Лекция: Чебишови системи

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Чебишови системи. Определение и свойства
- Примери на Чебишови системи
- Тригонометричните полиноми образуват Чебишова система върху полузатворен интервал с дължина 2π
- Построяване на интерполационен тригонометричен полином
- Интерполационна формула при равноотдалечени възли

Обща интерполационна задача

Нека $\varphi_0(x),\ldots,\varphi_n(x)$ са непрекъснати и линейно независими функции в интервала [a,b]. Линейните комбинации $a_0\varphi_0(x)+\ldots+a_n\varphi_n(x)$ ще наричаме обобщени полиноми по системата $\{\varphi_i\}$. Ще разгледаме задачата за интерполиране с обобщени полиноми. При дадени възли $x_0<\cdots< x_n$ в [a,b] и стойности y_0,\ldots,y_n търсим обообщен полином $\varphi(x)=a_0\varphi_0(x)+\cdots+a_n\varphi_n(x)$, който да удовлетворява интерполационните условия

$$a_0\varphi_0(x_k)+\cdots+a_n\varphi_n(x_k)=y_k, \quad k=0,\ldots,n.$$
 (1)

Но (1) е линейна система уравнения с неизвестни a_0, \ldots, a_n . Следователно интерполационната задача (1) има единствено решение при всеки избор на $\{y_k\}$ тогава и само тогава когато детерминантата на матрицата от коефициентите пред неизвестните в тези уравнения е различна от нула. Нищо повече не може да се каже в този най-общ случай.

Чебишови системи

Чебишови системи

000000

Интерес представляват тези системи от функции $\{\varphi_i\}_{0}^{n}$, при които интерполационната задача (1) има единствено решение при всеки избор на възлите $x_0 < \cdots < x_n$ в [a,b] и при всеки избор на стойностите y_0, \dots, y_n . Пример за такава система е $\varphi_k(x) = x^k$, $k = 0, \dots n$. Ще разгледаме един клас от системи $\{\varphi_i\}_{0}^{n}$, които удовлетворяват горното изискване и се явяват естествени обобщения на алгебричните полиноми.

Определение

Казваме, че функциите $\varphi_0(x), \dots, \varphi_n(x)$ образуват система на Чебишов в интервала I, ако всеки ненулев обобщен полином по тази система има най-много n различни нули в l.

Напомняме, че $a_0\varphi_0(x)+\cdots+a_n\varphi_n(x)$ е ненулев обобщен полином, ако поне един от коефициентите $\{a_i\}_{0}^{n}$ е различен от нула. Системите на Чебишов се наричат още 7- системи или чебищови системи.

Характеризация на Чебишовите системи

Да означим с $D[x_0,\ldots,x_n]$ матрицата на системата (1).

Теорема 1

Функциите $\varphi_0, \dots, \varphi_n$ образуват система на Чебишов в интервала I тогава и само тогава, когато

$$\det D[x_0,\ldots,x_n] \neq 0$$

при всеки избор на точките $x_0 < \cdots < x_n$ в I.

Доказателство. Нека $\varphi_0, \ldots, \varphi_n$ е система на Чебишов в I. Да допуснем, че $\det D[x_0, \ldots, x_n] = 0$ при някои $x_0 < \cdots < x_n$ от I. Тогава между стълбовете на матрицата $D[x_0, \ldots, x_n]$ има линейна зависимост, т.е. съществувават числа b_0, \ldots, b_n , поне едно от които е различно от нула и такива, че

$$b_0\varphi_0(x_k) + b_1\varphi_1(x_k) + \dots + b_n\varphi_n(x_k) = 0$$
 sa $k = 0, \dots, n$. (2)

Доказателство на Теорема 1

Но равенствата (2) означават, че ненулевият обобщен полином $\varphi(x) := b_0 \varphi_0(x) + \cdots + b_n \varphi_n(x)$ се анулира в n+1различни точки, именно в x_0, \dots, x_n . Това противоречи на определението за чебишова система. Следователно $\det D[x_0,\ldots,x_n]\neq 0.$ Обратно, нека $\det D[x_0,\ldots,x_n]\neq 0$ при всеки избор на $x_0 < \cdots < x_n$ в I. Да допуснем, че системата $\varphi_0, \ldots, \varphi_n$ не е чебишова. Тогава съществува ненулев обобщен полином $\varphi(x) := b_0 \varphi_0(x) + \cdots + b_n \varphi_n(x)$ и n+1 различни точки $x_0 < \cdots < x_n$ в I такива, че $\varphi(x_k) = 0$ за $k = 0, \dots, n$. Но това означава, че хомогенната система (2) има ненулево решение b_0, \ldots, b_n . Следователно нейната детерминанта е нула, т.е. $\det D[x_0,\ldots,x_n]=0$, противоречие. Теоремата е доказана.

Интерполационна теорема

Непосредствено следствие от доказаното тук свойство на чебишовите системи е следната интерполационна теорема.

Теорема 2

Чебишови системи

000000

Нека функциите $\varphi_0(x), \ldots, \varphi_n(x)$ образуват система на Чебишов в интервала I. Тогава при дадени произволни възли $x_0 < \cdots < x_n$ от I и стойности y_0, \ldots, y_n интерполационната задача

$$a_0\varphi_0(x_k)+\cdots+a_n\varphi_n(x_k)=y_k, \quad k=0,\ldots,n,$$

има единствено решение.

Доказателство. Действително, интерполационната задача има единствено решение тогава и само тогава, когато $\det D[x_0,\ldots,x_n] \neq 0$ и Теорема 2 следва веднага от доказаната по-горе Теорема 1.

Примери на Чебишови системи

Примери на T-системи:

- Функциите $\{1, x, x^2, \dots, x^n\}$ образуват T-система във всеки подинтервал на реалната права.
- $igoplus \Phi$ ункциите $\{x, x^3, x^5, \dots, x^{2n+1}\}$ образуват T-система във всеки подинтервал на $(0, \infty)$.
- Функциите $\{x^{\alpha_0}, x^{\alpha_1}, \dots, x^{\alpha_n}\}$ образуват T-система във всеки подинтервал на $(0, \infty)$ при произволни реални числа $0 < \alpha_0 < \dots < \alpha_n$.
- Функциите $\{\frac{1}{x-x_0},\dots,\frac{1}{x-x_n}\}$ образуват T-система във всеки подинтервал, който не съдържа различните точки X_0,\dots,X_n .

Тригонометрични полиноми от ред *п*

Определение

Тригонометричен полином от ред \boldsymbol{n} наричаме функция от вида

$$t(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)), \qquad (3)$$

където a_k , b_k са дадени коефициенти (реални или комплексни числа).

Множеството от тригонометричните полиноми от ред ненадминаващ n ще бележим с τ_n . Тригонометричните полиноми от вида (3) са 2π -периодични функции, т.е. изпълняват условието $\tau(x) = \tau(x+2\pi)$ за всяко x. Естествено е за данни, които са 2π -периодични, да се използват като апарат за интерполиране именно тригонометричните полиноми.

Тригонометричните полиноми като обобщени полиноми

Всеки тригонометричен полином от ред n е обобщен полином по системата от 2n+1 функции

1,
$$cos(x)$$
, $sin(x)$,..., $cos(nx)$, $sin(n(x))$.

Ще докажем, че тези функции образуват Чебишова система върху всеки полузатворен интервал с дължина 2π , т.е., интервал от вида $[\alpha, \alpha + 2\pi), \alpha \in \mathbb{R}$. Предвид 2π -периодичността, достатъчно е да разгледаме само интервала $[0, 2\pi)$.

Теорема

Теорема 3

Всеки тригонометричен полином от τ_n има най-много 2n различни реални нули в интервала $[0,2\pi)$.

Доказателство. Припомняме някои елементарни факти за комплексните числа. Комплексното число \mathbf{z} ($\mathbf{z} \in \mathbb{C}$) има алгебрично представяне

$$z = x + iy$$
, $x = \Re z$, $y = \Im z$,

където i е имагинерната единица (дефинирана с $i^2=-1$), и $x,y\in\mathbb{R}$ са съответно реалната и имагинерната част на z. Тригонометричното представяне на z е

$$z = r(\cos \theta + i \sin \theta), \quad r = |z|, \ \theta = \arg z,$$

където $r, \theta \in \mathbb{R}$ са съответно модулът и аргументът на z.

Комплексни числа

Връзката между двете представяния се дава с

$$r = \sqrt{x^2 + y^2}, \quad x = r \cos \theta, \quad y = r \sin \theta.$$

При $z \neq 0$, комплексното число z има безброй много аргументи, всеки два от които се различават с цело кратно на 2π . Геометрически, комплексните числа се отъждествяват с точките от една равнина (комплексната равнина), като при алгебричното представяне на z = x + i y двойката (x, y)задава координатите на точката \boldsymbol{Z} в комплексната равнина спрямо декартова координатна система с оси, отчитащи съответно $\Re z$ и $\Im z$.

Комплексни числа (продълж.)

Чебишови системи

При тригонометричното представяне |z| и arg z ca координатите на Z в съответната полярна координатна система. По този начин |z| е разстоянието на точката от комплексната равнина, отговаряща на Z, до началото на координатната система. В частност, множеството

$$C = \{ z = \cos \theta + i \sin \theta : \theta \in [0, 2\pi) \}$$

е окръжността в комплексната равнина с център началото и радиус единица. Функцията на Ойлер

$$\mathbf{Z} = \mathbf{e}^{i\theta} := \cos\theta + i\sin\theta \tag{4}$$

изобразява взаимноеднозначно интервала $[0,2\pi)$ в окръжността \mathcal{C} .

Комплексни числа (продълж.)

От равенствата

Чебишови системи

$$z^{k} = e^{ik\theta} = \cos(k\theta) + i\sin(k\theta),$$

$$z^{-k} = e^{-ik\theta} = \cos(-k\theta) + i\sin(-k\theta) = \cos(k\theta) - i\sin(k\theta))$$

получаваме следните представяния на $\cos(k\theta)$ и $\sin(k\theta)$:

$$\cos(k\theta) = \frac{z^{k} + z^{-k}}{2},$$

$$\sin(k\theta) = \frac{z^{k} - z^{-k}}{2i} = (-i)\frac{z^{k} - z^{-k}}{2},$$
(5)

където $z = e^{i\theta}$.

Доказателство на Теорема 3

Нека

$$t(\theta) = a_0 + \sum_{k=1}^{n} \left(a_k \cos(k\theta) + b_k \sin(k\theta) \right). \tag{6}$$

Замествайки $\cos(k\theta)$ и $\sin(k\theta)$ от (5), получаваме

$$t(\theta) = \sum_{k=-n}^{n} c_k z^k, \qquad (7)$$

с коефициенти $c_0 = a_0$ и

$$c_k = \begin{cases} \frac{a_k - i b_k}{2}, & k = 1, \dots, n \\ \frac{a_{-k} + i b_{-k}}{2}, & k = -n, \dots, -1 \end{cases}.$$

Доказателство на Теорема 3 (продължение)

От (7) следва

$$z^n t(\theta) = P_{2n}(z),$$

където P_{2n} е алгебричен полином от степен най-много 2n(коефициентът пред z^{2n} в $P_{2n}(z)$ е $(a_n - i b_n)/2$, затова ако tе тригонометричен полином от ред n, тогава P_{2n} е от степен **2***n*). Тъй като |z| = 1 (виж (4)), $t(\theta) = 0$ точно когато $P_{2n}(z)=0$. Съгласно основната теорема на алгебрата, P_{2n} има точно 2n нули в $\mathbb C$ (броени с кратностите им). На тези нули отговарят най-много 2*п* различни точки от комплексната равнина, и в частност най-много 2*п* различни точки върху единичната окръжност \mathcal{C} . Изображението $\theta \in [0,2\pi) \mapsto \mathbf{z} = \mathbf{e}^{i\theta} \in \mathcal{C}$ е взаимноеднозначно, поради което съществуват най-много 2n нули на t в интервала $[0,2\pi)$. Теорема 3 е доказана.

Интерполационна задача

Доказахме, че тригонометричните полиноми от τ_n образуват Чебишова система в $[0,2\pi)$. Еквивалентно, в сила е следното:

Твърдение

Чебишови системи

При произволни зададени интерполационни възли $\{x_k\}_{k=0}^{2n}$

$$0 \le x_0 < x_1 < \dots < x_{2n} < 2\pi, \tag{8}$$

и данни $\{y_k\}_{k=0}^{2n}$ (реални или комплексни числа), съществува единствен тригонометричен полином $t \in \tau_n$, изпълняващ условията

$$\tau(x_k) = y_k \qquad k = 0, \dots, 2n. \tag{9}$$

Единственост на интерполационния тригонометричен полином

Единствеността на интерполационния тригонометричен полином следва лесно от доказаното по-горе: ако допуснем, че t_1 и t_2 са два различни тригонометрични полинома от ред n, такива че $\tau_1(x_k) = \tau_2(x_k) = y_k$ за $k = 0, \ldots, 2n$, тогава тригонометричният полином $t_1 - t_2$ е от τ_n и има 2n различни нули в точките $\{x_k\}_0^{2n}$ от интервала $[0, 2\pi)$, което е противоречие с Теорема 3.

Интерполационен тригонометричен полином

Ще построим в явен вид интерполационния тригонометричен полином. Да предположим, че за всяко $k \in \{0,1,\ldots,2n\}$ сме намерили $\lambda_k(x) \in \tau_n$, изпълняващ условията

$$\lambda_{k}(x_{i}) = 0, \quad i \in \{0, 1, \dots, 2n\} \setminus \{k\},$$

$$\lambda_{k}(x_{k}) = 1.$$
 (10)

От равенствата (10) се вижда, че

$$t(x) = \sum_{k=0}^{2n} \lambda_k(x) y_k$$

е от τ_n и изпълнява условията (9). Предвид единствеността, това е търсеният интерполационен полином.

Интерпол. тригонометричен полином (продължение)

Функцията

$$\lambda_k(x) = \prod_{\substack{j=0\\j\neq k}}^{2n} \frac{\sin\frac{x-x_j}{2}}{\sin\frac{x_k-x_j}{2}}$$
 (11)

изпълнява условията (10). Наистина, очевидно $\lambda_k(x_k)=1$, и $\lambda_k(x_i)=0$ при $i\neq k$, тъй измежду числителите на дробите, участащи в произведението, е $\sin(0)=0$. Отбелязваме още, че при $j\neq k$ имаме

$$0<\left|\frac{x_k-x_j}{2}\right|<\pi,$$

откъдето

$$\sin\frac{x_k-x_j}{2}\neq 0\,,$$

т.е. няма деление на нула.

Интерпол. тригонометричен полином (продължение)

Остава да се убедим, че функцията $\lambda_k(x)$, зададена с (11), е тригонометричен полином от ред n. Отбелязваме, че с точност до множител константа, дясната страна на (11) е произведение на 2n множителя от вида

$$\sin\frac{x-\alpha}{2}.$$

Ще докажем с индукция относно n, че произведение на 2n множителя от този вид е тригонометричен полином от ред n. При n=1 това следва така:

$$2 \sin \frac{x - \alpha}{2} \sin \frac{x - \beta}{2} = \cos \frac{\alpha - \beta}{2} - \cos \left(x - \frac{\alpha + \beta}{2}\right)$$

$$= \cos \frac{\alpha - \beta}{2} - \cos \frac{\alpha + \beta}{2} \cos x - \sin \frac{\alpha + \beta}{2} \sin x$$

$$= a_0 + a_1 \cos x + b_1 \sin x.$$

Чебишови системи 000000

Интерпол. тригонометричен полином (продължение)

Нека твърдението е вярно за $n-1\in\mathbb{N}$, тогава от индукционното предположение и случая n=1 следва, че

$$\prod_{\substack{j=0\\j\neq k}}^{2n} \sin \frac{x-x_j}{2} = t_{n-1}(x)t_1(x),$$

където $t_{n-1} \in \tau_{n-1}$ и $t_1 \in \tau_1$. Сега от формулите

$$\cos(kx)\cos(x) = \frac{1}{2}(\cos((k+1)x) + \cos((k-1)x)),$$

$$\cos(kx)\sin(x) = \frac{1}{2}(\sin((k+1)x) - \sin((k-1)x)),$$

$$\sin(kx)\sin(x) = \frac{1}{2}(\cos((k-1)x) - \cos((k+1)x)),$$

$$\sin(kx)\cos(x) = \frac{1}{2}(\sin((k+1)x) + \sin((k-1)x))$$

се вижда, че $t_{n-1}(x)t_1(x) \in \tau_n$.

Равномерни интерполационни възли

В случая когато интерполационните възли $\{x_k\}_{k=0}^{2n}$ разделят интервала $[0,2\pi)$ на отсечки с равни дължини, базисните функции $\lambda_k(x)$ от (7) имат по-просто представяне. Нека

$$x_k = \frac{2k\pi}{2n+1}, \qquad k=0,\ldots,2n.$$

Ще ни е нужна следната

Лема

Изпълнено е тъждеството

$$\frac{1}{2} + \cos(x) + \cos(2x) + \cdots + \cos(nx) = \frac{\sin\frac{(2n+1)x}{2}}{2\sin\frac{x}{2}}.$$

Доказателство на лемата

Доказателство. Освобождавайки се от знаменателя, ще докажем еквивалентното тъждество

$$\sin\frac{x}{2} + \sum_{k=1}^{n} (2\sin\frac{x}{2}\cos(kx)) = \sin\frac{(2n+1)x}{2}.$$

Преобразуваме лявата страна, използвайки формулата $2\sin(y)\cos(z) = \sin(y+z) - \sin(z-y)$ за всяко от събираемите, и получаваме

$$\sin \frac{x}{2} + \sum_{k=1}^{n} \left(\sin \frac{(2k+1)x}{2} - \sin \frac{(2k-1)x}{2} \right) = \sin \frac{(2n+1)x}{2} . \square$$

Ядро на Дирихле

Чебишови системи

Функцията

$$D_n(x) = \frac{\sin\frac{(2n+1)x}{2}}{2\sin\frac{x}{2}}$$

се нарича ядро на Дирихле. От Лема 1 следва, че ядрото на Дирихле е четен тригонометричен полином от ред **n**, който изпълнява условията

$$D_n(x_k) = \frac{\sin(k\pi)}{2\sin\frac{x_k}{2}} = 0, \qquad k = 1, 2, \dots, 2n,$$
 $D_n(x_0) = n + \frac{1}{2}.$

Базисни тригонометрични полиноми

Тези равенства показват, че базисният тригонометричен полином $\lambda_0(x)$ се дава с формулата

$$\lambda_0(x) = \frac{1}{n + \frac{1}{2}} D_n(x) = \frac{1}{2n + 1} \frac{\sin \frac{(2n+1)x}{2}}{\sin \frac{x}{2}}$$

(защото $\lambda_0(x_0)=1$ и $\lambda_0(x_k)=0$ за $k=1,\ldots,2n$). Останалите базисни полиноми се получават посредством

$$\lambda_k(x) = \lambda_0(x - x_k), \qquad k = 1, 2, \dots, 2n.$$

Наистина, от Лема 1 следва, че $\lambda_0(x-x_k)\in au_n$, и

$$\lambda_k(x_k) = \lambda_0(x_k - x_k) = \lambda_0(x_0) = 1,$$

 $\lambda_k(x_i) = \lambda_0(x_i - x_k) = \lambda_0(|x_i - x_k|) = \lambda_0(x_{|i-k|}) = 0, \quad i \neq k$

(използвахме $1 \leq |i-k| \leq 2n$ и че $\lambda_0(x)$ е четна функция).

Интерполационна формула при равномерни възли

Така намерихме явния вид на всички базисни тригонометрични полиноми $\{\lambda_k(x)\}_{k=0}^{2n}$ за интерполиране в равноотдалечените възли за интервала $[0,2\pi)$, а именно,

$$\lambda_k(x) = \frac{1}{2n+1} \frac{\sin \frac{(2n+1)(x-x_k)}{2}}{\sin \frac{x-x_k}{2}}, \qquad k=0,1,\ldots,2n.$$

Нека f е функция дефинирана в интервала $[0,2\pi)$,

$$x_k = \frac{2k\pi}{2n+1}, \qquad k = 0, 1, \dots, 2n,$$

и $t_n(f;x)\in au_n$ е определен от интерполационните условия

$$t_n(f;x_k)=f(x_k), \qquad k=0,\ldots,2n.$$

Интерполационна формула при равномерни възли

От явния вид на базисните тригонометрични полиноми $\{\lambda_k(x)\}_{k=0}^{2n}$ следва, че е в сила следната

Теорема 4

Интерполационният тригонометричен полином $t_n(f;x)$ се задава с формулата

$$t_n(f;x_k) = \frac{1}{2n+1} \sum_{k=0}^{2n} \frac{\sin \frac{(2n+1)(x-x_k)}{2}}{\sin \frac{x-x_k}{2}} f(x_k).$$

Край на лекцията!