סיבוכיות- תרגול 10

 $\mathit{DSPACE}(s(n)^c) \subset \mathit{DSPACE}(s(n)^{c+1})$ מתקיים $c \in \mathbb{N}$ ולכל $s(n) \geq \log n$ תזכורת:

 $.P \neq DSPACE(n)$ תרגיל: הוכיחו כי

פתרון: נניח בשלילה כי P = DSPACE(n) ונראה כי P = DSPACE(n) בסתירה למשפט היררכית פתרון: נניח בשלילה כי $S \in DSPACE(n^2)$ מקום. מ"ט $S \in DSPACE(n^2)$ מקום. תהי

נגדיר שפה חדשה $S' = \{x10^{|x|^2} \mid x \in S\}$. נשים לב כי $S' \in DSPACE(n)$, ניתן לבדוק אם $S' = \{x10^{|x|^2} \mid x \in S\}$, ניתן לבדוק אם הוא מהצורה $y = x10^{|x|^2}$, ואם כן, לסמלץ את את M(x) ולהחזיר את תשובתה. המקום הנדרש סה"כ הוא $O(|x|^2) = O(|y|)$

לפי ההנחה, מתקיים כי $S'\in P$. לכן קיימת מ"ט פולינומית M' המכריעה את S'. כעת, נראה כי $S'\in P$. נבנה מ"ט M'' הפועלת באופן הבא: בהנתן קלט M'' יוצרת את המחרוזת $y=x10^{|x|^2}$ ומסמלצת את M''(y). זמן הריצה M'' פולינומי ב-|x| ולכן גם פולינומי ב-|x|. לכן |x|

. בסתירה בסתירה נקבל כי $DSPACE(n^2) \subseteq DSPACE(n)$. כלומר, $S \in DSPACE(n)$ בסתירה

אלגוריתמים רנדומיים

שתי הגדרות שקולות למ"ט הסתברותית:

- 1) מודל אונליין- מ"ט ל"ד, כך שבכל מעבר שאינו מוגדר באופן יחיד, המכונה מטילה מטבע ובהסתברות שוה בוחרת אחת מהאפשרויות.
 - 2) מודל אופליין- מ"ט דטר' המקבלת קלט נוסף, שהוא סדרת הטלות מטבע אקראיות.

טעות חד-כיוונית

הרצה בזמן פולינומי M הרצה בזמן פולינומי RP אם קיימת מ"ט הסתברותית M הרצה בזמן פולינומי ומקיימת:

$$x \in S \Longrightarrow \Pr[M(x) = 1] \ge 1 \setminus 2$$

$$x \notin S \Longrightarrow \Pr[M(x) = 0] = 1$$

הרצה בזמן פולינומי M הרצה בזמן פולינומי coRP אם קיימת מ"ט הסתברותית M הרצה בזמן פולינומי ומקיימת:

$$x \in S \Longrightarrow \Pr[M(x) = 1] = 1$$

$$x \notin S \Longrightarrow \Pr[M(x) = 0] \ge 1/2$$

טעות דו-כיוונית

הרצה בזמן פולינומי מ"ט הסתברותית M הרצה בזמן פולינומי אם קיימת מ"ט הסתברותית S שייכת למחלקה ומקיימת:

$$\forall x, \Pr[M(x) = \chi_S(x)] \ge 2/3$$

הערות

- p ניתן להקטין את ההסתברות לטעות (בכל המחלקות הנ"ל) ל $\frac{1}{2^{p(|x|)}}$ עבור כל פולינום
 - $.RP \subseteq NP$
 - $.RP \subseteq BPP \quad \bullet$
 - לא ידוע. NP ל- NP לא ידוע.
 - $.BPP \subseteq PSPACE \bullet$

דוגמה לאלגוריתם הסתברותי

נגדיר את השפה הבאה:

.MAT-VERIFY = $\{(A,B,C) \mid A \cdot B = C \text{ המקיימות } n \times n$ הן מטריצות בגודל $A,B,C\}$

ניתן להכריע את השפה באופן נאיבי בזמן $O(n^3)$. נראה אלגוריתם הסתברותי פשוט הרץ בזמן $O(n^2)$ ומראה כי MAT-VERIFY $\in coRP$

. ונחזיר 1 אם הם שווים. $(A\cdot(Br))$ ואת $(A\cdot(Br))$ ואת הם שווים. $r\in\{0,1\}^n$ ונחזיר 1 אם הם שווים.

.1 עבור קלטים בשפה מתקיים $(A\cdot (Br))=(A\cdot B)r=Cr$, ולכן $A\cdot B=C$ עבור קלטים בשפה מתקיים

עבור קלטים שלא בשפה מתקיים $A\cdot B\neq C$. נחשב את ההסתברות לטעות. נסמן $D=A\cdot B-C$, ונשים לב כי $A\cdot B\neq C$ עבור קלטים שלא בשפה מתקיים $A\cdot B\neq C$. מכיוון ש- $AB\neq C$, אזי $AB\neq C$, ולכן קיים $AB\neq C$. נניח בה"כ כי $AB\neq C$. נניח בה"כ כי $AB\neq C$.

$$\begin{split} \Pr[Dr = 0 | D \neq 0] \leq \Pr[(Dr)_1 = 0 | d_{11} \neq 0] &= \Pr[(d_{11}, \dots d_{1n})(r_1, \dots, r_n) = 0 | d_{11} \neq 0] = \\ \Pr[d_{11}r_1 + \dots + d_{1n}r_n = 0 | d_{11} \neq 0] &= \Pr[d_{11}r_1 = -(d_{12}r_2 + \dots + d_{1n}r_n) | d_{11} \neq 0] = \\ \Pr\Big[r_1 = -\frac{d_{12}r_2 + \dots + d_{1n}r_n}{d_{11}} | d_{11} \neq 0\Big] \leq \frac{1}{2} \end{split}$$

אי-השיוויון האחרון נכון כי אחרי שבחרנו את r_2,\dots,r_n , הערך בצד ימין נקבע והוא או 0 או 1 או משהו אחר. אם הערך הנ"ל אינו 0 או 1, אז ההסתברות הנ"ל שווה 0, אחרת היא 1.