A Generic Force Field Method for Robot Real-time Motion Planning and Coordination

Dalong Wang

A thesis submitted in fulfilment of the degree of DOCTOR OF PHILOSOPHY

Faculty of Engineering and Information Technology
University of Technology, Sydney

October 2009

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

(DALONG WANG)

Sydney, October 2009

Abstract

This thesis presents a systematic study on a novel force field method (F^2) for robot motion planning and multi-robot motion coordination. In this F^2 method, a force field is generated for each robot based on its status: location, orientation, travel speed, priority, size, and the robot's environment. A robot with larger volume, travelling at higher speed or with higher task priority than other robots, will have a larger force field, and consequently has priority in collision avoidance. The interaction of a robot's force field with its environment provides a natural way for real-time motion planning and multi-robot coordination.

Four novel F² based methods have been investigated for applications in different cases. The Canonical Force Field method (CF²) is first designed based on the concept of the F² method, in which a robot is assumed to be travelling with constant speed and its moving direction is determined by the resultant forces acting on it. This CF² method has proved to be very efficient in applications in simple and structured environments. A Variable Speed Force Field method (VSF²) which takes a robot's kinematic and dynamic constraints into consideration is further investigated. The VSF² method allows a robot to change its speed based on environmental information and the status of obstacles and other robots in the same environment. A Subgoal-Guided Force Field method (SGF²) is developed to enhance the F² method by generating subgoals based on updated sensor data. A robot using the SGF² method will then move towards a subgoal instead of the global goal, which greatly broadens the applicability of the F² method in more complex environments. Finally, a Dynamic Variable Speed Force Field method (DVSF²) is designed for applications in partially known and dynamically changing environments. In this method, subgoals are selected on a pre-planned global path.

In order to investigate the effect of parameters on the performance of the proposed F^2 methods, two optimization algorithms have been proposed in this research for optimal design of the parameters in F^2 methods: the Particle Swarm Optimization-tuned Force Field method (PSOtuned F^2) for single objective parameter optimization and the Ranked Pareto Particle Swarm Optimization approach for multiobjective parameter optimization.

Extensive simulations and experiments with real robots in an indoor environment have been carried out to verify these methods. The results have demonstrated the feasibility and efficiency of the F^2 methods in real-time robot motion planning and multi-robot coordination in various environments.

Acknowledgements

I would like to express my deepest gratitude to the following people for helping me during my study in the ARC Centre of Excellence for Autonomous Systems (CAS), Faculty of Engineering and Information Technology, University of Technology, Sydney. First of all, I would like to thank my principal supervisor Associate Professor Dikai Liu for his advice and guidance throughout these years. Without his support the completion of this thesis would not have been possible. I would also like to thank Professor Gamini Dissanayake for advising me on my research. His expert knowledge and deep insight provide invaluable help to my research.

I would like to thank all friends and colleagues in CAS, especially Gavin Paul, Nathan Kirchner, Zhengzhi Zhang, Pholchai Chotiprayanakul, Tianran Ren, Tarek Taha, and Stephen Webb for their friendship and help. I would like to thank Mr. Tarek Taha and Dr. Jaime Valls Miro for their great support in experiments with robots. A special thank goes to Dr. Ngai Ming Kwok, who helped a lot in my research on parameter optimization of the force field methods and gave me many helpful suggestions on the writing of my thesis.

Finally, I would like to thank my family who has always supported me and my wife Danna for always being by my side. You are the source of my inspiration, courage and happiness.

Table of Contents

CERTIFICATE OF AUTHORSHIP / ORIGINALITY	ii
Abstract	iii
Acknowledgements	V
Table of Contents	vi
List of Figures	ix
List of Tables	xiv
Chapter 1 Introduction	1
1.1 Robot Motion Planning Algorithms	3
1.1.1 Motion Planning Approaches	3
1.1.2 Force Field Related Work	4
1.1.3 Virtual Force Field Method for Real-time Motion Planning and Coordination	6
1.2 Scope and Objectives	8
1.3 Contributions	9
1.4 Publications Associated with This Research	10
1.5 Thesis Outline	12
Chapter 2 Literature Review	14
2.1 Single Robot Motion Planning Approaches	14
2.1.1 Potential Field Method and Its Varieties	14
2.1.2 Vector Field Histogram and Its Varieties	26
2.1.3 Dynamic Window-based Approaches	29
2.1.4 Curvature Velocity Method	31
2.2 Approaches to Multi-Robot Motion Planning	33
2.2.1 Centralized and Decentralized Approaches	33
2.2.2 Priority-based Planning	35
2.2.3 Path-Velocity Decomposition Approaches	37
2.3 Conclusions	39
Chapter 3 Force Field Method	41
3.1 Introduction	41
3.2 Mobile Robot Motion Model	44
3.3 Construction of a Force Field	47
3 3 1 Definition of a Force Field	47

3.3.2 Attractive Force	53
3.3.3 Repulsive Force	54
3.4 Canonical Force Field Method	56
3.5 Case Studies	58
3.5.1 Single Robot Cases	58
3.5.2 Multiple Robots Cases	63
3.6 Algorithm Efficiency Evaluation	69
3.7 Conclusions	72
Chapter 4 Development of Force Field Algorithms	74
4.1 Variable Speed Force Field Method	75
4.1.1 The Concepts of the Variable Speed Force Field Method	75
4.1.2 Simulations on Variable Speed Force Field Method	77
4.1.3 Conclusions on Variable Speed Force Field Method	85
4.2 Subgoal-Guided Force Field Method	86
4.2.1 Introduction	86
4.2.2 Subgoal-Guided Force Field Method	88
4.2.3 Simulation Studies on Subgoal-Guided Force Field Method	90
4.2.4 Conclusion on the Subgoal-Guided Force Field Method	96
4.3 Dynamic Variable Speed Force Field Method	97
4.3.1 Local Obstacle Avoidance	97
4.3.2 Dynamic Variable Speed Force Field Method	98
4.3.3 Simulations Studies on Dynamic Variable Speed Force Field Method	. 100
4.3.4 Conclusions on the Dynamic Variable Speed Force Field Method	. 101
4.4 Discussions on Force Field Methods	. 104
4.5 Conclusions	. 105
Chapter 5 Optimization based Parameter Refinements	. 106
5.1 Introduction	. 106
5.2 Particle Swarm Optimization (PSO)	. 109
5.3 Particle Swarm Optimization Tuned Force Field Method	. 110
5.3.1 Single Objective Parameter Optimization	. 110
5.3.2 Simulations Studies on Single Objective Optimization	. 111
5.3.3 Conclusions on Particle Swarm Optimization Tuned Force Field Method	. 117
5.4 Ranked Pareto Particle Swarm Optimization Method for Multiobjective Parameter	
Ontimization	117

5.4.1 Key Concepts in Multiobjective Optimization Problems	118
5.4.2 Ranked Pareto Particle Swarm Optimization Method	119
5.4.3 Case Study	125
5.5 Multiobjective Optimization of Force Field Method	129
5.6 Discussions	136
5.7 Conclusions	138
Chapter 6 Experimental Verification	139
6.1 Experiment Setup	139
6.1.1 Software Platform	139
6.1.2 Pioneer Robot	142
6.1.3 Laser Sensor	142
6.1.4 Environmental Map	143
6.1.5 Localization Method	145
6.1.6 Obstacle Identification Approach	146
6.1.7 Curve Fitting Method	147
6.2 Experimental Studies on Single Robot Cases	147
6.2.1 Experimental Studies on Canonical Force Field Method	149
6.2.2 Experimental Studies on Variable Speed Force Field Method	154
6.2.3 Experimental Studies on the Subgoal-Guided Force Field Method	157
6.2.4 Conclusions on Single Robot Experiments	159
6.3 Experimental Studies on Multi-robot Coordination	159
6.3.1 Two-Robot Cases	159
6.3.2 Three-Robot Coordination	166
6.4 Conclusions	172
Chapter 7 Conclusions and Future Work	173
Appendix A 3-Dimensional Force Field	176

List of Figures

Figure 1-1 Various types of robots: (a) the <i>irobot</i> cleaning robot, (b) a wheelchair platfor	m
developed in UTS, (c) a museum guide robot, (d) Stanley from Stanford University in the	e
DARPA Grand Challenge 2006, (e) an autonomous straddle carrier	2
Figure 2-1 An example of potential field [87]	15
Figure 2-2 An example of local minima [87]	16
Figure 2-3 Elastic band: (a) a path is pre-planned by a planner, (b) the repulsive forces fr	om
obstacles and internal contraction force make the path smoother, (c) when an obstacle is	found,
the elastic band deforms to avoid collision, (d) the elastic band continues to deform as the	e
obstacle moves [56]	17
Figure 2-4 Bubbles in elastic band: as long as the path is in the bubble sets, it is collision	-free.
Bubbles are updated in real-time and their sizes vary with the environment [56]	18
Figure 2-5 Protective hull: the bubbles show the free work space around this robot, and t	he
small obstacles represent obstacles nearby. The bubble sizes are limited by obstacles. When	hen
this robot approaches an obstacle as shown in b), more bubbles are needed to describe th	e free
space [87]	19
Figure 2-6 Elastic tunnel: some configurations are selected from a pre-planned path. The	;
combination of protective hulls of these configurations forms an elastic tunnel [87]	20
Figure 2-7 Disconnection of elastic band: an obstacle stops on the pre-planned path. The	
internal forces cannot reconnect the broken elastic strip [87]	20
Figure 2-8 Ge & Cui's method: attractive force in 2D space [44]	22
Figure 2-9 Ge & Cui's method: vectors for defining repulsive potential [44]	23
Figure 2-10 Effect of parameter γ [45]	25
Figure 2-11 The potential field with different γ [45]	25
Figure 2-12 Polar histogram in VFH [98]	26
Figure 2-13 Creation of a binary histogram [99]	29
Figure 2-14 Dynamic window [101]	30
Figure 2-15 Tangent curvatures for an obstacle [59]	32
Figure 2-16 Combining subgraphs into a super-graph [113]	34
Figure 2-17 Prioritized planning: the path of Robot 1 is planned first. Paths for Robots 2,	, 3 and
4 are then planned in sequence [50]	36

Figure 2-18 The effect of priority assignment: (a) optimal paths for two robots (b) if a pa	th is
planned for Robot 1 first, Robot 2 will have to follow a large contour. (c) if a path is pla	nned
for Robot 2 first, the total path length is shorter [7].	37
Figure 2-19 VE evaluation for robot path [133]	38
Figure 3-1 The effect of velocity on collision avoidance	42
Figure 3-2 Global reference frame and local reference frame	45
Figure 3-3 Illustration of a robot's parameters	48
Figure 3-4 The effect of ρ on force magnitude	51
Figure 3-5 Force field: a robot's force field covers more area in its moving direction that	n in
other directions	52
Figure 3-6 Attractive force.	53
Figure 3-7 Reaction force between a robot and an obstacle	55
Figure 3-8 Reaction forces between two robots	56
Figure 3-9 CF ² for single robot Case 1: the direction of a repulsive force is from the inte	raction
point to the robot centre (Option 1)	60
Figure 3-10 CF ² for single robot Case 2: the repulsive force direction is along the normal	l line
of interaction contour at the interaction point (Option 2)	60
Figure 3-11 CF ² : single robot Case 1 (snapshot 1)	61
Figure 3-12 CF ² : single robot Case 1 (snapshot 2)	61
Figure 3-13 CF ² : single robot Case 1 (trajectories in the analysed area)	62
Figure 3-14 CF ² : single robot Case 2 (snapshot 1)	62
Figure 3-15 CF ² : single robot Case 2 (trajectories in the analysed area)	63
Figure 3-16 CF ² : individual paths for four robots with force direction Option 1 (D ₁)	67
Figure 3-17 CF ² : individual paths for four robots with force direction Option 2 (D ₂)	67
Figure 3-18 CF ² : multi-robot navigation with force direction Option 1 (D ₃)	68
Figure 3-19 CF ² : multi-robot navigation with force direction Option 2 (D ₄)	68
Figure 3-20 CF ² : multi-robot navigation with priorities (D ₅)	69
Figure 3-21 CF ² : a six-robot case	72
Figure 4-1 VSF ² method parameters	76
Figure 4-2 Amigo robot [136]	78
Figure 4-3 A two-robot case with CF ² method	80
Figure 4-4 Direction oscillation in a two-robot case with CF ² method	80
Figure 4-5 VSF ² method: two-robot case	81
Figure 4-6 VSF ² method: two-robot case (robots' speeds and moving directions)	82

Figure 4-7 VSF ² method: four-robot case	83
Figure 4-8 VSF ² method: four-robot case (robots' speeds and orientations)	84
Figure 4-9 SGF ² method: a problematic case	87
Figure 4-10 SGF ² method: a local minimum for F ² method and PFM	87
Figure 4-11 SGF ² method: illustration of subgoals	89
Figure 4-12 SGF ² method: laser view	90
Figure 4-13 SGF ² method: Case 1 - simulation snapshots	93
Figure 4-14 SGF ² method: Case 1 - resultant path	94
Figure 4-15 SGF ² method: Case 2 - map	94
Figure 4-16 SGF ² method: Case 2 - resultant path	95
Figure 4-17 SGF ² method: Case 2 - environment changed	95
Figure 4-18 SGF ² method: Case 2 - new path	96
Figure 4-19 An automated wheelchair [4]	100
Figure 4-20 DVSF ² simulation: snapshot 1	102
Figure 4-21 DVSF ² simulation: snapshot 2	103
Figure 4-22 DVSF ² simulation: snapshot 3	103
Figure 4-23 DVSF ² simulation: snapshot 4	104
Figure 5-1 Single objective optimization Case 1: paths resulting from different parameters.	108
Figure 5-2 Single objective optimization Case 1: optimization results	112
Figure 5-3 Single objective optimization Case 2: two robots in a corridor	114
Figure 5-4 Single objective optimization Case 2: optimization results	115
Figure 5-5 Single objective optimization Case 3: four robots navigation	116
Figure 5-6 RPPSO flowchart	121
Figure 5-7 Snapshots of the progress of RPPSO	127
Figure 5-8 RPPSO optimization results – 2 objectives	128
Figure 5-9 RPPSO optimization results – 3 objectives	128
Figure 5-10 Multiobjective optimization Case 1: resultant path	133
Figure 5-11 Multiobjective optimization Case 1: Pareto optimal set	133
Figure 5-12 Multiobjective optimization Case 1: evaluation of optimized parameters	134
Figure 5-13 Multiobjective optimization Case 2: Pareto optimal set	135
Figure 5-14 Multiobjective optimization Case 2: resultant paths	135
Figure 5-15 Multiobjective optimization Case 2: distance to obstacles	136
Figure 5-16 Multiobjective optimization Case 3: Pareto optimal set	137
Figure 6-1 A configuration file from the Player project	141

Figure 6-2 A Pioneer robot with a laser rangerfinder	142
Figure 6-3 An experimental environment	143
Figure 6-4 A bitmap used in Player/Stage	144
Figure 6-5 An experiment map	144
Figure 6-6 An example of laser reading.	145
Figure 6-7 Obstacles identified	147
Figure 6-8 Obstacle identification	148
Figure 6-9 Curve fitting	148
Figure 6-10 CF ² Case 1: setup	150
Figure 6-11 CF ² Case 1: the environment used in the experiments	150
Figure 6-12 CF ² Case 1: the map of the environment	151
Figure 6-13 CF ² Case 1: the path obtained by the CF ² method	151
Figure 6-14 CF ² Case 2: the path obtained by the CF ² method	152
Figure 6-15 CF ² Case 3: the path obtained by the CF ² method	153
Figure 6-16 VSF ² Case 1: the environment	155
Figure 6-17 VSF ² Case 1: the map of the environment	155
Figure 6-18 VSF ² Case 1: the path obtained	156
Figure 6-19 VSF ² Case 1: variation of the robot orientation	156
Figure 6-20 VSF ² Case 1: the changes of the robot's linear speed with time	157
Figure 6-21 VSF ² Case 1: the variation of the robot's angular speed	157
Figure 6-22 SGF ² Case 1: the map of the environment	158
Figure 6-23 SGF ² Case 1: the path obtained	158
Figure 6-24 Two-robot coordination: paths of Case 1	160
Figure 6-25 Two-robot coordination: Case 1	161
Figure 6-26 Two-robot coordination: paths of Case 2	162
Figure 6-27 Two-robot coordination: Case 2	163
Figure 6-28 Two-robot coordination: paths of Case 3	164
Figure 6-29 Two-robot coordination: Case 3	165
Figure 6-30 Three-robot coordination: part 1	168
Figure 6-31 Three-robot coordination: part 2	169
Figure 6-32 Three-robot coordination: part 3	170
Figure 6-33 Three-robot coordination: a general view	171
Figure 7-1 Spring damp-friction joints represent the robot arm [68]	176
Figure 7-2 (a) Parameters of 3D-F ² and (b) a robot arm covered by force fields [68]	177

Figure 7-3 The magnitude of force field [68]	179
--	-----

List of Tables

Table 3-1 Parameters in the F ² method	48
Table 3-2 Some parameters of four robots	52
Table 3-3 CF ² : simulations results	66
Table 3-4 Computation time: a four-robot case (Simulation 4)	71
Table 3-5 Computation time: a six-robot case	71
Table 4-1 Four robots simulation results	83
Table 5-1 Parameters in single objective optimization Case 1	108
Table 5-2 Parameters in single objective optimization Case 2	114
Table 5-3 Parameters in single objective optimization Case 3	116
Table 5-4 Nomenclature in RPPSO method	120
Table 5-5 Multiobjective optimization Case 1: optimization results	134
Table 5-6 Multiobjective optimization Case 2: optimization results	136
Table 5-7 Multiobjective optimization Case 3: optimization results	138