



## Revue PGE

Equipement de tests vidéo



## Plan

**01** Gestion de projet

02 Ingénierie Système

03 Software

**04** Hardware

05 Mécanique



# Gestion de Projet · Cycle en V

- Diagramme de Gantt

## Cycle en V



### Diagramme de Gantt





## Ingénierie Système

Analyse des exigences

## Ingénierie Système



1.Définition des besoins



2.Analyse des exigences



#### Définition des besoins

Cette partie a été faite après avoir étudié le cahier des charges fourni par tachysséma. La revue de l'analyse des besoins a été faite lors de la reunion du 13/10/2020



#### Analyse des exigences

Après avoir fait plusieurs recherches, les équipes ont pu faire l'analyse des exigences. Ceci se traduit par la réalisation de diagramme de cas d'utilisation et de digrammes de séquences.



3.Rédaction des specifications



4. Architecture logique et matérielle



Rédaction des specification

La prochiane étape sera de rédiger les specifications fonctionnelles. C'est à dire la description des fonctions du logiciel en vue de sa réalisation. La spécification fonctionnelle décrit dans le détail la façon dont les exigences seront prises en compte.



Concevoir l'architecture logique et matérielle







## Software

• IHM

### **IHM**

#### Objectifs:

La realisation d'une IHM bidirectionnelle

Environnement de travail









### Logiciel proposé

 Le développement de l'interface graphique se fera suivant l'architecture MVC (= Model View Control)

Architecture MVC:



### Liaison PC – Microcontrôleur

Objectif : Commander le système via un ordinateur

Exigence : Liaison par câble USB

• Solution: Utilisation du protocole UART + Virtual Communication Port (VCP)





Cube

# + TouchGFX

#### **Equipe IHM**

#### **Démonstration**

- Nous avons développé :
  - Des drivers pour les controleurs LCD et Tactile
  - Completer le framework touchGFX et prise en main
  - Développer une petite interface graphique de test
- STM32
  - 256 Ko RAM
  - Jusqu'à 180 Mhz
  - Chrom-ART accelerator (2D DMA)
  - Flexible Memory Controller (FMC)
- Ecran
  - Resolution 800 x 480
  - Couleur 16 bit
  - Controleurs LCD

### Video démonstration







## Software

• Bus de communication

## Liaison série



Bit par bit (≠ liaison parallèle)

Synchrone (même horloge)

Asynchrone (horloges séparées)

Bit de parité pour détecter des erreurs

### **UART**: Universal Asychronous Receiver Transmitter

#### Communication



### Trame UART



### I2C: Inter-Integrated Circuit

#### Communication



#### • Trame I2C:



### SPI: Synchronous Peripheral Interface

Communication



4 modes de fonctionnement dépendant de CPOL et CPHA





### Détection du protocole

Le système doit pouvoir **identifier** le protocole et donc savoir quel bus de communication est utilisé.

Première idée d'identification :

✓ Le système utilise 2 pins + GND : UART ou

I2C



S'il y a présence d'une horloge :

I2C

Sinon: UART

✓ Le système utilise plus de 3 pins : SPI

La lecture se fait alors suivant le protocole associé.



## Software

• FPGA : Analyse et generation de flux vidéo

#### Introduction

 La recherche faites sur la partie analyse du flux vidéo est plus précise par rapport à la partie génération de flux, car dans cette partie on va chercher juste le/les canal(canaux) ou on va récupérer les informations concernant l'écran et que doit fournir l'appareil source.

Remarque: cette recherche est faite pour se familiariser avec les technologies utiliser dans l'équipement à concevoir, en se basant sur le cahier de charge fournit par le client.

### Vu général du sous-système (analyse flux)



#### Canal DDC/EDID



• L'échange de données EDID est un moyen normalisé permettant à un écran de communiquer ses capacités à un périphérique source.

#### Protocole TMDS

- Est un protocole de communication utilisé par HDMI ainsi que les DVI qui utilise un algorithme très intelligent pour l'envoi des données vidéo à haute vitesse de transfert il peut atteindre 3.4 Gbits/s en un seul canal.
- Le format des flux données ce décompose en trois paquet : data vidéo, contrôle data, audio data
- On va s'intérreser au paquet data vidéo pour notre système

### Conclusion

- Cette présentation avait pour but de de montrer une solution technologique en lien avec nos taches à faire et en se basant sur les besoins du cahier de charges.
- Cette solution n'est pas définitive car il n'est pas eu de consensus à propos de cette solution au sein de l'équipe et les sepcifications liée à cette partie n'ont pas été réaliser.
- En fin, la prochaine étape est d'écrire les exigences liée à cette partie et les approuvés par le client puis on attaquera la conception et le codage en suivant le cycle en V du PGE.





# Hardware

- Schematique
- Liste des composants

## PCB

**TOP** 

### **BOTTOM**



Les schémas ne sont pas à l'échelle

## Communication



Les schémas ne sont pas à l'échelle

# Supply

|                  | Min | Тур | Max | Unit |
|------------------|-----|-----|-----|------|
| MCU              |     |     | 300 | mA   |
| LCD screen touch |     |     | 300 | mA   |
| LCD driver       |     |     | 50  | mA   |
| HV3 module (1)   |     |     | 1   | Α    |
| HV3 module (2)   |     |     | 1   | Α    |

| Total |  | 2.65 | Α |
|-------|--|------|---|
|       |  |      |   |

## Alimentation



## Supply





## **Equipe Hardware**

Prochaines étapes Réalisation d'un PCB avec des « modules » pour validation

 Définir le pinout avec l'équipe SW (MCU + HV3)



## Mécanique

Second prototype





### **Détails**





# Merci

D'avoir suivi la présentation