Wydział: FiIS	1. Piotr N	nazwisko: Aoszkowicz or Jasiński	Rok: Drugi	Grupa: PN 14:40	Zespół: 1
PRACOWNIA FIZYCZNA WFiIS AGH	Ter	Temat: Opracowanie danych pomiarowych			
Data wykonania: 4.03.2019	Data oddania: 11.03.2019	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 0: Opracowanie danych pomiarowych

Cel ćwiczenia:

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów szybkostrzelności AK47 w grze komputerowej Counter Strike Global Offensive.

Spis treści

1	Wstęp Teoretyczny	1
	1.1 Szybkostrzelność	1
	1.2 Klatka filmowa	1
	1.3 FPS	1
	1.4 Dodatkowe oznaczenia	1
2	Aparatura pomiarowa	1
3	Wykonanie	2
4	Wyniki pomiarów	2
5	Opracowanie wyników	3
	5.1 Błędy grube	3
	5.2 Niepewność pomiaru (typu A)	3
	5.3 Niepewność pomiaru (typu B)	3
	 5.4 Na podstawie uzyskanych pomiarów oblicz szybkostrzelność 5.5 Czy uzyskana wartość szybkostrzelności jest zgodna, w granicach niepewności z 	3
	wartością rzeczywistą?	4
6	6 Wyniki	
7	7 Wnioski	
8	Bibliografia	4

1 Wstęp Teoretyczny

Zamiast dokonywać pomiaru wahadła postanowiliśmy zmierzyć, czy szybkostrzelność broni AK47 w grze Counter Strike Global Offensive odpowiada realnej szybkostrzelności teoretycznej tegoż karabinu na Ziemi. W tym celu potrzebne jest sprecyzowanie kilku pojęć.

1.1 Szybkostrzelność

Szybkostrzelność - liczba strzałów, jaką dany karabin oddanej w ciągu określonego czasu (minuty). Przedstawiona jest wzorem:

$$n_t = \frac{\Delta l}{\Delta t} \tag{1}$$

 Δl - ilość wystrzałów

 Δt - czas trwania wystrzałów

W naszym przypadku często będziemy się posługiwać angielskim skrótem RPM ("Rounds per minute"). [1] $1RPM=1\frac{strzal}{min}$

Szybkostrzelność teoretyczna - szybkostrzelność przy mierzeniu nie bierzemy pod uwagę fizycznych ograniczeń takich pojemność magazynów, czas oraz konieczność przeładowania broni i tym podobne. [1]

Szybkostrzelność praktyczna - średnia szybkostrzelność jaką możemy oddać z danego typu broni w realnych warunkach eksploatacyjnych, gdy broń obsługiwana jest przez dobrze wyszkolonego strzelca. [1]

1.2 Klatka filmowa

Klatka filmowa - obszar na taśmie filmowej, na którym zarejestrowany jest pojedynczy nieruchomy obraz. [2]

1.3 FPS

FPS - ("Frame per second") - miara, która określa ilość klatek na sekundę; wykorzystywana przy określaniu parametrów nagranego filmu.

1.4 Dodatkowe oznaczenia

Aby jednoznacznie odczytywać wyniki, przyjęliśmy poniższe dodatkowe oznaczenia:

 k_{29} - Numer klatki, gdy w magazynku broni znajduje się 29 kul [-] k_1 - Numer klatki, gdy w magazynku broni znajduje się 1 kula [-] $\Delta k_{28} = |k_1 - k_{29}|$ - Ilość klatek potrzebnych na oddanie 28 strzałów [-] Δt_{28} - Czas potrzebny na oddanie 28 strzałów - obliczany ze wzoru 1 [s]

2 Aparatura pomiarowa

W przypadku naszego doświadczenia pomiary będą dokonywane na komputerze przy pomocy dwóch programów:

- Open Broadcast Software Studia (64bit) wersja 23.0.1
- Sony Vegas PRO wersja 16.0

3 Wykonanie

Na początku, aby uniknąć dużych niepewności pomiarowych, ustawiliśmy grę, w taki sposób, aby ilość wyświetlanych klatek na sekundę wynosiła zawsze 60. Jest to powiązane z naszymi nagraniami - one również są wykonywane w 60 klatkach na sekundę. To ograniczenie zostało narzucone poprzez program nagrywający.

Wykonujemy kilkanaście (15) pomiarów, które uzyskujemy dzięki poniższym czynnościom:

- Wykonanie nagrania, która przedstawia wystrzał 30 kul (pełnego magazynka).
- Spowalniamy film maksymalnie, tak, abyśmy mogli poruszać się po nim "klatka po klatce".
- Znalezienie klatki, w której po raz pierwszy widzimy ilość pozostałych kul jako 29 (czyli
 pomijamy pierwszy wystrzał, gdyż nie jesteśmy pewni, w którym momencie dokładnie
 nastąpił).
- Znalezienie klatki, w której po raz pierwszy widzimy ilość pozostałych kul jako 1 (czyli pomijamy ostatni wystrzał, gdyż nie jesteśmy pewni, w którym momencie nastąpił).
- Zapisujemy wyniki w celu przyszłej analizy.

4 Wyniki pomiarów

Aby dobrze zrozumieć wyniki pomiarów polecamy zerknąć na oznaczenia wprowadzone we wstępie teoretycznym.

t [s]
. F. 1
80s
80s
80s
78s
80s
80s
80s
80s
78s
80s
80s
80s
83s
78s
82s

Tabela 1: Tabela zawierająca wyniki pomiarów istotnych klatek

5 Opracowanie wyników

5.1 Błędy grube

Nasze pomiary nie zawierają błędów grubych - specyfika doświadczenia nie pozwala na uzyskanie takiego błędu.

5.2 Niepewność pomiaru (typu A)

Zgodnie z informacjami zawartymi w pomocy przy opracowaniu danych pomiarowych [4] niepewność pomiaru czasu typu A obliczamy jako estymator odchylenia standardowego średniej zgodnie ze wzorem:

$$u(\Delta t) = \sqrt{\frac{\sum (t_i - \bar{t})^2}{n(n-1)}}$$
 (2)

W naszym przypadku $u(\Delta t) = 0.045s$.

5.3 Niepewność pomiaru (typu B)

W związku z tym, iż gra czasami (mimo specjalnych ustawień) wyświetlała obraz w 59 klatkach na sekundę, przyjęliśmy, iż niepewność pomiarowa (ilości klatek) wynosi 3. Niepewność obliczenia ilości klatek jest zerowa, stąd: $u_b(\Delta l) = 0$ oraz $u_b(\Delta t) = \frac{0.05}{\sqrt{3}} = 0.02s$ Na mocy prawa przenoszenia niepewności pomiarowych możemy finalnie wyliczyć niepewność

$$u_b(\Delta t) = \sqrt{\left(\frac{1}{\Delta t} * u(\Delta t)^2 + \left(\frac{\Delta l}{(\Delta t)^2} * u(\Delta t)\right)^2} = 0.08s$$

5.4 Na podstawie uzyskanych pomiarów oblicz szybkostrzelność

Nr pomiaru	Szybkostrzelność	teoretyczna	(wzór	1)
Ni poimaru	[RPM]			
1	600			
2	600			
3	600			
4	603			
5	600			
6	600			
7	600			
8	600			
9	603			
10	600			
11	600			
12	600			
13	593			
14	603			
15	596			

Tabela 2: Tabela zawierająca obliczoną szybkostrzelność na podstawie danych z każdego pomiaru

5.5 Czy uzyskana wartość szybkostrzelności jest zgodna, w granicach niepewności z wartością rzeczywistą?

Odpowiedź na to pytanie znajduje się w sekcji wyniki.

6 Wyniki

Naszym wynikiem jest uśredniona szybkostrzelność otrzymana na podstawie wyników z tabeli 2 zgodnie ze wzorem: $\overline{s}=\frac{1}{15}*\sum_{n=1}^{15}s_i$

Uzyskany wynik 600.01 RPM.

7 Wnioski

Obliczmy niepewność rozszerzoną daną wzorem: $U(n_t) = k * u_b(n_t) = 2 * \frac{60*0.08}{28} = 0.17RPM$ Zgodnie ze źródłami przedstawionymi w bibliografii szybkostrzelność teoretyczna karabinka AK47 powinna wynosić 600 RPM [3]. Biorąc pod uwagę tę wartość możemy wykonać test statystyczny:

$$|n - n_t| \le U(n_t)$$

 $|600 - 600.01| \le 0.17$
 $0.01 \le 0.17$

Zgodnie z testem statystycznym otrzymaliśmy poprawny wynik w granicy błędu pomiarowego.

8 Bibliografia

- [1] https://pl.wikipedia.org/wiki/Szybkostrzelność
- [2] https://encyklopedia.pwn.pl/haslo/klatka-filmowa;3922730.html
- [3] https://pl.wikipedia.org/wiki/Karabinek'AK
- $[4] \ http://www.fis.agh.edu.pl/~pracownia~fizyczna/pomoce/OpracowanieDanychPomiarowych.~pdf$