WO 2005/051993 PCT/NZ2004/000308

1/5

SEQUENCE LISTING

<110>	Ovit	a Lir	nite	d												
<120> .	Novel Muscle Growth Regulator															
<130>	JC218744-142															
<150> <151>	NZ529860 2003-11-27															
<160>	11															
<170>	PatentIn version 3.1															
<210> <211> <212> <213>	1 576 DNA Ovin	e .														
<400> atggcg1	1 tgcg	gggc	gacad	ct ga	aagc	ggcc	c ato	ggag	ttcg	aggo	ggc	gct (gctga	agcc	ct	60
ggctct	ccga	agcg	gcgg	cg ct	gcg	cccc1	t ct	gtcc	ggcc	ccad	tcc	ggg (cctca	aggc	cc	120
ccggac	gccg	aacc	gccg	cc go	ctgc	ttcag	g ac	gcaga	accc	caco	gcc	gac 1	tctg	cagca	ag	180
cccgcc	cgc	ccgg	cagc	ga go	ggc	gccti	t cca	aact	cgg	agca	aat	ttt 1	tcaga	aaca [.]	ta	240
aaacaag	gaat :	atag	tcgti	ta to	cagag	ggtgg	g aga	acati	ttag	aagt	tgt	tct 1	taato	caga	gt	300
gaagcti	tgta	cttc	ggaaa	ag to	cagco	ctcad	c tc	ctca	gcac	tcad	agca	acc 1	tagti	ctc	ca	360
ggttcc	tcct	ggat	gaaaa	aa gg	gacca	agcco	c acc	cttta	accc	tccg	gacaa	agt 1	tggaa	taa	ta	420
tgtgag	gtc	tctta	aaaa	ga ct	atga	aagat	t aaa	aatto	ggg	agga	atat	tga 🤉	gcaaa	atcc	tc	480
aatacta	aaac	tagca	agaa	ca at	catga	aatci	t tti	tgtga	aaat	tcad	cacat	tga 1	tcaga	atta	tg	540
cgacgat	tatg	ggaca	aaggo	cc aa	acaag	gctai	t gta	atcc								576
<210> <211> <212> <213> <400>	2 192 PRT Ovin	e	*													
Met Ala		GIV	Δla	Thr	l eu	LVS	Ara	Pro	Met	Glu	Phe	Glu	ΔΊа	Δla		
1	,-	•.,	5	••••		-,-	· · · · 5	10					15	,		
Leu Lei	ı Ser	Pro 20	Gly	Ser	Pro	Lys	Arg 25	Arg	Arg	Cys	Ala	Pro 30	Leu	Ser		
Gly Pro	35	Pro	Gly	Leu	Arg	Pro 40	Pro	Asp	Ala	Ģ∏u	Pro 45	Pro	Pro	Leu		
Leu Glr 50	n Thr	Gln	Thr	Pro	Pro 55	Pro	Thr	Leu	Gln	G]n 60	Pro	Ala	Pro	Pro		
Gly Sei 65	Glu	Arg	Arg	Leu 70	Pro	Thr	Pro	Glu	G]n 75	Ile	Phe	Gln	Asn	Ile 80		
Lys Glr	n Glu	Tyr	Ser 85	Arg	Tyr	Gln	Arg	Trp 90	Arg	His	Leu	Glu	∨a1 95	Val		

Leu Asn Gln Ser Glu Ala Cys Thr Ser Glu Ser Gln Pro His Ser Ser Ala Leu Thr Ala Pro Ser Ser Pro Gly Ser Ser Trp Met Lys Lys Asp Gln Pro Inches Inches

<210> 3 <211> 576 <212> DNA

<213> Bovine

<400> 3

atggcgtgcg gggcgacact gaagcggccc atggagttcg aggcggcgct gctgagccct 60 ggctctccga agcgacggcg ctgcgcccct ctgtccggcc ccactccggg cctcaggccc 120 ccggacgccg aaccgccacc gctgcttcag acgcagatcc caccgccgac tctgcagcag 180 . cccgccccgc ccggcagcga ccggcgcctt ccaactccgg agcaaatttt tcagaacata 240 aaacaagaat atagtcgtta tcagaggtgg agacatttag aagttgttct taatcagagt 300 gaagcttgta cttcggaaag tcagcctcac tcctcaacac tcacagcacc tagttctcca 360 ggttcctcct ggatgaaaaa ggaccagccc acctttacgc tccgacaagt tggaataata 420 tgtgagcgtc tcttaaaaga ctatgaagat aaaattcggg aggaatatga gcaaatcctc 480 aatactaaac tagcagaaca atatgaatct tttgtgaaat tcacacatga tcagattatg 540 cgacgatatg ggacaaggcc aacaagctat gtatcc 576

<210> 4 <211> 192

<212> PRT <213> Bovine

<400> 4

Met Ala Cys Gly Ala Thr Leu Lys Arg Pro Met Glu Phe Glu Ala Ala 15

Leu Leu Ser Pro Gly Ser Pro Lys Arg Arg Arg Cys Ala Pro Leu Ser Gly Pro Thr Pro Gly Leu Arg Pro Pro Asp Ala Glu Pro Pro Pro Pro Leu Gln Thr Gln Ile Pro Pro Pro Thr Leu Gln Gln Pro Ala Pro Pro Gly Ser Asp Arg Arg Leu Pro Thr Pro Glu Gln Ile Pro Pro Thr Pro Glu Gln Ile Pro Pro Glu Gln Ile Gln Ile Gln Ile Gln Ile Gln Ile Gln Ile Glu Val Val

WO 2005/051993 PCT/NZ2004/000308

3/5

| S5 | Ser |

<210> 5 <211> 2071 <212> DNA <213> mouse

ccacattcac tgtgcaagtc gtggggaaat acagatgaat aaaggcttcc ttgttattct 60 caaggaatgt atggttttga agcacagtta gacatatatt caaattacag cttcctcctt 120 taaaacacta atattccaag gcacactcaa tgttttaaag gatcacagag tgactaccaa 180 agcacgtagc aaaaccctac taagagaggt gtgtttaaaa tgactaccca agggacatac 240 ttttcaagtc ttctaatcgt tcactttgga tctgtttata ccacaagaaa acaatttact 300 tgatgctctt aggtcccctt aaaaaataac catcgtgaag tggcttttca tgtccttggc 360 ttttattgaa catagaaaca gccatgcaag cggtcttaaa ggctttatta catcattgtt 420 tcctaataaa gtcatgacag tctacctttg gaattaaagt gatacacaaa atgatggtct 480 gtgtcctctg gtgaactggt tccattcaga taacacctat tcatcatgac tatggtttca 540 tttttcttta gccttcaaga agctcagaac tgaattttaa attcagtcat ttaccaccaa 600 gataattgtg agttittttt tittaaaaaa actctaatgt titatticta gattitagtt 660 taaaccacgt tacatctata ttgacaataa atgtgctaaa ataaacttaa catgggtaat 720 gtgcctaggg aggcttgaat cccaatatgg caaaacaaac agaaaaccag caatttggta 780 tgctgtgctg tcttatattt tacagaaata aatgtgaaag tatatgacct atgttatgat 840 ctttaaagag tttgtagaaa cggaagagga ctcagagaaa agcaaccaaa acgaacagga 900 ggagaaggaa gaagaggcgg agaaggagga ggaagattgg agatagtatg cctttattgt 960 ctaaccccaa gtgtgttgaa gtactgtgac agccatcttg gcaattagaa atgaqtatct 1020 aaaatttgga ctgttctaga aaaatctgtt acagagataa tgttaaagcc agattacagg 1080 aatcacagcc actaatatac aaataattac agaaaggctt tgaatgtgga ggtgttgttc 1140 tgatgactct attgatgtat ttgaaagcac tggagttact ccccaggaaa attacaacca 1200

gagttcccta aagcagaacc tccctgtttt ctattcattt gctgaatatc aaaagcattt

1260

tccagccaac		agtacggcag	agaatctcga	ttgacccgag	gaagaaccag	tctgagttgc	1320
caagtcggat		gaggaagcca	actgccaaat	cagctatcag	gggaagttcc	taacaccctg	1380
gtatcacttg		gttagacagt	ttaagccagt	gagttttctg	gtaggattgt	tttttggttt	1440
tttttt	tttc	cttttaatcc	ttttttgcgt	aacacatatc	catttagtga	tccgattaat	1500
ggccgggtca		tctatcccca	aaatacattc	atttgtaaca	cacctcccct	tccaattttg	1560
cccatgattg		cacagggttc	gtggattaaa	taaagtctat	ccttagataa	cccggttatg	1620
tttgtgaaga		tttcctggga	ctcaagacaa	aatcctttga	taacccttta	gaatcacctc	1680
ttttatcggt		cacgcggcca	agggaacccg	ggtctcccag	ggtctctccc	atccccgcc	1740
cccgaggccc		ctgccgcgca	ggtgcgaaag	acctcccagg	ccactccggc	agagagcgtg [.]	1800
aagggggggg		ccctgggagg	ggcgggggcg	ggggtgttgc	taggcgacca	cgctctccgc	1860
ccagac	cggc	ctacttcttc	cgcagggggc	gccatgggcc	gagcccaggc	tcgcgggcct	1920
cccgga	tcgg	cccttttccg	acttcttccc	ctctgccggg	cggtggcgca	cgcccgtgac	1980
gtcacag	ggag	gcggggccag	cgcggctgcc	gggtgccgga	ggcgccattg	gagccggctt	2040
ggcttg	ggag	ccgtagctga	agagttggat	С			2071
<210> <211> <212> <213>	6 25 DNA PCR	Primer					
<400> caccato	6 ggcg	tgcggggcga	cactg				25
<210> <211> <212> <213>	7 21 DNA PCR	Primer					
<400> ggataca	7 atag	cttgttggcc	t				21
<210> <211> <212> <213>	8 20 DNA PCR	Primer					
<400> tgaagco	8 ggcc	catggagttc					20
<210> <211> <212> <213>	9 22 DNA PCR	Primer					
<400> 9 ggtgggctgg		tccttcttca	tc				22
<210> <211> <212>	10 25 DNA						

			5/5	
<213>	PCR	Primer		
	10 gatc	caactcttca	gctac.	25
	11 24 DNA PCR	Primer		
	11 cac	attcactgtg	caag	24

PCT/NZ2004/000308

WO 2005/051993