Avi Hirsch

Huffman Encoding (HW #11)

1. Encoding:

0.	
Letter	Encoding
T	0
A	11
G	100
С	101

2. (a) Encoding:

(**) =====-8.	
Letter	Encoding
A	0
В	11
С	100
D	1010
E	1011

(b)

(D)	
Letter	Length
A	1000000 * 1 / 2
	= 500000
В	1000000 * 2 / 4
	= 500000
С	1000000 * 3 / 8
	= 375000
D	1000000 * 4 / 16
	= 250000
E	1000000 * 4 / 16
	= 250000
Total	1875000

3. (a) (20, 35, 45)

- (b) Impossible: A Huffman tree cannot be created with the given frequencies because '0' is a prefix of '00'.
- (c) Impossible: The encoding produced by Huffman's algorithm will always contain a single bit code. In this case, '10' should be '1,' because '1' is shorter and is not a prefix of any other code.
- (Following the algorithm, at every step there will be at least one leaf that is one away from the root of the Huffman tree and will therefore have a one-bit encoding.)