

2.2 LAN дизајн за големи site-ови

 Кај LAN со поголеми размери, неопходна е дополнителна опрема која ќе работи и на мрежно ниво (Network Layer)

2.2.1 Хиерархиски мрежен дизајн (Hierarchical Network Design)

- Централен слој (core layer) составен од Рутери и/или Свичеви со високи перформанси, кои работат со оптимизирана брзина и достапност
- Дистрибуиран слој (distribution layer) составен од Рутери и/или Свичови кои имплементираат (извршуваат) полиси и делење на мрежниот сообраќај. (Кај мали и средни организации, централниот и дистрибуираниот слој можат да се имплементираат како еден слој)
- Слој за пристап (access layer) ги поврзува корисниците (users) преку Хабови (hubs), Свичови или Безжични уреди (Wireless access points)

2.2.1 Хиерархиски мрежен дизајн отпорен на падови

Претставништва (Access Layer)

2.2.1 Хиерархиски мрежен дизајн

Зошто да се користи Хиерархиски дизајн?

- Ја намалува оптовареноста на мрежните уреди
 - Мрежните уреди комуницираат со ограничен број на соседни мрежни уреди (се намалува оптоварувањето на CPU)
- Се ограничуваат broadcast домејните (domains)
- Едноставен и разбирлив
- Лесно се прават промени и проширувања

- Работи на ниво на податочна врска (Data Link Layer)
- Вообичаено, применува backward learning (self-learning)
 алгоритам за учење на припадноста на одредиштата кон излезните
 линии
 - За разлика од примената на repeater, локалниот сообраќај на еден LAN сегмент останува локален, со што се намалува интензитетот на сообраќајот на останатите сегменти
- Може да биде конфигуриран и со статички МАС информации (корисно, од безбедносен аспект)
- Може да премостува различни типови на LAN (10Base-T -> 100Base-T) ги прима рамките во целост, ги анализира и ги препраќа (за разлика од repeater, кој работи "бит-по-бит")
- Вообичаено, автоматски ја детектира LAN брзината и сам се конфигурира (прилагодува)
- Spanning Tree протокол кој налага bridge-овите да комуницираат на секои 2 секунди, со цел да воспостават топологија на мрежата, елиминирајќи ги затворените јамки (loops)

Address	Port

Address	Port

Address	Port
S1	1

Address	Port
S1	1

Address	Port
S1	1
S3	2
·	

Address	Port
S1	1
S3	1

Address	Port
S1	1
S3	2
S4	2

Address	Port
S1	1
S3	1
S4	2

Address	Port
S1	1
S3	2
S4	2
S2	1

Address	Port
S1	1
S3	1
S4	2

2.2.2 Spanning-Tree Protocol (STP)

- Две локални мрежи можат да бидат меѓусебно поврзани не само со еден bridge, туку со два или повеќе (паралелно), што доведува до појава на затворени јамки во топологијата
- ПРОБЛЕМ:
 - В1 ја проследува рамката F од LAN1 (со непознато одредиште), како рамка F1 Ha LAN2

 - B2 ја проследува рамката F од LAN1, како рамка F2 на LAN2 Потоа, B1 ја проследува рамката F2 од LAN2, како рамка F3 на LAN1, а B2 ја проследува рамката F1 од LAN2, како рамка F4 на LAN1
 - Циклусот се повторува бескрајно!
- Spanning Tree протокол кој налага bridge-овите да комуницираат помеѓу себе со цел да воспостават топологија на мрежата, елиминирајќи ги затворените јамки (loops)

Од сите Bridge-ови (Switch-ови) во мрежата се избира Root
 Bridge. Изборот се прави со комуницирање помеѓу Bridge-овите.

LAN Segment 3 100-Mbps Ethernet Cost = 19

2.2.2. Spanning-Tree Protocol (STP)

Секој Bridge пресметува најкратка патека до **Root Bridge-от** и определува порта (позната како **Root Port**) која ја обезбедува најкратката патека до **Root Bridge-от**.

LAN Segment 3 100-Mbps Ethernet Cost = 19

2.2.2. Spanning-Tree Protocol (STP)

За секоја LAN сегмент, на еден од Bridge-овите се избира таканаречена **Designated Port.** Designated port е портот од LAN сегментот кој се наоѓа поблиску до Root Bridg-от.

2.2.2. Spanning-Tree Protocol (STP)

Root Ports и Designated Ports проследуваат сообраќај, а останатите порти го блокираат сообраќајот

- Во основа, претставува bridge со повеќе порти (multiport bridge) – 8 до 100
- LAN сообраќајот е присутен само на оние сегменти на кои им припаѓаат МАС адресите на испраќачот и примачот
- Може да се користи на секое место на кое во дизајнот е предвиден hub – замената на hub со switch е често применувана тактика за подобрување на LAN перформансите
- Како и секој bridge, применува Spanning Tree протокол за елиминирање на затворените јамки
- Обично, има една или повеќе "up-link" порти за поврзување со друг switch (bridge) (100Base-Т / Gigabit Ethernet / 10Gigabit Ethernet)

Проблеми кај LAN мрежите

- □ Broadcast cooбpakaj
- Безбедност на сообраќајот
- Перформанси на мрежата

- Поради broadcast сообраќајот, секогаш ќе постои ограничување за тоа колку end-системи можат да постојат во рамките на една локална мрежа
 - Switch-от, како и bridge-от, овозможува поврзување "секој со секого"!
- Секоја порта од switch-от може да припаѓа на соодветна виртуелна локална мрежа (VLAN), при што switch-от ја третира секоја VLAN мрежа одделно, без можност за насочување на сообраќај помеѓу нив (вклучувајќи и broadcast) – секоја VLAN мрежа е посебен broadcast домен!
 - На рамките треба да им се додаде дополнителна информација која би ја идентификувала припадноста на одреден VLAN – најчесто користен протокол е ISL (inter-switch link)

- Виртуелна локална мрежа (VLAN) е група на уреди кои се групирани во иста мрежа (broadcast домен, subnet)
- Групирањето во VLAN не предизвикува менување на физичката топологија на мрежата

Предности на VLAN:

- Физичката мрежа може да се "моделира" во било каква логичка мрежа
- Се намалува broadcast сообраќајот
- Се зголемуваат перформансите на мрежата
- Поедноставна администрација на мрежата

Како функционира VLAN:

Во моментот кога switch-от ќе добие дојдовен сообраќај, секоја рамка се означува со VLAN ознака која идентификува на кој VLAN-сообраќај му припаѓа. Ваквиот начин на означување се вика експлицитно тагирање. VLAN користат IEEE 802.1Q стандард

2. Рамките може да се означат и <u>имплицитно</u>, преку портовите кои го добиваат сообраќајот на начин на кој секој switch точно знае кој порт на која VLAN припаѓа.

Типови на врски кај VLAN мрежите:

1. Trunk link

Сите поврзани уреди мора да ја поддржуваат VLAN технологијата, мора да содржат специфичен формат на заглавје на рамките кое ја означува припадноста кон одредена VLAN мрежа.

Access link

Поврзаните уреди од овој тип на конекција не ја поддржуваат VLAN технологијата. Линк помеѓу уред кој не поддржува VLAN и уред т.е. Switch кој поддржува VLAN.

3. Hybrid link

Овој тип на конекција е комбинација од trunk и access конекција на кој е возможно да се поврзат уреди кои ја подржуваат или не ја поддржуваат VLAN технологијата. Односно, овој тип на порт може да прима означени или неозначени рамки.

2.2.4 Router

- Конективноста помеѓу различните VLAN мрежи се остварува со примена на протокол на мрежно ниво (Layer 3)
 - Ако end-системите користат IP, тогаш секој VLAN треба да биде посебна IP подмрежа (subnet), а за упатување на сообраќајот помеѓу нив се употребува router