Выражаю благодарность Георгию Калашнову за

использованы материалы из «A Practical Introduction to Regression Discontinuity Designs» Matias D. Cattaneo

(2019), материалы «Applied metrics» Paul

Goldsmith-Pinkham (2021)

использование части материалов (2020) в слайдах. Также

Практическая эконометрика. Разрывная регрессия

авторы: Георгий Калашнов, Ольга Сучкова, преподаватели 2021: Ольга Сучкова, Алексей Замниус, Анна Ставнийчук

11 и 18 ноября 2022 г.

План на сегодня

Разрывная регрессия

Четкая разрывная регрессия

Инструментальные переменные в экспериментах

Размытая разрывная регрессия

Table of Contents

Разрывная регрессия

Четкая разрывная регрессия

Инструментальные переменные в экспериментах

Размытая разрывная регрессия

Применимость метода RDD

Source: Technology and Big Data Are Changing Economics: Mining Text to Track Methods by Janet Currie, Henrik Kleven, and Esmee Zwiers

Впервые - в статье Thistlewaite and Campbell (1960)

DO BETTER SCHOOLS MATTER?

FIGURE I
Example of Data Collection for One City: Melrose
Streets, and Attendance District Boundaries

Table of Contents

Разрывная регрессия

Четкая разрывная регрессия

Инструментальные переменные в экспериментах

Размытая разрывная регрессия

Как присваивается treatment

Четкая разрывная регрессия: Обозначения

- ightharpoonup Потенциальные исходы Y(0), Y(1). Ковариаты: X
- R Running variable (или Score). По ней проходит граница
- $ightharpoonup T = \mathbb{I}(R > c)$. c отсечка (cutoff)
- ightharpoonup Y = TY(1) + (1-T)Y(0) наблюдаемый исход

⁰Картинка из Imbens и Lemieux 2008.

 $^{^{0}}$ Также на русском можно почитать Ниворожкин 2009.

Четкая разрывная регрессия: Предположения

Для начала упражнение:

- $ightharpoonup (Y(0), Y(1), R) \perp T$ экзогенность. Выполнена ли? нет
- $ightharpoonup (Y(0), Y(1)) \perp T|R$ unconfoundedness. Выполнена ли? верим
- ightharpoonup 1 > P(T|R) > 0 overlap. Выполнена ли? нет

Предположим непрерывность

E(Y(1)|R), E(Y(0)|R), E(X|R) вместо независимости T и (Y(0), Y(1))

Четкая разрывная регрессия: Эффект локальный!

$$au_{SRD} = E[Y(1) - Y(0)|R = utoff] = \lim_{R o cutoff^+} E[Y|R] - \lim_{R o cutoff^-} E[Y|R]$$

⁰Картинка из Imbens и Lemieux 2008.

⁰Также на русском можно почитать Ниворожкин 2009.

Четкая разрывная регрессия: оценка

- ▶ Выбираем ширину окна h
- ightharpoonup Берем данные $R \in [c-h,c+h]$
- ▶ Оцениваем (простая версия)

$$\hat{ au}_{\mathsf{rdd}} = rac{1}{\sum (c+h>R>c)} \sum_{c+h>R>c} Y_i - rac{1}{\sum (c-h Или с помощью регрессии на данных $R \in [c-h,c+h]$:$$

$$Y = a + \tau T$$

lacktriangle Таким образом мы получаем локальный эффект (LATE $=\mathbb{E}(au|R=c)$)

Ядро

Проверка баланса¹

- 1. Проверить распределение данных по R (McCray test)
- 2. Проверить непрерывность Х

¹Картинка из Matias D Cattaneo, Nicolás Idrobo и Rocio Titiunik (2019). A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge University Press, Тут также есть хороший обзор метода.

Манипуляция R - делаем donut hole пример

Проверка предположения непрерывности

- 1. Проверить непрерывность Y(1), Y(0) мы не можем
- 2. Но можем проверить непрерывность X

Контроль на тренд

¹Angrist и Pischke 2008, Глава 6.

Проверка чувствительности к ширине окне

Чем меньше окно, тем выше дисперсия (т.к. мало наблюдений), но меньше смещение (так как наблюдения более похожие друг на друга). Два случая нарисованы для 2 разных трендов.

Table of Contents

Разрывная регрессия

Четкая разрывная регрессия

Инструментальные переменные в экспериментах

Размытая разрывная регрессия

Терминология

- ▶ Инструмент Z (предложение)
- Переменная интереса Т (реализация, принятие)
- Исход Ү

Эффекты

Как устроен мир: $Z \rightarrow T \rightarrow Y$

- Reduced form (Intention to treat): Z -> Y
- ► First stage: Z -> T
- ▶ Second stage: T -> Y

Обозначения

- Y(00), Y(10), Y(01), Y(11) − Зависимая переменная (potential outcomes)
- T(1), T(0) Переменная интереса (теперь тоже с потенциальными исходами)
- Z Инструментальная переменная (instrumental variable)
- ► X Независимые переменные (Covariates)
- ightharpoonup Мы наблюдаем только (Y,Z,T,X), где T=ZT(1)+(1-Z)T(0) observed treatment Y= длинная формула observed outcomes

¹Angrist и Pischke 2008, Глава 4.4.

Предпосылки

- $ightharpoonup (Y_{ij}, T_i, X) \perp Z$ рандомизация
- Y(T,Z=1)=Y(T,Z=0) exclusion restriction: напрямую T влияет на Y, а не Z напрямую не влияет на Y
- SUTVA
- ▶ T|Z = 1 >= T|Z = 0 монотонность
 - lacktriangle Мы хотим, чтобы никогда не было $T_1 < T_0$, но бывало такое, что $T_1 > T_0$
 - ► Бывает одностороннее неповиновение тритменту (one-sided noncompliance)
 - ► Бывает двустороннее неповиновение тритменту (two-sided noncompliance)

Когда выполнены все эти предпосылки, мы говорим, что эффект **идентифицирован**.

¹Imbens и Rubin 2015, Часть VI.

Подробнее про предпосылки

- $P(T_1 \ge T_0) = 1$ монотонность. На самом деле возможных случает в только 4
 - ▶ Always takers: $T_1 = 1$, $T_0 = 1$
 - ightharpoonup Compliers: $T_1 = 1$, $T_0 = 0$
 - Never takers: $T_1 = 0$, $T_0 = 0$
 - ▶ Defiers: $T_1 = 0$, $T_0 = 1$
- ► Two-sided noncompliance: no Defiers
- One-sided noncompliance: no Defiers and no Always takers

Пример одностороннего неповиновения:encouragement design (Sommer Zeger, 1991)

Table I. Mortality rates in control and programme villages, months 4-12, stratified by compliance

Study group	Complied	Children	Deaths	Mortality (per 1000)	
Control	_	11,588	74	6.4	
Treatment	_	12,094	46	3.8	
	Yes	9,675	12	1.2	
	No	2,419	34	14-1	

Пример двустороннего неповиновения (Hirano et al.,2000

- 1. В 1978-80 гг. в США рассылали письма с предложением сделать прививку от гриппа.
- 2. В чём отличие от предыдущего примера?

		Me	ans	Means			
	Grand mean	No letter $Z_i^{\text{obs}} = 0$	Letter $Z_i^{\text{obs}} = 1$	t-stat.	No flu shot $D_i^{\text{obs}} = 0$	Flu shot $D_i^{\text{obs}} = 1$	t-stat.
Letter (Z_i^{obs})	0.514	0	1	_	0.475	0.631	-7.5
Flu Shot (D_i^{obs})	0.250	0.190	0.307	-7.3	0	1	_
Hospitalization (Y_i^{obs})	0.085	0.092	0.078	1.4	0.085	0.084	0.1

Формула

$$ITT_{T} = \bar{T}_{Z=1} - \bar{T}_{Z=0} = P(compliers)$$

$$ITT_{Y} = \bar{Y}_{Z=1} - \bar{Y}_{Z=0}$$

$$TE = \frac{ITT_{Y}}{ITT_{T}} = E(\tau | Compliers) = LATE$$
(3)

Откуда брать инструментальные переменные?

- Из опыта чужих исследований
- Миру известны десятки хороших инструментов.
 Каждый из них вызывает много дебатов
- Если вы придумали свой инструмент это тянет на хорошее оригинальное исследование.

Table of Contents

Разрывная регрессия

Четкая разрывная регрессия

Инструментальные переменные в экспериментах

Размытая разрывная регрессия

Пример: оценка спроса на образование в Нью-Йорке

Плацебо тест

Fuzzy regression discontinuity

Размытая разрывная регрессия: Предположения

- ▶ Что у нас инстументальная переменная? Z = R > с
- Что у нас переменная интереса? Т
- Главное предположение разрывной регрессии: Предположим непрерывность всего: $E(Y_{00}|R), E(Y_{01}|R), E(Y_{10}|R), E(Y_{11}|R), E(T_0|R), E(T_0|R), E(T_0|R), E(X|R)$

¹Angrist и Pischke 2008, Глава 6.

¹Картинка из Imbens и Lemieux 2008.

Попадание в тритмент sharp vs fuzzy

(b) Fuzzy RD (one-sided compliance)

RDD kink

 $_{
m ore\,X}$ Score X
RD (levels) (b) Kink RD (derivatives)

JELY(1)(1)(3)/JX, JELY(0)(X)/JX

ΘΕ[Y(1)|X]/ΘX

Cutoff

TSKRD

Расширения

(a) Multi-cutoff:

$$\begin{array}{ll} \text{(a) Multi-cutoff:} & \text{(b) Multi-score:} \\ \tau_{\mathtt{SRD}}(x,c) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x, C_i = c] & \tau_{\mathtt{SRD}}(x_1,x_2) = \mathbb{E}[Y_i(1) - Y_i(0)|X_{1i} = x_1, X_{2i} = x] \end{array}$$

Пример – холера в Лондоне 1854 (Ambrus 2020)

Panel A. John Snow's 1854 cholera map

Panel B. Pumps' catchment areas

Смерти от холеры в Лондоне 1854

Panel C. At least 25% of houses in block have a death

Стоимость аренды жилья в Лондоне

Состав жителей

Механизм - «дурная слава» района и проблемы с водой

Panel D. Middle class

Состав жителей

Проверка непрерывности ковариатов

Плацебо-тест: ложные границы

Внешняя валидность: RDD - локальная оценка

