DM 5 : Transferts thermiques Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	
Bonus	exercice supplémentaire	0.5	

N°	Elts de rép.
00-00	titre
0	
01-02	Simple et double vitrage
1	Régime stationnaire + pas de sources thermiques dans la vitre, donc il existe
	R_{th} résistance thermique telle que $R_{th} = \frac{T_1 - T_2}{\Phi_{1 \to 2}}$. On est dans le cas 1D cartésien
	donc $R_{th} = \frac{e}{\lambda S} = 7,3.10^{-3} \text{ K.W}^{-1}$. Pour un simple vitrage $\Phi = \frac{T_i - T_e}{R_{th}} = 2,1$ kW
2	Résistances en série, justifiées par régime stationnaire + pas de termes sources.
	$R_{th} = 2\frac{e}{\lambda S} + \frac{e_{air}}{\lambda_{air}S} = 1,13 \text{ K.W}^{-1}$. Le flux thermique est $\Phi = \frac{T_i - T_e}{R_{th}} = 13 \text{ W.}$
	Pour calculer les différentes températures on peut utiliser le pont diviseur de
	tension.
03-03	Cuisson d'un œuf
03-03	Cuisson d'un œuf durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la
	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la
	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$
3	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$ or $L \propto M^{1/3}$ donc $\tau \propto M^{2/3}$ donc $\tau_{autruche} = \tau_{poule} \left(\frac{M_{autruche}}{M_{poule}}\right)^{2/3} = 26$ min
3 04-04	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$ or $L \propto M^{1/3}$ donc $\tau \propto M^{2/3}$ donc $\tau_{autruche} = \tau_{poule} \left(\frac{M_{autruche}}{M_{poule}}\right)^{2/3} = 26$ min Fonte d'un glaçon durée de fonte, c'est la durée qu'il faut pour que le glaçon reçoivent un transfert thermique égal à sa chaleur latente de fusion, donc $ML_{fus} = \Phi \tau$. Or la
3 04-04	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$ or $L \propto M^{1/3}$ donc $\tau \propto M^{2/3}$ donc $\tau_{autruche} = \tau_{poule} \left(\frac{M_{autruche}}{M_{poule}}\right)^{2/3} = 26$ min Fonte d'un glaçon durée de fonte, c'est la durée qu'il faut pour que le glaçon reçoivent un transfert thermique égal à sa chaleur latente de fusion, donc $ML_{fus} = \Phi \tau$. Or la température de fusion du glaçon et la température de l'eau sont constante +
3 04-04	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$ or $L \propto M^{1/3}$ donc $\tau \propto M^{2/3}$ donc $\tau_{autruche} = \tau_{poule} \left(\frac{M_{autruche}}{M_{poule}}\right)^{2/3} = 26$ min Fonte d'un glaçon durée de fonte, c'est la durée qu'il faut pour que le glaçon reçoivent un transfert thermique égal à sa chaleur latente de fusion, donc $ML_{fus} = \Phi \tau$. Or la température de fusion du glaçon et la température de l'eau sont constante + processus convectif (solide/fluide) donc $\Phi = h(T_{fus} - T_{eau})S$ donc $M \propto L^3$ et
3 04-04	durée de cuisson, c'est la durée qu'il faut pour que le centre de l'oeuf atteigne la température de cuisson. Le coefficient de diffusion thermique D, donne $\tau = \frac{L^2}{D}$ or $L \propto M^{1/3}$ donc $\tau \propto M^{2/3}$ donc $\tau_{autruche} = \tau_{poule} \left(\frac{M_{autruche}}{M_{poule}}\right)^{2/3} = 26$ min Fonte d'un glaçon durée de fonte, c'est la durée qu'il faut pour que le glaçon reçoivent un transfert thermique égal à sa chaleur latente de fusion, donc $ML_{fus} = \Phi \tau$. Or la température de fusion du glaçon et la température de l'eau sont constante +

05-07	Ailette de refroidissement
5	situation d'une équadiff de la chaleur en régime stationnaire avec flux extérieur
	due à la convection $\phi_{ext} = h(T(x) - T_e) \frac{dS}{dV} = h(T(x) - T_e) \frac{2\pi a dx}{\pi a^2 dx} = \frac{2h}{a} (T(x) - T_e)$
	donc $\triangle T - \frac{2h}{\lambda a}T = -\frac{2h}{a}T_e$ donc en 1D ça donne $\delta^2 \frac{d^2T}{dx^2} - T = -T_e$. La solution
	est de la forme $T(x) = T_e + A \exp(\frac{x}{\delta}) + B \exp(-\frac{x}{\delta})$. Les conditions aux limites
	donnent, pour $x \to +\infty$ la température est définie donc il faut annuler le
	terme divergent $A = 0$, donc $T = T_e + B \exp(-\frac{x}{\delta})$ de plus en $x = 0$, on
	a contact entre deux solides donc $T(x=0) = T_0$ donc $B = T_0 - T_e$ donc
C	$T(x) = T_e(1 - \exp(-\frac{x}{\delta})) + T_0 \exp(-\frac{x}{\delta})$
6	On a toujours la même équation différentielle donc $T(x) = T_e + A \exp(\frac{x}{\delta}) + B \exp(\frac{x}{\delta})$ mais les conditions aux limites ent changé. En $x = 0$ on a toujours
	$B \exp(-\frac{x}{\delta})$, mais les conditions aux limites ont changé. En $x = 0$ on a toujours $T(0) = T_0$ donc $A + B = T_0 - T_e$, et en $x = L$ on a une interface air/solide donc
	$\begin{aligned} & f(0) = f_0 \text{ done } T + D = f_0 - f_e, \text{ et cir. } x = D \text{ on a disc interface any solide done} \\ & f_Q(L)\pi a^2 = h(T(L) - T_e)\pi a^2 \text{ done } \frac{dT}{dx}\big _{x=L} = -\frac{h}{\lambda}(T(L) - T_e) \text{ done calculation} \end{aligned}$
	$A = 5.9 \text{ K et } B = 24 \text{ K, donc } T(L) = 3,2.10^2 \text{ K}$
7	La tige permet d'augmenter la surface d'interface solide/air et donc d'augmen-
	ter le flux thermique sortant qui permet de refroidir le système. Il ne sert à rien
	d'avoir $\delta \ll L$ car au bout de quelques δ , $T(x) \simeq T_e$ donc $j_Q = h(T(x) - T_e)$ est
	négligeable. Le flux sortant n'augmente plus, il vaut mieux jouer sur le nombre
	d'ailettes et les dimensions a .
08-09	Effet de cave
8	Il n'y a pas de sources thermiques dans le sol, on n'est pas en régime sta-
	tionnaire (conditions aux limites dépendantes du temps), et on est dans le
	cas a une dimension cartésienne donc l'équation de la chaleur a considérer
	est $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$. On injecte la solution proposée (solution d'équation aux dé-
	rivées partielles à variables séparées) $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$ donc $j\omega f(x) \exp(j\omega t) =$
	$D \frac{\partial^2 f}{\partial x^2} \exp(j\omega t)$ donc en remarquant que $\frac{2}{\delta^2} = \frac{\omega}{D}$, on a $\frac{d^2 f}{dx^2} - \frac{2j}{\delta^2} f = 0$ donc
	avec $(2j)^{1/2} = 1 + j$ on a $f(x) = \underline{A} \exp(-(1+j)\frac{x}{\delta}) + \underline{B} \exp((1+j)\frac{x}{\delta})$, donc
	$T = T_0 + (\underline{A} \exp(-(1+j)\frac{x}{\delta}) + \underline{B} \exp((1+j)\frac{x}{\delta})) \exp(j\omega t).$ Les conditions aux
	limites sont pour $x \to +\infty$ la température est définie donc il faut annuler le
	terme divergent $\underline{B} = 0$, et pour $x = 0$, $\underline{T}(0) = T_0 + \underline{A} \exp(j\omega t) = T_0 + a \exp(j\omega t)$
	donc $\underline{A} = a$ donc $\underline{T}(0) = T_0 + a \exp(-(1+j)\frac{x}{\delta}) \exp(j\omega t)$ donc $T(x,t) = -(1+j)\frac{x}{\delta}$
	$T_0 + a \exp(-\frac{x}{\delta}) \cos(j(\omega t - \frac{x}{\delta}))$. C'est une équation d'onde amortie.

température moyenne de 3°C donc $T_0 = 3$ °C, variation de 15°C en surface donc a = 15°C, profondeur de 50 cm donc x = 50 cm, donc variations de température sont de $a \exp(-\frac{x}{\delta}) = 0,5$ °C autour de $T_0 = 3$ °C, car le cos varie de -1 à 1.