THERMODYNAMICS

→ Basic Terminologies: () System - part of universe under | thermodynamic investigation $e_g \rightarrow D = \underline{m}, [c] = \underline{n}$ Open - Can exchange both energy and matter. (coffee in open glass). Close → Can exchange only energy (coffee in close vessel). Isolated → Cannot exchange matter and energy. (Coffee in thermoflask) (2) Surrounding - Anything outside the system. 3 Universe = System + Swerounding by system. e.g. - Heat, Work. (4) Boundary - Separate system and Swowunding. Rigid - Immovable Non-Rigid - Movable Adiabatic - q=0 L> Diathernic → q ≠0 Properties of System Extensive Intensive Depend on amount system and surrounding Independent of substance in system, amount of substance and size of system. present my system and size of system Volume, Gibbs, Internal energy, moles, enthalpy, surface. Molar Volume, Density, Repractive inneversible Reversible -Index, Pressure, acea, mass, entropy, W=-Pext AV W=-SP.dy force, heat capacity. Temp., Swyace tension, B.P., freezing point, Vapour pressure Truck for Intensive Property E.→ Electrode potential m→ Melting point | Molar Heat Capacity V -> Vapour Pressure V → Viscocity T → Temperature. other. $A \rightleftharpoons B$, $B \rightleftharpoons C$ therefore $A \rightleftharpoons C$ D-> Density F- freezing point 5→Surface tension. 5→ Specific heat Capacity. c→Concentration Based on energy conservation principle Total energy of universe remains constant. B - Boiling point. P->pressure -> (1) = 9 + W (Internal = Heat + Given Work)

→ A → extensive · A = Intensive.

B → extensive · B State Function - Depend on initial and final state of system.

Do not depend on path followed by e.g. → Enthalpy, Internal energy, entropy, Gibbs Energy, Pressure, Temp, Volume Path Function - Depend on path followed Heat - Mode of energy transfer between system and surrounding. →Heat flowing into the system/Heat absorb by system= +q. Heat flowing out of the system Heat released by system = -9. Work-Mode of energy transfer between Non PV Work - Change in Volume is not essential Ce.g. - electric Work) P-V Work-Change in Volume is essential. Work done by System - Expansion (-ve) Work done on System - Compression (+Ve) Leroth Law Of Thermodynamics. Two thermodynamic system are in thermal equilibrium with third system then they are in thermal equilibrium with each First Law Of Thermodynamics

Isobaric (p=const)	W=-P(V2-V1) =-nR(T2-T1)	9=	ДН	TAVOM=UA	AH= ncpAT
Tsochoric (V=const.)	W=0	9=4	20	DU=ncvAT	ΔH=MCpΔT
Reversible Adiabatic. PV = K TY Y-1= K TP = K	$W = MC_{V}(T_{2}-T_{1})$ $= P_{2}V_{2}-P_{1}V_{1}$ $= Y-1$	9=	O Lange	∆u=nCvdt	ΔΗ=ηςρΔΤ
Inveversible Adiabatic	$W = \mathcal{N}C_{V}(T_{2}-T_{1})$ $= -P_{ext}\left(\frac{nRT_{2}}{P_{2}}-\frac{nRT_{1}}{P_{1}}\right)$	9=0	Substance of the second	Δυ=ης,ΔΤ	$\Delta H = \mathcal{N}_{C_p} \Delta T$
Cyclic	Area Under PV- Curve	9=		onstance outstance	of perfort or
Second States a All nature inverse in the puriverse in Extension Entropy Extension Ang > 0 Ang = 0 Unit of	expansion for ideal (Condition? T=0, W=0 Law Of Thermod bout direction of flow wal process in Universe process and spontance spontaneous process, en nexeasing continuosly We property and state Preversible Affecting Entropy AS>0 AS=0 Entropy JK-ma Order: Corder: P	ynamics of heat are ous. tropy of system. function	Calculation Ideal Go AS = MCV AS = MCV Entropy Isotherma Isotherma Isotherma Reversible adiaba Entropy O Fusion: Q Vapowiis	not entropy cho si is In Thi, + nRln th In Thi, + nRln th In Thi, + nRln th AS = nRl + nRl nCyln Thi Thange in pha H2O(s) = H2O(l)	ange for an V_{V_1} P_{V_2}

Entropy Change in Chemical Rx:1:--Que) If DOISYSHM = 0 SYSHM attained equilibrium. DS=ESproduct-ESreactant Que Enthalpy and Entropy change Criteria for Spontaneity:for reaction Br2(e) + Cl2(g) - 2Bra, are 30 KJ mol and 105 JK mol Temp at which xx. will be in DS system + DS surrounding >0 Que) At 27°C latent heat of jusion of a compound is 2930 J/mol. equilibrium. Sol. > DH = TAS Entropy Change: 2930 = 9.77 Jmol K! $\frac{\Delta H}{\Delta S} = T \rightarrow \frac{30\times10^3}{105} = 285.7$ hird Law Of Thermodynamics Que) Standard Enthalpy and Entropy changes for oxidation of ammonia at -> Determine absolute enteropy of substance. → At absolute temp (Zero Kelvin) entropy of perfectly crystaline substance is Zero 298 Kare - 382.64 Kt mol and -145.6 Jmol! Standard Gibbs enoug change, for same reaction at 2984. SOLT - DG = DH - TDS DG1=-382.64-298 X-145.6 ds = GpdT = -339.3 KImol. Sds=SCPdT Relationship between Standard Gibb's free energy and equilibrium ST-80 = Cpln ST = 2.303 Cp log T / 2.303 Cv log T Constant-ΔG= ΔGi+RTln Siatequilibrium
ΔG=-RTlnK [ΔG=0, Q=K Gibbs Free Energy: DG=-RTLAK=-2.303RTlogki G=H-T.S AGT = AH - TAS (at const. Temp and pressure) 💙, share - Change in entropy changin Gibbs enthalpy. subseriba Spontaneous at all temperature. ΔH spontaneous at low temperature. Non-spontaneous at higher temperature NEET + Non-spontaneous at low temp. Spontaneous at higher temp.
Non-spontaneous at all temps LAYER