Tutorial 9

Main topics: Inner products

- 1. Explain why the following do *not* define inner products on \mathbb{C}^2 :
 - (a) $\langle (z_1, z_2), (w_1, w_2) \rangle = z_1 w_1 + 4z_2 w_2$
 - (b) $\langle (z_1, z_2), (w_1, w_2) \rangle = z_1 \overline{w_1} z_2 \overline{w_2}$
 - (c) $\langle (z_1, z_2), (w_1, w_2) \rangle = z_1 \overline{w_1}$
- 2. Find the length of the vector $(1-2i, 2+3i) \in \mathbb{C}^2$ using the standard inner product on \mathbb{C}^2 .
- 3. Find an orthonormal basis for \mathbb{C}^2 containing a multiple of the vector (1+i,1-i). [Hint: use Gram-Schmidt.]
- 4. Show that in every complex inner product space V:

$$\forall u, v \in V \quad 4\langle u, v \rangle = \|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2$$

- 5. Let (\cdot, \cdot) be an inner product on a complex vector space V. Let $\mathbb{R}V$ be V regarded as a real vector space, and define $\langle v, w \rangle = \text{Re}(v, w)$.
 - (a) Show that $\langle v, w \rangle$ is an inner product on \mathbb{R}^V .
 - (b) Show that: $\forall v, w \in V \quad (v, w) = \langle v, w \rangle + i \langle v, iw \rangle$
 - (c) Deduce that (v, w) = 0 if and only if $\langle v, w \rangle = 0$ and $\langle v, iw \rangle = 0$.
- 6. Let W be the subspace of \mathbb{R}^4 spanned by the set $\{(0,1,0,1),(2,0,-3,-1)\}$. Find a basis for the orthogonal complement W^{\perp} (where inner product is the usual dot product).

[Hint:
$$x \in W^{\perp}$$
 if and only if $x \cdot (0, 1, 0, 1) = 0$ and $x \cdot (2, 0, -3, -1) = 0$.]

7. Let W be a subspace of an inner product space V. Show that $W \subset (W^{\perp})^{\perp}$ and that $W = (W^{\perp})^{\perp}$ if dim V is finite.