgrader anvendes

Post hoc parvis hypotesetest

 \bullet In enkelt forudplanlagt hypotesetest på α signifikansniveau om forskel af behandling i og j

$$H_0: \mu_i = \mu_j, \ H_1: \mu_i \neq \mu_j$$

udføres ved

$$t_{\text{obs}} = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \tag{1}$$

og

$$p - \mathsf{value} = 2P(t > |t_{\mathsf{obs}}|)$$

hvor t-fordelingen med (k-1)(l-1) frihedsgrader anvendes

• Hvis alle M=k(k-1)/2 kombinationer af hypotesetests: korrigeret signifikans niveau $\alpha_{\mathsf{Bonferroni}}=\alpha/M$

- Model kontrol

Varians homogenitet

Se på box-plot om spredning af residualer ser ud til at afhænge af gruppen

```
## Gem fittet
fit <- lm(y ~ treatm + block)
## Box plot
par(mfrow=c(1,2))
plot(treatm, fit$residuals, y, xlab="Treatment")
## Box plot
plot(block, fit$residuals, xlab="Block")
```

Normalfordelingsantagelse

Se på qq-normal plot

```
## qq-normal plot af residualer
qqnorm(fit$residuals)
qqline(fit$residuals)
## Eller med et Wally plot
require (MESS)
qqwrap <- function(x, y, ...) {qqnorm(y, main="",...);</pre>
  qqline(y)}
## Kan vi se et afvigende gg-norm plot?
wallyplot(fit$residuals, FUN = qqwrap)
```

- Intro: Regneeksempel og TV-data fra B&O
- Model
- Beregning variationsopspaltning og ANOVA tabellen
- Hypotesetest (F-test)
- Post hoc sammenligninger
- Model kontrol