L02: Basic Modeling

Prof. Tias Guns and Dr. Dimos Tsouros

Partly based on slides from Pierre Flener, Uppsala University.

Combinatorial Optimisation

Model-and-Solve

Modelling (declarative) vs Programming (imperative)

Example (Problem Definition: Sudoku)

The goal of Sudoku is to *complete* a partially filled 9x9 grid with numbers so that each row, column and 3x3 section contains each digit between 1 and 9 once.

Example (Model: Sudoku)

$$G_{ij} \in \{1,2,\ldots,9\}$$

$$G_{ij} \in \{1,2,\ldots,9\}$$

 $G_{ii} = v$

$$G_{ij} \in \{1,2,\ldots,9\}$$
ALLDIFFERENT $(\{G_{ij}|j\in\{1,\ldots,9\}\})$

ALLDIFFERENT(
$$\{G_{ij}|j\in\{1,\ldots,9\}\}$$
)
ALLDIFFERENT($\{G_{ij}|i\in\{1,\ldots,9\}\}$)

ALLDIFFERENT(
$$\{G_{ij}|i\in\{1,\ldots,9\}\}$$
)
ALLDIFFERENT($\{G_{kl}|k\in\{i,\ldots,i+2\},l\in\{j,\ldots,j+2\}\}$)

$$\mathsf{IT}(\{G_{ij}|j\in\{1,\ldots,9\}\})$$
 $\mathsf{IT}(\{G_{ii}|i\in\{1,\ldots,9\}\})$

$$\forall j$$

$$\forall j \in \{1, ...\}$$

$$\forall j \in \{1, \dots, 9\}$$

 $\forall (i, j, v) \in \mathcal{D}$

$$\forall j \in \{1, \dots, 9\}$$

 $\forall i, j \in \{1, 4, 7\}$

$$f \in \{1, \dots, 9\}$$
 $f \in \{1, \dots, 9\}$

$$i \in \{1, \ldots, 9\}$$
 $i \in \{1, \ldots, 9\}$

$$\forall i \in \{1, \ldots, 9\}$$

$$\forall i, j \in \{1, \dots, 9\}$$

 $\forall i \in \{1, \dots, 9\}$

Example (Problem Definition: Sudoku)

The goal of Sudoku is to *complete* a partially filled 9x9 grid with numbers so that each row, column and 3x3 section contains each digit between 1 and 9 once.

Example (Model: Sudoku in CPMpy)

```
import cpmpy as cp
#given = np.array(...) # load the hints, uses '0' for the empty cells
grid = cp.intvar(1,9, shape=given.shape, name="grid") # Decision variables
model = cp.Model(
        [cp.AllDifferent(row) for row in grid],
        [cp.AllDifferent(col) for col in grid.T], # numpy's Transpose
        [cp.AllDifferent(grid[i:i+3, j:j+3]) \
            for i in range(0, 9, 3) for j in range(0, 9, 3)],
        grid[given!=0] == given[given!=0], # enforce the hints
)
model.solve()
```

From Model to Model to Solver

High-level vs low-level modelling languages

High-level modeling languages (CPMpy, MiniZinc, Essence)

- ► Model = list of *complex* expressions over decision variables
- ▶ Boolean logic example: (symbols are explained later) $(a \leftrightarrow (b \lor (c \land d))) \land (e \lor \neg f)$

Low-level modeling language (SAT, ILP, CP, ...)

- Model = list of atomic constraints over decision variables
- SAT: CNF Example: $(a \lor \neg b) \land (a \lor \neg n) \land (\neg a \lor b \lor n) \land (n \lor \neg c \lor \neg d) \land (\neg n \lor c) \land (\neg n \lor d) \land (e \lor \neg f)$

Typically, high-level languages can translate to multiple low-level languages (solver-agnostic).

This course uses 1 high-level language, all ideas translate to other languages and to low-level languages.

So what does solving do?

For a CP solver, a model = list of atomic constraints over decision variables.

It will iterate over the constraints and try to reduce domains (=propagation) and branch over variables if there is nothing left to reduce (=search)

Branching induces a search tree

Belgian Beer Tasting problem

Responsible drinking:

What beers to try, so that you can still pay attention in class tomorrow?

Tias' Belgian beer guide

Stella Artois, from Leuven, 5.2%, must-try factor: 5/10

Duvel, devilish blond, 8.5%, must-try factor: 8/10

Vedett IPA, tastefully hoppy, 6%, must-try factor: 7.5/10

Tripel Karmeliet, strong blond, 8.4%, must-try factor: 8.2/10

Gouden Carolus Whiskey Infused, 11.7%, must-try factor: 9.5/10

Kriek Lindemans, sweet cherry beer, 3.5%, must-try factor: 7/10

Belgian Beer Tasting problem

What beers to try, so that you can still pay attention in class tomorrow?

Model =

- Variables, with a domain
- Constraints over variables
- Optionally: an objective

$$52*st + 85*du + 60*vi + 84*tk + 117*gc + 35*kl \le 4*52$$

maximize(50*st + 80*du + 75*vi + 82*tk + 95*gc + 70*kl)

Model.solve()

Belgian Beer Tasting problem, CPMpy

What beers to try, so that you can still pay attention in class tomorrow?

Decision variables

In this course, we only consider discrete decision variables, namely Boolean and integer decision variables:

$$b \in \{0,1\} \tag{1}$$

$$x \in \{1, \dots, 10\} \tag{2}$$

Variables have a domain, a finite set of allowed values:

- ▶ for Boolean variables, this is always {0, 1}
- ► for integer variables, this is specified as two parameters: *lb*=lower bound, *ub*=upper bound, domain: {*lb..ub*}

Sometimes, you want to create a variable with a sparse domain: $x \in \{1, 2, 5, 8, 9\}$

Some modeling languages support other variables (floats, sets, strings, bitvectors)

Logical constraints

Logical constraints involve Boolean operators over Boolean expressions

Boolean operators:

- ▶ negation: $\neg a$ (in text sometimes -a)
- ▶ or: $a \lor b$ (in text sometimes written as $a \mid b$)
- ▶ and: $a \land b$ (in text sometimes written as a & b)
- ightharpoonup equivalence: $a \leftrightarrow b$ (also called reification or double-implication)
- ▶ implication: $a \rightarrow b$ (also called half-reification)

Each operator has its own *truth table*: a/b values that make the expression true or false.

Logical constraints

Each operator has its own *truth table*: a/b values that make the expression true or false.

The one many people find tricky is the one of **implication**, called material implication in logic:

а	b	$a \rightarrow b$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

Verify: $a \rightarrow b$ is equivalent to $\neg a \lor b$ Also: a = b is equivalent to $(a \rightarrow b) \land (b \rightarrow a)$

Logical constraints

Boolean quantifiers:

- ▶ universal quantification: $\forall x \in X, (x \rightarrow y)$
- existential quantification: $\exists x \in X, (x \land y)$

Other Boolean operator:

ightharpoonup exclusive-or: $a \otimes b$ (in text sometimes $a \times b$)

а	b	a⊗b
Т	Т	F
Τ	F	T
F	Т	Т
F	F	F

To think about: $a \otimes b$ is equivalent to $(a \vee b) \wedge (\neg a \vee \neg b)$, what about XOR(a, b, c)?

Simple comparison constraints

Simple comparisons $(=, \neq, <, \leq, >, \geq)$ of an integer variable:

$$y \neq 6$$
 (4)
$$z < 2$$
 (5)

A simple comparison is a Boolean-valued expression, it can be used inside Boolean operators:

$$(x=3) \land (y>5)$$

$$(y \neq 6) \rightarrow (a \lor (z < 2))$$

$$(7)$$

(3)

$$(y \neq 6) \rightarrow (a \lor (z < 2)) \tag{7}$$

x = 3

Good use of brackets () avoids ambiguity.

Arithmetic constraints

Arithmetic constraints combine arithmetic operations (+, -, *, /) over integers with a comparisons $(=, \neq, <, \leq, >, \geq)$:

$$x + y = 3 \tag{8}$$

$$y-z\neq 6 \tag{9}$$

$$2*z - (x*y + y) < 2 (10)$$

Integer division x/y == 5 is tricky because it is undefined for y = 0. It is a partial function. Some languages/systems simply forbid a division where the nominator has 0 in its domain.

(there are more peculiarities with integer division, such as using *floor division* or *rounding division* for negative numbers...)

Arithmetic constraints

Linear constraints only involve arithmetic operations (+,-) and a multiplication of a variable with a constant. Linear inequalities further only use the comparisons $(<, \leq, >, \geq)$:

$$x+y\geq 3 \tag{11}$$

$$y-z<6+x \tag{12}$$

All integer linear inequalities can be rewritten to a normal form $a_1x_1 + ... + a_nx_n \le b$

A linear equality x + y = 5 can be rewritten as $(x + y \le 5) \land (x + y \ge 5)$

A linear dis-equality $x + y \neq 5$ leads to a disjunction: $(x + y < 5) \lor (x + y > 5)$ and cannot be rewritten to a conjunction of inequalities without adding a new variable...

Arithmetic constraints

Many other arithmetic operations exist:

- ► absolute value |a|
- ► modulo *x*%*y*
- ightharpoonup minimum min(x, y, z)
- ightharpoonup maximum max(x, y, z)

These can be used in arithmetic constraints too (e.g. arithmetic operators + comparison).

Just like simple constraints, arithmetic constraints are Boolean-valued expressions too; and can be used in Boolean expressions.

A nested expression nests all sorts of Boolean operators and/or arithmetic constraints and operators. A contrived example:

$$(a \lor (|x-y| > z/2)) \rightarrow (r * s \neq max(x, y-t, |z-3|)) \land (b \otimes (c \leftrightarrow d))$$

Global constraints

Many other constraints and operations that do not exist in standard mathematics can be defined.

In the constraint programming community, such constraints are called global constraints:

- ► AllDifferent(x, y, z)
- ightharpoonup Table([x, y], [[1, 2], [1, 4], [3, 4]])
- ightharpoonup Count(X,3) == z
- **.**..

In some systems, the concept 'Count(X, 3) == z' is modelled with a predicate 'Count(X, 3, z)'.

In this course, we call the 'Count(X, 3)' part a global function, the integer-valued counter-part of a global constraint; such that it can be nested with arithmetic operators, e.g. 10 * (Count(X,3) - Count(Y,3))

Objective functions

The objective function is an integer-valued expression that must be minimized or maximized.

Global functions are valid integer-valued expressions too, as are nested arithmetic expressions (in high-level languages at least).

Sometimes, we want to relax a hard constraint by allowing it to be violated, but penalizing that **violation in the objective**.

When we add a constraint (Boolean-valued expression) to the objective function, we call that constraint a soft constraint, e.g. [z == 0] below:

maximize
$$10 * x + 3 * y + [z == 0]$$
 (13)
s.t. $x + y < 10$, (14)
 $x + y + z > 5$, (15)

$$x, y, z \in \{0..10\} \tag{16}$$

Using CPMpy includes the following:

- Import and model creation
- Decision variables
- Constraints
- Objective function (optional)
- Solving
- Printing output

Example (Showcase)

```
import cpmpy as cp
   m = cp.Model()
   # Decision variables
   b = cp.boolvar(name="b")
   X = cp.intvar(1,10, shape=3, name="X")
   # Constraints
   m.add(X[0] == 1)
   m.add(cp.AllDifferent(X))
   m.add(b.implies(X[1] + X[2] > 5))
11
12
13
   # Objective function (optional)
   m.maximize(cp.sum(X) + 100*b)
14
15
   if m.solve():
16
        print(X.value(), b.value())
        print("obj:", m.objective value())
18
19
   else.
        print("No solution found.")
20
21
        print (m)
```

Install, import, create model

Single page, all you need documentation:

```
https://cpmpy.readthedocs.io/en/latest/modeling.html
```

Installing: pip install cpmpy

Importing and model creation:

```
import cpmpy as cp
m = cp.Model()
```

You can also from <code>cpmpy import *</code> which will override any/all/min/max/sum for convenience but this can be confusing for novices (e.g. when does <code>sum</code> compute a value or create an expression).

Decision variables

CPMpy supports discrete decision variables, namely Boolean and integer decision variables:

```
b = cp.boolvar(name="b")
x = cp.intvar(lb=1,ub=10, name="x")
```

Variables have a domain, a finite set of allowed values:

- ▶ for Boolean variables, this is implicitely {0, 1}
- ▶ for integer variables, this is specified as the first two parameters: lb=lower bound, ub=upper bound, domain: {lb..ub}

If you want a sparse domain, containing only a few values, you can:

- ► Add constraints to forbid specific values, e.g. x != 3, x != 5, x != 7
- ▶ Or use the shorthand *InDomain* global constraint:

```
cp.InDomain(x, [1,2,4,6,8,9])
```

Decision variables 2/2

Decision variables have a unique name. You can set it yourself, otherwise a unique name will automatically be assigned to it. If you print decision variables, print(b, x), it will print the name.

CPMpy creates *n-dimensional* NumPy arrays when creating variables! This is very convenient for Numpy-style *vectorized* operations and for integration with machine learning libraries.

The *shape* argument allows you to specify the dimensions of the array. All variables will have the same initial domain:

Note: Numpy indexing

Python creates lists of lists, each requiring an index:

```
1 A = [["00","01"],
2 ["10","11"]]
3 print(A[0][1]) # out: '01'
```

Numpy creates an array, which allows indexing with a tuple:

```
1 B = np.array(A)
2 print(B[0,1]) # out: '01'
```

Also accepts ':' which means this entire dimension:

```
print(B[0,:]) # out: ['00' '01']
```

Or using an equal sized array of Booleans (also called a 'selector'):

Advanced: Vectorized operations

Because decision variables are NumPy arrays in CPMpy, you can also do vectorized operations on them: an operation on two equal sized arrays will create an (equal sized) array of element-wise operations:

Example (vectorized operations)

```
1  X = cp.intvar(1,9, shape=3, name="X")
2  A = [1,2,4]
3
4  print(X == A) # output: [X[0]==1 X[1]==2 X[2]==4]
```

Broadcasting in NumPy allows operations between arrays of different shapes, by automatically expanding the smaller array along its dimensions to match the larger array's shape:

Example (broadcasting)

```
print(X == 3) # output: [X[0]==3 X[1]==3 X[2]==3]
```

Expressing constraints

A constraint is an expression that is added to a model, the solver will enforce it to always be true, e.g.:

```
m.add(X[0] == 1)
m.add(cp.AllDifferent(X))
m.add(b.implies(X[1] + X[2] > 5))
```

The m += 0 is Python syntactic sugar for m.__add__(0).

We will differentiate *Boolean-valued* expressions like x[0] == 1 and *integer-valued* expressions like x[1] + x[2]. Only Boolean-valued expressions can be added as a constraint.

Common constraints

Example (Typical logical constraints)

```
1  (a,b,c) = cp.boolvar(shape=3)
2  m.add(a | b)  # a OR b
3  m.add(~(a & b))  # NOT (a AND b)
4  m.add(a.implies(b | c))  # a -> (b OR c)
5  m.add(a == b)  # equivalence: (a -> b) & (b -> a)
6  m.add(a != b)  # same as ~(a==b) and same as (a == ~b)
```

CPMpy overloads the Python bitwise operators &, |, $\tilde{}$. They have precedence over all other operators, so $a == 0 \mid b == 1$ is **wrongly** interpreted as $a == (0 \mid b) == 1$ — WRONG!. So make sure to **always write explicit brackets** to express $(a == 0) \mid (b == 1)$.

Example (n-ary logical constraints)

```
Bv = cp.boolvar(shape=3)
m.add(cp.any([Bv[0], Bv[1], Bv[2]])) # explicit list
m.add(~cp.all(Bv)) # (numpy) array
```

Common constraints 2/4

Example (Typical comparison constraints)

```
b = cp.boolvar()
x = cp.intvar(0, 10)
Iv = cp.intvar(0, 10, shape=3)

m.add(x > 3)
m.add(x != 6)

m.add(Iv == 1)  # vectorized, shorthand for:
m.add([Iv[0] == 1, Iv[1] == 1, Iv[2] == 1])
```

You can not use a numeric expression as a Boolean expression, e.g. invalid: $b \mid x - WRONG!$, you need to add your intended meaning of truth: $b \mid (x \mid = 0)$

Common constraints 3/4

Example (Some arithmetic constraints)

```
1  Xs = cp.intvar(0, 10, shape=3, name="Xs")
2  Ys = cp.intvar(1, 10, shape=3, name="Ys")
3  W = np.array([1,3,-5])  # numpy array for use in vectorized multiplication
4  m.add(Xs[0] - Ys[0] == 5)
6  m.add(cp.sum(Xs) != 1)
7  m.add(cp.sum(W*Xs) > 3)  # 1*Xs[0] + 3*Xs[1] + (-5)*Xs[2] > 3
8  # arbitrary nested expressions:
10  m.add(3*Xs[0] < abs(5 - cp.max(Xs) + cp.min(Ys)))</pre>
```

You can use any Boolean expression as a numeric expression, e.g. valid:

$$b + x > 2$$

Common constraints 4/4

Example (Typical global constraints)

Many more global constraints and global functions exists! We will see them throughout the course.

Handy summary sheet: https://cpmpy.readthedocs.io/en/latest/summary.html

Objective functions (optional)

If a model has *no objective function* specified, then it is a satisfaction problem: the goal is to find out whether a solution, any solution, exists.

When an objective function is added it is an optimisation problem and this function needs to be minimized or maximized.

Example (Objective function, from showcase example)

```
# Objective function (optional)
m.maximize(cp.sum(X) + 100*b)
```

Any expression can be added as an objective function (maximize()) or minimize())

CPMpy does not support multi-objective optimisation yet: multiple objective functions must either be aggregated into a weighted sum, or handled outside the model.

Solving and printing output

Example (Solving)

```
1  Xs = cp.intvar(1,10, shape=3)
2  m = cp.Model( cp.AllDifferent(Xs) )
3  m.maximize(cp.sum(Xs))
4
5  hassol = m.solve()
```

solve() accepts arguments such as time_limit=, solver= and solver-specific ones

Example (Printing output)

```
print("Status:", m.status()) # Status: ExitStatus.OPTIMAL (0.03033301 seconds)
if hassol:
   print(m.objective_value(), Xs.value()) # 27 [10 9 8]
else:
   print("No solution found.")
   print(m) # pretty-prints the constraints in the model
```

Focus point: reification

Reification enables the reasoning about the truth of a constraint or a Boolean expression.

Example

constraint x < y

requires that x be smaller than y.

constraint b == (x < y) requires that the Boolean variable b takes the value ${\tt True}$ iff

x is smaller than y:

the constraint x < y is said to be reified, and b is called its reified variable.

Reification is a powerful mechanism that enables:

- efficient reuse of logical components through their reified variable;
- higher-level modelling (e.g. nested expressions, soft constraints)

```
Example (Soft Constraints: Alignment Photo Problem)
```

A set of students want to line up for a class photo.

Consider:

```
Wishes = [("Dimos", "Stella"), ("Marco", "Dimos"), ...] where each pair (who, whom) denotes that student who wants
```

to be next to student *whom* on the photo.

Maximise the number of granted wishes.

Let decision variable Pos[s] denote the position in 0..len(Students) of student s on the photo.

The array Pos must form a permutation of the positions:

```
m = cp.Model(cp.AllDifferent(Pos))
```

The objective, formulated using nested expressions, is:

Constraint cp.abs(Pos[who] - Pos[whom]) == 1 will automatically be reified.

Example (Soft Constraints: Weighted Alignment Photo Problem)

A set of students want to line up for a class photo.

Consider:

```
Wishes = [("Dimos", "Stella", 2), ("Marco", "Dimos", 1), ...] where each pair (who, whom, bid) denotes that student who wants to bid bid to be next to student whom on the photo.

Maximise the weighted number of granted wishes.
```

Let decision variable Pos[s] denote the position in 0..len(Students) of student s on the photo.

The array ${ t Pos}$ must form a permutation of the positions:

```
m = cp.Model(cp.AllDifferent(Pos))
The objective, formulated using nested expressions, is:
```

```
m.maximize(cp.sum([bid*(cp.abs(Pos[who] - Pos[whom]) == 1)

for (who,whom,bid) in Wishes]))
```

General-purpose Modelling Languages

```
► CPMpy: https://cpmpy.readthedocs.io/
```

- ► MiniZinc: https://www.minizinc.org
- ► Essence and Essence': https://constraintmodelling.org
- ► OPL: https://www.ibm.com/optimization-modeling
- ► SMT-lib: https://smtlib.cs.uiowa.edu
- ► AIMMS: https://aimms.com
- ► AMPL: https://ampl.com
- ► GAMS: https://gams.com
- CANO. Heeps.//gams.com
- ► FICO Xpress Insight:
 https://www.fico.com/en/products/fico-xpress-optimization
- ▶ Comet: https://mitpress.mit.edu/books/constraint-based-local-search
- **•** . . .