MCSD1133 Operations Research & Optimization

CHAPTER 4: LP - SENSIVITY ANALYSIS

n z a h @ u t m . m y - 2 0 2 3 2 0 2 4 (S 2)

Innovating Solutions

The Role of Sensitivity Analysis of the Optimal Solution

- Is the optimal solution sensitive to changes in input parameters? The effective of this change is known as "sensitivity"
- Sensitivity of the optimal solution to the changes in the available resources i.e., the right-hand sight (RHS) of the constraints.
- Sensitivity of the optimal solution to the changes in unit profit or unit cost, i.e., coefficients of the objective function.

Sensitivity Analysis To The Changes In The Available Resources.

- A **shadow price** for a constraint is the increase in the objective function value resulting from a one unit increase in its right-hand side value.
- The **range of feasibility** for a right-hand side coefficient is the range of that coefficient for which the shadow price remains unchanged.
- The range of feasibility is also the range for which the current set of basic variables remains the optimal set of basic variables (although their values change.)

Example 1

 JOBCO manufactures two products on two machines. All information as shown below.

	Product 1	Product 2	Daily availability
Machine 1	2 hours	1 hours	8 hours
Machine 2	1 hours	3 hours	8 hours
Unit Profit	30	20	

• LP formulation:

Maximize
$$Z = 30X_1 + 20X_2$$

Subject to:

$$2X_1 + X_2 \le 8$$

$$X_1 + 3X_2 \le 8$$

$$X_1 \ge 0, X_2 \ge 0$$

Example 1 - Shadow Price/Dual Price (cont'd)

■ The change in the optimum solution when changes are made in the capacity of machine 1.

• If the daily capacity is increased from **8 to 9 hrs**, the new optimum will move to point G. The rate of change in optimum z resulting from changing machine I capacity from 8 to

9 hrs can be computed as:

$$= \frac{z_G - z_C}{\text{(Capacity change)}} = \frac{142 - 128}{9 - 8} = \$14/\text{hr}$$

 A unit increase (decrease) in machine 1 capacity will increase (decrease) revenue by \$14.

Example 1 - Shadow Price Dual Price (cont'd)

- The dual price of \$14/hr remains valid for changes (increases or decreases) in machine 1 capacity that move its constraint parallel to itself to any point on the line segment BF.
- Machine 1 capacities at points B and F as follows:

Minimum machine 1 capacity [at B=(0,2.67)] = $2 \times 0 + 1 \times 2.67 = 2.67$ hr Minimum machine 1 capacity [at F=(8,0)] = $2 \times 8 + 1 \times 0 = 16$ hr

The conclusion is that the dual price of \$14.00/hr remains valid only in the range

 $2.67 \text{ hr} \leq \text{Machine 1 capacity} \leq 16 \text{ hr}$

Changes outside this range produce a different dual price (worth per unit).

Example 1 - Shadow Price/Dual Price (cont'd)

- Using similar computations, you can verify that the dual price for machine 2 capacity is \$2/hr, and it remains valid for changes in machine 2 capacity within the line segment DE.
- A unit increase (decrease) in machine 2 capacity will increase (decrease) revenue by \$2.

Minimum machine 2 capacity [at D = (4,0)] = $1 \times 4 + 3 \times 0 = 4$ hr

Minimum machine 2 capacity [at E = (0,8)] = $1 \times 0 + 3 \times 8 = 24$ hr

Thus, the dual price of \$2/hr for machine 2 remains applicable for the range

 $4 \text{ hr} \leq \text{Machine 2 capacity} \leq 24 \text{ hr}$

Example 1 (cont'd)

Question 1.

If JOBCO can increase the capacity of both machines, which machine should receive priority?

Question 2.

A suggestion is made to increase the capacities of machines 1 and 2 at the additional cost of \$10/hr for each machine. Is this advisable?

Example 1 (cont'd)

Question 3.

If the capacity of machine 1 is increased from 8 to 13 hrs, how will this increase impact the optimum revenue?

Sensitivity Analysis of Objective Function Coefficients.

- Range of Optimality:
 - The optimal solution will remain unchanged as long as
 - ✓ An objective function coefficient lies within its range of optimality
 - ✓ There are no changes in any other input parameters (keeping all other coefficients constant)

Sensitivity Analysis of Objective Function Coefficients

Example: How can we determine the optimality range that will keep the optimal solution unchanged at C?

The slope of $Z = c_1x_1 + c_2x_2$ must lies between the slope of the two constrains so the optimal solution will be unchanged at point C.

$$\frac{1}{3} \le \frac{c_1}{c_2} \le \frac{2}{1} = 0.333 \le \frac{c_1}{c_2} \le 2$$

Example 1 (cont'd)

Question 4

Suppose that the unit revenues for products 1 and 2 are changed to \$35 and \$25, respectively. Will the current optimum remain the same?

Question 5

Suppose that the unit revenue of product 2 is fixed at its current value c_2 = \$20. What is the associated optimality range for the unit revenue for product 1, c_1 , that will keep the optimum unchanged?

Sensitivity Analysis with Solver

1	Example - JOBC	0								
3	Input Data									
4		X1	X2							
5		Product 1	Product 2	Total		Limit				
6	Objective	30	20	128						
7	M1	2	1	8	<=	8				
8	M2	1	3	8	<=	8	● ○ ○ Solver Results			
9							Solver found a solution. All constraints and optimality			
10	Output results:						conditions are satisfied.			
11		X1	X2	Z			Keep Solver Solution Reports Answer — — — — — — — — — — — — — — — — — — —			
12	Solution	3.2	1.6	128			Restore Original Values Sensitivity Limits — — —			
13										
14 15							Return to Solver Parameters Dialog Outline Reports			
16							S <u>a</u> ve Scenario <u>C</u> ancel <u>O</u> K			
17							Save Scenario <u>C</u> ancel <u>O</u> K			
18										
19										

Sensitivity Analysis Report

Example:

TOYCO uses three operations to assemble three types of toys: trains, trucks, and cars. The daily available times for the three operations are 430, 460, and 420 mins, respectively, and the revenues per unit of toy train, truck, and car are \$3, \$2, and \$5, respectively. The assembly times per train at the three operations are 1, 3, and 1 mins, respectively. The corresponding times per truck and per car are (2, 0, 4) and (1, 2, 0) mins (a zero time indicates that the operation is not used).

Example - Solution:

Letting x₁, x₂, and x₃ represent the daily number of units assembled of trains, trucks, and cars, respectively, the associated LP model is given as:

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to:

$$x_1 + 2x_2 + x_3 < = 430$$

$$3x_1 + 2x_3 < = 460$$

$$x_1 + 4x_2 < = 420$$

Variable C	ells					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$15	Solution X1	0	-4	3	4	1E+30
\$D\$15	Solution X2	100	0	2	8	2
\$E\$15	Solution X3	230	0	5	1E+30	2.666666667
Constrain	ts			_		
Final			Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$9	OP1 Total	430	1	430	10	200
\$F\$10	OP2 Total	460	2	460	400	20
\$F\$11	OP3 Total	400	0	420	1E+30	20
	Cell \$C\$15 \$D\$15 \$E\$15 Constrain Cell \$F\$9 \$F\$10	\$C\$15 Solution X1 \$D\$15 Solution X2 \$E\$15 Solution X3 Constraints Cell Name \$F\$9 OP1 Total \$F\$10 OP2 Total	Cell Name Final Value \$C\$15 Solution X1 0 \$D\$15 Solution X2 100 \$E\$15 Solution X3 230 Constraints Final Value \$F\$9 OP1 Total 430 \$F\$10 OP2 Total 460	Cell Name Final Value Reduced Cost \$C\$15 Solution X1 0 -4 \$D\$15 Solution X2 100 0 \$E\$15 Solution X3 230 0 Constraints Final Shadow Cell Name Value Price \$F\$9 OP1 Total 430 1 \$F\$10 OP2 Total 460 2	Cell Name Value Cost Coefficient \$C\$15 Solution X1 0 -4 3 \$D\$15 Solution X2 100 0 2 \$E\$15 Solution X3 230 0 5 Constraints Final Shadow Constraint Cell Name Value Price R.H. Side \$F\$9 OP1 Total 430 1 430 \$F\$10 OP2 Total 460 2 460	Cell Name Value Cost Coefficient Increase \$C\$15 Solution X1 0 -4 3 4 \$D\$15 Solution X2 100 0 2 8 \$E\$15 Solution X3 230 0 5 1E+30 Constraints Final Cell Name Value Value Price Price R.H. Side Increase \$F\$9 OP1 Total 430 1 430 10 \$F\$10 OP2 Total 460 2 460 400

• Shadow Price/Dual price:

$$x_1=1$$
; $x_2=2$; $x_3=0$

1 unit change in operation 1 capacity changes Z by \$1

1 unit change in operation 2 capacity changes Z by \$2

1 unit change in operation 3 capacity changes Z by \$0

Feasible ranges associated with the changing the resources

13	Constrain	ts					
14			Final	Shadow	Constraint	Allowable	Allowable
15	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
16	\$F\$9	OP1 Total	430	1	430	10	200
17	\$F\$10	OP2 Total	460	2	460	400	20
18	\$F\$11	OP3 Total	400	0	420	1E+30	20
19							

- The shadow price for operation 1 is valid in the feasible range changes between -200 and 10
- The shadow price for operation 2 is valid in the feasible range changes between -20 and 400
- The shadow price for operation 3 is valid in the feasible range changes is between -20 and infinity.

· Determine the condition that keep a solution optimal (current optimum remain the same)

5							
6	Variable C	ells					
7			Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	\$C\$15	Solution X1	0	-4	3	4	1E+30
0	\$D\$15	Solution X2	100	0	2	8	2
11	\$E\$15	Solution X3	230	0	5	1E+30	2.666666667
12							

- Optimality range for coefficient value of x₁ changes is less than 4
- Optimality range for coefficient value of x2 changes is between -2 and 8
- Optimality range for coefficient value of x₃ changes is greater than -2.667

Exercise

Consider the Reddy Mikks problem. Use Solver to obtain the sensitivity report, then answer the following:

- a) Determine the range for the ratio of the unit revenue of exterior paint to the unit revenue of interior paint.
- b) If the revenue per ton of exterior paint remains constant at \$5000 per ton, determine the maximum unit revenue of interior paint that will keep the present optimum solution unchanged.
- c) If for marketing reasons the unit revenue of interior paint must be reduced to \$2500, will the current optimum production mix change?
- d) It is proposed that the availability of raw material 1 is increase to 30 tons. Indicate whether the changes will keep the current shadow price?
- e) Determine the value of profit if the availability or raw material 2 is decrease by 2 tons.

