Trees

- Abstract data type used for data organization

Uses in Computer Science:

- Expression trees

- Search trees
- Find data faster
- Index into large files or databases
- Game trees
- Keep possible next moves in tree (e.g. checkers, chest)
- Postponed obligations
- Encoding/Decoding messages
- Huffman codes
- Priority Queues
- Items have priorities
- Tree data structures allows quickest access to highest priority items (e.g. P.Q. to hold events for CPU)

Basic Trees Concepts and Terminology

- A data structure made up of nodes and edges without having any cycle
- All trees are graphs but not all graphs are trees
- NOT a tree: anything with cycles (e.g. A-> A or B->C->E->D->B), undirected cycle, two non-connected parts (A->B and C->D->E)

Tree Anatomy:

- Root the top node in a tree.
- Child a node directly connected to another node when moving away from the root.
- Parent the converse notion of a child.
- Siblings a group of nodes with the same parent.
- Descendant a node reachable by repeated proceeding from parent to child.
- Ancestor a node reachable by repeated proceeding from child to parent.
- Leaf/External node a node with no children.
- Branch/Internal node a node with at least one child.
- Edge the connection between one node and another.
- Path a sequence of nodes and edges connecting a node with a descendant.
- Level the level of a node is defined as: 1 + the number of edges between the node and the root.
- Height of node the height of a node is the number of edges on the longest path between that node and a leaf.
- Height of tree the height of a tree is the height of its root node.
- Depth the depth of a node is the number of edges from the tree's root node to the node

Binary Tree

- Empty or has 1 node with 2 children, each a Binary Tree (recursive definition)

Complete Binary Tree

- Binary Tree that has leaves (on a single level or on 2 adjacent levels) such that leaves on the bottom most level are as far left as possible
- All levels are full (except possibly last)
- Are these Complete Binary trees?

Complete Binary Tree

Sequential:

- Use array
- Root A[1]
- A[i]'s left child A[2*i]
- A[i]'s right child -A(2*i+1]
- A[i]'s parent -A[i/2]

0	1	2	3	4	5	6	7
	X	В	С	Е	F	D	G

?												
0	1	2	3	4	5	6	7					

Problems?

- What happens when a tree is long and thin and right heavy?
- For a tree of height 3, you need an array $A[15] 2^{(3+1)} 1$
- For a tree of height 8, you need an array A[511] $-2^{(8+1)} 1$

Linked:

- Use pointers

```
typedef struct NodeTag{
  itemType Item
  struct NodeTag *LLink
  struct NodeTag *RLink
} TreeNode
```

Tree Traversals

Level Order: Level by level, left (Breadth First)
 Pre-order: Root, Left, Right (Depth First)
 In-order: Left, Root, Right (Depth First)
 Post-order: Left, Right, Root (Depth First)

Level Order: A B C D E F G

How? Use Queues (iterative)

insert root on Q
while Q not Empty
 Remove item
 Visit it
 Insert item's left child on Q
 Insert item's right child on Q

A

B C | | |

В

C D E

C

D, E, F, G

Pre-order: A B D E C F G
In-order: D B E A F C G
Post-order: D E B F G C A

Iterative Preorder algorithm: Use Stack

Recursive Preorder algorithm:

insert root on S
while S not Empty
 Pop item
 Visit it
 Push item's right child on S
 Push item's left child on S

PreOrder (T)
 if (!Empty(T))
 Visit (T)
 PreOrder(T->LChild)
 PreOrder(T->RChild)

Recursive in-order and post-order?

Binary Search Trees (BTSs)

- Binary Tree such that each node X
- (keys in X's left subtree) < (key in X) < (keys in X's right subtree)

Search: <- do it

Insert: always a leaf <-

Delete:

- If leaf, easy
- If 1 child, promote child
- If 2 children, promote a descendant
- Copy largest descendent in left subtree OR smallest descendent in right subtree
- Delete "copied" from old subtree

Delete 80?

Delete 50 (promote 70)
Delete 30 (promote 20 or 50)

Optimally Balanced Trees?

Complete BST Search time?

Worse case: O(logn)

Why?

Height is proportional to logn

n is number of nodes, on a complete binary tree $n = 2^{(h+1)} - 1$ where h is the height of the tree

therefore $h = log_2(n+1) - 1$

and the math says $\log(n+1) < \log n + 1$ so $h < \log n$

any Complete BST is similar h = floor(logn)

Degenerate BST?

Search time and insert time is O (n) at worst

Height is proportional to n

- Keep trees optimally balanced for quickest search
- Problem: algorithm to re-blance tree after insert is O(n)

AVL Trees

- Adelson, Velskii, Landis 1962
- BSTs such that

for every node, (height of leftsubtree) – (height of right subtree
$$\begin{cases} -1 \\ 0 \\ 1 \end{cases}$$

- almost balanced trees
- search/insert/delete time of O(logn)

Inserting

- as usual for BST ... then ... may need to rebalance
- 4 ways to insert and cause imbalance
- re-balance preserves in-order traversal of tree
- only re-balance smallest subtree possible

AVL Single Rotation

Height of left - Height of right

Key

Single Rotation Example

AVL Double Left Rotation

AVL Double Right Rotation

Double Rotation Examples

 $\underline{https://www.cs.usfca.edu/\sim} galles/visualization/AVLtree.html$

Break down

nortches Double Right (left, right)

130 /14 125) /13 125) /13

Single right: 130

125

150

AVL V

105

115 126 128

133

160

180

107

129

185 165 177 183

Now put it brek in main tree 100 50 130

+ whole tree AVL.

More examples

T-10

matches single right votation

=> Balance

Subtree now AUL => whole tree AUL
Remember to put subtree back in tree!

· AUL? yes (BST a property)

- insert 80 - still AUL

-insert 3 (goes to right of 1)

- AVL? no.

- Smallest non- AREN AVL subtree?

(rooted at 25) Fotale es hypore

How do you find smallest non-AVL subtree?

- Start at inserted node
- Calculate its balance factor (B.F.)
- Work up ancestors toward root
 - o for each node, recalculate B.F
 - o if find $|B.F.| \ge 2$ then it's the root of smallest non -AVL subtree

NOTE: the insert algorithm most change tehse B.F.s. If find |B.F.| >= 2 stop and rotate, other wise go to root, re-calculating

Deleting:

- The usual delete by copy (normal BST delete)
 - o copy node "X" into node we're deleting
 - o delete node X (leaf or 1-child)
- Update B.F.s from X's parent up to root for each node with |B.F.| >= 2: rotate to restore balance

Delete

- Keeps going until gets to root, rebalancing if necessary (unlike insert, which stops after first rebalance)

AVL Trees – insert/delete/search are all O(logn)