$(n \ge 0)$? Определить размеры этой окрестности при n = 0, 1, 2, 3.

666. С помощью «є—б»-рассуждений доказать, что функция $f(x) = x^2$ непрерывна при x = 5.

Заполнить следующую таблицу:

e	1	0,1	0,01	0,001	• • •
8					

667. Пусть $f(x) = \frac{1}{x}$ и $\epsilon = 0,001$. Для значений $x_0 = 0,1$; 0,01; 0,001; . . . найти максимально большие положительные числа $\delta = \delta$ (ϵ , x_0) такие, чтобы из неравенства $|x-x_0| < \delta$ вытекало бы неравенство $|f(x)-f(x_0)| < \epsilon$.

Можно ли для данного $\varepsilon = 0,001$ выбрать такое $\delta > 0$, которое годилось бы для всех значений x_0 из интервала (0,1), т. е. такое, что если $|x-x_0| < \delta$, то $|f(x)-f(x_0)| < \varepsilon$, каково бы ни было значение $x_0 \in (0,1)$?

668. Сформулировать на языке « ϵ — δ » в положительном смысле следующее утверждение: функция f(x), определенная в точке x_0 , не является непрерывной в этой точке.

669. Пусть для некоторых чисел $\varepsilon > 0$ можно найти соответствующие числа $\delta = \delta$ (ε , x_0) > 0 такие, что $|f(x) - f(x_0)| < \varepsilon$, если только $|x - x_0| < \delta$.

Можно ли утверждать, что функция f(x) непрерывна в точке x_0 , если: а) числа в образуют конечное множество; б) числа в образуют бесконечное множество двоичных дробей $\epsilon = \frac{1}{2^n}$ ($n = 1, 2, \ldots$).

670. Пусть дана функция f(x) = x + 0,001 [x].

Показать, что для каждого $\varepsilon > 0,001$ можно подобрать $\delta = \delta$ (ε , x) > 0 такое, что $|f(x') - f(x)| < \varepsilon$, если только $|x' - x| < \delta$, а для $0 < \varepsilon \le 0,001$ для всех вначений x этого сделать нельзя.

В каких точках нарушается непрерывность этой функции?

671. Пусть для каждого достаточно малого числа $\delta > 0$ существует $\epsilon = \epsilon (\delta, x_0) > 0$ такое, что если