

UTHou-16UTL final.ST25
SEQUENCE LISTING

<110> Board of Regents of the University of Texas System

<120> MUTATIONS IN A NOVEL PHOTORECEPTOR-PINEAL GENE ON 17P CAUSE LEBER CONGENITAL AMAUROSIS (LCA4)

<130> 96606/16UTL

<140> 09/765,061
<141> 2001-01-17

<150> 60/331362
<151> 2001-01-14

<160> 83

<170> PatentIn version 3.3

<210> 1
<211> 6689
<212> DNA
<213> Homo sapiens

<220>
<221> gene
<222> (1)..(6689)
<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

<220>
<221> misc_feature
<222> (1897)..(1906)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (3946)..(3946)
<223> n is a, c, g, or t

<400> 1
ggcctcccaa agtgctggat tacaggcgtg agtcaccgcg cctggtcccc tgtcttcttt 60
aagaaaagctc agcgacacctt ttcccttctt ggggtgaaac aaaaagccaa atcttagcaca 120
accctggca ggggccaga atcactggaa gcaaagggtgg atggatagg aggcgaggct 180
gcctgtggac cacaggcccg gcccggatgg ctctgatgag aagccggggc gccttaggtca 240
ccgcccccac cgtctgccc tccccccact cctcctggct ggtaaatcc cagagtctca 300
gccgcctaag tgtcttcccc ggaggtgaga ttatctccgc ctgtgctgga cacctccctt 360
tctcctgcag ccatggatgc cgctctgctc ctgaacgtgg aagggtcaa gaaaaccatt 420
ctgcacgggg gcacgggcga gctcccaaac ttcatcaccc gatcccaggt gagtggggcc 480
cctccggagc agacagggtc ccccacagca gcttcaaca ttccaggtgt gccccaaaggc 540

UTHou-16UTL final.ST25

actgtaaaca gcttcagct gtgccaaaaa aacagccagg cagccccagc gctgggcctc 600
cggggagctc ccagcgttt cccattcagg gggcatttt ggtactttgc agattcaact 660
tttagcatggg ctgaggggaa gggctttgg gaattttctg gggccctaaa tggtgagtg 720
gaagaaaggg agtccgagga gtcttggtat ttgtccccaa atgtctgtta ggcttccctg 780
gactgaaggg tgcgtctgtg gctacagaat tcgggcttg gccaggcgag gcggctcccg 840
cctgtaatcc cagcaccttg ggaggccaag atgggcagat catgaggtca agagttcgag 900
accagcctga ccaacatgtg aaacccatc tctactgaaa atacaaaaat tagccagatg 960
tgctgtggcg cctgtaatcc cagttcagat actcaggaga cttgaggcag gagaatcact 1020
tgagcccagg aggtggaggt tgcagtgagc cgagatcata ccactgcact ccaacctggg 1080
caacagagtg agactctgtc tcagaaaaaa aaaaaaaaaa aagaactcgg gcttacttga 1140
ggaaggattt ctggacgcac agggctgtgg ggagtggaaat ggggtctgtta gggaggggtg 1200
ggtccttcct ccctgggggg tgcaggcagg gtggaggtgc tccaggggtc tgaggcatct 1260
gatgggggtga actgagtgag ctgaccctgg ggacagccct gggtgtcggt ggcaaggggg 1320
tggcttctgc cgggccttga acagtgtgtc tagagcagag tgcaccgtct cggtgactag 1380
gtgatcttc atttccgcac catgaaatgt gatgaggagc ggacagtcat tgacgacagt 1440
cggcagggtgg gccagcccat gcacatcatc atcgaaaca tggtaagct cgaggtctgg 1500
gagatcctgc ttacctccat gcgggtgcac gaggtggccg agttctggc cgacaccatc 1560
gtaagtaggc cctgcgcgcc tgtctcctgg gactagtctt ttctgggtc acccaccgc 1620
tttgcggggc tgctgtgttt cgggaaagct gggactcaag cgaagctttg caaagccagt 1680
cctgc当地 tattccccac cgtgtcatg tgaagatgga gggaaacaagg gctggaaagg 1740
gtgaccctac ctgtggctgg ctggggggaa gcaggctat gaccagcagg agtgagctgg 1800
cccacttcac agtcctcaca tctgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg 1860
tgtgtgtgtg agagagagag agagagagag agagagnnn nnnnnntagc cttaggactt 1920
attgcagaga ccaacaccta acaatgtat caggcagcca gtgcaggaca taaataagta 1980
aggcagtgtg cttgggcca caaaagcacg ctcagcttc tggaagccat gggtgccgag 2040
ctgggggctg ctgagtcagg gccaaagggg gcccctccct gcagtaagct gttctgggg 2100
cctctccctc cttgggtcca gctcttaatc ccaacaggtc caacagccat ctgcttgc 2160
cttccataaa gaggcagaag gcatttcggg ctaatcccg ccgggtggggc gggcagggtg 2220
acctctgtct ctgtgtgtt gacctggagg cagagctgaa ctgctgcata gagttcagc 2280

UTHou-16UTL final.ST25

cccttcactt	cacatgttgc	atgtggggcc	agtgctgggt	catctcagaa	gccggtccaa	2340
ggagatgggt	tctcagggag	cctagttggg	gaaactgagg	cccagcatac	atacagcagg	2400
cctcgctgag	gccgcacggc	ggatcttccc	agccctcctt	catcccaagg	gtggcaaact	2460
cagctccat	gctggctgaa	gctgtatga	gccagatcta	tatctgcacc	atctcattta	2520
atccctacag	cagcccta	atcgaacagg	agcaacccag	ggaactgagt	ttcagagaag	2580
tgcagagacc	tgggctcacc	gctaacctgc	agcactgcc	ggacacccaaa	gcgactctct	2640
tggaccctgg	agtcctgctc	cttctactgc	cccacactgc	ccttcctgcg	agtcataaggc	2700
tttgcagagg	tcagggtttc	cctggggcag	agatgtgtt	cagtggacca	caagggccag	2760
aagaggcagc	cggaggctaa	cagcatatgg	cctctggagc	caggttgaa	tcctggctgc	2820
gtcatttcct	agctgtgtga	ccttaagcaa	gttgcttgcg	tctctggct	gtagttccc	2880
catccgtaaa	atggataat	agtgcctgcc	ttgaattgtc	ataaggattg	aaggggctca	2940
taacagtgtg	aagtgc	tttgc	cctggcacac	agttaccac	agtagtatg	3000
tgagggagca	ggattcctcc	caggagggc	tctgagtgg	ggcctttat	ggcccaccta	3060
gctctggca	ggtagcctgg	atgc	ccatcca	tccgttatac	cccacagcac	3120
accccatcct	rtccggagc	ctgaggcaga	tggcccaggg	caaggacccc	acagagtggc	3180
acgtgcacac	gtgcgggctg	gcca	acatgt	tcgc	cttacca	3240
tggacgagct	gcagaaggag	cctc	agcctc	tgg	tttgt gatc	3300
ggctgggtt	ggcagggctg	gagg	gctgtg	ccag	cactgg	3360
gggcacccccc	accccactgg	ccactggaca	gtgc	ccctgtt	tctgtt	3420
gggttcataa	ccatgggag	aatacgaatt	tgaaaaaaa	gtc	cctctgat	3480
aaaaagtcc	ttgg	tgctgg	gcatgg	tttgc	ccacgc	3540
ccgaggggt	tggatcacct	gagg	tcagga	gtt	cgaa	3600
aacccgtct	ctattaaaa	caca	aaaatt	aacc	gggtgt	3660
aatcccagct	acttggaa	ttgagg	catg	agaatt	gttgc	3720
cagtgagcag	agatcatgtc	agtgc	at	tttgc	tttgc	3780
aaaaaaaaag	aaaaaaaaaa	aaagtcc	act	tgg	accagt	3840
ttcattgtgg	aggcatttta	tccacttcca	ctt	cattt	cagg	3900
cgcctccttgc	gttc	cctgtgg	ttt	gtgg	ttt	3960
tgc	atgaa	cacatc	ctcc	caacca	ggagccccag	4020
tgtggattgg	tgagagaggg	ttagg	ggccag	ggtca	agg	4080

UTHou-16UTL final.ST25

gccaagactg aggctcagcc tgagagctat gtgggtgaat aaaataaaat aagaactgtg	4140
tcaaccaagg gccccttaca ggcttgctgt cacagttgtg tggtctgtgc actgcacaag	4200
gtgcaccggc atctcctcca aggtgctcat tatagacatt gtatattggg atttccataa	4260
tgagaagttt ccagcagatg gcaatagtgt attgttctaa caaaaacgagt attcgtgaca	4320
attttctgaa tattagaagt gaagtgtctt gatgaacggg cacctttcc tagttgcac	4380
aaagacattg atttagggca gggtttcgg cggtgttgc tcttccctt gtctgtatgc	4440
acttgaccag caagcatgac ttcagggaga tgtgccacag ggtcctgttt ttcgggtctc	4500
tgatgggtg caggccccctg gggccctgc ctcactgacc tgca ggtcagctcg gggccaggtt	4560
gatgccccga gtgattacca gagggagacc tggAACCTGA gcaatcatga gaagatgaag	4620
gccccgtcccg tcctccacgg agagggaaat cggctttca agctggcccg ctacgaggag	4680
gcctcttcca agtaccagga ggccatcatc tgcctaagga acctgcagac caaggtcaga	4740
ggccgctggc caggggtggg aagtggcgct gactctgggg ggcctgcccgt gtcggccca	4800
gggtggggcg ggggttgggc agctgcctga ggtcatggct gaccccttc ctggcagga	4860
gaagccatgg gaggtgcagt ggctgaagct ggagaagatg atcaatactc tgatcctcaa	4920
ctactgccag tgcctgctga agaaggagga gtactatgag gtgctggagc acaccagtga	4980
tattctccgg caccacccag gtgcgcgggg ctgcagggc ggacagttag gggcgcccc	5040
gcccagggcc acggagacac ctgccatagc cttccctggac ttttcttcc accccaccag	5100
ggcaccaaac cttgtctcca cccagccggg ttcccccgag tgtgtaactg aattgtgggt	5160
gatggatggg cagtgcctgg cgccggggcgg cctttatttt aatgtgtgt tgaacactta	5220
cccagaagc tcgccaagct tgtgatttca gcggAACGGT aaacaggcgt taaaaaagag	5280
gggcaatcaa tatagggaaa aatattatga tgcggtaact agtactgggt ttgcgaggat	5340
atggcaccgc agtactagat tgacttaatg ctcgaatcgt gtcacagta aaaacatcca	5400
gcccctggct catgcattcag gcacacgtcg tctgcgttta ttatctcatt taatcctcat	5460
aatcctcata atcaccatat gagggaggtg cagggaaagg ggcctgaagg ttatctaatt	5520
taggtgcgt ctataagaaa aataaaaacaa agttatgaat ataaaattac tcacagggcc	5580
ttaaaaagga gaggaggagg tactgctatt atgatcatca tctccatctt acagttgagg	5640
aaaccgaggg atgggggata cagagagggtt aaggatcatg gcggggctga gggcttggaa	5700
ggctgggtgag tcccagctgg gctggggctg cctctgaggc tggaaaggga gctgtagctg	5760
gatgctccct gctccccaca ggcattcgtga aggctacta cgtgcgtgcc cgggctcacg	5820

UTHou-16UTL final.ST25

cagagggtgtg	aatgaggcc	gaggccaagg	cggacctcca	gaaagtgc	tg	gagctggagc	5880
cgtccatgca	gaaggcggtg	cgcaggagc	ttgaggctgc	tggagaaccg	catggcggag	5940	
aacaggagga	ggagcggctg	cgctgccgga	acatgctgag	ccagggtgcc	acgcagcctc	6000	
ccgcagagcc	acccacagag	ccacccgcac	agtcatccac	agagccacct	gcagagccac	6060	
ccacagcacc	atctgcagag	ctgtccgcag	ggccccctgc	agagccagcc	acagagccac	6120	
ccccgtcccc	agggcactcg	ctgcagcact	gagccccctg	aggcccacag	ccacccaggc	6180	
agggagcaag	tggcctggtc	acttctggtt	cgattgacca	ggatcggt	gtcacttttt	6240	
aaaatttaaa	attaattttt	gaaatcaaag	tcagacacac	ccatggtaaa	aaaaaaaaaa	6300	
aaaacaatcc	caagggtaca	gaagagctt	tgaataaaag	tagtttctc	ctctacccct	6360	
ctcattcctt	ccgtgccatg	gttttaattt	accctgtttt	taattcttct	ggttagtttc	6420	
tctatttcca	agtaatctgt	ttaaatcagt	ttctagattt	taccccatgt	caatgacaaa	6480	
tgaggatttgc	atgctctgat	ccttctcat	gcctgatacc	cctccctgtc	tcccccatttt	6540	
ggatagttac	atttgggggt	catctcggtg	atttttgtaa	ctttacgcag	gacacttaga	6600	
gctctctaga	atcccactga	ctttagtggg	gtcttgatgt	agggtgggca	agcccccaca	6660	
ctggagctt	gcctgagagg	ggttcttgc				6689	

```

<210> 2
<211> 1119
<212> DNA
<213> Papio anubis

```

```

<220>
<221> gene
<222> (1)..(1119)
<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting
protein-like 1

<400> 2
atggatgccg ctctgctcct gaacgtggaa ggggtcaaga aaaccattct gcacggaggc 60
acgggcgagc tcccaaactt catcacccga tcccagtgatc tcttcattt ccgcaccatg 120
aaatgtgatg aggagcgcac ggtcatcgac gacagccggc aggtggacca gcccatgcac 180
atcatcatcg ggaacatgtt caagctcgag gtctggaga tcctgctcac ctccatgagg 240
gtgcacgagg tggccgagtt ctgggtgcac accatccaca cgggggtcta ccccatcctg 300
tcccggagcc tgccggcagat ggcccaggc aaggaccca cggagtgccgca cgtgcacaca 360
tgcgggctgg ccaacatgtt cgcctaccac acactgggct acgaggaccc ggacgagctg 420
cagaaggagc ctcagcctct gatcttgc atcgagctgc tgcaagggttga cgcccccaggt 480

```

UTHou-16UTL final.ST25

gattaccaga gggagacctg gaacctgagc aatcatgaga agatgaaggt ggtgccgc	540
ctccacggag agggaaatcg gctttcaag ctggggcgt acgaggaggc ctttccaag	600
taccaggagg ccatcatctg cctaaggaac ctgcagacca aggagaagcc atgggaggt	660
cagtggctga agctggagaa gatgatcaac accctgaccc tcaactactg ccagtgcctg	720
ctgaagaagg aggagtatta cgaggtgctg gagcacacca gtgacattct ccggcaccac	780
ccaggcatcg tgaaggccta ctatgtgcgt gcccgggctc acgcagaggt gtggaatgag	840
gccgaggcca aggccggacct ccagaaagtg ctggagctgg agccatccat gcagaaggcg	900
gtgcgcaggg agctgaggct gctggagaac cgcatggcag agaagcagga ggaggagcgg	960
ctgcgctgcc ggaacatgct gagccaggga gccacgcagc ctcccacaga gccaccggca	1020
gagccccaca cagcaccacc tgccggagctg tccacaggc cacctgcaga gccaccggca	1080
gagctcccc tgcgtccagg gcactcactg cagcactga	1119

<210> 3
<211> 1155
<212> DNA
<213> Pan troglodytes

<220>
<221> gene
<222> (1)..(1155)
<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

atggatgccg ctctgctcct gaacgtggaa ggggtcaaga aaaccattct gcacggggc	60
acggggcgagc tcccaaactt catcacccga tcccagtgta tcttcattt ccgcaccatg	120
aatatgtatg aggagcggac agtcattgac gacagccggc aggtgggcca gcccatgcac	180
atcatcatcg gaaacatgtt caagctcgag gtctggaga tcctgcttac ctccatgcgg	240
gtgcacgagg tggccgagtt ctgggtgcac accatccaca caggggtcta ccccatcctg	300
tcccgagcc tgagggcagat ggcccaggc aaggaccca cagagtggca cgtgcacaca	360
tgcgggctgg ccaacatgtt cgcctaccac acgctgggt acgaggaccc ggacgagctg	420
cagaaggagc ctcagcctct ggtctttgtt atcgagctgc tgcaggttga tgccccgagt	480
gattaccaga gggagacctg gaacctgagc aatcatgaga agatgaaggc ggtgccgc	540
ctccacgggrg agggaaatcg gctttcaag ctggggacgt acgaggaggc ctttccaag	600
taccaggagg ccatcatctg cctaaggaac ctgcagacca aggagaagcc gtgggaggt	660

UTHou-16UTL final.ST25

cagtggctga agctggagaa gatgatcaat actctgatcc tcaactactg ccagtgcctg	720
ctgaagaagg aggagtacta tgaggtgctg gagcacacca gcgcacattct ccggcaccac	780
ccaggcatcg tgaaggccta ctacgtgcgt gcccggtc acgcagaggt gtggaatgag	840
gccgaggcca aggcagacct ccggaaagtg ctggagctgg agccgtccat gcagaaggcg	900
gtgcgcaggg agctgaggct gctggagaac cgcatggcg agaagcagga ggaggagcgg	960
ctgcgctgcc ggaacatgct gagccagggt gccacgcagc ctccggcaga gccacccaca	1020
gagccaccccg cacagtcatc cacagagcca cctgcagagc caccggcacc accatctgca	1080
gagctgtccg cagggccacc tgcagagaca gccacagagc caccggcgtc cccagggcac	1140
tcgctgcagc actga	1155

```

<210> 4
<211> 1060
<212> DNA
<213> Bos taurus

```

```

<220>
<221> gene
<222> (1)..(1060)
<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting
protein-like 1

<400> 4
atggatgcca ctctgctcct gaatgtggaa gggatcaaga aaaccattct gcatggggc 60
acaggggacc tccccaaactt cattactgga gcccgagtga ctttcattt ccgaaccatg 120
aatgtgatg aggagcggac ggtgatagac gacagcaagc aggtggccca tcccatgcac 180
atcatcattt ggaacatgtt caagctggag gtctggaga tcttgctgac gtccatgcgg 240
gtcagcgagg tggccgagtt ttgggtgcac accatccaca caggggtcta ccccatcctg 300
tcccggagcc tgcggcagat ggcggagggt aaggacccca cagagtggca cgtgcacacg 360
tgtggcttgg ccaacatgtt cgcttaccac acgctggct acgaggaccc ggacgagctg 420
cagaaggagc ctcagccact gatttcata atcgagttgc tgcaggtcga ggcccgagc 480
cagtaccaga gggagacctg gaacctgaat aaccaggaga agatgcaggc ggtgcccac 540
ctccatggag aaggaaaccc gctttcaag ctggccgct acgaggaggc ctccaacaag 600
taccaggaag ccatcgctg cctgaggaac ctgcagacca aggagaaacc ctgggaggtg 660
cagtggctga agctggagaa gatgatcaac accctgatcc tgaactactg tcagtgtctg 720
ctgaagaagg aggagtacta cgaggtgctg gaacacacta gtgacatcct ccggcatcac 780
ccaggcatcg tgaaggccta ctatgtgagg gcccggtc acgcgcagggt gtggaatgag 840

```

UTHou-16UTL final.ST25

gcggaagcca aggccggatct ggagaaaagtg ctggagctgg agccgtccat gcggaaggcg 900
gtgcagaggg agctgaggct gctggagaac cggctggagg agaaacgcga ggaggagcga 960
ctgcgcgtgcc ggaacatgct gggctagtgc gcaggcgcca agcctcctgc ctccgcccc 1020
cgcycctcca ccccccccaa aaaaaaaaaa aaaaattttt 1060

<210> 5
<211> 925
<212> DNA
<213> Canis familiaris

<220>
<221> gene
<222> (1)..(925)
<223> The AIP1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

<400> 5
tgtacggggg caccggcgag ctcccaaact tcctcacggg gtcccggtc atcttcact 60
tccgcacaac gaaatgcgac gaggcgcgga cagtgatcga cgacagcaag cgtgtggcc 120
atcccatgca catcatcatc gggAACATGT tcaagctggg ggtctggag gtgctgtga 180
catccatgcg cgtggcgag gtggccgagt tctggtgcga ctctattcac acaggagtct 240
accccattct gtcccgagc ctgcccagg tggcgaggg caaggacccc actgagtgcc 300
atgtacacac gtgcggcttg gccaacatgt ttgcctatca cacgctggc tacgaggacc 360
tggacgagct acagaaggag ccgcagcccc tcatacttcat gataagagctg ctgcaggtgg 420
aggccccaaag tgagtaccag agggagacgt ggagcctgaa caatgagaga agatgcagcg 480
gtaccatct catggagagg ggaacccggct cttcaagctg ggccgctaca atgatgcctc 540
caccaagtac caggagccat cgtctgctga ggaacctgca gaccaaggag aagcctggga 600
ggtcgactgg ctaaagctgg agaagctgat caaacacctt atttcaact actgccagtg 660
tctgctgaag aaggaggagt actacgaggt gctggagcac actagcgaca tcctgcggct 720
tcacccagga atcgtgaagg cctactacgt gcgcccccgg gctcacgcgg aggtgtggaa 780
cgaggccgag gccaggccgg accttcagaa agtgcgtggag ctggagccat ccatggggaa 840
ggctgtgcgc agggagctgc ggcttctgaa aaatgcctg gagaaaaagc gggaggagga 900
gcggctgcgc tgccggaaca tgcta 925

<210> 6
<211> 1075
<212> DNA

UTHou-16UTL final.ST25

<213> Mus musculus

<220>

<221> gene

<222> (1)..(1075)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

<400> 6

atggacgtct	ctctactcct	caatgtggag	ggtgtcaaga	agaccattct	gcatgggggg	60
acaggagagc	tccccaacctt	catcaactggc	tccagagtga	ccttcattt	ccgaacaatg	120
aagtgtatg	aagaacgcac	ggtgatcgat	gacagcaagc	aggtgggcca	gcccatgagc	180
atcatcatcg	gcaacatgtt	caagctggag	gtgtggaga	cgctgctgac	ctccatgcgg	240
ctggcgagg	tggctgagtt	ctggtgcgac	accattcaca	caggggtcta	ccctatgtt	300
tcccgcagtc	tgcggcaggt	ggctgagggc	aaggaccca	caagctggca	tgtgcacacg	360
tgcgggttgg	ccaacatgtt	tgcataaccac	acgctgggct	acgaggacct	ggatgagctg	420
cagaaagagc	cacgcctct	tgtttcctg	tatgaactgt	tgcaggtgga	ggccccaaat	480
gagtaccaga	gggagacgtg	gaacctgaat	aatgaagaga	ggatgcaggc	ggtagctt	540
cttcatggag	aaggcaacag	gctctacaag	ctggacgct	atgatcaggc	cgcacccaag	600
taccaggagg	ccattgtgt	cctgaggaac	cttcagacca	aggagaagcc	ctgggaggtt	660
gagtggctga	agctggagaa	gatgatcaac	accctgatcc	tcaactactg	ccagtgctg	720
ctgaagaagg	aggagtacta	cgaggtgtt	gagcacacca	gacattct	acgacaccac	780
ccagggatcg	tgaaggccta	ctatatgcgc	gcacgtgctc	acgcagaggt	gtggAACGCT	840
gaggaggcca	aggcggacct	ggagaaagtg	ctggagttgg	agccatccat	gacaggcg	900
gtgctcaggg	aactgcggct	gctggagagc	cgcctggcgg	acaaacagga	ggaggagcgg	960
cagcgctgcc	ggagcatgct	ggctaggct	ggctggatt	ccactgagtt	agactgggtt	1020
agttgggtg	ggagctgcgg	gttgaaccct	ggggcgaggg	ctggggctat	ggact	1075

<210> 7

<211> 1179

<212> DNA

<213> Macaca mulatta

<220>

<221> gene

<222> (1)..(1179)

<223> The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1

UTHou-16UTL final.ST25

<400>	7					
atggatgccg	ctctgctcct	gaacgtggaa	ggggtaaga	aaaccattct	gcacggaggc	60
acggcgagc	tcccaaactt	catcacccga	tcccagtg	tcttcattt	ccgcaccatg	120
aatgtgatg	aggagcgcac	ggtcatcgac	gacagccgtc	aggtggacca	gccccatgcac	180
atcatcatcg	ggaacatgtt	caagctcgag	gtctggaga	tcctgctcac	ctccatgagg	240
gtgcacgagg	tggccagtt	ctggcgac	accatccaca	cgggggtcta	ccccatyctg	300
tcccggagcc	tgcggcagat	ggcccaggc	aaggaccca	cggagtggca	cgtgcacaca	360
tgcgggctgg	ccaacatgtt	cgcctaccac	acgctggct	acgaggacct	ggacgagctg	420
cagaaggagc	ctcagcctct	gatcttgtg	atcgagctgc	tgcagggtga	cgcggcagat	480
gattaccaga	gggagacctg	gaacctgagc	aatcatgaga	agatgaaggt	ggtgcggcgtc	540
ctccacggag	aggaaatcg	gctttcaag	ytggggcgt	acgaggagc	ctcttccaag	600
taccaggagg	ccatcatctg	cctaaggaac	ctgcagacca	aggagaagcc	gtgggaggtg	660
cagtggctga	agctggagaa	gatgatcaac	accctgaccc	tcaactactg	ccagtgccctg	720
ctgaagaagg	aggagtatta	cgaggtgctg	gagcacacca	gtgacattct	ccggcaccac	780
ccaggcatcg	tgaaggccta	ctatgtcgt	gccccggc	acgcggaggt	gtggAACGAG	840
gccgaggcca	aggcggaccc	ccagaaagtg	ctggagctgg	agccatccat	gcagaaggcg	900
gtgcgcagg	agctgaggct	gctggagaac	cgcattggcg	agaagcagga	ggaggagagg	960
ctgcgtgcc	ggaacatgct	gagccaggga	gccacgcagc	ctcccgac	gccaccggca	1020
cagcccccca	cagcaccacc	tgcagagctg	tccacagggc	cacctgcgga	cccaccggcg	1080
gagcccccca	cagcaccacc	tgcggagctg	tccacagggc	cacctgcaga	gccaccggca	1140
gagctcccccc	tgtccccagg	gcactcactg	cagcactga			1179

<210>	8	
<211>	1119	
<212>	DNA	
<213>	Saimiri sciureus	

<220>		
<221>	gene	
<222>	(1)..(1119)	
<223>	The AIPL1 gene produces the aryl-hydrocarbon receptor interacting protein-like 1	

<400>	8					
atggatgccg	ctctgctcct	gaacgtggaa	ggggtaaga	agaccattct	gcacggggc	60
acggcgagc	tcccaaattt	catcacccga	tcccagtg	tcttcattt	ccgcaccatg	120

UTHou-16UTL final.ST25

aaatgtgatg	aggagcggac	ggtgattgac	gacagcaggg	aggtgggcca	gccccatgcac	180
atcatcatcg	ggaacatgtt	caagctggag	gtctggaga	tcctgctcac	gtcccatgcgg	240
gtgcgagagg	tggccgagtt	ctgggtgcac	accatccaca	cgggggtcta	ccccatcctg	300
tcccggagcc	tgcggcagat	ggcccagggc	aaggacccga	cggagtggca	tgtgcacacg	360
tgcgggctgg	ccaacatgtt	cgcctaccac	acgctgggct	acgaggacct	ggatgagctg	420
cagaaggagc	ctcagcctct	gatctttgtg	atcgagctgc	tgcaggttga	tgccccaaagt	480
Gattaccaga	gggagacctg	gaacctgagc	aatcacfagaga	agatgaaggt	ggtgcccgctc	540
ctccatggag	aaggaaatag	gctcttcaag	ctggggccgct	acgaggaggc	ctcttccaag	600
taccaggagg	ccatcatctg	cctaaggaac	ctgcagacca	aggagaaacc	ctgggaggtg	660
cagtggctga	agctggagaa	gatgatcaat	accctgatcc	tcaactactg	tcagtgtctg	720
ctgaagaagg	aggagtacta	cgaggtcctg	gagcatacca	gtgacattct	ccggcaccac	780
ccaggcattg	tgaaggccta	ctatgtgcgc	gcccgccgctc	acgcggaggt	gtggaacgag	840
gccgaggcca	aggcggacct	ccagaaaagtg	ctggagctgg	agccgtccat	gcagaaggcg	900
gtgcgcaggg	agctgaggct	gctggagaac	cgcattggcg	agaacgagga	ggaggagcgg	960
ctgcgcgtgcc	gcaacatgct	gagccagggg	gccacgtgg	cccccgccga	gccacccgca	1020
gagccacctg	cagactcatc	cacagagcca	cccgccagac	cacctgcaga	gccacctgca	1080
gagctaacct	tgaccccggg	gcacccacta	cagcactga			1119

<210> 9
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon position 79: Met to Thr mutation

<400> 9
acctccacgc ggggtg 15

<210> 10
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)

UTHou-16UTL final.ST25

<223> Amino Acid codon 88 mutation: Trp to X

<400> 10

gagttctgat gcgac

15

<210> 11

<211> 15

<212> DNA

<213> Homo sapiens

<220>

<221> mutation

<222> (7)..(9)

<223> Amino Acid codon 96 mutation: Val to Ile mutation

<400> 11

acggggatct acccc

15

<210> 12

<211> 15

<212> DNA

<213> Homo sapiens

<220>

<221> mutation

<222> (7)..(9)

<223> Amino Acid codon 124 mutation: Thr to Ile mutation

<400> 12

gaccccatag agtgg

15

<210> 13

<211> 15

<212> DNA

<213> Homo sapiens

<220>

<221> mutation

<222> (7)..(9)

<223> Amino Acid codon 376 mutation: Pro to Ser mutation

<400> 13

ccaccctcgt cccca

15

<210> 14

<211> 15

<212> DNA

<213> Homo sapiens

<220>

<221> mutation

UTHou-16UTL final.ST25
<222> (7)..(9)
<223> Amino Acid codon 163 mutation: Gln to X mutation

<400> 14
gattactaga gggag

15

<210> 15
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 197 mutation: Ala to Pro mutation

<400> 15
gaggagccct cttcc

15

<210> 16
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 278 mutation: Trp to X mutation

<400> 16
gaggtgtgaa atgag

15

<210> 17
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(7)
<223> a to g mutation: IVS2-2A to G

<400> 17
tccccacggc acacg

15

<210> 18
<211> 15
<212> DNA
<213> Homo sapiens

<220>

UTHou-16UTL final.ST25

<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 262 mutation: Glu to Ser

<400> 18
cacccaagtgcgcgg

15

<210> 19
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 302 mutation: Arg to Leu

<400> 19
gcggtgctca gggag

15

<210> 20
<211> 13
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (5)..(5)
<223> Deletion of "tgcagagccacc" at location 5

<400> 20
gccacccaca gca

13

<210> 21
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 239 mutation: Cys to Arg

<400> 21
tgccagcgcc tgctg

15

<210> 22
<211> 13
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> mutation
<222> (5)..(5)
<223> two base deletion at location 5: "ag"

<400> 22
tccccgagcc acc

13

<210> 23
<211> 15
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon 42 mutation: Cys to X

<400> 23
atgaaatgag atgag

15

<210> 24
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(7)
<223> nine base deletion at location 7: "ctccggcac"

<400> 24
gatattcacc ca

12

<210> 25
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(7)
<223> eight base insertion: "gtgatctt"

<400> 25
gacttaggtga tcttgtgatc t

21

<210> 26
<211> 12
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> mutation
<222> (4)..(4)
<223> g to a polymorphism: IVS1-9 g to a benign mutation

<400> 26
ctcagtgact ag

12

<210> 27
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(4)
<223> g to c polymorphism: IVS2+66G to C Benign

<400> 27
tttgccgggc tg

12

<210> 28
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(4)
<223> c to t polymorphism: IVS2-88C to T Benign

<400> 28
tcctctcagg ag

12

<210> 29
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(4)
<223> g to a polymorphism: IVS2-14G to A Benign

<400> 29
atccatttat cc

12

<210> 30
<211> 12
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> mutation
<222> (4)..(4)
<223> a to c mutation: IVS2-10A to C Benign

<400> 30
cgtttctccc ca

12

<210> 31
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(4)
<223> t to c mutation: IVS3-25T to C Benign

<400> 31
ctgccccact ga

12

<210> 32
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(7)
<223> t to c mutation: IVS3-21T to C Benign

<400> 32
cctcaccgac ct

12

<210> 33
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(7)
<223> g to a mutation: IVS5+18G to A Benign

<400> 33
aggagcggac ag

12

<210> 34
<211> 12
<212> DNA

UTHou-16UTL final.ST25

<213> Homo sapiens

<220>
<221> mutation
<222> (7)..(9)
<223> Amino Acid codon mutation: Asp 90 His Benign

<400> 34
tggtgccaca cc

12

<210> 35
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid mutation: Phe 37 Phe Benign

<400> 35
catttccgca cc

12

<210> 36
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid mutation: Ser 78 Ser Benign

<400> 36
acctcttatgc gg

12

<210> 37
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid mutation: Cys 89 Cys Benign

<400> 37
tggtgtgaca cc

12

<210> 38
<211> 12

UTHou-16UTL final.ST25

<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid codon mutation: Leu 100 Leu Benign

<400> 38
atcctgtccc gg

12

<210> 39
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid codon mutation: His 172 His

<400> 39
aatcacgaga ag

12

<210> 40
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid codon mutation: Pro 217 Pro Benign

<400> 40
aagccgtggg ag

12

<210> 41
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> mutation
<222> (4)..(6)
<223> Amino Acid codon mutation: Asp 255 Asp Benign

<400> 41
agtgacattc tc

12

<210> 42

UTHou-16UTL final.ST25

<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(20)
<223> PCR primer 1 page 57

<400> 42
aagaaaaacca ttctgcacgg

20

<210> 43
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(19)
<223> PCR primer 2 page 57

<400> 43
tgcagtcgt ccaggtcct

19

<210> 44
<211> 17
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(17)
<223> PCR primer 1 page 58

<400> 44
gacacctccc tttctcc

17

<210> 45
<211> 18
<212> DNA
<213> Homo sapiens

<400> 45
gctggggctg cctggctg

18

<210> 46
<211> 20
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> primer
<222> (1)..(20)
<223> PCR primer 3 page 58

<400> 46
ccgagtgatt accagaggga

20

<210> 47
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(20)
<223> PCR primer 4 page 58

<400> 47
tgagctccag cacctcatag

20

<210> 48
<211> 18
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(18)
<223> PCR primer 1 page 60

<400> 48
acgcagaggt gtggatg

18

<210> 49
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(19)
<223> PCR primer 2 page 60

<400> 49
aaaaagtgac accacgatc

19

<210> 50
<211> 34
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> exon
<222> (1)..(34)
<223> exon - donor splice site 1 of Table 1 page 49
CGGATCCCGAgtgagtggggccctccggagcaga

<400> 50
cgg atc ccg agt gag tgg ggc cct ccg gag cag a 34
Arg Ile Pro Ser Glu Trp Gly Pro Pro Glu Gln
1 5 10

<210> 51
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)
<223> exon - acceptor splice site 1 of Table 1 page 49
cagagtgcaccgtctcggtgactagGTGATCTTC

<400> 51
cag agt gca ccg tct cgg tga cta ggt gat ctt tc 35
Gln Ser Ala Pro Ser Arg Leu Gly Asp Leu
1 5 10

<210> 52
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 2 of Table 1 page 49
CSACACCATCgtaagttaggcctgcgcgcgtct

<400> 52
csa cac cat cgt aag tag gcc ctg cgc gcc tgt ct 35
Xaa His His Arg Lys Ala Leu Arg Ala Cys
1 5 10

<210> 53
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)

UTHou-16UTL final.ST25

```

<223> exon - acceptor splice site 2 of Table 1 page 49
      gccatccatccgttatccccacagCACACGGGGG

<400> 53
      gcc atc cat ccg ttt atc ccc aca gca cac ggg gg
      Ala Ile His Pro Phe Ile Pro Thr Ala His Gly
      1           5           10

      35

<210> 54
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 3 of Table 1 page 49
      GCTGCTGCAGgtggggctggggttggcaggcgtgg

<400> 54
      gct gct gca ggt ggg gct ggg gtt ggc agg gct gg
      Ala Ala Ala Gly Gly Ala Gly Val Gly Arg Ala
      1           5           10

      35

<210> 55
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)
<223> exon - acceptor splice site 3 of Table 1 page 49
      cactgacctgcagctctggggccagGTTGATGCC

<400> 55
      cac tga cct gca gct ctg ggg cca ggt tga tgc cc
      His     Pro Ala Ala Leu Gly Pro Gly     Cys
      1           5

      35

<210> 56
<211> 35
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1)..(35)
<223> exon - donor splice site 4 of Table 1 page 49

```

UTHou-16UTL final.ST25

GCAGACCAAGgtcagaggccgctggcacggggtg

<400> 56

gca gac caa ggt cag agg ccg ctg gcc acg ggg tg
Ala Asp Gln Gly Gln Arg Pro Leu Ala Thr Gly
1 5 10

35

<210> 57

<211> 35

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (1)..(35)

<223> exon - acceptor splice site 4 of Table 1 page 49

catggctgaccttctccctgggcagGAGAAGCCRT

<400> 57

cat ggc tga cct tct ccc tgg gca gga gaa gcc rt
His Gly Pro Ser Pro Trp Ala Gly Glu Ala
1 5 10

35

<210> 58

<211> 35

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (1)..(35)

<223> exon - donor splice site 5 of Table 1 page 49

CACCACCCAGgtgcgcgggctgcagggcgacaca

<400> 58

cac cac cca ggt gcg cggt ggc tgc agg ggc gga ca
His His Pro Gly Ala Arg Gly Cys Arg Gly Gly
1 5 10

35

<210> 59

<211> 35

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (1)..(35)

<223> exon - acceptor splice site 5 of Table 1 page 49

gctggatgctccctgctccccacagGCATCGTGAA

UTHou-16UTL final.ST25

<400> 59
gct gga tgc tcc ctg ctc ccc aca ggc atc gtg aa 35
Ala Gly Cys Ser Leu Leu Pro Thr Gly Ile Val
1 5 10

<210> 60
<211> 18
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 1 for AIPL1 fragment amplification Table 5 page 61
```

<400> 60
ggacacctcc ctttctcc 18

<210> 61
<211> 18
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 2 for AIPL1 fragment amplification Table 5 page 61
```

<400> 61
gctggggctg cctggctg 18

<210> 62
<211> 20
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> primer
<222> (1)..(20)
<223> PCR Primer 3 for AIPL1 fragment amplification Table 5 page 61
```

<400> 62
gggccttgaa cagtgtgtct 20

<210> 63
<211> 19
<212> DNA
<213> *Homo sapiens*

<220>
<221> primer

UTHou-16UTL final.ST25
<222> (1)..(19)
<223> PCR Primer 4 for AIPL1 fragment amplification Table 5 page 61

<400> 63
tttcccgaaa cacagcagc 19

<210> 64
<211> 18
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 5 for AIPL1 fragment amplification Table 5 page 61

<400> 64
agtgagggag caggattc 18

<210> 65
<211> 20
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(20)
<223> PCR Primer 6 for AIPL1 fragment amplification Table 5 page 61

<400> 65
tgcccatgtat gccccgtgtc 20

<210> 66
<211> 18
<212> DNA
<213> Homo sapiens

<220>
<221> PRIMER
<222> (1)..(18)
<223> PCR Primer 7 for AIPL1 fragment amplification Table 5 page 61

<400> 66
tttcgggtct ctgatggg 18

<210> 67
<211> 17
<212> DNA
<213> Homo sapiens

<220>

UTHou-16UTL final.ST25

<221> primer
<222> (1)..(17)
<223> PCR Primer 8 for AIPL1 fragment amplification Table 5 page 61

<400> 67

gcaggctccc cagagtc

17

<210> 68
<211> 19
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(19)
<223> PCR Primer 9 for AIPL1 fragment amplification Table 5 page 61

<400> 68

gcagctgcct caggtcatg

19

<210> 69
<211> 18
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 10 for AIPL1 fragment amplification Table 5 page 61

<400> 69

gtggggtgga aagaaaag

18

<210> 70
<211> 18
<212> DNA
<213> Homo sapiens

<220>
<221> primer
<222> (1)..(18)
<223> PCR Primer 11 for AIPL1 fragment amplification Table 5 page 61

<400> 70

ctgggaaggg agctgtag

18

<210> 71
<211> 19
<212> DNA
<213> Homo sapiens

UTHou-16UTL final.ST25

<220>
<221> primer
<222> (1)..(19)
<223> PCR Primer 12 for AIPL1 fragment amplification Table 5 page 61

<400> 71
aaaagtgaca ccacgatcc 19

<210> 72
<211> 384
<212> PRT
<213> Homo sapiens

<220>
<221> PEPTIDE
<222> (1)..(384)
<223> Human AIPL1 Protein

<400> 72

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Gln Val Gly Gln Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Val Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser
Page 28

UTHou-16UTL final.ST25

145 150 155 160
Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys
165 170 175

Ala Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg
305 310 315 320

Leu Xaa Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala
325 330 335

Glu Pro Pro Thr Glu Pro Pro Ala Gln Ser Ser Thr Glu Pro Pro Ala
340 345 350

Glu Pro Pro Thr Ala Pro Ser Ala Glu Leu Ser Ala Gly Pro Pro Ala
355 360 365

Glu Pro Ala Thr Glu Pro Pro Ser Pro Gly His Ser Leu Gln His
370 375 380

UTHou-16UTL final.ST25

<210> 73
<211> 384
<212> PRT
<213> Pan troglodytes

<220>
<221> Peptide
<222> (1)..(384)
<223> Chimpanzee AIPL1 Protein

<400> 73

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Gln Val Gly Gln Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Val Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser
145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys
165 170 175

Ala Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

UTHou-16UTL final.ST25

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Arg
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg
305 310 315 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala
325 330 335

Glu Pro Pro Thr Glu Pro Pro Ala Gln Ser Ser Thr Glu Pro Pro Ala
340 345 350

Glu Pro Pro Pro Ala Pro Ser Ala Glu Leu Ser Ala Gly Pro Pro Ala
355 360 365

Glu Thr Ala Thr Glu Pro Pro Pro Ser Pro Gly His Ser Leu Gln His
370 375 380

<210> 74
<211> 372
<212> PRT
<213> Papio anubis

<220>
<221> peptide
<222> (1)..(372)

UTHou-16UTL final.ST25

<223> Baboon AIPL1 Protein

<400> 74

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Gln Val Asp Gln Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Ile Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser
145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys
165 170 175

Val Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
210 215 220

UTHou-16UTL final.ST25

Leu Glu Lys Met Ile Asn Thr Leu Thr Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg
305 310 315 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Thr
325 330 335

Glu Pro Pro Ala Glu Pro His Thr Ala Pro Pro Ala Glu Leu Ser Thr
340 345 350

Gly Pro Pro Ala Glu Pro Pro Ala Glu Leu Pro Leu Ser Pro Gly His
355 360 365

Ser Leu Gln His
370

<210> 75
<211> 328
<212> PRT
<213> Bos taurus

<400> 75

Met Asp Ala Thr Leu Leu Leu Asn Val Glu Gly Ile Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Asp Leu Pro Asn Phe Ile Thr Gly Ala Arg
20 25 30

Val Thr Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

UTHou-16UTL final.ST25

Ile Asp Asp Ser Lys Gln Val Gly His Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val Ser Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Glu Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Ile Phe Ile Ile Glu Leu Leu Gln Val Glu Ala Pro Ser
145 150 155 160

Gln Tyr Gln Arg Glu Thr Trp Asn Leu Asn Asn Gln Glu Lys Met Gln
165 170 175

Ala Val Pro Ile Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Asn Lys Tyr Gln Glu Ala Ile Val Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Glu
275 280 285

UTHou-16UTL final.ST25

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Gln Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Leu Glu Glu Lys Arg Glu Glu Glu Arg
305 310 315 320

Leu Arg Cys Arg Asn Met Leu Gly
325

<210> 76
<211> 328
<212> PRT
<213> Mus musculus

<220>
<221> peptide
<222> (1)..(328)
<223> Mouse AIPL1 Protein

<400> 76

Met Asp Val Ser Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Thr Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Lys Gln Val Gly Gln Pro Met Ser Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Thr Leu Leu Thr Ser Met Arg
65 70 75 80

Leu Gly Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Met Leu Ser Arg Ser Leu Arg Gln Val Ala Glu Gly Lys Asp
100 105 110

Pro Thr Ser Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

UTHou-16UTL final.ST25

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Val Phe Leu Tyr Glu Leu Leu Gln Val Glu Ala Pro Asn
145 150 155 160

Glu Tyr Gln Arg Glu Thr Trp Asn Leu Asn Asn Glu Glu Arg Met Gln
165 170 175

Ala Val Pro Leu Leu His Gly Glu Gly Asn Arg Leu Tyr Lys Leu Gly
180 185 190

Arg Tyr Asp Gln Ala Ala Thr Lys Tyr Gln Glu Ala Ile Val Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Glu Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Met Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Ala Glu Glu Ala Lys Ala Asp Leu Glu
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Leu Arg Glu
290 295 300

Leu Arg Leu Leu Glu Ser Arg Leu Ala Asp Lys Gln Glu Glu Glu Arg
305 310 315 320

Gln Arg Cys Arg Ser Met Leu Gly
325

<210> 77
<211> 392
<212> PRT
<213> Macaca mulatta

<220>

UTHou-16UTL final.ST25

<221> peptide
<222> (1)..(392)
<223> Rhesus Monkey AILP1 Protein

<400> 77

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Gln Val Asp Gln Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Ile Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser
145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys
165 170 175

Val Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys

UTHou-16UTL final.ST25

210

215

220

Leu Glu Lys Met Ile Asn Thr Leu Thr Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg
305 . . . 310 . . . 315 . . . 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala
325 330 335

Glu Pro Pro Ala Gln Pro Pro Thr Ala Pro Pro Ala Glu Leu Ser Thr
340 345 350

Gly Pro Pro Ala Asp Pro Pro Ala Glu Pro Pro Thr Ala Pro Pro Ala
355 360 365

Glu Leu Ser Thr Gly Pro Pro Ala Glu Pro Pro Ala Glu Leu Pro Leu
370 375 380

Ser Pro Gly His Ser Leu Gln His
385 390

<210> 78
<211> 372
<212> PRT
<213> Saimiri sciureus

```
<220>
<221> peptide
<222> (1)..(372)
<223> Squirrel Monkey AIPL1 Protein
```

<400> 78

UTHou-16UTL final.ST25

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Arg Glu Val Gly Gln Pro Met His Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Val Arg Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp
100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Ile Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser
145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys
165 170 175

Val Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly
180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

UTHou-16UTL final.ST25

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg
260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu
290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg
305 310 315 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Trp Ser Pro Ala
325 330 335

Glu Pro Pro Ala Glu Pro Pro Ala Glu Ser Ser Thr Glu Pro Pro Ala
340 345 350

Glu Pro Pro Ala Glu Pro Pro Ala Glu Leu Thr Leu Thr Pro Gly His
355 360 365

Pro Leu Gln His
370

<210> 79
<211> 328
<212> PRT
<213> Rattus norvegicus

<220>
<221> PEPTIDE
<222> (1)..(328)
<223> AIPL1 Protein rat - from Figure 1

<400> 79

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile
1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg
20 25 30

UTHou-16UTL final.ST25

Val Thr Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val
35 40 45

Ile Asp Asp Ser Lys Gln Val Gly Gln Pro Met Asn Ile Ile Ile Gly
50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg
65 70 75 80

Leu Gly Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val
85 90 95

Tyr Pro Met Leu Ser Arg Ser Leu Arg Gln Val Ala Glu Gly Lys Asp
100 105 110

Pro Thr Ser Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala
115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro
130 135 140

Gln Pro Leu Ile Phe Leu Ile Glu Leu Leu Gln Val Glu Ala Pro Asn
145 150 155 160

Glu Tyr Gln Arg Glu Thr Trp Asn Leu Asn Asn Glu Glu Arg Met Gln
165 170 175

Ala Val Pro Leu Leu His Gly Glu Gly Asn Arg Leu Tyr Lys Leu Gly
180 185 190

Arg Tyr Asp Gln Ala Ala Thr Lys Tyr Gln Glu Ala Ile Ile Cys Leu
195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Glu Trp Leu Lys
210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu
225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile
245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Met Arg Ala Arg
260 265 270

UTHou-16UTL final.ST25

Ala His Ala Glu Val Trp Asn Ala Glu Glu Ala Lys Ala Asp Leu Glu
275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Arg Lys Ala Val Leu Arg Glu
290 295 300

Leu Arg Leu Leu Glu Ser Arg Leu Ala Asp Lys Gln Glu Glu Glu Arg
305 310 315 320

Gln Arg Cys Arg Ser Met Leu Gly
325

<210> 80
<211> 330
<212> PRT
<213> Homo sapiens

<220>
<221> PEPTIDE
<222> (1)..(330)
<223> AIP Protein human - From Figure 1

<400> 80

Met Ala Asp Ile Ile Ala Arg Leu Arg Glu Asp Gly Ile Gln Lys Arg
1 5 10 15

Val Ile Gln Glu Gly Arg Gly Glu Leu Pro Asp Phe Gln Asp Gly Thr
20 25 30

Lys Ala Thr Phe His Tyr Arg Thr Leu His Ser Asp Asp Glu Gly Thr
35 40 45

Val Leu Asp Asp Ser Arg Ala Arg Gly Lys Pro Met Glu Leu Ile Ile
50 55 60

Gly Lys Lys Phe Lys Leu Pro Val Trp Glu Thr Ile Val Cys Thr Met
65 70 75 80

Arg Glu Gly Glu Ile Ala Gln Phe Leu Cys Asp Ile Lys His Val Val
85 90 95

Leu Tyr Pro Leu Val Ala Lys Ser Leu Arg Asn Ile Ala Val Gly Lys
100 105 110

Asp Pro Leu Glu Gly Gln Arg His Cys Cys Gly Val Ala Gln Met Arg
Page 42

UTHou-16UTL final.ST25

115

120

125

Glu His Ser Ser Leu Gly His Ala Asp Leu Asp Ala Leu Gln Gln Asn
 130 135 140

Pro Gln Pro Leu Ile Phe His Met Glu Met Leu Lys Val Glu Ser Pro
 145 150 155 160

Gly Thr Tyr Gln Gln Asp Pro Trp Ala Met Thr Asp Glu Glu Lys Ala
 165 170 175

Lys Ala Val Pro Leu Ile His Gln Glu Gly Asn Arg Leu Tyr Arg Glu
 180 185 190

Gly His Val Lys Glu Ala Ala Ala Lys Tyr Tyr Asp Ala Ile Ala Cys
 195 200 205

Leu Lys Asn Leu Gln Met Lys Glu Gln Pro Gly Ser Pro Glu Trp Ile
 210 215 220

Gln Leu Asp Lys Gln Ile Thr Pro Leu Leu Leu Asn Tyr Cys Gln Cys
 225 230 235 240

Lys Leu Val Val Glu Glu Tyr Tyr Glu Val Leu Asp His Cys Ser Ser
 245 250 255

Ile Leu Asn Lys Tyr Asp Asp Asn Val Lys Ala Tyr Phe Lys Arg Gly
 260 265 270

Lys Ala His Ala Ala Val Trp Asn Ala Gln Glu Ala Gln Ala Asp Phe
 275 280 285

Ala Lys Val Leu Glu Leu Asp Pro Ala Leu Ala Pro Val Val Ser Arg
 290 295 300

Glu Leu Arg Ala Leu Glu Ala Arg Ile Arg Gln Lys Asp Glu Glu Asp
 305 310 315 320

Lys Ala Arg Phe Arg Gly Ile Phe Ser His
 325 330

<210> 81
<211> 330
<212> PRT
<213> Mus musculus

UTHou-16UTL final.ST25

<220>
<221> PEPTIDE
<222> (1)..(330)
<223> AIP Protein mouse - From Figure 1

<400> 81

Met Ala Asp Leu Ile Ala Arg Leu Arg Glu Asp Gly Ile Gln Lys Arg
1 5 10 15

Val Ile Gln Glu Gly Arg Gly Glu Leu Pro Asp Phe Gln Asp Gly Thr
20 25 30

Lys Ala Thr Phe His Phe Arg Thr Leu His Ser Asp Asn Glu Gly Ser
35 40 45

Val Ile Asp Asp Ser Arg Thr Arg Gly Lys Pro Met Glu Leu Ile Val
50 55 60

Gly Lys Lys Phe Lys Leu Pro Val Trp Glu Thr Ile Val Cys Thr Met
65 70 75 80

Arg Glu Gly Glu Ile Ala Gln Phe Leu Cys Asp Ile Lys His Val Val
85 90 95

Leu Tyr Pro Leu Val Ala Lys Ser Leu Arg Asn Ile Ala Glu Gly Lys
100 105 110

Asp Pro Leu Glu Gly Gln Arg His Cys Cys Gly Ile Ala Gln Met His
115 120 125

Glu His Ser Ser Leu Gly His Ala Asp Leu Asp Ala Leu Gln Gln Asn
130 135 140

Pro Gln Pro Leu Ile Phe His Ile Glu Met Leu Lys Val Glu Ser Pro
145 150 155 160

Gly Thr Tyr Gln Gln Asp Pro Trp Ala Met Thr Asp Glu Glu Lys Ala
165 170 175

Lys Ala Val Pro Val Ile His Gln Glu Gly Asn Arg Leu Tyr Arg Glu
180 185 190

Gly Gln Val Lys Glu Ala Ala Lys Tyr Tyr Asp Ala Ile Ala Cys
195 200 205

UTHou-16UTL final.ST25

Leu Lys Asn Leu Gln Met Lys Glu Gln Pro Gly Ser Pro Asp Trp Ile
210 215 220

Gln Leu Asp Leu Gln Ile Thr Pro Leu Leu Leu Asn Tyr Cys Gln Cys
225 230 235 240

Lys Leu Val Ala Gln Glu Tyr Tyr Glu Val Leu Asp His Cys Ser Ser
245 250 255

Ile Leu Asn Lys Tyr Asp Asp Asn Val Lys Ala Tyr Phe Lys Arg Gly
260 265 270

Lys Ala His Ala Ala Val Trp Asn Ala Gln Glu Ala Gln Ala Asp Phe
275 280 285

Ala Lys Val Leu Glu Leu Asp Pro Ala Leu Ala Pro Val Val Ser Arg
290 295 300

Glu Leu Arg Ala Leu Glu Thr Arg Ile Arg Gln Lys Asp Glu Glu Asp
305 310 315 320

Lys Ala Arg Phe Arg Gly Ile Phe Ser His
325 330

<210> 82
<211> 8
<212> DNA
<213> Homo sapiens

<220>
<221> misc_structure
<222> (1)..(8)
<223> Eight Base insertion as Val 33 in the AIPL1 gene

<400> 82
gtgatctt

8

<210> 83
<211> 9
<212> DNA
<213> Homo sapiens

<220>
<221> misc_structure
<222> (1)..(9)
<223> Nine base deletion at Leu 257 of the AIPL1 gene

UTHou-16UTL final.ST25

<400> 83
ctccggcac

9