北京理工大学 2019-2020 学年第一学期

大学物理 AII 期中考试试卷

2019年X月X日 时长: 2小时

<u> </u>	班级	_学号	_姓名	_总分
----------	----	-----	-----	-----

一、选择题(单选,每题3分,共27分。将答案写在方括号内):

- 1. 如图所示,两个同心的均匀带电球面,内球面半径为 R_1 、带有电荷 Q_1 ,外球面半径为 R_2 、带有电荷 O_2 ,则在内球面里面、距离球心为 r 处的 P 点的场强大 小 E 为:
 - $(A) \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r^2}.$
- (B) $\frac{Q_1}{4\pi\varepsilon_0 R_1^2} + \frac{Q_2}{4\pi\varepsilon_0 R_2^2}$
- (C) $\frac{Q_1}{4\pi\varepsilon_1 r^2}$.
- (D) 0.

٦

- 2. 一长直导线横截面半径为 a, 导线外同轴地套一半径为 b 的薄圆筒, 两者互相绝缘, 并且 外筒接地,如图所示.设导线单位长度的电荷为 $+\lambda$,并设地的电势为零,则两导体之间的P点(OP = r)的电势为:

 - (A) $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{a}$. (B) $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{r}$.

 - (C) $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{a}{r}$. (D) $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r}{a}$.

- 3. 在一点电荷 q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形 闭合面 S,则对此球形闭合面:
 - (A) 高斯定理成立,且可用它求出闭合面上各点的场强.
 - (B) 高斯定理成立,但不能用它求出闭合面上各点的场强.
 - (C) 由于电介质不对称分布,高斯定理不成立.
 - (D) 即使电介质对称分布,高斯定理也不成立.

- 4. 如图所示, 一球形导体, 带有电荷 q, 置于一任意形状的空腔导体中. 当用导线将两者连 接后,则与未连接前相比系统静电场能量将
 - (A) 增大.
- (B) 减小.
- (C) 不变.
- (D) 如何变化无法确定.

Γ

5. 两块面积均为S的金属平板A和B彼此平行放置,板间距离为d(d远小 于板的线度),设A板带有电荷 g_1 ,B板带有电荷 g_2 ,则AB两板间的电势 差UAB为

6. 如图所示,在真空中半径分别为 R 和 2R 的两个同心球面,其上分别均匀地带有电荷+q和-3q. 今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动 能为:

- 7. 把 A, B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零 点, A 的电势为 U_A , B 的电势为 U_B , 则
 - (A) $U_B > U_A \neq 0$. (B) $U_B > U_A = 0$.

 - (C) $U_B = U_A$. (D) $U_B < U_A$.

- 8. 关于静电场中的电位移线,下列说法中,哪一个是正确的?
 - (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断.
 - (B) 任何两条电位移线互相平行.
 - (C) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线在无自由电荷的空间不相交.

(D) 电位移线只出现在有电介质的空间.

9. 将一空气平行板电容器接到电源上充电到一定电压后,在保持与电 源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极 板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储 存电能的影响为:

- (A) 储能增加,但与金属板相对极板的上下位置无关.
- (B) 储能增加, 且与金属板相对极板的上下位置有关.
- (C) 储能减少,但与金属板相对极板的上下位置无关.
- (D) 储能减少, 且与金属板相对极板的上下位置有关.

二、填空题(共39分,请将答案写在卷面指定的横线上):

1 区 E 的人小	,方向	_•	I II	III
$II区\bar{E}$ 的大小	,方向	_•		
$III区 \bar{E}$ 的大小	,方向	_•	λ_1	
2. (3分)两根互相平行的长国	直导线,相距为 a,其上均匀 [,]	带电,电荷线密	 ★	>
度分别为礼和礼. 则导线单位	长度所受电场力的大小为 F=	=		a
3. (3 分) 一半径为 R 的均匀	带电圆盘,电荷面密度为 σ , i	设无穷远处为电	₫.	
势零点,则圆盘中心 o 点的电	旦势 <i>U</i> =	·		į
4.(3 分)在场强为 $ar{E}$ 的均匀 \mathfrak{b} 轴线与 $ar{E}$ 的方向垂直.在通过			.+` _	
图所示. 则穿过剩下的半圆柱	面的电场强度通量等于	·		
5.(4 分)在静电场中,一质于 弧轨道从 A 点移到 B 点(如图) 四 分 之 三 的 圆 弧 轨 道 从 B	,电场力作功 8.0×10 ⁻¹⁵ J. 贝	则当质子沿 作	A (B O
设 A 点电势	为零,则 B 点电势 $U=$	·		
6.(4 分)一空气平行板电容器	器, 电容为 C, 两极板间距离	为 <i>d</i> . 充电后,	两极板门	可相互作
用力为 F. 则两极板间的电势	势差为,极植	反上的电荷为_		·
7.(6分)一平行板电容器,3	充电后与电源保持联接,然后	使两极板间充剂	满相对介	电常量対
	这时两极板上的电荷是原来的	勺	电场强度	是原来的
ε_r 的各向同性均匀电介质,这				
ε_r 的各向同性均匀电介质, i 倍;电场能量是原 ε_r	来的			
		质,已知相对为	介电常量	为ε _r . ネ
倍;电场能量是原为	两板间充满各向同性均匀电介			

10. (3分) 如图所示,电容 C_1 、 C_2 、 C_3 已知,电容 C 可调,当调节 到 A、B 两点电势相等时,电容 C =______.

三、计算题(共34分):

1. (6分) 真空中一立方体形的高斯面,边长 a=0.1 m,位于图中所示位置. 已知空间的场强分布为:

 $E_x=bx$, $E_y=0$, $E_z=0$.

常量 $b=1000 \text{ N/(C} \cdot \text{m})$. 试求通过该高斯面的电通量.

2.(6分)如图所示两个平行共轴放置的均匀带电圆环,它们的半径均为R,电荷线密度分别是 $+\lambda$ 和 $-\lambda$,相距为l. 试求以两环的对称中心O为坐标原点垂直于环面的x轴上任一点的电势(以无穷远处为电势零点).

- 3.(12 分)两导体球 A、B. 半径分别为 $R_1 = 0.5$ m, $R_2 = 1.0$ m,中间以导线连接,两球外分别包以内半径为 R = 1.2 m 的同心导体球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所示. 已知: 空气的击穿场强为 3×10^6 V/m,今使 A、B 两球所带电荷逐渐增加,计算:
 - (1) 此系统何处首先被击穿? 这里场强为何值?
 - (2) 击穿时两球所带的总电荷 Q 为多少?
 - (设导线本身不带电,且对电场无影响.)
 - (真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \cdot \mathrm{N}^{-1} \cdot \mathrm{m}^{-2}$)

4.(10 分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为 $R_1 = 2$ cm, $R_2 = 5$ cm,其间充满相对介电常量为 ε 的各向同性、均匀电介质.电容器接在电压 U = 32 V 的电源上,(如图所示),试求距离轴线 R = 3.5 cm 处的 A 点的电场强度和 A 点与外筒间的电势差.