

FIGURE 1
MTW9/PL2 CELL GROWTH IN 50% CDE - HORSE SERUM

A: DATA EXPRESSED AS CELL NUMBER AFTER 7 DAYS
Growth with $1.0 \times 10^{-8} M E_2$ (closed circles) and
without hormone (open circles) in medium con-
taining the designated concentrations of serum.

B: DATA IN (A) EXPRESSED AS CPD
The symbols indicate the same conditions as (A)
except the open triangles show CPD differences
between growth in dishes with and without the
hormone (Difference = estrogenic effect on growth).

FIGURE 2

MTW9/PL2 CELL GROWTH IN 50% CDE - HORSE SERUM WITH
ESTROGENS ADDED AT VARIOUS TIMES AFTER SEEDING

LEGEND:

Control growth in the absence of exogenous estrogen is shown by (triangles). In other dishes, 1.0×10^{-8} M E₂ was added at the beginning of the experiment (closed circles), after 48 h (open circles), after 96 h (closed squares), or after 144 h (open squares).

FIGURE 3

STEROID HORMONE DOSE RESPONSE EFFECTS WITH
MTW9/PL2 CELLS IN 50% CDE - HORSE SERUM

LEGEND:

- Closed circles = E₂
- Open circles = E₁
- Closed squares = E₃
- Open squares = Progesterone
- Closed triangles = DHT
- Open triangles = T

FIGURE 4

MTW9PL2 CELL GROWTH IN CDE SERUM
FROM DIFFERENT SPECIES

LEGEND: Open circles = -E₂
Closed circles = +E₂
Open triangles = Estrogenic effect

FIGURE 5

CDE HORSE SERUM TITRATION
GH4C1 CELLS

LEGEND: ● = + E₂
 ○ = - E₂
 ▲ = Estrogenic effect

FIGURE 6

ZR-75-1 CELLS IN CDE - HORSE SERUM \pm 10 nM E_2

LEGEND:

Closed circles = +E₂
Open circles = -E₂
Closed triangles = Estrogenic effect

FIGURE 7

MCF7A CELL GROWTH IN CDE - HORSE SERUM $\pm E_2$

LEGEND:

Closed circles = +E₂
Open circles = -E₂
Closed triangles = Estrogenic effect

FIGURE 8

GROWTH KINETICS OF T47D HUMAN BREAST CANCER
CELLS IN CDE - HORSE SERUM \pm 10 nM E₂

(A) The growth of the cells in medium with 20% (v/v) serum with 10 nM E₂ (closed circles) and without the steroid (open circles). As comparison, growth is shown in medium containing 10% (v/v) FBS (triangles).

(B) T47D cell growth kinetics in medium with 50% (v/v) serum with E₂ (closed circles) and without the steroid (open circles).

FIGURE 9

GROWTH OF HUMAN & RODENT CELL LINES
IN 50% CDE - HORSE SERUM $\pm E_2$ (10 nM)

LEGEND: Closed circles = Medium with 10 nM E_2
Open circles = Medium without E_2
Triangles = Estrogenic effect

FIGURE 10

DOSE RESPONSE OF STEROID HORMONES
WITH T47D CELLS IN 50% CDE - HORSE SERUM

LEGEND:

Growth after 14 days is shown in response to:

- Closed circles = E₂
- Open circles = E₁
- Closed triangles = E₃
- Open triangles = DHT
- Closed squares = Testosterone
- Open squares = Progesterone
- Crosses = Cortisol

FIGURE 11

DOSE RESPONSE OF STEROID HORMONES
WITH H-301 CELLS IN 50% CDE - HORSE SERUM

LEGEND:

Growth after 9 days is shown in response to:
Closed circles = E₂
Open circles = E₁
Closed triangles = E₃
Open triangles = DHT
Closed squares = Testosterone
Open squares = Progesterone
Crosses = Cortisol

FIGURE 12

DOSE RESPONSE OF STEROID HORMONES
WITH H-301 CELLS IN 50% CDE - HORSE SERUM

LEGEND:

Growth after 9 days is shown in response to:
Closed circles = E₂
Open circles = E₁
Closed triangles = E₃
Open triangles = DHT
Closed squares = Testosterone
Open squares = Progesterone
Crosses = Cortisol

FIGURE 13

DOSE RESPONSE OF STEROID HORMONES
WITH LNCaP CELLS IN 50% CDE - HORSE SERUM

LEGEND:

Growth after 14 days is shown in response to:

Closed circles = E₂

Open triangles = E₁

Open squares = E₃

Open circles = DHT

Closed triangles = Testosterone

Closed squares = Progesterone

Crosses = Cortisol

FIGURE 14

T₃ TITRATION OF GH₃ CELLS GROWN
IN SERUM - FREE MEDIUM (PCM)

FIGURE 15

**E₂ TITRATION OF GH₃ CELLS GROWN IN
SERUM-FREE MEDIUM MINUS T₃**

FIGURE 16

EFFECT OF T_3 ON GH CELL LINES:
GROWTH IN 2.5% CDE - HORSE SERUM WITH NO E_2

FIGURE 17

EFFECT OF T_3 ON PITUITARY CELL LINES
INCUBATED IN 50% CDE - HORSE SERUM

FIGURE 18

EFFECT OF XAD-4 RESIN TREATED HORSE SERUM
ON MTW9/PL2 CELL GROWTH $\pm E_2$

LEGEND:

Open square $s = + E_2$

Closed squares $= - E_2$

FIGURE 19

EFFECT OF XAD-4 RESIN TREATED HORSE SERUM
ON T47D CELL GROWTH $\pm E_2$

LEGEND:

Open squares = + E₂

XXX = - E₂

Closed squares = Estrogenic effect

FIGURE 20

MCF-7 CELL GROWTH IN CDE - HORSE SERUM ± PHENOL RED AND ± E₂

LEGEND:

- (A) MCF-7A cell growth in phenol red containing medium with E₂ (closed circles) and without E₂ (closed triangles), and in phenol red-free medium with E₂ (open circles) and without E₂ (open triangles).
- (B) Estrogenic effects with MCF-7A cells in medium with phenol red (solid bars) and without phenol red (shaded bars) were calculated from (A) and defined as the CPD in medium containing E₂ minus the CPD in medium without added E₂.
- (C) MCF-7K cell growth in phenol red medium with E₂ (closed circles) and without E₂ (closed triangles), and in phenol red-free medium with E₂ (open circles) and without E₂ (open triangles).
- (D) Estrogenic effects with MCF-7K cells in medium with phenol red (solid bars) and without phenol red (shaded bars), calculated from (C).

FIGURE 21

T47D AND ZR-75-1 CELL GROWTH
IN CDE-HS \pm PHENOL RED AND \pm E₂

LEGEND:

(A) T47D cell growth in phenol red containing medium with E₂ (closed circles) and without E₂ (closed triangles), and in phenol red-free medium with E₂ (open circles) and without E₂ (open triangles).

(B) Estrogenic effects with T47D cells in medium with phenol red (solid bars) and without phenol red (shaded bars) were calculated from (A) and defined as the CPD in medium containing E₂ minus the CPD in medium without added E₂.

(C) ZR-75-1 cell growth in phenol red medium with E₂ (closed circles) and without E₂ (closed triangles), and in phenol red-free medium with E₂ (open circles) and without E₂ (open triangles).

(D) Estrogenic effects with ZR-75-1 cells in medium with phenol red (solid bars) and without phenol red (shaded bars), calculated from (C).

FIGURE 22

MTW9/PL2 CELL GROWTH IN CDE - HORSE SERUM \pm PHENOL RED AND $\pm E_2$

LEGEND:

(A) MTW9/PL2 growth in phenol red medium with E_2 (closed circles) and without E_2 (closed triangles), and in phenol red-free medium with E_2 (open circles) and without E_2 (open triangles).

(B) Estrogenic effects with MTW9/PL2 cells in medium with phenol red (solid bars) and without (shaded bars) were calculated from (A).

FIGURE 23

DOSE RESPONSE TO PHENOL RED AND E₂
IN THREE CELL LINES

LEGEND: The growth of the MCF-7A (closed circles), MTW9/PL2 (open circles) and T47D (closed triangles) cell lines was assessed at 14, 7, and 12 days.

FIGURE 24

PROGESTERONE RECEPTOR INDUCTION IN
T47D CELLS BY PHENOL RED AND E₂

LEGEND:

(A) The effects of E₂ at 1.0 x 10⁻⁸ M (closed circles), 1.0 x 10⁻¹⁰ M (open circles), 1.0 x 10⁻¹² M (closed triangles), 1.0 x 10⁻¹⁴ M (open triangles) and the control without added E₂ (open squares).

(B) The effects of phenol red at 16 mg/L (closed circles), 8mg/L (open circles), 4 mg/L (closed triangles), 2 mg/L (open triangles), and the control without phenol red (open squares).

FIGURE 25

EFFECT OF TGF-beta1 ON THE GROWTH OF
BREAST/MAMMARY ORIGIN CELL LINES

LEGEND:

(A) The effect of the transforming growth inhibitor on human breast MCF-7K cell growth as measured after 12 d either with 10 nM E₂ (closed circles) or without the hormone (open circles). The insert shows conversion of the cell number results to CPD.

(B) The same experiment with rat mammary MTW9/PL2 cells after 9 d growth.

FIGURE 26

EFFECT OF TGF-beta1 ON THE GROWTH OF CELL LINES FROM BOTH HUMAN AND RODENT TUMORS

In these studies, TGF-beta1 was added at 40 ng/ml. Estradiol (+ E) indicates either no added E₂ or the steroid at 10 nM.

(A) The effect of TGF-beta1 on five cell lines after 10-14 d growth in medium ± E₂. The results are expressed as cell number decreases caused by TGF-beta1.
(B) The CPD decreases caused by TGF-beta1 ± E₂ with each of the cell lines shown in (A).

FIGURE 27

EFFECT OF EGF AND TGF-alpha ON THE GROWTH
OF HUMAN BREAST CANCER CELLS

The cells were grown in D-MEM/F-12 supplemented with increasing concentrations of CDE horse serum. Each line tested was grown in serum alone (open circles) and in serum plus 50 ng/ml EGF (open triangles), 50 ng/ml TGF-alpha (closed triangles), or 10 nM E₂ without exogenous growth factors (closed circles). (A) - (D) show the results with the MCF-7A, MCF-7K, T47D, and ZR-75-1 cell lines, respectively.

FIGURE 28

EFFECT OF IGF-I ON THE GROWTH
OF HUMAN BREAST CANCER CELLS

Breast cancer cells were grown in D-MEM/F-12 supplemented with increasing concentrations of CDE horse serum. Each cell line tested was grown in serum alone (open circles) and in serum plus 1.0 µg/ml IGF-I (triangles), or in serum with 10 nM E₂ without exogenous growth factors (closed circles). (A) - (C) show the results with the MCF-7K, MCF-7A and T47D cells, respectively. Assays were conducted for 12-14 d.

FIGURE 29

T47D CELLS IN STANDARD D-MEM/F-12 MEDIUM
VS "LOW FE" SERUM-FREE SERUM

LEGEND:

- "STANDARD" MEDIUM
- ▲ "LOW-FE" MEDIUM

FIGURE 30

LNCaP CELLS IN STANDARD D-MEM/F-12 MEDIUM
VS "LOW-FE" SERUM-FREE MEDIUM

LEGEND:

- "STANDARD" MEDIUM
- "LOW-FE" MEDIUM

FIGURE 31

**MDCK CELLS IN STANDARD D-MEM/F-12 MEDIUM
VS "LOW FE" SERUM-FREE MEDIUM**

LEGEND:

—○— "STANDARD" MEDIUM

—●— "LOW-FE" MEDIUM

FIGURE 32

**LNCaP CELL GROWTH IN CAPM ± DHT
AND 10% FETAL BOVINE SERUM**

LEGEND:

Closed circles = Fetal bovine serum
Open circles = CAPM + DHT
Closed triangles = CAPM - DHT
Open triangles = D-MEM/F12 only

FIGURE 33

PC3 AND DU145 GROWTH IN SERUM - FREE
MEDIUM VS MEDIUM WITH 10% FETAL CALF SERUM

FIGURE 34

DOSE-RESPONSE EFFECTS OF INDIVIDUAL COMPONENTS
OF CAPM SERUM-FREE MEDIUM ON LNCAP CELL GROWTH

FIGURE 35

DELETIONS OF INDIVIDUAL COMPONENTS
OF CAPM WITH PROSTATE CANCER CELL LINES

FIGURE 36

**EFFECT OF FE (III) IN MCF-7A CELL GROWTH
IN DDM-2MF DEFINED MEDIUM**

LEGEND:

- plus E₂
- ▲ minus E₂

FIGURE 37

EFFECT OF FE (III) IN T47D CELL GROWTH
IN DDM-2MF DEFINED MEDIUM

LEGEND:

■ plus E₂

▲ minus E₂

Express Mail EL818623436US
Inventor: Sirbasku
Atty Dkt. No. 1944-00800
Contact: C.G. Mintz (713) 238-8000
Page 38 of 133

FIGURE 38

EFFECTS OF INCREASING CONCENTRATIONS OF
IRON ON LNCaP CELLS GROWN IN SERUM-FREE
MEDIUM WITH APOTRANSFERRIN

FIGURE 39

EFFECTS OF IRON AND T_3 ON THREE PROSTATIC
CELL LINES IN SERUM-FREE MEDIUM

INSERT:

DARK BARS = GROWTH IN CAPM PLUS T_3

LIGHT (HATCHED) BARS = GROWTH IN CAPM MINUS T_3

NOTE THE STRIKING DEPENDENCE OF LNCaP CELLS ON T_3

FIGURE 40

EFFECT OF CHELATORS ON SERUM-FREE T47D
GROWTH UNDER HIGH IRON CONDITIONS

LEGEND:

- DEFEROXAMINE
- EDTA
- CITRATE

FIGURE 41

EFFECT OF CHELATORS ON SERUM-FREE LNCaP
GROWTH UNDER HIGH IRON CONDITIONS

LEGEND:

Closed circles = Deferoxamine

Open circles = Citrate

Closed triangles = EDTA

FIGURE 42

**DU145 GROWTH IN SERUM-FREE MEDIUM
BASED ON "LOW FE" OR "STANDARD" MEDIUM**

LEGEND:

Open circles = "Low Fe" medium

Closed circles = "Standard" medium

FIGURE 43

**PC3 GROWTH IN SERUM-FREE MEDIUM
BASED ON "LOW FE" OR "STANDARD" MEDIUM**

LEGEND:

Open circles = "Low Fe" medium

Closed triangles = "Standard" medium

FIGURE 44

CDE HORSE SERUM TITRATION ON DU145 CELLS

LEGEND:

● = + 10 nM DHT

○ = STEROID FREE

▲ = ANDROGENIC EFFECT

FIGURE 45

CDE HORSE SERUM TITRATION ON PC3 CELLS

LEGEND:

- = + 10 nM DHT
- = STEROID FREE
- ▲— = ANDROGENIC EFFECT

FIGURE 46

CDE HORSE SERUM TITRATION ON ALVA-41 CELLS

LEGEND:

- = + 10 nM DHT
- = STEROID FREE
- ▲ = ANDROGENIC EFFECT

FIGURE 47

EFFECTS OF ESTROGEN ON STEROID HORMONE-
RESPONSIVE HUMAN TUMOR CELL GROWTH

The cells were grown in serum-free defined medium and in D-MEM/F-12 supplemented with increasing concentrations of CDE horse serum.

- (A) MCF-7K cell growth was measured daily in serum-free defined DDM-2MF with 10 nM E₂ (closed circles) and without steroid (open circles) E₂. Triangles = estrogenic effect.
- (B) MCF-7K cell growth measured after 12 d in D-MEM-F-12 supplemented with the designated concentrations of serum with E₂ (closed circles) and without steroid (open circles). The estrogenic effect is shown by triangles.
- (C) and (D) show the same experiments as in (A) and (B), respectively, except with T47D cells.
- (E) and (F) show the same experiments as in (A) and (B), respectively, except with LNCaP cells. In (E) the serum-free medium was CAPM.

FIGURE 48

**CDE HORSE SERUM TITRATION ON LNCaP
GROWTH IN SERUM FREE CONDITIONS**

LEGEND:

- NO STEROID
- + E₂
- + DHT

FIGURE 49

EFFECTS OF ESTROGEN ON STEROID HORMONE-
 RESPONSIVE RODENT TUMOR CELL GROWTH

Comparison of the effects of estrogen on steroid hormone-responsive rodent tumor cell growth in serum-free defined medium and in D-MEM/F-12 supplemented with increasing concentrations of CDE horse serum.

- (A) GH₄C₁ rat pituitary tumor cell growth measured daily in serum-free PCM-9 with E₂ (closed circles) and without E₂ (open circles). The estrogenic effect is shown by triangles.
- (B) GH₄ C₁ cell growth measured after 9 d in D-MEM-F-12 supplemented with the designated concentrations of CDE horse serum with E₂ (closed circles) and without E₂ (open circles). The estrogenic effect is shown by triangles.
- (C) and (D) show the same experiments as in (A) and (B) respectively, but with the MTW9/PL2 rat mammary tumor cells. The serum-free medium in (D) was DDM-2A.
- (E) and (F) show the same experiments as in (A) and (B), respectively, except with the H-301 hamster kidney tumor cells. In (E) the serum-free medium was CAPM.

FIGURE 50

THE EFFECT OF DHT, E_2 , AND DES ON
LNCaP CELLS GROWN IN CDE HORSE SERUM

LEGEND:

(A) Open circles = - DHT
Closed circles = + DHT
Closed triangles = Androgenic effect

(B) Open circles = - E_2
Closed circles = + E_2
Closed triangles = Estrogenic eff ct

(C) Open circles = - DES
Closed circles = + DES
Closed triangles = Estrogenic effect

(D) Open circles = DHT & DES
Closed circles = E_2 & DES
Open triangles = No additions
Closed triangles = DES only

FIGURE 51

PHENYL SEPHAROSE ELUTION OF
CBG (CA-PS-POOL 1) AND SHBG-LIKE (CA-PS-POOL 11)

FIGURE 52

**SDS PAGE (A) AND WESTERN ANALYSIS (B) OF THREE
PREPARATIONS OF CA-PS-POOL II VS HUMAN SHBG**

LANES 1, 2, AND 3 = 10 ug each of CA-PS-POOL II

LANE "SHBG" = 10 mg of purified protein

FIGURE 53

ASSAY OF CA-PS-POOL II ESTROGEN REVERSIBLE INHIBITORY ACTIVITY WITH SEVERAL ER⁺ CELL LINES

LEGEND:

Open circles = $-E_2$
Closed circles = $+E_2$
Closed triangles = Estrogenic effect

FIGURE 54

CORTISOL-AGAROSE AFFINITY REMOVAL
OF THE INHIBITOR FROM CDE-SERUM

LEGEND: Open circles = - E₂
 Closed circles = + E₂
 Closed triangles = Estrogenic effect

FIGURE 55

GROWTH OF ER⁺ CELL LINES IN
SERUM-FREE MEDIUM ± E₂

LEGEND:

Closed circles = + E₂

Open circles = - E₂

FIGURE 56

EFFECT OF CDE-SERUM ON ESTROGEN RESPONSIVE GROWTH OF THREE ER⁺ CANCER CELL LINES IN SFM

A =
T47D IN DDM-2MF

B =
MTW9/PL2 IN DDM-2A

C =
GH₄ C₁ IN PCM 9

FIGURE 57

EFFECT OF CA-PS-POOL II ON ESTROGEN
RESPONSIVE GROWTH IN SERUM FREE MEDIUM

LEGEND: Open circles = $-E_2$
Closed circles = $+E_2$

FIGURE 58

**WESTERN ANALYSIS OF CBG (POOL I) AND
SHBG (POOL II) PREPARATION WITH ANTI-54 kDa**

1 = CBG PREPARATION #5

2 = CBG PREPARATION #6

3 = SHBG PREPARATION #5.1

4 = SHBG PREPARATION #5.2

5 = SHBG PREPARATION #6.1

6 = SHBG PREPARATION #6.2

ANTIBODY = RABBIT ANTI-54 kDa 1:5000 DILUTION

FIGURE 59

EFFECT OF ANTI-54kDa ANTISERUM ON MTW9/PL2
CELLS GROWN IN THE PRESENCE OF CA-PS-POOL II

LEGEND:

- No antibody
- Antibody 1:5000
- ▼ Antibody 1:1000
- ▽ Antibody 1:500
- Antibody 1:100
- Antibody 1:50

Express Mail EL818623436US
Inventor: Sirbasku
Atty Dkt. No. 1944-00800
Contact: C.G. Mintz (713) 238-8000
Page 60 of 133

FIGURE 60

**WESTERN BLOT OF COMMERCIAL PREPARATIONS
OF HORSE IgA, IgG AND IgM WITH THE
ANTI-54 kDa ANTIBODY**

MkDa

FIGURE 61

EFFECT OF COMMERCIALLY PURIFIED HORSE IgG
ON MTW9/PL2 CELL GROWTH IN 2.5% CDE-HORSE SERUM

FIGURE 62

EFFECT OF HORSE IgM ON GROWTH OF THE
MTW9/PL2 CELLS IN 2.5% CDE HORSE SERUM $\pm E_2$

LEGEND:

● = $+ E_2$

○ = $- E_2$

▼ = Estrogenic effect

FIGURE 63

EFFECT OF HORSE IgA ON GROWTH OF THE
MTW9/PL2 CELLS IN 2.5% CDE HORSE SERUM $\pm E_2$

LEGEND:

- = + E_2
- = - E_2
- ▼— = Estrogenic effect

FIGURE 64

**SDS PAGE AND WESTERN ANALYSIS OF RAT
"SHBG-LIKE" PREPARATIONS**

COMMASSIE STAIN

WESTERN BLOT. ANTI IgG

**WESTERN
ANALYSIS
WITH
ANTI-RAT
IgG**

FIGURE 65

**CROSSREACTION OF THE PURIFIED RAT "SHBG-LIKE" PROTEINS
WITH ANTI- IgA, IgG1 AND IgM MONOCLONAL ANTIBODIES**

FIGURE 66

**SDS PAGE (A) AND WESTERN ANALYSIS (B)
WITH ANTI-SHBG AND RAT Ig'S**

A KDa **RAT Ig's COMMSSIE STAINED**

B **RAT Ig's WESTERN BLOT. ANTI SHBG ANTIBODY** **KDa**

IgA IgG1 IgG2a IgG2b IgG2c IgE IgM HP RP

FIGURE 67

EFFECT OF RAT IgG ON MTW9/PL2 CELL
GROWTH IN 2.5% CDE RAT SERUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 68

EFFECT OF RAT IgA ON MTW9/PL2 CELL
GROWTH IN 2.5% CDE RAT SERUM

LEGEND:

Closed circles = + E₂

Closed squares = - E₂

Closed triangles = Estrogenic effect

FIGURE 69
EFFECT OF RAT IgM ON MTW9/PL2 CELL
GROWTH IN 2.5% CDE RAT SERUM

0
20
40
60
80
100
120
140
160
180
200

LEGEND:

Closed squares = - E₂

Closed circles = + E₂

Closed triangles = Estrogenic effect

FIGURE 70

**ELUTION OF IgM FROM MANNAN
BINDING PROTEIN COLUMN**

Express Mail EL818623436US
Inventor: Sirbasku
Atty Dkt. No. 1944-00801
Contact: C.G. Mintz (713) 238-8000
Page 71 of 133

FIGURE 71

IgM PURIFICATION FROM PLASMA BY JACALIN

MW HUMAN PURIFIED
IgA IgA

FIGURE 72

EFFECT OF IgM ISOLATED FROM HUMAN PLASMA
ON MTW9/PL2 GROWTH IN SERUM-FREE CONDITIONS

LEGEND:

- = + E₂
- = - E₂
- ▼ = Estrogenic effect

FIGURE 73

THE EFFECT OF VARIOUS IgA AND IgM PREPARATIONS
ON MTW9/PL2 CELLS GROWN IN SERUM-FREE MEDIUM

FIGURE 74

RAT MYELOMA IgA TITRATION ON GH₁ CELLS
GROWN IN SERUM-FREE CONDITIONS

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 75

HUMAN PLASMA IgA TITRATION ON GH₁ CELLS
GROWN IN SERUM-FREE CONDITIONS

LEGEND:
Closed circles = + E_2
Open circles = - E_2
Closed triangles = Estrogenic effect

FIGURE 76

HUMAN PLASMA IgM TITRATION ON GH₁ CELLS
GROWN IN SERUM-FREE CONDITIONS

FIGURE 77

EFFECT OF HUMAN SECRETORY IgA ON
GH₁ CELLS GROWN IN SERUM-FREE CONDITIONS

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 78

MECHANISM OF TRANSCYTOSIS OF IgA AND IgM
BY MUCOSAL EPITHELIAL CELLS

FIGURE 79

ESSENTIAL STRUCTURES OF HUMAN
PLASMA AND SECRETORY IgA

SECRETORY IgA SHOWING J CHAIN
AND SECRETORY COMPONENT (INACTIVE)

FIGURE 80

EFFECT OF RAT MYELOMA IgA ON GH₃
CELLS GROWN IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 81

EFFECT OF RAT IgM ON GH₃ CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

—●— = + E₂

—○— = - E₂

—▲— = Estrogenic effect

FIGURE 82

EFFECT OF HUMAN PLASMA IgA ON GH₃
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 83

EFFECT OF HUMAN PLASMA IgM ON GH₃
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

- = + E₂
- = - E₂
- ▼ = Estrogenic effect

FIGURE 84

**EFFECT OF HUMAN MILK SECRETORY IgA ON
GH₃ CELL GROWTH IN SERUM-FREE MEDIUM**

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 85

EFFECT OF RAT MYELOMA IgA ON GH₄
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 86

EFFECT OF RAT PLASMA IgM ON GH₄
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

—○— = + E₂

—●— = - E₂

—▲— = Estrogenic effect

FIGURE 87

EFFECT OF HUMAN PLASMA IgA ON GH₄C₁
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 88

EFFECT OF HUMAN PLASMA IgM ON GH₄C₁
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

● = + E₂

✗ = - E₂

▲ = Estrogenic effect

FIGURE 89

EFFECT OF HUMAN MILK SECRETORY IgA ON
 GH_4C_1 CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 90

EFFECT OF MOUSE IgA ON H301 CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

Closed circles = + E₂

Open circles = - E₂

Closed triangles = Estrogenic effect

FIGURE 91

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON H301 CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = + E₂
Open circles = - E₂
Closed triangles = Estrogenic effect

FIGURE 92

EFFECT OF ESTRADIOL ON H301 CELL GROWTH IN SERUM-FREE MEDIUM AND 40 ug/mL OF HUMAN IgM

FIGURE 93

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON MCF-7K CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = + E₂
Open circles = - E₂
Closed triangles = Estrogenic effect

FIGURE 94

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON MCF-7K CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = + E₂
Open circles = - E₂
Closed triangles = Estrogenic effect

FIGURE 95
EFFECT OF HUMAN IgM ON MCF-7A CELL
GROWTH IN SERUM-FREE MEDIUM

LEGEND:

- = + E₂
- = - E₂
- ▼ = Estrogenic effect

FIGURE 96
EFFECT OF HUMAN IgM ON MCF-7K
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

- = + E₂
- = - E₂
- ▼— = Estrogenic effect

FIGURE 97

EFFECT OF ESTRADIOL ON MCF-7K CELL GROWTH
IN SERUM-FREE MEDIUM WITH 40 ug/mL HUMAN IgM

FIGURE 98

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON T47D CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = + E₂
Open circles = - E₂
Closed triangles = Estrogenic effect

FIGURE 99
**EFFECT OF HUMAN IgM ON T47D CELL
GROWTH IN SERUM-FREE MEDIUM**

LEGEND: Closed circles = + E₂
 Open circles = - E₂
 Closed triangles = Estrogenic effect

FIGURE 100

**EFFECT OF ESTRADIOL ON T47D CELL GROWTH IN
SERUM-FREE MEDIUM WITH 40 ug/mL HUMAN IgM**

FIGURE 101

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON ZR-75-1 CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = $+ \text{E}_2$
Open circles = $- \text{E}_2$
Closed triangles = Estrogenic effect

FIGURE 102
EFFECT OF HUMAN PLASMA IgM ON
ZR-75-1 CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:

—●— = — E₂
—○— = + E₂

FIGURE 103

EFFECT OF HUMAN IgM ON HT-29 CELL GROWTH IN
THE PRESENCE OF INCREASING CONCENTRATIONS OF T_3

LEGEND:

□ = T_3 Titration

■ = T_3 Titration + 40 μ g/mL IgM

FIGURE 104

EFFECT OF HUMAN PLASMA IgA (A) AND SECRETORY IgA (B) ON LNCaP CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND: Closed circles = + E₂
Open circles = - E₂
Closed triangles = Estrogenic effect

FIGURE 105

EFFECTS OF HUMAN PLASMA IgM VS IgM DERIVED FROM MYELOMA CELLS ON LNCaP CELL GROWTH IN SERUM-FREE MEDIUM WITH AND WITHOUT DHT

LEGEND: ● = DHT + Myeloma IgM
 ○ = Myeloma IgM only
 ▲ = DHT + Plasma IgM
 △ = Plasma IgM only

FIGURE 106

ESTROGENIC EFFECT OF 50 ug/mL OF VARIOUS
IgM'S ON SEVERAL DIFFERENT CELL LINES

LEGEND:

1. Human IgM on MTW9/PL2 Cells = 6.36 cpd
2. Mouse IgM on MTW9/PL2 Cells = 6.00 cpd
3. Rat IgM on MTW9/PL2 Cells = 5.77 cpd
4. Human IgM on H301 Cells = 7.57 cpd
5. Mouse IgM on H301 Cells = 7.56 cpd
6. Rat IgM on H301 Cells = 6.11 cpd
7. Human IgM on GH1 Cells = 4.12 cpd
8. Rat IgM on GH1 Cells = 5.83 cpd
9. Human IgM on GH3 Cells = 4.09 cpd
10. Human IgM on GH4 Cells = 5.41 cpd
11. Human IgM on MCF-7A Cells = 5.01 cpd
12. Human IgM on MCF-7K C lls = 5.89 cpd

FIGURE 107

EFFECT OF TAMOXIFEN ON T47D CELL GROWTH
IN DDM-2MF DEFINED MEDIUM

LEGEND:

- SFM + E₂
- ▲ SFM - E₂
- ▼ SFM + 10⁻⁹ M TAM
- ◆ SFM + 10⁻⁸ M TAM
- SFM + 10⁻⁷ M TAM
- SFM + 10⁻⁶ M TAM
- △ SFM + 10⁻⁵ M TAM

FIGURE 108

EFFECT OF INCREASING ESTRADIOL CONCENTRATIONS
ON T47D CELL GROWTH IN SERUM-FREE AND
PHENOL-RED FREE MEDIUM WITH 10^{-7} TAMOXIFEN

NOTE:

DATA ARE EXPRESSED AS BOTH CELL NUMBER AND CPD

FIGURE 109

E₂ RESCUE OF MTW9/PL2 CELL GROWTH IN SERUM-FREE MEDIUM WITH 40 ug/mL HORSE IgM

LEGEND:

- = E₂ Added on Day 0
- = No E₂
- ▽ = E₂ Added on Day 2
- ▲ = E₂ Added on Day 4
- = E₂ Added on Day 6
- = E₂ Added on Day 8
- ◆ = E₂ Added on Day 10

FIGURE 110

SUMMARY OF E₂ RESCUE OF MTW9/PL2 CELL GROWTH
IN SERUM-FREE MEDIUM WITH 40 ug/mL HORSE IgM

FIGURE 111

**E₂ RESCUE OF T47D CELL GROWTH IN SERUM-FREE
MEDIUM WITH 40 ug/mL HORSE IgM**

0 1 2 3 4 5 6 7 8

LEGEND:

■ = + E₂

▨ = - E₂

FIGURE 112

ESTROGEN RESCUE OF MCF-7A CELL GROWTH IN SERUM-FREE MEDIUM WITH 40 ug/mL OF HUMAN SERUM IgM

LEGEND:

FIGURE 113

**DETECTION OF SECRETORY COMPONENT
IN SECRETORY IgA WITH ANTI-SC ANTIBODY**

IgA = Human Plasma

IgG = Human Plasma

Secretory IgA = IgA from Milk

Albumin = Human

FIGURE 114

HUMAN IgM TITRATION ON T47D CELLS GROWN IN SERUM-FREE MEDIUM WITH DIFFERENT DILUTIONS OF ANTI-SC ANTIBODY

LEGEND:

- = + E₂
- = - E₂
- ▲— = 1:5000 Dilution of Anti-SC Antibody
- △— = 1:1000 Dilution of Anti-SC Antibody
- = 1:500 Dilution of Anti-SC Antibody

INSERT: EFFECT OF RABBIT SERUM ON T47D CELLS INCUBATED WITH 40 ug/mL HUMAN IgM

FIGURE 115

EFFECT OF IgA ON LNCaP GROWTH IN THE
PRESENCE OF ANTI-SECRETORY COMPONENT
ANTIBODY AT DIFFERENT DILUTIONS

FIGURE 116

WESTERN BLOT: ANTI-SECRETORY COMPONENT

1 2 3 4 5 6 7 8 9 10 11 12

LEGEND:

1. MW
2. ALVA 41: 40 ug
3. ALVA 41: 20 ug
4. DU 145: 40 ug
5. DU 145: 20 ug
6. HUMAN FIBROBLAST: 40 ug
7. HUMAN FIBROBLAST: 20 ug
8. LNCaP: 40 ug
9. LNCaP: 20 ug
10. MDCK1: 20 ug
11. MDCK1: 10 ug
12. PC3: 40 ug

FIGURE 117

EFFECT OF HUMAN PLASMA IgA ON DU145
CELL GROWTH WITH AND WITHOUT DHT

LEGEND:

● = + DHT

■ = - DHT

FIGURE 118

EFFECT OF HUMAN PLASMA IgA ON PC3
CELL GROWTH WITH AND WITHOUT DHT

LEGEND:

- = + DHT
- = - DHT

FIGURE 119

EFFECT OF RAT IMMUNOGLOBULINS ON MTW9/PL2
CELL GROWTH IN SERUM-FREE MEDIUM

LEGEND:
■ = + E₂
▨ = - E₂
▨ = Estrogenic effect

CONTROL IS SERUM-FREE MEDIUM ALONE + E₂

FIGURE 120
ESTROGENIC EFFECT GENERATED BY IMMUNOGLOBULINS
WITH T47D CELLS IN SERUM-FREE MEDIUM

FIGURE 121

EFFECT OF IgG ISOTYPES (40 μ g/mL) ON LNCaP
CELL GROWTH IN SERUM-FREE MEDIUM

FIGURE 122

IgG ISOTYPE ASSAYS WITH LNCaP CELLS IN
SERUM-FREE DEFINED MEDIUM ± DHT

FIGURE 123

MODEL OF EARLY ONSET BREAST CANCER INCLUDING TGF-BETA

ER⁺ BREAST CANCERS

- (i) Inhibitory receptor(s) for IgA & IgM & IgG1
- (ii) Growth inhibition by IgA & IgM
- (iii) Little or no TGF β growth inhibition
- (iv) No TGF β receptors

NORMAL EPITHELIAL CELLS

- I. Inhibitory receptor(s) for IgA & IgM & IgG1 & TGF β
- II. Growth inhibition by IgA & IgM & TGF β

ER⁻ BREAST CANCERS

- (i) No functional receptors for IgA or IgM & IgG1
- (ii) No growth inhibition by IgA & IgM
- (iii) High sensitivity TGF β growth inhibition
- (iv) TGF β receptors present

FIGURE 124

EFFECT OF CARCINOGENS ON MAMMARY TUMOR INDUCTION IN RATS OF VARIOUS AGES

INCIDENCE OF MAMMARY CANCER IN GROUPS OF 10 FEMALE RATS OF VARIOUS AGES FED 3-MC, 100 MG

INCIDENCE OF MAMMARY ADENOCARCINOMA IN RATS GIVEN DMBA AT DIFFERENT AGES

FIGURE 125

ANTI-HUMAN SHBG ANTIBODY IMMUNOPRECIPITATION
OF THE ESTROGENIC ACTIVITY PRESENT IN
CDE-HORSE SERUM WITH MTW9/PL2 CELLS

LEGEND: ■ = GROWTH IN 50% CDE WITH E₂
▨ = GROWTH IN 50% WITHOUT E₂
▨ = E₂ EFFECT

FIGURE 126

ANTI-HUMAN SHBG ANTIBODY IMMUNOPRECIPITATION OF THE ESTROGENIC ACTIVITY PRESENT IN CDE-RAT SERUM ASSAYED WITH MTW9/PL2 CELLS

FIGURE 127

ANTI-HUMAN SHBG ANTIBODY IMMUNOPRECIPITATION
OF THE LABELED STEROID HORMONE BINDING
ACTIVITY PRESENT IN CDE-RAT SERUM

FIGURE 128

WESTERN ANALYSIS AND DENSITOMETRY OF THE
IMMUNOGLOBULIN LEVELS IN THE SERUM OF
FEMALE RATS OF SPECIFIED AGE GROUPS

FIGURE 129

STRUCTURAL AND FUNCTIONAL ORGANIZATION
OF THE HUMAN ESTROGEN RECEPTOR-alpha

FIGURE 130

"BREAST CANCER" SEARCH - 31 "HITS"

"PIGR" (POLY-Ig RECEPTOR) SEARCH - 1 "HIT"

NOTE: THERE ARE NO BREAST CANCER "HITS" IN THE AREA OF THE POLY-Ig RECEPTOR ON CHROMOSOME 1

FIGURE 131

CHROMOSOME 1

BREAST CANCER SEARCH

FIGURE 132

CANCER AROUND THE WORLD, 1994-1997
 DEATH RATES PER 100,000 (45 COUNTRIES)

Country	Colon & Rectum		Breast	Prostate
	Male	Female	Female	Male
United States†	15.2 (27)	10.4 (23)	20.0 (14)	15.9 (20)
Australia‡	20.2 (10)	13.3 (10)	19.9 (15)	19.0 (9)
Austria†	21.7 (8)	12.2 (14)	20.9 (13)	16.9 (14)
Azerbaijan§	6.0 (41)	4.2 (43)	8.6 (42)	5.1 (41)
Bulgaria^	17.2 (20)	11.4 (19)	15.9 (31)	8.5 (34)
Canada‡	16.1 (26)	10.3 (25)	21.5 (10)	16.4 (17)
Chile^	7.0 (38)	6.7 (36)	12.1 (35)	16.0 (19)
China¶^	7.9 (36)	6.4 (37)	5.0 (44)	—
Colombia^	4.8 (44)	5.1 (40)	9.1 (40)	12.6 (28)
Croatia#	22.5 (6)	11.5 (18)	18.5 (20)	13.0 (25)
Cuba‡	9.4 (34)	11.3 (20)	14.9 (33)	20.8 (4)
Czech Republic§	34.3 (1)	17.3 (3)	21.1 (12)	16.0 (18)
Denmark§	22.7 (5)	15.6 (4)	27.6 (1)	19.9 (6)
Estonia§	18.1 (16)	12.2 (13)	18.5 (19)	12.8 (27)
Finland‡	12.1 (31)	8.5 (31)	16.8 (25)	17.6 (12)
France‡	16.6 (22)	9.6 (29)	19.6 (16)	15.8 (21)
Germany†	20.8 (9)	14.0 (7)	21.7 (8)	16.6 (16)
Greece§	8.0 (35)	6.2 (38)	16.2 (27)	9.3 (33)
Hungary^	34.3 (2)	18.7 (2)	23.7 (6)	18.7 (11)
Ireland‡	22.5 (7)	13.3 (9)	26.1 (2)	18.8 (10)
Israel§	17.9 (18)	13.8 (8)	25.1 (4)	12.0 (30)

FIGURES IN PARENTHESES ARE ORDER OF RANK WITHIN SITE AND SEX GROUP

SOURCE: MORTALITY DATABASE 1994-97
 WORLD HEALTH ORGANIZATION, 1999

Country	Colon & Rectum		Breast	Prostate
	Male	Female	Female	Male
Japan**	17.1 (21)	9.9 (28)	7.7 (43)	5.1 (42)
Kazakhstan§	12.6 (30)	8.6 (30)	13.2 (34)	5.7 (39)
Kyrgyzstan§	6.9 (39)	4.5 (41)	10.6 (37)	4.3 (43)
Latvia‡	18.3 (12)	11.8 (15)	17.3 (24)	11.5 (31)
Lithuania§	18.2 (13)	11.7 (16)	18.7 (18)	15.2 (22)
Macedonia§	10.8 (33)	7.1 (34)	16.1 (30)	6.2 (38)
Mauritius§	6.0 (42)	3.8 (44)	9.0 (41)	7.7 (36)
Mexico‡	3.6 (45)	3.3 (45)	9.3 (39)	12.8 (26)
Netherlands‡	17.7 (19)	12.7 (11)	26.0 (3)	19.4 (8)
New Zealand^	26.4 (3)	19.1 (1)	22.9 (7)	19.8 (7)
Norway‡	20.0 (11)	14.7 (5)	19.4 (17)	23.2 (2)
Poland§	16.4 (23)	11.0 (22)	16.1 (29)	11.1 (32)
Portugal§	18.1 (15)	10.4 (24)	17.6 (22)	17.2 (13)
Rep. of Moldova‡	18.2 (25)	11.1 (21)	18.2 (21)	5.7 (40)
Romania§	11.3 (32)	7.9 (33)	15.7 (32)	8.3 (35)
Russian Fed.‡	18.2 (14)	12.6 (12)	16.1 (28)	7.2 (37)
Slovakia‡	14.6 (28)	6.8 (35)	—	12.2 (29)
Slovenia§	23.9 (4)	14.0 (6)	21.2 (11)	14.7 (23)
Spain‡	16.4 (24)	10.0 (27)	17.5 (23)	13.9 (24)
Sweden§	13.8 (29)	10.2 (26)	18.8 (26)	21.4 (3)
Trinidad & Tobago^	7.8 (37)	8.3 (32)	21.5 (9)	35.5 (1)
Turkmenistan^	6.2 (40)	4.4 (42)	9.5 (38)	1.4 (44)
United Kingdom†	18.0 (17)	11.6 (17)	24.5 (5)	16.6 (15)
Venezuela^	5.9 (43)	6.2 (39)	11.8 (36)	20.3 (5)

FIGURE 133

A: TYPICAL CONCENTRATIONS OF IgG SUBCLASSES DURING CHILDHOOD

B: IMMUNOGLOBULIN CHANGES WITH AGE

