

1 ATGTGGAAATGGATACTGACACATTGTGCCTCAGCCTTCCCCACCTGCCGGCTGCTGC 60
 TACACCTTACCTATGACTGTGTAACACGGAGTCGGAAAGGGGTGGACGGGCCGACGACG
M W K W I L T H C A S A F P H L P G C C
 61 TGCTGCTGCTTTTGTTGCTGTTGGTGTCTCCGTCCTGTCACCTGCCAAGCCCTT 120
 ACGACGACGAAAAACAACGACAAGAACACAGAAGGACAGGGACAGTGGACGGTCGGAA
C C C F L L L F L V S S V P V T C Q A L
 121 GGTCAGGACATGGTGTACCAGAGGGCCACCAACTCTTCTCCTCCTCTCCTCTCCT 180
 CCAGTCCTGTACCACAGTGGTCTCCGGTGGTTGAGAAGAAGGAGGAAGAGGAGAGGA
G Q D M V S P E A T N S S S S S F S S P
 181 TCCAGCGCGGGAAAGGCATGTgCGGAGCTACAATCACCTCAAGGAGATGTCCGCTGGAGA 240
 AGGTCGCGCCCTTCCGTACAcGCCTCGATGTTAGTGGAAAGTTCTACAGGCGACCTCT
S S A G R H V R S Y N H L Q G D V R W R

MATCH WITH FIG. 1B

FIG. 1A

MATCH WITH FIG. 1A

AAGCTATTCTTTACCAAGTACTTCTCAAGATTGAGAAGAACGGGAAGGTCAAGCGGG
241 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 300
TTCGATAAGAGAAAGTGGTTCATGAAAGAGTTCTAACTCTGCCCTCCAGTCGCC

K L F S F T K Y F L K I E K N G K V S G

ACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT
301 -----+-----+-----+-----+-----+-----+-----+-----+ 360
TGGTTCTTCCTCTTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTAGCCTCAA

T K K E N C P Y S I L E I T S V E I G V

GTTGCCGTCAAAGCCATTAACAGCAACTATTACTAGCCATGAACAAGAAGGGGAAACTC
361 -----+-----+-----+-----+-----+-----+-----+-----+ 420
CAACGGCAGTTTCGGTAATTGTCGTTGATAATGAATCGGTACTGTTCTCCCTTGAG

V A V K A I N S N Y Y L A M N K K G K L

TATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGA
421 -----+-----+-----+-----+-----+-----+-----+-----+ 480
ATACCGAGTTTCTTAAATTGTTACTGACATTGACTTCCTCTCCTATCTCCTTTACCT

Y G S K E F N N D C K L K E R I E E N G

MATCH WITH FIG. 1C

FIG.1B

MATCH WITH FIG. 1B

TACAATACTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTG
481 -----+-----+-----+-----+-----+-----+-----+-----+
ATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCCTCGTTACATACACCGTAAC
Y N T Y A S F N W Q H N G R Q M Y V A L

AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCAC
541 -----+-----+-----+-----+-----+-----+-----+
TTACCTTTCTCGAGGTTCTCTCCTGTCTTGTGCTTCCTTTGTGGAGACGAGTG
N G K G A P R R G Q K T R R K N T S A H

TTTCTTCCAATGGTGGTACACTCATAG
601 -----+-----+----- 627
AAAGAAGGTTACCACCATGTGAGTATC
F L P M V V H S *

FIG. 1C

1

50

FGF4 MS.GPGTAAV ALLPAVLLAL LA..... PWAGRGGAA APTAPNGTLE
FGF6 MSRGAGRLQG TLWALVFLGI LV..... GMVVVPSPAG TR.ANNTLLD
FGF5MSL SFLLLLFFSH LILSAWAHGE KRLAPKGQPG PAATDRNPIG
FGF1
FGF2
FGF9 MAPLGEVG NYFGVQDAVP
FGF7 MHKW ILTWILPTLL YRSCF HIICLVGTIS
KGF2 MWKW ILTHCASAFP HLPGCCCCCF LLLFLVSSVP
FGF3 MGL IWLLLLSLL
FGF8 MGSPRSALSC LLLHLLVLCL QAQVRSAAQK RGPGAGNPAD TLGQGHEDRP

51

100

FGF4 AELERRWESL VALSLARLPV AA..QPKEAA VQSGAGDY.. LLGIKRL
FGF6 S...RGWGTL LSRSRAGLAG EI.....AG VNWE SG.Y.. LVGIKRO
FGF5 SSSRQSSSSA MSSSSASSSP AASLGSQLSG LEQSSFQW.. SPSGRRT
FGF1MAEG EITTFTALTE KFN..LPPGN.. YK..KP
FGF2MAAG SITTLPALPE DGGSGAFPPGH.. FK..DP
FGF9 FGNVPVLPVD SPVLLSDHLG QSEAGGLPRG PAVTDLDH.. LKGILRR
FGF7 LACNDMTPEQ M...ATNVNCSSPE RHTRSYDY.. MEGGDIR
KGF2 VTCQALGQDM VSPEATNSSS SSFSSPSSAG RHVRSYNH.. LQ.GDVR
FGF3 PGWPAAGPGA RLRRDAG GRGGVYEH.. L.GGAPR
FGF8 FGQRSRAGKN FTNPAPNYPE EGSKEQRDSV LPKVTQRHVR EQSLVTDQLS

MATCH WITH FIG. 2B

FIG. 2A

MATCH WITH FIG. 2A

101	150
FGF4 RRL.....YC NVGIGFHLQA LPDGRIGGAH ADT.RDSLLE LSPVERGV.V	
FGF6 RRL.....YC NVGIGFHLQV LPDGRISGTH EEN.PYSLLE ISTVERGV.V	
FGF5 GSL.....YC RVGIGFHLQI YPDGKVNGSH EAN.MLSVLE IFAVSQGI.V	
FGF1 KLL.....YC SNG.GHFLRI LPDGTVDGTR DRSDQHIQLQ LSAESVGE.V	
FGF2 KRL.....YC KNG.GFFLRI HPDGRVDGVR EKSDPHIKLQ LQAEERGV.V	
FGF9 RQL.....YC R.T.GFHLEI FPNGTIQGTR KDHSRGFILE FISIAVGL.V	
FGF7 VRR.....LF CRT.QWYLRI DKRGKVKGTO EMKNNYNIME IRTVAVGI.V	
KGF2 WRK.....LF SFT.KYFLKI EKNGKVSGTK KENCPYSILE ITSVEIGV.V	
FGF3 RRK.....LY CAT.KYHLQL HPSGRVNGSL .ENSAYSILE ITAVEVGI.V	
FGF8 RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPFAKLI VETDTFGSRV	

151	200
FGF4 SIFGVASRFF VAMSSKGKLY G.SPFFTDEC TFKEILLPNN YNAYESYKYP	
FGF6 SLFGVRSALF VAMNSKGRLY A.TPSFQEEC KFRETLLPNN YNAYESDLYQ	
FGF5 GIRGVFSNKF LAMSKKGKLH A.SAKFTDDC KFRERFQENS YNTYASAIHR	
FGF1 YIKSTETGQY LAMTDGLLY G.SQTPNEEC LFLERLEENH YNTYISKHH.	
FGF2 SIKGVCANRY LAMKEDGRLL A.SKCVTDEC FFFERLESNN YNTYRSRKY.	
FGF9 SIRGVDSGLY LGMNEKGELY G.SEKLTQEC VFREQFEENW YNTYSSNLYK	
FGF7 AIKGVESEFY LAMNKEGKLY A.KKECNEDC NFKELILENH YNTYAS....	
KGF2 AVKAINSNYY LAMNKKGKLY G.SKEFNNDC KLKERIEENG YNTYAS....	
FGF3 AIRGLFSGRY LAMNKRGRLY A.SEHYSAEC EFVERIHELG YNTYASRLYR	
FGF8 RVRGAETGLY ICMNKKGKLI AKSNGKGKDC VFTEIVLENN YTALQNAKY.	

MATCH WITH FIG. 2C

FIG. 2B

MATCH WITH FIG. 2B

	201	250
FGF4 GM..... FI	ALSKNGKTKK G.. NRVSPTM KVTHFLPRL.
FGF6 GT..... YI	ALSKYGRVKR G.. SKVSPIM TVTHFLPRI.
FGF5 TEKTGREWYV	ALNKRKGAKR GCSPRVKPQH ISTHFLPRFK
FGF1 AEKNWFV	GLKKNGSCKR G.. PRTHYQQ KAILFLPLPV
FGF2 T.. SWYV	ALKRTGQYKL G.. SKTGPQQ KAILFLPMSA
FGF9	HV..... DTGRRYYV	ALNKGDTPRE G.. TRTKRHQ KFTHFLPRPV
FGF7 AKW THNGGEM.FV	ALNQKGIPVR G.. KTKKEQ KTAHFLPMAI
KGF2 FNW QHNGRQM.YV	ALNGKGAPRR G.. QKTRRKNA TSAHFLPMVV
FGF3	TVSSTPGARR	QPSAERLWYV SVNGKGRPRR G.. FKTRRTQ KSSLFLPRVL
FGF8 EGWYM	AFTRKGPRPK G.. SKTRQHQ REVHFMKRLP

	251	300
FGF4
FGF6
FGF5	QSEQPELSFT	VTVPENKNPP SPIKSKIPLS APRKNTNSVK YRLKFREG..
FGF1	SSD.....
FGF2	KS.....
FGF9	DPKVPELYK DILSQS.....
FGF7	T.....
KGF2	HS.....
FGF3	DHRDHEMVRQ LQSGLPRPPG	KGVQPRRRQ KQSPDNLEPS HVQASRLGSQ
FGF8	RGHHTTEQSL RFEFLNYPPF	TRSLRGSQRT WAPEPR.....

MATCH WITH FIG. 2D

FIG. 2C

MATCH WITH FIG. 2C

301

FGF4
FGF6
FGF5
FGF1
FGF2
FGF9
FGF7
KGF2
FGF3	LEASAH
FGF8

FIG.2D

Eggshell gene

GGAATTCCGG	GAAGAGAGGG	AAGAAAACAA	CGGCGACTGG	GCAGCTGCCT	CCACTTCTGA	60		
CAACTCCAAA	GGGATATACT	TGTAGAAGTG	GCTCGCAGGC	TGGGGCTCCG	CAGAGAGAGA	120		
CCAGAACGGTG	CCAACCGCAG	AGGGGTGCAG	ATATCTCCCC	CTATTCCCCA	CCCCACCTCC	180		
CTTGGGTTTT	GTTCACCGTG	CTGTCATCTG	TTTTCAGAC	CTTTTGGCA	TCTAACATGG	240		
TGAAGAAAGG	AGTAAAGAAG	AGAACAAAGT	AACTCCTGGG	GGAGCGAAGA	GCGCTGGTGA	300		
CCAACACCAC	CAACGCCACC	ACCAGCTCCT	GCTGCTGC GG	CCACCCACGT	CCACCATT A	360		
CCGGGAGGCT	CCAGAGGC GT	AGGCAGCGGA	TCCGAGAAAG	GAGCGAGGGG	AGTCAGCCGG	420		
CTTTTCCGAG	GAGTTATGGA	TGTTGGTGCA	TTCACTTCTG	GCCAGATCCG	CGCCCAGAGG	480		
GAGCTAACCA	GCAGCCACCA	CCTCGAGCTC	TCTCCTTGCC	TTGCATCGGG	TCTTACCC TT	540		
CCAGTATGTT	CCTTCTGATG	AGACAATT TC	CAGTGCCGAG	AGTTTCAGTA	CA ATG Met	595		
TGG AAA	TGG ATA	CTG ACA	CAT TGT	GCC TCA	TTT CCC CAC	CTG CCC	643	
Trp Lys	Trp Trp	Ile Leu	Thr His	Cys Ala	Ser Ala	Phe Pro	His Leu Pro	
GGC TGC	TGC TGC	TGC TGC	TTT TTG	TTG CTG	TTC TTG	GTG TCT	TCC GTC	691
Gly Cys	Cys Cys	Cys Cys	Phe Leu	Leu Leu	Phe Leu	Leu Val	Ser Ser Val	
CCT GTC ACC	TGC CAA	GCC CTT	GGT CAG	GAC ATG	GTG TCA	CCA GAG	GCC Pro	739
Val Thr Cys	Gln Ala	Leu Gln	Aly Gln	Asp Met	Val Ser	Pro Glu	Ala	
ACC AAC TCT	TCT TCC	TCC TTC	TCC TCT	CCT CCT	AGC AGC	GCG GGA	AGG	787
Thr Asn Ser	Ser Ser	Ser Ser	Phe Ser	Ser Ser	Pro Ser	Ser Ala	Gly Arg	
CAT GTG CGG	AGC TAC	AAT CAC	CTT CAA	GGA GAT	GTC CGC	TGG AGA	AAG	835
His Val Arg	Ser Tyr	Asn His	Leu Gln	Gly Asp	Val Arg	Trp Arg	Lys	
CTA TTC TCT	TTC ACC	AAG TAC	TTT CTC	AAG ATT	GAG AAG	AAC GGG	AAG	883
Leu Phe Ser	Phe Thr	Lys Tyr	Phe Leu	Lys Ile	Glu Glu	Lys Asn	Gly Lys	
GTC AGC GGG	ACC AAG	AAG GAG	AAC TGC	CCG TAC	AGC ATC	CTG GAG	ATA	931
Val Ser Gly	Thr Lys	Lys Glu	Asn Cys	Pro Tyr	Ser Ile	Leu Glu	Ile	
ACA TCA GTA	GAA ATC	GGA GTT	GTT GCC	GTC AAA	GCC ATT	AAC AGC	AAC	979
Thr Ser Val	Val Glu	Ile Gly	Val Val	Ala Val	Lys Ala	Ile Asn	Ser Asn	
TAT TAC TTA	GCC ATG	AAC AAG	AAG GGG	AAA CTC	TAT GGC	TCA AAA	GAA	1027
Tyr Tyr Leu	Ala Met	Asn Lys	Lys Gly	Lys Leu	Tyr Tyr	Gly Ser	Lys Glu	
TTT AAC AAT	GAC TGT	AAG CTG	AAG GAG	AGG ATA	GAG GAA	AAT GGA	TAC	1075
Phe Asn Asn	Asp Cys	Lys Leu	Lys Glu	Arg Ile	Glu Glu	Asn Gly	Tyr	

FIG.3A

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr	1123
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
TAGAGGAAGG CAACGTTTGT GGATGCAGTA AAACCAATGG CTCTTTGCC AAGAACATGTG GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1276
TTAAAAAGAAA GCCAGCCTT GAAGGTTTT GTATTCACTG CTGACATATG ATGTTCTTT AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAACGTT	1336
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTGTTGT TGTTGTCAAG TTTTGTTTT TAAACCTCTG AGATAGAACT TAAAGGACAT AGAACAACT GTTGAAAGAA CGATCTCGG	1396
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1456
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA TAAACATGTT AGTGTGAAAC TGTTCTAACAA ATACAAATAG TATGGTATGC TTGTGCATT	1516
TGCCTTCATC CCTTTCTATT TCTTCTAACG TTATTTATT AATAGGATGT TAAATATCTT TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTCT TTTTATTCTAG	1576
CACACCACAT GCATGTTCAC GACAAAGTGT TTTAAAAC TGGCGAACAC TTCAAAAATA GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTGCA	1636
CTTCTGCAGT AATAACCAC AACAAATAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG AGATGTCTGC TATCATTGAA AACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2056
GACCAGAAGG CCAAATTCTT CTCTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA AAAAGGAAAA TTAATTGCTA AATACATTAA AATAGCCTAG CCTCATTATT TACTCATGAT	2116
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAC CCTCTGTAAA TTCCACATAA TGCATCTTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2236
	2296
	2356
	2416

FIG.3B

CCCAGGGGCT TAAACTGAGC AAATCAAATA TATACTGGTA TATGTGTAAC CATATACAAA	2476
AACCTGTTCT AGCTGTATGA TCTAGTCCTT ACAAAACCAA ATAAAACCTG TTTTCTGTAA	2536
ATTAAAGAG CTTTACAAGG TTCCATAATG TAACCATATC AAAATTCAATT TTGTTAGAGC	2596
ACGTATAGAA AAGAGTACAT AAGAGTTAC CAATCATCAT CACATTGTAT TCCACTAAAT	2656
AAATACATAA GCCTTATTTG CAGTGTCTGT AGTGATTTA AAAATGTAGA AAAATACTAT	2716
TTGTTCTAAA TACTTTAAG CAATAACTAT AATAGTATAT TGATGCTGCA GTTTATCTT	2776
CATATTCTT GTTTGAAAA AGCATTAT TGTTGGACA CAGTATTTG GTACAAAAAA	2836
AAAGACTCAC TAAATGTGTC TTACTAAAGT TTAACCTTTG GAAATGCTGG CGTTCTGTGA	2896
TTCTCCAACA AACTTATTTG TGTCAACT TAACCAGCAC TTCCAGTTAA TCTGTTATTT	2956
TTAAAAATTG CTTTATTAAG AAATTTTTG TATAATCCCA TAAAAGGTCA TATTTTCCC	3016
ATTCTTCAAA AAAACTGTAT TTCAGAAGAA ACACATTGA GGCACGTCT TTTGGCTTAT	3076
AGTTTAAATT GCATTTCATC ATACTTGCT TCCAACTTGC TTTTGGCAA ATGAGATTAT	3136
AAAAATGTTT AATTGGTGTG GTTGGAAATCT GGATGTTAAA ATTTAATTGG TAACTCAGTC	3196
TGTGAGCTAT AATGTAATGC ATTCCCTATCC AACTAGGTAA TCTTTTTTC CTTTATGTTG	3256
AAATAATAAT GGCACCTGAC ACATAGACAT AGACCACCCA CAACCTAAAT TAAATGTTG	3316
GTAAGACAAA TACACATTGG ATGACCACAG TAACAGCAA CAGGGCACAA ACTGGATTCT	3376
TATTCACAT AGACATTTAG ATTACTAAAG AGGGCTATGT GTAAACAGTC ATCATTATAG	3436
TACTCAAGAC ACTAAAACAG CTTCTAGCCA AATATATTAA AGCTTGCAGA GGCCAAAAAT	3496
AGAAAACATC TCCCCGTCT CTCCCACATT TCCCTCACAG AAAGACAAAA AACCTGCCTG	3556
GTGCAGTAGC TCACACCTGT AATCCCAGCA GTTGGGAGA CTGTGGGAAG ATGGCTTGAG	3616
TCCAGGAGTT CTAGACAGGC CTGAGAAACC TAGTGAGACA TCCTTCTCTT AAACAAAACA	3676
AAACAAAACA AATGTAGCCA TGCCTGGTGG CATATACCTG TGGTCCCAAC TACTCAGGAG	3736
GCTGAAACGG AAGGATCTCT TGGGCCCGAG GAGTTTGAGG CTGCAGTGAG CTATAATCTT	3796
GCCATTGCAC TCCAGCCTGG GTGAAAAGA GCCAGAAAGA AAGGAAAGAG AGAAAAGAGA	3856
AAAGAAAGAG AGAAAAGACA GAAAGACAGG AAGGAAGGAA GGAAGGAAGG AAGGAAGGAA	3916
GGAAGCAAGG AAAGAAGGAA GGAAGGAAAG AAGGGAGGGA AGGAAGGAGA GAGAAAGAAA	3976
GATTGTTGG TAAGGAGTAA TGACATTCTC TTGCATTTAA AAGTGGCATA TTTGCTGAA	4036

FIG.3C

ATGGAAATAG AATTCTGGTC CCTTTGCAA CTACTGAAGA AAAAAAAAAG CAGTTTCAGC 4096
CCTGAATGTT GTAGATTGAA AAAAAAAAAA AAAAAAAACTC GAGGGGGGGC CCGTACCCAA 4156
TTCGCCCTAT AGTGAGTCGT-A 4177

FIG.3D

FIG. 4A

FIG. 4B

KIEKNGKVSGTKKENCPYSILEITSVEIGWAVKAISNNYLLAMN

FIG. 4C

FIG. 4D

NGK GAP PRG QKTR KNTS A HFL P M VHS

FIG. 4E

FIG.5

FIG.6

FIG.7

FIG. 8

1–3 MINIMAL CELL ACCUMULATION, NO GRANULATION
4–6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES
10–12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.9

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION
4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES
7-9 GRANULATION TISSUE, CELLS, FIBROBLASTS, NEW EPITHELIUM
10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.10

ANTI-CYTOKERATIN IMMUNOSTAINING
0-NO CLOSURE
5-SLIGHT TO MODERATE CLOSURE
10-COMPLETE CLOSURE

FIG.11

FIG.12

PCNA SCORING
0-2 SLIGHT PROLIFERATION
3-5 MODERATE PROLIFERATION
6-8 INTENSE PROLIFERATION

FIG.13

PCNA SCORING
0-2 SLIGHT PROLIFERATION
3-5 MODERATE PROLIFERATION
6-8 INTENSE PROLIFERATION

FIG.14

100% of people

ATGAGAGGATCGCATCACCATCACCATCACGGATCCTGCCAGGCTCTGGTC
AGGACATGGTTCTCCGGAAAGCTACCAACTCTTCCTTCCCTTTCTTCCC
CGTCTTCCGCTGGTCGTACGTTCGTCTTACAACCACCTGCAGGGTGACGTT
GTTGGCGTAAACTGTTCTCTTACCAAATACTTCCGTAAAATCGAAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTG
GAGATAACATCAGTAGAAATCGGAGTTGTCGTCAAAGCCATTAACAG
CAACTATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAG
AATTTAACAAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGAT
ACAATACCTATGCATCATTAACTGGCAGCATAATGGAGGCAAATGTAT
GTGGCATTGA_aTGGAAAAGGAGCTCCA_aGGAGAGGACAGAAAACACGAAG
GAAAAACACCTTGCTCACTTCTCCAATGGTGGTACACTCATAG

MRGSIIHHHGSCQALGQDMVSPEATNSSSSFSSPSSAGRHVRSYHLQGD
VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGWAVKAINSN
YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA
LNGKGAPRRGQKTRRKNTSAHFLPMVHS

kgf-2 synthetic cys37 Bam HI
AAAGGATCCTGCCAGGCTCTGGTCAGGACATG

FIG.15

FIG. 16

GLUCOCORTICOID TREATED ANIMALS

FIG.17

FIG. 18

FIG.19A

DAY 10 POSTWOUNDING

FIG. 19B

FIG.20

FIG.21A

FIG.21B

FIG.21C

FIG.22A

FIG.22A-1

FIG.22B

FIG. 22C

ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTCCCCCACCTGCCGGGTTGCTGC 60
 Met Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys

 TGCTGCTGCTTCCTGCTGCTGTTCTGGTTCTGTTCCGGTTACCTGCCAGGCTCTG 120
 Cys Cys Cys Phe Leu Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gln Ala Leu

 GGTCAGGACATGGTTCTCCGAAGCTACCAACTCTTCCTCTTCCTCTTCTTCCCCG 180
 Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Phe Ser Ser Pro

 ACTTCCGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTCGTGGCGT 240
 Thr Ser Ala Gly Arg His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg

 AAACTGTTCTCTTCAACCAAATACTTCCTGAAAATCGAAAAAAACGGTAAAGTTCTGGG 300
 Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys Val Ser Gly

 ACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT 360
 Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val

 GTTGCCTCAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC 420
 Val Ala Val Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu

 TATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGA 480
 Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly

 TACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTG 540
 Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr Val Ala Leu

 AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCAC 600
 Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His

 TTTCTTCCAATGGTGGTACACTCATAG 627
 Phe Leu Pro Met Val Val His Ser *

FIG.23

EQUITY USE ONLY

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGAAGCTACCAACTCTCCTCT 60
MetThrCysGlnAlaLeuGlyGlnAspMetValSerProGluAlaThrAsnSerSerSer

TCCTCTTCTCTCCCCGCTTCCGCTGGCGTCACGTTGTTACAACCACCTGCAG 120
SerSerPheSerSerProSerSerAlaGlyArgHisValArgSerTyrAsnHisLeuGln

GGTGACGTTGTTGGCGTAAACTGTTCTTTACCAAATACTTCCTGAAAATCGAAAAAA 180
GlyAspValArgTrpArgLysLeuPheSerPheThrLysTyrPheLeuLysIleGluLys

AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACA 240
AsnGlyLysValSerGlyThrLysLysGluAsnCysProTyrSerIleLeuGluIleThr

TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAAACAGCAACTATTACTTAGCCATG 300
SerValGluIleGlyValValAlaValLysAlaIleAsnSerAsnTyrTyrLeuAlaMet

AACAAAGAAGGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAG 360
AsnLysLysGlyLysLeuTyrGlySerLysGluPheAsnAsnAspCysLysLeuLysGlu

AGGATAGAGGAAAATGGATACAATACCTATGCATCATTAACGGCAGCATAATGGGAGG 420
ArgIleGluGluAsnGlyTyrAsnThrTyrAlaSerPheAsnTrpGlnHisAsnGlyArg

CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGGACAGAAAACACGAAGG 480
GlnMetTyrValAlaLeuAsnGlyLysGlyAlaProArgArgGlyGlnLysThrArgArg

AAAAACACCTTGCTCACTTCTCCAATGGTGGTACACTCATAG 525
LysAsnThrSerAlaHisPheLeuProMetValValHisSer *

FIG.24A

FIG.24B

ATGACCTGCCAGGCTCTGGTCAGGACATGGTTCTCGGAAGCTACCAACTCTTCC
TCTTCCTCTTCTCTTCCCCGTCTCCGCTGGTCGTACGTTGTTCTTACAACCAC
CTGCAGGGTGACGTTGTTGGCGTAAACTGTTCTTCAACAAATACTTCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCCACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTCAAAGAATTAAACAAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATACAATACTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTTCCAATGGTG
GTACACTCATAG

MTCQALGQDMVSPEATNSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSTKYFLKIE
KNGVSGTKKENCPYSILEITSVEIGVVAVKAINSNNYLAMNKKGKLYGSKEFNNDKL
KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.25

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGTTGGCGT
AAACTGTTCTCTTCAACAAATACTTCTGAAAATCGAAAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATC
GGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAG
GGGAAACTCTATGGCTCAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATA
GAGGAAAATGGATACAATACCTATGCATCTTAACTGGCAGCATAATGGGAGGCAA
ATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGG
AAAAACACCTCTGCTCACTTCTTCCAATGGTGGTACACTCATAG

MAGRHVRSYNHLQGDVRWRKLFSTKYFLKIEKNGVSGTKKENCPYSILEITSVEIGV
VAVKAINSNNYLAMNKKGKLYGSKEFNNDKLKERIEENGYNTYASFNWQHNGRQMYVA
LNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.26

ATGGTTCGTTGGCGTAAACTGTTCTTTACCAAATACTCCTGAAAATCGAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATA
ACATCAGTAGAAATCGGAGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTA
GCCATGAACAAGAAGGGGAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAG
CTGAAGGAGAGGATAGAGGAAATGGATAACAATACCTATGCATCATTAACTGGCAG
CATATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGA
CAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTCCAATGGTGGTACACTCA
TAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAM
NKKGKL YGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTR
RKNTSAHFLPMVVHS.

FIG.27

ATGGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCAT
CCTGGAGATAACATCAGTAGAAATCGGAGTTGCCGTCAAAGCCATTAACAGCA
ACTATTACTTAGCCATGAACAAGAAGGGGAACTCTATGGCTAAAAGAATTAAAC
AATGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATAACAATACCTATGCATC
ATTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG
CTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTCCA
ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAMNKKGL YGSKEFNNDC
KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH
S.

FIG.28

ATGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGT
TGCCGTCAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGAAAC
TCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
AATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTA
TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAA
ACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MENCPYSILEITSVEIGVVAVKAINSNNYLAMNKKGLYGSKEFNNDKLKERIEENGY
NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.29

ATGGTCAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGAAACT
CTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
ATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTAT
GTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAA
CACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MVKAINSNNYLAMNKKGLYGSKEFNNDKLKERIEENGYNTYASFNWQHNGRQMY
VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.30

ATGGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAG
GATAGAGGAAAATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGA
GGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACA
CGAAGGAAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MGKL YGSKEFNNDKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKT
RRKNTSAHFLPMVVHS.

FIG.31

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGGAAAGCTACCAACTCTCC
TCTTCCTCTTCTCTTCCCCGTCTTCGCTGGTCGTACGTTCTTACAACCAC
CTGCAGGGTGACGTTCGTGGCGTAAACTGTTCTTCAACAAATACTTCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGCCGTCAAAGCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAGAATTAAACAAT
GACTGTAAGCTGAAG

MTCQALGQDMVSPEATNSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE
KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL
K

FIG.32

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGGCGT
AAACTGTTCTTCAACAAATACTTCTGAAAATCGAAAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATC
GGAGTTGCCGTCAAAGCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAG
GGGAAACTCTATGGCTCAAAGAATTAAACAATGACTGTAAGCTGAAG

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV
—
VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLK

FIG.33

C-37 To Ser

ATGACCTCTCAGGCTCTGGTCAGGACATGGTTCTCCGAAGCTACCAACTCTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGCGTCACGTTCTTACAACCAC
CTGCAGGGTGACGTTCGTGGCGTAAACTGTTCTCTTACCAAATACTTCCTGAAA
ATCGAAAAAACCGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGCGTCAAAGCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTTCCAATGGTG
GTACACTCATAG

FIG.34

C-106 To Ser

ATGACCTGCCAGGCTCTGGTCAGGACATGGTTCTCCGAAGCTACCAACTCTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGCGTCACGTTCTTACAACCAC
CTGCAGGGTGACGTTCGTGGCGTAAACTGTTCTCTTACCAAATACTTCCTGAAA
ATCGAAAAAACCGTAAAGTTCTGGGACCAAGAAGGAGAACTCTCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGCGTCAAAGCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTTCCAATGGTG
GTACACTCATAG

FIG.35

FIG. 36
WOUND AREA (sq. mm)

EFFECT OF KGF-2 Δ 33 ON NORMAL WOUND HEALING RAT MODEL

TREATMENT GROUPS	WOUND SIZE (mm)	% WOUND CLOSURE	HISTOLOGICAL SCORE (μm)	RE-EPITH. (μm)	BrdU SCORE
NO TREATMENT	25.9 \pm 2.5	58.8 \pm 3.7	6.8 \pm 0.2	1142 \pm 141	3.8 \pm 0.4
BUFFER	25.1 \pm 1.7	60.2 \pm 2.6	6.4 \pm 0.2	923 \pm 61	5.0 \pm 0.4
KGF-2/ Δ 33 (0.1 μg)	22.0 \pm 0.9	65 \pm 1.4	6.8 \pm 0.2	1275 \pm 148	4.6 \pm 0.7
KGF-2/ Δ 33 (0.4 μg)	21.1 \pm 1.4	68.4 \pm 2.4	8.0 \pm 0.5 p=0.0445*	1310 \pm 182	4.2 \pm 0.7
KGF-2/ Δ 33 (1.0 μg)	19.9 \pm 1.5	66.2 \pm 2.1	8.4 \pm 0.4 p=0.0159*	1389 \pm 115 p=0.0074†	3.3 \pm 0.25 p=0.0217†
KGF-2/ Δ 33 (4.0 μg)	18.1 \pm 1.6 p=0.0398* p=0.0200†	71.2 \pm 2.6 p=0.0367* p=0.0217†	8.5 \pm 0.3 p=0.0047* p=0.0445†	1220 \pm 89 p=0.0254†	5.3 \pm 0.9

FIG. 37

FIG.38

FIG.39

FIG.40

FIG. 41

FIG.42A

FIG.42B

EFFECT OF KGF-2 Δ 33 ON PAF-INDUCED PAW EDEMA IN LEWIS RATS

FIG.43

EFFECT OF KGF-2 Δ 33 ON SURVIVAL OF WHOLE BODY IRRADIATED Balb/c MICE

FIG.44

FIG.45

FIG.46

FIG.47

FIG.48

FIG.49

FIG. 50

1 AAGCTTAAAAAACTGCAAAAAATAGT ⁻¹⁰ TTGACT ⁻³⁵ GTCGCGGATAACAAT Operator 1

50 TAAGAT ⁻¹⁰ GTACCCATTGTCGCGGATAACAAT ^{Operator 2} TTCACACATTAA

94 ^{S/D} AGAGGAGAAATT CATATG

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

PROLIFERATION OF HEPATOCYTES FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

FIG. 57

PROLIFERATION OF PANCREATIC CELLS FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

FIG. 58

FIG. 59

FIG. 60