Integral/Perfect formulations

We would like to know when a formulation is "ideal" or "perfect" (or "integral" in the pure integer case). In other words, when does solving the LP relaxation solve the underlying MIP too?

Definition 1. A <u>perfect formulation</u> of a mixed integer set $S \subseteq \mathbb{Z}^n \times \mathbb{R}^d$ is a system $Ax + Gy \leq b$ of linear inequalities such that $\operatorname{conv}(S) = \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^d \mid Ax + Gy \leq b\}.$

Definition 2. A polyhedron $P \subseteq \mathbb{R}^n$ is said to be integral if $P = \operatorname{conv}(P \cap \mathbb{Z}^n)$.

How can we show that $Ax + Gy \le b$ is a perfect formulation?

Theorem 1. Let $P:=\{(x,y)\in\mathbb{R}^n\times\mathbb{R}^d\mid Ax+Gy\leq b\}$ be a rational polyhedron and let $S:=P\cap(\mathbb{Z}^n\times\mathbb{R}^d)$. The following are equivalent.

- (i) P is a perfect formulation for S, i.e., P = conv(S);
- (ii) Every nonempty face of P contains a point of S;
- (iii) Every extreme point (i.e., vertex) of P belongs to S;
- (iv) For every $(c,h) \in \mathbb{R}^n \times \mathbb{R}^d$ such that $z := \max\{cx + hy \mid (x,y) \in P\}$ is finite, there is a point $(x^*,y^*) \in S$ for which $z = cx^* + hy^*$.

Definition 3 (extreme point). A point x from a polyhedron P is an extreme point (a.k.a. vertex) of P if $\{x\}$ is a face of P. More generally, a point x belonging to a convex set P is said to be an extreme point if it cannot be expressed as a strict convex combination of distinct points from P.

Equivalently, you should not be able to write $x = \lambda x^1 + (1 - \lambda)x^2$ for $\lambda \in (0, 1)$; $x^1 \neq x^2$; $x^1, x^2 \in P$.

Example. Use Theorem 1(iii) to show that P, defined as the set of $(x,y) \in \mathbb{R}^m \times \mathbb{R}$ satisfying:

$$0 \le y \le 1$$

$$0 \le x_i \le y, \ i = 1, \dots, m.$$

is a perfect formulation for

$$S := \left\{ (x, y) \in \mathbb{R}^m \times \{0, 1\} \mid \mathbf{0} \le x \le \mathbf{1}, \sum_{i=1}^m x_i \le my \right\}.$$

Example. Use Theorem 1(iv) to show that P, defined as the set of $(x,y) \in \mathbb{R}^m \times \mathbb{R}$ satisfying:

$$0 \le y \le 1$$

$$0 \le x_i \le y, \ i = 1, \dots, m.$$

is a perfect formulation for

$$S := \left\{ (x, y) \in \mathbb{R}^m \times \{0, 1\} \mid \mathbf{0} \le x \le \mathbf{1}, \sum_{i=1}^m x_i \le my \right\}.$$

Total Unimodularity

Definition 4. A matrix A is said to be totally unimodular (TUM) if the determinant of every square submatrix belongs to $\{0, +1, -1\}$.

Example. Determine which of the following matrices are totally unimodular and why.

$$\begin{bmatrix} -1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Why do we care about TUM matrices?

Theorem 2 (Hoffman and Kruskal, 1956). Let A be an $m \times n$ integral matrix. The polyhedron $P(b) := \{x \mid Ax \leq b, \ x \geq 0\}$ is integral for every $b \in \mathbb{Z}^m$ if and only if A is totally unimodular. Notice that TUM refers to the constraint matrix, and not to the formulation as a whole.

Proposition 1. The following are equivalent regarding a matrix A.

- ${\it 1. \ A \ is \ totally \ unimodular.}$
- 2. A^T is totally unimodular.
- 3. (A, I) is totally unimodular.

Theorem 3. Let A be an $m \times n$ integral matrix. The polyhedron $Q := \{x \mid c \leq Ax \leq d, \ l \leq x \leq u\}$ is integral for all integral vectors c, d, l, u if and only if A is totally unimodular.

4

Applications of TUM

Consider directed graph G = (V, A). The (node-arc) incidence matrix B_G of G has dimension $n \times m$, where n = |V| and m = |A|. There is a row for each vertex v and column for each arc a = (u, w). The associated entry B_{va} takes a value as follows:

$$B_{va} = \begin{cases} -1 & \text{if } v = u \\ 1 & \text{if } v = w \\ 0 & \text{o.w.} \end{cases}$$

Example. Give the incidence matrix for this graph.

Theorem 4. The incidence matrix of a directed graph is totally unimodular.

By this theorem, many LP relaxations for network problems are integral. For example, consider the following formulation for the minimum cost flow problem.

Remark 1. The constraint matrix associated with the flow balance constraints above is the graph's incidence matrix. Thus, the above formulation is integral when b and u are integral.

Using TUM for non-network problems

Exercise. Use total unimodularity to show that P, defined as the set of $(x, y) \in \mathbb{R}^m \times \mathbb{R}$ satisfying:

$$0 \le y \le 1$$

$$0 \le x_i \le y, \ i = 1, \dots, m.$$

is integral and is hence a perfect formulation for

$$S := \left\{ (x, y) \in \mathbb{R}^m \times \{0, 1\} \mid \mathbf{0} \le x \le \mathbf{1}, \sum_{i=1}^m x_i \le my \right\}.$$