

Structural Features of the Circulation

Professor Deepthi de Silva Department of Physiology

Blood vessels- Basic structure

- Three layers differences between vessels
 - >Tunica intima

Tunica Intima

- Vascular endothelium
 - Secretory function
 - Respond to chemicals in blood
 - Able to respond to changes in flow, stretch

• Elastic fibres (Internal elastic lamina)

Tunica Media

- Smooth muscle in circular arrangement
- Contain Ca⁺⁺, K⁺ and Cl⁻ channels
- Revise contractile mechanism
- Contraction- reduces vessel diameter
 - 'constriction'
- Relaxation- increases vessel diameter
 - 'dilatation'

Tunica adventitia

- External elastic lamina and Collagen fibres
- Prevents overstretching of vessel

Elastic arteries

- E.g. aorta, brachial artery
 - Elastin in internal and external elastic lamina
- Recoil ability-
 - In systole vessel stretches and stores energy and this is released in diastole
 - Stretch- causes energy to be stored and released when the force stretching it is released
- Collagen fibres in media and adventitia prevent over stretching

Elastic Arteries

The Pulse

- Wave of pressure travelling along arteries at systole
 - Causes a palpable expansion of the vessel

Velocity greater than the flow rate for blood

 Pulse weak in shock; strong when stroke volume is high [exercise, anxiety]

Muscular Arteries

- More smooth muscle / less elastin, collagen than elastic arteries
- Transport function
- Resting tone
 - Smooth muscle partially contracted under normal resting conditions

Arterioles

- Main importance in regulating the resistance in the circulation
 - Resistance vessels
- Arteriolar constriction (vasoconstriction)
 - Increase resistance
- Arteriolar dilatation (vasodilatation)
 - Reduce resistance

Flow = <u>Pressure</u> Resistance

Velocity = <u>Flow</u> Area

Capillaries

- Single layer of endothelial cells
 - No smooth muscle/ collagen/ elastin
 - Large total surface area
- Function as exchange vessels
 - Substances moved in and out of the circulation
- Pericytes surrounding endothelium-
 - Contractile
 - Secrete substances
 - Regulate flow between endothelial cells

Continuous capillary

- Passage of molecules
 <10nm between
 endothelial cells
- Vesicular transport
- E.g. In muscles

Fenestrated capillary

- Holes with thin membrane cover
- 20-100nm molecules
- GIT, endocrine organs
- Liver- no membrane; large particles can cross

Microcirculation

Blood from metarterioles pass via a tiny sphincter 'precapillary sphincter'

• 5 μm –arterial end and 9 μm at venous end- allows a single red cell to pass in a thimble shape

Collecting venules and veins

- Collecting vessels- single layer of smooth muscle & converge to form veins
- Veins: less thickness than arterial system
- Large veins have valves
 - aid return of blood to heart

Veins- Capacitance vessels

- Can distend with blood act as capacitance vessels (reservoirs)
 - Veins can increase volume without a rise in the pressure
 - With excessive stretching of veins (e.g. heart failure), their pressure rises

- Contraction of veins increases venous return to heart
 - Aided by the muscle and respiratory pumps

Characteristics of Blood vessels

Vessel	Lumen diameter	Wall Thickness	Cross sectional area (Total) cm ²	% of blood contained
Aorta	2.5cm	2mm	4.5	2
Artery	0.4cm	1mm	20	8
Arteriole	30μm	20μm	400	1
Capillary	5μm	1μm	4500	5
Venule	20μm	2μm	4000	
Vein	0.5cm	0.5mm	40	54
Vena cava	3cm	1.5mm	18	

Volume pressure relationship in vessels

Lymphatics

- Drain interstitial spaces
- Vessels eventually drain to right and left subclavian veins

- Vessels contain valves
- Go through lymph nodes
- Differ from capillaries
 - No fenestrations
 - Wide gaps between endothelial cells
 - 'No' basal lamina

