Possible Choices of Complex Structures for a Surface Moduli Spaces of Riemann Surfaces

Zhaoshen Zhai

Graduate mentor: Kaleb Ruscitti

April 28, 2023

Refined question

How many complex structures on \mathbb{R}^2 ?

Refined question

How many complex structures on \mathbb{R}^2 ? How many complex structures on \mathbb{R}^2 up to biholomorphism?

Riemann surfaces

Definition

A $\underline{Riemann\ surface}$ is a surface equipped with a complex structure.

Compact surfaces

Theorem (Classification of Surfaces)

For each natural number g, there exists exactly one compact orientable surface up to homeomorphism.

Compact surfaces

Theorem (Classification of Surfaces)

For each natural number g, there exists exactly one compact orientable surface up to homeomorphism.

Topological torus

Theorem

Every torus is a quotient $\mathbb{C}/(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2)$ for some \mathbb{R} -linearly independent vectors $\omega_1, \omega_2 \in \mathbb{C}$.

Topological torus

Theorem

Every torus is a quotient $\mathbb{C}/(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2)$ for some \mathbb{R} -linearly independent vectors $\omega_1, \omega_2 \in \mathbb{C}$.

Complex tori

Complex tori

Theorem

Every complex torus is the quotient $X_{\tau} := \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$ for some $\tau \in \mathbb{H}$. Indeed, for all linearly independent vectors $\omega_1, \omega_2 \in \mathbb{C}$,

$$\mathbb{C}/(\mathbb{Z}\omega_1\oplus\mathbb{Z}\omega_2)\cong X_{\tau}$$

for
$$\tau := \omega_2/\omega_1 \in \mathbb{H}$$
.

Fundamental domain

Figure: A fixed $\tau \in \mathbb{H}$.

Fundamental domain

Figure: $X_{\tau} \cong X_{\tau'}$.

Fundamental domain

Figure: $X_{\tau} \cong X_{\bullet}$.

Moduli space of the torus

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Moduli space of the torus

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Theorem

For any $\tau, \tau' \in \mathbb{H}$, the tori X_{τ} and $X_{\tau'}$ are biholomorphic iff there exists some $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$ such that $\tau' = \gamma(\tau)$.

Moduli space of the torus

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Theorem

For any $\tau, \tau' \in \mathbb{H}$, the tori X_{τ} and $X_{\tau'}$ are biholomorphic iff there exists some $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$ such that $\tau' = \gamma(\tau)$.

Corollary

The moduli space of the torus is $\mathbb{H}/\operatorname{PSL}_2(\mathbb{Z})$.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

Proof. Hard!

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

Proof. Hard! Equip a sphere $\hat{\mathbb{C}}$ with a particular complex structure (the *Riemann sphere*) and let X be another sphere.

• Covering space theory: We showed that if there exists a global meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

- Covering space theory: We showed that if there exists a global meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

- Covering space theory: We showed that if there exists a global meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.
- Čech cohomology: We used tools from differential forms and cohomology to prove the existence of such a global meromorphic function.

Theorem (Uniformization)

There is a unique choice of complex structure on the sphere.

- Covering space theory: We showed that if there exists a global meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.
- Čech cohomology: We used tools from differential forms and cohomology to prove the existence of such a global meromorphic function.

Thank you!

Thank you!