

FACESHEET/CORE DISBOND GROWTH IN HONEYCOMB SANDWICH PANELS SUBJECTED TO GROUND-AIR-GROUND PRESSURIZATION AND IN-PLANE LOADING

Zhi M. Chen

FAA William J. Hughes Technical Center, Atlantic City, NJ, USA

Ronald Krueger

National Institute of Aerospace, Hampton, VA, USA

Martin Rinker

Rolls-Royce Deutschland Ltd & Co KG, Dahlewitz, Germany

ICSS-11, Florida Atlantic University, Dania Beach, FL, March 20-22, 2016

Work was funded by NASA Langley Research Center under contract number NNL09AA00A

Overview

- Background
- Road Map
- Detailed problem description
- Fracture mechanics approach
 - Development of a test method for fracture toughness testing
 - Finite element modeling
- Finite element analysis of a panel with circular disbond
 - Model benchmarking
 - Analysis of a flat panel under internal pressure, in-plane and combined loading
 - Analysis of a curved panel
- Summary

Background

Problem

- In-service component failures associated with disbonding in unvented honeycomb core sandwich
- Degradation due to disbonding affects operational safety
- Failures may discourage use of composites in 'future' vehicles
- Methods for assessing propensity of sandwich structures to disbonding not fully matured, accepted and documented
- Methods development is currently being discussed within the Disbond/ Delamination Task Group in CMH-17

*Focus of this presentation

Road Map

- Ongoing CMH-17/ASTM D30 activity initiated 2012
- Current FAA initiative on Continuous Operational Safety (COS)
- Objective
 - Develop a fracture mechanics based methodology for damage tolerance assessment of sandwich structure
 - Assessment of facesheet/core disbonding in sandwich components similar to delamination in composite laminates
- Approach
 - Coupon test standard development
 - Test method for peel-dominated (mode I) interfacial fracture toughness*
 - Test method for mode II and mixed-mode interfacial fracture toughness
 - Analysis development
 - Develop analysis tool for facesheet/core disbonding in sandwich structure*
 - Develop models to simulate the ground-air-ground cycle load case*
 - Panel testing for analysis validation
 - Sandwich disbond methodology development
 - Publication
 - ASTM D30 fracture toughness standards
 - CMH-17 Vol. 6 best practices, guidelines and case studies

^{*}Focus of this presentation

Detailed Problem Description

- Pressure difference between inside and outside of unvented sandwich structures
 - Caused by alternating changes in ambient pressure and temperature
 - Results in significant deformations and core volume increase
 - Volume increase results in pressure decrease based on the ideal gas law

$$pV = nRT$$

- Initial disbonds between facesheets and core
 - increase the peeling effect and
 - decrease the structural reliability significantly
- For an accurate structural analysis, a coupled pressure-deformation problem needs to be solved

 Initial configuration at ground elevation

 Deformed configuration at cruising altitude

Fracture Mechanics Approach – 1 of 2

- Test standard development in ASTM committee D30 (WK 47682)
 - Characterize properties of facesheet/core interface
 - Measure fracture toughness G_c
 - Single cantilever beam (SCB) type configuration was identified as the most appropriate test
 - Simple loading fixture
 - Disbond front loading is independent of disbond length
 - Disbonding occurs along or near the facesheet/core interface (no kinking into the core)
 - Disbond toughness can be calculated by using a compliance calibration procedure for data reduction
 - Standardized test method for peel-dominated interfacial fracture toughness of sandwich constructions (draft)
 - Draft includes procedure to determine the SCB specimen dimensions (specimen length, facesheet thickness, initial disbond length)
 - Current round robin activity involves seven research laboratories in the US and Europe

SCB test schematic

Honeycomb sandwich test

Fracture Mechanics Approach – 2 of 2

Analysis development

- Compute the energy release rate along the disbond front
- Use the Virtual Crack Closure Technique (VCCT) based on the results obtained from a finite element analysis
 - Provides mode separation
 - Transformation of nodal forces and displacement into deformed system for non-linear analysis
 - Computation along an arbitrarily shaped delamination path is possible
- Propagation is predicted to occur once the computed value exceeds the measured fracture toughness

Schematic of 3D elements at crack tip

$$G_{II} = \frac{1}{2\Delta ab} \cdot F'_{yi} \cdot \left(v'_{\ell} - v'_{\ell^*} \right)$$

$$G_{II} = \frac{1}{2\Delta ab} \cdot F'_{xi} \cdot \left(u'_{\ell} - u'_{\ell^*} \right)$$

$$G_{III} = \frac{1}{2\Delta ab} \cdot F'_{zi} \cdot \left(w'_{\ell} - w'_{\ell^*} \right)$$

FE Model of a Panel With Disbond – 1 of 4

- A quarter section of a flat panel was modeled
 - Circular disbond radius: 152.4 mm (6")
 - Square section side dimension: 304.8 mm (12")
 - Abaqus/Standard® was used (C3D20 element)
 - Boundary conditions applied at symmetry planes
 - Surface contact used between top facesheet and core in the disbonded section
- Sandwich properties
 - Thin facesheet: 0.772 mm (0.03")
 - CYCOM 5320PW plain weave fabric
 - [45/0/90/-45] quasi-isotropic layup
 - Thick core: 76.5 mm (3.0")
 - Hexcel HRH-10[®] honeycomb
 - NOMEX® paper with 48 kg/m³ (3.0 lb/ft³) density and 3.175 mm (1/8") cell size
 - Modeled as an orthotropic, homogeneous continuum

3D model of a disbonded flat panel

Detail near disbond front

FE Model of a Panel With Disbond – 2 of 4

- Pressure deformation coupling was simulated using fluid-filled cavities
 - Abaqus/Standard® feature enabled the definition of fluid-filled cavities enclosed by structural elements
 - The ideal gas law is solved within each increment until equilibrium is found
 - The volume of the fluid cavities was assumed to be equal to that of the entire sandwich core
 - Two separate cavities were defined
 - One cavity was used to simulate the intact part
 - The other cavity included only the disbonded section
 - The disbonded cavity extended by one cell size, 3.175 mm (1/8"), ahead of the disbond front

Top view on disbonded flat panel

Detail near disbond front

FE Model of a Panel With Disbond – 3 of 4

- Model of a flat panel with in-plane loading
 - Study the effect of in-plane service load on a flat control surface
 - In-plane displacement applied to the model to simulate a 0.2% (2000 με) strain condition during a flight maneuver
 - A compressive strain condition was chosen since it was believed that it would aggravate the tendency to disbond
- Model of a curved panel
 - Honeycomb sandwich constructions may be used for cylindrical fuselage structures
 - A 3 m radius (wide body airliner) was chosen for this study

3D model of a disbonded flat panel

3D model of a disbonded curved panel

FE Model of a Panel With Disbond – 4 of 4

- Internal pressurization of the disbond
 - Commercial jetliner ascent scenario was considered from 0 to 12192 m (0 to 40000 ft)
 - The pressure and temperature values were taken from the International Standard Atmosphere ISO 2533
 - The temperature in the core was defined to be equal to the ambient T, K temperature
 - Pressure and volume inside the cavities were calculated during the analysis
- Additional load conditions
 - 0.2% (2000 με) strain condition only
 - 0.2% (2000 με) strain condition plus GAG cycle

Decrease of temperature and pressure with increasing altitude

Model Benchmarking – 1 of 3

- X-33 cryogenic fuel tank
 - NASA sandwich disbond investigation
 - Square delamination
 - Panel pressurized by a compressor
 - Defined load, no pressuredeformation coupling
 - Calculations were performed using surface loads
 - Current analysis approach
 - Same dimensions as NASA investigation
 - Pressure load case modeled with Abaqus fluid elements
 - VCCT calculation using postprocessing routine

Result comparison

 Good correlation between G_T values calculated using different models

Energy release rate dependence on disbond length

Model Benchmarking – 2 of 3

- Sandwich panel with disbond
 - Panel with 350 mm disbond
 - Pressure-deformation coupling needs to be considered
 - Pressure in disbonded core section was measured during test
 - FE analysis was performed calculating pressure-deformation coupling iteratively

Airbus test panel in vacuum chamber

- Current analysis approach
 - Same dimensions as Airbus panel
 - Pressure-deformation coupling solved using Abaqus Fluid Cavity Simulation
- Result comparison
 - Good correlation for pressuredeformation coupling using different models
 - Pressure in core:
 - Airbus test: 0.0582 MPa
 - o Airbus analysis: 0.0577 MPa
 - Current analysis: 0.0571 Mpa
- Additional validation studies should be performed to compare test results and analysis
 - Compare deformation field
 - Compare pressure inside the cavity

Model Benchmarking – 3 of 3

- Conditions
 - 12,192 m altitude (40,000 ft)
 - External pressure p=0.0188 MPa (2.73 lbs/in²)
 - External temperature T= 216.65 K
 (-69.7°F, -56.5°C)
- Verification for using a FE model of a quarter section of the panel
 - Excellent agreement of computed
 G_T along the front for the currently used quasi-isotropic layup
 - Deviation, however, for other
 layups that violate the symmetry
 conditions of the model

Distribution of energy release rate along the disbond front

Flat Panel Subjected to Internal Pressure Loading – 1 of 2

Parametric study

Variation of

- Facesheet thickness, number of plies
- Disbond radius: 50.8 762 mm
 (2.0" 30.0")
- Core density: 29 kg/m³, 48 kg/m³, 80 kg/m³ (1.8 - 5.0 lb/ft³)
- Core thickness: 12.5 mm,
 25.4 mm, 50.8 mm, 76.5 mm
 (0.5" 3.0")

Results

- $\begin{tabular}{ll} \circ Variation of core density does not have a significant effect on computed G_T \\ \end{tabular}$
- Large disbond radius and thin facesheets result in maximum G_T

Following studies

 Dimensions based on results from parametric study

Averaged G_T along crack front

3.275 mm (1/8") cell size, 48 kg/m³ (3.0 lb/ft³) core density

Flat Panel Subjected to Internal Pressure Loading – 2 of 2

- Conditions
 - 12,192 m altitude (40,000 ft)
 - o p=0.0188 MPa (2.73 lbs/in²)
 - T= 216.65 K (-69.7°F, -56.5°C)
- Result
 - Max G_τ observed at φ=45°

Energy release rate along the disbond front

- Conditions
 - 0 m 12,192 m altitude
 - Sea level to cruising altitude
- Results for max G_T at φ=45°
 - G_T increases monotonically with increasing altitude

Energy release rate dependence on altitude

Flat Panel Subjected to In-Plane and Combined Loading

Conditions

- 12,192 m altitude (40,000 ft)
 - External pressure p=0.0188 MPa
 - External temperature T= 216.65 K
- 0.2% (2000 με) applied in-plane strain to simulate service loads on a flat control surface
- Combined internal pressure + 0.2%
 (2000 με) in-plane strain

Results

- Out-of-plane deformation of the disbonded section changes
- Leads to a change in the G_T distribution
- Addition of in-plane strain leads to an increase in G_T
- Due to non-linearity superposition of the results is not possible

Distribution of energy release rate along

Analysis of a Curved Panel

Conditions

- 12,192 m altitude (40,000 ft)
 - External pressure p=0.0188 MPa
 - External temperature T= 216.65 K
- Flat panel
- Curved panel with 3 m radius

Results

- Symmetry of the G_T distribution is lost for the curved panel
- Locally and on average the computed G_T is higher than the result obtained from the flat panel
- Result is unexpected
- In-plane strain may lead to a further increase in computed G_⊤
- Additional analyses with different radii and more refined mesh should be performed before a definite statement is made

Distribution of energy release rate along the disbond front

Summary

- A methodology similar to delamination modeling in composites was developed to assess facesheet/core disbonding in honeycomb sandwich components.
- A sandwich panel containing a circular disbond at the facesheet/core interface was studied using pressure-deformation coupling.
- Large disbonds, thin facesheets, and thick cores are most critical.
- Computed averaged G_T values increased almost linearly with increasing altitude.
- In-plane compressive strains increased G_T along the crack front.
- Due to non-linearity of the problem, results for combined load cases cannot be obtained simply by superposition of individual load cases.
- Computed G_T values were higher for a curved panel than for a flat panel.