

Lab 7: TB & BC (Testbench for Video Processing and Brightness and Contrast)

Outline

- Introduction
- Hardware Description
 - ◆ I/O Information
 - ◆ System Information
- Timing Generator Implementation
- Brightness and Contrast Implementation
- Practice
- Criteria
 - ◆ Grading Policy
 - ◆ Requirement & File Format
 - **♦** Deadline
 - ◆ Commands in Makefile

Introduction

■ Testbench and Timing Generator

這次lab我們需要完成testbench的填空,並且實作一個timing generator。 Timing Generator會用來產生螢幕所需要的信號,包括 Vsync, Hsync, Den。之後的題目會有很多的影像處理問題,都是由 這次testbench和timing generator為基礎實作的。

■ Brightness and Contrast

亮度和對比度的轉換是這次的影像處理問題,詳細的介紹會在後 面提到。

Hardware Description(Timing Generator)

■ I/O Information (timing_generator.v)

Signal	I/O	Width	Description
clk	I	1	Clock signal
rst_n	I	1	系統重置訊號,為 active low
h_total	I	12	輸入影像的水平相素總數,包含有效與無效的相素
h_size	I	12	輸入影像的水平解析度,即一條線的有效相素個數
h_sync	I	Ī1	水平同步訊號脈波寬度,以相素個數為單位
h_start	I	11	一條線內的有效相素起始點
v_total	I	11	輸入影像的垂直線條總數,包含有效與無效的線資料
v_size	I	11	輸入影像的垂直解析度,即一個畫面的有效線數目
v_sync	I	10	垂直同步訊號脈波寬度,以線為單位
hv_start	I	10	一個畫面內的有效線的起始點
vs_reset	I	23	timing generator 所產生的輸出時序與 lock 訊號同步的時間差,以 clk 為單位,23'h7FFFFF 為 free run
Synco	O	3	Synchronization signal output,共3位元 [26] 代表垂直(畫框)同步訊號 (Vsync) [25] 代表水平(線)同步訊號 (Hsync) [24] 代表有效資料區間 (Den)

Hardware Description(Brightness and Contrast)

■ I/O Information (BC.v)

Signal	I/O	Width	Description
clk	I	1	Clock signal
rst_n	I	1	系統重置訊號,為 active low
pass	I	1	決定是否要調整亮度和對比度 0:要 1:原圖輸出
Brig	I	8	決定亮度調整的大小
Cont	I	8	決定對比調整的大小
DPi	I	27	input source, 共27 位元 [26] 代表垂直(畫框)同步訊號 (Vsync) [25] 代表水平(線)同步訊號 (Hsync) [24] 代表有效資料區間 (Den) [23:0]資料, R, G, B 各 8 位元
Dpo	0	27	Data Port output, 共27 位元 [26] 代表垂直(畫框)同步訊號 (Vsync) [25] 代表水平(線)同步訊號 (Hsync) [24] 代表有效資料區間 (Den) [23:0]資料, R, G, B 各8 位元

Hardware Description

■ System Information

Timing Generator Implementation

■ Timing Generator 時序圖

■相關資料:

- http://www.3dexpress.de/displayconfigx/timings.html
- https://glenwing.github.io/docs/VESA-DMT-1.13.pdf

Brightness and Contrast Implementation

■ Formulas (通道為RGB)

- R_out = (R_in × contrast) + brightness;
- G_out = (G_in × contrast) + brightness;
- B_out = (B_in × contrast) + brightness;

■ Contrast

- 利用Cont [7:0] 調整對比
- Cont = 255, Rout = Rin \times (111111111) >> 7 \rightleftharpoons Rin * 199%
- Cont = 1, Rout = $Rin \times (00000001) >> 7 = Rin * 1\%$
- 使得可調整範圍介於1%~199%之間

■ Brightness

- •利用Brig[7:0]的值調整亮度,是一個sign and magnitude的數。
- sign bit: Brig[7] 代表加或減
- magnitude: Brig[6:0] 是無號數,調整亮度的大小

Brightness and Contrast Implementation

■ 示意圖 (Contrast)

Brightness and Contrast Implementation

■ 示意圖 (Brightness)

Practice

- ■請同學自行驗證資料傳輸的通道是否為RGB(修改pass_img.v)。
- ■透過將想要的通道保留值,將其他通道設為0來檢查
- 利用make vcs IMG=1 PASS=1 來確認圖片1

■ Grading Policy (已改為不用找助教demo)

(100%)

◆ 寫出Testbench並且透過 pass_img.v 送出原圖

(50 %)

◆ Brightness and Contrast 功能正確

(50 %)

◆ Brightness and Contrast, 請通過以下測資,有破圖的話需要修改

■ Requirement & File Format

- Deadline: 2025/05/13 (Tue) 14:00
 - ◆Late submissions will receive a partial score as follow:
 - 1 day late -> 80 %
 - 2 day late -> 50 %
 - 3 day late -> 20 %
 - Over 3 days late -> 0 %

■ Commands in Makefile

Situation	Command
RTL simulation (BC.v) with IMG{X=1, 2,3}	make vcs IMG=X
RTL simulation (pass_img.v) with IMG {X=1, 2,3}	make vcs IMG=X PASS=1
Dump Waveform	make vcs WV=1 IMG=X
Launch nWave	make wave
Delete waveform files and output image and txt	make clean
Compress homework to tar format	make tar