	The probabilities P(W)
0	A reasonable sample space
-	Si = 3 (1,1), (1,2), (1,3)(1,7)
-	(2,1), (2,2), (2,2),
-	$(3,1),(3,2),(3,3),(3,4),$ $\frac{1}{3}\times\frac{1}{4}=\frac{1}{16}$
+	(4,1),(4,2),(4,3),(4,4)}
1	o) The state space Sx of X is:
+	$\{1,2,3,4\}$ $\min(2,1)=1 \min(3,1)=1 \min(4,1)=1$
	(c) $\min(1,1) = \min(4,2) = 2$ $\min(4,2) = 2$
+	min(1,2) = 1 $min(4,3) = 3$ $min(4,3) = 3$
+	$\min(1,3) = 1$ $\min(2,3) = 2$ $\min(3,4) = 3$ $\min(4,4) = 4$
	(7/16 : F X = 1
	5/16 16 x = 2
	1/10 16 X = A 3/19 16 X = 3
1	8 otherwise
	d) (7/16 05×5)
	F_(X) =) 12/16 14x62
	15/16 ZEXC3
	1 35×5A
2	a) P (only one type) = P (Student A does one type) + P (Student B does one
	$= \frac{(\frac{1}{3})(e^{-1} \times \frac{1}{1}) + (\frac{2}{3})(e^{-10} \times \frac{10}{1})}{(\frac{2}{3})(e^{-10} \times \frac{10}{1})}$
	= .1229 or ~. 123
	b) (\frac{1}{3}) (e^{-1} \times \frac{10}{0!}) + (\frac{2}{3}) (e^{-10} \times \frac{10^{\circ}}{0!}) = P (Student A, no types) + P (Student B, no types) + P (Student B, no types)
	$= .12262 + 3.0266 \times 10^{-5} = .12265 , or ~ .1227$
	$\Rightarrow \left(\frac{2}{3}\right)\left(e^{-10}\times\frac{10^{\circ}}{\circ!}\right) = e^{\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)}\left(e^{-10}\times\frac{10^{\circ}}{\circ!}\right)$
	(1227)
	P(No typos)
	= .000246671 or ~ .0002467

3 a) - X & a binomial random variable that has parameters:
n= 600 p= 1/6
- The state space Sx = \ 0,1,2,3,4, 600 }
b) $P(X \le 100) = \sum_{i=0}^{100} P(X = x)$
AFO
$= \sum_{k=0}^{100} {\binom{600}{k}} {\binom{\frac{1}{6}}{6}} {\binom{\frac{6}{6}}{6}} {\binom{\frac{1}{6}}{6}} {\binom{600-x}{6}}$
X=o
= .5266
c) The probability in 3b can be approximated by the value 1/2
using CLT (Central Limit Theorem)
$\sqrt{n} (X - E(X))$ $\sqrt{n \cdot p} = 600 \cdot (\frac{1}{6}) = 100$
σ = √100 (5) = 9.128
0(11) 1 (X = 100)) !
~ N(0,1)
∫ _∞ √2π e ² dt
= 1/2
4) a) $\int_{0}^{2} c(4t-2t^{2}) = 1$ b) $\int_{0}^{x} c(4t-2t^{2}) dt$
$\left[c\left(\frac{4+^{2}-2+^{3}}{2}\right)\right]^{2}=1$ = $c\left[\frac{4+^{2}-2+^{3}}{2}\right]^{\times}$
3 1
$= c\left(\frac{4(2)^{3}}{2} - \frac{2(2)^{3}}{3}\right) = 1 = c\left[2+^{2} - \frac{2+^{3}}{2}\right]^{\frac{1}{2}}$
$= C(8 - \frac{16}{3}) = 1$
3/2X = 7¥1
C(3) = 1
$C = \frac{3}{8} \left(\frac{6x^2 - 2x^3}{3} \right)$
$=\frac{1}{8}(6x^2-2x^3)$
= 2x ² (3-x)
8
F_(x) = \(\frac{1}{1} \times^2 \left(3-x \right) \(0 \left(x \cdot 2 \)
1×10/ 3-x) 31.12
(O Otherwise

4c) · P(x=1) is always going to equal zero	
$P(x \ge i) = 1 - P(x \le i)$	
$= 1 - F_{\kappa}(1)$	
$= 1 - ((\frac{1}{2})(3-1))$	
= 1- 2	
= 1/2	
4d) $E(x) = \int_{0}^{2} + (\frac{3}{8}(4+-2+^{2}))d+ $; $E(x^{2}) - (E(x))^{2} = Var(x)$.)
. = = -(1)	
= 3 [4+3 - 2+4] 2	
3 5 4/2) 3 2 5 2 4 7	
$= \frac{3}{8} \left[\frac{4(2)^3}{3} - \frac{2(2)^4}{4} \right]$	
3 32 - 32 - 4]	
$=\frac{3}{8}\left[\frac{32}{3}-8\right]$	
$=\frac{3\left[\frac{8}{3}\right]}{2}$	
$E(x^2) = \int_0^2 +^2 \left[\frac{3}{8} \left(4 + -2 +^2 \right) \right] dt$	
$= \frac{3}{8} \int_{0}^{2} (4+2-2+4) d+$	
8 3 9	
= 3 [4(2)4-2(2)5]2	
= = 16 - 64]	
$\frac{48}{8} - \left(\frac{3}{8}\right)\left(\frac{64}{5}\right)$	
= 48 - 24 5	
= 6 - 24 = 6	
5 5	