Case 1: One Variable (Population)

Assumptions	σ is known	σ is unknown	$n(p_0) > 5$ and $n(1 - p_0) > 5$
Parameter of interest:	Mean, μ	Mean, μ	Proportion, p
Confidence Interval Formula:	$\bar{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$	$ar{x} \pm t(df, \alpha/2) \frac{s}{\sqrt{n}}$ with $df = n - 1$	$p' \pm z(\alpha/2) \sqrt{\frac{p'q'}{n}}$
Name of Hypothesis Test, H_0	One sample z -test, H_0 : $\mu=\mu_0$	One sample t -test, H_0 : $\mu=\mu_0$	One sample test of proportion H_0 : $p=p_0$
Test Statistic Formula:	$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$t^* = rac{\overline{x} - \mu_0}{{}^S/\sqrt{n}}$ with $df = n-1$	$z^* = \frac{p' - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
p-value:	H_a : $\mu > \mu_0$, p-value= $P(z \ge z^*)$ H_a : $\mu < \mu_0$, p-value= $P(z \le z^*)$ H_a : $\mu \ne \mu_0$, p-value= $2 \times P(z \ge z^*)$	$\begin{aligned} &H_a \colon \mu > \mu_0, \text{ p-value} = P(t(df) \geq t^*) \\ &H_a \colon \mu < \mu_0, \text{ p-value} = P(t(df) \leq t^*) \\ &H_a \colon \mu \neq \mu_0, \text{ p-value} = 2 \times P(t(df) \geq t^*) \end{aligned}$	H_a : $p > p_0$, p-value= $P(z \ge z^*)$ H_a : $p < p_0$, p-value= $P(z \le z^*)$ H_a : $p \ne p_0$, p-value= $2 \times P(z \ge z^*)$