Process Mining: Data Science in Action

Workflow Nets and Soundness

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Motivation

For process mining we often use (or aim at)
 Workflow Nets (WF-nets).

- WF-nets:
 - have a well-defined start and end
 - should be free of obvious anomalies (soundness)
- WF-nets are a subclass of Petri nets often used in the context of workflow management and business process management (systems).

"Business Process Management (BPM) is the discipline that combines knowledge from information technology and knowledge from management sciences and applies this to operational business processes"

Wil M. P. van der Aalst, "Business Process Management: A Comprehensive Survey," ISRN Software Engineering, vol. 2013, Article ID 507984, 37 pages, 2013. doi:10.1155/2013/507984

BPM lifecycle

What is the role of (process) models?

- Role of models in BPM/WFM:
 - reason about processes (redesign) and
 - make decisions inside processes (planning and control).
- Process models may be used to:
 - discuss responsibilities,
 - analyze compliance,
 - predict performance using simulation, and
 - configure a WFM/BPM system.

Many notations

Business Process Model and Notation (BPMN)

Petri nets (as seen before)

Example run of the model

Only one of infinitely many possible firing sequences! nd]

Reachability graph

No, deadlock possible: [c3].

No, AND-split does not have corresponding join!

No, "pay compensation" is dead!

Yes, but why?

WF-nets

A WorkFlow net (WF-net) has one source place (typically called *start* or *i*) and one sink place (typically called *end* or *o*) and all other nodes are on a path from source to sink.

Soundness

A WF-net is sound if and only if the following properties hold:

- safeness: places cannot hold multiple tokens at the same time,
- proper completion: if the sink place is marked, all other places are empty,
- option to complete: it is always possible to reach the marking that marks just the sink place, and
- absence of dead parts: for any transition there is a firing sequence enabling it.

- safeness: places cannot hold multiple tokens at the same time
- proper completion: if the sink place is marked, all other places are empty
- option to complete: it is always possible to reach the final target marking
- absence of dead parts: for any transition there is a firing sequence enabling it

- safeness: places cannot hold multiple tokens at the same time
- proper completion: if the sink place is marked, all other places are empty
- option to complete: it is always possible to reach the final target marking
- absence of dead parts: for any transition there is a firing sequence enabling it

- safeness: places cannot hold multiple tokens at the same time
- proper completion: if the sink place is marked, all other places are empty
- option to complete: it is always possible to reach the final target marking
- absence of dead parts: for any transition there is a firing sequence enabling it

- safeness: places cannot hold multiple tokens at the same time
- proper completion: if the sink place is marked, all other places are empty
- option to complete: it is always possible to reach the final target marking
- absence of dead parts: for any transition there is a firing sequence enabling it

Checking soundness may be far from trivial for larger examples.

Not sound: Unsafe

Examples of reachable markings:

- [c5²]
- [c1,c2,c3,c4]
- [c1²,c2²]
- · etc.

Not sound: No option to complete in [c3]

No need to check proper completion: It is implied by other properties

option to complete (it is always possible to reach the marking that marks just the sink place) implies proper completion (if the sink place is marked all other places are empty)

Link between soundness and classical Petri net properties

A WF-net is sound if and only if the corresponding "short-circuited" Petri net is live and bounded!

Main types of model-based analysis

Limitations of model-based analysis

- Verification and performance analysis heavily rely on the availability of high quality models.
- When the models and reality have little in common, model-based analysis does not make much sense!
- There is often a poor alignment between hand-made models and reality.
- Process mining aims to address these problems by establishing a direct connection between the models and actual event data about the process.

Next: Using the Alpha Algorithm to discover WF-nets from event logs

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3

Process Modeling and Analysis

Chapter 4 Data Mining

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

Chapter 7

Advanced Process
Discovery Techniques

Part IV: Be on

Chapter 8
Conformance
Checking

cess Discovery

pter 9
Mining Additional
Perspectives

Chapter 10 Operational Support

Part V: Putting Process Mining to Work

Chapter 11

Process Mining Software

Chapter 12

Process Mining in the Large

Chapter 13

Analyzing "Lasagna Processes"

Part VI: Reflection

Chapter 15

Cartography and Navigation

Chapter 16

Epilogue

Chapter 14

Analyzing "Spaghetti Processes"

Process

Mining

Second Edition

Wil van der Aalst

