MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome: Gabriel Haruo Hanai Takeuchi Número USP: 13671636

Assinatura

Gabriel Haruo Hanai Takeuchi

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E51 Data: 19/10/22

SOLUÇÃO

It is supposed that $H_n^2 = NI_N$ for all n.

Let's prove $v_i (1 \le i \le N)$ form a basis for \mathbb{R}^N .

Let's prove $\operatorname{Span}(v_i) = \mathbb{R}^N$.

If exists $[\alpha_1, \ldots, \alpha_N] \in \mathbb{R}$ such that $[\alpha_1, \ldots, \alpha_N] \cdot [v_1, \ldots, v_N]$ generate the standard vectors of \mathbb{R}^N , then $\mathrm{Span}(v_i) = \mathbb{R}^N$.

Let g_i be a standard generator of \mathbb{R}^N with a 1 in position i. For all i such that $1 \leq i \leq N$,

$$H_{n} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{N} \end{bmatrix} = g_{i}$$

$$H_{n}H_{n} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{N} \end{bmatrix} = H_{n}g_{i}$$

$$NI_{N} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{N} \end{bmatrix} = v_{i}$$

$$\begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{N} \end{bmatrix} = \frac{1}{4}v_{i}$$

$$\begin{bmatrix} \alpha_{N} \end{bmatrix} = \frac{1}{4}v_{i}$$

Therefore, all standard generators for \mathbb{R}^N can be obtained through a linear combination of v_i 's. Since the cardinality of set $\{v_1, \ldots, v_N\}$ equals to the cardinality of the set of the standard base and $\mathrm{Span}(v_i) = \mathbb{R}^N$, then $\{v_1, \ldots, v_N\}$ is linearly independent (assumed by the Teorema 6.1.3 from Yoshi's notes).