Project - Machine Learning

Prediction Of Fracture Or Not

In this project, we will work with Fracture.csv dataset to develop a machine learning algorithm that predicts the fracture. A model like this would be very valuable to predict one "s fracture using id,age,weight,,height and bmd

4.1 Problem Statement

Develop a model that has the capacity of predicting fracture by making use of the information provided in fracture Dataset

4.2 Dataset

The dataset used in this project consists of 8 variables: "Gender", 'Height', 'Weight', 'Index', "BMD", "Medication", "Waiting Time" and "Age". The main variable we are interested is 'fracture". This variable predicts the fracture of the person based on the inputs given in dataset

1.	ID	Enter the id number
2.	Age	Enter the age
3.	Sex	Enter the gender
4.	Weight	Enter the weight
5.	Height	Enter the height
6.	Waiting time	Enter the waiting time
7.	BMD	Enter the bmd

The overview of the original dataset is shown in figure with its original features:

4.3 Algorithm –Navie Bayes Algorithm

It is a very simple python program to implement. Multiple regression is like linear regression, but with more than one independent value, meaning that we try to predict a value based on two or more variables. Navie Bayes algorithm is implemented using the GussianNB class from sklearn.linear_model library.

4.4 Programming Steps

- •This project requires us to predict the weight of a person based on the given input dataset.
- •First, we read the given dataset using pandas function.
- •Then we print the inputs and output from csv file.
- Label encoding is used for "Sex" and "Medication" column.
- •We initialize the model i.e., Navie Bayes Algorithm.
- •We further implement this using Django in order for better representation

Code:

```
import pandas as pd

path="C:\\Users\\Sakshi\\Desktop\\Machine Learning\\Data\\Data\\Data\\bmd.csv"

data=pd.read_csv(path)

print(data)

print(data.info())

data['sex']=data['sex'].map({'M':1,'F':0})

print(data)

data['medication']=data['medication'].map({'Anticonvulsant':1,'No medication':2,'Glucocorticoids':3})

print(data)

#data['fracture']=data['fracture'].map({'fracture':1,'no fracture':0})

#print(data)
```

```
inputs=data.drop('fracture','columns')
output=data.drop(['id','age','sex','weight_kg','height_cm','medication','waiting_time','bmd'],'col
umns')
import sklearn
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(inputs,output,train_size=0.8)
print(x_train)
print(x_test)
print(y_train)
print(y_test)
from sklearn.naive_bayes import GaussianNB
model=GaussianNB()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
print(y_pred)
print(y_test)
pclass=int(input("Enter the id of the person:"))
age=float(input("Enter the age of the person:"))
sex=int(input("Enter the sex 0--F 1--M:"))
weight_kg=int(input("Enter the weight of the person in kg's:"))
height_cm=float(input("Enter the height of the person in cm's:"))
medication=int(input("Enter the medication 1--Anticonvulsant 2--No medication 3--
Glucocorticoids:"))
waiting_time=int(input("Enter the waiting time:"))
```

```
bmd=float(input("Enter the bmd:"))

result=model.predict([[pclass,age,sex,weight_kg,height_cm,medication,waiting_time,bmd]])
print(result)

if result==1:
    print("The person have Fracture")
else:
    print("The person have no fracture")
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(data.fracture)
plt.show()
```

OUTPUT:

```
fracture weight_kg height_cm
                                                              medication
                 age sex
0
      469 57.052768 F
                         no fracture
                                          64.0
                                                   155.5 Anticonvulsant
1
     8724 75.741225
                         no fracture
                                          78.0
                                                   162.0
                                                           No medication
                      F
     6736
           70.778900
                      M
                         no fracture
                                          73.0
                                                   170.5
                                                           No medication
                      F
                                                   148.0
                                                           No medication
3
     24180
          78.247175
                         no fracture
                                          60.0
    17072 54.191877
                      M no fracture
                                                   161.0
                                                           No medication
                                          55.0
                                                   164.0 No medication
164 21892 77.982543 M
                            fracture
                                          74.0
165 24140 50.285303
                                                   161.0
                                                          No medication
                     F
                            fracture
                                          59.0
     6969
          46.359721
                                          67.0
                                                   169.0
                                                          No medication
166
                      M
                            fracture
167
     5505 54.788368
                      M
                            fracture
                                          70.0
                                                   166.0
                                                           No medication
       71 69.994822
                                                   165.0 No medication
168
                            fracture
                                          68.5
     waiting_time
                    bmd
0
              18 0.8793
              56 0.7946
1
              10 0.9067
3
              14 0.7112
              20 0.7909
```


