Содержание

	Метрические пространства			
	1.1	Определения	2	
	1.2	Несложные утверждения	3	

1 Метрические пространства

1.1 Определения

Определение 1.1. Метрическим пространством называется множества X с функцией $\rho: X^2 \to \mathbb{R}$, обладающей следующими свойствами:

- 1. $\forall x,y \in X: \ \rho(x,y) \geqslant 0$, причём $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X : \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X : \rho(x, z) = \rho(x, y) + \rho(y, z)$ (неравенство треугольника).

Функция ρ называется метрикой на множестве X.

Определение 1.2. Топологическим пространством называется множество X с системой $\tau \subseteq 2^X$, обладающей следующими свойствами:

- 1. $\varnothing, X \in \tau$
- 2. $\forall G_1, G_2 \in \tau : G_1 \cap G_2 \in \tau$
- 3. $\forall \{G_{\alpha}\}_{{\alpha}\in\mathcal{A}} \subset \tau : \bigcup_{{\alpha}\in\mathcal{A}} G_{\alpha} \in \tau$

Система au называется топологией на множестве X, а элементы системы au – открытыми множествами.

Определение 1.3. Пусть X – метрическое пространство, $Y \subset X$. Подстранством пространства X называется метрическое пространство Y с метрикой, являющейся сужением метрики на X.

Определение 1.4. Пусть X – метрическое пространство. Множество $Y \subset X$ называется ограниченным, если выполнено условие $\sup_{x,y \in Y} \rho(x,y) < +\infty$

Определение 1.5. Пусть X – метрическое пространство, $x \in X, r > 0$:

• Открытым шаром называется множество

$$B(x,r) := \{ y \in X \mid \rho(y,x) < r \}$$

• Замкнутым шаром называется множество

$$\overline{B}(x,r) := \{ y \in X \mid \rho(y,x) \leqslant r \}$$

Определение 1.6. Пусть X – метрическое пространство, $M \subset X$. Точка $x \in X$ называется внутренней точкой множества M, если существует r > 0 такое, что $B(x,r) \subset M$. Внутренностью множества M называется множество int M всех его внутренних точек. Множество M называется открытым, если int M = M.

Определение 1.7. Пусть (X, ρ) — метрическое пространство, $M \subset X$. Точка $x \in X$ называется точкой прикосновения множества M, если для любого r > 0 выполнено условие $B(x,r) \cap M \neq \emptyset$. Замыканием множества M называется множество \overline{M} всех его точек прикосновения. Множество M называется замкнутым, если $\overline{M} = M$.

Определение 1.8. Пусть X – метрическое пространство. Множество $A \subset X$ называется:

- Плотным в множестве $B \subset X$, если $B \subset \overline{A}$
- ullet Всюду плотным, если $X=\overline{A}$

Определение 1.9. Метрическое пространство X называется сепарабельным, если в X существует не более чем счётное всюду плотное множество.

Определение 1.10. Пусть X – метрическое пространство. Последовательность $\{x_n\} \subset X$ сходится к точке $x \in X$, если $\rho(x_n, x) \to 0$ при $n \to +\infty$. Обозначение:

$$x_n \to_X x$$

Определение 1.11. Пусть X, Y – метрические пространства. $f: X \to Y$. Отображение f называется непрерывным в точке $x \in X$, если выполнено одно из следующих условий:

- 1. Для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $f(B(x,\delta)) \subset B(f(x),\varepsilon)$
- 2. Для любой $\{x_n\}\subset X$ такой, что $x_n\to_X x$, выполнено $f(x_n)\to_Y f(x)$

1.2 Несложные утверждения

Лемма 1.1. Неравенство Минсковского.

Пусть E – измеримое множество, на котором задана мера μ , и пусть $f,g:E\to\mathbb{R}$ – измеримые функции. Тогда выполнено следующее:

$$\left(\int_{E} |f(x) + g(x)|^{p} d\mu \right)^{\frac{1}{p}} \leqslant \left(\int_{E} |f(x)|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{E} |g(x)|^{p} d\mu \right)^{\frac{1}{p}}$$

Лемма 1.2. Неравенство Гёльдера.

Пусть E измеримое множество, на котором задана мера μ . Тогда для любых $p,q \geqslant 1, \frac{1}{p} + \frac{1}{q} = 1$, если $f \in L^p(E), g \in L^q(E)$, то $f \cdot g \in L^1$, причём выполнено следующее:

$$\int_{E} |f(x)g(x)| d\mu \leqslant \left(\int_{E} |f(x)| d\mu\right)^{\frac{1}{p}} \cdot \left(\int_{E} |g(x)| d\mu\right)^{\frac{1}{q}}$$

Лемма 1.3. Пусть X – метрическое пространство, $M \subset X$. Тогда множество M открыто \Leftrightarrow множество $X \setminus M$ замкнуто.

Доказательство. Достаточно заметить, что

$$x \in \overline{X \setminus M} \Leftrightarrow \forall r > 0: \ B(x,r) \cap (X \setminus M) \neq \varnothing \Leftrightarrow x \not \in \text{int } M$$

Значит, int $M = M \Leftrightarrow \overline{X \setminus M} = X \setminus M$.

Лемма 1.4. Пусть X – метрическое пространство. Тогда:

- 1. Для любого $x \in X$ и r > 0 множество B(x,r) открытое.
- 2. Для любого $x \in X$ u r > 0 множество $\overline{B}(x,r)$ замкнутое.

- 3. Для любого множества $M \subset X$ множество int M открытое, причём наибольшее по включение открытое множество, содержащееся в M.
- 4. Для любого множества $M \subset X$ множество \overline{M} замкнутое, причём наименьшее по включению замкнутое множество, содержащее M.

Доказательство. 1. Пусть $y \in B(x,r)$, тогда, по неравенству треугольника, $B(y,r-\rho(x,y)) \subset B(x,r)$, то есть $y \in \text{int } B(x,r)$.

- 2. Пусть $y \in \overline{\overline{B}(x,r)}$, тогда для любого $\varepsilon > 0$ выполнено $B(y,\varepsilon) \cap \overline{B}(x,r) \neq \emptyset$, откуда, по неравенству треугольника, $\rho(x,y) < r + \varepsilon$. В силу произвольности числа ε , получаем, что $\rho(x,y) \leqslant r$, то есть $y \in \overline{B}(x,r)$.
- 3. Для любого открытого множества $G\subset M$ выполнено $G=\operatorname{int} G\subset \operatorname{int} M$, поэтому, в частности, множество int M открыто, как объединение всех содержащихся в M открытых множеств.
- 4. Для любого замкнутого множества $F\supset M$ выполнено $F=\overline{F}\supset \overline{M}$, поэтому, в частности, множество \overline{M} замкнуто, как пересечение всех содержащих M замкнутых множеств.

Лемма 1.5. Пусть X, Y – метрические пространства, $f: X \to Y$. Тогда следующие условия эквивалентны:

- Отображение f непрерывно.
- ullet Для любого открытого множества $G\subset Y$ множество $f^{-1}(G)$ тоже является открытм
- Доказательство. $(1 \Rightarrow 2)$ Зафиксируем произвольное открытое множество $G \subset Y$. Тогда, поскольку выполнено равенство $f^{-1}(G) = \bigcup_{y \in G} f^{-1}(y)$ и каждое множество $f^{-1}(y)$ является открытым (из определения непрерывности), множество $f^{-1}(G)$ тоже является открытым.
 - $(2 \Rightarrow 1)$ Зафиксируем произвольные $x \in X, \varepsilon > 0$. Множество $B(f(x), \varepsilon)$ является открытым, поэтому его прообраз тоже открыт, то есть существует $\delta > 0$ такое, что $f(B(x,\delta)) \subset B(f(x),\varepsilon)$, что и даёт требуемое в силу произвольности выбора точки x и числа ε .

4