Paleoclimate

source: NASA

||||||||Unit | Université de Lausanne

Day 1.1 : Overview

- Modus operandi
- The science of paleoclimatology
- Methods overview
- Planet Earth and its main constituents
- Earth History

Who am I?

- PhD in physics @ IUP in 2017
- Post-Doc @ GeoW for 3 years
- Post-Doc @ UNIL for 2 years

Funded by

the European Union

- Marie Sklodowska-Curie Fellow since 2023
- Main work:
 - Paleoclimatology & Paleoceanography
 - Geochemistry with marine sediments

Unil

Who am I?

- PhD in physics @ IUP in 2017
- Post-Doc @ GeoW for 3 years
- Post-Doc @ UNIL for 2 years

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

UNIL | Université de Lausanne

- Marie Sklodowska-Curie Fellow since 2023
 - Funded by the European Union

- Main work:
 - Paleoclimatology & Paleoceanography
 - Geochemistry with marine sediments
- Contact: patrick.blaser@unil.ch
 https://patrick-blaser.github.io/

Unil

Modus operandi

- 5 x 14:00 17:00
- 2 slots each, 30 min coffee breaks ~ 15:15 15:45
- Tuesday need to finish 15 min early!

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

Modus operandi

Ask questions and interact!

Literature suggestions

- Princeton Primers in Climate series
 - Paleoclimate (Michael L. Bender, 2013) **Princeton University Press**
- Introduction to Climate Science Open Textbook by Andreas Schmittner, 2019 (https://open.oregonstate.education/climatechange)
- IPCC (Sixth Assessment Report, 2021) (https://www.ipcc.ch)

What is Paleoclimatology?

What is Paleoclimatology?

Paleo

Climatology

What is Paleoclimatology?

Physics

Paleo

Climatology

What is Paleoclimatology?

Chemistry **Physics**

Biology

Paleo

Climatology

What is Paleoclimatology?

Chemistry Physics

Biology

Geology

Paleo Climatology

environmental archives

What is Paleoclimatology?

Chemistry Physics

Biology

Geology

petrology

earth history

planetary science

Paleo

Climatology

environmental archives

sedimentology

oceanography

modelling

LINII I Université de Lausanne

Objectives of Paleoclimatology

- understand Earth History (planetary science)
- understand evolution and past habitats (paleobiology)
- understand the climate system (earth system science)

Relevance of Paleoclimatology

- understand Earth History (planetary science)
 - fundamental interest in "our" history
 - origin of life and cosmology
- understand evolution and past habitats (paleobiology)
 - fundamental interest in life on Earth
 - adaptability and evolution
- understand the climate system (earth system science)
 - spectrum of possible climates on Earth
 - climate system under different boundary conditions
 - perturbations of the climate system
 - natural variations

Paleoclimatological methods

- theories and conceptual models
- geological observations
 (across scales from landscapes to microscopic)
- geochemistry and biology (either via system knowledge or modern analogues)
- numerical modelling

Paleoclimatological methods

proxy observations:

observations of a certain parameter in an environmental archive that is related to a quantity of interest

e.g.: tree ring thickness ~ duration of growth period

problems: secondary effects, complexity,

modern analogue,

linearity, calibration,

preservation,

existence of archive...

Unil Haiversité de lausanne

Paleoclimatological methods

proxy observations:

often inaccurate, imprecise, and prone to bias many quantities cannot (yet) be reconstructed

- → patchy observations
- → combine different "independent" proxy observations

still, quantitative reconstructions are often not possible or limited to low precision

many fundamental findings are robust, even though details may be less certain

omic

Paleoenvironmental Methods

Environmental archives

Environmental archives

marine sediments

Wikipedia

Environmental archives

marine sediments

Bremen Core Repository

International Ocean Discovery Program

Unil

Environmental archives

tree rings

willyswilderness.org

speleothems

speleothemscience.org

corals

quantamagazine.org

Environmental archives

fossils

sciencephoto.com

fossilmuseum.net

University of Birmingham

Environmental archives

ice

icecores.org

Environmental archives

Piovano et al. (2014) Latin American Journal of Sedimentology and Basin Analysis

Methods Introduction Paleoclim. Planet Earth Earth History

Paleoclimatology workflow

- retrieve a sample from the environment
- check (or hope) that sample is representative
- figure out how old it is
- check (or hope) that it was not too much altered
- measure something that relates to a quantity of interest
- marvel at the fact that you are seeing into the past
- come up with a reasonable theory
- measure many other parameters and samples to verify (or wait for others to do it)

Planet Earth

climate:
weather on
long time scales
(>= 30 years)

mean & variability

most important:

- surface T
- precipitation
- humidity
- wind

Planet Earth

oceans:

cover ~ 71%

mean depth ~ 3.8 km

deep ocean ~ 3°C

atmosphere:

Troposphere: 8-18 km
Stratosphere: ~ 50 km

composition:

 $N_2 \sim 78\%$ $O_2 \sim 21\%$ $Ar \sim 1\%$ $CO_2 \sim 0.04\%$

CH₄ ~ 0.002%

 $H_2O \sim 0.1 - 3\%$

surface T: ~ 15°C

The main actors

• Sun (luminosity)

Earth orbit (distribution of radiation)

• Earth interior (source for heat and matter)

• Earth surface (topography, weathering)

• atmosphere (absorbance, transport, chemistry)

• oceans:

surface (buffer, transport, chemistry, albedo)

deep (long term storage)

cryosphere (albedo, topography, cover)

• biosphere (all above, chemistry)

The main actors

Wold Ocean Review, after Meincke and Latif 1995, modified

The main actors

NOAA

History: past glaciations

History: past glaciations

- in 18th century, scientists wondered where erratic boulders came from (Alps & Northern Europe)
- there was more and more evidence from erratics, land forms, scrapings on rocks, and more
- extends of glaciers and ice sheets could be mapped
- finally, marine sediments showed details about cyclicity and extent of glaciations

History: past glaciations

glacier landforms and erosion

Glacial abrasion - striations

Plucking or glacial quarrying

earthsurface. readthedocs.io

History: past glaciations

glacier landforms and erosion

earthsurface.readthedocs.io

History: past glaciations

glacier landforms and erosion

geograph.org.uk

History: past glaciations

glacier landforms

and erosion

National Geographic

Introduction Planet Earth Paleoclim. Methods Earth History

History: past glaciations

Ice sheet map from 1908

Pinterest, from French Natural History Encyclopedia

Earth's energy budget

Earth's energy budget

geothermal heat

Mareschal (2011), Encyclopedia of Solid Earth Geophysics

source: radioactive decays of ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K + primordial heat

Earth's energy budget

atmospheric absorption

Earth's energy budget

atmospheric absorption

1368 W/m²

equilibrium: $P/A = \sigma T^4$

T = 6°C

but actually Earth's equilibrium $T = 15^{\circ}C!$

Unil_

Earth's energy budget

atmospheric absorption

1368 W/m²

equilibrium: $P/A = \sigma T^4$

T = 6°C

Earth's energy budget

atmospheric absorption: albedo

long-term average: 0.31

Earth's energy budget

atmospheric absorption

1368 W/m²

equilibrium: $P/A = \sigma T^4$

Albedo ~ 0.31

$$T = -19$$
°C

$$\Delta T = 31^{\circ}C \rightarrow Greenhouse effect$$

at ~ 5km height

Earth's energy budget

atmospheric absorption

Wikipedia

Earth's energy budget

solar radiation

Trenberth et al. (2009), Bulletin of the American Meteorological Society

Earth's energy budget

how to change Earth's temperature?

change either of:

- solar irradiation
- surface albedo
- atmospheric composition

Earth's energy budget

how to change Earth's (equilibrium) temperature?

change either of:

- solar irradiation (~ constant on Ga)
- albedo (ocean/continents, fauna, ice, clouds)
- atmospheric composition

(CO₂, CH₄, or others)

Earth history

Earth history

Earth history

Phanerozoic

Today

eukaryotes complex life

0.55Ga

Cambrian wood-trees & coal formation grasses

dinosaurs

Today

Earth history

Paleozoic

550 Ma

Mesozoic dinosaurs

S_____

Stegosaurus

ocean anoxic events

250 Ma

Chicxulub

65 Ma

Cenozoic

Today

IINII | I Iniversité de Lausanne

Earth history

Earth history

'Big Five' Mass Extinctions in Earth's History

A mass extinction is defined by the loss of at least 75% of species within a short period of time (geologically, this is around 2 million years).

Sources: Barnosky et al. (2011); Howard Hughes Medical Institute; McCallum (2015). Vertebrate biodiversity losses point to a sixth mass extinction.

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Hannah Ritchie.

Earth history

'Big Five' Mass Extinctions in Earth's History

A mass extinction is defined by the loss of at least 75% of species within a short period of time (geologically, this is around 2 million years).

Sources: Barnosky et al. (2011); Howard Hughes Medical Institute; McCallum (2015). Vertebrate biodiversity losses point to a sixth mass extinction.

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Hannah Ritchie.

Introduction Paleoclim. Earth History Methods Planet Earth

"Snowball Earth" events

"Snowball Earth"

Imagine you find:

geological evidence for large ice sheets

"Snowball Earth"

Imagine you find:

- geological evidence for large ice sheets
- in several Ga old rocks

"Snowball Earth"

Imagine you find:

- geological evidence for large ice sheets
- in several Ga old rocks
- with evidence that these ice sheets were:
 - located in the tropics

"Snowball Earth"

Imagine you find:

- geological evidence for large ice sheets
- in several Ga old rocks
- with evidence that these ice sheets were:
 - located in the tropics
 - extending into shallow marine environments

"Snowball Earth"

Imagine you find:

- geological evidence for large ice sheets
- in several Ga old rocks
- with evidence that these ice sheets were:
 - located in the tropics
 - extending into shallow marine environments

if sea level tropics were glaciated → everything was!

"Snowball Earth"

Unil

"Snowball Earth"

0.55Ga

Cambrian explosion dinosaurs

Today

"Snowball Earth"

Causes:

CO₂ drawdown

- from atmospheric oxygenation?
- from weathering (low latitude continents)?
- from early bioproductivity and extensive shelves?

Termination:

probably slow buildup of CO₂

Unil_

Banded Iron Formations

and the Great Oxidation Event

Methods Introduction Paleoclim. Planet Earth Earth History

Banded Iron Formations

alchetron.com

Banded Iron Formations

Hagemann et al. (2016), Ore Geology Reviews

Banded Iron Formations

0.55Ga

Cambrian explosion

dinosaurs

Today

Banded Iron Formations

semanticscholar.org

Banded Iron Formations

modified after Lyons et al. (2021), Astrobiology

Banded Iron Formations

modified after Lyons et al. (2021), Astrobiology

Earth history

Phanerozoic

Today

Earth history

Paleozoic

Pangaea

250 Ma

550 Ma

Mesozoic dinosaurs

ocean anoxic events

Chicxulub

Stegosaurus

T-Rex

65 Ma

Cenozoic

Tuesday

Wednesday

Today's Summary

- Paleoclimatology is very interdisciplinary
- many different archives and proxies, but data patchy and often uncertain
- long term climate determined by: insolation, albedo, and greenhouse gases
- Early Earth climate has changed completely
- Life and Evolution have shaped Earth's chemistry

Cenozoic climate

better records with plenty marine sediment cores

Earle (2016), opentextbc.ca after James Hansen and Root Routledge

Outlook

Tomorrow we finish at 16:45!

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

||||||||**UNIL** | Université de Lausanne

weathering

weathering rates

chemical weathering:

- CO₂ /
- temperature ✓
- humidity /

physical weathering:

- temperature ****
- humidity /

worldatlas.com

easyscienceforkids.com

85

weathering rates

chemical weathering:

- CO₂ /
- temperature ✓
- humidity /

physical weathering:

- temperature ****
- humidity /

LINII I llaivarrité de laverage

weathering rates

the marine carbon pump(s)

Cartapanis et al. (2018), Climate of the Past

the carbon cycle

Sigman & Boyle (2000), Nature

 $Pg C = Gt = 10^{12} g C$