Unsupervised Learning

Principal Components Analysis

Maarten Cruyff

Program

Morning session

Principal Components Analysis

Principal components analysis (PCA) is a data reduction technique. It's aim is to capture the information present in a large number of variables in a much smaller number of principal components. For example, a personality test may consist 5 groups of 10 questions each, with each group measuring a different personality trait. If the test is constructed well, the PCA will identify 5 principal components that each measure a different personality trait. By saving the individual scores on these principal components the dimension of the data is reduced from 50 to 5 variables, and the 5 variables can be used to make individual personality profiles.

Course materials

- · Lecture sheets
- R lab
- · R Markdown lab template

Content

- 1. Unsupervised learning
- 2. Principal components analysis
- 3. Iris data

Supervised vs unsupervised

Known outcome

Unknown outcome

Western Digital.

Unsupervised learning

Principal Components Analysis

How to make customer profiles?

Profiles of bought products

many products but only a few profiles

What is Principal Components Analysis

Data of high dimension

- many features containing different information
- high correlations within groups of features
- low correlations between groups of features

Dimension reduction

- groups of correlated features form a single principal component
- different groups form different principal components

Principal components

The p principal component Z_j are computed as:

$$Z_j = \phi_{1j} X_1 + \ldots \, + \phi_{pj} X_p, \quad \ j=1,\ldots,p$$

- $lacksquare Z_i$ is weighted sum of the features
- ϕ_{1j} is loading of X_1 on Z_J (like a correlation)

The Z_1,\dots,Z_p are ordered in terms of explained variance

PCA in two-dimensional space

PCA in high-dimensional space

Properties of principal components (PCs)

- explained variance is expressed in eigenvalues
- sum of eigenvalues is p (number of features)
- PCs with eigenvalues > 1 are considered informative
- PCs with eigenvalues < 1 are considered noise

Dimension reduction criteria, retain PC's

- ullet with eigenvalues > 1
- above the elbow in scree plot

PCA vs LDA

- PCA maximizes variance between data points
- LDA maximizes variance between groups

Rotation

Facilitates interpretation of PC's

- maximizes loading on one PC
- minimizes loadings on others

Iris data

Example iris data

4-dimensional data:

- 150 Iris flowers (3 species)
- 4 features
 - petal length
 - petal width
 - sepal length
 - sepal width

Feature structure in 4 dimensions

PCA solution with 4 components

```
pc4 <- principal(iris[, 1:4], nfactors = 4, rotate = "none")</pre>
print(loadings(pc4), cutoff = .1)
Loadings:
            PC1 PC2 PC3 PC4
Sepal.Length 0.890 0.361 -0.276
Sepal.Width -0.460 0.883
Petal.Length 0.992
                                0.115
Petal.Width 0.965 0.243
               PC1 PC2 PC3 PC4
SS loadings 2.918 0.914 0.147 0.021
Proportion Var 0.730 0.229 0.037 0.005
Cumulative Var 0.730 0.958 0.995 1.000
```

Elbow criterion

Conclusion: Extract one or two PCs (elbow is unclear)

Unrotated loadings

```
pc2 <- principal(iris[, -5], nfactors = 2, rotate = "none")
round(loadings(pc2)[1:4, 1:2], 2)</pre>
```

```
PC1 PC2
Sepal.Length 0.89 0.36
Sepal.Width -0.46 0.88
Petal.Length 0.99 0.02
Petal.Width 0.96 0.06
```


Rotated loadings

```
pc2rot <- principal(iris[, -5], nfactors = 2, rotate = "varimax")
round(loadings(pc2rot)[1:4, 1:2], 2)</pre>
```

```
RC1 RC2
Sepal.Length 0.96 0.05
Sepal.Width -0.14 0.98
Petal.Length 0.94 -0.30
Petal.Width 0.93 -0.26
```


PC scores with species in 1 and 2 dimensions

Large data sets

Function $\operatorname{prcomp}()$ handles data with p>n

```
pc2 <- prcomp(x = iris[, -5])
```

We need this function in the lab for some exercises.