

Foundation Calculation Program by Python

ติดตั้ง Program and Library

- Python: ภาษาคอมพิวเตอร์ที่จะใช้ในการเขียนและรันโค้ด
- NumPy (Library) : ชุดฟังชั่นเสริมในการคำนวณทางคณิตศาสต์ สถิติ จัดการข้อมูล Array เป็นต้น
- Editor : โปรแกรมช่วยในการเขียนโค้ด เช่น Sublime text 3 (ใช้งานฟรี) , Visual Studio Code เป็นต้น

การทำงานของโปรแกรม (Flow Chart)

เตรียมข้อมูล Pier Schedule.csv

- Pier No., Sta, Northing, Easting, Pier Az, Footing Skew and Foundation Type
- กรณีไม่มีข้อมูล Foundation Type ให้ใส่เป็น N/A

เตรียมข้อมูล Chainage & Offset Axis.csv

- Foundation Type, Point, Chainage Axis, Offset Axis (กำหนดเสาเข็มไว้ 10 ต้น)
- กรณีไม่มีข้อมูล Chainage & Offset Axis ให้ใส่เป็น N/A

AF	-30	-	: >	< ~	fx																											
1	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF
1	TYPE	Point	СН	os	Point	СН	os	Point	СН	os	Point	СН	OS	Point	СН	os	Point	СН	os	Point	СН	os	Point	СН	os	Point	СН	os	Point	СН	os	
2	F1B-A	1	0	0	2	N/A	N/A	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
3	F1B-B	1	0	0	2	N/A	N/A	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
4	F1B-C	1	1.875	0	2	-1.875	0	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
5	F1B-D	1	2.25	0	2	-2.25	0	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
6	F2B-A	1	1.5	-2.25	2	1.5	2.25	3	-1.5	2.25	4	-1.5	-2.25	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
7	F2B-B	1	1.5	-2.5	2	1.5	2.5	3	-1.5	2.5	4	-1.5	-2.5	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
8	F2B-F	1	1.5	-1.8	2	1.5	1.8	3	-1.5	1.8	4	-1.5	-1.8	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
9	F2B-G	1	2.25	0	2	-2.25	0	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
10	F2B-H	1	2.7	0	2	-2.7	0	3	N/A	N/A	4	N/A	N/A	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
11	F4B-A	1	1.8	-2.25	2	1.8	2.25	3	-1.8	2.25	4	-1.8	-2.25	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
12	F4B-B	1	1.8	-2.5	2	1.8	2.5	3	-1.8	2.5	4	-1.8	-2.5	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
13	F4B-C	1	1.8	-3	2	1.8	3	3	-1.8	3	4	-1.8	-3	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
14	F4B-D	1	2.25	-3	2	2.25	3	3	-2.25	3	4	-2.25	-3	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
15	F4B-E	1	2.25	-2.5	2	2.25	2.5	3	-2.25	2.5	4	-2.25	-2.5	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
16	F4B-F	1	2.25	-3	2	2.25	3	3	-2.25	3	4	-2.25	-3	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
17	F4B-G	1	2.25	-3.75	2	2.25	3.75	3	-2.25	3.75	4	-2.25	-3.75	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
18	F4B-H	1	2.7	-4.5	2	2.7	4.5	3	-2.7	4.5	4	-2.7	-4.5	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
19	F4B-T	1	2.25	-3	2	2.25	3	3	-2.25	3	4	-2.25	-3	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
20	F4B-U	1	3.75	-3.75	2	3.75	3.75	3	-3.75	3.75	4	-3.75	-3.75	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
21	F4B-V	1	2.25	-3.75	2	2.25	3.75	3	-2.25	3.75	4	-2.25	-3.75	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
22	F4B-W	1	1.8	-2.25	2	1.8	2.25	3	-1.8	2.25	4	-1.8	-2.25	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
23	F4BR-A	1	2.5	-1.5	2	2.5	1.5	3	-2.5	1.5	4	-2.5	-1.5	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
24	F4BR-B	1	2.5	-2	2	2.5	2	3	-2.5	2	4	-2.5	-2	5	N/A	N/A	6	N/A	N/A	7	N/A	N/A	8	N/A	N/A	9	N/A	N/A	10	N/A	N/A	
25	F9B-A	1	4.5	-4.5	2	4.5	0	3	4.5	4.5	4	0	-4.5	5	0	0	6	0	4.5	7	-4.5	-4.5	8	-4.5	0	9	-4.5	4.5	10	N/A	N/A	
26	F9B-B	1	5.4	-5.4	2	5.4	0	3	5.4	5.4	4	0	-5.4	5	0	0	6	0	5.4	7	-5.4	-5.4	8	-5.4	0	9	-5.4	5.4	10	N/A	N/A	
27	F9B-D	1	4.5	-4.5	2	4.5	0	3	4.5	4.5	4	0	-4.5	5	0	0	6	0	4.5	7	-4.5	-4.5	8	-4.5	0	9	-4.5	4.5	10	N/A	N/A	
28																																
29																																
30																																
31																																
32																																
22																																

Open Folder on Sublime Text

- สร้าง Folder พร้อมใส่ CSV file ที่จะ Import และโค้ด Python file
- File > Open Folder > ไปที่ Folder ที่สร้างไว้ > Select Forder

Overview Python on Sublime Text

Import CSV File

• ก่อนที่จะทำการ Import CSV file จะต้องตรวจสอบชื่อไฟล์ CSV กับชื่อใน Python ต้องตรงกันและต้องอยู่ใน Folder เดียวกัน

```
🗾 C:\Users\SUBEN\Desktop\Pile Schedule Program (Python)\pile_schedule_program_rev01.py (Pile Schedule Program (Python)) - Sublime Text (UNREGISTERED)
File Edit Selection Find View Goto Tools Project Preferences Help

◆ pile_schedule_program_rev01.py ×

 FOLDERS
                                              40bi 00
 ▼ Pile Schedule Program (Python)
                                            else:
                                              mm ='{:.0f}'.format(minute)
   1 01 Pier Schedule.csv
                                         return '{:.0f}'.format(degree)+"-"+mm+"-"+ss
   02_CH&OS_Axis.csv
   export_pile_schedule_result.csv
                                  39 # Write csv file : เขียนข้อมูลลงไฟล์ csv
    101 Flow Chart.pdf
    Flow Chart.xlsx
                                       def WriteCSV (export pile schedule result):
    /* pile_schedule_program_rev01.py
                                         # 'a' is append, newline='' ขึ้นบรรหัดใหม่, encoding='utf-8' อักขระทุกอย่างของ Unicode นำมาใช้หมด
    /* test.py
                                         with open ('export pile schedule result.csv', 'a', newline='', encoding='utf-8') as file:
                                            #fw is file writer
                                           fw = csv.writer(file)
                                            fw.writerow(export pile schedule result)
                                   47 # Pile Position : คำนวณตำแหน่งเข็ม
                                  48 def Pile Position(Ncenter, Ecenter, Azimuth, Chainage, Offset):
                                         Ni = Ncenter + Chainage * np.cos(Azimuth * DEG2RAD) + Offset * np.cos((Azimuth + 90) * DEG2RAD)
                                         Ei = Ecenter + Chainage * np.sin(Azimuth * DEG2RAD) + Offset * np.sin((Azimuth + 90) * DEG2RAD)
                                         return Ni, Ei
                                       # นำเช้าข้อมูล Pier Schedule.csv (ประเภทข้อความ)
                                       PierSC = np.loadtxt('01 Pier Schedule.csv', delimiter=',', skiprows=1, dtype=str)
                                       ุ # นำเข้าข้อมูล Chinage&Offset Axis.csv (ประเภทข้อความ)
                                       CHOS_Axis = np.loadtxt('02_CH&OS_Axis.csv', delimiter=',', skiprows=1, dtype=str)
                                       # ตั้งชื่อหัวตารางใน CSV
                                       Head_Column = ['Point', 'N', 'E', 'Pier No', 'Sta', 'Pier Az', 'F Type']
                                       WriteCSV(Head Column)
                                   65 # นับจำนวณข้อมูลที่อยู่ใน PierSC Array
                                   66 count array1 = len(PierSC)
   Line 93, Column 47
                                                                                                                                               Spaces: 2
                                                                                                                                                         Python
```

Export CSV File

ตั้งชื่อไฟล์ CSV ที่จะทำการ Export

Run Python

• Tools > Built หรือ Ctrl + B


```
C:\Users\SUBEN\Desktop\Pile Schedule Program (Python)\pile_schedule_program_rev01.py (Pile Schedule Program (Python)) - Su
File Edit Selection Find View Goto Tools Project Preferences Help
                                                pile_schedule_program_rev01.py X
 FOLDERS
 ▼ Pile Schedule Program (Python)
  ▶ ■ Photo
                                                     # แปลง Pier Azimuth Deg>DMS
                                                     sn, d, m, s = deg2dms(Pier Az)
     O1_Pier_Schedule.csv
                                                     Pier AzDMS = DMS2str(d, m, s, 2)
     □ 02 CH&OS Axis.csv
     export_pile_schedule_result.csv
                                                    # ตรวจสอบ Foundation type ใน PierSC Arr
     101 Flow Chart.pdf
                                                     if Found Type1 == 'N/A':

☐ Flow Chart.xlsx

                                                      continue # ข้ามข้อมลในกรณีไม่มี Foundatio
     /* pile_schedule_program_rev01.py
     /* test.py
                                                       # นับจำนวณข้อมูลที่อยู่ใน CHOS Axis Array
                                                       count array2 = len(CHOS Axis)
                                                       # กำหนดชื่อข้อมล Column ของ Foundation
                                                       for j in range(count array2):
                                                           Found Type2 = CHOS Axis[j][0]
                                                           # ตรวจสอบ Foundation type ทั้ง 2 A
                                                           if Found Type1 != Found Type2:
                                                                continue # ข้ามข้อมูลในกรณี Four
                                                                # กรณี Foundation type ตรงกัน
                                                                print('{}, N: {:.3f} E: {:.3
                                                                Result 1 = ['CL', Nc, Ec, Pi
                                                               WriteCSV(Result 1)
                                                               for k in range(1,30,3): # ra
                                                                    # หาตัวเลขคู่อันดับ เพื่อดึงข้อมูลใ
                                                                    Index P = k # ประเภทข้อควา
                                                                    Index Ch = Index P + 1 \ddagger
                                                                    Index 0s = Index Ch + 1
P60-13/2 N: 1516255.975 E: 722146.313
P60-13/3 N: 1516255.367 E: 722142.764
P60-13/4 N: 1516260.295 E: 722141.919
CL, N: 1516263.379 E: 722174.669, P60-14, Sta: 60482.371, Az: 80-15-44.88, F4B-E
P60-14/1 N: 1516266.224 E: 722176.464
P60-14/2 N: 1516261.296 E: 722177.309
P60-14/3 N: 1516260.534 E: 722172.874
P60-14/4 N: 1516265.462 E: 722172.028
[Finished in 1.2s]
```

Foundation Schedule Result (Exported)

