Lecture 7: Zener Diodes

Outline

- Voltage Regulators
- Forward Bias (FB) Diodes as Voltage Regulators
- Drawbacks of (FB) Diodes as Voltage Regulators
- Diode Breakdown Region
- Zener Diodes Introduction and analysis
- Zener Diodes as Voltage Regulators
- Practice Problems

Voltage Regulators

- Voltage Regulation is the measure of how well a system can provide near <u>constant voltage</u>.
- Voltage Regulators provide steady voltage independent of how much power is drawn from the power source

Voltage Regulators

Let's assume that v_{in} is not a perfect DC source. It supplies a voltage of $(V_{DC} \pm \delta)$ V

Voltage Regulator:

Tries to maintain a voltage constant at V_0 even when v_{in} is varying.

Variables: V_0 should remain constant <u>irrespective of the changes</u> in the following quantities:

- 1. Input Voltage: v_{in} 2. Load Current: I_L
 - 3. VR current: i_D

Voltage Regulator – Worst Case Scenario

Worst Case Scenario occurs when the three variables $(v_{in}, I_L, \text{ and } i_D)$ change in such a way, such that maintaining V_O constant requires the most power (current) from the **Voltage Regulator.**

The **Voltage regulator** is at its <u>maximum capacity</u> at the worst case.

Worst Case Scenario occurs when

- 1. Input Voltage is minimum: $v_{in}(min)$
- 2. Load Current is maximum: $I_L(max)$
- 3. VR current minimum: $i_D(min)$

The circuit of the adjacent <u>Figure</u> is specified to have the following parameters. The supply voltage V_{in} is nominally 3 V but can vary by \pm 0.1 V. R_L can draw a maximum of 10 mA and $i_D(\min) = 1$ mA.

What is R for worst case scenario if v_D (V_O) is to be regulated at 0.6 V? [Since r_O is not provided, you can consider the CVD model.]

Solution:

Worst Case Scenario occurs when

- 1. $v_{in}(min) = 3 0.1 \text{ V} = 2.9 \text{ V}$
- **2.** $I_L(\text{max}) = 10 \text{ mA}$
- 3. $i_D(\min) = 1 \text{ mA}$

$$\frac{U_{in}(min) - 0.6}{R} = I_{L}(max) + i_{D}(min)$$

The circuit of the adjacent <u>Figure</u> is specified to have the following parameters. The supply voltage V_{in} is nominally 3 V but can vary by \pm 0.1 V. R_L can draw a maximum of 10 mA and $i_D(\min) = 1$ mA.

What is R for worst case scenario if v_D (V_O) is to be regulated at $\mathbf{0.6}$ V? [Since r_O is not provided, you can consider the CVD model.]

Solution:
$$\frac{\mathcal{O}_{in}(min) - 0.6}{R} = I_{L}(max) + i_{D}(min)$$

$$R = \frac{2.9 - 0.6}{10 - 1} \text{ ksl} = 0.209 \text{ ksl}$$

$$\therefore R = 209 \text{ sl}$$

Drawbacks of Diodes as Voltage Regulators

- Regulation voltage is low: ~ V_{DO} (0.3 ~1 V)
- High in (min)
- R can be low → High power loss

Possible Solution:

<u>Stacked Diodes in Series:</u> -- Regulation Voltage can be increased to $n \cdot V_{DO}$ for n stacked diodes.

However, this can make the diodes deviate more from ideal model. **IV characteristics** become flatter (more lossy).

Zener Diode IV

Zener Diode IV

Breakdown Region $(V_Z > V_{Z0} \approx V_{ZK})$

$$V_Z = V_{Z0} + I_Z r_Z$$

 V_Z

Zener Diode Breakdown IV Characteristic

V_{z0}: Zener knee voltage

The 6.8 - V Zener diode in the circuit of **Figure** is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

$$V^+ = 10 \pm 1 V$$

$$V_Z = 6.8 V \text{ at } I_Z = 5 mA$$

$$r_Z = 20 \Omega.$$

$$I_{ZK} = 0.2 mA.$$

- (a) Find V_0 with no load and with V^+ at its nominal value
- (b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I
- (c) Find the R_L that would give rise to worst-case scenario at worst case V^+ . In this worst-case scenario, calculate the Zener voltage V_Z , load current I_L and input current I
- (d) (For $R_L = 2 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I
- (e) Design the circuit, i.e., find the minimum value of the input voltage V^+ such that, voltage regulation is maintained even in the worst-case scenario for $R_L=2~\mathrm{k}\Omega$. (Forget that V^+ is 10 V)
- (f) Determine whether the circuit will maintain regulation if V⁺ is increased. If yes, argue if it should be increased or not.

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(a) Find V_0 with no load and with V^+ at its nominal value

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(a) Find V_0 with no load and with V^+ at its nominal value

Solution:

Extracting Zener diode 's reverse cut-in voltage

$$V_{ZO} = 6.8 - 5 \times 0.02 \text{ V}$$

 $\therefore V_{ZO} = 6.7 \text{ V}$

Determining current from the 10 V source

$$I = \frac{10 - 6.7}{0.5 + 0.02} \text{mA} = 6.346 \text{ mA}$$

Determining output voltage

$$V_O = 6.7 + 6.346 \times 0.02 \text{ V}$$

 $V_O = 6.82692 \text{ V}$

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

The 6.8 - V Zener diode in the circuit of **Figure** is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

Solving the node equation at V_0 .

$$\frac{(10 \pm 1) - V_O}{R} = \frac{V_O - V_{ZO}}{r_z} + \frac{V_O}{R_L}$$
$$\frac{(10 \pm 1) - V_O}{0.5} = \frac{V_O - 6.7}{0.02} + \frac{V_O}{0.5}$$
$$\therefore V_O = 6.537 \sim 6.611 \text{ V}$$

As, $V_{O} < V_{ZO}$, the Zener diode will be in cut off

$$I_Z = 0$$

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{Z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

The 6.8 - V Zener diode in the circuit of **Figure** is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L=0.5 \,\mathrm{k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

$$V_O = \frac{10 \pm 1}{2} \text{ V} = 5 \pm 0.5 \text{ V}$$

 $I_Z = 0 \text{ mA}$

$$I_L = \frac{V^+ \pm 1}{R + R_L} = \frac{10 \pm 1}{1} \text{ mA} = \frac{10 - \text{mA}}{1} = \frac{10 \pm 1}{1} \text{ mA}$$

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{Z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

(c) Find the R_L that would give rise to worst-case scenario (d) (For $R_L = 2 \text{ k}\Omega$). Find the I_Z . In this scenario, at worst case V^+ . In this worst-case scenario, calculate the Zener voltage V_Z , load current I_L and input current I

calculate the Zener voltage V_{o} , load current I_{L} and input current I

 $\frac{3}{2}$ $\frac{3}$

$$(d) \begin{cases} (l0\pm i)V \\ \frac{1}{8} \cdot 5k\Omega \\ \frac{1}{1} \cdot \frac{1}{1} \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \\ \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \\ \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \\ \frac{1}{1} \cdot \frac$$

$$I = I_{2} + I_{L}$$

$$\frac{\sqrt{1 - \sqrt{6}}}{R} = \frac{\sqrt{6 - \sqrt{20}}}{r_{2}} + \frac{\sqrt{6}}{R_{L}}$$

$$\Rightarrow \sqrt{6} \left(\frac{1}{R} + \frac{1}{r_{2}} + \frac{1}{R_{L}}\right) - \sqrt{20} \left(\frac{1}{r_{2}}\right) = \frac{10}{R}$$

$$\Rightarrow \sqrt{6} \left(\frac{1}{0.5} + \frac{1}{2} + \frac{1}{0.02}\right) = \frac{10}{0.5} + \frac{6.7}{0.02}$$

$$\Rightarrow \sqrt{6} = \frac{35.5}{54} = \frac{6.76}{54} = \frac{6.76}{0.02} = \frac{3.1}{0.02} = \frac{3.1}{0.02} = \frac{3.1}{0.02}$$

So, the zener diode can sustain this load.

$$V_{0} = 6.76 \text{ V}$$

$$I_{2} = 3.7 \text{ mA}$$

$$I_{L} = \frac{6.76}{2} \text{ mA} = 3.38 \text{ mA}$$

(e) Design the circuit, i.e., find the minimum value of the input voltage V^+ such that, voltage regulation is maintained even in the worst-case scenario for $R_L = 2 \text{ k}\Omega$. (Forget that V^+ is 10 V)

Solving Problems

Obtain the Fixed Parameters first

$$V_{0} = V_{Z0} + I_{Z}r_{z}$$

$$I_{Z} = \frac{V_{O} - V_{ZO}}{r_{z}}$$

KCL/Nodal Analysis at node Vo

$$\frac{v_{in} - V_O}{R} = I_Z + \frac{V_O}{R_L}$$

$$\frac{v_{in} - V_O}{R} = \frac{V_O - V_{ZO}}{r_Z} + \frac{V_O}{R_L}$$

The Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The **supply voltage** V_{in} is nominally 5 V but can vary by ± 10 %. Load current can vary from 0 mA to 50 mA.

- a) Find minimum and maximum input Voltage, $V_{in}(\min)$ and $V_{in}(\max)$, maximum and minimum load current $I_L(\max)$ and $I_L(\min)$, minimum diode current $I_Z(\min)$.
- b) Find the I_Z , V_{in} and I_L at worst-case scenario.
- c) For worst case what is I_S and V_R .
- find R for which diode maintains regulation at worst case scenario

The Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters.

$$V_{Z0} = 3 V$$

 $r_z = 20 \Omega, 0 \Omega$
 $I_{ZK} = 1 \text{ mA}.$

- a) Find minimum input voltage, $V_{in}(\min)$ for which the diode maintains regulation, when $R_L = 10 \text{ k}\Omega$.
- b) Find worst case R_L if the **input voltage** V_{in} is nominally **5** V but can vary by $\pm 10 \%$

Some important tips

- If V_{ZK} , V_{ZO} and r_Z are given, we can calculate $I_{ZK} = \frac{V_{ZK} V_{ZO}}{r_Z}$
- If V_{ZO} and r_Z are **not** provided, consider $V_{ZK} = V_Z = V_{ZO}$
- Consider $I_{ZK} = 0$ if not provided

