Instituto Mauá de Tecnologia Núcleo de Sistemas Eletrônicos Embarcados - NSEE

Simulador motor BLDC

Juliano Tusi Amaral Laganá Pinto julianotusi@gmail.com

29 de junho de 2015

Sumário

1	Introdução						
	1.1	Objetivo	4				
	1.2	Sistema de interesse	4				
	1.3	Hipóteses	5				
	1.4	Modelo matemático	5				
2	lmp	Implementação					
	2.1	Bloco BLDC	8				
	2.2	Bloco BLDC com lógica de comutação em blocos	9				
3	Ferramentas adicionais						
	3.1	Conversão de tensões	11				
	3.2	Medição de posição	12				
		Medição de velocidade					

Revision History

Revision	Date	Author(s)	Description
1.0.0	16.10.14	Juliano Laganá	Criação do documento.
1.0.1	21.10.14	Juliano Laganá	Adição do encoder e do método M/T aos blocos especificados.
1.0.2	24.06.15	Juliano Laganá	Substituição do modelo elétrico de fases individuais pelo modelo elétrico com as fases acopladas.
1.0.3	24.06.15	Juliano Laganá	Adição do bloco de conversão de tensões.
1.0.4	24.06.15	Juliano Laganá	Correção da definição do parâmetro L. Na verdade é a indutância por fase descontada da indutância mútua.
1.0.5	25.06.15	Juliano Laganá	Inclusão do modelo de atrito de Coulomb
1.0.6	29.06.15	Juliano Laganá	Atualização: agora o usuário pode definir o formato de back-emf que quiser

1 Introdução

1.1 Objetivo

O objetivo desse documento é disponibilizar um manual de uso da biblioteca "BLDC.slx" para simulação do motor DC sem escovas (BLDC).

1.2 Sistema de interesse

O sistema de interesse é um motor DC sem escovas acoplado à uma carga constante. A figura 1.1 ilustra um modelo simplificado do sistema. Os torques mostrados no desenho são:

- \bullet T_e : Torque elétrico gerado pelo motor.
- T_d : Torque de atrito no mancal (atrito viscoso + atrito de Coulomb).
- T_l : Torque da carga.

Figura 1.1: Modelo simplificado do sistema

1.3 Hipóteses

- Todas as fases de alimentação do BLDC tem a mesma resistência.
- Todas as fases de alimentação do BLDC tem a mesma indutância.
- Todos as partes do sistema são consideradas corpos rígidos.
- O atrito no mancal pode ser modelado como atrito viscoso (diretamente proporcional à velocidade angular do rotor em relação ao estator) + atrito de Coulomb.

1.4 Modelo matemático

• Dinâmica mecânica, com atrito viscoso e atrito de Coulomb:

$$J.\frac{d^2\theta_m}{dt^2} = T_e - T_l - T_{at1} - T_{at2}$$

$$T_{at1} = K_d.\frac{d\theta_m}{dt}$$

$$T_{at2} = \begin{cases} -T_k.sign(\frac{d\theta}{dt}) & : \frac{d\theta_m}{dt} \neq 0\\ -min(T_s, T_e - T_l).sign(T_e - T_l) & : \frac{d\theta_m}{dt} = 0 \end{cases}$$

• Dinâmica elétrica, como proposto por [1]:

$$v_{ab} = R(i_a - i_b) + L\frac{d}{dt}(i_a - i_b) + e_a - e_b$$

$$v_{bc} = R(i_a + 2i_b) + L\frac{d}{dt}(i_a + 2i_b) + e_b - e_c$$

$$i_a + i_b + i_c = 0$$

• Forças contraeletromotrizes geradas em cada fase [1]:

$$e_a = \frac{f_a(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

$$e_b = \frac{f_b(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

$$e_c = \frac{f_c(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

• Torque gerado por cada fase e torque elétrico total [1]:

$$T_a = \frac{f_a(\theta_e).K_t.i_a}{2}$$

$$T_b = \frac{f_b(\theta_e).K_t.i_b}{2}$$

$$T_c = \frac{f_c(\theta_e).K_t.i_c}{2}$$

$$T_e = T_a + T_b + T_c$$

• Relação entre ângulo elétrico e ângulo mecânico:

$$\theta_e = \theta_m \cdot \frac{P}{2}$$

J = Inércia do sistema motor + carga

 K_d = Coeficiente de atrito viscoso do mancal

 T_{at1} = Torque devido ao atrito viscoso

 T_{at2} = Torque devido ao atrito de Coulomb

 T_k = Magnitude do torque devido ao atrito cinético

 T_s = Magnitude máxima do torque devido ao atrito estático

 K_e = Constante de força contraeletromotriz

 $K_t = \text{Constante de torque}$

P = Número de pólos

 $\theta_m = \text{Ângulo do rotor em relação ao estator}$

 $\theta_e = \text{Ângulo elétrico}$

 $L={
m Indut}$ ância de cada fase (descontada do valor da indutância mútua, caso seja significativo)

R = Resistência de cada fase

 v_{ab} = Tensão entre as fase $a \in b$

 v_{bc} = Tensão entre as fases b e c

 i_a = Corrente na fase a

 i_b = Corrente na fase b

 i_c = Corrente na fase c

 e_a = Força contraeletromotriz gerada na fase a

 e_b = Força contraeletromotriz gerada na fase b

 e_c = Força contraeletromotriz gerada na fase c

 T_a = Torque elétrico gerado pela fase a no rotor

 T_b = Torque elétrico gerado pela fase b no rotor

- T_c = Torque elétrico gerado pela fase c no rotor
- T_e = Torque elétrico total aplicado no rotor
- $f_a(\theta_e)$ = Função que reproduz o comportamento da força contraeletromotriz na fase a (padrão: comportamento trapezoidal)
- $f_b(\theta_e)$ = Função que reproduz o comportamento da força contraeletromotriz na fase b (padrão: comportamento trapezoidal)
- $f_c(\theta_e)$ = Função que reproduz o comportamento da força contraeletromotriz na fase c (padrão: comportamento trapezoidal)
- sign(x) = Retorna 1 se x é não-negativo, -1 caso contrário.
- min(a, b) = Retorna a se a > b, b caso contrário.

2 Implementação

2.1 Bloco BLDC

O modelo matemático apresentado na seção 1.4 foi implementado no bloco "BLDC" ilustrado na figura 2.1. Todos os parâmetros do motor podem ser alterados clicando-se duas vezes em cima do bloco.

Caso o usuário queira, ao invés de utilizar o formato padrão trapezoidal para o formato das forças contra-eletromotrizes, ele pode especificar um formato diferente nos parâmetros do bloco. Para tal, é necessário informar três matrizes $n \times 2$ que servirão de lookup table. A primeira coluna dessas matrizes é o tempo (deve começar em zero, ser monotonicamente crescente e terminar em 360) e a segunda coluna é o valor de $f(\theta_e)$ para aquela fase.

Exemplo: backemfa = [linspace(0,360,200)',sin(linspace(0,360,200)')];

Atenção: desde a adição do modelo de atrito de Coulomb, esse bloco não suporta mais simulação com fixed-step solvers. Caso um fixed-step solver seja utilizado, uma mensagem de erro será apresentada ao usuário.

Figura 2.1: Bloco simulink para simulação do BLDC

• Entradas

- 1. Vab Tensão entre as fases $a \in b$ [V]
- 2. Vbc Tensão entre as fases $b \in c$ [V]
- 3. Tl Torque da carga [N.m]

• Saídas

- 1. Theta_m Ângulo entre o rotor e o estator (θ_m) [rad]
- 2. w_m Velocidade angular entre o rotor e o estator $(\frac{d\theta_m}{dt})$ [rad/s]
- 3. internal Sinal multiplexado [4x1] composto pelos seguintes sinais:
 - Correntes [3x1] i_a , i_b e i_c [A]
 - Torques [3x1] $T_a,\,T_b$ e T_c [N.m]
 - FCEMs [3x1] $e_a,\,e_b$ e e_c [V]
 - Torque total T_e [N.m]
 - Torque de atrito T_{at2}

2.2 Bloco BLDC com lógica de comutação em blocos

Para o devido funcionamento do BLDC é necessário comutar a tensão entre cada fase periodicamente. O bloco apresentado na figura 2.2 implementa internamente a estratégia de comutação em blocos através da utilização de três sensores de efeito hall separados por 120 graus. Todos os parâmetros do motor podem ser alterados clicando-se duas vezes em cima do bloco.

Figura 2.2: Bloco simulink para simulação do BLDC utilizando comutação em blocos

• Entradas

- 1. V Tensão aplicada nas fases [V]
- 2. Tl Torque da carga [N.m]

• Saídas

- 1. Theta_m Ângulo entre o rotor e o estator (θ_m) [rad]
- 2. w_m Velocidade angular entre o rotor e o estator $(\frac{d\theta_m}{dt})$ [rad/s]

- 3. internal Sinal multiplexado [4x1] composto pelos seguintes sinais:
 - Correntes [3x1] $i_a,\,i_b$ e i_c [A]
 - Torques [3x1] $T_a,\,T_b$ e T_c [N.m]
 - FCEMs [3x1] $e_a,\,e_b$ e e_c [V]
 - Torque total T_e [N.m]
 - Hall [3x1] H_1 , H_2 e H_3 (Níveis lógicos de cada sensor Hall acoplado ao motor)

3 Ferramentas adicionais

3.1 Conversão de tensões

Foi desenvolvido um bloco para converter as tensões individuais de cada fase $(V_a, V_b \in V_c)$ nas tensões entre as fases $(v_a b \in v_b c)$, que são as entradas do bloco BLDC), ilustrado na figura 3.1.

Figura 3.1: Bloco para converter as tensões individuais em tensões entre fases

• Entradas

- 1. Va Tensão na fase a
- 2. Vb Tensão na fase b
- 3. Vc Tensão na fase c

• Saídas

- 1. v_{ab} Tensão entre as fases $a \in b$
- 2. v_{bc} Tensão entre as fases b e c

3.2 Medição de posição

Para medição de posição angular do rotor foi desenvolvido um bloco que simula o funcionamento de um encoder de quadratura, ilustrado na figura 3.2. O número de pulsos por revolução pode ser configurado clicando-se duas vezes no bloco.

Figura 3.2: Bloco simulink para simulação de um encoder de quadratura

- Entradas
 - 1. Theta Ângulo mecânico entre o rotor e o estator. [graus]
- Saídas
 - 1. Theta_amostrado Ângulo mecânico entre o rotor e o estator, amostrado pelo encoder de quadratura simulado. [graus]
- Restrições
 - 1. Para o correto funcionamento desse bloco, o step size da simulação deve ser configurado para nunca exceder $\frac{360}{4.N_r.V_{m\acute{a}x}}$ segundos; onde N_r é o número de pulsos por rotação do encoder (especificado clicando-se duas vezes em cima do bloco) e $V_{m\acute{a}x}$ é o valor máximo da derivada da entrada Theta em graus/s. Exemplo: Para a correta simulação de um encoder com $N_r=300$, amostrando um BLDC cuja velocidade angular atinge no máximo 1200 graus/s (portanto o valor máximo da derivada da entrada Theta também é 1200 graus/s), faz-se necessário configurar a simulação para que o step size nunca exceda 2,5.10⁻⁴ segundos.

3.3 Medição de velocidade

O algoritmo M/T para estimação de velocidade [2] foi implementado no simulink e está ilustrado na figura $3.3\,$

Figura 3.3: Bloco que implementa o algoritmo de estimação de velocidade M/T

• Entradas

1. Posicao - Essa entrada deve ser conectada à saída "Theta_amostrado" do bloco simulador de encoder de quadratura. [graus]

• Saídas

1. Velocidade - Velocidade estimada pelo algorimo M/T. [graus/s]

Referências Bibliográficas

- [1] Stefan Baldursson. Bldc motor modelling and control-a matlab@/simulink@ implementation. 2005.
- [2] Tsutomu Ohmae, Toshihiko Matsuda, Kenzo Kamiyama, and Makoto Tachikawa. A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. *IEEE Transactions on industrial electronics*, IE-29(3):207–211, August 1982.