Water Potability

Team 9: Mild Trakarnsakdikul, Sylvie Zhou, Jason Hamilton, Faarid Sanaan

Team 9 Introduction

Mild Trakarnsakdikul

Jason Hamilton

Sylvie Zhou

Faarid Sanaan

Water is considered "the most important resource for sustaining ecosystems, which provide life-supporting services for people, animals, and plants."

—The Centers for Disease Control and Prevention (CDC)

Business Understanding: Clean Water

Why clean water is a necessity, according to the UN:

- Sustainable development
- Socio Economic development
- Energy and food production
- Health and survival
- Healthy ecosystems

Business Understanding: Measurement

POTABLE WATER = CLEAN WATER

- The United Nation adopted Goal 6: Access to Clean Water Supply and Adequate Water Sanitation in their "Sustainable Development Goals"
 - Testing for water potability using coliform bacteria test
 - Improve water quality by:
 - Reducing pollution
 - Eliminating dumping
 - Increase water recycling

Business Problem: Predicting Potability

Objective: Build a predictive model to determine whether or not the water is potable

 Potable water or drinking water comes from surfaces and ground sources, then is treated to safe levels

Data Understanding: Water Features

Our 9 features were presented as numeric values:

- pH of water: the acidity or basic of water
 - o (Basic) to 14 (acidic)
- Hardness: capacity of water to precipitate soap (mg/L)
- Solids: total dissolved solids (ppm)
- Chloramines: Amount of Chloramines (ppm)
- Sulfate: Amount of Sulfates dissolved (mg/L)
- Conductivity: Electrical conductivity of water (μS/c)
- Organic Carbon: Amount of organic carbon (ppm)
- Trihalomethanes: Amount of Trihalomethanes (μg/L)
- Turbidity: Measure of light emitting property of water (NTU)

Data Understanding: Dataset

The data contain 3,276 samples of different water bodies:

- Target variable: potability
 - 1,998 water bodies are not potable
 - 1,278 water bodies are potable
 - Ratio is 5:3 to the majority class
- Missing values filled using the data mean
 - o pH: 491 missing values
 - Sulfate: 781 missing values
 - Trihalomethanes: 162 missing values

Exploratory Data Analysis

Features Distribution

- Normally distributed
- No transformations required

Exploratory Data Analysis

Our Correlation Heatmap:

- Little to no correlation
- Effect on model performance

Data Preparation: Feature Engineering

Used polynomial features to generate new features to uncover nonlinear trends:

- Quadratic features
- Cubic features

Modeling

Four classification models:

Logistic Regression, K-NN, Decision Tree, Ridge Classifier

Utilized cross validation and feature engineering

- 5-fold cross validation
- Balanced accuracy, Recall and F1 Score

Grid search for hyperparameter tuning

3,575,000

people die each year from diseases stemming from dirty water

Model Prioritization: Maximizing Balanced Accuracy

Unsafe water causes water-borne illnesses

• Escherichia coli-induced diarrhea, cholera, typhoid fever, giardia, Hepatitis A, and dysentery

Scoring by balanced accuracy

- Average of true positives and true negatives
- Correctly identify water

Model Result

	Logistic Regression	k-NN	Decision Tree	Ridge Classifier
Best Parameters	C = 0.01 max_iter = 1000 penalty = none	metric = euclidean n_neighbors = 11 p = 1 weight = distance	criterion = entropy max_depth = 8 max_features = 5 min_samples+leaf = 15 min_samples_split = 10	Alpha = 1 Max_iter = 50
Best Features	Quadratic	No difference	Quadratic	Cubic

Model Result: Confusion Matrix

Logistic Regression:

- Highest true positive rate: 96%
- Lowest true negative: 3%
- Smallest false negative rate: 4%
- False positive rate of 97%
 - Model is wasteful

Model Result: Confusion Matrix

Decision Tree

- High true positive rate: 73%
- Relatively high true negative rate: 46%
- Relatively low false positive rate: 54%

Evaluation: True Positive

- Logistic Regression maximize true positives
 - Highest AUC of 0.67
 - Use with quadratic features and parameter tuning

Evaluation: Balanced Accuracy

	CV Balanced Accuracy	AUC
Logistic Regression	0.56 +/- 0.02	0.67
Decision Tree	0.57 +/- 0.01	0.64
k-NN	0.54 +/- 0.02	0.51
Ridge Classifier	0.57 +/- 0.02	

Best Decision Tree Classifier

- Maximized the true positives and true negatives, avoided false negatives
- Highest Balanced Accuracy at 57%
- Best features
 - Sulfate, Hardness, Conductivity,
 Chloramines, Trihalomethanes
- Potential Scaling Problem

Deployment

The predictive model can be used to determine if the body of water is potable or not.

- Entities like the CDC, UN or governments can apply this model to:
 - Deliver and test safe water in their community
 - Improve population health
 - Increase economic stability
 - Grow food and natural resources
- Other stakeholders to considers:
 - NGOs
 - Private water bottling companies

Conclusion

Improved water supply can boost economic growth and reduce poverty.

- This model has applications to varying entities, so we expect
 - Scaling the model to be a challenge with the balance accuracy score
 - FIX: Focus on other scoring such as precision or F1 to also mitigate false negatives
- Costs and benefits
 - Cost of drinking non-potable water outweighs the cost of misclassifying potable water
 - Graphing profit curve and exploring ways to minimize false negatives

Thank you! Any Questions?

Citations

- https://caltestlabs.com/analytical-services/regulated-drinking-water-homeowne-rs/wateranalyses/#:":text=All%20drinking%20waters%20should%20be,potable%20with%20respect%20to%20bacteria.
- https://www.un.org/sustainabledevelopment/water-and-sanitation/
- https://healingwaters.org/why-do-communities-need-clean-water/#:~:text=Unsa fe%20water%20causes%20water%2Dborne,%2C%20and%20hygiene%20(WA SH).
- https://sdgs.un.org/goals/goal6
- https://www.who.int/news-room/fact-sheets/detail/drinking-water#:":text=Safe %20and%20readily%20available%20water,contribute%20greatly%20to%20poverty%20reduction.

Appendix: Decision Tree

Decision Tree Mapping

Top 5 factors of water quality:

Sulfate, Hardness, Conductivity, Chloramines, Trihalomethanes

Appendix: Confusion Matrix

Ridge Classifier

Appendix: Learning Curve

Logistic

Appendix: Learning Curve

Ridge Classifier

