CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

1 (a) (i)

(ii) linear and
$$180^{\circ}$$
 (1) [3]

(b) (i)
$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$
 (1)

is burnt in an excess of oxygen/air

or is completely combusted

(c)

(d) (i)
$$CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$$

or
 $CS_2 + 2NO \rightarrow CO + 2S + N_2O$

correct products (1)

correct equation (1)

[Total: 12]

Paper

Syllabus

					GCE AS	A LEV	EL – May/	June :	2013		9701	23	
2	(a)	(i)	if the	conditi	ons of a sy	ystem i	n equilibriu	m are	changed			(1)	
			the p	osition	of equilibri	ium mo	oves so as	to redu	uce that cha	ange		(1)	[2]
		(ii)	lower	tempe	erature							(1)	
			beca	use the	forward re	eaction	is exother	mic				(1)	
			highe	r press	sure							(1)	
				use the	forward re	eaction	shows a r	eductio	on in volum	е			
			or there	are fe	wer moleci	ules/m	oles on RH	S of e	quilibrium			(1)	[4]
	(b)				CO ₂	+	H ₂	=	СО	+	H ₂ O		
		initi	ial mol	es	0.70		0.70		0.30		0.30		
		equ	uil. mol	es	(0.70-x)		(0.70-x)		(0.30+x)		(0.30+x)	(1)	
		equ	uil. con	cn.	(0.70-x) 1		(0.70-x) 1		(0.30+x) 1		(0.30+x) 1		
		K _c =	= <u>(0.30</u> (0.70)+x) ² =	1.44							(1)	
		at e	es x = equilibr CO ₂) =	ium,	÷ 0.70 – 0.2	25 = 0. ₁	45 moles					(1)	

 $n(CO) = n(H_2O) = 0.3 + 0.25 = 0.55 \text{ moles}$

Mark Scheme

Page 3

[Total: 10]

(1) [4]

Page 4		Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9701	23	
3 (a) (i	i) He	or Ne or Ar or Kr		(1)	
(ii	i) P	or As		(1)	
(iii	i) Br			(1)	
(iv) Na	allow Ar		(1)	
(v) Si			(1)	
(vi	i) Pa	allow Si		(1)	
(vii) C1	or F or Br		(1)	[7]
(b) (i	i) an	y two from P_4O_6 , SO_2 and Cl_2O_7		(1+1)	
(ii) A <i>l</i> ₂	O ₃ or SiO ₂		(1)	
(iii	i) Mg	SO ₃		(1)	[4]
(c) (i	i) Si	is giant molecular/giant covalent or			
	P,	S, and C <i>l</i> are simple molecular		(1)	
(ii	i) the	molecules are S ₈ , P ₄ , C l ₂		(1)	
	lar	ger molecules have more electrons		(1)	
	an	d hence greater van der Waals' forces		(1)	[4]
				[Total:	: 15]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

4 (a) (i)

one mark for each correct compound, R, S and T

allow correct cis and trans versions of compound T for 2 marks (3×1)

(ii) reduction

NaBH₄ or LiA
1
H₄ or H₂/Ni or Na/C₂H₅OH (1) dehydration

$$P_4O_{10}/P_2O_5$$
 or H_3PO_4 or conc. H_2SO_4 or Al_2O_3 (1) [5]

(b)

Tollens' reagent	NO REACTION
HCN	CH ₃ (CH ₂) ₄ C(OH)CH ₃ CN
K ₂ Cr ₂ O ₇ /H ⁺	NO REACTION

one mark for each correct answer (3×1) [3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

(c) Na₂CO₃ or NaHCO₃ effervescence/colourless gas

or

Na colourless gas

or

 PCl_3/PCl_5 etc. steamy fumes

or

 $C_2H_5OH/conc.\ H_2SO_4$ sweet smell of ester

or

K₂Cr₂O₇/H⁺ orange solution becomes green

correct reagent (1)

correct observation (1) [2]

[Total: 10]

Paper

Syllabus

Paç	Page 1		wark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9701	23	
5 (a)	(i)	CH ₂	=CHCO ₂ H		(1)	
((ii)	BrCl	H ₂ CHBrCH ₂ OH		(1)	
(iii)	prod	luct is HOCH ₂ CH(OH)CH ₂ OH			
		corre	ect addition across >C=C<		(1)	
		origi	nal –CH ₂ OH remains		(1)	
(iv)	HO ₂	CCO₂H		(1)	[5]
(b)	(i)	nucl	eophilic substitution		(1)	
((ii)	oxida	ation		(1)	[2]
(c)	(i)	step	01			
		H ₂			(1)	
		heat	with Ni catalyst		(1)	
		step	11			
		acidi	ified K ₂ Cr ₂ O ₇		(1)	
		heat	or distil off product		(1)	
((ii)		ctural isomerism			
		or func	tional group isomerism		(1)	[5]
(d)	bot	h oxid	dation and reduction have occurred or			
	disp	oropo	rtionation has taken place		(1)	[1]
				[Total: 13]		

Mark Scheme

Page 7