Лабораторная работа 2.2.1.

Герасименко Д.В.

1 курс ФРКТ, группа Б01-104

Аннотация

Тема:

Исследование взаимной диффузии газов

Цели работы:

- 1) Определение коэффициента диффузии по результатам измерения
- 2) Исследование явления взаимной диффузии газов
- 3) Регистрация зависимости концентрации гелия в воздухе с помощью датчиков теплопроводности при разных начальных давлениях смеси газов

Необходимое оборудование:

Измерительная установка, форвакуумный насос, баллон с газом, манометр, источник питания, цифровой омметр, секундомер

Теория

Основное уравнение диффузии

Диффузия - самопроизвольное перемешивание молекул, происходящее вследствие их хаотичного теплового движения, если в системе есть молекулы разного сорта, то говорят о *взаимной* диффузии. Для исследования диффузии необходимо строгое соблюдение ламинарности потоков, что достигается при равенстве давлений частей смеси.

В системе с диффузией выполняется закон Фика, согласно которому градиент концентрации вещества системы пропорциональен потоку вещества в данном объеме:

$$J = -D\nabla N \tag{1}$$

Где D - коэффициент диффузии, J - диффузионный потока вещества, N - концентрация её в данном объёме. В одномерно случае, если происходит взаимная диффузия двух компонент a и b, то уравнение (1) для каждой из компонент преобразуется как:

$$j_a = -D_{ab} \cdot \frac{\partial n_a}{\partial x}; \ j_b = -D_{ba} \cdot \frac{\partial n_b}{\partial x}$$
 (2)

В данной работе предполагается поддержание неизменными температуры и давления смеси, откуда из основного уравенения состояния идеального газа получаем: $P = (n_{He} + n_D) \cdot kT \Rightarrow \Delta n_{He} = -\Delta n_D$. Поэтому для описания диффузии будем рассматривать уравнение только для потока гелия. Также эксперимент будет проходить в условиях малой концентрации гелия по сравнению с концентрацией воздуха, а

поэтому перемешивание газов можно рассматривать как диффузию легких частиц. Из параграфов 89-90 2го тома Сивухина находим, что вязкость потока жидкости подчиняется ньютоновскому закону вязкости:

$$\eta = \frac{1}{3} nm\lambda \, \overline{v} = nm \, D \tag{3}$$

Таким образом, коэффициент взаимной диффузии газов равен:

$$D = \frac{1}{3}\lambda \,\overline{v} \tag{4}$$

где $\lambda=\frac{1}{\sigma n_0}$ - длина свободного пробега, а $\overline{v}=\sqrt{\frac{8RT}{\pi\mu}}$ - средняя тепловая скорость частиц.

Применение закона Фика в эксперименте

В экспериментальной устновке есть два сосуда объёмами V_1 и V_2 соответственно. Они соединены трубкой малого объема по сравнению с объёмами сосудов, поэтому можно считать, что выравнивание концентрации происходит исключительно в трубке, а внутри сосудов устанавливается постоянной по объёму концентрация. Если бы $n_1, n_2 = const$, то J = const и следовательно:

$$J = -DS \frac{n_1 - n_2}{l} \tag{5}$$

В предположении, что процесс выравнивания - медленный, можно считать, что ур-е (4) устанавливается в каждый момент времени. Допустим, за время Δt изменения концентрации в сосудах: $\Delta n_1, \Delta n_2$. Тогда верно, что $V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t$. Откуда получим:

$$\frac{d(n_1 - n_2)}{n_1 - n_2} = -\frac{D S}{l} \left(\frac{1}{V_1} + \frac{1}{V_2} \right) \cdot dt \tag{6}$$

Откуда получим уравнение концентрации смеси от времени:

$$\Delta n = \Delta n_0 \cdot e^{-\frac{t}{\tau}} \tag{7}$$

где $au=rac{V_1V_2}{V_1+V_2}rac{l}{D\,S}$. Для проверки процесса на квазистационарность необходимо убедиться в том, что au много больше времени диффузии одной частицы вдоль трубки: $au\ggrac{l^2}{\Sigma}$

Метод и экспериментальная установка

Мы будем фиксировать изменения концентрации газов, следя за его теплопроводностью. Для этого понадобятся датчики, с помощью которых проследим зависимость сопротивления проволоки от теплопроводности газа. Схема датчиков изображена на рис.1.

рис.1. Датчик теплопроводности и дозатор

Для измерения сопротивлений используется мостовая схема, балансирующаяся при заполнении сосудов (и датчиков) одной и той же смесью. При перемешивании газов в сосудах возникает «разбаланс» моста. При незначительном различии в составах смесей показания вольтметра, подсоединённого к диагонали моста, будут пропорциональны разности

концентраций примеси: $U \sim$

 $\Delta C \sim \Delta (n_1 - n_2)$. В процессе диффузии разность концентраций убывает по закону (6), и значит по тому же закону изменяется напряжение:

$$U = U_0 \cdot e^{-\frac{t}{\tau}} \tag{8}$$

Экспериментальная установка состоит из сосудов объёмами V_1, V_2 , соединительной трубкой с краном K_3 , в которой будет происходить диффузия, сообщающей трубкой с баллоном гелия, форвакуумного насоса и подачи атмосферы. Гелий будет запускаться в установку с помощью дозатора, устройство которого приведено на рис.1.

рис.2. Схема установки

Датчики теплопроводности \mathcal{A}_1 и \mathcal{A}_2 , расположенные в сосудах V_1 и V_2 соответственно, включены в мостовую электрическую схему согласно рис. 1. В одну из диагоналей моста включён высокочувствительный вольтметр (гальванометр) Γ , к другой подключается источник небольшого постоянного напряжения. Сопротивления проволок датчиков составляют одно из плеч моста. Второе плечо составляют переменные сопротивления R_1 , R_2 и R, служащие для установки показаний вольтметра Γ на нуль (балансировка моста). Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо проводить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводится измерения)

Выполнение и обработка результатов

Экспериментальные погрешности и необходимые справочные данные

Цена деления манометра: 199 делений соответствует атмосферному давлению в 750 мм рт. ст. \Rightarrow цена деления: $\sigma_M = 3,7$ торр \cdot дел $^{-1}$.

Рабочие объемы сосудов: $V_1 = V_2 = (252 \pm 1) \text{ см}^3$; $\varepsilon_V = 0, 4\%$.

Отношение длины диффузорной трубки к площади её сечения: $\frac{L}{S}=(5,3\pm0,1)$ см $^{-1};~\varepsilon_{ls}=1,8\%$

$$\frac{L}{S} = (5, 3 \pm 0, 1) \text{ cm}^{-1}; \, \varepsilon_{ls} = 1, 8\%$$

Выполнение

Подготовим установку к работе:

- 1) Очистим установку от всех газов с помощью форвакуумного насоса до давления $\sim 0, 1$ торр.
- 2) Напустим воздуха в установку из крана ${
 m K}_5$ до рабочего давления в $P_r \sim 40$ торр. Сбалансируем мост датчиков.
- 3) Подадим гелий в установку, предварительно откачав воздух из патрубков с помощью форвакуумного насоса. Подачу осуществим порционно с помощью дозатора. По оканчании подачи плотно закроем кран K_7 .
- 4) Откачаем гелий из патрубков и подадим в сосуд с воздухом давление в $1, 5 \cdot P_r$. Изолируем систему газов, перекрыв краны K_1 и K_2 .
 - 5) Откроем кран K_3 и запустим программу на компьютере.

Проведем эксперимент при разных рабочих давлениях и результаты внесем в таблицы ниже. Построим графики зависимостей $ln(\frac{U}{U_0})$ и по наклонну графиков определим значение коэффициента $-\frac{1}{\tau}$

	40 ropp																			
Номер	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
t, c	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
U, B	15,87	15,11	14,33	13,58	12,91	12,27	11,63	11,1	10,52	9,883	9,465	8,985	8,552	8,121	7,693	7,316	6,908	6,567	6,229	5,925
ln(V)	2,764	2,716	2,663	2,608	2,558	2,507	2,454	2,407	2,354	2,291	2,248	2,196	2,146	2,094	2,04	1,99	1,933	1,882	1,829	1,779
100 торр																				
Номер	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
t, c	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
U, B	16,31	15,78	15,27	14,78	14,28	13,84	13,4	12,94	12,53	12,14	11,72	11,23	10,99	10,57	10,26	9,892	9,542	9,293	8,858	8,677
ln(V)	2,792	2,759	2,726	2,693	2,659	2,628	2,595	2,561	2,528	2,496	2,461	2,419	2,397	2,358	2,329	2,292	2,256	2,229	2,181	2,161
200 торр																				
Номер	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
t, c	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
U, B	15,4	15,12	14,85	14,59	14,35	14,11	13,87	13,64	13,45	13,21	13,05	12,9	12,74	12,57	12,4	12,24	12,07	11,9	11,76	11,61
ln(V)	2,734	2,716	2,698	2,68	2,664	2,647	2,63	2,613	2,599	2,581	2,569	2,557	2,545	2,531	2,518	2,505	2,49	2,476	2,465	2,452
300 торр																				
Номер	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
t, c	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
U, B	15,15	14,96	14,78	14,6	14,39	14,21	14,05	13,87	13,73	13,5	13,43	13,28	13,16	13,07	12,96	12,87	12,72	12,59	12,5	12,36
ln(V)	2,718	2,705	2,693	2,681	2,666	2,654	2,642	2,63	2,619	2,602	2,597	2,586	2,578	2,57	2,562	2,555	2,543	2,533	2,526	2,514

табл. 1. Зависимость напряжения датчиков от времени

График зависимости $ln(U/U_0)$ (t)

Обработаем полученные результаты с помощью метода наименьших квадратов. Каждая из зависимостей - линейна, следовательно, выражается как: $ln(\frac{U}{U_0}) = b \cdot t + a$. Запишем получившиеся коэффициенты для каждой из зависимостей.

Давление, торр	$b, 10^{-3} c^{-1}$	$\sigma_b, 10^{-3} c^{-1}$	a	σ_a
40	-5,21	0,01	2,82	0,0006
100	-3,34	0,01	2,83	0,0008
200	-1,47	0,02	2,74	0,0012
300	-1,06	0,02	2,72	0,0012

maбл. 2. Для просчета $-\frac{1}{\tau}$.

Теперь вычислим коэффициент диффузии гелия для каждого из давления. Оценим погрешность вычисляемой величины. Так как введенная $au=rac{V_1V_2}{V_1+V_2}rac{l}{D\,S},$ то

$$D = \frac{l}{S} \cdot \frac{V_1 \, V_2}{V_1 + V_2} \cdot \frac{1}{\tau} \tag{9}$$

тогда относительная погрешность:

$$\left(\frac{\sigma_D}{D}\right) = \sqrt{\varepsilon_{ls}^2 + \varepsilon_V^2 + \varepsilon_b^2} \tag{10}$$

Данные внесем в таблицу:

Давление, торр	$D, cm^2 \cdot c^{-1}$	$\sigma_D, \mathrm{cm}^2 \cdot \mathrm{c}^{-1}$
40	3,45	0,06
100	1,63	0,03
200	0,97	0,02
300	0,71	0,01

Теперь изобразим график зависимости $D(\frac{P}{P_0})$, значение D_0 при атмосферном давлении сравним с табличным. Из графика находим, что при $\frac{1}{P}=\frac{1}{760}=0,0013$: $D_0=(0,151\pm0,005)~{\rm cm}^2\cdot{\rm c}^{-1}$, что отличается от табличного и не совпадает с ним в пределах посчитанной погрешности: $D_{real}=0,62~{\rm cm}^2\cdot{\rm c}^{-1}$.

Теперь оценим длину свободного пробега. По формуле (4) имеем:

$$\lambda = 3D \cdot \sqrt{\frac{\pi \,\mu}{8 \,R \,T}} \Rightarrow \varepsilon_{\lambda} = \sqrt{\varepsilon_D^2 + \varepsilon_{k_{D\left(\frac{1}{P}\right)}}^2} = 8,4\% \tag{11}$$

Давление, торр	40	100	200	300	760
λ , HM	831	393	234	171	96

Тогда длина свободного пробега гелия при атмосверном давлении:

$$\lambda_0 = (96 \pm 8) \text{ HM}$$

Вывод и обсуждение результатов работы

- 1) Исследована взаимная диффузия на примере проникновения примеси легких частиц гелия.
- 2) Найдено значение коэффициента диффузии при экстраполяции к 760 торр, которое не совпадает с табличным в пределах погрешности.
- 3) Оценена длина свободного пробега гелия при различных давлениях. По порядку совпадает с эталлонным, но численно отличается в 2 раза
- 4) Проблемы в найденных результатах могут быть обусловлены неправильным трактованием объёма установки. Если бы он был в 2 раза больше, чем V_1 , то все найденные значения вошли бы в предел погрешности.