

R Users Group - Ecuador®

"Taller de Introducción a la Inferencia Estadística con R"

Unidad 4: Distribuciones en el muestreo. Teorema del Límite Central

Andrés Peña M.

a.pena@rusersgroup.com

Agosto 2018

Tabla de contenidos

1 Distribuciones en el muestreo

Teorema del Límite Central

1. Distribuciones en el muestreo

Recordando...

- Parámetros: medidas calculadas en base a los datos de toda la población.
- Estimadores o estadísticos: medidas calculadas en base a los datos de la muestra

Distribución conjunta de *n* observaciones muestrales

Si de la población se selecciona **una observación al azar**, se genera una variable aleatoria que tiene las misma distribución de la variable en la población. Si seleccionamos *n* **unidades con reemplazo**, se genera una muestra aleatoria simple.

Una **muestra aleatoria simple** es una sucesión X_1 , X_2 ,.... X_n de n variables aleatorias independientes e igualmente distribuidas, es decir, que todas tienen la misma función de densidad o cuantía, que es la de la variable en la población.

$$f(x_1,x_2,...,x_n) = \prod_{i=1}^n f(x_i) = [f(x_i)]^n$$

Notación de los parámetros y estadísticos

Los **estadísticos** estiman **parámetros poblacionales**, es decir, que aunque no coincidan exactamente con el parámetro, si la muestra fue correctamente seleccionada, deberían asumir valores próximos a los mismos.

Tipo de variable	Medidas	Parámetros	Estadísticos
	Media	μ	X
Cuantitativa	Varianza	σ^2	S ²
Cualitativa	Proporción	р	ŷ

Los estadísticos son **variables aleatorias**, ya que su valor depende de la muestra seleccionada y podemos determinar su distribución en base a **todas las muestras posibles** de igual tamaño.

Muestras posibles:

- Con reemplazo $VR_n^N = N^n$
- Sin reemplazo $C_n^N = \frac{N!}{n!(N-n)!}$

Muestreo	Estadístico	Esperanza	Varianza
Con reemplazo	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	μ	$\frac{\sigma^2}{n}$
Sin reemplazo	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	μ	$\frac{\sigma^2}{n} \frac{N-n}{N-1}$

Esperanza y varianza de la media muestral

Si X₁, X₂,.... X_n representan observaciones de una muestra aleatoria, extraída de **cualquier población** con media μ y varianza σ^2 , entonces \bar{x} es una variable aleatoria con media μ y varianza σ^2/n .

$$E(\bar{X}) = E(\frac{\sum_{i=1}^{n} x_i}{n}) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{n\mu}{n} = \mu$$

Analice qué consecuencias tienen sobre la variabilidad de la distribución muestral de la media:

- a) Un aumento de n
- b) Un aumento de σ²

$$V(\bar{X}) = V(\frac{\sum_{i=1}^{n} x_i}{n}) = \frac{1}{n^2} \sum_{i=1}^{n} V(x_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Ejemplo de distribución de \bar{x} CR

Población teórica

Familia	¿Cuántos trabajan?
Α	2
В	4
С	3
D	1
Media	μ = 2.5
Varianza	$\sigma^2 = 1.25$

```
x<-1:4
n<-length(x)
(mu<-mean(x))
## [1] 2.5
(va<-sum((x-mu)^2)/n)
## [1] 1.2</pre>
```


Ejemplo de distribución de \bar{x} CR

Muestras de tamano 2 con reemplazo			
Familias seleccionadas en la Muestra	Cuántos trabajan Me		Media
A,A	2	2	2
A,B	2	4	3
A,C	2	3	2.5
A,D	2	1	1.5
B,A	4	2	3
B,B	4	4	4
B,C	4	3	3.5
B,D	4	1	2.5
C,A	3	2	2.5
C,B	3	4	3.5
C,C	3	3	3
C,D	3	1	2
D,A	1	2	1.5
D,B	1	4	2.5
D,C	1	3	2
D,D	1	1	1.0

```
library(gtools)
muestras<-permutations(n=4,r=2,v=x,repeats.allowed=T)
(xbar_n_i<-rowMeans(muestras))

## [1] 1.0 1.5 2.0 2.5 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 2.5 3.0
(fx_i<-prop.table(table(xbar_n_i)))

## xbar_n_i
## 1 1.5 2 2.5 3 3.5 4</pre>
```


Ejemplo de distribución de \bar{x} CR

Distribución de la media muestral (muestras de tamaño 2 con reemplazo)

Media muestral	Probabilidad
\overline{x}_{i}	$f(\bar{x}_i)$
1	1/16
1,5	2/16
2	3/16
2,5	4/16
3	3/16
3,5	2/16
4	1/16
Total	1

$$E(\bar{X}) = \sum_i \bar{x}_i f(\bar{x}_i) = \frac{40}{16} = 2.5 = \mu$$

$$V(\bar{X}) = \sum_i (\bar{x}_i - 2.5)^2 f(\bar{x}_i) = \frac{10}{16} = \frac{1.25}{2} = \frac{\sigma^2}{2}$$

barplot(prop.table(table(xbar_i)))

1 1.5 2 2.5 3 3.5 4

Ejemplo de distribución de \bar{x} SR

Muestras de tamaño 2 sin reemplazo

Viviendas seleccionadas en la Muestra		ntos oajan	Media
A,B	2	4	3
A,C	2	3	2,5
A,D	2	1	1,5
В,С	4	3	3,5
B,D	4	1	2,5
C,D	3	1	2

Distribución de la media muestral (muestras de tamaño 2 sin reemplazo)

Media muestral	Probabilidad
\bar{X}_i	$f(\bar{X}_i)$
1,5	1/6
2	1/6
2,5	2/6
3	1/6
3,5	1/6

$$E(\bar{X}) = \sum_i \bar{x}_i f(\bar{x}_i) = \frac{15}{6} = 2.5 = \mu$$

$$V(\bar{X}) = \sum_i (\bar{x}_i - 2.5)^2 f(\bar{x}_i) = \frac{2.5}{6} = 0.42$$

Compruebe en R

y la varianza de la media muestral resulta igual a:

$$V(\bar{X}) = \frac{\sigma^2}{n} \frac{N-n}{N-1} = \frac{1,25}{2} \frac{2}{3} = 0,42$$

Para recordar...

En la práctica es imposible trabajar con la distribución empírica del estadístico, obtenida a partir de todas las muestras posibles de igual tamaño, por lo que es importante establecer un modelo teórico de probabilidad para los estadísticos muestrales.

Muestreo en poblaciones normales

Vimos que si X_1 , X_2 ,.... X_n representan observaciones de una muestra aleatoria, extraída de **cualquier población** con media μ y varianza σ^2 , entonces \bar{x} es una variable aleatoria con media μ y varianza σ^2 /n. Si x es normal, la distribución de \bar{x} también lo es, para **cualquier tamaño de muestra**.

Sea una variable con distribución normal $x \sim N(\mu, \sigma^2)$ y X_1, X_2, \ldots, X_n una muestra aleatoria de esa población, entonces \bar{x} tiene distribución normal con media μ y varianza σ^2/n .

$$Si \quad \chi \sim N(\mu, \sigma^2) \quad \Rightarrow \quad \bar{\chi} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
$$z = \frac{\bar{\chi} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

2. Teorema del Límite Central

Teorema del Límite Central - Poblaciones no normales

A través de este teorema (TCL) se demuestra que, **cualquiera sea la población**, si el tamaño de la muestra es lo suficientemente grande, **la suma de variables** $Y = \sum_{i=1}^{n} x_i$ se distribuye aproximadamente normal con esperanza n. μ y varianza n. σ^2

Regla empírica: si n \geq 30, se puede usar el TCL Si se trabaja con la **media muestral**, cuya distribución también converge a la normal tenemos:

$$\lim_{n\to\infty} P(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}} < z) = F(z)$$

$$Y = \sum_{i=1}^{n} X_{i}$$
Si $n \to \infty$ $Y \sim N(n\mu, \sqrt{n\sigma^{2}})$
Si $n \to \infty$ $\overline{X} \sim N(\mu, \sqrt{\frac{\sigma^{2}}{n}})$

La importancia de este teorema radica en su generalidad, ya que puede aplicarse a la media proveniente de cualquier distribución.

Teorema del Límite Central - Poblaciones no normales

Recuerde que una variable binomial X es el número de éxitos en un experimento binomial que consiste en ensayos de éxito o fracaso independientes con probabilidad de éxito p para un determinado ensayo.

 $x_i = \begin{cases} 1 & \text{si el } i-\text{\'e} \text{simo ensayo produce un \'exito} \\ 0 & \text{si el } i-\text{\'e} \text{simo ensayo produce un fracaso} \end{cases}$

A partir de la variable x podemos definir la proporción como:

$$p = \frac{X}{n} \text{ donde } X = x_1 + x_2 + \dots + x_n$$

Dado que la variable binomial se define como la suma de variables bipuntuales, de acuerdo al TCL:

$$\lim_{n\to\infty} P(\frac{\hat{p}-p}{\sqrt{\frac{p\cdot q}{n}}} < z) = F(z)$$

Los resultados empíricos muestran que se obtienen buenas aproximaciones de probabilidad utilizando el modelo normal, siempre que $np \ge 5$ y $nq \ge 5$

Teorema del Límite Central en R

```
#Teorema del límite central
\#N \leftarrow rbinom(1000, 100, 0.5)
N \leftarrow rexp(1000, 1/10)
#N <- runif(1000, 10, 50)
n <- numeric(100)</pre>
for (i in 1:100) {
  n[i] <- sum(sample(N, 100, replace = TRUE))</pre>
par(mfrow=c(1,2))
hist(N, probability = T)
hist(n, probability = T)
curve(dnorm(x, mean(n), sd(n)), col = 2, lty = 2,
      1wd = 2, add=T)
par(mfrow=c(1,1))
```

Teorema del Límite Central en R

Density

Histogram of n

Gracias!!!

