Speeding Up PPR Computations Via Graph Compression

Graph Compression

Figure 1. The bipartite clique-star transformation.

Modified Compressed-Graph Algorithms

PageRank
$$\vec{r} = cP\vec{r} + \frac{1}{N}(1-c)\vec{1}$$

PPR $\vec{r} = cP\vec{r} + (1-c)\vec{s}$

Graph Compression

Transformation

Add virtual vertex to **reduce edges**Aiming at dense subgraphs, i.e. the **bipartite subgraph**.

Accelerate Adjacency Matrix Multiplication

$$\mathbf{y} = E^T \mathbf{x}$$
 $\mathbf{y}[v] = \sum_{uv \in E} \mathbf{x}[u].$

Considering a virtual node w:

$$\mathbf{y}[v] = \mathbf{x}[u_1] + \mathbf{x}[u_2] + \mathbf{x}[u_3] + \mathbf{x}[u_4] + \mathbf{x}[u_5]$$

= $\mathbf{x}[u_1] + \mathbf{x}[u_2] + \mathbf{x}[w].$

Graph Compression

Accelerate Adjacency Matrix Multiplication

Algorithm 2. (Compressed-multiply(E, x)) forall Real nodes v do $\mathbf{y}[v] = 0;$ end forall Virtual nodes v do $\mathbf{x}[v] = 0;$ end forall Nodes $u \in V'$ do forall $Edges\ uv \in E'$ do if v is real then $\mathbf{y}[v] = \mathbf{y}[v] + \mathbf{x}[u];$ else $\mathbf{x}[v] = \mathbf{x}[v] + \mathbf{x}[u];$ end end end

For virtual node v:

$$\mathbf{x}[v] = \sum_{uv \in E'} \mathbf{x}[u].$$

Then, sum up for y results.

$$\mathbf{y}[v] = \sum_{uv \in E'} \mathbf{x}[u].$$

$$O(|E'| + |V'|)$$

PageRank and PPR

PageRank
$$\vec{r} = cP\vec{r} + \frac{1}{N}(1-c)\vec{1}$$

	Uncompressed	Black-Box	Markov Chain
Time/Iteration (sec)	263.52	60.80	60.06
No. of Iterations	21	21	53
Speedup	1	4.33	1.74

Directly run on a compressed graph?

(Personalized) PageRank On Compressed-Graph

- Random walk on G' is not uniform.
- Jump vector has zeros on virtual nodes
- Transitions made from virtual nodes have zero jump p.

This ensures that the Markov chain on G' models exactly the uniform random walk on G

$$\Delta_G(u) = \begin{cases} 1 & \text{if } u \text{ is real,} \\ \sum_{w \in \delta_{\text{out}}^G(u)} \Delta_G(w) & \text{if } u \text{ is virtual.} \end{cases}$$

$$\Gamma_G(u) = \sum_{w \in \delta_{\text{out}}^G(u)} \Delta_G(w). \quad X[u, v] = \frac{\Delta_{G'}(v)}{\Gamma_{G'}(u)}.$$

$$Y[u,v] = \begin{cases} (1-\alpha)X[u,v] & \text{if } u \text{ is real,} \\ X[u,v] & \text{if } u \text{ is virtual.} \end{cases}$$

$$Z = (Y + \alpha J'^T)$$

Compute *P*, the steady state represented by *Z*

P': Discard probability for virtual nodes in P.

P'': the L₁ norm scale from P'

P'' is the steady state of original uniform random walk on G.

FORA On Compressed-Graph?

Algorithm 1: Forward Push

Input: Graph G, source node s, probability α , residue threshold r_{max}

Output: $\pi^{\circ}(s, v)$, r(s, v) for all $v \in V$

- 1 $r(s, s) \leftarrow 1; r(s, v) \leftarrow 0 \text{ for all } v \neq s;$
- 2 $\pi^{\circ}(s, v) \leftarrow 0$ for all v;
- 3 while $\exists v \in V$ such that $r(s, v)/|N^{out}(v)| > r_{max}$ do
- for each $u \in \mathcal{N}^{out}(v)$ do

- $\pi^{\circ}(s, \upsilon) \leftarrow \pi^{\circ}(s, \upsilon) + \alpha \cdot r(s, \upsilon);$
- $r(s, v) \leftarrow 0;$

Modified Forward Push

While $\exists v \in V \text{ such that } \frac{\mathbf{r}(s,v)}{\tau(v)} > r_{max} \mathbf{do}$

for each
$$u \in N^{out}(v)$$
 do

If v is real do

$$r(s,u) += \frac{(1-\alpha)\Delta(u)}{\tau(v)} r(s,v)$$

$$\pi^{o}(s, v) += \alpha \cdot r(s, v)$$

If v is virtual do

$$\mathbf{r}(s,u) \mathrel{+}= \frac{\Delta(u)}{\tau(v)} \mathbf{r}(s,v)$$

$$r(s, v) \leftarrow 0$$

FORA On Compressed-Graph

Modified Forward Push

While $\exists v \in V \text{ such that } \frac{\mathbf{r}(s,v)}{\tau(v)} > r_{max} \mathbf{do}$

for each $u \in N^{out}(v)$ do

If v is real do

$$r(s,u) += \frac{(1-\alpha)\Delta(u)}{\tau(v)} r(s,v)$$

$$\pi^{o}(s, v) += \alpha \cdot \mathbf{r}(s, v)$$

If v is virtual do

$$\mathbf{r}(s,u) \mathrel{+}= \frac{\Delta(u)}{\tau(v)}\mathbf{r}(s,v)$$

$$\mathbf{r}(s,v) \leftarrow 0$$

Using MC to estimate $\pi_{G'}(v, t)$.

Monte-Carlo Random Walk On Compressed Graph

Consider one step,
$$a(u) = \begin{cases} 1 - \alpha, & \text{if } u \text{ is } real \\ 1, & \text{if } u \text{ is } virtual \end{cases}$$

Any
$$v \in N_{out}(u)$$
,

$$p(u \to v) = a(u) \cdot \frac{\Delta(v)}{\tau(u)}$$

$$p(u \to u) = 1 - a(u)$$

Proof it's an unbiased estimation.

Vital PPR Components

α-random walk:

Any
$$v \in N_{out}(u)$$
,

$$p(u \to v) = \frac{1-\alpha}{|N_{out}(u)|}$$

$$p(u \to u) = \alpha$$

 π (s, t): Probability of α -random walk starts from s, ends at t.

Virtual α -random walk:

Consider one step,
$$a(u) = \begin{cases} 1 - \alpha, & \text{if } u \text{ is real} \\ 1, & \text{if } u \text{ is virtual} \end{cases}$$

$$\text{Any } v \in N_{out}(u),$$

$$p(u \to v) = a(u) \cdot \frac{\Delta(v)}{\tau(u)}$$

$$p(u \to u) = 1 - a(u)$$

 $\pi'(s,t)$: Probability of **Virtual** α -random walk starts from s, ends at t.

• $\pi'(s,t) = \pi(s,t)$ holds and MC simulations is **unbiased**.

Algorithm 1: Forward Push

Input: Graph G, source node s, probability α , residue threshold r_{max}

Output: $\pi^{\circ}(s, v)$, r(s, v) for all $v \in V$

- 1 $r(s, s) \leftarrow 1; r(s, v) \leftarrow 0$ for all $v \neq s$;
- 2 $\pi^{\circ}(s, v) \leftarrow 0$ for all v;
- 3 while $\exists v \in V \text{ such that } r(s, v)/|N^{out}(v)| > r_{max} \text{ do}$
- for each $u \in \mathcal{N}^{out}(v)$ do

- $\pi^{\circ}(s, v) \leftarrow \pi^{\circ}(s, v) + \alpha \cdot r(s, v);$
- $r(s, v) \leftarrow 0;$

$$\pi(s,t) = \pi^{\circ}(s,t) + \sum_{v \in V} r(s,v) \cdot \pi(v,t)$$

Virtual Forward Push

While
$$\exists v \in V$$
 such that $\frac{\mathbf{r}'(s,v)}{\tau(v)} > r_{max}$ do

for each $u \in N^{out}(v)$ do

If v is real do

 $\mathbf{r}'(s,u) += \frac{(1-\alpha)\Delta(u)}{\tau(v)}\mathbf{r}'(s,v)$
 $\pi^{o'}(s,v) += \alpha \cdot \mathbf{r}'(s,v)$ once

If v is virtual do

 $\mathbf{r}'(s,u) += \frac{\Delta(u)}{\tau(v)}\mathbf{r}'(s,v)$
 $\mathbf{r}'(s,v) \leftarrow 0$

$$\pi'(s,t) = \pi^{o'}(s,t) + \sum_{v \in V'} r'(s,v) \cdot \pi'(v,t)$$

Algorithm 2: Backward Search

Input: Graph G, target node t, decay factor α , threshold r_{max}^b Output: Backward residue $r^f(s, v)$ and reserve $\pi^f(s, v)$ for all $v \in V$ $r^b(t, t) \leftarrow 1$ and $r^b(v, t) \leftarrow 0$ for all $v \neq t$ and $i = 1, \ldots, j$; $\pi^b(v, t) \leftarrow 0$ for all v; 3 while $\exists v$ such that $r^b(v, t) > r_{max}^b$ do $for each <math>u \in N^{in}(v)$ do $r^b(u, t) \leftarrow r^b(u, t) + (1 - \alpha) \cdot \frac{r^b(v, t)}{d_{out}(u)}$ $\pi^b(v, t) \leftarrow \pi^b(v, t) + \alpha \cdot r^b(v, t)$; $r^b(s, v) \leftarrow 0$;

$$\pi(s,t) = \pi^o(s,t) + \sum_{v \in V} \pi(s,v) \cdot r(v,t)$$

Virtual Backward Push

While
$$\exists v \in V$$
 such that $\mathbf{r}'(\mathbf{v}, \mathbf{t}) > r_{max}$ do

for each $u \in N^{in}(v)$ do

If v is real do

 $\mathbf{r}'(u,t) += \frac{(1-\alpha)\Delta(v)}{\tau(u)}\mathbf{r}(v,t)$
 $\pi^{o'}(v,t) += \alpha \cdot \mathbf{r}'(v,t)$ once

If v is virtual do

 $\mathbf{r}'(u,t) += \frac{\Delta(v)}{\tau(u)}\mathbf{r}'(v,t)$
 $\mathbf{r}'(v,t) \leftarrow 0$

$$\pi'(s,t) = \pi^{o'}(s,t) + \sum_{v \in V'} \pi'(s,v) \cdot r'(v,t)$$

Node Order in Forward Push in SpeedPPR

Simultaneous way vs asynchronous way.

$$O(m \cdot \log \frac{1}{\lambda})$$
 $O(\frac{m}{\lambda})$

Push Order in Compressed Graph

In each iteration:

Real Nodes — Virtual Nodes In Rank Order

Algorithm 2: First-In-First-Out Forward Push

Input: G, α , s, r_{max}

Output: an estimation $\hat{\pi_s}$ of $\vec{\pi_s}$ and the resulted residues $\vec{r_s}$

- 1 $\hat{\pi}(s,v) \leftarrow 0$ and $r(s,v) \leftarrow 0$ for all $v \in V$; $r(s,s) \leftarrow 1$;
- 2 initialize a *first-in-first-out* queue $Q \leftarrow \emptyset$;
- ³ Q.append(s); // append s at the end of Q;
- 4 while $Q \neq \emptyset$ do

$$v \leftarrow Q.pop(); // \text{ pop and remove the front node from } Q;$$

$$\hat{\pi}(s,v) \leftarrow \hat{\pi}(s,v) + \alpha \cdot r(s,v);$$

$$\text{for } each \ u \in N_{out}(v) \text{ do}$$

$$r(s,u) \leftarrow r(s,u) + \frac{(1-\alpha) \cdot r(s,v)}{d_{r}};$$

9 **if**
$$r(s, u) > d_u \cdot r_{\max}$$
 and $u \notin Q$ **then**
10 // u is active and not in Q ;

11
$$Q.append(u)$$
; // append u at the end of Q ;

$$r(s,v) \leftarrow 0;$$

return $\hat{\pi}(s, v)$ for all $v \in V$ as a vector $\hat{\pi_s}$, and r(s, v) for all $v \in V$ as the resulted residue vector $\vec{r_s}$;

Theoretical Analysis

For δ , $0 < \delta < 1$ and $m \ge n^{2-\delta}$, with compressied graph G'(V', E') holds:

- $m' = O\left(\frac{m}{k(n,m,\delta)}\right)$
- $O\left(\frac{m}{n^{1-\delta}}\right)$ additional(virtual) nodes
- runs in time $O(m \cdot n^{\delta} \cdot \log^2 n)$