In [6]: data = pd.read_csv('aerofit_treadmill.csv?1639992749')

2024-03-21 15:37:07 (1.30 GB/s) - 'aerofit_treadmill.csv?1639992749' saved [7279/7279]

7.11K --.-KB/s

:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	179	KP781	48	Male	18	Partnered	4	5	95508	180

HTTP request sent, awaiting response... 200 OK

Saving to: 'aerofit_treadmill.csv?1639992749'
aerofit treadmill.c 100%[===========]

Length: 7279 (7.1K) [text/plain]

180 rows × 9 columns

Out[6]

Exploring the Dataset

```
In [10]: data.head()
Out[10]:
             Product Age Gender Education MaritalStatus Usage Fitness Income Miles
              KP281
                            Male
                                        14
                                                            3
                                                                        29562
                                                                                112
                      18
                                                  Single
              KP281
                      19
                                        15
                                                            2
                                                                        31836
                                                                                 75
                            Male
                                                  Single
                                                                    3
              KP281
                      19
                          Female
                                        14
                                               Partnered
                                                            4
                                                                    3
                                                                        30699
                                                                                 66
              KP281
                      19
                                        12
                                                                        32973
                                                                                 85
                            Male
                                                  Single
              KP281
                                        13
                                                                        35247
                                                                                 47
                      20
                            Male
                                               Partnered
In [14]: print ("Number of rows and cols: ")
          data.shape
          Number of rows and cols:
          (180, 9)
Out[14]:
In [16]: print("First 4 rows of the dataset: ")
          data.head()
          First few rows of the dataset :
```

```
KP281
                           Male
                                               Single
                                                                     31836
             KP281
                     19
                         Female
                                      14
                                             Partnered
                                                         4
                                                                 3
                                                                     30699
                                                                             66
             KP281
                     19
                                      12
                                               Single
                                                                 3
                                                                     32973
                                                                             85
             KP281
                     20
                           Male
                                      13
                                                                     35247
                                                                             47
                                             Partnered
In [19]:
         print("List of Parameters available: ")
          data.info()
         List of Parameters available:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 180 entries, 0 to 179
         Data columns (total 9 columns):
               Column
                              Non-Null Count Dtype
          0
               Product
                               180 non-null
                                                obiect
           1
               Age
                               180 non-null
                                                int64
               Gender
                               180 non-null
                                                object
           3
               Education
                               180 non-null
                                                int64
           4
               MaritalStatus 180 non-null
                                                object
           5
               Usage
                               180 non-null
                                                int64
           6
               Fitness
                               180 non-null
                                                int64
               Income
                                                int64
           7
                               180 non-null
           8
               Miles
                               180 non-null
                                                int64
         dtypes: int64(6), object(3)
         memory usage: 12.8+ KB
         print("Description of all the parameters: ")
          data.describe(include = "all")
         Description of all the parameters:
```

29562

112

Product Age Gender Education MaritalStatus Usage Fitness Income Miles

Single

14

percentage and parameters.									
	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000
unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN
top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN
freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN
mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444
std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605
min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000
25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000
50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000
75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000
max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000

Analysis

Out[16]:

KP281

18

Male

- Treadmills are employed for exercise purposes at least twice in a week by their owners.
- The minimum weekly mileage covered on a treadmill is 21 miles.
- Typically, individuals utilize treadmills approximately 3.45 times per week.
- On average, a treadmill accumulates a distance of 103 miles in a week's usage.
- Individuals who own treadmills exhibit a fitness score of at least 1, according to the measurement criteria.
- The average fitness level or score reported by treadmill owners is 3.3 on a given scale.

Visual Analysis

Analizing the sale of products categorizing:

```
In [24]: # Create a bar plot to visualize sales count for each product
product_sales_visualization = sns.countplot(x=data["Product"], color='red')

# Set a descriptive title for the plot
product_sales_visualization.set_title('Sales by Product')

# Label the x-axis of the plot with 'Product'
product_sales_visualization.xaxis.set_label_text('Product')

# Label the y-axis of the plot with 'Sales'
```

```
product_sales_visualization.yaxis.set_label_text('Sales')
```

Out[24]: Text(0, 0.5, 'Sales')


```
In [25]: # Create a contingency table (crosstab) with 'Product' as rows and 'count' as columns
product_count_table = pd.crosstab(index=data['Product'], columns='count')

# Calculate the marginal probabilities by dividing the counts by the total sum
marginal_probabilities = product_count_table / product_count_table.sum()

# Rename the column of the marginal probabilities DataFrame to 'Probability'
marginal_probabilities.columns = ['Probability']

# Display the marginal probabilities DataFrame
print(marginal_probabilities)
```

Probability
Product
KP281 0.444444
KP481 0.333333
KP781 0.222222

Inference:

- We can figure out, KP281(Base Model) is the most sold product.
- Followed by KP481(Mid-Level Model) and then the least sold product is KP781(Top Model).

Age Wise Data Inferening

```
In [31]: sns.histplot(data=data['Age'], kde=False, color='black')
Out[31]: <Axes: xlabel='Age', ylabel='Count'>
```


In [29]: sns.boxplot(x=data["Age"], showmeans=True, color='red')

In [33]: sns.boxplot(x=data["Age"], y=data["Product"], showmeans=True, hue=data["Product"], palette=['yellow', 'red', 'li
Out[33]: <Axes: xlabel='Age', ylabel='Product'>


```
In [34]: data["Age"].describe()
                   180.000000
          count
Out[34]:
                    28.788889
          mean
          std
                     6.943498
          min
                    18.000000
          25%
                    24.000000
                    26.000000
          50%
          75%
                    33.000000
                    50.000000
          max
          Name: Age, dtype: float64
In [44]: crosstab_age = pd.crosstab(index=data['Product'], columns='MaritalStatus')
          marginal_prob_age_group = crosstab_age / crosstab_age.sum()
          marginal_prob_age_group.columns = ['Probability']
          print("Marginal probabilities for Product Models:")
          marginal_prob_age_group
          Marginal probabilities for age groups:
Out[44]:
                 Probability
          Product
           KP281
                   0.444444
           KP481
                   0.333333
           KP781
                   0.222222
```

Analysis

Product KP281 is sold the highest, followed by KP481 and KP781.

Analysis based on the gender:

```
In [50]: sns.countplot(x=data["Gender"], hue=data["Product"], palette=['cyan', 'green', 'pink'])
Out[50]: <Axes: xlabel='Gender', ylabel='count'>
```



```
In [54]: crosstab_gender = pd.crosstab(index=data['Gender'], columns='count')
    crosstab_age = data['Age']
    marginal_prob_gender = crosstab_gender / crosstab_age.sum()
    marginal_prob_gender.columns = ['Probability']

print("Marginal probabilities based on gender:")
    marginal_prob_gender
```

Marginal probabilities based on gender:

Out[54]: Probability

Gender			
Female	0.014666		
Male	0.020069		

Analysis:

- Female customers purchased significantly fewer units of the premium KP781 model compared to males.
- Male customers bought more premium KP781 units than the mid-range model.
- $\bullet\,$ For the base KP281 model, sales were highest and nearly equal across both genders.
- Product positioning and marketing may need to be adjusted to better appeal to gender preferences, especially for premium and entry-level offerings.
- The visualization identified potential areas for targeted strategies to address observed gender-specific sales patterns.

Analysis based on Education level of customers:

<Axes: xlabel='Education', ylabel='count'>

Out[56]:


```
In [59]: sns.boxplot(data["Education"], orient='h', palette = ['cyan'])
           <ipython-input-59-7920da415607>:1: FutureWarning:
           Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.
             sns.boxplot(data["Education"], orient='h', palette = ['cyan'])
           <Axes: xlabel='Education'>
```

Out[59]:


```
In [64]: sns.boxplot(x=data["Education"],y=data["Product"], orient='h',hue=data["Product"], palette='Set1')
         <Axes: xlabel='Education', ylabel='Product'>
Out[64]:
```



```
In [65]: data["Education"].describe()
                        180.000000
            count
Out[65]:
                         15.572222
            mean
            std
                          1.617055
                         12.000000
            min
                         14.000000
            25%
                         16.000000
            50%
            75%
                         16.000000
                         21.000000
            max
            Name: Education, dtype: float64
In [71]:
            def education_group(education):
                 if education <= 14:
    return '12-14'</pre>
                 elif education <= 16:</pre>
                      return '14-16'
                 else:
            return 'greater than 16'
data['Education Group'] = data['Education'].apply(education_group)
sns.countplot(y=data["Education Group"], hue=data["Product"], palette='Set1')
Out[71]: <Axes: xlabel='count', ylabel='Education Group'>
```



```
In [70]:
    def education_group(education):
        if education <= 14:
            return '12-14'
        elif education <= 16:
            return '14-16'
        else:
            return 'greater than 16'
        data['Education Group'] = data['Education'].apply(education_group)

        crosstab_education = pd.crosstab(index=data['Education Group'], columns='count')

        marginal_prob_education_group = crosstab_education / crosstab_education.sum()
        marginal_prob_education_group.columns = ['Probability']

        print("Marginal probabilities for education groups:")
        marginal_prob_education_group</pre>
```

Marginal probabilities for education groups:

Out[70]: Probability

Education Group							
12-14	0.35						
14-16	0.50						
greater than 16	0.15						

Inference:

- The visualizations suggest that the average customer base for these products predominantly falls within the education level range of 14-16 years, closely followed by the 12-14 years education group.
- Additionally, there is a noticeable trend where customers with higher levels of educational attainment exhibit a greater propensity to purchase the premium or high-end model, KP781, compared to the other product offerings.
- The plots reveal a positive correlation between the customers' educational background and their likelihood of opting for the top-tier,

feature-rich model, indicating that product positioning and marketing strategies may need to be tailored to cater to the preferences and purchasing power of more educated consumer segments.

Income Wise Analysis:

```
In [72]: sns.histplot(data=data, x="Income")
Out[72]: <Axes: xlabel='Income', ylabel='Count'>
```

```
35
30
25
20
15
10
 5
 n
           40000
                         60000
                                70000
                                        80000
                                               90000 100000
   30000
                  50000
                              Income
```

```
In [73]: crosstab = pd.crosstab(index=data[data["Income"]> data["Income"].mean() ]["Product"], columns='count')
marginal_probability = crosstab / crosstab.sum()

marginal_probability_percent = marginal_probability * 100
marginal_probability_percent.columns = ['Percentage']
print(marginal_probability_percent.round())
```

Percentage
Product
KP281 29.0
KP481 21.0
KP781 51.0

<Axes: xlabel='Income'>

Out[75]:

```
In [ ]:
```


Analysis

- Majority of customers have an income range between 40,000 and 60,000.
- Higher income groups tend to have less time for fitness due to work commitments.
- The median income of most buyers is around 50,000.
- Presence of outliers indicates a segment of high-income individuals investing in health and fitness.
- Despite high-income customers purchasing advanced treadmills, their numbers are lower compared to those buying intermediate and beginner models.
- Revenue distribution is relatively equal across different product tiers.

Analysis based on user's Fitness Levels

```
In [78]: sns.histplot( data, x="Fitness")
Out[78]: <Axes: xlabel='Fitness', ylabel='Count'>
```


In [79]: sns.boxplot(data, x="Fitness")

Out[79]: <Axes: xlabel='Fitness'>

Analysis

- Individuals with very low fitness levels are less likely to purchase a treadmill.
- People with median or above-median fitness levels are more inclined to buy a new treadmill.
- The majority of treadmill buyers have a fitness score of 3 or higher.
- Conclusion: Most treadmill customers have a fitness level of 3 or above, indicating a preference among individuals with moderate to high fitness levels.

```
In [82]: sns.histplot(data, x="Usage")
Out[82]: <Axes: xlabel='Usage', ylabel='Count'>
```



```
In [83]: sns.boxplot(data, x="Usage")
Out[83]: <Axes: xlabel='Usage'>
```


Analysis

- Majority of treadmill buyers use it for 2-4 days per week.
- Most buyers utilize their treadmills for approximately 3 days a week.
- Conclusion: The typical treadmill customer is a beginner or intermediate user, exercising on their treadmill around 3 days per week.
- There are 5 outliers observed in the data.

Bivariate Analysis

```
In [84]: print("Correlation between numerical (continuous) variables : \n")
    numeric_data = data.select_dtypes(include=['int'])
    correlation_matrix = numeric_data.corr()
    correlation_matrix
```

Correlation between numerical (continuous) variables :

```
Age Education
                                           Usage
                                                   Fitness
                                                            Income
                                                                        Miles
Out[84]:
                Age 1.000000
                                0.280496
                                        0.015064
                                                 0.061105 0.513414 0.036618
           Education 0.280496
                                1.000000
                                        0.395155
                                                 0.410581
                                                          0.625827 0.307284
              Usage 0.015064
                                0.395155
                                                 0.668606
                                                           0.519537
                                                                    0.759130
                                        1.000000
             Fitness 0.061105
                               0.410581 0.668606
                                                 1 000000 0 535005
                                                                    0.785702
             Income
                    0.513414
                                0.625827 0.519537 0.535005
                                                          1.000000
                                                                    0.543473
                                        0.759130 0.785702 0.543473 1.000000
                    0.036618
                                0.307284
```

```
In [85]: sns.heatmap(correlation_matrix, annot=True, cmap='Blues')
```

Out[85]: <Axes: >

Age vs Gender

continue:
cont


```
In [92]: sns.boxplot(x=data["Age"], y=data["Gender"], hue=data["Gender"], showmeans=True, palette='Set1')
Out[92]: <Axes: xlabel='Age', ylabel='Gender'>
```


Gender vs Usage

In [95]: sns.catplot(x='Usage', col='Gender', hue='Product', data=data, kind='count', palette='Set1')

Out[95]: <seaborn.axisgrid.FacetGrid at 0x7eb6e9cbbc10>

In [97]: sns.boxplot(y=data["Gender"], x=data["Usage"], showmeans=True, hue=data["Gender"], palette='Set2') Out[97]: <Axes: xlabel='Usage', ylabel='Gender'>

Gender vs Fitness

In [101... sns.catplot(data=data,x="Fitness",col="Gender",kind="count",hue="Product")

Out[101]: <seaborn.axisgrid.FacetGrid at 0x7eb6e98cb6a0>

In [104... sns.boxplot(y=data["Gender"], x=data["Fitness"], showmeans=True, hue=data["Gender"], palette='Set2') Out[104]: <Axes: xlabel='Fitness', ylabel='Gender'>

Gender vs Miles

In [105... df_copy['Miles Group'] = pd.cut(data['Miles'],bins=[60,120,180,240,300,360],labels=['60-120','120-180','180-240
sns.catplot(x='Miles Group', col='Gender', hue='Product', data=data, kind='count', palette='Set1')

Out[105]: <seaborn.axisgrid.FacetGrid at 0x7eb6e96cf670>

In [106... sns.boxplot(y=data["Gender"], x=data["Miles"], showmeans=True, hue=data["Gender"], palette='Set2')
Out[106]: <Axes: xlabel='Miles', ylabel='Gender'>

Gender vs Education

In [107... sns.catplot(x='Education', col='Gender', hue='Product', data=data, kind='count', palette='Set1')
Out[107]: <seaborn.axisgrid.FacetGrid at 0x7eb6f05df580>

In [109... sns.boxplot(y=data["Gender"], x=data["Education"], showmeans=True, hue=data["Gender"], palette='Set1')
Out[109]: <Axes: xlabel='Education', ylabel='Gender'>

PairPlot

In [116... sns.pairplot(data,hue="Product",palette="husl")

Out[116]: <seaborn.axisgrid.PairGrid at 0x7eb6e88046a0>

- Strong positive correlations observed between Miles-Fitness, Miles-Usage, and Fitness-Usage.
- High correlation between Education and Income levels, as expected.
- The identified correlations provide insights into relationships between physical activity, fitness, and socioeconomic factors.

Conditional Probabilities

Probabilities of Purchasing a Product with respect to Age Group.

<pre>In [117 pd.crosstab(index=df_copy["Product"],columns=data["Age Group"],</pre>											
Out[117]:	Age Group	18-28	28-38	38-48	48-58	All					
	Product										
	KP281	27.0	12.0	4.0	1.0	44.0					
	KP481	18.0	13.0	3.0	0.0	34.0					
	KP781	14.0	6.0	3.0	0.0	22.0					
	AII	50 N	31 0	9.0	1.0	100.0					

Probability of buying:

- For KP281:
 - Age 18-28: 27%
 - Age 28-38: 12%
 - Age 38-48: 4%
- For KP481:

- Age 18-28: 17%Age 28-38: 12%
- Age 38-48: 2%
- For KP781:
 - Age 18-28: 13%
 - Age 28-38: 5%
 - Age 38-48: 2%

Probabilities of Purchasing a Product with respect to Education group.

Here are the probabilities of a person who has purchased each product being in different education groups:

- For KP281:
 - Education group 12-14: 18%
 - Education group 14-16: 24%
 - Education group 16-18: 1%
- For KP481:
 - Education group 12-14: 14%
 - Education group 14-16: 18%
 - Education group 16-18: 1%
- For KP781:
 - Education group 12-14: 1%
 - Education group 14-16: 8%
 - Education group 16-18: 10%

Probabilities of Purchasing a Product with respect to Usage.

For KP281:

Usage per week group 2: 10% Usage per week group 3: 20% Usage per week group 4: 12% Usage per week group 5: 1% Usage per week group 6: 0% For KP481:

Usage per week group 2: 7% Usage per week group 3: 17% Usage per week group 4: 6% Usage per week group 5: 1% Usage per week group 5: 1% Usage per week group 6: 0% For KP781:

Usage per week group 2: 0% Usage per week group 3: 0% Usage per week group 4: 10% Usage per week group 5: 6% Usage per week group 6: 4%

Probabilities of Purchasing a Product with respect to Income Group.

F	Product	KP281	KP481	KP781	All
	IG				
	2₹-3₹	1.0	0.0	0.0	1.0
	3ቖ-4ቖ	12.0	5.0	0.0	17.0
	4Χ-5Χ	14.0	12.0	3.0	28.0
	5X-6X	14.0	13.0	3.0	31.0
	6 X-7 X	3.0	4.0	3.0	11.0
	7 X- 8 X	0.0	0.0	2.0	2.0
	<8₹	0.0	0.0	11.0	11.0
	All	44.0	33.0	22.0	100.0

Here are the probabilities of a person who has purchased each product being in different income groups:

- For KP281:
 - Income group 20K-30K: 0%
 - Income group 30K-40K: 12%
 - Income group 40K-50K: 13%
 - Income group 50K-60K: 14%
 - Income group 60K-70K: 3%
 - Income group 70K-80K: 0%
 - Income group <80K: 0%
- For KP481:
 - Income group 20K-30K: 0%
 - Income group 30K-40K: 5%
 - Income group 40K-50K: 11%
 - Income group 50K-60K: 12%
 - Income group 60K-70K: 3%
 - Income group 70K-80K: 0%
 - Income group <80K: 0%
- For KP781:
 - Income group 20K-30K: 0%
 - Income group 30K-40K: 0%
 - Income group 40K-50K: 2%
 - Income group 50K-60K: 3%
 - Income group 60K-70K: 3%
 - Income group 70K-80K: 2%
 - Income group <80K: 10%

Probabilities of Purchasing a Product with respect to Fitness Level.

```
In []: Here are the probabilities of a person who has purchased each product being in different fitness level groups:
    - For KP281:
        - Fitness Level group 1: 0%
        - Fitness Level group 2: 7%
        - Fitness Level group 3: 30%
        - Fitness Level group 4: 5%
        - Fitness Level group 5: 1%

- For KP481:
        - Fitness Level group 1: 0%
        - Fitness Level group 2: 6%
        - Fitness Level group 3: 21%
        - Fitness Level group 4: 4%
        - Fitness Level group 5: 0%
```

```
- For KP781:
- Fitness Level group 1: 0%
- Fitness Level group 2: 0%
- Fitness Level group 3: 2%
- Fitness Level group 4: 3%
- Fitness Level group 5: 16%
```

Probabilities of Purchasing a Product with respect to MaritalStatus.

Here are the probabilities of a person who has purchased each product having different marital statuses:

• For KP281:

Marital Status Single: 26%Marital Status Partnered: 17%

• For KP481:

Marital Status Single: 20%Marital Status Partnered: 13%

• For KP781:

Marital Status Single: 12%Marital Status Partnered: 9%

Probabilities of Purchasing a Product with respect to Gender.

Here are the probabilities of a person who has purchased each product being male or female:

• For KP281:

Male: 22%Female: 22%

• For KP481:

Male: 17%Female: 16%

• For KP781:

Male: 18%Female: 3%

Customer Profiling:

- The likelihood of purchasing KP281 stands at 44%.
- KP481 has a purchase probability of 33%.
- For KP781, the probability of purchase is 22%.

Customer Profile for KP281:

• Age Demographics: Customers primarily fall within the 18-28 age range, with some individuals extending into the 28-38 age bracket,

- reflecting a youthful customer base.
- Fitness Status: Customers typically exhibit a fitness level ranging from 2 to 4, indicating a moderate level of physical activity.
- Income Range: The majority of customers belong to the income bracket of 30K-60K, indicating a middle-income segment.
- Educational Background: Customers generally have an education level between 12-16 years, indicating a moderately educated demographic.
- Marital Status: Most customers are in a partnered relationship, reflecting a stable family-oriented customer base.
- Weekly Usage: Customers use the product 2-4 days per week, indicating regular but not intensive usage.
- Mileage Range: Customers cover a weekly mileage of 60-120 miles, indicating moderate usage patterns.
- · Gender Representation: The customer base comprises a balanced mix of male and female buyers.

Customer Profile for KP481:

- Age Demographics: Customers are predominantly in the 18-28 age range, with some extending to the 28-48 age range.
- Fitness Status: Customers exhibit a slightly higher fitness level of 3-4 compared to KP281, indicating a more active user base.
- Income Range: Customers' income levels range from 40K-70K, suggesting a slightly higher disposable income compared to KP281 customers.
- Educational Background: Customers typically have an education level between 12-16 years, reflecting a similar educational profile to KP281.
- Marital Status: The customer base is predominantly partnered, but there is also a significant number of single customers.
- Weekly Usage: Customers use the product 2-4 days per week, similar to KP281.
- Mileage Range: Customers cover a weekly mileage of 60-180 miles, indicating a range of usage from moderate to more intensive.
- Gender Representation: Both male and female customers contribute equally to the customer base.

Customer Profile for KP781:

- Age Demographics: Customers are primarily in the 18-28 age range, with some extending to the 28-48 age range.
- Fitness Status: Customers exhibit a higher fitness level of 3-5, indicating a more active and fitness-conscious user base.
- Income Range: There is a mix of income levels, with some customers in the 40K-80K range and a majority above 80K, indicating a higher purchasing power among certain segments.
- Educational Background: Customers generally have an education level between 14-18 years, indicating a relatively higher level of education compared to KP281 and KP481 customers.
- Marital Status: Similar to KP481, the customer base is predominantly partnered, but there are also single customers.
- Weekly Usage: Customers use the product 4-6 days per week, indicating a more frequent usage pattern compared to KP281 and KP481.
- Mileage Range: Customers cover a weekly mileage of 120-300 miles, indicating a more intensive usage compared to the other products.
- Gender Representation: The customer base is predominantly male, indicating a bias towards male buyers for this product.

Concluding Remarks and Recommendations:

- The majority of buyers across all products are young adults, suggesting that marketing strategies should primarily target this demographic.
- Female buyers are slightly underrepresented for KP781, presenting an opportunity for tailored advertising and fitness initiatives to attract this segment.
- Adjusting the price of KP281 and organizing fitness events can attract more buyers from lower-income brackets and boost overall
 product usage.
- Initiating fitness activities such as marathons can enhance customer engagement, foster loyalty, and increase usage, ultimately leading to improved revenue generation.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js