Cálculo Numérico - IME/UERJ

Lista de Exercícios 5

Integração Numérica

1. De um velocímetro de um automóvel foram obtidos as seguintes leituras de velocidade instantânea:

t(min)	0	5	10	15	20	25	30	35	40
v(km/h)	23	25	30	35	40	45	47	52	60

Calcule a distância em quilômetros percorrida pelo automóvel usando a Regra dos Trapézios.

2. A velocidade v de um foguete lançado do chão verticalmente foi tabelada como se segue:

t(s)	0	5	10	15	20
$v(\mathrm{p\acute{e}s}/s)$	0	60,6	180,1	341,6	528,4

Sabendo que 1 pé equivale a 0.3048 m, use a Regra 1/3 de Simpson repetida para calcular a altura do foguete após 20s.

- 3. Calcule uma aproximação da integral $\int_0^1 \frac{1}{\sqrt{2+x^3}} dx$, usando as regras dos Trapézios repetida e 1/3 de Simpson repetida com h = 0, 125
- 4. Seja a integral dada por $\int_{1}^{4} \sqrt{x} \ dx$.
 - (a) Calcule o **número mínimo** de subdivisões de [1,4] para garantir um erro de truncamento menor que 10⁻² pela Regra dos Trapézios repetida.
 - (b) Calcular a integral usando a Regra dos Trapézios repetida com o número de subintervalos obtido no item (a).
 - (c) Calcule o **número mínimo** de subdivisões de [1,4] para garantir um erro de truncamento menor que 10⁻³ pela Regra de Simpson repetida.
 - (d) Calcular a integral usando a Regra de Simpson repetida com o número de subintervalos obtido no item (c).
- 5. Calcule as integrais abaixo pela Regra dos Trapézios e pela Regra de Simpson repetidos, usando 4 e 6 divisões do intervalo [a, b]:

1

(a)
$$\int_{1}^{2} e^{-x^{2}} dx$$
; (c) $\int_{1}^{3} x \ln(x) dx$

(a)
$$\int_{1}^{2} e^{-x^{2}} dx$$
;
 (b) $\int_{2}^{5} \frac{1}{\sqrt{x}} dx$;
 (c) $\int_{1}^{3} x \ln(x) dx$;
 (d) $\int_{0}^{2} e^{2x} \sin(3x) dx$.

- 6. Determine o número mínimo de subintervalos necessários na Regra dos Trapézios e na Regra de Simpson para que cada uma das integrais do exercício 5 tenha precisão $\varepsilon \leq 1 \times 10^{-5}$.
- 7. Dado que $\ln(1+y) = \int_0^y \frac{x}{1+x}$ para y > -1, podemos calcular o logaritmo neperiano de qualquer número positivo por integração. Calcule:
 - (a) ln(4), usando a regra dos Trapézios repetida com h = 0, 5;
 - (b) ln(4), integrando a fórmula pela regra de Simpson repetida para n=4;
 - (c) uma cota superior dos erros de truncamento cometidos nos cálculos dos itens anteriores.
- 8. Calcule as integrais duplas a seguir usando as regras dos Trapézios e 1/3 de Simpson repetidas:
 - (a) $\int_{-1}^{2} \int_{0}^{1} x^{3}y^{2} dx dy$, com número de subintervalos $n_{x} = n_{y} = 2$;
 - (b) $\iint_R (x^2 + e^{-xy^2}) dx dy$, onde $R = [1, 1.5] \times [3, 4]$, com número de subintervalos $n_x = n_y = 4$.