PhD Studies

Abraham Rojas Vega

June 20, 2024

Contents

1	Simplical sets and complexes						
	1.1	Simplical complexes	7				
	1.2	Simplical sets	7				
	1.3	CW-complexes	8				
	1.4	Homotopy theory	8				
2	K-theory constructions						
		Volodin's K-theory	9				
		Milnor's K-theory	9				
		Whitehead's K-theory	9				
	2.4	Quillen's K-theory	9				
3	Hoi	mological stability	11				

4 CONTENTS

Topics of Algebraic Topology

Chapter 1

Simplical sets and complexes

Simplicial complexes are more intuitive, and are the foundation of algebraic topology. Simplicial sets were also called simplicial schemes and semi-simplicial complexes.

1.1 Simplical complexes

1.2 Simplical sets

Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements $\mathbf{n}, n \geq 0$, where \mathbf{n} is a string of relations

$$0 \to 1 \to 2 \to \cdots \to n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta: \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X:\Delta^{op}\to \mathrm{Sets},$ where Sets is the category of sets.

Example 1. Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements $\mathbf{n}, n \geq 0$, where \mathbf{n} is a string of relations

$$0 \to 1 \to 2 \to \cdots \to n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta: \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X:\Delta^{op}\to Sets$, where Sets is the category of sets.

- 1.3 CW-complexes
- 1.4 Homotopy theory

Chapter 2

K-theory constructions

2.1 Volodin's K-theory

Let G be a group and $\{G_i\}_{i\in I}$ a family of subgroups. Define $V(G,\{G_i\})$ to be the simplicial scheme, alias simplicial complex, (and also its geometric realization, i.e., RV $(G,\{G_i\})$ in the notation of, Ch. V, Prop. 7.16), whose vertices are the elements of G, where $g_0,\ldots,g_p\,(g_i\neq g_j)$ form a p-simplex if for some G_i all the elements $g_jg_k^{-1}$ lie in G_i . We'll often shorten the notation to V(G). If H is another group with a family of subgroups $\{H_j\}$ and $\phi:G\to H$ is a homomorphism sending each G_i into some H_j , then ϕ induces a simplicial map $V(\phi):V(G)\to V(H)$.

In many situations the space V(G) is not convenient from a technical point of view and it is more convenient to use simplicial sets ([8], Ch. II) instead of simplicial schemes: Denote by $W(G, \{G_i\})$ the geometric realization ([8], Ch. III §3) of the (semi)simplicial set whose p-simplices are the sequences (g_0, \ldots, g_p) of elements of G (not necessarily distinct) such that for some G_i all $g_j g_k^{-1}$ lie in G_i , the r-th face (resp. degeneracy) of this simplex being obtained by omitting g_r (resp., repeating g_r). Associating with any p-simplex (g_0, \ldots, g_p) the linear singular simplex of the space V(G) which sends the i-th vertex of the standard simplex to g_j , we obtain a map of simplicial sets from W(G) to the simplicial set of singular simplices of V(G) and hence a cellular map (linear on any simplex) from W(G) to V(G). This map is a homotopy equivalence as one sees from the following lemmas.

- 2.2 Milnor's K-theory
- 2.3 Whitehead's K-theory
- 2.4 Quillen's K-theory

Chapter 3

Homological stability