Linear Algebra Note

Harry Ying

Contents

L	Chapter 1	2
	.1 § 1	2
	1.1.1 Notes	
	1.1.2 Exercises	3

1 Chapter 1

1.1 § 1

1.1.1 Notes

A generic vector space V is not a field because there is no definition of v^{-1} for some $v \in V$, fulfilling not the definition of a field.

1. **Pg.** 4 **Proof** of (-1)v = v

$$(-1)v + v = (-1)v + 1 \cdot v$$

= $(-1+1)v$
= $v + (-v)$

Thus, (-1)v = -v.

2. Pg. 6 Proof of SP 3

$$(xA) \cdot B = \sum_{i=1}^{n} (xa_i)b_i$$

$$= \sum_{i=1}^{n} x(a_ib_i)$$

$$= x \sum_{i=1}^{n} a_ib_i$$

$$= x(A \cdot B)$$

$$A \cdot (xB) = \sum_{i=1}^{n} a_i(xb_i)$$

$$= \sum_{i=1}^{n} x(a_ib_i)$$

$$= x \sum_{i=1}^{n} a_ib_i$$

$$= x(A \cdot B)$$

3. **Pg.** 7

Upper one:

$$(A+B)^{2} = (A+B) \cdot (A+B)$$

$$= (A+B) \cdot A + (A+B) \cdot B \quad \text{Use SP 2}$$

$$= A^{2} + B \cdot A + A \cdot B + B^{2} \quad \text{Use SP 1}$$

Bottom one: Since K is a field, all **VS** s regarding summation or product of functions are actually closed on K. By applying field axioms, V is then a vector space over K.

4. **Pg.** 9

Let $a_1 = (u_1 + w_1), a_2 = (u_2 + w_2)$. Both of them $\in (U + W)$. Since U, W are subspaces of $V, U, W \in V$. Thus, $a_1, a_2 \in V$ as $u_1, w_1, u_2, w_2 \in V$, moreover, $(U + W) \subset V$. $a_1 + a_2 = (u_1 + u_2) + (w_1 + w_2) \in (U + W)$ $ca_1 = c(u_1 + w_1) = (cu_1) + (cw_1) \in (U + W)$ Since $O \in U$ and $O \in W$, $O = O + O \in (U + W)$. Thus, (U + W) is a subspace of V.

2

1.1.2 Exercises

- 1. **Exercise 1** Let $v \in V$, $c[v + (-v)] = cv + c(-v) = cv + (-c)v = v \cdot 0 = v \cdot (1-1) = v + (-v) = O$
- 2. Exercise 2 Since $c \neq 0$

$$O = cv + [-(cv)]$$

$$cv = cv + [-(cv)]$$

$$O = -(cv)$$

$$\frac{-1}{c} \cdot O = (-c)v \cdot \frac{-1}{c}$$

$$\frac{-1}{c} \cdot (v - v) = v$$

$$\frac{-1}{c} \cdot v + \frac{1}{c} \cdot v = v$$

$$v \cdot (1 - 1) = v$$

$$v - v = v$$

$$O = v$$

3. Exercise 3

$$\forall g \in V, (g+f)(x) = g(x) + f(x) = f(x) + g(x) = (f+g)(x) \Rightarrow g+f = f+g.$$

If $O + u = u$, $(O + u)(x) = O(x) + u(x) = u(x)$. Therefore, $O(x) = 0$.

4. Exercise 4

$$v + w = O$$
$$v + w = v + (-v)$$
$$w = -v$$

5. Exercise 5

$$v + w = v$$

$$v + (-v) + w = v + (-v)$$

$$O + w = O$$

Since $\forall u, O + u = u$, we have w = O.

6. Exercise 6

Let $W = \{B | B \cdot A_1 = O \text{ and } B \cdot A_2 = O\}$. Specifically, it is clear that $O \in W$ as $O \cdot A = \sum_{i=1}^n b_i a_i = \sum_{i=1}^n 0 \times a_i = 0$. Let $v_1, v_2 \in W$ such that $v_1 \cdot A_1 = 0$, $v_1 \cdot A_2 = 0$, $v_2 \cdot A_1 = 0$, $v_2 \cdot A_2 = 0$. Thus,

$$(v_1 + v_2) \cdot A_1 = v_1 \cdot A_1 + v_2 \cdot A_1$$

$$= O + O$$

$$= O$$

$$[c(v_1 + v_2)] \cdot A_1 = (cv_1 + cv_2) \cdot A_1$$

$$= (cv_1) \cdot A_1 + (cv_2) \cdot A_1$$

$$= c(v_1 \cdot A_1 + v_2 \cdot A_1)$$

$$= cO$$

$$= O$$

- . It is easy to show for A_2 then. Therefore, $(v_1 + v_2) \in W$.
- 7. Exercise 7 Same to apply as Exercise 6.
- 8. Exercise 8

Name the set as W.

(a) Proof

$$v_1 + v_2 = (x_1 + x_2, y_1 + y_2), x_1 + x_2 = y_1 + y_2 \Rightarrow (v_1 + v_2) \in W$$

 $cv = (cx, cy), cx = cy \Rightarrow cv \in W$
 $O = (0, 0) \in W$

- (b) Proof See Part (a).
- (c) Proof Same technique as in Part (a).
- 9. Exercise 9 See Exercise 8.
- 10. Exercise 10

For $U \cap W$, let $v_1, v_2 \in U \cap W$. Since $v_1, v_2 \in U$ and U is a subspace, $v_1 + v_2 \in U$. In same way, we can see that $v_1 + v_2 \in W$. Thus, $v_1 + v_2 \in U \cap W$.

Since $v_1 \in U$, $cv_1 \in U$. Also, it shows $cv_1 \in W$ in the same way. Thus, $cv_1 \in U \cap W$. Because U, W are subspaces, $O \in U$ and $O \in W$. Thus, $O \in U \cap W$. Therefore, $U \cap W$ is a subspace. Refer to the note part for proof for U + W.

- 11. **Exercise 11** Since L is a field, **VS1**, **VS3**, **VS4**, **VS8** are established under field axioms, and multiplication and addition are closed in L. For **VS5**, **VS6**, **VS7**, they are all valid as $K \subset L$. O is simply 0, and $1 \cdot u = u$ is established in L.
- 12. Exercise 12

For $x, y \in K$, we have

$$x + y = a_1 + b_1\sqrt{2} + a_2 + b_2\sqrt{2} = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$$
. Since $a_1, b_1, a_2, b_2 \in \mathbb{Q}$, $(a_1 + a_2), (b_1 + b_2) \in \mathbb{Q}$. Thus, $x + y \in K$.

$$xy = (a_1a_2 + 2b_1b_2) + (a_2b_1 + a_1b_2) \times \sqrt{2}$$
. Since $a_1, b_1, a_2, b_2 \in \mathbb{Q}$, $(a_1a_2 + 2b_1b_2), (a_2b_1 + a_1b_2) \in \mathbb{Q}$. Thus, $x + y \in K$.

$$-x = -a + -b\sqrt{2}$$
. Since $a, b \in \mathbb{Q}, -a, -b \in \mathbb{Q}$. Thus, $-x \in K$.

$$x^{-1} = \frac{1}{a+b\sqrt{2}} = \frac{a+b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} + \frac{b}{a^2-2b^2}\sqrt{2}$$
. It is easy to see that **new** $a,b \in \mathbb{Q}$ as $a,b \in \mathbb{Q}$. Thus, $x^{-1} \in K$. Specifically, if $a = b = 0, 0 \in \mathbb{Q}$. If $a = 1, b = 0, 1 \in \mathbb{Q}$.

Thus, K is a field.

- 13. Exercise 13 Same technique as Exercise 12.
- 14. Exercise 14 Same technique as Exercise 12. Be careful that $\gamma = \pm \sqrt{c}$.