

Model Performance And Fit - 1

One should look for what is and not what he thinks should be. (Albert Einstein)

Model Performance and Fit: Topic introduction

In this part of the course, we will cover the following concepts:

- Implement a custom neural network to demonstrate model fit with different learning rates, epochs and batch sizes
- Understand loss functions and math behind gradient descent
- Assess and discuss methods to improve the fit of a neural network

Warm up: Quick, Draw!

Can a neural network learn to recognize doodling?

Help teach it by adding your drawings to the <u>world's</u> <u>largest doodling data set</u>, shared publicly to help with machine learning research.

Let's Draw!

- Quick, Draw! is an online game that uses neural network intelligence to guess what the drawings represent
- Visit the website to play Quick, Draw!
- After completing, share how many of your doodles were correctly recognized

Module completion checklist

Objective	Complete
Summarize the role that batch size and epochs play in neural network training	
Implement a custom neural network to demonstrate model fit with different learning rates	

Epoch

- When the entire dataset is passed through a neural network, we consider one epoch of the training complete
 - Since the dataset can be too big to feed into the neural network, we divide it into several smaller batches
 - The number of batches needed to complete the epoch equals to the number of iterations per epoch the algorithm needs to make

Batch

- Batch size is a parameter we define while fitting the model
- It refers to the number of observations our model takes at a time to make predictions and update the weights in the following manner:
 - the algorithm iterates over one or more observations making predictions at the end of each batch
 - predictions are then compared and an error is calculated
 - this error term is then used to adjust the weights

								-		
۱ ۲	654	331	17	81	11	11	2	NO	NO	2
	670	131	17	71.5	6.5	9	2	NO	NO	3
Batch=1	1229	120	18	44	4	1	1	YES	NO	4
	1454	108	9	64	2.5	2	1	YES	NO	5
	1518	82	13	42.5	1	2.5	1	YES	NO	6
ا ا	1518	88	6	52	2	2	1	YES	NO	7
	1362	148	11	47.5	3	1	2	YES	NO	8
Batch=2	891	68	17	51	5	1	2	NO	NO	9
	768	54	25	46	8.5	2	1	NO	NO	10
	1280	41	15	50	6	2	1	YES	NO	11
ן ו	432	9	22	87	3	2.5	3	YES	NO	727
	1867	247	21	60	1	3	2	YES	NO	728
Batch=n	2451	644	9	60	1	3	2	YES	NO	729
	1182	159	6	75	2	3	2	NO	NO	730
	1432	364	24	51	1	4	1	NO	NO	731

Batch order

- Batches are selected randomly during each epoch, unless we specify otherwise
 - Most problems are agnostic to the order of observations in batches and the order of batches
 - Some models, like time series problems, do need to have observations appear in order and need batch options set accordingly

5	NO	YES	1	1.5	2	70	12	15	416	
10	NO	YES	1	2	6	50	15	41	1280	
22	NO	YES	1	3	4	40	27	64	1466	├─ Batch=1
26	NO	YES	3	11.5	11.5	94	7	69	1538	
31	NO	YES	1	2	5	42	22	75	1468	
33	NO	YES	2	10	8	93	19.5	81	1365	7
35	NO	YES	2	4	2	56	15	83	1844	
36	NO	YES	1	2.5	7	49	13	86	1330	Batch=2
37	NO	YES	2	6.3	6.7	85.6	21.12	87	1009	
40	NO	YES	1	2	8	42.5	24	89	2147	
703	NO	NO	1	23	23	58	19	2512	5883	7
713	NO	NO	1	19.5	19.5	49	9	2622	4807	
719	NO	NO	1	18	18	52	11	2795	4665	├─ Batch=n
720	NO	NO	1	20	20	49	13	2795	5325	
730	NO	NO	1	13.5	13.5	23.5	17	3252	3605	

Batch size implications

- Batch size plays a big role in the time it takes to train the model and how well the model is doing
- With a small batch size, expect:
 - a longer train time
 - higher accuracy (which may lead to model overfitting)
 - it easily fits in computer memory
- With a medium batch size, expect:
 - a balance between training time and accuracy
 - better generalization to new data
 - it fits in memory
- With a large batch size, expect:
 - a faster training time, especially if training is done in parallel
 - it may generalize to new data poorly
 - it could be too big to fit into memory

Batch size implications (cont'd)

- A single batch can:
 - consist of a single observation (batch_size = 1), known as stochastic gradient descent
 - be as large as your dataset (batch_size = num_observations), known as batch gradient descent
 - be any value between 1 and the total num_observations, known as mini-batch gradient descent
- The default value for a batch size in TensorFlow and many other neural network frameworks is 32

Batch size calculations

- num_observations / batch_size will provide the total number of resulting batches
- If the batch_size doesn't evenly divide into num_observations, the last batch will be smaller than the rest
 - If the model is sensitive to batches having the same outer dimension, set the drop_remainder argument to True to drop the smaller batch

Example: batch size, iterations, and epochs math

- Let's say you have a dataset with 1000 observations and you choose to set the batch size to 50 and the epochs to 200:
 - o num_observations = 1000
 - o batch_size = 50
 - \circ epochs = 200
- This means that the entire dataset will be split into 20 batches, each with 50 observations:
 - o num_batches = num_observations / batch_size = 20
- This also means that 1 epoch will involve 20 batches or 20 updates in the model
 - o iterations = num_batches = 20
- With 200 epochs, the model passes through the entire dataset 200 times, which means
 - o total_iterations = epochs*iterations = 4000

10

Module completion checklist

Objective	Complete
Summarize the role that batch size and epochs play in neural network training	
Implement a custom neural network	

Loading packages

Let's load the packages we will be using:

```
# Helper packages.
import os
import pickle
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
import seaborn as sns
# Scikit-learn packages.
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

```
# TensorFlow and supporting packages.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
```

Directory settings

- Let's start by encoding the directory structure into variables in order to maximize the efficiency of your workflow
- Let the data_dir be the variable corresponding to your data folder

```
from pathlib import Path
home_dir = Path(".").resolve()
main_dir = home_dir.parent.parent
print(main_dir)
```

```
data_dir = str(main_dir) + "/data"
print(data_dir)
```

Load the data

- The credit_card_data dataset contains information about credit card defaulters
- Our goal is to predict if the customer will default on a credit card payment

```
credit_card = pd.read_csv(str(data_dir) + "/credit_card_data.csv")
print(credit_card.head())
```

```
default_payment_next_month
  ID
      LIMIT_BAL
                SEX
                         PAY_AMT5
                                   PAY_AMT6
         20000
        120000
                                      2000
                    • • •
                                   5000
       90000
                            1000
       50000
                                    1000
                             1069
         50000
                             689
                                      679
[5 rows x 25 columns]
```

Data preparation

- We need to make sure our data is in a suitable form to run through a neural network, which is why we must:
 - check the data for NAs
 - transform the data to numeric values (if it's categorical, make sure the data is encoded)
 - split data into train, test, and validation
 - normalize data
 - examine the target variable imbalance

Remember that the order of operations matters!

- Ideally, all data transformations should happen after the data has been split
- In this instance, we will check for NAs and encode categorical variables before the split since this will not significantly affect the results and will keep our code more concise

Data prep: convenience function

 We wrote a time-saving function to perform all of the cleaning and split steps on the credit card dataset at once!

```
def data_prep(df):
    # Fill missing values with mean
    df = df.fillna(df.mean()['BILL_AMT1'])
    # Drop an unnecessary identifier column.
    df = df.drop('ID',axis = 1)

# Convert 'sex' into dummy variables.
    sex = pd.get_dummies(df['SEX'], prefix = 'sex', drop_first = True)
# Convert 'education' into dummy variables.
    education = pd.get_dummies(df['EDUCATION'], prefix = 'education', drop_first = True)
# Convert 'marriage' into dummy variables.
    marriage = pd.get_dummies(df['MARRIAGE'], prefix = 'marriage', drop_first = True)
# Drop `sex`, `education`, `marriage` from the data.
    df.drop(['SEX', 'EDUCATION', 'MARRIAGE'], axis = 1, inplace = True)

# Concatenate `sex`, `education`, `marriage` dummies to our dataset.
    df = pd.concat([df, sex, education, marriage], axis=1)
```

```
# Separate predictors from data.
X = df.drop(['default_payment_next_month'], axis=1)
# Separate target from data.
y = df['default_payment_next_month']
```

Data prep: convenience function (cont'd)

```
# Transforms features by scaling each feature to a given range.
# The default is the range between 0 and 1.
min_max_scaler = preprocessing.MinMaxScaler()
X_train_scaled = min_max_scaler.fit_transform(X_train)
X_test_scaled = min_max_scaler.transform(X_test)
X_val_scaled = min_max_scaler.transform(X_val)

return X_train_scaled, X_test_scaled, X_val_scaled, y_train, y_test, y_val
```

Data prep

X_train_scaled, X_test_scaled, X_val_scaled, y_train, y_test, y_val = data_prep(credit_card)

Train shape: (21000, 30) Test shape: (4500, 30) Val shape: (4500, 30)

Define and compile a sequential model

 Let's create a convenience function to define and compile the model with an input layer, two hidden layers, and an output layer

- We will create models with different numbers of learning rates to compare how those parameters affect loss and accuracy
- We will use the default batch_size 32 in this experiment

Default learning rate

• We have set the learning rate to default to 0.01 in the create_model() function, so we don't have to specify it explicitly

High learning rate

• Let's set the learning rate to a very high number like 0.75

Low learning rate

- Let's set the learning rate to a very low number like 0.0001
 - Let's also increase the number of epochs here to 50 since the learning rate is low

Visualize results for learning rates

 Let's create a dataframe with the loss and accuracy for training and validation data along with their corresponding epochs and learning rates

```
learn_rates = []
for exp, result in zip([lr_default, lr_low, lr_high], [".01", ".0001", ".75"]):
    df = pd.DataFrame.from_dict(exp.history)
    df['epoch'] = df.index.values
    df['Learning Rate'] = result
    learn_rates.append(df)

df_learning = pd.concat(learn_rates)
df_learning['Learning Rate'] = df_learning['Learning Rate'].astype('str')
```

Visualize results for learning rates (cont'd)

sns.lineplot(x='epoch', y='val_loss', hue='Learning Rate', data=df_learning)

24

Visualize results for learning rates (cont'd)

sns.lineplot(x='epoch', y='val_accuracy', hue='Learning Rate', data=df_learning)

 We obtain the best results when the learning rate is set to 0.01 and the model seems to clearly underfit when the learning rate is high

Model Performance And Fit - 1

DATASOCIETY: © 2024

Knowledge check

Module completion checklist

Objective	Complete
Summarize the role that batch size and epochs play in neural network training	
Implement a custom neural network to demonstrate model fit with different learning rates	

Congratulations on completing this module!

You are now ready to try tasks 1-7 in the Exercise for this topic

28