PROJECT REPORT ADHIYAMAAN COLLEGE OF ENGINEERING - HOSUR

Hazardous area monitoring for industrial plant powered by IoT TEAM ID- PNT2022TMID08189

TEAM MEMBERS:

- 1. SUBBURAJ P
- 2. SANTHOSH NARMAL AKASH A
- 3. SRIDHAR M
- 4. SHANMUGAM M
- 5. SAKTHIT

INDEX

- 1.INTRODUCTION
 - 1.1 Project Overview

2.LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3.IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5.PROJECT DESIGN

- **5.1 Data Flow Diagrams**
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6.PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- **6.2 Sprint Delivery Schedule**

7.CODING & SOLUTIONING

7.1 Feature 1

8.RESULTS

8.1 Performance Metrics

9.ADVANTAGES & DISADVANTAGES

10.CONCLUSION

11.FUTURE SCOPE

12.APPENDIX

- 12.1 Source Code
- 12.2 GitHub & Project Demo Link

1. INTRODUCTION

1.1 PROJECT OVERVIEW

The proposed system aims at reducing the risk of fires and explosions, thus increasing the safety of workers engaged in maintenance or inspection of gas storages.

The monitoring system is based on compact battery-powered wearable sensor nodes containing sensors for LPG flammable compounds, toxic gases, and oxygen.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

The existing detection systems are available to sense only a particular gas and they use GSM technology to indicate the critical situations. The drawback is that the detection system can send a message to only one person.

2.2 REFERENCES

- [1] Nivit Yadav, "CPCB **Real time Hazardous area Monitoring**", Report: Center for Science and Environment, 2012.
- [2] Fraiwan L., Lweesy K., Bani-Salma A., Mani N., "A wireless home safety **gas leakage detection system**", 2011 1st Middle East Conference on Biomedical Engineering, 2011, pp. 11-14, d: 10.1109/MECBME.2011.5752053.
- [3] Quio Tie-Zhn, Song Le, "The Design of Multi-parameter On line **Monitoring System of Hazardous area** based on GPRS", Report:Advanced Transducers and intelligent Control System Lab, Taiyuan Technical University, Taiyuan, China, 2010.
- [4] Abrardo A., Fort A., Landi E., Mugnaini M., Panzardi E., Pozzebon A., "Black Powder Flow Monitoring in Pipelines by Means of Multi-Hop LoRa Networks", 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT.

2.3 PROBLEM STATEMENT DEFINITION

In industry, changes in the chemical reaction and environment affects the machines and causes some explosions. Due to this hazardous problem the industry will meet a million of losses and also loss the lives of the workers and nearby people.

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user'sbehaviours and attitudes. It is a useful tool to helps teams better understandtheirusers. Creating an effective solution requires understanding the true problemand the personwho is experiencing it. The

exercise of creating the map helps participants consider thingsfrom the user's perspective along with his or her goals and challenges.

3.2 IDEATION & BRAINSTORMING

Brainstorming provides a free and open environment that encourages everyone withinateamto participate in the creative thinking process that leads to problemsolving. Prioritizingvolume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your teamcan unleashtheir magination and start shaping concepts even if you're not sitting in the same room.

Hazard monitoring is a common term that describes the equipment and process of monitoring grain handling equipment and facilities for proper operation and the conditions that can lead to the creation of a heat source that can initiate an explosion.

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem statement (problem to be solved)	Continuous monitoring of Hazardous Area
2	Idea / Solution description	Not only monitoring, it includes real intimation to authorised one and some self-protection system.
3	Novelty / Uniqueness	solve the problem at the beginning by using some external sensors.
4	Social Impact / Customer Satisfaction	Avoid large scale hazards in industries and saves the environment and people.
5	Business Model (financial Benefit)	We can bring this device for continuous monitoring and work as a defender to the problem.
6	Scalability of Solution	The technology can automatically monitor fire, toxic gas. This method is very adaptable. This system may be used to monitor any hazardous or natural disaster.

3.4 PROBLEM SOLUTION

6. CUSTOMER LIMITATIONS EG. BUDGET, DEVICES

Devices-Arduino uno, fire Sensor, temperature and humidity Sensor and gas sensor

9. PROBLEM ROOT / CAUSE

RC

CL

- Continuous monitoring of the industry encironment
- Quick response to relay control unit

10. YOUR SOLUTION

SL

This system are continuous monitoring of the industry environment and knowning

when the sensors detect values over the threshold and act as a defender without human support.

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Gathering	The smart beacon must be able to detect and the
		temperature of a particular area in real.
FR-2	Location Detection	The smart beacon must be able to detect when a
		wearable device has entered an area near it.
FR-3	Beacon Data Syncing	The smart beacon must be able to share its stored data
		with both the wearable device and admin dashboard
		through the cloud.
FR-4	Wearable Device Display	The wearable device must be able to display the
		temperature of the area where the worker is currently
		present.
FR-5	SMS Notification	If the temperature of the area is found to above of
		threshold value, the worker should be informed via SMS
		to their phone instructing them to leave the area.
FR-6	Admin Dashboard	If the temperature of the area is found to above of
		threshold value, the admin is informed via the
		dashboard and must take the necessary precautions.

4.2 NON-FUNCTIONAL REQUIREMENT

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The wearable device should be slim and not annoy
		or disturb the workers who are wearing that. It
		should also be clear display without large delays and
		notifications should be clear in cases of any danger.
NFR-2	Security	The connection of the beacons to the cloud and
		wearable devices should be secure. The security of
		the database housing all the temperature data
		should also be bolstered.
NFR-3	Reliability	The wearable device should be able to function
		without any faults even at High temperatures. If a
		fault is detected it should notify the user and the
		admin to be immediately make it repaired and

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION & TECHNICAL ARCHITECTURE COMPONENTS & TECHNOLOGIES

S.	COMPONENT	DESCRIPTION	TECHNOLOGY
NO			
		User can interact through	HTML, CSS /
1.	User Interface	mobile app application	Angular Js / React
			Js etc.
		Used to measure the	
2.	Application Logic-1	environmental parameters like	Python.
		temperature and humidity	
		etc	
		It is used to build a	
3.	Application Logic-2	communication interfaces	IBM Watson
		between two different	Assistant

		applications	
		Used to show the collected	
4.	Database	data in the tabular form.	Python.
		Cloudant is a non-relational,	
5.	Cloud Database	distributed data base service,	IBM DB2, IBM
		which handles software and	Cloudant etc.
		hardware provisioning,	
		management and scaling, and	
		support.	
		Using IBM block storage, the	IBM Block Storage
6.	File Storage	collected data's are stored	or Other Storage
		permanently.	Service or Local
			Filesystem
		The purpose of this API is to	
7.	External API-1	collect the required data from	IBM Weather API,
		the cloud.	etc.

APPLICATION CHARACTERISTICS

S. NO	CHARACTERISTICS	DESCRIPTION	TECHNOLOGY
1	Open-Source Frameworks	KAA IoT, ZETTA, GE PREDIX, Thing speak	KAA loT
2	Security Implementations	Mandatory access control, Discretionary access control, Role- based access control, Rule-based access control.	e.g., SHA-256, Encryptions, IAM Controls, OWASP etc.

		It refers to a system,	
3	Scalable Architecture	network or process that	Kubernetes, elastic
3		is designed to handle a	storage, load
		workload that may	balancers.
		change in scope.	
		Equipment availability is	
4	Availability	a metric used to measure	Technology used
4		the percentage of time a	
		machine can be used.	
		Need to simulate devices	
5	Performance	from different locations	Machine learning
3		with required network	algorithms
		technologies.	

5.3 USER STORIES

USER TYPE	FUNCTION AL REQUIREME NT (EPIC)	USER STORY NUMB ER	USER STORY/ TASK	ACCEPTANCE CRITERIA	PRIORI TY	RELEA SE
Technician	Installation	USN-1	The technician mustinstall the smartbeacons at points to ensurethe entire area of the plant iscovered.	A beacon can be found in every areaof the plant.	High	Sprint-1
	Data Gathering	USN-2	The beacons obtainthe temperature of theirrespective area using sensors.	The temperature of areas within the plant is obtained.	High	Sprint-1
	Data Sync	USN-3	The beacons sendtheir data to thecloud in thereal time which is in turn sent to nearby wearable devices and the administrators dashboard.	Data is sent to the cloud successfully and synced with other devices.	High	Sprint-1

Worker	Wearable devicedisplay	USN-4	The wearable devices shoulddisplay the datasent by beacons withinthe area.	The user can seethe temperature of the area ontheir device.	High	Sprint-1
	Wearable device adjustments	USN-5	The user can adjust the size of the wearable device to better suit them.	The user can make adjustments to the deviceto make working with it more comfortable.	Low	Sprint-2
	Wearable display customization	USN-6	The user can adjust the device display to suit theirneeds on the device itself.	The user can modify thedisplay of the device to increase readability.	Medi um	Sprint-2
	SMS Notifications	USN-7	The user is sent a notification to their phone from the wearable devicethrough an API whenthe area theyare in reaches dangerous temperatures.	The user is informed of potential danger via SMS as soon as it is detected by the beacons.	High	Sprint-1
Administrat or	Admin Dashboard	USN-8	The beacons send thedata through the cloudtoa dashboard which is run by the administrator.	The data of all the beaconscan be viewed by the administrator of the plant.	High	Sprint-1
	Dashboard Customizati on	USN-9	The dashboard can becustomized by the admin to suit theirperson al requiremen ts and priorities.	The admin can customize theUI for theirdashboar d.	Medi um	Sprint-2

6. PROJECT PLANNING AND SCHEDULING 6.1 SPRINT PLANNING AND ESTIMATION

TITLE	DESCRIPTION	DATE
Literature Survey &	Literature survey on the	10 SEPTEMBER 2022
Information Gathering	selected project &	
	gathering information by	
	referring the, technical	
	papers, research	
	publications etc.	
Prepare Empathy Map	Prepare Empathy Map	10 SEPTEMBER 2022
	Canvas to capture the user	
	Pains & Gains, Prepare list	
	of problem statements	
Ideation	List the by organizing the	17 SEPTEMBER 2022
	brainstorming session and	
	prioritize the top 3 ideas	
	based on the feasibility &	
	importance.	
Proposed solution	Prepare the proposed	24 SEPTEMBER 2022
	solution document, which	
	includes the novelty,	
	feasibility of idea, business	
	model, social impact,	
	scalability of solution, etc.	
Problem solution fit	Prepare problem - Solution	1 OCTOBER 2022
	Fit document	
Solution Architecture	Prepare solution	1 OCTOBER 2022
	architecture document.	
Customer Journey	Prepare the customer	8 OCTOBER 2022
	journey maps to	
	understand the user	
	interactions & experiences	
	with the application (entry	
	to exit).	
Functional Requirement	Prepare the functional	16 OCTOBER 2022
	requirement document.	

Data Flow Diagrams	Draw the data flow	16 OCTOBER 2022
	diagrams and submit for	
	review	
Technology Architecture	Prepare the technology	18 OCTOBER 2022
	architecture diagram	
Prepare Milestone &	Prepare the milestones &	22 OCTOBER 2022
Activity List	activity list of the project.	
Project Development	Develop & submit the	2 NOVEMBER 2022
Delivery of Sprint-1, 2, 3 &	developed code by testing	
4	it.	

7. CODING AND SOLUTIONS

7.1 NODE RED SERVICE ASSOCIATED WITH IBM CLOUD

8. RESULTS

8.1 PERFORMANCE METRICS

PARAMETER	PERFORMANCE	DESCRIPTION
ADMIN TESTING	95%-100%	THE TESTING DONE
		BEFORE IT IS
		DEPLOYED AS AN APP
CUSTOMER	75-85%	THE CUSTOMER NEED
SATISFACTION		TO BE SATISFIED WITH
		THE MOBILE
		APPLICATION
USER INTERFACE	65-85%	THE APP CAN USED BY
		ANYONE.(EASE OF
		ACCESS)
SEVER RESPONSE	50-75%	url - response
DATA	60-80%	VALID DATA FROM
VALIDATION WITH	(15-30	THE APP
NO. OF TEST CASE	TESTCASE)	
ERROR	3-5%	REAL-TIME DELAY
		MAY OCCUR

9. ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- ➤ Minimize human effort
- > Save time
- Improved security
- Useful for safety concerns

DIS ADVANTAGES:

- > Increased unemploymen
- ➤ High dependency on the internet
- > The complexity of the system
- > Complex system for maintenance

10. CONCLUSION

The worker should be warned through SMS to their phone that they need to leave the location if it is determined that the temperature has reached unsafe levels.

11. FUTURE SCOPE

The sensor has been integrated with IoT framework which has efficiently been used to measure and monitor the pollutants in real time. The datas are automatically stored in the database; this information can be used by the authorities to take prompt actions. It also helps the normal people to know about the amount of pollutants in their area. It also notifies the user through SMS if the gas concentration is more than normal condition it also shut off the valve when concentration reaches to dangerous level without further damage. It is able to successfully detect temperature and humidity which can be used for further study.

12.APPENDIX 12.1 SOURCE CODE

PYTHON CODE TO PUBLISH DATA

import time
import symbol
import sys
import ibmiotf.application
import ibmiotf.device
import random

#Provide your IBM Watson Device Credentials organization = "05eb28" deviceType = "abcd" deviceId = "1234" authMethod = "token" authToken = "12345678"

Initialize GPIO

```
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="Relayon":
    print ("Relay is on")
  elif status=="Relayoff":
    print ("Relay is off")
  #print(cmd)
try:
                   deviceOptions = {"org": organization, "type": deviceType, "id":
deviceId, "auth-method": authMethod, "auth-token": authToken}
                   deviceCli = ibmiotf.device.Client(deviceOptions)
                   #.....
except Exception as e:
                   print("Caught exception connecting device: %s" % str(e))
                   sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of
type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(80,100)
    Humid=random.randint(60,80)
    data = { 'temp' : temp, 'Humid': Humid }
    #print data
```

```
def myOnPublishCallback():
    print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid,
"to IBM Watson")

success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
```

success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0
on_publish=myOnPublishCallback)
if not success:
 print("Not connected to IoTF")
time.sleep(10)

deviceCli.commandCallback = myCommandCallback

Disconnect the device and application from the cloud deviceCli.disconnect()

OUTPUT

rowse	Action Device	Types Interfaces				
	Identity	Device Information	Recent Events	State	Logs	
	The recent eve	nts listed show the live str	eam of data that is con	ning and going	from this dev	vice.
	Event	Value			Format	Last Received
	IoTSensor	{"temp":80,"Humid	:68}		json	a few seconds ago
	IoTSensor	{"temp":95,"Humid	:69}		json	a few seconds ago
	IoTSensor	{"temp":81,"Humid	:70}		json	a few seconds ago
	IoTSensor	{"temp":91,"Humid	::63}		json	a few seconds ago
	IoTSensor	("temp":94,"Humid	:70}		json	a few seconds ago

12.2 GIT-HUB LINK

https://github.com/IBM-EPBL/IBM-Project-17724-1659675521/tree/main/IBM

PROJECT DEMO LINK

https://youtu.be/sAYv1Kmwzx4