Capítulo 1

Gases imperfectos

1.1 Cuánticos -reubicar

Ensamble de $\mathcal N$ sistemas $(k=1,2,...,\mathcal N).$ Cada uno tiene su estado descripto por

$$\Psi^k(\mathbf{x},t), \qquad \qquad \hat{H}\Psi^k = i\hbar \frac{\partial \Psi^k}{\partial t} \quad \forall k$$

Si son estados puros entonces

$$\Psi^k = \sum_n a_n(t) \phi_n(\mathbf{x}) \qquad \{\phi_n\} \text{ set ortonormal}$$

Un estado puro es superposición coherente de una base

$$i\hbar \frac{\partial}{\partial t} a_m^k = \sum_n H_{mn} a_n^k$$

El sistema k-ésimo puede describirse a partir de Ψ^k o bien a partir de los coeficientes $\{a_n\}.$

Definimos un operador de densidad,

$$\rho_{mn} \equiv \sum_{k=1}^{\mathcal{N}} p_k a_m^k (a_n^k)^*$$

el cual proviene de

$$\hat{\rho}_{mn} = \sum_{k=1}^{\mathcal{N}} p_k \left| \Psi^k \right\rangle \left\langle \Psi^k \right|$$

Todos son la misma combinación lineal de la base.

Promedio en el ensamble de la interferencia cuántica entre ϕ_m y ϕ_n . p_k es la probabilidad del estado k.

Puede verse que se cumple

$$i\hbar\dot{\rho} = [\hat{H},\hat{\rho}],$$

un teorema de Liouville cuántico.

Sea el valor medio de \hat{G}

$$\left\langle G\right\rangle _{ENS}=\sum_{k=1}^{\mathcal{N}}p_{k}\left\langle G\right\rangle _{k}=\sum_{k=1}^{\mathcal{N}}p_{k}\left\langle \Psi^{k}|\hat{G}|\Psi^{k}\right\rangle _{k}=\sum_{k}p_{k}\int\sum_{i}a_{i}^{k*}\phi_{i}^{*}\hat{G}\sum_{j}a_{j}^{k}\phi_{j}dx$$

$$\begin{split} \left\langle G \right\rangle_{ENS} &= \sum_{k} p_{k} \sum_{i} \sum_{j} a_{i}^{k*} a_{j}^{k} \int \phi_{i}^{*} G \phi_{j} dx = \sum_{i} \sum_{j} \left(\sum_{k} p_{k} a_{i}^{k*} a_{j}^{k} \right) G_{ij} \\ &\left\langle G \right\rangle_{ENS} = \sum_{i} \sum_{j} \rho_{ij} G_{ij} = \text{ Traza } (\hat{\rho} \hat{G}) = \sum_{i} [\rho G]_{ii} \end{split}$$

Ahora, si el conjunto $\{\phi_n\}$ fuesen autoestados de \hat{G} entonces

$$\begin{split} \int dx \phi_i^* G \phi_j &= \int dx \phi_i^* \phi_j g_j = \delta_{ij} g_j = g_i \\ \left\langle G \right\rangle_{ENS} &= \sum_k p_k \sum_i a_i^{k*} a_i^k g_i = \sum_k p_k \sum_i |a_i^k|^2 g_i \end{split}$$

La matriz densidad $\hat{\rho}$ se define de modo que sus elementos ρ_{ij} resultan

$$\langle \phi_i | \hat{\rho} | \phi_j \rangle = \sum_{k=1}^{\mathcal{N}} p_k \, \langle \phi_i | \Psi^k \rangle \, \langle \Psi^k | \phi_j \rangle = \sum_{k=1}^{\mathcal{N}} p_k \int dx \phi_i^* \sum_l a_l^k \phi_l \int dx' \phi_j \sum_m a_m^{k*} \phi_m^*$$

$$\begin{split} \langle \phi_i | \hat{\rho} | \phi_j \rangle &= \sum_{k=1}^{\mathcal{N}} p_k \sum_l \sum_m a_l^k a_m^{k*} \int dx \phi_i^* \phi_l \int dx' \phi_j \phi_m^* = \sum_{k=1}^{\mathcal{N}} p_k \sum_l \sum_m a_l^k a_m^{k*} \delta_{il} \delta_{jm} \\ \rho_{ij} &= \sum_k p_k a_i^k a_j^{k*} \end{split}$$

El primer postulado de la QSM es asegurarse de que $\rho_{ij} \propto \delta_{ij}$, es decir que EN PROMEDIO no hay correlación entre funciones $\{\phi_i\}$ para diferentes miembros k del ensamble. El elemento ρ_{ij} es el promedio en el ensamble de la interferencia entre ϕ_i y ϕ_j .

En la práctica los ensambles serán mezcla, una superposición de estados puros pero incoherente, de modo que

Es muy difícil preparar un ensamble puro.

$$\hat{\rho} = \sum_{k=1}^{\mathcal{N}} p_k \left| \Psi^k \right\rangle \left\langle \Psi^k \right| \qquad p_k \ge 0 \quad \sum_k p_k = 1$$

donde p_k serán las abundancias relativas de los estados puros $\Psi^k.$ Para un ensamble puro sería

$$\hat{\rho} = |\Psi\rangle \langle \Psi|$$

donde no hay supraíndice k puesto que todos son el mismo estado.

Un estado puro puede escribirse

$$\Psi^k = \sum_n a_n \phi_n, \quad \text{ o bien } \quad \left| \Psi^k \right> = \sum_n a_n \left| \phi_n \right>$$

y sabemos que el valor de expectación será

$$\left\langle A\right\rangle _{k}=\left\langle \Psi^{k}|\hat{A}|\Psi^{k}\right\rangle =\int dx\Psi^{k*}A\Psi^{k}$$

Un estado mezcla será en cambio

$$|\xi\rangle \cong \sum_{n} p_{n} |\phi_{n}\rangle$$
 (1.1)

donde $\sum_n p_n = 1$ y $p_n \in \mathbb{R} > 0$. Pero $|\xi\rangle$ no es un estado de sistema como Ψ^k pués

$$|\xi\rangle \neq \sum_{n} c_n |\phi_n\rangle$$
 (1.2)

no hay cambio de base que lleve (1.1) al miembro derecho de (1.2). Entonces

$$\langle A \rangle_{\xi} \neq \langle \xi | \hat{A} | \xi \rangle$$

Pero como en la práctica lo que se tiene son estados mezcla, la matriz de densidad $\hat{\rho}$ permite trabajar con ellos tranquilamente.