LibreSilicon's Standard Cell Library

Hagen Sankowski

February 13, 2018

Abstract

Copyright ©2018 CHIPFORGE.ORG. All rights reserved.

This process is licensed under the Libre Silicon public license; you can redistribute it and/or modify it under the terms of the Libre Silicon public license as published by the Libre Silicon alliance either version 2 of the License, or (at your option) any later version.

This design is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Libre Silicon Public License for more details.

For further clarification consult the complete documentation of the process.

Document Revision History

VERSION	DATE	DESCRIPTION	TRACKING NOTES
Draft 0.0	2018-02-01	START with empty document, ADD many cells	-

Chapter 1

CMOS in a nutshell

This basic initial project is dedicated to the CMOS Technology only and for this reason two types of metal-oxide-semiconductor field-effect transistors (MOSFET) are required.

Historicaly, the first chips with MOSFETs on the mass market were p-channel MOSFETs in enhancement-mode.

enhancement-mode PMOS transistor use-case

The sectional view of a PMOS transistor in silicon is being shown below

Historically later, faster chips with MOSFETs on the mass market were marked as n-channel MOSFETs in enhancement mode also.

enhancement-mode NMOS transistor use-case

The sectional view of a NMOS transistor in silicon is being shown here also.

Both technologies, the older NMOS as the newer PMOS, have the same disadvantage. Every time, the transistor is switched on, the current between Drain and Source of the transistor is limited by the Resistor on Drain only. Higher currents here meaning higher power consumption for the chip where the transistors are integrated also. If the transistors are switched off, no currents flows between Drain and Source anymore, the power consumption of the chip also goes low.

Et violà, the US-Patent with Number 3356858¹ changed the world and combines both technologies to the new complementary metal-oxide-semiconductor (CMOS) technology. Instead of every transistor is working against a weak resistor, the transistor works against a complementary switched-off transistor. With the Eyes of our antecessor CMOS doubles the transistor count, but contemporary chips all are build in CMOS.

complementary PMOS and NMOS transistor couple use-case

¹https://www.google.com/patents/US3356858

The sectional view of a NMOS and PMOS transistors couple in silicon - building the CMOS technology - are being shown here also.

Chapter 2

Considerations

Chapter 3

Logical Cells

3.1. AND4

7

3.1 AND4

Cell

 $\mathbf{AND4}$ - a 4-input AND gate

Synopsys

AND4(Z, D, C, B, A)

Description

Circuit

Schematic (two stages, 4T stacked, 10T total)

Truth Table

$$Z = D \wedge C \wedge B \wedge A$$

D	С	В	A	Z
0	X	X	X	0
X	0	X	X	0
X	X	0	X	0
X	X	X	0	0
1	1	1	1	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mathrm{OR4}$ - a 4-input OR gate [p.8]

3.2 AO2111

Cell

AO2111 - a 2-1-1-1-input AND-OR gate

Synopsys

AO2111(Z, D1, D0, C, B, A)

Description

Truth Table

$$Z = (D1 \wedge D0) \vee C \vee B \vee A$$

D1	D0	С	В	A	Z
0	X	0	0	0	0
0	X	1	X	X	1
0	X	X	1	X	1
0	X	X	X	1	1
X	0	0	0	0	0
X	0	1	X	X	1
X	0	X	1	X	1
X	0	X	X	1	1
1	1	X	X	X	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\rm AO3111$ - a 3-1-1-1-input AND-OR gate [p.9]

3.3. AO3111 9

3.3 AO3111

Cell

 $\bf AO3111$ - a 3-1-1-1-input AND-OR gate

Synopsys

AO3111(Z, D2, D1, D0, C, B, A)

Description

Circuit

Truth Table

$$Z = (D2 \wedge D1 \wedge D0) \vee C \vee B \vee A$$

D2	D1	D0	С	В	A	Z
0	X	X	0	0	0	0
0	X	X	1	X	X	1
0	X	X	X	1	X	1
0	X	X	X	X	1	1
X	0	X	0	0	0	0
X	0	X	1	X	X	1
X	0	X	X	1	X	1
X	0	X	X	X	1	1
X	X	0	0	0	0	0
X	X	0	1	X	X	1
X	X	0	X	1	X	1
X	X	0	X	X	1	1
1	1	1	X	X	X	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\rm AO2111$ - a 2-1-1-1-input AND-OR gate [p.8]

3.4 AOI21

Cell

AOI21 - a 2-1-input AND-OR-Invert gate

Synopsys

AOI21(Z, B1, B0, A)

Description

Schematic (one stage, 2T stacked, 6T total)

Truth Table

$$Z = \neg((B1 \land B0) \lor A)$$

B1	B0	A	Z
0	X	0	1
1	1	X	0
X	0	0	1
X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mbox{AOI31}$ - a 3-1-input AND-OR-Invert gate $[\mbox{p.}12]$

See also

[p.14]

AOI33 - a 3-3-input AND-OR-Invert gate

3.5 AOI22

 \mathbf{Cell}

AOI22 - a 2-2-input AND-OR-Invert gate

Synopsys

AOI22(Z, B1, B0, A1, A0)

Description

Schematic (one stage, 2T stacked, 8T total)

Truth Table

$$Z = \neg((B1 \land B0) \lor (A1 \land A0))$$

B1	В0	A1	A0	Z
0	X	0	X	1
0	X	X	0	1
1	1	X	X	0
X	0	0	X	1
X	0	X	0	1
X	X	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

3.6 AOI31

Cell

AOI31 - a 3-1-input AND-OR-Invert gate

Synopsys

AOI31(Z, B2, B1, B0, A)

Description

Truth Table

$$Z = \neg((B2 \land B1 \land B0) \lor A)$$

B2	B1	В0	A	Z
0	X	X	0	1
1	1	1	X	0
X	0	X	0	1
X	X	0	0	1
X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

AOI21 - a 2-1-input AND-OR-Invert gate [p.10]

3.7. AOI32

3.7 AOI32

Cell

AOI32 - a 3-2-input AND-OR-Invert gate

Synopsys

AOI32(Z, B2, B1, B0, A1, A0)

Description

Circuit

Truth Table

$$Z = \neg((B2 \land B1 \land B0) \lor (A1 \land A0))$$

B2	B1	В0	A1	A0	Z
0	X	X	0	X	1
0	X	X	X	0	1
1	1	1	X	X	0
X	0	X	0	X	1
X	0	X	X	0	1
X	X	0	0	X	1
X	X	0	X	0	1
X	X	X	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI22}$ - a 2-2-input AND-OR-Invert gate [p.11] ${\it AOI33}$ - a 3-3-input AND-OR-Invert gate [p.14]

3.8 AOI33

Cell

AOI33 - a 3-3-input AND-OR-Invert gate

Synopsys

AOI33(Z, B2, B1, B0, A2, A1, A0)

Description

Truth Table

$$Z = \neg((B2 \land B1 \land B0) \lor (A2 \land A1 \land A0))$$

B2	B1	В0	A2	A1	A0	Z
0	X	X	0	X	X	1
0	X	X	X	0	X	1
0	X	X	X	X	0	1
1	1	1	X	X	X	0
X	0	X	0	X	X	1
X	0	X	X	0	X	1
X	0	X	X	X	0	1
X	X	0	0	X	X	1
X	X	0	X	0	X	1
X	X	0	X	X	0	1
X	X	X	1	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mbox{AOI22}$ - a 2-2-input AND-OR-Invert gate [p.11] $\mbox{AOI32}$ - a 3-2-input AND-OR-Invert gate [p.13]

3.9. AOI211

15

3.9 Cell

Synopsys

AOI211

Description

Circuit

Truth Table

$$Z = \neg((C1 \land C0) \lor B \lor A)$$

C1	C0	В	A	Z
0	X	0	0	1
1	1	X	X	0
X	0	0	0	1
X	X	1	X	0
X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

$$\mbox{AOI311}$$
- a 3-1-1-input AND-OR-Invert gate $[\mbox{p.}18]$

3.10 AOI221

Cell

$$\bf AOI221$$
 - a 2-2-1-input AND-OR-Invert gate

Synopsys

Description

Truth Table

$$Z = \neg((C1 \land C0) \lor (B1 \land B0) \lor A)$$

C1	C0	B1	В0	A	\mathbf{Z}
0	X	0	X	0	1
0	X	X	0	0	1
1	1	X	X	X	0
X	0	0	X	0	1
X	0	X	0	0	1
X	X	1	1	X	0
X	X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI321}$ - a 3-2-1-input AND-OR-Invert gate [p.19] ${\it AOI331}$ - a 3-3-1-input AND-OR-Invert gate [p.21]

3.11. AOI222

3.11 AOI222

Cell

 $\bf AOI222$ - a 2-2-2-input AND-OR-Invert gate

Synopsys

AOI222(Z, C1, C0, B1, B0, A1, A0)

Description

Truth Table

$$Z = \neg((C1 \land C0) \lor (B1 \land B0) \lor (A1 \land A0))$$

C1	C0	B1	В0	A1	A0	
0	X	0	X	0	X	1
0	X	0	X	X	0	1
0	X	X	0	0	X	1
0	X	X	0	X	0	1
1	1	X	X	X	X	0
X	0	0	X	0	X	1
X	0	0	X	X	0	1
X	0	X	0	0	X	1
X	0	X	0	X	0	1
X	X	1	1	X	X	0
X	X	X	X	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mbox{AOI322}$ - a 3-2-2-input AND-OR-Invert gate $[\mbox{p.20}]$

AOI332 - a 3-3-2-input AND-OR-Invert gate [p.22]

AOI333 - a 3-3-3-input AND-OR-Invert gate [p.23]

3.12 AOI311

Cell

$$\bf AOI311$$
 - a 3-1-1-input AND-OR-Invert gate

Synopsys

Description

Truth Table

$$Z = \neg((C2 \land C1 \land C0) \lor B \lor A)$$

C2	C1	C0	В	A	Z
0	X	X	0	0	1
1	1	1	X	X	0
X	0	X	0	0	1
X	X	0	0	0	1
X	X	X	1	X	0
X	X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

$$\mbox{AOI211}$$
- a 2-1-1-input AND-OR-Invert gate $[\rm p.15]$

3.13. AOI321

3.13 AOI321

Cell

 $\bf AOI321$ - a 3-2-1-input AND-OR-Invert gate

Synopsys

AOI321(Z, C2, C1, C0, B1, B0, A)

Description

Truth Table

$$Z = \neg((C2 \land C1 \land C0) \lor (B1 \land B0) \lor A)$$

C2	C1	C0	B1	B0	A	Z
0	X	X	0	X	0	1
0	X	X	X	0	0	1
1	1	1	X	X	X	0
X	0	X	0	X	0	1
X	0	X	X	0	0	1
X	X	0	0	X	0	1
X	X	0	X	0	0	1
X	X	X	1	1	X	0
X	X	X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI311}$ - a 3-1-1-input AND-OR-Invert gate [p.18] ${\it AOI331}$ - a 3-3-1-input AND-OR-Invert gate [p.21]

3.14 AOI322

Cell

 $\bf AOI322$ - a 3-2-2-input AND-OR-Invert gate

Synopsys

AOI322(Z, C2, C1, C0, B1, B0, A1, A0)

Description

Truth Table

 $Z = \neg((C2 \land C1 \land C0) \lor (B1 \land B0) \lor (A1 \land A0))$

C2	C1	C0	B1	В0	A1	A0	Z
0	X	X	0	X	0	X	1
0	X	X	0	X	X	0	1
0	X	X	X	0	0	X	1
0	X	X	X	0	X	0	1
1	1	1	X	X	X	X	0
X	0	X	0	X	0	X	1
X	0	X	0	X	X	0	1
X	0	X	X	0	0	X	1
X	0	X	X	0	X	0	1
X	X	0	0	X	0	X	1
X	X	0	0	X	X	0	1
X	X	0	X	0	0	X	1
X	X	0	X	0	X	0	1
X	X	X	1	1	X	X	0
X	X	X	X	X	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI222}$ - a 2-2-2-input AND-OR-Invert gate $[{\it p.17}]$ AOI332 - a 3-2-2-input AND-OR-Invert gate

 $[\mathrm{p.22}]$ AOI333 - a 3-3-3-input AND-OR-Invert gate

[p.23]

3.15. AOI331

3.15 AOI331

Cell

 $\bf AOI331$ - a 3-3-1-input AND-OR-Invert gate

Synopsys

AOI331(Z, C2, C1, C0, B2, B1, B0, A)

Description

Truth Table

$$Z = \neg((C2 \land C1 \land C0) \lor (B2 \land B1 \land B0) \lor A)$$

C2	C1	C0	B2	B1	В0	A	Z
0	X	X	0	X	X	0	1
0	X	X	X	0	X	0	1
0	X	X	X	X	0	0	1
1	1	1	X	X	X	X	0
X	0	X	0	X	X	0	1
X	0	X	X	0	X	0	1
X	0	X	X	X	0	0	1
X	X	0	0	X	X	0	1
X	X	0	X	0	X	0	1
X	X	0	X	X	0	0	1
X	X	X	1	1	1	X	0
X	X	X	X	X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI221}$ - a 2-2-1-input AND-OR-Invert gate [p.16] ${\it AOI321}$ - a 3-2-1-input AND-OR-Invert gate [p.19]

3.16 AOI332

Cell

 $\bf AOI332$ - a 3-3-2-input AND-OR-Invert gate

Synopsys

Description

Truth Table

 $Z = \neg((C2 \land C1 \land C0) \lor (B2 \land B1 \land B0) \lor (A1 \land A0))$

C2	C1	C0	B2	B1	В0	A1	A0	Z
0	X	X	0	X	X	0	X	1
0	X	X	0	X	X	X	0	1
0	X	X	X	0	X	0	X	1
0	X	X	X	0	X	X	0	1
0	X	X	X	X	0	0	X	1
0	X	X	X	X	0	X	0	1
1	1	1	X	X	X	X	X	0
X	0	X	0	X	X	0	X	1
X	0	X	0	X	X	X	0	1
X	0	X	X	0	X	0	X	1
X	0	X	X	0	X	X	0	1
X	0	X	X	X	0	0	X	1
X	0	X	X	X	0	X	0	1
X	X	0	0	X	X	0	X	1
X	X	0	0	X	X	X	0	1
X	X	0	X	0	X	0	X	1
X	X	0	X	0	X	X	0	1
X	X	0	X	X	0	0	X	1
X	X	0	X	X	0	X	0	1
X	X	X	1	1	1	X	X	0
X	X	X	X	X	X	1	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\ensuremath{\mathrm{AOI222}}$ - a 2-2-2-input AND-OR-Invert gate [p.17]

AOI322 - a 3-2-2-input AND-OR-Invert gate [p.20]

 $\mbox{AOI333}$ - a 3-3-3-input AND-OR-Invert gate $[\rm p.23]$

3.17. AOI333

3.17 AOI333

Cell

 $\bf AOI333$ - a 3-3-3-input AND-OR-Invert gate

Synopsys

Description

Truth Table

 $Z = \neg((C2 \land C1 \land C0) \lor (B2 \land B1 \land B0) \lor (A2 \land A1 \land A0))$

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it AOI222}$ - a 2-2-2-input AND-OR-Invert gate [p.17] ${\it AOI322}$ - a 3-2-2-input AND-OR-Invert gate [p.20] ${\it AOI332}$ - a 3-3-2-input AND-OR-Invert gate [p.22]

C2	C1	C0	B2	B1	В0	A2	A1	A0	Z
0	X	X	0	X	X	0	X	X	1
0	X	X	0	X	X	X	0	X	1
0	X	X	0	X	X	X	X	0	1
0	X	X	X	0	X	0	X	X	1
0	X	X	X	0	X	X	0	X	1
0	X	X	X	0	X	X	X	0	1
0	X	X	X	X	0	0	X	X	1
0	X	X	X	X	0	X	0	X	1
0	X	X	X	X	0	X	X	0	1
1	1	1	X	X	X	X	X	X	0
X	0	X	0	X	X	0	X	X	1
X	0	X	0	X	X	X	0	X	1
X	0	X	0	X	X	X	X	0	1
X	0	X	X	0	X	0	X	X	1
X	0	X	X	0	X	X	0	X	1
X	0	X	X	0	X	X	X	0	1
X	0	X	X	X	0	0	X	X	1
X	0	X	X	X	0	X	0	X	1
X	0	X	X	X	0	X	X	0	1
X	X	0	0	X	X	0	X	X	1
X	X	0	0	X	X	X	0	X	1
X	X	0	0	X	X	X	X	0	1
X	X	0	X	0	X	0	X	X	1
X	X	0	X	0	X	X	0	X	1
X	X	0	X	0	X	X	X	0	1
X	X	0	X	X	0	0	X	X	1
X	X	0	X	X	0	X	0	X	1
X	X	0	X	X	0	X	X	0	1
X	X	X	1	1	1	X	X	X	0
X	X	X	X	X	X	1	1	1	0

3.18 BUF

Cell

BUF - a Buffer gate

Synopsys

BUF(Z, A)

Description

Circuit

Schematic (two stages, 1T stacked, 4T total)

Truth Table

$$Z = A$$

A	Z
0	0
1	1

Usage

Fan-in / Fan-out

Layout

Files

See also

INV - a Not (or Inverter) gate [p.26]

3.19. EQ2

25

3.19 EQ2

 \mathbf{Cell}

$$\mathbf{EQ2}$$
 - a 2-input Equality (or XNOR) gate

Synopsys

Description

Circuit

Truth Table

$$Z = \neg (B \oplus A)$$

В	A	Z
0	0	1
0	1	0
1	0	0
1	1	1

Usage

Fan-in / Fan-out

Layout

Files

See also

$$\rm XOR2$$
 - a 2-input Exclusive-OR (or XOR) gate [p.48]

3.20 INV

Cell

 \mathbf{INV} - a Not (or Inverter) gate

Synopsys

INV(Z, A)

Description

Circuit

Schematic (one stage, 1T stacked, 2T total)

Truth Table

$$Z = \neg A$$

A	Z
0	1
1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 BUF - a Buffer gate [p.24]

3.21. NAND2

27

Cell

3.21

$${\bf NAND2}$$
 - a 2-input Not-AND (or NAND) gate

Synopsys

NAND2

Description

Schematic (one stage, 2T stacked, 4T total)

Truth Table

$$Z = \neg (B \wedge A)$$

В	A	Z
0	X	1
1	1	0
X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

$${\rm NAND3}$$
 - a 3-input Not-AND (or NAND) gate [p.28]

3.22 NAND3

Cell

 ${\bf NAND3}$ - a 3-input Not-AND (or NAND) gate

Synopsys

NAND3(Z, C, B, A)

Description

Schematic (one stage, 3T stacked, 6T total)

Truth Table

$$Z = \neg(C \land B \land A)$$

\mathbf{C}	В	A	Z
0	X	X	1
1	1	1	0
X	0	X	1
X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\it NAND2}$ - a 2-input Not-AND (or NAND) gate [p.27]

3.23. NOR2 29

3.23 NOR2

Cell

NOR2 - a 2-input Not-OR (or NOR) gate

Synopsys

NOR2(Z, B, A)

Description

Schematic (one stage, 2T stacked, 4T total)

Truth Table

$$Z = \neg(B \vee A)$$

В	A	Z
0	0	1
1	X	0
X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\operatorname{NOR3}$ - a 3-input Not-OR (or NOR) gate $[\operatorname{p.30}]$

3.24 NOR3

Cell

NOR3 - a 3-input Not-OR (or NOR) gate

Synopsys

NOR3(Z, C, B, A)

Description

Schematic (one stage, 3T stacked, 6T total)

Truth Table

$$Z = \neg(C \lor B \lor A)$$

С	В	A	Z
0	0	0	1
1	X	X	0
X	1	X	0
X	X	1	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\rm NOR2}$ - a 2-input Not-OR (or NOR) gate $[{\rm p.29}]$

3.25. OA2111 31

3.25 OA2111

Cell

 $\mathbf{OA2111}$ - a 2-1-1-1-input OR-AND gate

Synopsys

OA2111(Z, D1, D0, C, B, A)

Description

Circuit

Truth Table

$$Z = (D1 \vee D0) \wedge C \wedge B \wedge A$$

D1	D0	С	В	A	Z
0	0	X	X	X	0
1	X	1	1	1	1
X	1	1	1	1	1
X	X	0	X	X	0
X	X	X	0	X	0
X	X	X	X	0	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mathrm{OA3111}$ - a 3-1-1-1-input AND-OR gate [p.32]

3.26 OA3111

Cell

 $\mathbf{OA3111}$ - a 3-1-1-1-input OR-AND gate

Synopsys

OA3111(Z, D2, D1, D0, C, B, A)

Description

Truth Table

$$Z = (D2 \vee D1 \vee D0) \wedge C \wedge B \wedge A$$

D2	D1	D0	С	В	A	Z
0	0	0	X	X	X	0
1	X	X	1	1	1	1
X	1	X	1	1	1	1
X	X	1	1	1	1	1
X	X	X	0	X	X	0
X	X	X	X	0	X	0
X	X	X	X	X	0	0

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mathrm{OA2111}$ - a 2-1-1-1-input AND-OR gate [p.31]

3.27. OAI21 33

3.27 OAI21

Cell

 $\mathbf{OAI21}$ - a 2-1-input OR-AND-Invert gate

Synopsys

Description

Circuit

Truth Table

$$Z = \neg((B1 \lor B0) \land A)$$

B1	В0	A	Z
0	0	X	1
1	X	1	0
X	1	1	0
X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI31 - a 3-1-input OR-AND-Invert gate
$$[\mathrm{p.35}]$$

3.28 OAI22

 \mathbf{Cell}

OAI22 - a 2-2-input OR-AND-Invert gate

Synopsys

OAI22(Z, B1, B0, A1, A0)

Description

Schematic (one stage, 2T stacked, 8T total)

Truth Table

$$Z = \neg((B1 \lor B0) \land (A1 \lor A0))$$

B1	В0	A1	A0	\mathbf{Z}
0	0	X	X	1
1	X	1	X	0
1	X	X	1	0
X	1	1	X	0
X	1	X	1	0
X	X	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mbox{OAI}32$ - a 3-2-input OR-AND-Invert gate $[\mbox{p.}36]$

OAI33 - a 3-3-input OR-AND-Invert gate [p.37]

3.29. OAI31 35

3.29 OAI31

Cell

 $\mathbf{OAI31}$ - a 3-1-input OR-AND-Invert gate

Synopsys

Description

Circuit

Truth Table

$$Z = \neg((B2 \lor B1 \lor B0) \land A)$$

B2	B1	В0	A	Z
0	0	0	X	1
1	X	X	1	0
X	1	X	1	0
X	X	1	1	0
X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI21 - a 2-1-input OR-AND-Invert gate
$$[\mathrm{p.33}]$$

3.30 OAI32

Cell

OAI32 - a 3-2-input OR-AND-Invert gate

Synopsys

OAI32(Z, B2, B1, B0, A1, A0)

Description

Circuit

Truth Table

$$Z = \neg((B2 \lor B1 \lor B0) \land (A1 \lor A0))$$

B2	B1	B0	A1	A0	Z
0	0	0	X	X	1
1	X	X	1	X	0
1	X	X	X	1	0
X	1	X	1	X	0
X	1	X	X	1	0
X	X	1	1	X	0
X	X	1	X	1	0
X	X	X	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI22 - a 2-2-input OR-AND-Invert gate [p.34] OAI33 - a 3-3-input OR-AND-Invert gate [p.37]

3.31. OAI33 37

3.31 OAI33

Cell

OAI33 - a 3-3-input OR-AND-Invert gate

Synopsys

OAI33(Z, B2, B1, B0, A2, A1, A0)

Description

Circuit

Truth Table

$$Z = \neg((B2 \lor B1 \lor B0) \land (A2 \lor A1 \lor A0))$$

B2	B1	В0	A2	A1	A0	Z
0	0	0	X	X	X	1
1	X	X	1	X	X	0
1	X	X	X	1	X	0
1	X	X	X	X	1	0
X	1	X	1	X	X	0
X	1	X	X	1	X	0
X	1	X	X	X	1	0
X	X	1	1	X	X	0
X	X	1	X	1	X	0
X	X	1	X	X	1	0
X	X	X	0	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI22 - a 2-2-input OR-AND-Invert gate [p.34] OAI32 - a 3-2-input OR-AND-Invert gate [p.36]

3.32 OAI211

Cell

$${\bf OAI211}$$
 - a 2-1-1-input OR-AND-Invert gate

Synopsys

Description

Truth Table

$$Z = \neg((C1 \vee C0) \wedge B \wedge A)$$

C1	C0	В	A	Z
0	0	X	X	1
1	X	1	1	0
X	1	1	1	0
X	X	0	X	1
X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

$$\mbox{OAI311}$$
- a 3-1-1-input OR-AND-Invert gate $[\mbox{p.41}]$

3.33. OAI221

3.33 OAI221

Cell

 ${\bf OAI221}$ - a 2-2-1-input OR-AND-Invert gate

Synopsys

OAI221(Z, C1, C0, B1, B0, A)

Description

Truth Table

$$Z = \neg((C1 \lor C0) \land (B1 \lor B0) \land A)$$

C1	C0	B1	B0	A	Z
0	0	X	X	X	1
1	X	1	X	1	0
1	X	X	1	1	0
X	1	1	X	1	0
X	1	X	1	1	0
X	X	0	0	X	1
X	X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI321 - a 3-2-1-input OR-AND-Invert gate [p.42] OAI331 - a 3-3-1-input OR-AND-Invert gate [p.44]

3.34 OAI222

Cell

 ${\bf OAI222}$ - a 2-2-2-input OR-AND-Invert gate

Synopsys

OAI222(Z, C1, C0, B1, B0, A1, A0)

Description

Truth Table

$$Z = \neg((C1 \lor C0) \land (B1 \lor B0) \land (A1 \lor A0))$$

C1	C0	В1	В0	A1	A0	Z
0	0	X	X	X	X	1
1	X	1	X	1	X	0
1	X	1	X	X	1	0
1	X	X	1	1	X	0
1	X	X	1	X	1	0
X	1	1	X	1	X	0
X	1	1	X	X	1	0
X	1	X	1	1	X	0
X	1	X	1	X	1	0
X	X	0	0	X	X	1
X	X	X	X	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\ensuremath{\mathrm{OAI322}}$ - a 2-2-2-input OR-AND-Invert gate [p.43]

OAI332 - a 3-3-2-input OR-AND-Invert gate [p.45]

 ${\rm OAI333}$ - a 3-3-3-input OR-AND-Invert gate $[{\rm p}.46]$

3.35. OAI311 41

3.35 OAI311

Cell

 ${\bf OAI311}$ - a 3-1-1-input OR-AND-Invert gate

Synopsys

OAI311(Z, C2, C1, C0, B, A)

Description

Truth Table

$$Z = \neg((C2 \lor C1 \lor C0) \land B \land A)$$

C2	C1	C0	В	A	Z
0	0	0	X	X	1
1	X	X	1	1	0
X	1	X	1	1	0
X	X	1	1	1	0
X	X	X	0	X	1
X	X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\mbox{OAI211}$ - a 2-1-1-input OR-AND-Invert gate [p. 38]

3.36 OAI321

Cell

 ${\bf OAI321}$ - a 3-2-1-input OR-AND-Invert gate

Synopsys

OAI321(Z, C2, C1, C0, B1, B0, A)

Description

Truth Table

$$Z = \neg((C2 \vee C1 \vee C0) \wedge (B1 \vee B0) \wedge A)$$

C2	C1	C0	B1	B0	A	Z
0	0	0	X	X	X	1
1	X	X	1	X	1	0
1	X	X	X	1	1	0
X	1	X	1	X	1	0
X	1	X	X	1	1	0
X	X	1	1	X	1	0
X	X	1	X	1	1	0
X	X	X	0	0	X	1
X	X	X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI221 - a 2-2-1-input OR-AND-Invert gate [p.39] OAI331 - a 3-3-1-input OR-AND-Invert gate [p.44]

3.37. OAI322 43

3.37 OAI322

Cell

 ${\bf OAI322}$ - a 3-2-2-input OR-AND-Invert gate

Synopsys

 $OAI322(Z,\ C2,\ C1,\ C0,\ B1,\ B0,\ A1,\ A0)$

Description

Truth Table

 $Z = \neg((C2 \lor C1 \lor C0) \land (B1 \lor B0) \land (A1 \lor A0))$

C2	C1	C0	B1	В0	A1	A0	Z
0	0	0	X	X	X	X	1
1	X	X	1	X	1	X	0
1	X	X	1	X	X	1	0
1	X	X	X	1	1	X	0
1	X	X	X	1	X	1	0
X	1	X	1	X	1	X	0
X	1	X	1	X	X	1	0
X	1	X	X	1	1	X	0
X	1	X	X	1	X	1	0
X	X	1	1	X	1	X	0
X	X	1	1	X	X	1	0
X	X	1	X	1	1	X	0
X	X	1	X	1	X	1	0
X	X	X	0	0	X	X	1
X	X	X	X	X	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\ensuremath{\mathrm{OAI222}}$ - a 2-2-2-input OR-AND-Invert gate $[\mathrm{p.40}]$

OAI332 - a 3-3-2-input OR-AND-Invert gate [p.45]

OAI333 - a 3-3-3-input OR-AND-Invert gate [p.46]

3.38 OAI331

Cell

 ${\bf OAI331}$ - a 3-3-1-input OR-AND-Invert gate

Synopsys

OAI331(Z, C2, C1, C0, B2, B1, B0, A)

Description

Truth Table

$$Z = \neg((C2 \lor C1 \lor C0) \land (B2 \lor B1 \lor B0) \land A)$$

C2	C1	C0	B2	B1	В0	A	Z
0	0	0	X	X	X	X	1
1	X	X	1	X	X	1	0
1	X	X	X	1	X	1	0
1	X	X	X	X	1	1	0
X	1	X	1	X	X	1	0
X	1	X	X	1	X	1	0
X	1	X	X	X	1	1	0
X	X	1	1	X	X	1	0
X	X	1	X	1	X	1	0
X	X	1	X	X	1	1	0
X	X	X	0	0	0	X	1
X	X	X	X	X	X	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI221 - a 2-2-1-input OR-AND-Invert gate [p.39] OAI321 - a 3-2-1-input OR-AND-Invert gate [p.42]

3.39. OAI332 45

3.39 OAI332

Cell

 ${\bf OAI332}$ - a 3-3-2-input OR-AND-Invert gate

Synopsys

Description

Truth Table

 $Z = \neg((C2 \lor C1 \lor C0) \land (B2 \lor B1 \lor B0) \land (A1 \lor A0))$

C2	C1	C0	B2	B1	B0	A1	A0	Z
0	0	0	X	X	X	X	X	1
1	X	X	1	X	X	1	X	0
1	X	X	1	X	X	X	1	0
1	X	X	X	1	X	1	X	0
1	X	X	X	1	X	X	1	0
1	X	X	X	X	1	1	X	0
1	X	X	X	X	1	X	1	0
X	1	X	1	X	X	1	X	0
X	1	X	1	X	X	X	1	0
X	1	X	X	1	X	1	X	0
X	1	X	X	1	X	X	1	0
X	1	X	X	X	1	1	X	0
X	1	X	X	X	1	X	1	0
X	X	1	1	X	X	1	X	0
X	X	1	1	X	X	X	1	0
X	X	1	X	1	X	1	X	0
X	X	1	X	1	X	X	1	0
X	X	1	X	X	1	1	X	0
X	X	1	X	X	1	X	1	0
X	X	X	0	0	0	X	X	1
X	X	X	X	X	X	0	0	1

Usage

Fan-in / Fan-out

Layout

Files

See also

 $\ensuremath{\mathrm{OAI222}}$ - a 2-2-2-input OR-AND-Invert gate [p.40]

OAI322 - a 3-2-2-input OR-AND-Invert gate [p.43]

 $\mbox{OAI333}$ - a 3-3-3-input OR-AND-Invert gate $[\mbox{p.46}]$

3.40 OAI333

Cell

 ${\bf OAI333}$ - a 3-3-3-input OR-AND-Invert gate

Synopsys

Description

Circuit

Truth Table

 $Z = \neg((C2 \lor C1 \lor C0) \land (B2 \lor B1 \lor B0) \land (A2 \lor A1 \lor A0))$

Usage

Fan-in / Fan-out

Layout

Files

See also

OAI222 - a 2-2-2-input OR-AND-Invert gate [p.40]OAI322 - a 3-2-2-input OR-AND-Invert gate [p.43]OAI332 - a 3-3-2-input OR-AND-Invert gate [p.45]

C2	C1	C0	B2	B1	В0	A2	A1	A0	Z
0	0	0	X	X	X	X	X	X	1
1	X	X	1	X	X	1	X	X	0
1	X	X	1	X	X	X	1	X	0
1	X	X	1	X	X	X	X	1	0
1	X	X	X	1	X	1	X	X	0
1	X	X	X	1	X	X	1	X	0
1	X	X	X	1	X	X	X	1	0
1	X	X	X	X	1	1	X	X	0
1	X	X	X	X	1	X	1	X	0
1	X	X	X	X	1	X	X	1	0
X	1	X	1	X	X	1	X	X	0
X	1	X	1	X	X	X	1	X	0
X	1	X	1	X	X	X	X	1	0
X	1	X	X	1	X	1	X	X	0
X	1	X	X	1	X	X	1	X	0
Χ	1	X	X	1	X	X	X	1	0
Χ	1	X	X	X	1	1	X	X	0
Χ	1	X	X	X	1	X	1	X	0
Χ	1	X	X	X	1	X	X	1	0
Χ	X	1	1	X	X	X	1	X	0
Χ	X	1	1	X	X	X	X	1	0
Χ	X	1	X	1	X	1	X	X	0
X	X	1	X	1	X	X	1	X	0
Χ	X	1	X	1	X	X	X	1	0
X	X	1	X	X	1	1	X	X	0
X	X	1	X	X	1	X	1	X	0
X	X	1	X	X	1	X	X	1	0
X	X	X	0	0	0	X	X	X	1
X	X	X	X	X	X	0	0	0	1

3.41 OR4

 \mathbf{Cell}

 $\mathbf{OR4}$ - a 4-input OR gate

Synopsys

OR4(Z, D, C, B, A)

Description

Circuit

Truth Table

 $Z = D \vee C \vee B \vee A$

D	С	В	A	Z
0	0	0	0	0
1	X	X	X	1
X	1	X	X	1
X	X	1	X	1
X	X	X	1	1

Usage

Fan-in / Fan-out

Layout

Files

See also

AND4 - a 4-input AND gate [p.25]

EQ2 - a 2-input Equality (or XNOR) gate

See also

[p.25]

3.42 XOR2

Cell

 $\mathbf{XOR2}$ - a 2-input Exclusive-OR (or XOR) gate

Synopsys

XOR2(Z, B, A)

Description

Schematic (two stages, 2T stacked, 10T total)

Truth Table

$$Z=B\oplus A$$

В	A	Z
0	0	0
0	1	1
1	0	1
1	1	0

Usage

Fan-in / Fan-out

Keep attention - Fan-in is doubled

Layout

Files

Chapter 4

Physical Cells

4.1 TIE0

Cell

 $\bf TIE0$ - a Tie-low (or pull-down) cell

Synopsys

TIEO(Z)

Description

Circuit

Truth Table

Z = 0

Usage

Fan-in / Fan-out

Layout

Files

See also

TIE1 - a Tie-high (or pull-up) cell [p.51]

4.2. TIE1 51

4.2 TIE1

 \mathbf{Cell}

TIE1 - a Tie-high (or pull-up) cell

Synopsys

TIE1(Z)

Description

Truth Table

$$Z = 1$$

Usage

Fan-in / Fan-out

Layout

Files

See also

 ${\rm TIE0}$ - a Tie-low (or pull-down) cell [p.50]

4.3 FILL

Cell

 ${\bf FILL}$ - a Filler cell with capacitance

Synopsys

FILL

Description

Schematic (one stage, 1T stacked, 2T total)

Truth Table

No Truth Table applicable.

Usage

Fan-in / Fan-out

Layout

Files

See also

4.3. FILL 53

VDDIO GND ANA