Examenul național de bacalaureat 2025 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q = \frac{b_3}{b_2} = 5$, unde q este rația progresiei geometrice	3p
	$b_1 = \frac{b_2}{q} = 4$	2p
2.	f(a) = 4a + 3, $g(a) = a - 3$, pentru orice număr real a	3 p
	4a+3=a-3, de unde obţinem $a=-2$	2p
3.	$3^{2x+3} = 3^{x+2}$, de unde obtinem $2x + 3 = x + 2$	3 p
	x = -1	2p
4.	În mulțimea numerelor naturale de două cifre sunt 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 3 numere n pentru care \sqrt{n} este număr natural par, deci sunt 3 cazuri favorabile, de unde obținem $p = \frac{3}{90} = \frac{1}{30}$	3 p
5.	$m_{OB} = \frac{1}{3}$	2p
	$m_{AC} = \frac{a-3}{3}$ și, cum $m_{OB} = m_{AC}$, obținem $a = 4$	3 p
6.	$\frac{AB}{BC} = \frac{1}{\sqrt{2}}$, de unde obținem $B = \frac{\pi}{4}$, deci $AB = AC$	3 p
	$\frac{AB \cdot AC}{2} = 32$, de unde obţinem $AC = 8$	2p

SUBIECTUL al II-lea	(30 de puncte)
SUDITY I ULI AL LI-ICA	(50 ue builcie)

	·	
1.a)	$M(0) = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 0 & 0 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 + 0 + 0 - 0 - 0 - 0 = 0$	2p 3p
b)		3p 2p
c)		3p
	$\left(\frac{x}{2} - 1\right) M(0) = 2M(0), \text{ de unde obținem } x = 6$	2p

2.a)	1*3 = 5(1-1)(3-1)+1 = = 0+1=1	3p
	=0+1=1	2 p
b)	$x * \frac{6}{5} = 5(x-1)\left(\frac{6}{5}-1\right) + 1 = x-1+1 = x$, pentru orice număr real x	2p
	$\frac{6}{5} * x = 5 \left(\frac{6}{5} - 1\right)(x - 1) + 1 = x - 1 + 1 = x, \text{ pentru orice număr real } x, \text{ deci } e = \frac{6}{5} \text{ este}$	3p
	elementul neutru al legii de compoziție "*"	
(c)	$\frac{m}{25} * n = n * \frac{m}{25} = \frac{6}{5}$, de unde obținem $5\left(\frac{m}{25} - 1\right)(n-1) + 1 = 5(n-1)\left(\frac{m}{25} - 1\right) + 1 = \frac{6}{5}$	3 p
	(m-25)(n-1)=1 și, cum m și n sunt numere naturale, obținem perechile $(24,0)$ și $(26,2)$	2p

SUBIECTUL al III-lea (30 de puncte)

ODIE	ECTUL al III-lea (30 de pui	
1.a)	$f'(x) = \frac{\left(2 + \frac{1}{x}\right) \cdot x - \left(2x - 2 + \ln x\right)}{x^2} =$	3 p
	$= \frac{2x+1-2x+2-\ln x}{x^2} = \frac{3-\ln x}{x^2}, \ x \in (0,+\infty)$	2p
b)	$\lim_{x \to 1} \frac{f(x)}{\ln x} = \lim_{x \to 1} \frac{2x - 2 + \ln x}{x \ln x} = \lim_{x \to 1} \frac{(2x - 2 + \ln x)'}{(x \ln x)'} =$	3p
	$= \lim_{x \to 1} \frac{2 + \frac{1}{x}}{\ln x + 1} = 3$	2p
c)	$f'(x) = 0 \Leftrightarrow x = e^3$; pentru orice $x \in (0, e^3]$, $f'(x) \ge 0$, deci f este crescătoare pe $(0, e^3]$ şi, pentru orice $x \in [e^3, +\infty)$, $f'(x) \le 0$, deci f este descrescătoare pe $[e^3, +\infty)$	2p
	$\lim_{x \to 0} f(x) = -\infty, \ f(e^3) = 2 + \frac{1}{e^3} \in (2,3) \text{ si } f \text{ este continuă, deci cel mai mare număr întreg}$ $m \text{ pentru care ecuația } f(x) = m \text{ are cel puțin o soluție este } 2$	3 p
2.a)	$\int_{0}^{2} f(x)e^{x} dx = \int_{0}^{2} (x+4) dx = \left(\frac{x^{2}}{2} + 4x\right)\Big _{0}^{2} =$	3p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (x+4) (-e^{-x})' dx = (x+4) (-e^{-x}) \Big _{0}^{1} - e^{-x} \Big _{0}^{1} =$	2p 3p
	$=-\frac{5}{e}+4-\frac{1}{e}+1=5-\frac{6}{e}$	2p
c)	$I_n = \int_0^1 \frac{x^n e^x}{x+4} dx$, de unde obţinem $I_{n+1} + 4I_n = \int_0^1 \frac{\left(x^{n+1} + 4x^n\right) e^x}{x+4} dx = \int_0^1 x^n e^x dx$, pentru orice	2p
	număr natural nenul n Cum $e^x \le e$, pentru orice $x \in [0,1]$, obținem $I_{n+1} + 4I_n \le e \int_0^1 x^n dx = e \cdot \frac{x^n}{n+1} \Big _0^1 = \frac{e}{n+1}$, pentru orice puměr natural nenul n	3 p
	orice număr natural nenul n	

Pagina 2 din 2