Correction DL 3 : une suite de tirages aléatoires

Une urne contient initialement • une boule blanche et

• deux boules rouges.

On effectue dans cette urne une succession de tirages d'une boule selon le protocole suivant :

- si la boule tirée est blanche, elle est remise dans l'urne.
- si la boule tirée est rouge, elle n'est pas remise dans l'urne.

Pour tout entier $n \ge 1$, on considère les événements suivants :

- $B_n =$ « on obtient une boule **blanche** lors du $n^{\hat{e}me}$ tirage »,
- $R_n =$ « on obtient une boule **rouge** lors du $n^{\grave{e}me}$ tirage »,

et X_n le nombre de boules rouges contenues dans l'urne à l'issue du $n^{\grave{e}me}$ tirage.

Remarque préliminaire : chaîne de Markov

Il y a 3 configurations accessibles au cours de l'expérience : les contenus possibles de l'urne (le nombre de boules rouges : X = 0, 1 ou 2).

On parle des états du système.

Selon l'issue de chaque tirage, $(R \ ou \ B)$ le contenu de l'urne est modifié selon le graphe des transitions à droite.

Ces changements d'états ont lieu, conditionnellement à l'état présent, avec une probabilité décrite sur chaque flèche.

Remarques de rédaction

▶ Décrire une situation Markovienne

Je vous conseille à l'avenir, si vous détectez une situation Markovienne, de la décrire assez précisément pour et de faire sur votre copie le graphe des transitions comme ci-dessus en explicitant

▶ Référer au graphe des transitions (Exemple pour la question 3.)

Sur le graphe des transitions, il y a exactement 2 flèches qui aboutissent à l'état X=1:

- celle qui provient de [X=2], associée à l'événement R
- celle qui provient de [X=1], associée à l'événement B
- Attention!

La simple invocation de la notion de « chaîne de Markov » n'est pas une solution qui vous exonère d'une rédaction rigoureuse et précise

1. Le début de l'expérience

- a) (Justifier que l'on a $X_1(\Omega) = \{1, 2\}$. Donner la probabilité de chaque valeur (la loi de X_1).)
 - ▶ Support de X_1 Le contenu initial de l'urne est une boule blanche et deux rouges. Après le premier tirage, il peut donc rester :

une boule blanche et deux rouges, si on tire la boule blanche alors $X_1 = 2$ une boule blanche et une rouge, si on tire une boule rouge alors $X_1 = 1$

Ainsi on a $X_1(\Omega) = \{1, 2\}.$

ightharpoonup Loi de X_1 On a l'égalité d'événements suivante :

 $[X_1=2]=B_1=\mbox{\ensuremath{\emptyset}}$ on tire la boule blanche parmi les 3 de l'urne. »

Ainsi $\mathbb{P}(X_1=2)=\frac{1}{3}$.

b) (Justifier que l'on pose $X_0 = 2$.)

Avant le premier tirage, on a 2 boules rouges dans l'urne.

- **2.** Étude de $\mathbb{P}(X_n=2)$
 - a) (À quelles conditions sur le $n^{i\`{e}me}$ tirage restera-t-il 2 boules rouges à son issue?)

Il reste 2 boules rouges dans l'urne à l'issue du $n^{\text{ième}}$ tirage ssi

- \rightarrow avant le $n^{\text{ième}}$ tirage, l'urne contient 2 boules rouges,
- on tire la boule blanche au $n^{\text{ième}}$ tirage.

b) (En déduire l'égalité d'événements : $\forall n \geq 1$, $[X_n = 2] = [X_{n-1} = 2] \cap B_n$.) On a donc bien $\forall n \geq 1$, l'égalité d'événements qui redit la conclusion de la question précédente :

$$[X_n = 2] = [X_{n-1} = 2] \cap B_n.$$

- c) (Quelle est la probabilité conditionnelle $\mathbb{P}_{[X_{n-1}=2]}(B_n)$?)
 On conditionne par l'événement $[X_{n-1}=2]$.
 Sous cette hypothèse, il reste donc 2 boules avant le $n^{\text{ième}}$ tirage.
 La probabilité conditionnelle de tirer la boule blanche est donc $\mathbb{P}_{[X_{n-1}=2]}(B_n)=\frac{1}{3}$
- **d)** (En déduire que la suite $(\mathbb{P}(X_n=2))_{n\in\mathbb{N}}$ est géométrique et donner son terme général.) Pour $n\geqslant 1$, on a $\mathbb{P}(X_n=2)=\mathbb{P}([X_{n-1}=2]\cap B_n)$

$$= \mathbb{P}_{[X_{n-1}=2]}(B_n) \times \mathbb{P}(X_{n-1}=2) = \frac{1}{3} \mathbb{P}(X_{n-1}=2).$$

Cette suite est donc géométrique de raison $\frac{1}{3}$ et de premier terme $\mathbb{P}(X_0=2)=1$, donc

$$\forall n \in \mathbb{N}, \ \mathbb{P}(X_n = 2) = \frac{1}{3^n}.$$

- 3. Étude de $\mathbb{P}(X_n=1)$
 - a) (Pour $n \in \mathbb{N}^*$, écrire l'événement $[X_n = 1]$ en terme de $[X_{n-1} = 1]$, $[X_{n-1} = 2]$, B_n , R_n .)
 - \blacktriangleright Disjonction selon l'issue du $n^{\text{ième}}$ tirage
 - si B_n , alors il restait **une boule rouge** à l'issue du $(n-1)^{\text{ième}}$ tirage. Ainsi $[X_n=1] \cap B_n = [X_{n-1}=1] \cap B_n$
 - si R_n , alors il restait **deux boules rouges** à l'issue du $(n-1)^{\text{ième}}$ tirage. Ainsi $[X_n=1] \cap R_n = [X_{n-1}=2] \cap R_n$

► Expression ensembliste

On obtient donc la décomposition selon le système complet (B_n, R_n) :

$$[X_n = 1] = ([X_n = 1] \cap B_n) \quad \sqcup ([X_n = 1] \cap R_n)$$

= $([X_{n-1} = 1] \cap B_n) \sqcup ([X_{n-1} = 2] \cap R_n)$

b) (Par les probabilités totales, déduire pour $n \ge 1$: $\mathbb{P}(X_n = 1) = \frac{1}{2}\mathbb{P}(X_{n-1} = 1) + \frac{2}{3}\mathbb{P}(X_{n-1} = 2)$.) On passe aux probabilités, et il vient :

$$\mathbb{P}(X_n = 1) = \mathbb{P}\Big[\Big([X_{n-1} = 1] \cap B_n\Big) \sqcup \Big([X_{n-1} = 2] \cap R_n\Big)\Big]$$

$$= \mathbb{P}_{[X_{n-1} = 1]}(B_n) \times \mathbb{P}(X_{n-1} = 1) + \mathbb{P}_{[X_{n-1} = 2]}(R_n) \times \mathbb{P}(X_{n-1} = 2)$$

$$= \frac{1}{2} \times \mathbb{P}(X_{n-1} = 1) + \frac{2}{3} \times \mathbb{P}(X_{n-1} = 2)$$

Pour $n \in \mathbb{N}$, on note $u_n = \mathbb{P}(X_n = 1)$. On a donc : $u_0 = 0$, et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + \frac{2}{3^{n+1}}$.

- c) (Montrer que la suite (v_n) définie par : $\forall n \in \mathbb{N}$, $v_n = u_n + \frac{4}{3^n}$, est géométrique.) Pour $n \in \mathbb{N}$, on a : $v_{n+1} = u_{n+1} + \frac{4}{3^{n+1}} = \frac{1}{2}u_n + \frac{2}{3^{n+1}} + \frac{4}{3^{n+1}} = \frac{1}{2}u_n + \frac{2}{3^n}$. Ainsi $v_{n+1} = \frac{1}{2}v_n$, et a suite (v_n) est donc géométrique de raison $\frac{1}{2}$.
- **d)** (En déduire $\forall n \in \mathbb{N}$, l'expression $\mathbb{P}(X_n = 1) = \frac{4}{2^n} \frac{4}{3^n}$.) On a donc $\forall n \in \mathbb{N}$, $v_n = v_0 \times \frac{1}{2^n} = (u_0 + \frac{4}{3^0}) \times \frac{1}{2^n} = \frac{4}{2^n}$. Ainsi, on a $\mathbb{P}(X_n = 1) = u_n = v_n - \frac{4}{3^n}$ soit $\mathbb{P}(X_n = 1) = \frac{4}{2^n} - \frac{4}{3^n}$
- 4. On note T le rang du tirage où l'on tire une boule rouge pour la deuxième fois.
 - a) (Montrer que $\forall n \in \mathbb{N}$, on a l'égalité d'événements $[T \leqslant n] = [X_n = 0]$.) On a en effet

 $[X_n=0]=$ « L'urne ne contient plus de boules rouges après le $n^{\mathrm{i\`{e}me}}$ tirage » = « On a tiré la dernière boule rouge $n^{\mathrm{i\`{e}me}}$ tirage ou avant » $=[T\leqslant n]$

b) (En déduire que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(T=n) = \mathbb{P}(X_n=0) - \mathbb{P}(X_{n-1}=0)$.) On a l'égalité d'événements : $[T=n] = [T \leqslant n] \setminus [T \leqslant n-1]$. $= [X_n=0] \setminus [X_{n-1}=0]$

En passant aux probabilités, il vient bien : $\mathbb{P}(T=n) = \mathbb{P}(X_n=0) - \mathbb{P}(X_{n-1}=0)$.

c) ((Variante) Montrer que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(T=n) = \frac{1}{2}\mathbb{P}(X_{n-1}=1)$.) L'événement [T=n] =« On a tiré la dernière boule rouge $n^{\text{ième}}$ tirage » signifie « Il restait exactement une boule rouge avant le $n^{\text{ième}}$ tirage, et on a tiré celle-ci au $n^{\text{ième}}$ tirage »

c'est-à-dire : $[T = n] = [X_{n-1} = 1] \cap R_n$ Il vient donc bien : $\mathbb{P}(T = n) = \mathbb{P}([X_{n-1} = 1] \cap R_n) = \mathbb{P}(X_{n-1} = 1) \times \mathbb{P}_{[X_{n-1} = 1]}(R_n)$ soit $\mathbb{P}(T = n) = \frac{1}{2}\mathbb{P}(X_{n-1} = 1)$.

- **d)** (En déduire l'expression de la probabilité $\forall n \geqslant 1$, $\mathbb{P}(T=n) = 2\left[\frac{1}{2^{n-1}} \frac{1}{3^{n-1}}\right]$.) On a bien : $\forall n \geqslant 1$, $\mathbb{P}(T=n) = \frac{1}{2}\mathbb{P}(X_{n-1}=1) = 2\left[\frac{1}{2^{n-1}} \frac{1}{3^{n-1}}\right]$.
- **e)** (Vérifier que $\sum\limits_{n=1}^{\infty}\mathbb{P}(T=n)=1.)$

On calcule les sommes des deux séries convergentes : $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 2$ et $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}} = \frac{3}{2}$.

Il vient donc bien $\sum_{n=1}^{\infty}\mathbb{P}(T=n)=2\times 2-2\times \frac{3}{2}=1$

Ainsi, avec probabilité = 1, on a $T \in \mathbb{N} \setminus \{0, 1\}$.

Par conséquent, $\mathbb{P}(T=+\infty)=0$ et T est une variable aléatoire bien définie.

f) ((Bonus) Établir:
$$\mathbb{E}[T] = \frac{7}{2}$$
 $\mathbb{E}[T(T-1)] = \frac{23}{2}$ $\operatorname{Var}(T) = \frac{11}{4}$.)

Espérance

On a, sous réserve de convergence absolue :

$$\mathbb{E}[T] = \sum_{n=1}^{+\infty} n \, \mathbb{P}(T=n) = \sum_{n=1}^{+\infty} n \times 4 \left(\frac{1}{2^{n-1}} - \frac{1}{3^{n-1}} \right)$$

$$= 4 \left[\sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} - \sum_{n=1}^{+\infty} \frac{n}{3^{n-1}} \right]$$

$$= 4 \left[\left(\frac{1}{1 - \frac{1}{2}} \right)^2 - \left(\frac{1}{1 - \frac{1}{3}} \right)^2 \right] = 4 \left[4 - \frac{9}{4} \right] = \frac{7}{2}$$

La série est à termes positifs. La convergence absolue équivaut donc à la convergence simple.

Les séries géométriques dérivées qui apparaissent étant convergentes, il y a bien convergence absolue aussi.

▶ Calcul intermédiaire de $\mathbb{E}[T(T-1)]$

Sous réserve de convergence absolue, on décompose de même, en dégageant l'exposant n-2:

$$\mathbb{E}[T(T-1)] = 4 \left[\frac{1}{2} \sum_{n=1}^{+\infty} \frac{n(n-1)}{2^{n-2}} - \frac{1}{3} \sum_{n=1}^{+\infty} \frac{n(n-1)}{3^{n-2}} \right]$$
$$= 4 \left[\frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}} \right)^3 - \frac{1}{3} \left(\frac{1}{1 - \frac{1}{3}} \right)^3 \right] = 4 \left[4 - \frac{9}{8} \right] = \frac{23}{2}$$

De même, cette série est • à termes positifs

• convergente.

Il y a donc bien convergence absolue et l'espérance est bien définie.

▶ Variance

Par la formule de Kœnig-Huygens, on a :

$$Var(T) = \mathbb{E}[T(T-1)] + \mathbb{E}[T] - (\mathbb{E}[T])^{2}$$

$$= \frac{23}{2} + \frac{7}{2} - \frac{49}{4}$$

$$= \frac{11}{4}.$$