$$u(t-2) \rightarrow 0 2 t \rightarrow 0$$

$$\int_{-\infty}^{\infty} h(t) dt = \int_{-\infty}^{\infty} e^{2t} dt = \left(\frac{e^{-4t}}{4}\right)_{2}^{\infty} = \frac{e^{-8}}{4} < \infty$$

- so stuble

Trest of Lx a

$$h(-1)_{2}e^{8}u(-1-2)_{2}e^{8}u(-3)_{2}0$$
 ($u(-3)_{2}0$)

$$h(-1)_{2} e^{u(-1-2)_{2}} = e^{u(-1-2)_{2}} = e^{u(-1-2)_{2}} = e^{u(-1-2)_{2}}$$

$$h(0) = 1$$
 $h(-1) = e^{-6 \times 1 - 1} = e^{-6}$

$$\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} e^{-6(-t)} dt + \int_{0}^{\infty} e^{-6t} dt$$

$$= \int_{-\infty}^{\infty} e^{6t} dt + \int_{0}^{\infty} e^{-6t} dt$$

$$= \left(\frac{e^{6t}}{6}\right)_{-\infty}^{0} + \left(\frac{e^{-6t}}{6}\right)_{0}^{\infty}$$

$$= \frac{1}{6} \left(1 - e^{-\infty}\right) + \left(\frac{-1}{6}\right) \left(e^{-\infty} - e^{0}\right)$$

$$= \frac{1}{6} \left(1 - e^{-\infty}\right) + \left(\frac{-1}{6}\right) \left(e^{-\infty} - e^{0}\right)$$

$$= \frac{1}{6} \left(1 - e^{-\infty}\right) + \frac{1}{6} \left(e^{-2(-1)}\right) \left(e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{-2(-1)}\right) + \frac{1}{6} \left(1 - e^{-2(-1)}\right)$$

$$= \frac{1}{6} \left(1 - e^{$$

e)
$$h(t)$$
 $z e^{2t} u(-1-t)$
 $h(t)$ $for (-2)$
 $u(-1-(-2))$
 $e^{2x-2} u(-1-(-2))$
 $e^{-4t} u(-1+2) = e^{4t} u(1) \neq 0$

Non cawal.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

-> h lt) to for t co => Non causal.

$$\int_{\infty}^{\infty} |h(t)| dt = \int_{\infty}^{\infty} e^{2t} dt = \left(\frac{e^{2t}}{2}\right)_{-\infty}^{-1}$$

$$= \frac{1}{2} \left(\frac{e^{-2} - e^{-\infty}}{2}\right)$$

$$= \frac{e^{-2}/2}{2} < \infty$$

Stable

d) Here the respons for x(4) is given. So we need to find the Impulse Response. So replace x(4) by s(4) and y(4) by h(4) $h(4) = \int_{-\infty}^{\infty} e^{-\alpha}x s(1-\alpha) d\alpha$

8(+-a) exists only al- a=t. Se S(+-4)da = e tu(+)

alto) = fact) or toolds h(+) = etult) h(+)=0 fm +20 i 80 non (umal $\int_{0}^{\infty} h(t) |dt = \int_{0}^{\infty} e^{-t} u(t) = \int_{0}^{\infty} e^{-t} e^{-t} = \int_{0}^{\infty} e^{-t} = \int_{0}^{\infty} e^{-t} = \int_{0}^{\infty} e^{-t} e^{-t} = \int_{0}^{\infty} e$

Multiplication: paz(+-7) Now if t-2 < 0 x1 (y) x2(t-y) =0 > 0/p = 0 => y(t)=0 Consider of t-261 >> 2<t<3 $y(t) = \int_{0}^{t-2} (1 \times 2) dx$ = 2(t-2)

ternative method: using properties.

In convolution problems any given signal which in convolution problems any given signal which impulse would be of great and be converted to impulse would with impulse and be convolution involved with impulse help. as convolution shifting property but using sifting is nothing.

elp. as

nothing but using sifting

y(t) =
$$\times_1(t) \times \times_2(t)$$

of $y(t) = \begin{bmatrix} \times_1(t) \times dt \\ + \int \times_1(t) \times dt \end{bmatrix}$

$$= y(t) = \begin{bmatrix} \times_1(t) \times dt \\ + \int \times_1(t) \times dt \end{bmatrix}$$

$$\frac{d}{dt} x_{2}(t)$$

$$\frac{d}{dt} x_{2}(t)$$

$$\frac{d}{dt} x_{2}(t)$$

$$\frac{d}{dt} x_{2}(t) = \delta(t-2) - \delta(t-3)$$

$$\frac{d}{dt} x_{2}(t) = \lambda_{3}(t) + \lambda_{4}(t) + \lambda_{5}(t)$$

$$\frac{d}{dt} x_{2}(t) = \lambda_{5}(t) + \lambda_{5}(t) + \lambda_{5}(t)$$

$$\frac{d}{dt} x_{2}(t) = \lambda_{5}(t) + \lambda_{5}(t)$$

$$\frac{d}{dt} x_{3}(t) = \lambda_$$

$$y(t) = 2 + 3$$

$$= -2t + 8$$

$$2$$

$$2 = 3 + 7$$

(5) h(+) = (extu(+) +eBtu(-t) J(h 4) d+ < 0. (0) +>6 Shitly sextuit at Septilite dt = Jextual + Sept dt The above value should be finite. So take it individually Jerrat Zor if & is-ve ie 220 Septat Co if Bistre \$>0