

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1-3. (Canceled).

4. (Currently Amended) A method of calculating, by the use of a computer, pin-to-pin delay time T_{iopath_aged} , which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{connect_aged}$, which is delay time of a signal passing between said two said logic blocks connected to each other, comprising:

(a) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

$$S = \alpha \left(\frac{C}{W} \right)^{\beta}$$

where a load capacitance is represented by C [pF], constants depending on change of inputted waveform are represented by α and β , and width of channel of the-a transistor connected to the-a pin is represented by W [μ m];

(b) calculating an aged delay time of the input pin δ_{in} [%] and an aged delay time of the output pin δ_{out} [%] according to the following expression:

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

$$\delta = \gamma \left(\frac{\tau Sf}{\varepsilon_1 e^{\kappa T}} \right)^{\frac{1}{\varepsilon_2}}$$

where a constant depending on physical structure of the pin is represented by γ , the term of guarantee of the a LSI is represented by τ [hour], constants depending on process are represented by ε_1 , ε_2 and κ , working frequency is represented by f [Hz], and absolute temperature is represented by T [K];

(c) calculating and outputting for use as values representative of circuit properties of said a logic level circuit the pin-to-pin delay time T_{iopath_aged} and the block-to-block delay time $T_{connect_aged}$ according to the following expressions:

$$T_{iopath_aged} = T_{iopath_fresh} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{connect_aged} = T_{connect_fresh} (1 + \lambda_{out} \delta_{out})$$

where pin-to-pin delay time and block-to-block delay time calculated ignoring aging caused by hot carrier effect are represented by T_{iopath_fresh} [ps] and $T_{connect_fresh}$ [ps], and ratios of delay times occurred at the an input stage and the an output stage to whole delay time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} .

5. (Cancelled).

AMENDMENT UNDER 37 C.F.R. § 1.114
 Application No.: 09/347,409
 Attorney Docket No. Q55026

6. (Currently Amended): A method of calculating, by the use of a computer, a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, comprising:

(a) calculating delay times of all said logic blocks according pin-to-pin delay time $T_{inpath, aged}$, which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{connect, aged}$, which is delay time of a signal passing between two said logic blocks connected to each other, comprising:

(i) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

$$S = \alpha \left(\frac{C}{W} \right)^{\beta}$$

where a load capacitance is represented by C [pF], constants depending on change of inputted waveform are represented by α and β , and width of channel of a transistor connected to a pin is represented by W [um];

(ii) calculating an aged delay time of the input pin $\delta_{in} [\%]$ and an aged delay time of the output pin $\delta_{out} [\%]$ according to the following expression:

$$\delta = \gamma \left(\frac{\tau S f}{\epsilon_1 e^{\kappa T}} \right)^{\frac{1}{\epsilon_2}}$$

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

where a constant depending on physical structure of the pin is represented by γ ,
the term of guarantee of a LSI is represented by τ [hour], constants depending on process
are represented by ε_1 , ε_2 and κ , working frequency is represented by f [Hz], and absolute
temperature is represented by T [K];

(iii) calculating and outputting for use as values representative of circuit
properties of the logic level circuit the pin-to-pin delay time T_{iopath_aged} and the block-to-
block delay time $T_{connect_aged}$ according to the following expressions:

$$T_{iopath_aged} = T_{iopath_fresh} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{connect_aged} = T_{connect_fresh} (1 + \lambda_{out} \delta_{out})$$

where pin-to-pin delay time and block-to-block delay time calculated ignoring
aging caused by hot carrier effect are represented by T_{iopath_fresh} [ps] and $T_{connect_fresh}$ [ps],
and ratios of delay times occurred at an input stage and an output stage to whole delay
time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} to the
method as in claim 4; and

(b) calculating and outputting for use as a value representative of a circuit property of
said logic level circuit the delay time of the logic level circuit from the result of step (a).

7-9. (Cancelled).

10. (Currently Amended) A computer-readable medium incorporating a program of
instructions for calculating, by using a computer, pin-to-pin delay time T_{iopath_aged} , which is delay

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{connect_aged}$, which is delay time of a signal passing between said two said logic blocks connected to each other, the program making a computer execute the following processes:

(a) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

$$S = \alpha \left(\frac{C}{W} \right)^\beta$$

where a load capacitance is represented by C [pF], constants depending on change of inputted waveform are represented by α and β , and width of channel of the-a transistor connected to the-a pin is represented by W [μm];

(b) calculating an aged delay time of the input pin δ_{in} [%] and an aged delay time of the output pin δ_{out} [%] according to the following expression:

$$\delta = \gamma \left(\frac{\tau S f}{\varepsilon_1 e^{\kappa T}} \right)^{\frac{1}{\varepsilon_2}}$$

where that a constant depending on physical structure of the pin is represented by γ , the term of a guarantee of the-a LSI is represented by τ [hour], constants depending on process are represented by ε_1 , ε_2 and κ , working frequency is represented by f [Hz], and absolute temperature is represented by T [K];

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

(c) calculating and outputting for use as values representative of circuit properties of said logic level circuit the pin-to-pin delay time $T_{\text{topath_aged}}$ and the block-to-block delay time $T_{\text{connect_aged}}$ according to the following expressions:

$$T_{\text{topath_aged}} = T_{\text{topath_fresh}} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{\text{connect_aged}} = T_{\text{connect_fresh}} (1 + \lambda_{out} \delta_{out})$$

where pin-to-pin delay time and block-to-block delay time calculated ignoring aging caused by hot carrier effect are represented by $T_{\text{topath_fresh}}$ [ps] and $T_{\text{connect_fresh}}$ [ps], and ratios of delay times occurred at the an input stage and the an output stage to whole delay time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} , respectively.

11. (Cancelled).

12. (Currently Amended): A computer-readable medium incorporating a program of instructions for calculating a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, the program making a computer execute the following processes:

(a) calculating pin-to-pin delay time $T_{\text{topath_aged}}$, which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{\text{connect_aged}}$, which is delay time of a signal passing between two said logic blocks connected to each other, said calculating comprises:

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

(i) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

$$S = \alpha \left(\frac{C}{W} \right)^\beta$$

where a load capacitance is represented by C [pF], constants depending on change of inputted waveform are represented by α and β , and width of channel of a transistor connected to a pin is represented by W [μm];

(ii) calculating an aged delay time of the input pin δ_{in} [%] and an aged delay time of the output pin δ_{out} [%] according to the following expression:

$$\delta = \gamma \left(\frac{\tau S f}{\epsilon_1 e^{\kappa T}} \right)^{\frac{1}{\epsilon_2}}$$

where that a constant depending on physical structure of the pin is represented by γ , the term of a guarantee of a LSI is represented by τ [hour], constants depending on process are represented by ϵ_1 , ϵ_2 and κ , working frequency is represented by f [Hz], and absolute temperature is represented by T [K];

(iii) calculating and outputting for use as values representative of circuit properties of said logic level circuit the pin-to-pin delay time $T_{\text{path aged}}$ and the block-to-block delay time $T_{\text{connect aged}}$ according to the following expressions:

AMENDMENT UNDER 37 C.F.R. § 1.114

Application No.: 09/347,409

Attorney Docket No. Q55026

$$T_{\text{topath_aged}} = T_{\text{topath_fresh}} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{\text{connect_aged}} = T_{\text{connect_fresh}} (1 + \lambda_{out} \delta_{out})$$

where pin-to-pin delay time and block-to-block delay time calculated ignoring aging caused by hot carrier effect are represented by $T_{\text{topath_fresh}}$ [ps] and $T_{\text{connect_fresh}}$ [ps], and ratios of delay times occurred at an input stage and an output stage to whole delay time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} , respectively calculating delay times of all said logic blocks according to the program as in claim 10; and,

(b) calculating and outputting for use as a value representative of a circuit property of said logic level circuit the delay time of the logic level circuit from the result of step (a).

13-16. (Cancelled).