QCM 5

Durée: 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

Bon courage!

1. Parmi les croissances comparées suivantes, lesquelles sont vraies?

$$(1)^{\square}$$
 $(\ln x)^3 = o(\frac{1}{x^4})$ $(2)^{\square}$ $\ln x = o(x^{-2})$
 $(3)^{\square}$ $x = o(\ln x)$ $(4)^{\square}$ $x^2 = o(e^{-x})$

(5)□ aucune des réponses précédentes n'est correcte.

2. Soit f une fonction telle que $\forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ |x - a| \leq \delta \Rightarrow f(x) \geqslant A$. Alors on a :

$$\lim_{x\to A} f(x) = a \qquad \text{(2)} \square \lim_{x\to \delta} f(x) = +\infty \qquad \text{(3)} \square \lim_{x\to a} f(x) = A$$

$$\lim_{x\to a} f(x) = +\infty \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

3. Parmi les équivalentes suivantes, lesquelles sont vraies?

f est dominée par g au voisinage de a si f/g est borné au voisinage de a.

(3) Si $f \sim g$ et $h \sim g'$, alors $f + h \sim g + g'$ (3) Si $f \sim g$, alors f = O(g) et g = O(x)

Si deux fonctions ont la même limite en a, elles sont équivalentes au voisinage de a. (4)

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

4. La valeur de la limite $\lim_{x \to -\infty} \frac{x+2}{ x -2}$ est							
(1)	0 (2)	□ -1	(3)□ 1	(4)	$+\infty$ (5))□	aucune des réponses précédentes n'est correcte.
F TT 1	^						

- 5. Un polynôme est équivalent à
 - $_{(1)}\square$ son terme de plus bas degré au voisinage de 0.
 - $_{(2)}\square$ son terme de plus haut degré au voisinage de 0.
 - (3) son terme de plus bas degré au voisinage de $\pm \infty$.
 - $_{(4)}\square$ son terme de plus haut degré au voisinage de $\pm \infty$.
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
 - 6. Parmi les affirmations suivantes lesquelles sont vraies?

$$\lim_{x \to 0} \frac{\sin(2x)}{1 - e^{2x}} = -1 \qquad \text{(2)} \quad \lim_{x \to 0} \frac{\sin(2x)}{\sqrt{1 - 2x}} = -1 \qquad \text{(3)} \quad \lim_{x \to 0} \frac{\sin(2x)}{1 - \sqrt{1 - 2x}} = -1 \\ \text{(4)} \quad \lim_{x \to 0} \frac{\sin^2(2x)}{1 - \cos(2x)} = 2 \qquad \text{(5)} \quad \text{aucune des réponses précédentes n'est correcte.}$$

7. Soit $f(x) = x^{1/3} \ln^3(x)$. On peut écrire que ...

$$\lim_{x\to 0^+} f(x) = -\infty \qquad \text{(2)} \square \quad \lim_{x\to 0^+} f(x) = 0 \qquad \text{(3)} \square \quad x^{1/3} = o(\ln^3(x)) \qquad \text{(4)} \square \quad \ln^3(x) = o(x^{1/3})$$

- 8. La valeur de la limite $\lim_{x\to-\infty}\frac{-2x^3+x^2+1}{x^2-4x+3}$ est ... $(1)\square \quad 0 \qquad (2)\square \quad -\infty \qquad (3)\square \quad +\infty \qquad (4)\square \quad -2$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 9. La valeur de la limite $\lim_{x\to 1} \frac{-2x^3+x^2+1}{x^2-4x+3}$ est ...
 - $_{(1)}\square$ $\stackrel{0}{_0}$ $_{(2)}\square$ -2 $_{(3)}\square$ 2 $_{(4)}\square$ Cette fraction rationnelle n'admet pas de limite en -1.
- 10. Soit $f(x) = \frac{1}{2+x} + \frac{4}{x^2-4}$ et \tilde{f} son prolongement s'il existe. Parmi les affirmations suivantes lesquelles sont vraies?
 - f(x) est prolongeable par continuité en x=2 et $\tilde{f}(2)=+\infty$
 - f(x) n'est pas prolongeable par continuité en x=2
 - f(x) est prolongeable par continuité en x=-2 et $\tilde{f}(-2)=-\frac{1}{4}$
 - f(x) n'est pas prolongeable par continuité en x=-2
 - (5) aucune des réponses précédentes n'est correcte.
- 11. La valeur de la limite $\lim_{x\to+\infty} \frac{1}{\sqrt{x+1}-\sqrt{x-1}}$ est ...
 - ${}_{(1)}\square \quad 0 \qquad {}_{(2)}\square \quad 1 \qquad {}_{(3)}\square \quad -\infty \qquad {}_{(4)}\square \quad +\infty \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$

- 12. Parmi les affirmations suivantes, lesquelles sont vraies?
 - Au voisinage de $\pm \infty$, un polynôme est équivalent à son terme de plus haut degré. (1)
 - Au voisinage de 0, un polynôme est équivalent à son terme de plus bas degré.
 - $_{(3)}\square$ Si f(x) = o(g(x)) alors $f(x) + g(x) \sim f(x)$
 - $f(x) \sim g(x) \Leftrightarrow f(x) g(x) \sim 0$ (4)
 - aucune des réponses précédentes n'est correcte. (5)
- 13. Parmi les limites suivantes lesquelles sont vraies?

$$\lim_{x \to 0} \frac{e^x - \cos(x) - \sin(x)}{x^2} = 1 \qquad \text{(2)} \square \lim_{x \to 0} \frac{e^x - \cos(x) - \sin(x)}{x^2} = -1$$

$$\lim_{x \to 0} \frac{\ln(x)}{x^2 - 1} = +\infty \qquad \text{(4)} \square \lim_{x \to 0} \frac{e^x - \cos(x) - \sin(x)}{x^2} = +\infty \qquad \text{(5)} \square \lim_{x \to 0} \frac{\ln(x)}{x^2 - 1} = 1$$

- 14. Soit f une fonction continue sur \mathbb{R} telle que f(-1) = 1, f(1) = 1, f(3) = -1. Quelle(s) affirmation(s) est(sont) correcte(s)?

 - f est constante $\sup[-1,1]$ f est paire $\operatorname{car} f(-1) = f(1)$
 - \square (3) f s'annule sur[1,2]
 - f est décroissante sur[1, 3]
 - aucune des réponses précédentes n'est correcte.
 - 15. Soient f et g deux fonctions définies au voisinage de a et ne s'annulant pas au voisinage de a (sauf à la rigueur en a). On dit que f et g sont équivalentes au voisinage de a si

 - $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ $\lim_{x \to a} f(x) = g(x)\varepsilon(x) \text{ avec } \lim_{x \to a} \varepsilon(x) = 0$ $\lim_{x \to a} f(x) = g(x)\varepsilon(x) \text{ avec } \lim_{x \to a} \varepsilon(x) = 1$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 16. Soient f et g deux fonctions définies au voisinage de $a \in \mathbb{R}$ et ne s'annulant pas au voisinage de a. On suppose que $\lim_{x\to a} \frac{f(x)}{g(x)} = l$. Cocher la(les) affirmation(s) correcte(s)

 - $\begin{array}{ll} \text{Si } l = +\infty \text{ alors } \lim_{x \to a} g(x) = 0 \\ \text{(2)} \square & \text{Si } l = +\infty \text{ alors } g(x) = o(f(x)) \\ \text{(3)} \square & \text{Si } l = 1 \text{ alors } g(x) = O(f(x)) \\ \text{(4)} \square & \text{Si } l = 1 \text{ alors } f(x) = O(g(x)) \text{ et } f(x) \underset{a}{\sim} g(x) \\ \text{(5)} \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$