An Axiomatic Approach to Diagnosing Neural IR Models

Daniël Rennings, Felipe Moraes, Claudia Hauff Delft University of Technology, the Netherlands

Why?

Why diagnose neural IR models?

Why adopt an axiomatic approach?

Why diagnose neural IR models?

- □ Neural IR has not (yet) achieved the progress seen in Computer Vision / NLP
- ☐ Issues:
 - □ Lack of large scale public datasets
 - Lack of shared public code repositories
 - □ Lack of approaches to interpret and analyze neural IR models
 - ☐ CV and NLP communities fare better, e.g. CLEVR, bAbI
- Can we create such an approach for analyzing neural IR models?

Why adopt an axiomatic approach?

Computer Vision

CLEVR instances diagnose aspects of **visual reasoning**, e.g. attribute identification and counting

Q: How many objects are small cubes?

NLP

bAbl tasks diagnose aspects of **reading comprehension**, e.g. counting and logical operations

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.

IR

we want to diagnose aspects of *relevance*...

... which are formalized in search heuristics or *axioms*

Q: How many items is Daniel holding?

Axiomatic Thinking in IR

What are axioms?

How have they been used?

What are axioms?

- ☐ **Axioms** are search heuristics that any reasonable retrieval function should satisfy
- ☐ Term Frequency Constraint 1 (TFC1):
 - ☐ Intuition:

A model must rank d_1 higher than d_2 if d_1 contains more query terms than d_2

☐ Formally:

Assume
$$q=\{w\}$$
 and $|d_1|=|d_2|$, If $c(w,d_1)>c(w,d_2)$, Then $S(d_1,q)>S(d_2,q)$

What are axioms?

- More than twenty axioms have been proposed
- → We explored:
 - ☐ TFC1 to favor a document with a larger count of a query term
 - □ **TFC2** to ensure that the **impact of TF** from 1 to 2 is larger than from 101 to 102
 - ☐ M-TDC to assign higher weights to discriminative terms
 - ☐ LNC2 to avoid over-penalizing long documents
- Other constraints consider semantic similarity, proximity, ...

How can we **use** axioms?

☐ TFC1

Assume $q = \{w\}$ and $|d_1| = |d_2|$, If $c(w, d_1) > c(w, d_2)$, Then $S(d_1, q) > S(d_2, q)$

□ BM25

$$\sum_{w \in d \cap q} (ln \frac{|\mathbf{D}| - df(w) + 0.5}{df(w) + 0.5} \times \frac{(k_1 + 1) \times c(w, \mathbf{d})}{k_1((1 - b) + b \frac{|\mathbf{d}|}{avdl} + c(w, \mathbf{d})} \times \frac{(k_3 + 1) \times c(w, \mathbf{q})}{k_3 + c(w, \mathbf{q})})$$

- ☐ TFC1 on BM25:
 - BM25 does not always fulfill TFC1
 - Modified BM25 (always fulfills TFC1) leads to higher retrieval effectiveness

Problem: not feasible for neural approaches with potentially millions of parameters!

Diagnosing neural IR models

How to obtain diagnostic datasets?

How to use such diagnostic datasets?

 $\mathbf{d_1}$

 $\mathbf{d_2}$

 $\mathbf{d_1}$

 $\mathbf{d_2}$

 $\mathbf{d_1}$

 $\mathbf{d_2}$

 $\mathbf{d_1}$

 $\mathbf{d_2}$

How to **use** diagnostic datasets?

Experiment

Setup

Results

Experimental setup

- ☐ WikiPassageQA (4K questions, 50K passages):
 - ☐ Given a **question** and all six-sentence passages making up a **Wikipedia document**, **rank the passages** such that the actual answers are ranked on top
 - ☐ For example on Granite: How does the weathering affect granite?
- □ 2 traditional baselines (Indri) and 4 neural IR models (MatchZoo)
- □ 5 diagnostic datasets (TFC1, TFC2, M-TDC, LNC2^{Test}, LNC2^{All})
- ☐ Retrieval effectiveness (MAP, MRR, P@5)
- □ Axiomatic performance on diagnostic datasets (fraction of fulfilled diagnostic instances)

☐ Neural models struggle to outperform baselines on WikiPassageQA

	CHE
	MAP
¹ BM25	$0.52^{3,4}$
2 QL	$0.54^{1,3,4}$
³ Duet	0.25
⁴ MatchPyramid	0.44^{3}
⁵ DRMM	$0.55^{1,2,3,4}$
⁶ aNMM	$0.57^{1,2,3,4}$

- ☐ Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences

		Performance per axiom					
	MAP	TFC1	TFC2	M-TDC	$\overline{\mathtt{LNC2}}^{Test}$	$\overline{\mathtt{LNC2}}^{All}$	
¹ BM25	$0.52^{3,4}$	0.73	0.98	1.00	0.80	0.80	
2 QL	$0.54^{1,3,4}$	0.87	0.63	0.94	0.68	0.68	
³ Duet	0.25						
⁴ MatchPyramid							
5 DRMM	$0.55^{1,2,3,4}$						
⁶ aNMM	$0.57^{1,2,3,4}$						

- ☐ Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances

		Performance per axiom						
		MAP	TFC1	TFC2	M-TDC	$\overline{\mathtt{LNC2}}^{Test}$	$\overline{\mathtt{LNC2}}^{All}$	
	BM25	$0.52^{3,4}$	0.73	0.98	1.00	0.80	0.80	
2	QL	$0.54^{1,3,4}$	0.87	0.63	0.94	0.68	0.68	
	Duet	0.25	0.69	0.56	0.48	0.19	0.47	
	MatchPyramid		0.79	0.58	0.63	0.00	0.19	
5	DRMM	$0.55^{1,2,3,4}$	0.84	0.60	0.76	0.05	0.12	
6	aNMM	$0.57^{1,2,3,4}$	0.85	0.56	0.69	0.38	0.47	

- ☐ Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
 - ☐ TFC1: DRMM and aNMM best at matching query terms and aggregation

	MAP				$\frac{\mathbf{per} \ \mathbf{ax}}{LNC2^{Test}}$	
1 BM25 2 QL	$0.52^{3,4}$ $0.54^{1,3,4}$		0.98	1.00	0.80 0.68	0.80 0.68
 Duet MatchPyramid DRMM aNMM 	$0.25 \\ 0.44^3 \\ 0.55^{1,2,3,4} \\ 0.57^{1,2,3,4}$	0.79	0.56 0.58 0.60 0.56	0.48 0.63 0.76 0.69	0.19 0.00 0.05 0.38	0.47 0.19 0.12 0.47

- Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
 - ☐ TFC1: DRMM and aNMM best at matching query terms and aggregation
 - ☐ TFC2: All neural models do not strictly follow this heuristic

					per ax	
	MAP	TFC1	TFC2	M-TDC	$\overline{\mathtt{LNC2}}^{Test}$	LNC2 ^{Att}
¹ BM25	$0.52^{3,4}$	0.73	0.98	1.00	0.80	0.80
2 QL	$0.54^{1,3,4}$	0.87	0.63	0.94	0.68	0.68
³ Duet	0.25	0.69	0.56	0.48	0.19	0.47
⁴ MatchPyramid		0.79	0.58	0.63	0.00	0.19
5 DRMM	$0.55^{1,2,3,4}$	0.84	0.60	0.76	0.05	0.12
6 aNMM	$0.57^{1,2,3,4}$	0.85	0.56	0.69	0.38	0.47

- Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
 - ☐ TFC1: DRMM and aNMM best at matching query terms and aggregation
 - ☐ TFC2: All neural models do not strictly follow this heuristic
 - ☐ M-TDC: DRMM best at weighing query terms, neural models underperform on IDF heuristic

	MAP	Perfo		e per ax	
¹ BM25 ² QL	$0.52^{3,4}$ $0.54^{1,3,4}$	0.73 0.9 0.87 0.6		0.80 0.68	0.80 0.68
 Duet MatchPyramid DRMM aNMM 	0.25 0.44^3 $0.55^{1,2,3,4}$ $0.57^{1,2,3,4}$	0.69 0.5 0.79 0.5 0.84 0.6 0.85 0.5	8 0.63 0 0.76	0.19 0.00 0.05 0.38	0.47 0.19 0.12 0.47

- Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
 - ☐ TFC1: DRMM and aNMM best at matching query terms and aggregation
 - ☐ TFC2: All neural models do **not strictly follow** this heuristic
 - ☐ M-TDC: DRMM best at weighing query terms, neural models underperform on IDF heuristic
 - ☐ LNC2: All neural models struggle, but can learn to not over-penalize long documents

	MAP				$rac{\mathbf{per} \ \mathbf{ax}}{LNC2}$	
¹ BM25 ² QL	$0.52^{3,4}$ $0.54^{1,3,4}$		0.98	1.00 0.94	0.80 0.68	0.80 0.68
 Duet MatchPyramid DRMM aNMM 	0.25 0.44^3 $0.55^{1,2,3,4}$ $0.57^{1,2,3,4}$	0.69 0.79 0.84 0.85	0.56 0.58 0.60 0.56	0.48 0.63 0.76 0.69	0.19 0.00 0.05 0.38	0.47 0.19 0.12 0.47

- Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
- ☐ QL outperforms aNMM on all axioms but is less effective: we only included four axioms

		Performance per axiom						
	MAP	TFC1	TFC2	M-TDC	$\overline{\mathtt{LNC2}}^{Test}$	LNC2 ^{All}		
¹ BM25	$0.52^{3,4}$	0.73	0.98	1.00	0.80	0.80		
2 QL	$0.54^{1,3,4}$	0.87	0.63	0.94	0.68	0.68		
³ Duet	0.25	0.69	0.56	0.48	0.19	0.47		
⁴ MatchPyramid		0.79	0.58	0.63	0.00	0.19		
⁵ DRMM	$0.55^{1,2,3,4}$	0.84	0.60	0.76	0.05	0.12		
⁶ aNMM	$0.57^{1,2,3,4}$	0.85	0.56	0.69	0.38	0.47		

- Neural models struggle to outperform baselines on WikiPassageQA
- ☐ BM25 and QL fulfill many diagnostic instances, but not all due to (a.o) document length differences
- ☐ Stronger neural models fulfill more diagnostic instances
- ☐ QL outperforms aNMM on all axioms but is less effective: we only included four axioms
- □ "Correlation" between MAP and average axiomatic performance = **0.44** (N=6)

	Performance per axiom					
	MAP	TFC1	TFC2	M-TDC	$\overline{\mathtt{LNC2}}^{Test}$	$\overline{\mathtt{LNC2}}^{All}$
¹ BM25	$0.52^{3,4}$	0.73	0.98	1.00	0.80	0.80
2 QL	$0.54^{1,3,4}$	0.87	0.63	0.94	0.68	0.68
³ Duet	0.25	0.69	0.56	0.48	0.19	0.47
⁴ MatchPyramid		0.79	0.58	0.63	0.00	0.19
5 DRMM	$0.55^{1,2,3,4}$	0.84	0.60	0.76	0.05	0.12
⁶ aNMM	$0.57^{1,2,3,4}$	0.85	0.56	0.69	0.38	0.47

Conclusions

Summary

What's next?

Conclusions

- □ Summary
 - ☐ Diagnostic datasets offer us a tool to **diagnose retrieval models** that is rooted in axiomatic thinking
 - ☐ The approach is **model-agnostic:** we can diagnose any IR model based on its **output**
 - ☐ There is no shortage of resources for diagnostic datasets as they **do not require**relevance labels
 - ☐ Future work
 - ☐ More axioms, datasets (tasks), models (toolkits), ...
 - ☐ How can we "**fix**" neural models based on the axiomatic insights?

An Axiomatic Approach to Diagnosing Neural IR Models

Daniël Rennings, Felipe Moraes, Claudia Hauff Delft University of Technology, the Netherlands

