1. Prove or disprove the negligibility of the following functions:

(a)
$$\frac{2^{-1000}}{n}$$

(b) $\frac{1}{(\log n)!}$
(c) $\frac{1}{(\log \log n)!} \times 2^{\frac{-n}{1000}}$

[10]

- 2. Using your experience in security definitions, provide a definition for perfect pseudorandom generators $G: \{0,1\}^n \to \{0,1\}^{n+1}$. Furthermore, prove that such perfect PRGs do not exist. [10]
- 3. Assuming that DLP is hard in Z_{17}^* (of course, it isn't really), using 4-bits to represent each of its elements, design a corresponding PRG $G: \{0,1\}^4 \to \{0,1\}^*$, and output the first six bits if seed is set to be the last 4 bits of your choice (say, the last 4 bits of the last 2 digits of your roll number). [10]
- \mathcal{A} . Prove that the shift cipher is perfectly secret as long as only one character in $[a, \ldots, z]$ is encrypted.

End Semester Examination

Principles of Information Security IIIT Hyderabad, Monsoon 2022

April 29, 2024

Maximum Marks: 100. Time: 180 min

There are 10 questions, 10 marks each.

- X. Recall that the one-time pad is defined over $(K, \mathcal{M}, \mathcal{C})$ where $K = \mathcal{M} = \mathcal{C} = \{0, 1\}^n$ and $\operatorname{Enc}(k, m) = k \oplus m$. Notice that when the key $k = 0^n$ is used, then $\operatorname{Enc}(k, m) = m$ and this does not "seem" secure. Suppose we "improve" the one-time pad by setting the key space to $K := \{0, 1\}^n \setminus 0^n$. That is, we take 0^n out of the key space so that it will never be chosen as a key. Does the resulting cipher have perfect secrecy? Justify your answer. More generally, while there is a need for always using only strong passwords, is there a need for an analogous notion of strong keys for (a) perfect security and (b) computational security. 3 + 3 + 4 = 10 marks
 - 2. Let \mathcal{G} be a group of prime order p with generator $g \in \mathcal{G}$. Assume that the discrete log problem is hard in \mathcal{G} . Consider the following PRG defined over $(\mathcal{Z}_p, \mathcal{G}^2)$: given an input $x \in \mathbb{Z}_p$, the PRG outputs $G(x) := (g^{4x}, g^{5x}) \in \mathcal{G}^2$. Is this a secure PRG? Justify. Using the notion of hard-core predicates, how would you design a secure PRG is the above setting?
 - B. Define (in the way you find appropriate) the notions of (a) perfect one way functions (b) perfect pseudorandom generators, (c) perfect pseudorandom functions, (d) perfect collision-resistant hashing and (c) perfect public-key cryptosystems and prove that none of them exist.

 5 × 2 = 10 marks
 - 4. Does counter mode encryption require a PRP or is a PRF sufficient? Justify your answer. Imagine a new mode of operation for block ciphers for each of the following: $4 + 1\frac{1}{2} \times 4 = 10$ marks
 - It is insecure for encrypting some (but not all) messages.
 - It is secure for encrypting all messages of given fixed length ℓ but is insecure for all the other length messages.
 - It is always insecure for encrypting each and every message.
 - It is secure for encrypting sufficiently long messages, but is insecure for short messages.
 - Design a new MAC scheme that is provably secure (and prove it under CDH/DDH/DLP-assumption)—in more detail, construct a fixed length collision resistant hash function using DLP, followed by the Merkle-Damgard transform and subsequently a HMAC-like design. Compare/contrast your design with the CBCMAC, and which of the two is likely to have a smaller block-size?

 3 + 2 + 2 + 2 + 1 = 10
 - 6. Show that if H_1 and H_2 are distinct collision resistant functions with range $\mathcal{T} := \{0,1\}^n$, then $H(x) := H_1(x) \oplus H_2(x)$ need not be collision resistant. No matter how good the hashing algorithm, prove that to find two passwords that have the same n-bit hash value (colllision) it is expected to take only $O(\sqrt{2^n})$ trials (the Birthday attack rather than brute-force approach of $O(2^n)$ trials). Do you think an OS that uses a 64-bit password hashes are secure with today's technology (argue with time calculations). What is the hash-and-sign paradigm? Show that the textbook RSA signatures are not secure. Illustrate how the above paradigm enables 2+3+2+1+1+1=10 to tighten RSA-signatures.
 - 7. In 1-out-of-2 Oblivious Transfer (OT), a sender has two message bits $m_0, m_1 \in \{0, 1\}$, and a receiver has a choice bit $b \in \{0, 1\}$. The sender wants to send m_b to the receiver while satisfying correctness (the receiver obtains m_b), sender's privacy (the receiver gains no knowledge about the message m_{1-b}), and receiver's privacy

mal

(the sender gains no knowledge about the choice bit b). In this problem, we focus on achieving security against honest-but-curious senders and receivers. 5+5=10 marks

- Show how you can use any 1-bit OT scheme to build an ℓ -bit OT scheme for transferring ℓ -bit messages $m_0, m_1 \in \{0,1\}^{\ell}$. Here $\ell = \ell(\lambda)$ is a (possibly large) polynomial in security parameter λ . Your scheme can only invoke the given 1-bit OT scheme at most $\lambda \ll \ell$ times. You can assume the existence of a pseudorandom generator.
- A 1-out-of-n secret sharing scheme is one where the sender has n messages $m_0, \ldots, m_{n-1} \in \{0,1\}^{\ell}$ and the receiver wants the i^{th} message m_i .

You are given a 1-out-of-2 OT scheme with ℓ -bit messages. Show how to construct a 1-out-of-n OT scheme for any integer $n \geq 2$. You can assume the existence of a PRF family. For full credit, your scheme must invoke the 1-out-of-2 OT scheme at most $O(\log n)$ many times.

A prime p is called b-smooth if all the prime factors of (p-1) are at most b. Design an algorithm that is polynomial-time is $\log b$ to compute discrete logatirhm in \mathbb{Z}_p^* where p is b-smooth. What kind of primes p have the maximum value of b (relative to p), and are better suited for DLP-based cryposystems like the El Gamal public-key cryptosystem (PKC)? Under DDH, prove that El Gamal PKC is CPA-secure. Prove that El Gamal PKC is not CCA-secure. Show how would to design a new provably CCA-secure PKC starting with the El Gamal PKC. 5+1+2+1+1=10

9. For each of the following statements, say whether it is true or false, with proof.

 $2 \times 5 = 10 \text{ marks}$

- There exists a pseudorandom generator $G = \{G_n\}$ where for every $n, G_n : \{0,1\}^n \to \{0,1\}^{2n}$ such that for every $x \in \{0,1\}^n$, the first n/3 bits of $G_n(x)$ are zero.
- There exists a pseudorandom generator $G = \{G_n\}$ where for every $n, G_n : \{0,1\}n \to \{0,1\}^{2n}$ such that for every $x \in \{0,1\}^n$, if the first n/3 bits of x are zero then all the bits of $G_n(x)$ are zero (i.e., $G_n(x) = 0^{2n}$).
- There exists a pseudorandom function collection $\{f_s\}_{s\in\{0,1\}}$ where, letting $n=|s|, f_s:\{0,1\}^n \to \{0,1\}^n$ that satisfies the following: for every $s\in\{0,1\}^n$, $f_s(0^n)=0^n$.
- For $\ell \geq 2$ and a string $x \in \{0,1\}^{\ell}$, let $cnot : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ be the following function: $cnot(x_1,\ldots,x_{\ell}) = x_1,x_2 \oplus x_1,x_3,\ldots,x_{\ell}$. (That is, cnot flips the second bit of x according to whether or not the first bit is one.) There exists a CPA-secure public key encryption scheme (Gen,Enc,Dec) and a polynomial time algorithm A, such that for every n, if $(e,d) = Gen(1^n)$ then for every $x \in \{0,1\}^{\ell}$ (where ℓ is the message size of the encryption scheme for security parameter n) it holds that

$$\operatorname{Dec}_d\left(A\Big(e,\operatorname{Enc}_e(x)\Big)\right)=cnot(x)$$

- Repeat the above for CCA-secure public key encryption scheme.
- 10. Write in detail about any two of the following:

 $2 \times 5 = 10$

- 1. Blockchains
- 2. Efficient Quantum Algorithm for Integer Factorization
- 3. Quantum Secure Key Establishment
- 4. Quantum Teleportation
- 5. Chinese Remainder Theorem
- 6. Byzantine Agreement

Digital Certificates and PKI

- 8. Random Oracle Model
- 9. Secret sharing •
- 10. Perfectly Secure Multiparty Computation

BEST OF LUCK