Deret Fourier

Farikhin Dept Matematika FSM Undip

TUJUAN PEMBELAJARAN

- Mahasiswa mampu menentukan deret Fourier untuk fungsi periodic
- Mahasiswa mampu menentukan deret Fourier untuk fungsi diskontinu
- Mahasiswa dapat mengaplikasikan sifatsifat deret Fourier untuk komputasi bilangan irasional tertentu.

MANFAAT MATERI

- Deret fourier dapat digunakan untuk fungsi diskontinu. Sementara, fungsi ini tidak dapat direpresentasikan dengan deret Taylor/Maclaurin.
- Deret Fourier digunakan utamanya untuk fungsi periodic.
- Sifat oskilasi fungsi dapat direpresentasikan dengan deret Fourier.

MANFAAT MATERI

REFERENSI UTAMA

- Spiegel: Advanced Calculus (Schaum, Mc Graw-Hill), 1999
- Widowati dkk : Kalkulus (Undip Press), 2013

BASELINE PENGETAHUAN:

Integral tertentu

$$\int_{-\pi}^{\pi} \sin(nx) \cos(mx) dx = 0$$

$$\int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx = \begin{cases} 0, & n \neq m \\ \pi, & n = m \end{cases}$$

$$\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \begin{cases} 0, & n \neq m \\ \pi, & n = m \end{cases}$$

Fungsi periodik

- Fungsi f(x) berperiodik 2L : f(x) = f(x + 2L)
- Contoh Fungsi periodik : $f(x) = \sin(x)$ dan $f(x) = \cos(x)$
- Contoh lainnya:

Deret Fourier $f: R \to R$ dengan

$$f(x)$$
 terdefinisi pada $-L < x < L$

dan

$$f(x) = f(x + 2L)$$
 untuk x lainnya

adalah

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

dengan

$$A_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

dan

$$B_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$
 Farikhin Dept matematika $\int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

DERET FOURIER untuk $L=\pi$

Fungsi periodik $f: R \to R$, deret Fourier f pada interval $-\pi < x < \pi$

adalah

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(nx) + B_n \sin(nx))$$

dengan

$$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

dan

$$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Farikhin Dept matematika FSM

Contoh 1:

Buat deret Fourier utk
$$f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$$
 dengan periode = 10 ($L = 5$)

Contoh 1: Solusi

Periode 2L = 10 maka l = 5, sehingga

$$A_n = \frac{1}{5} \int_{-5}^{5} f(x) \cos\left(\frac{n\pi x}{5}\right) dx$$

$$= \frac{3}{5} \left(\frac{5}{n\pi} \sin\left(\frac{n\pi x}{5}\right) \right) \Big|_{x=0}^{5} = 0$$

untuk $n \neq 0$.

$$A_0 = \frac{1}{5} \int_{-5}^{5} f(x) \, dx = \frac{1}{5} \int_{0}^{5} 3 \, dx = 3$$

Contoh 1: Solusi

$$B_n = \frac{1}{5} \int_{-5}^{5} f(x) \sin\left(\frac{n\pi x}{5}\right) dx$$

$$= \frac{3}{5} \left(-\frac{5}{n\pi} \cos\left(\frac{n\pi x}{5}\right) \right) \Big|_{x=0}^{5}$$

$$= \frac{3(1 - \cos(n\pi))}{n\pi}$$

Jadi

$$f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} \left[(0) \left(\cos\left(\frac{n\pi x}{5}\right) \right) + \left(\frac{3(1 - \cos(n\pi))}{n\pi}\right) \left(\sin\left(\frac{n\pi}{5}\right) \right) \right]$$

$$= \frac{3}{2} + \sum_{\text{Farikhin Dept}}^{\infty} \left[\left(\frac{3(1 - \cos(n\pi))}{n\pi}\right) \left(\sin\left(\frac{n\pi x}{5}\right) \right) \right]$$

Deret Fourier untuk fungsi Genap dan Ganjil

Definisi fungsi genap/ganjil

- Fungsi genap f(x) = f(-x). Sebagai Contoh:
 - 1. f(x) = |x|
 - $2. \quad f(x) = \cos(x)$
- Fungsi ganjil f(-x) = -f(x). Sebagai Contoh:
 - 1. f(x) = x
 - $2. \quad f(x) = \sin(x)$

Sifat fungsi genap/ganjil f(x)

Fungsi Genap	Fungsi Ganjil
$\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$	$\int_{-L}^{L} f(x) dx = 0$
Grafik fungsi $f(x)$ simetris terhadap sumbu $y = 0$	Grafik fungsi $f(x)$ simetris terhadap sumbu $y = -x$
Perkalian dua fungsi genap menghasilkan fungsi genap	Perkalian fungsi ganjil dan fungsi genap menghasilkan fungsi ganjil
Perkalian dua fungsi ganjil menghasilkan fungsi genap Farikhin Dept matematika FSM	

Contoh 2

Tentukan deret Fourier untuk fungsi

$$f(x) = \left(\frac{\pi - x}{2}\right)$$

pada $(-\pi,\pi)$. Dengan deret tersebut, buktikan bahwa

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Contoh 2: Solusi

Misalkan

$$\left(\frac{\pi - x}{2}\right) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(nx) + \sum_{n=1}^{\infty} B_n \sin(nx)$$

Karena f(x) fungsi ganjil dan cos(nx) fungsi genal, maka f(x).cos(nx) merupakan fungsi ganjil, sehingga

$$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos(nx) dx = 0$$

Selanjutnya,

$$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{\pi - x}{2} \right) . \sin(nx) dx = \frac{1}{n}$$

Contoh 2 : Solusi

Akibatnya,

$$\left(\frac{\pi - x}{2}\right) = +\sum_{n=1}^{\infty} \frac{1}{n} \sin(nx)$$

Untuk
$$x = \frac{\pi}{2}$$
 maka

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Aspek teori untuk Deret Fourier

Aspek teori

Teorema 1: Jika x_0 titik diskonitu untuk f(x) maka nilai deret Fourier di x_0 konvergen ke $\frac{f(x_0+0)+f(x_0-0)}{2}$

Teorema 2: Penulisan deret Fourier suatu fungsi adalah tunggal.

Teorema 3: Jika f(x) kontinu pada $(-\pi,\pi)$ maka deret Fourier konvergen ke f(x).

Aspek teori

Teorema 4 : Jika f(x) kontinu pada $(-\pi,\pi)$ maka

$$\lim_{n\to\infty} A_n = 0,$$

$$\lim_{n\to\infty} B_n = 0,$$

dan

$$\frac{A_0^2}{2} + \sum_{n=1}^p (A_n^2 + B_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$$

(Advanced Calculus, Kaplan)

Aspek teori

Teorema 5: Karakteristik deret Fourier untuk fungsi periodik

Fungsi	Koefisien Fourier
$\alpha f(x) + \beta g(x)$	$\alpha F_n + \beta G_n$
f(-x)	F_{-n}
f(x)g(x)	$\sum_{m,n=-\infty}^{\infty} F_m G_{n-m}$