

SenNet IoT Easy Meter

Energy Meter 3PH CT/Rogowski

8

Gateway for remote nodes

General description

SenNet IoT Easy Meter is a device that monitors 3PH energy electrical circuits, with two options of current transformer, 0.33Vac or flexible Rogowski. This device has the possibility to create a local RF Network with remote nodes with different features: Pulse Counter / Temperature-Humidity / CO2 / Particulate Matter etc.., and send all this information in one Sigfox message.

The configuration of all these features is possible by three ways:

- Trough APP SenNet NFC (IOS or Android).
- Micro-usb connection and console/terminal.
- Downlink message on sigfox backend.

The end-user can select what kind of energy data and remote device wants to upload to the cloud, must select the type of message (see in the next section).

Power supply

The device uses voltage reference as the power supply (100-265VAC @ 50HZ), <u>it's important just to use Neutral Line Vn and V1.</u> There is an internal fuse to protect the device against surge damages.

Voltage power supply	100-265VAC @ 50HZ
Power	<1W

Basic steps to intall:

- Set the type Current Transformer: CT-0.33Vac: 50A, 100A, 150A, 400A, 800A Flexible-Rogowski: 3500A, 3700A, 5000A
- 2. Set the type of message to use and take note to parse this data on your preferred platform.
- 3. Take note ID / PAC to sign the device on Sigfox Cloud.
- 4. Connect voltage reference (feed internal power supply) and current reference.

Additional steps:

- Define and install remotes devices that will join to Local Network
- Set an univoque ID at each remote device

Power Meter 3 Phase Class 1 (CT's 0.33v -Rogowski)

((•))

Local RF Network Remotes Nodes

Type Message

SenNet IoT Easy Meter is a powerful Energy Meter, the client must select what kind of data will be uploaded to the platform. For that reason, the devices have been defined by default several types of message what includes the main information from each electricity measurement.

The main interest always is the total Energy accumulated, if your interest is on another parameter you can contact with our technical department to ask for it.

Depending on the type of load to be monitored (triphasic or monofasic) you may choose these types of uplink messages:

A common point in all types of messages is the head (defined with <u>2 bytes</u>) that includes important information embedded in the message (type device/type message/errors.. etc). In the next table are defined the mean of these info-fields.

	Field Info																
Byte				Byte :	L				Byte 2								
	Туре	Master D	evice	1	ype N	1essag	e	_			Туре	Remote I	Nodes	ID R	lemote N	odes	
					type 0	(info)		ig Ei	error	÷ 5							
	01 - Eas	sy Meter			typ	e 1		ner		SAG /	0x00 -	No local I	Network	No Rer	mote = 00	00	
	02 - PC	LongNet			typ	e 2		ge a	e G	~ =	0x01 -	PC LongN	et	Remot	e ID = 00	1 _b = 01 _d	
	03 – No	ot defined			typ	e 3		se in g mode	noes	Itag I me	0x02 -	TH LongN	et		= 01	$0_{b} = 02_{d}$	
	04 – En	viroment	roment Sensor		type 4				/oltage secuence	Overvoltage /	0x03 - (0x03 - CO2 LongNet			= 011 _b = 0		
	05 – No	ot defined		typ	e 5 (no	t defii	ned)	Some Phase in generation mode	olta	P S	0x04 - I	PM LongN	let		= 10	$0_{b} = 04_{d}$	
	06 – G\	N Modbu	s LN	typ	e 6 (no	t defii	ned)	S	>		0x05 -	GW Mod	bus LN		= 10	1 _b = 05 _d	
	07 – No	ot defined									0x06 – Analog Input		= 110 _b = 06		$0_{b} = 06_{d}$		
				type	15 (n	ot defi	ned)	Feed	lback Eri	or	0x07 -	Not defin	ed	(6 nc	odes max	imum)	
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
		Byte1		Byte1		Byte1	Ву	te2		Byte2		Byte2					
		Bit 7-6-5			Bit 4-3-2-1		Bit 0	Bit	7-6		Bit 5-4-3		Bit 2-1-0				

Table 1

Type 1 : Active + Reactive Energy + Remote Node												
Field	In	fo	Active Energy PH1+PH2+PH3			Reactive Energy PH1+PH2+PH3				Data from Remote node		
Type data	See To	able 1	Float 32 bits unit kWh		Float 32 bits unit kvArh				Depending on Ro	emote node type		
Byte	1	2	3	4	5	6	7	8	9	10	11	12

	Type 2: Active Energy PH1 + Active Energy PH2 + Active Energy PH3											
Field	In	fo	Active Energy PH1			Activ	ve Energy	PH2	Active Energy PH3			
Type data	Se Tab			resolution=100wh Max. 1.6Mwh			lution=10 ax. 1.6Mv		resolution=100wh Max. 1.6Mwh			
Byte	1	2	3	4	5	6	7	8	9	10	11	

	Type 3: Active Energy PH1 + Active Energy PH2 + Remote Node Data												
Field	In	fo	Active Energy PH1				Α	ctive E	nergy	PH2	Data from Remote Node		
Type data		ee le 1	Float 32 bits				Float	32 bit	s	Depending on Remote node type			
Byte	1	2	3	4	5	6	7	8	9	10	11	12	

Remote Node Data:

Type of Remote Node																
			1 by	e ter	mpe	atur	e Pa	yload			1 t	1 byte humidity Payload				oad
TH LongNet – 868		[-10ºC60ºC] conversion function							[0-100%]							
	Temperature=Payload*0.2745-10									Hun	nidity	/=Pa	yload	b		
Pulse Counter LongNet – 868				2 by	tes (nteg	er ty	/pe) -	max	imuı	n val	ue 6	5535	5		
Pulse Counter LongiNet - 808	Only is enabled input 1 "C1"															
	2 bytes (integer typ								typ	e)						
			byte	2 -H	ligh _l	art-			byte 1 -Low part-							
CO2 LongNet - 868	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
3		(CO2 P					Tempe			ayload Hum. Pa			,	ad	
				ppm)					(± 1						6%)	
	CO	2=Pa	yload [:]	*12.6	984+	100		T=Pay	/load	*1.11	1-10		H=	Payl	oad*6	5.66
Particulate Matter - 868	2 bytes (integer type) - under development															
Gateway Modbus – 868	2 bytes (custom) – under development															
Gateway Custom Protocol – 868	2 bytes (custom) - under development															

Downlink Message

It's possible to set the device in the cloud without interacting with it locally, defining this type of downlink message and CT value on the sigfox backend or in your platform. That method is optional but it's not necessary.

Byte		1	2 - 5	6	7	8	
Field		Easy Meter Setup byte (1byte)	Set time (4bytes)	Type uplink Message (1 byte)	(2 b	CT value (2 byte) (hex. value)	
	Bit 7	1 (by default)					
	Bit 6	1/0 enable/disable set Time					
	Bit 5	1/0 enable/disable set Type uplink Messsage		01			
Value	Bit 4	1/0 enable/disable set value CT	{Time-Epox}	02	High	Low	
value	Bit 3	1 (by default)	{IIIIIe-Lpox}	03	Part	Part	
	Bit 2	1/0 enable/disable Debug 1 (versión HW/FW)					
	Bit 1	1/0 enable/disable Debug 2 (internals errors)					
	Bit 0	1/0 enable/disable Debug 3 (instant power value)					

Example for downlink message:

F8 (time) 01 00 32 \rightarrow With this downlink message set the remote device on time, with type of message 01 and CT value 50 Amps.

Local RF Network & types of Remotes Nodes

SenNet IoT Easy Meter can works like sigfox gateway for up to 6 remotes nodes.

SenNet Easy Meter works as Local Network coordinator and gateway for Remotes Nodes **Pulse Counter** Node ID=1 Temperature & Humidity Node ID=2 Easy Meter CO2 Node ID=3

Power Meter features

These devices include advanced technology for metering power electricity loads, using a current reference and voltage reference. It's possible to use this device like a 3 single-phase meter or 1 three-phase meter, it depends on the client's goal to monitor.

Type of load to monitorized	
3 single-phase loads independient	PH1 PH2 PH3
1 three-phase load	PH1 / PH2 / PH3

Led output pulse		(Current F	teferenc	9		Vo	ltage Refer Power Sup		
Reactive Power Aparent Power Active Power	l1+ (1)	l1- (2)	12+ (3)	12- (4)	13+ (5)	13- (6)	Vn (19)	V1 (20)	V2 (21)	V3 (22)
Reactive Power Aparent Power		H1	PH2 PH3			Power 100-265V/	(22)	(/		
Active Power 1 pulse/seg = 1kw	(CT – 0		CT currei	nt transfo						
		III REAC	APA ACTV	는 최 설 CURRENT R	± ± ≯ _{PWI}	T	TR.			

Voltage reference

Range	110-220/240VAC (CAT III – 400V)
Frequency	50-60Hz
Electrical isolation	2.5Kv @ 60second
Power supply requirement	0.1 VA per phase
Accuracy	Class 0.2 (+/-0.2%)
4	Recommend using electrical protection before connecting this reference.

Current reference

This device can use current transformers (CT) of two types 0.33Vac and flexible type (Rogowski), depending on each type has a different type of accuracy.

Types	Range of measureament	Output type	Accuracy
	measureament	type	
CT 50 A	150 A	0.33VAC	+/-1% (5%100% In)
CT 100 A	1100 A	0.33VAC	+/-1% (5%100% In)
CT 150 A	1150 A	0.33VAC	+/-1% (5%100% In)
CT 400 A	1400 A	0.33VAC	+/-1% (5%100% ln)
CT 800 A	1800 A	0.33VAC	+/-1% (5%100% ln)
Flexible 5000 A (7cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (12cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (20cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)

(*)Must use flexible SenNet Rogowski model to certificate Class 1. (Factory Calibrated)

Accuracy on current measurement		
Easy Meter + SenNet CT 0.33Vac	Class 1	(Class 0.5 under requeriment)
Easy Meter + Flexible SenNet Rogowski	Class 1	Factory Calibrated

Electrical isolation	
SenNet CT 0.33Vac	2.5KV / 0.5mA / 3second
Flexible SenNet Rogowski	600V CAT IV

Tabla – Modbus RTU , a través de Gateway Modbus LongNet

• Modbus RTU: 9600 kbits – 8N1

Formato: Float inverse16 bit cada registro (2 bytes)

• Base 0

Meter 1	Register	Register	Description	Format	Units
1	00000	00001	Frequency Hz	32 bit Float Inverse	Hz
1	00002	00003	Phase 1 Power factor	32 bit Float Inverse	
1	00004	00005	Phase 2 Power factor	32 bit Float Inverse	
1	00006	00007	Phase 3 Power factor	32 bit Float Inverse	
1	00008	00009	Phase 1 to Neutral Voltage	32 bit Float Inverse	V
1	00010	00011	Phase 2 to Neutral Voltage	32 bit Float Inverse	V
1	00012	00013	Phase 3 to Neutral Voltage	32 bit Float Inverse	V
1	00014	00015	Phase 1 Line current	32 bit Float Inverse	Α
1	00016	00017	Phase 2 Line current	32 bit Float Inverse	Α
1	00018	00019	Phase 3 Line current	32 bit Float Inverse	Α
1	00020	00021	Phase 1 Active Power	32 bit Float Inverse	W
1	00022	00023	Phase 2 Active Power	32 bit Float Inverse	W
1	00024	00025	Phase 3 Active Power	32 bit Float Inverse	W
1	00026	00027	Phase 1 Reactive Power	32 bit Float Inverse	VAr
1	00028	00029	Phase 2 Reactive Power	32 bit Float Inverse	VAr
1	00030	00031	Phase 3 Reactive Power	32 bit Float Inverse	VAr
1	00032	00033	Phase 1 Apparent Power	32 bit Float Inverse	kVA
1	00034	00035	Phase 2 Apparent Power	32 bit Float Inverse	kVA
1	00036	00037	Phase 3 Apparent Power	32 bit Float Inverse	kVA
1	00038	00039	Phase 1 Active Energy Partial	32 bit Float Inverse	kWh
1	00040	00041	Phase 2 Active Energy Partial	32 bit Float Inverse	kWh
1	00042	00043	Phase 3 Active Energy Partial	32 bit Float Inverse	kWh
1	00044	00045	Phase 1 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00046	00047	Phase 2 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00048	00049	Phase 3 Reactive Energy Partial	32 bit Float Inverse	kVArh
1	00050	00051	Phase 1 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00052	00053	Phase 2 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00054	00055	Phase 3 Apparent Energy Partial	32 bit Float Inverse	kVAh
1	00056	00057	Phase 1 Active Energy Total	32 bit Float Inverse	kWh
1	00058	00059	Phase 2 Active Energy Total	32 bit Float Inverse	kWh
1	00060	00061	Phase 3 Active Energy Total	32 bit Float Inverse	kWh
1	00062	00063	Phase 1 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00064	00065	Phase 2 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00066	00067	Phase 3 Reactive Energy Total	32 bit Float Inverse	kVArh
1	00068	00069	Phase 1 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00070	00071	Phase 2 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00072	00073	Phase 3 Apparent Energy Total	32 bit Float Inverse	kVAh
1	00074	00075	Active Energy Total	32 bit Float Inverse	kWh
1	00076	00077	Reactive Energy Total	32 bit Float Inverse	kVArh
1	00078	00079	Apparent Energy Total	32 bit Float Inverse	kVAh

Holding case

IP Grade	IP-60	
Temperature details		
Working temperature	-20ºC+70ºC	
Store temperature	-20ºC+75ºC	
Holding		
Dimensions	119 x 111 x 53 mm	
Type mount	Wall or din rail	
Plastic Material	ABS – V0	

