First Order Logic

41

Limitations

- Propositional logic is not sufficiently powerful for general inference systems.
 - Cannot represent "quantifiers"
 - Cannot represent variables
 - Cannot represent functional information
 - Cannot represent uncertainty
- Next, we will consider a more expressive logic formalism—first-order logic.

First-Order Logic

- Also called Predicate Calculus
- Extend language beyond propositions
 - Constants (individuals in the world)—KingJohn, 2, MSU, ...
 - Functions (map individuals to individuals)—Sqrt, LeftLegOf, ...
 - Predicates (map individuals to truth values)—Brother, >, ==, ...
 - Variables (e.g., x, y)
 - Connectives $(\land, \lor, \neg, \Rightarrow, \Leftrightarrow)$
 - Quantifiers (universal "∀" and existential "∃")
 - Equality (i.e., =)

43

Atomic Sentences

- AtomicSentence \Leftrightarrow predicate(term₁, ..., term_n)|term₁ = term₂
- $term \Leftrightarrow function(term_1, ..., term_n)|constant|variable$
- Examples:
 - Brother(KingJohn, RichardTheLionheart)
 - GT(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex Sentences

- Made up from atomic sentences using connectives.
 - $\neg S$, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$
- Examples:
 - Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
 - GT(1,2) \(\times \text{LE(1,2)} \)
 - GT(1,2) ∧ ¬GT(1,2)

45

Truth in First-Order Logic

- Sentences are true with respect to a model and interpretation.
- Models contain objects and relations among them.
- Interpretation specifies referents for
 - constant symbols \rightarrow objects
 - $predicate symbols \rightarrow logical relations$
 - ullet function symbols o functional relations
- An atomic sentence $predicate(term_1,...,term_n)$ is true iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate.

Quantifiers

- Universals are like conjunction
 - $\forall x P(x)$ means P holds for all values x
 - · Usually used with implication
- Existentials are like disjunction
 - $\exists x P(x)$ means P holds for some value x
 - · Usually used with conjunction
- Switching the order of like quantifiers does not change meaning.
- Switching the order of different quantifiers does.

47

Universal Quantification

- ∀⟨variables⟩ ⟨sentence⟩
- Everyone at MSU is smart.
 - $\forall x \, At(x, MSU) \Rightarrow Smart(x)$
- Remember, $\forall x P(x)$ is equivalent to the conjunction of *all* instantiations of P(x).
 - At(KingJohn,MSU) ⇒ Smart(KingJohn) ∧ At(Richard,MSU) ⇒ Smart(Richard) ∧
 At(KingJohn,MSU) ⇒ Smart(MSU) ∧ ...
- Typically, \Rightarrow is the main connective with \forall .
- Common mistake: using \wedge as the main connective with \forall :
 - $\forall x \ At(x, MSU) \land Smart(x)$ means "everyone is at MSU and everyone is smart."
 - This is not the same!

Existential Quantification

- ∃⟨variables⟩ ⟨sentence⟩
- Someone at UM is smart.
 - $\exists x \ At(x,UM) \land Smart(x)$
- Remember, $\exists x \ P(x)$ is equivalent to the disjunction of instantiations of P(x).
 - At(KingJohn,UM) ∧ Smart(KingJohn) ∨ At(Richard,UM) ∧ Smart(Richard) ∨
 At(KingJohn,UM) ∧ Smart(UM) ∨ ...
- Typically, \wedge is the main connective with \exists .
- Common mistake: using \Rightarrow as the main connective with \exists :
 - ∃x At(x,UM) ⇒ Smart(x) means "if there is some person at UM, then that person is smart."
 - This is not the same!

49

Properties of Quantifiers

- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x.$
- $\exists x \exists y \text{ is the same as } \exists y \exists x.$
- $\exists x \ \forall y \text{ is } not \text{ the same as } \forall y \ \exists x.$
 - $\exists x \ \forall y \ Loves(x,y)$ means "There is a person who loves everyone in the world."
 - $\forall y \exists x \ Loves(x,y)$ means "Everyone in the world is loved by at least one person."
- Duality of Quantifiers (express each as the other)
 - $\forall x \ Likes(x, IceCream) \equiv \neg \exists x \neg Likes(x, IceCream)$
 - $\exists x \ Likes(x, Broccoli) \equiv \neg \forall x \neg Likes(x, Broccoli)$

