

ADS AD VIDEO COSOUN

www.aduni.edu.pe

QUÍMICA

SOLUCIONES II Semana 28

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

1. Conocer las principales formas de expresar las unidades físicas de concentración (%(m/m); %(V/V); %(m/V); ppm) de una solución.

2. Conocer las formas de expresar las unidades químicas de concentración de una solución (molaridad y normalidad).

II. INTRODUCCIÓN

La concentración de las soluciones que se preparan en los laboratorios e industria, se pueden expresar en diversas unidades de concentración. Veamos algunos casos

Concentración: 40 % en volumen de alcohol

Concentración 7230 ppm de NaCl

Concentración: 0,1 N

UNIDADES FÍSICAS DE CONCENTRACIÓN

III. CONCEPTO

Son aquellas que solo consideran la masa y volumen y no toma en cuenta aspectos químicos como masa molar, número de moles o equivalentes.

1) PORCENTAJE EN MASA (%(m/m))

Indica la relación de masas entre el soluto y la solución expresada en forma porcentual.

Soluto (Sto) Solución (Sol) Solvente (Ste)

Se cumple:

$$m_{Sol} = m_{Sto} + m_{Ste}$$

EJERCICIO

La solubilidad del nitrato de potasio a 40°C es 60 g de KNO₃ por 100 g de agua. Determine el porcentaje en masa de soluto %(m/m) de la solución saturada.

RESOLUCIÓN

T= 40 °C

$$\% \frac{m}{m} = \frac{(60x)}{(160x)} \times 100 \% = 37,5 \%$$

De

$$\%\left(\frac{m}{m}\right) = \frac{m_{Sto}}{m_{Sol}} x 100\%$$

$$\% \frac{m}{m} = \frac{(60x)}{(160x)} \times 100 \% = 37,5 \%$$

2) PARTES POR MILLÓN (ppm)

Indica la concentración de una solución muy diluida como por ejemplo para determinar la concentración de contaminantes en el aire o en el agua.

Para sólidos o líquidos:

$$ppm = \frac{m_{sto}(mg)}{m_{solución}(kg)}$$

$$ppm = \frac{m_{sto}(mg)}{V_{solución}(L)}$$

En soluciones muy diluidas, la cantidad de soluto presente es tan pequeño que:

$$V_{Sol}(L) \approx m_{Sol}(kg)$$

Para gases (generalmente):

$$ppm = \frac{V_{Sto}(mL)}{V_{Sol}(m^3)}$$

 1 ppm de monóxido de carbono (CO) en el aire indica que 1 mL de CO está presente por cada 1 m³ de de aire (106 mL de aire).

EJEMPLO

Se ha detectado 16 mg de iones Pb²⁺ en 500 mL de agua. Calcule la concentración de los iones Pb²⁺ en partes por millón.

RESOLUCIÓN

Una forma de indicar la concentración de una solución muy diluida es mediante la unidad física llamada parte por millón, para ello es necesario conocer la masa de soluto y el volumen de la solución, como la cantidad de iones Pb²⁺ es muy poco, **podemos considerar que el volumen de agua, es el volumen de la solución.**

de
$$ppm = \frac{m_{sto(mg)}}{V_{sol(L)}} \Rightarrow ppm = \frac{16}{0.5} = 32$$

Una concentración de 32 *ppm* quiere decir que en 1 L de solución, están presentes 32 mg de iones Pb²⁺.

EJERCICIO

Si una muestra de 100 mL de aire contiene $3.3x10^{-5}$ mL de N_2O , ¿cuál es la concentración de N_2O en ppm en volumen?

Dato: $1m^3 = 10^6 \,\text{mL}$

RESOLUCIÓN

Volumen $(N_2O) = 3.3 \times 10^{-5} \text{ mL}$

Volumen (aire)= $100 \text{ mL} <> 10^{-4} \text{ m}^3$

De
$$ppm = \frac{V_{Sto}(mL)}{V_{Sol}(m^3)}$$

$$ppm = \frac{3,3x10^{-5}}{10^{-4}} = 0,33$$

Una concentración de 0,33 ppm quiere decir que cada metro cúbico de aire contiene 0,33 mL de N_2 O.

EJERCICIO

Se tiene 40 L de una solución acuosa que contiene 80 $\,\mu$ L de metanol líquido CH_3OH . Calcular la concentración en partes por millón (ppm) por volumen de soluto.

Dato: $1 \mu L = 0.001 \text{ mL}$; $1 \text{m}^3 = 1000 \text{ L}$

RESOLUCIÓN

Volumen (CH₃OH)= $80 \mu L <> 0.08 mL$

Volumen (Solución)= 40 L <> 0,04 m³

De
$$ppm = \frac{V_{Sto}(mL)}{V_{Sol}(m^3)}$$

$$ppm = \frac{0.08}{0.04} = 2$$

3) PORCENTAJE EN VOLUMEN (%(V/V))

Indica la relación en volumen de soluto entre el volumen de la solución en forma porcentual.

$$\%\left(\frac{V}{V}\right) = \frac{V_{Sto}}{V_{Sol}} \times 100\%$$

Se aplica para soluciones donde el **sto** y **ste** son líquidos, en una solución ideal se tiene:

$$V_{sol} = V_{sto} + V_{ste}$$

EJEMPLO

El agua y etanol se mezclan en cualquier proporción, si 80 g de etanol (d= 0,8 g/mL) se mezclan con 420 g de agua. Determine el porcentaje en volumen del soluto.

SOLUCIÓN

$$\%\left(\frac{V}{V}\right) = \frac{100}{520} \times 100\% = 19,23 \%$$

El alcohol medicinal de 96° <> 96 %(V/V), quiere decir que de 100 mL de solución, 96 mL son de alcohol puro.

4) PORCENTAJE MASA – VOLUMEN (%(m/V))

Indica la masa de soluto en gramos contenidos en 100 mL de solución, expresándose en forma porcentual.

$$\%\left(\frac{m}{V}\right) = \frac{m_{Sto}(g)}{V_{Sol}(mL)} \times 100\%$$

EJEMPLO

Una sustancia "X" se disuelve en agua a 20°C y forma una solución saturada cuya densidad es 1,3 g/mL, determine el %(m/V) de la solución. Dato: $S_X^{20°C}$ = 30 g X /100 g H₂O

RESOLUCIÓN

como la solución formada es saturada, por ser mezcla homogénea tomaremos una porción de la mezcla y calcularemos su concentración:

Determinando el volumen de la solución:

$$V_{Sol} = \frac{m_{Sol}}{D_{Sol}} = \frac{130 g}{1.3 g/m L} = 100 mL$$

Finalmente:

$$\%\left(\frac{m}{V}\right) = \frac{m_{Sto}(g)}{V_{Sol}(mL)} \times 100\%$$

$$= \frac{30}{100} x 100\% = 30 \%$$

UNIDADES QUÍMICAS DE CONCENTRACIÓN

Son aquellas que toma en cuenta la unidad formula del soluto y solvente, usando para ello la masa molar, número de moles, número de equivalentes etc.

UNIDADES QUÍMICAS

- FRACCIÓN MOLAR
- MOLARIDAD
- NORMALIDAD
- MOLALIDAD

1) MOLARIDAD (M)

Indica el número de moles de soluto contenido en un litro de solución.

EJEMPLO

Qué significa que una solución acuosa de HCl tenga concentración 5 *M*?

Quiere decir que en 1 L de solución está disuelto 5 moles de HCl.

En general las unidades de concentración son **propiedades intensivas**, es decir su valor será el mismo para cualquier cantidad de solución.

Despejando m_{sto}:

$$m_{sto} = M.\overline{M}_{sto}.V_{sol}$$

También:

i Sabías qué...!

El ácido sulfúrico, (H_2SO_4) , concentrado comercial se adquiere con una concentración (18 M), a partir de él se forman soluciones de menor concentración.

EJERCICIO

El ácido sulfúrico H₂SO₄ en solución es usado en batería de automóviles. Si la molaridad de dicha solución debe estar comprendida entre 4,2M y 5,2M. Dos alumnos de la academia, Juan y Rosa, deciden preparar dicha solución en el laboratorio según:

- a) Juan vierte con cuidado 392g de ácido puro en agua destilada, hasta formar 800mL de solución.
- Rosa toma una muestra del almacén y lee en la etiqueta una concentración de 49% en masa y al medir su densidad encuentra el valor de 1,27g/mL.
 Responda verdadero(V) o falso(F).
- I) La solución preparada por Juan tiene una molaridad que pertenece al rango permitido para batería.
- II) La solución preparada por Rosa tiene una molaridad menor que la preparada por Juan.
- III) Ambas soluciones preparadas por los alumnos tiene concentración molar, cuyos valores son para ácido de batería.

Dato de masa molar(g/mol): $H_2SO_4 = 98$

RESOLUCIÓN

a) La molaridad de la solución preparada por Juan es:

$$m_{sto}$$
 = 392g $\implies n_{sto}$ = $\frac{m}{\bar{M}}$ = $\frac{392}{98}$ = 4 mol $M = \frac{n_{sto}}{V_{sol}} = \frac{4}{0.8}$ = 5 mol/L V_{sol} = 800 mL=0.8 L

b) La molaridad de la solución preparada por Rosa es:

Asume
$$V_{sol} = 1 L = 1000 \text{ mL}$$
 $m_{sol} = d.V = 1,27x1000 = 1270 \text{ g}$

$$m_{sto} = \%(\frac{m}{m}).m_{sol} = (\frac{49}{100}).$$
 1270 g= 622,3 g

$$n_{sto} = \frac{m}{\overline{M}} = \frac{622,3}{98} = 6,35 \text{ mol} \implies M = \frac{n_{sto}}{V_{sol}} = \frac{6,35}{1} = 6,35 \text{ mol/L}$$

$$de \quad M_{sol} = \frac{10(\%m_{sto})D_{sol}}{\overline{M}_{sto}}$$

$$M = \frac{49x1,27x10}{98} = 6,35 \text{ mol/L}$$

Rpta: VFF

EJERCICIO

La concentración de una solución de ácido nítrico HNO₃ en %(m/V) es 21 %. Con esta información determine su molaridad.

Masa molar(g/mol): $HNO_3 = 63$

RESOLUCIÓN

La solución acuosa de HNO₃ será:

Con esa proporción se tendrá:
$$\begin{cases} m_{sto}=21 \text{ g} \\ V_{sol}=100 \text{ mL}=0,1 \text{ L} \end{cases}$$

Hallamos la molaridad:

$$M = \frac{n_{sto}}{V_{sol}} = \frac{(21/63)}{0.1} = 3.33 \text{ mol/L}$$

2) NORMALIDAD (N)

Nos indica la cantidad de equivalentes gramos de soluto disueltos en cada litro de solución.

$$\left(N = \frac{\#E_{q-g(sto)}}{V_{sol}}\right) \quad \Rightarrow \#E_{q-g(sto)} = N.V_{sol}$$

Unidad:
$$\frac{E_{q-g}}{L} \ll normal(N)$$

¿Qué significa que el ácido nítrico, (HNO₃), tenga concentración 3,5 N?

 $\overline{\text{HNO}_{3(ac)}}$: 3,5 N Como 3,5 N < > 3,5 E_{q-g}/L entonces en 1 L de solución se encuentra disuelto 3,5 $E_{q-g}\,$ de HNO $_3$.

EJERCICIO

Se prepara una solución diluida de hidróxido de calcio $Ca(OH)_2$, disolviendo 3,7 gramos de soluto en suficiente agua, hasta formar 2500 mL de solución. Cuál es la normalidad? (el hidróxido libera sus 2 OH^-) Dato de masa molar (g/mol) : $Ca(OH)_2 = 74$

RESOLUCIÓN

 $V_{sol} = 2500 \text{ mL} = 2.5 \text{ L}$

$$\#eq - g(sto) = n_{Sto}.\theta_{Sto} = \frac{3.7}{74}x2 = 0.1 \text{ eq-g}$$

$$N = \frac{\#eq - g(sto)}{V_{sol}} = \frac{0.1}{2.5} = 0.04 \text{ eq-g/L}$$

EJERCICIO

Se tiene 600 mL de una solución acuosa de $Al_2(SO_4)_3$, 0,1 M. Determine la concentración normal de sus iones.

RESOLUCIÓN

Al₂(SO₄)_{3(ac)}
0,1 *M*

$$\theta = 3$$
 $\theta = 2$

0,3 M

 $1Al_2(SO_4)_{3(ac)} \longrightarrow 2Al_{(ac)}^{3+} + 3SO_{4(ac)}^{2-}$

Inicio: 0,1 *M*

reacciona: -0.1 M + 0.2 M + 0.3 M

Final: 0,2 *M* 0,6 *N*

VIII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición