Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

SEGUNDA PRUEBA - 26 DE OCTUBRE DE 2015. DURACIÓN: 1.5 HORAS

Ejercicio 1.

a. Sea G un grupo y H, K dos subgrupos de G. Hallar los posibles valores de |H| si $K \subsetneq H \subsetneq G$, |G| = 345 y |K| = 23.

Para resolver este ejercicio utilizamos el Teorema de Lagrange. Claramente se tiene que cumplir |K| |H| |G|, o sea 23 |H| |345. Pero como las inclusiones de los subgrupos son estrictas, $|H| \neq 23,345$. Se ve entonces que como $345 = 15 \cdot 23, |H| = 3 \cdot 23, 5 \cdot 23$.

b. Hallar todos los subgrupos del grupo diedral D_5 .

Recordamos que D_5 es un grupo de 10 elementos que son $D_5 = \{id, s, sr, sr^2, sr^3, sr^4, r, r^2, r^3, r^4\}$, donde r es una rotación antihoraria de ángulo 360/5 y s es una simetría axial. Además cumplen $r^5 = id$, $s^2 = id$ y $rs = sr^4$.

Por el teorema de Lagrange sabemos que si H es subgrupo de D_5 entonces $|H| \mid 10$, por lo que $|H| \in \{1, 2, 5, 10\}$. Si |H| = 1, 10 entonces $H = \{id\}, D_5$, y falta ver si hay subgrupos de orden 2 y 5 y cuantos. Como 2 y 5 son primos, y los subgrupos de orden primo son cíclicos, alcanza con encontrar todos los elementos de orden 2 y 5. Calculando todos los ordenes de los elementos de D_5 encontramos que los de orden 2 son $\{s, sr, sr^2, sr^3, sr^4\}$ por lo que hay 5 subgrupos de orden 2 que son $\langle s \rangle, \langle sr \rangle, \langle sr^2 \rangle, \langle sr^3 \rangle, \langle sr^4 \rangle$. También vemos que hay 4 elementos de orden 5, que son $\{r, r^2, r^3, r^4\}$ pero, todos están en el mismo subgrupo que es $\langle r \rangle$. En conclusión los subgrupos de D_5 son

$$\{\{id\}, \langle s \rangle, \langle sr \rangle, \langle sr^2 \rangle, \langle sr^3 \rangle, \langle sr^4 \rangle, \langle r \rangle, D_5\}$$
.

Ejercicio 2.

a. Sea G un grupo. Probar que si $a \in G$ cumple $a^n = e_G$ entonces $o(a) \mid n$.

Esto lo pueden encontrar en las notas teóricas en la proposición 3.7.8 parte 4. También era un ejercicio del práctico 7.

- **b.** Sea el grupo de invertibles módulo 58 G = U(58).
 - i) Calcular el orden de $q = \overline{9} \in G$.

Para calcular el orden de g buscamos la potencia n no nula más pequeña tal que $g^n \equiv 1 \pmod{58}$. Con la información de la parte anterior sabemos también que $o(g) \mid |U(58)| = \varphi(58) = \varphi(2 \cdot 29) = 28 = 4 \cdot 7$. Entonces $o(g) \in \{1, 2, 4, 7, 14, 28\}$. Calculamos estás potencias: $9^2 = 81 \ equiv23 \ (\text{mód } 58), \ 9^4 \equiv (23)^2 \ (\text{mód } 58) \equiv 7 \ (\text{mód } 58), \ 9^7 = 9 \cdot 9^2 \cdot 9^4 \equiv 9 \cdot 23 \cdot 7 \ (\text{mód } 58) \equiv 5 \cdot 23 \ (\text{mód } 58) \equiv 57 \ (\text{mód } 58) \equiv -1 \ (\text{mód } 58)$. Finalmente $9^{14} = (9^7)^2 \equiv (-1)^2 \ (\text{mód } 58) \equiv 1 \ (\text{mód } 58)$. Concluimos entonces que o(g) = 14.

ii) ¿Es G cíclico? Si es cíclico dar un generador del grupo G.

Para ver si es cíclico el grupo probemos de calcular $o(\bar{3})$. Para eso usamos la fórmula

$$\mathrm{o}\left(h^{m}\right)=\frac{\mathrm{o}(h)}{\mathrm{mcd}(\mathrm{o}(h),m)},$$

 $h = \overline{3}$ y m = 2. Entonces

$$14 = o(\overline{9}) = \frac{o(\overline{3})}{\operatorname{mcd}(o(\overline{3}), 2)}.$$

Tenemos 2 casos. Si $\operatorname{mcd}(o(\overline{3}), 2) = 1$ entonces $o(\overline{3}) = 14$, lo que contradice $\operatorname{mcd}(o(\overline{3}), 2) = 1$ y descartamos eses caso. Si $\operatorname{mcd}(o(\overline{3}), 2) = 2$ entonces $o(\overline{3}) = 14 \cdot 2 = 28 = |U(58)|$. Concluimos que G es cíclico con generador $\overline{3}$.

Ejercicio 3. Sea el grupo de permutaciones de 4 elementos $G = S_4$. Determinar si los siguientes conjuntos son subgrupos de G.

$$\mathbf{a.}\ \ H = \left\{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array}\right) \right\}.$$

Como el conjunto H tiene 5 elementos y el orden de G es |G|=4!, por el teorema de Lagrange H no es subgrupo ya que $5 \nmid 4!$.

b.
$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \right\}.$$

Denotamos al último elemento de H como τ . Observar que τ^2 es el primer elemento de H y τ^3 el segundo que es el neutro. Se concluye que H es el subgrupo generado por τ , $H = \langle \tau \rangle$.

_