In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors \vec{b}_1 and \vec{b}_2 .

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

If possible, on the grids below, draw

- (i) the two vectors and the span of the columns of A,
- (ii) the solution set of $A\vec{x} = \vec{b}_1$.
- (iii) the solution set of $A\vec{x} = \vec{b}_2$.

ii) solution set $Ax = \vec{b}_1$

iii) solution set $Ax = \vec{b}_2$

counterexample

2. Indicate **true** if the statement is true, otherwise, indicate **false**. For the statements that are false, give a counterexample.

true

false

a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^M .

b) If there are some vectors $\vec{b} \in \mathbb{R}^M$ that are not in \bigcirc the range of $T(\vec{x}) = A\vec{x}$, then there cannot be a pivot in every row of A.

c) If the transform $\vec{x} \to A\vec{x}$ projects points in \mathbb{R}^2 onto a line that passes through the origin, then the transform cannot be one-to-one.

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A linear system that is homogeneous and has no solutions.
 - (b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_A: \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
 - (c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A\vec{x} = \vec{b}$ has exactly 5 free variables.

4. Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(a) Express the augmented matrix $(A | \vec{b})$ in RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

Math 1554 Linear Algebra Fall 2022

Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:	GTID Number:		
Student GT Email Address:	@gatech.edu		
Section Number (e.g. A3, G2, etc.)	TA Name		
Circle your instructor:			
Prof Vilaca Da Rocha Prof l	Kafer Prof Barone Prof Wheeler		
Prof Blumenthal	Prof Sun Prof Shirani		

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of A and \vec{b} . Otherwise, select **false**.

true	false	
\bigcirc	\bigcirc	If A has a pivot in every column then the system $A\vec{x} = \vec{b}$ has a unique solution.
0	\bigcirc	Suppose A is a 6×4 matrix with 4 pivots, then there is \vec{b} such that $A\vec{x} = \vec{b}$ has no solution.
\bigcirc	\bigcirc	The sets $\{\vec{v}_1, \vec{v}_2\}$ and $\{\vec{v}_1 + \vec{v}_2, -\vec{v}_1 - \vec{v}_2\}$ have the same span.
\bigcirc	\bigcirc	If A and B are square $n \times n$ matrices, then $A^2 - B^2 = (A - B)(A + B)$.
\bigcirc	\bigcirc	The matrix equation $A\vec{x} = \vec{0}$ is always consistent.
\bigcirc	0	Suppose $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ are nonzero vectors in \mathbb{R}^n and the sets $\{\vec{v}_1, \vec{v}_2\}$, $\{\vec{v}_1, \vec{v}_3\}$, and $\{\vec{v}_2, \vec{v}_3\}$ are all linearly independent. Then, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent.
\bigcirc	\bigcirc	If $A\vec{v} = 0$, $A\vec{u} = 0$ and $\vec{w} = 3\vec{v} - 2\vec{u}$, then $A\vec{w} = 0$.
\bigcirc	\bigcirc	Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\vec{x}) = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^m$. Then T is one-to-one.

(b) (4 points) Indicate whether the following situations are possible or impossible.

Midterm 1. Your	initials:		
You do not ne	eed to justify your reaso	ning for questions o	on this page.

(c) (2 points) Let

$$\left(\begin{array}{ccc|c}
1 & 3 & 0 & 1 \\
0 & 3h & 3 & 6 \\
0 & 0 & 1 & 2
\end{array}\right)$$

be an augmented matrix of a system of linear equations. For which values of h does the system have a free variable? *Choose the best option*.

- \bigcirc 0 only
- $\bigcirc \frac{1}{3}$ only
- \bigcirc 1 only
- \bigcirc for all values of h
- \bigcirc for no values of h

- (d) (2 points) A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^1$ maps each of the standard unit vectors \vec{e}_1 , \vec{e}_2 and \vec{e}_3 to 1. Which of the following statements is TRUE? *Select only one.*
 - \bigcirc *T* is one-to-one.
 - \bigcirc *T* is not onto.
 - \bigcirc The solution set of $T(\vec{x}) = \vec{0}$ spans a plane in \mathbb{R}^3 .
 - \bigcirc The range of T is $\{1\}$.

2. (4 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$ and sketch (a) a non-zero vector \vec{b} such that $A\vec{x} = \vec{b}$ is consistent, and (b) the set of solutions to $A\vec{x} = \vec{0}$.

3. (2 points) Consider the linear system in variables x_1, x_2, x_3 with unknown constants below.

$$a_1x_1 + a_2x_2 + a_3x_3 = b_1$$
$$c_1x_1 + c_2x_2 + c_3x_3 = b_2$$

Which of the following statements about the solution set of this system are possible? *Select all that apply.*

- The solution set is empty.
- The solution set is a single point.
- The solution set is a line.
- The solution set is a plane.

- 4. Fill in the blanks.
 - (a) (3 points) Let A be a coefficient matrix of size 2×2 and B be a coefficient matrix of size 3×2 . Construct an example of two augmented matrices $\begin{bmatrix} A | \vec{b} \end{bmatrix}$ and $\begin{bmatrix} B | \vec{d} \end{bmatrix}$ which are both in RREF and such that the systems $A\vec{x} = \vec{b}$ and $B\vec{x} = \vec{d}$ each have the exact same unique solution $x_1 = 3$ and $x_2 = 6$. If this is not possible write NP in each box.

$$\left[A|\vec{b}\right] =$$

$$\left[B|\vec{d}
ight] =$$

(b) (2 points) Let
$$\vec{u}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find c_1 , c_2 such that $\vec{b} = c_1 \vec{u}_1 + c_2 \vec{u}_2$. $c_1 = \boxed{ }$

Midterm 1. Your initials:

dterm 1. Your initials: _____ You do not need to justify your reasoning for questions on this page.

5. (8 points) Let T be a linear transformation that maps \vec{v}_1 to $T(\vec{v}_1)$ and \vec{v}_2 to $T(\vec{v}_2)$, where

$$\vec{v}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad T(\vec{v}_1) = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \quad T(\vec{v}_2) = \begin{pmatrix} 3 \\ -1 \\ -2 \\ 1 \end{pmatrix}.$$

(i) What is domain and codomain of T?

domain is codomain is

- (ii) Is it true that $\mathbb{R}^2 = \operatorname{span}\{\vec{v}_1, \vec{v}_2\}$?
- O yes
- \bigcirc no
- (iii) Write $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as linear combinations of \vec{v}_1 and \vec{v}_2 .

$$ec{e}_2 =$$

(iv) What is the standard matrix of T?

(v) Is *T* one-to-one?

- 6. Show all work for problems on this page.
 - (a) (3 points) For what value of k will matrix A have exactly two pivots?

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & k \end{pmatrix}$$

$$k =$$

(b) (4 points) Find b and c such that AB = BA.

$$A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix}$$

$$b = \boxed{ }$$
 $c = \boxed{ }$

7. (4 points) Show your work for problems on this page.

Write down the parametric vector form for solutions to the homogeneous equation $A\vec{x} = \vec{0}$.

$$A = \begin{bmatrix} 1 & -1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 3 & 1 \\ -1 & 1 & 2 & 3 & 2 \end{bmatrix}$$

8. (4 points) Determine whether the set of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent. *Justify your answer in the space below.*

$$\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2 \\ -1 \\ 8 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -2 \\ 2 \\ -9 \end{bmatrix}$$

○ linearly independent ○ linearly dependent

Math 1554 Linear Algebra Spring 2022

Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:		GTID Number:	
Student GT Email Ac	ldress:		@gatech.edu
Section Number (e.g. A3,	G2, etc.)	TA Name	
Circle your instructor:			
Prof Barone	Prof Shirani	Prof Simone	Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

		uppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select tatement is true for all choices of A and \vec{b} . Otherwise, select false .
true	e false	
\bigcirc	\bigcirc	The span of two non-zero vectors in \mathbb{R}^3 is necessarily a plane.
0	0	If an echelon form of A has a row of zeros, then the system $A\vec{x}=\vec{b}$ has a free variable.
\bigcirc	\bigcirc	If $A\vec{v} = \vec{b}$, and $[A \mid \vec{b}]$ is row equivalent to $[C \mid \vec{d}]$, then $C\vec{v} = \vec{d}$.
\bigcirc	\bigcirc	If the columns of A span \mathbb{R}^m , then $A\vec{x} = \vec{b}$ is consistent for any $\vec{b} \in \mathbb{R}^m$.
\circ	\bigcirc	If $A\vec{x}=\vec{0}$ has a non-trivial solution, then the columns of A are linearly dependent.
\bigcirc	0	If \vec{v} and \vec{u} are solutions of a homogeneous system of linear equations, then $\vec{v} + \vec{u}$ is also a solution of that system.
\circ	\circ	If the columns of a matrix A are linearly dependent, then the system $A\vec{x}=\vec{b}$ can not have a unique solution.
0	\bigcirc	If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation such that $T(\vec{x}) = \vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^n$, then T is not one-to-one.
(b) (4]	points) I	ndicate whether the following situations are possible or impossible.
possibl	le imp	possible
\bigcirc	\bigcirc	A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ that is not onto.
\bigcirc	0	A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ that is onto and its standard matrix has two non-pivotal columns.
\bigcirc	0	A linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$ that is onto and its standard matrix has linearly dependent columns.
\bigcirc	\circ	Three non-zero matrices A, B, C of size 2×2 with $AC = BC$ and $A \neq B$.

(c) (2 points) Let

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & h^2 & 0
\end{array} \right]$$

be a row echelon form of an augmented matrix of a system of linear equations. For which values of h is the system consistent? *Choose the best option*.

- \bigcirc for all values of h
- \bigcirc 0 only
- \bigcirc for no values of h
- 1 and -1 only
- (d) (2 points) Let

$$\left[\begin{array}{ccc|ccc|c}
1 & -1 & 0 & \pi & 2 & -1 \\
0 & 0 & 1 & -2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]$$

be a row echelon form of an augmented matrix of a system of equations. How many solutions does the system have? *Choose the best option*.

- \bigcirc 0
- \bigcirc 1
- \bigcirc infinitely many
- (e) (2 points) Suppose $A\vec{x} = \vec{b}$ is a system of three linear equations in three variables. If the system $A\vec{x} = \vec{b}$ is consistent, which of the following could be the graphs in \mathbb{R}^3 of the three equations represented by the rows of $[A \mid b]$? *Circle all pictures that apply.*

2. (4 points) Suppose $A=\begin{pmatrix}2&1\\4&2\end{pmatrix}$ and sketch a) a non-zero solution to $A\vec{x}=\vec{0}$, and b) the span of the columns of A.

- 3. (5 points) Let $A \in \mathbb{R}^{3 \times 5}$, $B \in \mathbb{R}^{4 \times 3}$ and $\vec{a} \in \mathbb{R}^3$, $\vec{b} \in \mathbb{R}^4$, $\vec{c} \in \mathbb{R}^5$. Which of the following are defined? *Choose all the expressions which are defined*.
 - $\bigcirc B\vec{b}$
 - $\bigcirc A\vec{c}$
 - $\bigcirc A(B\vec{a})$
 - $\bigcirc B(A\vec{c})$
 - $\bigcirc B(\vec{a} + \vec{b})$
- 4. (3 points) In each of the following cases, indicate whether $A\vec{x}=\vec{b}$ has no solutions, a unique solution, infinitely many solutions, or if this can not be determined with the given information.

no	unique	infinitely	can't be
solution	solution	many	deter-
		solutions	mined

- \bigcirc
- \bigcirc
- \bigcirc
- $A \in \mathbb{R}^{3 \times 4}$, $\vec{b} = \vec{0}$, and A has 2 pivots

- \bigcirc
- \bigcirc
- \bigcirc
- $A \in \mathbb{R}^{5 \times 2}$, $\vec{b} = \vec{0}$, and A has 2 pivots

- \bigcirc
- \bigcirc
- \bigcirc
- \bigcirc
- $A \in \mathbb{R}^{3 \times 5}$ and A has 3 pivots

Midterm 1. Your initials:

You do not need to justify your reasoning for questions on this page.

- 5. Fill in the blanks.
 - (a) (2 points) If the augmented matrix $[A \mid \vec{b}]$ of a system of equations is 3×6 and the system has two pivot (basic) variables, then how many free variables does it have?

(b) (2 points) For what value(s) of h is the following set of vectors linearly dependent?

$$\left\{ \left(\begin{array}{c} 1\\1\\h \end{array}\right), \left(\begin{array}{c} 1\\h\\1 \end{array}\right), \left(\begin{array}{c} -1\\0\\h \end{array}\right) \right\}$$

$$h =$$

- 6. Show all work for problems on this page.
 - (a) (1 point) Let $\vec{b} = \begin{bmatrix} 3 \\ -4 \\ -6 \\ 1 \end{bmatrix}$, $\vec{a_1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{a_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{a_3} = \begin{bmatrix} 3 \\ -3 \\ -5 \\ 2 \end{bmatrix}$. Is \vec{b} in the span of
 - () Yes
 - \bigcirc No

(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. If you answered no, give an echelon form of the augmented matrix $[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ | \ \vec{b}]$.

7. (3 points) Show your work for problems on this page.

Suppose that we have

$$\left[\begin{array}{c|ccc}A & \vec{b}\end{array}\right] \sim \left[\begin{array}{cccc}1 & 4 & 0 & -1 & 3\\0 & 0 & 1 & 5\end{array}\right]$$

Find the parametric vector form for the solutions of $A\vec{x} = \vec{b}$.

8. (2 points) Suppose
$$A\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $A\vec{u} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$. Compute $A(2\vec{v} - \vec{u})$.

Mi	dterm 1. Your initials:
9.	(8 points) Show all work for problems on this page. Consider the linear transformation defined by $T(x_1, x_2) = (x_1 + x_2, x_1, x_1 - x_2)$ with domain \mathbb{R}^2 .
	(i) What is the codomain of <i>T</i> ?
	(ii) What is the standard matrix of T ?
	(iii) Is T onto? \bigcirc yes \bigcirc no
	(iv) Write an equation using the variables b_1 , b_2 , and b_3 which is satisfied exactly when $T(x_1,x_2)=(b_1,b_2,b_3)$ has a solution for x_1,x_2 .
	(v) What is the range of T ?