Содержание

Введе	ние	2
ЛеКци	едыварительные сведения.	
1.1	Введение в математическую логику	•
	1.1.1 Алгебра высказываний	•
1.2	Понятие множества. Операции над множествами	4
	1.2.1 Операции над множествами	(
	1.2.2 Парадоксы теории множеств	7
1.3	Понятие функции.	8

Введение

Лекция 1. Предварительные сведения.

1.1 Введение в математическую логику.

1.1.1 Алгебра высказываний.

Понятие **высказывания** является первоначальным и не определяется. Можно лишь пояснить, что **высказыванием** мы будем называть любое повествовательное предложение, про которое определенно можно сказать, истинно оно или ложно. Высказывание может быть записано как на естественном языке, так и с помощью «специального» языка (например, математического).

Пример 1. «Простых чисел бесконечно много» — верное высказывание. «2+2=5» — неверное высказывание. Фраза «математическая логика — это скучно» высказыванием не является. « $x^2+5x-6\geqslant 0$ » также не является высказыванием.

Значением истинности или индикаторным значением высказывания P будем называть число, равное 1 в случае истинности P и равное 0, когда P ложно.

В естественном языке можно образовать новые высказывания при помощи связок «не», «и», «или», «если ..., то ...». При помощи значений истинности можно корректно определить высказывания, соответствующие этим связкам.

Отрицание высказывания P — высказывание, истинное если и только если P ложно. Отрицание высказывания P обозначают $\neg P$ или \overline{P} . При этом \overline{P} читается как «не P».

Конъюнкция двух высказываний P и Q — высказывание, обозначаемое через $P \wedge Q$, истинное тогда и только тогда, когда истинны оба высказывания P и Q. $P \wedge Q$ читается как «P и Q».

Дизъюнкция двух высказываний P и Q — высказывание, обозначаемое через $P \lor Q$, истинное тогда и только тогда, когда истинно хотя бы одно из высказываний P и Q. $P \lor Q$ читается как «P или Q».

Импликацией высказываний P и Q будем называть высказывание ложное только тогда, когда P истинно, а Q ложно. Импликацию обозначают как $P \implies Q$. Читается это как «из P следует Q» или «P влечет Q».

Как уже было сказано, можно определить данные выше понятие с помощью значений истинности, записав следующую таблицу, которую обычно называют **таблицей истинности**.

P	Q	\overline{P}	$P \wedge Q$	$P \lor Q$	$P \implies Q$
0	0	1	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	1	1	1

Из таблицы видно, что чтобы получить значения истинности для $P \wedge Q$, необходимо перемножить значения истинности P и Q, т.е. конъюнкция является неким аналогом умножения для высказываний. Может быть, есть аналог и для дизъюнкции? Естественно поначалу предположить, что это будет сложение. Легко однако увидеть, что это предположение неверно.

Упражнение 1. Аналогами каких операций над числами являются конъюнкция и дизъюнкция? (можно придумать много аналогов, но здесь чем проще, тем лучше).

С помощью определенных выше элементарных операций над высказываниями можно строить более сложные высказывания, которые мы будем называть формулами. Например, можно построить формулу

$$(P \implies Q) \land (Q \implies P).$$

Очевидно, что полученное высказывание истинно лишь только в том случае, когда значения истинности P и Q совпадают. Такое высказывание будем называть **эквивалентностью** P и Q. Обозначать его будем следующим образом

$$P \Longleftrightarrow Q$$
.

Определим более точно понятие формулы алгебры высказываний.

1.2 Понятие множества. Операции над множествами.

Понятие «множество» входит в базовый словарь современной математики. Однако дать строгое определение этому понятию вовсе не так просто. В то же время каждый из нас интуитивно понимает, что **множество** – это некоторая *совокупность* каких-то объектов. Важно при этом также понимать, что данное выше «определение» вовсе таковым не является, поскольку значение слова «совокупность» (ровно как и «множество») так и не было определено.

На данном этапе нам будет удобно оставить понятие множества неопределяемым (или, как говорят, остаться в рамках наивной теории множеств).

Позднее мы строго формализуем это понятие, рассмотрев аксиоматический подход к теории множеств.

Слова «класс», «набор», «совокупность», «семейство» будут использоваться как синонимы к слову «множество».

Пример 2. Примерами множеств могут служить множество студентов в аудитории, множество букв русского алфавита, множество страниц в книге. Как правило, множества мы будем обозначать заглавными латинскими буквами.

Элементом множества будем называть объект, принадлежащий этому множеству. Запись $x \in X$ будет означать, что x является элементом множества X. Если x не принадлежит X, то будем записывать этот факт как $x \notin X$.

Множество, не содержащее элементов, называется nycmum и обозначается \varnothing .

Рассмотрим способы задания множеств.

1. Π еречисление. Чтобы задать множество, нужно попросту указать все элементы, которые ему принадлежат. Например, можно задать множество букв английского алфавита M следующим образом

$$M = \{a, b, c, d, e, \dots, x, y, z\}.$$

2. Характеристический предикат. Чтобы задать множество, нужно указать предикат P(x), истинный тогда и только тогда, когда x принадлежит множеству.

$$M = \{x \mid P(x)\} = \{x : P(x)\}.$$

3. Индексация. Это способ используется, если нужно проиндексировать («занумеровать») элементы одного множества с помощью другого множества — множества индексов I.

$$M = \{x_i\}_{i \in I}.$$

Например, если $I = \{2, 3, 5\}$, то

$$M = \{x_i\}_{i \in I} = \{x_2, x_3, x_5\}.$$

1.2.1 Операции над множествами.

Будем говорить, что множество X содержится в множестве Y (или что Y содержит X), если для любого $x \in X$ выполнено $x \in Y$. Записывать это будем следующим образом: $X \subset Y$. Альтернативный способ прочтения этой записи — «X является подмножеством Y».

Заметим, что пустое множество \varnothing является подмножеством любого множества. Также отметим, что множество всегда является своим подмножеством.

Множества Х и У будем называть равными при выполнении обоих условий

$$X \subset Y, Y \subset X$$
.

Определение 1. Пересечением двух множеств X и Y назовем множество $X \cap Y$, состоящее из элементов, принадлежащих одновременно множествам X и Y.

Определение 2. Объединением двух множеств X и Y назовем множество $X \cup Y$, состоящее из элементов, принадлежащих хотя бы одному из множеств X и Y.

Более формально данные выше определения можно записать как

$$X \cap Y = \{x : (x \in X) \land (x \in Y)\},\$$

 $X \cup Y = \{x : (x \in X) \lor (x \in Y)\},\$

откуда четко видно соответствие между логическими и теоретикомножественными операциями.

Определение 3. *Разностью* множеств X и Y будем называть множество $X \setminus Y$, состоящее из элементов, принадлежащих X, но не принадлежащих Y.

Отметим, что при взятии разности двух множеств важен порядок — $X \setminus Y$, вообще говоря, не совпадает с $Y \setminus X$.

Определение 4. Множества X и Y будем называть **непересекающи- мися** или **дизъюнктными**, если $X \cap Y = \emptyset$.

Объединение непересекающихся множеств X и Y будем часто обозначать $X \sqcup Y$.

Определение 5. Пусть $X \subset Y$. Множество $Y \setminus X$ будем называть **до**полнением X к (относительно) Y.

Понятно, что

$$X \sqcup (Y \setminus X) = Y$$

•

1.2.2 Парадоксы теории множеств.

Вольное обращение с понятием «множество» (которое, как напомним, все еще не было строго определено) может привести к различного рода парадоксам. Рассмотрим некоторые из них.

Парадокс Рассела.

Парадокс Б.Рассела показывает, что понятие множества всех множеств противоречиво само по себе.

Одной из переформулировок этого парадокса является **парадокс бра- добрея**. Он звучит следующим образом. Известно, что в некоторой деревне брадобрей бреет тех и только тех, кто не бреет себя. Бреет ли себя брадобрей? С одной стороны, если он себя не бреет, то он должен себя брить в силу поставленного условия. Но, с другой стороны, если он себя уже бреет, то он этого уже делать не должен опять-таки в силу поставленного условия.

Формализуем этот парадокс на языке теории множеств. Для этого рассмотрим множество M, которое состоит из тех и только тех множеств, которые не содержат себя в качестве своего элемента, т.е.

$$M = \{X : X \notin X\}. \tag{1}$$

Поставим вопрос, является ли M своим элементом. Ровно те же самые рассуждения, что и в парадоксе Брадобрея, показывают нам, что на этот вопрос нельзя дать ни положительный, ни отрицательный ответ.

С парадоксом Рассела тесно связен логический парадокс, который обычно называют парадокс лжеца. Он заключается в том, что высказывание

это высказывание ложно

не может быть ни истинным, ни ложным.

1.3 Понятие функции.

Пусть X, Y — какие-то множества. Попытаемся определить понятие функции, определенной на X со значениями во множестве Y. Сначала рассмотрим обычное «школьное» определение.

Определение 6 (нестрогое). Функцией f, определенной на X со значениями в Y, называется некое правило (закон), по которому каждому элементу $x \in X$ сопоставляется некий элемент $y \in Y$. При этом X называется областью определения функции f, а Y — областью значений функции f.

Список литературы