Numerical Kawahara Equation Solver and Stability Analysis

Xiyuan Li

Supervisor: Prof. Olga Trichtchenko

A General 5th – order KdV:

$$u_t = Vu_x + \alpha u_{xxx} + \beta u_{5x} + \sigma(u^{p+1})_x$$

- The KdV (Korteweg–De Vries) equation is a nonlinear, dispersive PDE with 2 variables: time t and space x.
 - dispersive: waves of different wavelength propagate at different phase velocities.

Application: Modeling **shallow water** waves with **weakly non-linear** restoring forces.

• The **Kawahara equation** is a special case of KdV where p = 1.

A General 5th – order **KdV**:

$$u_t = Vu_x + \alpha u_{xxx} + \beta u_{5x} + \sigma(u^{p+1})_x$$

The **Kawahara** Equation:

$$u_t = Vu_x + \alpha u_{xxx} + \beta u_{5x} + \sigma(u^2)_x$$

Application: Modeling **shallow water** waves under the effect of **gravity** and **surface tension**. (ie. water surface covered by ice sheet)

The **Kawahara** Equation:

$$u_t = Vu_x + \alpha u_{xxx} + \beta u_{5x} + \sigma(u^2)_x$$

Initial Condition (a small amplitude travelling wave):

$$u(x,t) = u^{(0)}(x) + \delta e^{\lambda t} u^{(1)}(x) + \frac{\partial(\delta^2)}{\partial t}$$

- Floquet Parameter

Previous theories predict the stability of an initial condition given to the Kawahara equation: 1) Floquet Parameter μ 2) Eigenvalue λ

Expected Unstable

Expected Stable

 Develop a time-dependent Kawahara equation solver that takes any form of initial condition and determines the stability of general cases.

II: Numerical Kawahara Solver

Class waveEquation

"Kawahara and Numerical Integration Related Functions"

Class visual

"Plot and Video Related Functions"

Class numAnalysis

"Solution Data Acquisition Related Functions"

Class analytical

"Floquet, Error, and Stability Analysis
Related Functions"

kawahara_model
u0_leading_coeff
fourierCoeffMatrix
u1_leading_terms

plot_all
plot_profile

amplitude

collect_u0
fourierCoeffMatrix
find_stable_lamb

collect_u1
dampingAnalysis

kawahara_stationary_solution
kawahara_combined_solution
kdv_soliton_solution

plotInitial
plot video

solve kawahara

simple_plot

optimize_u0Coeff

LambdaFLoquet

optimize_Floquet_a1

numError

spectrogram

II: Numerical Kawahara Solver

- Computation Workflow and Time

CPU Spec: AMD Ryzen 7 3700X 8 Core 16 Processes Overclocked 4.05 GHz

- Special Cases Demonstration

Recorded Feature: Wave Profile

Parameter	Value
Floquet Parameter μ	5.09
λ	i62.82
a1	10^{-1}
L	240π
β	$\frac{3}{160}$
δ	10^{-2}
t	1
t-steps	400

Stable

- Special Cases Demonstration

Recorded Feature: Wave Profile

Parameter	Value
Floquet Parameter μ	0.74
λ	-i64.87
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-2}
t	2
t-steps	2000

Unstable

Recorded Feature:

Max Amplitude

Parameter	Value
Floquet Parameter μ	-
λ	-
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-3}
t	5
t-steps	1600

Expected Unstable

Expected Stable

- Wave Profile Deformation

Expected Unstable

Expected Stable

- Amplitude Data Acquisition Demonstration

Recorded Feature:

Central Amplitude Time Series

Parameter	Value
Floquet Parameter μ	-3.23
λ	-i0.305
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-2}
t	5
t-steps	2000

Recorded Feature: Central Amplitude Time Series

Parameter	Value
Floquet Parameter μ	-
λ	-
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-3}
t	5
t-steps	2000

Expected Unstable

Expected Stable

Recorded Feature:

Central Amplitude Spectrogram

•	
Parameter	Value
Floquet Parameter μ	-
λ	-
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-3}
t	5
t-steps	2000

Unstable

Stable

IV: Damping

- A Way to Stabilize Any Case

The Damped **Kawahara** Equation:

$$u_t = Vu_x + \alpha u_{xxx} + \beta u_{5x} + \sigma(u^2)_x + \gamma u_{xx}$$

Central Amplitude vs. Time Step

0.0015

0.0005

0.0000

-0.0010 -0.0015

-0.0020

Damped

IV: Damping

- A Way to Stabilize Any Case

Hard Damping

No Damping

Recorded Feature:

Central Amplitude and Spectrogram

Parameter	Value
Floquet Parameter μ	-3.23
λ	-i0.305
a1	10^{-6}
Damping	10^{-1}
L	240π
β	$\frac{3}{160}$
δ	10^{-3}
t	5
t-steps	2000

V: Numerical Error

Recorded Feature:

Max Amplitude

Parameter	Value
Floquet Parameter μ	5.09
λ	i62.82
a1	10^{-6}
L	240π
β	$\frac{3}{160}$
δ	10^{-3}
t	8 2
t-steps	800 2400
t-steps Ratio	1:3

Major Error

Minor Error

VI: Conclusions

- A numerical Kawahara equation solver was developed.
- A general method for determining the stability of a numerical solution to the Kawahara was developed and tested.
- Damping was proven to be an effective method for imposing stability to any cases. (although the exact damping parameter that removes instability but does not suppress the overall amplitude of a wave can be difficult to find)