Software Architecture Document

Version 1.2

for

QuickBook Conference Room Reservation System

Prepared by

Aline Koftikian	27764162
Armine Iradian	27197144
Hannah Ortiz	26939414
Ideawin-Bunthy Koun	26314155
Mohammad-Ali Eghtesadi	27427611
Nassim El Sayed	27010419
Nimrat Cheema	27035845
Philip Lim	27485506

Instructor: Dr. Constantinos

Constantinides

Course: SOEN 343

Date: 11/21/2016

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Document history

Date	Version	Description	Author
10/12/2016	1.0	- Addition of UML Class Diagram with respective associations during team meeting	- All team members
		- Design of communication diagram for critical use cases	- Ideawin, Philip, Hannah
10/25/2016	1.1	-Modification of UML class Diagram	- All team members
		- Addition of Mappers, TDGs, unit of work diagram	-Ideawin, Philip, Hannah
11/21/2016	1.2	- Modification of visibilities for subsystems	-Hannah, Ideawin
		- Addition of methods in Class Diagram for respective restrictions	-Armine, Ideawin, Hannah, Aline

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Table of contents

1.	Intro	duction	4
		pose	
		pe	
	1.3 Det	initions, acronyms, and abbreviations	4
2.	Arch	itectural representation	5
	2.1 Sce	narios (Use Case View)	6
	2.2	Logical View	7
	2.1.1	Layers	8
	2.1.2	Subsystems	9
	2.1.3	Use Case Realizations	12
	2.3	Data View	16
3.	Arch	itectural requirements: goals and constraints	17
	3.1 Fun	ictional requirements (Use case view)	17
	3.2 Nor	n-functional requirements (NFRs)	17

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

List of Figures

Figure 1: UML Use Case Diagram	6
Figure 2: UML Class Diagram	7
Figure 3: Server-side architecture: logical view: layered architectural style	8
Figure 4: Relationship between Core package and Mappers	9
Figure 5: Relationship between Mappers package and Unit of Work	10
Figure 6: Relationship between Mappers and Identity Maps	10
Figure 7: Relationship between Mappers, TDGs and Tables	11
Figure 8: Communication Diagram	12
Figure 9: Sequence Diagram to make a new reservation	13
Figure 10 : Sequence Diagram when user is done and mapper is ready to commit to UoW	13
Figure 11: Sequence Diagram to make a new TimeSlot	14
Figure 12: Sequence Diagram when user is ready to commit to UoW	14
Figure 13: Complete Sequence Diagram for Make Reservation	15
Figure 14: Entity-Relationship (ER) Model	16

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

1. Introduction

This document contains a high-level design overview and provides an overall architecture of *QuickBook*, a web application tool that helps ENCS faculty members reserve a conference room. With high-level descriptions of the goals, the SAD explains the underlying architecture behind some of the use cases such as when a user tries to create, modify and cancel a reservation. This document provides the goals of the architecture, a view of the use cases supported by the system and architectural styles and components that have been selected to best achieve the use cases.

1.1 Purpose

This document provides a comprehensive architectural overview of the *QuickBook*. To describe different aspects of the system, we have presented three different architectural views such as: Logic View, Data Model View and Use-Case View. The purpose of this documentation is to record and express our architectural decisions which have been made on the system.

1.2 Scope

SAD describes the architecturally significant design aspects of *QuickBook*. This document can be used to achieve a good understanding of the fundamentals of the system as well as a good guiding tool for duplicating or building the system. Any stakeholder who wants to have a good technical knowledge of *QuickBook* are encouraged to read this document to be able to follow up with the source code.

1.3 Definitions, acronyms, and abbreviations

UML: Unified Modelling Language

SAD: Software Architecture Document

TDG: Table Data Gateway

UoW: Unit of Work

ER: Entity Relationship

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2. Architectural representation

QuickBook is implemented as a web application; it is developed using multilayered architecture which is a client-server architecture. The multilayered architecture is composed of a presentation layer, application (logic) layer, data source (storage) layer.

A description of the *QuickBook* system will be provided through the representation of different views based on the 4 + 1 model which is composed of Logical View, Process View, Development View, Physical View and Use Case View. This document will only be describing two of the five architectural views: Use Case View and Logical View. An extra view, the Data View, will also be described.

In the **Logical View**, a class diagram shows the relationship between classes with their specific associations and dependencies. Also, the Logical View includes the communication diagram, which illustrates the interaction of objects, for a given system operation, in a network format.

In the **Use Case View**, a use case model illustrates the functionality the system must provide; its behavior. Furthermore, the use case model displays the relationship between the system's intended functions and the actors (the user).

In the **Data View**, an Entity Relationship (ER) diagram is used to show a visual representation of the logical relationship between the data entities (or objects) of the system to build a database.

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.1 Scenarios (Use Case View)

Figure 1: UML Use Case Diagram

Use case 3 **(UC03)** is a *critical use case* of the system because the system depends on its functionality. If users are not able to make a reservation, then the system is entirely non-functional and therefore it doesn't meet its requirements.

The communication diagram (fig. 3) describes the flow of the critical use case operation *makeNewReservation*. The interaction between domain objects is presented, showing how to successfully make a reservation.

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.2 Logical View

Figure 2: UML Class Diagram

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.1.1 Layers

The system's design uses a layered architectural style. There are three layered views of the system.

Figure 3: Server-side architecture: logical view: layered architectural style

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.1.2 Subsystems

Decomposition of the system in subsystems and their relation.

Figure 4: Relationship between Core and Mappers packages

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Figure 5: Relationship between Mappers package and Unit of Work

Figure 6: Relationship between Mappers and Identity Maps

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Figure 7: Relationship between Mappers, TDGs and Tables

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.1.3 Use Case Realizations

To clearly describe the important architectural elements of *QuickBook*, interaction diagrams are provided for the critical use case Make Reservation: **UC03**.

Figure 8: Communication Diagram

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

The following Sequence Diagrams illustrate the UML interactions between the Domain Object, Mappers, Identity Maps, Unit of Work (UoW), Table Data Gateways (TDG) and the data base table.

Figure 9: Sequence Diagram to make a new reservation

Figure 10 : Sequence Diagram when user is done and mapper is ready to commit to UoW

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Figure 11: Sequence Diagram to make a new TimeSlot

Figure 12: Sequence Diagram when user is ready to commit to UoW

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

Figure 13: Complete Sequence Diagram for Make Reservation

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

2.3 Data View

Four main entities are present in the system: the User, the Reservation, the Room and the Timeslot. The below Entity-Relationship (ER) model shows the attributes of each entity and the relationships between them.

Figure 14: Entity-Relationship (ER) Model

QuickBook Conference Room Reservation System	Version:	1.2
Software Architecture Document	Date:	11/21/2016

3. Architectural requirements: goals and constraints

Functional Requirements and Non-Functional requirements can affect the architecture of a software system.

3.1 Functional requirements (Use case view)

This section describes which Use Cases from the Use Case Model are relevant to the software architecture.

Source	Name	Architectural relevance	Addressed in:
SRS	Use Case Login	-A user is needed for most methods	Section 2.1
SRS	Use Case Make Reservation	-Making a reservation must be functional in the system for most methods to function.	Section 2.1

3.2 Non-functional requirements (NFRs)

This section describes the non-functional requirements that are relevant to the architecture of the *Quickbook* Software. The two most important type of technical NFRs are Usability and Maintainability.

Source	Name	Architectural relevance	Addressed in:
SRS	Usability	-Consistency of both the user interface and the functionality of the systemNatural Mapping : ease of navigation	Section 3.3.2
SRS	Maintainability	-When adding or changing the functionality and meeting new requirements, the system endures these changes with a degree of ease.	Section 3.3.4