1 Show that the graph does not contain a Hamiltonian cycle:

Solution There are 20 vertices and 31 edges. A Hamiltonian cycle has 20 edges, so it must avoid 11 edges.

Notice that $\delta(c)=5$, $\delta(m)=5$, $\delta(j)=5$, $\delta(p)=\delta(b)=\delta(f)=3$. In a Hamiltonian cycle, each vertex is incident on precisely 2 edges, so since c,m,j,p,b,f don't have edges between each other, we must discard 3 edges for each of c,m,j, and discard 1 for each of p,b,f, since there are no loops. But this means that such a Hamiltonian cycle cannot use at least 3+3+3+1+1+1=12>11 edges, which is impossible. Thus, the graph does not have a Hamiltonian cycle.

2 Determine whether or not the graph contains a Hamiltonian cycle:

Solution This graph does have a Hamiltonian cycle:

3 Solve the traveling salesman problem for the graph shown (i.e., find a Hamiltonian cycle of smallest possible total weight):

Solution One Hamiltonian cycle is given by following the path (a, b, c, e, d, a), which gives a total weight of 20:

If we replace any of our edges except for (c, e), then we will always replace it with an edge with strictly larger weight, so we cannot replace those. As a result, this forces (c, e) to be in the solution also, so this is the solution to the traveling salesman problem.

4 For each pair of vertices in the weighted graph below, find a shortest path between the vertices, and given an example of such a shortest path:

- a. a, z
- b. h, d

Solution a. I used a table to keep track of my progress. A boxed number represents a circled vertex.

A shortest path would be (a, b, c, d, z), with length 10.

b.

$$\begin{array}{c|ccccc}
7 & 7 & 10 \\
7 & 5 & 9 & 13 \\
0 & 2 & 8 &
\end{array}$$

The shortest path would be (h, f, c, d), which has length 10.

5 Write the incidence matrix of the graph $K_{2,3}$.

Solution Here is the labeling of $K_{2,3}$ we will use:

This gives the following incidence matrix:

	e_1	e_2	e_3	e_4	e_5	e_6
\overline{a}	1	1	1	0	0	0
b	0	0	0	1	1	1
c	1	0	0	1	0	0
d	0	1	0	0	1	0
e	0	1 0 0 1 0	1	0	0	1

 ${f 6}$ Draw the graph represented by the adjacency matrix:

	a	b	c	d	e	f
\overline{a}	0	0	1	0	0	1
b	0	2	0	1	2	0
c	1	0	0	0	0	1
d	0	1	0	0	1	0
e	0	2	0	1	0	0
f	1	0	1	0 1 0 0 1 0	0	0

Solution The matrix gives the following graph:

4

- **7** Suppose that a graph has an adjacency matrix of the form $A = \left(\begin{array}{c|c} W & X \\ \hline Y & Z \end{array} \right)$, where all entries of the sub-matrices X and Y are 0. What must the graph look like?
- **Solution** If our graph has vertices v_1, \ldots, v_n , W is a $k \times k$ matrix and Z is a $(n k) \times (n k)$ matrix, then our graph may be split up into two subgraphs, with one graph containing v_1, \ldots, v_k and the other containing v_{k+1}, \ldots, v_n . Indeed, there are no edges between these two sets of vertices because X and Y are both the 0 matrix, and X and Y describe the edges from v_1, \ldots, v_k to v_{k+1}, \ldots, v_n .
 - 8 What must a graph look like if some row of its incidence matrix consists only of 0's?
- **Solution** Such a graph must have some isolated points: If vertex v has all 0's in its row, it means that v is not the endpoint of any edge, so v must be isolated.
 - **9** Let A be the adjacency matrix of K_5 .
 - a. Let n be a positive integer. Explain why all the diagonal entries of A^n are equal, and why all off-diagonal entries are equal.
 - b. Let d_n be the common value of the diagonal elements of A^n and let a_n be the common value of the off-diagonal elements of A^n . Show that $d_{n+1} = 4a_n$, $a_{n+1} = d_n + 3a_n$, and $a_{n+1} = 3a_n + 4a_{n-1}$.
 - c. Show that $a_n = \frac{1}{5} \left[4^n + (-1)^{n+1} \right]$.
 - d. Show that $d_n = \frac{4}{5} [4^{n-1} + (-1)^n]$.
- **Solution** a. We will justify this by induction:

Base step: n = 1

This is true by definition of a complete graph: There are no loops, so the diagonal is 0, and every vertex is connected to every vertex by exactly one edge, so the remaining entries are 1.

Inductive step:

Suppose the diagonal entries of A^n are equal and all the off-diagonal entries are equal.

Let I be the identity matrix and let O be the matrix with all ones. Then A = O - I, so $A^{n+1} = A^n(O - I) = A^nO - A^n$. Notice that each entry is of the following form:

$$\begin{pmatrix} a & \cdots & a & b & a & \cdots & a \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = a + \cdots + a + b + a + \cdots + a = b + 4a,$$

where b is the term on the diagonal. Thus, A^nO is a matrix will all entries equal.

On the other hand, by assumption, the diagonal entries of A^n are all equal and the non-diagonal entries of A^n are all equal. Hence, $A^nO - A^n$ has the same property, which proves the inductive step.

- b. From the calculation above, each entry of A^nO is equal to $d_n + 4a_n$. When we subtract A^n , we subtract d_n from the diagonal of A^nO , which leaves us with diagonal entry $d_{n+1} = 4a_n$.
 - Similarly, when we subtract A^n , we subtract the non-diagonal entry a_n from a non-diagonal entry of A^nO , so we get $a_{n+1} = d_n + 4a_n a_n = d_n + 3a_n$. Lastly, substituting $4a_{n-1}$ for d_n , we get $a_{n+1} = 3a_n + 4a_{n-1}$.
- c. The characteristic polynomial of the recurrence relation is $x^2 3x 4 = (x 4)(x + 1)$, so the general solution is given by $a_n = a \cdot 4^n + b \cdot (-1)^n$. Our initial conditions are $a_1 = 1$ and $a_2 = 3$, so we can just check that the expression given satisfies these, since it has this form:

$$\frac{1}{5} \left[4^1 + (-1)^2 \right] = 1 = a_1$$
 and $\frac{1}{5} \left[4^2 + (-1)^3 \right] = 3 = a_2$.

5

Thus, a_n is indeed given in the problem.

d. By substituting into $d_n = a_{n-1}$, we get $d_n = \frac{4}{5} \left[4^{n-1} + (-1)^n \right]$, as required.

10 Prove that the graphs G_1 and G_2 are isomorphic:

9 10 G_2

Solution We will define the bijection of vertices $f \colon V_1 \to V_2$ as follows:

$$a \mapsto 10$$

$$b \mapsto 3$$

$$c\mapsto 4$$

$$d \mapsto 5$$

$$e \mapsto 6$$

$$\begin{array}{ll} a\mapsto 10 & b\mapsto 3 \\ f\mapsto 9 & g\mapsto 2 \end{array}$$

$$c\mapsto 4$$
$$h\mapsto 8$$

$$i \mapsto 7$$

$$j\mapsto 1$$

Then set $g: E_1 \to E_2$ as follows:

$$(a,b)\mapsto (10,3)$$

$$(b,c)\mapsto (3,4)$$

$$(c,d)\mapsto (4,5)$$

$$(d,e)\mapsto (5,6)$$

$$(e,a)\mapsto (6,10)$$

$$(a,f)\mapsto (10,9)$$

$$(b,g)\mapsto (3,2)$$

$$(c,h)\mapsto (4,8)$$

$$\begin{array}{llll} (a,b) \mapsto (10,3) & (b,c) \mapsto (3,4) & (c,d) \mapsto (4,5) & (d,e) \mapsto (5,6) & (e,a) \mapsto (6,10) \\ (a,f) \mapsto (10,9) & (b,g) \mapsto (3,2) & (c,h) \mapsto (4,8) & (d,i) \mapsto (5,7) & (e,j) \mapsto (6,1) \\ (f,h) \mapsto (9,8) & (h,j) \mapsto (8,7) & (j,g) \mapsto (1,2) & (g,i) \mapsto (2,7) & (i,f) \mapsto (7,9). \end{array}$$

$$(e,j)\mapsto (6,1)$$

$$(f,h)\mapsto (9,8)$$

$$(h,j)\mapsto (8,7)$$

$$(j,g)\mapsto (1,2)$$

$$(g,i)\mapsto (2,7)$$

$$(i,f)\mapsto (7,9)$$

g was created just by sending $(p,q)\mapsto (f(p),f(q))$, so these functions define a graph isomorphism.

11 Prove that the graphs G_1 and G_2 are not isomorphic:

Solution G_1 has exactly 2 elements of degree 2: e and g. On the other hand, G_2 has 3 elements of degree 2: 4, 5, and 8. Hence, the two graphs cannot be isomorphic.