Lösungen zum Übungsblatt: Cloud Computing

Aufgabe 1: Konzepte des Cloud Computings

1. Fog Computing vs. Edge Computing:

- Fog Computing bringt die Cloud-Fähigkeiten näher an den Rand des Netzwerks, wobei die Verarbeitung in einer lokalen Netzwerkschicht (Fog Layer) erfolgt.
- Edge Computing bezieht sich auf die Verarbeitung von Daten direkt am Ort ihrer Erzeugung (am Edge des Netzwerks), was die Reaktionszeiten und Bandbreitennutzung verbessert.

2. Hybrid Cloud:

Eine Hybrid Cloud kombiniert On-Premises-Infrastruktur (oder private Clouds)
mit öffentlichen Clouds, was Flexibilität und Skalierbarkeit bietet. Ein
Anwendungsszenario könnte das Hosting einer kritischen Anwendung OnPremises und weniger kritischer Anwendungen in der Public Cloud sein.

Aufgabe 2: Technologie und Architektur

1. Skalierung in der Cloud:

- Horizontale Skalierung: Hinzufügen weiterer Maschinen zur bestehenden Umgebung.
- Vertikale Skalierung: Hinzufügen von Ressourcen zu einer einzelnen Maschine.

2. Load Balancing:

Verteilung der Arbeitslast über mehrere Server hinweg, um eine Überlastung einzelner Server zu vermeiden und die Verfügbarkeit und Zuverlässigkeit der Anwendung zu erhöhen.

3. Cloud Orchestration:

Cloud Orchestration bezieht sich auf die Automatisierung des Managements, der Koordination und der Bereitstellung von Cloud-Ressourcen. Es verbessert die Effizienz, indem es die Komplexität der Ressourcenzuweisung reduziert und automatisiert.

Aufgabe 3: Anwendungsfälle

- 1. **Mobile Anwendungsentwicklung:** PaaS, da es die Entwicklungsumgebung und Tools bereitstellt, ohne dass das Unternehmen Infrastruktur verwalten muss.
- 2. **E-Mail-Kommunikation:** SaaS, speziell ein Cloud-basierter E-Mail-Dienst, da er Software und Speicherung ohne lokale Verwaltung bereitstellt.
- 3. **Forschungsteam:** laaS, da es flexible und skalierbare Rechenressourcen bietet, die für datenintensive Aufgaben erforderlich sind.

4. **Datenbankauslagerung:** SaaS, da das Unternehmen die Datenbanksoftware nicht verwalten muss.

Aufgabe 4: Sicherheit in der Cloud

- 1. Herausforderungen bei der Implementierung von Sicherheitsmaßnahmen:
 - Herausforderungen umfassen die Sicherung von Daten, die Kontrolle des Zugriffs, die Einhaltung von Compliance-Vorschriften und die Berücksichtigung von Sicherheitsbedrohungen in einer geteilten Umgebung.
- 2. Minimierung des Risikos eines Datenverlusts:
 - Maßnahmen umfassen die Implementierung robuster Backup- und Wiederherstellungsprozesse, Verschlüsselung von Daten sowohl in Ruhe als auch in Übertragung und die Verwendung sicherer Authentifizierungsverfahren.

Aufgabe 5: Fallstudie

- 1. **Migrationsprozess:** Bewertung der vorhandenen Infrastruktur, Auswahl eines geeigneten Cloud-Providers, Datenmigration.
- 2. **Sicherheit und Compliance:** Implementierung von End-to-End-Verschlüsselung, Auswahl eines Cloud-Providers mit Compliance-Zertifizierungen, Durchführung von Datenschutz-Folgenabschätzungen.
- 3. **Auswirkungen auf IT-Belegschaft:** Schulung der Mitarbeiter in Cloud-Technologien, Neuausrichtung von Rollen und Verantwortlichkeiten, Förderung der Entwicklung neuer Kompetenzen.

Aufgabe 6: Multiple Choice

- 1. Was bedeutet die Abkürzung 'laaS' im Cloud Computing?
 - Antwort: b) Infrastructure as a Service
- 2. Was ist ein Hauptvorteil der Nutzung von Cloud Computing in Unternehmen?
 - Antwort: c) Erhöhte Skalierbarkeit
- 3. Welcher der folgenden Begriffe ist KEIN Cloud-Service-Modell?
 - Antwort: d) QaaS
- 4. Was ist der Hauptunterschied zwischen 'Public Cloud' und 'Private Cloud'?
 - Antwort: c) Public Cloud-Dienste werden über das öffentliche Internet bereitgestellt, während Private Cloud-Dienste in einem internen Netzwerk gehostet werden.
- 5. Welche Technologie ist entscheidend für das Funktionieren von Cloud Computing?
 - Antwort: c) Virtualisierung
- 6. Welche Aussage über serverlose Architekturen ist korrekt?

- Antwort: b) Sie reduzieren die Notwendigkeit, sich um Serververwaltung zu kümmern.
- 7. Was ist eine gängige Nutzung von 'Cloud Bursting'?
 - Antwort: c) Zur Bewältigung von Spitzenlasten in der Datenverarbeitung
 - Erläuterung: Cloud Bursting bezieht sich auf eine Konfiguration, bei der eine Anwendung bei Spitzenlasten automatisch auf Cloud-Ressourcen ausweicht, um die Leistung zu optimieren.
- 8. Welches Konzept beschreibt das Bereitstellen einer vereinheitlichten, nutzerfreundlichen Schnittstelle über mehrere Cloud-Dienste hinweg?
 - Antwort: c) Cloud Service Brokering
 - Erläuterung: Cloud Service Brokering bietet eine zentrale Schnittstelle zur Verwaltung und Integration verschiedener Cloud-Dienste, was die Nutzung und das Management über verschiedene Cloud-Plattformen hinweg vereinfacht.
- 9. In welchem Szenario würde das Prinzip der 'Data Gravity' im Cloud Computing am wahrscheinlichsten angewendet?
 - Antwort: a) Wenn Datenmengen so groß sind, dass es effizienter ist, die Anwendungen zu den Daten zu bringen, statt die Daten zu den Anwendungen.
 - Erläuterung: Data Gravity bezieht sich auf das Phänomen, bei dem große Datenmengen weitere Dienste und Anwendungen "anziehen", sodass es effizienter ist, die Verarbeitung näher an den Daten durchzuführen.
- 10. Was ist eine mögliche Herausforderung beim Einsatz von 'Green Computing' Praktiken in großen Cloud-Rechenzentren?
 - Antwort: b) Schwierigkeiten bei der Integration erneuerbarer Energiequellen.
 - Erläuterung: Die Integration erneuerbarer Energiequellen in große Rechenzentren kann aufgrund von Skalierbarkeit, Zuverlässigkeit und Konsistenz der Energieversorgung herausfordernd sein.