Testing 2 : result

	UCI-HAR	mHealth	PAMAP2	MobiAct
CNN [27]	92.34 (0.44)	72.53 (1.10)	64.25 (2.47)	84.40 (1.60)
DeepConvLSTM [27]	89.46 (1.95)	72.22 (1.99)	61.31 (2.85)	85.31 (0.85)
LSTM-CNN [28]	92.64 (0.28)	70.43 (1.63)	62.03 (1.78)	80.19 (1.56)
CAE [33]	87.66 (1.47)	76.09 (0.90) 72.15 (1.10) 75.66 (1.25)	68.22 (1.26)	82.85 (1.26)
Masked recon. [34]	69.34 (2.71)		62.77 (1.81)	79.24 (1.07)
CPC [38]	85.09 (1.27)		64.38 (1.43)	83.89 (0.51)
One-stream model	93.32 (0.45)	71.84 (1.16)	65.31 (2.04)	84.47 (0.91)
Two-stream model	91.37 (0.43)	73.74 (0.73)	66.68 (1.35)	89.21 (0.76)
CAGE (Ours)	92.50 (0.44)	75.48 (2.11)	70.47 (2.85)	89.70 (0.63)

(Above) the figure 3 at the paper "<Contrastive Accelerometer–Gyroscope Embedding Model for Human Activity Recognition (https://ieeexplore.ieee.org/document/9961198>"

best validation accuracy(F1)	UCI-HAR	mHealth	PAMAP2
CAGE	86.93 (0.8680)	84.08 (0.8301)	76.69 (0.7662)
BaselineCNN	82.67 (0.8282)	83.7 (0.8367)	75.19 (0.7478)
CAE (Convolution AutoEncoder)	46.17 (0.4610)		·
DeepConvLSTM	77.73 (0.7765)		-
LSTM-CNN	89.81 (0.8971)	86.35 (0.8569)	74.71 (0.7442)

best test accuracy(F1)	UCI-HAR	mHealth	PAMAP2
CAGE	17.61 (0.0926)	0.91 (0.0002)	0.07 (0.0000)
BaselineCNN	84.36 (0.8434)	74.58 (0.6891)	62.49 (0.6117)
CAE (Convolution AutoEncoder)	17.10 (0.0878)	·	
DeepConvLSTM	79.50 (0.7956)		
LSTM-CNN	89.38 (0.8929)	74.05 (0.6742)	66.24 (0.6421)

final test accuracy(F1)	UCI-HAR	mHealth	PAMAP2
CAGE	85.00 (0.8499)	77.05 (0.7325)	59.66 (0.5968)
BaselineCNN	84.53 (0.8450)	71.84 (0.6492)	66.17 (0.6524)
CAE (Convolution AutoEncoder)	46.93 (0.4656)		·
DeepConvLSTM	79.13 (0.7928)	·	
LSTM-CNN	79.13 (0.7928)	74.97 (0.6851)	64.40 (0.6199)

final validation accuracy(F1)	UCI-HAR	mHealth	PAMAP2
CAGE	84.85 (0.8473)	82.27 (0.8139)	74.30 (0.7439)
BaselineCNN	82.42 (0.8235)	84.08 (0.8220)	69.51 (0.6947)
CAE (Convolution AutoEncoder)	45.36 (0.4510)		
DeepConvLSTM	75.92 (0.7594)		
LSTM-CNN	88.73 (0.8858)	83.60 (0.8119)	70.68 (0.7050)

- I have contacted BMILab (Biomedical Informatics Laboratory) via email to request access to the MobiAct dataset for review and download. However, I have not yet received a response, which has prevented me from conducting experiments.
- Due to hardware limitations, I was unable to complete some experiments with CAE and DeepConvLSTM (as training all epochs requires over 12 hours to complete).
- The results of CAGE were not universally superior across all scenarios.

Overall, the scores of CAGE were not satisfactory. Could there be an issue with the experimental methodology? The experiments were conducted using the following commands.

CAGE UCI-HAR	<pre>python train_CAGE.pydataset UCI_HARbatch_size 64epochs 200proj_dim 64lambda_ssl 1.0lambda_cls 1.0</pre>
CAGE mHealth	<pre>python train_CAGE.pydataset mHealthbatch_size 64epochs 200proj_dim 64lambda_ssl 1.0lambda_cls 1.0</pre>
CAGE PAMAP2	python train_CAGE.pydataset PAMAP2batch_size 64epochs 200proj_dim 128lambda_ssl 1.0lambda_cls 1.0
DeepConv LSTM	<pre>python train_baseline.pydataset UCI_HARmodel DeepConvLSTM python train_baseline.pydataset mHealthmodel DeepConvLSTM python train_baseline.pydataset PAMAP2model DeepConvLSTM</pre>

2025. 01. 03.

LSTM ConvNet	<pre>python train_baseline.pydataset UCI_HARmodel LSTMConvNet python train_baseline.pydataset mHealthmodel LSTMConvNet python train_baseline.pydataset PAMAP2model LSTMConvNet</pre>
CAE	<pre>python train_CAE.pydataset UCI_HAR python train_CAE.pydataset mHealth python train_CAE.pydataset PAMAP2</pre>
Baseline CNN	python3 train_baseline.pydataset UCI_HARmodel BaselineCNN python3 train_baseline.pydataset mHealthmodel BaselineCNN python3 train_baseline.pydataset PAMAP2model BaselineCNN

period