EFREI -L1 et PL1 mars 2012

ALGEBRE LINEAIRE - DE n°1

Sans document ni calculatrice.

Questions de cours :

A quelles conditions une partie F d'un ensemble E est-elle un sous-espace vectoriel de E ?

Enoncer une condition pour qu'une famille de vecteurs soit liée.

Définir un endomorphisme et un automorphisme.

Définir le noyau et l'image d'une application linéaire d'un espace vectoriel E dans un espace vectoriel F et énoncer le théorème du rang pour cette application.

Définir une matrice symétrique et une matrice antisymétrique.

Soit deux matrices A et B ; quels sont la transposée et l'inverse de leur produit ? Développer (A+B) ² .

Définir le rang d'une famille de vecteurs, le rang d'une application, le rang d'une matrice.

Soit A la matrice associée à une application linéaire f de E dans F, espaces vectoriels de bases respectives BE et BF. Quel est le vecteur dont les coordonnées dans ces bases forment le j-ième vecteur-colonne de A?

Exercice n°1: On considère dans R⁴ les 4 vecteurs $\vec{a} = (1; 1; 1; 1)$, $\vec{b} = (1; 0; -1; 1)$, $\vec{c} = (0; 1; 0; -1)$, $\vec{d} = (2; 4; 2; 0)$. Soient F l'espace vectoriel engendré par la famille $\{\vec{a}, \vec{b}\}$ et G l'espace vectoriel engendré par la famille $\{\vec{c}, \vec{d}\}$. Quelles sont les dimensions et bases de F, G, F+G, F \cap G; trouver une relation linéaire entre ces 4 vecteurs. Donner les équations de F+G et F \cap G dans R⁴.

Exercice $n^{\circ}2$: Soit φ un endomorphisme de R^4 défini par :

 $\varphi(x; y; z; t) = (x+y; x-y; x-z+t; 3y-z+t)$. Trouver une base et la dimension du noyau de φ . Quel est le rang de φ ? Donner l'équation (ou les équations) et une base de l'image de φ . Cette application est-elle injective? Est-elle surjective? Est-ce un automorphisme? Quelle est la matrice associée à φ dans la base canonique de \mathbb{R}^4 ? Quelles sont les images, par φ , des vecteurs de cette base?

Exercice 3 : On considère les matrices à coefficients réels A, B, C, D définies par

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -2 & 3 \\ -1 & 1 & -2 \end{pmatrix}; B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}; C = \begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix}; D = \begin{pmatrix} -1 & 3 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$

Calculer successivement: 2.A; A^2 ; A+I, où I est la matrice unité de taille 3; A+B; tA ; A.B; B.A; A.C; A.D; C.D; D.C; D.A; A.

Triplets de Pythagore:

On recherche une famille d'entiers naturels x_i , y_i et z_i formant un « triplet de Pythagore » vérifiant l'équation de Pythagore : $x_i^2 + y_i^2 = z_i^2$. On considère les matrices :

$$V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, H = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix} \text{ et } W = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}. \text{ On recherche une famille } \mathcal{F} \text{ de matrice}$$

colonne V_i dont les coefficients x_i , y $_i$ et z_i vérifient l'équation de Pythagore.

Calculer f(V) = U.M.V où f est une application de R^3 dans R et U la transposée de V. Montrer que f(HV) = f(V). En déduire que si $V \in \mathcal{F}$, alors $H^n . V \in \mathcal{F}$, $\forall n \in N^*$. Calculer $H^n . W$ pour n=1,2 et 3. En déduire que l'on dispose ainsi d'une famille \mathcal{F} de triplets de Pythagore.