PH203: Vacuum Science and Techniques

Calculation of Throughput and Pumping Speed in a Vacuum Chamber

Project by:
Yash Sharma 1901CS73 Sahil Gupta 1901CS49
Manjul Bamrara 1901CS32

Introduction

In this project, we will study about throughput and pumping speed and how to calculate them using different parameters. We will deploy a web application interface and write program for their calculation using two different methods i.e. using gas equation and the formula for pumping speed for a diaphragm pump.

Theory

• Throughput (Q): It is the quantity of gas flowing through a pipe per unit time. (Also sometimes, referred to as the product of pumping speed and the inlet pressure).

Unit: $Pa.m^3/s = W$

Also, if **Q > 200D => Turbulent** and if **Q > 100D => Laminar**

Pumping Speed (Sp): The volume of gas per unit time (dV/dt)
which the pumping device removes from the system at the pressure
existing at the inlet of the pump.

Unit: litres/s, m³/hr

Calculations

Using Gas Equation

Throughput (Q) = P * (d(V)/d(t))

=> Q = (dN/dt) * (R.T)

Pumping Speed (S) = Q / P

where,

n = Moles of Gas

P = Pressure

T = Temperature

t = Time

Calculations

For a Suction Chamber

Throughput(Q) =
$$q_pV$$

$$=> Q = n * (V_s * p_{in} - V_{D,S} * P_{out})$$

Pumping Speed (S) = Q / p_{in}

where,

N = Rotational Speed

V_s = Suction Chamber Volume

P_{in} = Input Pressure

V_{DS} = Dead Space Volume

P out = Output Volume

Figure 7.3 Diagram of a diaphragm pump stage: ① housing, ② valves, ③ head cover, ④ diaphragm clamping disk, ⑤ diaphragm, ⑥ diaphragm supporting disk, ⑦ connecting rod, ⑧ eccentric rotor (crank shaft).

A labelled diagram of a Diaphragm Pump

Code Analysis

For Gas Equation

```
var throughput = (inputs[0].value * 8.314 * inputs[2].value) /
inputs[3].value;
var pumpingSpeed = throughput / inputs[1].value;
where,
    input[0] = Moles of gas
    input[1] = Pressure
    input[2] = Temperature
    input[3] = Time
```

Code Analysis

For Suction Chamber

```
var throughput = inputs[0].value * (inputs[4].value * inputs[1].value -
inputs[3].value * inputs[2].value)
var pumpingSpeed = throughput / inputs[1].value
where,
    input[0] = Rotational Speed
    input[1] = Input Pressure
    input[2] = Output Pressure
    input[3] = Dead Space Volume
    input[4] = Suction Chamber Volume
```

Link of code and deployed website

- Link of code uploaded on Google Drive
 https://drive.google.com/drive/folders/1ynyAipDhC0C9HRJ4Wz847
 5ZVgr4qcXkN
- Link of website deployed on Netlify https://ph203projectcs73-49-32.netlify.app/

Screenshots of the website made

PH203 PROJECT

HOME

GAS EQUATION

SUCTION CHAMBER

ABOUT US

Calculation of Pumping Speed and Throughput in a Vacuum Chamber

USING GAS EQUATION:-

Qty of gas 'n' : (in mol) Pressure P: (in Pa)

HOME GAS EQUATION SUCTION CHAMBER ABOUT US

USING GAS EQUATION:-

Qty of gas 'n' : (in mol)

Temperature T : (in K)

300

Pressure P : (in Pa)

10000

Time t:

(in s)

2

CALCULATE

Throughput (Q) : 2494.2 W Pumping Speed (S_p) : 249.42 I/s

HOME GAS EQUATION SUCTION CHAMBER ABOUT US

FOR SUCTION CHAMBER CONNECTED TO A DIAPHRAGM PUMP:-

Input Pressure p_{in}: (in Pa)

.

Suction Chamber Volume V_S : (in m^3)

,

Rotational Speed n : (in rpm)

2

Output Pressure p_{out} : (in Pa)

2

Dead Space Volume V_{D.S.}:

(in m³)

1

HOME GAS EQUATION SUCTION CHAMBER ABOUT US

CALCULATE

Throughput (Q): 8 W

Pumping Speed (Sp) : 2666.66666666665 I/s

Team Members:

- Yash Sharma (1901CS73)
- Sahil Gupta (1901CS49)
- Manjul Bamrara (1901CS32)

Conclusion

In this project, we studied about throughput and pumping speed and how to calculate them using different parameters. We also created a web application interface for calculation of throughput and pumping speed in a vacuum chamber. Many such softwares can be created for the ease of engineers that are useful in many cases.

So, at the end, we achieved our goal and wrote a program for the calculation of throughput and pumping speed successfully.

Thank You!