GNANAMANI COLLEGE OF TECHNOLOGY

Department: BIO MEDICAL ENGINEERING

Year: THIRD YEAR

TOPIC: SMART WATER MANAGEMENT

Team members:

- 1. Pushpa.B
- 2. Rasiya.L
- 3. Yashika.D
- 4. Thirisulliya.V
 - 5. Ranjitha.A

SMART WATER MANAGEMENT

INTRODUCTION

Smart water management using IOT involves using interconnected devices and sensors to monitor, control, and optimize water resources efficiently. Sensors placed in water infrastructure collect real-time data on water quality, usage, and distribution, while IoT technology enables the transmission of this data to central systems. Through data analysis and automation, it's possible to detect leaks, manage water quality, and ensure optimal water distribution. Users can access this information through apps or web platforms, allowing for informed water conservation efforts and timely response to issues. In essence, IoT transforms traditional water management into a data-driven and responsive system, promoting sustainability and resource conservation.

HARDWARE REQUIRED

- Arduino board with Wi-Fi capabilities (e.g., Arduino Uno with Wi-Fi shield or an ESP8266)
- Water flow sensor
- Solenoid valve or relay
- Water Quality Sensors
- Pressure Sensors:
- IoT Microcontrollers or Modules
- Communication Devices
- Data Storage Devices
- Microcontrollers and Processors

SOFTWARE REQUIRED:

- IoT platform (e.g., ThingSpeak, Adafruit IO, or AWS IoT)
- Mobile app or web dashboard for users

WORKING:

Working in smart water management involves various jobs like analyzing data from sensors to spot problems and save water, designing and maintaining the technology that makes it all work (like sensors and data systems), making sure the water is clean and safe to drink, and planning how to use water wisely in different areas. Some people also research new ways to make water management better, while others help organizations follow the rules about using water. It's a field that helps us use water efficiently and protect our environment.

CHALLENGE INVOLVED:

Deploying smart metering systems can be challenging due to various factors. High deployment and maintenance costs can strain budgets, while inadequate infrastructure may hinder implementation. Interoperability issues can make it difficult for different components to work together seamlessly. In some locations, weak communication signals can disrupt data transmission, and power cabling challenges may arise in confined or remote areas. Addressing these issues is crucial for the successful implementation of smart metering technologies in the energy sector.

PROBLEM SOLVING:

Smart water management means using technology to make sure we use water wisely. This includes things like tracking water quality, finding and fixing leaks, and predicting how much water we'll need. It also involves upgrading our water systems and teaching people to use water carefully. We need to follow rules and keep people's data safe when managing water smartly. By doing all this, we can save water, reduce costs, and make sure we have enough clean water for everyone and our environment.

SOCIAL RELEVANCE:

Smart water management is socially relevant due to its ability to address water scarcity, contamination, and access disparities. By leveraging IoT and data analytics, it ensures equitable distribution of clean water, detects leaks promptly, and promotes conservation. During emergencies, it aids rapid response, protecting public health. Overall, it fosters sustainable water use, safeguarding this vital resource for present and future generations, making it indispensable for societal well-being.

MAIN OBJECTIVES:

Smart water management employs technology to enhance water conservation, quality, and efficiency. By swiftly identifying and repairing leaks, it minimizes water loss. Continuous monitoring ensures safe and clean water for consumption. Smart systems optimize the operation of water treatment facilities and distribution networks, reducing operational costs. They also facilitate better water consumption tracking, aiding both utilities and individuals in responsible usage. Ultimately, smart water management not only preserves a vital resource but also reduces expenses and provides access to high-quality water for communities and ecosystems, contributing to a sustainable and resilient water future.