

0	1
0	2
0	3

05

ABOUT MERCER BANK AND THE PRODUCT

BUSINESS OBJECTIVE

PROJECT OVERVIEW

OUR APPROACH

FINAL VARIABLES

MODEL PERFORMANCE

MODEL SELECTION

INSIGHTS

RECOMMENDATION

APPENDIX

MERCERBANK & IT'S PRODUCTS

- MercerBank offers many services such as personalized financial services tailored to your needs.
- You can get concierge-like service and assistance in a wide array of financial matters ranging from deposit accounts, wire transfers and currency exchanges to investments, wealth planning and elder care.
- Also known as a fixed-term investment. It is the depositing of money into an account at a financial institution that offers a guaranteed return.

PROBLEM & OBJECTIVE

Problem:

• The bank has a product that is underperforming and not bringing in enough revenue.

Objective:

- To find the best candidate/prospect for the term deposit
- What is the best channel to reach out to the prospects?
- Is phone marketing the best channel for this marketing campaign?

PROJECT OVERVIEW

Target Right Prospects

Term Deposit Yes/No Y(Target)

Customer Info

Age
Job
Marital
Education
Default
Housing
Loan

Previous Campaign

Month
Dayofweek
Duration
Campaign
Pdays
Previous
Poutcome

Economic Index

Emp.var.rate
Cons.price.idx
Cons.conf.idx
Euribor3m
Nr.employed

Analyzed dataset to select only variables that are important to our analysis and to detect anomalies in the variables.

Select type of model to be used based defined objective

Create an oversample data to counter bias towards 'no' in our dataset and run each model with both imbalance and balance dataset

Compare the performance of each model and Select the model that helps answer our objective.

Υ

DEFAULT

CONTACT

DAY_OF_WEEK

EDUCATION

POUTCOME

JOB

MARTIAL

LOAN

HOUSING

MONTH

Respondent No: 89% Respondent Yes: 11%

Model 1

MODEL PERFORMANCE

Confusion Matrix and Statistics
Reference

Confusion Matrix and Statistics

Reference
Prediction 0 1
0 13542 825
1 1180 990

Reference
Prediction 0 1
0 14228 950
1 494 865

Respondent No: 51% Respondent Yes: 49%

MODEL PERFORMANCE

Model 1

Reference Prediction 0 1 0 12580 214 1 2142 1601

Model 2

Confusion Matrix and Statistics

Reference Prediction 0 1 0 12027 426 1 2695 1389

Model 3

Confusion Matrix and Statistics

Reference Prediction 0 1 0 13043 300 1 1679 1515

MODEL SELECTION

INSIGHTS

- Dominance of 'no' approved for term deposit created an imbalance in the dataset with bias towards 'no'
- College degree retirees and students tend to favor term deposit
- Telephone outreach did not yield good result
- Monday and Friday were not good days to reach out to potential prospects
- Campaign launch in 2nd and 3rd quarter have better return than other quarters
- Campaign results decreased as the year ends out

RECOMMENDATION

- Retirees and college students are more inclined for this type of product. The business may need other communication channel other than landline to reach out to those prospects.
 - For students social medias channel or online campaign might be more effective in reaching out to that demography
 - For retirees Ads on Tv channels used by retirees, senior citizen clubs,
- Timing of the campaign matters. Study shows that campaign launched between second and third quarter yield better return than other quarters

Most of the clients in this marketing campaign are between the ages mid 20s and early 60s.

Out of the data of the clients, only 6.2K have a personal loan either though MercerBank or another insistution.

Out of the data of the clients, only 21.6K have a housing loan either though MercerBank or another insistution.

Out of the data of the clients, only 6.2K have a personal loan either though MercerBank or another insistution.

Response to campaign by year.

Correlation analysis that show degree of correlation between variables

```
#### Dataset BMarketing.v1 exclude correlated variables
```{r}

to.drop <- c("pdays", "nr.employed", "age", "cons.conf.idx", "campaign", "euribor3m")

BMarketing.v1 <- BMarketing[, -which(names(BMarketing) %in% to.drop)]

names(BMarketing.v1)

write.csv(BMarketing,'BMarketing.v1.csv')

str(BMarketing.v1)</pre>
```

```
[1] "job"
 "marital"
 "education"
 "default"
 "housing"
[6] "loan"
 "contact"
 "month"
 "dav_of_week" "duration"
 "emp.var.rate" "cons.price.idx" "y"
[11] "previous"
 "poutcome"
'data.frame':
 41188 obs. of 15 variables:
$ job
 : chr "housemaid" "services" "services" "admin." ...
$ marital : chr "married" "married" "married" "married" ...
 "basic.4y" "high.school" "high.school" "basic.6y" ...
$ education
 : chr
$ default
 "no" "unknown" "no" "no" ...
 : chr
 "no" "no" "yes" "no" ...
$ housing
 : chr
 "no" "no" "no" "no" ...
 : chr
$ loan
 "telephone" "telephone" "telephone" ...
 : chr
$ contact
$ month
 : chr "may" "may" "may" "may" ...
$ day_of_week
 : chr
 "mon" "mon" "mon" "mon" ...
$ duration
 : int 261 149 226 151 307 198 139 217 380 50 ...
$ previous : int 0 0 0 0 0 0 0 0 0 ...
 : chr "nonexistent" "nonexistent" "nonexistent" "nonexistent" ...
$ poutcome
$ cons.price.idx: num 94 94 94 94 ...
$ y
 : num 0000000000...
```

```
###recode job
bmarketing.v1$job <- case_when(
 bmarketing.v1$job == "unknown" ~ "unemployed",
 bmarketing.v1$job == "unemployed" ~ "unemployed",
 bmarketing.v1$job == "entrepreneur" ~ "entrepreneur",
 bmarketing.v1$job == "retired" ~ "retired",
 bmarketing.v1$job == "housemaid" ~ "housemaid",
 bmarketing.v1$job == "self-employed" ~ "self-employed",
 bmarketing.v1$job == "student" ~ "student",
 bmarketing.v1$job == "blue-collard" ~ "blue-collar",
 bmarketing.v1$job == "technician" ~ "blue-collar",
 bmarketing.v1$job == "services" ~ "blue-collar",
 TRUE ~ "white-collar")

bmarketing.v1$job <- as.factor(bmarketing.v1$job)

str(bmarketing.v1)</pre>
```





```
```{r}
set.seed(456)
ind <- sample(2, nrow(bmarketing.v1), replace=TRUE, prob = c(0.6,0.4))
ov.train <- bmarketing.v1[ind==1, ]</pre>
ov.valid <- bmarketing.v1[ind==2,]</pre>
#### reponse prop in train
```{r}
prop.table(table(ov.train$y))
```

Partition dataset into training and validation. Dominance of 'no' 89% compared to 11% of 'yes'

0.8874904 0.1125096

```
#install.packages("ROSE")
library(ROSE)

set.seed(455)
ind <- sample(2, nrow(bmarketing.v1), replace=TRUE, prob = c(0.6,0.4))

ov.train1 <- bmarketing.v1[ind==1,]

ov.valid1 <- bmarketing.v1[ind==2,]

over <- ovun.sample(y~., data=ov.train1, method = "over", N=43652)$data</pre>
```

Created oversample dataset using ROSE library

```
over.train1.glm <- glm(y~., data=over.1, family=binomial(link="logit"), na.action = na.exclude)
over.train1.glm.pred <- predict(over.train1.glm, ov.valid.1[, -14], type= "response")
over.train1.glm.pred2<-ifelse(over.train1.glm.pred > 0.5, 1, 0)
confusionMatrix(as.factor(over.train1.qlm.pred2), as.factor(ov.valid.1$y), positive = '1')
 call:
 glm(formula = y \sim ., family = binomial(link = "logit"), data = ov.train1.
 na.action = na.exclude)
 Deviance Residuals:
 Min
 10 Median
 30
 Max
 -6.0662 -0.3073 -0.1839 -0.1333
 3.1228
 Coefficients:
 Pr(>|z|)
 Estimate
 Std. Error z value
 (Intercept)
 -119.07731461
 6.95187327 -17.129 < 0.00000000000000000 ***
 iobentrepreneur
 -0.05904870
 0.15942571 -0.370
 0.711097
 iobhousemaid
 0.17622789
 0.03021855
 0.171
 0.863851
 iobretired
 0.28238801
 0.11336849
 2.491
 0.012742 *
 iobself-employed
 -0.24567620
 0.15091638 -1.628
 0.103547
 iobstudent
 1.932
 0.053382 .
 0.26572232
 0.13755039
 jobunemployed
 0.18345400
 0.14468720
 1.268
 0.204821
 iobwhite-collar
 0.06557159 -1.552
 0.120720
 -0.10175141
 maritalmarried
 0.08453447
 0.08844171
 0.956
 0.339163
 maritalsingle
 0.15587011
 0.09575995
 1.628
 0.103585
 educationnoCollege
 0.05841181 -3.444
 0.000572 ***
 -0.20119265
 defaultves
 -7.05867723 139.18406469 -0.051
 0.959553
 housingves
 0.01795312
 0.05240211
 0.343
 0.731897
 loanyes
 -0.12702196
 0.07411468 -1.714
 0.086555 .
 contacttelephone
 0.07927401 -3.967
 -0.31445822
 0.00007287 ***
 monthaug
 1.00050924
 0.11333054
 8.828 < 0.0000000000000000 ***
 monthdec
 0.56068586
 0.24793217
 2.261
 0.023731 *
```

Logistic regression results

monthjul	0.51255341	0.11181368	4.584	0.00000456	***
monthjun	0.11363681	0.11214853	1.013	0.310931	
monthmar	2.12806895	0.14643893	14.532 <	< 0.00000000000000000000000000000000000	***
monthmay	-0.41789582	0.09532639	-4.384	0.00001166	***
monthnov	-0.02925055	0.11739419	-0.249	0.803233	
monthoct	0.65145511	0.14055396	4.635	0.00000357	***
monthsep	0.40410597	0.15287651	2.643	0.008209	* *
day_of_weekmon	-0.17024515	0.08424612	-2.021	0.043300	ŵ
day_of_weekthu	0.01479917	0.08182799	0.181	0.856480	
day_of_weektue	0.03357382	0.08426022	0.398	0.690296	
day_of_weekwed	0.12157486	0.08394268	1.448	0.147531	
duration	0.00477753	0.00009713	49.187 <	< 0.000000000000000000	***
previous	0.04978504	0.07360005	0.676	0.498770	
poutcomenonexistent	0.54290571	0.12181774	4.457	0.00000832	<b>常常家</b>
poutcomesuccess	1.84553501	0.11024795	16.740 <	< 0.000000000000000000	***
emp.var.rate	-1.02954020	0.03147529	-32.709 <	< 0.000000000000000000	***
cons.price.idx	1.22184691	0.07427177	16.451 <	< 0.00000000000000000	***

Logistic regression results

```
warning: qlm.fit: fitted probabilities numerically 0 or 1 occurredConfusion Matrix and Statistics
 Reference
Prediction 0 1
 0 12580 214
 1 2142 1601
 Accuracy: 0.8575
 95% CI : (0.8521, 0.8628)
 No Information Rate: 0.8902
 P-Value [Acc > NIR] : 1
 Kappa: 0.5026
 Mcnemar's Test P-Value : <0.00000000000000002
 Sensitivity: 0.88209
 Specificity: 0.85450
 Pos Pred Value: 0.42773
 Neg Pred Value: 0.98327
 Prevalence: 0.10975
 Detection Rate: 0.09681
 Detection Prevalence: 0.22634
 Balanced Accuracy: 0.86830
 'Positive' Class : 1
```

Logistic regression confusion matrix for balance dataset

```
ov.train.nbayes <- naiveBayes(y~., data= nb.over)

ov.nb.pred <- predict(ov.train.nbayes, newdata= nb.valid1, type= "class")

confusionMatrix(ov.nb.pred, nb.valid1$y, positive ='1')
```

```
Confusion Matrix and Statistics
 Reference
Prediction
 426
 0 12027
 1 2695 1389
 Accuracy: 0.8113
 95% CI: (0.8052, 0.8172)
 No Information Rate: 0.8902
 P-Value [Acc > NIR] : 1
 Kappa : 0.3761
Mcnemar's Test P-Value : <0.0000000000000002
 Sensitivity: 0.76529
 Specificity: 0.81694
 Pos Pred Value: 0.34011
 Neg Pred Value: 0.96579
 Prevalence: 0.10975
 Detection Rate: 0.08399
 Detection Prevalence: 0.24696
 Balanced Accuracy: 0.79111
 'Positive' Class: 1
```

Naive Bayes confusion matrix with balance dataset

```
confusionMatrix(predict(rfover, ov.valid1), ov.valid1$y, positive='1')
Confusion Matrix and Statistics
 Reference
Prediction 0 1
 0 13043 300
 1 1679 1515
 Accuracy: 0.8803
 95% CI: (0.8753, 0.8852)
 No Information Rate: 0.8902
 P-Value [Acc > NIR] : 1
 карра : 0.5406
 Mcnemar's Test P-Value : <0.0000000000000002
 Sensitivity: 0.83471
 Specificity: 0.88595
 Pos Pred Value: 0.47433
 Neg Pred Value: 0.97752
 Prevalence: 0.10975
 Detection Rate: 0.09161
 Detection Prevalence: 0.19314
 Balanced Accuracy: 0.86033
 'Positive' Class: 1
```

## confusion matrix with balance dataset

rfover <- randomForest(y~., data=over)

```
{r}
#install.packages("skimr")
library(skimr)
```

skim(BMarketing)

#### Stats for categorical variables

	skim_variable <chr></chr>	n_missing <int></int>	complete_rate <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	<b>p0</b> <dbl></dbl>	<b>p25</b> <dbl> ▶</dbl>
1	age	0	1	40.0240604	10.4212500	17.000	32.000
2	duration	0	1	258.2850102	259.2792488	0.000	102.000
3	campaign	0	1	2.5675925	2.7700135	1.000	1.000
4	pdays	0	1	962.4754540	186.9109073	0.000	999.000
5	previous	0	1	0.1729630	0.4949011	0.000	0.000
6	emp.var.rate	0	1	0.0818855	1.5709597	-3.400	-1.800
7	cons.price.idx	0	1	93.5756644	0.5788400	92.201	93.075
8	cons.conf.idx	0	1	-40.5026003	4.6281979	-50.800	-42.700
9	euribor3m	0	1	3.6212908	1.7344474	0.634	1.344
10	nr.employed	0	1	5167.0359109	72.2515277	4963.600	5099.100

1-10 of 11 rows | 1-8 of 11 columns

Previous 1 2 Next

```
[1] "age"
 "iob"
 "marital"
 "education"
 "default"
 "Ìoan"
 "month"
 "day_of_week"
[6] "housing"
 "contact"
[11] "duration"
 "previous"
 "poutcome"
 "campaign"
 "pdays"
[16] "emp.var.rate"
 "cons.price.idx" "cons.conf.idx" "euribor3m"
 "nr.employed"
[21] "y"
'data.frame':
 41188 obs. of 21 variables:
$ age
 : int 56 57 37 40 56 45 59 41 24 25 ...
 "housemaid" "services" "services" "admin." ...
$ job
 : chr
 "married" "married" "married" ...
$ marital
 : chr
$ education
 : chr
 "basic.4y" "high.school" "high.school" "basic.6y" ...
$ default
 "no" "unknown" "no" "no" ...
 : chr
 "no" "no" "yes" "no" ...
$ housing
 : chr
 "no" "no" "no" "no" ...
$ loan
 : chr
 "telephone" "telephone" "telephone" "...
$ contact
 : chr
 "may" "may" "may" "may" ...
$ month
 : chr
 "mon" "mon" "mon" "mon" ...
$ day_of_week
 : chr
$ duration
 : int
 261 149 226 151 307 198 139 217 380 50 ...
$ campaign
 : int
 11111111111...
$ pdays
 : int
 999 999 999 999 999 999 999 999 999 ...
$ previous
 : int
 0000000000...
 "nonexistent" "nonexistent" "nonexistent" "nonexistent" ...
$ poutcome
 : chr
$ emp.var.rate : num
 $ cons.price.idx: num
 94 94 94 94 ...
$ cons.conf.idx : num
 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 ...
$ euribor3m
 : num
 4.86 4.86 4.86 4.86 4.86 ...
$ nr.employed
 5191 5191 5191 5191 5191 ...
 : num
```

"no" "no" "no" "no" ...

names(BMarketing) str(BMarketing) #dim(BMarketing)

#dim(BMarketing.na)

BMarketing.na <- na.omit(BMarketing)

: chr

\$ y