Multivariable Calculus Day 11 Differentiability and Directional Derivative

Truong-Son Van

Spring 2023

Fulbright University Vietnam

Directional derivative

Definition

Let $\mathbf{u} \in \mathbb{R}^n$. The directional derivative of $f : \mathbb{R}^n \to \mathbb{R}$ at $a \in \mathbb{R}^n$ in the direction of \mathbf{u} is the following limit (if exists)

$$D_{\mathbf{u}}f(a)=\lim_{h\to 0}\frac{f(a+h\mathbf{u})-f(a)}{h}.$$

1

Differentiability

Definition

Let $f: D \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Let z = f(x) and $\Delta z = f(a + \Delta x) - f(a)$. Then f is **differentiable at** a if Δz can be expressed in the form

$$\Delta z = \sum_{i=1}^{n} \partial_{i} f(a) \Delta x_{i} + \epsilon_{i} \Delta x_{i},$$

where $\epsilon_i \to 0$ as $\Delta x_i \to (0,0)$.

f is said to be **differentiable** if it is differentiable at every point on the domain.

2

Chain rule

Theorem

Let $f(x_1,\ldots,x_n),g_i(y_1,\ldots,y_m)$ $(i=1,\ldots,n)$ be differentiable functions. Then,

$$z(y_1,\ldots,y_m)=f(g_1(y_1,\ldots,y_m),\ldots,g_n(y_1,\ldots,y_m))$$

is differentiable and

$$\frac{\partial z}{\partial y_i} = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\partial g_j}{\partial y_i}.$$