湛江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 38——等差数列与等比数列性质 3

学号: _______姓名: ______

一、单选题

1. 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{1}{1-a}$,若 $a_1 = \frac{1}{2}$,则 $a_{100} = ($)

- A. -1
- B. $\frac{1}{2}$ C. 1

2. 记首项为 **1** 的数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $n \ge 2$ 时, $a_n(2S_n-1)=2S_n^2$,则 S_{10} 的值为(

- **A.** $\frac{1}{10}$
- B. $\frac{1}{13}$ C. $\frac{1}{16}$ D. $\frac{1}{19}$

3. 在数列 $\{a_n\}$ 中, $a_n = n + \frac{25}{n}$,则 $|a_1 - a_2| + |a_2 - a_3| + \dots + |a_{24} - a_{25}| = ($)

4. 已知数列 $\{a_n\}$ 的前n项和为 S_n ,且 $a_na_{n+1}<0$, $a_nS_n=c>0$, $n\in \mathbb{N}^*$,则(

- **A.** $|a_2| < |a_3| < |a_4|$ **B.** $|a_3| < |a_2| < |a_4|$ **C.** $|a_3| < |a_4| < |a_2|$ **D.** $|a_4| < |a_3| < |a_2|$

5. 已知数列 $\{a_n\}$ 满足 $\{a_{n+1}-1\}$ $\{a_n-1\}=3$ $\{a_n-a_{n+1}\}$, $a_1=\frac{5}{2}$, 设 $c_n=2^n\left(\frac{2a_n}{n+4}-\lambda\right)$, 若数列 $\{c_n\}$ 是单调递减数列,

则实数λ的取值范围是(

A.
$$\left(\frac{1}{6}, +\infty\right)$$
 B. $\left(\frac{1}{3}, +\infty\right)$ C. $\left(\frac{1}{2}, +\infty\right)$ D. $(1, +\infty)$

6. 已知无穷递减实数列 $\{a_n\}$ 满足 $a_1=1$,则下列可作为 $\{a_n\}$ 递推公式 $(n \in N^*)$ 的是()

- **A.** $a_{n+1} = \sin a_n$ **B.** $a_{n+1} = \cos a_n$ **C.** $a_{n+1} = 2^{a_n}$ **D.** $a_{n+1} = \log_2 a_n$

7. 已知 $n \in N^+$,若数列 $\{a_n\}$ 的前 n 项和是 $S_n = \left(\frac{1}{2}\right)^n - 2$,设 $b_n = -\log_2\left(-a_n\right)$,设 $T_n = \frac{1}{b_1b_2} + \frac{1}{b_2b_2} + L + \frac{1}{b_2b_{2+1}}$,当且

仅当 $n \ge 5$ 时,不等式 $T_n \ge t$ 成立,则实数t的范围为(

- **A.** $\left(\frac{4}{5}, \frac{5}{6}\right]$ **B.** $\left(-\infty, \log_{\frac{4}{5}} 2 + \frac{1}{3}\right]$ **C.** $\left(-\infty, \frac{5}{6}\right]$ **D.** $\left(\log_{\frac{4}{5}} 2 + \frac{3}{10}, \log_{\frac{4}{5}} 2 + \frac{1}{3}\right]$

8. 已知数列 $\{a_n\}$ 的各项均不为零, $a_1=a$,它的前n项和为 S_n . 且 a_n , $\sqrt{2S_n}$, a_{n+1} ($n\in \mathbb{N}^*$)成等比数列,记

$$T_n = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_n}$$
, \mathbb{Q} ()

A. 当a=1时, $T_{2022}<\frac{4044}{2023}$

- B. 当a=1时, $T_{2022} > \frac{4044}{2023}$
- **C.** $\triangleq a = 3$ **ff**, $T_{2022} > \frac{1011}{1012}$
- D. 当a=3时, $T_{2022}<\frac{1011}{1012}$

二、多选题

- 9. 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $S_2 = 4a_1$, a_2 是 $a_1 + 1$ 与 $\frac{1}{2}a_3$ 的等差中项,数列 $\{b_n\}$ 满足 $b_n = \frac{a_n}{S_n \cdot S_{n+1}}$,数 $M_{n}^{\{b_{n}\}}$ 的前 n 项和为 T_{n} ,则下列命题正确的是(
- A. 数列 $\{a_n\}$ 的通项公式为 $a_n = 3^{n-1}$
- **B.** $S_n = 3^n 1$
- **c.** 数列 $\{b_n\}$ 的通项公式为 $b_n = \frac{2 \times 3^n}{(3^n 1)(3^{n+1} 1)}$ **D.** T_n 的取值范围是 $\left[\frac{1}{8}, \frac{1}{6}\right]$
- **10.** 已知等差数列 $\{a_n\}$ 的前n项和为 S_n ,且满足 $a_{2022}>0$, $a_{2021}+a_{2022}<0$,则(
- A. 数列 $\{a_n\}$ 是递增数列

B. 数列 $\{S_n\}$ 是递增数列

 $C. S_n$ 的最小值是 S_{2021}

- **D.** 使得 S_n 取得最小正数的n=4042
- **11.** 已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\frac{(n+1)a_n}{a_n+2n}$,对于任意 $n\in N^*$, $a\in [-2$,2],不等式 $\frac{3n}{a_n\cdot 2^n}<2t^2+at-1$ 恒成立,则t的 取值可以是(
- A. 1
- B. 2
- c. $\frac{3}{2}$
- 12. 设等差数列 $\{a_n\}$ 的前n项和为 S_n ,公差为d. 已知 $a_3=12$, $S_{10}>0$, $a_6<0$,则()
- A. 数列 $\left\{ \frac{S_n}{a} \right\}$ 的最小项为第6项
- **B.** $-\frac{24}{5} < d < -4$

c. $a_5 > 0$

D. $S_n > 0$ 时,n的最大值为5

三、填空题

- **13**. 已知等差数列 $\{a_n\}$, $\{b_n\}$ 的前n项和分别为 S_n , T_n ,若 $\frac{S_n}{T_n} = \frac{3n-1}{2n+3}$,则 $\frac{a_9}{b_{11}} = \underline{\hspace{1cm}}$
- **14**. 已知 S_n 是数列 $\{a_n\}$ 的前n项和, $a_{n+1}-3a_n+2a_{n-1}=1$, $a_1=1$, $a_2=4$,求数列 $\{a_n\}$ 的通项公式______
- **15**. 已知数列 $\{a_n\}$ 满足: $a_n=1$, $a_n=2a_{n-1}+2^{n-1}$ ($n\geq 2$, $n\in N$), 则 $a_n=$ ______.
- **16.** 数列 $\{a_n\}$ 的前n项和 $S_n = 2^n 1$, $n \in \mathbb{N}^*$.设 $b_n = a_n + (-1)^n a_n$,则数列 $\{b_n\}$ 的前2n 项和 $T_{2n} =$ _______
- **17.** 数列 $\{a_n\}$ 满足 $\frac{1}{a_{n+2}} = \frac{2}{a_{n+1}} \frac{1}{a_n}, a_1 = 1, a_5 = \frac{1}{9}$,则 $a_{100} =$ ______.
- **18.** 设 S_n 为数列 $\{a_n\}$ 的前n 项和, $2a_n a_{n-1} = 3 \cdot 2^{n-1} (n \ge 2)$,且 $3a_1 = 2a_2$.记 T_n 为数列 $\left\{\frac{1}{a_n + S_n}\right\}$ 的前n 项和,若对任

意 $n \in \mathbb{N}^*$, $T_n < m$,则m的最小值为______