

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

piration reaches its minimum just before the cambium resumes its activity. The paper includes a rather extended inspection of the literature.—RAYMOND H. POND.

Ecology of woodland plants.—Woodhead 13 has investigated the woodland plants near Huddersfield, England, and has made an important addition to the ecological literature that is rapidly developing in Great Britain. The subject is still new enough, however, for the author to preface his paper by a brief account of the study of ecology in Britain. The first section of the paper is physiographic, dealing with the woodland vegetation maps of the various areas under consideration. The second section is anatomical, discussing the effect of environment on structure. Under the head of dominant species, there are described the leaf, petiole, and rhizome of Pteris aguilina; the leaf, absciss-layer, and elongated bulbs of Scilla festalis; and the leaves of Deschampsia flexuosa, Holcus mollis, and Vaccinium Myrtillus. Under the head of secondary species, the leaves of Heracleum Sphondylium, Lamium Galeobdolon, and Mercurialis perennis are described. The vegetation of the Huddersfield district is naturally divided into three parallel zones: (1) the moss moor (1700-1000 feet altitude), the most exposed zone, dominated by Eriophorum vaginatum or on drier ridges by Vaccinium Myrtillus; (2) the millstone-grit plateau (1000-500 feet), with oak as the dominant tree, associated with birch and pine; (3) the Coal-measure area (500-200 feet), with deep and well-watered humus soil.—J. M. C.

Phycophaein.—Tswett finds14 that phycophaein does not exist as such in the living body of the brown algae. He does find, however, that a colorless chromogen, soluble in water but insoluble in alcohol, is present. made with distilled water contains this chromogen, but owing to its neutral reaction the solution becomes colored very slowly. Extraction with an alkaline solvent, such as ordinary tap water, gives a yellow solution, rapidly becoming brown by oxidation. Decoloration occurs when the reaction is made acid. Extracts of the thallus with 50 to 80 per cent. alcohol remain colorless. work, done in Reinke's laboratory, sustains his hypothesis of the post-mortem origin of phycophaein and refutes the generally accepted notion that it is a genuine pigment of the chromatophore. The remainder of the paper outlines the author's method for isolating the several pigments present in the chromatophore. The following are soluble in petroleum ether containing 10 per cent. alcohol; carotin, chlorophyllin a, fucoxanthin, and fucoxanthophyl. Chlorophyllin γ is not soluble in this reagent, but is soluble in alcohol and ether. The natural color of the brown algae results from a mixture of these pigments in the chromatophore.—RAYMOND H. POND.

¹³ WOODHEAD, T. W., Ecology of woodland plants in the neighborhood of Huddersfield. Jour. Linn. Soc. Bot. 37:333-406. figs. 70. 1906.

¹⁴ TSWETT, M., Zur Kenntnis der Phaeophyceenfarbstoffe. Ber. Deutsch. Bot. Gesells. 24:235–244. 1906.