DeepSeek

- All items are rated on a **5-point Likert scale** unless otherwise indicated:
- 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree.
- ## Section A. **Content Accuracy and Reliability**
- 1. The hazards identified by the system are **factually grounded in the scene description**. $\bf 5$
- 2. The analysis includes the **most critical hazards** relevant to the task and environment. $\bf 5$
- 3. The **severity and likelihood ratings** are reasonable and consistent with the hazards described. $\bf 3$
- 4. The analysis avoids mentioning **hazards not supported by the scene context** (hallucinations). ${\bf 4}$
- 5. The hazard list is **non-redundant** (few repeated or duplicate entries). $\bf 3$

- ## Section B. **Explanation Quality**
- 6. Explanations are **specific to the scene context**, referencing concrete objects and spatial relations. $\bf 3$
- 7. Explanations provide a **causal or temporal account** (e.g., preconditions or sequences that could lead to the hazard). $\bf 3$
- 8. The outputs include **clear and actionable safeguards or instructions**. $\boldsymbol{4}$
- 9. The hazard descriptions are **concise and free of irrelevant details**. $\mathbf{2}$
- 10. The explanation structure makes it **easy to follow the reasoning process** of the system. ${\bf 3}$

- ## Section C. **Trust and Usability**
- 11. I would find this hazard analysis **useful for supporting safety assessment** in assistive robotics. $\bf 3$
- 12. The outputs are **easy to interpret and understand** without further clarification. $\mathbf{2}$

- 13. I would feel **confident relying on these results** in a real hazard analysis task. $\bf 3$
- 14. The system provides a **balanced level of detail**, neither overwhelming nor superficial. ${\bf 2}$

Section D. **Open Feedback**

(Free-text responses; supports qualitative analysis)

15. What did you find **most useful** about this hazard analysis output?

It recognised realistic hazards like tripping, burns, and obstacles around the wheelchair. The explanations made sense.

16. What did you find **least useful or problematic**?

The table: every item had its own line, and the text was packed tightly together. It felt more technical than practical, so reading it was tiring.

17. What **improvements** would make the outputs more reliable and usable for safety analysis?

Condense the table, group hazards by type, and give short summaries rather than full paragraphs.

Grok

- All items are rated on a **5-point Likert scale** unless otherwise indicated:
- 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree.
- ## Section A. **Content Accuracy and Reliability**
- 1. The hazards identified by the system are **factually grounded in the scene description**. $\bf 5$
- 2. The analysis includes the **most critical hazards** relevant to the task and environment. $\bf 5$
- 3. The **severity and likelihood ratings** are reasonable and consistent with the hazards described. ${\bf 4}$
- 4. The analysis avoids mentioning **hazards not supported by the scene context** (hallucinations). $\bf 4$
- 5. The hazard list is **non-redundant** (few repeated or duplicate entries). ${\bf 4}$

- ## Section B. **Explanation Quality**
- 6. Explanations are **specific to the scene context**, referencing concrete objects and spatial relations. $\bf 4$
- 7. Explanations provide a **causal or temporal account** (e.g., preconditions or sequences that could lead to the hazard). $\bf 4$
- 8. The outputs include **clear and actionable safeguards or instructions**. ${\bf 4}$
- 9. The hazard descriptions are **concise and free of irrelevant details**. $\bf 3$
- 10. The explanation structure makes it **easy to follow the reasoning process** of the system. $\bf 3$

- ## Section C. **Trust and Usability**
- 11. I would find this hazard analysis **useful for supporting safety assessment** in assistive robotics. $\bf 3$
- 12. The outputs are **easy to interpret and understand** without further clarification. $\bf 3$

- 13. I would feel **confident relying on these results** in a real hazard analysis task. $\bf 3$
- 14. The system provides a **balanced level of detail**, neither overwhelming nor superficial. $\bf 3$

Section D. **Open Feedback**

(Free-text responses; supports qualitative analysis)

15. What did you find **most useful** about this hazard analysis output?

Well organised, listed nearly everything relevant in the scene.

16. What did you find **least useful or problematic**?

he writing felt mechanical; lots of numbers and coordinate references that didn't add meaning. After a few rows it started to feel repetitive.

17. What **improvements** would make the outputs more reliable and usable for safety analysis?

Keep the layout but trim unnecessary data. Add a short bullet summary for the top five risks.

GPT 5

- All items are rated on a **5-point Likert scale** unless otherwise indicated:
- 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree.
- ## Section A. **Content Accuracy and Reliability**
- 1. The hazards identified by the system are **factually grounded in the scene description**. $\bf 5$
- 2. The analysis includes the **most critical hazards** relevant to the task and environment. $\bf 5$
- 3. The **severity and likelihood ratings** are reasonable and consistent with the hazards described. $\bf 5$
- 4. The analysis avoids mentioning **hazards not supported by the scene context** (hallucinations). $\bf 3$
- 5. The hazard list is **non-redundant** (few repeated or duplicate entries). ${\bf 4}$

- ## Section B. **Explanation Quality**
- 6. Explanations are **specific to the scene context**, referencing concrete objects and spatial relations. $\mathbf{5}$
- 7. Explanations provide a **causal or temporal account** (e.g., preconditions or sequences that could lead to the hazard). $\bf 4$
- 8. The outputs include **clear and actionable safeguards or instructions**. $\mathbf{5}$
- 9. The hazard descriptions are **concise and free of irrelevant details**. ${\bf 4}$
- 10. The explanation structure makes it **easy to follow the reasoning process** of the system. $\bf 5$

- ## Section C. **Trust and Usability**
- 11. I would find this hazard analysis **useful for supporting safety assessment** in assistive robotics. $\bf 4$
- 12. The outputs are **easy to interpret and understand** without further clarification. ${\bf 4}$

- 13. I would feel **confident relying on these results** in a real hazard analysis task. ${\bf 4}$
- 14. The system provides a **balanced level of detail**, neither overwhelming nor superficial. ${\bf 4}$

Section D. **Open Feedback**

(Free-text responses; supports qualitative analysis)

15. What did you find **most useful** about this hazard analysis output?

This was the easiest to read (except the table). The explanations linked hazards to visible objects without many unnecessary data.

16. What did you find **least useful or problematic**?

Messy table. Some hazards were repeated, and the spacing made it difficult to see where one row ended.

17. What **improvements** would make the outputs more reliable and usable for safety analysis?

Fix the table. (Content is good)