Problem Set

#02

mail@kenjisato.jp

Day 2

[1] Differential equations

In each case below, find a differential equation that describes the development of a stock variable.

- 1. The rates of withdrawal, *W*, and deposit, *D*, determine the bank balance, or savings, *S*.
- 2. The rates of birth, *B*, and death, *D*, determines the population, *N*.
- 3. The rates of government expenditure, G, tax receipts, T, and interest rate r determine the government debt, D.

[2] Prediction for the near future

Suppose that your clock shows it is time t now. Suppose also that some important variable k(t) satisfies a differential equation $\dot{k} = f(k)$, where \dot{k} denotes the time derivative of k, f is a function of k. You are interested in prediction of $k(t + \Delta t)$ for a sufficiently small $\Delta t > 0$.

In the cases listed below, is $k(t + \Delta t)$ greater than, smaller than or equal to k(t)?

- 1. f(k(t)) > 0
- 2. f(k(t)) < 0
- 3. f(k(t)) = 0

[3] Prediction for the distant future

Consider a differential equation $\dot{k} = f(k)$. The below figure sketches the graph of f. Describe what will happen to k(t) as $t \to \infty$, starting from k(t) indicated by the dot.

Notation

log or ln

Both log and ln denote the natural logarithm. It is the inverse function of e^x , where $e \simeq 2.718281...$ is Napier's constant; i.e., $e^{\ln x} = x$, and $\ln e^x = x$. When we want to specify the base b of log, we explicitly write it. For instance, the common logarithm is denoted by $\log_{10} y$. We will use the following formulas very often: for x, y > 0,

$$\ln xy = \ln x + \ln y$$
, $\ln \frac{x}{y} = \ln x - \ln y$, $\ln x^{\alpha} = \alpha \ln x$.

Derivatives

Suppose a variable x changes its values with time. Since we usually use letter t for time, we write x(t) to show it is time dependent; it is a function of time. We sometimes don't bother to write t when the time-dependence is obvious from the context. The derivative of x with respect to time

$$\frac{dx}{dt} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{(t + \Delta t) - t}$$

is denoted by $\dot{x}(t)$. \dot{x} is voiced "x dot."

Let f be a function of x. The derivative of f(x) with respect to x is denoted by f'(x) (f' is voiced "f prime"). When f is a function of x and x is a function of time, the most unambiguous expression, f(x(t)), is sometimes written simply as f(x). Because f(x) is a function of time (through the time dependence of x), we can take time-drivative of f(x), which is

$$\frac{df(x)}{dt} = f'(x(t))\dot{x}(t).$$

For example, let f = ln. Recall that $f'(x) = \ln'(x) = \frac{1}{x}$. Thus,

$$\frac{d}{dt}\left(\ln x(t)\right) = \frac{\dot{x}(t)}{x(t)}.$$

Growth Rates

Since we will study economic growth, we will analyze the rates of growth of many economic variables. Mathematically, the growth rate of x is defined by $\frac{\dot{x}}{x}$, which will be denoted by g_x in this class (this is not standard). Recall that

$$\frac{\dot{x}}{x} \simeq \frac{x(t+\Delta t) - x(t)}{\Delta t \cdot x(t)} = \frac{1}{\Delta t} \left[\frac{x(t+\Delta t) - x(t)}{x(t)} \right].$$

By multiplying $\frac{1}{\Delta t}$ and the instantaneous rate of change, $\frac{x(t+\Delta t)-x(t)}{x(t)}$, the latter is translated up into the rate of change in a unit length of time, a year, quarter, or month for instance.