《应用多元统计分析》(第五版) JMP13.1 的应用

王学民

说明:本文侧重于 JMP13.1 的菜单操作,其输出结果有许多与 SAS9.3 的输出结果相同或类似,对于这些部分本文未作输出说明,可参见《应用多元统计分析》(原《应用多元分析》,第五版,王学民编著)各章附录1(SAS的应用)或书中的有关例题。

读者可从

https://anyshare.sufe.edu.cn/#/link/B9F2F217DF9A179950462AF6B590145F?path=下载《应用多元统计分析》(第五版)配书资料,下载的资料中有一个"《应用多元统计分析》(第五版) Excel 数据"文件夹,本文均从该文件夹中打开数据表。

在主窗口(见图 1)中,选择<u>文件</u>⇒<u>打开····</u>,即出现如图 2 所示的"打开数据文件"窗口,选择窗口左边列表框中 Excel 数据所在的文件夹,双击窗口中的数据表名即出现"Excel 导入向导"窗口(见图 3),在该窗口中点击导入,即可打开数据表。

图 1

图 2

图 3

第三章 多元正态分布

一、对例 3.4.2 进行相关分析等

打开 <u>examp3.4.2.xlsx</u> 数据表(见图 3.1) ⇒ 选择<u>分析</u> ⇒ <u>多元方法</u> > ⇒ <u>多元</u>,随即出现 "多元与相关性"对话框(见图 3.2) ⇒ 选择 <u>x1,x2,x3,x4,x5,x6,x7</u>,并点击 <u>Y,列</u>(或将其拖入 "Y,列"列表框内) ⇒ <u>确定</u> ⇒ 在出现的 "多元"窗口中(见图 3.3),点击 "多元"旁的红色小三角或在右边空白处点击右键,出现图中菜单,做该菜单中的选择可得相应的结果。

图 3.1

# 多元与相关性 - JMP Pro		_	\square \times
多列配对且高度相关			
_选择列 ————————————————————————————————————	· 为选定列指定角色 ————		操作 ——
▼75月	Y,列	<u> </u>	取消
▲x6 ▲x7 估计方法 默认 ×	频数 可选,数值 依据 の洗		重新调用 帮助
矩阵格式 正方形 >			↑ □ ▼

图 3.2

图 3.3

图 3.3 (续)

注: "偏相关性"中的值是给定其他5个变量后求得的两个变量间的偏相关系数。

在图 3.3 (续)中,点击"散点图矩阵"旁的红色小三角菜单,做图中选择。在图 3.3 的菜单中,选择三维椭圆图,出现如图 3.4 所示的对话框,点击<u>确定</u>,得到可旋转的三维椭圆图,如图 3.5 所示。

图 3.4

图 3.5

二、对 pic3. 1. 2. xlsx 数据表作二元正态密度椭圆线

打开 <u>pic3.1.2.xlsx</u> 数据表 \Rightarrow <u>分析</u> \Rightarrow <u>以 X 拟合 Y</u> \Rightarrow 在图 3.6 中选择 <u>y \Rightarrow Y, 响应</u>; 选择 <u>x</u> \Rightarrow X, 因子 \Rightarrow <u>确定</u> \Rightarrow 在随即出现的窗口中(见图 3.7),点击"二元拟合"旁的红色小三角,做该图中菜单的选择 \Rightarrow 在弹出的对话框中(见图 3.8),填入概率值 \Rightarrow <u>确定</u>,重复操作,在图 3.8 中分别填入概率值:0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,生成图 3.9。

图 3.6

图 3.7

图 3.8

图 3.9

三、对 pic3. 1. 2. xlsx 数据表作二元密度等高线

打开 <u>pic3.1.2.xlsx</u> 数据表 \Rightarrow <u>图形</u> \Rightarrow <u>等高线图</u> (见图 3.10) \Rightarrow 在图 3.11 中,选择 <u>x</u>,<u>y</u> \rightarrow <u>X</u>;选择 <u>f</u> \rightarrow <u>Y</u> \Rightarrow <u>确定</u>。随即出现图 3.12。

图 3.10

注: 该数据表中(x,y)为 10000 对独立的二元正态分布随机数, f 为其密度值。

图 3.11

图 3.12

在图 3.12 中右侧的内方框与外方框之间点击右键,在弹出菜单中选择<u>显示数据点</u>(见图 3.13)⇒在右侧的内方框内点击右键,作图 3.14 中的选择。可见,散点呈椭圆状,并且沿着椭圆线点的密集程度相同。

图 3.13

图 3.14

第四章 多元正态总体的统计推断

一、对例 4.2.1 进行检验

打开 <u>examp4.2.1.xlsx</u> 数据表 ⇒ 选择<u>分析</u> ⇒ <u>多元方法</u> > ⇒ <u>多元</u>,随即出现"多元与相关性"对话框(类似于图 3.2) ⇒ 选择 <u>x1,x2,x3</u>,并点击 <u>Y,列</u> ⇒ <u>确定</u> ⇒ 在出现的"多元"窗口中(类似于图 3.3),点击"多元"旁的红色小三角(见图 4.1) ⇒ 选择 <u>Hotelling T²</u> 检验 ⇒ 在出现的"为原假设指定均…"窗口中填入图 4.2 中的数据 ⇒ 确定,即生成图 4.3。

图 4.1

图 4.2

图 4.3

二、对例 4.5.1 进行一元方差分析

打开 <u>examp4.5.1.xlsx</u> 数据表 \Rightarrow 在变量 <u>g</u> 处点击右键,弹出一菜单(见图 4.4) \Rightarrow <u>列信</u> 息…,出现如图 4.5 所示的对话框 \Rightarrow 在"建模类型"列表框中,选择名义型(或有序型) \Rightarrow

确定,变量 g 即设置为名义型(或有序型)。

图 4.4

图 4.5

在图 4.4 中,选择<u>分析</u> \Rightarrow <u>以 X 拟合 Y</u>,出现"以 X 拟合 Y"对话框(见图 4.6) \Rightarrow 选择 <u>x1,x2,x3,x4 \Rightarrow Y,响应</u>;选择 <u>g \Rightarrow X,因子</u> \Rightarrow <u>确定</u>,即出现图 4.7 \Rightarrow 按住 <u>Ctrl</u> 键(该操作可使对这四个变量所作的分析同时进行)的同时点击"单因子分析"旁的红色小三角或右边空白处点击右键,做图中的选择。

图 4.6

图 4.7

注: 这里的输出省略了关于 x2, x3, x4 的一元方差分析结果。

三、对例 4.5.1 进行多元方差分析

类似于图 5.10 的操作,选中"显示典型详细信息"即可,生成图 4.8。

检验	值	近似的F值	分子自由度	分母自由度	概率>F
Wilks Lambda	0.6663595	3.0379	8	108	0.0040*
Pillai 迹	0.3612359	3.0309	8	110	0.0041*
Hotelling-Lawley	0.4592792	3.0673	8	74.856	0.0048*
Roy 最大根 ´	0.3360454	4.6206	4	55	0.0027*

图 4.8

第五章 判别分析

一、对书中例 5.2.3 中的数据作 Bayes 判别

打开 <u>examp5.2.3.xlsx</u> 数据表 ⇒ 将变量 g 设置为名义型(或有序型) ⇒ 在图 5.1 中,选择分析 ⇒ <u>多元方法</u> ≥ ⇒ <u>判别</u>,即出现 "判别"对话框(见图 5.2) ⇒ 选择 <u>x1,x2,x3,x4 → Y,协变量</u>;选择 <u>g → X,类别</u>;在 "判别方法"列表框中,使用缺省的<u>线性,共同协方差</u> ⇒ <u>确</u> 定 ⇒ 在出现的窗口中,点击 "判别分析"旁的红色小三角(见图 5.3),作菜单中的选择,即得到图 5.4。

图 5.1

图 5.2

💸 Sheet - g - 判别 - JMP Pro

图 5.3

图 5.4

A A A A A A A A A A A A A A A A A A A		
△各组概率		
行 实际值	1	2
1 1	0.99608	0.00392
2 1	0.97009	0.02991
3 1	0.78928	0.21072
4 1	0.79365	0.20635
5 1	0.89276	0.10724
6 1	0.92845	0.07155
7 1	0.78538	0.21462
8 1	0.82425	0.17575
9 1	0.69340	0.30660
10 1	0.90770	0.09230
11 1	0.99343	0.00657
12 1	0.61406	0.38594
13 1	0.57395	0.42605
14 1	0.98402	0.01598
15 1	0.30883	0.69117
16 1	0.17892	0.82108
17 1	0.82255	0.17745
18 1	0.79444	0.20556
19 1	0.82884	0.17116
20 1	0.43932	0.56068
21 1	0.98171	0.01829
22 2	0.10890	0.89110
23 2	0.47439	0.52561
24 2	0.02261	0.97739
25 2	0.20644	0.79356
26 2	0.01253	0.98747
27 2	0.01204	0.98796
28 2	0.28771	0.71229
29 2	0.38979	0.61021
30 2	0.16149	0.83851
31 2	0.42511	0.57489
32 2	0.33913	0.66087
33 2	0.41568	0.58432
34 2	0.90494	0.09506
35 2	0.16346	0.83654
36 2	0.30369	0.69631
37 2	0.15422	0.84578
38 2		0.67942
39 2	0.11028	0.88972
40 2	0.37986	0.62014
41 2	0.33705	0.66295
42 2	0.00401	0.99599
43 2		0.77524
44 2		0.96494
45 2		0.88101
46 2	0.00096	0.99904

Δ	到各组	1的平方	距离	
	行	实际值	1	2
	1	1	11.65965	22.735637
	2	1	9.8612002	16.819554
	3	1	1.4116586	4.0528832
	4	1	1.0563054	3.750414
	5	1	1.6064816	5.8449034
	6	1	1.6649545	6.7912436
	7	1	2.8060045	5.4006158
	8	1	0.2075586	3.2984289
	9	1	0.8198986	2.4520487
	10	1	0.3679075	4.9395984
	11	1	8.8350798	18.872429
	12	1	2.3209388	3.2497913
	13	1	2.8936168	3.4896099
	14	1	4.1750061	12.415226
	15	1	3.1444996	1.5332933
	16	1	4.4825428	1.4351569
	17	1	0.0915689	3.1589867
	18	1	8.4435422	11.147323
	19	1	1.4967141	4.6515165
	20	1	7.493352	7.0054908
	21	1	4.3065969	12.272517
	22	2	8.4793711	4.2752297
	23	2	1.4780814	1.2730528
	24	2	8.7723169	1.2393794
	25	2	3.1497296	0.456718
	26	2	13.459587	4.7260344
	27	2	15.37933	6.5653234
	28	2	4.196577	2.383466
	29	2	3.7323178	2.8359645
	30	2	3.6185608	0.324218
	31	2	2.258559	1.6548812
	32	2	2.308924	0.9745979
	33	2	4.5983816	3.9172998
	34	2	3.8748332	8.381553
	35	2	4.243073	0.9776039
	36	2	2.7237755	1.064221
	37	2	5.4652033	2.0614166
	38		2.8988345	1.3966219
	39		8.813758	4.6380748
	40		12.120523	11.140253
	41		9.0666554	7.7136979
	42		17.109821	6.0804836
	43		3.753217	1.2769503
	44		7.8828783	1.2529074
	45		6.8884962	2.8844108
	46		31.26258	17.360563

图 5.4(续)

在图 5.2 的 "判别方法"列表框中,选择<u>二次,不同协方差</u> \Rightarrow <u>确定</u> \Rightarrow 仍作图 5.3 中的选择,得图 5.5。

图 5.5

各组概率			페 各4	1的平方	距离	
行 实际值	1	2		实际值	1	
1 1	1.00000	0.00000		1	-8.27286	161 9447
2 1		0.00000		1	-1.599705	59.6145
3 1		0.43154		1	-12.02373	-11.4725
4 1		0.00199		1	-13.25595	-0.82295
5 1		0.00008		1	-13.04424	
6 1		0.06805		1	-9.454736	-4.22061
7 1		0.07809		1	-12.24141	-7.30436
8 1		0.01723		1		
9 1		0.17968		1	-13.54322	
10 1		0.00000	10		-13.54522	
11 1		0.00000				
12 1		0.32658	11		-4.480918	
13 1		0.36317	12			-11.4552
14 1		0.00000	13		-10.12097	-8.99770
15 1		0.72365	14		-11.71429	
16 1		0.72363	15		-10.45934	-12.3845
			16		-4.811489	-12.1522
17 1		0.00295	17		-14.12025	-2.47391
18 1		0.01651	18		-7.909163	
19 1		0.14416	19		-12.55565	-8.99326
20 1		0.01277	20		-8.921366	-0.22533
21 1		0.00000	21		-11.99628	72.64650
22 2		1.00000	22		14.347431	-10.2804
23 2		0.61983	23		-11.7721	-12.7497
24 2		1.00000	24		21.356718	-11.3871
25 2		0.97552	25	2	-6.232238	-13.6023
26 2		1.00000	26	2	52.801802	-10.6320
27 2	0.00000	1.00000	27	2	63.616057	-8.41995
28 2	0.06564	0.93436	28	2	-6.051662	-11.3629
29 2	0.17996	0.82004	29	2	-8.803991	-11.8372
30 2	0.03023	0.96977	30	2	-6.079975	-13.0162
31 2	0.48877	0.51123	31	2	-12.58751	-12.677
32 2	0.16595	0.83405	32	2	-10.01919	-13.2484
33 2		0.98410	33		-2.89441	-11.1451
34 2	0.73734	0.26266	34	2	-3.845594	-1.78121
35 2	0.01355	0.98645	35	2	-4.051231	-12.6260
36 2	0.14871	0.85129	36	2	-9.586638	-13.0761
37 2	0.02450	0.97550	37	2	-3.613082	-10.9814
38 2	0.04504	0.95496	38	2	-7.07625	-13.184
39 2	0.00000	1.00000	39	2	14.477546	-10.5590
40 2		0.99999	40	2	19.783446	-3.83322
41 2		0.99958	41		6.8339663	-8.72930
42 2		1.00000	42		77.995011	-10.4085
43 2		0.72739	43		-9.580632	-11.5434
44 2		0.99999	44		13.509588	-10.8062
45 2		0.99602	45		1.0689614	-9.97517
46 2		1.00000	46		157.4424	-0.00434

图 5.5(续)

注:"平方距离"就是书上的"广义平方距离",可以是负值。

二、对书中例 5.3.2 进行 Bayes 判别

打开 <u>examp5.2.3.xlsx</u> 和 <u>examp5.3.2.xlsx</u> 数据表,将 examp5.3.2.xlsx 中未判企业的四个变量值复制至原样本数据后面一行(见图 5.6) \Rightarrow 将变量 g 设置为名义型(或有序型) \Rightarrow 在

类似图 5.1 中,选择<u>分析</u> \Rightarrow <u>多元方法</u> \Rightarrow <u>判别</u>,即出现"判别"对话框(类似图 5.2) \Rightarrow 选择 <u>x1,x2,x3,x4</u> \Rightarrow <u>Y,协变量</u>;选择 <u>g</u> \Rightarrow <u>X,类别</u> \Rightarrow <u>确定</u> \Rightarrow 在出现的窗口中,点击"判别分析"旁的红色小三角(见图 5.7) \Rightarrow <u>指定先验值</u> \Rightarrow <u>其他…</u> \Rightarrow 在弹出的图 5.8 所示的对话框中作图中的输入 \Rightarrow 确定,随即得到图 5.9 的结果。

图 5.6

💸 Sheet - g - 判别 - JMP Pro

图 5.7

图 5.8

图 5.9

三、对书中例 5.4.1 中的数据作 Fisher 判别

打开 <u>examp5.4.1.xlsx</u>数据表 \Rightarrow 将变量 g 设置为名义型(或有序型) \Rightarrow 在与图 5.2 类似的对话框中,点击**确定** \Rightarrow 作图 5.10 中菜单的选择,并点击**点着色**,即得到图 5.11。

图 5.10

图 5.11

注:这里的"得分系数"和"标准化得分系数"分别是书上输出 5-1.9 中的"原始典型系数"和"合并类内标准化典型系数"。

第六章 聚类分析

一、对书中例 6.3.3 用 Ward 方法聚类

打开 <u>examp6.3.3.xlsx</u>数据表 \Rightarrow <u>分析</u> \Rightarrow <u>聚类</u> > \Rightarrow <u>层次聚类</u>,即出现"聚类"对话框(见图 6.1) \Rightarrow 选择 x1,x2,x3,x4,x5,x6,x7,x8 \rightarrow Y,列;选择 region \rightarrow 标签;对"选项"列表框做图

中的选择 ⇒ <u>确定</u> ⇒ 从"层次聚类"相应的红色小三角菜单中(见图 6.2),作图中选择,即生成图 6.3。

图 6.1

在图 6.3 中,点击"聚类历史记录"旁的展开按钮,得图 6.4。

图 6.3

图 6.4

在图 6.2 中,点击<u>聚类数</u>→在出现的对话框中,填入 <u>3</u>→<u>确定</u>,即聚 3 类;点击<u>平行坐</u> 标图,产生图 6.5;再点击保存聚类,聚类结果将出现在原数据表中,见图 6.6。

图 6.5

B 5 6 6) X	Man.			A				- L >	11.0	
■ Sheet D	4		est.	2			- Sec			we.	117.04
沙理			x1	x2	х3	x4	x5	х6	х7	x8	聚类
		1	2959,19	730.79	749.41	513,34	467.87	1141.82	478.42	457.64	1
列(10/1)		2	2459.77	495.47	697.33	302.87	284.19	735.97	570.84	305.08	2
1×2		3	1495.63	515.9	362.37	285.32	272.95	540.58	364.91	188.63	2
4 x3		4	1406,33	477.77	290.15	208,57	201.5	414.72	281.84	212.1	3
1×4		5	1303.97	524.29	254.83	192.17	249.81	463.09	287.87	192.96	3
4 x5		6	1730.84	553.9	246.91	279.81	239.18	445.2	330.24	163.86	3
4 x6		7	1561.86	492.42	200.49	218.36	220.69	459.62	360.48	147.76	3
4 x7		8	1410.11	510.71	211.88	277.11	224.65	376.82	317.61	152.85	3
4 ×8		9	3712.31	550.74	893.37	346.93	527	1034.98	720.33	462.03	1
▲ 聚类		10	2207.58	449.37	572.4	211.92	302.09	585.23	429.77	252.54	2
· fī		11	2629.16	557.32	689.73	435.69	514.66	795.87	575.76	323.36	1
所有行 31		12	1844.78	430.29	271.28	126.33	250.56	513.18	314	151.39	3
日选定 1 日排除 0 日隐藏 0 日添加标签 0		13	2709.46	428.11	334.12	160.77	405.14	461.67	535.13	232.29	2
		14	1563.78	303.65	233.81	107.9	209.7	393.99	509.39	160.12	3
	1	15	1675.75	613.32	550.71	219.79	272.59	599.43	371.62	211.84	2
		16	1427.65	431.79	288.55	208.14	217	337.76	421.31	165.32	3

图 6.6

二、对书中例 6.3.3 用 k 均值法聚类

在图 6.1 的"选项"列表框中选择 <u>K 均值</u>,如图 6.7 所示 \Rightarrow <u>确定</u>,出现图 6.8 \Rightarrow 在"聚类数…"框内填入 $5 \Rightarrow$ <u>执行</u>,出现图 6.9(缺省时"聚类标准差"未展开) \Rightarrow 从"K 个均值聚类数=5"相应的红色小三角菜单中(见图 6.10),选<u>保存聚类</u>,聚类结果即保存在原数据表中(见图 6.11)。

图 6.7

图 6.8

图 6.9

图 6.10

图 6.11

第七章 主成分分析

一、对书中例 7.3.3 作主成分分析

打开 <u>examp6.3.3.xlsx</u> 数据表 \Rightarrow <u>分析</u> \Rightarrow <u>多元方法</u> \Rightarrow <u>主成分</u>,即出现"主成分"对话框(见图 7.1) \Rightarrow 选择 <u>x1,x2,x3,x4,x5,x6,x7,x8</u> 并点击 <u>Y,列</u> \Rightarrow <u>确定</u> \Rightarrow 从"主成分:基于相关性"相应的红色小三角菜单中(见图 7.2),作图中选择;在选择<u>得分图</u>时,弹出如图 7.3 所示的框,输入 2 \Rightarrow 确定,即生成图 7.4。

图 7.1

图 7.2

图 7.3

图 7.4

在得分图框内点击右键,选择弹出菜单中的<u>行图例···</u>,出现如图 7.5 所示的"按列标记"对话框 \Rightarrow 在变量框中选择 <u>region</u>,在"标记"列表框中选择<u>字母数字</u> \Rightarrow <u>确定</u>,即出现图 7.6 中标记了的得分图。

图 7.5

图 7.6

注:如希望调整得分图中字母的大小,则可在图 7.4 (续)的菜单中点击标记大小 >,从中选择所需要的大小。此外,通过拉得分图的边框还可以将图形拉大,以使图形显示得更为清楚。

在图 7.2 中点击**保存主成分**,弹出如图 7.7 所示的框 \Rightarrow 输入 $\underline{2} \Rightarrow \underline{m}\underline{c}$,前两个主成分得分随即出现在原数据表中,见图 7.8。

图 7.7

•		region	x1	x2	x3	×4	x5	х6	х7	х8	主成分1	主成分2
8	1	北京	2959.19	730.79	749.41	513.34	467.87		478.42	457.64	5.426442824	2,4666100700
Ž		天津	2459.77	495.47	697.33	302.87	284.19	735.97	570.84	305.08	2.0064021721	0.04489778
Î.	3	河北	1495.63	515.9	362.37	285.32	272.95	540.58	364.91	188.63	-0.769577208	0.580486018
V	4	山西	1406.33	477.77	290.15	208.57	201.5	414.72	281.84	212.1	-1.848721831	0.40444996
R	5	内蒙古	1303.97	524.29	254.83	192.17	249.81	463.09	287.87	192.96	-1.826726062	0.509910414
Q	6	辽宁	1730.84	553.9	246.91	279.81	239.18	445.2	330.24	163.86	-1.313555872	0.844834476
N	7	吉林	1561.86	492.42	200.49	218.36	220.69	459.62	360.48	147.76	-1.859765766	0.151359130
K	8	無龙江	1410.11	510.71	211.88	277.11	224.65	376.82	317.61	152.85	-1.927574639	0.636691716
X	9	上海	3712.31	550.74	893.37	346.93	527	1034.98	720.33	462.03	5.8665800816	-0.19559014
0	10	江苏	2207.58	449,37	572.4	211.92	302.09	585.23	429.77	252.54	0.4072064428	-0.31195964
d	11	浙江	2629.16	557.32	689.73	435.69	514.66	795.87	575.76	323.36	3.5839360229	0.531841117
Д	12	安徽	1844.78	430.29	271.28	126.33	250.56	513.18	314	151.39	-1.796734483	-0.51930440
c	13	福建	2709.46	428.11	334.12	160.77	405.14	461.67	535.13	232.29	0.2011572053	-1.33753888
p.	14	江西	1563.78	303.65	233.81	107.9	209.7	393.99	509.39	160.12	-2.234432278	-1.86717291
U.	15	山东	1675.75	613.32	550.71	219.79	272.59	599.43	371.62	211.84	-0.147463977	0.983842796
1	16	河南	1427.65	431.79	288.55	208.14	217	337.76	421.31	165.32	-1.947265673	-0.38812436
L	17	湖北	1783.43	511.88	282.84	201.01	237.6	617.74	523.52	182.52	-0.717010904	-0.24723591
M	18	Miles	1942.23	512.27	401.39	206.06	321.29	697.22	492.6	226.45	0.2190214152	-0.20355313
E	19	广东	3055.17	353.23	564.56	356.27	811.88	873.06	1082.82	420.81	5.5835416167	-3.07199929
F	20	广西	2033.87	300.82	338.65	157.78	329.06	621.74	587.02	218.27	-0.251547629	-2,05847733
н	21	海南	2057.86	186.44	202.72	171.79	329.65	477.17	312.93	279.19	-1.15751891	-1.91307201
e:	22	重庆	2303.29	589.99	516.21	236.55	403.92	730.05	438.41	225.8	1.1156184438	0.40997059
Y	23	[29]11	1974.28	507.76	344.79	203.21	240.24	575.1	430.36	223.46	-0.533650385	0.041788916
G	24	贵州	1673.82	437.75	461.61	153.32	254.66	445.59	346.11	191.48	-1.298147689	-0.34197643
	25	云南	2194.25	537.01	369.07	249.54	290.84	561.91	407.7	330.95	0.435733524	0.479094464
A	26	西蘇	2646.61	839.7	204.44	209.11	379.3	371.04	269.59	389.33	0.4373180482	2.364999450
W.	27	陕西	1472.95	390.89	447.95	259.51	230.61	490.9	469.1	191.34	-0.859474363	-0.50106126
D.	28	甘肃	1525.57	472.98	328.9	219.86	206.65	449.69	249.66	228.19	-1.549423484	0.52621968
Ŧ.	29	青海	1654.69	437.77	258,78	303	244.93	479.53	288.56	236.51	-1.045191936	0.426094041
5	30	宁夏	1375.46	480.89	273.84	317.32	251.08	424.75	228.73	195.93	-1.501711016	0.90691141
b	31	新疆	1608.82	536.05	432.46	235.82	250.28	541.3	344.85	214.4	-0.697463691	0.647063719

图 7.8

在图 7.2 中,如选择<u>三维得分图</u>,则出现图 7.9,可作三维旋转。当然,该例并不适合取第三主成分,这里只是作一展示。

图 7.9

第八章 因子分析

一、对书中习题 6.5 中的数据作因子分析

打开 <u>exec6.5.xlsx</u>数据表 \Rightarrow <u>分析</u> \Rightarrow <u>多元方法</u> \Rightarrow <u>主成分</u>,即出现"主成分"对话框(见图 8.1) \Rightarrow 选择 <u>x1,x2,x3,x4,x5,x6,x7,x8</u> 并点击 <u>Y,列</u> \Rightarrow <u>确定</u> \Rightarrow 从"主成分:基于相关性"相应的红色小三角菜单中(见图 8.2),选择<u>特征值</u>和<u>因子分析</u>,随即出现图 8.3。

图 8.1

图 8.2

1.主成分法

图 8.3

作图 8.3 中的选择 ⇒ 确定, 在生成的窗口中展开所有按钮, 如图 8.4 所示。

图 8.4

图 8.4 (续 1)

图 8.4 (续 2)

在图 8.5 中点击保存旋转成分,两个旋转因子得分即出现在原数据表中,见图 8.6。

图 8.5

4 ·	Action grants		1000-0		2000-0	17.000	365.5	7200	175000		V.60000	SVORPA
*	nation	Alphabet	x1	x2	x3	x4	x5	х6	x7	x8	国子1	国子2
- 1	阿根廷	a	10,39	20.81	46.84	1.81	3.7	14.04	29.36	137.72	0.3169772437	-0.213093462
2	澳大利亚	a	10.31	20.06	44.84	1.74	3.57	13,28	27.66	128.3	-0.571156834	-0.79421059
3	舆地利	a	10.44	20.81	46.82	1.79	3.6	13.26	27.72	135.9	-0.576639622	0.1900216845
4	比利时	b	10,34	20.68	45.04	1.73	3.6	13,22	27.45	129.95	-0.78405685	-0.304385999
5	西幕大	b	10.28	20.58	45.91	1.8	3.75	14.68	30.55	146.62	1.4463107841	-1.244244271
6	巴西	b	10.22	20,43	45.21	1.73	3.66	13,62	28.62	133.13	-0.013822046	-0.913721148
7	插甸	b	10.64	21.52	48.3	1.8	3.85	14.45	30,28	139.95	0.4027017637	0.7073693832
8	加拿大	E	10.17	20.22	45.68	1.76	3.63	13.55	28.09	130.15	-0.167174377	-0.847257113
9	帽科	c	10.34	20.8	46.2	1.79	3.71	13.61	29.3	134.03	0.0276323912	-0.259595695
10	中国	c	10.51	21.04	47.3	1.81	3.73	13.9	29,13	133.53	-0.128108347	0.3933185979
- 11	哥伦比亚	c	10.43	21.05	46.1	1.82	3.74	13.49	27.88	131.35	-0.462596428	0.3063004836
12	库克群岛	c	12.18	23.2	52.94	2.02	4.24	16.7	35.38	164.7	2.063991826	3.8934948444
13	哥斯达黎	c	10.94	21.9	48.66	1.87	3.84	14.03	28.81	136.58	-0.484088861	1.9345311701
14	捷克斯洛	c	10.35	20.65	45.64	1.76	3.58	13.42	28.19	134.32	-0.384754699	-0.370667326
15	丹麦	d	10.56	20.52	45.89	1.78	3.61	13.5	28.11	130.78	-0.597530171	0.0320141749
16	多米尼加	d	10.14	20.65	46.8	1.82	3.82	14.91	31.45	154.12	2.2081659239	-1.549856477
17	芸兰	f	10.43	20.69	45.49	1.74	3.61	13.27	27.52	130.87	-0.783172311	-0.097026388
18	法国	f	10.11	20.38	45.28	1.73	3.57	13.34	27.97	132.3	-0.29089558	-0.957014626
19	德意志民	9	10.12	20.33	44.87	1.73	3.56	13.17	27.42	129.92	-0.54784803	-0.907131069
20	德摩志联	g	10,16	20.37	44.5	1.73	3.53	13.21	27.61	132.23	-0.466826307	-0.979258927

图 8.6

2.主因子法

将图 8.3 "先验公因子方差"中的选择改为<u>公因子分析(对角线=SMC)</u> ⇒ <u>确定</u> ⇒ 在随即出现的窗口中点击"主成分:基于相关性"旁的红色小三角,在菜单中撤销<u>特征值</u>的选项,将窗口中所有的展开按钮处于展开状态,产生图 8.7。

图 8.7

△旋转矩阵

0.75751 0.65283 -0.65283 0.75751

△最终公因子方差估计值

- x1 0.89710
- x2 0.90575
- x3 0.85613
- x4 0.88150
- x5 0.92639
- x6 0.96003
- x7 0.97430
- x8 0.90681

△标准得分系数

19-1-19-29-29-29-4	
因子 1	因子 2

- x1 -0.265097 0.494755
- x2 -0.220675 0.466401
- x3 -0.066347 0.217786
- x4 0.044516 0.138280
- x5 0.096157 0.091646
- x6 0.355885 -0.180007
- x7 0.618596 -0.285328
- x8 0.190745 -0.158668

△每个因子解释的方差

因子	方差	百分比	累积百分比
因子 1	4.0786	50.983	50.983
因子 2	3.2294	40.367	91.350

△ 旋转的因子载荷

因子 1	因子 2

- x1 0.2874007 0.9024951
- x2 0.3807869 0.8722098
- x3 0.5405182 0.7509781
- x4 0.6953970 0.6308084
- x5 0.7985637 0.5372915
- x6 0.8949599 0.3988482
- x7 0.9003021 0.4046738
- x8 0.9088972 0.2841069

图 8.7 (续 1)

图 8.7 (续 2)

3. 极大似然法

将图 8.3 "因子分解方法"中的选择改为<u>最大似然</u>,"先验公因子方差"中的选择仍为<u>主</u>成分(对角线=1)[也可选择为公因子分析(对角线=SMC)] ⇒ 确定,在生成的窗口中将所有的展开按钮处于展开状态,生成图 8.8。

图 8.8

图 8.8 (续)

第九章 对应分析

一、对书中例 9.2.1 中的数据作对应分析

打开 <u>examp9.2.1.xlsx</u> 数据表 ⇒ 类似于图 4.4 的操作,将变量"心理健康状况"设置为有序型(或名义型) ⇒ <u>分析</u> ⇒ <u>以 X 拟合 Y</u>,即出现"以 X 拟合 Y"对话框(见图 9.1) ⇒ 选择<u>父母社会经济地位</u> → <u>Y,响应</u>;选择<u>心理健康状况</u> → <u>X,因子</u> ⇒ <u>确定</u> ⇒ 在随即出现的图 9.2 中,点击"列联分析"旁的红色小三角,作图中的选择,即出现图 9.3。

图 9.1

图 9.2

图 9.3

图 9.3 (续 1)

注:列联表格子中的第2、3、4行的单位为%,其第2行元素(除最后一行格子和最后一列格子外)构成对应矩阵,其最后一行格子的第2行元素为列边缘频率,最后一列格子的第2行元素为行边缘频率。格子中第3行元素构成列轮廓矩阵,第4行元素构成行轮廓矩阵。

图 9.3 (续 2)

注:图中的二维对应分析图可以拉大,以便看得更清楚。

若希望得到三维对应分析图(本例无此必要),则从"对应分析"相应的红色小三角菜单,选择**三维对应分析**,出现图 9.4,该图可进行三维旋转。

图 9.4

在图 9.3 (续 1) 中,点击"列联表"旁的红色小三角,作图 9.5 中的选择,生成图 9.6。

图 9.5

图 9.6

作图 9.7 中的操作 ⇒ 确定,产生另一马赛克图,如图 9.8 所示。

图 9.7

图 9.8