Python-Control Cheat Sheet

from control.matlab import * import numpy as np

System representation

Transfer Function
$$P = tf([0, 4], [1, 2, 3])$$

$$P(s) = \frac{4}{s^2 + 2s + 3}$$
 $s = tf('s')$
 $P = 4/(s^{**}2 + 2^{*}s + 3)$

State-Space Equation

Controllability and Reachability Matrix

$$Vc = ctrb(P.A, P.B)$$

$$Vo = obsv(P.A, P.C)$$

A = [[0, 1], [-4, -5]]

Time response

Impulse response

Step response

Info = stepinfo(sys)

Step response characteristics

Initial condition response

Forced response

Frequency response

Bode diagram
$$P(j\omega)=\alpha(\omega)e^{j\beta(\omega)}$$
 gain, phase, w = bode(P, logspace(-2,2))

Frequency response at multiple angular frequencies gain, phase, w = freqresp(sys, [omega])

Nyquist diagram $P(j\omega) = x(\omega) + jy(\omega)$

$$x$$
, y , $w = nyquist(P, logspace(-2,2,1000))$

Block diagram

Stability and Robustness

Controller design

F = -acker(P.A, P.B, Pole)Pole placement

F = -place(P.A, P.B, Pole)

LQ optimal control

LQ optimal control
$$Q = \begin{bmatrix} [100, 0], [0, 1] \end{bmatrix}$$

$$R = 1$$

$$J = \int_0^\infty \{x^\mathsf{T} Q x + u^\mathsf{T} R u\} dt$$

$$F = -\mathsf{F}$$

$$Q = \begin{bmatrix} [100, 0], [0, 1] \end{bmatrix}$$

$$R = 1$$

$$F, _, _ = \mathsf{lqr}(\mathsf{P.A, P.B, Q, R})$$

$$F = -\mathsf{F}$$

solves the continuous-time algebraic Riccati equation (X, L, G) = care(A, B, Q, R)

Mixied sensitivity design from control import mixsyn

K, , gamma = mixsyn(Sys, w1=WS , w2=WU, w3=WT)

Digitalization

Zero Order Hold ts = 0.2 Pd = c2d(P, ts, method='zoh')

Tustin Transformation Pd = c2d(P, ts, method='tustin')