Solving equations in \mathbb{Z}_p

CNT@SSHS #003 05/07/2019 (Tue) 4411 윤창기

Contents

• Tonelli - Shanks : Solving quadratic eqn.

• Cantor - Zassenhaus : Solving general eqns.

Tonelli - Shanks

Able to deal with classic NT tools

Invented by Alberto Tonelli, in 1891

Want to solve

• $x^2 \equiv n \pmod{p}$ in "polynomial" time. (For odd p, nonzero n)

• Finding one solution r is enough. The other one is -r.

Hold on, does the solution exist?

Euler's criterion

- $x^2 \equiv n \pmod{p}$ has a solution, if and only if $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
 - (mod p) notation will be omitted for convenience.
- If $x^2 \equiv n$ and $n^{\frac{p-1}{2}} \equiv -1$, $x^{p-1} \equiv n^{\frac{p-1}{2}} \equiv -1$, which contradicts with FLT. So we immediately reject in this case.
- If $n^{\frac{p-1}{2}} \equiv 1$, there is a primitive root g s.t. $n \equiv g^{2k}$ for some k.
- So g^k would be the soln. of the quadratic equation.
- Then should we solve DLP now?

Hell nah.

- DLP is way too expensive!
- Our algorithm works in $O(\log^2 p)$, in average case.
 - Still polytime assuming GR..H...

An ansatz

- Let $p-1=Q\cdot 2^S$, with odd Q.
- We know that there is a minimal k s.t. $n^{p-1} \equiv n^{\frac{p-1}{2}} \equiv \cdots \equiv n^{Q \cdot 2^k} \equiv 1$.
- What if $n^Q \equiv 1$, (i.e. k = 0) in the extremely lucky case?
 - We put $r \equiv n^{\frac{Q+1}{2}}$, which gives $r^2 \equiv n$ and the algorithm terminates.

An ansatz

- Needless to say, k is nonzero in general case. But we still use $r \equiv n^{\frac{Q+1}{2}}$ as a 'pseudo-solution'!
- The 'pseudo-equation' is $r^2 \equiv nt$ with $t \equiv n^Q$.
- Our goal is achieving t = 1, maintaining the relation $r^2 \equiv nt$ through the iteration.

Inspecting t

- t is a 2^{S-1} -th root of 1.
 - $t^{2^{S-1}} \equiv n^{Q \cdot 2^{S-1}} \equiv n^{\frac{p-1}{2}} \equiv 1$.
- In firm, M = S is a kind of "strict upper bound" for "order of t"; there is minimal i s.t. $t^{2^i} \equiv 1$, guaranteed that i < M.
- Assume we can generate $t' \equiv tb^2$ with smaller M, for appropriate b.

The pseudo-equation still holds for r' = rb. Then M will drop to 1 (i = 0), after $O(\log p)$ times of loop.

Reducing M

- We will show that there is a *b* which makes M = i.
- Let z be a quadratic irresidue modulo p.
- Then $b = z^{Q \cdot 2^{M-i-1}}$ goes well with $t' = tb^2$, because

$$t'^{2^{i-1}} \equiv t^{2^{i-1}} z^{Q^{2^{M-1}}} \equiv (-1) \cdot (-1) \equiv 1. \text{ (for } M = S)$$

Reducing M

- In general, we need to prepare c s.t. $c^{2^{M-1}} \equiv -1$ and $c = z^{Q2^{S-M}}$ is enough!
- Initially M = S, so $c = z^Q$.
- If we change M to M'=i, $c'=c^{2^{M-i}}=z^{Q2^{S-M}2^{M-i}}=z^{Q2^{S-i}}$ plays the same role.
- Note that $b = z^{Q2^{M-i-1}} = \sqrt{c}$.

Complete algorithm

- 1. Test if n is a quadratic residue, with Euler's criterion. (Accept n = 0 here)
- 2. Find a quadratic irresidue z.
- 3. Initially, M = S, $c = z^Q$, $t = n^Q$, and $r = n^{\frac{Q+1}{2}}$.
 - 1. Terminate if t = 1.
 - 2. Find minimal i s.t. $t^{2^i} \equiv 1$. Acquire $b = c^{Q2^{M-i-1}}$.
 - 3. Put $M' \leftarrow i$, $c \leftarrow b^2$, $t \leftarrow tb^2$, and $r \leftarrow rb$.

- Test if n is a quadratic residue, with Euler's criterion. (Accept n = 0 here)
 O(log p).
- 2. Find a quadratic irresidue z.
- 3. Initially, M = S, $c = z^Q$, $t = n^Q$, and $r = n^{\frac{Q+1}{2}}$.
 - 1. Terminate if t = 1.
 - 2. Find minimal i s.t. $t^{2^i} \equiv 1$. Acquire $b = c^{Q2^{M-i-1}}$.
 - 3. Put $M' \leftarrow i$, $c \leftarrow b^2$, $t \leftarrow tb^2$, and $r \leftarrow rb$.

- 1. Test if n is a quadratic residue, with Euler's criterion. (Accept n = 0 here)
- 2. Find a quadratic irresidue z.

 Possible with 2 attempts of Euler's criterion in average.

 Polytime in worst case is guaranteed with Generalized Riemann Hypothesis. (Bach, 1990)
- 3. Initially, M = S, $c = z^Q$, $t = n^Q$, and $r = n^{\frac{Q+1}{2}}$.
 - 1. Terminate if t = 1.
 - 2. Find minimal i s.t. $t^{2^i} \equiv 1$. Acquire $b = c^{Q2^{M-i-1}}$.
 - 3. Put $M' \leftarrow i$, $c \leftarrow b^2$, $t \leftarrow tb^2$, and $r \leftarrow rb$.

- 1. Test if n is a quadratic residue, with Euler's criterion. (Accept n = 0 here)
- 2. Find a quadratic irresidue z.
- 3. Initially, M = S, $c = z^Q$, $t = n^Q$, and $r = n^{\frac{Q+1}{2}}$. O(S) loops
 - 1. Terminate if t = 1.
 - 2. Find minimal i s.t. $t^{2^i} \equiv 1$. Acquire $b = c^{Q2^{M-i-1}}$. O(S) multiplication
 - 3. Put $M' \leftarrow i$, $c \leftarrow b^2$, $t \leftarrow tb^2$, and $r \leftarrow rb$.

- Overall complexity : $O(\log p + S^2) = O(\log^2 p)$ in average.
- In many cases, S is way smaller than $\log p$.
- Assuming GRH, finding a quadratic irresidue is possible in $O(\log^3 p)$, which is not so practical compared to the random approach.

Hensel's lifting

• If we know the solution of $x^2 \equiv a \pmod{p^k}$, we can obtain the solution of $x^2 \equiv a \pmod{p^{k+1}}$ as well.

```
x^* = x + p^k t for unknown t.

(x^*)^2 \equiv x^2 + 2p^k xt + p^{2k} t^2 \equiv n + p^k u + 2p^k xt \pmod{p^{k+1}}

u + 2xt \equiv 0 \pmod{p} \implies t \equiv -2^{-1}ux^{-1} \pmod{p}
```

 $x^2 \equiv 86 \pmod{97}$.

 $86^{48} \equiv 1 \pmod{97}$, so 86 is a quadratic residue.

My 'random guess' to find z was 53 and 41, and I got 41 as z.

$$97 = 3 \times 2^5 + 1 \Longrightarrow Q = 3, S = 5.$$

Initial variables:

$$M = 5$$
, $t = 86^3 \equiv 27$, $c = 41^3 \equiv 51$, $r = 86^{\frac{3+1}{2}} = 24$.

$$M = 5$$
, $t = 27$, $c = 51$, $r = 24$.

$$27^{2^3} \equiv -1$$
, so $i = 4$.

 $b = z^{Q2^{S-i}}$ is desired, and we know that $b = c^{2^{M-i-1}}$.

$$M - i - 1 = 0$$
, so $b = c = 51$.

Now

$$M' = i = 4$$
, $c' = b^2 = 79$, $t' = 27 \times 51^2 = 96$, $r' = rb = 24 \times 51 = 60$.

$$M = 4$$
, $t = 96$, $c = 79$, $r = 60$.

$$96^{2^0} \equiv -1$$
, so $i = 1$.

 $b = z^{Q2^{S-i}}$ is desired, and we know that $b = c^{2^{M-i-1}}$.

$$M - i - 1 = 2$$
, so $b = c^4 = 22$.

Now

$$M' = i = 1$$
, $c' = b^2 = 79$, $t' = 96 \times 22^2 = 1$, $r' = rb = 60 \times 22 = 59$.

Since t = 1, we stop the iteration and return r = 59.

 $59^2 = 86$ holds, so algorithm was run successfully:)

Exercise

Project Euler #216, #437

Cantor - Zassenhaus

Sur-nonfiction 'factoring' algorithm Invented in 1981

Our goal

• Input : $f \in \mathbb{Z}_p[x]$.

• Output : $f = g_1g_2g_3 \cdots g_m$

• Complexity : $O((n \log p)^c)$ in random

What can we do?

- Addition / Subtraction
- Multiplication / Division / Mod / GCD
- Everything is quadratic in naïve, linearithmic with FFT. (GCD requires $O(n \log^2 n)$
- They are all "polytime"s after all:)

The overall algorithm

- 1. Extract the square free part of f (why?)
- 2. Run a **Distinct Degree Factorization** algorithm, which returns the list of factors classified in degrees.
- 3. Factorize each degree-wise factor in randomized manner.

Step 1. Extracting the square-free part

• The simplest part!

•
$$g = \gcd(f, f')$$

• f/g is the square – free part of f.

* For an irreducible polynomial $h, h^m \parallel f \implies h^{m-1} \parallel f'$.

Step 1. Extracting the square-free part

• Then, why should we treat the square-free polynomial?

- Irreducible polynomial ≈ prime
 - gcd≠1 ⇔ multiple
- For an irreducible h, $\mathbb{Z}_p[x]/h(x) \approx \mathbb{F}_{p^d}$.

• Given a square-free polynomial f, with degree n, return a list:

$$L = \{g_1, g_2, \cdots g_n\}$$

• g_i 's are product of distinct irreducible factors with degree i.

An important lemma:

• Let $R_p(d)$ be a product of all irreducible polynomials in \mathbb{Z}_p with degree d. Then

$$\prod_{d\mid m} R_p(d) = x^{p^m} - x.$$

DDF procedure

for
$$i = 1 \dots m$$

$$g_i = \gcd(x^{p^i} - x, f)$$

$$f = f/g_i$$

DDF procedure

for
$$i = 1 \dots m$$

$$g_i = \gcd(x^{p^i} - x, f)$$

$$f = f/g_i$$

???: Degree of x^{p^i} is exponential!!

Modified DDF procedure

```
for i = 1 \dots m

g_i = \gcd((x^{p^i} \bmod f) - x, f)
f = f/g_i
```


Step 3. Equal degree factorization

Interpreting the DDF result:

- If $g_n \neq 1$, f is irreducible.
- Else, factorize all g_i s, with $\deg g_i > i$.

Factorizing a "chunk" consisted of equal degree, distinct polynomials?

Step 3. Equal degree factorization

Let g be the "chunk" defined in former slide. $n \coloneqq \deg g$.

Now we generate a polynomial a(x) randomly, with $\deg a < n$.

We cross our finger and check $h = \gcd(a, g)$.

If h is nontrivial(neither 1, nor g), Hooray! Factorize h and g/h recursively.

Step 3. Equal degree factorization

Assume h = 1. $(h \neq g \text{ since deg } h \leq \deg a < \deg g)$

Then, a(x) is an element of

$$\mathbb{Z}_p^*[x]/g(x).$$

Algebra alert!

It isn't difficult to imagine $\mathbb{Z}_p^*[x]/g(x)$. It is a set of all polynomials $\operatorname{mod} g(x)$ but coprime to g(x).

Chinese remainder theorem is still alive and well:

If
$$g(x) = k_1(x)k_2(x)\cdots k_t(x)$$
, $(k_i(x) \text{ are pairwise coprime})$

$$\mathbb{Z}_p[x]/g(x) \approx \mathbb{Z}_p[x]/k_1(x) \times \mathbb{Z}_p[x]/k_2(x) \times \cdots \times \mathbb{Z}_p[x]/k_t(x).$$

A GENUINE algebra alert!

Fact 1.

For an irreducible polynomial f(x) with degree d, $\mathbb{Z}_p[x]/f(x) \approx \mathbb{F}_{p^d}$.

Note that \mathbb{F}_{p^d} is a field with p^d elements, should be distinguished with \mathbb{Z}_{p^d} . Remark: \mathbb{Z}_8 is not a field!

A GENUINE algebra alert!

Fact 2. (Fermat's little theorem)

For a field \mathbb{K} and $a \in \mathbb{K}$,

$$a^{|\mathbb{K}|-1} = 1.$$

Proof: Analogous to proof of the classic FLT.

i.e. $a(x)^{p^{d}-1} = 1$ for all $a(x) \in \mathbb{Z}_p[x]/f(x)$.

A GENUINE algebra alert!

Fact 3. (Lagrange's theorem)

For a field \mathbb{K} , and $p(x) \in \mathbb{K}[x]$, p(x) = 0 accepts at most $\deg p$ solutions in \mathbb{K} .

- Lemma (Fact 4.) For a field \mathbb{K} , $\mathbb{K}[x]$ is a Unique Factorization Domain. $(p(x) \in \mathbb{K}[x])$ accepts a unique factorization)
- The proof after the lemma is analogous to proof of the classic one.

To recall our problem, we focus on the fact that "a(x) is an element of $\mathbb{Z}_p^*[x]/g(x)$ ".

According to the Chinese Remaindering Theorem, a(x) can be written in the context of "CRT coordinate" – $a(x) = [a_1(x), a_2(x), \cdots, a_t(x)]$

With $g(x) = h_1 h_2 \cdots h_t$, and $a_i(x) \in \mathbb{Z}_p^*[x]/h_i(x) \approx \mathbb{F}_{p^d}^*$.

Now we take the $\frac{p^{d}-1}{2}$ -th power on a(x). More precisely, we consider $b(x) = a(x)^{\frac{p^{d}-1}{2}} + 1.$

Then each $b_i(x) \in \mathbb{F}_{p^d}$ becomes $a_i(x)^{\frac{p^d-1}{2}} + 1$ parallelly.

Then each $b_i(x) \in \mathbb{F}_{p^d}$ becomes $a_i(x)^{\frac{p^d-1}{2}} + 1$ parallelly.

Lemma. For all i, $a_i(x)^{\frac{p^{d-1}}{2}} = \pm 1$.

pf) $\forall a \in \mathbb{F}_{p^d}$, $a^{\frac{p^d-1}{2}}$ is a soln. of the eqn. $x^2-1=0$. By Lag's theorem, there are no solutions of former equation except ± 1 .

In the same manner, we know that \mathbb{F}_{p^d} is halved by the value of its $\frac{p^{d-1}}{2}$ -th power.

Hence, for a randomly chosen polynomial a(x), Each $b_i(x)$ is 0 in probability $\frac{1}{2}$.

Theorem*. For a randomly chosen polynomial a(x),

 $a(x)^{\frac{p^{d}-1}{2}} + 1$ has a common factor with g(x) w/ probability $1 - \frac{1}{2^{t}}$.

Caution:

If all $b_i(x)$'s are -1, it means b(x) = 0, which gives a trivial factor g(x).

Theorem. For a randomly chosen polynomial a(x),

 $a(x)^{\frac{p^d-1}{2}} + 1$ has a common **nontrivial** factor with g(x), w/ probability $1 - \frac{2}{2^t} = 1 - \frac{1}{2^{t-1}}$.

Summary

- 1. Extract the square free part.
 - $O(n \log p + GCD)$
- 2. Run DDF.
 - $O(n \log p)$ multiplications / modular ops.
- 3. Randomly factorize the chunks.
 - About $O(n \log n \log p)$ multiplications / modular ops?
 - It's a poly after all:)

With optimized polynomial ops, the expected complexity is $O(n^2 \log n \log \log n (\log n + \log p))$.

Apdx: Description on \mathbb{F}_{p^d}

Let $f(x) = x^d + f_{d-1}x^{d-1} + f_{d-2}x^{d-2} + \dots + f_0$ be an irreducible.

Every element $p(x) \in \mathbb{Z}_p[x]/f(x)$ can be written as a vector -

$$1 = (0, 0, \dots, 0, 1)$$

$$x = (0, 0, \dots, 1, 0)$$

$$x^{d-1} = (1, 0, \dots, 0, 0),$$

$$p(x) = (p_{d-1}, p_{d-2}, \dots, p_1, p_0),$$

And

$$x^d = -(f_{d-1}, f_{d-2}, \cdots, f_0).$$

In fact \mathbb{F}_{p^d} is a good vector space, with a multiplication operator between the elements.

It is important to pick an irreducible polynomial, because it's the only method to implement \mathbb{F}_{p^d} in fact.

A very important lemma:

• Let $R_p(d)$ be a product of all irreducible polynomials in \mathbb{Z}_p with degree d. Then

$$\prod_{d|m} R_p(d) = x^{p^m} - x.$$

Inspection on degree

- I(d) := # of irreducible polynomials in \mathbb{Z}_p with degree d.
- $\deg R_p(d) = dI(d)$

$$p^m = \sum_{d|m} dI(d)$$

$$dI(d) = \sum_{e|d} p^e \mu\left(\frac{d}{e}\right) \text{ (\cdots Mobius inversion)}$$

$$dI(d) = \sum_{e|d} p^e \mu\left(\frac{d}{e}\right) \text{ (\cdots Mobius inversion)}$$

$$\therefore I(d) = \frac{p^d}{d} + O(\sqrt{p^d})$$

If we randomly pick a polynomial with degree d, it is irreducible with probability $\approx \frac{1}{d}$.

If we randomly pick a polynomial with degree d, it is irreducible with probability $\approx \frac{1}{d}$.

The irreducibility testing can be run deterministically with DDF.

If we repeat Generating – DDF procedure 5d times, it gives an irreducible polynomial w/ probability $\approx 1 - \left(1 - \frac{1}{d}\right)^{5d} \approx 1 - \frac{1}{e^5} \approx 0.9933$.

Berlekamp's algorithm

Slightly different to the Berlekamp - Massey algorithm Invented in 1967

Berlekamp vs Cantor - Zassenhaus

Both are randomized algorithm for factorization

```
• Time complexity:

T_B = O(n^{\omega} + n \log n \log \log n \log p)
T_{CZ} = O(n^2 \log n \log \log n (\log n + \log p))
```

• Space complexity : $O(n^2)$ in B, O(n) in CZ.

Berlekamp's algorithm: Overview

- 1. Extract the square free part.
- 2. Find the Berlekamp sub*algebra*.
- 3. Run randomized factorization several times.

No DDF!

• Step 1 is identical to CZ.

According to the CRT, $R = \mathbb{Z}_p[x]/f(x) \approx \mathbb{Z}_p[x]/f_1(x) \times \mathbb{Z}_p[x]/f_2(x) \times \cdots \times \mathbb{Z}_p[x]/f_t(x).$

In the **ring** R, we define the Frobenius map:

$$T: x \mapsto x^p$$
.

Note that T is an identity map in \mathbb{Z}_p .

Frobenius map is linear:

$$(a+b)^p = a^p + b^p.$$

$$(ca)^p = c^p a^p = ca^p. (c \in \mathbb{Z}_p)$$

So, for
$$w(x) = w_0 + w_1 x^1 + \dots + w_{n-1} x^{n-1} \in R$$
, $(n := deg w)$

$$T(w(x)) = w_0 + w_1 T(x) + w_2 T(x^2) + \dots + w_{n-1} T(x^{n-1}).$$

Now, we find the polynomials satisfying T(w) = w.

Why?

Let $w = [w_1, w_2, \dots, w_t]$. (CRT coordinate).

T(w) = w is equivalent to the condition $T(w_i) = w_i$ for all i's:

But w_i is an element of the field $\mathbb{Z}_p[x]/f_i(x)$, so $T(w_i) = w_i$ means $w_i \in \mathbb{Z}_p$.

So if we can generate w "randomly", then CRT-coordinate of $w^{\frac{p-1}{2}}$; will be confined in ± 1 , which meets the idea of CZ.

The Berlekamp Subalgebra *B*

 $B = \ker(T - I) = \{w : Tw = w\}$ forms a vector space as well. And $w \in B$ can be constructed with the w_i 's in \mathbb{Z}_p ; which indicates $B \approx \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \mathbb{Z}_p = \mathbb{Z}_p^t$.

So if we find the 'basis' of $B = \{b_1, b_2, \cdots, b_t\}$, we can generate $w \in B$ in a faithful random sense: $w = c_1b_1 + c_2b_2 + \cdots + c_tb_t$.

We know that $\{1, x, \dots, x^{n-1}\}$ spans R. So T accepts a matrix representation:

$$T(x^i) = \sum_j t_{ji} x^j \Longrightarrow T = (t_{ij}).$$

 $(1, x, x^{2}, \dots, x^{n-1}) \text{ is a row vector:}$ $r(x) = \begin{pmatrix} 1 & x & \cdots & x^{n-1} \end{pmatrix} \cdot \begin{pmatrix} r_{0} \\ r_{1} \\ \vdots \\ r_{n-1} \end{pmatrix}.$ $T(r(x)) = (T(1) \quad T(x) \quad \cdots \quad T(x^{n-1})) \cdot \begin{pmatrix} r_{0} \\ r_{1} \\ \vdots \\ r_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & x & \cdots & x^{n-1} \end{pmatrix} \cdot T \cdot \begin{pmatrix} r_{0} \\ r_{1} \\ \vdots \\ r_{n-1} \end{pmatrix}.$

Step 3. Run randomized factorization

After obtaining $B = \{b_i\}$, a random linear combi. of b_i 's will give a factor of f in high probability.

We can reuse *B* without re-computation: the more iterations will give the more "different" factors.

We can decompose f into "near" the primitive factors by increasing the iterations. Of course, re-applying Berlekamp's algorithm to the "small chunks" is good as well.

Further

Von zur Gathen & Shoup's algorithm (1992):

- Time: $T_{GS} = O(n^2 \log^2 n \log \log n + n \log n \log \log n \log p)$.
- Space : $O(n^{1.5})$
- Intermediate complexity between CZ and Ber.
- Better actual performance in large n, p than both.