

Statistics

Maximum Likelihood Estimate and Linear Regression

Name teacher

Learning objective

After this class you can:

- Apply the Maximum Likelihood Principle in various settings
- Derive the Maximum Likelihood Estimate for model parameters
- Set up a linear regression model and estimates its parameters

Book: Chapters 21 and 22

Statistics

Before this class (week 3.7 lesson 1):

Watch prelecture 'Maximum Likelihood Principle'

Book: Sections 21.1 and 21.2

Programme

Likelihood and loglikelihood

Obtain maximum likelihood estimate

Exercises

Linear Regression

Exercises

Question from prelecture: What is the maximum likelihood estimate for passing probability of men?

- A) 0.375
- B) 0.607
- C) 0.393
- D) 0.647

Feedback Fruits

Consider two dice: die R has 5 red sides and 1 white, die W has 5 white side and 1 red. We choose one die. We throw it until first red appears. This is repeated 2 more times. The results: 3rd throw, 5th throw and 4th throw show first red. Which die do you think we threw?

- Die R
- B) Die W
- Equally likely

Likelihood and maximum likelihood estimate

Definition:

Let x_1, x_2, \ldots, x_n be a realization of a random sample from a distribution characterized by a parameter θ . Distribution is discrete with p.m.f. p_{θ} : the *likelihood* is $L(\theta) = P(X_1 = x_1, \ldots, X_n = x_n) = p_{\theta}(x_1) \cdots p_{\theta}(x_n)$. Distribution is continuous with p.d.f. f_{θ} : the *likelihood* is $L(\theta) = f_{\theta}(x_1) \cdots f_{\theta}(x_n)$.

The maximum likelihood estimate of θ is the value $t = h(x_1, \dots, x_n)$ that maximizes $L(\theta)$. The corresponding random variable $T = h(X_1, \dots, X_n)$ is the maximum likelihood estimator for θ .

Maximum Likelihood Estimate

How to obtain the maximum likelihood estimate for θ ?

- Compute the likelihood $L(\theta)$
- Compute the loglikelihood $\ell(\theta) = \ln(L(\theta))$
- Differentiate $\ell(\theta)$ with respect to θ
- Solve $\ell'(\theta) = 0$: this yields $\hat{\theta}$
- ullet Check whether it is a maximum, e.g. check $\ell''(\hat{ heta}) < 0$
- If this is the case, then $\hat{\theta}$ is the MLE for θ

Example: exponential distribution

Let x_1, \ldots, x_n be a dataset from a $Exp(\lambda)$ distribution.

Then:
$$L(\lambda) = \dots$$
 $\ell(\lambda) = \dots$ $\ell'(\lambda) = \dots$ $\ell'(\lambda) = 0$, if $\lambda = \dots$ $\ell''(\lambda) = \dots$ $\ell''(\hat{\lambda}) = \dots$

Thus
$$\hat{\lambda} = \frac{1}{\bar{\chi}_n}$$
 is MLE for λ .

Two exercises

During WW II many areas of London were hit by German bombs. The following table shows the number of hits in 576 parts (squares Of length ¼ km) of South London:

Number of hits	0	1	2	3	4	5	6	7
Number of squares	229	211	93	35	7	0	0	1

Model the hits by Poisson distribution with parameter μ . Compute the MLE for μ .

Repeat the previous exercise if the data were corrupted:

Number of hits	0 or 1	2	3	4	5	6	7
Number of squares	440	93	35	7	0	0	1

Caution!

The stepwise approach sometimes fails!

Suppose the dataset $x_1 = 0.98$, $x_2 = 1.57$, and $x_3 = 0.31$ is the realization of a random sample from a $U(0, \theta)$ distribution.

Then $L(\theta) = \dots$

Thus $\hat{\theta} = \max\{x_1, x_2, x_3\} = 1.57$

Signal with noise

Let us take a square periodic wave signal x.

Suppose we have two independent white gaussian noise components We receive $y = x + n_1 + n_2$ with $n_1, n_2 \sim N(0, \sigma^2)$.

Signal with noise

Now consider the absolute noise $N = \sqrt{n_1^2 + n_2^2}$ on the signal. This has a so-called Rayleigh distribution with parameter σ !

Its density is given by
$$f_N(x) = \begin{cases} \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

Two Exercises

Let x_1, \ldots, x_n be a dataset from a distribution with density

$$f_{\theta}(x) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

Calculate the likelihood $L(\theta)$ and the maximum likelihood estimate $\hat{\theta}$ for θ .

Estimate the standard deviation in the two noise signals n_1 , $n_2 \sim N(0, \sigma^2)$ when we have the following dataset for the absolute noise:

1.77, 1.78, 1.36, 0.82, 1.06, 1.04, 2.01, 1.06, 0.88, 0.43

Two exercises

Let x_1, \ldots, x_n be a dataset from a distribution with density f_{δ} :

$$f_{\delta}(x) = \begin{cases} e^{-(x-\delta)} & x \ge \delta \\ 0 & x < \delta. \end{cases}$$

Draw the likelihood $L(\delta)$ and determine the MLE for δ .

Let $x_1, ..., x_n$ be a realization of a random sample from a $N(\mu, \sigma^2)$ distributed RV.

Determine the MLE for μ and σ .

Scatterplot

Definition:

If two variables x and y are measured on the same objects, the dataset $(x_1, y_1), \ldots, (x_n, y_n)$ is called a bivariate dataset.

A plot of the points (x_i, y_i) is called a scatterplot.

Two examples:
Mean drill time
versus depth
for "dry" and
"wet" drilling

Regression line

Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a bivariate dataset. Simple linear regression model: Assume that x_1, \ldots, x_n are nonrandom and y_1, \ldots, y_n realizations from random variables $Y_i = \alpha + \beta x_i + U_i$, where U_i ('errors') are independent RVs with $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.

Recall the drilling dataset.

Estimate α_{wet} , β_{wet} , α_{dry} and β_{dry} by eye.

Then:

A)
$$lpha_{
m wet} > lpha_{
m dry}$$
 and $eta_{
m wet} > eta_{
m dry}$

$$lpha_{
m wet} > lpha_{
m dry}$$
 and $eta_{
m wet} > eta_{
m dry}$ B) $lpha_{
m wet} < lpha_{
m dry}$ and $eta_{
m wet} > eta_{
m dry}$

C)
$$lpha_{
m wet} > lpha_{
m dry}$$
 and $eta_{
m wet} < eta_{
m dry}$

$$lpha_{
m wet} > lpha_{
m dry}$$
 and $eta_{
m wet} < eta_{
m dry}$ D) $lpha_{
m wet} < lpha_{
m dry}$ and $eta_{
m wet} < eta_{
m dry}$

MLE for regression line (errors normally distr.)

Suppose the U_i have a $N(0, \sigma^2)$ distribution. Then the Y_i have a $N(\alpha + \beta x_i, \sigma^2)$ distribution.

Using the maximum likelihood procedure we can show that the likelihood $L(\alpha, \beta, \sigma)$ attains its maximum when

$$\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

is minimal. This yields the following MLE estimates:

$$\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n,$$

$$\hat{\beta} = \frac{n\sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n\sum_i x_i^2 - (\sum_i x_i)^2}.$$

Regression line: example

Regression line: example

$$\hat{\alpha} = -976$$

$$\hat{eta}=6648$$

Residuals

How to check whether the U_i have a $N(0, \sigma^2)$ distribution? Consider the residuals $r_i = y_i - \hat{\alpha} - \hat{\beta}x_i$.

The r_i should look like a sample from a normal distribution. Furthermore, a scatterplot of the r_i versus the x_i should not show any trend or pattern.

⇔ Feedback**Fruits**

Consider the following residuals. Is normality reasonable? And do they exhibit any pattern/trend?

- A) Normality reasonable, no trend
- C) Normality reasonable, but trend

- B) Normality not reasonable, no trend
- Normality not reasonable, and trend

Method of least squares

What if the U_i do **not** have a $N(0, \sigma^2)$ distribution? (Of course, still $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.)

Use the *method of least squares*: find α and β such that

$$\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

is minimal. We get the *least squares estimates*:

$$\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n,$$

$$\hat{\beta} = \frac{n\sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n\sum_i x_i^2 - (\sum_i x_i)^2}.$$

NB: they coincide (in case of normality) with the MLE estimates.

Why 'least squares'?

The least squares estimates minimize the sum of the squared distances between the points y_i and their prediction $\alpha + \beta x_i$

Two exercises

Suppose you have the following bivariate dataset

$$(1,3.1), (1.7,3.9), (2.1,3.8)(2.5,4.7), (2.7,4.5).$$

Determine the least squares estimates for the regression line.

You may use that $\sum x_i = 10$, $\sum y_i = 20$, $\sum x_i^2 = 21.84$ and $\sum x_i y_i = 41.61$.

Draw also the scatterplot and regression line in one figure.

Given a bivariate dataset $(x_1, y_1), \ldots, (x_n, y_n)$, consider a regression model without intercept, i.e. assume $Y_i = \beta x_i + U_i$. Derive the least squares estimate for β .

For next class (week 3.8 lecture 1):

Complete MyStatlab assignments and book exercises

Watch prelectures 'Confidence intervals'

Book: 23.1, 23.2, 23.4, 24.1, 24.2, 24.3, 24.4

After this class you can:

- Create and interpret confidence intervals in various settings
- Determine the sample size to achieve a given confidence level

