Osnovi Računarske Inteligencije

Klasterovanje

predavač: Aleksandar Kovačević

Šta je klasterovanje?

 Nalaženje grupa objekata takvih da su objekti iz grupe međusobno slični (ili povezani) i da su različiti (nepovezani) od objekata u drugim grupama

Primene klasterovanja

- Razumevanje
 - Grupa povezanih dokumenata za pretraživanje,
 - grupa gena i proteina koji imaju sličnu funkcionalnost,
 - grupa akcija sa sličnom fluktuacijom cene,...
- Smanjenje veličine velikih skupova podataka

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,IP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN, Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Klasterizacija padavina u Australiji

Značenje klasterovanja može da bude neodređeno

Tipovi klasterovanja – terminologija 1/2

Partitivno

 Podela objekata u nepreklapajuće podskupove (klastere) takva da je svaki objekat u tačno jednom podskupu

Hijerarhijsko

Skup ugnježdenih klastera organizovanih kao hijerarhijsko stablo

Tipovi klasterovanja – terminologija 2/2

- Tvrdo (Hard)
 - Binarana pripadnost klasteru
- Meko (Soft)
 - Pripadnost klasteru je kontinualna vrednost (najviše ima smisla da je u intervalu [0,1].

Algoritmi koje prikazujemo danas

K-sredina

Klasterovanje bazirano na gustini

K-sredina

- Partitivni pristup klasterovanju
- Svakom klasteru se dodeljuje centroid (centar)
- Svaka tačka se svrstava u klaster sa najbližim centroidom
- Broj klastera K mora biti zadat

K-sredina

- Osnovni algoritam je vrlo jednostavan:
- 1. Selektovati *K* tačaka za početne centroide
- 2. repeat
 - з. Formirati K klastera svrstavanjem tačaka u najbliži centroid
 - 4. Sračunati novi centroid za svaku klasu (na bazi svrstanih tačaka)
- 5. **until** centroid se ne menja

K-sredina - Detalji

- Inicijalni centroidi se često slučajno biraju.
- Dobijaju se različiti klasteri za različite slučajne sekvence.
- Centroid je (obično) srednja vrednost tačaka iz klastera.
- 'Blizina' se meri Euklidskim rastojanjem, kosinusnom sličnošću, korelacijom, itd.

K-sredina - Detalji

 K-sredine konvergiraju za uobičajene (pomenute) mere sličnosti.

Najbrža je konvergencija u prvih nekoliko iteracija.

 Kriterijum zaustavljanja u praksi je najčešće 'dok relativno malo podataka menja klaster'

K-sredina – Prmer sa 2 klastera

klasterovanje

2-1.5-0--2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ne-optimalno klasterovanje

K-Means Primer 2

K-Means kao optimizacioni problem

Pogledajmo ukupan zbir rastojanja tačaka do centara:

- Svaka iteracija smanjuje fukciju φ
- Dve faze u svakoj iteraciji:
 - Dodela klasterima: fiksiramo centre c, menjamo dodele a
 - Promena centara: fiksiramo a, menjamo centre c

Faza I: Dodela Klasterima

Dodaj svaku tačku centru koji joj je najbliži:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

Ova faza može samo da smanji fukciju φ!

$$\phi(\lbrace x_i \rbrace, \lbrace a_i \rbrace, \lbrace c_k \rbrace) = \sum_{i} \operatorname{dist}(x_i, c_{a_i})$$

Faza II: Promena Centara

Pomeramo svaki centar ka proseku tačaka koje su mu dodeljene:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i$$

- Takođe samo smanjuje fukciju φ.
- Uzećemo bez dokaza: tačka koja ima najmanju kvadratnu euklidsku udaljenost ka tačkama {x} u nekom skupu je baš centar tih tačaka.

Inicijalizacija

- K-means ne daje uvek isti rezultat za više pokretanja
 - Zahteva inicijalne centre
 - Vrlo je značajno kako su odabrani!
 - Postoji puno metoda za rešavanje ovog problema.
 Jedan od njih ćemo raditi danas.

K-Means može da se zaglavi

Lokalni optimum:

K-Means Pitanja

- Da li konvergira?
 - Ka globalnom optimumu?
- Da li će uvek pronaći stvarne šablone koji postoje u podacima?
 - Samo ako su ti šabloni stvarno jasni?
- Da li će uvek naći nešto interesantno?
- Da li se stvarno koristi?
- Koliko klastera odabrati?

Problemi pri izboru inicijalnih tačaka

- Ako postoji K 'stvarnih' klastera, verovatnoća da se izabere jedan centroid za svaki klaster je mala.
- Ako svaki klaster ima *n* tačaka verovatnoća je:

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

Problemi pri izboru inicijalnih tačaka

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- Na primer, za K = 10, verovatnoća = 10!/1010 = 0.00036
- U nekim slučajevima centroidi će se modifikovati na 'dobar' način, a u nekima baš i neće
- Posmtraćemo pet parova klastera

Rešenje problema inicijalnih centroida – 1/2

- Višestruka izvršavanja
 - Pomaže, ali verovatnoća nije na vašoj strani
- Korišćenje hijerarhijskog klasteringa za određivanje inicijalnih centroida

 Generisanje više od k inicijalnih centroida i zatim izbor među tim centroidima

Biraju se oni koji su najbolje razdvojeni

Rešenje problema inicijalnih centroida – 2/2

Post-procesing (spajanje ili razbijanje dobijenih klastera)

- Bisekcija K-sredina (biće prikazan na nekom drugih mojih kurseva)
 - Nije jako osetljiv na pitanja inicijalizacije

K-means++ [Arthur et al. '07]

- Predlog rešenja problema inicijalizacije centara
- Ideja algoritma: raširiti centre što više
- Algoritam je stohatički.
- Verovatnoće za odabir centara podešene

K-means++ - Algoritam

- Odabrati prvi centar, c₁, na slučajan način iz uniformne raspodele celog skupa podataka.
- Ponavljati za $2 \le i \le k$: (k je broj klastera)
 - Odabrati c_i tako da tačka iz podataka x_i bude birana iz distribucije: $\frac{D_i}{\sum_i D_j}$

$$D_i = \min(\|x_i - c_1\|^2, \|x_i - c_2\|^2, ..., \|x_i - c_n\|^2)$$

 Ideja je da se sledeći centar bira tako da tačke koje su udaljenije od već odabranih centara imaju veću verovatnoću.

Kako odabrati broj klastera?

 K-meas kao metod optimizuje sumu kvadrata grešaka (Sum of Squared Error - SSE):

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x je podatak (tačka) iz klastera C_i, a m_i odgovara centru klastera.
- Da li onda ima smisla koristiti SSE kao meru za odabir broja klastera?
- Ne direktno jer povećanjem broja klastera uvek smanjujemo SSE.

Kako odabrati broj klastera? – "Lakat" metod

- Iteriramo po broju klastera i prikazujemo SSE.
- Tražimo nagli prelaz ("lakat") u grafiku SSE po broju klastera

 Zasniva se na razlici (Gap) disperzije klastera dobijenih pomoću K-sredina za dati skup podataka i disperzije klastera slučajno generisanih skupova podataka

Razlika se meri iterativno od nekog datog broja klastera

 Broj klastera koji proizvede najveći razmak je predlog za broj klastera za K-sredina

- Zasniva se na razlici (Gap) disperzije klastera dobijenih pomoću Ksredina za dati skup podataka i disperzije klastera slučajno generisanih skupova podataka.
- Ideja je u tome da naši podaci imaju prirodne grupe tj. da nisu skroz slučajno generisani.
- Postavljamo pitanje koliko ima tih grupa tj. u koliko klastera treba da klasterujemo?

- Ideja je da će disperzija (rasutost) podataka oko centara klastera biti mala kad potrefimo baš taj prirodan broj grupa.
- Kako ćemo znati šta je mala disperzija?
- Tako što ćemo videti kolika je disperzija slučajno generisanih podataka (onih koji nemaju prirodne grupe) i onda je uporediti sa onom koju smo dobili.
- K za koje je razlika disperzija u odnosu na slučajno generisane podatke je ono koje biramo.

 Zasniva se na razlici (Gap) disperzije klastera dobijenih pomoću K-sredina za dati skup podataka i disperzije klastera slučajno generisanih skupova podataka

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r = 2n_r \sum_{i \in C_r} ||x_i - \bar{x}||^2 \longleftarrow SSE$$

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

 Zasniva se na razlici (Gap) disperzije klastera dobijenih pomoću K-sredina za dati skup podataka i disperzije klastera slučajno generisanih skupova podataka

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r = 2n_r \sum_{i \in C_r} ||x_i - \bar{x}||^2$$
 SSE

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

Ovo je disperzija podataka koju očekujemo za slučajno generisane podatke.

Dobijamo je višestrukim generisanjem slučajnih skupova podataka i određivanjem disperzije za svaki.

Te disperzije se onda uproseče.

 Zasniva se na razlici (Gap) disperzije klastera dobijenih pomoću K-sredina za dati skup podataka i disperzije klastera slučajno generisanih skupova podataka

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r = 2n_r \sum_{i \in C_r} ||x_i - \bar{x}||^2$$
 SSE

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

Ovo je disperzija dobijena za k klastera pomoću K-sredina.

Broj klastera k kod kojega je ova razlika najveća je onaj koji najbolje grupiše tačke, tačnije onaj koji je uspeo da pronađe prirodno grupisanje našeg skupa podataka, ako ono postoji.

Kako dobijamo slučajno generisane skupove podataka? Monte Carlo Ograničavajući **Podaci** Pravougaonik simulacije (Bounding Box) Monte Carlo Ograničavajući **Podaci** Pravougaonik simulacije (Bounding Box)

Algoritam za izračunavanje Gap statistike

for l = 1 to B

Compute Monte Carlo sample $X_{1b}, X_{2b}, ..., X_{nb}$ (n is # obs.)

for k = 1 to K

Cluster the observations into k groups and compute $\log W_k$ for l = 1 to B

Cluster the M.C. sample into k groups and compute $\log W_{kb}$

Compute
$$Gap(k) = \left(\frac{1}{B} \sum_{b=1}^{B} \log W_{kb}\right) - \log W_{k}$$

Compute sd(k), the s.d. of $\{\log W_{kb}\}_{l=1,...,B}$

Find the smallest k such that $Gap(k) \ge Gap(k+1) - s_{k+1}$

$$s_k = \sqrt{1 + 1/B} \cdot sd(k)$$

Ograničenja K-sredina

- K-sredina ima probleme kada se razlikuju klasteri
 - veličina
 - gustina
 - nesferični oblici

 K-sredina ima problem u slučaju prisustva stranih podataka.

Ograničenja K-sredina: Različite veličine klastera

Originalne tačke

K-sredina (3 klastera)

Ograničenja K-sredina: Različite gustine

3 - 2 - 1 0 1 2 3 4 5 6 X

Originalne tačke

K-sredina (3 klastera)

Ograničenja K-sredina: Nesferični oblici

Originalne tačke

K-sredina (3 klastera)

DBSCAN - "Density-based spatial clustering of applications with noise"

- Algoritam baziran na gustini.
- Algoritmi koji su bazirani na centralnim tačkama uglavnom rade dobro sa sfernim (globularnim) klasterima. Klasteri nisu uvek sferični:

DBSCAN - "Density-based spatial clustering of applications with noise"

- Algoritam baziran na gustini.
- Gustina = broj tačaka unutar zadatog prečnika (Eps)
- Tačka je tačka jezgra (core point) ako ima više od specificiranog broja tačaka (MinPts) unutar Eps
- Ivična tačka (border point) ima manje od MinPts tačaka na rastojanju Eps, ali je susedna sa tačkom jezgra (nalazi se u Eps "krugu" neke tačke jezgra)
- Tačka šuma (noise point) je svaka tačka koja nije ni tačka jezgra ni ivična tačka.

DBSCAN: tačka jezgra, ivična tačka, tačka šuma

DBSCAN: defincije

 DBSCAN funkcioniše tako što markira guste komšiluke tačaka kao zasebne klastere

Crvene tačke su tačka jezgra za minPts = 4.

DBSCAN: još defincija

- Tačke jezgra mogu **direktno da dosegnu** komšije u svojoj ε -sferi.
- <u>Samo</u> tačke jezgra mogu direktno da dosegnu druge tačke.
- Tačka q je **dosežna-po-gustini** od tačke p ako postoji niz tačaka $p = p_1, ..., p_n = q$ takav da p_{i+1} može da se **direktno dosegne** od tačke p_i .
- Tačke koje nisu dosežne-po-gustini smatraju se tačkama šuma.

DBSCAN: još defincija – napomena

- <u>Samo</u> **tačke jezgra** mogu **direktno da dosegnu** druge tačke:
- Granična tačka je tačka koja može biti direktno dosegnuta od neke tačke jezgra.
- Ali, granična tačka ne može direktno da dosegne druge tačke jer nije tačka jezgra. To znači da dosežnost-po-gustini nije simetrična.
- Tačke B i C su granične tačke. Tačka šuma N ne može biti dosegnuta.

DBSCAN: još malo defincija

- Tačke p, q su povezane-po-gustini ako postoji tačka o takva da su obe tačke p i q dosežne-po-gustini od tačke o.
- Klaster je skup tačaka koje su povezane-po-gustini.
- Ako je tačka dosežna-po-gustini od neke druge tačke onda te dve tačke pripadaju istom klasteru.

DBSCAN: još malo defincija – napomena

- Tačke B i C su povezane-po-gustini.
- Povezanost-po-gustini je simetrična. Preko tačke A može se "stići" od tačke B do tačke C i obrnuto.
- Tačka *N* je **tačka šuma**.
- Povezanost-po-gustini nam je trebala da bi mogli da definišemo koje tačke čine jedan klaster.

DBSCAN Algortiam, Pseudo-kod

```
DBSCAN(DB, dist, eps, minPts) {
C = 0
                                                   /* Cluster counter */
for each point P in database DB {
   if label(P) ≠ undefined then continue
                                                  /* Previously processed in inner loop */
   Neighbors N = RangeQuery(DB, dist, P, eps) /* Find neighbors */
   if |N| < minPts_then {</pre>
                                                  /* Density check */
      label(P) = Noise
                                                   /* Label as Noise */
                     Ako je u pitanju granična tačka
      continue
                     ona može kasnije biti obeležena
   C = C + 1
                                                   /* next cluster label */
                     kao deo klastera.
   label(P) = C
                                                   /* Label initial point */
   Seed set S = N \setminus \{P\}
                                                   /* Neighbors to expand */
   for each point Q in $/{
                                                   /* Process every seed point */
      if label(Q) = Noise then label(Q) = C
                                                  /* Change Noise to border point */
      if label(Q) ≠ undefined then continue
                                                 /* Previously processed */
      label(0) = C
                                                  /* Label neighbor */
      Neighbors N = RangeQuery(DB, dist, Q, eps) /* Find neighbors */
      if |N| ≥ minPts then {
                                                   /* Density check */
         S = S \cup N
                                                   /* Add new neighbors to seed set */
```

DBSCAN – 2d prikaz

Originalne tačke

Tačke:

jezgra, granične i šum

Eps = 10, MinPts = 4

DBSCAN – 2d prikaz

Originalne tačke

Klasteri

- Otporan na šum
- Može da radi sa klasterima različitih oblika i veličine

Kada DBSCAN ne radi dobro

Originalne tačke

- Varijabilne gustine
- Visoko dimenzionalni podaci

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Određivanje EPS i MinPts

- Ideja je da za tačke iz klastera, kte najbliže komšije budu na približno istom rastojanju
- Tačke šuma za k-te najbliže komšije su na većem rastojanju
- Dakle, nacrtaju se sortirane distance svake tačke do svakog njenog ktog najbližeg komšije

