

Universidad Nacional de Ingeniería

Facultad de Ciencias

Ciclo: 2016-II

BC+CD=BD= (6,2)

[Cod: CM 141 Curso: Cálculo Vectorial I] [Tema:Proyecciones e Dependencia Lineal.]

Segunda Práctica Calificada Cálculo Vectorial I

1. Se tiene un trapecio isósceles ABCD, con $\overline{BC} \parallel \overline{AD}$ y \overline{BC} base menor. Sabiendo que $\overrightarrow{BC} = (1,3)$ y $\overrightarrow{CD} = (5,-1)$. Calcule el valor del área de dicho trapecio isósceles.

Nota: se debe utilizar los elementos vistos en clases.

2. Sea $u \in \mathbb{R}^2 \setminus \{0\}$, mostrar que:

- a) $u y u^{\perp}$ son linealmente independiente.
- b) Dado $w \in \mathbb{R}^2$ existen α y $\beta \in \mathbb{R}$ tal que $w = \alpha u + \beta u^{\perp}$.
- c) Concluya que u y u^{\perp} es una base de \mathbb{R}^2 .

3. Sea V un espacio vectorial, determine la verasidad o falsedad de las siguientes proposiciones, en cada caso justificar su respuesta: R= & X N+ Dut dirERI

 \bigvee a) Si $\{v_1, v_2, v_3\} \subset V$ es linealmente independiente, entonces $\{v_1, v_2\}$ es linealmente independiente.

- b) Si $\{v_1, v_2, v_3\} \subset V$ es linealmente independiente, entonces $\{v_1, v_2, v_3, v_4\}$ es linealmente independiente entonces $\{v_1, v_2, v_3, v_4\}$ es linealmente independiente entonces $\{v_1, v_2, v_3, v_4\}$ es linealmente entonces enton 0 - (1,00) + 801,01 +060,01) =0
 - c) Si $\{v_1, v_2, v_3\} \subset V$ es linealmente dependiente, entonces $\{v_1, v_2\}$ es linealmente dependiente.

a) Determine, si el móvil ubicado en el punto C interseca al segmento \overline{AB} .

1(1,0)+-11,0)+

b) Hallar el punto de intersección del móvil ubicado en el punto C con el segmento \overline{AB} si es que existe y el tiempo que demora en intersecar la recta.

A= || u|| , || proy v || = || ut < v, ut > = | < v, ut >

product