Business Analytics JADS expert program

Case: Portfolio optimization

You are given the sample average returns and sample variances of $N = 100 \text{ stocks}^1$. Balancing the average return and risk, you create the portfolio according to the *mean-variance* portfolio optimization model:

Maximize
$$\sum_{i=1}^{N} \overline{r_i} * x_i - \alpha \sum_{i=1}^{N} \sum_{j=1}^{N} s_{ij} * x_i * x_j$$

$$such that: \sum_{i=1}^{N} x_i = 1$$

$$x_i \ge 0, \ i = 1, ..., N,$$

here, the decision variable x_i is the amount of asset i chosen, $\overline{r_i}$ the sample average return of asset i, s_{ij} the sample covariance between asset i and asset j for all i = 1, ..., N, j = 1, ..., N. The parameter α is the so-called *risk-aversion* parameter.

Tasks

- A. Implement and solve the mean-variance portfolio optimization model above in Excel using risk-aversion parameter $\alpha = 0.012$. The sample means and sample covariances are given in the file "MeanVarPortfolio.xlsx".
- B. Plot the (sample) mean and covariance of the portfolio found in the Figure given in the second sheet of the Excel file.
- C. (*Bonus extension question*). In the current model short-selling is not allowed: you cannot have negative positions in assets ($x_i \ge 0$). Change the model formulation to allow for short positions. However, a restriction put forth by the regulators is that the total short position cannot be more than 10% of the total long position.

(Hint: Introduce two new variables $x_i^{long} \ge 0$ and $x_i^{short} \ge 0$, together with the constraint $x_i = x_i^{long} - x_i^{short}$. You still have introduce a constraint on the total short position to comply with the regulations regarding the total short position $\sum_{i=1}^{N} x_i^{short}$ and the total long position $\sum_{i=1}^{N} x_i^{long}$.)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

¹ Original data for this case came from the website of Kennet French (from the famous Fama-French Model):

Excel tips

Here we describe how you can calculate the value of the objective term $\sum_{i=1}^{N} \sum_{j=1}^{N} s_{ij} * x_i * x_j$ in Excel. Suppose there are three assets, N=3 (just for simplicity in the explanation below), and that the values of s_{ij} for all i and j equal to the numbers in the red cells in the figure below. The values for x_i are given in green.

	Α	В	С	D	Е	F	G	Н
1								
2		s_ij	1	2	3			x_i
3		1	1	2	3		1	10
4		2	4	5	6		2	20
5		3	7	8	9		3	30
6								
7								
8			Sum of s_ij x	_i x_j				
9			22800 =SUMPRODUCT(H3:H5;MMULT(C3:E5;H3:H5))					
10								

Then the value of $\sum_{i=1}^{N} \sum_{j=1}^{N} s_{ij} * x_i * x_j$ can be computed by the formula:

(In more technical mathematical terms, this calculates x'Sx, where x is a vector and S a matrix.)