- 前期准备知识
- 一些参考文档
- 传感器启动
- 建图
 - 使用cartographer_3d 建图
 - 使用cartographer_3d 纯定位模式
 - 使用move_base 导航
- 一些参数调整

前期准备知识

- Ros 的使用, roslaunch, launch文件, rviz 订阅话题 可视化话题
- Cartographer_3d 原理
- EKF 原理 (融合轮速计和imu信息)
- urdf配置, cartographer_ros/cartographer_ros/urdf/my_3d.urdf 配置小车和imu、雷达的位姿关系, imu需要z轴朝下, 因为Cartographer_3d 需要这个信息来判断地面所在方向

一些参考文档

- Cartographer 3D实时建图教程(超详细) 镭神C16 + IMU (一) 知乎 (zhihu.com)
- (21条消息) cartographer 3D点云建图教程_cartography 建图_小肉包老师的博客-CSDN博客
- (21条消息) cartographer跑自己的数据+3d建图篇(Lidar+imu)_叫我李先生的博客-CSDN博客
- ROS学习笔记-机器人导航(仿真)2-路径规划move_base 知乎 (zhihu.com)
- dgt001m_can驱动包使用说明dgt00.docx (文档,使用前先运行yhs_can_control/start_car.sh) can盒灯全亮并在闪就是正常运行

传感器启动

- imu 参考(21条消息) 三驰惯导IMU传感器100D2的测试使用_杰尼君的博客-CSDN博客
- rslidar 参考(21条消息) Ubuntu18.04 安装速腾聚创最新驱动RSLidar_SDK采集 XYZIRT格式的激光点云数据 --SLAM不学无术小问题_rslidar驱动_^oprater^的博客-

CSDN博客

• 小车的启动参考docx文档

建图

使用cartographer_3d 建图

- 1. 录制bag (需要录制话题 imu、 yhs左右轮速信息(看docx文档的话题)、激光雷达的话题)
- 2. 回放bag
- 3. 运行 wheel odom/launch/start.launch 发布轮速计话题
- 4. 运行 robot_pose_ekf/launc/ekf.launch 发布融合了imu 轮速计信息的 odom话题
- 5. 运行 cartographer_ros/cartographer_ros/launch/my_3d.launch 注意需要设置use sim time 为true, 因为回放的bag和真实时间不一样,相当于在模拟
- 6. 停止建图,保存地图

rosservice call /finish_trajectory 0 //结束路径0 的建图 rosservice call /write_state "{filename: '\${HOME}/Downloads/mymap.pbstream'}" //保存地图

使用cartographer_3d 纯定位模式

- 1. 修改文件occupancy_node_main.cc 注释 171行
 //occupancy_grid_publisher_.publish(*msg_ptr);不然你纯定位过程建立的子图会覆盖在之前建好的地图上。 并重新编译 cartographer, 参考定位的CSDN博客
- 2. 启动各种传感器 imu 雷达 dgt车 轮速计
- 3. 运行 wheel_odom/launch/start.launch 发布轮速计话题
- 4. 运行 robot_pose_ekf/launc/ekf.launch 发布融合了imu 轮速计信息的 odom话题
- 5. 运行

cartographer_ros/cartographer_ros/launch/my_demo_backpack_3d_localiztion.launch 注意修改mapserver 和 pbstream指定对应的map

使用move base 导航

1. 运行 car_control/launch/start.launch 使得车辆可以被move_base 控制

一些参数调整

- 由于设计的参数比较多,所以很多参数的设置需要具体情况具体设置,例如话题的名称,可能需要在launch文件里面remap或者是读取
- 建图和定位的参数调整类似,都在lua文件里面,可以看launch文件里面指定的是哪一个lua文件

POSE_GRAPH.optimize_every_n_nodes = 20 // 这个数值越低后端优化的频率越高,但是效果不一定最好,数值越高优化频率就越低

POSE_GRAPH.constraint_builder.sampling_ratio =0.35

POSE_GRAPH.constraint_builder.min_score =0.42 // 和建图的效果相关,可以调整来判断不同的效果

POSE_GRAPH.constraint_builder.global_localization_min_score = 0.46

在纯定位时有一个比较关键的参数:

pose_publish_period_sec = 0.2, 降低pose发布的频率可以降低movebase路径的改变频率,导航的时候会更加平顺稳定

movebase里的costmap的参数,以及导航路径的更新发布频率可以参考知乎,局部路径规划需要稍短一点避障会更好,costmap的更新频率也需要稍微低一点,路径规划的更新频率也会降低(但不是越低越好,太低可能会直接装上障碍物),导航效果也就更好