高显经典力学习题解答

数据风暴中的避风港

二〇二四年十二月一日

数据风暴中的避风港 社区成员共同编写,本习题解答及其 LATEX 代码符合 MIT 许可. 链接: HTTPS://GITHUB.COM/PHIYU/GAOXIAN. 编写成员均为物理专业或非物理专业的物理爱好者, 编写过程中难免有许多纰漏, 欢迎指出, 也欢迎加 入 数据风暴中的避风港 大家庭(QQ 群: 832100706). 2024年12月

目录

第一章 变分法	1
第二章 位形空间	7
第三章 相对论时空观	9
第四章 最小作用量原理	11
第五章 对称性与守恒律	13
第六章 辅助变量	15
第七章 达朗贝尔原理	17
第八章 两体问题	19
第九章 微扰展开	21
第十章 小振动	23
第十一章 转动理论	25
第十二章 刚体	27
第十三章 哈密顿正则方程	33
第十四章 泊松括号	35
第十五章 正则变换	37
第十六章 哈密顿-雅可比理论	39
第十七章 可积系统	41

第一章 变分法

1.1 给定 f(t) 的泛函

$$S[f] = -\int dt e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$$

其中 V 是 f 的任意函数. 求 S[f] 取极值时, f(x) 的欧拉-拉格朗日方程.

参考解答 1.1 记 $L = e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$,则

$$\frac{\partial L}{\partial f} = V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - (f'(t))^2}, \qquad \frac{\partial L}{\partial f'} = \mathrm{e}^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}}$$

$$\delta S = \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} \delta f + e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \delta f' \right)$$

$$\simeq \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} - \frac{d}{dt} \left(e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \right) \right) \delta f$$

因此, Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta f} = -V \frac{\mathrm{d}V}{\mathrm{d}f} f' \mathrm{e}^{-V(f(t))} \frac{f'}{\sqrt{1 - f'^2}} + \mathrm{e}^{-V(f(t))} \frac{f'' + (1 - f')f'^2}{(1 - f'^2)^{3/2}} - V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - f'^2} = 0$$

1.2 给定
$$f(t)$$
 的泛函 $S[f] = \int dt L$, 其中 $L = (f'(t))^2 + f(t)f'(t) + \frac{1}{2}f(t)f''(t)$.

- (1) 求一阶泛函导数 $\frac{\delta S}{\delta f}$;
- (2) 将 L 改写成 $L=\tilde{L}+\frac{\mathrm{d}F}{\mathrm{d}t}$ 的形式, 要求 \tilde{L} 中不包含 f''(t), 求 \tilde{L} 和 F;
- (3) 求泛函 $\tilde{S}[f]=\int \mathrm{d}t\, \tilde{L}$ 的一阶泛函导数 $\frac{\delta \tilde{S}}{\delta f},$ 并比较其和 $\frac{\delta S}{\delta f}$ 的异同.

参考解答 1.2 (1)

$$\delta S = \int dt \, \delta L = \int dt \left(\left(f' + \frac{1}{2} f'' \right) \delta f + \left(2f' + f \right) \delta f' + \frac{1}{2} f \delta f'' \right)$$

$$\simeq \int dt \left(f' + \frac{1}{2} f'' - \frac{d}{dt} \left(2f' + f \right) + \frac{d^2}{dt^2} \left(\frac{1}{2} f \right) \right) \delta f$$

$$\frac{\delta S}{\delta f} = -f''$$

(2) 假设
$$F = \frac{1}{2}ff'$$
, 则 $\frac{dF}{dt} = \frac{1}{2}f'^2 + \frac{1}{2}ff''$, $\tilde{L} = ff' + \frac{1}{2}f'^2$ 满足题意.

$$\delta \tilde{S}[f] = \int dt \delta \tilde{L} = \int dt \left(f' \delta f + (f + f') \delta f' \right)$$

$$\simeq \int dt \left(f' - \frac{d}{dt} (f + f') \right) \delta f$$

$$\frac{\delta \tilde{S}}{\delta f} = -f''$$

注意到
$$\frac{\delta \tilde{S}}{\delta f} = \frac{\delta S}{\delta f}$$
.

1.3 给定两个函数 n(t) 和 a(t) 的泛函 $S[n,a] = \int_{t_1}^{t_2} \mathrm{d}t \, na^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2}\right)$, 其中 A,B 是 n(t) 的任意函数. 求泛函 S[n,a] 取极值时, n(t) 和 a(t) 的欧拉-拉格朗日方程.

参考解答 1.3

$$\delta S = \int \mathrm{d}t \left(a^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2} \right) + na^3 \left(\frac{\mathrm{d}A}{\mathrm{d}n} + 3 \frac{\mathrm{d}B}{\mathrm{d}n} \frac{a'^2}{n^2 a^2} - \frac{3}{2} B(n) \frac{a'^2}{n^3 a^2} \right) \right) \delta n$$

$$-\frac{\delta S}{\delta n} = -a^3 A - 3B \frac{aa'^2}{n^2} - na^3 \frac{\mathrm{d}A}{\mathrm{d}n} - 3n \frac{\mathrm{d}B}{\mathrm{d}n} \frac{aa'^2}{n^2} + \frac{3}{2} nB \frac{aa'^2}{n^3} = 0$$

$$\delta S = \int \mathrm{d}t \left(6B \frac{aa'}{n} \delta a' + \left(3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a \right)$$

$$\simeq \int \mathrm{d}t \left(-\frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) + 3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a$$

$$-\frac{\delta S}{\delta a} = \frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) - 3nAa^2 - 3B \frac{a'^2}{n} = 0$$

1.4 给定二元函数 f(t,x) 的泛函 $S[f] = \iint \mathrm{d}t \mathrm{d}x \frac{1}{2} \left[\left(\frac{\partial f(t,x)}{\partial t} \right)^2 - \left(\frac{\partial f(t,x)}{\partial x} \right)^2 - m^2 f^2(t,x) \right],$ 其中 m 是常数. 求泛函 S[f] 取极值时 f(t,x) 的欧拉-拉格朗日方程.

参考解答 1.4 泛函 S[f] 的 Lagrange 函数为 $L(t,x,f,f_t,f_x) = \frac{1}{2}(f_t^2 - f_x^2 - m^2 f^2)$, 则

$$\delta S = \iint dt dx \delta L$$

$$\simeq \iint dt dx \left[\frac{\partial L}{\partial f} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial f_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f_x} \right) \right]$$

$$= \iint dt dx \left(-m^2 f - f_{tt} + f_{xx} \right) \delta f$$

取极值有 $-\frac{\delta S}{\delta f} = 0$, 即 $f_{tt} - f_{xx} + -m^2 f = 0$

- **1.5** 考虑一条不可拉伸、质量均匀的柔软细绳, 长为 l, 质量为 m. 细绳两端点悬挂于相同高度, 水平距离为 a(a < l).
 - (1) 选择合适的坐标, 求细绳总的重力势能 V 作为细绳形状的泛函;
 - (2) 求细绳重力势能取极值时,细绳形状所满足的欧拉-拉格朗日方程.

参考解答 1.5 \qquad (1) 取细绳所在平面建立笛卡尔系,设悬点为 $\pmb{x_1}=(0,0), \pmb{x_2}=(a,0)$,竖直向下为 y 轴正方向,设细绳形状为 y=y(x) $(0\leq x\leq a)$,可知细绳线密度为 $\lambda=\frac{m}{l}$,则

$$V[y] = \int -(\lambda dL)gy$$
$$= -\frac{mg}{l} \int_0^a y\sqrt{1 + y'^2} dx$$

(2) 泛函 V[y] 的 Lagrange 函数为 $L(x,y,y') = -\frac{mg}{l}y\sqrt{1+y'^2}$, 重力势能取极值有

$$\begin{split} -\frac{\delta V}{\delta y} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial L}{\partial y'} \right) - \frac{\partial L}{\partial y} \\ &= -\frac{mg}{l} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{yy'}{\sqrt{1+y'^2}} \right) - \sqrt{1+y'^2} \right] \\ &= -\frac{mg}{l} \left(\frac{y'^2}{\sqrt{1+y'^2}} + \frac{yy''}{\sqrt{1+y'^2}} - \frac{yy'^2y''}{(1+y'^2)^{3/2}} - \sqrt{1+y'^2} \right) = 0 \end{split}$$

将最后一式化简得到: $yy'' - y'^2 - 1 = 0$, 此即著名的悬链线满足的微分方程.

- **1.6** 考虑 **3** 维欧氏空间中的任意 **2** 维曲面, 取直角坐标, 曲面方程为 z=z(x,y). 曲面上任意两固定点, 由曲面上的任一曲线连接. 曲线方程为 $x=x(\lambda), y=y(\lambda)$, 这里的 λ 是曲线的参数.
 - (1) 求曲线的长度 S 作为 $x(\lambda)$ 和 $y(\lambda)$ 的泛函 S[x,y];
 - (2) 求曲线长度 S 取极值时, $x(\lambda)$ 和 $y(\lambda)$ 的欧拉-拉格朗日方程;
 - (3) 当曲面为以下情况时, 求解 $x(\lambda)$ 和 $y(\lambda)$:
 - (3.1) 平面 z = ax + by + c (a, b, c 为常数);
 - (3.2) 球面 $z = \sqrt{R^2 x^2 y^2}$ (R 为常数);
 - (3.3) 锥面 $z = H\left(1 \frac{1}{R}\sqrt{x^2 + y^2}\right)$ (H, R 为常数).

参考解答 1.6 (1)
$$S[x,y] = \int d\lambda \sqrt{x'^2 + y'^2} = \int d\lambda L(x',y')$$

(2) 先对 $x(\lambda)$ 做变分,

$$\delta S = \int d\lambda \left(\frac{\partial L}{\partial x'} \delta x' \right) = \int d\lambda \left(\frac{x'}{\sqrt{x'^2 + y'^2}} \right) \delta x'$$
$$\simeq \int d\lambda \left(-\frac{d}{d\lambda} \frac{x'}{\sqrt{x'^2 + y'^2}} \right) \delta x$$

因此, $x(\lambda)$ 的 Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta x} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{x'}{\sqrt{x'^2 + y'^2}} \right) = \frac{x''y'^2}{(x'^2 + y'^2)^{\frac{3}{2}}} = 0$$

再对 $y(\lambda)$ 做变分, 因为 x,y 对称, 同理可得 $y(\lambda)$ 的 Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta y} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{y'}{\sqrt{x'^2 + y'^2}} \right) = \frac{y'' x'^2}{(x'^2 + y'^2)^{\frac{3}{2}}} = 0$$

(3)(3.1) 未完工

1.7 假设地球质量均匀分布, 密度为 ρ , 半径为 R. 如图 1.9 所示, 在地球内部钻一个光滑隧道, 隧道处于过球心的大圆平面内. 一个物体从 A 点静止滑入, 则最终将由 B 点滑出. 在轨道平面取极坐标 $\{r,\phi\}$, 求轨道形状 $r(\phi)$ 满足什么方程时物体穿过隧道的时间最短. (提示:地球内部距离中心 r 处质量为 m 的粒子的牛顿引力势能为 $U(r)=\frac{2}{3}\pi Gm\rho r^2$, 其中 G 为牛顿引力常数.)

参考解答 1.7 考察 A、B 与地球球心形成的平面,以球心为极点,设极坐标下 A 点坐标为 (R,ϕ_1) ,B 点为 (R,ϕ_2) . 对于一个从 A 静止释放的粒子,运动到 $r(\phi)$ 处速度为

$$v(r) = \sqrt{\frac{2T}{m}} = \sqrt{\frac{2\Delta U(r)}{m}} = \sqrt{\frac{4}{3}\pi G\rho(R^2 - r^2)}$$

考虑到极坐标下线元为 $\mathrm{d}s^2=\mathrm{d}r^2+(r\mathrm{d}\phi)^2$,则沿着轨道从 A 到 B 的运动总时间为 $r(\phi)$ 的泛函,表达式为

$$T[r] = \int \frac{\mathrm{d}s}{v} = \int_{\phi_1}^{\phi_2} \frac{\sqrt{r'^2 + r^2}}{\sqrt{\frac{4}{3}\pi G\rho(R^2 - r^2)}} \mathrm{d}\phi$$

该泛函的等效 Lagrange 函数为 $L(r,r') = \sqrt{\frac{r'^2 + r^2}{R^2 - r^2}}$, 取极值时满足欧拉-拉格朗日方程:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{\partial L}{\partial r'} \right) - \frac{\partial L}{\partial r} &= \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{r'}{L(R^2 - r^2)} \right) - \frac{r(r'^2 + R^2)}{L(R^2 - r^2)^2} \\ &= \frac{r''}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{1/2}} - \frac{r'^2 (r'' + r)}{(r'^2 + r^2)^{3/2} (R^2 - r^2)^{1/2}} - \frac{rR^2}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{3/2}} \\ &= 0 \end{split}$$

最后一式整理可得 $r(R^2-r^2)r''+(r^2-2R^2)r'^2-R^2r^2=0$

- **1.8** 数学上将面积取极值的曲面称作极小曲面. 如图 **1.10** 所示, $\{x,y\}$ -平面上给定的 A 点和 B 点之间有曲线 y(x),此曲线绕 x 轴旋转而成旋转曲面.
 - (1) 求此旋转曲面面积取极小值时 y(x) 满足的微分方程;
 - (2) 求 y(x) 的解.

参考解答 1.8 待施工

- 1.9 并不是所有的微分方程都是欧拉-拉格朗日方程.
- (1) 证明 $f''(t) + 2\lambda f'(t) + \omega^2 f(t) = 0$ (λ, ω 是常数) 在 $\lambda \neq 0$ 时不是欧拉-拉格朗日方程;
- (2) 引入新变量 $q = e^{\lambda t} f$, 求 q 所满足的方程;

(3) 求 q 的方程作为欧拉-拉格朗日方程所对应的泛函 $\tilde{S}[q]$.

参考解答 1.9 (1) 假设存在泛函 $S[f] = \int L(t, f, f') dt$ 满足:

$$\frac{\delta S}{\delta f} = L_f - \frac{\mathrm{d}}{\mathrm{d}t}(L_{f'}) = f'' + 2\lambda f' + \omega^2 f$$

将此式化简可得到:

$$L_f - L_{f't} - L_{ff'}f' - L_{f'f'}f'' = f'' + 2\lambda f' + \omega^2 f$$

于是应当有 $L_{f'f'} = -1$, 进而有:

$$L(t, f, f') = -\frac{1}{2}f'^{2} + C_{1}(f, t)f' + C_{2}(f, t)$$

其中 $C_1(f,t)$, $C_2(f,t)$ 的具体形式待定, 将该解带入欧拉-拉格朗日方程化简有:

$$\frac{\partial C_2}{\partial f}(f,t) - \frac{\partial C_1}{\partial t}(f,t) = 2\lambda f' + \omega^2 f$$

在 $\lambda \neq 0$ 的情况下,上式不可能对所有 f 恒成立,因此原微分方程不是欧拉-拉格朗日方程.

(2) 将 $f(t) = e^{-\lambda t}q(t)$ 带入原方程, 容易化简得到:

$$q''(t) + (\omega^2 - \lambda^2)q(t) = 0$$

(3) 与 (1) 中讨论类似, 将所用符号对应替换即可: $(S,L,f;\lambda,\omega^2) \to (\tilde{S},\tilde{L},q;0,\omega^2-\lambda^2)$, 替换后得到:

$$\begin{cases} \tilde{L}(t,q,q') = -\frac{1}{2}q'^2 + C_1(q,t)q' + C_2(q,t) \\ \\ \frac{\partial C_2}{\partial q}(q,t) - \frac{\partial C_1}{\partial t}(q,t) = (\omega^2 - \lambda^2)q \end{cases}$$

不妨取 $C_1(q,t) = 0, C_2(q,t) = \frac{1}{2}(\omega^2 - \lambda^2)q^2$, 我们就能得到:

$$\tilde{S}[q] = \int \tilde{L}(t, q, q') dt = \int -\left(\frac{1}{2}q'^2 - \frac{1}{2}(\omega^2 - \lambda^2)q^2\right) dt$$

不难看出, 新变量 q 的 Lagrange 函数满足谐振子的形式。

第一章 变分法

第二章 位形空间

2.1 定性画出沿着操场跑道跑步时你的世界线,并分析其与跑道的关系.

参考解答 2.1 世界线在每一时刻与该时刻的位形空间交于一点, 所有这样的点的集合即在跑道上跑步的轨迹. 该路径是位形空间中的一条封闭曲线.

- **2.2** 如图**2.1**所示,两个粒子由一条无质量、不可拉伸的软绳连接,绳长为 l. 粒子 m_2 放在固定的水平面上,绳子穿过水平面上的小孔,另一端悬挂粒子 m_1 . 不考虑摩擦,假设 m_2 可以在整个水平面上运动, m_1 只在竖直方向运动.
 - (1) 分析这两个粒子和绳子构成的系统的位形和约束,给出约束方程,并分析约束是否完整、定常约束;
 - (2) 求系统的自由度.

图 2.1:

参考解答 2.2 (1) 设无约束时的广义坐标为 $\{r_1, r_2, \theta\}$, 其中 r_1 和 r_2 分别是粒子与小孔之间的距离, θ 是粒子 m_2 在平面上运动的角度. 约束方程为

$$\phi(r_1, r_2, \theta) = r_1 + r_2 - l = 0$$

注意到该约束方程是广义坐标的函数, 因此为完整约束; 且不显含时间, 因此为定常约束.

- (2) 完整约束可减少一个自由度,因此系统的自由度为 2, 即最少只需两个独立的广义坐标 $\{r,\theta\}$ 即可完全描述粒子的位形.
- **2.3** 如图**2.2**所示, 质量为 M 的楔块放在水平面上, 斜角分别为 θ_1 和 θ_2 , 底边长 L. 两个质量分别为 m_1 和 m_2 的粒子, 由一根无质量、不可拉伸的软绳连接, 绳长为 l, 两个粒子分别放在楔块的两个斜面上. 不考虑摩擦,

第二章 位形空间 习题解答

(1) 分析楔块、两个粒子以及绳子组成的系统的位形与约束,给出约束方程,并分析约束是否完整、定常约束;

(2) 求系统的自由度.

图 2.2:

参考解答 2.3 待施工.

第三章 相对论时空观

3.1 考虑 2 维欧氏空间, 取一般坐标 $\{u,v\}$, 与直角坐标关系为 x=x(u,v), y=y(u,v). 求 2 维欧氏空间度规在 $\{u,v\}$ 坐标下的形式.

参考解答 3.1 由线元的定义, 我们有

$$\begin{split} \mathrm{d}s^2 &= \left(\frac{\partial x}{\partial u}\mathrm{d}u + \frac{\partial x}{\partial v}\mathrm{d}v\right)^2 + \left(\frac{\partial y}{\partial u}\mathrm{d}u + \frac{\partial y}{\partial v}\mathrm{d}v\right)^2 \\ &= \left(\frac{\partial x}{\partial u}\right)^2\mathrm{d}u^2 + \left(\frac{\partial x}{\partial v}\right)^2\mathrm{d}v^2 + \frac{\partial x}{\partial u}\frac{\partial x}{\partial v}\mathrm{d}u\mathrm{d}v + \left(\frac{\partial y}{\partial u}\right)^2\mathrm{d}u^2 + \left(\frac{\partial y}{\partial v}\right)^2\mathrm{d}v^2 + \frac{\partial y}{\partial u}\frac{\partial y}{\partial v}\mathrm{d}u\mathrm{d}v \\ &= \left(\mathrm{d}u \ \mathrm{d}v\right)\left(\frac{\left(\frac{\partial x}{\partial u}\right)^2}{\frac{\partial x}{\partial v}}\frac{\partial x}{\partial u}\frac{\partial x}{\partial v}\right)\left(\frac{\mathrm{d}u}{\mathrm{d}v}\right) \\ &= \left(\mathrm{d}u \ \mathrm{d}v\right)\left(\frac{\left(\frac{\partial x}{\partial u}\right)^2}{\frac{\partial x}{\partial v}}\frac{\partial y}{\partial u} + \left(\frac{\partial y}{\partial v}\right)^2\right)\left(\frac{\mathrm{d}u}{\mathrm{d}v}\right) \end{split}$$

因此, 度规在 $\{u,v\}$ 坐标下的形式为

$$g_{ij} = \begin{pmatrix} \left(\frac{\partial x}{\partial u}\right)^2 & \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \\ \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} & \left(\frac{\partial y}{\partial v}\right)^2 \end{pmatrix}$$

3.2 考虑 3 维欧氏空间, 已知球坐标与直角坐标的关系为 $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$. 求 3 维欧氏空间度规在球坐标下的形式.

参考解答 3.2 考虑 3 维欧氏空间中的矢量 v, 由此构造坐标系的坐标基矢

$$\begin{split} \frac{\partial \boldsymbol{v}}{\partial r} &= \sin \theta \cos \phi \, \hat{\boldsymbol{x}} + \sin \theta \sin \phi \, \hat{\boldsymbol{y}} + \cos \theta \, \hat{\boldsymbol{z}} \\ \frac{\partial \boldsymbol{v}}{\partial \theta} &= r \cos \theta \cos \phi \, \hat{\boldsymbol{x}} + r \cos \theta \sin \phi \, \hat{\boldsymbol{y}} - r \sin \theta \, \hat{\boldsymbol{z}} \\ \frac{\partial \boldsymbol{v}}{\partial \phi} &= -r \sin \theta \sin \phi \, \hat{\boldsymbol{x}} + r \sin \theta \sin \phi \, \hat{\boldsymbol{y}} \end{split}$$

则线元可以写为

$$ds^{2} = d\mathbf{v} \cdot d\mathbf{v} = g_{ij}du^{i}du^{j}$$

$$= \left(dr \quad d\theta \quad d\phi\right) \begin{pmatrix} g_{rr} & g_{r\theta} & g_{\theta\phi} \\ g_{\theta r} & g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi r} & g_{\phi\theta} & g_{\phi\phi} \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$

其中
$$g_{ij} = g_{ji} = \frac{\partial \mathbf{v}}{\partial u^i} \cdot \frac{\partial \mathbf{v}}{\partial u^j} = \frac{\partial x}{\partial u^i} \frac{\partial x}{\partial u^j} + \frac{\partial y}{\partial u^i} \frac{\partial y}{\partial u^j} + \frac{\partial z}{\partial u^i} \frac{\partial z}{\partial u^j}.$$

将 g_{ij} 代入线元, 得

$$ds^{2} = \begin{pmatrix} dr & d\theta & d\phi \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin^{2}\theta \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$

即 3 维欧氏空间度规在球坐标下的形式为

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

第四章 最小作用量原理

第五章 对称性与守恒律

第六章 辅助变量

第六章 辅助变量 习题解答

第七章 达朗贝尔原理

第八章 两体问题

第八章 两体问题 习题解答

第九章 微扰展开

第九章 微扰展开 习题解答

第十章 小振动

10.1 已知 n 个函数 $\{u_1(t), \ldots, u_n(t)\}$ 线性无关的"充分"条件是其朗斯基行列式 (Wronskian) 非零, 定义为

$$\mathcal{W}(u_1, \dots, u_n) := \det \begin{pmatrix} u_1 & u_2 & \cdots & u_n \\ u'_1 & u'_2 & \cdots & u'_n \\ \vdots & \vdots & \ddots & \vdots \\ u_1^{(n-1)} & u_2^{(n-1)} & \cdots & u_n^{(n-1)} \end{pmatrix}$$

其中 $u^{(i)}$ 代表对 t 的 i 阶导数.

- (1) 证明 $e^{-i\omega t}$ 和其复共轭 $e^{+i\omega t}$ 是线性无关的, 即 $\mathcal{W}(e^{-i\omega t}, e^{+i\omega t}) \neq 0$;
- (2) 证明任意复函数 u(t) 及其复共轭的朗斯基行列式 $\mathcal{W}(u, u^*)$ 只有虚部, 并讨论其非零的条件.

参考解答 10.1 待施工

- **10.2** 某单自由度系统,广义坐标为 q,拉格朗日量为 $L=\frac{1}{2}G(t)\dot{q}^2-\frac{1}{2}W(t)q^2$,其中 G(t) 和 W(t) 都是时间的函数.
 - (1) 若 $q_1(t)$ 和 $q_2(t)$ 为系统运动方程的任意两个线性无关的特解,证明其朗斯基行列式 $\mathcal{W}(t) = W(q_1(t), q_2(t))$ 满足形式为 $\dot{\mathcal{W}} + f(t)\mathcal{W} = 0$ 的微分方程,并给出 f(t) 的表达式;
 - (2) 根据 (1) 的结果, 分析当 G(t) 和 W(t) 满足什么条件时 \mathcal{W} 为常数.

参考解答 10.2 (1) 易求得系统运动方程为

$$G(t)\ddot{q} - W(t)q = 0$$

Wronskian 为

$$\mathcal{W} = \begin{pmatrix} q_1 & q_2 \\ \dot{q_1} & \dot{q_2} \end{pmatrix} = q_1 \dot{q_2} - q_2 \dot{q_1}$$

现计算 W

$$\dot{W} = \dot{q}_1 \dot{q}_2 + q_1 \ddot{q}_2 - \dot{q}_1 \dot{q}_2 - q_2 \ddot{q}_1 =$$

未完工

(2)

第十章 小振动 习题解答

10.3 待施工

参考解答 10.3 待施工

10.4 求习题 9.5 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.4 待施工

10.5 求习题 9.6 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.5 待施工

10.6 求习题 9.7 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.6 待施工

第十一章 转动理论

第十一章 转动理论 习题解答

第十二章 刚体

- 12.1 已知方阵的矩阵对数由 $\ln(1+M) = M \frac{1}{2}M^2 + \frac{1}{3}M^3 \cdots$ 定义.
- (1) 给定同阶方阵 X,Y,证明矩阵指数 $e^Xe^Y=e^Z$ 由所谓 Baker-Campbell-Hausdorff 公式给出,即 $Z=X+Y+rac{1}{2}[X,Y]+rac{1}{12}[X,[X,Y]]-rac{1}{12}[Y,[X,Y]]+\cdots$.
- (2) 仿照(1)的推导,利用无穷小三维转动生成元的对易式求 $e^{-\psi J_3}e^{-\theta J_1}e^{-\phi J_3}=e^{\phi^1 J_1+\phi^2 J_2+\phi^3 J_3}$ 的 ϕ^1,ϕ^2,ϕ^3 ,精确到 2 阶.

参考解答 12.1 (1) 把 e^{X}, e^{Y} 展开到 3 阶即可.

$$e^{X}e^{Y} = (1 + X + \frac{1}{2}X^{2} + \frac{1}{6}X^{3})(1 + Y + \frac{1}{2}Y^{2} + \frac{1}{6}Y^{3})$$
$$= 1 + X + \frac{1}{2}X^{2} + \frac{1}{6}X^{3} + Y + \frac{1}{2}Y^{2} + \frac{1}{6}Y^{3} + XY + \frac{1}{2}X^{2}Y + \frac{1}{2}XY^{2}$$

$$\begin{split} \ln\!\left(\mathbf{e}^X\mathbf{e}^Y\right) &= X + Y + \frac{1}{2}(X^2 + Y^2 + 2XY) + \frac{1}{6}(X^3 + Y^3 + 3X^2Y + 3XY^2 + Y^3) - \\ &\frac{1}{2}(X + Y + \frac{1}{2}(X^2 + Y^2 + 2XY))^2 + \frac{1}{3}(X + Y)^3 \\ &= X + Y + \frac{1}{2}(X^2 + Y^2 + 2XY) + \frac{1}{6}(X^3 + Y^3 + 3X^2Y + 3XY^2 + Y^3) - \\ &\frac{1}{2}\Big(X^2 + Y^2 + XY + YX + \frac{1}{2}((X + Y)(X^2 + Y^2 + 2XY) + (X^2 + Y^2 + 2XY)(X + Y))\Big) \\ &+ \frac{1}{3}(X^3 + Y^2X + XYX + YX^2 + X^2Y + Y^3 + XY^2 + YXY) \\ &= X + Y + \frac{1}{2}(XY - YX) - \frac{1}{4}(2X^3 + 2Y^3 + 2YXY + 2XYX + 3X^2Y + 3XY^2 + Y^2X + YX^2) \\ &+ \frac{1}{6}(X^3 + 3X^2Y + 3XY^2 + Y^3) + \frac{1}{3}(X^3 + Y^2X + XYX + YX^2 + X^2Y + Y^3 + XY^2 + YXY) \\ &= X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] \end{split}$$

(2) 要求是展开到 2 阶, 那么只需要取前两项. 根据 SO(3) 生成元之间的对易关系 $[J_i,J_i]=arepsilon_{ijk}J_k$

$$e^{-\psi J_3}e^{-\theta J_1} = e^{-\psi J_3 + -\theta J_1 + \frac{1}{2}\psi\theta J_2}$$

而

$$e^{-\psi J_3}e^{-\theta J_1}e^{-\phi J_3} = e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2}e^{-\phi J_3}$$

$$= e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2 - \phi J_3 - \frac{1}{2}[\psi J_3 + \theta J_1 - \frac{1}{2}\psi\theta J_2, \phi J_3]}$$

$$= e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2 - \phi J_3 - \frac{1}{2}\theta\phi J_2}$$

也就是说
$$\phi^1 = -\theta, \phi^2 = \frac{1}{2}(\psi - \phi)\theta, \phi^3 = -\psi - \phi.$$

12.2 求质量为 m 的匀质椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的相对于质心的转动惯量张量

由于

$$\int_{x_1^2 + y_1^2 + z_1^2 \le 1} (x_1^2 + y_1^2 + z_1^2) dx_1 dy_1 dz_1 = \int_{r_1^2 \le 1} r_1^2 \times r_1^2 dr_1 \times 4\pi$$

立刻得到

$$\int_{r_1^2 \le 1} x_1^2 dx_1 dy_1 dz_1 = \frac{4\pi}{15}$$

由于球的密度 $\rho = \frac{m}{\frac{4}{3}\pi abc}$ 所以计算积分

$$\int_{\frac{x^2}{2} + \frac{y^2}{12} + \frac{z^2}{2} \le 1} \rho x^2 dx dy dz = \frac{3}{4\pi} a^2 m \int_{r_1^2 \le 1} x_1^2 dx_1 dy_1 dz_1 = \frac{1}{5} m a^2$$

因此可以得到

$$I_{xx} = \frac{1}{5}m(b^2 + c^2), I_{yy} = \frac{1}{5}m(a^2 + c^2), I_{zz} = \frac{1}{5}m(a^2 + b^2)$$

非对角元都是 0.

12.3 证明刚体惯量张量三个对角元中任意一个不会大于另外两个之和.

参考解答 12.3 直接计算即可

$$I_{xx} + I_{yy} - I_{zz} = \int \rho(y^2 + z^2 + x^2 + z^2 - x^2 - y^2) d\tau$$
$$= 2 \int \rho z^2 d\tau \ge 0$$

- 12.4 考虑例 12.4 中的立方体.
 - (1) 求其相对质心基矢垂直于立方体表面的本体系中惯量张量;
 - (2) 证明以质心为原点的任意本体坐标系均为其惯量主轴,并由此说明当质心绕定点转动时,匀质立方体和匀质球不可分辨.

参考解答 12.4 由于对称性可以知道其三个对角元素均为相同的, 而非对角元均为 0, 仅计算一个即可

$$I_{xx} = \int \frac{m}{a^3} (y^2 + z^2) dx dy dz = \frac{1}{6} ma^2$$

习题解答 第十二章 刚体

由于其转动惯量张量写为

$$\begin{pmatrix} \frac{1}{6}ma^2 & 0 & 0\\ 0 & \frac{1}{6}ma^2 & 0\\ 0 & 0 & \frac{1}{6}ma^2 \end{pmatrix} = \frac{1}{6}ma^2 \cdot I$$

其中 I 是单位矩阵, 在正交变换下具有不变性

$$I' = RIR^{-1} = RR^{-1} = I,$$

因此其转动惯量张量在任何正交归一坐标系下形式不变,也易知动能与绕质心转动球相同,而动能一样运动自然一样.

12.5 求例 11.5 中圆盘相对于质心角动量在本体坐标系中分量形式

参考解答 12.5 本体坐标系下角速度为

$$\boldsymbol{\omega} = \omega \frac{R}{L} \cos \phi \, \hat{\boldsymbol{e}}_1 + \omega \frac{R}{L} \sin \phi \, \hat{\boldsymbol{e}}_2 - \omega \, \hat{\boldsymbol{e}}_3$$

由于其转动惯量张量为

$$\begin{pmatrix} \frac{1}{4}mR^2 & 0 & 0\\ 0 & \frac{1}{4}mR^2 & 0\\ 0 & 0 & \frac{1}{4}mR^2 \end{pmatrix}$$

得到其角动量

$$\boldsymbol{L} = \frac{1}{4}m\omega \frac{R^3}{L}\cos\phi\,\hat{\boldsymbol{e}}_1 + \frac{1}{4}m\omega \frac{R^3}{L}\sin\phi\,\hat{\boldsymbol{e}}_2 - \frac{1}{2}mR^2\omega\,\hat{\boldsymbol{e}}_3$$

- 12.6 如图12.1所示,一个宽为 l 高为 h 的门板绕着一边以角速度 ω 匀速旋转,建立如图的本体系 $\{\hat{e}_i\}$,
 - (1) 求门板相对于 $\mathbf{0}$ 点的角动量在 $\{\hat{e}_i\}$ 中的分量;
 - (2) 为了维持门的旋转,需要施加的相对于 O 点的扭矩.

图 12.1:

第十二章 刚体 习题解答

参考解答 12.6 先求解相对于质心的角动量, 容易计算出其本体坐标系中的惯量张量为

$$\begin{pmatrix} \frac{1}{12}mh^2 & 0 & 0\\ 0 & \frac{1}{12}m(h^2 + l^2) & 0\\ 0 & 0 & \frac{1}{12}ml^2 \end{pmatrix}$$

于是其相对于质心的角动量为

$$\boldsymbol{L}_r = \frac{1}{12} m l^2 \omega \, \hat{\boldsymbol{e}}_3$$

再考虑质心相对于 0 点的角动量

$$\boldsymbol{L}_c = m\boldsymbol{r} \times \boldsymbol{v} = \frac{1}{4}m\omega l^2 \,\hat{\boldsymbol{e}}_3 - \frac{1}{4}m\omega hl \,\hat{\boldsymbol{e}}_1$$

熟知相对于 () 点角动量等于两项之和

$$\boldsymbol{L} = \frac{1}{3}m\omega l^2\,\hat{\boldsymbol{e}}_3 - \frac{1}{4}m\omega hl\,\hat{\boldsymbol{e}}_1$$

当然可以直接计算其相对于 ()点的惯量张量.

$$I_{11} = \frac{1}{3}mh^2, I_{22} = \frac{1}{3}m(h^2 + l^2), I_33 = \frac{1}{3}mh^2$$

以及

$$I_{13} = I_{31} = -\int \rho x z \mathrm{d}x \,\mathrm{d}z = -\frac{1}{4}mhl$$

再利用角动量公式 $L=I\omega$ 得到一样的结果. 由熟知公式

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{space} = \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{body} + \boldsymbol{\omega} \times$$

得到力矩

$$oldsymbol{M} = oldsymbol{\omega} imes oldsymbol{L} = rac{1}{4} mhl\omega^2$$

- 12.7 若自由刚体定点转动的角速度沿着某个主轴方向,则被称为匀速转动.
 - (1) 证明任意自由刚体都有匀速转动解;
 - (2) 设初始角速度沿着 \hat{e}_1 方向, 刚体收到小扰动, 角速度变为 $\omega_i \to \omega_i + \delta\omega_i$, 求 $\delta\omega_i$ 满足的微分方程并写成小振动方程的形式.
 - (3) 设刚体的主轴转动惯量为 $I_1 < I_2 < I_3$,利用(2)的结果,证明刚体沿着最小和最大转动惯量对应的主轴的匀速转动是稳定的,而沿着中间转动惯量对应的主轴的转动是不稳定的.

参考解答 12.7 (1) 只需要 $\omega_1=C, \omega_2=\omega_3=0$ 或与其类似即可满足欧拉动力学方程.

(2) 由题知道角速度为

$$\boldsymbol{\omega} = (\omega_1 + \delta\omega_1)\,\hat{\boldsymbol{e}}_1 + \delta\omega_2\,\hat{\boldsymbol{e}}_2 + \delta\omega_3\,\hat{\boldsymbol{e}}_3$$

习题解答 第十二章 刚体

由自由转动时三个欧拉动力学方程

$$I_1 \dot{\delta \omega}_1 = \delta \omega_2 \delta \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\delta \omega}_2 = \delta \omega_3 (\omega_1 + \delta \omega_1) (I_3 - I_1)$$

$$I_3 \dot{\delta \omega}_3 = (\omega_1 + \delta \omega_1) \delta \omega_2 (I_1 - I_2)$$

知道, 由于 $\delta\omega_2$, $\delta\omega_3$ 都是小量, $\delta\omega_1$ 可以忽略. 因此原运动方程化为 2 元的

$$I_2 \delta \dot{\omega}_2 = \delta \omega_3 \omega_1 (I_3 - I_1) \tag{12.1}$$

$$I_3\delta\dot{\omega}_3 = \omega_1\delta\omega_2(I_1 - I_2) \tag{12.2}$$

在 (2) 两边求导后带入 (1) 得到关于 $\delta\omega_3$ 的二阶线性微分方程

$$\ddot{\delta\omega_3} + \frac{(I_2 - I_1)(I_3 - I_1)}{I_2 I_3} \omega_1^2 \delta\omega_3 = 0$$

同样可以得到

$$\delta \ddot{\omega}_2 + \frac{(I_2 - I_1)(I_3 - I_1)}{I_2 I_3} \omega_1^2 \delta \omega_2 = 0$$

其假如存在小振动解,本征频率为 $\Omega=\sqrt{\frac{(I_2-I_1)(I_3-I_1)}{I_2I_3}}\omega_1$

- (3) 假如初始绕着 2 轴旋转, 知道其本征频率为 $\Omega = \sqrt{\frac{(I_1 I_2)(I_3 I_2)}{I_1 I_3}} \omega_2$ 但是 $I_1 < I_2 < I_3$,所以根号下小于 0,对应解指数发散,即不稳定.
- 12.8 设对称陀螺相对质心的主轴转动惯量为 $I_1=I_2=\lambda I_3$, 若陀螺绕质心自由转动, 初始章动角为 θ_0 , 证明进动角速度 $\dot{\psi}$ 与自转角速度 $\dot{\varphi}$ 满足 $\dot{\psi}=(\lambda-1)\dot{\phi}\cos\theta_0$

参考解答 12.8 这题还是用欧拉动力学方程. 由于 $I_1=I_2$, 立刻得到 $\omega_3=C$ 由此得到关于 ω_1,ω_2 的方程

$$\lambda \dot{\omega_1} = \omega_2 \omega_3 (\lambda - 1)$$
$$\lambda \dot{\omega_2} = \omega_2 \omega_3 (-\lambda + 1)$$

因此解得

$$\omega_1 = A\cos\left(\frac{\lambda - 1}{\lambda}\omega_3 t + \varphi\right), \omega_1 = A\sin\left(\frac{\lambda - 1}{\lambda}\omega_3 t + \varphi\right)$$

也就是说, 有守恒量 $\omega_1^2 + \omega_2^2 = C$ 于是可以知道总角动量大小守恒, 因为

$$L^2 = \lambda^2 I_3^2 (\omega_1^2 + \omega_2^2) + I_3^2 \omega_3^2$$

正文中已经给出,z轴角动量分量 p_{ψ} 也守恒,即

$$\cos\theta = \frac{p_{\psi}}{L} = \cos\theta_0$$

为常数! 由欧拉运动学方程得到

$$\omega_1^2 + \omega_2^2 = \sin^2 \theta \dot{\phi}^2 + \dot{\theta}^2 = C'$$

即
$$\dot{\phi} = \frac{A}{\sin \theta_0}$$
 是一个常数 但是由于

$$L^{2} = \lambda^{2} I_{3}^{2} (\omega_{1}^{2} + \omega_{2}^{2}) + I_{3}^{2} \omega_{3}^{2} = \lambda^{2} I_{3}^{2} (\omega_{1}^{2} + \omega_{2}^{2}) + L^{2} \cos^{2} \theta$$

于是可以得到

$$\dot{\phi} = \frac{L}{\lambda I_3}$$

由于 $p_{\psi} = L\cos\theta = I_3(\dot{\psi} + \dot{\phi}\cos\theta_0)$ 解得

$$\dot{\psi} = \frac{L(\lambda - 1)}{I_3 \lambda} \cos \theta_0$$

即得到题给式子

$$\dot{\psi} = (\lambda - 1)\dot{\phi}\cos\theta_0$$

第十三章 哈密顿正则方程

第十四章 泊松括号

第十五章 正则变换

第十六章 哈密顿-雅可比理论

第十七章 可积系统