Sada: 1 Příklad: 2 IV003 Algoritmy a datové struktury II

Jméno: Karel Kubíček	UČO: 408351
Jméno: Henrich Lauko	UČO: 410438

- 1. Posloupnost n operací INSERT a MIN-ALL má složitost $\mathcal{O}(n)$. Neplatí. Můžeme vložit $\frac{n}{2}$ stejných prvků, následně můžeme volat MIN-ALL, která nesmaže žádný prvek, tím pádem můžeme volat tuto operaci $\frac{n}{2}$ -krát vždy se složitostí $\mathcal{O}(n)$, tedy $\frac{n}{2} \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$.
- 2. Posloupnost n operací Insert a Min-one má složitost $\mathcal{O}(n)$. Platí. Dokážeme pomocí metody účtů. Operacím přiřadíme následující ceny:

operace	reálná cena (c_i)	amortizovaná cena (\hat{c}_i)
Insert	1	2
Min-One	$d\acute{e}lka\ seznamu-1$	0

Při Insert vložíme na účet 2 kredity, jeden z nich slouží na zaplacení operace Insert a druhý na zaplacení smazání sám sebe při operaci Min-One. Jelikož v každém momentu bude mít každý prvek jeden kredit, tak účet nemůže jít do mínusu. Tudíž amortizovaná cena může být nanejvýš 2n kreditů, kde n je počet operací. Tedy pro n operací je amortizovaná složitost $\mathcal{O}(n)$.

- 3. Posloupnost n operací INSERT a DELETE má složitost $\mathcal{O}(n)$. Neplatí. Můžeme vložit $\frac{n}{2}$ stejných prvků x, následně můžeme volat DELETE(S, x), která nesmaže žádný prvek, tím pádem můžeme volat tuto operaci $\frac{n}{2}$ -krát vždy se složitostí $\mathcal{O}(n)$, tedy $\frac{n}{2} \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$.
- 4. Posloupnost n operací INSERT a DELETE taková, že při každém volání se operace DELETE volá s jiným parametrem i má složitost $\mathcal{O}(n)$. Platí. Dokážeme pomocí metody účtů. Přiřadíme následující ceny operacím:

operace	reálná cena (c_i)	amortizovaná cena (\hat{c}_i)
Insert	1	2
Delete	délka seznamu – počet prvků i	0

Při Insert vložíme na účet 2 kredity, jeden znich slouží na zaplacení operace Insert a druhý na zaplacení smazání sám sebe při operaci Delete. Jelikož v každém momentu bude mít každý prvek jeden kredit, tak účet nemůže jít do mínusu. Při operaci Delete se smaže jen $d\acute{e}lka$ seznamu - počet prvků i prvků, teda počet prvků i musí zůstat s 1 kreditem. Tudíž amortizovaná cena může být nanejvýš 2n kreditů, kde n je počet operací. Teda pro n operací je amortizovaná složitost $\mathcal{O}(n)$.