

UNIVERSITY OF BARISHAL

EDGE BU CSE Digital Skills Training

Project TOPIC: Grocery Store Management System

COURSE TITLE: Database

Submitted to:

Md. Samsuddoha

Assistant Professor

Dept. of Computer Science & Engineering

University of Barishal

Submitted by:

Redwan Ashad

SL NO-01

Date of submission: 07.06.24

Introduction:

An Entity-Relationship (ER) Diagram is a graphical representation that illustrates the relationships between entities (real-world objects or concepts) in a database system. It provides a visual blueprint for the database structure, making it easier to understand and design. Steps of Drawing ERD-

- 1. Identify the Entities Required
- 2. Identify the Attributes and Primary key for each Entity
- 3. Identify the Relationship needed
- 4. Identify the Cardinality Ratio and Participation
- 5. Draw the Diagram

Designing a database for Grocery Store Management System consider the following requirements-

Step-1&2: Identifying the Entities Required, the Attributes and Primary key for each Entity-

- 1. product (**product_id**, product_name, description, unit_price, quantity)
- 2. customer (customer_id, customer_name, phone, address)
- 3. supplier (supplier_id, supplier_name, address, phone, email)
- 4. employee (employee_id, employee_name, job_title, joining_date, phone, address)
- 5. bill (bill_id, quantity, sale_date, total_bill)
- 6. branch (**branch_id**, phone, address)
- 7. stockout_products (stockout_products_id, required_quantity)
- 8. dateexpired_products (dateexpired_products_id, expiry_date)
- 9. online_orders (**Online_orders_id**, quantity, order_date)
- 10. delivery_boy_id, name, phone)
- 11. expenses (**expenses_id**, electricity_bill, water_bill, salary)
- 12. shift (**shift_id**, duty_time, employee_id)

Step-3: Identifying the Relationship needed-

- 1. Product-belongs to- supplier
- 2. Customer-has-bill
- 3. Product-has-bill
- 4. Product-has-stockout_products
- 5. Product-has-dateexpired_products

- 6. Product-has- online_orders
- 7. Employee- assigned to- shift
- 8. Employee- assigned to- branch
- 9. Expenses-belongs to- branch

Step-4: Identifying the Cardinality Ratio and Participation-

1. Product-belongs to- supplier

2. Customer-has-bill

3. Product-has-bill

4. Product-has- stockout_products

5. Product-has-dateexpired_products

6. Product-has- online_orders

7. Employee- assigned to- shift

8. Employee- assigned to- branch

9. Expenses-belongs to- branch

Step-5: Drawing the Diagram-

Reduction to database schema-

- 1. product (**product_id**, product_name, description, unit_price, quantity)
- 2. customer (**customer_id**, customer_name, phone, address)
- 3. supplier (supplier_id, supplier_name, address, phone, email, product_id)
- 4. product_supplier (ps_id, product_id, supplier_id)
- 5. employee (employee_id, employee_name, job_title, joining_date, phone, address, branch_id)
- 6. bill (**bill_id**, quantity, sale_date, total_bill, product_id, customer_id)
- 7. branch (**branch_id**, phone, address)
- 8. stockout_products (stockout_products_id, product_id, required_quantity)

- 9. dateexpired_products (dateexpired_products_id, product_id, expiry_date)
- 10. online_orders (**Online_orders_id**, quantity, order_date, product_id)
- 11. delivery_boy_id, name, phone)
- 12. expenses (expenses_id, electricity_bill, water_bill, salary, branch_id)
- 13. shift (**shift_id**, duty_time, employee_id, branch_id)

Schema-

