Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	е
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	S
3.1 Алгоритм функции main	S
3.2 Алгоритм функции fun	S
3.3 Алгоритм конструктора класса Class	10
3.4 Алгоритм конструктора класса Class	10
3.5 Алгоритм конструктора класса Class	11
3.6 Алгоритм деструктора класса Class	11
3.7 Алгоритм метода vod класса Class	11
3.8 Алгоритм метода first класса Class	12
3.9 Алгоритм метода second класса Class	12
3.10 Алгоритм метода summa класса Class	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	14
5 КОД ПРОГРАММЫ	21
5.1 Файл Class.cpp	21
5.2 Файл Class.h	22
5.3 Файл main.cpp	23
6 ТЕСТИРОВАНИЕ	24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	25

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. По значению параметра определяется размерность целочисленного массива из закрытой области. Массив создается. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива. Размер должен иметь значение больше 2 и быть четным.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

• оператор ввода и вывода.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: осовная функция.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	Nº
			перехода
1		int razmer	2
2		ввод razmer	3
3	razmer	вывод ошибок	Ø
	<= 2 razmer %2 != 0		
			4
4		вывод razmer	5
5		создание объека obj	6
6		вывод vod	7
7		вызов fun	8
8		вызов second	9
9		вызов summa	Ø

3.2 Алгоритм функции fun

Функционал: копирование.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм функции представлен в таблице 2.

Таблица 2 – Алгоритм функции fun

No	Предикат	Действия	No
			перехода
1		вызов first	2
2		вызов summa	Ø

3.3 Алгоритм конструктора класса Class

Функционал: создание объекта.

Параметры: нет.

Алгоритм конструктора представлен в таблице 3.

Таблица 3 – Алгоритм конструктора класса Class

No	Предикат	Действия	No
			перехода
1		вывод Default constructor	Ø

3.4 Алгоритм конструктора класса Class

Функционал: создаие объекта.

Параметры: razmer.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса Class

No	Предикат	Действия	No
			перехода
1		вывод Constructor set	2
2		создать цклочисленный массив razmer	Ø

3.5 Алгоритм конструктора класса Class

Функционал: создание объекта.

Параметры: Class& obj.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса Class

N₂	Предикат	Действия	No
			перехода
1		вывод Copy constructor	2
2		копирование obj	Ø

3.6 Алгоритм деструктора класса Class

Функционал: удалить объект.

Параметры: нет.

Алгоритм деструктора представлен в таблице 6.

Таблица 6 – Алгоритм деструктора класса Class

No	Предикат	Действия	N₂
			перехода
1		вывод Destructor	Ø

3.7 Алгоритм метода vod класса Class

Функционал: ввод значений.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода vod класса Class

No	Предикат	Действия	No
			перехода
1		int a	2
2	i < razmer		3
			Ø
3		ввод а	4
4		arr[i]=a	5
5		инкремент і	Ø

3.8 Алгоритм метода first класса Class

Функционал: сложение элемента массива.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода first класса Class

N₂	Предикат	Действия	No
			перехода
1	i < razmer		2
			Ø
2		arr[i]=arr[i]+arr[i+1]	3
3		инкремен і	1

3.9 Алгоритм метода second класса Class

Функционал: умножение элементов массива.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода second класса Class

N₂	Предикат	Действия	No
			перехода
1	i < razmer		2
			Ø
2		arr[i]=arr[i]*arr[i+1]	3
3		инкремент і	Ø

3.10 Алгоритм метода summa класса Class

Функционал: суммирлвание.

Параметры: нет.

Возвращаемое значение: отсутствует.

Алгоритм метода представлен в таблице 10.

Таблица 10 – Алгоритм метода summa класса Class

N₂	Предикат	Действия	N₂
			перехода
1		int summa	2
2	i < razmer		3
			5
3		summa = summa + arr[i]	4
4		инкремент і	2
5		вывод summa	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-7.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Class.cpp

Листинг 1 – Class.cpp

```
#include "Class.h"
#include <iostream>
using namespace std;
Class::Class()
  cout << "Default constructor" << endl;</pre>
Class::Class(int razmer)
  arr = new int [razmer];
  cout <<"Constructor set"<< endl;</pre>
  this->razmer = razmer;
}
Class::Class(const Class & obj)
  cout <<"Copy constructor"<< endl;</pre>
  razmer=obj.razmer;
  arr = new int [razmer];
  for (int i = 0; i < razmer; i++)
      arr[i] = obj.arr[i];
int Class::vod()
  for (int i = 0; i < razmer; i++)
     cin >> a;
     arr[i] = a;
  return(a);
Class::~Class()
  cout << "Destructor";</pre>
```

```
if (arr != nullptr)
     delete[]arr;
int Class::first()
  for (int i = 0; i < razmer; i = i + 2)
     arr[i] = arr[i] * arr[i + 1];
  return(razmer);
}
int Class::second()
  for (int i = 0; i < razmer; i = i+2)
     arr[i]=arr[i]+arr[i+1];
  return(razmer);
}
void Class::summa()
  int summa = 0;
  for (int i = 0; i < razmer; i++)
     summa = summa + arr[i];
  cout << summa << endl;</pre>
}
```

5.2 Файл Class.h

Листинг 2 – Class.h

```
#ifndef __CLASS__H
  #define __CLASS__H
  class Class
{
  private:
    int* arr;
    int razmer;
  public:
    Class();
    Class(int razmer);
    Class(const Class& obj);
    ~Class();
  int vod();
  int first();
  int second();
```

```
void summa();
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "Class.h"
#include <iostream>
using namespace std;
void fun(Class obj)
  obj.first();
  obj.summa();
int main()
  int razmer;
  cin >> razmer;
   if ((razmer <= 2) || (razmer % 2 != 0))</pre>
      cout << razmer << "?";</pre>
      return 0;
   cout << razmer << endl;</pre>
   Class obj(razmer);
   obj.vod();
   fun(obj);
   cout << endl;</pre>
   obj.second();
   obj.summa();
   return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
9	9?	9?
1		

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).