Министерство науки и высшего образования российской федерации

Федеральное государственное автономное образовательное учреждение
высшего образования

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Прикладная математика

Лабораторная работа №1

Выполнил: Казаков Никита Андреевич

Сарипов Денис Рустамович

M32061

1) Метод Дихотомии

Файл с алгоритмом: Dichotomy.py

Количество итераций на отрезке I = 4:

Точность	Число	Число
	итераций	подсчетов
		функции
0.1	6	12
0.01	9	18
0.001	12	24

Отрезок изменяется линейно

2) Метод золотого сечения

Файл с алгоритмом: GoldenRatio.py

Количество итераций на отрезке I = 4:

Точность	Число	Число
	итераций	подсчетов
		функции
0.1	7	7
0.01	12	12
0.001	16	16

Отрезок уменьшается на длину золотого сечения * текущую длину отрезка

3) Метод Фиббоначи

Файл с алгоритмом: Fibonacci.py

Количество итераций на отрезке I = 4:

Точность	Число	Число
	итераций	подсчетов
		функции
0.1	10	10
0.01	15	15
0.001	19	19

Отрезок сжимается с коэффициентом F_{n-k} / F_{n-k+1}

4) Метод Парабол

Файл с алгоритмом: Parabola.py

Количество итераций на отрезке l = 4:

Точность	Число	Число
	итераций	подсчетов
		функции
0.0001	10	10
0.00001	11	11
0.000001	12	12

5) Метод Брента

Файл с алгоритмом: Fibonacci.py

Количество итераций на отрезке I = 4:

подсчетов
функции
14
14
12

"Могут ли метод золотого сечения/Брента не найти локальный минимум многомодальной функции?"

Возможен случай отсутствия нахождения локального минимума методами золотого сечения и Брента. По задумке метод Бренат реализует метод золотого сечения при отсутствии малой окрестности возле границы и метод параболы при обратном. Приведём пример функции, в ходе которой первый локальный минимум пропускается на первых больших шагах, после чего находится второй локальный минимум.

В данном примере после первого шага по данным методам мы "пойдём" в левую половину отрезка функции, заведомо упуская локальный минимум, находящийся справа.

Ссылка на реализацию:

https://github.com/bblankbboi/ITMO-Math-Labs