In this work I carried out a small analysis of loans from people who paid and did not pay the loan. I used 7 machine learning algorithm for analysis.

• Detailed data description of Credit Risk dataset:

person_age : Age of person

• person income Annual : Income per year

person_home_ownership : Home ownership

person_emp_length : Employment length (in years)

• loan intent : intention of loan

loan_grade : Loan grade

loan_amnt : Loan amount

loan_int_rate : Interest rate

loan_status : Loan status (0 is non default(payer) ,1 is default(non-payer)

• loan percent income : Percent income

cb_person_default_on_file : Historical default

• cb_preson_cred_hist_length : Credit history length

• Target Variable : loan_status

```
In [1]: # import necessary liberaries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]: # read the data
df = pd.read_csv("credit_risk_dataset.csv")
df.head()
```

Out[2]:

	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loan_status	loan
0	22	59000	RENT	123.0	PERSONAL	D	35000	16.02	1	
1	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	0	
2	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	1	
3	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	1	
4	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	1	ļ

In [3]: df.shape

Out[3]: (32581, 12)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32581 entries, 0 to 32580
Data columns (total 12 columns):
                                Non-Null Count Dtype
    Column
    -----
    person age
                                32581 non-null int64
 1
    person_income
                                32581 non-null int64
    person home ownership
                                32581 non-null object
    person emp length
                                31686 non-null float64
 4
    loan intent
                                32581 non-null object
    loan grade
                                32581 non-null object
    loan amnt
                                32581 non-null int64
 7
    loan_int_rate
                                29465 non-null float64
    loan status
                                32581 non-null int64
    loan percent income
                                32581 non-null float64
10 cb person default on file 32581 non-null object
11 cb person cred hist length 32581 non-null int64
dtypes: float64(3), int64(5), object(4)
memory usage: 3.0+ MB
```

Data Cleaning

In [4]: | df.info()

```
In [5]: # check null values
        df.isna().sum()
Out[5]: person_age
                                          0
        person income
        person home ownership
                                          0
        person_emp_length
                                        895
        loan_intent
                                          0
        loan grade
        loan amnt
        loan_int_rate
                                       3116
        loan status
        loan percent income
        cb_person_default_on_file
                                          0
        cb person cred hist length
        dtype: int64
```

```
(df.isna().sum()/len(df))*100
Out[6]: person_age
                                       0.000000
        person income
                                       0.000000
        person_home_ownership
                                      0.000000
        person_emp_length
                                      2.747000
        loan_intent
                                      0.000000
        loan_grade
                                      0.000000
        loan_amnt
                                       0.000000
        loan_int_rate
                                       9.563856
        loan_status
                                      0.000000
        loan_percent_income
                                      0.000000
        cb person default on file
                                      0.000000
        cb_person_cred_hist_length
                                       0.000000
        dtype: float64
```

In [6]: #check the percentage of missing values

Percantage of missing values in both the columns are under 30, so can be treated with appropriate technique, after exploring the distribution

```
In [7]: #Check distribution of both columns
def dist_plot(data,col):
    plt.figure()
    sns.distplot(data[col].dropna())
```

In [8]: dist_plot(df,'person_emp_length'), dist_plot(df,'loan_int_rate')

Out[8]: (None, None)

Both columns are not following a normal distribution. So preferably we can use 'median' to replace the missing values

```
In [9]: # fill null value by median
         df['person_emp length'].median()
 Out[9]: 4.0
In [10]: df['person_emp_length'].fillna('4.0',inplace=True)
In [11]: |df['loan int rate'].median()
Out[11]: 10.99
In [12]: df['loan int rate'].fillna('10.99',inplace=True)
In [13]: print('Null values : ',df.isna().sum().sum())
          Null values: 0
         Here we fill the null values by median bt it may affect on the accuracy of model, to see the differece we will check the accuaracy of
         model in both ways. by filling the values or by dropping the values
In [14]: import statsmodels.api as sm
         from statsmodels.stats.outliers influence import variance inflation factor
In [15]: # check multicolinearity
         def calculate vif(X):
             vif = pd.DataFrame()
             vif["variables"] = X.columns
             vif["VIF"] = [variance inflation factor(X.values, i) for i in range(X.shape[1])]
```

return(vif)

```
In [16]: X = df.select_dtypes(exclude='object').dropna()
calculate_vif(X)
```

Out[16]:

	variables	VIF
0	person_age	13.446412
1	person_income	3.198992
2	loan_amnt	6.873545
3	loan_status	1.528453
4	loan_percent_income	7.904940
5	cb_person_cred_hist_length	6.309861

Age has high value for VIF, which indicates that it can be predicted by other independent variables in the dataset, So the column 'age' can be dropped to reduce the feature set

https://www.investopedia.com/terms/v/variance-inflation-factor.asp# (https://www.investopedia.com/terms/v/variance-inflation-factor.asp#)

```
In [17]: # check outliers in data
df['person_age'].max()
```

Out[17]: 144

Out[18]:

		person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loan_status
	81	144	250000	RENT	4.0	VENTURE	С	4800	13.57	0
	183	144	200000	MORTGAGE	4.0	EDUCATION	В	6000	11.86	0
	575	123	80004	RENT	2.0	EDUCATION	В	20400	10.25	0
	747	123	78000	RENT	7.0	VENTURE	В	20000	10.99	0
;	32297	144	6000000	MORTGAGE	12.0	PERSONAL	С	5000	12.73	0

```
In [19]: #drop the outliers
df = df[df['person_age'] < 100].reset_index(drop=True)</pre>
```

In [20]: df

Out[20]:

	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loar
0	22	59000	RENT	123.0	PERSONAL	D	35000	16.02	
1	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	
2	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	
3	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	
4	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	
32571	57	53000	MORTGAGE	1.0	PERSONAL	С	5800	13.16	
32572	54	120000	MORTGAGE	4.0	PERSONAL	Α	17625	7.49	
32573	65	76000	RENT	3.0	HOMEIMPROVEMENT	В	35000	10.99	
32574	56	150000	MORTGAGE	5.0	PERSONAL	В	15000	11.48	
32575	66	42000	RENT	2.0	MEDICAL	В	6475	9.99	

32576 rows × 12 columns

4

Five rows of outliers are dropped

```
In [21]: # df[df['person_emp_length'] > 100]
```

```
In [22]: # check outlier using box plot
df['person_emp_length'] = df.person_emp_length.astype("float")
```

```
In [23]: df.boxplot(column='person_emp_length')
plt.show()
```


We can clearly see that there is outlier, we should remove that outlier for better accuracy result.

```
In [24]: df = df[df['person_emp_length'] < 100].reset_index(drop=True)
df</pre>
```

Out[24]:

	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loar
0	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	
1	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	
2	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	
3	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	
4	21	9900	OWN	2.0	VENTURE	Α	2500	7.14	
32569	57	53000	MORTGAGE	1.0	PERSONAL	С	5800	13.16	
32570	54	120000	MORTGAGE	4.0	PERSONAL	Α	17625	7.49	
32571	65	76000	RENT	3.0	HOMEIMPROVEMENT	В	35000	10.99	
32572	56	150000	MORTGAGE	5.0	PERSONAL	В	15000	11.48	
32573	66	42000	RENT	2.0	MEDICAL	В	6475	9.99	

32574 rows × 12 columns

4

Two rows of outlier dropped

Exploratory Data Analysis

```
In [25]: plt.figure(figsize=[16,9])
    sns.countplot(x = 'person_age', hue= 'loan_status', data=df, palette='Set2' )
    plt.xlabel("person age", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("loan status", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


- 0 : non-default
- 1 : default

We can observe that people who are younger have a tendency of not to pay the loan, The greatest default is among the youngest.

```
In [26]: import plotly.express as px
```

• https://www.analyticsvidhya.com/blog/2021/10/interactive-plots-in-python-with-plotly-a-complete-guide/ (https://www.analyticsvidhya.com/blog/2021/10/interactive-plots-in-python-with-plotly-a-complete-guide/)

```
In [27]: defaulter = df[df['loan_status'] == 1]
non_defaulter = df[df['loan_status'] == 0]
```

```
In [28]: # Loan intention of Loan defaulter
fig_1 = px.histogram(defaulter, x='loan_intent',color='loan_intent')
fig_1.show()
```


- An interesting fact is that the people most likely to default on the loan are the youngest, and the biggest expense on loans is for medical expenses. One of the reasons may be that many do not have health insurance and, in an emergency, end up borrowing money.
 - Debt consolidation is the act of taking out a single loan to pay off multiple debts.
 - https://www.investopedia.com/terms/d/debtconsolidation.asp (<a href="https://www.investopedia.com/terms/d/deb

```
In [29]: # loan intention of non-defaulters
fig_2 = px.histogram(non_defaulter, x='loan_intent',color='loan_intent')
fig_2.show()
```


- In this graph we see that non-defaulter used the amount for education purpose, the education factor ends up being an interesting factor for the payment
- Venture debt refers to a financing arrangement wherein companies in their start-up, or early phase are backed by venture capital.
 - https://corporatefinanceinstitute.com/resources/knowledge/finance/venture-debt/ (https://corporatefinanceinstitute.com/resources/knowledge/finance/venture-debt/)

In [30]: fig_3 = px.histogram(defaulter,x='person_home_ownership',color='person_home_ownership')
fig_3.show()


```
In [31]: fig_4 = px.histogram(non_defaulter,x='person_home_ownership',color='person_home_ownership')
fig_4.show()
```


In both of the cases number of renters are more

The number of mortgage is much higher in non-defaulter when related to rent.

• https://www.rocketmortgage.com/learn/what-is-a-mortgage (https://www.rocketmortgage.com/learn/what-is-a-mortgage)

```
In [32]: plt.figure(figsize=(13,8))
    sns.scatterplot(data=df,x='person_age',y='person_income',)
    plt.xlabel("person age", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("person income", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```



```
In [33]: plt.figure(figsize=(13,8))
sns.scatterplot(data=df,x='loan_amnt',y='person_income',hue='loan_status',palette='winter_r')
plt.xlabel("loan amount", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
plt.ylabel("person income", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
plt.show()
```


- inference:
 - here, we can see that the person whoes income is more than 75k are non defaulters.

• the person whoes income is less than 25k have more number of defaulter

```
In [34]: plt.figure(figsize=(13,8))
    sns.barplot(data=df,y='person_income',x='loan_grade',hue='loan_status')
    plt.xlabel("loan amount", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("person income", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


In [35]: plt.figure(figsize=(15,8))
 sns.heatmap(df.corr(), annot= True)
 plt.show()

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Model Building

```
In [36]: # Splitting of data
         X = df.drop(columns='loan_status')
         y= df['loan status']
In [37]: # encode the categorical data
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.compose import ColumnTransformer
         one_hot_encoder = ColumnTransformer(transformers=[('OneHot', OneHotEncoder(), [0,2,4,5,9,10])], remainder='passthrough'
         X = one_hot_encoder.fit_transform(X).toarray()
In [38]: # Escalation of values
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X = scaler.fit transform(X)
In [39]: # Division of data into training and testing
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
In [40]: |print(X_train.shape)
         print(X_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (24430, 109)
         (8144, 109)
         (24430,)
         (8144,)
```

Naive Bayes

```
In [41]: from sklearn.naive_bayes import GaussianNB
    naive_bayes = GaussianNB()
    naive_bayes.fit(X_train, y_train)
    predictions = naive_bayes.predict(X_test)

Out[41]: array([1, 1, 1, ..., 1, 1, 1], dtype=int64)

In [42]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
    print('accuracy of naive bayes algorithm :%.2f%%' % (accuracy_score(y_test, predictions)*100))
    accuracy of naive bayes algorithm :21.66%

In [43]: confusion_matrix(y_test, predictions)

Out[43]: array([[ 73, 6362],
```

[18, 1691]], dtype=int64)

```
In [44]: from yellowbrick.classifier import ConfusionMatrix
cm = ConfusionMatrix(naive_bayes)
cm.fit(X_train, y_train)
cm.score(X_test, y_test)
```

Out[44]: 0.21660117878192534

In [45]: print(classification_report(y_test, predictions))

recall	f1-score	support
0.01	0.02	6435
0.99	0.35	1709
	0.22	8144
0.50	0.18	8144
0.22	0.09	8144
	0.99	0.01 0.02 0.99 0.35 0.22 0.50 0.18

One of the reasons for the bad result of this algorithm is, the fact that the combination of characteristics, each pair is independent, which is not always true, contributing to the bad performance of this algorithm.

Decision Trees

accuracy of decision tree algorithm :89.40%

```
In [49]: from yellowbrick.classifier import ConfusionMatrix
cm = ConfusionMatrix(dec_tree)
cm.fit(X_train, y_train)
cm.score(X_test, y_test)
```

Out[49]: 0.894032416502947

In [50]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.94	0.93	0.93	6435
Ø	0.94	0.93	0.33	
1	0.74	0.76	0.75	1709
accuracy			0.89	8144
macro avg	0.84	0.85	0.84	8144
weighted avg	0.90	0.89	0.89	8144

XGBoost

```
In [53]: y_pred1 = xgboost.predict(X_test)
```

```
In [54]: print('accuracy of xgboost algorithm :%.2f%%' % (accuracy_score(y_test, y_pred1)*100))
```

accuracy of xgboost algorithm :93.63%

In [55]: cm = ConfusionMatrix(xgboost)
 cm.fit(X_train, y_train)
 cm.score(X_test, y_test)

Out[55]: 0.9362721021611002


```
precision
                            recall f1-score
                                               support
           0
                   0.94
                              0.99
                                        0.96
                                                  6435
                              0.75
           1
                   0.94
                                        0.83
                                                  1709
                                        0.94
                                                  8144
    accuracy
   macro avg
                                        0.90
                                                  8144
                   0.94
                              0.87
weighted avg
                                        0.93
                   0.94
                              0.94
                                                  8144
```

accuracy of random forest algorithm :93.26%

In [56]: print(classification_report(y_test, y_pred1))

Random Forest

In [60]: cm = ConfusionMatrix(random_forest)
 cm.fit(X_train, y_train)
 cm.score(X_test, y_test)

Out[60]: 0.9325884086444007


```
precision
                           recall f1-score
                                               support
           0
                   0.93
                             0.99
                                        0.96
                                                  6435
                   0.96
                             0.71
                                        0.81
           1
                                                  1709
                                        0.93
                                                  8144
    accuracy
                                        0.89
   macro avg
                                                  8144
                   0.95
                             0.85
weighted avg
                             0.93
                                        0.93
                                                  8144
                   0.93
```

Instance-based learning - knn

In [61]: print(classification_report(y_test, y_pred_rf))

```
In [62]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p = 2)
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)
```

```
In [63]: print('accuracy of knn algorithm :%.2f%%' % (accuracy_score(y_test, y_pred_knn)*100))
```

accuracy of knn algorithm :84.45%

In [64]: cm = ConfusionMatrix(knn)
 cm.fit(X_train, y_train)
 cm.score(X_test, y_test)

Out[64]: 0.8445481335952849


```
In [65]: print(classification_report(y_test, y_pred_knn))
                       precision
                                     recall f1-score
                                                        support
                            0.86
                                       0.96
                                                 0.91
                                                           6435
                    0
                            0.73
                                       0.41
                                                 0.52
                                                           1709
                    1
                                                 0.84
                                                           8144
             accuracy
            macro avg
                            0.80
                                       0.68
                                                 0.72
                                                           8144
         weighted avg
                                                 0.83
                                                           8144
                            0.83
                                       0.84
```

SVM

In [69]: cm = ConfusionMatrix(svm)
 cm.fit(X_train, y_train)
 cm.score(X_test, y_test)

Out[69]: 0.9007858546168959


```
precision
                           recall f1-score
                                               support
           0
                   0.90
                              0.98
                                        0.94
                                                  6435
                   0.88
                             0.61
                                        0.72
           1
                                                  1709
                                        0.90
                                                  8144
    accuracy
                                        0.83
   macro avg
                              0.79
                                                  8144
                   0.89
weighted avg
                             0.90
                                        0.89
                                                  8144
                   0.90
```

In [70]: print(classification_report(y_test, y_pred_svm))

Logistic Regression

accuracy of logistic regression algorithm :86.64%

In [74]: cm = ConfusionMatrix(classifier)
 cm.fit(X_train, y_train)
 cm.score(X_test, y_test)

Out[74]: 0.8664047151277013


```
In [75]: print(classification_report(y_test, y_pred_reg))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.89
                                       0.95
                                                 0.92
                                                            6435
                     1
                             0.74
                                       0.56
                                                 0.64
                                                            1709
                                                 0.87
                                                           8144
              accuracy
                                                 0.78
            macro avg
                                                            8144
                             0.82
                                       0.75
         weighted avg
                                       0.87
                                                 0.86
                             0.86
                                                            8144
```

Check the accuracy by dropping the null values

We are performing this operation for our better understanding

```
In [76]: # read the data
df = pd.read_csv("credit_risk_dataset.csv")
df.head()
```

Out[76]:

		person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loan_status	loan
•	0	22	59000	RENT	123.0	PERSONAL	D	35000	16.02	1	
	1	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	0	
	2	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	1	
	3	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	1	
	4	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	1	
	4										

```
In [77]: df.shape
```

```
Out[77]: (32581, 12)
```

```
In [78]: print('Total null values : ',df.isna().sum().sum())
```

Total null values : 4011

In [79]: # dropping null values
df1 = df.dropna(inplace=True)

In [80]: df

Out[80]:

	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loar
0	22	59000	RENT	123.0	PERSONAL	D	35000	16.02	
1	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	
2	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	
3	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	
4	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	
32576	57	53000	MORTGAGE	1.0	PERSONAL	С	5800	13.16	
32577	54	120000	MORTGAGE	4.0	PERSONAL	Α	17625	7.49	
32578	65	76000	RENT	3.0	HOMEIMPROVEMENT	В	35000	10.99	
32579	56	150000	MORTGAGE	5.0	PERSONAL	В	15000	11.48	
32580	66	42000	RENT	2.0	MEDICAL	В	6475	9.99	

28638 rows × 12 columns

In [81]: # dropping outliers

df = df[df['person_age'] < 100].reset_index(drop=True)</pre>

```
In [82]: df = df[df['person_emp_length'] < 100].reset_index(drop=True)
df</pre>
```

Out[82]:

		person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade	loan_amnt	loan_int_rate	loar
	0	21	9600	OWN	5.0	EDUCATION	В	1000	11.14	
	1	25	9600	MORTGAGE	1.0	MEDICAL	С	5500	12.87	
	2	23	65500	RENT	4.0	MEDICAL	С	35000	15.23	
	3	24	54400	RENT	8.0	MEDICAL	С	35000	14.27	
	4	21	9900	OWN	2.0	VENTURE	Α	2500	7.14	
2	8627	57	53000	MORTGAGE	1.0	PERSONAL	С	5800	13.16	
2	8628	54	120000	MORTGAGE	4.0	PERSONAL	Α	17625	7.49	
2	8629	65	76000	RENT	3.0	HOMEIMPROVEMENT	В	35000	10.99	
2	8630	56	150000	MORTGAGE	5.0	PERSONAL	В	15000	11.48	
2	8631	66	42000	RENT	2.0	MEDICAL	В	6475	9.99	

28632 rows × 12 columns

```
In [83]: # Splitting of data
X = df.drop(columns='loan_status')
y= df['loan_status']
```

```
In [84]: # encode the categorical data
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
one_hot_encoder = ColumnTransformer(transformers=[('OneHot', OneHotEncoder(), [0,2,4,5,9,10])], remainder='passthrough'
X = one_hot_encoder.fit_transform(X).toarray()
```

```
In [85]: # Escalation of values
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)

In [86]: # Division of data into training and testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

In [87]: print(X_train.shape)
print(X_train.shape)
print(Y_test.shape)
print(y_train.shape)
print(y_test.shape)

(21474, 108)
(7158, 108)
(21474,)
(7158,)
```

Naive Bayes

```
In [88]: from sklearn.naive_bayes import GaussianNB
    naive_bayes = GaussianNB()
    naive_bayes.fit(X_train, y_train)
    predictions = naive_bayes.predict(X_test)

    predictions = naive_bayes.predict(X_test)

    print('accuracy of naive bayes algorithm :%.2f%%' % (accuracy_score(y_test, predictions)*100))

    print(classification_report(y_test, predictions))
```

accuracy o		ve bayes recision	U	:21.63% f1-score	support
	0	0.78	0.01	0.02	5651
	1	0.21	0.99	0.35	1507
accura	су			0.22	7158
macro av	vg	0.50	0.50	0.18	7158
weighted a	vg	0.66	0.22	0.09	7158

Decision Tree

0.94 0.93 0.94 0 5651 0.76 0.77 0.76 1507 1 0.90 7158 accuracy macro avg 0.85 0.85 7158 0.85 weighted avg 0.90 0.90 0.90 7158

Radom Forest

-	precision	recall	f1-score	support
0	0.93	0.99	0.96	5651
1	0.97	0.72	0.82	1507
accuracy			0.94	7158
macro avg	0.95	0.86	0.89	7158
weighted avg	0.94	0.94	0.93	7158

Knn

```
In [91]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p = 2)
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)

print('accuracy of knn algorithm :%.2f%%' % (accuracy_score(y_test, y_pred_knn)*100))
print(classification_report(y_test, y_pred_knn))
```

```
accuracy of knn algorithm :84.51%
              precision
                           recall f1-score
                                               support
           0
                              0.96
                                        0.91
                                                  5651
                   0.86
                   0.73
           1
                              0.42
                                        0.53
                                                  1507
                                        0.85
                                                  7158
    accuracy
                                        0.72
                                                  7158
   macro avg
                   0.80
                              0.69
weighted avg
                   0.83
                             0.85
                                        0.83
                                                  7158
```

SVM

```
In [92]: from sklearn.svm import SVC
         svm = SVC(kernel='rbf', random_state=1, C = 2.0)
         svm.fit(X_train, y_train)
         y_pred_svm = svm.predict(X_test)
         print('accuracy of svm algorithm :%.2f%' % (accuracy_score(y_test, y_pred_svm)*100))
         print(classification_report(y_test, y_pred_svm))
         accuracy of svm algorithm :89.98%
                       precision
                                    recall f1-score
                                                       support
                            0.90
                                      0.98
                    0
                                                0.94
                                                          5651
                            0.89
                                      0.60
                                                0.71
                                                          1507
                    1
                                                0.90
                                                          7158
             accuracy
            macro avg
                            0.90
                                      0.79
                                                0.83
                                                          7158
                            0.90
                                      0.90
                                                0.89
                                                          7158
         weighted avg
```

Logistic Regression

```
In [93]: from sklearn.linear_model import LogisticRegression
    classifier = LogisticRegression(random_state = 0)
    classifier.fit(X_train, y_train)

y_pred_reg = classifier.predict(X_test)

print('accuracy of logistic regression algorithm :%.2f%%' % (accuracy_score(y_test, y_pred_reg)*100))

print(classification_report(y_test, y_pred_reg))
```

accuracy of logistic regression algorithm :86.78%				6.78%
	precision	recall	f1-score	support
_		0.05	0.00	5654
6	0.89	0.95	0.92	5651
1	0.75	0.56	0.64	1507
accuracy	1		0.87	7158
macro avg	g 0.82	0.75	0.78	7158
weighted avg	g 0.86	0.87	0.86	7158

XGBoost

```
In [94]: from xgboost import XGBClassifier
    xgboost = XGBClassifier(n_estimators=1000, max_depth=15, learning_rate=0.05, objective='binary:logistic', random_state=
    xgboost.fit(X_train, y_train)

y_pred1 = xgboost.predict(X_test)

print('accuracy of xgboost algorithm :%.2f%%' % (accuracy_score(y_test, y_pred1)*100))

print(classification_report(y_test, y_pred1))
```

accuracy of x	gboost algor: precision		99% f1-score	support
0 1	0.94 0.95	0.99 0.76	0.96 0.84	5651 1507
accuracy macro avg weighted avg	0.94 0.94	0.87 0.94	0.94 0.90 0.94	7158 7158 7158

	algorithm	accuracy by filing null values	accuracy by dropping null values
0	Naive bayes	21.66%	21.63%
1	Decision tree	89.40%	89.94%
2	Random forest	93.26%	93.55%
3	Knn	84.45%	84.51%
4	SVM	90.08%	89.98%
5	Logistic regression	86.64%	86.78%
6	XGboost	93.63%	93.99%

- Here we can see that, there is slightly difference between the accuracy score of both.so, we can say that filing or dropping the null values doesn't affect more on the accuracy of model.
- we check the accuracy of model in both way by filling and by dropping null values only for our better understanding.

Insight

- The focus of this work was only to analyze and compare the results of the most used algorithms when it comes to credit analysis with a focus on the risk of its concession to non-payers.
- In this work,XGBoost and Random Forest algorithm performed best among the algorithm
- There is slight difference in both of the algorithms ,among them XGBoost perform much better.
- https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/)
 https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/)
- https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/ (http

NOTE: These percentages are from data performed at the time of creation of the algorithm, when we save the algorithm it compiles the code again, which may have a slight variation in the results for more or less.				