Problemi di Cinematica del punto (2)

1. Uno sciatore scende lungo un piano inclinato di un angolo $\theta=45^\circ$ rispetto all'orizzontale

e ad un certo punto sale su un trampolino orizzontale che sporge di una distanza $\ell=5$ m dal piano inclinato. L'uscita dello sciatore dal trampolino avviene con una velocità pari in modulo a $v_0=30$ m/s. Determinare la lunghezza R totale del salto a partire dalla base del trampolino.

- 2. Un'automobile percorre un giro di pista circolare di raggio R=150 m in un tempo T=60 s partendo da ferma e muovendosi con accelerazione tangenziale a_T costante. Determinare:
 - a) la velocità media v_m ;
 - b) il valore dell'accelerazione tangenziale a_T ;
 - c) l'espressione a(t) del modulo dell'accelerazione in funzione del tempo.

3. Un corpo è in moto lungo una traiettoria circolare di raggio R con una legge oraria del moto

definita dall'espressione $s(t)=t^3+2t^2$. Si sa che il modulo dell'accelerazione all'istante $t_1=2$ s è $|a(t_1)|=a_1=16\sqrt{2}$ m/s². Determinare il raggio R del cerchio.

4. Una ruota di raggio R=0.4 m sta ruotando attorno al suo asse posto orizzontale con una

frequenza pari a f=1 giro/s. Ad un certo istante, dal punto A posto sulla ruota ad un angolo $\theta=30^\circ$ rispetto all'orizzontale, si stacca una particella che nel suo moto va a sbattere contro una parete posta a distanza d=0.8 m dall'asse della ruota (vedi figura). Determinare:

- a) il vettore \vec{v}_0 della velocità della particella all'istante del distacco;
- b) il tempo t impiegato dalla particella a colpire la parete dall'istante del distacco;
- c) la quota h del punto di impatto sulla parete rispetto alla posizione dell'asse della ruota
- d) il modulo v_1 della velocità della particella all'impatto.