衡阳师范学院 2018-2019 学年第二学期 化学与材料科学学院化学专业 2018 级 《高等数学(下)》期末考试试题 A 卷

考核类型: 闭卷 考试时量: 120 分钟

	得分 评阅人 一、选择题 (每小题 3 分, 共 15 分)		
学院			
	1. 求初值问题 $y' = y, y(0) = 1$ 的特解为 $y =$	()
	A. $e^x + 1$ B. $\frac{1}{2}x^2 + 1$ C. $x^2 + C$, 其中 C 为任意常数 D. e^x		
专业	2. 求初值问题 $y' = y, y(0) = 1$ 的特解为 $y =$	()
△ AF	A. $e^x + 1$ B. $\frac{1}{2}x^2 + 1$ C. $x^2 + C$, 其中 C 为任意常数 D. e^x		
	3. 求初值问题 $y' = y, y(0) = 1$ 的特解为 $y =$	()
	A. $e^x + 1$ B. $\frac{1}{2}x^2 + 1$ C. $x^2 + C$, 其中 C 为任意常数 D. e^x		
班级	4. 求初值问题 $y' = y, y(0) = 1$ 的特解为 $y =$	()
	A. $e^x + 1$ B. $\frac{1}{2}x^2 + 1$ C. $x^2 + C$, 其中 C 为任意常数 D. e^x		
	5. 求初值问题 $y' = y, y(0) = 1$ 的特解为 $y =$	()
学 号	A. $e^x + 1$ B. $\frac{1}{2}x^2 + 1$ C. $x^2 + C$, 其中 C 为任意常数 D. e^x		
姓名	得分 评阅人 二、填空题 (每小题 3 分, 共 15 分)		
	6. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 $(-2,1)$ 处的切线方程		
	7. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 $(-2,1)$ 处的切线方程	·	
	8. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 $(-2,1)$ 处的切线方程	·	
	9. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 $(-2,1)$ 处的切线方程	·	
	10. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 $(-2,1)$ 处的切线方程	<u></u> .	
	得分 评阅人 三、判断题 (每小题 2 分, 共 10 分)		

- 11. 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微。
- 12. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 13. 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微。
- 14. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 15. 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.

得分	评阅人

四、解答题 (每小题 10 分, 共 60 分)

16. 试将微分方程 $x \frac{dy}{dx} = x^2 + 3y$, x > 0 转换成一阶非齐次线性微分方程的标准形式,然后使用常数变易法求解,最后对求得的结果进行验算。

题号				
_				
三				
四				
总分				
合分人				
复查人				
总分				
15				
15				
10				
60				
100				
4	Ш	ı	I	
得分				

第3页,共**??**页

20. 求函数 f(x,y) = x + y 在 $g(x,y) = x^2 + y^2 = 1$ 限制下的条件最大值与最小值。(提示: 可以使用拉格朗日乘数法。)

21. 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。