Arbeitsweise und Umfeld des AVR Bootloaders optiboot

Karl-Heinz Kübbeler kh_kuebbeler@web.de

15. Januar 2018

Inhaltsverzeichnis

T	Prii	Prinzipiene Arbeitsweise eines Bootloaders									
2	Die 2.1 2.2 2.3 2.4	Hardware der AVR 8-Bit Mikrocontroller CPU und Speicherzugriff	5 7 8 10								
		2.4.1 parallele Programmierung	11 11								
		2.4.2 Selbstprogrammierung mit serieller Schnittstelle	12								
		2.4.4 Diagnose Werkzeuge	13								
3	Der	optiboot Bootloader für AVR Mikrocontroller	15								
_	3.1	Änderungen und Weiterentwicklung von Version 6.2	15								
	3.2	Automatische Größenanpassung in der optiboot Makefile	16								
	3.3	Zielvorgaben für optiboot Makefile	16								
	3.4	Die Optionen für die optiboot Makefile	18								
	3.5	Benutzung von optiboot ohne Bootloader-Bereich	20								
	3.6	Die Möglichkeiten der seriellen Schnittstelle mit der verwendeten Software	22								
	0.0	3.6.1 Berechnung der Verzögerungszeit	24								
		3.6.2 Benutzung von mehr als einer seriellen Schnittstelle	25								
		3.6.3 Serielle Eingabe und Ausgabe über nur einen AVR Pin	26								
	3.7	Einige Beispiele für die Erzeugung eines optiboot Bootloaders	28								
	3.8	Anpassung der Taktfrequenz bei internem RC-Generator	29								
	0.0	3.8.1 Untersuchung der RC-Generatoren des ATmega8	30								
		3.8.2 Untersuchung der RC-Generatoren der ATmega328 Familie	30								
		3.8.3 Untersuchung der RC-Generatoren des ATmega32 / 16	31								
		3.8.4 Untersuchung der RC-Generatoren des ATmega64 / 128	32								
		3.8.5 Untersuchung der RC-Generatoren der ATmega644 Familie	32								
		3.8.6 Untersuchung der RC-Generatoren der ATmega645 Familie	33								
		3.8.7 Untersuchung der RC-Generatoren der ATmega649 Familie	33								
		3.8.8 Untersuchung der RC-Generatoren der ATtiny84 Familie	33								
4	Ver	schiedene USB zu Seriell Wandler mit Linux	35								
_	4.1	Der CH340G und der CP2102 Wandler									
	4.2	Der PL-2303 und der FT232R Wandler									
	4.3	Der USB-serial Wandler mit der ATmega16X2 Software	41								

Vorwort

Etwas intensiver habe ich mich mit den AVR-Bootloadern beschäftigt, als der Wunsch von Nutzern aufkam, die Transistortester-Software auf einigen Platinen der Arduino Familie zum Laufen zu bringen. Natürlich läuft die Software nicht als Arduino Sketch. Die Arduino Entwicklungsumgebung wird lediglich zur Darstellung von Ausgaben über die serielle Schnittstelle benutzt. Die Transistortester-Software benutzt auch nicht die Arduino Bibliothek. Das ist auch gar nicht notwendig, um den Bootloader zu benutzen.

Der Bootloader ist ein kleines Programm, welches Programm-Daten über eine serielle Kommunikation von einem Host (PC) entgegennehmen kann und in den Arbeitsspeicher des Mikrocontrollers laden kann. Da die Transistortester-Software ziemlich viel Programmspeicher braucht, sollte der Bootloader nur wenig vom Programmspeicher für sich selbst belegen. Außer dem Programmspeicher sollte der Bootloader auch den anderen nicht flüchtigen Speicher des AVR beschreiben können, das EEprom. Damit war die Zielsetzung klar. Es sollte ein Bootloader her, der auch das Beschreiben des EEproms unterstützt, aber wenig Flash-Speicherplatz benötigt.

Kapitel 1

Prinzipielle Arbeitsweise eines Bootloaders

Ein Bootloader ist ein kleines Programm, welches neue Programm-Daten für einen Prozessor über eine Datenschnittstelle in Empfang nehmen kann und in den Arbeitsspeicher dieses Prozessors ablegen kann. Üblicherweise wird dieses über die Datenschnittstelle empfangene Programm nach Beenden der Übertragung vom Bootloader gestartet. Damit ist ein Rechner mit einem beschreibbaren Arbeitsspeicher dann in der Lage, beliebige Anwenderprogramme aus dem Arbeitsspeicher auszuführen.

Im Prinzip ist damit das BIOS eines PC's auch ein Bootloader, allerdings erweitert um Möglichkeiten, die Schnittstelle für den ersten Zugriff auf Programm-Daten einzustellen. Beim PC läßt sich so oft eine ganze Kette von Peripheriegeräten einstellen, die auf das Vorhandensein von Programm-Daten getestet werden. Beim PC wird dann oft eine zweite Stufe gestartet, die weitere Einstellungen (Auswahl von Betriebssystemen oder abgesicherter Modus) ermöglicht.

Bei Mikrocontrollern ist der Bootloader meistens einfacher gestaltet. Hier wird nur eine Schnittstelle untersucht und es gibt auch keine weitere Einstellmöglichkeit im Betrieb. Ein Merkmal für die Betriebsweise des Bootloaders besteht übrigens im Typ des Arbeitsspeichers. Wenn der Arbeitsspeicher des Rechners aus flüchtigem Speicher besteht (RAM = Random Access Memory), muß der Bootloader vor einem Anwender-Programmstart sicher sein, daß er gerade vorher ein Programm selbst geladen hatte.

Bei einem Mikrocontroller mit nicht flüchtigem Arbeitsspeicher (Flash) darf der Bootloader annehmen, daß bereits irgendwann einmal vorher ein Anwender-Programm in den Speicher geladen wurde. Deshalb wird nach einer angemessenen Wartezeit auf neue Programm-Daten versucht, das Anwenderprogramm zu starten. Dabei ist es egal, ob gerade vorhin ein neues Anwenderprogramm geladen wurde oder nicht. Selbst wenn noch nie ein Anwenderprogramm geladen wurde oder ein fehlerhaftes, passiert nichts Schlimmes. Die Möglichkeit, ein neues Anwenderprogramm zu laden, bleibt ja weiterhin erhalten. Es ist eher das Gegenteil der Fall. Durch das fehlenden Anwenderprogramm versucht der Bootloader immer wieder, die Kommunikation über die serielle Schnittstelle aufzubauen.

Die Abbildung 1.1 zeigt die prinzipielle Arbeitsweise von Bootloadern, die ihre Daten über eine serielle Schnittstelle empfangen.

Abbildung 1.1. Prinzipielle Arbeitsweise eines Bootloaders

Der AVR-Zielprozessor wird beim Start des Daten-Sendeprozess auf dem PC zurückgesetzt. Wenn dies nicht automatisch erfolgt, muß der AVR-Prozessor von Hand zurückgesetzt werden. Der PC versucht die Kommunikation mit dem AVR-Prozessor aufzubauen, indem er ein Datenbyte über die serielle Schnittstelle schickt und auf die Antwort des AVR-Prozessors wartet. Wenn die Antwort nicht in angemessener Zeit erfolgt, wird dieser Vorgang wiederholt. Das Bootloader Programm auf dem AVR Prozessor wartet nur eine begrenzte Zeit auf Daten (Time limit). Beim Überschreiten der Wartezeit wird versucht, das Anwender-Programm im Flash-Speicher zu starten.

Kapitel 2

Die Hardware der AVR 8-Bit Mikrocontroller

2.1 CPU und Speicherzugriff

Auf dem Chip der AVR 8-Bit Mikrocontroller ist alles vereinigt, was ein digitaler Minirechner zum Arbeiten braucht. Es ist ein Taktgenerator, Register, Arbeitsspeicher (RAM), Programmspeicher (Flash), Eingaberegister und Ausgaberegister vorhanden. Der Inhalt von Registern und Arbeitsspeicher geht bei jedem Neustart verloren. Der Inhalt des Programmspeicher (Flash) und auch des meistens zusätzlich vorhandenem Datenspeicher (EEprom) bleiben aber erhalten. Die Abbildung 2.1 zeigt ein vereinfachtes Blockdiagramm eines 8-Bit AVR Mikrocontrollers.

Abbildung 2.1. Vereinfachtes Blockschaltbild eines AVR-Mikrocontrollers

Aus dem Diagramm ist zu entnehmen, daß die CPU (Central Processor Unit) sehr leicht auf die Register R0-R31 und auf den RAM-Speicher zugreifen kann. Auch der Zugriff auf die Eingabe (Input) oder Ausgabe (Output) Register ist leicht möglich. Der Zugriff auf den Programmspeicher (Flash) ist dagegen nur über den zugehörigen Controller möglich und deutlich komplizierter.

Nur die eigentliche Befehls-Ausführungseinheit kann einfach auf die Daten des Flash Speichers für die eingestellte Programm-Adresse zugreifen. Mit dem Load Immediate Befehl (LDI) können dann auch Bestandteile des 16-Bit Befehls-Wortes zu den oberen Registern (R16-R31) transferiert werden. Auch bei den Befehlen ADIW, ANDI, CPI, ORI, SBCI, SBIW und SUBI werden Teile des 16-Bit Befehls-Wortes verarbeitet.

Normalerweise wird bei der Programmausführung die Flash-Adresse je nach Befehls-Größe um ein Wort oder zwei Worte erhöht. Eine Ausnahme hiervon sind bei der normalen Programm-Abarbeitung nur die bedingten oder unbedingten (RJMP, JMP, IJMP, RCALL, CALL, ICALL, RET, RETI) Sprung-Anweisungen.

Außerdem kann ein Reset Ereignis oder ein Unterbrechungs-Signal (Interrupt) für eine Abweichung von der Regel führen. Beim Reset wird der Prozessor zurückgesetzt und der Programm-Zähler auf eine vorher eingestellte Adresse gesetzt. Bei einem Interrupt wird der Programm-Zähler auf die dem Ereignis zugehörende Adresse einer Sprungtabelle gesetzt. Normalerweise ist die Start-Adresse für das Reset Ereignis die Adresse 0. Für Bootloader-Zwecke kann dies aber bei vielen AVR-Prozessoren mit speziellen Konfigurations-Bits (Fuse) anders eingestellt werden.

Ein wahlfreier Lesezugriff zum Programmspeicher ist nur über den Flash-Controller möglich.

Dabei muß dem Controller erst die gewünschte Byte-Adresse mitgeteilt werden. Erst dann ist ein Lesen des Datenbytes mit einem Spezial-Befehl möglich.

Noch komplizierter wird es beim Schreibzugriff. Der Schreibzugriff des Programmspeichers ist nur seitenweise möglich. Die Flash-Speicherseite muß vor jedem Beschreiben vorher gelöscht sein. Die neuen Daten für eine Flash-Seite müssen vor dem Beschreiben komplett in den Zwischenspeicher des Flash-Controllers geladen werden. Erst dann kann der Controller mit dem Neubeschreiben der Flash-Seite beauftragt werden. Dieses Verfahren läßt sich anschaulich mit dem Bedrucken einer Seite mit einem Stempel vergleichen. Der Stempel kann mit austauschbaren Zeichen bestückt werden, so daß jeder Text möglich ist. Für das Stempeln der Information muß aber eine leere Papierseite vorhanden sein und der Stempel muß zuerst mit den Zeichen für den Text bestückt sein. Erst dann kann mit einem Stempeldruck die leere Seite neu beschrieben werden.

Auch der EEprom Speicher (nicht flüchtiger Speicher für Daten) wird über einen speziellen Controller zugegriffen. Hier ist das Beschreiben des Speichers aber etwas einfacher, ist aber auch nur über einen Controller möglich. Der EEprom-Controller kann nicht zusammen mit dem Flash-Controller benutzt werden, da die Controller wohl gemeinsame Teile haben.

2.2 Eingabe und Ausgabefunktion

Über die IO-Register kann die CPU auf die externen Pins zugreifen. Die Register sind Byte weise (8-Bit) organisiert, so daß mit einem Register bis zu 8 Pins angesprochen werden können. Die Abbildung 2.2 zeigt den Aufbau einer Port Pin Beschaltung.

Abbildung 2.2. Vereinfachtes Schaltbild jedes AVR-Portpins

Jeder Pin ist mit einem Port Bit fest verknüpft und kann normalerweise sowohl als Ausgangs-Pin (PORT) als auch als Eingangs-Pin (PIN) verschaltet werden. Zur Umschaltung der Funktion der 8 Bits eines Ports dienen die 8 Bits des Data Direction Registers DDR. Es gibt also für jeden Pin eine zugeordnete Bitnummer in drei verschiedenen Registern. Mit dem DDR Register kann die Datenrichtung für jedes des zugeordneten Pins umgeschaltet werden. Das PIN Register gibt den Zustand der Spannung an den 8 Eingangspins an. Unterhalb etwa der halben Betriebsspannung wird eine 0 angezeigt, darüber eine 1. Wenn das dem Pin zugehörige DDR Bit auf Ausgang (1) geschaltet ist, wird mit dem zugehörigen PORT Bit der Ausgang auf 0 V oder auf Betriebsspannung (VCC) geschaltet. Bei mit dem auf 0 gesetzten DDR Bit inaktiviertem Ausgang wird je nach Zustand des zugehörigen PORT Bits ein Pull-Up Widerstand für diesen Pin zugeschaltet (PORT Bit = 1) oder nicht (PORT Bit = 0). Wenn allerdings das PUD Bit im MCU Konfigurations-Register MCUCR gesetzt ist, bleiben alle internen Pull-Up Widerstände inaktiv. Alle zugehörigen Register und Bits einer Gruppe (8-Bit) benutzen immer den gleichen Kennbuchstaben. Also für die zweite Gruppe wäre der Buchstabe ein B. Der Ausgabe Port würde also PORTB heißen, der Eingangs Port würde PINB heißen und das Register für die Datenrichtung DDRB. Für die Bezeichnung der einzelnen Bits wird jeweils eine Ziffer 0-7 angehängt. Zum Beispiel würde das Bit 0 des Eingangs Ports dann PINB0

heißen. Diese Bezeichnungsweise wird so in der Beschreibung der Hardware von Atmel verwendet und wird üblicherweise auch innerhalb von Programmiersprachen so verwendet.

2.3 Das Starten des AVR Mikrocontrollers

In der vom Werk ausgelieferten Konfiguration des Mikrocontrollers löst das erste Erreichen der erforderlichen Betriebsspannung einen Reset des Prozessors aus. Dabei werden die IO-Register auf vorbestimmte Werte gesetzt, noch etwas Zeit zur Stabilisierung der Betriebsspannung gewartet und dann der Befehl ausgeführt, der auf der Adresse 0 des Flash-Speichers steht. In aller Regel sind die Ausgabe-Funktionen aller Pins in diesem Zustand abgeschaltet. Außer diesem Einschalt-Reset gibt es noch drei weitere Gründe für einen Reset des Prozessors. Der Grund für den Reset wird in einem MCU Status-Register (MCUSR) mit 4 Bits festgehalten.

Name des Flags	Grund für den Reset					
PORF	Power-on Reset					
	Dieser Reset wird beim ersten Erreichen der Betriebsspannung ausgelöst.					
	Dieser Grund kann nicht abgeschaltet werden.					
BORF	Brown-out Reset					
	Der Reset wegen Spannungseinbruch kann nur dann vorkommen,					
	wenn die Funktion mit den BODLEVEL Bits in dem Fuse-Bit					
	freigeschaltet ist und kein Brown-out Interrupt benutzt wird.					
EXTRF	External Reset					
	Wird ausgelöst durch Pegel 0 am Reset Pin,					
	wenn RSTDISBL nicht konfiguriert wurde.					
WDRF	Watchdog Reset					
	Wird nur ausgelöst, wenn der zugehörige Interrupt					
	nicht freigeschaltet wurde.					

Tabelle 2.1. Die verschiedenen Reset Gründe im MCUSR Register

Durch Setzen der entsprechenden Konfigurations-Bits in den Fuses des AVR-Mikrocontrollers kann die Start-Adresse abweichend von 0 eingestellt werden. Die Abbildung 2.3 zeigt die Möglichkeiten für den ATmega168. Dieser Prozessor hat insgesamt 16384 Byte Arbeitsspeicher (Flash). Der Befehls-Interpreter des Mikrocontrollers greift übrigens auf einen 16-Bit breiten Befehlscode des Flash Speicher zu. Deshalb ist der höchste Programm-Zähler Wert nur 8190! Das es nicht 8192 ist, ist klar, weil ja die Zählung bei 0 beginnt, aber es ist noch ein Wort weniger, weil das letzte Wort im Flash Speicher für die Versionsnummer von Optiboot verwendet wird.

Abbildung 2.3. Verschiedene Start-Möglichkeiten für den ATmega168

Als mögliche Bootloader-Größen unterstützt der ATmega168 256 Bytes (BOOTSZ=3), 512 Bytes (BOOTSZ=2), 1024 Bytes (BOOTSZ=1) und 2048 Bytes (BOOTSZ=0). Für das Anwenderprogramm ist natürlich interessant, den Bootloader-Bereich möglichst klein zu wählen, damit möglichst viel Speicherplatz für das Anwenderprogramm zur Verfügung steht. Der Bootloader wird ja immer auf die höchstmögliche Start-Adresse platziert. Durch Programmieren der Lock-Bits des AVR-Mikrocontrollers läßt sich der Bootloader-Bereich gegen Überschreiben sichern. Die einmal installierte

Sicherung des Flash-Speichers läßt sich dann aber nur durch komplettes Löschen (erase) des AVR Speichers wieder zurücksetzen.

Für diesen Prozessor, wie auch für den Mega48 und Mega88, befinden sich die Steuerbits für den Bootloader Start in der extended Fuse. Dies gilt auch für die BOOTRST Fuse, mit der die Startadresse von 0 auf den Bootloader Start umgeschaltet wird. Für viele andere AVR Mikrocontroller, auch dem ATmega328, befinden sich die gleichen Steuerbits in der high Fuse. Die Tabelle 2.2 zeigt die Speichergrößen für verschiedene AVR-Mikrocontroller sowie die Möglichkeiten für den Bootloader-Bereich. Die verwendeten Bit-Nummern für die Bootloader Einstellung sind übrigens die gleichen, egal ob high oder extended Fuse Register.

Processor	Flash	EEprom	RAM	UART	Boot		BOO	TSZ	
Typ	Größe	Größe	Größe		Config				
					Fuse	=3	=2	=1	=0
ATmega48	4K	256	512	1	Ext.	256	512	1K	2K
ATtiny84	8K	512	512	-	-		(N x	64)	
ATmega8	8K	512	1K	1	High	256	512	1K	2K
ATmega88	8K	512	1K	1	Ext.	256	512	1K	2K
ATmega16	16K	512	1K	1	High	256	512	1K	2K
ATmega168	16K	512	1K	1	Ext.	256	512	1K	2K
ATmega164	16K	512	1K	1	High	256	512	1K	2K
ATmega32	32K	1K	2K	1	High	512	1K	2K	4K
ATmega328	32K	1K	2K	1	High	512	1K	2K	4K
ATmega324	32K	1K	2K	2	High	512	1K	2K	4K
ATmega644	64K	2K	4K	2	High	1K	2K	4K	8K
ATmega640	64K	4K	8K	4	High	1K	2K	4K	8K
ATmega1284	128K	4K	16K	2	High	1K	2K	4K	8K
ATmega1280	128K	4K	8K	4	High	1K	2K	4K	8K
ATmega2560	262K	4K	8K	4	High	1K	2K	4K	8K

Tabelle 2.2. Bootloader Konfigurationen für verschiedene Mikrocontroller

Übrigens funktioniert ein Bootloader selbst dann beim ersten Mal, wenn das BOOTRST Fuse Bit nicht gelöscht wurde. Dann steht der Reset-Vektor immer noch auf Adresse 0, auf den normalerweise das Anwenderprogramm steht. Da aber noch kein Anwenderprogramm geladen wurde, läuft die CPU durch den Flash Speicher, bis er auf den Bootloader-Code trifft. Bei diesem Prozessor sind das weniger als 8000 Befehle, die die CPU bei 8 MHz Taktrate in weniger als 1 ms durchläuft. Sobald aber ein Anwenderprogramm geladen wurde, startet mit einem Reset immer das Anwenderprogramm, solange das BOOTRST Bit gesetzt bleibt. Der Bootloader würde mit gesetztem BOOTRST Bit nicht mehr funktionieren, weil er gar nicht mehr angesprochen wird.

2.4 Das Beschreiben des AVR Speichers

Die AVR Mikrocontroller kennen 3 verschiedene nicht flüchtige Speicher. Der wichtigste ist der Programmspeicher, der sogenannte Flash-Speicher.

Daneben gibt es noch einige Konfigurationsbits, mit denen die Eigenschaften des Prozessors eingestellt werden können. Diese sind Konfigurationsbits sind aufgeteilt in mehrere Bytes, die lfuse (low Fuse), hfuse (high Fuse), efuse (extended Fuse), das lock-Byte und das Kalibrations-Byte. Das Kalibrations-Byte dient dem Frequenz-Abgleich des internen RC-Oszillators. Mit dem lock-Byte können Zugriffe auf die Speicher gesperrt werden. Beim lock-Byte lassen sich einmal aktivierte Bits nicht

wieder zurücksetzen. Der einzige Weg, einmal gesetzte lock-Bits wieder zurückzusetzen, ist ein komplettes Löschen aller AVR-Speicher. Beim lock-Byte werden die Schutzfunktionen durch Löschen von entsprechenden Bits auf 0 aktiviert. Im gelöschten Zustand des AVR-Mikrocontrollers sind alle wirksamen Bits des lock-Bytes auf 1 gesetzt. Die Aufteilung des Konfigurationsbits auf die verschiedenen Fuse-Bytes unterscheidet sich für die verschiedenen Prozessor-Modelle und sollte im jeweiligen Datenblatt nachgelesen werden. Mit den Konfigurationsbits lassen sich Art der Taktgewinnung für den Prozessor, eine Startverzögerung und eine Betriebsspannungsüberwachung einstellen.

Die meisten AVR Mikrocontroller verfügen auch über einen nicht flüchtigen Datenspeicher, das EEprom. Dieser Speicher hat keine spezielle Aufgabe für den Prozessor. Es ist lediglich eine Möglichkeit, Daten für den nächsten Programmstart festzuhalten.

2.4.1 parallele Programmierung

Alle drei Speicherarten können mit verschiedenen Methoden beschrieben und auch gelesen werden. Normalerweise wird die parallele Methode zum Beschreiben der nicht flüchtigen Speicher eher selten verwendet. Manchmal hilft diese Methode aber Prozessoren wieder zu beleben, die mit anderen Methoden nicht mehr ansprechbar sind. Beispielsweise funktioniert die serielle Programmierung dann nicht mehr, wenn mit den Fuse-Bits die Funktion des Reset-Pins abgeschaltet wurde. Diese Methode ist daran zu erkennen, daß bei der Programmierung der Reset Eingangspin auf höhere Spannungswerte (12V) gesetzt wird. Deshalb heißt diese Methode auch HV-Programmierung. Einzelheiten zu dieser Programmierung sollten dem jeweiligen Datenblatt entnommen werden.

2.4.2 serieller Download mit ISP

Der normale Weg zum Programmieren des nicht flüchtigen Speichers ist die serielle Programmierung. Die Atmel Dokumentation spricht auch von Serial Downloading. Dabei wird eine SPI (Serial Parallel Interface) Schnittstelle verwendet. Die SPI Schnittstelle besteht aus drei Signalen, MOSI, MISO und SCK. Damit der Prozessor überhaupt diese spezielle Art der Programmierung benutzt, ist außerdem das Reset Signal erforderlich, das auf 0 gehalten werden muß. Zusammen mit den Betriebsspannungs Signalen GND und VCC (etwa 2.7V bis 5V) ergibt sich eine Schnittstelle, die oft bereits auf einer Platine integriert ist, die ISP (In System Programming) Schnittstelle. Die Abbildung 2.4 zeigt zwei gebräuchliche Stecker, die auf Platinen mit AVR Mikrocontrollern integriert sind.

Abbildung 2.4. Zwei verschiedene Arten von ISP Steckern

Bei der 10-poligen Variante des ISP-Steckers kann zusätzlich das Takt Signal OSC für die Versorgung des AVR mit einem Takt aufgelegt sein. Einer dieser beiden Stecker ist also in der Regel erforderlich, um einen neuen Bootloader in den Flash-Speicher eines AVR-Mikrocontrollers zu

schreiben. Die Daten für den Flash-Speicher werden im allgemeinen auf einem PC erzeugt. Für das Transferieren der Daten zum AVR-Mikrocontroller ist ein ISP-Programmer erforderlich, der meistens zur Rechnerseite hin über einen USB-Anschluss verfügt. Es ist aber auch ein Anschluss des ISP-Programmers über eine serielle oder parallele Schnittstelle möglich. Die USB-Schnittstelle hat aber den Vorteil, daß auch die Stromversorgung (5V oder 3.3V) für dem Mikrocontroller direkt über die Schnittstelle zur Verfügung gestellt wird. Es gibt auf dem Markt eine Auswahl an solchen ISP-Programmern, von Atmel wird beispielsweise der AT AVR-ISP MK2 Programmer angeboten. Auch die Verwendung eines Arduino UNO oder eines anderen Arduino ist mit Spezialprogramm für eine angeschlossene ISP-Schnittstelle möglich. Ich selbst verwende einem DIAMEX ALL-AVR, der über beide ISP-Steckervarianten verfügt und einige Zusatzfunktionen hat.

2.4.3 Selbstprogrammierung mit serieller Schnittstelle

Da der AVR-Prozessor den Flash und EEprom Speicher auch selbst beschreiben kann, kann man mit einer der beiden anderen Methoden ein kleines Programm in den Flash-Speicher laden, der Daten über eine serielle Schnittstelle empfängt und diese Daten in den Flash- oder auch EEprom-Speicher schreibt. Genau das macht der Bootloader Optiboot. Das Setzen der Fuses oder des Lock-Bytes ist mit dieser Methode oft nicht möglich und wird auch vom Bootloader nicht unterstützt. Die Fuses und das Lock-Byte müssen also immer mit einer der anderen Methoden geschrieben werden. Für die Übermittlung der Daten werden Teile des STK500 Communication Protocol von Atmel verwendet. Da moderne Rechner meist nicht mehr über serielle Schnittstellen verfügen, wird heute meistens ein USB - Seriell UART Wandler wie beispielsweise das FTDI Chip von Future Technology Devices International Ltd verwendet. Ein Modul mit diesem Wandler-Chip ist z.B. das UM232R. Die Chips PL2303 von Prolific Technology Inc. und CP2102 von Silicon Laboratories Inc. erfüllen wohl den gleichen Zweck. Von Atmel kann ein entsprechend programmierter ATmega16U2 auch diese Aufgabe übernehmen. Alle Chips haben eine einstellbare Baud-Rate und haben TTL-Pegel für die Signale. Für echte RS232 Signale müßten noch Pegelwandler verwendet werden. Die sind aber für die AVR Mikrocontroller nicht notwendig. Einer dieser Chips ist auf den Arduino Platinen mit USB-Schnittstelle integriert. Für eine schnelle Reaktion auf die Programm-Datenübertragung sollte das DTR-Signal des Schnittstellenwandlers über einen 100nF Kondensator mit dem Reset Eingang des AVR-Prozessors verbunden sein. Die Abbildung 2.5 zeigt eine typische Anschlussart.

Abbildung 2.5. Anschluss eines USB-seriell Wandlers an den Mikrocontroller

Bei der Verwendung von USB-seriell Modulen sollte auf die richtige Wahl der Betriebsspannung geachtet werden. Viele Module können auf 3.3V oder 5V Signalpegel gestellt werden (Jumper). Wenn man einen Arduino UNO mit gesockeltem ATmega328p besitzt, kann man den ATmega328p entfernen und das Board als USB-seriell Wandler benutzen. So kann man dann auch die Programmdaten zu einem anderen AVR-Prozessor übertragen. Bei häufigem Gebrauch ist natürlich ein separates USB-seriell Modul sinnvoll. Die beiden 1 nF Kondensatoren an den RX-Eingängen filtern Impulsspitzen weg. Der Test des Software-UART Programms war nur erfolgreich mit einem kleinen Kondensator am

RX Eingang des AVR Prozessors. Die Tastspitze eines Oszilloskops war aber als "Filter" schon ausreichend. Die Hardware-UART Schnittstelle filtert wohl besser und läuft mit und ohne Kondensator einwandfrei.

Bei der Arduino Entwicklungsumgebung Sketch ist unter "Tools - serieller Port" die Möglichkeit vorgesehen, eine serielle Schnittstelle auszuwählen. Weiter kann dann unter "Tools - Serial Monitor" ein Kontrollfenster geöffnet werden, welches die seriellen Ausgaben des AVR Mikrocontrollers auf dem Bildschirm darstellen kann. Die Baud-Rate der seriellen Schnittstelle kann in diesem Fenster eingestellt werden. Der laufende Serial Monitor des Arduino Sketch stört aber das Laden von Programmen über die serielle Schnittstelle, wenn das gleiche USB-Seriell Wandlermodul verwendet wird. Es gibt aber die Möglichkeit, ein weiteres USB-Seriell Modul in den PC einzustecken und bei diesem nur das RX-Signal an den TX-Port des AVR-Mikrocontrollers anzuschließen. Dieser zweite serielle Eingang horcht so die Ausgaben des AVR mit und stört dabei die serielle Kommunikation beim Programm-laden nicht, wenn diese Schnittstelle für den Serial Monitor gewählt wird.

2.4.4 Diagnose Werkzeuge

Unter dem Linux-Betriebssystem gibt es ein Werkzeug (Tool) mit dem seltsamen Namen jpnevulator, mit dem zwei serielle Eingänge zur selben Zeit überwacht werden können. Die übertragenen Daten werden im sedezimal (hex) Format dargestellt und mit der Option -a auch als ASCII-Zeichen. Mit der Option –timing-print werden die System-Zeiten der empfangenen seriellen Datenpakete gezeigt. Um eine Beeinflussung des Datenverkehrs beim Laden von Programmdaten auszuschließen, sollten zwei separate USB-Seriell Module für die Überwachung benutzt werden. Der serielle Eingang eines Moduls wird an das TX-Signal und der serielle Eingang des anderen Moduls an das RX-Signal des AVR-Mikrocontrollers angeschlossen. Zusammen mit dem Modul für das Programmladen sind dann drei solche Module an den PC angeschlossen. Natürlich müssen alle drei Module auf die gleiche Baudrate eingestellt sein (stty ... -F /dev/ttyUSB1). Ohne den speed Parameter gibt das stty Programm die Parameter der angegebenen Schnittstelle aus (stty -F /dev/ttyUSB1). Einige Anwendungen wie avrdude können die Baudrate selber einstellen. Der komplette Aufruf für das Werkzeug mit dem Beginn der Ausgaben könnte beispielsweise so aussehen:

```
jpnevulator -a --timing-print --read --tty "/dev/ttyUSB1" --tty "/dev/ttyUSB2"
2016-05-29 11:05:06.589614: /dev/ttyUSB0
30 20
2016-05-29 11:05:06.589722: /dev/ttyUSB1
2016-05-29 11:05:06.593593: /dev/ttyUSB0
41 81 20
                                                 Α.
2016-05-29 11:05:06.594581: /dev/ttyUSB1
                                                 .t.
2016-05-29 11:05:06.597583: /dev/ttyUSB0
41 82 20
                                                 Α.
2016-05-29 11:05:06.598574: /dev/ttyUSB1
14 02 10
2016-05-29 11:05:06.601586: /dev/ttyUSB0
42 86 00 00 01 01 01 01 03 FF FF FF FF 00 80 04 B......
00 00 00 80 00 20
                                                 . . . . .
2016-05-29 11:05:06.603608: /dev/ttyUSB1
14 10
2016-05-29 11:05:06.605639: /dev/ttyUSB0
45 05 04 D7 C2 00 20
                                                 E....
2016-05-29 11:05:06.606576: /dev/ttyUSB1
```

14 10 ...

. . .

Kapitel 3

Der optiboot Bootloader für AVR Mikrocontroller

Der optiboot Bootloader wurde in der Sprache C von Peter Knight und Bill Westfield entwickelt. Die Version 6.2 habe ich als Basis für die hier beschriebene überarbeitete Assembler Version benutzt. Dabei möchte ich betonen, daß ich den optiboot Bootloader nicht neu erfunden habe, sondern lediglich weiter optimiert. Viele Anpassungen an verschiedene Zielprozessoren und spezielle Platinenentwürfe waren bereits in der Version 6.2 vorhanden. Es werden Teile des STK500 Kommunikations-Protokols benutzt, die in der AVR061 [21] von Atmel veröffentlicht wurde.

3.1 Änderungen und Weiterentwicklung von Version 6.2

Im wesentlichen habe ich das komplette Programm in die Assembler- Sprache umgeschrieben und die Makefile so angepasst, daß die Programmlänge automatisch weiterverarbeitet wird und damit die Startadresse des Bootloaders sowie die Fuses des ATmega richtig eingestellt werden. Die eingeschlagene Lösung erzeugt während der Abarbeitung der Einzelschritte für die Erzeugung des Programmcodes für den Bootloader noch weitere kleine Dateien, welche in den nachfolgenden Schritten für die Anpassung der Start-Adresse und der Fuses erforderlich sind. Die Startadresse für den jeweiligen Zielprozessor ist abhängig von der vorhandenen Flash-Speichergröße, dem Speicherbedarf für den aktuellen Bootloader-Code und der Kachelgröße, die für Bootloader beim Zielprozessor zur Verfügung steht. Als Kachelgröße bezeichne ich die kleinste Speichergröße für Bootloader, die der jeweilige Prozessor zur Verfügung stellen kann.

Bei Prozessoren wie der ATtiny84, die keine Bootloader Startadresse einstellen können, wird die Seitengröße des Flash-Speichers für die Berechnung benutzt. Beim ATtiny84 sind das 64 Bytes. Damit liegt die Startadresse des Bootloaders immer am Anfang einer Flash Speicherseite.

Bei allen anderen Zielprozessoren kann der Bootloader-Bereich mit den Fuse-Bits BOOTSZ1 und BOOTSZ0 eingestellt werden (jeweils mit den Werten 0 und 1). Wenn man die beiden Bits zusammensetzt, ergibt sich daraus die Bootloader-Größe BOOTSZ mit Werten zwischen 0 und 3. Dabei bedeutet 3 immer den kleinsten mögliche Bootloader Speicherbereich. Der Wert 2 gibt den doppelten, der Wert 1 den vierfachen und der Wert 0 den acht-fachen Speicherbereich vor. Die Tabelle 2.2 auf Seite 10 gibt einen Überblick für verschiedene Zielprozessoren.

3.2 Automatische Größenanpassung in der optiboot Makefile

Die Bootloader Startadresse und die benötigte Bootloadergröße wird automatisch in der Makefile angepasst. Für die Berechnungen werden einige Zwischendateien erzeugt, was nur zusammen mit den folgenden Linux Werkzeugen funktioniert:

bc ein einfacher Rechner, der die Eingabe- und Ausgabe-Werte sowohl dezimal als auch sedezimal (hex) verarbeiten kann.

cat gibt den Inhalt von Dateien auf der Standard-Ausgabe aus.

cut kann Teile von Zeilen einer Textdatei ausschneiden.

echo gibt den angegebenen Text auf der Standard-Ausgabe aus.

grep gibt nur Zeilen einer Textdatei mit dem angegebenen Suchtext aus.

tr kann Text-Zeichen ersetzen oder löschen.

Bisher ist die Funktion der Makefile nur mit einem Linux-System getestet. Wahrscheinlich ist die Benutzung unter Windows nur möglich, wenn das Cygwin Paket installiert wird.

Um die erzeugten Zwischendateien braucht man sich im Regelfall nicht zu kümmern. Hier möchte ich aber wenigstens die Namen und die Bedeutung erwähnen:

- BootPages.dat enthält die Zahl der vom Bootloader benötigten Seiten. Bei Prozessoren mit Bootloader Unterstützung kann die Zahl nur 1, 2, 4 oder 8 sein und gibt an, das wie-vielfache der Mindest-Bootloadergröße verwendet wird. Bei der virtuellen Bootloader Seite kann die Zahl beliebig sein und gibt die Zahl der benötigten Flash-Speicherseiten an.
- **BOOTSZ.dat** enthält eine Zahl zwischen 0 und 3 für die Einstellung der BOOTSZ0 und BOOTSZ1 Bits.
- BL_StartAdr.dat enthält die Startadresse des Bootloaders im sedezimal (hex) Format. Die Startadresse wird berechnet aus der Flash-Speichergröße des jeweiligen Zielprozessors und aus der Zahl der benötigten Speicherseiten.
- **EFUSE.dat** enthält im sedezimal Format der Wert für die efuse. Die Makefile entscheidet abhängig vom Zielprozessor, ob diese Datei verwendet wird.
- **HFUSE.dat** enthält im sedezimal Format der Wert für die hfuse. Die Makefile entscheidet abhängig vom Zielprozessor, ob diese Datei verwendet wird.

3.3 Zielvorgaben für optiboot Makefile

Die Steuerung des Ablaufs für die Generierung der Programmdaten aus dem Quellcode ist in der Makefile festgelegt. Außer der Haupt Makefile gibt es noch weitere drei Erweiterungen der Makefile, die automatisch von der Haupt Makefile integriert werden: Makefile.1284, Makefile.atmel, und Makefile.extras . Dabei können verschiedene Konfigurationen auch für einen Prozessortyp festgelegt worden sein. In der Tabelle 3.1 sind die derzeit vordefinierten Konfigurationen für AVR Prozessoren angegeben. Im Prinzip ist diese Liste natürlich erweiterbar. Die einstellbaren Parameter sind aber auch in der Aufrufzeile des make Programms als Parameter oder auch als Umgebungsvariable der Shell einstellbar.

Name	MCU	AVR_	total	Flash	BP_	LFUSE	HFUSE	EFUSE
		FREQ	Flash	page	LEN			
			size	size				
attiny84	t84	16M?	8K	64	(64)	62	DF	FE
atmega8	m8	16M	8K	64	256	BF	CC	-
atmega88	m88	16M	8K	64	256	FF	DD	04
atmega16	m16	16M	16K	128	256	FF	9C	-
atmega168	m168	16M	16K	128	256	FC	DD	04
atmega168p	m168p	16M	16K	128	256	FC	DD	04
atmega32	m32	16M	16K	128	256	BF	CE	-
atmega328	m328	16M	32K	128	512	FF	DE	05
atmega328p	m328p	16M	32K	128	512	FF	DE	05
atmega644p	m644p	16M	64K	256	512	F7	DE	05
atmega1284	m1284	16M	128K	256	512	F7	DE	05
atmega1284p	m1284p	16M	128K	256	512	F7	DE	05
atmega1280	m1280	16M	128K	256	1K	FF	DE	05

Tabelle 3.1. Prozessor targets für optiboot Makefile

Alle Angaben für Größen sind in Bytes angegeben, die Werte für die Fuses sind die sedezimalen Werte (hex). Die Frequenz-werte werden in Hz angegeben, 16M entspricht also 16000000 Hz. Die Standard Baud-Rate für die serielle Schnittstelle beträgt immer 115200.

Neben den universellen Konfigurationen gibt es auch Konfigurationen für bestimmte Platinen oder Arbeitsumgebungen. Die Tabelle 3.2 zeigt die unterschiedlichen Einstellungen.

Name	MCU	AVR_	BP_	L	Н	E	BAUD_	LED	SOFT_
		FREQ	LEN	FUSE	FUSE	FUSE	RATE		UART
luminet	t84	1M	64v	F7	DD	04	9600	0x	-
virboot8	m8	16M	64v						
diecimila	m168	(16M)		F7	DD	04		3x	
lilypad	m168	8M		E2	DD	04	_	3x	
pro8	m168	16M		F7	C6	04	_	3x	-
pro16	m168	16M		F7	DD	04	_	3x	-
pro20	m168	16M		F7	DC	04	_	3x	-
atmega168p_lp	m168	16M		FF	DD	04	_		-
xplained168pb	m168	(16M)					57600		
virboot328	m328p	16M	128v						-
atmega328_pro8	m328p	8M		FF	DE	05	_	3x	
xplained328pb	m168	(16M)					57600		
xplained328p	m168	(16M)					57600		
wildfire	m1284p	16M					-	3xB5	
mega1280	m1280	16M		FF	DE	05	-		-

Tabelle 3.2. vorkonfigurierte targets für optiboot Makefile

3.4 Die Optionen für die optiboot Makefile

Mit den Optionen wird die Eigenschaft des optiboot Bootloaders eingestellt. Beispielsweise kann mit der Option SOFT_UART veranlasst werden, daß ein Softwareprogramm für die serielle Kommunikation verwendet werden soll. Sonst wird, wenn vorhanden, die auf dem Chip integrierte serielle Schnittstelle mit den Pins TX (Transmit = senden) und RX (Receive = empfangen) benutzt. Bei mehreren integrierten seriellen Schnittstellen wird normalerweise die erste Schnittstelle mit den Nummer 0 verwendet. Es kann aber auch jede andere vorhandene Schnittstelle mit der Option UART vorgegeben werden (UART=1 für die zweite Schnittstelle). Bei der Hardware UART Schnittstelle sind die Pins für Empfangen (RX) und Senden (TX) fest verknüpft. Bei der Software-Lösung für die serielle Schnittstelle sind alle Pins des AVR Prozessors frei für die serielle Kommunikation wählbar. Die einzige Bedingung ist, daß die Pins für digitale Eingabe (RX) beziehungsweise Ausgabe (TX) geeignet sind. Näheres zu den möglichen Optionen findet man in der Übersicht 3.3 und 3.4

Name der	Beispiel	Funktion
Option		
F_CPU	F_CPU=8000000	Teilt dem Programm die Taktrate des Prozessors mit.
		Die Angabe erfolgt in Hz (Schwingungen pro Sekunde.
		Das Beispiel gibt eine Frequenz von 8 MHz an.
BAUD_RATE	BAUD_	Gibt die Baud-Rate für die serielle Kommunikation an.
COPE III DE	RATE=9600	Es werden immer 8 Datenbits ohne Parity verwendet.
SOFT_UART	SOFT_UART=1	Wählt Software-Lösung für die serielle Kommunikation.
UART_RX	UART_RX=D0	Gibt den Port und die Bitnummer für die seriellen
		Empfangsdaten an. Das Beispiel nimmt
IIADO OV	IIADO ON D1	Bit 0 des D Ports für den seriellen Eingang.
UART_TX	UART_TX=D1	Gibt den Port und die Bitnummer für die seriellen
		Sendedaten an. Das Beispiel nimmt
UART	UART=1	Bit 1 des D Ports für den seriellen Ausgang. Wählt für die serielle Schnittstelle des Chips.
UARI	UARI=1	Eine Auswahl setzt das Vorhandensein mehrerer
		Schnittstellen voraus.
LED_START_	LED_START_	Wählt für die Anzahl der Blink-Zyklen
FLASHES	FLASHES=3	für die Kontroll-LED.
TEMOTIES	r LindiiLb—5	Bei 1 oder -1 wird nur einmal geblinkt ohne Wiederholung.
		Negative Vorgaben bewirken, daß in der Programmschleife
		das RX Bit der seriellen Schnittstelle überwacht wird.
		Sobald eingehende RX-Daten festgestellt werden,
		wird die Schleife abgebrochen. Bitte beachten Sie,
		daß das Blinken den Start des Anwenderprogramms
		verzögert.
LED	LED=B3	Wählt das Port-Bit für die Kontroll-LED.
		Beim Beispiel würde eine an das Bit 3 des Port B
		angeschlossene LED blinken. Bei der
		LED_START_FLASHES Option blinkt die LED die
		angegebene Anzahl vor dem Kommunikations-Start.
		Mit der LED_DATA_FLASH Option leuchtet die
		LED auch während des Wartens auf Daten.
LED_DATA_	LED_DATA_	Die Kontroll-LED leuchtet während des Wartens auf
FLASH	FLASH=1	Empfangsdaten der seriellen Kommunikation.
TIMEOUT_MS	TIMEOUT_	Diese Option gibt eine Zeitschranke in Millisekunden
	MS=2000	vor für den Empfang von Boot-Daten. Nach dieser Zeit
		wird der Bootvorgang abgebrochen und versucht, das
		Anwenderprogramm zu starten. Mögliche Werte für
		TIMEOUT_MS sind 500, 1000, 2000, 4000 und 8000.
		Der tatsächlich mögliche Wert kann abhängig vom Prozessor aus 2 Sekunden begrenzt sein.
		Wenn kein TIMEOUT_MS angegeben wird, wird die
		Zeitschranke auf 1 Sekunde gesetzt.
		Zorosomanno aur i ponunuo generati.

Tabelle 3.3. Wichtige Optionen für die optiboot Makefile

Bei Betrieb mit internem RC-Generator ist es durchaus möglich, daß ein serieller Datentransfer nicht auf Anhieb gelingt. Das ist prinzipiell auch unabhängig davon, ob die Hardware UART Schnitt-

stelle oder eine Softwarelösung (SOFT_UART) benutzt wird. Ohne zusätzliche Messungen ist man dann auf Probieren mit der OSCCAL_CORR angewiesen. Einen Hinweis kann das Datenblatt des Prozessors liefern. Hier ist beschrieben, bei welcher Betriebsspannung und bei welcher Temperatur der RC-Oszillator kalibriert wurde. Außerdem ist der prinzipielle Verlauf der Frequenzänderung mit der Betriebsspannung, mit der Temperatur und mit OSCCAL-Änderung beschrieben.

Weitere Optionen sind in der Tabelle 3.4 aufgezählt. Diese Optionen sind nur für Software-Untersuchungen, die Frequenzkalibration des RC-Generators und für Prozessoren ohne Bootloader-Bereich interessant.

Name der Option	Beispiel	Funktion
SUPPORT_	SUPPORT_	Wählt für das Bootloader-Programm die Lese- und Schreib-
EEPROM	EEPROM=1	Funktion für EEproms. Wenn als Quelle das Assembler-
		Programm gewählt wurde, ist die EEprom Unterstützung
		ohne gesetzte Option eingeschaltet, kann aber abgeschaltet
		werden, wenn die SUPPORT_EEPROM Option auf 0
		gesetzt wird.
		Bei der C-Quelle muß die Funktion mit der Option
		eingeschaltet werden (Standard $=$ aus).
C_SOURCE	C_SOURCE=1	Wählt als Programmquelle das C-Programm anstelle des
		Assembler-Programms $(0 = Assembler)$.
		Die Assembler Version benötigt weniger Speicherplatz.
BIGBOOT	BIGBOOT=512	Wählt zusätzlichen Speicherverbrauch für das Bootloader-
		Programm. Das dient nur zum Test der automatischen
		Anpassung an die Programmgröße in der Makefile.
VIRTUAL_	VIRTUAL_	Ändert die Programmdaten eines Anwenderprogramms
BOOT_	BOOT_	so ab, daß der Bootloader beim Reset angesprochen
PARTITION	PARTITION	wird. Für den Start des Anwenderprogramms wird
		ein anderer Interrupt-Vektor benutzt.
save_vect_	save_vect_	Wählt eine Interrupt-Vektornummer für die
num	num=4	VIRTUAL_BOOT_PARTITION Methode aus.
OSCCAL_	OSCCAL_	Mit der Option OSCCAL_CORR kann der interne
CORR	CORR=5	8 MHz RC-Generator des AVR abgeglichen werden.
		Ist bei Quarz-Betrieb oder externem Takt unwirksam!
		Der Korrekturwert wird vom voreingestellten OSCCAL Byte
		abgezogen. Bei positivem Korrekturwert wird die Frequenz
		normalerweise niedriger. Da die erzeugte Baud-Rate direkt
		vom Prozessortakt abhängt, ist ein richtig eingestellter
		Prozessortakt für eine erfolgreiche serielle Kommunikation
		wichtig. Der Wert sollte zwischen -20 und +20 liegen.

Tabelle 3.4. Weitere Optionen für die optiboot Makefile

3.5 Benutzung von optiboot ohne Bootloader-Bereich

Für Prozessoren ohne speziellen Bootloader-Bereich im Flash-Speicher wie dem ATtiny84 ist eine Möglichkeit vorgesehen, trotzdem optiboot zu benutzen. Diese Funktion wird mit der Option VIRTU-AL_BOOT_PARTITION gewählt. Dabei wird im Anwenderprogramm auf der Reset-Vektoradresse die Start-Adresse des Bootloaders eingetragen damit bei einem Reset immer der Bootloader zuerst

angesprochen wird. Die Start-Adresse des Anwender-Programms wird dabei auf die Adresse eines anderen Interrupt-Vektors verlegt. Dieser Interrupt-Vektor sollte vom Anwenderprogramm nicht benutzt werden. Wenn der Bootloader in angemessener Zeit keine Daten von der seriellen Schnittstelle empfängt, springt er zu dem Sprungbefehl, der auf der "Ersatz"-Vektoradresse steht und startet damit das Anwenderprogramm. Die Abbildung 3.1 soll die Veränderung verdeutlichen.

Abbildung 3.1. Veränderung der Programmdaten durch optiboot

Auf der linken Seite ist der Inhalt der Datei dargestellt, welche die Programmdaten (.hex) enthält. Rechts daneben ist der Inhalt des Flash-Speichers dargestellt, wie er vom Optiboot Bootloader geschrieben wird. An zwei Interruptvektor-Adressen wurde der Inhalt verändert. Einmal wurde auf dem Reset-Vektor 0 der Optiboot Bootloader eingetragen und zum anderen auf der "Ersatz"-Vektor Adresse 4 ein Sprung zum Start des Applikations-Programms eingetragen. Eine Schwierigkeit bei der Methode entsteht aber dadurch, daß die Programmdaten nach der Programmierung meistens zur Kontrolle zurückgelesen werden. Damit bei der Kontrolle keine Fehler gemeldet werden, gibt Optiboot nicht den wirklichen Inhalt der Interrupt-Vektortabelle zurück, sondern den Zustand vor seiner Manipulation. Die Sprung-Adresse im Reset-Vektor kann dafür aus den Daten des "Ersatz"-Interruptvektors rekonstruiert werden. Aber die ursprünglichen Daten des "Ersatz"-Interruptvektors

wären verloren, da sie an keiner Stelle der Vektortabelle wiederzufinden sind. Optiboot benutzt zum Sichern des Original-Inhaltes des "Ersatz"-Vektors deshalb die beiden letzten Bytes des EEprom-Speichers. Damit ist eine Kontrolle der Programmdaten solange möglich, wie die beiden letzten Bytes des EEproms nicht überschrieben werden. Selbst wenn die EEprom Daten überschrieben werden, bleibt der Bootloader funktionsfähig. Nur die Kontrolle (verify) der Programmdaten ist dann nicht mehr möglich. Bei der Adresse des "Ersatz"-Interruptvektors wird dann ein Fehler gemeldet.

Bei Prozessoren mit mehr als 8 kByte Flash Speicher werden zwei Befehlsworte für jeden Interrupt-Vektor vorgesehen. Normalerweise stehen auf diesen Doppelworten jmp Befehle mit den jeweiligen Sprungzielen. Auch diese Art der Vektortabelle wird von Optiboot berücksichtigt. Wenn aber für das Bindeprogramm (Linker avr-ld) die Option –relax verwendet wird, werden alle jmp Befehle durch die kürzeren rjmp Befehle ersetzt, wenn dies bei der jeweiligen Sprungadresse möglich ist. Dies wird derzeit nicht von optiboot berücksichtigt. Das Optiboot Programm geht fest davon aus, daß in der Vektortabelle jmp Befehle stehen, wenn mehr als 8 kByte Flash-Speicher vorhanden sind. Deshalb wird die VIRTUAL_BOOT_PARTITION Methode meistens nicht funktionieren, wenn die –relax Option beim Programmbinden benutzt wurde!

Weiter ist zu beachten, daß bei Benutzung der VIRTUAL_BOOT_PARTITION Option für Prozessoren, die auch die normale Bootloader Unterstützung bieten, das BOOTRST Fuse Bit nicht aktiviert wird. Der Grund hierfür ist, daß bei Benutzung der VIRTUAL_BOOT_PARTITION die Start-Adresse des Bootloaders auf einer anderen Adresse liegen kann wie bei der normalen Bootloader Unterstützung. Bei Benutzung der Option VIRTUAL_BOOT_PARTITION kann die Startadresse auf jedem Anfang einer Seite des Flash-Speichers liegen. Bei der normalen Bootloader Unterstützung kann immer nur das einfache, doppelte, vierfache oder achtfache einer Mindest-Bootloadergröße berücksichtigt werden (BOOT_SZ Fuse-Bits), wie es in Abbildung 2.3 auf Seite 9 dargestellt wird.

3.6 Die Möglichkeiten der seriellen Schnittstelle mit der verwendeten Software

Das Programm für die Erzeugung und Verarbeitung der elektrischen Signale ist in AVR-Assembler geschrieben. Die Arbeitsweise ist von der Veröffentlichung von Atmel übernommen. Allerdings sind einige Besonderheiten eingebaut. So wird beispielsweise berücksichtigt, daß nicht für alle Port Adressen die speziellen Bitbefehle SBI, CBI bzw SBIC benutzt werden können. Das ist nur bis zur Adresse 31 (0x1f) möglich. Für etwas größere Port Adressen von 63 (0x3f) ist noch die Verwendung spezieller Einlese (IN) und Ausgabe (OUT) Befehle möglich. Darüber liegende Adressen können nur mit den LDS und STS Befehlen erreicht werden. Diese Befehle benötigen sowohl zwei Takte für die Ausführung und belegen auch den doppelten Speicherplatz im Flash (2 Worte oder 4 Byte). Die veränderte Taktzahl für einen Schleifendurchlauf ohne eine zusätzliche Verzögerung wird vom Programm automatisch ermittelt. Diese Taktzahl wird dann für die Berechnung der Verzögerungsschleife berücksichtigt, um eine korrekte Zeit für die Übertragung eines Bits zu erreichen. Die Diagramme 3.2 und 3.3 sollen die Erzeugung der Schleife mit dem C-Preprozessor verdeutlichen.

Abbildung 3.2. Mögliche Varianten der getch Funktion

Abbildung 3.3. Mögliche Varianten der putch Funktion

Beide Schleifen werden so erzeugt, daß für die gleichen Bedingungen von INVERS_UART und Adresse des verwendeten Ports die gleiche Taktzahl gebraucht wird. Damit können dann beide Funktionen die gleiche Funktion für die notwendige Verzögerung benutzen.

3.6.1 Berechnung der Verzögerungszeit

Für die Einlesefunktion getch() wird auch die halbe Baudzeit gebraucht. Von der Erkennung des Startbits wird 1.5 Mal die Baud-Zeit gewartet, um das erste Datenbit einzulesen. Deshalb ist die Basisschleife auf die halbe Zeitdauer einer Bitübertragung ausgelegt. Für die ganze Baudzeit wird diese Basisschleife in einer speziellen Weise zwei mal aufgerufen, damit exakt die doppelte Zeit eingehalten wird. Sollte durch die Bildung der Hälfte der Zeit und der nachfolgenden Verdopplung ein Takt verloren gegangen sein, wird dieser Takt durch einen zusätzlichen NOP Befehl ausgeglichen damit die

Gesamtzeit für die Übertragung eines Bits auf einen Takt genau stimmt. Wenn bei der Schleifenzeit ein oder zwei Takte wegen der Zeitauflösung (3 Takte) fehlen, wird das automatisch durch einen zusätzlichen Befehl ausgeglichen. Natürlich geschieht das alles automatisch, da für die Berechnung nur die Schleifenzeit der Einlesefunktion (getch) bzw. Ausgabefunktion (putch), die Taktfrequenz des Prozessors und die gewünschte Baudrate bekannt sein muß. Auch die übrigen Parameter wie die Anzahl der Takte für einen Unterprogramm-Aufruf (RCALL, RET) sind für den Zielprozessor bekannt. Ein Nachteil der Basis-Verzögerungsschleife ist die begrenzte Anzahl Takte für die Verzögerung. Es sind wegen des verwendeten 8-Bit Zählers maximal 256*3 Takte für die Scheifenverzögerung möglich. Dazu kommt noch der Unterprogrammaufruf von 7 Takten, wodurch sich für die halbe Verzögrungszeit dann 775 Takte ergeben. Dieser Wert muß verdoppelt werden (Verzögerung für eine ganze Bitzeit) und dazu noch die Schleifenzeit der Ausgabe- bzw. Eingabe dazugezählt werden. Somit ist die höchste erzielbare Verzögerungszeit 1559 Takte. Bei 16 MHz Taktfrequenz sind so mit maximal $97.4\mu s$ noch nicht einmal 9600 Baud $(104.17\mu s)$ einstellbar. Würde man den Zähler der Zählschleife für die Verzögerungszeit von 8 Bit auf 16 Bit erweitern, hätte man eine noch schlechtere Auflösung als die 3 Takte der 8-Bit Variante. Außerdem käme die Schleife wahrscheinlich nicht wie die 8-Bit Variante ohne Veränderung des Übertragssignals (carry) aus. Dieses Problem habe ich durch die schrittweise Verdopplung der Verzögerungszeiten durch Verdopplung der Schleifenfunktion gelöst. Mit dem C-Preprozessor wird geprüft, ob der Anfangswert für die 8-Bit Zählschleife bei der gewählten Taktfrequenz des Prozessors und der Baudrate größer als 255 sein würde. Für diesen Fall wird die Berechnung für einen Doppelaufruf der Schleifenfunktion wiederholt. Wenn dann der Anfangswert für die Zählschleife immer noch zu hoch wäre, wird der Doppelaufruf noch einmal verdoppelt. Diese Prüfung wird derzeit bis zum Faktor 64 des Basiszeit fortgesetzt. Bei einer Taktfrequenz von 16 MHz oder 20 MHz sind so auf jeden Fall noch 300 Baud einstellbar. Für jede Verdopplung der Verzögerungszeit wird ein zusätzlicher Befehl (2 Byte) benötigt. Bei der maximal möglichen Zahl der Verdopplung werden dann 6 zusätzliche Befehle (12 Byte) im Flash belegt. Ein Ausgleich der durch die Vorteilung möglicherweise fehlenden Takte wird hier nicht durchgeführt, um nicht unnötig Platz im Flash zu belegen. Da die zusätzliche Vorteilung ja nur bei Bedarf erfolgt, bleibt der Fehler der Baudzeit deutlich unter 1%, weil die Zeit für eine Basisverzögerung auf einen Prozessor-Takt genau eingehalten wird. Die Basisschleife hat mindestens 127 Durchläufe mit etwa 381 Takten. Die doppelte Verzögerungszeit macht auch noch keinen Fehler wegen des "NOP" Ausgleichs. Somit bleibt der Fehler unter 1:762, also 0.13%. Probleme mit der Einhaltung der Baudrate bestehen also eher für hohe Baudraten, weil die Übertragungszeit für ein Bit nicht zum vorgegebenen Zeitraster durch den CPU-Takt paßt. Das gleiche Problem hat dann aber auch die Hardware UART-Schnittstelle. Ein Beispiel erläutert das Problem. Wenn man mit 8MHz CPU-Taktrate eine Baudrate von 230400 erzeugen möchte, kann man entweder 34 Takte mit einer Taktzeit von $4.25\mu s$ oder 35 Takte mit einer Baud-Zeit von $4.375\mu s$ verwenden. Im ersten Fall ist die Baud-Zeit um 2.08% zu kurz, im zweiten Fall ist die Baud-Zeit um 0.8% zu lang.

3.6.2 Benutzung von mehr als einer seriellen Schnittstelle

Die Assembler Datei soft_uart.S ist dafür ausgelegt, von einer anderen Datei eingefügt (#include) zu werden, welche ein normales Assembler-Programm für die AVR-Familie beinhaltet. Für die optiboot Applikation wird das von der Datei optiboot.S gemacht. Die eingefügte Datei soft_uart.S benutzt viele Anweisungen für den GNU C-Processor und fügt eine weitere Datei uart_delay.S ein, um eine Verzögerungsschleife für die gewünschte Baud-Rate zu generieren. Weil dieses Verfahren für uart_delay.S mit anderen Parametern mehrfach wiederholt werden kann, kann man bis zu 4 verschiedene Verzögerungsschleifen erzeugen lassen. Diese Vorgehensweise nutzt die Datei soft_uart.S für die Erzeugung der getch und putch Funktion. Für beide Funktionen wird die Datei uart_delay.S eingefügt. Aber für den zweiten #include wird meistens keine neue Verzögerungsschleife produziert, weil die Parameter beim zweiten Aufruf gleich sind. Nur bei verschiedenen Parametern wird eine neue

Verzögerungsschleife generiert. Bitte beachten Sie, daß die Aufrufe der Verzögerungsschleifen mit C-Preprozessor Makro Namen versehen sind. Diese Makro Namen DOUBLE_DELAY_CALL und SINGLE_DELAY_CALL werden durch die richtigen Funktionsnamen ersetzt, wenn die #include Anweisung vor der Befehlsfolge für die serielle Eingabe- oder Ausgabe-Funktion steht.

Drei Konstanten müssen vor jeder Einfügung von uart_delay.S gesetzt sein, F_CPU, BAUD_RATE und LOOP_TICS. Die Konstante LOOP_TICS muß auf die Anzahl der Takte gesetzt sein, die von einer seriellen Bit-Ausgabe in der Schleife gebraucht wird (normalerweise 9 Takte). Für jede erzeugte Verzögerungsfunktion wird die Anzahl der Verzögerungstakte in einer von vier verschiedenen Konstanten-Namen des C-Prozessors gespeichert, BIT_CLOCKS_0, BIT_CLOCKS_1, BIT_CLOCKS_1 und BIT_CLOCKS_3. Bevor eine neue Verzögerungsschleife erzeugt wird, prüft der C-Preprozessor, ob eine schon erzeugte Schleife zu den geforderten Parametern paßt. Weil die Datei soft_uart.S auch mit #include eingefügt werden muß, kann man diesen include auch mit anderen Parametern für eine andere serielle Schnittstelle wiederholen. Aber man muß eine weitere Konstante vorbesetzen, um die Namen der erzeugten Funktionen zu unterscheiden. Wenn Sie die Konstante SOFT_UART_NUMBER vor dem #include auf 1 setzen (#define SOFT_UART_NUMBER 1), wird die Funktion für die serielle Eingabe getch_1 und die Funktion für die serielle Ausgabe putch_1 heißen. Wenn man die Konstante NO_SOFT_UART_TX vor dem #include gesetzt hat, wird keine serielle Ausgabefunktion generiert. Gleiches gilt auch für die serielle Eingabe, wenn die Konstante NO_SOFT_UART_RX vor dem #include gesetzt ist.

3.6.3 Serielle Eingabe und Ausgabe über nur einen AVR Pin

Manchmal ist es sinnvoll, die serielle Datenkommunikation nur über einen Pin zu betreiben, um einen der wenigen IO-Pins bei kleinen AVRs freizuschalten. Mit einer speziellen Schaltungstechnik kann erreicht werden, daß in den Ausgabe-Pausen der seriellen Ausgabe ein Einlesen von Daten möglich ist. Bei der hier bei optiboot gewählten Software-Lösung ist ohnehin nur ein Halb-Duplex Betrieb möglich. Es kann also zu einer Zeit nur entweder Daten gesendet oder Daten empfangen werden. Normalerweise wird der Ausgabepin mit der TX-Funktion in den Sendepausen auf High Pegel geschaltet, was ein Einlesen von Daten auf dem gleichen Pin verhindert. Wenn aber der TX Ausgabepin statt auf den High Pegel in den Sendepausen auf den Eingabemodus zurückgeschaltet wird, kann ein externer Pull-Up Widerstand den erforderlichen High Pegel erzeugen. Im Gegensatz zum festen High Pegel kann jetzt aber ein extern angeschlossenes TX-Signal den Pegel für die serielle Einlesefunktion auf Low Pegel ziehen. Ein serieller Widerstand in der Verbindung von dem gemeinsamen TX/RX Pin des AVR mit dem TX Ausgang kann die Funktion des Pull-Up Widerstandes übernehmen, da der Ruhezustand dieser Schnittstelle auf High Pegel liegt. Außerdem sorgt dieser serielle Widerstand für eine Strombegrenzung, falls doch einmal beide TX Schnittstellen gleichzeitig senden. Damit die TX-Ausgabe des AVR von der externen seriellen Schnittstelle gelesen werden kann, muß der RX-Eingang direkt mit dem gemeinsamen TX/RX verbunden werden. Die Abbildung 3.4 soll die einfachste Verbindung veranschaulichen.

Abbildung 3.4. Mögliche serielle Verbindung zum AVR mit einem Pin

Das Problem besteht nun darin, daß die meistens full-duplex fähige externe serielle Schnittstelle die eigene Ausgabe zurückliest. Darauf ist das Kommunikationsprogramm auf der externen Seite im allgemeinen nicht vorbereitet. Es gibt nun die Möglichkeit, das Programm auf der externen Seite entsprechend anzupassen. Ich halte das für keine gute Idee, da die angepasste Version dann entweder keine Wartung mehr erhält oder es müßte die Änderung für neue Versionen ständig wiederholt werden. Aus diesem Grund bevorzuge ich eine Hardware-Lösung. Eine elektronische Schaltung, die zwischen die beiden Endpunkte der seriellen Schnittstelle geschaltet wird, muß unterscheiden, ob die Daten von der externen Schnittstelle oder von der AVR Seite gesendet werden. Ein entsprechender Schaltungsvorschlag zeigt die Abbildung 3.5.

Electronic switch to prevent local echo from TXD to RXD.

Abbildung 3.5. Schaltung zur Unterdrückung des Echos

Mit den zwei ersten NAND Gattern des HCF4093 wird ein Flip-Flop gebildet, welches von den zwei weiteren NAND Gattern dieses Bausteins in den einen oder anderen Zustand geschaltet wird. Die Schaltsignale werden von einer Kette von invertierenden Buffern mit Schmitt-Trigger Eingängen

(HC7414) abgegriffen. An einer Stelle ist ein zusätzliches C-R Glied (120pF) und $3.3k\Omega$ erforderlich, um ein Schalten bei einer unerwünschten Flanke zu verhindern. Umgeschaltet wird jeweils mit einer 1-0 Flanke der beiden Sendeseiten. Erforderlich ist diese Umschaltung nur bei der Flanke des Startbits. Aber ein zusätzliches Schalten durch Datenbits schadet nicht, wenn das Flip-Flop schon im richtigen Zustand ist. Wenn die externe Schnittstelle sendet, wird der Empfang der Daten über den externen Empfänger verhindert. Das externe RX-Signal bleibt auf High Pegel. Mit dieser Zusatzschaltung ist keine Software-Anpassung notwendig. Für den Bootloader kann zum Beispiel das avrdude Programm benutzt werden. Die Schaltung ist weitgehend unabhängig von der benutzen Baudrate. Lediglich bei sehr hohen Baud-Raten erwarte ich Probleme. Bei 115200 Baud läuft die Schaltung aber einwandfrei. Sehr viel höhere Baudraten sind bei der Softwarelösung sowieso oft nicht möglich.

3.7 Einige Beispiele für die Erzeugung eines optiboot Bootloaders

Das erste Beispiel ist die Bildung eines Bootloaders für den beliebten ATmega328P:

```
optiboot $ make atmega328p
avr-gcc -g -Wall -Os -fno-split-wide-types -mrelax -mmcu=atmega328p \
-fno-diagnostics-show-caret \
-DBAUD RATE=115200 -DLED START FLASHES=3 -DSUPPORT EEPROM=1 \
-DLED=p -DUART RX=p -DUART TX=p -DF CPU=16000000 -c -o optiboot.o optiboot.S
In file included from optiboot.S:254:0
pin_defs.h:183:4: warning: #warning "LED bit is set to default B5" [-Wcpp]
optiboot.S:530:6: warning: #warning BAUD RATE error greater than 2% [-Wcpp]
______
BAUD RATE CHECK: Desired: 115200, Real: 117647, UBRRL = 16, Error=2.12%
Boot Loader start address: 0x7E00
16000000 Hz operation with Baudrate 115200 configured.
avr-size optiboot.elf
         data
                 bss
                               hex filename
  text
                        dec
   474
                        474
                               1da optiboot.elf
Requires 1 Boot Pages, 512 Bytes each
BOOTSZ=3
avr-objdump -h -S optiboot.elf > optiboot atmega328p.lst
avr-objcopy -j .text -j .data -j .version --set-section-flags .version=alloc,load \
-O ihex optiboot.elf optiboot_atmega328p.hex
```

Wenn keine zusätzliche Option angegeben wird, wird eine Baudrate von 115200 mit einer Taktfrequenz von 16MHz gewählt. Für die serielle Ausgabe wird die vorhandene Hardware-Schnittstelle benutzt. Man beachte, daß der systematische Fehler der Baudrate über 2% mit dem Hardware UART beträgt. Das zweite Beispiel zeigt die Erzeugung von optiboot für den gleichen Prozessor mit einer Software-Lösung für die serielle Schnittstelle.

```
optiboot $ make atmega328p SOFT_UART=1
avr-gcc -g -Wall -Os -fno-split-wide-types -mrelax -mmcu=atmega328p \
   -fno-diagnostics-show-caret \
```

```
-DBAUD RATE=115200 -DLED START FLASHES=3 -DSOFT UART=1 -DSUPPORT EEPROM=1 \
 -DLED=p -DUART RX=p -DUART TX=p -DF CPU=16000000 -c -o optiboot.o optiboot.S
In file included from optiboot.S:254:0:
pin defs.h:183:4: warning: #warning "LED bit is set to default B5" [-Wcpp]
pin defs.h:192:4: warning: #warning use default RX PDO for Soft UART [-Wcpp]
pin defs.h:200:4: warning: #warning use default TX PD1 for Soft UART [-Wcpp]
BAUD RATE CHECK: Desired: 115200, SoftUART_Real: 115107, Error=-.08%
Boot Loader start address: 0x7E00
16000000 Hz operation with Baudrate 115200 configured.
avr-size optiboot.elf
          data
                  bss
                          dec
                                 hex filename
  text
   494
                          494
             0
                    0
                                 1ee optiboot.elf
Requires 1 Boot Pages, 512 Bytes each
avr-objdump -h -S optiboot.elf > optiboot atmega328p.lst
avr-objcopy -j .text -j .data -j .version --set-section-flags .version=alloc,load \
 -O ihex optiboot.elf optiboot_atmega328p.hex
```

Beachten Sie bitte, daß die Software-Lösung für die serielle Schnittstelle etwas mehr flash-Speicher braucht, aber es wird auch nur eine "boot page" gebraucht. Der systematische Fehler der Baudrate ist hier deutlich kleiner wie bei dem Hardware-UART. Aber der Hardware-UART hat den Vorteil, daß Eingang und Ausgang gleichzeitig bearbeitet werden kann (full duplex) und außerdem ist die Hardware-Lösung fehlertoleranter gegenüber kurzen Störungen des Eingangssignals. Für die serielle Schnittstelle mit Software kann jeder digitale IO-Pin als Eingang (UART_RX) und als Ausgang (UART_TX) gewählt werden. In diesem Beispiel wird die Fähigkeit benutzt, automatisch die IO-Pins des Hardware-UART's zu wählen. Die drei "warning" Meldungen, die Sie über diese automatische Wahl informieren, können Sie ignorieren. Die automatische Wahl der IO-Pins hängt vom gewählten Prozessor-Typ und von der gewählten UART Nummer ab, wenn mehr als ein UART zur Verfügung steht.

3.8 Anpassung der Taktfrequenz bei internem RC-Generator

Die Benutzung der seriellen Schnittstelle ist nur möglich, wenn die eingestellte Baudrate hinreichend genau eingehalten wird. Die tatsächliche Baudrate hängt unmittelbar von dem tatsächlichen Prozessortakt und von dem berücksichtigtem Teilerverhältnis für die Takt der seriellen Ein-Ausgabe ab. Die Hardware UART Schnittstelle teilt den Prozessortakt generell durch 8 oder durch 16 und kann dann für den bereits vorgeteilten Takt einen weiteren einstellbaren Teiler zwischen 1:1 und 1:4096 zur Erzeugung des Taktes für die serielle Schnittstelle benutzen. Für niedrige Baudraten kann der Prozessortakt bei Bedarf noch um zusätzliche 2er Potenzen geteilt werden. Wenn das Verhältnis zwischen dem Prozessortakt zu dem Baudraten-Takt ausreichend hoch ist, kann damit die Baudrate ausreichend genau eingestellt werden. Bei der Erzeugung des Optiboot Bootloaders wird der systematische Fehler dieser Erzeugung protokolliert. Normalerweise sind Fehler von weniger als 2% als unkritisch anzusehen. Für die Implementation der seriellen Schnittstelle mit Software (SOFT_UART) werden meistens geringere systematische Fehler der Baudrate erreicht. Hier liegen die Schwierigkeiten bei der

fehlenden Fehlerunterdrückung der Einlese-Funktion und bei der mangelden Fähigkeit, die Schnittstelle "voll duplex" zu betreiben. Von der Ausgabe des letzten Bits bis zur Empfangsbereitschaft vergeht immer eine gewisse Zeit. Daher ist hier bei geringeren Baudraten mit weniger Schwierigkeiten zu rechnen.

Alle diese Betrachtungen setzen aber voraus, daß der Prozessortakt selbst hinreichend genau eingehalten wird. Bei Quarz oder Keramik-Resonator Betrieb ist das meistens ohne weitere Maßnahmen der Fall. Anders sieht das aber bei der Benutzung des internen RC-Generators der AVR Prozessoren aus. Hier kann die Prozessorfrequenz deutlich vom Wunschwert abweichen. Die Prozessoren sind zwar ab Werk vorkalibriert. Dies gilt aber oft nur für eine Frequenz und für eine Temperatur und eine Betriebsspannung. Je nach Prozessortyp ist die Frequenz des RC-Generators mehr oder weniger abhängig von Temperatur und Betriebsspannung.

Um vorhandene Fehler der Frequenz mit dem internen RC-Generators ausgleichen zu können, wird der Kalibrationswert des Herstellers beim Start des Prozessors in das IO-Register OSCCAL kopiert. Der Optiboot Bootloader kann die Option OSCCAL_CORR benutzen, um den vorhandenen Restfehler auszugleichen. In den folgenden Unterkapiteln werde ich einige AVR-Typen exemplarisch näher untersuchen.

3.8.1 Untersuchung der RC-Generatoren des ATmega8

Der ATmega64 und der ATmega128 können 4 verschiedene Frequenzen mit dem internen RC-Generator über die Low-Fuse einstellen, 1 MHz, 2 MHz, 4 MHz und 8 MHz. In der Tabelle 3.5 habe ich alle 4 Frequenzeinstellungen untersucht.

AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
1M	0xA1	9.6k	-8	1050k	4	983k	0	1004k
2M	0xA2	19.2k	-8	2098k	4	1967k	0	2008k
4M	0xA3	19.2k	-2	4201k	10	3927k	7	3999k
8M	0xA4	57.6k	0	8231k	13	7723k	6	7990k

Tabelle 3.5. Mögliche OSCCAL_CORR Einstellungen für die RC-Frequenzen des ATmega8

Die Tabelle 3.5 zeigt, daß für den 1Mhz und 2MHz Betrieb eine Korrektur des OSCCAL Registers nicht erforderlich ist. Dieser ATmega8 ist ab Werk für diese Frequenzen sehr gut kalibriert. Bei 4MHz kommt man noch ohne Korrektur aus, erreicht aber bei OSCCAL_CORR=7 die richtige Schwingfrequenz. Bei 8MHz ist der Betrieb der seriellen Schnittstelle so gerade eben noch möglich, sicherer läuft die serielle Schnittstelle aber mit OSCCAL CORR=6.

3.8.2 Untersuchung der RC-Generatoren der ATmega328 Familie

Bei der ATmega328 Familie kann nur eine RC-Oszillatorfrequenz von 8MHz gewählt werden. Die Frequenz kann aber mit einem Fuse-Bit mit Faktor 8 vorgeteilt werden, so daß auch ein 1MHz Betrieb eingestellt werden kann. Die Tabelle 3.6 zeigt die Resultate der untersuchten Prozessoren.

Тур	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
mega48P	8M	0xE2	57.6k	-6	8230k	8	7720k	0	8010k
mega88	8M	0xE2	57.6k	-2	8250k	10	7770k	4	7990k
mega168	8M	0xE2	57.6k	-5	8263k	8	7720k	1	7970k
mega328P	8M	0xE2	57.6k	-5	8250k	9	7723k	1	7992k

Tabelle 3.6. Mögliche OSCCAL_CORR Einstellungen für die ATmega328 Familie

Bei allen untersuchten Prozessoren ist ein Betrieb der seriellen Schnittstelle auch mit dem internen RC-Oszillator möglich. Nur bei dem untersuchten ATmega88 würde sich bei OSCCAL_CORR=4 eine Korrektur überhaupt lohnen.

3.8.3 Untersuchung der RC-Generatoren des ATmega32 / 16

Der ATmega32 und der ATmega16 können 4 verschiedene Frequenzen mit dem internen RC-Generator über die Low-Fuse einstellen, 1 MHz, 2 MHz, 4 MHz und 8 MHz. In den Tabellen 3.7 und 3.8 habe ich alle 4 Frequenzeinstellungen untersucht.

	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
Тур	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
m32	1M	0xA1	9.6k	-13	1049k	-1	980k	-5	1001k
m32a				-7	1046k	4	984k	1	998k
m32	2M	0xA2	19.2k	-12	2102k	0	1968k	-3	1997k
m32a				-7	2105k	6	1966k	2	2005k
m32	4M	0xA3	19.2k	-5	4169k	6	3942k	3	3993k
m32a				2	4192k	14	3939k	10	4015k
m32	8M	0xA4	19.2k	-7	8425k	6	7888k	3	7983k
m32a				2	8408k	14	7921k	11	8014k

Tabelle 3.7. Mögliche OSCCAL_CORR Einstellungen für die RC-Frequenzen des ATmega32

AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
1M	0xA1	9.6k	-11	1047k	1	982k	-2	998k
2M	0xA2	19.2k	-12	2099k	0	1971k	-3	1995k
4M	0xA3	19.2k	-9	4291k	3	3932k	0	4002k
8M	0xA4	19.2k	-11	8415k	2	7857k	-2	8013k

Tabelle 3.8. Mögliche OSCCAL_CORR Einstellungen für die RC-Frequenzen des ATmega16A

Immer wenn in der MinCorr Spalte positive Werte oder in der MaxCorr Spalte negative Werte auftauchen, ist bei dieser Frequenz und diesem Prozessor-Exemplar der Betrieb der seriellen Schnittstelle ohne Korrektur nicht möglich. Wenn eine 0 in den Spalten auftaucht, ist der Betrieb der seriellen Schnittstelle gerade eben noch möglich.

3.8.4 Untersuchung der RC-Generatoren des ATmega64 / 128

Der ATmega64 und der ATmega128 können 4 verschiedene Frequenzen mit dem internen RC-Generator über die Low-Fuse einstellen, 1 MHz, 2 MHz, 4 MHz und 8 MHz. In den Tabellen 3.9 und 3.10 habe ich alle 4 Frequenzeinstellungen untersucht. An dieser Stelle sei auch ein Hinweis erlaubt, das das Laden der Programmdaten über die ISP-Schnittstelle nicht mit den Signalen MISO und MOSI, sondern über die Signale TXD (PE1) und RXD (PE0) erfolgt. Dies muß natürlich beim Anschluß an den Programmer berücksichtigt werden.

AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
1M	0xA1	9.6k	-4	1024k	6	975k	1	1000k
2M	0xA2	19.2k	-4	2047k	6	1952k	0	2015k
4M	0xA3	19.2k	4	4070k	10	3939k	8	3976k
8M	0xA4	57.6k	6	8028k	10	7847k	7	8005k

Tabelle 3.9. Mögliche OSCCAL_CORR Einstellungen für die RC-Frequenzen des ATmega64

AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
1M	0xA1	9.6k	-9	1051k	3	985k	0	999k
2M	0xA2	19.2k	-9	2102k	3	1971k	0	2000k
4M	0xA3	19.2k	-3	4209k	9	3960k	6	4006k
8M	0xA4	57.6k	0	8225k	13	7723k	7	8005k

Tabelle 3.10. Mögliche OSCCAL CORR Einstellungen für die RC-Frequenzen des ATmega128

Die Tabellen zeigen, daß für den 1Mhz und 2MHz Betrieb eine Korrektur des OSCCAL Registers nicht erforderlich ist. Bei 4MHz und 8MHz Betrieb kann die serielle Schnittstelle aber beim untersuchten ATmega64 nicht ohne Korrektur betrieben werden. Ohne Korrektur wäre die 4MHz Frequenz um etwa 4% zu hoch und die 8MHz Frequenz um etwa 4.3% zu hoch. In der Dokumentation von Atmel wird übrigens abgegeben, daß der RC-Generator des ATmega64 und ATmega128 bei 1MHz abgeglichen wird. Es sei noch einmal darauf hingewiesen, daß es sich bei den Tabellendaten um die Untersuchung eines einzelnen Exemplars des ATmega handelt. Außerhalb der angegebenen Min- bzw. Max-Werte der OSCCAL Korrekturen war ein Betrieb der seriellen Schnittstelle bei der angegebenen Baud-Rate nicht möglich.

3.8.5 Untersuchung der RC-Generatoren der ATmega644 Familie

Bei der ATmega644 Familie kann eine RC-Oszillatorfrequenz von 8MHz gewählt werden. Daneben kann auch noch ein 128kHz Gererator als Takt gewählt werden, der sonst den Watchdog-Timer versorgt. Die gwählte Frequenz kann aber mit einem Fuse-Bit mit Faktor 8 vorgeteilt werden, so daß auch ein 1MHz Betrieb eingestellt werden kann. Die Tabelle 3.11 zeigt die Resultate der untersuchten Prozessoren.

Тур	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
mega1284p	8M	0xC2	19.2k	-8	8416k	7	7882k	4	7989k
mega644p	8M	0xC2	19.2k	-12	8416k	3	7871k	-1	8009k
mega324p	8M	0xC2	19.2k	-12	8398k	3	7885k	0	7976k
mega164p	8M	0xC2	19.2k	-5	8401k	4	7888k	2	8012k

Tabelle 3.11. Mögliche OSCCAL_CORR Einstellungen für die ATmega644 Familie

3.8.6 Untersuchung der RC-Generatoren der ATmega645 Familie

Bei der ATmega645 Familie kann nur eine RC-Oszillatorfrequenz von 8MHz gewählt werden. Die Frequenz kann aber mit einem Fuse-Bit mit Faktor 8 vorgeteilt werden, so daß auch ein 1MHz Betrieb eingestellt werden kann. Die Tabelle 3.12 zeigt die Resultate der untersuchten Prozessoren.

Тур	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
mega645	8M	0xE2	57.6k	0	8253k	12	7726k	5	8012k

Tabelle 3.12. Mögliche OSCCAL CORR Einstellungen für die ATmega645 Familie

Beim ATmega645 ist der Betrieb der seriellen Schnittstelle ohne OSCCAL Korrektur gerade noch möglich. Sicherer ist aber der Betrieb mit OSCCAL_CORR=5, da dann die 8MHz besser eingehalten werden.

3.8.7 Untersuchung der RC-Generatoren der ATmega649 Familie

Bei der ATmega649 Familie kann nur eine RC-Oszillatorfrequenz von 8MHz gewählt werden. Die Frequenz kann aber mit einem Fuse-Bit mit Faktor 8 vorgeteilt werden, so daß auch ein 1MHz Betrieb eingestellt werden kann. Die Tabelle 3.13 zeigt die Resultate der untersuchten Prozessoren.

Тур	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
mega169	8M	0xE2	57.6k	-9	8250k	2	7864k	-2	8010k

Tabelle 3.13. Mögliche OSCCAL_CORR Einstellungen für die ATmega649 Familie

3.8.8 Untersuchung der RC-Generatoren der ATtiny84 Familie

Bei der ATtiny84 Familie kann außer dem 8MHz RC-Oszillator auch noch der 128kHz Takt der Watchdog-Schaltung benutzt werden. Der 128kHz Takt kann nicht kalibriert werden. Wenn man diesen Takt benutzen möchte, kann man die erzeugte Baudrate nur über den vorgegebenen Wert korrigieren. Bei einem ATtiny24a habe ich die erzeugte Baudrate kontrolliert. Statt der eingestellten 2400 Baud habe ich nur 2170 Baud gemessen. Das ergibt einen Frequenzfehler von etwa 9.6% und damit deutlich zu viel, um ohne Korrektur benutzt werden zu können. Bei eingestellten 2640 Baud funktionierte der Download mit 2400 Baud. Die gemessene Taktrate betrug dann nur 115.2kHz anstelle der 128kHz. Die erste Tabelle 3.14 stellt für die untersuchten Exemplare die möglichen OSCCAL Änderungen für den 8MHz Betrieb dar.

Тур	AVR_	LFUSE	Baud-	Min-	Min-	Max-	Max-	Best-	Best-
	FREQ		rate	Corr	Freq	Corr	Freq	Corr	Freq
attiny84	8M	0xE2	19.2k	-6	8453k	14	7673k	5	8019k
attiny44a	8M	0xE2	19.2k	-16	8367k	3	7673k	7	7984k
attiny24a	8M	0xE2	19.2k	-4	8388k	11	7685k	4	7992k

Tabelle 3.14. Mögliche OSCCAL_CORR Einstellungen für die ATtiny
84 Familie

Kapitel 4

Verschiedene USB zu Seriell Wandler mit Linux

Die klassische serielle Schnittstelle wird heute immer weniger verwendet. Bei älteren Rechnern findet man diese Schnittstelle nach RS232 Standard häufiger. Die serielle Schnittstelle ist aber für die Programmierung eines Mikrocontrollers ohnehin nicht sehr praktisch, da die verwendeten Spannungspegel (etwa -12V und +12V) nicht direkt verwendet werden können. Diese Spannungspegel müßten erst wieder mit Pegelwandlern auf die bei Mikrocontrollern gebräuchlichen +5V oder 3.3V zurückgewandelt werden. Praktischer sind für den Zweck der Programmierung die USB zu Seriell Wandler, da diese neben dem benötigten Spannungspegel auch noch die +5V oder +3.3V für die Versorgung des Mikrocontrollers zur Verfügung stellen. Unter Linux werden diese USB-Geräte meistens problemlos erkannt. Es kann aber bei den Zugriffsrechten hapern. Meistens werden die Zugangsknoten wie /dev/ttyUSB1 der Gruppe dialout zugewiesen. Dann sollte man selbst (user) dieser Gruppe angehören. Mit dem Kommando "usermod -a -G dialout \$USER" sollte man der Gruppe dialout angehören.

4.1 Der CH340G und der CP2102 Wandler

Untersucht habe ich eine Platine mit der Aufschrift BTE13-005A, auf der ein CH340G Wandler von QinHeng Elektronics untergebracht ist. Die Platine hat einen Minischalter zum Umschalten der VCC Spannung auf 3.3V oder 5V und einen 12 MHz Quarz. Auf der einen Seite befindet sich ein USB-A Stecker und auf der anderen Seite eine 6-polige Pin-Leiste mit den Signalen GND, CTS, VCC, TXD, RXD und DTR. In einem chinesischen Datenblatt zum Chip kann man Angaben zu den unterstützten Baudraten finden. Auf der Platine befindet sich eine mit VCC verbundene LED und eine weitere LED.

Die andere Platine mit dem CP2102 Wandler von Silicon Laboratories Inc. hat keine Aufschrift auf der Platine. Wie bei der CH340G Platine befindet sich auf der einen Seite der USB-A Stecker und auf der gegenüberliegenden Seite eine 6-polige Stiftleiste mit den Signalen 3.3V, GND, +5V, TXD, RXD und DTR. Auf den beiden anderen Seiten läßt sich jeweils eine 4-polige Stiftleiste nachrüsten mit den Signalen DCD, D3R, RTS und CTS sowie RST, R1, /SUS und SUS. Alle für den Bootloader benötigten Signale befinden sich aber auch bei dieser Platine auf der bereits bestückten Stiftleiste. Die Reihenfolge der Belegung ist aber unterschiedlich. Auf der Platine mit dem CP2102 Wandler befinden sich außer dem Wandlerchip sehr wenige Bauteile, eine LED für RXD, TXD und Power ist aber vorhanden.

Mit meinem Linux-Mint 17.2 wurden beide Wandler ohne weiteres erkannt. Mit dem Kommando

lsusb sieht man in der Ausgabe:

Bus 002 Device 093: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge / myABus 002 Device 076: ID 0403:6001 Future Technology Devices International, Ltd FT232 Serial

Natürlich sind die Angaben zum Bus abhängig vom Rechner und dem verwendeten USB-Port.

Die beim Einstecken automatisch erzeugten Device Namen kann man sofort nach dem Einstecken durch das Kommando "dmesg \mid tail -20" herausfinden. Beim folgenden Beispiel habe ich beide Ausgaben zusammengefaßt.

```
usb 2-4.2: new full-speed USB device number 94 using ohci-pci usb 2-4.2: New USB device found, idVendor=1a86, idProduct=7523 usb 2-4.2: New USB device strings: Mfr=0, Product=2, SerialNumber=0 usb 2-4.2: Product: USB2.0-Serial ch341 2-4.2:1.0: ch341-uart converter detected usb 2-4.2: ch341-uart converter now attached to ttyUSB1 usb 2-4.5: new full-speed USB device number 93 using ohci-pci usb 2-4.5: New USB device found, idVendor=10c4, idProduct=ea60 usb 2-4.5: New USB device strings: Mfr=1, Product=2, SerialNumber=3 usb 2-4.5: Product: CP2102 USB to UART Bridge Controller usb 2-4.5: Manufacturer: Silicon Labs usb 2-4.5: SerialNumber: 0001 cp210x 2-4.5:1.0: cp210x converter detected usb 2-4.5: reset full-speed USB device number 93 using ohci-pci usb 2-4.5: cp210x converter now attached to ttyUSB2
```

Nach diesen Angaben und eigenen Experimenten habe ich die Tabellen 4.1 und 4.2erstellt. Weil sich mit dem neueren Betriebssystem Linux Mint 18.3 teilweise bessere Ergebnisse ergeben haben, habe ich die Meßergebnisse mit diesem System gemessen.

CH340G	CH340G	CH340G	CP2102	CP2102	CP2102	AVR
supported	stty	measured	supported	stty	measured	UBBR
BaudRate	speed	BaudRate	BaudRate	speed	BaudRate	@16MHz
50	50	50.00	(50)	Error		
75	75	75.18	(75)	Error		
100	Error	-	(100)	Error		
110	110	109.3	(120)	Error		
134	134	133.4	(134)	Error		
150	150	150.4	(150)	Error		
300	300	300.7	300	300	300.7	
600	600	602.4	600	600	598.8	3332
900	Error	-	(900)	Error	-	2221
1200	1200	1204.8	1200	1200	1198	832
1800	1800	1801.6	1800	1800	1802	555
2400	2400	2409.6	2400	2400	2410	416
3600	Error	-	(3600)	Error	-	277
(4000)	Error	-	4000	Error	-	249
4800	4800	4808	4800	4800	4808	207
(7200)	Error	-	7200	Error	-	138
9600	9600	9616	9600	9600	9616	207
14400	Error	-	14400	Error	-	138
(16000)	Error	-	16000	Error	-	124
19200	19200	19232	19200	19200	19232	103

Tabelle 4.1. geprüfte Baudraten des CH340 und CP2102 im unteren Baud-Bereich

CH340G	CH340G	CH340G	CP2102	CP2102	CP2102	AVR
supported	stty	measured	supported	stty	measured	UBBR
BaudRate	speed	BaudRate	BaudRate	speed	BaudRate	@16MHz
28800	Error	-	28800	Error	-	68
33600	Error	-	(33600)	Error	-	59
38400	38400	38.464k	38400	38400	38.464k	51
(51200)	Error	-	51200	Error	-	38, 0.16%
56000	Error	-	56000	Error	-	35, -0.79%
57600	57600	57.8k	57600	57600	57.472k	34, -0.79%
(64000)	Error	-	64000	Error	-	30, 0.80%
76800	Error	-	76800	Error	-	25, 0.16%
115200	115200	115.6k	115200	115200	114.96k	16, 2.12%
128000	Error	-	128000	Error	-	15, -2.34%
153600	Error	-	153600	Error	-	12, 0.16%
230400	230400	229.9k	230400	230400	229.9k	8, -3.54%
(25000)	Error	-	250000	Error	-	7, 0.00%
(25600)	Error	-	256000	Error	-	7, -2.34%
460800	460800	460.8k	460800	460800	458.7k	-, >5%
(500000)	500000	500.0k	500000	500000	500.0k	3, 0.00%
(576000)	576000	543,4k	576000	576000	571.4k	-, >5%
921600	921600	851.2k	921600	921600	921.6k	-, >5%
(1000000)	1000000	1000k	(1000000)	1000000	921.6k	1, 0.00%
(1200000)	Error	-	(1200000)	Error	-	-, >5%
1500000	1500000	1498k	(1500000)	1500000	1498k	-, >5%
2000000	2000000	2000k	(2000000)	2000000	1504k	0, 0.00%
(3000000)	3000000	3007k	(3000000)	2000000	-	-, >5%

Tabelle 4.2. geprüfte Baudraten des CH340 und CP2102 im oberen Baud-Bereich

Bei beiden Tabellen fällt auf, daß nicht alle von den Herstellern angegebenen Baudraten mit dem Linux stty Kommando einstellbar sind. In den meisten Fällen wird ein Fehler gemeldet, aber leider nicht immer. Beim CP2102 Kontroller wird die Fehlergrenze bei den Baudraten 1 MBaud und 2 MBaud deutlich überschritten. Auch bei den 576 kBaud ist die Abweichung etwas höher als erwartet. Bei der Messung der eingestellten Baudrate fällt nur die Einstellung 576000 und 921600 des CH340G Kontrollers negativ auf. Die anderen Einstellungen bleiben bei der Toleranz unkritisch. Wo die Ursachen für diese Auffälligkeiten liegen, habe ich nicht erörtert. Bei der Dokumentation zum CH340G scheint aber nicht alles mit der gelieferten Version übereinzustimmen. Die Einstellungen 500 kBaud und 1 MBaud sind zwar möglich, aber nicht in der Dokumentation erwähnt.

4.2 Der PL-2303 und der FT232R Wandler

Diesmal habe ich eine Platine mit der Aufschrift "SBT5329" und dem PL-2303RX Wandler von Profilic Technology und eine Platine "FTDI Basic 1" mit einem FT232RL Wandler von Future Technology Devices untersucht.

Die SBT5329 Platine hat auf der einen Seite einen USB-A Stecker und auf der anderen Seite eine 5-polige Stiftleiste mit den Signalen +5V, GND, RXD, TXD und 3.3V. Außerdem findet man auf der Platine noch einen 12 MHz Quarz und drei Leuchtdioden Tx, Rx und Power. Die Steuersignale der seriellen Schnittstelle sind bei dieser Platine nicht auf Stiftleisten herausgeführt. Der PL-2303

Chip stellt aber die Handshake-Signale der seriellen Schnittstelle bereit.

Die FTDI Basic 1 Platine hat auf der einen Seite eine USB-B-Buchse und auf der anderen Seite eine 6-polige Steckerleiste mit den Signalen GND, CTS, 5V, TXD, RXD und DTR. Außer dem FT232RL Chip sind nur wenige weitere Bauteile auf der Platine zu finden. Zwei LED's für Tx und Rx sind jedenfalls auch vorhanden.

Wie auch bei den beiden anderen Platinen werden die Geräte unter Linux Mint 17.1 einwandfrei erkannt.

```
Bus 002 Device 095: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port
Bus 002 Device 076: ID 0403:6001 Future Technology Devices International, Ltd FT232 Serial
```

So zeigen sich die Geräte mit dem Kommando lsusb. Mit dem Kommando "dmesg | tail -20" sieht man dann unmittelbar nach dem Einstecken die Meldungen:

```
usb 2-4.5: new full-speed USB device number 95 using ohci-pci usb 2-4.5: New USB device found, idVendor=067b, idProduct=2303 usb 2-4.5: New USB device strings: Mfr=1, Product=2, SerialNumber=0 usb 2-4.5: Product: USB-Serial Controller usb 2-4.5: Manufacturer: Prolific Technology Inc. pl2303 2-4.5:1.0: pl2303 converter detected usb 2-4.5: pl2303 converter now attached to ttyUSB1
```

beziehungsweise

```
usb 2-4.3: new full-speed USB device number 96 using ohci-pci usb 2-4.3: New USB device found, idVendor=0403, idProduct=6001 usb 2-4.3: New USB device strings: Mfr=1, Product=2, SerialNumber=3 usb 2-4.3: Product: FT232R USB UART usb 2-4.3: Manufacturer: FTDI usb 2-4.3: SerialNumber: A50285BI ftdi_sio 2-4.3:1.0: FTDI USB Serial Device converter detected usb 2-4.3: Detected FT232RL usb 2-4.3: Number of endpoints 2 usb 2-4.3: Endpoint 1 MaxPacketSize 64 usb 2-4.3: Endpoint 2 MaxPacketSize 64 usb 2-4.3: Setting MaxPacketSize 64 usb 2-4.3: FTDI USB Serial Device converter now attached to ttyUSBO usb 2-4.3: FTDI USB Serial Device converter now attached to ttyUSBO
```

In der Tabelle 4.3 wird die Baudrate für den FT232R Kontroller auch unter 300 Baud eingestellt, obwohl der Chip das nicht kann. Aber das stty Kommando akzeptiert diese Einstellungen ohne eine Fehlermeldung. Natürlich ist die resultierende Baudrate für diese Einstellungen falsch.

PL2303	PL2303	PL2303	FT232R	FT232R	FT232R	AVR
supported	stty	measured	supported	stty	measured	UBBR
BaudRate	speed	BaudRate	BaudRate	speed	BaudRate	@16MHz
75	75	75.18	(75)	75	415	
(110)	110	109.9	(110)	110	278	
(134)	134	135.1	(134)	134	502	
150	150	149.8	(150)	150	832	
300	300	300.7	300	300	300.72	
600	600	602.4	600	600	602.4	3332
(900)	Error	-	900	Error	-	2221
1200	1200	1204.8	1200	1200	1212	832
1800	1800	1801.6	1800	1800	1809.6	555
2400	2400	2409.6	2400	2400	2424	416
3600	Error	-	3600	Error	-	277
4800	4800	4808	4800	4800	4831	207
7200	Error	-	7200	Error	-	138
9600	9600	9616	9600	9600	9664	207
14400	Error	-	14400	Error	-	138
19200	19200	19232	19200	19200	19320	103

Tabelle 4.3. geprüfte Baudraten des PL-2303 und FT232R im unteren Baud-Bereich

In der Tabelle 4.4 wird die Baudrate für den FT232R Konverter richtig gesetzt, wenn das stty Kommando keinen Fehler meldet. Ich kenne den Grund nicht, warum einige Baudraten für den FT232R Chip nicht vom stty Kommando akzeptiert werden. Nur die Baudrate 576000 könnte vom Chip besser eingestellt werden, als hier gemessen.

PL2303	PL2303	PL2303	FT232R	FT232R	FT232R	AVR
supported	stty	measured	supported	stty	measured	UBBR
BaudRate	speed	BaudRate	BaudRate	speed	BaudRate	@16MHz
28800	Error	-	28800	Error	-	68
(33600)	Error	-	33600	Error	-	59
38400	38400	38.464k	38400	38400	38.6k	51
(51200)	Error	-	51200	Error	-	38, 0.16%
(56000)	Error	-	56000	Error	-	35, -0.79%
57600	57600	57.8k	57600	57600	57.8k	34, -0.79%
(64000)	Error	-	64000	Error	-	30, 0.80%
(76800)	Error	-	76800	Error	-	25, 0.16%
115200	115200	115.6k	115200	115200	115.6k	16, 2.12%
(128000)	Error	-	128000	Error	-	15, -2.34%
(153600)	Error	-	153600	Error	-	12, 0.16%
230400	230400	231.2k	230400	230400	231.2k	8, -3.54%
(250000)	Error	-	250000	Error	-	7, 0.00%
(256000)	Error	-	256000	Error	-	7, -2.34%
460800	460800	460.8k	460800	460800	465.1k	-, >5%
(500000)	500000	500.0k	500000	500000	500.0k	3, 0.00%
(576000)	Error	-	576000	576000	588.24k	-, >5%
921600	921600	925.6k	921600	921600	930.4k	-, >5%
(1000000)	1000000	1000k	1000000	1000000	1005k	1, 0.00%
(1200000)	Error	-	1200000	Error	-	-, >5%
(1500000)	Error	1482k	1500000	1500000	1509k	-, >5%
(2000000)	2000000	2010k	2000000	2000000	2020k	0, 0.00%
(3000000)	3000000	3007k	3000000	3000000	3007k	-, >5%

Tabelle 4.4. geprüfte Baudraten des PL-2303 und FT232R im oberen Baud-Bereich

4.3 Der USB-serial Wandler mit der ATmega16X2 Software

Auf manchen Arduino UNO Platinen wird ein ATmega16X2 als USB-seriell Wandler benutzt. Deswegen möchte ich die Untersuchungen der einstellbaren Baudraten auch für diese Lösung durchführen. In der ersten Tabelle 4.5 für den unteren Baudraten-Bereich fällt nur negativ auf, daß die Baudraten unter 600 Baud von stty ohne Fehlermeldung akzeptiert werden. Ab 600 Baud aufwärts werden die Einstellungen ohne Fehlermeldung brauchbar eingehalten.

Mega16X2	Mega16X2	Mega16X2	AVR
supported	stty	measured	UBBR
BaudRate	speed	BaudRate	@16MHz
75	75	956	
110	110	1120	
134	134	757.6	
150	150	1914	
300	300	778	
600	600	599	3332
900	Error	-	2221
1200	1200	1198	832
1800	1800	1802	555
2400	2400	2395	416
3600	Error	-	277
4800	4800	4808	207
7200	Error	-	138
9600	9600	9616	207
14400	Error	-	138
19200	19200	19232	103

Tabelle 4.5. geprüfte Baudraten des ATmega16X2 im unteren Baud-Bereich

Bei der Tablelle 4.6 für den oberen Baudbereich kann man erkennen, daß auch nicht alle Zahlenwerte ohne Fehlermeldung richtig eingestellt werden. Wünschenswert wäre natürlich eine bessere Rückmeldung von stty, welche Baudraten für das angewählte Interface eingestellt werden können.

Mega16X2	Mega16X2	Mega16X2	AVR
supported	stty	measured	UBBR
BaudRate	speed	BaudRate	@16MHz
28800	Error		68
		-	
33600	Error	-	59
38400	38400	38.312k	51
51200	Error	-	38, 0.16%
56000	Error	-	35, -0.79%
57600	57600	58.82k	34, -0.79%
64000	Error	-	30, 0.80%
76800	Error	-	25, 0.16%
115200	115200	116.9k	16, 2.12%
128000	Error	-	15, -2.34%
153600	Error	-	12, 0.16%
230400	230400	221.0k	8, -3.54%
250000	Error	-	7, 0.00%
256000	Error	-	7, -2.34%
(460800)	460800	500.0k	-, >5%
500000	500000	500.0k	3, 0.00%
(576000)	576000	667k	-, >5%
(921600)	921600	995.0k	-, >5%
(1000000)	1000000	1000k	1, 0.00%
(1200000)	Error	-	-, >5%
(1500000)	Error	2000k	-, >5%
2000000	2000000	2000k	0, 0.00%
(3000000)	3000000	2000k	-, >5%

Tabelle 4.6. geprüfte Baudraten des ATmega16X2 im oberen Baud-Bereich

Literaturverzeichnis

- [1] Atmel Corporation 8-bit AVR with 8KBytes In-System Programmable Flash ATmega8(L),. Manual, 2486AA-AVR-02/13, 2013
- [2] Atmel Corporation 8-bit AVR with 8KBytes In-System Programmable Flash ATmega8515(L),. Manual, 2512K-AVR-01/10, 2010
- [3] Atmel Corporation 8-bit AVR with 8KBytes In-System Programmable Flash ATmega8535(L),. Manual, 2502K-AVR-10/06, 2006
- [4] Atmel Corporation 8-bit AVR with 16KBytes In-System Programmable Flash ATmega16A,. Manual, 8154C-AVR-07/14, 2014
- [5] Atmel Corporation 8-bit AVR with 32KBytes In-System Programmable Flash ATmega32(L),. Manual, doc2503-AVR-07/11, 2011
- [6] Atmel Corporation 8-bit AVR with 16KBytes In-System Programmable Flash ATmega163, ATmega163L, Manual, 1142E-AVR-02/03, 2003
- [7] Atmel Corporation 8-bit AVR with 4/8/16/32KBytes In-System Programmable Flash ATmega48 ATmega328, Manual, 8271J-AVR-11/15, 2015
- [8] Atmel Corporation 8-bit AVR with 64KBytes In-System Programmable Flash ATmega64, AT-mega64L, Manual, 2490R-AVR-02/2013, 2013
- [9] Atmel Corporation 8-bit AVR with 16/32/64/128KBytes In-System Programmable Flash AT-mega164 ATmega1284,. Manual, 8272G-AVR-01/15, 2015
- [10] Atmel Corporation 8-bit AVR with 16/32/64KBytes In-System Programmable Flash ATmega165A/PA ATmega6450A/P,. Manual, 8285F-AVR-ATmega-08/2014, 2013-2014
- [11] Atmel Corporation 8-bit AVR with 128KBytes In-System Programmable Flash ATmega128, ATmega128L, Manual, 2467X-AVR-ATmega-06/11, 2011
- [12] Atmel Corporation 8-bit AVR with 2/4KBytes In-System Programmable Flash ATtiny2313A-ATtiny4313, Manual, 8246B-AVR-09/11, 2011
- [13] Atmel Corporation 8-bit AVR with 2/4/8KBytes In-System Programmable Flash ATtiny24-ATtiny44-ATtiny84,. Manual, doc8006-AVR-10/10, 2010
- [14] Atmel Corporation 8-bit AVR with 4/8KBytes In-System Programmable Flash ATtiny441-ATtiny841,. Manual, 8495H-AVR-05/14, 2014
- [15] Atmel Corporation 8-bit AVR with 2/4/8KBytes In-System Programmable Flash ATtiny25-ATtiny45-ATtiny85,. Manual, 2586N-AVR-04/11, 2011

- [16] Atmel Corporation 8-bit AVR with 2/4/8KBytes In-System Programmable Flash ATtiny261A-ATtiny461A-ATtiny861A, Manual, 8197C-AVR-05/11, 2011
- [17] Atmel Corporation 8-bit AVR with 4/8KBytes In-System Programmable Flash ATtiny48-ATtiny88, Manual, 8008H-AVR-04/11, 2011
- [18] Atmel Corporation 8-bit AVR with 16KBytes In-System Programmable Flash ATtiny1634, ... Manual, Atmel-8303H-AVR-ATtiny1634-Datasheet_02/2014, 2014
- [19] Atmel Corporation 8-bit AVR with 32/64/128KBytes of ISP Flash and CAN Controller AT90CAN32-AT90CAN64-AT90CAN128, Manual, 7682C-AUTO-04/08, 2008
- [20] Atmel Corporation 8-bit AVR with 8KBytes of In-System Programmable Flash AT90PWM2B-AT90PWM3B ,. Manual, 4317K-AVR-03/2013, 2013
- [21] Atmel Corporation STK500 Communication Protocol, Application Note, AVR061-04/03, 2003
- [22] Atmel Corporation Calibration of the internal RC oscillator ,. Application Note, AVR053-12/03, 2003
- [23] Atmel Corporation $Half\ Duplex\ Compact\ Software\ UART$,. Application Note, 0952C-AVR-0905, 2005
- [24] http://en.wikibooks.org/wiki/LaTeX LaTeX documentation,. Guide to the LaTeX markup language, 2012
- [25] http://www.xfig.org/userman Xfig documentation,. Documentation of the interactive drawing tool xfig, 2009
- [26] http://www.cs.ou.edu/~fagg/classes/general/atmel/avrdude.pdf AVRDUDE Userguide,. A program for download/uploading AVR microcontroller flash and eeprom, by Brian S. Dean 2006
- [27] http://www.mikrocontroller.net/articles/AVRDUDE Online Dokumentation des avrdude programmer interface, Online Article, 2004-2011
- [28] http://wch.cn USB to serial chip CH340, English DataSheet
- [29] http://www.silabs.com CP2102N Data Sheet, USBXpress Family, 2016
- [30] http://www.silabs.com CP210x Baud Rate Support, AN205 Rev 0.4, 2007
- [31] http://www.ftdichip.com/FTProducts.htm FT232R USB UART IC Datasheet, Version 2.13, 2015
- [32] http://www.ftdichip.com Configuring FT232R, FT2232 and FT232B Baud Rates, AN232B-05, 2004-2006
- [33] http://www.prolific.com.tw *PL-2303 Edition USB to Serial Bridge Controller*, Product Datasheet, Rev. 1.6, April26, 2006