Основы глубинного обучения

Лекция 4

Свёрточные сети. Оптимизация в глубинном обучении.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2022

- Возьмём пиксель в итоговом изображении (после свёрточных слоёв)
- От какой части входного изображения зависит значение в этом пикселе?

Поле восприятия: 3 х 3

Поле восприятия: 5 х 5

Поле восприятия для свёртки 3 х 3:

- После 1 свёрточного слоя: 3 х 3
- После 2 свёрточных слоев: 5 х 5
- После 3 свёрточных слоёв: 7 х 7

Поле восприятия для свёртки 5 х 5:

Поле восприятия: 5 х 5

Поле восприятия для свёртки 5 х 5:

- После 1 свёрточного слоя: 5 х 5
- После 2 свёрточных слоев: 9 х 9
- После 3 свёрточных слоёв: 13 х 13

Нужно очень много слоёв, если изображение размера 512 х 512

Свёртки с пропусками (strides)

Свёртки с пропусками (strides)

Поле восприятия: 7 х 7

Свёртки с пропусками (strides)

Подробности про подсчёт размера поля:

https://distill.pub/2019/computing-receptive-fields/

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Pooling

1	0	2	1	0	0					
0	1	3	2	1	2			1	3	2
							_		3	
							7			

Pooling

- Разбивает изображение на участки $n \times m$ и считает некоторую статистику в каждом участке (обычно максимум)
- Существенно сокращает размер изображения (значит, увеличивает поле восприятия следующих слоёв)
- Не имеет параметров

Зачем это всё?

• Важно следить за тем, чтобы последние свёрточные слои имели размер поля восприятия, сравнимый со всей картинкой

Padding

Свёртки

• Если применять свёртку по формуле, то выходное изображение будет меньше входного

Свёртки

Valid mode

• При честном подсчёте свёрток пиксели на краях не оказывают большого влияния на результат

Zero padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Zero padding

- Добавляем по границам нули так, чтобы посчитанная после этого свёртка в valid mode давала изображение такого же размера, как исходное
- Есть риск, что модель научится понимать, где на изображении края можем потерять инвариантность

Reflection padding

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

*

Reflection padding

- Не получится легко находить края изображения
- Но теперь модель может начать находить зеркальные отражения и подбирать фильтры под них

Replication padding

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

*

Replication padding

• Пиксель на границе равен ближайшему пикселю из изображения

• Модель всё ещё может настроиться под паттерны, которые возникают из-за такого паддинга

Резюме

- Паддинг позволяет контролировать размер выходных изображений
- Паддинг позволяет учитывать даже объекты на краях
- Разные типа паддингов допускают разные способы переобучения под края

Структура свёрточных сетей

Свёрточный слой

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_t(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_t \right)$$

Типичная архитектура

Типичная архитектура

- Последовательное применение комбинаций вида «свёрточный слой -> нелинейность -> pooling» или «свёрточный слой -> нелинейность»
- Выпрямление (flattening) выхода очередного слоя
- Серия полносвязных слоёв

LeNet

AlexNet

Представления с последних слоёв

- Важное наблюдение: выходы полносвязных слоёв являются хорошими признаковыми описаниями изображений
- Полезны во многих задачах
- Например, поиск похожих изображений

- Не интерпретируется (в отличие от классического компьютерного зрения)
- По смыслу «индикаторы» наличия каких-то паттернов

Layer 1

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если ошибка на тестовой выборке перестаёт убывать

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i,1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i,d} (\langle w, x \rangle - y_i)$$

Сложности градиентного спуска

- Для вычисления градиента, как правило, надо просуммировать что-то по всем объектам
- И это для одного маленького шага!

Оценка градиента

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i))$$

• Градиент:

$$\nabla Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \nabla L(y_i, a(x_i))$$

• Может, оценить градиент одним слагаемым?

$$\nabla Q(w) \approx \nabla L(y_i, a(x_i))$$

1. Начальное приближение: w^0

2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \eta \nabla L \left(y_{i_t}, a(x_{i_t}) \right)$$

3. Останавливаемся, если ошибка на тестовой выборке перестаёт убывать

Градиентный спуск

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \frac{\eta_{t}}{\eta_{t}} \nabla L \left(y_{i_{t}}, a(x_{i_{t}}) \right)$$

3. Останавливаемся, если ошибка на тестовой выборке перестаёт убывать

- Оценка по одному объекту несмещённая
- То есть в среднем мы идём в правильную сторону

- Даже в точке оптимума оценка по одному объекту вряд ли будет нулевой
- Поэтому важно, чтобы длина шага стремилась к нулю

• Сходимость к глобальному минимуму гарантируется только для выпуклых функций

$$\eta_t = \frac{0.1}{t^{0.3}}$$

