Конспект лекций по математическому анализу, семестр II

Шишминцев Дмитрий Владимирович

14 мая 2023 г.

СОДЕРЖАНИЕ

		Стр.
1	Лекция 3	2
2	Лекция 4	5
3	Лекция 5	8
4	Лекция 7	10
5	Лекция 8	12
6	Лекция 9	13
7	Лекция 10	15
8	Лекция 12	17

Определение 1 (Определенный интеграл). Рассматриваем функцию f(x), которая непрерывна на отрезке [a,b]. Пусть функция f(x) > 0, a < b. Разобъем отрезок [a,b] точками $x_k, k=0..n-1$ на n-1 частей. Рассмотрим $\Delta x = x_k - x_{k-1}$. Наибольшее значение Δx обозначим за ранг дробления. $max\Delta x_i = \lambda(i=0,...n-1)$ На каждым частичном отрезке выберем произвольным образом точку x_k и найдем значение функции $f(\xi_k)$. Рассмотрим $\lim_{\lambda \to 0, n \to \infty} \sum_{k=0}^{\infty} f(\xi_k) \cdot \Delta x_k = \int_b^a f(x) dx$

Свойства:

-
$$f(x) > 0, a < b \rightarrow \int_b^a f(x) dx$$

-
$$f(x) > 0, a > b \rightarrow -\int_b^a f(x)dx$$

$$- f(x) > 0, a = a \rightarrow \int_{b}^{a} f(x) dx = 0$$

Определение 2 (Интегральная сумма Римана). $\sum_{k=0}^{n-1} f(\xi_k) \cdot \Delta x_k$ Предел суммы Римана не зависит от выбора точек и разбиения отрезка [a,b]на маленькие отрезки.

Теорема 1 (Теорема существования определенного интеграла). f(x) называется кусочно-непрерывной на [a,b], если она имеет конечное количество точек разрыва первого рода.

Теорема 2 (Достаточное условие интегрируемости функции). Если функция кусочно-непрерына на отрезке [a, b], то на этом отрезке существует определенный интеграл

Определение 3 (Геометрический смысл определенного интеграла). Рассмотрим функцию f(x), непрерывную на отрезке [a,b], то $\int_a^b f(x)dx$ - площадь криволинейной трапеции. (площадь под графиком функции) на отрезке [a,b]ограниченной осью O_x или y=0

Определение 4 (Свойства определенного интеграла).

- $\int_a^a f(x)dx = 0$ по определению
- $\int_a^b f(x)dx = -\int_b^a f(x)dx$ по определению $\int_a^b (c_1f_1+c_2f_2)dx = c_1\int_a^b f_1(x)dx + c_2\int_a^b f_2(x)dx$ По определению, определенный интеграл - предел суммы Римана. Сумму можно разбить, а константу вынести.

- Рассмотрим $c\in [a,b], f(x)$ - непрерывна, то $\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx$

-
$$a < b, x \in [a, b] : f(x) \ge 0 \Rightarrow \int_a^b f(x) dx \ge 0$$

-
$$a < b, x \in [a, b] : f(x) \le 0 \Rightarrow \int_a^b f(x) dx \le 0$$

-
$$a < b, x \in [a, b] : f(x) \le \phi(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b \phi(x) dx$$

$$-a < b, x \in [a, b] : |\int_a^b f(x) dx| \le \int_a^b |f(x)| dx$$

Теорема 3 (Оценка определенного интеграла). Если функция f(x) - непрерына на отрезке [a,b], то справедливо утверждение:

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

где m - наименьшее значение функции на [a,b], а M - наибольшее значение ДОКАЗАТЕЛЬСТВО:

f(x) - непрерывна $\Rightarrow \exists \sup, \inf$ по Т. Вейерштрасса.

$$\sum_{k=0}^{n-1} m \Delta x_k \le \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \le \sum_{k=0}^{n-1} M \Delta x_k, \Delta x_k = b - a$$

, если мы рассмотрим все значения.

$$\Rightarrow \sum_{k=0}^{n-1} m(b-a) \le \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \le \sum_{k=0}^{n-1} M(b-a) \Rightarrow$$

$$\lim_{x \to 0, n \to \infty} \sum_{k=0}^{n-1} m(b-a) \le \lim_{x \to 0, n \to \infty} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \le \lim_{x \to 0, n \to \infty} \sum_{k=0}^{n-1} M(b-a)$$

Теорема 4 (Теорема о среднем).

Если f(x) непрервна на [a,b], то

$$\exists \xi \in [a, b] : \int_a^b f(x)dx = f(\xi)(b - a)$$

ДОКАЗАТЕЛЬСТВО: f(x) - непрерывна $\Rightarrow m(b-a) \leq \int_a^b f(x) dx \leq M(b-a) \Rightarrow m \leq \int_a^b f(x) dx \cdot \frac{1}{b-a} \leq M \Rightarrow \int_a^b f(x) dx \cdot \frac{1}{b-a} = f(\xi), \xi \in [a,b] \Rightarrow \int_a^b f(x) dx = f(\xi)(b-a)$

Теорема 5 (Об интеграле с переменным верхним пределом (Бароу)). f(x) - непрерывна на $[a,b] \Rightarrow \int_a^x f(t)dt$ имеет проивзодную которая равна подынтегральной функции f(x)

$$\left(\int_{a}^{x} f(t)dt\right)' = f(x)$$

Доказательство:

$$\phi(x) = \int_a^x f(t)dt \Rightarrow \phi(x + \Delta x) = \int_a^{x + \Delta x} f(t)dt = \int_a^x f(t)dt + \int_x^{\Delta x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \Delta \phi(x) = \phi(x + \Delta x) - \phi(x) = \int_x^{\Delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x + \Delta x) = \phi(x) + \int_x^{\delta x + x} f(t)dt \Rightarrow \phi(x) = \phi(x) + \int_x^{\delta x + x$$

2 Лекция 4.

Теорема 6 (дополнительная к формуле Ньютона-Лейбница). Если f(x) - непрерывна на отрезке, то она на этом отрезке имеет первообразную и имеет неопределенный интеграл

$$\int f(x)dx = F(x) + C$$

ДОКАЗАТЕЛЬСТВО: Пусть F(x) - первообразная для f(x) на отрезке $[a,b].\int_a^x f(t)dt = F(x), F'(x) = (\int_a^a f(t)dt)' = f(x)$ по теореме Бароу. $\phi(x)$ - первообразная f(x), то $F(x) - \phi(x) = C \Rightarrow \int f(x)dx = F(x) + C$

Теорема 7 (Ньютона-Лейбница). Если f(x) непрерывна [a,b], то

$$\int_{a}^{b} f(x)dx = F(b) - F(a), a < b$$

ДОКАЗАТЕЛЬСТВО: $\int_a^x f(t)dt = F(x), f(x) = F'(x)$ - первообразная. Рассмотрим [a,b], пусть $x=a\Rightarrow \int_a^a f(t)dt = F(a)+C\Rightarrow F(a)=-C$ Пусть $x=b\Rightarrow \int_a^b f(t)dt = F(b)+C=F(b)-F(a)\Rightarrow \int_a^b f(t)dt = F(b)-F(a)\Rightarrow \int_a^b f(t)dt = F(b)-F(a)$ ЗАМЕЧАНИЕ: $\int_a^b f(x)dx = F(b)-F(a)=F(x)|_a^b$ (краткая запись)

МЕТОДЫ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

- Формула замены
- Интегрирование по частям

Теорема 8 (Формула замены). $\int_a^b f(x)dx, f(x)$ - непрерывна на [a,b], положим $\phi(t)$ - непрерывна на $[\alpha,\beta]$ и $\phi(\alpha)=a,\phi(\beta)=b, \exists \phi'(t),$ тогда справедлива формула:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))d\phi(t) = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t)dt = F(\beta) - F(\alpha)$$

где F(x)- первообразная для функции $(f(\phi(t)) \cdot y'(t))$

Теорема 9 (Формула для интегрирования по частям). Расммотрим u(x), v(x) - которые непрерывны и дифференцируемы на $[a,b] \Rightarrow$

$$\int_{a}^{b} u(x)dv(x) = (u(x)v(x))|_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

Применение определенного интеграла. Площадь плоских фигур в декартовой системе координат

f(x) - непрерывна на $[a,b], f(x) > 0, a < b \Rightarrow$

$$S_{aABb} = \int_{a}^{b} f(x)dx$$

f(x) - непрерывна на $[a,b], f(x) < 0, a < b \Rightarrow$

$$S_{aABb} = \int_{a}^{b} -f(x)dx = \int_{b}^{a} f(x)dx$$

f(x) меняет знак при переходе через ось $O_x \Rightarrow$

$$S = S_1 + S_2 = \int_a^c -f(x)dx + \int_c^b f(x)dx$$

f(x),g(x) - непрерывны на отрезке $[a,b],f(x)>g(x)\Rightarrow$

$$S = \int_{a}^{b} (f(x) - g(x))dx$$

 $x = x(y), y \in [c, d] \Rightarrow$

$$S = \int_{c}^{d} f(y)dy$$

 $x = x(t), y = y(t), t \in [\alpha, \beta] \Rightarrow$

$$S = \int_a^b y(x)dx = \int_a^\beta y(t)dx(t) = \int_a^\beta y(t) \cdot x'(t)dt$$

В полярной системе координат. $x^2 + y^2 = R^2 \Rightarrow y = \sqrt{R^2 - x^2}$

$$\begin{cases} x = R \cdot \cos t \\ y = R \cdot \sin t \end{cases}, t \in [0, 2\pi]$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\begin{cases} x = a \cdot \cos t \\ y = b \cdot \sin t \end{cases}, t \in [0, 2\pi]$$

Рассматривается кривая $r(\phi)$ заданная в полярной системе координат и ограничена углом α, β .

- Разбиваем сектор на n кусков. $\alpha=\phi_1,\phi_2,...,\phi_n=\beta$
- Вводим углы $\Delta\phi_n=\phi_n-\phi_{n-1}$
- Рассмотрим произвольный $\Delta\phi_k$, ограничен кривой $r=f(\Delta\phi_k),$ $S=\frac{1}{2}r_k^2\Delta\phi_k$
- Таким образом находим все площади $\Delta S_1; \Delta S_2, ..., \Delta S_n$
- Составим сумму $S=\sum \Delta S_n=\sum_{k=1}^{n-1} \frac{1}{2} r_k^2 \Delta \phi_k$ интегральная сумма
- Вводим ранг дробления $\lambda = \max \Delta \phi_k$
- $S = \lim \sum_{k=1}^{n-1} \frac{1}{2} r_k^2 \Delta \phi_k$. Если предел существует и имеет конечное значение, то:

$$S = \int_{\alpha}^{\beta} \frac{1}{2} r^2(\phi) d\phi = \int_{\alpha}^{\beta} \frac{1}{2} f^2(\phi) d\phi$$

Определение 5 (Длина дуги). предел длины вписанной кривой при $n \to \infty$

Вычисление длины дуги

Кривая AB задана графиком функции $f(x), x \in [a, b], a < b, f(x)$ непрерывна на [a,b]. Рассматривается k кусочек ломанной. $l_k =$ $\sqrt{\Delta x_k^2 + \Delta y_k^2} = \sqrt{\Delta x_k^2 + (f_k - f_{k-1}^2)}$ по теореме Лагранжа $f_k - f_{k-1} = f_k'(x)\Delta x_k \Rightarrow = \sqrt{\Delta x_k^2 + (f_k')^2 \Delta x_k^2} = \Delta x_k \sqrt{1 + (f_k')^2} = l_k \Rightarrow \sum_{k=1}^{n01} l_k = \sum_{n=1}^{k=1} \sqrt{1 + (f_k')^2} \Delta x_k \Rightarrow \lim_{n \to \infty} \sum_{n=1}^{k=1} \sqrt{1 + (f_k')^2} \Delta x_k \Rightarrow$

$$\int_a^b \sqrt{1 + (f_k')^2} dx$$

Если кривая задана в параметрическом виде

Если кривая задана в параметрическом виде
$$\begin{cases} x = \phi(t) \\ y = \xi(t) \end{cases} \Rightarrow L = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int_{t_1}^{t_1} \sqrt{(\phi'_t)^2 + (\xi'_t)^2}$$

Кривая задана в полярной системе координат $r=r(\phi)$ Рассмотрим $[\alpha,\beta]$

$$\begin{cases} x = r \cdot \cos \phi \\ y = r \cdot r \sin \phi \end{cases} L = \int_{t_1}^{t_2} \sqrt{(x'_t)^2 + (y'_t)^2} dt \\ x'_{\phi} = r'(\phi) \cdot \cos \phi + r(\phi) \cdot (-\sin \phi) \ y'_{\phi} = r'(\phi) \cdot \sin \phi + r(\phi) \cdot \cos \phi \ (x'_{\phi})^2 + (y_{\phi})^2 = (r'_{\phi})^2 + r_{\phi}^2 \Rightarrow L \int_{\alpha}^{\beta} \sqrt{(r'_{\phi})^2 + r_{\phi}^2} d\phi \end{cases}$$

Несобственные интегралы

Рассмотрим y=f(x) определена в $x\in(a,+\infty)$ и интегрируема при $x\in$ $(a, A) \subset (a, +\infty)$

Определение 6 (Несобственный интеграл). $\int_a^{+\infty} f(x) dx$ от функции y =f(x) по бесконечному промежутку $[a,+\infty)$ называеют $\lim_{A\to\infty}\int_a^A f(x)dx$ и если предел существует и конечный, то несобственный интеграл называется сходящимся. В противном случая интеграл называется расходящимся.

Геометрический смысл несобственного интеграла - площадь бесконечной криволинейной трапеции.

Вычисление:
$$\int_a^{+\infty} f(x)dx = \lim_{A\to\infty} \int_a^A f(x)dx = \lim_{A\to\infty} F(A)$$

Определение 7 (Главное значение несобственного интеграла по бесконечному промежутку).

$$\int_{-\infty}^{+\infty} = \lim_{R \to \infty} \int_{R}^{R} F'(R) - F(-R)$$

Обозначается как:

$$v.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

В определении главного значения несобственного интеграла имеется ввиду симметричное возрастание модуля переменной x в положительном и отрицительном направлении.

Определение 8. Простая кривая - кривая K, которая распадается на конечное число частей, каждая из которых имеет уравнение y = f(x) или $x = \phi(y)$ причем f(x), g(x) непрерывные функции на [a,b], [p,q] то в этом случае K - кривая простая, замкнутая самонепересекающаяся кривая лежащая на плоскости Oxy разбивает множество точек на два множества, единственным образом

Определение 9. Двойной интеграл

- 1. Разобъем область D сетью простых кривых произвольным образом на ячейки $D_1, D_2, D_3...D_n$, площадями $S_1, S_2, S_3...S_n$ с диаметрами $d_1, d_2, d_3, ...d_n$
- 2. Наибольший из диаметров обозначаем через ранг дробления $\max(d_k) = \lambda$
- 3. В каждой ячейке D_k возьмем произвольную точку $M_k(x_k,y_k)$ и вычислим значения $f(M_k)$
- 4. Умножим $f_k(M_k)$ на соответсвующую площадь S_k ячейки и все это просуммируем $\sum_{k=1}^n = f(x_k, y_k) S_k$, то если рассмотрим $\lim_{n\to\infty} \sigma_k = \lim_{n\to\infty,\lambda\to 0} \sum_{k=1}^n f(x_k, y_k) \Rightarrow \iint_D f(x, y) dx dy$

Теорема 10 (О существовании двойного интеграла). Если подынтегральное функция f(x,y) непрерывна в каждой точки области $D(x,y) \to \exists \iint_D f(x,y) dx dy$

Геометрический смысл двойного интеграла

Если $f(x,y) \ge 0$ в каждой точки области D, то

$$\iint_D f(x,y)dxdy = V$$

Объем тела ограниченного снизу области D(x,y) с боков цилиндрической поверхностью, образующие которой параллельны Oz

Свойства двойного интеграла

 $C_1, C_2 = const \neq 0$ $f_1(x,y), f_2(x,y)$ - непрерывны в области D

– Аналогичные свойства, как у обычных интегралов

 $M\iint_{D}1dxdy\Rightarrow$ что и требовалось доказать.

- Если каждая точка в области больше нуля, то и интеграл будет больше нуля.
- Если одна функция больше другой, то ее интеграл тоже будет больше
- Если в каждой точке D справедливо $m \leq f(x,y) \leq M$, то $m \cdot S_d \leq \iint f(x,y) dx dy \leq M \cdot S_D$ ДОКАЗАТЕЛЬСТВО: так как $m \leq f(x,y) \leq M \Rightarrow \iint_D m dx dy \leq \iint_D f(x,y) dx dy \leq \iint_d M dx dy \Rightarrow m \iint_D 1 dx dy \leq \iint_D f(x,y) dx dy \leq$

Теорема 11 (О среднем). Если в каждой точке Df(x,y) непрерывна, то в области D найдется точка $P(\xi,\nu)$

$$\iint_D f(x,y)dxdy = f(\xi,\nu) \cdot S_D$$

ДОКАЗАТЕЛЬСТВО: так как функция непрерывна, то по свойству $m \cdot S_D \leq \iint_D f(x,y) dx dy \leq M \cdot S_D : |\frac{1}{S_D} \Rightarrow m \leq \frac{1}{S_D} \iint_D f(x,y) dx dy \leq M \Rightarrow \frac{1}{S_D} \iint_D f(x,y) dx dy f(\xi,\nu) \Rightarrow \iint_D f(x,y) dx dy = f(\xi,\nu) \cdot S_D$

Вычисление двойного интеграла

Рассмотрим $I = \iint_D f(x, y) dx dy$

$$D(x,y) = \{a \le x \le b; c \le y \le d\}$$

Проведем сечение ABB_1A_1 , площадь сечения $S(y)=\int_a^b f(x,y)dx \Rightarrow V=\int_a^b S(x)dx$ - объем тела.

$$V = \iint_D f(x,y) dxdy = \int_c^d S(y) dy = \int_c^d dy (\int_a^b f(x,y) dx) = \iint_D f(x,y) dxdy$$

ПРИМЕР:

$$\iint_{D} (x^{2} + y^{2}) dx dy = \int_{0}^{1} dx \int_{0}^{2} (x^{2} + y^{2}) dy = \int_{0}^{1} dx [x^{2} \cdot y + \frac{y^{3}}{3}]_{0}^{2} =$$

$$= \int_{0}^{1} dx [x^{2} \cdot 2 + \frac{2^{3}}{3} - (x^{2} \cdot 0 + \frac{0}{3})] = \int_{0}^{1} dx (2x^{2} + \frac{8}{3}) = \frac{2x^{3}}{3} + \frac{8}{3}x|_{0}^{1} = \frac{2}{3} + \frac{8}{3} = \frac{10}{3}$$

Замена переменных в двойном интеграле

J - якобиан, коэффицент растяжения $J=\lim_{diamS^k\to 0}\frac{\Delta S}{\Delta S^k}$

Пусть есть непрерывная функция $x=\phi(u,v); y=\xi(u,v)$ и однозначно отображают D в D^* и эти функции имеют непрерывную частную производную. Пусть в области D на плоскости Oxy задана функция z=f(x,y) и ей соответстует функция $f(\phi(u,v),\xi(u,v))$. Тогда сумма Римана $\sum_D f(x,y)\Delta S=\sum_D f(\phi(u,v),\xi(u,v))\cdot J\Delta S$

$$|J| = \begin{bmatrix} x_u' & x_v' \\ y_u' & y_v' \end{bmatrix}$$

Если $\lim_{\alpha \to 0} \sum_D f(x,y) \Delta S = \iint_D f(x,y) dx dy$ - существует конечное значение

$$\iint_D f(x,y)dxdy = \iint_{D^*} f(\phi(u,v),\xi(u,v)) \cdot |J|dudv$$

Двойной интеграл в полярных координатах

$$x(r,\phi) = x = r \cdot \cos \phi$$

$$y(r,\phi) = y = r \cdot \sin \phi$$

$$r \in [0, +\infty]; \phi \in (0, 2\pi] \Rightarrow$$

$$|J| = \begin{bmatrix} x'_r & x'_\phi \\ y'_r & y'_\phi \end{bmatrix} = \begin{bmatrix} \cos \phi & r \cdot (-\sin \phi) \\ \sin \phi & r \cdot \cos \phi \end{bmatrix} = |r \cdot \cos^2 \phi + r \cdot \sin^2 \phi|$$

$$\iint_D f(x, y) dx dy = \iint_{D^*} f(r \cos \phi, r \cos \phi) \cdot r dr dy$$

Тройной интеграл

Определение 10 (Тройной интеграл). Дано материальное тело, представляющее собой пространственную область Ω заполненную массой. Требуется найти массу этой области, при условии что в каждой точке этой области известна плотность. $\phi(P) = \phi(x,y,z)$ Разобъем Ω на неперекрывающиеся куби-

руемые части: $\Omega_1, \Omega_2, \Omega_3, ..., \Omega_n$ в соотсветствии с объемами $\Delta v_1, \Delta v_2, ..., \Delta v_n$. В каждой области выбираем $\forall (\cdot) P_k$ с плотностью $\phi(p_k)$, тогда масса этой области $\Delta m_k \approx \phi(P_k) \cdot \Delta v_k$, мааса всей области $\Omega m \approx \sum_{k=1}^n \phi(P_k) \cdot v_k$. Пусть d наименьший из диаметров частичных областей: $\lim_{d\to 0} \sum_{k=1}^n \phi(P_k) \cdot \Delta v_k$, где сумма не зависит от выбора точки P_k , не зависит от разбиения и если предел конечен, то:

$$\iiint_{\Omega} \phi(x, y, z) dx dy dz = \lim_{d \to 0} \sum_{k=1}^{n} \phi(P_k) \cdot \Delta v_k$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iint_{D} dx dy \int_{l}^{m} f(x, y, z) dz = \int_{a}^{b} dx \int_{c}^{d} dy \int_{l}^{m} f(p) dz$$

Вычисление тройного интеграла в декартовых координатах

Область G ограничена $z=\phi(x,y)$ и $z=\phi(x,y)$ - поверхности, которые однозначно проектируются на одну и ту же область D

$$\iiint_D f(x,y,z)dxdydz = \iint_D dxdy \int_{\phi_1(x,y)}^{\phi_2(x,y)} fdz$$

Если область D(x,y) представляет собой криволинейную трапецию, то $x\in [a,b]; y=\xi_1(x); y=\xi(x)$

$$\int_{a}^{b} dx \iint_{\xi_{1}(x)}^{\xi_{2}(x)} dy \int_{\phi_{1}(x)}^{\phi_{2}(x)} f dz$$

Вычисление тройного интеграла в цилиндрических координатах

Вычисление тройного интеграла в цилиндрических координатах описывается тремя координатами. $\rho, \phi, z \Rightarrow P(\rho, \phi, z) \rho$ - полярный радиус, ϕ - полярный угол, для точки p' - которая является проекцией точки p z - аппликата точки p.

Декартовы координаты связаны с цилиндрическими координатами:

$$x = \rho \cdot \cos \phi; \phi \in [0, +\infty]$$
$$y = \rho \cdot \sin \phi; \phi \in [0, 2\pi]$$
$$z = z; z \in [-\infty, +\infty]$$

$$\iiint_G f(x,y,z) dx dy dz = \iint_{G^*} f(\rho \cos \phi, r \sin \phi, z) |J| dr d\phi dz$$

$$J = \det \begin{bmatrix} \frac{dx}{dr} & \frac{dx}{d\phi} & \frac{dx}{dz} \\ \frac{dy}{dr} & \frac{dy}{d\phi} & \frac{dx}{dz} \\ \frac{dz}{dr} & \frac{dz}{d\phi} & \frac{dz}{dz} \end{bmatrix} = r\cos^2\phi + r\sin^2\phi = r$$

 $drdydz = J \cdot drd\phi dz = dv =$ элемент объема в цилиндрических координатах.

Сферические координаты в тройном интеграле

В сферических координатах положение точки p описывается с помощью трех координат ϕ , r, θ где r - радиус вектор которые соединяет точку p с началом координат. ϕ - полярный угол, угол между проекцией точки p на плоскость Oxy и осью Ox. θ - угол между радиус вектором и положительным направлением Oz.

$$\phi \in [0,2\phi]$$

$$r \in [0, +\infty]$$

$$\theta \in [-\tfrac{\pi}{2};\tfrac{\pi}{2}]$$

Декартовы координаты через сферические:

$$x = r \cos \phi \sin \theta$$

$$y = r \sin \phi \sin \theta$$

$$z = r \cos \theta$$

$$\iiint_D f(x,y,z)dxdydz = \iiint_{D^*} f(r\cos\phi\sin\theta, r\sin\phi\sin\theta, r\cos\theta) \cdot |J|dtd\phi d\theta$$

$$J = \det \begin{bmatrix} \frac{dx}{dr} & \frac{dx}{d\phi} & \frac{dx}{d\theta} \\ \frac{dy}{dr} & \frac{dy}{d\phi} & \frac{dx}{d\theta} \\ \frac{dz}{dr} & \frac{dz}{d\phi} & \frac{dz}{d\theta} \end{bmatrix} = r^2 \sin \theta \Rightarrow r^2 \sin \theta dr d\phi d\theta$$

- элемент объема в сферических координатах.

Свойства криволинейного интеграла II рода

- Криволинейный интеграл второго рода зависит от пути обхода $\int_{AB} P dx + Q dy = \int_{BA} P dx + Q dy$
- Если кривая контур замкнутый $ABCDA \Rightarrow \oint_{+ABCDA} P(x,y)dx + Q(x,y)dy = -\oint_{-ABCDA} P(x,y)dx + Q(x,y)dy$
- Если кривая описывается $AB=AC+CB, \Rightarrow \int_{AB}P(x,y)Q(x,y)dy=\int_{AC}P(x,y)dx+Q(x,y)dy+\int_{CB}P(x,y)dx+Q(x,y)dy$
- Если кривая AB прямолинейный отрезок который перпендикулярен $Ox \Rightarrow \int_{AB} P(x,y) dx = 0$ так как x = const, d(const) = 0
- Если кривая AB прямолинейный отрезок который перпендикулярен $Oy \Rightarrow \int_{AB} Q(x,y) dy = 0$ так как y = const, dy = 0

Связь криволинейного интеграла I рода с криволинейным интегралом II рода

Рассмотрим $\int_{AB} P(x,y) dx$, где P(x,y) - непрерывная функция вместе со своими частными производными на рассматриваемой кривой. Кривая AB будет задаваться в явном виде, то есть $y=\xi(x), x\in [a,b]$ так как кривая непрерывна и функция P(x,y) со своими производными непрерывна, следовательно в каждой точке кривой можно построить касательную к кривой. $\xi'_x=\operatorname{tg}\alpha\Rightarrow\int_{AB}P(x,y)dx=\int P(x,\xi(x))dx=\int P(x,\xi(x))\cdot 1dx=[\operatorname{tg}^2\alpha+1=\frac{1}{\cos^2\alpha}\Rightarrow\cos^2\alpha\cdot(\operatorname{tg}^2\alpha+1)=1\Rightarrow\sqrt{\cos^2\alpha\cdot(\operatorname{tg}^2+1)}\Rightarrow\cos\alpha\sqrt{\operatorname{tg}^2\alpha+1}]=\int_a^b P(x,\xi(x))\cos\alpha\sqrt{\operatorname{tg}^2\alpha+1}dx=[\sqrt{y'_x+1}dx=dl]=\int_L P(x,\xi(x))\cdot\cos\alpha dl$ - криволинейный интеграл I рода.

Аналогично $\int_{AB}Q(x,y)dy=[x=\phi(y),y\in[c,d]]=\int Q(\phi(y),y)\cdot\cos\beta\sqrt{1+(\phi_y')^2}dy=\int_LQ(x,y)\cdot\cos\beta\cdot dl$

$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int P(x,\xi(x)) \cdot \cos \alpha + Q(\phi(y),y) \cdot \cos \beta dl =$$

$$= \int_{L} [P(x,y) \cdot \cos \alpha + Q(x,y) \cdot \cos \beta] dl$$

Определение 11 (Формула Остроградского-Грина). Если функции P(x,y); Q(x,y) непрерывны вместе со своими частными производными $\frac{dp}{dy}; \frac{dq}{dx}$ на рассматриваемой кривой которая полностью лежит в области D(x,y) то имеет место формула:

$$\oint_{+ABCDA} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{dQ}{dx} - \frac{dP}{dy}\right)dxdy$$

ДОКАЗАТЕЛЬСТВО: Пусть заданная область D(x,y) ограничена таким образом:

- Кривыми $y = \phi(x); y = \xi(x)$
- С боков BC||Oy;AD||Oy

Рассмотрим $\oint_{+ABCDA} P(x,y) dx + Q(x,y) dy$ по кускам \Rightarrow

$$\oint_{+ABCDA} P(x,y)dx + Q(x,y)dy = \int_{AB} P(x,y)dx + \int_{BC} P(x,y)dx + \int_{CD} P(x,y)dx + \int_{DA} P(x,y)dx$$

По свойствам криволинейного интеграла $\int_{DA} P(x,y) dx = \int_{BC} P(x,y) dx = 0$ так как $x=const\Rightarrow dx=0$

Подставим наши кривые:

$$\int_{AB} P(x,\phi(x))dx + \int_{CD} P(x,\xi(x))dx$$

Так как $\frac{dP}{dy}$ - непрерывна на L и в области $D\Rightarrow P(x,y_2(x))-P(x,y_1(x))=\int_{y_1}^{y_2}\frac{dP}{dy}dy$

К нашей формуле мы получим такое выражение:

$$P(x,\xi(x)) - P(x,\phi(x)) = \int_{\phi(x)}^{\xi(x)} \frac{dP}{dy} dy$$

$$\int_{a}^{b} P(x,\phi(x))dx + \int_{b}^{a} P(x,\xi(x))dx = \int_{a}^{b} P(x,\phi(x))dx - \int_{a}^{b} P(x,\xi(x))dx = \int_{a}^{b} P(x,\phi(x))dx + \int_{a}^{b} P(x,\xi(x))dx = \int_{a}^{b} P(x,\xi(x))dx + \int_{a$$

$$= \int_{a}^{b} [P(x,\phi(x)) - P(x,\xi(x))]dx = -\int_{a}^{b} [P(x,\xi(x)) - P(x,\phi(x))]dx$$

Вспомним, что $P(x,\xi(x)) - P(x,\phi(x)) = \int_{\phi(x)}^{\xi(x)} \frac{dP}{dy} dy \Rightarrow$

$$-\int_{a}^{b} 1 dx \int_{\phi(x)}^{\xi(x)} \frac{dP}{dy} dy = -\iint_{D} \frac{dP}{dy} dy dx = \oint_{+ABCDA} P(x, y) dx$$

- малая формула Грина

Аналогичным образом можно доказать (сами!!!)

$$\oint_{+ABCDA} Q(x,y) dy = \iint_D \frac{dQ}{dy}$$

Следовательно:

$$\oint_{+ABCDA} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{dQ}{dx} - \frac{dP}{dy}\right)dxdy$$

Что и требовалось доказать.

Следствие из формулы Остраградского-Грина: Если P(x,y) = -y; Q(x,y) = x

$$\oint_L P(x,y)dx + Q(x,y)dy = \oint_L -ydx + xdy = 2S_D$$

Следовательно, через криволинейные интегралы II рода можно считать площади плоских фигур.

Криволинейные интегралы II рода независящие от пути интегрирования

Рассмотрим функции P(x,y); Q(x,y) - непрерывны вместе со своими частными производными на рассматриваемой кривой и в области D(x,y), кривая целиком лежим в области D(x,y)

Криволинейный интеграл II рода не зависит от пути интегрирования, если результат вычисления криволинейного интеграла по любым кривым соединяющих точки A и B один и тот же.

Теорема 12. Если в каждой точке области D(x,y)P(x,y) и Q(x,y) непрерывны вместе со своими частными производными и выполняется условия Γ рина $(\frac{dQ}{dx} = \frac{dP}{dy})$, то выражение $P(x,y)dx + Q(x,y)dy \Rightarrow$

$$du(x,y) = P(x,y)dx + Q(x,y)dy \Rightarrow$$

$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{AB} du(x,y) = u(x,y)$$

Тогда криволинейный интеграл не зависит от контура.

Приложение криволинейного интеграла II рода

- Если f(x,y) линейная плотность, то $\int_{AB} f(x,y) dl = m$ масса дуги.
- $\oint_L x dy y dx = 2S_D$ площадь плоской фигуры.
- $\int P(x,y)dx + Q(x,y)$, где (P,Q) = F силы перемещения точки, (dx,dy) = S перемещение кривой $\Rightarrow \int FdS = W$ работа по перемещению точки вдоль контура AB
- $f(x,y)=1\Rightarrow\int_{AB}1dl=L$ длинна дуги

$$W_V + W_\omega + \Delta U = 0 \tag{8.1}$$

$$mgh = \frac{mv^2}{2} + \frac{I\omega^2}{2} \tag{8.2}$$

$$v = \omega r \tag{8.3}$$

$$v = at; h = \frac{at^2}{2} \tag{8.4}$$

$$v = \frac{2h}{t} \tag{8.5}$$

$$I = mr^2(\frac{gt^2}{2h} - 1) (8.6)$$

$$mgh - mgh_1 = M(\varphi + \varphi_1) \tag{8.7}$$

$$mgh = M\varphi + \frac{mv^2}{2} + \frac{l\omega^2}{2} \tag{8.8}$$

$$\frac{\varphi}{\varphi + \varphi_1} = \frac{h}{h + h_1} \tag{8.9}$$

$$M\varphi = mgh\frac{h - h_1}{h + h_1} \tag{8.10}$$

$$I = mr^2 (\frac{gt^2}{h} \cdot \frac{h_1}{h + h_1} - 1) \tag{8.11}$$