

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-03-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[삼각방정식의 풀이]

- •삼각방정식의 풀이
- ① 주어진 방정식을 $\sin x = k$ (또는 $\cos x = k$ 또는 $\tan x = k$) 꼴로
- ② 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y = k를 그린다.
- ③ 주어진 범위에서 삼각함수의 그래프와 직선의 교점의 x좌표를 찾아 방정식의 해를 구한다.

[삼각방정식의 실근의 개수]

• 방정식 f(x) = g(x)의 서로 다른 실근의 개수는 두 함수 y = f(x)와 y = g(x)의 그래프의 서로 다른 교점의 개수와 같다.

[삼각부등식의 풀이]

- 삼각부등식의 풀이
- ① $\sin x > k$ (또는 $\cos x > k$ 또는 $\tan x > k$)꼴의 부등식: 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y=k의 교점의 x좌표를 이용하여 삼각함수의 그래프가 직선 y = k보다 위쪽에 있는 x의 값의 범위를 구한다.
- ② $\sin x < k$ (또는 $\cos x < k$ 또는 $\tan x < k$)꼴의 부등식: 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y=k의 교점의 x좌표를 이용하여 삼각함수의 그래프가 직선 y = k보다 아래쪽에 있는 x의 값의 범위를 구한다.

기본문제

- **1.** $0 \le x < \pi$ 일 때, 방정식 $\cos x = \frac{1}{2}$ 을 푼 것은?
 - ① $\frac{1}{6}\pi$
- ② $\frac{1}{3}\pi$
- $3\frac{1}{2}\pi$
- $\frac{2}{3}\pi$
- $\frac{5}{6}\pi$

- [문제] **2.** $0 \le x < 2\pi$ 일 때, $\cos x = -\frac{\sqrt{3}}{2}$ 의 해를 α , β 라 하면, $\alpha + \beta$ 의 값은?
 - ① π
- $\bigcirc \frac{3}{2}\pi$
- $\Im 2\pi$
- $4 \frac{5}{2}\pi$
- (5) 3π

[예제]

3. $0 \le x < 2\pi$ 일 때, 부등식 $\cos x < \frac{\sqrt{3}}{2}$ 의 해를 a < x < b라 할 때, b-a의 값은?

$$3 \frac{4}{3} \pi$$

$$(4) \frac{5}{3}\pi$$

⑤
$$\frac{5}{4}\pi$$

4. $0 \le x < \pi$ 일 때, $\tan x \le 1$ 을 푼 것으로 옳은 것

①
$$0 \le x \le \frac{\pi}{4}$$
 또는 $\frac{\pi}{2} < x < \pi$

②
$$0 \le x \le \frac{\pi}{4}$$

③
$$0 \le x \le \frac{\pi}{3}$$
 또는 $\frac{\pi}{2} < x < \pi$

⑤
$$0 \le x \le \frac{3\pi}{4}$$

평가문제

[중단원 마무리하기]

- **5.** $0 < x < \pi$ **9** $\text{III}, -\cos x + \cos^2 x = \sin^2 x$ **9**
 - ① $\frac{1}{6}\pi$
- ② $\frac{1}{3}\pi$
- $3\frac{1}{2}\pi$
- $\bigcirc \frac{2}{3}\pi$
- $\frac{5}{6}\pi$

[중단원 마무리하기]

- **6.** $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ 일 때, $-1 \le \tan x \le \frac{1}{\sqrt{3}}$ 의 근이 $a \le x \le b$ 라고 하면 a+b는?
 - ① $-\frac{\pi}{6}$
- $2 \frac{\pi}{12}$
- $3\frac{\pi}{12}$
- $4 \frac{\pi}{6}$
- $\Im \frac{\pi}{4}$

[중단원 마무리하기]

- **7.** $0 < x < \pi$ 일 때, 부등식 $\cos x < \sqrt{3} \sin x$ 를 푼
 - ① $\frac{\pi}{6} < x < \pi$ ② $\frac{\pi}{4} < x < \pi$
- - $3 \frac{\pi}{3} < x < \pi$ $4 \frac{\pi}{2} < x < \pi$
 - ⑤ $\frac{3\pi}{4} < x < \pi$

- **8.** $0 \le x < 4\pi$ 일 때, 방정식 $\cos x = \frac{1}{2}$ 의 모든 근의 합을 구한 것은?
 - \bigcirc π
- $\bigcirc 2\pi$
- 34π
- (4) 8π
- ⑤ 10π

- **9.** $0 \le x < 2\pi$ 일 때, 방정식 $\sin x = \cos x$ 의 모든 근의 합을 구한 것은?
- ② π
- $\Im \frac{3}{2}\pi$
- $4) 2\pi$
- $(5) \frac{5}{2} \pi$

[대단원 평가하기]

10. $0 \le x < 2\pi$ 일 때, 두 부등식 $\sin x > \frac{1}{2}$,

 $\cos x < \frac{\sqrt{2}}{2}$ 을 동시에 만족시키는 x의 값의 범위 a < x < b라고 할 때, a+b를 구한 것은?

- ① $\frac{5}{6}\pi$
- $\Im \frac{13}{12}\pi$
- $\frac{7}{6}\pi$
- $(5) \frac{4}{3}\pi$

[대단원 평가하기]

11. 모든 실수 x에 대하여 이차부등식 $x^2 - 4 \sin \theta x + 3 \ge 0$ 이 성립한다고 할 때, θ 의 값의 범위는? (단, $0 \le \theta \le \pi$)

$$\textcircled{2} \ 0 \leq \theta \leq \frac{1}{6}\pi \ \text{ } \underline{\text{4-1}} \ \frac{5}{6}\pi \leq \theta \leq \pi$$

$$\textcircled{4} \ 0 \leq \theta \leq \frac{1}{3}\pi \ \ \underline{\text{FL}} \ \ \frac{2}{3}\pi \leq \theta \leq \pi$$

[대단원 평가하기]

- **12.** $0 \le x < \frac{\pi}{2}$ 일 때, 방정식 $2\sin\left(3x \frac{\pi}{3}\right) = \sqrt{3}$ 의 해를 모두 더한 것은?
 - ① $\frac{2}{9}\pi$
- $\bigcirc \frac{1}{3}\pi$
- $3\frac{4}{9}\pi$
- $4 \frac{5}{9}\pi$
- ⑤ $\frac{2}{3}\pi$

유사문제

- **13.** 부등식 $\cos^2\theta 3\cos\theta a + 6 \ge 0$ 이 모든 θ 에 대 하여 항상 성립하는 실수 a의 범위는?
 - ① $-1 \le a \le 9$
- $\bigcirc a \ge 0$
- $3 a \leq 4$
- (4) $a \le 7$
- ⑤ $a \le 9$
- **14.** $0 \le \theta \le 2\pi$ 일 때, 모든 실수 x에 대하여 부등식 $rac{1}{2}x^2 - (2\sin\theta + 1)x + 2 > 0$ 이 항상 성립하도록 하는 θ 의 범위가 $0 \le \theta < \alpha$ 또는 $\beta < \theta \le 2\pi$ 일 때, $\alpha + \beta$ 의 값은?
 - ① π
- $\Im \frac{3}{4}\pi$
- $(4) \frac{5}{4}\pi$

(H

정답 및 해설

1) [정답] ②

[해설]
$$\cos x = \frac{1}{2}$$
 에서 $x = \frac{1}{3}\pi$ 이다.

2) [정답] ③

[해설]
$$\cos x=-\frac{\sqrt{3}}{2}$$
 의 해는 $x=\frac{5}{6}\pi$, $x=\frac{7}{6}\pi$ 이다.
따라서 $\alpha+\beta=2\pi$

3) [정답] ④

[해설]
$$\cos x < \frac{\sqrt{3}}{2}$$
 를 풀면 $\frac{1}{6}\pi < x < \frac{11}{6}\pi$ 이므로
$$b-a = \frac{5}{3}\pi$$

4) [정답] ①

[해설]
$$\tan x \le 1$$
이므로 $0 \le x \le \frac{\pi}{4}$ 또는 $\frac{\pi}{2} < x < \pi$

5) [정답] ④

[해설] 주어진 방정식을
$$\sin^2 x + \cos^2 x = 1$$
을 이용하여 정리하면

$$2\cos^2 x - \cos x - 1 = 0$$
 $2\cos^2 x - \cos x - 1 = (2\cos x + 1)(\cos x - 1) = 0$ 따라서 $\cos x = -\frac{1}{2}$ 또는 $\cos x = 1$ 이때 $0 < x < \pi$ 이므로 $x = \frac{2}{3}\pi$ 이다.

6) [정답] ②

[해설]
$$-1 \le \tan x \le \frac{1}{\sqrt{3}}$$
을 계산하면
$$-\frac{\pi}{4} \le x \le \frac{\pi}{6}$$
이다. 따라서 $a+b=-\frac{\pi}{12}$

7) [정답] ①

[해설]
$$y=\cos x$$
와 $y=\sqrt{3}\sin x$ 의 교점의 x 좌표는 $\cos x=\sqrt{3}\sin x$ 의 해로 $x=\frac{\pi}{6}$ 이다. 따라서 $\cos x<\sqrt{3}\sin x$ 를 만족하는 범위는 $\frac{\pi}{6}< x<\pi$ 이다.

8) [정답] ④

[해설]
$$\cos x=\frac{1}{2}$$
의 근을 구하면
$$x=\frac{\pi}{3},\ x=\frac{5}{3}\pi,\ x=\frac{7\pi}{3},\ x=\frac{11}{3}\pi$$
 따라서 모든 근의 함은 8π

9) [정답] ③

[해설] $\sin x = \cos x$ 을 만족하는 근은 다음과 같다.

$$x=\frac{\pi}{4}$$
 또는 $x=\frac{5}{4}\pi$
따라서 모든 근의 합은 $\frac{3}{2}\pi$

10) [정답] ③

[해설]
$$\sin x > \frac{1}{2}$$
를 만족하는 x 는 $\frac{\pi}{6} < x < \frac{5}{6}\pi$ $\cos x < \frac{\sqrt{2}}{2}$ 를 만족하는 x 는 $\frac{\pi}{4} < x < \frac{7}{4}\pi$ 동시에 만족시키는 x 의 범위는 $\frac{\pi}{4} < x < \frac{5}{6}\pi$ 따라서 $a+b=\frac{13}{12}\pi$

11) [정답] ④

[해설] 모든 실수
$$x$$
에 대하여 이차부등식
$$x^2-4\sin\theta x+3\geq 0$$
이 성립하려면 판별식 $D\leq 0$ 을 만족해야한다. 따라서 $(2\sin\theta)^2-3\leq 0$ 이므로
$$-\frac{\sqrt{3}}{2}\leq \sin\theta\leq \frac{\sqrt{3}}{2}$$
 따라서 $0\leq \theta\leq \frac{1}{3}\pi$ 또는 $\frac{2}{3}\pi\leq \theta\leq \pi$ 이다.

12) [정답] ④

[해설]
$$2\sin\left(3x - \frac{\pi}{3}\right) = \sqrt{3}$$
 에서 $3x - \frac{\pi}{3} = t$ 라 하면 $2\sin t = \sqrt{3}$, $\sin t = \frac{\sqrt{3}}{2}$ $0 \le x < \frac{\pi}{2}$ 에서 t 의 값의 범위를 구하면 $-\frac{\pi}{3} \le t < \frac{7}{6}\pi$ $\sin t = \frac{\sqrt{3}}{2}$ 을 만족시키는 t 의 값은 $t = \frac{\pi}{3}$ 또는 $t = \frac{2}{3}\pi$ 즉, $3x - \frac{\pi}{3} = \frac{\pi}{3}$ 또는 $3x - \frac{\pi}{3} = \frac{2}{3}\pi$ 이므로 $x = \frac{2}{9}\pi$ 또는 $x = \frac{\pi}{3}$ 따라서 $\frac{2}{9}\pi + \frac{\pi}{3} = \frac{5}{9}\pi$

13) [정답] ③

[해설]
$$\cos\theta = t \left(-1 \le t \le 1\right)$$
라 하면 $t^2 - 3t - a + 6 \ge 0$ 이고, $f(t) = t^2 - 3t - a + 6$ 라 하면
$$f(t) = \left(t - \frac{3}{2}\right)^2 - a + \frac{15}{4} \ \left(-1 \le t \le 1\right)$$
의 최솟값이 0보다 크거나 같으면 된다. $f(t)$ 는 $t = 1$ 일 때, 최솟값을 가지므로

$$f(1) = 4 - a \ge 0$$

$$\therefore a \le 4$$

14) [정답] ①

[해설]
$$D = (2\sin\theta + 1)^2 - 4\left(\frac{1}{2}\right)2 < 0$$

$$4\sin^2\theta + 4\sin\theta + 1 - 4 < 0$$

$$4\sin^2\theta + 4\sin\theta - 3 < 0$$

$$(2\sin\theta + 3)(2\sin\theta - 1) < 0$$

$$-\frac{3}{2} < \sin\theta < \frac{1}{2}$$

따라서
$$0 \le \theta < \frac{\pi}{6}$$
 또는 $\frac{5}{6}\pi < \theta \le 2\pi$

$$\alpha + \beta = \frac{\pi}{6} + \frac{5}{6}\pi = \pi$$