Génération procédurale d'un réseau de rivières

Etudiants: EYMARD B., PEURIERE R. Tuteur: GALIN E. Master 1 Informatique

Objectifs

- Créer un algorithme alternatif à celui du calcul des aires de drainage
- Pallier au problème du bruit
- Obtention d'une HeightMap finale comprenant un réseau de rivières réaliste

Pipeline et Méthode

Entrée: HeightMap d'un terrain T sans réseau de rivières

Sortie:

HeightMap du terrain T avec réseau de rivières réaliste

Poisson-Disc Sampling

Calcul de l'échantillonage sur les points de la HeightMap T: $P = \{ p \in T \mid \forall p_i, p_j \in P, r \leq || p_i - p_j || \leq 2r \}$ Création du graphe G = (P, A)

 $A = \{ (p_i, p_j) \mid p_i \in P, p_j \in P, || p_i - p_j || < d_6 \}$

Correction de la pente

$$\forall \left(p_i, p_j\right) \in A, \ f\left(p_i, p_j\right) = \begin{cases} C^2 * w \ si \ \vec{a}. \vec{z} > 0 \\ \frac{w}{c} \ si \ \vec{a}. \vec{z} < 0 \end{cases}, w = ||p_i - p_j|| * (1 + (-\frac{1}{2} * \vec{a}. \vec{z})) \\ \vec{a} = \overline{(p_j - p_i)} \ et \ \vec{z} = (0, 0, 1) \end{cases}$$

Utilisation de la fonction de cout f pour pondérer les arcs de G:

Calcul des points des n rivières R_n de longueur m sur P: (i.e. plus court chemin vers la mer) $R_n = \{p_0, ..., p_m\} \mid h(p_0) > h_{sea}, h(p_m) < h_{sea}$

Dijkstra (Shortest Path)

Obtention d'un réseau de n rivières:

 $N = \{Rc_0, ..., Rc_{n-1}\}$ Tel que Rc_i forme un chemin continu dans *T*.

Soit $\forall R_i$, $Rc_i = B(R_i)$ (Bresenham)

Calcul du drainage

Calcul de la profondeur et de la largeur de nos rivières grâce au drainage:

Soit D le drainage en un point de la rivière R_i , $D(p) = 1 + \sum D(p_i)$, p_i les i fils de pEt Q le flux d'eau de R_i

 $Q = D^{0,5}$ Soit R_v le rayon de la rivière R_i en un point p, $R_{v} = Q$

avec
$$h_{eau} = h_t - R_v$$
, $\alpha = \left(1 - \left(\frac{dr}{R_v}\right)^2\right)^3$ et $dr = \|p - c\|$

Obtention d'un réseau $N' = \{R_{c_0}, ... R_{c_{n-1}}\}$ Et d'une nouvelle HeightMap T' à laquelle ce même réseau a été intégré.

Résultats

- Obtention d'un réseau de rivières de manière procédurale
- Rivières respectant la topologie (pente...) de T après correction
- Modification et correction du terrain en fonction de N'
- Largeur des rivières dépendante du nombre de points (précision) et
- non de la largeur du terrain Actuelle impossibilité de créer des structures tels que les lacs
- Possible lits de rivière non réalistes si la Heightmap ne convient pas (Dijkstra trouvera toujours un chemin vers la mer)

