Lecture 9 Floating Point

Byung-gi Kim

School of Computer Science and Engineering Soongsil University

3. Arithmetic for Computers

- 3.1 Introduction
- 3.2 Addition and Subtraction
- 3.3 Multiplication
- 3.4 Division
- 3.5 Floating Point
- 3.6 Parallelism and Computer Arithmetic: Associativity
- 3.7 Real Stuff: Floating Point in the x86
- 3.8 Fallacies and Pitfalls
- 3.9 Concluding Remarks
- 3.10 Historical Perspective and Further Reading
 - 3.11 Exercises

3.5 Floating Point

Real numbers

```
3.14159265..._{ten} (pi), 2.71828..._{ten} (e), 0.000000001_{ten}, 0.1_{ten} \times 10^{-8} or 1.0_{ten} \times 10^{-9}, 3.155,760,000_{ten}, 0.00315576 \times 10^{12} or 3.15576 \times 10^{9}
```

Scientific notation

 A notation that renders numbers with a single digit to the left of the decimal point

$$1.0_{\text{ten}} \times 10^{-9}$$
, 3.15576×10^{9}

Normalized number

A number in scientific notation that has no leading 0s

$$1.0_{\text{ten}} \times 10^{-9}$$
, 3.15576×10^{9}

Floating-point Representation

Floating point numbers in binary form

$$\pm 1.xxxxxxxxx$$
 _{two} $\times 2^{yyyy}$

- Sign
 - * 1 bit
- Exponent
 - 8 bits (including the sign of the exponent)
- Fraction (=significand=mantissa)
 - 23 bits, fraction
 - sign and magnitude representation

3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2	2 2	2	2	1 9	1 8	1 7	1 6	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
s			e	×po	nei	nt													fro	act	ion										

Floating Point Numbers

General form of floating-point numbers

$$(-1)^S \times F \times 2^E$$

- Tradeoff between accuracy and range
 - Large significand ... increased accuracy
 - Large exponent ... increased range of numbers
- Range of floating-point numbers in MIPS

$$2.0_{\text{ten}} \times 10^{-38} \sim 2.0_{\text{ten}} \times 10^{38}$$

ANSI/IEEE Std 754-1985

- IEEE standard for binary floating-point arithmetic
- Hidden-bit scheme

$$(-1)^s \times (1 + fraction) \times 2^E$$

= $(-1)^s \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + (s3 \times 2^{-3}) + (s4 \times 2^{-4}) + ...) \times 2^E$

- In this book,
 - significand ... represent the 24/53-bit number that is 1 plus the fraction
 - fraction ... represent the 23/52-bit number
- 32-bit single format
 - 1-bit sign, 8-bit exponent, 23-bit fraction
- 64-bit double format
 - 1-bit sign, 11-bit exponent, 52-bit fraction

Double and Quad Precision

Double precision floating-point number

- 11 exponent bits
- 52 fraction bits

$$2.0_{\text{ten}} \times 10^{-308} \sim 2.0_{\text{ten}} \times 10^{308}$$

fraction(continued)

Quad precision floating-point number

- ❖ IEEE 754-2008 binary128 standard
- 15 exponent bits
- 112 significand bits

IEEE 754 Encoding

Single p	recision	Double p	orecision	Object represented			
Exponent	Fraction	Exponent	Fraction	Object represented			
0	0	0	0	0.0			
0	Nonzero	0	Nonzero	± denormalized number			
1~254	Anything	1~2046	Anything	± floating point number			
255	0 2047		0	±infinity			
255	Nonzero	2047	Nonzero	NAN (Not A Number)			

Sorting Floating Point Numbers

- Keep encoding that is somewhat compatible with 2's complement
 - e.g., 0.0 in FP is 0 in two's complement
 - Can compare two FP numbers in the same way as comparing 2's complement integers

- Placing the sign in the most significant bit
- Placing exponent before the significand
- But what with the negative exponents?

Example: 2's complement exponents

- $1.0_{\text{two}} \times 2^{-1}$
- $1.0_{\text{two}} \times 2^{+1}$
- 1.0 $_{two}$ × 2⁻¹ looks like a bigger one than 1.0 $_{two}$ × 2⁺¹

Undesirable

Biased Notation

- Can reuse integer comparison hardware
 - ❖ If the most negative exponent = 00...000
 - and the most positive exponent = 11...111
- $(-1)^{Sign} \times (1 + Fraction) \times 2^{(Exponent Bias)}$
- Exponent biases in IEEE 754
 - 127 for single precision
 -126 ≤ exponent ≤ +127
 - 1023 for double precision
 - $-1022 \le exponent \le +1023$

Biased Exponent with Bias=127

How it is interpreted

How it is encoded

	Decimal	signed 2's	Biased Notation	Decimal Value of
	Exponent	complement		Biased Notation
∞, NaN	For infinities		111111111	255
1	127	01111111	111111110	254
	2	00000010	10000001	129
Getting	1	00000001	10000000	128
closer to	0	00000000	01111111	127
zero	-1	111111111	011111110	126
	-2	111111110	01111101	125
V	-126	10000010	00000001	1
Zero	For Denorms	10000001	00000000	0

Example: Floating-Point Representation

 Show the IEEE 754 single and double precision representations of -0.75_{ten}.

[Answer]

Example: Converting Binary to Decimal Floating Point

- What decimal number is represented by

[Answer]

```
(-1)^{S} \times (1 + Significand) \times 2^{(Exponent - Bias)}
= (-1)^{1} \times (1 + 0.25) \times 2^{(129-127)}
= -1 \times 1.25 \times 2^{2}
= -1.25 \times 4
= -5.0
```

Floating-Point Addition

Figure 3.14

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions
 (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G
 R and S
- Step 2: Add the resulting F2 to F1 to form F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Example: Floating Point Addition

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:
- Step 2:

- Step 3:
- Step 4:
- Step 5:

Example: Floating Point Addition

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
- Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
- Step 3: Normalize the sum, checking for exponent over/underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
- Step 4: The sum is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing
 0 01111011 00000000000000000000000

Floating-Point Adder

Figure 3.15

Floating-Point Multiplication

Figure 3.16

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 – 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Example: Floating Point Multiplication

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:

- Step 2:
- Step 3:
- Step 4:
- Step 5:

Example: Floating Point Multiplication

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1-2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing
 1 01111100 11000000000000000000000

Floating-Point Instructions

Category	Instruction	MIPS	ARM
	FP add single	add. s \$f2, \$f4, \$f6	FADDS s2, s4, s6
	FP subtract single	sub. s \$f2, \$f4, \$f6	FSUBS s2, s4, s6
	FP multiply single	mul.s \$f2,\$f4,\$f6	FMULS s2, s4, s6
Arithmatia	FP divide single	di v. s \$f2, \$f4, \$f6	FDI VS s2, s4, s6
Arithmetic	FP add double	add. d \$f2, \$f4, \$f6	FADDD d2, d4, d6
	FP subtract double	sub. d \$f2, \$f4, \$f6	FSUBD d2, d4, d6
	FP multiply double	mul.d \$f2,\$f4,\$f6	FMULD d2, d4, d6
	FP divide double	di v. d \$f2, \$f4, \$f6	FDI VD d2, d4, d6
	FP load single	Iwc1 \$f1,4(\$s2)	FLDS S1, [R1, #100]
Data	FP store single	swc1 \$f1,4(\$s2)	FSTS S1, [R1, #100]
transfer	FP load double		FLDD d1, [R1, #100]
	FP store double		FSTD d1, [R1, #100]
	FP compare single	C. X. S	FCMPS s2, s4
Compara	FP compare double	c. x. d	FCMPD d2, d4
Compare	FP move status		FMSTAT
	conditional branch	bclt 100, bclf 100	

3.9 Concluding Remarks

	SPECint	SPECfp		
addu	5.2%	3.5%		
addiu	9.0%	7.2%		
or	4.0%	1.2%		
sll	4.4%	1.9%		
lui	3.3%	0.5%		
lw	18.6%	5.8%		
sw	7.6%	2.0%		
1bu	3.7%	0.1%		
beq	8.6%	2.2%		
bne	8.4%	1.4%		
slt	9.9%	2.3%		
slti	3.1%	0.3%		
sltu	3.4%	0.8%		

	SPECint	SPECfp
add.d	0.0%	10.6%
sub.d	0.0%	4.9%
mul.d	0.0%	15.0%
add.s	0.0%	1.5%
sub.s	0.0%	1.8%
mul.s	0.0%	2.4%
1.d	0.0%	17.5%
s.d	0.0%	4.9%
1.s	0.0%	4.2%
s.s	0.0%	1.1%
lhu	1.3%	0.0%

Homework #1

- Posted on e-Campus.
- Due
 - (가) 10/7 (월) 1:30 PM
 - * (나)

Supplement

Accurate Arithmetic

Guard bit

- Used to provide one fraction bit when shifting left to normalize a result
- e.g., when normalizing fraction after division or subtraction

Round bit

Used to improve rounding accuracy

Sticky bit

- Used to support Round to nearest even
- 0.50...00_{ten} vs. 0.50...01_{ten}
- Is set to a 1 whenever a 1 bit shifts (right) through it
- e.g., when aligning fraction during addition/subtraction

F = 1. xxxxxxxxxxxxxxxxxx GRS

Example: Rounding with Guard Digits

- Add $2.56_{\text{ten}} \times 10^{0}$ to $2.34_{\text{ten}} \times 10^{2}$.
- Significant digit = 3 decimal digits
- Round to the nearest number with and without guard and round digits.

[Answer]

1) Without guard and round digits

$$2.34 \times 10^2 + 0.02 \times 10^2 = 2.36 \times 10^2$$

2) With guard and round digits

$$2.56 \times 10^{0}$$
 -> 0.0256×10^{2} (guard = 5, round = 6)
 $2.3400 \times 10^{2} + 0.0256 \times 10^{2} = 2.3656 \times 10^{2}$
=> rounded to 2.37×10^{2}

Example: Prob. 7 of 2010-1 Midterm Exam

Add x=1.110 0000 0000 0000 0011 0001_{two} X 2⁻¹ to y=1.01_{two} X 2⁵. Use G, R and S bits.

[Answer]

 $x = 0.000 \ 0011 \ 1000 \ 0000 \ 0000 \ 0000 \ 11 \ 0001 \ X \ 2^5$ = 0.000 \ 0011 \ 1000 \ 0000 \ 0000 \ 0000 \ X \ 2^5 \ (G=1, R=1, S=1)

	fraction	G	R	S
X	0.000 0011 1000 0000 0000 0000	1	1	1
У	1.010 0000 0000 0000 0000 0000	0	0	0
X +y	1.010 0011 1000 0000 0000 0000	1	1	1

 $\mathbf{x} + \mathbf{y} = 1.010\ 0011\ 1000\ 0000\ 0000\ 0001\ X\ 2^5$

0	1000 0100	010 0011 1000 0000 0000 0001
---	-----------	------------------------------

Elaboration

Rounding modes in IEEE 754

- 1) Always round up
 - Toward +∞
- 2) Always round down (toward $-\infty$)
 - Toward -∞
- 3) Truncate
 - Toward 0
 - Round down if positive, up if negative
- 4) Round to nearest even
 - When the Guard || Round || Sticky are 100
 - Always creates a 0 in the least significant bit of fraction

Examples

	7.3	7.5	8.5	7.7	-7.3	-7.5	-8.5	-7.7
Round up	8	8	9	8	-7	-7	-8	-7
Round down	7	7	8	7	-8	-8	-9	-8
Truncate	7	7	8	7	-7	-7	-8	-7
Round to nearest even	7	8	8	8	-7	-8	-8	-8

	+0001.01	-0001.01	+0101.10	+0100.10	-0011. <mark>10</mark>
Round up	+0010	-0001	+0110	+0101	-0011
Round down	+0001	-0010	+0101	+0100	-0100
Truncate	+0001	-0001	+0101	+0100	-0011
Round to nearest even	+0001	-0010	+0110	+0100	-0100