数据库课程实验报告-数据库调优

基本信息

姓名: 汪畅

专业: 地图学与地理信息系统

学号: 201028007010019

年级: 2010

院系:资源与环境学院 E-mail: 675015515@qq.com

1. 实验目的

学会使用查询代价分析工具,并能够针对某个复杂的 SQL 语句分析各运算的代价。

2. 实验内容和步骤

本实验选择两个表如下

ID	customer_name	account_number
1	汪畅	002
2	汪畅	005
3	张三	001
4	张三	007
5	李四	003
6	 五五	008
7	 五	009
8	刘三	006
9	汪畅	004
10	刘三	010

account_number	branch_name	balance
001	北京建行	10000
002	上海工行	10000
003	北京建行	10000
004	天津农行	10000
005	北京建行	1000
006	北京建行	1000
007	上海工行	1000
008	北京建行	10000
009	天津农行	2000
010	上海工行	1000

depositor 表

account 表

查询汪畅在北京建行里的存款。

方法一:

- 1. 查询 depositor 表中含有汪畅的存款信息,查询 account 表中含有北京建行的存款信息;
- 2. 利用两个表的 account_name 属性连接,得到汪畅在北京建行里的存款。 查询语句如下:

use bank

qo

select b.customer_name,a.branch_name,a.balance

from (select * from dbo.account where dbo.account.branch_name='北京建行') as a,

(select dbo.depositor.account_number,dbo.depositor.customer_name from dbo.depositor where dbo.depositor.customer_name='汪畅') as b where a.account_number=b.account_number

方法二:

- 1. 利用 account_name 属性连接两个表到一个表中;
- 2. 通过属性值"汪畅"和"北京建行"查询1中所得到的表,得到汪畅在北京建行里的存款。

查询语句如下:

use bank

qo

select a.customer_name,a.branch_name,a.balance

from (select

dbo.depositor.customer_name,dbo.account.branch_name,dbo.account.b
alance from dbo.account,dbo.depositor where

dbo.account_account_number=dbo.depositor.account_number) as a where a.customer_name='
汪畅' and a.branch_name='北京建行'

3. 实验结果及结论

(1) 实验结果

得到的结果如下:

查询 2: (与该批有关的)查询开销: 100%

select b.customer name, a.branch name, a.balance from (select * fro

方法一

查询 2: (与该批有关的)查询开销: 100%

select a.customer name, a.branch name, a.balance from (select dbo.der

方法二

其中, select 的一些参数值如下:

袋存的计划大小 11 字节 估计运算符开销 0 (0%) 估计子树大小 0.0067388 估计行数 2

方法一

嵌套循环的一些参数值如下:

嵌套循环

对于顶部(外部)输入的每一行,扫描底部(内部)输入,然后输出匹配的行。

物理运算	嵌套循环
Logical Operation	Inner Join
估计 I/O 开销	0
估计 CPV 开销	0.0000084
估计运算符开销	0.0000112 (0%)
估计子树大小	0.0067388
估计行数	2
估计行大小	33 字节
节点 ID	0

方法一

聚集索引扫描的一些参数值如下:

聚集索引扫描

整体扫描聚集索引或只扫描一定范围。

物理运算	聚集索引扫描
Logical Operation	Clustered Index Scan
估计 1/0 开销	0.003125
估计 CPV 开销	0.0001614
估计运算符开销	0.0032864 (49%)
估计子树大小	0.0032864
估计行数	2
估计行大小	23 字节
己排序	False
节点 ID	1

方法一

聚集索引查找的一些参数值如下:

聚集索引查找

扫描聚集索引中特定范围的行。

聚集索引查找
Clustered Index Seek
0.003125
0.0001581
0.0034412 (51%)
0.0034412
1
27 字节
True
2

方法一

SELECT

缓存的计划大小	11 字节
估计运算符开销	0 (0%)
估计子树大小	0.0072366
估计行数	5

方法二

嵌套循环

对于顶部(外部)输入的每一行,扫描底部(内部)输入,然后输出匹配的行。

物理运算	嵌套循环
Logical Operation	Inner Join
估计 1/0 开销	0
估计 CPV 开销	0.0000209
估计运算符开销	0.0000281 (0%)
估计子树大小	0.0072366
估计行数	5
估计行大小	33 字节
节点 ID	0

方法二

聚集索引扫描

整体扫描聚集索引或只扫描一定范围。

物理运算	聚集索引扫描
Logical Operation	Clustered Index Scan
估计 1/0 开销	0.003125
估计 CPV 开销	0.000168
估计运算符开销	0.003293 (46%)
估计子树大小	0.003293
估计行数	5
估计行大小	23 字节
己排序	False
节点 ID	1

方法二

聚集索引查找

扫描聚集索引中特定范围的行。

物理运算	聚集索引查找
Logical Operation	Clustered Index Seek
估计 I/O 开销	0.003125
估计 CPV 开销	0.0001581
估计运算符开销	0.0039155 (54%)
估计子树大小	0.0039155
估计行数	1
估计行大小	27 字节
己排序	True
节点 ID	2

方法二

(2) 实验结论

查询汪畅在北京建行里的存款有两种查询思路:先投影,后连接(方法一);先连接,后投影(方法二)。

方法一: 两个表分别投影得到的数据去除了那些不相关的数据,大大减小了元组的数量,从而是磁盘块能容纳更多的元组,减少了 I/0 操作代价。连接后,就得到结果了。但是投影消耗的计算量较大,所以 cpu 开销较大。

方法二:连接操作需要把其中一个表的所有元组与另外一个表中的元组对应,连接后元组数量可能增加,这样需要更多的磁盘空间。但进行投影时候,计算量没有方法一的大,所以 cpu 开销较小。

(3) 问题分析

根据上述分析,该实验不能够明显的比较出两种查询方法效率的大小,这是因为数据量较小,数据的类型没有明显的特点(比如说一个表相应的数据较多,一个表对应的数据较少)。但是,本次试验可以看出两种查询方法的优缺点,还是达到了实验的目的。