통계학과 202STG18 이재빈

Word Embeddings in 2020

NLP Process

Why Word Embedding?

- Q. 컴퓨터는 각 의미 단위를 어떻게 이해할 수 있을까?
- A. 컴퓨터가 처리할 수 있는 것은 **수치** 뿐 컴퓨터가 언어의 특성을 이해할 수 있도록 각 token 마다 **수치를 부여**!

Embedding

자연어를 숫자의 나열인 **벡터**로 변환

Word Embeddings

- 1. CountVectorizer
- 2. TF-IDF
- 3. Word2Vec
- 4. GloVe
- 5. FastText
- 6. ELMo
- 7. Transformers

단어(Token)들의 카운트(출현 빈도(frequency))로 여러 문서(Corpus)들을 벡터화

단어(Token)들의 등장 여부(0 / 1)로 여러 문서(Corpus)들을 벡터화

TF-IDF

단어의 빈도(Term Frequency)와 역 문서 빈도(Inverse Document Frequency)를 사용하여 각 단어들마다 **중요한 정도**를 가중치로 주는 방법

$$W_{t,d} = tf_{t,d} \times log_{10}(\frac{n}{1 + df(t)})$$

$$\frac{\text{The log}_{10}}{\text{The log}_{10}} \times \frac{n}{1 + df(t)}$$

- 단어 빈도 (Term Frequency) = tf(t,d): 특정 문서 d에서 특정 단어 t의 등장 횟수
- 문서 빈도 (Document Frequency) = df(t) : 특정 단어 t가 등장한 문서의 수
- 역문서 빈도 (Inverse Document Frequency) = idf(t) : df(t)에 반비례하는 수
- 모든 문서에 많이 나오는 단어 (ex. a, the, is, ...) 굳이 가중치를 높게 줄 필요 없다!

TF-IDF

00

01

02

03

04

05

06

```
# CountVectorizer
array([[2, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 1, 1, 1],
      [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0],
      [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3],
      [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1]])
np.sum(tf, axis=0)
                                       # df
array([2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 2, 5])
np.log10(4/(1+np.sum(tf, axis=0)))
                                       # idf
array([ 0.12493874,  0.30103 ,  0.30103 ,  0.30103 ,  0.30103 ,
       0.30103 , 0.
                             , 0.30103
                                         , 0.
                                                      , 0.30103 ,
                             , 0.30103 , 0.30103 , 0.12493874,
      -0.17609126])
```


np.multiply(tf, idf)

Word2Vec

비슷한 맥락을 갖는 단어들은 비슷한 의미(semantic similarity)를 가진다

비슷한 맥락을 갖는 단어에 **비슷한 벡터**를 준다!

(중심단어와 주변단어 벡터의 내적이 코사인 유사도가 되도록 단어벡터를 벡터공간에 임베딩한다)

Word2Vec: CBOW

주변에 있는 단어들을 통해 중심에 있는 단어를 예측하는 방법

아침을 안 먹었더니 __ 너무 고프다

Word2Vec : Skip-gram

중심에 있는 단어를 통해 주변에 있는 단어들을 예측하는 방법

(CBOW 모델보다 update 기회가 더 많기 때문에 좀 더 많이 사용하는 추세)

아침을 ___ **... 배가** ___ _

Word2Vec

- **Distance** between vectors for words with close meaning (ex. king queen)
- Allow mathematical operations on vectors (ex. king man + woman = queen)

전체 문서 정보를 이용, 동시 등장 확률(co-occurrence information)을 고려해 임베딩하는 방법

LSA, TF-IDF

- 빠른 훈련 속도
- 통계 정보 사용

단점

- 단어 간 관계는 파악 불가능
- 주로 단어 유사성 여부만을 파악하는 데에 사용

Count-based

Skip-gram, CBOW

장점

- 단어 유사성 이상의 복잡한 패턴을 파악
- 높은 수준의 성능

단점

+

임베딩 벡터가 윈도우 크기 내에서만 주변 단어를 고려하기 때문에, Corpus의 전체적인 통계 정보 반영 불가능

Direct Prediction

GloVe

통계 정보를 포함한 Direct Prediction Embedding

00

01

02

03

04

05

06

임베딩 된 단어 벡터 간 유사도 측정을 수월하게 하면서 # word2vec 장점 말뭉치 전체의 통계 정보를 반영하자

co-occurrence matrix 장점

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

ice가 주어졌을 때, solid 등장할 확률 > steam 등장할 확률

$$\frac{P(solid|ice)}{P(solid|steam)} > 1 \iff \frac{P(gas|ice)}{P(gas|steam)} < 1$$

(임베딩 된 **두 단어벡터의 내적**이 말뭉치 전체에서의 **동시 등장확률 로그값**이 되도록 목적함수를 정의)

00

01

02

03

04

05

06

Subword Embedding을 통해 언어의 형태학적 (Morpological) 특성을 반영하는 방법

- OOV (Out-of-Vocabulary) : Word2Vec의 한계점, 새로운 단어가 들어오면 embedding 불가능
- <u>단어를 Bag-of-Characters로 보고, 개별 단어가 아닌 n-gram의 Characters를 embedding</u>
- 희소한 단어에 대해 더 좋은 word embedding 가능
- 어휘사전(vocabulary words)으로부터 훈련된 말뭉치에 존재하지 않았던 단어 벡터를 만들어 낼 수 있음 ex) disaster, disastrous

00

01

02

03

04

05

06

ELMo

Embeddings from Language Models, 문맥을 반영한 워드 임베딩(**Contextualized** Word Embedding)

- Language Modeling : 현재까지 주어진 문장을 기반으로, 다음 단어를 예측하는 것
- $P(x^{(t+1)}|x^{(t)},...,x^{(1)})$, where $x^{(t+1)}$ can be word in the Vocabulary $V = \{w_1,...,w_{|v|}\}$
- $P(x^{(t)}, ..., x^{(1)}) = P(x^{(1)}) \times P(x^{(2)}|x^{(1)}) \times ... \times P(x^{(T)}|x^{(T-1)}, ..., x^{(1)}) = \prod_{t=1}^{T} P(x^{(t)}|x^{(t-1)}, ..., x^{(1)})$

Bank Account (계좌) vs River Bank (강둑): 문맥에 따라 워드 임베딩을 다르게 수행

biLM (Bidirectional Language Model) 순방향 + 역방향 모두 고려

ELMo representation을 임베딩 벡터와 concatenate해서 입력으로 사용

00

01

02

03

04

05

06

Transformers

Attention Mechanism을 활용해, 단어 간 연관성(connections and dependencies)을 반영하는 방법

Attention Mechanism

RNN 기반 모델의 문제

• Long Dependency & Vanishing Gradient

Attention?

- Decoder에서 출력 단어를 예측하는 매 시점마다, Encoder에서의 전체 입력 문장을 다시 한 번 참고
- 단, 전체 입력 문장을 전부 다 동일한 비율로 참고하는 것이 아니라, 해당 시점에서 예측해야 할 단어와 **연관이 있는 입력 단어 부분**을 좀 더 집중(attention)해서 보게 됨

Transformers

Attention + Neural Network

KEYWORD

- Positional Encoding 단어의 위치 정보 반영
- Multi-head Attention
 여러 head를 사용해, 다양한 특징 분석
- Self-Attention input 자신에 대한 attention (The animal is hungry, because **it** is tired)

Reference

00

01

02

03

04

05

06

D

Word Embeddings in 2020. Review with code examples
 https://towardsdatascience.com/word-embeddings-in-2020-review-with-code-examples-11eb39a1ee6d

Word2Vec Efficient Estimation of Word Representations in Vector Space (2013)

■ GloVe Glove: Global vectors for word representation (2014)

FastText Enriching word vectors with subword information (2016)

ELMo Deep contextualized word representations (2018)

Transformers Attention is all you need (2017)

감사합니다 😊