ECE 230 Practice Exam #1

Solutions

1. Convert the decimal number (40)₁₀ to binary.

ECE 230 Practice Exam #1

Solutions

1. Convert the decimal number (40)10 to binary.

```
40 \div 2 = 20 rem 0 (LSb)

20 \div 2 = 10 rem 0 Answer: (101000)_2

10 \div 2 = 5 rem 0

5 \div 2 = 2 rem 1

2 \div 2 = 1 rem 0

1 \div 2 = 0 rem 1 (MSb)
```

5. Find the minimum sum-of-products (SOP) implementation for $f(x_1, x_2, x_3, x_4) = \sum m(1, 2, 5, 6, 9, 12) + D(13, 15)$.

6. Find the minimum product-of-sums (POS) implementation for $f(x_1,x_2,x_3,x_4)=\sum m(1,2,5,6,9)+D(13,15)$.

This is one of two possible solutions. Can you identify the other?

Answer:
$$f(x_1, x_2, x_3, x_4) = (x_3 + x_4) \cdot (\overline{x_3} + \overline{x_4}) \cdot (\overline{x_1} + \overline{x_3})$$

7. Perform the following operations involving eight-bit 2's complement numbers <u>and</u> indicate whether arithmetic overflow occurs (circle yes or no.)

11101101

Negative of 01000101 found via invert all bits (10111010) and then add $1 \rightarrow 10111011$

s (A, B, and C) below, indicate the value of the expression (0 or 1.) binary value.

$$0 \oplus 1) + 0$$
 Answers: $f = 0$
 $0 = 0 + 0 = 0$
 $+ 0 + x$ $g = x$
 $0 \cdot x$ $h = 0$

WHEN PRODUCT OF SUMS, FLIP THE SIGN OVER IT. ^^^^IF THERE IS AN EVEN NUMBER OF 1's IT IS 0. IF THERE ARE AN ODD AMOUNT OF 1's IT IS 1.

(a):

00110110

(b):

+01000101

54 +69 123

 $\frac{011110101}{01010011}$

 $\frac{117}{-34}$

 $\frac{11011111}{100101111}$

(-33)+(-72)(-105)

 \widehat{C}

01111011

(d):

-00110111

(e):

 $\frac{-110101111}{100111111}$

00001011

SOP: As is figure below

 $f(x_1, x_2, x_3, x_4) = x_3 \overline{x_4} + \overline{x_3} x_4 + \overline{x_1} x_2 \overline{x_3}$

Or alternatively (not shown)

 $f(x_1, x_2, x_3, x_4) = x_3 \overline{x_4} + \overline{x_3} x_4 + \overline{x_1} x_2 \overline{x_4}$

POS: As is figure below

$$f(x_1, x_2, x_3, x_4) = (\overline{x_1} + \overline{x_2})(\overline{x_3} + \overline{x_4})(x_2 + x_4)$$

The simplest SOP implementation of the function is

 $\overline{x}_1\overline{x}_2x_3 + \overline{x}_1x_2x_3 + x_1\overline{x}_2\overline{x}_3 + x_1x_2\overline{x}_3 + x_1x_2x_3$ $\overline{x}_1(\overline{x}_2 + x_2)x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3 + (\overline{x}_1 + x_1)x_2x_3$

 $\overline{x}_1x_3 + x_1\overline{x}_3 + x_2x_3$

The simplest POS implementation of the function is

$$f = (x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + x_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

= $((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(\overline{x}_1 + x_2 + \overline{x}_3)$
= $(x_1 + x_3)(\overline{x}_1 + x_2 + \overline{x}_3)$