2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 19

Sums of Two Squares (1)

Now we shall prove Fermat's Thm on Sums of Two Squares.

Fermat's Thm on Sums of Two Squares

A prime number P is a **sum of two squares** if and only if

$$P = 2$$
 or $P \equiv 1 \pmod{4}$.

Pierre de Fermat (1607?-1665)

Sums of Two Squares (2)

Proof (Step 1): we may assume P is an **odd prime number** $(P \neq 2)$, and $P = X^2 + Y^2$. By the following tables, $P \equiv 1 \pmod{4}$.

$X \pmod{4}$	0	1	2	3
$X^2 \pmod{4}$	0	1	0	1
Y (mod 4)	0	1	2	3
$\overline{Y^2 \pmod{4}}$	0	1	0	1

Sums of Two Squares (3)

```
Proof (Step 2): for the converse direction,
we put P = 4N + 1 and A = (2N)!.
By Wilson's Thm,
       -1 \equiv (P-1)!
            \equiv 1 \times 2 \times \cdots \times (2N) \times (2N+1) \times \cdots \times (4N)
Since 2N+K \equiv -(2N+1-K) (for any K),
       (P-1)! \equiv (2N)! \times (2N)! \times (-1)^{2N} \equiv A^2.
Hence A^2 \equiv -1 \pmod{P}.
```

Sums of Two Squares (4)

Proof (Step 3): recall $A^2 \equiv -1 \pmod{P}$.

Consider

AB+C (mod P) for
$$0 \le B$$
, $C < \sqrt{P}$.

Since the number of pairs (B,C) is > P,

$$AB+C \equiv AD+E \pmod{P}$$

for some $0 \le B$, C, D, $E < \sqrt{P}$, $(B,C) \ne (D,E)$.

Put X = C - E and Y = D - B. Then

$$X \equiv A Y \Rightarrow X^2 \equiv A^2 Y^2 \equiv -Y^2 \Rightarrow X^2 + Y^2 \equiv 0.$$

Since $X^2 + Y^2 < 2P$, $X^2 + Y^2 = P$.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 19

Summary of Week 2

- > Fermat and his Theorems:
 - Reciprocity Laws
 - Sums of Two Squares
- Modular Arithmetic
- Fermat's Little Thm, Wilson's Thm, Lagrange's Thm
- Proof of Fermat's Thm on Sums of Two Squares.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 19

Plan of Week 3

We will learn more general Reciprocity Laws; the Quadratic Reciprocity Law of Gauss, and its generalizations. Let's discover hidden laws of prime numbers. See you next week!

Carl Friedrich Gauss (1777-1855)