

FR 2818010

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
13 juin 2002 (13.06.2002)

PCT

(10) Numéro de publication internationale
WO 02/47156 A1

- (51) Classification internationale des brevets⁷ : **H01L 21/762**
- (21) Numéro de la demande internationale : **PCT/FR01/03873**
- (22) Date de dépôt international : 7 décembre 2001 (07.12.2001)
- (25) Langue de dépôt : français
- (26) Langue de publication : français
- (30) Données relatives à la priorité : 00/15980 8 décembre 2000 (08.12.2000) FR
- (71) Déposant (*pour tous les États désignés sauf US*) : COMMISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31/33, rue de la Fédération, F-75752 Paris 15ème (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (*pour US seulement*) : ASPAR, Bernard [FR/FR]; 110 Lotissement du Hameau des Ayes, F-38140 Rives (FR). BRUEL, Michel [FR/FR]; Presvert n°9, F-38113 Veurey-Voroize (FR).
- (74) Mandataire : LEHU, Jean; Brevatome, 3, rue du Docteur Lancereaux, F-75008 Paris (FR).
- (81) États désignés (*national*) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

[Suite sur la page suivante]

(54) Title: METHOD FOR PRODUCING A THIN FILM COMPRISING INTRODUCTION OF GASEOUS SPECIES

(54) Titre : PROCÉDÉ DE REALISATION D'UNE COUCHE MINCE IMPLIQUANT L'INTRODUCTION D'ESPECES GAZEUSES

WO 02/47156 A1

(57) Abstract: The invention concerns a method for producing a thin film from a structure, comprising the following steps: (a) producing a stacked structure consisting of a first part designed to facilitate introduction of gaseous species and a second part, the second part including a first free surface and a second surface integral with the first part; (b) introducing gaseous species in the structure, from the first part so as to produce a cleavage zone, the thin film being thus delimited between the first surface of the second part and said cleavage zone; (c) separating the thin film from the rest of the structure at the cleavage zone.

(57) Abrégé : L'invention concerne un procédé de réalisation d'une couche mince à partir d'une structure, comprenant les étapes suivantes (a) réalisation d'une structure empilée formée d'une première partie conçue pour faciliter l'introduction des espèces gazeuses et d'une deuxième partie, la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie, (b) introduction d'espèces gazeuses dans la structure, à partir de la première partie pour créer une zone fragilisée, la couche mince étant ainsi délimitée entre la première face de la deuxième partie et ladite zone fragilisée, (c) séparation de la couche mince du reste de la structure au niveau de la zone fragilisée.

THIS PAGE BLANK (USPTO)

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 818 010

(21) N° d'enregistrement national :

00 15980

(51) Int Cl⁷ : H 01 L 21/301, H 01 L 21/265

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 08.12.00.

(30) Priorité :

(71) Demandeur(s) : COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de caractère scientifique technique et industriel — FR.

(43) Date de mise à la disposition du public de la demande : 14.06.02 Bulletin 02/24.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

(60) Références à d'autres documents nationaux apparentés :

(72) Inventeur(s) : ASPAR BERNARD et BRUEL MICHEL.

(73) Titulaire(s) :

(74) Mandataire(s) : BREVATOME.

(54) PROCEDE DE REALISATION D'UNE COUCHE MINCE IMPLIQUANT L'INTRODUCTION D'ESPECES GAZEUSES.

(57) L'invention concerne un procédé de réalisation d'une couche mince à partir d'une structure, comprenant les étapes suivantes:

a) réalisation d'une structure empilée formée d'une première partie et d'une deuxième partie, la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie,

b) introduction d'espèces gazeuses dans la structure, à partir de la première partie pour créer une zone fragilisée, la couche mince étant ainsi délimitée entre la première face de la deuxième partie et ladite zone fragilisée,

c) séparation de la couche mince du reste de la structure au niveau de la zone fragilisée.

**PROCEDE DE REALISATION D'UNE COUCHE MINCE IMPLIQUANT
L'INTRODUCTION D'ESPECES GAZEUSES**

DESCRIPTION

5

Domaine technique

La présente invention concerne un procédé de réalisation d'une couche mince impliquant l'introduction d'espèces gazeuses. Elle permet en particulier de réaliser des couches d'épaisseur relativement fortes. Elle trouve des applications notamment dans le domaine des semi-conducteurs.

15 **Etat de la technique antérieure**

L'introduction d'espèces gazeuses dans un matériau solide peut être avantageusement réalisée par implantation ionique. Ainsi, le document FR-A-2 681 472 (correspondant au brevet américain N° 5 374 564) décrit un procédé de fabrication de films minces de matériau semiconducteur. Ce document divulgue que l'implantation d'un gaz rare et/ou d'hydrogène dans un substrat en matériau semiconducteur est susceptible d'induire, dans certaines conditions, la formation de microcavités ou de microbulles (encore désignées par le terme "platelets" dans la terminologie anglo-saxonne) à une profondeur voisine de la profondeur moyenne de pénétration des ions implantés. Si ce substrat est mis en contact intime, par sa face implantée avec un raidisseur et qu'un traitement thermique est appliqué à

une température suffisante, il se produit une interaction entre les microcavités ou les microbulles conduisant à une séparation du substrat semiconducteur en deux parties : un film mince semiconducteur adhérant au raidisseur d'une part, le reste du substrat semiconducteur d'autre part. La séparation a lieu au niveau de la zone où les microcavités ou microbulles sont présentes. Le traitement thermique est tel que l'interaction entre les microbulles ou microcavités créées par implantation est apte à induire une séparation entre le film mince et le reste du substrat. On peut donc obtenir le transfert d'un film mince depuis un substrat initial jusqu'à un raidisseur servant de support à ce film mince.

La création d'une zone fragilisée et la séparation au niveau de cette zone peuvent également être utilisées pour la fabrication d'un film mince de matériau solide autre qu'un matériau semiconducteur, un matériau conducteur ou diélectrique, cristallin ou non (voir le document FR-A-2 748 850).

Ce procédé s'avère très intéressant et est utilisé notamment pour obtenir des substrats SOI. Le passage de ces ions peut amener des perturbations pour certaines applications. Cependant, l'épaisseur de film mince obtenu dépend de l'énergie d'implantation que peut fournir les implanteurs. L'obtention de films relativement épais (50 µm par exemple) exige des implanteurs très puissants, ce qui impose une limite pour les épaisseurs disponibles. Il peut en outre présenter un inconvénient en ce sens que le film mince

obtenu a été traversé par les ions destinés à former les microcavités.

Le document FR-A-2 738 671 (correspondant au brevet américain N° 5 714 395) divulgue un procédé 5 utilisant également l'implantation ionique pour créer une zone fragilisée qui permet, grâce à un traitement postérieur, d'obtenir la séparation d'une couche superficielle d'avec le reste d'un substrat initial. Selon ce document, l'implantation ionique est effectuée 10 à une profondeur supérieure ou égale à une profondeur minimum déterminée pour que le film mince obtenu soit rigide après sa séparation d'avec le reste du substrat initial. On entend par film rigide un film autoporté, c'est-à-dire indépendant mécaniquement et pouvant être 15 utilisé ou manipulé directement.

Exposé de l'invention

Pour remédier à ces inconvénients, la 20 présente invention propose d'implanter (ou d'introduire) les espèces gazeuses par la face arrière du substrat, c'est-à-dire par la face du substrat opposée au film ou couche mince désirée. Pour cela, il faut que le substrat soit "transparent aux ions" du 25 côté de sa face arrière.

L'invention a donc pour objet un procédé de réalisation d'une couche mince à partir d'une structure, le procédé impliquant l'introduction d'espèces gazeuses pour créer une zone fragilisée 30 conduisant à une séparation de la structure au niveau de cette zone fragilisée, le procédé étant caractérisé en ce qu'il comprend les étapes suivantes :

- a) réalisation d'une structure empilée formée d'une première partie et d'une deuxième partie, la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie,
- 5 b) introduction d'espèces gazeuses dans la structure, à partir de la première partie pour créer une zone fragilisée, la couche mince étant ainsi délimitée entre ladite première face libre de la deuxième partie et ladite zone fragilisée,
- 10 c) séparation de la couche mince du reste de la structure au niveau de la zone fragilisée.

De préférence, l'introduction d'espèces gazeuses est réalisée par implantation ionique au travers de la face libre de la première partie.

15 L'introduction d'espèces gazeuses peut créer une zone fragilisée dans la première partie, dans la deuxième partie ou à l'interface entre la première partie et la deuxième partie.

20 La première partie peut comprendre un matériau à forte porosité ou à faible pouvoir d'arrêt pour les espèces gazeuses ou d'épaisseur correspondant à la profondeur de pénétration des espèces gazeuses dans cette première partie.

25 L'introduction d'espèces gazeuses étant réalisée par implantation ionique, la première partie peut comprendre un support transparent aux espèces gazeuses implantées, c'est-à-dire un support présentant des ouvertures aux espèces gazeuses implantées, le rapport de la surface totale des ouvertures par rapport 30 à la surface du support étant tel que la séparation peut se produire au niveau de la zone fragilisée créée.

Le support peut être une grille, la première partie comprenant aussi un film déposé sur la grille et solidaire de la deuxième partie.

La première partie peut être un film 5 autoporté initialement posé sur un support, la deuxième partie étant formée sur la première partie par croissance pour fournir une structure manipulable. La croissance de la deuxième partie peut être réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en 10 phase liquide.

Avantageusement, la première partie comprend une couche superficielle servant de germe pour la croissance de la deuxième partie sur la première partie. La croissance de la deuxième partie peut être 15 réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en phase liquide. L'introduction d'espèces gazeuses peut être menée de façon que la zone fragilisée laisse subsister, après séparation, en surface de la première partie une couche pouvant servir 20 de germe pour faire croître à nouveau une deuxième partie sur la première partie.

Eventuellement, avant l'étape b) ou avant l'étape c), un support intermédiaire est fixé sur la première partie. Après l'étape c), le support 25 intermédiaire peut être éliminé.

La structure peut comprendre une couche destinée à favoriser la séparation, les espèces gazeuses étant introduites dans cette couche.

L'étape de séparation peut être réalisée 30 par apport d'énergie thermique et/ou mécanique à la zone fragilisée.

L'étape de séparation peut mettre en œuvre un apport d'énergie pour initier une action de clivage utilisant un front de clivage se propageant le long de la zone fragilisée. Cette technique est en particulier divulguée par le document WO 98/52 216.

Les espèces gazeuses peuvent être choisies parmi l'hydrogène et les gaz rares, ces espèces pouvant être introduites seules ou en combinaison.

10 Brève description des dessins

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre 15 d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :

- les figures 1A à 1D illustrent un premier mode de réalisation de la présente invention,
- les figures 2A à 2D illustrent un 20 deuxième mode de réalisation de la présente invention.

Description détaillée de modes de réalisation de l'invention

25 Les figures 1A à 1D illustrent un mode de réalisation de l'invention où la première partie de la structure comprend une grille.

La figure 1A est une vue en perspective et en coupe partielle de cette première partie 10. La 30 première partie 10 comprend une grille 11 formée de barreaux dont la section peut être carrée ou rectangulaire. Les barreaux ont par exemple 80 µm de

largeur et peuvent être espacés de quelques centaines de micromètres à quelques millimètres. Suivant les dimensions des barreaux et des espacements qui les séparent, la grille peut servir de raidisseur et permettre la séparation au niveau de la zone implantée sans induire la formation de cloques.

Quand les espacements entre les barreaux sont trop grands et/ou si la profondeur de pénétration des ions n'est pas suffisante pour induire une séparation (on a alors formation de cloques) et conduire à un film autoporté, on peut déposer après l'étape d'implantation une couche qui sert de raidisseur sur la face libre de la première partie.

La grille 11 peut être réalisée par gravure d'une plaquette de Si ou de SiC.

La grille 11 sert de support à un film 12 formé d'une ou plusieurs couches, par exemple de deux couches 13 et 14. Si on désire obtenir à l'issue du procédé une couche mince de silicium monocristallin, la couche 13 peut être en SiO_2 et avoir 1 μm d'épaisseur et la couche 14 peut être en silicium et avoir 2 μm d'épaisseur. Le film 12 peut être obtenu et déposé sur la grille 11 par le procédé divulgué dans le document FR-A-2 738 671 cité plus haut. Le film 12 peut être rendu solidaire de la grille 11 par une technique d'adhésion moléculaire connue de l'homme de l'art. On peut aussi utiliser une colle pour solidariser le film 12 et la grille 11 en s'assurant que la colle ne perturbe pas l'implantation ionique.

La couche 14 peut alors servir à la formation de la deuxième partie de la structure. C'est

ce que montre la figure 1B qui est une vue en coupe transversale de la structure. La deuxième partie 20 est une couche de silicium monocristallin obtenue par croissance à partir de la couche 14 servant de germe.

5 La croissance est par exemple obtenue par une technique de dépôt CVD ou par épitaxie en phase liquide. La deuxième partie 20 peut alors atteindre plusieurs μm , voire quelques dizaines de μm , par exemple 50 μm d'épaisseur.

10 La figure 1C, qui est également une vue en coupe transversale de la structure, illustre l'étape d'implantation ionique effectuée au travers de la grille 11. L'implantation ionique peut consister à planter des ions hydrogène, figurés symboliquement 15 par les flèches 1, avec une dose de $10^{17}\text{H}^+/\text{cm}^2$ et une énergie de 400 keV. Les ions parviennent majoritairement dans la couche 14 en silicium pour y former une zone fragilisée 15.

20 L'introduction d'espèces gazeuses dans une couche de matériau pour constituer une zone fragilisée peut aussi se faire par d'autres méthodes employées seules ou en combinaison et décrites dans le document FR-A-2 773 261.

25 La figure 1D, qui est également une vue en coupe transversale de la structure, illustre l'étape de séparation. La séparation peut avoir lieu par recuit thermique et/ou par utilisation de forces mécaniques. On obtient alors une couche mince 2 entre la face libre 21 de la deuxième partie 20 et l'emplacement initial de 30 la zone fragilisée. La couche initiale 14 est alors scindée en deux sous-couches 14' et 14". La couche

mince 2, d'environ 50 µm d'épaisseur, est récupérée pour être exploitée. Le reste de la structure, constitué de l'empilement grille 11, couche 13 et sous-couche 14" (formant le film 12'), peut être réutilisé 5 comme nouvelle première partie, la sous-couche 14" servant de germe pour la formation d'une nouvelle seconde partie.

Dans cet exemple de réalisation, la zone fragilisée a été créée dans la couche 14 appartenant à 10 la première partie de la structure, la couche mince obtenue comprenant alors la première partie de la structure et une portion de la deuxième partie (la sous-couche 14'). Il entre aussi dans le cadre de la présente invention de créer la zone fragilisée à 15 l'interface des deux parties, auquel cas la couche mince obtenue correspondrait exactement à la deuxième partie de la structure. Cette variante présente un avantage : une zone de défauts créée à cette interface favorise la séparation. Cette zone de défauts peut 20 contenir des défauts cristallins et/ou des microcavités qui vont favoriser la séparation. Il est aussi possible de créer la zone fragilisée dans la deuxième partie de la structure, auquel cas la couche mince obtenue correspondrait à une portion de la deuxième partie.

25 Dans une variante du procédé, l'introduction des espèces gazeuses peut être réalisée pour une énergie d'implantation de 200 keV par exemple. Dans ce cas, avant séparation on rajoute sur la face libre de la première partie une couche qui sert de raidisseur et qui permet la séparation. Cette couche 30

peut être constituée par exemple de 3 µm d'oxyde de silicium.

La deuxième partie de la structure peut aussi être constituée d'un empilement de couches. Elle 5 peut-être, temporairement ou non, fixée à un support intermédiaire.

Il peut être prévu dans la structure une couche spécifique, par exemple réalisée avant la formation de la deuxième partie, destinée à favoriser 10 la séparation au niveau de la zone fragilisée. La couche spécifique peut être une couche de SiGe épitaxiée sur une couche de silicium de la première partie. La deuxième partie est épitaxiée sur la couche de SiGe et l'implantation est réalisée au niveau de la 15 couche de SiGe contrainte. La couche spécifiée peut être une couche de silicium fortement dopée au bore. Un tel matériau permet d'obtenir une séparation à l'aide d'un budget thermique et/ou mécanique plus faible.

Les figures 2A à 2D illustrent un autre 20 mode de réalisation de l'invention où la première partie de la structure est constituée par un film autoporté. Ces figures sont des vues en coupe transversale.

La figure 2A montre un film autoporté 31 25 posé sur un support 30 sans y adhérer. Le film autoporté 31 est par exemple un film de silicium de 5 µm d'épaisseur obtenu par le procédé divulgué dans le document FR-A-2 738 671 cité plus haut. Ce film 31 constitue la première partie de la structure.

30 La figure 2B montre qu'une couche 32 a été formée sur le film 31. La couche 32 peut être une

couche de silicium de 45 µm d'épaisseur, épitaxiée sur la couche 31. La couche 32 constitue la deuxième partie de la structure. On obtient une structure manipulable.

La figure 2C montre la structure qui a été 5 retournée sur son support 30 pour subir l'étape d'implantation ionique. Des ions hydrogène (figurés symboliquement par les flèches 33) sont alors implantés, par exemple pour une dose de $10^{17}\text{H}^+/\text{cm}^2$ et avec une énergie de 500 keV. Dans cet exemple de 10 réalisation, la zone fragilisée est créée à l'interface entre les deux parties 31 et 32. Pour créer cette zone fragilisée, on peut utiliser une coimplantation d'hélium et d'hydrogène par exemple.

La structure est à nouveau retournée sur 15 son support et, par exemple par un traitement thermique ou par un traitement thermique partiel suivi d'une application de forces mécaniques, la séparation entre les parties 31 et 32 est obtenue. On obtient une couche mince constituée par la deuxième partie 32 comme le 20 montre la figure 2D. La partie 31 peut à nouveau être utilisée pour appliquer le procédé de l'invention.

L'invention s'applique à l'obtention de couches minces de différents matériaux. Il est ainsi possible d'obtenir des couches de GaN autoportées pour 25 des applications optoélectroniques ou microélectroniques. Dans ce cas, le film autoporté peut être en SiC. Sur ce film, on peut réaliser une couche épaisse de GaN par exemple par épitaxie à 1050°C. De l'hydrogène est ensuite implanté selon une dose de 30 $10^{16}\text{H}^+/\text{cm}^2$ à 250 keV dans le SiC au voisinage de l'interface avec GaN. A l'aide par exemple d'un

traitement thermique à 850°C, la séparation est obtenue au niveau de la zone implantée. On obtient un film de GaN autoporté muni d'une couche mince de SiC provenant de la séparation. Le reste du film de SiC qui est
5 toujours autoporté peut être recyclé.

REVENDICATIONS

1. Procédé de réalisation d'une couche mince (2,32) à partir d'une structure, le procédé impliquant l'introduction d'espèces gazeuses pour créer une zone fragilisée conduisant à une séparation de la structure au niveau de cette zone fragilisée, le procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
- 10 a) réalisation d'une structure empilée formée d'une première partie (10,31) et d'une deuxième partie (20,32) la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie,
- 15 b) introduction d'espèces gazeuses dans la structure, à partir de la première partie (10,31) pour créer une zone fragilisée (15), la couche mince étant ainsi délimitée entre ladite première face libre de la deuxième partie et ladite zone fragilisée,
- 20 c) séparation de la couche mince (2,32) du reste de la structure au niveau de la zone fragilisée.
2. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses est réalisée par implantation ionique au travers de la face libre de la première partie.
3. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée (15) dans la première partie (10).

4. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée dans la deuxième partie.

5

5. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée à l'interface entre la première partie (31) et la deuxième partie (32).

10

6. Procédé selon la revendication 1, caractérisé en ce que la première partie comprend un matériau à forte porosité ou à faible pouvoir d'arrêt pour les espèces gazeuses ou d'épaisseur correspondant à la profondeur de pénétration des espèces gazeuses dans cette première partie.

7. Procédé selon la revendication 2, caractérisé en ce que la première partie comprend un support transparent aux espèces gazeuses implantées, c'est-à-dire un support présentant des ouvertures aux espèces gazeuses implantées, le rapport de la surface totale des ouvertures par rapport à la surface du support étant tel que la séparation peut se produire au niveau de la zone fragilisée créée.

8. Procédé selon la revendication 7, caractérisé en ce que le support est une grille (11), la première partie (10) comprenant aussi un film (12) déposé sur la grille et solidaire de la deuxième partie (20).

9. Procédé selon la revendication 1,
caractérisé en ce que la première partie (31) est un
film autoporté initialement posé sur un support (30),
5 la deuxième partie étant formée sur la première partie
par croissance pour fournir une structure manipulable.

10. Procédé selon la revendication 9,
caractérisé en ce que la croissance de la deuxième
partie (32) est réalisée par un procédé de dépôt CVD ou
10 un procédé d'épitaxie en phase liquide.

11. Procédé selon la revendication 1,
caractérisé en ce que la première partie (10) comprend
15 une couche superficielle (14,14") servant de germe pour
la croissance de la deuxième partie sur la première
partie.

12. Procédé selon la revendication 11,
20 caractérisé en ce que la croissance de la deuxième
partie est réalisée par un procédé de dépôt CVD ou un
procédé d'épitaxie en phase liquide.

13. Procédé selon l'une des revendications
25 11 ou 12, caractérisé en ce que l'introduction
d'espèces gazeuses est menée de façon que la zone
fragilisée (15) laisse subsister, après séparation, en
surface de la première partie (10) une couche (14")
30 pouvant servir de germe pour faire croître à nouveau
une deuxième partie sur la première partie.

14. Procédé selon la revendication 1, caractérisé en ce que, avant l'étape b) ou avant l'étape c), un support intermédiaire est fixé sur la première partie.

5

15. Procédé selon la revendication 14, caractérisé en ce que, après l'étape c), le support intermédiaire est éliminé.

10

16. Procédé selon la revendication 1, caractérisé en ce que la structure comprend une couche destinée à favoriser la séparation, les espèces gazeuses étant introduites dans cette couche.

15

17. Procédé selon la revendication 1, caractérisé en ce que l'étape de séparation est réalisée par apport d'énergie thermique et/ou mécanique à la zone fragilisée.

20

18. Procédé selon la revendication 1, caractérisé en ce que l'étape de séparation met en œuvre un apport d'énergie pour initier une action de clivage utilisant un front de clivage se propageant le long de la zone fragilisée.

25

19. Procédé selon la revendication 1, caractérisé en ce que les espèces gazeuses sont choisies parmi l'hydrogène et les gaz rares, ces espèces étant introduites seules ou en combinaison.

30

2818010

1 / 3

FIG. 1A

2/3

FIG. 1B

FIG. 1C

FIG. 1D

3 / 3

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

RAPPORT DE RECHERCHE
PRÉLIMINAIRE

 établi sur la base des dernières revendications
 déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10, 31 août 1999 (1999-08-31) & JP 11 126910 A (DENSO CORP), 11 mai 1999 (1999-05-11) -& US 6 191 007 B1 (OHSHIMA HISAYOSHI ET AL) 20 février 2001 (2001-02-20) * colonne 34, ligne 56 - colonne 35, ligne 28; figure 22 *	1-3, 17-19	
A	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02, 26 février 1999 (1999-02-26) -& JP 10 308355 A (DENSO CORP), 17 novembre 1998 (1998-11-17) * abrégé; figures *	1-5, 9-13	
A	EP 0 767 486 A (CANON KK) 9 avril 1997 (1997-04-09) * abrégé; revendications; figures *	1-7, 16-19	
A	"SOI INTERPOSER STRUCTURE" IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, vol. 39, no. 7, 1 juillet 1996 (1996-07-01), pages 191-195, XP000627972 ISSN: 0018-8689 * abrégé; figures *	1, 14, 15	DOMAINES TECHNIQUES RECHERCHÉS (Int.Cl.7) H01L
A, D	EP 0 763 849 A (COMMISSARIAT ENERGIE ATOMIQUE) 19 mars 1997 (1997-03-19) * abrégé; revendications; figures *	1, 14, 15	
A	EP 0 665 588 A (COMMISSARIAT ENERGIE ATOMIQUE) 2 août 1995 (1995-08-02) * abrégé; revendications; figures *	1, 7, 8	
3		Date d'achèvement de la recherche	Examinateur
		21 août 2001	Wirner, C
CATÉGORIE DES DOCUMENTS CITÉS		T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant	
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non écrite P : document intercalaire			

THIS PAGE BLANK (USPTO)