An introduction to Reinforcement Learning

21st of June 2022

Greedy action selection:

$$P(a_t = a) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ 0 & \text{otherwise} \end{cases}$$

Softmax action selection:

$$P(a_t = a) = \frac{e^{V_t(a) \cdot \beta}}{\sum_{i=1}^{N} e^{V_t(a_i) \cdot \beta}}$$

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Epsilon-greedy action selection:

$$P(a_t = a) = \begin{cases} 1 - \epsilon & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ \epsilon / N & \text{otherwise} \end{cases}$$

Upper-confidence-bound

(UCB) action selection:

$$P(a_t = a) = \operatorname{argmax}_a[V_t(a) + c \cdot \sqrt{\frac{\ln t}{N_t(a)}}]$$

Greedy action selection:

$$P(a_t = a) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ 0 & \text{otherwise} \end{cases}$$

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Epsilon-greedy action selection:

$$P(a_t = a) = \begin{cases} 1 - \epsilon & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ \epsilon / N & \text{otherwise} \end{cases}$$

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Softmax action selection:

$$P(a_t = a) = \frac{e^{V_t(a) \cdot \beta}}{\sum_{i=1}^{N} e^{V_t(a_i) \cdot \beta}}$$

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Upper-confidence-bound

(UCB) action selection:

$$P(a_t = a) = \operatorname{argmax}_a[V_t(a) + c \cdot \sqrt{\frac{\ln t}{N_t(a)}}]$$

$$\pi(a, s) = P(a_t = a \mid s_t = s)$$

Softmax action selection:

$$P(a_t = a) = \frac{e^{V_t(a) \cdot \beta}}{\sum_{i=1}^{N} e^{V_t(a_i) \cdot \beta}}$$

Upper-confidence-bound

(UCB) action selection:

$$P(a_t = a) = \operatorname{argmax}_a [V_t(a) + c \cdot \sqrt{\frac{\ln t}{N_t(a)}}]$$

There's an interesting distinction between random and goal-directed exploration

Softmax: Slope Shift

Note:

UCB: Intercept Shift

Gershman, Cognition 2017

Limitation of multi-armed bandit problems

Your current action does not influence what happens next!!

How can we solve sequential problems?

R = -1

The textbook problem:

'Cliff-World'

Optimal path

R = -100

The rules:

- Agent has to move from start (S) to goal (G)
- Reaching the goal results in a positive reward of +10
- Falling off the cliff results in a negative reward of -100
- Any other state results in a negative reward of -1

What's the problem the agent has to solve here??

Note the subtle introduction of the concept of 'transition probabilities' here - implicit, later: explicit

From classical to instrumental learning

TD Learning:

Q-Learning:

What's the difference between $V(s_t)$ and $Q(s_t, a_t)$?

What's is $max_aQ(s_t, a_t)$ doing?

Note that this is just an update rule - doesn't tell us how to select an action!