

793392_1.TXT

SEQUENCE LISTING

#5

<110>	GENOMINE INC. KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY									
<120>	Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide									
<130>	OP03-1029									
<150> <151>	KR 2002-38011 2002-07-02									
<160>	6									
<170>	KopatentIn 1.71									
<210><211><211><212><213>	1 1410 DNA Arabidopsis thaliana									
<400> atggcggat	1 cc attogtggga taaaactgtg gaagaagcag tgaatgtgct tgaatccagg	60								
caaattctt	cc gatetttgag geceatttge atgtetagge aaaaegaaga agaaatagtg	120								
aaaagcaga	ag ccaatggagg agacgggtac gaggtgttcg acggtttgtg tcaatgggat	180								
cggacttca	ag ttgaggtgtc tgtctcgatt cctacatttc agaaatggct tcacgatgaa	240								
cccagcaac	cg gagaagagat ttttagtgga gatgcattag ctgagtgtag aaaagggaga	300								
ttcaagaag	ge tgettttgtt etetgggaat gattatttgg gtttgagete acatectaca	360								
atatcaaac	cg ctgctgcaaa cgcagtcaaa gaatatggta tgggacctaa gggttctgct	420								
ttaatatgt	g gctataccac ttatcatcgt ttgcttgagt ctagtttggc gcaactgaag	480								
aaaaaagag	gg attgtcttgt ttgtcctact gggtttgctg ccaatatggc tgcaatggtt	540								
gcaattgga	aa gtgttgcttc tcttttggcc gctagcggga aacctctgaa gaatgaaaaa	600								
gttgccato	ct tttctgatgc gctgaatcat gcatcaatta ttgatggtgt ccgtcttgct	660								
gaacgacaa	ag gaaatgttga agtttttgtt tatcgacact gtgacatatc aaattgcaaa	720								
atgaagagg	ga aggtcgtggt gactgatagc ttatttagta tggacggtga ctttgcacca	780								
atggaagag	ge teteteaget teggaagaag tatggettee ttetagttat tgatgatget	840								
catggaaca	at ttgtctgtgg agaaaacggt ggtggcgtgg ctgaggaatt taactgtgaa	900								
gctgatgta	ag atttatgtgt gggcactttg agtaaggcag cagggtgt.ca tggcggtttc	960								
atagcttgc	ca gcaaaaaatg gaagcaactg atacagtcga gaggtcgttc attcatattt	1020								

793392 1.TXT

tcaacagcaa	tccctgtccc	aatggctgca	gctgcttatg	cagcagttgt	agtggcgagg	1080
aaggagatat	ggagaagaaa	ggcaatatgg	gagagggtaa	aagagttcaa	ggaattatct	1140
ggagttgaca	tctcaagccc	cattatctca	cttgttgtag	ggaatcaaga	gaaagccctc	1200
aaagcgagcc	ggtatctatt	aaaatcaggc	ttccatgtaa	tggcaatacg	accgcccaca	1260
gtgccaccca	attcttgcag	gctaagggtg	acactgagtg	cagcacatac	cacagaagat	1320
gtgaagaaac	tcatcactgc	gctttcttct	tgtttggact	ttgacaacac	agccactcac	1380
attccttcct	ttctatttcc	caaattataa				1410

<210>	2	
<211>	469	
<212>	PRT	
<213>	Arabidopsis	thalian
<400>	2	

Met Ala Asp His Ser Trp Asp Lys Thr Val Glu Glu Ala Val Asn Val 1 5 10 15

Leu Glu Ser Arg Gln Ile Leu Arg Ser Leu Arg Pro Ile Cys Met Ser 20 25 30

Arg Gln Asn Glu Glu Glu Ile Val Lys Ser Arg Ala Asn Gly Gly Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Tyr Glu Val Phe Asp Gly Leu Cys Gln Trp Asp Arg Thr Ser Val 50 55 60

Glu Val Ser Val Ser Ile Pro Thr Phe Gln Lys Trp Leu His Asp Glu 65 70 75 80

Pro Ser Asn Gly Glu Glu Ile Phe Ser Gly Asp Ala Leu Ala Glu Cys 85 90 95

Arg Lys Gly Arg Phe Lys Lys Leu Leu Phe Ser Gly Asn Asp Tyr 100 105 110

Leu Gly Leu Ser Ser His Pro Thr Ile Ser Asn Ala Ala Ala Asn Ala 115 120 125

Val Lys Glu Tyr Gly Met Gly Pro Lys Gly Ser Ala Leu Ile Cys Gly 130 135 140

Tyr Thr Thr Tyr His Arg Leu Leu Glu Ser Ser Leu Ala Gln Leu Lys 150 155 160

Lys Lys Glu Asp Cys Leu Val Cys Pro Thr Gly Phe Ala Ala Asn Met 165 170 175

Ala Ala Met Val Ala Ile Gly Ser Val Ala Ser Leu Leu Ala Ala Ser 180 185 190

Gly Lys Pro Leu Lys Asn Glu Lys Val Ala Ile Phe Ser Asp Ala Leu 195 200 205

Page 2

793392_1.TXT

Asn	His 210	Ala	Ser	Ile	Ile	Asp 215	Gly	Val	Arg	Leu	Ala 220	Glu	Arg	Gln	Gly
Asn 225	Val	Glu	Val	Phe	Val 230	Tyr	Arg	His	Cys	Asp 235	Ile	Ser	Asn	Cys	Lys 240
Met	Lys	Arg	Lys	Val 245	Val	Val	Thr	Asp	Ser 250	Leu	Phe	Ser	Met	Asp 255	Gly
Asp	Phe	Ala	Pro 260	Met	Glu	Glu	Leu	Ser 265	Gln	Leu	Arg	Lys	Lys 270	Tyr	Gly
Phe	Leu	Leu 275	Val	Ile	Asp	Asp	Ala 280	His	Gly	Thr	Phe	Val 285	Cys	Gly	Glu
Asn	Gly 290	Gly	Gly	Val	Ala	Glu 295	Glu	Phe	Asn	Cys [.]	Glu 300	Ala	Asp	Val	Asp
Leu 305	Cys	Val	Gly	Thr	Leu 310	Ser	Lys	Ala	Ala	Gly 315	Cys	His	Gly	Gly	Phe 320
Ile	Ala	Cys	Ser	Lys 325	Lys	Trp	Lys	Gln	Leu 330	Ile	Gln	Ser	Arg	Gly 335	Arg
Ser	Phe	Ile	Phe 340	Ser	Thr	Ala	Ile	Pro 345	Val	Pro	Met	Ala	Ala 350	Ala	Ala
Tyr	Ala	Ala 355	Val	Val	Val	Ala	Arg 360	Lys	Glu	Ile	Trp	Arg 365	Arg	Lys	Ala
Ile	Trp 370	Glu	Arg	Val	Lys	Glu 375	Phe	Lys	Glu	Leu	Ser 380	Gly	Val	Asp	Ile
Ser 385	Ser	Pro	Ile	Ile	Ser 390	Leu	Val	Val	Gly	Asn 395	Gln	Glu	Lys	Ala	Leu 400
Lys	Ala	Ser	Arg	Tyr 405	Leu	Leu	Lys	Ser	Gly 410	Phe	His	Val	Met	Ala 415	Ile
Arg	Pro	Pro	Thr 420	Val	Pro	Pro	Asn	Ser 425	Cys	Arg	Leu	Arg	Val 430	Thr	Leu
Ser	Ala	Ala 435	His	Thr	Thr	Glu	Asp 440	Val	Lys	Lys	Leu	Ile 445	Thr	Ala	Leu
Ser	Ser 450	Cys	Leu	Asp	Phe	Asp 455	Asn	Thr	Ala	Thr	His 460	Ile	Pro	Ser	Phe
Leu 465	Phe	Pro	Lys	Leu											
<210 <211 <212 <213	L> ?> }>	3 28 DNA Art		cial	Seqı	ience	e								

<223>	Forward primer for AtKAPAS	793392_1.TXT gene	
<400>	3		
ggcggatc	ct tcgcccaaat cacaattc		28
	-		
<210>	4		
<210>	4 32		
<212>	DNA		
<213>	Artificial Sequence		
(213)	merriciar bequence		
<220>			
<223>	Reverse primer for AtKAPAS	gene	
<400>	4		
	tt tcactgacaa tatcagaaac aa		32
ggcaagec	ce codecyddad tatodyddae dd		52
<210>	5		
<211>	26		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Forward primer for AtKAPAS	gene	
12201	torward primor for menumb	900	
	•		
<400>	5		
gcagatct	tc gcccaaatca caattc		26
<210>	6		
<211>	31		
<212>	DNA		
<213>	Artificial Sequence	•	
	•		
<220>			
<223>	Reverse primer for AtKAPAS	gene	
<400>	6		
rcagatet	tt cactgacaat atcagaaaca a		31