A Little Linear Algebra

Steve Avsec

Illinois Institute of Technology

January 8, 2024

Overview

1 What's a matrix?

- 2 A Few Examples
- 3 Who Cares?

What's a matrix?

What's a matrix?

A *matrix* is a *representation* of a linear transformation $T: V \to W$ given bases of V and W.

What's a matrix?

A *matrix* is a *representation* of a linear transformation $T: V \rightarrow W$ given bases of V and W.

A complicated example: Let V = W = P(x) where P(x) is the vector space of all polynomials (with real numbers as coefficients). Define T by

$$T(p)(x) = \int_{-\infty}^{\infty} p(y)e^{-\frac{(x-y)^2}{2}} dy$$

Some Intuition

Let's look at the matrix

$$A = \left[\begin{array}{cc} -1 & 3 \\ 2 & 5 \end{array} \right]$$

What happens to a circle?

Figure: A unit circle

Figure: The unit circle after a linear transformation

Let's Break It Down

Figure: A unit circle

Figure: The unit circle after a rotation

Next Step

Figure: A unit circle after a rotation

Figure: The unit circle after a rotation and stretch

Finally

Figure: A unit circle after a rotation and stretch

Figure: The unit circle after a rotation and stretch and another rotation

Some Intuition

Let's look a singular matrix

$$A = \left[\begin{array}{cc} -2 & 1 \\ -4 & 2 \end{array} \right]$$

What happens to a circle?

Figure: A unit circle

Figure: The unit circle after a singular linear transformation

Still Start With a Rotation

Figure: A unit circle

Figure: The unit circle after a rotation

"Stretch" is more of a "Smash"

Figure: A rotated unit circle

Figure: The unit circle after a rotation and a smash

Finally

Figure: A rotated smashed unit circle

Figure: A final rotation

A system

Look at Ax = b where

$$A = \left[\begin{array}{cc} -2 & 1 \\ -4 & 2 \end{array} \right]$$

and

$$b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

A system

Look at Ax = b where

$$A = \left[\begin{array}{cc} -2 & 1 \\ -4 & 2 \end{array} \right]$$

and

$$b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

How many solutions does this have?

A Picture

