Numerikus Módszerek 2. C szakirány 1. Zárthelyi Dolgozat

2017. november 1.

1.	Tekintsük az $f(x) = \sin(\pi x)$ függvényt!	
	(a) 0 Interpoláljuk f -et a $\{0, \frac{1}{2}, 1, 2\}$ alappontokon!	(6 pont)
	(b) Becsüljük a hibát az $x = \frac{1}{4}$ pontban!	(6 pont)
2.	Tekintsük az $f(x) = \log_2(x) - x^2 + 7$ függvényt!	
	(a) Lássuk be, hogy f az $[1,4]$ intervallumon invertálható!	(2 pont)
	(b) Közelítsük f -nek a fenti intervallumba eső gyökhelyét az $\{1,2,4\}$ pontokra felírt inventerpoláció segítségével!	erz (6 pont)
3.	Tekintsük az $f(x) = e^{-x/2}$ függvényt!	
	(a) Hogyan válasszuk meg az alappontokat, ha minimális hibával szeretnénk interpolálnt f -et a $[-2,0]$ intervallumon másodfokú polinom segítségével?	i (3 pont)
	(b) Hogyan tudjuk becsülni az interpolációs polinom hibáját az intervallumon?	(5 pont)
4.	(a) Határozzuk meg azt a P polinomot, amelyre	
	P(-1) = 0 $P(0) = 2$ $P(1) = 0$	
	P'(-1) = 0 P'(1) = 0	
		(8 pont)
	(b) Hozzuk P -t algebrai alakra, és ellenőrizzük a fenti feltételek teljesülését!	(2 pont)
	(c) Számítsuk ki a deriváltat a 0 pontban, majd készítsünk sematikus ábrát a $\{-1,0,1\}$ pontokban ismert függvényértékek és derivált értékek alapján!	(2 pont)
5.	(a) Írja fel a Lagrange-féle polinom interpolációs problémát, és annak megoldását a Lagrange-alappolinomok segítségével.	(3 pont)
	a Lagrange anappointomok segresegever.	(o ponto)
	(b) Definiálja a Csebisev-polinomokat!	(2 pont)
		, - ,
	(b) Definiálja a Csebisev-polinomokat!	(2 pont)