Entrega 1

Daniel Brito

1) Dado um grafo direcionado G=(V,A), sendo representado por uma matriz de adjacência, o algoritmo abaixo decide se G possui uma celebridade. A ideia consiste em encontrar um candidato por meio da função encontrar Candidato, e depois verificar se ele é realmente uma celebridade ou não, por meio da função verificar Celebridade, checando se o candidato conhece ninguém e todos o conhecem. Se o candidato for uma celebridade a função retorna True, caso contrário, retorna False.

```
def encontrarCandidato(G, n):
    if (n==1):
      return n-1
    candidato = encontrarCandidato(G, n-1)
    if (candidato == -1):
      return n-1
    elif (G[candidato][n-1] and not <math>(G[n-1][candidato]):
    elif(G[n-1][candidato] and not(G[candidato][n-1])):
      return candidato
    return -1
def verificarCelebridade(G, n):
  candidato = encontrarCandidato(G, n)
  if (candidato == -1):
    return False
  u = v = 0
  for i in range(n):
    if (i!=candidato):
      u += G[candidato][i]
      v += G[i][candidato]
  if (u==0 \text{ and } v==n-1):
    return True
  else:
    return False
```

2) Para mostrar que $(n+a)^b = \Theta(n^b)$, devemos encontrar constantes $c_1, c_2, n_0 > 0$, tal que $0 \le c_1 \cdot n^b \le (n+a)^b \le c_2 \cdot n^b$ para todo $n \ge n_0$. Assim, temos:

$$n + a \le n + |a|$$

$$\le 2n, |a| \le n$$

e

$$n + a \ge n - |a|$$

$$\ge \frac{1}{2}n, |a| \le \frac{1}{2}n$$

Portanto, quando $n \ge 2 \cdot |a|$, temos:

$$0 \le \frac{1}{2}n \le n + a \le 2n.$$

Como b > 0, a inequação ainda é válida, ou seja:

$$0 \le (\frac{1}{2}n)^b \le (n+a)^b \le (2n)^b,$$

$$0 \le (\frac{1}{2})^b \cdot n^b \le (n+a)^b \le 2^b \cdot n^b.$$

Por fim, temos que $c_1 = (\frac{1}{2})^b$, $c_2 = 2^b$ e $n_0 = 2 \cdot |a|$, satisfazendo a definição.

3) Sim. Para mostrar que $2^{n+1} \in O(2^n)$, devemos encontrar constantes $c, n_0 > 0$, tal que $0 \le 2^{n+1} \le c \cdot 2^n$, para todo $n \ge n_0$. Como $2^{n+1} = 2 \cdot 2^n$ para todo $n \ge 0$, temos que a definição é satisfeita com c = 2 e $n_0 = 1$.

Não. Note que $2^{2n}=2^n\cdot 2^n$. Desta maneira, para $2^{2n}\in O(2^n)$, precisamos de uma constante c, tal que $0\leq 2^n\cdot 2^n\leq c\cdot 2^n$. Fica evidente que precisamos de um $c\geq 2^n$. Entretanto, isso não é possível para um valor de n arbitrariamente alto. Ou seja, não importa o valor escolhido para c, para algum valor suficientemente alto de n, c não será suficiente. Portanto, concluímos que $2^{2n}\notin O(2^n)$.

4) Utilizando as definições de limite, o(n) e $\omega(n)$, temos que:

$$o(g(n)) = \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

 \mathbf{e}

$$\omega(g(n)) = \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Entretanto, ambos os casos não se mantêm verdadeiros quando n se aproxima de ∞ . Desta maneira, a interseção é vazia.

- 5) Sejam os itens:
- a) $n! \in \omega(2^n)$:

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$
$$> 2 \cdot 2 \cdot \dots \cdot 2, n \ge 4$$
$$= 2^n$$

Desta forma, existe uma constante positiva c=1 e $n_0=4$, na qual $n!>c\cdot 2^n$, para todo $n\geq n_0$.

b) $n! \in o(n^n)$:

Com base na definição, temos $0 \le f(n) < c \cdot g(n)$, para todo c > 0 e $n \ge n_0$. Seja c = 1 e $n_0 = 1$.

Caso Base :
$$n = 1$$

 $n! \le n^n$
 $1! \le 1^1$
 $1 \le 1$

Hipótese de indução: Assuma que $k! \le k^k, k > 1$

Passo indutivo: Queremos provar que $(k+1)! \le (k+1)^{(k+1)}$.

$$k! \le k^k$$

$$(k+1)(k!) \le (k+1) \cdot (k^k) <$$

$$(k+1)! \le \le c(k+1) + 1$$

$$= c(k+1) + O(1)$$

$$= c(k+1)$$

$$= O(n)$$

Desta forma, existe uma constante positiva c=1 e $n_0=2$, na qual $n! < c \cdot n^n$, para todo $n \ge n_0$.

- 6) Sejam os itens:
- a) Se $k \geq d$, então $p(n) \in O(n^k)$:

Como $k \ge d$, n^k cresce mais rápido ou no mesmo ritmo que n^d para um n suficientemente grande. Desta maneira, $p(n) = O(n^k)$.

Para c, temos $0 \le p(n) \le 1.5 \cdot a_d \cdot n^d \le 1.5 \cdot a_d \cdot n^k$. Assim, se tomarmos $c_1 = 1.5 \cdot a_d$, temos $0 \le p(n) \le c_1 \cdot n^k$, ou seja, $p(n) = O(n^k)$.

b) Se $k \leq d$, então $p(n) \in \Omega(n^k)$:

Como $k \leq d$, n^k cresce mais devagar ou no mesmo ritmo que n^d para um n suficientemente grande. Desta maneira, $p(n) = \Omega(n^k)$.

Para c, temos $0 \leq p(n) \leq 0.5 \cdot a_d \cdot n^d \leq 0.5 \cdot a_d \cdot n^k$.

Assim, se tomarmos $c_1 = 0.5 \cdot a_d$, temos $0 \leq p(n) \leq c_1 \cdot n^k$, ou seja, $p(n) = \Omega(n^k)$.

- c) TO-DO
- d) TO-DO
- e) TO-DO

7) Ordenação crescente, sendo que as funções na mesma linha possuem classe de equivalência iguais:

$$1, n^{\frac{1}{\log(n)}}$$

$$2^{\log(n)}$$

$$ln(ln(n))$$

$$\sqrt{\log(n)}$$

$$ln(n)$$

$$log^{2}(n)$$

$$2^{\sqrt{2 \cdot \log(n)}}$$

$$(\sqrt{2})^{\log(n)}$$

$$n$$

$$n \cdot \log(n)$$

$$4^{\log(n)}, n^{2}$$

$$n^{3}$$

$$n^{\log(\log(n))}, \log(n)^{\log(n)}$$

$$\log(n!)$$

$$(\frac{3}{2})^{n}$$

$$2^{n}$$

$$e^{n}$$

$$n \cdot 2^{n}$$

$$n!$$

$$(n+1)!$$

$$2^{2^{n}}$$

$$2^{2^{n+1}}$$

- 8) Sejam os itens:
- a) Falso. Contra-exemplo: Seja f(n)=n e $g(n)=n^2$. Assim, temos que $n=O(n^2)$, mas $n^2\neq O(n)$.
 - b) Falso. Contra-exemplo: Seja f(n) = n e $g(n) = n^2$, mas $n^2 + n \neq \Theta(n)$.
- c) Verdadeiro. Prova: f(n) = O(g(n)), ou seja, $0 \le f(n) \le c \cdot g(n)$, para todo $n \ge n_0$, com $c, n_0 > 0$. Desta forma, $0 \le log(f(n)) \le log(c) + log(g(n)) \le k \cdot log(g(n))$. Portanto, log(f(n)) = O(log(g(n))).
- d) Falso. Contra-exemplo: Seja f(n)=2n e g(n)=n. Desta forma, f(n)=O(g(n)), mas $2^{2n}=4^n\neq O(2^n)$.
 - 9) Sejam os itens:
 - a) Tomando como estimativa $T(n) \le cn = O(n)$.

Caso Base:
$$n=1$$

$$T(1) = 1$$

Hipótese de indução: $T(k) \le ck$, para c > 0, k > 1

Passo indutivo: Queremos provar que $T(k+1) \le c(k+1) = O(n)$.

$$T(k+1) = T(k+1-1) + 1$$

$$= T(k) + 1$$

$$\leq c(k+1) + 1$$

$$= c(k+1) + O(1)$$

$$= c(k+1)$$

$$= O(n)$$

b) Tomando como estimativa $T(n) \le cn^2 = O(n^2)$.

Caso Base:
$$n=1$$

$$T(1) = 1$$

Hipótese de indução: $T(k) \le ck^2$, para c > 0, k > 1

Passo indutivo: Queremos provar que $T(k+1) \le c(k+1)^2 = O(n^2)$.

$$T(k+1) = T(k+1-1) + k$$

$$= T(k) + k$$

$$\leq c(k+1)^{2} + k$$

$$= c(k+1)^{2} + O(n)$$

$$= c(k+1)^{2}$$

$$= O(n^{2})$$

c) Para esta recorrência, temos $a=1,\ b=2,\ f(n)=1,\ {\rm e}\ n^{\log_b^a}=n^{\log_2^1}=n^0.$ Então, podemos aplicar o caso 2 do Teorema Mestre. Assim:

$$T(n) = O(n^{\log_b^a} \log n) = O(n^0 \cdot \log n) = O(\log n).$$

- d) Para esta recorrência, temos $a=3,\,b=2,\,f(n)=n,\,\mathrm{e}\,\,n^{\log_b^a}=n^{\log_2^3}\simeq n^{1.585}$ (TO-DO)
- e) Para esta recorrência, temos $a=4,\,b=3,\,f(n)=n,\,$ e $n^{\log_b^a}=n^{\log_3^4}\simeq n^{0.792}$ (TO-DO)
- f) Para esta recorrência, temos $a=4,\,b=2,\,f(n)=n^2,\,$ e $n^{\log_b^a}=n^{\log_2^4}=n^2.$ Então, podemos aplicar o caso 2 do Teorema Mestre. Assim:

$$T(n) = O(n^{\log_b^a} \log n) = O(n^2 \cdot \log n).$$

- g) TO-DO
- 10) Sejam os itens:
- a) Para esta recorrência, temos $a=2,\ b=4,\ f(n)=1,\ e\ n^{\log_b^a}=n^{\log_4^2}$. Como $f(n)=1=O(n^{\log_4^{2-\epsilon}})$, onde $\epsilon=0.2$, podemos aplicar o caso 1 do Teorema Mestre, e concluir que:

$$T(n) = \Theta(n^{\log_4^2} \log n) = \Theta(n^{\frac{1}{2}}) = \Theta(\sqrt{n}).$$

b) Para esta recorrência, temos $a=2,\ b=4,\ f(n)=\sqrt{n},\ e\ n^{\log_b^a}=n^{\frac{1}{2}}=\sqrt{n}.$ Como $f(n)=\Theta(\sqrt{n})$, podemos aplicar o caso 2 do Teorema Mestre, e concluir que:

$$T(n) = \Theta(\sqrt{n} \cdot \log n).$$

c) Para esta recorrência, temos $a=2,\,b=4,\,f(n)=n,\,$ e $n^{\log_b^a}=n^{\log_4^2}.$ Como $f(n)=\Omega(n^{\log_4^{2+\epsilon}}),$ onde $\epsilon=0.2,\,$ podemos aplicar o caso 3 do Teorema Mestre. Assim, temos que provar que $af(\frac{n}{b})\leq cf(n),\,$ para alguma constante $c<1,\,$ e todos os valores suficientemente altos de $n.\,$ Logo, como $af(\frac{n}{b})=2(\frac{n}{4})=\frac{n}{2}\leq cf(n),\,$ para c=0.7 e $n\geq 2,\,$ podemos concluir que:

$$T(n) = \Theta(f(n)) = \Theta(n).$$

d) Para esta recorrência, temos $a=2,\ b=4,\ f(n)=n^2,\ e\ n^{\log_b^a}=n^{\log_4^2}.$ Como $f(n)=\Omega(n^{\log_4^{2+\epsilon}})$, onde $\epsilon=1$, podemos aplicar o caso 3 do Teorema Mestre. Assim, temos que provar que

 $af(\frac{n}{b}) \le cf(n)$, para alguma constante c < 1, e todos os valores suficientemente altos de n. Logo, como $af(\frac{n}{b}) = 2(\frac{n}{4})^2 = (\frac{1}{8})n^2 \le cf(n)$, para c = 0.5 e $n \ge 4$, podemos concluir que:

$$T(n) = \Theta(n^2).$$

e) Para esta recorrência, temos $a=1,\ b=2,\ f(n)=1,\ {\rm e}\ n^{\log_b^a}=n^{\log_2^1}=n^0.$ Então, podemos aplicar o caso 2 do Teorema Mestre. Assim:

$$T(n) = \Theta(n^{\log_b^a} \log n) = \Theta(n^0 \cdot \log n) = \Theta(\log n).$$

- 11) Para esta recorrência, temos $a=4,\,b=2,\,f(n)=n^2\cdot\log n,\,$ e $n^{\log_b^a}=n^{\log_2^4}=n^2.$ Assintoticamente falando, $f(n)=n^2\cdot\log n>n^2,\,$ mas não polinomialmente. Portanto, não podemos aplicar o Teorema Mestre neste caso. (TO-DO)
 - 12) Para escolher qual dos algoritmos utilizar, precisamos fazer a seguinte análise:
 - 1) $5T(\frac{n}{2}) + n$ Para esta recorrência, temos a = 5, b = 2, f(n) = n, e $n^{\log_b^a} = n^{\log_2^5} = O(n^{2.322})$.
 - 2) 2T(n-1)+1Tomando como estimativa $T(n) \leq 2^n = O(2^n)$.

Caso Base:
$$n = 1$$

 $T(1) < 2$

Hipótese de indução: $T(k) \leq 2^k$, para k > 1

Passo indutivo: Queremos provar que $T(k+1) \le 2^{(k+1)} = O(2^{(k+1)})$.

$$T(k+1) = 2T(k+1-1) + 1$$

$$= 2T(k) + 1$$

$$\leq 2 \cdot 2^{k} + 1$$

$$= 2^{(k+1)} + O(1)$$

$$= 2^{(k+1)}$$

$$= O(2^{(k+1)})$$

3)
$$9T(\frac{n}{3}) + n^2$$

Para esta recorrência, temos a = 9, b = 3, $f(n) = n^2$, e $n^{\log_b^a} = n^{\log_3^9} = O(n^2 \log n)$.

Portanto, com base nesta análise, o algoritmo (1) deveria ser escolhido para resolver o problema.