Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 1

Exercise 1: Estimating the Bayes Error (10+10+10 P)

The Bayes decision rule for the two classes classification problem results in the Bayes error

$$P(\text{error}) = \int P(\text{error}|\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x},$$

where

$$P(\text{error}|\boldsymbol{x}) = \min [P(\omega_1|\boldsymbol{x}), P(\omega_2|\boldsymbol{x})]$$

is the probability of error for a particular input x. Interestingly, while class posteriors $P(\omega_1|x)$ and $P(\omega_2|x)$ can often be expressed analytically and are integrable, the error function has discontinuities that prevent its analytical integration, and therefore, direct computation of the Bayes error. Section 2.8 of Duda&Hart explains how considering an upper-bound to the Bayes error instead of the true error overcomes this difficulty.

(a) Show that the full error can be upper-bounded as follows:

$$P(\text{error}) \le \int \frac{2}{\frac{1}{P(\omega_1|\boldsymbol{x})} + \frac{1}{P(\omega_2|\boldsymbol{x})}} p(\boldsymbol{x}) d\boldsymbol{x}.$$

Note that the integrand is now continuous and corresponds to the harmonic mean of class posteriors weighted by p(x).

(b) Show using this result that for the univariate probability distributions

$$p(x|\omega_1) = \frac{\pi^{-1}}{1 + (x - \mu)^2}$$
 and $p(x|\omega_2) = \frac{\pi^{-1}}{1 + (x + \mu)^2}$,

the Bayes error can be upper-bounded by:

$$P(\text{error}) \le \frac{2 P(\omega_1) P(\omega_2)}{\sqrt{P(\omega_1)^2 + (4\mu^2 + 2) P(\omega_1) P(\omega_2) + P(\omega_2)^2}}$$

(Hint: you can use the identity $\int \frac{1}{ax^2+bx+c} dx = \frac{2\pi}{\sqrt{4ac-b^2}}$ for $b^2 < 4ac$.)

(c) Explain how you would estimate the error if there was no upper-bounds that are both tight and analytically integrable. Discuss following two cases: (1) the data is low-dimensional and (2) the data is high-dimensional.

Exercise 2: Bayes Decision Boundaries (10+10+10 P)

One might speculate that, in some cases, the generated data $p(x|\omega_1)$ and $p(x|\omega_2)$ is of no use to improve the accuracy of a classifier, in which case one should only rely on prior class probabilities $P(\omega_1)$ and $P(\omega_2)$.

For the first part of this exercise, we assume that the data for each class is generated by the univariate Laplacian probability distributions:

$$p(x|\omega_1) = \frac{1}{2\sigma} \exp\left(-\frac{|x-\mu|}{\sigma}\right)$$
 and $p(x|\omega_2) = \frac{1}{2\sigma} \exp\left(-\frac{|x+\mu|}{\sigma}\right)$.

where $\sigma > 0$.

- (a) Compute the Bayes optimal decision boundary (i.e. points $x \in \mathbb{R}$ where $P(\omega_1|x) = P(\omega_2|x)$).
- (b) Determine for which values of $P(\omega_1), P(\omega_2), \mu, \sigma$ the optimal decision is to always predict the first class (i.e. under which conditions $P(\text{error}|x) = P(\omega_2|x) \ \forall \ x \in \mathbb{R}$).
- (c) Repeat the exercise for the case where the data for each class is generated by the univariate Gaussian probability distributions:

$$p(x|\omega_1) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 and $p(x|\omega_2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x+\mu)^2}{2\sigma^2}\right)$.

where $\sigma > 0$.

Exercise 3: Programming (40 P)

Download the programming files on ISIS and follow the instructions.