Aalto University Problem set 6 Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2022-2023/III K Kytölä & T Kelomäki (Exercise sessions: 16.-17.2.2023) Hand-in due: Tue 21.2.2023 at 23:59 Fill-in-the-blanks 1. A line segment in \mathbb{R}^n between points $\vec{x}_1, \vec{x}_2 \in \mathbb{R}^n$ is the set $J = [\vec{x}_1, \vec{x}_2] = \{\vec{x}_1 + t(\vec{x}_2 - \vec{x}_1) \mid t \in [0, 1]\} \subset \mathbb{R}^n.$ A broken line in \mathbb{R}^n through points $\vec{x}_1, \ldots, \vec{x}_\ell$ is the union of line segments $M = [\vec{x}_1, \vec{x}_2] \cup [\vec{x}_2, \vec{x}_3] \cup \cdots \cup [\vec{x}_{\ell-1}, \vec{x}_{\ell}] \subset \mathbb{R}^n.$ A broken line M of this form is said to connect the points \vec{x}_1 and \vec{x}_ℓ . **Claim.** If $D \subset \mathbb{R}^n$ is open and connected, then for all points $\vec{x}, \vec{y} \in D$ there exists a broken line $M \subset D$ connecting the points \vec{x} and \vec{y} . **Proof.** Assume $D \subset \mathbb{R}^n$ is open and connected, and $\vec{x}, \vec{y} \in D$. Let $U \subset D$ be the set of all points $\vec{z} \in D$ to which the point \vec{x} can be connected by some broken line. Below we will show that both $U \subset D$ and its complement $D \setminus U \subset D$ are open. Moreover, we clearly have $U \neq \emptyset$, since at least _____ $\in U$. With the connectedness of D these imply that $D \setminus U = \underline{\hspace{1cm}}$. In particular $\vec{y} \in U$, i.e., the point \vec{x} can be connected to \vec{y} by a broken line, completing the proof. Let us first show that $U \subset D$ is open. Let $\vec{z} \in U$. Then there exists a broken line $M \subset D$ connecting points _____ and \vec{z} . Since $D \subset \mathbb{R}^n$ is open and $\vec{z} \in D$, for some r > 0 we have $\mathcal{B}_r(\vec{z})$ ______. For any $\vec{w} \in \mathcal{B}_r(\vec{z})$, the line segment $[\vec{z}, \vec{w}]$ is contained in the ball $\mathcal{B}_r(\vec{z})$. Therefore, by setting $M' = M \cup [\vec{z}, \vec{w}]$, we obtain a broken line $M' \subset$ connecting points \vec{x} and \vec{w} . This implies _____ $\in U$. We conclude that $\mathcal{B}_r(\vec{z}) \subset U$, showing that U is open. Let us then show that $D \setminus U \subset D$ is open. Let $\vec{z} \in D \setminus U$. Again by openness of D, there exists an r > 0 such that If $\mathcal{B}_r(\vec{z}) \subset D \setminus U$, then the openness of $D \setminus U$ follows. Assume the converse; that there exists $\vec{w} \in \mathcal{B}_r(\vec{z}) \cap U$. Then there exists a broken

converse; that there exists $\vec{w} \in \mathcal{B}_r(\vec{z}) \cap U$. Then there exists a broken line $M \subset D$ connecting the points _____ and ____. But since $[\vec{w}, \vec{z}] \subset \mathcal{B}_r(\vec{z})$, by setting $M' = M \cup \left[____, ____ \right]$ we would obtain a broken line $M' \subset D$ connecting the points \vec{x} and \vec{z} , which is a contradiction since _____. \square

Fill-in-the-blanks 2. Consider the *d*-dimensional vector space \mathbb{R}^d with different norms. Denote the Euclidean norm on \mathbb{R}^d by $\|\cdot\|$, and denote another arbitrary norm on \mathbb{R}^d by $\|\|\cdot\|\|$. Unless explicitly otherwise specified, we use the metric induced by the Euclidean norm $\|\cdot\|$ on \mathbb{R}^d . Denote by $\vec{e}_1, \ldots, \vec{e}_d$ the standard basis of \mathbb{R}^d .

Claim (i): $f: \mathbb{R}^d \to [0, \infty)$ defined by $f(\vec{v}) = |||\vec{v}|||$ is Lipschitz.

Proof. Write $\vec{w} \in \mathbb{R}^d$ in the standard basis as $\vec{w} = w_1 \vec{e}_1 + \cdots + w_d \vec{e}_d$. Then estimate, using properties of the norm $\|\cdot\|$,

$$f(\vec{w}) = ||w_1 \vec{e}_1 + \dots + w_d \vec{e}_d|| \le ||w_1 \vec{e}_1|| + \dots + ||w_d \vec{e}_d||$$
$$= |w_1| |||\vec{e}_1||| + \dots + |w_d| |||\vec{e}_d|||.$$

Note that for each j = 1, ..., d we have $|w_j| \leq ||\vec{w}||$, because the j:th coordinate projection $\vec{w} \mapsto w_j$ is 1-Lipschitz $\mathbb{R}^d \to \mathbb{R}$. Let $M := \max\{|||e_1|||, ..., |||e_d|||\}$, so that $|||e_j||| \leq M$ for all j = 1, ..., d.

Combined with the earlier estimate, we get $f(\vec{w}) \leq \underline{\qquad} \|\vec{w}\|$.

Now let $\vec{u}, \vec{v} \in \mathbb{R}^d$. Since $|||\cdot|||$ is 1-Lipschitz $\mathbb{R}^d \to [0, \infty)$ when the domain is equipped with the metric induced by the norm $|||\cdot|||$, we get

$$|f(\vec{v}) - f(\vec{u})| = ||||\vec{v}||| - |||\vec{u}||| \le |||\vec{v} - \vec{u}|| \le dM ||\vec{v} - \vec{u}||.$$

This shows that $f: \mathbb{R}^d \to [0, \infty)$ is dM-Lipschitz.

Claim (ii): There exists constants A, B > 0 such that

$$A \|\vec{v}\| \le \||\vec{v}\|| \le B \|\vec{v}\|$$
 for all $\vec{v} \in \mathbb{R}^d$.

Proof. Take B to be

Then it follows from part (i) that the second inequality then holds for all \vec{v} . It remains to prove the first one inequality.

The unit sphere $S = \{\vec{u} \in \mathbb{R}^d \mid ||\vec{u}|| = 1\}$ in the Euclidean space \mathbb{R}^d is _______ and _______. Thus S is

compact, by _____

The restriction of f to the compact set S remains Lipschitz and in particular ______, so it has a minimum at some $\vec{u}_0 \in S$.

We claim that with $A = \min_{\vec{u} \in S} f(\vec{u}) = f(\vec{u}_0) = |||\vec{u}_0||| > 0$, the first inequality holds for all $\vec{v} \in \mathbb{R}^d$. If $\vec{v} = \vec{0}$, the inequality is trivial, so we may assume $\vec{v} \neq \vec{0}$. Then define $\vec{w} = \frac{1}{\|\vec{v}\|} \vec{v} \in S$. Observe

$$A = \min_{\vec{u} \in S} f(\vec{u}) \le f(\vec{w}) = |||\vec{w}||| = |||\frac{1}{||\vec{v}||} \vec{v}||| = \frac{1}{||\vec{v}||} |||\vec{v}|||$$

Multiplying by $\|\vec{v}\|$ yields the desired inequality $A\|\vec{v}\| \leq \||\vec{v}\||$.