2022년 지능화 파일럿 프로젝트 논문 서론 및 이론적 배경

Project

YOLOv5를 이용한 PCB 불량검출

우상진(2021254004) 2022. 10. 19.

2022년 지능화 파일럿 프로젝트 논문 서론 및 이론적 배경

Contents

- 연구의 배경
- 프로젝트의 목적
- 프로젝트의 기대효과
- 선행 연구
- 연구 추진 방법

연구의 배경

1. 프로젝트 제목

- (한글) YOLOv5를 이용한 PCB 불량검출
- (영문) PCB Defect Detection Using YOLOv5

2. 연구의 배경

- 생산 수량이 적은 중소기업에도 적용 가능한 불량 검출 장비의 필요
- 1) 학습, 검증에 필요한 데이터가 적은 상황에도 적용가능
- 2) PCB의 잦은 변경에도 동일하게 불량 검출 가능
- 3) 불량의 위치 파악, 1개 이상의 다중 불량 검출 가능

연구에 사용될 PCB

프로젝트의 목적

프로젝트의 목적

- 검출할 불량 유형은 4가지 미삽, 파손, SMD 틀어짐, 역삽 으로 정의한다.
- 불량의 원인과 위치를 검출 할 수 있도록 직접 Labelling하여 데이터셋(Dataset)을 구성.
- 소량의 학습데이터로도 일정수준 이상의 검출률을 보일 수 있는지 실제 학습 후 평가를 진행한다.
- 학습에 사용되지 않은 PCB로 불량 검출을 실시하여 유사한 제품(버전 변경, 부품 대체 등)에서의 검출 정확도를 평가한다.

불량보드 (미삽)

불량보드 (파손)

불량보드 (틀어짐)

불량보드 (역삽,틀어짐)

검출할 PCB 불량 예시

프로젝트의 기대효과

1. 프로젝트의 기대효과

- PCB 불량 검출 분야에서 객체 검출 기술로 불량 검출 가능성 확인
- 생산 수량이 적어 자동화 시설을 구축하기 어려운 중소기업에 적용하여 생산성 향상
- 불량의 원인과 위치를 파악할 수 있으므로 불량별 분류 후, 불량 PCB 정상화 등 후속 조치에 용이함

선행 연구

1. 선행 연구

1) YOLO 기반으로 SMD부품 분류를 진행한 선행연구 31개의 클래스 총 7,386개의 데이터를 분류. YOLO 모델의 분류 정확도 성능 확인

	Model	Pass	Fail	Total	Accuracy
	YOLO v2	5,969	1,417	7,386	80.81%
	YOLO v3	5,146	2,240	7,386	69.67%
	V2 Anchor Modified	6,411	975	7,386	86.80%
	V2 Anchor & Network Modified	7,254	132	7,386	98.21%

• YOLO 모델을 사용한 PCB 납땜 비전검사 불량 검출 정확도 고도화에 관한 선행 연구에서 객체검출이 작은 객체를 잘 검출하지 못하는 단점을 보완하기위해 1218*1610의 고해상도 이미지를 12장으로 분할하여 검출률을 향상시킴.

YOLO SMD분류 정확도

87.65% 고장 정상 고장 701(91.4%) 66(8.6%) 정상 73(20.3%) 286(79.7%)

검출정확도

예측

이미지 분할(1218*1610 -> 350*420)

납땜 불럄검출 정확도

연구 추진 방법

1. 연구 방법론

- 보드에 음영이 지지않도록 조명을 포함한 촬영장소구성
- 고화질 데이터확보를 위한 4K CAM 사용하여 이미지 획득
- 높은 검출 정확도와 중복 검출을 위한 Labelling 작업
- Dataset 확보 후 YOLO모델 학습시 이미지 사이즈, batch사이즈, epoch 수 등을 조절하며 검출 정확도 확인

실험 설계(or 서비스 구성)

- PCB 종류별(5종) 이미지 데이터 50장씩 확보
- Dataset 구축 후 가장 작은 S모델부터 XL모델까지 순차적으로 모델을 높여가며 검출 정확도 확인후 최종 모델선정
- Google Colab GPU대여해서 모델학습 진행
- 1 테스트 성능수준미달시 데이터 증량법을 적용해서 추가 학습
- ②테스트 성능수준미달시 추가 데이터를 확보하여 학습

2022년 지능화 파일럿 프로젝트 논문 서론 및 이론적 배경

감사합니다

