Dimentionality reduction

- Terkadang kita memiliki atribut/fitur data yang sangat banyak, sehingga:
 - √ Komputasi menjadi berat
 - √Tidak bisa divisualisasikan → dimensi berapa yang maksimal masih bisa kita visualisasikan?

➤ Ilustrasi: diberikan data dengan 2 dimensi berikut, bagaimana cara terbaik untuk mereduksi menjadi 1

dimensi?

- ➤ Singkatan dari: Principal Component Analysis
- Tujuan: mereduksi data dengan dimensi m ke dimensi p, yang mana $p \le m$
- Kategori pembelajaran: masuk dalam kategori unsupervised learning
- ►Ide: memproyeksikan data X ke data terproyeksi Z di mana Z adalah kemungkinan data terproyeksi dengan nilai variansi tertinggi.

$$Z = XW$$

Di mana:

Z = data terproyeksi, ukuran = ?

W = matriks proyeksi, ukuran = (m, p)

 $X = \text{data yang ingin diproyeksikan, ukuran} = (n_{data}, m)$

$$_{\boldsymbol{w}}^{argmax}(varian \boldsymbol{Z}) = _{\boldsymbol{w}}^{argmax}((\boldsymbol{Z} - \overline{\boldsymbol{Z}})^2)$$

Ada yang bisa mencoba melanjutkan? Akan mendapatkan poin plus bagi yang bisa ©

$$w (varian \mathbf{Z}) = w ((\mathbf{Z} - \overline{\mathbf{Z}})^{2})$$

$$argmax \\ w (varian \mathbf{Z}) = argmax \\ w ((XW - \overline{X}W)^{2})$$

$$argmax \\ w (varian \mathbf{Z}) = w (((X - \overline{X})W)^{2})$$

$$argmax \\ w (varian \mathbf{Z}) = argmax \\ w (((X - \overline{X})W)^{T}(X - \overline{X})W)$$

$$argmax \\ w (varian \mathbf{Z}) = argmax \\ w ((X - \overline{X})W)^{T}(X - \overline{X})W)$$

$$_{\boldsymbol{w}}^{argmax}(varian \boldsymbol{Z}) = _{w}^{argmax}(\boldsymbol{W}^{T}\boldsymbol{S} \boldsymbol{W})$$

Di mana
$$S = (X - \overline{X})^T (X - \overline{X})$$

$$_{\boldsymbol{w}}^{argmax}(varian \boldsymbol{Z}) = _{w}^{argmax}(\boldsymbol{W}^{T}\boldsymbol{S} \boldsymbol{W})$$

$$\underset{\boldsymbol{w}}{\operatorname{argmax}}(\operatorname{varian} \boldsymbol{Z}) = \frac{d(\boldsymbol{W}^T \boldsymbol{S} \, \boldsymbol{W})}{d\boldsymbol{W}} = 0$$

Untuk mendapatkan solusi W yang 'unique', tambahkan constraint lagrange multiplier $W^TW = 1$

a. Diberikan data asli X, hitung matriks kovarian S.

$$S = (X - \overline{X})^T (X - \overline{X})$$

- b. Dekomposisikan *S* ke *eigenvector* dan *eigenvalue*.
- c. Jika dikehendaki direduksi ke dimensi p, maka ambil sebanyak p eigenvector dari hasil langkah (b) yang memiliki nilai eigenvalue p-terbesar. Setiap eigenvectornya ini kita susun sebagai matriks kolom, yang selanjutnya akan kita akan gunakan sebagai matriks proyeksi W.
- d. Data yang terproyeksi dapat dihitung $\rightarrow Z = XW$

Ingat! **Z** ini dimensinya sudah tereduksi dan nilai variansinya paling tinggi.

Hitung $S = (X - \overline{X})^T (X - \overline{X})$ mean:

[185.72 151.12]
matriks kovarians:

[[2287.04 1268.84]
[1268.84 1304.64]]

Dekomposisikan ke eigen
 (eigenvalue, eigenvector) =
 np.linalg.eig(matriks_kovarians)
 eigenvalue:
 [3156.44000941 435.23999059]
 eigenvector:

➢ Bangun matriks W dari eigenvector, dan hitung Z, contoh:

$$\mathbf{Z} = \mathbf{X}\mathbf{W} = \begin{bmatrix} 191 & 155 \\ 195 & 149 \\ \vdots & \vdots \\ 190 & 163 \end{bmatrix} \begin{bmatrix} 0.825 \\ 0.565 \end{bmatrix} = \begin{bmatrix} 245.15 \\ 245.06 \\ \vdots \\ 248.8 \end{bmatrix}$$

191 155 195 149 181 148 183 153 176 144 208 157 189 150 197 159	
181 148 183 153 176 144 208 157 189 150 197 159	
183 153 176 144 208 157 189 150 197 159	
176 144 208 157 189 150 197 159	
208 157 189 150 197 159	
189 150 197 159	
197 159	
188 152	
192 150	
179 158	
183 147	
174 150	
190 159	
188 151	
163 137	
195 155	
186 153	
181 145	
175 140	
192 154	
174 143	
176 139	
197 167	
190 163	

Hasil plot matriks terproyeksi **Z** dengan PCA dari data **X** (halaman sebelumnya)

Contoh digit angka MNIST

- \triangleright Angka = 0 9
- Ukuran = 28 x 28 = 784 fitur

Hasil reduksi ke 2 dimensi dengan PCA

Welling, M. (2005). Fisher linear discriminant analysis. *Department of Computer Science, University of Toronto*.

Dimentionality reduction – tSNE

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. *Journal of machine learning research*

Dimentionality reduction – perbandingan

PCA

- Tidak butuh label
- Memaksimalkan variansi

LDA

- Butuh label
- Memaksimalkan
 Fisher discriminant

Yang mana yang paling bagus?

t-SNE

- Tidak butuh label
- Meminimalkan Kullback-Leibler divergence / relative entropy

End..

