Lezione 17

Metodi di Predictor-corrector

Questi metodi sono come abbiamo visto nel punto fisso, infatti è un concetto che nasce dagli ODE.

Guardando lo schema CN:

$$\left\{egin{aligned} u_{n+1} = \underbrace{u_n + rac{h}{2}[f(t_n,u_n) + f(t_{n+1},u_{n+1})]
ightarrow n \geq 0}_{\phi(u_{n+1})} \ u_0 = u_0 \end{aligned}
ight.$$

Essend implicito serve attivare un solver non-lineare. Tuttavia la parte a destra può esser letta come una funzione di punto fisso per trovare u_{n+1} .

Come abbiamo visto negli schemi iterativi possiamo usare più iterazione per approssimare un punto fisso:

$$x^{(k+1)} = \phi(x^{(k)})
ightarrow lpha = \phi(lpha)$$

Quindi possiamo trovare $u_{n+1} \in \mathbb{R}$, con $u_{n+1}^{(k)} \simeq u_{n+1}$ usando uno schema iterativo di se stesso.

Questo che stiamo facendo allora è di chiedere allo schema stesso di fare da metodo di punto fisso per trovare il risultato, utilizzando u_n che è l'istante che è andato a convergenza nell'istante prima.

Questo cambio ad uno schema iterativo cambia lo schema da uno schema iterativo a uno schema esplicito.

Se $u_{n+1}^{(0)}$ è "sufficientemente ricca", allora $u_{n+1}^{(1)}$ è già una buona approssimazione per u_{n+1} , quindi è possiamo trovarlo in una singolare iterazione.

Cosa significa "sufficiente ricca"?

Se il mio schema implicito è di ordine p, allora $u_{n+1}^{(0)}$ deve esser generata da uno schema esplicito di ordine $\geq p-1$.

Nel caso di CN significa che possiamo usare EE per generare $u_{n+1}^{\left(0\right)}$

Essendo CN implicito di ordine 2 che usiamo come corrector e EE esplicito di ordine 1 che usiamo da predictor.

Possiamo scrivere lo schema come:

$$egin{cases} u_{n+1}^{(0)} = u_n + h f(t_n.\,u_n) \ u_{n+1}^{(1)} = u_n + rac{h}{2} [f(t_n,u_n) + f(t_{n+1},u_{n+1}^{(0)})] \end{cases}$$

Questo schema è di Eulero migliorato o schema di Heun.

Essendo CN implicito di ordine 2 che usiamo come corrector e EE esplicito di ordine 1 che usiamo da predictor, potremmo assumere che prendere l'ordine da EE, ma in realtà mantiene l'ordine di CN, ma con lo svantaggio di esser condizionalmente assolutamente stabile.

Schemi di Ordine Alto

Ci sono due modi per avere schemi di ordine più alti, gli schemi multi-step sono il prima, ma abbiamo già detto che non li vediamo. Il secondo sono i metodi one-step di Runge-Kutta.

Metodi di Runge-Kutta

Nei metodi Runge-Kutta non abbiamo una sola analisi di t_n e t_{n+1} ma anche s stadi intermedi. Infatti chiamiamo questi metodi, metodi di Runge-Kutta a s stadi perché prendiamo un numero di stadi in base a quanti ne vogliamo.

Lo schema generale Runge-Kutta è costruito come:

$$egin{cases} u_{n+1} = u_n + h \sum\limits_{i=1}^s b_i \cdot K_i \ K_i = f\left(t_n + c_i h, u_n + \sum\limits_{j=1}^s a_{ij} K_j
ight)
ightarrow i = 1, \ldots, s \ u_0 = y_0 \end{cases}$$

Questo schema dipende da i valori di b_i , c_i e a_{ij} .

Possiamo orgaizzare questi valori in un Array di Butcher come:

$$egin{array}{ccccc} c & | & A \ - & + & - \ & | & b^{^{ au}} \end{array}$$

Dove A è la matrice dei valori a_{ij} . I diversi vettori e matrici hanno dimensione $A \in \mathbb{R}^{s \times s}$ e $b,c \in \mathbb{R}^s$.

Possiamo ricavare i diversi K_i con i valori in ogni riga.

Se A è composta da tutti elementi non nulli, allora tutti i K, sono dipendenti da tutti gli altri K, quindi è un sistema non-lineare per cui possiamo usare Newton per sistemi.

Se è strettamente triangolare inferiore, possiamo vedere che ogni K_i è dipendente solo da tutti i K_i prima di se e anche non se stesso, questo rende RK a s stadi uno schema esplicito.

Se un K_i è dipendente da se stesso o un K_i che non abbiamo ancora trovato allora è uno schema implicito.

Esempi di Schemi di Runge-Kutta

$RK4 \rightarrow RK a 4 stadi$

Aventi 4 stadi, RK4 è convergente di ordine 4.

Lo schema ha forma:

$$\left\{egin{aligned} u_{n+1} = u_n + rac{h}{6}[K_1 + 2K_2 + 2K_3 + K_4]
ightarrow n \geq 0 \ u_0 = y_0 \end{aligned}
ight.$$

Con valori K_i :

$$egin{cases} K_1 = f(t_n, u_n) \ K_2 = f\left(t_n + rac{h}{2}, u_n + rac{h}{2}K_1
ight) \ K_3 = f\left(t_n + rac{h}{2}, u_n + rac{h}{2}K_2
ight) \ K_4 = f(t_{n+1}, u_n + hK_3) \end{cases}$$

L'Array di Butcher per RK4 è:

EE

Eulero esplicito può esser scritto come Runge-Kutta ad 1 stadio (RK1).

$$u_{n+1} = u_n + h\underbrace{f(t_n,u_n)}_{K_1}$$

L'Array di Butcher per EE è:

$$\begin{array}{c|cccc}
0 & | & 0 \\
- & + & - \\
& | & 1
\end{array}$$

Heun = RK2

Lo schema di Heun è:

$$egin{cases} u_n^{(1)} = u_n + rac{h}{2} [\underbrace{f(t_{n,}u_n)}_{K_1} + \underbrace{f(t_{n+1},u_{n+1}^{(0)})}_{K_2}] \ u_{n+1}^{(0)} = u_n + \underbrace{hf(t_n,u_n)}_{K_1} \end{cases}$$

L'Array di Butcher per Heun è:

$$\begin{array}{c|ccccc}
0 & | & 0 & 0 \\
1 & | & 1 & 0 \\
- & + & - & - \\
& | & \frac{1}{2} & \frac{1}{2}
\end{array}$$

Sistemi di ODE

Ora che abbiamo visto come si applicano i metodi numerici per gli ODE di grado 1 possiamo vedere come si applicano per ODE di grado 1.

Definiamo ogni funzione incognite come:

$$y_i:[t_0,T]\subset \mathbb{R} o \mathbb{R}, i=1,\ldots,m$$

Quali sono questi y_1, y_2, \ldots, y_m .

Possiamo definire il sistema di ODE:

$$egin{cases} y_1'(t) = f_1(t_n, y_1(t), y_2(t), \dots, y_m(t)) \ y_2'(t) = f_2(t_n, y_1(t), y_2(t), \dots, y_m(t)) \ dots \ y_m'(t) = f_m(t_n, y_1(t), y_2(t), \dots, y_m(t)) \end{cases}$$

Definiamo le condizioni iniziali come:

$$egin{cases} y_1(t_0) = y_{1,0} \ y_2(t_0) = y_{2,0} \ dots \ y_m(t_0) = y_{m,0} \end{cases}$$

Vogliamo riportare questo sistema alla forma:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Per fare questo possiamo definire diversi vettori. Per primo possiamo definire il vettore di funzioni incognite come:

$$ec{y}(t) = egin{bmatrix} y_1(t) \ y_2(t) \ dots \ y_m(t) \end{bmatrix}$$

Un vettore delle funzioni note, se stesso funzione del vettore delle funzioni incognite, come ogni suo componente:

$$ec{F}(t,ec{y}(t)) = egin{bmatrix} f_1(t,ec{y}(t)) \ f_2(t,ec{y}(t)) \ dots \ f_m(t,ec{y}(t)) \end{bmatrix}$$

In forma breve:

$$ec{y}'(t) = ec{F}(t,ec{y}(t))$$

Introduciamo il vettore delle condizioni iniziali:

$$ec{y}_0 = \left[y_{1,0},\ldots,y_{m,0}
ight]^{^{\mathrm{\scriptscriptstyle T}}}$$

Possiamo allora scrivere il sistema come:

$$egin{cases} ec{y}'(t) = ec{F}(t,ec{y}(t)) \ ec{y}(t_0) = ec{y}_0 \end{cases}$$

Dove $\vec{y}(t_0)$ è il vettore dei punti iniziali che vogliamo definire.

EE nel case scalare ha forma:

$$\left\{egin{aligned} u_{n+1} = u_n + hf(t_n, u_n) \ u_0 = y_0 \end{aligned}
ight.$$

Invece in forma vettoriale lo scriviamo come:

$$egin{cases} ec{u}_{n+1} = ec{u}_n + hec{F}(t_n,ec{u}_n) \ ec{u}_0 = ec{y}_0 \end{cases}$$

In questo schema $\vec{u}_{n+1} \simeq \vec{y}(t_{n+1})$. Tale che questo sia vero ogni elemento di \vec{u}_{n+1} deve approssimare l'associato elemento nel vettore \vec{y}_{n+1} .

Questo significa che dobbiamo imporre lo schema per ogni elemento tale che:

$$\left\{egin{aligned} u_{n+1,1} &= u_{n,1} + h f_1(t_n, u_{n,1} u_{n,2}, \ldots, u_{n,m}) \ u_{n+1,2} &= u_{n,2} + h f_2(t_n, u_{n,1} u_{n,2}, \ldots, u_{n,m}) \ dots \ u_{n+1,m} &= u_{n,m} + h f_m(t_n, u_{n,1} u_{n,2}, \ldots, u_{n,m}) \end{aligned}
ight.$$

È il vettore delle condizioni iniziali significa che sono uguali elemento per elemento.

Generalizzando ightarrow heta-method

Possiamo generalizzare ogni schema in modo possiamo una variabile e definire i diversi schemi e altri gli altri infiniti schemi che non vediamo:

$$egin{cases} ec{u}_{n+1} = ec{u}_n + h[hetaec{F}(t_{n+1},ec{u}_{n+1}) + (1- heta)ec{F}(t_{n},ec{u}_{n})] \ ec{u}_0 = ec{y}_0 \ 0 \leq heta \leq 1 \end{cases}$$

$$\begin{array}{l} \operatorname{Per} \theta = 0 \to \operatorname{EE} \\ \operatorname{Per} \theta = 1 \to \operatorname{EI} \\ \operatorname{Per} \theta = \frac{1}{2} \to \operatorname{CN} \end{array}$$

 $heta=rac{1}{2}$ è il confine della stabilità assolutamente condizionata e incondizionata, perciò di solito nella pratica si va a $heta=rac{2}{3}$ per avere stabilità assoluta.

Equazioni Differenziali a Derivate Parziali (PDE)

Le ODE prendono forma:

$$y = y(t)$$

E abbiamo una condizione iniziale, lo chiamiamo iniziale perché di solito la ODE è di solito la variabile indipendente è il tempo.

I PDE invece prendono la forma:

$$u = u(t,x)$$
 o $u = u(x,y)$

I PDE sono dipendenti da più di una variabile indipendente.

La realtà è un PDE di forma:

$$u = u(t, x, y, z)$$

Perché cambia sia con il tempo che con lo spazio.

Per i PDE invece di condizioni iniziali di solito si parla di condizioni di bordo, questo termine tiene a conto della forma multidimensionale dei PDE. Se il PDE è dipendente dal tempo e dallo spazio (in qualsiasi

dimensione) allora si danno sia i valori iniziali che le condizioni di bordo.

La funzione note dei PDE prende forma:

$$F\left(ec{x},t,y,\underbrace{\dfrac{\partial u}{\partial t},\dfrac{\partial u}{\partial x},\ldots,\dfrac{\partial u}{\partial x_d}}_{ ext{Derivate di ordine 1}},\underbrace{\sum_{ ext{Derivate di Ordine 2}}}_{ ext{Derivate di Ordine 2}},\ldots,\dfrac{\partial^{p_1+\cdots+p_d+p_t}u}{\partial x_1^{p_1}\cdots\partial x_d^{p_d}\partial t^{p_t}},g
ight)=$$

Il vettore $\vec{x} = [x_1, \dots, x_d]^T$ è il vettore di dipendenza dello spazio.

Il termine grande alla fine è il grado di dipendenza massimo che prendiamo rispetto alle variabili indipendenza.

 $\Omega \subset \mathbb{R}^d$ è il dominio dove d può avere valore 1,2 o 3.

g è la dipendenza dai dati.

L'ordine del PDE è:

$$p = p_1 + \cdots + p_d + p_t$$

 p_1 è il grado massimo di dipendenza rispetto alla prima variabile indipendente dello spazio che prendiamo. Ogni altro termine è il rispettivo per le variabili.

Classificazioni di PDE

Forma

I PDE possono esser classificati in 2 tipi di forma:

• lineari:

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial t^2} = f$$

non-lineare:

$$rac{\partial u}{\partial t} - \mu rac{\partial^2 u}{\partial x^2} + u^2 = \widetilde{f}$$

Il caso lineare è quello che guardiamo generalmente.

Il caso non-lineare è più complesso perché la funzione incognite dipende non linearmente da se stessa.

Tempo-dipendenza

Si può avere una PDE stazionaria e una non-stazionaria.

La stazionaria non è variabile nel tempo e quella non-stazionaria è una variabile nel tempo.

Dimensione dello spazio

In base a d la nostra funzione è variabile in dimensioni dello spazio diverse:

- se d = 1, abbiamo un intervallo
- se d = 2, abbiamo una area

• se d = 3, abbiamo un volume