Aprendizagem Automática

João Paulo Pordeus Gomes

Método de Classificação

- Método de Classificação
 - Exemplo

- Método de Classificação
 - Exemplo

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

Modelo Linear

Função Logística

$$f(x) = \frac{1}{1 + e^{-x}}$$

Modelo Linear

$$\overline{y_i} = w_1 x_i + w_0 = \mathbf{w}^T \mathbf{x}_i$$

Função Logística

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\overline{y}_i = \frac{1}{1 + e^{-w^T x_i}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

0,10 centavos 0,50 centavos

Peso

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

Modelo

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

Ajuste dos parâmetros

Modelo

- Ajuste dos parâmetros
 - Gradiente descendente
 - Minimizar uma função de custo (função objetivo)

$$\square w = w - \alpha \frac{\partial J}{\partial w}$$

Primeira escolha

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \overline{y}_i)^2$$

Primeira escolha

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-\mathbf{w}^T x_i}})^2$$

Primeira escolha

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-\mathbf{w}^T x_i}})^2$$

Regra de aprendizado

$$w = w - \alpha \frac{\partial J}{\partial w}$$

Primeira escolha

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-\mathbf{w}^T x_i}})^2$$

Regra de aprendizado

$$w = w - \alpha \frac{\partial J}{\partial w}$$

- J não é uma função convexa
 - Mínimos Locais

Primeira escolha

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-\mathbf{w}^T x_i}})^2$$

Regra de aprendizado

- J não é uma função convexa
 - Mínimos Locais

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} C(w)$$

$$C(\mathbf{w}) = \begin{cases} -\ln(\overline{y_i}) \text{ se } y = 1\\ -\ln(1 - \overline{y_i}) \text{ se } y = 0 \end{cases}$$

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} C(w)$$

$$C(\mathbf{w}) = \begin{cases} -\ln(\overline{y_i}) \text{ se } y = 1\\ -\ln(1 - \overline{y_i}) \text{ se } y = 0 \end{cases}$$

- Nova Função de Custo
 - $J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) (1 y_i) \ln(1 \overline{y_i})$

Regra de Aprendizado

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i})$$

Regra

Regra de Aprendizado

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i})$$

Regra

$$w = w - \alpha \frac{\partial J}{\partial w}$$

Gradiente

Regra de Aprendizado

Função de custo

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i})$$

Regra

Gradiente

Dúvidas?