Math 401: Homework 1

Tim Farkas

Aug 2021

Problem 1

1a

Statement: $\forall a \in A, \exists y \in B \text{ s.t. } y^2 = x.$

Negation: $\exists a \in A \text{ s.t. } \forall y \in B, \ y^2 \neq x$

1b

Statement: $\forall x \in A$, we have $\{x\} \subseteq B$.

Negation: $\exists x \in A \text{ s.t. } \{x\} \nsubseteq B$

1c

Statement: There is an element of A that is also an element of B.

Negation: $\forall a \in A, a \notin B$. Equivalently, $A \cap B = \emptyset$

Problem 2

Prove whether the following are true or false.

2a

Statement: $\forall x, y \in \mathbb{R}$ we have $x^2 = y^2$

Value: False.

Proof: Take $x=0,\,y=1.$ Then $x^2=0\neq 1=y^2$ \square

2b

Statement: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{R} \text{ s.t. } x^2 = y^2$

Value: True.

Proof: Because $\mathbb{Z} \subset \mathbb{R}$, we can always take x = y. Then $x^2 = y^2$. \square

2c

Statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ s.t. } xy = 1$

Value: False.

Proof: Take x = 0. Then $\forall y$ we have xy = 0. \square

2d

Statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ s.t. } xy = 0$

Value: True.

Proof: Take y = 0. Then $\forall x \in \mathbb{R}$ we have xy = 0

2e

Statement: $\exists y \in \mathbb{R} \text{ s.t. } \forall x \in \mathbb{R} \text{ we have } xy = 0.$

Value: True.

Proof: Statement 2e is equivalent to statement 2d. See proof to 2d.

Problem 3

Prove that if $x \in \mathbb{R}$, then 1 < x < 3 implies $-10 < x^3 - x < 30$.

Proof: Assume 1 < x < 3. This implies $1 < x^3 < 27$, and also that -3 < -x < -1. Adding the two implied statements yields $-2 < x^3 - x < 26$, and so we have 1 < x < 3 implies $-2 < x^3 - x < 26$. Then, because $-10 < -2 < x^2 - x < 26 < 30$, we see that 1 < x < 3 implies $-10 < x^3 - x < 30$. \square

Problem 4

For $n \in \mathbb{Z}$, prove that if n is even, then $n^2 = 4k + 4$ for some $k \in \mathbb{Z}$.

Proof: Assume n is even. Then $\exists q \in \mathbb{Z} \text{ s.t. } n = 2q$. To prove the statement, we substitute 2q for n in the consequent. Rearranging a bit first:

$$k = (n^2 - 4)/4$$
$$k = ((2q)^2 - 4)/4$$
$$k = (4q^2 - 4)/4$$

$$k = q^2 - 1$$

Hence, $n^2 = 4k + 4$ whenever $k = q^2 - 1$. \square

Problem 5

Prove that if $x \in \mathbb{R}$, then $-\frac{7}{16} < x^2 - x < -\frac{5}{16}$ implies that $x \notin \left(\frac{1}{10}, \frac{3}{10}\right)$.

Proof: To simplify calculations, we prove the contrapositive. If $x \in \mathbb{R}$, then $\frac{1}{10} < x < \frac{3}{10}$ implies $x^2 - x < -\frac{7}{16}$ or $-\frac{5}{16} < x^2 - x$.

Assume $\frac{1}{10} < x < \frac{3}{10}$. Then $\frac{1}{100} < x^2 < \frac{9}{100}$ and $-\frac{3}{10} < -x < -\frac{1}{10}$. Adding the last two inequalities yields $-\frac{29}{100} < x^2 - x < -\frac{1}{100}$.

Hence, if $\frac{1}{10} < x < \frac{3}{10}$, then $-\frac{29}{100} < x^2 - x$. To finish the proof, we show that $-\frac{5}{16} = -\frac{500}{1600} < -\frac{464}{1600} = -\frac{29}{100} < x^2 - x$, satisfying the condition. \square