FORMULAS FROM GEOMETRY

Triangle

$$h = a \sin \theta$$

Area =
$$\frac{1}{2}bh$$

(Law of Cosines)

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Sector of Circular Ring

(p = average radius,

$$w =$$
width of ring,

 θ in radians)

Area =
$$\theta pw$$

Right Triangle

(Pythagorean Theorem)

$$c^2 = a^2 + b^2$$

Ellipse

Area = πab

Circumference
$$\approx 2\pi \sqrt{\frac{a^2 + b^2}{2}}$$

Equilateral Triangle

$$h = \frac{\sqrt{3}s}{2}$$

Area =
$$\frac{\sqrt{3}s^2}{4}$$

Cone

$$(A = area of base)$$

Volume =
$$\frac{Ah}{3}$$

Parallelogram

Area =
$$bh$$

Right Circular Cone

Volume =
$$\frac{\pi r^2 h}{3}$$

Trapezoid

Area =
$$\frac{h}{2}(a+b)$$

Frustum of Right Circular Cone

Volume =
$$\frac{\pi(r^2 + rR + R^2)h}{3}$$

Circle

Area =
$$\pi r^2$$

Circumference =
$$2\pi r$$

Right Circular Cylinder

Volume =
$$\pi r^2 h$$

Lateral Surface Area = $2\pi rh$

Sector of Circle

(
$$\theta$$
 in radians)

Area =
$$\frac{\theta r^2}{2}$$

$$s = r\theta$$

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area =
$$4\pi r^2$$

Circular Ring

$$(p = average radius,$$

$$w =$$
width of ring)

Area =
$$\pi(R^2 - r^2)$$

= $2\pi pw$

Wedge

$$(A = area of upper face,$$

$$B = area of base$$

$$A = B \sec \theta$$

