

Estimation paramétrique par intervalle de confiance

Module: Techniques d'estimation pour l'ingénieur

Intervalle de confiance de la proportion

Construire un intervalle de confiance de la proportion est la détermination d'un intervalle pour le paramètre $p \in]0,1[$ de la loi de Bernoulli au vu d'un échantillon $(X_1,\ldots,X_n)\sim \mathcal{B}(p)$.

• De ce fait, une proportion n'est que la fréquence de la valeur 1 dans l'échantillon.

On rappelle qu'on a déjà montré qu'un estimateur ponctuel de p est

$$\widehat{p}_n = \overline{X}_n = \frac{X}{n}$$

où X est le nombre de fois où le caractère apparaît dans l'échantillon de taille n.

Intervale de confiance de la moyenne

Or pour un échantillon qui n'est pas normal, la loi de la statistique \overline{X}_n n'est pas évident de la trouver et par la suite la détermination de l'intervalle de confiance n'est plus possible.

Mais lorsque n est suffisamment grand, en faveur du Théorème Central Limite (T.C.L) , on admet le résultat suivant:

Théorème 5

Si np>5 et n(1-p)>5 (ou n assez grand), alors l'intervalle de confiance de niveau de signification $1-\alpha$ pour une proportion p se présente comme suit:

$$IC(p) = \left[\widehat{p}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}}, \widehat{p}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}}\right]$$

Sur 500 personnes interrogées, 274 ont déclaré qu'elles voteraient pour le candidat A.

- 1. Donner une estimation de *p* la proportion de personnes favorables au candidat A dans la population par intervalle de confiance au niveau de signification 95%.
- 2. Pour quel degré de confiance a-t-on la borne inférieure exactement égale à 50% ?

On a $\mathit{n} = 500$, $\alpha = 1 - 0.95 = 0.05 \longrightarrow \frac{\alpha}{2} = 0.025$

La proportion dans l'échantillon est donnée par :

$$\widehat{p}_n = \frac{274}{500} = 0.548$$

Les hypothèses sont vérifiées, en effet on a:

$$n > 30$$
, $n.p = 274 > 5$, et $n(1-p) = 226 > 5$.

Alors l'intervalle de confiance de la proportion p est donné par :

$$IC(p) = \left[\widehat{p}_n - z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}}, \widehat{p}_n + z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}}\right]$$

avec $z_{\frac{\alpha}{2}}$ est déterminée à partir d'une lecture inverse de la table normale $\mathcal{N}(0,1)$ tel que :

$$P(Z > z_{\frac{\alpha}{2}}) = \frac{\alpha}{2} = 0.025$$

 $z_{\frac{\alpha}{2}} = 1.96$

$$\sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}} = \sqrt{\frac{0.548(1-0.548)}{500}} = 0,022$$

Par conséquent :

$$IC(p) = [0.548 - 1.96 \times 0.022; 0.548 + 1.96 \times 0.022] = [0.504; 0.591]$$

2. Pour quel degré de confiance a-t-on la borne inférieure exactement égale à 50% ?

On a la borne inférieure de l'IC(p) est :

$$\widehat{p}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}}$$

Par conséquent

$$\widehat{p}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_n(1 - \widehat{p}_n)}{n}} = 0.5 \iff \widehat{p}_n - 0.5 = z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}_n(1 - \widehat{p}_n)}{n}}$$

$$\iff z_{\frac{\alpha}{2}} = \frac{\widehat{p}_n - 0.5}{\sqrt{\frac{\widehat{p}_n(1 - \widehat{p}_n)}{n}}}$$

$$\iff z_{\frac{\alpha}{2}} = \frac{0.548 - 0.5}{0.022}$$

$$\iff z_{\frac{\alpha}{2}} = 2.18$$

Sachant que $z_{\frac{\alpha}{2}}$ vérifie

$$P(Z>z_{\frac{\alpha}{2}})=\frac{\alpha}{2}$$

Par une lecture directe de la table normale on aura $\frac{\alpha}{2}=0.0146$, et par la suite :

$$1 - \alpha = 97\%$$

