## Wyznaczanie przyspieszenia ziemskiego metodą spadku swobodnego Informatyka – profil praktyczny, semestr II Wydział Matematyki Stosowanej Politechnika Śląska

Sekcja 5 Erwin Matys, Bartłomiej Maliniecki Kwiecień 2022

#### 1 Obliczenia i wykresy

Obliczenie niepewności typu a (statystycznych) średnich czasów spadania  $u_a(t_{sr})$ .

Aby policzyć niepewności typu a skorzystamy ze wzoru:

$$u_a(t_{sr}) = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - t_{sr})^2} \cdot t_{\alpha,N}.$$

Gdzie:

 $t_{\alpha,N}$  - Współczynnik Studenta Fishera, gdzie za  $\alpha$  przyjmujemy 0.6828, a za N liczbę pomiarów w serii, czyli w naszym przypadku 5.

$$t_{\alpha=0.6828, N=5} = 1.141$$

Po uwzględnieniu wszystkich danych wychodzi nam:

| Lp. | $t_{sr}$ , s | $u_a(t_{sr})$ , s |
|-----|--------------|-------------------|
| 1.  | 0.31900      | 0.00000           |
| 2.  | 0.34850      | 0.00029           |
| 3.  | 0.37600      | 0.00026           |
| 4.  | 0.40325      | 0.00023           |
| 5.  | 0.42825      | 0.00029           |
| 6.  | 0.45225      | 0.00023           |
| 7.  | 0.47300      | 0.00036           |
| 8.  | 0.49450      | 0.00046           |
| 9.  | 0.51575      | 0.00023           |
| 10. | 0.53400      | 0.00026           |

### Obliczenie niepewności typu b pomiaru czasu $u_b(t)$

Aby policzyć niepewność typu b pomiaru czaus  $u_b(t)$  skorzystamy ze wzoru:

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}.$$

Gdzie  $\Delta x = 0.003$  s dla użytego przyrządu.

$$u_b(t) = \frac{0.003}{\sqrt{3}} = 0.0017 \text{ s.}$$

# Obliczenie niepewności całkowitych średnich czasów spadania $u(t_{sr})$ i umieszczenie wyników w tabeli

Do policzenia niepewności całkowitych średnich czasów spadania skorzystamy ze wzoru:

$$u(t_{sr}) = \sqrt{u_a^2(t_{sr}) + u_b^2(t)}$$

Tabelka z danymi:

| Lp. | H, m  | $\sqrt{H}$ , $\sqrt{m}$ | $t_{sr}$ , s | $u(t_{sr})$ , s |
|-----|-------|-------------------------|--------------|-----------------|
| 1.  | 0.500 | 0.707                   | 0.3190       | 0.0017          |
| 2.  | 0.600 | 0.775                   | 0.3485       | 0.0018          |
| 3.  | 0.700 | 0.837                   | 0.3760       | 0.0018          |
| 4.  | 0.800 | 0.894                   | 0.4033       | 0.0017          |
| 5.  | 0.900 | 0.949                   | 0.4283       | 0.0018          |
| 6.  | 1.000 | 1.0                     | 0.4523       | 0.0017          |
| 7.  | 1.100 | 1.049                   | 0.4730       | 0.0018          |
| 8.  | 1.200 | 1.095                   | 0.4945       | 0.0018          |
| 9.  | 1.300 | 1.14                    | 0.5158       | 0.0017          |
| 10. | 1.400 | 1.183                   | 0.5340       | 0.0018          |

## Wykres zależności $t_{sr}$ od H

Dla wykresu przyjmujemy następujące niepewności:

u(H) = 0.003 m

 $\boldsymbol{u}(t_{sr})$  - Niepewności całkowite średnich czasów spadania.



### Wykres zależności $t_{sr}$ od $\sqrt{H}$

Dla wykresu przyjmujemy następujące niepewności:

 $u(t_{sr})$  - Niepewności całkowite średnich czasów spadania.

Aby policzyć niepewność  $u(\sqrt{H})$ musimy użyć prawa przenoszenia niepewności:

$$u(y) = \sqrt{\sum_{i=1}^{k} \left[\frac{\partial y}{\partial x_i} u(x_i)\right]^2}.$$

Dla  $y=\sqrt{H}$ równanie ma postać:

$$u(\sqrt{H}) = \sqrt{\left[\frac{u(H)}{2\sqrt{H}}\right]^2} = \frac{u(H)}{2\sqrt{H}}.$$

Tabelka z danymi:

| Lp. | $\sqrt{H}, \sqrt{m}$ | $u(\sqrt{H}), \sqrt{m}$ |
|-----|----------------------|-------------------------|
| 1.  | 0.7070               | 0.0021                  |
| 2.  | 0.7750               | 0.0019                  |
| 3.  | 0.8370               | 0.0018                  |
| 4.  | 0.8940               | 0.0017                  |
| 5.  | 0.9490               | 0.0016                  |
| 6.  | 1.0000               | 0.0015                  |
| 7.  | 1.0490               | 0.0014                  |
| 8.  | 1.0950               | 0.0014                  |
| 9.  | 1.1400               | 0.0013                  |
| 10. | 1.1830               | 0.0013                  |

Wykres na następnej stronie:



## Wyznaczenie metodą regresji liniowej współczynników prostej $t_{sr}(\sqrt{H})$ wraz z niepewnościami

Aby policzyć współczynniki kierunkowe prostych i wyrazy wolne skorzystamy ze wzorów:

$$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2}, b = \frac{S_{xx} S_y - S_x S_{xy}}{nS_{xx} - S_x^2}$$

Gdzie:

$$S_x = \sum_{i=1}^n x_i, \ S_y = \sum_{i=1}^n y_i, \ S_{xx} = \sum_{i=1}^n x_i^2, \ S_{xy} = \sum_{i=1}^n x_i \cdot y_i$$

Do obliczenia niepewności skorzystamy ze wzorów:

$$u(a) = \sqrt{\frac{n}{n-2} \cdot \frac{S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}, \ u(b) = \sqrt{\frac{1}{n-2} \cdot \frac{S_{xx}S_{\epsilon\epsilon}}{nS_{xx} - S_x^2}}$$

Gdzie:

$$S_{\epsilon\epsilon} = \sum_{i=1}^{n} \epsilon_i^2$$
, dla  $\epsilon_i = y_i - ax_i - b$ 

Po obliczeniach wartości współczynników są równe:

$$a = 0.4500 \frac{s}{\sqrt{m}},$$
  
 $b = -0.00305 \text{ s}.$ 

Wartości niepewności współczynników prostej:

$$u(a) = 0.0015 \frac{s}{\sqrt{m}},$$
  
 $u(b) = 0.00145 \text{ s.}$ 

Postać końcowa:

$$a = 0.4500(15) \frac{s}{\sqrt{m}}, b = -0.00305(145) \text{ s}$$

#### Wyznaczenie przyspieszenia ziemskiego g

Aby wyprowadzić wzór na przyspieszenie ziemskie skorzystamy z równania na drogę w ruchu jednostajnie przyspieszonym:

$$S = S_0 + v_0 t + \frac{1}{2}at^2$$

Przyjmując  $S_0 = 0$  i  $v_0 = 0$  oraz zamieniając drogę S na wysokość H i przyspieszenie a na przyspieszenie ziemskie g otrzymujemy:

$$H = \frac{1}{2}gt^2$$

Przekształcając wzór, w celu wyznaczenia g:

$$g = \frac{2H}{t^2}$$

Współczynnik kierunkowy funkcji  $t_{sr}(\sqrt{H})$  jest równy  $a = \frac{t_{sr}}{\sqrt{H}}$ . Możemy to a podstawić do wzoru na g i otrzymujemy:

$$g = \frac{2}{a^2}$$

Po wstawieniu odpowiednich danych otrzymujemy:

$$g = \frac{2}{0.45^2} = 9.88 \frac{m}{s^2}$$

## Obliczenie niepewności przyspieszenie ziemskiego g korzystając z prawa przenoszenia niepewności

Aby wyliczyć niepewność przyspieszenia ziemskiego g, skorzystamy z prawa przenoszenia niepewności. Przyjmujemy, że niepewność  $u(a)=0.0015\frac{s}{\sqrt{m}}$ . Prawo przenoszenia niepewności wyraża się wzorem:

$$u(y) = \sqrt{\sum_{i=1}^{k} \left[\frac{\partial y}{\partial x_i} u(x_i)\right]^2}$$

Zatem prawo przenoszenia niepewności dla g ma postać:

$$u(g) = \sqrt{\left(\frac{-4}{a^3} \cdot u(a)\right)^2}$$

Po wstawieniu liczb:

$$u(g) = 0.066 \frac{m}{s^2}$$

#### Obliczenie niepewności rozszerzonej

Aby policzyć niepewność rozszerzoną skorzystamy ze wzoru:

$$U(y) = k \cdot u(y).$$

Gdzie:

k - bezwymiarowy współczynnik rozszerzenia. Przyjmujemy k=2. u(y) - niepewność badanej wartości.

Dla g:

$$U(g) = 2 \cdot u(g) = 0.13 \frac{m}{s^2}.$$
  
$$g = 9.88 \pm 0.13 \frac{m}{c^2}.$$

### Obliczenie przyspieszenia ziemskiego dla Gliwic i porównanie wyniku z otrzymaną wartością

Aby policzyć przyspieszenie ziemskie dla danej szerokości geograficznej i wysokości nad poziomem morza, skorzystamy ze wzoru:

$$g_{\varphi} \approx 9.780318(1+0.0053024\sin^2\varphi - 0.0000058\sin^22\varphi) - 3.086\cdot10^{-6}h$$

Gdzie:

 $\varphi$  - szerokość geograficzna [°],

h - wysokość nad poziomem morza  $[\mathrm{m}].$ 

Przyjmując szerokość geograficzną  $\varphi=50.3^\circ$ i wysokość nad poziomem morza h=219m otrzymujemy:

$$g_0 = 9.80 \frac{m}{s^2}.$$

Przeprowadzimy test zgodności otrzymanego g w wyniku doświadczenia z przyspieszeniem ziemskim  $g_0$  dla Gliwic:

Test zgodności ma postać:

$$|y - y_0| < U(y)$$

Wstawiając g i  $g_0$ :

$$|g - g_0| < U(g)$$
$$0.08 < 0.132$$

Co pokazuje, że test zgodności zachodzi dla g zmierzonego przez nas.

### 2 Wnioski

Otrzymane wyniki potwierdziły poprawność wzoru na czas spadku swobodnego.

Co prawda doświadczenia nie wykonaliśmy w próżni, ale masa naszej kulki była na tyle duża, a jej rozmiar i odległość z jakiej ją zrzucaliśmy na tyle małe, a że mogliśmy zaniedbać opory powietrza.