

FCC PART 15.247 TEST REPORT

For

Hangzhou Tuya Information Technology Co., Ltd

Room701, Building3, More Center, No.87 GuDun Road, Hangzhou, Zhejiang, China

FCC ID: 2ANDL-WR2E

Report Type: Original Report		Product Type: Wi-Fi Module
Test Engineer:	Max Min	Max Min
Report Number:	RSHD19022500	01-00A
Report Date:	2019-04-24	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	11
TEST EQUIPMENT LIST	12
FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	13
FCC §15.203 - ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	14
Antenna Connector Construction	
FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	15 16
TEST RESULTS SUMMARY	
Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	19
APPLICABLE STANDARD	19
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	20
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH	45
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	53
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
I E O I DATA	

Bay Area	Compliance	Laboratories	Corp.	(Kunshan)
----------	------------	--------------	-------	-----------

Report No.: RSHD190225001-00A

FCC §15.247(e) - POWER SPECTRAL DENSITY	60
APPLICABLE STANDARD	60
TEST PROCEDURE	
TEST DATA	60

FCC Part 15.247 Page 3 of 67

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Hangzhou Tuya Information Technology Co., Ltd		
Tested Model:	WR2E		
Product Type:	Wi-Fi Module		
Dimension:	18mm(L)*15mm(W)*3.3 mm(H)		
Power Supply:	DC 3.3V		
Type of Modulation:	DSSS,OFDM		

Report No.: RSHD190225001-00A

Objective

This report is prepared on behalf of Hangzhou Tuya Information Technology Co., Ltd in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communications Commission rules.

The tests were performed in order to determine Compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal/grant.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC 558074 D01 15.247 Meas Guidance v05r01.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 67

^{*}All measurement and test data in this report was gathered from production sample serial number: 20190225001. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-02-25.

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19dB
RF conducto	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
D. I. e. I	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Оссир	pied Bandwidth	0.5kHz
Temperature		1.0℃
Humidity		6%

Report No.: RSHD190225001-00A

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 67

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Test channel list is as below:

For 802.11b, 802.11g and 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11;

For 802.11n-HT40 mode, EUT was tested with Channel 3, 6 and 9.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RSHD190225001-00A

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

RF test tool: UI_mptool.exe

Pre-scan with all the data rates, and the worst case was performed as below:

Mode	Data Rate	Power Level
802.11b	1 Mbps	46
802.11g	6 Mbps	53
802.11n-HT20	MCS0	50
802.11n-HT40	MCS0	48

FCC Part 15.247 Page 6 of 67

Duty Cycle:

802.11b Mode Middle Channel

Report No.: RSHD190225001-00A

802.11g Mode Middle Channel

FCC Part 15.247 Page 7 of 67

802.11n-HT20 Mode Middle Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode Middle Channel

FCC Part 15.247 Page 8 of 67

Mode	Duty Cycle (%)	T(ms)	1/T(kHz)	10log(1/x)
802.11b	100	/	/	0
802.11g	100	/	/	0
802.11n-HT20	100	/	/	0
802.11n-HT40	100	/	/	0

Note: "x" means the Duty Cycle.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Notebook	GX620	D65874152
DELL	Adapter	LA65NS0-00	DF263
TELINK	Debug Board	/	/

External I/O Cable

Cable Description	Shielding Type	Length (m)	From Port	То
Data Cable	Un-shielding	0.1	Debug Board	EUT

Block Diagram of Test Setup

For Conducted Emissions:

FCC Part 15.247 Page 9 of 67

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.247 Page 10 of 67

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.247(d)	Spurious Emissions at Antenna Port	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Report No.: RSHD190225001-00A

FCC Part 15.247 Page 11 of 67

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Radiated Em	nission Test (Chan			
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-30	2019-11-29
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25
Sonoma Instrument	Pre-amplifier	310N	171205	2018-08-14	2019-08-13
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14
	Radiated Em	nission Test (Chan	nber 2#)		
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26
ETS-LINDGREN	Horn Antenna	3115	9207-3900	2017-07-15	2020-07-14
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-12-12	2019-12-11
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19
EM Electronics Corporation	Amplifier	EM18G40G	060726	2019-03-22	2020-03-21
MICRO-TRONICS	Band Reject Filter	BRM50702	G024	2018-08-05	2019-08-04
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14
	R	F Conducted Test			
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2018-11-30	2019-11-29
Agilent	Power Meter	N1912A	MY5000492	2018-11-18	2019-11-17
Agilent	Power Sensor	N1921A	MY54210024	2018-11-18	2019-11-17
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14
Hangzhou Tuya	RF Cable	TuyaC01	C01	Each Time	/
	Cond	lucted Emission Te	est		
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2018-11-30	2019-11-29
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29
BACL	Auto test Software	BACL-EMC	CE001	N/A	N/A
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14

Report No.: RSHD190225001-00A

FCC Part 15.247 Page 12 of 67

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHD190225001-00A

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure											
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)							
0.3-1.34	614	1.63	*(100)	30							
1.34-30	824/f	2.19/f	*(180/f²)	30							
30-300	27.5	0.073	0.2	30							
300-1500	/	/	f/1500	30							
1500-100,000	/	/	1.0	30							

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range	Antenna Gain		Target Output Power		Evaluation Distance	Power Density	MPE Limit	
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)	
802.11b		2.5	1.78	20.50	112.20	20	0.0397	1.0	
802.11g	2412~2462	2.5	1.78	24.00	251.19	20	0.0889	1.0	
802.11 n-HT20		2.5	1.78	24.50	281.84	20	0.0998	1.0	
802.11 n-HT40	2422~2452	2.5	1.78	24.00	251.19	20	0.0889	1.0	

Note: The target output power was declared by the manufacturer.

Conclusion: The EUT meets exemption requirement - RF exposure evaluation greater than 20cm distance specified in § 2.1091. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by § 2.1093.

FCC Part 15.247 Page 13 of 67

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSHD190225001-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a PCB antenna for Wi-Fi and the antenna gain is 2.5 dBi, which was permanently attached, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC Part 15.247 Page 14 of 67

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RSHD190225001-00A

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 15 of 67

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

Report No.: RSHD190225001-00A

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	20.2 ℃
Relative Humidity:	51 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-03-30

EUT operation mode: Transmitting in 802.11n-HT20 mode Low channel (worst case)

FCC Part 15.247 Page 16 of 67

AC 120V/60 Hz, Line

Report No.: RSHD190225001-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.160	46.48	QP	9.000	L	16.05	65.46	18.98	Compliant
0.160	23.39	AV	9.000	L	16.05	55.46	32.07	Compliant
0.415	30.04	QP	9.000	L	16.06	57.55	27.51	Compliant
0.415	27.76	AV	9.000	L	16.06	47.55	19.79	Compliant
0.875	23.86	QP	9.000	L	15.91	56.00	32.14	Compliant
0.875	19.85	AV	9.000	L	15.91	46.00	26.15	Compliant
1.700	27.45	QP	9.000	L	15.86	56.00	28.55	Compliant
1.700	21.58	AV	9.000	L	15.86	46.00	24.42	Compliant
4.200	22.25	QP	9.000	L	15.85	56.00	33.75	Compliant
4.200	16.37	AV	9.000	L	15.85	46.00	29.63	Compliant
18.600	19.61	QP	9.000	L	16.38	60.00	40.39	Compliant
18.600	14.69	AV	9.000	L	16.37	50.00	35.31	Compliant

FCC Part 15.247 Page 17 of 67

AC 120V/60 Hz, Neutral

Report No.: RSHD190225001-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.150	47.67	QP	9.000	N	16.06	66.00	18.33	Compliant
0.150	24.31	AV	9.000	N	16.06	56.00	31.69	Compliant
0.460	29.09	QP	9.000	N	16.10	56.69	27.60	Compliant
0.460	20.71	AV	9.000	N	16.10	46.69	25.98	Compliant
1.250	28.58	QP	9.000	N	15.93	56.00	27.42	Compliant
1.250	21.18	AV	9.000	N	15.93	46.00	24.82	Compliant
2.650	28.89	QP	9.000	N	15.90	56.00	27.11	Compliant
2.650	20.65	AV	9.000	N	15.90	46.00	25.35	Compliant
5.200	25.45	QP	9.000	N	15.88	60.00	34.55	Compliant
5.200	18.99	AV	9.000	N	15.88	50.00	31.01	Compliant
18.350	23.89	QP	9.000	N	16.11	60.00	36.11	Compliant
18.350	17.22	AV	9.000	N	16.11	50.00	32.78	Compliant

1) Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB) 2) Margin (dB) = Limit (dBµV) - Corrected Amplitude (dBµV)

FCC Part 15.247 Page 18 of 67

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Report No.: RSHD190225001-00A

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

FCC Part 15.247 Page 19 of 67

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

Report No.: RSHD190225001-00A

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1CHr	1MHz	3 MHz	/	PK
Above 1GHz	1MHz	3 MHz	/	Ave.

Test Procedure

According to ANSI C63.10-2013 clause 6.5, 6.6 and 6.7.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30MHz - 1GHz, peak and Average detection mode for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 20 of 67

Test Data

Environmental Conditions

Temperature:	21.6-24.2 ℃
Relative Humidity:	48-50 %
ATM Pressure:	100.3-101.2kPa

The testing was performed by Max Min from 2019-03-20 to 2019-04-22.

EUT operation mode: Transmitting

Spurious Emission Test:

30MHz-1GHz:

Pre-scan with 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40 modes of operation in the X,Y and Z axes of orientation, the worst case Low channel of 802.11n-HT20 mode in X-axis of orientation was recorded

Report No.: RSHD190225001-00A

Frequency	Corrected Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin	
(MHz)	QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)	
66.996800	17.76	101.0	V	39.0	-17.5	40.00	22.24	
170.422250	21.92	101.0	V	318.0	-13.2	43.50	21.58	
175.335400	20.86	101.0	V	2.0	-13.4	43.50	22.64	
200.211100	10.27	199.0	Н	68.0	-12.3	43.50	33.23	
344.424200	20.32	101.0	Н	70.0	-9.5	46.00	25.68	
376.807250	18.79	101.0	V	18.0	-8.6	46.00	27.21	

FCC Part 15.247 Page 21 of 67

1GHz-18GHz:

802.11b Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V /m)

Low Channel: 2412MHz

Report No.: RSHD190225001-00A

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000		25.99	100.0	V	210.0	-9.6	54.00	28.01
1595.000000	35.24		100.0	V	210.0	-9.6	74.00	38.76
3247.400000		28.65	200.0	V	239.0	-4.0	54.00	25.35
3247.400000	38.96		200.0	V	239.0	-4.0	74.00	35.04
4824.000000		38.57	100.0	Н	185.0	-0.5	54.00	15.43
4824.000000	48.64		100.0	Н	185.0	-0.5	74.00	25.36
7236.000000		45.90	150.0	Н	171.0	5.7	54.00	8.10
7236.000000	50.63		150.0	Н	171.0	5.7	74.00	23.37
9972.600000		38.54	100.0	V	304.0	8.2	54.00	15.46
9972.600000	49.52		100.0	V	304.0	8.2	74.00	24.48
17575.000000		45.04	100.0	Н	171.0	14.2	54.00	8.96
17575.000000	54.92		100.0	Н	171.0	14.2	74.00	19.08

FCC Part 15.247 Page 22 of 67

Middle Channel: 2437MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1591.600000	36.26		150.0	V	217.0	-9.6	74.00	37.74
1591.600000		27.00	150.0	V	217.0	-9.6	54.00	27.00
3213.400000	39.70		100.0	V	203.0	-4.0	74.00	34.30
3213.400000		29.36	100.0	V	203.0	-4.0	54.00	24.64
4874.000000	43.25		150.0	Н	186.0	-0.5	74.00	30.75
4874.000000		34.63	150.0	Н	186.0	-0.5	54.00	19.37
7311.000000	47.59		100.0	Н	21.0	5.8	74.00	26.41
7311.000000		42.77	100.0	Н	21.0	5.8	54.00	11.23
9751.600000		36.82	100.0	Н	312.0	7.9	54.00	17.18
9751.600000	47.98		100.0	Н	312.0	7.9	74.00	26.02
17615.800000		43.40	200.0	V	358.0	14.1	54.00	10.60
17615.800000	53.99		200.0	V	358.0	14.1	74.00	20.01

FCC Part 15.247 Page 23 of 67

High Channel: 2462MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1615.400000		28.44	100.0	V	117.0	-9.5	54.00	25.56
1615.400000	36.30		100.0	V	117.0	-9.5	74.00	37.70
3437.800000		30.39	150.0	V	146.0	-3.6	54.00	23.61
3437.800000	40.24		150.0	V	146.0	-3.6	74.00	33.76
4924.000000		33.77	200.0	V	245.0	-0.4	54.00	20.23
4924.000000	42.19		200.0	V	245.0	-0.4	74.00	31.81
7386.000000		42.64	100.0	Н	166.0	5.9	54.00	11.36
7386.000000	48.11		100.0	Н	166.0	5.9	74.00	25.89
9843.400000		38.04	150.0	V	303.0	8.0	54.00	15.96
9843.400000	46.29		150.0	V	303.0	8.0	74.00	27.71
17479.800000		43.38	100.0	Н	93.0	14.2	54.00	10.62
17479.800000	53.54		100.0	Н	93.0	14.2	74.00	20.46

FCC Part 15.247 Page 24 of 67

802.11g Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V /m)

Low Channel: 2412MHz

Report No.: RSHD190225001-00A

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1591.600000		27.06	150.0	V	224.0	-9.6	54.00	26.94
1591.600000	36.60		150.0	V	224.0	-9.6	74.00	37.40
3070.600000		29.75	100.0	V	196.0	-4.3	54.00	24.25
3070.600000	39.74		100.0	V	196.0	-4.3	74.00	34.26
4824.000000		32.71	200.0	Н	166.0	-0.5	54.00	21.29
4824.000000	41.76		200.0	Н	166.0	-0.5	74.00	32.24
7236.000000		39.40	100.0	Н	166.0	5.7	54.00	14.60
7236.000000	50.31		100.0	Н	166.0	5.7	74.00	23.69
9632.600000		37.07	150.0	V	254.0	7.8	54.00	16.93
9632.600000	47.54		150.0	V	254.0	7.8	74.00	26.46
17466.200000		44.06	100.0	Н	236.0	14.1	54.00	9.94
17466.200000	53.94		100.0	Н	236.0	14.1	74.00	20.06

FCC Part 15.247 Page 25 of 67

Middle Channel: 2437MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1676.600000	37.43		100.0	V	311.0	-9.3	74.00	36.57
1676.600000		23.90	100.0	V	311.0	-9.3	54.00	30.10
3407.200000	40.08		200.0	Н	43.0	-3.7	74.00	33.92
3407.200000		29.47	200.0	Н	43.0	-3.7	54.00	24.53
4874.000000		31.61	100.0	Н	99.0	-0.5	54.00	22.39
4874.000000	42.26		100.0	Н	99.0	-0.5	74.00	31.74
7311.000000		40.17	150.0	Н	84.0	5.8	54.00	13.83
7311.000000	49.25		150.0	Н	84.0	5.8	74.00	24.75
9744.800000		37.65	100.0	V	55.0	7.9	54.00	16.35
9744.800000	46.16		100.0	V	55.0	7.9	74.00	27.84
17493.400000		44.03	100.0	Н	262.0	14.2	54.00	9.97
17493.400000	53.09		100.0	Н	262.0	14.2	74.00	20.91

FCC Part 15.247 Page 26 of 67

High Channel: 2462MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000		25.79	200.0	V	206.0	-9.6	54.00	28.21
1595.000000	34.72		200.0	V	206.0	-9.6	74.00	39.28
3077.400000		28.95	100.0	Н	2.0	-4.2	54.00	25.05
3077.400000	38.76		100.0	Н	2.0	-4.2	74.00	35.24
4924.000000		32.40	150.0	Н	83.0	-0.4	54.00	21.60
4924.000000	41.91		150.0	Н	83.0	-0.4	74.00	32.09
7386.000000		40.40	100.0	Н	154.0	5.9	54.00	13.60
7386.000000	50.64		100.0	Н	154.0	5.9	74.00	23.36
9853.600000		38.72	200.0	V	304.0	8.1	54.00	15.28
9853.600000	48.76		200.0	V	304.0	8.1	74.00	25.24
17571.600000		44.02	100.0	Н	41.0	14.2	54.00	9.98
17571.600000	54.29		100.0	Н	41.0	14.2	74.00	19.71

FCC Part 15.247 Page 27 of 67

802.11n-HT20 Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) Corrected Amplitude (dBμV/m)

Low Channel: 2412MHz

Report No.: RSHD190225001-00A

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1771.800000		24.43	100.0	V	181.0	-9.0	54.00	29.57
1771.800000	33.88		100.0	V	181.0	-9.0	74.00	40.12
3070.600000		31.12	200.0	V	166.0	-4.3	54.00	22.88
3070.600000	39.44		200.0	V	166.0	-4.3	74.00	34.56
4824.000000		33.22	100.0	V	237.0	-0.5	54.00	20.78
4824.000000	43.25		100.0	V	237.0	-0.5	74.00	30.75
7236.000000		37.40	150.0	V	293.0	5.7	54.00	16.60
7236.000000	46.56		150.0	Н	293.0	5.7	74.00	27.44
9642.800000		37.48	100.0	Н	18.0	7.8	54.00	16.52
9642.800000	46.41		100.0	Н	18.0	7.8	74.00	27.59
17524.000000		44.33	200.0	Н	0.0	14.2	54.00	9.67
17524.000000	54.62		200.0	Н	0.0	14.2	74.00	19.38

FCC Part 15.247 Page 28 of 67

Middle Channel: 2437MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000	35.51		100.0	V	208.0	-9.6	74.00	38.49
1595.000000		25.52	100.0	V	208.0	-9.6	54.00	28.48
3070.600000	39.82		150.0	V	166.0	-4.3	74.00	34.18
3070.600000		30.58	150.0	V	166.0	-4.3	54.00	23.42
4874.000000		31.31	100.0	Н	212.0	-0.4	54.00	22.69
4874.000000	41.71		100.0	Н	212.0	-0.4	74.00	32.29
7311.000000		38.75	200.0	Н	35.0	5.8	54.00	15.25
7311.000000	48.12		200.0	Н	35.0	5.8	74.00	25.88
9744.800000		36.91	100.0	Н	102.0	7.9	54.00	17.09
9744.800000	46.30		100.0	Н	102.0	7.9	74.00	27.70
17564.800000	54.06		150.0	Н	198.0	14.2	74.00	19.94
17564.800000		45.18	150.0	Н	198.0	14.2	54.00	8.82

FCC Part 15.247 Page 29 of 67

High Channel : 2462MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1754.800000	34.11		200.0	V	353.0	-9.1	74.00	39.89
1754.800000		25.43	200.0	V	353.0	-9.1	54.00	28.57
2985.600000	39.08		100.0	V	180.0	-4.5	74.00	34.92
2985.600000		29.46	100.0	V	180.0	-4.5	54.00	24.54
4924.000000	40.88		150.0	Н	1.0	-0.4	74.00	33.12
4924.000000		31.59	150.0	Н	1.0	-0.4	54.00	22.41
7386.000000	48.58		100.0	Н	174.0	6.0	74.00	25.42
7386.000000		38.04	100.0	Н	174.0	6.0	54.00	15.96
9843.400000	46.99		150.0	V	180.0	8.0	74.00	27.01
9843.400000		37.53	150.0	V	180.0	8.0	54.00	16.47
17554.600000		43.42	100.0	V	264.0	14.2	54.00	10.58
17554.600000	54.17		100.0	V	264.0	14.2	74.00	19.83

FCC Part 15.247 Page 30 of 67

802.11n-HT40 Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.5 GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude ($dB\mu V/m$) = Corrected Factor (dB/m) + Reading ($dB\mu V$) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Low Channel: 2422MHz

Full Spectrum

Report No.: RSHD190225001-00A

80	Fundame	ntal Test w	ith note	h filte	r				
60									*
Level in dB u	· la de di sangli de la sangli	and the same of th	*	ا المساورة المارية	ا المواندين ايد. المواندين الموادين		***		
20	was a subject to the subject tof the subject to the subject to the subject to the subject to the	مسينيسيا أبيهميم							
- 0									
1G	2	<u> </u>	G 40	G 50	G 6	3	8	10G	180

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1792.200000		24.07	100.0	V	0.0	-8.9	54.00	29.93
1792.200000	34.39		100.0	V	0.0	-8.9	74.00	39.61
3070.600000		29.71	150.0	V	358.0	-4.3	54.00	24.29
3070.600000	39.03		150.0	V	358.0	-4.3	74.00	34.97
4844.000000		31.26	100.0	V	304.0	-0.4	54.00	22.74
4844.000000	40.33		100.0	V	304.0	-0.4	74.00	33.67
7266.000000		36.95	200.0	V	276.0	5.9	54.00	17.05
7266.000000	45.69		200.0	V	276.0	5.9	74.00	28.31
9938.600000		38.93	100.0	V	352.0	8.1	54.00	15.07
9938.600000	48.46		100.0	V	352.0	8.1	74.00	25.54
17636.200000		44.17	150.0	Н	5.0	14.1	54.00	9.83
17636.200000	55.13		150.0	Н	5.0	14.1	74.00	18.87

FCC Part 15.247 Page 31 of 67

Middle Channel: 2437MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000		24.58	100.0	Н	160.0	-9.6	54.00	29.42
1595.000000	34.72		100.0	Н	160.0	-9.6	74.00	39.28
3070.600000		31.67	200.0	V	172.0	-4.3	54.00	22.33
3070.600000	39.43		200.0	V	172.0	-4.3	74.00	34.57
4874.000000		32.72	150.0	V	207.0	-0.5	54.00	21.28
4874.000000	41.47		150.0	V	207.0	-0.5	74.00	32.53
7311.000000		36.90	100.0	Н	68.0	5.9	54.00	17.10
7311.000000	46.13		100.0	Н	68.0	5.9	74.00	27.87
10261.600000		38.23	200.0	Н	347.0	8.6	54.00	15.77
10261.600000	47.49		200.0	Н	347.0	8.6	74.00	26.51
17677.000000		43.51	100.0	Н	347.0	14.0	54.00	10.49
17677.000000	54.29		100.0	Н	347.0	14.0	74.00	19.71

FCC Part 15.247 Page 32 of 67

High Channel : 2452MHz

Report No.: RSHD190225001-00A

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1717.400000		24.64	100.0	Н	317.0	-9.2	54.00	29.36
1717.400000	34.29		100.0	Н	317.0	-9.2	74.00	39.71
3043.400000		29.63	200.0	Н	27.0	-4.3	54.00	24.37
3043.400000	40.17		200.0	Н	27.0	-4.3	74.00	33.83
4904.000000		32.31	100.0	Н	16.0	-0.4	54.00	21.69
4904.000000	40.79		100.0	Н	16.0	-0.4	74.00	33.21
7356.000000		36.98	150.0	V	7.0	5.9	54.00	17.02
7356.000000	46.61		150.0	V	7.0	5.9	74.00	27.39
9809.400000		37.68	200.0	Н	2.0	8.0	54.00	16.32
9809.400000	47.79		200.0	Н	2.0	8.0	74.00	26.21
17554.600000		43.93	100.0	V	157.0	14.2	54.00	10.07
17554.600000	53.97		100.0	V	157.0	14.2	74.00	20.03

FCC Part 15.247 Page 33 of 67

18GHz-25GHz:

Pre-scan with 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40 modes of operation in the X,Y and Z axes of orientation, the worst case Low channel of 802.11n-HT20 mode in X-axis of orientation was recorded

Report No.: RSHD190225001-00A

Vertical

Date: 22.APR.2019 13:46:42

Horizontal

Date: 22.APR.2019 13:57:37

FCC Part 15.247 Page 34 of 67

Fundamental Test & Restricted Bands Emissions Test:

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

802.11b Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Report No.: RSHD190225001-00A

Emagnamay	Corrected	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
			Low Chan	nel: 2412M	Hz			
2412.000000	105.89		200.0	V	222.0	2.8	/	/
2412.000000		103.26	200.0	V	222.0	2.8	/	/
2412.000000	101.58		100.0	Н	305.0	2.8	/	/
2412.000000		99.03	100.0	Н	305.0	2.8	/	/
2390.000000		45.68	150.0	V	48.0	2.8	54.00	8.32
2390.000000	58.11		150.0	V	48.0	2.8	74.00	15.89
		N	Middle Cha	nnel: 24371	МНz			
2437.000000	105.75		100.0	V	34.0	2.9	/	/
2437.000000		103.23	100.0	V	34.0	2.9	/	/
2437.000000	101.38		200.0	Н	284.0	2.9	/	/
2437.000000		98.86	200.0	Н	284.0	2.9	/	/
			High Char	nnel: 2462M	Ήz			
2462.000000	105.68		100.0	V	192.0	3.0	/	/
2462.000000		103.16	100.0	V	192.0	3.0	/	/
2462.000000	101.47		250.0	Н	113.0	3.0	/	/
2462.000000		98.78	250.0	Н	113.0	3.0	/	/
2483.500000	59.59		100.0	V	279.0	3.0	74.00	14.41
2483.500000		46.37	100.0	V	279.0	3.0	54.00	7.63

FCC Part 15.247 Page 35 of 67

802.11g Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Report No.: RSHD190225001-00A

Frequency (MHz)	Corrected Amplitude		Rx Antenna		Tourstable	Corrected	I imit	Maurin
	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
Low Channel: 2412MHz								
2412.000000	105.34		100.0	V	146.0	2.8	/	/
2412.000000		98.48	100.0	V	146.0	2.8	/	/
2412.000000	101.00		200.0	Н	77.0	2.8	/	/
2412.000000		94.04	200.0	Н	77.0	2.8	/	/
2390.000000		49.41	100.0	V	244.0	2.8	54.00	4.59
2390.000000	64.78		100.0	V	244.0	2.8	74.00	9.22
Middle Channel: 2437MHz								
2437.000000	104.87		100.0	V	169.0	2.9	/	/
2437.000000		97.93	100.0	V	169.0	2.9	/	/
2437.000000	100.53		200.0	Н	58.0	2.9	/	/
2437.000000		93.49	200.0	Н	58.0	2.9	/	/
High Channel: 2462MHz								
2462.000000	104.45		100.0	V	270.0	3.0	/	/
2462.000000		97.55	100.0	V	270.0	3.0	/	/
2462.000000	100.21		250.0	Н	217.0	3.0	/	/
2462.000000		93.17	250.0	Н	217.0	3.0	/	/
2483.500000	62.72		100.0	V	47.0	3.0	74.00	11.28
2483.500000		50.95	100.0	V	47.0	3.0	54.00	3.05

FCC Part 15.247 Page 36 of 67

802.11n-HT20 Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Report No.: RSHD190225001-00A

Emagnamay	Corrected Amplitude		Rx Antenna		Turntable	Corrected	T ::4	Mangin
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
			Low Chan	nel: 2412M	Hz			
2412.000000	104.32		150.0	V	339.0	2.8	/	/
2412.000000		96.66	150.0	V	339.0	2.8	/	/
2412.000000	100.02		200.0	Н	271.0	2.8	/	/
2412.000000		92.28	200.0	Н	271.0	2.8	/	/
2390.000000		49.07	100.0	V	193.0	2.8	54.00	4.93
2390.000000	64.28		100.0	V	193.0	2.8	74.00	9.72
		N	Middle Cha	nnel: 24371	МНz			
2437.000000	104.15		200.0	V	35.0	2.9	/	/
2437.000000		96.37	200.0	V	35.0	2.9	/	/
2437.000000	99.81		200.0	Н	243.0	2.9	/	/
2437.000000		92.14	200.0	Н	243.0	2.9	/	/
			High Char	nnel: 2462M	Hz			
2462.000000	104.43		100.0	V	50.0	3.0	/	/
2462.000000		96.72	100.0	V	50.0	3.0	/	/
2462.000000	99.95		250.0	Н	113.0	3.0	/	/
2462.000000		92.43	250.0	Н	113.0	3.0	/	/
2483.500000	64.99		100.0	V	1.0	3.0	74.00	9.01
2483.500000		50.84	100.0	V	1.0	3.0	54.00	3.16

FCC Part 15.247 Page 37 of 67

802.11n-HT40 Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst caseX-axis of orientation was recorded)

Report No.: RSHD190225001-00A

Frequency	Corrected Amplitude		Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
	Low Channel: 2422MHz							
2422.000000	100.51		100.0	V	161.0	2.8	/	/
2422.000000		92.67	100.0	V	161.0	2.8	/	/
2422.000000	96.16		250.0	Н	48.0	2.8	/	/
2422.000000		88.40	250.0	Н	48.0	2.8	/	/
2390.000000		48.77	100.0	V	138.0	2.8	54.00	5.23
2390.000000	60.11		100.0	V	138.0	2.8	74.00	13.89
	Middle Channel: 2437MHz							
2437.000000	100.05		100.0	V	36.0	2.9	/	/
2437.000000		92.58	100.0	V	36.0	2.9	/	/
2437.000000	95.84		150.0	Н	263.0	2.9	/	/
2437.000000		88.16	150.0	Н	263.0	2.9	/	/
			High Char	nnel: 2452M	Hz			
2452.000000	99.83		150.0	V	345.0	3.0	/	/
2452.000000		92.51	150.0	V	345.0	3.0	/	/
2452.000000	95.35		250.0	Н	126.0	3.0	/	/
2452.000000		88.06	250.0	Н	126.0	3.0	/	/
2483.500000	60.32		100.0	V	115.0	3.0	74.00	13.68
2483.500000		49.49	100.0	V	115.0	3.0	54.00	4.51

FCC Part 15.247 Page 38 of 67

Conducted Spurious Emissions at Antenna Port

802.11b Mode Low Channel

Report No.: RSHD190225001-00A

802.11b Mode Middle Channel

FCC Part 15.247 Page 39 of 67

802.11b Mode High Channel

Report No.: RSHD190225001-00A

802.11g Mode Low Channel

FCC Part 15.247 Page 40 of 67

802.11g Mode Middle Channel

Report No.: RSHD190225001-00A

802.11g Mode High Channel

FCC Part 15.247 Page 41 of 67

802.11n-HT20 Mode Low Channel

Report No.: RSHD190225001-00A

802.11n-HT20 Mode Middle Channel

FCC Part 15.247 Page 42 of 67

802.11n-HT20 Mode High Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode Low Channel

FCC Part 15.247 Page 43 of 67

802.11n-HT40 Mode Middle Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode High Channel

FCC Part 15.247 Page 44 of 67

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSHD190225001-00A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.8.1

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 * RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24 ℃	
Relative Humidity:	51 %	
ATM Pressure:	101.3 kPa	

The testing was performed by Max Min on 2019-03-28.

EUT operation mode: Transmitting

Test Result: Compliant

FCC Part 15.247 Page 45 of 67

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
	802.1	1b Mode	
Low	2412	10.160	≥ 0.5
Middle	2437	10.160	≥ 0.5
High	2462	10.160	≥ 0.5
	802.1	1g Mode	
Low	2412	16.593	≥ 0.5
Middle	2437	16.593	≥ 0.5
High	2462	16.593	≥ 0.5
	802.11n-	HT20 Mode	
Low	2412	17.796	≥ 0.5
Middle	2437	17.856	≥ 0.5
High	2462	17.856	≥ 0.5
	802.11n-	HT40 Mode	
Low	2422	36.433	≥ 0.5
Middle	2437	36.433	≥ 0.5
High	2452	36.313	≥ 0.5

Report No.: RSHD190225001-00A

FCC Part 15.247 Page 46 of 67

802.11b Mode Low Channel

Report No.: RSHD190225001-00A

802.11b Mode Middle Channel

FCC Part 15.247 Page 47 of 67

802.11b Mode High Channel

Report No.: RSHD190225001-00A

802.11g Mode Low Channel

FCC Part 15.247 Page 48 of 67

802.11g Mode Middle Channel

Report No.: RSHD190225001-00A

802.11g Mode High Channel

FCC Part 15.247 Page 49 of 67

802.11n-HT20 Mode Low Channel

Report No.: RSHD190225001-00A

802.11n-HT20 Mode Middle Channel

FCC Part 15.247 Page 50 of 67

802.11n-HT20 Mode High Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode Low Channel

FCC Part 15.247 Page 51 of 67

802.11n-HT40 Mode Middle Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode High Channel

FCC Part 15.247 Page 52 of 67

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, Compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSHD190225001-00A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	23.8℃	
Relative Humidity:	54 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2019-03-28.

FCC Part 15.247 Page 53 of 67

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result		
		802.11b Mode				
Low	2412	20.12	30	Pass		
Middle	2437	20.19	30	Pass		
High	2462	19.53	30	Pass		
	802.11g Mode					
Low	2412	23.82	30	Pass		
Middle	2437	23.48	30	Pass		
High	2462	23.11	30	Pass		
		802.11n-HT20 Mode				
Low	2412	24.04	30	Pass		
Middle	2437	23.59	30	Pass		
High	2462	23.06	30	Pass		
802.11n-HT40 Mode						
Low	2422	23.98	30	Pass		
Middle	2437	23.78	30	Pass		
High	2452	23.82	30	Pass		

Report No.: RSHD190225001-00A

FCC Part 15.247 Page 54 of 67

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSHD190225001-00A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to ANSI C63.10-2013 sub-clause 6.10.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24.3 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.3 kPa	

The testing was performed by Max Min on 2019-03-28

EUT operation mode: Transmitting

Test Result: Compliant

FCC Part 15.247 Page 55 of 67

802.11b Mode Left Side

Report No.: RSHD190225001-00A

802.11b Mode Right Side

FCC Part 15.247 Page 56 of 67

802.11g Mode Left Side

Report No.: RSHD190225001-00A

802.11g Mode Right Side

FCC Part 15.247 Page 57 of 67

802.11n-HT20 Mode Left Side

Report No.: RSHD190225001-00A

802.11n-HT20 Mode Right Side

FCC Part 15.247 Page 58 of 67

802.11n-HT40 Mode Left Side

Report No.: RSHD190225001-00A

802.11n-HT40 Mode Right Side

FCC Part 15.247 Page 59 of 67

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSHD190225001-00A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set the RBW to: 3kHz < RBW < 100 kHz.
- 2. Set the VBW \geq 3*RBW.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24.1 ℃		
Relative Humidity:	50%		
ATM Pressure:	101.3 kPa		

The testing was performed by Max Min on 2019-03-28.

EUT operation mode: Transmitting

Test Result: Compliant

FCC Part 15.247 Page 60 of 67

High

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)				
	802.11b Mode						
Low	2412	-12.42	≤ 8				
Middle	2437	-12.54	≤ 8				
High	2462	-13.01	≤ 8				
	802.11g	Mode					
Low	2412	-12.38	≤ 8				
Middle	2437	-12.82	≤ 8				
High	2462	-13.39	≤ 8				
802.11n-HT20 mode							
Low	2412	-11.07	≤ 8				
Middle	2437	-12.08	≤ 8				
High	2462	-12.75	≤ 8				
802.11n-HT40 Mode							
Low	2422	-13.18	≤ 8				
Middle	2437	-12.37	≤ 8				

-12.87

2452

Report No.: RSHD190225001-00A

≤ 8

FCC Part 15.247 Page 61 of 67

802.11b Mode Low Channel

Report No.: RSHD190225001-00A

802.11b Mode Middle Channel

FCC Part 15.247 Page 62 of 67

802.11b Mode High Channel

Report No.: RSHD190225001-00A

802.11g Mode Low Channel

FCC Part 15.247 Page 63 of 67

802.11g Mode Middle Channel

Report No.: RSHD190225001-00A

802.11g Mode High Channel

FCC Part 15.247 Page 64 of 67

802.11n-HT20 Mode Low Channel

Report No.: RSHD190225001-00A

802.11n-HT20 Mode Middle Channel

FCC Part 15.247 Page 65 of 67

802.11n-HT20 Mode High Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode Low Channel

FCC Part 15.247 Page 66 of 67

802.11n-HT40 Mode Middle Channel

Report No.: RSHD190225001-00A

802.11n-HT40 Mode High Channel

***** END OF REPORT *****

FCC Part 15.247 Page 67 of 67