# Trigonometry

Edward Jex

February 21, 2020

# The Radian

 $\pi$  radians = 180 degrees

# Arc length

$$l = \frac{\theta 2\pi r}{2\pi}$$
$$= r\theta$$

### Sector area

$$A = \frac{\theta}{2\pi} \pi r^2$$
$$= \frac{r^2 \theta}{2}$$

# Trigonometry

Values of sin, cos and tan can be worked out by using triangles.

|               | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{4}$      | $\frac{\pi}{2}$ |
|---------------|---|----------------------|----------------------|----------------------|-----------------|
| $\sin \theta$ | 0 | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1               |
| $\cos \theta$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0               |
| $\tan \theta$ | 0 | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | NaN             |

#### The unit circle

#### Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$



sin and cos graphs have a period of  $2\pi$ , tan has a period of  $\pi$ . sin and tan have a rotational symmetry about the origin. cos has a line of symmetry on the y axis

$$\cos -\theta = \cos \theta$$

$$\sin -\theta = -\sin \theta$$

$$\tan -\theta = -\tan \theta$$

# **Solving Equations**

Be careful not to divide by an expression that may be 0 as you may lose solutions. Also note that there may be many solutions in a given range. Drawing a CAST diagram or graph sketch may be useful.

# Example 1

Solve 
$$\sin \theta - 2\cos \theta = 0$$
 for  $0 \le \theta < 2\pi$   
 $\sin \theta = 2\cos \theta$   

$$\frac{\sin \theta}{\cos \theta} = 2$$

$$\tan \theta = 2$$

$$\theta = \arctan 2$$

$$\theta = 1.107, 4.249$$

Note, two solutions.

### Example 2

Solve 
$$2\cos\theta\sin\theta = \cos\theta$$
 for  $0 \le \theta < 2\pi$   
 $2\cos\theta\sin\theta - \cos\theta = 0$   
 $\cos\theta(2\sin\theta - 1) = 0$   
 $\cos\theta = 0$   $\sin\theta = \frac{1}{2}$   
 $\theta = \frac{\pi}{6}, \frac{\pi}{4}, \frac{5\pi}{6}, \frac{3\pi}{2}$ 

### Example 3

Solve 
$$\sin^2 \theta + \sin \theta = \cos^2 \theta$$
 for  $0 \le \theta < 2\pi$   
 $\sin^2 \theta + \sin \theta = 1 - \sin^2 \theta$   
 $2\sin^2 \theta + \sin \theta = 1$   
 $2\sin^2 \theta + \sin \theta - 1 = 0$   
 $(\sin \theta + 1)(2\sin \theta - 1) = 0$   
 $\sin \theta = -1$   $\sin \theta = \frac{1}{2}$   
 $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ 

# Sine and Cosine rules

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of a triangle =  $\frac{1}{2}ab\sin C$ 

