MCMC methods in Bioinformatics

Maria Chernigovskaya

26 іюля 2018 г.

"Простое" сэмплирование

- ▶ Пусть есть U равномерно случайное число из [0,1];
- ▶ Как с помощью этого симулировать подкидывание монетки?
- ▶ Как с помощью этого симулировать бросания кубика?
- Как с помощью этого симулировать непрерывную случайную величину (например, экспоненциальную)?
- Как с помощью этого симулировать дискретную случайную величину (например, Пуассона)?
- КАК ЖЕ получить случайное филогенетическое дерево?

Функция распределения

X - случайная величина, тогда

$$F_X(t) = P(X \leq t).$$

Дискретный случай

Непрерывный случай

Экспоненциальное распределение
$$F_X(t)=1-e^{-x}$$
.

Дискретный случай с бесконечным числом состояний

Что делать, например, с распределением Пуассона?

$$P(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}$$

СЛОЖНО!

Что делать, если нужно симулировать сложный объект (например, граф, филогенетическое дерево, кристаллическую решетку)?

MCMC!

Марковские цепи

Состояния $i=1,2,\ldots$, вероятности перехода из состояния i в состояние j p_{ij} . Пример: погода в стране Оз (дождь, хорошая погода, снег):

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

Упр.: Найдите вероятность того, что погода изменится с хорошей на дождливую за 2 дня.

Metropolis-Hastings algorithm

Находимся в состоянии x_t , рассмотрим переход в следующее состояние.

- 1. предлагаем кандидата x' с вероятностью $Q(x_t, x')$;
- 2. Acceptance ratio (Метрополис, симметричное Q):

$$\alpha = \frac{P(x')}{P(x_t)}$$

Или (Метрополис-Гастингс, несимметричное Q):

$$\alpha = \frac{P(x')}{P(x_t)} \frac{Q(x', x_t)}{Q(x_t, x')};$$

3. Если alpha > 1, то $x_{t+1} := x'$; если $\alpha < 1$, то

$$x_{t+1} := \begin{cases} x', \text{ с вероятностью } \alpha \\ x_t, \text{ с вероятностью } 1 - \alpha \end{cases}$$

Примеры на сегодня (??)

- 1. распределение Пуассона;
- 2. (внезапно) агрегатное состояние вещества

Шары и фазовый переход

Состояние – конфигурация шаров. Желаемое распределение: Все конфигурации равновероятны, т.е.

$$\frac{P(x')}{P(x)}=1.$$

Функция Q(x,x')=1, если положение всех шаров, кроме одного (B), совпадает, а положение B изменилось незначительно

$$dist(B(x), B(x')) < \varepsilon$$

(и Q(x,x')=0 в противном случае).

Заметим, что в данном случае Q – плотность вероятность, а не вероятность сама по себе, но для Q(x,x')/Q(x',x) это не имеет принципиального значения.

Распределение Пуассона

```
Множество состояний = \{0,1,\dots\}. Правило перехода (Q) – переходим в предыдущее (если разрешено) или следующее число с равными вероятностями.
```

Криптография

A- 110-10 10

Студенты Marc Coram and Phil Beineke at Stanford получили набор шифрованных сообщений из тюрьмы штата.

Криптография

Состояние – код, т.е. отображение $f:\{$ символы из сообщения $\} \to \{$ символы алфавита $\}.$ Сколько всего есть состояний?

Функция "хорошести" кода:

$$G(f) := \prod_{i} M(f(s_i), f(s_{i+1})),$$

где s_i — это i-й символ сообщения; M — это матрица частот паросочетаний букв в английском языке (обученная на War and Peace).

$$\frac{P(f')}{P(f)} = \frac{G(f')}{G(f)}$$

Переходы?

Модель Изинга: Намагничевание

Спиновая решетка

$$\sigma(v) \in \{+, -\};$$

$$E(\sigma) = \# \{(v, w), v \sim w : \sigma(v) \neq \sigma(w)\};$$

$$P(\sigma) = \frac{1}{Z_T} \exp\left(-\frac{1}{k_B T} E(\sigma)\right).$$

Модель Изинга, МСМС

Посткритическая ($T>>T_{cr}$), критическая $T=T_{cr}$, и докритическая ($T<<T_{cr}$) фазы.

Модель Изинга

Модель Изинга

 ${\sf Jupyter\ notebook}$

mr.Bayes

Томас Байес (1702 — 7 апреля 1761) — английский математик, пресвитерианский священник.

mr.Bayes

Цель: построить филогенетическое дерево по некоторому набору геномов X.

- ullet G набор геномов (строки равной длины над алфавитом $A,G,C,\mathcal{T},-$),
- au филогенетическое дерево (топология),
- v "длины" ребер,
- lacktriangledown параметры мутирования (например, матрица замен 5 imes 5).

Формула Байеса:

$$p(\tau, v, \theta \mid G) = \frac{p(G \mid \tau, v, \theta)p(\tau, v, \theta)}{p(X)}.$$

mr.Bayes: MCMC

Формула Байеса:

$$p(\tau, v, \theta \mid G) = \frac{p(G \mid \tau, v, \theta)p(\tau, v, \theta)}{p(G)}.$$

Как сделать переход?

$$(au, v, heta) \mapsto (au', v', heta')$$
:
 $(au', v', heta') = p(G \mid au', v', heta')$

$$\alpha = \frac{p(\tau', v', \theta')}{p(\tau, v, \theta)} = \frac{p(G \mid \tau', v', \theta')}{p(G \mid \tau, v, \theta)},$$

так как предполагаем

$$p(\tau, \mathbf{v}, \theta) = p(\tau', \mathbf{v}', \theta').$$

mr.Bayes: как делать переход?

- ▶ v вектор из e вещественных чисел, $v \in \mathbb{R}^e$; $v' \sim \mathcal{N}(v, \varepsilon E)$,
- ▶ θ матрица мутаций, $\theta \in \mathbb{R}^{25}$; $\theta' \sim \mathcal{N}(\theta, \varepsilon E)$,
- ightharpoonup au дерево, его можно менять ДВИЖЕНИЯМИ ДЕРЕВА.

mr.Bayes: движения дерева

mr.Bayes: Nearest neighbor interchange (NNI)

mr.Bayes: Subtree pruning and regrafting (SPR)

mr.Bayes: Tree bisection and reconnection (TBR)

Find active module in PPI network

Find active module in PPI network

Дано:

- Сеть белок-белковых взаимодействий;
- ▶ p-values для всех генов, кодирующих белки.
- 1. initialize S_0 as a random connected subgraph on k = |V(M)| vertices
- 2. FOR i = 0, 1, 2, ...
 - ▶ Choose v_- from $V(S_i)$ and v_+ from $nei(S_i)$ uniformly;
 - ▶ Propose S' as an induced subgraph on $V(S_i) \setminus \{v_-\} \cup \{v_+\}$;
 - ▶ IF S' is connected: Acceptance Probability:

$$\rho(S_i, S') = \min \left\{ 1, \frac{\rho_{\mathbf{v}_{-}}^{\alpha-1}}{\rho_{\mathbf{v}_{-}}^{\alpha-1}} \frac{|\operatorname{nei}(S')|}{|\operatorname{nei}(S_i)|} \right\}$$

$$S_{i+1} := \begin{cases} S' \text{ with probability } \rho(S_i, S') \\ S_i \text{ with probability } 1 - \rho(S_i, S') \end{cases}$$

$$S_{i+1} := S_i$$