Is It Funny?

Joke classification with BiLSTM and NLTK

Purpose

- Which is the joke?
 - Why did the chicken cross the road?
 - Why did the man cross the road?
- Can a deep learning model recognize a joke?
- Tools:
 - NLTK to process the texts
 - BiLSTM to identify patterns and classify texts

Dataset

- Generated for a paper on BERT Sentence Embedding
- 200,000 short texts
- 2 classes: humor vs non-humor
- Text and class are the only features
- The mean character count for jokes is slightly larger (70) than for non-jokes (65)

EDA

EDA

- Most frequent n-grams in joke texts
- Can recognize some common joke cliches

3	2	1
((like, woman, like), 1053)	((knock, knock), 2478)	(fuck, 1761)
((woman, like, like), 774)	((get, cross), 1101)	(fucking, 1608)
((take, change, lightbulb), 480)	((like, coffee), 960)	(whats, 1524)
((man, walk, bar), 465)	((take, change), 864)	(favourite, 1116)
((chicken, cross, road), 447)	((yo, mama), 801)	(lightbulb, 1032)
((like, coffee, like), 408)	((call, mexican), 573)	(midget, 951)
((wan, na, hear), 387)	((black, guy), 570)	(dyslexic, 606)
((like, like, coffee), 372)	((take, screw), 567)	(im, 561)
((change, light, bulb), 351)	((chicken, cross), 543)	(cunt, 453)
((yo, mama, fat), 345)	((change, lightbulb), 513)	(cant, 420)
((take, change, light), 330)	((whats, difference), 480)	(til, 381)
((walk, bar, bartender), 324)	((hear, joke), 477)	(constipated, 360)

EDA

 Most frequent n-grams in non-joke texts

4)
4)
4)
3)
3)
0)
2)
4)
5)
2)
9)
7)
7)

Preprocessing

- Convert text to lowercase
- Tokenize
- Remove stop words
- Lemmatize

```
Joe biden rules out 2020 bid: 'guys, i'm not r...
Watch: darvish gave hitter whiplash with slow ...
What do you call a turtle without its shell? d...
5 reasons the 2016 election feels so personal
Pasco police shot mexican migrant from behind,...
```



```
joe biden rule bid running
watch darvish gave hitter whiplash slow pitch
call turtle without shell dead
reason election feel personal
pasco police shot mexican migrant behind new a...
```

Tokenization and Word Embedding

- Tokenized words converted to sequences and padded to ensure equal lengths
- Pretrained Word2Vec word embedding
 - Boosts performance
- Creates a vector representation of the texts to feed into the models

BILSTM

- LSTM maintains a long term memory store
- A BiLSTM uses 2 LSTM layers
 - Forward process
 - Backward process
 - Allows for better learning of sequences
- 3 candidate architectures
 - Simple BiLSTM
 - BiLSTM with a dropout layer
 - BiLSTM with L2 regularization

Training

- Each model was trained with a training and validation set to monitor performance
- Loss function: binary cross entropy
- Optimizer: ADAM

Evaluation

- Validation accuracy is flat across models
- Overfitting observed in losses
- Model with regularization shows best performance

Hypertuning

- Evaluated 4 L2 regularization factors
- As the regularization factor increased, the training and validation losses became more similar

Results

- Final model: BiLSTM with L2 regularization (0.1)
- Test accuracy = 0.90
- Test loss = 0.25

Conclusion and Future Directions

- BiLSTM successfully identified whether texts were jokes
- Regularization helped reduce overfitting
- Future expansion to longer texts would be interesting. Could the model identify jokes that require a longer set up?

References

- Data source:

 https://github.com/Moradnejad/ColBERT-Using-BERT-Sentence-Embedding-for-Humor-D
 etection/tree/master?tab=readme-ov-file
- https://towardsdatascience.com/simple-word-embedding-for-natural-language-processin g-5484eeb05c06
- https://www.geeksforgeeks.org/bidirectional-lstm-in-nlp/
- https://www.ibm.com/topics/word-embeddings