Homework9

Zhihao Wang

04/01/2022

3.7.4

(a)

Since this matrix is uppertriangular matrix \to The eignvalue of the matrix is its diagonal. There are two different eignvalues. By **Theorem 3.8**, there are at least two independant eignvectors. By **Theorm 3.28**, they are basis of \mathbb{C} . By **Corollary 3.16**, these two independant eignvectors can form an invertible matrix S. So it is diagonalizable.

(b)

Since this matrix is upper triangular matrix \to The eignvalue of the matrix is its diagonal. There are only one eignvalue which is 1. We know that $Eig_{\lambda}T = Ker(T - \lambda I)$.

$$A - \lambda I = A - I \to \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

If we do **RREF** to this matrix: $\begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Apparently, there are only two

pivots in this matrix. By **Theorem 3.35**, $Rank(T - \lambda I) = 2 \Rightarrow Null(T - \lambda I) = 1$ there are only one independnt eignvectors of matrix. By **Theorm 3.28**, It can not form an invertible matrix S, therefore, it is not diagonolizable.

(c)

Since this matrix is uppertriangular matrix \to The eignvalue of the matrix is its diagonal. There are only two eignvalue which are 1, 2. We know that $Eig_{\lambda}T = Ker(T - \lambda I)$.

$$A - \lambda_1 I = A - I \to \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} A - \lambda_2 I = A - 3I \to \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Apparently, there are two pivots in the first matrix. By **Theorem 3.35**, $Rank(T - \lambda I) = 2 \Rightarrow Null(T - \lambda I) = 1$ there is only one independnt eignvector of matrix. There is only one pivot in the second matrix. By **Theorem 3.35**, $Rank(T - \lambda I) = 1 \Rightarrow Null(T - \lambda I) = 2$ there are two independnt eignvectors of matrix. By **Theorem 3.8**, these three eignvectos are independant. By **Theorm 3.28**, It can form an invertible matrix S, therefore, it is diagonolizable.

(d)

Since this matrix is uppertriangular matrix \to The eignvalue of the matrix is its diagonal. There are only two eignvalue which are 1,3. We know that $Eiq_{\lambda}T = Ker(T - \lambda I)$.

$$A - \lambda_1 I = A - I \to \begin{bmatrix} 1 & 0 & 7 \\ 0 & 0 & 8 \\ 0 & 0 & 1 \end{bmatrix} A - \lambda_2 I = A - 2I \to \begin{bmatrix} 0 & 0 & 7 \\ 0 & -1 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

If we do **RREF** to the second matrix: $\begin{bmatrix} 0 & 0 & 7 \\ 0 & -1 & 8 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & -1 & 8 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}.$ Apparently, there are two pivots in the first matrix. By **Theorem 3.35**, $Rank(T-\lambda I)=2 \Rightarrow Null(T-\lambda I)=1$ there

pivots in the first matrix. By **Theorem 3.35**, $Rank(T - \lambda I) = 2 \Rightarrow Null(T - \lambda I) = 1$ there is only one independnt eignvectors of matrix. There are two pivots in the second matrix. By **Theorem 3.35**, $Rank(T - \lambda I) = 2 \Rightarrow Null(T - \lambda I) = 1$ there is only one independnt eignvector of matrix. By **Theorem 3.8**, these two eignvectos are independant. By **Theorem 3.28**, It can not form an invertible matrix S, therefore, it is not diagonolizable.

3.7.10

(a)

Proof Prove it by doing arithmetic calculation

$$p(A)x = (a_0I + a_1A + a_2A^2 + \dots + a_nA^n)x = (a_0x + a_1\lambda x + a_2\lambda Ax + \dots + a_n\lambda A^{n-1}x)$$

$$= (a_0x + a_1\lambda x + a_2\lambda^2 x + \dots + a_n\lambda^2 A^{n-2}x) = (a_0x + a_1\lambda x + a_2\lambda^2 x + \dots + a_n\lambda^3 A^{n-3}x)$$

$$= \dots$$

$$= (a_0 + a_1\lambda + a_2\lambda^2 x + \dots + a_n\lambda^n)x = p(\lambda)x$$

Since x is eignvector of A, x is not $\{0\} \to x$ is an eignvector of p(A) with eignvalue $p(\lambda)$.

(b)

Proof From part (a): we know that $p(A)x = p(\lambda)x$. Therefore, $p(A)x = 0 \Rightarrow p(\lambda)x = 0$. Since $x \neq 0$, $p(\lambda) = 0$.

(c)

Proof From part (b): we know that if p(A)x = 0, then $p(\lambda) = 0$. If $p(A) = 0 \rightarrow p(A)x = 0 \rightarrow p(\lambda) = 0$

3.7.12

Proof Denote The basis of F^n as $(e_1, e_2, ..., e_n)$.

We choose a random vector e_j from $(e_1, e_2, ..., e_n)$. Since A is an uppertriangular matrix, by **Lemma 3.68**, $Ae_j = \sum_{i=1}^{i=j} a_i e_i$. Since it is strictly uppertriangular matrix, $a_j = 0$, we get that

 $Ae_j = \sum_{i=1}^{i=j-1} a_i e_i$. (Ae_j) is jth column of A. $(A^k e_j)$ is jth column of A^k .

$$A^{n}e_{j} = A^{n-1}(\sum_{i=1}^{i=j-1} a_{i}e_{i}) \Rightarrow A^{n-2}(AAe_{j}) = A^{n-2}(\sum_{i=1}^{i=j-1} Aa_{i}e_{i})$$

$$= A^{n-2}(\sum_{i=1}^{i=j-1} a_{i}Ae_{i}) = A^{n-2}(\sum_{i=1}^{i=j-1} a_{i}\sum_{k=1}^{k=i-1} b_{k}e_{k})$$

 $\sum_{i=1}^{i=j-1} a_i \sum_{k=1}^{k=i-1} b_k e_k \in Span(e_1,e_2,...,e_{j-2}). \ \ So \ we \ can \ conclude \ that \ A^n e_j = A^{n-2} \sum_{i=1}^{i=j-2} c_i e_i.$

$$A^{n}e_{j} = A^{n-2} \sum_{i=1}^{i=j-2} c_{i}e_{i}$$

$$= A^{n-3} \left(\sum_{i=1}^{i=j-3} d_{i}e_{i} \right)$$

$$= \dots$$

$$= A^{n-j} \left(\sum_{i=1}^{i=0} x_{i}e_{i} \right)$$

$$= 0$$

It is true $\forall j \in \{1,...,n\}$. So all columns of A^n are zero.

3.7.14

Proof Suppose The dim V = n. $T^0 = I$.

If we want to find a non-zero polynomial, which is equivalent to find a list of dependent vectors. By **Theorem 2.5**, we now that $\mathcal{L}(\mathcal{V})$ itself is a vector space. By **Corollary 3.43**, we know $dim\mathcal{T} = dimV * dimV = n^2$.

Consider Construct a List $(I, T^1, T^2, ..., T^{n^2})$. By **Proposition 3.21**, we know that the number of independent vectors in a list is at most $(\dim V)^2 = n^2$. Since there are $n^2 + 1 > n^2$ elements in $(I, T^1, T^2, ..., T^{n^2})$, so it can not be independent, therefore it is a list of dependent vectors. By **Definition Of Linearly Dependent**, there must exist a list of coefficients $(a_0, a_1, ..., a_{n^2})$ which is not all zero. It makes $\sum_{i=0}^{i=n^2} a_i T^i = 0$. Therefore, there exists a nonzero polynomial $p(x) = \sum_{i=0}^{i=n^2} aix^i$.

4.1.2

(a)

Since the field is \mathbb{R} , therefore, $\langle v, w \rangle = \langle w, v \rangle$.

$$3 = \|v - w\|^2 = \langle v - w, v - w \rangle$$
$$= \langle v, v \rangle + \langle w, w \rangle - 2\langle v, w \rangle$$
$$7 = \|v + w\|^2 = \langle v + w, v + w \rangle$$
$$= \langle v, v \rangle + \langle w, w \rangle + 2\langle v, w \rangle$$

Subtract those two equations, we will get $4 = 4\langle v, w \rangle \Rightarrow \langle v, w \rangle = 1$

(b)

Use the answer from (a)

$$7 = ||v + w||^2 = \langle v, v \rangle + \langle w, w \rangle + 2$$
$$\Rightarrow ||v||^2 + ||w||^2 = 5$$

4.1.6

Denote The ith entry of a_j , b_k are a_{ij} , b_{ik} .

Proof

$$[A^*B]_{jk} = \sum_{i=1}^{i=m} a_{ji}^* b_{ik} = \sum_{i=1}^{i=m} \overline{a_{ij}} b_{ik} = \sum_{i=1}^{i=m} b_{ik} \overline{a_{ij}} = \langle b_k, a_j \rangle$$

4.1.10

Proof Inorder to prove this will defines an inner product on \mathbb{W} . We need to follow the **Definition** on page 226, 227. Since T is an isomorphism.

Denote $\forall w_1, w_2, w_3 \in \mathbb{W}, \exists v_1 = T^{-1}(w_1), v_2 = T^{-1}(w_2), v_3 = T^{-1}(w_3), \text{ where } v_1, v_2, v_3 \in \mathbb{V}, \forall a \in \mathbb{F}.$

Inner product is scalar: Since \mathbb{V} is a inner product vector space, $\langle v_1, v_2 \rangle = k \in (F)$. $\forall w_1, w_2 \in \mathbb{W}$, $\langle w_1, w_2 \rangle = \langle T^{-1}(w_1), T^{-1}(w_2) \rangle = \langle v_1, v_2 \rangle = k \in (F)$.

Distributive Law: Since \mathbb{V} is a innerproduct vectorspace, $\langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle$. Therefore, $\langle w_1 + w_2, w_3 \rangle = \langle T^{-1}(w_1) + T^{-1}(w_2), T^{-1}(w_3) \rangle = \langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle = \langle T^{-1}(w_1), T^{-1}(w_3) \rangle + \langle T^{-1}(w_2), T^{-1}(w_3) \rangle = \langle w_1, w_3 \rangle + \langle w_2, w_3 \rangle$.

Homogenity: Since \mathbb{V} is a innerproduct vectorspace, $\langle av_1, v_2 \rangle = a \langle v_1, v_2 \rangle$. Therefore, $\langle aw_1, w_2 \rangle = \langle T^{-1}(aw_1), T^{-1}(w_2) \rangle = \langle aT^{-1}(w_1), T^{-1}(w_2) \rangle = \langle av_1, v_2 \rangle = a \langle v_1, v_2 \rangle = a \langle T^{-1}(w_1), T^{-1}(w_2) \rangle = a \langle w_1, w_2 \rangle$.

Symmetry: Since \mathbb{V} is a inner product vector space, $\langle v_1, v_2 \rangle = \overline{\langle v_2, v_1 \rangle}$. Therefore, $\langle w_1, w_2 \rangle = \langle T^{-1}(w_1), T^{-1}(w_2) \rangle = \langle v_1, v_2 \rangle = \overline{\langle v_2, v_1 \rangle} = \overline{\langle T^{-1}(w_2), T^{-1}(w_1) \rangle} = \overline{\langle w_2, w_1 \rangle}$.

Nonenegtive: Since \mathbb{V} is a innerproduct vectorspace, $\langle v_1, v_1 \rangle \geq 0$. Therefore, $\langle w_1, w_1 \rangle = \langle T^{-1}(w_1), T^{-1}(w_1) \rangle = \langle v_1, v_1 \rangle \geq 0$.

Definiteness: Since \mathbb{V} is a innerproduct vectorspace, if $\langle v_1, v_1 \rangle = 0 \rightarrow v_1 = 0$. Therefore, if $0 = \langle w_1, w_1 \rangle = \langle T^{-1}(w_1), T^{-1}(w_1) \rangle = \langle v_1, v_1 \rangle \rightarrow v_1 = 0 \rightarrow w_1 = T(v_1) = T(0) = 0$.

4.1.12

(a)

Proof \Rightarrow *If* v = 0, by **Theorem 4.2(3)**

$$\langle v, w \rangle = \langle 0, w \rangle = 0, \forall w \in \mathbb{V}$$

 $\Leftarrow If \langle v, w \rangle = 0, \forall w \in \mathbb{V}, by Theorem 4.2(4)$

$$v = 0$$

(b)

Proof \Rightarrow *If* v = w

$$\langle v, u \rangle = \langle w, u \rangle = \langle w, u \rangle, \forall u \in \mathbb{V}.$$

 \Leftarrow If $\langle v, u \rangle = \langle w, u \rangle$, $\forall u \in \mathbb{V}$. Using result from (a)

$$\langle v, u \rangle = \langle w, u \rangle \rightarrow \langle v - w, u \rangle = 0 \rightarrow v - w = 0 \rightarrow v = w$$

(c)

Proof \Rightarrow *If* S = T.

$$\langle Sv_1, v_2 \rangle = \langle Tv_1, v_2 \rangle, \forall v_1, v_2 \in \mathbb{V}$$

 $\Leftarrow If \langle Sv_1, v_2 \rangle = \langle Tv_1, v_2 \rangle, \forall v_1, v_2 \in \mathbb{V}.$ Using conclusion from (a), (b)

$$\begin{split} \langle Sv_1, v_2 \rangle &= \langle Tv_1, v_2 \rangle \rightarrow \langle Sv_1 - T(v_1), v_2 \rangle = 0 \\ &\rightarrow \forall v_2, \langle (S - T)(v_1), v_2 \rangle = 0 \\ &\rightarrow (S - T)(v_1) = 0 \\ &\rightarrow \forall v_1, S(v_1) = T(v_1) \\ S &= T \end{split}$$