BLG 231E - Digital Circuits

Assignment 5

Student ID: 150200054 Full Name: Aslı Yel

Analyze the synchronous sequential circuit with a single input (X) and two outputs (A, B) shown in the figure below. (Note: One flip-flop is a J-K flip-flop, the other is a D flip-flop).

Istanbul Technical University Department of Computer Engineering

a) Write the next state equations, $S^+=H(S,I)$.

$$\begin{split} S^+ &= \{Q_{JK}^+, Q_D^+\} \\ J &= Q_D \\ K &= X' \cdot Q_D \cdot Q_{JK} \\ D &= X \end{split} \qquad F(S,I) \\ Q_{JK}^+ &= J \cdot Q_{JK}' + K' \cdot Q_{JK} \ (J-K \ flip-flop \ characteristic \ equation) \\ Q_{JK}^+ &= Q_D \cdot Q_{JK}' + (X' \cdot Q_D \cdot Q_{JK})' \cdot Q_{JK} \\ Q_{JK}^+ &= Q_D \cdot Q_{JK}' + (X+Q_D'+Q_{JK}') \cdot Q_{JK} \\ Q_{JK}^+ &= Q_D \cdot Q_{JK}' + X \cdot Q_{JK} + Q_D' \cdot Q_{JK} + Q_{JK}' \cdot Q_{JK} \\ Q_{JK}^+ &= Q_D \oplus Q_{JK}' + X \cdot Q_{JK} \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \end{split} \qquad \text{minimization} \\ Q_D^+ &= X \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ \\ Q_{JK}^+ &= Q_D \oplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \\ Q_D^+ &= X \\ Q_D^+ &= X \\ \\ Q_D^$$

b) Construct the state/output table.

$$\begin{split} S^+ &= \{Q_{JK}^+, Q_D^+\} \\ Q_{JK}^+ &= Q_D \bigoplus Q_{JK} + X \cdot Q_{JK} \\ Q_D^+ &= X \end{split} \qquad S^+ = H(S,I) \end{split}$$

Outputs A and B depend only on the state variables (Q_D , Q_{JK}).

The circuit is designed using the Moore model and output functions are in the form of O = G(S)

Output function for output A:

$$A = Q_{JK}$$

Output function for output B:

$$B = Q_D$$

$Q_{JK}^+Q_{D}^+$					
	X Q _{JK} Q _D	0	1	A	В
	00	00	01	0	0
	01	10	11	0	1
	10	10	11	1	0
	11	00	11	1	1

Istanbul Technical University Department of Computer Engineering

c) Draw the state diagram.

