

3.3 Scikit learn中的Logistic回归实现

CSDN学院 2017年10月

▶大纲

- Logistic回归基本原理
- 多类Logistic回归
- Scikit learn 中的Logistic回归实现
- 案例分析
- 分类模型的评价
- 模型选择与参数调优

► Scikit learn 中的LogisticRegression实现

- Scikit learn提供的LogisticRegression实现为:
 LogisticRegression(penalty='l2', dual=False, tol=0.0001, C= 1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1)
 - Logistic回归的正则参数: penalty、C
 - 优化求解参数: dual、solver、max_iter、tol、warm_start
 - 模型参数: multi_class、fit_intercept、intercept_scaling、 class_weight

►LogisticRegression参数列表

参数	· 说明	
penalty	惩罚函数 / 正则函数 , 支持L2正则和L1正则 , 缺省: L2	
dual	原问题(primal)还是对偶问题求解。对偶只支持L2正则和liblinear solver。当样本数n_samples>特征数目n_features时,缺省:False	
tol	迭代终止判据的误差范围。 缺省:1e-4	
C	C=1/ λ ,缺省:1	
fit_intercept	是否在决策函数中加入截距项。如果数据已经中心化,可以不用。缺省:True	
intercept_scaling	截距缩放因子,当fit_intercept为True且liblinear solver有效 所以还是对y做标准化预处理	
class_weight	不同类别样本的权重,用户指定每类样本权重或'balanced'(每类样本权重与该类样本出现比例成反比)。缺省:None	
random_state	混合数据的伪随机数。缺省:None	

►LogisticRegression参数列表

参数	说明	
solver	优化求解算法,可为'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'。缺省: liblinear	
max_iter	最大迭代次数, 当newton-cg, sag and lbfgs solvers时有效。缺省:100	
multi_class	多类分类处理策略,可为'ovr', 'multinomial'。'ovr'为1对多,将多类分类转化为多个两类分类问题,multinomial为softmax分类。缺省:'ovr'	
verbose	是否详细输出	
warm_start	是否热启动(用之前的结果作为初始化),对liblinear solver无效。缺省:False	
n_jobs	多线程控制。缺省值-1,算法自动检测可用CPU核,并使用全部核	

▶多类分类任务

- multi_class参数决定了多类分类的实现方式
- 'ovr':即1对其他(one-vs-rest, OvR),将多类分类转化为多个二类分类任务。为了完成第c类的分类决策,将所有第c类的样本作为正例,除了第c类样本以外的所有样本都作为负例。
- 'multinomial':多对多(many-vs-many, MvM),即softmax回归模型。
- OvR相对简单,但分类效果相对略差
 - 大多数情况,不排除某些情况下OvR更好
- MvM分类相对精确,但分类速度较OvR慢
- multi_class选择会影响优化算法solver参数的选择
 - OvR:可用所有的slover
- Multinomial: 只能选择newton-cg, lbfgs和sag / saga

► 优化求解算法solver

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

- liblinear:使用了开源的liblinear库实现,使用坐标轴下降法来迭代优化损失函数
- sag:随机平均梯度下降(Stochastic Average Gradient),是梯度下降 法的变种,每次迭代仅用一部分的样本来计算梯度,适合于样本多的 情况
- saga: sag的增强版本
- lbfgs:拟牛顿法的一种,利用损失函数二阶导数矩阵(Hessian矩阵) 来迭代优化损失函数
- newton-cg:牛顿法家族的一种(共轭梯度)

► 优化求解算法solver

- 对小数据集, 'liblinear' 是一个很好的选择, 而 'sag' 和 'saga' 对大数据集更快。
- 对多类分类问题,只有 'newton-cg', 'sag', 'saga' 和'lbfgs'支持MvM (multinomial), 'liblinear'只支持OvR (one-versus-rest)的方式。
- 'newton-cg', 'lbfgs'和'sag'支持L2正则,而'liblinear'和'saga'支持L1正则。
- 注意: 'sag' 和'saga' 只有当特征有类似的尺度 (scale) 时能保证快速 _ 收敛。(对数据做标准化预处理)

▶优化求解算法solver选择

正则	求解算法	应用场景
L1	liblinear	如果模型的特征非常多,希望一些不重要的特征系数归零从而让模型系数稀疏的话,可以使用 L1 正则化。 liblinear 适用于小数据集
L1	saga	当数据量较大,且选择L1,只能采用saga
L2	liblinear	libniear只支持多元逻辑回归的OvR , 不支持多项分布损失 (MvM) ,但MVM相对精确。
L2	lbfgs/newton-cg/sag	较大数据集,支持OvR和 MvM两种多元logit回归。
L2	sag / saga	如果样本量非常大, sag/sga是第一选择

对于大数据集,可以考虑使用SGDClassifier,并使用logloss。

▶类别权重class_weight

- class_weight用于不同类别样本数目不均衡的情况
- 另开一小节讲解

THANK YOU

