NUCL 510 Nuclear Reactor Theory I Fall 2011

HW#4: Neutron Interactions

Due September 22

1. A spherical target of radius *R* is placed in a mono-directional beam of neutrons of intensity *I*. The area of the beam is larger than the cross sectional area of the sphere. Show that the total reaction rate within the sphere in such a beam is equal to the reaction rate when the sphere is completely immersed in an isotropic flux of magnitude equal to *I*.

(Hint) For the mono-directional beam, consider the number of neutrons coming into the sphere through an incremental area dA at an angle θ with respect to the beam direction and then the number of interactions made by these neutrons over the traveling path $2R\cos\theta$ within the spherical target. Similarly, for the isotropic flux case, consider the number of neutrons passing through an incremental area dA into an incremental solid angle $d\Omega$ about $\vec{\Omega}$ and then the number of interactions made by these neutrons within the spherical target.

- 2. Let f_k be an eigenfunction of an operator A corresponding to eigenvalue a_k , and let g_l be an eigenfunction of the adjoint operator A^* with eigenvalue b_l . Show that either b_l is the complex conjugate of a_k the eigenvector g_l is orthogonal to f_k .
- 3. Represent $x^5 x^3$ in terms of Legendre polynomials $P_n(x)$.
- 4. Represent the following functions in terms of spherical harmonics functions $Y_{lk}(\theta, \varphi)$, where θ and φ denote the polar and azimuthal angles, respectively. (a) $\sin\theta\cos\varphi$, (b) $\sin\theta\sin\varphi$ and (c) $\cos\theta$.
- 5. The angular flux for mono-energetic neutrons at a point \vec{r} is given by $\psi(\vec{r}, \vec{\Omega}) = a + b \cos \theta$ where a and b are constants, and θ is the angle between $\vec{\Omega}$ and the z-axis. Compute at \vec{r} (a) the flux, (b) the current, (c) the partial current in the positive z direction, and (d) the partial current in the negative z direction.