

Regular time series

- Time series analysis assumes equally spaced time-stamped measurements as well as most tools.
 - Regular time series (with missing values) filling missing values with imputation method (e.g., 'traces' from Python, 'imputeTS' from R)

Figure 2: Example for ggplot_na_distribution

Irregular time series

- Time series with irregular intervals (e.g., events or irregular observations) is unpredictable and cannot be modeled or forecasted (violation of assumption)
- upsampling (e.g., from minutes to seconds) or downsampling (e.g., from days to months) and/or interpolation to make it regular

Metrics (Regular)

Measurements gathered at regular time intervals

Events (Irregular)

Measurements gathered at irregular time intervals

Interpolation (or smoothing)

- Concept: predict values that fall within the range of data points taken (caution to use!)
 - Forward-fill (recent) / backward-fill (next) can use both to interpolate (e.g., a simple spline in the plot, left)
 - Arithmetic mean, median, linear regression, regional weighting, spline interpolation, Stineman interpolation, and Kalman Smoothing imputations etc.
 - For more details see (https://doi.org/10.4136/ambi-agua.2795).
 - Avoid missing data is (usually) the best solution.

Examples

Examples

Regression with time series errors

- Let's assume that we have a regular (or properly interpolated) time series data;
 - A classic regression model with uncorrelated errors

$$m{y} = \widehat{m{\beta}} m{X} + m{\epsilon}$$
 $\widehat{m{\beta}} = fitted\ model's\ regression\ coefficients$
 $m{\epsilon} = residual\ errors\ of\ regression}$

- The residual errors of time series are often auto-correlated (i.e., violation of iid)
- We need the residual errors after controlling for all time series components identified

$$y_i = \widehat{\boldsymbol{\beta}} \boldsymbol{x_i} + \boldsymbol{\epsilon}_i$$

where ϵ_i is modeled using ARIMA(p,d,q)(P,D,Q)m

The (S)ARIMA model

 The Auto-Regressive (AR) component is a linear combination of past values of the time series up to some number of lags p.

$$y_i = \widehat{\phi_1} y_{i-1} + \widehat{\phi_2} y_{i-2} + \dots + \widehat{\phi_p} y_{i-p} + \epsilon_i$$

 $y_i = -\widehat{\theta}_1 e_{i-1} - \widehat{\theta}_2 e_{i-2} - \dots - \widehat{\theta}_p e_{i-q} + \epsilon_i$

 The Moving Average (MA) component of SARIMA is a linear combination of the model's past errors up to some number of lags q. The model's past errors are calculated by subtracting the past predictions from past actual values.

 SAR, SMA, D and m: The Seasonal ARIMA or SARIMA model simply extends the above concepts concepts of AR, MA and differencing to the seasonal realm, and the seasonal period (m): ARIMA(p,d,q)(P,D,Q)m.

Error test

Accept/Reject the Null hypothesis of the Ljung-Box test that the residual errors are not auto-correlated.

Dep. Varia	ble:		PT08_S	4_NO2 No.	Observations:		7954
Model:	ARIM	A(1, 1, 0)	<(0, 1, [¹]	, 24) Log	Likelihood		-48986.687
Date:		9	Sun, 06 Sep	2020 AIC			97983.374
Time:			22:	30:25 BIC			98018.265
Sample:			03-10	-2004 HQIC			97995.322
			- 02-05	-2005			
Covariance	Type:			opg			
=======						=======	
	coef	std err	Z	P> z	[0.025	0.975]	
т	5.3000	0.557	9.514	0.000	4.208	6.392	
AH	509.7184	8.959	56.895	0.000	492.159	527.278	
ar.L1	-0.0615	0.007	-8.385	0.000	-0.076	-0.047	
ma.S.L24	-0.9117	0.004	-255.955	0.000	-0.919	-0.905	
sigma2	1.353e+04	122.144	110.806	0.000	1.33e+04	1.38e+04	
 Ljung-Box	(11) (0):		0.72	Jarque-Bera	:======= (6655	=== . 59
Prob(Q):			0.40	Prob(JB):		0.00	
Heteroskedasticity (H): 0.78			Skew:			.04	
Prob(H) (two-sided): 0.00			Kurtosis: 7.49				

Key takeaways

- Regression with (Seasonal) ARIMA errors (SARIMAX) is a time series regression model
 that brings together two powerful regression models namely, Linear Regression, and
 ARIMA (or Seasonal ARIMA).
- While configuring the time series decompositions, it helps to use a set of well-known rules (combined with personal judgement) for fixing the values of the p,d,q,P,D,Q and m parameters of the model. (in R, auto.arima() fixes)
- Make sure to test the residual errors of regression (e.g., the Ljung-Box test).
- Additionally, you would want the residual errors to be homoscedastic, and (preferably) normally distributed. Experiment with different combinations of p,d,q,P,D,Q until you get a model with the best goodness-of-fit characteristics.