10.1 Introduction

(Original section¹)

RISC: any computer announced after 1985.

We cover two groups of reduced instruction set computer (RISC) architectures in this appendix. The first group is the desktop and server RISCs:

- Digital Alpha
- Hewlett-Packard PA-RISC
- IBM and Motorola PowerPC
- MIPS INC MIPS-64
- Sun Microsystems SPARC

The second group is the embedded RISCs:

- Advanced RISC Machines ARM
- Advanced RISC Machines Thumb
- Hitachi SuperH
- Mitsubishi M32R
- MIPS INC MIPS-16

There has never been another class of computers so similar. This similarity allows the presentation of 10 architectures in about 50 pages. Characteristics of the desktop and server RISCs are found in the figure below and the embedded RISCs in the subsequent figure.

Figure 10.1.1: Summary of the first version of five architectures for desktops and servers (COD Figure D.1.1).

Except for the number of data address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with COD Figure D.17.1 (Summary of four 1970s architectures). Later versions of these architectures all support a flat, 64-bit address space.

	Alpha	MIPS I	PA-RISC 1.1	PowerPC	SPARCv8
Date announced	1992	1986	1986	1993	1987
Instruction size (bits)	32	32	32	32	32
Address space (size, model)	64 bits, flat	32 bits, flat	48 bits, segmented	32 bits, flat	32 bits, flat
Data alignment	Aligned	Aligned	Aligned	Unaligned	Aligned
Data addressing modes	1	1	5	4	2
Protection	Page	Page	Page	Page	Page
Minimum page size	8 KB	4 KB	4 KB	4 KB	8 KB
1/0	Memory mapped				
Integer registers (number, model, size)	31 GPR × 64 bits	31 GPR × 32 bits	31 GPR × 32 bits	32 GPR × 32 bits	31 GPR × 32 bits
Separate floating-point registers	31 × 32 or 31 × 64 bits	16 × 32 or 16 × 64 bits	56 × 32 or 28 × 64 bits	32 × 32 or 32 × 64 bits	32 × 32 or 32 × 64 bits
Floating-point format	IEEE 754 single, double				

Figure 10.1.2: Summary of five architectures for embedded applications (COD Figure D.1.2).

Except for number of data address modes and some instruction set details, the integer instruction sets of these architectures are similar. Contrast this with COD Figure D.17.1 (Summary of four 1970s architectures).

	ARM	Thumb	SuperH	M32R	MIPS-16
Date announced	1985	1995	1992	1997	1996
Instruction size (bits)	32	16	16	16/32	16/32
Address space (size, model)	32 bits, flat	32 bits, flat	32 bits, flat	32 bits, flat	32/64 bits, flat
Data alignment	Aligned	Aligned	Aligned	Aligned	Aligned
Data addressing modes	6	6	4	3	2
Integer registers (number, model, size)	15 GPR x 32 bits	8 GPR + SP, LR x 32 bits	16 GPR x 32 bits	16 GPR x 32 bits	8 GPR + SP, RA x 32/64 bits
1/0	Memory mapped	Memory mapped	Memory mapped	Memory mapped	Memory mapped

Notice that the embedded RISCs tend to have eight to 16 general-purpose registers while the desktop/server RISCs have 32, and that the length of instructions is 16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Thumb and MIPS-16 are really optional modes of ARM and MIPS invoked by call instructions. When in this mode, they execute a subset of the native architecture using 16-bit-long instructions. These 16-bit instruction sets are not intended to be full architectures, but they are enough to encode most procedures. Both machines expect procedures to be homogeneous, with all instructions in either 16-bit mode or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have been extended over the years. We have decided to describe the latest versions of the architectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R version 1, and MIPS-16 version 1 for the embedded ones.

The remaining sections proceed as follows: after discussing the addressing modes and instruction formats of our RISC architectures, we present the survey of the instructions in five steps:

- Instructions found in the MIPS core, which is defined in COD Chapters 2 (Instructions: Language of the Computer) and 3 (Arithmetic
 for Computers) of the main text
- Multimedia extensions of the desktop/server RISCs
- Digital signal-processing extensions of the embedded RISCs

- Instructions not found in the MIPS core but found in two or more architectures
- The unique instructions and characteristics of each of the 10 architectures

We give the evolution of the instruction sets in the final section and conclude with speculation about future directions for RISCs.

(*1) This section is in original form.

Provide feedback on this section