Short Notes K29

phys. stat. sol. <u>34</u>, K29 (1969) Subject classification: 3 and 5; 18.3

Institute of Nuclear Research, Swierk Research Establishment, Warsaw (a), and Institute of Crystallography of the Academy of Sciences, Moscow (b)

On the Magnetic Structure of a Manganese-Substituted Zinc

$$\frac{\text{Ferrite - Zn}}{\text{Bv}} 0.87 \frac{\text{Mn}}{\text{0.13}} \frac{\text{Fe}}{\text{2}} 2 \frac{\text{O}}{\text{4}}$$

M.K. FAYEK¹⁾, J. LECIEJEWICZ, A. MURASIK (a), and I.I. YAMZIN (b)

In the course of neutron diffraction studies on spinel-type ferrites in which the

B-B magnetic interactions are comparable with the A-B ones, a Mn-substituted

zinc ferrite with the composition Zn_{0.87}Mn_{0.13}Fe₂O₄ was investigated.

Neutron diffraction patterns of a polycrystalline sample taken at 4.2 ^OK showed the presence of strong and well-shaped magnetic peaks which could be readily indexed on the basis of a magnetic unit cell obtained by doubling the chemical unit cell in one direction. The observed magnetic indices obeyed the rule

$$h_{\mathbf{M}} + k_{\mathbf{M}} + 1_{\mathbf{M}} = 2n$$

with l_M odd only.

Using a computer programme a large number of simple and complex magnetic structures was surveyed including those with the magnetic order in the B sites as well as in the A sites. However, the best agreement between the observed and calculated magnetic intensities was obtained for a collinear model with antiferromagnetic ordering in the B sites only. Considering the doubled spinel-type unit cell, the spin direction denoted by + is associated with magnetic ions in the following positions:

1/8, 1/8, 5/16; 1/8, 7/8, 11/16; 7/8, 7/8, 13/16; 7/8, 1/8, 3/16; 7/8, 3/8, 1/16; 5/8, 7/8, 15/16; 3/8, 1/8, 7/16; 1/8, 5/8, 9/16,

The same spin direction appears at further 8 ions connected with those above by the (1/2, 1/2, 1/2) translation. The magnetic ions with opposite spin direction are situated in the positions obtained by adding (0, 0, 1/2) to the above 16 sets of coordinates.

¹⁾ On leave from the Atomic Energy Establishment, Cairo.

The minimum value of the R-factor for the magnetic intensities (R = 0.04) was obtained for the spins aligned in the [111] direction of the doubled cell. It is also possible to choose a simpler magnetic unit cell by the following transformation:

$$\alpha' = \alpha$$
,
$$c' = \frac{\alpha + b + c}{2}$$
,

where $|\alpha| = |b| = a_0$ and $|c| = 2a_0$. a_0 is the lattice constant of the chemical unit cell. In the new magnetic unit cell the spins are parallel to the c^1 -direction.

The observed and calculated intensities for 8 observable magnetic reflections are collected in Table 1.

Table 1 ${\rm Magnetic~intensities~in~Zn}_{0.~87}{\rm Mn}_{0.~13}{\rm Fe}_2{\rm O}_4 {\rm ~at~4.~2} {\rm ^oK}$ (indexing on the doubled unit cell)

h M	k _M	¹ M	Iobs	I calc
1	0	1	480	475
1	0	3	20	17
2	1	1	33	33
1 1	2 0	3 5	108	112
3	0	1	36	45
3	2	5	26	22
4 3 1	1 0 0	3 7 9	20	16
3 2 4	0 5 1	9 1 7	10	13

The average magnetic moment of a ferric ion in the B site was found to be \approx (3.0 \pm 0.1) Bohr magnetons. Basing on the nuclear intensities at 4.2 $^{\circ}$ K the

oxygen parameter and the inversion coefficient at this temperature were determined to

$$x = 0.3857 \pm 0.0005,$$

 $i = 0.10 \pm 0.05$

leading to R = 5%. The cation distribution is thus

$$[Z_{0.77}^{Fe}]_{0.10}^{Mn}]_{0.13}^{Fe}[F_{1.90}^{Zn}]_{0.10}^{Q}$$

 $\begin{array}{l} \left[\mathrm{Zn_{0.77}^{Fe}}_{0.10}\mathrm{Mn_{0.13}}\right]\left[\mathrm{Fe_{1.90}Zn_{0.10}}\right]\mathrm{O_{4}}. \\ \text{In connection with this study we performed neutron diffraction measurements at} \end{array}$ 4.2 $^{\rm O}{\rm K}$ on ${\rm ZnFe_2O_4}$. Its neutron pattern showed a striking similarity in the magnetic peak distribution to that of Zn_{0.87}Mn_{0.13}Fe₂O₄. This suggests that the unit cell of ${\tt ZnFe}_2{\tt O}_4$ should be described as doubled in one direction only, contrary to the previously reported data (1).

References

(1) J. M. HASTINGS and L. M. CORLISS, Phys. Rev. 102, 1460 (1956).

(Received May 14, 1969)