Esercizi

Algebra e Geometria Corso di Laurea in Informatica 21 Aprile 2016

Esercizio 1. Sia $\mu \in \mathbb{R}$. Si consideri l'applicazione lineare $f_{\mu} : \mathbb{R}^5 \to \mathbb{R}^3$ tale che:

- $f_{\mu}(\mathbf{e_1}) = (\mu 2)\mathbf{e_1} + (\mu 1)(\mathbf{e_2} + \mathbf{e_3}),$
- $\bullet \ f_{\mu}(\mathbf{e_2}) = \mathbf{e_2} + \mathbf{e_3},$
- $f_{\mu}(\mathbf{e_3}) = (\mu 2)\mathbf{e_1} + 2(\mu 1)(\mathbf{e_2} + \mathbf{e_3}) + \mathbf{e_3}$
- $\bullet \ f_{\mu}(\mathbf{e_4}) = \mu \mathbf{e_2} + \mathbf{e_3},$
- $f_{\mu}(\mathbf{e_5}) = -\mathbf{e_2} + \mathbf{e_3}$.

Stabilire per quali valori di μ , se esistono, l'applicazione f_{μ} è iniettiva e/o suriettiva.

Esercizio 2. Si consideri la funzione $f: \mathbb{R}^3 \to \mathbb{R}^4$ definita da:

$$f(x, y, z) = (x + 2y + 3z, x + y + z, y + 2z, x - z).$$

- a) Verificare che f è un'applicazione lineare.
- b) Scrivere la matrice associata a f rispetto alle basi canoniche di \mathbb{R}^3 e \mathbb{R}^4 .
- c) Stabilire se f è iniettiva e/o suriettiva.
- d) Determinare, se possibile, due vettori linearmente dipendenti di \mathbb{R}^3 che hanno la stessa immagine tramite f, e due vettori linearmente indipendenti di \mathbb{R}^4 che non appartengono a Imf.
- e) Calcolare l'immagine del vettore $\mathbf{e_1} + \mathbf{e_3}$ tramite f.
- f) Calcolare la controimmagine dei vettori $\mathbf{e_4}$ e (4,2,2,0) tramite f.
- g) Esiste (senza costruirla) una applicazione lineare $g: \mathbb{R}^4 \to \mathbb{R}^3$ tale che Ker $g = \operatorname{Im} f$ e Im $g = \operatorname{Ker} f$?
- h) Esiste (senza costruirla) una applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^2$ non suriettiva tale che Ker $h = \operatorname{Ker} f$?

Esercizio 3. Sia $\alpha \in \mathbb{R}$. Sia $f_{\alpha} : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare associata alla matrice

$$A_{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ \alpha & \alpha & 0 \\ -1 & \alpha & \alpha \end{array} \right)$$

rispetto alla base canonica di \mathbb{R}^3 .

- a) Determinare per quali valori di α l'applicazione f_α non è suriettiva.
- b) Determinare al variare di α le dimensioni dei sottospazi $\operatorname{Ker} f_{\alpha}$ e $\operatorname{Im} f_{\alpha}$.
- c) Stabilire se il vettore $(1, \alpha, 1)$ appartiene a Ker f_{α} e calcolare la sua immagine tramite f_{α} .
- d) Determinare per quali valori di α il vettore $(1, \alpha, 1)$ appartiene a $\mathrm{Im} f_{\alpha}$. Per i valori di α trovati, calcolarne la controimmagine tramite f_{α} .

Esercizio 4. Costruire, se possibile, una applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che:

- a) $\operatorname{Ker} f = \langle \mathbf{e_1} + \mathbf{e_2} \rangle;$
- b) $\operatorname{Im} f = \langle \mathbf{e_1} + \mathbf{e_2}, \, \mathbf{e_1} \mathbf{e_2} \rangle.$

Tale applicazione è unica? In caso negativo, costruire un'altra applicazione lineare g che soddisfi le condizioni precedenti.