

Universidade Federal de Uberlândia | Faculdade de Engenharia - UFU -

Elétrica - FEELT -

CAPÍTULO 01

CIRCUITOS MAGNETICAMENTE ACOPLADOS

PROF. PAULO HENRIQUE OLIVEIRA REZENDE

paulohenrique16@gmail.com

- I. Introdução;
- II. Indutância Própria;
- III. Indutância Mútua;
- IV. Polaridade das tensões induzidas;
- V. Associação de Indutores (Indutância Equivalente);
- VI. Análise de Circuitos Magneticamente Acoplados;
- VII. Energia armazenada em Circuitos Magneticamente Acoplados;
- **VIII.Transformadores Lineares**;
- IX. Transformadores Ideais;
- X. Transformadores com núcleo de ferro.

I. INTRODUÇÃO

- Os circuitos estudados nas aulas anteriores são chamados de condutivos, pois um circuito afeta o vizinho pela condução da corrente elétrica por meios físicos;
- Quando dois circuitos com ou sem contatos entre eles afetam por meio de campo magnético gerado por um deles, diz-se que são acoplados magneticamente;
- Os transformadores são exemplo de dispositivo elétrico projetado com base no conceito de acoplamento magnético, pois usam bobinas acopladas magneticamente para transferir energia de um circuito para o outro.

II. INDUTÂNCIA PRÓPRIA

Quando uma corrente i(t) flui através de um indutor simples, um fluxo magnético ϕ é produzido ao redor dele.

Lei de Faraday:

$$v = N \frac{d\phi}{dt}$$

O fluxo magnético ϕ é produzido pela corrente i(t).

Assim, qualquer alteração nesse fluxo é causada por uma variação de i(t).

$$v = N \frac{d\phi}{dt} \frac{di}{di} = N \frac{d\phi}{di} \frac{di}{dt} \implies v = L \frac{di}{dt}$$

Então:

$$N \frac{d\phi}{dt} \frac{d\hat{l}}{di} = L \frac{d\hat{l}}{dt}$$
 \Longrightarrow $L = N \frac{d\phi}{di}$ Indutância própria

$$\Rightarrow$$

$$L = N \frac{d\phi}{di}$$

A **indutância própria** relaciona a tensão induzida em uma bobina provocada por uma corrente variante no tempo, na mesma bobina.

III. INDUTÂNCIA MÚTUA

Tem-se duas bobinas próximas, com indutâncias próprias $\mathbf{L_1}$ e $\mathbf{L_2}$, contendo $\mathbf{N_1}$ e $\mathbf{N_2}$ espiras, respectivamente. Em um primeiro momento, considera-se que não há circulação de corrente em $\mathbf{L_2}$.

É evidente que o fluxo magnético ϕ_1 , originado na bobina 1, possui duas componentes:

 ϕ_{11} = fluxo magnético que percorre a bobina 1 apenas; ϕ_{12} = fluxo magnético que percorre as duas bobinas.

III. INDUTÂNCIA MÚTUA

Tem-se duas bobinas próximas, com auto-indutâncias $\mathbf{L_1}$ e $\mathbf{L_2}$, contendo $\mathbf{N_1}$ e $\mathbf{N_2}$ espiras, respectivamente. Em um primeiro momento, considera-se que não há circulação de corrente em $\mathbf{L_1}$.

É evidente que o fluxo magnético ϕ_2 , originado na bobina 2, possui duas componentes:

 ϕ_{21} = fluxo magnético que percorre a bobina 2 apenas; ϕ_{22} = fluxo magnético que percorre as duas bobinas.

$$\phi_2 = \phi_{21} + \phi_{22}$$

Tensão induzida na

bobina 1 em

circuito aberto

Indutância própria da bobina 2

$$v_2 = L_2 \frac{di_2}{dt} \implies L_2 = N_2 \frac{d\phi_2}{di_2}$$

Indutância Mútua da bobina 1 com respeito à bobina 2

III. INDUTÂNCIA MÚTUA

 \square Considerando-se a permeabilidade constante do meio físico (no caso o ar), tem-se uma relutância fixa da trajetória do fluxo magnético ($\mathcal{R}_{21} = \mathcal{R}_{12}$)

$$M_{12} = M_{21} = M$$

☐ M é a indutância mútua entre dois enrolamentos, expressa em henryes (H)

Indutância Mútua é a capacidade de um indutor induzir uma tensão sobre um indutor vizinho

COEFICIENTE DE ACOPLAMENTO MAGNÉTICO

(Indica a porcentagem da parcela de fluxo (ϕ_{12} e ϕ_{21}) que consegue enlaçar a bobina vizinha, e é definido por:

$$K = \frac{\phi_{12}}{\phi_1} = \frac{\phi_{21}}{\phi_2}$$
 Onde $0 < k < 1$

Tomando o produto dos dois valores de indutância mútua e assumindo que K (coeficiente de acoplamento) depende apenas da geométrica do sistema, temos:

$$M_{12} = M_{21} = M$$

$$M^{2} = M_{12} \cdot M_{21}$$

$$M_{12} = N_{1} \frac{d\phi_{21}}{di_{2}}$$

$$M_{21} = N_{2} \frac{d\phi_{12}}{di_{1}}$$

$$k_{M} = \sqrt{\left(\frac{M}{L_{1}}\right)\left(\frac{M}{L_{2}}\right)} = \frac{M}{\sqrt{L_{1}L_{2}}}$$

IV. POLARIDADE DAS TENSÕES INDUZIDAS

Embora a indutância mútua (M) seja sempre positiva, a tensão mútua $\left(M\frac{di}{dt}\right)$ pode ser negativa ou positiva

A escolha da polaridade de "M" deve ser feita analisando a orientação particular de enrolamento de ambas as bobinas. Mas mostrar os detalhes construtivos das bobinas nos circuitos é inviável, diante disso criou-se a "regra do ponto"

Considere um circuito magnético abaixo:

IV. POLARIDADE DAS TENSÕES INDUZIDAS

COMO MARCAR OS PONTOS EM UM CIRCUITO MAGNETICAMENTE ACOPLADO:

SEQUÊNCIA:

- 1. Marca-se um "ponto" no terminal do primário (bobina 1) por onde a corrente entra (i_1) ;
- 2. Desenha-se o sentido do fluxo magnético originado pela bobina 1 que atinge a bobina 2 (ϕ_{12}) (Regra da mão direita);
- 3. Verificar qual é o sentido da corrente na bobina 2 que dará origem a um fluxo (ϕ_{21}) que se soma com o inicial;
- 4. Marca-se um "ponto" no terminal da bobina 2, por onde a corrente entra (i_2) ;

IV. POLARIDADE DAS TENSÕES INDUZIDAS

COMO IDENTIFICAR A POLARIDADE DA TENSÃO INDUZIDA CONHECENDO-SE OS "PONTOS":

<u>Opção 01</u>: Se a corrente **entra** pelo terminal do ponto em uma bobina, a tensão mútua será **positiva** no terminal da segunda bobina que contém o ponto.

Opção 02: Se a corrente sai pelo terminal do ponto em uma bobina, a tensão mútua será negativa no terminal da segunda bobina que contém o ponto.

Universidade Federal de Uberlândia - UFU Faculdade de Engenharia Elétrica FEELT

V. Associação de Indutores (Indutância Equivalente)

Duas bobinas mutuamente acopladas podem ser ligadas da seguinte maneira:

Associação Série:

Polaridade Série Aditiva

$$\mathbf{V} = j\omega L_1 \mathbf{I} + j\omega M \mathbf{I} + j\omega L_2 \mathbf{I} + j\omega M \mathbf{I}$$

$$\mathbf{V} = \mathbf{j} \omega \mathbf{L}_{eq} \mathbf{I}$$

Polaridade Série Subtrativa

$$\mathbf{V} = j\omega L_1 \mathbf{I} - j\omega M \mathbf{I} + j\omega L_2 \mathbf{I} - j\omega M \mathbf{I}$$

$$\mathbf{V} = \mathbf{j} \omega \mathbf{L}_{eq} \mathbf{I}$$

V. ASSOCIAÇÃO DE INDUTORES (INDUTÂNCIA EQUIVALENTE)

Duas bobinas mutuamente acopladas podem ser ligadas da seguinte maneira:

 $L_{\rm eq} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$

Associação Paralela:

Polaridade Paralela Aditiva

$$\mathbf{V} = j\omega L_1 \mathbf{I}_1 + j\omega M \mathbf{I}_2$$

$$\mathbf{I}_1 = \frac{\mathbf{V}(L_2 - M)}{j\omega(L_1 L_2 - M^2)}$$

$$\mathbf{V} = j\omega M \mathbf{I}_1 + j\omega L_2 \mathbf{I}_2$$

$$\mathbf{I}_2 = \frac{\mathbf{V}(L_1 - M)}{j\omega(L_1 L_2 - M^2)}$$

$$\mathbf{I}_1 = \frac{\mathbf{V}(L_2 - M)}{j\omega(L_1 L_2 - M^2)}$$
$$\mathbf{I}_2 = \frac{\mathbf{V}(L_1 - M)}{j\omega(L_1 L_2 - M^2)}$$

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 = \frac{\mathbf{V}(L_1 + L_2 - 2M)}{j\omega(L_1L_2 - M^2)} = \frac{\mathbf{V}}{j\omega L_{\text{eq}}}$$

Polaridade Paralela Subtrativa

$$L_{\rm eq} = \frac{L_1 L_2 - M^2}{L_1 + L_2 + 2M}$$

VI. ANÁLISE DE CIRCUITOS MAGNETICAMENTE ACOPLADOS

CIRCUITO COM FONTE EM AMBOS OS LADOS

Polaridade aditiva

$$\mathbf{V}_1 = (R_1 + j\omega L_1)\mathbf{I}_1 + j\omega M\mathbf{I}_2$$

$$\mathbf{V}_2 = + j\omega M \mathbf{I}_1 + (R_2 + j\omega L_2) \mathbf{I}_2$$

CIRCUITO COM FONTE EM APENAS UM LADO

Polaridade subtrativa

$$\mathbf{V} = (\mathbf{Z}_1 + j\omega L_1)\mathbf{I}_1 - j\omega M\mathbf{I}_2$$

$$0 = -j\omega M \mathbf{I}_1 + (\mathbf{Z}_L + j\omega L_2) \mathbf{I}_2$$

Universidade Federal de Uberlândia - UFU Faculdade de Engenharia Elétrica FEELT

VI. ANÁLISE DE CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 01: CALCULE AS CORRENTES DE MALHA DO CIRCUITO ABAIXO:

Simulação: Software *Psim* (Demo)

$$\underline{\text{MALHA 01:}} \quad 100 < 0^{\underline{0}} = 4I_1 + [(-j3)I_1] + j6(I_1 - I_2) - j2I_2$$

$$\begin{array}{ll} {\rm Malha~02:} & 0=5I_2+j2(I_2-I_1)+j8I_2+j6(I_2-I_1)+j2I_2 \\ \\ & I_1=20,3<3,5^{\circ}~A \\ \\ & I_2=8,69<19,03^{\circ}~A \end{array}$$

VI. ANÁLISE DE CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 01: CALCULE AS CORRENTES DE MALHA DO CIRCUITO ABAIXO:

VI. ANÁLISE DE CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 02: FAÇA UM CIRCUITO EQUIVALENTE SUBSTITUINDO O SENTIDO DOS ENROLAMENTOS DAS BOBINAS MAGNETICAMENTE ACOPLADAS PELOS PONTOS E ENCONTRE A TENSÃO EM CIMA DO CAPACITOR DE REATÂNCIA $10~\Omega$:

$$\begin{bmatrix} 5 - j5 & 5 + j3 \\ 5 + j3 & 10 + j6 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 10/0^{\circ} \\ 10 - j10 \end{bmatrix}$$

$$\mathbf{I}_{1} = \frac{\begin{vmatrix} 10 & 5 + j3 \\ 10 - j10 & 10 + j6 \end{vmatrix}}{\Delta_{\mathbf{Z}}} = 1.015 \, \underline{/113.96^{\circ}} \, \, \mathbf{A}$$

$$V = I_1(-j10) = 10.15/23.96^{\circ} V$$

Universidade Federal de Uberlândia - UFU Faculdade de Engenharia Elétrica FEELT

VI. ANÁLISE DE CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 03: ENCONTRE A TENSÃO V_o DO CIRCUITO ACOPLADO MAGNETICAMENTE ABAIXO:

Resposta:

$$V_o = 11.4/0.334^{\circ} \text{ V}.$$

VII. ENERGIA ARMAZENADA EM CIRCUITOS MAGNETICAMENTE ACOPLADOS

A energia armazenada num indutor é dada por:

$$w = \frac{1}{2}Li^2$$

Agora, queremos determinar a energia armazenada em bobinas acopladas magneticamente:

Consideremos o circuito da Figura acima. Suponhamos que as correntes i_1 e i_2 sejam, inicialmente, zero, de modo que a energia armazenada nas bobinas seja zero. Se aumentarmos i_1 de zero até I_1 mantendo $i_2 = 0$, a potência e energia na bobina 1 será:

$$p_1(t) = v_1 i_1 = i_1 L_1 \frac{di_1}{dt}$$
 Energia $w_1 = \int p_1 dt = L_1 \int_0^{I_1} i_1 di_1 = \frac{1}{2} L_1 I_1^2$

Se agora mantivermos $i_1 = I_1$ e aumentarmos i_2 de zero até I_2 , a tensão mútua induzida na bobina 1 será M_{12} di_2/dt , enquanto a tensão mútua induzida na bobina 2 será zero, já que i_1 não muda. A potência e energia na bobina 2 agora é:

$$p_2(t) = i_1 M_{12} \frac{di_2}{dt} + i_2 v_2 = I_1 M_{12} \frac{di_2}{dt} + i_2 L_2 \frac{di_2}{dt}$$

$$w_2 = \int p_2 dt = M_{12} I_1 \int_0^{I_2} di_2 + L_2 \int_0^{I_2} i_2 di_2$$
$$= M_{12} I_1 I_2 + \frac{1}{2} L_2 I_2^2$$

VII. ENERGIA ARMAZENADA EM CIRCUITOS MAGNETICAMENTE ACOPLADOS

A energia total armazenada nas bobinas quando tanto i_1 quanto i_2 atingiram valores constantes é:

$$w = w_1 + w_2 = \frac{1}{2} L_1 I_1^2 + \frac{1}{2} L_2 I_2^2 + M_{12} I_1 I_2$$

Se invertermos a ordem na qual as correntes atingem seus valores finais, isto é, aumentarmos, primeiro, i_2 de zero até l_2 e, posteriormente, i_1 de zero a l_1 , a energia total armazenada nas bobinas será:

$$w = \frac{1}{2}L_1I_1^2 + \frac{1}{2}L_2I_2^2 + M_{21}I_1I_2$$

Como a energia total armazenada deve ser a mesma independentemente de como atingimos as condições finais, comparar as Equações anteriores nos leva a concluir que:

$$M_{12} = M_{21} = M$$

$$w = \frac{1}{2}L_1I_1^2 + \frac{1}{2}L_2I_2^2 + MI_1I_2$$

Se uma corrente entrar por um terminal marcado com um ponto, enquanto a outra corrente deixa o outro terminal marcado com um ponto, a tensão mútua será negativa, de modo que a energia mútua Ml_1l_2 também será negativa.

$$w = \frac{1}{2}L_1I_1^2 + \frac{1}{2}L_2I_2^2 - MI_1I_2$$

$$w = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm Mi_1i_2$$

VII. ENERGIA ARMAZENADA EM CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 04: DETERMINE O COEFICIENTE DE ACOPLAMENTO E CALCULE A ENERGIA ARMAZENADA NOS INDUTORES ACOPLADOS NO INSTANTE T=1 S SE V=60 COS (4T+30°) V.

$$k = \frac{M}{\sqrt{L_1 L_2}} = \frac{2.5}{\sqrt{20}} = 0.56$$

$$60 \cos(4t + 30^{\circ}) \Rightarrow 60/30^{\circ}, \omega = 4 \text{ rad/s}$$

$$5 \text{ H} \Rightarrow j\omega L_{1} = j20 \Omega$$

$$2.5 \text{ H} \Rightarrow j\omega M = j10 \Omega$$

$$4 \text{ H} \Rightarrow j\omega L_{2} = j16 \Omega$$

$$\frac{1}{16} \text{ F} \Rightarrow \frac{1}{j\omega C} = -j4 \Omega$$

$$j10 \Omega$$

VII. ENERGIA ARMAZENADA EM CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 04: DETERMINE O COEFICIENTE DE ACOPLAMENTO E CALCULE A ENERGIA ARMAZENADA NOS INDUTORES ACOPLADOS NO INSTANTE T = 1 S SE V = 60 COS (4T + 30°) V.

$$(10 + j20)\mathbf{I}_1 + j10\mathbf{I}_2 = 60/30^{\circ}$$

$$j10\mathbf{I}_1 + (j16 - j4)\mathbf{I}_2 = 0$$

$$I_2 = 3.254/160.6^{\circ} A$$

 $I_2(-12 - j14) = 60/30^\circ$

$$I_1 = -1.2I_2$$

$$I_1 = -1.2I_2 = 3.905 / -19.4^{\circ} A$$

As correntes no domínio do tempo:

$$i_1 = 3.905 \cos(4t - 19.4^\circ), \qquad i_2 = 3.254 \cos(4t + 160.6^\circ)$$

Em t = 1 s, $4t = 4 = 229,2^{\circ}$:

$$i_1 = 3.905 \cos(229.2^{\circ} - 19.4^{\circ}) = -3.389 \text{ A}$$

$$i_2 = 3.254 \cos(229.2^{\circ} + 160.6^{\circ}) = 2.824 \text{ A}$$

VII. ENERGIA ARMAZENADA EM CIRCUITOS MAGNETICAMENTE ACOPLADOS

EXERCÍCIO 04: DETERMINE O COEFICIENTE DE ACOPLAMENTO E CALCULE A ENERGIA ARMAZENADA NOS INDUTORES ACOPLADOS NO INSTANTE T = 1 S SE V = 60 COS $(4T + 30^\circ)$ V.

A energia total armazenada nos indutores acoplados é

$$w = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 + Mi_1i_2$$

= $\frac{1}{2}(5)(-3.389)^2 + \frac{1}{2}(4)(2.824)^2 + 2.5(-3.389)(2.824) = 20.73 \text{ J}$

Universidade Federal de Uberlândia - UFU Faculdade de Engenharia Elétrica FEELT

VIII. TRANSFORMADORES LINEARES

- □ Diz-se que o transformador é linear se as bobinas forem enroladas em um material magneticamente linear um material para o qual a permeabilidade magnética é constante;
- ☐ Entre esses materiais, temos ar, plástico, baquelite e madeira. Na realidade, a maioria dos materiais é magneticamente linear. (Desvantagem desses materiais é o coeficiente de acoplamento relativamente baixo)

 R_1 e X_1 – Impedância própria (resistência e reatância) do enrolamento primário; R_2 e X_2 – Impedância própria (resistência e reatância) do enrolamento secundário; X_M – Reatância relativa ao acoplamento mútuo entre os enrolamentos.

IMPEDÂNCIA DE ENTRADA (Z) VISTA PELA FONTE:

Expressando I_2 em termos de I_1 , temos:

Sentido dos pontos não importa!!

$$\overline{Z} = \frac{\overline{V}_F}{\overline{I}_1} = \frac{\left(\overline{Z}_F + R_1 + jX_1 + \frac{X_M^2}{R_2 + jX_2 + \overline{Z}_C}\right)\overline{I}_1}{\overline{I}_1} = \overline{\overline{Z}_F} + \underbrace{\overline{R}_1 + jX_1}_{\text{Impedância do primário}} + \underbrace{\frac{\overline{Z}_2^{ref}}{\overline{Z}_2^2}}_{R_2 + jX_2 + \overline{Z}_C}$$

VIII. TRANSFORMADORES LINEARES

EXERCÍCIO 05: NO CIRCUITO DA FIGURA ABAIXO, CALCULE A IMPEDÂNCIA DE ENTRADA E A CORRENTE I_1 . Considere $Z_1 = 60 - J100 \Omega$, $Z_2 = 30 - J40 \Omega$ e $Z_1 = 80 - J60 \Omega$:

$$\mathbf{Z}_{in} = \mathbf{Z}_1 + j20 + \frac{(5)^2}{j40 + \mathbf{Z}_2 + \mathbf{Z}_L}$$

$$= 60 - j100 + j20 + \frac{25}{110 + j140}$$

$$= 60 - j80 + 0.14 / -51.84^{\circ}$$

$$= 60.09 - j80.11 = 100.14 / -53.1^{\circ} \Omega$$

$$I_1 = \frac{\mathbf{V}}{\mathbf{Z}_{\text{in}}} = \frac{50/60^{\circ}}{100.14/-53.1^{\circ}} = 0.5/113.1^{\circ} \text{ A}$$

CIRCUITOS EQUIVALENTES NÃO ACOPLADOS:

Por vários motivos, é conveniente substituir um circuito acoplado magneticamente por um sem acoplamento magnético. Dessa forma, considerem o transformador abaixo e suas equações de malha de tensão:

Circuito Equivalente T:

Para o circuito T (abaixo), a análise de malhas fornece as equações terminais, como segue:

VIII. TRANSFORMADORES LINEARES

CIRCUITOS EQUIVALENTES NÃO ACOPLADOS:

Circuito Equivalente π :

Para o circuito π (abaixo), a análise nodal fornece as equações nos terminais, como segue:

Por inversão de matrizes, é possível escrever as correntes como:

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \frac{L_2}{j\omega(L_1L_2 - M^2)} & \frac{-M}{j\omega(L_1L_2 - M^2)} \\ \frac{-M}{j\omega(L_1L_2 - M^2)} & \frac{L_1}{j\omega(L_1L_2 - M^2)} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

$$L_A = \frac{L_1 L_2 - M^2}{L_2 - M}$$
, $L_B = \frac{L_1 L_2 - M^2}{L_1 - M}$
 $L_C = \frac{L_1 L_2 - M^2}{M}$

VIII. TRANSFORMADORES LINEARES

Exercício 05: Determine I_1 , I_2 e V_0 na Figura abaixo usando o circuito T equivalente para o transformador linear.

$$L_a = L_1 - (-M) = 8 + 1 = 9 \text{ H}$$

$$E_{J5 \Omega} \quad \mathbf{v}_2 \quad L_b = L_2 - (-M) = 5 + 1 = 6 \text{ H}, \quad L_c = -M = -1 \text{ H}$$

$$j6 = \mathbf{I}_1(4 + j9 - j1) + \mathbf{I}_2(-j1)$$

$$0 = \mathbf{I}_1(-j1) + \mathbf{I}_2(10 + j6 - j1)$$

$$I_2 = \frac{j6}{100} = j0.06 = 0.06/90^{\circ} \text{ A}$$

$$I_1 = (5 - j10)j0.06 = 0.6 + j0.3 \text{ A}$$

$$\mathbf{V}_o = -10\mathbf{I}_2 = -j0.6 = 0.6/-90^{\circ} \text{ V}$$

Universidade Federal

IX. TRANSFORMADORES IDEAIS

Transformador ideal é um transformador sem perdas $(R_1 = R_2 = 0)$ com coeficiente de acoplamento unitário (k = 1)no qual as bobinas primárias e secundária possuem autoindutâncias infinitas (L1, L2, $M \rightarrow \infty$).

Isolar a corrente *I*₁ e substituir

$$\mathbf{V}_{1} = j\omega L \mathbf{I}_{1} + j\omega M \mathbf{I}_{2}$$

$$\mathbf{V}_{2} = j\omega M \mathbf{I}_{1} + j\omega L_{2} \mathbf{I}_{2}$$

$$\mathbf{V}_{2} = j\omega L_{2} \mathbf{I}_{2} + \frac{M \mathbf{V}_{1}}{L_{1}} - \frac{j\omega M^{2} \mathbf{I}_{2}}{L_{1}}$$

$$\mathbf{V}_{2} = j\omega L_{2} \mathbf{I}_{2} + \frac{\sqrt{L_{1}L_{2}} \mathbf{V}_{1}}{L_{1}} - \frac{j\omega L_{1}L_{2} \mathbf{I}_{2}}{L_{1}} = \sqrt{\frac{L_{2}}{L_{1}}} \mathbf{V}_{1} = n \mathbf{V}_{1}$$

$$M = \sqrt{L_{1}L_{2}}$$

$$\mathbf{V}_{2} = j\omega L_{2}\mathbf{I}_{2} + \frac{\sqrt{L_{1}L_{2}}\mathbf{V}_{1}}{L_{1}} - \frac{j\omega L_{1}L_{2}\mathbf{I}_{2}}{L_{1}} = \sqrt{\frac{L_{2}}{L_{1}}}\mathbf{V}_{1} = n\mathbf{V}_{1}$$

- \square Onde $n = \sqrt{L_1 \cdot L_2}$ é chamada *relação de espiras*. Como L_1 , L_2 , M tende para ∞ de modo que n permanece a mesma, as bobinas acopladas se tornam um transformador ideal;
- ☐ Os transformadores com núcleo de ferro são boas aproximações dos transformadores ideais, usados em sistemas de geração de energia elétrica e em eletrônica.

niversidade Federal e Uberlândia - UFU Faculdade de Engenharia Elétrica FEELT

IX. TRANSFORMADORES IDEAIS

Quando uma tensão senoidal é aplicada ao enrolamento primário, conforme mostrado na figura abaixo, o fluxo magnético Ø atravessa ambos os enrolamentos.

☐ De acordo com a lei de Faraday, a tensão no enrolamento primário e secundário é:

$$v_1 = N_1 \frac{d\phi}{dt} \qquad \qquad v_2 = N_2 \frac{d\phi}{dt}$$

 \square Se dividirmos uma equação pela outra, obtemos a *relação de espiras* ou a *relação de transformação*. Podemos usar as tensões fasoriais V_1 e V_2 em vez dos valores instantâneos v_1 e v_2 :

$$\frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{N_2}{N_1} = n$$

☐ Por motivo de conservação de energia, a energia fornecida para o primário deve ser igual à energia absorvida pelo secundário, já que não existem perdas em um transformador ideal. Isso implica;

$$v_1 i_1 = v_2 i_2$$
 $\frac{\mathbf{I}_2}{\mathbf{I}_1} = \frac{N_1}{N_2} = \frac{1}{n}$

IX. TRANSFORMADORES IDEAIS

COMO IDENTIFICAR A POLARIDADE DAS TENSÕES E SENTIDO DAS CORRENTES EM UM TRANSFORMADOR IDEAL:

<u>Opção 01</u>: Se tanto V_1 quanto V_2 forem positivas ou ambas negativas nos terminais pontuados, use +n na equação da relação de transformação de tensão. Caso contrário, use -n.

Opção 02: Se tanto I_1 quanto I_2 entrarem ou ambos deixarem os terminais pontuados, use -n na equação da relação de transformação de corrente. Caso contrário, use +n.

IMPEDÂNCIA REFLETIDA E CIRCUITOS EQUIVALENTES:

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}_1}{\mathbf{I}_1} = \frac{1}{n^2} \frac{\mathbf{V}_2}{\mathbf{I}_2} \qquad \mathbf{Z}_{\text{in}} = \frac{\mathbf{Z}_L}{n^2}$$

$$\mathbf{Z}_{\rm in} = \frac{\mathbf{Z}_L}{n^2}$$

A impedância de entrada também é chamada impedância refletida, uma vez que parece como se a impedância da carga fosse refletida para o lado do primário.

☐ Ao analisarmos um circuito contendo um transformador ideal, é prática comum eliminar o transformador refletindo as impedâncias e as fontes de um lado do transformador para o outro.

✓ Suponha que queiramos refletir o lado secundário do circuito para o lado primário. Encontramos o circuito equivalente de Thévenin do circuito à direita dos terminais a-b.

IX. TRANSFORMADORES IDEAIS

IMPEDÂNCIA REFLETIDA E CIRCUITOS EQUIVALENTES:

Obtemos V_{Th} como a tensão de circuito aberto nos terminais a-b, conforme mostrado na Figura abaixo.

Como os terminais a-b estão abertos, $I_1 = 0 = I_2$ de modo que V_2 e V_{s2} . Logo, obtemos:

$$\mathbf{V}_{\mathrm{Th}} = \mathbf{V}_1 = \frac{\mathbf{V}_2}{n} = \frac{\mathbf{V}_{s2}}{n}$$

Para obter Z_{Th} , eliminamos a fonte de tensão no enrolamento secundário e inserimos uma fonte unitária nos terminais a-b, como indicado na Figura abaixo:

$$\mathbf{Z}_{\mathrm{Th}} = \frac{\mathbf{V}_1}{\mathbf{I}_1} = \frac{\mathbf{V}_2/n}{n\mathbf{I}_2} = \frac{\mathbf{Z}_2}{n^2}, \qquad \mathbf{V}_2 = \mathbf{Z}_2\mathbf{I}_2$$

IX. TRANSFORMADORES IDEAIS

IMPEDÂNCIA REFLETIDA E CIRCUITOS EQUIVALENTES:

Assim que tivermos V_{Th} e Z_{Th} , acrescentamos o circuito equivalente de Thévenin à parte do circuito original à esquerda dos terminais a-b. A Figura abaixo mostra o resultado:

A regra para eliminar o transformador e refletir o circuito secundário para o lado primário é: dividir a impedância do secundário por n^2 , dividir a tensão do secundário por n e multiplicar a corrente do secundário por n.

Também podemos refletir o lado primário do circuito para o lado secundário. A Figura abaixo mostra o circuito equivalente:

VIII. TRANSFORMADORES LINEARES

Exercício 06: Para o circuito com transformador ideal da Figura Abaixo, determine: (a) a corrente de fonte I_1 ; (b) a tensão de saída V_0 ; (c) a potência complexa fornecida pela fonte.

$$\mathbf{I}_2 = -\frac{1}{n}\mathbf{I}_1 = -5.545/33.69^{\circ}$$
 A

$$\mathbf{V}_o = 20\mathbf{I}_2 = 110.9/213.69^{\circ} \text{ V}$$

$$\mathbf{Z}_R = \frac{20}{n^2} = \frac{20}{4} = 5 \ \Omega$$

$$\mathbf{Z}_{\text{in}} = 4 - j6 + \mathbf{Z}_R = 9 - j6 = 10.82 / -33.69^{\circ} \Omega$$

$$\mathbf{I}_{1} = \frac{120/0^{\circ}}{\mathbf{Z}_{\text{in}}} = \frac{120/0^{\circ}}{10.82/-33.69^{\circ}} = 11.09/33.69^{\circ} \text{ A}$$

$$\mathbf{S} = \mathbf{V}_{s} \mathbf{I}_{1}^{*} = (120/0^{\circ})(11.09/-33.69^{\circ}) = 1,330.8/-33.69^{\circ} \text{ VA}$$

VIII. TRANSFORMADORES LINEARES

Exercício 07: Calcule a potência fornecida ao resistor de 10Ω no circuito com transformador ideal da Figura Abaixo.

$$-120 + (20 + 30)\mathbf{I}_{1} - 30\mathbf{I}_{2} + \mathbf{V}_{1} = 0 \qquad \mathbf{V}_{2} = -\frac{1}{2}\mathbf{V}_{1}$$

$$50\mathbf{I}_{1} - 30\mathbf{I}_{2} + \mathbf{V}_{1} = 120 \qquad \mathbf{I}_{2} = -2\mathbf{I}_{1}$$

$$-\mathbf{V}_2 + (10 + 30)\mathbf{I}_2 - 30\mathbf{I}_1 = 0$$

$$-30\mathbf{I}_1 + 40\mathbf{I}_2 - \mathbf{V}_2 = 0$$

$$-55\mathbf{I}_2 - 2\mathbf{V}_2 = 120$$

$$15\mathbf{I}_2 + 40\mathbf{I}_2 - \mathbf{V}_2 = 0 \qquad \Rightarrow \qquad \mathbf{V}_2 = 55\mathbf{I}_2$$

$$-165\mathbf{I}_2 = 120$$
 \Rightarrow $\mathbf{I}_2 = -\frac{120}{165} = -0.7272 \text{ A}$

$$P = (-0.7272)^2(10) = 5.3 \text{ W}$$

Universidade Federal de Uberlândia - UFU

VIII. TRANSFORMADORES LINEARES

EXERCÍCIO 08: DETERMINE I_1 , I_2 , V_1 E V_2 DO CIRCUITO ABAIXO:

$$\frac{10 - \mathbf{V}_1}{2} = \frac{\mathbf{V}_1 - \mathbf{V}_2}{2} + \mathbf{I}_1$$
$$\mathbf{I}_2 + \frac{\mathbf{V}_1 - \mathbf{V}_2}{2} = \frac{\mathbf{V}_2}{2j}$$

The transformer relationships are $\mathbf{V}_2 = 2\mathbf{V}_1$ and $\mathbf{I}_1 = 2\mathbf{I}_2$. The first nodal equation yields $\mathbf{I}_1 = 5$ A and therefore $\mathbf{I}_2 = 2.5$ A. The second nodal equation, together with the constraint equations specified by the transformer, yields $\mathbf{V}_1 = \sqrt{5} / 63^\circ$ V and $\mathbf{V}_2 = 2\sqrt{5} / 63^\circ$ V.

REFERENCIAS BIBLIOGRÁFICAS

Básicas:

- ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto Alegre: Mc Graw-Hill, 2015.
- IRWIN, J.D.; NELMS, R.M. Análise Básica de Circuitos para Engenharia. 10^a ed. Rio de Janeiro: Editora LTC, 2014.
- MACEDO JÚNIOR, J. R. Circuitos Elétricos 2. Disponível em: http://www.jrubens.eng.br/ce2.htm. Acesso em: 03 maio 2018.

Complementar:

- BOYLESTAD, R. L. Introdução à Análise de Circuitos. 12ª ed. São Paulo: Pearson Prentice Hall, 2012.
- CHAPMAN, S. J. Fundamentos de Máquinas Elétricas. 5ª ed. Porto Alegre: Mc Graw-Hill, 2013.

Universidade Federal de Uberlândia | Faculdade de Engenharia - UFU -

Elétrica - FEELT -

OBRIGADO!

Paulo Henrique Oliveira Rezende

paulohenrique16@gmail.com