Linear Programming

Jack Yang

December 2, 2020

A linear programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints. The constraints maybe equalities or inequalities.

Linear programs are problems that can be expressed in standard matrix form as

Manimize
$$c^T x$$

s.t. $Ax \le b$
and $x > 0$

Here we assume that the matrix A has a full row rank.

Definition 1 (Hyperplane). $\{x: a_1x_1 + a_2x_2 + \cdots + a_nx_n = b\}$ (linear equality constraint).

Definition 2 (Halfspace). $\{x: a_1x_1 + a_2x_2 + \cdots + a_nx_n \leq b\}$ (linear inequality constraint).

Definition 3 (Polyhedron). The intersection of several half spaces.

Definition 4 (Polytope). A bounded, nonempty polyhedron.

Slack form is a more convenient form for describing the Simplex Algorithm for solving linear program. We are dealing with linear equality instead of inequality.

We change inequality

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

to an equality

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + x_{n+1} = b_i$$

by a slack variable x_{n+1} where $x_{n+1} \ge 0$.

Theorem 5 (Polytope \Leftrightarrow Feasible Region). Any polytope $P \subseteq \mathbb{R}^{n-m}$ corresponds to the feasible region of a linear program $Ax = b, x \geq 0$, and vice versa.

Proof. (Polytope \Rightarrow Feasible Region) In the standard form, we write

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$
$$x_1, x_2, \dots, x_n \ge 0$$

Now, we write in slack form (let s_1, s_2, \ldots, s_m be slack variables)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + s_1 \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + s_2 \le b_2$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + s_m \le b_m$$

 $x_1, x_2, \dots, x_n, s_1, s_2, \dots, s_m \ge 0$

Thus, $(x_1, x_2, ..., x_n) \in P \Rightarrow (x_1, x_2, ..., x_n, s_1, s_2, ..., s_m) \ge 0$.

(Feasible Region \Rightarrow Polytope) Row reduction gives

$$x_1 + a'_{1,m+1}x_{m+1} + \dots + a'_{1,n}x_n = b'_1$$

 $x_2 + a'_{2,m+1}x_{m+1} + \dots + a'_{2,n}x_n = b'_2$

$$x_m + a'_{m,m+1}x_{m+1} + \dots + a'_{m,n}x_n = b'_m$$

 $x_1, x_2, \dots, x_m, x_{m+1}, \dots, x_n \ge 0$

By removing positive variables x_1, x_2, \ldots, x_m gives

$$a'_{1,m+1}x_{m+1} + \dots + a'_{1,n}x_n = b'_1$$

 $a'_{2,m+1}x_{m+1} + \dots + a'_{2,n}x_n = b'_2$

$$a'_{m,m+1}x_{m+1} + \dots + a'_{m,n}x_n = b'_m$$

 $x_{m+1}, \dots, x_n \ge 0$

Now, we define a polytope $P \subseteq \mathbb{R}^{n-m}$ as the intersection of m half-spaces. Thus, any feasible solution $x = (x_1, x_2, \dots, x_n)$ correspond to $x_N = (x_{m+1}, \dots, x_n)$.

Theorem 6 (Optimal Solution can be Reached at a Vertex). There exists a vertex in P that takes the optimal value (if the optimal objective value is finite).

Proof. Since P is closed and bounded, so $c^T x$ can reach its optimum in P. Define a point x_0 be the optimal solution. We want to show that there is a vertex at least as good as x_0 .

 x_0 can be represented as the convex combination of vertices of P, that is $x_0 = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k$, where $\lambda_i \geq 0$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 1$. Thus, $c^T x_0 = \lambda_1 c^T x_1 + \lambda_2 c^T x_2 + \cdots + \lambda_k c^T x_k$. Let x_i be the vertex with the minimal objective value $c^T x_i$, then

$$c^T x_0 = \lambda_1 c^T x_1 + \lambda_2 c^T x_2 + \dots + \lambda_k c^T x_k \ge c^T x_i.$$

Thus, vertex x_i is also an optimal solution since $c^T x_i \leq c^T x_0$.

Example 7 (A vertex of P corresponds to a basis of matrix A).

Minimize
$$-x_1 - 14x_2 - 6x_3$$

s.t. $x_1 + x_2 + x_3 \le 4$
 $x_1 \le 2$
 $x_3 \le 3$
 $3x_2 + x_3 \le 6$
and $x_1, x_2, x_3 \ge 0$

Turning into the slack form, we have

Minimize
$$-x_1-14x_2-6x_3$$
 s.t.
$$x_1+x_2+x_3+x_4=4$$

$$x_1+x_5=2$$

$$x_3+x_6=3$$

$$3x_2+x_3+x_7=6$$
 and
$$x_1,x_2,x_3,x_4,x_5,x_6,x_7\geq 0$$

so

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let's take the vertex $(x_1, x_2, x_3) = (0, 2, 0)$. The full solution is

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (0, 2, 0, 2, 2, 3, 0).$$

The column vectors for non-zero x_i are linearly independent and thus form a basis. Then, we can construct two other points $x' = x + \theta \lambda \in P$ and $x'' = x - \theta \lambda \in P$.

The basis is

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

Decomposing x above gives $x_B = \begin{bmatrix} 2 & 2 & 2 & 3 \end{bmatrix}^T$ and $x_N = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Then,

$$b = \begin{bmatrix} 4 \\ 2 \\ 3 \\ 6 \end{bmatrix}$$

The basic feasible solution x respect to basis B is

$$x = \begin{bmatrix} 0 & 2 & 0 & 2 & 2 & 3 & 0 \end{bmatrix}^T.$$

Thus, $(x_1, x_2, x_3) = (0, 2, 0)$ is a vertex of the polytope P.

Unfortunately, simplex is not a polynomial-time algorithm.

Consider

Maximize
$$x_n$$
 s.t. $\delta \leq x_i \leq 1$ for $i=1,\ldots,n$
$$\delta x_{i-1} \leq x_i \leq 1 - \delta x_{i-1} \text{ for } i=2,\ldots,n$$
 and $x_i \geq 0$ for $i=1,2,\ldots,n$

The Klee-Minty cube takes place when $n = 3, \delta = \frac{1}{4}$. The paper How Good Is the Simplex Algorithm? In Inequalities is given by V. Klee and G. L. Minty (1972).