

Тема 4. Анализ и моделирование сезонности во временных рядах

Генезис наблюдений, образующих ВР

4 типа факторов (Айвазян):

- (А) Долговременные
- (Б) Сезонные
- (В) Циклические
- (Г) Случайные

$$Y_{t} = \chi(A)f_{mp}(t) + \chi(B)\varphi(t) + \chi(B)\psi(t) + \varepsilon_{t}$$

Сезонные колебания — это повторяющиеся в каждом временном периоде колебания, связанные с изменением времени года (период колебания <1 года)

Сезонность в экономике: примеры

http://www.minenergo.gov.ru/activity/oilgas/

Родионова Л.А.

Анализ сезонной компоненты: примеры в демографии

Число мигрантов, перемещающихся в пределах России

Сезонность в потреблении товаров и услуг: примеры

Динамика потребления электроэнергии в ЕЭС России по мес 2010–2012 г.г.

http://so-ups.ru/fileadmin/files/company/reports/disclosure/2013/ues_rep2012.pdf

Месячное потребление газа в США, 2001-2015 гг. (в млн. куб. фут)

Сезонность в сфере торговли: примеры

Сезонность: примеры

Ежеквартальные поступления по ОСАГО

Сезонность: примеры

Спрос на электроэнергию и погода в регионе //ПЭ, 2017, №46.

Особенность работы: сезонность ряда внутри года, каждой недели и времени суток

Динамика потребления электроэнергии и температуры с 2010 по 2015 г. в Пермском крае

$$y_i = \beta_0 + \theta (Temp_t) + \beta_1 W_i + \beta_2 H_i + \beta_3 t + \beta_4 Hol_t + \sum_{i=1}^6 \gamma_i D_{it} + \sum_{i=1}^7 \mu_j Hr_{jt} + \varepsilon_t,$$

где t — номер наблюдения, t = 1,...,13631;

у, — потребление электроэнергии в Пермском крае для наблюдения t;

Temp, — температура окружающей среды для наблюдения t;

 $W_{r}H_{t}$ — скорость ветра и относительная влажность воздуха для наблюдения t соответственно;

Hol, — индикаторная переменная государственных праздников для наблюдения t;

 D_{ii} — индикаторная переменная дня недели i для наблюдения t;

 Hr_{ji} — индикаторная переменная трехчасового интервала времени суток j для наблюдения t, при этом интервалы времени суток в выборке — это промежутки $\{0-2,\ 3-5,\ 6-8,\ 9-11,\ 12-14,\ 15-17,\ 18-20,\ 21-23\}$ часов, j=1,...,7;

 ε_i — случайная ошибка.

Анализ сезонной компоненты во временных рядах

- Графический анализ, сезонная волна
- Анализ автокорреляционной и частной автокорреляционной функции
- Спектральный анализ

Графический анализ сезонных колебаний

Индекс сезонности:

$$I_s = \frac{\widetilde{y}_i}{\overline{v}} \cdot 100\%$$

Число браков, зарегистрированных в России, по месяцам 1995, 2000, 2005, 2010 и 2012 годов, тысяч

Сезонные отклонения помесячных чисел заключенных браков от среднегодовых значений в России, 1995, 2000, 2005, 2010 и 2012 годы, %

Анализ автокорреляционной и частной автокорреляционной функции

$$\hat{\rho}(\tau) = \frac{\hat{\gamma}(\tau)}{\hat{\gamma}(0)}$$

Kendall(1976): периодическая зависимость м.б. определена как корреляционная зависимость пор-ка τ между i-м элементом ряда и $(i+\tau)$ -м элементом.

12

Анализ автокорреляционной и частной автокорреляционной функции

Пример: Пассажирские авиаперевозки

Введение в спектральный анализ

• гармоническое представление

$$y_{t} = \overline{y} + A\cos(\omega t + \Phi) =$$
$$= \overline{y} + A\cos(2\pi f t + \Phi)$$

Период (р) - минимальный интервал времени, необходимый для того, чтобы значения ВР начали повторяться.

Амплитуда (**A**) – максимальное смещение от среднего уровня.

Начальная фаза (Φ) — расстояние между началом отсчета (t=0) и ближайшим пиковым значением.

Фаза колебания (wt+Ф)

Циклическая частота (ω) - на сколько радиан (градусов) изменяется фаза колебания за единицу времени.

Частота (f) $\frac{1}{p}$ величина, обратная периоду. $f = \frac{1}{p}$ (Число циклов в единицу времени)

Введение в спектральный анализ

$$\begin{split} y_t &= \overline{y} + A\cos(2\pi f t + \Phi) = \\ &= \overline{y} + A\cos(2\pi f)\cos(\Phi) - A\sin(2\pi f)\sin(\Phi) = \\ &= \overline{y} + a\cos(2\pi f) + b\sin(2\pi f) \end{split}$$

• Разложение в ряд Фурье

$$y_t = a_0 + \sum_{i=1}^q a_i \cos \omega_i t + \sum_{i=1}^q b_i \sin \omega_i t + \varepsilon_t$$

$$\omega_i = 2\pi f_i, \quad f_i = i/N; q = N/2$$

$$MHK: a_0 = \overline{y}, \quad a_i = \frac{2}{N} \sum_{t=1}^{N} y_t \cos \omega_i t;$$

$$b_i = \frac{2}{N} \sum_{t=1}^{N} y_t \sin \omega_i t.$$

 $x_{t1} = 2\cos(2\pi t 6/100) + 3\sin(2\pi t 6/100)$ $x_{t2} = 4\cos(2\pi t 10/100) + 5\sin(2\pi t 10/100)$ $x_{t3} = 6\cos(2\pi t 40/100) + 7\sin(2\pi t 40/100)$

$$A = \sqrt{a^2 + b^2}$$
$$\Phi = arctg(-b/a)$$

Фурье

Жан-Батист Жозеф Фурье (1768-1830) (62г) фр. Jean-Baptiste Joseph Fourier

Жозеф Фурье был министром продовольствия в правительстве Наполеона, свое открытие он сделал во время Египетской кампании Наполеона (1798-1801),

рассчитывал оптимальную глубину винных погребов (в условиях климата Египта французское вино нужно было хранить на другой глубине).

В результате родился метод Фурье для изучения и объяснения механизмов теплопроводности — распространения тепла в твердых телах.

Фурье предположил, что изначальное нерегулярное распределение тепловой волны можно разложить на простейшие синусоиды, каждая из которых будет иметь свой температурный минимум и максимум, а также свою фазу. При этом каждая такая компонента будет измеряться от минимума к максимуму и обратно.

https://www.hse.ru/news/community/204320600.html

Введение в спектральный анализ: периодограмма

$$a_0 = \overline{y}, \quad a_i = \frac{2}{N} \sum_{t=1}^{N} y_t \cos \omega_i t; \quad b_i = \frac{2}{N} \sum_{t=1}^{N} y_t \sin \omega_i t.$$

Периодограмма:

$$I(f_i) = \frac{N}{2} \left(a_i^2 + b_i^2 \right)$$

Основная идея: Если ВР содержит циклическую компоненту с частотой f_i , то $I(f_i)$ будет иметь тенденцию к увеличению около f_i

Периодограмма: пример

Среднемесячные температуры в центральной Англии в 1964 г.

t	1	2	3	4	5	6	7	8	9	10	11	12
z_t	3,4	4.5	4,3	8,7	13,3	13,8	16,1	15,5	14,1	8,9	7,4	3,6

Бокс, Дженкинс

$$a_i = \frac{2}{N} \sum_{t=1}^{N} y_t \cos \omega_t t; \quad b_i = \frac{2}{N} \sum_{t=1}^{N} y_t \sin \omega_t t. \qquad I(f_i) = \frac{N}{2} (a_i^2 + b_i^2)$$

$$I(f_i) = \frac{N}{2} \left(a_i^2 + b_i^2 \right)$$

Таблица дисперсионного анализа температурного ряда

	Частота f _i	Период	Периодо- грамма <i>I</i> (f _f)
1	1/ ₁₂ 1/ ₆ 1/ ₄ 1/ ₃ 5/ ₁₂ 1/ ₂	12	254,96
2		6	0,19
3		4	1,56
4		3	3,22
5		12/6	2,09
6		2	1,08

Амплитуды синусондальных и косинусоидальных компонент для температурных данных

ı	a _i	b_i
1 2 3 4 5 6	5,30 0,05 0,10 0,52 0,09 0,30	3,82 0,17 0,50 0,52 0,58

- •Анализ пиков периодограммы.
- •Тренд: скачок на нулевой частоте
- Большой пик в области частоты w_k указывает на то, что в спектральном разложении присутствует соответствующая гармоническая компонента.
 - Для случайных данных функция спектральной плотности не имеет доминирующих пиков

•Тренд: скачок на нулевой частоте

• период и частота обратны друг другу

Период 12 месяцев соответствует частоте 1/12 (или 0,083). Годовая периодичность подразумевает пик в периодограмме на 0,083 (пик чуть ниже частоты 0.1).

$$f = \frac{1}{p}$$

The periodogram peaks at a frequency of slightly less than 0.10 cycles per year, indicating a 10- to 12-year cycle in sunspot activity

Спектральная плотность

Выборочный спектр BP – функция, описывающая распределение амплитуд по различным частотам. $I(f) = \frac{2}{N} (\alpha_f^2 + \beta_f^2), \quad 0 \le f \le 0.5$

$$I(f) = 2(c_0 + 2\sum_{k=1}^{N-1} c_k \cos 2\pi f_k)$$

 c_k – выборочная автоковариационная функция

Замечание. На практике выборочный спектр сильно флуктуирует.

Спектр мощности (спектральная плотность) (spectral density function)

$$p(f) = \lim_{N \to \infty} E(I(f)) = 2(\gamma_0 + 2\sum_{k=1}^{N-1} \gamma_k \cos 2\pi f_k), \quad 0 \le \mathbf{f} \le 0.5, \quad \lim_{N \to \infty} E(c_k) = \gamma_k$$

$$g(f) = p(f) / \sigma_y^2 = 2(1 + 2\sum_{k=1}^{N-1} \rho_k \cos 2\pi f_k)$$
 - Нормированный спектр

Айвазян

4.2. Моделирование сезонных колебаний

- фиктивные переменные
- гармонический анализ
- тренд-сезонные модели
- •SARIMA
- •адаптивные модели с сезонностью

Аддитивная и мультипликативная модели ВР

Аддитивная модель

$$Y_{t} = f_{mp}(t) + \varphi(t) + \mathcal{E}_{t}$$

(После логарифмирования)

Мультипликативная модель

$$Y_t = f_{mp}(t) \cdot \boldsymbol{\varphi}(t) \cdot \boldsymbol{\varepsilon}_t$$

4.2.1 Моделирование сезонных колебаний с помощью фиктивных переменных

$$y_t = a + bt + c_2d_2 + c_3d_3 + c_4d_4 + \varepsilon_t$$

 $d_{i} = \begin{cases} 1, ecлu \ haблюдениe \in i-my \ кварталу, i = 2,3,4 \\ 0, \ в ocmaльных cлучаях. \end{cases}$

$$\hat{y}_t = \hat{a} + \hat{b}t + \hat{c}_2d_2 + \hat{c}_3d_3 + \hat{c}_4d_4,$$

1-й квартал
$$\hat{y}_t = \hat{a} + \hat{b}t$$
,

2-й квартал
$$\hat{y}_{t} = \hat{a} + \hat{b}t + \hat{c}_{2}$$
,

3-й квартал
$$\hat{y}_t = \hat{a} + \hat{b}t + \hat{c}_3$$
,

4-й квартал
$$\hat{y}_t = \hat{a} + \hat{b}t + \hat{c}_4$$
.

- оценка сезонных отклонений

$$\hat{y}_{t} = \hat{a}_{cpe\partial H} + \hat{b}t$$

Моделирование сезонных колебаний с помощью фиктивных переменных

reg l_a t mon_2 mon_3 mon_4 mon_5 mon_6 mon_7 mon_8 mon_9 mon_10 mon_11 mon_12

Source	SS	df	MS
Model Residual	27.407665 .460715454		2.28397208 .003516912
Total	27.8683804	143	.194883779

Number of obs = 144 F(12, 131) = 649.43 Prob > F = 0.0000 R-squared = 0.9835 Adj R-squared = 0.9820 Root MSE = .0593

1_a	Coef.	Std. Err.	t	P> t
t	. 0100688	.0001193	84.40	0.000
mon_2	0220548	.0242109	-0.91	0.364
mon_3	.1081723	.0242118	4.47	0.000
mon_4	. 0769034	.0242132	3.18	0.002
mon_5	. 0745308	.0242153	3.08	0.003
mon_6	.196677	.0242179	8.12	0.000
mon_7	. 3006193	.0242212	12.41	0.000
mon_8	. 2913245	.024225	12.03	0.000
mon_9	.1466899	. 0242294	6.05	0.000
mon_10	.0085316	. 0242344	0.35	0.725
mon_11	1351861	. 02424	-5.58	0.000
mon_12	0213211	. 0242461	-0.88	0.381
_cons	4.72678	.0188935	250.18	0.000

4.2.2. Моделирование сезонных колебаний с помощью гармонического анализа

$$y_t = a_0 + \sum_{i=1}^q a_i \cos \omega_i t + \sum_{i=1}^q b_i \sin \omega_i t + \varepsilon_t,$$

 $y_t = a_0 + a_1 \cos \omega_1 t + b_1 \sin \omega_1 t + a_2 \cos \omega_2 t + b_2 \sin \omega_2 t + \varepsilon_t.$

$$\omega_i = 2\pi f_i, \quad f_i = i/N.$$

Моделирование сезонных колебаний с помощью гармонического анализа

Source	SS	SS df MS			Number of obs = 144 F(3, 140) = 1112.85
Model Residual	26.7467746 1.12160577				Prob > F = 0.0000 R-squared = 0.9598 Adj R-squared = 0.9589
Total	27.8683804	143 .1	L94883779		Root MSE = .08951
1_a	Coef.	Std. Err	·. t	P> t	[95% Conf. Interval]
t cos11 sin11 _cons	.010036 1417735 0494811 4.814568	.0001790 .01055 .0105690 .015020	5 -13.44 8 -4.68	0.000 0.000 0.000 0.000	.0096804 .0103915 16263141209155 0703782028584 4.784872 4.844264
Source	SS	df	MS		Number of obs = 144 F(5, 138) = 1176.78
Model Residual	27.2297386 .638641843		44594771 04627839		Prob > F = 0.0000 R-squared = 0.9771 Adj R-squared = 0.9763
Total	27.8683804	143 .1	94883779		Root MSE = .06803
1_a	Coef.	Std. Err	. t	P> t	[95% Conf. Interval]
t cos11 sin11 cos2 sin2 _cons	.0100822 1418197 0493085 0228262 .078703 4.811215	. 0001368 . 0080184 . 0080334 . 0080184 . 0080207 . 0114209	-17.69 -6.14 -2.85 9.81	0.000 0.000 0.000 0.005 0.000	.0098118 .0103526 1576745125965 065193033424 03868090069714 .0628436 .0945623 4.788632 4.833798

cos11 sin11 cos2 sin2 1 .8660254 .5 .8660254 2 .5 .8660254 5 .8660254 3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16<	1 .8660254 .5 .8660254 2 .5 .8660254 5 .8660254 3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 5660254 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
1 .8660254 .5 .8660254 2 .5 .8660254 5 .8660254 3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 8660254 17 8660254 5	1 .8660254 .5 .8660254 2 .5 .8660254 5 .8660254 3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 5 8660254 17 8660254		cos11	sin11	cos2	sin2
2	2 .5 .86602545 .8660254 3 6.12e-17 1 -1 1.22e-16 45 .866025458660254 58660254 .5 .58660254 6 -1 1.22e-16 1 -2.45e-16 786602545 .5 .8660254 8586602545 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .58660254 18 -1 3.67e-16 1 -7.35e-16	1	. 8660254	. 5	.5	. 8660254
3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 8660254 17 8660254 5 8660254	3 6.12e-17 1 -1 1.22e-16 4 5 .8660254 5 8660254 5 8660254 .5 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 5 8660254 17 8660254 5 5 8660254 17 8660254 5 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
4 5 .8660254 5 8660254 5 8660254 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 17 8660254 .5 8660254	4 5 .8660254 5 8660254 5 8660254 .5 5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 8660254 18 -1 3.67e-16 1 -7.35e-16					
5 8660254 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	5 8660254 .5 8660254 6 -1 1.22e-16 1 -2.45e-16 7 8660254 5 .5 .8660254 8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16	4		_	_	
6	6 -1 1.22e-16 1 -2.45e-16 786602545 .5 .8660254 8586602545 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .5 .58660254 18 -1 3.67e-16 1 -7.35e-16	5				
786602545 .5 .8660254 8586602545 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .58660254	786602545 .5 .8660254 8586602545 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .5 .58660254 18 -1 3.67e-16 1 -7.35e-16					
8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	8 5 8660254 5 .8660254 9 -1.84e-16 -1 -1 3.67e-16 10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16		_		_	
9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .58660254	9 -1.84e-16 -1 -1 3.67e-16 10 .5866025458660254 11 .86602545 .58660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .86602545 .8660254 15 1.19e-15 1 -1 2.39e-15 165 .866025458660254 178660254 .5 .58660254 18 -1 3.67e-16 1 -7.35e-16	-				
10	10 .5 8660254 5 8660254 11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16	-				
11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	11 .8660254 5 .5 8660254 12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16			_	_	
12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	12 1 -2.45e-16 1 -4.90e-16 13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16					
13 .8660254 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	13 .8660254 .5 .5 .8660254 14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 .5 8660254 18 -1 3.67e-16 1 -7.35e-16					
14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254	14 .5 .8660254 5 .8660254 15 1.19e-15 1 -1 2.39e-15 16 5 .8660254 5 8660254 17 8660254 .5 8660254 18 -1 3.67e-16 1 -7.35e-16		_		_	
15	15					
165 .866025458660254 178660254 .5 .58660254	165 .866025458660254 178660254 .5 .58660254 18 -1 3.67e-16 1 -7.35e-16					
178660254 .5 .58660254	178660254 .5 .58660254 18 -1 3.67e-16 1 -7.35e-16			_	_	
	18 -1 3.67e-16 1 -7.35e-16		5	.8660254	5	8660254
18 -1 3.67e-16 1 -7.35e-16		17	8660254	.5	.5	8660254
	1986602545 .5 .8660254	18	-1	3.67e-16	1	-7.35e-16
1986602545 .5 .8660254		19	8660254	5	.5	.8660254

Моделирование сезонных колебаний с помощью гармонического анализа

4.2.3. Моделирование сезонных колебаний: тренд-сезонные модели (самостоятельно)

Процедура построения тренд-сезонных моделей:

- 1. Сглаживание ВР с помощью скользящей средней
- 2. Оценивание сезонной составляющей с учетом характера сезонности (аддитивной или мультипликативной).
- 3. Сезонная корректировка (десезонализация) исходных данных.
- 4. Расчет параметров трендовой составляющей.
- 5. Моделирование динамики исходного ряда с учетом трендовой и сезонной составляющих.
- 6. Оценка точности и адекватности полученной модели.
- 7. Использование построенной модели для прогнозирования.

См. Дуброва Т.А. Статистические методы прогнозирования 2003

4.2.4. Сезонные модели ARIMA

1. Тренд-стационарные BP (с трендом определенного вида)

$$y_t = \varphi(t)f(t) + \alpha(L)y_t + \theta(L)\mathcal{E}_t + c_2d_2 + c_3d_3 + c_4d_4$$
 Для квартальных данных

2. Сезонно-интегрированные *BP* – приводятся к стационарному виду взятием сезонной разности

$$y_t = y_{t-4} + \mathcal{E}_t$$

Сезонный разностный оператор:

$$\Delta^{s} y_{t} = (1 - L^{s}) y_{t} = y_{t} - y_{t-s}$$

Сезонная разность

$$\Delta^{s} y_{t} = y_{t} - y_{t-s}$$

$$\Delta^{4} y_{t} = y_{t} - y_{t-4}$$

$$\Delta^{12} y_{t} = y_{t} - y_{t-12}$$

3. $SARIMA(p, d, q)(Ps, Ds, Qs)_S$

Модели SARIMA: общий вид

SARIMA(p, d, q)(P_s , D_s , Q_s)_S,

 P_s - сезонный параметр авторегрессии;

 Q_s - сезонный параметр скользящего среднего;

D_s- порядок сезонной разности.

$$\alpha_{\rm p}(L)\alpha_{\rm Ps}(L)\Delta^d\Delta_{\rm s}^{\rm D}y_t = \theta_q(L)\theta_{\rm Qs}(L)\varepsilon_t$$

$$\alpha_{Ps}(L) = 1 - \alpha_{s1}L^{s} - \alpha_{s2}L^{2s}..-\alpha_{sP}L^{Ps}$$

$$\theta_{Qs}(L) = 1 + \theta_{s1}L^{s} + \theta_{s2}L^{2s}..+\theta_{sQ}L^{Qs}$$

мультипликативная модель

Модели SARIMA:

аддитивная и мультипликативная модель

$$SARIMA(0,1,1)(0,1,1)_4$$

$$\Delta \Delta_4 y_t = \mathcal{E}_t + \theta_1 \mathcal{E}_{t-1} + \theta_4 \mathcal{E}_{t-4}$$
$$= (1 + \theta_1 L + \theta_4 L^4) \mathcal{E}_t$$
$$\Delta \Delta_4 y_t = (1 + \theta_1 L)(1 + \theta_4 L^4) \mathcal{E}_t$$

$$(1 + \theta_1 L + \theta_4 L^4) \Delta \Delta_4 y_t = \varepsilon_t$$

$$(1 + \theta_1 L)(1 + \theta_4 L^4) \Delta \Delta_4 y_t = \mathcal{E}_t$$

Задание. Записать (самостоятельно) аддитивный и

мультипликативный вид моделей:

$$SARIMA(2,1,1)(1,1,2)_{12}$$

$$SARIMA(2,1,2)(2,1,2)_{6}$$

Модели SARIMA: практика

- *He следует* строить смешанных моделей, одновременно включать SAR- и SMA-составляющих.
- Идентификация полной сезонной модели

SARIMA(p, d, q)(Ps, Ds, Qs),

- 1) логарифмирование исходного ряда (снижение дисперсии процесса),
- 2) взятие несезонной и сезонной разности.
- 3) исследование поведения АСF и PACF для полученного ряда.

37

Модели SARIMA

arima - ARIMA, ARMAX, and other dynamic regressio

arima lnair, arima(0,1,1) sarima(0,1,1,12) noconstant

Sample: 14 - 144 Number of obs = 131 Wald chi2(2) = 84.53 Log likelihood = 244.6965 Prob > chi2 = 0.0000

DS12.lnair	Coef.	OPG Std. Err.	z	P> z
ARMA ma L1.	4018324	. 0730307	-5.50	0.000
ARMA12 ma L1.	5569342	. 0963129	-5.78	0.000
/sigma	. 0367167	.0020132	18.24	0.000

Модели SARIMA

arima lnair, arima(0,1,1) sarima(0,1,1,12) noconstant

Sample: 14 - 144 Number of obs = 131 Wald chi2(2) = 84.53 Log likelihood = 244.6965 Prob > chi2 = 0.0000

DS12.lnair	Coef.	OPG Std. Err.	z	P> z
ARMA ma	4018324	.0730307	-5.50	0.000
ARMA12 ma L1.	5569342	. 0963129	-5.78	0.000
/sigma	. 0367167	.0020132	18.24	0.000

$$\Delta\Delta_{12} \text{lnair}_t = -0.402 \epsilon_{t-1} - 0.557 \epsilon_{t-12} + 0.224 \epsilon_{t-13} + \epsilon_t$$
 $\widehat{\sigma} = 0.037$

Модели SARIMA: стационарность

Анализ стационарности SARIMA-моделей аналогичен анализу ARIMA-моделей.

Показать стационарность процессов.

$$y_{t} = y_{t-4} + \varepsilon_{t}$$

$$y_{t} = \frac{2}{3} y_{t-1} - \frac{1}{48} y_{t-4} + \varepsilon_{t} + \frac{1}{5} \varepsilon_{t-1}$$

$$y_{t} = 0.4 y_{t-1} + \varepsilon_{t} + 0.3 \varepsilon_{t-1} + 0.8 \varepsilon_{t-4}$$

Модели SARIMA: прогнозирование

Прогнозирование по **SARIMA-моделям** прогнозированию в классе ARIMA-моделей.

Построить прогноз
$$y_t = 0.4 y_{t-1} + 0.2 y_{t-4} + \varepsilon_t + 0.3 \varepsilon_{t-1}$$

аналогично

4.3. Сезонные единичные корни

Родионова Л.А. 2019

Сезонные единичные корни

SARIMA(p, d, q)(P_s , D_s , Q_s) S

Нестационарность процесса:

- Обычный единичный корень
- Сезонный единичный корень
- Обычный и сезонный единичный корень

Вопрос: брать обычную разность, сезонную или обе разности?

выводы о порядке интегрированности некоторых рядов

- 1. процедура сезонного сглаживания рядов и исследование порядка интегрированности тестами на единичные корни (тест Дики Фуллера, тест Филипса Перрона).
- 2. тестирование временных рядов на сезонные единичные корни:
- DHF-test расширение ADF-test на случай сезонных ед. корней

Dickey D. A.; Hasza D. P.; Fuller W. A. (1984) Testing for Unit Root in Seasonal Time Series // Journal of the American Statistic Association, Vol. 79, pp 355-367.

Недостаток: не рассматривает возможность наличия обычных ед.корней

• **HEGY-test** – тестирование на случай обычных и сезонных ед.корней

Hylleberg S. Engle R. F. Granger C. W. J. Yoo B. S.(1990) Seasonal Integration and Cointegration // Journal of Econometrics 44 pp. 215-238.

HEGY-test в случае квартальных данных (s=4)

 $(1-L^4)=0 \rightarrow (1-z^4)=0$ имеет 4 единичных корня:

$$z_1 = 1$$
, обычный ед.корень

$$z_2 = -1$$
, сезонный полугодовой ед. корень

$$z_{3,4} = \pm i$$
, $i^2 = -1$ сезонный квартальный ед.корень

Спецификация теста:

$$B(L)y_{t} = \left\{ \alpha_{0} + \sum_{k=1}^{s-1-3} \alpha_{k} d_{t}^{(k)} + \delta t \right\} + \varepsilon_{t}, \varepsilon_{t} \sim WN (4.1)$$

B(L) необходимо представить в виде суммы

Hylleberg S. Engle R. F. Granger C. W. J. Yoo B. S.(1990) Seasonal Integration and Cointegration // Journal of Econometrics 44 pp. 215-238.

HEGY-test в случае квартальных данных (s=4)

$$B(L)y_t = \left\{\alpha_0 + \sum_{k=1}^{s-1=3} \alpha_k d_t^{(k)} + \delta t\right\} + \varepsilon_t, \varepsilon_t \sim WN$$

Теорема Лагранжа (теория приближенных вычислений)

1. Пусть z_k – корни уравнения 1- z^s =0.

$$B(z) = \sum_{k=1}^{s} \lambda_k B_k(z) + B^*(z)(1 - z^s)$$
 (4.2)

$$B_k(z) = \frac{z}{z_k} \prod_{j \neq k} \left(1 - \frac{z}{z_j}\right), \quad k = \overline{1, s}$$

2. Разложение (4.2) обладает следующим свойством:

$$\lambda_k = 0 \leftrightarrow z_k$$
 – корень уравнения $B(z) = 0$.

 $(4.2) \kappa (4.1)$:

$$B^{*}(L)\Delta_{s}y_{t} = \left\{\alpha_{0} + \sum_{k=1}^{3} \alpha_{k} d_{t}^{(k)} + \delta t\right\} - \sum_{k=1}^{4} \lambda_{k} B_{k}(L)y_{t} + \varepsilon_{t} (4.3)$$

HEGY-test в случае квартальных данных (s=4)

$$B(z) = \sum_{k=1}^{s} \lambda_k B_k(z) + B^*(z)(1 - z^s) \quad (4.2)$$

$$B_k(z) = \frac{z}{z_k} \prod_{i \neq k} \left(1 - \frac{z}{z_i}\right), \quad k = \overline{1, s}$$

$$\lambda_k = 0 \leftrightarrow z_k - \kappa o p e h b y p a в h e h u s B(z) = 0.$$

$$B^{*}(L)\Delta_{s}y_{t} = \left\{\alpha_{0} + \sum_{k=1}^{3} \alpha_{k} d_{t}^{(k)} + \delta t\right\} - \sum_{k=1}^{4} \lambda_{k} B_{k}(L)y_{t} + \varepsilon_{t} (4.3)$$

$$k = 1,2$$
 $H_0: \lambda_k = 0(\pi_k = 0)$

наличие несезон. (k=1) и сезон (k=2) ед.корня

$$H_1: \lambda_k > 0(\pi_k < 0)$$

стационарность процесса

t-статистика

$$k = 3,4$$
 $H_0: \lambda_3 = 0, \lambda_4 = 0(\pi_3 = \pi_4 = 0)$

F-статистика

Реализация в статистических пакетах

gretl 2016c

MS Windows (x86_64) Дата сборки 2016-07-06 'От эконометристов, для эконометристов."

http://gretl.sourceforge.net/

Инструменты - Пакеты функций - На сервере

Случай квартальных данных (s=4)

HEGY test of seasonal unit roots for series sales:

AR order = 0 (determined by BIC with max.order=8)

Deterministic component: constant + (s-1) trigonometric terms

Dof (T-k) = 28

Statistic	p-value	Ang. Frequency	Period
t1= -1,46	1,00000	zero	infinity
F1= 6,76	0,99924	+-pi/2	4
t2= -1,64	1,00000	pi	2
Fs= 7,37	0,18778	All the seasonal	cycles
Ft= 6,26	0,00924	Delta_s (all the	seas. + zero freq.)

Сезонные единичные корни в случае s=12

Тест HEGY для ежемесячных данных

$$(1-L^{12})=0 \to 12$$
 единичных корней:

$$\pm 1; \pm i; -\frac{1\pm i\sqrt{3}}{2}; \frac{1\pm i\sqrt{3}}{2}; -\frac{\sqrt{3}\pm i}{2}$$
 и $\frac{\sqrt{3}\pm i}{2}$

Единичные корни и частоты в случае месячных данных

Construction of the contract o	Час	тота
Сезонные единичные корни	B единицах π	Циклов/год
-1	π	6
$\pm i$	$\pm \frac{\pi}{2}$	3, 9
$-\frac{1}{2}(1\pm\sqrt{3}i)$	$\frac{1}{1}\frac{2\pi}{3}$	8, 4
$\frac{1}{2}(1\pm\sqrt{3}i)$	$\pm \frac{\pi}{3}$	2, 10
$-\frac{1}{2}(\sqrt{3}\pm i)$	$\frac{1}{4}\frac{5\pi}{6}$	7, 5
$\frac{1}{2}(\sqrt{3}\pm i)$	$\pm \frac{\pi}{6}$	1, 11

Критические значения для теста HEGY в случае месячных данных

	Односто t-стати	оронняя истика	F-статистика				
Частота							
	1	π	$\pm \frac{\pi}{2}$	${+}\frac{2\pi}{3}$	$\pm \frac{\pi}{3}$	$\frac{-5\pi}{6}$	$\pm \frac{\pi}{6}$
Критические значения	-3.19	-2.65	5.77	5.77	5.77	5.84	5.82

Beaulieu J.J., Miron J.A. (1993). Seasonal unit roots in aggregate U.S. data // Journal of Econometrics. № 55. P. 305–328.

Сезонные единичные корни в случае s=12

Тест HEGY для ежемесячных данных

Тестовое уравнение

$$\psi(L) \cdot \left(1 - L^{12}\right) \cdot y_{t} = \pi_{1} \cdot y_{1,t-1} + \pi_{2} \cdot y_{2,t-1} + \pi_{3} \cdot y_{3,t-1} + \pi_{4} \cdot y_{4,t-1} + \pi_{5} \cdot y_{5,t-1} + \pi_{6} \cdot y_{6,t-1} + \pi_{7} \cdot y_{7,t-1} + \pi_{8} \cdot y_{8,t-1} + \pi_{9} \cdot y_{9,t-1} + \pi_{10} \cdot y_{10,t-1} + \pi_{11} \cdot y_{11,t-1} + \pi_{12} \cdot y_{12,t-1} + \mu_{t} + \mathcal{E}_{t}$$

$$y_{1,t} = (1+L)\cdot(1+L^2)\cdot(1+L^4+L^8)\cdot y_t$$

$$y_{2,t} = -(1-L)\cdot(1+L^2)\cdot(1+L^4+L^8)\cdot y_t$$

$$y_{3,t} = -(1-L^2)\cdot(1+L^4+L^8)\cdot y_t$$

$$y_{4,t} = y_{3,t-1}$$

$$y_{5,t} = -(1-L^4)\cdot(1-\sqrt{3}\cdot L + L^2)\cdot(1+L^2+L^4)\cdot y_t$$

$$y_{6,t} = y_{5,t-1}$$

$$y_{7,t} = -(1-L^4)\cdot (1+\sqrt{3}\cdot L + L^2)\cdot (1+L^2 + L^4)\cdot y_t$$

$$y_{8,t} = y_{7,t-1}$$

$$y_{9,t} = -(1-L^4)\cdot(1-L^2+L^4)\cdot(1-L+L^2)\cdot y_t$$

$$y_{10,t} = y_{9,t-1}$$

$$y_{11,t} = -(1-L^4)\cdot(1-L^2+L^4)\cdot(1+L+L^2)\cdot y_t$$

$$y_{12,t} = y_{11,t-1}$$

Реализация в статистических пакетах

Случай ежемесячных данных (s=12)

HEGY test of seasonal unit roots for series air:

p-value

AR order = 2 (determined by BIC with max.order=24)

Deterministic component: constant + (s-1) trigonometric terms

Ang. Frequency

Period

Dof (T-k) = 104

Statistic

gretl 2016c	t1= 0,86	0,99
MS Windows (x86 64)	F1= 0,08	0,99
Дата сборки 2016-07-06	F2= 0,28	0,98
'От эконометристов, для эконометристов."	F3= 2,27	0,7
http://gretl.sourceforge.net/	F4= 0,95	0,9
	F5= 4,87	0,2
700	t2= -2,89	0,0

Сезонные единичные корни: пример

Рис. 7. Динамика логарифмов денежного агрегата M2 (I квартал 1999 г. – II квартал 2008 г.)

Рис. 10. Динамика логарифмов ВВП (I квартал 1999 г. – II квартал 2008 г.)

Моделирование спроса на деньги в российской экономике в 1999–2008 гг./ С. Дробышевский [и др.];— М.: ИЭПП, 2010.

http://www.iep.ru/files/text/working_papers/136.pdf

Ряд/ тест	HEGY	С константой	С константой и дамми	С константой и трендом	С констан- той, дамми, трендом
m2	Единичный Полугодовой	Единичный Полугодовой	Единичный	Единичный Полугодовой	Квартальный
gdp	Единичный Полугодовой Квартальный	Единичный Полугодовой Квартальный	Единичный Полугодовой	Единичный Полугодовой Квартальный	Единичный Полутодовой

устойчивость результатов теста к смене модификации

Ряд	Модифика- ция теста	Значение статистик	Критические значения при уровне значимости 0,05	Вывод
m2	С константой	$ \gamma_1 = -1.30 $ $ \gamma_2 = -1.39 $ $ \gamma_3 = -2.97 $ $ \gamma_4 = -3.51 $	-2.96 -1.95 -1.90 -2.06 или 2.04	Единичный и полугодовой единичный корни
gdp	С константой и трендом	$ \gamma_1 = -0.40 $ $ \gamma_2 = -0.59 $ $ \gamma_3 = -0.47 $ $ \gamma_4 = -0.79 $	-3.56 -1.91 -1.92 -2.05 или 1.96	Единичный, полугодовой единичный и квартальный корни

Литература

Dickey D. A.; Hasza D. P.; Fuller W. A. (1984) Testing for Unit Root in Seasonal Time Series. // Journal of the American Statistic Association, Vol. 79, pp 355-367.

Franses P. H. and Taylor R. M. A. (2000) Determining the Order of Differencing in Seasonal Time Series Processes // Econometric Journal Vol.3, pp. 250-264.

Franses P. H. and Paap R. (2004) Periodic Time Series Models // Oxford University Press 2004

Ghysels E., Lee H. S., and Noh J.(1994) Testing for Unit Root in Seasonal Time Series // Journal of Econometrics Vol. 62 pp. 415-442.

Hanza D. P. and Fuller W. A. (1982) Testing for Nonstationary Parameter Specifications in Seasonal Time Series Models // The Annals of Statistics Vol. 10. No. 4, pp.1209-1216.

Hylleberg S. Engle R. F. Granger C. W. J. Yoo B. S.(1990) Seasonal Integration and Cointegration // Journal of Econometrics 44 pp. 215-238.

Моделирование спроса на деньги в российской экономике в 1999–2008 гг./ С. Дробышевский [и др.]. – М.: ИЭПП, 2010. – 144 с. http://www.iep.ru/files/text/working_papers/136.pdf

Выдумкин Платон. Сезонные единичные корни и сезонная коинтеграция. Теоретические основы и практическое применение. (обзор)

https://www.hse.ru/data/2010/10/21/1222645995/статья%20Выдумкин%20Платон.pdf

A seasonal unit root test with STATA

http://www.stata.com/meeting/italy08/depalo_2008.pdf

Корректировка сезонности

Анализ взаимозависимости и оценивание тенденции развития требует очистки от эффекта сезонности.

Рис. 3. Динамика производительности труда, средней заработной платы и уровня безработицы, сглаженные на сезонность⁸

Вакуленко

http://www.hse.ru/data/2014/12/22/1103212064/WP3_2014_08_f.pdf

Пример: 26 апреля 2016. FINMARKET.RU - ВВП России с <u>исключением сезонного и</u> календарного факторов в марте 2016 года снизился на 0,4% после роста на 0,3% в феврале, говорится в ежемесячном обзоре Внешэкономбанка (ВЭБ). До февраля ВВП РФ со снятой сезонностью снижался в течение четырех месяцев подряд. http://www.finmarket.ru/news/4270683

Корректировка сезонности

Индексы промышленного производства

в % к среднемесячному значению 2013г.

http://www.gks.ru/bgd/free/b04_03/IssWWW.exe/Stg/d01/image1592.gif

1. Скользящие средние ⁵⁰⁰ (разных типов: простые, взвешенные и т.д) ⁴⁰⁰

См. Дуброва Т.А. Статистические методы прогнозирования 2003

http://www.twirpx.com/file/18580/

Сглаживание : скользящие средние

Примеры.

1. Простая СС
$$\hat{y}_t = \frac{1}{3}(y_{t-1} + y_t + y_{t+1})$$
 (по 3-м точкам)

Для устранения сезонных колебаний часто требуется использовать 4- и 12-членные скользящие средние.

$$\hat{y}_{t} = \frac{\frac{1}{2} y_{t-2} + y_{t-1} + y_{t} + y_{t+1} + \frac{1}{2} y_{t+2}}{4}$$

$$\hat{y}_{t} = \frac{\frac{1}{2} y_{t-6} + y_{t-5} + \dots + y_{t} + \dots + y_{t+5} + \frac{1}{2} y_{t+6}}{12}$$

2. Взвешенная СС

$$\hat{y}_{t} = \frac{1}{35} \left[-3y_{t-2} + 12y_{t-1} + 17y_{t} + 12y_{t+1} - 3y_{t+2} \right]$$

(по 5-ти точкам, аппроксимация полиномом 2-го порядка)

Gretl: Добавить – Фиктивную переменную для периода

тест с константой включая сезонные фиктивные переменные модель: $(1-L)y = b0 + (a-1)*y(-1) + \ldots + e$ коэф. автокорреляции 1-го порядка для e: 0,019 оценка для (a-1): -0,00924108 тестовая статистика: $tau_c(1) = -0$,705617 асимпт. p-значение 0,8436

Регрессия расширенного теста Дики-Фуллера МНК, использованы наблюдения 1949:03-1960:12 (T = 142) Зависимая переменная: d_g

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	37,5225	6,70374	5,597	1,27e-07	***
g 1	-0,00924108	0,0130965	-0,7056	0,8436	
d g 1	0,188766	0,0870947	2,167	0,0321	**
dm1	-33,3151	9,03628	-3,687	0,0003	***
dm2	-44,4442	8,10237	-5,485	2,12e-07	***
dm3	1,09000	7,50030	0,1453	0,8847	
dm4	-44,7475	9,29879	-4,812	4,13e-06	***
dm5	-29,7223	7,60609	-3,908	0,0002	***
dm6	3,92624	7,86946	0,4989	0,6187	
dm7	-2,49487	9,57433	-0,2606	0,7948	
dm8	-42,0135	9,60322	-4,375	2,49e-05	***
dm9	-82,8976	7,79895	-10,63	2,65e-019	***
dm10	-61,3745	7,31233	-8,393	7,56e-014	***
dm11	-62,0449	7,13996	-8,690	1,48e-014	***

2. оценивание регрессии для ряда на сезонные фиктивные переменные:

-Остатки от оцененной регрессии - *очищенный ряд*, к которому можно применять DF-test. [Dickey, Bell, Miller (1986)]: асимптотическое распределение DF статистики не изменяется при исключении из ряда детерминированных сезонных компонент.

3. Использование фильтров – фильтр Ходрика-Прескотта

$$HP_{\lambda}(L) = \frac{1}{1 + \lambda \Delta^{2} (1 - L^{-1})^{2}}, \lambda > 0$$

 $\lambda = 100$ – годовые данные $\lambda = 1600$ – квартальные данные $\lambda = 14400$ – месячные данные

1948 1950 1952 1954 1956 1958 1960 150 100 -50 -100 1948 1950 1952 1954 1956 1958 1960

сглаженный ряд

Hodrick, Robert; Prescott, Edward C. (1997). "Postwar U.S. Business Cycles: An Empirical Investigation". Journal of Money, Credit, and Banking. 29 (1): 1-16.

4. U.S. Census Bureau's EuroSTAT

X-12-ARIMA TRAMO

(Time Series Regression with ARIMA Noise, Missing Observations and Outliers)

