Quiz 5

Magnitude of electron charge: $e = 1.6 \times 10^{-19} \text{ C}$

Electron current: $i = nA\overline{v}$

Electron drift velocity: $\overline{v} = uE$

In the figure below, the thin resistor is made out of the same material as the connecting wires (Nichrome). You know the following information:

- The emf ε of the battery is 1.5 V
- The length L of each conducting wire is 0.5 cm
- The length L_R of the resistor is 0.1 cm
- The cross-sectional area of each conducting wire is $0.3~\mathrm{mm}^2 = 3 \times 10^{-7}~\mathrm{m}^2$
- The cross-sectional area of the resistor is $0.005~\mathrm{mm}^2 = 5 \times 10^{-9}~\mathrm{m}^2$

You also know the conductive properties of Nichrome:

Property	Value
Electron density (n)	$9 \times 10^{28} \text{ m}^{-3}$
Electron mobility (u)	$7 \times 10^{-5} \frac{\text{m/s}}{\text{N/C}}$
Charge carrier	electron

Table 1:

What is the (a) Electric field and (b) electron drift velocity inside of the thin resistor?

$$\mathcal{E} - E_{R}L_{R} - E_{z}L = 0$$

$$i_{1} = i_{R} = i_{2}$$

$$E_{1} = E_{2}$$

$$\mathcal{E}$$
 - Z E , L - E , L R = O

$$i = nAuE$$

$$nA_{i}UE_{i} = nA_{R}UE_{R}$$

$$E_{R} = \frac{A_{i}}{A_{R}}E_{i}$$

$$\mathcal{E} - 2E_{,L} - \frac{A_{1}}{A_{R}}E_{,L_{R}} = 0$$

$$\mathcal{E} - E_{,}(2L + \frac{A_{1}}{A_{R}}L_{R}) = 0$$

$$E_{,} = \frac{\mathcal{E}}{2L + \frac{A_{1}}{A_{R}}L_{R}} = 21.4 \frac{V}{m} = E_{2}$$

$$E_{,} = \frac{A_{1}}{A_{R}}E_{,} = 1285.7 \frac{V}{m}$$

$$\overline{V}_{n} = u E_{R}$$

$$= 7 \times 10^{-5} \frac{m/s}{N/c} \cdot 1285.7 = 0.09 \frac{m}{5}$$