SRM Institute of Science and Technology Department of Mathematics 18MAB102T-Advanced Calculusand Complex Analysis

2020-2021 Even

Unit – II: Vector Calculus Tutorial Sheet - III

S.No	Questions	Answers
Part – A [3 Marks]		
1	Evaluate $\int_C (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the square	0
	formed by the lines $x = \pm 1, y = \pm 1.$	
2	Evaluate $\iint_C \overrightarrow{F} \cdot \overrightarrow{dr}$ by stoke's theorem where	$\frac{1}{3}$
	$\vec{F} = y^2 \vec{i} + x^2 \vec{j} - (x+z) \vec{k}$, and C is the boundary of the triangle with vertices at $(0,0,0)$, $(1,0,0)$, $(1,1,0)$.	3
3	Evaluate $\iint_C (xy dx + xy^2 dy)$ by stoke's theorem where C is the	$\frac{4}{3}$
	square in the x-y plane with vertices (1,0), (-1,0), (0,1), (0,-1)	120
4	Evaluate $\iiint_V \phi dv$, where $\phi = 45x^2y$ and V is the closed origin	128
	bounded by the planes $4x + 2y + z = 8$, $x = 0$, $y = 0$, $z = 0$.	
5	If $\vec{F} = (2x^2 - 3z)\vec{i} - 2xy\vec{j} - 4x\vec{k}$, then evaluate $\iiint_V \nabla \cdot \vec{F} dv$, where	$\frac{8}{3}$
	V is bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $2x + 2y + z = 4$.	
Part – B [6 Marks]		
6	Verify Stoke's theorem for the function $\vec{F} = x^2 \vec{i} + xy \vec{j}$,	$\frac{a^3}{2}$
	integrated round the square in the $z = 0$ plane whose sides are along the lines $x = 0$, $y = 0$, $x = a$, $y = a$	2
7	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$, taken round the rectangle bounded by $x = \pm a$, $y = 0$, $y = b$	$-4ab^2$
8	Verify Stoke's theorem for $\vec{F} = (y-z+2)\vec{i} - (yz+4)\vec{j} - (xz)\vec{k}$,	-4
	over the surface of a cube $x = 0$, $y = 0$, $z = 0$, $x = 2$, $y = 2$, $z = 2$	
	above the XOY plane.	
9	Verify divergence theorem for	abc (a+b+c)
	$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$, taken over the	, , ,
	rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.	
10	Verify divergence theorem for the function	3
	$\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$, taken over the cube bounded by the planes	$\frac{3}{2}$
	x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.	