Imiona:

Nazwisko:

Klucz: KLUCZ

Nr albumu:

Prace bez podanego numeru albumu lub bez podpisu nie będą oceniane. Odpowiedzi na poszczególne pytania należy koniecznie wpisać (jako cyfry) do poniższej tabeli. Zakreślanie odpowiedzi w tekstach pytań nie będzie uwzględniane. Punktacja podana jest na lewym marginesie. Podczas testu nie wolno korzystać z żadnych pomocy oprócz prostych kalkulatorów naukowych. Każde pytanie ma dokładnie jedną prawidłową odpowiedź. Czas trwania testu: 35 minut.

UWAGA! W niniejszym kluczu każde pytanie może mieć więcej niż jedną odpowiedź prawidłową i więcej niż trzy nieprawidłowe. Do docelowego testu wybierana jest spośród nich dokładnie jedna odpowiedź prawidłowa i dokładnie trzy nieprawidłowe. Odpowiedzi prawidłowe są w tekście klucza wyróżnione pogrubieniem.

Pyt.	A	В	С	D	Е	F	G	Σ
Pkt.	1	1	1	1	1	2	2	9

Odp.

1p. A.

Opór zastępczy dwójnika AB wynosi:

1. $\frac{R}{1-aR}$ 2. $\frac{1}{1-aR}$

3. $\frac{R}{1+gR}$

4. *R* 5.

6. $R + \frac{1}{3}$ 7. R -

1p. B.

W przedstawionym układzie, gdzie $R \neq 0$, napięcie U na źródle prądowym:

1. zależy tylko od wartości E_2 2. nie zależy od wartości J 3. nie zależy od wartości elementów, U=0

4. zależy tylko od wartości E_1 i E_2 5. zależy tylko od wartości E_1 i R 6. zależy tylko od wartości J

7. zależy od wartości wszystkich elementów układu 8. układ jest sprzeczny, nie można wyznaczyć U

1p. | C.

Jeśli opory R_1 i R_2 mają skończoną wartość to napięcie U wynosi: E

1. E 2. -E 3. $E(1+\frac{R_1}{R_2})$ 4. $E(1+\frac{R_2}{R_1})$ 5. $-E\frac{R_1}{R_2}$ 6. $-E\frac{R_2}{R_1}$

1p. D.

Połączenie równoległe występuje między parami elementów:

- 1. tylko (4 i 5)
- 2. tylko (2 i 5)
- 3. tylko (3 i 5)
- 4. (3 i 4) oraz (4 i 5)
- 5. (1 i 2) oraz (3 i 5)

6. w układzie nie ma połączeń równoległych

E. 1p.

Elementem równoważnym zaciskowo dwójnikowi AB (po lewej) jest rzeczywiste źródło napięciowe AB o parametrach:

1. $E = 1 \text{ V}, R = 1/2 \text{ k}\Omega$. 2. $E = 2 \text{ V}, R = 1 \text{ k}\Omega$. 3. $E = 1 \text{ V}, R = 1 \text{ k}\Omega$. 4. $E = 2 \text{ V}, R = 1/2 \text{ k}\Omega.$ 5. $E = 1/2 \text{ V}, R = 1/4 \text{ k}\Omega$. 6. $E = 2 \text{ V}, R = 1/4 \text{ k}\Omega$.

i[mA]

2p. F.

Wartość oporu R została dobrana tak, aby wydzielała się w nim maksymalna możliwa moc. Moc ta wynosi:

4. 0, 25 mW **1.** 1 mW 2. 2 mW $3.0,5 \,\mathrm{mW}$ 5. 4 mW

G. 2p.

D to dioda idealna zwarciowo-rozwarciowa. Charakterystyka dwójnika AB przedstawiona jest na rysunku:

