سلسلة تمارين تدعيمية للوحدة الرابعة: تعيين كمية المادة عن طريق قياس الناقلية

التمرين الأول:

نذيب Na₃PO₄₍₅₎ من فوسفات الصوديوم (Na₃PO₄₍₅₎ في الماء فنحصل على 100mL من محلول مائي لفوسفات الصوديوم.

- 1- أكتب معادلة انحلال فوسفات الصوديوم في الماء.
 - 2- أحسب التركيز المولى للمذاب.
 - 3- أحسب التركيز المولي لكل شاردة.
- 4- نضيف للمحلول السابق 150mL من الماء، أحسب التركيز المولي الجديد للمذاب ثم لشوارده.

التمرين الثاني:

لدينا محلول (S₀) لحمض يود الهيدروجين HI درجة نقاوته P=30% وكثافته d=1.28 و كتلته المولية M=128g/mol.

- . واحسب قيمته. $C_0 = \frac{10Pd}{M}$ يعطى بالعبارة: $C_0 = \frac{10Pd}{M}$ واحسب قيمته.
 - V=100 ممدد 100 مرة و حجمه V=100 نربد تحضير محلول (S) ممدد 100 مرة و حجمه V=100
 - استنتج التركيز المولي للمحلول (S).
 - احسب الحجم V_0 المسحوب من المحلول (S_0) لتحضير (S_0).
 - أحسب حجم الماء المضاف من أجل التمديد.

التمرين الرابع:

لتعيين التركيز المولي C_0 لمحلول مائي من نترات المغنزيوم ($Mg^{2+} + 2 NO_3$) قمنا بمعايرة خلية قياس الناقلية بواسطة عدة محاليل من نترات المغنزيوم مختلفة التراكيز فتحصلنا على البيان $\sigma = f(C)$ أسفله .

قياس ناقلية المحلول السابق بواسطة الخلية المعايرة التي ثابتها K = 0.1 m يعطي القيمة G = 0.025 S

1- أوجد الناقلية النوعية لمحلول نترات المغنزيوم ؟

2-استنتج من البيان قيمة C_0 ؟

 λ_{Mg2+} أحسب , $\lambda_{NO3-} = 7.1 \text{ mS.m}^2.\text{mol}^{-1}$ أحسب .

 λ_{Mg2+} و λ_{NO3-} بدلالة، λ_{NO3-} و جد عبارة λ_{NO3-} و λ_{NO3-} و λ_{NO3-} و λ_{NO3-}

التمرين الخامس:

نريد تعيين تركيز محلول نترات النحاس وذلك بواسطة قياس الناقلية ، نحضر مجموعة من المحاليل لنترنات النحاس وذلك بإذابة $Cu(NO_3)_2$

C(m	ımol/L)	1	2,5	5	7,5	10
G	(mS)	0,26	0,63	1,27	1,87	2,49

- الماء. $Cu(NO_3)_2$ في الماء. -1
 - . ماذا تستنتج . G = f(C) أرسم البيان -2
- $. \left\lceil NO_3^- \right
 ceil$ ، $\left\lceil Cu^{2+} \right
 ceil$ ، أوجد بيانيا تركيز محلول نترات النحاس الذي ناقليته $0.88~{
 m mS}$ شم استنتج 3
 - لمحلول. و $Cu(NO_3)_2$ في هذا المحلول.

يعطى:

 $M_0 = 16 \text{ g/mol}$, $M_N = 14 \text{ g/mol}$, $M_{Cu} = 63 \text{ g/mol}$

التمرين السادس:

- 1- أوجد كتلة كبريتات الألمنيوم m الواجب إذابتها في الماء المقطر للحصول على المحلول السابق.
 - 2- أكتب معادلة إنحلال كبريتات الألمنيوم في الماء.
 - $.SO_4^{2-}$ و شوارد الكبريتات Al^{3+} و أوجد تركيز المحلول بشوارد Al^{3+}
- 4- من أجل إيجاد الناقلية G لهذا المحلول وضعنا G منه في بيشر ، وبعد تركيب دارة كهربائية مناسبة وبإستعمال خلية لقياس . $\sigma = 75.2~mS/m$. G=2~mS
 - أ/- أرسم الدارة الكهربائية المناسبة .
 - ب/- أوجد قيمة ثابت الخلية .
 - . C بدلالة التركيز المولى σ بدلالة التركيز المولى
 - $.SO_4^{2-}$ د. أوجد قيمة الناقلية النوعية المولية الشاردية لشاردة الكبريتات

M(Al)=27 ; M(O)=16 ; M(S)=32 : g/mol بالمعطيات : الكتلة المولية المولية المولية الشاردية لشاردة الألمنيوم : $\lambda_{Al^{3+}}=18.3mS$. m^2 . mol^{-1} : الناقلية النوعية المولية الشاردية لشاردة الألمنيوم

التمرين السابع:

لتحديد التركيز المولي لمحلول (S_5) لهيدروكسيد الألمنيوم نقوم بتحضير محلول منه نرمز له بـ (S_5) وذلك بإذابة كتلة S_5 0 m من هيدروكسيد الألمنيوم اللامائية ذات الصيغة S_5 0 Al(OH) في حجم S_5 1 عند الدرجة S_5 2.

من هذا المحلول (50) نقوم بتحضير أربعة محاليل أخرى كما يلي:

- المحلول S_1 : تركيزه المولي يساوي $\frac{1}{5}$ تركيز المحلول (S_0).

- المحلول S_2 : تركيزه المولي يساوي $\frac{1}{2}$ تركيز المحلول (S_1).

- المحلول S_3 : تركيزه المولي يساوي $\frac{1}{2}$ تركيز المحلول (S_2).

- المحلول S_4 : تركيزه المولي يساوي $\frac{2}{5}$ تركيز المحلول (S_3).

هذه المحاليل المحضرة نغمس فيها و بالترتيب خلية لقياس الناقلية المتكونة من صفيحتين مستويتين ومتوازبتين بحيث تكون مساحة السطح المغمور في المحلول $S = 4 \, \mathrm{cm}^2$ و المسافة الفاصلة بينهما L ثابتة ، نوصل الصفائح بجهاز GBF ذو إشارة جيبية و توتر قدره U = 2V

المحلول	S ₀	S ₁	S ₂	S ₃	S ₄	S ₅
I (mA)	37.1	7.42	3.71	1.86	0.742	16.69
الناقلية (G (mS)						
تركيز المحلول (mmol /L)						

2- أكتب معادلة إنحلال هيدروكسيد الألمنيوم في الماء ؟

1- أكمل الجدول ؟

3- أحسب الناقلية النوعية σ للمحلول σ , ثم إستنتج بعد الصفيحتين L عن بعضهما

4- أرسم المنحني (G = f (C) ؟

5- إستنتج التركيز المولى للمحلول (S₅) ؟

المعطيات: الكتل المولية: M(O) =16 g/mol , M(H) = 1 g/mol , M(Al) = 27 g/mol : المعطيات

 $\lambda(AI^{3+}) = 18.30 \text{ mS.m}^2.\text{mol}^{-1}, \ \lambda(OH^-) = 20 \text{ mS.m}^2.\text{mol}^{-1} : 25 \, \text{C}^0$ الناقلية النوعية المولية عند الدرجة

التمرين الثامن:

I- كبريتات الألمنيوم هو مركب كيميائي على شكل بلورات ملحية عديمة اللون، يستخدم بشكل واسع في عمليات معالجة وتطهير المياه، متواجد في المخبر في علبة علها الملصقة المقابلة التالية:

كبريتات الألمنيوم	الإسم النظامي
$Al_2(SO_4)_3$	الصيغة الجزيئية
342,1g / mol	الكتلة المولية
P=97.2 %	درجة النقاوة

نذيب كتلة معينة من هذا الملح في كمية كافية من الماء المقطر ثم نكمل الحجم إلى نذيب كتلة معينة من هذا الملح في كميتات الألمنيوم تركيزه ($(C=10^{-3}mol\ /L)$)

1- أوجد كتلة كبريتات الألمنيوم الواجب إذابتها للحصول على المحلول السابق.

2 -أكتب معادلة إنحلال الملح في الماء.

3-أوجد تركيز المحلول بشوارد الألمنيوم وشوارد الكبريتات.

II- من أجل إيجاد قيمة ناقلية (G)لهذا المحلول وضعنا منه $(100 \ mL)$ في بيشر وبعد تركيب دارة كهربائية مناسبة و بإستعمال خلية القياس الناقلية تمكنا من الحصول على قيمتى الناقلية و الناقلية النوعية $(\sigma = 75.2 \ mS \ / m \ , \ G = 2 \ mS)$

(R)1-أعط عبارة الناقلية (G)ثم أحسب مقاومة المحلول ا(R)

 $(L=5\ mm)$ وطول ضلع الصفيحة المستعملة في خلية القياس بإعتبارها مربعة إذا كان البعد بين الصفيحتين و-1

(C)عط عبارة الناقلية النوعية (σ) بدلالة التركيز المولى للمحلول.

4-أوجد قيمة الناقلية الشاردية لشاردة (χ_{max}) . هل تتغير قيمة هذه الأخيرة إذا غيرنا قيمة التركيز المولي (C) للمحلول (C)

 $(\lambda_{n^{3+}} = 18,3 \ ms.m^2 \ / \ mol)$: معطیات: