Diversification

Asset return characteristics

Buy an asset (e.g. a stock) at t = 0 at price P_0 . At time t = 1,

- its cash flow (dividend) is D_1 , and
- its price is P_1

(both are random variables). The risk-free rate is

Realized return:
$$r_1 = \frac{D_1 + P_1}{P_0} - 1$$
 Returns comes

from both dividends and capital gains.

Expected return:
$$E[r_1] = \frac{E[D_1] + E[P_1]}{P_0} - 1$$

Excess return: (realized) $r_1 - r_F$

Risk premium: (expected excess return)

$$E[r_1] - r_F$$

Mean (average) return:
$$\bar{r} = E[r] = \frac{1}{T} \sum_{t=1}^{T} r_t$$

Would be same as the expected return $E[r_t]$ if expected returns are constant for all t.

Options

Options: Derivative contracts specifying a right to buy (call option) or sell (put option) an underlying asset at a specified price K (the strike/exercise price) on or before a specified date T (the expiration/maturity date).

- Call option:: right to buy the underlying asset at the strike price.
- Put option:: right to sell the underlying asset at the strike price.

Exercise style:

- American option:: can be exercised at any time before expiration.
- European option:: can only be exercised at expiration.

Option Payoff curves

• S: Price of the underlying asset at expiration

- K: Strike price of option
- Payoff # Profit. To get profit (net payoff), need to subtract the option's cost.

Payoff of buying a Call $\max(0, S - K)$

Payoff of buying a Put Payoff of selling a Put

Payoff curves of other assets that can be used with options:

Payoff of underlying asset

Payoff of a \$100 FV ZC Bond

Option payoff and profit

- r: Risk-free interest rate (EAR)
- C: Call option price
- P: Put option price

Call option:

•	S < K	S = K	S > K
Payoff	0	0	S - K
Profit	$-C(1+r)^T$	$-C(1+r)^T$	S - K - C(1+r)

Put option:

Payoff $K-S$ 0 $Profit K-S-P(1+r)^T -P(1+r)^T -$	$\frac{0}{P(1+i)}$