Overview

- Why imaging? Imaging tasks?
- What/Why is a Convolution?
- Why text? Text tasks?
- Preprocessing Text

Unstructured Data

- Often refer to tabular data as "structured data"
- Thus, we refer to images and text as unstructured data
 - Also include things like video (lots of images) and audio (fancy sequence)
- Structured Data
 - Random Forest vs. Gradient Boosting vs. DL vs. etc
- Unstructured Data
 - Deep Learning reigns supreme

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!
 - Classification (facial/object recognition, avoid poisonous plants, etc.)
 - Medical Imaging (detecting disease, predicting outcomes of radiation, segmentation of medical images)
 - Autonomous Driving (driver assistance, fully autonomous vehicles)
 - Deepfakes and deepfake detection

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!
 - Classification (facial/object recognition, avoid poisonous plants, etc.)
 - Medical Imaging (detecting disease, predicting outcomes of radiation, segmentation of medical images)
 - Autonomous Driving (driver assistance, fully autonomous vehicles)
 - Deepfakes and deepfake detection
- A lot of these are time-consuming things that human can do really well

- Images are deceptively hard

- Images are deceptively hard

- Images are deceptively hard

This is ??????

```
\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ .5 & .75 & 1 & \dots & .25 \\ \vdots & \vdots & \vdots & & \vdots \\ .333 & 0 & 1 & \dots & 0 \end{bmatrix}
```

- Images are deceptively hard
- Images are big

32x32 image 1024 features

512x512 image 262,144 features

- Images are deceptively hard
- Images are big

32x32 image 1024 features

Fully Connected Layer

- 1024 -> 1024
- $1024^2 = 1,048,576$ parameters
- 262,144 -> 262,144
- 68,719,476,736 parameters

512x512 image 262,144 features

- Images are deceptively hard
- Images are big
- Geometry matters!
 - Pixels near each other interact in different ways to create features than pixels far away

- Images are deceptively hard
- Images are big
- Geometry matters!
 - Pixels near each other interact in different ways to create features than pixels far away
 - This is free data that we lose if we simply consider an image as a data vector

- Fancy linear operation useful for spatial data

- Fancy linear operation useful for spatial data

1	.5	1	0				
0	.25	.5	1	*	$\lceil 1 \rceil$	$0 \rceil$	
1	.25	0	1	~	0	2	
$\lfloor .5$	0	1	1		_	_	

- Fancy linear operation useful for spatial data

- Fancy linear operation useful for spatial data

Grayscale Image

Filter $\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1 \\
.5 & 0 & 1 & 1
\end{bmatrix}

*

<math display="block">
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$

- Fancy linear operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (.5 \times 0) + (0 \times 0) + (.25 \times 2)$$

= 1.5

Grayscale Image

- Fancy linear operation useful for spatial data
- Element-wise product

$$(.5 \times 1) + (1 \times 0) + (.25 \times 0) + (.5 \times 2) = 1.5$$

- Fancy linear operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (0 \times 0) + (.5 \times 0) + (1 \times 2) = 3$$

- Fancy linear operation useful for spatial data
- Element-wise product

- Fancy linear operation useful for spatial data
- Element-wise product

```
Grayscale Image

Filter

Filter

\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1 \\
5 & 0 & 1 & 1
\end{bmatrix}

*
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}

=
\begin{bmatrix}
1.5 & 1.5 & 3 \\
0.5 & ? & ? \\
? & ? & ?
\end{bmatrix}
```

- Fancy linear operation useful for spatial data
- Element-wise product

Grayscale Image

Filter

Filter $\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1
\end{bmatrix}$ \star $\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}$ $=
\begin{bmatrix}
1.5 & 1.5 & 3 \\
0.5 & .25 & 2.5 \\
1 & 2.25 & 2
\end{bmatrix}$

- Fancy linear operation useful for spatial data
- Element-wise product

- Only four parameters!
 - If input is dimension 16 and output is dimension 9, how many for FC?

- Only four parameters!
- Translational Equivariance
 - If I shift my image, I shift the output!

- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)

Intuition: <u>Edge</u> <u>Detection</u>

- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)

Why Natural Language Processing?

- Understand, analyze, and perform tasks using human language (through text).
- Example Tasks:
 - Sentiment Analysis
 - Auto-complete
 - Translation
 - Question answering
 - Conversation?!

Some or all of the content shared in this Tweet conflicts with guidance from public health experts regarding COVID-19. Learn more

- How to represent text as data?

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world

train

brain

head

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world

brain 20-18-1-9-14

brain 2-18-1-9-14

head 8-5-1-4

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world
- For most tasks this is not a particularly helpful embedding
 - Intrinsic meaning is largely lost

- How to represent text as data?
- Humans represent text using characters
 - Takes years to learn to read
 - Different peoples do it differently all around the world
- For most tasks this is not a particularly helpful embedding
 - Intrinsic meaning is largely lost

Tokenization

- Idea: Break up text into pieces (tokens) and treat as categorical variables
 - Often these tokens are words

Tokenization

- Idea: Break up text into pieces (tokens) and treat as categorical variables
 - Often these tokens are words

Word Embedding

High-dimensional space

Low-dimensional space

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
 - N-grams: Common phrases as one token instead of separate tokens

data_science vs. data, science

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
 - Break up words into smaller tokens
 - Smaller dictionary, less total tokens
 - Better at handling unknown, less lemmatization

Unfortunately -> un + fortunate + ly skiing -> ski + ing

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
 - Break up words into smaller tokens
 - Smaller dictionary, less total tokens
 - Better at handling unknown, less lemmatization
 - Many Algorithms: BPE, Unigram, WordPiece

Unfortunately -> un + fortunate + ly skiing -> ski + ing

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
 - EOS (End of Sentence) and SOS (Start of Sentence) tokens are common

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
 - EOS (End of Sentence) and SOS (Start of Sentence) tokens are common
 - Non-trivial to find these!
 - Binary Classifier, complicated logic trees

Can't just rely on periods!

The U.K. exports of goods and services as percent of GDP was 31.6% in 2019.

- Idea: Break up text into pieces (tokens) and treat as categorical variables
- Words -> Tokens
- Characters -> Tokens
- Sub-words -> Tokens
- Sentence Segmentation
- Other languages:
 - Chinese languages, Arabic, French, etc.

- Lemmatization
 - Reduce words to their base
 - Shrink dictionary size

running -> run mice -> mouse

- Lemmatization
- Infrequent words (misspelled or weird words)
 - Remove from text or encode as single UNK token

- Lemmatization
- Infrequent words (misspelled or weird words)
- Cleaning before tokenization
 - Lower case
 - Remove weird characters/numbers/punctuation
 - Remove stop words

the, to, a, an, etc.

- Lemmatization
- Infrequent words (misspelled or weird words)
- Cleaning before tokenization
 - Lower case
 - Remove weird characters/numbers/punctuation
 - Remove stop words
- Named Entity Recognition

Apple vs. apple Xerox vs. xerox

Deep Learning and NLP

- Sequences
 - Variable length
 - Relationships between elements of sequence
- Continuous Bag of Words (CBOW)
- 1D CNN
- Recurrent Neural Network (RNN)
 - Keep track of a hidden state vector of features as you move along a sequence
 - Sequence length agnostic

Summary

- Images and Text are special
 - Humans are better at seeing than speaking
 - Language is "harder" than vision
- Special architectures exist to take advantage of the unique properties
 - Images: spatial
 - Text: sequences
- NLP requires a lot of preprocessing and thinking deeply about representation