p.316, icon at Example 1

#2. Use the Principle of Mathematical Induction to prove the "generalized" distributive law

$$a(b_1 + b_2 + \dots + b_n) = ab_1 + ab_2 + \dots + ab_n$$

for all integers $n \geq 2$.

Prove the above proposition is true.

BASIS STEP

P(2) (n=2):

 $a(b_1 + b_2) = ab_1 + ab_2$ is true because of the distributive property

INDUCTIVE STEP

1. Assume P(k) is true.

$$a(b_1 + b_k) = ab_1 + ab_k$$

P(k):
$$a(b_1 + ... + b_k) = ab_1 + ... + ab_k$$

2. Show P(k) -> P(k+1).

P(k+1):
$$a(b_1 + ... + b_k + b_{k+1}) = ab_1 + ... + ab_k + ab_{k+1}$$

The $b_1 + ... + b_k + b_{k+1}$ inside of the left expression can be expressed as combined or separate terms according to the associative property:

$$b + ... + b_k + b_{k+1} = (b + ... + b_k) + (b_{k+1})$$

As in basis step, use the distributive property to distribute a to both terms in the expression:

$$a((b_1 + ... + b_k) + (b_{k+1})) = a(b_1 + ... + b_k) + a(b_{k+1})$$

Distribute the *a* to $a(b_{k+1})$:

$$a((b_1 + ... + b_k) + a(b_{k+1})) = a(b_1 + ... + b_k) + ab_{k+1}$$

Replace $a(b_1 + ... + b_k)$, which is P(k) on the right side with $ab_1 + ... + ab_k + ab_{k+1}$ according to step 2

$$a((b_1 + ... + b_k) + a(b_{k+1})) = ab_1 + ... + ab_k + ab_{k+1}$$

$$a(b_1 + ... + b_k + b_{k+1}) = ab_1 + ... + ab_k + ab_{k+1} \text{ is P(k+1)}$$

p.316, icon at Example 1

#3. Use the Principle of Mathematical Induction to prove that

$$\sum_{i=1}^{n} (2i+3) = n(n+4) \text{ for all } n \ge 1.$$

$$\sum_{i=1}^{n} (2i+3) = n(n+4)$$
 for all $n \ge 1$

- 1) Let P(n) be the proposition $\sum_{i=1}^{n} (2i+3) = n(n+4)$ for all $n \ge 1$
- 2) Basis step: Show that P(1) is true:

$$2(1) + 3 = 1(1+4)$$

5 = 5

3) Inductive step: $P(k) \rightarrow P(k+1)$. Let's assume that P(k) is true.

P(k):
$$\sum_{i=1}^{k} (2i+3) = k(k+4)$$
 for n = k.

Under this assumption, we must show that P(k+1) is true.

Show P(k+1):
$$\sum_{i=1}^{k+1} (2i+3) = (k+1)(k+1+4)$$
$$\sum_{i=1}^{k+1} (2i+3) = (k+1)(k+5)$$

$$\sum_{i=1}^{k+1} (2i+3) = \sum_{i=1}^{k} (2i+3) + (2k+5) = (k+1)(k+5)$$

ASIDE: (2k+5), comes from the summation formula where the pattern of sums would have been (2(1) +3) + (2(2)+3) + (2k+3), the last value would have k+1 substituted into the equation. (2(k+1)+3) = (2k+2+3) = 2k+5.

$$\sum_{i=1}^{k} (2i+3) + (2k+5) = k(k+4) + (2k+5)$$

$$\sum_{i=1}^{k} (2i+3) + (2k+5) = k^2 + 4k + 2k + 5$$

$$\sum_{i=1}^{k} (2i+3) + (2k+5) = k^2 + 6k + 5$$

$$\sum_{i=1}^{k} (2i+3) + (2k+5) = (k+1)(k+5)$$

Therefore we have shown that P(n) for all $n \ge 1$.

p.319, icon at Example 5

#1. Use the Principle of Mathematical Induction to show that the following inequality is true for all integers $n \geq 2$:

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n}.$$

- 1) Let P(n) be the proposition $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sqrt{n}$
- 2) Basis step: Show that P(2) is true: $\sum_{i=1}^{n} \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} > \sqrt{2}$ 1 + 0.7 > 1.4 We have shown that P(2) is true.
- 3) Inductive step: $P(k) \rightarrow P(k+1)$. Let's assume that P(k) is true.

P(k):
$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} > \sqrt{k}$$
 for n = k.

Under this assumption we must show that P(k+1) is true.

P(k+1):
$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} > \sqrt{k+1} = \sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

Start on the right side of the equation:

1.
$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

We substitute $\sum_{i=1}^{k} \frac{1}{\sqrt{i}}$ with \sqrt{k} because we know it's even smaller as P(k): $\sum_{i=1}^{k} \frac{1}{\sqrt{i}} > \sqrt{k}$:

2.
$$\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

We multiply both sides by $\sqrt{k+1}$:

3.
$$(\sqrt{k+1})(\sqrt{k} + \frac{1}{\sqrt{k+1}}) > (\sqrt{k+1})(\sqrt{k+1})$$

 $(\sqrt{k+1})(\sqrt{k} + \frac{1}{\sqrt{k+1}}) > k+1$ (just showing each side separately for clarity)
 $\sqrt{k+1}\sqrt{k} + 1 > k+1$

Subtract 1 from both sides:

4.
$$\sqrt{k+1} \sqrt{k} > k$$

Multiply $\sqrt{k+1}$ by \sqrt{k} :

$$5. \quad \sqrt{k^2 + k} > k$$

Represent the right side as $\sqrt{k^2}$:

6.
$$\sqrt{k^2 + k} > \sqrt{k^2}$$

We can see that this is true.

Explaining this procedure: we did a series of "safe" transformations to the expression we were originally trying to prove. The final expression is true, so we know the original expression is true.

Need to prove: Y > A

Known X < Y

If we prove X > A, then, given Y > X, Y > X > A => Y > A

p.321, icon at Example 8

#1. Prove that 6 is a divisor of $4^n + 7^n + 1$ for all positive integers n.

- 1) Let P(n) be the proposition that 6 is a divisor of $4^n + 7^n + 1$ for all positive integers n.
- 2) Basis Step: Show that P(1) is true: $4^1 + 7^1 + 1 = 12$, we know that 12 is divisible by 6.
- 3) Inductive step: P(k)->P(k+1). We assume that P(k) is true. Inductive Hypothesis: P(k): $4^k + 7^k + 1$ is divisible by 6 for n = k. $4^k + 7^k + 1 = 6m$ $m \in \mathbb{N}$

Under this assumption, we must show that P(k+1) is also true.

P(k+1):
$$4^{k+1} + 7^{k+1} + 1 = 6$$
m where $m \in \mathbb{N}$

4)Use the exponent laws to remove the +1 from the 4^{k+1} and 7^{k+1} (eg. $2^3 = 2(2^2)$):

$$4^{k+1} + 7^{k+1} + 1 = 4 \cdot 4^k + 7 \cdot 7^k + 1 = \dots$$

= $4 \cdot 4^k + 7 \cdot 7^k + 1$
= $(3+1) \cdot 4^k + (6+1) \cdot 7^k + 1$

On the right side, distribute the 4^k to the (3+1) and the 7^k to the (6+1). Remove the 1s.

$$= 3 \cdot 4^k + 1 \cdot 4^k + 6 \cdot 7^k + 1 \cdot 7^k + 1$$

5) Group terms:

=
$$(3 \cdot 4^k + 6 \cdot 7^k) + (4^k + 7^k + 1)$$
 <- this is P(k) which = 6m
= $(3 \cdot 4^k + 6 \cdot 7^k) + 6m$
= $(3 \cdot 4 \cdot 4^{k-1} + 6 \cdot 7^k) + 6m$
= $(12 \cdot 4^{k-1} + 6 \cdot 7^k) + 6m$
= $6(2 \cdot 4^{k-1} + 7^k + m)$ which is divisible by 6.

Generalization of step done in 4:

$$(a+b)4^{k} = a4^{k} + b4^{k}$$

$$(a+b)4^{k} = a4^{k} + b4^{k}$$

$$4 = 3 + 1$$

$$4(4^{k}) = (1+3)(4^{k}) = 4^{k} + 3(4^{k})$$

p.316, icon at Example 1

#4. Find a formula for

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{n^2}\right)$$

for $n \geq 2$, and use the Principle of Mathematical Induction to prove that the formula is correct.

1) Let P(n) be the proposition:
$$\prod_{i=1}^{n} (1 - \frac{1}{i^2}) = \frac{n+1}{2n} when \ n \ge 2$$

Note: The character Π is used for multiplication in the same way we use Sigma for summation.

$$n=2=3/4$$
 $n=3=8/9$ $n=4=15/16$ $n=5=24/25$ $n=6=35/36$ $n=7=48/49$ $n=8=63/64$ $n=9=80/81$ $n=10=99/100$ $n=11=120/121$

Multiplication sets:

- 2) Basis Step: Show that P(2) is true = $(1 \frac{1}{2^2}) = \frac{3}{4}$...3 is 2+1 and 4 is 2(2)
- 3) Induction Step: $P(k) \rightarrow P(k+1)$. Assume that P(k) is true.

P(k):
$$\prod_{i=1}^{k} (1 - \frac{1}{i^2}) = \frac{k+1}{2k}$$
 (our inductive hypothesis)

Under this assumption, we must show that P(k+1) is also true.

P(k+1):
$$\prod_{i=1}^{k+1} (1 - \frac{1}{i^2}) = \frac{k+2}{2(k+1)} = \frac{k+2}{2k+2}$$

Replace the left side with

$$\frac{k+1}{2k}(1-\frac{1}{k+1^2}) = \frac{k+2}{2k+2} \text{ (the left most expression is P(k))}$$

$$\frac{k+1}{2k}(1-\frac{1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{k+1^2}{k+1^2} - \frac{1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{k+1^2-1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{k+1^2-1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{k+1^2-1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{k+1^2-1}{k+1^2}) = \frac{k+2}{2k+2}$$

$$(k+1)^2 - 1 = (k+1+1)(k+1-1) = (k+2)k$$

$$\frac{k+1}{2k}(\frac{(k+1-1)(k+1+1)}{(k+1)(k+1)}) = \frac{k+2}{2k+2}$$

$$\frac{k+1}{2k}(\frac{(k+2)}{(k+1)(k+1)}) = \frac{k+2}{2k+2}$$

$$\frac{1}{2}(\frac{(k+2)}{(k+1)}) = \frac{k+2}{2k+2}$$

$$\frac{k^2-1}{k^2}$$

$$(k-1)/k = 1 - 1/k != 1 - 1/(k+1)^2 !$$

$$\prod_{i=1}^{k} (1 - \frac{1}{i^2})(1 - \frac{1}{k+1^2}) = \frac{k+1}{2k} \left(1 - \frac{1}{k+1^2}\right)$$

9) a)Find a formula for the sum of the first n even positive

Integers.

N 2n =
$$F(n)$$

$$4 8 = 20$$

 $5 10 = 30$

$$F(n) = Sum(i=1; i <= n){2i}$$

$$F(n) = 2 + 4 + 6 + ... + 2n = ??$$

$$\sum_{i=1}^{n} 2i = n^2 + n = n(n+1)$$

- 1) Let P(n) be the proposition: $\sum_{i=1}^{n} 2i = n(n+1)$.
- 2) Basis step: Show P(1):

$$2(1) = 1(1+1)$$

2 = 2

We have shown that P(1) is true.

3) Inductive step: $P(k) \rightarrow P(k+1)$. Let's assume that P(k) is true.

P(k):
$$\sum_{i=1}^{n} 2i = k(k+1)$$
 where n=k

Under this assumption we must show that P(k+1) is also true.

P(k+1):
$$\sum_{i=1}^{k+1} 2i = (k+1)(k+1+1)$$

 $\sum_{i=1}^{k+1} 2i = (k+1)(k+2)$

$$\sum_{i=1}^{k+1} 2i = \sum_{i=1}^{k} 2i + 2(k+1) = k(k+1) + 2(k+1)$$

$$= k^2 + k + 2k + 2$$

$$= k^2 + 3k + 2$$

$$= (k+1)(k+2)$$

Therefore, we have shown that P(n) holds for all n>=1.