Bitcoin Clique: Channel-free Off-chain Payments using Two-Shot Adaptor Signatures

Siavash Riahi TU Darmstadt Orfeas Stefanos Thyfronitis Litos
Imperial College London
Common Prefix
SBC
2024-08-09

Commit-chain for Bitcoin*

Commit-chain

Commit-chain

Motivation

- Why Bitcoin?
 - Security rigorously analyzed
 - Non-Turing-complete scripting
 - → solutions should work everywhere
 - Contains > \$1T 😜

Motivation - Why not channels?

Connectivity

Hub collateral

Imbalance

Goals

- Pay anyone in the Clique >>>
- Free to leave unilaterally
- Known max time to finality
- No extra trust 😇
- Few on-chain TXs

UTXO & Notation

c = e.g., 10,000 satoshis

UTXO & Notation

c = e.g., 10,000 satoshis

UTXO & Notation

c = e.g., 10,000 satoshis

Strawman solution

Strawman solution

Strawman solution

CHECKTEMPLATEVERIFY (CTV)

Spendable by:

- Op after time 4t OR
- TX T₁ at any time

Blockchain	Alice	pk, Y, tx: Bob pays Alice	Bob
	(Y , y) ← KeyGen()	(pk,sk) ← KeyGen()

- Alice has 2 pairs $(Y_1, y_1), (Y_2, y_2)$
- Bob wants to learn $y_1 + y_2$
- Alice's secret is safe if she only discloses y_1 or y_2

Unilateral exit

Unilateral exit

Unilateral exit

Limitations & Future work

- Need for (untrusted) Operator
- Large collateral by Operator
- Single denomination
- No privacy

Goals achieved

- Pay anyone in the Clique: Output transfers
- Free to leave unilaterally: CTV tree of TXs
- Known max time to finality: 2t+slack
- Users need no extra trust: Operator Byzantine
- Few on-chain TXs: Constant in #users, payments
- * Operator security: Refunded on exit/malicious user
- * Graceful recovery after closing starts

Goals achieved <

- Pay anyone in the Clique: Output transfers
- Free to leave unilaterally: CTV tree of TXs
- Known max time to finality: 2t+slack
- Users need no extra trust: Operator Byzantine
- Few on-chain TXs: Constant in #users, payments
- * Operator security: Refunded on exit/malicious user
- * Graceful recovery after closing starts

https://eprint.iacr.org/2024/25

Thank you! Questions?

Unilateral exit - CTV tree

P₁ pays P₂

P₁ pays P₂

Off-chain storage & actions

- Operator stores everyone's data
- Operator posts every new payment (keys, etc.)
- Every user calculates every new tree locally
- If new root tx unexpected, users leave unilaterally