About Dataset

Feature	explanation	Values
Diabetes_binary	diabetes	0 = no 1 = yes
HighBP	high BP	0 = no 1 = yes
HighChol		0 = no high cholesterol 1 = high cholesterol
CholCheck	cholesterol check in 5 years	0 = no 1 = yes
вмі	Body Mass Index	
Smoker	Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes]	0 = no 1 = yes
Stroke	(Ever told) you had a stroke.	0 = no 1 = yes
HeartDiseaseorAttack	coronary heart disease (CHD) or myocardial infarction (MI)	0 = no 1 = yes
PhysActivity	physical activity in past 30 days - not including job	0 = no 1 = yes
Fruits	Consume Fruit 1 or more times per day	0 = no 1 = yes
Veggies	Consume Vegetables 1 or more times per day	0 = no 1 = yes
HvyAlcoholConsump	(adult men >=14 drinks per week and adult women>=7 drinks per week)	0 = no 1 = yes
AnyHealthcare	Have any kind of health care coverage, including health insurance, prepaid plans such as HMO, etc.	0 = no 1 = yes

Feature	explanation	Values		
NoDocbcCost	Was there a time in the past 12 months when you needed to see a doctor but could not because of cost?	0 = no 1 = yes		
GenHlth	Would you say that in general your health is:	1 = excellent 2 = very good 3 = good 4 = fair 5 = poor		
MentHith	days of poor mental health scale 1-30 days	1-30		
PhysHlth	physical illness or injury days in past 30 days	1-30		
DiffWalk	Do you have serious difficulty walking or climbing stairs?	0 = no 1 = yes		
Sex	Gender	0 = female 1 = male		
Age	13-level age category (_AGEG5YR see codebook)	1 = 18-24 9 = 60-64 13 = 80 or older		
Education	Education level (EDUCA see codebook)	scale 1-6 1 = Never attended school or only kindergarten 2 = elementary etc.		
Income	Income scale (INCOME2 see codebook)	scale 1-8 1 = less than $10,0005 = less than$ 35,000 $8 = $75,000$ or more		

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
import os
import warnings
warnings.filterwarnings('ignore')
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: Us erWarning: A NumPy version >=1.16.5 and <1.23.0 is required for t his version of SciPy (detected version 1.23.5

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxv ersion}"

/kaggle/input/diabetes-health-indicators-dataset/diabetes_binary_ 5050split_health_indicators_BRFSS2015.csv

/kaggle/input/diabetes-health-indicators-dataset/diabetes_binary_ health_indicators_BRFSS2015.csv

/kaggle/input/diabetes-health-indicators-dataset/diabetes_012_health indicators BRFSS2015.csv

Loading the dataset

In [2]: #Loading the dataset
 df = pd.read_csv("/kaggle/input/diabetes-health-indicators-datase
 df.head()

Out[2]:		Diabetes_binary	HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	He
	0	0.0	1.0	1.0	1.0	40.0	1.0	0.0	
	1	0.0	0.0	0.0	0.0	25.0	1.0	0.0	
	2	0.0	1.0	1.0	1.0	28.0	0.0	0.0	
	3	0.0	1.0	0.0	1.0	27.0	0.0	0.0	
	4	0.0	1.0	1.0	1.0	24.0	0.0	0.0	

5 rows × 22 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 253680 entries, 0 to 253679 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	Diabetes_binary	253680 non-null	float64
1	HighBP	253680 non-null	float64
2	HighChol	253680 non-null	float64
3	CholCheck	253680 non-null	float64
4	BMI	253680 non-null	float64
5	Smoker	253680 non-null	float64
6	Stroke	253680 non-null	float64
7	HeartDiseaseorAttack	253680 non-null	float64
8	PhysActivity	253680 non-null	float64
9	Fruits	253680 non-null	float64
10	Veggies	253680 non-null	float64
11	HvyAlcoholConsump	253680 non-null	float64
12	AnyHealthcare	253680 non-null	float64
13	NoDocbcCost	253680 non-null	float64
14	GenHlth	253680 non-null	float64
15	MentHlth	253680 non-null	float64
16	PhysHlth	253680 non-null	float64
17	DiffWalk	253680 non-null	float64
18	Sex	253680 non-null	float64
19	Age	253680 non-null	float64
20	Education	253680 non-null	float64
21	Income	253680 non-null	float64
dtyp	es: float64(22)		
memo	rv usage: 42.6 MB		

memory usage: 42.6 MB

In [4]: df.describe()

Out[4]:		Diabetes_binary	HighBP	HighChol	CholCheck	
	count	253680.000000	253680.000000	253680.000000	253680.000000	253680.
	mean	0.139333	0.429001	0.424121	0.962670	28.
	std	0.346294	0.494934	0.494210	0.189571	6.
	min	0.000000	0.000000	0.000000	0.000000	12.
	25%	0.000000	0.000000	0.000000	1.000000	24.
	50%	0.000000	0.000000	0.000000	1.000000	27.
	75%	0.000000	1.000000	1.000000	1.000000	31.
	max	1.000000	1.000000	1.000000	1.000000	98.

8 rows × 22 columns


```
In [5]: #Checking for null values
        df.isnull().sum().sum()
Out[5]:
In [6]: #Checking for duplicated
        df.duplicated().sum()
        24206
Out[6]:
In [7]: #Drop duplicate rows
        df.drop_duplicates(inplace = True)
        df.shape
        (229474, 22)
Out[7]:
        df['Diabetes'] = df['Diabetes_binary']
In [8]:
        df.drop(columns = 'Diabetes_binary', inplace=True)
In [9]: # Value count for each value
        for i in df.columns:
```

print(i,'\n',df[i].value_counts())
print('-'*90)

```
HighBP
0.0
    125214
1.0
    104260
Name: HighBP, dtype: int64
              -----
_____
______
HighChol
0.0
    128129
1.0
    101345
Name: HighChol, dtype: int64
_____
CholCheck
1.0
    220176
0.0
     9298
Name: CholCheck, dtype: int64
______
BMI
27.0
     21514
26.0
    17775
24.0
    16497
28.0
    14914
25.0
   14793
85.0
       1
       1
91.0
86.0
       1
90.0
       1
78.0
       1
Name: BMI, Length: 84, dtype: int64
______
______
Smoker
0.0
    122585
1.0
    106889
Name: Smoker, dtype: int64
_____
______
Stroke
0.0
    219190
1.0
    10284
Name: Stroke, dtype: int64
_____
_____
HeartDiseaseorAttack
0.0
    205761
1.0
    23713
```

```
Name: HeartDiseaseorAttack, dtype: int64
              ______
PhysActivity
1.0
    168214
0.0
    61260
Name: PhysActivity, dtype: int64
_____
Fruits
1.0
    140593
0.0
    88881
Name: Fruits, dtype: int64
______
_____
Veggies
1.0
    182337
0.0
    47137
Name: Veggies, dtype: int64
_____
______
HvyAlcoholConsump
0.0
    215524
1.0
    13950
Name: HvyAlcoholConsump, dtype: int64
_____
AnyHealthcare
1.0
    217085
0.0
    12389
Name: AnyHealthcare, dtype: int64
______
NoDocbcCost
0.0
    208151
1.0
    21323
Name: NoDocbcCost, dtype: int64
_____
______
GenHlth
2.0
    77365
3.0
    73632
    34854
1.0
4.0
    31545
5.0
    12078
Name: GenHlth, dtype: int64
```

MentHlth	
0.0	152325
2.0	12692
30.0	12079
5.0	8913
1.0	8307
3.0	7301
10.0	6352
15.0	5501
4.0	3774
20.0	3362
7.0	3090
25.0	1188
14.0	1167
6.0	988
8.0	639
12.0	398
28.0	327
21.0	227
29.0	158
18.0	97
9.0	91
16.0	88
27.0	79
22.0	63
17.0	54
26.0	45
11.0	41
13.0	41
23.0	38
24.0	33
19.0	16

Name: MentHlth, dtype: int64

PhysHlth 0.0 136578 30.0 19385 2.0 14491 1.0 11073 3.0 8435 5.0 7595 10.0 5588 15.0 4914 7.0 4531 4.0 4521 20.0 3273

2584

14.0

```
25.0
        1336
6.0
        1328
8.0
         809
21.0
         663
12.0
         578
28.0
         522
29.0
         215
9.0
         179
18.0
         152
16.0
         112
27.0
          99
17.0
          96
24.0
          72
22.0
          70
26.0
          69
13.0
          68
11.0
          60
23.0
          56
19.0
          22
Name: PhysHlth, dtype: int64
-----
DiffWalk
0.0
      186849
1.0
      42625
Name: DiffWalk, dtype: int64
_____
_____
Sex
0.0
       128715
      100759
1.0
Name: Sex, dtype: int64
Age
9.0
       29678
10.0
       29093
8.0
       27272
7.0
       23121
11.0
       21993
6.0
       17280
13.0
       16791
12.0
       15379
5.0
       14040
4.0
       12229
3.0
       10023
2.0
       7064
1.0
       5511
```

```
Name: Age, dtype: int64
         Education
          6.0
                 88225
         5.0
                 66444
         4.0
                61124
         3.0
                9467
         2.0
                 4040
         1.0
                  174
         Name: Education, dtype: int64
         Income
          8.0
                 71640
         7.0
                40131
         6.0
                34957
         5.0
                25326
         4.0
                19953
         3.0
               15920
         2.0
                11756
         1.0
                 9791
         Name: Income, dtype: int64
         Diabetes
          0.0
                 194377
         1.0
                  35097
         Name: Diabetes, dtype: int64
         #Change dtype to int
In [10]:
          df = df.astype('int32')
```

EDA

Find correlation between the variables and the target variable (Diabetes_binary)

```
In [11]: #Plot correlation between the variables and Diabetes_binary
    df.corr()['Diabetes'][:-1].sort_values().plot(kind='bar')
Out[11]:
```


Diabetes Percentage

```
In [12]: #Plot pie chart to show HeartDisease Percentage
   plt.figure(figsize=(10,6))
   plt.pie(df['Diabetes'].value_counts(), labels=['No Diabetes', 'Di
   plt.title('Diabetes Percentage')
   plt.show()
```

Diabetes Percentage

Age and Diabetes

```
In [13]: # Age group distribution
    sns.countplot(x='Age', data=df, hue='Diabetes')
    plt.title('Age Distribution')
    plt.xlabel('Age Group | 1 = 18-24 ... 9 = 60-64 ... 13 = 80 or ol
    plt.ylabel('Count')
    plt.show()
```


Countplot shows relation between Age and Diabetes. **Elderly people** are at **high risk** of **diabetes**

```
In [14]: # Split Diabetics
   Diabetics = df.where(df.Diabetes == 1)
   Diabetics.dropna(inplace=True)
```

Sex and Diabetes

```
In [15]: # Plot pie chart to show sex distribution of Diabetes pations
    plt.figure(figsize=(10,6))
    plt.pie(Diabetics['Sex'].value_counts(), labels=['Female','Male']
    plt.title('Diabetics Gender')
    plt.show()
```

Diabetics Gender

Pie chart shows don't have strong relation between Sex and Diabetes

High Cholesterol and Diabetes

```
In [16]: # HighChol and Diabetes
    fig,ax = plt.subplots(1,2,figsize=(15,5))
    sns.countplot(x='HighChol', data=df, hue='Diabetes', ax=ax[0]).se
    sns.countplot(x='HighChol', data=Diabetics, ax=ax[1]).set_title('
Out[16]:
Text(0.5, 1.0, 'High Cholesterol in Diabetes pation')
```


Countplots shows have relation between the High Cholesterol and Diabetes. **Diabetics** (with HighChol: 23496, without HighChol: 11601)

Difficulty walking or climbing and Diabetes

```
In [17]:
            # DiffWalk and Diabetes
            fig,ax = plt.subplots(1,2,figsize=(15,5))
            sns.countplot(x='DiffWalk', data=df, hue='Diabetes', ax=ax[0]).se
            sns.countplot(x='DiffWalk', data=Diabetics, ax=ax[1]).set title('
            Text(0.5, 1.0, 'Difficulty in walking or climbing in Diabetes pat
Out[17]:
            ion')
                       Difficulty in walking or climbing vs Diabetes
                                                                Difficulty in walking or climbing in Diabetes pation
             160000
                                                        20000
             140000
             120000
                                                        15000
             100000
              80000
                                                        10000
              60000
              40000
              20000
```

Diabetics (with DiffWalk: 13114, without DiffWalk: 21983)

High blood pressure and Diabetes

DiffWalk

```
In [18]: # HighBP and Diabetes
fig,ax = plt.subplots(1,2,figsize=(15,5))
```

DiffWalk

```
sns.countplot(x='HighBP', data=df, hue='Diabetes', ax=ax[0]).set_
sns.countplot(x='HighBP', data=Diabetics, ax=ax[1]).set_title('Hi
```

Out[18]: Text(0.5, 1.0, 'High blood pressure in Diabetes pation')

Countplot shows have relation between the High blood pressure and Diabetes. **Diabetics (with HighBP : 26405 , without HighBP : 8692)**

General Health and Diabetes

```
In [19]: # GenHlth and Diabetes
fig,ax = plt.subplots(1,2,figsize=(15,5))
sns.countplot(x='GenHlth', data=df, hue='Diabetes', ax=ax[0]).set
sns.countplot(x='GenHlth', data=Diabetics, ax=ax[1]).set_title('G
plt.xlabel('GenHlth | 1:excellent 2:very good 3:good 4:fair 5:poo
```

Out[19]: Text(0.5, 0, 'GenHlth | 1:excellent 2:very good 3:good 4:fair 5:p oor')

Both the Countplotsprovides clear understanding of the realtion between the General Health and diabetes. In good, fair, poor health type there is a high risk of developing diabetes

```
1. good: 13324
2. fair: 9781
```

3. very good: 6280

4. poor: 4577

5. excellent: 1135

```
In [20]: Diabetics['GenHlth'].value_counts().sort_values(ascending=False)
Out[20]: 3.0    13324
    4.0    9781
    2.0    6280
    5.0    4577
    1.0    1135
    Name: GenHlth, dtype: int64
```

BMI and Diabetes

```
In [21]: # BMI and Diabetes
    sns.displot(df, x="BMI", hue="Diabetes", kind="kde", fill=True)
    plt.title('BMI vs Diabetes')
    plt.xlabel('BMI')
    plt.ylabel('Count')
    plt.show()
```


In [22]: fig,ax = plt.subplots(1,2,figsize=(15,5))
 sns.boxplot(x='Diabetes', y='BMI', data=df, ax=ax[0]).set_title('
 sns.violinplot(x='Diabetes', y='BMI', data=df, ax=ax[1]).set_titl

Out[22]: Text(0.5, 1.0, 'BloodPressure vs Diabetes')

Both graphs highlights the role of BMI in diabetes prediction. Non diabetic patients have a normal BMI within the range of 25-35 whereas

the diabetic patients have a BMI greater.

Correlation heatmap

```
In [23]: #correlation heatmap
  plt.figure(figsize=(20,20))
  sns.heatmap(df.corr(), annot=True).set_title('Correlation Heatmap
```

Out[23]: Text(0.5, 1.0, 'Correlation Heatmap')

Train Test Split

```
In [24]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df.drop('Diab'))
```

Model Training

Logistic Regression

```
In [25]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score

solver = ['lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'best_slover = ''
    train_score = np.zeros(6)
    for i, n in enumerate(solver):
        lr = LogisticRegression(solver=n).fit(X_train, y_train)
        train_score[i] = lr.score(X_test, y_test)
        if lr.score(X_test, y_test) == train_score.max():
            best_slover = n

lr = LogisticRegression(solver=best_slover)
lr.fit(X_train, y_train)
lr_pred = lr.predict(X_test)
print(f'LogisticRegression Score: {accuracy_score(y_test, lr_pred)
```

LogisticRegression Score: 0.849373570105676

Decision Tree Classifier

```
In [26]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import GridSearchCV

dtree = DecisionTreeClassifier(class_weight='balanced')
    param_grid = {
        'max_depth': [3, 4, 5, 6, 7, 8],
        'min_samples_split': [2, 3, 4],
        'min_samples_leaf': [1, 2, 3, 4],
        'random_state': [0, 42]
    }
    grid_search = GridSearchCV(dtree, param_grid, cv=5)
    grid_search.fit(X_train, y_train)
    Ctree = DecisionTreeClassifier(**grid_search.best_params_, class_Ctree.fit(X_train, y_train)
```

```
dtc_pred = Ctree.predict(X_test)
print("DecisionTrees's Accuracy: ", accuracy_score(y_test, dtc_pr
```

DecisionTrees's Accuracy: 0.7209935722845626

Random Forest Classifier

Models Evaluation

Evaluating Logistic Regression Model

```
In [41]: from sklearn.metrics import mean_absolute_error,mean_squared_erro
    print('Accuracy Score :', accuracy_score(y_test, lr_pred))
    print('f1 Score :', f1_score(y_test, lr_pred, average="weighted")
    print('Mean Absolute Error :',mean_absolute_error(y_test, lr_pred)
    print('Mean Squared Error : ',mean_squared_error(y_test, lr_pred)
    print('R2 Score : ',r2_score(y_test, lr_pred))
```

Accuracy Score : 0.849373570105676 f1 Score : 0.8102760048559708

Mean Absolute Error : 0.150626429894324 Mean Squared Error : 0.150626429894324

R2 Score : -0.1542471114712025

Evaluating DecisionTree Model

```
In [42]: from sklearn.metrics import mean_absolute_error,mean_squared_erro
    print('Accuracy Score :', accuracy_score(y_test, dtc_pred))
    print('f1 Score :', f1_score(y_test, dtc_pred, average="weighted"
    print('Mean Absolute Error :',mean_absolute_error(y_test, dtc_pred
    print('Mean Squared Error : ',mean_squared_error(y_test, dtc_pred
    print('R2 Score : ',r2_score(y_test, dtc_pred))
```

Accuracy Score: 0.7209935722845626

f1 Score: 0.7567270217569475

Mean Absolute Error : 0.27900642771543743 Mean Squared Error : 0.27900642771543743

R2 Score: -1.13802028965554

Comparing the models

```
In [47]: #comparing the accuracy of different models
    models = ['Logistic Regression','DecisionTree']
    preds = [lr_pred,dtc_pred]
    accuracys= []
    f1 = []
    for i in preds:
        accuracys.append( accuracy_score(y_test, i))
        f1.append(f1_score(y_test, i, average="weighted"))
    fig,ax = plt.subplots(1,2,figsize=(15,5))
    sns.barplot(x=models, y=accuracys, ax=ax[0]).set_title('accuracys sns.barplot(x=models, y=f1, ax=ax[1]).set_title('f1_score')
```

Out[47]: Text(0.5, 1.0, 'f1_score')

Conclusion

From the exploratory data analysis, I have concluded that the risk of Diabetes depends upon the following factors:

- HighChol
- BMI
- DiffWalk
- HighBP
- GenHlth

The LogisticRegression model performed better than DecisionTrees model with an accuracy of 84.9%.