Comp 6321 - Machine Learning - Assignment 2

Federico O'Reilly Regueiro

October 18th, 2016

Question 1:

1.a Partition the data into training / testing, 90 to 10 and perform and plot L2 regularization

Lorem Ipsum

1.b Use the quadprog function in Matlab for L1 regularization

$$\arg\min_{w} \frac{1}{2} (\mathbf{\Phi} w - y)^{T} (\mathbf{\Phi} w - y) + \frac{\lambda}{2} \sum_{k=0}^{K-1} |w_{k}|$$
 (1)

Which is equivalent to finding:

$$\arg\min_{\boldsymbol{w}} (\boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{y})^{T} (\boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{y}) + \lambda \sum_{k=0}^{K-1} |w_{k}|$$
 (2)

And expands to:

$$\arg\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{w} - 2y^T \boldsymbol{\Phi} \boldsymbol{w} + \boldsymbol{y}^T \boldsymbol{y}^T + \lambda \sum_{k=0}^{K-1} |w_k|$$
 (3)

And for which we can remove the constant term $y^T y$, yielding:

$$\arg\min_{w} \boldsymbol{w}^{T} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{w} - 2 \boldsymbol{y}^{T} \boldsymbol{\Phi} \boldsymbol{w}^{T} + \lambda \sum_{k=0}^{K-1} |w_{k}|$$
(4)

Matlab's quadprog(H, f, A, b) function, gives the optimal x corresponding to the expression $\arg\min_x \frac{1}{2} x^T H x + f^T x$, subject to constraints $Ax \leq b$. We can thus take $\mathbf{H} := 2\Phi^T \Phi$, then $\mathbf{f} := 2y^T \Phi$, $\mathbf{A} := \lambda P$, where for a system with n variables, P is the matrix with 2^n permutations of $[b_1, b_2, \dots b_n, 0]^1, b \in \{-1, 1\}$

¹the last zero entry is to avoid the regularization of the intercept term

and lastly $\mathbf{b} := c \xrightarrow{\mathbf{1}}$, where $\overrightarrow{\mathbf{1}}$ is an all-one vector of length 2^n that places an upper bound to the expression $\lambda \sum_{k=0}^{K-1} |w_k|$, such that $\sum_{k=0}^{K-1} |w_k| \leq \frac{c}{\lambda}$. If we set c=1, then we parametrize L1 regularization simply by adjusting λ accordingly.