Stationary random processes

Yuxin Chen
Princeton University, Fall 2018

Outline

- Stationary random processes
- Power spectral density

Stationarity

Stationarity refers to time invariance of some, or all, of the statistics of a random process, such as mean, autocorrelation, n-th-order distribution

 We define two types of stationarity: strict sense (SSS) and wide sense (WSS)

Strict sense stationarity

A random process X(t) (or X_n) is said to be SSS if all its finite order distributions are time invariant, i.e., the joint cdfs (pdfs, pmfs) of

$$X(t_1), X(t_2), \dots, X(t_k)$$
 and $X(t_1 + \tau), X(t_2 + \tau), \dots, X(t_k + \tau)$ are the same for all k , all t_1, t_2, \dots, t_k , and all time shifts τ

• So for a SSS process, the first-order distribution is independent of t, and the second-order distribution — the distribution of any two samples $X(t_1)$ and $X(t_2)$ — depends only on $\tau=t_2-t_1$

Strict sense stationarity

Example (random phase signal): $X(t) = \alpha \cos(\omega t + \Theta)$ where $\Theta \in \mathsf{Unif}[0,2\pi]$ is SSS

- Check that both the first order and second order PDF are stationary (exercise)
- If we know that $X(t_1)=x_1$ and $X(t_2)=x_2$, the sample path is totally determined (except when $x_1=x_2=0$, where two paths may be possible), and thus all n-th order pdfs are stationary

Strict sense stationarity

- IID processes are SSS
- Random walks are not SSS (for example, we know that $\mathbb{E}[X_1^2]=1$ and $\mathbb{E}[X_2^2]=2$, which is clearly not stationary)
- Poisson processes are not SSS (for example, we know that $\mathbb{E}[N(t)] = \lambda t$, which is clearly not stationary)

Wide sense stationarity

A random process X(t) is said to be wide-sense stationary (WSS) if its mean and autocorrelation functions are time invariant, i.e.,

- $\mathbb{E}[X(t)] = \mu$, independent of t
- ullet $R_X(t_1,t_2)$ is a function only of the time difference t_2-t_1
- $\mathbb{E}[X(t)^2] < \infty$ (technical condition)

Since $R_X(t_1,t_2)=R_X(t_2,t_1)$, for any wide sense stationary process X(t), $R_X(t_1,t_2)$ is a function only of $|t_2-t_1|$

Wide sense stationarity

Clearly SSS implies WSS. The converse is not necessarily true Example: Let

$$X(t) = \begin{cases} +\sin t & \text{with prob. } 1/4\\ -\sin t & \text{with prob. } 1/4\\ +\cos t & \text{with prob. } 1/4\\ -\cos t & \text{with prob. } 1/4 \end{cases}$$

- $\mathbb{E}[X(t)] = 0$ and $R_X(t_1, t_2) = \frac{1}{2}\cos(t_2 t_1)$, thus X(t) is WSS
- But X(0) and $X(\frac{\pi}{4})$ do not even have the same range, so the first order PMF is not stationary. Hence, the process is not SSS

Wide sense stationarity

- For Gaussian random processes, WSS implies SSS, since the process is completely specified by its mean and autocorrelation functions
- Random walk is not WSS, since $R_X(n_1,n_2)=\min\{n_1,n_2\}$ is not time invariant; similarly Poisson process is not WSS

Let X(t) be a WSS process. We often relabel $R_X(t_1,t_2)$ as $R_X(\tau)$ where $\tau=t_1-t_2$

- 1. $R_X(\tau)$ is real and even, i.e., $R_X(\tau) = R_X(-\tau)$ for every τ
- 2. $|R_X(\tau)| \le R_X(0) = \mathbb{E}[X^2(t)]$, the "average power" of X(t) **Proof:** For every t,

$$(R_X(\tau))^2 = \{\mathbb{E}[X(t)X(t+\tau)]\}^2$$

$$\leq \mathbb{E}[X^2(t)]\,\mathbb{E}[X^2(t+\tau)] \quad \text{(by Cauchy-Schwarz)}$$

$$= (R_X(0))^2 \quad \text{(by stationarity)}$$

3. If $R_X(T) = R_X(0)$ for some $T \neq 0$, then $R_X(\tau)$ is periodic with period T, that is,

$$R_X(\tau) = R_X(\tau + T)$$
 for every τ

Proof: we again use Cauchy-Schwarz inequality: for every τ ,

$$[R_X(\tau) - R_X(\tau + T)]^2$$

$$= [\mathbb{E}(X(t)(X(t+\tau) - X(t+\tau + T)))]^2$$

$$\leq \mathbb{E}[X^2(t)] \mathbb{E}[(X(t+\tau) - X(t+\tau + T))^2]$$

$$= R_X(0)(2R_X(0) - 2R_X(T))$$

$$= R_X(0)(2R_X(0) - 2R_X(0)) = 0$$

Thus
$$R_X(\tau) = R_X(\tau + T)$$
 for all τ

Ш

The necessary and sufficient conditions for a function to be an autocorrelation function for a WSS process is that it be real, even, and positive semidefinite

By positive semidefinite, we mean that for any n, any t_1, t_2, \ldots, t_n and any real vector $\mathbf{a} = (a_1, \ldots, a_n)$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j R(t_i - t_j) \ge 0$$

- To see why positive semidefiniteness is necessary, recall that the
 correlation matrix for a random vector must be positive
 semidefinite, so if we take a set of n samples from the WSS
 random process, their correlation matrix must be positive
 semidefinite
- The positive semidefinite condition may be difficult to verify directly. It turns out, however, to be equivalent to the condition that the Fourier transform of $R_X(\tau)$, which is called the power spectral density $S_X(f)$, is nonnegative for all frequencies f

Interpretation of autocorrelation function

• Let X(t) be WSS with zero mean. If $R_X(\tau)$ drops quickly with τ , this means that samples become uncorrelated quickly as we increase τ . Conversely, if $R_X(\tau)$ drops slowly with τ , samples are highly correlated

Interpretation of autocorrelation function

- So $R_X(\tau)$ is a measure of the rate of change of X(t) with time t, i.e., the frequency response of X(t)
- It turns out that this is not just an intuitive interpretation—the Fourier transform of $R_X(\tau)$ (the power spectral density) is in fact the average power density of X(t) over frequency

Power spectral density

• The power spectral density (PSD) of a WSS random process X(t) is the Fourier transform of $R_X(\tau)$:

$$S_X(f) = \mathcal{F}(R_X(\tau)) = \int R_X(\tau)e^{-i2\pi\tau f}d\tau$$

• For a discrete time process X_n , the power spectral density is the discrete-time Fourier transform (DTFT) of the sequence $R_X(n)$:

$$S_X(f) = \sum_{n=-\infty}^{\infty} R_X(n)e^{-i2\pi nf}, \quad |f| < \frac{1}{2}$$

Power spectral density

• $R_X(\tau)$ (or $R_X(n)$) can be recovered from $S_X(f)$ by taking the inverse Fourier transform or inverse DTFT:

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{i2\pi\tau f} df$$
$$R_X(n) = \int_{-\frac{1}{2}}^{\frac{1}{2}} S_X(f) e^{i2\pi nf} df$$

Properties of power spectral density

1. $S_X(f)$ is real and even, since the Fourier transform of the real and even function $R_X(\tau)$ is real and even

2.
$$\int S_X(f) df = R_X(0) = \mathbb{E}[X^2(t)]$$
, the average power of $X(t)$, i.e., the area under S_X is the average power

Properties of power spectral density

3. $S_X(f)$ is the average power density, i.e., the average power of X(t) in the frequency band $[f_1,f_2]$ is

$$\int_{-f_2}^{-f_1} S_X(f) \, \mathrm{d}f + \int_{f_1}^{f_2} S_X(f) \, \mathrm{d}f = 2 \int_{f_1}^{f_2} S_X(f) \, \mathrm{d}f$$

(we will show this soon)

WSS processes and LTI systems

Consider a linear time invariant (LTI) system with impulse response h(t) and transfer function $H(f)=\mathcal{F}(h(t))$. Suppose the input to the system is a WSS process X(t), then the system output is given by

$$Y(t) = X(t) * h(t) = \int_{-\infty}^{\infty} X(\tau)h(t - \tau)d\tau$$

WSS processes and LTI systems

(a) Cross-correlation function:

$$R_{YX}(\tau) = \mathbb{E}[Y(t+\tau)X(t)]$$

$$= \mathbb{E}\left[\int_{-\infty}^{\infty} h(s)X(t+\tau-s)X(t)ds\right]$$

$$= \int_{-\infty}^{\infty} h(s)R_X(\tau-s)ds$$

$$= h(\tau) * R_X(\tau)$$

(b) Auto-correlation function of system output:

$$R_Y(\tau) = \mathbb{E}[Y(t+\tau)Y(t)]$$

$$= \mathbb{E}[Y(t+\tau)\int_{-\infty}^{\infty} h(s)X(t-s)ds]$$

$$= \int_{-\infty}^{\infty} h(s)R_{YX}(\tau+s)ds$$

$$= R_{YX}(\tau) * h(-\tau) = R_X(\tau) * h(\tau) * h(-\tau)$$

WSS processes and LTI systems

(c) Cross power spectral density

$$S_{YX}(f) = \mathcal{F}(R_{XY}(\tau))$$

= $S_X(f)H(f)$

(d) Power spectral density of system output:

$$S_Y(f) = \mathcal{F}(R_Y(\tau))$$

= $|H(f)|^2 S_X(f)$

Properties of power spectral density

• We now prove Property 3. Let Y(t)=h(t)*X(t) with h(t) representing the ideal band-pass filter (with band $[f_1,f_2]\cap [-f_2,-f_1]$), then

$$\mathbb{E}[Y^{2}(t)] = \int_{-\infty}^{\infty} S_{Y}(f) df$$

$$= \int_{-\infty}^{\infty} |H(f)|^{2} S_{X}(f) df$$

$$= \int_{-f_{2}}^{f_{1}} S_{X}(f) df + \int_{f_{1}}^{f_{2}} S_{X}(f) df$$

$$= 2 \int_{f_{1}}^{f_{2}} S_{X}(f) df$$

ullet From Property 3, it follows that $S_X(f)\geq 0$

Properties of power spectral density

In general, a function S(f) is a PSD of a WSS process if and only if it is real, even, nonnegative, and

$$\int S(f) \, \mathrm{d}f < \infty$$

1.

 $S_X(f) = \frac{\alpha}{\alpha^2 + (\pi f)}$ f

2.

3.

4. Discrete-time white noise process

5. Band-limited white noise process

6. White noise process: If we let $B \to \infty$ in the previous example, we obtain a white noise process, which has

$$S_X(f) = \frac{N}{2}$$
 for all f
$$R_X(\tau) = \frac{N}{2}\delta(\tau)$$

If, in addition, X(t) is a GRP, then we obtain the famous white Gaussian noise (WGN) process

Remarks on white noise

- For a white noise process, all samples are uncorrelated
- The process is not physically realizable, since it has infinite power
- However, it plays a similar role in random processes to point mass in physics and delta function in linear systems

• Let x(t), $t \ge 0$, be a deterministic signal. Define

$$x_T(t) = \begin{cases} x(t), & 0 \le t \le T \\ 0, & \text{otherwise,} \end{cases}$$

and its Fourier transform

$$X_T(f) = \mathcal{F}[x_T(t)]$$

• The autocorrelation function of x(t) is defined as

$$R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t)x(t+\tau) dt$$

ullet The power spectrum of x(t) if defined as

$$S_x(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2,$$

assuming the limit exists

• It can be shown that

$$S_x(f) = \mathcal{F}[R_x(\tau)]$$

ullet There is a similar relationship for WSS processes. Let X(t), $t\geq 0$, be a WSS random process Define

$$X_T(t) = \begin{cases} X(t), & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

and its Fourier Transform

$$X_T(f) = \mathcal{F}[X_T(t)]$$

ullet Define the time average autocorrelation function of X(t) as as

$$\langle R_X(\tau) \rangle_T = \frac{1}{T} \int_0^T X_T(t) X_T(t+\tau) dt$$

• Through some simple but technical calculation, we can get

$$R_X(\tau) = \lim_{T \to \infty} \mathbb{E}[\langle R_X(\tau) \rangle_T]$$

ullet Define the power spectrum of $X_T(t)$ (called periodogram) as

$$\langle S_X(f)\rangle_T = \frac{1}{T}|X_T(f)|^2$$

Finally, we claim that (without proof)

$$S_X(f) = \lim_{T \to \infty} \mathbb{E}[\langle S_X(f) \rangle_T]$$

- Remark: This result underlies a basic method for estimating the PSD: For a given T, compute the periodogram for several sample paths of the random process (i.e., in several independent experiments), and average the results
- Remark: Increasing the number of sample paths over which the averaging is taken reduces the noise in the estimate, while repeating the entire procedure for larger T improves the frequency resolution of the estimate

Reference

[1] "Lecture notes for Statistical Signal Processing," A. El Gamal.