Методы оптимизации. Семинар 10. Двойственность.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

14 октября 2016 г.

Напоминание

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств

Обозначения

Задача

$$\min_{x \in \mathcal{D}} f(x) = p^*$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\mu, \lambda) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu)$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) в независимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $oldsymbol{\lambda}$ и для $oldsymbol{\mu} \geq 0$ выполнено $g(oldsymbol{\mu}, oldsymbol{\lambda}) \leq oldsymbol{p}^*.$

Двойственная задача

$$\max g(oldsymbol{\mu},oldsymbol{\lambda})=d^*$$
 s.t. $oldsymbol{\mu}\geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Примеры

Слабая и сильная двойственность

Геометрическая интерпретация

Условия Каруша-Куна-Таккера

Механическая интерпретация

Примеры