

• A Internet baseada em IPv4 suporta apenas 2³² ≈ 4,3 bilhões de endereços, muitos já alocados pelos RIRs.Essa escassez leva a NATs complexos, que introduzem dificuldades de segurança, performance e configuração.

- Esgotamento de endereços: pool global de IPv4 foi totalmente alocado em 2011.
- NAT onipresente: obriga mapeamentos de portas, dificulta alguns protocolos e aplicações.
- Extensibilidade limitada: cabeçalho de 20–60 bytes que mal acomoda opções extras.

- Espace de 128 bits: 2¹²⁸ ≈ 3,4×10³⁸ endereços, eXtensível para o futuro.
- Cabeçalho simplificado: apenas 8 bytes fixos, otimizado para roteamento.
- Autoconfiguração: sem DHCP ou com "stateless" SLAAC.

- **Dual-Stack:** ambos protocolos rodando simultaneamente em hosts e roteadores.
- **Túneis:** 6to4, Teredo, ISATAP encapsulam IPv6 dentro de IPv4.
- **Tradução:** NAT64/DNS64 permite dispositivos IPv6 acessarem recursos IPv4.

- Sistema de numeração hexadecimal
 - Cada dígito hex representa 4 bits.
 - Ex: bloco "FE80" = 1111 1110 1000 0000.
- Formatos do endereçamento IPv6
 - Canônico completo: oito grupos de quatro hex (ex: 2001:0db8:0000:0000:0000:ff00:0042:8329).
 - Canônico abreviado: aplicar regras de formatação.
- Regras de Formatação IPv6
 - Regra 1 Omitir zeros à esquerda em cada bloco:
 - 0db8 → db8; 0042 → 42.
 - Regra 2 Dois pontos duplos para uma sequência contínua de zeros
 - 2001:db8::ff00:42:8329 (os quatro blocos "0000").

- Atribuição de endereço IPv4 estático
 - Definido manualmente em cada host.
 - Vantagem: controle total; Desvantagem: suscetível a erros e esforço de manutenção
- Atribuição dinâmica de endereço IPv4
 - **DHCPv4**: protocolo cliente-servidor que automatiza atribuição de IP, máscara, gateway, DNS.

Característica	DHCPv4	DHCPv6
Protocolo Base	IPv4	IPv6
Portas UDP	Cliente: 68Servidor: 67	Cliente: 546Servidor: 547
Atribuição de Endereço IP	Sempre via servidor DHCP	Pode ser feita via DHCPv6 (stateful) ou SLAAC
Autoconfiguração sem servidor	Não suportada	Suportada via SLAAC (Stateless Address Autoconfiguration)
Requer um servidor DHCP?	Sim	Não necessariamente (SLAAC pode ser usado sem DHCPv6)
Identificação do Host	Via endereço MAC	Usa DUID (DHCP Unique Identifier)
Transporte entre sub-redes	Precisa de um relay agent	Também usa relay agent (Relay DHCPv6)
Configuração de DNS	Fornecido pelo servidor DHCP	Pode ser fornecido via DHCPv6 ou opcionalmente via RA (Router Advertisement)
Suporte a opções adicionais	Sim (ex: gateway, WINS, TFTP)	Sim, mas mais restrito. Algumas opções são obtidas por RA
Método de operação	Apenas stateful (servidor mantém controle dos IPs atribuídos)	Pode ser stateful (como DHCPv4) ou stateless (apenas para parâmetros como DNS)
Mensagens utilizadas	Discover → Offer → Request → ACK	Solicit → Advertise → Request → Reply
Prefixo de rede	Atribuído pelo servidor	Pode vir do roteador (RA) ou do servidor DHCPv6
Detecção de endereços duplicados	Host não faz detecção por padrão	O host faz DAD (Duplicate Address Detection) como parte do SLAAC
Escopo de uso típico	Todas as redes IPv4	Redes IPv6 com ou sem SLAAC – mais flexível
Gateway padrão	Fornecido pelo servidor DHCP	Fornecido via Router Advertisement, não pelo DHCPv6
Endereço Link-local obrigatório	Não	Sim – toda interface IPv6 tem um endereço fe80::/10