Assignment 5: CS 215

Devansh Jain	Harshit Varma
190100044	190100055

November 16, 2020

Question 1

Instructions for running the code

- 1. Unzip, cd into q1/code, open and run q1.m
- 2. The respective plots for MLE, MAP₁, and MAP₂ will be created and saved to q1/results/

ML Estimate

We know that ML estimate is the sample mean $= \overline{x}$

MAP₁ Estimate:

This was derived in class,

$$\frac{\sigma_0^2 \bar{x} + \sigma^2 \mu_0 / N}{\sigma_0^2 + \sigma^2 / N}$$

MAP₂ Estimate:

Likelihood:

$$L(x|\mu) = C \cdot \exp \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Prior:

$$P(\mu) = \frac{1}{b-a} \quad \text{If } a \le \mu \le b$$
$$= 0 \quad \text{otherwise}$$

Posterior is proportional to Likelihood×Prior

$$F(\mu|x) = \frac{C}{b-a} \cdot \exp \sum_{i=1}^{N} \frac{(\mu - x_i)^2}{2\sigma^2}$$
$$= \frac{C'}{b-a} \cdot \exp \frac{(\mu - \bar{x})^2}{2\sigma^2/N}$$

Thus, the maximum of the posterior is at \bar{x} , which is same as the ML estimate.

But, if $\bar{x} < a$, then we know from the prior that this is not possible, thus in this case, the MAP estimate will be a, similarly, if $\bar{x} > b$, the MAP estimate will be b. Thus, the MAP₂ estimate can be written compactly as:

 $|\min(\max(\bar{x},a),b)|$

Boxplots:

Figure 1: ML Estimate relative error

Figure 2: MAP_1 Estimate relative error

Figure 3: MAP_2 Estimate relative error

Interpretation

- i.) The relative errors decrease to zero for all 3 estimates as N increases, this is desirable.
- ii.) When N is small, MAP₁ estimate performs better than the others.

For large N, the three estimates perform approximately the same.

Due to the reasons stated above, we prefer the MAP₁ estimate over the other two.