Zadatak 11

Grupa 8

Januar 2025

1 Hamiltonov graf

Hamiltonov graf je koncept u teoriji grafova koji je usko vezan za problem Hamiltonovog ciklusa, odnosno ciklusa koji prolazi kroz svaki čvor grafa tačno jednom i vraća se u početni čvor. Iako se danas koristi u mnogim oblastima informatike i matematike, njegovo poreklo ima zanimljiv istorijski kontekst.

1.1 Uvod u teoriju grafova

Definicija: Neka je G graf. Hamiltonov put u G je put koji sadrži sve čvorove tog grafa. Hamiltonova kontura je Hamiltonov put koji je ujedno i kontura.

Primer: Hamiltonov put u grafu G_1 je dachbkfiejg, dok je dachbkfiejg Hamiltonova kontura u grafu G_2 .

Definicija: Graf je Hamiltonov ako sadrži Hamiltonovu konturu. Graf je polu Hamiltonov ako sadrži Hamiltonov put.

U prethodnom primeru, graf G_1 je polu Hamiltonov, a graf G_2 je Hamiltonov.

- U Hamiltonovo vreme pojam **grafova** još uvek nije bio formalizovan.
- Formalizacija teorije grafova započinje krajem 19. i početkom 20. veka, i to zahvaljujući radu **Leonharda Eulera**, koji je još 1736. godine formulisao poznati problem Königsberških mostova.

1.1.1 Terminologija i razvoj

- Naziv **Hamiltonov ciklus/graf** uveden je naknadno, kako bi se odala počast Hamiltonovom doprinosu.
- Hamiltonov graf je graf koji sadrži Hamiltonov ciklus.
- Sa razvojem teorije računara, naročito u 20. veku, problem nalaženja Hamiltonovog ciklusa postao je značajan zbog svoje **NP-kompletnosti**.

1.1.2 Savremeni značaj

Hamiltonovi grafovi danas imaju primenu u različitim oblastima:

- teorija kompleksnosti i algoritmi
- optimizacija i operaciona istraživanja
- problem trgovačkog putnika
- bioinformatika (npr. sastavljanje DNK sekvenci)

Hamiltonov ciklus se razlikuje od Eulerovog ciklusa po tome što:

- kod Hamiltonovog ciklusa se svako **teme** posećuje tačno jednom,
- dok se kod Eulerovog ciklusa svaka **grana** koristi tačno jednom.

1.2 Dovoljni uslovi za Hamiltonov graf

Hamiltonov ciklus u grafu je ciklus koji prolazi kroz sva temena grafa tačno jednom (osim početnog/poslednjeg koje se poklapa). Ako takav ciklus postoji, kažemo da je graf **Hamiltonov**.

Postoje mnogi dovoljni (ali ne i nužni) uslovi da graf bude Hamiltonov. Ovde navodimo dva poznata teorema: **Diracov teorem** i **Oreov teorem**.

Diracov teorem (1952.)

Teorem: Neka je G jednostavan graf sa $n \geq 3$ temena. Ako za svako teme v u grafu važi:

$$\deg(v) \ge \frac{n}{2},$$

onda je graf G Hamiltonov.

Dokaz (skica):

Pretpostavimo suprotno — da G nije Hamiltonov, ali zadovoljava uslov teorema. Onda postoji najduži put (ili ciklus) u G koji nije Hamiltonov. Može se pokazati (kontraargumentom) da se takav najduži put može produžiti pod uslovima iz teorema, što je kontradikcija. Detaljan dokaz koristi indukciju i teoriju najdužeg puta i zahteva konstrukciju dodatnog čvora. Dakle, uslov implicira da graf sadrži Hamiltonov ciklus. \Box

Oreov teorem (1960.)

Teorem: Neka je G jednostavan graf sa $n \geq 3$ temena. Ako za svaka dva netesno povezana temena u i v važi:

$$\deg(u) + \deg(v) \ge n,$$

onda je graf G Hamiltonov.

Dokaz (skica):

Slično kao i kod Diracovog teorema, pretpostavlja se suprotno i koristi se najduži mogući put u G. Ako uslov važi za svaka dva nepovezana temena, moguće je pokazati da se najduži put može proširiti, što dovodi do kontradikcije ako pretpostavimo da graf nije Hamiltonov.

Napomena

Niti Diracov niti Oreov uslov nije **neophodan** za Hamiltonovost — postoje Hamiltonovi grafovi koji ne zadovoljavaju ove uslove. Ipak, oni predstavljaju korisne **dovoljne uslove** koji se lako proveravaju i često se koriste u praksi.

1.3 Potrebni uslovi za Hamiltonov graf

Uslov 1. Ako je graf G Hamiltonov i ako je $U \subseteq V(G)$, $U \neq \emptyset$, tada važi:

$$\omega(G-U) < |U|,$$

gde je $\omega(G-U)$ broj komponenti grafa G-U.

Uslov 2. Ako je graf G Hamiltonov i ako je $U \subseteq V(G)$, $U \neq \emptyset$, tada važi:

$$\omega(G-U) \le |U| + 1.$$

Napomena: Uslov 1 je jači od Uslova 2. Uslovi su **potrebni**, ali **nisu do- voljni**.

Primeri

Primer 1: Kršenje uslova 1

Neka je $U=\{b,d,f,h\}.$ Ako važi:

$$\omega(G - U) = 5 > |U| = 4,$$

onda G ne može biti Hamiltonov.

Uklanjanjem temena b,d,f,h,ostaje 5 nepovezanih komponenti (čvorovi: a, c, e, g, i).

Primer 2: Kršenje uslova 2

Neka je $U=\{b,d,f,h,p\}$. Ako važi:

$$\omega(G - U) = 6 > |U| + 1 = 6,$$

onda G ne može biti Hamiltonov.

(Analogni graf kao gore sa dodatim temenom p.)

1.4 Zadaci

1. Neka je dat graf G sa čvorovima $\{a,b,c,d,e\}$ i granama $\{ab,bc,cd,de,ea\}$.

Rešenje: Graf je ciklus kroz svih 5 čvorova. Postoji put koji ih sve obilazi i vraća se na početak.

Zaključak: G je Hamiltonov.

2. Da li graf K_4 ima Hamiltonov ciklus?

Rešenje: Potpuni graf K_4 ima sve moguće veze izmedju čvorova. Ciklus $1\to 2\to 3\to 4\to 1$ koristi sve čvorove.

Zaključak: Da, K_4 je Hamiltonov.

3. Ciklus C_6 :

Rešenje: Po definiciji, ciklus C_n uključuje sve čvorove i formira Hamiltonov ciklus.

Zaključak: C_6 je Hamiltonov graf.

4. Za graf sa n=7,važi da $d(u)+d(v)\geq 7$ za svaki nepovezan par u,v.

Rešenje: Primena **Oreove teoreme**. Ako je zbir stepena svaka dva nepovezana čvora $\geq n$, graf je Hamiltonov.

Zaključak: G je Hamiltonov.

5. Da li je $K_{3,3}$ Hamiltonov?

Rešenje: Bipartitni graf $K_{n,n}$ ima Hamiltonov ciklus ako $n \geq 2$. Ovde je n = 3.

Zaključak: Da, $K_{3,3}$ je Hamiltonov.

6. Gima 10 čvorova, i svaki čvor ima stepen $\geq 5.$

Rešenje: Koristimo **Diracovu teoremu**: ako je $d(v) \geq \frac{n}{2}$, graf je Hamiltonov. Ovde: $d(v) \geq 5 = \frac{10}{2}$.

Zaključak: G je Hamiltonov.

7. Graf sa čvorovima $\{a, b, c, d, e, f\}$ i granama $\{ab, bc, cd, de, ef, fa, bd\}$:

Rešenje: Ciklus: $a \to b \to c \to d \to e \to f \to a$ koristi sve čvorove.

Zaključak: Graf je Hamiltonov.

8. Graf ima izolovani čvor ili komponentu sa jednim čvorom.

Rešenje: Hamiltonov ciklus mora da obuhvati sve čvorove i bude zatvoren. Ako čvor nije povezan ni sa kim - nemoguće ga uključiti u ciklus.

Zaključak: Takav graf nije Hamiltonov.

9. Graf sa 8 čvorova, i uklanjanjem 3 čvora broj komponenti postaje 4.

Rešenje: Koristimo sledeće pravilo:

Ako važi !(G-U)>|U|, graf nije Hamiltonov. Ovde je !(G-U)=4, |U|=3.

Zaključak: G nije Hamiltonov.