Parcial de Señales y Sistemas (66.74 y 86.05)

14 de noviembre de 2022

1. Sea el sistema de la figura:

Donde:

Graficar los espectro de frecuencias de las señales $g_1[n]$, $g_2[n]$, $g_3[n]$, $g_4[n]$ y y[n].

Observacion las entradas : (-1)^n corresponden a $cos(\pi \cdot n)$ y como el seno siempre vale 0 para $\pi \cdot n$, se puede expresar con la notacion compleja de euler:

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n] (-1)^n = exp(j \cdot \pi \cdot n) ,$$

$$x2[n$$

cuya transformada de Fourier corresponde a

0

$$X2(j\Omega) = \sum_{\alpha} \pi \left[\delta(\pi - \Omega - 2 \cdot \pi \cdot k) + \delta(\pi + \Omega - 2 \cdot \pi \cdot k) \right]$$

$$X2(j\Omega)$$

2π

- 2. Una señal analógica periódica $x_a(t)$, de período T=4s, es muestreada obteniendo la señal discreta x[n] de N muestras y sea $X_N(k)$ su DFT. Se pide:
 - a) Si utilizamos una frecuencia de muestreo de fs=10Hz y tomamos N=80 muestras. ¿Que restricciones debemos imponer sobre $x_a(t)$ para evitar el aliasing? ¿Cual es la resolución frecuencial de $X_N(k)$, en Hz? ¿Cuantos armónicos estarán presentes en $X_N(k)$?
 - b) Explique el procedimiento para reconstruir la señal analógica $x_a(t)$ a partir de $X_N(k)$. Que condiciones debemos imponer sobre los valores de la frecuencia de muestreo fs y el número de muestras a tomar N.

Frecuencia Fundamental: 1/4 Hz , $\omega f = 2\pi/Ta = \pi/2$ rad/s

Otras frecuencias son ω armonicos = $k \cdot \omega f = k \cdot \pi/2 \text{ rad/s}$

Como la señal es periodica se puede representar con una serie de cosenos y senos con diferentes frecuencias , los valores de coseno y senos se repetiran cada $\omega_armonicos$ + $2\pi\cdot k$

El armónico fundamental corresponde a la frecuencia más baja presente en la señal que no es cero. Es el primer armónico, y todos los demás armónicos son múltiplos enteros de esta frecuencia.

Expectro de Xa (jω) generico :

Existe un maximo $\omega M=k\cdot\omega f$, que para que no se produzca aliasing debe ser la mitad de la frecuencia de muestreo $\omega s>=2\omega M$

Se toman 10 muestras cada 1 segundo , y se consiguen 80 muestras tiempo de muestreo = 80/10 = 8 s

Se puede observar que se han muestreado 2 periodos

Para que se cumpla el teorema de muestreo las caracteristicas de Xa deben ser:

La señal Xa, debe tener una componente de frecuencia maxima en

$$\omega M = \omega s/2 = 2\pi 10/2 = \pi 10$$

$$\omega = (2\pi)f$$

Para evitar solapamiento o aliasing:

$$\omega M = 10\pi$$
 , ω fund = $\pi/2$

Divido por 2π:

$$FM = 5 Hz$$
, $Fmin = 1/4 Hz$

La resolución de frecuencia es simplemente la frecuencia de muestreo dividida por la cantidad de muestras .

10 Hz

Resolucion: 1/8 Hz

80 muestras

Cantidad de armonicos : Como se toman dos ciclos de Xa para hacer el muestreo de 80 muestras , en el caso limite de que hayan 80 frecuencias involucradas en X[n] habran 40 que se repetiran , ya que se toman dos ciclos , por lo tanto habremos to mado como maximo 40 armonicos

b) Indicar el procedimiento para recontruir xa(t) a partir de Xn[k]

Vuelvo a la señal con la que hice la DFT :

$$x[n] = \left\{ \begin{array}{cc} \frac{1}{N} \sum_{n=0}^{N-1} X[k] W_N^{-kn} & 0 \leq n \leq N-1 \\ 0 & \text{en otro caso} \end{array} \right.$$

Se utiliza un filtro pasabajos H[Ω] con frecuencia de corte : $\Omega c = \Omega M = \pi$ (ejemplo con fM = 5 Hz)

Divido por el periodo de muestreo Ts , para pasar a $\omega = \Omega/Ts$ y obtenfo $Xa(\omega)$

Aplico la antitransformada:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega, \ t \in \mathbb{R}$$

Obtengo nuevamente Xa(t)

- 3. Sea un sistema LTI descripto por $y[n] = 0.75 \ x[n] + 0.25 \ x[n-1]$. Se pide:
 - a) Estimar y graficar la respuesta al impulso h[n] del sistema.
 - b) ¿El sistema es causal? ¿es estable? Justifique.
 - c) Estimar y graficar la salida cuando la señal de entrada x[n] es como en la figura de abajo.
 - d) Sea la interconección de sistema LTI como en la figura de abajo, donde h[n] es la respuesta al impulso estimada en el punto a). Estimar y graficar la respuesta al impulso del sistema total.
 - e) Estimar y graficar la salida del sistema de la parte d) cuando la señal de entrada x[n] es como en la figura de abajo.

a)

La respuesta al impulso , es el sistema con $\delta[n]$ como entrada :

$$h[n] = (3/4) \delta[n] + (1/4)\delta[n-1]$$

b)

Causalidad: El sistema no depende de valores de la señal mayores a n , como la entrada $x[n] = \delta[n]$ nunca es evaluada para $\delta[n+k]$, el sistema es causal

Estabilidad: dada una señal de entrada acotada |x[n]| < M, para cualquier n

si se la convoluciona con h[n], dara como resultado

$$y[n] = x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[k-n]$$

$$\sum_{k=-\infty}^{\infty} (3/4) x[k]\delta[k-n] + (1/4)x[k]\delta[k-n-1]$$

Como la h[n] , vale != 0 , para dos valores , la salida sera acotada y el sistema es estable . c) Si la señal es x[n] = u[n+2]y[n] d) Si se ingresa a un sistema total compuesto por: h[n] $h_d[n] = \delta[n-1]$ ai) Estimar y graficar el impulso total $h_t[n] = h[n] + (hd[n] *{-h[-n]})$ $h_t[n] = h[n] + (hd[n] *{-h[-n]})$ hd[n] *{-h[-n]}) hd[n] hd[n] *{-h[-n]}) -h[-n] >>>> hd[n] *{-h[-n]}) ht[n]

$$h_t[n] = (1/2) \delta[n] - (1/2) \delta[n-1]$$

d) Estimar y graficar yt[n] , ingresando la x[n] del grafico

$$y[n] = (1/2)\delta[n+2]$$