MATH 325 - Lecture 2

Lambros Karkazis

September 23, 2017

1 Logical Operators

 $\frac{\text{Negation: NOT, } \tilde{}, \neg}{\frac{\text{Conjunction: AND, } \wedge}{\text{Disjunction: OR, } \vee}}$

 $\overline{\text{Implication:}} \text{ IF... THEN...}, \implies$

Equivalence: ...IF AND ONLY IF..., IFF ←⇒

 $\overline{\text{Precedence:}}$ (1st) NOT, AND, OR, IF... THEN..., IFF (Last)

2 Example 4

2.1 Logical Analog of DeMorgan's Laws (p.33)

Logical Definition of DeMorgan's Laws

$$\neg (P \lor Q) \iff \neg P \land \neg Q$$
$$\neg (P \land Q) \iff \neg P \lor \neg Q$$

Truth Table proving $\neg(P \land Q) \iff \neg P \lor \neg Q$

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg (P \land Q)$	$\neg P \lor \neg Q$
F	F	Т	Т	F	${f T}$	T
F	Т	Т	F	F	\mathbf{T}	\mathbf{T}
T	F	F	Т	F	${f T}$	\mathbf{T}
T	Т	F	F	Т	F	F

2.2 The Negation of $P \implies Q$

$$P \wedge \neg Q \iff \neg (P \implies Q)$$

P	Q	$\neg Q$	$P \wedge \neg Q$	$P \Longrightarrow Q$	$\neg(P \implies Q)$
T	Т	F	\mathbf{F}	Τ	\mathbf{F}
T	F	T	${f T}$	\mathbf{F}	${f T}$
F	Т	F	${f F}$	\mathbf{F}	${f F}$
F	F	T	${f F}$	${ m T}$	${f F}$

Note:

$$\neg(P \Longrightarrow Q) \iff P \land \neg Q$$
$$\neg[\neg(P \Longrightarrow Q)] \iff \neg(P \land \neg Q)$$
$$P \Longrightarrow Q \iff \neg P \lor Q$$

Negation of an Implication Double Negation Equivalent Form of Implication

3 Definition 5 (p. 34):

Suppose P and Q are statements.

- 1. Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$
- 2. Converse of $P \implies Q$ is $Q \implies P$
- 3. Inverse of $P \implies Q$ is $\neg P \implies \neg Q$
- 4. Negation of $P \implies Q$ is $P \land \neg Q$

3.1 Remark 6:

- The contrapositive is always equivalent of the original implication.
- The converse and inverse are not equivalent to an implication.
- The converse and inverse are contrapositives.
- To prove equivalence, once ust prove implication and its converse.

4 Variables and Quanitifiers (sec 1.4)

Make statements that depend on an unspecified parameter, a <u>variable</u>, but a context is needed to determine the truth value.

4.1 Example 7

$$P(x) = x^2 - 5x + 6 = 0$$

P(x) is a sentence, but not a statement. You need information about x to determine its truth value.

Need to know what "universe" x lives in.

$$P(0), P(2)$$
 are statements: $P(0) = 0^2 - 5*(0) + 6 = 0$ $6 \neq 0$ False

$$P(2) = 2^2 - 2 * (5) + 6 = 0$$

0 = 0 True

Quantifiers are used to provide a larger context for variables

4.2 Definition 8 (p 33)

- \bullet Phrases such as "For all...", "For every..." are universal quantifiers: \forall
- Phrases such as "There exists...", "There is at least one..." are existential quantifiers: \exists

4.2.1 More Notation:

 \ni , s.t.: "such that" \exists !: "there exists a unique (exactly one)..."

WARNING: Unless otherwise stated, all variables are real numbers.

4.2.2 Convention:

If a variable appears in an antecedent of an implication without a quantifier, then we assume there is a universal quantifier. $x>1 \implies x^2>1$ really means $\forall x\in\mathbb{R}, x>1 \implies x^2>1$

4.2.3 Example:

$$P(x) = x^2 - 5x + 6 = 0$$
 (Assuming x is a real number) $\forall x \in \mathbb{R}, P(x) = x^2 - 5x + 6 = 0$ means... "For all real numbers $x, x^2 - 5x + 6 = 0$ " (False statement because some real numbers x don't satisfy $P(x)$) $\exists x \ni P(x)$ means... "There is a real number x s.t. $x^2 - 5x + 6 = 0$ (True statement since $P(2)$ evalulates to true) $\exists ! x \ni P(x) = 0$ means... "There exactly one real s.t. $x^2 - 5x + 6 = 0$ " (False statement since $P(2)$ and $P(3)$ both evaluate to true)

WARNING: $\forall x, \exists y \text{ is not the same as } \exists y, \forall x$

4.2.4 Example 8: (Prob 4)

Suppose that P(x, y) is a statement for each x and y.

 $\forall x, y, P(x, y) \iff \forall x, \forall y P(x, y) \iff \forall y, \forall x, P(x, y)$

Means P(x, y) is true regardless of what x and y are (order does not matter for the same quantifier).

 $\exists x, y \ni P(x, y) \iff \exists x \ni \exists y \ni P(x, y) \iff \exists y \ni \exists x \ni P(x, y)$

Means there's at least one x and one y that satisfies P(x,y) (order does not matter for the same quantifier).

 $\forall x, \exists y \ni P(x,y) \iff \exists \ni \forall x, P(x,y)$

 $\forall x, \exists y \ni P(x,y) \ y \text{ can depend on } x.$

 $\exists y \ni \forall x, P(x,y) \ y$ cannot depend on x. There is some y s.t. no matter what x, P(x,y) holds.