Babies and Bayes nets: A computational theory of human theory-formation

Alison Gopnik

Dept. of Psychology

University of California at Berkeley

Collaborators

- Clark Glymour
- Laura Schulz
- Tamar Kushnir
- David Sobel
- David Danks
- Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, Psychological Review, 2004.
- Gopnik & Schulz, Trends in Cognitive Science, 2005

The Theory Theory

- Intuitive theories of biology (Carey) physics (Gopnik & Meltzoff) psychology, (Wellman, Perner, Theory of Mind)
- Cognitive development as intuitive theory formation
- The scientist as child
- Common representations and learning mechanisms underlying science and cognitive development.

The Spatial Analogy

- Cognitive maps
- The spatial inverse problem
- Implicit assumptions for solving the problem

Theories as Causal Maps

- General
- Coherent
- Non-egocentric
- Learned
- Support new predictions
- Support new interventions

The Causal Inverse Problem

- Causal structure is not directly perceived
- Causal structure is probabilistic
- Causal structure is complex

Assumptions for Solving the Inverse Problem

- Substantive Assumptions
- Space, Time, Movement-Michotte, Leslie, Bullock & Gelman
- Events following intentional actions-Watson, Meltzoff

Assumptions for solving the inverse problem

- Formal Assumptions
- Conditional dependence
- In adults Cheng, Shanks, Causal Rescorla-Wagner
- In animals Blocking in classical conditioning

Approaches to Causation

- "Kant", Michotte, Leslie, Intuitive Physics Mechanism
- "Hume", Classical Conditioning, Shanks
 Association
- Spirtes, Glymour, Scheines; Pearl, Woodward; Bayes nets -- Interventions & Observations

 The causal markov assumption, the faithfulness assumption, the intervention assumption

Normative Mathematical Models in Psychology

- Vision
- 3-d object representations (geometry)
- Projections from 3-d objects to the retina (optics)
- Assume projections are caused by objects (ideal observer theory)

- Causation
- Representations of causal structure (directed acyclic graphs)
- Projections from causal structure to conditional dependencies and interventions (the causal markov assumption)
- Assume dependencies and interventions are caused by structure (faithfulness)

Screening-Off

- A and B are potential causes of E
- A, B and E are correlated
- E is independent of B conditional on A
- E is not independent of A conditional on B
- A causes E and B does not
- In adults Cheng, Shanks
- In animals with classical conditioning
- In children with novel interventions?

Screening-off and Blickets

Some blocks are blickets. Blickets make the blicket detector light up and play music.

Figure 12: Procedure used in Gopnik et al. (2001), Experiment 3

One-Cause Condition

Object B is placed on the detector and nothing happens Object B is removed activates Object B is added to the detector with Object A. The detector continues to activate. Children are asked to make it stop

Two-Cause Condition

Object B is placed on the detector and the detector activates

Object B is removed.
The detector stops
activating

Object A is placed on the detector by itself and the detector activates

Object B is added to the detector with Object A. The detector continues to activate. Children are asked to make it stop

Can you make it stop?

Probabilistic Strength = Causal Strength?

- Adults make inferences about causal *strength* based on probabilistic evidence (Cheng, 1997; Waldman & Hagmayer, 2001).
- Children make inferences about causal *structure* based on deterministic evidence (Bullock, Gelman & Baillargeon, 1982; Gopnik, Sobel, Schulz & Glymour, 2001).
- Do children use probabilities to infer causal strength?

Probabilistic Strength = Causal Strength?

Intervention Question: "Pick the best one and make the toy go."

Simultaneous Causes:Inferring causal direction

- Intervention→Insomnia →Anxious Thoughts
- Intervene on insomnia, anxious thoughts
- Intervention→Insomnia←Anxious Thoughts
- Intervene on insomnia, no anxious thoughts
- No work with adults or children (though since then Steyvers et al, 2003, Sobel & Kushnir in press).

Pretest

- This is my puppet machine. Some of these puppets are special. Special puppets almost always make other puppets go.
- Look X is moving and its making Y go. See?

• Is X special? Is X moving Y?

Interventions to resolve simultaneous causes

Common Effects

Y and X move together (3times)

E. Moves Y and X doesn't move

Y and X move together (2 times)

Does Y make X move?

Does X make Y move?

CE v. RW

Inferring more complex causal structure: Chains versus common effects versus conjunctions

The Causal Possibilities

The Causal Mystery

- These causal structures cannot be distinguished by:
 - Spatiotemporal cues
 - Associative strength
 - Direct interventions
 - Causal mechanisms

• In the world at large, cues to causal structure might be either redundant or absent.

Interventions on each causal structure will produce different patterns of evidence.

Conditional interventions . . .

Knowing each gears' relationship to the switch let you determine the gears' relationship to one another . . .

Question

• Do formal assumptions about how patterns of conditional dependence and independence indicate causal relations, allow children to distinguish causes from effects and learn the structure of causal events?

• 40 preschool children (mean age: 4;8) were randomly assigned to one of two groups.

Predicting the structure from patterns of evidence

Experiment 3

• Sixteen children were tested as in Experiment 2 -- but the toy was turned to face the experimenter. Children

Experiment 3 v. Experiment 2

Predicting patterns of evidence from the structure

Results

- Preschool children can use interventions and the resulting patterns of conditional dependence and independence to learn causal structure.
- Preschool children can use knowledge of causal structure to predict the patterns of evidence that will result from interventions.

Pilot work:

- In Experiments 1 and 2, the children were given the relevant patterns of independence and dependence. Would children be able to discover this evidence on their own?
- Advantages of immaturity?
 - Impulsivity
 - Perseveration

Results

- 9 dyads have been tested so far.
- 8 of the 9 dyads spontaneously generated the pattern of independence and dependence
- 7 of the 8 dyads correctly identified the causal gear.

Inferring Unobserved Causal Structure

- Intervene on insomnia and no anxious thoughts
- Intervene on anxious thoughts and no insomnia
- Insomnia ←?→Anxious Thoughts

Multiple Choice - Adults

What is making the stick-balls move?

Bluey makes Reddy move	Reddy makes Bluey move
\	\rightarrow
Something makes them both move together	Two things make each of them move separately
	♦ ♦

Results

Percentage of Responses in Each of the Test Trials (N = 48)

	Trial Type		
A n s w e r Choice	Hidden Common	Hidden Independent	One Observed
\	0	0	65
\rightarrow	2	0	6
	63	4	8
	35	96	21

5-year-olds

• Do young children also infer a hidden cause given the same pattern of data?

Method

- Multiple Choice
- Three conditions: Hidden common cause,
 hidden independent causes, one observed cause

Results

Free-response

- Multiple choice: Participants can choose by elimination rather than learning causal structure.
- Can people infer hidden causal structure without being given explicit choices?
- Method:
 - Train participants to draw causal graphs.
 - Identical procedure to multiple choice

Results

Percentage of Responses in Each of the Test Trials (N = 48)

	Trial Type		
A n s w e r Choice	Hidden Common	Hidden Independent	One Observed
$\bigcirc {\color{red} {\rightarrow}} \bigcirc$	4.3	0	71.7 ^a
	58.7	28.3	6.5
\bigcirc	17.4	52.2	8.7
Other	19.6	19.6	13

^a This was the correct one-cause answer only, no one was incorrect

Free-response

- Multiple choice: Participants can choose by elimination rather than learning causal structure.
- Can people infer hidden causal structure without being given explicit choices?
- Method:
 - Train participants to draw causal graphs.
 - Identical procedure to multiple choice

Common Effects vs. Unobserved

Common Effects

Y and X move together (3times)

E. Moves Y and X doesn't move

Y and X move together (2 times)

Why are they moving together?

Unobserved Variables

Y and X move together (3times)

E. Moves Y and X doesn't move

E. Moves X and Y doesn't move

Y and X move together (2 times)

Why are they moving together?

One Puppet Explanations

Common Effects

Unobserved

No

0

11

Yes

16

5

Something Else Explanations

Common Effects

Unobserved

No

16

7

Yes

0

9

The Story So Far

- From patterns of intervention, dependence, independence and probability children (and adults) can normatively infer
- Which cause led to an effect
- Causal strength
- Causal direction
- Complex causal structure
- Unobserved causal structure