```
In [ ]: ### Final Project DTSC 670
        # Abigail Rhea
        # 2/17/2024
In [1]: # import necessary pandas and numpy imports
        import pandas as pd
        import numpy as np
        # Run necessary code to guarantee file runs in CodeGrade
         pd.set_option('display.max_columns', 20)
         np.set_printoptions(suppress=True)
        ## FRAME THE PROBLEM AND LOOK AT THE BIG PICTURE
In [2]:
In [3]:
        ### 1) I will create a robust machine learning regression model to determine the final
        \# of the student population. This will assist the school system in determining which s
        # are doing well in their studies and which students need more assistance. This soluti
        # will look at many different features within the dataset to see if there is a correla
        # between said features and the final grade of the students.
        ### 2 & 3) This model uses a form of regression that requires supervised machine learn
        # Supervised machine learning just means that we use labeled datasets that can train a
        # to classify the data and make predictions and measure prediction accuracy over time.
        # By using a regression model, we can look at the relationship between independent and
        # variables. Our end goal is to train the model to learn the impact of these relations
        # variables (i.e. the features listed below and the final grade of the last term, G3)
        # based on those impacts.
        ### 4) I will use a few select regression tasks to predict the squared error of the ma
        # I've chosen: Linear Regression, Decision Tree Regression, Random Forest Regression
        ## GET THE DATA
In [4]:
In [5]: ### 1) import student-mat.csv file and name the DataFrame student_info
        student_info = pd.read_csv('student-mat.csv')
In [6]: student_info.head()
Out[6]:
           school sex
                       age address famsize Pstatus Medu Fedu
                                                                  Mjob
                                                                          Fjob ... goout Dalc
        0
              GP
                    F
                       18.0
                                 U
                                       GT3
                                                Α
                                                            4 at_home
                                                                       teacher
                                                                                            1
              GP
                      17.0
                                       GT3
                                                Τ
                                                             1 at home
                                                                         other
                                                                                           2
        2
              GΡ
                      15.0
                                 U
                                       LE3
                                                Т
                                                             1 at home
                                                                         other
        3
              GΡ
                      15.0
                                       GT3
                                                                 health
                                                                       services
                                                Τ
              GΡ
                    F NaN
                                       GT3
                                                       3
                                                                  other
                                                                                      2
                                                                                            1
                                                                         other
        5 rows × 35 columns
```

In [7]: # It is noteworthy that the median value for final grade is 11.
The average final grade is 10.4.

student_info.describe()

Out[7]:		age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime
	count	383.000000	395.000000	395.000000	395.000000	395.000000	395.000000	395.000000	395.000000
	mean	16.699739	2.749367	2.521519	1.448101	2.035443	0.334177	3.944304	3.235443
	std	1.280615	1.094735	1.088201	0.697505	0.839240	0.743651	0.896659	0.998862
	min	15.000000	0.000000	0.000000	1.000000	1.000000	0.000000	1.000000	1.000000
	25%	16.000000	2.000000	2.000000	1.000000	1.000000	0.000000	4.000000	3.000000
	50%	17.000000	3.000000	2.000000	1.000000	2.000000	0.000000	4.000000	3.000000
	75%	18.000000	4.000000	3.000000	2.000000	2.000000	0.000000	5.000000	4.000000
	max	22.000000	4.000000	4.000000	4.000000	4.000000	3.000000	5.000000	5.000000

In [89]: ### 2) Check size and type of data
print(student_info.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 395 entries, 0 to 394
Data columns (total 35 columns):
    Column
                 Non-Null Count Dtype
---
    -----
                 -----
                 395 non-null
0
    school
                                object
1
                                object
    sex
                 395 non-null
2
    age
                 383 non-null
                                float64
3
                 395 non-null
                                 object
    address
4
    famsize
                 395 non-null
                                object
5
    Pstatus
                 395 non-null
                                object
6
    Medu
                 395 non-null
                                 int64
7
    Fedu
                 395 non-null
                                int64
8
    Mjob
                 395 non-null
                                object
9
    Fjob
                 395 non-null
                                object
10 reason
                 395 non-null
                                object
11 guardian
                 395 non-null
                                object
12 traveltime
                 395 non-null
                                 int64
13 studytime
                 395 non-null
                                int64
14 failures
                 395 non-null
                                int64
    schoolsup
                 395 non-null
15
                                object
16 famsup
                 395 non-null
                                object
17
    paid
                 395 non-null
                                object
                                object
18 activities 395 non-null
19 nursery
                 395 non-null
                                object
20 higher
                 395 non-null
                                object
21 internet
                 395 non-null
                                object
22 romantic
                 395 non-null
                                object
```

 29
 absences_G1
 381 non-null
 float64

 30
 absences_G2
 381 non-null
 float64

 31
 absences_G3
 381 non-null
 float64

 32
 G1
 395 non-null
 int64

 33
 G2
 395 non-null
 int64

 34
 G3
 395 non-null
 int64

395 non-null

395 non-null

395 non-null

395 non-null

395 non-null

395 non-null

int64

int64

int64

int64

int64

int64

dtypes: float64(4), int64(14), object(17)

memory usage: 108.1+ KB

23 famrel

24 freetime

25 goout

28 health

26 Dalc

27 Walc

None

```
In [9]:
        ### 3) The features in this dataset include:
         # school - the student's school: GP or MS
         # sex - the student's sex: F or M
         # age - the student's age: between 15 and 22
         # address - the student's home adress type: U for urban & R for rural
         # famsize - the student's family size: LE3 for 3 or less & GT3 for 4 or more people
         # Pstatus - parent's status: living together or apart (T or A)
         # Medu - mother's education: 0 - none, 1 - up to 4th grade, 2-up to 9th grade, 3-seco
            # 4-higher education
         # Fedu - father's education: same as mother's
         # Mjob - mother's job
         # Fjob - father's job
         # reason - reason for choosing a school: close to "home", "reputation", "course" opti
         # guardian - student's guardian (mother, father, other)
         # traveltime - from home to school ( 1: 15 min or less, 2: 15-30 mins, 3:30mins to 1h
         # studytime - weekly (1: <2hr, 2: 2-5 hr, 3:5-10hr, 4: >10hr)
```

```
# failures - number of failures (n if 1<=n< 3, else 4)
 # schoolsup - extra edu support (yes or no)
# famsup - family support ( yes or no)
# paid - extra paid classes (yes or no)
# activities - extra activities (yes or no)
# nursey - attended nursey school (yes or no)
# higher - wants to reach higher edu (yes or no)
# internet - home access (yes or no)
# romantic - in a relationship (yes or no)
# famrel - quality of family relationships ( from 1 to 5; very bad to excellent)
 # freetime - free time after school (from 1 to 5; low to very high)
# goout - going out with friends (from 1 to 5; very low to very high)
# Dalc - workday alcohol consumption(1 to 5; low to high)
# Walk - weekend alcohol consumption(1 to 5; low to high)
# health - current health status (1 to 5; very bad to very good)
# absences_G1 - number of school absences for G1 term
# ansences_G2 - absences in G2 term
# absences_G3 - absences in G3 term
# G1 - term 1 grade (numerical value between 0-20)
# G2 - term 2 grade (numerical value between 0-20)
### 4) The target is the grade for term G3: numeric value between 0-20
```

```
In [11]: ## EXPLORE THE DATA TO GAIN INSIGHTS
```

```
In [12]: ### Explore the training set attributes and there characteristics
    # Let's plot a histogram of all the numerical attributes in the dataframe.

import matplotlib.pyplot as plt

student_info.hist(bins=50, figsize=(20,15))
plt.show()
```


In [13]: ### Thoroughly study training set attributes and characteristics.

A few things I notice from the above plots are that absences increase in the last pe
The grade scores in term one do not include as many zeros, but the amount of zeros i
Most of the students live close by to their school of choice.
Family relationships are generally high.
The grades for all three periods are relatively evenly skewed.
Most student's study an average of 2 hours and there are very few failures.
Students state their mothers comsume alchohol more than fathers.

In [14]: ### Produce at least four visualizations

```
In [15]: plt.bar(X_train['G1'], (X_train['absences_G1']))

plt.title("Period 1 Grades and Absences")
plt.xlabel("1st Period Grade")
plt.ylabel("1st Term Absences")

# The bar chart below shows the students grade in period 1 and the count of absences
# in period 1. The plot shows that the highest number of absences gives
# a grade somewhere between 9 and 11.
```

Out[15]: Text(0, 0.5, '1st Term Absences')

Period 1 Grades and Absences


```
In [16]: def higher_education(mom):
    if mom <= 3 :
        return 0
    if mom == 4 :
        return 1

X_train['Mhigher_edu'] = X_train.apply(lambda x: higher_education(x["Medu"]), axis=1)

In [17]: # Now let's use a different library to view some data. I will import the seaborn
# Library. It provides some more options for plotting.</pre>
```

```
[17]: # Now let's use a different library to view some data. I will import the seaborn
# library. It provides some more options for plotting.

import seaborn as sns

sns.barplot(x='Mhigher_edu', y='G1', data=X_train, hue='famrel')
plt.title("Family Relations and Grades")
plt.xlabel("Education of mother")
plt.ylabel("1st Period Grades")

plt.show()

# This bar plot represents the education of the mother. I've applied a function to
# a new column in the student_train dataset that scores 1 if
# the mother received any higher education. All other forms of education fall under th
# I wanted to see if this is an important factor on the relationship the
# student has with the family and how that affects the student's final grade. I was su
# The higher grades came from student's whose mother did receive a higher edu, but who
# on the quality of the family relationships. Otherwise, overall, student's whose moth
# scored slightly higher in the 1st term.
```

Family Relations and Grades


```
In [18]: sns.lineplot(x="studytime", y="G2", data=X_train, hue='internet', palette=['purple', 'plt.title("Internet Access and Study Time")
   plt.xlabel("Study Time in hours")
   plt.ylabel("2nd Period Grades")

plt.show()

# In this line plot, we can see the affects of internet access at home to the amount of # We also see how that amount of study time affects the grades in the 2nd period. It l # have steady study habits, with only a slight increase in time. We also see that the # also relatively steady. Whereas, the student's who don't have access to internet stu # to student's who don't have internet access and don't study otherwise.
```

Internet Access and Study Time


```
In [19]: sns.histplot(x='studytime', y='age', data=X_train, hue='higher', palette=['green', 'or plt.title("Study time and the desire for a higher education")

plt.xlabel("Study Time in hours")

plt.show()

# As we can see on this histogram, the desire to reach a higher education affects
# study time immensely. We can see that student's of all ages who don't want to
# receive any higher education, don't spend as much time studying. I'll draw another
# barplot below to show the correlation between student's who don't wany education a
# and their parents level of education received. I have a feeling this will affect
# the final grade of the student.
```

Study time and the desire for a higher education


```
In [20]: sns.barplot(x='Mhigher_edu', y="G1", data=X_train, hue="higher")

plt.title("Striving for higher education")
plt.xlabel("Mother's Level of Education")
plt.ylabel("1st Period Grade")

plt.show()

# Here we can see that mother's having a higher education does not increase
# the student's desire for a higher education. In fact, either way, the student's
# seem to deny wanting a higher education in both scenarios.
```

Striving for higher education

- In [21]: # I'm going to drop the Mhigher_edu columns that we added earlier so I don't mess
 # up my calculations.
 X_train = X_train.drop('Mhigher_edu', axis=1)
- In [22]: ### Study correlations between attributes
 # Correlation: we can pick a features and see how other features correlate with it.
 # A score of -1 represents a negative correlation, while +1 represents a high correlat
 # between two features. A value closer to 0 shows that there is little to no correlati
 corr_matrix = student_info.corr(numeric_only=True)
- In [23]: # Let's look and see how the final grade correlates with each feature.
 # The negative values just mean that the relationship is inversely related.
 # If one goes up, the other goes down and vice versa.

 corr_matrix['G3'].sort_values(ascending=False)

```
1.000000
Out[23]:
          G2
                          0.904868
          G1
                          0.801468
          Medu
                          0.217147
          Fedu
                          0.152457
          studytime
                          0.097820
          absences_G3
                          0.067294
          famrel
                          0.051363
          absences_G1
                          0.012485
          absences_G2
                          0.012485
          freetime
                          0.011307
          Walc
                         -0.051939
          Dalc
                         -0.054660
          health
                         -0.061335
          traveltime
                         -0.117142
          goout
                         -0.132791
                         -0.152762
          age
          failures
                         -0.360415
          Name: G3, dtype: float64
```

In [24]: # Let's also plot the corr matrix. A visual is always a good idea. We'll just
choose the attribute that is most closely related to the final grade, term2 grade (G

from pandas.plotting import scatter_matrix

student_info.plot(kind='scatter', x="G3", y="G2", alpha=0.5)

Out[24]: <Axes: xlabel='G3', ylabel='G2'>

In [25]: # Interesting! We have a great visual of the positive relationship between the # student's G2 grade and their G3 or final grade.

```
## PREPARE THE DATA
In [26]:
In [30]: ### Fill in missing values
         # I want to remove null values from my features set and replace them with the mean val
         # I will use an imputer from the SciKit library that will replace the null values from
         # numerical objects and replaces it with the mean of those values.
         from sklearn.impute import SimpleImputer
         imputer = SimpleImputer(strategy='median')
         student_num = X_train.select_dtypes(include=[np.number])
         imputer.fit(student_num)
         X = imputer.transform(student_num)
In [31]: | ### Ordinal Encoder
         # Now, lets gather the categorical or object attributes and convert them to numeric.
         # I will use another class from Scikit termed OrdinalEncoder.
         from sklearn.preprocessing import OrdinalEncoder
         ordinal encoder = OrdinalEncoder()
         student_cat = X_train.select_dtypes(exclude=[np.number])
         student cat_encoded = ordinal_encoder.fit_transform(student_cat)
In [32]: ### OneHotEncoder
         # The one hot encoder works on categorical data by creating binary attributes
         # per category. For instance, when looking at categorical variables, the encoder
         # uses a 1 or 0 to show whether the category is present or not.
         from sklearn.preprocessing import OneHotEncoder
         cat encoder = OneHotEncoder()
         student_cat_1hot = cat_encoder.fit_transform(student_cat_encoded)
         student_cat_1hot.toarray()
         array([[0., 1., 1., ..., 1., 0., 1.],
Out[32]:
                [0., 1., 1., \ldots, 1., 0., 1.],
                [1., 0., 1., ..., 1., 0., 1.],
                . . . ,
                [1., 0., 0., ..., 1., 0., 1.],
                [1., 0., 0., ..., 1., 0., 1.],
                [0., 1., 0., ..., 1., 0., 1.]]
In [33]: ### Custom Transformer
         # This customer transformer will perform by combining certain attributes.
         # I want to create one that, if True, will combine the sum of the absence columns
         # and create a new colum with that sum.
         # Then those individual columns will be dropped.
         absences_G1, absences_G2, absences_G3 = 0,1,2
         G2, G3 = 8,9
         from sklearn.base import BaseEstimator, TransformerMixin
         class StudentTransformer(BaseEstimator, TransformerMixin):
             def __init__(self, drop_G1_G2=True):
                 self.drop_G1_G2 = drop_G1_G2
             def fit(self, X, y=None):
                 return self
             def transform(self, X):
                   if self.drop_G1_G2:
```

```
machine learning final project
                     X=np.delete(X, [8,9], 1)
                   total_absences = X[:,absences_G1] + X[:, absences_G2] + X[:, absences_G3]
                   X = np.delete(X, [0,1,2], 1)
                   return np.c_[X]
In [34]: attr_adder = StudentTransformer(drop_G1_G2 = False)
         student_extra_attributes = attr_adder.transform(X_train.values)
In [35]: ### Feature Scaling
         # Now, I will create pipelines for the numerical columns in the student
         # training set. Pipelines help in the transformation process by keeping
         # the processes occuring in the right order. We do it for both numerical and
         # categorical attributes in the training data sets.
         # The standard scaler in this pipeline will ensure that values stay within a range
         # by subtracting the mean by each value and then dividing it by the standard
         # deviation. Then there is unit variance.
         from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import StandardScaler
         num_pipeline_drop = Pipeline([
              ('imputer', SimpleImputer(strategy='median')),
              ('attribs_adder', StudentTransformer()),
              ('std_scaler', StandardScaler()),
         ])
         student num tr drop= num pipeline drop.fit transform(student num)
In [36]: ### Create Transformation Pipelines
         num_pipeline = Pipeline([
             ('imputer', SimpleImputer(strategy='median')),
              ('attr_adder', (StudentTransformer(drop_G1_G2 = False))),
              ('std scaler', StandardScaler()),
         ])
         student_num_tr = num_pipeline.fit_transform(student_num)
In [37]: from sklearn.preprocessing import OneHotEncoder
         from sklearn.pipeline import make_pipeline
In [39]: ### Column Transformer
         # The column transformer below can now take both numerical and categorical
         # attributes and transform them in one transformation. Our above pipelines
         # made this process easier for the column transformer to work in this way.
         # I will separate numerical and categorical attributes from the X\_training
         # set once more then apply them alongside their respective pipelines from above.
         from sklearn.compose import ColumnTransformer
```

categorical_attributes = X_train.select_dtypes(exclude=[np.number]).columns

("num", num_pipeline_drop, numerical_attributes),

numerical_attributes = list(student_num)

preprocessing_drop = ColumnTransformer([

```
("cat", OneHotEncoder(), categorical_attributes),
             ],
         ### Prepared data excluding G1/G2
         X_train_prepared_drop = preprocessing_drop.fit_transform(X_train)
         preprocessing = ColumnTransformer([
In [40]:
                 ("num", num_pipeline, numerical_attributes),
                ("cat", OneHotEncoder(), categorical_attributes),
             ],
          )
         ### Prepared data including G1/G2
         X train prepared = preprocessing.fit transform(X train)
In [41]:
         ### Shape of transformed training set with G1 and G2 present
         print(X_train_prepared.shape)
         (316, 17)
In [42]: ### Shape of transformed training set with G1 and G2 absent
         print(X_train_prepared_drop.shape)
         (316, 15)
         ## EXPLORE MANY DIFFERENT MODELS AND SHORTLIST PROMISING MODELS
In [43]:
In [44]: | ### 1: We will start with a basic Linear Regression Model
         # This model will run the X_train_prepared data that still contains G1 & G2
         from sklearn.linear_model import LinearRegression
         lin_reg = LinearRegression()
         lin_reg.fit(X_train_prepared, y_train)
Out[44]: ▼ LinearRegression
         LinearRegression()
In [45]: | ### Regression with G1 and G2
         # Now, let's test some data from our training set to see how well it predicts.
         some_data = X_train.iloc[:5]
         some labels = y train.iloc[:5]
         some_data_prepared = preprocessing.transform(some_data)
         print("Predictions:", lin_reg.predict(some_data_prepared))
         # Not an awful set of predictions. The final grade is averaged at 10.4 and the median
         Predictions: [12.79406988 14.22648735 5.02319364 8.68213029 8.26442581]
In [46]: # Now, let's run a calculation of the RMSE (root mean squared error).
         from sklearn.metrics import mean_squared_error
         student_predictions = lin_reg.predict(X_train_prepared)
         lin_mse = mean_squared_error(y_train, student_predictions)
         lin_rmse = np.sqrt(lin_mse)
```

```
lin_rmse
         # This root mean squared error is stating that the error +- 1.828
         # Because the actual value is quite small, this may be too much of a an error window.
         # We will do some more calcs before deciding.
         1.8286639984513686
Out[46]:
In [47]: ### Cross_Validation with G1/G2
         # Cross-validation works by separating the training data yet again into numerous
         # subsets. Then, it performs the decision tree regressor on all of those subsets
         # returns the scores of each. Since the dataset is already small, I will program
         # the cross-val to separate the training data into 4 subsets.
         from sklearn.model selection import cross val score
         scores = cross_val_score(lin_reg, X_train_prepared, y_train,
                                  scoring="neg_mean_squared_error", cv=4)
         lin_rmse_scores = np.sqrt(-scores)
         def display_scores(scores):
             print("Scores:", scores)
             print("Mean:", scores.mean())
              print("Standard deviation:", scores.std())
         display_scores(lin_rmse_scores)
         Scores: [1.94408844 1.64665972 2.04978646 1.98163019]
         Mean: 1.90554120369544
         Standard deviation: 0.15419285109971254
In [48]: # These are a bit higher than the original decision tree. It says that the mean error
          # is 1.905 +- .1541
In [49]: ### Linear Regression without G1/G2
         # Now we will run the same linear regression task on the G1 and G2 dropped data.
         lin_reg_drop = LinearRegression()
         lin_reg_drop.fit(X_train_prepared_drop, y_train)
Out[49]:
         ▼ LinearRegression
         LinearRegression()
In [50]: some_data_drop = X_train.iloc[:5]
         some_labels_drop = y_train.iloc[:5]
         some data prepared drop = preprocessing drop.transform(some data drop)
         print("Predictions:", lin_reg_drop.predict(some_data_prepared_drop))
         # These predictions are somewhate similar to the regression predictions from above.
         Predictions: [12.78592761 11.87854446 5.1404602 11.23618363 10.58872911]
In [51]: | student_predictions_drop = lin_reg_drop.predict(X_train_prepared_drop)
         lin_mse_drop = mean_squared_error(y_train, student_predictions_drop)
         lin_rmse_drop = np.sqrt(lin_mse_drop)
         lin_rmse_drop
         # Wow, that mean squared error goes up significantly when G1 and G2 are dropped from t
         # data set.
```

```
4.082512889940057
Out[51]:
In [52]: ### Cross_Validation without G1/G2
         scores_drop = cross_val_score(lin_reg_drop, X_train_prepared_drop, y_train,
                                  scoring="neg mean squared error", cv=4)
         lin_rmse_scores_drop = np.sqrt(-scores_drop)
         def display_scores(scores_drop):
             print("Scores:", scores drop)
             print("Mean:", scores_drop.mean())
              print("Standard deviation:", scores_drop.std())
         display_scores(lin_rmse_scores_drop)
         # It seems that keeping the G1 and G2 columns lessen the error window.
         Scores: [4.17897699 4.3569983 4.63869687 4.33120778]
         Mean: 4.376469985909966
         Standard deviation: 0.16597758691556178
In [53]: ### Decision Tree Regressor with G1/G2
         # Now, we will train a decision tree regressor.
         # This regressor is able to find
         # more complex, non-linear relationships.
         # Let's start with the training data that still has G1 and G2 present.
         from sklearn.tree import DecisionTreeRegressor
         tree reg = DecisionTreeRegressor()
         tree_reg.fit(X_train_prepared, y_train)
Out[53]: ▼ DecisionTreeRegressor
         DecisionTreeRegressor()
In [54]: # Now let's run our training set through the model and see what comes up.
         student_predictions = tree_reg.predict(X_train_prepared)
         tree_mse = mean_squared_error(y_train, student_predictions)
         tree_rmse = np.sqrt(tree_mse)
         tree rmse
         0.0
Out[54]:
         # We received 0.0 error window! This seems great. However, it has been stated that
In [55]:
         # a zero error may actually be a case of data overfitting. So, we will do a cross-vali
         # before making any calls.
In [56]: ### Cross_Validation with G1/G2
         # I'd like to perform a cross_val_score on this regression to get a standard deviation
          # This can help me decide if such a low root mean squared error is accurate or
         # if the std dev will nulify it by being a hefty value.
         scores = cross_val_score(tree_reg, X_train_prepared, y_train,
                                  scoring="neg_mean_squared_error", cv=4)
```

tree_rmse_scores = np.sqrt(-scores)

```
def display scores(scores):
In [57]:
             print("Scores:", scores)
             print("Mean:", scores.mean())
              print("Standard deviation:", scores.std())
         display_scores(tree_rmse_scores)
         # Hmmm, the scores are worse than the linear regression model. These values below
         # are saying that the mean value is 2.4701 +- 0.3933.
          # The std dev is quite high on top of a high RMSE.
         Scores: [2.38932224 1.90601978 2.58525517 3.
                                                              ]
         Mean: 2.4701492969906025
         Standard deviation: 0.39330848516257927
         ### Decision Tree Regressor without G1/G2
In [58]:
         # Let's run it again, but without G1 and G2 in the data.
         tree reg drop = DecisionTreeRegressor()
         tree_reg_drop.fit(X_train_prepared_drop, y_train)
Out[58]: ▼ DecisionTreeRegressor
         DecisionTreeRegressor()
In [59]: student_predictions_drop = tree_reg_drop.predict(X_train_prepared drop)
         tree_mse_drop = mean_squared_error(y_train, student_predictions_drop)
         tree_rmse_drop = np.sqrt(tree_mse_drop)
         tree_rmse_drop
         # This produces a decent error, not even 1, but the score is worse when the
         # G1 and G2 columns are dropped.
         0.5979924219493594
Out[59]:
In [60]: ### Cross_validation without G1/G2
         scores_drop = cross_val_score(tree_reg_drop, X_train_prepared_drop, y_train,
                                  scoring="neg_mean_squared_error", cv=4)
         tree_rmse_scores_drop = np.sqrt(-scores_drop)
In [61]: def display_scores(scores_drop):
             print("Scores:", scores_drop)
             print("Mean:", scores_drop.mean())
              print("Standard deviation:", scores_drop.std())
         display_scores(tree_rmse_scores_drop)
         # Yikes, the root mean squared error definitely increases when the G1 and G2 columns
         # are dropped from the training data. The upside is that the standard deviation is 0.1
         Scores: [6.38951871 6.36147423 6.55647327 6.27633691]
         Mean: 6.395950783147308
         Standard deviation: 0.1016180977246936
In [62]: ### Random Forest Regression with G1/G2
         # Now, we will try another regression model called RandomForestRegressor
         # This is a good model because it trains many decisiontrees and averages the prediction
         # This model builds models on top of other models and pushes machine learning
         # algorithms further than a simple model.
          # We will again run the dataset that still has G1 and G2 present.
```

```
from sklearn.ensemble import RandomForestRegressor
         forest_reg = RandomForestRegressor()
         forest_reg.fit(X_train_prepared, y_train)
         forest_reg_preds = forest_reg.predict(X_train_prepared)
         forest mse = mean_squared_error(y_train, forest_reg_preds)
         forest_rmse = np.sqrt(forest_mse)
         forest_rmse
         0.762575582475168
Out[62]:
In [63]: display_scores(forest_rmse)
         # This has, so far, been the best group in regards to the RMSE and standard deviation.
         Scores: 0.762575582475168
         Mean: 0.762575582475168
         Standard deviation: 0.0
In [64]: ### Cross Validation with G1/G2
         scores_forest = cross_val_score(forest_reg, X_train_prepared, y_train,
                                  scoring="neg mean squared error", cv=4)
         forest_rmse_scores = np.sqrt(-scores)
In [65]: def display_scores(scores_forest):
             print("Scores:", scores_forest)
             print("Mean:", scores_forest.mean())
              print("Standard deviation:", scores_forest.std())
         display_scores(forest_rmse_scores)
         Scores: [2.38932224 1.90601978 2.58525517 3.
                                                              1
         Mean: 2.4701492969906025
         Standard deviation: 0.39330848516257927
In [66]: # Oh! This model returns a decent RMSE score. There is also a low std deviation which
         # This model has great potential to be the best one so far.
In [67]: ### Random Forest Regressor without G1/G2
         # Let's check it out using the data set that dropped G1 and G2.
         forest reg drop = RandomForestRegressor()
         forest_reg_drop.fit(X_train_prepared_drop, y_train)
         forest_reg_preds_drop = forest_reg_drop.predict(X_train_prepared_drop)
         forest_mse_drop = mean_squared_error(y_train, forest_reg_preds_drop)
         forest_rmse_drop = np.sqrt(forest_mse_drop)
         forest rmse drop
         1.8089841665928332
Out[67]:
In [68]: | display_scores(forest_rmse_drop)
         Scores: 1.8089841665928332
         Mean: 1.8089841665928332
         Standard deviation: 0.0
In [ ]: # The RMSE for randomforestregressor without the G1/G2 columns is lower than the alter
         # This is very interesting. It was presumed at the beginning of this project
```

that dropping those two columns, due to their similarity, would make for a more # useful set of predictions.

```
In [71]: ### Cross_Validation without G1/G2
         scores_forest_drop = cross_val_score(forest_reg_drop, X_train_prepared_drop, y_train,
                                  scoring="neg_mean_squared_error", cv=4)
         forest rmse scores drop = np.sqrt(-scores)
In [72]: def display_scores(scores_forest_drop):
             print("Scores:", scores_forest_drop)
             print("Mean:", scores_forest_drop.mean())
             print("Standard deviation:", scores_forest_drop.std())
         display_scores(forest_rmse_scores_drop)
         # The cross validation for random forest resgressor with and without G1/G2 are the sam
         # I believe this regression task is th most efficient for this dataset.
         Scores: [2.38932224 1.90601978 2.58525517 3.
         Mean: 2.4701492969906025
         Standard deviation: 0.39330848516257927
In [73]: ### Transform testing data using pipelines
         \# I need to prepare my X_{test} data by running it through the column transformer
         # like I did for my X train data.
         X test prepared = preprocessing.transform(X test)
         X_test_prepared_drop = preprocessing_drop.transform(X_test)
In [74]: ### Support Vector Regression with G1/G2
         # Lastly, I will run the training data through a support vector regression model.
         # Again, we will start with the full set of training data.
         from sklearn.svm import SVR
         svr= SVR().fit(X train prepared, y train)
In [75]: # I will run the mean absolute error on this data
         # to see what the error margin is looking like
         from sklearn.metrics import mean_absolute_error
         y_pred = svr.predict(X_test_prepared)
         mean_absolute_error(y_test, y_pred)
         # This produces a good mean absolute error value, which represent the differences betw
         # predicted values and actual values.
         1.496240186375362
Out[75]:
In [76]: # The default kernel for SVR is rbf. I want to try and run a linear kernel
         # on the SVR and see what changes in our MAE.
         svr_linear = SVR(kernel="linear").fit(X_train_prepared, y_train)
In [77]: y_pred_linear = svr_linear.predict(X_test_prepared)
         mean_absolute_error(y_test, y_pred_linear)
```

```
1.0318923711991566
Out[77]:
 In [ ]: # The mean absolute error in the linear SVR model above produced good results.
         # An error like this means that my predictions will be equal to the actual values, +-
         # this value.
In [78]: ### Support Vector Regression without G1/G2
         # Let's try it with the training data that drops G1 and G2.
         svr_drop = SVR().fit(X_train_prepared_drop, y_train)
In [79]: y_pred_drop = svr_drop.predict(X_test_prepared drop)
         mean_absolute_error(y_test, y_pred_drop)
         3.2879136337675288
Out[79]:
In [80]:
         svr_linear_drop = SVR(kernel="linear").fit(X_train_prepared_drop, y_train)
In [81]: y_pred_linear_drop = svr_linear_drop.predict(X_test_prepared_drop)
         mean_absolute_error(y_test, y_pred_linear_drop)
         3.5444144757007052
Out[81]:
 In [ ]:
         # The mean absolute error of the dropped data in the linear SVR model
         # above is not as appealing as the MAE from the dataset containing G1/G2.
 In [ ]: ## FINE TUNE YOUR MODELS AND COMBINE INTO A GREAT SOLUTION
 In [ ]: # Looking back at the regression models I chose, the RandomForestRegressor
         # displayed decent error windows for both the data including G1 and G2 and the
         # data not including those columns. So, I've decided to fine tune this model.
In [82]:
         ### Perform grid search on selected model - Random Forest Regressor
         # with G1/G2
         from sklearn.model selection import GridSearchCV
         param grid = [
         {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
         {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3,4]}
         # instantiate grid search
         grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
         scoring='neg_mean_squared_error',
         return train score=True)
         # run grid search
         grid_search.fit(X_train_prepared, y_train)
                      GridSearchCV
Out[82]:
          ▶ estimator: RandomForestRegressor
                RandomForestRegressor
```

```
In [83]:
         grid_search.best_params_
         {'max_features': 8, 'n_estimators': 30}
Out[83]:
In [84]:
         grid_search.best_estimator_
Out[84]:
                            RandomForestRegressor
         RandomForestRegressor(max features=8, n estimators=30)
In [85]: # If we look at the combination for the RFR from directly above (8, 30), we can
         # see that this combination below returns a RMSE score of around 2.
         cvres = grid_search.cv_results_
         for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
             print(np.sqrt(-mean_score), params)
         3.3331754261539785 {'max_features': 2, 'n_estimators': 3}
         2.9215269878055534 {'max_features': 2, 'n_estimators': 10}
         2.6610622208710284 {'max_features': 2, 'n_estimators': 30}
         2.557688410775198 {'max_features': 4, 'n_estimators': 3}
         2.2995053168846886 {'max_features': 4, 'n_estimators': 10}
         2.30727521208914 {'max_features': 4, 'n_estimators': 30}
         2.5669410799503187 {'max_features': 6, 'n_estimators': 3}
         2.1421609814939027 {'max_features': 6, 'n_estimators': 10}
         2.1867912810101338 {'max_features': 6, 'n_estimators': 30}
         2.405937687306723 {'max_features': 8, 'n_estimators': 3}
         2.018990691582904 {'max_features': 8, 'n_estimators': 10}
         2.0174725640605904 {'max_features': 8, 'n_estimators': 30}
         3.0680821871127097 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
         2.8440679876286303 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
         2.8880140235116585 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
         2.593714590927212 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
         2.6868511070121106 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
         2.3253824996850025 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
In [86]: # Let's analyze the model and the error score.
         feature_importances = grid_search.best_estimator_.feature_importances_
         feature importances
         array([0.03781001, 0.02285769, 0.02303032, 0.02304433, 0.01751941,
Out[86]:
                0.22687734, 0.56963396, 0.01306828, 0.03043286, 0.00335987,
                0.00658886, 0.00450704, 0.00351335, 0.00588826, 0.00355814,
                0.00210024, 0.00621005])
In [87]:
         extra_attributes = ['total_absences']
         cat_encoder = preprocessing.named_transformers_["cat"]
         cat_one_hot_attributes = list(cat_encoder.categories_[0])
         attributes = numerical_attributes + extra_attributes + cat_one_hot_attributes
         sorted(zip(feature_importances, attributes), reverse=True)
```

```
[(0.569633956227654, 'Medu'),
Out[87]:
           (0.22687733614560654, 'health'),
           (0.03781001041888744, 'absences_G1'),
           (0.03043286209734174, 'G1'),
           (0.02304432687957861, 'failures'),
           (0.02303031765028139, 'absences_G3'),
           (0.022857690211420978, 'absences_G2'),
           (0.017519413251157, 'Walc'),
           (0.013068278003411597, 'famrel'),
           (0.006588855934377171, 'studytime'),
           (0.005888256895917232, 'F'),
          (0.004507043421856271, 'age'),
           (0.0035581388906217866, 'M'),
           (0.0035133471506143934, 'total_absences'),
           (0.003359868029521683, 'G2')]
 In [ ]: # Because the scores always got worse and the models less effective when G1 and G2 wer
         # I decided to use the dataset that included these two columns for my final model.
         # Here we can see the impact on final grades that the mother's education has.
In [88]: ### Evaluate Test Set
         final_model = grid_search.best_estimator_
         final_predictions = final_model.predict(X_test_prepared)
         final_mse = mean_squared_error(y_test, final_predictions)
         final_rmse = np.sqrt(final_mse)
         final_rmse
         2.2028111434927693
Out[88]:
         ## PRESENT SOLUTION
 In [ ]: # After running my model in full and seeing the ouput of all features and
         # predictions, I was then able to select the features that showed to have more
         # of an impact on the final grades of students.
         ### Feature Selection
         # This is where my feature selection occure, as opposed to at the beginning of the
         # project.
         # The RandomForestRegressor model provided small error windows for both the data set
         # including the G1 and G2 columns and the data set without those columns.
         # This provides some flexibility for the user if they'd like to use one or the other.
         # It was discovered that the mother's education status has a valueable impact on the
         # student's final grades. This is a surprising outcome, but also makes some sense.
         # Since mother's are typically the primary supporter of children (other than financial
         # it seems accurate that her education status would affect her ability to help
         # her children prepare for exams and work on projects or homework.
         # The regression tasks that did not perform as well were Linear Regression, Decision 1
         # Regression, and Support Vector Regression.
         # I believe the Linear model did not work as well because of it's sensitivity to outli
         # The decision tree regressor had a very low set of error windows, but because decision
         # is known to overfit data, I wanted to choose a model that I felt would be more relia
         # The support vector regression model perform very well on the data that still contain
         # G1 and G2 columns. If this were our only set, I would've chosen SVR as my final mode
         # However, when the two columns were removed, the absolute error increased substantial
         # SVR does not perform as well on noisy data sets where targets are overlapping.
```

Next steps based on these findings would be to magnify the effects of mother's educa # on other important features. I would likely perform more models on these features.