A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: August 29, 2016

Homework B.16

For the inner loop of the inverted pendulum, use the Matlab bode command to create a graph that simultaneously displays the Bode plots for (1) the plant, and (2) the plant under PD control, using the control gains calculated in Homework B.10.

- (a) To what percent error can the closed loop system track the desired input if all of the frequency content of $\theta_r(t)$ is below $\omega_r = 1.0$ radians per second?
- (b) If all of the frequency content of the sensor noise on the inner n(t) is greater than $\omega_{no} = 200$ radians per second, what percentage of the noise shows up in the output signal θ ?

For the outer loop of the inverted pendulum, use the Matlab bode command to create a graph that simultaneously displays the Bode plots for the plant, and the plant under PID, using the control gains calculated in Homework B.10.

(c) If the reference signal $y_r(t)$ has frequency content below $\omega_r = 0.001$ radians/second, what is the tracking error under PID control if $|r(t)| \le 50$?

Solution

(a) The Bode plot of the plant P(s), and the loop gain with PD control $P(s)C_{PD}(s)$ are shown in Figure 1.

Figure 1: Bode plot for inner loop of the inverted pendulum, plant only, and under PD control.

From Figure 1 we see that below $\omega_r = 1.0 \text{ rad/sec}$, the loop gain is above $B_r = 4 \text{ dB}$. Therefore, from Equation (16.5) we have that

$$|e(t)| \leq \gamma_r |r(t)|,$$

where $\gamma_r = 10^{-4/20} = 0.63$, which implies that the tracking error will be 63% of the magnitude of the input.

- (b) For noise greater than $\omega_{no} = 200 \text{ rad/sec}$, we see from Figure 1 that $B_n = 45 \text{ dB}$. Therefore, $\gamma_n = 10^{-45/20} = 0.0056$ which implies that 0.56% of the noise will show up in the output signal.
- (c) The Bode plot of the outer loop P(s), and the loop gain with PID control $P(s)C_{PID}(s)$ is shown in Figure 2.

Figure 2: Bode plot for outer loop of the inverted pendulum, plant only, and under PID control.

From Figure 2 it can be seen that the loopgain under PID control for the outer loop is above $B_r = 120$ dB for all $\omega < \omega_r = 0.001$ radians/second. Therefore, from Equation (16.5) the tracking error satisfies

$$|e(t)| \leq \gamma_r |r(t)|,$$

where $\gamma_r = 10^{-120/20} = 1.0e - 06$. Therefore, if $|r(t)| \le 50$, then $|e(t)| \le 50e - 06$.