Vehicle Interaction Learning

Xiaosong Jia

08/26/2019

About covariance/correlation

$$Cov(X,Y) = E[(X-\mu_x)(Y-\mu_y)] \qquad \qquad
ho = rac{Cov(X,Y)}{\sigma_X \sigma_Y} :$$

	Covariance (entire interval)	Correlation (entire interval)	Covariance (interaction interval)	Correlation (interaction interval)
HighD	0.018	0.519	0.001	0.321
NGSIM	0.68	0.401	0.033	0.092
FT	-0.018	0.084	-0.006	-0.096
SR	-0.004	0.023	-0.006	-0.086

Graph Neural Network

Aggregation and Updating: [DeepMind, Google Brain, MIT 2018]

$$\mathbf{e}'_{k} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{h}_{r_{k}}, \mathbf{h}_{s_{k}}, \mathbf{u} \right) \qquad \mathbf{\bar{e}}'_{i} = \rho^{e \to h} \left(E'_{i} \right)$$

$$\mathbf{h}'_{i} = \phi^{h} \left(\mathbf{\bar{e}}'_{i}, \mathbf{h}_{i}, \mathbf{u} \right) \qquad \mathbf{\bar{e}}' = \rho^{e \to u} \left(E' \right)$$

$$\mathbf{u}' = \phi^{u} \left(\mathbf{\bar{e}}', \mathbf{\bar{h}}', \mathbf{u} \right) \qquad \mathbf{\bar{h}}' = \rho^{h \to u} \left(H' \right)$$

$$(43)$$

$$\mathbf{h}'_{i} = \phi^{h} \left(\mathbf{\bar{e}}', \mathbf{\bar{h}}', \mathbf{u} \right) \qquad \mathbf{\bar{h}}' = \rho^{h \to u} \left(H' \right)$$

where $E_i' = \{(\mathbf{e}_k', r_k, s_k)\}_{r_k = i, \ k = 1:N^e}$, $H' = \{\mathbf{h}_i'\}_{i = 1:N^v}$, and $E' = \bigcup_i E_i' = \{(\mathbf{e}_k', r_k, s_k)\}_{k = 1:N^e}$. The ρ functions must be invariant to permutations of their inputs and should take variable numbers of arguments.

• Simple Example: Neural FPs (NIPS 2015)

$$\mathbf{x} = \mathbf{h}_v^{t-1} + \sum_{i=1}^{|\mathcal{N}_v|} \mathbf{h}_i^{t-1}$$
$$\mathbf{h}_v^t = \sigma \left(\mathbf{x} \mathbf{W}_t^{|\mathcal{N}_v|} \right)$$

• Problem: Given 5s trajectories of several cars, predict the next 5s of their car.

 Motivation: whether representing interactions as graphs leads to better performance for prediction?

 Models: GCN (NIPS 2015) and GAT(ICLR 2018) with adaption to extract features for each node and use linear layers to predict

• Dataset:

NGSIM:

- 1. As Thiemann et al. [23] show, position, velocity, and acceleration data contain unrealistic values. We therefore smooth the positions using double-sided exponential smoothing with a span of 0.5s and compute velocities from these.
- 2. We subsample the trajectory data to 1 FPS.
- The NGSIM dataset still contains many artifacts (errors in bounding boxes, undetected cars, complete non-overlap of bounding box and true vehicle)

HighD:

1. The dataset consists mainly of roads without on- or off-ramps and without traffic jams, interaction seems limited: Only about 5% of the cars experience a lane change.

Graph Construction:

- 1. Only self connection or
- 2. All connection or
- 3. Preceding connection or
- 4. Close vehicles (at most 8 cars)
- 5. Features for nodes: all 5s trajectory
- 6. Features for edges: all 5s relative distance

• Experiments: baseline: Constant Velocity Model, Intelligent Driver Model [Physical Review E 2000], simple neural networks

About connection

Self-Connections	2.68 ± 0.05	5.08 ± 0.08
Preceding Connection	2.70 ± 0.04	5.11 ± 0.07
Neighbour Connection	1.93 ± 0.08	3.47 ± 0.13
All Connections (★)	2.41 ± 0.02	4.42 ± 0.03

ST-GCN (AAAI 2018)

- What is a node's neighborhood? $\Delta t < T$ and Distrance < D
- How to aggregate? (Kernel Design)
- 1. Uni-set
- 2. Distance-partition
- 3. Spatial-partition

Spatial Reasoning and Temporal Stack Learning [ECCV 2018]

Spatial Feature Extraction:

- e_k^t features of node k at time t
- r_k^t relation of node k at time t with other nodes
- m_k^t messages received by node k at time t
- q^t features of frame t

$$\begin{aligned} \boldsymbol{m}_{k}^{t} &= \sum_{i \in \varOmega_{v_{k}}} \boldsymbol{m}_{ik}^{t} & \boldsymbol{s}_{k}^{t} = f_{lstm}\left(\boldsymbol{r}_{k}^{t-1}, \boldsymbol{m}_{k}^{t}, \boldsymbol{s}_{k}^{t-1}\right) & \boldsymbol{r}^{T} = concat\left(\left[\boldsymbol{r}_{1}^{T}, \boldsymbol{r}_{2}^{T}, ..., \boldsymbol{r}_{k}^{T}\right]\right), \forall k \in K \\ & \boldsymbol{q} = f_{r}\left(\boldsymbol{r}^{T}\right) & \\ &= \sum_{i \in \varOmega_{v}} \boldsymbol{W}_{m} \boldsymbol{s}_{i}^{t-1} + \boldsymbol{b}_{m} & \boldsymbol{r}_{k}^{t} = \boldsymbol{r}_{k}^{t-1} + \boldsymbol{s}_{k}^{t} & \\ \end{aligned}$$

Spatial Reasoning and Temporal Stack Learning [ECCV 2018]

• The sequence is divided into M clips which includes d frames

$$\{Q_1, Q_2, \dots, Q_M\}$$
 where $Q_i = \{q_{id+1}, q_{id+2}, \dots, q_{(i+1)d}\}$

• Difference Vector $v_t = q_t - q_{t-1}$ and temporal difference features $V_j = \{q_{jd+1}, q_{jd+2}, \dots, q_{(j+1)d}\}$

$$\begin{aligned} \boldsymbol{h}_{m}^{'} &= f_{LSTM}\left(Q_{m}\right) \\ &= f_{LSTM}\left(\left\{\boldsymbol{q}_{md+1}, \boldsymbol{q}_{md+2}, ..., \boldsymbol{q}_{(m+1)d}\right\}\right) \end{aligned}$$

$$H_{m} = H_{m-1} + h'_{m}$$
$$= \sum_{i=1}^{m} h'_{i}$$

- an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data
- x_i^t feature vector of object i at time t (coordinates+velocity+...)
- N objects, T time steps

- Graph: node->object, edge->relationship (z_{ij} object I and object j's relation)
- Objective: $\mathcal{L} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \text{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})]$
- Decoder: Given the history trajectories of all objects and whether they have interactions, predict their future trajectories.

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^{t},...,\mathbf{x}^{1},\mathbf{z})$$

• Prior: constrains; To encourage a sparse graph, use a prior with higher probability on the non-edge label.

• Encoder: GNN on the fully connected graph

$$\mathbf{h}_{j}^{1} = f_{\text{emb}}(\mathbf{x}_{j})$$

$$v \to e: \quad \mathbf{h}_{(i,j)}^{1} = f_{e}^{1}([\mathbf{h}_{i}^{1}, \mathbf{h}_{j}^{1}])$$

$$e \to v: \quad \mathbf{h}_{j}^{2} = f_{v}^{1}(\sum_{i \neq j} \mathbf{h}_{(i,j)}^{1})$$

$$v \to e: \quad \mathbf{h}_{(i,j)}^{2} = f_{e}^{2}([\mathbf{h}_{i}^{2}, \mathbf{h}_{j}^{2}])$$

$$\mathbf{z}_{ij} = \operatorname{softmax}((\mathbf{h}_{(i,j)}^{2} + \mathbf{g})/\tau)$$
(9)

where $\mathbf{g} \in \mathbb{R}^K$ is a vector of i.i.d. samples drawn from a $\mathrm{Gumbel}(0,1)$ distribution and τ (softmax temperature) is a parameter that controls the "smoothness" of the samples.

• Decoder:

$$v \rightarrow e: \quad \tilde{\mathbf{h}}_{(i,j)}^{t} = \sum_{k} z_{ij,k} \tilde{f}_{e}^{k}([\tilde{\mathbf{h}}_{i}^{t}, \tilde{\mathbf{h}}_{j}^{t}])$$

$$e \rightarrow v: \quad \mathrm{MSG}_{j}^{t} = \sum_{i \neq j} \tilde{\mathbf{h}}_{(i,j)}^{t}$$

$$\tilde{\mathbf{h}}_{j}^{t+1} = \mathrm{GRU}([\mathrm{MSG}_{j}^{t}, \mathbf{x}_{j}^{t}], \tilde{\mathbf{h}}_{j}^{t})$$

$$\boldsymbol{\mu}_{j}^{t+1} = \mathbf{x}_{j}^{t} + f_{\mathrm{out}}(\tilde{\mathbf{h}}_{j}^{t+1})$$

$$p(\mathbf{x}^{t+1}|\mathbf{x}^{t}, \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}^{t+1}, \sigma^{2}\mathbf{I})$$

Training: reconstruction error and KL term for a uniform prior

$$-\sum_{i}\sum_{t=2}^{T}\frac{||\mathbf{x}_{j}^{t}-\boldsymbol{\mu}_{j}^{t}||^{2}}{2\sigma^{2}} \qquad \sum_{i\neq j}H(q_{\phi}(\mathbf{z}_{ij}|\mathbf{x}))$$

Experiments 1: Physics simulations: objects connected by springs (have/not), charged particles (attract/repel), phase-coupled oscillators (have/not)

Model	Springs	Charged	Kuramoto				
5 objects							
Corr. (path)	$52.4{\scriptstyle\pm0.0}$	$55.8{\scriptstyle\pm0.0}$	62.8 ± 0.0				
Corr. (LSTM)	$52.7{\scriptstyle\pm0.9}$	54.2 ± 2.0	$54.4{\pm}$ 0.5				
NRI (sim.)	$99.8 \scriptstyle{\pm 0.0}$	59.6 ± 0.8	_				
NRI (learned)	$99.9 {\scriptstyle\pm0.0}$	$82.1 \scriptstyle{\pm 0.6}$	$96.0 \scriptstyle{\pm 0.1}$				
Supervised	$99.9{\scriptstyle\pm0.0}$	95.0 ± 0.3	99.7 ± 0.0				
10 objects							
Corr. (path)	$50.4\pm$ 0.0	$51.4\pm{\scriptstyle 0.0}$	59.3 ± 0.0				
Corr. (LSTM)	$54.9{\scriptstyle\pm1.0}$	52.7 ± 0.2	56.2 ± 0.7				
NRI (sim.)	$98.2 \scriptstyle{\pm 0.0}$	53.7 ± 0.8	_				
NRI (learned)	$98.4_{\pm 0.0}$	$\textcolor{red}{\bf 70.8} \scriptstyle{\pm 0.4}$	75 . 7 ±0.3				
Supervised	98.8 ± 0.0	$94.6{\scriptstyle\pm0.2}$	$97.1{\scriptstyle\pm0.1}$				

Experiments 2: 3D trajectories of joints when walking

Observation: dynamic edge type helps

4-edge types, with non-edge prior=0.91

- Experiments
- 3. Pick and Roll NBA data
- 25 frames long (4s), five objects: ball, ball handler, screener, defensive matchup
- 2-edge types: ball, ball handler -> off-ball players; among off-ball players

Factorised Neural Relational Inference for Multi-Interaction Systems [ICML 2019 Workshop]

 Multi-interaction at the same time -> only conflict interactions on the same layer

Even only one output for each layer

Table 1. Accuracy (%) in recovering the ground truth increation graph. This is better.							
	I-Springs+Charges			I-Springs+Charges+F-springs			
Accuracy	Combined	I-Springs	Charges	Combined	I-Springs	Charges	F-Springs
Random	25.0	50.0	50.0	12.5	50.0	50.0	50.0
NRI (learned)	89.1 ± 0.4	97.9 ± 0.0	91.0 ± 0.4	57.9 ± 6.1	88.5 ± 0.9	87.3 ± 6.2	70.7 ± 2.3
fNRI (learned)	94.0 ± 1.4	98.0 ± 0.1	95.8 ± 1.3	$\textbf{63.3} \pm \textbf{6.5}$	86.9 ± 2.7	97.7 ± 0.7	69.2 ± 5.5
sfNRI (learned)	88.8 ± 0.8	97.6 ± 0.1	91.1 ± 0.8	45.1 ± 5.1	90.0 ± 2.3	98.2 ± 0.8	52.4 ± 2.7
NRI (supervised)	98.3 ± 0.0	98.6 ± 0.0	99.7 ± 0.0	80.9 ± 0.7	92.4 ± 0.3	99.0 ± 0.1	84.4 ± 0.4
fNRI (supervised)	98.3 ± 0.0	98.8 ± 0.4	99.4 ± 0.4	$\textbf{81.8} \pm \textbf{0.1}$	93.3 ± 0.1	99.3 ± 0.0	85.8 ± 0.1
cfNPI (supervised)	98.0 ± 0.0	98.3 ± 0.0	99.6 ± 0.0	81.0 ± 0.3	92.9 ± 0.1	99.2 ± 0.0	85.2 ± 0.2

Table 2. Mean squared error (MSE) $/ 10^{-5}$ in trajectory prediction. Lower is better.

	I-Springs+Charges+F-Springs					
Predictions Steps	1	10	20	1	10	20
Static	19.4	283	783	12.8	274	782
NRI (learned) fNRI (learned) sfNRI (learned)	$\begin{array}{c} 0.88 \pm 0.06 \\ \textbf{0.80} \pm \textbf{0.04} \\ 1.03 \pm 0.09 \end{array}$	$\begin{array}{c} 4.05 \pm 0.22 \\ 3.54 \pm 0.09 \\ \textbf{3.32} \pm \textbf{0.23} \end{array}$	$\begin{array}{c} 11.5 & \pm \ 0.5 \\ 9.93 & \pm \ 0.29 \\ \textbf{9.68} & \pm \ \textbf{0.74} \end{array}$	$\begin{array}{c} 0.95 \pm 0.05 \\ 0.81 \pm 0.05 \\ \textbf{0.77} \pm \textbf{0.03} \end{array}$	8.67 ± 0.45 7.78 ± 0.20 5.69 ± 0.21	$\begin{array}{ccc} 29.1 & \pm \ 1.4 \\ 26.8 & \pm \ 0.8 \\ \textbf{19.3} & \pm \ \textbf{0.8} \end{array}$
NRI (true graph) fNRI (true graph) sfNRI (true graph)	$\begin{array}{c} 0.85 \pm 0.04 \\ \textbf{0.70} \pm \textbf{0.03} \\ 0.86 \pm 0.09 \end{array}$	$\begin{array}{c} \textbf{1.59} \pm 0.26 \\ \textbf{1.30} \pm \textbf{0.06} \\ \textbf{1.32} \pm 0.06 \end{array}$	3.20 ± 0.15 2.52 ± 0.11 2.77 ± 0.07	$\begin{array}{c} 0.75 \pm 0.02 \\ \textbf{0.51} \pm \textbf{0.05} \\ 0.56 \pm 0.04 \end{array}$	$\begin{array}{c} 1.55 \pm 0.07 \\ 0.97 \pm 0.08 \\ \textbf{0.89} \pm \textbf{0.06} \end{array}$	$\begin{array}{c} 3.43 \pm 0.21 \\ 2.44 \pm 0.28 \\ \textbf{2.28} \pm \textbf{0.15} \end{array}$

About our model

- Supervised vs Semisupervised vs Unsupervised
- Define a metric
- Temporal graph? Dynamic Edge Type?
- Define samples (which vehicles should be included)
- Features (Scale, Map information …)

