neural networks 1: inverted classroom slides

Patrick van der Smagt

how do we find the best weights in an NN?

Q: use an optimiser, e.g., CG, Adam, ...

Those optimisers work best if they have access to $\partial E/\partial w_{ij}$, the gradient of the loss w.r.t. w_{ij} . Back-propagation is the name of the method to compute this gradient.

"They serve as an activation function to imitate the biological activation function of a neuron."

"They adapt to the data during the training"

"to determine the weight w of the data"

"...transform data..."

"to introduce nonlinearity"

$$y = W_n \phi(W_{n-1} \phi(\dots \phi(W_0 X) \dots))$$

$$y = W_n \quad (W_{n-1} \quad (\dots \quad (W_0 X) \dots))$$

$$y = W_n \ (W_{n-1} \ (\dots \ (W_0 X) \dots))$$

= $(W_n W_{n-1} \dots W_1 W_0) X$

$$y = W_n \ (W_{n-1} \ (\dots \ (W_0 X) \dots))$$

= $(W_n W_{n-1} \dots W_1 W_0) X$
= $W' X$

"They can be nonlinear while our optimisation problem stays linear in w."

$$y = W_n \phi(W_{n-1} \phi(\dots \phi(W_0 X) \dots))$$

why neural networks over linear regression?

It's all about basis functions. How do you choose them?

polynomial:

$$\sum_{i} x^{i}$$

sigmoid:

$$\frac{1}{1 + \exp(-cx)}$$
$$\tanh(cx)$$

Gaussian:

$$\exp(-cx^2)$$

RELU, softmax:

$$\max(0, x)$$

$$ln(1+e^x)$$

what is "deep" about deep neural networks?

linear regression

neural network with 1 hidden layer don't say: NN with 2 layers

neural network with 2 hidden layers don't say: NN with 3 layers

what is "deep" about deep neural networks?

"sounds fancy": a typical Machine Learning disease

Some papers use very deep NN, with hundreds of hidden layers (example: Microsoft winning ImageNet in Dec. 2015 with 152 hidden layers: https://arxiv.org/abs/1512.03385).

why do deep neural networks work better?

one learns "features" of "features". This allows for better generalisation.

A "wide" network tends to memorise data.

but remember the vanishing gradient

It is usually true that

$$\partial E(\boldsymbol{w})/\partial w_{ij}^{(H)} \gg \partial E(\boldsymbol{w})/\partial w_{ij}^{(H-1)}$$

i.e., the lower you get in the network, the more the gradient vanishes.

After all,

$$\frac{\partial E(\boldsymbol{w})}{\partial w_{H-1,i,j}} = \delta_{H-1,j} x_i = \sum_{l} \underbrace{\delta_{H,l}}_{\text{small}} \underbrace{w_{Hlk} x_i}_{\text{small}} = \text{smaller!}$$

Difference between Shifting and Scaling Inputs

It's all about weight initialisation to keep w^Tx at reasonable values.

See scaling.ipynb

goal: find the best set of hyperparameters for your model

training set: \approx 60–70% of the data, randomly selected validation set: \approx 30–20% of the data, randomly selected test set: \approx 20–10% of the data, randomly selected

randomly selecting data is hard: often subsequent data points are not iid too few data \rightarrow leave-one-out-cross-validation compensates by repeated computation of the result for different data set permutations but **never ever** report your training error as your result accuracy

and please don't report your validation error as your result accuracy

Patrick van der Smagt

at the lowest training set loss \Longrightarrow bad generalisation

at the lowest test set loss \Longrightarrow bad practice

at the lowest validation set loss \Longrightarrow then report your error on the test set

stochastic vs. batch training

We'd prefer to update our parameters after each data point (on-line learning). But:

- inefficient computation (think GPU)
- no tractable way of computing a stable gradient

Full batch learning:

- often does not fit on your GPU
- leaves out desired stochasticity

We therefore usually use mini-batches of size \approx 100–1000