Plano de Ensino

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Campus Taguatinga

1 Identificação da Disciplina

- Nome da Disciplina: Tópicos Especiais em Algoritmos;
- Curso: Bacharelado em Ciência da Computação;
- Carga Horária: 72 h/a.
- Período: 2021/2;
- Professor: Daniel Saad Nogueira Nunes.

2 Bases Tecnológicas (Ementa)

Juízes eletrônicos; Busca e ordenação; Estruturas de dados lineares; Estruturas de dados associativas; Vetores de bits; Árvores de Fenwick; Árvores de segmentos; Paradigmas de projeto de algoritmos; Algoritmos em grafos;

3 Objetivos e Competências

- Abordar o projeto de algoritmos e estruturas de dados avançados;
- Modelar problemas reais em termos computacionais;
- Introduzir noções acerca de Programação Competitiva;

4 Habilidades Esperadas

- Entender os problemas clássicos em Computação e as soluções envolvidas;
- Ser capaz de resolver problemas rapidamente através do projeto de algoritmos.
- Escolher uma solução eficiente dentro das restrições do problema.
- Proficiência em diversos tópicos acerca de algoritmos.

5 Conteúdo Programático

- 1. Estruturas de Dados e bibliotecas: utilização de estruturas presentes nas bibliotecas padrão; estruturas de dados não lineares; representação de grafos, estruturas de union-find, árvores de segmentos e árvores de Fenwick.
- 2. Paradigmas de projeto de algoritmos: busca completa, divisão e conquista, abordagem gulosa, programação dinâmica.
- 3. Grafos: busca em largura, busca em profundidade, árvore espalhada mínima, menor caminho, fluxo em grafos, algoritmos em classes especiais de grafos;
- 4. Algoritmos matemáticos: *big-integer*, combinatória, números primos, maior divisor comum e menor múltiplo comum, aritmética modular, equações diofantinas; teoria de probabilidade; teoria dos jogos;
- 5. Processamento de palavras: soluções presentes em bibliotecas padrão; algoritmo KMP e variantes; distância de edição; subsequência comum mais longa; vetor de sufixos.
- 6. Geometria computacional: objetos básicos de e sua representação computacional; algoritmos em polígonos;
- 7. Tópicos avançados em algoritmos.

6 Metodologia de Ensino

Ensino híbrido: aulas expositivas e PBL.

7 Recursos de Ensino

Projetor multimídia; laboratórios de Informática; Internet; quadro branco, pincel e apagador; visitas técnicas e participação em eventos; grupo de discussão *on-line*.

8 Avaliação

A avaliação consistirá de listas de exercício e provas práticas de programação. A nota final é calculada como:

$$N_f = 0.3 \cdot \bar{L} + 0.7 \cdot \bar{P}$$

Em que \bar{L} corresponde à média aritmética das listas de exercício e \bar{P} representa a média aritmética das provas de programação.

O aluno é considerado **aprovado** se e somente se obtiver $N_f \ge 6.0$ e presença $\ge 75\%$. As frequências são contabilizadas de acordo com chamada, nas atividades síncronas, e entrega das atividades assíncronas.

Observações

Será atribuída nota **ZERO** a qualquer avaliação que contenha plágio.

9 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

Semana do dia	Conteúdo	Total de Horas
04/out	Apresentação da disciplina / Vetores, Ordenação e Busca	4
11/out	Estruturas de Dados Lineares	4
18/out	Estruturas de Dados Associativas e Vetores de Bits	4
25/out	Árvores Fenwick e de Segmentos	4
08/nov	Busca Completa	4
22/nov	Prova 1: Eds e Bibliotecas	4
29/nov	Divisão e Conquista	4
$06/\mathrm{dez}$	Algoritmos Gulosos	4
13/dez	Prova 2: Busca Completa e Divisão e Conquista	4
20/dez	Programação Dinâmica	4
03/jan	Grafos: Introdução	5
10/jan	Prova 3: Algoritmos Gulosos e Programação Dinâmica	4
17/jan	Grafos: Algoritmos Baseados em Percurso	5
24/jan	Grafos: Menor Caminho	5
31/jan	Prova 4: Grafos 1	4
07/fev	Grafos: Árvore Espalhada Mínima e UF	5
14/fev	Prova 5: Grafos 2	4

Total 72