Paper Review

Densely Connected Convolutional Networks

Gao Huang* Cornell University

gh349@cornell.edu

Zhuang Liu* Tsinghua University

liuzhuang13@mails.tsinghua.edu.cn

Kilian Q. Weinberger Cornell University

kqw4@cornell.edu

Laurens van der Maaten Facebook AI Research

lvdmaaten@fb.com

이**준영** UST-KRISS 측정과학전공 2021. 05. 07

1 Introduction

많은 연구를 통해 CNN은 입력과 출력 사이의 연결 거리가 짧아질 수록 효율적 인 훈련과 높은 정확도를 높일 수 있다는 것을 발견했음.

본 논문에서는 이러한 발견에 기반하여 **모든 레이어 사이를 연결해줌으로서** 더 강화된 신경망을 소개함.

DenseNet은 기울기소실을 완화하고 파라미터 수를 효과적으로 줄인다.

STANDARD

기존의 feed-forward 신경망은 *l* 번째 layer 의 output 을 다음층의 input과 연결

$$\rightarrow X_l = H_l(X_{l-1})$$

RESNET

ResNet 은 skip-connection 을 추가

$$\rightarrow X_{l} = H_{l}(X_{l-1}) + X_{l-1}$$

기울기 소실 문제를 일부 해결할 수 있으나, 합으로 결합되기 때문에 **정보전달이 방해 를 받을 수 있음.**

DENSENET

정보전달을 향상시키기 위해 모든 레이어 사이를 연결함.

$$\rightarrow X_l = \frac{H_l}{(X_0, X_1, \dots, X_{l-1})}$$

Composition function

: Composite function은 모든 층의 feature map을 입력으로 받아 **연결**(concatenation)하여 다음의 세가지 연산을 수행한다.

: composite function

Pooling layer (Transition Layer)

Concatenation 특성상 레이서 사이의 down sampling이 불가능하기 때문에 DenseNet 순전파를 하나의 Dense Block으로 구분하여 block 사이에 1×1 convolution과 2×2 average pooling을 수행한다.

Transition Layer

Transition Layer

Growth rate (*k*)

- H_l 이 k개의 feature-map을 생성하면, 다음 layer는 k_0 + k × (l-1)개의 input feature-map을 가짐 $(k_0$ 는 dense block 첫번째의 input layer 의 feature map 개수)
- 한번 기록되면 network 내의 어디서든 접근 가능, 계층별로 layer 복제할 필요 없음

Bottleneck layer

- 층이 진행 될수록 input의 채널이 쌓이기 때문에 feature-map을 생성하기 위한 연산양 또한 증가함.

- 증가한 연산양을 효율적으로 처리하기 위해 bottleneck layer를 이용하여 $4 \times k$ 데이터로 변환 후 composition function을 수행함.

Compression

- 모델의 압축률을 더 향상 시키기 위해 transition layer에서 feature-map의 수를 줄임.
- 하나의 Dense block의 output이 m개의 feature-map을 포함한다면, transition layer에서 θ×m개의 feature-map을 갖는 output 생성
- DenseNet-C : θ < 1 Ω DenseNet (θ = 0.5)
- DenseNet-BC: θ < 1 인 bottleneck과 transition layer를 모두 사용

Architecture

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201(k=32)	DenseNet-161 $(k = 48)$		
Convolution	112 × 112	7×7 conv, stride 2					
Pooling	56 × 56	3×3 max pool, stride 2					
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$		
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\wedge 0}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$		
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$					
(1)	28×28	2 × 2 average pool, stride 2					
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$		
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$		
Transition Layer	28×28	$1 \times 1 \text{ conv}$					
(2)	14 × 14	2 × 2 average pool, stride 2					
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 36 \end{bmatrix}$		
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$		
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$					
(3)	7 × 7	2×2 average pool, stride 2					
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix}$		
(4)	/	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$		
Classification	1 × 1	7 × 7 global average pool					
Layer		1000D fully-connected, softmax					

3 Advantage

3.1 Strong gradient flow

- 모든 층이 연결되어 있기 때문에 역전파시에도 기울기 소실 문제가 줄어들음.

3 Advantage

3.2 Maintains low complexity features

- 기존 모델은 채널 수가 많아야 학습이 잘되기 때문에 좋은 성능을 내기 위해서 복잡도가 증가함.
- 그러나 DenseNet은 기존의 채널(C)보다 굉장히 작은 k를 파라미터로 하기 때문에 복잡도가 작음

3 Advantage

3.3 Parameter & Computational Efficiency

- 기존의 경우 초반 layer의 정보가 깊은 망에서 뒤로 갈수록 희미 해지는데, Dense connectivity pattern을 사용하면 초반 layer 의 정보를 쌓아가며 마지막까지 전달됨.
- 모든 feature map 들을 쌓기 때문에 layer 사이 사이 최대한 가치 있는 정보가 전달됨.

4 Experiment

CIFAR-10, CIFAR-100 (32*32*3, train 5만, test 1만) SVHN (32*32*3 train 73257 test 26032) ImageNet (224*224, train 120만, test 5만)

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	_	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	_	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	_	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k=24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k=40)$	190	25.6M	-	3.46		17.18	-

^{1.} K 가 증가하면 parameter 의 수가 많아지고 Bottleneck Compression 을 사용하면 parameter 가 감소

^{2.} SVHN 이 상대적으로 쉬운 작업이기 때문에 더 deep 한 모델이 학습데이터에 overfitting 되어서 BC를 안쓰는 network에서 결과가 좋음

4 Experiment

Model	top-1	top-5		
DenseNet-121 ($k = 32$)	25.02 (23.61)	7.71 (6.66)		
DenseNet-169 $(k=32)$	23.80 (22.08)	6.85 (5.92)		
DenseNet-201 ($k=32$)	22.58 (21.46)	6.34 (5.54)		
DenseNet-161 ($k=48$)	22.33 (20.85)	6.15 (5.30)		

5 Discussion

- Dense block 내부에서 convolution layer 들의 필터 가중치의 평균
- 픽셀 색깔이 source layer(s) 에서 target layer(l) 로 연결되어 있는 가중치의 L1norm
- 색이 빨간색일수록 더 높은 가중치

- 같은 block 내에서는 가중치가 잘 흩어져 있음
- Transition layer 에서 나온 가중치도 잘 퍼져 있음
- Classification layer 가 전체 weight 를 가져가기는 하지만, 네트워크 마지막 단에서 생긴 high-level feature 를 더 많이 가짐

Q&A

Reference

- https://jayhey.github.io/deep%20learning/2017/10/13/DenseNet_1/
- https://youtu.be/fe2Vn0mwALI
- https://www.youtube.com/watch?v=fe2Vn0mwALI&t=922s