1.	$x(t) = \int A o < t < \tau$
	0 τ< t <t< th=""></t<>
	jwnt ,
	$C_n = + \int_0^T x(t) e^{-j\omega nt} dt = + \int_0^T A e^{-j(\frac{n\pi}{2})nt}$
	$=\frac{1}{T}A\frac{T}{-2\pi in}e^{-j\frac{2\pi T}{T}t}\Big]^{\tau}$
	$= -\frac{A}{2NT\dot{I}} \left(\frac{-j\frac{2NT}{T}}{T} + \frac{1}{2NT} \right)$
	$C_{n} = \frac{1}{T} \int_{0}^{T} X(t) e^{-j\omega nt} dt = \frac{1}{T} \int_{0}^{T} A e^{-j\frac{2\pi}{T}} dt$ $= \frac{1}{T} A \frac{T}{-2\pi j n} e^{-j\frac{2\pi}{T}} t \int_{0}^{T} dt$ $= -\frac{A}{2n\pi j} \left(e^{-j\frac{2n\pi}{T}} t - 1 \right) e^{-j\frac{2n\pi}{T}} t$ $\therefore X(t) = \frac{1}{n - \infty} \frac{A}{j - 2n\pi} \left(e^{-j\frac{2n\pi}{T}} t - 1 \right) e^{-j\frac{2n\pi}{T}} t$
2.	No. the signal close not have finite power:
	No, the signal does not have finite power. Energy = $\int_{-\infty}^{\infty} x(t) ^2 dt$ where $x(t) = \begin{cases} A & 0 < \tau < \tau \end{cases}$
	For one period: $E_x = \int_0^T X(t) ^2 dt = \int_0^T A ^2 dt + \int_T^T a ^2 dt = A^2 \tau$.
	However X(t) is a continous periodic function, therefore, the
	energy $E_x = \int_{-\infty}^{\infty} x(t) ^2 dt \rightarrow \infty$
	Power = $\lim_{t\to\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x(t) ^2 dt$ $P_x = \lim_{t\to\infty} \frac{1}{T} \int_{0}^{T} x(t) ^2 dt$
	Cim + (St A' dt + St O' dt) B. as asserted
	= (im A2 1 75/1
	I think the power is finite, as the result shows that
; w	the power is a fraction of A2, depending on the 2 m
	duty cycle $(0 \le \frac{x}{4} \le 1)$.
w ²	v.
3	$Sinc(t) * sinc(t) = \frac{sin(t)}{t} * \frac{sin(t)}{t} = \left(\int_{-\infty}^{\infty} \frac{sin(t)}{t} e^{-j\frac{2\pi t}{t}} dt\right) \cdot \left(\int_{-\infty}^{\infty} \frac{sin(t)}{t} e^{-j\frac{2\pi t}{t}} dt\right)$
,	$= \left(\int_{-\infty}^{\infty} \frac{\sin(t)}{t} e^{-j\frac{2\pi}{4}t} dt\right)^{2}$
	= rect (w): rect (w)
	= 5M((t)
* .	