

	Code	:	15F	EC3	4T
--	------	---	-----	-----	-----------

Register					
Number				, ,	

III Semester Diploma Examination, Oct./Nov.-2019

ELECTRONICS MEASUREMENTS & INSTRUMENTATION

Tir	ne : 3 Hours]	[Max. Marks : 100
No	te: (i) Answer any six questions from PART - A.	
	(ii) Answer any seven questions from PART – B.	
	PART – A	
1.	Write a note on IEEE standards.	
2.	Explain the working of proximity sensors.	5 .
3.	Explain with block diagram peak responding type voltmeter.	1
4.	Differentiate between PMMC and Electrodynamometer.	5
4.	Differentiate between FWINC and Electrodynamometer.	
5.	What is the importance of CRO probes? List the types.	5
6.	How do you measure AC/DC voltages by using CRO?	5 5
7.	Explain the mechanism of automatic polarity indication.	5 (
0	Explain the heate structure of IEEE 400 CDID to structure	.
8.	Explain the basic structure of IEEE-488 GPIB instruments.	5
9.	Define Grounding. Write the need for grounding.	
	1 of 2	[Turn over

15E(C34T	2 of 2	1384
	•	PART – B	0
10.	Expl	ain how Wheatstone bridge is used for measurement of resistance.	10
11.	(a)	Define errors. Write the sources of errors.	5
	(b)	Explain the principle of strain gauge.	5
12.	(a)	Write the working principle of PIR sensors.	5
	(b)	Write the characteristics of transducer.	5
13.	(a)	Explain with neat sketch the multirange ammeter.	5
	(b)	Explain how calibration of DC voltmeter is done.	5
14.		n neat diagram, explain the construction and working of electrodynamometer meter.	r as 10
15.	(a)	Write the diagram of CRO and name its parts.	5
	(b)	Write the application of Digital Storage Oscilloscope.	5
16.	With	h block diagram, explain sweep frequency generator and write its application.	10
17.		cuss with block diagram the successive approximation method used to mea	sure 10
18.	(a) •	Write a brief note on Microprocessor based instrument.	5
	(b)	Write the advantages of Digital Multimeter.	5
19.	(a)	Write the precautions to be taken in instrument usage.	5
	(b)	Write a note on shielding	