Demostrar que los subconjuntos del plano de los Ejercicios 18-21 son abiertos:

- **18.** $A = \{(x, y) \mid -1 < x < 1, -1 < y < 1\}$
- **19.** $B = \{(x, y) \mid y > 0\}$
- **20.** $C = \{(x, y) \mid 2 < x^2 + y^2 < 4\}$
- **21.** $D = \{(x, y) \mid x \neq 0 \text{ y } y \neq 0\}$
- **22.** Sea $A \subset \mathbb{R}^2$ el disco unidad abierto $D_1(0,0)$ con el punto $\mathbf{x}_0 = (1,0)$ añadido y sea $f: A \to A$ $\mathbb{R}, \mathbf{x} \mapsto f(\mathbf{x})$ la función constante $f(\mathbf{x}) = 1$. Demostrar que $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = 1$.
- **23.** Si $f: \mathbb{R}^n \to \mathbb{R}$ y $g: \mathbb{R}^n \to \mathbb{R}$ son continuas, demostrar que las siguientes funciones son continuas

$$f^2g: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto [f(\mathbf{x})]^2 g(\mathbf{x})$$

у

$$f^2 + g \colon \mathbb{R}^n \to \mathbb{R}, x \mapsto [f(\mathbf{x})]^2 + g(\mathbf{x})$$

- **24.** (a) Demostrar que $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1-x)^8 +$ $\cos(1+x^3)$ es continua.
 - (b) Demostrar que la aplicación $f: \mathbb{R} \to \mathbb{R}, x \mapsto$ $x^2e^x/(2-\sin x)$ es continua.
- **25.** (a) ¿Puede hacerse [sen(x+y)]/(x+y) continua definiéndola adecuadamente en (0, 0)?
 - (b) ¿Puede hacerse $xy/(x^2+y^2)$ continua defi-
 - niéndola adecuadamente en (0, 0)?
 (c) Demostrar que f: R² → R, (x, y) → ye^x + sen x + (xy)⁴ es continua.
- **26.** Utilizando ε y δ o coordenadas esféricas, demostrar que

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+z^2} = 0.$$

- **27.** Utilizar la formulación ε - δ de los límites para demostrar que $x^2 \to 4$ cuando $x \to 2$. Realizar esta demostración usando el Teorema 3.
- **28.** (a) Demostrar que para $\mathbf{x} \in \mathbb{R}^n$ y s < $t, D_s(\mathbf{x}) \subset D_t(\mathbf{x}).$
 - (b) Demostrar que si U y V son entornos de $\mathbf{x} \in \mathbb{R}^n$, entonces también lo son $U \cap V$ y $U \cup V$.
 - (c) Demostrar que los puntos frontera de un intervalo abierto $(a,b) \subset \mathbb{R}$ son los puntos a
- **29.** Suponer que \mathbf{x} e \mathbf{y} están en \mathbb{R}^n y que $\mathbf{x} \neq$

- y. Demostrar que existe una función continua $f: \mathbb{R}^n \to \mathbb{R} \text{ con } f(\mathbf{x}) = 1, f(\mathbf{y}) = 0 \text{ y } 0 \le f(\mathbf{z}) \le$ 1 para todo \mathbf{z} en \mathbb{R}^n .
- **30.** Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ y sea \mathbf{x}_0 un punto frontera de A. Decimos que $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \infty$ si para todo N > 0 existe un $\delta > 0$ tal que $0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta$ y $\mathbf{x} \in A$ implican que $f(\mathbf{x}) > N$.
 - (a) Demostrar que $\lim_{x\to 1} (x-1)^{-2} = \infty$.
 - (b) Demostrar que $\lim_{x\to 0} 1/|x| = \infty$. ¿Es cierto que $\lim_{x\to 0} 1/x = \infty$?
 - (c) Demostrar que $\lim_{(x,y)\to(0,0)} 1/(x^2+y^2) = \infty$.
- **31.** Sea $b \in \mathbb{R}$ y $f: \mathbb{R} \setminus \{b\} \to \mathbb{R}$ una función. Escribimos $\lim_{x \to a} f(x) = L$ y decimos que L es el *límite* por la izquierda de f en b si para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que x < b y $0 < |x - b| < \delta$ implican que $|f(x) - L| < \varepsilon$.
 - (a) Formular una definición de límite por la derecha, o $\lim_{x \to b+} f(x)$.
 - (b) Hallar $\lim_{x\to 0-} 1/(1+e^{1/x})$ y $\lim_{x\to 0+} 1/(1+e^{1/x}).$
 - (c) Dibujar la gráfica de $1/(1+e^{1/x})$.
- **32.** Demostrar que f es continua en \mathbf{x}_0 si y solo si

$$\lim_{\mathbf{x} \to \mathbf{x}_0} ||f(\mathbf{x}) - f(\mathbf{x}_0)|| = 0.$$

- **33.** Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ tal que, para constantes positivas K y α , satisface $||f(\mathbf{x}) - f(\mathbf{y})|| \le$ $K \| \mathbf{x} - \mathbf{y} \|^{\alpha}$ para todos \mathbf{x} e
 \mathbf{y} en A. Demostrar que f es continua. Las funciones que verifican la propiedad anterior se llaman continuas Hölder o, si $\alpha = 1$, continuas Lipschitz.)
- **34.** Demostrar que $f: \mathbb{R}^n \to \mathbb{R}^m$ es continua en todos los puntos si y solo si la imagen inversa de todo conjunto abierto es abierta. Es decir, si $U \subset \mathbb{R}^m$ es abierto, entonces $f^{-1}(u) =$ $\{x|f(x) \in u\}$ es abierto.
- **35.** (a) Hallar un número específico $\delta>0$ tal que si $|a| < \delta$, entonces $|a|^3 + 3a^2 + a| < 1/100$.
 - (b) Hallar un número específico $\delta > 0$ tal que si $x^2 + y^2 < \delta^2$, entonces $|x^2 + y^2 + 3xy +$ $180xy^5 | < 1/10.000.$