Hinimale Spannbaume

agy

agy

(a.u) $\in E$ Graph (V, E) $\omega(e) \rightarrow \mathbb{R}$ $\omega(E) = \sum_{e \in E} \omega(e)$

hveisfrei
"Wald"
Baum

Krushal

Def: MST (V, Enst) 74

gewichteten Graph (V, E)

ist leichtester Spannbaum

3 9 16

IN: $\omega_1 E$ 1.) $E_{MST} = \emptyset$ 2.) $FOR C \in SORT(E_1 \omega)$:

IF $E_{MST} \cup \{e\}$ hycisfrei:

EMST = EMST U {e}

Alle Uveisfreien Teilgraphen: $U := \{ u \in P(E) : u \text{ ist hiersfre! } \}$

KI: Vererbing, $\forall a \subseteq b \in U =)$ $a \in U$ KII: Exweitenny, $\forall a, b \in U$, |a| < |b|=) $\exists e \in b$: $a \cup \{e\} \in U$ KIII: Spann Laume sind max. Hengen

Beveis: Krushal ist howelt

Lösing vm Urushal i u= {e,...en}, w(ei) < w(ej)

Annahme $\exists u \in U$ $u = \{e_0, \dots, e_N\}$, $w(u) < w(u^*)$

 $|u|=|u^*|=$ $\exists n \ \omega(e_o) < \omega(e_o^*)$

Knuskal nach n-Heratimen $u_{(n)}^{*} = \{e_{0}, ..., e_{n-n}\}$ Cn

 $U_{(n+1)} = \{e_0, \dots, e_n\} := \{e_x \in u \mid w(e_x) \in u(e_n)\}$

U(n+1) CUEU => U(n+1) EU, U(n) EU

| u(n+1) | > | u(n) | =)] =] =] = (u(n+1) | u(n) | v {ex} \ \in \ \langle \langle \langle \ \langle

=> Unishal muss ex wahlen & M

Teilmenyensystème : KI Hatroid : KI + KII	
hanonischer Greedy "Krushal auf Matroiden"	
Prim: Bave gierg Spannbaum	
WI - ? adjesthwadde Fam "Greedoid))

Weilerführende Literatur

O Une Schoning. "Algorithmih"

guter Oberstich (Greedy, Kruskal, UNION-FIND, SORT, und mehr) leicht zugänglich, gut zu lesen, anschaulich

o Cambridge University Press, "Martroid Applications"

Mapitel 8 "Introduction to Greedoids" (Björner, Fiegler)
insbesonder Kapitel 8.5 (kanonischer Greedy auf Greedoiden, Prim Algerthmus)
deutlich formaler/allgemeiner

Online varfügbar in UAU Bibliotheh

Früha Versian frei verfügbar (eng. Libipedia -> "Greedoid" -> Referances]

(him Kapitel 9 statt 8)

- https://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/006PREPRINT.pdf?1397057423
- o Krushal -> Willipedia (alternative Bevels)
- o Dieses Shript: github/hollmanj -> talks-and-material