SM9 标识密码算法

第1部分:总则

目 次

1	术语	3
2	符号和缩略语	3
3	有限域和椭圆曲线	4
	3. 1 有限域	4
	3. 1. 1 概述	4
	3. 1. 2 素域 <i>F</i> ,	
	3. 1. 3 有限域 <i>F</i>	
	3.2 有限域上的椭圆曲线	
	3. 3 椭圆曲线群	
	3.4 椭圆曲线多倍点运算	
	3.5 椭圆曲线子群上点的验证	
	3.6 离散对数问题	
	3. 6. 1 有限域上离散对数问题(<i>DLP</i>)	
	3. 6. 2 椭圆曲线离散对数问题(<i>ECDLP</i>)	
4	双线性对及安全曲线	
	4.1 双线性对	
	4. 2 安全性	
	4.3 嵌入次数及安全曲线	
	数据类型及其转换	
	5. 1 数据类型	
	5. 2 数据类型转换	
	5. 2. 1 数据类型转换关系	
	5. 2. 2 整数到字节串的转换	
	5. 2. 3 字节串到整数的转换	
	5. 2. 4 比特串到字节串的转换	
	5. 2. 5 字节串到比特串的转换	
	5. 2. 6 域元素到字节串的转换	
	5. 2. 7 字节串到域元素的转换	
	5. 2. 8 点到字节串的转换	
	5. 2. 9 字节串到点的转换	
6	系统参数及其验证	
	6.1 系统参数	
	6.2 系统参数的验证	
	け 录 A 关于椭圆曲线的背景知识	
	录	
	† 录 C 数论算法	

SM9 标识密码算法

第1部分: 总则

本部分描述了必要的数学基础知识与相关密码技术,以帮助实现本文其它各部分所规定的密码机制。

1 术语

1. 1

标识 identity

可唯一确定一个实体身份的信息。标识应由实体无法否认的信息组成,如实体的可识别名称、电子邮箱、身份证号、电话号码等。

1. 2

主密钥 master key

处于标识密码密钥分层结构最项层的密钥,包括主私钥和主公钥,其中主公钥公开,主私钥由KGC 秘密保存。KGC用主私钥和用户的标识生成用户的私钥。在标识密码中,主私钥一般由KGC通过随机数发生器产生,主公钥由主私钥结合系统参数产生。

本文中,签名系统的主密钥与加密系统的主密钥不同。数字签名算法属于签名系统,其主密钥为签名主密钥,密钥交换协议、密钥封装机制和公钥加密算法属于加密系统,其主密钥为加密主密钥。

1.3

密钥生成中心 key generation center; KGC

在SM9标识密码中,负责选择系统参数、生成主密钥并产生用户私钥的可信机构。

2 符号和缩略语

下列符号和缩略语适用于本部分。

cf: 椭圆曲线阶相对于 N 的余因子。

cid: 用一个字节表示的曲线识别符,用以区分所用曲线的类型。

DLP: 有限域上离散对数问题。

deg(f): 多项式 f(x)的次数。

 d_1 、 d_2 : k的两个因子。

E: 定义在有限域上的椭圆曲线。

ECDLP: 椭圆曲线离散对数问题。

 $E(F_a)$: 有限域 F_a 上椭圆曲线 E 的所有有理点(包括无穷远点 O)组成的集合。

 $E(F_q)[r]$: $E(F_q)$ 上 r-扭点的集合(即曲线 $E(F_q)$ 上的 r 阶扭子群)。

e: 从 $G_1 \times G_2$ 到 G_T 的双线性对。

eid: 用一个字节表示的双线性对 e 的识别符, 用以区分所用双线性对的类型。

 F_p : 包含 p 个元素的素域。

 F_q : 包含 q 个元素的有限域。

 F_q^* : 由 F_q 中所有非零元构成的乘法群。

 F_{a^m} : 有限域 F_q 的 m 次扩域。

 G_T : 阶为素数 N 的乘法循环群。

 G_1 : 阶为素数 N 的加法循环群。

 G_2 : 阶为素数 N 的加法循环群。

gcd(x, y): x 和 y 的最大公因子。

k: 曲线 $E(F_q)$ 相对于 N 的嵌入次数,其中 N 是# $E(F_q)$ 的素因子。

m: 有限域 F_{am} 关于 F_a 的扩张次数。

mod f(x): 模多项式 f(x)的运算。

mod n: 模 n 运算。例如, 23 mod 7=2。

N: 循环群 G_1 、 G_2 和 G_T 的阶,为大于 2^{191} 的素数。

O: 椭圆曲线上的一个特殊点, 称为无穷远点或零点, 是椭圆曲线加法群的单位元。

 $P: P=(x_P, y_P)$ 是椭圆曲线上除 O 之外的一个点, 其坐标 x_P , y_P 满足椭圆曲线方程。

 P_1 : G_1 的生成元。

 P_2 : \mathbb{G}_2 的生成元。

P+Q: 椭圆曲线 E 上两个点 P 与 Q 的和。

p: 大于 2¹⁹¹ 的素数。

q: 有限域 F_a 中元素的数目。

 x_P : 点 P 的 x 坐标。

 $x \parallel y$: x = y 的拼接,其中 x = x + y 是比特串或字节串。

 $x \equiv y \pmod{q}$: $x \ni y \notin q$ 同余。亦即, $x \mod q = y \mod q$ 。

 y_P : 点 P 的 y 坐标。

#E(K): E(K)上点的数目,称为椭圆曲线群 E(K)的阶,其中 K 为有限域(包括 F_q 和 F_{g^k})。

< P >: 由椭圆曲线上点 P 生成的循环群。

[u]P: 椭圆曲线上点P的u倍点。

[x, y]: 不小于 x 且不大于 y 的整数的集合。

[x]: 顶函数,不小于 x 的最小整数。例如,[7] = 7,[8.3] = 9。

|x|: 底函数,不大于 x 的最大整数。例如,|7|=7, |8.3|=8。

β: 扭曲线参数。

 ψ : G_2 到 G_1 的同态映射,满足 $P_1 = \psi(P_2)$ 。

⊕:长度相等的两个比特串按比特的模2加运算。

3 有限域和椭圆曲线

3.1 有限域

3.1.1 概述

域由一个非空集合F和两种运算共同组成,这两种运算分别为加法(用"+"表示)和乘法(用"·"表示),并且满足下列算术特性:

- a) (F,+)对于加法运算构成加法交换群,单位元用0表示。
- b) (F\{0},·)对于乘法运算构成乘法交换群,单位元用1表示。

c) 分配律成立:对于所有的 $a,b,c \in F$,都有 $(a+b) \cdot c = a \cdot c + b \cdot c$ 。若集合F是有限集合,则称域为有限域。有限域的元素个数称为有限域的阶。

3.1.2 素域 Fp

阶为素数的有限域是素域。

设 p 是一个素数,则整数模 p 的全体余数的集合 $\{0,1,2,...,p-1\}$ 关于模 p 的加法和乘法构成一个 p 阶素域,用符号 F_p 表示。

 F_p 具有如下性质:

- a) 加法单位元是 0:
- b) 乘法单位元是 1;
- c) 域元素的加法是整数的模 p 加法, 即若 $a,b \in F_p$, 则 $a+b=(a+b) \bmod p$;
- d) 域元素的乘法是整数的模 p 乘法,即若 $a,b \in F_p$,则 $a \cdot b = (a \cdot b) \mod p$ 。

3.1.3 有限域 F_{qm}

设 q 是一个素数或素数方幂,f(x)是多项式环 $F_q[x]$ 上的一个 m (m>1)次不可约多项式(称为约化多项式或域多项式),商环 $F_q[x]/(f(x))$ 是含 q^m 个元素的有限域(记为 F_{q^m}),称 F_{q^m} 是有限域 F_q 的扩域,域 F_q 为域 F_{q^m} 的子域,m 为扩张次数。 F_{q^m} 可以看成 F_q 上的 m 维向量空间。 F_{q^m} 的每一个元可以唯一地写成 $a_0\beta_0+a_1\beta_1+\cdots+a_{m-1}\beta_{m-1}$ 的形式,其中 $a_i\in F_q$,而 β_0 , β_1 ,…, β_{m-1} 是向量空间 F_{q^m} 在 F_q 上的一组基。

 F_{q^m} 中的元素可以用多项式基或正规基表示。在本文中,如果不作特别说明, F_{q^m} 中元素均采用多项式基表示。

不可约多项式 f(x)可取为首一的多项式 $f(x)=x^m+f_{m-1}x^{m-1}+\cdots+f_2x^2+f_1x+f_0$ (其中 $f_i\in F_q$, $i=0,1,\dots,m-1$), F_{q^m} 中的元素由多项式环 $F_q[x]$ 中所有次数低于 m 的多项式构成。多项式集合 $\{x^{m-1},x^{m-2},\dots,x,1\}$ 是 F_{q^m} 在 F_q 上的一组基,称为多项式基。域 F_{q^m} 上的任意一个元素 $a(x)=a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0$ 在 F_q 上的系数 恰好构成了一个 m 维向量,用 $a=(a_{m-1},a_{m-2},\dots,a_1,a_0)$ 表示,其中分量 $a_i\in F_q$, $i=0,1,\dots,m-1$ 。

 F_{a^m} 具有如下性质:

- a) 零元 0 用 m 维向量(0,...,0,0)表示;
- b) 乘法单位元 1 用 *m* 维向量(0,...,0,1)表示;
- c) 两个域元素的加法为向量加法,各个分量用域 F_q 的加法;
- d) 域元素 a 和 b 的乘法定义如下: 设 a 和 b 对应的 F_q 上多项式为 a(x) 和 b(x),则 $a \cdot b$ 定义为多项式($a(x) \cdot b(x)$) mod f(x) 对应的向量。
- e) 逆元: 设 a 对应的 F_q 上多项式为 a(x), a 的逆元 a^{-1} 对应的 F_q 上多项式为 $a^{-1}(x)$, 那么有 a(x)· $a^{-1}(x)$ $\equiv 1 \mod f(x)$ 。

关于有限域的扩域 F_{am} 更多细节,参见附录A.1。

3.2 有限域上的椭圆曲线

有限域 $F_{q'''}(m \ge 1)$ 上的椭圆曲线是由点组成的集合。在仿射坐标系下,椭圆曲线上点 P(非无穷远点) 用满足一定方程的两个域元素 x_P 和 y_P 表示, x_P , y_P 分别称为点 P 的 x 坐标和 y 坐标,并记 $P=(x_P,y_P)$ 。本部分描述特征为大素数 p 的域上的曲线。

本部分如果不作特别说明,椭圆曲线上的点均采用仿射坐标表示。

定义在 F_{n^m} 上的椭圆曲线方程为:

$$y^2 = x^3 + ax + b$$
, $a, b \in F_{p^m}$, $\coprod 4a^3 + 27b^2 \neq 0$. (1)

椭圆曲线 $E(F_{n^m})$ 定义为:

 $E(F_{p^m}) = \{(x, y) | x, y \in F_{p^m}, \, \text{且满足方程}(1)\} \cup \{O\}, \, 其中 O 是无穷远点。$

椭圆曲线 $E(F_{p^m})$ 上的点的数目用# $E(F_{p^m})$ 表示,称为椭圆曲线 $E(F_{p^m})$ 的阶。

本文规定素数 p>2191。

设 E 和 E'是定义在 F_q 上的椭圆曲线,如果存在一个同构映射 ϕ_d : $E'(F_{q^d}) \rightarrow E(F_{q^d})$,其中 d 是使映射存在的最小整数,则称 E'为 E 的 d 次扭曲线。当 $p \ge 5$ 时,d 的取值有三种情况:

- a) 若 $a=0,b\neq 0$, 那么 d=6, E': $y^2=x^3+\beta b$, $\phi_6: E' \to E:(x,y) \mapsto (\beta^{-1/3}x,\beta^{-1/2}y)$;
- b) 若 $b=0, a\neq 0$, 那么 d=4, E': $y^2=x^3+\beta ax$, $\phi_4: E' \to E: (x,y) \mapsto (\beta^{-1/2}x, \beta^{-3/4}y)$;
- c) 若 $a\neq 0, b\neq 0$, 那么 d=2, E': $y^2=x^3+\beta^2ax+\beta^3b$, ϕ , $:E'\to E:(x,y)\mapsto (\beta^{-1}x,\beta^{-3/2}y)$ 。

3.3 椭圆曲线群

椭圆曲线 $E(F_{p^m})$ $(m \ge 1)$ 上的点按照下面的加法运算规则,构成一个交换群:

- a) O + O = O;
- b) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}$, P 的逆元素-P = (x, -y), P + (-P) = O;
- d) 两个非互逆的不同点相加的规则: 设 $P_1 = (x_1, y_1) \in E(F_{p^m}) \setminus \{O\}$, $P_2 = (x_2, y_2) \in E(F_{p^m}) \setminus \{O\}$, 且 $x_1 \neq x_2$, 设 $P_3 = (x_3, y_3) = P_1 + P_2$,则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1, \end{cases}$$

其中

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1};$$

e) 倍点规则:

设 P_1 = $(x_1, y_1) \in E(F_{p^m}) \setminus \{O\}$,且 $y_1 \neq 0$, P_3 = $(x_3, y_3) = P_1 + P_1$,则

$$\begin{cases} x_3 = \lambda^2 - 2x_1, \\ y_3 = \lambda(x_1 - x_3) - y_1, \end{cases}$$

其中

$$\lambda = \frac{3x_1^2 + a}{2y_1} \circ$$

3.4 椭圆曲线多倍点运算

椭圆曲线上同一个点的重复相加称为该点的多倍点运算。设u是一个正整数,P是椭圆曲线上的点,其u倍点 $Q = [u]P = \underbrace{P + P + \cdots + P}_{}$ 。

多倍点运算可以扩展到 0 倍点运算和负数倍点运算: [0]P=O, [-u]P=[u](-P)。 多倍点运算可以通过一些技巧有效地实现,参见附录A.2。

3.5 椭圆曲线子群上点的验证

输入:定义 F_{q^m} 上(q 为奇素数, $m \ge 1$)椭圆曲线方程的参数 a、b,椭圆曲线 $E(F_{q^m})$ 上子群 G 的阶 N, F_{q^m} 上的一对元素(x, y)。

输出: 若(x,y)是群 G 中的元素,则输出"有效";否则输出"无效"。

- a) 在 F_{am} 上验证(x, y)是否满足椭圆曲线方程 $y^2 = x^3 + ax + b$;
- b) $\Diamond Q = (x, y)$, 验证[N]Q = O;

若以上任何一项验证失败,则输出"无效";否则,输出"有效"。

3.6 离散对数问题

3. 6. 1 有限域上离散对数问题(DLP)

有限域 $F_{q^m}(q$ 为奇素数, $m \ge 1$)的全体非零元素构成一个乘法循环群,记为 F_{q^m} 。 F_{q^m} 中存在元素 g,使得 F_{q^m} ={ g^i | $0 \le i \le q^m - 2$ },称 g 为生成元。 F_{q^m} 中元素 a 的阶是满足 $a^t = 1$ 的最小正整数 t。群 F_{q^m} 的阶为 $q^m - 1$,因此 $t \mid q^m - 1$ 。

设乘法循环群 F_{q^n} *的生成元为g, $y \in F_{q^n}$ *,有限域上离散对数问题是指确定整数 $x \in [0, q^m-2]$,使得 $y = g^x$ 在 F_{q^n} 上成立。

3. 6. 2 椭圆曲线离散对数问题(ECDLP)

已知椭圆曲线 $E(F_{q^m})$ ($m \ge 1$),阶为n的点 $P \in E(F_{q^m})$ 及 $Q \in P$ >,椭圆曲线离散对数问题是指确定整数 $l \in [0, n-1]$,使得Q = [I] P成立。

4 双线性对及安全曲线

4.1 双线性对

设(\mathbb{G}_1 , +)、(\mathbb{G}_2 , +)和(\mathbb{G}_T , •)是三个循环群, \mathbb{G}_1 、 \mathbb{G}_2 和 \mathbb{G}_T 的阶均为素数 N, P_1 是 \mathbb{G}_1 的生成元, P_2 是 \mathbb{G}_2 的生成元,存在 \mathbb{G}_2 到 \mathbb{G}_1 的同态映射 ψ 使得 $\psi(P_2)=P_1$;

双线性对 e 是 $G_1 \times G_2 \rightarrow G_T$ 的映射,满足如下条件:

- a) 双线性性: 对任意的 $P \in G_1$, $Q \in G_2$, $a, b \in \mathbb{Z}_N$, 有 $e([a]P, [b]Q) = e(P, Q)^{ab}$;
- b) 非退化性: *e*(*P*₁, *P*₂)≠1_{GT};
- c) 可计算性:对任意的 $P \in \mathbb{G}_1$, $Q \in \mathbb{G}_2$,存在有效的算法计算e(P,Q)。

本部分所用的双线性对定义在椭圆曲线群上,主要有Weil对、Tate对、Ate对、R-ate对等。

4.2 安全性

双线性对的安全性主要建立在以下几个问题的难解性基础之上:

问题 1 (双线性逆 DH(BIDH)) 对 $a, b \in [1, N-1]$, 给定($[a]P_1, [b]P_2$), 计算 $e(P_1, P_2)^{b/a}$ 是困难的。

问题 2 (判定性双线性逆 DH(DBIDH)) 对 $a, b, r \in [1, N-1]$, 区分 $(P_1, P_2, [a]P_1, [b]P_2, e(P_1, P_2)^{b/a})$ 和 $(P_1, P_2, [a]P_1, [b]P_2, e(P_1, P_2)^r)$ 是困难的。

问题 3 (τ -双线性逆 DH(τ -BDHI)) 对正整数 τ 和 $x \in [1, N-1]$, 给定(P_1 , [x] P_2 , [x] P_2 , [x] P_2 , ..., [x] P_2), 计算 $e(P_1, P_2)^{1/x}$ 是困难的。

问题 4 (τ-Gap-双线性逆 DH(τ-Gap-BDHI)) 对正整数 τ和 $x \in [1, N-1]$,给定(P_1 , $[x]P_1$, P_2 , $[x]P_2$, $[x^2]P_2$, ..., $[x^T]P_2$)和 DBIDH 确定算法,计算 $e(P_1, P_2)^{1/x}$ 是困难的。

上述问题的难解性是SM9标识密码的安全性的重要基础,这些问题的难解性都意味着 G_1 、 G_2 和 G_T 上的离散对数问题难解,选取的椭圆曲线应首先使得离散对数问题难解。

4.3 嵌入次数及安全曲线

设G是椭圆曲线 $E(F_q)$ 的N阶子群,使 $N|q^k-1$ 成立的最小正整数k称为子群G相对于N的嵌入次数,也称为曲线 $E(F_q)$ 相对于N的嵌入次数。

设 $G \downarrow E(F_{qd_1})(d_1$ 整除k)的N阶子群, $G \downarrow E(F_{qd_2})(d_2$ 整除k)的N阶子群,则椭圆曲线双线性对的值域 $G \cap E(F_{qd_2})$ 0分群,因此椭圆曲线双线性对可将椭圆曲线离散对数问题转化为有限域 F_{qd_2} 1)上离散对数问题。嵌入次数越大安全性越高,但双线性对的计算越困难,因而需要采用嵌入次数适中且达到安全性标准的椭圆曲线。本文规定 $G \cap E(F_{qd_2})$ 2)

本文规定选用如下的曲线:

- a) 基域q为大于 2^{191} 的素数、嵌入次数 $k=2^{i}3^{j}$ 的常曲线,其中i>0, $j\ge0$;
- b) 基域q为大于 2^{768} 的素数、嵌入次数k=2的超奇异曲线;对小于 2^{360} 的N,建议:
- c) N-1含有大于2190的素因子;
- d) N+1含有大于2120的素因子。

5 数据类型及其转换

5.1 数据类型

数据类型包括比特串、字节串、域元素、椭圆曲线上的点和整数。

比特串: 有序的 0 和 1 的序列。

字节串: 有序的字节序列, 其中8比特为1个字节, 最左边的比特为最高位。

域元素:有限域 F_{a^m} $(m \ge 1)$ 中的元素。

椭圆曲线上的点: 椭圆曲线 $E(F_{q^m})(m\geq 1)$ 上的点 P 或者是无穷远点 O,或者是一对域元素 (x_P, y_P) ,其中域元素 x_P 和 y_P 满足椭圆曲线方程。

点的字节串表示有多种形式,用一个字节 PC 加以标识。无穷远点 O 的字节串表示是单一的零字节 PC=00。非无穷远点 $P=(x_P,y_P)$ 有如下三种字节串表示形式:

- a) 压缩表示形式, PC=02 或 03;
- b) 未压缩表示形式, PC=04;

混合表示形式, PC=06或07。

注:混合表示形式既包含压缩表示形式又包含未压缩表示形式。在实现中,它允许转换到压缩表示形式或者未压缩表示形式。对于椭圆曲线上点的压缩表示形式和混合表示形式,本文定为可选形式。椭圆曲线上点的压缩表示形式参见附录A.4。

5.2 数据类型转换

5.2.1 数据类型转换关系

图1表示了各种数据类型之间的转换关系,线上的标志是相应数据转换方法所在的条。

图 1 数据类型和转换约定

5.2.2 整数到字节串的转换

输入: 非负整数 x, 以及字节串的目标长度 l(其中 l满足 $2^{8l}>x$)。

输出:长度为l的字节串M。

- a) 设 $M_{l-1}, M_{l-2}, ..., M_0$ 是 M 的从最左边到最右边的字节:
- b) M的字节满足:

$$x = \sum_{i=0}^{l-1} 2^{8i} M_i \, \circ$$

5.2.3 字节串到整数的转换

输入: 长度为l的字节串M。

输出:整数 x。

- a) 设 $M_{l-1}, M_{l-2}, ..., M_0$ 是 M 的从最左边到最右边的字节;
- b) 将 M 转换为整数 x:

$$x = \sum_{i=0}^{l-1} 2^{8i} M_i \circ$$

5.2.4 比特串到字节串的转换

输入: 长度为n 的比特串s。

输出: 长度为 l 的字节串 M,其中 $l=\lceil n/8 \rceil$ 。

- a) 设 $s_{n-1}, s_{n-2}, ..., s_0$ 是 s 从最左边到最右边的比特;
- b) 设 M_{l-1} , M_{l-2} , ..., M_0 是 M 从最左边到最右边的字节,则 $M_{i}=s_{8i+7}s_{8i+6}\ldots s_{8i+1}s_{8i}$, 其中 $0\leq i\leq l$, 当 $8i+j\geq n$, $0\leq j\leq 7$ 时, $s_{8i+j}=0$ 。

5.2.5 字节串到比特串的转换

输入: 长度为l的字节串M。

输出: 长度为n的比特串s, 其中n=8l。

- a) 设 $M_{l-1}, M_{l-2}, ..., M_0$ 是 M 从最左边到最右边的字节;
- b) 设 $s_{n-1}, s_{n-2}, ..., s_0$ 是 s 从最左边到最右边的比特,则 s_i 是 M_j 右起第 i-8j+1 比特,其中 j= $\lfloor i/8 \rfloor$ 。

5.2.6 域元素到字节串的转换

输入: $F_{q^m}(m \ge 1)$ 中的元素 $\alpha = (a_{m-1}, a_{m-2}, ..., a_1, a_0), q = p$ 。

输出: 长度 l 的字节串 S,其中 $l=\lceil \log_{q}/8 \rceil \times m$ 。

- a) 若 m=1,则 $\alpha=a_0(q=p)$, α 必为区间[0, q-1]中的整数,按 6.2.2 的细节把 α 转换成长度为 l 的字节 串 S:
- b) 若 m>1,则 $\alpha=(a_{m-1}, a_{m-2}, ..., a_1, a_0)$ (q=p),其中 $a_i \in F_q$,i=0,1,...,m-1;
 - 1) 置 $r = \log_{q}/8$;
 - 2) 对 i 从 m-1 到 0 执行: 按 6.2.2 的细节把 $a_i(q=p)$ 转换成长度为 r 的字节串 s_i ;
 - 3) $S = s_{m-1} || s_{m-2} || \dots || s_0$

5.2.7 字节串到域元素的转换

情形 1: 转换为基域中元素

输入: 域 F_a , q=p, 长度为 l 的字节串 S, $l=\log_a q/8$]。

输出: F_a 中的元素 α 。

若 q=p,则按 6.2.3 的细节将 S 转换为整数α,若 α ∉ [0, q-1],则报错;

情形 2: 转换为扩域中元素

输入: 域 $F_{a^m}(m \ge 2)$, q=p, 长度为 l 的字节串 S, 其中 $l=\lceil \log_2 q/8 \rceil \times m$.

输出: F_{a^m} 中的元素 α 。

- a) 将字节串 S 平均分成 m 段, 每段长度为 l/m, 记作 $S=(S_{m-1}, S_{m-2}, ..., S_1, S_0)$;
- b) 对 *i* 从 *m*−1 到 0 执行: 按 6.2.3 的细节将 *Si*转换为整数 *ai*,若 *ai* ∉ [0, *q*−1],则报错;
- c) 若q=p, 输出 $\alpha=(a_{m-1}, a_{m-2}, ..., a_1, a_0)$ 。

5.2.8 点到字节串的转换

点到字节串的转换分为两种情形:一种是在计算过程中,将椭圆曲线点转换为字节串后才能作为某个函数(如杂凑函数)的输入,这种情况下只需直接将点转换为字节串;一种是在传输或存储椭圆曲线点时,为了减少传输的量或存储空间,可采用点的压缩或混合压缩表示形式,这种情况下需要加入一个字节的识别符 PC 来指示点的表示形式。下面分两种情况说明详细的转换过程。

情形 1: 直接转换

输入: 椭圆曲线 $E(F_{a^m})(m \ge 1)$ 上的点 $P=(x_P, y_P)$,且 $P \ne O$ 。

- a) 按 6.2.6 中的细节把域元素 x_P 转换成长度为 l 的字节串 X_1 ;
- b) 按 6.2.6 中的细节把域元素 ν_P 转换成长度为 l 的字节串 Y_1 ;
- c) 输出字节串 $X_1 || Y_1$ 。

情形 2:添加一字节识别符 PC 的转换

输入: 椭圆曲线 $E(F_{a^m})(m \ge 1)$ 上的点 $P=(x_P, y_P)$,且 $P \ne O$ 。

输出: 字节串 PO。若选用未压缩表示形式或混合表示形式,则输出字节串长度为 2l+1;若选用压缩表示形式,则输出字节串长度为 l+1。(当 m=1 时,l=1 $\log_{2}q/8$];当 m>1 时,l=1 $\log_{2}q/8$ $\gg m$ 。)

- a) 按 6.2.6 中的细节把域元素 x_P 转换成长度为 l 的字节串 X_1 ;
- b) 若选用压缩表示形式,则:
 - 1) 计算比特 \tilde{y}_p ; (参见附录 A.4。)
 - 2) 若 $\tilde{y}_P = 0$,则令PC = 02;若 $\tilde{y}_P = 1$,则令PC = 03;
 - 3) 字节串 $PO = PC||X_1;$
- c) 若选用未压缩表示形式,则:
 - 1) 按 6.2.6 的细节把域元素 yP 转换成长度为 l 的字节串 Y1;
 - 2) $\Rightarrow PC = 04$;
 - 3) 字节串 $PO = PC||X_1||Y_1;$
- d) 若选用混合表示形式,则:
 - 1) 按 6.2.6 的细节把域元素 y_P 转换成长度为 l 的字节串 Y_1 ;
 - 2) 计算比特 \tilde{y}_P ; (参见附录 A.4。)
 - 3) 若 $\tilde{y}_P = 0$,则令 PC = 06;若 $\tilde{y}_P = 1$,则令 PC = 07;
 - 4) 字节串 PO=PC||X₁||Y₁。

5.2.9 字节串到点的转换

字节串到点的转换是6.2.8的逆过程。下面也分两种情况加以说明。

情形 1: 直接转换

输入: 定义 $F_{q'''}(m \ge 1)$ 上椭圆曲线的域元素 a、b,长度为 2l 的字节串 $X_1 || Y_1$, X_1 、 Y_1 的长度均为 l (当 m=1 时, $l=\log_2 q/8$]; 当 m>1 时, $l=\log_2 q/8$]×m)。

输出: 椭圆曲线上的点 $P=(x_P, y_P)$, 且 $P\neq O$ 。

- a) 接 6.2.7 的细节把字节串 X_1 转换成域元素 x_P ;
- b) 按 6.2.7 的细节把字节串 Y_1 转换成域元素 y_P 。

情形 2: 包含一字节识别符 PC 的字节串的转换

输入: 定义 $F_{q^m}(m \ge 1)$ 上椭圆曲线的域元素 a、b,字节串 PO。若选用未压缩表示形式或混合表示形式,则字节串 PO 长度为 2l+1;若选用压缩表示形式,则字节串 PO 长度为 l+1(当 m=1 时,l=1 log.g/8];当 m>1 时,l=1 log.g/8]。

输出: 椭圆曲线上的点 $P=(x_P, y_P)$,且 $P\neq O$ 。

- a) 若选用压缩表示形式,则 $PO=PC||X_1$; 若选用未压缩表示形式或混合表示形式,则 $PO=PC||X_1||Y_1$, 其中 PC 是单一字节, X_1 和 Y_1 都是长度为 l 的字节串;
- b) 按 6.2.7 的细节把字节串 X_1 转换成域元素 x_P ;
- c) 若选用压缩表示形式,则:
 - 1) 检验 PC=02 或者是 PC=03, 若不是这种情形,则报错;
 - 2) 若 PC=02, 则令 $\tilde{y}_{p}=0$; 若 PC=03, 则令 $\tilde{y}_{p}=1$;
 - 3) 将 (x_P, \widetilde{y}_P) 转换为椭圆曲线上的一个点 (x_P, y_P) ;(参见附录 A.4。)
- d) 若选用未压缩表示形式,则:

- 1) 检验 PC=04,若不是这种情形,则报错;
- 2) 按 6.2.7 的细节把字节串 Y_1 转换成域元素 y_P ;
- e) 若选用混合表示形式,则:
 - 1) 检验 PC=06 或者 PC=07, 若不是这种情形,则报错;
 - 2) 执行步骤 e.2.1)或者 e.2.2):
 - 按 6.2.7 的细节把字节串 Y_1 转换成域元素 y_P ;
 - 若 PC = 06,则令 $\tilde{y}_P = 0$,否则令 $\tilde{y}_P = 1$; 将 (x_P, \tilde{y}_P) 转换为椭圆曲线上的一个点 (x_P, y_P) ; (参见附录 A.4。)
- f) 验证(x_P, y_P)是否满足曲线方程,若不满足,则报错;
- g) $P = (x_P, y_P)_{\circ}$

6 系统参数及其验证

6.1 系统参数

系统参数包括:

- a) 曲线的识别符 cid,用一个字节表示: 0x10 表示 F_q (素数 q>3)上常曲线,0x11 表示 F_q 上超奇异曲线,0x12 表示 F_q 上常曲线及其扭曲线;
- b) 椭圆曲线基域 F_q 的参数:基域参数为大于 3 的素数 q;
- c) F_q 中的两个元素 a 和 b,它们定义椭圆曲线 E 的方程: $y^2 = x^3 + ax + b$; 扭曲线参数 β (若 cid 的低 4 位为 2);
- d) 余因子 cf 和素数 N,其中 cf× $N = \#E(F_q)$,规定 $N > 2^{191}$ 且 N 不整除 cf,如果 N 小于 2^{360} ,建议 N-1 含有大于 2^{190} 的素因子,N+1 含有大于 2^{120} 的素因子;
- e) 曲线 $E(F_a)$ 相对于 N 的嵌入次数 k(N) 阶循环群(G_T , ·) $\subset F_a$, 规定 $g^k > 2^{1536}$;
- f) N 阶循环群(G_1 , +)的生成元 $P_1 = (x_{P_1}, y_{P_1}), P_1 \neq O$;
- g) N 阶循环群(G_2 , +)的生成元 $P_2 = (x_{P_2}, y_{P_2}), P_2 \neq O$;
- h) 双线性对 $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$,用一个字节的识别符 eid 表示: 0x01 表示 Tate 对,0x02 表示 Weil 对,0x03 表示 Ate 对,0x04 表示 R-ate 对;
- i) (选项) 参数 d_1, d_2 , 其中 d_1, d_2 整除 k;
- j) (选项) G_2 到 G_1 的同态映射 ψ ,使得 $P_1 = \psi(P_2)$ 。
- k) (选项) BN 曲线的基域特征 q, 曲线阶 r, Frobenius 映射的迹 tr 可通过参数 t 来确定, t 至少达到 63 比特。

6.2 系统参数的验证

下面的条件应由系统参数的生成者加以验证。这些条件也能由系统参数的用户验证。

输入:系统参数集合。

输出: 若所有参数有效,则输出"有效"; 否则输出"无效"。

- a) 验证 q 是大于 3 的素数(参见附录 C.1.5);
- b) 验证 a, b 是区间[0, q-1]中的整数;
- c) 验证在 $F_q \perp 4a^3 + 27b^2 \neq 0$; 若 cid 的低 4 位为 2,验证 β 是非平方元(参见附录 C.1.4.3.1);
- d) 验证 N 为大于 2^{191} 的素数且 N 不整除 cf,如果 N 小于 2^{360} ,验证 N-1 含有大于 2^{190} 的素因子, N+1 含有大于 2^{120} 的素因子;
- e) 验证| $q+1-cf\times N$ |<2 $q^{1/2}$;

- f) 验证 $q^k > 2^{1536}$, 且 k 为使 $N(q^m-1)$ 成立的最小正整数 m;
- g) 验证 (x_{P_1}, y_{P_1}) 是群 G_1 中的元素;
- h) 验证 (x_{P_2}, y_{P_2}) 是群 G_2 中的元素;
- i) 验证 $e(P_1, P_2) \in F_{qk}^* \setminus \{1\}$, 且 $e(P_1, P_2)^N = 1$;
- j) (选项)验证 d₁, d₂整除 k;
- k) (选项)验证 P₁=\psi(P₂);
- 1) (选项)验证 t 至少达到 63 比特。

若以上任何一项验证失败,则输出"无效";否则,输出"有效"。

附 录 A 关于椭圆曲线的背景知识

A. 1 有限域

A. 1. 1 素域F_p

设p是一个素数,整数模p的全体余数的集合 $\{0,1,2,...,p-1\}$ 关于模p的加法和乘法构成一个p阶素域,用符号 F_p 表示。加法单位元是 0,乘法单位元是 1, F_p 的元素满足如下运算法则:

- ——加法: 设 $a, b \in F_p$,则 a + b = r,其中 $r = (a + b) \mod p$, $r \in [0, p-1]$ 。
- **一一乘法:** 设 $a, b \in F_p$,则 $a \cdot b = s$,其中 $s = (a \cdot b) \mod p$, $s \in [0, p-1]$ 。

记 F_p^* 是由 F_p 中所有非零元构成的乘法群,由于 F_p^* 是循环群,所以在 F_p 中至少存在一个元素g,使得 F_p 中任一非零元都可以由g的一个方幂表示,称g为 F_p^* 的生成元(或本原元),即 $F_p^*=\{g^i|\ 0\leq i\leq p-2\}$ 。设 $a=g^i\in F_p^*$,其中 $0\leq i\leq p-2$,则a的乘法逆元为: $a^{-1}=g^{p-1-i}$

示例 1: 素域 F_{19} , F_{19} ={0, 1, 2, ..., 18}。

 F_{19} 中加法的示例: 10,14 \in F_{19} , 10+14=24, 24 mod 19 =5,则 10+14=5。

 F_{19} 中乘法的示例: $7,8 \in F_{19}$, $7 \times 8 = 56$, $56 \mod 19 = 18$, 则 $7 \cdot 8 = 18$ 。

 $13^{0} = 1$, $13^{1} = 13$, $13^{2} = 17$, $13^{3} = 12$, $13^{4} = 4$, $13^{5} = 14$, $13^{6} = 11$, $13^{7} = 10$, $13^{8} = 16$, $13^{9} = 18$,

 $13^{10} = 6$, $13^{11} = 2$, $13^{12} = 7$, $13^{13} = 15$, $13^{14} = 5$, $13^{15} = 8$, $13^{16} = 9$, $13^{17} = 3$, $13^{18} = 1$.

A. 1. 2 有限域F_am

设 q 是一个素数或素数方幂,f(x)是多项式环 $F_q[x]$ 上的一个 m (m>1)次不可约多项式(称为约化多项式或域多项式),商环 $F_q[x]/(f(x))$ 是含 q^m 个元素的有限域(记为 F_{q^m}),称 F_{q^m} 是有限域 F_q 的扩域,域 F_q 为域 F_{q^m} 的子域,m 为扩张次数。 F_{q^m} 可以看成 F_q 上的 m 维向量空间,也就是说,在 F_{q^m} 中存在 m 个元素 α_0 , α_1 , ..., α_{m-1} , 使得 $\forall a \in F_{q^m}$, a 可以唯一表示为: $a = a_{m-1}\alpha_{m-1} + \cdots + a_1\alpha_1 + a_0\alpha_0$, 其中 $a_i \in F_q$, 称 $\{\alpha_{m-1}, \ldots, \alpha_1, \alpha_0\}$ 为 F_{q^m} 在 F_q 上的一组基。给定这样一组基,就可以由向量 $\{a_{m-1}, a_{m-2}, \ldots, a_1, a_0\}$ 来表示域元素 a。 F_{q^m} 在 F_q 上的基有多种选择:多项式基和正规基等。

不可约多项式f(x)可取为首一的多项式 $f(x)=x^m+f_{m-1}x^{m-1}+\cdots+f_2x^2+f_1x+f_0$ (其中 $f_i\in F_q$, $i=0,1,\dots,m-1$), F_{q^m} 中的元素由多项式环 $F_q[x]$ 中所有次数低于m的多项式构成,即 $F_{q^m}=\{a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0\mid a_i\in F_q$, $i=0,1,\dots,m-1\}$ 。多项式集合 $\{x^{m-1},x^{m-2},\dots,x,1\}$ 是 F_{q^m} 作为向量空间在 F_q 上的一组基,称为多项式基。当m含有因子d(1< d< m)时, F_{q^m} 可以由 F_{q^d} 扩张生成,从 $F_{q^d}[x]$ 中选取一个合适的m/d次不可约多项式作为 F_{q^m} 在 F_{q^d} 上的约化多项式, F_{q^m} 可以由塔式扩张方法(towering method)得到,这种扩张的基本形式仍是由 F_q 中元素组成的向量。例如当m=6时,可以先由 F_q 经过3次扩张得扩域 F_{q^3} ,再由 F_{q^3} 经过2次扩张得到扩域 F_{q^6} 。

 F_{q^m} 在 F_q 上形如 $\{\beta, \beta^q, \beta^{q^2}, \dots, \beta^{q^{m-1}}\}$ 的一组基称为正规基,其中 $\beta \in F_{q^m}$ 。 $\forall a \in F_{q^m}$,a可以唯一表示为: $a = a_0\beta + a_1\beta^q + \dots + a_{m-1}\beta^{q^{m-1}}$,其中 $a_i \in F_q$, $i = 0, 1, \dots, m-1$ 。对于任意有限域 F_q 及其扩域 F_{q^m} ,这样的基总是存在的。

如果不作特别说明, F_{am} 中元素均采用多项式基表示。

域元素 $a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0$ 相对于多项式基可以由向量 $(a_{m-1},a_{m-2},\ldots,a_1,a_0)$ 表示,所以 $F_{a^m}=\{(a_{m-1},a_{m-2},\ldots,a_1,a_0)|a_i\in F_q,\ i=0,1,\ldots,m-1\}$ 。

乘法单位元1由(0,...,0,1)表示,零元由(0,...,0,0)表示。域元素的加法和乘法定义如下:

——加法运算

 $\forall (a_{m-1}, a_{m-2}, ..., a_1, a_0)$, $(b_{m-1}, b_{m-2}, ..., b_1, b_0) \in F_{q^m}$,则 $(a_{m-1}, a_{m-2}, ..., a_1, a_0) + (b_{m-1}, b_{m-2}, ..., b_1, b_0) = (c_{m-1}, c_{m-2}, ..., c_1, c_0)$,其中 $c_i = a_i + b_i \in F_q$,i = 0, 1, ..., m-1,亦即,加法运算按分量执行域 F_q 的加法运算。

——乘法运算

 $\forall (a_{m-1}, a_{m-2}, \dots, a_1, a_0), (b_{m-1}, b_{m-2}, \dots, b_1, b_0) \in F_{q^m}, 则(a_{m-1}, a_{m-2}, \dots, a_1, a_0) \cdot (b_{m-1}, b_{m-2}, \dots, b_1, b_0) = (r_{m-1}, r_{m-2}, \dots, r_1, r_0),$ 其中多项式 $(r_{m-1}x^{m-1} + r_{m-2}x^{m-2} + \dots + r_1x + r_0)$ 是 $(a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_1x + a_0) \cdot (b_{m-1}x^{m-1} + b_{m-2}x^{m-2} + \dots + b_1x + b_0)$ 在 $F_q[x]$ 中模 f(x)的余式。

 F_{q^m} 恰包含 q^m 个元素。记 F_{q^m} *是由 F_{q^m} 中所有非零元构成的乘法群, F_{q^m} *是循环群,在 F_{q^m} 中至少存在一个元素g,使得 F_{q^m} 中任一非零元都可以由g的一个方幂表示,称g为 F_{q^m} * 的生成元(或本原元),即: F_{q^m} * ={ g^i | $0 \le i \le q^m - 2$ }。 设 $a = g^i \in F_{q^m}$ *,其中 $0 \le i \le q^m - 2$,则a的乘法逆元为: $a^{-1} = g^{q^m - 1 - i}$ 。

示例 2: F_{3^2} 的多项式基表示

取 F_3 上的一个不可约多项式 $f(x) = x^2 + 1$,则 F_{3^2} 中的元素是:

$$(0,0)$$
, $(0,1)$, $(0,2)$, $(1,0)$, $(1,1)$, $(1,2)$, $(2,0)$, $(2,1)$, $(2,2)$

加法: (2,1)+(2,0)=(1,1)

乘法: $(2,1)\cdot(2,0)=(2,2)$

 $(2x+1)\cdot 2x=4x^2+2x$

 $=x^2+2x$

 $\equiv 2x+2 \pmod{f(x)}$

即 2x+2 是 $(2x+1)\cdot 2x$ 除以 f(x)的余式。

乘法单位元是(0,1), $\alpha=x+1$ 是 F_{3^2} 的一个生成元,则 α 的方幂为:

$$\alpha^0 = (0,1), \quad \alpha^1 = (1,1), \quad \alpha^2 = (2,0), \quad \alpha^3 = (2,1), \quad \alpha^4 = (0,2), \quad \alpha^5 = (2,2),$$

 $\alpha^6 = (1,0), \quad \alpha^7 = (1,2), \quad \alpha^8 = (0,1).$

A. 1. 3 有限域上的椭圆曲线

A. 1. 3. 1 概述

有限域上椭圆曲线常用的表示形式有两种: 仿射坐标表示和射影坐标表示。

A. 1. 3. 2 仿射坐标表示

设 p 是大于 3 的素数, F_{p^m} 上椭圆曲线方程在仿射坐标系下可以简化为 $y^2=x^3+ax+b$,其中 a, $b \in F_{p^m}$,且使得 $4a^3+27b^2\neq 0$ 。椭圆曲线上的点集记为 $E(F_{p^m})=\{(x,y)|x,y\in F_{p^m}$,且满足曲线方程 $y^2=x^3+ax+b\}\cup \{O\}$,其中 O 是椭圆曲线的无穷远点,又称为零点。

 $E(F_{n^m})$ $(m \ge 1)$ 上的点按照下面的加法运算规则,构成一个交换群:

- a) O + O = O;
- b) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y) \in E(F_{p^m}) \setminus \{O\}$, P 的逆元素-P = (x, -y), P + (-P) = O;
- d) 点 $P_1=(x_1, y_1) \in E(F_{p^m}) \setminus \{O\}$, $P_2=(x_2, y_2) \in E(F_{p^m}) \setminus \{O\}$, $P_3=(x_3, y_3) = P_1 + P_2 \neq O$, 则

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1, \end{cases}$$

其中

示例 3: 有限域 F19 上一条椭圆曲线

 F_{19} 上方程: $y^2=x^3+x+1$, 其中 a=1, b=1。则 F_{19} 上曲线的点为:

(0,1), (0,18), (2,7), (2,12), (5,6), (5,13), (7,3), (7,16), (9,6), (9,13), (10,2), (10,17), (13,8), (13,11), (14,2), (14,17), (15,3), (15,16), (16,3), (16,16)

则 $E(F_{19})$ 有 21 个点(包括无穷远点 O)。

a) 取 P_1 =(10,2), P_2 =(9,6),计算 P_3 = P_1 + P_2 :

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{9 - 10} = \frac{4}{-1} = -4 \equiv 15 \pmod{19}$$
,

 $x_3=15^2-10-9=225-10-9=16-10-9=-3=16 \pmod{19}$,

 $y_3=15\times(10-16)-2=15\times(-6)-2\equiv3\pmod{19}$

所以 P₃=(16,3)。

b) 取 P₁=(10,2), 计算[2]P₁:

$$\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3 \times 10^2 + 1}{2 \times 2} = \frac{3 \times 5 + 1}{4} = \frac{16}{4} = 4 \pmod{19},$$

 $x_3=4^2-10-10=-4\equiv 15 \pmod{19}$

 $y_3=4\times(10-15)-2=-22\equiv16\pmod{19}$,

所以[2]P1=(15,16)。

A. 1. 3. 3 射影坐标表示

A. 1. 3. 3. 1 标准摄影坐标系

设 p 是大于 3 的素数, F_{p^m} 上椭圆曲线方程在标准射影坐标系下可以简化为 $y^2z=x^3+axz^2+bz^3$,其中 $a,b\in F_{p^m}$,且 $4a^3+27b^2\neq 0$ 。 椭圆曲线上的点集记为 $E(F_{p^m})=\{(x,y,z)|x,y,z\in F_{p^m}$ 且满足曲线方程 $y^2z=x^3+axz^2+bz^3\}$ 。对于 (x_1,y_1,z_1) 和 (x_2,y_2,z_2) ,若存在某个 $u\in F_{p^m}$ 且 $u\neq 0$,使得: $x_1=ux_2$, $y_1=uy_2$, $z_1=uz_2$,则称这两个三元组等价,表示同一个点。

 $\ddot{z}\neq 0$,记 X=x/z,Y=y/z,则可从标准射影坐标表示转化为仿射坐标表示: $Y^2=X^3+aX+b$; 若 z=0,(0,1,0)对应的仿射坐标系下的点即无穷远点 O。

标准射影坐标系下, $E(F_{p^m})$ 上点的加法运算定义如下:

- a) O+O=O;
- b) $\forall P=(x, y, z) \in E(F_{p^m}) \setminus \{O\}, P+O=O+P=P;$
- c) $\forall P = (x, y, z) \in E(F_{n^m}) \setminus \{O\}$, P 的逆元素-P = (ux, -uy, uz), $u \in F_{n^m} \perp u \neq 0$, P + (-P) = O;
- d) 设点 $P_1 = (x_1, y_1, z_1) \in E(F_{p^m}) \setminus \{O\}$, $P_2 = (x_2, y_2, z_2) \in E(F_{p^m}) \setminus \{O\}$, $P_3 = P_1 + P_2 = (x_3, y_3, z_3) \neq O$, 若 $P_1 \neq P_2$, 则:

$$\lambda_{1} = x_{1}z_{2}, \quad \lambda_{2} = x_{2}z_{1}, \quad \lambda_{3} = \lambda_{1} - \lambda_{2}, \quad \lambda_{4} = y_{1}z_{2}, \quad \lambda_{5} = y_{2}z_{1}, \quad \lambda_{6} = \lambda_{4} - \lambda_{5}, \quad \lambda_{7} = \lambda_{1} + \lambda_{2}, \quad \lambda_{8} = z_{1}z_{2}, \\ \lambda_{9} = \lambda_{3}^{2}, \quad \lambda_{10} = \lambda_{3}\lambda_{9}, \quad \lambda_{11} = \lambda_{8}\lambda_{6}^{2} - \lambda_{7}\lambda_{9}, \quad x_{3} = \lambda_{3}\lambda_{11}, \quad y_{3} = \lambda_{6}(\lambda_{9}\lambda_{1} - \lambda_{11}) - \lambda_{4}\lambda_{10}, \quad z_{3} = \lambda_{10}\lambda_{8};$$

若 $P_1=P_2$, 则:

$$\lambda_1 = 3x_1^2 + az_1^2$$
, $\lambda_2 = 2y_1z_1$, $\lambda_3 = y_1^2$, $\lambda_4 = \lambda_3 x_1z_1$, $\lambda_5 = \lambda_2^2$, $\lambda_6 = \lambda_1^2 - 8\lambda_4$,

$$x_3 = \lambda_2 \lambda_6$$
, $y_3 = \lambda_1 (4\lambda_4 - \lambda_6) - 2\lambda_5 \lambda_3$, $z_3 = \lambda_2 \lambda_5$

A. 1. 3. 3. 2 Jacobian加重射影坐标系

设 p 是大于 3 的素数, F_{p^m} 上椭圆曲线方程在 Jacobian 加重射影坐标系下可以简化为 $y^2 = x^3 + axz^4 + bz^6$ 。其中 $a,b \in F_{p^m}$,且 $4a^3 + 27b^2 \neq 0$ 。椭圆曲线上的点集记为 $E(F_{p^m}) = \{(x,y,z) | x,y,z \in F_{p^m}$ 且满足曲线方程 $y^2 = x^3 + axz^4 + bz^6\}$ 。对于 (x_1,y_1,z_1) 和 (x_2,y_2,z_2) ,若存在某个 $u \in F_{p^m}$ 且 $u \neq 0$,使得: $x_1 = u^2x_2$, $y_1 = u^3y_2$, $z_1 = uz_2$,则称这两个三元组等价,表示同一个点。

若 $z\neq 0$,记 $X=x/z^2,Y=y/z^3$,则可从 Jacobian 加重射影坐标表示转化为仿射坐标表示: $Y^2=X^3+aX+b$; 若 z=0,(1,1,0)对应的仿射坐标系下的点即无穷远点 O 。

Jacobian 加重射影坐标系下, $E(F_{p^m})$ 上点的加法运算定义如下:

- a) O+O=O;
- b) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}, P + O = O + P = P;$
- c) $\forall P = (x, y, z) \in E(F_{p^m}) \setminus \{O\}$, P 的逆元素 $-P = (u^2x, -u^3y, uz)$, $u \in F_{p^m} \perp u \neq 0$, P + (-P) = O;
- d) 设点 $P_1 = (x_1, y_1, z_1) \in E(F_{p^m}) \setminus \{O\}$, $P_2 = (x_2, y_2, z_2) \in E(F_{p^m}) \setminus \{O\}$, $P_3 = P_1 + P_2 = (x_3, y_3, z_3) \neq O$,

若 $P_1 \neq P_2$,则:

$$\lambda_1 = 3x_1^2 + az_1^4$$
, $\lambda_2 = 4x_1y_1^2$, $\lambda_3 = 8y_1^4$, $\lambda_3 = \lambda_1^2 - 2\lambda_2$, $\lambda_3 = \lambda_1(\lambda_2 - x_3) - \lambda_3$, $\lambda_3 = 2y_1z_1$.

A. 1. 4 有限域上椭圆曲线的阶

有限域 F_{q^m} 上一条椭圆曲线的阶是指点集 $E(F_{q^m})$ 中元素的个数,记为# $E(F_{q^m})$ 。由 Hasse 定理知: $q^{m+1-2} \ q^{m/2} \le \#E(F_{q^m}) \le q^m + 1 + 2q^{m/2}$,即# $E(F_{q^m}) = q^m + 1 - t$,其中 t 称为 Frobenius 迹且 $|t| \le 2q^{m/2}$ 。

若 F_{q^m} 的特征整除Frobenius迹t,则称此曲线为超奇异的,否则为非超奇异的。

设 $E(F_{q^m})$ 是 F_{q^m} 上的椭圆曲线,r是与 q^m 互素的整数,则 $E(F_{q^m})$ 的r阶扭子群 $E(F_{q^m})[r]=\{P\in E(F_{q^m})\mid [r]P=O\}$, $E(F_{q^m})[r]$ 中的点称为r-扭点。

A. 2 椭圆曲线多倍点运算

椭圆曲线上同一个点的重复相加称为该点的多倍点运算。设u是一个正整数,P是椭圆曲线上的点,其u倍点 $Q=[u]P=\underbrace{P+P+\cdots+P}$ 。

多倍点运算可以扩展到 0 倍点运算和负数倍点运算: [0]P=O,[-u]P=[u](-P)。 椭圆曲线多倍点运算的实现有多种方法,这里只介绍最基本的三种方法,以下都假设 $1 \le u < N$ 。

算法一: 二进制展开法

输入: 点
$$P$$
, l 比特的整数 $u = \sum_{j=0}^{l-1} u_j 2^j$, $u_j \in \{0,1\}$.

输出: Q = [u]P。

- a) 置Q = 0;
- b) 对*j* 从*l*-1降至0执行:

b.1)
$$Q = [2]Q$$
;

c) 输出Q。

算法二:加减法

输入: 点
$$P$$
, l 比特的整数 $u = \sum_{j=0}^{l-1} u_j 2^j$, $u_j \in \{0,1\}$ 。

输出: Q=[u]P。

- a) 设3u的二进制表示是 h_rh_{r-1} ···· h_1h_0 ,其中最高位 h_r 为1,显然 r=l 或 l+1;
- b) 设u的二进制表示是 u_ru_{r-1} ··· u_1u_0 ;
- c) 置Q = P;
- d) 对*i*从*r*-1降至1执行:
 - d.1) Q = [2]Q;
 - d.2) 若 $h_i = 1$, 且 $u_i = 0$, 则 Q = Q + P;
- e) 输出Q。

注: 减去点(x,y),只要加上(x,-y)。有多种不同的变种可以加速这一运算。

算法三:滑动窗法

输入: 点
$$P$$
, l 比特的整数 $u = \sum_{i=0}^{l-1} u_j 2^j$, $u_j \in \{0,1\}$.

输出: *Q*=[*u*]*P*。

设窗口长度 r > 1。

预计算

- a) $P_1=P$, $P_2=[2]P$;
- b) i从 1 到 $2^{r-1}-1$ 计算 $P_{2i+1}=P_{2i-1}+P_2$;
- c) 置 j = l-1, Q = O。

主循环

- d) 当 $j \ge 0$ 执行:
 - d.1) 若 $u_i = 0$, 则Q = [2]Q, j = j-1;
 - d.2) 否则
 - d.2.1) 令 t 是使 $j-t+1 \le r \le u_t = 1$ 的最小整数;

d.2.2)
$$h_j = \sum_{i=0}^{j-t} u_{t+i} 2^i$$
;

d.2.3)
$$Q=[2^{j-t+1}]Q+P_{h_i}$$
;

d.2.4) 置
$$j = t-1$$
;

e) 输出Q。

A. 3 离散对数问题

A. 3. 1 求解有限域上离散对数问题的方法

有限域 F_q 的全体非零元素构成一个乘法循环群,记为 F_q^* 。 F_q^* 中存在一个元素g,g 称为生成元,

使得 $F_q^* = \{g \mid 0 \le i \le q-2\}$ 。 $a \in F_q$ 的阶是满足 $a^t = 1$ 的最小正整数 t。循环群 F_q^* 的阶为 q-1,因此 $t \mid q-1$ 。 设乘法循环群 F_q^* 的生成元为 g, $y \in F_q^*$,有限域上离散对数问题是指确定整数 $x \in [0, q-2]$,使得 $y = g^x \mod q$ 成立。

有限域上离散对数问题现有攻击方法有:

- a) Pohlig-Hellman方法:设l是q-1的最大素因子,则时间复杂度为 $O(l^{1/2})$;
- b) BSGS方法: 时间复杂度与空间复杂度均为(πq/2)^{1/2};
- c) Pollard方法: 时间复杂度为(πq/2)^{1/2};
- d) 并行Pollard方法:设s为并行处理器个数,时间复杂度为 $(\pi q/2)^{1/2}/s$;
- e) 线性筛法(对素域 F_q): 时间复杂度为 $\exp((1+o(1))(\log q)^{1/2}(\log\log q)^{1/2})$;
- f) Gauss整数法(对素域 F_q): 时间复杂度为 $\exp((1+o(1))(\log q)^{1/2}(\log\log q)^{1/2})$;
- g) 剩余列举筛法(对素域 F_a): 时间复杂度为 $\exp((1+o(1))(\log q)^{1/2}(\log\log q)^{1/2})$;
- h) 数域筛法(对素域 F_q): 时间复杂度为 $\exp(((64/9)^{1/3} + o(1))(\log q(\log \log q)^2)^{1/3})$;
- i) 函数域筛法 (对小特征域): 时间复杂度为 $\exp(c(\log q(\log\log q)^2)^{1/4+o(1)})$ 和拟多项式时间。

从以上列举的求解离散对数问题的方法及其时间复杂度可知:对于一般的大特征域上的离散对数问题,存在亚指数级计算复杂度的攻击方法,对小特征域上的离散对数问题,目前已经有拟多项式时间的攻击方法。

A. 3. 2 求解椭圆曲线离散对数问题的方法

已知椭圆曲线 $E(F_q)$,阶为n的点 $P \in E(F_q)$ 及 $Q \in P >$,椭圆曲线离散对数问题是指确定整数 $u \in [0, n-1]$,使得Q = [u]P成立。

ECDLP现有攻击方法有:

- a) Pohlig-Hellman方法: 设l是n的最大素因子,则时间复杂度为 $O(l^{1/2})$;
- b) BSGS方法: 时间复杂度与空间复杂度均为(πn/2)^{1/2};
- c) Pollard方法: 时间复杂度为(πn/2)^{1/2};
- d) 并行Pollard方法:设r为并行处理器个数,时间复杂度为 $(\pi n/2)^{1/2}/r$;
- e) MOV-方法: 把超奇异椭圆曲线及具有相似性质的曲线的ECDLP降到 F_q 的小扩域上的离散对数问题(亚指数级计算复杂度算法);
- f) Anomalous方法: 对Anomalous曲线($\#E(F_q)=q$ 的曲线)的有效攻击方法(多项式级计算复杂度算法):
- g) GHS-方法:利用Weil下降技术求解扩张次数为合数的二元扩域上椭圆曲线离散对数问题,将 *ECDLP*转化为超椭圆曲线离散对数问题,而求解高亏格的超椭圆曲线离散对数存在亚指数级 计算复杂度算法。
- h) DGS-点分解方法:对低次扩域上的椭圆曲线离散对数利用的指标计算方法,在某些特殊情况下,其求解复杂度低于平方根时间复杂度。

从上述对椭圆曲线离散对数问题解法的描述与分析可知:对于一般曲线的离散对数问题,目前的求解方法都为指数级计算复杂度,未发现亚指数级计算复杂度的一般攻击方法;而对于某些特殊曲线的离散对数问题,存在多项式级或者亚指数级计算复杂度算法。

A. 4 点的压缩

A. 4.1 概述

对于椭圆曲线 $E(F_q)$ 上的任意非无穷远点 $P=(x_P,y_P)$,该点能由坐标 x_P 及由 x_P 和 y_P 导出的一个特定比特简洁地表示,称为点的压缩表示。

A. 4. 2 F_p 上椭圆曲线点的压缩与解压缩方法

设 $P = (x_P, y_P)$ 是定义在 F_p 上椭圆曲线 $E: y^2 = x^3 + ax + b$ 上的一个点, \tilde{y}_P 为 y_P 的最右边的一个比特,则点P可由 x_P 和比特 \tilde{y}_P 表示。

由 x_P 和 \tilde{y}_P 恢复 y_P 的方法如下:

- a) 在 F_p 上计算域元素 $\alpha = x_P^3 + ax_P + b$;
- b) 计算 α 在 F_p 上的平方根 β (参见附录C.1.4),若输出是"不存在平方根",则报错;
- c) 若 β 的最右边比特等于 $\tilde{\gamma}_p$,则置 $y_P = \beta$;否则置 $y_P = p \beta$ 。

A. 4. 3 $F_{q^m}(q$ 为奇素数, $m \ge 2$)上椭圆曲线点的压缩与解压缩方法

设 $P = (x_P, y_P)$ 是定义在 F_{q^m} 上椭圆曲线 $E: y^2 = x^3 + ax + b$ 上的一个点,则 y_P 可表示为 $(y_{m-1}, y_{m-2}, ..., y_1, y_0)$, \tilde{y}_P 为 y_0 的最右边的一个比特,则点P可由 x_P 和比特 \tilde{y}_P 表示。由 x_P 和 \tilde{y}_P 恢复 y_P 的方法如下:

- a) 在 F_{am} 上计算域元素 $\alpha = x_P^3 + ax_P + b$;
- b) 计算 α 在 F_{q^m} 上的平方根 β (参见附录C.1.4),若输出是"不存在平方根",则报错;若 β 的表示(β_{m-1} , β_{m-2} , ..., β_1 , β_0)中 β_0 的最右边比特等于 \tilde{y}_P ,则置 $y_P = \beta$; 否则置 $y_P = (\beta'_{m-1}, \beta'_{m-2}, ..., \beta'_{m-2},$

附录B

椭圆曲线上双线性对的计算

B. 1 概述

设有限域 F_q 上椭圆曲线为 $E(F_q)$,若# $E(F_q)$ = $cf \times r$,r 是素数且 gcd(r,q)=1,cf 为余因子,则使 $r|q^k$ -1 的最小正整数 k 称为椭圆曲线相对于 r 的嵌入次数。若 G 是 $E(F_q)$ 的 r 阶子群,则 G 的嵌入次数也是 k。

设 \bar{F}_a 是有限域 F_a 的代数闭包,E[r]表示 $E(\bar{F}_a)$ 中所有r阶点的集合。

B. 2 Miller算法

设 F_{qk} 上椭圆曲线 $E(F_{qk})$ 的方程为 $y^2=x^3+ax+b$,定义过 $E(F_{qk})$ 上点U和V的直线为 $g_{U,V}$: $E(F_{qk}) \rightarrow F_{qk}$,若过U, V两点的直线方程为 $\lambda x+\delta y+\tau=0$,则令函数 $g_{U,V}(Q)=\lambda x_Q+\delta y_Q+\tau$,其中 $Q=(x_Q,y_Q)$ 。当U=V时, $g_{U,V}$ 定义为过点U的切线;若U和V中有一个点为无穷远点O, $g_{U,V}$ 就是过另一个点且垂直于x轴的直线。一般用 g_{U} 作为 $g_{U,U}$ 的简写。

记 $U=(x_U,y_U)$, $V=(x_V,y_V)$, $Q=(x_Q,y_Q)$, $\lambda_1=(3x_V^2+a)/(2y_V)$, $\lambda_2=(y_U-y_V)/(x_U-x_V)$, 则有以下性质:

- a) $g_{U,V}(O)=g_{U,O}(Q)=g_{O,V}(Q)=1$;
- b) $g_{V,V}(Q) = \lambda_1(x_Q x_V) y_Q + y_V$, $Q \neq O$;
- c) $g_{U,V}(Q)=\lambda_2(x_O-x_V)-y_O+y_V$, $Q\neq O$, $U\neq \pm V$;
- d) $g_{V,-V}(Q)=x_Q-x_V$, $Q\neq O_\circ$

Miller 算法是计算双线性对的有效算法。

Miller 算法

输入: 曲线 E, E 上两点 P 和 O, 整数 c。

输出: f_{P,c}(Q)。

- a) 设 c 的二进制表示是 $c_i...c_1c_0$,其最高位 c_i 为 1;
- b) 置 *f*=1, *V=P*;
- c) 对 *i* 从 *j*-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(Q) / g_{\gamma V}(Q)$, V = [2]V;
 - c.2) 若 $c_i=1$, 令 $f = f \cdot g_{VP}(Q)/g_{V+P}(Q)$, V = V + P.
- d) 输出 f。
- 一般,称 $f_{P,c}(Q)$ 为Miller函数。

B. 3 Weil对的计算

设 E 是 F_q 上的椭圆曲线,r 是与 q 互素的正整数,设 μ_r 是 r 次单位根集合,k 是相对于 r 的嵌入次数,即 $r \mid q^k-1$,则 $\mu_r \subset F_{ak}$ 。

令 $G_1=E[r]$, $G_2=E[r]$, $G_T=\mu_r$,则 Weil 对是从 $G_1\times G_2$ 到 G_T 的双线性映射,记为 e_r 。

设 $P \in \mathbb{G}_1$, $Q \in \mathbb{G}_2$,若 P = O 或 Q = O ,则 $e_r(P,Q) = 1$;如果 $P \neq O$ 且 $Q \neq O$,随机选取非无穷远点 $T \in \mathbb{G}_1$, $U \in \mathbb{G}_2$,使得 P + T 和 T 均不等于 U 或 U + Q ,则 Weil 对为:

$$e_r(P,Q) = \frac{f_{P+T,\,r}(Q+U)f_{T,\,r}(U)f_{U,\,r}(P+T)f_{Q+U,\,r}(T)}{f_{T,\,r}(Q+U)f_{P+T,\,r}(U)f_{Q+U,\,r}(P+T)f_{U,\,r}(T)} \circ$$

 $f_{P+T,r}(Q+U)$, $f_{T,r}(Q+U)$, $f_{P+T,r}(U)$, $f_{Q+U,r}(P+T)$, $f_{Q+U,r}(T)$, $f_{U,r}(P+T)$ 和 $f_{U,r}(T)$ 均可用Miller算法计算。在计算过程中,若出现分母为0的情况,则更换点T或U重新计算。

B. 4 Tate对的计算

设 $E \not\in F_q$ 上的椭圆曲线,r 是与 q 互素的正整数,k 是相对于 r 的嵌入次数。设 Q 是 $E(F_{qk})[r]$ 上的 r 阶点,由 Q 生成的循环群记为< Q >。(F_{qk}^*)"为 F_{qk}^* 中每一个元素的 r 次幂构成的集合,(F_{qk}^*)"是 F_{qk}^* 的子群, F_{qk}^* 关于(F_{qk}^*)"的商群记为 F_{qk}^* /(F_{qk}^*)"。

令 $G_1 = E(F_q)[r]$, $G_2 = \langle Q \rangle$, $G_T = F_{qk}^*/(F_{qk}^*)^r$,则 Tate 对是从 $G_1 \times G_2$ 到 G_T 的双线性映射,记为 t_r 。

设 $P \in G_1$, $Q \in G_2$, 若 P = O 或 Q = O ,则 $t_r = 1$; 若 $P \neq O$ 且 $Q \neq O$,随机选择非无穷远点 $U \in E(F_{q^k})$,使得 $P \neq Q$, $P \neq Q + U$, $U \neq -Q$,则 Tate 对为:

$$t_r(P,Q) = \frac{f_{P,r}(Q+U)}{f_{P,r}(U)} \circ$$

 $f_{P,r}(Q+U)$ 和 $f_{P,r}(U)$ 可通过 Miller 算法计算。在计算过程中,若出现分母为 0 的情况,则更换点 U 重新计算。

在实际应用中,一般使用约化 Tate 对:

$$t_r(P,Q) = \begin{cases} f_{P,r}(Q)^{(q^k-1)/r}, & Q \neq O, \\ 1, & Q = O_0 \end{cases}$$

约化 Tate 对比一般 Tate 对的计算量减少了一半。若相对于 r 的嵌入次数 k 是偶数时,约化 Tate 对的计算方法可以进一步优化。算法 1 描述的是一般约化 Tate 对的计算方法,算法 2、3、4 均指 k=2d 的情况。

算法1

输入: 与 q 互素的整数 r, $P \in E(F_q)[r]$, $Q \in E(F_{q^k})[r]$ 。

输出: t_r(P, Q)。

- a) 设r的二进制表示是 $r_i...r_1r_0$, 其最高位 r_i 为 1;
- b) 置 *f* = 1, *V* = *P*;
- c) 对 i = j-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(Q) / g_{2V}(Q)$, V = [2]V;
 - c.2) 若 r=1, 则计算 $f=f\cdot g_{V,P}(Q)/g_{V+P}(Q)$, V=V+P;
- d) 计算 $f = f^{(q^{k-1})/r}$;
- e) 输出 f。

算法2

输入: 与 q 互素的整数 r, $P \in E(F_q)[r]$, $Q \in E(F_{q^k})[r]$ 。

输出: t_r(P, Q)。

- a) 设r的二进制表示是 $r_i...r_1r_0$,其最高位 r_i 为 1;
- b) 置 *f* = 1, *V*=*P*;
- c) 对 i = j-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(Q) / g_{2V}(Q), V = [2]V$;
 - c.2) 若 $r_i = 1$, 则计算 $f = f \cdot g_{V,P}(Q) / g_{V+P}(Q)$, V = V + P;
- d) 计算 $f = f^{q^{d-1}}$;
- e) 计算 $f = f^{(q^{d+1})/r}$;
- f) 输出 f。

算法3

如果将 $F_{q^k}(k=2d)$ 看成 F_{q^d} 的二次扩域,则 F_{q^k} 上元素可表示成 $w=w_0+iw_1$ 的形式,其中 $w_0, w_1 \in F_{q^d}$,则 w 的共轭 $\overline{w}=w_0-iw_1$,此时算法 1 中的求逆运算可用共轭代替。

输入: 与 q 互素的整数 r, $P \in E(F_q)[r]$, $Q \in E(F_{q^k})[r]$ 。

输出: t_r(P, Q)。

- a) 设r的二进制表示是 $r_i...r_1r_0$,其最高位 r_i 为 1;
- b) 置 *f* = 1, *V*=*P*;
- c) 对 i 从 j-1 降至 0, 执行:

- c.1) 计算 $f = f^2 \cdot g_{V,V}(Q) \cdot \overline{g}_{2V}(Q)$, V = [2]V;
- c.2) 若 r=1, 令 $f = f \cdot g_{VP}(Q) \cdot \overline{g}_{V+P}(Q)$, V = V + P;
- d) 计算 $f = f^{q^{d-1}}$;
- e) 计算 $f = f^{(q^{d+1})/r}$;
- f) 输出 f。

算法4

当 q 为大于 3 的素数时,点 $Q \in E'$, E'是 E 的扭曲线,此时算法可进一步优化。

输入: $P \in E(F_q)[r]$, $Q \in E'(F_{q^d})[r]$, 整数 r。

输出: t_r(P, Q)。

- a) 设r的二进制表示是 $r_i...r_1r_0$, 其最高位 r_i 为 1;
- b) 置*f*=1, *V=P*;
- c) 对 *i* 从 *j*-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(Q), V = [2]V$;
 - c.2) 若 r=1, 则计算 $f = f \cdot g_{V,P}(Q)$, V = V + P;
- d) 计算 $f = f^{q^{d-1}}$;
- e) 计算 $f = f^{(q^{d+1})/r}$;
- f) 输出f。

B. 5 Ate对的计算

设 π_q 为 Frobenius 自同态,即 π_q : $E \to E$, $(x,y) \mapsto (x^q,y^q)$; [q]为映射: $E \to E$, $Q \mapsto [q]Q$; [1]为单位映射; π_q 的对偶为 π_q ′,满足 π_q · π_q ′=[q];Ker()表示映射的核;设椭圆曲线 $E(F_q)$ 的 Frobenius 迹为 t,令 T=t-1。

下面给出不同结构下的Ate对的计算方法。

B. 5. 1 定义在 $G_2 \times G_1$ 上Ate对的计算

设
$$G_1 = E[r] \cap \text{Ker}(\pi_q - [1])$$
, $G_2 = E[r] \cap \text{Ker}(\pi_q - [q])$, $P \in G_1$, $Q \in G_2$ 。 定义 $G_2 \times G_1$ 上 Ate 对:
$$Ate: \quad G_2 \times G_1 \rightarrow F_{qk}^* / (F_{qk}^*)^r$$

$$(Q,P) \mapsto f_{Q,T}(P)^{(q^k-1)/r} \circ$$

下面给出 $G_2 \times G_1$ 上 Ate 对的计算方法:

输入: $G_1=E[r]\cap \text{Ker}(\pi_q-[1])$, $G_2=E[r]\cap \text{Ker}(\pi_q-[q])$, $P\in G_1$, $Q\in G_2$, 整数 T=t-1.

输出: Ate(Q, P)。

- a) 设T的二进制表示是 $t_i...t_1t_0$, 其最高位 t_i 为1;
- b) 置 *f* = 1, *V* = *O*;
- c) 对 *i* 从 *j*-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(P), V = [2]V$;
 - c.2) 若 t=1, 计算 $f = f \cdot g_{V,Q}(P) / g_{V+Q}(P)$, V = V + Q;
- d) 计算 $f = f^{(q^{k}-1)/r}$;
 - e) 输出f。

B. 5. 2 定义在 $G_1 \times G_2$ 上Ate对的计算

对于超奇异椭圆曲线来说,以上Ate对的定义与技术可以直接应用;而对于常曲线来说,需要把 \mathcal{C}_{2} 转换到扭曲线上才可以定义Ate对。

B. 5. 2. 1 超奇异椭圆曲线上Ate对

设E为定义在 F_q 上的超奇异椭圆曲线, $G_1=E[r]\cap \operatorname{Ker}(\pi_q'-[q])$, $G_2=E[r]\cap \operatorname{Ker}(\pi_q'-[1])$, $G_7=F_{a^k}/(F_{a^k})^r$,

 $P \in G_1$, $Q \in G_2$ 。 定义 $G_1 \times G_2$ 上的 Ate 对:

Ate:
$$G_1 \times G_2 \rightarrow F_{qk}^*/(F_{qk}^*)^r$$

 $(P,Q) \mapsto f_{P,T}(Q)^{(q^k-1)/r}$.

下面给出 $G_1 \times G_2$ 上 Ate 对的计算方法:

输入: $G_1=E[r]\cap \text{Ker}(\pi_q'-[q])$, $G_2=E[r]\cap \text{Ker}(\pi_q'-[1])$, $P\in G_1$, $Q\in G_2$, 整数 T=t-1。 输出: Ate(P,Q)。

- a) 设T的二进制表示是 $t_i...t_1t_0$,其最高位 t_i 为1;
- b) 置 *f* = 1, *V*=*P*;
- c) 对 *i* 从 *j*-1 降至 0, 执行:
 - c.1) 计算 $f = f^2 \cdot g_{VV}(Q), V = [2]V$;
 - c.2) 若 t = 1, 计算 $f = f \cdot g_{VP}(Q) / g_{VP}(Q)$, V = V + P;
- d) 计算 $f = f^{(q^{k}-1)/r}$;
- e) 输出f。

B. 5. 2. 2 常曲线上的Ate对

对于常曲线来说,存在一个整数 e,使得 $(\pi_q')^e$ 成为 G1上的自同构,这样可以用扭曲线理论在 Ate(P,Q) 和 f_{P} T^e Q1 之间建立起联系,其中 T=t-1,t 为迹。

设 E 是定义在 F_q 上的椭圆曲线,E'为 E 的 d 次扭曲线。k 为嵌入次数, $m=\gcd(k,d)$,e=k/m, ζ_m 是 m 次本原单位根,当 $p \ge 5$ 时,d 的取值有三种情况:

- a) d=6, $\beta = \zeta_m^{-6}$, $E': y^2 = x^3 + \beta b$, $\phi_6: E' \to E: (x,y) \mapsto (\beta^{-1/3}x, \beta^{-1/2}y)$, $G_1 = E[r] \cap \text{Ker}(\pi_q [1])$, $G_2 = E'[r] \cap \text{Ker}([\beta^{-1/6}]\pi_q^e [1])$;
- b) d=4, $\beta = \zeta_m^{-4}$, $E': y^2 = x^3 + \beta ax$, $\phi_4: E' \to E: (x,y) \mapsto (\beta^{-1/2}x, \beta^{-3/4}y)$, $\mathcal{G}_1 = E[r] \cap \text{Ker}(\pi_q [1])$, $\mathcal{G}_2 = E'[r] \cap \text{Ker}([\beta^{-1/4}]\pi_q^e [1])$;
- c) d=2, $\beta = \zeta_m^{-2}$, $E': y^2 = x^3 + \beta^2 ax + \beta^3 b$, $\phi_2: E' \to E: (x, y) \mapsto (\beta^{-1}x, \beta^{-3/2}y)$, $G_1 = E[r] \cap \text{Ker}(\pi_q [1])$, $G_2 = E'[r] \cap \text{Ker}([\beta^{-1/2}]\pi_q^e [1])$.

设 $P \in \mathbb{G}_1$, $Q \in \mathbb{G}_2$ 。定义 $\mathbb{G}_1 \times \mathbb{G}_2$ 上Ate对:

Ate:
$$\mathbb{G}_1 \times \mathbb{G}_2 \rightarrow F_{qk}^*/(F_{qk}^*)^r$$

 $(P,Q) \mapsto f_{P,T^e}(Q)^{(q^k-1)/r}$.

下面给出具体算法描述:

输入: G_1 , G_2 , $P \in G_1$, $Q \in G_2$, 整数 T = t-1.

输出: Ate(P, Q)。

- a) 计算 *u=Te*;
- b) 设u的二进制表示是 $t_i...t_1t_0$, 其最高位 t_i 为1;
- c) 置 f=1, V=P;
- d) 对 i 从 j-1 降至 0, 执行:
 - d.1) 计算 $f = f^2 \cdot g_{VV}(Q)$, V = [2]V;
 - d.2) 若 t=1, 计算 $f = f \cdot g_{VP}(Q) / g_{V+P}(Q)$, V = V + P;
- e) 计算 $f = f^{(q^{k-1})/r}$:
- f) 输出 f。

如果定义在 $\mathbb{G}_1 \times \mathbb{G}_2$ 上的Ate对所基于的椭圆曲线是超奇异的,则容易看出它比Tate对有更高的效率。但对于常曲线来说,只有当 $|T^e| \le r$ 时它的运算效率才会比Tate对高,所以只有在t值较小时才推荐使用Ate对。

B. 6 R-ate 对的计算

B. 6.1 R-ate 对的定义

R-ate 对中的"R"可视为两个对的比值,也可以看成是 Tate 对的某固定幂次。 令 A, B, a, $b \in Z$, A = aB + b. Miller 函数 $f_{Q,A}(P)$ 有如下性质:

$$f_{Q,A}(P) = f_{Q,aB+b}(P) = f_{Q,aB}(P) \cdot f_{Q,b}(P) \cdot g_{[aB]Q,[b]Q}(P) / g_{[A]Q}(P)$$

$$=f_{\mathcal{Q},B}^{a}(P)\cdot f_{[B]\mathcal{Q},a}(P)\cdot f_{\mathcal{Q},b}(P)\cdot \frac{g_{[aB]\mathcal{Q},[b]\mathcal{Q}}(P)}{g_{[A]\mathcal{Q}}(P)}$$

定义 R-ate 对为

$$R_{A,B}(Q, P) = (f_{[B]Q,a}(P) \cdot f_{Q,b}(P) \cdot \frac{g_{[aB]Q,[b]Q}(P)}{g_{[A]Q}(P)})^{(q^{k}-1)/n}$$

$$= (\frac{f_{Q,A}(P)}{f_{a}^{a}(P)})^{(q^{k}-1)/n}$$

如果 $f_{Q,A}(P)$ 和 $f_{Q,B}(P)$ 是非退化对的 Miller 函数,则 $R_{A,B}(Q,P)$ 也是非退化对。

令
$$L_1, L_2, M_1, M_2 \in \mathbb{Z}$$
,使得 $e_n^{L_1}(Q, P) = (f_{Q,A}(P))^{M_1 \cdot (q^k - 1)/n}$

$$e_n^{L_2}(Q,P) = (f_{OB}(P))^{M_2 \cdot (q^k-1)/n}$$

令 $M = lcm(M_1, M_2)$, $m = (M/M_1) \cdot L_1 - a \cdot (M/M_2) \cdot L_2$. 为了非退化,n 不能整除 m. 我们有

$$e_n^m(Q,P) = e_n^{\frac{M}{M_1}L_1 - a\frac{M}{M_2}L_2}(Q,P) = \frac{e_n(Q,P)^{\frac{1}{M_1}}}{e_n(Q,P)^{aL_2\frac{M}{M_2}}} = \left(\frac{f_{Q,A}(P)}{f_{Q,B}(P)^a}\right)^{M \cdot (q^k - 1)/n}$$

易见 $e_n^m(Q,P)=R_{A,B}(Q,P)^M$.

一般来说,不是任意整数对(A,B)都能给出非退化对,(A,B)有四种选择:

- 1. $(A; B) = (q^i; n)$
- 2. $(A; B) = (q; T_1)$
- 3. $(A; B) = (T_i; T_i)$
- 4. $(A; B) = (n; T_i)$

其中 $T_i \equiv q^i \pmod{n}$, $i \in \mathbb{Z}$, $0 \le i \le k$.

情形 1: $(A; B) = (q^i; n)$, 由于 A = aB + b, 即 $q^i = an + b$. 因此 $b \equiv q^i \pmod{n}$,

$$\mathbb{Z} \left(\frac{f_{Q,q^{i}}(P)}{f_{Q,n}^{a}(P)} \right)^{(q^{k}-1)/n} = R_{A,B}(Q,P) = \left(f_{[n]Q,a}(P) f_{Q,b}(P) \frac{g_{[an]Q,[b]Q}(P)}{g_{[q^{i}]Q}(P)} \right)^{(q^{k}-1)/n}$$

因为 $b \equiv q^i \pmod n$,所以 $g_{[an]Q,[b]Q}(P) = g_{[q^i]Q}(P)$.更进一步, $f_{[n]Q,a}(P) = 1$. 因此

$$R_{A,B}(Q, P) = f_{Q,q^i}(P)^{(q^k - 1)/n}$$
(1)

情形 2: $(A; B) = (q; T_1)$, 即 $q = aT_1 + b$,则:

$$\left(\frac{f_{Q,q}(P)}{f_{Q,T_1}^a(P)}\right)^{(q^k-1)/n} = R_{A,B}(Q,P) = \left(f_{[T_1]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_1]Q,[b]Q}(P)}{g_{[q]Q}(P)}\right)^{(q^k-1)/n}$$

由于 $f_{\Gamma_{0,a}}(P) = f_{0,a}^{q}(P)$, 因此

$$R_{A,B}(Q,P) = (f_{Q,a}^{q}(P)f_{Q,b}(P)\frac{g_{[aT_{1}]Q,[b]Q}(P)}{g_{[a]Q}(P)})^{(q^{k}-1)/n}$$
(2)

情形 3: $(A; B) = (T_i; T_i)$, 即 $T_i = aT_i + b$. 有:

$$\left(\frac{f_{Q,T_{i}}(P)}{f_{Q,T_{j}}^{a}(P)}\right)^{(q^{k}-1)/n} = R_{A,B}(Q,P) = \left(f_{[T_{j}]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_{j}]Q,[b]Q}(P)}{g_{[q^{i}]Q}(P)}\right)^{(q^{k}-1)/n}$$

同样,因为 $f_{[T_i]_{Q,a}}(P) = f_{Q,a}^{q_j}(P)$,因此:

$$R_{A,B}(Q,P) = (f_{Q,a}^{q_j}(P)f_{Q,b}(P)\frac{g_{[aT_j]Q,[b]Q}(P)}{g_{[a^i]Q}(P)})^{(q^k-1)/n}$$
(3)

情形 4: $(A; B) = (n; T_i)$, 即 $n = aT_i + b$. 因此:

$$\left(\frac{f_{Q,n}(P)}{f_{Q,n}^{a}(P)}\right)^{(q^{k}-1)/n} = R_{A,B}(Q,P) = \left(f_{[T_{i}]Q,a}(P)f_{Q,b}(P)\frac{g_{[aT_{i}]Q,[b]Q}(P)}{g_{[n]Q}(P)}\right)^{(q^{k}-1)/n}$$

同样,由 $f_{[T_i]_{Q,a}}(P) = f_{Q,a}^{q_i}(P)$ 得

$$R_{A,B}(Q,P) = (f_{Q,a}^{q_i}(P)f_{Q,b}(P)\frac{g_{[aT_i]Q,[b]Q}(P)}{g_{[n]Q}(P)})^{(q^k-1)/n}$$
(4)

情形 1 的 R-ate 对也称 Ate_i 对。情形 2、3、4 的对计算需要两个长度为 $\log a$ 和 $\log b$ 的 Miller 循环。情形 2 和情形 4 只能改变一个参数 i 来获得有效对,情形 3 可以改变两个参数。因此,一般都选择情形 3 的 R-ate 对,这时(A; B) = (T_i ; T_i)。

为了降低Miller循环次数,可以尝试不同的i和j,使整数a和b足够小,从而使Miller循环次数减至 $\log(r^{1/\Phi(k)})$ 。

B. 6.2 BN曲线上R-ate对的计算

Barreto 和 Naehrig 提出了一种构造素域 F_q 上适合对的常曲线的方法,通过此方法构造的曲线称为 BN 曲线。BN 曲线方程为 $E: y^2 = x^3 + b$,其中 $b \neq 0$.嵌入次数 k=12,曲线阶 r 也是素数。

基域特征 q,曲线阶 r,Frobenius 映射的迹 tr 可通过参数 t 来确定:

$$q(t) = 36t^4 + 36t^3 + 24t^2 + 6t + 1$$

$$r(t) = 36t^4 + 36t^3 + 18t^2 + 6t + 1$$

$$tr(t) = 6t^2 + 1$$

其中 $t \in \mathbb{Z}$ 是任意使得 q = q(t) 和 r = r(t) 均为素数的整数,为了达到一定的安全级别,t 必须足够大,至少达到 63 比特。

BN 曲线存在定义在 F_{q^2} 上的 6 次扭曲线 E': $y^2 = x^3 + \beta b$,其中 $\beta \in F_{q^2}$,并且在 F_{q^2} 上既不是二次元也不是三次元,选择 β 使得 r# $E'(F_{q^2})$, G_2 中点可用扭曲线 E'上的点来表示, $\phi_6: E' \to E: (x,y) \mapsto (\beta^{-1/3}x, \beta^{-1/2}y)$ 。因此对的计算限制在 $E(F_q)$ 上点 P 和 $E'(F_{q^2})$ 上点 Q'。

 π_q 为 Frobenius 自同态, π_q : $E \rightarrow E$, $\pi_q(x, y) = (x^q, y^q)$ 。

$$\pi_{q^2}: E \to E, \quad \pi_{q^2}(x, y) = (x^{q^2}, y^{q^2})$$

R-ate 对的计算:

输入: $P \in E(F_q)[r]$, $Q \in E'(F_{q^2})[r]$, a = 6t + 2 。

输出: R_a(Q, P)。

a)
$$\stackrel{\text{th}}{\boxtimes} a = \sum_{i=0}^{L-1} a_i 2^i , \quad a_{L-1} = 1 ;$$

- b) 置 T=Q, f=1;
- c) 对 i 从 L-2 降至 0,执行:

c.1) 计算
$$f = f^2 \cdot g_{TT}(P)$$
, $T=[2]T$;

c.2) 若
$$a_i = 1$$
, 计算 $f = f \cdot g_{T,O}(P)$, $T = T + Q$;

- d) 计算 $Q_1=\pi_q(Q)$, $Q_2=\pi_{q^2}(Q)$;
- e) 计算 $f = f \cdot g_{T,Q_1}(P)$, $T = T + Q_1$;

f) 计算
$$f = f \cdot g_{T,-O_2}(P)$$
, $T = T - Q_2$;

- g) 计算 $f = f^{(q^{12}-1)/r}$;
- h) 输出 f。

B. 7 适合对的椭圆曲线

对于超奇异曲线,双线性对的构造相对容易,但对于随机生成的曲线,构造可计算的双线性对比 较困难,因此采用常曲线时,需要构造适合对的曲线。

假设 E 是定义在 F_q 上的椭圆曲线,如果以下三个条件成立,则称 E 是适合对的曲线:

- a) $\#E(F_q)$ 有一个不小于 \sqrt{q} 的素因子r;
- b) E 相对于 r 的嵌入次数小于 $\log_2(r)/8$;
- c) $r\pm 1$ 的最大素因子的规模与r 相当。

构造适合对的椭圆曲线的步骤如下:

步骤 1: 选定 k, 计算整数 t、 r、 q,使得存在一条椭圆曲线 $E(F_q)$,其迹为 t,具有一个素数阶 r 的 子群且嵌入次数为 k;

步骤 2: 利用复乘方法在 F_q上计算该曲线的方程参数。

附 录 C

数论算法

C.1 有限域中的运算

C. 1. 1 有限域中的指数运算

设a是正整数,g是域 F_q 上的元素,指数运算是计算 g^a 的运算过程。通过以下的二进制方法可以有效地执行指数运算。

输入: 正整数a, 域 F_q , 域元素g。

输出: g^a。

- a) $\mathbb{E}e=a \mod(q-1)$, 若e=0, 则输出1;
- b) 设e的二进制表示是 $e_re_{r-1}...e_1e_0$, 其最高位 e_r 为1;
- c) 置x=g;
- d) 对 i 从r-1降至 0 执行:
 - d.1) 置 $x = x^2$;
 - d.2) 若 e_i =1,则置 $x=g \cdot x$;
- e) 输出x。

C. 1. 2 有限域中的逆运算

设g是域 F_q 上的非零元素,则逆元素 g^{-1} 是使得 $g\cdot c=1$ 成立的域元素c。由于 $c=g^{q-2}$,因此求逆可通过指数运算实现。若q是素数,g是满足 $1\leq g\leq q-1$ 的整数,则 g^{-1} 是整数c, $1\leq c\leq q-1$,且 $g\cdot c\equiv 1\pmod q$)。

输入: 域 F_q , F_q 中的非零元素g。

输出: 逆元素g⁻¹。

- a) 计算 $c=g^{q-2}$ (参见附录C.1.1);
- b) 输出c。

更为有效的方法是扩展的欧几里德(Euclid)算法。

C. 1. 3 Lucas序列的生成

令X和Y是非零整数,X和Y的Lucas序列 U_k , V_k 的定义如下:

 $U_0=0, U_1=1,$ $\stackrel{\text{def}}{=} k \ge 2$ iff , $U_k=X\cdot U_{k-1}-Y\cdot U_{k-2}$;

 $V_0=2, V_1=X, \quad \exists k \ge 2 \text{ if }, \quad V_k=X\cdot V_{k-1}-Y\cdot V_{k-2}.$

上述递归式适于计算k值较小的 U_k 和 V_k 。对大整数k,下面的算法可有效地计算 U_k mod q和 V_k mod q。

输入: 奇素数q, 整数X和Y, 正整数k。

输出: $U_k \mod q$ 和 $V_k \mod q$ 。

- a) 置 $\Delta = X^{2} 4Y$;
- b) 设k的二进制表示是 $k=k_rk_{r-1}...k_1k_0$, 其中最高位 k_r 为1;
- c) 置U=1, V=X;
- d) 对i从r-1降至0执行:
 - d.1) 置 $(U,V) = ((U \cdot V) \mod q, ((V^2 + \Delta \cdot U^2)/2) \mod q);$
 - d.2) 若 $k_i = 1$, 则置 $(U,V) = (((X \cdot U + V)/2) \mod q, ((X \cdot V + \Delta \cdot U)/2) \mod q)$;
- e) 输出U和V。

C. 1. 4 平方根的求解

C. 1. 4. 1 F_a 上平方根的求解

设q是奇素数,g是满足 $0 \le g < q$ 的整数,g的平方根(mod q)是整数y,即 y^2 mod q = g, $0 \le y < p$ 。 若g = 0,则只有一个平方根,即y = 0;若 $g \ne 0$,则g有零个或两个平方根,若y是其中一个平方根,则另一个平方根就是g - y。

下面的算法可以确定g是否有平方根,若有,就计算其中一个根。

输入: 奇素数q, 整数g, 0 < g < q.

输出: 若存在g的平方根,则输出一个平方根,否则输出"不存在平方根"。

算法1: 对*q*≡3 (mod 4),即存在正整数*u*,使得*q*=4*u*+3。

- a) 计算 $y = g^{u+1} \mod q$ (参见附录C.1.1);
- b) 计算 $z = y^2 \mod q$;
- c) 若z=g, 则输出y; 否则输出"不存在平方根"。

算法2: 对 $q \equiv 5 \pmod{8}$,即存在正整数u,使得q = 8u + 5。

- a) 计算 $z = g^{2u+1} \mod q$ (参见附录C.1.1);
- b) 若 $z \equiv 1 \pmod{q}$, 计算 $y = g^{u+1} \mod q$, 输出y, 终止算法;
- c) 若 $z \equiv -1 \pmod{q}$, 计算 $y = (2g \cdot (4g)^u) \mod q$, 输出y, 终止算法;
- d) 输出"不存在平方根"。

算法3: 对 $q \equiv 1 \pmod{8}$, 即存在正整数u, 使得q = 8u + 1。

- a) 置Y=g;
- b) 生成随机数X, 0 < X < q;
- c) 计算Lucas序列元素(见附录C.1.3): $U=U_{4u+1} \mod q$, $V=V_{4u+1} \mod q$;
- d) 若 $V^2 \equiv 4Y \pmod{q}$, 则输出 $y = (V/2) \mod q$, 并终止;
- e) 若 $U \mod q \neq 1$ 且 $U \mod q \neq q-1$,则输出"不存在平方根",并终止;
- f) 返回步骤b)。

C. 1. 4. 2 F_{a^2} 上平方根的求解

设q是奇素数,对于二次扩域 F_{q^2} ,假设约化多项式为 $f(x)=x^2+n$, $n\in F_q$,则 F_{q^2} 中元素 β 可表示成a+bx的形式, $a,b\in F_a$,则 β 的平方根为:

$$\sqrt{\beta} = \sqrt{a + bx} = \pm \left(\sqrt{\frac{a + \sqrt{a^2 - nb^2}}{2}} + \frac{xb}{2\sqrt{\frac{a + \sqrt{a^2 - nb^2}}{2}}}\right) \overrightarrow{\mathbb{D}}$$

$$\pm \left(\sqrt{\frac{a - \sqrt{a^2 - nb^2}}{2}} + \frac{xb}{2\sqrt{\frac{a - \sqrt{a^2 - nb^2}}{2}}}\right)$$

下面的算法可以确定 β 是否有平方根,若有,就计算其中一个根。

输入: F_{a^2} 中元素 $\beta = a + bx$ 且 $\beta \neq 0$,q为奇素数。

输出:若存在 β 的平方根,则输出一个平方根z,否则输出"不存在平方根"。

- a) 计算 $U = a^2 nb^2$;
- b) 利用C.1.4.1的方法求 $U \mod q$ 的平方根,若 $U \mod q$ 的平方根存在,记作 w_i ,即 $w_i^2 = U \mod q$,i = 1, 2,转步骤c);否则输出"不存在平方根",并终止;
- c) 对i从1至2执行:
 - c.1) 计算 $V=(a+w_i)/2$;

- c.2) 利用C.1.4.1的方法求 $V \mod q$ 的平方根,若 $V \mod q$ 的平方根存在,任取一个根y,即 $y^2=V \mod q$,转步骤d);若 $V \mod q$ 的平方根不存在且i=2,输出"不存在平方根",并 终止算法;
- d) 计算 $z_1 = b/2y \pmod{q}$, 令 $z_0 = y$;
- e) 输出 $z = z_0 + z_1 x$ 。

C. 1. 4. 3 F_{am} 上平方根的求解

C. 1. 4. 3.1 F_{q^m} 上平方元检测

设q是奇素数,且 $m \ge 2$,g是域 F_{q^m} 中非零元素,下面算法给出g是否为一个平方元的检测。

输入: 域元素g。

输出: 若g是平方元则输出"是平方元", 否则输出"不是平方元"。

- a) 计算 $B=g^{(q^m-1)/2}$; (参见C.1.1)
- b) 若B=1,则输出"是平方元";
- c) 若B=-1,则输出"不是平方元"。

C. 1. 4. 3. 2 F_{a} 上平方根的求解

设q是奇素数,且m≥2。

输入: 域元素g。

输出: 若g是平方元则输出平方根B,否则输出"没有平方根"。

- a) 随机选取非平方元Y;
- b) 计算 $q^m-1=2^u\times k$; (其中k为奇数。)
- c) 计算Y=Yk;
- d) 计算 $C=g^k$;
- e) 计算 $B=g^{(k+1)/2}$;
- f) 若 $C^{u-1} \neq 1$, 则输出"没有平方根", 终止算法;
- g) 当*C*≠1执行:
 - g.1) 设i是使 C^{i} =1成立的最小正整数;
 - g.2) 计算*C= C*×Y^{2^{*u-i*};}
 - g.3) 计算 $B=B\times Y^{2^{u-i-1}}$;
- h) 输出B。

C. 1. 5 概率素性检测

设u是一个大的正整数,下面的概率算法(Miller-Rabin检测)将确定u是素数还是合数。

输入: 一个大的奇数 u 和一个大的正整数T。

输出:"概率素数"或"合数"。

- a) 计算 v 和奇数w,使得u– $1=2^v$ -w;
- b) 对*j*从1到*T*执行:
 - b.1) 在区间[2, u-1]中选取随机数a;
 - b.2) 置 $b=a^w \mod u$;
 - b.3) 若b=1或u-1,转到步骤b.6);
 - b.4) 对*i*从1到*v*-1执行:

 - b.4.2) 若b=u-1,转到步骤b.6);
 - b.4.3) 若b=1, 输出"合数"并终止;

b.4.4) 下一个*i*;

- b.5) 输出"合数",并终止;
- b.6) 下一个j;
- c) 输出"概率素数"。

若算法输出"合数",则u是一个合数。若算法输出"概率素数",则u是合数的概率小于 2^{-2T} 。这样,通过选取足够大的T,误差可以忽略。

C. 2 有限域上的多项式

C. 2.1 最大公因式

若 $f(x) \neq 0$ 和 $g(x) \neq 0$ 是系数在域 F_q 中的两个多项式,则唯一地存在次数最高的首一多项式d(x),其系数在域 F_q 中且同时整除f(x)和g(x)。多项式d(x)称为f(x)和g(x)的最大公因子,记为gcd(f(x),g(x))。利用下面的算法(欧几里德算法)可计算出两个多项式的最大公因子。

输入: 有限域 F_q , F_q 上的两个非零多项式 $f(x) \neq 0$, $g(x) \neq 0$ 。

输出: $d(x) = \gcd(f(x), g(x))$ 。

- a) $\mathbb{E} a(x) = f(x), b(x) = g(x);$
- b) 当 $b(x) \neq 0$ 时,循环执行:
 - b.1) 置 $c(x) = a(x) \mod b(x);$
 - b.2) $\mathbb{E} a(x) = b(x)$;

设 α 是a(x)的首项系数并输出 $\alpha^{-1}a(x)$ 。

C. 2. 2 F_a 上多项式不可约性的检测

设f(x)是 F_a 上的多项式,利用下面的算法可以有效地检测f(x)的不可约性。

输入: F_q 上的首一多项式f(x),素数q。

输出: 若f(x)在 F_q 上不可约,则输出"正确";否则,输出"错误"。

- a) $\mathbb{E}u(x) = x$, $m = \deg(f(x))$;
- b) 对*i*从1到 [*m*/2] 执行:
 - b.1) 计算 $u(x) = u^q(x) \mod f(x)$;
 - b.2) 计算 $d(x) = \gcd(f(x), u(x)-x)$;
- c) 输出"正确"。

C.3 椭圆曲线算法

C. 3.1 椭圆曲线点的寻找

给定有限域上的椭圆曲线,利用下面的算法可有效地找出曲线上任意一个非无穷远点。

C. 3. 1. 1 $E(F_p)$ 上点的寻找

输入: 素数p, F_p 上一条椭圆曲线E的参数a, b。

输出: $E(F_p)$ 上一个非无穷远点。

- a) 选取随机整数x, $0 \le x < p$;
- b) $\mathbb{E} \alpha = (x^3 + ax + b) \mod p$;

- c) 若 α = 0,则输出(x, 0)并终止算法;
- d) 求 α mod p的平方根y (参见附录C.1.4.1);
- e) 若步骤 d) 的输出是"不存在平方根",则返回步骤a);
- f) 输出(*x*, *y*)。

C. 3. 1. 2 $E(F_{q^m})$ $(m \ge 2)$ 上点的寻找

输入: 有限域 $F_{am}(q)$ 为奇素数), F_{am} 上的椭圆曲线E的参数a, b。

输出: E上一个非无穷远点。

- a) 随机选取 F_{q^m} 上元素x;
- b) 在 F_{a^m} 上计算 $\alpha = x^3 + ax + b$;
- c) 若 α = 0,则输出(x,0)并终止算法;
- d) 在 F_{q^m} 上求 α 的平方根y (参见附录C.1.4.3);
- e) 若步骤 d) 的输出是"不存在平方根",则返回步骤a);
- f) 输出(x, y)。

C. 3. 2 椭圆曲线上/阶点的寻找

本算法可用于椭圆曲线/阶子群生成元的求取。

输入: 椭圆曲线 $E(F_q)$ 的参数a、b,曲线阶# $E(F_q) = n = l \cdot r$,其中l为素数。

输出: $E(F_q)$ 上一个l阶点。

- a) 用C.3.1的方法随机选取曲线上点Q;
- b) 计算*P*=[*r*]*O*;
- c) 若P=O,返回步骤a);
- d) 输出P。

C. 3. 3 扭曲线上/阶点的寻找

设 F_{q^m} 上椭圆曲线E的方程: $y^2=x^3+ax+b$,其阶# $E(F_{q^m})=q^m+1-t$,设其扭曲线E'的方程: $y^2=x^3+\beta^2\cdot ax+\beta^3\cdot b$, β 为 F_{q^m} 上非平方元, $E'(F_{q^m})$ 的阶# $E'(F_{q^m})=q^m+1+t$ 。

输入: 椭圆曲线 $E(F_{q^m})$ 的扭曲线 $E'(F_{q^m})$ 的参数a、b和 β ,扭曲线阶# $E'(F_{q^m}) = n' = l \cdot r$,其中l为素数。

输出: $E'(F_{q^m})$ 上一个l阶点。

- a) 用C.3.1的方法随机选取 $E'(F_{q^m})$ 上点Q;
- b) 计算*P*=[*r*]*Q*;
- c) 若*P=O* ,返回步骤a); 否则,*P*是*I*阶点;
- d) 输出P。