SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: O'BRIEN, JOHN 5. KISHIMOTO, YASUO
- (ii) TITLE OF INVENTION: IDENTIFICATION OF PROSAPOSIN AS A NEUROTROPHIC FACTOR
- (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: KNOBBE, MARTIENS, OLSON AND BEAR
 - (B) STREET: 620 NEWPORT CENTER DRIVE SIXTEENTH FLOOR
 - (C) CITY: NEWPORT BEACH
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 92660
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS\DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Israelsen, Ned A.
 - (B) REGISTRATION NUMBER: 29,655
 - (C) REFERENCE/DOCKET NUMBER: OBRIEN. Q02A
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619-235-8550
 - (B) TELEFAX: 619-235-0176
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: interhal

(vii) IMMEDIATE SOURCE:

(B) CLONE: 22-MER FRAGMENT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Cys Glu Phe Leu Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys
1 10 15

Thr Glu Lys Glu Ile Leu 20

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 523 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (V) FRAGMENT TYPE: N-terminal
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PROSAPOSIN
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala 1 5 15

Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp
20 25 30

Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys 35 40 45

Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp

Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Net Leu Lys Asp Asn 65 70 75 80

-25-

Subject

Ala Thr Glu Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp 90 Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser 105 Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro Gly Glu Val Cys Ser Ala Leu Asn Leu Cys Glu Ser Leu Gln Lys His 130 135 Leu Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro 155 Glu Leu Asp Met Thr Glu Val Val Ala\Pro Phe Met Ala Asn Ile Pro Leu Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys 190 180 185 Asp Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile Gln Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu His Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile Cys 225 235 Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala\Ile Gln Met Met Met 245 250 His Met Gln Pro Lys Glu Ile Cys Ala Leu Val Gly Phe Cys Asp Glu Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Alà Lys Val Ala Ser 275 280 285 Lys Asn Val Ile Pro Ala Leu Asp Leu Val Asp Pro \Ile Lys Lys His 290 Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu 315 Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu 325 330 Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu Pro/Lys Ser Leu 340 350 Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly Ser \$er Ile Leu

360

355

-26-

365

Ser Ile Leu Leu Glu Glu Val Ser Pro Glu Leu Val Cys Ser Met Leu 370 375 380

His Leu Cys Ser Gly Thr Arg Leu\Pro Ala Leu Thr Val His Val Thr 390 395

Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys Lys Leu Val Gly

Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys Gln Glu Ile Leu 420 425

Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp Pro Tyr Gln Lys

Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val Leu Ile Glu Ile

Leu Val Glu Val Met Asp Pro Ser Phe\Val Cys Leu Lys Ile Gly Ala 465 470 480

Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu Lys Cys Ile Trp

Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala Ala Gln Cys Asn

Ala Val Glu His Cys Lys Arg His Val Trp \Asn 515 520

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
 - (V) FRAGMENT TYPE: internal
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: SAPOSIN C
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu Val Lys Glu Val Thr 10

-27-

Lys	Leu	Ile	Asp 20	Asn	Asn	Lys	Thr	Glu 25	Lys	Glu	Ile	Leu	Asp 30	Ala	Phe
Asp	Lys	Met 35	Cys	Ser	Lys	Leu	Pro 40	Lys	Ser	Leu	Ser	Glu 45	Glu	Cys	Gln
Glu	Val 50	Val	Asp	Thr	Tyr	Gly 55	Ser	Ser	Ile	Leu	Ser 60	Ile	Leu	Leu	Glu
Glu 65	Val	Ser	Pro	Glu	Leu 70	Val	Cys	Ser	Met	Leu 75	His	Leu	Cys	Ser	Gly 80

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2740 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE:

(B) CLONE: PROSAPOSIN CDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGTACGCCC	TCTTCCTCCT	GGCCAGCCTC	CTGGGCGCGG	CTCTAGCCGG	CCCGGTCCTT	60
GGACTGAAAG	AATGCACCAG	GGGCTCGGCA	GTGTGGTGCC	AGAATGTGAA	GACGGCGTCC	120
GACTGCGGGG	CAGTGAAGCA	CTGCCTGCAG	ACCGTTTGGA	ACAAGCCAAC	ACTGAAATCC	180
CTTCCCTGCG	ACATATGCAA	AGACGTTGTC	ACCGCAGCTG	GTGATATGCT	GAAGGACAAT	240
GCCACTGAGG	AGGAGATCCT	TGTTTACTTG	GAGAAGACCT	GTGACTGGCT	TCCGAAACCG	300
AACATGTCTG	CTTCATGCAA	GGAGATAGTG	GACTCCTACC	TCCCTGTCAT	CCTGGACATC	360
ATTAAAGGAG	AAATGAGCCG	TCCTGGGGAG	GTGTGCTCTG	CTCTCAACCT	CTGCGAGTCT	420
CTCCAGAAGC	ACCTAGCAGA	GCTGAATCAC	CAGAAGCAGC	TGGAGTCCAA	TAAGATCCCA	480
GAGCTGGACA	TGACTGAGGT	GGTGGCCCCC	TTCATGGCCA	ACATCCCTCT	сстсстфтас	540
CCTCAGGACG	GCCCCGCAG	CAAGCCCCAG	CCAAAGGATA	ATGGGGACGT	TTGCCAGGAC	600

	TGCATTCAGA	TGGTGACTGA	CATCCAGACT	GCTGTACGGA	CCAACTCCAC	CTTTGTCCAG	660
		AACATGTCAA		\			720
		ATATCAGCCA		ľ			780
		TCTGTGCGCT					840
				1			
		CCGCCAAAGT	,				900
	CCCATTAAGA	AGCACGAGGT	CCCAGCAAAG	TCTGATGTTT	ACTGTGAGGT	GTGTGAATTC	960
	CTGGTGAAGG	AGGTGACCAA	GCTGATTGAC	AACAACAAGA	CTGAGAAAGA	AATACTCGAC	1020
	GCTTTTGACA	AAATGTGCTC	GAAGCTGCCG	AAGTCCCTGT	CGGAAGAGTG	CCAGGAGGTG	1080
b	GTGGACACGT	ACGGCAGCTC	CATCCTGTCC	ATCCTGCTGG	AGGAGGTCAG	CCCTGAGCTG	1140
b_{ij}	GTGTGCAGCA	ACGGCAGCTC TGCTGCACCT	CTGCTCTGGC	ACGCGGCTGC	CTGCACTGAC	CGTTCACGTG	1200
(8)	ACTCAGCCAA	AGGACGGTGG	CTTCTGCGAA	GTGTGCAAGA	AGCTGGTGGG	TTATTTGGAT	1260
	CGCAACCTGG	AGAAAAACAG	CACCAAGCAG	GAGATCCTGG	CTGCTCTTGA	GAAAGGCTGC	1320
	AGCTTCCTGC	CAGACCCTTA	CCAGAAGCAG	TGTGATCAGT	TTGTGGCAGA	GTACGAGCCC	1380
	GTGCTGATCG	AGATCCTGGT	GGAGGTGATG	GATCCTTCCT	TÇGTGTGCTT	GAAAATTGGA	1440
	GCCTGCCCCT	CGGCCCATAA	GCCCTTGTTG	GGAACTGAGA	AGTGTATATG	GGGCCCAAGC	1500
	TACTGGTGCC	AGAACACAGA	GACAGCAGCC	CAGTGCAATG	CTGTCGAGCA	TTGCAAACGC	1560
	CATGTGTGGA	ACTAGGAGGA	GGAATATTCC	ATCTTGGCAG	AAAQCACAGC	ATTGGTTTTT	1620
	TTCTACTTGT	GTGTCTGGGG	GAATGAACGC	ACAGATCTGT	TTGACTTTGT	TATAAAAATA	1680
	GGGCTCCCCC	ACCTCCCCA	TTTCTGTGTC	CTTTATTGTA	GCATTGCTGT	CTGCAAGGGA	1740
	GCCCCTAGCC	CCTGGCAGAC	ATAGCTGCTT	CAGTGCCCCT	TTTCTCTCTG	CTAGATGGAT	1800
	GTTGATGCAC	TGGAGGTCTT	TTAGCCTGCC	CTTGCATGGC	GCCTGCTGGA	GGAGGAGAGA	1860
	GCTCTGCTGG	CATGAGCCAC	AGTTTCTTGA	CTGGAGGCCA	TCAACCCTCT	TGGTTGAGGC	1920
	CTTGTTCTGA	GCCCTGACAT	GTGCTTGGGC	ACTGGTGGGC	CTGGGCTTCT	GAGGTGGCCT	1980
	CCTGCCCTGA	TCAGGGACCC	TCCCCGCTTT	CCTGGGCCTC	TCAGTTGAAC	AAAGCAGCAA	2040
	AACAAAGGCA	GTTTTATATG	AAAGATTAGA	AGCCTGGAAT	AATCAGGCTT	TTTAAATGAT	2100
	GTAATTCCCA	CTGTAATAGC	ATAGGGATTT	TGGAAGCAGC	TGCTGGTGGC	TTGGGACATC	2160
	AGTGGGGCCA	AGGGTTCTCT	GTCCCTGGTT	CAACTGTGAT	TTGGCTTTCC	CGTGTCTTTC	2220

CTGGTGATGC	CTTGTTTGGG	GTTCTGTGGG	TTTGGGTGGG	AAGAGGGCAA	TCTGCCTGAA	2280
TGTAACCTGC	TAGCTCTCCG	AAGGCCCTGC	eccrect	TGTGTGAGCG	TGTGGACAGT	2340
GGTGGCCGCG	CTGTGCCTGC	TCGTGTTGCC	TACATGTCCC	TGGCTGTTGA	GCCCTCCTT	2400
CAGCCTGCAC	CCCTCCCTTG	TCTCATAGAT	GCTCTTTTG	ACCTTTTCAA	ATAAATATGG	2460
ATGGCGAGCT	CCTAGGCCTC	TGGCTTCCTG	GTAGAGGCG	GCATGCCGAA	GGGTCTGCTG	2520
GGTGTGGATT	GGATGCTGGG	GTGTGGGGGT	TGGAAGCTGT	CTGTGGCCCA	CTTGGGCACC	2580
CACGCTTCTG	TCCACTTCTG	GTTGCCAGGA	GACAGCAAGC	AAAGCCAGCA	GGACATGAAG	2640
TTGCTATTAA	ATGGACTTCG	TGATTTTTGT	TTTGCACTAA	AGTTTCTGTG	ATTTAACAAT	2700
AAAATTCTGT	TAGCCAGAAA	AAAAAAAA	AAAAAAAA			2740

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(v) FRAGMENT TYPE: internal

(vii) IMMEDIATE SOURCE:

(B) CLONE: 18-MER FRAGMENT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5

Tyr Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu
1 10 15

Ile Leu