

Projekt: MSS54 Modul: TI

Seite 1 von 5

Projekt: MSS54

Modul: Einspritzung-Diagnose

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20135	E. Steger	4.02

Projekt: MSS54 Modul: TI

Seite 2 von 5

x. I/O Status vorgeben und Stellgliedansteuerung

x.1. Einspritzventile ansteuern

Die Einspritzventilansteuerung erfolgt über die Funktion **ti_write** (unsigned char zylindernummer, unsigned char period, unsigned char tastverhältnis). Diese Funktion wird von der DS2-Software aufgerufen und läuft auf **DS2-Tasklevel.**

Wertebreiche:

Zylindernummer: 1 .. 8 (cfg_zylinderzahl)

Periodendauer: 10 .. 100 [msec] Auflösung: 10msec/bit. Tastverhältnis: 0 .. 100 [%] Auflösung: 1%/bit.

Diese Funktionen laufen auf dem Slave.

Diese Funktion wird nicht bei **B_ML** ausgeführt. Bei B_ML darf das Tastverhältnis nur 0% betragen. Dies kommt einem Abschalten des Ventiles gleich.

Die Funktion setzt in **ti_ev_ds2** das Bit_(ZYLINDER-1) (= B_EVx_DS2) für den jeweiligen Zylinder. Hiermit wird das Laden der TPU-Parameter durch die Funktionssoftware verhindert, der TPU-Kanal als LPWM im continious mode konfiguriert, die Periodendauer und die Highzeit in das TPU-RAM geschrieben.

Wenn der Diagnosemode (!B_DIAG) verlassen wird und B_EVx_DS2 aktiv ist, wird die Funktion ti write undo aufgerufen. Diese Funktion

- löscht die B_EVx_DS2
- konfiguriert die TPU-Kanäle bei B_SSP als PSP-Kanal (winkelsynchroner Einspritzimpulsl) und bei B_VSP als PWM-Kanal (Vorabeinspritzimpuls)

Als Returnvalue wird folgendes zurückgegeben:

- 00: Stellglied wird ordungsgemäß angesteuert
- 01: Ansteuerung für diesen Zylinder nicht vorgesehen
- 02: Stellglied nicht ansteuerbar, da Tastverhältnis nicht gültig ist
- 03: Stellglied nicht ansteuerbar, da Periodendauer nicht gültig ist
- 04: Stellglied nicht ansteuerbar, da Ansteuerbedingung nicht erfüllt ist

x.2 Einspritzzeit lesen

Es wird von der Diagnosesoftware für "Einspritzzeit lesen" die Variablen **ti1** bis **ti8** ausgelesen (enthält noch nicht die UBATT-Korrektur).

Die Einspritzzeit hat einen Wertebereich von 0 bis 65.535 msec (unsigned short) mit einer Auflösung von 1 usec/bit.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20135	E. Steger	4.02

Projekt: MSS54 Modul: TI

Seite 3 von 5

x.3 Einspritzventiltreiber Diagnose

Der Einspritzventiltreiber HIP82 von Harris diagnostiziert folgende Fehler:

- open load = Unterbrechung
- Kurzschluß nach UB
- Kurzschluß nach Masse
- Übertemparatur

Der Treiberstatus wird winkelsynchron (alle 720 °KW) ausgelesen und in der Backgroundtask auf Fehler überprüft und entsprechend verarbeitet.

Der Treiberstatus darf nur ausgewertet werden, wenn ein Wechsel im Ansteuersignal erfolgte. Dies ist immer dann der Fall, wenn auch eine neue Treiberstatusinformation vorliegt und der Kanal nicht ausgeblendet ist.

Der Treiberstatus in der Backgroundtask wird ausgewertet, wenn

- B_START oder B_ML	und
- B_SSP (sequ. Einspritzung aktiv ist)	und
- S_KL_15_ROH (KL15 sicher vorhanden)	und
- ub > K_TI_UB	und
- der Einspritzkanal nicht ausgeblendet ist	und
- der Einspritzkanal nicht über DS2 angesteuert wird	und
- ein neue Treiberstatusinformation vorliegt	

- ein neue Treiberstatusinformation vorliegt

Der Treiberstatus steht in den Variablen ti_ed_ev1 bis ti_ed_ev8.

Die Routine trägt nach einer bestimmten Fehlerhäufigkeit einen Fehler in den Fehlerspeicher ein.

Folgende Übergabeparameter an den ed_report sind nun in Summe möglich:

0x00: kein Fehler 0x01: short to battery 0x02: short to ground 0x04: open load

0x08: unplausibler Zustand

Es wird weiterhin eine globale Diagnosestatusvariable für die Einspritzventiltreiber gebildet => ti_ed_ev_summe (das gesetztes Bit stellt einen Fehler für entprechenden (Zylinder+1) dar)

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20135	E. Steger	4.02

Projekt: MSS54 Modul: TI

Ein Abschalten wegen **Übertemperatur** wird ebenfalls vom HIP82-Baustein erkannt und in den Variablen **ti_ed_tr1/2** dargestellt.

Diese Fehlerauswertung findet man ebenfalls im winkelsynchron aktualisierten Treiberstatus wieder. Die Auswertung erfolgt in der Backgroundtask, wenn

- B_START oder B_ML

und

- ub > K_TI_UB

und

- ein neue Treiberstatusinformation vorliegt

Fehler	Auswirkung	laßnahme	
open load	mageres Abgas unruhiger Motorlauf verfälschtes Lambdasondensignal	Bank in o treten ist ⇒ LA-Ac gespe TE-Ac	daption gesperrt; TE
short circuit +	mageres Abgas unruhiger Motorlauf verfälschtes Lambdasondensignal Treiber schaltet selbständig ab	Bank in o treten ist ⇒ LA-Ac gespe TE-Ac	daption gesperrt; TE
short circuit -	fettes Abgas unruhiger Motorlauf verfälschtes Lambdasondensignal Einspritzventil kann ständig angesteuert sein ==> Zylinder kann sich mit Krafftstoff füllen	Bank in o treten ist ⇒ LA-Ac gespe TE-Ac	daption gesperrt; TE
overtemparatur	mageres Abgas unruhiger Motorlauf verfälschtes Lambdasondensignal Treiber schaltet selbständig ab	Bank in o treten ist ⇒ LA-Ac gespe TE-Ac	daption gesperrt; TE

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.20135	E. Steger	4.02

Projekt: MSS54 Modul: TI

Seite 5 von 5

x. 4 Leerlaufsynchronisationswerte vorgeben und lesen

Über die DS2 kann durch den Aufruf der Funkrion **ti_II_vorg**(unsigned char zylinder, signed short wert) der Leerlaufsynchronisationsoffset ti_II_zx vorgegeben werden. Der übergebene Wert wird seine Grenzen (K_TI_LL_MIN und K_TI_LL_MAX) in dieser Funktion überprüft.

Die Funktion **ti_II_read**(unsigned char zylinder) liefert als reurnvalue den Leerlaufsynchronisationswert ti_II_zx zurück.

ti_ll_zx ist ein signed short Wert mit einer Auflösung von 1 usec/Bit.

		Abteilung	Datum	Name	Filename
ĺ	Bearbeiter	EE-32	01.04.20135	E. Steger	4.02