

Department of ECE, Bennett University

EECE105L: Fundamentals of Electrical and Electronics Engineering

Tutorial Sheet-13

Topics Covered: Diode Circuits

If not mentioned, assume non-ideality factor (η) as 1.5, reverse saturation current I₀ as 5 nA.

- 1. A PN junction diode is in series with a 100 k Ω resistor and 3.5 V supply. If the diode is forward biased, determine the current through the diode and voltage across the diode. Given that the reverse saturation voltage is 5 nA and built-in voltage of diode is 0.6 V.
- 2. For the diode circuit shown in Fig. 1, $V_S = 2$ V. The silicon diode has a reverse saturation current of 1 nA at 300 K. Given that V = 0.7 V. Find
 - i) R_2 when $R_1 = 1 \text{ k}\Omega$ and ii) R_1 when $R_2 = 1 \text{ k}\Omega$

- 3. For the diode circuit shown in Fig. 2, $V_S = 6 \text{ V}$ and have a reverse saturation current of 1 nA at 300 K. Answer the following questions:
 - i) Find R_2 when $R_1 = 10 \text{ k}\Omega$ and $V_1 = 0.66 \text{ V}$
 - ii) Find R_1 when R_2 = 100 Ω and V_2 = 0.66 V
 - iii) Find R_1 and R_2 when $V_1 = 0.68$ V and $V_2 = 0.66$ V.

4. For the diode circuit shown in Fig. 3 D_1 and D_2 are silicon diodes having saturation currents of 5 nA and 10 nA respectively, at 300 K. Given that both the diodes are forward biased. Find the values of R for which the current is 15 mA.

- 5. For the ideal diode circuit shown in Fig. 4, let R_f = $1k\Omega$ and R = $9~k\Omega$. Find the output voltage V_0 when,
 - i) $V_1 = V_2 = 0 V$
 - ii) $V_1 = 10 \text{ V}, V_2 = 0 \text{ V}$
 - iii) $V_1 = V_2 = 10 \text{ V}$

6. Consider the circuit shown in fig. 5. Determine the current through diode and voltage across the diode. Assume that the cut-in voltage of diode is 0.6 V.

7. The reverse saturation current of each diode in fig. 6 is 2×10^{-10} A. Determine the input voltage required to produce an output voltage of 0.60 V.

- 8. Assume that each diode in circuit shown in fig. 7 has a cut-in voltage of 0.65 V.
 - i) If the input voltage is V_1 = 5V, determine the value of R_1 such that I_{D1} is one-half of I_{D2} . What are the values of I_{D1} and I_{D2} ?
 - ii) If V_I = 8V and R_1 = 2 $k\Omega$, determine I_{D1} and I_{D2} .

9. In the circuit shown in fig. 8, find the diode voltage V_D and the supply voltage V such that the current $I_D = 0.4$ mA. Assume cut-in voltage is 0.7V. What is the power dissipated by the diode?

----- END OF QUESTIONS -----

Answers:

- 1) $V_D = 0.6 \text{ V}, I_D = 29 \mu\text{A}$
- 2) i) $R_2 = 538 \Omega$, ii) $R_1 = 1.68 k\Omega$
- 3) i) $R_2 = 110 \Omega$, ii) $R_1 = 8.82 \text{ k}\Omega$ iii) $R_1 = 62 \Omega$, $R_2 = 11 \text{ k}\Omega$
- 4) $R = 350 \Omega$
- 5) i) $V_O = 0 \text{ V}$ ii) $V_O = 8.46 \text{ V}$ iii) $V_O = 8.91 \text{ V}$

- 6) $I_D = 0 A$, $V_D = -0.5 V$
- 7) V_I = 1.378 V
- 8) i) I_{D1} = 0.65 mA, I_{D2} = 1.3 mA, R_1 = 2.35 k Ω i) I_{D1} = 2.375 mA, I_{D2} = 3.025 mA
- 9) V = 2.42 V, P = 0.28 mW