COURSE SYLLABUS CSC10007 – Introduction to Operating Systems

1. GENERAL INFORMATION

Course name: Introduction to Operating Systems

Course name (in Vietnamese): Nhập môn Hệ điều hành

Course ID: CSC10007

Knowledge block: Cơ sở ngành

Number of credits: 4

Credit hours for theory: 40

Credit hours for practice: 30

Credit hours for self-study: 90

Prerequisite: Nonce

Prior-course: Computer Systems

Instructors: Phạm Tuấn Sơn

2. COURSE DESCRIPTION

This course covers the important problems in operating system design and implementation. It will also cover the tradeoffs that can be made between performance and functionality during the design and implementation of an operating system. Particular emphasis will be given to three major OS subsystems: process management (processes, threads, CPU scheduling, synchronization, and deadlock), memory management (segmentation, paging, swapping), and file systems; and on operating system support for distributed systems.

3. COURSE GOALS

At the end of the course, students are able to

ID	Description	Program LOs
G1	Learn a lot of practical information about how programming languages, operating systems, and architectures interact and how to use each effectively.	5.1.1, 5.1.3, 5.2.1, 5.2.2, 5.3.1, 6.1.1
G2	Learn about how operating system structured and its components working.	5.1.1, 5.1.3, 5.2.1

VNUHCM-UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

G3	Have knowledge to more effectively use and manipulate computers and computer program	5.1.3, 5.2.1, 5.2.2, 5.3.1
G4	Team work & Independent thinking	2.2, 2.3.1
G5	Understanding keywords	2.4.3, 2.4.5

4. COURSE OUTCOMES

CO	Description	I/T/U
G1.1	Describe and explain the fundamental components of a computer operating system	I,T
G1.2	Define, restate, discuss, and explain the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems	I,T
G2.1	Describe and extrapolate the interactions among the various components of computing systems	I,T
G2.2	Design and construct the following OS components: System calls, Schedulers, Memory management systems, Virtual Memory and Paging systems	I,T
G3.1	Illustrate, construct, compose and design solutions via C/C++ programs, and through NACHOS	I,T
G3.2	Explain in detail a particular file system (FAT/NTFS/) organization and operations Explain data recovery mechanism and use effective tools	I,T
G4.1	Criticize any topic related to OS	I
G5.1	Be able to work independently or work in group	I,U

5. TEACHING PLAN

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)
1	Overview	G1.1, G2.1	Lecturing
	A brief of History		Discussion
	Architecture		Q&A, Quizzes
2	Disk	G1.2, G2.1, G2.2,	Lecturing
	File systems	G3.2	Demonstration, Case study
	Detail of FAT/NTFS/		Q&A, Exercises
			[Test T1]
			[Bonus B1]
3	Processes and Threads	G1.2, G2.1, G2.2	Lecturing
	CPU Schedule		Demonstration
			Q&A, Exercises
			[Test T2]
4	Memory management	G1.2, G2.1, G2.2	Lecturing
	Virtual memory		Demonstration, Discussion

VNUHCM-UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

			Q&A, Exercises [Test T3]
5	Synchronnization	G1.2, G2.1, G2.2	Lecturing Discussion Q&A, Exercises [Test T4]
6	Review	G1.1, G1.2, G2.1, G2.2, G4.1	Discussion Q&A, Exercises

For the practical laboratory work, there are 10 weeks which cover similar topics as it goes in the theory class. Each week, teaching assistants will explain and demonstrate key ideas on the corresponding topic and ask students to do their lab exercises either on computer in the lab or at home. All the lab work submitted will be graded. There would be a final exam for lab work.

6. LAB PLAN

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)
1	Project 1 explaination	G3.1, G5.1	Lecturing Demonstration Q&A, Group discussion
2	Project 2 explaination	G3.1, G5.1	Lecturing Demonstration Q&A, Group discussion
3	Project 3 explaination	G3.1, G5.1	Lecturing Demonstration Q&A, Group discussion

7. ASSESSMENTS

ID	Торіс	Description	Course outcomes	Ratio (%)
T	Tests			30% - E1
T1	FAT file system	Files/folders organized on FAT and their operations (copy, cut, delete,)	G3.2	Up to 20%
T2	CPU scheduling	FIFO, SJF,	G2.2	Up to 10%
T3	Memory, Virtual memory	Paging	G2.2	Up to 10%
T4	Synchronization	Semaphore	G2.2	Up to 10%
P	Projects			30%
P1	NachOS	Implementation system calls for file system operations on NachOS	G3.1	10%
P2	NachOS	Implementation the multiprograming system on NachOS	G3.1	10%

VNUHCM-UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

Р3	Linux	Implementation Linux kernel modules	G3.1	10%
В	Bonus	Data recovery		Up to +/- 20%
B1	Data recovery	Lost partitions, files, folders	G3.2	Up to +/- 20%
E	Exams			Up to 70%
E1	Midterm exam	Open book exam. Describe the understanding of different topics, analyze & program to solve problems	G2.2, G3.2	30% - T
E2	Final exam	Open book exam. Describe the understanding of different topics, analyze & program to solve problems	G1.1, G1.2, G2.1, G2.2	40%

8. RESOURCES

Textbooks

- Giao trinh He dieu hanh, Tran Trung Dung & Pham Tuan Son
- Modern Operating System, 4th Edition, Andrew Tanenbaum & Herbert Bos, Pearson PLC, 2014

Others

• Operating System Concepts, 10th Edition, Abraham Silberschatz, Peter B. Galvin & Greg Gagne, John Wiley & Sons, 2018

Software

Linux Operation System at https://github.com/torvalds/linux

9. GENERAL REGULATIONS & POLICIES

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams.
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.
- Students are encouraged to form study groups to discuss on the topics. However, individual work must be done and submitted on your own.