TANZANIA WEILS

Blake Tolman

OBJECTIVE/DATA

• Using data from <u>Taarifa</u> and the <u>Tanzanian Ministry of Water</u>, predict which pumps are functional, which need some repairs, and which don't work at all

Feature	data example			
For example,	a single row in the dataset n	night have these values:		
	amount_tsh	300.0		
	date_recorded	2013-02-26		
	funder	Germany Republi		
	gps_height	1335		
	installer	CES		
	longitude	37.2029845		
	latitude	-3.22870286		
	wpt_name	Kwaa Hassan Ismail		
	num_private	0		
	basin	Pangani		
	subvillage	Bwani		
	region	Kilimanjaro		
	region_code	3		

The labels in this dataset

MAPPING THE DATA

- There are higher populations around the edges of the country along with a high density of nonfunctional wells
- Central Tanzania has the most working wells and with lower average populations
- Functional wells that need repair appear to be randomly located

Number of Wells per Funder

FUNDER

- Danida is the only funder to fund more functional wells than non-functional
- When factoring in wells that need repair, the Government and Hesawa are barley producing more functional wells than not
- This could signify the money is going to quantity over quality

Number of Wells per Installer

INSTALLER

- Of the top 3 installers used DWE is the only one to produce more than 50% of their wells as functional
- DWE is the most reliable installer
- The Government, who is also a funder, again is just barely producing equivalent amounts of functional and non-functional well when factoring in the wells that need repair

Number of Well per Management Group

MANAGEMENT

- This chart of popular management groups is the first to indicate more functional wells are being observed than not
- It appears the management group is most responsible for the success of the well.
- VWC manages the most wells by a large amount with no indication why

	precision	recall	f1-score	support
non functional	0.75	0.75	0.75	5664
functional	0.78	0.80	0.79	8006
functional needs repair	0.35	0.30	0.32	1088
accuracy			0.74	14758
macro avg	0.63	0.61	0.62	14758
weighted avg	0.74	0.74	0.74	14758

AUC is :0.7468304703517535

INITIAL MODEL — DECISION TREE

- Models Sampled:
 - Logistic Regression
 - Decision Tree
 - XGBoost
 - K-Nearest Neigbor
- First model performance struggled with categorizing "functional needs repair"
- Functional and non-functional had good performance for an initial model
- The overall model had a 74% accuracy and a macro average of 0.62

	precision	recall	f1-score	support
non functional	0.85	0.72	0.78	5664
functional	0.77	0.92	0.84	8006
functional needs repair	0.59	0.23	0.33	1088
accuracy			0.79	14758
macro avg	0.74	0.62	0.65	14758
weighted avg	0.79	0.79	0.78	14758

AUC is: 0.7468304703517535

FINAL MODEL — GRID SEARCH RANDOM FOREST

- Iterations:
 - Grid Search
 - Random Forest
 - Oversample
 - Undersample
- Grid search had the highest increase in performance
- F1-score for "functional need repair" had a minor increase but still had poor performance
- The new mode increased its accuracy by 5% to 79% and increased macro f1-score 0.03 for a final of 0.65

RECOMMENDATIONS AND FUTURE WORK

- Recommendations:
- 1. Raise more money per well
- 2. Reallocate how the money is being spend on the well
- 3. Focus on quality over quantity

- Future Work:
- 1. Analyze the amount of money spent per well
- 2. Find the number of daily uses per well and its status
- 3. Look at the list of materials used for each status group of wells

THANK YOU

