

fake rate measurements using 2017 & 2018 re-reco

Sherif Elgammal¹

1- CTP, British University in Egypt

HEEP + DiMuon Meeting 16/09/2019

2017 Dataset files

```
/SingleMuon/Run2017B-17Nov2017-v1/MINIAOD
/SingleMuon/Run2017C-17Nov2017-v1/MINIAOD
/SingleMuon/Run2017D-17Nov2017-v1/MINIAOD
/SingleMuon/Run2017E-17Nov2017-v1/MINIAOD
/SingleMuon/Run2017F-17Nov2017-v1/MINIAOD
```

- Using the Muon Physics JSON file
 Cert_294927-306462_13TeV_PromptReco_Collisions17_JSON_MuonPhys.txt
- With recorded lumi: 41.9/fb (approved certified lumi)
- Triggers used for the main analysis:

```
HLT_Mu50_V*
```

2018 Dataset files

```
/SingleMuon/Run2018A-17Sep2018-v2/MINIAOD
/SingleMuon/Run2018B-17Sep2018-v1/MINIAOD
/SingleMuon/Run2018C-17Sep2018-v1/MINIAOD
/SingleMuon/Run2018D-22Jan2019-v2/MINIAOD
```

- Using the Muon Physics JSON file
 Cert_314472-325175_13TeV_17SeptEarlyReReco2018ABC_PromptEraD_Collisions18_JSON_MuonPhys.txt
- With recorded lumi: 61.3/fb
- Triggers used for the main analysis:

```
HLT_Mu50_V*
```

Other MC samples "CMSSW94X"

All MCs are done with RunII Fall17 MiniAOD-94X

/WjetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v2/MINIAODSIM

/WW_TuneCP5_13TeV-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/WZ_TuneCP5_13TeV-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/ZZ_TuneCP5_13TeV-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

/DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/RunIIFall17MiniAOD-RECOSIMstep_94X_mc2017_realistic_v10_ext1-v1/MINIAODSIM

QCD MC samples "CMSSW94X"

/QCD_Pt_30to50_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_50to80_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_50to80_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_80to120_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_120to170_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_170to300_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_300to470_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_600to800_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_800to1000_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v2/MINIAODSIM
/QCD_Pt_1000to1400_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_1400to1800_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_1800to2400_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_2400to3200_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_2400to3200_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM
/QCD_Pt_3200toInf_TuneCP5_13TeV_pythia8/RunIIFall17MiniAOD-94X_mc2017_realistic_v10-v1/MINIAODSIM

Fake Rate definition

FR = Nb. Of muon objects pass the high pt muon selection & hlt trigger
Nb. Of muon objects pass the FR pre-selection

variable	cut value	
is GlobalMu and is TrackerMu	true	
$ d_z $	< 1.0	
$ d_{xy} $	< 0.2	FR pre-selection
Nb. of Tracker Layers with Measurement	> 5	
Nb. of Valid Pixel Hits	> 0	

Table 5: The selection requirements to define the control region for the fake rate calculation.

Same method which has been used for 2015, 2016, 2017 AN

Num & Den distributions (Barrel)

- Variable bin width is used
- Good agreement is seen between Data and MCs within 20% (systematic error).

Num & Den distributions (Endcaps)

- Variable bin width is used
- Good agreement is seen between Data and MCs within 20% (systematic error).

2017 and 2018 combined fake rate estimate

Jets estimate using FR a'la HEEP (see HEEP AN p.30)

- The fake rate is measured with respect to muon candidates passing both the fake rate pre-selection (see b.s.16) and either the HLT_Mu50_V*
- The fake rate is therefore the number of misidentified jets in this sample which then go on to pass the High pt muon selection (see b.s.19).

2FR estimate:

- The di-jet component can be estimated by selecting muon pairs where both muons pass the FR pre-selection but fail the high pt muon selection, selected using the primary analysis trigger.
- These events are weighted by $FR1/(1 FR 1) \times FR2/(1 FR2)$

1FR estimate:

- The jet background is estimated by selecting muon pairs passing the primary analysis trigger with one muon passing the high pt muon selection and one muon passing the FR pre-selection but failing the high pt muon selection.
- The events are then weighted by FR/(1 FR)
- There is a residual contamination of the Z/γ^* ---> $\mu^+ \mu^-$ events which is corrected for by directly subtracting off the MC estimate.
- The 1FR estimate includes the background from **W** +**jets**, **γ**+**jets** and **di**-**jets** but due to combinatorial effects, the 1FR estimate overestimates the di-jet contribution by a factor 2.
- 2FR is then subtracted off the 1FR estimate to estimate the total jet background without any double counting.

Slide 10

Num dist in the Barrel with 2017 & 2018 Data

Den dist in the Barrel with 2017 & 2018 Data

Num dist in the Endcaps with 2017 & 2018 Data

Den dist in the Endcaps with 2017 & 2018 Data

Jets estimate using FR a'la HEEP (see HEEP AN p.30)

High pt muon ID 2017

- [1] Muon must be reco as global muon
- [2] pt(TuneP) > 35.0 GeV
- [3] $\delta pt(TuneP)/pt(TuneP) < 0.3$
- [4] |dxy| < 0.2
- [5] Nb. of Valid Muon Hits [from Global Track] > 0
- [6] Nb. of Valid Pixel Hits [from Global Track] > 0
- [7] Nb. of Tracker Layers With Meas. [from Global Track] > 5
- [8] Relative track iso. < 0.10
- [9] Nb. of Matched Stations > 1

New Proposed Cut*:

```
if (firstMuon->numberOfMatchedStations()>1 \parallel (firstMuon->numberOfMatchedStations()==1 \&\& !(firstMuon->stationMask()==1 \parallel firstMuon->stationMask()==16)) \parallel ((firstMuon->numberOfMatchedStations()==1 && (firstMuon->stationMask()==1 \parallel firstMuon->stationMask()==16)) && firstMuon->numberOfMatchedRPCLayers()>2) )\\
```