5. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 20.11.2022, 24.00 Uhr

Aufgabe 1: (2+2+2=6 Punkte)

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Beweisen Sie folgende Aussagen:

- a) Gilt $\lim_{n\to\infty} a_n = a$, so gilt $\lim_{k\to\infty} a_{n_k} = a$ für jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ von $(a_n)_{n\in\mathbb{N}}$.
- **b)** Gilt $\lim_{k\to\infty} a_{2k} = a$ und $\lim_{k\to\infty} a_{3k} = b$, so ist a = b.
- c) Gilt $\lim_{k\to\infty} a_{2k} = a = \lim_{k\to\infty} a_{2k+1}$, so ist $\lim_{n\to\infty} a_n = a$.

Aufgabe 2: (2+2=4 Punkte)

Bestimmen Sie alle Häufungspunkte der angegebenen Folgen.

a)
$$a_n = \frac{n - (-1)^n}{4 + (-1)^n n}$$
 b) $b_n = 2(-1)^{\frac{n(n+1)}{2}} + 4(-1)^n$

Aufgabe 3 (5 Punkte)

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $a\in\mathbb{R}$. Beweisen Sie, dass a genau dann ein Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$ ist, wenn gilt:

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \colon |a_n - a| < \varepsilon$$

Aufgabe 4: (4 Punkte)

- a) Sei $K \in \mathbb{N}$. Zeigen Sie die Existenz einer Folge $(a_n)_{n \in \mathbb{N}}$ mit genau K Häufungspunkten.
- b) Zeigen Sie die Existenz einer Folge $(a_n)_{n\in\mathbb{N}}$ für die jedes $k\in\mathbb{N}$ ein Häufungspunkt ist.