UADE	CÁLCULO NUMÉRICO	3.1.020	
Departamento al que pertenece		Modalidad	
Dpto. De Ciencias Básicas		Presencial	
Carga horaria		Fecha de aprobacion en el Consejo de Facultad y Nº de Acta	
34 hs		04/06/2024 CF FAIN Nº 507	
Carrera(s) en la(s) que se dicta		Codigos(s) carrera(s)	
Ingeniería Electromecánica		3805	
Ingeniería Electromecánica		3824	
Ingeniería En Telecomunicaciones		3905	
Licenciatura En Organización De La Producción		4205	
Ingeniería Industrial		4505	
Ingeniería Industrial		4524	
Doble Titulación En Ingeniería Industrial Y Electromecánica		45389	
Ingeniería En Alimentos		5705	
Ingeniería En Alimentos		5724	
Licenciatura En Tecnología Electromecánica		7505	
Licenciatura En Tecnología De Las Comunicaciones		7605	
Ingeniería Electrónica		9513	
Ingeniería Electrónica		9524	

I. Objetivos de aprendizaje

Al finalizar el curso el alumno será capaz de:

- Resolver problemas cuya expresión matemática no permite la solución analítica y requiere de la mecánica del modelado de fenómenos y procesos en general, atendiendo a sus métodos, con sus ventajas y limitaciones.
- · Programar en computadora modelos simples.

II. Contenidos

Unidad I: Resolución Numérica de Ecuaciones

Ecuaciones algebraicas no lineales. Puntos fijos de Funciones. Método del Punto Fijo. Ceros de funciones. Método de Bisección. Método de Newton-Raphson.

Unidad II: Aproximación Numérica

Tratamiento de datos discretos. Interpolación polinomial. Polinomio de Lagrange. Ajuste de curvas. Regresión lineal por mínimos cuadrados. Linealización de datos. Integración numérica. Métodos de Trapecios y de Simpson.

Unidad III: Resolución numérica de Problemas de Valores Iniciales

Ecuaciones diferenciales ordinarias (EDO). Problemas de valores iniciales (PVI). Discretización. Métodos de Euler y de Runge-Kutta. Sistemas de EDO de primer orden. EDO de orden superior. Transformación de EDO de orden superior en sistema de EDO de primer orden.

Unidad IV: Introducción al modelado de Sistemas Dinámicos

Concepto de sistema dinámico. Realimentación. Modelos de stock y flujo. Diagramas de Forrester.

Unidad V: Introducción a la resolución numérica de Ecuaciones en Derivadas Parciales

Ecuaciones diferenciales en derivadas parciales (EDP). Clasificación.

III. Estrategias de enseñanza

- o Aprendizaje basado en problemas
- · Aprendizaje por descubrimiento
- o Exposición y diálogo con preguntas
- · Trabajo con imágenes
- Trabajo con simuladores
- o Trabajo en Laboratorios

IV. Recursos

- o Dispositivos digitales: Tablet, Wacom, celular, PC, notebooks
- · Ejercicios matemáticos
- o Guías de estudio, Guías de lectura
- · Imágenes: Fotografías, dibujos y viñetas, mapas geográficos, videos, películas, maquetas, etc.
- Laboratorio
- o Organizadores gráficos: mapas/ redes conceptuales, tablas, gráficos, etc.
- Pizarrón
- Situaciones problemáticas
- · Textos, material bibliográfico
- Trabajos prácticos
- Otros: Software: GNU Octave (GNU General Public License), entorno de matemática computacional que procura mantener un alto nivel de compatibilidad con Matlab®

V. Evaluación

o Requisitos de aprobación

- a. Cumplimiento mínimo del 75% de asistencia.
- Aprobación de cada una de las evaluaciones parciales y/o recuperatorios previstos con una calificación mínima de 4 (cuatro) puntos.

Modalidad de evaluación

Se evalúa la comprensión de la mecánica del modelado de fenómenos y procesos, la programación en computadora de modelos simples, el conocimiento de los métodos numéricos fundamentales y la aplicación de los mismos en el contexto de resolución de ejercicios y problemas.

o Régimen de aprobación

Trabajo Final: Se establecen 4 (cuatro) entregas parciales y una entrega final de carácter obligatorio. De las 4 (cuatro) entregas parciales, 2 (dos) de ellas serán obligatorias. Los alumnos que obtuviesen una calificación igual o superior a 4 (cuatro) puntos en cada una de las entregas parciales (obligatorias o no) y en la entrega final una calificación igual o superior a 8 (puntos), obtendrán la aprobación de la asignatura. Si el estudiante debe rendir recuperatorio, no puede acceder a este régimen de promoción. Los alumnos que aprueben las entregas parciales y la entrega final con un mínimo de 4 (cuatro) puntos, podrán rendir examen final de la asignatura en los 11 (once) turnos de exámenes finales consecutivos posteriores a la aprobación de la cursada.

Los actos de deshonestidad académica o cualquier situación de indisciplina serán sancionados según el régimen disciplinario correspondiente.

VI. Bibliografía

o Obligatoria

- Mathews, J. H., & Fink, K. D. (2000). Métodos numéricos con MATLAB. Prentice Hall.
- Mathews, J. H., & Fink, K. D. (2004), Numerical methods using MATLAB. Prentice Hall.

o Complementaria

- Chapra, S. C., & Canale, R. P. (2007). *Métodos numéricos para ingenieros*. McGraw-Hill.
- Mooney, D. D., & Swift, R. J. (1999). A course in mathematical modeling. Mathematical Association of America.

VII. Cronograma

Nº Clase	Nº Unidad	Tema	Observaciones
1	1	Ecuaciones Diferenciales Ordinarias (EDO) de 1er orden. Método de Euler. Método de Runge- Kutta. Sistemas de EDOs de 1er orden.	-
2	2	Representación gráfica de sistemas dinámicos (Forrester). Modelos de Flujo y Stock. EDOs de orden superior. Problemas de valores iniciales (PVI). Transformación a PVI como sistema de EDO de 1er orden.	-
3	3	Resolución de ecuaciones no lineales (ENL). Cálculo de puntos fijos. Cálculo de raíces. Métodos globalmente convergentes (Bolzano) y localmente convergentes (Newton-Raphson).	-
4	4	Introducción a conceptos de Ajuste de Curvas, Interpolación e Integración Numérica. Introducción a las ecuaciones en derivadas parciales.	-
5	5	Introducción a las ecuaciones en derivadas parciales.	-
6	5	Práctica de evaluación	-
7	5	Evaluación parcial.	-
8	5	Recuperatorio o examen final regular.	Entrega Final del TP
9	5	Recuperatorio o examen final regular.	-

La cantidad de clases estará sujeta al turno de la materia.