Sigma Delta ADCs

Specifications

- Programmable Sigma-Delta ADC
 - Input sample rate: 48KHz
 - 16bit resolution
 - Switchable to 96KHz@15bits, 192KHz@14bits
- 45nm technology: 1V
- Input current range: ±5μA

Current vs. Voltage Mode

- Input current allows use of capacitor as integrator, rather than op-amp integrator
- Savings in area and complexity
- Requires use of voltage to current converter

Dealing With Overflow

- 2ⁿ cycles per sampling period, but counter limited to 2ⁿ-1 levels
- Three proposed solutions:
 - Make sure not to overload input
 - Sample before last cycle so overflow never appears at the output
 - Add an overflow bit (requires either an extra bit or one bit less resolution)

Mixed Signal Synthesis

- Create custom analog cell(s) with standard cell height
- Generate abstract view from layout
- Generate LEF file, append to standard cell LEF file
- Synthesize digital section normally (behavioral Verilog), place and route using timing optimization
- Combine analog and digital circuits using structural Verilog
- Re-run place and route without timing optimization

Modulator Output

Decimator Simulation

Placed Cells

Placed and Routed

Cell Count and Area

Analog circuit area of ~15um² versus ~500um² for full circuit (3%)

Netlist Extraction and Simulation

- OpenAccess for easy management
- Procedure:
 - Extract netlist with Calibre
 - Attach netlist to symbol
 - Simulate with ADE

Programmability

- Oversampling ratio = $\frac{bitstream_clock}{sample_rate}$
- With fixed bitstream clock, can trade between sample rate and resolution (through oversampling ratio)

Verilog Code

Decimator Behavioral Verilog

```
module decimator16bit (CLK, VMOD, MODE, Q);
input CLK, VMOD, MODE;
output [15:0] Q;
reg [15:0] count, timer, Q;
 always @(posedge CLK)
  begin
   timer = timer + 1'b1;
   if(timer == 16'hffff && MODE == 1'b0)
               Q <= count:
   if(timer == 16'h8000 && MODE == 1'b1)
               Q <= count;
  end
 always @(negedge CLK)
  begin
   if (timer == 16'hffff && MODE == 1'b0)
    count = 16'h0000;
   else if(timer == 16'h8000 && MODE == 1'b1)
    count = 16'h0000:
   else if(VMOD)
    count = count + 1'b1;
   end
endmodule
```

ADC Structural Verilog

Deliverables

- Current mode Sigma Delta modulator schematics
- Programmable decimator verilog code
- Placed and routed ADC layout
- Simulation results and design metrics