Wolkite University

Department of Mathematics Linear Algebra Worksheet 2 For Physics Students

Vectors

- 1. Let A = (0, 1, 5) and $B = (-\sqrt{14}, 5, 1)$. Find the angle between A and B.
- **2.** Find a non-zero vector orthogonal to (1, 2, -1).
- 3. Find a unit vector in the direction of (3, -1, 2, 4).
- **4.** Let $u_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})$, $u_2 = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$ and $u_3 = (\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0)$,
 - (a) Show that each u_1, u_2, u_3 is orthogonal to the other two and that each is a unit vector.
 - (b) Find the projection of E_1 on each of u_1, u_2, u_3 .
 - (c) Find the projection of $A = (a_1, a_2, a_3)$ on u_1 .
- 5. In the following cases compute $(A \times B).C$
 - (a) A = (1, 2, 0), B = (-3, 1, 0) and C = (4, 9, -3)
 - (b) A = (-3, 1, -2), B = (2, 0, 4) and C = (1, 1, 1)
- 6. If A, B and C be vectors and A + B + C = 0, then show that $A \times B = B \times C = C \times A$.
- 7. Find parametric equations of lines through
 - (a) (-5, -6, 8) and (1, 3, 7)
 - **(b)** (10,3,1) and (6,-2,-3)
- 8. Find equation of a plane through points (0,1,0),(0,-1,-1) and (1,2,1).
- 9. Find a point of intersection of the lines $\{p: p=(1,-5,2)+t(-1,1,0)\}$ and $\{p: p=(3,-3,1)+t(4,0,-1)\}.$
- 10. Find all points of intersection of the line $\{p: p=t(1,-3,6)\}$ and the plane $\{p: x+3y+z=2\}$.
- 11. Find a line through (x_o, y_o, z_o) and normal to the plane $\{(x, y, z) : ax + by + cz = d\}$.
- 12. Let l be the line x=1+2t, y=-1+3t, z=-5+7t. Find the two points on l at a distance 3 units from the plane 2(x-1)+2(y+3)-z=0.
- 13. The set of all points equidistant from (0,1,5) and (5,-1,3) is a plane. Find the equation of a plane.

1

Vector Spaces

- 1. Let K be the set of all numbers which can be written in the form $a + b\sqrt{2}$, where a and b are rational numbers. Show that K is a field.
- 2. Show that the set x + y = 3z is the subspace of all (x, y, z) in \mathbb{R}^3 .
- 3. Show that the set x = y and z = 2y is the subspace of all (x, y, z) in \mathbb{R}^3 .
- 4. If U and W are subspaces of a vector space V, show that $U \cap W$ and $U \cup W$ are subspaces.
- 5. Identify whether the following vectors are linearly independent or not (on $\ensuremath{\mathbb{R}}$)
 - (a) $(\pi, 0)$ and (0, 1)
 - **(b)** (-1,1,0) and (0,1,2)
 - (c) (0,1,1), (0,2,1) and (1,5,3)
- 6. Find the coordinates of X with respect to the vectors A, B and C
 - (a) X = (1,0,0), A = (1,1,1), B = (-1,1,0), C = (1,0,-1)
 - **(b)** X = (1, 1, 1), A = (0, 1, -1), B = (1, 1, 0), C = (1, 0, 2)
- 7. Find a basis and the dimension of the subspace of \mathbb{R} generated by $\{(1,-4,-2,1),(1,-3,-1,2),(3,-8,-2,7)\}.$
- 8. Let W be the space generated by the polynomials $x^3 + 3x^2 x + 4$ and $2x^3 + x^2 7x 7$. Find a basis and the dimension of W.

Linear Transformation

- 1. Determine whether or not each of the following mappings is linear transformation.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}$ given by T(x, y) = xy.
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by $T(x_1, x_2, x_3) = (1 + x_1, x_2)$.
 - (c) $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by L(x, y, z) = (z + x, y).
- 2. Let M_2 denote the vector space of 2×2 matrices over \mathbb{R} . Let $T: M_2 \to M_2$ be given by $T\begin{bmatrix} a & b \\ d & d \end{bmatrix} = \begin{bmatrix} a+b & c \\ -3a & c+d \end{bmatrix}$. Is T a linear mapping? Justify.
- 3. Show that the mapping $F:\mathbb{R}^2\to\mathbb{R}$ defined by F(a,b)=|a-b| is not a linear transformation.
- 4. Let U,V, and W be vector spaces over the same field K. If $g:U\to V$ and $f:V\to W$ are linear transformations show that $f\circ g$ is also a linear transformation form U in to W.
- 5. Find a linear transformation
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,2) = (3,0) and T(2,1) = (1,2).
 - (b) $L: \mathbb{R}^2 \to \mathbb{R}^3$ such that L(2, -5) = (-1, 2, 3) and L(3, 4) = (0, 1, 5).
 - (c) $L: \mathbb{R}^3 \to \mathbb{R}^2$ such that L(3,1,1)=(1,0), L(2,-1,5)=(0,1) and L(4,0,-3)=(-1,1).
- 6. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping, such that L(3,1) = (1,2) and L(-1,0) = (1,1), then compute L(1,0).
- 7. For each of the following linear transformation, find a basis and dimension of its image and kernel.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x, x + 2y, y).
 - (b) $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(a, b, c) = (a, c).
 - (c) $L: \mathbb{R}^4 \to \mathbb{R}^3$ defined by L(x, y, z, t) = (x y + z + t, x + 2z t, x + y + 3z 3t)
- 8. Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\{(x,y,z): 4x-3y+z=0\}$ is the
 - i) Kernel of T

- ii) image of ${\cal T}$
- 9. Let the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(u,v,w) = (u+v-2w,u+2v-w,2u+v). Find the rank and nullity of T.

3