第七章 卤代烃 (3)

主要内容

- 卤代烷的消除反应
- 消除反应的E2机理和E1机理,影响消除反应机理的因素
- 消除的Zaitsev取向和Hofmann取向, 烯烃的类型 及相对稳定性。
- E2机理的立体化学

卤代烷的性质 (续)

1. 卤代烃的消除反应

• 例:一些卤代烷的消除

注意: 主要产物的结构 有何特点?

$$f$$
 CH₃CH₂CH₂CH₂CI f CH₃CH₂CH=CH₂ f CH₃CH=CHCH₃ f CH₃CH=CHCH₃ f CH₃CH=CHCH₃ f CH₃CH=CHCH₃ f CH₃CH=CHCH₂ f CH₃CH=CHCH₃ f CH₃CH=CHCH₃ f CH₃CH=CHCH₂ f CH₃CH=CH

$$\begin{array}{c|cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ CH_3CH_2CCH_3 & & & \\ I & & & \\ Br & & & \\ \hline EtOH & & \\$$

2. 卤代烃的消除反应机理

$$R \xrightarrow{\beta} C \xrightarrow{\alpha} C \xrightarrow{\alpha} X + B \xrightarrow{\Theta} \longrightarrow R \xrightarrow{\alpha} H + X \xrightarrow{\Theta} + HB$$

• 实验证据: 存在两种类型的消除反应

	动力学证据 反应速率	反应的立体化学	重排现象	反应类型
I	∞[RX][B:]	立体专一性	无	双分子机理 E2
II	∞[RX]	无选择性	有	单分子机理 E1

■ E2机理(双分子消除机理)

五中心过渡态

- 一旧键的解离与新键的形成同时进行
 - (一步机理)
- ▶符合动力学特征 V = k[RX][B:]

■ E1机理 (单分子消除机理)

碳正离子中间体

- ▶ 第一步是决速步骤,符合动力学特征 V=k[RX]

■ 影响消除反应机理的一些因素

a) E2机理

$$\begin{array}{c}
\delta \\
B \\
\downarrow \\
C
\end{array}$$

$$\begin{array}{c}
\delta \\
C
\end{array}$$

$$\begin{array}{c}
C
\end{array}$$

$$\begin{array}{c}
\delta \\
C
\end{array}$$

$$\begin{array}{c}
\delta \\
C
\end{array}$$

$$\begin{array}{c}
\delta \\
C
\end{array}$$

$$\begin{array}{c}
C
\end{array}$$

$$C$$

有利于E2机理的因素:

▶R-X: α-C上连有较多的支链烷基 (可以生成稳定的烯烃)

▶B(碱): 强碱、大浓度有利

>溶 剂: 弱极性溶剂有利 (过渡态电荷密度分散)

有利于E1机理的因素:

>R-X: 3°R-X

▶B(碱): 对E1反应影响较小,但弱碱或低浓度碱,可减少E2的竞争

溶剂:大极性溶剂有利(过渡态电荷密度集中)

• 例:解释下列消除产物的生成机理

3. 消除反应的取向 (消除反应的区位选择性, Regioselectivity)

a) Zaitsev 消除取向

Zaitsev 规则

(一般情况下)消除优先生成双键上取代基多的烯烃。

为什么?

烯烃的稳定性

■补充: 烯烃的类型及其稳定性

> 分类:将烯烃看作乙烯的取代产物

稳定性:多取代烯烃较稳定

■ 烯烃相对稳定性的测定——烯烃的氢化热

→ E1 反应 CH₃ CH₃CH₂CCH₃ Br CH₃CH₂CCH₃ CH₃ CH₃CH₂CCH₃ EtOH CH₃CH₂CCH₃ EtOH CH₃CH₂CCH₃ EtOH CH₃CH₃CH₂CCH₂ EtOH CH₃CH₃CH₂CCH₂ EtOH CH₃CH₃CH₂CCH₂ EtOH EtOH CH₃CH₃CH₂CC=CH₂ EtOH EtOH CH₃CH₃CH₂CC=CH₂ EtOH EtOH CH₃CH₃CH₂CC=CH₂ EtOH CH₃CH₃CH₂CC=CH₂ W不稳定 CH₃CH₃CH₂CC=CH₂ 校稳定

b) Hofmann 消除取向

思考题:以下卤代烷在碱作用下消除,不论碱的体积大小, 均为Hofmann取向,试给出合理解释。

原因: B-H所处位置有明显的空间位阻

- 4. E2 消除的立体化学—— 立体专一性反应
 - ▶立体专一性反应 (Stereospecific Reaction) 具有一定立体结构的底物通过反应只生成一种类型的立体异构体。
 - ▶立体有择性反应 (Stereoselective Reaction) 底物通过反应可以生成 2 个以上立体异构体,其中有一个占优势。

●例1: **1**-溴-**1**,**2**-二苯基丙烷的消除反应 (有二对对映体)

注意:消除为立 体专一性

■ E2 消除为反式共平面消除(反式消除)

●解释 1-溴-1,2-二苯基丙烷的消除反应的立体专一性

为E2反式消除机理

$$H_3C$$
 H $=$ H_3C H $=$ H

转变为H和Br反式共平面构象

例2:解释下列两个异构体在相同反应条件下的不同反应结果 (环状化合物的E2消除)

接下页

▶化合物I的反应解释

▶化合物II的反应解释

5. 取代反应对消除反应

■S_N与E

▶ 烷基结构: RX中, R体积增加, 消除比例上升。

- ▶ 碱性和亲核性:碱性强 (NH₂-, RO-,OH-等),浓度大有利于消除。
- ▶温度: 高温有利于消除(消除反应是吸热量较大的反应)。
- ▶溶剂: 低极性溶剂对E2更好。

本次课小结:

- > 卤代烷的消除反应
- ▶ E2消除机理, 动力学特征, 立体化学(立体专一性反应, 反式消除)
- > E1消除机理, 动力学特征
- 消除的取向, Zaitsev取向, 烯烃的类型及相对稳定性, Hofmann取向