

Exercise 9A

Question 1:

Let the fourth angle be x.

We know, that sum of the angles of a quadrilateral is 360°

Then,
$$56^{\circ} + 115^{\circ} + 84^{\circ} + x = 360^{\circ}$$

 $\Rightarrow 255^{\circ} + x = 360^{\circ}$
 $\Rightarrow x = 360^{\circ} - 255^{\circ} = 105^{\circ}$

.: The fourth angle is 105°.

Question 2:

Let the angles of a quadrilateral be 2x, 4x, 5x and 7x. We know, that sum of the angles of a quadrilateral is 360°

Then,
$$2x + 4x + 5x + 7x = 360^{\circ}$$

⇒ $18x = 360^{\circ}$
⇒ $x = \frac{360}{18} = 20^{\circ}$

: the angles of the quadrilateral are:

$$2x = 2 \times 20 = 40^{\circ}$$

 $4x = 4 \times 20 = 80^{\circ}$
 $5x = 5 \times 20 = 100^{\circ}$
 $7x = 7 \times 20 = 140^{\circ}$

∴ the required angles are 40°, 80°, 100° and 140°.

Question 3: Since AB || DC

Since AB $\mid\mid$ DC, \angle A and \angle D are consecutive interior angles.

Consecutive interior angles sum upto 180°.

So,
$$\angle A + \angle D = 180^{\circ}$$

 $\Rightarrow 55^{\circ} + \angle D = 180^{\circ}$
 $\Rightarrow \angle D = 180^{\circ} - 55^{\circ} = 125^{\circ}$

Also, we know that, sum of the angles of a quadrilateral is 360°

⇒
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

⇒ $55^{\circ} + 70^{\circ} + \angle C + 125^{\circ} = 360^{\circ}$
⇒ $250^{\circ} + \angle C = 360^{\circ}$
⇒ $\angle C = 360^{\circ} - 250^{\circ} = 110^{\circ}$

 \therefore \angle C = 110° and \angle D = 125°