## Esercizio sulla VPN

UNITA 5 - Reti, sicurezza, DMZ e Trusted



## **ESERCIZI IN LABORATORIO**

## **REALIZZIAMO UNA VPN CON PACKET TRACER**

Per poter definire una VPN è necessario avere a disposizione una rete sulla quale operare: realizziamo quella riportata nella figura seguente.



Per la LAN A connettiamo due PC a uno switch, con la seguente Addressing Table:

| DEVICE | IP ADDRESS  | SUBNET MASK   | DEFAULT GATEWAY |
|--------|-------------|---------------|-----------------|
| Romeo  | 192.168.1.2 | 255.255.255.0 | 192.168.1.254   |
| Renzo  | 192.168.1.1 | 255.255.255.0 | 192.168.1.254   |

Per la LAN B connettiamo due PC a uno switch, con la seguente Addressing Table:

| DEVICE    | IP ADDRESS  | SUBNET MASK   | DEFAULT GATEWAY |
|-----------|-------------|---------------|-----------------|
| Giulietta | 192.168.4.2 | 255.255.255.0 | 192.168.4.254   |
| Lucia     | 192.168.4.1 | 255.255.255.0 | 192.168.4.254   |

La configurazione dei router non richiede particolari accorgimenti: riportiamo per comodità solo le tabelle statiche.

#### Router R3



## **ESERCIZI IN LABORATORIO**



#### Router R4



#### Router R5



## VPN - crittografia

Dopo avere collaudato il funzionamento della rete verificando che i pacchetti della rete LAN A giungano alla LAN B, procediamo con la creazione di un tunnel tramite il quale i pacchetti scambiati tra il router R3 e il router R4 vengano cifrati, così da garantire l'integrità e la riservatezza delle comunicazioni per fare in modo che il router R5 non venga a conoscenza del loro contenuto.

#### Comandi per il router R4

Analizziamo il comando da inserire nel router in due parti: nella prima fase introduciamo le impostazioni per effettuare lo scambio delle chiavi e utilizzare il protocollo ISAKMP per identificare l'algoritmo di hashing e il metodo di autenticazione.



#### ISAKMP

The Internet Security Association and Key Management Protocol (ISAKMP) defines procedures and packet formats to establish, negotiate, modify and delete Security Associations (SA).

È anche necessario indicare "la terminazione" del tunnel, che nel nostro caso è sul router R4 di indirizzo 192.168.3.1.

```
crypto isakmp policy 10
hash md5
authentication pre-share // utilizza la chiave di cifratura definita in seguito
crypto isakmp key P5NM address 192.168.3.1 //chiave di cifratura
isakmp com
```

# 2

# **ESERCIZI IN LABORATORIO**

Procediamo creando IPseo definendo la trasformazione che chiamiamo SEGRETO con l'indicazione del protocollo di crittografia che deve essere diverso da quello utilizzato da IKE.

```
crypto ipsec transform-set SEGRETO esp-3des esp-md5-hmac mode transport crypto ipsec df-bit clear
```

Possiamo anche definire un gruppo e richiedere le credenziali per l'utilizzo della VPN.

```
crypto isakmp client configuration group AMICI key AMICI
```

Impostiamo infine la crittomappa che verrà utilizza nel sistema.

```
crypto map MIAMAPPA 10 ipsec-isakmp // definizione di una crittomappa set peer 192.168.3.1 // estremo del tunnel set transform-set SEGRETO // abilitiamo la trasformazione match address 101 // origine-destinazione dei pacchetti crypto map MIAMAPPA // attiva la crittomappa
```

### Comandi per il router R3

I comandi per il router R3 sono identici a quelli sopra descritti per il router R4: cambia solamente l'indirizzo di fine tunnel, che è 192.168.2.2.

### METTITI ALLA PROVA

Programmare i router Cisco in CLI

Applicare una VPN

Inserisci nei router i comandi sopra descritti e verifica il funzionamento, analizzando i pacchetti che attraversano il router RS.