Official Date: Official as of 01-Aug-2015

Document Type: GENERAL CHAPTER

1

(202) IDENTIFICATION OF FIXED OILS BY THIN-LAYER **CHROMATOGRAPHY**

INTRODUCTION

The following procedure for the USP Identification test is used to identify fixed oils using high-performance thin-layer chromatography (HPTLC), with a suitable octadecylsilyl silica gel as the coating substance.

METHOD I

Mobile phase 1: Ethyl ether

Mobile phase 2: Methylene chloride, glacial acetic acid, and acetone (20:40:50)

System suitability solution 1: Dissolve about 20 mg (1 drop) of USP Corn Oil RS in 3 mL of methylene chloride. System suitability solution 2: Dissolve about 20 mg (1 drop) of USP Olive Oil RS in 3 mL of methylene chloride.

Standard solution: Dissolve about 20 mg (1 drop) of the appropriate USP Reference Standard in 3 mL of methylene chloride.

Sample solution: Dissolve about 20 mg (1 drop) of a fixed oil sample in 3 mL of methylene chloride.

Chromatographic system

(See Chromatography (621), Thin-Layer Chromatography.)

Mode: HPTLC

Plate: 20 cm × 10 cm, silica gel 60 RP-18, 0.15–0.2 mm layer, 4–8 μm particle size¹

Application volume: 1 µL, manually spot

Spray reagent: 100 mg/mL of phosphomolybdic acid in 96% alcohol

System suitability

Samples: System suitability solution 1 and System suitability solution 2

Suitability requirements

Resolution: The four principal spots from corn oil are clearly identified and separated, and the two principal spots from olive oil are clearly identified and separated.

[NOTE—Retardation factors (R_F) are provided for informational purposes only to aid in spot identification. The R_F values for the four principal spots for USP Corn Oil RS are 0.39, 0.45, 0.51, and 0.56, and the $R_{\rm F}$ values for the two principal spots for USP Olive Oil RS are 0.39 and 0.45.]

Analysis

Samples: Standard solution and Sample solution

Apply the Samples in separate bands to the previously marked starting point on an HPTLC plate, and develop the plate in the following order:

- 1. Ensure that the spots are at least 3 mm above the surface of the mobile phase. Develop two times over a path of 0.5 cm using Mobile phase 1. Remove the plate from the chamber after each run, and allow the plate to dry in air.
- 2. Develop two times over a path of 8 cm using Mobile phase 2. Allow the plate to dry for about 5 min after each development and before spraying with a spray reagent.

Spray the plate with the Spray reagent.

Heat the plate at 120° for about 1 min, and examine in daylight.

Acceptance criteria: The R_F values of the principal spots of the *Sample solution* correspond to those of the *Standard solution*.

METHOD II

Mobile phase: Methylene chloride, glacial acetic acid, and acetone (20:40:50)

System suitability solution 1: Dissolve 25 µL of USP Corn Oil RS in 3 mL of methylene chloride. System suitability solution 2: Dissolve 25 µL of USP Olive Oil RS in 3 mL of methylene chloride.

Standard solution: Dissolve 25 μ L of the appropriate USP Reference Standard in 3 mL of methylene chloride.

Sample solution: Dissolve 25 µL of a fixed oil sample in 3 mL of methylene chloride.

Chromatographic system

(See Chromatography (621), Thin-Layer Chromatography.)

Plate: 20 cm × 10 cm, silica gel 60 RP-18 (or RP-18 F₂₅₄), 0.15–0.2 mm layer, 4–8 μm particle size

Conditioning of plate: Condition the plate to a relative humidity of about 33%. Application volume: 2 µL as bands of 8 mm. A suitable automated apparatus is used.

Spray reagent: 25 mg/mL of phosphomolybdic acid in 96% alcohol

System suitability

Samples: System suitability solution 1 and System suitability solution 2

Suitability requirements

Resolution: The four principal bands from corn oil are clearly identified and separated, and the two principal bands from olive oil are clearly identified and separated.

[Note—Retardation factors (R_F) are provided for informational purposes only to aid in band identification. The R_F values for the four principal bands for USP Corn Oil RS are 0.20, 0.26, 0.30, and 0.34, and the R_F values for the two principal bands for USP Olive Oil RS are 0.20 and 0.26.]

Samples: Standard solution and Sample solution

Predevelop the plate with methylene chloride to the upper edge. Dry the plate at 120° for 10 min.

¹ HPTLC Silica Gel 60 RP-18 plate from Merck EMD, or equivalent.

Printed on: Mon Aug 09 2021, 06:47:52 PM Official Status: Currently Official on 09-Aug-2021 Docld: 1_GUID-17A1BCE5-269D-4CEC-8384-E4C81CD7AFC1_2_en-US

Printed by: Nguyen Nhan

Official Date: Official as of 01-Aug-2015

Document Type: GENERAL CHAPTER

@2021 USPC

2

Apply the Samples in separate bands to the previously marked starting point on an HPTLC plate.

Ensure that the bands are at least 3 mm above the surface of the mobile phase.

Develop over a path of 7 cm using *Mobile phase*. Allow the plate to dry in air. Treat the plate with the *Spray reagent*.

Heat the plate at 120° for 3 min, and examine in daylight.

Acceptance criteria: The R_F values of the principal bands of the *Sample solution* correspond to those of the *Standard solution*.

ADDITIONAL REQUIREMENTS

• USP REFERENCE STANDARDS (11)

USP Almond Oil RS USP Borage Seed Oil RS

USP Canola Oil RS

USP Corn Oil RS

USP Cottonseed Oil RS

USP Evening Primrose Oil RS

USP Flax Seed Oil RS

USP Olive Oil RS

USP Palm Oil RS

USP Peanut Oil RS

USP Safflower Oil RS

USP Sesame Oil RS

USP Soybean Oil RS

USP Sunflower Oil RS

