1. Die Formel für die Geschwindigkeit v ist

$$v = \frac{\Delta s}{\Delta t}$$

Hier ist Δs der zurückgelegte Weg und Δt die dafür benötigte Zeit.

- (a) Berechnen Sie die Geschwindigkeit, wenn $\Delta s = 30\,\mathrm{m}$ und $\Delta t = 15\,\mathrm{s}$ ist.
 - i. Berechnen Sie die Geschwindigkeit, wenn $\Delta s = 4 \cdot 10^7 \, \mathrm{m}$ und $\Delta t = 0.133 \, \mathrm{s}$ ist.
- (b) Rechnen Sie $17 \frac{m}{s}$ in $\frac{km}{h}$ um.
- (c) Rechnen Sie $55 \frac{km}{h}$ in $\frac{m}{s}$ um.
- (d) Stellen Sie die Gleichung für v nach dem Weg Δs um und berechnen Sie den Weg, den man bei einer Geschwindigkeit von $15\,\frac{\rm m}{\rm s}$ in $16\,{\rm s}$ zurücklegt.
- (e) Stellen Sie die Gleichung für v nach der benötigten Zeit Δt um und berechnen Sie die Zeit, die nötig ist, um $300\,\mathrm{m}$ bei einer Geschwindigkeit von $11\,\frac{\mathrm{m}}{\mathrm{s}}$ zurückzulegen.
- 2. Die Formel für die Beschleunigung a ist

$$a = \frac{\Delta v}{\Delta t}$$

Hier ist Δv die Geschwindigkeitsänderung und Δt die dafür benötigte Zeit.

- (a) Ein Auto ändert seine Geschwindigkeit in $11.5\,\mathrm{s}$ von $v_1=3\,\frac{\mathrm{m}}{\mathrm{s}}$ auf $v_2=11\,\frac{\mathrm{m}}{\mathrm{s}}$. Wie groß ist seine Beschleunigung?
 - i. Ein Geschoss ändert seine Geschwindigkeit in $2\cdot 10^{-6}\,\mathrm{s}$ von $v_1=0\,\frac{\mathrm{m}}{\mathrm{s}}$ auf $v_2=10^3\,\frac{\mathrm{m}}{\mathrm{s}}$. Wie groß ist seine Beschleunigung? Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für 10er Potenzen, die wir gelernt haben.
- (b) Stellen Sie die Formel für die Beschleunigung nach Δv um und berechnen Sie, um wieviel sich die Geschwindigkeit ändert, wenn wir $16\,\mathrm{s}$ lang mit $3\,\frac{\mathrm{m}}{\mathrm{s}^2}$ beschleunigen.
 - i. Berechnen Sie, um wieviel sich die Geschwindigkeit ändert, wenn wir 10^4 s lang mit $3 \cdot 10^{-3} \, \frac{\text{m}}{\text{s}^2}$ beschleunigen. Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für 10er Potenzen, die wir gelernt haben.
- (c) Stellen Sie die Formel für die Beschleunigung nach Δt um und berechnen Sie, wie lange es dauert, bis eine Beschleunigung von $9.81\,\frac{\rm m}{\rm s^2}$ die Geschwindigkeit um $25\,\frac{\rm m}{\rm s}$ ändert.

i. Berechnen Sie, wie lange es dauert, bis eine Beschleunigung von $10^{-3}\,\frac{\text{m}}{\text{s}^2}$ die Geschwindigkeit um $7\cdot 10^5\,\frac{\text{m}}{\text{s}}$ ändert. Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für 10er Potenzen, die wir gelernt haben.