Simulado para o 2º EE de Cálculo 1, 2022.1 (Finja que é sua prova da próxima segunda-feira)

1.(2EE-2015.1) Considere a curva plana *C* definida por:

$$x + arctg(xy) - sen(\pi y) = 0.$$

Seja $y' = \frac{dy}{dx}$ a derivada de y implicitamente definida como função de x.

- (a) (1,0 pt) Encontre uma expressão para y' em termos de x e y.
- **(b)** (1,0 pt) Obtenha uma equação para a reta tangente à curva \mathcal{C} no ponto P de coordenadas (0,1).
- (1.b)'(1EE-2011.2) Determine a equação da reta tangente ao gráfico da curva com equação $x^2 3x^3y^2 + y^2 2x = -9$ no ponto (1,-2). (Questão Extra)

2.(2EE-2014.1) Calcule os seguintes limites:

(a) (1,0 pt)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^3 - 2x}$$
.

(b) (1,0 pt)
$$\lim_{x \to +\infty} ln(x^2 + 1) - ln(x^2 - 1)$$
.

(c) (1,0 pt)
$$\lim_{x \to +\infty} e^{-1/x} ln(x)$$
.

3.(2EE2015.1) (2,0 pt) Considere a função $f(x) = ln(x^2 + x + 1)$, definida no intervalo I=[-1,1]. Determine, se possível, os valores máximo e mínimo locais e absolutos de f(x) no intervalo I, justificando para isto suas afirmações.

4.(2EE-2017.2) (4,0 pts) Considere a função
$$f(x) = \frac{3x-3}{x^2}$$
.

- (a) Determine a(s) assíntota(s), calculando os limites necessários.
- **(b)** Encontre os intervalos de crescimento e decrescimento, bem como extremo(s) local(is).
- (c) Analise a concavidade e encontre o(s) ponto(s) de inflexão.
- (d) Esboce o gráfico da função, destacando os elementos obtidos nos itens anteriores.