Student Information

Full Name: Batuhan Akçan

Id Number: 2580181

Answer 1

BASIS: n = 1. $6^2 - 1 = 35$ is divisible by both 5 and 7.

IND. STEP: Assume that $6^{2k}-1$ is divisible by both 5 and 7. Then $6^{2k}-1=35m$, where $m\in$ \mathbb{Z} . Hence, $6^{2k} = 35m + 1$.

Put k+1 in place of n. Then, $6^{2k+2}-1=6^{2k}\times 36-1=36(35m+1)-1=1260m+35=$ 35(36m+1) is divisible by 35 and hence, by both 5 and 7.

Therefore, by induction, $6^{2n}-1$ is divisible by both 5 and 7, where $n \in \mathbb{N}^+$.

Answer 2

BASIS: n = 3. $H_3 = 8H_2 + 8H_1 + 9H_0 = 105 \le 9^3 = 729$.

IND. STEP: Assume $H_4 \le 9^4$, $H_5 \le 9^5$, ..., $H_k \le 9^k$. Then $H_{k+1} = 8H_k + 8H_{k-1} + 9H_{k-2} \le 8 \cdot 9^k + 8 \cdot 9^{k-1} + 9 \cdot 9^{k-2} = (8/9 + 8/81 + 1/81) \cdot 9^{k+1} = 9^{k+1}$. So $H_{k+1} \le 9^{k+1}$.

Answer 3

For 0000:

Assume that 0000 is a single object and is equal to 0.

Assume that 0000 is a single object and is equal to 0. $00000000 \to 00000 \to \frac{5!}{5!} = 1$ $00000001 \to 00001 \to \frac{5!}{4! \cdot 1!} = 5$ $00000011 \to 00011 \to \frac{5!}{3! \cdot 2!} = 10$ $0000111 \to 00111 \to \frac{5!}{2! \cdot 3!} = 10$ $00001111 \to 01111 \to \frac{5!}{1! \cdot 4!} - 2 = 3 \text{ (excluded 2 cases 00001111 and 11110000 since they will also according to 111110000 since they will also accordi$ occur in 1111 case.)

Total: 1 + 5 + 10 + 10 + 3 = 29.

For 1111:

Similarly, 29 cases.

Result: 29 + 29 + 2 = 60.

Answer 4

Pick 1 star in 10 distinct stars. Pick 2 habitable planets in 20 distinct habitable planets. Pick 8 nonhabitable planets in 80 distinct nonhabitable planets. Let H: habitable planet, N: nonhabitable planet. Then,

HNNNNNNHNN \rightarrow 6! · 2! · 2! · 3 (We multiply by 3 because there are 3 cases: HNNNNNNHNN, NHNNNNNNHN, NNHNNNNNH)

HNNNNNNNN $\rightarrow 7! \cdot 2! \cdot 1! \cdot 2$ (2 cases: HNNNNNNNNN, NHNNNNNNNN)

HNNNNNNNH $\rightarrow 8! \cdot 2!$.

Hence, the result is:

$$\binom{10}{1} \times \binom{20}{2} \times \binom{80}{8} \times (6! \cdot 2! \cdot 2! \cdot 3 + 7! \cdot 2! \cdot 1! \cdot 2 + 8! \cdot 2!).$$

Answer 5

- a) $a_1 = 1$, $a_2 = 2$ (11 and 2).
- a_3 has 4 cases, which is $2^2 0$: 111, 12, 21, 3.
- a_4 has 7 cases, which is 2^3-1 : 1111, 112, 121, 211, 13, 31, 22. The robot can not jump 4 cells, so a_4 does not have the 8th case.

Similarly, a_5 has 14 cases, which is $2^4 - 2$, since the robot can not jump 4 or 5 cells.

Hence, the answer is: $a_n = 2^{n-1} - (n-3) = 2^{n-1} - n + 3$.

- **b**) $a_1 = 1, a_2 = 2.$
- c) $a_9 = 2^8 9 + 3 = 250$.