Data Reduction

Feng-Chang Lin

Department of Biostatistics
University of North Carolina at Chapel Hill

flin@bios.unc.edu

(C&B §6)

Introduction

- Suppose that we are interested in estimating a parameter θ .
- If there is a random sample, X, whose pdf or pmf does not depend on θ , one would say "X does not contain any information about θ ".
- On the other hand, it is possible to have a brief summary statistic that contains all the information about θ .
- We call this "data reduction", which summarizes a large number of observations into a small number of summary statistics.
- Our ultimate goal is to find the "smallest", most concise, summary statistics.

Sufficient Statistics

- Principle: If T(X) is a sufficient statistic for θ , then it is sufficient to do any inference about θ through T(X).
- That is, if x and y are two sample values such that T(x) = T(y), then inference about θ should be the same whether X = x or X = y is observed.
- Sufficient statistics: A statistic T(X) is a sufficient statistic for θ if the conditional distribution of the sample X given the value of T(X) does not depend on θ .

Sufficient Statistics (cont'd)

- **Example** Let X_1, \dots, X_n be iid random variables distributed as bernoulli(θ), $0 < \theta < 1$. Show that $T(X) = \sum_{i=1}^{n} X_i$ a sufficient statistic for θ .
- Proof Since

$$P(X = x | T(X) = t) = \frac{P(X = x, T(X) = t)}{P(T(X) = t)},$$

where

$$P(T(x) = t) = {n \choose t} \theta^t (1 - \theta)^{n-t},$$

and

$$P(X = x, T(X) = t) = P(X = x) = \prod_{i=1}^{n} P(X_i = x_i) = \theta^t (1 - \theta)^{n-t}.$$

4/28

Sufficient Statistics (cont'd)

• Hence, P(X = x | T(X) = t) = t!(n-t)!/n!, for those $x_i's$ with $\sum_{i=1}^n x_i = t$, and P(X = x | T(X) = t) = 0, otherwise.

5/28

Sufficient Statistics (cont'd)

- For θ , the sufficiency statistics may not be unique.
- In this case, \bar{X} , (X_1, \bar{X}) , (X_1, \dots, X_n) are all sufficient statistics.
- **Theorem 6.2.2** If $p(x|\theta)$ is the joint pdf or pmf of X and $q(t|\theta)$ is the pdf or pmf of T(X). T(X) is a sufficient statistic for θ if, for every x in the sample space, the ratio $p(x|\theta)/q(T(x)|\theta)$ does not depend on θ .

6/28

Finding Sufficient Statistics

- So far, we only show whether T(X) is a sufficient statistic.
- The question here is "how to find one"?

Theorem (Factorization Theorem)

Let $f(x|\theta)$ be the joint pdf or pmf of X. A statistic T(X) is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and h(x) such that, for all sample points x and all parameter points θ ,

$$f(x|\theta) = g(T(x)|\theta)h(x).$$

Lin (UNC-CH) Bios 661 February 7, 2019 7/28

Finding Sufficient Statistics (cont'd)

- **Example** Let X_1, \dots, X_n be iid random variables distributed as Bernoulli(θ), $0 < \theta < 1$. Show that $T(x) = \sum_{i=1}^n x_i$ is a sufficient statistic using Factorization Theorem.
- Proof We first write the joint pmf

$$P(X = x) = \prod_{i=1}^{n} P(X_i = x_i)$$

$$= \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)} I(x_i \in \{0, 1\})$$

$$= \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} I(x_i \in \{0, 1\}).$$

• We can have $g(T(x)|\theta) = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i}$ as a function of $T(x) = \sum_{i=1}^{n} x_i$ and $h(x) = \prod_{i=1}^{n} I(x_i \in \{0,1\})$.

Lin (UNC-CH) Bios 661 February 7, 2019 8/28

Finding Sufficient Statistics (cont'd)

- **Example** Let X_1, \dots, X_n be iid random variables distributed as Uniform $(0, \theta)$. Find a sufficient statistic for θ .
- Solution To apply the factorization theorem, we first write the joint pdf

$$f_X(x) = \theta^{-n} \prod_{i=1}^n I(0 < x_i < \theta) = \theta^{-n} I(0 < x_{(n)} < \theta) I(0 < x_{(1)})$$

- Take $T(x) = x_{(n)}$, $g(T(x)|\theta) = \theta^{-n}I(0 < T(x) < \theta)$, and $h(x) = I(0 < x_{(1)})$.
- We can conclude $T(X) = X_{(n)}$ is a sufficient statistic for θ .

Lin (UNC-CH) Bios 661

Sufficiency in Exponential Family

• **Theorem 6.2.10** Let X_1, \dots, X_n be iid random variables from a pdf or pmf $f(x|\theta)$ that belongs to the exponential family given by

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^k w_j(\theta)t_j(x)\right),$$

where $\theta = (\theta_1, \dots, \theta_d)$, $d \leq k$. Then,

$$T(X) = \left(\sum_{i=1}^n t_1(X_i), \cdots, \sum_{i=1}^n t_k(X_i)\right)$$

is a sufficient statistic for θ .

10 / 28

Sufficiency in Exponential Family (cont'd)

- **Example** Let X_1, \dots, X_n be iid random variables distributed as Bernoulli(θ), $0 < \theta < 1$. Show that $T(X) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .
- Solution The pmf for one observation is

$$P(X_1 = x) = \theta^x (1 - \theta)^{1 - x} I(x \in \{0, 1\})$$

= $I(x \in \{0, 1\}) (1 - \theta) \exp\left(x \log \frac{\theta}{1 - \theta}\right)$.

- Take $h(x) = I(x \in \{0, 1\}), c(\theta) = (1 \theta), w_1(\theta) = \log \frac{\theta}{1 \theta}, t_1(x) = x.$
- By the sufficiency theorem in exponential family, one can conclude $T(X) = \sum_{i=1}^{n} t_1(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

11 / 28

Minimal Sufficient Statistics

- In the Bernoulli example, there is a large number of sufficient statistics: $\sum_{i=1}^{n} X_i, \bar{X}, (X_1, \bar{X}), \dots, (X_1, \dots, X_n)$.
- Apparently, some of these can be reduced to a simpler form that is still sufficient for θ .
- Minimal Sufficient Statistics: A sufficient statistic is a minimal sufficient statistic if it is a function of every other sufficient statistic.
- Any one-to-one transformation of a minimal sufficient statistic is also a minimal sufficient statistic (still not unique).

Minimal Sufficient Statistics (cont'd)

• Theorem 6.2.13 Let $f(x|\theta)$ be the joint pdf or pmf of X. Suppose that there exists a function T(X) such that, for every two sample points x and y, the ratio $f(x|\theta)/f(y|\theta)$ does not depend on θ if and only if T(x) = T(y). Then T(X) is a minimal sufficient statistic for θ .

Minimal Sufficient Statistics (cont'd)

- **Example** Let X_1, \dots, X_n be iid random variables distributed as Bernoulli(θ), $0 < \theta < 1$. Show that $T(x) = \sum_{i=1}^{n} x_i$ is a minimal sufficient statistic.
- Proof To apply the above theorem, we first write the joint pmf

$$P(X = x) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} I(x_i \in \{0, 1\}).$$

• If $T(x) = \sum_{i=1}^{n} x_i$, one can have

$$P(X = x) = \left(\frac{\theta}{1 - \theta}\right)^{T(x)} (1 - \theta)^n \prod_{i=1}^n I(x_i \in \{0, 1\}).$$

Lin (UNC-CH) **Bios 661**

Minimal Sufficient Statistics (cont'd)

• Taking two points, x and y, in the sample space for X. One has

$$\frac{P(X=x)}{P(X=y)} = \left(\frac{\theta}{1-\theta}\right)^{T(x)-T(y)}.$$

• The ratio does not depend on θ if and only of T(x) = T(y).

15/28

Ancillary Statistics

- Sample values may contain some additional information that is redundant of θ .
- For example, suppose that X_1 , X_2 are iid as $N(\theta, 1)$. The random variable $X_1 X_2$ is distributed as N(0, 2).
- Is $X_1 X_2$ expected to provide any information about θ ?
- How about $(X_1 X_2, X_2)$?
- Ancillary Statistics: A statistic whose distribution does not depend on the parameter θ is called an *ancillary statistic* (for θ).

Ancillary Statistics (cont'd)

Lin (UNC-CH)

- Let X_1, \dots, X_n be iid from a *scale* parameter family with cdf $F(x/\sigma), \sigma > 0$.
- Any statistic that depends on $X_1/X_n, \dots, X_{n-1}/X_n$ is an ancillary statistic.
- For example, $(X_1 + \cdots + X_n)/X_n = X_1/X_n + \cdots + X_{n-1}/X_n + 1$ is an ancillary statistic.
- Let $Z_i = X_i/\sigma$. We know that Z_i does not depend on σ .
- Since the joint cdf of $X_1/X_n, \dots, X_{n-1}/X_n$ is

$$F(y_1, ..., y_{n-1} | \sigma) = P(X_1 / X_n \le y_1, ..., X_{n-1} / X_n \le y_{n-1})$$

$$= P(\sigma Z_1 / (\sigma Z_n) \le y_1, ..., \sigma Z_{n-1} / (\sigma Z_n) \le y_{n-1})$$

$$= P(Z_1 / Z_n \le y_1, ..., Z_{n-1} / Z_n \le y_{n-1})$$

• The last line shows the cdf does not depend on σ and $(X_1 + \cdots + X_n)/X_n$ is an ancillary statistic of σ .

4 D > 4 B > 4 E >

February 7, 2019

17/28

Bios 661

Complete Statistics

- Complete Statistics: Let $\{f(t|\theta): \theta \in \Theta\}$ be a family of pdfs or pmfs for T(X). The family is called complete if $E_{\theta}g(T) = 0$ for all $\theta \in \Theta$ implies that $P_{\theta}(g(T) = 0) = 1$ for all $\theta \in \Theta$.
- Completeness means that the only function of T with mean 0 is the 0 function.
- **Example** Let X_1, \dots, X_n be iid random variables distributed as $N(\theta, \theta^2), -\infty < \theta < \infty$. Is $T = (\bar{X}, S^2)$ complete? Since $E_{\theta}\bar{X}^2 = \theta^2 + \theta^2/n = (1 + 1/n)\theta^2$ and $E_{\theta}S^2 = \theta^2$, one can have $g(T) = \bar{X}^2 (1 + 1/n)S^2$ and $E_{\theta}g(T) = 0$ for all $\theta \in \Theta$.
- Here g(T) is not a zero function (with probability 1) and does not involve θ. Hence T is NOT complete.

Complete Statistics (cont'd)

- **Example** Let $X \sim \text{Bernoulli}(\theta)$, $\theta \in (0, 1)$. Take T(X) = X. Is T complete? This is equivalent to find out if g = 0 is the only function that has $E_{\theta}g(T) = 0$ for all $\theta \in (0, 1)$.
- **Solution** Since X follows Bernoulli, one only has g(0) and g(1) for g(T). Then, if

$$E_{\theta}g(T) = g(0)(1-\theta) + g(1)\theta = g(0) + \{g(1) - g(0)\}\theta = 0,$$

the only solution for g function is g(0) = g(1) = 0 for $\theta \in (0, 1)$.

Lin (UNC-CH) Bios 661 February 7, 2019 19 / 28

Complete Statistics (cont'd)

• **Example** Similarly, let $X \sim \text{Binomial}(2, \theta)$, $\theta \in \Theta$, where $\Theta = \{1/3, 2/3\}$. Take T(X) = X. Is T complete? One can see X = 0, 1, 2. Follow the same approach,

$$E_{\theta}g(T) = (4/9)g(0) + (4/9)g(1) + (1/9)g(2), \text{ if } \theta = 1/3,$$

 $E_{\theta}g(T) = (1/9)g(0) + (4/9)g(1) + (4/9)g(2), \text{ if } \theta = 2/3.$

If $E_{\theta}g(T) = 0$, one can find g(0) = g(2) = 4, g(1) = -5 as a solution, which shows g function can be non-zero

- **Example** Let $X \sim \text{Binomial}(2, \theta)$, $\theta \in \Theta$, where $\Theta = \{1/3, 1/2, 2/3\}$. Take T(X) = X. Is T complete? Yes.
- That tells you the completeness highly depends on the parameter space.

Lin (UNC-CH) Bios 661 February 7, 2019 20 / 28

Completeness in Exponential Families

• Let X_1, \dots, X_n be iid random variables from a pdf or pmf $f(x|\theta)$ that belongs to the exponential family given by

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^k w_j(\theta)t_j(x)\right),$$

where $\theta = (\theta_1, \cdots, \theta_k)$. Then

$$T(X) = \left(\sum_{i=1}^n t_1(X_i), \cdots, \sum_{i=1}^n t_k(X_i)\right)$$

is complete if $\{(w_1(\theta), \cdots, w_k(\theta)) : \theta \in \Theta\}$ contains an open set in \mathbb{R}^k .

• **Example**: The family $\{N(\mu, \sigma^2) : -\infty < \mu < \infty\}$ with a fixed $\sigma^2 < \infty$ is complete.

Exponential Families

• **Example**: Let $f(x|\mu, \sigma^2)$ be the $N(\mu, \sigma^2)$ family of pdfs where $\theta = (\mu, \sigma^2)$, $-\infty < \mu < \infty$, $\sigma > 0$. Then

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2}\right).$$

• Take h(x) = 1 for all x,

$$c(\theta) = c(\mu, \sigma) = (\sqrt{2\pi}\sigma)^{-1} \exp(-\mu^2/(2\sigma^2)), -\infty < \mu < \infty, \sigma > 0,$$

 $w_1(\mu, \sigma) = \sigma^{-2}, \sigma > 0, w_2(\mu, \sigma) = \mu/\sigma^{-2}, \sigma > 0,$
 $t_1(x) = -x^2/2$, and $t_2(x) = x$.

Lin (UNC-CH) Bios 661 February 7, 2019 22 / 28

Exponential Families (cont'd)

• **Example** If $f(x|\theta) = \theta^{-1} \exp(1 - (x/\theta))$, $0 < \theta < x < \infty$, it is not an exponential family since

$$f(x|\theta) = \theta^{-1} \exp\left(1 - \left(\frac{x}{\theta}\right)\right) I_{[\theta,\infty)}(x).$$

• The indicator function is not a function of *x* alone, and cannot be expressed as an exponential.

Lin (UNC-CH) Bios 661 February 7, 2019 23 / 28

Basu's theorem

Theorem (Basu's Theorem)

If T(X) is a complete and minimal sufficient statistic, then T(X) is independent of every ancillary statistic.

Proof: (only for discrete distributions) Let S(X) be any ancillary statistic, so P(S(X) = s) does not depend on θ . Since T(X) is a sufficient statistic,

$$P(S(X) = s | T(X) = t) = P(X \in \{x : S(x) = s\} | T(X) = t),$$

does not depend on θ . For independence, we owe to show

$$P(S(X) = s | T(X) = t) = P(S(X) = s)$$

for all possible values of $t \in \mathcal{T}$.

Basu's theorem (cont'd)

• Marginalizing the joint probability of S(X) and T(X), one can have

$$P(S(X) = s) = \sum_{t \in \mathcal{T}} P(S(X) = s, T(X) = t)$$

$$= \sum_{t \in \mathcal{T}} P(S(X) = s | T(X) = t) P_{\theta}(T(X) = t). \quad (1)$$

• Since $\sum_{t \in \mathcal{T}} P_{\theta}(T(X) = t) = 1$, one can also write

$$P(S(X) = s) = P(S(X) = s) \sum_{t \in \mathcal{T}} P_{\theta}(T(X) = t)$$
$$= \sum_{t \in \mathcal{T}} P(S(X) = s) P_{\theta}(T(X) = t). \tag{2}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Basu's theorem (cont'd)

By (1) and (2), we can have

$$0 = P(S(X) = s) - P(S(X) = s)$$

= $\sum_{t \in T} \{ P(S(X) = s | T(X) = t) - P(S(X) = s) \} P_{\theta}(T(X) = t)$

• If we let g(t) = P(S(X) = s | T(X) = t) - P(S(X) = s), then

$$0 = \sum_{t \in \mathcal{T}} g(t) P_{\theta}(T(X) = t) = E_{\theta} g(T), \; \text{ for all } \; \theta.$$

- Since T(X) is a complete statistic, the equation above implies that g(t) = 0 for all possible values of $t \in \mathcal{T}$.
- Hence, we can claim P(S(X) = s | T(X) = t) = P(S(X) = s).

◄□▶◀圖▶◀불▶◀불▶ 불 외Q⊙

Basu's theorem (cont'd)

- Did we use "minimality" of the sufficient statistics in the proof?
- For the problems we will consider, a sufficient statistic will be complete only if it is minimal.
- Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistics.

Practical Use of Basu's theorem

• **Example** Let X_1, \dots, X_n be iid Exponential(θ). Compute the expected value of

$$S(X) = \frac{X_n}{X_1 + \dots + X_n}.$$

- We can show that S(X) is an ancillary statistic (How?)
- Since Exponential(θ) belongs to the exponential family (homework) with t(x) = x, so $T(X) = \sum_{i=1}^{n} X_i$ is a (minimal) sufficient statistic.
- Hence by Basu's theorem, T(X) and S(X) are independent and

$$\theta = E_{\theta}X_n = E_{\theta}T(X)S(X) = E_{\theta}T(X)E_{\theta}S(X) = n\theta E_{\theta}S(X).$$

One has $E_{\theta}S(X) = 1/n$.

