Biplot

Lino Oswaldo Sánchez Juárez

2022-06-01

Introducción

El prefijo "bi" hace referencia ala superposición de individuos y variables en una misma representación. Son útiles paradescribir gráficamente los datos o para mostrar los resultados obtenidos de modelos más formales.

Librerías necesesarias:

Matriz de datos:

```
vinos <- read_excel("C:/Users/Usuario/Documents/Esatadistica multivariada/BIPLOT/vinos.xls")
BD<-as.data.frame(vinos)[,-1]</pre>
```

Usaremos uan base de d
taos que contien varaibles basdas en las características de dos varidades de vinos
 TORO y **Ribera**, de los años 1986 y 1987.

Exploracion de matriz

```
dim(BD)
```

[1] 45 21

Tenemos 45 observaciones y 21 variables.

colnames(BD)

```
[1] "a_o"
                    "denomina"
                                "grupo"
                                            "grado"
                                                         "avol"
                                                                     "atot"
    [7] "acfi"
                    "ph"
                                "folin"
                                            "somers"
                                                         "srv"
                                                                     "procian"
                                            "ic"
## [13] "acrg"
                    "acse"
                                "achplc"
                                                         "ic2"
                                                                     "tono"
                                "vla"
                    "eq1"
   [19] "iim"
```

Con esto sabemos los nobres de nuestra 21 variables

```
str(BD)
```

```
45 obs. of 21 variables:
##
                   1 1 1 1 1 1 1 1 1 1 ...
   $ a_o
             : num
## $ denomina: num
                    1 1 1 1 1 1 1 1 1 1 ...
## $ grupo
                    1 1 1 1 1 1 1 1 1 1 ...
             : num
##
   $ grado
             : num
                    12.8 12.8 12.5 11.9 12.5 12.1 12.2 12.6 13 12.4 ...
##
  $ avol
                   1.2 0.75 1 0.7 0.95 0.5 0.8 0.4 0.4 0.35 ...
             : num
   $ atot
             : num 6.7 6.9 7.2 7.7 7.7 5.8 5.9 5.4 4.6 5.5 ...
             : num 5.2 6 6 6.8 6.3 5.2 4.9 4.9 4.1 5 ...
##
   $ acfi
##
   $ ph
             : num 3.7 3.5 3.6 3.3 3.6 3.2 3.4 3.3 3.6 3.3 ...
## $ folin
              : num 2827 1818 1459 2054 2930 ...
## $ somers
             : num 50.8 37.8 35.1 32.1 49.6 30.6 35.6 30.6 41.7 30 ...
##
                    811 968 866 978 1128 ...
   $ srv
              : num
##
   $ procian : num
                    3794 1736 2306 3420 3158 ...
## $ acrg
                    386 144 225 204 214 167 252 315 293 152 ...
              : num
##
   $ acse
                    287 141 132 110 148 95 160 124 170 67 ...
             : num
##
   $ achplc
                    181 69 78 84 75 74 101 101 137 56 ...
             : num
##
   $ ic
                    7.81 4.88 5.52 4.64 6.99 3.98 7.6 6.15 6.6 5.49 ...
             : num
##
  $ ic2
                    8.95 5.55 6.35 5.15 7.87 4.36 8.84 7.11 7.85 6.23 ...
             : num
##
             : num 0.72 0.755 0.456 0.675 0.672 0.716 0.716 0.74 0.93 0.75 ...
  $ tono
##
   $ iim
             : num
                    18.4 23.6 36.8 36.4 34.2 38.1 28.5 27.7 21.6 30.3 ...
## $ eq1
             : num
                   0.489 0.48 0.598 0.42 0.45 0.434 0.501 0.566 0.557 0.689 ...
                   0.21 0.56 0.38 0.29 0.36 0.3 0.24 0.4 0.28 0.26 ...
   $ vla
              : num
```

Es necesario que para nuestros biplot la variable sean numéricas en esta base las tres primeras son reconocidas como numéricas pero son categoricas.

```
BD$denomina = as.factor(BD$denomina)
BD$grupo = as.factor(BD$grupo)
```

Convertimos a factor las varibles de denominación y grupo.

Gráficos de exploración

```
BX1<-BoxPlotPanel(BD[,4:9], nrows=2, groups=BD$denomina)
```

[1] 2

BX1

\$mfrow ## [1] 2 3

BX2<-BoxPlotPanel(BD[,4:9], nrows=2, groups=BD\$grupo)

[1] 2

BX2

\$mfrow ## [1] 2 3

Graficamos las dos varibles enn
contra de las otras variobles y observamos la distribución y la relación que puede haber entre el
las.

Filtrado de variables

1.- Selección de variables numéricas

X<-BD[,4:21]

Usamos de la 4 a la 21 ## 2.- Generación del scatter plot

PL1<-plot(X[,1:9])

Generamos el scatter plot de las variables 1 a la 9; Observamos relación en algunas variables no entodas hay se observan más en la parte inferior derecha.

PL2<-plot(X[,10:18])

Generamos de la 10 a la 18 y en este gráfico obsevamos correlaciones en la parte superior izquierda, y en las demás no hay correlación aparente.

Reducción de la dimensionalidad

1.- ACP

```
acpvino<-PCA.Analysis(X,Scaling = 5)</pre>
summary(acpvino)
    ##### Principal Components Analysis ######
##
##
## Transformation of the raw data:
##
   [1] "Standardize columns"
##
##
    Eigenvalues & Explained Variance (Inertia)
        Eigenvalue Exp. Var Cummulative
##
##
         277.12688
                      34.991
                                  34.991
   [1,]
                                  60.163
   [2,]
         199.36534
                      25.172
   [3,]
##
          85.42317
                      10.786
                                  70.949
##
##
    STRUCTURE OF THE PRINCIPAL COMPONENTS
##
```

```
##
           Dim 1 Dim 2 Dim 3
## grado
          -0.676 -0.142 0.188
## avol
          -0.450 0.204 -0.519
          -0.225 0.738 -0.526
## atot
## acfi
          -0.063 0.797 -0.397
           0.191 -0.593 -0.193
## ph
## folin -0.910 -0.094 -0.072
## somers -0.920 -0.154 -0.090
## srv
          -0.798 -0.088 0.277
## procian -0.873 -0.102 0.036
## acrg
          -0.301 -0.726 -0.441
## acse
          -0.213 -0.856 -0.372
## achplc
          0.119 -0.830 -0.355
          -0.926 0.117 -0.074
## ic
## ic2
          -0.932 0.095 -0.048
## tono
          -0.351 -0.290 0.612
           0.021 0.810 -0.179
## iim
## eq1
          -0.688 0.416 0.255
## vla
           0.006 0.071 0.368
```

Reducimos la dimencionalidad con un análisis de compoenetes pricipales. y oedimos un resumen.

2.- Contenido del objeto acpvino

names(acpvino)

```
[1] "Title"
                                  "Type"
                                                             "call"
    [4] "Non_Scaled_Data"
                                  "alpha"
                                                             "Dimension"
##
##
   [7] "Means"
                                  "Medians"
                                                             "Deviations"
## [10] "Minima"
                                  "Maxima"
                                                             "P25"
## [13] "P75"
                                  "GMean"
                                                             "Initial_Transformation"
                                  "nrows"
## [16] "Scaled_Data"
                                                             "ncols"
## [19] "nrowsSup"
                                  "ncolsSup"
                                                             "dim"
                                  "Inertia"
                                                             "CumInertia"
## [22] "EigenValues"
## [25] "EV"
                                  "Structure"
                                                             "RowCoordinates"
## [28] "ColCoordinates"
                                  "RowContributions"
                                                             "ColContributions"
## [31] "Scale_Factor"
                                  "ClusterType"
                                                             "Clusters"
                                  "ClusterNames"
## [34] "ClusterColors"
```

3.- Generación del gráfico sin caja

```
acp1<-plot(acpvino, ShowBox=TRUE)</pre>
```

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Screeplot con barras

```
acp2<-princomp(X, cor=TRUE, score=TRUE)
plot(acp2)</pre>
```


Obserbamos la ditribución de los componentes principales.

Gráfico circular de correlación

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Principal Components Analysis – Correlation Circle

Axis 1

Esta es una fora de visualizar el biplot por componentes principales.

Agregar grupos al biplot definido por usuario

Grafico con poligonos

CexInd= tamaño de los argumentos

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Vemos una visulizacion por poligonos

Gráfico con elipses

```
acp5<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="el",
    ShowBox=F)</pre>
```

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Gráfico con estrellas

```
acp6<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="st",
    ShowBox=TRUE)</pre>
```

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

Aplicacion del Biplot

Predeterminado JK

```
bipvino<-PCA.Biplot(X, Scaling = 5)
summary(bipvino)</pre>
```

```
###### Biplot for Principal Components Analysis ######
##
## Call
## PCA.Biplot(X = X, Scaling = 5)
## Type of coordinates:
## Transformation of the raw data:
## [1] "Standardize columns"
## Type of Biplot
## [1] "PCA"
##
##
   Eigenvalues & Explained Variance (Inertia)
        Eigenvalue Exp. Var Cummulative
## [1,] 277.12688 34.991
                                34.991
## [2,] 199.36534
                    25.172
                                60.163
## [3,]
        85.42317 10.786
                                70.949
##
##
```

```
## RELATIVE CONTRIBUTIONS OF THE FACTOR TO THE ELEMENT
##
##
  Row Contributions
      Dim 1 Dim 2 Dim 3
##
## I1 42.04 6.63 44.06
## I2
       0.03 32.75 2.51
## I3
       0.07 57.27 18.53
## I4
       0.28 70.89 8.84
## I5 29.69 38.53 12.87
## 16
       2.64 67.95 1.86
## I7 23.63 27.17 9.95
## I8 15.06 20.09 8.55
## I9 60.32 7.05 10.79
## I10 1.55 61.24 11.60
## I11 0.12 74.78 12.48
## I12 0.09 35.48 28.14
## I13 1.68 57.21 29.79
## I14 2.95 15.65 39.81
## I15 64.41 9.27 3.81
## I16 35.26 17.46 4.85
## I17 63.73 0.99 14.28
## I18 51.05 25.08 0.12
## I19 75.88 7.45 9.01
## I20 77.10 5.13 0.77
## I21 24.48 9.79 18.31
## I22 30.80 25.95 0.05
## I23 2.08 2.45
                  0.20
## I24 71.22 15.56 0.82
## I25 72.83 12.08 2.23
## I26 32.34 43.51 1.52
## I27 35.29 35.58 11.66
## I28 63.06 11.10 3.65
## I29 16.99 16.98 27.32
## I30 17.97 32.85 0.25
## I31 9.13 1.41 35.53
## I32 55.95 4.40 3.60
## I33 28.58 7.60 26.59
## I34 67.06 0.00 4.97
## I35 7.12 13.24 1.64
## I36 41.97 12.56 27.66
## I37 4.81 4.11 20.46
## I38 83.21 0.21 0.95
## I39 88.41 3.71 2.38
## I40 0.08 13.31 0.69
## I41 42.39 34.59 1.36
## I42 9.24 2.75 29.92
## I43 23.86 2.26 7.75
## I44 29.74 44.90 6.03
## I45 56.52 23.65 1.05
##
## Column Contributions
          Dim 1 Dim 2 Dim 3
## grado
          45.71 2.02 3.54
## avol
          20.23 4.14 26.96
```

```
## atot
           5.06 54.44 27.69
## acfi
           0.40 63.45 15.73
## ph
           3.63 35.20 3.72
           82.89 0.89 0.52
## folin
## somers 84.58
                  2.36
                       0.81
## srv
           63.74 0.78 7.65
## procian 76.19 1.04 0.13
           9.08 52.64 19.41
## acrg
## acse
            4.54 73.25 13.87
           1.41 68.84 12.61
## achplc
## ic
           85.75 1.37 0.54
           86.89 0.91 0.23
## ic2
           12.30 8.43 37.44
## tono
           0.04 65.55 3.20
## iim
## eq1
           47.38 17.28 6.51
## vla
           0.00 0.51 13.58
##
##
##
    Qualities of representation of the rows (Cummulative contributions)
##
       Dim 1 Dim 2 Dim 3
## I1 42.04 48.67 92.73
       0.03 32.78 35.29
## I2
## I3
       0.07 57.34 75.87
## I4
       0.28 71.17 80.01
## I5 29.69 68.22 81.09
## 16
       2.64 70.59 72.45
## I7 23.63 50.80 60.75
## I8 15.06 35.15 43.70
## I9 60.32 67.37 78.16
## I10 1.55 62.79 74.39
## I11 0.12 74.90 87.38
## I12 0.09 35.57 63.71
## I13 1.68 58.89 88.68
## I14 2.95 18.60 58.41
## I15 64.41 73.68 77.49
## I16 35.26 52.72 57.57
## I17 63.73 64.72 79.00
## I18 51.05 76.13 76.25
## I19 75.88 83.33 92.34
## I20 77.10 82.23 83.00
## I21 24.48 34.27 52.58
## I22 30.80 56.75 56.80
## I23 2.08 4.53 4.73
## I24 71.22 86.78 87.60
## I25 72.83 84.91 87.14
## I26 32.34 75.85 77.37
## 127 35.29 70.87 82.53
## I28 63.06 74.16 77.81
## I29 16.99 33.97 61.29
## I30 17.97 50.82 51.07
## I31 9.13 10.54 46.07
## I32 55.95 60.35 63.95
## I33 28.58 36.18 62.77
```

```
## 134 67.06 67.06 72.03
## I35 7.12 20.36 22.00
## I36 41.97 54.53 82.19
## I37 4.81 8.92 29.38
## I38 83.21 83.42 84.37
## I39 88.41 92.12 94.50
## I40 0.08 13.39 14.08
## I41 42.39 76.98 78.34
## I42 9.24 11.99 41.91
## I43 23.86 26.12 33.87
## 144 29.74 74.64 80.67
## I45 56.52 80.17 81.22
##
##
##
   Qualities of representation of the columns (Cummulative contributions)
##
           Dim 1 Dim 2 Dim 3
## grado
           45.71 47.73 51.27
           20.23 24.37 51.33
## avol
## atot
           5.06 59.50 87.19
## acfi
           0.40 63.85 79.58
## ph
           3.63 38.83 42.55
## folin 82.89 83.78 84.30
## somers 84.58 86.94 87.75
## srv
           63.74 64.52 72.17
## procian 76.19 77.23 77.36
## acrg
           9.08 61.72 81.13
           4.54 77.79 91.66
## acse
## achplc 1.41 70.25 82.86
           85.75 87.12 87.66
## ic
           86.89 87.80 88.03
## ic2
## tono
           12.30 20.73 58.17
           0.04 65.59 68.79
## iim
           47.38 64.66 71.17
## eq1
           0.00 0.51 14.09
## vla
```

Valores propios

bipvino\$EigenValues

```
## [1] 277.12687550 199.36534193 85.42316719 61.02361652 54.61472549

## [6] 33.21950770 23.10087611 18.20271969 12.93567822 8.99721387

## [11] 7.17039349 5.14634483 2.46693118 1.76863760 1.12884586

## [16] 0.26153511 0.02966717 0.01792254
```

Screeplot

```
SC<-barplot(bipvino$EigenValues)
```


Vectores propios

bipvino\$EV

```
[,1]
                             [,2]
                                         [,3]
##
##
   [1,] -0.269400471 -0.06678758 0.13502664
   [2,] -0.179235894  0.09563188 -0.37266607
   [3,] -0.089642289  0.34663991 -0.37767939
##
   [4,] -0.025075364  0.37420670 -0.28461188
   [5,] 0.075921760 -0.27872944 -0.13842752
   [6,] -0.362771201 -0.04421297 -0.05176113
   [7,] -0.366464498 -0.07220257 -0.06472232
   [8,] -0.318130606 -0.04157401 0.19854164
  [9,] -0.347804576 -0.04785685 0.02584725
## [10,] -0.120049408 -0.34086254 -0.31617278
## [11,] -0.084888000 -0.40207820 -0.26728099
## [12,] 0.047378644 -0.38977456 -0.25488092
## [13,] -0.368971746  0.05491570 -0.05287232
## [14,] -0.371435455   0.04476039 -0.03421019
## [15,] -0.139772430 -0.13640832 0.43913353
## [16,] 0.008178563 0.38035721 -0.12838425
## [17,] -0.274261123  0.19527349  0.18313281
## [18,] 0.002361018 0.03345360 0.26444673
```

Tabla de inercias

Eje	Valor Propio	Inercia	Inercia acumulada
Eje 1	277.1268755	34.991	34.991
Eje 2	199.3653419	25.172	60.163
Eje 3	85.4231672	10.786	70.949
Eje 4	61.0236165	7.705	78.654
Eje 5	54.6147255	6.896	85.550
Eje 6	33.2195077	4.194	89.744
Eje 7	23.1008761	2.917	92.661
Eje 8	18.2027197	2.298	94.959
Eje 9	12.9356782	1.633	96.592
Eje 10	8.9972139	1.136	97.728
Eje 11	7.1703935	0.905	98.633
Eje 12	5.1463448	0.650	99.283
Eje 13	2.4669312	0.311	99.594
Eje 14	1.7686376	0.223	99.817
Eje 15	1.1288459	0.143	99.960
Eje 16	0.2615351	0.033	99.993
Eje 17	0.0296672	0.004	99.997
Eje 18	0.0179225	0.002	99.999

Tabla contribución de columnas

kable(bipvino\$ColContributions)

	Dim 1	Dim 2	Dim 3
grado	45.71	2.02	3.54
avol	20.23	4.14	26.96
atot	5.06	54.44	27.69
acfi	0.40	63.45	15.73
ph	3.63	35.20	3.72
folin	82.89	0.89	0.52
somers	84.58	2.36	0.81
srv	63.74	0.78	7.65
procian	76.19	1.04	0.13
acrg	9.08	52.64	19.41
acse	4.54	73.25	13.87
achplc	1.41	68.84	12.61
ic	85.75	1.37	0.54
ic2	86.89	0.91	0.23

	Dim 1	Dim 2	Dim 3
tono	12.30	8.43	37.44
$_{ m iim}$	0.04	65.55	3.20
eq1	47.38	17.28	6.51
vla	0.00	0.51	13.58

Gráficos Biplot

plot(bipvino, ShowBox=TRUE)

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

• Prolongación de vectores linea recta

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

• Prolongación de vectores con flechas y linea punteada

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Gráfico circular correlaciones

GC<-CorrelationCircle(bipvino)</pre>

PCA Biplot – Correlation Circle

OF OF OR OTHER PROPERTY OF THE PROPERTY OF THE

Axis 1

Gráfico contribuciones de los vectores

ColContributionPlot(bipvino, AddSigns2Labs = FALSE)

PCA Biplot – Contribution Plot

Axis 1

• Proyección individuos sobre una variable donde dp= selecciona la variable

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

- Proyección de ind
 sobre todas las variables con $\mathit{PredPoints} = \mathit{individuo}$

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

- Cluster Jerárquico con datos originales con el metodo ward.D

• Cluster aplicado al biplot

```
clusBP<-plot(bipvino, PlotClus=TRUE, ShowAxis=TRUE)</pre>
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

clusBP

NULL