Electrostática

Objetivo

Reconocer y resolver ejercicios tipo examen de admisión asociados con conceptos de electricidad.

Electricidad antecedentes

- Tales: Primeros fenómenos eléctricos.
- Benjamín Franklin: conducción de cargas en puntas, los pararrayos

pararrayos.

- Coulomb: fuerza de atracción y repulsión.
- Georg Ohm: ley de ohm
- Faraday: inducción electromagnética
- J. Joule: corriente eléctrica y calor.

Definición:

La electrostática, estudia las cargas eléctricas en reposo.

Carga eléctrica:

Los átomos de cualquier elemento químico son neutros, ya que tienen la misma cantidad de electrones que de protones.

Sin embargo, un átomo puede ganar electrones y quedar con carga negativa

Perder electrones y adquirir carga positiva.

Principio fundamental entre cargas de igual o diferente signo.

- Cargas del mismo signo se repelen
- Cargas de signos contrarios se atraen

Formas de cargar eléctricamente un cuerpo

- Frotamiento: Forma sencilla de cargar eléctricamente un cuerpo.
- La carga eléctrica no se crea ni se destruye.

Los cuerpos electrizados Por frotamiento quedan Con cargas opuestas.

Existen materiales que son

Conductores Se electriza en toda su superficie, aunque sólo se frote un punto de la misma.

Ejemplos:

- Todos los metales
- Soluciones con ácidos, bases y sales disueltos en agua.
- Cuerpo humano.

Aislantes o
Dieléctricos
Solo se electrizan en
los puntos donde
hacen contacto con
un cuerpo cargado,
o bien, en la parte
frotada.

Ejemplos:

- · La madera
- Los plásticos
- El vidrio
- El caucho
- La porcelana

¿Cómo se mide la carga eléctrica?

Su unidad de medida es el Coulomb (C)

l nano coulomb = l n C= 1×10^{-9}

1 micro coulomb = 1μ C= 1×10^{-6}

Ley de Coulomb. Campo eléctrico

La magnitud de la fuerza de atracción o repulsión que experimentan dos cargas eléctricas, es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa.

$$F = K \frac{q_1 * q_2}{r^2}$$

$$k = 9 \cdot 10^9 \frac{N \cdot m^2}{c^2}$$

Una carga de 3 $x10^{-6}$ C se encuentra a 2m de una carga de -8 $x10^{-6}$ C. ¿Cuál es la magnitud de la fuerza de atracción entre las cargas?

- A) -0.54 N
- B) -0.054 N
- C) 5.4 N
- D) 54 N

Dos cargas eléctricas q1 y q2 se encuentran separadas una distancia d y experimentan una fuerza de repulsión de 40 N. Si la distancia entre cargas se duplica. ¿Cuál es la magnitud de la nueva fuerza de repulsión?

- A) 10 N B) 80 N C) 160 N
- 320 N

¿Cuál de las siguientes expresiones matemáticas se refiere a la ley de Coulomb?

A)
$$k \frac{q_1 q_2}{r^2}$$

B)
$$k \frac{q}{r^2}$$

C)
$$k \frac{q_1 q_2}{r}$$
D) $\frac{F}{r}$

$$D$$
) $\frac{F}{q}$

Dos esferas conductoras idénticas están situadas a 0.20m de distancia una de la otra. Una tiene una carga de 10x10⁻⁹C y la otra, de -16x10⁻⁹C. ¿Cuál es la magnitud de la fuerza (N) electrostática que ejerce una en la otra?

- A) $3.6 \times 10^{-5} N$
- B) $6.4 \times 10^{-4} N$
- C) $7.9 \times 10^{-5} N$
- $D) 9.7 \times 10^{-4} N$

El enunciado "Cargas de mismo signo se rechazan y de signos contrario se atraen" corresponde a la ley de:

- A. Fuerza de Lorentz
- B. Coulomb
- C. Interacción entre cargas eléctricas
- D. Gauss

Campo eléctrico

Región del espacio que rodea a una carga eléctrica.

$$ec{E} = rac{ec{F}}{q}$$

No es constante, a medida que aumenta la distancia, disminuye su magnitud.

$$E = \frac{1}{4\pi\,\varepsilon_0} \frac{Q}{r^2}$$

Campo eléctrico

Dos cargar puntuales fijas con signos contrarios experimentan una fuerza F cuando están separadas a una distancia r. Si se acercan a la distancia de r/2, la magnitud de la nueva fuerza entre ambas cargas puntuales en términos de la fuerza F es:

```
F/4
```

Una carga puntual genera un campo eléctrico E a la distancia r. Cuando se mide la magnitud del campo eléctrico desde la distancia 2r, la nueva magnitud en términos E es:

```
A. E/2
```

Si la intensidad de campo eléctrico está dada por $E = \frac{F_e}{a_0}$, seleccionar la expresión que determina la intensidad de campo eléctrico de una carga puntual.

A)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^3}$$
B) $E = \frac{2}{4\pi\varepsilon_0} \frac{Q}{r^3}$

B)
$$E = \frac{2}{4\pi\varepsilon_0} \frac{Q}{r^3}$$

C)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

D) $E = \frac{2}{4\pi\varepsilon_0} \frac{Q}{r^2}$

D)
$$E = \frac{2}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

La fuerza eléctrica por unidad de carga recibe el nombre de campo:

- A. Eléctrico
- B. Gravitacional
- C. Magnético
- D. Rotacional

Relacionar el concepto con su característica

correspondiente:

A. 1D, 2C, 3B, 4A

B. 1B, 2C, 3D, 4A

C. 1D, 2B, 3A, 4C

D. 1B, 2A, 3C, 4D

Concepto	Característica
1. La ley de Coulomb es aplicable a cargas de tipo.	A. Negativa
2. Las unidades de la permitividad en el sistema internacional de unidades para cualquier medio presente entre cargas eléctricas son	B. Coulomb
3. Son las unidades en el sistema internacional para las cargas eléctricas	C. C ² /Nm ²
4. Se considera al electrón como carga	D. Puntual

La ley de _____ postula que la fuerza de atracción o repulsión entre dos cargas puntuales es directamente proporcional al producto de la magnitud de las cargas e inversamente proporcional al cuadrado de la distancia que los separa.

- A. Coulomb
- B. Ampere
- C. Savart
- D. Faraday

Líneas de fuerza

Las líneas de fuerza positiva salen radialmente y las negativas llegan de modo radial:

Líneas de fuerza

Las líneas de fuerza positiva salen radialmente y las negativas llegan de modo radial:

¿Te gustó la clase? Sigue mis redes;

El Profe Damian

El Profe Damian

El Profe Damian

