

WHAT IS CLAIMED IS:

1. A digital-to-analog converter for converting a digital signal to an analog signal comprising:

5 a modulator for applying Delta-Sigma modulation to the digital signal to generate a code sequence;

 a first post-filter having a first-order attenuation characteristic of performing low-pass filtering to the code sequence;

10 a second post-filter having another first-order attenuation characteristic of performing low-pass filtering to an output signal from said first post-filter, and for outputting the processed analog signal; wherein

15 said first and second post-filters have different cutoff frequencies.

2. The digital-to-analog converter according to claim 1, wherein the cutoff frequency of said first post-filter is set in a frequency range between the cutoff frequency of said second post-filter and a maximum frequency at which the attenuation of 20 said second post-filter reaches a predetermined value of attenuation.

3. The digital-to-analog converter according to claim 2, wherein the cutoff frequency of said first post-filter is set in a frequency range of 20 to 30kHz, and the cutoff frequency of said 25 second post-filter is set in a frequency range of 2 to 3 kHz.

4. The digital-to-analog converter according to claim 1, wherein each of said first and second post-filters is a first-order

analog low-pass filter composed of a resistor and a capacitor.

5. The digital-to-analog converter according to claim 4,
wherein said resistor composing said first post-filter is connected
to an output of said modulator and is fabricated in a semiconductor
5 integrated circuit device together with said modulator.

6. The digital-to-analog converter according to claim 1,
further comprising:

an impedance converter connected to a subsequent stage of
said second post-filter, to convert impedance of the analog signal
10 being output from said second post-filter.

7. The digital-to-analog converter according to claim 6,
further comprising:

voltage dividing resistors for dividing a voltage of the
analog signal being output from said impedance converter.

15 8. The digital-to-analog converter according to claim 5,
wherein said semiconductor integrated circuit device is provided
with an FM receiving section placed at a preceding stage of said
modulator.

9. The digital-to-analog converter according to claim 8,
20 wherein said FM receiving section comprises an RF amplifier, a
frequency converter, an A/D converter, a frequency discriminator
and a matrix circuit to generate a detected signal from a received
signal.