1 Uvod

Kaj so dinamični sistemi? Najbolj enostavno jih lahko opišemo kot:

Drugače povedano, obravnavamo delec v množici možnih stanj, pravilo, pa nam pove, kaj se z njim zgodi v naslednjem trenutku.

Deterministično, v našem kontekstu pomeni, da je naslednji korak odvisen le od trenutnega stanja delca.

V grobem jih glede na tip koraka, ločimo na **diskretne** in **zvezne** sisteme. V splošnem jih lahko obravnavamo na npr. metričnih ali topoloških prostorih, mi pa se bomo omejili na \mathbb{R}^n in \mathbb{C} . Obravnavali bomo

- i) Diferenčne oz.rekurzivna enačbe $x_{n+1} = F(x_n)$, za $F: S \to S$ in pri različnih začetnih pogojih $x_0 \in S$, kjer je S množica stanja v \mathbb{R}^n ali \mathbb{C} . Temu rečemo diskretna dinamika funkcije oz. preslikave F
- ii) Nelinearni sistemi navadnih diferencilnih enačb, $F:S\subseteq\mathbb{R}^n\to S\subseteq\mathbb{R}^n$, $\dot{x}=F(x),\,x\in S.$ To bo model za zvezne dinamične sisteme v \mathbb{R}^n .

Opomba 1. V obeh primer govorimo o **autonomnih sistemih** tj. pravilo ni odvisno od časa. Pokažimo, da lahko poljuben sistem prevedemo na avtonomen sistem, zato je dovolj obravnavati le te.

$$\dot{x} = F(x,t) \iff \dot{x} = F(x,t) \iff \dot{\tilde{x}} = \tilde{F}(\tilde{x}) \ za \ \tilde{x} = (x,t) \ in \ \tilde{F} = (F,1)$$
 $\dot{t} = 1$

$$x_{n+1} = F(x_n, n) \iff x_{n+1} = F(x_n, y_n) \iff \tilde{x}_{n+1} = \tilde{F}(x_n) \ za \ \tilde{x} = (x, y)$$

 $y_{n+1} = y_n + 1$

tj. če nimamo dimenzijskih omejitev, so avtonomni sistemi najsplošnejši možni, saj lahko čas premaknemo v množico stanj tj. $\tilde{S} = S \times \mathbb{R}$ oz. $\tilde{S} = S \times \mathbb{Z}$.

Primer 1. Zgodil se je umor in imamo naslednje podatke:

- Temperatur T trupla ob prihodu: $T(0) = 9^{\circ}C$
- Temperatura T po 1h: $T(1) = 7^{\circ}C$
- Temperatura jezera T_j : $T_j = 5^{\circ}C$

Kdaj se je zgodil umor?

Fizikalni zakon: telesna temperatura pada sorazmerno z razliko do temperature jezera.

Diskretni model:

$$T_{n+1} = T_n - k(T_n - T_i),$$

kjer sta:

- k > 0 konstanta odvisna le od lasnosti trupla
- $T_n T_j$ temperaturna razlika

Vstavimo meritve: čas ob prihodu

$$7C = 9C - k(9C - 5C)$$
$$\implies k = \frac{1}{2}.$$

Sistem, ki opisuje telesno temperaturo, je podano z

$$T_{n+1} = T_n - \frac{1}{2}(T_n - T_j) = \frac{1}{2}T_n + \frac{1}{2}T_j.$$

V tem primeru lahko poiščemo ekplicitno rešitev:

Homogeni del:

$$T_{n+1} = \frac{1}{2}T_n \Longrightarrow T_n = C\left(\frac{1}{2}\right)^n.$$

Partikularna rešitev:

$$T_n^p = T_j = 5C$$

Splošna rešitev:

$$T_n = C\left(\frac{1}{2}\right)^n + T_j$$

$$T_0 = C + T_j \Longrightarrow C = T_0 - T_j$$

$$T_n = (T_0 - T_j) \cdot \left(\frac{1}{2}\right)^n + T_j$$

Odgovor:

 $vemo, da je T_0 = 37C torej imamo$

$$T_n = (37 - 5)\left(\frac{1}{2}\right)^n + 5 = 9$$
$$\implies n = 3.$$

Umor se je zgodil 3h pred prihodom.

Zvezni model: model je dan z

$$\dot{T} = -k(T - T_i).$$

Rešimo z metodo ločljivih spremenljiv

$$T = De^{-kt} + T_j$$

Začetni pogoj: $T(0) = T_0 \Longrightarrow D = T_0 - T_j$ in je rešitev

$$T(t) = (T_0 - T_j)e^{-kt} + T_j$$

 $\check{C}as\ prihoda:\ T(n)=9C,$

Čas po eni uri: T(n+1) = 7C.

Rešimo sistem enačb in dobimo n=3. Dobimo enak sklep kot prej, dinamični sistem, ki opisuje temperaturo, pa je

$$\dot{T} = \ln\left(\frac{1}{2}\right)(T - T_j) = -\ln 2(T - T_j)$$

V tem primeru, je $T \equiv 5C$ neka fiksna točka oz. ravnovesje, "pritegne" ostale rešitve. Tekom predmeta bomo spoznali bolj zapletene primere.

Dinamika realnih funkcij

Uroš Kosmač

April 24, 2025

2 Osnovni pojmi

Za začetek se bomo omejili na funkcije $f:I\subseteq\mathbb{R}\to I$, kjer je I interval. Obravnavali bomo zaporedje $x_{n+1}=f(x_n)$ pri različnih pogojih $x_0\in I$. Za začetek uvedemo oznako:

$$f^n = \underbrace{f \circ f \cdots \circ f}_{n \text{ kompozitumov}}$$

Definicija 1. Orbita točke x_0 pri funkciji f je podana s členi zaporedja:

$$O_f(x_0) = \{x_0, x_1, \dots\} = \{f^n(x_0) \mid n \in \mathbb{N}_0\}.$$

Orbita predstavlja dinamični razvoj točke x_0 pri komponiranju z f. Množici vseh orbit za $x_0 \in I$ pa rečemo **dinamika funkcije** f.

Primer 2. $x_{n+1} = x_n^2 + 1$ oz. $f(x) = x^2 + 1$.

$$O_f(1) = \{1, 2, 5, 26, \dots\}$$

 $O_f(0) = \{0, 1, 2, 5, 26, \dots\}$

$$O_f(-2) = \{-2, 5, 26, \dots\}$$

Orbite lahko pri funkcijah ene spremenljivke vizualiziramo z pajčevinastim diagramom.

Postopek:

- $izbere\check{s} x_0$ na osi x,
- $gre\check{s}$ $navpi\check{c}no$ na f(x),
- $gre\check{s}\ vodoravno\ do\ y=x,$
- ponavljaš zadnja dva koraka.

Primer 3. Sherlock: $x_{n+1} = \frac{1}{2}x_n + \frac{5}{2}$ oz. $f(x) = \frac{1}{2}x + \frac{5}{2}$.

 $O_f(5) = \{5, 5, \dots\}.$ Za ostale orbite velja: $x_n \to 5$.

Definicija 2. Točka $x_0 \in \mathbb{R}$ je periodična s periodo $n \in \mathbb{N}$ za f, če zanjo velja $f^n(x_0) = x_0$ in je n najmanjše naravno število s to lastnostjo. Če je n = 1, taki točki pravimo fiksna točka.

Primer 4. $f(x) = -x^3$.

Fiksne točke:

$$f(x) = x \iff -x^3 = x \iff x = 0.$$

Točke periode 2:

$$f^2(x) = x$$
 in $f(x) \neq x \iff x^9 = x$ in $-x^3 \neq x \iff x = \pm 1$.

Definicija 3. Orbiti n - periodične točke rečemo n-cikel.

Figure 1: pajčevinast diagram iz Primera 3.

Definicija 4. Naj bo $x_0 \in I$ fiksna točka za $f: I \to I$.

- x_0 je **šibko privlačna**, če obstaja njena okolica $U \subseteq I$, da za vsak $y_0 \in U$ velja $y_n = f^n(y_0) \to x_0$.
- x_0 je **šibko odbojna**, če obstaja njena okolica $U \subseteq I$, da za vsak $y_0 \in U \setminus \{x_0\}$ obstaja $m \in \mathbb{N}$, da $f^m(x_0) \notin U$.

Okolici iz prve točke pravimo **območje privlaka za** x_0 , največjemu intervalu znotraj U, ki vsebuje x_0 pa rečemo **neposredno območje privlaka za** x_0 .

Opomba 2. Če je $f \in C^0(I)$ in $f^n(x) \to x_0$ je x_0 nujno fiksna točka:

$$f^n(x) \to x_0 \Longrightarrow \lim_{n \to \infty} f^{n+1}(x) = f(x_0) = x_0 = \lim_{n \to \infty} f^n(x)$$

Definicija 5. Če je $f \in C^1(I)$, dodamo pojme:

- x_0 je **privlačna**, če $|f'(x_0)| < 1$.
- x_0 je **odbojna**, če $|f'(x_0)| > 1$.
- x_0 je **nevtralna**, če $|f'(x_0)| = 1$.

Primer 5. Sherlock: $f(x) = \frac{1}{2}x + \frac{5}{2}$. $f'(5) = \frac{1}{2}$ je privlačna in šibko privlačna.

Primer 6. Dane imamo tri funkcije $f_1(x) = x + x^3$, $f_2(x) = x - x^3$ in $f_3(x) = x + x^2$ V vseh treh primerih pa je |f'(0)| = 1 tj. gre za nevtralne točke.

Izrek 1. Naj bo $f \in C^1(I)$ in $x_0 \in I$ fiksna točka. Potem velja:

- i) Če je $|f'(x_0)| < 1$, je x_0 šibko privlačna.
- ii) Če je $|f'(x_0)| > 1$, je x_0 šibko odbojna.
- iii) Če je $|f'(x_0)| = 1$, je x_0 nevtralna, pogledamo višje odvode za več informacij.

Dokaz:

i): Recimo, da je $|f'(x_0)| < \lambda < 1$. Potem obstaja $\delta > 0$, da je $|f'(x_0)| < \lambda$ za vsak $x \in (x_0 - \delta, x_0 + \delta)$ zaradi zveznosti odvoda. Uporabimo Lagrangeov izrek

$$f'(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 za $c \in (x, x_0)$.

Ker je x_0 fiksna točka

$$f'(x) = \frac{f(x) - x_0}{x - x_0}.$$

Naredimo oceno

$$|f(x) - x_0| = |f'(c)| \cdot |x - x_0| < \lambda |x - x_0|.$$

Zato za $x \in (x_0 - \delta, x_0 + \delta)$, velja da je tudi $f(x) \in (x_0 - \delta, x_0 + \delta)$. Indultivno sklepamo

$$|f(f(x)) - f(x_0)| = |f^2(x) - x_0| < \lambda^2 |x - x_0|$$

oz.

$$|f^n(x) - x_0| < \lambda^n |x - x_0|.$$

Ker je $\lambda \in (0,1)$, gre $\lambda^n \to 0$ za $n \to \infty$ torej $\lim_{n \to \infty} f^n(x) = x_0$.

ii): Dokaz je podoben, le da $\lambda>1$ tj. za nek velik $m\in\mathbb{N},$ bo $\lambda^m|x-x_0|$ šel iz okolice.

Definicija 6. Fiksna točka $x_0 \in I$ je **stabilna** za $f: I \to I$, če za vsako njeno okolico $U \subset I$ obstaja manjša okolica $U' \subset U$, da za vsak $x \in U'$ velja $O_f(x) \subset U$.

Opomba 3. Iz dokaza izreka sledi, da privlačnost porodi enakomerno konvergenco $f^n(x) \to x_0$ za vse $x \in (x_0 - \delta, x + \delta)$. Sledi, da so vse privlačne fiksne točke stabilne. Pa tudi take, katerih bližnje orbite ne konvergirajo nujno k x_0 tj. obstajajo nevtralne točke, ki niso šibko privlačne, a so vseeno stabilne npr. f(x) = 1 - x. Imamo $f^2(x) = x$ in $f(\frac{1}{2}) = \frac{1}{2}$ in $f'(\frac{1}{2}) = -1$. Torej je $\frac{1}{2}$ nevtralna fiksna točka, ostale točke so 2-periodične. $x = \frac{1}{2}$ je stabilna.

Definicija 7. Fiksne točke, ki so stabilne in šibko privlačne pravimo asimptotsko stabilne.

Opomba 4. Ni vsaka šibko privlačna točka (asimptotsko) stabilna. Orbita lahko "uide" iz okolice in se nato vrne. So pa use privlačne točke tudi asimptotsko stabilne.

Sedaj lahko to klasifikacijo razširimo na n-periodične točke, če nanje pogledamo kot na fiksne točke funkcije f^n .

Definicija 8. Periodična točka $x_0 \in I$ oz. pripadajoči n-cikel je:

- Šibko privlačna/odbojna, če je šibko privlačna/odbojna kot fiksna točka funkcije fⁿ.
- Privlačna/odbojna/nevtralna, če je privlačna/odbojna/nevtralna kot fiksna točka funkcije f^n .

Da bosta ti definiciji dobri, v prvi točki potrebujemo zveznost, v drugi pa zvezno odvedljivost funkcije f. To združi nasledji izrek.

Izrek 2. Če je $f \in C^1(I)$, so vse periodične točke n-cikla "istega tipa".

Dokaz: Naj bo $\{x_1,\ldots,x_n\}$ n-cikel za f. Recimo, da je x_n šibko privlačna za f^n . Torej obstaja njena okolica $U_n\subset I$, da za $x\in U_n$ velja $f^{nk}(x)\to x_n$ za $k\to\infty$. Radi bi videli, da analogne okolice obstajajo za točke x_1,\ldots,x_{n-1} . Sedaj definiramo U_{n-j} za $1\leq j\leq n-1$, kot povezano komponento praslike $f^{-j}(U_n)$, ki vsenuje x_{n-j} . Vemo, da za vsak $x\in U_{n-j}$ po konstrukciji velja:

$$f^{nk+j}(x) \xrightarrow{k \to \infty} x_n.$$

Sedaj na to zvezo dodamo zvezno funkcijo f^{n-j}

$$f^{n-j}(f^{nk+j}(x)) \to f^{n-j}(x_n)$$
$$f^{n(k+1)}(x) \xrightarrow{k \to \infty} x_{n-j}$$

vse točke so šibko privlačne, kar smo želeli dokazati. Dokaz za šibko odbojnost izpustimo.

Poglejmo si še privlačnosti/odbojnost /nevtralnost

$$|(f^{n})'(x_{n})| = |(f \circ f \circ \cdots \circ f)'(x_{n})| =$$

$$= |f'(f^{n-1}(x_{n})) \cdot f'(f^{n-2}(x_{n})) \cdot \dots \cdot f'(x_{n})| =$$

$$= |f'(x_{n-1})| \cdot |f'(x_{n-2})| \cdot \dots \cdot |f'(x_{1})| \cdot |f'(x_{0})| = |(f^{n})'(x_{j})|.$$

za vsak x_j dobimo isti rezultat.

Opomba 5. Brez zveznosti f izrek ne drži nujno, npr.

Primer 7. Dano imamo $f(x) = x^2 - 1$. Opazimo f(0) = -1 in f(-1) = 0 tj. imamo 2-cikel. Poglejmo, katarega tipa je:

$$(f^2)'(0) = f'(f(0)) \cdot f'(0) = f'(-1) \cdot f'(0) = 0.$$

Torej gre za privlačen 2-cikel. Fiksni točki sta $x=\frac{1\pm\sqrt{5}}{2}\Longrightarrow f'\left(\frac{1\pm\sqrt{5}}{2}\right)=1\pm\sqrt{5}$, torej sta obe odbojni. Vidimo, da 2-cikel "privlači" bližnje orbite. To

velja tudiv primeru šibke privlačnosti. Naj bosta U_1 in U_2 okolici točke x_1 in x_2 , ki pripadata 2-ciklu. Vzamemo $\tilde{U}_1 = U_1 \cap f^{-1}(U_2)$ in $\tilde{U}_2 = U_1 \cap f^{-1}(U_1)$. Potem velja:

$$x \in \tilde{U}_1 \Longrightarrow f^{2n}(x) \to x_1 \ (ker \ x \in U_1) \ in \ f^{2n+1}(x) \to x_2 \ (ker \ f(x) \in U_2)$$

 $x \in \tilde{U}_2 \Longrightarrow f^{2n}(x) \to x_2 \ (ker \ x \in U_2) \ in \ f^{2n+1}(x) \to x_1 \ (ker \ f(x) \in U_1)$

Opomba 6. Zanimiva je tudi točka x=1, ki ima orbito $O_f(1)=\{1,0,-1,0,-1,\ldots\}$ tj. po prvi iteraciji postane ciklična. Takim točkam pravimo **predperiodična** (preperiodic /eventually periodic) točka.

Definicija 9. $\exists k \in \mathbb{N}: f^{n+k}(x) = f^k(x)$ za najmanjši tak $n \in \mathbb{N}$.

3 Kaos

Do sedaj smo spoznali le dinamične sisteme z razmeroma predvidljivim dogajanjem. Konkretno, razen v kakšni posebni točki, so imele orbite bližnjih točk "enak dinamičen razvoj". Sedaj bomo spoznali sisteme, ki so nasprotje tega in jim pravimo kaotični.

Definicija 10 (Devaney). Dinamični sistem podan $z f: I \to I$ je kaotičen, če zanj veljajo

(C1) Množica periodičnih točk je gosta v I.

- (C2) Tranzitivnost: za poljubna odprta intervala $U_1, U_2 \subset I$, obstajata $x_0 \in U_1$ in $n \in \mathbb{N}$, da je $f^n(x_0) \in U_2$.
- (C3) Občutljivostna konstanta: obstaja $\beta > 0$, da v poljubni okolici U poljubne točke x_0 najdemo tudi točko $y_0 \in U$ za katero je $|f^n(x_0) f^n(y_0)| > \beta$ za nek $n \in \mathbb{N}$.

Opomba 7.

- Točka (C3) je zanimiva pri izbiri majhnih okolic U, saj pomeni, da lahko poljubno blizu najdeš točko s čisto drugačno dinamiko. Temu se reče učinek metulja (butterly effect) tj. zaporedje oz. orbita je občutljiva na začetne podatke.
- Izkaže se, da je (C2) ekvivalentna obstoju goste orbite, če je f zvezna. Če ni zvezna je pogoj zadosten.
- Za kompakt $J \subset I$ se izkaže, da (c1) in (C2) implicirata (C3).
- Če je f zvezna iz (C1) in (C2) vedno sledi (C3).

Opis kaosa: kaotični sistem je tak, v katerem s približnim začetkom niti približno nemoreš napovedati konca.

Primer 8. Podvojitvena preslikava (doubling map).

$$D:[0,1)\to[0,1)$$

$$D(x) = 2x - |2x|$$

Velja:

D(0) = 0 je fiksna točka

 $D(\frac{1}{2}) = 0$ predperiodična

 $D(\frac{1}{3})=\frac{2}{3},\ D(\frac{2}{3})=\frac{1}{3}$ 2-cikel. Za dokaz ka
otičnosti uporabimo dvojiški decimalni zapis.

$$x \in [0,1) : x = 0.x_1x_2..._{(2)} = \sum_{j=1}^{\infty} \frac{x_j}{2^j}, \quad x_j \in \{0,1\}$$

Če prepovemo neskočen niz enic, je zapis enoličen. Kaj naredi naša preslikava?

$$D(x) = 2x - \lfloor 2x \rfloor = x_1 \cdot x_2 x_3 \cdot \cdot \cdot \cdot (2) - x_{1(2)} = 0 \cdot x_2 x_3 \cdot \cdot \cdot \cdot (2).$$

Temu rečemo tudi operator zamika (shift map), ki "pozabi" prvo decimalko.

(C1) Pokažimo, da imamo poljubno blizu točke $x \in [0,1)$ tudi periodično točko

$$x = 0.x_1x_2...x_Nx_{N+1}..._{(2)} \quad N >> 1$$

$$\tilde{x} = 0.\overline{x_1x_2...x_N}_{(2)}$$

$$\implies |x - \tilde{x}| = 0.0...0x_{N+1}..._{(2)} < \frac{1}{2^N}$$

Očitno je \tilde{x} periodičen, saj je $f^N(\tilde{x}) = \tilde{x}$. Po drugo strani pa je $|x - \tilde{x}| < 1$ $\frac{1}{2^N}$ tj. poljubno majhna.

C2) Pokažimo, da obstaja gosta orbita. Naj bo $x \in [0,1]$ število z razvojem

$$x = 0.0100011011000001010...$$

tj. število vsebuje vse končne zapise v dvojiškem sistemu. Trdimo, da je za vsak $x \in [0,1]$ blizu nek $D^m(\tilde{x})$.

$$x = 0.x_1x_2...x_Nx_{N+1}..., za N >> 1.$$

Obstaja tak $m \in \mathbb{N} : f^m(x) = 0.x_1 x_2 \dots x_N y_{N+1}$ tj. $|f^m(\tilde{x}) - x| < \frac{1}{2^N}$.

C3) Želimo videti, da poljubno blizu $x \in [0,1]$ obstaja $\tilde{x} \in [0,1]$, da je za nek $m \in \mathbb{N}$: $|f^m(x) - f^m(\tilde{x})| \ge \frac{1}{2}$. Vzamemo

$$x = 0.x_1x_2...x_Nx_{N+1}...(2)$$

in

$$\tilde{x} = 0.\tilde{x}_1 \tilde{x}_2 \dots \tilde{x}_N \tilde{x}_{N+1} \dots (2)$$

Naj velja $\tilde{x}_{N+1} \neq x_{N+1}$ Potem je

$$|f^N(x) - f^N(\tilde{x})| = |0.x_{N+1}x_{N+2} \cdots - 0.\tilde{x}_{N+1}\tilde{x}_{N+2} \dots| \ge \frac{1}{2}.$$

Dobimo števili, ki sta $\frac{1}{2^N}$ blizu in po n-iteracijah $\frac{1}{2}$ narazen.

Primer 9. Šotorasta preslikava(Tent map)

$$T(x) = \begin{cases} 2x; & x \in \left[0, \frac{1}{2}\right] \\ 2 - 2x; & x \in \left(\frac{1}{2}, 1\right] \end{cases} = 2\min\{x, 1 - x\}$$

 $Drugi\ iterat:$

$$T^{2}(x) = \min\{T(x), 1 - T(x)\}$$

 $Podobno\ dobimo\ T^3\ in\ višje\ iterate$

 $Definiramo\ intervale$

$$I_{k,j} := \left[\frac{j-1}{2^k}, \frac{j}{2^k}\right], \quad j = \{1, 2, \dots, 2^k\}.$$

- C1) Je izpolnjen, saj ima periodično točko na vsakem intervalu oblike $I_{k,j}$. Perioda teh točk je n ali manjša.
- C2) Sledi, ker je $f^n(I_{j,n}) = [0,1]$, tj. za U_1 obstaja $I_{j,n} \subset U_1$, bo $T(I_{j,n}) \cap U_2 \neq \emptyset$ za poljubni odprti $U_1, U_2 \subset [0,1]$.
- C3) Samo ideja: za vsak $x \in [0,1]$, poiščemo j,k in $\tilde{x} \in I_{j,n}$, da bo $T^k(x) T^k(\tilde{x})| \geq \frac{1}{2}$.

4 Konjugacije in semi-konjugacije

Definicija 11. Pravimo, da sta $f: I \to I$ in $g: J \to J$ **konjugirani**, če obstaja homeomorfizem $h: I \to J$, da $\forall x \in I: h \circ f(x) = g \circ h(x)$

Predstavimo z komutirajočim diagramom

$$\begin{array}{ccc}
I & \xrightarrow{f} & I \\
\downarrow & & \downarrow \\
J & \xrightarrow{g} & J
\end{array}$$

Iz definicije sledi, da je $h(O_f(x)) = O_g(h(x))$ za vsak $x \in I$. Z drugimi besedami orbite f se slikajo v orbite h za g. To vidimo iz naslednjega razmisleka:

ker je h obrljiva in h^{-1} zvezna, se zvezno traslira celotna dinamika tj.

$$f = h^{-1} \circ g \circ h \Longrightarrow$$

$$f^{n} = (h^{-1} \circ g \circ h) \circ (h^{-1} \circ g \circ h) \circ \dots \circ (h^{-1} \circ g \circ h) =$$

$$= h^{-1} \circ g^{n} \circ h$$

Primer 10.

$$g(x) = x^2 \ na \ [0, \infty)$$

$$f(x) = x^2 - 2x + 2 \ na \ [1, \infty)$$

$$h(x) = x - 1 \ kot \ preslikava \ h : [1, \infty) \to [0, \infty).$$

Preverimo pogoj iz definicije

$$h \circ f(x) = h(x^2 - 2x + 2) = x^2 - 2x + 2 - 1 = x^2 - 2x - 1 = (x - 1)^2 = g(x - 1) = g \circ h(x)$$

Opomba 8.

- V splošnem velja, da je vsaka kvadratna funkcija $f(x) = Ax^2 + Bx + C$, $A \neq 0$ konjugirana $p_c(x) = x^2 + c$, $c \in \mathbb{R}$.
- Vidimo, da se je v primeru ohranil tudi karakter fiksnih točk. To ne preseneča oz. še več, če sta h in h⁻¹ tudi odvedljivi, velja:

$$f'(x) = (h^{-1} \circ g \circ h)(x) = (h^{-1})(g(h(x))) \cdot g'(h(x)) \cdot h'(x) =$$

$$= \frac{1}{h'(h^{-1}(g(h(x))))} \cdot g'(h(x)) \cdot h'(x) = g'(h(x)),$$

kjer smo uporabili dejstvo, da je g(h(x)) = h(x) za fiksno točko x. Torej se tip fiksne točke ograni. Podobno velja za periodične točke.

Definicija 12. Pravimo, da je $g: J \to J$ **semi-konjugirana** funkciji $f: I \to I$, če obstaja zvezna surjektivna preslikava $h: I \to J$, za katero velja:

- $i) \ \forall x \in I : \ h \circ f(x) = g \circ h(x)$
- ii) $\exists m \in \mathbb{N}. \forall x \in J \text{ ima } h^{-1}(x) \text{ največ } m \text{ elementov}.$

Opomba 9.

- Definicija semi-konjugacije lahko varira glede na literaturo.
- Znova velja

$$h(O_f(x)) = O_g(h(x))$$

vendar pa ta relacija ni več bijektivna.

Primer 11. Dane imamo naslednje preslikave

$$h\circ f(x) = g(\sqrt{1-x^2}) = (\sqrt{1-x^2})^2 = 1-x^2 = g(x^2) = g\circ h(x).$$

Sebi-konjugacija ne ohranja dinamike popolno. V našem primeru je priklopila predperiodične točke, periodičnim.

Trditev 1. Naj bo g semi-konjugirana f preko $h: I \to J$. Če je $x_0 \in I$ periodična za f, je tudi $h(x_0)$ periodična za g, a se perioda ne ohranja nujno.

Dokaz: Naj bo $f^n(x_0)=x_0$ in $n\in\mathbb{N}$ najmanjše tako število. Potem velja

$$g^{n}(h(x_{0})) = g^{n-1} \circ (g \circ h)(x_{0}) = g^{n-1} \circ (h \circ f)(x_{0}) = \dots = h \circ f^{n}(x_{0}) = h(x_{0}).$$

Opomba 10.

• Problem je, da nemoremo zagotoviti minimalnosti n za g. Recimo, da ima f 2-cikel $\{0,1\}$, g pa fiksno točko 0. Če vzamemo h(0) = h(1) = 0, bo veljalo $h \circ f(0) = 0 = g \circ h(0)$, a ne bosta isti periodi.

• V splošnem velja, da je perioda delitelj števila n.

Izrek 3. Naj bo g semi-konjugirana f s $h: I \to J$ in naj bosta $I, J \subset \mathbb{R}$ kompaktna intervala in naj bo f kaotičen. Potem je g kaotična, če je izpolnjen eden od treh pogojev:

- i) h je injektivna
- ii) g je zvezna
- iii) f je zvezna

Dokaz:

c1) Sledi iz trditve. Če vzamemo poljubno $U \subset J$ odprto, je tudi $h^{-1}(U) \subset I$ odprta in vsebuje periodično točko x_0 . Torej je $h(x_0)$ periodična in v U.

- c2) Če je $O_f(x)$ gosta, je taka tudi $O_g(h(x))$.
- c3) i) h je injektivna: poglejmo si preslikavo $d:I\times I\to\mathbb{R}$, podano s predpisom d(x,y)=|h(x)-h(y)|. Gre za zvezno preslikavo iz kompakta v \mathbb{R} . Poglejmo si množico

$$\Delta_{\beta} = \{ (x, y) \in I \times I \mid |x - y| \ge \beta \}.$$

Ker je Δ_{β} zaprta in podmnožica $I \times I$ je omejena, torej je kompaktna. Zato je $I \times I - \Delta_{\beta}$ kompaktna. Ker je d zvezna, slika $d(I \times I - \Delta_{\beta})$ kompaktna. Obstaja $\beta' > 0$: če $|x-y| > \beta$, potem $|h(x) - h(y)| > \beta'$. Potem iz pogoja $|f^n(x) - f^n(y)| > \beta$ sledi $|g^n(h(x)) - g^n(h(y))| > \beta'$. To je občutljivostna konstanta za g.

- ii) g je zvezna: ker je g zvezna pogoj c3) sledi iz (c1) in (c2).
- iii) f je zvezna (ideja): zaradi konjugacije obstaja osprta $U \subset J$, ki ima do m praslik. Zaradi kompaktnosti, zveznosti h in lokalne obrljivosti, obstaja $\delta > 0$, da iz diam $(U) < \delta$ sledi, da imajo praslike diam $(g^n(U)) < \delta$ za vse $n \in \mathbb{N}_0$. Zaradi zveznosti se praslike $g^n(U)$ slikajo v $g^{nm}(U)$. Torej obstaja praslika V od U, da je diam $(f^n(V)) < \beta$ za vse $n \in \mathbb{N}_0$, kar je protislovje.

Opomba 11. Zakaj je pomembna kompaktnost intervalov I in J? Poglejmo si preslikavi

$$f(x) = 2x \ na \ (0, \infty)$$

$$g(x) = x + \ln 2 \ na \ \mathbb{R}.$$

Očitno je, da je f izpolnjuje (c3), saj sta za velik n števili $2^n x$ in $2^n y$ daleč narazen, če $x \neq y$. Po drugi strani, je tudi očitno, da g ne izpolnjuje (c3), saj je razlika

$$|g^n(x) - g^n(y)| = |x + n\ln(2) - (y + n\ln(2))| = |x - y|$$

konstantna za vse $n \in \mathbb{N}$. Sta pa kljub temu f in g konjugirani preko $h(x) = \ln(x)$.

$$g(x) = h \circ f \circ h^{-1}(x) = \ln(2e^x) = \ln(e^x) + \ln(2) = x + \ln(2).$$

.

Primer 12. Poglejmo si sedaj primere semi-konjugacije na podvojitveni in šotorasti preslikavi.

$$D(x) = 2x - \lfloor 2x \rfloor$$
$$T(x) = 2\min\{x, 1 - x\}$$

Imamo

$$T(D(x)) = 2\min\{D(x), 1 - D(x)\} = T(T(x)).$$

To pomeni, da je T semi-konjugirana D za h=T. Posledično kaotičnost T sledi.

Primer 13. Imamo preslikavo

$$h: [0,1) \to S^1 \subset \mathbb{R}^2$$
$$h(x) = (\cos 2\pi x, \sin 2\pi x)$$

Zanima nas, kaj se zgodi z doubling map, če uporabimo to konjugacijo oz. trdimo, da bo konjugirana preslikava

Sklep: D je konjugirana $f: S^1 \to S^1$, $f(\cos t, \sin t) = (\cos 2t, \sin 2t)$ za $t \in [0, 2\pi]$ tj. preslikavi ki podvoji argument. V kompleksni notacijo bi jo zapisali $z e^{it} \mapsto e^{2it}$ ali $z \mapsto z^2$. Posledično je tudi f kaotična.

Primer 14. Pokažimo, da je $q_{-2}(x)=x^2-2$ kaotična. To bo sledilo iz dejstva, da je semi-konjugirana preslikavi podvojitev argumenta, preko semi-konjugacije h

$$h: S^1 \to [-2, 2]$$
$$(x, y) \mapsto 2x$$

Ta preslikava ima v vsaki točki $y \in [-2, 2]$ največ 2 prasliki, je zvezna in surjektivna. Preverimo, da komutirata g in q_{-2} :

$$h \circ g(\cos 2t, \sin 2t) = 2\cos 2t = 2\cos^2 t - 2\sin^2 t = 4\cos^2 t - 2$$
$$q_{-2} \circ h(\cos t, \sin t) = q_{-2}(2\cos t) = 4\cos^2 t - 2 = 4\cos^2 t - 2$$

Sklep: q_{-2} je semi-konjugirana D. Direktna preslikava bi bila

$$h(x) = 2\cos(2\pi x).$$

Ker je q_{-2} zvezna, po prejšnjem izreku je tudi kaotična.

5 Bifurkacije

Za motivacijo si oglejmo enoparametrično družino šotorskih preslikav za $c \in [0,2]:$

$$T_c(x) = c \min\{x, 1 - x\} = \frac{c}{2}T(x).$$

Vse te preslikave interval [0,1]slikajo vase, dinamike pa se za različne vrednosti malce razlikujejo

• če je c < 1:

 $x_0=0$ je edina periodična točka, gre pa za privlačno fik
sno točko, saj je $T_c^\prime(0)=c<1.$

• če je c=1: vse točke na $\left[0,\frac{1}{2}\right]$ so fiksne in nevtralne, točke $(\frac{1}{2},1]$ pa se

slikajo vanje.

• če je $c \in (1, 2]$:

pojavi se dodatna fiksna točka

$$c - cx = x \iff x = \frac{c}{1 + c}.$$

Ta točka je odbojna , saj je na $(\frac12,1]$ odvod $T_c'(x)=-c<-1$. Opazimo, da je x=0 postala odbojna točka, saj $T_c'(0)=c>1$.

Opazka: ob prehodu čez c=1 je prišlo do kvalitativne spremembe dinamike, saj smo iz ene dobili dve fiksni točki.

Poglejmo si kaj se dogaja z 2-cikli oz. $T_c^2\colon$

$$T_c^2(x) = c \cdot \min\{T_c(x), 1 - T_c(x)\}$$

Za c<1 nimamo presečišč z y=x zato se omejimo na $c\geq 1$. Za c=1 so vsa presečišča fiksne točke. Ob prehodu čez c=1 pa iz točke $x=\frac{1}{2}$ dobimo dve 2-periodični točki.

Za T_c^3 postane obnašanje še bolj zanimivo Izkaže se, da pri $c=\frac{1+\sqrt{5}}{2}$ sekamo

 T^3 natanko 5-krat (3-cikel $+\ 2$ fiksni točki). Pri večjih je presečišč8 (dva 3-cikla) pri manjših pa2. Kasneje bomo dokazali, da se ob 3-ciklu pojavijo še vse ostale periode. Točkam, pri katerih se zgodi "kvalitativna sprememba" dinamike, pravimo bifurkacije.

Formalno:

Obravnavamo družino zveznih funkcij $f_c:I\to I\subset\mathbb{R}$, za parameter $c\in J\subset\mathbb{R}$. Ta družina je C^k -odvisna od c, če k-ti parcialni odvodi $F(x,c)\coloneqq f_c(x)$ obstajajo $\frac{\partial^k}{\partial c^k}F(x,c)$ in so zvezni, za $k\in\mathbb{N}_0$. Na primer $T_c(x)=\frac{c}{2}T(x)$ je taka, čeprav ni odvedljiva po x v $x=\frac{1}{2}$ in velja

$$\frac{\partial}{\partial c} T_c(x) = \frac{1}{2} T(x)$$
$$\frac{\partial^k}{\partial c^k} T_c(x) = 0, \ k \ge 2.$$

Definicija 13. Vrednosti $c \in J$ pravimo **bifurkacija** družine f_c , če se dinamika ob prehodu čez njo kvalitativno spremeni.

Pri motivaciji smo opazili različne tipe bifurkacij:

- Fiksna točka se je pojavila in izginila (npr. $x=\frac{1}{4}$ pri c=1).
- Fiksna točka se je pojavila in nato podvojila (za $c=\frac{1+\sqrt{5}}{2}$ in poljubni fiksni točki)
- Iz fiksno točko $x=\frac{1}{2},$ ki se pojavi pri c=1, smo dobili fiksno točko drugega tipa in 2-cikel.

Ključna opazka je, da so se spremembe zgodile, ko je odvod v fiksni točki 1 ali pa ne obstaja.

Izrek 4. Naj bo $f_c: I \to I$ družina zvezno odvedljivih funkcij, ki so gladko odvisne od parametra $c \in J$. Denimo, da za $x_0 \in I$ velja $f_{c_0}(x_0) = x_0$ in $f'_{c_0}(x_0) \neq 1$. Potem obstajata okolica $I' \subset I$ in $J' \subset J$, ter preslikava $p: J' \to I'$, da je $f_c(p(c)) = p(c)$, za katero je p(c) edina fiksna točka na I' pri $c \in J'$.

Dokaz: Uporabimo izrek o implicitni preslikavi za

$$F(x,c) = f_c(x) - x.$$

Po predpostavki je:

$$F(x_0, c_0) = 0$$
 in $\frac{\partial}{\partial x} F(x_0, c_0) = f'_{c_0}(x_0) - 1 \neq 0$.

Torej lahko na majhni okolici $c_0 \in J$ izrazimo x = p(c), ter velja F(p(c), c) = 0 oz. $f_c(p(c)) = p(c)$.

Opomba 12. Izrek podaja le potreben, ne pa tudi zadosten pogoj.

Posledica 1. Privlačne in odbojne fiksne točke se pri majhnih motnjah ohranijo. Enako velja za točke, kjer je odvod -1. Pri nevtralnih točkah z odvodom +1 pa lahko pride do sprememb.

Primer 15 (Tangentna bifurkacija). Bifurkacija, v katerih iz nevtralne točke, ki zadošča $f'_{c_0}(x_0) = 1$, dobimo dve fiksni točki, ki jih prej ni bilo. Ena je privlačna, druga odbojna, zato se tudi imenuje saddle-node bifurcation. Opazujemo družino $g_c(x) = x^2 + c$. Dobimo

- $za \ c > \frac{1}{4} \ ni \ fiksnih \ točk$
- $za c = \frac{1}{4} se pojavi nevtralna točka$
- $za \ c < \frac{1}{4} \ se \ razcepi \ v \ privlačno \ in \ odbojno \ točko.$

Primer 16 (Potrojitev fiksnih točk). *Imamo družino* $f_c(x) = c \arctan x$ za $c \in [0, \infty]$.

Primer 17 (Podvojitev periode). Naj bo $f_{c_0}(x_0) = x_0$ in $f'_{c_0}(x_0) = -1$. Potem se po izreku 4 fiksna točka pri majhnih motnjah ohrani, vendar pa velja:

$$(f_{c_0}^2)'(x_0) = f'_{c_0}(f_{c_0}(x_0)) \cdot f'_{c_0}(x_0) = (f'_{c_0}(x_0))^2 = 1.$$

Torej se v tej točki lahko pojavi nov 2-cikel.

V literaturi se taki bifurkaciji pogosto reče period-doubling. Navadno pa se zahteva tudi, da se karakter fiksne točke pri prehodu prenese na cikel, pri točki pa se spremeni npr. iz privlačne točke dobiš privlačen 2-cikel in odbojno fiksno točko.

6 Simbolična dinamika

Oglejmo si šotorsko preslikavo za vrednost $c=3\,$

$$T_3(x) = 3 \cdot \min\{x, 1 - x\} = \frac{3}{2}T(x).$$

Opazimo, da se v[0,1] preslikata zgolj intervala $[0,\frac{1}{3}]$ in $[\frac{2}{3},1].$

Za drugi interat velja:

$$T_3^2(x) = 3\min\{T_3(x), 1 - T_3(x)\}.$$

Po dveh iteracijah v [0,1] ostanejo le točke intervalov $[0,\frac{1}{9}]$ in $[\frac{2}{3},\frac{7}{9}]$ ter $[\frac{8}{9},1]$

Če nadaljujemo induktivno, ugotovimo, da po \boldsymbol{n} iteracijah ostanejo natanko točke množic:

$$C_n = \frac{1}{3}C_{n-1} \cup \left(1 - \frac{1}{3}C_{n-1}\right)$$
 za $C_0 = [0, 1]$.

Torej v [0,1] za vse iteracije ostanejo natanko točke $C = \bigcap_{n=1}^{\infty} C_n$. To je t.i. **Cantorjeva množica**. Radi bi raziskali dinamiko preslikave $T_3: C \to [0,1]$. Pomagamo si s t.i. simbolično dinamiko. Naj bo

$$S = {\overline{s} = (s_1, s_2, \dots) | s_j \in {0, 1}} = 2^{\mathbb{N}}.$$

Na ta prostor uvedemo metriko

$$d(\overline{s},\overline{t}) = \sum_{j=1}^{\infty} \frac{|s_j - t_j|}{2^j}.$$

Torej sta zaporedji $\frac{1}{2^{j+1}}$ - blizu, če se ujemata do j-te komponente. Vsakemu elementu $x \in C$ lahko na bijektiven način priredimo zaporedje \overline{s} , in sicer:

tj. za s_n izberemo 0 ali 1 glede na to, ali smo šli levo ali desno. Nekoliko težje je dokazati, da je taka $h:C\to S$ homeomorfizem. Premislimo, kako delujeta T_3 in $f=h\circ T_3\circ h^{-1}$

$$x \in \left[0, \frac{1}{3}\right] \Longrightarrow T_3(x) = 3x \text{ oz. } (0, s_2, s_3, \dots) \mapsto (s_2, s_3, \dots)$$

 $x \in \left[\frac{2}{3}, 1\right] \Longrightarrow T_3(x) = 3(1-x) \text{ oz. } (1, s_2, s_3, \dots) \xrightarrow{1-x} (0, \tilde{s}_2, \tilde{s}_3, \dots) \mapsto (\tilde{s}_2, \tilde{s}_3, \dots)$

in $\tilde{s}_j \neq s_j$.

Sklep: T_3 je konjugirana preslikavi

$$f(\bar{s}) = \begin{cases} (s_2, s_3, \dots); s_1 = 0\\ (\tilde{s}_2, \tilde{s}_3, \dots); s_1 = 1. \end{cases}$$

Podobno kot pri podvojitveni preslikavi, lahko pokažemo, da je f kaotična, torej je taka tudi $T_3:C\to [0,1].$

Opomba 13. V tem konkretnem primeru bi dokaz kaotičnosti lahko dokazali tudi s trojiškim zapisom, saj velja:

$$C = \{0.x_1x_2..._{(3)} \mid x_i \neq 1\}.$$

Vendar pa smo se odločili za malce bolj robustno metodo, ki bi funkcijo dala tudi za ostale T_c , za c > 2, saj vse slikajo v [0,1] natanko množico, ki je homeomorfna Cantorjevi. Metoda dobro deluje, tudi kadar imamo več kot dve izbiri na vsakem koraku. Takrat izberemo

$$S = \{\overline{s} = (s_1, s_2, \dots) \mid s_j \in \{0, 1, \dots, N-1\}\} = (N-1)^{\mathbb{N}} \text{ in } d(\overline{s}, \overline{t}) = \sum_{j=1}^{\infty} \frac{|s_j - t_j|}{N^j}.$$

Prednost te metode je, da loči med $(1,0,0,\ldots)$ in $(0,N-1,N-1,\ldots)$ zato se nam ni treba ubadati z neskončnimi nizi. Tovrstemu pristopu n konjugiranju preslikav z operatorji zamika pravimo **simbolična dinamika**.

7 Izrek Šarkovskega

V tem razdelku bomo dokazali izrek, katerega rezultat je eden najbolj presenetljivih v realni dinamiki.

Izrek 5. Naj bo $I \subset \mathbb{R}$ kompakten interval in $f: I \to I$ zvezna. Če obstaja 3-cikel, obstajajo tudi n-cikli za vse $n \in \mathbb{N}$.

Dokaz: Dokaz temelji na dveh lastnostih kompaktnih intervalov $I, J \subset \mathbb{R}$:

- i) če je $I \subseteq f(J)$, potem obstaja interval $J_0 \subset J$, da je $f(J_0) = I$.
- ii) če je $J \subseteq f(J)$, obstaja fiksna točka v J.

Naj bodo a < b < c točke v 3-ciklu. BŠS lahko zapišemo f(a) = b, f(b) = c in f(c) = a. Naj bo $J_0 = [b, c]$. Naredimo tri korake:

- zaradi zveznosti očitno velja: $J_0 \subseteq f(J_0)$, torej po i) obstaja manjši interval $J_1 \subseteq J_0$, da je $f(J_1) = J_0$.
- Ker je $J_1 \subseteq J_0$, je $f(J_1) = J_0 \supseteq J_1$. Torej lahko nadaljujemo induktivno.
- Dobimo: $[b, c] \supseteq J_1 \supseteq \cdots \supseteq J_n$ in $f(J_n) = J_{n-1}$.

Iz izpeljanega zaporedja inkluzij sledi:

$$f^{n}(J_{n}) = f^{n-1}(J_{n-1}) = \dots = f(J_{1}) = J_{0} \supseteq J_{1} \dots \supseteq J_{n}.$$

Torej po ii) obstaja točka $x \in J_n$, ki zadošča $f^n(x) = x$, vendar pa nam ta metoda ne zagotovi minimalnosti $n \in \mathbb{N}$, možno je $f^k(x) = x$, za k < n. Popravimo na sledeč način:

vsi J_n so v polovici [b,c]. Na koraku n-1 skočimo v [a,b]. Naj bo $n\in\mathbb{N}\setminus\{1\}$ in naj bodo $J_0\supseteq J_1\supseteq\ldots J_{n-2}$ kot zgoraj in naredimo naslednje korake

• upoštevamo, da velja

$$f^{n-1}(J_{n-2}) = f(f^{n-2}(J_{n-2})) = f(J_0) \supseteq [a, c] \supseteq [a, b].$$

Sedaj za razliko od prej definiramo J_{n-1} , kot množico z lastnostjo $J_{n-1}\subseteq J_{n-2}$ in po i) $f^{n-1}(J_{n-1})=[a,b].$

• Na to relacijo dodamo f, kar nam da

$$f^n(J_{n-1}) = f([a,b]) \supseteq [b,c]$$

kar pomeni, da obstaja $J_n \subseteq J_{n-1}$, da je $f^n(J_n) = [b, c]$.

• Posredno, to pomeni, da je $J_n \subseteq f^n(J_n)$ in, da obstaja $x \in J_n$, da je $f^n(x) = x$.

Minimalnost števila n: ker je $f^k(x) \in [b,c]$ za $k \in \{1,2,\ldots,n-2\}, x \in J_n$ in $f^{n+1}(x) \in [a,b)$. Res $f^{n-1}(x) \neq b$, saj bi v nasprotnem primeru veljalo $f^{n-1}(x) = a = f(x) \notin [b,c]$.

Sklep: perioda ni n-1, ker je $x \in [b,c]$ in $f^{n-1}(x) \in [a,b)$. Ni pa tudi manjša, ker za k < n-1 perioda nebi smela zapustiti [b,c].

Primer 18. Za šotorsko preslikavo $T_c(x)$ smo povedali, da se 3-cikel pojavi pri $c \geq \frac{1+\sqrt{5}}{2}$. Torej imamo od tam dalje, tudi periode vseh ostalih dolžin. To je konsistentno tudi za c > 2, kjer n - cikle tvorimo s simbolično dinamiko.

Primer 19. Nujnost zveznosti:

$$f(x) = 1 - \frac{1}{x} \Longrightarrow f^{2}(x) = 1 - \frac{1}{1 - \frac{1}{x}} = \frac{1}{1 - x}$$
$$f^{3}(x) = 1 - \frac{1}{\frac{1}{1 - x}} = 1 - (1 - x) = x.$$

Vidimo, da so vse točke 3-cikli. Izjema sta točki x = 0 in x = 1, saj f(0) in $f^2(1)$ nista definirani.

Šikorski je leta 1965 pokazal, da velja še več:

- $\forall p \in \mathbb{N}. \ \exists m, n \in \mathbb{N}_0: \ p = 2^m(2n+1).$
- $p_1 \triangleright p_2 \iff m_1 < m_2 \text{ ali } m_1 = m_2 \text{ in } 0 < n_1 < n_2$ $2^0 \cdot 3 \triangleright 2^0 \cdot 5 \triangleright 2^0 \cdot 7 \triangleright \dots 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright \dots \triangleright 2^m \cdot (2n+1).$
- Nato na konec te vrste dodamo števila z n=0 v padajočem vrstnem redu:

$$2^m(2n+1) \triangleright 2^k \triangleright 2^{k-1} \triangleright \dots \triangleright 2 \triangleright 1.$$

Izrek 6 (Šikorski). Naj bo $I \subset \mathbb{R}$ kompakten interval in $f: I \to I$ zvezna. Če obstaja p-cikel za $p \in \mathbb{N}$, obstajajo tudi vsi 2-cikli za $p \triangleright q$.

Primer 20. Če ima f cikel dolžine $14 = 2 \cdot 7$, ima zagotovo tudi fiksno točko in vse cikle sodih dolžin razen morda 6-cikla in 10-cikla.

Opomba 14.

- Velja celo več tj. Šarkovskijev komplement, ki pove, da za vsak n ⊳ m obstaja funckija, ki ima n-cikel, a nima m-cikla.
- Še ena zanimiva posledica: če ima f zgolj končno število periodičnih točk, morajo biti vse periode oblike 2^m.

8 Realna dinamika v višjih dimenzijah

Pojme, ki smo jih obravnavali doslej, si lahko ogledamo tudi za realne preslikave $f: \mathbb{R}^n \to \mathbb{R}^n$ za $n \geq 2$.

Primer 21.

$$F : [0,1) \times [0,1) \to [0,1) \times [0,1)$$
$$F(x,y) = \left(2x - \lfloor 2x \rfloor, \frac{1}{2}y - \frac{1}{2}\lfloor 2x \rfloor\right),$$

 $kjer\ smo\ stranici\ x=1\ in\ y=1\ izpustili\ zaradi\ dvojiškega\ zapisa.$ $Dvojiški\ zapis\ brez\ niza\ enic:$

3-periodična točka:

 $npr. (x, y) = (0.\overline{001}_{(2)}, 0.\overline{100}_{(2)}) = \dots 100100|100100\dots$ V desetiškem zapisu je to

$$0.\overline{001}_{(2)} = \frac{1}{8} + \frac{1}{64} + \dots = \frac{1}{2^3} \frac{1}{1 - \frac{1}{8}} = \frac{1}{7}$$
$$0.\overline{100}_{(2)} = \frac{1}{2} + \frac{1}{16} + \dots = \frac{1}{2} \frac{1}{1 - \frac{1}{8}} = \frac{4}{7}.$$

Preverimo:
$$F^3\left(\frac{1}{7}, \frac{4}{7}\right) = F^2\left(\frac{2}{7}, \frac{2}{7}\right) = F^3\left(\frac{4}{7}, \frac{1}{7}\right) = \left(\frac{1}{7}, \frac{4}{7}\right)$$
.

Opomba 15. V splošnem taka točka ne implicira obstoja vseh periodičnih točk, saj izrek Šikorskega drži le za n=1, vendar v tem primeru obstajajo cikli poljubne dolžine.

Kaj lahko povemo o privlačnosti oz. odbojnosti fiksne točke (0,0)?

$$F(x,y) = (2x - \lfloor 2x \rfloor, \frac{1}{2}y - \frac{1}{2}\lfloor 2x \rfloor) = (2x, \frac{1}{2}y) \ za \ x < \frac{1}{2}.$$

 $Za \ y = 0 \colon x \to 2x \to 4x \to \dots$ za majhne x. $Za \ x = 0 \colon y \to \frac{1}{2}y \to \frac{1}{4}y \to \dots$ za majhne y.

 $Točka\ (0,0)$ ni stabilna , ni šibko odbojna in ni sibko privlačna, saj ima eno privlačno smer vzdolž y osi in odbojno smer vzdolž x osi. Taki točki se reče sedlo.

Lokalno lahko F zapišemo kot

$$F(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Primer 22. Oglejmo si še tri linearne primere s konstantnimi koeficienti:

$$F(x,y) = \frac{1}{12} \begin{pmatrix} 5 & 3\\ 3 & 5 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

Zanima nas zaporedje

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \dots = A^{n+1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

Potenco izračunamo z diagonalizacijo matrike A oz. Jordanovim razcepom

$$A^{n} = (PDP^{-1})^{n} = PD^{n}P^{-1} = P\begin{pmatrix} \lambda_{1}^{n} & 0\\ 0 & \lambda_{2}^{n} \end{pmatrix} P^{-1}.$$

 $V\ koordinatnem\ zapisu\ imamo$

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$$

in

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = PD^n P^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \iff \begin{pmatrix} \tilde{x}_n \\ \tilde{y}_n \end{pmatrix} = D^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Konkretno je

$$A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 8^{n+1} & 0 \\ 0 & 2^{n+1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

V "lastnih koordinatah":

V navadnih koordinatah:

$$F(x,y) = \frac{1}{12} \left(\begin{array}{cc} 0 & -2 \\ 2 & 0 \end{array} \right) \begin{pmatrix} x \\ y \end{pmatrix}$$

Tokrat sta lastni vrednosti $\lambda_{1,2}=\pm 2i$ in lastna vektorja $v_{1,2}=(\pm i,1)$. Iz grafa vidimo, da je točka (0,0) v tem primeru odbojna

 $\bullet \ \ Fibonaccije vo\ zaporedje:$

$$a_{n+1} = a_n + a_{n-1}.$$

Podobno kot pri NDE, lahko rekurzivne enačbe prevedemo na sistem.

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ a_n + a_{n-1} \end{pmatrix} = \begin{pmatrix} y_n \\ y_n + x_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$

Dobimo rešitev:

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = P \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2} \right) & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2} \right) \end{pmatrix} P^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

Trditev 2. Če so vse lastne vrednosti A po absolutni vrednosti $0 < |\lambda| < 1$, je izhodišče asimptotsko stabilna točka preslikave $F : \mathbb{R}^m \to \mathbb{R}^M$, $f(\vec{x}) = A\vec{x}$. Če so lastne vrednosti $|\lambda| > 1$, je odbojna.

 $Dokaz(skica)\colon$ Naj bo $A=PJP^{-1}$ Jordanov razcep matrike A. V spremenjenih koordinatah velja:

$$\begin{pmatrix} \tilde{x}_n \\ \tilde{y}_n \end{pmatrix} = J^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

V primeru 2×2 matrik imamo dve možnosti:

•
$$J = \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, če $|\lambda_1|, \lambda_2| < 1$.

$$\bullet \ \ J = \left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right) = \left(\begin{array}{cc} \lambda^n & n \cdot \lambda^{n-1} \\ 0 & \lambda^n \end{array} \right) \longrightarrow \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \ \mbox{\'ee} \ |\lambda| < 1.$$

Podobno večja v višjih dimenzijah in za $|\lambda| > 1$.

So pa linearni primeri s konstantnimi koeficienti osnova tudi za nelinearno teorijo.

Definicija 14. Naj bo $f: \mathbb{R}^n \to \mathbb{R}^n$ C^1 preslikava. Točka $\vec{x_0} \in U$ je **hiperbolična** fiksna točka, če zanjo velja $F(\vec{x_0}) = \vec{x_0}$, za lastne vrednosti Jacobijeve matrike $DF(\vec{x_0})$ velja $0 < |\lambda_i| \neq 1$.

Izrek 7 (Hartman-Grobman). Naj bo $F: U \subset \mathbb{R}^n \to U$ C^1 preslikava in $\vec{x_0} \in U$ hiperbolična fiksna točka. Potem obstaja homeomorfizem φ , ki okolico $\vec{x_0}$ slika vase in zanj velja $\varphi \circ DF(\vec{x_0}) = F \circ \varphi$.

Dokaz:

- Brez škode za splošnost je $\vec{x_0} = 0$, kar dosežemo s translacijo.
- Ker je $F \in C^1$, velja razvoj

$$F(\vec{x}) = \vec{x}_0 + DF(\vec{x}_0) \cdot \vec{x} + r(\vec{x}) = A\vec{x} + r(\vec{x}),$$

kjer sta $r(\vec{x})$ ostanek reda $|\vec{x}|^2$ in $A = DF(\vec{x}_0)$.

• Sumimo, da je φ skoraj indentiteta t.j. $\varphi(\vec{x}) = \vec{x} + h(\vec{x})$ za nek h z majhno absolutno vrednostjo. To vstavimo v zvezo:

$$\varphi \circ A(\vec{x}) = A\vec{x} + h(A\vec{x}) = F \circ \varphi(\vec{x}) = F(\vec{x} + h(\vec{x})) = A(\vec{x} + h(\vec{x})) + \vec{r}(\vec{x} + h(\vec{x})).$$

Dobimo:

$$h(A\vec{x}) = Ah(\vec{x}) + \vec{r}(\vec{x} + h(\vec{x}))$$

oz.

$$h(\vec{y}) = Ah(A^{-1}\vec{y}) + \vec{r}(A^{-1}\vec{y} + h(A^{-1}\vec{y}))$$

za $y = A\vec{x}$

• Ključen del je pokazati, da je desna stran

$$D: C^1(U', \mathbb{R}^n) \to C(U', \mathbb{R}^n)$$
 za $U' \subset U \subset \mathbb{R}^n$
 $D(h) = AhA^{-1} + r(A^{-1} + h(A^{-1}))$

skrčitev za za metriko d_{∞} .

• r je kvadratnega reda in omejena z velikostjo okolice okoli $\vec{x}_0 = 0$, zato je pomemben le prvi sumand.

Poglejmo si najbolj preprost primer, t.j. ko je A diagonalna in so $0 < \lambda_j < q < 1.$ Velja

$$d_{\infty}(Ah_{1}A^{-1},Ah_{2}A^{-1}) = \max_{\vec{y}} |Ah_{1}A^{-1}\vec{y} - Ah_{2}A^{1}\vec{y}| = \max_{\vec{x}} |A(h_{1} - h_{2})\vec{x}| \le$$

upoštevamo: $|\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\cdot\vec{v}| \leq \max_{j} |\lambda_j|\cdot|\vec{v}|$

$$\leq \max_{j} |\lambda_{j}| \cdot \max_{\vec{x}} |h_{1} - h_{2}| \leq q \cdot d_{\infty}(h_{1}, h_{2}).$$

V splošnem moramo delati z primernimi matričnimi normami. Če so nekate $|\lambda_j| > 1$, moramo preoblikovati enačbo tako, da na koncu gledamo $h \mapsto A^{-1}hA +$ drugi red. V mešanem delu pa reševanje razbijemo na dva dela.

Primer 23. Naj bo
$$F(x,y)=(\frac{1}{2}x^2,y^2)$$
. Fiksni točki sta $(0,0)$ in $(0,1)$. $DF(x,y)=\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2y \end{pmatrix} \Longrightarrow DF(0,0)=\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix}$, izrek ne deluje. $Za\ DF(0,1)=\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$ imamo sedlo.

Poglejmo si še en pomemben primer, ki se bo pojavil pri zveznih sistemih, pri njem pa se uporabi simbolična dinamika.

Primer 24 (Snaleova podkev).

$$F: [0,1] \times [0,1] \to [0,1] \times [0,1]$$

$$F(x,y) = \begin{cases} (3x, \frac{1}{3}y) & ; x \in [0, \frac{1}{3}] \\ (3-3x, 1-\frac{1}{3}y); x \in [\frac{2}{3}, 1] \end{cases} = \begin{cases} (T_3(x), \frac{1}{3}y) & ; x \in [0, \frac{1}{3}] \\ (T_3(x), 1-\frac{1}{3}y); x \in [\frac{2}{3}, 1] \end{cases}$$

 $Inverz\ te\ preslikave:$

$$F^{-1}(x,y) = \begin{cases} \left(\frac{1}{3}x, T_3(y)\right) & ; x \in \left[0, \frac{1}{3}\right] \\ \left(1 - \frac{1}{3}x, T_3(y)\right) & ; x \in \left[\frac{2}{3}, 1\right] \end{cases}$$

Preslikavo moramo opazovati na

$$C_n = \frac{1}{3}C_{n-1} \times \left(1 - \frac{1}{3}C_{n-1}\right), \quad C_0 = [0, 1].$$

$$D = \bigcap_{n=1}^{\infty} C_n \times C_n.$$

Izkaže se, da je $F:D\to D$ homeomorfna preslikavi:

$$\Sigma = \{(\bar{s}, \bar{t}) \mid \bar{s} = (s_1, s_2, \dots), \bar{t} = (t_1, t_2, \dots), s_j, t_j \in \{0, 1\}\}$$

$$d((\bar{s}, \bar{t}), (\bar{s'}, \bar{t'})) = \sum_{j=1}^{\infty} \frac{|s_j - s'_j| + |t_j - t'_j|}{2^j}$$

$$G(\bar{s}, \bar{t}) = \begin{cases} ((s_2, s_3, \dots), (0, t_1, t_2, \dots)); \ s_1 = 0, \ \tilde{t}_j + t_j = 1\\ ((\tilde{s}_2, \tilde{s}_3, \dots), (1, \tilde{t}_1, \tilde{t}_2, \dots)); \ s_1 = 1, \ \tilde{s}_j + s_j = 1 \end{cases}$$

Da se pokazati, da je ta preslikava kaotična.