In [64]:

- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 %matplotlib inline

In [65]:

data = pd.read_csv('titanic.csv')

In [66]:

1 data.head()

Out[66]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875
4										•

In [67]:

1 sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[67]:

<Axes: >

In [68]:

```
1 sns.countplot(x='Survived',data=data,palette='RdBu_r')
```

Out[68]:

<Axes: xlabel='Survived', ylabel='count'>

In [69]:

```
1 sns.countplot(x='Survived',hue='Sex',data=data,palette='RdBu_r')
```

Out[69]:

<Axes: xlabel='Survived', ylabel='count'>

In [70]:

sns.countplot(x='Survived',hue='Pclass',data=data,palette='rainbow')

Out[70]:

<Axes: xlabel='Survived', ylabel='count'>

In [33]:

sns.distplot(data['Age'].dropna(),kde=False,color='darkred',bins=30)

C:\Users\suraj\AppData\Local\Temp\ipykernel_10448\4202982456.py:1: UserWa
rning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(data['Age'].dropna(),kde=False,color='darkred',bins=30)

Out[33]:

<Axes: xlabel='Age'>

In [35]:

```
1 sns.countplot(x='SibSp',data=data)
```

Out[35]:

<Axes: xlabel='SibSp', ylabel='count'>

In [36]:

```
1 sns.boxplot(x='Pclass',y='Age',data=data,palette='winter')
```

Out[36]:

<Axes: xlabel='Pclass', ylabel='Age'>

In [38]:

```
1
    def impute_age(cols):
 2
        Age = cols[0]
 3
        Pclass = cols[1]
 4
 5
        if pd.isnull(Age):
 6
 7
            if Pclass == 1:
 8
                 return 37
 9
            elif Pclass == 2:
10
                 return 29
11
12
            else:
13
14
                return 24
15
        else:
16
17
            return Age
```

```
In [39]:
```

```
data['Age'] = data[['Age','Pclass']].apply(impute_age,axis=1)
```

In [40]:

sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[40]:

<Axes: >

In [41]:

1 data.drop('Cabin',axis=1,inplace=True)

In [42]:

1 data.head()

Out[42]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875
4										•

In [43]:

1 data.dropna(inplace=True)

In [44]:

1 data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 417 entries, 0 to 417
Data columns (total 11 columns):

#	Column	Non-Null Coun	t Dtype
0	PassengerId	417 non-null	int64
1	Survived	417 non-null	int64
2	Pclass	417 non-null	int64
3	Name	417 non-null	object
4	Sex	417 non-null	object
5	Age	417 non-null	float64
6	SibSp	417 non-null	int64
7	Parch	417 non-null	int64
8	Ticket	417 non-null	object
9	Fare	417 non-null	float64
10	Embarked	417 non-null	object

dtypes: float64(2), int64(5), object(4)

memory usage: 39.1+ KB

In [45]:

```
sex = pd.get_dummies(data['Sex'],drop_first=True)
embark = pd.get_dummies(data['Embarked'],drop_first=True)
```

In [46]:

```
data.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)
```

In [47]:

```
data = pd.concat([data,sex,embark],axis=1)
```

In [48]:

```
1 data.head()
```

Out[48]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	s
0	892	0	3	34.5	0	0	7.8292	1	1	0
1	893	1	3	47.0	1	0	7.0000	0	0	1
2	894	0	2	62.0	0	0	9.6875	1	1	0
3	895	0	3	27.0	0	0	8.6625	1	0	1
4	896	1	3	22.0	1	1	12.2875	0	0	1

In [49]:

```
from sklearn.model_selection import train_test_split
```

In [51]:

```
1  X = train.drop('Survived',axis=1)
2  y = train['Survived']
3  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_startest_split(X)
```

In [52]:

```
1 from sklearn.linear_model import LinearRegression
```

In [53]:

```
1 lm = LinearRegression()
```

```
In [54]:
```

```
1 lm.fit(X_train,y_train)
```

Out[54]:

```
▼ LinearRegression
LinearRegression()
```

In [55]:

```
predictions = lm.predict(X_test)
```

In [58]:

1 sns.distplot((y_test-predictions),bins=50,kde=False);

C:\Users\suraj\AppData\Local\Temp\ipykernel_10448\3145007558.py:1: UserWa
rning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot((y_test-predictions),bins=50,kde=False);

In [59]:

1 **from** sklearn **import** metrics

In [60]:

```
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 7.128336721601204e-16 MSE: 8.392407869408556e-31 RMSE: 9.16100860681211e-16

In []:

1