Linear Regression and Classification Revisited

Dr. Víctor Uc Cetina

Facultad de Matemáticas Universidad Autónoma de Yucatán

cetina@informatik.uni-hamburg.de
https://sites.google.com/view/victoruccetina

Content

- General View of Linear Regression
- 2 Regularized Linear Regression
- 3 Discriminant Functions for Classification

• x is the input variable, t is the output variable, \mathbf{w} is the parameters vector of our model and the data points were generated from $\sin(2\pi x) + \varepsilon$.

- x is the input variable, t is the output variable, \mathbf{w} is the parameters vector of our model and the data points were generated from $\sin(2\pi x) + \varepsilon$.
- For our model $y(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M$, we need to search for the best M and we need to learn the parameters \mathbf{w} .

- x is the input variable, t is the output variable, \mathbf{w} is the parameters vector of our model and the data points were generated from $\sin(2\pi x) + \varepsilon$.
- For our model $y(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M$, we need to search for the best M and we need to learn the parameters \mathbf{w} .
- ullet Such parameter vector ullet can be learned iteratively or directly.

Estimating the Parameters w

Stochastic Gradient Descent

```
Loop {  \text{for } i=1 \text{ to } m \text{ } \{ \\ w_j:=w_j+\alpha \big[t^{(i)}-y(x^{(i)},\mathbf{w})\big]x_j^{(i)} \qquad \text{(for every } j\text{)}. \\ \}  }
```

Estimating the Parameters w

```
Stochastic Gradient Descent
Loop {
       for i = 1 to m {
              w_j := w_j + \alpha \big[ t^{(i)} - y(x^{(i)}, \mathbf{w}) \big] x_i^{(i)}
                                                                                (for every j).
Normal Equations
\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.
```

Locally Weighted Linear Regression

The algorithm works as follows:

- Fit **w** to minimize $\sum_{i} \sigma^{(i)} (t^{(i)} \mathbf{w}^{\top} x^{(i)})^{2}.$
- **2** Output $\mathbf{w}^{\top} x$.

Locally Weighted Linear Regression

The algorithm works as follows:

- Fit **w** to minimize $\sum_{i} \sigma^{(i)} (t^{(i)} \mathbf{w}^{\top} x^{(i)})^{2}.$
- **2** Output $\mathbf{w}^{\top} x$.

Where $\sigma^{(i)}$'s are non-negative valued weights.

A good choice for the weights is:

$$\sigma^{(i)} = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

Locally Weighted Linear Regression

The algorithm works as follows:

- Fit **w** to minimize $\sum_{i} \sigma^{(i)} (t^{(i)} \mathbf{w}^{\top} x^{(i)})^{2}.$
- **2** Output $\mathbf{w}^{\top} x$.

Where $\sigma^{(i)}$'s are non-negative valued weights.

A good choice for the weights is:

$$\sigma^{(i)} = \exp\left(-\frac{(x^{(i)}-x)^2}{2\tau^2}\right)$$

 For polynomial functions, we need to try systematically different M's and evaluate the performance of our current model.

ullet Polynomial functions with different orders M.

Evaluation of Performance

• For each choice of M we can evaluate the performance of the model using the root-mean-square error $E_{\rm RMS}$.

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w})/N}$$

where

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Evaluation of Performance

• For each choice of M we can evaluate the performance of the model using the root-mean-square error $E_{\rm RMS}$.

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w})/N}$$

where

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

 This error can also be used to evaluate if our model's performance is improving after each iteration of the learning algorithm.

Evaluation of Performance

 The goal of regression is to predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.

- The goal of regression is to predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.
- The simplest linear model for regression is one that involves a linear combination of the input variables

$$y(\mathbf{x},\mathbf{w})=w_0+w_1x_1+\ldots+w_Dx_D$$

where

$$\mathbf{x} = (x_1, \dots, x_D)^{\top}$$

- The goal of regression is to predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.
- The simplest linear model for regression is one that involves a linear combination of the input variables

$$y(\mathbf{x},\mathbf{w})=w_0+w_1x_1+\ldots+w_Dx_D$$

where

$$\mathbf{x} = (x_1, \dots, x_D)^{\top}$$

• The key property of this model is that it is a linear function of the parameters w_0, \ldots, w_D . It is also, however, a linear function of the input variables x_i , and this imposes significant limitations on the model.

 However, we can obtain a much more useful class of functions by taking linear combinations of a fixed set of nonlinear functions of the input variables, of the form

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as basis functions.

 However, we can obtain a much more useful class of functions by taking linear combinations of a fixed set of nonlinear functions of the input variables, of the form

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as basis functions.

 Such models are linear functions of the parameters, which gives them simple analytical properties, and yet can be nonlinear with respect to the input variables.

• It is often convenient to define an additional dummy basis function $\phi_0(x) = 1$ so that

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x})$$

where

$$w = (w_0, w_1, \dots, w_{M-1})^{\top}$$

and

$$\phi = (\phi_0, \phi_1, \dots, \phi_{M-1})^{\top}$$

• Polynomial regression is a particular example of radial basis functions models in which there is a single input variable x, and the basis functions take the form of powers of x so that $\phi_i(x) = x^j$.

- Polynomial regression is a particular example of radial basis functions models in which there is a single input variable x, and the basis functions take the form of powers of x so that $\phi_j(x) = x^j$.
- One limitation of polynomial basis functions is that they are global functions of the input variable, so that changes in one region of input space affect all other regions.

- Polynomial regression is a particular example of radial basis functions models in which there is a single input variable x, and the basis functions take the form of powers of x so that $\phi_j(x) = x^j$.
- One limitation of polynomial basis functions is that they are global functions of the input variable, so that changes in one region of input space affect all other regions.
- This can be resolved by dividing the input space into regions and fit a different polynomial in each region, leading to spline functions.

 Other possible choices for the basis functions are Gaussian basis functions and sigmoidal basis functions

- Other possible choices for the basis functions are Gaussian basis functions and sigmoidal basis functions
- Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

where the μ_j govern the locations of the basis functions in input space, and the parameter s governs their spatial scale.

- Other possible choices for the basis functions are Gaussian basis functions and sigmoidal basis functions
- Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

where the μ_j govern the locations of the basis functions in input space, and the parameter s governs their spatial scale.

• Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{5}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

 Linear models have significant limitations as practical techniques for machine learning, particularly for problems involving input spaces of high dimensionality.

- Linear models have significant limitations as practical techniques for machine learning, particularly for problems involving input spaces of high dimensionality.
- However, they form the foundation of more sophisticated models such as neural networks and support vector machines.

Parameters Going Wild

Parameters Going Wild

	M = 0	M = 1	M = 6	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
W_2			-25.43	-5321.83
<i>W</i> 3			17.37	48568.31
W4				-231639.30
W_5				640042.26
w_6				-1061800.52
W ₇				1042400.18
<i>W</i> 8				-557682.99
W 9				125201.43

Importance of Dataset Size

Importance of Dataset Size

Importance of Dataset Size

• Two solutions with M=9. In the left using N=15 training examples. In the right using N=100 training examples.

 We can add a regularization term to the error function in order to control over-fitting, so that the total error function to be minimized takes the form

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

 We can add a regularization term to the error function in order to control over-fitting, so that the total error function to be minimized takes the form

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

where λ is the regularization coefficient that controls the relative importance of the data-dependent error $E_D(\mathbf{w})$ and the regularization term $E_W(\mathbf{w})$.

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)\}^2$$

 One of the simplest forms of regularizer is given by the sum-of-squares of the weight vector elements

$$E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

 One of the simplest forms of regularizer is given by the sum-of-squares of the weight vector elements

$$E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

Then, instead of minimizing

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)\}^2.$$

 One of the simplest forms of regularizer is given by the sum-of-squares of the weight vector elements

$$E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

Then, instead of minimizing

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)\}^2.$$

We minimize

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}.$$

Estimating the Parameters w with Regularization

Stochastic Gradient Descent

```
Loop { for \ i=1 \ to \ m \ \{ \\ w_j:=w_j+\alpha \big[t^{(i)}-y(x^{(i)},\mathbf{w})\big]x_j^{(i)}+\frac{\lambda}{m}w_j \qquad \text{(for every $j$)}. } }
```

Estimating the Parameters w with Regularization

```
Stochastic Gradient Descent
Loop {
        for i = 1 to m {
               w_i := w_i + \alpha \left[ t^{(i)} - y(x^{(i)}, \mathbf{w}) \right] x_i^{(i)} + \frac{\lambda}{m} w_i
                                                                                               (for every j).
Normal Equations
\mathbf{w} = (\mathbf{\lambda}\mathbf{I} + \mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.
```

Different Types of Regularizers

 Sometimes a more general regularizer is used, for which de regularized error takes the form

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M} |w_i|^q.$$

where q = 2 corresponds to the quadratic regularizer.

Types of Regularizers and their Effects

Types of Regularizers and their Effects

Types of Regularizers and their Effects

Benefits of Regularization

 Regularization allows complex models to be trained on data sets of limited size without severe over-fitting, essentially by limiting the effective model complexity.

Benefits of Regularization

- Regularization allows complex models to be trained on data sets of limited size without severe over-fitting, essentially by limiting the effective model complexity.
- However, the problem of determining the optimal model complexity is then shifted from one of finding the appropriate number of basis functions to one of determining a suitable value of the regularization coefficient λ .

• The goal in classification is to take an input vector \mathbf{x} and to assign it to one of K discrete classes C_k where $k = 1, \dots, K$.

- The goal in classification is to take an input vector \mathbf{x} and to assign it to one of K discrete classes C_k where $k = 1, \dots, K$.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.

- The goal in classification is to take an input vector \mathbf{x} and to assign it to one of K discrete classes C_k where $k = 1, \dots, K$.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.
- The input space is thereby divided into decision regions whose boundaries are called decision boundaries or decision surfaces.

- The goal in classification is to take an input vector \mathbf{x} and to assign it to one of K discrete classes C_k where $k = 1, \dots, K$.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.
- The input space is thereby divided into decision regions whose boundaries are called decision boundaries or decision surfaces.
- In linear models for classification, the decision surfaces are linear functions of the input vector x and hence are defined by (D-1)-dimensional hyperplanes within the D-dimensional input space.

- The goal in classification is to take an input vector \mathbf{x} and to assign it to one of K discrete classes C_k where $k = 1, \dots, K$.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.
- The input space is thereby divided into decision regions whose boundaries are called decision boundaries or decision surfaces.
- In linear models for classification, the decision surfaces are linear functions of the input vector x and hence are defined by (D-1)-dimensional hyperplanes within the D-dimensional input space.
- Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable.

• For classification problems, however, we wish to predict discrete class labels, or more generally posterior probabilities that lie in the range (0,1).

- For classification problems, however, we wish to predict discrete class labels, or more generally posterior probabilities that lie in the range (0,1).
- To achieve this, we consider a generalization of this model in which we transform the linear function of \mathbf{w} using a nonlinear function $f(\cdot)$ so that

$$y(\mathbf{x}) = f(\mathbf{w}^{\top}\mathbf{x} + w_o).$$

where $f(\cdot)$ is known as the activation function.

- For classification problems, however, we wish to predict discrete class labels, or more generally posterior probabilities that lie in the range (0,1).
- To achieve this, we consider a generalization of this model in which we transform the linear function of \mathbf{w} using a nonlinear function $f(\cdot)$ so that

$$y(\mathbf{x}) = f(\mathbf{w}^{\top}\mathbf{x} + w_o).$$

where $f(\cdot)$ is known as the activation function.

• An input vector \mathbf{x} is assigned to class C_1 if $y(\mathbf{x}) \geq 0$ and to class C_2 otherwise.

• A discriminant is a function that takes an input vector \mathbf{x} and assigns it to one of K classes, denoted C_k .

- A discriminant is a function that takes an input vector \mathbf{x} and assigns it to one of K classes, denoted C_k .
- The simplest representation of a linear discriminant function is obtained by taking a linear function of the input vector so that

$$y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_o.$$

where \mathbf{w} is called a weight vector, and w_0 is a bias.

• The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.

- The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.
- Consider two points x_A and x_B both of which lie on the decision surface.

- The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.
- Consider two points x_A and x_B both of which lie on the decision surface.
- Because $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$, we have $\mathbf{w}^{\top}(\mathbf{x}_A \mathbf{x}_B) = 0$ and hence the vector \mathbf{w} is orthogonal to every vector lying within the decision surface.

- The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.
- Consider two points x_A and x_B both of which lie on the decision surface.
- Because $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$, we have $\mathbf{w}^{\top}(\mathbf{x}_A \mathbf{x}_B) = 0$ and hence the vector \mathbf{w} is orthogonal to every vector lying within the decision surface.
- So w determines the orientation of the decision surface.

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.

$$y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.
$$y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$$
$$y(\mathbf{x}_A) = y(\mathbf{x}_B)$$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.
 $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$
 $y(\mathbf{x}_A) = y(\mathbf{x}_B)$
 $\mathbf{w}^{\top}\mathbf{x}_A + w_0 = \mathbf{w}^{\top}\mathbf{x}_B + w_0$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.
$$y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$$
$$y(\mathbf{x}_A) = y(\mathbf{x}_B)$$
$$\mathbf{w}^{\top}\mathbf{x}_A + w_o = \mathbf{w}^{\top}\mathbf{x}_B + w_o$$
$$\mathbf{w}^{\top}\mathbf{x}_A = \mathbf{w}^{\top}\mathbf{x}_B$$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_{A} - \mathbf{x}_{B}) = 0$$
.
$$y(\mathbf{x}_{A}) = y(\mathbf{x}_{B}) = 0$$
$$y(\mathbf{x}_{A}) = y(\mathbf{x}_{B})$$
$$\mathbf{w}^{\top}\mathbf{x}_{A} + w_{o} = \mathbf{w}^{\top}\mathbf{x}_{B} + w_{o}$$
$$\mathbf{w}^{\top}\mathbf{x}_{A} = \mathbf{w}^{\top}\mathbf{x}_{B}$$
$$\mathbf{w}^{\top}\mathbf{x}_{A} - \mathbf{w}^{\top}\mathbf{x}_{B} = 0$$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.
$$y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$$
$$y(\mathbf{x}_A) = y(\mathbf{x}_B)$$
$$\mathbf{w}^{\top}\mathbf{x}_A + w_o = \mathbf{w}^{\top}\mathbf{x}_B + w_o$$
$$\mathbf{w}^{\top}\mathbf{x}_A = \mathbf{w}^{\top}\mathbf{x}_B$$

$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_{A} - \mathbf{w}^{\mathsf{T}}\mathbf{x}_{B} = 0$

Explaining
$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$
.

$$y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$$

$$y(\mathbf{x}_A) = y(\mathbf{x}_B)$$

$$\mathbf{w}^{\top}\mathbf{x}_{A} + w_{o} = \mathbf{w}^{\top}\mathbf{x}_{B} + w_{o}$$

$$\mathbf{w}^{\top}\mathbf{x}_{A} = \mathbf{w}^{\top}\mathbf{x}_{B}$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{A} - \mathbf{w}^{\mathsf{T}}\mathbf{x}_{B} = 0$$

$$\mathbf{w}^{\top}(\mathbf{x}_A - \mathbf{x}_B) = 0$$

• Similarly, if x is a point on the decision surface, then y(x) = 0, and so the normal distance from the origin to the decision surface is given by

$$\frac{\mathbf{w}^{\top}\mathbf{x}}{||\mathbf{w}||} = -\frac{w_o}{||\mathbf{w}||}$$

• Similarly, if x is a point on the decision surface, then y(x) = 0, and so the normal distance from the origin to the decision surface is given by

$$\frac{\mathbf{w}^{\top}\mathbf{x}}{||\mathbf{w}||} = -\frac{w_o}{||\mathbf{w}||}$$

• We therefore see that the bias parameter w_0 determines the location of the decision surface.

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$a = ||\vec{A}|| \cos \varphi \qquad (1)$$

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$a = ||\vec{A}|| \cos \varphi \qquad (1)$$

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \, ||\vec{B}|| \cos \varphi$$

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$a = ||\vec{A}|| \cos \varphi \qquad (1)$$

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \, ||\vec{B}|| \cos \varphi$$

$$\cos \varphi = \frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \, ||\vec{B}||} \qquad (2)$$

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$a = ||\vec{A}|| \cos \varphi \qquad (1)$$

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \, ||\vec{B}|| \cos \varphi$$

$$\cos \varphi = \frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \, ||\vec{B}||} \qquad (2)$$

$$a = ||\vec{A}|| \left(\frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \, ||\vec{B}||}\right)$$

$$\cos \varphi = \frac{a}{||\vec{A}||}$$

$$a = ||\vec{A}|| \cos \varphi \qquad (1)$$

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \, ||\vec{B}|| \cos \varphi$$

$$\cos \varphi = \frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| \, ||\vec{B}||} \quad (2)$$

Subst. (2) in (1)
$$a = ||\vec{A}|| \left(\frac{\vec{A} \cdot \vec{B}}{||\vec{A}|| ||\vec{B}||}\right)$$

$$= \frac{\vec{A} \cdot \vec{B}}{||\vec{B}||}$$

Consider the extension of linear discriminants to K>2 classes. There are two approaches:

Consider the extension of linear discriminants to K>2 classes. There are two approaches:

 One-versus-the-rest classifier: build a K-class discriminant by combining a number of two-class discriminant functions.
 However, this leads to some serious ambiguity difficulties.

Consider the extension of linear discriminants to K>2 classes. There are two approaches:

- One-versus-the-rest classifier: build a K-class discriminant by combining a number of two-class discriminant functions.
 However, this leads to some serious ambiguity difficulties.
- One-versus-one classifier: Introduce K(K-1)/2 binary discriminant functions, one for every possible pair of classes. Each point is then classified according to a majority vote amongst the discriminant functions. However, this too runs into the problem of ambiguous regions.

One-versus-one

One-versus-the-rest

One-versus-one

• Both result in ambiguous regions of input space.

• Consider a single K class discriminant of the form

$$y_k(x) = w_k^\top x + w_{k0}.$$

• Consider a single K class discriminant of the form

$$y_k(x) = w_k^\top x + w_{k0}.$$

• Then we can assign a point x to class C_k if

$$y_k(x) > y_j(x)$$
 for all $j \neq k$.

Consider a single K class discriminant of the form

$$y_k(x) = w_k^\top x + w_{k0}.$$

• Then we can assign a point x to class C_k if

$$y_k(x) > y_j(x)$$
 for all $j \neq k$.

 Decision regions of such a discriminant are always singly connected and convex.

• Consider two points x_A and x_B both in decision region R_k .

- Consider two points x_A and x_B both in decision region R_k .
- Any point \hat{x} on line connecting x_A and x_B can be expressed as

$$\hat{x} = \lambda x_{A} + (1 - \lambda)x_{B}$$

where $0 \le \lambda \le 1$

- Consider two points x_A and x_B both in decision region R_k.
- Any point \hat{x} on line connecting x_A and x_B can be expressed as

$$\hat{x} = \lambda x_A + (1 - \lambda) x_B$$

where $0 \le \lambda \le 1$

 From linearity of discriminant functions, it follows that

$$y_k(\hat{x}) = \lambda y_k(x_A) + (1 - \lambda)y_k(x_B).$$

• Because both x_A and x_B lie inside R_k , it follows that

$$y_k(x_A) > y_j(x_A),$$

and

$$y_k(x_B) > y_j(x_B),$$

for all $j \neq k$.

 Because both x_A and x_B lie inside R_k, it follows that

$$y_k(x_A) > y_j(x_A),$$

and

$$y_k(x_B) > y_j(x_B),$$

for all $j \neq k$.

• Hence $y_k(\hat{x}) > y_j(\hat{x})$, and so \hat{x} also lies inside R_k .

 Because both x_A and x_B lie inside R_k, it follows that

$$y_k(x_A) > y_j(x_A),$$

and

$$y_k(x_B) > y_j(x_B),$$

for all $j \neq k$.

- Hence $y_k(\hat{x}) > y_j(\hat{x})$, and so \hat{x} also lies inside R_k .
- Thus R_k is singly connected and convex.

• Decision boundaries found by least squares (magenta curve) and also by the logistic regression model (green curve).

- Decision boundaries found by least squares (magenta curve) and also by the logistic regression model (green curve).
- The right-hand plot shows that least squares (Maximum Likelihood with Gaussian assumption) is highly sensitive to outliers, unlike logistic regression.

 One way to view a linear classification model is in terms of dimensionality reduction.

- One way to view a linear classification model is in terms of dimensionality reduction.
- Consider the case of two classes, and suppose we take
 D-dimensional input vector x and project it down to one dimension using

$$y = \mathbf{w}^{\top} \mathbf{x}$$
.

- One way to view a linear classification model is in terms of dimensionality reduction.
- Consider the case of two classes, and suppose we take
 D-dimensional input vector x and project it down to one dimension using

$$y = \mathbf{w}^{\top} \mathbf{x}$$
.

• If we place a threshold on y and classify $y \ge -w_o$ as class C_1 , and otherwise class C_2 , then we obtain a standard linear classifier.

 In general, the projection onto one dimension leads to a considerable loss of information, and classes that are well separated in the original D-dimensional space may become strongly overlapping in one dimension.

 In general, the projection onto one dimension leads to a considerable loss of information, and classes that are well separated in the original D-dimensional space may become strongly overlapping in one dimension.

 In general, the projection onto one dimension leads to a considerable loss of information, and classes that are well separated in the original D-dimensional space may become strongly overlapping in one dimension.

 However, by adjusting the components of the weight vector w, we can select a projection that maximizes the class separation.

• Consider a two-class problem in which there are N_1 points of class C_1 and N_2 points of class C_2 , so that the mean vectors of the two classes are given by

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n,$$

$$\mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n.$$

• Consider a two-class problem in which there are N_1 points of class C_1 and N_2 points of class C_2 , so that the mean vectors of the two classes are given by

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n,$$

$$\mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n.$$

 The simplest measure of the separation of the classes, when projected onto w, is the separation of the projected class means.

• This suggests that we might choose **w** so as to maximize

$$m_2-m_1=\mathbf{w}^{\top}(\mathbf{m}_2-\mathbf{m}_1)$$

where

$$m_k = \mathbf{w}^{\top} \mathbf{m}_k$$

is the mean of the projected data from class C_k .

• This suggests that we might choose **w** so as to maximize

$$m_2-m_1=\mathbf{w}^{\top}(\mathbf{m}_2-\mathbf{m}_1)$$

where

$$m_k = \mathbf{w}^{\top} \mathbf{m}_k$$

is the mean of the projected data from class C_k .

 However, this expression can be made arbitrarily large simply by increasing the magnitude of w.

This suggests that we might choose w so as to maximize

$$m_2-m_1=\mathbf{w}^{\top}(\mathbf{m}_2-\mathbf{m}_1)$$

where

$$m_k = \mathbf{w}^{\top} \mathbf{m}_k$$

is the mean of the projected data from class C_k .

- However, this expression can be made arbitrarily large simply by increasing the magnitude of w.
- To solve this problem we could constrain \mathbf{w} to have unit length, so that $\sum_i w_i^2 = 1$.

 Problem with this approach: two classes that are well separated in the original two-dimensional space may have considerable overlap when projected onto the line joining their means.

- Problem with this approach: two classes that are well separated in the original two-dimensional space may have considerable overlap when projected onto the line joining their means.
- This difficulty arises from strongly nondiagonal covariances of the class distributions.

- Problem with this approach: two classes that are well separated in the original two-dimensional space may have considerable overlap when projected onto the line joining their means.
- This difficulty arises from strongly nondiagonal covariances of the class distributions.

 The idea proposed by Fisher is to maximize a function that will give a large separation between the projected class means while also giving a small variance within each class, thereby minimizing the class overlap.

- The idea proposed by Fisher is to maximize a function that will give a large separation between the projected class means while also giving a small variance within each class, thereby minimizing the class overlap.
- The projection then transforms the set of labelled data points in x into a labelled set in the one-dimensional space y.

- The idea proposed by Fisher is to maximize a function that will give a large separation between the projected class means while also giving a small variance within each class, thereby minimizing the class overlap.
- The projection then transforms the set of labelled data points in x into a labelled set in the one-dimensional space y.
- The within-class variance of the transformed data from class C_k is therefore given by

$$s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$$

where

$$y_n = \mathbf{w}^{\top} \mathbf{x}_n$$
.

• We can define the total within-class variance for the whole data set to be simply $s_1^2 + s_2^2$.

- We can define the total within-class variance for the whole data set to be simply $s_1^2 + s_2^2$.
- The Fisher criterion is defined to be the ratio of the between-class variance to the within-class variance and is given by

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}.$$

- We can define the total within-class variance for the whole data set to be simply $s_1^2 + s_2^2$.
- The Fisher criterion is defined to be the ratio of the between-class variance to the within-class variance and is given by

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}.$$

 We can make the dependence on w explicit and rewrite the Fisher criterion in the form

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

In

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

In

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

• **S**_B is the between-class covariance matrix given by

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\top}$$

In

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

 \bullet S_B is the between-class covariance matrix given by

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{ op}$$

ullet and $oldsymbol{S}_W$ is the within-class covariance matrix given by

$$\mathbf{S}_W = \sum_{n \in C_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^\top + \sum_{n \in C_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^\top.$$

In

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{W} \mathbf{w}}$$

 \bullet **S**_B is the between-class covariance matrix given by

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\top}$$

ullet and $oldsymbol{S}_W$ is the within-class covariance matrix given by

$$\mathbf{S}_W = \sum_{n \in C_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^\top + \sum_{n \in C_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^\top.$$

• Finally, by maximizing $J(\mathbf{w})$ we find that

$$\label{eq:window} \textbf{w} \propto \textbf{S}_{\textit{W}}^{-1}(\textbf{m}_2 - \textbf{m}_1).$$

 The result is known as Fisher's linear discriminant, although strictly it is not a discriminant but rather a specific choice of direction for projection of the data down to one dimension.

- The result is known as Fisher's linear discriminant, although strictly it is not a discriminant but rather a specific choice of direction for projection of the data down to one dimension.
- However, the projected data can subsequently be used to construct a discriminant, by choosing a threshold y_0 so that we classify a new point as belonging to C_1 if $y(\mathbf{x}) \geq y_0$ and classify it as belonging to C_2 otherwise.

Reference

- Andrew Ng. Machine Learning Course Notes. 2003.
- Christopher Bishop. Pattern Recognition and Machine Learning. Springer. 2006.

General View of Linear Regression Regularized Linear Regression Discriminant Functions for Classification

Thank you!