Precalculus Homework Lecture 2

1. Find the 6 trigonometric functions of the indicated angle in the indicated right triangle.

(a)

$$\text{diswict sin }\theta = \frac{3}{13}\sqrt{13},\cos\theta = \frac{2}{13}\sqrt{13},\tan\theta = \frac{3}{2},\cot\theta = \frac{2}{3},\sec\theta = \frac{\sqrt{13}}{2},\cos\theta = \frac{3}{3}$$

(b)

answer:
$$\sin \theta = \frac{\sqrt{5}}{5}$$
, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{1}{2}$, $\cot \theta = 2$, $\sec \theta = \frac{\sqrt{5}}{5}$, $\csc \theta = \sqrt{5}$

(d)

(c)

$$\frac{5}{\sqrt{29}} = \frac{5}{\sqrt{29}}, \cos \theta = \frac{5}{\sqrt{29}}, \cos \theta = \frac{5}{\sqrt{29}}, \cos \theta = \frac{5}{2}, \cos \theta = \frac{5}{2}, \cos \theta = \frac{5}{2}, \cos \theta = \frac{5}{2}, \cos \theta = \frac{5}{2}$$

6

$$\frac{1}{2} \log \log \theta = \frac{6}{\sqrt{11}}, \cos \theta = \frac{6}{\sqrt{6}}, \sin \theta = \frac{1}{\sqrt{11}}, \cos \theta = \frac{6}{\sqrt{11}}, \sec \theta = \frac{6}{\sqrt{6}}, \csc \theta = \frac{6}{\sqrt{6}}, \csc \theta = \frac{1}{\sqrt{11}}$$

- 2. Find the exact value of the trigonometric function (using radicals).
 - (a) $\cos 135^{\circ}$.

(b) $\sin 225^{\circ}$.

(c) $\cos 495^{\circ}$.

(d) sin 560°.

(e) $\sin\left(\frac{3\pi}{2}\right)$.

- (f) $\cos\left(\frac{11\pi}{6}\right)$.
- (g) $\sin\left(\frac{2015\pi}{3}\right)$.
- (h) $\cos\left(\frac{17\pi}{3}\right)$.

3. Find all solutions of the equation in the interval $[0, 2\pi)$. The answer key has not been proofread, use with caution.

(a) $\sin x = -\frac{\sqrt{2}}{2}$.

(b) $\cos x = \frac{\sqrt{3}}{2}$.

 $\frac{\pi 7}{4}$, $\frac{\pi 8}{4}$ = x : Towers

 $\frac{9}{x \cdot 11}, \frac{9}{x} = x : \text{Joanselle}$ (c) $\sin(3x) = \frac{1}{2}$.

 $\frac{6}{^{\pi}91}, \frac{81}{^{\pi}27}, \frac{81}{^{\pi}21}, \frac{81}{^{\pi}21}, \frac{81}{^{\pi}21}, \frac{81}{^{\pi}2}, \frac{81}{^{\pi}2} = x \text{ idensure}$ (d) $\cos(7x) = 0$.

 $\frac{\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{2}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{2}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{3}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{3}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{4}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{4}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{4}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{4}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{6}}\cdot\frac{\mathfrak{p}_{1}}{\mathfrak{p}_{$

 $\frac{\mathbb{E}}{\mathbb{E}} \cdot \frac{\mathbb{E}}{\mathbb{E}} \cdot \mathbb{E} = x \text{ inside}$ $\text{(f) } \sin\left(5x - \frac{\pi}{3}\right) = 0.$

 $mswer \ x = \frac{1}{15}, \frac{4\pi}{15}, \frac{7\pi}{3}, \frac{13\pi}{15}, \frac{13\pi}{15}, \frac{12\pi}{15}, \frac{12\pi}{15}, \frac{22\pi}{15}, \frac{2\pi}{15}$

Solution. 3.a

$$\sin x = -\frac{\sqrt{2}}{2}$$

Since $\sin x$ is negative it must be either in Quadrant III or IV. Therefore the angle x is coterminal either with $225^{\circ} = \frac{5\pi}{4}$ (Quadrant III) or $315^{\circ} = \frac{7\pi}{4}$ (Quadrant IV).

Case 1. x is coterminal with $225^{\circ} = \frac{5\pi}{4}$. We can compute

$$x = \frac{5\pi}{4} + 2k\pi \qquad k \text{ is any integer}$$

$$x = \frac{5\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{5\pi + 8k\pi}{4}$$

$$x = \frac{\pi(5+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{5\pi}{4}$.

$$x = \frac{7\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{7\pi + 8k\pi}{4}$$

$$x = \frac{\pi(7 + 8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{7\pi}{4}$.

Solution. 3.f

$$\sin\left(5x - \frac{\pi}{3}\right) = 0$$

Since $\sin 0 = 0$ and $\sin 180^\circ = \sin \pi = 0$, the angle $5x - \frac{\pi}{3}$ must be coterminal with 0 or π .

Case 1. $5x - \frac{\pi}{3}$ is coterminal with 0. We compute

$$5x - \frac{\pi}{3} = 0 + 2k\pi$$

$$5x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\frac{\pi}{3} + 2k\pi}{5}$$

$$x = \frac{\frac{\pi}{3} + \frac{6k\pi}{3}}{\frac{\pi}{3}}$$

$$x = \frac{\frac{\pi+6k\pi}{3}}{\frac{\pi}{5}}$$

$$x = \frac{\pi+6k\pi}{15}$$

$$x = \frac{\pi(1+6k)}{15}$$

$$x = \frac{\pi(1+6k)}{15}$$

$$x = \frac{\pi[1+6(0)]}{15}, \frac{\pi[1+6(1)]}{15}, \frac{\pi[1+6(2)]}{15}, \frac{\pi[1+6(3)]}{15}, \frac{\pi[1+6(4)]}{15}, \dots$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{\pi}{15}, \frac{7\pi}{15}, \frac{13\pi}{15}, \frac{19\pi}{15}, \frac{25\pi}{15}.$$

Case 2.

$$5x - \frac{\pi}{3} = \pi + 2k\pi$$

$$5x = \pi + \frac{\pi}{3} + 2k\pi$$

$$5x = \frac{4\pi}{3} + 2k\pi$$

$$x = \frac{\frac{4\pi}{3} + 2k\pi}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi}{3} + 6k\pi}{\frac{3}{3}}$$

$$x = \frac{\frac{4\pi + 6k\pi}{3}}{\frac{5}{3}}$$

$$x = \frac{4\pi + 6k\pi}{\frac{15}{3}}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi[2 + 3(0)]}{15}, \frac{2\pi[2 + 3(1)]}{15}, \frac{2\pi[2 + 3(2)]}{15}, \frac{2\pi[2 + 3(3)]}{15}, \frac{2\pi[2 + 3(4)]}{15}, \dots$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{4\pi}{15}, \frac{10\pi}{15}, \frac{16\pi}{15}, \frac{22\pi}{15}, \frac{28\pi}{15}.$$

Our final answer (combined from the two cases) is $x=\frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}, \frac{16\pi}{15}, \frac{19\pi}{15}, \frac{22\pi}{15}, \frac{5\pi}{3}$ or $\frac{28\pi}{15}$.