

Department of Computer Science & Engineering (School of Technology) MATH2361: Probability And Statistics (No. of hrs/week: 3 Credits: 3) @Semester -V

Dr Malikarjuna Reddy Doodipala MSc, M.Phil, PGDCA, Ph D, Department of Mathematics GITAM Hyderabad

Why is this Course Designed ...?

This course is designed to Impart Knowledge on

- ▶ The Concepts of Data Science
- ► Fundamental Properties of Probability, Distributions
- Correlation and Regression
- ► Testing of Hypothesis for
 - -Small and Large Samples In Engineering Applications.

Course Learning Objectives...

In this course, By the end of this chapter, students should be able to:

- To familiarize the students with the foundations of Data Science, probability and statistical methods.
- To explain the concepts in random variables and several distributions in engineering applications.
- To teach the concepts of correlation, regression and estimations and their properties.
- To explain the concept of testing of hypothesis for large samples.
- To impart knowledge on small sample tests.

Course Learning Outcomes...

Upon successful completion of this course, students will be able to:

- classify the concepts of Data Science and its importance (L3).
- apply discrete and continuous probability distributions (L3).
- explain the association of characteristics through correlation and regression tools (L3).
- identify the components of a classical hypothesis test (L3).
- use the statistical inferential methods based on small and large sampling tests (L4)

UNIT-I: Data Science and Probability

Data Science:

- Introduction to Statistics
- Population Vs Sample
- Collection of Data-primary and Secondary Data,
- Types of Variables: Dependent, Independent, Categorical and Continuous Variables
- Data Visualization
- Measures of Central Tendency,
- Measures of Dispersion (Variance)

UNIT-I: Data Science and Probability

Probability:

- Concept Definitions
- Probability axioms,
- addition law and multiplicative law of probability,
- conditional probability,
- Baye's theorem (without proof).

UNIT-I: Learning Outcomes

- summarize the basic concepts of data science and its importance in engineering (L3).
- analyze the data quantitatively or categorically, measure of averages, variability (L4).
- define the terms trial, events, sample space, probability and laws of probability (L3).
- make use of probabilities of events in finite sample spaces from experiments (L3).
- apply Baye's theorem to practical problems (L3).

UNIT-II: Random Variable and Probability Distributions

- Random variables (Discrete and Continuous),
- Probability mass and density functions,
- Probability distributions
- 1. Binomial,
- 2. Poisson,
- 3. Normal distributions and their properties (Only Mean Variance)
- Applications on Binomial, Poisson and Normal Distributions

UNIT-II: Learning outcomes

- explain the notion of random variable, distribution functions and
 - expected value (L3).
- apply Binomial and Poisson distributions to compute probabilities,
 - theoretical frequencies (L3).
- explain the properties of normal distribution and its applications (L3).

- ▶ Correlation, correlation coefficient, rank correlation,
- Regression, lines of regression, regression coefficients,
- ► Curve fitting: principle of least squares and curve fitting (straight line, parabola and exponential curves).
- **Estimation**: Parameter, statistic, sampling distribution, point estimation,
 - Properties of estimators, interval estimation.

UNIT-III: Learning outcomes

- Identify different trends in scatter plots, strengths of association between two numerical variables (L3).
- Make use of the line of best fit as a tool for summarizing a linear relationship and predicting future observed values (L3).
- Estimate the value of a population parameter, computation of point and interval estimations (L3).

UNIT-IV: Testing of Hypothesis and Large Sample Tests

Testing of Hypothesis

Formulation of null hypothesis, alternative hypothesis, critical region, two types of errors, level of significance and power of the test.

Large Sample Tests:

- ▶ Test for single proportion, difference of proportions, test for single
- mean and difference of means,
- confidence interval for parameters in one sample and two sample problems.

UNIT-IV: Learning outcomes

- identify the difference between one-tailed and two-tailed hypothesis tests (L3).
- analyze the testing of hypothesis for large samples (L4).

UNIT-V: Small Sample Tests

- Student t-distribution test for single mean, two means and paired t-test
- Chi-square tests
 - x2- test for variance
 - x2 test for goodness of fit,
 - χ2 -test for independence of attributes.
- ▶ F-Test: Testing of equality of variances (F-test),

UNIT-V: Learning Outcomes

- analyze the testing of hypothesis for small samples (L4)
- test for the χ2-goodness of fit and independence of attributes (L4)

- V.K.Kapoor and S.C.Gupta: Fundamentals of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- Richard A. Johnson, Iswin Miller and John Freund, Miller & Freund's Probability & Statistics for Engineers, 7/3, Pearson, 2008.

Course Plan

Modules	No. of Classes to be Required
Orientation	02
Unit – I	10
Unit – II	08
Unit – III	08
Unit - IV	08
Unit – V	06
Total	42

Reference Books

- WillamFeller: Introduction to Probability theory and its applications.
 Volume –I, Wiley
- S. Ross, A First Course in Probability, Pearson, 2002.

Mode of Examination

- External Max.Marks:30
- ▶ Internal Max. Marks: 70
- ► Credits-3
- Purely Descriptive (Internal Choice Based)
- ▶ Blue Print : Equal weightage to each unit
- ▶ All questions carries equal Marks

Any Questions? Suggestions?

Thank you

Feedback to mdoodipa@gitam.edu