Метод главных компонент

Задание 1. Выберите из нижеприведенных матриц подходящую (-ие) для реализации МГК и повторите шаги из первого задания.

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right); \quad B = \left(\begin{array}{cc} 6 & 4 \\ 4 & -1 \end{array}\right); \quad C = \left(\begin{array}{cc} 3 & 3 \\ 2 & 4 \end{array}\right); \quad D = \left(\begin{array}{cc} 3 & -2 \\ -2 & 4 \end{array}\right); \quad E = \left(\begin{array}{cc} 3 & 5 \\ 5 & 3 \end{array}\right)$$

Задание 2.

Ниже представлены результаты применения метода главных компонент. Исходные индикаторы: X, Y, Z.

	PC1	PC2	PC3
X	0.5884	-0.4993	0.6360
Y	0.6129	-0.2377	-0.7536
Z	0.5274	-0.8332	0.1662
Variance	2.5149	0.4305	0.0545

- 1. Рассчитайте информативность первой главной компоненты?
- 2. Сформулируйте критерий Кайзера для определения количества извлекаемых главных компонент. Сколько, согласно данному критерию, главных компонент необходимо извлечь в данном случае?
- 3. Чему равен след (trace) ковариационной матрицы исходных переменных $X,\ Y,\ Z$ (то есть, сумма элементов матрицы по главной диагонали)? Проинтерпретируйте это значение.