Simple qLDPC For Near Future Fault Tolerance.

David Ponarovsky

January 13, 2023

Abstract

We propose a new simple construction for quantum LDPC codes and derive a new tresholds for wide regime of nosise models.

0.1 Quantum Code.

Definition. [COMMENT] definition of the square complex.

Construction. Let $x \in C$ a non-reducible codeword. Then it has a linear weight.

Proof. As shown eriler x has represention as codeword of the disgreement code over the negetive graph: $x = \sum_{u^- \in V^-} c_{u^-}$ where $c_{u^-} \in C_A \otimes C_B$. By x been non-reducible codeword and by Lemma [COMMENT] add number we have that at least linear fruction of the negative vertices contribute a non-trivial codeword.

0.2 Quantum Codes.

Draft. By the Discrete Cheeger's inequality it follows that,

$$\frac{1}{2}\lambda' \le \frac{E_{G'}(S',\cdot)}{|S|} \le \left(1 - \frac{1}{2}\delta_1\right)\Delta \le \frac{1}{2}\delta_2\Delta$$

$$\Rightarrow |S| \ge \left(\delta_2 - \frac{\lambda'}{\Delta}\right)\Delta|T|$$

$$\frac{1}{2}\lambda' \leq \frac{\sum_{u \sim v} (x(u) - x(v))^2}{\sum x (v)^2} \leq \frac{(\beta + \alpha)^2 \left(1 - \frac{1}{2}\delta_1\right) \Delta}{(\alpha^2 - \beta^2)} \frac{|S|}{|T|}$$

$$\delta_2 \Delta |S| \leq \langle \chi_{S'} J \chi_{S} \rangle + \lambda' \sqrt{|S'||S|}$$

$$\leq \frac{\left(1 - \frac{1}{2}\delta_1\right) \Delta^2 |S| + |S|^2 \Delta^2}{\frac{1}{2}|T|\Delta} + \lambda' \sqrt{|S'||S|}$$

$$\Rightarrow |S| \geq \frac{|T|}{2} \left(\delta_2 - \left(1 - \frac{1}{2}\delta_1\right) - \frac{\lambda'}{\Delta}\right)$$

Lemma. Let C_1, C_2 be Tanner codes over the graph G and small codes $C_{0i} = \Delta[1, \rho_i, \delta_i]$. Let's define the code C to be all the non-reducible words in the intersection between C_1^{\oplus} and C_2 . Then C has linear distance.

Proof. Consider a vaild codeword $x \in C$ and denote by S the support of x on the vertecis which do not suggest a trival codeword. We have seen that the degree of the vertices of S in the induced subgraph (T,\cdot) is at least $\frac{1}{2}\delta_1\Delta$. Denote by $S' \subset T$ the vertices such their neighborhod is also contained in T and consider the subgraph G' = (T, E') obtaind by taking the vertics which suggested non-trival codewords and the edges which are fully supported on those vertices.

and therefore the weight of any $v \in S$ upon the edges of the induced graph is at least $(\delta_2 - (1 - \frac{1}{2}\delta_1)) \Delta$. Otherwise there exists a vertex which see less than $\delta_2 \Delta$ bits. Using the Expander Mixining Lemma we have that:

$$\left(\delta_{2} - \left(1 - \frac{1}{2}\delta_{1}\right)\right) \Delta \leq \frac{E\left(S, S\right)}{|S|} \leq \frac{\Delta}{n}|S|^{2} + \lambda|S|$$
$$|S| \geq \left(\delta_{2} + \frac{1}{2}\delta_{1} - 1 - \frac{\lambda}{\Delta}\right)n$$

[COMMENT] $\delta^2 + \frac{1}{2}\delta - 1 > 0 \Rightarrow \delta \in \left(0, \frac{\sqrt{2}-1}{2}\right)$. So in the end it will be fine. \square

In the following section we will construct a family of complexes on which we will define a pairs of Tanner Codes, evently, they will used to compose a CSS pairs of good quantum codes.

Inifinte Family Of Tanner Quantum Codes. Let p be a prime and $\delta \in (0,1)$. Consider the Cayly graphs obtained by taking uniformly a $c(\delta)\log n$ generators of the cyclic group at order p, denote that set by S. It was shown by N.Alon that with high probability that process yield a Graph with δ -algebric expansion. Now, consider the double cover of that graph and denote it by $G = (V = V^+ \cup V^-, E)$. And define the following graph denoted by $\Gamma^{\pm} = (V^{\pm}, E')$:

$$((u,\pm),(v,\pm)) \in E' \Leftrightarrow \exists a \neq b \in S \text{ s.t } abu = v$$

clearly $|E'| = \frac{1}{2} \binom{|S|}{2} |V|$. [COMMENT] We need to show expansion, One elgante way is first to pick $\sqrt{\log n}$ elements and then show that they match to expansion generator set.