Описание задания:

- 1. Обучить модель на языке Python для классификации отзывов.
- 2. Разработать веб-сервис на базе фреймворка Django для ввода отзыва о фильме с автоматическим присвоением рейтинга (от 1 до 10) и статуса комментария (положительный или отрицательный).
- 3. Развернуть сервис в открытом доступе для оценки работоспособности прототипа.
- 4. Подготовить отчет о работе с оценкой точности полученного результата на тестовой выборке.
- 5. Отправить ответным письмом ссылку на прототип сервиса, ссылку на открытый репозиторий github с исходным кодом проекта, отчет о проделанной работе в формате pdf.

Моя работа состояла из следующих этапов:

1. Формирование датасетов:

Мне были предоставлены данные - 50 тыс. файлов типа .txt. Каждый файл содержал один отзыв, а его название было построено в виде "индекс_рейтинг":

Файлы поделены по папкам следующим образом:

./data/train/pos/ - папка с позитивными (рейтинг 6-10) комментариями для обучения,

./data/train/neg/ - папка с негативными (рейтинг 1-5) комментариями для обучения,

./data/test/pos/ - папка с позитивными (рейтинг 6-10) комментариями для обучения,

./data/test/neg/ - папка с негативными (рейтинг 1-5) комментариями для обучения.

На этом этапе были написаны две функции:

- Функция get_text_rating получает путь к файлу с комментарием, возвращает кортеж из текста комментария и рейтинга (он получен из имени файла).
- Функция get_df_comments_ratings принимает путь к папке, в которой хранятся текстовые файлы и возвращает датасет с комментариями и рейтингами.

С помощью этих функций я построила четыре таблицы (train pos, test pos, train neg, test neg), имеющие две колонки (comment – текст одного комментария, rating - рейтинг комментария).

Из таблиц для обучения случайно выбрала несколько негативных и позитивных комментариев, чтобы проверить качество разметки, разметка оказалась верна.

Объединила негативные и позитивные комментарии для обучения, то же сделала и для теста. Сохранила в .\data\train.csv и .\data\test.csv.

2. Подготовка данных

Обучающая выборка: Количество пустых значений:				Тестовая выборка: Количество пустых значений:			
	rating				rating		
count	25000.000000			count	25000.000000		
mean	5.477720			mean	5.512960		
std	3.466477			std	3.490902		
min	1.000000			min	1.000000		
25% 2.000000				25%	2.000000		
50%	5.500000			50%	5.500000		
75%	9.000000			75%	9.000000		
max	10.000000			max	10.000000		
		comment r	ating			comment	rating
0	Story of a mai	n who has unnatural feelings for	3	0	Once again Mr.	Costner has dragged out a movie	2
	Airport '77 starts as a brand new luxury 747 p						
1	Airport '77 sta	378	4	1	This is an e	example of why the majority of acti	4
1 2	950000000000000000000000000000000000000	378	4	1 2		example of why the majority of acti I hate those moronic rappers, who	1
	This film lack	arts as a brand new luxury 747 p			First of all		
2	This film lack	arts as a brand new luxury 747 p ked something I couldn't put my f	4	2	First of all Not even the	I hate those moronic rappers, who	1
2	This film lack	arts as a brand new luxury 747 p ked something I couldn't put my f ne,,, I know this is supposed to b	4	2	First of all Not even the	I hate those moronic rappers, who Beatles could write songs everyon	1
2 3 4	This film lack Sorry everyor When I was lift	arts as a brand new luxury 747 p ked something I couldn't put my f ne,,, I know this is supposed to b	1	2 3 4	First of all Not even the Brass pic	I hate those moronic rappers, who Beatles could write songs everyon	1 3 3
2 3 4 	This film lack Sorry everyor When I was lift Seeing as the v	arts as a brand new luxury 747 p ked something I couldn't put my f ne.,, I know this is supposed to b ttle my parents took me along to	4 1 1	2 3 4 	First of all Not even the Brass pict I was extr	I hate those moronic rappers, who Beatles could write songs everyon tures (movies is not a fitting word f	3
2 3 4 24995	This film lack Sorry everyor When I was lift Seeing as the v	arts as a brand new luxury 747 p ked something I couldn't put my f ne.,, I know this is supposed to b ttle my parents took me along to vote average was pretty low, and	4 1 1 9	2 3 4 24995	First of all Not even the Brass pice I was extr	I hate those moronic rappers, who Beatles could write songs everyon tures (movies is not a fitting word f aordinarily impressed by this film	1 3 3
2 3 4 24995 24996	This film lack Sorry everyor When I was lift Seeing as the v The plot had so	arts as a brand new luxury 747 p ked something I couldn't put my f ne.,, I know this is supposed to b tile my parents took me along to vote average was pretty low, and me wretched, unbelievable twist	4 1 1 9	2 3 4 24995 24996	First of all Not even the Brass pict I was extr Although I's	I hate those moronic rappers, who Beatles could write songs everyon tures (movies is not a fitting word f aordinarily impressed by this film m not a golf fan, I attended a snea	1 3 3 8 10

Датасеты были сформированны корректно. 25000 комментариев в обучающей выборке (негативные/позитивные 50 на 50), 25000 комментариев в тестовой выборке (негативные/позитивные 50 на 50). Пустых ячеек нет. Негативными считаются комментарии от 1 до 4 включительно, позитивными - от 7 до 10 включительно. Нейтральных комментариев нет ни в обучении, ни в тесте (комментарии с рейтингами 5 или 6).

Распределения рейтингов для обучающей выборки и тестовой очень похожи. И там и там имеется дисбаланс, оценок 1 и 10 примерно в два раза больше, чем остальных. Это логично, люди обычно чаще ставят крайние оценки, чем средние.

Принято решение обработать текстовую колонку comment следующим образом:

- Привести текст к нижнему регистру.
- Удалить все символы, не являющиеся буквами английского алфавита, цифрами или пробелами.
- Лемматизировать слова.
- Удалить стоп-слова английского языка.

Для реализации этих пунктов я воспользовалась библиотекой nltk и мною были написаны следующие функции:

- get_cleared_comment функция принимает текст, возвращает текст в нижнем регистре очищенный от лишних символов.
- get_wordnet_pos функция принимает слово, возвращает словарь, где возвращается значение часть речи (pos_tag).
- get_lemmatized_comment функция принимает комментарий, возвращает комментарий с лемматизировнным набором слов и с удаленными стоп-словами.

Вид датасета, после обработки:

	comment	rating
0	mr costner drag movie far longer necessary asi	2
1	example majority action film generic boring re	4
2	first hate moronic rapper could nt act gun pre	1
3	even beatles could write song everyone like al	3
4	brass picture movie fitting word really somewh	3
24995	extraordinarily impressed film one best sport \dots	8
24996	although golf fan attend sneak preview movie a	10
24997	start edge love viewer transport strike world	8
24998	$\label{eq:movie complexity subtlety make one thought pro}$	10
24999	see story kid boy troubled past join military \dots	7

25000 rows x 2 columns

Сохранила в .\data\train lem.csv и .\data\test lem.csv.

3. Обучение

Задача предсказания рейтинга представляет собой задачу порядковой регрессии. Следовало исследовать разную обработку текста и разные типы моделей.

Так как присутствовали ограничения по времени сдачи работы и ограничения, связанные разработкой прототипа веб-сервиса, я использовала обработку данных BOW, TF-IDF (только с униграммами и с униграммами и биграммами) и модели линейные, LightGBM, чтобы подбор параметров модели не занял большого количества времени, и модели не занимали много памяти на сервере.

Я воспользовалась библиотекой sklearn и lightgbm, а конкретно классами Pipeline, CountVectorizer, TfidfVectorizer, GridSearchCV, LinearRegression, Lasso, Ridge, LGBMRegressor.

Модели были обучены на обучающей выборке с 5-фолдовой кросс-валидацией. В качестве метрики, по которой отбиралась лучшая модель, была выбрана RMSE. Для линейных моделей я подбирала только гиперпараметр регуляризации, а для модели LightGBM только гиперпараметры количества деревьев и глубины дерева (глубину дерева подбирала небольшую, чтобы не было переобучения).

```
5.2.2 Ridge + TF-IDF + unigram + bigram
       %%time
pipe_tfidf_ridge = Pipeline([('tfidf', TfidfVectorizer(ngram_range=(1, 2))), ('ridge', Ridge())])
      cv=5,
n_jobs=-1)
gs_tfidf_ridge.fit(X_train, y_train)
gs_tfidf_ridge.best_params_, gs_tfidf_ridge.best_score_
       CPU times: total: 13.4 s
Wall time: 1min 35s
Out[39]: ({'ridge_alpha': 0.6, 'ridge_random_state': 42}, -2.081779817746546)
'param_ridge_alpha']].sort_values(by='rank_test_score')
      rank mean_rmse std_rmse alpha
       5 1 2.081780 0.031032 0.6
           2 2.082161 0.031140 0.5
       6 3 2.082211 0.030967 0.7
       7 4 2.083255 0.030901 0.8
       3 5 2.083606 0.031121 0.4
       8 6 2.084904 0.030817 0.9
       2 7 2.086495 0.031198 0.3
          8 2.086910 0.030754 1.0
       1 9 2.091298 0.031293 0.2
```

Лучшие результаты RMSE на кросс-валидации показала модель Ridge с гиперпараметром регуляризации равным 0.6 с кодировкой текста с помощью TF-IDF, были использованы униграммы и биграммы. Также Ridge обучается быстрее других моделей использованных в исследовании. Она и была в качестве модели для прототипа веб-приложения и сохранена в .\best_model.pkl.

(Подробнее этапы подбора модели можно посмотреть в ноутбуке проекта $.\$ \rating_of_comments.ipynb.)

4. Оценка лучшей модели

Я протестировала лучшую модель на тестовой выборке с помощью метрики RMSE и сравнила результат с результатом лучшей модели на обучающей выборке и результатом на тестовой выборке "наивного" классификатора, обученного на обучающей выборке. Получены следующие результаты:

- RMSE лучшей модели на обучающей выборке: 0.86
- RMSE лучшей модели на тестовой выборке: 2.13
- RMSE "наивного" регрессора на тестовой выборке: 3.49

RMSE на тесте для лучшей модели меньше, чем для "наивной", обучение сработало корректно.

[&]quot;Решающими" словами для модели стали:

Решающее значение для модели в определении категории комментария представляет наличие либо очень положительных слов, либо резко отрицательных. Примечательно, что в 50 важных для модели слов попали биграммы "10 10" и "must see".

Полученная модель предсказывает вещественное число, но стояла задача предсказать оценку комментария - целое число от 1 до 10 включительно. Для преобразования предсказаний модели в предсказание рейтинга была написана функция.

get_score_pred - функция, принимает вектор предсказаний модели и преобразует его в вектор оценок следующим образом:

- 1) Значения вектора округляются с помощью round.
- 2) Если полученное значение вектора меньше 1, то оно заменяется на 1.
- 3) Если полученное значение вектора больше 10, то оно заменяется на 10.

Я преобразовала с помощью get_score_pred предсказания (лучшей и "наивной" моделей) и сравнила результаты метрики МАЕ (эта метрика представляет собой абсолютное отклонение от истинного результата, легко интерпретируется, в данном случае измеряется в баллах). Получены следующие результаты:

- МАЕ определения класса лучшей модели на обучающей выборке: 0.65
- МАЕ определения класса лучшей модели на тестовой выборке: 1.59
- МАЕ определения класса "наивного" регрессора на тестовой выборке: 3.29

На тестовой выборке модель абсолютно ошибается в среднем на 1.6 балла, это хороший результат, так как у "наивной" модели средняя абсолютная ошибка в два раза больше.

Процент ошибок в зависимсти от истинной оценки и ранга ошибки

По результатам лучшей модели на тестовой выборке был построен график процента ошибок в зависимости от рейтинга (score) и порядка ошибки (error rank). Ошибкой считается только абсолютная разница между истинным и предсказанным значением большая error rank баллов. Из графика видно, что модель достаточно плохо точно предсказывает оценку комментария, но даже процент расхождений больших 2 баллов очень мал, это значит, что модель довольно четко распознает тональность комментария. Так же можно заметить, что процент ошибок выше при крайних значениях оценки и ниже при серединных.

Определение статуса комментария — это задача классификации, для ее решения требуются модели-классификаторы. Но я приняла решение использовать лучшую модель (регрессионную), полученную при решении задачи оценивания комментария. Это обусловлено следующими пунктами:

- 1) Модель должна быть встроена в веб-сервис, она должна предсказывать достаточно быстро. Время предсказания одной моделью оценки и статуса будет меньше, чем, если будут предсказывать две модели.
- 2) Одна модель занимает меньше памяти на сервере, чем две.
- 3) Дополнительные исследования качества лучшей модели показали, что она довольно хорошо определяет тональность комментария.
- 4) Экономия времени подбора гиперпараметров и типа модели.

Я создала функцию get_status, которая принимает вектор оценок и выдает вектор статусов. Для оценок <= 5.5 - статус будет отрицательным (значение 0), для оценок > 5.5 - статус будет положительным (значение 1).

Так как дизбаланса классов нет, соотношение положительных и отрицательных статусов в выборках 1:1, то в качестве метрики можно выбрать Accuracy - отношение правильно предсказанных записей ко всем записям.

Я преобразовала с помощью get_status предсказания (лучшей и "наивной" моделей) и сравнила результаты метрики Accuracy:

Accuracy лучшей модели на обучающей выборке: 0.99

Accuracy лучшей модели на тестовой выборке: 0.88

Accuracy "наивной" модели на тестовой выборке: 0.5

Лучшая модель дала хороший результат ассuracy на тесте, он превышает результат "наивной" модели на 38%.

1. Прототип сервиса

Комментарий scenes are spine cnilling, yet ormila s enourance and survival are both remarkable. From a woman robbed of her freedom to women in similar situations. A remarkable film that should be given credit for intelligent characters and storytelling

Комментарий: Pinjar is one of the... Рейтинг: 10 Статус: Позитивный

Финальным этапом моей работы была разработка веб-сервиса на базе фреймворка Django для ввода отзыва о фильме с автоматическим присвоением рейтинга (от 1 до 10) и статуса комментария (положительный или отрицательный).

Веб-сервис был реализован и размещен на хостинге pythonanywhere, им можно воспользоваться по ссылке https://anastasianehodova.pythonanywhere.com/

Посмотреть все файлы использованные в работе можно в репозитории https://github.com/AnastasiaNehodova/movie