AE1MCS: Mathematics for Computer Scientists

Huan Jin, Heshan Du University of Nottingham Ningbo China

October 2021

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.3. Functions
- Chapter 2, Section 2.4. Sequences and Summations

Functions

$$y = f(x)$$

- The concept of a function is extremely important in discrete mathematics.
- A function assigns to each element of a first set exactly one element of a second set, where the two sets are not necessarily distinct.
- Functions play important roles throughout discrete mathematics.
- They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways.
- Useful structures such as sequences and strings are special types of functions.

Functions

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write f: $A \rightarrow B$.

Remark: Functions are sometimes also called *mappings* or

transformations.

Domain and Range

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range* or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Equal Functions

Two functions are **equal** when they have the <u>same domain</u>, have the same codomain and map each element of their common domain to the same element in their common codomain.

Image of a Set

Definition

Let f be a function from A to B and let S be a subset of A. The <u>image</u> of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t \mid \exists s \in S \ (t = f(s))\}.$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

Remark: The notation f(S) for the image of the set S under the function f is potentially ambiguous. Here, f(S) denotes a set, and not the value of the function f for the set S.

Huan Jin, Heshan Du AE1MCS October 2021 7 / 25

One-to-One Function

Definition

A function f is said to be <u>one-to-one</u>, or an <u>injective</u>, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. This is

$$\forall a \forall b (f(a) = f(b) \rightarrow a = b)$$

or equivalently

$$\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$$

A function is said to be *injective* if it is one-to-one.

Huan Jin, Heshan Du

AE1MCS

Prove or Disprove a Function is Injective

Suppose that $f: A \rightarrow B$.

To show that \overline{f} is injective Show that for arbitrary $x, y \in A$, if f(x) = f(y), then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

Onto Functions

Definition

A function f from A to B is called *onto*, or a *surjection*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. This is,

$$\forall b \in B, \exists a \in A (f(a) = b)$$

A function *f* is called *surjective* if it is onto.

Prove or Disprove a Function is Surjective

Suppose that $f: A \rightarrow B$.

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that for all $x \in A$, $f(x) \neq y$.

One-to-one Correspondence

Definition

The function *f* is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto. We also say that such a function is *bijective*.

Inverse Functions

Definition

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} Hence, $f^{-1}(b) = a$ when f(a) = b.

Remark: Be sure not to confuse the function f^{-1} with the function 1/f, which is the function that assigns to each x in the domain the value 1/f(x). Notice that the latter makes sense only when f(x) is a non-zero real number.

13 / 25

Invertible Functions

- A one-to-one correspondence is called **invertible** because we can define an inverse of this function.
- A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Compositions of Functions

Definition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The *composition* of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(\underline{a})=f(g(a)).$$

Note that the *composition* $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

FIGURE 7 The Composition of the Functions f and g.

$$f(x) = \chi^2, \quad R \to R$$

$$f(-2) = f(2)$$

Identity Function

$$f: A \rightarrow A$$
 $f(a) = a$

Suppose that f is a one-to-one correspondence from the set A to the set B. f(a) = b.

$$\begin{cases} \underbrace{(f^{-1} \circ f)(a)}_{f(a)} = f^{-1}(f(a)) = f^{-1}(b) = a & A \to A \\ \underbrace{(f \circ f^{-1})(b)}_{f(a)} = \underbrace{f(f^{-1}(b))}_{f(a)} = f(a) = b & B \to B \end{cases}$$

 $f^{-1} \circ f$ and $f \circ f^{-1}$ are the identity functions on the sets A and B respectively. $(f^{-1})^{-1} = f$.

The Graphs of Functions

Definition

Let f be a function from the set A to the set B. The *graph* of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \land f(a) = b\}$.

Example

Consider f(n)=2n+3, is it bijective from \mathbb{Z} to \mathbb{Z} ?

One-to-one

onto:

Example

For each of the following functions, is it invertible? If yes, what is its inverse?

- (a) Let f(x) be a function from \mathbb{R} to \mathbb{R} . f(x) = 2x + 1
- (b) Let f(x) be a function from \mathbb{R}^+ to \mathbb{R} . $g(x) = log_2(2x) 1$

(a)
$$y=2n+1$$
 (b) $x = \frac{y-1}{2}$ $f^{-1}(x) = \frac{x-1}{2}$ $R \to R$.

o
$$\mathbb{R}$$
. $g(x) = log_2(2x) - 1$

$$y = log_2(2x) - 1$$

$$\partial x = 2^{y+1}$$

$$x = 2^y$$

$$f'(x) = 2^x$$

$$R \to R^+$$

Sequences

Definition

A <u>sequence</u> is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1, 2, 3, ...\}$) to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

Geometric Progression

Definition

A geometric progression is a sequence of the form

$$a, ar, \underline{ar^2}, ..., \underline{ar^n}, ...$$

where the initial term \sqrt{a} and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function $f(x) = ar^x$.

sponential function
$$\gamma(x) = ar^{\alpha}$$
.
 $\{bn\}$ $bn = (-1)^n$
 $\{-1, +, -1, -1, \dots, y \}$ $\alpha = 1$
 $\gamma = -1$

< ロ > < 回 > < 巨 > < 巨 > 三 の < @

Arithmetic Progression

Definition

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, ...(a + nd)...$$

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f(x) = dx + a.

$$\{S_n\}$$
 $S_n = -1 + 4n, \quad N = 0, 1, 2, ...$
 $\{S_n\}$ = $\{-1, 3, 7, ...$ $\}$
 $\alpha = -1, \quad d = 4$

4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

Recurrence Relation

$$\frac{\alpha_n = \alpha_{n-1} + 1}{\alpha_n = \alpha_n + 1} = \frac{\alpha_0 = 1}{\alpha_1 = \alpha_1 + 1} = 3.$$

Definition

Definition $\alpha_n = \alpha_n + \beta_n = \alpha_n + \beta_n +$ expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

e.g.
$$a_0 = 1$$
. $a_{n+1} = a_n + 1$ for $n = 0, 1, 2, ...$

Homework

Learn the following definitions by yourself.

- Real-valued and Integer-valued Functions
- Adding and Multiplying Real-valued Functions
- Increasing and Decreasing Functions
- Floor Function and Ceiling Function

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.3. Functions
- Chapter 2, Section 2.4. Sequences and Summations