Assignment-2 Course: B.Tech 1st Year

Subject: Discrete Mathematical Structures (DMS)

- 1. Let, $A = \{0,1\}$. Show that the following expressions are regular over A:
 - a) $0^* (0 \lor 1)^* 01^* 0$, b) $00^* (0 \lor 1)^* 1^* 1$, c) $(01)^* (01 \lor 1^*)^*$.
- 2. Let, $A = \{a, b, c, d\}$. Show that the following expressions are regular over A:
 - a) $abc \lor b(ab)^*(abc \lor a)$, b) $ab^*(a^*b \lor c)^*d$, c) $(a^*b \lor c^*d)^* \lor abcd$.
- 3. Let, $S = \{0,1\}$. Give the regular expressions, corresponding to the regular sets:
 - a) {00,010,0110,011110,...}
 - b) {0,001,000,00001,00000,0000001,...}
- 4. Let, U be an universal set with cardinality 12 and A, B, C be three nonempty subsets of U, so that the bit string representations of $A \cup B$, $A \cap B$, and A B are as follows: 111010111111, 000010100001, and 011000001010, respectively. Write down the bit string representations for A, B, B A, $A \oplus B$, and $A^c B$.
- 5. Find the product *AB* for the following matrices:

i)
$$A = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}$$

ii)
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & 7 \\ -4 & 3 & -1 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 & 1 \\ 8 & 5 & -10 \\ 1 & 1 & -1 \end{bmatrix}$$

- 6. Consider the matrix: $A = \begin{bmatrix} 2 & 3 & -7 \\ 4 & 5 & 8 \\ -1 & 0 & 3 \end{bmatrix}$. Compute the values of A^2 and A^3 .
- 7. For each of the three matrices A in Questions 5 i), ii), and 6, compute the corresponding matrix A^{-1} .
- 8. Find a matrix A that satisfies the following matrix identity:

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 1 \\ 4 & 0 & 3 \end{bmatrix} A = \begin{bmatrix} 7 & 1 & 3 \\ 1 & 0 & 3 \\ -1 & -3 & 7 \end{bmatrix}.$$

9. Show that the following matrix is nilpotent and find its index of nilpotency:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

10. Show that the following matrix is idempotent:

$$A = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}.$$

11. Compute $A \vee B$, $A \wedge B$, and $A \odot B$ for the following two Boolean matrices:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

12. Show that the set of all 5×5 Boolean matrices is a mathematical structure that is closed with respect to the operations: *meet, join,* and *Boolean product*. Write down the identity elements for each of these three operations.

_____******_____