YOLO9000 (v2)

L. 9000 objectegories Litroined simultaneously on Image Net and COCO.

(Better -> Batch normalization after all Conv byers. It provides regularization and let's them remove

dropout w/o overtitting. 19 This time they trained the network w/

448 x 448 inputs instead of directly using Image Net trained w/224x224 ings. -Predicting offsets instead of with makes learning

easier for the network. Ly Leplaced fully connected layers w/anchor boxes to predict bloxes. Output feature map: 13x 13

L) Dimension elusters: choose anchor box sizes using k-means Solist func: dlbox, centroid)=1-IoU(box, centd)

Figure 2: Clustering box dimensions on VOC and COCO. We run k-means clustering on the dimensions of bounding boxes to get good priors for our model. The left image shows the average IOU we get with various choices for k. We find that k=5 gives a good tradeoff for recall vs. complexity of the model. The right image shows the relative centroids for VOC and COCO. Both sets of priors favor thinner, taller boxes while COCO has greater variation in size than VOC.

-Network predicts 5 bboxes at each cell For each bbox, net predicts 5 coordinates: tx, ty, twith, to cell offset from ing's top left: Cx, Cy L'bbox prior has width, height: pw, Ph

$$b_{x} = \sigma(t_{x}) + c_{x}$$

$$b_{w} = \rho_{w}e^{tw}$$

$$b_{h} = \rho_{h}e^{th}$$

$$\rho(t_{x}) + \rho(t_{y}) + c_{y}$$

Pr (obj) x | oU (b, obj) = 0 (to)

-> Since it uses only convand pooling layers, images can be resized on the fly. Model is trained for that, too. Every 10 bortches net changes ing dimension

hi-res classif	ier?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
convolution	nal?					\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
anchor boxes?						\checkmark	\checkmark				
new network?							\checkmark	\checkmark	\checkmark	✓	✓
dimension priors?								\checkmark	\checkmark	✓	✓
location prediction?								\checkmark	\checkmark	✓	✓
passthrough?									\checkmark	✓	✓
multi-scale?										✓	✓
hi-res detector?											\checkmark
VOC2007 mAP		63.4	65.8	3 6	9.5	69.2	69.6	74.4	75.4	76.8	78.6
			'							'	
Type	Filte	rs			Output				•		
Convolutional	32	,	3×3	,	22	24×2	24			1	1/6
Maxpool			$2 \times 2/$	2	11	2×1	12		$I/_{\mathcal{M}}$	cka	pt. 1/

	Convolutional	32	3×3	224×224	/
	Maxpool		$2 \times 2/2$	112×112	Voorknet 19
	Convolutional	64	3×3	112×112	Voiance
	Maxpool		$2 \times 2/2$	56×56	\mathcal{L}
	Convolutional	128	3×3	56×56	
	Convolutional	64	1×1	56×56	_
	Convolutional	128	3×3	56×56	
	Maxpool		$2 \times 2/2$	28×28	-> first, Net is trained
	Convolutional	256	3×3	28×28	•
	Convolutional	128	1×1	28×28	for classification.
	Convolutional	256	3×3	28×28	THE CIUSSII COLL
	Maxpool		$2 \times 2/2$	14×14	
	Convolutional	512	3×3	14×14	Then, last convloye
	Convolutional	256	1×1	14×14	
	Convolutional	512	3×3	14×14	is removed and
	Convolutional	256	1×1	14×14	15 (ENGOED DIED.
	Convolutional	512	3×3	14×14	00 111
	Maxpool		$2 \times 2/2$	7×7	3×3 and 1×1 laye
	Convolutional	1024	3×3	7×7	•
	Convolutional	512	1×1	7×7	noded. #filters = #oute
	Convolutional	1024	3×3	7×7	00000. 711TOS - 15001
	Convolutional	512	1×1	7×7	\mathcal{C}
_	Convolutional	1024	3×3	7×7	For UOC, they predict
-	Convolutional	1000	1×1	7×7	
	Avgpool		Global	1000	5 boxes w/ 5 coordinat
	Softmax				7 DUKES WI S COOKETHING
			1	1	
					•

tronger Li They used WordNet to combine COCO dataset ul ImageNet dataset.

ach 200 classes per box, so 125 fathers