COMP-273
Input/Output:
Assignment Project Exam Help
Polling and Interrupts
https://powcoder.com

Ada Wecha Storoger

Outline

- ° I/O Background
- ° Polling
- ° Interruptsgnment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Anatomy: 5 components of any Computer

Motivation for Input/Output

- I/O is how humans interact with computers
- I/O gives computers long-term memory.

Assignment Project Exam Help

I/O lets computers do amazing things:

- · Read pressure of synthetic hand and control synthetic arm and hand of fireman
 Add WeChat powcoder
 Display complex medical data
- Computer without I/O like a car without wheels; great technology, but won't get you anywhere

I/O Device Examples and Speeds

° I/O Speed: bytes transferred per second

° Device	Behavior	Partner	Data Rate (KBytes/s)
Keyboard Assign	ment Projec	t Fram Help	0.01
Mouse ht	tps m/pow cod	ler l-tum an	0.02
Voice output A	da Weehat p Storage	Human	5.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Network-LAN	I or O	Machine	10,000.00
Graphics Display	Output	Human	30,000.00

What do we need to make I/O work?

A way to connect many types of devices to the *Files* **APIs** Proc-Mem **Operating System** A way to control these am devices, respond to Mem them, and transfer dataon A way to present them oder PCI Bus to user programs so they are useful **SCSI Bus** cmd reg. data reg

Current Bus Speeds

- PCI (Peripheral Component Interconnect) bus: PCI bus was created by Intel in 1993. PCI bus can transfer 32 or 64 bits at one time. PCI bus ran originally at 33 Mhz, with a data transfer of 250 Mbyte/s. PCI Express is used with modern graphics processor cards at 1 GByte/s (or more), also network cards.
- SCSI (Small Computer System Interface) bus: It is a high performance 16-bibble which was used for fast disks, scanners, and for devices which require high bandwidth. It has a data rate of 640 MByte/s. https://powcoder.com
- OUSB (Universal Serial Bus), a single bit bus: It is used for connecting keyboa Addo Mse and protest and either USB devices such as wireless network adapters to the computer. A USB bus has a connector with four wires. Two wires are used for supplying electrical power to the USB devices. USB 1.0 had a data rate of 1½ MByte/s and USB 2.0 has a data rate of 60 MByte/s. There is now a USB 3.0, that can travel at 640 MByte/s.
- [°] **IEEE 1394 or FireWire:** IEEE 1394 is used for high speed data transfer. It was built by Apple, **though Apple have moved away from it**. It can transfer data at a rate of up to 400 MByte/s. It is a single bit serial bus which is used for connecting cameras, and other multimedia devices.

COMP-273

Instruction Set Architecture for I/O

- What must the processor do for I/O?
 - Input: reads a sequence of bytes
 - Output: writes a sequence of bytes
- Some processors have special input and output instructions
 https://powcoder.com

- Alternative model (used by MIPS):
 - Use loads for input, stores for output
 - Called "Memory Mapped Input/Output"
 - A portion of the address space dedicated to communication paths to Input or Output devices (no memory there)

Memory Mapped I/O (Polling)

- ° Certain addresses are not regular memory
- Instead, they correspond to registers in I/O devices ent Project Exam Help

Processor-I/O Speed Mismatch

- ° 1GHz microprocessor can execute 1 billion load or store instructions per second, or 4,000,000 KB/s data rate
 - I/O devices data rates range from 0.01 KB/s to 30,000 Repignment Project Exam Help
- on Input: device may not be ready to send data as fast as the processor loads it
 - Also, might be waiting for human to act
- Output: device may not be ready to accept data as fast as processor stores it
- $^{\circ}~$ What to do?

Processor Checks Status before Acting

- Path to device generally has 2 registers:
 - Control Register, says it's OK to read/write (I/O ready)
 - Data Register, contains data Assignment Project Exam Help
- Processor reads from Control Register in loop, waiting for device to set *Ready* bit in Control regations of the control regations of the control regations of the control regation of the control reg
- Processor then loads from (input) or writes to (output) data register
 - Load from or Store into Data Register resets Ready bit (1 ⇒ 0) of Control Register

MARS I/O Simulation

- MARS simulates 1 I/O device: memory-mapped terminal (keyboard + display)
 - Read from keyboard (<u>receiver</u>); 2 device regs
 - Writes to terminal (transmitter); 2 device regs Assignment Project Exam Help

SPIM I/O

- Control register rightmost bit (0): Ready
 - Receiver: Ready==1 means character in Data Register not yet been read;
 - 1 ⇒ 0 when data is read from Data Reg
 - Transmittem Readyjee 1 Imeahs pransmitter is ready to accept a new character;
 0 ⇒ Transmitter stiff busy writing last char
 - I.E. bit disdussedhatenowcoder
- ° Data register rightmost byte has data
 - Receiver: last char from keyboard; rest = 0
 - Transmitter: when write rightmost byte, writes char to display

I/O Example

Input: Read from keyboard into \$v0

Output: Write to display from \$a0

Add WeChat powcoder

```
lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 8($t0) #control
andi$t1,$t1,0x0001
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data
```

Processor waiting for I/O called "Polling"

Cost of Polling?

- The following example used dated estimates, but it conveys the general idea. Assume for a processor with a 1GHz clock it takes 400 clock cycles for a polling operation (call polling routine, accessing the device, and returning). Determine % of processor time used for polling
 - · Mouse: Poine 30 times see so as not to miss user movement/powcoder.com
 - Floppy disk: transfers data in 2-Byte units and has a data rate of 50 KB/second. No data transfer can be missed.
 - Hard disk: transfers data in 16-Byte chunks and can transfer at 16 MB/second. Again, no transfer can be missed.

% Processor time to poll mouse, floppy

- ° Mouse Polling, Clocks/sec
 - = 30 * 400 = 12000 clocks/sec
- ° % Processor for polling:
 - $12*10^3/1*10^9 = 0.0012\%$
 - ⇒ Polling mouse little impact on processor
- ° Frequency of the line of the policy of the
 - = 50 KB/s /2 B. dd 25 We poblisy seconder
- ° Floppy Polling, Clocks/sec
 - = 25K * 400 = 10,000,000 clocks/sec
- ° % Processor for polling:
 - $10*10^6/1*10^9 = 1\%$
 - ⇒ OK if not too many I/O devices

% Processor time to hard disk

- * Frequency of Polling Disk
 - = 16 MB/s / 16B = 1M polls/sec
- ° Disk Polling, Clocks/sec
 - = 1M * 400 = 400,000,000 = 10 ks/sec
- ° % Processor for politing.
 - 400*106/1*10th | We hat powcoder
 - ⇒ Unacceptable

What is the alternative to polling?

- Wasteful to have processor spend most of its time "spin-waiting" for I/O to be ready
- Would Aikienamumplanmed Iprocedure call that would be invoked only when I/O device is ready coder.com
- Solution: use exception mechanism to help I/O. Interrupt program when I/O ready, return when done with data transfer

I/O Interrupt

- ° An I/O interrupt is like overflow exceptions except:
 - An I/O interrupt is "asynchronous"
 - More information needs to be conveyed
- * An I/O interruptpis asynchronous with respect to instruction execution:

 Add WeChat powcoder

 I/O interrupt is not associated with any
 - I/O interrupt is not associated with any instruction, but it can happen in the middle of any given instruction
 - I/O interrupt does not prevent any instruction from completion

Definitions for Clarification

- Exception: signal marking that something "out of the ordinary" has happened and needs to be handled
- ° Interruptsigasynchronous Expeption
- ° Trap: synethromous exception

Add WeChat powcoder

Interrupt Driven Data Transfer

Instruction Set Support for I/O Interrupt

- $^{\circ}\,$ Save the PC for return
 - But where?
- ° Where to go when interrupt occurs?
 - · MIPS defines 10 Carriert: Fox 8000000000
- ° Determine cause of interrupt?
 - MIPS has Cause Register, 4-bit field (bits 5 to 2) gives cause of exception

Instruction Set Support for I/O Interrupt

- ° Portion of MIPS architecture for interrupts called "coprocessor 0"
- ° Coprocessor 0 Instructions
 - Data transfer: Iwc0, swc0
 - · Move: mfc0, mfc0vcoder.com
- ° Coprocessor 0 Registers:

name	number	usage
Status	\$12	Interrupt enable
Cause	\$13	Exception type
EPC	\$14	Return address

(details in appendix A.7)

SPIM I/O Simulation: Interrupt Driven I/O

- I.E. stands for <u>Interrupt Enable</u>
- Set Interrupt Enable bit to 1 have interrupt occur whenever Ready bit is set

Benefit of Interrupt-Driven I/O

- Find the % of processor consumed if the hard disk is only active 5% of the time. Assuming 500 clock cycle overhead for each transfer, including interrupt:
 Assignment Project Exam Help
 - Disk Interrupts/sec = 16 MB/s /16B = 1M interrupts/sec
 - Disk Interrupts, Clocks/sec = 1M * 500 = 500,000,000 clocks/sec
 - % Processor for during transfer: 500*10⁶/1*10⁹= 50%
- Disk active $5\% \Rightarrow 5\% * 50\% \Rightarrow 2.5\%$ busy

Questions Raised about Interrupts

- ° Which I/O device caused exception?
 - Needs to convey the identity of the device generating the interrupt
- ° Can avoidignterruptstelumingsthe interrupt routine?

 https://powcoder.com
 - What if more important interrupt occurs while serviced distinctions?
 - Allow interrupt routine to be entered again?
- Who keeps track of status of all the devices, handle errors, know where to put/supply the I/O data?

4 Responsibilities leading to OS

- The I/O system is shared by multiple programs using the processor
- Low-level control of I/O device is complex because requires managing a set of concurrent events and because requirements for correct device control are often very detailed Add WeChat powcoder

- I/O systems often use interrupts to communicate information about I/O operations
- Would like I/O services for all user programs under safe control

4 Functions OS must provide

- OS: guarantees that user's program accesses only the portions of I/O device to which user has rights (e.g., file access)
- provides abstractions for accessing devices by supplying routines that handle low-level device operations https://powcoder.com
- handles the exceptions generated by I/O devices (and arithmetic exceptions generated by a program)
- ° tries to provide equitable access to the shared I/O resources, as well as schedule accesses to enhance system performance

Things to Remember

- ° I/O gives computers their 5 senses
- ° I/O speed range is a few million to one
- ° Processor speed means must synchronize with I/O devices before use
- ° Polling works, but expensive
 - processor repeatedly queries devices Add WeChat powcoder
- Interrupts works, more complex
 - devices causes an exception, causing OS to run and deal with the device
- ° I/O control leads to Operating Systems