1、针对下图 AOE 网络,计算个活动弧的 e(ai),1(ai) 的值、各事件(顶点)的 ve(vi),1(vi)。

解:右图为各边的编号以及边和点的信息。

Ve(vi):

Ve(A) = 1

Ve(B) = 6

 $Ve(C) = 17(a \rightarrow G \rightarrow H \rightarrow C)$

Ve(D) = 3

 $Ve(E) = 25(a \rightarrow G \rightarrow H \rightarrow C \rightarrow E)$

Ve(F) = 4

Ve(G) = 3

 $Ve(H) = 13(a \rightarrow G \rightarrow H)$

Ve(I) = 1

 $Ve(J) = 31(a \rightarrow G \rightarrow H \rightarrow K \rightarrow J)$

 $Ve(K) = 22(a \rightarrow G \rightarrow H \rightarrow K)$

Ve(∞) = 43

I(vi):

I(A) = 19

I(B) = 23

I(C) = 25

I(D) = 18

I(E) = 33

I(F) = 8

I(G) = 3

I(H) = 13

I(I) = 7

I(J) = 31

I(K) = 22

I(∞) = 43

e(ai)

e(a1) = 0

e(a2) = 0

e(a3) = 0

C(ab) = 0

e(a4) = 0

e(a5) = 0

e(a6) = 0

e(a7) = 1

e(a8) = 6

` ,

e(a9) = 3

e(a10) = 3e(a11) = 3

e(a12) = 4

e(a13) = 4

e(a14) = 3

e(a15) = 3

e(a16) = 1

e(a17) = 17e(a18) = 13 e(a19) = 13

e(a20) = 13

e(a21) = 22

e(a22) = 31

e(a23) = 31

e(a24) = 25

1(ai)

I(a1) = 18	I(a7) = 19	I(a13) = 8	I(a19) = 27
I(a2) = 17	I(a8) = 22	I(a14) = 22	I(a20) = 13
I(a3) = 15	I(a9) = 18	I(a15) = 3	I(a21) = 22
I(a4) = 4	I(a10) = 25	I(a16) = 7	I(a22) =30
I(a5) = 0	I(a11) = 25	I(a17) = 25	I(a23) = 31
I(a6) = 6	I(a12) = 27	I(a18) = 21	I(a24) = 33

2. 利用 Di jkstra 算法,求图中顶点 a 到其他各顶点的最短路径,写出执行算法过程中各步的状态

解:

步骤一: 以 a 为起点初始待定路径表

STEP1

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null $D(f) = \infty$	P(g) = null D(g) = ∞

步骤二:从待定路径表中选出一条最短的边,设其顶点为新的 生长点,并且对剩下每一个生长点进行比较,若以新生长点为中转的路径短于原始路径则替换。

STEP2

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null $D(f) = \infty$	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞

对步骤二进行 n-2 次重复(注: 绿色表示当前有新的通路,但路径长度大于原来的路径故步替换,红色为新的通路的路径长度小于原来路径的长度故替换)

STEP3

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16

STEP4

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16
е	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11			P(g) = acfg D(g) = 16

STEP5

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16
е	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11			P(g) = acfg D(g) = 16
d	P(b) = ab D(b) = 15					P(g) = acfdg D(g) = 14

STEP6

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16
е	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11			P(g) = acfg D(g) = 16
d	P(b) = ab D(b) = 15					P(g) = acfdg D(g) = 14
g	P(b) = ab D(b) = 15					

STEP7

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16
е	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11			P(g) = acfg D(g) = 16
d	P(b) = ab D(b) = 15					P(g) = acfdg D(g) = 14
g	P(b) = ab D(b) = 15					
b				P(e) = ace D(e) = 10		

STEP8

生长点	b	С	d	е	f	g
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = ad D(d) = 12	P(e) = null D(e) = ∞	P(f) = null D(f) = ∞	P(g) = null D(g) = ∞
С	P(b) = ab D(b) = 15		P(d) = ad D(d) = 12	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = null D(g) = ∞
f	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10		P(g) = acfg D(g) = 16
е	P(b) = ab D(b) = 15		P(d) = acfd D(d) = 11			P(g) = acfg D(g) = 16
d	P(b) = ab D(b) = 15					P(g) = acfdg D(g) = 14
g	P(b) = ab D(b) = 15					
b				P(e) = ace D(e) = 10		
а	P(b) = ab D(b) = 15	P(c) = ac D(c) = 2	P(d) = acfd D(d) = 11	P(e) = ace D(e) = 10	P(f) = acf D(f) = 6	P(g) = acfdg D(g) = 14

3. 利用 Floyd 算法,求图中各对顶点间的最短路径

STEP1:初始邻接矩阵 D,和 Path

	Α	В	С	D
Α	0	1	00	3
В	00	0	1	∞
С	5	∞	0	2
D	∞	4	8	0

STEP2:以A为中转点,进行第一次迭代

	Α	В	С	D		Α	В	С	D
Α	0	1	00	3	А	-1	-1	-1	-1
В	∞	0	1	∞	В	-1	-1	-1	-1
С	5	6	0	2	С	-1	Α	-1	-1
D	∞	4	00	0	D	-1	-1	-1	-1

		_		
A	-1	-1	-1	-1
В	-1	-1	-1	-1
С	-1	Α	-1	-1
D	-1	-1	-1	-1

STEP3:以B为中转点,进行第二次迭代

	Α	В	С	D		Α	В	С	D
		1			A	-1	-1	-1	-1
В	∞				В	-1	-1	-1	-1
С	l	6		l	С	-1	Α	-1	-1
D	∞	4	5	0	D	-1	-1	8	-1

١	-1	-1	-1	-1
3	-1	-1	-1	-1
)	-1	Α	-1	-1
)	-1	-1	5	-1

STEP4:以C为中转点,进行第三次迭代

	А	В	C	D		А	В	C	D
Α	0	1	2	3	Α	-1	-1	-1	-1
В	6	0	1	3	В	С	-1	-1	С
С	5	6	0	2	С	-1	Α	-1	-1
D	10	4	5	0	D	С	-1	3	-1

STEP5:以D为中转点,进行第四次迭代

	Α	В	С	D		Α	В	С	D
Α	0	1	2	3	А	-1	-1	-1	-1
В	6	0	1	3	В	С	-1	-1	
С	5	6	0	2	С	-1	Α	-1	
D	10	4	5	0	D	С	-1	В	-1

Α	-1	-1	-1	-1
В	С	-1	-1	С
С	-1	Α	-1	-1
D	С	-1	В	-1

STEP6:得出最终的 D, 和 Path 矩阵

	Α	В	С	D		Α	В	С	D
Α	0	1	2	3	А	-1	-1		
В	6	0	1	3	В	С		-1	
С	5	6	0	2	С	-1	Α	-1	-1
D	10	4	5	0	D	С	-1	В	-1

4. 已知一个有序表的表长为 8N,并且表中没有关键字相同的记录。假设按如下所述方法查找一个关键字等于给定值 K 的记录: 先在第 8, 16, 24, ···, 8K, ···, 8N 个记录中进行顺序查找,或者查找成功,或者由此确定出一个继续进行折半查找的范围。画出描述上述查找过程的判定树,并求等概率查找时查找成功的平均查找长度。

解: 该查找过程的判定树如下

-----END-----