	Sg	512	256	128	64	32	16	8	4	2	1
19	0						1	0	0	1	1
23							1	0	1	1	1
437			1	1	0	1	1	0	1	0	1

```
X = 0.10011;
```

Y = 0.10111

.10011 d .1<mark>01</mark>11 î

10011 – produs intermediar (suma parţială)PI

+ 10011 - +x deplasat cu o poziție la stînga

- produs intermediar 111001

+ 10011 - +x deplasat cu două poziții la stînga

- produs intermediar 10000101

+ 00000 - +x deplasat cu trei poziții la stînga (0) - produs intermediar

10000101

+ 1 0 0 1 1 - +x deplasat cu patru poziții la stînga

.110110101

Z = 0.0110110101

II.METODĂ

X = 0.10011;

Y = 0.10111

deînm. .10011 înmult. .1 0 1 1 0 10011 Ы

+X deplasat cu 2 poziții la dreapta 10011 1011111

+X deplasat cu 3 poziții la dreapta 10011

Ы 11010001 X deplasat cu 4 poziții la dreapta 00000

.0110110100

Z = 0.0110110101

Înmulțirea numerelor binare cu semn

X=0.10100 (20)

Y=1.00010 -11110 (-30)

1. $Sq_x \oplus Sq_v=0 \oplus 1=1$ - produsul va fi negativ

2. |X|=0.10100

|Y|cc=0.11101

0.11110

3. |Z| = |X| * |Y|alg.1

> deînm. .10100

înmulț. .11110 00000

+X deplasat cu o poziție la stînga

101000

10100

+X deplasat cu 2 poziții la stînga

1111000

10100

+X deplasat cu 3 poziții la stînga 10100

100011000

+X deplasat cu 4 poziții la stînga <u>10100</u>

.1001011000

4. |Z|=0.1001011000

Z cc = 1.0110101000

Verificare

	Sg	512	256	128	64	32	16	8	4	2	1
20	0						1	0	1	0	0
30	0						1	1	1	1	0
	1	0	1	1	0	1	0	1	0	0	0
-600	0	1	0	0	1	0	1	1	0	0	0

Exemplu:

- 1. $Sq_x \oplus Sq_y=1 \oplus 1=1$ produsul va fi **pozitiv**
- 2. |X|cc =0.1101

3.
$$|Z|=|X|^*|Y|$$
 alg.1

4. |Z|=0.01001110

Z=0.01001110 (78)

Exemplu de înmulțire

```
X=0.101001 *2<sup>-29</sup>
```

$$Y = 1.100010 *2^{27}$$

1. $e_z=e_x+e_y$

0.11011

1.11110

3.
$$|m_x|$$
, $|m_y|$

$$|m_x| = 0.010100$$

$$|m_y| = 0.011101$$

____1

0.011110

4.
$$|m_z| = |m_x| * |m_y|$$

de	înm.	.010100
înı	mulţ <u>.</u>	.011110
		.000000
+mxdeplasat cu o poziție la stînga		.0101000
		.0101000
+mxdeplasat cu 2 poziții la stînga	0	1010000
	.0	1111000
+m _x deplasat cu 3 poziții la stînga	.01	.0100000
	.10	00011000
+m _x deplasat cu 4 poziții la stînga	.010	1000000
	.100	1011000
+mxdeplasat cu 5 poziții la stînga(0)	.0000	0000000
_	.0100	1011000

$$|m_z| = 0.001001011000$$
 $m_z = 1.110110101000$

4. Normalizarea: deoarece mantisa nu este normalizată urmează să o deplasam la stînga cu 2 poziții iar puterea se decrementeză de 2 ori (-2).

$$m_z$$
=1.011010100000

1.11100 (-4)

- 00100

Rezultatul final: M_z=1.011010100000*2⁻⁴