Logik

Äquival	Äquivalente Formeln ⇔		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \vee A$	Kommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \lor (B \lor C)$	$(A \lor B) \lor C$	ASSOZIATIV	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idomnotona	
$A \vee A$	A	Idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \vee \neg B$	DE-MORGAN	
$\neg(A \lor B)$	$\neg A \wedge \neg B$	DE-MORGAN	
$A \wedge (\mathbf{A} \vee B)$	A	A becometion	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg \mathbf{A} \vee B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A\Rightarrow B)\wedge (B\Rightarrow A)$		

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, \rightarrow)

Konjunkt. $A \wedge B$ "und" (&&, \Rightarrow)

Disjunkt. $A \lor B$ "oder" (\sqcap , \updownarrow)

 $\mathcal{A} \Rightarrow \mathcal{B}$ "A hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A}$ "A notwendig"

Wahrheitswertetabelle mit 2^n Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg A$	$\mathcal{A} \wedge \mathcal{B}$	$\mathcal{A}\vee\mathcal{B}$	$\mathcal{A}\Rightarrow\mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Universums:

Existenzq. ∃ "Mind. eines"

Individuum ∃! "Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

Klassische Tautologien	Bezeichnung
$A \vee \neg A$	Ausgeschlossenes Drittes
$A \wedge (A \Rightarrow B) \Rightarrow B$	Modus ponens
$(A \land B) \Rightarrow A$ $A \Rightarrow (A \lor B)$	Abschwächung

Negation (DE-MORGAN)

$$\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$$
$$\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$$

Häufige Fehler

- $U = \emptyset^{\complement}$ nicht notwendig
- $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$
- $\neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Beweistechniken

Achtung: Aus falschen Aussagen können wahre *und* falsche Aussagen folgen.

Direkt $A \Rightarrow B$ Angenommen A, zeige B. Oder: Angenommen $\neg B$, zeige $\neg A$ (*Kontraposition*).

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Fallunters. Aufteilen, lösen, zusammenführen. O.B.d.A = "Ohne Beschränkung der Allgemeinheit"

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$ Angenommen $A \land \neg B$, zeige Kontradiktion. (Reductio ad absurdum)

Ring (Transitivität der Implikation)

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$
$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow \mathbf{A}$$

Induktion $F(n) \quad \forall n \geq n_0 \in \mathbb{N}$

1. **Anfang:** Zeige $F(n_0)$.

2. Schritt: Angenommen F(n) (Hypothese), zeige F(n+1) (Behauptung).

Starke Induktion:

 $\begin{array}{lll} \text{Angenommen} \\ F(k) & \forall n_0 & \leq & k & \leq \\ n \in \mathbb{N}. \end{array}$

Häufige Fehler

- Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Naive Mengenlehre

Mengen Zusammenfassung versch. Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum ${\cal U}$

Einschränkung $\{x \mid F(x)\}$

Relationen

Mächtigkeit

$$|M| egin{cases} = n & ext{endlich} \ \geq \infty & ext{unendlich} \ = |N| \Leftrightarrow \exists f_{ ext{bijekt.}} : M o N \end{cases}$$

Abzählbar $\exists f_{\text{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{Q}
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{\text{abz.}} \wedge N \subseteq M \Rightarrow N_{\text{abz.}}$

 $f(1) = 0, \mathbf{r}_{11} r_{12} r_{13} r_{14} \dots$

 $f(2) = 0, r_{21} \mathbf{r}_{22} r_{23} r_{24} \dots$ $f(3) = 0, r_{31} r_{32} \mathbf{r}_{33} r_{34} \dots$

 $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$

:

(CANTORS Diagonalargumente)

Operationen

Vereinig. $M \cup N$ $\Leftrightarrow \{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in N\} (= \emptyset \text{ "disjunkt"})$

 $\mathbf{Diff.}\ M \setminus N \ \Leftrightarrow \{x \mid x \in M \land x \not\in N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$ \bigcirc

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M:\emptyset\subseteq M$, nicht $\forall M:\emptyset\in M$

Ouantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

$$\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$$
$$\bigcap_{i \in I} M_i := \{ x \mid \forall i \in I : x \in M_i \}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\begin{split} \mathcal{P}(M) := & \{ N \mid N \subseteq M \} \\ |\mathcal{P}(M)| = & 2^{|M|} \quad (\in / \notin \text{bin\"ar}) \end{split}$$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$

$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ Kartesisches Produkt eindeutig ein $y \in Y$ zu.

Totalität
$$\forall x \in X \exists y \in Y : f(x) = y$$

Eindeutigkeit
$$\forall x \in X \forall a, b \in Y : f(x) = a \land f(x) = b \Rightarrow a = b$$

$$\mathbf{f}:X\to Y$$

$$\begin{array}{ll} \textbf{Urbilder} \ \ f^{-1}(Y') = \{x \in X \mid f(x) \in \ \ \ \textbf{Irreflexiv} \ \ \forall x \in M : (x,x) \not \in R \\ Y'\} \quad Y' \subseteq Y \qquad \qquad \Leftrightarrow \mathrm{id}_M \cap R = \emptyset \\ \end{array}$$

$$\mathbf{Graph} \ \operatorname{gr}(f) := \{(x, f(x)) \mid x \in X\}$$

Identität

$$id_A: A \to A$$

 $id_A(a) := a \quad \forall a \in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$ bzw. $f; f^{-1} = id_X \wedge f^{-1}; f = id_X$ Für die Relation f^{-1} gilt:

- $x \in f^{-1}(\{f(x)\})$
- $f(f^{-1}(\{y\})) = \{y\}$ falls fsurjektiv

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X :$$
 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv
$$\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$$

Bijektiv/Invertierbar wenn injektiv und surjektiv

Verkettung
$$f \circ q : A \to C$$

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

$$A \xrightarrow{f \nearrow B} g$$

$$f \circ g \to C$$

Relationen

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathrm{id}_M \subseteq R$

Irreflexiv
$$\forall x \in M : (x, x) \notin R$$

 $\Leftrightarrow id_M \cap R = \emptyset$

$$\equiv$$
 Sym. $\forall (x, y) \in R : (y, x) \in R$
 $\Leftrightarrow R \subseteq R^{-1}$

Antis.
$$\forall x, y: ((x, y) \in R \land (y, x) \in R) \Rightarrow \mathbf{x} = \mathbf{y} \Leftrightarrow R \cap R' \subseteq \mathrm{id}_M$$

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Assoziativität

Kommutativität

Inverses "Negativ"

a+b=b+a

Neutrales Element Null

 $a+0=a \quad 0 \in \mathbb{R}$

a + (b+c) = (a+b) + c

 $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Assoziativität a * (b * c) = (a *

Kommutativität a * b = b * a

 $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Neutrales Element Eins

 $a \neq \mathbf{0}, (a^{-1}) \in \mathbb{R}$

 $\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$

 $a < b \land b < c \Rightarrow a < c$

 $a < b \Rightarrow a + c < b + c$

a < b oder a = b oder b < a

 \Rightarrow Irreflexivität ($a < b \Rightarrow a \neq b$)

Inverses "Kehrwert" $a * (a^{-1}) = 1$

Distributivität

Totale Ordnung

Trichotomie Entweder

Transitivität

Addition

Addition $(\mathbb{R}, +)$

Vollst.
$$\forall \mathbf{x}, \mathbf{y} \in M : (x, y) \in R \lor (y, x) \in R \\ \Leftrightarrow R \cup R^{-1} = M \times M$$

Spezielle Relationen

$$\begin{array}{ll} \textbf{Inverse Relation} \ R^{-1} \ \ \text{mit} \ R \ \in \ M \ \times \ \ \ \textbf{K\"{o}rperaxiome} \ (\mathbb{R},+,*) \quad a,b,c \in \mathbb{R} \\ N := \\ \{(n,m) \in N \times M \mid (m,n) \in R\} \qquad \textbf{Addition} \ (\mathbb{R},+) \end{array}$$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation 0

Allrelation $M \times M$

 $\ddot{\mathbf{A}}$ quivalenzrelation \equiv reflexiv, sym- Multiplikation $(\mathbb{R},*)$ metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse $[m]_{\equiv}$ auf M, Vertreter $m \in M$.

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subset \mathcal{P}(M)$ von M.

- ∅ ∉ N
- $M = \bigcup \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Analysis Inversion dreht sich die Ungleichung.

ARCHIMEDES Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$$

 $(\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{b} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$
- $\frac{a}{b} \stackrel{*d}{=} \frac{a*d}{b*d}$
- $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
- $\frac{a}{b} + \frac{c}{d} = \frac{a*d+c*b}{b*d}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\sqrt[n]{\mathbf{a} * \mathbf{b}} = \sqrt[n]{\mathbf{a}} * \sqrt[n]{\mathbf{b}}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- $\bullet \ (a^x)^y = a^{x*y}$

Dezimaldarstellung

GAUSS-Klammer $[y] := \max\{k \in$ $\mathbb{Z} \mid k \leq y \} = |y|$

$$[y] = k \Leftrightarrow k \leq y < k+1$$

Existenz $\forall x \geq 0 \exists ! (a_n)_{n \in \mathbb{N}} \text{ mit }$

- $a_n \in \{0, \ldots, 9\} \quad \forall n \in \mathbb{N}$
- $\sum_{i=0}^{n} \frac{a_i}{10^i} \le x < \sum_{i=0}^{n} \frac{a_i}{10^i} + \frac{1}{10^n} \forall n \in \mathbb{N}_0$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma $x \ge 0$, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n \ge N : a_n = 9)$$

 $x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ periodisch

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

("Ecken sind mit enthalten")

Offen $(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

Minimum $min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a_0} \le a$

Maximum $max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{s} \leq a$

Vollständigkeit

Infimum (klein) $\inf(A)$

 $:= \max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} \leq a\}$

Supremum (groß) sup(A) $:= \min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

Folgen

Folge $(a_n)_{n\in\mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

Arithmetische Folge $a_{n+1} = a_n + d$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$$

Summen und Produkte

Summe $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$

Produkt $\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$

Fakultät $n! = \prod^n i$ (0! = 1)

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

BERNOULLI Unglei. $n \in \mathbb{N}_0, x \geq -1$

$$(1+x)^n \ge 1 + n * x$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k! * (n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\binom{n}{0} = \binom{n}{n} = 1$
- \bullet $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} * b^k$$

Grenzwerte

 $\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} x & 0 \le x \\ - & x & x < 0 \end{array} \right.$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x+y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x| - |y|| \le |x - y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \\ \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 : \\ |\mathbf{a}_n - \mathbf{a}| \le \epsilon \\ (a - \epsilon \le a_n \le a + \epsilon)$$

• $a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$

Beschränkt + monoton ⇒ konver- **Grenzwertsätze** gent:

$$\lim_{n o \infty} a_n = egin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{fall.}} \ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = \mathbf{0}$

- $\lim_{n\to\infty}\frac{1}{n^k}=\mathbf{0}$ $k\in\mathbb{N}$
- $\lim_{n\to\infty} n * q^n = \mathbf{0}$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \text{div.} & \le -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a_n}| \le \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b$ (Max. einen Grenzw.)
- $a = \mathbf{0} \wedge (b_n)_{beschr.}$ $\Leftrightarrow \lim_{n\to\infty} a_n * b_n = \mathbf{0}$
- $a_n < b_n \Leftrightarrow a < b \pmod{n}$

•
$$\lim_{n\to\infty}$$

$$\begin{cases}
a_n \pm b_n = a \pm b \\
a_n * b_n = a * b \\
a_n * c = a * c \\
\sqrt[k]{a_n} = \sqrt[k]{a} \\
|a_n| = |a|
\end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n\in\mathbb{N}}$ $\operatorname{mit}(n_k)_{k\in\mathbb{N}}$, sodass $b_k = \mathbf{a_{n_k}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n \in \mathbb{N}} \exists (a_{nk})_{k \in \mathbb{N}_{mnt.}}$$
 (nicht streng!)

Häufungspunkt *h* mit einer Teilfolge

$$\lim_{n \to \infty} a_{nk} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

BOLZANO-WEIERSTRASS

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H\ddot{a}uf.}$$

(Teilfolge + (beschr.)
$$\Rightarrow \exists$$
 Häuf.)

CAUCHY-Folge

$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m > n_0 :$ $|a_n - a_m| < \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von \mathbb{R}

$$(a_n)_{n\in\mathbb{N}_{\mathsf{CAUCHY}}}\Leftrightarrow\exists\lim_{n\to\infty}a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\mathsf{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\mathsf{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

Reihe $(s_n)_{n\in\mathbb{N}} = \sum_{k=1}^{\infty} a_k$ mit Gliedern $(a_k)_{k\in\mathbb{N}}$.

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^\infty a_k$, falls s_n Majorante $0 \le a_n \le b_k$ $\forall n \in \mathbb{N}$ konvergiert

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in (-1;1)$$

Harmon. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert $\forall \alpha > 1$

Lemma

- $\sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k$ konvergent $\begin{array}{ll} -\sum_{\substack{k=1\\ \sum_{k=1}^{\infty}}}^{\infty} a_k \ +\sum_{\substack{k=1\\ k}}^{\infty} b_k &= \end{array}$ $-\mathbf{c}*\sum_{k=1}^{\infty}\mathbf{a_k}=\sum_{k=1}^{\infty}\mathbf{c}*\mathbf{a_k}$
- $\exists N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $\begin{array}{l} \bullet \ (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \ \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0 \end{array}$

Konvergenzkriterien

CAUCHY

$$\Leftrightarrow (\sum_{k=1}^n a_k)_{n\in\mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^\infty a_k)_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0:$$

$$|\sum_{k=m+1}^n a_k| \leq \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{div.}}$$

Beschränkt $a_n > 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{beschr.} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{konv.}$$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

Quotient $a_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \begin{cases} <1 \to (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \\ >1 \to (\sum_{n=1}^{\infty} a_n)_{\text{div.}} \end{cases}$$

Wurzel $a_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \sqrt[n]{a_n} \begin{cases} <1 \to (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \\ >1 \to (\sum_{n=1}^{\infty} a_n)_{\text{div.}} \end{cases}$$

$$(\sum_{n=1}^{\infty} |a_n|)_{\text{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\text{konv.}}$$

Grenzwert $a_n, b_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{a_n}{b_n} > \mathbf{0} \Rightarrow$$

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} b_n)_{\text{konv.}}$$

Exponentialfunktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

- $\exp(1) = e \approx 2,71828 \notin \mathbb{Q}$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

$$\exp(x) * \exp(y) = \exp(x + y)$$

CAUCHY-Produkt

$$(\sum_{n=0}^{\infty} a_n) * (\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k * b_{n-k}$$

- $\exp(x) > 0$
- $\frac{1}{\exp(x)} = \exp(-x)$
- $x < y \Rightarrow \exp(x) < \exp(y)$
- $\exp(r * x) = (\exp(x))^r$
- $\exp(r) = e^r$

Algorithmen auf Datenstrukturen

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Problemlösung.

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Sprache, Pseudocode, Mathematische Ausdrücke, Quellcode, Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilpro-

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösungen

Effizienz

Raum/Zeit-Tradeoff: schnell + großvs. klein + langsam.

Programmlaufzeit/-allokationen	Komplexität
Einfluss äußerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- Best-case C_B
- Average-case C_A
- Worst-case C_W

Asymptotische Zeit-/Speicherkomplexität

Groß-O-Notation Kosten $C_f(n)$ mit $q: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n > n_0$

Untere Schranke $\Omega(f)$ $C_f(n) > c * q(n)$

Obere Schranke
$$O(f)$$

 $C_f(n) \le c * g(n)$

Exakte Schranke
$$\Theta(f)$$

$$C_f(n) \in \Omega(f) \cap O(f)$$
Polynom k ten Grades $\in \Theta(n^k)$

(Beweis: q und c finden)

Groß-O	Wachstum	Klasse		
O(1)	Konstant			
$O(\log n)$	Logarithmisch			
O(n)	Linear		bar	
$O(n \log n)$	Nlogn		lösbar	
$O(n^2)$	Quadratisch	Polynomiell $O(n^k)$		
$O(n^3)$	Kubisch	Polynomieli $O(n^n)$		
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$		
O(n!)	Fakultät		hart	
$O(n^n)$				

Rechenregeln

Elementare Operationen, Kontrollstr. $\in \mathbf{O}(1)$

Schleifen $\in i$ Wiederholungen * O(f)teuerste Operation

Abfolge O(q) nach O(f) $O(\max(f;q))$

Rekursion $\in k$ Aufrufe * O(f) teuerste Operation

Mastertheorem $a > 1, b > 1, \Theta > 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k * \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling Runden

Floor |x| nach unten

Ceiling [x] nach oben

Suchverfahren

Lineare Liste endlich, geordnete (nicht sortierte) Folge n Elemente $L := [a_0, \ldots, a_n]$ gleichen Typs.

Array Sequenzielle Abfolge im Speicher, statisch, Index O(1), schnelle Suchverfahren

$$\begin{array}{lll} \textbf{Sequenziell} & C_A(n) &=& \frac{1}{n} * \sum^n i &=& \\ \frac{n+1}{2} \in O(n) & & \\ & \textbf{Algorithm: Sequential Search} \\ & \textbf{Input: Liste } L_i \texttt{Predikat } x \\ & \textbf{Output: Index } i \text{ von } x \\ & \text{for } i \leftarrow 0 \text{ to } L.len - 1 \text{ do} \\ & & \text{if } x = L[i] \text{ then} \\ & & \text{end} \end{array}$$

Auswahlproblem Finde *i*-kleinstes Element in unsortierter Liste $\in \Theta(n)$

```
\begin{aligned} & \text{Algorithm: } i\text{-Smallest Element} \\ & \text{Input: Unsortierte Liste } L, \text{Level } i \\ & \text{Output: Kleinstes Element } x \\ & p \leftarrow L[L.len-1] \\ & \text{for } k = 0 \text{ to } L.len-1 \text{ do} \\ & \text{ if } L[k]  p \text{ then} \\ & \mid P \text{ush} (L > , L[k]) \\ & \text{ end} \end{aligned} & \text{end} & \text{ if } L[k] > p \text{ then} & \mid P \text{ ush} (L > , L[k]) \\ & \text{ end} & \text{ if } L < .len = i-1 \text{ then} & \text{ return } p \\ & \text{ if } L < .len > i-1 \text{ then} & \text{ return } i\text{-Smallest Element } L < \\ & \text{ if } L < .len < i-1 \text{ then} \\ & \text{ return } i\text{-Smallest Element} (L > , \\ & \text{ if } L < .len < i-1 \text{ then} \end{aligned}
```

Sortierte Listen

return

Binär
$$C_W(n) = \lfloor \log_2 n \rfloor + 1, C_A(n) \approx \log_2 n \in O(\log n)$$

```
Algorithm: Binary Search Input: Sortierte Liste L, Predikat x Output: Index i von x if L.len = 0 then | return - 1 else | m \leftarrow \lfloor \frac{L.len}{2} \rfloor if x = L[m] then | return m if x < L[m] then | return m if x < L[m] then | L[n] = L[m] if x > L[m] then | L[n] = L[m] if x > L[m] then | return m + 1 + Binary Search | L[m] = L[m] then | return m + 1 + Binary Search | L[m] = L[m]
```

Sprung Kosten Vergleich *a*, Sprung *b* mit optimaler Sprungweite:

$$m = \left\lfloor \sqrt{(\frac{a}{b})*n)} \right\rfloor$$

$$C_A(n) = \frac{1}{2} (\lceil \frac{n}{m} \rceil * a + m * b) \in O(\sqrt{n}) \in O(n)$$

```
Algorithm: Jump Search Input: Sortierte Liste L, Predikat x Output: Index i von x m \leftarrow \lfloor \sqrt{n} \rfloor while i < L. I.en do  \begin{matrix} i \leftarrow i + m \\ if x < L[i] \text{ then} \end{matrix}   \begin{matrix} if x < L[i] \text{ then} \end{matrix}   \begin{matrix} [L[i-m], \ldots, L[i-1]] \end{matrix}  end end end return -1
```

- Rekursive Sprungsuche $\in O(\sqrt[k]{n})$
- Partitionierung in Blöcke m möglich

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Input: Sortierte Liste L, Predikat x Output: Index i von x while x > L[i] do $i \leftarrow 2 * i$ end return Search $[L[i/2], \ldots, L[i-1]]$

• Unbekanntes n möglich

Interpolation
$$C_A(n) = 1$$
 $\log_2 \log_2 n$, $C_W(n) \in O(n)$

 $\begin{aligned} & \textbf{Algorithm: } \textbf{Search position} \\ & \textbf{Input: } \textbf{Listengrenzen} \left[u, \, v \right] \\ & \textbf{Output: } \textbf{Such position} \, p \\ & \textbf{return} \left\lfloor u + \frac{x - L\left[u \right]}{L\left[v \right] - L\left[u \right]} \left(v - u \right) \right\rfloor \end{aligned}$

Algorithm: Interpolation Search

$$\begin{aligned} & \text{Input: Sortierte Liste } [L[u], \dots, L[v]], \text{Predikat } x \\ & \text{Output: Index } i \text{ von } x \\ & \text{if } x < L[u] \lor x > L[v] \text{ then} \\ & \text{return} - 1 \\ & p \leftarrow \text{Searchposition}(u, v) \\ & \text{if } x = L[p] \text{ then} \\ & \text{return } p \\ & \text{if } x > L[p] \text{ then} \\ & \text{return Interpolation Search}(p+1, v, x) \\ & \text{else} \\ & \text{length} \end{aligned}$$

Häufigkeitsordnungen mit Zugriffswahrscheinlichkeit p_i : $C_A(n) = \sum_{i=0}^n i * p_i$

Frequency-count Zugriffszähler pro Element

Transpose Tausch mit Vorgänger

Move-to-front

Verkettete Listen

Container Jedes Element
$$p$$
 ist in der Form $p \to (\text{key}) \mid \text{value} \mid \text{next}$. Index $\in O(n)$

Löschen $\in O(1)$

Algorithm: Delete

· desh. sehr dynamisch

Suchen
$$C_A(n) = \frac{n+1}{2} \in O(n)$$

Algorithm: Search Linked List

 $\begin{array}{ll} \textbf{Input:} \ \text{Verkettete Liste L, Predikat x} \\ \textbf{Output:} \ \text{Zeiger p and x} \\ p \leftarrow L \ \text{.head } \textbf{while } p \rightarrow \textit{value} \neq x \ \textbf{do} \\ | p \leftarrow p \rightarrow \text{next} \\ \textbf{end} \\ \textbf{end} \\ \textbf{return } p \\ \textbf{return } p \\ \textbf{total } \end{array}$

Doppelt Verkettet Zeiger auf Vorgänger (key) | value | prev | next

- Bestimmung des Vorgängers $\in O(1)$ statt O(n)
- Höherer Speicheraufwand

Skip

- Zeiger auf Ebene i zeigt zu nächstem 2ⁱ Element
- Suchen $\in O(\log n)$

Perfekt Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.)

 $P(h) = \frac{1}{2^{h+1}}$: Einfügen, Löschen $\in O(\log n)$

Spezielle Listen

ADT "Abstrakte Datentypen"

Stack $S = |_{n}TOP^{n}, \cdots$ Operationen nur auf letztem Element $\in O(1)$

Queue Q = || "HEAD", \cdots , "TAIL" Vorne Löschen, hinten einfügen $\in O(1)$

Priority Queue $P = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \\ a_0 & a_1 & \cdots & a_n \end{bmatrix}$ Jedes Element hat Priorität; Entfernen von Element mit höchster

("MIN") Priorität

Sortierverfahren

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I \to I$ (Permutation), sodass $K_{\pi(i)} \le K_{\pi(i+1)}$

mit Optimierung nach geringen

- ullet Schlüsselvergleichen C
- Satzbewegungen *M*

Eigenschaften

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation *Stabil* vs. *instabil*: Vorherig relative Reihenfolge bleibt erhalten

Speicher *In situ* vs. *ex situ*: Zusätzlicher Speicher notwendig

Lokal *Intern* vs. *extern*: Hauptspeicher oder Mischung vorsortierter externer Teilfolgen

Ordnung $\forall x, y \in X$

Reflexiv $x \leq x$

Antisym. $x \le y \land y \le x \Rightarrow x = y$

Transitiv $x \le y \land y \le z \Rightarrow x = z$

Total (Vollständig) $x \le y \lor y \le x$

(ohne Total: "Halbordnung")

Grad der Sortierung

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{aligned} & \text{inv}(L) := |\{(i,j) \mid \\ & 0 \leq i < j \leq n-1, \\ & L[i] \geq L[j]\}| \end{aligned}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist

$$\begin{aligned} & \operatorname{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$\begin{aligned} \operatorname{las}(L) &:= \max\{r.\operatorname{len} \mid \\ & r \text{ ist Run in } L\} \\ \operatorname{rem}(L) &:= L.\operatorname{len} - \operatorname{las}(L) \end{aligned}$$

Einfache Sortierverfahren $O(n^2)$

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

 $\label{eq:algorithm: Insertionsort} \begin{tabular}{ll} \textbf{Algorithm: Insertionsort} \\ \textbf{Input: Liste } L \\ \textbf{Output: Sorticate Liste } L \\ for $i \leftarrow 1$ to $L.len-1$ do \\ if $L[i] < L[i-1]$ then $temp \leftarrow L[i]$ $j \leftarrow t \\ while $temp \leftarrow L[j-1] \land j > 0$ do $ \\ L[j] \leftarrow L[j-1] \end{cases} $j \leftarrow temp$ end $t[j] \leftarrow temp$ and $t[j] \leftarrow temp$$

Bubble Vertausche benachbarte Elemente die nicht in Sortierordnung sind, durchlaufe bis nichts vertauscht wird. *Achtung:* Die hinteren Elemente können im Durchlauf ignoriert werden!

```
Algorithm: Bubblesort
Input: Liste L
\hat{\text{Output:}} Sortierte Liste L
i \leftarrow L.len
swapped \leftarrow 1
while swapped do
       swapped \leftarrow 0
       for i \leftarrow 0 to i-2 do
              if L[j] > L[j+1] then
| Swap L[j], L[j+1]
                     swapped \leftarrow 1
```

Verbesserte Sortierverfahren

 $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden. Im letzten Schritt dann Insertionsort ($h_t = 1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

```
Algorithm: Shellsort
Input: Liste L, Absteigende Liste von Sprunggrößen H
Output: Sortierte Liste L
foreach h in H do
       for i \leftarrow h to L.len - 1 do
              temp \leftarrow L[i]
              for j \leftarrow i; temp < L[j-h] \land j \ge h;
               j \leftarrow j - h \text{ do} 
| L[j] \leftarrow L[j - h]
              L[j] \leftarrow \text{temp}
       end
```

Quick Rekursiv: Pivot-Element in Merge Zerlege Liste in k Teile, sor-Zerlegung: Durchlauf von Links bis ge). $L[i] \geq x$ und von Rechts bis $L[j] \leq x$, dann tauschen.

```
Algorithm: Quicksort
Input: Liste L, Indices l, r
Output: L, sortiert zwischen l und r
if l \geq r then
      return
i \leftarrow l
j \leftarrow r
\mathrm{piv} \leftarrow L[\lfloor \frac{l+r}{2} \rfloor]
       while L[i] < piv do
       while L[j] > piv do
      end
      if i \leq j then
            Swap L[i], L[j]
            i + +
            j - -
while i \leq j;
Quicksort (L, l, j)
Quicksort (L, i, r)
```

Turnier Liste also Binärbaum, bestimme $\min L$ durch Austragen des Turniers, entferne Sieger und wiederhole von Siegerpfad aus.

Heap Stelle Max-Heap (größtes Element in der Wurzel) her, gib Wurzel aus under ersetze mit Element ganz rechts in unterster Ebene.

```
Algorithm: Max-Heapify
Input: Liste L, Index i der MHE widerspricht und
        \forall j > i erfüllen MHE
Output: Liste L mit MHE \forall i > i
r \leftarrow 2i + 2
if l < L.len \wedge L[l] > L[i] then
      largest \leftarrow l
else
      largest \leftarrow i
end
if r < L.len \wedge L[r] > L[largest] then
      largest \leftarrow r
if largest \neq i then
       Swap L[i], L[largest]
      Max-Heapify L, largest
Algorithm: Build-Max-Heap
Input-Liste L.
Output: Liste L mit MHE
\begin{array}{ccc} & \text{for } i \leftarrow \lfloor \frac{L.len}{2} \rfloor - 1 \text{ to } 0 \text{ do} \\ \mid & \text{Max-Heapify } L, i \end{array}
Algorithm: Heapsort
Input: Liste L
Output: Sortierte Liste L
Build-Max-Heap L
for i \leftarrow L \cdot len - 1 to 1 do
      Swap L[0], L[i]
       L.len - -
       Max-Heapify L, 0
```

der Mitte, Teillisten $L_{<}$, $L_{>}$, sodass tiere diese (mit Mergesort) und ver- $\forall l_{<} \in L_{<} \forall l_{>} \in L_{>}: l_{<} < x < L_{>}.$ schmelze die sortierten Teillisten (mer-

```
Input: Liste L mit L[l\ldots m-1] und L[m\ldots r]
        sortiert, Indices l, m, r
Output: Liste L mit L[1 ... r] sortiert
for i \leftarrow 0 to r - l do
       \begin{array}{l} \text{if } k > r \lor (j < m \land L[j] \leq L[k]) \text{ then} \\ \mid B[i] \leftarrow L[j] \end{array}
               j \leftarrow j + 1
        else
               B[i] \leftarrow L[k]
                k \leftarrow k + 1
        end
\text{for } i \,\leftarrow\, 0 \text{ to } r \,-\, l \text{ do}
      L[l+i] \leftarrow B[i]
Algorithm: Rekursives 2-Mergesort
Input: Liste L, Indices l, r
```

else $m \leftarrow \lfloor \frac{l\!+\!r\!+\!1}{2} \rfloor$ Mergesort L, l, m-1Mergesort L, m, rMerge L, l, m, r

Output: Liste L mit $L[1 \dots r]$ sortiert

if $l \geq r$ then

__return

Iteratives 2-Mergesort

```
Algorithm: Iteratives 2-Mergesort
Input: Liste L
Output: Sortierte Liste L
for k \leftarrow 2; k < n; k \leftarrow k * 2 do
      for i \leftarrow 0; i + k < n; i \leftarrow i + k do
            Merge L, i, \min(i+k-1, n-1)
      end
end
Merge L, 0, n-1, \frac{k}{2}
```

Natürliches Mergesort Verschmelzen von benachbarten Runs (Ausnutzen der Vorsortierung)

Untere Schranke allgemeiner Sortierverfahren

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

(Siehe Pfadlänge auf Entscheidungsbaum)

Spezielle Sortierverfahren O(n)

Distribution Abspeichern der Frequenz jedes Elementes k auf F[k]; Ausgeben jedes Index F[k] mal.

Lexikographische Ordnung Sei A = $\{a_1,\ldots,a_n\}$ ein Alphabet, dass sich mit gegebener Ordnung $a_1 < \cdots <$ a_n wie folgt auf dem Lexikon A* = $\bigcup_{n\in\mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall \forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

(Die antisymmetrische Relation < heißt Lexikographische Ordnung)

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Große Datensätze sortieren

Indirekt Liste von Zeigern Z[i] =i auf die eigentlichen Listenelemente.

Schlüsselvergleiche mit L[Z[i]], Satzbewegungen nur als Zeigertausch in Z. Anschließend linear kopieren.

Extern Zerlegen in m Blöcke, sortieren im Hauptspeicher (Run) der mind. m+1 Blöcke groß ist, verschmelzen der Runs (*m*-Wege-Merge).

Ausgeglichenes 2-Wege-Mergesort

Daten auf Band n, sortieren von Block $r_1 < n$ auf zweites Band und r_2 auf drittes Band, löschen des ersten Bandes und Merge 2rabwechselnd auf erstes (neues $2r_1$) und viertes Band (neues $2r_2$) und wiederholen.

Replacement Selectionsort Lese r <n Elemente auf Priority-Queue Q. Falls $x = \min(Q) \ge \text{letz-}$ tem Element auf zweiten Band, schreibe x aus, sonst schreibe Q auf Band. Wiederhole auf dritten Band und dann merge.

Algo. Stab		l Mem.	Schlüsselvergleiche			Satzbewegungen			
	Stabil		C_B	C_A	C_W	M_B	M_A	M_W	
Selection	×	1	**(n-1)	n+(n-1)	n+(n-1)	3*(n-1)	3*(n-1)	3*(n-1)	_
Insertion	1	1	n-1	$\approx \frac{n\pi(n-1)}{4} + n - \ln n$	$\frac{n + (n-1)}{2}$	2*(n-1)	$\frac{n^2+3n-4}{4}+n-1$	$\frac{n^2+3n-4}{2}$	£.
Bubble	1	1	$\frac{n*(n-1)}{2}$	n+(n-1)	$\frac{n + (n-1)}{2}$	0	3n+(n-1)	$\frac{3n + (n-1)}{2}$	_
			Best-case		Average-case		Worst-case		
Shell	×	-1			-		· · · · · · · · · · · · · · · · · · ·		
Quick	×	logn		n log n	n log n		n ²		8
Turnier	×	2n-1		n log n	n log n		n log r		(ngogn)C
Heap	×	1		n log n	nlogn		n log n n log n		ે
Merge	1	n		$n \log n$	n log n		n log n		
			Untere	Schranke Ω(n log n) für	allgemein	e Sortierverfa	hren		
Distribution	-	n		70.	8 8		n log n,	n ²	Oin