Structural Engineering Course Basic Level

Sylabus Basic Level (12x 2 hours meeting)

- 1. Material & Element
- 2. Engineering Mechanic & Structural Behaviour
- 3. Introduction to Design Code Criteria
- 4. Environment load 1
- 5. Environment load 2
- 6. Environment load 3
- 7. Environment load 4
- 8. Preservice Weighing
- 9. Preservice Lifting
- 10. Preservice Land Transport
- 11. Preservice Sea Transport
- 12. Final Assignment

Lifting Arrangement

Sling Forces

MEMBER FORCES AND MOMENTS REPORT

				*******	**** KN ****	*****
MEMBER Number	MEMBER End	GROUP ID	LOAD Cond	FORCE(X)	FORCE(Y)	FORCE(Z)
P581-PDY1	P581	PDY	4000	9828.1377	1334.2141	-0.6788
			4100	9726.8271	1331.2980	-1.6778
			4288	7808.6665	1075.7202	-1.8225
			4300	9929.4365	1337.1292	0.3201
			4488	11847.5967	1592.7068	8.4649
	PDY1		4000	9828.1377	1334.2141	-0.6788
			4100	9726.8271	1331.2980	-1.6778
			4288	7808.6665	1075.7202	-1.8225
			4300	9929.4365	1337.1292	0.3201
			4488	11847.5967	1592.7068	8.4649

Load Factors

Combination		Factor								
Factor	SLF	TEF	YEF	DAF	CF	Factor				
a1	1.1	1.05	1.0	1.0	1.0	1.155				
a2	1.1	1.05	1.0	1.05	1.0	1.212				
a3	1.1	1.05	1.0	1.05	1.15	1.394				
a4	1.1	1.05	1.0	1.05	1.30	1.576				

Factored sling load	Fsf	=	11000.0 kN, From SACS lifting case output.
Combination factor for padeyes calc	a4	=	1.576
Basic sling load = Fsf/a4	Fs	=	711.5 MT (Metric Ton)
Basic load for padeye, Fpb:	Fpb	=	711.5 MT
Weight contingency	γwc	=	1.00 (included in SACS model)
COG shift	γcog	=	1.00
DAF	γdaf	=	1.05
SKL	γskl	=	1.10
Tilt Factor	γt	=	1.05
Yaw Factor	γw	=	1.00
Sling design load, Fsd=Fs*γwc*γcog*γdaf*γt*γw*γskl	Fsd	=	862.9 MT 1902.6 Kips DNVGL-ST-N001 (2016) sec.16.3.4.

Dimension of Shackle

Provided Shackle:		Green Pin P-6043	3, SLPGP1550 with the following data :	
Shackle Safe Working Load (SWL)	SSWL =	1560.0 MT		
Shackle Min Breaking Load MBL	SMBL =	7800.0 MT		
Proof load test result	PLT =	1560.0 MT	(presumed, not available yet)	
Pin Diameter	d _p =	320.0 mm		
Jaw Width	Bsh =	460.0 mm		
Inside Length	Hsh =	950.0 mm		
Check Fsd <sswl*daf< td=""><td>862.9 MT <</td><td>1638.0 MT</td><td>DNVGL-ST-N001 (2016) sec.16.5.2.5</td><td>Accepted</td></sswl*daf<>	862.9 MT <	1638.0 MT	DNVGL-ST-N001 (2016) sec.16.5.2.5	Accepted
Unity Check	UC =	0.527		
Check Fsd <smbl 3<="" td=""><td>862.9 MT <</td><td>2600.0 MT</td><td>DNVGL-ST-N001 (2016) sec.16.5.2.5</td><td>Accepted</td></smbl>	862.9 MT <	2600.0 MT	DNVGL-ST-N001 (2016) sec.16.5.2.5	Accepted
Unity Check	UC =	0.332		
Check Fsd <plt< td=""><td>862.9 MT <</td><td>1560.0 MT</td><td>DNVGL-ST-N001 (2016) sec.16.5.2.5</td><td>Accepted</td></plt<>	862.9 MT <	1560.0 MT	DNVGL-ST-N001 (2016) sec.16.5.2.5	Accepted
Unity Check	UC -	0.553		

Green Pin® Power Sling Shackle Group : P-6043 Part : SLPGP1550 WLL : 1550t

. Dimension of Sling

Nominal safety factor for sling, ysf=max(2.3,yf*yc*yr*	'γw*γm)			DNVGL-ST-N001 (2016) sec.16.4.3
	γsf	=	3.26	
Where				
Lifting factor	γf	=	1.30	
Consequence factor	ус	=	1.30	
Reduction factor, yr=max(ys,yb)	γr	=	1.30	
Termination factor	γs	=	1.30	
Bending factor, fb=1/(1-0.5/(Dsh/dsl)^0.5)	γb	=	1.00	(Ignored as the bending is at the eye sling)
Material factor	γm	= 1	1.35	
Wear factor	γw	=	1.10	
Required Nominal MBL of sling, MBLr > γsf*Fsd	MBLr	=	28 <mark>1</mark> 5.1 MT	DNVGL-ST-N001 (2016) sec.16.4.2.0
		=	27616.2 kN	

IWRC 6x36 grade 1770 Provide sling rope = Choose sling rope above MBL 7750.0 MT (assumed) 162.0 mm Diameter of Sling dsl =

Unity Check MBLr/MBL ≤ 1 UC 0.363 =

D. Criteria for Padeye Sizing

326.00 mm Diameter of pin hole $d_h = Max(dp+2mm,min(1.03*dp,dp+6)) =$ DNVGL-ST-N001 (2016) sec.16.9.5.2 Radius of pin hole 163.00 mm Pin Hole Radius for the padeye =

=

E. Lift Point Load

Lift Point Design Load Fp=Fpb*ywc*ycog*ydaf*yt*yw*yskl*yc 1121.7 MT

83.4 degree Load angle =

$$P = 1121.7 \text{ MT}$$

 $P_z = P \sin \alpha = 1114.3 \text{ MT}$
 $P_y = P \cos \alpha = 128.9 \text{ MT}$

...Accepted

F. Padeye Code Check

Try th	ne following plate thickness :						
	- Thickness main plate	(t_m)	=	100	mm		
	- Max thickness cheek plate 1	(t_{c1})	=	100	mm		
	- Max thickness cheek plate 2	(t_{c1})	=	0	mm		
	- Total Provide thickness cheek plate		=	100.0	mm		
	 Total thickness of padeye (before spacer) 	tp	=	$t_m+2*t_{c1}+2*t_{c2}$			
			=	300.0	mm	Jaw width, Bsh= 460.0	
	- Actual gap distance between padeye thickne	ess and	jaw v	idth, g1=Bsh-tp			
		g1	=	160.0	mm		
	 Actual gap in each side, g2=g1/2 	g2	=	80.00	mm		
	- Design gap in each side:	g3	=	30.00	mm		
	- Req. thk. of spacer plate, tsp=g2-g3	tsp	=	50.00	mm	(each side)	
	 Provided thk. of spacer plate, tsp 	tsp	=	50.00	mm		Accepted
	- Gap distance Inside Length		=	H+dp/2-rm-ds > '	1.3*d		
			=	308.00	mm	> 210.6 mm	Accepted
	- Stiffener plate thickness	ts	=	38	mm		
	 Total thickness of padeye (with spacer) 	tp'	=	$t_m+2*(Tsp+t_{c1+}t_{c2})$			
			=	400.0	mm	> Jaw width, Bsh= 460.0	Accepted
	- Main plate radius	r _m	=	max of (1.25 x Diam	eter p	oin hole or Diameter pinhole/2 + 3")	
			=	640	mm		
	 Cheek plate radius, rc=rm-tc 	r _c	=	main plate radius - t	thickn	iess cheek plate	
			=	540	mm		
	- f _{yield} main plate	f_{ym}	=	355	MPa		
	- f _{yield} cheek plate	f_{yc}	=	355	MPa	a	

Geometric check of Padeye (as per DNVGL ST N001 Sec. P.2.4.2)

Outside radius of the padeye main plate shall be no less than the diameter of the pin hole

 $r_m \ge p+6)$

640.0 mm ≥ 326.0 mm

...Accepted

The pad eye thickness at the hole shall not be less than 75% the inside width of the shackle

tp' ≥ 75%* Bsh

400.0 mm ≥ 345.0 mm

...Accepted

Shackle pin max. diameter including tolerance should be considered in order to ensure that the pin will enter the hole

nm,min(1.03 ≥ dp

356.0 mm ≥ 320.0 mm

...Accepted

Sketch of Padeye

F.1 Pin Bearing Stress

Check Bearing Capacity

Allowable Bearing Stress $= 0.9 \text{ x f}_{\text{vield}}$ 319.5 MPa Bearing Capacity: $= 0.9 \times f_{vield} \times A$ $= d_p * t/sqrt(2)$ 67882.3 mm² Bearing capacity $= 0.9 x f_{yield} x A$ 2210.8 MΤ Fb Bearing Load MT < Bearing Capacity 1121.7 Unity Check 0.510 < 1 ...Accepted Bearing stress due to radial pressure fb=Fb/(t*dp) = < 0.9*fy 114.6 MPa Unity Check 0.360 < 1 ...Accepted

Max stress due to pressure between elastic bodies

Max stress	f _{he}	=	0.591	x sqrt F	*E/Tt*K	(B	≤		2.5 Fy	 	
		=		383.9	N	ИРа	<		888 MPa		
Unity Check		=		0.430			<	1			.Accepted

Where,

Bearing Load Fp = 11004013.3 N

Bearing load per unit length of contact surface, p =Fp/tp

= 36680.0 N/mm

Young's Modulus E = 200,000.0 MPa

Hertz pressure :

For 1560MT shackle Green Pin P-6043, SLPGP1550

Pin hole dia. $d_h = 326.0 \hspace{1cm} mm$ Pin dia. $d_p = 320.0 \hspace{1cm} mm$

Kd = $(d_h \times d_p)/(d_h - d_p)$ = 17386.7

...Accepted

F.2 Pin Pull-Out Shear

Allowable Shear Stress = 0.4 x Fy

Shear force, Py Py = 1121.7 MT

= 11004013.3 N

Effective shear section area Ae = $(2 \times (rm-dh/2) \times tm) + (4 \times (rc-dh/2) \times tc)$

= 246200.0 mm2

Shear Stress, fs=Py/Ae fs = 44.7 MPa < 0.4 Fy = 142 MPa

Unity Check = **0.310** < 1

F.3 Tension Failure

Tensile Capacity

Effective tension section area

Refer to AISC D1 - Block Shear 1 Allowable Tensile Stress without pin hole = 0.60 x FyMaximum Tension Ft=Pz = 1114.3 MT 10931086.8 N Effective tension section area = Block Shear 1 length x tm x 0.60 Fy (D-dh) x tm 974 x 100 97400.0 mm2 Tensile Stress, ft=Ft/Ae 213 MPa 112.2 MPa < 0.60 x Fy =Unity Check 0.527 < 1 ...Accepted Refer to AISC D1 - Block Shear 2 Allowable Tensile Stress without pin hole = 0.60 x Fy

213

= 2*(rm-dh/2) x tm

= Block Shear 2 length x t_m x 0.60 Fy

MPa

= 954 x 100 = 95400.0 mm2 sile Stress, ft=Ft/Ae ft = 114.6 MPa

Tensile Stress, ft=Ft/Ae ft = 114.6 MPa $< 0.60 \times Fy = 213 \text{ MPa}$ Unity Check = 0.538 < 1Accepted

F.4 Combined Stress

	b	h	Area	Ordinat to a-b		Ordinat to a-b A*X' A*Y'		Centre of Gravity	
No.				X'	y'			X _{cog}	Y _{cog}
	mm	mm	(mm2)	mm	mm	mm3	mm3	mm	mm
1	112.0	100.0	11200	56.0	405.0	627200.000	4536000.000		
2	112.0	100.0	11200	1544.0	405.0	17292800	4536000		
3	38.0	810.0	30780	131.0	405.0	4032180	12465900		
4	1300.0	100.0	130000	800.0	405.0	104000000	52650000	800.00	405.00
5	38.0	810.0	30780	1469.0	405.0	45215820	12465900	800	406
		Total	213960			171168000	86653800		

	Ordinat Rel	lative to COG	A*X^2	A*Y^2	A*Y^2 A*X*Y		I_{Y0}	I _X	I _Y	I _{XY}
No.	X	Y								
	mm	mm	mm4	mm4	mm3	mm4	mm4	mm4	mm4	mm4
1	-744.00	0.00	6199603200	0	0	9333333.333	11707733.33	9333333.333	6.211E+09	0
2	744.00	0.00	6199603200	0	0	9333333.333	11707733.33	9333333.333	6.211E+09	0
3	-669.00	0.00	13775927580	0	0	1682896500	3703860	1682896500	1.378E+10	0
4	0.00	0.00	0	0	0	108333333.3	18308333333	108333333.3	1.831E+10	0
5	669.00	0.00	13775927580	0	0	1682896500	3703860	1682896500	1.378E+10	0
								3502126333	8.5E+10	0

F.5 In-plane Bending

 $I_y = \sum Ig + \sum (A \times x'^2)$

= 8.500E+10 mm/4

 $S_v = Iy / (Xcog)$

1.063E+08 mm^3

= Py * h1

= 809455276.8 N.mm

Allowable In-plane Bending Stress Fb = $0.66 \times fyield$

= 234.3 MPa

In-plane Bending Stress fip = M/S_y

= 7.618 MPa

Unity Check = **0.033** < 1

F.6 Out-of-Plane Bending

Inplane Moment M

Sx = Ix/(Ycog)

= 4377657.9 mm³ = 71.7370 m³

...Accepted

5% of static sling force will be applied, as per API 20th edition section 2.4.2.

5% of sling force Fop = $0.05^{\circ}P$

			5.502E+05	N	
Moment arm length	h2=Hsh/2	=	475	mm	
Out-of-plane Moment M	Mop	=	Fop*h2		
		=	2.613E+08	N.mm	
Allowable out-of-plane Bending Stress	fop	=	0.75 x fyield		
		=	266.25	MPa	
Out-of-plane bending stress		=	M/S_x		
		=	59.7	MPa	
Unity Check		=	0.224		< 1

...Accepted

Ft = 0.6 x Fy

213 MPa

1.093E+07 N

2*(((rm-dh/2)*tm)+2*((Rc-dh/2)*tc))

2.140E+05 mm^2

Pz / As

fa

= 51.1 MPa

0.24 < 1

...Accepted

Combined Axial Tension and Bending

Unity Check

Unity Check

Axial Tensile Stress

Allowable tensile stress

Axial Tensile Force (Pz)

Tensile Area (A_s)

Axial Tensile Stress

UC = $f_a / F_t + f_{ip} / F_b + f_{op} / F_b$ = 0.24 + 0.0 +

0.24 + 0.0 + 0.224 **0.497** < 1

...Accepted

Horizontal Direction (Main Plate)

Allowable shear stress

Shear force, max(Py, Fop)

Shear Area (As) Shear stress

Unity Check

= 0.4 x fyield

142.0 MPa 1.265E+06 N

2.140E+05 mm^2

= Py / As

5.9 MPa

Shear Stress / Allowable Shear Stress

0.042 < 1

...Accepted

F.7 Von Misses Stress

Von Misses Stress	
where:	
total stress in x-dir.	
total stress in y-dir.	
shear stress	

$\sigma = (fx^2 + fy^2 + 3fs^2)^{0.5}$

$$\sigma$$
 = 84.353 MPa

$$\sigma a = 0.75x \, Fy$$

$$\sigma/\sigma a = 0.317 < 1$$

...Accepted

G. Welding Sizing

Weld of cheek plate to main plate

Allowable Shear Stress

Allowable Shear Stress for Fillet Weld is the lesser of :

Fsw =
$$0.6*(1/2\sqrt{2})*Fexx$$

= 66.1 MPa

=

Load at Check Plate
$$Pcp = Ps*(tc/(2*Tc+tm))$$
$$= 3668004.4 N$$

= 1696.5 mm

Size of fillet welds: Min 0.7 x Thk Cheek Plate

Min
$$0.7 \times \text{Thk Cheek Plate}$$
 = 70.0 mm

Max Thk Cheek Plate-2mm = 98.0 mm

Used fillet weld size tws = 70.0 mm < twr 32.73 mm ...Accepted

