

Unit-I

	Computer Science and Engineering			
	23CS401 – Operating System			
	First			
Q.No	Questions	Cos		Bloom's Level
1	What are the basic components of the computer system?	CO1	K1	
2	What is an operating system?	CO1	K1	
3	Describe the different views of OS.	CO1	K1	
4	What is the role of device controller?	CO1	K1	
5	What is the role of device driver?	CO1	K1	
6	Define: Interrupt-specific handler.	CO1	K1	
7	What are maskable and non maskable interrupts?	CO1	K1	
8	What is the Purpose of a vectored interrupt mechanism?	CO1	K1	
9	Describe the concept of interrupt chaining,	CO1	K1	
10	Illustrate the need of interrupt priority levels.	CO1	K2	
11	What is bootstrap program?	CO1	K1	
12	What are the types of Memory? Give example.	CO1	K1	
13	Describe the functionality of direct memory access (DMA).	CO1	K1	
14	Draw the Symmetric multiprocessing architecture.	CO1	K1	
15	Describe: Loosely Coupled Systems	CO1	K1	
16	What are services provided by operating system?	CO1	K1	
17	What are the different User Operating System Interfaces?	CO1	K1	
18	What do you mean by system calls?	CO1	K1	
19	What is API?	CO1	K1	
20	What are the categories of system calls?	CO1	K1	
21	What is system program?	CO1	K1	
22	What are categories of system programs?	CO1	K1	
23	List the different structures of Operating System?	CO1	K1	
24	Define microkernel.	CO1	K1	
25	Define process.	CO2	K1	
26	What are the states in a process?	CO2	K1	
27	What are the types of CPU schedulers?	CO2	K1	
28	What is the concept of Context Switch?	CO2	K1	
29	What is cascading termination?	CO2	K1	
30	What is zombie process?	CO2	K1	
31	What are the Benefits of Cooperating Processes?	CO2	K1	

32	Differentiate the different communication models of IPC.	CO2	K2
33	What are the different types of Buffering in IPC?	CO2	K1
34	What is thread?	CO2	K1
35	What are the benefits of multithreaded programming?	CO2	K1
	PART B		
1	Discuss in details the components and functionalities of Computer System Organization.	CO1	K2
2	Explain in details about Computer-System Architecture.	CO1	K2
3	Explain in detail the types of system calls.	CO1	K2
4	Explain in detail about the operating system Structure		K2
5	Outline the basic concepts of process.	CO2	K2
6	Discuss in detail about different scheduling mechanisms involved in process.	CO2	K2
7	Describe in detail the concept of process creation and process termination.		K2
8	Outline IPC in Shared-Memory Systems and Message Passing Systems	CO2	K2
9	Illustrate the concepts of multithread models.	CO2	K2

UNIT-II

Q.No	Questions	Cos	Bloom's Level
1	What are the circumstances for CPU scheduling decisions?	CO2	K1
2	What is preemptive and nonpreemptive scheduling?	CO2	K1
3	Define dispatcher and list it functionalities.	CO2	K1
4	Illustrate the Criteria to compare CPU-scheduling algorithms	CO2	K2
5	What is the concept of FCFS and SJF scheduling?	CO2	K1
6	What is the concept of Priority and Round Robin scheduling?	CO2	K1
7	Describe about SRTF.	CO2	K1
8	Describe the issue in priority scheduling algorithms and suggest a way to solve it.	CO2	K2
9	Interpret the relationship between Turnaround time and the size of the time quantum in RR scheduling.	CO2	K2
10	Define: Multilevel Queue Scheduling.	CO2	K1
11	List the queues in multilevel queue scheduling algorithm with respect to order of priority.	CO2	K1
11	Define: Multilevel Feedback Queue Scheduling.	CO2	K1
12	List the parameters defines the multilevel feedback queue scheduler.	CO2	K1
13	What is race condition?	CO2	K1

What are the requirements to provide solution to the critical-section problem? CO2 K1			T	1
15 What is meant by spin locks? CO2 K1 16 What are the types of semaphore? CO2 K1 17 What is the use of monitors? CO2 K1 18 Define: Deadlock. CO2 K1 19 Illustrate the components of resource allocation graph. CO2 K1 20 Describe the Methods for Handling Deadlocks. CO2 K1 21 What is safe sequence? CO2 K1 21 What is safe sequence? PART B 1. Explain in detail all scheduling algorithm with example. CO2 K2 Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY P1 14 2 P2 3 2 2 P3 3 4 4 4 2 P4 4 6 1 P5 4 3 3 1. Give a Gantt chart illustrating the execution of these processes using FCFS, SJF, Round Robin(quantum=2) and Priority II. Calculate the average waiting time and average turn around time for each of the above scheduling algorithm. Assume the following processes arrive for execution at the time indicated and also mention with the length of the CPU-burst time given in milli seconds. JOB BURST TIME PRIORITY ARRIVAL TIME P1 9 2 0 P2 2 1 1 1 1 2 1 1 1	14	What are the requirements to provide solution to the critical-section problem?	CO2	K1
16	15		CO2	K1
17 What is the use of monitors? CO2 K1 18 Define: Deadlock. CO2 K1 19 Illustrate the components of resource allocation graph. CO2 K1 20 Describe the Methods for Handling Deadlocks. CO2 K1 21 What is safe sequence? CO2 K1 22 What is safe sequence? PART B 3 Explain in detail all scheduling algorithm with example. CO2 K2 Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY P1	16		1	K1
18 Define: Deadlock. CO2 K1 19			1	
19 Illustrate the components of resource allocation graph. CO2 K1				
Describe the Methods for Handling Deadlocks. CO2 K1				
21 What is safe sequence? PART B 1. Explain in detail all scheduling algorithm with example. Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY P1				
PART B				•
1. Explain in detail all scheduling algorithm with example. Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY P1		•	I.	
Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY Pl 14 2 P2 3 2 P3 3 4 P4 6 1 P5 4 3 I. Give a Gantt chart illustrating the execution of these processes using FCFS, SJF, Round Robin(quantum=2) and Priority II. Calculate the average waiting time and average turn around time for each of the above scheduling algorithm. Assume the following processes arrive for execution at the time indicated and also mention with the length of the CPU-burst time given in milli seconds. JOB BURST TIME PRIORITY ARRIVAL TIME P1 9 2 0 P2 2 1 1 P3 3 4 1 P3 3 4 1 P4 1 1 2 CO2 K3 1. Give a Gantt chart illustrating the execution of these processes using FCFS, SJF, SRTF, Round Robin(quantum=3) and Priority (Preemptive and Non Preemptive) 2. Calculate the average waiting time and average turnaround time for each of the above scheduling algorithm. 4. Discuss about the critical section problem in process synchronization. CO2 K2	1.		CO2	K2
the time indicated and also mention with the length of the CPU-burst time given in milli seconds. JOB BURST TIME PRIORITY ARRIVAL TIME P1 9 2 0 P2 2 1 1 1 P3 3 4 1 3. P4 1 1 2 CO2 K3 1. Give a Gantt chart illustrating the execution of these processes using FCFS, SJF, SRTF, Round Robin(quantum=3) and Priority (Preemptive and Non Preemptive) 2. Calculate the average waiting time and average turnaround time for each of the above scheduling algorithm. 4. Discuss about the critical section problem in process synchronization. CO2 K2 Describe the Hardware Support solutions for process Synchronization		Assume the following processes arrive for execution at the time t=0 and also mentioned with the length of the CPU-burst time given in milli seconds. JOB (ms) BURST TIME (ms) PRIORITY P1 14 2 P2 3 2 P3 3 4 P4 6 1 P5 4 3 I. Give a Gantt chart illustrating the execution of these processes using FCFS, SJF, Round Robin(quantum=2) and Priority II. Calculate the average waiting time and average turn around time for each of the above		
4. Discuss about the critical section problem in process synchronization. CO2 K2 Describe the Hardware Support solutions for process Synchronization CO2 K2	3.	Assume the following processes arrive for execution at the time indicated and also mention with the length of the CPU-burst time given in milli seconds. JOB BURST TIME PRIORITY ARRIVAL TIME P1 9 2 0 P2 2 1 1 1 P3 3 4 1 P4 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO2	K3
Synchronization CO2 K2	4.	Discuss about the critical section problem in process synchronization.	CO2	K2
6. Describe Mutex Locks and explain how it provides CO2 K2	5.	Synchronization	CO2	K2
	6.	Describe Mutex Locks and explain how it provides	CO2	K2

	solution for critical section problem.		
_	Explain in detail the usage and implementation of		
7.	Semaphores	CO2	K2
8.	Explain in details about Monitor	CO2	K2
9.	Discuss in detail the Classical problems of	CO2	K2
9.	synchronization	CO2	K2
	Illustrate the necessary condition for deadlock and		
10.	describe deadlock with the help of resource allocation	CO2	K2
	graph.		
	Discuss the deadlock prevention methods.	CO2	K2
12.	Discuss the approaches for deadlock avoidance.	CO2	K2
	Consider the following snapshot of a system:		
	Process Allocation Max Available		
	ABCD ABCD ABCD		
	P0 1 0 1 3 2 0 1 4 2 7 3 0		
	P1 2 0 0 0 3 7 5 0		
13.	P2	CO2	W2
13.	P4 0 5 1 4 0 6 2 4	CO2	K2
	Answer the following questions applying the banker's algorithm. a. What is the content of the matrix <i>Need</i> ? Is the system in a safe state? b. If a request from process P1 arrives for (0, 4, 2, 0), can the request be granted immediately?		
	Consider the following snapshot of a system with		
	resource type A has 7 instances, resource type B has 6 instances and resource type C has 5 instances.		
	<u>Process</u> <u>Allocation</u> <u>Max</u>		
	ABC ABC		
	P0 1 1 3 7 5 4		
	P1 3 1 0 5 2 2		
14.	P2 2 0 0 4 0 3	CO2	K3
	P3 110 412	002	
	P4 0 0 1 4 5 2		
	A nerven the fellowing exceptions and bring the honbon's		
	Answer the following questions applying the banker's		
	algorithm: a. What is the content of the matrix <i>Need</i> ? Is the		
	system in a safe state?		
	b. If a request from process P1 arrives for (0, 1, 0),		
	can the request be granted immediately?		
	can die request ee grantea minioantery.		
15.	Describe the mechanisms of Deadlock detection and		
	Recovery from deadlock.	CO2	K2
	recovery from acadiock.		

UNIT III

Q.No	Questions	COs	Bloom's level
1	What are the steps in which address binding is carried out?	CO3	K1
2	Define: Logical address and physical address.	CO3	K1
3	What is the role of relocation-register?	CO3	K1
4	What is the concept of external fragmentation?	CO3	K1
5	What is the concept of internal fragmentation?	CO3	K1
6	What do you mean by best fit?	CO3	K1
7	What do you mean by first fit?	CO3	K1
8	What do you mean by worst fit?	CO3	K1
9	What is compaction?	CO3	K1
10	Differentiate Paging and Segmentation.	CO3	K2
11	Define: Translation Look-aside Buffer (TLB).	CO3	K1
12	Define: TLB Hit and TLB Miss	CO3	K1
13	How protection is accomplished in paging?	CO3	K1
14	What is virtual memory?	CO3	K1
15	What is Demand paging?	CO3	K1
16	Describe the concept of copy on write.	CO3	K1
17	What is Belady's anomaly?	CO3	K1
18	What is dirty bit/modify bit?	CO3	K1
19	What is thrashing?	CO3	K1
20	What is working set model?	CO3	K1
	PART B		
1	Explain about the contiguous memory allocation.	CO3	K2
2	Illustrate the concepts of Segmentation.	CO3	K2
3	Outline the concepts of paging with suitable example.	CO3	K2
4	Discuss in detail the different structures of page table.	CO3	K2
5	Explain the concept of demand paging in Virtual Memory	CO3	K2
6	Outline the concept of page replacement and explain the replacement algorithms in brief.	CO3	K2
7	Consider the following page reference string 5, 0, 1, 5, 0, 3, 0, 1, 2, 3, 1, 3, 2, 1, 2, 0, 1, 7, 0, 1,4,1 How many page faults would occur for the following replacement algorithms, assuming three frames? Remember all frames are initially empty, so your first unique pages will all cost one fault each. • FIFO replacement • Optimal replacement • LRU replacement	CO3	К3

8	Consider the following page reference string 7, 2, 1, 5, 2, 3, 0, 1, 7, 0, 1, 0, 2, 5, 5, 0, 1, 6, 0, 6,0,5,2,4,0,2 How many page faults would occur for the following replacement algorithms, assuming four frames? Remember all frames are initially empty, so your first unique pages will all cost one fault each. • FIFO replacement • Optimal replacement	CO3	K3
	 Optimal replacement LRU replacement 		
9	Illustrate the cause of thrashing and explain the mechanisms to prevent thrashing.	CO3	K2

UNIT-IV

Q.No	Questions	COs	Bloom's level
1	Define seek time and latency time	CO4	K1
2	Suppose that the disk rotates at 7200 rpm. What is the average rotational latency of the disk drive? .	CO4	K2
3	Define rotational latency and disk bandwidth	CO4	K1
4	A disk has 2310 cylinders, 16 tracks and 63 sectors. The disk spins at 7200 rpm. Seek time between adjacent tracks is 1ms. How long does it take to read the entire disk?	CO4	K2
5	List the types of disk scheduling algorithms.	CO4	K1
6	What is low-level formatting?	CO4	K1
7	What is the use of boot block?	CO4	K1
8	Define: Sector sparing.	CO4	K1
9	Define: Sector slipping	CO4	K1
10	What is daisy chain?	CO4	K1
11	State the registers control I/O devices.	CO4	K1
12	Describe the concept of polling.	CO4	K1
13	What is the concept of interrupt chaining?	CO4	K1
14	Infer how DMA increases system concurrency?	CO4	K2
15	What is the role of device-status table?	CO4	K1
16	Define: Buffering.	CO4	K1
17	Describe the concept of double buffering.	CO4	K1
18	Define: Caching.	CO4	K1
19	Define: Spooling.	CO4	K1
20	Describe file and list its types.	CO4	K1
21	What are the different attributes of file?	CO4	K1
22	What is directory?	CO4	K1

23	What are the operations that can be performed on a directory?	CO4	K1
24	Define: Mount point.	CO4	K1
25	What are the different types of access rights given to a file?	CO4	K1
26	Describe the challenges associated with file sharing.	CO4	K1
	PART B		
1	Discuss the Disk scheduling algorithms with example.	CO4	K2
2	Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The drive is currently serving a request at cylinder 2,150, and the previous request was at cylinder 1,805. The queue of pending requests, in FIFO order, is: 2,069, 1,212, 2,296, 2,800, 544, 1,618, 356, 1,523, 4,965, 3681 Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk-scheduling algorithms? a. FCFS b. SSTF c. SCAN d. LOOK e. C-SCAN	CO4	K3
3	On a disk with 1000 cylinders, numbers 0 to 999, compute the number of tracks the disk arm must move to satisfy the entire request in the disk queue. Assume the last received was at track 345 and the head is moving towards track 0. The queue in FIFO order contains requests for the following tracks. 123,874,692,475,105 and 376. Find the seek length for the following scheduling algorithms. a. FCFS b. SSTF c. SCAN d. LOOK e. C-SCAN	CO4	K3
4	Outline the concept of memory mapped I/O and polling	CO4	K2
5	Explain in detail the concept of interrupts in I/O (8)	CO4	K2
6	Explain in details the concept of DMA (7) Explain in detail the various services provides by	CO4	K2
7	Kernel with respect to I/O. Explain about different attributes of file (7) Outline the different operations that can be performed on a file (8)	CO4	K2

8	Discuss the different types of file. (7) Outline the different file access methods. (8)	CO4	K2
9	Explain in detail the schemes for defining the logical structure of a directory.	CO4	K2
10	Explain about File-System Structure (7) Discuss the methods of directory implementation. (8)	CO4	K2
11	Explain the various Allocation Methods in file system.	CO4	K2
12	Discuss in detail the Free-Space Management techniques of file system.	CO4	K2

UNIT-V

Q.No	Questions	COs	Bloom's Level
1	What is virtualization?	CO5	K1
2	State the virtualization requirements.	CO5	K1
3	Define Paravirtualization	CO5	K1
4	State the purpose of hypervisor	CO5	K1
5	What is emulation?	CO5	K1
6	What is VCPU?	CO5	K1
7	State about Binary translation.	CO5	K1
8	What is nested page table?	CO5	K1
9	What is virtual machine sprawl?	CO5	K1
10	Describe control partition.	CO5	K1
11	State the role of containers in Oracle Solaris.	CO5	K1
12	Describe the functionality of Pseudo device driver.	CO5	K1
13	What is NAT address?	CO5	K1
14	Which layer of iOS contains fundamental system	CO6	K1
	services for apps? What are the components of this		
	layer?		
15	What is iOS SDK?	CO6	K1
16	What is the media layer in iOS?	CO6	K1
17	Draw the iOS architecture.	CO6	K1
18	What is the functionality of application frameworks layer of iOS?	CO6	K1
19	What is Android?	CO6	K1
20	Draw the Android architecture.	CO6	K1
	PART B		
1	Explain the building blocks of Virtual Machine	CO5	K2
2	Explain the types of virtual Machine and its	CO5	K2
	implementation techniques.		
3	Outline how OS handles I/O, Storage	CO5	K2
	management and live migration in virtual		
	environment.		
4	Explain about the Android OS	CO6	K2
5	Explain about the iOS Operating System.	CO6	K2