Práctica 3

 ${\sf Supercomputador}$

María Jesús López Salmerón Nazaret Román Guerrero Laura Hernández Muñoz José Baena Cobos Carlos Sánchez Páez

6 de abril de 2018

Presentación del problema Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso Demostración de optimalida

- Presentación del problema
- 2 Algoritmo tradicional
- 3 Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- Demostración de optimalidad

Presentación del problema

- Presentación del problema
- - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalidae
Fin de la presentación

Tiempo de
$$proceso_i = \begin{cases} p(i) & \text{segundos en el supercomputador} \\ + \\ f(i) & \text{segundos en un PC} \end{cases}$$

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalidae
Fin de la presentación

Tiempo de
$$proceso_i = \begin{cases} p(i) & \text{segundos en el supercomputador} \\ + \\ f(i) & \text{segundos en un PC} \end{cases}$$

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalidae
Fin de la presentación

Tiempo de
$$proceso_i = \begin{cases} p(i) & \text{segundos en el supercomputador} \\ + \\ f(i) & \text{segundos en un PC} \end{cases}$$

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Domostración de optimalidac
Fin de la oresentación

Presentación del problema Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso Demostración de optimalidad Fin de la presentación

$$\mathsf{Tiempo \ de \ } \textit{proceso}_i = \begin{cases} p(i) & \mathsf{segundos \ en \ el \ supercomputador} \\ & + \\ f(i) & \mathsf{segundos \ en \ un \ PC} \end{cases}$$

Igoritmo tradicional Igoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso

Presentación del problema

Demostración de optimal

Proceso	T_S	T_{PC}
P_1	4	6
P_2	5	5
P_3	3	7
P_4	8	2

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalid.

Proceso	p(i)	f(i)
P ₁	4	6
$\overline{P_2}$	5	5
P_3	3	7
P_4	8	2

Presentación del problema
Algoritmo tradicional
Algoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalidac
Fin de la presentación

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P ₃	3	7
P_4	8	2

Tiempo de PC. Tiempo de supercomputador.

resentación del problema Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso Jeemostración de optimalida

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P ₃	3	7
P ₄	8	2

Para 4 procesos hay 4! = 24 posibles soluciones.

resentación del prob

Igoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso Jemostración de optimali

- 1 Presentación del problema
- 2 Algoritmo tradicional
- Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Algoritmo tradicional

esentación del problema goritmo tradicional goritmo vorax lementos del algoritmo oraz etectoología jemplo de uso mostración de optimalida t de la presentación

lacktriangle Probar las distintas combinaciones (n!)

Algoritmo tradicional

Presentación del problema

Algoritmo tradicional

Algoritmo voraz

Elementos del algoritmo
voraz

Metodología

Ejemplo de uso

Demostración de optimalida

- Probar las distintas combinaciones (n!)
- 2 Elegir la que menor tiempo total consuma.

Algoritmo tradicional

Presentación del problema

Algoritmo tradicional

Algoritmo voraz

Elementos del algoritmo

voraz

Metodología

Ejemplo de uso

Demostración de optimalid

- Probar las distintas combinaciones (n!)
- 2 Elegir la que menor tiempo total consuma.

O(n!)

Presentación del problema Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso

- Presentación del problema
- 2 Algoritmo tradiciona
- 3 Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Presentación del problem

Algoritmo voraz

Elementos del algoritmo
voraz

Metodología
Ejemplo de uso

Demostración de optimalid.

- Presentación del problema
- 2 Algoritmo tradiciona
- 3 Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Elementos del algoritmo voraz

resentación del problema Igoritmo tradicional Igoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso emostración de optimalidad

• Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$

- Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$
- Conjunto de seleccionados. Aquellos procesos que iremos incorporando a la lista final.

- Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$
- Conjunto de seleccionados. Aquellos procesos que iremos incorporando a la lista final.
- Función solución. p_i completado $\forall i \in [1, \#P]$.

- Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$
- Conjunto de seleccionados. Aquellos procesos que iremos incorporando a la lista final.
- Función solución. p_i completado $\forall i \in [1, \#P]$.
- Función de factibilidad. El tiempo de ejecución de un proceso debe ser finito.

- Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$
- Conjunto de seleccionados. Aquellos procesos que iremos incorporando a la lista final.
- Función solución. p_i completado $\forall i \in [1, \#P]$.
- Función de factibilidad. El tiempo de ejecución de un proceso debe ser finito.
- Función de selección. Seleccionaremos aquel proceso que tenga un f(i) mayor.

- Conjunto de candidatos. Todos los procesos a ejecutar. $P = \{p_1, p_2, ..., p_n\}.$
- Conjunto de seleccionados. Aquellos procesos que iremos incorporando a la lista final.
- Función solución. p_i completado $\forall i \in [1, \#P]$.
- Función de factibilidad. El tiempo de ejecución de un proceso debe ser finito.
- Función de selección. Seleccionaremos aquel proceso que tenga un f(i) mayor.
- Función objetivo. Obtener la solución cuyo tiempo global sea menor, siendo

$$T_{fin_{global}} = \sum_{i=1}^{n} p(i) + max\{T_{restante}(p_1), ..., T_{restante}(p_n)\}.$$

Presentación del problema Algoritmo veraz Elementos del algoritmo voraz Metodología Ejemplo de uso Demostración de optimalida

- Presentación del problema
- 2 Algoritmo tradiciona
- 3 Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Metodología del algoritmo voraz

resentación del problema Ilgoritmo tradicional Ilgoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso temostración de optimalidad

• Ordenar el vector de procesos de forma decreciente según su $f(i) \rightarrow Quicksort$.

Metodología del algoritmo voraz

Presentación del problema Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso Demostración de optimalida

• Ordenar el vector de procesos de forma decreciente según su f(i).

$$O(n \cdot log(n))$$

Presentación del problema Ugoritmo tradicional Ugoritmo voraz Elementos del algoritmo voraz Metodología **Ejemplo de uso** Demostración de optimalidad

- Presentación del problema
- 2 Algoritmo tradiciona
- 3 Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Ilgoritmo tradicional
Ilgoritmo voraz
Elementos del algoritmo
voraz
Metodología
Ejemplo de uso
Demostración de optimalida

Proceso	T_S	T_{PC}
P_1	4	6
P_2	5	5
P_3	3	7
P_4	8	2

esentación del problema goritmo tradicional goritmo voraz :lementos del algoritmo oraz //detodología tjemplo de uso imostración de optimali

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P_3	3	7
P_4	8	2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tiempo de PC.

Tiempo de supercomputador.

esentación del problen goritmo tradicional goritmo voraz Elementos del algoritm voraz Vectodología Ejemplo de uso emostración de optima

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P_3	3	7
P_4	8	2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tiempo de PC.

esentación del problem goritmo tradicional goritmo voraz Elementos del algoritmo roraz Metodología Ejemplo de uso emostración de optimal

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P_3	3	7
P_4	8	2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tiempo de PC. Tiempo de supercomputador.

esentación del problem goritmo tradicional goritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso emostración de optimal

Proceso	p(i)	f(i)
P_1	4	6
P_2	5	5
P ₃	3	7
P_4	8	2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tiempo de PC.

Tiempo de supercomputador.

Presentación del proble Algoritmo tradicional

Elementos del algoritmo oraz Metodología Ejemplo de uso

1 Presentación del problema

- 2 Algoritmo tradiciona
- Algoritmo voraz
 - Elementos del algoritmo voraz
 - Metodología
 - Ejemplo de uso
- 4 Demostración de optimalidad

Igoritmo tradicional Igoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso emostración de optimalida

- $P = \{p_1, p_2, ..., p_n\} \rightarrow \text{conjunto de procesos candidatos.}$
- $T_{fin_{global}} = \sum_{i=1}^{n} p(i) + máx\{T_{restante}(p_1), ..., T_{restante}(p_n)\}$
- $p_x \in P$ un proceso tal que $f(p_x) \ge f(p_i) \forall i \in [1, \#P]$.

resentación del problema Igoritmo tradicional Igoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso emostración de optimalidad in de la presentación

Si p_x se ejecuta el primero:

•
$$t_{inicio}(f(p_x)) = t_0 + p(p_x)$$

•
$$t_{fin}(f(p_x)) = t_{inicio}(f(p_x)) + f(p_x)$$

Sea $t_{fin}(p_x) = t_0 + \sum_{i=1}^n p(i)$ el momento en el que han finalizado todos los cómputos del superordenador. Entonces:

$$t_{restante}(p_{\scriptscriptstyle X}) = t_{fin}(p_{\scriptscriptstyle X}) - t_{fin}(p)$$

Reducción al absurdo

Presentación del problema Algoritmo varaz Elementos del algoritmo voraz Metodología Ejemplo de uso Demostración de optimalidac

Supongamos que no eligiendo p_x como el primer proceso obtenemos una solución óptima. Entonces:

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}}$$

Algoritmo tradicional Algoritmo voraz Elementos del algoritmo voraz Metodología Ejemplo de uso

Supongamos que no eligiendo p_x como el primer proceso obtenemos una solución óptima. Entonces:

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}}$$

•
$$t'_{inicio}(p_{\scriptscriptstyle X}) > t_{inicio}(p_{\scriptscriptstyle X})
ightarrow t'_{fin}(p_{\scriptscriptstyle X}) > t_{fin}(p_{\scriptscriptstyle X})
ightarrow t_{restante}p(x)' > t_{restante}(p_{\scriptscriptstyle X})$$

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}} o$$

•
$$t'_{inicio}(p_{x}) > t_{inicio}(p_{x}) \rightarrow t'_{fin}(p_{x}) > t_{fin}(p_{x}) \rightarrow t_{restante}p(x)' > t_{restante}(p_{x})$$

Por tanto, como $t_{restante}p(x)'$ es mayor:

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}} \rightarrow$$

• $t'_{inicio}(p_{x}) > t_{inicio}(p_{x})
ightarrow t'_{fin}(p_{x}) > t_{fin}(p_{x})
ightarrow t_{restante}p(x)' > t_{restante}(p_{x})$

Por tanto, como $t_{restante}p(x)'$ es mayor:

$$ext{máx}'\{t_{restante}(p_1),...,t_{restante}(p_x),...,t_{restante}(p_n)\} > \\ ext{máx}\{t_{restante}(p_1),...,t_{restante}(p_x),...,t_{restante}(p_n)\}$$

Por tanto,
$$T'_{fin_{global}} > T_{fin_{global}}$$

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}} o$$

• $t'_{inicio}(p_{\mathsf{X}}) > t_{inicio}(p_{\mathsf{X}})
ightarrow t'_{fin}(p_{\mathsf{X}}) > t_{fin}(p_{\mathsf{X}})
ightarrow t_{restante}p(x)' > t_{restante}(p_{\mathsf{X}})$

Por tanto, como $t_{restante}p(x)'$ es mayor:

$$\begin{aligned} & \max '\{t_{restante}(p_1),...,t_{restante}(p_x),...,t_{restante}(p_n)\} > \\ & \max \{t_{restante}(p_1),...,t_{restante}(p_x),...,t_{restante}(p_n)\} \end{aligned}$$

Por tanto, $T'_{\mathit{fin_{\mathit{global}}}} > T_{\mathit{fin_{\mathit{global}}}} o \mathsf{Soluci\'{o}n}$ no $\acute{\mathsf{o}}\mathsf{ptima}$

•
$$t'_{inicio}(f(p_x)) = t_0 + \underbrace{\sum_{i=1}^{pos_x-1} p(p_i) + p(p_x)}_{\text{espera}} \rightarrow$$

• $t'_{inicio}(p_{\scriptscriptstyle X}) > t_{inicio}(p_{\scriptscriptstyle X})
ightarrow t'_{fin}(p_{\scriptscriptstyle X}) > t_{fin}(p_{\scriptscriptstyle X})
ightarrow t_{restante}p(x)' > t_{restante}(p_{\scriptscriptstyle X})$

Por tanto, como $t_{restante}p(x)'$ es mayor:

$$\begin{aligned} & \max \{ t_{restante}(p_1), ..., t_{restante}(p_x), ..., t_{restante}(p_n) \} > \\ & \max \{ t_{restante}(p_1), ..., t_{restante}(p_x), ..., t_{restante}(p_n) \} \end{aligned}$$

Por tanto, $T'_{\mathit{fin_{global}}} > T_{\mathit{fin_{global}}} \to \mathsf{Soluci\'{o}}$ no $\acute{\mathsf{optima}} \to \mathsf{contradicci\'{o}}$ nuestra hip\'{otesis} es correcta.

esentación del problema goritmo tradicional goritmo voraz Elementos del algoritmo coraz Vetodología Ejemplo de uso emostración de optimalio

Fin de la presentación