Chapter 39: Fast Fibonacci

The fibonacci function defined on the natural numbers is as follows.

```
*(0) f.0 = 0

*(1) f.1 = 1

*(2) f.(n+2) = f.n + f.(n+1)
```

In this section we look at 3 algorithms to compute f.N for some natural number N. We begin with an algorithm which you are familiar with, we then develop an algorithm which is a bit similar to our first algorithm for exponentiation and finally we try to mimic the approach taken for the second exponentiation algorithm.

First approach.

Invariants.

We generalise the shape of the most complex part of the definition of f. We use a linear combination.

P0:
$$x*f.n + y*f.(n+1) = f.N$$

P1: $0 \le n \le N$

Establish invariants.

$$n, x, y := N, 1, 0$$

Achieving postcondition.

We note that P0 \wedge P1 \wedge n = 0 => y = f.N

Guard.

$$n \neq 0$$

vf.

n

Loop body.

$$y*f.(n-1) + (x+y)*f.n = f.N$$

$$= \{WP.\}$$

$$(n, x, y := n-1, y, x+y).P0$$

Algorithm.

$$n, x, y := N, 1, 0;$$
 $Do n \neq 0 \longrightarrow$

$$n, x, y := n-1, y, x+y$$
 Od
 $\{y = f.N\}$

The algorithm has complexity O(N).

Second approach.

We take a conventional approach to choose x = f.n as part of the invariant. However we strengthen this with y = f.(n+1).

Invariants.

P0:
$$x = f.n \land y = f.(n+1)$$

P1: $0 \le n \le N$

Establish invariants.

$$n, x, y := 0, 0, 1$$

Achieving postcondition.

Note that P0 \wedge P1 \wedge n = N => x = f.N

Guard.

$$\boldsymbol{n} \neq \boldsymbol{N}$$

Loop body.

$$(n, x, y := n+1, E, E').P0$$

$$= \{text substitution\}$$

$$E = f.(n+1) \land E'' = f.(n+2)$$

$$= \{(2)\}$$

$$E = f.(n+1) \land E'' = f.n + f.(n+1)$$

$$= \{P0\}$$

$$E = y \land E'' = x+y$$

Algorithm.

n, x, y := 0, 0, 1;
Do
$$n \neq N \longrightarrow$$

n, x, y := n+1, y, x+y
Od
 $\{x = f.N \land y = f.(N+1)\}$

The algorithm has complexity O(N).

Third approach.

We observe that the values assigned to x and y within the loop are linear combinations of x and y. We can express this in matrix form.

$$n, \begin{pmatrix} x \\ y \end{pmatrix} := n+1, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix}$$

The postcondition can be expressed as

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Where

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)^{N} * \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} f.N \\ f.(N+1) \end{array} \right)$$

The invariant P0 can now be expressed as

P0:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n * \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

This invariants are established by the assignment

$$n, \begin{pmatrix} x \\ y \end{pmatrix} = 0, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Now, in the same was that we constructed the fast exponentiation algorithm we propose that we try to construct a program to achieve the same post but this time using the following tail invariant.

Invariants.

P0:
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = A^{n} * \begin{pmatrix} x \\ y \end{pmatrix}$$

$$P1:0 \le n \le N$$

Establish invariants.

$$n,x,y,A := N,0,1, \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)$$

Achieving postcondition.

We note that P0 \wedge P1 \wedge n = 0 => x = f.N

Guard.

$$n \neq 0$$

vf.

n

Key Insight.

If A is a square matrix then we note the following properties.

$$A^n = (A*A)^{(n \text{ div } 2)}$$
 <= even.n

$$A^n = A^{(n-1)} A$$
 \leq odd.n

Loop body.

We observe

$$= \begin{cases} 0 & 1 \\ 1 & 1 \end{cases}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = A^{n} * \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{cases} \text{case even.n} \end{cases}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (A * A)^{(ndiv2)} * \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{cases} WP. \rbrace$$

$$(n, A := n \text{ div } 2, A * A).P0$$

We further observe

$$= \begin{cases} 0 & 1 \\ 1 & 1 \end{cases}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = A^{n} * \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{cases} \text{case odd.n} \end{cases}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{N} * \begin{pmatrix} 0 \\ 1 \end{pmatrix} = A * A^{(n-1)} * \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{cases} \text{WP.} \end{cases}$$

$$n, \begin{pmatrix} x \\ y \end{pmatrix} := n-1, A * \begin{pmatrix} x \\ y \end{pmatrix}$$

Algorithm.

$$n,x,y,A := N,0,1, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix};$$
Do $n \neq 0 \longrightarrow$

if even.n \longrightarrow n, $A :=$ n div 2, $A * A$

$$[] \text{ odd.n } \longrightarrow n, \begin{pmatrix} x \\ y \end{pmatrix} := n-1, A * \begin{pmatrix} x \\ y \end{pmatrix}$$

fi

Od
$$\{x = f.N\}$$

The algorithm has complexity O(Log(N)).

Final refinement.

Our language however does not provide matrices, so it is necessary to try to remove them. We will represent the matrix using 4 variables.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a*a+b*c & (a+d)*b \\ (a+d)*c & b*c+d*d \end{pmatrix}$$

We can now eliminate the matrix operations in our algorithm.

$$A := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 becomes a, b, c, d := 0,1, 1, 1
$$A := A*A$$
 becomes a, b, c, d := a*a+b*c, (a+d)*b, (a+d)*c, b*c+d*d
$$\begin{pmatrix} x \\ y \end{pmatrix} := A*\begin{pmatrix} x \\ y \end{pmatrix}$$
 becomes x, y := a*x + b*y, c*x + d*y

Final algorithm.

```
\begin{array}{l} n,\,x,\,y,\,a,\,b,\,c,\,d:=N,\,0,\,1,\,0,\,1,\,1\,\,;\\ Do\,\,n\neq 0\longrightarrow\\ &if\,\,even.n\longrightarrow>n,\,a,\,b,\,c,\,d\,:=n\,\,div\,\,2,\,\,a^*a+b^*c\,\,,\,(a+d)^*b,\,(a+d)^*c,\,b^*c+d^*d\\ &[]\,\,odd.n\,\,\longrightarrow>n,\,x,\,y\,:=n-1,\,\,a^*x+b^*y,\,\,c^*x+d^*y \end{array} \begin{array}{l} fi\\ Od\\ \{x=f.N\} \end{array}
```

The Algorithm involves no matrix operations and has complexity O(Log(N)).