

Faculdade UnB Gama

Mecânica do Voo

Variações de curto período: Oscilação do ângulo de ataque

Referências Bibliográficas

- ITEN 1.7: Paglione, P.; Zanardi, M. C., Estabilidade e Controle de Aeronaves, ITA, 1990.
- Bernard Etkin, Lloyd Duff Reid, Dynamics of Flight Stability and Control, John Wiley & Sons, 3^a Ed, 1996.
- STEVENS, Brian L.; LEWIS, Frank L. Aircraft control and simulation. 2nd ed. Hoboken: John Wiley & Sons, 2003

Faculdade UnB Gama 💜

MOVIMENTO LONGITUDINAL DIVIDIDO EM:

1. MOVIMENTO DE CURTO PERÍODO OSCILAÇÕES EM γ , α , q, COM VELOCIDADE CONSTANTE (DURAÇÃO DA ORDEM DE 0,5 – 5 SEGUNDOS)

QUE SE CARACTERIZA POR UM MOVIMENTO DE LONGO PERÍODO (ALGUNS MINUTOS) COM ALTERAÇÕES SENSÍVEIS NA VELOCIDADE, ÂNGULO DE TRAJETÓRIA DE VOO E ALTITUDE, PORÉM COM PEQUENAS VARIAÇÕES NO ÂNGULO DE ATAQUE.

2. MOVIMENTO FUGOIDAL

MOVIMENTO DE CURTO PERÍODO

8.1 LINEARIZAÇÃO DAS EQUAÇÕES DO MOVIMENTO

8.2 RESPOSTA DA AERONAVE A UMA PERTURBAÇÃO EXTERNA $\delta_p-\delta_{pe}$ = 0

8.3 INFLUÊNCIA DO TAMANHO DA AERONAVE

8.4. RESPOSTA DA AERONAVE A UMA VARIAÇÃO DO PROFUNDOR

$$\delta_p - \delta_{pe} \neq \mathbf{0}$$

EQUAÇÕES DO MOVIMENTO LONGITUDINAL

$$m\frac{dV}{dt} = -m g \operatorname{sen} \gamma - \frac{1}{2}\rho S V^2 C_D + F \cos(\alpha + \alpha_F)$$
(1)

$$m V \frac{d\gamma}{dt} = \frac{1}{2} \rho S V^2 C_L + F \operatorname{sen}(\alpha + \alpha_F) - m g \cos \gamma$$
 (2)

$$I_{y}\frac{dq}{dt} = \frac{1}{2}\rho S V^{2}l \left(C_{m_{o}} + C_{m_{\alpha}} \alpha + C_{m_{\delta_{P}}} \delta_{P} + C_{m_{q}} \frac{ql}{V} + C_{m_{\dot{\alpha}}} \frac{\dot{\alpha} l}{V}\right)$$

$$\tag{3}$$

$$\theta = \alpha + \gamma$$

$$\frac{dH}{dt} = V \operatorname{sen} \gamma$$

8.1. Linearização das equações do movimento

VAMOS CONSIDERAR QUE HAVERÁ SÓ ALTERAÇÕES NO PROFUNDOR: δ_P , COM

$$F = F_e$$
, $\gamma_e = 0$, $V = V_e$

EQUAÇÃO DO ARRASTO É SATISFEITA, COM:

$$m \dot{V} = 0 = -\frac{1}{2} \rho S V_e^2 C_D + F_e \cos (\alpha + \alpha_F)$$

$$\frac{1}{2} \rho S V_e^2 C_D = F_e \cos (\alpha + \alpha_F)$$

$$H = H_e$$

As equações se reduzem:

$$m V_e \frac{d\gamma}{dt} = \frac{1}{2} \rho S V_e^2 C_L + \mathbf{F_e} sen(\alpha + \alpha_F) - m g$$
 (2)

$$\frac{I_{y}}{\frac{1}{2}\rho \, SV_{e}^{2} l} \frac{dq}{dt} = C_{m_{o}} + C_{m_{\alpha}} \, \alpha + C_{m_{\delta_{P}}} \, \delta_{P} + C_{m_{q}} \, \frac{ql}{V_{e}} + C_{m_{\dot{\alpha}}} \, \frac{\dot{\alpha} \, l}{V_{e}}$$
(3)

NO EQUILIBRIO $\,\dot{\gamma}=0$, $q=0\,$, $\,\dot{q}=0$, $\dot{lpha}=0\,$

$$0 = \frac{1}{2}\rho \, S \, V_e^2 C_{Le} + F_e \, sen(\alpha_e + \alpha_F) - m \, g \tag{2a}$$

$$0 = C_{m_o} + C_{m_\alpha} \alpha_e + C_{m_{\delta_P}} \delta_{Pe}$$
 (3a)

Fazendo (2) - (2a) e (3) - (3a):

$$m V_e \dot{\gamma} = \frac{1}{2} \rho S V_e^2 (C_L - C_{L_e}) + F_e \left[sen \left(\alpha + \alpha_F \right) - sen(\alpha_e + \alpha_F) \right]$$
 (4)

$$\frac{I_{y}}{\frac{1}{2} \rho S l V_{e}^{2}} = C_{m_{o}}(\alpha - \alpha_{e}) + C_{m_{q}} \frac{ql}{V_{e}} + C_{m_{\delta}} (\delta_{P} - \delta_{P_{e}}) + C_{m_{\dot{\alpha}}}(\dot{\alpha}) \frac{l}{V_{e}}$$
(5)

Como a velocidade é constante, o número de Mach é constante e

$$C_L = C_L(\alpha, \delta_p)$$

Linearizando C_L em torno do ponto de equilíbrio:

$$C_L - C_{L_e} = C_{L_{\alpha}}(\alpha - \alpha_e) + C_{L_{\delta}}(\delta_P - \delta_{P_e})$$

Linearizando $sen(\alpha + \alpha_F)$ em torno do ponto de equilíbrio:

$$sen(\alpha + \alpha_F) = sen(\alpha_e + \alpha_F) + cos(\alpha_e + \alpha_F)(\alpha - \alpha_e)$$

$$sen(\alpha + \alpha_F) - sen(\alpha_e + \alpha_F) = cos(\alpha_e + \alpha_F)(\alpha - \alpha_e)$$

ENTÃO:

$$F_e \left[sen \left(\alpha + \alpha_F \right) - sen \left(\alpha_e + \alpha_F \right) \right] = F_e \cos \left(\alpha_e + \alpha_F \right) \left(\alpha - \alpha_e \right)$$

VAMOS CONSIDERAR QUE O TERMO $c_{m\dot{\alpha}}$ $\dot{\alpha}$ É DESPREZÍVEL PERANTE OS DEMAIS TERMOS DE $c_{m,r}$ SE A VARIAÇÃO DO ÂNGULO DE ATAQUE É PEQUENA.

INTRODUZINDO A NOTAÇÃO:

$$ar{\gamma} = \gamma - \gamma_e$$
 , $ar{\alpha} = \alpha - \alpha_e$, $ar{\delta_p} = \delta_P - \delta_{P_e}$

AS EQUAÇÕES LINEARIZADAS SÃO:

$$m V_e \dot{\bar{\gamma}} = \frac{1}{2} \rho V_e^2 S \left(C_{L\alpha} \bar{\alpha} + C_{L\delta} \overline{\delta_p} \right) + F_e \cos \left(\alpha_e + \alpha_F \right) \bar{\alpha}$$

$$\frac{I_{y}}{\frac{1}{2} \rho V_{e}^{2} S l} \dot{q} = C_{m\alpha} \bar{\alpha} + C_{m\delta} \overline{\delta_{p}} + C_{mq} q$$

VOO É HORIZONTAL ENTÃO NO EQUILÍBRIO:

$$F_e \cos (\alpha_e + \alpha_F) = \frac{mg}{E'}$$

$$\dot{\bar{\gamma}} = \frac{1}{2mV_e} \rho V_e^2 S \left(C_{L\alpha} \bar{\alpha} + C_{L\delta} \overline{\delta_p} \right) + \frac{g}{V_e E'} \bar{\alpha}$$

$$\dot{q} = \frac{1}{2I_y} \rho V_e^2 S l(C_{m\alpha} \bar{\alpha} + C_{m\delta} \overline{\delta_p} + C_{mq} q)$$

DEFININDO OS COEFICIENTES:

$$L_{\alpha} = \frac{1}{2} \rho \frac{S}{m} V_e^2 C_{L_{\alpha}}, \qquad m_{\alpha} = -\frac{1}{2} \rho \frac{S l}{I_y} V_e^2 C_{m_{\alpha}}$$

$$L_{\delta} = \frac{1}{2} \rho \frac{S}{m} V_e^2 C_{L_{\delta}}, \qquad m_{\delta} = -\frac{1}{2} \rho \frac{S l}{I_y} V_e^2 C_{m_{\delta}}$$

$$m_q = -\frac{1}{2} \rho \frac{S l^2}{I_y} V_e C_{m_q}$$

 m_{lpha} , m_{δ} , m_q são positivos. Pois C_{mlpha} < 0, $C_{m\delta}$ < 0, C_{mq} < 0.

$$\dot{\bar{\gamma}} = \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) \bar{\alpha} + \frac{L_{\delta}}{V_e} \; \bar{\delta}_p$$

$$\dot{q} = -m_{\alpha}\bar{\alpha} - m_{q}q - m_{\delta}\overline{\delta_{p}}$$

UTILIZANDO A EQUAÇÃO GEOMÉTRICA:

$$\theta = \alpha + \gamma
q = \dot{\theta} = \dot{\alpha} + \dot{\gamma} \rightarrow \dot{\gamma} = q - \dot{\alpha} \quad ou \quad \dot{\alpha} = q - \dot{\gamma}$$

$$\dot{q} = -m_q q - m_\alpha \bar{\alpha} - m_\delta \overline{\delta_p}$$

$$\dot{\bar{\alpha}} = q - \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) \bar{\alpha} - \frac{L_{\delta}}{V_{e}} \ \bar{\delta}_{p}$$

2 equações

2 variáveis $\bar{\alpha}$, q

1 controle $\overline{\delta_p}$

2 EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM:

SOLUÇÃO COMPLETA DADA PELA SOMA DA SOLUÇÃO DA EQUAÇÃO HOMOGÊNEA

$$\overline{\delta}_p = 0$$

EQUAÇÃO PARTICULAR DA EQUAÇÃO NÃO HOMOGÊNEA $\overline{\delta}_p
eq 0$

SOLUÇÃO DA EQUAÇÃO HOMOGÊNEA $\overline{\delta}_p=0$ RESPOSTA A UMA PERTURBAÇÃO EXTERNA.

RETORNO DA AERONAVE AO EQUILÍBRIO:

ESTABILIDADE DINÂMICA

8.2 RESPOSTA A PERTURBAÇÃO EXTERNA $\overline{\delta}_p=0$

EQUAÇÕES DO MOVIMENTO, EQUAÇÃO HOMOGÊNEA:

$$\dot{q} = -m_q q - m_\alpha \bar{\alpha}$$

$$\dot{\bar{\alpha}} = q - \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) \bar{\alpha}$$

FORMA MATRICIAL

$$\begin{bmatrix} \dot{q} \\ \dot{\bar{\alpha}} \end{bmatrix} = A \begin{bmatrix} q \\ \bar{\alpha} \end{bmatrix}$$

$$A = \begin{bmatrix} -m_q & -m_\alpha \\ 1 & -\left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right) \end{bmatrix}$$

SOLUÇÃO DEPENDE DOS AUTOVALORES DA MATRIZ A:

$$\det(A - sI) = 0$$

SOLUÇÃO DEPENDE DOS AUTOVALORES DA MATRIZ A:

$$\det(A - sI) = 0$$

$$\begin{vmatrix} -m_q - s & -m_\alpha \\ 1 & -\left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right) - s \end{vmatrix} = 0$$

Que corresponde a uma equação de segunda ordem em s:

$$s^{2} + \left(m_{q} + \frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) s + m_{\alpha} + m_{q} \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) = 0$$

2 raízes:

Tipo de solução depende das raízes s1 e s2.

Se t é o tempo, dependendo de s1 e s2 a solução será:

1) s1 e s2 reais distintas

$$X = C_1 e^{s1 t} + C_2 e^{s2 t}$$

2) Para raízes reais iguais: s1 = s2 = s

$$X = e^{s1 t} (C_1 + C_2 t)$$

3) Para um par de raízes conjugadas $s = a \pm b i$

$$X = e^{at} (C_1 \cos b t + C_2 \sin b t)$$

$$s^{2} + \left(m_{q} + \frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) s + m_{\alpha} + m_{q} \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) = 0$$

Essa equação pode ser escrita na forma:

$$s^2 + 2 w_0 \xi s + w_0^2 = 0$$

$$w_0 = \sqrt{m_\alpha + m_q \left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right)} \longrightarrow$$

 $w_0 - frequ$ ência natural

$$\xi = \frac{m_q + \frac{L_\alpha}{V_e} + \frac{g}{V_e E'}}{2w_0}$$

 ξ – amortecimento

$$s^2 + 2 w_0 \xi s + w_0^2 = 0$$

$$s = \frac{-2 w_0 \xi \pm \sqrt{4 w_0^2 \xi^2 - 4w_0^2}}{2}$$

$$s = -w_0 \xi \pm w_0 \sqrt{\xi^2 - 1}$$

PORTANTO:

1) $\xi > 1 \rightarrow s \in real \rightarrow s1 \neq s2 \rightarrow MOVIMENTO NÃO OSCILATÓRIO$

2) $\xi = 1 \rightarrow s1 = s2 \rightarrow$ MOVIMENTO NÃO OSCILATÓRIO

3) $\xi < 1 \rightarrow s \in \text{complexo} \rightarrow s = -w_0 \xi \pm i w_0 \sqrt{1 - \xi^2}$

Desejado para aeronaves

Assim para $s=-w_0\,\xi\,\pm\,iw_0\,\sqrt{1-\xi^2}$, a solução é do tipo:

$$X = \begin{pmatrix} \mathbf{q} \\ \overline{\alpha} \end{pmatrix} = e^{-w_0 \xi t} \left(\begin{pmatrix} A_q \\ A_\alpha \end{pmatrix} \operatorname{sen} \left(w_0 \sqrt{1 - \xi^2} t \right) + \begin{pmatrix} B_q \\ B_\alpha \end{pmatrix} \cos(w_0 \sqrt{1 - \xi^2} t) \right)$$

A frequência do movimento é $w = w_0 \sqrt{1 - \xi^2}$

O período do movimento é dado por

$$T=\frac{2\pi}{w}=\frac{2\pi}{w_0\sqrt{1-\xi^2}}$$

Note também que $w_0 \xi > 0$ e $e^{-w_0 \xi t}$ é decrescente.

$$q = e^{-w_0 \xi t} \left(A_q \sec w_0 \sqrt{1 - \xi^2} t + B_q \cos w_0 \sqrt{1 - \xi^2} t \right)$$

$$\alpha = e^{-w_0 \xi t} \left(A_{\alpha} \operatorname{sen} \sqrt{1 - \xi^2} t + B_{\alpha} \cos w_0 \sqrt{1 - \xi^2} t \right)$$

QUE PODE SER COLOCADO NA FORMA:

$$q = k_q e^{-w_0 \xi t} sen (w_0 \sqrt{1 - \xi^2} t + \psi_q)$$

$$\overline{\boldsymbol{\alpha}} = k_{\alpha} e^{-w_0 \xi t} sen \left(w_0 \sqrt{1 - \xi^2} t + \psi_{\alpha} \right)$$

- As constantes são determinadas pelas condições iniciais $\overline{lpha}_0 \ e \ q_0$
- Com $\overline{\alpha_0}$ e q_0 obtidos a partir do sistema:

$$\begin{bmatrix} q \cdot 0 \\ \frac{\dot{\alpha}_0}{\alpha_0} \end{bmatrix} = A \begin{bmatrix} q \cdot 0 \\ \overline{\alpha_0} \end{bmatrix}$$

EXEMPLO: MIRAGE

Ve = 150m/s ao nível do mar, He =0km

$$m=7400~kg,~~S=36~m^2,~~l=5,25~m,~~I_y=50000~kg~m^2$$
 $C_D=0,015+0,4~C_L^2,~~C_{m_{\alpha}}=-0,17,~~C_{L_{\alpha}}=2,20$ $C_{m_q}=-0,4,~~C_{L_{\delta}}=0,70,~~C_{m_{\delta}}=-0,45$

$$lpha_e=3,76^\circ$$
 , $F_e=11624\,N$, $C_{L_e}=0,1447$ $C_{D_{lpha}}=0,02338$, $E=6,1907$, $E'=6,2565$ $m_{lpha}=8,8558$, $m_q=0,7293$, $\frac{L_{lpha}}{V_e}=0,9850$ $\frac{q}{V_eE'}=0,01045$

MIRAGE: Ve = 150m/s He = 0km

$$q = e^{-w_0 \xi t} \left(A_q sen w_0 \sqrt{1 - \xi^2} t + B_q cos w_0 \sqrt{1 - \xi^2} t \right)$$

$$\alpha = e^{-w_0 \xi t} \left(A_{\alpha} \operatorname{sen} w_0 \sqrt{1 - \xi^2} t + B_{\alpha} \cos w_0 \sqrt{1 - \xi^2} t \right)$$

Com:

$$\xi = 0.2786$$
; $w_0 = 3.0954 \ rad/s$ e $T = 2.113 \ s$

MIRAGE: Ve = 150m/s He = 0km

$$A = \begin{bmatrix} -0,7293 & -8,8558 \\ 1 & -0,9955 \end{bmatrix}$$

Para condição inicial:

$$\bar{\alpha}_0 = 1^{\circ}$$
 e $q_0 = 0$

$$\dot{\bar{\alpha}}_0 = -0.9955$$
 e $\dot{q}_0 = -8.8558$

$$A_{\alpha} = 0.07990$$
 e $A_{q} = -2.9782$

$$B_{\alpha} = 1$$
 e $B_{q} = 0$

MIRAGE: Ve = 150m/s He = 0km

Ou ainda:

$$q = k_q e^{-w_0 \xi t} sen (w_0 \sqrt{1 - \xi^2} t + \psi_q)$$

$$\overline{\boldsymbol{\alpha}} = k_{\alpha} e^{-w_0 \xi t} sen (w_0 \sqrt{1 - \xi^2} t + \psi_{\alpha})$$

$$k_{\alpha} = 1,00319$$
 e $k_{q} = 2,9782$

$$\psi_{\alpha} = 1,49106 \ rad = 85,432^{\circ} \ \ e \ \ \psi_{q} = \pi \ rad = 180^{\circ}$$

$$\bar{\alpha}(t) = 1,00319 e^{-0.8624 t} sen(2,9736 t + 1,49106)$$

$$q(t) = 2,9782 e^{-0.8624 t} sen (2,9736 t + \pi)$$

MIRAGE: Ve = 150 km, He = 0 km

AIRBUS: Ve = 150 km, He = 0 km

$$\alpha_e = 3.92^{\circ} (F_e = 82038 N)$$

$$C_{L,e} = 0.3269$$
; $C_{D,e} = 0.02284$; $E = 14.3097$; $E' = 14.3783$

$$m_{\alpha} = 3,6052$$
; $m_{q} = 1,1804$; $\frac{L_{\alpha}}{V_{e}} = 0,9505$; $\frac{q}{V_{e}E'} = 0,004547$

$$\xi = 0.4908$$
; $w_0 = 2.1754 \ rad/s$; $T = 3.315 \ s$; $\xi w_0 = 1.0677$

$$A = \begin{bmatrix} -1,1804 & -3,6052 \\ 1 & -0,9950 \end{bmatrix}$$

AIRBUS: Ve = 150 km, He = 0 km

Condições iniciais:

$$\overline{\alpha}_0 = \mathbf{1}^\circ \quad e \quad q_0 = \mathbf{0}$$

$$\dot{\alpha}_0 = -0.9950$$
 e $\dot{q}_0 = -3.6052$ $A_{\alpha} = 0.05946$ e $A_q = -1.9021$ $B_{\alpha} = 1$ e $B_q = 0$

Logo

$$k_{\alpha} = 1,00177$$
 e $k_{q} = 1,9021$

$$\psi_{\alpha} = 1,5141 \ rad = 86,6^{\circ} \ \ e \ \ \psi_{q} = \pi \ rad = 180$$

$$\bar{\alpha}(t) = 1,00177 e^{-1,0677 t} sen \left(\frac{2 \pi}{3,315} t + 1,5144\right)$$

$$q(t) = 1,9021 e^{-1,0677 t} sen \left(\frac{2 \pi}{3,315} t + \pi\right)$$

AIRBUS: Ve = 150 km, He = 0 km

AMORTECIMENTO

$$\xi = \frac{m_q + \frac{L_\alpha}{V_e} + \frac{g}{V_e E'}}{2w_0}$$

$$w_0 = \sqrt{m_\alpha + m_q \left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right)}$$

AMORTECIMENTO INDEPENDE DA VELOCIDADE, DIMINUI COM A ALTITUDE

PERÍODO

AIRBUS

$$T=\frac{2\pi}{w}=\frac{2\pi}{w_0\sqrt{1-\xi^2}}$$

$$w_0 = \sqrt{m_\alpha + m_q \left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right)}$$

$$\xi = \frac{m_q + \frac{L_\alpha}{V_e} + \frac{g}{V_e E'}}{2w_0}$$

PERÍDO DIMINUE COM O AUMENTO DA VELOCIDADE, AUMENTA COM A ALTITUDE, E INDEPENDE DO ÂNGULO DE ATAQUE

Faculdade UnB Gama 🌇

MIRAGE

$$T=\frac{2\pi}{w}=\frac{2\pi}{w_0\sqrt{1-\xi^2}}$$

$$w_0 = \sqrt{m_\alpha + m_q \left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right)}$$

$$\xi = \frac{m_q + \frac{L_\alpha}{V_e} + \frac{g}{V_e E'}}{2w_0}$$