Exercice 1.

Compléter avec le symbole mathématique qui convient:

$$1. -2 \dots \mathbb{N}$$

$$4. \frac{2}{3} \dots \mathbb{D}$$

$$2.7...\mathbb{N}$$

$$3. -9, 0 \dots \mathbb{Z}$$

6.
$$5, 16 \dots \mathbb{Q}$$

Exercice 2.

Indiquer l'ensemble minimum auquel appartient chaque nombre suivant parmi \mathbb{N} , \mathbb{Z} , \mathbb{D} ; \mathbb{Q} ou \mathbb{R} :

1.
$$\frac{5-14}{3}$$
2. $\frac{9}{6}$

3.
$$\sqrt{25} + 6$$

2.
$$\frac{9}{6}$$

$$4. \ 3, 141596$$

Exercice 3.

Compléter avec le symbole d'appartenance \in ou de non-appartenance \notin :

1.
$$2...$$
] $-1;5$]

$$[2. -5...] - 1; 0$$

3.
$$10^{-3} \dots [0; +\infty[$$

4.
$$7...$$
] $-\infty$; 7]

5.
$$\pi$$
...]3, 14; 3, 15[

Exercice 4.

On considère la droite des réels représentée cidessous.

- 1. Indiquer les abscisses (exactes) des points M, N et P:
- 2. Placer sur la droite, le plus précisément possible, les points A, B et C ayant respectivement pour abscisses -2; $\frac{5}{3}$ et 3, 5.

Exercice 5.

On considère la droite des réels représentée cidessous.

- 1. Lire les abscisses des points A et B.
- 2. Placer les points $C\left(\frac{5}{7}\right)$, D(-1,5) et E(3).

Exercice 6.

Écrire, sous forme d'intervalle, les réels qui appartiennent à la partie de la droite numérique représentée en « foncé » dans les cas suivants :

Exercice 7.

Même question qu'à l'exercice 6 :

Exercice 8.

Dans chacun des cas suivants, représenter l'ensemble des nombres vérifiant la condition donnée sur une droite graduée puis écrire cet ensemble sous forme d'intervalle :

1.
$$-2 \le x < 2$$

2.
$$x > \sqrt{3}$$

3.
$$x \le 2$$

4.
$$x < -6$$

5.
$$-2 < x \leqslant \frac{1}{3}$$

Exercice 9.

Déterminer l'ensemble, sous forme d'union ou d'intersection d'intervalles, auquel appartient le nombre réel x dans chacun des cas suivants. Simplifier l'ensemble quand cela est possible. :

- 1. $x \leq 5$ et $x \geq -5$.
- 2. x < 8 ou $x \le 5$.

Exercice 10.

Traduire chacune des informations ci-dessous par une ou des inégalités :

- 1. $x \in [-1; 4]$
- $[2. \ x \in]-2;0[$
- 3. $x \in]-\infty; 2[$
- $4. \ x \in \left[\frac{1}{2}; +\infty\right]$
- 5. $x \in [0; +\infty[$
- $6. \ x \in \left] -\frac{1}{2}; +\infty \right[$

Exercice 11.

Représenter les intervalles I et J de deux couleurs différentes sur la même droite réelle puis donner ensuite leur réunion et leur intersection.

- 1. I = [-10; 3] et J = [-2; 9]
- 2. I =]-3; 8] et J =]-5; 6]
- 3. $I =]-\infty$; 2] et J = [4; 6]
- 4. $I =]-\infty$; 3] et $J = [0; +\infty[$

Exercice 12.

- 1. Sur un même axe, et avec des couleurs différentes, représenter les intervalles I = [-3; 5], J =]0; 2] et $K = [0; +\infty[$.
- 2. Parmi ces affirmations ci-dessous, lesquelles sont justes?
 - (a) $I \subset J$
- (c) $J \subset K$
- (b) $J \subset I$
- (d) $I \subset K$

Exercice 13.

Soit $A = \{a; k; d; f; m; u\}, B = \{u; d; m; b\}$

 $C = \{a; d; f\}.$

- 1. B est-il inclus dans A? Justifier.
- 2. Écrire avec des accolades les ensembles : $A \cup B, \ A \cup C$ et $A \cap B$ et $A \cap C$.

Exercice 14.

Soient $A = \{m ; a ; t ; h\}, B = \{e ; u ; x\}$ et $C = \{y ; o ; e ; u ; x\}.$

1. Justifier que B est inclus dans C.

2. Écrire avec des accolades, si possible, les ensembles : $A \cap B$, $A \cup B$, $A \cup C$ et $A \cap C$.

Exercice 15.

Simplifier au maximum les écritures :

- 1. $x \times x^2$
- 2. $(6u)^2$
- 3. $\left(\frac{x}{4}\right)^2$
- 4. $(5x)^3 \times (2u)^2$
- 5. $\frac{10^2 \times 10^{-4}}{10^{-7}}$

Exercice 16.

x est un nombre réel non nul. Écrire les nombres suivants sous la forme x^n avec n un entier relatif.

- 1. $A = \left(\frac{1}{x^{-4}}\right)^3$
- 2. $B = \frac{x^8 \times x^5}{x^3 \times x^{-10}}$
- 3. $C = ((x^2)^3)^4$
- 4. $D = \left(\frac{x^{-3}}{x^7}\right)^3$

Exercice 17.

Les nombres a et b étant non nuls, écrire plus simplement :

- 1. $(a^{-2}b^3)^{-4}$
- 2. $a^2b^{-2}a^{-3}b^3$
- 3. $\left(\frac{a}{h^5}\right)^{-1}$
- 4. $a^{-6}(a^3 \times b^{-2})^2$

Exercice 18.

Simplifier au maximum:

- 1. $\frac{4^{-5} \times 4^9}{(4^2)^3}$.
- $2. \ \frac{10}{[(10^2)^3]^{-7}}.$
- 3. $\frac{5^5 \times 5^{-2} \times 5^9}{125}.$

Exercice 19.

Dans chacun des cas, déterminer la valeur de n:

- 1. $2^4 \times 3^2 \times 5^6 \times 7^2 = n^2$.
- 2. $2^3 \times 3^6 \times 5^3 \times 7^3 = n^3$.

Exercice 20.

Dans chacun des cas, écrire sous la forme 3^n où n est un entier relatif :

1.
$$\frac{3^5 \times 3^2}{3^{-7}}$$
.

2.
$$\frac{3^2 \times 27}{81}$$
.