INTRODUCTION TO STATISTICAL INFERENCE

Sangita Das, notes by Ramdas Singh

Third Semester

List of Symbols

Placeholder

Contents

1	SUF	FFICIENCY	1
	1.1	Introduction to Sufficient Statistics	1
	1.2	Factorization Theorems	2
	1.3	Minimal Sufficiency	4
	1.4	Location Scale Family	6
2	POINT ESTIMATION 9		
	2.1	Estimators	9
		2.1.1 Method of Moments	9
		2.1.2 Maximum Likelihood Estimators	9
		2.1.3 One Parameter Exponential Family in Natural Form	11
	2.2	Information Number	13
		2.2.1 Information Inequality	14
	2.3	Order Statistics	15
3	MU	LTIVARIATE NORMAL DISTRIBUTION	17
	3.1	Random Vectors and Random Matrices	17
		3.1.1 Covariance Matrix	18
	3.2	Multivariate Normal Distribution	19
In	dex		21

Chapter 1

SUFFICIENCY

1.1 Introduction to Sufficient Statistics

We start by defining terms for the sake of completion, whilst assuming the most basic definitions.

Definition 1.1. An *estimator* is any function of the random sample which is used to estimate the unknown value of the given parameteric function $g(\theta)$.

If $\underline{X} = (X_1, \dots, X_n)$ is a random sample from a population with a probability distribution P_{θ} , a function d(X) used for estimating $g(\theta)$ is known as an estimator. Let $\underline{x} = (x_1, \dots, x_n)$ be a realization of $\underline{X} = (X_1, \dots, X_n)$. Then $d(\underline{x})$ is called an *estimate*.

Definition 1.2. The parameter space is the set of all possible values of a parameter.

For example, the normal distribution $N(\mu, \sigma^2)$ has the parameter space $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Similarly, the binomial distribution Bin(n, p) has the constraints $n \in \mathbb{N}$ and $p \in [0, 1]$.

Throughout this course, we will assume any data, otherwise stated, will be *independent and identically distributed*; the are separate datapoints that follow the same probability distribution and are independent.

Definition 1.3. Let X_1, \ldots, X_n be a random sample from a population P_{θ} , where $\theta \in \Theta$. A statistic $T = T(X_1, \ldots, X_n) = T(\underline{X})$ is said to be a *sufficient statistic* for the family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ if the conditional distribution of X_1, \ldots, X_n given T = t is independent of θ .

We shall look at some examples.

Example 1.4. Let X_1, \ldots, X_n be a random sample from the Bernoulli distribution with parameter $p \in (0,1)$. We claim that $T = \sum_{i=1}^{n} X_i$ is sufficient for $\{Ber(p) \mid 0 . To show this, we simply have$

$$P(X_{i} = x_{i} \text{ for all } i | T = t) = \frac{P(X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1}, X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{p^{x_{1}} (1 - p)^{1 - x_{1}} \cdots p^{x_{n-1}} (1 - p)^{1 - x_{n-1}} p^{t - \sum x_{i}} (1 - p)^{1 - t + \sum x_{i}}}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{1}{\binom{n}{t}}.$$

$$(1.2)$$

Thus, the statistic T is sufficient. The above expression is valid when $\sum_{i=1}^{n} x_i = t$, and the probability

SUFFICIENCY Factorization Theorems

evaluates to 0 if $\sum_{i=1}^{n} x_i \neq t$.

Example 1.5. Let X_1, \ldots, X_n be a random sample from Poisson(λ) for $\lambda > 0$. We claim that the statistic $T = \sum_{i=1}^n X_i$ is sufficient. Recall that the probability mass function is $f(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$ where x is a non-negative integer, and $\lambda > 0$. We have

$$P(X_{i} = x_{i} \mid T = t) = \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\frac{e^{-\lambda} \lambda^{x_{1}}}{x_{1}!} \cdots \frac{e^{-\lambda} \lambda^{x_{n-1}}}{x_{n-1}!} \cdot \frac{e^{-\lambda} \lambda^{t-\sum x_{i}}}{(t-\sum x_{i})!}}{\frac{e^{-n\lambda} (n\lambda)^{t}}{t!}}$$

$$= \frac{e^{-n\lambda} \lambda^{t}}{x_{1}! \cdots x_{n-1}! (t - \sum_{i=1}^{n-1} x_{i})!} \cdot \frac{t!}{e^{-n\lambda} (n\lambda)^{t}}$$

$$= \frac{t!}{x_{1}! \cdots x_{n-1}!} \frac{1}{t}$$

$$= \left(\frac{t}{x_{1}, x_{2}, \dots, x_{n}}\right) \cdot \frac{1}{n^{t}}.$$
(1.3)

This shows that the conditional distribution of (X_1, \ldots, X_n) given T = t does not depend on λ , so by the definition of sufficiency, T is a sufficient statistic for λ .

Definition 1.6. A regular model may be one of two things.

- 1. All P_{θ} are continuous with probability density function $f(x \mid \theta)$.
- 2. All P_{θ} are discrete with prbability mass function $p(x \mid \theta)$, and there exists a countable set $S = \{x_1, x_2, \ldots\}$ independent of θ such that $\sum_{i=1}^{\alpha} p(x_i \mid \theta) = 1$.

1.2 Factorization Theorems

The following theorem proves to be useful for finding sufficiency.

Theorem 1.7 (The Neyman-Fisher factorization theorem). Let $f(\underline{x} \mid \theta)$ be the density of \underline{X} under the probability model P_{θ} for $\theta \in \Theta$. Then if the model is regular, a statistic $T(\underline{X})$ is sufficient for θ if and only if there exist functions g and h such that

$$f(\underline{x} \mid \theta) = g(T(\underline{x}), \theta)h(\underline{x}). \tag{1.5}$$

Note that the functions are defined with $T: \mathbb{R}^n \to I \subseteq \mathbb{R}^k$ (for $k \leq n$), $g: I \times \Theta \to \mathbb{R}_{\geq 0}$, and $h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$. The functions g and h need not be unique.

A little less formally, the theorem basically states this: let X be a random variable with probability mass/density function $f(x,\theta)$ for $\theta \in \Theta$. Then T(X) is sufficient if and only if $f(x,\theta) = g(T(x),\theta)h(x)$ for all $\theta \in \Theta$. We now provide a proof.

Proof. We show only for the discrete case. Let us first assume such a faztorization exists. With

$$P_{\theta}(X = x' \mid T(X) = t) = \begin{cases} \frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} & \text{if } T(x') = t, \\ 0 & \text{if } T(x') \neq t, \end{cases}$$
(1.6)

we then have

$$P_{\theta}(T(x) = t) = \sum_{\{x \mid T(x) = t\}} f_{\theta}(x \mid \theta) = g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x). \tag{1.7}$$

SUFFICIENCY Factorization Theorems

Thus, using the above, and the fact that $\{X = x\} \subseteq \{T(X) = T(x)\}$, gives us

$$\frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} = \frac{P_{\theta}(X = x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{g(t, \theta)h(x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{h(x')}{\sum_{\{x \mid T(x) = t\}} h(x)}.$$
(1.8)

We now suppose that T(X) is sufficient for θ . Let $g(t,\theta) = P_{\theta}(T=t)$. Then,

$$g(t,\theta) = P_{\theta}(T=t) = P_{\theta}(T(X) = T(x')) \text{ where } T(x') = t.$$
 (1.9)

Also set $h(x) = P_{\theta}(X = x' \mid T(X) = T(x'))$, which is independent of θ since T is sufficient. Therefore, we have

$$f_X(x' \mid \theta) = P_{\theta}(X = x') = P_{\theta}(T(X) = T(x')) \cdot P_{\theta}(X = x' \mid T(X) = T(x')) = g(T(x), \theta)h(x). \tag{1.10}$$

Example 1.8. Let X_1, \ldots, X_n be independent and identically distributed $N(\mu, \sigma^2)$ random variables, with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Let us find a sufficient test statistic. We look at cases; the first case being when σ^2 is known ($\sigma^2 = 1$). Since these are independent, we have the joint probability density function of these random variables as

$$f(x_1, \dots, x_n \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2}$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)\right)$$

$$= \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2} \times e^{-\frac{1}{2} (-2\mu \sum_{i=1}^n x_i + n\mu^2)}.$$
(1.11)

Make the former term h(x) and the latter term $g(\sum_{i=1}^n x_i, \mu)$ with $T(x) = \sum_{i=1}^n x_i$. The second case now involves μ being known, and we set it to $\mu = 0$ to get $T(x) = \sum_{i=1}^n x_i^2$, $h(x) = 1/(2\pi)^{n/2}$, and $g(T(x), \sigma^2) = \sigma^{-n} e^{-T(x)/2\sigma^2}$.

We move on to another factorization theorem.

Definition 1.9. The family of distributions $\{P_{\theta} \mid \theta \in \Theta\}$ is said of be a *single parameter exponential family* if there eixst real valued functions $c(\theta), d(\theta)$ on Θ and T(x), S(x) on \mathbb{R}^n and a set $A \subset \mathbb{R}^n$ such that

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_{A}(x) \tag{1.13}$$

where A must not depend on θ .

Example 1.10. Suppose $X \sim \text{Poisson}(\lambda)$ for $\lambda > 0$. With $A = \{0, 1, 2, \ldots\}$, we have

$$f(x \mid \lambda) = \exp(x \log(\lambda) - \lambda - \log(x!)) \mathbf{1}_A(x)$$
(1.14)

with T(x) = x, $c(\lambda) = \log(\lambda)$, $d(\lambda) = -\lambda$, and $S(x) = -\log(x!)$.

Consider X_1, \ldots, X_n independent and identically distributed random variables following the distribution P_{θ} , and suppose that $\{P_{\theta} \mid \theta \in \Theta\}$ is an exponential family, that is, $f(x \mid \theta) = \exp(c(\theta)T(x_i) + \theta)$

SUFFICIENCY Minimal Sufficiency

 $d(\theta) + S(x))\mathbf{1}_A(x)$. Then,

$$f_{x_1,\dots,x_n}(x_1,\dots,x_n \mid \theta) = \prod_{i=1}^n \exp(c(\theta)T(x_i) + d(\theta) + S(x_i))\mathbf{1}_A(x_i)$$
(1.15)

$$= \exp(c(\theta) \sum_{i=1}^{n} T(x_i) + md(\theta) + \sum_{i=1}^{n} S(x_i)) \mathbf{1}_{A^n}(x_1, \dots, x_n).$$
 (1.16)

 (x_1, \ldots, x_n) has distribution belonging to a single parameter exponential family. Thus, if $\{P_\theta \mid \theta \in \Theta\}$ is a single parameter family with density $f(x, \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then T(x) is sufficient for θ .

Corollary 1.11. If x_1, \ldots, x_n are independent and indentically distributed random variables following the distribution P_{θ} with density $f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then $\sum_{i=1}^n T(X_i)$ is sufficient for θ .

The exponential family is expanded.

Definition 1.12. A family of distributions $\{P_{\theta}: \theta \in \Theta\}$ with density $f(x \mid \theta)$ is called a k-parameter exponential family if there exists real valued functions $c_1(\theta), \ldots, c_k(\theta), d(\theta)$ on Θ and $T_1(\underline{x}), \ldots, T_k(\underline{x}), S(x)$ on \mathbb{R}^n , and a set $A \subset \mathbb{R}^n$ such that

$$f(\underline{x} \mid \theta) = \left(\exp(\sum_{j=1}^{n} c_j(\theta) T_j(\underline{x}) + d(\theta) + S(\underline{x})) \right) \mathbf{1}_A(\underline{x}). \tag{1.17}$$

Here, (T_1, \ldots, T_k) is a k-dimensional sufficient statistic for θ . Note that the parameter here is θ and not $(c_1(\theta), \ldots, c_k(\theta))$.

We look at more examples.

Example 1.13. For a normal distribution with $\sigma^2 = 1$, we have

$$f(x \mid \theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2}} \mathbf{1}_A(x) = \exp\left(-\frac{1}{2}\log(2\pi) - \frac{x^2}{2} + x\theta - \frac{\theta^2}{2}\right) \mathbf{1}_A(x). \tag{1.18}$$

Here, $c(\theta) = \theta$, T(x) = x, $S(x) = -\frac{x^2}{2} - \frac{1}{2}\log(2\pi)$, and $d(\theta) = -\frac{\theta^2}{2}$.

August 1st.

- **Remark 1.14.** 1. The Neyman-Fisher factorization theorem holds if $\underline{\theta}$ and \underline{T} are vectors. Their dimensions need not be equal.
 - 2. If T is sufficient and T is a function of U, then U is also sufficient.
 - 3. If V is a function of T, then V need not be sufficient. But if V is one-to-one with T, then V is also sufficient. V = B(T) and $T = B^{-1}(V)$ shows that $g(T, \theta) = g(B^{-1}(V), \theta) = g^*(V, \theta)$. Note that the inverse exists since it is defined on the image of the original function only.

1.3 Minimal Sufficiency

Again, we being with a few definitions.

SUFFICIENCY Minimal Sufficiency

Definition 1.15. A partition of a space \mathcal{X} is a collection $\{E_i\}$ of subsets of \mathcal{X} such that

$$\bigcup_{n\geq 1} E_i = \mathcal{X} \text{ and } E_i \cap E_j = \emptyset \text{ for } i \neq j.$$
(1.19)

The E_i 's are called partition sets. Let $T: \mathcal{X} \to \mathcal{Y}$. The partition of \mathcal{X} induced by the function T is the collection of the sets $T_y = \{x \mid T(x) = y\}$ for $y \in \mathcal{Y}$.

We say that \mathcal{P}_2 is a reduction of \mathcal{P}_1 if each partition set of \mathcal{P}_2 is the union of the same members of \mathcal{P}_1 .

Definition 1.16. A sufficient statistic T(X) is called a *minimal sufficient statistic* if for any other sufficient statistic T'(X), $T(\underline{X})$ is a function of T'(X). That is,

$$T(\underline{X}) = U(T'(X)) \implies \text{if } T'(\underline{x}) = T'(y) \text{ then } T(\underline{x}) = T(y).$$
 (1.20)

In terms of partition sets, if $\{B_{t'} \mid t' \in T'\}$ are partition sets for T'(x) and $\{A_t : t \in T\}$ are partition sets for T(x), then the definition states that every $B_{t'}$ is a subset of some A_t . Thus the partition associated with a minimal sufficient statistic is the coarsest possible partition for a sufficient statistic, and a minimal sufficient statistic achieves the greatest possible data reduction.

Theorem 1.17. Let $f(x \mid \theta)$ be the probability mass/density function of a sample \underline{X} . Suppose there exists a function $T(\underline{x})$ such that for every two sample points \underline{x} and \underline{y} , the ratio $f(\underline{x} \mid \theta)/f(\underline{y} \mid \theta)$ is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Then $T(\underline{X})$ is a minimal sufficient statistic for θ .

We look at an example first before proving the theorem.

Example 1.18. Let X_1, \ldots, X_n be independent and identically distributed $\text{Exp}(\theta)$ for $\theta > 0$. Recall that the probability density function is $f(x \mid \theta) = \theta \exp(-\theta x)$. We show that $T(\underline{X}) = \sum_{i=1}^{n} X_i$ is minimal sufficient for θ . The joint density in this case is

$$f(\underline{X} = \underline{x} \mid \theta) = \prod_{i=1}^{n} \theta \exp(-\theta x_i) = \theta^n \exp\left(-\theta \cdot \sum_{i=1}^{n} x_i\right). \tag{1.21}$$

The ratio is now

$$\frac{f(\underline{x} \mid \theta)}{f(\underline{y} \mid \theta)} = \exp\left(-\theta \sum_{i=1}^{n} (x_i - y_i)\right) = \exp(-\theta (T(\underline{x}) - T(\underline{y}))). \tag{1.22}$$

This expression is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Thus, T is minimal sufficient statistic for θ .

Proof. We shall assume that $f(x \mid \theta) > 0$ for all $x \in X, \theta \in \Theta$. Suppose there exists T(X) such that $f(x \mid \theta)/f(y \mid \theta)$ is constant as a function of θ if and only if T(x) = T(y). We first show that T is sufficient. The map is really $T: \mathcal{X} \to \mathcal{T} = \{t \mid T(x) = t \text{ for some } x \in \mathcal{X}\}$. Let $A_t = \{x \in \mathcal{X} \mid T(x) = t\}$. Then the collection of sets $\{A_t\}_{t \in \mathcal{T}}$ is a partition of \mathcal{X} .

For each A_t , fix an element $x_t \in A_t$. For any $x \in \mathcal{X}$, we have $x \in A_{T(x)}$ and hence $x_{T(x)}$ is the fixed element which belongs to the same partitioning set as x does. Thus, $T(x) = T(x_{T(x)})$ since x and $x_{T(x)}$ belong to $A_{T(x)}$. $\frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ is a constant function of θ , so $h(x) = \frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ independent of θ and $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$. Define $g: \mathcal{T} \times \Theta \to \mathbb{R}_{\geq 0}$ by $g(t, \theta) = f(x_t \mid \theta)$. Then

$$f(x \mid \theta) = \frac{f(x \mid \theta)}{f(x_{T(x)} \mid \theta)} f(x_t \mid \theta) = h(x)g(t, \theta).$$
 (1.23)

Now that we have shown T is sufficient, we show its minimality. Let T'(X) be any other sufficient statistic. Then there exist functions g' and h' such that

$$f(x \mid \theta) = g'(T'(x), \theta)h'(x). \tag{1.24}$$

Let x and y be any two sample points such that T'(x) = T'(y). Then

$$\frac{f(x\mid\theta)}{f(y\mid\theta)} = \frac{g'(T'(x),\theta)h'(x)}{g'(T'(y),\theta)h'(y)} = \frac{h'(x)}{h'(y)} \text{ is independent of } \theta. \tag{1.25}$$

We already know that T(x) = T(y) whenever the above ratio is a constant function of θ . Hence, $T'(x) = T'(y) \implies T(x) = T(y)$. This means that T is coarser.

Theorem 1.19. Suppose \mathcal{P} is a family of probability models with common support and $\mathcal{P}_0 \subset \mathcal{P}$. If T is minimal sufficient for \mathcal{P}_0 and sufficient for \mathcal{P} , then it is minimal sufficient for \mathcal{P} also.

Proof. Let U be any sufficient statistic for \mathcal{P} . Then it is sufficient for \mathcal{P}_0 . But T is minimal for \mathcal{P}_0 . Therefore, T = H(U). Now consider \mathcal{P} . T is sufficient for \mathcal{P} and for any other sufficient statistic U, T = H(U). Thus, T is minimal sufficient.

Example 1.20. Let X_1, \ldots, X_n be independent and identically distributed Poisson(λ) random variables. The probability mass function in this case is

$$f(x_1, \dots, x_n \mid \lambda) = e^{-n\lambda} \frac{\lambda^{x_1 + \dots + x_n}}{x_1! \cdots x_n!}.$$
(1.26)

We find whether $\sum_{i=1}^{n} X_i$ is sufficient for λ . We have

$$\frac{f(\underline{x} \mid \theta)}{f(y \mid \theta)} = \theta^{-\left(\sum_{i=1}^{n} x_i - \sum_{j=1}^{n} y_j\right)} \frac{y_1! \cdots y_n!}{x_1! \cdots x_n!}$$
(1.27)

which is a constant with respect to θ if and only if T(x) = T(y).

Definition 1.21. Two statistics S_1 and S_2 are said to be *equivalent statistics* if $S_1(x) = S_1(y)$ if and only if $S_2(x) = S_2(y)$. Note that if S_1 and S_2 are equivalent, then then provide the same

- 1. partition of the sample space,
- 2. reduction, and
- 3. information.

Definition 1.22. A statistic $S(\underline{X})$ whose distribution does not depend on the parameter θ is called an *ancillary statistic*. An example is the chi-squared distribution.

1.4 Location Scale Family

With examples as context, we define the following families.

Example 1.23. Consider $U \sim \text{Unif}(-1,1)$. Then $f_U(u) = \frac{1}{2}I_{(-1,1)}(u)$. Let $X = \mu + U$. Then $X \sim \text{Unif}(\mu - 1, \mu + 1)$. Thus,

$$f_X(x) = \frac{1}{2}I_{(\mu-1,\mu+1)}(x) = \frac{1}{2}I_{(-1,1)}(x-\mu) = f_U(x-\mu). \tag{1.28}$$

The family of distributions for X indexed by μ is called a location family with location parameter μ . Note that μ is the location for X if $X - \mu$ has a distribution which is free of μ . **Example 1.24.** Suppose $Z_1 \sim N(0,1)$ with density $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$. If we set $X = \sigma Z$ with $\sigma > 0$, then $X \sim (0, \sigma^2)$. Thus,

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}} = \frac{1}{\sigma}f_Z(\frac{x}{\sigma}).$$
 (1.29)

Here, σ is called the *scale parameter* for the family of distributions X indexed by it, which is called a *scale family*. Together, we have the changed distribution as

$$f_X(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right).$$
 (1.30)

Chapter 2

POINT ESTIMATION

August 8th.

We begin with a definition.

Definition 2.1. A point estimator is a function W of the sample, mapping into the parameter space Θ of the parameter θ of interest. The value W(X) is called a point estimate of θ .

Various methods of point estimation are discussed in this chapter, including the method of moments, maximum likelihood estimation, and Bayes estimation.

2.1 Estimators

2.1.1 Method of Moments

Let X_1, \ldots, X_n be a sample from a population with a probability distribution function and probability density function. The *method of moments* estimators are found by equating the first k sample moments to the corresponding k population moments and solving the resulting system of simultaneous equations. Here, the kth sample moment and the kth population moment are given as

$$m_k = \frac{1}{n} \sum_{j=1}^n X_j^k$$
 and $\mu'_k = E[X^k]$ (2.1)

respectively. For $\mu'_j = \mu'_j(\theta_1, \dots, \theta_i)$, with $1 \le j \le k$, the estimators are obtained by solving the equations

$$m_j = \mu'_j(\theta_1, \dots, \theta_i)$$
 for $1 \le j \le k$. (2.2)

2.1.2 Maximum Likelihood Estimators

Let X_1, \ldots, X_n be an independent and identically distributed sample from a population with a probability distribution/mass function $f(\underline{x} \mid \theta_1, \ldots, \theta_k)$. The *likelihood function* is defin as

$$L(\underline{\theta} \mid \underline{x}) = L(\theta_1, \dots, \theta_k \mid x_1, \dots, x_n) := \prod_{j=1}^n f(x_j \mid \theta_1, \dots, \theta_k).$$
 (2.3)

Definition 2.2. For each sample points, let $\overline{\theta}(\underline{x})$ be a parameter value at which $L(\underline{\theta} \mid \underline{x})$ attains its maxima as a function of $\underline{\theta}$, with \underline{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample \underline{X} is $\hat{\theta}(\underline{X})$.

POINT ESTIMATION Estimators

Remark 2.3. 1. By its contraction, the ranges of the MLE concludes with the range of the parameter.

2. The MLE is the parameter points for which the observation sample is most likely.

If the likelihood function is differentiable in θ_i , then possible candidates for the MLE are the values of $(\theta_1, \ldots, \theta_k)$ that solve $\frac{\partial}{\partial \theta_i} L(\underline{\theta} \mid \underline{x}) = 0$ for $1 \le i \le k$. Moreover, we must have $\frac{\partial^2}{\partial^2 \theta_i} L(\underline{\theta} \mid \underline{x}) < 0$ for the solution to be a maximum.

- **Remark 2.4.** 1. The solutions to the above equation are the only possible candidates for the MLE since the first derivative being zero is only a necessary condition for the maximum and not sufficient.
 - 2. The zeroes of the first derivatives only locate extreme points in the interior of the domain of the function.
 - 3. If the extrema occurs on te boundary of the domain, then the first derivative may not be zero. Thus the boundary must be checked separately.
 - 4. The points where the first derivatives are zero may be local/global maxima or minima.

Example 2.5. Let us take the example of the binomial distribution, $X \sim \text{Bin}(n, p)$. The likelihood function is given by $L(p \mid x) = \binom{n}{x} p^x (1-p)^{n-x}$, where 0 . We have

$$\frac{\partial}{\partial p}L(p\mid x) = \frac{dL}{dp}(p\mid x) = 0. \tag{2.4}$$

This derivative is hard to compute directly. So we take the logarithm (an increasing function) of the likelihood function, and then differentiate.

$$\implies \frac{d}{dp}\log L(p\mid x) = \frac{x}{p} - \frac{n-x}{1-p} = 0. \tag{2.5}$$

This gives us $p = \frac{x}{n}$, with the second derivative less than zero, confirming that this is a maximum. Thus, the MLE of p is $\hat{p} = \frac{X}{n}$.

The method in this example is known as *log likelihood estimation*. It is often easier to work with the log likelihood function, especially when dealing with products.

Remark 2.6. 1. The MLE may not exist at all or may not be unique.

2. If $\hat{\theta}$ is the MLE of θ , then $\rho(\hat{\theta})$ is the MLE of $\rho(\theta)$ for any function ρ .

The following is a vital and important result.

Theorem 2.7. The MLE depends on \underline{x} only through the sufficient statistic $T(\underline{x})$.

Proof. We have $L(\theta \mid \underline{x}) = f(\underline{x} \mid \theta) = g(T(\underline{x}), \theta)h(\underline{x})$. Therefore, we have

$$L(\hat{\theta}(\underline{x}) \mid \underline{x}) = \max_{\theta} g(T(\underline{x}), \theta) h(\underline{x}). \tag{2.6}$$

Since $h(\underline{x}) > 0$, and does not depend on θ , we must have

$$L(\hat{\theta}(\underline{x}) \mid \underline{x}) = h(\underline{x}) \max_{\theta} g(T(\underline{x}), \theta)$$
(2.7)

where the maximization is on the part that involves \underline{x} through $T(\underline{x})$ only.

POINT ESTIMATION Estimators

2.1.3 One Parameter Exponential Family in Natural Form

Recall that the usual density form of the exponential family was given as

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + s(x))\mathbf{1}_A(x). \tag{2.8}$$

Define $\eta = c(\theta)$ for $\theta \in \Theta$, and let $\Gamma = \{ \eta \mid \eta = c(\theta), \theta \in \Theta \}$. We then have

$$f^*(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x)$$
 (2.9)

where $d_0(\eta) = d(c^{-1}(\eta))$ if c is one-one. Moreover,

$$1 = \int_{A} f^{*}(x \mid \eta) dx = \int_{A} \exp(\eta T(x) + d_{0}(\eta) + s(x)) dx = \exp(d_{0}(\eta)) \int_{A} \exp(\eta T(x) + s(x)) dx$$
(2.10)

$$\implies d_0(\eta) = -\log\left(\int_A \exp(\eta T(x) + s(x))dx\right). \tag{2.11}$$

Theorem 2.8. If X has density of the form $f(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x)$ and η is an interior points of $H := \{\eta \mid |d_0(\eta)| < \infty\}$, then the moment generating function of T(X) exists and is given by

$$\varphi(s) = E[\exp(sT(X))]. \tag{2.12}$$

Also,

$$E[T(X)] = -\frac{d}{d\eta}d_0(\eta), \qquad and \qquad \operatorname{Var}(T(X)) = -\frac{d^2}{d\eta^2}d_0(\eta). \tag{2.13}$$

Theorem 2.9. Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a one parameter exponential family with density $f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + s(x))\mathbf{1}_A(x)$ and let c be the interior of $C = \{c(\theta) \mid \theta \in \Theta\}$. Also suppose $\theta \mapsto c(\theta)$ is one-one. If the equation

$$E_{\theta}[T(X)] = T(x) \tag{2.14}$$

has a solution $\hat{\theta}(x)$ for which $c(\hat{\theta}(x)) \in C$, then $\hat{\theta}(x)$ is the unique MLE of θ .

Proof. Since $\theta \mapsto c(\theta)$ is one-one, maximizing the likelihood over θ is maximizing over $\eta = c(\theta)$. Hence, consider the natural parametrization

$$f(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x) \text{ for } \eta \in H.$$
(2.15)

 $L(\eta \mid x) = \eta T(x) + d_0(\eta) + s(x)$, if $x \in A$, is the log likelihood function. Also,

$$\frac{\partial}{\partial \eta} L(\eta \mid x) = T(x) + d'_0(\eta) \text{ and } \frac{\partial^2}{\partial \eta^2} L(n \mid x) = d''_0(\eta). \tag{2.16}$$

Therefore, we get $\frac{\partial}{\partial \eta} L(\eta \mid x) = T(x) - E_{\eta}[T(x)] = 0$ implying that $E_{\eta}[T(X)] = T(x)$. Now, $\frac{\partial^2}{\partial \eta^2} L(\eta \mid x) < 0$ so that L is strictly concave. Then we get a unique maxima at $\hat{\eta}(x)$ for which $E_{\eta}[T(X)]_{\eta=\hat{\eta}(x)} = T(x)$.

August 22nd.

The loss function $L(q(\theta), T(X))$ measures the discrepancy between the true parameter $q(\theta)$ and the estimate T(X). A common choice for L is the squared error loss, defined as

$$L(q(\theta), T(X)) = (q(\theta) - T(X))^{2}.$$
(2.17)

One may also choose the absolute error loss, defined as

$$L(q(\theta), T(X)) = |q(\theta) - T(X)|. \tag{2.18}$$

POINT ESTIMATION Estimators

Theorem 2.10 (The Rao-Blackwell theorem). Let \underline{X} be a random vector with distribution P_{θ} , $\theta \in \Theta$, and let T be sufficient for θ . Moreover, let $\delta(\underline{X})$ be an estimator of θ and $\delta^*(t) = E[\delta(X) \mid T = t]$. Also let $L(\theta, d)$ be a strictly convex loss function (in d) and $R(\theta, d) = E[L(\theta, d(\underline{X}))]$. Then if $R(\theta, \delta) = E[L(\theta, \delta(X))] < \infty$, we obtain $R(\theta, \delta^*) < R(\theta, \delta)$ for all θ unless $\delta(x) = \delta^*(T(x))$ with probability 1.

Another form is

Theorem 2.11. If T is an unbiased estimate of $\tau(\theta)$ and S is a sufficient statistic, then $T' = E_{\theta}[T \mid S]$ is also unbiased for $\tau(\theta)$ and

$$\operatorname{Var}_{\theta}(T') \le \operatorname{Var}_{\theta}(T) \text{ for all } \theta.$$
 (2.19)

Proof. We simply have $E_{\theta}[T'] = E_{\theta}[E[T \mid S]] = \tau(\theta) = E_{\theta}[T] = \tau(\theta)$, where we have used the property $E[E[X \mid Y]] = E[X]$. For the next part, we have

$$Var_{\theta}(T) = E[T - E[T]]^{2} = E[T - \tau(\theta)]^{2} = E[T - T' + T' - \tau(\theta)]^{2}$$
$$= E[T - T']^{2} + E[T' - \tau(\theta)]^{2} + 2E[(T - T')(T' - \tau(\theta))]. \tag{2.20}$$

The last term can be worked upon as

$$E[(T - T')(T' - \tau(\theta))] = E[E[(T - T')(T' - \tau(\theta)) \mid S]] = E[(T - \tau(\theta))E[(T - T') \mid S]]$$
(2.21)

where we have used the fact that $E[AB \mid S] = AE[B \mid S]$ when B is any random variable and A is measurable with respect of S. But note that the inner term, $E[(T - T') \mid S]$ expands as

$$E[(T - T') \mid S] = E[T \mid S] - E[T' \mid S] = 0$$
(2.22)

giving us

$$Var_{\theta}(T) = E[T - T']^{2} + E[T' - \tau(\theta)]^{2} \ge E[T' - \tau(\theta)]^{2} = Var_{\theta}(T'). \tag{2.23}$$

Theorem 2.12. Let X have distribution P_{θ} , $\theta \in \Theta$, and let $T = T(\underline{X})$ be complete and sufficient for θ (or P_{θ} , $\theta \in \Theta$). Then every function h(T) is the unique unbiased estimator of its own expected value; that is, for any h, if $g(\theta) = E_{\theta}[h(T)]$ holds, then h(T) is the only unbiased estimate available for $g(\theta)$.

Proof. T is complete for θ , so for any function h, E[h(T(X))] = 0 for all θ implies that $h \equiv 0$. Let $h_1(T)$ and $h_2(T)$ be unbiased, so that $E[h_1(T)] = \theta = E[h_2(T)]$. Set $h(t) = h_1(t) - h_2(t)$. Then E[h(T)] = 0 for all θ , which implies that $h \equiv 0$, or $h_1(t) = h_2(t)$.

Theorem 2.13 (The Lehmann-Scheffe theorem). Suppose $T = T(\underline{X})$ is complete sufficient for P_{θ} , $\theta \in \Theta$, and $S = S(\underline{X})$ is any unbiased estimate of $q(\theta)$. Then $S^* = E[S(\underline{X}) \mid T]$ is the unique minimum variance unbiased estimator (UMVUE) of $q(\theta)$ is $\operatorname{Var}_{\theta}(S^*(\underline{X})) < \infty$ for all θ .

Proof. Both S and S^* are unbiased, and the mean squared error is the variance. By Rao-Blackwell theorem, $\operatorname{Var}_{\theta}(S^*) \leq \operatorname{Var}_{\theta}(S)$ for all θ . Let S_1 and S_2 be two such that $g_1(T) = E[S_1 \mid T]$ and $g_2(T) = E[S_2 \mid T]$ with $E[g_1(T)] = \theta = E[g_2(T)]$. Then $E[h(T)] = E[g_1(T) - g_2(T)] = 0$ showing $h \equiv 0$.

Remark 2.14. 1. Give any S(X) unbiased for $q(\theta)$, the UMVUE is found by obtaining $S^*(X) = E[S(X) \mid T(X)]$, where T is a complete sufficient statistic for θ .

2. If we already have h(T) unbiased for $q(\theta)$ and T complete sufficient, then h(T) is the UMVUE for $q(\theta)$ since $S^* = E[h(T) \mid T] = h(T)$.

We work with some problems to familiarize.

POINT ESTIMATION Information Number

Example 2.15. Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ be independent and identically distributed random variables. Setting $s^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X})^2$, one can show that s^2 is unbiased for σ^2 .

Example 2.16. For $X_1, \ldots, X_n \sim N(\theta, \theta^2)$, one can show that $(\sum X_i, \sum X_i^2)$ is sufficient but not complete.

Theorem 2.17 (Basu's theorem). Suppose T is complete sufficient for $\{P_{\theta} \mid \theta \in \Theta\}$. Let S be any ancillary statistic. Then T and S are independent for all θ .

Proof. We have

$$\int_{-\infty}^{\infty} [F_S(s) - F_{S|T=t}(s)] f_T(t) dt = 0 \text{ for all } \theta.$$
 (2.24)

Theorem 2.18. Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a k-parameter exponential family with density

$$f(\underline{x} \mid \theta) = \exp\left(\sum_{j=1}^{k} c_j(\theta) T_j(\underline{x}) + d(\theta) + S(\underline{x})\right) \mathbf{1}_A(\underline{x}). \tag{2.25}$$

Suppose $\{\underline{c}(\theta) = (c_1(\theta), \dots, c_n(\theta)) \mid \theta \in \Theta\}$ contains an open set g(e) in \mathbb{R}^k . Then $\underline{T}(\underline{X}) = (T_1, \dots, T_k)$ is complete sufficient.

Theorem 2.19. A (bounded) complete sufficient statistic is minimal sufficient, assuming that the minimal sufficient statistic exists.

Proof. Let T be minimal sufficient and U complete sufficient. Then T=h(U) for some function h. We need to show that T and U are equivalent statistics (produce the same partition). It is enough t show that for all integrable φ , $E[\varphi(U) \mid T] = \varphi(U)$. Suppose $E[\varphi(U) \mid T] \neq \varphi(U)$ for some φ . Define $K(U) = \varphi(U) - E[\varphi(U) \mid h(U)]$. Then

$$E[K(U)] = E[\varphi(U)] - E[E[\varphi(U) \mid h(U)]] = E[\varphi(U)] - E[\varphi(U)] = 0.$$
(2.26)

But U is complete, so $K(U) \equiv 0$, or $\varphi(U) = E[\varphi(U) \mid h(U)]$ for all integrable φ . This shows that T and U are equivalent statistics.

2.2 Information Number

Let $\{P_{\theta} : \theta \in \Theta\}$ be a family of probability distributions satisfying the following mathematical regularity conditions.

(A) $A = \{x : f(x) > 0\}$ does not depend on θ .

For all $x \in A$, $\theta \in \Theta$, the score function

$$S(x) = \frac{\partial}{\partial \theta} \log f(x \mid \theta) = \frac{\frac{\partial}{\partial \theta} f(x \mid \theta)}{f(x \mid \theta)}$$
 (2.27)

exists and is finite. S(x) measures the relative rate at which $f(x \mid \theta)$ changes at x. Since X is random, this needs averaging as

$$I(\theta) = E_{\theta}[S(X)^{2}] = \int \left(\frac{\partial}{\partial \theta} \log f(x \mid \theta)\right)^{2} f(x \mid \theta) dx. \tag{2.28}$$

 $I(\theta)$ is called the *Fisher information number* about θ contained in the observation X. It measures the amount of information that the observable random variable X carries about the unknown parameter θ . The second regularity condition is

POINT ESTIMATION Information Number

(B) The derivative, with respect to θ , of $\int f(x \mid \theta) dx$ can be obtained by differentiating under the integral sign.

Theorem 2.20. If both (A) and (B) hold then

- 1. $E_{\theta}[S(X)] = 0$,
- 2. $I(\theta) = \operatorname{Var}_{\theta}(S(X))$.

In addition, if the second derivative (w.r.t. θ) of log $f(x \mid \theta)$ for all x and θ , and the second derivative of $\int f(x \mid \theta) dx$ can be obtained by differentiating under the integral sign, then

3.
$$I(\theta) = -E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right].$$

Theorem 2.21. Let X, Y be two independent random variables with densities $f_1(x \mid \theta)$ and $f_2(y \mid \theta)$ respectively. If $I(\theta)$, $I_1(\theta)$, $I_2(\theta)$ are the Fisher information numbers of (X, Y), X, Y respectively, then $I(\theta) = I_1(\theta) + I_2(\theta)$.

The above theory works for single parameters; for multiple parameters, the fisher information matrix is defined as

$$I(\theta) = [I_{ij}(\theta)] \text{ where } I_{ij}(\theta) = E\left[\frac{\partial}{\partial \theta_i} \log f(x \mid \theta) \cdot \frac{\partial}{\partial \theta_j} \log f(x \mid \theta)\right]. \tag{2.29}$$

The matrix is symmetric.

August 29th.

Theorem 2.22. Let X have one parameter exponential family density

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + s(x))\mathbf{1}_A(x). \tag{2.30}$$

Consider the mean value parametrization $\delta(\theta) = E_{\theta}[T(X)]$. Then $I(\delta) = \frac{1}{\operatorname{Var} T}$.

Proof. The natural parametrization $\eta = c(\theta)$ gives

$$f^*(x \mid \eta) = \exp(\eta T(x) + d_0(\theta) + s(x)) \mathbf{1}_A(x). \tag{2.31}$$

Log gives us

$$\log f^*(x \mid \eta) = \eta T(x) + d_0(\theta) + s(x) \implies \frac{\partial}{\partial \eta} \log f^*(x \mid \eta) = T(x) + d_0'(\eta) = T(x) - E_{\eta}(T). \tag{2.32}$$

Here $E_{\eta}(T) = -d'_{0}(\eta)$ and $\operatorname{Var}_{\eta}(T) = -d''_{0}(\eta)$. Therefore, we have

$$I^*(\eta) = E_{\eta}\left[\frac{\partial}{\partial \eta}\log f^*(X\mid \eta)\right] = E_{\eta}[T(X) - E_{\eta}(T)] = \operatorname{Var}_{\eta}(T). \tag{2.33}$$

Here $\delta(\theta) = E_{\theta}[T] = -d'_{0}(\eta) = h(\eta)$.

$$\frac{d\eta}{d\delta} = \left(\frac{d\delta}{d\eta}\right)^{-1} = (-d_0''(\eta))^{-1} = \frac{1}{\operatorname{Var}_{\eta}(T)} \implies I(\delta) = I^*(\eta) \left(\frac{d\eta}{d\delta}\right)^2 \big|_{\eta = h^{-1}(\delta)} = \frac{1}{\operatorname{Var}_{\eta}(T)}.$$
 (2.34)

2.2.1 Information Inequality

Suppose the conditions (A) and (B) (above) hold, and $0 < I(\theta) < \infty$. Let T(X) be any statistic with $\operatorname{Var} T < \infty$ and such that the derivative, with respect to θ , of

$$E_{\theta}(T) = \int T(x)f(x \mid \theta)dx \tag{2.35}$$

POINT ESTIMATION Order Statistics

exists and can be obtained by differentiating under the integral sign. Then

$$\operatorname{Var}_{\theta}(T(X)) \ge \frac{\frac{d}{d\theta} [E_{\theta}[T]]^2}{I(\theta)}.$$
(2.36)

This is known as the Cramér-Rao lower bound. To see this inequality, note that

$$\frac{d}{d\theta}E_{\theta}[T] = \int T(x)\frac{d}{d\theta}f(x\mid\theta)dx = \int T(x)S(x)f(x\mid\theta)dx = E_{\theta}[T(X)S(X)]. \tag{2.37}$$

E[S(X)] = 0, so the covariance $Cov(T(X), S(X)) = E[T(X)S(X)] - E[T(X)]E[S(X)] = E[T(X)S(X)] \le \sqrt{Var(T(X)) Var(S(X))}$. Var(S(X)) is nothing but $I(\theta)$. The inequality follows.

For the class of all unbiased estimators of θ we have

$$\operatorname{Var}_{\theta}(T(X)) \ge \frac{\frac{d}{d\theta} [E_{\theta}[T]]^2}{I(\theta)} = \frac{1}{I(\theta)}.$$
(2.38)

This lower bound is independent of any particular T. If there exists an unbiased estimator that attains this lower bound, then that estimator has to be the UMVUE.

Remark 2.23. Let X_1, \ldots, X_n be i.i.d. from a location parameter family with probability distribution function $f_X(x \mid \theta) = f(x - \theta)$ with $\theta \in \mathbb{R}$. Then $R = X_{(n)} - X_{(1)}$ is ancillary. If they come from a scale parameter family with pdf $f_X(x \mid \theta) = \frac{1}{\theta} f\left(\frac{x}{\theta}\right)$, then $R = X_{(n)} - X_{(1)}$ is also ancillary.

2.3 Order Statistics

Suppose $X_1, \ldots, X_n \sim F(x)$ are independent and identically distributed. Then the data points are arranged in increasing order and labelled $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. The distribution of the smallest order statistic $X_{(1)}$ is given by

$$F_{(1)}(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - P(X_1 > x)^n = 1 - (1 - F(x))^n.$$
 (2.39)

Similarly, the distribution of the largest order statistic $X_{(n)}$ is given by

$$F_{(n)}(x) = P(X_{(n)} \le x) = P(X_1 \le x)^n = (F(x))^n.$$
(2.40)

The joint distribution of $X_{(1)}$ and $X_{(n)}$ may also be obtained. Here,

$$P(X_{(n)} \le y) = P(X_{(1)} \le x, \ X_{(n)} \le y) + P(X_{(1)} > x, \ X_{(n)} \le y)$$

$$\implies F_{X_{(1)},X_{(n)}}(x,y) = P(X_{(1)} \le x, \ X_{(n)} \le y) = (F(y))^n - (F(y) - F(x))^n. \tag{2.41}$$

POINT ESTIMATION Order Statistics

Chapter 3

MULTIVARIATE NORMAL DISTRIBUTION

3.1 Random Vectors and Random Matrices

September 19th.

Definition 3.1. A σ -algebra (or σ -field) on a set Ω is a collection \mathcal{F} of subsets of Ω that satisfies the following properties:

- 1. $\Omega \in \mathcal{F}$ (The entire set is in \mathcal{F}),
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (Closed under complementation),
- 3. If $A_1, A_2, A_3, \dots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ (Closed under countable unions).

Let (Ω, \mathcal{F}) be such a σ -algebra. One then defines a random variables across more than one dimension as follows:

Definition 3.2. The random variable X defined as $X = (X_1, \ldots, X_p) : \Omega \to \mathbb{R}^p$ for all $\omega \in \Omega$ is called a p-variate random variable if $X^{-1}(I_a) \in \mathcal{F}$ for all $I_a = \{(x_1, \ldots, x_p) \in \mathbb{R}^p \mid \infty < x_i \leq a_i, i = 1, \ldots, p\}$ and for all $a = (a_1, \ldots, a_p) \in \mathbb{R}^p$. The mean vector is defined as $\mu = E[X] = (E[X_1], \ldots, E[X_p]) = (\mu_1, \ldots, \mu_p)$.

Definition 3.3. A random matrix $Z_{p\times q}=(Z_{ij})_{p\times q}$ is a $p\times q$ matrix of random variables, where each entry Z_{ij} is a random variable.

The mean matrix of Z is defined as $\mu_Z = E[Z] = (E[Z_{ij}])_{p \times q}$, where $E[Z_{ij}]$ is the expected value of the random variable Z_{ij} for all i = 1, ..., p and j = 1, ..., q.

Note that if G(Z) is a function of the random matrix Z, then the expectation is simply $E[G(Z)] = (E[G(Z)_{ij}])_{p \times q}$. A few more properties may be noted.

- 1. If G(Z) = AZB where A and B are constant matrices of appropriate dimensions, then E[G(Z)] = AE[Z]B.
- 2. If (Z,T) has a joint distribution and A, B, C, and D are constant matrices of appropriate dimensions, then E[AZB + CTD] = AE[Z]B + CE[T]D.
- 3. If Z is symmetric and positive semidefinite with probability 1, then E[Z] is also symmetric and positive semidefinite.

The first two properties follow from the linearity of the expectation in each of the entries of the matrix. The third property follows from the fact that if Z is positive semidefinite with probability 1, then for any vector x, we have $x^T Z x \ge 0$ with probability 1. Taking the expectation, we get $E[x^T Z x] = x^T E[Z] x \ge 0$, which implies that E[Z] is also positive semidefinite. Similarly, one can show that E[Z] is symmetric if Z is symmetric with probability 1.

Example 3.4. Suppose $Z_{p \times p}$ is symmetric and positive semidefinite with probability 1. Then its spectral decomposition gives gives $Z = \Gamma D_{\lambda} \Gamma^{t}$ where Γ is an orthogonal matrix and D_{λ} is a diagonal matrix with nonnegative entries. If $\lambda_{i}(Z)$ denotes the i^{th} diagonal entry of D_{λ} , then $\lambda_{1}(Z) \geq \lambda_{2}(Z) \geq \ldots \geq \lambda_{p}(Z) \geq 0$ with probability 1. However $\lambda_{i}(E[Z])$ need not be equal to $E[\lambda_{i}(Z)]$ for $i=1,\ldots,p$. This is because the eigenvalues are not linear functions of the entries of the matrix. What is true is that $\lambda_{i}(E[Z]) \geq 0$.

3.1.1 Covariance Matrix

Definition 3.5. Suppose the random vector $X_{p\times 1}$ has mean μ , and

$$E[(X_i - \mu_i)(X_j - \mu_j)] = \operatorname{Cov}(X_i, X_j) = \sigma_{ij} < \infty$$
(3.1)

for all i, j = 1, ..., p. Then the *covariance matrix* of X is defined as

$$Cov(X) = \Sigma = E[(X - \mu)(X - \mu)^t] = (E[(X_i - \mu_i)(X_j - \mu_j)])_{p \times p} = (\sigma_{ij})_{p \times p}.$$
 (3.2)

One may also call the matrix the dispersion matrix or the variance-covariance matrix.

Theorem 3.6. A matrix $\Sigma_{p \times p}$ is a covariance matrix of some random vector X if and only if Σ is symmetric and positive semidefinite.

Proof. Suppose Σ is a covariance matrix of some random vector X. Then $\Sigma = E[(X - \mu)(X - \mu)^t]$ for some mean vector μ . Then for any $\alpha \in \mathbb{R}^p$, we have

$$\alpha^t \Sigma \alpha = \alpha^t E[(X - \mu)(X - \mu)^t] \alpha = E[\alpha^t (X - \mu)(X - \mu)^t \alpha] = E[(\alpha^t (X - \mu))^2] = \operatorname{Var}(\alpha^t X) \ge 0 \quad (3.3)$$

showing positive semidefinitness. Also, $\Sigma^t = (E[(X-\mu)(X-\mu)^t])^t = E[(X-\mu)(X-\mu)^t] = \Sigma$ showing symmetry. For the converse, suppose Σ is symmetric and positive semidefinite. Also suppose it has rank $r \leq p$. Then $\Sigma = CC^t$ for some $C_{p \times r}$ with rank r. Let Y_1, \ldots, Y_r be independent and identically distribution N(0,1) random variables, and let X = CY. Then E[X] = E[CY] = CE[Y] = 0 and

$$Cov(X) = E[XX^t] = E[CY(CY)^t] = CE[YY^t]C^t = CI_rC^t = CC^t = \Sigma$$
(3.4)

where $E[YY^t] = \operatorname{Cov}(Y) = I_r$ since the Y_i are independent N(0,1) random variables. Thus Σ is a covariance matrix of the random vector X.

Let $X_{p\times 1}$ and $Y_{q\times 1}$ be jointly distributed with finite second moments for their elements and with $E[X] = \mu$ and $E[Y] = \nu$. Then

- 1. $Cov(X,Y) = E[(X \mu)(Y \nu)^t]$ is the $p \times q$ covariance matrix between X and Y.
- 2. $Cov(X) = E[XX^t] = E[X]E[X]^t$.
- 3. $Cov(AX, BY) = A Cov(X, Y)B^t$ for any constant matrices A and B of appropriate dimensions.
- 4. $Cov(AX) = A Cov(X)A^t$ for any constant matrix A of appropriate dimensions.

The moment generating function of a random vector $X_{p\times 1}$ is defined, simply, as

$$\phi_X(\alpha) = E[e^{\alpha^t X}] \text{ for all } \alpha \in \mathbb{R}^p.$$
 (3.5)

If X_1 and X_2 are independent, then

$$\phi_{X_1 + X_2}(\alpha) = E[e^{\alpha^t (X_1 + X_2)}] = E[e^{\alpha^t X_1} e^{\alpha^t X_2}] = E[e^{\alpha^t X_1}] E[e^{\alpha^t X_2}] = \phi_{X_1}(\alpha) \phi_{X_2}(\alpha).$$
(3.6)

Theorem 3.7 (Cramér-Wold device). If $X_{p\times 1}$ is a random vector, then its probability distribution is completely determined by the distribution of all linear functions $\alpha^t X$ for all $\alpha \in \mathbb{R}^p$.

3.2 Multivariate Normal Distribution

Definition 3.8. A random vector $X_{p\times 1}$ is said to be *p-variate normally distributed* if for every $\alpha \in \mathbb{R}^p$, the distribution of $\alpha^t X$ is univariate normal.

If X has the p-variate normal distribution then both $\mu = E[X]$ and $\Sigma = \text{Cov}(X)$ exist and are finite. We claim that the distribution of X is completely determined by μ and Σ . TO see this, let $X = (X_1, \ldots, X_p)^t$. Then $e_i^t X = X_i$ is univariate normal for each $i = 1, \ldots, p$ where e_i is the i^{th} standard basis vector in \mathbb{R}^p . Thus each X_i is univariate normal and follows distribution $N(\mu_i, \sigma_{ii}^2)$. Set $\mu = (\mu 1, \ldots, \mu_p)^t$ and $\Sigma = (\sigma_{ij})_{p \times p}$. Further, $E[\alpha^t X] = \alpha^t \mu$ and $Var(\alpha^t X) = \alpha^t \Sigma \alpha$. Thus $\{\alpha^t X \mid \alpha \in \mathbb{R}^p\}$ determines the distribution of X by the Cramér-Wold device.

IF $X = N_p(\mu, \Sigma)$, then for any $A_{k \times p}$ and $b_{k \times 1}$, we have

$$Y = AX + b \sim N_k(A\mu + b, A\Sigma A^t). \tag{3.7}$$

Theorem 3.9. $X_{p\times 1} \sim N_p(\mu, \Sigma)$ if and only if $X_{p\times 1} = C_{p\times r}Z_{r\times 1} + \mu_{p\times 1}$ where $Z = (Z_1, \ldots, Z_r)^t$ with Z_i 's following independent N(0,1) distributions, $C_{p\times r}$ is a constant matrix with rank $r \leq p$, and $\Sigma = CC^t$.

Proof. Suppose $Z \sim N_r(0, I_r)$ and $X = CZ + \mu$ with $C_{p \times r}$ a constant matrix with rank $r \leq p$, and $\mu \in \mathbb{R}^p$. The characteristic function of X is

$$\phi_X(t) = E[e^{it^T X}] = E[e^{it^T X}] = E[e^{it^T (CZ + \mu)}] = e^{it^T \mu} E[e^{i(C^T t)^T Z}] = e^{it^T \mu} e^{-\frac{1}{2}t^T CC^T t}.$$
(3.8)

Theorem 3.10. If $X \sim N_p(\mu, \Sigma)$, then the marginal distribution of any subset of k components of X is k-variate normal.

Proof. Suppose, without the loss of generality, that the first k components of X are considered. Then we can write $X = (X_{k\times 1}^{(1)}, X_{(p-k)\times 1}^{(2)})^t$ where $X^{(1)} = (X_1, \dots, X_k)^t$ and $X^{(2)} = (X_{k+1}, \dots, X_p)^t$. Then we can write $X^{(1)} = (I_{k\times k}, 0_{k\times (p-k)})X$. Thus $X^{(1)}$ is a linear function of X and hence is k-variate normal.

Proposition 3.11. Suppose

$$X_{p\times 1} = \begin{pmatrix} X_{k\times 1}^{(1)} \\ X_{(p-k)\times 1}^{(2)} \end{pmatrix} \sim N_p \left(\begin{pmatrix} \mu_{k\times 1}^{(1)} \\ \mu_{(p-k)\times 1}^{(2)} \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right).$$
(3.9)

Then $X^{(1)}$ and $X^{(2)}$ are independent if and only if $\Sigma_{12} = 0$ (or equivalently $\Sigma_{21} = 0$).

Proof. To prove the result, we use the moment generating function (MGF) of $X = (X^{(1)}, X^{(2)})^T$. The joint distribution of $X^{(1)}$ and $X^{(2)}$ is multivariate normal, so the MGF of X is given by:

$$M_{(X^{(1)},X^{(2)})}(s_1,s_2) = E[e^{s_1^T X^{(1)} + s_2^T X^{(2)}}].$$
 (3.10)

This can be written as:

$$M_{(X^{(1)},X^{(2)})}(s_1,s_2) = E[e^{(s_1^T,s_2^T)^TX}] = e^{(s_1^T,s_2^T)^T\mu + \frac{1}{2}(s_1^T,s_2^T)^T\Sigma(s_1^T,s_2^T)}.$$
(3.11)

Expanding the quadratic form:

$$(s_1^T, s_2^T)^T \Sigma(s_1^T, s_2^T) = s_1^T \Sigma_{11} s_1 + s_1^T \Sigma_{12} s_2 + s_2^T \Sigma_{21} s_1 + s_2^T \Sigma_{22} s_2.$$
(3.12)

So the MGF becomes:

$$M_{(X^{(1)},X^{(2)})}(s_1,s_2) = e^{s_1^T \mu^{(1)} + s_2^T \mu^{(2)} + \frac{1}{2} \left(s_1^T \Sigma_{11} s_1 + s_1^T \Sigma_{12} s_2 + s_2^T \Sigma_{21} s_1 + s_2^T \Sigma_{22} s_2 \right)}. \tag{3.13}$$

Now, recall that $X^{(1)}$ and $X^{(2)}$ are independent if and only if their joint distribution factors, i.e., the cross terms involving both $X^{(1)}$ and $X^{(2)}$ vanish. For the MGF to factorize into a product of two functions (one depending only on s_1 and the other only on s_2), the cross terms must disappear. These cross terms are given by:

$$s_1^T \Sigma_{12} s_2 + s_2^T \Sigma_{21} s_1. \tag{3.14}$$

Since Σ_{12} is a $k \times (p-k)$ matrix and $\Sigma_{21} = \Sigma_{12}^T$, we have:

$$s_1^T \Sigma_{12} s_2 + s_2^T \Sigma_{21} s_1 = 2s_1^T \Sigma_{12} s_2. (3.15)$$

For the MGF to factor, we need this term to vanish for all s_1 and s_2 . This occurs if and only if:

$$\Sigma_{12} = 0.$$
 (3.16)

Therefore, $X^{(1)}$ and $X^{(2)}$ are independent if and only if $\Sigma_{12} = 0$. Since $\Sigma_{12} = \Sigma_{21}^T$, this condition is equivalent to $\Sigma_{21} = 0$.

Theorem 3.12. Suppose $X \sim N_p(\mu, \Sigma)$ with Σ positive definite. Then the probability density function of X is given by

$$f_X(x) = \frac{1}{(2\pi)^{\frac{p}{2}}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)} \text{ for all } x \in \mathbb{R}^p.$$
 (3.17)

Proof. Let $\Sigma = CC^t$ with $C = \Sigma^{\frac{1}{2}}$ is non-singular. Then $X = CZ + \mu$ where $Z \sim N_r(0, I_r)$. Thus,

$$f_Z(z) = (2\pi)^{-\frac{r}{2}} e^{-\frac{1}{2}z^t z} \implies f_X(x) = f_Z(C^{-1}(x-\mu)) \left| \det(C^{-1}) \right| = \frac{(2\pi)^{-\frac{r}{2}}}{\left| \det(C) \right|} e^{-\frac{1}{2}(x-\mu)^t (CC^t)^{-1}(x-\mu)}. \tag{3.18}$$

Theorem 3.13. Let $X \sim N_p(\mu, \Sigma)$ with Σ positive definite, and let $X = (X_1, X_2)^t$, $\mu = (\mu_1, \mu_2)^t$, and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ where X_1 and μ_1 are of length k. Let $\Sigma_{11\cdot 2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.

1. If $\Sigma_{11\cdot 2}$ is positive definite, then $X_1 - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \sim N_k(\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\mu_2, \Sigma_{11\cdot 2})$ and is independent of X_2 .

Proof. 1. Let $X \sim N_p(\mu, \Sigma)$, $A \in \mathbb{R}^{m \times p}$ and $b \in \mathbb{R}^m$. Then $AX + b \sim N_m(A\mu + b, A\Sigma A^t)$. Set $C = \begin{pmatrix} I_k & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I_{p-k} \end{pmatrix}$. Then

$$CX = \begin{pmatrix} I_k & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & I_{p-k} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} X_1 - \Sigma_{12}\Sigma_{22}^{-1}X_2 \\ X_2 \end{pmatrix}$$
(3.19)

Index

 σ -algebra, 17 log likelihood estimation, 10 σ -field, 17 loss function, 11 k-parameter exponential family, 4 maximum likelihood estimator, 9 p-variate normally distributed, 19 mean matrix, 17 p-variate random variable, 17 mean vector, 17 ancillary statistic, 6method of moments, 9 minimal sufficient statistic, 5 Basu's theorem, 13 moment generating function, 18 covariance matrix, 18 Neyman-Fisher factorization theorem, 2 Cramér-Rao lower bound, 15 parameter space, 1 Cramér-Wold device, 19 partition, 5 equivalent statistics, 6 partition set, 5 estimate, 1 point estimate, 9 point estimator, 9 estimator, 1 Rao-Blackwell theorem, 12 fisher information matrix, 14 reduction, 5 Fisher information number, 13 regular model, 2 independent and identically distributed, 1 scale family, 7 Lehmann-Scheffe theorem, 12 scale parameter, 7 likelihood function, 9 score function, 13 location family, 6 single parameter exponential family, 3

location parameter, 6

sufficient statistic, 1