45,4	45,3	44,1	46,6	44,8	45,6	43,7	46,8	45,2	46,1
44,5	45,4	45,1	46,2	44,2	46,4	45,7	43,9	47,2	45,0
43,9	45,6	44,9	44,5	46,2	46,7	44,3	46,1	47,7	45,8
45,6	45,2	44,2	46,0	44,7	46,5	43,5	45,4	47,1	44,0
46,2	44,2	45,5	46,0	45,7	46,4	44,6	47,0	45,2	46,9

Требуется:

- а) записать значения результатов эксперимента в виде вариационного ряда;
- б) найти размах варьирования и разбить его на 9 интервалов:
- в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
 - г) найти числовые характеристики выборки \bar{x} , $D_{\rm B}$;
- д) приняв в качестве нулевой гипотезу H_0 : генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение, проверить ее, пользуясь критерием Пирсона при уровне значимости $\alpha=0.01$;
- е) найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности $\gamma=0.95$.
- ▶ a) Располагаем значения результатов эксперимента в порядке возрастания, т.е. записываем вариационный ряд:

43,4	43,5	43,7	43,8	43,9	43,9	43,9	44,0	44,0	44,1
44,2	44,2	44,2	44,3	44,3	44,3	44,4	44,5	44,5	44,5
44,6	44,6	44,7	44,7	44,8	44,8	44,8	44,9	44,9	44,9
45,0	45,0	45,1	45,2	45,2	45,2	45,2	45,2	45,3	45,3
45,3	45,4	45,4	45,4	45,4	45,4	45,4	45,5	45,5	45,6
45,6	45,6	45,6	45,6	45,7	45,7	45,7	45,7	45,7	45,7
45,8	45,8	45,9	45,9	46,0	46,0	46,0	46,0	46,0	46,0
46,1	46,1	46,1	46,1	46,2	46,2	46,2	46,2	46,2	46,4
46,4	46,4	46,4	46,4	46,5	46,5	46,5	46,6	46,7	46,7
46,7	46,7	46,7	46,8	46,9	47,0	47,1	47,1	47,2	47,7

б) Находим размах варьирования: $\omega = x_{\text{max}} - x_{\text{min}} = 47,7-43,4=4,3$. По формуле $h = \omega/l$, где l — число

интервалов, вычисляем длину частичного интервала h=4,3/9=0,4(7)=0,48. В качестве границы первого интервала можно выбрать значение x_{\min} . Тогда границы следующих частичных интервалов вычисляем по формуле $x_{\min}+dh$, $d=\overline{1,l}$. Находим середины интервалов: $x_i'=(x_i+x_{i+1})/2$. Подсчитываем число значений результатов эксперимента, попавших в каждый интервал, т.е. находим частоты интервалов n_i . Далее вычисляем относительные частоты $W_i=n_i/n$ (n=100) и их плотности W_i/h . Все полученные результаты

помещаем в таблицу (табл. 19.24).

Таблица 19.24

Номер частич- ного ин- тервала l_i	Границы интервала $x_i - x_{i+1}$	Середина интервала $x'_{i} = (x_{i} + x_{i+1})/2$	Частота интер- вала <i>n</i> _i	Относительная частота $W_i = n_i / n$	Плотность относительной частоты W_i/h
1	43,40-43,88	43,64	4	0,04	0,083
2	43,88-44,36	44,12	12	0,12	0,25
3	44,36-44,84	44,60	11	0,11	0,23
4	44,84-45,32	45,08	14	0,14	0,29
5	45,32-45,80	45,56	21	0,21	0,44
6	45,80-46,28	46,04	17	0,17	0,35
7	46,28-46,76	46,52	14	0,14	0,29
8	46,76-47,24	47,00	6	0,06	0,13
9	47,24-47,72	47,48	1	0,01	0,02
\sum_{i}	-	-	100	-	_

в) Строим полигон частот и гистограмму относительных частот (рис. 19.3, 19.4 соответственно; масштабы на осях берем разные).

Находим значения эмпирической функции распределения $F^*(x) = n_x/n$: $F^*(43,40) = 0$, $F^*(43,88) = 0,04$, $F^*(44,36) = = 0,16$, $F^*(44,84) = 0,27$, $F^*(45,32) = 0,41$, $F^*(45,80) = = 0,62$, $F^*(46,28) = 0,79$, $F^*(46,76) = 0,93$, $F^*(47,24) = = 0,99$, $F^*(47,72) = 1$.

Рис. 19.3

Рис. 19.4

Рис. 19.5

Строим график эмпирической функции распределения (рис. 19.5).

г) Находим выборочное среднее:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x'_{i} n_{i}$$

и выборочную дисперсию:

$$D_{\rm B} = \frac{1}{n} \sum_{i=1}^{k} (x'_{i} - \bar{x})^{2} n_{i} = \frac{1}{n} \sum_{i=1}^{k} (x'_{i})^{2} n_{i} - \bar{x}^{2}.$$

Для этого составляем расчетную таблицу (табл. 19.25). Из нее получаем:

$$\bar{x} = 4545,92/100 = 45,46,$$

$$D_{\rm B} = 206,738,7/100-45,46^2 = 0,85, \, \sigma_{\rm B} = \sqrt{D_{\rm B}} = 0,92.$$

Таблица 19.25

m_i	Границы интервала x_i ; x_{i+1}	Середина интервала x'_{i}	Частота интервала n_i	$n_i x_i'$	$(x_i')^2$	$n_i(x_i')^2$
1	43,40-43,88	43,64	4	174,56	1904,45	7617,80
2	43,88-44,36	44,12	12	529,44	1946,57	23 358,84
3	44,36-44,84	44,60	11	490,60	1989,16	21 880,76
4	44,84-45,32	45,08	14	631,12	2032,21	28 450,94
5	45,32-45,80	45,56	21	956,76	2075,71	43 589,91
6	45,80-46,28	46,04	17	782,68	2119,68	36 034,56
7	46,28-46,76	46,52	14	651,28	2164,11	30 297,54
8	46,76-47,24	47,00	6	282,00	2209,00	13 254,00
9	47,24-47,48	47,48	1	47,48	2254,35	2 254,35
\sum_{i}	-	_	100	4545,92	_	206 738,7

Выборочная дисперсия является *смещенной оценкой* генеральной дисперсии, а исправленная дисперсия — *несмещенной оценкой*:

$$\tilde{D}_{\rm B} = \frac{n}{n-1}D_{\rm B} = \frac{100}{99} \cdot 0.85 = 0.867, \ \tilde{\sigma}_{\rm B} = \sqrt{D_{\rm B}} = 0.93.$$

д) Согласно критерию Пирсона необходимо сравнить эмпирические и теоретические частоты. Эмпирические частоты даны. Найдем теоретические частоты. Для этого пронумеруем X, т.е. перейдем к СВ $z=(x-\bar{x})/\sigma_{\rm B}$ и вычислим концы интервалов: $z_i=(x_i-\bar{x})/\sigma_{\rm B}$, $z_{i+1}=(x_{i+1}-\bar{x})/\sigma_{\rm B}$, причем наименьшее значение z, т.е. z_1 , положим стремящимся к $-\infty$, а наибольшее, т.е. z_{m+1} , $-\kappa+\infty$. Результаты занесем в таблицу (табл. 19.26). Так как $n_1=4<5$, то первый интервал объединяем со вторым и получаем интервал (43,40; 44,36) с частотой $n_1=16$. Далее объединим восьмой и девятый интервалы и получим интервал (46,76; 47,72) с частотой $n_7=7$.

Таблица 19.26

	Границы интервала x_i ; x_{i+1}				Границы интер	овала (z_i ; z_{i+1})
i	x_i	<i>x</i> _{<i>i</i> + 1}	$x_i - \bar{x}$	$x_{i+1} + \bar{x}$	$z_i = (x_i - \frac{1}{2})/\sigma_B$	$z_{i+1} = (x_{i+1} - \frac{1}{-\bar{x}})/\sigma_{\mathrm{B}}$
1	43,40	44,36	_	-1,10	_	-1,19
2	44,36	44,84	-1,10	-0,62	-1,19	-0,67
3	44,84	45,32	-0,62	-0,14	-0,67	-0,15
4	45,32	45,80	-0,14	0,34	-0,15	0,37
5	45,80	46,28	0,34	0,82	0,37	0,89
6	46,28	46,76	0,82	1,30	0,89	1,40
7	46,76	47,72	1,30	_	1,40	_

Находим теоретические вероятности P_i и теоретические частоты: $n'_i = nP_i = 100P_i$. Составляем расчетную таблицу (табл. 19.27).

Таблица 19.27

i		Границы интервала $(z_i; z_{i+1})$				$\Phi(z_{i+1})$	$P_i = \Phi(z_{i+1}) - \Phi(z_i)$	$n_i' = 100 P_i$
	z_i	z_{i+1}			$-\Psi(z_i)$			
1	_	-1,19	-0,5000	-0,3830	0,1170	11,70		
2	-1,19	-0,67	-0,3830	-0,2486	0,1344	13,34		
3	-0,67	-0,15	-0,2486	-0,0596	0,1890	18,90		
4	-0,15	0,37	-0,0596	0,1443	0,2039	20,39		
5	0,37	0,89	0,1443	0,3133	0,1690	16,90		
6	0,89	1,40	0,3133	0,4192	0,1059	10,59		
7	1,40	_	0,4192	0,5000	0,0808	8,08		
\sum_{i}	_	_	_	_	1	100		

Вычислим наблюдаемое значение критерия Пирсона. Для этого составим расчетную таблицу (табл. 19.28). Последние два столбца служат для контроля вычислений по формуле

$$\chi^2_{\text{набл}} = \frac{1}{n} \sum_{i=1}^k n_i^2 - n.$$

Таблица 19.28

i	n _i	n'_i	$n_i - n'_i$	$(n_i - n'_i)^2$	$\frac{\left(n_i - n_i'\right)^2}{n_i'}$	n_i^2	$\frac{n_i^2}{n_i'}$
1	16	11,70	4,30	18,49	1,5803	256	21,8803
2	11	13,44	-2,44	5,9536	0,4430	121	9,0030
3	14	18,90	-4,90	24,01	1,2704	196	10,3704
4	21	20,39	0,61	0,3721	0,0182	441	21,6282
5	17	16,90	0,10	0,010	0,0006	289	17,1006
6	14	10,59	3,41	11,6281	1,0980	196	18,5080
7	7	8,08	-1,08	1,1664	0,1444	49	6,0644
\sum_{i}	100	100	_	_	$\chi^2_{\text{набл}} = 4,5549$	_	104,5549

Контроль:
$$\frac{\sum n_i^2}{n_i'} - n = \frac{\sum (n_i - n_i')^2}{n} = 104,5549 - 100 =$$

= 4,5549 . По таблице критических точек распределения χ^2 (см. прил. 10), уровню значимости $\alpha=0,01$ и числу степеней свободы k=l-3=7-3=4 (l — число интервалов) находим: $\chi^2_{\rm kp}=13,3$.

Так как $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$, то гипотеза H_0 о нормальном распределении генеральной совокупности принимается.

е) Если СВ X генеральной совокупности распределена нормально, то с надежностью γ можно утверждать, что математическое ожидание a СВ X покрывается доверительным интерва-

лом
$$\left(\bar{x} - \frac{\tilde{\sigma}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma}; \ \bar{x} + \frac{\tilde{\sigma}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma}\right)$$
, где $\delta = \frac{\tilde{\sigma}_{\mathrm{B}}}{\sqrt{n}}t_{\gamma} -$ точность оценки.

В нашем случае $\bar{x}=45,46$, $\tilde{\sigma}_{\rm B}=0,93$, n=100. Из прил. 4 для $\gamma=0,95$ находим: $t_{\gamma}=1,984$, $\delta=0,1843$. Доверительным интервалом для a будет (45,2757; 45,6443). Доверительный интервал, покрывающий среднее квадратичное отклонение σ с заданной надежностью γ , $(\tilde{\sigma}_{\rm B}(1-q); \tilde{\sigma}_{\rm B}(1+q))$, где q находится по данным γ и n из прил. 9. При $\gamma=0,95$ и n=100 имеем: q=0,143. Доверительным интервалом для σ будет (0,7970; 1,0630). \P

ИДЗ-19.2

Дана таблица распределения 100 заводов по производственным средствам X (тыс. ден. ед.) и по суточной выработке Y (т). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) найти уравнение прямой регрессии у на х;
- б) построить уравнение эмпирической линии регрессии и случайные точки выборки (X, Y).