PROJET: THERMODYNAMIQUE DES MACHINES THERMIQUES

Contexte

- Transition énergétique : une des solution est la décarbonation par le biais d'électrification
- Production d'électricité décarbonée : énergies renouvelables (éolienne, solaire)
 - ✓ Problème : énergies intermittentes
 - ✓ Solution : vecteurs énergétiques permettant le stockage de surplus d'électricité
- Vecteur énergétique : le dihydrogène produit par le biais de l'électrolyse de l'eau (le procédé produit le dioxygène également).
- Electricité décarbonée : combustion H₂ et O₂

Installation

Thermochimie

Calcul analytique de la température adiabatique de flamme :

- Calculer la température et la composition des gaz brûlés générés suite à une combustion isobare adiabatique d'un mélange stœchiométrique H₂ / O₂
 - ✓ La température et la pression initiales sont égales à 300 K et 0.1 MPa, respectivement.

Calcul CANTERA:

- Calculer la température de la flamme aux mêmes conditions avec le logiciel CANTERA
- Donner l'évolution de T_{ad} en fonction de la pression $P \in [0.1 \text{ MPa}, 10^4 \text{ MPa}]$

Thermochimie

Etude de l'influence de la température et la pression d'équilibre sur les propriétés du mélange

- Tracer l'évolution de l'enthalpie des gaz brûlés en fonction de la température (300 K <T< 4000 K) pour quatre valeurs de pression P = 0.1, 1, 10, 10⁴ MPa.
- Déduire :
 - ✓ la chaleur libérée par la réaction considérée.
 - ✓ la contribution énergétique de la dissociation en fonction de la température pour P = 0.1 MPa.
 - ✓ la température adiabatique de flamme en fonction de la pression.
- Tracer l'évolution de la fraction molaire des espèces OH et H₂O en fonction : (i) de la pression à la T=3400 K et (ii) de la température à la pression 0.1 MPa.

Influence de la richesse, la température et la pression initiales sur la température de la flamme

• Etudier l'influence de la richesse $0.1 \le \phi \le 10$ sur la température de flamme dans le cas d'une combustion isobare adiabatique à $T_0 = 300$ et 500 K pour $P_0 = 0.1$ et 10 MPa.

Machine thermique

La dernière étude s'intéresse à l'installation présentée précédemment, le but étant de :

- caractériser les produits de combustion à la sortie de la turbine,
- faire évoluer l'installation pour une meilleur efficacité,
- déterminer le (les) rendement(s) de l'installation.

Données:

- Température des gaz brûlés d'entrée de turbine 773 K
- Pression de la chambre de combustion 6 MPa
- Rendements : $\eta_{turbine} = 0.85$; $\eta_{alternateur} = 0.98$

Importation de librairies

```
import numpy as np
import cantera as ct
import matplotlib
import matplotlib.pyplot as plt
import csv

# - numpy: pour le calcul scientifique (ici pour le calcul matriciel)
# - matplotlib: pour le tracé des graphiques
# - cantera: pour le calcul thermodynamique
# - csv: pour l'export des données au format lisible par excel
```

Création d'un objet gaz

```
gas=ct.Solution('gri30.xml')
gas()
```

gri30:

temperature 300 K
pressure 1.0133e+05 Pa
density 0.081894 kg/m^3
mean mol. weight 2.016 kg/kmol
phase of matter gas

	1 kg	1 kmol	
enthalpy internal energy entropy Gibbs function heat capacity c_p	26469 -1.2108e+06 64910 -1.9447e+07 14311		J J J/K J J/K
heat capacity c_v	10187	20536	J/K
	mass frac. Y	mole frac. X	chem. pot. / RT
H2 [+52 minor]	1 0	1 0	-15.717

Sélection d'un nombre réduit d'espèces

```
ich4 = gas.species_index('CH4')
io2 = gas.species_index('02')
ico = gas.species_index('CO')
ih2o=gas.species_index('H2O')
ico2=gas.species_index('CO2')
ih2=gas.species_index('H2')
ioh=gas.species_index('OH')
io=gas.species_index('0')
ih=gas.species_index('H')
spec = ct.Species.listFromFile('gri30.xml')
gas = ct.Solution(thermo='IdealGas', species=[spec[i] for i in (ich4,io2,ico,ih2o,ico2,ih2,ioh,io,ih)])
gas()
                                                    mass frac. Y mole frac. X
                                                                                    chem. pot. / RT
                                              CH4
                                                                                        -1.0247e+07
                                        +8 minorl
```

Création du mélange stoechiométrique CH4 / O2

```
T=300.
P=101325
combustible = 'CH4'
Zst= gas.n_atoms(combustible,'C') + 0.25*gas.n_atoms(combustible,'H')
gas.TPX = T, P, 'CH4:1, O2:\{0\}'.format(Zst)
                                                                 temperature
                                                                   pressure
                                                                    density 1.292 kg/m^3
gas()
                                                              mean mol. weight 26.68 kg/kmol
                                                              phase of matter
```

	1 kg	1 kmol	
enthalpy internal energy entropy Gibbs function heat capacity c_p heat capacity c_v	-6.7736e+05 -8.3319e+05 8087.4 -4.7211e+06 1357.6 1046	-1.8072e+07 -2.2229e+07 2.1577e+05 -1.2596e+08 36220 27906	J J J/K J J/K J/K
	mass frac. Y	mole frac. X	chem. pot. / RT
CH4 02 [+7 minor]	0.20044 0.79956 0	0.33333 0.66667 0	-41.297 -24.799

500 K 2.0133e+05 Pa

Calcul de la température de flamme et la composition des gaz brûlés

temperature 3159.9 K pressure 2.0133e+05 Pa 0.16466 kg/m³ density gas.equilibrate('HP') mean mol. weight 21.489 kg/kmol phase of matter gas gas() 1 kmol 1 kg enthalpy -6.7736e+05 -1.4556e+07 -4.0828e+07 internal energy -1.9e+06J 13198 2.836e+05 J/K entropy Gibbs function -4.2381e+07 -9.1071e+08 J heat capacity c p 46752 J/K 2175.7 38438 heat capacity c v 1788.8 J/K mass frac. Y mole frac. X chem. pot. / RT CH4 2.0441e-13 2.7379e-13 -64.5260.12361 0.083009 -32.29402 C0 0.20523 0.15745 -34.724H20 0.32879 0.39219 -39.121C02 0.22739 0.11103 -50.8710.07213 H2 0.006767 -22.975OH 0.076978 0.097262 -27.634

> 0 H

0.028985

0.0022518

0.03893

0.048003

-16.147

-11.487

Enthalpie en fonction de la température et de la pression

```
gas1=ct.Solution('gri30.xml')
T=np.linspace(300,4000,200)
P=np.array([le5,le7],'d')
h=np.zeros([P.size,T.size])
Zst= gas.n atoms(combustible,'H')+ 0.25*gas.n atoms(combustible,'H')
for i in range (P.size):
  for j in range (T.size):
     gas1.TPX = T[j], P[i], 'CH4:1, O2:{0}'.format(Zst)
     gasl.equilibrate('TP')
     h[i,j]=gasl.h
plt.plot(T, h[0,:],label='$p_0=latm$')
plt.plot(T, h[1,:],label='$p_0=100atm$')
plt.legend(bbox_to_anchor=(0, 1), loc=2, borderaxespad=1.)
plt.ylabel('Enthalpie')
plt.xlabel('T')
plt.show()
```

