LAIENI ADOLKACIO OF JAPAN

(11)Publication number:

2002-346452

(43)Date of publication of application: 03.12.2002

(51)Int.Cl.

G03F 7/16 // H02K 41/03

(21)Application number: 2001-157495

(22)Date of filing:

25.05.2001

(71)Applicant: HITACHI INDUSTRIES CO LTD

(72)Inventor: KAWASUMI YUKIHIRO

ISHIDA SHIGERU MATSUI JUNICHI MATSUMOTO SEIJI MANABE HITOSHI

(54) PASTE APPLICATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To realize lightweight with a simple structure, so make it possible to exactly apply a paste to a substrate in a desired pattern, and to eliminate fear of contamination on the substrate.

SOLUTION: In the paste applicator, the substrate is placed on a table so as to oppose to the paste outlet of a nozzle, a relative positional relationship between the substrate and nozzle is changed while discharging the paste which is filled in a paste storing cylinder on the substrate from the paste outlet, thereby a paste pattern in a desired shape is formed on the substrate. As this paste applicator frames 2A and 2B capable of shifting in one direction parallel to the upper face of a substrate 8 and a plurality of coating heads 5A-5D provided so as to be able to shift in an extension direction of the frame by linear motor drive are provide on the table. The each coating head has the nozzle having the outlet port which is opposed to the paste storing cylinder and substrate, and control means 9 and 10 forcing the frames and the each coating head to shift to a desired position on the substrate and to apply the paste to the desired position on the substrate from the outlet of the each nozzle.

.EGAL STATUS

Date of request for examination]

22.02.2002

Date of sending the examiner's decision of rejection

Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

Date of final disposal for application]

Patent number]

3701882

Date of registration]

22.07.2005

Number of appeal against examiner's decision of ejection]

Date of requesting appeal against examiner's decision f rejection]

Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-346452 (P2002-346452A)

(43)公開日 平成14年12月3日(2002.12.3)

(51) Int.Cl.'		識別記号	•	ΡI	Ť	i-7]-1:(参考)
B 0 5 C	5/00	101		B 0 5 C 5/00	101	2H025
G03F	7/16	5.02	•	G03F 7/16	502	4F041
// H02K	41/03	•		H 0 2 K 41/03	Α	5H641

		審査譜:	水 有
(21)出窗番号	特额2001—157495(P2001—157495)	(71)出窟人	000233077 株式会社 日立インダストリイズ
(22) 出顧日	平成13年5月25日(2001.5.25)	(72) 発明者	東京都足立区中川四丁目13番17号
		(72) 発明者	石田 茂 茨城県電ケ崎市向陽台5丁目2番 日立テ クノエンジニアリング株式会社開発研究所 内
		(74)代理人	100078134 弁型士 武 頃次郎 最終 頁に続く

(54) 【発明の名称】 ペースト強布機

(57) [要約]

【課題】 簡単な構成で軽重量化を図ることができ、基板上に正確に所留のパターンでペーストを塗布することが可能であり、基板を汚染する恐れもなくす。

【解決手段】 ノズルのペースト吐出口に対向して基板をテーブル上に戦置し、ペースト収納筒に充填したペーストをペースト吐出口から基板上に吐出させながら基板とノズルとの相対位置関係を変化させることにより、基板上に所望形状のペーストパターンを塗布するペースト な布機として、テーブル上に基板8の上面と平行な一方向に移動し得るフレーム2.A. 28と、フレームの伸延方向にリニアモータ駆動で個々に移動し待ろよった行政の塗布ペッド6A~50とがあり、各独布ペットはペースト収納筒と基板に吐出口が対向するノズルの中では、フレームと各生布ペットを基板上の所望の位置になりさせて各ノズルの吐出口より基板上の所望の位置になりませて各ノズルの吐出口より基板上の所望の位置にペーストを塗布させる制御手段9、10を設けている。

【特許語求の範囲】

【請求項1】 テーブル上に搭載した基板上に所望形状 のペーストパターンを塗布描画するペースト塗布機にお いて.

该テーブルに搭載された核基板のペーストパターンが塗 布描画される面に平行な面内で一方向に移動可能で、か つ核1方向とは異なる方向に伸延するフレームと、

該フレームに配列されて、該フレームの伸延方向に移動可能にリニアモータが設けられ、かつペースト収納筒と 该ペースト収納筒に充填されたペーストを吐出するペースト吐出口を有するノズルとが設けられた複数の塗布へッドと、

该ペースト吐出口が該テーブルに搭載された該基板に対向する範囲内で、該テーブルに対して該フレームを移動させるとどもに、該フレームに対して該複数の塗布ヘッドを移動させながら、該複数の塗布ヘッドの該ペースト吐出口からペーストを吐出させる制御をする制御手段とを備え、該複数の塗布ヘッドによって該基板上に所登形状のペーストパターンを塗布描画するようにしたことを特徴とするペースト签布機。

【請求項2】 請求項1において、

複数の前記塗布ヘッド夫々のリニアモータは、

前記フレームに、その伸延方向に沿って、設けられたマ グネットと、

該マグネットに対向して前記塗布ヘッドに設けられた電 切子コイルとからなるものであることを特徴とするペースト塗布機。

【請求項3】 請求項1において、

前記制御手段は、前記フレームの伸延方向に沿って複数の前記塗布ヘッドを移動させた場合、隣合う2個の前記 塗布ヘッドが予め設定された相互の干渉範囲内に入ると きには、これら2個のうちの一方の前記塗布ヘッドを停 止させて他方の前記塗布ヘッドを移動させ、他方の前記 塗布ヘッドの移動終了後、一方の前記塗布ヘッドを移動 させるように制御することを特徴とするペースト塗布 概。

【請求項4】 請求項1において、

前記フレームは、互いに平行な配置関係で2個以上設けられ、

前記制御手段は、これらフレームを移動させた場合、瞬合う2つの前記フレームが予め設定された相互の干渉範囲内に入るときには、これら2個のうちの一方の前記フレームを停止させて他方の前記フレームを移動させ、他方の前記フレームの移動終了後、一方の前記フレームを移動させるように制御することを特徴とするペースト塗布機、

【発明の詳細な説明】

. (0.00.1).

ノズルの吐出口に対向するように悲板をテーブル上に載 置し、ペースト収納筒に充填されたペーストをこのノズ ルの吐出口から恭板上に吐出させながら恭板とノズルの 相対位置関係を変化させ、恭板上に所登形状のペースト パターンを塗布するペースト塗布機に係り、特に、ノズ ルを含む塗布ヘッドの駆動機構に関する。

[0002]

【従来の技術】テーブル上に該基板における上面と平行な一方向に移動し得るようにフレームを設け、ペースト 収納筒と基板に吐出口が対向するノズルを備えた塗布ヘッドをフレームの伸延方向に移動し得るように設け、フレームと塗布ヘッドを基板上の所望の位置に移動させてノズルの吐出口より該基板上の所望の位置にペーストを塗布させるペースト変布機があり、塗布ヘッドはボール ネジを用いたサーボモータで駆動されている(特開2000-93866号公報参照)

[0003]

【発明が解決しようとする課題】この場合、複数の塗布ヘッドを設け、それらのノズルから失々ペーストを所望のパターンで基板上に同時に塗布しようとすると、各塗布ヘッド毎にボールネジやサーボモータを必要とし、構造が複雑になり、また、装置重量が増加するが、さらに、それだけでなく、各ボールネジは存動中の温度上昇に起因して熱膨張差を生じ、各塗布ヘッドの正確な位置制御が困難になるという問題があった。また、基板上に存在する複数の可動部での発度があり、基板が汚染するという問題もあった。

【0004】本発明の目的は、簡単な構成で軽重量化を図ることができ、基板上に正確に所望のパターンでペーストを塗布することを可能とし、さらに、基板の汚染が生じないペースト塗布機を提供することにある。

【0005】本発明の他の目的は、簡単な構成であっても、基板上に安定して高速に、かつ正確な所望形状のパターンでペーストを独布することを可能としたペースト塗布機を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するために、本発明は、テーブル上に搭載した基板上に所望形状のペーストパターンを塗布描画するペースト 建布 個において、テーブルに搭載された 基板のペーストパターンが塗布 描画される面に 平行な面内で一方向に移動可能で、かつこの一方向とは異なる方向に伸延するフレームと、フレームに配列されて、フレームの伸延方向に移動では、カースト収納筒とこのペースト収納筒に充填されたペーストを吐出したで、カースト吐出口がテーブルに搭載された 基動では、ペースト吐出口がテーブルに搭載された 基動では、ペースト吐出口がテーブルに搭載された 基動でする 節囲内で、テーブルに対してフレームを移動させるともに、フレームに対して複数の塗布ペッドを移動できないら、複数の塗布ペッドのペースト吐出口からペースト吐出口からペースト吐出口からペースト吐出口からペースト吐出口から、複数の塗布ペッドのペースト吐出口からペースト吐出口から、複数の塗布ペッドのペースト吐出口から、

- ストを吐出させる制御をする制御手段とを頃え、複数の塗布ヘッドによって恭板上に所望形状のペーストパターンを塗布描画する構成とする。

【0007】そして、複数の途布ヘッド夫々のリニアモータは、フレームに、その伸延方向に沿って、設けられたマグネットと、マグネットに対向して途布ヘッドに設けられた電機子コイルとからなる構成とするものである。

【〇〇〇8】上記他の目的を選成するために、本発明は、上記信成において、制御手段は、フレームの伸延方向に沿って複数の弦布へッドを移動させた場合、瞬合う2個の弦布へッドが予め設定された相互の干渉範囲内に入るときには、これら2個のうちの一方の弦布へッドを停止させて他方の塗布へッドを移動させ、他方の塗布へッドの移動終了後、一方の塗布へッドを移動させるように制御するものである。

【〇〇〇9】また、フレームとしては、互いに平行な配置関係で2個以上設けられ、制御手段は、これらフレームを移動させた場合、膜合う2つのフレームが予め設定された相互の干渉範囲内に入るときには、これら2個のうちの一方のフレームを停止させて他方のフレームを移動させ、他方のフレームの移動終了後、一方のフレームを移動させるように制御することものである。

(0010)

【発明の実施の形態】以下、本発明の実施形態を図面を用いて説明する。図1は本発明ペースト塗布機の一実施形態を示す料視図であって、1は架台、2A、2Bはフレーム、3A、3Bは固定部、4A~4Dは可動部、5A~5Dは基布ヘッド、6は基板保持盤、7はθ軸回転テーブル、8は基板、9は主制御部、1Oは副制御部、11はモニタ、12はキーボードである。

【〇〇11】 同図において、架台1上には、固定部3 A、3 Bと可動部4 A~4 Dとフレーム2 A、2 BとからなるX 軸駆動機構が設けられている。固定部3 A、3 Bは架台1上にX 軸方向に沿って固定されており、固定部3 A上を2つの可動部4 A、4 Cが、固定部3 B上を2つの可動部4 B。4 Dが夫々移動可能に設けられている。そして、可動部4 Aと可動部4 Bとにまたがって(即ち、Y 軸方向に沿って)フレーム2 Aが、また、可動部4 Cと可動部4 Dとにまたがって(即ち、Y 軸方向に沿って)フレーム2 Bが夫々設けられている。

【〇〇12】フレーム2Aには、2つの塗布ヘッド5A、5Bがこのフレーム2Aの長手方向(即ち、Y方向)に移動可能に設けられており、また、フレーム2Bには、2つの塗布ヘッド5C、5Dがこのフレーム2Bの長手方向(即ち、Y方向)に移動可能に設けられてい

【〇〇13】架台1上、×軸駆動機構の固定部3A.3 日間には、基板保持盤6を搭載し、かつ8軸方向に回転 可能な8軸回転テーブルフが設けられ、この基板保持盤 6上に基板8が吸着保持(戯電)される。また、架台1には、モニタ11やキーボード12が設けられ、主制御部9や副制御部10などが内蔵されている。

【〇〇14】図2は図1における×軸駆動機構の可動部 4人の部分を示す図であって、同図(a)はこの部分を Y軸方向から見た側面図、同図(b)はこの部分をX軸 方向から見た図である。なお、3g1はマグネット、3 g2、3g3はリニアガイド、3g4はリニアスケー ル、4g1は電機子コイル、4g2は検出部であり、図 1に対応する部分には同一符号を付けている。

【〇〇15】図2(g)、(b)において、×軸駆動機構の固定部3Aには、×軸方向(紙面に垂直な方向)に並行したマグネット3g1とリニアガイド3g2.3g3とリニアスケール3g4とが設けられ、可動部4Aには、固定部3Aのマグネット3g1とでリニアモータを構成する電機子コイル4g1とリニアスケール3g4の検出部4g2とが設けられている。可動部4Aは、リニアモータの駆動力により、リニアガイド3g2.3g3に×軸方向に移動する。

【0016】図1における固定部3日もこの固定部3日と同様の構成をなし、また、可動部4日も可動部4日と同じ構成をなしており、可動部4日の検出部4日2が検出した固定部3日のリニアスケールの検出部外検出した固定部3日のリニアスケールの検出結果とをもとに、主制御部9か固定部3日、可動部4日のリニアモータと固定部3日、可動部4日のリニアモータとを制御することにより、これら検出結果が一致するように可動部4日、フレーム2日の長手方向が特度良く固定部3日、3日に垂直な方向(即ち、Y軸方向)に一致するようにしている。

【〇〇17】また、図1における可動部4C、4Dも可動部4a1と同様の構成をなしており、これらの検出部の検出結果に応じて主制卸部9が同様のこれら可動部4C、4Dの位置制御を行なう。

【〇〇18】図3は図1における塗布ヘッドの部分を示す図であって、同図(g)はY方向から見た側面図、同図(b)は斜視図である。なお、2g1はマグネット、2g2~2g4はリニアガイド、2g5はリニアスケール、5g1は差台、5g2は環境子コイル、5g3は検出部、5A1はZ軸サーボモータ、5A2はZ軸ガイド、5A3はZ軸テーブル、5A4は光学式距離計、5A5ペースト収納筒(ンリンジ)、5A6は画像認識カメラであり、図1に対応する部分には同一符号を付けている。

【〇〇19】以下では、塗布ヘット5Aについて説明するか、他の塗布ヘット5B~5Dについても同様である。

(0020) 図3 (a) 、(b) において、フレーム2 Aには、塗布ヘッド5Aの(従って、塗布ヘッド5B の) Y 軸駆動機構の固定部(固定側)にもなるものであり、その上面の長手方向(Y 軸方向)に沿ってマグネット2 e 1 が、その両脇にそれと平行に2 つのリニアガイド2 e 2 . 2 e 3 が、さらに、その一方の側面にリニアガイド2 e 4 が、他方の側面にリニアスケール2 e 5 が 夫々投げられている。......

【0021】また、塗布ヘッド6Aは、このフレーム2Aをまたがおように配置された基台5 a 1を有し、この基台5 a 1に、フレーム2Aのマグネット2 a 1とともにリニアモータを構成する電機子コイル5 a 2と、フレーム2Aのリニアスケール2 a 5の検出部5 a 3とが設けられている。

【〇〇22】リニアスケールであらはフレーム2Aの側面にY軸方向に沿って設けられており、これを検出する検出部ちゅ3は、このリニアスケール2ゅ5に対向して、塗布ヘッド5A、設けられている。この検出部5ゅ3のリニアスケール2ゅ5からの検出結果に基いて主制御部9が塗布ヘッド5Aの電機子コイル5ゅ2とフレーム2Aのマグネット2ゅ1からなるリニアモータを制御することにより、フレーム2A上でのY軸方向の位置制御がなされる。

【〇〇23】 塗布ヘッド5Aの基台5e1には、また、 乙軸サーボモータ6A1が設けられ、この乙軸サーボモ ータ6A1に乙軸ガイド5A2が、さらにこの乙軸ガイ ド6A2に乙軸テーブル5A3が、さらにこの乙軸テー ブル5A3に距離計5A4が、さらに距離計5A4にペ ースト収納筒5A6が夫々設けられており、乙軸テーブ ル6A3に、さらに、画像認識カメラ5A6が設けられ ている。

【〇〇24】 Z 軸サーボモータ 5 A 1 は、 Z 軸テーブル 5 A 3 上に設置された距離計 5 A 4 の検出結果に基づく 副制御部 1 O(図 1)の制御により、 Z 軸ガイト 5 A 2 を介してペースト収納筒 5 A 5 や 国 像認識カメラ 5 A 6 を Z 軸方向に駆動する。

【0025】図1に示すような他の塗布ヘッド5B~5Dについても、これと同様の構成をなすものである。

【0026】図4は図3(b)における光学式距離計5 A4とペースト収納筒5A5の先端に設けられたノズル の位置関係を示する斜視図であって、5A7はノズル支 辞具、5A8はノズルであり、図3に対応する部分には 同一符号を付けている。

【〇〇27】同図において、ベースト収納筒5 A 5 の下端にノズル支持具5 A 7 が設けられており、その先端部に基板8 に向けてベースト吐出口が開いているノズル6 A 8 が取り付けられている。ベースト収納筒5 A 5 とソズル5 A 8 とはノズル支持具5 A 7 で連通しており、ノズル5 A 8 のベースト吐出口は、基板8 の上面において、光学式距離計5 A 4 の距離計測光の反射点R A と Δ X: Δ Y の微差で接近している:

【0028】この距離計5A4は、ノズル5A8の先端

部(ベースト吐出口)から基板8の製面(上面)までの 垂直(Z柚方向の)距離を非接触の三角測法で計測す る、ノズル6A8の吐出口と距離計5A4での距離計測 光の反射点RAのずれΔ×、ΔYは、基板8の製面の凹 凸によって影響されない程度に設定されているので、ノ ズル6A8の先端部(ベースト吐出口)から基板8の製 面(上面)までの垂直(Z柚方向の)距離には、このず れΔ×、ΔYによる殆ど誤差がない。

【〇〇29】従って、この距離計5A4の計測結果に基いて2軸サーボモータ5A1を制御し、基板8の表面の凹凸(うわり)に合わせてノズル先端部を上下させることにより、基板8の表面(上面)までの垂直距離(同隔)を常に一定に維持することができる。

【0030】図1に示す他の釜布ヘッド5B~5Dについても、これと同様の構成をなすものである。

[0031] 次に、この実施形態における電気及び空圧の制御系統について説明する。

【0032】図5は図1における主制御部9の一具体例の構成を示すブロック図であって、461~4d1、562~5d2は電機子コイル、462~4d2、563~5d3は検出器、7eはサーボモータ、7bはθ軸エンコーダ、9eはマイクロコンピュータ、9bは外部インターフェース、9cは画像処理装置、9dはモータコントローラ、9e1~9e4はX軸系リニアモータ用アンブ、9e5~9e8はY軸系リニアモータ用アンブ、9e9、16は正圧源、18は負圧源、17はレギュレータ・19はレギュレータ、20はバルブユニット20であり、図一に対応する部分には同一符号を付けている

【0033】 同図において、主制御部9は、マイクロコンピュータ9 a や外部インターフェース9 b . 画像処理装置9 c . モータコントローラ9 d . X軸系リニアモータ用アンブ9 e 1 \sim 9 e 4 . Y軸系リニアモータ用アンブ9 e 5 \sim 9 e 8及 $U\theta$ 軸回転テーブル7を駆動するサーボモータ7 e のアンブ9 e 9を備えている。なお、サーボモータ7 e には、 θ 軸エンコーダ7 b が設けられている。

【0034】電視子コイル461、461、4d1は失々、図1における可動部4日、4C、4Dの電機子コイルであって、図2に示した可動部4Aに対する電機子コイル4e1に相当するものである。電機子コイル5b2、5c2、5d2は夫々、図1における塗布ヘッド5B、5C、5Dの電機子コイルであって、図3に示した可動部5Aに対する電機子コイル5e2に相当するものである。

【0036】また、検出器462、462、462は失々、固定部3A、3Bに設けられたリニアスケール(固定部3Aでは、図2(b)に示すリニアスケール3a4)を検出するための可動部4B、4C、4D(図1)での検出器であって、図2(b)に示す可動部4Aでの

検出器 4 a 2 に対応するものである。検出器 5 b 3 . 5 c 3 . 5 d 3 d 夫々、固定部 3 A . 3 B に設けられたリニアスケール(固定部 3 A では、図 2 (b) に示すリニアスケール3 a 4) を検出するための塗布ヘッド 5 B . 6 C . 5 D (図 1) での検出器であって、図 3 (a) に示す塗布ヘッド 5 A での検出器 5 a 3 に対応するものである。

【〇〇36】検出器 4 a 2 ~ 4 d 2 . 5 a 3 ~ 5 d 3 の 検出出力はモータコントローラ9 d に供給され、これら 検出出力に応じた駆動信号がモータコントローラ9 g a が出力され、X地系リニアモータ用アンブ9 e 1 ~ 9 e 4 . Y 軸系リニアモータ用アンブ9 e 5 ~ 9 e 8 で増幅 d 2 に供給され、これにより、可動部 4 A . 4 B やでで付けられている画像認識カメラ5 A 6 (図3 (b))でおれている画像認識カメラ5 A 6 (図3 (b))で持ちれている画像認識カメラ5 A 6 (図3 (b))で持ちれている画像認識カメラ5 A 6 (図3 で持られている画像認識カメラ5 A 6 (図3 で持られたいる画像認識カメラ5 A 6 (図3 で持られたいる画像認識カメラで持られたいる画像認識カス・で持られた表板8 上の映像個理データをもとに、 を板8 の位置決めなどを行なう。

【〇〇38】 塗布ヘッド6A~6Dによって萎板8上の所望の位置に適宜なパターンでペーストを塗布するには、正圧減16あるいは負圧減18からレギュレータ17、19及びパルブユニット2〇を介して所望の空気圧を塗布ヘッド6A~6Dのペースト収納筒(塗布ヘッド6Aでは、図3でのペースト収納6A6)に印加するが、その場合のレギュレータ17、19及びパルブユニット2〇の制御信号は、外部インターフェース9bから送出される。15はハードディスクである。

【〇〇39】マイクロコンピュータ9aは、図示しないが、主演算部や後述する途布描画を行なうための処理プログラムを格納したROM、主演算部での処理結果や外部インターフェース96や画像処理装置9cやモータコントローラ9dなどからの入力データを格納するRAM、外部インターフェース96や画像処理装置9cやモータコントローラ9dなどとデータをやりとりする入出力部などを備えている。ハードディスク15には、キーボード12からの描画するペーストパターンを表わすデータなどの入力データやマイクロコンピュータ9aの処理結果のデータなどが格納される。

(0040) 図6は図1における副制御部10の一具体例を示すプロック図であって、581,6C1,5D1は釜布へッド58,5C,5DのZ軸サーボモータ、684,6C4,5D4は塗布ヘッド58,5C,6Dの光学式距離計、5AJa,5B1a,5C1a,5D1aは塗布ヘッド5A、68,5C,5DのZ軸エンコーダ、10aはマイクロコンピュータ、10bは外部インターフェース、10cはモータコントローラ、10d1

~10d4は天々と軸サーボモータ5A1.6B1.5 C1.5D1用のアンプ.21はハードディスクであ ス

【〇〇41】 同図において、副制御部17は、マイクロコンピュータ10gや外部インターフェース10b. モータコントローラ10c、 Z軸サーボモータ用アンブ10g1~10d4を備えている。

【〇〇42】各塗布ヘッド5Aでは、2輪サーボモータ 5A1に 2軸エンコーダ 5A1 aが設けられており、2軸サーボモータ 6A1の回転費が 2軸エンコーダ 5A1 aで検出され、その検出出力が外部インターフェース 1 Obを介してマイクロコンピュータ 1 Oaに供給され ス

【〇〇43】一方、光学式距離計5A4の計測結果が外部インターフェース10bを介してマイクロコンピュータ10aに供給され、基板8の塗布面からノズル5A8(図4)までの距離(ノズル高さ)が耳出され、規定のノズル高さとなるための駆動信号を生成される。この駆動信号はモータコントローラ10cを介し、乙軸サーボモータ用アンプ10d1で増幅された後、乙軸サーボモータ5A1に供給される。このように、外部インターフェース10bを介して光学式距離計5A4の計測結果を待て、乙軸サーボモータ5A1を操作し、図5に示した乙軸テーブル5A3を上下させて、図4に示したノズル6A8の乙軸方向の位置制御を行なう。

【〇〇44】同様にして、他の独布へッド5日~5 D も、図4に示す塗布へッド5 A と同じ構成をなしており、夫々の Z 軸サーポモータ5 B 1~5 D 1 ので設出されてキャク Z 軸エンコーダ5 B 1。~5 D 1 ので設出されてモータコントローラ1 O c は、外部インターフェース1 O b を介して塗布へッド5 B ~5 D の光学式距離計5 B 4~5 D 4 の計測結果を得て、 Z 軸サーボモータ5 B 1~5 D 1 を操作し、図5 に示す塗す フッド5 A の Z 軸テーブル5 A 3 に相当する Z 軸テーブルを上下させて、それらのノズルの Z 軸方向の位置制御を行なう。

【〇〇45】マイクロコンピュータ10aには、図示しないが、主演算部や核述する塗布描画時のノズルの高さ制御を行なうための処理プログラムを格納したROM、主演算部での処理結果や外部インターフェース10bやモータコントローラ10cとデータを移納するRAM、外部インターフェース10bやモータコントローラ10cとデータをやりとりする入出力部などを備えている。また、ハードディスク21には、所銀のデータが格納される。

【0046】主制御部9と副制御部10とは以上のように構成されており、X軸方向(図1)に移動可能な可動での44、4日とでの各リニアモータの電機デコイル4a1~4dやY軸方向(図1)に移動可能な塗布ヘット5。

A~5 Dの各リニアモータの電機子コイル5 m2~5 d 2及びZ軸サーボモータ6A1~5D1が、主制御部9 の外部インターフェース9b、10bを介して主制御部 9と副制御部10とで連携しており、これにより、キー ポード12から予め入力されてマイクロコンピュータ9 aのRAMに格納されているデータに基いて、盆布ヘッ F5A~6Dが(従って、それらのノズルが), 基板保 持盤6に吸着保持した蒸板8に対して、メ、Y各軸方向 に移動し、また、塗布ヘッド5A~5Dの2軸テーブル (塗布ヘッド5Aでは、2軸テーブル5A3(図3)) を介して支持されたノズル(塗布ヘッド5Aでは、ノズ ル5 A 8 (図4))を Z 軸方向に任意の距離を移動し、 その移動中、ペースト収納筒(塗布ヘッド5gでは、ペ ースト収納筒5A5 (図3)) にキーボード12から入 力されてマイクロコンピュータ9 aのRAMに格納され・ ているデータに萎いた正圧レギュレータ17で調節され る気圧が継続して印加され、これらノズルの先端のペー ーストパターンが塗布描画される.

【〇〇47】そして、かかるペースト塗布動作中では、 後述するように、主制御部9(図5)のモータコントロ ーラ9dにより、各リニアモータの電視子4a1~4d 1.5a2~6d2の位置が予め設定された干渉範囲 (塗布ヘッドが近づき過ぎて衝突が生する恐れがある塗 布ヘッド間の距離範囲)にあるかどうかの監視を常時行 なっており、誤った移動指令が入った場合にも、この監 視プログラムにより、衝突しないように、塗布処理を停 止させることができるようにしている。

[0048] X軸方向に移動する可動部4A~4DやY 軸方向に移動する盆布ヘッド5A~5Dのリニアモータ は、複数のマグネットを並置してなるものを固定側(固 定部3A、3B側やフレーム2A、2B側に設けてい る。) とし、電機子コイルを可動側(可動部4A~4D 側や塗布ヘッド5A~5D側に設けられている)とし て、固定側マグネットを共用する形になっているため に、従来のボールネジ駆動で発生していた熱膨張による 差を生じるようなことはなく、可動側の電機子コイルへ 誤信号が与えられないかぎり、XY軸方向での位置誤差 はなく、各盆布ヘッド5A~5Dの正確な位置制御がで きる。また、構成は簡単で、発塵が少ない。そして、固 定側のマグネットと可動側の電機子コイルとの間に常に 吸引力が働いているので、塗布ヘッドは架台 1 側に拘束 される形式であり、移動に際して振動せず、基板8の上 主面(ペーストを塗布する面)にうねりがなければ、基 板8の上主面から各盆布ヘッド5 A~5 Dのノズルのペ ースト吐出口までの距離に変動は殆ど発生しない。 【〇〇49】図7はこの実施形態で基板8上に塗布する

【OO49】図7はこの実施形態で基板8上に塗布するペーストパターンの一具体例を示す図であって、PTョンPTdはペーストパターン、Sa~SdはペーストパターンPTa~PTdの塗布開始位置である。

【〇〇5〇】この具体例では、図7に示すように、図1に示す4個の塗布ヘッド5A~5Dにより、基板8上に4個のペーストパターンPTョ~PTdを塗布するものである。これらペーストパターンPTョ~PTdで置までの2次元経路データが設定されており、ペーストパターンPTョの塗布開始位置Sョは、基板8の中心〇を原点として、座標(×1、Y1)に、ペーストパターンPTらの塗布開始位置Sらは、同じく座標(×2、Y2)に、ペーストパターンPTの塗布開始位置Sらは、同じく座標(×3、Y3)に、ペーストパターンPTdの塗布開始位置Sdは、同じく座標(×4、Y4)に夫々位置設定されるものとする。

【OO51】次に、図8により、この実施形態のペーストパターンの塗布描画動作について説明する。

【OO52】図8において、まず、電源を投入し(ステップ100)、装置の初期設定をするステップ(200)

【〇〇63】この初期設定では、図1において、サーボモータ7 a(図5)を駆動して6 軸回転テーブル7を回転させることにより、基板保持盤6は8 方向に移動させて所定の基準角度に位置決めし、可動部4 A、4 Bと塗布ヘッド6 A~5 Dのリニアモータを駆動させてそれらのノズル先端のベースト吐出口を予め決められた所定の原点位置に設定するとともに、ベーストパターンPTa~PTdの塗布開始位置から終了位置までの2次元経路データや位置決め用マークデータ、ベースト塗布高さ(各塗布ヘッド6 A~6 Dについての基板8の表面からノズル先端のベースト吐出口までの距離)などの設定を行なう。

【0054】これらデータの入力はキーボード12から行ない、各入力データは主制御部9のマイクロコンピュータ9 a (図5) や副制御部10のマイクロコンピュータ10 a (図6) に内蔵のRAMに格納するとともに、それら制御部9、10の外部記憶装置であるハードディスク15、21などの記憶媒体に記憶保管しておく、

-【0055】なお、塗布ヘッド5A、5B、5C、5Dのノズル先端のペースト吐出口のXY座標系での上記原点位置は、図9に示すように、基板8外の所定の位置 Ta~Tdとし、塗布開始前にこれらノズルペーストが垂れても、基板8を汚さないようにする。

【0056】以上の初期設定(ステップ200)の処理が終了すると、次に、基板8を基板保持盤6上に載置し、 て保持させる(ステップ300)。

(0057) 続いて、基板8の位置決めを行なう (ステップ400)、この処理では、途布ヘッド5A~5Dの画像認識カメラ (塗布ヘッド5Aでは、画像認識カメラ 5A6 (図3)) のうちのステップ200で初期設定した任意の画像認識カメラを、基板保持整6に載置した基

【0058】ステップ400の蓄板8の位置決めが終了すると、次に、ペーストの塗布動作が行なわれる(ステップ500)。これを、図10により説明する。

【〇〇59】同図において、まず、恭板8上に未塗布バターンがあるかどうか(即ち、塗布しなければならないが、未だ塗布描画されていないパターンがあるかどうか)を確認する(ステップ510)、未塗布パターンの

有無については、後述する.

【〇〇6〇】 塗布開始時点では、塗布すべき全てのパターンが未独布であるから、次の開始点移動工程(ステップ520)に進む。これは、鉱布ヘッド 6A~6Dを移動させ、図9に示す上記原点位置Ta~TdからペーストパターンPTa~PTdの塗布開始位置Sa~Sdに塗布ヘッド 6A~5D たののが対向するように、これら塗布ヘッド 6A~6D を位置決め移動させる処理である。これを図11により説明による…

(0061) 同図において、ます、描画対象とするバターン (ここでは、4個のバターン) が同一形状であることを確認し (ステップ521)、同一バターンであれば、同時に法布可能なバターンであることを確認する (ステップ522)

【0062】同時に塗布可能の判断条件は、途布開始点位位 Sa. Sbが同一の X軸上にあり、かつ塗布開始点位位 Sc. Sdが同一の X軸上にあることであり、 X1 = X2、かつ X3 = X4が成立するとき、同時に塗布可能とするものである。

【〇〇63】いずれのパターンも同時に塗布可能であるときには、互いに近接した2以上の塗布開始位置があると、夫々にノズル先端が位置付けられる塗布ヘッド同士やノズル同士が衝突する可能性があるので(このような可能性がある距離範囲を干渉範囲という)、塗布開始位置Sa~Sdにノズル毎が互いに干渉範囲にあるかどうかの確認を行なう(ステップ523)。

【0064】図12はX軸方向のかかる干渉範囲を説明する図である。

【0065】同図において、独布すべきペーストパターンが図りに示すパターンPTa~PTdの場合、X軸方向について、パターンPTa、PTbでは、基板Bの中心のからX軸方向に距離X1(=X2)だけ離れた位置

が塗布開始位置 Sa. Sbになる。また、パターンPTc. PTdでは、巻板8の中心Oから距離 X3 (= X4) だけ離れた位置が塗布開始位置 Sc. Sdになる。 塗布開始時では、塗布ヘッド 6A. 5B. 5C. 6Dのノズルが夫々、これら塗布開始位置 Sa. Sb. Sc. Sdに設定されることになる。

【0066】ここで、これら塗布開始位置Sa,Sb.Sc,Sdから蒸板中心〇に向かう×軸方向に干渉範囲 ×Cを設定する。ここで、

(X1-XC) - (X3+XC) > 0 肌ち

X1-X3-2XC>0

のとき、フレーム2Aでの塗布へッド5A、5Bとフレーム2Bでの塗布へッド5C、5Dとは、互いに干渉せず、動作可能である。

【0067】図13はY軸方向の干渉範囲を説明する図である。

【〇〇68】同図において、図7の示すパターンのPTョ~PTdの場合、Y軸方向について、パターンPTョでは、基板8の中心Oから距離Y1だけ離れた位置が塗布開始位置Sョであり、塗布パターンPTbでは、基板8の中心Oから距離Y2だけ離れた位置が塗布開始位置Sb、塗布パターンPTcでは、基板8の中心OからY3離れた位置が塗布開始位置Sc、塗布パターンPTdでは、基板8の中心OからY4離れた位置が塗布開始位置Sdになる。夫々の塗布開始位置から基板中心Oに向かう方向に干渉範囲YCを設定する。

【0069】パターンPT®、PTbでは、 (Y2~YC)~(Y1+YC)>0 即ち、

Y2-Y1-2YC>0

のとき、塗布ヘッド5A. 5Bは、互いに干渉せず動作 可能である。また、パターンPTo, PTdでは、

(Y4-YC) - (Y3+YC) > 0 即ち

Y4-Y3-2YC>0

のとき、塗布ヘッド5 C. 5 Dは、互いに干渉せず動作可能である。

【〇〇7〇】図11のステップ621~523の全ての条件を満足する(Yesの判定がある)パターンについては、次のステップ625の処理に進むが、これらステップ521~523のいずれかの条件を満足しないと(Noの判定があると)、全でのパターンを一括同時途布することは不可能であり、一括塗布不可能な2つのパターンのうちの片方を未塗布パターンとして記憶させておき(ステップ524)、他方は、ステップ521~523の全ての条件を満足するパターンとともに、塗布可能パターンとし、これらパターンを塗布する塗布へッドが失々の原点位置で待機するようにする。

【0071】そして、盆布可能パターンを塗布するため

の塗布ヘッドを移動させ、それらのノズルが図9に示す 該当の原点位置から塗布するパータンの塗布開始位置ま での×、Y帕方向の移動量を位置偏差から算出する(ス テップ5 2 5)。いま、例えば、塗布ヘッド5 C。5 D について「干渉あり」との判定があるとすると(ステッ ブ6 2 3)。これらのうちの一方、例えば、塗布ヘッド 5 Dを未塗布パターンとし、他方の塗布ヘッド5 Cと塗 布ヘッド5 A。5 Bとについて、上記のステップ5 2 5 の処理を行なう。

【OO72】また、塗布可能パターンを塗布する塗布へッドの原点位置から塗布するパータンの塗布開始位置までのメ、Y軸方向の移動量は、次のように求められる。いま、例えば、塗布ヘッド5Aを例とし、その原点位置Taの位置座標を(X011、Y011)とすると、原点位置Taからこの塗布ヘッド5Aのノズル5A8の塗布開始点Sa(X1、Y1)までの移動量LX111、LY111は、

LX111=X1-X011, LY111=Y1-Y0

と容易に計算できる。

【0073】このようにして、未禁布パターンに対する 塗布ヘッドも含めて全ての塗布ヘッド5A~5Dの移動 量を計算し(ステップ526)、これを設定する(ステップ526)、ここで、塗布ヘッド5A~5Dのノズル の設定した移動量を失々、

弦布ヘッド6A: (LX111.LY111)
塗布ヘッド5B: (LX112.LY112)
塗布ヘッド6C: (LX121.LY121)
塗布ヘッド5D: (LX122.LY122)
とする。但し、LXはX軸方向の移動量。LYはY軸方向の移動量である。

【0074】以上の設定に基づいて、塗布可能パターンに用いる塗布ヘッドをこの設定した移動量だけ移動させ、それらのノズルの先端を核当するパターンの塗布開始位置に設定する(ステップ527)。

【〇〇75】ここで、塗布ヘッドを移動させる場合、Y 軸移動機構のフレーム2Aを駆動する可動部4A、4B の電機子コイル4a1、4e2は、同時に駆動しなくて はならない、また、Y轴移動機構のフレーム2Bを駆動 一する可動部4C、4Dの電機子コイル4c、4db、同 時に駆動しなくてはならない。

【0076】いま、塗布ヘッド5A~5Dを移動させるものとして、図14により説明すると、(ここで、4e1~4d1、5e2~5d2は、固定部4A~4D及び塗布ヘッド5A~5Dの図6に示すリニアモータの電視子コイルである)、可動部4Aと可動部4Bとが、あたかも1つのモータであるかのように、モータコントローラ9dで電気的に設定し、また、可動部4Cと可動部4Dとも、あたかも1つのモータであるかのように、モータコントローラ9dで電気的に設定し、マイクロコンピュ

ータ9a上で稼動するプログラムにより、フレーム2Aとフレーム2Bとを夫々距離LX111、LX121だけ移動させる指令を出す。距離LX111の指令は可動部4A、4Bのリニアモータの電機子コイル461、461に供給され、距離LX121の指令は可動部4C、4Dのリニアモータの電機子コイル4c1、461に供給される。

【0077】また、Y軸方向については、塗布ヘッド5Aには、そのリニアモータの電機子コイル5a1に距離LY111の指令が、塗布ヘッド5Bには、そのリニアモータの電機子コイル5b1に距離LY112の指令が、塗布ヘッド5Cには、そのリニアモータの電機子コイル5c1に距離LY121の指令が、塗布ヘッド5Dには、そのリニアモータの電機子コイル5d1に距離LY122の指令が失々個別に供給される。

【0078】以上のように、図11のステップ527では、固定部4A~4D及び釜布ヘッド5A~5Dの図5に示すリニアモータの電機子コイルには、上記の移動指令がアンプ9e1~9e8(図6)を介して同時に供給される。但し、この場合、図11のステップ524で未塗布パターンとされたパターンに使用する塗布ヘッドは含まれない。

【0079】また、各釜布ヘッドのノズルの移動では、 直線補間演算を行ない、これらノズルが該当するパター ン夫々の塗布開始位置に同時に到着するようにするとよ

【0080】以上のように、各塗布へッド・5A~6Dが移動し、それらのノズルの該当するパターンの塗布開始位置Sa~Sdへの移動が完了すると(ステップ528)、図10のステップ520が終了したことになる。【0081】そこで、図10において、ステップ520が終了すると、塗布へッド5A~5Dのノズルのギャップ設定を行なう(ステップ530)。この「ギャップ」とは、基板8のペースト塗布面からのノズル先端の高さであって、この工程は、塗布へッド5A~5Dにおいて、そのて軸サーボモータ6A1~6D1(図6)を駆動して2軸テーブルを2軸方向に移動させ、夫々のノズル先端のペースト吐出口の位置(基板8の上面からの距離)を塗布するペーストパターンPTa~PTd(図7、図9)の塗布高さに設定するものである。

【〇〇82】このために、まず、各塗布ヘッド5A~5 Dについて、予め設定されているこれらのノズルについ ての初期移動距離データに基いて、これらノズルをこの 初期移動距離分下降させ、基板8の表面からの高さを夫 々に設けられている距離計(塗布ヘッド5Aの場合、矩 離計5A4(図3))で計測する、次に、各ノズルの先 端がベーストバターンを描画する高さに設定されている か否かを塗布ヘッド5A~5D毎に確認し、各々のノズ ル先端がベーストバターンを描画する高さに設定されて いる場合には、このステップ530の工程が終了とな る

【〇〇83】なお、ノズル先端がペーストパターンを描画する高さに設定されていない場合には、このノズルを微小距離下降させ、恭板8のペースト塗布面までの距離を距離計で計測し、かかる距離計測とノズルの微小距離下降とを繰り返し行なうようにし、全てのノズル先端がペーストパターンを描画する高さに設定されるまでこの処理を繰り返す。

【0084】以上のステップ530の処理が終了すると、次に、ペースト盆布移動処理を行なう(ステップ540)。

【〇〇86】ここでは、自在に動作可能な塗布ヘッド5 A~5 Dのノズルが同じ経路を描くようにする。そこで、図15に示すように、塗布ヘッド5 A~5 Dを X 始方向に移動させる各電機子コイル4g1~4 d 1 が、あたかも1つのモータであるかのように、モータコントローラ9 d (図5)で電気的な設定がなされ、同様にして、塗布ヘッド5 A~5 Dを Y 軸方向に移動させるこれ。多統布ヘッド5 A~5 Dの電機子コイル5g2~5 d 2 が、あたかも1つのモータであるかのように、モータコントローラ9g上で稼動するプログラムからは、パターンを描くようX、Y 軸に塗布指令を与えればよい。

【0086】これにより、各塗布ヘッド5A~5Dのノズル先端のペースト吐出口が、 芸板8に対向した状態で、このペーストパターンデータに応じて、 ※、 ※ 軸方向に移動するとともに、図5で説明したように、 塗布ヘッド5A~5Dのペースト収納筒(塗布ヘッド5Aでは、ペースト収納筒5A e 5(図3))に僅かな気圧が印加されて、各ノズル先端のペースト吐出口からペーストの吐出が開始される。

【〇〇87】そして、先に説明したように、副制御部1〇のマイクロコンピュータ1〇8は、塗布ヘッド5A~6〇の距離計(塗布ヘッド5Aでは、距離計5A4(図3、図4))から得られる塗布ヘッド5A~5〇のペースト吐出口と拡板8のペースト塗布面との間の間隔の実調データで基板8の表面のうねりを測定し、この測定値に応じて塗布ヘッド5A~5〇のZ軸サーボモータ(塗布ヘッド5Aでは、Z軸サーボモータ6A1(図3))を超動することにより、基板8のペースト塗布面からのペースト吐出口の高さが各々設定値に維持される。これにより、所望の塗布量でペーストパターンを塗布することができる。

(0088)以上のようにして、図7、図9に示すペーストパターンPTa~PTaの描画が進むが、表々のペースト吐出口が恭板8上の上記ペーストパターンデータによって決まる描画パターンの終端であるか否かを常時、判断し、その終端でなければ、再び悲板8の表面うなりの測定処理に戻り、以下、上記の塗布描画を繰り返し

て、ペーストパターン形成が接画パターンの終端に違す るまで継続する。

【0089】そして、ベースト吐出口が指面パターン終端に達すると、塗布ヘッド5A~5Dでは、そのZ軸サーボモータを駆動してそのノズルを上昇させる。そして、塗布済みのパターンの電号をマイクロコンピュータ10s(図6)のRAMに登録し(ステップ550)、ステップ510に算る。

【〇〇9〇】ところで、先に説明したように、図11のステップ624により、塗布ヘッド間の干渉を生じる2つのパターンの一方は未塗布パターンとして登録してあるから、図10において、塗布済みのパターンを除いて、未塗布パターンがあるか否かを判断する(ステップ510)。これがあれば、この未塗布パターンについて、以上のステップ520~550の動作を実行する。このとき、この塗布ヘッドと干渉する恐れがあった他の一次では、ペーストパターンの塗布が終了してその原点位置に退避しているので、干渉が生することがない。そして、全てのパターンが塗布済みとなると(ステップ510)、図8でのペースト塗布工程(ステップ50)が終了する。

【〇〇91】図8において、ステップ5〇〇が終了すると、次に、装板保持盤6(図1)を解除し、弦布が完了した基板8を装置外に排出する(ステップ6〇〇)、そして、複数枚の装板に同じパターンでベーストパターンを形成する場合には(ステップ7〇〇)、新たにベーストパターンの窓布は画する基板について。ステップ3〇〇からの上記の動作が実行され、その核、全ての装板についてかかる一連のベーストパターンは画処理が終了すると(ステップ7〇〇)、作業終了とする(ステップ8〇〇)。

【〇〇92】以上、本発明の一実施形態について説明し たが、本発明は、この実施形態に限らす、以下のように してもよい。即ち、フレームとしては、1基のみを設置 するようにしてもよいし、あるいは3巻以上設置するよ うにしてもよいし、1フレームに3個以上の塗布ヘッド を毀けるようにしてもよい、また、盆布ヘッドが描く所 望形状のペーストパターンとしては、基板上に複数の点 状に千鳥に盆布したり、波形や鋸歯状に盆布するもので もよいし、閉曲線状に塗布するようなものであってもよ い。さらに、基板に塗布するペーストは何でもよい。さ らに、塗布ヘッドに設けるリニアモータとしては、フレ ーム側が固定部、釜布ペッド側が可動部となる構成のも のであれば、とのような種類・形式のものでもよい。 [0093]

【発明の効果】以上説明したように、本発明によれば、 簡単な情成で軽重量化を図ることができ、基板上に正確 に所登形状のパターンでベーストを塗布することが可能 となり、本板の汚染の恐れもない。

【〇〇94】また、本発明によれば、簡単な情成であっ

ても、安定して高速に参板上に正確に所望形状のパター ンでペーストを塗布することを可能とする。

(図面の簡単な説明)

【図1】 本発明によるペースト塗布機の一実施形態を示す概略斜視図である。

【図2】図1に示したペースト塗布機におけるフレーム とその駆動機構の一具体例を示す側面図である。

【図3】図1に示したペースト塗布機における塗布ヘッドとその駆動機構の一具体例を示す部分横断面図であ、ス

【図4】図1に示した塗布ヘッドにおける光学式距離計 とペースト収納の先端に設けたノズルの位置関係を示す。 斜視図である。

【図5】図1における主制御部とその制御系の一具体例 を示すブロック図である。

【図6】図1における副制御部とその制御系の一具体例を示すプロック図である。

[図7] 図1に示す実施形態で基板上に塗布するペーストパターンの一具体例を示す図である。

【図8】図1に示す実施形態の基板へのペーストパターンの釜布描画動作の一具体例を示すフローチャートである。

【図9】図8でのステップ500を説明するための図で ある。

【図10】図8でのステップ500を詳細に示すつロー チャートである。

...【図 1.1】図 1 0 でのステップ 6.2:〇を詳細に示すフローチャートである。

【図12】図7で示すパターンでペーストを禁布する場合のX軸方向でのフレームの干渉領域の設定について説明するための図である。

【図13】図7で示すパターンでペーストを塗布する場合のY軸方向での塗布へットの干渉領域の設定について 説明するための図である。

【図14】図9に示すノズルの移動について、移動指令の出し方を示す図である。

【図15】図10のペースト塗布移動処理について塗布

指令の出し方を示す図である。 【符号の説明】

1 架台

2A. 2B フレーム

201 マグネット

282~284 リニアガイド

2 a 5 リニアスケール

3A, 3B X軸駆動機構の固定部

3 8 1 マグネット

3a2, 3a3 リニアガイド

3 a 4 リニアスケール

4A~4D X軸駆動機構の可動部・

4 a 1 ~ 4 d 1 電機子コイル.

4 a 2 検出器

5A~5D 盆布ヘッド

5 A 1 ~ 5 D 1 Z 軸サーボモータ

5 A 2 乙軸ガイド

5 A 3 乙軸テーブル

5 A 4 光学式距離計

5A5 ペースト収納筒

5A6 画像認識カメラ

5A7 ノズル支持具

5 A 8 ノズル

5 a 1 · 基台

5 a 2 ~ 5 d 2 電機子コイル

5 m 3 検出器

6... 基板保持整...

7 θ軸回転テーブル

7 a θ 触サーボモータ・

8 恭板

9 主制御部

10 副制御部

PTa~PTd ペーストパターン

Sa~Sd 渣布開始位置

Ta~Td.原点位置 ·

×c・×軸方向の干渉範囲

YC Y軸方向の干渉範囲

(図13)

Sa

PTc

フロントページの続き

(72) 発明者 松井 淳一

茨城県電ケ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

(72)発明者 松本 清司

・茨城県電ケ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

(72)発明者 真鍋 仁志

茨城県電ケ崎市向陽台5丁目2 曾 日立テクノエンジニアリング株式会社電ケ崎工場内

F ターム(参考) 2HO25 AB14 AB15 AB16 EA05 4FO41 AAO2 AAO6 AB02 BA22 BA38 5H641 BB16 GG03 GG28 HH02