Assignment_08

Zhang Huakang | D-B92760-6

- 2.
- a) finite
- b) countable infinite

$$f(x)=-2k-1, k\in\mathbb{N}$$

- c) finite
- d) uncountable
- e) countable infinite

	1	2	3	4	***	n
2	(2,1)	(2,2)	(2,3)	(2,4)		(2,n)
3	(3,1)	(3,2)	(3,3)	(3,4)		(3,n)

(f) countable infinite

$$f(x)=10k, k\in\mathbb{Z}$$

12.

Proof:

 $Bacause \ A \subset B$

Let
$$f:A o B, f(x)=x$$

So, f is a one to one function.

$$|So, |A| \leq |B|$$

20.

Proof:

Let
$$f: A \rightarrow B, g: B \rightarrow C$$

 $f\ and\ g\ are\ one\ to\ one\ and\ onto\ functions$

$$Let \ h:A\to C, h=g\circ f$$

 $So,h\ is\ one\ to\ one\ and\ onto\ function$

$$So, |A| \leq |C|$$

$$Let \ q:C \rightarrow B, p:B \rightarrow A$$

 $q\ and\ p\ are\ one\ to\ one\ and\ onto\ functions$

$$Let \ m:A \rightarrow C, m=p \circ q$$

 $So, m \ is \ one \ to \ one \ and \ onto \ function$

$$|So, |C| \leq |A|$$

$$So, |A| = |C|$$