# Reevaluating Composite Scores with Flexible Regression and Variable Selection

Eli Kravitz

Texas A&M

February 13, 2022

- Follow up to Ma, Ma, Wang, Kravitz & Carroll (2016).
- It is common in epidemiology to use composite scores to assess health behavior.
  - Healthy Eating Index (next slide), Mediterranean Diet Score, Physical and Mental Health Composite Scores, etc.
- Assign individuals' health behavior a <u>single</u> interpretable score between 0 and 100. Use that score to model disease risk

| Component        | Units      | HEI-2005 score calculation                                              |
|------------------|------------|-------------------------------------------------------------------------|
| Total Fruit      | cups       | $\min \{5, 5 \times (\text{density}/.8)\}$                              |
| Whole Fruit      | cups       | $\min \{5, 5 \times (\text{density}/.4)\}$                              |
| Total Vegetables | cups       | $\min \{5, 5 \times (\text{density}/1.1)\}$                             |
| DOL              | cups       | $\min \{5, 5 \times (\text{density}/.4)\}$                              |
| Total Grains     | ounces     | $\min\{5, 5 \times (\text{density/3})\}$                                |
| Whole Grains     | ounces     | $\min\left\{5, 5 \times (\text{density}/1.5)\right\}$                   |
| Milk             | cups       | $\min\left\{10, 10 \times \left(\frac{10}{10}\right)\right\}$           |
| Meat and Beans   | ounces     | $\min\left\{10, 10 \times \left(\frac{2.5}{10}\right)\right\}$          |
| Oil              | grams      | $\min\left\{10, 10 \times \left(\frac{10}{12}\right)\right\}$           |
| Saturated Fat    | % of       | if density $\geq 15$ score = 0                                          |
|                  | energy     | else if density $\leq 7 \text{ score} = 10$                             |
|                  |            | else if density > 10 score = $8 - \{8 \times (\text{density} - 10)/5\}$ |
|                  |            | else, score = $10 - \{2 \times (\text{density} - 7)/3\}$                |
| Sodium           | milligrams | if density $\geq 2000 \text{ score} = 0$                                |
|                  |            | else if density $\leq 700 \text{ score} = 10$                           |
|                  |            | else if density $\geq 1100$                                             |
|                  |            | $score = 8 - \{8 \times (density - 1100)/(2000 - 1100)\}$               |
|                  |            | else score = $10 - \{2 \times (density - 700)/(1100 - 700)\}$           |
| SoFAAS           | % of       | if density $\geq 50$ score = 0                                          |
|                  | energy     | else if density $\leq 20$ score=20                                      |
|                  |            | else score = $20 - \{20 \times (density - 20)/(50 - 20)\}$              |

Figure: 2005 Healthy Index Index (HEI) developed by U.S. Department of Agriculture (USDA)

- Improvement: Use many populations and diseases to build a more accurate score.
  - single score but more predictive
- To relate 2005-HEI and cancer, Ma et. al. (2016) developed the single index model

$$\Pr(Y_{k\ell} = 1|X) = H\{\beta_{k\ell} m(\sum_j X_{jk}\alpha_j)\}(1)$$

where  $H(\cdot)$  is the logistic distribution function, and  $m(\cdot)$  is an unknown function.

• On the data of interest (NIH-AARP Study of Diet and Health),  $m(\cdot)$  is **nearly linear**.



## Setup

- We remove  $m(\cdot)$  and work with a flexible GLM.
- We're still able to calibrate HEI, but with lower variability, more numerical stability, and it is easier to perform variable selection.
- Variable selection allows us to see what HEI components have negligable effect on health status

## Setup

Denote j=1,...,J as the index of the HEI component. There are k=1,...K populations and  $\ell=1,...L_K$  diseases in each population. There are  $i=1,...n_{k\ell}$  individuals with disease  $\ell$  in population k. The data are observed as follows.

- $Y_{ik\ell=1}$  is a binary indicator of disease  $\ell$  for the  $i^{th}$  person in population k .
- Let  $(X_{i1I},...,X_{iJ})$  be the HEI score for person i with components j=1,...,J. J=12 in the 2005-HEI
- Covariates are denoted as  $Z_{ik\ell}$ . This includes age, ethnicity, education, body mass index, smoking status, etc.

# Setup

• We model the probability of someone of population  $\ell$  having disease k as

$$\Pr(Y_{k\ell} = 1 | X_{ijl}, Z_{ik\ell}) = H(\beta_{k\ell} \sum_{j=1}^{J} X_{ijk} \alpha_j + Z_{ik\ell} \theta_{k\ell}), \quad (2)$$

where  $H(\cdot)$  is the logistic function.

 $\bullet$  This model needs a constraint for identifiability. Initially set  $\beta_{11}=-1$ 

## Important Features

$$\Pr(Y_{ik\ell} = 1 | X_{ij}, Z_{ik\ell}) = H(\beta_{k\ell} \sum_{j=1}^{J} X_{ij} \alpha_j + Z_{ik\ell} \theta_{k\ell}),$$

- Three unknown vectors
  - $\alpha$ : The new weights assigned to the 12 HEI components. When  $\alpha \equiv 1$ , the HEI is unchanged.
  - $\beta$ : The effect of diet on disease  $\ell$  in population k
  - $\theta$ : Covariate effect
- Single dietary score,  $\sum_{j=1}^{J} X_i \alpha_j$ , that does not depend on population or disease
- ullet Similarly, eta and heta have no dependence on diet.



# Model Fitting

- ullet This model falls outside of standard GLM software because of the dependence between lpha and eta
- Parameters are estimated using profile likelihood procedure.
  - Fix  $\alpha$  and estimate  $\beta$ ,  $\theta$  with standard GLM methods
  - Fix  $\beta$  and  $\theta$  and maximize likelihood with respect to  $\alpha$ . (very slow!)
- After model converges, set  $\alpha_j^* = \alpha_j/\alpha^T c_{max}$  where  $c_{max}$  is the highest value assigned to a component in the HEI.
  - This constraint on  $\alpha$  forces the <u>new score</u> assigned to someone to be <u>between 0 and 100</u>.
  - $\alpha^*$  is constrained, so  $\beta_{11}$  is identifiable. Refit to get a value for  $\beta_{11}$

- We want to establish if any HEI component has no effect on health status
- We add an **adaptive lasso** (Zou, 2006) penalty to the  $\alpha$  parameters in our negative log likelihood,

$$n^{-1}L_n(\beta,\alpha,\theta) + \lambda \sum_{j=1}^{J} |\widehat{\alpha}_{full,j}|^{-\gamma} |\alpha_j|, \tag{3}$$

where  $\lambda$  is the tuning parameter,  $\gamma$  is a prespecified positive number, and  $\widehat{\alpha}_{\mathit{full},j}$  is an estimate of  $\alpha_j$  which has not been subject to any constraint

- There are several issues with implementing (3), or any regularization for that matter.
- Typical tools for fitting Lasso problems (glmnet or Least Angle Regression Efron (2004)) are not equipt to handle the term  $\sum_j X_{ij\ell} \alpha_j$ . They cannot penalize the  $\alpha$  coefficients without also penalizing the  $\beta$  coefficient.
- Minimizing  $n^{-1}L_n$  is very time consuming.
  - $\bullet$  Solving (3) directly and performing a grid-search for the optimal  $\lambda$  is not realistic

- For a conceptually simple and computation fast solution, we use Wang and Leng's (2007) Least Squares Approximation (LSA).
- The authors show that under very mild regularity conditions, a loss function,  $n^{-1}L_n(\beta) + \sum_p \lambda_p |\beta|$ , can be expressed as an asymptotically equivalent least squares problem:

$$Q(\beta) = (\widetilde{\beta} - \beta)^{T} \widehat{\Sigma}^{-1} (\widetilde{\beta} - \beta) + \sum_{j=1}^{d} \lambda_{j} |\beta_{j}|,$$

where  $\widetilde{\beta}$  is the parameter than minimizes  $L_n(\cdot)$  and  $\widehat{\Sigma}$  is an asymptotically consistent estimate of the covariance matrix of  $\widetilde{\beta}$ .

We approximate our log likelihood as

$$L_{n}(\Theta) + \lambda \sum_{j=1}^{J} |\widehat{\alpha}_{full,j}|^{-\gamma} |\alpha_{j}| \approx$$

$$(\widetilde{\Theta} - \Theta)^{T} \widehat{\Sigma}^{-1} (\widetilde{\Theta} - \Theta) + \lambda \sum_{j=1}^{J} |\widehat{\alpha}_{full,j}|^{-\gamma} |\alpha_{j}|, \quad (4)$$

where 
$$\Theta = (\beta, \alpha, \theta)$$
.

- (4) can be fit quickly for any value of  $\lambda$  with *glmnet* as a Gaussian family problem.
  - Denote  $\widehat{\Theta}_{LSA}(\lambda)$  as the value which minimizes the right hand side of (4) as a function of  $\lambda$ .

# Choice of Tuning Parameter

- Like all Lasso methods, LSA provides a solution for any  $\lambda$ , however the optimal value of  $\lambda$  must be selected.
- Wang and Leng propose a BIC style criterion, namely

$$BIC(\lambda) = (\widehat{\Theta}_{LSA}(\lambda) - \widetilde{\Theta}_{full})\widehat{\Sigma}^{-1}(\widehat{\Theta}_{LSA}(\lambda) - \widetilde{\Theta}_{full}) + g_n/n \log(n),$$
(5)

where  $g_n$  is the number of nonzero coefficients in  $\widehat{\Theta}_{LSA}(\lambda)$ .

• Can be shown that any  $\lambda$  that does not select the true subset of predictors will not be chosen by the BIC criterion.



## **Oracle Properties**

- Variable selection procedures should have the *oracle* property.
- ullet Fan and Li (2001): A selection procedure  $\delta$  has the oracle property if
  - Selection Consistency:  $\Pr\{\widehat{A}(\lambda) = A\} \to 1$
  - Optimal Estimation Rate:  $\sqrt{n}(\widehat{\Theta}_{\delta,\widehat{A}_{\delta}} \Theta_{A}) \rightarrow N(0,\Sigma_{A})$  in distribution, where  $\Theta_{A}$  are the nonzero components of  $\Theta$  and  $\Sigma_{A}$  is the covariance matrix of the limiting distribution of true subset of predictors
- where  $A = \{j : \Theta_j \neq 0\}$  and  $\widehat{A}(\lambda) = \{j : \widehat{\Theta}(\lambda)_{LSA,j} \neq 0\}$  The procedure  $\delta$  should have:

#### **Oracle Properties**

- We had unexpected difficulties right before this presentation.
- Selection consistency is provided in Wang and Leng (2007) with minor assumptions on  $\lambda$
- Conditions from Wang and Leng for optimal estimation rate are not satisfied.
  - However we can still show optimal estimation rate (unexpected difficulties)

#### Results

- We apply our methods to the NIH-AARP Study of Diet and Health.
- This study tracks lung, colorectal, prostate, breast, and ovarian cancer in adults between the ages of 51-75. As well as cause of death for anyone who died during study.
- Mortality is analyzed in two ways: as a mutually exclusive outcome of one of several causes or as the aggregation of any type of mortality.

#### Results

|                   | ļ       | Men         | Women   |             |  |
|-------------------|---------|-------------|---------|-------------|--|
| Description       | # Cases | Percentages | # Cases | Percentages |  |
| Sample size       | 29      | 4,673       | 199,285 |             |  |
| Breast cancer     |         |             | 7,736   | 3.88%       |  |
| Ovarian cancer    |         |             | 759     | 0.38%       |  |
| Prostate cancer   | 23,477  | 7.97%       |         |             |  |
| Colorectal cancer | 4,693   | 1.59%       | 2,291   | 1.15%       |  |
| Lung cancer       | 6,135   | 2.08%       | 3,630   | 1.82%       |  |

Table: Summary of the NIH-AARP data for cancer occurance.

#### Results

|                       | Men     | Women   |
|-----------------------|---------|---------|
| Description           | # Cases | # Cases |
| Sample size           | 219,612 | 169,480 |
| CVD mortality         | 8,112   | 4,028   |
| Cancer mortality      | 12,247  | 7,344   |
| Diabetes mortality    | 269     | 138     |
| Other cause mortality | 10,552  | 6,349   |

Table: Summary of the NIH-AARP data for mortality. Cardiovascular disease has been abbreviated as CVD.

#### Results: Cancer

|                | se   | Unpenalized | Penalized |
|----------------|------|-------------|-----------|
| Whole Grain    | 0.23 | 0.85        | 0.91      |
| Total Fruit    | 0.26 | 1.76        | 2.20      |
| Whole Fruit    | 0.25 | 1.01        | 1.07      |
| Total Grain    | 0.29 | 3.74        | 4.19      |
| Total Veg.     | 0.28 | 1.76        | 1.91      |
| DOL Veg.       | 0.21 | 1.00        | 1.14      |
| Dairy          | 0.08 | 0.78        | 0.82      |
| Meat and Beans | 0.13 | 0.69        | 0.46      |
| Oils           | 0.09 | 0.46        | 0.48      |
| Sodium         | 0.11 | 1.90        | 1.71      |
| Saturated Fat  | 0.09 | 0.77        | 0.82      |
| Empty Calories | 0.06 | 0.17        | 0         |

• Ex: A perfect score of 5 for total grains would now received a score of  $5 \times 3.74 = 18.7$ 

#### Results: Cancer

|            | Mei         | n     | Wom      | en    |
|------------|-------------|-------|----------|-------|
|            | Estimate se |       | Estimate | se    |
| Lung       | -0.35       | 0.02  | -0.33    | 0.024 |
| Colorectal | -0.14       | 0.019 | -0.10    | 0.029 |
| Prostate   | 0.05        | 0.009 | •        |       |
| Breast     |             |       | -0.013   | 0.017 |
| Ovarian    | •           | •     | 0.016    | 0.053 |

Table: Results for  $\widehat{\beta}$  when cancer is the outcome of interest.

# Results: Mortality

|                | se    | Unpenalized | Penalized |
|----------------|-------|-------------|-----------|
| Whole Grain    | 0.22  | 0.88        | 0.84      |
| Total Grain    | 0.27  | 5.55        | 5.90      |
| Whole Fruit    | 0.23  | 0.36        | 0         |
| Total Fruit    | 0.25  | -0.13       | 0         |
| Total Veg.     | 0.27  | 2.17        | 2.37      |
| DOL Veg.       | 0.21  | 0.80        | 0.76      |
| Dairy          | 0.076 | 0.57        | 0.50      |
| Meat and Beans | 0.12  | 1.10        | 0.99      |
| Oils           | 0.09  | 0.60        | 0.52      |
| Sodium         | 0.10  | 1.95        | 1.98      |
| Saturated Fat  | 0.087 | 1.05        | 1.07      |
| Empty Calories | 0.056 | -0.046      | 0         |

Table: Mortality Analysis

# Results: Mortality

|                | se   | Unpenalized | Penalized |
|----------------|------|-------------|-----------|
| Whole Grain    | 0.23 | 0.92        | 0.88      |
| Total Fruit    | 0.26 | -0.09       | 0.00      |
| Whole Fruit    | 0.25 | 0.48        | 0.36      |
| Total Grain    | 0.29 | 5.59        | 5.58      |
| Total Veg.     | 0.28 | 2.11        | 2.11      |
| DOL Veg.       | 0.21 | 0.70        | 0.67      |
| Dairy          | 0.08 | 0.62        | 0.59      |
| Meat and Beans | 0.13 | 1.04        | 1.03      |
| Oils           | 0.09 | 0.64        | 0.62      |
| Sodium         | 0.11 | 1.85        | 1.89      |
| Saturated Fat  | 0.09 | 1.10        | 1.07      |
| Empty Calories | 0.06 | -0.06       | 0.00      |

Table: All Cause Mortality Analysis

## Results: Mortality

|                      | Mei         | n     | Wom      | en    |
|----------------------|-------------|-------|----------|-------|
|                      | Estimate se |       | Estimate | se    |
| Cancer               | -0.16       | 0.017 | -0.12    | 0.022 |
| CVD                  | -0.22       | 0.021 | -0.28    | 0.028 |
| Other                | -0.29       | 0.019 | -0.29    | 0.023 |
| All- Cause Mortality | -0.25       | 0.133 | -0.23    | 0.021 |

Table: Results for  $\widehat{\beta}$  when mortality is the outcome of interest. Cardiovascular disease is abbreviated as CVD.

#### Remarks

- The original HEI is more distorted for mortality than for cancer
  - $\bullet$  The  $\alpha$  coefficients are further from 1, and more coefficients are set to 0.
- Nutritionists have focused on cancer over mortality traditionally. This may be a side effect of this.

# Thank You