

超低功耗耳机充电仓专用芯片

芯片介绍

LP7801D是一款专为小容量锂电池充电/放电应用设计的单芯片解决方案IC,集成了线性充电管理模块、超低功耗同步升压放电管理模块,内置功率MOS,充电电流外部可编程,最大充电电流1A。

LP7801D集成了充电指示、输入过压保护、恒温度电功能;放电部分,升压输出5.1V、负载电流能力500mA,待机功耗1uA,带EN控制功能,控制EN可完全关断输出电压,内置过流、过温保护功能,工作频率1.2MHz,支持2.2uH小电感应用;针对小容量锂电池系统的应用,提供简单易用的解决方案。

LP7801D采用的封装形式为ESOP-8

特点

◆ 待机功耗:1uA◆ 高输入耐压:28V

- ◆ 内置7V过压保护
- ◆ 线性充电,充电电流可编程
- ◆ 智能恒温充电功能
- ◆ 同步升压输出5.1V
- ◆ 开关频率1.2MHz
- ◆ 效率高达95%
- ◆ 内置EN控制功能
- ◆ 放电模块过流、过温保护功能

应用原理图

应用范围

- ♦ TWS耳机仓
- ◇ 锂电池系统充电/放电应用

丝印及包装信息

Y: 生产年份 W: 生产周 X: 批次号

型 号	丝印	封装	包装
LP7801DSPF	LP7801D YWXXX	ESOP-8	4K/盘
丝印标示:			

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 1 of 7

引脚信息

无MCU应用原理图

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 2 of 7

内部框图

极限参数注1

\diamond	VIN
	SW
	VOUT
	其他管脚
\diamond	最高焊接温度(10秒) 260°C
	储存温度
	最大结温 150°C
	IowPowerSemi 微源半導體

温度性能

\Leftrightarrow	最大封装切耗	2VV
\diamond	温升	50°C/W

ESD 系数

\diamond	人体模型(HBM)	 · 2KV
\diamond	机械模型(MM)	 200V

注1:超出极限参数列出的参数值,可能会导致设备永久性损坏,长时间暴露于极限条件可能会影响设备的可靠性。

推荐工作条件

◆ 工作环境温度范围 ------ -20°C~80°C

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 3 of 7

电气参数

(T_A = 25℃. V_{IN} = 5V,除非特别说明.)

符号	参数	条件	最小值	典型值	最大值	单位
充电部分						
$V_{\rm IN}$	输入工作电压		4.5		5.8	V
I_{IN}	输入待机电流	$V_{BAT}=4.2V$		40		uA
V_{OVP}	过压保护电压	VIN 上升		7		V
V _{OCP-HYS}	过压保护迟滞电压			150		mV
$V_{\rm UV}$	输入欠压保护			3.3		V
V_{FLOAT}	电池充满电压		4.158	4.2	4.242	V
▼ FLOAT	石16/6/16/石压		4.301	4.35	4.394	V
		R _{ISET} =17K,充电模式		100		mA
${ m I}_{ m BAT}$	电池端电流	R _{ISET} =3.4K,充电模式		500		mA
*BAI	. 616510 . 6100	$V_{BAT}=4.2V$		1		uA
		$V_{BAT}=4.2V$, $VIN=0$		1		uA
V_{TRIKL}	涓流充电电压阈值			2.6		V
I_{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}$		10		$%I_{BAT}$
I_{TERM}	终止充电电流阀值			10		$%I_{BAT}$
ΔV_{RECHRG}	再充电电压阈值			150		mV
I_{CHRG}	CHRG 管脚电流	$V_{BAT}=4.3V$			5	uA
		放电部分				
V_{out}	升压输出电压			5.1		V
I_{out}	放电电流			500		mA
I_{BAT}	待机电流	V _{BAT} =3.7V,无负载		1		uA
I_{SD}	关断电流			0.01		uA
F_{SW}	开关频率	D 0 1 (MAXIX	MZ 25	1.2		MHz
$V_{\rm EN_ON}$	EN 开启电压阀值	WPOWELZEIN 12X 1/2	0.9	喜用鱼		V
$V_{\rm EN_OFF}$	EN 关断电压阀值	0111 011 01 001111			0.8	V
I_{EN}	EN 管脚电流	EN=5V		0.01		uA
I_{LIMIT}	开关电流限制			1		A
R _{ON_HIGH}	高端 MOS 开启内阻			160		mΩ
R _{ON_LOW}	低端 MOS 开启内阻			220		mΩ
OTP	过温保护			150		$^{\circ}\mathbb{C}$

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 4 of 7

充电曲线图

升压效率曲线图

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com www.lowpowersemi.com Page 5 of 7

应用说明

LP7801D 集成了线性充电模块和同步升压放电模块,带充电状态指示灯显示,充电电流可外部设定,支持边充边放,具有过流、短路、过温等多种异常保护,可以有效保护电池及系统安全。

充电模式

LP7801D内部集成了完整的线性充电模块,对电池进行涓流、恒流和恒压充电。恒流模式下充电电流IBAT由电阻RISET设定,对应关系见以下公式:

$$I_{BAT} = 1700 \times \frac{V_{ISET}}{R_{ISET}}$$

其中V_{ISET}=1V。当电池电压低于预充阈值电压时,芯片进入涓流充电模式 在涓流模式下充电电流为1/10C。当电池电压接近浮充电压时,芯片进入恒压充电模式,在恒压模式下,充电电流逐渐减小,当充电电流减小到1/10C以下时,充电周期结束;当电池电压下降至复充电压以下,系统将自动开始新的充电周期。

CHRG状态指示

LP7801通过CHRG状态来表示充电、充满状态。CHRG输出有两种不同的状态:强下拉(~10mA)和高阻抗。CHRG处于强下拉状态表示处于充电周期,CHRG处于高阻状态表示充电周期结束;当输入电压低于4.5V或高于OVP保护电压值,CHRG处于高阻状态。

升压部分

LP7801D提供同步升压模块作为放电输出,集成功率 MOS。EN管脚可用于控制升压模块的开启或关闭,当 EN为悬空或高电平时,升压模块启动工作,输出电压 5.1V,无负载条件下,待机电流1uA。EN为低电平时,升压模块不工作,OUT端无输出。

LP7801D支持电池边充边放,升压模块最低启动电压 1V,在不需要控制EN的应用中,电池过放的情况下,为防止电池在涓流充电阶段同时输出大电流,导致电池电压越充越低,可以通过EN管脚电阻分压方式连接 BAT,使电池电压达到恒流充电阶段再打开升压模块,电路见下图:

升压启动电压对应关系见以下公式:

$$V_{BAT-L} = V_{EN-ON} \times (1 + \frac{R_1}{R_2})$$

以分压电阻3M/1.2M为例,对过放的电池充电,电池电压上升到2.98V(典型值)时,升压模块正常启动。

www.lowpowersemi.com

LP7801D-02 Dec.-2019 Email: marketing@lowpowersemi.com

封装信息

ESOP-8

	5 11 45 11 5 11 5 11 5 11 5 11 5 11 5 1					
SYMBOLS		DIMENSION (MM)		DIMENSION (INCH)		
	STINIBOLS	MIN	MAX	MIN	MAX	
	A	1.30	1.70	0.051	0.067	
	A1	0.00	0.15	0.000	0.006	
	A2	1.25	1.52	0.049	0.060	
	b	0.33	0.51	0.013	0.020	
	С	5.80	6.20	0.228	0.244	
	D	4.80	5.00	0.189	0.197	
	D1	3.15	3.45	0.124	0.136	
	E	3.80	4.00	0.150	0.157	
	E1	2.26	2.56	0.089	0.101	
	е	1.27 BSC		0.050) BSC	
	Н	0.19	0.25	0.0075	0.0098	
	L	0.41	1.27	0.016	0.050	
	θ	0°	8°	0°	8°	

LP7801D-02

Dec.-2019

Email: marketing@lowpowersemi.com