| - Puefin Sum: lange sum queries                    |
|----------------------------------------------------|
| → Puefin Sum: lange sum queries<br>→ Carry forward |
| (s,e) > Subarray                                   |
| SUBARRAY: Contigous part of the Array.             |
|                                                    |
|                                                    |
| T e                                                |
| Subarray.                                          |
| 1) Complete Array is a subarray of itself.         |
| 2) Single element is also a Subarray.              |
| Subarrays. Joing to consider NON empty             |
| $\frac{E_{\pi}}{=}$ A: 3 4 5 6 -2 8 10             |
| 1) 5, 6, -2 4) 6 5 4                               |
| 2) 3,4,6,-2 ×                                      |
| 3) 8 ~                                             |
| 4) -2                                              |
| 5) 3 10 ×                                          |
| () (D 3 X                                          |
|                                                    |

En [5, 3, 5]

(53 ~

(5, 3, 53 ~

⇒ Subarray ⇒ [s,e] inden

gui2

A: [4, 2, 10, 3, 12, -2, 15]

# ef subarrays starting from inden = 1

Buiz No. et subarrages in A:

[4, 2, 10, 3, 12, -2, 15] N= 7

N= +

 $\frac{7(7+1)}{2} = \frac{28}{2}$ 

Quiz



Total no. of subarrays in an Array of size N.

$$\frac{1}{N(N+1)} \Rightarrow O(N_2)$$

8. Print all the values of a subarray. (S,e)

Void Print SubArray (Arr, S, e) (S-S+)

ვ ||

S e

0 
$$0 \rightarrow [2]$$

0  $1 \rightarrow [2, 8]$ 

0  $2 \rightarrow [2, 8, 9]$ 

1  $1 \rightarrow [8]$ 

1  $1 \rightarrow [8]$ 

2  $1 \rightarrow [8, 9]$ 

2  $1 \rightarrow [8, 9]$ 

2  $1 \rightarrow [8, 9]$ 

3  $1 \rightarrow [8, 9]$ 

4 :  $[1, 2, 3, 4]$ 

5 e

(0,0)  $[0,1)$   $[0,2)$   $[0,3)$ 

(1,1)  $[1,2)$   $[1,3)$ 

(2,2)  $[2,3)$ 

(3,3)

&= 2, c= 2 => q

De Print the sum of energy single subarray

A: [3 2 -1 4]

See Sum

Brute Force

for 
$$(8=0; 8 < N; 8++) <$$
for  $(e=8; e < N; e++) <$ 

118um of subarray from  $s \neq 0e$ 

8um SubArray (Arr,  $s,e$ );  $\rightarrow 0(N)$ 

3

TC:  $0(N^3)$ 

SC: Q(1)

Quantity the sum of all subarrays starting at inden =  $\frac{2}{3}$ .

Solution =  $\frac{2}{3}$ .

2  $4 \rightarrow a[2] + a[3] + a[4]$ 2  $5 \rightarrow a[2] + a[3] + a[4] + a[5]$ 2  $6 \rightarrow a[2] + a[3] + a[4] + a[5] + a[6]$ 

Sum = 0

for ( i = 2; i ( N; i++) (

Sum += A[i]

Print (Sum);

7 3 2 3 4 5 6 7 3 2 -1 6 8 2 5

1=28456

Sum = 8 7 + 7 15 17

2, 1,7,15,17

$$TC: O(N^2) \rightarrow Carry forward$$
  
 $SC: O(L)$ 

$$A : \begin{bmatrix} 3 & 2 & 2 & 3 \\ 3 & 2 & -1 & 4 \end{bmatrix}$$

$$8=0$$
,  $Sum = 0 + 3 + 2 - 1 + 4 = 8$ 
 $1=0$ 
 $A$ 
 $2$ 

Google Google

Given an Array, find the sum of all subarray sums.

 $A: \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$ 

s Frint (sum);

 $T(: O(N^2)$  S(: O(L)

A: 
$$\{1, 2, \frac{2}{3}\}$$

S e

D D [1]  $\rightarrow 1 \Rightarrow [a[b]$ 

O 1 [1,2]  $\rightarrow 3 \Rightarrow [a[b]+a[1]]$ 

O 2 [1,2,3]  $\rightarrow 6 \Rightarrow [a[b]+a[1]] + [a[2]]$ 

L 1 [2]  $\rightarrow 2 \Rightarrow [a[1]]$ 

L 2 [2 3]  $\rightarrow 3 \Rightarrow [a[1]+a[2]]$ 

2 2 [3]  $\rightarrow 3 \Rightarrow [a[2]]$ 

20  $3xa[b]+4xa[1]+3xa[2]$ 

W

S·  $[1+4\cdot 2+3\cdot 3]$ 
 $3+8+9=20$ 

# In How many subarrays an element will be present

be present. 

No. of subarrays, indem=0 will be present

A:  $3-2$  4 1 2 6

A: 
$$3 - 2 + 1 = 2$$

$$8 = 1 \Rightarrow |3| = 2$$

$$9 \Rightarrow |2| = 5$$

$$A: 3 - 2 4 1 2 6$$

\* Inden = i mill be present in the subarrays

$$\Rightarrow \begin{cases} 0 \\ 3 \\ 4 \\ 3 \end{cases} \Rightarrow \begin{cases} 1 \\ 2 \\ 3 \end{cases} \times \begin{cases} 1 \\ 2 \\ 3 \end{cases} \Rightarrow \begin{cases} 1 \\ 3 \\ 4 \\ 3 \end{cases} \Rightarrow \begin{cases} 1 \\ 2 \\ 3 \end{cases} \Rightarrow \begin{cases} 1 \\ 3 \\ 3 \end{cases}$$

# No. of subarrays, indem= i mill be present = (i+1)(N-i)

Sum of all subarray sums  $= \sum_{i=0}^{N-1} (i+i) \times (N-i) \times A[i]$ 

Sum = 0

for (i=0; i < N; i++) < x = i+1 y = N-iSum  $t = n \times y \times \alpha(i)$ 

= neturn sum;

> TC: O(N) Sc: O(L)

Contribution Technique