EXERCISE 1.1

- 1. (C) 2. (D) 3. (C) 4
 - **3.** (C) **4.** (B) **5.**

(A)

6. (B) **7.** (C) **8.** (A) **9.** (D) **10.** (D)

EXERCISE 1.2

- 1. No, because an integer can be written in the form 4q, 4q+1, 4q+2, 4q+3.
- 2. True, because n(n+1) will always be even, as one out of n or (n+1) must be even.
- **3.** True, because n(n+1)(n+2) will always be divisible by 6, as at least one of the factors will be divisible by 2 and at least one of the factors will be divisible by 3.
- **4.** No. Since any positive integer can be written as 3q, 3q+1, 3q+2,

therefore, square will be $9q^2 = 3m$, $9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1 = 3m + 1$, $9q^2 + 12q + 3 + 1 = 3m + 1$.

- **5.** No. $(3q+1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) = 3m + 1$.
- **6.** HCF = 75, as HCF is the highest common factor.
- 7. $3 \times 5 \times 7 + 7 = 7 (3 \times 5 + 1) = 7 (16)$, which has more than two factors.
- **8.** No, because HCF (18) does not divide LCM (380).

9. Terminating decimal expansion, because $\frac{987}{10500} = \frac{47}{500}$ and 500 5³ 2²

$$\left[\frac{987}{10500} - \frac{329}{3500} - \frac{329}{2^2.5^3.7} - \frac{47}{2^25^3} - .094.\right]$$

10. Since 327.7081 is a terminating decimal number, so q must be of the form $2^m.5^n$; m, n are natural numbers.

EXERCISE 1.3

13. 2³.5⁴, 0.0514 **8.** 63 **9.** 625 **12.** 2520 cm

EXERCISE 2.1

(C) 5. **6.** (A) **10.**

11. (D)

EXERCISE 2.2

1. (i) No (ii) $0, ax^2 + bx + c$ (iii) deg p(x) < deg g(x)

(iv) $\deg g(x) \leq \deg p(x)$ (v) No

2.(i) False (iii) True (iv) True (ii)False

(vi) False (vii) False

EXERCISE 2.3

1. 1, $-\frac{1}{4}$ **2.** $\frac{2}{3}$, -2 **3.** -1, $\frac{-7}{5}$ **4.** 0, -3, 5 **5.** $\frac{-3}{2}$, $\frac{-1}{4}$

6. $\frac{\sqrt{2}}{4}, \frac{-3\sqrt{2}}{2}$ 7. $\frac{1}{2}, \sqrt{2}$ 8. $\sqrt{3}, -5\sqrt{3}$ 9. $-2\sqrt{5}, \frac{\sqrt{5}}{2}$ 10. $\frac{2}{3}, -\frac{1}{7}$

EXERCISE 2.4

(ii) $\frac{5}{2}$, $\frac{1}{8}$ (iii) $-3\sqrt{3}$, $\sqrt{3}$ (iv) $\frac{\sqrt{5}}{5}$, $\frac{-\sqrt{5}}{2}$

2. a = -1 and b = 3 or a = 5, b = -3. Zeroes are -1, 2, 5

3.
$$\frac{-\sqrt{2}}{2}$$
, $\frac{-2\sqrt{2}}{3}$

4.
$$k = -3$$

Zeroes of $2x^4 + x^3 - 14x^2 + 5x + 6$ are 1, -3, 2, $-\frac{1}{2}$

Zeroes of $x^2 + 2x - 3$ are 1, -3

5.
$$\sqrt{5}$$
, $\sqrt{5}$ $\sqrt{2}$, $\sqrt{5}$ – $\sqrt{2}$ **6.** $a = -1$, $b = -2$

1 and 2 are the zeroes of q(x) which are not the zeroes of p(x).

EXERCISE 3.1

(D) (D) 2. (D) (D)

6. (C) 7. (C) 8. (D) 10. (D) 11. (C) **12.** (D) 13. (C)

EXERCISE 3.2

1. (i) Yes (ii) No (iii) No

2. (i) No (ii) Yes (iii) No

3. (i) No (iii) Yes (iv) No (ii) Yes

5. False **4.** No **6.** Not true

EXERCISE 3.3

(ii) $\lambda = 1$ **1.** (i) $\lambda = -1$ (iii) All real values of λ except ± 1 .

2. k = -63. a = 3, b = 1

All real values of p except 10. (ii) p = 1

(iii) All real values of p except $\frac{9}{10}$. (iv) All real values of p except – 4.

(v) p = 4, q = 8

5. Do not cross each other.

6. x - y = -4

2x + 3y = 7; infinitely many pairs.

7. 31,
$$\frac{-5}{7}$$

8.
$$x = 1, y = 4$$

9. (i)
$$x = 1.2$$
, $y = 2.1$ (ii) $x = 6$, $y = 8$

(ii)
$$x = 6, y = 8$$

(iii)
$$x = 3, y = 2$$

(iv)
$$x = \frac{1}{6}$$
, $y = \frac{1}{4}$ (v) $x = 1$, $y = -1$ (vi) $x = a^2$, $y = b^2$

(v)
$$x = 1, y = -1$$

(vi)
$$x = a^2, y = b^2$$

(vii)
$$x = \frac{1}{2}, y = \frac{-3}{2}$$

10.
$$x = 340, y = -165;$$
 $-\frac{1}{2}$

- **11.** (i) consistent; x = -1, y = -1
- (ii) inconsistent
- (iii) consistent. The solution is given by y = 3-x, where x can take any value, i.e., there are infinitely many solutions.
- **12.** (2,0), (0,4), (0,-4); 8 sq. units. **13.** x = y; Infinitely many lines.
- **14.** a = 5, b = 2.

- **15.** 55°, 85°.
- **16.** Salim's age = 38 years, Daughter's age = 14 years.
- **17.** 40 years.
- **18.** 40, 48.
- 19. 100 students in hall A, 80 students in hall B.
- **20.** Rs 10, Rs 3. **21.** 100.
- **22.** x = 20, y = 30, $A = 130^{\circ}$, $B = 100^{\circ}$, $C = 50^{\circ}$,

EXERCISE 3.4

- 1. x = 1, y = 4; 4:1
- **2.** (0, 0), (4, 4), (6, 2)
- **3.** 8 sq. units
- **4.** 4x + 4y = 100, 3x = y + 15, where Rs x and Rs y are the costs of a pen and a pencil box respectively; Rs 10, Rs 15 **5.** (1, 0), (2, 3), (4, 2) **6.** 10 km/h, 40 km/h
- 7. 2.5 km/h
- $10 \, \text{km/h}, 4 \, \text{km/h}$ 8.
- **9.** 83

- 10. Rs 2500, Rs 30
- 11. Rs 600, Rs 400
- **12.** Rs 12000 in scheme A, Rs 10000 in scheme B
- **13.** 500

EXERCISE 4.1

1. (D) **2.** (C) **3.** (C) **4.** (A) **5.** (B)

6. (D) **7.** (B) **8.** (C) **9.** (B) **10.** (A)

11. (C)

EXERCISE 4.2

1. (i) No, because discriminant = -7 < 0.

- (ii) Yes, because discriminant = 9 > 0.
- (iii) No, because discriminant = 0.
- (iv) Yes, because discriminant = 4 > 0.
- (v) No, because discriminant = -64 < 0.
- (vi) Yes, because discriminant = $(2 2\sqrt{2})^2 0$
- (vii) Yes, because discriminant = 1 > 0.
- (viii) No, because discriminant = -7 < 0.
- (ix) Yes, because discriminant = 1 > 0.
- (x) Yes, because discriminant = 8 > 0.
- **2.** (i) False, for example : $x^2 = 1$ is a quadratic equation with two roots.
 - (ii) False, for example $x^2 + 1 = 0$ has no real root.
 - (iii) False, for example : $x^2+1=0$ is a quadratic equation which has no real roots.
 - (iv) True, because every quadratic polynomial has almost two zeroes.
 - (v) True, because if in $ax^2+bx+c=0$, a and c have opposite signs, then ac<0 and so $b^2-4ac>0$.
 - (vi) True, because if in $ax^2+bx+c=0$, a and c have same sign and b=0, then $b^2-4ac=-4ac<0$.
- 3. $x^2-3x+1=0$ is an equation with integral coefficients but its roots are not integers.
- **4.** $x^2 6x + 7 = 0$, which has roots 3 $\sqrt{2}$, $3 \sqrt{2}$
- **5.** Yes. $\sqrt{3}x^2 7\sqrt{3}x$ 12 $\sqrt{3}$ 0, which has roots 3, 4
- **6.** No. **7.** Yes

EXERCISE 4.3

1. (i) $\frac{5}{2}$, -1 (ii) -1, $-\frac{8}{5}$ (iii) $-\frac{4}{3}$, 3

(iv) 5, 2

(v) $-3\sqrt{2}$, $\sqrt{2}$ (vi) $\sqrt{5}$, $2\sqrt{5}$ (vii) $\sqrt{11}$ 3, $\sqrt{11}$ -3

2. (i) $-\frac{3}{2}, \frac{2}{3}$ (ii) $-\frac{1}{2}, 3$ (iii) $\sqrt{2}, -\frac{\sqrt{2}}{6}$

(iv) $\frac{\sqrt{5}}{3}$, $-2\sqrt{5}$ (v) $\frac{1}{21}$, $\frac{1}{21}$

EXERCISE 4.4

- 1. (i) Real roots exist; roots are $\frac{1}{2}$, $\frac{-3}{4}$
 - (ii) Real roots exist; roots are 2, $-\frac{1}{2}$
 - (iii) Real roots exist; roots are $\frac{1}{5}$ $\frac{\sqrt{51}}{5}$, $\frac{1}{5}$ $\frac{\sqrt{51}}{5}$
 - (iv) Real roots exist; roots are $4 + \frac{3\sqrt{2}}{2}$, $4 \frac{3\sqrt{2}}{2}$
 - (v) Real roots exist; roots are $-7\sqrt{5}$, $2\sqrt{5}$
- 2. The natural number is 12
- 3. The natural number is 8
- Original speed of the train is 45 km/h
- 5. Zeba's age now is 14 years
- Nisha's age is 5 years and Asha's age is 27 years
- 7. Length of the pond is 34 m and breadth is 24 m
- **8.** 14

EXERCISE 5.1

1. (D) **2.** (B) **3.** (B) **4.** (B) **5.** (C)

6. (B) **7.** (B) **8.** (B) **9.** (C) **10.** (A)

11. (C) **12.** (D) **13.** (B) **14.** (C) **15.** (A)

16. (A) **17.** (C) **18.** (A)

EXERCISE 5.2

- 1. (i), (iv) and (vii) form an AP as in each of these $a_{k-1} a_k$ is the same for different values of k.
- **2.** False, as $a_4 a_3$ $a_3 a_2$.
- 3. Yes, $a_{30} a_{20} = 30 20 \ d = 10d 40$.
- **4.** The difference between any two corresponding terms of such APs is the same as the difference between their first terms.
- 5. No.
- 6. No, as the total fare (in Rs) after each km is 15, 23, 31, 39, ---
- 7. (i), (ii) and (iii) form an AP as in the list of numbers formed every succeeding term is obtained by adding a fixed number.
- **8.** (i) Yes (ii) No (iii) No

EXERCISE 5.3

- 1. $(A_1) \to (B_4)$
 - $(A_2) \rightarrow (B_5)$
 - $(A_3) \rightarrow (B_1)$
 - $(A_4) \rightarrow (B_2)$
- 2. (i) $1, \frac{5}{4}, \frac{3}{2}$ (ii) $\frac{11}{3}, \frac{10}{3}, 3$ (iii) $4\sqrt{3}, 5\sqrt{3}, 6\sqrt{3}$
 - (iv) (a+2) + (b+1), (a+2) + (b+2), (a+3) + (b+2)
 - (v) 5a 4, 6a 5, 7a 6

3. (i)
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{6}$

(ii)
$$-5, -8, -1$$

3. (i)
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{6}$ (ii) -5 , -8 , -11 (iii) $\sqrt{2}$, $\frac{3}{\sqrt{2}}$, $\frac{4}{\sqrt{2}}$

4.
$$a = -1, b = 15, c = 31$$
 5. 3, 7, 11, 15, --- **6.** $d = -\frac{1}{5}, n = 27$

126 **10.** Yes,
$$17^{th}$$
 term. **11.** $k = 0$

3 **20.**
$$n = 6, d = 10$$

21. (i) –9400 (ii)
$$\frac{7n-1}{2}$$
 (iii) $\frac{1111a-6b}{a}$

24. 5, 13, 21, --- **25.**
$$k = 27$$

32.
$$n = 5, 11$$

EXERCISE 5.4

1. 970

(i) 12250 (ii) 12750

(iii)75250

3. 3 3, 7, 11, 15, --- **5.**

(ii) 13167

6. 1:3; 5:49

8.

9. Rs 3900; Rs 44500

(i) 1683

10. 728 m; 26 m.

EXERCISE 6.1

- **1.** (C)
- **2.** (B) **7.** (B)
- **3.** (C)
- **4.** (A)
- **5.** (D)

- **6.** (B) **11.** (A)
- **12.** (C)
- **8.** (A)
- **9.** (B)
- **10.** (C)

Ρ.

EXERCISE 6.2

- 1. No, 25² 5² 24²
- 2. No, D = R but F
- 3. Yes, because $\frac{PA}{QA} = \frac{PB}{BR}$
- 4. Yes, SAS criterion.

- **5.** No, $\triangle QPR \sim \triangle STM$
- **6.** No, Corresponding sides must also be proportional.
- **7.** Yes, as the corresponding two sides and the perimeters are equal, their third sides will also be equal.
- 8. Yes, AAA criterion.
- 9. No, ratio will be $\frac{9}{25}$.
- **10.** No, For this, $\angle P$ should be 90°.
- 11. Yes, AA criterion.
- 12. No, angles should be included angles between the two pairs of proportional sides.

EXERCISE 6.3

- **2.** x = 2
- **4.** 9:1
- 6. $4\sqrt{3}$ cm
- 7. 18 cm

- **8.** 1:3
- **9.** 60 cm
- **10.** 108 cm²
- **12.** 12 cm

- 13. $\frac{55}{3}$ cm
- **14.** 10 m
- **15.** 8 m

EXERCISE 6.4

- 1. 5 cm, 2 cm
- **2.** BC = 6.25 cm, EF = 16.8 cm. **5.** 0.8 m
- **6.** 8 km
- **7.** 20.4 m

8. 9 m

- 9. $2\sqrt{5}$ cm, 6 cm
- 10. $2\sqrt{5}$ cm, 5 cm, $3\sqrt{5}$ cm
- **14.** 8 cm, 12 cm, 16 cm

EXERCISE 7.1

- **1.** (B)
- **2.** (B)
- **3.** (C)
- **4.** (B)
- **5.** (C)

- **6.** (B)
- 7. (C)
- **8.** (B)
- **9.** (D)
- **10.** (A)

- **11.** (B)
- **12.** (D)
- **13.** (B)
- **14.** (A)
- **15.** (A)

- **16.** (D)
- **17.** (D)
- 18. (B)
- **19.** (B)
- **20.** (C)

- EXERCISE 7.2
- 2. True. The three points lie on the line x = -4.
- 3. False, since two points lie on the y axis and one point lies in quadrant I.

1. True. Because all three sides of both triangles are proportional.

- **4.** False. $PA = \sqrt{2}$ and $PB = \sqrt{10}$, i.e., PA PB.
- 5. True, since ar $(\triangle ABC) = 0$.

- **6.** False, since the diagonals donot bisect each other.
- 7. True, radius of the circle = 5 and OP > 5
- 8. False, since AP AQ
- 9. True, since P divides AB in the ratio 1:2
- **10.** True, since B divides AC in the ratio 2:7
- 11. False, since $PC = \sqrt{26}$ 6, P will lie inside the circle.
- **12.** True, Mid-points of both the diagonals are the same and the diagonals are of equal length.

EXERCISE 7.3

- 1. Scalene triangle
- **2.** (9, 0), (5, 0), 2 points
- 3. Rectangle
- **4.** a = -3
- 5. (-3, 5) the middle point of AB. Infinite number of points. In fact all points which are solutions of the equation 2x+y+1=0.
- **6.** $\frac{-1}{2}$,0, isosceles triangle

- 7. $\frac{19}{14}$
- 8. $y = -3, -5, PQ = \sqrt{290}, 13\sqrt{2}$
- **9.** 0

- **10.** 6:7, $\frac{-34}{13}$,0
- **11.** 1::
- **12.** a = 1 b = -3

- **13.** k = 22, $AB = 2\sqrt{61}$
- 14. a = 5, 3
- **15.** 19

- **16.** 11
- 17. a = 2, Area = 6 sq. unit
- 18. $\frac{4}{5}$, $\frac{21}{5}$
- 19. $2,\frac{1}{2}$
- **20.** 8:1, $\frac{8}{3}$, $\frac{-1}{9}$

EXERCISE 7.4

1. 0, $3-4\sqrt{3}$ 2. $\frac{3}{4}$ sq. units.

- 3. (i) $\frac{x_2 x_3}{2}, \frac{y_2 y_3}{2}$
- (ii) $\frac{x_1 \quad x_2 \quad x_3}{3}$, $\frac{y_1 \quad y_2 \quad y_3}{3}$

(iii) same as (ii)

(iv) same as (ii)

4. $a = -3, h \frac{12\sqrt{26}}{13}$

- **5.** Yes, Jaspal should be placed at the point (7, 5)
- **6.** House to Bank = 5 km

Bank to school = 10 km

School to Office = 12 km

Total distance travelled = 27 km

Distance from house to office = 24.6 km

Extra distance = 2.4 km

EXERCISE 8.1

- **1.** (B) **2.** (A) **3.** (B) **4.** (C) **5.** (B)
- **6.** (B) **7.** (C) **8.** (A) **9.** (A) **10.** (D)
- 11. (B) 12. (C) 13. (C) 14. (B) 15. (A)

EXERCISE 8.2

- 1. True 2. False 3. False $[\sin 80^{\circ} \sin 10^{\circ} = \text{positive} : \text{as } \theta \text{ increases, value of } \sin \theta \text{ increases}]$
- 4. True 5. True 6. False 7. False 8. False
- **9.** False **10.** False **11.** False **12.** True

EXERCISE 8.3

8. 30° **9.** $\frac{-1}{2}$ **10.** $\frac{15}{2}$ m **11**. 1 **12.** 90° **14.** 45°

EXERCISE 8.4

3. $10 \sqrt{3} \ 1 \text{ m}$ 7. $25\sqrt{3} \text{ m}$ 13. $10\sqrt{3} \text{ m}$; 10 m 14. $h (\cot \alpha - \cot \beta)$

16. $5(\sqrt{3}+3)$ m **18.** 8 m

EXERCISE 9.1

1. (B) **2.** (D) **3.** (C) **4.** (A) **5.** (D)

6. (C) **7.** (A) **8.** (A) **9.** (D) **10.** (B)

EXERCISE 9.2

1. False 2. False 3. True 4. True 5. True

6. False **7.** True **8.** False **9.** True **10.** True

EXERCISE 9.3

1. 3 cm

EXERCISE 9.4

3. 20 cm 5. 4.8 cm 7. 30° 11. $\frac{20}{3}$ cm

12. 70° 13. $8\sqrt{2}$ cm² 14. 24 cm

EXERCISE 10.1

1. (D) **2.** (B) **3.** (A) **4.** (C) **5.** (B)

6. (D)

EXERCISE 10.2

1. True 2. False 3. False 4. True

EXERCISE 10.3

2. Yes **7.** No

EXERCISE 10.4

1. 3.25 cm **2.** Yes, yes **3.** 4 cm **6.** 8 cm

EXERCISE 11.1

- **1.** (B) **2.** (A) **3.** (B) **4.** (A) **5.** (B)
- **6.** (A) **7.** (D) **8.** (B) **9.** (C) **10.** (D)

EXERCISE 11.2

- 1. No, radius of the circle is $\frac{a}{2}$
- 2. Yes, side of the square is 2a cm
- 3. No, side of the outer square = diagonal of the inner square
- 4. No, it is only true for minor segment.
- 5. No, it is πd .
- **6.** Yes, distance covered in one revolution = $2\pi r$
- 7. No, it will depend on the value of radius.
- **8.** Yes, it will be true for the arcs of the same circle.
- **9.** No, it will be true for the arcs of the same circle.
- 10. No, it will be true for arcs of the same circle.
- 11. Yes, radius of the circle breadth of the rectangle.
- 12. Yes, their radii are equal
- 13. Yes, their radii are equal
- **14.** No, diagonal of the square is p cm.

EXERCISE 11.3

1. 33 cm 2. $(16\pi - 32)$ cm² 3. 308 cm²

4. 500. **5.** 154 m^2 **6.** $(380 + 25\pi)\text{cm}^2$

7. 54.5 cm^2 8. $(32 + 2\pi) \text{m}^2$ 9. $(248 - 4\pi) \text{m}^2$

10.
$$\frac{308}{3}$$
 - 49 $\sqrt{3}$ cm² **11.** 30.96 cm² **12.** 39.25 cm²

13. 308 cm² **14.** 15246 m² **15.** 1386 cm² **16.**
$$\frac{60}{\pi}$$
 cm

EXERCISE 11.4

1. Rs 26400 **2.** 560 **3.**
$$24\sqrt{21} - 77 \text{ m}^2$$

4.
$$75.36 - 36\sqrt{3}$$
 cm² **5.** Rs 3061.50 **6.** 196 cm²

7.
$$1.967 \text{ cm}^2(\text{approx})$$
 8. 8.7 cm^2 9. 42 cm^2

14.
$$45\frac{5}{6}$$
 cm² 15. $73\frac{1}{3}$ cm, Areas: $\frac{154}{3}$ cm², 154 cm²; Arc lengths: $\frac{44}{3}$ cm;

Arc lengths of two sectors of two different circles may be equal, but their area need not be equal.

17.
$$180-8\pi$$
 cm² 18. 40 19. $\frac{25\pi}{4} + \frac{25}{2}$ cm² 20. 462 cm²

EXERCISE 12.1

1.	(A)	2. (A)	3.	(B)	4.	(B)	5.	(C)
6.	(D)	7. (A)	8.	(A)	9.	(B)	10.	(A)
11.	(B)	12. (C)	13.	(A)	14.	(A)	15.	(A)
16	(B)	17 (C)	18	(A)	10	(Δ)	20	(\mathbf{D})

EXERCISE 12.2

False
 False
 False
 False
 False
 True
 False
 True

EXERCISE 12.3

1. 6 cm **2.** 84 **3.** 15 cm **4.** 7:1 **5.** 160 cm² **6.** 277 cm³ **7.** 855 cm² (approx.)

8. 14 cm, 7 cm; 132 cm³, 66 cm³; 396 cm³ **9.** 327.4 cm³

10. 150 **11.** 1500 12. 2541 **13.** 12960 **14.** 450

EXERCISE 12.4

- 1. 28.44 cm **2.** 8.6 m **3.** 3960 cm³, 29.7 kg 4. 480000 words
- 51 minutes 12 sec 74.25m³,80.61 m² 6. **7.** Rs 2250
- **11.** 487.6 cm³ 8. 2 hours **9.** 112 m **10.** 0.5 cm
- 12. Rs 230.12 13.36 cm, 43.27 cm 14. 301.44 cm², 377.1 cm³
- 15. 4 m **16.** 54 **17.** 1.584 m³ 19.2.5 cm 20. 170.8 cm³ 18. 90 cm

EXERCISE 13.1

- 2. (B) **4.** (C) 5. **1.** (C) (A) (B) (C) **6.** (B) 7. (B) **9.** (C) 10. (C)13. (D) **11.** (A) **12.** (D) (A) 15. 20. **16.** (B) 17. (C) (A) (A)(A)
- **21.** (D) 22. (B) (C) 25. (C)
- **26.** (B)

EXERCISE 13.2

- 1. Not always, because for calculating median of a grouped data, the formula used is based on the assumption that the observations in the classes are uniformly distributed (or equally spaced).
- 2. Not necessary, the mean of the data does not depend on the choice of a (assumed mean).
- 3. No, it is not always the case. The values of these three measures can be the same. It depends on the type of data.
- 4. Not always. It depends on the data.
- 5. No, the outcomes are not equally likely. For example, outcome 'one girl' means gbb, bgb, bbg 'three girls' means ggg and so on.
- **6.** No, the outcomes are not equally likely. The outcome '3' is more likely than the others.
- 7. Peehu; probability of Apoorv's getting $\frac{1}{36}$ while probability of Peehu's getting
 - $\frac{1}{6} \frac{6}{36}$.

- **8.** Yes, the probability of each outcome is $\frac{1}{2}$, since the two outcomes are equally likely.
- 9. No, outcomes '1' and 'not 1' are not equally likely, $P(1) = \frac{1}{6}$, $P(\text{not 1}) = \frac{5}{6}$,
- **10.** No, the outcomes are not equally likely. Outcome 'no head' means 'TTT'; outcome 'one head' means THT, HTT, TTH and so on. $P(TTT) = \frac{1}{8}$, $P(\text{one head}) = \frac{3}{8}$ and so on.
- 11. No, the outcomes 'head' and 'tail' are equally likely every time regardless of what you get in a few tosses.
- 12. It could be a tail or head as both the outcomes are equally likely, in each toss.
- **13.** No, head and tail are equally likely. So, no question of expecting a tail to have a higher chance in the 4th toss.
- **14.** Yes, the outcomes 'odd number', 'even number' are equally likely in the situation considered.

EXERCISE 13.3

- **1.** 5.5
- 2.35
- **3.** 12.93
- 4 26
- **5.** Rs. 356.5

- **6.** 109. 92
- **7.** 123.4 kg
- **8.** 14.48 km/*l*; No, the manufacturer is claiming mileage 1.52 km/h more than the average mileage

9.

Weight (in kg)	Number of persons
Less then 45 Less then 50 Less then 55 Less then 60 Less then 65 Less then 70 Less then 75 Less then 80	4 8 21 26 32 37 39 40

10.

Marks	Number of students
0-10	10
10-20	40
20-30	80
30-40	140
40-50	170
50-60	130
60-70	100
70-80	70
80-90	40
90-100	20

11.

Marks	Number of candidates
0-10	2
10-20	2
20-30	3
30-40	4
40-50	6
50-60	6
60-70	5
70-80	2
80-90	4

12.
$$a = 12$$
, $b = 13$, $c = 35$, $d = 8$, $e = 5$, $f = 50$

13.	(i) Less than	ı type	(ii) More than type		
	Ages (in years) Number of students		Ages (in years)	Number of students	
	Less than 10	0	More than or equal to 10	300	
	Less than 20	60	More than or equal to 20	240	
	Less than 30	102	More than or equal to 30	198	
	Less than 40	157	More than or equal to 40	143	
	Less than 50	227	More than or equal to 50	73	
	Less than 60	280	More than or equal to 60	60	
	Less than 70	300			

14.

Marks	Number of students
0-20	17
20-40	5
40-60	7
60-80	8
80-100	13

- **15.** Rs 1263.15
- **16.** 109.17 km/h **17.** Rs 11875

- **18.** 201.7 kg
- **19.** (i) $\frac{1}{6}$ (ii) $\frac{5}{6}$ **20.** (i) $\frac{1}{6}$ (ii) $\frac{5}{12}$ (iii) 0
- **21.** (i) $\frac{1}{9}$ (ii) $\frac{1}{9}$ (iii) 0

- 23. $P(2) = \frac{1}{18}$, $P(3) = \frac{1}{9}$, $P(4) = \frac{1}{6}$, $P(5) = \frac{1}{6}$, $P(6) = \frac{1}{6}$, $P(7) = \frac{1}{6}$, $P(8) = \frac{1}{9}$ $P(9) = \frac{1}{18}$
- **24.** $\frac{3}{4}$ **25.** (i) $\frac{1}{8}$ (ii) $\frac{1}{2}$ **26.** $\frac{2}{9}$
- **27.** (i) $\frac{5}{11}$ (ii) $\frac{7}{22}$ (iii) $\frac{17}{22}$

(ii) $\frac{3}{49}$

29. (i) $\frac{10}{49}$ (ii) $\frac{1}{49}$

30. (i) $\frac{1}{10}$

(ii) $\frac{3}{10}$

(iii) $\frac{3}{5}$

31. (i) $\frac{14}{99}$

(ii) $\frac{85}{99}$

32. (i) $\frac{1}{2}$

33.

34. 0.69

36. P (not defective) = $\frac{3}{4}$, P (2nd bulb defective) = $\frac{5}{23}$

37. (i) $\frac{4}{9}$

38. (i) $\frac{1}{8}$

39. (i) 5 scores (0, 1, 2, 6, 7, 12)

(ii) $\frac{1}{3}$

42. (i) 0.009

[Hint: (ii) After first player has won the prize the number of perfect squares greater than 500 will be reduced by 1]

202 EXEMPLAR PROBLEMS

EXERCISE 13.4

1. 51.75

2. 48.41

3. 31 years

4. 201.96 g

7. Median salary = Rs 13420, Modal salary = Rs 12730

8. $f_1 = 28, f_2 = 24$ **9.** p = 5, q = 7

11. Median = 17.81 hectares, Mode = 17.76 hectares

12. Median rainfall = 21.25 cm

13. average = 170.3 sec.

14. (i)	Distance (in m)	No. of students	Cummulative frequency
	0-20	6	6
	20-40	11	17
	40-60	17	34
	60-80	12	46
	80-100	4	50

(iii) 49.41 m.