### Mostafa Sabri

# Lecture 13

4.4 Coordinates Systems

### Unique Representation Theorem

Thm: If  $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  is a basis of a vector space V, then any element  $\mathbf{w} \in V$  can be written uniquely as  $\mathbf{w} = \sum_{i=1}^p c_i \mathbf{v}_i$ , for some  $c_i \in \mathbb{R}$ .

The proof is the same as we saw in Lec5: existence of the expansion follows from the spanning property, while uniqueness follows from linear independence.

Find the unique expansion of  $\mathbf{u} = (u_1, u_2)$  in the basis  $C = \{(1, 1), (1, -1)\}.$ 

### Coordinate systems

Suppose  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$  is a basis for a vector space V. For each  $\mathbf{x} \in V$ , the *coordinates of*  $\mathbf{x}$  relative to the basis  $\mathcal{B}$  are the weights  $c_1, \dots, c_p$ 

such that 
$$\mathbf{x} = \sum_{i=1}^{p} c_i \mathbf{b}_i$$
. The vector  $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} \in \mathbb{R}^p$  is called the coordinate vector of  $\mathbf{x}$  relative to  $\mathcal{B}$ .

If 
$$\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$$
,  $\mathbf{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ ,  $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ .

If 
$$C = \{(1, 1), (1, -1)\}, \mathbf{u} = (u_1, u_2), [\mathbf{u}]_C = \begin{bmatrix} \frac{u_1 + u_2}{2} \\ \frac{u_1 - u_2}{2} \end{bmatrix}.$$

# Coordinate systems



Figure: The coordinate mapping from V to  $\mathbb{R}^n$ .



Figure: Even in  $V = \mathbb{R}^n$ , it can be useful to consider different coordinate systems  $\mathcal{B}$  and  $\mathcal{C}$ . Here  $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$  and  $[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ .

In crystallography, we try to choose a coordinate system adapted to the crystal lattice

# Coordinate systems



Figure: It is natural to consider a slanted coordinate system to analyze this crystal.

1. If 
$$\mathcal{B} = \{(1, 2), (3, 4)\}$$
 and  $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ , find the coordinate vector of  $\mathbf{x}$  relative to the standard basis.

2. Let 
$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
,  $A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 3 & 3 \\ -4 & -4 \end{bmatrix}$ . Is  $B$  in  $B = \begin{bmatrix} A_1, A_2 \end{bmatrix}$ ? If yes, find  $A_1 = \begin{bmatrix} A_1, A_2 \end{bmatrix}$ .

In the last example,  $B \in M_{2,2}$ , but only needs 2 coordinates to be fully described in the plane H.

# Isomorphism

Let V, W be vector spaces. We say that  $T: V \to W$  is an *isomorphism* if it linear, injective and surjective. If such a T exists, we say V and W are *isomorphic*.

#### Prove that $T^{-1}$ exists and is an isomorphism.

Thm: Let  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  be a basis for a vector space V. Then the coordinate mapping  $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$  is an isomorphism of V onto  $\mathbb{R}^n$ .

<u>Proof.</u> If  $\mathbf{x}, \mathbf{y} \in V$ , then  $\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{b}_i$  and  $\mathbf{y} = \sum_{i=1}^{n} d_i \mathbf{b}_i$  for some  $c_i, d_i \in \mathbb{R}$ . So  $\mathbf{x} + \mathbf{y} = \sum_{i=1}^{n} (c_i + d_i) \mathbf{b}_i$ . Also, if  $\alpha \in \mathbb{R}$ ,  $\alpha \mathbf{x} = \alpha \sum_{i=1}^{n} c_i \mathbf{b}_i = \sum_{i=1}^{n} \alpha c_i \mathbf{b}_i$ . Thus,

# Isomorphism

$$[\mathbf{x} + \mathbf{y}]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\mathbf{x}]_{\mathcal{B}} + [\mathbf{y}]_{\mathcal{B}}$$
$$[\alpha \mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha c_1 \\ \vdots \\ \alpha c_n \end{bmatrix} = \alpha \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \alpha [\mathbf{x}]_{\mathcal{B}}$$

so the map is linear. Next, if  $[\mathbf{x}]_{\mathcal{B}} = \mathbf{0}$ , then  $\mathbf{x} = 0\mathbf{b}_1 + 0\mathbf{b}_2 + \cdots + 0\mathbf{b}_n = \mathbf{0}$ . Thus, the map is one-to-one. Finally, given  $\mathbf{u} \in \mathbb{R}^n$ , let

$$\mathbf{x} = u_1 \mathbf{b}_1 + u_2 \mathbf{b}_2 + \dots + u_n \mathbf{b}_n$$
. Then  $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathbf{u}$ . So

П

the map is surjective.

### Example

If  $\mathcal{B} = \{1, x, x^2, \dots, x^n\}$  is the standard basis of  $P_n$  and

$$p \in P_n$$
,  $p(x) = \sum_{k=0}^n c_k x^k$ , then  $[p]_{\mathcal{B}} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$ .

- 1. Check that  $P_n$  is isomorphic to  $\mathbb{R}^{n+1}$  and  $M_{2,2}$  is isomorphic to  $\mathbb{R}^4$ .
- 2. Let  $\mathcal{B}$  be the standard basis of  $M_{2,2}$  and  $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\}. \text{ Let } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$  Find  $[A]_{\mathcal{B}}$  and  $[A]_{\mathcal{C}}$ .
- 3. Prove that if  $T_1: V \to W$  and  $T_2: W \to H$  are isomorphisms, then  $T_2 \circ T_1: V \to H$  is an isomorphism.

# Isomorphism properties

Thm: If  $T: V \to W$  is an isomorphism, then T carries lin. independent sets to lin. independent sets, spanning sets to spanning sets, bases to bases.

Thus, a set S is independent iff its image T(S) is. Why?

<u>Proof.</u> Let  $S = \{\mathbf{v}_i\}_{i=1}^n$ , its image  $T(S) = \{T(\mathbf{v}_i)\}_{i=1}^n$ . If  $\sum_{i=1}^n \alpha_i T(\mathbf{v}_i) = \mathbf{0}$  then  $T(\sum_{i=1}^n \alpha_i \mathbf{v}_i) = \mathbf{0}$  by linearity. As T is injective, we must have  $\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$ . But S is independent, so  $\alpha_i = 0 \ \forall i$ . Thus, T(S) is independent.

Next, if  $V = \operatorname{Span}(S)$  and  $\mathbf{w} \in W$ , then  $\mathbf{w} = T(\mathbf{v})$  for some  $\mathbf{v} \in V$ , so  $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{v}_i$  for some  $c_i \in \mathbb{R}$ , so  $\mathbf{w} = T(\sum c_i \mathbf{v}_i) = \sum_{i=1}^{n} c_i T(\mathbf{v}_i) \in \operatorname{Span}(T(S))$ . As  $\mathbf{w}$  is arbitrary, then  $\operatorname{Span}(T(S)) = W$ .

П

#### **Exercises**

Use the coordinate map to study the linear independence of  $S = \{t + t^2, 2 + 3t^2, 1 + 2t\}$  in  $P_2$ .

Use the coordinate map to find a basis for the space  $H = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right\}.$ 

Let  $\mathcal{B} = \{1 + t, 1 + t^2, t + t^2\}$ . Show that  $\mathcal{B}$  is a basis of  $P_2$  and find  $[p]_{\mathcal{B}}$  if  $p(t) = 6 + 3t - t^2$ .

If  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  is a basis of  $\mathbb{R}^n$  and  $\mathcal{S}$  is the standard basis, then the matrix  $P = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}$  satisfies that  $\mathbf{x} = P[\mathbf{x}]_{\mathcal{B}}$ , i.e. P is the *transition matrix* from  $\mathcal{B}$  to  $\mathcal{S}$ . We explain this in detail in Lec15.

#### The matrix of a linear transformation

Thm: Let V and W be vector spaces with bases  $\mathcal{B}$  and  $\mathcal{B}'$ , respectively. Say  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ .

If  $T: V \rightarrow W$  is linear then the matrix

$$A = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}'} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{B}'} \end{bmatrix}$$

satisfies that  $[T(\mathbf{v})]_{\mathcal{B}'} = A[\mathbf{v}]_{\mathcal{B}}$  for all  $\mathbf{v} \in V$ .

Proof. Let 
$$\mathbf{v} \in V$$
, so  $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{b}_i$ . Then by linearity,  $T(\mathbf{v}) = \sum_{i=1}^{n} c_i T(\mathbf{b}_i)$ , so  $[T(\mathbf{v})]_{\mathcal{B}'} = \sum_{i=1}^{n} c_i [T(\mathbf{b}_i)]_{\mathcal{B}'} = A[\mathbf{v}]_{\mathcal{B}}$ .

Let  $D_X: P_n \to P_{n-1}$  be the differentiation operator. Find the matrix of  $D_X$  relative to the bases  $\mathcal{B} = \{1, x, ..., x^n\}$ and  $\mathcal{B}' = \{1, x, ..., x^{n-1}\}$  of  $P_n$  and  $P_{n-1}$ .