Math 101 HW 32

Jeff Carney

May 3, 2017

1

Q: Suppose that $f_n:[0,1]\to\mathbb{R}$ by $f_n(x)=x^n$. Find the function f that f_n converges to.

Let $f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$

If $x \in [0,1)$ then $\lim_{x\to\infty} x^n = 0$ and if x = 1 then $\lim_{x\to\infty} x^n = 1$. Thus, f_n converges pointwise to f.

2

Q: Let f_n be the sequence of functions on $(0, \infty)$ defined by $f_n(x) = \frac{nx}{1+n^2x^2}$. Does this function converge pointwise or uniformly, neither pointwise or uniformly, or both pointwise and uniformly?

 $f_n(x)=\frac{nx}{1+n^2x^2}=\frac{x}{\frac{1}{n}+nx^2}$. So $\lim_{x\to\infty}f_n(x)=\lim_{x\to\infty}\frac{x}{\frac{1}{n}+nx^2}=0$. Thus f_n converges pointwise to f(x)=0.

3

Q: Let $g_n(x) = \frac{1}{n(1+x^2)}$. Does this function converge uniformly on \mathbb{R} .

Let $\varepsilon > 0$. Let $N = \frac{1}{\varepsilon}$. Now let n > N and let $x \in \mathbb{R}$. Claim: $g_n(x) \to g$ uniformly where g(x) = 0.

$$|g_n(x) - g(x)| = \left|\frac{1}{n(1+x^2)} - 0\right| = \left|\frac{1}{n(1+x^2)}\right| \le \frac{1}{n} < \frac{1}{N} < \varepsilon$$

Thus g_n converges to g uniformly where g(x) = 0.