

Advanced Prices

ineal and all ace book

Advanced Micro Devices

Linear and Interface Data Book

Copyright © 1979 by Advanced Micro Devices, Inc.

Advanced Wicro Devices

Linear and Interface Data Book

Copyright (6) 1979 by Advanced Micro Davices, Inc.

ALPHA NUMERIC INDEX
FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE
DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

1

COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Section I

Numeric Index	1-
Functional Index	
Selection Guides	
Industry Cross-Reference	-14
Dice Policy 1	-22
Ordering Information	-23
MIL-M-38510/MIL-STD-883	-26

NUMERIC INDEX

Product	Description	Page
Am0026	5MHz Two-Phase MOS Clock Driver	5-1
Am0056	5MHz Two-Phase MOS Clock Driver	
AmDAC-08	8-Bit High-Speed Multiplying D/A Converter	3-1
Am101	Operational Amplifier	
Am101A	Operational Amplifier	6-5
Am102	Voltage Follower	
Am105	Voltage Regulator	8-1
Am106	Voltage Comparator/Buffer	
Am107	Frequency Compensated Operational Amplifier	
Am108	Operational Amplifier	
Am108A	Operational Amplifier	
Am110	Voltage Follower	
Am111	Precision Voltage Comparator	
Am112	Compensated High-Performance Operational Amplifier	
Am118	High-Speed Operational Amplifier	
Am119	Dual Voltage Comparator	
Am124	Quad Operational Amplifier	
Am124A	Quad Operational Amplifier	
Am139	Low Offset Voltage Quad Comparator	
Am139A	Low Offset Voltage Quad Comparator	
Am1408	8-Bit Multiplying D/A Converter	
SSS1408A	8-Bit Multiplying D/A Converter	
Am1458	Dual Frequency Compensated Operational Amplifier	
Am148	Quad 741 Operational Amplifier	
Am1488	Quad RS-232C Line Driver	
Am1489	Quad RS-232C Line Receiver	
Am1489A	Quad RS-232C Line Receiver	
Am149	Quad 741 Operational Amplifier	
Am1500	Dual Precision Voltage Comparator	
Am1501	Dual Operational Amplifier	
Am1508	8-Bit Multiplying D/A Converter	
SSS1508A	8-Bit Multiplying D/A Converter	
LF155	JFET Input Operational Amplifier	
LF155A	JFET Input Operational Amplifier	
Am1558	Dual Frequency Compensated Operational Amplifier	
LF156	JFET Input Operational Amplifier	
LF156A	JFET Input Operational Amplifier	
LF157	JFET Input Operational Amplifier	
LF157A	JFET Input Operational Amplifier	
Am1692	Three-State Differential Line Drivers	
LF198	Monolithic Sample and Hold Circuits	
Am201	Operational Amplifier	
Am201A	Operational Amplifier	
Am202	Voltage Follower	
Am205	Voltage Regulator	
Am206	Voltage Comparator/Buffer	
Am207	Frequency Compensated Operational Amplifier	
Am208	Operational Amplifier	
Am208A	Operational Amplifier	
Am210	Voltage Follower	
LH2101A	Dual Operational Amplifier	

Product	Description 1	Page
Am211	Precision Voltage Comparator	. 2-5
LH2111	Dual Precision Voltage Comparator	
Am212	Compensated, High-Performance Operational Amplifier	
Am216	Compensated, High-Performance Operational Amplifier	
Am216A	Compensated, High Performance Operational Amplifier	
Am218	High-Speed Operational Amplifier	
Am219	Dual Voltage Comparator	
LH2201A	Dual Operational Amplifier	
LH2211	Dual Precision Voltage Comparator	
Am224	Quad Operational Amplifier	
Am224A	Quad Operational Amplifier	
LH2301A	Dual Operational Amplifier	
	Dual Precision Voltage Comparator	
LH2311	Low Offset Voltage Quad Comparator	
Am239A	Low Offset Voltage Quad Comparator	
Am248	Quad 741 Operational Amplifier	
Am249	Quad 741 Operational Amplifier	
Am2502	8-Bit/12-Bit Successive Approximation Registers	
Am25L02	Low-Power, 8-Bit/12-Bit Successive Approximation Registers	
Am2503	8-Bit/12-Bit Successive Approximation Registers	
Am25L03	Low-Power, 8-Bit/12-Bit Successive Approximation Registers	
Am2504	8-Bit/12-Bit Successive Approximation Registers	
Am25L04	Low-Power, 8-Bit/12-Bit Successive Approximation Registers	
Am25LS240	Octal Buffer; Inverting, Three-State	
Am25LS241	Octal Buffer; Non-Inverting, Three-State	
Am25LS242	Quad Three-State Transceiver	
Am25LS243	Quad Three-State Transceiver	
Am25LS244	Octal Buffer Non-Inverting, Three-State	
LF255	JFET Input Operational Amplifier	
LF255A	JFET Input Operational Amplifier	
LF256	JFET Input Operational Amplifier	
LF256A	JFET Input Operational Amplifier	
LF257	JFET Input Operational Amplifier	
LF257A	JFET Input Operational Amplifier	
Am26S10	Quad Bus Transceiver	
Am26S11	Quad Bus Transceiver	
Am26S12	Quad Bus Transceiver	
Am26S12A	Quad Bus Transceiver	
Am2614	Quad Single-Ended Line Driver	
Am2615	Dual Line Receiver	. 4-72
Am2616	Quad MIL-188C and RS-232C Line Driver	
Am2617	Quad RS-232C Line Receiver	
Am26LS29	Quad Three-State Single Ended RS-423 Line Driver	. 4-26
Am26LS30	Dual Differential RS-422 Party Line/Quad Single Ended	
1-8	RS-423 Line Driver	
Am26LS31	Quad RS-422 High Speed Differential Line Driver	
Am26LS32	Quad RS-422 and RS-423 Differential Line Receiver	
Am26LS33	Quad Differential Line Receiver	
Am2905	Quad Two-Input OC Bus Transceiver with Three-State Receiver	
Am2906	Quad Two-Input OC Bus Transceiver with Parity	. 4-92

Product	noilt-meet Description	Page
Am2907	Quad Bus Transceiver with Interface Logic	4-98
Am2908	Quad Bus Transceiver with Interface Logic	
Am2915A	Quad Three-State Bus Transceiver with Interface Logic	
Am2916A	Quad Three-State Bus Transceiver with Interface Logic	
Am2917A	Quad Three-State Bus Transceiver with Interface Logic	
LF298	Monolithic Sample and Hold Circuits	
Am301	Operational Amplifier	
Am301A	Operational Amplifier	6-!
Am302	Voltage Follower	6-10
Am305	Voltage Regulator	8-
Am305A	Voltage Regulator	8-
Am306	Voltage Comparator/Buffer	
Am307	Frequency Compensated Operational Amplifier	
Am308	Operational Amplifier	
Am308A	Operational Amplifier	
Am310	Voltage Follower	6.2
Am311	Precision Voltage Comparator	
Am312		
	Compensated, High-Performance Operational Amplifier	
Am316	Compensated, High-Performance Operational Amplifier	
Am316A	Compensated, High-Performance Operational Amplifier	
Am318	High-Speed Operational Amplifier	
Am319	Dual Voltage Comparator	
Am3212	8-Bit Input/Output Port	
Am3216	4-Bit Parallel Bidirectional Bus Driver	
Am3226	4-Bit Parallel Bidirectional Bus Driver	
Am324	Quad Operational Amplifier	
Am324A	Quad Operational Amplifier	
Am339	Low Offset Voltage Quad Comparator	
Am339A	Low Offset Voltage Quad Comparator	
Am3448A	IEEE-488 Quad Bidirectional Transceiver	
Am348	Quad 741 Operational Amplifier	
Am349	Quad 741 Operational Amplifier	
LF355	JFET Input Operational Amplifier	
LF355A	JFET Input Operational Amplifier	
LF356	JFET Input Operational Amplifier	
LF356A	JFET Input Operational Amplifier	
LF357	JFET Input Operational Amplifier	
LF357A	JFET Input Operational Amplifier	
Am3692	Three-State Differential Line Drivers	4-8
LF398	Monolithic Sample and Hold Circuits Octal Buffer; Inverting, Three-State	
Am54LS240	Octal Buffer; Inverting, Three-State	4-13
Am54S240	Octal Buffer/Line Driver/Line Receiver with Three-State Output	
Am54LS241	Octal Buffer; Non-Inverting, Three-State	
Am54S241	Octal Buffer/Line Driver/Line Receiver with Three-State Output	
Am54LS242	Quad Three-State Bus Transceiver	
Am54S242	Octal Buffer/Line Driver/Line Receiver with Three-State Output	
Am54LS243	Quad Three-State Bus Transceiver	
Am54S243	Octal Buffer/Line Driver/Line Receiver with Three-State Output	
Am54LS244	Octal Buffer, Non-Inverting, Three-State	
Am54S244	Octal Buffer/Line Driver/Line Receiver with Three-State Output	
Am55107B	Dual Line Receiver	4-147

Product	Description	Page
Am55108B	Dual Line Receiver	4-147
Am55109	Dual Line Receiver	
Am55110	Dual Line Driver	
Am592	Differential Video Amplifier	7-1
Am6070	Companding D-to-A Converter for Control Systems	
Am6071	Companding D-to-A Converter for Control Systems	
Am6072	Companding D-to-A Converter for PCM Communication Systems	
Am6073	Companding D-to-A Converter for PCM Communication Systems	
Am6080	Microprocessor System Compatible 8-Bit High-Speed	
1987 17	Multiplying D/A Converter	3-76
Am6081	Microprocessor System Compatible 8-Bit High-Speed	ArtinA.
I S I I	Multiplying D/A Converter	3-84
Am685	Voltage Comparator	
Am686	Voltage Comparator Mellion & Michelle Comparator	
Am687	Dual Voltage Comparator	2-29
Am715	High-Speed Operational Amplifier	
Am715C	High-Speed Operational Amplifier	
Am71LS95	Three-State Octal Buffers	
Am71LS96	Three-State Octal Buffers	
Am71LS97	Three-State Octal Buffers	
Am71LS98	Three-State Octal Buffers	4-159
Am723	Voltage Regulator	
Am723C	Voltage Regulator	
Am725	Instrumentation Operational Amplifier	
SSS725	High-Performance Operational Amplifier	
Am725C	Instrumentation Operational Amplifier	
Am7303B	Octal Three-State Inverting Bidirectional Transceiver	
Am7304B	Octal Three-State Bidirectional Transceiver	
Am733	Differential Video Amplifier	
Am733C	Differential Video Amplifier	
Am741	Frequency-Compensated Operational Amplifier	
SSS741	Frequency-Compensated Operational Amplifier	
Am741A	Frequency-Compensated Operational Amplifier	
Am74LS240	Octal Buffer; Inverting, Three-State	
Am74S240	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs	
Am74LS241	Octal Buffer; Non-Inverting, Three-State	
Am74S241	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs	
Am74LS242	Quad Three-State Bus Transceiver	
Am74S242	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs	
Am74LS243	Quad Three-State Bus Transceiver	
Am74S243	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs	
Am74LS244	Octal Buffer, Non-Inverting, Three-State	
Am74S244	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs	
Am747	Dual Frequency-Compensated Operational Amplifier	
SSS747	Dual Frequency-Compensated Operational Amplifier	
Am747A	Dual Frequency-Compensated Operational Amplifier	
Am748	Operational Amplifier	
Am748C	Operational Amplifier	
Am75107B	Dual Line Receiver	
Am75108B	Dual Line Receiver	4-147
Am75109	Dual Line Receiver 1949269 and Isud	4-153

Product	Description	Page
Am75110	Dual Line Driver	4-153
Am7820	Dual Differential Line Receiver	4-173
Am7820A	Dual Differential Line Receiver	
Am7830	Dual Differential Line Driver	
Am7831	Three-State Line Driver	4-182
Am7832	Three-State Line Driver	
Am7838	Quad Unified Bus Transceiver	4-188
Am81LS95	Three-State Octal Buffers	4-159
Am81LS96	Three-State Octal Buffers	4-159
Am81LS97	Three-State Octal Buffers	4-159
Am81LS98	Three-State Octal Buffers	4-159
Am8212	8-Bit Input-Output Port	4-125
Am8216	4-Bit Parallel Bidirectional Bus Driver	4-132
Am8224	Clock Generator and Driver	5-13
Am8226	4-Bit Parallel Bidirectional Bus	4-132
Am8228	System Controller and Bus Driver	5-20
Am8238	System Controller and Bus Driver	5-20
Am8T26	Schottky Three-State Quad Bus Driver/Receiver	4-190
Am8T26A	Schottky Three-State Quad Bus Driver/Receiver	4-195
Am8T28	Schottky Three-State Quad Bus Driver/Receiver	4-195
Am8303B	Octal Three-State Inverting Bidirectional Transceiver	4-163
Am8304B	Octal Three-State Bidirectional Transceiver	4-168
Am8820	Dual Differential Line Receiver	4-173
Am8820A	Dual Differential Line Receiver	4-173
Am8830	Dual Differential Line Driver	
Am8831	Three-State Line Driver	
Am8832	Three-State Line Driver	4-182
Am8838	Quad Unified Bus Transceiver	4-188
Am9614	Differential Line Driver	4-200
Am9615	Dual Differential Line Receiver	4-72
Am9616	Triple EIA RS-232C/MIL-STD-188C Line Driver	
Am9617	RS-232C Line Receiver	4-209

FUNCTIONAL INDEX

Section 1

Functional Index	Total Department Communication	1-1 1-6 1-10 1-14 1-22
	c D Laus Differential Une Orliver. 2.1 Circus Sale Line Driver. 2.2 Intentified Line Driver.	1-23 1-26
Comparators - Sect	Continued Eus Transpeiver II noi	
Am106/206/306 Am111/211/311 Am119/219/319 Am139/239/339 Am139A/239A/339A Am685 Am686 Am687/687A Am1500 LH2111/2211/2311	Voltage Comparator/Buffer Precision Voltage Comparator Dual Voltage Comparator Low Offset Voltage Quad Comparator Low Offset Voltage Quad Comparator Voltage Comparator Voltage Comparator Dual Voltage Comparator Dual Precision Voltage Comparator Dual Precision Voltage Comparator	2-13 2-19 2-27 2-29 2-31
Application Notes		
	rator - The Am685esigning with High-Speed Comparators	
Data Conversion Pro	ducts - Section III	
AmDAC-08 LF198 LF298 LF398 Am1508/1408 SSS1508A/1408A Am2502 Am2503 Am2504 Am25L02 Am25L03 Am25L04 Am6070 Am6071 Am6072 Am6073 Am6080 Am6081 Application Notes	8-Bit High-Speed Multiplying D/A Converter Monolithic Sample and Hold Circuits Monolithic Sample and Hold Circuits Monolithic Sample and Hold Circuits 8-Bit Multiplying D/A Converter 8-Bit Multiplying D/A Converter	3-18 3-18 3-18 3-24 3-24 3-24 3-28 3-40
		3-96
Line Drivers/Receiver		0-90
Am1488 Am1489 Am1489A Am1692/3692	Quad RS-232C Line Driver Quad RS-232C Line Receiver Quad RS-232C Line Receiver Three-State Differential Line Drivers	4-1 4-4 4-4 4-8

П

FUNCTIONAL INDEX (Cont.)

Line Drivers/Receivers - Section IV (Cont.)

	The state of the s
Am25LS240	Octal Buffer; Inverting, Three-State 4-13
Am25LS241	Octal Buffer; Non-Inverting, Three-State
Am25LS242	Quad Three-State Bus Transceiver 4-21
Am25LS243	Quad Three-State Bus Transceiver 4-21
Am25LS244	Octal Buffer, Non-Inverting, Three-State
Am26LS29	Quad Three-State Single-Ended RS-423 Line Driver 4-26
Am26LS30	Dual Differential RS-422 Party Line/Quad Single-Ended
	RS-423 Line Driver 4-30
Am26LS31	Quad RS-422 High-Speed Differential Line Driver 4-36
Am26LS32	Quad RS-422 and RS-423 Differential Line Receiver 4-40
Am26LS33	Quad Differential Line Receiver 4-40
Am26S10	Quad Bus Transceiver 4-57
Am26S11	Quad Bus Transceiver 4-57
Am26S12	Quad Bus Transceiver 4-62
Am26S12A	Quad Bus Transceiver
Am2614	Quad Single-Ended Line Driver 4-67
Am2615	Dual Differential Line Receiver 4-72
Am2616	Quad MIL-188C and RS-232C Line Driver
Am2617	Quad RS-232C Line Receiver 4-82
Am2905	Quad Two-Input OC Bus Transceiver with Three-State Receiver 4-86
Am2906	Quad Two-Input OC Bus Transceiver with Parity 4-92
Am2907	Quad Bus Transceiver with Interface Logic 4-98
Am2908	Quad Bus Transceiver with Interface Logic 4-98
Am2915A	Quad Three-State Bus Transceiver with Interface Logic
Am2916A	Quad Three-State Bus Transceiver with Interface Logic 4-113
Am2917A	Quad Three-State Bus Transceiver with Interface Logic 4-119
Am3212	8-Bit Input/Output Port
Am3216	4-Bit Parallel Bidirectional Bus Driver
Am3226	4-Bit Parallel Bidirectional Bus Driver
Am3448A	IEEE-488 Quad Bidirectional Transceiver
Am54LS/74LS240	Octal Buffer; Inverting, Three-State 4-13
Am54LS/74LS241	Octal Buffer; Non-Inverting, Three-State
Am54LS/74LS242	Quad Three-State Bus Transceiver 4-21
Am54LS/74LS243	Quad Three-State Bus Transceiver
Am54LS/74LS244	Octal Buffer; Non-Inverting, Three-State
Am54S/74S240	Octal Buffer/Line Driver/Line Receiver
	with Three-State Outputs
Am54S/74S241	Octal Buffer/Line Driver/Line Receiver
08-3	with Three-State Outputs
Am54S/74S242	Octal Buffer/Line Driver/Line Receiver
88-8	with Three-State Outputs 4-142
Am54S/74S243	Octal Buffer/Line Driver/Line Receiver
154-8	with Three-State Outputs
Am54S/74S244	Octal Buffer/Line Driver/Line Receiver
84-8	with Three-State Outputs
Am55/75107B	Dual Line Receiver
Am55/75108B	Dual Line Receiver
Am55/75109	Dual Line Driver
Am55/75110	Dual Line Driver
	Three-State Octal Buffers 4-159
Am71LS/81LS96	Three-State Octal Buffers
Am71LS/81LS97	Three-State Octal Buffers
Am71LS/81LS98	Three-State Octal Buffers
Am73/8303B	Octal Three-State Inverting Bidirectional Transceiver
	o otato involving biomodificial flatioudiver 4"100

Am73/8304B	Octal Inree-State Didirectional Hanscolver	
Am78/8820	Dual Differential Line Receiver	
Am78/8820A	Dual Differential Line Receiver	
Am78/8830	Dual Differential Line Driver	4-178
Am78/8831	Three-State Line Driver	4-182
Am78/8832	Three-State Line Driver :	4-182
Am78/8838	Quad Unified Bus Transceiver	4-188
Am8T26	Schottky Three-State Quad Bus Driver/Receiver	
Am8T26A	Schottky Three-State Quad Bus Driver/Receiver	
Am8T28	Schottky Three-State Quad Bus Driver/Receiver	
Am8212	8-Bit Input/Output Port	
Am8216	4-Bit Parallel Bidirectional Bus Driver	4-132
Am8226	4-Bit Parallel Bidirectional Bus Driver	
Am9614	Differential Line Driver	
Am9615	Dual Differential Line Receiver	
Am9616	Triple EIA RS-232C/MIL-STD-188C Line Driver	
Am9617		
Am9617	RS-232C Line Receiver	+-209
Application Notes		
	31 and 32 Quad Driver/Receiver	
Esmily in EIA 400 and 400 /	Applications	1 15
Family III EIA-422 and 423 F	Applications	4-45
MOS Memory and Mid	croprocessor Interface - Section V	
Am0026/0026C	5MHz Two-Phase MOS Clock Driver	5-1
Am0056/0056C	5MHz Two-Phase MOS Clock Driver	5-7
Am8224	Clock Generator and Driver	5-13
Am8228	System Controller and Bus Driver	
Am8238	System Controller and Bus Driver	
Operational Amplifiers	vent of and regelmental tellers of	
Am101/201/301	Operational Amplifier	6-1
Am101A/201A/301A	Operational Amplifier	
Am102/202/302	Voltage Follower	
Am107/207/307	Frequency Compensated Operational Amplifier	
Am108/208/308	Operational Amplifier	
Am108A/208A/308A	Operational Amplifier	
Am110/210/310	Voltage Follower	
Am112/212/312	Compensated, High-Performance Operational Amplifier	
Am118/218/318	High-Speed Operational Amplifier	
Am124/224/324	Quad Operational Amplifier . T	
Am124A/224A/324A	Quad Operational Amplifier	
Am148/248/348	Quad 741 Operational Amplifier	
Am149/249/349	Quad 741 Operational Amplifier	6-41
LF155/255/355	Monolithic JFET Input Operational Amplifier	6-43
LF155A/255A/355A	Monolithic JFET Input Operational Amplifier	6-43
LF156/256/356	Monolithic JFET Input Operational Amplifier	6-43
LF156A/256A/356A	Monolithic JFET Input Operational Amplifier	6-43
LF157/257/357	Monolithic JFET Input Operational Amplifier	6-43
LF157A/257A/357A	Monolithic JFET Input Operational Amplifier	6-43
Am216/316	Compensated, High-Performance Operational Amplifier	6-51
Am216A/316A	Compensated, High-Performance Operational Amplifier	6-51
Am715/715C	High-Speed Operational Amplifier	6-55
Am725/725C	Instrumentation Operational Amplifier	6-59
SSS725/725B/725E	High-Performance Operational Amplifier	6-64

1

FUNCTIONAL INDEX (Cont.)

Operational Amplifie	rs - Section VI (Cont.)	
Am741/741A/741C/741E	Frequency-Compensated Operational Amplifier	6-70
SSS741/741C	High-Performance Operational Amplifier	6-64
Am747/747A/747C/747E	Dual Frequency-Compensated Operational Amplifier	
SSS747/747C	Dual 741 Operational Amplifier	6-64
Am748/748C	Operational Amplifier	
Am1501	Dual Operational Amplifier	
Am1558/1458 LH2101A/LH2201A/	Dual Frequency-Compensated Operational Amplifier	
LH2301A	Dual Operational Amplifier	6-99
Special Functions -	Section VII	
Am592 Am733/733C	Differential Video Amplifier	
Voltage Regulators -		
Am105/205/305/305A	Voltage Regulator	8-1
Am723/723C	Voltage Regulator	8-5
Section IX		
Package Outlines	SANALLY GOLDENS AND SANALY	9-1
	10000	
	Sales Representatives, Distributor Locations	

SELECTION GUIDE

OPERATIONAL AMPLIFIERS

UNCOMPI		
1.04107	Page No.	
LM101	6-1	General Purpose, 500nA IB, 5mV Vos
LM748	6-84	General Purpose, 500nA IB, 5mV Vos
LM101A	6-5	Improved General Purpose, 75nA I _B , 2mV Vos
AM1501	6-90	Dual Improved General Purpose, 75nA I _B , 2mV Vos
LH2101A	6-99	Dual Improved General Purpose, 75nA
725	6-59	I _B , 2mV Vos Instrumentation, 100nA I _B , 1mV Vos, 5.0V/°C TCVIO
SSS725	6-64	Improved Instrumentation, 80nA I _B , .5mV Vos, 1.0V/°C TCVIO
LM108	6-18	Low Input Current Precision, 2nA IB, 2mV Vos, 0.2nA IOS
LM108A	6-18	Low Input Current and Offset Voltage Precision, 2nA I _B , 0.5mV Vos, 0.2nA
-0		IOS, 5µV/°C TCVIO
715	6-55	High Speed, 15V/μsec slew rate, 750nA
101	11375	
	1	OMPENSATED
741	6-70	General Purpose, 500nA IB, 5mV Vos
741A,E	6-70	Improved General Purpose, 80nA IB,
11-8	TO DE TO	3mV Vos, 30nA IOS, 50μV/VPSRR
SSS741	6-64	High Performance, 50nA IB, 2mV Vos
747	6-77	Dual General Purpose, 500nA IB, 5mV
		Vos
747A,E	6-77	Dual Improved General Purpose, 80nA
SSS747	6-64	I _B , 3mV Vos, 30nA I _{OS} , 50μV/VPSRR Dual High Performance, 50nA I _B , 2mV
AM1558	6-95	Vos Dual General Purpose, 500nA I _B , 5mV
		Vos
LM124	6-36	Quad General Purpose, 150nA I _B , 5mV
LM124A	6-36	Vos, Single or Dual Supply, 3 to 30V, 1mW/op amp at +5V
LM148	6-41	Quad 741, 500nA I _B , 5mV Vos
LM149	6-41	Quad Decompensated, 500nA I _B , 5mV Vos A _{V(min.)} = 5
LM107	6-14	Improved General Purpose, 75nA I _B , 2mV Vos
LM112	6-26	Low Input Current Precision, 2nA I _B , 2mV Vos
LM216	6-51	Very Low Input Current Precision, 150pA I _B , 10mV Vos
LM216A	6-51	Very Low Input Current Precision, 50pA I _B , 3mV Vos
LM118	6-30	High Speed, 50V/µsec slew rate, 4mV Vos, 250nA IB
LF155	6-43	FET Input General Purpose, 5mV Vos, 20pA Ios, 100pA I _B
LF155A	6-43	FET Input General Purpose, 2mV Vos, 5μV/°C TC V ₁₀ , 10pA I _{OS} , 50pA I _B
LF156	6-43	FET Input Wideband, 5mV Vos, 20pA
LF156A	6-43	I _{OS} , 100pA I _B , 7.5V/μsec SR FET Input Wideband, 2mV Vos, 5μV/°C TC V ₁₀ , 10pA I _{OS} , 50pA I _B , 10V/ μsec SR
LF157	6-43	FET Input Wideband Decompensated, 5mV Vos, 20pA I _{OS} , 100pA I _B , 30V/
LF157A	6-43	μ sec SR (A $_{ m V}$ = 5) FET Input Wideband Decompensated, 2mV Vos, 5 μ V/° C TC V ₁₀ , 10pA I _{OS} , 50pA I _B , 40V/ μ sec SR (A $_{ m V}$ = 5)

VOLTAGE FOLLOWERS

ated Opp	Compens	Page No.	CHANNALC/741E FIS
ahoitsiég satsenégaste siftiomA lu	LM102	6-10	Low Input Current, High Speed, 10nA IB, 5mV Vos, 20V/ μ sec slew rate, $10^{10}\Omega$ Rin
npliner	LM110	6-22	Improved Low Input Current, High Speed, 3nA IB, 4mV Vos, $20V/\mu sec$ slew rate, $10^{10}\Omega$ Rin

VOLTAGE COMPARATORS

A lano la	Page No	to the second of
LM111	2-5	General Purpose, 100nA I _B , 3mV Vos, 250ns Response Time, 50V and 50mA
1110444	a long-	Output
LH2111	2-35	Dual General Purpose, 100nA I _B , 3mV
		Vos, 250ns Response Time, 50V and
HIV	the Steel	50mA Output
AM1500	2-31	Dual General Purpose, 100nA IB, 3mV
rolelese	Flens	Vos, 250ns Response Time, 50V and
notella	ane a	50mA Output
LM106	2-1	High Speed, 20µA IB, 2mV Vos, 40ns
		Response Time, 24V and 100mA Output
LM119	2-9	Dual General Purpose, 500nA IB, 4mV
		Vos, 80ns Response Time, 35V and 25mA
		Output, +5 or +15V Supply
LM139	2-13	Quad General Purpose, 100nA IB, 2mV
LM139A	2-13	Vos, Single or Dual Supply 2 to 36V,
		1mW/comp. at +5V
AM685	2-19	Very Fast ECL Output, 10µA IB, 2mV
		Vos, 6.5ns Response Time
AM686	2-27	Very Fast TTL Output, 10μA I _B , 2mV
		Vos, 12ns Response Time
AM687	2-29	Dual Very Fast ECL Output, 10µA IB.
		2mV Vos, 6.5ns Response Time
	LH2111 AM1500 LM106 LM119 LM139 LM139A AM685 AM686	LM111 2-5 LH2111 2-35 AM1500 2-31 LM106 2-1 LM119 2-9 LM139 2-13 LM139A 2-13 AM685 2-19 AM686 2-27

VOLTAGE REGULATORS

Page No.

723	8-5	General Purpose, 2-37V Output, 0.15%	
		load reg., 50V input, 150mA Output	
LM105	8-1	General Purpose, 4.5-40V Output, 0.05%	ı
		load reg., 50V input, 12mA Output	ı

DATA CONVERSION PRODUCTS

Page No.

AM1508	3-14	8-Bit Multiplying D-to-A Converter, Accuracy 0.19%, Settling Time 300nsec typ.
SSS1508A	3-14	8-Bit Multiplying D-to-A Converter, Accuracy 0.1%, Settling Time 135nsec
DAC-08	3-1	8-Bit High-Speed Multiplying D/A Converter
AM6070	3-28	Companding D-to-A Converter for Control Systems
AM6071	3-40	Companding D-to-A Converter for Control Systems
AM6072	3-52	Companding D-to-A Converter for PCM Communication Systems
AM6073	3-64	Companding D-to-A Converter for PCM Communication Systems
AM6080	3-76	Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter
AM6081	3-84	Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter
LF198, 298, 398	3-7	Monolithic Sample and Hold Circuits
AM2502, 03, 04	3-18	8-Bit/12-Bit Successive Approximation Registers

LINE DRIVERS

DUAL DIF	ERENTIAL	Use With					
75109	Open collector differential outputs typical current 6mA, inhibit controls	75107B 75108B					
75110	12mA output current version of Am75109	75107B 75108B					
8830	8830 Designed for single 5.0V supply operation						
8831	Dual differential device which may also be used as a quad single-ended driver. Three-state output.	9615 or 2615					
8832							
9614	9614 5 volt supply driver with complementary outputs						
9621	200mA transient capability with 130 Ω back matching resistor	9620					
FEDERAL							
	and the same of th	26LS32 or 26LS33					
FEDERAL 26LS31	STD 1020 Quad, high-speed, low output skew Dual, high output CMR						
PEDERAL 26LS31 26LS30	STD 1020 Quad, high-speed, low output skew Dual, high output CMR						
FEDERAL 26LS31 26LS30 SINGLE El 2614	STD 1020 Quad, high-speed, low output skew Dual, high output CMR NDED High-speed quad driver for multi-channel,	26LS33					
FEDERAL 26LS31 26LS30 SINGLE El 2614	STD 1020 Quad, high-speed, low output skew Dual, high output CMR NDED High-speed quad driver for multi-channel, common ground operation.	26LS33					
26LS31 26LS30 SINGLE EI 2614	STD 1020 Quad, high-speed, low output skew Dual, high output CMR NDED High-speed quad driver for multi-channel, common ground operation. NDED, EIA RS-232-C	26LS33 2615					
26LS31 26LS30 SINGLE E 2614 SINGLE E 1488	STD 1020 Quad, high-speed, low output skew Dual, high output CMR NDED High-speed quad driver for multi-channel, common ground operation. NDED, EIA RS-232-C Quad EIA RS-232C driver (14 pins) Quad 16-pin driver for EIA RS-232C,	26LS33 2615 1489/ 1489A					
26LS31 26LS30 SINGLE El 2614 SINGLE El 1488 2616 9616	STD 1020 Quad, high-speed, low output skew Dual, high output CMR NDED High-speed quad driver for multi-channel, common ground operation. NDED, EIA RS-232-C Quad EIA RS-232C driver (14 pins) Quad 16-pin driver for EIA RS-232C, CCITT V.24 and MIL-188C interface	26LS33 2615 1489/ 1489A 2617 9617					

BUS BUFFERS/DRIVERS

		t _{pd} (TYP)	I _{OL} (MAX)
25LS240	Inverting octal buffer/driver with three-	10	48
74LS240	state output	10	24
74S240	the state of the s	4.5	68
81LS96		9.0	16
25LS241	Non-inverting octal buffer/driver with	12	48
74LS241	three-state output	12	24
74S241		6.0	68
81LS95	e us 8216 except different A.D. Irealing u	12	16
25LS242	Inverting buffer/driver with two quad	10	48
74LS242	data paths connected input-to-output	10	24
†74S242		4.5	68
25LS243	Non-inverting buffer/driver with two	12	48
74LS243	quad data paths connected input-to-	12	24
†74S243	output	6.0	68
25LS244	Non-inverting octal buffer/driver with	12	48
74LS244	three-state output and two inverting	12	24
74S244	enables	6.0	68
81LS97	e as two B220's in one 20 oin pestigne.	12	16
81LS98	Inverting octal buffer/driver with three- state output and two inverting enables	9.0	16

†In development

LINE RECEIVERS

	FERENTIAL	Use With				
3603	Receiver with differential input to detect signals > 25mV. Three-state outputs.	75110				
75107B	Totem-pole TTL output version of Am363	75109 or 75110				
75108B	Open collector TTL output version of Am363	75109 or 75110				
8820	Designed for ±15V common mode using 5.0V supply	8830				
8820A	Higher speed, tighter spec 8820	8830				
9615	±15 volt common mode, 5 volt supply receivers with uncommitted collector and active pull-up controls	9614				
9620						
QUAD DIF	FERENTIAL	/ 90257				
26LS33	±15 volt common mode, 5 volt supply, three-state output	26LS31				
QUAD DIF	FERENTIAL EIA RS-422,					
FEDERAL						
FEDERAL 26LS32	STD 1020 ±7 volt common mode, 5 volt supply, three-state output	26LS31				
	±7 volt common mode, 5 volt supply, three-state output	26LS31				
26LS32	±7 volt common mode, 5 volt supply, three-state output	26LS31				
26LS32 SINGLE EI 2615	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL	GAUD				
26LS32 SINGLE EI 2615	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL level data	GAUD				
26LS32 SINGLE EI 2615 SINGLE EI	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL level data NDED, EIA RS-232-C Quad EIA RS-232C receiver with input threshold hysteresis Higher threshold version of Am1489	2614				
26LS32 SINGLE EI 2615 SINGLE EI 1489 1489A 2617	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL level data NDED, EIA RS-232-C Quad EIA RS-232C receiver with input threshold hysteresis Higher threshold version of Am1489 Quad EIA RS-232 receiver specified over military temperature range (same	2614				
26LS32 SINGLE EI 2615 SINGLE EI 1489 1489A	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL level data NDED, EIA RS-232-C Quad EIA RS-232-C receiver with input threshold hysteresis Higher threshold version of Am1489 Quad EIA RS-232 receiver specified	2614 1488 1488				
26LS32 SINGLE EI 2615 SINGLE EI 1489 1489A 2617 9617 SINGLE EI	±7 volt common mode, 5 volt supply, three-state output NDED Receiver for 3 volt single-ended TTL level data NDED, EIA RS-232-C Quad EIA RS-232C receiver with input threshold hysteresis Higher threshold version of Am1489 Quad EIA RS-232 receiver specified over military temperature range (same pinout as Am1489A) Triple EIA RS-232 receiver with	2614 1488 1488 2616				

SELECTION GUIDE (Cont.)

SPECIAL FUNCTIONS

TIMERS 555 Single, Precision oscillator/timer 556 Dual version 555

MOS MEMORY please the first state and the

DRIVERS	
0026	Dual 5MHz Two-Phase MOS clock driver
0056	0026 with added V _{BB} terminal
SENSE AMP	LIFIERS OF A Short ribrance, Lividia and a late
3604	Differential input for signals > 10mV, Three-state outputs
75207	Totem-pole TTL output 3604
75208	Open-collector 3604

MOS-MICROPROCESSOR INTERFACE CIRCUITS

8080A/9080A	
8212	8-Bit input/output port, with storage
8216	4-Bit parallel bidirectional bus driver
8224	Clock generator and driver
8226	Inverting version 8216
8228	System controller and bus driver
8238	System controller and bus driver with extended IOW/MEMW
8303B	Two 8226's in one 20 pin package
8304B	Two 8216's in one 20 pin package

BUS TRANSCEIVERS

Device	Output	Function	Hysteresis	Speed (Note 1)	Comments
QUAD			n muna		nei mago briump nominos
Am26S10	100mA-O.C.	Inverting	No	20ns	SN55/75138 pin out
Am26S11	100mA-O.C.	Non-Inverting to bus; Inverting off bus	No	22ns	Same as Am26S10 except non-inverting to bus
Am26S12	100mA-O.C.	Inverting	Yes-0.6V	32ns	Same pin out as DS78/8838 and 8T38
Am26S12A	100mA-O.C.	Inverting	Yes-1.05V	32ns	Wider threshold Am26S12
Am2905	100mA-O.C.	Inverting	No	31ns (Note 2)	Has 2-input multiplexer
Am2906	100mA-O.C.	Inverting	No	31ns (Note 2)	Has 2-input multiplexer and parity
Am2907	100mA-O.C.	Inverting	No	31ns (Note 2)	Includes parity, 2.0V receiver V _{TH}
Am2908	100mA-O.C.	Inverting	No	31ns (Note 2)	Includes parity, 1.5V receiver V _{TH}
Am2915A	48mA/3-St.	Inverting	No	31ns (Note 2)	Has 2-input multiplexer
Am2916A	48mA/3-St.	Inverting	No	31ns (Note 2)	Has 2-input multiplexer and parity 100 cfs.
Am2917A	48mA/3-St.	Inverting	No	31ns (Note 2)	Includes parity
Am3216	50mA/3-St.	Non-Inverting	No	34ns	Same as 8216 except different A.C. loading spec
Am3226	50mA/3-St.	Inverting	No	30ns	Same as 8216 except different A.C. loading spec
Am3448A	48mA/3-StO.C.	Non-Inverting	Yes	32ns	IEEE 488 compatible
Am78/8838	50mA-O.C.	Inverting	No	38ns	Same pin out and function as Am26S12A and 8T38
Am8T26A	48mA/3-St.	Inverting	No	19ns	V _{OH} MOS compatible
Am8T28	48mA/3-St.	Non-Inverting	No	25ns	V _{OH} MOS compatible
Am8216	50mA/3-St.	Non-Inverting	No	34ns	Similar to 8T28
Am8226	50mA/3-St.	Non-Inverting	No	30ns	Similar to 8T26A
OCTAL				38	0.3 aelitiana
Am8303B	48mA/3-St.	Inverting	No	14ns	Same as two 8226's in one 20 pin package
Am8304B	48mA/3-St.	Non-Inverting	No	24ns	Same as two 8216's in one 20 pin package

Notes: 1. Typical delay at 28°C for input to bus plus receiver to output.

^{2.} Bus enable to bus plus bus to receiver output. All parts include register or driver plus receiver with latch.

MONOSTABLES (ONE SHOTS)

Device No.	Description	Dual	Retrig- gerable	Reset Table	Initial Accuracy %	Min. Output t _{pw} (ns)	Pulse Width Variation (% Temp. V _{CC}		No. Package Leads
Am2600	t _{pw} = 55ns to ∞, with guaranteed < 1% change over temperature range	х	×	×	±10	45	±0.5 ±1.5	95	14
Am2602	t_{pw} = 55ns to ∞ , with guaranteed < 1% change over temperature range	x	×	×	±10	45	±0.5 ±1.5	175	16
Am26L02	Low-Power version 2602, t _{pw} = 100ns to ∞	X	X	×	±10	110	±0.3 ±1.0	50	16
Am26L123	Low-Power version 26123, tpw = 120ns to ∞	X	X	X	±10	120	±0.3 ±1.0	60	16
Am26S02	High speed Schottky version 2602, $t_{pw} = 28ns to \infty$	х	×	×	±5.0	33	±0.4 ±1.	240	16
Am26123	t _{pw} = 45ns to ∞, with guaranteed < 1% change over temperature range. Output stability latch improves noise immunity	x	X	×	±10	45	±0.5 ±0.9	230 96	16
Am54/74123	Same as 26123, except no output latch, no Δt_{pw} guarantee	х	X	x	±10	45	±2.7 ±1.	230	16
Am54/74221	Schmitt-trigger input	X	9.0	X	±7.0	30	±0.3 ±0.3	130	16
Am9600	Same as 2600, except no Δt_{pw} guarantee		X	X	±10	50	±1.5 ±1.	95	14
Am9601	Non-resettable version of 9600, $t_{pw} = 55$ ns to ∞	100	X	is broces	±10	45	±2.7 ±1.	95	14
Am9602	Same as 2602, except $t_{pw} = 60$ ns to ∞ , no Δt_{pw} guarantee	×	x	x	±10	50	±1.5 ±1.	175	16
Am96L02	Same as 26L02, except t _{pw} guaranteed <1.6% change over temperature range	×	×	x	±10	110	±0.3 ±0.	5 50	16

			HITOTAL
	0965 Au		
	A747HM		

INDUSTRY CROSS REFERENCE

	AMD*	Fairchild	Intel	Motorola	National	Signetics	Texas Instruments
Manufacturer Identif	fication Cro	oss Reference	Yamuaak I	Rebigs Rine gerable Table	Plan Dus	cinema()	
	AM	μA, or None	None	M,MC	DM, DS, LM, MH	None	SN
emperature Range	Cross Ref	erence	**		animi 2	ge coet ismperature	und und
Commercial	С	С	-	14, 34, 86	3, 86, 88	NE, N	72, 74, 75
Military	М	M	М	15, 35, 96	1, 96, 78	SE, S	52, 54, 55
ackage Cross Refe	erence				wat sheet the	speed Scholpy vo	NOS C
Hermetic DIP	D	D	C, D	L	D	F, I ** 0	J
Molded DIP	Р	80x P 89	or P	P ₂	N	A, B	N
Mini-Molded DIP	Т	T		P ₁	N	V Not only	Р
Flat Pack	°F*	F 63	_± 10	× F	F, W	W, Q	H, U, Z, W
TO-5 Type Can	€H≘	8.0= H ==	-	G, R	× H	DB, K, T	upos isL
TO-8 Type Can	G	8.7± _ 00	(01 s_	× H×	G	11 Jove (2623 25 a	- 8

^{*}The original manufacturers' part number and package code are used for second source devices.

9614 D M	μΑ 556	D M
1 01 1 00 00 00 000 000 011 010 X	tisetronius y liquaki	Samons 2012
Device Package Temperature Mfg. Type Type Range Iden		Package Temperature Type Range

Туре	Туре	Hange
Fairchild	AMD Direct Replacement	AMD Functional Replacement
μA101D	LM101D	
μA101H	LM101H	
μA101AD	LM101AD	
μA101AF	LM101AF	
μA101AH	LM101AH	
μA102H	LM102H	
μA105H	LM105H	
μA107H	LM107H	
μA108AH	LM108AH	
μ108H	LM108H	
μA110H	LM110H	
μA111H	LM111H	
μA139D	LM139D	5
μA1458H	AM1458H	
μA1558H	AM1558H	
μA201D	LM201D	
μA201H	LM201H	
μA201AD	LM201AD	
μA201AF	LM201AF	
μA201AH	LM201AH	
μΑ207Η	LM207H	
μA208H	LM208H	
μA208AH	LM208AH	
μA301AD	LM301AD	
μA301AH	LM301AH	
μA301AN	LM301AN	
μA302H	LM302H	
μΑ305Η	LM305H	
μA305AH	LM305AH	
μΑ307Η	LM307H	
μΑ308Η	LM308H	
μΑ308ΑΗ	LM308AH	
μA310H	LM310H	
μΑ311Η	LM311H	

Fairchild	AMD Direct Replacement	AMD Functional Replacement
μA311P	LM311N	
μA339D	LM339D	
μA339P	LM339N	
μA715DC	715DC	
μA715DM	715DM	
μA715HC	715HC	
μA715HM	715HM	
μA723DC	723DC	
μA723DM	723DM	
μA723HC	723HC	
μΑ723HM	723HM	
μA725HC	725HC	
μA725HM	725HM	
μA725PC	725CN	
μA733DC	733DC	
μA733DM	733DM	
μA733FM	733FM	
μA733HC	733HC	
μA733HM	733HM	
μA741DC	741DC	
μA741DM	741DM	
μA741FM	741FM	
μA741HC	741HC	
μA741HM	741HM	
μA741ADM	741ADM	11.11.0
μ A741AFM	741AFM	
μA741AHM	741AHM	
μA741EDC	741EDC	
μA741EHC	741EHC	
μA747DC	747DC	
μA747DM	747DM	
μA747HC	747HC	
μA747HM	747HM	
μA747PC	747PC	

Fairchild	AMD Direct Replacement	AMD Functional Replacement
μΑ747ADM	747ADM	NCTZBB
μA747AHM	747AHM	TACALARRE
μA747EDC	747EDC	MC1733L
μA747EHC	747EHC	10014100
μA748DC	748DC	MC17416L
μA748DM	748DM	MOTART
μΑ748FM	748FM	MICHTALG
μΑ748HC	748HC	THE SHAFTON
μΑ748HM	748HM	MC17470G
μΑ748PC	748PC	MOSTATOL
μΑ760DC	MAKAY	AM686DC
μA760DM	7 EZOM .	AM686DM
μΑ760HC	748HC	AM686HC
The second second second	748553	
μA760HM	LAMOOD	AM686HM
μA775DM	LM139D	MCSeston -
μA775DC	LM339D	MC3438II
μA775PC	LM339N	NCM3NP
54123DM	SN54123J	MCS44SI
54123FM	SN54123W	FISHARDA
55107ADM	SN55107BJ	MCSALSAL
55107BDM	SN55107BJ	MCSEARAP
55107AFM	SN55107BW	Jacosom
55107BFM	SN55107BW SN55108BJ	MICOASSIP
55108ADM 55108AFM	SN55108BJ SN55108BW	MC3488L
55108AFM	SN55108BV	MICCABBP
55108BFM	SN55108BW	INC. SABYL
55108BFM	SN55109J	MC3487P
55109DM	SN551093 SN55109W	MODREER
55110DM	SN55110J	Mossion
55110FM	SN55110W	MCSEIOBI.
5520DM	SN5520J	MCSS109L
5521DM	SN5520J	MCSS110L
55234DM	SN55234J	MC552AL
55234FM	SN55234W	MCSSSSL
55235DM	SN55235J	MCSB328L
55235FM	SN55235W	itoratom
55238DM	SN55238J	MOTSTORT
55238FM	SN55238W	MC78108L
55239DM	SN55239J	MCIBIOSE
55239FM	SN55239W	M0522103F
5524DM	SN5524J	Mcastega
5525DM	SN5525J	MCSSITEL
55325DM	SN55325J	MOTESTON
55325FM	SN55325W	- JESTESM
74123DC	SN74123J	PRINTEDME
74123PC	SN74123N	MCBEOTL
75107ADC	SN75107BJ	MCB601F
75107APC	SN75107BN	MC8802L
75107BDC	SN75107BJ	MC9602P
75107BPC	SN75107BN	MOScott
75107BFC	SN75107BN	MC9602L-
75108APC	SN75108BN	MLM101AG
75108AFC	SN75108BJ	DBDFM:IM
75108BPC	SN75108BN	MUNICIPE.
75109DC	SN75109J	MLNI1100
75109PC	SN75109N	APTHVIN.
75110DC	SN75110J	MUNITIE
	SN75110N	MUMITAL

Fairchild	AMD Direct Replacement	AMD Functional Replacement
9600DC	9600DC	
9600DM	9600DM	
9600FM	9600FM	tami
9600PC	9600PC	
9601DC	9601DC	Daging .
9601DM	9601DM	MDGSt2
9601FM	9601FM	P3912
		91550
9601PC	9601PC	MD3218
9602DC	9602DC	P3218
9602DM	9602DM	- D3225
9602FM 9602PC	9602FM	MDSSSS
	9602PC	P3228
96L02DC	96L02DC	Degra
96L02DM	96L02DM	
96L02FM	96L02FM	MD8212
96L02PC	96L02PC	P8212-
96S02DC	01280	AM26S02DC
96S02PC	9128GM	AM26S02PC
9614DC	9614DC	34284
9614DM	9614DM	D8228 ×
9614FM	9614FM	MD8224
9614PC	9614PC	92235
9615DC	9615DC	DB226
9615DM	9615DM	
9615FM	9615FM	188728F
9615PC	9615PC	\$85T8M
9616DC	9616DC	MD8228
9616DM	9616DM	P8228
9616EDC	9616EDC	88980
9616EPC	9616EPC	BESACIM
9616FM	9616FM	P8238
9616PC	9616PC	0.8288
9617DC	9617DC	Pager
9617PC	9617PC	DB287 :-
9634PC	DPSSQSBN	AM26LS31PC
9634DC		AM26LS31DC
9634DM	I INDATON	AM26LS31DM
9635PC	AJUROTOM	AM26LS33PC
9635DC	Company of the compan	AM26LS33DC
9635DM		AM26LS33DM
9636PC	ire3 muteraign	AM26LS30PC
9636DC	ayT egnisf	AM26LS30DC
9636DM	CHA	AM26LS30DM
9637PC	Direct	AM26LS32PC
9637DC	Replacement	AM26LS32DC
9637DM		AM26LS32DM
9638PC	8.180A TMA	AM26LS32PC
9638DC	AMMADELT	AM26LS32DC
9638DM	AMARDELE .	AM26LS32DM
9640DC	AM26S10DC	AIVIZOLOGZDIVI
9640DM	AM26S10DC	1884 FOM
9640PC		MC1488P
	AM26S10PC	TJR84FOM
9641DC	AM26S11DC	SPERMON
9641DM	AM26S11DM	MC148BAL
9641PC	AM26S11PC	GARRY TON
9642PC	AM1508LE	AM26S12APC
9642DC	HEESTMA	AM26S12ADC
9642DM	72346	AM26S12ADM
	October	POSTER I CAN

	D8228		
Temperature Range	Package Type	Device Type	
Intel	AMD Direct Replacement	AMD Functional Replacement	
D3212	D3212	Dunker	
MD3212	MD3212	100	
P3212	P3212	582 (Balt)	
D3216	D3216	N8T28F	
MD3216	MD3216	S8T28F	
P3216	P3216	N8T28B	
D3226	D3226	N8T26F	
MD3226	MD3226	S8T26F	
P3226	P3226	N8T26B	
D8212	D8212	100000000000000000000000000000000000000	
MD8212	AM8212DM	4 bardburg	
P8212	AM8212PC	350 (8)	
D8216	D8216	N8T28F	
MD8216	MD8216	S8T28F	
P8216	P8216	N8T28B	
D8224	D8224	3617136	
MD8224	AM8224DM	INT - 198	
P8224	AM8224PC	098189	
D8226	D8226	N8T26F	
	MD8226	MD8226	
S8T26F	P8226	P8226	
N8T26B	D8228	D8228	
MD8228	AM8228DM	255 GDG	
P8228	AM8228PC	MORNEG	
D8238	D8238	00.391.03	
MD8238	AM8238DM	1733718	
P8238	AM8238PC	V 3ame	
D8286	DP8304BJ	789 46	
P3287	DP8304BN	38 (70)	
D8287	DP8303BJ	281790	
P8287	DP8303BN	393808	

MC 14	MOTOHOLA	88 L
Mfg.'s		evice Package
Motorola	AMD Direct Replacement	AMD Functional Replacement
MC1408L6 MC1408L7 MC1408L8 MC1458G MC1488L MC1488P MC1489P MC1489AL MC1489AP MC1508L8 MC1558G MC1723CG MC1723CL MC1723CL MC1723CL	AM1408L6 AM1408L7 AM1408L8 AM1458H MC1488L AM1488PC MC1489L AM1489PC MC1489AL AM1489APC AM1508L8 AM1558H 723HC 723HM 723DM 733HC	29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MOTOROLA

Motorola	AMD Direct	AMD Functional
200,1304,031	Replacement	Replacement
MC1733F	733FM	The contract
MC1733G	733HM	1.01
MC1733L	733DM	
MC1741CG	741HC	SIT 5
MC1741CG	741DC	Q+ 1
	Control of the contro	001-
MC1741F	741FM	MOS
MC1741G	741HM	44300
MC1741L	741DM	TO HAVE TO SEE
MC1747CG	747HC	Mark
MC1747CL	747DC	09.5
MC1747G	747HM	
MC1747L	747DM	1 150 0
MC1748CG	747BW	l Nici
		10000
MC1748G	748HM	Mars Co.
MC26S10L	AM26S10DC	RVC .
MC26S10P	AM26S10PC	100.0
MC3438L	Litter Cal	AM26S12ADC
MC3438P	Militaria	AM26S12APC
MC3443L	SMSKID	AM26S10DC
	SARRIAGE A	
MC3443P	140044041	AM26S10PC
MC3448AL	MC3448AL	106
MC3448AP	MC3448AP	14
MC3456L	NE556F	1493
MC3456P	NE556A	100
MC3486L		AM26LS31DC
MC3486P	Mal puegna	AM26LS31PC
MC3487L	SMEETER	AM26LS32DC
	1 V 1 - 21.88748	The second secon
MC3487P	SNESTO	AM26LS32PC
MC3556L	SE556F	1 1 1 1 1 1 1 1 1 1 1 1
MC55107L	SN55107BJ	100
MC55108L	SN55108BJ	10000
MC55109L	SN55109J	
MC55110L	SN55110J	
MC5524L	SN5524J	
		parts
MC5525L	SN5525J	170
MC55325L	SN55325J	1200
MC75107L	SN75107BJ	No.
MC75107P	SN75107BN	MC
MC75108L	SN75108BJ	No.
MC75108P	SN75108BN	Mac II
MC75109L	SN75109J	
MC75109P	SN75109N	I IMPLE TO
MC75110L		tyre.
	SN75110J	Wor.
MC75110P	SN75110N	MOLES
MC8T26L	N8T26F	107-12-5
MC8T26P	N8T26B	503
MC8601L	9601DC	390
MC8601P	9601PC	
MC8602L	9602DC	AM2602DC
MC8602P	9602PC	AM2602PC
MC9601L		AIVIZUUZI O
	9601DM	11.074
MC9602L	9602DM	AM2602DM
MLM101AG	LM101AH	The State of
MLM105G	LM105H	brien -
MLM107G	LM107H	
MLM110G	LM110H	D'4111
MLM111F		The State of
	LM111F	- 000 A
MLM111G	LM111H	00.
MLM111L	LM111D	OR PR
MLM201AG	LM210AH	
MLM205G	LM205H	
MLM207G	LM207H	
MLM210G	LM210H	
MLM211G	LM211H	

Motorola	AMD Direct Replacement	AMD Functional Replacement
MLM211L	LM211D	CHAIMS
MLM301AG	LM301AH	HEDSMI
MLM301API	LM301AN	L MEDTAD, J
MLM305G	LM305H .	LHOUNE
MLM307G	LM307H	LM20TAH
MLM310G	LM310H	103840
MLM311G	LM311H	750000
MLM211PI	LM311N	- Haushi L
MLM311L	LM311D	FMS0AD" T
MMH0026CG	MH0026CH	- FX0EM.I
MMH0026CL	MMH0026CL	HYDSMJ
MMH0026CPI	MH0026CN	L MASUSALL
MMH0026G	MH0026H	FA80SM.I
MMH0026L	MMH0026L	FIABGSWILL

	NATION	AL	
DS	78	20	J
Mfg.'s	Temperature	Device	Package
Ident.	Range	Туре	Туре

National	AMD Functional Replacement	AMD Direct Replacement
DM54123J	SN54123J	L darski
DM54123W	SN54123W	FAZISMI
DM54L123J	HABISMI -	AM26L123DM
DM54L123W	Linershil :	AM26L123FM
DM71LS95J	DM71LS95J	SN54LS241J
DM71LS96J	DM71LS96J	SN54LS240J
DM71LS97J	DM71LS97J	SN54LS244J
DM71LS98J	DM71LS98J	SN54LS240J
DM74L123J	Herswu	AM26L123DC
DM74L123N	LIMPAGE	AM26L123PC
DM74123J	SN74123J	AM26123DC
DM74123N	SN74123N	AM26123PC
DM81LS95J	DM81LS95J	SN74LS240J
DM81LS95N	DM81LS95N	SN74LS240N
DM81LS96J	DM81LS96J	SN74LS241J
DM81LS96N	DM81LS96N	SN74LS241N
DM81LS97J	DM81LS97J	SN74LS241J
DM81LS97N	DM81LS97N	SN74LS241N
DM81LS98J	DM81LS98J	SN74LS240J
DM81LS98N	DM81LS98N	SN74LS240N
DM8601J	9601DC	MAISSIN
DM8601N	9601PC	33459/D
DM8602J	9602DC	AM2602DC
DM8602N	9602PC	AM2602PC
DM9601J	9601DM	Навении
DM9601W	9601FM	HARDSIALI
DM9602J	9602DM	AM2602DM
DM9602W	9602FM	AM2602FM
DP7303BJ	DP7304BJ	L. OSOBNA
DP8303BJ	DP8303BJ	Tiveties
DP8304BJ	DP8304BJ	HYDENIA
DS0026CG	MH0026CG	CMBORNE: J
DS0026CH	MH0026CH	TAROSTO J
DS0026CJ	MMH0026CL	HAROSMI
DS0026CN	MH0026CN	MANDEMA
DS0026F	DS0026F	U (daseme)
DS0026G	MH0026G	1,0308
DS0026H	MH0026H	HSSOM
DS0026J	MMH0026L	Mades

National	AMD Direct Replacement	AMD Functional Replacement
DS0056CG	DS0056CG	lanopa (
DS0056CH	DS0056CH	LF355M
DS0056CJ	DS0056CJ	LPSSEAH
DS0056CN	DS0056CN	HARRY
DS0056G	DS0056G	
		LESSEN
DS0056H	DS0056H	LFBSSAM
DS0056J	DS0056J	TESSTH .
DS1488J	MC1488L	LESS IN
DS1488N	AM1488PC	LESSTAN
DS1489J	MC1489L	Hessell -
DS1489N	AM1489L	LHZTOTAD, J
DS1489AJ	MC1489AL	LESTOIAE
DS1489AN	AM1489APC	LESTINGLU
DS1691J	AM26LS30DM	FireSHi
DS1692J	DS1692J	LHERDINAN
DS3691J	AM26LS30DC	HADDECHLI
DS3691N	AM26LS30PC	LR22stD. 3
DS3692J	DS3692J	THESTER
DS3692N	DS3692J	L ,CA fossmu
DS3692N	DS3692N	LH2311D, J
DS7820J	DM7820J	LM101DJ J
DS7820AJ	DM7820AJ	19101111
DS7830J	DM7830J	HIDHWI
DS7831J	DM7831J	L.OATOTMJ
DS7832J	DM7832J	CMIDIAE
DS7835J	FATOMO	S8T26F
DS7838J	DS7838J	AM26S12ADM
DS8820J	DM8820J	AIVIZOOTZADIVI
DS8820N	DM8820N	LIMITORIA
DS8820AJ	DM8820AJ	LM105F
DS8820AN	DM8820AN	LM105H
DS8830J	DM8830J	LWIDGE
DS8830N	DM8830N	Ettortal
DS8831J	DM8831J	TWANDLEY T
DS8831N	DM8831N	LM107F
DS8832J	DM8832J	THIOMIT
DS8832N	DM8832N	L CROIM.
DS8835J	ROTMI	N8T26F
DS8835N	HBOTMI	N8T26B
DS8838J	DS8838J	AM26S12ADC
DS8838N	DS8838N	AM26S12APC
DS55107J	SN55107BJ	AIVIZOSTZATO
		UGOTIMA
DS55108J	SN55108BJ	
DS55109J	SN55109J	ROUML
DS55110J	SN55110J	HOLLING
DS75107J	SN75107BJ	t GUITTMU
DS75107N	SN75107BN	Livitation
DS75108J	SN75108BJ	HTMM.
DS75108N	SN75108BN	LICERTIMA
DS75109J	SN75109J	THE PERSON OF TH
DS75109N	SN75109N	PISKING
DS75110J	SN75110J	L darema
DS75110N	SN75110N	TREEMA
LF155H	LF155H	Harrwil
LF155AH	LF155AH	L Control
LF156H	LF156H	Februar.
LF156AH	LF156AH	LW119H
LF157H	LF157H	L Mraight J
LF157AH	LF157AH	TAS PAR
LF198H	LF198H	L MISSE, U.
LF255H	LF255H	LIGASSIMI
LF256H	LF256H	LMISSE
		LMESAF
I F257H		
LF257H LF298H	LF257H LF298H	G8FHW1

National	AMD Direct Replacement	AMD Functional Replacement	National	AMD Direct Replacement	AMD Functional Replacement
LF355H	LF355H	20450460	LM149D	LM149D	21 8 1 - 4
LF355N	LF355N	M Macogan	LM201H	LM201H	
					DATUR
LF355AH	LF355AH	to decorate 12	LM201AD, J	LM201AD	[9A1036
LF356H	LF356H	MOREGOSO	LM201AF	LM201AF	giant ville
LF356N	LF356N	Dazonab	LM201AH	LM201AH	District N
LF356AH	LF356AH	Recase i	LM202H	LM202H	a year
LF357H	LF357H	1.880026	LM205H	LM205H	5
		DS18561			
LF357N			LM206H	LM206H	191130
LF357AH	LF357AH	MITALSO	LM207D, J	LM207D	37135
LF398H	LF398H	1200180	LM207F	LM207F	#0850ch
LH2101AD, J	LH2101AD	M984 (2.0	LM207H	LM207H	ubacou-
LF2101AF	LH2101AF	LA PER EEG	LM208AD, J	LM208AD	(908)
LF2111D, J	LH2111D	21 1981 120 F	LM208AF	LM208AF	Discour
LH2111F	LH2111F	DSING	LM208AH	1,000,000,000,000,000,000,000	
	The second secon		The second secon	LM208AH	18501 5
LH2201AD, J	LH2201AD	LSEUraid	LM208D, J	LM208D	
LH2201AF	LH2201AF	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LM208F	LM208F	
LH2211D, J	LH2211D	1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LM208H	LM208H	1 6.1
LH2211F	LH2211F	DSSS921	LM210D, J	LM210D	80 30
LH2301AD, J	LH2301AD	14:00882G	LM210H	LM210H	
LH2311D, J	LH2311D		The second secon	the second secon	
	The state of the s	Vite2520	LM211D, J	LM211D	13-1
LM101D, J	LM101D	1 SEVED	LM211F	LM211F	
LM101F	LM101F	L4020180	LM211H	LM211H	
LM101H	LM101H	0874763	LM212D, J	LM212D	Annual Control
LM101AD, J	LM101AD	Dazeni	LM212F	LM212F	land is
LM101AF	LM101AF	US0812U	LM212H	LM212H	
LM101AH	LM101AH	DSASSET	LM216D, J	LM216AD	Lacrost .
LM102D, J	LM102D	8087810	LM216AF	LM216AF	Was
LM102F	LM102F	DSAS	LM216AH	LM216AH	1,03 (
LM102H	LM102H	DS8826N	LM216D, J	LM216D	W881 1421 17
LM105F	LM105F	DS8828A	LM216F	LM216F	12,088,017
LM105H	LM105H	Designan	LM216H	LM216H	Date: Training
LM106F	LM106F	LOGRAND T	LM218D, J	LM218D	1.000 mgs
LM106H	LM106H	11008820	LM218F	LM218F	DSB2.
LM107D, J	LM107D	Tagarga I	LM218H	LM218H	1.03 () 4 () 4
LM107F	LM107F	Minoraso	LM219D, J	LM219D	123N
LM107H	LM107H	LSE6325	LM219F	LM219F	USSIET
LM108D, J	LM108D	VIZV. ISSU	LM219H	LM219H	Fat28N
LM108F	LM108F	0.88935	LM224D, J	LM224D	GBRILLISEV
LM108H	LM108H	Massaso 1	LM239D, J	LM239D	Makes estimate
LM108AD. J	LM108AD	Lassageo	LM239AD, J	LM239D	1383 (8)
LM108AF			The same and the s	The second secon	
	LM108AF	Me1888(0 1	LM248D	LM248D	Hagging 1
LM108AH	LM108AH	LTOTESEE	LM249D	LM249D	U.101 CSB7U
LM110D, J	LM110D	DS\$2/0PJ	LM301AD, J	LM301AD	M285718
LM110F	LM110F	F5019680	LM301AF	LM301AF	U899.18 14
LM110H	LM110H	DSSS 103	LM301AH	LM301AH	MBBSUREN
LM111D, J	LM111D	0.575 (073)	LM301AN	LM301AN	H Knuery
LM111F	LM111F	DEFSTORN	LM302F	LM302F	Minustra
LM111H	LM111H	1.50116530	LM302H		
			The state of the s	LM302H	630361
LM112D, J	LM112D	V801-450	LM305F	LM305F	PISDES II
LM112F	LM112F	Develor	LM305H	LM305H	16.1086 at
LM112H	LM112H	Neutrals	LM305AH	LM305AH	Witteen
LM118D, J	LM118D	Lottavag	LM306F	LM306F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LM118F	LM118F	ROFFERING 1	LM306H	LM306H	WSDS
LM118H	LM118H	LPASSH	LM307D, J	LM307D	\$820EV91
	LM119D				
LM119D, J	The second second	HASS4FL	LM307F	LM307F	US 500F 10
LM119F	LM119F	Haarau	LM307H	LM307H	DENOSEIL
LM119H	LM119H	HARRIST	LM308AD, J	LM308AD	30 00 28 Q G
LM124D, J	LM124D	HAZELET I	LM308AF	LM308AF	D-coascon C
LM124F	LM124F	HATEPAL	LM308AH	LM308AH	goases (c
LM139D. J	LM139D	1988791	LM308AN	LM308AN	MORSOL C
LM139AD, J	LM139AD		LM308D, J		
LM139F	The second secon	LF255H	and the second s	LM308D	- Basoc
	LM139F	LESSEH	LM308F	LM308F	180S00cc
LM139AF LM148D	LM139AF	L PASZH	LM308H	LM308H	1,480,0000
	LM148D	HSEST	LM308N	LM308N	1.8900 0

S	IG	N	ET	IC	S
	10		lim II		·

National	AMD Direct Replacement	AMD Functional Replacement
1110105		
LM310D, J	LM310D	
LM310F	LM310F	
LM310H	LM310H	
LM310N	LM310N	
LM311D, J	LM311D	
LM311F	LM311F	
LM311N	LM311N	
LM312D, J	LM312D	BINSSHITEA
LM312F	LM312F	
LM312H	LM312H	JET PROBLEM
LM316AD, J	LM316AD	ARSTITUTE.
LM316AF	LM316AF	SNESTIBJA
LM316AH	LM316AH	Jen realite
LM316D, J	LM316D	LESTSEME
LM316F	LM316F	SWSZYZSL
LM316H	LM316H	ARCCOCHIC
LM318D, J	LM318D	
LM318F		PEELLSTIES
	LM318F	SNSEZSSI
LM318H	LM318H	SMS2741FA
LM318N	LM318N	SMS2741JA
LM319H	LM319H	SNEZZATE
LM319D, J	LM319D	SN62747FA
LM319N	LM319N	SN82747JA
LM324D, J	LM324D	SN8527471
LM324N	LM324N	SNEST 48FA
LM339D, J	LM339D	ALBASSAMS
LM339AD, J	LM339AD	SNB2748L
LM339N	LM339N	SMEAL (23)
LM339AN	LM339AN	SNEAU(2349)
LM348D	LM348D	CESTS INCHE
LM348N	LM348N	SNESTS WEIGHT
LM349D	LM349D	SNEAFESTADT
LM349N	LM349N	\$1,050,000,000
LM723D, J	723DM	Street Sevel
LM723H	723HM	PRINCIPLE
LM723CD, J	723DC	SNEW SZAL
LM723CH	723HC	Loadinichi
LM725H	725HM	
	725HIVI 725HC	SNEASSAN
LM725CH		LESTARVIR
LM725CN	725CN	3WS1123W
LM725D, J	725DM	P120545
LM725CD, J	725DC	SNS4221W
LM733D, J	733DM	LANGEROVAL
LM733H	733HM	Teachasms .
LM733CD, J	733DC	
LM733CH	733HC	
LM741D, J	741DM	
LM741F	741FM	LOTTERNE
LM741H	741HM	
LM741CD, J	741DC	
LM741CF	741FC	SWESTERA
LM741CH	741HC	
LM747D, J	747DM	
LM747H	747HM	
LM747F	747FM	
LM747CD, J	747DC	
LM747CP	747PC	
LM747CH	747HC	
LM747CN	747PC	
LM478H	748HM	
LM748CH	748HC	
LM748CN	748PC	
LM1458H	AM1458H	
LM1558H	AM1558H	

E OMA	555	V
Temperature	Device	Package
Range	Туре	Туре
	AMD	AMD
Signetics	Direct	Functional
	Replacement	Replacement
LM101F	LM101D	BARSTON
LM101T	LM101H	FIRESTRIA
LM101AF	LM101AD	HASTERN
LM101AT LM107F	LM101AH LM107D	RESERVA .
LM107T	LM107H	886786
LM108F	LM108D	PERTEN.
LM108T	LM108H	RSDBOH
LM108AF	LM108AD	3100338 ·
LM108AT	LM108AH	tassa
LM111F	LM111D	1.1986138
LM111T	LM111H	ASE338 -
LM119H	LM119H	- NESSERIA
LM119D LM124F	LM119D LM124D	HEATER *
LM139F	LM139D	SS4221F
LM201T	LM301H	48000B
LM201AF	LM201AD	PARCIES
LM201AT	LM201AH	Setter
LM201AV	LM201AN	1- PRETER
LM207F	LM207D	FEBRUTAL
LM207T	LM207H	JOESTA4
LM208F LM208T	LM208D LM208H	P7255
LM208AF	LM208AD	JESTAM.
LM208AT	LM208AH	LATSSON
LM211F	LM211D	HOBETAN
LM211T	LM211H	FERTAN
LM219H	LM219H	DIRECTAL
LM219D	LM219D	TOMETAN
LM224F	LM224D	TOTAGEL
LM239F LM301AT	LM239D LM301AH	HINTAG.
LM301AV	LM301AN	TINAL
LM307F	LM307D	AGTREAU.
LM307T	LM307H	: XOTATA
LM308F	LM308D	REALES
LM308T	LM308H	XXXXX
LM308V	LM308N	- MATABOT
LM308AF	LM308AD	7847Au
LM308AT LM311F	LM308AH LM311D	TRATAL
LM311T	LM311H	
	LM311N	
LM319H	LM319H	8 GNS 75
LM319D	LM319D	J TERL
LM319A	LM319N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LM324A		A LITTLE NEW YORK IN
LM324F	LM324D	
LM339A LM339F	LM339N	STREET NO.
MC1488F	LM339D MC1488L	etmenturient
MC1489F	MC1489L	LAtersmic
MC1489AF	MC1489AL	JAPOTSPAS
NE529K	BAronks .	AM686HC
NE592K	AM592HC	Jeanswe
N74123B	SN74123N	SNEELOGEN
N74123F	SN74123J	Jaoesaua.
N74221B	SN74221N	CMERTON
N74221F	SN74221J	- CARSSIOTE

SIGNETICS (Cont.)

Signetics	AMD Direct Replacement	AMD Functional Replacement
N8T22A	9601PC	
N8T22F	9601DC	
N8T26B	N8T26B	
N8T26F	N8T26F	
N8T26AB	N8T26AB	
N8T26AF	N8T26AF	
N8T28B	N8T28B	
N8T28F	N8T28F	
N8T38B	LN4.97D	DS8838N
N8T38F	LINTOTHE	DS8838J
N9602B	9602PC	CALIDEL
N9602F	9602DC	
SE529K	GA3014A3	AM686HM
SE555T	SE555T	TAROTMU
SE556F	SE556F	311161
SE592A	AM592PC	THUME
SE592K	AM592HM	Hairma
S54123F	SN54123J	CANTRO
S54221F	SN54221J	LMazzF
S9602F	9602DM	LM139F
S8T26F	S8T26F	LM201T
S8T26AF	S8T26AF	LMS01AF
S8T28F	S8T28F	FA LOSMU
S8T38F	58128F	DS7838J
	723DC	DS76363
μA723CF	723HC	TROSMU
μA723CL		1802141
μ723F	723DM 723HM	TEGSMU
μA723L	733PC	HASSSALI
μA733CA	733PC	TAUDSMJ
μA733CF		TI I SML1
μA733CK	733HC 733DM	TITSM
μA733F		HSTOM
μΑ733Κ	7 331 1101	CHISMA
μA741CF	74100	THESTALL
μA741CT	741110	absort i
μA741F	/ TIDIVI	TATOAMA
μΑ741Τ	/ 	
μΑ747CA	747PC	LMCOTAV
μA747CF	747DC	
μΑ747CK	747HC	LNSOT
μA747F	747DM	7808VL1
μΑ747Κ	747HM	
μA748CT	748HC	
μA748F	748DM	
μΑ748Τ	748HM	

TEXAS INSTRUMENTS

SN 75	LMS18MU L	110 STEWLI N
Mfg.'s Ident.	Temperature Range	Device Package Type Type
Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN52101AJ	LM101AD	HORNOM -
SN52101AL SN52101AZ	LM101AH LM101AF	MG148BAF NESSSK
SN52105L SN52106FA	LM105H LM106F	NESSEK
SN52106L	LM106H	M7A12SF
SN52107J SN52107L	LM107D LM107H	N74221E N74221E

TEXAS INSTRUMENTS (Cont.)

Otto	AMD	AMD
Texas	AMD Direct	AMD Functional
Instruments	Replacement	Replacement
SN52107Z	LM107F	77/1
SN521072 SN52108AFA	LM108AF	T and
SN52108AJA	LM108AD	E
SN52108AL	LM108AH	Vot si
SN52108FA	LM108F	L C
SN52108JA	LM108D	211
SN52108L	LM108H	Mark I
SN52111FA	LM111F	F 081 7
SN52111J	LM111D	चंद्री
SN52111L	LM111H	No.
SN52118FA	LM118F	- 16X01 J
SN52118JA	LM118D	HI I
SN52118L SN52723J	LM118H 723DM	1 631
SN52723L	723HM	337
SN52733FA	733FM	Ho
SN52733J	733DM	L Car
SN52733L	733HM	307 1.
SN52741FA	741FM 8M	N HIGH
SN52741JA	741DM	PER
SN52741L	741HM	hand.
SN52747FA	747FM	P 05.0
SN52747JA	747DM	WE.
SN52747L	747HM	6 085
SN52748FA SN52748JA	748FM 748DM	MATERIAL L
SN52748L	748HM	N. CASE 1
SN54L123J	LM38 N	AM26L123DM
SN54L123W	I A A P E S M L I	AM26L123FM
SN54LS123J	SN54LS123L	AM25LS123AM
SN54LS123W	SN54LS123W	AM25LS123FM
SN54LS240J	SN54LS240J	AM25LS240DM
SN54LS241J	SN54LS241J	AM25LS241DM
SN54LS242J	SN54LS242J	AM25LS242DM
SN54LS243J	SN54LS243J	AM25LS243DM
SN54LS244J SN54S240J	SN54LS244J SN54S240J	AM25LS244DM
SN54S240J SN54S241J	SN54S240J SN54S241J	HO
SN54123J	SN54123J	AM26123DM
SN54123W	SN54123W	AM26123DM
SN54221J	SN54221J	L. das vi
SN54221W	SN54221W	TYSSOD: J
SN55107AJ	SN55107BJ	14,000
SN55107BJ	SN55107BJ	1361
SN55108AJ	SN55108BJ	L.COET
SN55108BJ	SN55108BJ	HOSE
SN55109J SN55110J	SN55109J SN55110J	6,0
SN55114J	9614DM	HI
SN55114W	9614FM	L.00
SN55115J	9615DM	RONATE
SN55115W	9615DM	180 mm L
SN55182J	DM7820AJ	14,053
SN55182W	DM7820AW	H725
SN55183J	DM7830J	PYNAME
SN55183W	DM7830W	1.74700.3
SN55369J	MMH0026L	1 PDts 1 L
SN72301AJ	LM301AD	HOVE
SN72301AL SN72305L	LM301AH LM305H	LINE TO STATE OF
SN72306L SN72306L	LM306H	LANTER
SN72307J	LM307D	MOSI
SN72307L	LM307H	Hose
SN72308AJA	LM308AD	Hiszail
		L

Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN72308AL	LM308AH	
SN72308JA	LM308D	100 miles
SN72308L	LM308H	
SN72311J	LM311D	
SN72311L	LM311H	
SN72318JA	LM318D	
SN72318L	LM318H	
SN72723J	723DC	
SN72723L	723HC	
SN72733J	733DC	
SN72733L	733HC	
SN72741JA	741DC	
SN72741L	741HC	
SN72747JA	747DC	1200
SN72747L	747HC	YOI,
SN72748JA	748DC	
SN72748L	748HC	
SN74L123J		AM26L123DC
SN74L123N		AM26L123PC
SN74LS123J	SN74LS123J	AM25LS123DC
SN74LS123N	SN74LS123N	AM25LS123PC
SN74LS240J	SN74LS240J	AM25LS240DC
SN74LS240N	SN74LS240N	AM25LS240PC
SN74LS241J	SN74LS241J	AM25LS241DC
SN74LS241N	SN74LS241N	AM25LS241PC
SN74LS242J	SN74LS242J	AM25LS242DC
SN74LS242N	SN74LS242N	AM25LS242PC
SN74LS243J	SN74LS243J	AM25LS243DC
SN74LS243N	SN74LS243N	AM25LS243PC
SN74LS244J	SN74LS244J	AM25LS244DC
SN74LS244N	SN74LS244N	AM25LS244PC
SN74LS424J	D8224	TIGN -
SN74LS424N	P8224	dual companients
SN74S240J	SN74S240J	
SN74S240N	SN74S240N	
SN74S241J	SN74S241J	

Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN74S241N	SN74S241N	
SN74S412J	D8212	
SN74S412	P8212	
SN74123J	SN74123J	AM26123DC
SN74123N	SN74123N	AM26123PC
SN74221J	SN74221J	
SN74221N	SN74221N	
SN75107AJ	SN74107BJ	
SN75107AN	SN75107BN	
SN75107BJ	SN75107BJ	
SN75107BN	SN75107BN	
SN75108AJ	SN75108BJ	
SN75108AN	SN75108BN	
SN752108BJ	SN75108BJ	
SN75108BN	SN75108BN	
SN75109J	SN75109J	
SN75109N	SN75109N	
SN75110J	SN75110J	
SN75110N	SN75110N	
SN75114J	9614DC	
SN75114N	9614PC	
SN75115J	9615DC	
SN75115	9615PC	
SN75182J	DM8820AJ	
SN75182N	DM8820AN	
SN75183J	DM8830J	
SN75183N	DM8830N	
SN75188J	MC1488L	174 10 1-
SN75188N	AM1488PC	
SN75189J	MC1489L	
SN75189N	AM1489PC	11 140 1 1
SN75189AJ	MC1489AL	The state of the s
SN75189AN	AM1489APC	
SN75369J SN75369P	MMH0026CL MH0026CN	

DICE POLICY

Advanced Micro Devices, interface and linear products are all available in dice form.

ELECTRICAL CHARACTERISTICS

Each die is electrically tested to the commercial or military grade DC parameters to guardbanded limits at 25° C to guarantee operation over the temperature range.

QUALITY ASSURANCE

All dice are 100% visually inspected to the requirements of MIL-STD-883A, Method 2010.2, condition B.

All dice are glass passivated with only the bonding pads exposed to provide scratch protection. All dice are provided without gold backing.

SHIPPING PACKAGES/ORDER INFORMATION

All dice are packaged in containers with individual compartments which prevent damage to the die during shipping.

Minimum order for AMD dice is 10 pcs.

SPECIAL CHIP PROCESSING

If there is a need for additional testing or processing, contact AMD for detailed information.

See following pages on ordering information for detail ordering number.

ORDERING INFORMATION (MICO) FOR AMERICAN CHARGE CONTROL OF THE CON

Am592 Am685* Am686 Am687* Am1500		Metal Can	Hermetic DIP	Molded		Metal	Hermetic	101086		
Am685* Am686 Am687*			DIF	DIP	Dice	Can	DIP	Flat Pak	Dice	
Am685* Am686 Am687*									***********	
Am686 Am687*		AM592HC	AM592DC	AM592PC	AM592XC	AM592HM	AM592DM		AM592XM	
Am687*	Parta	AM685HL	AM685DL		AM685XL	AM685HM	AM685DM		AM685XM	
		AM686HC	AM686DC		AM686XC	AM686HM	AM686DM		AM686XM	
Am1500	Arneal		AM687DL		AM687XL	MATORIA	AM687DM		AM687XM	
			AM1500DC			BATOSM	AM1500DM	AM1500FM		
	Storeus						AM1500DL	AM1500FL		
Am1501			AM1501DC				AM1501DM	AM1501FM		
*	-		AMITOUTEO				AM1501DL	AM15091FL		
A1500	\$0.00m		AM1408L8				AM1508L8	ANTOUSTIL		
Am1508							AMIDUOLO			
	SCHOOL STATE		AM1408L7							
			AM1408L6							
Am1558	30/03	AM1458H	atanic stance	Historian	10001	AM1558H	GYDSTA	A CHARLE		SOF
m25 Series										
Am2502			AM2502DC	AM2502PC	AM2502XC		AM2502DM	AM2502FM	AM2502XM	
Am2503	80703		AM2503DC	AM2503PC	AM2503XC	REDUKT	AM2503DM	AM2503FM	AM2503XM	
Am2504			AM2504DC	AM2504PC	AM2504XC		AM2504DM	AM2504FM	AM2504XM	
Am25L02	Augs.		AM25L02DC	AM25L02PC	AM25L02XC	armen's	AM25L02DM	AM25L02FM	AM25L02XM	
	ARTIC					STABLES				
\m25L03			AM25L03DC	AM25L03PC	AM25L03XC	The state of the s	AM25L03DM	AM25L03FM	AM25L03XM	
Am25L04			AM25L04DC	AM25L04PC	AM25L04XC	I develo	AM25L04DM	AM25L04FM	AM25L04XM	
Am25LS240	491.752.3		AM25LS240DC	AM25LS240PC	AM25LS240XC	No les	AM25LS240DM	AM25LS240FM	AM25LS240XN	4
Am25LS241			AM25LS241DC	AM25LS241PC	AM25LS241XC		AM25LS241DM	AM25LS241FM	AM25LS241XN	A
Am25LS242			AM25LS242DC	AM25LS242PC	AM25LS242XC		AM25LS242DM	AM25LS242FM	AM25LS242XN	
	other					G. P. C.				
Am25LS243			AM25LS243DC	AM25LS243PC	AM25LS243XC	1	AM25LS243DM	AM25LS243FM	AM25LS243XN	
m25LS244		317524	AM25LS244DC	AM25LS244PC	AM25LS244XC		AM25LS244DM	AM25LS244FM	AM25LS244XN	1
m26 Series	\$/174	AST III	A CONTRACTOR	HSYTMA	9109			HETELL		153
Am2600			AM2600DC	AM2600PC	AM2600XC	2 Stu 11 15 7 5	AM2600DM	AM2600FM	AM2600XM	
m2602			AM2602DC	AM2602PC	AM2602XC	The same of the same of	AM2602DM	AM2602FM	AM2602XM	
m2614	61 KG.		AM2614DC	AM2614PC	AM2614XC	MSTSM	AM2614DM	AM2614FM	AM2614XM	
m2615			AM2615DC	AM2615PC	AM2615XC	Charles Co. Co.	AM2615DM	AM2615FM	AM2615XM	
	100							7		
m2616	61.001		AM2616DC	AM2616PC	AM2616XC	179,1031	AM2616DM	AM2616FM	AM2616XM	
m2617	2123		AM2617DC	AM2617PC	AM2617XC		AM2617DM	AM2617FM	AM2617XM	
m26123			AM26123DC	AM26123PC	AM26123XC	and the second	AM26123DM	AM26123FM	AM26123XM	
m26LS29	1252		AM26LS29DC	AM26LS29PC	AM26LS29XC	VINCEN	AM26LS29DM	AM26LS29FM	AM26LS29XM	
m26LS30			AM26LS30DC	AM26LS30PC	AM26LS30XC		AM26LS30DM	AM26LS30FM	AM26LS30XM	
					AM26LS31XC				AM26LS31XM	
m26LS31	AIREGA		AM26LS31DC	AM26LS31PC		MARSEN	AM26LS31DM	AM26LS31FM		
m26LS32			AM26LS32DC	AM26LS32PC	AM26LS32XC		AM26LS32DM	AM26LS32FM	AM26LS32XM	
m26LS33			AM26LS33DC	AM26LS33PC	AM26LS33XC		AM26LS33DM	AM26LS33FM	AM26LS33XM	
m26L02			AM26L02DC	AM26L02PC	AM26L02XC	Total Control of the	AM26L02DM	AM26L02FM	AM26L02XM	
m26L123	08110		AM26L123DC	AM26L123PC	AM26L123XC	499000	AM26L123DM	AM26L123FM	AM26L123XM	
m26S02			AM26S02DC	AM26S02PC	AM26S02XC	The second second	AM26S02DM	AM26S02FM	AM26S02XM	
Am26S10	-060 cer		AM26S10DC	AM26S10PC	AM26S10XC	- STATES	AM26S10DM	AM26S10FM	AM26S10XM	
Am26S11			AM26S11DC	AM26S11PC	AM26S11XC		AM26S11DM	AM26S11FM	AM26S11XM	
Am26S12			AM26S12DC	AM26S12PC	AM26S12XC	The state of the s	AM26S12DM	AM26S12FM	AM26S12XM	
Am26S12A	Sare		AM26S12ADC	AM26S12APC	AM26S12AXC	March Minkey	AM26S12ADM	AM26S12AFM	AM26S12AXM	
m29 Series				- CORPORATION				a final control		_
Am2905	89-10		AM2905DC	AM2905PC	AM2905XC	MESSEL	AM2905DM	AM2905FM	AM2905XM	
Am2906	danie i		AM2906DC	AM2906PC	AM2906XC	The second	AM2906DM	AM2906FM	AM2906XM	
Am2907	56 151		AM2907DC	AM2907PC	AM2907XC	1000000	AM2907DM	AM2907FM	AM2907XM	
Am2908			AM2908DC	AM2908PC	AM2908XC		AM2908DM	AM2908FM	AM2908XM	
Am2915A			AM2915ADC	AM2915APC	AM2915AXC		AM2915ADM	AM2915AFM	AM2915AXM	
Am2916A	ARETO,		AM2916ADC	AM2916APC	AM2916AXC		AM2916ADM	AM2916AFM	Am2916AXM	
Am2917A			AM2917ADC	AM2917APC	AM2917AXC	A CONTRACTOR	AM2917ADM	AM2917AFM	AM2917AXM	Taki
m32XX Serie	s									
Am3212	shares a		D3212	P3212	AM8212XC		MD3212			
Am3216			D3126	P3216	AM8212XC		MD3216			
Am3226			D3226	P3226	AM8226XC		MD3226			
	7,24,07					MAGE				
Am6070			AM6070DC	AM6070PC	6070XC		AM6070DM	Am6071		
	ATEND		,111007 000		307070		AINIOUT ODIVI	71110071		
Am6072	7					Burn Tarana				
Am6073										
Am6080	80075		AM6080DC	AM6080PC	6080XC		AM6080DM			
Am6081			AM6081DC	6081PC	6081XC	THE RESERVE	AM6081DM			
*			AMDAC-08EQ	HIRS I			AMDAC-08AQ			
DAC-08			AMDAC-08CQ				AMDAC-08Q			
				PARTS OF THE PARTS						_
M, DP or DS		Degreeou		Denneschi	A 1400 F C C V	Decorati			AMOOFOU	
S0056 (8 pir		DS0056CH		DS0056CN	AM0056CX	DS0056H			AM0056X	
S0056 (12 p		DS0056CG	THE STATE OF THE S			DS0056G				
S0056 (14 p	oin)		DS0056J			- Administration	DS0056J			
S16/3692			DS3692J	DS3692N		Griston IV	DS1692J	DS1692W		
M71/81LS95	5		DM81LS95N	DM81LS95J	AM81LS95X	2508418	DM71LS95J	DM71LS95W	AM71LS95X	
M71/81LS96			DM81LS96N	DM81LS96J	AM81LS96X	- ORASSARN	DM71LS96J	DM71LS96W	AM71LS96X	
						0.000000000				
M71/81LS97			DM81LS97N	DM81LS97J	AM81LS97X	LANGE OF THE PARTY	DM71LS97J	DM71LS97W	AM71LS97X	
M71/81LS98	3		DM81LS98N	DM81LS98J	AM81LS98X	ALC: NO.	DM71LS98J	DM71LS98W	AM71LS98X	
M78/8820			DM8820J	DM8820N	AM8820X		DM7820J	DM7820W	AM7820X	
M78/8820A			DM8820AJ	DM8820AN	AM8820AX		DM7820AJ	DM7820AW	AM7820AX	
M78/8830	100						DM7820A3			
			DM8830J	DM8830N	AM8830X			DM7830W	AM7830X	
M78/8831			DM8831J	DM8831N	AM8831X		DM7831J	DM7831W	AM7831X	
M78/8832			DM8832J	DM8832N	AM8832X		DM7832J	DM7832W	AM7832X	
M73/8303B			DP8303BJ	DP8303BN	AM8303BX		DP7303BJ	DP7303BW	AM7303BX	
P73/8304B			DP8304BJ	DP8304BN	AM8304BX		DP7304BJ	DP7304BW	AM7304BX	
			DS8838J	DS8838N	AUTOSOTON		DS7838J	DS7838W	, AUT 00-DA	

ORDERING INFORMATION (Cont.)

DEVICE NUMBER	ORDER NUMBER 0°C to +70°C				ORDER NUMBER -55°C to +125°C			1 - 1 - 21 - 21 - 21 - 21 - 21 - 21 - 2	
	Metal Can	Hermetic DIP	Molded DIP	Dice	Metal Can	Hermetic DIP	Flat Pak	Dice	
					111010115	111010115			
LH2101A LM101	LM301H	LH2301AD LM301D	LMOOTAL	LD301	LH2101AD LM101H	LH2101AF LM101D	LM101F	LD101	
_M101	LM301H	LM301D	LM301N LM201N	LD301	LM201H	LM201D	LM201F	LUIUI	
LM101A	LM301AH	LM301AD	LM301AN	LD301A	LM101AH	LM101AD	LM101AF	LD101A	
*	LINIOUTATT	LIVISOTAD	LM201AN	LDSUIA	LM201AH	LM201AD	LM201AF	LUTOTA	
LM102	LM302H	LM302D	CINEO IT IT	LD302	LM102H	LM102D	LM102F	LD102	
	Militarius	warpat Kv		2002	LM202H	LM202D	LM202F		
LM105	LM305H LM305AH	The property		LD305	LM105H LM205H	400.050		LD105	
LM106	LM306H	LM306D		LD306	LM106H		LM106F	LD106	
					LM206H		LM206F		
LM107 *	LM307H	LM307D		LD307	LM107H LM207H	LM107D LM207D	LM107F LM207F	LD107	
_M108	LM308H	LM308D	LM308N	LD308	LM108H	LM108D	LM108F	LD108	
*	LM308FI	LM308D	LM306N	LD308	LM208H	LM208D	LM208F	LD108	
LM108A	LM308AH	LM308AD	LM308AN	LD308A	LM108AH	LM108AD	LM108AF	LD108A	
LIWITOOA	LIVISUOAH	LIVISUGAD	LIVISUBAIN	LUSUGA				LDTOOK	
Nat His	A 145 A LIEU A	Control Person		_ OXHBUILS N	LM208AH	LM208AD	LM208AF		
LM110	LM310H	LM310D	LM310N	LD310	LM110H	LM110D	LM110F	LD110	
* 11 1 150 151	No section	1 100 HS 3580		971955,8550	LM210H	LM210D	LM210F		
LM111	LM311H	LM311D	LM311N	LD311	LM111H	LM111D	LM111F	LD111	
* TO 400 (ES)				779 92.104	LM211H	LM211D	LM211F		
LM112	LM312H	M312D		LD312	LM112H	LM112D	LM112F	LD112	
• 40 80	1/Filiabolis			286095.00	LM212H	LM212D	LM212F		
LM118	LM318H	LM318D	LM318N	LD318	LM118H	LM118D	LM118F	LD118	
 ske 10 				14310934	LM218H	LM218D	LM218F		
LM119	LM319H	LM319D	LM319N	LD319	LM119H	LM119D	LM119F	LD119	
LIWITIS	LIVISTOTI	LINISTED	LIVISTOIN	20319				LUTTS	
4:80, 389		C. Tildo, nesso		to the last to	LM219H	LM219D	LM219F		
LM124		LM324D	LM324N	LD324		LM124D	LM124F	LD124	
• 101 dos 110				(0.003,253,46		LM224D	LM224F		
LM124A		LM324AD	LM324AN	LD324A	181	LM124AD	LM124AF	LD124A	
10.882.681	A APPENDICULATION	1000000		10.000.00.00	LM224AD	LM224AF			
LM139		LM339D	LM339N	LD339		LM139D	LM139F	LD139	
1.000.10		Company of the Company	V11222111	CH HIGHSTA		LM239D	LM239F		
LM139A		LM339AD	LM339AN	LD339A		LM139AD	LM139AF	LD139A	
• 51111120				1000		LM239AD	LM239AF		
LM148		LM348D	LM348N	LD348		LM148D		LD148	
					LM248D				
LM149		LM349D	LM349N	LD349		LM149D		LD149	
N25 A20				arch Mi		LM249D			
LF155	LF355H		LF355N	LD355	LF155H			LD155	
FIFTA STATE SCHOOL	LEGGGAN			. Doce t	LF225H			104554	
LF155A	LF355AH			LD355A	LF155AH			LD155A	
LF156	LF356H		LF356N	LD356	LF156H			LD156	
					LF256H				
LF16A	LF356AH			LD356A	LF156AH			LD156A	
				JAMES SHAP					
LF157	LF357H		LF357N	LD357	LF157H			LD157	
	TOTAL STATE OF THE			03000	LF257H				
LF157A	LF357AH			LD357A	LF157AH			LD157A	
LF198	LF398H			LD398	LF198H			LD198	
	E. 000/1			Chi i re	LF298H				
LM216	LM316H	LM316D		LD316	LIZOUT				
					LM216H	LM216D	LM216F	LD216	
LM216A	LM316AH	LM316AD		LD316A					
			seconds.		LM216AH	LM216AD	LM216AF	LD216A	
MC1488	Service Fred	MC1488L	AM1488PC	AM1488XC	M Front 1	i in at a		The state of the s	
MC1489		MC1489L	AM1489PC	AM1489XC					
MC1489A		MC1489AL	AM1489APC	AM1489AXC					
MC3448A	e la proper particular	MC3448AL	MC3448APC	AM3448X	THE REAL				
MH0026 (8 pin)	MH0026CH		MH0026CN	AM0026CX	MH0026H			AM0026X	
MH0026 (12 pin) MH0026 (14 pin)	MH0026CG	MMH0026CL		J. 1700 S. R. L.	MH0026G	NAME OF TAXABLE PARTY.			
						MMH0026L	DS0026F		

ORDERING INFORMATION (Cont.)

DEVICE NUMBER	ORDER NUMBER 0°C to +70°C				ORDER NUMBER -55°C to +125°C			
	Metal Can	Hermetic DIP	Molded DIP	Dice	Metal Can	Hermetic DIP	Flat Pak	Dice
SN54/74 Series	A STATE OF THE OWNER,							
SN54/74123		SN74123J	SN74123N	AM74123X	Principle	SN54123J	SN54123W	AM54123X
SN54/74221		SN74221J	SN74221N	Am74221X		SN54221J	SN54221W	AM54221X
SN54/74LS240		SN74LS240J	SN74LS240N	AM74LS240X		SN54LS240J	SN54LS240W	AM54LS240X
SN54/74LS241		SN74LS241J	SN74LS241N	AM74LS241X		SN54LS241J	SN54LS241W	AM54LS241X
SN54/74LS242		SN74LS242J	SN74LS242N	AM74LS242X	and the second	SN54LS242J	SN54LS242W	AM54LS242X
SN54/74LS243	H SOLFOURNISH H	SN74LS243J	SN74LS243N	AM74LS243X	MIGHT DESTRUCTION OF STREET	SN54LS243J	SN54LS243W	AM54LS243X
SN54/74LS244	m etectione l	SN74LS244J	SN74LS244N	AM74LS244X	Standardist	SN54LS244J	SN54LS244W	AM54LS244X
SN54/74S240	and the same	SN74S240J	SN74S240N	AM74S240X	Linear Street, or other	SN54S240J	A Photo Tiles	AM54S240X
SN54/74S241	CHUSTINGER BUT	SN74S241J	SN74S241N	AM74S241X	saids reserved	SN54S241J		AM54S241X
SN54/74S242	relide los des	SN74S242J	SN74S242N	AM74S242X	in politicale :	SN54S242J		AM54S242X
SN54/74S243		SN74S243J	SN74S243N	AM74S243X		SN54S243J		AM54S242X
SN54/74S244		SN74S244J	SN74S244N	AM74S244X		SN54S244J		AM54S243X
NEE (TE O - 1					Sexu Substice	alors de light a	with the ship	
SN55/75 Series SN55/75107B		SN75107BJ	SN75107BN	AM75107BX		SN55107BJ		AM55107BX
SN55/75107B		SN75107BJ	SN75107BN	AM75107BX				
SN55/75106B						SN55108BJ		AM55108BX
		SN75109J	SN75109N	AM75109X	on for this p	SN55109J		AM55109X
SN55/75110		SN75110J	SN75110N	AM75110X		SN55110J		AM55110X
715	715HC	715DC		715XC	715HM	715DM		715XM
723	723HC	723DC	723PC	723XC	723HM	723DM		723XM
SSS725	SSS725CJ	SSS725CP			SSS725J	SSS725P		
733	733HC	733DC		733XC	733HM	733DM	733FM	733XM
741	741HC	741DC	741XC	741HM	741DM	741FM	741XM	
741A	741EHC	741EDC			741AHM	741ADM	741AFM	
SSS741	SSS741CJ	741200			SSS741J	TTADM	7.71731.181	
747	747HC	747DC	747PC	747XC	747HM	747DM	747FM	747XM
747A	747EHC	747EDC	14110	74770	747AHM	747ADM	747AFM	1-77 AIM
SSS747	SSS747CK	SSS747CP			SSS747K	SSS747P	SSS747M	
748	748HC	748DC	748PC	748XC	748HM	748DM	748FM	748XM
8XXX Series 8T26		N8T26F	N8T26B	AM8T26X		S8T26F		AM8T26X
8T26A	The Real Property and the Party and the Part	N8T26AF	N8T26AB	AM8T26AX		S8T26AF		AM8T26AX
8T28	A Leury gyp of the				STREET, STREET			
	Service Services	N8T28F	N8T28B	AM8T28X		S8T28F		AM8T28X
8212 8216		D8212	P8212	AM8212XC	1.00	AM8212DM		
		D8216	P8216	AM8216XC		AM8216DM		
8224		D8224	AM8224PC	AM8224XC		AM8224DM		
Am8224-4		AM8224-4DC						
8226	obsoluted and	D8226	AM8226PC	AM8226XC	shifts noth	AM8226DM		
8228		D8228	AM8228PC	AM8228XC		AM8228DM		
8238	HURS DISTRE	D8238	AM8238PC	AM8238XC	O Jake Miles	AM8238DM		
	Englisch D.	AM8238-4DC	AM8238-4PC	ental without to a	กลการกรบุริกา	ed the embulh	milesalveQ out	Advanced Me
Am8238-4								
Am8238-4 96 Series						9600DM	9600FM	AM9600XM
		9600DC	9600PC	AM9600XC				
96 Series 9600		9600DC 9601DC	9600PC 9601PC	AM9600XC AM9601XC		9601DM	9601FM	AM9601XM
96 Series 9600 9601	nactive even				To reseals v			AM9601XM AM9602XM
96 Series 9600 9601 9602	socia, principal	9601DC	9601PC	AM9601XC	То незвыю у	9601DM	9601FM	
96 Series 9600 9601 9602 9614	erosaction, propa	9601DC 9602DC	9601PC 9602PC	AM9601XC AM9602XC	to season y	9601DM 9602DM 9614DM	9601FM 9602FM	AM9602XM
96 Series	noune, propa	9601DC 9602DC 9614DC	9601PC 9602PC 9614PC 9615PC	AM9601XC AM9602XC AM9614XC AM9615XC	o lesses of	9601DM 9602DM 9614DM 9615DM	9601FM 9602FM 9614FM	AM9602XM AM9614XM
96 Series 9600 9601 9602 9614 9615	oseffer, proces	9601DC 9602DC 9614DC 9615DC	9601PC 9602PC 9614PC	AM9601XC AM9602XC AM9614XC	То вваявія у	9601DM 9602DM 9614DM	9601FM 9602FM 9614FM	AM9602XM AM9614XM

PRODUCT ASSURANCE MIL-M-38510 • MIL-STD-883

The product assurance program at Advanced Micro Devices defines manufacturing flow, establishes standards and controls, and confirms the product quality at critical points. Standardization under this program assures that all products meet military and government agency specifications for reliable ground applications. Further screening for users desiring flight hardware and other higher reliability classes is simplified because starting product meets all initial requirements for high-reliability parts.

The quality standards and screening methods of this program are equally valuable for commercial parts where equipment must perform reliably with minimum field service.

Two military documents provide the foundation for this program. They are:

MIL-M-38510 – General Specification for Microcircuits
MIL-STD-883 – Test Methods and Procedures for Microelectronics

MIL-M-38510 describes design, processing and assembly workmanship guidelines for military and space-grade integrated circuits. All circuits manufactured by Advanced Micro Devices for full temperature range (-55°C to +125°C) operation meet these quality requirements of MIL-M-38510.

MIL-STD-883 defines detail testing and inspection methods for integrated circuits. Three of the methods are quality and processing standards directly related to product assurance:

Test Method 2010 defines the visual inspection of integrated circuits before sealing. By confirming fabrication and assembly quality, inspection to this standard assures the user of reliable circuits in long-term field applications. Standard inspection at Advanced Micro Devices includes all the requirements of the latest revision of Method 2010, condition B.

Test Method 5004 defines three reliability classes of parts. All must receive certain basic inspection, preconditioning and screening stresses. The classes are:

Class C - Used where replacement can be readily accomplished. Screening steps are given in the AMD processing flow chart

Class B — Used where maintenance is difficult or expensive and where reliability is vital. Devices are upgraded from Class C to Class B by 160-hour burn-in at 125°C followed by more extensive electrical measurements. All other screening requirements are the same.

Class S — Used where replacement is extremely difficult and reliability is imperative. Class S screening selects extra reliability parts by expanded visual and X-ray inspection, further burn-in, and tighter sampling inspection.

All hermetically sealed integrated circuits (military and commercial) manufactured by Advanced Micro Devices are screened to MIL-STD-883, Class C. Molded integrated circuits receive Class C screening except that centrifuge and hermeticity steps are omitted.

Optional extended processing to MIL-STD-883, Class B is available for all AMD integrated circuits. Parts procured to this screening are marked with a "-B" following the standard part number, except that linear 100, 200 or 300 series are suffixed "/883B".

Test Method 5005 defines qualification and quality conformance procedures. Subgroups, tests and quality levels are given for Group A (electrical), Group B (mechanical quality related to the user's assembly environment), Group C (die related tests) and Group D (package related tests). Group A tests are always performed; Group B, C and D may be specified by the user.

1

MANUFACTURING, SCREENING AND INSPECTION FOR INTEGRATED CIRCUITS

All integrated circuits are screened to MIL-STD-883, Method 5004, Class C; quality conformance inspection where required is performed to Class B quality levels on either Class B or Class C product.

All full-temperature-range (-55° C to $+125^{\circ}$ C) circuits are manufactured to the workmanship requirements of MIL-M-38510.

The flow chart identifies processing steps as they relate to MIL-STD-883 and MIL-M-38510.

GROUP A ELECTRICAL TESTS From MIL-STD-883, Method 5005, Table I

Subgroups	LTPD (Note 1)	Initial Sample Size
Subgroup 1 — Static tests at 25°C	5	45
Subgroup 2 — Static tests at maximum rated operating temperature	7	32
Subgroup 3 — Static tests at minimum rated operating temperature	7	32
Subgroup 4 - Dynamic tests at 25°C - Linear devices	5	45
Subgroup 5 — Dynamic tests at maximum rated operating temperature — Linear devices	0 7 (32
Subgroup 6 — Dynamic tests at minimum rated operating temperature — Linear devices	7	32
Subgroup 7 — Functional tests at 25° C	5	45
Subgroup 8 — Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 — Switching tests at 25°C — Digital devices	7	32
Subgroup 10 — Switching tests at maximum rated operating temperature — Digital devices (Note 2)	10	10
Subgroup 11 – Switching tests at minimum rated operating temperature – Digital devices (Note 2)	10	10

Sampling plans are based on LTPD tables of MIL-M-38510. The smaller initial sample size, based on zero rejects allowed, has been chosen
unless otherwise indicated. If necessary, the sample size will be increased once to the quantity corresponding to an acceptance number
of 2. The minimum reject number in all cases is 3.

2. These subgroups are usually performed during initial device characterization only.

OPTIONAL EXTENDED PROCESSING CLASS B Steps 101 Through 110

Advanced Micro Devices offers several extended processing options to meet customer high-reliability requirements. These are defined in AMD document 00-003. The flow chart below outlines Option B, a 160-hr burn in. Military temperature range devices processed to this flow (in the left column) meet the screening requirements of MIL-STD-883, Class B.

OTHER OPTIONS

Document 00-003, "Extended Processing Options", further defines Option B as well as other screening or sampling options available or special order. Available options are listed here for reference.

Option	Description	Effect			
А	Modified Class A screen (Similar to Class S screening)	Provides space-grade product, fol- lowing most Class S requirements of MIL-STD-883, Method 5004.			
В	160-hr operating burn in	Upgrades a part from Class C to Class B.			
Х	Radiographic inspection (X-ray)	Related to Option A. Provides limited internal inspection of sealed parts.			
S	Scanning Electron Microscope (SEM) metal inspection	Sample inspection of metal coverage of die.			
V	Preseal visual inspection to MIL-STD-883, Method 2010, Cond. A	More stringent visual inspection of assemblies and die surfaces prior to seal.			
Р	Particle impact noise (PIN) screen with ultrasonic detection.	Detects loose particles of approximately 0.5 mil size or larger, which could affect reliability in zero-G or high vibration applications.			
Q	Quality conformance inspection (Group B, C and D life and environmental tests)	Samples from the lot are stressed and tested per Method 5005. The customer's order must state which groups are required. Group B destroys 16 devices; Group C, 92 devices; Group D, 60 devices.			

문데취취"위한 의견된 14년

Copyrige on the Copyrige Copyr

Market State of the Control of the

ALPHA NUMERIC INDEX
FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE
DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

1

COMPARATORS COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Comparators – Section II

Am106/206/306	Voltage Comparator/Buffer	2-1
Am111/211/311	Precision Voltage Comparator	2-5
Am119/219/319	Dual Voltage Comparator	2-9
Am139/239/339	Low Offset Voltage Quad Comparator	2-13
Am139A/239A/339A	Low Offset Voltage Quad Comparator	2-13
Am685	Voltage Comparator	2-19
Am686	Voltage Comparator	
Am687/687A	Dual Voltage Comparator	. 2-29
Am1500	Dual Precision Voltage Comparator	2-31
LH2111/2211/2311	Dual Precision Voltage Comparator	2-35
Application Notes		
A New High-Speed Com	parator - The Am685	2-39
	Designing with High-Speed Comparators	

Distinctive Characteristics

- Functionally, electrically, and pin-for-pin equivalent to the National LM 106/206/306
- · Drives RTL, DTL or TTL directly
- Output can switch voltages up to 24 V @ 100 mA
- · Fan-out of 10 with DTL or TTL

- 100% reliability assurance testing in compliance with MIL STD 883.
- Electrically tested and optically inspected die for assemblers of hybrid products.
- Available in metal can and hermetic flat package.

FUNCTIONAL DESCRIPTION

The Am106/206/306 are high-speed voltage comparators/buffers designed to be used in applications where high accuracy and fast response times are required. The device is useful as a pulse-height discriminator, relay or lamp driver or a line receiver.

FUNCTIONAL DIAGRAM

LIC-072

APPLICATION

Level Detector With Hysteresis

LIC-073

Upper and Lower Trip Points:
$$V_{UT} = V_{REF} \, + \, \frac{R_2 \, [V_{0 \, MAX} \, {}^{-} \, V_{REF}]}{R_2 + R_3}$$

$$V_{LT} = V_{REF} + \frac{R_2 [V_{0 MIN} - V_{REF}]}{R_2 + R_3}$$

$$\begin{split} & \text{Hysteresis} = \text{V}_{\text{H}} = \text{V}_{\text{UT}} \cdot \text{V}_{\text{LT}} \\ & = \frac{\text{R}_2 \left[\text{V}_{\text{0 MAX}} \cdot \text{V}_{\text{0 MIN}} \right]}{\text{R}_2 + \text{R}_3} \end{split}$$

ORDERING INFORMATION

Part	Package	Temperature	Order
Number	Type	Range	Number
Am306	Metal Can	0°C to +70°C	LM306H
	Dice	0°C to +70°C	LD306
Am206	Metal Can	-25°C to +85°C	LM206H
Am106	Metal Can	-55°C to +125°C	LM106H
	Flat Pak	-55°C to +125°C	LM106F
	Dice	-55°C to +125°C	LD106

CONNECTION DIAGRAMS Top Views

Note: Pin 6 connected to bottom of package. Note: Pin 4 connected to case.

Am106/206/306

MAXIMUM RATINGS

Positive Supply Voltage		15 V
Negative Supply Voltage	Lage Comparator/Butter	—15 V
Output Voltage		24 V
Output to Negative Supply Voltage	- And Anna Charles - St. Charles	30 V
Differential Input Voltage		±5 V
Input Voltage		±7 V
Power Dissipation (Note 1)	nesilat 3800 to e	#30 mW
Output Short Circuit Duration	F 8 UTS JIW Complete of	10 sec
Operating Temperature Range Am106 Am206 Am306		00°C to +125°C 0°C to +85°C 0°C to +70°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature (soldering, 60 sec)		300°C
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 2)

Parameter (see definitions)	Conditions	Am306 Min Typ	Max	Am106 Am206 Min Typ	Max	Units
Input Offset Voltage	Note 3	1.6	5.0	0.5	2.0	mV
Input Offset Current	Note 3	1.8	5.0	0.7	3.0	μΑ
Input Bias Current		16	25	10	20	μΑ
Voltage Gain		40		40		V/mV
Response Time	Note 4	30	40	30	40	ns
Saturation Voltage	$V_{IN} \leq -5 \text{ mV}, \ I_{sink} = 100 \text{ mA}$	0.8	2.0	1.0	1.5	V
Output Leakage Current	$V_{IN} \geq 5 \text{ mV}, \ 8 \text{ V} \leq V_{OUT} \leq 24 \text{ V}$	0.02	2.0	0.02	1.0	μΑ
The Following Specifications Appl	y Over The Operating Temperature Ra	inges				
Input Offset Voltage	Note 3		6.5	-	3.0	mV
Average Temperature Coefficient of Input Offset Voltage	$T_{A(min)} \leq T_A \leq T_{A(max)}$	5.0	20	3.0	10	μV/°C
Input Offset Current	$T_A = T_{A(max)}$ Note 3, $T_A = T_{A(min)}$	0.6 2.4	5.0 7.5	0.25 1.8	3.0 7.0	μA μA
Average Temperature Coefficient of Input Offset Current	$\begin{array}{c} 25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{A(max)}} \\ \text{T}_{\text{A(min)}} \leq \text{T}_{\text{A}} \leq 25^{\circ}\text{C} \end{array}$	15 24	50 100	5.0 15	25 75	nA/°C nA/°C
Input Bias Current	V =classific		40		45	μΑ
Input Voltage Range	$-7 \text{ V} \ge \text{V}^- \ge -12 \text{ V}$	±5.0		±5.0		V
Differential Input Voltage Range	The second second	±5.0		±5.0		V
Saturation Voltage	$V_{IN} \leq -5 \text{ mV}, I_{sink} = 50 \text{ mA}$		1.0		1.0	V
Saturation Voltage	$V_{IN} \le -5 \text{ mV}, I_{sink} \le 16 \text{ mA}$		0.4		0.4	V
Positive Output Level	$V_{IN} \geq 5$ mV, $I_{OUT} = 400 \mu A$	2.5	5.5	2.5	5.5	V
Output Leakage Current	$V_{IN} \geq 5 \text{ mV}, 8 \text{ V} \leq V_{OUT} \leq 24 \text{ V}$		100		100	μΑ
Strobe Current	V _{strobe} = 0.4 V	1.7	3.3	1.7	3.3	mA
Strobe ON Voltage		0.9 1.4	Egross	0.9 1.4		V
Strobe OFF Voltage	$I_{sink} \leq 16 \text{ mA}$	Macemula.4	2.5	1.4	2.5	V
Positive Supply Current	$V_{IN} = -5 \text{ mV}$	5.5	10	5.5	10	mA
Negative Supply Current	Mary Dr. Bullion	1.5	3.6	1.5	3.6	mA

Note 1: Derate metal can package at 6.8 mW/°C for operation at ambient temperatures above 60°C; derate flat package at 5.4 mW/°C for operation at ambient temperatures above 40°C.

Note 2: These specifications apply for -3 V ≥ V⁻ ≥ -12 V, V⁺ = 12 V and T_A = 25°C unless otherwise specified.

Note 3: The offset voltages, offset currents, and bias currents given are the maximum values required to drive the output from the minimum output level up to the maximum output level. Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

PERFORMANCE CURVES

LIC-076

ADDITIONAL APPLICATIONS

Level Detector and Lamp Driver

LIC-077

Relay Driver

LIC-079

Fast Response Peak Detector

LIC-078

Adjustable Threshold Line Receiver

*Optional for response time control

Metallization and Pad Layout

33 x 46 Mils

Am111/211/311

Precision Voltage Comparator

Distinctive Characteristics

- The Am111/211/311 are functionally, electrically, and pin-for-pin equivalent to the National LM 111/211/311
- Output Drive 50V and 50mA
- Input Bias Current 150nA max.
- Input Offset Voltage 4mV max.
- Differential Input Voltage Range ±30V
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for assemblers of hybrid products
- Mixing privileges for obtaining price discounts. Refer to price list.
- Available in Metal Can, Hermetic Dual-In-Line or hermetic Flat Packages

FUNCTIONAL DESCRIPTION

The Am111/211/311 are voltage comparators featuring low input currents, high differential and common mode voltage ranges, wide supply voltage range, and outputs compatible with all bipolar and MOS circuitry. The inputs and outputs can be isolated from system ground, and the output can drive loads refered to ground or either supply. Strobing and offset balancing are available and the outputs can be wire ORed.

FUNCTIONAL DIAGRAM

LIC-081

CONNECTION DIAGRAM

Top View Dual-In-Line Am111/211/311

Pin 6 is connected to bottom of package.

LIC-082

CONNECTION DIAGRAM
Top View
Flat Package
Am111/211/311

Pin 5 is connected to bottom of package.

LIC-083

ORDERING	INFORMATION
Package	Temperature

Part	Package	Temperature	Order
Number	Type	Range	Number
Am311	TO-99	0°C to +70°C	LM311H
	Hermetic DIP	0°C to +70°C	LM311D
	Mini-DIP	0°C to +70°C	LM311N
	Dice	0°C to +70°C	LD311
Am211	TO-99	-25°C to +85°C	LM211H
	Hermetic DIP	-25°C to +85°C	LM211D
Am111	TO-99	-55°C to +125°C	LM111H
	Hermetic DIP	-55°C to +125°C	LM111D
	Flat Pak	-55°C to +125°C	LM111F
	Dice	-55°C to +125°C	LD111

CONNECTION DIAGRAM Top View Metal Can Am111/211/311

Pin 4 is connected to case

LIC-084

501/
50V
40V
30V
±30V
+30V, -0V
-30V
500mW
10 sec
THE PROPERTY IN
−55°C to +125°C
−25°C to +85°C
0°C to +70°C
−65°C to +150°C
300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 2)

		Am311 Am211						
rameters (see definitions)	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage (Note 3)			2.0	7.5	S. F.Fan	0.7	3.0	mV
Input Offset Current (Note 3)			6.0	50.0		4.0	10.0	nA
Input Bias Current (Note 3)			100	250		60	100	nA
Response Time (Note 4)	$R_L = 500 \Omega \text{ to } +5 \text{ V, V}_E = 0$		200			200		ns
Supply Current Positive (Note 5)			3.9	7.5		3.9	6.0	mA
Negative (Note 5)			2.6	5.0	110	2.6	4.5	mA
Voltage Gain			200		- 15	200		V/mV
Saturation Voltage	$V_{IN} \leq -5 \text{ mV}$, $I_C = 50 \text{ mA}$					0.75	1.5	Volts
Saturation Voltage	$V_{IN} \leq -10 \text{ mV}$, $I_C = 50 \text{ mA}$		0.75	1.5				Volts
Output Leakage Current	$V_{IN} \ge +5 \text{ mV}$, V_C to $V_E = 50 \text{ V}$					0.2	10.0	nΑ
Output Leakage Current	$V_{IN} \ge +10 \text{ mV}$, V_C to $V_E = 40 \text{ V}$		0.2	50.0	rit outs	100 11	HIST	nA
The Following Specification	s Apply Over The Operating Tempo	erature R	anges					
Input Offset Voltage (Note 3)	alteratives		Esgel 1	10.0	mu summ	FLE CLERK	4.0	mV
Input Offset Current (Note 3)	NOT			70.0			20.0	nA
Input Bias Current (Note 3)	Mat A	THE PARTY.		300		0.8×0.61	150	nA
Saturation Voltage	$V_{IN} \leq -6 \text{ mV}$, $I_C = 8 \text{ mA}$	STATE OF		1		0.23	0.40	Volts
Saturation voltage	$V_{IN} \leq -10 \text{ mV}, I_C = 8 \text{ mA}$	n (Elfic)	0.23	0.40		BROT	201	Volts
Output Leakage Current	$V_{IN} \ge +6 \text{ mV}$, V_C to $V_E = 50 \text{ V}$	1 (E)/L)	7.01	HOT	916	0.1	0.5	μΑ
Input Voltage Range	The other many that is a second	±13	±14	53 L	±13	±14		Volts
Supply Current Positive (Note 5)	7 10700	116 12 /	Digital Control	137		2.7	4.5	mA
Negative (Note 5)	1 Δ = 125 C	HIDIOTE I	91 3184 1	nº aci	1 916	1.8	3.5	mA

Am111

Notes: 1. For the Am111/211/311, derate Metal Can package at 6.8mW/°C for operation at ambient temperatures above 75°C, the Dual In-Line at 9mW/°C

for operation at ambient temperatures above 95°C, and the Flat Packages at 5.4mW/°C for operation at ambient temperatures above 57°C.

2. Unless otherwise specified, these specifications apply for V+ = +15V, V- = -15V, V_E = -15V, and R_L at collector output = $7.5 \text{k}\Omega$ to +15V. 3. The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1V of the supplies

with a 7.5k Ω load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance. 4. The response time specified (see definitions) is for a 100mV input step with 5mV overdrive.

PERFORMANCE CURVES

LIC-085

APPLICATIONS

Offset Balancing

LIC-086

Increasing Input Stage Current*

LIC-087

Strobing

LIC-088

Strobing OFF both Input and Output Stages**

LIC-089

Metallization and Pad Layout

48 x 65 Mils

^{*}Increases input bias current and common mode slew rate by a factor of 3.

**Typical input current = 50pA with inputs strobed OFF.

Distinctive Characteristics

- The Am119/219/319 are functionally, electrically, and pin-for-pin equivalent to the National LM119/ 219/319.
- Two independent comparators.
- Operates from single 5V supply.
- Output drive 35V and 25mA.
- Input bias current $-1\mu A$ max. (1.2 μA for Am319)
- Response time 80ns typical at ±15V.

- Minimum fan out of 2 each side.
- Inputs and outputs isolated from system ground.
- High common mode slew rate.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Electrically tested and optically inspected die for assemblers of hybrid products.
- Available in Metal Can, Hermetic Dual-In-Line, Hermetic Flatpack or Molded DIP packages.

2

FUNCTIONAL DESCRIPTION

The Am119/219/319 are dual high-speed voltage comparators designed to operate over a wide range of voltage supplies down to a single 5V supply and ground. They have higher gain and lower input bias currents than devices such as the $\mu A710$. The uncommitted collector of the output stage facilitates RTL, DTL and TTL interfacing, and driving lamps and relays at currents up to 25mA. The device is specified for operation from power supplies up to $\pm 15 \rm V$ and features faster response than the Am111 at the expense of higher power dissipation.

The Am119 performance is specified over the temperature range -55°C to 125°C, the Am219 performance is specified over the temperature range -25°C to 85°C and the Am319 performance is specified over the temperature range 0°C to 70°C.

LIC-091

CONNECTION DIAGRAM Top View Dual In-Line

Pin 6 connected to bottom of package.

CONNECTION DIAGRAM Top View Flat Package

Pin 5 connected to bottom of package,

LIC-092

	ORDERIN	G INFORMATION	
Part	Package	Temperature	Order
Number	Type	Range	Number
Am319	TO-99	0°C to +70°C	LM319H
	DIP	0°C to +70°C	LM319D
	Molded DIP	0°C to +70°C	LM319N
	Dice	0°C to +70°C	LD319
Am219	TO-99	-25°C to +85°C	LM219H
	DIP	-25°C to +85°C	LM219D
	Flat Pak	-25°C to +85°C	LM219F
Am119	TO-99	-55°C to +125°C	LM119H
	DIP	-55°C to +125°C	LM119D
	Flat Pak	-55°C to +125°C	LM119F
	Dice	-55°C to +125°C	LD119

CONNECTION DIAGRAM Top View Metal Can

Pin 5 connected to case.

LIC-093

LIC-090

Am119/219/319

MAXIMUM RATINGS (Above which the useful life may be impaired)

Voltage from V ⁺ to V ⁻	36 V
Voltage from Collector Output to V ⁻	36 V
Voltage from Ground to V ⁺	18 V
Voltage from Ground to V ⁻	25 V
Differential Input Voltage	seritor interesed to ±5.0V
Input Voltage (Note 1)	±15V
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10s
Operating Temperature Range	
Am119	-55°C to +125°C
Am219 hamsaani alisahaa biis naasa ulaahaada a	−25°C to +85°C
Am319 Am319	base VdS - and 0°C to +70°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C
Lead Temperature (soldering, 10 sec)	300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, Unless Otherwise Noted) (Note 3)

rameters					Am319		Am119/219				
definitions)		Conditions		Min.	Typ.	Max.	Min.	Тур.	Max.	Units	
Input Offset Volta	ge (Note 4)	R _S ≤ 5 k		E16mA	2.0	8.0	- B	0.7	4.0	mV	
Input Offset Curre	nt (Note 4)			a o syr	80	200	ille (BWC)	30	75	nA	
Input Bias Current		3			250	1000		150	500	nA	
Response Time (N	ote 5)				80			80		ns	
	THE RESERVE	V ⁺ = 5.0 V, V ⁻ = 0			4.3	Market Park	THE PARTY	4.3		113	
Supply Current	Positive	V _S = ±15 V			8.0	12.5	i bod igo	8.0	11.5	mA	
	Negative	V _S = ±15 V			3.0	5.0		3.0	4.5		
Voltage Gain				8.0	40	7.1	10	40			
Saturation Voltage		V _{in} ≤ -5.0 mV, I _C = 25 mA						0.75	1.5	Volts	
		$V_{in} \leq -10 \text{mV}$, $I_C = 25 \text{mA}$			0.75	1.5		Alg ne		VOITS	
		$V_{in} \ge +5.0 \text{mV}$, V_C to $V_E = 35 \text{ V}$				14	Ly	0.2	2.0		
Output Leakage Co	urrent	$V_{in} \ge +10 \text{mV}$, V_C to $V_E = 35 \text{V}$			0.2	10	- A	Letter on		μΑ	
The Following S	pecifications	Apply Over The Operating	Temperatur	e Ranges	S	nest!	1.>	0			
Input Offset Volta	ge (Note 4)	R _S ≤5k				10		-Disuri	7.0	mV	
Input Offset Curre	nt (Note 4)					300			100	nA	
Input Bias Current	gazinga ta mar	ad of Bet less is a final to		mio-laju	51	1200	lead of b	ston mas i	1000	nA	
Saturation Voltage MARDAN		V. < 9.0mV/ l= = 2.2mA	T _A ≥ 0°C					0.23	0.4		
		$V_{in} \le -8.0 \mathrm{mV}$, $I_C = 3.2 \mathrm{mA}$	T _A ≤ 0°C		0	OH da	109 11 8	ทเทอนห	0.6	Volts	
		V _{in} ≤ −12mV, I _C = 3.2mA		MAT ID	0.3	0.4		10.620	I BH		
Output Leakage Current		$V_{in} \ge +8.0 \text{ mV}$, V_C to $V_E = 3$	85 V	20114011		79/178/1		1.0	10	μΑ	
Input Voltage D	20	V _S = ±15 V		THE PERSON	±13	Pot-And	196 31	±13		Val	
Input Voltage Range		V+ = 5.0 V, V- = 0		1.0		3.0	1.0	girl ne	3.0	Volts	

Notes: 1. For supply voltages less than ± 15V the absolute maximum rating is equal to the supply voltage.

2. Derate Metal Can package at 6.8mW/°C for operation at ambient temperatures above 75°C, the Dual-In-Line at 9mW/°C for operation at temperatures above 55°C.

3. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ± 15V supplies.

4. The offset voltages and offset currents given are the maximum values required to drive the output within 1 volt of either supply with a 1mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

5. The response time specified is for a 100mV input step with 5mV overdrive.

TYPICAL PERFORMANCE CURVES

Metallization and Pad Layout

Am139/239/339 · Am139A/239A/339A

Low Offset Voltage Quad Comparators

Distinctive Characteristics

- Four high precision comparators
- Reduced VOS drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Wide single supply voltage range or dual supplies 2.0 V_{DC} to 36 V_{DC}
 - ±1.0 Vpc to ±18 Vpc
- Very low supply current drain (0.8mA)—independent of supply voltage (1.0mW/comparator) makes these comparators suitable for battery operation.

- Low input bias current 35 nA
- Low input offset current 3.0 nA and offset voltage — 2.0 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage

1.0mV at 5.0μA

60mV at 1.0mA

 Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

FUNCTIONAL DESCRIPTION

The Am139, Am239, Am339, Am339A, Am239A and Am339A quad comparators are functionally, electrically and pin-for-pin equivalent to the National LM139, LM239, LM339, LM339A, LM239A and LM339A. This series of precision comparators consists of four independent voltage comparators which were specifically designed to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators have a unique characteristic

in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The Am139/A series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the Am139/A will directly interface with MOS logic — where the lower power drain of the Am139/A is a distinct advantage over standard comparators.

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
Am339	DIP	0°C to 70°C	LM339D
	Molded DIP	0°C to 70°C	LM339N
	Dice	0° C to 70° C	LD339
Am239	DIP	-25°C to +85°C	LM239D
Am139	DIP	-55° C to +125° C	LM139D
	Flat Pack	-55°C to +125°C	LM139F
	Dice	-55°C to +125°C	LD139
Am339A	DIP	0° C to 70° C	LM339AD
	Molded DIP	0°C to 70°C	LM339AN
	Dice	0° C to 70° C	LD339A
Am239A	DIP	-25° C to +85° C	LM239AE
Am139A	DIP	-55°C to +125°C	LM139AD
	Flat Pack	-55°C to +125°C	LM139AF
	Dice	-55°C to +125°C	LD139A

Am139/239/339 • Am139A/239A/339A

HIPUL VUILAYE -U.S VDC IU TSU VDC

Power Dissipation (Note 1)	
Ceramic Dip	900 mW
Plastic Dip	570 mW
Flat Pack	800 mW

Operating Temperature Range

Am 339/A	0° C to +70° C
Am 239/A	-25°C to +85°C
Am139/A	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C
Lead Temperature (Soldering, To seconds)	300

LECTRICAL CHAP $V^+ = +5.0V_{DC}$ (Note 4			Am23 Am33			Am13	9		m239		А	m139	Α	
arameters	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	T _A = +25°C (Note 9)		±2.0	±5.0		±2.0	±5.0		±1.0	±2.0	7.81	±1.0	±2.0	mV _D C
Input Bias Current (Note 5)	I _{IN(+)} or I _{IN(-)} with Output in Linear Range, T _A = +25°C		25	250		25	100		25	250	1.50	25	100	nADC
Input Offset Current	I _{IN(+)} - I _{IN(-)} , T _A = +25°C	1 . 3	±5.0	±50		±3.0	±25		±5.0	±50	salu lind	±3.0	±25	nADO
Input Common-Mode Voltage Range (Note 6)	T _A = +25° C	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	VDC
Supply Current	$R_L = \infty$ on all Comparators $T_A = +25^{\circ}C$		0.8	2.0		0.8	2.0		0.8	2.0	1 /3	0.8	2.0	mADO
Voltage Gain	$R_L \ge 15k\Omega$, $T_A = +25^{\circ}C$, $V^+ = 15 V_{DC}$ (To Support Large V_0 Swing)		200			200		50	200	1012	50	200		V/mV
Large Signal Response Time	V_{IN} = TTL Logic Swing, V_{REF} = +1.4 V_{DC} , V_{RL} = 5.0 V_{DC} , R_{L} = 5.1 $k\Omega$ and T_{A} = +25 $^{\circ}$ C		300	Si .		300			300	- 100 - 100		300		ns
Response Time (Note 7)	V_{R_L} = 5.0 V_{DC} and R_L = 5.1 $k\Omega$ T_A = +25° C		1.3		j. 762	1.3			1.3	a last		1.3		μs
Output Sink Current	$V_{IN(-)} \ge +1.0 V_{DC}, V_{IN(+)} = 0,$ and $V_0 \le +1.5 V_{DC}, T_A = +25^{\circ} C$	6.0	16		6.0	16		6.0	16	in Ignor	6.0	16	eth	mADO
Saturation Voltage	$V_{IN(-)} \ge +1.0 V_{DC}, V_{IN(+)} = 0,$ and $I_{sink} \le 4.0 mA, T_A = +25°C$		250	400		250	400		250	400	Liner	250	400	mV _D (
Output Leakage Current	$V_{IN(+)} \ge +1.0 V_{DC}, V_{IN(-)} = 0$ and $V_0 = 5.0 V_{DC}, T_A = +25^{\circ}C$		0.1			0.1			0.1			0.1		nADO
Input Offset Voltage	(Note 9)			9.0			9.0			4.0			4.0	mVD(
Input Offset Current	$I_{IN(+)} - I_{IN(-)}$			±150			±100			±150		919	±100	nADO
Input Bias Current	I _{IN(+)} or I _{IN(-)} with Output in Linear Range			400		1 L	300			400	311		300	nADO
Input Common-Mode Voltage Range		0		V ⁺ -2.0	0	7.5	V ⁺ -2.0	0		V ⁺ -2.0	0	id etilok	V ⁺ -2.0	VDC
Saturation Voltage	$V_{IN(-)} \ge +1.0 V_{DC}, V_{IN(+)} = 0$ and $I_{sink} \le 4.0 \text{ mA}$			700			700			700			700	mV _D (
Output Leakage Current	$V_{IN(+)} \ge +1.0 V_{DC}, V_{IN(-)} = 0$ and $V_0 = 30 V_{DC}$		T - 1	1.0			1.0			1.0			1.0	μADO
Differential Input Voltage (Note 8)	Keep all $V_{IN's} \ge 0 V_{DC}$ (or V^- if used)			36	1984		36			V ⁺	16	nia U	V+	VDC

- Note 1: For high temperature operation, the Am339/A must be derated based on a +125°C maximum junction temperature and a thermal resistance of $\pm 175^{\circ}$ C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The Am239/A and Am139/A must be derated based on a $\pm 150^{\circ}$ C maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small (Pd \leq 100 mW), provided the output transistors are allowed to saturate.
 - Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V+.
 - 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is, not destructive and normal outputs states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3~\mathrm{V}_{DC}$.
 - These specifications apply for V⁺ = +5.0 V_{DC} and -55°C \leq T_A \leq +125°C, unless otherwise stated. With the Am239/A all temperature specifications are limited to -25°C \leq T_A \leq +85°C and the Am339/A temperature specifications are limited to 0°C \leq T_A \leq +70°C.
 - The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
 - The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V^+ -1.5 V, but either or both inputs can go to +30 V_{DC} without damage. The response time specified is for a 100mV input step with 5.0mV overdrive. 300ns can be achieved with larger overdrive signals, see typical

 - If the voltage applied to any input exceeds V^+ , all four comparator outputs will go to the high voltage level. The low input voltage state must not be less than $-0.3~{\rm V_{DC}}$ (or $0.3~{\rm V_{DC}}$ below the magnitude of the negative power supply, if used).
 - At output switch point, $V_0 \cong 1.4 V_{DC}$, $R_S = 0 \Omega$ with V^+ from 5.0 V_{DC} ; and over the full input common mode range (0 V_{DC} to V^+ -1.5 V_{DC}).

APPLICATION HINTS

The Am139/A is a high gain, wide bandwidth device; which like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. The oscillation shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board-layout is helpful as it reduces stray input-output coupling. Lowering the input resistors to $<10 k\Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the I/C card attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the Am139/A establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2V_{\hbox{\scriptsize DC}}$ to 30 $V_{\hbox{\scriptsize DC}}$.

It is not normally necessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 V_{DC}$ (at 25° C). An input clamp diode and input resistor can be used as shown in the applications section.

The output of the Am139/A is the uncommitted collector of a grounded-emitter NPN output transistor. Several collectors can be tied together to provide an output OR'ing function. An output "pull-up" resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the Am139/A package. The output can also be used as a simple SPST switch to ground (when a "pull-up" resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^+) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60Ω r_{sat} of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp very nearly to ground level for small load

TYPICAL APPLICATIONS (Cont.) $(V^+ = 5.0V_{DC})$ Q +5.0V **3.0kΩ** 10kΩ ≥ **\$**100kΩ 1/4 DM54XX 0-1/4 DM54XX LIC-108 LIC-110 LIC-109 **Driving CMOS Basic Comparator Driving TTL** $(V^{+} = 15V_{DC})$ Q V⁺(12V) **\$** 3.0kΩ 10kΩ LAMP 12 ESN 2N2222 +VREF LOW O ALL DIODES 1N914 LIC-111 VOUT = A . B . C LIC-112 **Limit Comparator** Large Fan-In AND Gate **≥**10kΩ 10kΩ 100kΩ 200Ω € -0 VO 0.001μF 100kΩ 200Ω ₹1.0M 1N914 LIC-113 LIC-114 **One-Shot Multivibrator** Remote Temperature Sensing

TYPICAL APPLICATIONS (Cont.) $(V^{+} = 15V_{DC})$ **≤** 1.0M **\$**1.0M **₹**10M **≤** 560kΩ 15kΩ **≤** 100kΩ +VIN O-100kΩ ≸ 1/4 Am339/A +4.0V 100 pF 62kΩ **≨** 240kΩ LIC-115 One-Shot Multivibrator with Input Lock Out Q +15V D₁ 1N914 **≸** 15kΩ 100kΩ R₂ 100kΩ -**VV**-51kΩ 80 pF 1/4 Am339/A *For large ratios of R₁/R₂, D₁ can be omitted. LIC-117 LIC-116 **Pulse Generator** Bi-Stable Multivibrator

- 6.5ns MAXIMUM PROPAGATION DELAY AT 5mV OVERDRIVE
- 3.0ns Latch setup time
- Complementary ECL outputs
- ullet 50 Ω line driving capability

- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically and optically inspected dice for assemblers of hybrid products
- Available in metal can and hermetic dual-in-line packages

FUNCTIONAL DESCRIPTION

The Am685 is a fast voltage comparator manufactured with an advanced bipolar NPN, Schottky diode high-frequency process that makes possible very short propagation delays (6.5 ns) without sacrificing the excellent matching characteristics hitherto associated only with slow, high-performance linear IC's. The circuit has differential analog inputs and complementary logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated 50% transmission lines. The low input offset and high resolution make this comparator especially suitable for high-speed precision analog-to-digital processing.

A latch function is provided to allow the comparator to be used in a sample-hold mode. If the Latch Enable input is HIGH, the comparator functions normally. When the Latch Enable is driven LOW, the comparator outputs are locked in their existing logical states. If the latch function is not used, the Latch Enable must be connected to ground.

FUNCTIONAL DIAGRAM

The outputs are open emitters, therefore external pull-down resistors are required. These resistors may be in the range of $50{-}200\Omega$ connected to -2.0 V, or $200{-}2000\Omega$ connected to -5.2 V.

CIRCUIT DIAGRAM

ORDERING INFORMATION

Part	Package	Temperature	Order		
Number	Type	Range	Number		
Am685	Metal Can	-30°C to +85°C	Am685HL		
	DIP	-30°C to +85°C	Am685DL		
Am685	Metal Can	-55°C to +125°C	Am685HN		
	DIP	-55°C to +125°C	Am685DN		
Am685	Dice	-30°C to +85°C	Am685XL		
	Dice	-55°C to +125°C	Am685XM		

CONNECTION DIAGRAMS

Note 1: On metal package, pin 5 is connected to case. LIC-121 On DIP, pin 8 is connected to case.

Am685

MAXIMUM RATINGS (Above which the useful life may be impaired)

Positive Supply Voltage	+7 V
Negative Supply Voltage	-7 V
Input Voltage	±4 V
Differential Input Voltage	±6 V
Output Current	30 mA
Power Dissipation (Note 2)	500 mW

Operating Temperature Range	
Am685-L	-30°C to +85°C
Am685-M	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 Sec.)	300°C
Minimum Operating Voltage (V ⁺ to V ⁻)	9.7 V

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified)

DC Characteristics			Am6	85-L	Ame		
ymbol	Parameter (see definitions)	Conditions (Note 3)	Min.	Max.	Min.	Max.	Units
v _{os}	Input Offset Voltage	$R_S \le 100 \Omega$, $T_A = 25^{\circ} C$ $R_S \le 100 \Omega$	-2.0 -2.5	+2.0 +2.5	-2.0 -3.0	+2.0 +3.0	mV mV
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 100 Ω	-10	+10	-10	+10	μV/°C
I _{OS}	Input Offset Current	T _A = 25°C	-1.0 -1.3	+1.0 +1.3	-1.0 -1.6	+1.0 +1.6	μΑ μΑ
IB	Input Bias Current	T _A = 25°C	i i - Qi ji -	10 13	4 A G 1 108	10 16	μA μA
RIN	Input Resistance	T _A = 25°C	6.0	100	6.0	noin Iri	kΩ
CIN	Input Capacitance	$T_A = 25^{\circ}C$		3.0	BRITISH	3.0	pF
V _{CM}	Input Voltage Range	1.0000000000000000000000000000000000000	-3.3	+3.3	-3.3	+3.3	V
CMRR	Common Mode Rejection Ratio	$R_S \le 100 \Omega, -3.3 \le V_{CM} \le +3.3 V$	80		80	se poste	dB
SVRR	Supply Voltage Rejection Ratio	$R_S \le 100 \Omega$, $\Delta V_S = \pm 5\%$	70	1 13	70	tuo minim	dB
V _{OH}	Output HIGH Voltage	T _A = 25°C T _A = T _A (min.) T _A = T _A (max.)	-0.960 -1.060 -0.890	-0.810 -0.890 -0.700	-0.960 -1.100 -0.850	-0.810 -0.920 -0.620	V V
V _{OL}	Output LOW Voltage	$T_A = 25^{\circ}C$ $T_A = T_A(min.)$ $T_A = T_A(max.)$	-1.850 -1.890 -1.825	-1.650 -1.675 -1.625	-1.850 -1.910 -1.810	-1.650 -1.690 -1.575	V V
1+	Positive Supply Current			22		22	mA
1-	Negative Supply Current			26		26	mA
PDISS	Power Dissipation			300		300	mW

Switching Characteristics (V_{in} = 100 mV, V_{od} = 5 mV)

	Input to Output HIGH	$T_{A(min.)} \leq T_{A} \leq 25^{\circ} C$	4.5	6.5	4.5	6.5	ns
^t pd+	input to Output HIGH	$T_A = T_A(max.)$	5.0	9.5	5.5	12	ns
	Innut to Gutout I OW	$T_{A(min.)} \le T_{A} \le 25^{\circ} C$	4.5	6.5	4.5	6.5	ns
t _{pd} - Input to Output LOW	input to Output LOW	$T_A = T_A(max.)$	5.0	9.5	5.5	12	ns
t _{pd+} (E) Latch Enable to Output HIGH (Note 4)	Latch Enable to Output HIGH	$T_{A(min.)} \leq T_{A} \leq 25^{\circ} C$	4.5	6.5	4.5	6.5	ns
	The state of the s	$T_A = T_A(max.)$	5.0	9.5	5.5	12	ns
(5)	Latch Enable to Output LOW	$T_{A(min.)} \leq T_{A} \leq 25^{\circ} C$	4.5	6.5	4.5	6.5	ns
t _{pd} _(E)	(Note 4)	$T_A = T_A(max.)$	5.0	9.5	5.5	12	ns
- 66	Minimum Satura Time (Nata 4)	$T_{A(min.)} \leq T_{A} \leq 25^{\circ} C$		3.0	V	3.0	ns
t _s	Minimum Set-up Time (Note 4)	$T_A = T_A(max.)$		4.0		6.0	ns
th	Minimum Hold Time (Note 4)	$T_{A(min)} \leq T_{A} \leq T_{A(max.)}$		1.0		1.0	ns
+ /E)	Minimum Latch Enable Pulse Width	$T_{A(min.)} \le T_{A} \le 25^{\circ} C$		3.0		3.0	ns
t _{pw} (E)	(Note 4)	$T_A = T_A(max.)$	1 34	4.0	C	5.0	ns

 NOTES: 2: For the metal can package, derate at 6.8 mW/° C for operation at ambient temperatures above +100° C; for the dual-in-line package, derate at 9 mW/° C for operation at ambient temperatures above +105° C.
 3: Unless otherwise specified V+ = 6.0V, V- = -5.2V, V_T = -2.0V, and R_L = 50Ω; all switching characteristics are for a 100 mV input step with 5 mV overdrive. The specifications given for V_{OS}, l_{OS}, l_B, CMRR, SVRR, t_{Dd+} and t_{Dd-} apply over the full V_{CM} range and for ±5% supply voltages. The Am685 is designed to meet the specifications given in the table after thermal equilibrium has been established with a transverse air flow of 500 LFPM or greater. air flow of 500 LFPM or greater.

4: Owing to the difficult and critical nature of switching measurements involving the latch, these parameters can not be tested in production. Engineering data indicates that at least 95% of the units will meet the specifications given.

DEFINITION OF TERMS

- INPUT OFFSET VOLTAGE That voltage which must be applied between the two input terminals through two equal resistances to obtain zero voltage between the two outputs.
- AVOS/AT AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFF-SET VOLTAGE - The ratio of the change in input offset voltage over the operating temperature range to the temperature range.
- INPUT OFFSET CURRENT The difference between the los currents into the two input terminals when there is zero voltage between the two outputs.
- IB INPUT BIAS CURRENT - The average of the two input currents.
- RIN INPUT RESISTANCE - The resistance looking into either input terminal with the other grounded.
- CIN INPUT CAPACITANCE - The capacitance looking into either input terminal with the other grounded.
- INPUT VOLTAGE RANGE The range of voltages on the VCM input terminals for which the offset and propagation delay specifications apply.
- CMRR COMMON MODE REJECTION RATIO - The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.
- SUPPLY VOLTAGE REJECTION RATIO The ratio of the SVRR change in input offset voltage to the change in power supply voltages producing it.
- VOH OUTPUT HIGH VOLTAGE - The logic HIGH output voltage with an external pull-down resistor returned to a negative supply.
- VOL OUTPUT LOW VOLTAGE - The logic LOW output voltage with an external pull-down resistor returned to a negative supply.
- POSITIVE SUPPLY CURRENT The current required from the positive supply to operate the comparator.
- NEGATIVE SUPPLY CURRENT The current required from the negative supply to operate the comparator.

POWER DISSIPATION - The power dissipated by the com-PDISS parator with both outputs terminated in 50Ω to -2.0V.

SWITCHING TERMS (refer to Fig. 1)

- INPUT TO OUTPUT HIGH DELAY The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output LOW to HIGH transition.
- INPUT TO OUTPUT LOW DELAY The propagation delay todmeasured from the time the input signal crosses the input offset voltage to the 50% point of an output HIGH to LOW transition.
- LATCH ENABLE TO OUTPUT HIGH DELAY The propagation delay measured from the 50% point of the Latch Enable signal LOW to HIGH transition to the 50% point of an output LOW to HIGH transition.
- LATCH ENABLE TO OUTPUT LOW DELAY The propagatpd-(E) tion delay measured from the 50% point of the Latch Enable signal LOW to HIGH transition to the 50% point of an output HIGH to LOW transition.
- MINIMUM SET-UP TIME The minimum time before the negative transition of the Latch Enable signal that an input signal change must be present in order to be acquired and held at the outputs
- MINIMUM HOLD TIME The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs.
- MINIMUM LATCH ENABLE PULSE WIDTH The minimum tpw(E) time that the Latch Enable signal must be HIGH in order to acquire and hold an input signal change.

OTHER SYMBOLS

- Ambient temperature TA
- RS Input source resistance
- Supply voltages
- Positive supply voltage Negative supply voltage
- V_T Output load terminating voltage
- RI Output load resistance
- Vin Input pulse amplitude
- Vod Input overdrive Frequency

MEASUREMENT OF PROPAGATION DELAY

A voltage comparator must be able to respond to input signal levels ranging from a few millivolts to several volts, ideally with little variation in propagation delay. The most difficult condition is where the comparator has been driven hard into one state by a large signal, and the next input signal is just barely enough to make it switch to the other state. This forces the input stage of the circuit to swing from a full off (or on) state to a point somewhere near the center of its linear range, thus exercising both its large- and small-signal responses. If the comparator is fast for this condition, it should be as fast or faster for almost any other condition. The unofficial industry standard input signal is a 100mV step with an overdrive of 5mV (the overdrive is the voltage in excess of that needed to bring the output to the center of its dynamic range). The 100mV is more than enough to fully turn on the input stage, but not so large to make measurement a problem. Large pulses would require exceptionally good control on waveform purity, since only a few tenths of a percent of overshoot or ripple would be enough to affect the value of the overdrive and, for sensitive comparators, result in false switching. The propagation delay is measured from the time the input signal crosses the input threshold voltage (i.e., the offset voltage) to the 50% point of either output. This definition ensures that each unit is measured under equal conditions, and also makes the measurement relatively independent of the input rise and fall times.

Figure 2

LIC-12

The test circuit of Figure 2 provides a means of automatically nulling out the offset voltage and applying the overdrive. With S1 in the "NULL" position, the feedback loop around the Am685 via the two operational amplifiers corrects for the offset of the circuit including any dc shift in the ground level of the input signal. When switched to "TEST", the offset is held on the storage capacitor of the Am216A and the overdrive is added at the Am216A non-inverting input. The duty cycle of the signal is made low so that the presence of the input pulse during nulling will not disturb the offset. A solid ground plane is used for the test jig, and capacitors bypass the supply voltages. All power and signal leads are kept as short as possible. The Am685 input and output run directly into the 50Ω inputs of the sampling scope via equal lengths of 50Ω coaxiàl cable. For the conditions shown in the figure, t_{pd+} is measured at the Ω output and t_{pd-} at the Ω output. If it is desired to measure the opposite output polarities, the polarities of the input signal and overdrive must be reversed.

THERMAL CONSIDERATIONS

To achieve the high speed of the Am685, a certain amount of power must be dissipated as heat. This increases the temperature of the die relative to the ambient temperature. In order to be compatible with ECL III and ECL 10,000, which normally use air flow as a means of package cooling, the Am685 characteristics are specified when the device has an air flow across the package of 500 linear feet per minute or greater. Thus, even though different ECL circuits on a printed circuit board may have different power dissipations, all will have the same input and output levels, etc., provided each sees the same air flow and air temperature. This eases design, since the only change in characteristics between devices is due to the increase in ambient temperature of the air passing over the devices. If the Am685 is operated without air flow, the change in electrical characteristics due to the increased die temperature must be taken into account.

INTERCONNECTION TECHNIQUES

All high-speed ECL circuits require that special precautions be taken for optimum system performance. The Am685 is particularly critical because it features very high gain (60dB) at very high frequencies (100MHz). A ground plane must be provided for a good, low inductance, ground current return path. The impedance at the inputs should be as low as possible and lead lengths as short as practical. It is preferable to solder the device directly to the printed circuit board instead of using a socket. Open wiring on the outputs should be limited to less than one inch, since severe ringing occurs beyond this length. For longer lengths, the printed-circuit interconnections become microstrip transmission lines when backed up by a ground plane, with a characteristic impedance of 50 to 150 Ω . Reflections will occur unless the line is terminated in its characteristic impedance. The termination resistors normally go to -2.0V, but a Thevenin equivalent to V⁻ can be used at some increase in power. Best results are usually obtained with the terminating resistor at the end of the driven line. The lower impedance lines are more suitable for driving capacitive loads. The supply voltages should be well decoupled with RF capacitors connected to the ground plane as close to the device supply pins as possible.

LIC-124

PERFORMANCE CURVES (Unless otherwise specified, standard conditions for all curves are T_A = 25°C, V⁺ = 6.0V, V⁻ = -5.2V, V_T = -2.0V, R_L = 50 Ω , and switching characteristics are for V_{in} = 100mV, V_{od} = 5mV.) Response Response Response for Various for Various for Various Input Overdrives Input Overdrives Input Signal Levels -0.8 Q OUTPUT $V_{in} = \pm 2.5 \,\text{mV}$ O OUTPUT 0.9 -0.9 100 -1.0 OUTPUT VOLTAGE - V -1.0 OUTPUT VOLTAGE -NON-INV 60 +20 INPUT VOLTAGE INPUT VOLTAGE --NPUT VOLTAGE -20 -40 -1.4 NON-IN -1.5 -1.5 -20 -60 -1.6 -80 -1.6 -1.6 -1.7 -100 -1.7 -1.7 -1.8 -1.810 6 8 10 12 14 16 18 2 10 TIME - ns TIME - ns TIME - ns **Propagation Delays Propagation Delays Propagation Delay** as a Function of as a Function of as a Function of Input Overdrive Input Signal Level Temperature PROPAGATION DELAY PROPAGATION DELAY. PROPAGATION DELAY +125°C +85°C 25 45 65 85 10 15 ±10mV ±.1V ±1.0V OVERDRIVE - mV TEMPERATURE - C INPUT VOLTAGE Response **Propagation Delays** Response as a Function of for Various for Various Load Resistances Load Resistances Load Resistance -0.7 R_L = 200Ω V_T = -5.2\ $R_L = 50\Omega$ PROPAGATION DELAY VOLTAGE VOLTAGE = 500Ω -5.21 TIME - ns TIME-ns LOAD RESISTANCE – Ω **Propagation Delays Propagation Delays Output Rise and Fall Times** as a Function of as a Function of as a Function of **Negative Supply Voltage** Common Mode Voltage Temperature 10%-90% ROPAGATION DELAY OPAGATION DELAY RISETIME TIME FALLTIME -4.6 -4.8 -5.0 -5.2 -5.4 -5.6 -5.8 -55 -35 -15 5 25 45 65 85 105 125 -3 -2 -1 0 TEMPERATURE - °C NEGATIVE SUPPLY VOLTAGE - V

COMMON MODE VOLTAGE - V

PERFORMANCE CURVES (Cont.)

(Unless otherwise specified, standard conditions for all curves are $T_A=25^{\circ}C$, $V^+=6.0V$, $V^-=-5.2V$, $V_T=-2.0V$, $R_L=50\Omega$, and switching characteristics are for $V_{in}=100$ mV, $V_{od}=5$ mV.)

Set-up Time as a Function of Temperature

Set-up Time as a Function of Input Overdriv

SET-UP TIME

Common Mode Pulse Response

Min. Latch Enable Pulse Width as a Function of Temperature

Min. Latch Enable Pulse Width as a Function of Input Overdrive

Response to 100 MHz Sine Wave

Voltage Gain as a Function of Temperature

Voltage Gain as a Function of Negative Supply Voltage

Voltage Gain as a Function of Frequency

Common Mode Limits as a Function of Temperature

Negative Common Mode Limit as a Function of

Positive Common Mode Limit as a Function of Positive Supply Voltage

LIC-125

(Unless otherwise specified, standard conditions for all curves are $T_A = 25^{\circ}$ C, $V^+ = 6.0V$, $V^- = -5.2V$, $V_T = -2.0V$, $R_L = 50\Omega$, and switching characteristics are for $V_{in} = 100$ mV, $V_{od} = 5$ mV.)

Output Levels as a Function of Temperature

Output Levels As A Function
Of Negative Supply Voltage

Output Levels As A Function Of DC Loading

Supply Currents As A Function Of Temperature

Supply Currents
As A Function Of
Negative Supply Voltage

Supply Currents
As A Function Of
Positive Supply Voltage

Input Bias Current As A Function Of Temperature

Input Bias Current
As A Function Of
Negative Supply Voltage

Input Bias Current
As A Function Of
Common Mode Voltage

Input Resistance As A Function Of

Input Resistance
As A Function Of
DC Differential Input Voltage

Input Current
As A Function Of
Differential Input Voltage

LIC-126

Distinctive Characteristics

- 12ns MAXIMUM PROPAGATION DELAY AT 5mV OVERDRIVE
- Complementary Schottky TTL outputs
- Fanout of 5
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically and optically inspected dice for assemblers of hybrid products.
- Available in metal can and hermetic dual-in-line packages.

2

FUNCTIONAL DESCRIPTION

The Am686 is a fast voltage comparator manufactured with an advanced bipolar NPN, Schottky diode high-frequency process that makes possible very short propagation delays without sacrificing the excellent matching characteristics hitherto associated only with slow, high-performance linear IC's. The circuit has differential analog inputs and complementary logic outputs compatible with Schottky TTL. The output current capability is adequate for driving 5 standard Schottky inputs. The low input offset and high resolution make this comparator especially suitable for high-speed precision analog-to-digital processing.

A latch function is provided to allow the comparator to be used in a sample-hold mode. If the Latch Enable input is LOW, the comparator functions normally. When the Latch Enable is driven HIGH, the comparator outputs are locked in their existing logical states. If the latch function is not used, the Latch Enable may be left open or connected to ground.

	ORDERII	NG INFORMATION			ION DIAGRAMS pp Views
Part Number	Package Type	Temperature Range	Order Number	Metal Can	Dual-In-Line
Am686	Metal Can DIP	0°C to 70°C 0°C to 70°C	Am686HC Am686DC	NC 02 1 100 NC	NC 2 1
Am686	Metal Can DIP	-55°C to +125°C -55°C to +125°C	Am686HM Am686DM	NON-INVERTING 3 9 TO OUTPU INPUT 4 8 Q OUTPU	INPUT L
Am686	Dice Dice	0°C to 70°C -55°C to +125°C	Am686XC Am686XM	V-05 6 70 GROUND LATCH ENABLE LIC-131	V 6 1

NC

15 NC

14 © OUTPUT

13 Q OUTPUT

12 GROUND

11 LATCH ENABLE

10 NC

Negative Supply Voltage	-, v
Input Voltage	±4 V
Differential Input Voltage	±6 V
Power Dissipation (Note 2)	600mW
Lead Temperature (Soldering, 60 sec.)	300°C
Storage Temperature Range	-65°C to +150°C

71110000		
Am686-M		-55°C to +125°C
Operating Supply V	oltage Range	
Am686-C	$V^{+} = +5.0V \pm 5\%$	$V^- = -6.0V \pm 5\%$
Am686-M	$V^{+} = +5.0V \pm 10\%, V$	$r = -6.0 \text{V} \pm 10\%$
Minimum Operating	Voltage (V ⁺ to V ⁻)	9.7V

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified) DC Characteristics

Symbol	Parameter	Conditions (Note 3)	Am686-C	Am686-M	Units
Vos	Input Offset Voltage	$R_S \le 100\Omega$, $T_A = 25^{\circ}C$ $R_S \le 100\Omega$	3.0 3.5	2.0 3.0	mV MAX. mV MAX.
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 100 Ω	10	10	μV/°C MAX.
IOS	Input Offset Current	25°C ≤ T _A ≤ T _A (max.) T _A = T _A (min.)	1.0 1.3	1.0 1.6	μΑ ΜΑΧ. μΑ ΜΑΧ.
IB	Input Bias Current	25° C ≤ T _A ≤ T _A (max.) T _A = T _A (min.)	10 13	10 16	μΑ ΜΑΧ. μΑ ΜΑΧ.
V _{CM}	Input Voltage Range	2 1 1 1	+2.7, -3.3	+2.7, -3.3	V MIN.
CMRR	Common Mode Rejection Ratio	$R_S \le 100 \Omega$, $-3.3 V \le V_{CM} \le +2.7 V$	80	80	dB MIN.
SVRR	Supply Voltage Rejection Ratio	R _S ≤ 100Ω	70	70	dB MIN.
V _{OH}	Output HIGH voltage	I _L = -1.0mA, V _S = V _S (min.)	2:7	2.5	V MIN.
VOL	Output LOW Voltage	I _L = 10mA, V _S = V _S (max.)	0.5	0.5	V MAX.
1+	Positive Supply Current	The state of the s	42	40	mA MAX.
1-	Negative Supply Current	. 1 900	34	32	mA MAX.
P _{DISS}	Power Dissipation		415	400	mW MAX.

Switching Characteristics ($V^+ = +5.0 \text{ V}$, $V^- = -6.0 \text{ V}$, $V_{in} = 100 \text{ mV}$, $V_{od} = 5.0 \text{ mV}$, $C_L = 15 \text{ pF}$) (Note 4)

t _{pd+}	Propagation Delay,	$T_A \text{ (min.)} \le T_A \le 25^{\circ}\text{C}$	12	12	ns MAX.
	Input to Output HIGH	$T_A = T_A \text{ (max.)}$	15	15	ns MAX.
t _{pd} —	Propagation Delay,	$T_A \text{ (min.)} \le T_A \le 25^{\circ}\text{C}$	12	12	ns MAX.
	Input to Output LOW	$T_A = T_A \text{ (max.)}$	15	15	ns MAX.
Δt _{pd}	Difference in Propagation Delay between Outputs	T _A = 25°C	2.0	2.0	ns MAX.

Notes: 2. For the metal can package, derate at 6.8mW/°C for operation at ambient temperatures above +95°C; for the dual-in-line package, derate at 9mW/°C for operation at ambient temperatures above 115°C.

3. Unless otherwise specified, V⁺ = +5.0V, V⁻ = -6.0V and the Latch Enable input is at V_{OL}. The switching characteristics are for a *100mV input step with 5.0mV overdrive.

4. The outputs of the Am686 are unstable when biased into their linear range. In order to prevent oscillation, the rate-of-change of the input signal as it passes through the threshold of the comparator must be at least $1V/\mu$ s. For slower input signals, a small amount of external positive feedback may be applied around the comparator to give a few millivolts of hysteresis.

- 8.0ns MAXIMUM PROPAGATION DELAY AT 5mV OVERDRIVE
- Complementary ECL outputs
- 50Ω line driving capability

- 100% reliability assurance testing in compliance with MIL-STD-883.
- Electrically and optically inspected dice for assemblers of hybrid products.
- Available in the hermetic dual-in-line package.

FUNCTIONAL DESCRIPTION

The Am687 and Am687A are fast dual voltage comparators constructed on a single silicon chip with an advanced high-frequency process. The circuits feature very short propagation delays as well as excellent matching characteristics. Each comparator has differential analog inputs and complementary logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated 50Ω transmission lines. The low input offsets and short delays make these comparators especially suitable for high-speed precision analog-to-digital processing.

The comparators are similar to the Am685 high-speed comparator but have been designed to operate from a 5V positive supply (instead of 6V), dissipating less power than two Am685's. Separate latch functions are provided to allow each comparator to be independently used in a sample-hold mode. The Latch Enable inputs are intended to be driven from the complementary outputs of a standard ECL gate. If LE is HIGH and LE is LOW, the comparator functions normally. When LE is driven LOW and LE is driven HIGH, the comparator outputs are locked in their existing logical states. If the latch function is not used, LE must be connected to ground.

FUNCTIONAL DIAGRAM

LIC-13

The outputs are open emitters; therefore external pull-down resistors are required. These resistors may be in the range of $50\text{--}200\Omega$ connected to -2.0V, or $200\text{--}2000\Omega$ connected to -5.2V.

CIRCUIT DIAGRAM (Each Comparator)

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
Am687A	DIP	-30°C to +85°C	AM687ADL
Am687A	DIP	-55°C to +125°C	AM687ADM
Am687	DIP	-30°C to +85°C	AM687DL
Am687	DIP	-55°C to +125°C	AM687DM
Am687	Dice	-30°C to +85°C	AM687XL
Am687	Dice	-55°C to +125°C	AM687XM

METALLIZATION AND PAD LAYOUT

CONNECTION DIAGRAM

Am687/687A

ts

MAXIMUM RATINGS (Above which the useful life may be impaired)

Positive Supply Voltage	+7 V	Operating Te
Negative Supply Voltage	-7 V	Am687-L
Input Voltage	±4 V	Am687-N
Differential Input Voltage	±6 V	Storage Tem
Output Current	30 mA	Lead Tempe
Power Dissipation (Note 2)	600 mW	Minimum Or

Operating Temperature Range	
Am687-L, Am687A-L	-30°C to +85°C
Am687-M, Am687A-M	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 Sec.)	300°C
Minimum Operating Voltage (V ⁺ to V ⁻)	9.7 V

4.0

4.0

ns

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless otherwise specified)

eteristics						
Parameter	Conditions (Note 3)	Min.	Max.	Min.	Max.	Units
I 0# V-I	R _S ≤ 100 Ω, T _A = 25°C	-3.0	+3.0	-2.0	+2.0	mV
Input Offset Voltage	R _S ≤ 100 Ω	-3.5	+3.5	-3.0	+3.0	mV
Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 100 Ω	-10	+10	-10	+10	μV/°C
Ios Input Offset Current	25°C ≤ T _A ≤ T _A (max.)	-1.0	+1.0	-1.0	+1.0	μΑ
Input Offset Current	T _A = T _A (min.)	-1.3	+1.3	-1.6	+1.6	μΑ
Land Bin Comment	$25^{\circ}\text{C} \leq \text{T}_{A} \leq \text{T}_{A(\text{max.})}$	FF mail	10	AUE I sa	10	μΑ
Input Blas Current	$T_A = T_A(min.)$	na Febru	13	selt odem	16	μΑ
Input Voltage Range	loign rose trans	-3.3	+2.7	-3.3	+2.7	V
Common Mode Rejection Ratio	$R_S \le 100 \Omega, -3.3 \le V_{CM} \le +2.7 V$	80	of Isco 4	80	bijnest se	dB
Supply Voltage Rejection Ratio	$R_S \leq 100 \Omega$, $\Delta V_S = \pm 5\%$	70	11 22 23	70	D , IVIS 20 -	dB
	T _A = 25°C	-0.960	-0.810	-0.960	-0.810	V
Output HIGH Voltage	$T_A = T_A(min.)$	-1.060	-0.890	-1.100	-0.920	V
	$T_A = T_A(max.)$	-0.890	-0.700	-0.850	-0.620	V
	T _A = 25°C	-1.850	-1.650	-1.850	-1.650	\vee
Output LOW Voltage	$T_A = T_A(min.)$	-1.890	-1.675	-1.910	-1.690	V
	$T_A = T_A(max.)$	-1.825	-1.625	-1.810	-1.575	V
Positive Supply Current	Paging Orling 1994 Tayan Circumsta		35		32	mA
Negative Supply Current		9	48		44	mA
Power Dissipation			485		450	mW
naracteristics (V _{in} = 100 mV, V _{od}	= 5 mV)					
Dalan America	$T_A(min.) \le T_A \le 25^{\circ}C$		8.0		8.0	ns
Propagation Delay, Ambs/A	$T_A = T_A(max.)$		10		12.5	ns
Proposition Doloy, Am697	$T_A(min.) \le T_A \le 25^{\circ}C$		10		10	ns
Fropagation Delay, Amos /	$T_A = T_A(max.)$		14		20	ns
	Parameter Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common Mode Rejection Ratio Supply Voltage Rejection Ratio Output HIGH Voltage Positive Supply Current Negative Supply Current Power Dissipation	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter Conditions (Note 3) Am687-L Min. Max. Input Offset Voltage $R_S \le 100 \Omega$, $T_A = 25^{\circ}C$ -3.0 +3.0 Average Temperature Coefficient of Input Offset Voltage $R_S \le 100 \Omega$ -10 +10 Input Offset Current $25^{\circ}C \le T_A \le T_A(max.)$ -1.0 +1.0 Input Offset Current $25^{\circ}C \le T_A \le T_A(max.)$ -1.0 +1.0 Input Bias Current $25^{\circ}C \le T_A \le T_A(max.)$ 10 13 Input Voltage Range -3.3 +2.7 80 Common Mode Rejection Ratio $R_S \le 100 \Omega$, $-3.3 \le V_{CM} \le +2.7 V$ 80 80 Supply Voltage Rejection Ratio $R_S \le 100 \Omega$, $-3.3 \le V_{CM} \le +2.7 V$ 80 -0.00 Output HIGH Voltage $T_A = 25^{\circ}C$ -0.960 -0.810 Output LOW Voltage $T_A = T_A(min.)$ -1.060 -0.890 $T_A = T_A(max.)$ -1.850 -1.650 Output LOW Voltage $T_A = T_A(max.)$ -1.825 -1.625 Positive Supply Current 48 Negative Supply Current 48 Propagation Delay	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Minimum Latch Set-up Time

Notes: 2. Derate at 9mW/°C for operation at ambient temperatures above +115°C.

3. Unless otherwise specified V⁺ = +5.0V, V⁻ = -5.2V, V_T = -2.0V, and R_L = 50Ω; all switching characteristics are for a 100mV input step with 5mV overdrive. The specifications given for V_{OS}, I_{OS}, I_B, CMRR, SVRR, t_{pd+} and t_{pd-} apply over the full V_{CM} range and for ±5% supply voltages. The Am687 and Am687A are designed to meet the specifications given in the table after thermal equilibrium has been established with a transverse air flow of 500 LFPM or greater.

 $T_A = 25^{\circ} C$

Distinctive Characteristics

- The Am1500 is functionally, electrically, and pin-forpin equivalent to the National LH2111
- The Am1500 is a dual 111, but requires 25% less power than two 111 comparators
- Output Drive 50V and 50mA
- Input Bias Current 150nA max.

- Input Offset Voltage 4.0mV max.
- Differential Input Voltage Range ±30V
- 100% reliability assurance testing in compliance with MIL-STD-883
- Available in Hermetic Dual-In-Line or Hermetic Flat Packages

FUNCTIONAL DESCRIPTION

The Am1500 is a voltage comparator featuring low input currents, high differential and common mode voltage ranges, wide supply voltage range, and outputs compatible with all bipolar and MOS circuitry. The inputs and outputs can be isolated from system ground, and the output can drive loads referred to ground or either supply. Strobing and offset balancing are available and the outputs can be wire-ORed.

FUNCTIONAL DIAGRAM (each half)

LIC-138

CONNECTION DIAGRAMS Top Views

Dual In-Line

Flat Package

Note: Pin 1 is marked for orientation.

LIC-139

LIC-140

ORDERING INFORMATION

Part	Package	Temperature	Order
Number	Type	Range	Number
Am1500C	TO-99	0°C to +70°C	AM1500DC
	Hermetic DIP	0°C to +70°C	AM1500FC
Am1500L	TO-99	-25°C to +85°C	AM1500DL
	Hermetic DIP	-25°C to +85°C	AM1500FL
Am1500M	Hermetic DIP	-55°C to +125°C	AM1500DM
	Flat Pak	-55°C to +125°C	AM1500FM

Am1500

MAXIMUM BATINGS

TACACA BARA	36V
Das Percinar Vollage Comparis	
	50V
	40V
	30V
- 機能を表現するが、1000年の一会	±30V
of the purpose of the Asia Notice West Vol	+30V, -0V
	-30V
	500mW
ski ni sldglisvA •	10 sec
Habe your	e de la proposición de la constante de la cons
	-55°C to +125°C
	-25°C to + 85°C
	0°C to + 70°C
	-65°C to +150°C
v speni mit	300°C
	Para Precision Vollage Computation Process of the Computa

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise specified}) \text{ (Note 2)}$

			Am15000			m1500 m1500		
rameter (see definitions)	Conditions	Min.	Тур.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage (Note 3)			2.0	7.5		0.7	3.0	mV
Input Offset Current (Note 3)			6.0	50.0	444	4.0	10.0	nA
Input Bias Current (Note 3)	The setting as The s		100	250		60	100	nA
Response Time (Note 4)	$R_L = 500\Omega$ to +5V, $V_E = 0$		200			200	u. Dun't F	ns
Supply Current—Positive (Note 5) —Negative (Note 5)			3.9 2.6	7.5 5.0	SAF	7.0 4.8	9.5 7.5	mA
Voltage Gain	- Tak-18270-48-48		200	11.		200	972/93M4. F- 1	V/mV
Saturation Voltage	$V_{in} \le -5.0 \text{mV}, I_{C} = 50 \text{mA}$ $V_{in} \le -10 \text{mV}, I_{C} = 50 \text{mA}$		0.75	1.5	- page to A	0.75	1.5	V
Output Leakage Current	$V_{in} \ge +5.0 \text{mV}, V_{C} \text{ to } V_{E} = 50 \text{V}$ $V_{in} \ge +10 \text{mV}, V_{C} \text{ to } V_{E} = 40 \text{V}$	epinder zi i d	0.2	50.0		0.2	10.0	nA

Input Offset Voltage (Note 3)			10.0			4.0	mV
Input Offset Current (Note 3)	NOTAMETER NO.	LOWERSORO	70.0			20.0	nA
Input Bias Current (Note 3)			300	Ţ'n.		150	nA
Saturation Voltage	$V_{in} \le -6.0 \text{mV}, I_{C} = 8.0 \text{mA}$ $V_{in} \le -10 \text{mV}, I_{C} = 8.0 \text{mA}$	0.23	0.40		0.23	0.40	V
Output Leakage Current	$V_{in} \ge +6.0 \text{mV}$, V_C to $V_E = 50 \text{V}$	SAY!	-18H7/M/L	FT .	0.1	0.5	μΑ
Input Voltage Range	STATEOSTMA DEUTS SE DEO	±13 ±14	2002/0	±13	±14		V
Supply Current—Positive (Note 5) —Negative (Note 5)	T _A = +125° C	S-7 68-0T	- Marcel II		4.8 3.2	6.4 4.4	mA

Notes: 1. For the Flat Package derate at 6.5mW/°C for operation at ambient temperatures above 83°C, and the Dual-In-Line at 9mW/°C for operation at ambient temperatures above 95°C.

2. Unless otherwise specified, these specifications apply for V⁺ = +15V, V⁻ = -15V, V_E = -15V, and R_L at collector output = 7.5kΩ to +15V.

3. The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1V of the supplies with a 7.5kΩ load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

4. The response time specified (see definitions) is for a 100mV input step with 5.0mV overdrive.

5. The Am1500 supply current is the sum of the supply currents required by each side.

PERFORMANCE CURVES

APPLICATIONS

Strobing

LIC-142

Strobing Off Both Input and Output Stages**

Offset Balancing

LIC-144

Increasing Input Stage Current*

LIC-145

- *Increases input bias current and common-mode slew rate by a factor of 3.
 **Typical input current = 50pA with inputs storbed OFF.

Distinctive Characteristics

- The LH2111/2211/2311 are functionally, electrically, and pin-for-pin equivalent to the National LH2111/ 2211/2311
- The LH2111 is a dual 111, but requires 25% less power than two 111 comparators
- Output Drive 50V and 50mA
- Input Bias Current 150nA max.

- Input Offset Voltage 4.0mV max.
- Differential Input Voltage ±30V
- 100% reliability assurance testing in compliance with MIL-STD-883
- Available in Hermetic Dual-In-Line or Hermetic Flat Packages

2

FUNCTIONAL DESCRIPTION

The LH2111/2211/2311 are voltage comparators featuring low input currents, high differential and common mode voltage ranges, wide supply voltage range, and outputs compatible with all bipolar and MOS circuitry. The inputs and outputs can be isolated from system ground, and the output can drive loads referred to ground or either supply. Strobing and offset balancing are available and the outputs can be wire-ORed.

FUNCTIONAL DIAGRAM (Each Half)

LIC-146

CONNECTION DIAGRAMS Top Views

Dual-In-Line

LIC-147

Flat Package

LIC-14

ORDERING INFORMATION

Part	Package	Temperature	Order
Number	Type	Range	Number
LH2311	DIP	0°C - +70°C	LH2311D
	Flat Pak	0°C - +70°C	LH2311F
LH2211	DIP	-25°C - +85°C	LH2211D
	Flat Pak	-25°C - +85°C	LH2211F
LH2111	DIP	−55°C - +125°C	LH2111D
	Flat Pak	−55°C - +125°C	LH2111F

LH2111/2211/2311

MAXIMUM RATINGS

Voltage from V ⁺ to V ⁻		36V
Voltage from Collector Output to V— LH2111/LH2211 LH2311	Dual Fracision Voltage Comparate	50V 40V
Voltage from Emitter Output to V		30V
Voltage between Inputs		±30V
Voltage from Inputs to V ⁺	loci pedici , gra la magaga kamasa	+30V,0V 30V
Power Dissipation (Note 1)	(a. Telatey 2001 ★ 3	500mW
Output Short Circuit Duration	BOOK COLORED SEED BOOK SEED DEVILORED	10 sec
Operating Temperature Range LH2111 LH2211 LH2311		−55°C to +125°C −25°C to +85°C 0°C to +70°C
Storage Temperature Range	nAUE	_65°C to +150°C
Lead Temperature (soldering, 10 sec)		300°C
The second secon	The property of extra property of the property	BIG TO GUYLFIGALIFE TO THE

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 2)

		LH2311					
Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
are areas	Lia San	2	7.5	1 1	0.7	3.0	mV
Paris		6.0	50.0	I-lead C	4.0	10.0	nA
S. S	050	100	250		60	100	nA
$R_L = 500\Omega$ to +5V, $V_E = 0$		200			200	carrie L	ns
		3.9 2.6	7.5 5.0	- (H)	7.0 4.8	9.5 7.5	mA
Maria Maria	· 1	200			200		V/m\
$V_{IN} \le -5 \text{mV}, I_{C} = 50 \text{mA}$ $V_{IN} \le -10 \text{mV}, I_{C} = 50 \text{mA}$	arri Ang	0.75	1.5		0.75	1.5	V
$V_{IN} \ge +5$ mV, V_C to $V_E = 50$ V $V_{IN} \ge +10$ mV, V_C to $V_E = 40$ V		0.2	50.0		0.2	10.0	nA
ply Over The Operating Temperating	ure Range	es		1. 10101			
			10.0			4.0	mV
JONAMED B	P CIPIERS	131943	70.0			20.0	nA
	100		300	1	72-3	150	nA
$V_{IN} \le -6mV$, $I_C = 8mA$ $V_{IN} \le -10mV$, $I_C = 8mA$		0.23	0.40	a l	0.23	0.40	V
$V_{IN} \ge +6mV$, V_C to $V_E = 50V$		916			0.1	0.5	μΑ
DETIGE IN FORTHUR	±13	±14		±13	±14		V
T _A = 125°C		sig .		FILE AS I	4.8	6.4	mA
	$R_L = 500\Omega \text{ to } +5\text{V}, \text{V}_E = 0$ $V_{IN} < -5\text{mV}, \text{I}_C = 50\text{mA}$ $V_{IN} < -10\text{mV}, \text{I}_C = 50\text{mA}$ $V_{IN} > +5\text{mV}, \text{V}_C \text{ to V}_E = 50\text{V}$ $V_{IN} > +10\text{mV}, \text{V}_C \text{ to V}_E = 40\text{V}$ ply Over The Operating Temperation $V_{IN} < -6\text{mV}, \text{I}_C = 8\text{mA}$ $V_{IN} < -10\text{mV}, \text{I}_C = 8\text{mA}$ $V_{IN} > +6\text{mV}, \text{V}_C \text{ to V}_E = 50\text{V}$	$R_L = 500\Omega \text{ to } +5\text{V}, \text{ V}_E = 0$ $V_{IN} < -5\text{mV}, \text{ I}_C = 50\text{mA}$ $V_{IN} < -10\text{mV}, \text{ I}_C = 50\text{mA}$ $V_{IN} > +5\text{mV}, \text{ V}_C \text{ to V}_E = 50\text{V}$ $V_{IN} > +10\text{mV}, \text{ V}_C \text{ to V}_E = 40\text{V}$ $\text{ply Over The Operating Temperature Range}$ $V_{IN} < -6\text{mV}, \text{ I}_C = 8\text{mA}$ $V_{IN} < -10\text{mV}, \text{ I}_C = 8\text{mA}$ $V_{IN} < -10\text{mV}, \text{ I}_C = 8\text{mA}$ $V_{IN} > +6\text{mV}, \text{ V}_C \text{ to V}_E = 50\text{V}$ ± 13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

For the Flat Package derate at 6.5 mW/⁰C for operation at ambient temperatures above 83°C, and the Dual-In-Line at 9 mW/⁰C for operation at ambient temperatures above 95°C.
 Unless otherwise specified, these specifications apply for V⁺ = 15V, V⁻ = -15V, V_E = -15V, and R_L at collector output = 7.5kΩ to +15V.
 The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1V of the supplies with a 7.5kΩ load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
 The response time specified (see definitions) is for a 100mV input step with 5mV overdrive.
 The LH2111 supply current is the sum of the supply currents required by each side.

APPLICATIONS

LIC-150

Strobing Off Both Input and Output Stages**

Offset Balancing

LIC-152

Increasing Input Stage Current*

LIC-153

- *Increases input bias current and common-mode slew rate by a factor of 3.
- **Typical input current = 50pA with inputs strobed OFF.

A NEW HIGH-SPEED COMPARATOR THE Am685

By Jim Giles and Alan Seales

INTRODUCTION

Modern electronic systems require more and more that operations be performed in a few nanoseconds so that the delay of the complete system, which may be very complex, be held to a minimum. There are abundant logic circuit elements available that meet this criterion: gold-doped TTL, Schottky TTL, and emitter-coupled logic (ECL), listed in descending order of propagation delay. Where it is necessary to interface from the analog world to the input of a logic system, or to detect very low-level logic signals in the presence of heavy noise, a high-speed precision comparator is needed. If such a comparator had a propagation delay less than 10ns, it could replace costly and complex circuitry that designers are now forced to use in very high-speed analog-to-digital converters, data acquisition systems, and optical isolators, as well as make possible many applications hitherto considered unfeasible. It could also be used as a sensitive line receiver or sense amplifier, in 100MHz sample and hold circuits, and in very highfrequency voltage-controlled oscillators.

The basic requirements for a high-speed precision comparator are few and well-defined: good resolution (high gain), high common-mode and differential voltage ranges, outputs compatible with standard logic levels, and, above all, very fast response to signal levels ranging from a few millivolts to several volts. The industry workhorse, the 710, has come close to meeting these requirements, and except for the most demanding applications, its 40ns propagation delay is adequate. A survey of presently available monolithic IC comparators (Table I) shows that there is really none that meets the requirements of very high-speed systems. The newer TTL-output circuits offer only marginal improvement over the 710 when measured under identical conditions of large input pulse and small overdrive, and the ECL-output comparator, although faster, has such poor resolution that it can be used only for large input signals. Advanced Micro Devices felt there was a need for a family of linear devices to fill the needs of very high-speed systems, with the first circuit being a precision comparator with less than 10ns delay.

Type No.	Logic Family	Propagation Delay	Resolution
Am111	TTL	200ns	0.012mV
μΑ710	TTL	40ŋs	1.4mV
Am106	TTL	40ns	0.06mV
μΑ760	TTL	25ns	0.5mV
NE527/529	TTL	25ns	0.5mV
MC1650	ECL	12ns	30mV

Table I: Propagation Delays of Available Monolithic IC Comparators (100mV Input Step, 5mV Overdrive)

DESIGN OBJECTIVES

In order to achieve the ultimate in speed, it is clear that the comparator outputs must be compatible with ECL, even

though at present the majority of systems use TTL. Designers striving for the highest possible speed will already be using ECL in the critical circuit areas of their systems to squeeze the last possible nanosecond out of the overall delay. Further, an ECL circuit requires only one-third the gain of an equivalent TTL circuit for the same resolution owing to its smaller output logic swing. This means that lower impedances can be used and consequently larger bandwidth realized for the same power dissipation. Also, there is no problem interfacing the linear input stages with the digital output gate since an ECL gate is basically a non-saturating overdriven differential amplifier. Properly driving a TTL gate from a linear amplifier is more difficult, however, because it requires a large voltage swing suitably biased to track the input logic threshold with temperature, plus a large peak negative current capability to turn off the gate with minimum delay.

The usefulness and versatility of a comparator can be enhanced by adding a strobe or latch function to the circuit. A strobe simply forces the output of the comparator to one fixed state, independent of input signal conditions, whereas a latch locks the output in the logical state it was in at the instant the latch was enabled. The latch can thus perform a sample and hold function, allowing short input signals to be detected and held for further processing. If the latch is designed to operate directly upon the input stage—so the signal does not suffer any additional delays through the comparator—signals only a few nanoseconds wide can be acquired and held. A latch, therefore, provides a more useful function than a strobe for very high-speed processing.

The most difficult input signal for a comparator to respond to is a large amplitude pulse that just barely exceeds the input threshold. This forces the input stage of the comparator to swing from a full off (or on) state to a point somewhere near the center of its linear range. This exercises both the large-and small-signal responses of the stage. If the comparator has less than 10ns delay under these stringent conditions, then it should be as fast or faster for any other circumstances (see Figure 1). The industry standard measurement is with a

Figure 1. Response to step input signals at output of a differential amplifier

100mV input pulse and an overdrive 5mV above input threshold (this was used for the delays given in Table 1). Pulses larger than 100mV might be used, but this would multiply measurement difficulties, since only a few tenths of a percent aberration or ripple in the pulse generator waveform would be enough to seriously affect the accuracy of the small overdrive, and thus would give misleading results for the propagation delay.

To obtain satisfactory speed for all input signals and particularly for the worst case measurement conditions, the input stage of the comparator must have: 1) wide small-signal bandwidth, 2) high slew rate for large signals, 3) minimum voltage swings, and 4) high gain. The first requirement can be realized by using low-value load resistors, by making every effort in circuit design, device geometry and processing to minimize parasitic capacitances, and by using transistors with the highest f_T possible. The second item calls for high operating currents as well as minimum capacitance. The last two requirements are conflicting, since obtaining high gain normally requires a large voltage swing; therefore some means of clamping the swing must be used that does not degrade the propagation delay.

The overall gain of the complete comparator must also be high because, as illustrated in Figure 1, the propagation delay is less if each stage is well overdriven. To ensure that most of the input overdrive signal is actually used for overdriving, and not consumed in just moving the output from one state to the other, the gain error should be no more than about 10% of the input overdrive. Therefore, for a 5mV overdrive and an ECL output swing of 800mV, the minimum gain must be 1600. It is not practical to strive for much higher gain than this because the small-signal rise time begins to suffer as the stage gain increases. Addition of another stage is undesirable as this also adds delay and increases circuit complexity. It must be remembered that there is a maximum limit on power dissipation that a single integrated circuit package can handle adequately, and this consideration must influence the choice of operating currents and impedance levels throughout the design of the circuit.

With a figure for the total gain required, it is now possible to determine the number of stages and the gain per stage. Since the output stage must be ECL-compatible, its design is fixed, giving a differential-input to single-ended-output gain of about 6. This leaves a differential gain of 270 to be provided by the remainder of the comparator. This is most efficiently divided between two stages, each with a gain somewhat over 16. Both stages should be identical, since minimum overall delay time is obtained when identical stages are cascaded.

A factor not yet discussed that affects the accuracy of the comparator is its input offset voltage. Unless this is trimmed out initially, it must be added to the overdrive in determining the worse-case value of input signal for which the propagation delay specifications will be met. Even with trimming, the temperature drift of high-offset units is typically much greater than that of low-offset units. Therefore, it is desirable to have low initial offset so that trimming is not necessary, and so that the offset temperature coefficient will be good. Also affecting the offset voltage and its drift at higher source resistances are the input currents. To keep this contribution to the total offset low requires high current gains in the input transistors. Therefore, obtaining offsets in the 1—2mV range requires close attention to circuit design, mask layout, and very tight process control (equivalent to that needed for the high-performance,

frow-frequency operational amplifiers), but with the added kicker of f_Ts well above 1GHz.

As was mentioned, large common-mode and differential voltage ranges are desirable features of a comparator. The limits of the common-mode range in a well-designed circuit should be close to the supply voltages. Since a high-speed comparator will, of necessity, operate at fairly high current levels, the supply voltages must be low to stay within the package power dissipation limits. As a minimum, the common-mode range should be equal to or exceed the differential voltage range to take full advantage of the voltage breakdown characteristics of the input transistors. The basic differential amplifier input stage has a differential voltage breakdown in the range of 5 to 6 volts; the design goal for the common mode range should thus be at least ±3 volts.

In summary, the design objectives for a high-speed precision comparator are as follows:

- propagation delay <10ns measured at 100mV input step, 5 mV overdrive
- 2) ECL-compatible outputs
- 3) latch capability
- 4) gain >1600
- 5) input offset voltage <±2mV
- 6) common -mode range >±3V

CIRCUIT DESIGN

The watchword in designing wideband circuits is simplicity — have the fewest possible active devices in the signal path, the lowest possible impedance levels, and the lowest possible capacitance. The simple, common-emitter differential amplifier can be designed to approach these ideals with one major exception: the deleterious shunting effect of the collector-to-base capacitance upon the driving source resistance is multiplied by the voltage gain of the stage (Miller effect). Even though the impedance levels will be only a few hundred ohms at most, this condition cannot be tolerated if maximum speed is to be achieved. The solution is to add an additional pair of common-base transistors to form a differential cascode amplifier (Figure 2). This circuit has all of the performance features of a common-emitter amplifier and no feedback capacitance.

Figure 2. Differential cascode amplifier

Further advantages of the cascode will become apparent later when the latch design is discussed. The only drawback is that there are more devices in the signal path, the positive common-mode range is reduced, and circuitry has to be provided to bias the cascode transistors.

It is now necessary to provide a means of shifting the signal at the output of the cascode (which is very near the positive supply voltage) down to a lower voltage to drive the inputs of the second stage. The use of PNPs is definitely out because of their poor frequency response. This leaves three possibilities: a chain of forward-biased diodes, a programmed voltage drop across a resistor, or a zener diode. The diode chain is useful for level shifts of only a few volts at most, above that, the number of diodes gets too large, with a consequent increase in shunt capacitance and temperature coefficient. The use of a currentsource/resistor combination is in the wrong direction for keeping impedance levels low. The resistors could be bypassed with capacitors, but this would offer only marginal improvement, since integrated capacitors have a large shunt component to the substrate. Besides, the addition of four capacitors (for both stages) would result in a large increase in chip area.

The zener diode is definitely superior for high-frequency applications because its shunt capacitance to ground is low, being equal to the collector-to-base capacitance of a transistor. It has no capacitance to the substrate, and its dynamic resistance is quite low. It does have the disadvantage that the level shift is limited to one voltage (6V), which restricts the range of power supply variation the circuit can tolerate. In addition it requires very tight control of the manufacturing process to maintain the matching required. For an input stage gain of 16 the zener voltages have to be matched to better than 0,25% to produce less than 1mV offset voltage at the input.

As shown in Figure 3, the zeners are buffered from the cascode collectors by emitter followers. The pulldown current through the zener-follower combination must be made large enough to discharge the node capacitance when the follower swings in the negative direction. The minimum value necessary is determined by the node capacitance, the signal swing, and the amount of delay that can be tolerated. The amount of signal swing can be reduced by adding clamping diodes across the collectors of the cascode. Regular diode-connected transistors could be used, but would add considerable collector-tosubstrate capacitance across the load resistors as well as base-to-emitter capacitance between them. Schottky diodes. on the other hand, require little additional chip area, and are very fast. With clamping, some of the common-mode range lost when the cascode was added can be regained because the cascode transistors can be biased closer to the positive supply without fear of going into saturation at the extremes of the signal swing. The use of Schottky diodes, however, puts a few more gray hairs on the head of the process engineer since he has to control another set of characteristics without affecting the other parameters. The circuit values given in Figure 3 are designed for a minimum differential gain of 16, and a minimum negative-going slew rate at the output of the level-shifter of 1000V/μs.

As mentioned earlier the design of the output stage (Figure 4) can vary little from that of a standard ECL gate. The output emitter followers have to be large enough to handle loading by a 50Ω transmission line (25mA), yet small enough not to add a lot of capacitance that would slow down the response. Therefore, the transistor design must be as efficient as possible with regard to physical size and current-carrying

Figure 3. Basic cascode gain stage

capacity. Since the input common-mode level to the gate varies with changes in the power supplies and resistor tolerance, a current source is used to supply the emitters of the gate, rather than the usual resistor to the negative supply. The design of this current source must be such as to provide the correct logical "1" and "0" levels at the output and the proper variation with temperature and power supply changes. The propagation delays to either output of this gate will be equal, whereas they are slightly different in a standard ECL gate owing to the additional capacitive loading on the $\overline{\Omega}$ output caused by the multiple input transistors.

Implementation of the latch function must be accomplished without interfering with the normal comparator operation or degrading the speed in any way. It must be as close to the input as possible to permit short input signals to be acquired and held. One simple method of adding a latch to a differential

Figure 4. Output gate

Figure 5. Simple latch circuit

Figure 6. Cascode with latch

amplifier is shown in Figure 5. A pair of transistors, Ω_5 and Ω_6 , are cross-coupled at the collectors of the input transistors, Ω_1 and Ω_2 . The current source I_2 is switched on when it is desired to enable the latch. If I_2 is greater than I_1 , the positive feedback via Ω_5 and Ω_6 will hold the circuit in whatever state it was in when the latch was turned on.

The simple circuit of Figure 5 is not the best for speed because of the added capacitance of Ω_5 and Ω_6 and the fact that they can saturate unless the signal swings are very small. However, it can be adapted to the cascode stage quite nicely as illustrated in Figure 6. Drive for the positive feedback transistors is taken from the level shifters, and the collectors go to the emitters of the cascode. With this arrangement there is no significant capacitive loading on the gain stage at all. The current source is switched by another differential amplifier, $\Omega_9 - \Omega_{10}$, referenced to the ECL logic threshold voltage. This provides the correct input levels for the Latch Enable being driven from a standard ECL gate as well as being very fast, since only currents are being switched.

The latch current source (I₂) must be about 1mA greater than the input current source (I₁) to ensure positive latching for any condition of input signal. Thus, for 5mA in the input stage, at least 6mA must be used to power the latch. This amounts to a lot of power consumed for a function that some users may never even need. However, there is a way to cut the latch standby power down to zero; this is accomplished by the addition of Ω_7 and Ω_8 , as shown in Figure 8.

To understand the function of these transistors, first refer to Figure 7. The differential voltage appearing across the emitters of the cascode transistors is equal to the input signal (for small input signals). This is because the currents through the lower pair of transistors in the cascode are equal to the corresponding currents through the upper pair, and the transistors are matched; therefore the differences in base-emitter voltages must be equal. Thus, Q_7 and Q_8 function as if they were

Figure 7. Cascode with "parallel" transistors

Figure 8. Complete input cascode stage with latch

simply connected in parallel with Q_1 and Q_2 , as far as the net effect at the collector load resistors is concerned. To obtain the desired total stage gain, the current I_1 can be 2mA and I_3 can be 3mA.

Now refer to Figure 8. With the latch enable HIGH, Qg will be switched on and the 3mA current source will be supplied to the parallel transistors, $Q_7 - Q_8$. The comparator functions normally, and no current is used up in the latch. When the latch enable goes LOW, I_2 will be switched through Q_{10} to the positive feedback transistors, robbing 3mA from the gain stage and giving it to the latch. The latch current is now 1mA greater than the input stage current, but the total current required is still only 5mA. As with the latch transistors, the collectors of the parallel transistors are connected to the emitters of the cascode, so no additional capacitance is added across the load resistors. This places the requirement on Q_7 and Q_8 that they maintain their high f_T at zero collector-to-base voltage.

The use of the parallel transistors has the added bonus that the input bias currents are decreased by more than a factor of two, thus reducing their influence on the offset voltage. The penalty paid is that all three pairs of junctions $(Q_1\!-\!Q_2,Q_3\!-\!Q_4$ and $Q_7\!-\!Q_8)$ add equally to the input offset. Once again, the processing must be carefully controlled to keep the overall offset within the 2mV goal.

The complete circuit of the comparator is given in Figure 9. It includes some additional refinements as well as the DC biasing. The drive for the latching transistors is taken from the emitters of the second cascode rather than from the level-shifting zeners. This removes their input capacitance from the level shifter and also ensures that Q10 cannot saturate. A resistor (Rg) is included to center the common-mode voltage at the input to the gate within its dynamic range; this prevents saturation of the gate or its current source over the expected range of signal swing, temperature drift and supply voltage variations. A separate ground is used for the output emitter followers so that heavy loading at the output will not couple back into the remainder of the circuit. The DC bias chain for the current sources is referenced to ground and the negative supply, so the output logic levels will track those of other ECL circuits connected to the same negative supply. The current sources are designed to stay constant with temperature, which keeps the open-loop gain high at elevated temperatures (>1000 at +125°C), and thus helps to maintain good propagation delay.

Figure 9. Complete schematic of the Am685 comparator

A NEW HIGH-SPEED COMPARATOR result in an input structure that has three pairs of transistors, the matching of which determines the offset voltage. This dictates that the matching of VRF shall be extremely good between the transistors in each pair in order to meet the 2mV maximum offset voltage target. For the speeds necessary the transistor f_T has to be in the region above 1 GHz, so high-frequency performance can not be compromised. The slew rate of the input stage has to be very high for acceptable response with large input signals. This is achieved by high operating current and low stray capacitances. It is very desirable to keep both the input bias current and the input offset current very low so that the impedances in the source voltages do not introduce intolerable input voltage errors. It would be possible to use a Darlington-connected input stage to achieve these low currents, but the penalty exacted in offset voltage, offset voltage drift, and propagation delay is unacceptable, so high current-gain transistors that match extremely well are needed. The problems are thus centered on achieving very wellmatched transistors with high beta and high ft.

As previously mentioned, it is desirable in a comparator to have a wide common-mode voltage range and high powersupply rejection ratio. This is facilitated by using Schottky diodes to clamp the collector-to-collector swings in the first two stages. Schottky diodes can be fabricated simply by making a window in the oxide over the N-type epitaxial layer and using the same evaporated aluminum as is used for the interconnects (see Figure 10). The contact potential between silicon and aluminum causes a potential barrier to the flow of electrons. Making the metal positive lowers this barrier, allowing electrons to pass over it by virtue of their thermal energy. This process is essentially the same as thermionic emission. Since these electrons are majority carriers. Schottky diodes show extremely fast turn-off characteristics, desirable in this application. Why the Schottky diode is so attractive is that the forward voltage necessary to produce a given current may be several hundred millivolts less than that required to produce the same current in a p-n junction diode of about the same size. It can thus be used as a "clamp" to prevent a bipolar transistor from saturating, when connected from collector to base so as to prevent the forward voltage of the collector-base diode from rising to a level sufficient to cause appreciable current flow in the collector-base diode. This is the common application in Schottky TTL circuits.

In the ECL comparator the use is different. Here they are used back-to-back to limit the differential voltage swings between the collectors in both the first and the second stages. Connected in this way the reverse voltage seen by one Schottky diode is equal to the forward voltage drop of the other diode. Because this voltage is so small reverse leakage is not a great problem. In the simple Schottky diode structure, as described above, the reverse leakage is high. Most of this leakage current is generated at the perimeter of the metal. where there is an electric field concentration. In order to reduce this field the metal is extended all around the opening in the oxide, overlaying this oxide. Spacing the metal from the silicon in this way reduces the field and hence the leakage. In applications where low leakage is critical, the use of a P+ guard ring is called for, but this carries with it extra capacitance, so in view of the fact that the reverse voltage is so low the guard ring technique was discarded for this application. Even so, the diodes used in the comparator have low leakage characteristics with a breakdown at about 45V.

Figure 10. Cross section of transistor and Schottky diode showing sinker and P+ base contact enhancement

At the very high speeds being considered, much effort has to go into reducing capacitances and resistances. Thinning down the epitaxial layer to the minimum required to sustain the voltages encountered is of benefit in two ways: 1) the collector-isolation sidewall area is reduced, lowering the collector-to-substrate capacitance; 2) the collector-series resistance is reduced. The two major contributions to collectorseries resistance are the resistance of the epitaxial material between the emitter and the buried N+ layer, and the resistance of the epitaxial layer between the collector contact and the buried layer. However, the first resistance is subject to reduction by conductivity modulation during operation of the device and thus is less important than the second term. The second term can be made very small by using a "sinker", which is a high concentration N-type diffusion from the surface, through the epitaxial layer, to the buried N+ layer, Contact to the collector is then made to the surface of the sinker. (see Figure 10)

Collector-to-base capacitance is held low by using very small dimensions and by using a relatively high epitaxial layer resistivity. The latter also serves to reduce the collector-to-substrate capacitance. A further reduction in collector-to-base capacitance results from using a shallow, high sheet-resistivity diffusion for the base. However, this raises the base resistance, both because the bulk resistance from the contact to the active base region is increased and because the specific contact resistance is increased. These resistances may be reduced by depositing P+ regions under the base contact areas after the main base diffusion.

A compromise has to be made in selecting emitter width. Large emitters are desirable for VRF matching, but very small emitters are essential for high ft. A stripe emitter. .25-mil wide and 1-mil long, was chosen as optimum. A difference in width, between two otherwise identical emitters, of .01-mil will be sufficient to cause an offset voltage of 1 mV. From this, it can be seen that the photolithography must be extremely carefully controlled, since the offset voltages of three pairs of transistors are summed to give the total offset of the comparator. Because the emitters are so narrow the normal procedure of making a contact cut inside of the emitter cannot be used. Instead, the emitter oxide is simply dissolved in hydrofluoric acid immediately before the aluminum evaporation in order to expose the emitter. As a consequence, the lateral distance between the metal and the emitter-base junction is very small, being equal to the lateral diffusion of the emitter. This means that the sintering process must be carried out at a temperature lower than is customary in linear circuit manufacture in order to avoid short-circuiting the emitter-base junction by lateral migration of aluminum. An additional reason for lowering the sintering temperature is to avoid penetration of aluminum down through the emitter and base, causing emitter-to-collector shorts.

The requirement for high current gain, for low input bias currents, necessitates narrow base widths. Emitter-to-collector shorts can be a problem in these shallow, narrow-base structures. The probability of shorting can be minimized by careful cleaning procedures and by proper emitter doping levels. Keeping the emitter doping level low also reduces the magnitude of the "emitter dip" effect, whereby the diffusion coefficient of the boron in the region under the emitter is greatly increased by the lattice strain caused by the emitter, resulting in the running-on of the base under the emitter, making it very difficult to achieve a narrow base width.

An area that is neglected in digital circuit processing, because high beta is not necessary, but which is of major importance in linear processing, is the control of surface conditions. It high current gains are to be realized, both the surface area of the emitter-base-depletion region and the surface recombination velocity must be minimized. The former implies that ionic contamination, such as sodium ions, must be eliminated and that the surface state charge density, Oss, should be made as low as possible. The surface recombination velocity is proportional to the fast surface state density and so can be minimized by making this density very low. These three goals; low ionic contamination, low Oss and low fast surface state density are achieved by using the well known techniques of MOS and linear circuit processing, such as annealing in an inert atmosphere and proper choice of sintering cycle.

In the interests of minimum capacitance, the metal interconnects are designed to be narrower than is usual in linear circuits. Special etching techniques have to be employed in order to reproduce these narrow lines reliably. These lines can be seen in the photomicrograph of Figure 11.

Figure 11. Photomicrograph of the Am685 comparator

PERFORMANCE

The primary design objective for the comparator was to obtain under 10ns propagation delay for large input signals with small overdrive. It should then be as fast or faster for any other input conditions. The performance of the Am685 comparator for a 100mV step input at various overdrives is shown in Figures 12 and 13. The propagation delay is measured from the time the input step crosses the input threshold voltage to the time the output crosses the logic threshold voltage. The input threshold voltage (i.e., the offset voltage) was adjusted for the figures so that the delay can be simply measured by

Figure 12. Tpd -"1" for 100mV step input and various overdrives (input = 5mV/cm, output = 200mV/cm)

Figure 13. Tpd -"0" for 100mV step input and various overdrives (input = 5mV/cm, output = 200mV/cm)

counting up 5, 10, or 20mV from the bottom of the input pulse. The input pulse, therefore, is displayed on a magnified scale to facilitate this measurement and also to illustrate the purity of input signal required to make accurate measurements at millivolt overdrives.

For a 100mV input step and 5mV overdrive, the propagation delay for a logical "0" is 6.3ns and for a logical "1" is about 300ps less. A graph of delay as a function of overdrive is given in Figure 14. It was previously stated that any other condition

Figure 14. Delay times as a function of input overdrive

Figure 15. Response to symmetrical input signals

of input signal should give faster response (refer back to Figure 1). This is demonstrated by Figure 15, which illustrates the response of the comparator to symmetrical inputs ranging from $\pm 5 \text{mV}$ to $\pm 500 \text{mV}$. The speeds are at least 1 to 2ns faster than for small overdrives.

Figure 16 shows how the delay time varies with temperature. The adverse effects of resistor and gain changes at elevated temperatures result in an increase in delay from 6.3ns at 25° C to 8.4 ns at 85° C and 10.4 ns at 125° C. All of the above data were taken with output loads of 500° connected to -2.0° V. For lighter loading (such as 5000° 0 to -5.2° V) the output rise and fall times and propagation delays are all slightly faster.

The usefulness of the latch is directly related to how quickly it can be enabled following a change in the input signal. The input signal must be present long enough to pass through the first stage of the comparator before the latching transistors can act upon it. The minimum time that the input must be present before the latch can be turned on is defined as the latch enable time. This is measured as the minimum time that must elapse

Figure 16. Delay times as a function of temperature

between the time the input step crosses the input threshold voltage and the time the latch enable input crosses the logic threshold voltage for which the comparator outputs will assume the correct states.

Figure 17. Latch enable time and latch aperature time for 100mV input step, 5mV overdrive (input = 5mV/cm, latch = 200mV/cm, output = 400mV/cm)

The performance of the latch function is illustrated by Figure 17. The input signal is the standard 100mV step with 5mV overdrive and is in the direction to cause the output to switch from a logical "0" to a logical "1". The delay of the latch signal relative to the input is adjusted until the output just switches to a "1"; this is the latch enable time and under these conditions is 1.8 ns. The difference between the latch timing for which the output just barely switches and when it does not switch is the latch aperture time; this is about 500ps for 5mV overdrive. The performance of the latch with input overdrive and temperature generally follows that of the propagation delays (Figure 14 and 16).

The overall performance of the Am685 is summarized in Table II. It is apparent from the table and the previous discussion that the device is ideally suited for applications where both precision and high speed are required, such as in analog-to-digital converters, data acquisition systems, and optical isolators. The device is the first in a family of new wideband linear integrated circuits designed to meet the requirements of very high-speed systems.

Propagation Delay	
(100mV step, 5mV overdrive)	6.5 ns MAX
Input Offset Voltage	2.0mV MAX
Average Temperature Coefficient	
Of Input Offset Voltage	10μV/°C MAX
Input Offset Current	1.0μA MAX
Input Bias Current	10μΑ ΜΑΧ
Common Mode Voltage Range	±3.3V MIN
Common Mode Rejection Ratio	80dB MIN
Supply Voltage Rejection Ratio	70dB MIN
Positive Supply Current	22 mA MAX
Negative Supply Current	26 mA MAX

Table II: Performance Characteristics of the Am685 Comparator ($T_A = 25^{\circ}C$, $V^+ = 6.0V$, $V^- = -5.2V$, $R_L = 50\Omega$ to -2.0V)

THE A-D APPLICATION

Very fast, precision, analog-to-digital conversion stands to benefit considerably from the availability of a fast comparator. As the block diagram of a fast 10-bit converter in Fig. 18 shows, a typical rapid conversion technique may resemble the use of feedforward compensation in an operational amplifier.

The analog input signal is sampled at the beginning of a conversion period and fed to a fast five-bit a-d converter, which provides the first five most significant bits of the output. These five bits also drive a companion d-a converter, which must be accurate to better than 10 bits. The output of the d-a converter is a replica of the input signal, quantized to five bits. This is compared with the actual input signal stored in the sample-and-hold amplifier. The difference between the two analog levels is the remaining part of the input signal that must be quantized. This difference is amplified and applied to another five-bit a-d converter to provide the five least-significant-bits of the final output.

Typical five-bit a-d converters may consist of 31 106-type comparators connected to the signal source and referenced to the full-scale input in steps of 1/32. The output of each comparator goes into a latch, and the latch outputs are decoded by three stages of TTL gages to develop the five-bit digital output.

Typical propagation delays are 40 ns for the comparators, 22 ns for the latches, and 10 ns for the decoding, resulting in a

total delay of 80 ns. Average settling time for the five-bit daconverter and the difference amplifier together comes to about 200 ns, and the settling time for the input sample-and-hold amplifier is 70 ns. Thus, the over-all conversion time for this 10-bit converter amounts to 430 ns.

Substitution of the high-speed ECL comparator for the 106 type in each of the five-bit converters leads to a significant improvement in propagation delay. The typical delay of the comparator is about 6.5 ns, and no external latch is required. With ECL it is possible to wire-OR outputs, so only one level of decoding gates is required. Allowing 1.5 ns for the gates, the total five-bit conversion time is only 8 ns — a tenfold improvement over the existing circuit.

If the latch function of the comparators is used as the sampleand-hold for the first five-bit converter, the sample-and-hold can be put in parallel with the first quantization step, as shown by the dotted lines in Fig. 18. This eliminates its settling time from the over-all delay of the system. With the new comparator, the total 10-bit conversion time drops to 216 ns, with over 90% of the delay attributable to the d-a converter and the difference amplifier. Moreover, the availability of an 8 ns five-bit converter should provide the impetus to improve the slower sections of the system. A 10-bit a-d converter with a delay under 100 ns is not an extravagant prediction.

Figure 18. Analog to digital.

Am685/Am686/Am687 DESIGNING WITH HIGH SPEED COMPARATORS

By Leonard Brown

INTRODUCTION

The Am685, Am686 and Am687 are a family of high-speed sampling comparators capable of detecting low-level signals of the order of 5-10mV in 12-15ns over the temperature range $-55^{\circ}\mathrm{C} \leqslant T_{A} \leqslant 125^{\circ}\mathrm{C}$. The Am686 is fully TTL-compatible and complementary outputs are available generated from a true differential output stage assuring a maximum output skew of under 2ns at 25°C. The Am685 and Am687 are single and dual ECL-compatible versions, respectively, and have output skews of less than 1ns. A high-speed latch is incorporated in the input stage permitting input signals to be acquired in 4.0ns maximum for the ECL versions and 6.0ns for the TTL device.

Applications of the devices are not limited to high-speed designs as the combination of the excellent DC input characteristics, availability of true differential outputs and the latch function permit unique solutions for slower speed applications where the response time of the comparators can be considered negligible.

THE SAMPLING COMPARATOR

The sampling comparator may be visualized as a conventional voltage comparator with the provision that the outputs may be latched into the logic states determined by the input signal conditions existing at the time of application of the latch signal. This is achieved by incorporating the latch circuitry in the input stage of the device. The minimum latch enable pulse width is necessarily less than the propagation delay of the device and, therefore, the comparator can be unlatched for a fraction of its propagation delay (4.0ns for the Am685). The outputs will then change in accordance with the input conditions existing at the time of the latch signal. Note: It is impossible for the comparator to oscillate under these conditions

If the latch function is not used, the device operates as a conventional voltage comparator.

BACK TO BASICS

Comparators are designed to have both high gain and large bandwidth. This creates instability problems or oscillations when the device outputs are in the transition region. The tendency of a device to oscillate is a function of the layout, (poor layout increasing the amount of feedback caused by parasitic capacitance) and the source impedance of the circuit employed (The higher the source impedance the less parasitic coupling is necessary to cause oscillation.) It is mandatory with comparators of the gain and bandwidth of the Am685, Am686 and Am687 to ensure that power supplies are well decoupled, lead lengths are kept as short as possible, and wherever possible (especially in the case of the Am686), a ground plane should be employed.

In addition to reducing the effects of stray capacitance, a ground plane substantially reduces the possibility of the

output current spike coupling back to the inputs through the ground lead when the TTL output stages switch.

The minimum slew rate at which the input signal must cross the threshold region to prevent oscillation, regardless of the particular layout parasitics, may be determined by applying a DC voltage to the input until the circuit just commences to oscillate and increasing this voltage until the oscillation ceases. The minimum necessary input slew rate is then given by $\Delta V/t_{pd}$ MIN, where ΔV is the input voltage required to prevent oscillation and t_{pd} MIN is the minimum propagation delay of the comparator.

The minimum slew rate will be found to be a function of source impedance and source impedance mismatch.

The curves of Figures 1 and 2 show the minimum slew rate for the Am686 as a function of source impedance and source impedance mismatch.

LIC-166

Figure 1. Minimum Slew Rate Versus Source Resistance (TO-5).

LIC-167

Figure 2. Minimum Slew Rate Versus Source Resistance (DIP).

Figure 3. Minimum Slew Rate Versus Source Resistance (TO –5 & DIP).

It can be seen that unbalanced sources dramatically effect the minimum input slew rate required. Note that for optimum performance, the source impedance seen by the comparator should be both DC and AC balanced to reduce the differential feedback to a minimum.

The effect of an AC unbalanced source is seen especially on the Am686 as when the output switches, the output current spike is coupled back to the input. This can be eliminated by forcing the AC unbalance to result in positive feedback, which may be achieved by decoupling the inverting input or applying positive feedback via a 2-4pF capacitor from the Q output to the non-inverting input.

The curves of Figure 3 illustrate the improvement in minimum slew rate when a small amount of positive feedback is employed by virtue of a 2pF feedback capacitor.

OPTIMUM SOURCE CONDITIONS (Cf = 0pF)

With low source impedances ($< 50\Omega$), the majority of the feedback between the output and the input occurs internal to the device. As the source impedance is raised, external feedback increases through the parasitic feedback capacitance until, at high source impedances, the external feedback dominates. This explains the anomolous characteristics of the minimum slew rate curves and suggests that the optimum source resistance for the device is between 300 and 500Ω for unbalanced sources and is approximately 1000Ω for a balanced source.

OPTIMUM SOURCE CONDITIONS (Cf = 2pF)

With a source impedance of 100 Ω , the minimum slew rate is 0.15V/ μ s for the DIP configuration and 0.02V/ μ s for the TO-5. For balanced sources the minimum slew rate is 0.03V/ μ s for RS \geqslant 100 Ω and for a source impedance between 1k Ω and 3k Ω , the minimum slew rate is <0.02V/ μ s regardless of impedance, DC imbalance or package type.

The use of the feedback capacitor is recommended when:

- 1. The input slew rate is within a factor of 2 greater than the minimum theoretical slew rate.
- System constraints do not permit optimisation of layout and lead lengths.
- Unbalanced source impedances are used (it is not always possible to provide input conditions which are both DC and AC balanced).

A FAMILY AFFAIR

It must be stressed that the concepts discussed concerning source imbalance and minimum input slew rate apply to all devices in the family. The Am686 was highlighted as it is more sensitive to layout constraints and parasitic feedback because of its significantly higher voltage gain.

Similarly all of the applications which follow may be implemented with any device in the series provided due caution is exercised with regard to the different output logic levels.

THE RELAXATION OSCILLATOR

The principal problems in the design of a classical relaxation oscillator are:

- The variation in potential to which the energy storage device (normally a capacitor) is charged.
- 2. The variation in the threshold level at which the capacitor is to be discharged.
- The variation inherent in the sensor element (normally a comparator) in detecting equivalence between the threshold level and the capacitor's instantaneous potential.

The variations are all functions of both time and temperature and are the primary causes of frequency drift, symmetry error, and litter.

By taking advantage of two unique properties of the Am686, a relaxation oscillator may be designed to eliminate the first two problems and reduce the third to a second-order effect for oscillation frequencies from 1MHz to 30MHz.

The true differential output stage of the comparator ensures that the Ω and $\overline{\Omega}$ outputs change within 1-2ns of each other. This feature ensures that the outputs can never be in the same logic state instantaneously, either HIGH or LOW, and that the only time they are equal in voltage is when traversing the logic uncertainty levels. This property permits the design of a threshold setting circuit that varies in accordance with the charging voltage applied to the timing capacitor. Therefore, any change in charging potential is automatically compensated by a corresponding change in threshold level.

Second, the combination of the short propagation delay 7-10ns, the minimum difference in propagation delay between outputs and the stability of these delays with temperature assures square wave symmetry of better than 1% @ 1MHz and 5% @ 25MHz and a frequency stability of 1% @ 10MHz and 4% @ 25MHz.

The above statements are true from device to device and over the operating temperature range of -55°C to $+125^{\circ}\text{C}$. Over the industrial temperature range, a factor of two improvement should be obtained.

CIRCUIT THEORY (Fig. 4)

Assuming the circuit is in an oscillating mode, the voltage appearing at the non-inverting terminal will alternate between $V_{\mbox{$\chi$}}$ and $V_{\mbox{$\gamma$}}$ where:

$$V_X = \frac{R_1}{(R_1 + R_2)} (V_{OH} - V_{OL}) + V_{OL}$$
 and
$$V_Y = \frac{R_2}{(R_1 + R_2)} (V_{OH} - V_{OL}) + V_{OL}$$

When $V_{+1N} = V_X$, the timing capacitor C will be charging towards V_{OH} , and when $V_{+1N} = V_Y$, the timing capacitor will be discharging towards V_{OI} .

Figure 4. Circuit Design.

After the voltage on the capacitor equals the voltage on the non-inverting input, a finite time will elapse before the output of the circuit changes, during which time (the propagation delay of the Am686) the capacitor will continue to charge towards V_{OH} , or discharge towards V_{OL} .

Therefore, the capacitor will charge to a voltage

$$V_A = V_{OH} - e^{-t_{PHL}/CR} \cdot (V_{OH} - V_X)$$

and discharge to a voltage

$$V_B = V_{OL} + e^{-t_{PLH}/CR} \cdot (V_Y - V_{OL})$$

where t_{PHL} and t_{PLH} = propagation delay of the Am686 from the inputs to the output changing from HIGH — LOW and LOW — HIGH respectively.

The time to charge from V_B to V_A which is the positive half cycle is given by:

$$t^{+} = CR \ 1n \ \frac{V_{OH} - V_{B}}{V_{OH} - V_{A}}$$

substituting for V_A and V_B

$$t^{+} = CR \ln \left[\left(\frac{R_1}{R_2} + 1 \right) e^{tPHL/CR} - 1 \right]$$

Similarily the negative half cycle is given by:

$$t^- = CR \ 1n \ \frac{V_A - V_{OL}}{V_B - V_{OL}}$$

$$t^- = CR \ln[(\frac{R_1}{R_2} + 1) e^{tPLH/CR} - 1]$$

Note: The only assumptions are:

- 1. $(V_{OH} V_{OL})$ of the Q output = $(V_{OH} V_{OL})$ of the \overline{Q} output.
- 2. Offset voltage and offset current errors are negligible.

$$3 e^{t_{PLH}/CR} \times e^{-t_{PHL}/CR} = 1$$

The only factor affecting pulse width variation is, therefore, t_{PLL} and t_{PLH} . As $t_{PLL} > t_{PLH}$ by 1-2ns, it is therefore anticipated that t^+ will be marginally greater than t^- .

MINIMUM OPERATING FREQUENCY

For the Am686, it is specified that the minimum slew rate at the input to insure that the device will not oscillate in the transition region is $1V/\mu s$. This will determine the minimum operating frequency of the circuit.

The rate of change of voltage on the timing node is given by:

$$\rho = \frac{\partial v}{\partial t} = \frac{Vo}{CR} \times e^{-t/CR}$$

In the circuit,

a) $Vo = V_{OH} - V_{B}$ (assuming positive ramp)

and

b) t = CR 1n
$$[(\frac{R_1}{R_2} + 1) e^{t_{PHL}/CR} - 1]$$

As the slew rate is only critical in determining the lowest operating frequency, it may be assumed that $e^{\mbox{t}_{PHL}/CR}=1$ (CR >>>> t_{PHL}); therefore, Vo = $V_{OH}-V_{B}\approx V_{OH}-V_{Y}$

$$V_0 = (V_{OH} - V_{OL}) \frac{R_1}{R_1 + R_2}$$
 and $t = CR 1n \frac{R_1}{R_2}$

where,
$$\Delta V = (V_{OH} - V_{OL})$$

The minimum operating frequency

$$f_{MIN} = \frac{1}{2 \text{ CR 1n } \frac{R_1}{R_2}}$$

substituting

$$CR = \frac{\Delta V}{\rho} \frac{R_2}{R_1 + R_2}$$
 $f_{MIN} = \frac{\rho}{2\Delta V} \times \frac{(R_1/R_2 + 1)}{10 R_1/R_2}$

The expression for minimum frequency indicates that an optimum ratio of R_1/R_2 exists that is independent of any particular RC time constant which may have been chosen.

The ratio may be determined by differentiating f_{MIN} with

$$\frac{\partial f_{MIN}}{\partial \frac{R_1}{R_2}} = \frac{\rho}{2\Delta V} \times \frac{\ln \frac{R_1}{R_2} - (\frac{R_1}{R_2} + 1) / \frac{R_1}{R_2})}{(\ln \frac{R_1}{R_2})^2}$$

$$= \frac{\rho}{2\Delta V} \times \frac{\ln \frac{R_1}{R_2} - 1 - \frac{R_2}{R_1}}{(\ln \frac{R_1}{R_2})^2}$$

Setting
$$\frac{\partial F}{\partial R_1} = 0$$

$$\ln \frac{R_1}{R_2} - 1 - \frac{R_2}{R_1} = 0$$

$$\frac{R_1}{R_2} = \frac{1}{\ln \frac{R_1}{R_2} - 1}$$

$$\frac{R_1}{R_2} = 3.59112$$

Therefore, the lowest frequency the oscillator will perform consistent with the 1V/µs constraint is:

$$f_{MIN} = \frac{1 \times 4.6}{2 \times 3.5 \text{ ln } 3.6} = .513\text{MHz}$$

D.C. OFFSET ERRORS

The presence of DC errors resulting from the bias and offset currents and offset voltage of the Am686 will cause the Vy and Vx thresholds to be both shifted either positive or negative by an equal amount δV where δV is the sum of all such errors.

The magnitude of these effects may be calculated as follows: When the capacitor is discharging -

Figure 5.

$$V_{(t)} = V_0 e^{-t/CR}$$

$$\frac{dv}{dt} = -\frac{1}{CR} Voe^{-t/CR} = -\frac{1}{CR} V(t)$$

$$\delta t_1 = -\frac{\delta V}{V(t_1)} CR$$

$$\delta t_2 = \frac{-\delta VCR}{V(t_2)}$$

$$\delta t_2 = \frac{-\delta VCR}{V_{(t_2)}}$$

∆t⁻ Negative Pulse Width Change

$$\delta t_2 - \delta t_1 = \delta VCR \frac{V(t_2) - V(t_1)}{V(t_1) V(t_2)}$$

As
$$V_X = V_{t_1}, V_Y = V_{t_2}$$

$$\Delta t^{-} = \frac{\delta VCR (V_{Y} - V_{X})}{V_{X}V_{Y}}$$

Similarly for the positive pulse

Figure 6.

$$V_{(t)} = Vo(1 - e^{-t/CR})$$

Whence,
$$dv/dt = \frac{1}{CR} (Vo - V_{(t)})$$

$$\delta t_2 = \frac{\delta VCR}{Vo - V_{t_2}}$$

Positive Pulse Width Change $\Delta t^+ = \delta t_2 - \delta t_1$

$$= \delta VCR \frac{1}{Vo - V(t_2)} - \frac{1}{Vo - V(t_1)}$$

In the circuit $V_{t_2} = V_X$, $V_{t_1} = V_Y$, $V_0 - V_X = V_Y$

$$\Delta t^{+} = \delta VCR \left(\frac{1}{V_{Y}} - \frac{1}{V_{X}} \right) = \delta VCR \frac{V_{X} - V_{Y}}{V_{X} V_{Y}} = -\Delta t^{-}$$

.. Offset errors do not affect the frequency of oscillation, only the symmetry of the waveshape.

Am685/Am686/Am687

SYMMETRY ERROR

Symmetry
$$S = \frac{\Delta t^+ - \Delta t^-}{2T} \times 100\%$$
 where $T = CR \ln \frac{V_Y}{V_X}$

$$S = \frac{2\Delta t^+}{2T} \times 100\%$$

$$= \frac{\delta VCR (V_X - V_Y)}{V_X V_Y} \times \frac{1}{CR \ln V_Y / V_X}$$

Symmetry is worse for maximum value of $V_X - V_Y$. Maximum value of $V_X - V_Y$ occurs when R_1 and R_2 are arranged for minimum operating frequency, i.e., $R_1/R_2 = 3.6$

Substituing $\delta V = 5 \text{mV}$

$$V_X/V_Y = 3.6$$

 $V_XV_Y = \frac{1}{4.6} V_{OH} \times \frac{3.6}{4.6} V_{OH}$

$$V_{OH} = 3.5V$$
 and neglecting V_{OL}

Symmetry is < 0.38%

Note: 1. For any given ratio of $R_1: R_2$ (i.e., V_X and V_Y), offset voltage Symmetry error is independent of frequency.

2. Symmetry improves to .33% @ R₁:R₂ = 2.5

EXTENDING LOW FREQUENCY PERFORMANCE

If it is necessary to extend the lower limit of the oscillation frequency, a small amount of positive feedback may be introduced by connecting a 2-4pF capacitor between the Q output and the non-inverting input. This will decrease the minimum input slew rate required and enable oscillation frequencies of 1kHz to be achieved without spurious oscillations occuring on the rising or falling edges of the waveform. At frequencies below 1MHz, it is not necessary to take into account any potential frequency shift this additional feedback introduces. (Above 1MHz, it is not necessary to use this additional feedback.)

PERFORMANCE CHARACTERISTICS:

Figure 7. Percentage Change in Frequency Versus
Case Temperature.

Figure 8. Change in Symmetry Versus Case Temperature.

Figure 9. Output Waveform at 1.0 MHz.

Figure 10. Output Waveform at 10 MHz.

Figure 11. Output Waveform at 24 MHz and Expanded Falling Edge Exhibiting <50 ps Jitter.

Figure 12. Change in Pulse Width and Jitter from 25° C to 125° C, f = $10\,\text{MHz}$.

Figure 13. Expanded Fall Time Showing Change in Pulse Width from 25°C to 125°C, f = 1.0 MHz, (Jitter ~ 300 ps).

Figure 14. Circuit and Component Values used in Obtaining Performance Characteristics.

LOW LEVEL PULSE DETECTOR

Figure 15.

CIRCUIT OPERATION

The input resistance is essentially determined by R_4 which was chosen to be $1 \mathrm{k} \Omega$ on the basis that most sources would not be unduly loaded at this value and consequentially higher values would make the circuit excessively prone to oscillation. To minimize bias current errors, the inverting input is connected to the 10mV reference source (R_1 and R_2) through an equal-valued resistor (R_3).

Positive feedback is provided by C_f which provides a 50-60mV, 3-4ns pulse, significantly improving the switching time and narrowing the uncertainty region for pulses just in excess of the 10mV threshold.

Capacitor C₁ provides A-C coupling and thus isolates the circuit from slowly varying signals which may be superimposed on the signal to be detected. Such is the case for a detector sensing the output from a fibreoptic cable receiver. The A-C coupling imposes additional constraints; namely, the repetition rate and duty cycle of the input signal.

The signal which is seen by the non-inverting terminal and then compared to the reference is not simply the peak value of the input pulse but the peak value less the average D.C. value of the input signal.

Assuming a 20mV input pulse, 20ns wide and repeated every 20ns, the signal seen across R_4 will be as follows:

Figure 16.

By the ninth pulse, the peak signal will be 15.2mV dropping to 14.6mV by the end of the pulse; thus, after a pulse train of ~ 10 pulses, the detector will not detect the incoming signal.

Additionally, consider the case of a 20ns pulse repeated every 60 nanoseconds.

Figure 17.

The peak signal at the input will now be only 15mV; therefore, the maximum repetition rate consistent with providing a 5.0mV overdrive is 1/80ns or 12.5MHz.

Therefore, the circuit will only successfully detect 20mV, 20ns signals if: a) the pulse train is \leq 10 pulses or b) the repetition rate \leq 12MHz.

To compensate for these problems, a DC feedback signal is generated by RA, RB and CC, which adjusts the reference level accordingly.

RA and C_C form a low-pass filter that gives a maximum DC level of 1.7 volts at a 1:1 duty cycle. At this duty cycle, it is required to reduce the reference level by 5mV to maintain adequate overdrive. RB and R4 form an attenuator and the DC voltage level returned to the non-inverting input = 1.7V x R4/(R4 + RB) = 4.3mV. Using this network permits the circuit to work up to 25MHz, or better than a 1:1 duty cycle and removes the limitation imposed by the input A-C coupling.

Note: The response time of the feedback path must be the same as the input network; i.e., $R_AC_C = R_4C_1$ in order for the feedback to follow rapid changes in repetition rate or duty cycle.

PRECISION MONOSTABLE

Commercially available one-shots encounter problems in the generation of narrow (< 100ns) pulses. Namely, there is a significant delay between the input pulse and the output pulse of the order of 20ns and the resultant output pulse width is highly temperature dependent due to the variation in internal delays with temperature. Second, the input pulse must be of the logic level for the type of logic employed in the design — TTL, DTL, RTL, etc. Thus, the circuits are incapable of responding to low-level input signals in the millivolt range.

The Am685 series of sampling comparators can be employed in the design of a custom one-shot to overcome both of these problems.

Figure 18 shows the design of a monostable employing the Am686 to generate precision output pulses in the 20-100ns range and the values shown are for a 50ns pulse width.

Figure 18.

The timing diagram illustrates the circuit operation,

Figure 19.

The circuit triggers on the negative-going edge of the input pulse and the Q output switches high. The output signal is attenuated by $R_{\mbox{\sc A}}$ and $R_{\mbox{\sc B}}$ to keep the coupled pulse inside the common mode limits of the device. The output remains high until the voltage on the non-inverting input reaches the threshold set by $R_{\mbox{\sc A}}$ and $R_{\mbox{\sc C}}$. In order that the pulse width be independent of the input pulse amplitude, it is important to make the input time constant small compared to the desired output pulse width.

A unique feature of the circuit is the use of the differential outputs of the device to set the threshold, V_{th} thus providing temperature compensation and a reduction in pulse width variation from device to device.

Diode D_1 shortens the recovery time of the timing capacitor and permits retriggering 30ns after the end of the pulse with less than a 5% change in pulse width.

Complete isolation of the input signal and the timing network may be achieved by employing the latch function as shown below:

Figure 20.

When the input signal exceed VREF, the output will switch and latch the comparator in the high state. When timing capacitor charges to the latch threshold, the latch will become disabled and the output will switch back to zero, providing the input is now below VREF.

The advantages of this approach are:

- 1. No interaction between input signal and timing capacitor.
- The input threshold set by VREF is independent of the timing threshold.

Thus, the input threshold can be varied from millivolts to volts. A practical circuit is shown:

Figure 21.

The circuit is applicable for situations where accuracy of trigger threshold is important, a large variation in input signal level is expected or the input signal level is low. Timing accuracy (pulse width) is independent of the amplitude of the input pulse, but the output pulse width varies with temperature in accordance with the temperature dependence of the latch threshold ($\sim 3.0 \text{mV}/^{\circ}\text{C}$ for Am686).

APPLICATIONS REQUIRING INPUT HYSTERESIS

Comparators are frequently employed in systems where it is required that the transfer function contain a defined amount of hysteresis. Conventional comparators employing positive feedback can be used to generate hysteresis as shown below:

Figure 22.

Drawbacks of this technique include:

- Response time of hysteresis loop ≥ comparator propagation delay
- 2. Hysteresis varies with VOH and VOL changes
- Hysteresis is not centered about zero unless an additional reference is used.

By utilizing the latch function on the Am685, Am686 and Am687, hysteresis can be inserted in a manner to overcome these drawbacks; namely:

- 1. Response time of hysteresis loop << propagation delay
- 2. Hysteresis not affected by VOH and VOL changes
- 3. Hysteresis is symmetrical about zero.
- Full input differential capability maintained over complete common mode range.

The hysteresis is obtained by applying a slight bias to the latch inputs. The technique is illustrated in the test circuit shown for the Am687.

Figure 23.

Am685/Am686/Am687

The hysteresis is essentially symmetrical about zero and between ± 5 and $\pm 50 mV$ of hysteresis can be generated before the relationship between the latch voltage and the thresholds become too sensitive.

The hysteresis is independent of changes in the positive supply voltage and the input common mode range and varies only with changes in temperature and negative supply voltage.

Figure 24. Input Hysteresis Versus Latch Voltage, TA = 25°C.

Figure 25. Change in Hysteresis Versus Change in Negative Supply Voltage.

Figure 26. Change in Hysteresis Versus Case Temperature.

COMPARATOR PERFORMANCE SPECIFICATIONS

Am687	
FUNCTIONAL DIA	GRAM
NON-	NON-
INVERTING Q OUTPUT Q OUTPUT	
SIDE A	SIDE B
O O O O O O O	JT SIDE B
INPUT	INVERTIN
R _L & R _L R	L \$ \$ RL
LE LE	IE LE
LATCH ENABLE O	LATCH ENABLE
	LIC-13
The outputs are open emitters; therefore are required. These resistors may be connected to $-2.0V$, or $200-2000\Omega$ connected to	in the range of 50-2000
are required. These resistors may be connected to $-2.0V$, or $200-2000\Omega$ connected to $-2.0V$, or $200-2000\Omega$ CONNECTION DIAC	in the range of 50-2000 nected to -5.2V.
are required. These resistors may be connected to -2.0V, or 200-2000s cons	in the range of 50-2000 nected to -5.2V.
are required. These resistors may be connected to -2.0V, or 200-2000Ω connected to -2.0V	in the range of 50-2000 nected to -5.2V.
are required. These resistors may be connected to -2.0V, or 200-2000Ω control to the CONNECTION DIAGORETICS TO View	in the range of 50-200s nected to -5.2V.
are required. These resistors may be connected to -2.0V, or 200-2000f3 control CONNECTION DIAK Top View	in the range of 50–200s nected to –5.2V.
are required. These resistors may be connected to -2.0V, or 200-2000Ω control CONNECTION DIAL Top View	in the range of 50–200s nected to –5.2V. GRAM
are required. These resistors may be connected to -2.0V, or 200-2000Ω control to View course for the connected to -2.0V, or 200-2000Ω control to View course for the control to View control to View control to View course for the control to View cont	in the range of 50-2009 nected to -5.2V. GRAM O GOUTPUT GND.
are required. These resistors may be connected to -2.0V, or 200-2000Ω conditions to the connected to -2.0V, or 200-2000Ω conditions to the control of the co	in the range of 50–200s nected to –5.2V. GRAM GOUTPUT GND. LE
are required. These resistors may be connected to -2.0V, or 200-2000f3 control CONNECTION DIAK Top View	in the range of 50-2006 sected to -5.2V. SRAM O OUTPUT GROOT JE JE JE JE JE JE JE JE JE J
are required. These resistors may be connected to -2.0V, or 200-2000f3 control to 100	in the range of 50-2006 GRAM COUTING COUTING

C Character			Am68 Am68	87-L	Am687 Am68	37-M	
mbol	Parameter	Conditions (Note 3)	Min.	Max.	Min.	Max.	Units
Vos	Input Offset Voltage	$R_S \le 100 \Omega$, $T_A = 25^{\circ}C$, $R_S \le 100 \Omega$	-3.0 -3.5	+3.0	-2.0 -3.0	+2.0	mV mV
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 100 Ω	-10	+10	-10	+10	μV/°C
Ios	Input Offset Current	25°C ≤ T _A ≤ T _{A(max.)} T _A = T _{A(min.)}	-1.0 -1.3	+1.0	-1.0 -1.6	+1.0 +1.6	μΑ μΑ
IB	Input Bias Current	25°C ≤ T _A ≤ T _{A(max.)} T _A = T _{A(min.)}	1.00	10 13	ef rius	10 16	μA μA
V _{CM}	Input Voltage Range		-3.3	+2.7	-3.3	+2.7	V
CMRR	Common Mode Rejection Ratio	R _S ≤ 100 Ω, −3.3 ≤ V _{CM} ≤ +2.7 V	80		80		dB
SVRR	Supply Voltage Rejection Ratio	R _S < 100 Ω, ΔV _S = ±5%	70		70		dB
V _{OH}	Output HIGH Voltage	T _A = 25°C T _A = T _A (min.) T _A = T _A (max.)	-0.960 -1.060 -0.890	-0.810 -0.890 -0.700	-0.960 -1.100 -0.850	-0.810 -0.920 -0.620	V V
VoL	Output LOW Voltage	$T_A = 25^{\circ}C$ $T_A = T_A(min.)$ $T_A = T_A(max.)$	-1.850 -1.890 -1.825	-1.650 -1.675 -1.625	-1.850 -1.910 -1.810	-1.650 -1.690 -1.575	v v v
1*	Positive Supply Current			35		32	mA
1-	Negative Supply Current	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		48	VI T	44	mA
P _{DISS}	Power Dissipation		A 3	485		450	mW
vitching Ch	naracteristics (Vin = 100 mV, Vod	= 5 mV)	The same		harring's	10	
t _{pd+} , t _{pd-}	Propagation Delay, Am687A	$T_A(min.) \le T_A \le 25^{\circ}C$ $T_A = T_A(max.)$	V	8.0		8.0 12.5	ns ns
t _{pd+} , t _{pd-}	Propagation Delay, Am687	$T_{A \text{ (min.)}} \le T_{A} \le 25^{\circ}\text{C}$ $T_{A} = T_{A \text{ (max.)}}$		10 14		10 20	ns ns
ts	Minimum Latch Set-up Time	T _A = 25°C	1	4.0		4.0	ns

COMPARATOR PERFORMANCE SPECIFICATIONS (Cont.)

Am685

FUNCTIONAL DIAGRAM

The outputs are open emitters, therefore external pull-down resistors are required. These resistors may be in the range of $50-200\Omega$ connected to -2.0 V, or $200-200\Omega$ connected to -5.2 V.

CONNECTION DIAGRAMS

Top Views Dual-In-Line Note 1: On metal package, pin 5 is connected to case

LIC-120

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified)

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified)

C Characte	eristics		Am6	85-L	Am6	85-M	
ymbol	Parameter (see definitions)	Conditions (Note 3)	Min.	Max.	Min.	Max.	Unit
1227		R _S < 100 Ω, T _A = 25°C	-2.0	+2.0	-2.0	+2.0	mV
Vos	Input Offset Voltage	R _S ≤ 100 Ω	-2.5	+2.5	-3.0	+3.0	mV
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage	R _S < 100 Ω	-10	+10	-10	+10	μV/° (
	Input Offset Current	T _A = 25°C	-1.0	+1.0	-1.0	+1.0	μA
los	Input Offset Current		-1.3	+1.3	-1.6	+1.6	μА
		T _A = 25°C		10		10	μА
IB .	Input Bias Current			13		16	μА
RIN	Input Resistance	T _A = 25°C	6.0		6.0		kΩ
CIN	Input Capacitance	T _A = 25°C		3.0		3.0	pF
V _{CM}	Input Voltage Range		-3.3	+3.3	-3.3	+3.3	V
CMRR	Common Mode Rejection Ratio	R _S ≤ 100 Ω, -3.3 ≤ V _{CM} ≤ +3.3 V	80		80		dB
SVRR	Supply Voltage Rejection Ratio	R _S ≤ 100 Ω, ΔV _S = ±5%	70		70		dB
		T _A = 25°C	-0.960	-0.810	-0.960	-0.810	V
VOH	Output HIGH Voltage	TA = TA(min.)	-1.060	-0.890	-1,100	-0.920	V
		TA = TA(max.)	-0.890	-0.700	-0.850	-0.620	V
		T _A = 25°C	-1.850	-1.650	-1.850	-1.650	V
VOL	Output LOW Voltage	TA = TA(min.)	-1.890	-1.675	-1.910	-1.690	V
		TA = TA(max.)	-1.825	-1.625	-1.810	-1.575	V
1+	Positive Supply Current			22		22	mA
1-	Negative Supply Current		2 10	26	26	26	mA
PDISS	Power Dissipation			300		300	mW

Switching Characteristics (V_{in} = 100 mV, V_{od} = 5 mV)

	Input to Output HIGH	TA(min.) < TA < 25° C	4.5	6.5	4.5	6.5	ns
t _{pd+}	Input to Output HIGH	$T_A = T_A(max.)$	5.0	9.5	5.5	12	ns
		T _{A(min.)} ≤ T _A ≤ 25°C	4.5	6.5	4.5	6.5	ns
tpd-	Input to Output LOW	$T_A = T_{A(max.)}$	5.0	9.5	5.5	12	ns
	Latch Enable to Output HIGH	T _{A(min.)} < T _A < 25°C	4.5	6.5	4.5	6.5	ns
t _{pd+} (E)	(Note 4)	$T_A = T_{A(max.)}$	5.0	9.5	5.5	12	ns
(5)	Latch Enable to Output LOW	TA(min.) < TA < 25°C	4.5	6.5	4.5	6.5	ns
t _{pd} _(E)	(Note 4)	$T_A = T_{A(max.)}$	5.0	9.5	5.5	12	ns
	Minimum Set-up Time (Note 4)	TA(min.) < TA < 25°C		3.0		3.0	ns
ts	Minimum Set-up Time (Note 4)	$T_A = T_{A(max.)}$		4.0		6.0	ns
th	Minimum Hold Time (Note 4)	$T_{A(min)} \leq T_{A} \leq T_{A(max.)}$		1.0		1.0	ns
. (5)	Minimum Latch Enable Pulse Width	T _A (min.) ≤ T _A ≤ 25°C		3.0		3.0	ns
t _{pw} (E)	(Note 4)	$T_A = T_{A(max.)}$		4.0		5.0	ns

Am686

FUNCTIONAL DIAGRAM

CONNECTION DIAGRAMS

LIC-189

LIC-131 LIC-132

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified)

ymbol	Parameter	Conditions (Note 3)	Am686-C	Am686-M	Units
vos	Input Offset Voltage	R _S ≤ 100Ω, T _A = 25°C R _S ≤ 100Ω	3.0 3.5	2.0	mV MAX.
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage	R _S < 100Ω	10	10	μV/°C MA)
Ios	Input Offset Current	25°C < T _A < T _A (max.) T _A = T _A (min.)	1.0 1.3	1.0 1.6	μΑ MAX. μΑ MAX.
IB	Input Bias Current	25°C < T _A < T _A (max.) T _A = T _A (min.)	10 13	10 16	μΑ MAX μΑ MAX
V _{CM}	Input Voltage Range		+2.7, -3.3	+2.7, -3.3	V MIN.
CMRR	Common Mode Rejection Ratio	R _S ≤ 100Ω, -3.3 V ≤ V _{CM} ≤ +2.7 V	80	80	dB MIN.
SVRR	Supply Voltage Rejection Ratio	R _S < 100Ω	70	70	dB MIN.
V _{OH}	Output HIGH voltage	IL = -1.0 mA, VS = VS (min.)	2.7	2.5	V MIN.
VOL	Output LOW Voltage	IL = 10mA, VS = VS (max.)	0.5	0.5	V MAX.
1+	Positive Supply Current		42	40	mA MAX
1-	Negative Supply Current		34	32	mA MAX
PDISS	Power Dissipation		415	400	mW MAX

Switching Characteristics ($V^+ = +5.0 \text{ V}$, $V^- = -6.0 \text{ V}$, $V_{in} = 100 \text{ mV}$, $V_{od} = 5.0 \text{ mV}$, $C_L = 15 \text{ pF}$) (Note 4)

t _{pd+}	Propagation Delay, Input to Output HIGH	T _A (min.) < T _A < 25°C T _A = T _A (max.)	12 15	12 15	ns MAX.
t _{pd} –	Propagation Delay, Input to Output LOW	TA (min.) < TA < 25°C TA = TA (max.)	12 15	12 15	ns MAX.
∆t _{pd}	Difference in Propagation Delay between Outputs	TA = 25°C	2.0	2.0	ns MAX

2. For the metal can package, derate at 6.8mW/°C for operation at ambient temperatures above +95°C; for the dual-in-line package, derate at 9mW/°C for operation at ambient temperatures above 15°C.
3. Unless otherwise specified, "* +50,V " = -6,0 V and the Latch Enable input is at V_{OL}. The switching characteristics are for a 100mV input top with 5.0mV overdrive.
4. The outputs of the Am686 are unstable when biased into their linear range. In order to prevent oscillation, the rate-of-change of the input signal as it passes through the threshold of the comparator must be at least 1V/s. For slower input signals, a small amount of external positive feedback may be applied around the comparator to give a few millifoots of Pyteriesis.

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Data Conversion Products - Section III

AmDAC-08	8-Bit High-Speed Multiplying D/A Converter	3-1
LF198	Monolithic Sample and Hold Circuits	3-7
LF298	Monolithic Sample and Hold Circuits	3-7
LF398	Monolithic Sample and Hold Circuits	3-7
Am1508/1408	8-Bit Multiplying D/A Converter	3-14
SSS1508A/1408A	8-Bit Multiplying D/A Converter	3-14
Am2502	8-Bit/12-Bit Successive Approximation Registers	3-18
Am2503	8-Bit/12-Bit Successive Approximation Registers	3-18
Am2504	8-Bit/12-Bit Successive Approximation Registers	3-18
Am25L02	Low Power, 8-Bit/12-Bit Successive Approximation Registers	3-24
Am25L03	Low Power, 8-Bit/12-Bit Successive Approximation Registers	3-24
Am25L04	Low Power, 8-Bit/12-Bit Successive Approximation Registers	3-24
Am6070	Companding D-to-A Converter for Control Systems	3-28
Am6071	Companding D-to-A Converter for Control Systems	3-40
Am6072	Companding D-to-A Converter for PCM Communication Systems	3-52
Am6073	Companding D-to-A Converter for PCM Communication Systems	3-64
Am6080	Microprocessor System Compatible 8-Bit High-Speed Multiplying	
	D/A Converter	3-76
Am6081	Microprocessor System Compatible 8-Bit High-Speed Multiplying	
	D/A Converter	3-84
Application Notes		
Companding DAC		3-96

AmDAC-08

8-Bit High Speed Multiplying D/A Converter

Distinctive Characteristics

- Fast settling output current 85nsec
- Full scale current prematched to ±1.0 LSB
- Direct interface to TTL, CMOS, ECL, HTL, NMOS
- Nonlinearity to ±0.1% max over temperature range
- High output impedance and compliance
 -10V to +18V

- Differential current outputs
- Wide range multiplying capability
 1.0MHz bandwidth
- Low ES current drift ±10ppm/°C
- Wide power supply range ±4.5V to ±18V
- Low power consumption − 33mW @ ±5V

GENERAL DESCRIPTION

The DAC-08 series of 8-bit monolithic multiplying Digital-to-Analog Converters provide very high speed performance coupled with low cost and outstanding applications flexibility.

Advanced circuit design achieves 85 nsec settling times with very low "glitch" and a low power consumption. Monotonic multiplying performance is attained over more than a 40 to 1 reference current range. Matching to within 1 LSB between reference and full scale currents eliminates the need for full scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic inputs.

High voltage compliance dual complementary current outputs are provided, increasing versatility and enabling differential operation to effectively double the peak-to-peak output swing. In many applications, the outputs can be directly converted to voltage without the need for an external op amp.

All DAC-08 series models guarantee full 8-bit monotonicity, and nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$ power supply range, with 33mW power consumption attainable at $\pm 5 \text{V}$ supplies.

The compact size and low power consumption make the DAC-08 attractive for portable and military/aerospace applications. All devices are processed to MIL-STD-883.

DAC-08 applications include 8-bit, 1.0μ sec A/D converters, servo-motor and pen drivers, waveform generators, audio encoders and attenuators, analog meter drivers, programmable power supplies, CRT display drivers, high speed modems and other applications where low cost, high speed and complete input/output versatility are required.

Order Number Temperature Range Nonlinearity DAC-08AQ −55°C to +125°C ±.1% DAC-08Q −55°C to +125°C ±.19% DAC-08EQ 0°C to +70°C ±.19% DAC-08CQ 0°C to +70°C ±.39% DAC-08HQ 0°C to +70°C ±.1% DAC-08HN 0°C to +70°C ±.1% DAC-08EN 0°C to +70°C ±.19% DAC-08CN 0°C to +70°C ±.39%	CONNECTION DIAGRAM Top View				
		Nonlinearity	group-	THRESHOLD COMPENSATION	
DAC-08AQ	-55°C to +125°C	±.1%	orana.	OUT 2 15 VREF (-)	
DAC-08Q	-55°C to +125°C	±.19%	0.3	V- 3 14 V _{REF} (+)	
DAC-08EQ	0°C to +70°C	±.19%	BIE	I _{OUT}	
DAC-08CQ	0°C to +70°C	±.39%	1.5	MSB B ₁ 5 12 B _R LSB	
DAC-08HQ	0°C to +70°C	±.1%	0.0-	Andrew Tage	
DAC-08HN	0°C to +70°C	±.1%	8.2	B ₂ 6 11 8 ₇	
DAC-08EN	0°C to +70°C	±.19%	6.8-	B ₃ 7 10 B ₆	
DAC-08CN	0°C to +70°C	±.39%	68	B ₄ 8 9 B ₅	
			807	Note: Pin 1 is marked for orientation.	LIC-191

AmDAC-08

MAXIMUM RATINGS (TA = 25°C Unless Otherwise Noted)

Operating Temperature	Ivited D/A Company
DAC-08AQ, Q	-55° C to $+125^{\circ}$ C
DAC-08EQ, CQ, HQ	0° C to $+70^{\circ}$ C
Storage Temperature	-65° C to $+150^{\circ}$ C
Power Dissipation	500mW
Derate above 100°C	10mW/°C
Lead Temperature (Soldering, 60 sec)	300°C

V+ supply to V – Supply	36V
Logic Inputs V-	to V+ plus 36V
V _{LC}	V- to V+
Analog Current Outputs	See Fig. 12
Reference Inputs (V ₁₄ , V ₁₅)	V- to V+
Reference Input Differential Voltage (V ₁₄ to V ₁₅	±18V
Reference Input Current (I ₁₄)	5.0mA

ELECTRICAL CHARACTERISTICS (V_S = ±15 V, I_{REF} = 2.0 mA)

							mDAC-0			mDAC-08		Ar	nDAC-08	ВС	
arameter	Descri	ption	Test	Condition	ons	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
-abrida	Resolution	anstille be	delu mor	10 81	Carrie	8	8	8	8	8	8	8	8	8	Bits
	Monotonicity	OTE. HIL	of the mon	(C) (b) (b) 30	threy in	8	8	8	8	8	8	8	8	8	Bits
	Nonlinearity		TA = MIN.	to MAX.			40	±0.1	i il viii		±0.19	glitlur	distribute	±0.39	%FS
t _s	Settling Time	olt; 1 Ojak Vaselon t	To ±1/2 LSI switched ON	B, all bits	DAC-08A DAC-08 DAC-08E	BD-DAC	85	135	1 00 X	85 85	135	ri) ekipi uu can	85	150	ns
ndds.ms	demonstration	winds statem.	T _A = 25°C	delicat	DAC-08C	nakhur ris	(0)	din-Hit	on Liv	85	150	av Lenli	85	150	
t _{PLH} ,	Propagation	Each Bit	T _A = 25°C		in register	towoo	35	60		35	60	to all by the	35	60	ns
^t PHL	Delay	All Bits Switched	lapa in vallisme rugio		en visua en	35	60		35	60	ng" Lea	35	60		
TCIFS	Full Scale Ten	прсо					±10	±50		±10	±50	-	±10	±80	ppm/°(
Voc	Output Voltag	e Compliance	Full scale current change < 1/2 LSB $R_{OUT} > 20 \text{Meg} \Omega$ typ.		-10	TMS TA	+18	-10		+18	-10		+18	Volts	
I _{FS4}	Full Scale Cur	rent	V _{REF} = 10 R ₁₄ , R ₁₅ = T _A = 25°C		1	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
IFSS	Full Scale Syn	nmetry	IFS4 - IFS	2			±0.5	±4.0		±1.0	±8.0		±2.0	±16	μА
Izs	Zero Scale Cu	rrent		-0			0.1	1.0		0.2	2.0		0.2	4.0	μА
	Output Currer	at Dansa	V-=-5.0	V		0	2.0	2.1	0	2.0	2.1	0	2.0	2.1	
IFSR	Output Curren	it halige	V= = -7.0V to -18V		0	2.0	4.2	0	2.0	4.2	0	2.0	4.2	mA	
VIL	Logic Input	Logic "0"	V _{LC} = 0 V				8.0			0.8			0.8	Volts	
VIH	Levels	Logic "1"	20			2.0	3		2.0			2.0	bi-resid		
IIL	Logic Input	Logic "0"	V _{LC} = 0 V	V _{IN} = -	-10 V to		-2.0	-10		-2.0	-10	87	-2.0	-10	0 μΑ
I _{IH}	Current	Logic "1"	. [[V _{IN} = 2	.0 V to 8 V		0.002	10		0.002	10	10	0.002	10	μ
VIS	Logic Input S	wing	V-=-15V	-		-10		+18	-10		+18	-10		+18	Volts
V _{THR}	Logic Thresho	ld Range	V _S = ±15V			-10		+13.5	-10		+13.5	-10		+13.5	Volts
115	Reference Bia	s Current	NEW TOTAL	with			-1.0	-3.0	1/8	-1.0	-3.0	MALIFIE	-1.0	-3.0	μΑ
dl/dt	Reference Inp	ut Slew Rate	Tool			4.0	8.0		4.0	8.0		4.0	8.0		mA/μs
PSSI _{FS+}	Davis Comple	Sinivita	V+ = 4.5 V	to 18 V			±0.0003	±0.01	Jensi A	±0.0003	±0.01	128.7	±0.0003	±0.01	%/%
PSSI _{FS} .	Power Supply	Sensitivity	V==-4.5 V		/		±0.002	±0.01		±0.002	±0.01	Yea.	±0.002	±0.01	70/70
1+			V _S = ±5.0 V	Iper =	1.0mA		2.3	3.8		2.3	3.8	1734	2.3	3.8	
I-			*5 =0.0 *	, 'KEF	1.01174		-4.3	-5.8		-4.3	-5.8	pro	-4.3	-5.8	
1+	Dawer Cur - L	Command	V _S = +5.0 V				2.4	3.8	12	2.4	3.8	0801	2.4	3.8	mA.
1-	Power Supply	Current	I _{REF} = 2.0	mA			-6.4	-7.8	4	-6.4	-7.8	310	-6.4	-7.8] mA
1+			V _S = ±15 V	Incr = 2	2 OmA		2.5	3.8		2.5	3.8	297	2.5	3.8	
1-			VS - 115 V	HEF - 2	UIIA		-6.5	-7.8		-6.5	-7.8	5"5	-6.5	-7.8	1
		D. Harris	±5.0 V, IRE	F = 1.0 m/	A		33	48		33	48	3°	33	48	1
PD	Power Dissipa	tion	+5.0 V, -15	V, IREF	= 2.0 mA		108	136		108	136		108	136	mW
			±15 V, IREF	= 2.0 mA			135	174		135	174		135	174	1

BASIC CONNECTIONS

 $I_{FS} = \frac{+ V_{REF}}{R_{REF}} \times \frac{255}{256}$

FOR FIXED REFERENCE, TTL OPERATION, TYPICAL VALUES

ARE:

 $I_0 + \overline{I_0} = I_{FS}$ FOR ALL LOGIC STATES

 $V_{REF} = +10.000V$ $R_{REF} = 5.000k$ $R_{15} \approx R_{REF}$

 $C_C = 0.01 \mu F$

V_{LC} = 0V (GROUND)

Figure 1. Basic Positive Reference Operation.

Figure 2. Recommended Full Scale Adjustment Circuit.

 $I_{FS} \approx \frac{-V_{REF}}{R_{REF}} \times \frac{255}{256}$

Note 1. RREF Sets IFS; R₁₅ is for Bias Current Cancellation.

Figure 3. Basic Negative Reference Operation.

	B1	B2	В3	B4	B5	B6	B7	B8	Io mA	T _O mA	Eo	Eo
FULL SCALE	1	1	1	1	1	1	1	1	1.992	000	-9.960	000
FULL SCALE -LSB	1	1	1	1	1	1	1	0	1.984	.008	-9.920	040
HALF SCALE +LSB	1	0	0	0	0	0	0	1	1.008	.984	-5.040	-4.920
HALF SCALE	1	0	0	0	0	0	0	0	1.000	.992	-5.000	-4.960
HALF SCALE -LSB	0	1	1	1	1	1	1	1	.992	1.000	-4.960	-5.000
ZERO SCALE +LSB	0	0	0	0	0	0	0	1	.008	1.984	040	-9.920
ZERO SCALE	0	0	0	0	0	0	0	0	.000	1.992	.000	-9.960

Figure 4. Basic Unipolar Negative Operation.

	B1	82	вз	B4	B5	В6	B7	B8	Eo	EO
POS FULL SCALE	1	1	1	1	1	1	1	1	-9.920	+10.000
POS FULL SCALE -LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
ZERO SCALE +LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
ZERO SCALE	1	0	0	0	0	0	0	0	0.000	+0.080
ZERO SCALE -LSB	0	-1	1	1	1	1	1	1	+0.080	0.000
NEG FULL SCALE +LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
NEG FULL SCALE	0	0	0	0	0	0	0	0	+10.000	-9.920

Figure 5. Basic Bipolar Output Operation.

	B1	B2	В3	B4	85	B6	B7	B8	EO
POS FULL SCALE	1	1	1	1	1	1	1	1	+9.960
POS FULL SCALE -LSB	1	1	1	.1	1	1	1	0	+9.880
(+) ZERO SCALE	1	0	0	0	0	0	0	0	+0.040
(-) ZERO SCALE	0	1	1	1	1	1	1	1	-0.040
NEG FULL SCALE +LSB	0	0	0	0	0	0	0	1	-9.880
NEG FULL SCALE	0	0	0	0	0	0	0	0	-9.960

Figure 6. Symmetrical Offset Binary Operation.

BASIC CONNECTIONS (Cont.)

LIC-198

$$I_{FS} \cong \frac{255}{256} I_{REF}$$

FOR COMPLEMENTARY OUTPUT (OPERATION AS NEGATIVE LOGIC DAC), CONNECT INVERTING INPUT OF OP-AMP TO $\overline{I_0}$ (PIN 2), CONNECT IO (PIN 4) TO GROUND

Figure 7. Positive Low Impedance Output Operation.

FOR COMPLEMENTARY (OPERATION AS A NEGATIVE LOGIC DAC), CONNECT NON-INVERTING INPUT OF OP-AMP TO $\overline{\rm I_O}$ (PIN 2); CONNECT I $_{\rm O}$ (PIN 4) TO GROUND.

Figure 8. Negative Low Impedance Output Operation.

SET VOLTAGE AT NODE "A" EQUAL TO DESIRED LOGIC THRESHOLD.

Figure 9. Interfacing With Various Logic Families.

Figure 10. Pulsed Reference Operation.

a) $I_{REF} \geqslant$ Peak Negative Swing of I_{IN} .

b) +VREF Must Be Above Peak Positive Swing of VIN.

Figure 11. Accomodating Bipolar References.

Figure 12. Settling Time Measurement.

APPLICATIONS INFORMATION

REFERENCE AMPLIFIER SET-UP

The DAC-08 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +4.0mA. The full scale output current is a linear function of the reference current and is given by:

$$I_{FS} = \frac{255}{256} \times I_{REF}$$
 where $I_{REF} = I_{14}$.

In positive reference applications (Fig. 1), an external positive reference voltage forces current through R_{14} into the $V_{\rm REF}(+)$ terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to $V_{\rm REF}(-)$ at pin 15 (Fig. 3); reference current flows from ground through R_{14} into $V_{\rm REF}(+)$ as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R_{15} (nominally equal to R_{14}) is used to cancel bias current errors; R_{15} may be eliminated with only a minor increase in error.

Bipolar references may be accommodated by offsetting V_{REF} or pin 15 as shown in Fig. 11. The negative common mode range of the reference amplifier is given by: $V_{CM} = V - plus$ ($I_{REF} \times 1.0 k\Omega$) plus 2.5V. The positive common mode range is V+ less 1.5V.

When a DC reference is used, a reference bypass capacitor is recommended. A 5.0V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R_{14} should be split into two resistors with the junction bypassed to ground with a $0.1\mu F$ capacitor.

For most applications, a +10.0V reference is recommended for optimum full scale temperature coefficient performance. This will minimize the contributions of reference amplifier V_{OS} and TCV_{OS} . For most applications the tight relationship between I_{REF} and I_{FS} will eliminate the need for trimming I_{REF} . If required, full scale trimming may be accomplished by adjusting the value of R_{14} , or by using a potentiometer for R_{14} . An improved method of full scale trimming which eliminates potentiometer T.C. effects is shown in Fig. 2.

Using lower values of reference current reduces negative power supply current and increases reference amplifier negative common mode range. The recommended range for operation with a DC reference current is +0.2mA to +4.0mA.

The reference amplifier must be compensated by using a capacitor from pin 16 to V—. For fixed reference operation, a $0.01\mu\text{F}$ capacitor is recommended. For variable reference applications, see section entitled "Reference Amplifier Compensation for Multiplying Applications."

MULTIPLYING OPERATION

The DAC-08 provides excellent multiplying performance with an extremely linear relationship between I_{FS} and I_{REF} over a range of 4.0mA to 4.0mA. Monotonic operation is maintained over a typical range of I_{REF} from $100\mu\text{A}$ to 4.0mA; consult factory for devices selected for monotonic operation over wider I_{REF} ranges.

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V—. The value of this capacitor depends on the impedance presented to pin 14: for R_{14} values of 1.0, 2.5 and $5.0k\Omega$, minimum values of C_C are 15, 37, and 75pF. Larger values of R_{14} require proportionately increased values of C_C for proper phase margin.

For fastest response to a pulse, low values of R_{14} enabling small C_C values should be used. If pin 14 is driven by a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For $R_{14}=1.0 \mathrm{k}\Omega$ and $C_C=15\mathrm{pF}$, the reference amplifier slews at $4.0\mathrm{mA}/\mu\mathrm{s}$ enabling a transition from $I_{REF}=0$ to $I_{REF}=2.0\mathrm{mA}$ in 500ns.

Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme shown in Fig. 10. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff (IREF = 0) condition. Full scale transition (0 to 2.0mA) occurs in 120ns when the equivalent impedance at pin 14 is 200 Ω and $C_{\rm C}=0$. This yields a reference slew rate of 16mA/ μs which is relatively independent of R_{IN} and V_{IN} values.

LOGIC INPUTS

The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 2.0µA logic input current and completely adjustable logic threshold voltage. For V = -15V, the logic inputs may swing between -10V and +18V. This enables direct interface with +15V CMOS logic, even when the DAC-08 is powered from a +5V supply. Minimum input logic swing and minimum logic threshold voltage are given by: V- plus (IREF X 1.0k Ω) plus 2.5V. The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 1, V_{LC}). For TTL and DTL interface, simply ground pin 1. When interfacing ECL, an IREF = 1.0mA is recommended. For interfacing other logic families, see Fig. 9. For general set-up of the logic control circuit, it should be noted that pin 1 will source 100µA typical; external circuitry should be designed to accommodate this current.

Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a $1.0k\Omega$ divider, for example, it should be bypassed to ground by a $0.01\mu F$ capacitor.

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided, when $I_O+\overline{I}_O=I_{FS}.$ Current appears at the "true" output when a "1" is applied to each logic input. As the binary count increases, the sink current at pin 4 increases proportionally, in the fashion of a "positive logic" D/A converter. When a "0" is applied to any input bit, that current is turned off at pin 4 and turned on at pin 2. A decreasing logic count increases \overline{I}_O as in a negative or inverted logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing I_{FS} ; do not leave an unused output pin open.

Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 36V above V— and is independent of the positive supply. Negative compliance is given by V— plus (IREF * 1.0k Ω) plus 2.5V.

The dual outputs enable double the usual peak-to-peak load swing when driving loads in quasi-differential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped coils and transformers.

AmDAC-08

POWER SUPPLIES mides with palling and carriages a system to the

The DAC-08 operates over a wide range of power supply voltages from a total supply of 9V to 36V. When operating at supplies of $\pm 5 \text{V}$ or less, $I_{\text{REF}} \leqslant 1 \text{mA}$ is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range. For example, operation at -4.5 V with $I_{\text{REF}} = 2 \text{mA}$ is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8V total must be applied to insure turn-on of the internal bias network.

Symmetrical supplies are not required, as the DAC-08 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required: however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows:

 $P_d = (I+) (V+) + (I+) (V-) + (2 I_{REF}) (V-)$. A useful feature of the DAC-08 design is that supply current is constant and independent of input logic states; this is useful in cryptographic applications and further serves to reduce the size of the power supply bypass capacitors.

TEMPERATURE PERFORMANCE

The nonlinearity and monotonicity specifications of the DAC-08 are guaranteed to apply over the entire rated operating temperature range. Full scale output current drift is tight, typically ±10ppm/°C, with zero scale output current and drift essentially negligible compared to 1/2 LSB.

Full scale output drift performance will be best with +10.0V references as V_{OS} and TCV_{OS} of the reference amplifier will be very small compared to 10.0V. The temperature coefficient of the reference resistor R_{14} should match and track that of the output resistor for minimum overall full scale drift. Settling times of the DAC-08 decrease approximately 10% at -55° C; at +125 $^{\circ}$ C an increase of about 15% is typical.

SETTLING TIME

The DAC-08 is capable of extremely fast settling times, typically 85nsec at $I_{\rm REF}$ = 2.0mA. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 35nsec for each of the 8 bits. Settling time to within 1/2 LSB of the LSB is therefore 35nsec, with each progressively larger bit taking successively longer. The MSB settles in 85nsec, thus determining the overall settling time of 85nsec. Settling to 6-bit accuracy requires about 65 to 70nsec. The output capacitance of the DAC-08 including the package is approximately 15pF, therefore the output RC time constant dominates settling time if $R_{\rm L} > 500\Omega$.

Settling time and propagation delay are relatively insensitive to logic input amplitude and rise and fall times, due to the high gain of the logic switches. Settling time also remains essentially constant for $I_{\mbox{\scriptsize REF}}$ values down to 1.0mA, with gradual increases for lower $I_{\mbox{\scriptsize REF}}$ values. The principal advantage of higher $I_{\mbox{\scriptsize REF}}$ values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant.

Measurement of settling time requires the ability to accurately resolve $\pm 4\mu A$, therefore a $1 k\Omega$ load is needed to provide adequate drive for most oscilloscopes. The settling time fixture of Fig. 12 uses a cascode design to permit driving a $1 k\Omega$ load with less than 5pF of parasitic capacitance at the measurement node. At I_{REF} values of less than 1mA, excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 01111111 to 10000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within $\pm 0.2\%$ of the final value, and thus settling times may be observed at lower values of I_{REF} .

DAC-08 switching transients of "glitches" are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.

Fastest operation can be obtained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference and V_{LC} terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; $0.1\mu F$ capacitors at the supply pins provide full transient protection.

LF198/LF298/LF398

Monolithic Sample and Hold Circuits

Distinctive Characteristics

- Operates from ±5V to ±18V supplies
- Less than 10μs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5mV typical hold step at $C_h = 0.01 \mu F$
- Low input offset

- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

GENERAL DESCRIPTION

The LF198/LF298/LF398 are BI-FET monolithic sample and hold circuits with ultra-high DC accuracy, fast acquisition time (6 μ s to 0.01%) and low droop rate. A bipolar input stage is used to obtain the lowest possible offset voltage and wide bandwidth. These circuits are designed to have high common mode rejection and a gain accuracy of 0.002%. High input impedance (10 $^{10}\Omega$) permits their use with a high impedance source without degrading accuracy.

The output buffer has a p-channel JFET input with a typical input current of 30pA, giving a droop rate as low as 5mV/Min with a $1\mu F$ hold capacitor. The JFET has a very low noise level and high temperature stability.

A differential logic input allows the logic to be referenced to a separate ground from analog ground, permitting a direct interface to nearly any logic family. The LF198 series guarantees no feed through in the hold mode including input signal swings equal to the power supply.

FUNCTION DIAGRAM

LIC-204

ORDERING INFORMATION

Part Package Number Type		Temperature Range	Order Number		
LF398	Metal Can Dice	0°C to +70°C	LF398H LD398		
LF298	Metal Can	-25°C to +85°C	LF298H		
LF198	Metal Can Dice	-55°C to +125°C	LF198H LD198		

CONNECTION DIAGRAM Metal Can Top View

LIC-205

LF298	-25°C to +85°C
LF398	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (Package Limitation, Note 1)	500mW
Supply Voltage	±18V
Input Voltage	Equal to Supply Voltage
Logic to Logic Reference Differential Voltage (Note 2)	+7V, -30V
Hold Capacitor Short Circuit Duration	10 sec
Lead Temperature (Soldering 10 seconds)	300°C

rameter	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage, (Note 6)	T _j = 25°C		1	3		2	7	mV
Triput Offset Voltage, (Note of	Full Temperature Range			5			10	mV
Innut Bird Courset (Note 6)	$T_j = 25^{\circ} C$	1,031,4	5	25		10	50	nA
Input Bias Current, (Note 6)	Full Temperature Range			75			100	nA
Input Impedance	T _i = 25° C		1010			1010	- 1	Ω
C-:- F	$T_i = 25^{\circ} C$, $R_L = 10k\Omega$		0.002	0.005		0.004	0.01	%
Gain Error	Full Temperature Range			0.02			0.02	%
Feedthrough Attenuation Ratio at 1 kHz	$T_j = 25^{\circ} C, C_h = 0.01 \mu F$	86	96		80	90		dB
	T _i = 25°C, "HOLD" mode	33	0.5	2		0.5	4	Ω
Output Impedance	Full Temperature Range			4			6	Ω
'HOLD'' Step, (Note 4)	$T_i = 25^{\circ} C, C_h = 0.01 \mu F, V_{OUT} = 0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 6)	T _i ≥ 25° C		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	T _j = 25° C		2	10		2	10	μΑ
Leakage Current into Hold Capacitor (Note 6)	T _j = 25° C, (Note 5) Hold Mode	\ .	30	100	0 1/00	30	200	pA
A	ΔV _{OUT} = 10V, C _h = 1000 pF		4			4		μs
Acquisition Time to 0.1%	$C_{h} = 0.01 \mu F$		20		The state of	20		μs
Hold Capacitor Charge Current	V _{IN} - V _{OUT} = 2V		5		1	5		mA
Supply Voltage Rejection Ratio	V _{OUT} = 0	80	110		80	110		dB
Differential Logic Threshold	T _i = 25° C	0.8	1.4	2.4	0.8	1.4	2.4	V

Notes: 1. The maximum junction temperature is 150°C for the LF198, 115°C for the LF298, and 100°C for the LF398. When used at a higher ambient temperature, the TO-5 can package must be derated based on a thermal resistance (θjA) of 150°C/W.

TO-5 can package must be derated based on a thermal resistance (θ|A) of 150°C/W.

2. The differential voltage may not exceed this limit. The common mode voltage on the logic pins may equal the supply voltage without causing damage to the device. For the LF198 to operate properly, one of the logic pins must be at least 2V below the positive supply and 3V above the negative supply.

3. The following conditions apply unless otherwise noted: Device is in "sample mode". T_j = 25°C, V_S = ±15V, -11.5V < V_{IN} < +11.5V, C_h = 0.01μF, and R_L = 10kΩ. Logic reference voltage = 0V. Logic input voltage = 2.5V.

4. The hold step is produced by a charge which is coupled from the logic input signal to the hold capacitor via parasitic capacitance and internal operating point changes. Stray capacitance equal to 1pF will create a 0.5mV step with a 5 volt logic swing and a 0.01μF hold capacitor. This step can be reduced by increasing the magnitude of the hold capacitor.

5. Leakage current is measured at a junction temperature of 25°C. The junction temperature doubles the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over the full input signal range.

6. These values are guaranteed over the ±5 to ±18V supply range.

TYPICAL PERFORMANCE CHARACTERISTICS

LIC-206

LF198/298/398 LOGIC INPUT CONFIGURATIONS TTL AND CMOS $3V \le V_{LG}(HI STATE) \le 7V$ ANALOG O-ANALOG O-LF198 O OUTPUT 2.8V HOLD HOLD V_{LG}O LIC-207 LIC-208 SAMPLE Threshold = 1.4V Threshold = 1.4V R₁ select for 2.8V at Pin 8 **CMOS** 7V ≤ V_{LG}(HI STATE) ≤ 15V **≨**20K ANALOG O ANALOG O-O OUTPUT LF198 HOLD LIC-209 LIC-210 SAMPLE Threshold = 0.6 (V+) + 1.4VThreshold = 0.6 (V+) - 1.4VOP AMP DRIVE **OUTPUT VOLTAGE = ±13V**

APPLICATION INFORMATION

Freezing the input to an analog-to-digital (A/D) converter is an important application for the sample and hold amplifier. If the analog input to the A/D changes during conversion by the amount ±1/2LSB, an ideal A/D would produce 1 LSB error beyond normal quantization error. A sample and hold amplifier eliminates this problem by holding the input signal to the A/D converter during the conversion interval. The proper choice of hold capacitor value and type is necessary to obtain optimum performance. The capacitor value directly affects several circuit parameters, particularly acquisition time, droop rate, and hold step. The hold step error is inversely proportional to the value of the hold capacitor.

Graphs are provided in this data sheet for use as guides in selecting a suitable value of capacitance. However, the capacitor should have extremely high insulation resistance and low dielectric absorption, or dielectric hysteresis. Polypropylene (below +85°C) and Teflon (above +85°C) types are recommended. The hysteresis error can be significantly reduced if the output of the LF198 is digitized immediately after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is 10-50ms, thus if A/D conversion can be made within 1ms, hysteresis error will be reduced by a factor of ten.

The logic inputs on the LF198 are fully differential with low input current and will operate from TTL levels up to 15V. Some typical logic input configurations are shown in this data sheet. The logic signal into the LF198 must have a minimum slew rate of $0.2V/\mu s$. Slower signals cause excess hold step errors.

When switched from sample to hold, delay in response to the hold command (aperture time and aperture time uncertainty) can cause the frozen value of a fast moving waveform to differ from the value it had at the instant the hold command is given. However, the hold capacitor has an additional lag due to the 300Ω series resistor on the chip which cancels out some of the error due to aperture time and aperture time uncertainty.

For example, using an analog input of 20 volts p-p at 10kHz, maximum slew rate $0.5V/\mu s$, with no phase delay and $80ns \log ic$

delay, one could expect up to $(0.08\mu s) \cdot (0.5V/\mu s) = 40mV$ error if the input is sampled during the maximum dv/dt period. A positive going input would give a +40mV error. Assume that the slew rate of the charging amplifier and the RC constant of the analog loop cause a delay of 120ns. If the hold capacitor sees this exact delay, then the analog delay would be $(0.5\mu V/sec) \cdot (1.12\mu s) = -60mV$. Total output error is +40mV -60mV = -20mV.

For a sample and hold amplifier in a multiplexed A/D system, acquisition and aperture times are critical parameters. In order to maintain the acquired signal level within the specified accuracy, these times must be considered when selecting the sampling rate. For example, if a 16 channel MUX drives a sample and hold amplifier in which each channel is 5KHz and 2 samples per cycle are needed to satisfy the Nyquist criteria, the minimum sampling rate = 160000 samples/sec. ((5KHz X 16) cycles/sec X 2 samples/cycle). The minimum channel period is the reciprocal of the sampling rate of 6.25µs. During the hold mode the MUX can switch to another channel. This eliminates the need to consider the MUX and source settling time and shortens the channel period.

Calculating the sum of the sample and hold acquisition time, aperture time and A/D conversion time is usually a convenient method for estimating maximum channel period.

In multiplex applications, sample and hold feed-through is a significant problem. Since each channel voltage differs, the sample and hold input signal becomes a series of varied height pulses that cause errors in the sample and hold voltage.

Digital feed through occurs when a fast rising logic signal is coupled into the analog input. To minimize it, the logic signal trace in the PCB layout should be kept as far as possible from the analog input. Guarded trace may also be used around the input pin for shielding purposes.

To adjust the DC offset zeroing, the wiper of a 1K potentiometer is connected to the offset adjust pin. One end of the potentiometer is connected to VCC and the other is connected through a resistor to ground. The value of the resistor is selected such that the current flows through it at approximately $6m\Delta$

Metallization and Pad Layout

51 X 66 Mils

APPLICATIONS (Cont.)

TRACK AND HOLD PEAK RECORDER

LIC-215

FAST ACQUISITION, LOW DROOP SAMPLE AND HOLD

LIC-216

DEFINITION OF TERMS

Acquisition Time — The time required to acquire a new analog input voltage with an output step of 10V. Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Aperture time — The delay between the command to hold and the actual opening of the hold switch.

Aperture time uncertainty - The tolerance, or jitter of the aperture time.

 $\label{eq:Feed-through} Feed-through - During hold, a small part of the input signal feeds through the capacitor of the switch to the hold capacitor and output. This is usually a function of the level and frequency of the input signal and is expressed in dB.$

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Gain error — The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

Hold step — The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (DC) analog input voltage.

Am1508/1408 · SSS1508A/1408A

8-Bit Multiplying D/A Converter

Distinctive Characteristics

- Improved direct replacement for MC1508/1408
- ±0.19% nonlinearity guaranteed over temperature range
- Improved settling time (SSS1508A/1408A) 250ns, typ.
- Improved power consumption (SSS1508A/1408A) 157mW, typ.
- Compatible with TTL, CMOS logic
- Standard supply voltage: +5.0V and −5.0V to −15V
- Output voltage swing: +0.5V to −5.0V
- High speed multiplying input: 4.0mA/μs

FUNCTIONAL DESCRIPTION

The SSS1508A/1408A, Am1508/1408 are 8-bit monolithic multiplying Digital-to-Analog Converters consisting of a reference current amplifier, an R-2R ladder, and eight high speed current switches. For many applications, only a reference resistor and reference voltage need be added. Improvements in design and processing techniques provide faster settling times combined with lower power consumption while retaining direct interchangeability with MC1508/1408 devices.

The R-2R ladder divides the reference current into eight binarily-related components which are fed to the switches. A remainder current equal to the least significant bit is always

shunted to ground, therefore the maximum output current is 255/256 of the reference amplifier input current. For example, a full scale output current of 1.992mA would result from a reference input current of 2.0mA.

The SSS1508A/1408A, Am1508/1408 is useful in a wide variety of applications, including waveform synthesizers, digitally programmable gain and attenuation blocks, CRT character generation, audio digitizing and decoding, stepping motor drives, programmable power supplies and in building Tracking and Successive Approximation Analog-to-Digital Converters.

BLOCK DIAGRAM

LIC-217

Part Number	Package Type	Temperature Range	Order Number
	Hermetic DIP	0°C to +70°C	AM1408L8
	Hermetic DIP	0°C to +70°C	AM1408L7
	Hermetic DIP	0°C to +70°C	AM1408L6
	Hermetic DIP	0°C to +70°C	SSS1408A-80
Am1408	Hermetic DIP	0°C to +70°C	SSS1408A-70
	Hermetic DIP	0°C to +70°C	SSS1408A-60
	Plastic DIP	0°C to +70°C	AM1408N8
	Plastic DIP	0°C to +70°C	AM1408N7
	Plastic DIP	0°C to +70°C	AM1408N6
i itti ku istaa	Dice	0°C to +70°C	LD1408
	Hermetic DIP	-55°C to +125°C	AM1508L8
Am1508	Hermetic DIP	-55°C to +125°C	SSS1508A-8C
	Dice	-55° C to +125° C	LD1508

Top View RANGE CONTROL 1 16 VREF (-) VEE 3 14 VREF (+) 10 4 13 VCC MSB A1 5 12 A8 LSB A2 6 11 A7 A3 7 10 A6 A4 8 9 A5

Note: Pin 1 is marked for orientation.

CONNECTION DIAGRAM

LIC-218

3

MAXIMUM RATINGS (Above which the useful life may be impaired) $(T_A = +25^{\circ}C$ unless otherwise noted)

Power Supply Voltage	
VCC SMA 90 SMITHEVE	
VEE	-16.5Vdd
Digital Input Voltage, V5-V12	+5.5, 0Vdc
Applied Output Voltage, VO	+0.5, -5.2Vdc
Reference Current, I ₁₄	5.0mA
Reference Amplifier Inputs, V ₁₄ , V ₁₅	VCC, VFF Vdc

Power Dissipation (Package Limitation), PD	PEA 138
Ceramic Package	1000mW
Derate above TA = +25°C	6.7mW/°C
Operating Temperature Range, TA	
SSS1508A-8, Am1508	-55°C to +125°C
SSS1408A Series, Am1408 Series	0°C to +75°C
Storage Temperature, T _{Stg}	-65°C to +150°C

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

 $(V_{CC} = 5.0 \text{Vdc}, V_{EE} = -15 \text{Vdc}, \frac{V_{ref}}{R_{14}} = 2.0 \text{mA}, \text{SSS1508A-8/Am1508L8}: T_{A} = -55^{\circ}\text{C to } +125^{\circ}\text{C}, \text{SSS1408A/Am1408 Series}: T_{A} = 0^{\circ}\text{C to } +75^{\circ}\text{C unless otherwise noted}. \text{All digital inputs at high logic level.})$

rameters	Description	Test Conditions	Min.	Тур.	Max.	Units		
	Relative Accuracy			SIMP.				
	SSS1508A-8, SSS1408A-8, Am1508L8, Am1408L8				±0.19			
ER	SSS1408A-7, Am1408L7				±0.39	% IFS		
	SSS1408A-6, Am1408L6	1 2 2 2 2 2		9 1	±0.78			
TATE IT	Settling Time to within 1/2 LSB (includes tpLH)	Ason		91				
	SSS1508A/1408A			250				
ts	Am1508/1408	T _A = +25°C		300		ns		
tPLH, tPHL	Propagation Delay Time	T _A = +25°C	m ar	30	100	ns		
TCIO	Output Full Scale Current Drift		5	±20		PPM/°		
	Digital Input Logic Levels (MSB)		100					
VIH	High Level, Logic "1"	++	2.0					
VIL	Low Level, Logic "0"	915.001	2.0		0.8	Vdc		
IIH	Low Love, Logic o	High Level, VIH = 5.0V		0	0.04			
IIL	Digital Input Current (MSB)	Low Level, V _{IL} = 0.8V		-0.002	-0.8	mA		
'IL	Reference Input Bias Current (Pin 15)	Low Level, VIL - 0.8V	UTI20	-0.002	-0.8			
	SSS1508A/1408A			-1.0	-3.0			
115	Am1508/1408			-1.0	-5.0 -5.0	μΑ		
	Aff1508/1408	V 50V	_					
IOR	Output Current Range	V _{EE} = -5.0V	0	2.0	2.1	mA		
		V _{EE} = -7.0V to -15V	0	2.0	4.2			
10	Output Current	$V_{ref} = 2.000V, R_{14} = 1000\Omega$	1.9	1.99	2.1	mA		
10 (min.)	Output Current (All Bits Low)		7 1	0	4.0	μΑ		
V _O	Output Voltage Compliance	V _{EE} = -5V	LEK	1329	-0.6, +0.5	Vdc		
	$(E_r \le 0.19\% \text{ at } T_A = +25^{\circ}C)$	VEE below -10V			-5.0, +0.5	A. C.		
SRI _{ref}	Reference Current Slew Rate			4.0	19-9	mA/μ		
PSSIO	Output Current Power Supply Sensitivity	\$ AUR 7/3/ 33		0.5	2.7	μA/V		
	Power Supply Current		1777					
ICC	SSS1508A/1408A			2.5	14			
IEE	3331300A/1400A			-6.4	-13	mA		
Icc	Am1508/1408			2.5	22	IIIA		
IEE	AII1508/1408	N. INSIEMARI		-6.4	-13			
V _{CCR}	Power Supply Voltage Range	T _A = +25°C	4.5	5.0	5.5	1/1-		
VEER	Fower Supply Voltage Hange	1A = +25 C	-4.5	-15	-16.5	Vdc		
	Power Dissipation	All Bits Low	11.77	110000				
		V _{EE} = -5.0Vdc		34	136			
	2004500 4 4 4 2 2 2	V _{EE} = -15Vdc		108	265			
	SSS1508A/1408A	All Bits High	76.0					
		V _{EE} = -5.0Vdc		34				
Pd		V _{EE} = -15Vdc		108		mW		
	The second secon	All Bits Low						
	Missing and Ala Market State of the State of	V _{EE} = -5.0Vdc		34	170			
		V _{EE} = -15Vdc		108	305			
	Am1508/1408	All Bits High		108	305			
			13.1	24				
		V _{EE} = -5.0Vdc		34				
		$V_{EE} = -15Vdc$		108				

TYPICAL APPLICATIONS

RELATIVE ACCURACY TEST CIRCUIT

USE WITH CURRENT-TO-VOLTAGE CONVERTING OP AMP

THEORETICAL VO

$$V_{O} = \frac{V_{REF}}{R_{14}} (R_{O}) \left[\frac{A_{1}}{2} + \frac{A_{2}}{4} + \frac{A_{3}}{8} + \frac{A_{4}}{16} + \frac{A_{5}}{32} + \frac{A_{6}}{64} + \frac{A_{7}}{126} + \frac{A_{8}}{256} \right]$$

ADJUST $V_{\rm REF}$, R_{14} OR $R_{\rm O}$ SO THAT $V_{\rm O}$ WITH ALL DIGITAL INPUTS AT HIGH LEVEL IS EQUAL TO 9.961 VOLTS

$$V_{O} = \frac{2V}{1k} (5k) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{126} + \frac{1}{256} \right]$$
$$= 10V \left[\frac{255}{256} \right] = 9.961V$$

USE WITH POSITIVE VREF

USE WITH NEGATIVE VREE

TRANSIENT RESPONSE AND SETTLING TIME TEST CIRCUIT

LIC-223

GENERAL INFORMATION AND APPLICATION NOTES

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, I₁₄ must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive voltage are shown on page 3. The reference voltage source supplies the full current I_{14} . For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R_{15} with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R_{14} to maintain proper phase margin; for R_{14} values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor may be tied to either V_{EE} or ground, but using V_{EE} increases negative supply rejection.

A negative reference voltage may be used if R_{14} is grounded and the reference voltage is applied to R_{15} as shown. A high input impedance is the main advantage of this method. Compensation involves a capacitor to V_{EE} on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4.0 volts above the V_{EE} supply. Bipolar input signals may be handled by connecting R_{14} to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0V logic supply is not recommended as a reference voltage. If a well regulated 5.0V supply which drives logic is to be used as the reference, R_{14} should be decoupled by connecting it to +5.0V through another resistor and bypassing the junction of the two resistors with $0.1\mu\text{F}$ to ground. For reference voltages greater than 5.0V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to +0.5 volts when $V_{EE} = -5.0V$ due to the current switching methods employed in the SSS1508A-8, Am1508.

The negative output voltage compliance of the SSS1508A-8, Am1508 is extended to $-5.0 \, \text{V}$ where the negative supply voltage is more negative than -10 volts. Using a full scale current of $1.992 \, \text{mA}$ and load resistor of $2.5 \, \text{kilohms}$ between pin 4 and ground will yield a voltage output of 256 levels between 0 and $-4.980 \, \text{volts}$. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance but a $2.5 \, \text{kilohm} \, \text{load}$ increases "worst case" settling time to $1.2 \mu \text{S}$ (when all bits are switched on). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2mA may be used only for negative supply voltages more negative than -7.0 volts, due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the SSS1508A-8, Am1508 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the SSS1508A-8 has a very low full scale current drift with temperature.

The SSS1508A-8/Am1508 Series is guaranteed accurate to within ±1/2 LSB at a full scale output current of 1.992mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0mA, with the loss of one LSB (8.0µA) which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown on page 3. The 12-bit converter is calibrated for a full scale output current of 1.992mA. This is an optional step since the SSS1508A-8, Am1508 accuracy is essentially the same between 1.5 and 2.5mA. Then the SSS1508A-8. Am1508 circuits' full scale current is trimmed to the same value with R₁₄ so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65,536 or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.19\%$ specification provided by the SSS1508A-8, Am1508.

MULTIPLYING ACCURACY

The SSS1508A-8, Am1508 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. If the reference current in the multiplying mode ranges from $16\mu A$ to 4.0 mA, the additional error contributions are less than $1.6\mu A$. This is well within eight-bit accuracy when referred to full scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the SSS1508A-8, Am1508 is monotonic for all values of reference current above 0.5mA. The recommended range for operation with a dc reference current is 0.5 to 4.0mA.

SETTLING TIME

The "worst case" switching condition occurs when all bits are switched "on," which coresponds to a LOW-to-HIGH transition for all bits. This time is typically 250ns for settling to within $\pm 1/2$ LSB, for 8-bit accuracy, and 200ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100ns. These times apply when $R_L \leqslant 500$ ohms and $C_O \leqslant 25 pF$.

The slowest single switch is the least significant bit. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 250ns may be realized.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100μ F supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

Am2502/2503/2504

Eight-Bit/Twelve-Bit Successive Approximation Registers

Distinctive Characteristics

- Contains all the storage and control for successive approximation A-to-D converters.
- Provision for register extension or truncation.
- Can be operated in START-STOP or continuous conversion mode.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel converter or ring counters
- Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am2502, Am2503 and Am2504 are 8-bit and 12-bit TTL Successive Approximation Registers. The registers contain all the digital control and storage necessary for successive approximation analog-to-digital conversion. They can also be used in digital systems as the control and storage element in recursive digital routines.

The registers consist of a set of master latches that act as the control elements in the device and change state when the input clock is "LOW, and a set of slave latches that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the Am2502 and Am2504 when the clock goes from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW ready for the next iteration.

The register is reset by holding the \overline{S} (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $O_7(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The \overline{CC} (Conversion Complete) signal is also set HIGH at this time. The \overline{S} signal should not be brought back HIGH until after the

clock LOW-to-HIGH transition in order to guarantee correct resetting. After the clock has gone HIGH resetting the register, the \overline{S} signal is removed. On the next clock LOW-to-HIGH transition the data on the D input is set into the $\Omega_7(11)$ register bit and the $\Omega_6(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the $\Omega_6(10)$ register bit and $\Omega_5(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Ω_0 , the \overline{CC} signal goes LOW, and the register is inhibited from further change until reset by a Start signal.

In order to allow complementary conversion the complementary output of the most significant register bit is made available. An active LOW enable input, \overline{E} , on the Am2503 and Am2504 allows devices to be connected together to form a longer register by connecting the clock, D, and \overline{S} inputs together and connecting the $\overline{C}C$ output of one device to the \overline{E} input of the next less significant device. When the Start signal resets the register, the \overline{E} signal goes HIGH, forcing the $Q_7(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its $\overline{C}C$ goes LOW. If only one device is used the \overline{E} input should be held at a LOW logic level (Ground). If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the $\overline{C}C$ signal to indicate the end of conversion.

LOGIC DIAGRAMS

Notes: 1. Cell logic is repeated for register stages. Q_5 to Q_1 Am2502/3, Q_9 to Q_1 Am2504.

2. Numbers in parentheses are for Am2504.

LIC-224

		4
	-	
L.	-	2

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential Continuous	−0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V _{CC} max
DC Input Voltage	−0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am2502XC Am2502XM	Am2503XC Am2504XC Am2503XM Am2504XM	$T_A = 0^{\circ} C \text{ to } + $ $T_A = -55^{\circ} C \text{ to}$	75°C o +125°C	$V_{CC} = 5.0V$ $V_{CC} = 5.0V$	±5% ±10%			
Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
v _{OH}	Output HIGH Voltage		V _{CC} = MIN., I _{OH} = -0.48mA V _{IN} = V _{IH} or V _{IL}		2.4	3.6		Volts
V _{OL}	Output LOW Voltage (Note 2)	V _{CC} = MIN., I _O V _{IN} = V _{IH} or			0.2	0.4	Volts	
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		WC			0.8	Volts
085-011	Unit Load		V - MAX V - 04V			-1.0	-1.6	
IIL	Input LOW Current	V _{CC} = MAX.,	V _{CC} = MAX., V _{IN} = 0.4V			-1.5	-2.4	mA
	Unit Load	$V_{CC} = MAX., V_{IN} = 2.4V$ CP, D E, \overline{S}				6.0	40	0
I _{IH}	Input HIGH Current				12.0	80	μА	
	Input HIGH Current	V _{CC} = MAX.,	V _{IN} = 5.5V	av striw by		HGH legic level	1.0	mA
I _{SC}	Output Short Circuit Current	V _{CC} = MAX.,	V _{OUT} = 0.0	/	-10	-25	-45	mA
	ment flawing out of the degree	tive Corrupt Co	A 2502	XM		65	85	
	ant flowing into the device	tes Current Cur	Am2502	XC	bass nedv	65	95	mA
	Power Supply Current	V - MAY	0.000	XM		60	80	mA
	Power Supply Current	V _{CC} = MAX.	Am2503	XC		60	90	mA
			Am2504	XM		90	110	mA
	the diw spaller butto MDIH :	Soc Biritinians	A1112504	XC		90	124	1111/2

Notes: 1. Typical Limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

Switching Characteristics (T_A = 25°C, V_{CC} = 5.0V, C_L = 15pF)

Parameters	Description	Min.	Typ.	Max.	Units	
t _{pd+}	Turn Off Delay CP to Output HIGH (6	except Q ₁₁ , Q ₁₁)	10	29	45	ns
t _{pd+}	Turn Off Delay CP to Q ₁₁ or Q ₁₁ HIC	GH	10	35	50	ns
t _{pd} _	Turn On Delay CP to Output LOW	10	27	40	ns	
t _S (D)	Set-up Time Data Input	-10	4.0	10	ns	
t _S (S)	Set-up Time Start Input	0	9.0	16	ns	
t _{pd+} (E)	Turn Off Delay E to Q7(11) HIGH	(Am2503/Am2504)		15	23	ns
t _{pd} _(E)	Turn On Delay E to Q7(11) LOW	$C_P = H, \overline{S} = L$	say made mane	20	30	ns
tpwL(CP)	Minimum LOW Clock Pulse Width	testables set test		28	46	ns
tpwH(CP)	Minimum HIGH Clock Pulse Width	no hreisig ad	and start from the	12	20	ns
f _{max} .	Maximum Clock Frequency	imes insverg	15	25		MHz

^{2.} VOL (MAX.) = 0.4V with total device fanout of less than 50 TTL Unit Loads (80mA). Otherwise, VOL (MAX.) = 0.45V.

DEFINITION OF TERMS

SUBSCRIPT TERMS:

H HIGH, applying to a HIGH logic level or when used with V_{CC} to indicate high V_{CC} value.

I Input

L LOW, applying to LOW logic level or when used with V_{CC} to indicate low V_{CC} value.

O Output

FUNCTIONAL TERMS:

Fan-Out The logic HIGH or LOW output drive capability in terms of Input Unit Loads.

Input Unit Load One T^2 L gate input load. In the HIGH state it is equal to I_{IH} and in the LOW state it is equal to I_{IL} .

CP The clock input of the register.

CC The conversion complete output. This output remains HIGH during a conversion and goes LOW when a conversion is complete.

D The serial data input of the register.

 \overline{E} The register enable. This input is used to expand the length of the register and when HIGH forces the $\Omega_7(11)$ register output HIGH and inhibits conversion. When not used for expansion the enable is held at a LOW logic level (Ground).

Q7(11) The true output of the MSB of the register.

Q₇(11) The complement output of the MSB of the register.

 Q_i i = 7(11) to 0 The outputs of the register.

 \overline{S} The start input. If the start input is held LOW for at least a clock period the register will be reset to $Q_7(11)$ LOW and all the remaining outputs HIGH. A start pulse that is LOW for a shorter period of time can be used if it meets the set-up time requirements of the \overline{S} input,

DO The serial data output. (The D input delayed one bit).

OPERATIONAL TERMS:

I_{IL} Forward input load current.

IOH Output HIGH current, forced out of output VOH test.

 I_{OL} Output LOW current, forced into the output in V_{OL} test.

IH Reverse input load current.

Negative Current Current flowing out of the device.

Positive Current Current flowing into the device.

VIH Minimum logic HIGH input voltage.

VIL Maximum logic LOW input voltage.

 ${
m V}_{
m OH}$ Minimum logic HIGH output voltage with output HIGH current I $_{
m OH}$ flowing out of output.

 $\rm V_{OL}~$ Maximum logic LOW output voltage with output LOW current $\rm I_{OL}$ flowing into output.

SWITCHING TERMS: (Measured at the 1.5 V logic level).

 t_{pd-} The propagation delay from the clock signal LOW-HIGH transition to an output signal HIGH-LOW transition.

 $t_{pd+}\,\,$ The propagation delay from the clock signal LOW-HIGH transition to an output signal LOW-HIGH transition.

 t_{pd} — (\bar{E}) The propagation delay from the Enable signal HIGH-LOW transition to the $\Omega_7(11)$ output signal HIGH-LOW transition.

 $t_{pd+}(\overline{E})$ The propagation delay from the Enable signal LOW-HIGH transition to $\Omega_7(11)$ output signal LOW-HIGH transition.

 ${\sf t_s}({\sf D})$ Set-up time required for the logic level to be present at the data input prior to the clock transition from LOW to HIGH in order for the register to respond. The data input should remain steady between ${\sf t_s}$ max. and ${\sf t_s}$ min. before the clock.

 $\mathbf{t_s}(\overline{\mathbf{S}})$ Set-up time required for a LOW level to be present at the $\overline{\mathbf{S}}$ input prior to the clock transition from LOW to HIGH in order for the register to be reset, or time required for a HIGH level to be present on \mathbf{S} before the HIGH to LOW clock transition to prevent resetting.

 $t_{pw}(CP)$ The minimum clock pulse width (LOW or HIGH) required for proper register operation.

Am2502/3 TRUTH TABLE

Time	In	pu	ts		Outputs								
t _n	D	s	Ē	D ₀	07	06	05	04	03	02	01	00	cc
0	X	L	L	X	X	X	X	X	X	X	X	X	X
1	D ₇	Н	L	X	L	Н	Н	Н	Н	Н	Н	Н	Н
2	D ₆	Н	L	D ₇	D ₇	L	Н	Н	Н	Н	Н	Н	Н
3	D ₅	Н	L	D ₆	D ₇	D ₆	L	Н	Н	Н	Н	Н	Н
4	D ₄	Н	L	D ₅	D ₇	D ₆	D ₅	L	Н	Н	Н	Н	Н
5	D ₃	Н	L	D ₄	D ₇	D ₆	D ₅	D ₄	L	Н	Н	Н	Н
6	D ₂	Н	L	D ₃	D ₇	D ₆	D ₅	D ₄	D ₃	L	H	Н	Н
7	D ₁	Н	L	D_2	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	L	H	Н
8	Do	Н	L	D ₁	D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	L	Н
9	X	Н	L	Do	D ₇	D ₆	D ₅	D ₄	D_3	D_2	D ₁	Do	L
10	X	X	L	X	D ₇	D ₆	D ₅	D ₄	D3	D_2	D ₁	D ₀	L
	X	X	Н	×	Н	NC	NC	NC	NC	NC	NC	NC	NC

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

NC = No Change

Note: Truth Table for Am2504 is extended to include 12 outputs.

USER NOTES FOR A/D CONVERSION

- 1. The register can be used with either current switches that require a low voltage level to turn the switch on, or current switches that require a high voltage level to turn the current switch on. If current switches are used which turn on with a low logic level the resulting digital output from the register is active LOW. That is, a logic "1" is represented as a low voltage level. If current switches are used that turn on with a high logic level then the digital output is active HIGH; a logic "1" is represented as a high voltage level.
- For a maximum digital error of ±½LSB the comparator must be biased. If current switches that require a high voltage level to turn on are used, the comparator should be biased ±½LSB and if the current switches require a high logic level to turn on then the comparator must be biased ±½LSB.
- The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion. Additional data input gating should be used to eliminate the possibility of false BCD codes.
- 4. The register can be used to perform 2's complement conversion by offsetting the comparator $\frac{1}{2}$ full range $\frac{1}{2}$ LSB and using the complement of the MSB $\frac{1}{2}$ ($\frac{1}{2}$) as the sign bit.
- 5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the START input the OR function of CC and the appropriate register output.

Input/Output		Pin No.'s		put Load HIGH	Output HIGH	Output
Ē	(2503)	1	1.5	2	DE DE LA	1 m <u>ul</u> t
DO	(2502)	1	Alcor at	ecalper e	12	6
CC	mai N.	2	athay we	il a <u>se</u> ba	12	6
00	Totalia	3	THE ENTE	injug TSCC	12	6
Q ₁		4	- Hava	i qo li qv	12	6
02	no - unb	5	to torn.	ngi gl u s	12	6
03	ou the fin	6	HAVE BEE	7 UNDLU	12	6
D	an kiriy	7	a 1di	1 88		- th
GNI	D	8	negla m	THILDS	MV <u>SL</u> no	II dair
CP		9	1	1	-	_
S	on or the	10	1	2	kr. Taule	9/5/
04	al service	11	PROPERTY AND LOCAL	TACT	12	6
05	1,62	12	g s al skir	r etil is hio	12	6
06	an Joh	13	- - -		12	6
07	it it ju	14	o 1518- -	n us a ta	12	6
07	hed 1	15	lines -	ri — — A	12	6
V _{CC}	;	16	_		1968 <u>3</u> -9-11-8-	THE PERSON

Interfacing Digital Family	Input U	valent nit Load LOW
Advanced Micro Devices 9300/2500 Serie	s 1	1
FSC Series 9300	1	1
Advanced Micro Devices 54/7400	1	11
TI Series 54/7400	1	malin
Signetics Series 8200	2	2
National Series DM 75/85	1	1
DTL Series 930	12	1

Am2504 LOADING RULES (IN UNIT LOADS)

			put	Fanout Output Output			
Input/Output	Pin No.'s	LOW	Load HIGH	HIGH	LOW		
Ē	1	1.5	2				
DO	2	_8~	200	12	6		
CC	3	- "	- 4	12	6		
00	4	-		12	6		
Q_1	5		-U ad	12	6		
Q ₂	6	ad	yi - 30	12	6		
Q_3	7	-60	- G- , D	12	6		
$Q_{\underline{A}}$	8	T -84	45 E.C	12	6		
05	9	·2 -84	4.10	12	6		
NC	10	_6	7-7				
D	11	1 1	1	7.1	1-2		
GND	12	_	_	_			
СР	13	1	1	-	_		
S	14	1	2	_	_		
NC	15	_	ls	vital <u>aimi</u> fic	V = _		
ο ₆	16	-	_	12	6		
Ω ₇	17	_	_	12	6		
08	18	2-1	S.COPE - IS	12	6		
Ω ₉	19	_	_	12	6		
O ₁₀	20		_	12	6		
Ω ₁₁	21			12	6		
NC	22	_		_	_		
<u>0</u> 11	23	_	-	12	6		
V _{CC}	24	_			-		

A Standard TTL Unit Load is defined as $40\mu\text{A}$ measured at 2.4V HIGH and -1.6mA measured at 0.4V LOW.

NC = No Connection

INPUT/OUTPUT INTERFACE CONDITIONS

3

Am2502/3/4 APPLICATION Continuous Conversion Analog-to-Digital Converter

This shows how the Am2502/3/4 registers are used with a Digital-to-Analog converter and a comparator to form a very high-speed continuous conversion Analog-to-Digital converter. Conversion time is limited mainly by the speed of the D/A converter and comparator with typical conversion rates of 100,000 conversions per second.

LIC-233

Metallization and Pad Layout

DIE SIZE 0.087" X 0.105"

DIE SIZE 0.087" X 0.105"

DIE SIZE 0.087" X 0.135"

Am25L02/25L03/25L04

Low-Power, Eight-Bit/Twelve-Bit Successive Approximation Registers

Distinctive Characteristics

- Contains all the storage and control for successive approximation A-to-D converters.
- Can be operated in START-STOP or continuous conversion mode.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel converter or ring counters.

FUNCTIONAL DESCRIPTION

The Am25L02, Am25L03 and Am25L04 are 8-bit and 12-bit TTL Successive Approximation Registers. The registers contain all the digital control and storage necessary for successive approximation analog-to-digital conversion. They can also be used in digital systems as the control and storage element in recursive digital routines.

The registers consist of a set of master latches that act as the control elements in the device and change state when the input clock is LOW, and a set of slave latches that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the Am25LO2 and Am25LO4 when the clock goes from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW ready for the next iteration.

The register is reset by holding the \overline{S} (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $Q_7(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The \overline{CC} (Conversion Complete) signal is also set HIGH at this time. The \overline{S} signal should not be brought back HIGH until after the clock LOW-to-HIGH transition in order to guarantee correct resetting.

After the clock has gone HIGH resetting the register, the \overline{S} signal is removed. On the next clock LOW-to-HIGH transition the data on the D input is set into the $\Omega_7(11)$ register bit and the $\Omega_6(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the $\Omega_6(10)$ register bit and $\Omega_5(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Ω_0 , the \overline{CC} signal goes LOW, and the register is inhibited from further change until reset by a Start signal.

In order to allow complementary conversion the complementary output of the most significant register bit is made available. An active LOW enable input, \overline{E} , on the Am25LO3 and Am25LO4 allows devices to be connected together to form a longer register by connecting the clock, D, and \overline{S} inputs together and connecting the \overline{CC} output of one device to the \overline{E} input of the next less significant device. When the Start signal resets the register, the E signal goes HIGH, forcing the $Q_7(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its \overline{CC} goes LOW. If only one device is used the \overline{E} input should be held at a LOW logic level (Ground). For continuous conversion the \overline{CC} output is connected to the \overline{S} input so that the device automatically restarts at the end of a conversion. If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the \overline{CC} signal to indicate the end of conversion.

Notes: 1. Cell logic is repeated for register stages. Q5 to Q1 Am25L02/3, Q9 to Q1 Am25L04.

2. Numbers in parentheses are for Am25L04.

LIC-234

MAXIMUM RATINGS (Above which the useful life may be impaired)

the terminal traction to the contract the contract the traction to the contract to	
Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
Output Current, Into Outputs	30mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am25L02XC Am25L02XM	Am25L03XC Am25L04XC Am25L03XM Am25L04XN	$T_{A} = 0^{\circ} C \text{ to}$ $T_{A} = -55^{\circ} C$	o +75° C C to +125° C	V _{CC}	= 5.0V ±5% = 5.0V ±10%			
Parameters	Description	Test Co	onditions		Min.	Typ.(Note 1)	Max.	Units
v _{OH}	Output HIGH Voltage		V _{CC} = MIN., I _{OH} = -0.4mA V _{IN} = V _{IH} or V _{IL}		2.4	3.6		Volts
V _{OL}	Output LOW Voltage (Note 2)	V _{CC} = MIN., I _{OL} = 4.92mA V _{IN} = V _{IH} or V _{IL}			0.15	0.3	Volts	
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0		appar10	Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.7	Volts	
	Input LOW Current	VNAX	$V_{CC} = MAX., V_{IN} = 0.3V$ \overline{E}			-0.25	-0.4	mA
IIL	Input LOW Current	VCC - WAX.,				-0.4	-0.6	110/5
	Input HIGH Current	Voc = MAY	V _{CC} = MAX., V _{IN} = 2.4V CP, D		TMES	2.0	20	μΑ
I _{IH}	Input man cunent	VCC - WAX., VIN - 2:4V				4.0	40	μ,
	Input HIGH Current	VCC = MAX.,	V _{IN} = 5.5V				1.0	mA
Isc	Output Short Circuit Current	V _{CC} = MAX.,	V _{OUT} = 0.0	V	4.0	15	35	mA
			1	XM		25	33	
			Am25L02	XC		25	35	mA
	SALAN BESTEVAR			XM		22	31	mA
18 THM 341374	Power Supply Current	$V_{CC} = MAX.$	Am25L03	хс		22	33	
	YGATH		- wante	XM		30	42	
			Am25L04	хс		30	45	mA

Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading. 2. $V_{OL}(MAX)$ = 0.3V with total device fanout of less than 90 Low Power TTL Unit Loads (36mA), otherwise, $V_{OL}(MAX)$ = 0.35V.

Switching Characteristics (T_A = 25°C, V_{CC} = 5.0V, C_L = 15pF)

arameters	Description		Min.	Тур.	Max.	Units
t _{pd+}	Turn Off Delay CP to Output HIGH	except Q ₁₁ , Q ₁₁)	20	75	110	ns
t _{pd+}	Turn Off Delay CP to Q ₁₁ or Q ₁₁ HI	GH	30	100	140	ns
t _{pd} _	Turn On Delay CP to Output LOW	20	75	100	ns	
t _S (D)	Set-up Time Data Input	-15	8.0	20	ns	
t _S (S)	Set-up Time Start Input		0	20	25	ns
t _{pd+} (E)	Turn Off Delay E to Q7(11) HIGH	(Am25L03/Am25L04)	The second	50	75	ns
t _{pd} _(E)	Turn On Delay E to Q7(11) LOW	Cp = H, S = L		60	75	ns
tpwL(CP)	Minimum LOW Clock Pulse Width	1/1/		100	150	ns
t _{pwH} (CP)	Minimum HIGH Clock Pulse Width	rest in a substitute of the	70	100	ns	
f _{max} .	Maximum Clock Frequency	3.5	5.0		MHz	

Am25L02/3 TRUTH TABLE

Time	In	pu:	ts					Out	puts				
tn	D	s	Ē	D ₀	07	06	Q ₅	04	03	02	01	α ₀	cc
0	X	L	L	X	X	X	X	Х	Х	X	Х	Х	Х
1	D_7	Н	L	X	L	Н	Н	H	Н	Н	H	Н	Н
2	D ₆	Н	L	D ₇	D ₇	L	Н	Н	Н	Н	Н	Н	H
3	D ₅	Н	L	D ₆	D ₇	D ₆	L	Н	Н	Н	Н	Н	Н
4	D ₄	Н	L	D ₅	D ₇	D ₆	D ₅	L	Н	Н	Н	Н	Н
5	D_3	Н	L	D ₄	D ₇	D ₆	D ₅	D_4	L	Н	Н	Н	Н
6	D ₂	Н	L	D_3	D ₇	D ₆	D ₅	D ₄	D_3	L	Н	Н	Н
7	D ₁	Н	L	D ₂	D ₇	D ₆	D ₅	D ₄	D_3	D_2	L	Н	Н
8	Do	H	L	D ₁	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	L	Н
9	X	Н	L	Do	D ₇	D ₆	D_5	D_4	D ₃	D ₂	D ₁	Do	L
10	Χ	Χ	L	×	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	L
2111	Х	X	Н	X	Н	NC	NC	NC	NC	NC	NC	NC	N

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care NC = No Change

Note: Truth Table for Am25L04 is extended to include

12 outputs.

USER NOTES FOR A/D CONVERSION

- 1. The register can be used with either current switches that require a low voltage level to turn the switch on, or current switches that require a high voltage level to turn the current switch on. If current switches are used which turn on with a low logic level the resulting digital output from the register is active LOW. That is, a logic "1" is represented as a low voltage level. If current switches are used that turn on with a high logic level then the digital output is active HIGH; a logic "1" is represented as a high voltage level.
- 2. For a maximum digital error of ±1/2 LSB the comparator must be biased. If current switches that require a low voltage level to turn on are used, the comparator should be biased +1/2LSB and if the current switches require a high logic level to turn on then the comparator must be biased -1/2LSB.
- The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion.
- 4. The register can be used to perform 2's complement conversion by offsetting the comparator 1/2 full range +1/2 LSB and using the complement of the MSB Q_7 (11) as the sign bit.
- If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the START input the OR function of CC and the appropriate register output.

LIC-240

SWITCHING TIME WAVEFORMS

LIC-242

Am25L02/3/4 APPLICATION Continuous Conversion Analog-to-Digital Converter

This shows how the Am25L02/3/4 registers are used with a Digital-to-Analog converter and a comparator to form a very high-speed continuous conversion Analog-to-Digital converter. Conversion time is limited mainly by the speed of the D/A converter and comparator with typical conversion rates of 300,000 conversions per second. The comparator can be the Am111 precision comparator, or Am106 high-speed comparator.

Distinctive Characteristics

- Tested to μ-255 companding law
- Absolute accuracy specified includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM, audio, and 8-bit μ-P systems
- Output dynamic range of 72 dB
- 12-bit accuracy and resolution around zero

- Sign plus 12-bit range with sign plus 7-bit coding
- Improved pin-for-pin replacement for DAC-76
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6070 monolithic companding D/A converter achieves a 72dB dynamic range which is equivalent to that achieved by a 12-bit converter.

The transfer function of the Am6070 complies with the Bell system μ -255 companding law, and consists of 15 linear segments or chords. A particular chord is identified with the sign bit input, (SB) and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are

determined by four step select input bits. Accuracy and monotonicity are assured by the internal circuit design and are guaranteed over the full temperature range.

Applications for the Am6070 include digital audio recording, servo-motor controls, electromechanical positioning, voice synthesis, secure communications, microprocessor controlled sound and voice systems, log sweep generators and various data acquisition systems.

CONNECTION DIAGRAM Am6070

Top View
Pin 1 is marked for orientation.

LIC-244

ORDERING INFORMATION

Part Number	Temperature	Accuracy		
Am6070ADM	-55°C to +125°C	±1/2 step		
Am6070DM	-55°C to +125°C	±1 step		
Am6070ADC	0°C to +70°C	±1/2 step		
Am6070DC	0°C to +70°C	±1 step		

SIMPLIFIED CONVERSION TRANSFER FUNCTIONS

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V – Supply	36V	Operating Temperature	
V _{LC} Swing	V- plus 8V to V+	MIL Grade	-55°C to +125°C
Output Voltage Swing	V- plus 8V to V- plus 36V	COM'L Grade	0°C to +70°C
Reference Inputs	V- to V+	Storage Temperature	-65°C to +150°C
Reference Input Differential Volta	ge ±18V	Power Dissipation T _A ≤ 100° C	500mW
Reference Input Current	1.25mA	For T _A > 100° C derate at	10mW/°C
Logic Inputs	V-plus 8V to V-plus 36V	Lead Soldering Temperature	300°C (60 sec)

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	±128 Steps
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	72 dB, (20 log (I ₇ , 15/I ₀ , 1))

ELECTRICAL CHARACTERISTICS

These specifications apply for V+ = +15V, V- = -15V, I_{REF} = 528μ A, 0° C \leq T_A \leq +70°C, for the commercial grade, -55° C \leq T_A \leq +125C, for the military grade, and for all 4 outputs unless otherwise specified.

Am6070ADM

Am6070ADM

Am6070ADC

		at latitat lustica opposit, dealet			100/04	070ADC		Am60701		
arameter	Description	Test Cond	litions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
t _S	Settling Time	To within ±1/2 step at output switched fro I _{ZS} to I _{FS}		5,000	300	500		300	500	ns
	Chord Endpoint Accuracy	a. Acard parace	ner at There are	0003		±1/2			±1	Step
	Step Nonlinearity	Guaranteed by output				±1/2			±1	Step
I _{FS(D)}	Full Scale Current Deviation	current error specified below.	he title best PS	Universe		±1/2			±1	
I _{FS(E)}	From Ideal	Delowing loss at a loss as loss as		1900	- 0	±1/2			±1	
ΔI _O	Output Current Error	$\begin{split} &V_{REF}=10.000V\\ &R_{REF+}=18.94k\Omega\\ &R_{REF-}=20k\Omega\\ &-5.0V \leqslant V_{OUT} \leqslant +18\\ &\text{Error referred to nom}\\ &\text{in Table 1.} \end{split}$	v	6.	43 43 35	±1/2			±1	Step
I _{O(+)} -I _{O(-)}	Full Scale Symmetry Error	$\begin{array}{l} V_{REF} = 10.000V \\ R_{REF+} = 18.94k\Omega \\ R_{REF} = 20k\Omega \\ -5.0V \leqslant V_{OUT} \leqslant +18 \\ Error\ referred\ to\ nomin\ Table\ 1 \end{array}$			1/40	1/8		1/20	1/4	Step Step
I _{EN}	Encode Current	Additional output Encode/Decode = 1		3/8	1/2	5/8	1/4	1/2	3/4	Step
I _{ZS}	Zero Scale Current	Measured at selected output with 000 0000 input			1/40	1/4		1/20	1/2	Step
ΔI_{FS}	Full Scale Drift	Operating temperatur	e range		±1/20	±1/4		±1/10	±1/2	Ste
Voc	Output Voltage Compliance	Full scale current change ≤1/2 step		-5.0	1.0	+18	-5.0		+18	Volt
I _{DIS}	Disable Current	Output leakage Output disabled by E/	D and SB	20.88	5.0	50		5.0	50	nA
I _{FSR}	Output Current Range			0	2.0	4.2	0	2.0	4.2	mA
V _{IL} V _{IH}	Logic Input Levels Logic "0" Logic "1"	V _{LC} = 0V	-62.63 -34.71	2.0	- 6	0.8	2.0		0.8	Volt
I _{IN}	Logic Input Current	$V_{1N} = -5.0V \text{ to } +18V$	20 50	10.53		40			40	μΑ
V _{IS}	Logic Input Swing	V- = -15V	4.88-1 58.65-	-5.0	. 0	+18	-5.0		+18	Volt
I _{B REF}	Reference Bias Current	- 26.26 - 10.87 -	- 10.87 - 35.04 - 26.58 - 10.87 -		-1.0	-4.0		-1.0	-4.0	μΑ
di/dt	Reference Input Slew Rate	- 1881- DE.85- 1	90.5E - TEAR-	0.12	0.25		0.12	0.25		mA/µ
PSSI _{FS+} PSSI _{FS-}	Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)	V+ = 4.5 to 18V, V- = -15V V- = 10.8 + -18V, V+ = 15V		±1/20 ±1/10	±1/2 ±1/2		±1/20 ±1/10	±1/2 ±1/2		Step
I+ I-	Power Supply Current	$V+ = +5.0 \text{ to } +15V, V- = -15V$ $I_{FS} = 2.0 \text{mA}$			2.7 -6.7	4.0 -8.8		2.7 -6.7	4.0 -8.8	mA
PD	Power Dissipation	$V = -15V$, $V_{OUT} = 0$ $V + = 5.0V$ $I_{FS} = 2.0 \text{mA}$ $V + = +15V$			114 141	152 192		114 141	152 192	mW

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE 1 NOMINAL DECODER OUTPUT CURRENT LEVELS IN $\mu {\sf A}$

13.9				СНО	RD			
STEP	0	1	2	3	4	5	6	7
0	.000	8.250	24.750	57.750	123.75	255.75	519.75	1047.75
- 1	.500	9.250	26.750	61.750	131.75	271.75	551.75	1111.75
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.75
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.75
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.75
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.75
6	3.000	14.250	36.750	81.750	171.75	351.75	711.75	1431.75
7	3.500	15.250	38.750	85.750	179.75	367.75	743.75	1495.75
8	4.000	16.250	40.750	89.750	187.75	383.75	775.75	1559.75
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.75
10	5.000	18.250	44.750	97.750	203.75	415.75	839.75	1687.75
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.75
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.75
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.75
14	7.000	22.250	52.750	113.750	235.75	479.75	967.75	1943.75
15	7.500	23.250	54.750	117.750	243.75	495.75	999.75	2007.75
STEP	.5	1	2	4	8	16	32	64

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM FULL SCALE

1000				CHO	ORD			
STEP	0	1	2	3	4 4	5	6	7
0	6.6	-47.73	-38.18	-30.82	-24.20	-17.90	-11.74	-5.65
1	-72.07	-46.73	-37.51	-30.24	-23.66	-17.37	-11.22	-5.13
2	-66.05	-45.84	-36.88	-29.70	-23.15	-16.87	-10.73	-4.65
3	-62.53	-45.03	-36.30	-29.18	-22.66	-16.40	-10.27	-4.19
4 :	-60.03	-44.29	-35.75	-28.70	-22.21	-15.96	-9.83	-3.75
5	-58.10	-43.61	-35.24	-28.24	-21.77	-15.53	-9.41	-3.33
6	-56.51	-42.98	-34.75	-27.80	-21.36	-15.13	-9.01	-2.94
7	-55.17	-42.39	-34.29	-27.39	-20.96	-14.74	-8.63	-2.56
8	-54.01	-41.84	-33.85	-26.99	-20.58	-14.37	-8.26	-2.19
9	-52.99	-41.32	-33.44	-26.61	-20.22	-14.02	-7.91	-1.84
10	-52.07	-40.83	-33.04	-26.25	-19.87	-13.68	-7.57	-1.51
11	-51.25	-40.37	-32.66	-25.90	-19.54	-13.35	-7.25	-1.18
12	-50.49	-39.93	-32.29	-25.57	-19.22	-13.03	-6.93	-0.87
13	-49.80	-39.51	-31.95	-25.25	-18.91	-12.73	-6.63	-0.57
14	-49.15	-39.11	-31.61	-24.94	-18.61	-12.43	-6.34	-0.28
15	-48.55	-38.73	-31.29	-24.63	-18.32	-12.15	-6.06	0.00

 \odot

THEORY OF OPERATION

Functional Description

The Am6070 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, I_{FS} , is specified by the input binary code 111 1111, and is a linear function of the reference current, I_{REF} . There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E/D), input signal. A logic 1 applied to the E/D input places the Am6072 in the encode mode and current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E/D input places the Am6070 in the decode mode.

The transfer characteristic is a piece-wise linear approximation to the Bell System μ -225 logarithmic law which can be written as follows:

$$Y = 0.18 \ln (1 + \mu |X|) \text{ sgn}(X)$$

where: X = analog signal level normalized to unity (encoder input or decoder output)

Y = digital signal level normalized to unity (encoder output or decoder input)

 $\mu = 255$

The current flows from the external circuit into one of four possible analog outputs determined by the SB and $E | \overline{D} \>$ inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $0.5\mu A$ found in the first chord near zero output current, and the largest step of $64\mu A$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels near zero output current. The accuracy for signal amplitudes corresponding to chord 0 is equivalent to that of a 12-bit linear, binary D/A converter. However, the ratio (in dB) between the chord

endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3dB over most of the dynamic range. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at approximately 6dB over most of the dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40dB range of input speech signals. Note that the 72dB output dynamic range for the Am6070 corresponds to the dynamic range of a sign plus 12-bit linear, binary D/A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7-bit input configuration is shown in Figure 1. The corresponding dynamic range is 72dB, and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E/D input enables switching between the encode, $I_{OE(+)}$ or $I_{OE(-)}$, and the decode, $I_{OD(+)}$ or I_{OD(-)}, outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E/D input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the IOF outputs (as determined by the SB input). When operating in the encode mode as shown in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current.

	E/D	SB	B1	B ₂	В3	B4	B ₅	В6	В7	Eo
POSITIVE FULL SCALE	0	1	1	1	1	1	1	1	1	5.019V
(+) ZERO SCALE +1 STEP	0	1	0	0	0	0	0	0	1	0.0012V
(+) ZERO SCALE	0	1	0	0	0	0	0	0	0	0V
(-) ZERO SCALE	0	0	0	0	0	0	0	0	0	0V
(-) ZERO SCALE +1 STEP	0	0	0	0	0	0	0	0	1	-0.0012V
NEGATIVE FULL SCALE	0	0	1	1	1	1	1	1	1	-5.019V

Figure 1. Detailed Decoder Connections.

TEST	E/D	SB		TPUT REMENT
1	1	1	IOE (+)	(E ₀₁ /R ₁)
2	1	0	IOE (-)	(E ₀₁ /R ₂)
3	0	1	IOD (+)	(E ₀₂ /R ₃)
4	0	0	IOD (-)	(E ₀₂ /R ₄)

Figure 2. Output Current DC Test Circuit.

 l_{EN} , is automatically added to the l_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32\mu A$. Similarly, the current levels in the first chord near the origin will be offset by $0.25\mu A$, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 0.25\mu A$ with respect to the corresponding decode current value of $0.0\mu A$. This additional encode half step of current can be used for extension of the output dynamic range from 72dB to 78dB, when the converter is performing only the decode function. The corresponding decoder connection utilizes the $E\overline{D}$ input as a ninth digital input and has the outputs $l_{OD(+)}$ and $l_{OE(+)}$ and the outputs $l_{OD(-)}$ and $l_{OE(-)}$ tied together, respectively.

When encoding or compression of an analog signal is reguired, the Am6070 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper Start, S, and Conversion Complete, CC, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/D input with a logic 0 level. No current flows into the IOF outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E/\overline{D} input back to a logic 1 level because the \overline{CC} signal changed. It also clocks the D

input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6070. Depending upon the SB input level, current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output of the Am6070.

Nine total clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6070 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6070 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0, sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6070. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.

In Figure 2, two operational amplifiers measure the currents of each of the four Am6070 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2\mu A$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10nA and 1nA, respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of

 $2.5k\Omega$, also contribute to the output measurement error by a factor of 400nA for every mV of offset at the A1 and A2 outputs. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current I_{REF} is from 0.1mA to 1.0mA. The full scale output current, I_{FS} , is a linear function of the reference current, and may be calculated from the equation $I_{FS}=3.8\ I_{REF}$. This tight relationship between I_{REF} and I_{FS} alleviates the requirement for trimming the I_{REF} current if the R_{REF} resistors values are within $\pm1\%$ of the calculated value. Lower values of I_{REF} will reduce the negative power supply current, (I–), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{REF}=V_{REF}/R_{REF}$ is $528\mu A$. The corresponding ideal full scale decode and encode current values are 2007.75 μA and 2039.75 μA , respectively. A percentage change from the ideal I_{REF} value produced by changes in V_{REF} or R_{REF} values produces the same percentage change in decode and encode output current values. The positive voltage supply, V+, may be used, with certain precautions, for the positive reference voltage V_{REF} . In this case, the reference resistor $R_{REF(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01\mu F$. The total resistor value should provide the reference current $I_{REF}=528\mu A$. The resistor $R_{REF(-)}$ value should be approximately equal to the $R_{REF(+)}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1, 2 and 3 is the application of a negative voltage to the $V_{R(-)}$ terminal through the resistor $R_{REF(-)}$ with the $R_{REF(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $V_{R(-)}$ terminal while the reference current flows from ground through $R_{REF(+)}$ into the $V_{R(+)}$ terminal.

The Am6070 has a wide output voltage compliance suitable for driving a variety of loads. With $I_{REF}=528\mu A$ and V-=-15V, positive voltage compliance is +18V and negative voltage compliance is -5.0V. For other values of I_{REF} and V-, the negative voltage compliance, $V_{OC(-)}$, may be calculated as follows:

$$V_{OC(-)} = (V-) + (2 \cdot I_{REF} \cdot 1.5k\Omega) + 8.4V.$$

The following table contains $V_{OC(-)}$ values for some specific V-, I_{REF} , and I_{FS} values.

Negative Output Voltage Compliance Voc(_)

V- (IFS)	264μA (1mA)	528μA (2mA)	1056μA (4mA)
-12V	-2.8V	-2.0V	-0.4V
-15V	-5.8V	-5.0V	-3.4V
-18V	-8.8V	-8.0V	-6.4V

The V_{LC} input can accommodate various logic input switching threshold voltages allowing the Am6070 to interface with various logic families. This input should be placed at a potential which is 1.4V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V-value and ±10V.

With a V- value chosen between -15V and -11V, the $V_{OC(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- value chosen.

With a V+ value chosen between +5V and +15V, the reference amplifier common mode positive voltage range and the V_{LC} input values are reduced by an amount equivalent to the difference between +15V and the V+ value chosen.

Notes: 2. Set the voltage "A" to the desired logic input switching threshold.

and NMOS Logic Inputs.

3. Allowable range of logic threshold is typically -5V to +13.5V when operating the companding DAC on ±15V supplies.

LIC-249

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3 Normalized Decoder Output (Sign Bit Excluded)

	Chord (C)	0	1 0	2	3	4	5	6	7
Step (S)	-100 Voising	000	001	010	011	100	101	110	111
0	0000	0	33	99	231	495	1023	2079	4191
ladV los	0001	2	37	107	247	527	1087	2207	4447
2	0010	4	41	115	263	559	1151	2335	4703
3	0011	6	45	123	279	591	1215	2463	4959
4	0100	8	49	131	295	623	1279	2591	5215
5	0101	10	53	139	311	655	1343	2719	5471
6	0110	12	57	147	327	687	1407	2847	5727
7	0111	14	61	155	343	719	1471	2975	5983
8	1000	16	65	163	359	751	1535	3103	6239
9	1001	18	69	171	375	783	1599	3231	649
10	1010	20	73	179	391	815	1663	3359	675
11	1011	22	77	187	407	847	1727	3487	700
12	1100	24	81	195	423	879	1791	3615	7263
13	1101	26	85	203	439	911	1855	3743	7519
14	1110	28	89	211	455	943	1919	3871	777!
15	1111	30	93	219	471	975	1983	3999	803
St	ep Size	2	4	8	16	32	64	128	250

The normalized decode current, ($I_{C,S}$), is calculated using: $I_{C,S} = 2(2^C(S+16.5)-16.5)$ where C=C code current, (I_{OD}), in μA is calculated using:

 $I_{OD} = (I_{C, S}/I_{7, 15(norm.)}) \cdot I_{FS} (\mu A)$

where I_{C,S} is the corresponding normalized current. To obtain normalized encode current values the corresponding normalized half-step value should be added to all entries in

Table 4 Normalized Encode Level (Sign Bit Excluded)

	CHORD	0	ded faner	2	3	4	5	6	7
STEP		000	001	010	011	100	101	110	111
0	0000	0 0 1 0	35	103	239	511	1055	2143	4319
1	0001	3	39	111	255	543	1119	2271	457
2	0010	5	43	119	271	575	1183	2399	483
3	0011	7	47	127	287	607	1247	2527	508
4	0100	9	51	135	303	639	1311	2655	534
5	0101	11	55	143	319	671	1375	2783	559
6	0110	13	59	151	335	703	1439	2911	585
7	0111	15	63	159	351	735	1503	3039	611
8	1000	17	67	167	367	767	1567	3167	636
9	1001	19	71	175	383	799	1631	3295	662
10	1010	21	75	183	399	831	1695	3423	687
11	1011	23	79	191	415	863	1759	3551	713
12	1100	25	83	199	431	895	1823	3679	739
13	1101	27	87	207	447	927	1887	3807	764
14	1110	29	91	215	463	959	1951	3935	790
15	1111	31	95	223	479	991	2015	4063	815
Ste	ep Size	2	4	8	16	32	64	128	250

 $I_{C,S} = 2[2^{C}(S+17) - 16.5]$

C = chord no. (0 through 7) S = step no. (0 through 15)

ADDITIONAL DECODE OUTPUT CURRENT TABLES (Cont.)

Table 5
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in μA with 2007.75μA FS	Step Size as a % of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a % of Reading at Chord Endpoints	Resolution & Accuracy of Equivalent Binary DAC
0	2	0.5	0.025%	0.60	6.67%	Sign + 12 Bits
1	4	1.0	0.05%	0.38	4.30%	Sign + 11 Bits
2	8	2.0	0.1%	0.32	3.65%	Sign + 10 Bits
3	16	4.0	0.2%	0.31	3.40%	Sign + 9 Bits
4	32	8.0	0.4%	0.29	3.28%	Sign + 8 Bits
5	64	16.0	0.8%	0.28	3.23%	Sign + 7 Bits
6	128	32.0	1.6%	0.28	3.20%	Sign + 6 Bits
7	256	64.0	3.2%	0.28	3.19%	Sign + 5 Bits

Table 6
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μA with 2007.75μA FS	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale
0	30	7.5	0.37%	-48.55
1	93	23.25	1.16%	-38.73
2	219	54.75	2.73%	-31,29
3	471	117.75	5.86%	-24.63
4	975	243.75	12.1%	-18.32
5	1983	495.75	24.7%	-12.15
6	3999	999.75	49.8%	-6.06
7	8031	2007.75	100%	0

BASIC CIRCUIT CONNECTIONS

±10V RANGE ENCODER/DECODER CONNECTIONS

COMPLIANCE EXTENSION USING AC COUPLED OUTPUT

LOW INPUT IMPEDANCE CONNECTION

I_{REF} = V_{IN}/R_{IN} + V_{REF}/R_{REF} I_{FS} ≈ 4 • I_{REF}

LIC-253

HIGH INPUT IMPEDANCE CONNECTION

I_{REF} = (V_{REF} - V_{IN})/R_{REF} I_{FS} ≈ 4 • I_{REF}

LIC-25

LOGARITHMIC DIGITAL GAIN CONTROL (Notes 4 & 5)

REFERENCE AMPLIFIER DYNAMIC TEST CIRCUIT

Notes: 4. Low distortion outputs are provided over a 72dB range.

5. Up to 4 channels of output may be selected by E/D and SB logic inputs.

TYPICAL PERFORMANCE CURVES

Reference Amplifier **Total Harmonic Distortion** Versus Frequency (80kHz Filter) (Notes 6, 7, 8)

Reference Amplifier

Reference Amplifier Input Common-Mode Range (Note 9)

Power Supply Currents Versus Power Supply Voltages

Power Supply Currents Versus Temperature

Output Current Versus Output Voltage (Output Voltage Compliance)

Bit Transfer Characteristics (Note 10)

Logic Input Current Versus Input Voltage and Logic Input Range (Note 11)

Output Full Scale Current Versus Reference Input Current

LIC-257

Notes: 6. THD is nearly independent of the logic input code.
7. Similar results are obtained for a high input impedance connection using V_{R(-)} as an input.
8. Increased distortion above 50kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of ±2.5V peak (25%) modulation), the bandwidth is 100kHz.

9. Positive common mode range is always (V+) -1.5V.

10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8V and 2.0V over the operating

11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

APPLICATIONS

The companding D/A converter is particularly suited for applications requiring a wide dynamic range.

Systems requiring fine control resulting in a constant rate of change or set point controls are economically achieved using these devices.

Instrumentation, Control and $\mu\text{-Processor}$ based applications include:

Digital data recording PCM telemetry systems Servo systems Function generation Data acquisition systems Telecommunications applications include:
PCM Codec telephone systems
Intercom systems
Military voice communication systems
Radar systems
Voice Encryption

Audio Applications:
Recording
Multiplexing of analog signals
Voice synthesis

SERIAL DATA TRANSCEIVING CONVERTER (1/2 OF SYSTEM SHOWN)

Notes:

- 1. Complementary send/receive commands are required for the
- two ends.

 2. START must be held low for one clock cycle to begin a send or receive cycle.
- 3. The SAR is used as a serial-in/parallel out register in the receive mode.
- 4. CLOCK and START may be connected in parallel at both ends.
- 5. Conversion is completed in 9 clock cycles.
- 6. Receive output is available for one full clock cycle.

Metallization and Pad Layout

80 X 114 Mils

Am6071

Companding D-to-A Converter for Control Systems

Distinctive Characteristics

- Tested to A-law tracking specification
- Absolute accuracy specified includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM, audio, and 8-bit μ-P systems
- Output dynamic range of 62 dB
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6071 is a monolithic 8-bit, companding digital-toanalog (D/A) converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6071 consists of 13 linear segments or chords. A particular chord is identified with the sign bit input, (SB) and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this format is 62 dB. Accuracy and monotonicity are assured by the internal circuit design and are guaranteed over the full temperature range. The Am6071 is tested to the A-law tracking specification. Applications for the Am6071 include digital audio recording, servo motor controls, electro-mechanical positioning, voice synthesis, secure communications, microprocessor controlled sound and voice systems, log sweep generators, and various data acquisition systems.

CONNECTION DIAGRAM Am6072

Top View

Pin 1 is marked for orientation.

LIC-260

ORDERING INFORMATION

Part Number	Temperature	Accuracy
Am6071ADM	-55°C to +125°C	±1/2 step
Am6071DM	-55°C to +125°C	±1 step
Am6071ADC	0°C to +70°C	±1/2 step
Am6071DC	0°C to +70°C	±1 step

SIMPLIFIED CONVERSION TRANSFER FUNCTIONS

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V- Supply	36V	Operating Temperature	ALERS AND STREET, STRE
V _{LC} Swing	V- plus 8V to V+	MIL Grade	-55°C to +125°C
Output Voltage Swing	V-plus 8V to V-plus 36V	COM'L Grade	0°C to +70°C
Reference Inputs	V- to V+	Storage Temperature	-65°C to +150°C
Reference Input Differential V	oltage ±18V	Power Dissipation T _A ≤ 100° C	500mW
Reference Input Current	1.25mA	For TA > 100°C derate at	10mW/°C
Logic Inputs	V-plus 8V to V-plus 36V	Lead Soldering Temperature	300°C (60 sec)

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	00 086 ±128 Steps (65 00 00 00 00 00 00 00 00 00 00 00 00 00
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	62dB, (20 log (17, 15/10, 1))

ELECTRICAL CHARACTERISTICS

These specifications apply for V+ = +15V, V- = -15V, I_{REF} = 512μ A, 0° C \leq T_A \leq +70°C, for the commercial grade, -55°C \leq T_A \leq +125C, for the military grade, and for all 4 outputs unless otherwise specified.

Am6071ADM

Am6071ADC

Am6071ADC

			Am	Am6071ADC			Am6071DC		
arameter	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
t _s	Settling Time	To within $\pm 1/2$ step at $T_A = 25^{\circ}$ C output switched from I_{ZS} to I_{FS}	90.80 QS 90.80 QS	300	500		300	500	ns
	Chord Endpoint Accuracy	200.80			±1/2			±1	Step
	Step Nonlinearity	Guaranteed by output	60.03		±1/2			±1	Step
I _{FS(D)}	Full Scale Current Deviation	helow	200.16	and I	±1/2		912	±1	
I _{FS(E)}	From Ideal	Delow. 00.385 000.881	100.18		±1/2		30	±1	
ΔΙΟ	Output Current Error	$\begin{split} &V_{REF} = 10.000V\\ &R_{REF+} = 19.53k\\ &R_{REF-} = 20k\Omega\\ &-5.0V \le V_{OUT} \le +18V\\ &\text{Error referred to nominal values}\\ &\text{in Table 1.} \end{split}$	2		±1/2		352	±1	Step
I _{O(+)} -I _{O(-)}	Full Scale Symmetry Error	$V_{REF} = 10.000V$ $R_{REF} = 19.53k$ $R_{REF} = 20k\Omega$ $-5.0V \le V_{OUT} \le +18V$ Error referred to nominal values in Table 1		1/40	1/8		1/20	1/4	Step Step
I _{EN}	Encode Current	Additional output Encode/Decode = 1	3/8	1/2	5/8	1/4	1/2	3/4	Step
I _{ZS}	Zero Scale Current	Measured at selected output with 000 0000 input		1/40	1/4	2000	1/20	1/2	Step
ΔI_{FS}	Full Scale Drift	Operating temperature range		±1/20	±1/4		±1/10	±1/2	Step
Voc	Output Voltage Compliance	Full scale current change ≤1/2 step	-5.0		+18	-5.0		+18	Volts
I _{DIS}	Disable Current	Output leakage Output disabled by E/D and SB	79.38: 85.29 85.82 89	5.0	50		5.0	50	nA
I _{FSR}	Output Current Range	28.23 18.3	0	2.0	4.2	0	2.0	4.2	mA
V _{IL}	Logic Input Levels Logic "0" Logic "1"	V _{LC} = 0V	2.0		8.0	2.0	8 4 4 6	8.0	Volts
I _{IN}	Logic Input Current	$V_{1N} = -5.0V \text{ to } +18V$	32.66	38	40		13	40	μΑ
V _{IS}	Logic Input Swing	V- = -15V	-5.0	BIG	+18	-5.0	8	+18	Volts
I _B REF-	Reference Bias Current	COLUMN TO SERVICE SERV	10 TO 10	-1.0	-4.0	HIN I	-1.0	-4.0	μΑ
di/dt	Reference Input Slew Rate	CT 45.81 95.85 V	0.12	0.25	88.1	0.12	0.25		mA/μ
PSSI _{FS+} PSSI _{FS-}	Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)	V+ = 4.5 to 18V, V- = -15V V- = -10.8 to -18V, V+ =	±1/20 ±1/10	The second second	4,15, 3,48 2,86	±1/20 ±1/10	100000000000000000000000000000000000000		Step
I+ I-	Power Supply Current	$V+ = +5.0 \text{ to } +15V, V- = -15V$ $I_{FS} = 2.0 \text{mA}$	/	2.7 -6.7	4.0 -8.8		2.7 -6.7	4.0 -8.8	mA
PD	Power Dissipation	$V = -15V, V_{OUT} = 0$ $V + = 5.$ $I_{FS} = 2.0 \text{mA}$ $V + = +$		114	152 192		114	152 192	mW

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE I NOMINAL DECODER OUTPUT CURRENT LEVELS IN $\mu {\bf A}$

STEP				CH	IORD	of A ap		
	0	1	2	3	4	5	6	7
0	.500	16.500	33.000	66.000	132.00	264.00	528.00	1056.00
1	1.500	17.500	35.000	70.000	140.00	280.00	560.00	1120.00
2	2.500	18.500	37.000	74.000	148.00	296.00	592.00	1184.00
3	3.500	19.500	39.000	78.000	156.00	312.00	624.00	1248.00
4	4.500	20.500	41.000	82.000	164.00	328.00	656.00	1312.00
5	5.500	21.500	43.000	86.000	172.00	344.00	688.00	1376.00
6	6.500	22.500	45.000	90.000	180.00	360.00	720.00	1440.00
7	7.500	23.500	47.000	94.000	188.00	376.00	752.00	1504.00
8	8.500	24.500	49.000	98.000	196.00	392.00	784.00	1568.00
9	9.500	25.500	51.000	102.000	204.00	408.00	816.00	1632.00
10	10.500	26.500	53.000	106.000	212.00	424.00	848.00	1696.00
11	11.500	27.500	55.000	110.000	220.00	440.00	880.00	1760.00
12	12.500	28.500	57.000	114.000	228.00	456.00	912.00	1824.00
13	13.500	29.500	59.000	118.000	236.00	472.00	944.00	1888.00
14	14.500	30.500	61.000	122.000	244.00	488.00	976.00	1952.00
15	15.500	31.500	63.000	126.000	252.00	504.00	1008.00	2016.00
STEP SIZE	1	1	2	4	8	16	32	64

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+ 3dBmo)

STEP		373		CHORD	somet gnur	daubn		tinti dise
SIEP	0	1 0.8-	2	3	4	5	6	7
0	72.11	41.74	35.72	29.70	23.68	17.66	11.64	5.62
1	62.57	41.23	35.21	29.19	23.17	17.15	11.13	5.11
2	58.13	40.75	34.73	28.71	22.68	16.66	10.64	4.62
3	55.21	40.29	34.27	28.25	22.23	16.21	10.19	4.17
4	53.03	39.85	33.83	27.81	21.79	15.77	9.75	3.73
5	51.28	39.44	33.42	27.40	21.38	15.36	9.34	3.32
6	49.83	39.05	33.03	27.00	20.98	14.96	8.94	2.92
7	48.59	38.67	32.65	26.63	20.61	14.59	8.57	2.54
8	47.50	38.31	32.29	26.27	20.24	14.22	8.20	2.18
9	46.54	37.96	31.94	25.92	19.90	13.88	7.86	1.84
10	45.67	37.62	31.60	25.58	19.56	13.54	7.52	1.50
11	44.88	37.30	31.28	25.26	19.24	13.22	7.20	1.18
12	44.15	36.99	30.97	24.95	18.93	12.91	6.89	0.87
13	43.48	36.69	30.67	24.65	18.63	12.61	6.59	0.57
14	42.86	36.40	30.38	24.38	18.34	12.32	6.30	0.28
15	42.28	36.12	30.10	24.08	18.06	12.04	6.02	0.00

THEORY OF OPERATION

Functional Description

The Am6071 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, I_{FS} , is specified by the input binary code 111 1111, and is a linear function of the reference current, I_{REF} . There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E/D), input signal. A logic 1 applied to the E/D input places the Am6073 in the encode mode and current state of the Sign Bit (SB) input. A logic 0 at the E/D input places the Am6073 in the decode mode.

The transfer characteristic is a piece-wise linear approximation to the CCITT A-87.6 logarithmic law which can be written as follows:

$$\begin{array}{l} Y = 0.18 \; (1 + \ln \; (A \; |X| \;)) \; sgn \; (X), \; 1/A \leqslant |X| \leqslant 1 \\ Y = 0.18 \; (A \; |X| \;) \; sgn \; (X), \qquad \qquad 0 \leqslant |X| \leqslant 1/A \end{array}$$

where: X = analog signal level normalized to unity (encoder input or decoder output)

Y = digital signal level normalized to unity (encoder output or decoder input)

A = 87.6

The current flows from the external circuit into one of four possible analog outputs determined by the SB and E/\overline{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. The two chords closest to the origin of the transfer function, chord 0 and chord 1, are made colinear and contiguous. The beginning of chord 0, specified by the input binary code 000 0000, is offset by $+0.5\mu A$. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $1.0\mu A$ found in the first two chords near zero output current, and the largest step of $64\mu A$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels. The accuracy for signal amplitudes corres-

ponding to chords 0 and 1 is very close to that of an 11-bit linear, binary D/A converter. The ratio (in dB) between the chord endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3dB over the entire dynamic range, with the exception of chord 0. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at 6dB over the entire dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40dB range of input speech signals. Note that the 62dB output dynamic range for the Am6071 is very close to the dynamic range of a sign plus 11-bit linear, binary D/A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Note that this does not apply to chord 0 and chord 1 where adjacent end points differ by only one step, because these two chords are colinear and have the same step sizes. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7-bit input configuration is shown in Figure 1. The corresponding dynamic range is 62dB, and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E/\overline{D} input enables switching between the encode, $I_{OE(+)}$ or $I_{OE(-)}$, and the decode, $I_{OD(+)}$ or $I_{OD(-)}$, outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E/\overline{D} input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the I_{OE} outputs (as determined by the SB input). When operating in the encode mode as shown

in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current, I_{EN}, is automatically added to the I_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32\mu A$. Similarly, the current levels in the first chord near the origin will be offset by 0.5 µA, which will bring the ideal encode current value for step 0 on chord 0 to 1.0 µA with respect to the corresponding decode current value of 0.5 µA. This additional encode half step of current can be used for extension of the output dynamic range from 62dB to 66dB, when the converter is performing only the decode function. The corresponding decoder connection utilizes the E/D input as a ninth digital input and has the outputs IOD(+) and IOE(+) and the outputs $I_{OD(-)}$ and $I_{OE(-)}$ tied together, respectively.

When encoding or compression of an analog signal is required, the Am6071 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper START, (S), and CONVERSION COM-PLETE, (CC), signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/D input with a logic 0 level. No current flows into the IOE outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E/\overline{D} input back to a logic 1 level because the \overline{CC} signal changed. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6071. Depending upon the SB input level, current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output of the Am6071.

Nine clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6071 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6071 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0, sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6071. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.

In Figure 2, two operational amplifiers measure the currents of each of the four Am6071 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2\mu A$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10nA and 1nA respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of 2.5kΩ, also contribute to the output measurement error by a factor of 400nA for

every mV of offset. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current IREE is from 0.1mA to 1.0mA. The full scale output current, I_{ES}, is a linear function of the reference current, and may be calculated from the equation I_{ES} = 3.94 I_{REF}. This tight relationship between IREF and IFS alleviates the requirement for trimming the IREE current if the RREE resistor values are within ±1% of the calculated value. Lower values of IREF will reduce the negative power supply current, (I-), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{REF} = V_{REF}/R_{REF}$ is 512µA. The corresponding ideal full scale decode and encode current values are 2016µA and 2048µA, respectively. A percentage change from the ideal IREF value produced by changes in V_{RFF} or R_{RFF} values produces the same percentage change in decode and encode output current values. The positive voltage supply, V+, may be used, with certain precautions, for the positive reference voltage V_{BFF}. In this case, the reference resistor R_{REF(+)} should be split into two resistors and their junction bypassed to ground with a capacitor of 0.01 µF. The total resistor value should provide the reference current $I_{REF} = 512\mu A$. The resistor $R_{REF(-)}$ value should be approximately equal to the R_{REF(+)} value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1, 2 and 3 is the application of a negative voltage to the V_{R(-)} terminal through the resistor R_{RFF(-)} with the R_{REF(+)} resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the V_{B(-)} terminal while the reference current flows from ground through R_{REF(+)} into the V_{R(+)} terminal.

The Am6071 has a wide output voltage compliance suitable for driving a variety of loads. With $I_{REF} = 512\mu A$ and $V_{-} =$ -15V, positive voltage compliance is +18V and negative voltage compliance is -5.0V. For other values of IREF and V-, the negative voltage compliance, VOC(-), may be calculated as follows:

 $V_{OC(-)} = (V-) + 2(I_{REF} \cdot 1.55k\Omega) + 8.4V$

where $1.55k\Omega$ and 8.4V are equivalent worst case values for

The following table contains $V_{OC(-)}$ values for some specific V-, IREF, and IFS values.

Negative Output Voltage Compliance Voc(_)

V-		IREF (IFS)	
	256μA (1mA)	512μA (2mA)	1024μA (4mA)
-12V	-2.8V	-2.0V	-0.4V
-15V	-5.8V	-5.0V	-3.4V
-18V	-8.8V	-8.0V	-6.4V

The V_{IC} input can accommodate various logic input switching threshold voltages allowing the Am6071 to interface with various logic families. This input should be placed at a potential which is 1.4V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V- value and +10V.

With a V- value chosen between -15V and -11V, the V_{OC(-)}, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- value chosen.

With a V+ value chosen between +5V and +15V, the reference amplifier common mode positive voltage range and the Vicinput values are reduced by an amount equivalent to the difference between +15V and the V+ value chosen.

and NMOS Logic Inputs.

Figure 5. Resistive Output Connections.

base and he sauling sedigined by ADDITIONAL DECODE OUTPUT CURRENT TABLES

Normalized Decoder Output (Sign Bit Excluded)

				CH	ORD (C)	gir ajriT	3.34 lgs	ed ands	pe ent
	hav (=100V	0	1	2	3	4	5	6 16	38 73
STI	EP (S)	000	001	010	011	100	101	110	111
0	0000	NO IT PURSO	33	66	132	264	528	1056	2112
1	0001	3	35	70	140	280	560	1120	2240
2	0010	5	37	74	148	296	592	1184	2368
3	0011	7	39	78	156	312	624	1248	2496
4	0100	9	41	82	164	328	656	1312	2624
5	0101	11	43	86	172	344	688	1376	2752
6	0110	13	45	90	180	360	720	1440	2880
7	0111	15	47	94	188	376	752	1504	3008
8	1000	17	49	98	196	392	784	1568	3136
9	1001	19	51	102	204	408	816	1632	3264
10	1010	21	53	106	212	424	848	1696	3392
11	1011	23	55	110	220	440	880	1760	3520
12	1100	25	57	114	228	456	912	1824	3648
13	1101	27	59	118	236	462	944	1888	3776
14	1110	29	61	122	244	488	976	1952	3904
15	1111	31	63	126	252	504	1008	2016	4032
STE	P SIZE	2	2	4	8	16	32	64	128

The normalized decode current, ($I_{C,S}$), where C is chord number and S is step number, is calculated using: $I_{CS} = 2^C(S + 16.5)$ for $C \ge 1$, and $I_{C,S} = 2S + 1$ for C = 0. The ideal decode current, (I_{OD}), in μ A is calculated using: $I_{OD} = (I_{C,S}/I_{7,15(norm.)}) \bullet I_{FS}(\mu$ A), where $I_{C,S}$ is the corresponding normalized current.

Table 4
Normalized Encoder Output (Sign Bit Excluded)

			In the case of	20.10.10.110	CHOP	RD (C)			
		0	1	2	3	4	5	6	7
ST	EP (S)	000	001	010	011	100	101	110	111
0	0000	2	34	68	136	272	544	1088	2176
1	00.01	4	36	72	144	288	576	1152	2304
2	0010	6	38	76	152	304	608	1216	2432
3	0011	8	40	80	160	320	640	1280	2560
4	0100	10	42	84	168	336	672	1344	2688
5	0101	12	44	88	176	352	704	1408	2816
6	0110	14	46	92	184	368	736	1472	2944
7	0111	16	48	96	192	384	768	1536	3072
8	1000	18	50	100	200	400	800	1600	3200
9	1001	20	52	104	208	416	832	1664	3328
10	1010	22	54	108	216	432	864	1728	3456
11	1011	24	56	112	224	448	896	1792	3584
12	1100	26	58	116	232	464	928	1856	3712
13	1101	28	60	120	240	480	960	1920	3840
14	1110	30	62	124	248	496	992	1984	3968
15	1111	32	64	128	256	512	1024	2048	4096
STE	P SIZE	2	2	4	8	16	32	64	128

ADDITIONAL DECODE OUTPUT CURRENT TABLES (Cont.)

Table 5
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in μA with 2016μA F. S.	Step Size as a % of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a % of Reading at Chord Endpoints	Resolution & Accuracy of Equivalent Binary DAC
0	2	1.0	0.05%	0.58	6.45%	Sign + 11 Bits
1	2	1.0	0.05%	0.28	3.17%	Sign + 11 Bits
2	4	2.0	0.1%	0.28	3.17%	Sign + 10 Bits
3	8	4.0	0.2%	0.28	3.17%	Sign + 9 Bits
4	16	8.0	0.4%	0.28	3.17%	Sign + 8 Bits
5	32	16.0	0.8%	0.28	3,17%	Sign + 7 Bits
6	64	32.0	1.6%	0.28	3.17%	Sign + 6 Bit
7	128	64.0	3.2%	0.28	3.17%	Sign + 5 Bits

Table 6
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μA with 2016μA F. S.	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale
0	31	15.5	0.77%	-42.28
1	63	31.5	1.56%	-36.12
2	126	63.0	3.13%	-30.10
3	252	126.0	6.25%	-24.08
4	504	252.0	12.5%	-18.06
5	1008	504.0	25.0%	-12.04
6	2016	1008.0	50.0%	-6.02
7	4032	2016.0	100%	0

BASIC CIRCUIT CONNECTIONS

±10V RANGE ENCODER/DECODER CONNECTIONS

COMPLIANCE EXTENSION USING AC COUPLED OUTPUT

LOW INPUT IMPEDANCE CONNECTION

I_{REF} = V_{IN}/R_{IN} + V_{REF}/R_{REF} I_{FS} ≈ 4 • I_{REF}

LIC-269

HIGH INPUT IMPEDANCE CONNECTION

IREF = (VREF - VIN)/RREF IFS ≈ 4 • IREF

LIC-270

LOGARITHMIC DIGITAL GAIN CONTROL (Notes 4 & 5)

REFERENCE AMPLIFIER DYNAMIC TEST CIRCUIT

Notes: 4. Low distortion outputs are provided over a 72dB range.

5. Up to 4 channels of output may be selected by E/D and SB logic inputs.

TYPICAL PERFORMANCE CURVES

Reference Amplifier **Total Harmonic Distortion** Versus Frequency (80kHz Filter) (Notes 6, 7, 8)

Reference Amplifier

Reference Amplifier Input Common-Mode Range (Note 9)

Power Supply Currents Versus Power Supply Voltages

Power Supply Currents Versus Temperature

Output Current Versus Output Voltage

Bit Transfer Characteristics (Note 10)

Logic Input Current Versus Input Voltage and Logic Input Range (Note 11)

Output Full Scale Current Versus Reference Input Current

LIC-273

6. THD is nearly independent of the logic input code.

7. Similar results are obtained for a high input impedance connection using V_{R(-)} as an input.

8. Increased distortion above 50kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of ±2.5V peak (25%) modulation), the bandwidth is 100kHz.

9. Positive common mode range is always (V+) -1.5V.

10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8V and 2.0V over the operating

11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

plications requiring a wide dynamic range.

Systems requiring fine control resulting in a constant rate of change or set point controls are economically achieved using these devices.

Instrumentation, Control and $\mu\text{-Processor}$ based applications include:

Digital data recording PCM telemetry systems Servo systems Function generation Data acquisition systems rerecommunications applications include:
PCM Codec telephone systems
Intercom systems
Military voice communication systems
Radar systems
Voice Encryption

Audio Applications:
Recording
Multiplexing of analog signals
Voice synthesis

Other companding converters offered by Advanced Micro Devices:

If particular interest lies in a companding D/A converter operating to the D3 compandor tracking specification and meeting the Bell System μ -255 companding law, see the Am6072 data sheet.

For a CCITT unit having an A-law characteristic see the $\mbox{\sc Am}6073$ data sheet.

 μ -law applications other than telecommunications systems are described in the Am6070 data sheet.

SERIAL DATA TRANSCEIVING CONVERTER (1/2 OF SYSTEM SHOWN)

Notes:

- 1. Complementary send/receive commands are required for the
- two ends.

 2. START must be held low for one clock cycle to begin a send or receive cycle.
- 3. The SAR is used as a serial-in/parallel out register in the re-
- ceive mode.

 4. CLOCK and START may be connected in parallel at both ends.
 - 5. Conversion is completed in 9 clock cycles.
- 6. Receive output is available for one full clock cycle.

Metallization and Pad Layout

80 X 114 Mils

PRELIMINARY INFORMATION

Distinctive Characteristics

- Tested to D3 compandor tracking specification
- Absolute accuracy specified includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM systems
- Output dynamic range of 72 dB

- Improved pin-for-pin replacement for DAC-86
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6072 is a monolithic 8-bit, companding digital-to-analog (D/A) data converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6072 complies with the Bell System μ -255 companding law, Y = 0.18 ln (1 + μ x), and consists of 15 linear segments or chords. A particular chord is identified with the sign bit input, (SB), and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this 8-bit format is 72dB. Accuracy and monoticity are assured by the internal circuit design and are guaranteed over the full temperature

range. The Am6072 is tested to the Bell D3 channel bank compandor tracking specification for pulse code modulation (PCM) transmission systems. The application of the Am6072 in communication systems provides an increased signal-tonoise ratio, reduces system signal distortion, and stimulates wider usage of computerized channel switching. Other application areas include digital audio recording, voice synthesis, and secure communications. When used in PCM communication systems, the Am6072 functions as a complete PCM decoder with additional encoding capabilities which make it ideal for implementation in CODEC circuits.

FUNCTIONAL BLOCK DIAGRAM

CONNECTION DIAGRAM Am6072

Top View

Pin 1 is marked for orientation.

LIC-276

ORDERING INFORMATION

Part Number	Temperature	Accuracy
m6072DM	-55°C to +125°C	Conforms to D3 Spec.
9072DC	0°C to +70°C	Conforms to D3 Spec.

SIMPLIFIED CONVERSION TRANSFER FUNCTIONS

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V – Supply 36\	Operating Temperature	
V _{LC} Swing V- plus 8V to V-	MIL Grade	-55°C to +125°C
Output Voltage Swing V- plus 8V to V- plus 36\	COM'L Grade	0°C to +70°C
Reference Inputs V- to V-	Storage Temperature	-65°C to +150°C
Reference Input Differential Voltage ±18\	Power Dissipation T _A ≤ 100° C	500mW
Reference Input Current 1.25mA	For T _A > 100° C derate at	10mW/°C
Logic Inputs V- plus 8V to V- plus 36V	Lead Soldering Temperature	300°C (60 sec)

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	SECURE E	±128 Steps	
Monotonicity	20 MON 10 M	For both groups of 128 steps and over full operating temperature range	
Dynamic Range	OBSERVE W	72 dB, (20 log (I _{7, 15} /I _{0, 1))}	

ELECTRICAL CHARACTERISTICS (Note 1)

These specifications apply for V₊=+15V, V₋= -15V, I_{REF}=528 μ A, 0°C \leq T_A \leq +70°C, for the commercial grade, -55°C \leq T_A \leq +125°C, for the military grade, and for all 4 outputs unless otherwise specified.

Parameter	Desc	cription	Test Condition	S	Min.	Тур.	Max.	Unit
ts	Settling Time	\$10.23 Yeshida 33	To within ±1/2 step at TA Output switched from IZS		-	300	500	ns
V = [Chord Endpoint Acc	curacy					and a little	
	Step Nonlinearity		dett trate tot delitores at					
IEN	Encode Current		make 20 curves a few and state of					
IFS(D) IFS(E)	Full Scale Current Deviation from Ideal		VREF = +10,000V RREF+ = 18.94kΩ		See Table 1 for absolute accuracy limits which cover all errors related			
10(+)-10(-)	Full Scale Current Symmetry Error		R _{REF} — = 20kΩ -5V ≤ V _{OUT} ≤ +18V		to the transfer characteristic.			٥.
Izs	Zero Scale Current		e fable.					
ΔIFS	Full Scale Current D	rift						
Voc	Output Voltage Compliance		Output within limits specifi	ed by Table 1	-5	_	+18	Volts
IDIS	Disable Current		Leakage of output disabled by E/D or SB		TUO F	5.0	50	nA
IFSR	Output Current Ran	ge			0	2.0	4.2	mA
VIL	Logic Input	Logic "0"				_	0.8	Volts
VIH	Levels	Logic "1"	V _{LC} = 0V		2.0	-	_	Volts
IIN	Logic Input Current		V _{IN} = -5V to +18V	想到一	- 8		40	μΑ
VIS	Logic Input Swing	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V-=-15V	05,18- 10,58-	-5	_	+18	Volts
IBREF-	Reference Bias Curr	ent	SCHOOL N. P.	10 May 10 May	-	-1.0	-4.0	μΑ
di/dt	Reference Input Sle	w Rate		10.15	0.12	0.25	_	mA/μs
PSSI _{FS+}	Power Supply Sensitivity Over Supply Range		V+ = +4.5 to +18V, V- = -	-15V	1 6	0.005	0.1	dB
PSSIFS-	(Refer to Characteristic Curves)		V- = -10.8V to -18V, V+ = +15V		- 14	0.01	0.1	GB
1+	Power Supply Curre	nt - 138 1194	V+ = +5V to +15V, V- = -	15V,		2.7	4.0	^
I-	Tower Supply Curre	Table 1 Brack	I _{FS} = 2.0mA		-	-6.7	-8.8	mA
PD	Power Dissipation		V-=-15V, V _{OUT} =0V	V+ = +5V	A2 - No.	114	152	mW
	, orrer Dissipution		I _{FS} = 2.0mA	V+ = +15V	Ot Bio	141	192	11100

Note 1. In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_0) the step size is 0.5μ A, while in the last chord near full scale (C_7) the step size is 64μ A.

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE 1
ABSOLUTE DECODER OUTPUT CURRENT LEVELS IN μΑ

STEP		ermans.	idaa alis	СНО	RD NO.	-		
NO.	0	a Thomas	2	3	4	5	6	7
1000	250	7.789	24.048	56.112	120.24	248.49	505.00	1018.0
0	.000	8.250	24.750	57.750	123.75	255.75	519.75	1047.7
	.250	8.739	25.473	59.436	127.36	263.22	534.93	1078.3
	.250	8.733	25.991	59.998	128.01	264.04	536.10	1080.2
1	.500	9.250	26.750	61.750	131.75	271.75	551.75	1111.7
	.750	9.798	27.531	63.553	135.60	279.69	567.86	1144.2
STATE OF	.750	9.677	27.934	63.885	135.79	279.59	567.19	1142.3
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.7
	1.250	10.857	29.590	67.670	143.83	296.15	600.80	1210.0
1 2/2/-	1.250	10.621	29.878	67.771	143.56	295.13	598.28	1204.5
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.7
	1.750	11.917	31.648	71.787	152.06	312.62	633.73	1275.9
	1.750	11,565	31.821	71.658	151.33	310.68	629.37	1266.7
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.7
	2.250	12.976	33.706	75.904	160.30	329.09	666.66	1341.8
	2.250	12.509	33.764	75.544	159.10	326.22	660.46	1328.9
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.7
	2.750	14.035	35.765	80.020	168.53	345.55	699.60	1407.6
	2.750	13.453	35.707	79.431	166.88	341.77	691.56	1391.1
6	3,000	14.250	36.750	81.750	171.75	351.75	711.75	1431.7
	3.250	15.094	37.823	84.137	176.77	362.02	732.53	1473.5
	3.250	14.397	37.651	83.317	174.65	357.32	722.65	1453.3
7	3,500	15.250	38,750	85.750	179.75	367.75	743.75	1495.7
	3.750	16.154	39.882	88.254	185.00	378.49	765.47	1539.4
1,0,12	3.750	15.341	39.594	87.204	182.42	372.86	753.74	1515.5
8	4.000	16.250	40.750	89.750	187.75	383.75	775.75	1559.7
	4.250	17.213	41.940	92.371	193.23	394.96	798.40	1605.3
	4.248	16.285	41.537	91,090	190.20	388,41	784.83	1577.6
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.7
	4.767	18.272	43.998	96.488	201.47	411.42	831,34	1671.1
Del Hill	4,720	17.229	43.480	94.977	197.97	403.95	815,92	1639.8
10	5.000	18.250	44.750	97,750	203.75	415.75	839.75	1687.7
	5.296	19.331	46.057	100.604	209.70	427.89	864.27	1737.0
	5.192	18.173	45.424	98.863	205.74	419.50	847.02	1702.0
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.7
	5.826	19.812	48.115	104.721	217.93	444.36	897.21	1802.9
	5.664	19.675	47.367	102.750	213.52	435.05	878.11	1764.2
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.7
	6.356	20.841	50.174	108.838	226.17	460.82	930.14	1868.7
l laser	6.136	20.647	49.310	106.636	221.29	450.59	909.20	1826.4
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.7
do arto	6.885	21.871	52.232	112.955	234.40	477.29	963.07	1934.6
	6.608	21.619	51.253	110.523	229.06	466.14	940.29	1888.6
14	7,000	22.250	52.750	113.750	235.75	479.75	967.75	1943.7
1200	7.415	22.900	54.290	117.072	242.63	493.76	996.01	2000.5
12 126 110	7.080	22.590	53.197	114.409	236.83	481.68	971.39	1950.7
15	7.500	23.250	54.750	117.750	243.75	495.75	999.75	2007.7
al discount	7.944	23.929	56.349	121.188	250.87	510.23	1028.94	2066.3
STEP	.5	1	2	4	8	16	32	64

Minimum, ideal and maximum values are specified for each step. The minimum and maximum values are specified to comply with the Bell D3 compandor tracking requirements. All four outputs are guaranteed, the encode outputs being specified to limits a half step higher than those shown above. This takes into account the combined effects of chord endpoint accuracy, step nonlinearity, encode current error, full scale current deviation from ideal, full scale symmetry error, zero scale current, full scale drift, and output impedance over the specified output voltage compliance range. Note that the guaranteed monotonicity ensures that adjacent step current levels will not overlap as might otherwise be implied from the minimum and maximum values shown in the above table.

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

CHORD	0	1	2	3	4	5	6	7
0		-44.73	-35.18	-27.82	-21.20	-14.90	-8.74	-2.65
1	-69.07	-43.73	-34.51	-27.24	-20.66	-14.37	-8.22	-2.13
2	-63.05	-42.84	-33.88	-26.70	-20.15	-13.87	-7.73	-1.65
3	-59.53	-42.03	-33.30	-26.18	-19.66	-13.40	-7.27	-1.19
4	-57.03	-41.29	-32.75	-25.70	-19.21	-12.96	-6.83	-0.75
5	-55.10	-40.61	-32.24	-25.24	-18.77	-12.53	-6.41	-0.33
6	-53.51	-39.98	-31.75	-24.80	-18.36	-12.13	-6.01	+0.06
7	-52.17	-39.39	-31.29	-24.39	-17.96	-11.74	-5.63	+0.44
8	-51.01	-38.84	-30.85	-23.99	-17.58	-11.37	~5.26	+0.81
9	-49.99	-38.32	-30.44	-23.61	-17.22	-11.02	-4.91	+1.16
10	-49.07	-37.83	-30.04	-23.25	-16.87	-10.68	-4.57	+1.49
11	-48.25	-37.37	-29.66	-22.90	-16.54	-10.35	-4.25	+1.82
12	-47.49	-36.93	-29.29	-22.57	-16.22	-10.03	-3.93	+2.13
13	-46.80	-36.51	-28.95	-22.25	-15.91	-9.73	-3.63	+2.43
14	-46.15	-36.11	-28.61	-21.94	-15.61	-9.43	-3.34	+2.72
15	-45.55	-35.73	-28.29	-21.63	-15.32	-9.15	-3.06	+3.00

The -37 dBmo and -50 dBmo output points significant for the Bell D3 system specification can be found between steps 11 and 12 on chord 1, and steps 8 and 9 on chord 0, respectively. Outputs corresponding to points below -50dB are specified in Table 1 for an accuracy of \pm a half step.

THEORY OF OPERATION

Functional Description

The Am6072 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, I_{FS} , is specified by the input binary code 111 1111, and is a linear function of the reference current, I_{REF} . There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E/D), input signal. A logic 1 applied to the E/D input places the Am6072 in the encode mode and current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E/D input places the Am6072 in the decode mode.

The transfer characteristic is a piece-wise linear approximation to the Bell System μ -225 logarithmic law which can be written as follows:

$$Y = 0.18 \ln (1 + \mu |X|) \text{ sgn } (X)$$

where: X = analog signal level normalized to unity (encoder input or decoder output)

Y = digital signal level normalized to unity (encoder output or decoder input)

 $\mu = 255$

The current flows from the external circuit into one of four possible analog outputs determined by the SB and $E \overline{D}$ inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $0.5\mu A$ found in the first chord near zero output current, and the largest step of $64\mu A$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels near zero output current. The accuracy for signal amplitudes corresponding to chord 0 is equivalent to that of a 12-bit linear, binary D/A converter. However, the ratio (in dB) between the chord

endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3dB over most of the dynamic range. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at approximately 6dB over most of the dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40dB range of input speech signals. Note that the 72dB output dynamic range for the Am6072 corresponds to the dynamic range of a sign plus 12-bit linear, binary D/A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7-bit input configuration is shown in Figure 1. The corresponding dynamic range is 72dB, and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E/D input enables switching between the encode, $I_{OE(+)}$ or $I_{OE(-)}$, and the decode, $I_{OD(+)}$ or I_{OD(-)}, outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E/D input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the IOE outputs (as determined by the SB input). When operating in the encode mode as shown in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current,

 l_{EN} , is automatically added to the l_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32\mu A$. Similarly, the current levels in the first chord near the origin will be offset by $0.25\mu A$, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 0.25\mu A$ with respect to the corresponding decode current value of $0.0\mu A$. This additional encode half step of current can be used for extension of the output dynamic range from 72dB to 78dB, when the converter is performing only the decode function. The corresponding decoder connection utilizes the E/\overline{D} input as a ninth digital input and has the outputs $l_{OD(+)}$ and $l_{OE(+)}$ and the outputs $l_{OD(+)}$ and $l_{OE(+)}$ and the outputs $l_{OD(-)}$ and $l_{OE(-)}$ tied together, respectively.

When encoding or compression of an analog signal is required, the Am6072 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper Start, S, and Conversion Complete, CC, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/\overline{D} input with a logic 0 level. No current flows into the loe outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E/\overline{D} input back to a logic 1 level because the \overline{CC} signal changed. It also clocks the D

input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6072. Depending upon the SB input level, current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output of the Am6072.

Nine total clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6072 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6072 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0, sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6072. The resulting operational amplifier's output in Figure 2 should ideally be symmetrical with resistors R1 and R2 matched.

In Figure 2, two operational amplifiers measure the currents of each of the four Am6072 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately 2μ A at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10nA and 1nA, respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of

 $2.5k\Omega$, also contribute to the output measurement error by a factor of 400nA for every mV of offset at the A1 and A2 outputs. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current I_{REF} is from 0.1mÅ to 1.0mÅ. The full scale output current, I_{FS} , is a linear function of the reference current, and may be calculated from the equation $I_{FS}=3.8\ I_{REF}$. This tight relationship between I_{REF} and I_{FS} alleviates the requirement for trimming the I_{REF} current if the R_{REF} resistors values are within $\pm1\%$ of the calculated value. Lower values of I_{REF} will reduce the negative power supply current, (I-), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{REF} = V_{REF}/R_{REF}$ is 528 μ A. The corresponding ideal full scale decode and encode current values are 2007.75 μ A and 2039.75 μ A, respectively. A percentage change from the ideal I_{REF} value produced by changes in V_{REF} or R_{REF} values produces the same percentage change in decode and encode output current values. The positive voltage supply, V+, may be used, with certain precautions, for the positive reference voltage V_{REF} . In this case, the reference resistor $R_{REF(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of 0.01μ F. The total resistor value should provide the reference current $I_{REF} = 528\mu$ A. The resistor $R_{REF(-)}$ value should be approximately equal to the $R_{REF(+)}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1, 2 and 3 is the application of a negative voltage to the $V_{R(-)}$ terminal through the resistor $R_{REF(-)}$ with the $R_{REF(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $V_{R(-)}$ terminal while the reference current flows from ground through $R_{REF(+)}$ into the $V_{R(+)}$ terminal.

The Am6072 has a wide output voltage compliance suitable for driving a variety of loads. With $I_{REF}=528\mu A$ and V-=-15V, positive voltage compliance is +18V and negative voltage compliance is -5.0V. For other values of I_{REF} and V-, the negative voltage compliance, $V_{OC(-)},$ may be calculated as follows:

$$V_{OC(-)} = (V-) + (2 \cdot I_{REF} \cdot 1.5k\Omega) + 8.4V.$$

The following table contains $V_{OC(-)}$ values for some specific V-, I_{REF} , and I_{FS} values.

Negative Output Voltage Compliance Voc(_)

	The second second second	0017
264μA (1mA)	528μA (2mA)	1056μA (4mA)
-2.8V	-2.0V	-0.4V
-5.8V	-5.0V	-3.4V
-8.8V	-8.0V	-6.4V
	(1mA) -2.8V -5.8V	(1mA) (2mA) -2.8V -2.0V -5.8V -5.0V

The V_{LC} input can accommodate various logic input switching threshold voltages allowing the Am6072 to interface with various logic families. This input should be placed at a potential which is 1.4V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V_{-} value and $+10V_{-}$.

With a V- value chosen between -15V and -11V, the $V_{OC(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- value chosen.

With a V+ value chosen between +5V and +15V, the reference amplifier common mode positive voltage range and the V_{LC} input values are reduced by an amount equivalent to the difference between +15V and the V+ value chosen.

Figure 4. Interfacing Circuits for ECL, CMOS, HTL, and NMOS Logic Inputs.

INPUT CODE	01	DIFUL	VOLTAG	E (V)
(E/\overline{D}, SB, B ₁ , , B ₇)	"A"	"B"	"C"	DIFF
10 111 1111	0			
10 110 1111	+5.02	N/A	N/A	N/A
10 000 0000	+10.00			
01 111 1111		-5.00	+5.00	-10.00
01 110 1111		+0.02	+5.00	-4.98
01 000 0000	N/A	+5.00	+5.00	0
00 000 0000	IN/M	+5.00	+5.00	0
00 110 1111		+5.00	+0.02	+4.98
00 111 1111		+5.00	-5.00	+10.00

Figure 5. Resistive Output Connections.

- Notes: 2. Set the voltage "A" to the desired logic input switching threshold.
 - 3. Allowable range of logic threshold is typically -5V to +13.5V when operating the companding DAC on $\pm15V$ supplies.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3 Section 857 Vo.8 - Blanca & Normalized Decoder Output (Sign Bit Excluded)

	Chord (C)	0	be palcul	2	3	4	5	6	7
Step (S)	(0.012.1	000	001	010	011	100	101	110	111
0	0000	0	33	99	231	495	1023	2079	4191
1	0001	2	37	107	247	527	1087	2207	4447
2	0010	4	41	115	263	559	1151	2335	4703
3	0011	6	45	123	279	591	1215	2463	4959
86014 A	0100	8	49	131	295	623	1279	2591	5215
5	0101	10	53	139	311	655	1343	2719	5471
6	0110	12	57	147	327	687	1407	2847	5727
7	0111	14	61	155	343	719	1471	2975	5983
8	1000	16	65	163	359	751	1535	3103	6239
9	1001	18	69	171	375	783	1599	3231	6495
10	1010	20	73	179	391	815	1663	3359	6751
pol11.com	1011	22	gni 77 V	187	407	847	1727	3487	7007
12	1100	24	81	195	423	879	1791	3615	7263
13	1101	26	85	203	439	911	1855	3743	7519
14	1110	28	89	211	455	943	1919	3871	7775
15	1111	30	93	219	471	975	1983	3999	8031
St	ep Size	2	4	8	16	32	64	128	256

The normalized decode current, $(I_{C,S})$, is calculated using: $I_{C,S} = 2(2^C(S + 16.5) - 16.5)$

where C = chord number; S = step number. The ideal decode current, (I_{OD}), in μ A is calculated using:

 $I_{OD} = (I_{C, S}/I_{7, 15(norm.)}) \cdot I_{FS} (\mu A)$

where $I_{C,\,S}$ is the corresponding normalized current. To obtain normalized encode current values the corresponding normalized half-step value should be added to all entries in Table 3.

Table 4
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in µA with 2007.75µA FS	Step Size as a % of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a % of Reading at Chord Endpoints	Resolution & Accuracy of Equivalent Binary DAC
0	2	0.5	0.025%	0.60	6.67%	Sign + 12 Bits
1	4	1.0	0.05%	0.38	4.30%	Sign + 11 Bits
2	8	2.0	0.1%	0.32	3.65%	Sign + 10 Bits
3	16	4.0	0.2%	0.31	3.40%	Sign + 9 Bits
4	32	8.0	0.4%	0.29	3.28%	Sign + 8 Bits
5	64	16.0	0.8%	0.28	3.23%	Sign + 7 Bits
6	128	32.0	1.6%	0.28	3.20%	Sign + 6 Bits
7	256	64.0	3.2%	0.28	3.19%	Sign + 5 Bits

Table 5
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μA with 2007.75μA FS	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale
0	30	7.5	0.37%	-48.55
1	93	23.25	1.16%	-38.73
2	219	54.75	2.73%	-31.29
3	471	117.75	5.86%	-24.63
4	975	243.75	12.1%	-18.32
5	1983	495.75	24.7%	-12.15
6	3999	999.75	49.8%	-6.06
7	8031	2007.75	100%	and a second

BASIC CIRCUIT CONNECTIONS

±10V RANGE ENCODER/DECODER CONNECTIONS

COMPLIANCE EXTENSION USING AC COUPLED OUTPUT

LOW INPUT IMPEDANCE CONNECTION

IREF = VIN/RIN + VREF/RREF IFS ≈ 4 • IREF

LIC-285

HIGH INPUT IMPEDANCE CONNECTION

I_{REF} = (V_{REF} - V_{IN})/R_{REF} I_{FS} ≈ 4 • I_{REF}

LIC-286

LOGARITHMIC DIGITAL GAIN CONTROL (Notes 4 & 5)

REFERENCE AMPLIFIER DYNAMIC TEST CIRCUIT

Notes: 4. Low distortion outputs are provided over a 72dB range.

5. Up to 4 channels of output may be selected by E/\overline{D} and SB logic inputs.

LIC-287

TYPICAL PERFORMANCE CURVES

Reference Amplifier **Total Harmonic Distortion** Versus Frequency (80kHz Filter) (Notes 6, 7, 8)

Reference Amplifier

Reference Amplifier Input Common-Mode Range (Note 9)

Power Supply Currents Versus Power Supply Voltages

Power Supply Currents

Output Current Versus Output Voltage (Output Voltage Compliance)

Bit Transfer Characteristics

Logic Input Current Versus Input Voltage and Logic Input Range

Output Full Scale Current

LIC-289

6. THD is nearly independent of the logic input code.

7. Similar results are obtained for a high input impedance connection using V_{R(-)} as an input.

8. Increased distortion above 50kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of ±2.5V peak (25%)

modulation), the bandwidth is 100kHz.

9. Positive common mode range is always (V+) -1.5V.

10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8V and 2.0V over the operating temperature range.

11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

TIME SHARED CONVERTER CONNECTIONS

SINGLE CHANNEL PCM CODEC - PARALLEL DATA I/O

APPLICATION INFORMATION

- To perform a transmit operation cycle the START pulse must be held low for one clock cycle; the receive operation is performed without the successive approximation register, SAR.
- XMT and RECEIVE command signals are mutually exclusive.
- Duration of the RECEIVE command signal must accommodate the Am6072 settling time plus the sampling time required by the sample and hold, (S & H), circuit used at the CODEC's analog output. The receiving data must not change during this time.
- 4. A XMT command signal must be issued after a high-to-low transition of the CONVERSION COMPLETE, CC, signal. Its duration depends on the time required by the digital time division switch circuitry to sample the 8-bit parallel transmit data bus.
- 5. Data conversion for a transmit operation is completed in 9 clock cycles because the SAR must be initialized before every new conversion. Data conversion for a receive operation corresponds to the Am6072 settling time; the receiving and transmit data transfers can be done simultaneously by employing separate transmit and receive data buses and utilizing data storage devices for the receive data.
- A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input.
- 7. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Am6072 settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.

TIME SHARED CONVERTER CONNECTIONS (Cont.)

SINGLE CHANNEL PCM CODEC - SERIAL DATA I/O

APPLICATION INFORMATION

- Before beginning either a transmit or a receive operation, the START signal must be held low for one complete clock cycle.
- XMT and RECEIVE command signals are mutually exclusive. Their durations must accommodate the time required for conversion of an outgoing or an incoming series of 8 digital bits, respectively.
- Data conversion for either operation, transmit or receive, is completed in 9 clock cycles.
- During the receive cycle the successive approximation register, SAR, is acting as a serial-in to parallel-out shift register, with data supplied from data storage devices.
- A sample command pulse for a transmit cycle must be issued before a XMT command signal; its duration depends on the sample and hold, S & H, circuit used.
- A sample command pulse for a receive cycle must be delayed by a time equal to the <u>Am6072 settling time after a</u> <u>high-to-low transition of the CONVERSION COMPLETE</u>, <u>CC</u>, signal occurs.

8 LINE CODEC TDM PCM/PABX SYSTEM - BLOCK DIAGRAM

LIC-295

D3 NOISE AND DISTORTION SPECIFICATION

The Am6072 has a negligible idle channel noise contribution. Signal-to-quantizing-distortion ratio, (S/D), is guaranteed to exceed the minimum values specified for D3 channels as follows:

Input Level 1020 Hz Sinewave	S/D, C-Message Weighting
0 to -30 dBmo	33 dB
At -40 dBmo	27 dB
At -45 dBmo	22 dB

DECODER OPERATION DURING SIGNALLING FRAME

The Am6072 can perform the decoding function in a D3 channel bank system. During signalling frames the least significant bit, B7, of each 8-bit word is used for signalling messages and only seven bits are used for sample coding. In order to minimize the quantizing error during these signalling frames, the Am6072 output is increased by a half step from its corresponding decode output value by switching the E/\overline{D} input from a logic level 0 to a logic 1.

Metallization and Pad Layout

80 X 114 Mils

Am6073

Companding D-to-A Converter for PCM Communication Systems

Distinctive Characteristics

- Tested to CCITT A-law tracking specification
- Absolute accuracy specified includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM systems
- Output dynamic range of 62 dB

- Improved pin-for-pin replacement for DAC-87
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6073 is a monolithic 8-bit, companding digital-to-analog (D/A) data converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6073 complies with the CCITT A-87.6 companding law, and consists of 13 linear segments or chords. A particular chord is identified with the sign bit input, (SB), and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this 8-bit format is 62dB. Accuracy and monoticity are assured by the internal circuit design and are guaranteed over the full temperature range. The Am6073 is

tested to the CCITT A-law compandor tracking specification for pulse code modulation (PCM) transmission systems. The application of the Am6073 in communication systems provides an increased signal-to-noise ratio, reduces system signal distortion, and stimulates wider usage of computerized channel switching. Other application areas include digital audio recording, voice synthesis, and secure communications. When used in PCM communication systems, the Am6073 functions as a complete PCM decoder with additional encoding capabilities which make it ideal for implementation in CODEC circuits.

FUNCTIONAL BLOCK DIAGRAM

CONNECTION DIAGRAM Am6073

Top View

Pin 1 is marked for orientation.

LIC-297

ORDERING INFORMATION

Part Number	Temperature	Accuracy
Am6073DM	-55°C to +125°C	Conforms to CCITT
Am6073DC	0°C to +70°C	A-law specification

Other AMD Companding D/A Converters

Am6070DM, DC	Conforms to industrial μ -law spec.
Am6071DM, DC	Conforms to industrial A-law spec.
AM6072DM, DC	Conforms to Bell D3 spec.

SIMPLIFIED CONVERSION TRANSFER FUNCTIONS

LIC-298

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V— Supply	36V	Operating Temperature	
V _{LC} Swing	V- plus 8V to V+	MIL Grade	-55°C to +125°C
Output Voltage Swing V-	plus 8V to V- plus 36V	COM'L Grade	0°C to +70°C
Reference Inputs	V- to V+	Storage Temperature	-65°C to +150°C
Reference Input Differential Voltage	±18V	Power Dissipation T _A ≤ 100° C	500mW
Reference Input Current	1.25mA	For T _A > 100° C derate at	10mW/°C
Logic Inputs V-	plus 8V to V- plus 36V	Lead Soldering Temperature	300°C (60 sec)

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	±128 Steps	
Monotonicity	For both groups of 128 steps and over full operating temperature range	
Dynamic Range	62 dB, (20 log (I ₇ , 15/I ₀ , 1))	

ELECTRICAL CHARACTERISTICS (Note 1)

These specifications apply for V₊=+15V, V₋= -15V, I_{REF} = 512μ A, 0° C \leq T_A \leq +70 $^{\circ}$ C, for the commercial grade, -55° C \leq T_A \leq +125 $^{\circ}$ C, for the military grade, and for all 4 outputs unless otherwise specified.

Parameter	Desc	ription	Test Condition	S	Min.	Тур.	Max.	Unit		
t _S	Settling Time	RESPI OFFICE CONTROL OF STATE	To within ±1/2 step at TA Output switched from IZS		de -	300	500	ns		
	Chord Endpoint Acc	uracy			1973					
	Step Nonlinearity				-98-1					
IEN	Encode Current	in. The minimum end	a granting for more a		Minimum, ideal and ma					
I _{FS} (D)	Full Scale Current Deviation from Ideal		$V_{REF} = +10,000V$ $R_{REF+} = 19.53k\Omega$	See Table 1 for absolute accuracy limits which cover all errors related						
10(+)-10(-)	Full Scale Current Sy Decode or Encode Pa		001			to the transfer characteristic.				
IZS	Zero Scale Current	and with the contract of	Fried against Juding dam							
ΔIFS	Full Scale Current D	rift	waria act al auccia anala							
Voc	Output Voltage Com	pliance	Output within limits specified by Table 1		-5	-	+18	Volts		
IDIS	Disable Current	daoanavo lucina ir	Leakage of output disabled	1700.18	5.0	50	nA			
IFSR	Output Current Range	ge	08049		0	2.0	4.2	mA		
VIL	Logic Input	Logic "0"	V - 0V	1 0		_	0.8	Volts		
VIH	Levels	Logic "1"	V _{LC} = 0V		2.0	-	_	Volts		
I _{IN}	Logic Input Current	taria i liena di librati	V _{IN} = -5V to +18V	10 - ET 22 -	77.5-	- 1	40	μΑ		
VIS	Logic Input Swing		V-=-15V		-5	-	+18	Volts		
IBREF-	Reference Bias Curre	ent	1007-1 9630-1 9718-11-9	CS- I The		-1.0	-4.0	μΑ		
dI/dt	Reference Input Slev	v Rate	Part Care Same I a	1.00	0.12	0.25	-	mA/μs		
PSSIFS+	Power Supply Sensit	ivity Over Supply Range	V+ = +4.5 to +18V, V- = -	-15V	-	0.005	0.1	-JD		
PSSIFS-	(Refer to Characteris	stic Curves)	V- = -10.8V to -18V, V+	= +15V	- 02-	0.01	0.1	dB		
1+	Power Supply Curren	C 1 Ric- 188-19	V+ = +5V to +15V, V- = -	15V,	_	2.7	4.0	A		
1-	r ower Supply Curren	The state of the state of	I _{FS} = 2.0mA		_	-6.7	-8.8	mA		
PD	Power Dissipation	MARK TOURS TO SOME	V-=-15V, V _{OUT} =0V	V+ = +5V	-	114	152	mW		
. D	Tower Dissipation		I _{FS} = 2.0mA	V+ = +15V	10 ut 3 -	141	192	TTIVV		

Note 1. In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_0) the step size is 1.0μ A, while in the last chord near full scale (C_7) the step size is 64μ A.

STEP		93171	TAC	CH	ORD	V 513		
SIEF	0	1	2	3	4	5	6	7
0	.000	16.032	32.064	64.127	128.25	256.51	513.02	1026.04
	.500	16.500	33.000	66.000	132.00	264.00	528.00	1056.00
	1.000	16.982	33.964	67.927	135.85	271.71	543.42	1086.84
1	1.000	17.003	34.007	68.014	136.03	272.06	544.11	1088.22
	1.500	17.500	35.000	70.000	140.00	280.00	560.00	1120.00
	2.000	18.011	36.022	72.044	144.09	288.18	576.35	1152.70
2	2.103	17.975	35.950	71.900	143.80	287.60	575.20	1150.41
	2.500	18.500	37.000	74.000	148.00	296.00	592.00	1184.00
	2.971	19.040	38.080	76.161	152.32	304.64	609.29	1218.57
3	2.945	18.947	37.893	75.787	151.57	303.15	606.30	1212.59
	3.500	19.500	39.000	78.000	156.00	312.00	624.00	1248.00
	4.160	20.069	40.139	80.278	160.56	321.11	642.22	1284.44
4	4.248	19.918	39.837	79.673	159.35	318.69	637.39	1274.78
	4.500	20.500	41.000	82.000	164.00	328.00	656.00	1312.00
	4.767	21.099	42.197	84.394	168.79	337.58	675.16	1350.31
5	5.192	20.890	41.780	83.560	167.12	334.24	668.48	1336.96
	5.500	21.500	43.000	86.000	172.00	344.00	688.00	1376.00
	5.826	22.128	44.256	88.511	177.02	354.04	708.09	1416.18
6	6.136	21.862	43.723	87.447	174.89	349.79	699.57	1399.14
	6.500	22.500	45.000	90.000	180.00	360.00	720.00	1440.00
	6.885	23.157	46.314	92.628	185.26	370.51	741.02	1482.05
7	7.080	22.833	45.667	91.333	182.67	365.33	730.66	1461.33
	7.500	23.500	47.000	94.000	188.00	376.00	752.00	1504.00
	7.944	24.186	48.372	96.745	193.49	386.98	773.96	1547.92
8	8.025	23.805	47.610	95.220	190.44	380.88	761.76	1523.51
	8.500	24.500	49.000	98.000	196.00	392.00	784.00	1568.00
	9.004	25.215	50.431	100.862	201.72	403.45	806.89	1613.79
9	8.969	24.777	49.553	99.106	198.21	396.42	792.85	1585.70
	9.500	25.500	51.000	102.000	204.00	408.00	816.00	1632.00
	10.063	26.245	52.489	104.978	209.96	419.91	839.83	1679.66
10	9.913	25.748	51.496	102.993	205.99	411.97	823.94	1647.88
	10.500	26.500	53.000	106.000	212.00	424.00	848.00	1696.00
	11.122	27.274	54.548	109.095	218.19	436.38	872.76	1745.52
11	10.857	26.720	53.440	106.879	213.76	427.52	855.03	1710.07
	11.500	27.500	55.000	110.000	220.00	440.00	880.00	1760.00
	12.181	28.303	56.606	113.212	226.42	452.85	905.70	1811.39
12	11.801	27.691	55.383	110.766	221.53	443.06	886.12	1722.25
	12.500	28.500	57.000	114.000	228.00	456.00	912.00	1824.00
	13.241	29.332	58.664	117.329	234.66	469.32	938.63	1877.26
13	12.745	28.663	57.326	114.652	229.30	458.61	917.22	1834.43
	13.500	29.500	59.000	118.000	236.00	472.00	944.00	1888.00
	13.894	30.361	60.723	121.446	242.89	485.78	971.57	1943.13
14	14.089	29.635	59.269	118.539	237.08	474.15	948.31	1896.62
	14.500	30.500	61.000	122.000	244.00	488.00	976.00	1952.00
	14.923	31.391	62.781	125.562	251.12	502.25	1004.50	2009.00
15	15.060	30.606	61.231	122.425	244.85	489.70	979.40	1958.80
	15.500	31.500	63.000	126.000	252.00	504.00	1008.00	2016.00
	15.953	32.420	64.840	129.679	259.36	518.72	1037.43	2074.87
STEP	1	1	2	4	8	16	32	64

Minimum, ideal and maximum values are specified for each step. The minimum and maximum values are specified to comply with the CCITT A-law compandor tracking requirements. All four outputs are guaranteed, the encode outputs being specified to limits a half step higher than those shown above. This takes into account the combined effects of chord endpoint accuracy, step nonlinearity, encode current error, full scale current deviation from ideal, full scale symmetry error, zero scale current, full scale drift, and output impedance over the specified output voltage compliance range. Note that the guaranteed monotonicity ensures that adjacent step current levels will not overlap as might otherwise be implied from the minimum and maximum values shown in the above table.

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

STEP				CHORD				- 7
SIEP	0	1	2	3	4	5	6	7
0	-69.11	-38.74	-35.72	-26.70	-20.68	-14.66	-8.64	-2.62
1	-59.57	-38.23	-32.21	-26.19	-20.17	-14.15	-8.13	-2.11
2	-55.13	-37.75	-31.73	-25.71	-19.68	-13.66	-7.64	-1.62
3	-52.21	-37.29	-31.27	-25.25	-19.23	-13.21	-7.19	-1.17
4	-50.03	-36.85	-30.83	-24.81	-18.79	-12.77	-6.75	-0.73
5	-48.28	-36.44	-30.42	-24.40	-18.38	-12.36	-6.34	-0.32
6	-46.83	-36.05	-30.03	-24.00	-17.98	-11.96	-5.94	+0.08
7	-45.59	-35.67	-29.65	-23.63	-17.61	-11.59	-5.57	+0.46
8	-44.50	-35.31	-29.29	-23.27	-17.24	-11.22	-5.20	+0.82
9	-43.54	-34.96	-28.94	-22.92	-16.90	-10.88	-4.86	+1.16
10	-42.67	-34.62	-28.60	-22.58	-16.56	-10.54	-4.52	+1.50
11	-41.88	-34.30	-28.28	-22.26	-16.24	-10.22	-4.20	+1.82
12	-41.15	-33.99	-27.97	-21.95	-15.93	-9.91	-3.89	+2.13
13	-40.48	-33.69	-27.67	-21.65	-15.63	-9.61	-3.59	+2.43
14	-39.86	-33.40	-27.38	-21.36	-15.34	-9.32	-3.30	+2.72
15	-39.28	-33.12	-27.10	-21.08	-15.06	-9.04	-3.02	+3.00

The -40dBmo, -50dBmo, and -55dBmo output points significant for the CCITT A-87.6 PCM system specification can be found between steps 13 and 14 on chord 0, steps 4 and 5 on chord 0, and steps 2 and 3 on chord 0, respectively. Outputs corresponding to points below -55dBmo are specified in Table 1 for an accuracy of \pm a half step.

THEORY OF OPERATION

Functional Description

The Am6073 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, I_{FS} , is specified by the input binary code 111 1111, and is a linear function of the reference current, I_{REF} . There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E/\overline{D}), input signal. A logic 1 applied to the E/\overline{D} input places the Am6073 in the encode mode and current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E/\overline{D} input places the Am6073 in the decode mode.

The transfer characteristic is a piece-wise linear approximation to the CCITT A-87.6 logarithmic law which can be written as follows:

$$Y = 0.18 (1 + \ln (A |X|)) sgn (X), 1/A \le |X| \le 1$$

 $Y = 0.18 (A |X|) sgn (X), 0 \le |X| \le 1/A$

where: X = analog signal level normalized to unity (encoder input or decoder output)

Y = digital signal level normalized to unity (encoder output or decoder input)

A = 87.6

The current flows from the external circuit into one of four possible analog outputs determined by the SB and E/\overline{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. The two chords closest to the origin of the transfer function, chord 0 and chord 1, are made collinear and contiguous. The beginning of chord 0, specified by the input binary code 000 0000, is offset by $+0.5\mu A$. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $1.0\mu A$ found in the first two chords near zero output current, and the largest step of $64\mu A$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels. The accuracy for signal amplitudes corres-

ponding to chords 0 and 1 is very close to that of an 11-bit linear, binary D/A converter. The ratio (in dB) between the chord endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3dB over the entire dynamic range, with the exception of chord 0. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at 6dB over the entire dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40dB range of input speech signals. Note that the 62dB output dynamic range for the Am6073 is very close to the dynamic range of a sign plus 11-bit linear, binary D/A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Note that this does not apply to chord 0 and chord 1 where adjacent end points differ by only one step, because these two chords are colinear and have the same step sizes. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7-bit input configuration is shown in Figure 1. The corresponding dynamic range is 62dB, and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E/\overline{D} input enables switching between the encode, $I_{OE(+)}$ or $I_{OE(-)}$, and the decode, $I_{OD(+)}$ or $I_{OD(-)}$, outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E/\overline{D} input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the I_{OE} outputs (as determined by the SB input). When operating in the encode mode as shown

IREF = VREF/RREF IDEAL VALUES: IREF = 512 μA, IFS = 2016 μA

	E/D	SB	B ₁	B ₂	В3	B4	B ₅	В6	В7	Eo
POSITIVE FULL SCALE	0	1.	1	1	1	1	1	1	1	5.040V
(+) ZERO SCALE +1 STEP	0	1	0	0	0	0	0	0	1	0.004V
(+) ZERO SCALE	0	1	0	0	0	0	0	0	0	0.0012V
(-) ZERO SCALE	0	0	0	0	0	0	0	0	0	-0.0012V
(-) ZERO SCALE +1 STEP	0	0	0	0	0	0	0	0	1	-0.004V
NEGATIVE FULL SCALE	0	0	1	1	1	1	1	1	1	-5.040V

Figure 1. Detailed Decoder Connections.

LINE SELECTION TABLE

GROUP				TPUT REMENT
1	1	1	IOE (+)	(E ₀₁ /R ₁)
2	1	0	IOE (-)	(E ₀₁ /R ₂)
3	0	1	IOD (+)	(E ₀₂ /R ₃)
4	0	0	IOD (-)	(E ₀₂ /R ₄)

Figure 2. Output Current DC Test Circuit.

in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current, I_{EN}, is automatically added to the I_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by 32μ A. Similarly, the current levels in the first chord near the origin will be offset by 0.5μA, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 1.0 \mu A$ with respect to the corresponding decode current value of 0.5 µA. This additional encode half step of current can be used for extension. of the output dynamic range from 62dB to 66dB, when the converter is performing only the decode function. The corresponding decoder connection utilizes the E/D input as a ninth digital input and has the outputs $I_{\text{OD}(+)}$ and $I_{\text{OE}(+)}$ and the outputs $I_{OD(-)}$ and $I_{OE(-)}$ tied together, respectively.

When encoding or compression of an analog signal is required, the Am6072 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper START, (S), and CONVERSION COM-PLETE, (CC), signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/D input with a logic 0 level. No current flows into the IOE outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E/\overline{D} input back to a logic 1 level because the \overline{CC} signal changed. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6073. Depending upon the SB input level, current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output of the Am6073.

Nine clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6073 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6073 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0, sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6073. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.

In Figure 2, two operational amplifiers measure the currents of each of the four Am6073 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2\mu A$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10nA and 1nA respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of 2.5k Ω , also contribute to the output measurement error by a factor of 400nA for

every mV of offset at the A1 and A2 outputs. Therefore, to minimize error, the offset voltages of A1 and A2 should be pulled

The recommended operating range for the reference current I_{REF} is from 0.1mA to 1.0mA. The full scale output current, I_{FS} , is a linear function of the reference current, and may be calculated from the equation $I_{FS}=3.94\ I_{REF}$. This tight relationship between I_{REF} and I_{FS} alleviates the requirement for trimming the I_{REF} current if the I_{REF} resistor values are within $\pm 1\%$ of the calculated value. Lower values of I_{REF} will reduce the negative power supply current, (I–), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{REF}=V_{REF}/R_{REF}$ is $512\mu A$. The corresponding ideal full scale decode and encode current values are $2016\mu A$ and $2048\mu A$, respectively. A percentage change from the ideal I_{REF} value produced by changes in V_{REF} or R_{REF} values produces the same percentage change in decode and encode output current values. The positive voltage supply, V+, may be used, with certain precautions, for the positive reference voltage V_{REF} . In this case, the reference resistor $R_{REF(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01\mu F$. The total resistor value should provide the reference current $I_{REF}=512\mu A$. The resistor $R_{REF(-)}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1, 2 and 3 is the application of a negative voltage to the $V_{R(-)}$ terminal through the resistor $R_{REF(-)}$ with the $R_{REF(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $V_{R(-)}$ terminal while the reference current flows from ground through $R_{REF(+)}$ into the $V_{R(+)}$ terminal.

The Am6073 has a wide output voltage compliance suitable for driving a variety of loads. With $I_{REF} = 512\mu A$ and V = -15V, positive voltage compliance is +18V and negative

voltage compliance is -5.0V. For other values of I_{REF} and V-, the negative voltage compliance, $V_{OC(-)}$, may be calculated as follows:

$$V_{OC(-)} = (V-) + 2(I_{REF} \cdot 1.55k\Omega) + 8.4V,$$

where 1.55k Ω and 8.4V are equivalent worst case values for the Am6073.

The following table contains $V_{OC(-)}$ values for some specific $V-,\,I_{REF},$ and I_{FS} values.

Negative Output Voltage Compliance VOC(-)

87 V -	35 35	IREF (IFS)	
V –	256μA (1mA)	512μA (2mA)	1024μA (4mA)
-12V	-2.8V	-2.0V	-0.4V
-15V	-5.8V	-5.0V	-3.4V
-18V	-8.8V	-8.0V	-6.4V

The V_{LC} input can accommodate various logic input switching threshold voltages allowing the Am6073 to interface with various logic families. This input should be placed at a potential which is 1.4V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V- value and $\pm 10V$.

With a V- value chosen between -15V and -11V, the $V_{OC(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- value chosen.

With a V+ value chosen between +5V and +15V, the reference amplifier common mode positive voltage range and the V_{LC} input values are reduced by an amount equivalent to the difference between +15V and the V+ value chosen.

Figure 5. Resistive Output Connections.

Notes: 2. Set the voltage "A" to the desired logic input switching threshold.

3. Allowable range of logic threshold is typically -5 V to +13.5 V when operating the companding DAC on +15 V supplies.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3
Normalized Decoder Output (Sign Bit Excluded)

	Sant			CH	IORD (C)		ml 46 6	sal moissus	pe etti
		0	as Line	2 V	3	4 01	5	24 6 1 4	7
ST	EP (S)	000	001	010	011	100	101	110	111
0	0000	1	33	66	132	264	528	1056	2112
1	0001	3	35	70	140	280	560	1120	2240
2	0010	5	37	74	148	296	592	1184	2368
3	0011	7	39	78	156	312	624	1248	2496
4	0100	9	41	82	164	328	656	1312	2624
5	0101	11	43	86	172	344	688	1376	2752
6	0110	13	45	90	180	360	720	1440	2880
7	0111	15	47	94	188	376	752	1504	3008
8	1000	17	49	98	196	392	784	1568	3136
9	1001	19	51	102	204	408	816	1632	3264
10	1010	21	53	106	212	424	848	1696	3392
11	1011	23	55	110	220	440	880	1760	3520
12	1100	25	57	114	228	456	912	1824	3648
13	1101	27	59	118	236	462	944	1888	3776
14	1110	29	61	122	244	488	976	1952	3904
15	1111	31	63	126	252	504	1008	2016	4032
STE	P SIZE	2	2	4	8	16	32	64	128

The normalized decode current, $(I_{C,S})$, where C is chord number and S is step number, is calculated using: $I_{CS} = 2^C(S + 16.5)$ for $C \ge 1$, and $I_{C,S} = 2S + 1$ for C = 0. The ideal decode current, (I_{OD}) , in μA is calculated using: $I_{OD} = (I_{C,S}/I_{7,15(norm.)}) \circ I_{FS}(\mu A)$, where $I_{C,S}$ is the corresponding normalized current. To obtain normalized encode values the corresponding normalized half-step value should be added to all entries in Table 3.

Table 4
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in μA with 2016μA F. S.	Step Size as a % of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a % of Reading at Chord Endpoints	Resolution & Accuracy of Equivalent Binary DAC
0	2	1.0	0.05%	0.58	6.45%	Sign + 11 Bits
1	2	1.0	0.05%	0.28	3.17%	Sign + 11 Bits
2	4	2.0	0.1%	0.28	3.17%	Sign + 10 Bits
3	8	4.0	0.2%	0.28	3.17%	Sign + 9 Bits
4	16	8.0	0.4%	0.28	3.17%	Sign + 8 Bits
5	32	16.0	0.8%	0.28	3.17%	Sign + 7 Bits
6	64	32.0	1.6%	0.28	3.17%	Sign + 6 Bits
7	128	64.0	3.2%	0.28	3.17%	Sign + 5 Bits

Table 5
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μA with 2016μA F. S.	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale
0	31	15.5	0.77%	-42.28
1	63	31.5	1.56%	-36.12
2	126	63.0	3.13%	-30.10
3	252	126.0	6.25%	-24.08
4	504	252.0	12.5%	-18.06
5	1008	504.0	25.0%	-12.04
6	2016	1008.0	50.0%	-6.02
7	4032	2016.0	100%	tap evir or 0 admitos

BASIC CIRCUIT CONNECTIONS

±10V RANGE ENCODER/DECODER CONNECTIONS

COMPLIANCE EXTENSION USING AC COUPLED OUTPUT

LIC-304

LOW INPUT IMPEDANCE CONNECTION

$$\begin{split} I_{REF} &= V_{IN}/R_{IN} + V_{REF}/R_{REF+} \\ I_{FS} &\approx 4(I_{REF}) \\ R_{REF-} &= \{(R_{REF+})(R_{IN})\}/(R_{REF+} + R_{IN}) \end{split}$$

REF+ + RIN) LIC-306

HIGH INPUT IMPEDANCE CONNECTION

IREF = (VREF - VIN)/RREF+ IFS ≈ 4(IREF)

LIC-307

LOGARITHMIC DIGITAL GAIN CONTROL (Notes 4, 5)

REFERENCE AMPLIFIER DYNAMIC TEST CIRCUIT

Notes: 4. Low distortion outputs are provided over 62dB range.

5. Up to 4 channels of output may be selected by $\mathsf{E}/\overline{\mathsf{D}}$ and SB logic inputs.

LIC-308

TYPICAL PERFORMANCE CURVES

Reference Amplifier **Total Harmonic Distortion** Versus Frequency (80kHz Filter) (Notes 6, 7, 8)

Reference Amplifier

Reference Amplifier Input Common-Mode Range (Note 9)

Power Supply Currents Versus Power Supply Voltages

Power Supply Currents

Output Current Versus Output Voltage

Bit Transfer Characteristics (Note 10)

Logic Input Current Versus Input Voltage and Logic Input Range

Output Full Scale Current Versus Reference Input Current

LIC-310

6. THD is nearly independent of the logic input code.

7. Similar results are obtained for a high input impedance connection using V_{R(-)} as an input.

8. Increased distortion above 50kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of ±2.5V peak (25%)

modulation), the bandwidth is 100kHz.

9. Positive common mode range is always (V+) -1.5V.

10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8V and 2.0V over the operating

11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

TIME SHARED CONVERTER CONNECTIONS

APPLICATION INFORMATION

- To perform a transmit operation cycle the START pulse must be held low for one clock cycle; the receive operation is performed without the successive approximation register, SAR.
- XMT and RECEIVE command signals are mutually exclusive.
- Duration of the RECEIVE command signal must accommodate the Am6073 settling time plus the sampling time required by the sample and hold, (S & H), circuit used at the CODEC's analog output. The receiving data must not change during this time.
- 4. A XMT command signal must be issued after a high-to-low transition of the CONVERSION COMPLETE, CC, signal. Its duration depends on the time required by the digital time division switch circuitry to sample the 8-bit parallel transmit data bus.
- Data conversion for a transmit operation is completed in 9 clock cycles because the SAR must be initialized before

- every new conversion. Data conversion for a receive operation corresponds to the Am6073 settling time; the receiving and transmit data transfers can be done simultaneously by employing separate transmit and receive data buses and utilizing data storage devices for the receive data.
- A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input.
- 7. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Am6073 settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.
- 8. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for signal sign and magnitude. The data bus, as a result, yields "high zeros" density for small signal amplitudes.

TIME SHARED CONVERTER CONNECTIONS (Cont.)

SINGLE CHANNEL PCM CODEC - SERIAL DATA I/O

APPLICATION INFORMATION

- Before beginning either a transmit or a receive operation, the START signal must be held low for one complete clock cycle.
- XMT and RECEIVE command signals are mutually exclusive. Their durations must accommodate the time required for conversion of an outgoing or an incoming series of 8 digital bits, respectively.
- Data conversion for either operation, transmit or receive, is completed in 9 clock cycles.
- During the receive cycle the successive approximation register, SAR, is acting as a serial-in to parallel-out shift re-

- gister, with data supplied from data storage devices.
- A sample command pulse for a transmit cycle must be issued before a XMT command signal; its duration depends on the sample and hold, S & H, circuit used.
- A sample command pulse for a receive cycle must be delayed by a time equal to the Am6073 settling time after a high-to-low transition of the CONVERSION COMPLETE, CC, signal occurs.
- 7. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for signal sign and magnitude. The data bus, as a result, yields "high zeros" density for small signal amplitudes.

LIC-315

CCITT NOISE AND DISTORTION SPECIFICATION

The Am6073 has a negligible idle channel noise contribution. Signal-to-quantizing-distortion ratio, (S/D), is guaranteed to exceed the minimum values specified for PCM channels at audio frequencies as follows:

Input Level 1020 Hz Sinewave	S/D, C-Message Weighting
0 to -30 dBmo	33 dB
At -40 dBmo	27 dB
At -45 dBmo	22 dB

Metallization and Pad Layout

Microprocessor System Compatible 8-Bit High Speed Multiplying D/A Converter

DISTINCTIVE CHARACTERISTICS

- 8-Bit D/A with 8-Bit input data latch
- Compatible with most popular microprocessors including the Am9080A-4 and the Am2900
- Write, Chip Select and Data Enable logic on chip
- DAC appears as memory location to microprocessor
- MSB inversion under logic control
- Differential current output
- · Choice of 6 coding formats

- Fast settling current output −160ns
- Nonlinearity to ±0.1% max over temperature range
- Full scale current pre-matched to ±1 LSB
- High output impedance and voltage compliance
- Low full scale current drift − ±5ppm/°C
- Wide range multiplying capability -2.0MHz bandwidth
- Direct interface to TTL, CMOS, NMOS
- High speed data latch 80ns min write time

GENERAL DESCRIPTION

The Am6080 is a monolithic 8-bit multiplying Digital-to-Analog converter with an 8-bit data latch, chip select and other control signal lines which allow direct interface with microprocessor buses.

The converter allows a choice of 6 different coding formats. The most significant bit (D_7) can be inverted or non-inverted under the control of the code select input. The code control also provides a zero differential current output for 2's complement coding. A high voltage compliance, complementary current output pair is provided. The data latch is very high speed which makes the Am6080 capable of interfacing with high speed microprocessors.

Monotonic multiplying performance is maintained over a more than 40 to 1 reference current range. Matching within ± 1 LSB

between reference and full scale current eliminates the need for full scale trimming in most applications.

The Am6080 guarantees full 8-bit monotonicity. Nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the full power supply voltage and temperature range.

Applications for the Am6080 include microprocessor compatible data acquisition systems and data distribution systems, 8-bit A/D converters, servo-motor and pen drivers, waveform generators, programmable attenuators, analog meter drivers, programmable power supplies, CRT display drivers and high speed modems.

CONNECTION DIAGRAM Top View

ORDERING INFORMATION

Package	Temperature	Nonlinearity	Order		
Type	Range		Number		
Hermetic	-55°C to +125°C	.1%	Am6080ADM		
DIP		.19%	Am6080DM		
Hermetic DIP	000 1- 17000	.1%	Am6080ADC Am6080DC		
Molded DIP	0°C to +70°C	.1%	Am6080APC Am6080PC		

MAXIMUM RATINGS

Operating Temperature		Power Supply Voltage	±18V
Am6080ADM, Am6080DM	-55°C to +125°C	Logic Inputs	-5V to +18V
Am6080ADC, Am6080DC	DODE Code School	Analog Current Outputs	-12V to +18V
Am6080APC, Am6080PC	0°C to +70°C	Reference Inputs (V ₁₄ V ₁₅)	V- to V+
Storage Temperature	-65°C to +150°C	Reference Input Differential Voltage (V ₁₄ to V ₁₅)	±18V
Lead Temperature (Soldering, 60 sec)	300°C	Reference Input Current (I ₁₄)	1.25mA

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_+ = +5V$, $V_- = -15V$, $I_{REF} = 0.5mA$, over the operating temperature range unless otherwise specified. Output characteristics refer to all outputs.

			Am6080A							
aramete	r De	scription	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
	Resolution	on	7000	8	8	8	8	8	8	bits
	Monoton	icity	13 1 132	8	8	8	8	8	8	bits
D.N.L.	Differential Nonlinearity		-	-	±0.19	-	-	±0.39	%FS	
N.L.	Nonlinea	arity		-	-	±0.1	-14		±0.19	%FS
I _{FS}	Full Sca	le Current	$V_{REF} = 10.000V$ $R_{14} = R_{15} = 20.000k\Omega$ $T_{A} = 25^{\circ}C$	1.984	1.992	2.000	1.976	1.992	2.008	mA
TCI _{ES}	Full Son	le Tempco		-	±5	±20	-	±10	±40	ppm/°
ICIFS	Full Sca	le Tempco		-	.0005	±.002	-200	.001	±.004	%FS/°
Voc	Output \ Complia			-10	- i	+18	-10	-	+18	Volts
I _{FSS}	Full Scale Symmetry I _{FS1} - I _{FS1}		ntilbrieC	±0.1	±1.0	itternase	±0.2	±2.0	μΑ	
Izs	Zero Sca	ale Current		988	0.01	0.4	31.34	0.01	0.8	μΑ
	Reference Current		V- = -5V	0	0.5	0.55	0	0.5	0.55	mA
IRR	Range	08	V- = -15V	0	0.5	1.1	0	0.5	1.1	mA
VIL	Logic "0" Logic "1"		98	3,000		0.8	200 174	1	0.8	JE9
V _{IH}			28 01 500	2.0	100		2.0	THE CHARLE	-	Volts
I _{IN}	Logic In	out Current	$V_{IN} = -5V \text{ to } +18V$	Lasty page	-	40		/s 1 last s	40	μΑ
V _{IS}	Logic In	out Swing	V- = -15V	-5	-	+18	-5	-	+18	Volts
I ₁₅	Reference		percentes statute on the inputs to the time w	(Seb ad)	-0.5	-2.0	date_edit o ba tativ	-0.5	-2.0	μΑ
dI/dt	Reference Slew R		$R_{14(EQ)} = 800\Omega$ $CC = 0pF$	4.0	8.0	CS, W An	4.0	8.0	The mea	mA/μs
PSSI _{FS+}	Power S	upply	V+ = +4.5V to $+5.5V$, $V- = -15V$	-	±0.0003	±0.01	- 1	±0.0005	±0.01	%FS
PSSI _{FS} -	Sensitiv	vity	V- = -13.5V to $-16.5V$, $V+ = +5V$	MINET	±0.0005	±0.01	-	±0.0005	±0.01	%F3
V+	Power S	upply	I _{REF} = 0.5mA, V _{OUT} = 0V	4.5	-	18	4.5	-	18	Volts
V-	Range		IREF = 0.5IIIA, VOUT = 0V	-18	_	-4.5	-18	-	-4.5	VOILS
l+			V+ = +5V, V- = -5V	1	9.8	14.7	- 1	9.8	14.7	
I-			V 1 - 13V, V - 3V	- 1	-7.4	-9.9	-	-7.4	-9.9	
1+	Power Supply Current		V+ = +5V. V- = -15V	-	9.8	14.7	-	9.8	14.7	mA
I-			OX XX Targetta	X-X	-7.4	-9.9	-	-7.4	-9.9	
+			V+ = +15V, V- = -15V	1-16.3	9.8	14.7		9.8	14.7	
I-				-	-7.4	-9.9	-	-7.4	-9.9	
	Power		V+ = +5V, V- = -5V	-	86	123	-	86	123	
PD	Dissipa	tion	V+ = +5V, V- = -15V	-	160	222	-	160	222	mW
			V+ = +15V, V- = -15V		258	369	_	258	369	

Am6080 FUNCTIONAL PIN DESCRIPTION DE Data Latch Enable - This active low input is used to enable the data latch. The CS, DE, and W must be active in order to write into the data latch. Symbol Function CODE Code Select - When CODE SEL = 0, the MSB (D7) is D0-D7 D₀-D₇ are the input bits 1-8 to the input data latch. inverted and 1 LSB balance current is added to the Data is transferred to the data latch when CS, DE, and W are active and is latched when any of the $\overline{I_0}$ output. enable signals go inactive. V_{REF(+)} Positive and negative reference voltage to the ref-V_{REF(-)} erence bias amplifier. These differential inputs allow CS Chip Select - This active low input signal enables the use of positive, negative and bipolar references. the Am6080. Writing into the data latch occurs only Compensation - Frequency compensating terminal when the device is selected. for the reference amplifier. W $I_0, \overline{I_0}$ Write - This active low control signal enables the These are high impedance complementary current outdata latch when the $\overline{\text{CS}}$ and $\overline{\text{DE}}$ inputs are active. puts. The sum of these currents is always equal to I_{ES}

FUNCTION TABLES

DATA LATCH CONTROL

CS	W	DE	Data Latch
0	0	0	Transparent
X	X	1	Latched
X	1	X	Latched
1	X	X	Latched

X = Don't Care

CODE SELECT

CODE	E
SEL	Function
0	MSB Inverted (Note 1)
1	MSB Non-inverted

Note 1. LSB balance current is added to the $\overline{I_0}$ output.

AC CHARACTERISTICS

 $V_{+}=+5V,\,V_{-}=-15V,\,I_{REF}=0.5$ mA, $R_{L}<500\Omega,\,C_{L}<15$ pF over the operating temperature range unless otherwise specified

					ommerc mp. Gra		Те	Military mp. Grad		50
arameter	Description		Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _S	Settling Time, All Bits Switched		T _A = 25°C Settling to ±½LSB	160	160	V -	10	160	Zaro (B)	ns
t _{PLH}	Propagation E	Each bit	T _A = 25°C 50% to 50%		80	160	V	80	160	no!
t _{PHL}	Delay	All bits switched			80	160		80	160	ns
t _{DH}	Data Hold Tim	ne	See timing diagram	10	-30		10	-30	Jugai -	ns
t _{DS}	Data Set Up Time		See timing diagram	80	35		100	35	SHOWN.	ns
t _{DW}	Data Write Tir	ne	See timing diagram	80	35	At 1 = N	100	35	1,01200	ns

Notes: 1. t_{DW} is the overlap of W low, $\overline{\text{CS}}$ low, and $\overline{\text{DE}}$ low. All three signals must be low to enable the latch. Any signal going inactive latches the data.

2. t_S is measured with the latches open from the time the data becomes stable on the inputs to the time when the outputs are settled to within ±1/2 LSB. All bits switched on or off.

3. The internal time delays from \overline{CS} , \overline{W} and \overline{DE} inputs to the enabling of the latches are all equal.

LIC-066

APPLICATION HINTS:

1. Reference current and reference resistor.

There is a 1 to 4 scale up between the reference current (IREF) and the full scale output current (I_{FS}). If $V_{REF} = +10V$ and I_{FS} = 2mA, the value of the R₁₄ is:

$$R_{14} = \frac{4 \times 10 \text{ Volt}}{2mA} = 20K\Omega$$

2. Reference amplifier compensation.

For AC reference applications, a minimum value compensation capacitor (C_C) is normally used. The value of this capacitor depends on R₁₅. The minimum values to maximize bandwidth without oscillation are as follows:

Reference Amplifier **Frequency Response**

Table 2 **Compensation Capacitor** $(I_{FS} = 2mA, I_{RFF} = 0.5mA)$

$R_{REF}(k\Omega)$	C _C (pF)							
20	100							
10	50							
5	25							
2	10							
1	5							
.5	0							

A $0.01\mu F$ capacitor is recommended for the fixed reference operation.

LIC-065

Reference Amplifier Biasing

Reference Configuration	R ₁₄	R ₁₅	R _{IN} C _C		IREF
Positive Reference	V _{R+}	OV	N/C	.01µF	V _{R+} /R ₁₄
Negative Reference	OV	V _R -	N/C	.01µF	-V _R -/R ₁₄
Lo Impedance Bipolar Reference	V _{R+}	OV	VIN	(Note 1)	$(V_{R+}/R_{14}) + (V_{IN}/R_{IN})$ (Note 2)
Hi Impedance Bipolar Reference	V _{R+}	VIN	N/C	(Note 1)	(V _{R+} - V _{IN})/R ₁₄ (Note 3)
Pulsed Reference (Note 4)	V _{R+}	ov	V _{IN}	No Cap	$(V_{R+}/R_{14}) + (V_{IN}/R_{IN})$

- Notes: 1. The compensation capacitor is a function of the impedance seen at the $+V_{REF}$ input and must be at least $C = 5pFX R_{14(eq)}$ in $k\Omega$. For $R_{14} < 800\Omega$ no capacitor is necessary.
 - 2. For negative values of V_{IN} , V_{R+}/R_{14} must be greater than $-V_{IN}$ Max/ R_{IN} so that the amplifier is not turned off. 3. For positive values of V_{IN} , V_{R+} must be greater than V_{IN} Max so the amplifier is not turned off.

 - For pulsed operation, V_{R+} provides a DC offset and may be set to zero in some cases. The impedance at pin 14 should be 800Ω or less and an additional resistor may be connected from pin 14 to ground to lower the impedance.

со	DE FORMAT	CODE	CONNECTIONS	OUTPUT SCALE		MSB D7	D6	D5	D4	D3	D2	D1	LSB D0	I ₁ (mA)	I ₂ (mA)	V _{OUT}
Amount of	Straight binary: one polarity with true input code, true zero output.	1	a-c b-e	Positive full scale Positive full scale – LSB Zero scale	×××	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 0 0	1.992 1.984 .000	0 0 0	9.960 9.920 .000
UNIPOLAR	Complementary binary: one polarity with complementary input code, true zero output.	1	a-e b-c	Positive full scale Positive full scale – LSB Zero scale	X X X	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 1 1	1.992 1.984 .000	0 0 0	9.960 9.920 .000
OFFSET off syl no off	Straight offset binary: offset half scale, symmetrical about zero, no true zero output.	1	a-c b-d	Positive full scale Positive full scale – LSB (+) Zero scale (-) Zero scale Negative full scale – LSB Negative full scale	X X X X	1 1 0 0	1 1 0 1 0	1 1 0 1 0 0	1 1 0 1 0	1 1 0 1 0	1 1 0 1 0	1 1 0 1 0	1 0 0 1 1	1.992 1.984 1.000 .992 .008	.000 .008 .992 1.000 1.984 1.992	-9.880
	1's complement: offset half scale, symmetrical about zero, no true zero output MSB complemented (need inverter at D ₇)	1 (Note 1)	a-c b-d	Positive full scale Positive full scale – LSB (+) Zero scale (-) Zero scale Negative full scale – LSB Negative full scale	X X X X	0 0 0 1 1	1 1 0 1 0 0	1 1 0 1 0	1 1 0 1 0	1 1 0 1 0	1 1 0 1 0	1 1 0 1 0	1 0 0 1 1	1.992 1.984 1.000 .992 .008	.000 .008 .992 1.000 1.984 1.992	9.96 9.98 .04 04 -9.88 -9.96
OFFSET	Offset binary: offset half scale, true zero output MSB complemented remainder add to I _O . (need inverter at D ₇)	0 (Note 1)	a-c b-d	Positive full scale Positive full scale - LSB + LSB Zero scale - LSB Negative full scale + LSB Negative full scale	X X X X X	1 1 1 1 0 0	1 1 0 0 1 0	1 1 0 0 1 0	1 1 0 0 1 0	1 1 0 0 1 0	1 1 0 0 1 0	1 1 0 0 1 0	1 0 1 0 1 1	1.992 1.984 1.008 1.000 1.992 .008	.008 .016 .992 1.000 1.008 1.992 2.000	9.920 9.844 .080 .000 080 -9.920
TRUE ZERO	2's complement: offset half scale true zero output MSB complemented.	0	a-c b-d	Positive full scale Positive full scale – LSB +1 LSB Zero scale -1 LSB Negative full scale + LSB Negative full scale	X X X X X	0 0 0 0 1 1	1 1 0 0 1 0	1 1 0 0 1 0 0	1 1 0 0 1 0	1 1 0 0 1 0	1 0 0 1 0 0	1 0 0 1 0	1 0 1 0 1 1 0	1.992 1.984 1.008 1.000 .992 .008	.008 .016 .992 1.000 1.008 1.992 2.000	9.92 9.84 .08 .00 08 -9.92 -10.00

Note 1: An external inverter is necessary since the code select inverts the MSB and adds a 1 LSB balance current to $\overline{I_0}$. Only one of these features is desired for this code.

ADDITIONAL CODE MODIFICATIONS

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.

LIC-070

9

ANALOG/DIGITAL CONVERTER UNDER SOFTWARE CONTROL

LIC-071

Am9080A SOFTWARE FOR A/D CONVERSION USING Am6080.

SOURCE STATEMENT		SEQ	SOURCE STATEME	ENT
EQU 00H	;6080 A/O PORT ADDRESS	13	IN PORT3	;INPUT FROM COMP
EQU 02H	;COMPARATOR ADDRESS	14	CRA A	;SET SIGN FLAG
ORG 3E50H		15	JM NEXT	;IF SMALLER GO TO NEXT BIT
LXI SP,STAKS-16	;INITIAL STAKS POINTER	16	MOV D,E	;SAVE RESULT
CALL ADCON	;CALL A/D CONVERSATION	17 NEXT:	MOV A,B	GET NEXT TRIAL BIT
JMP SAMPLE	;NEXT SAMPLE	18	RAR	;SHIFT RIGHT ONCE
XRA A	:CLEAR ACC	19	RC	;RETURN ON CARRY
MOV D,A	;CLEAR D REG	20	MOV B,A	STORE TEST BIT
STC	;SET CARRY	21	ADD D	;ACCUMULATE RESULT
RAR	;SET BIT 7 TO 1	22	JMP LOOP	TRY NEXT BIT
MOV B,A	STORE TEST BIT AT B REGISTER	23 STAKS:	DS 16	
MOV E,A	;STORE TEST WORD	24	END START	
OUT PORT1	:OUTPUT TO A/D			
	EQU 00H EQU 02H ORG 3E50H LXI SP,STAKS – 16 CALL ADCON JMP SAMPLE XRA A MOV D,A STC RAR MOV B,A MOV E,A	EQU 00H ;6080 A/O PORT ADDRESS EQU 02H ;COMPARATOR ADDRESS ORG 3E50H LXI SP,STAKS—16 ;INITIAL STAKS POINTER CALL ADCON ;CALL A/D CONVERSATION JMP SAMPLE ;NEXT SAMPLE XRA A ;CLEAR ACC MOV D,A ;CLEAR D REG STC ;SET CARRY RAR ;SET BIT 7 TO 1 MOV B,A ;STORE TEST BIT AT B REGISTER MOV E,A ;STORE TEST WORD	SOURCE STATEMENT SEQ EQU 00H ;6080 A/O PORT ADDRESS 13 EQU 02H ;COMPARATOR ADDRESS 14 ORG 3E50H 15 LXI SP,STAKS—16 ;INITIAL STAKS POINTER 16 CALL ADCON ;CALL A/D CONVERSATION 17 NEXT: JMP SAMPLE ;NEXT SAMPLE 18 XRA A :CLEAR ACC 19 MOV D,A ;CLEAR D REG 20 STC ;SET CARRY 21 RAR ;SET BIT 7 TO 1 22 MOV B,A ;STORE TEST BIT AT B REGISTER 23 STAKS: MOV E,A ;STORE TEST WORD 24	SOURCE STATEMENT SEQ SOURCE STATEMENT EQU 00H ;6080 A/O PORT ADDRESS 13 IN PORT3 EQU 02H ;COMPARATOR ADDRESS 14 CRA A ORG 3E50H 15 JM NEXT LXI SP,STAKS-16 ;INITIAL STAKS POINTER 16 MOV D,E CALL ADCON ;CALL A/D CONVERSATION 17 NEXT: MOV A,B JMP SAMPLE ;NEXT SAMPLE 18 RAR XRA A :CLEAR ACC 19 RC MOV D,A ;CLEAR D REG 20 MOV B,A STC ;SET CARRY 21 ADD D RAR ;SET BIT 7 TO 1 22 JMP LOOP MOV B,A ;STORE TEST BIT AT B REGISTER 23 STAKS: DS 16 MOV E,A ;STORE TEST WORD 24 END START

APPLICATIONS

Instrumentation and Control

Data Acquisition
Data Distribution
Function Generation
Servo Controls
Programmable Power Supplies
Digital Zero Scale Calibration
Digital Full Scale Calibration
Digitally Controlled Offset Null

Signal Processing

CRT Displays
IF Gain Control
8 x 8 Digital Multiplication
Line Driver

A/D Converters

Ratiometric ADC
Differential Input ADC
Microprocessor Controlled ADC

Audio M 20110 LTT of soches

Music Distribution
Digitally Controlled Gain
Potentiometer Replacement
Digital Recording
Speech Digitizing

D/A Converters

Single Quadrant Multiplying DAC Two Quadrant Multiplying DAC Four Quadrant Multiplying DAC

Metallization and Pad Layout

DIE SIZE 0.085" X 0.124"

Am6081

Microprocessor System Compatible 8-Bit High Speed Multiplying D/A Converter

DISTINCTIVE CHARACTERISTICS

- 8-Bit D/A with 8-Bit input data latch
- Compatible with most popular microprocessors including the Am9080A-4 and the Am2900
- Write, Chip Select and Data Enable logic on chip
- DAC appears as memory location to microprocessor
- MSB inversion under logic control
- Differential current outputs
- Output current mode multiplexer with logic selection
- 2-Bit status latch for output select and code select
- Choice of 8 coding formats

- Fast settling current output 200ns
- Nonlinearity to ±0.1% max over temperature range
- Full scale current pre-matched to ±1 LSB
- High output impedance and voltage compliance
- Low full scale current drift ±5ppm/°C
- Wide range multiplying capability -2.0MHz bandwidth
- Direct interface to TTL, CMOS, NMOS
- · Output range selection with on chip multiplexer
- High speed data latch 80ns min write time

GENERAL DESCRIPTION

The Am6081 is a monolithic 8-bit multiplying Digital-to-Analog converter with an 8-bit data latch, a 2-bit status latch, chip select and other control signal lines which allow direct interface with microprocessor buses.

The converter allows a choice of 8 different coding formats. The most significant bit (D₇) can be inverted or non-inverted under the control of the code select input. The code control also provides a zero differential current output for 2's complement coding. A pair of high voltage compliance, dual complementary current output channels is provided and is selected by the output status command. The output multiplexer also allows analog bus connection of several converters, range or output load selection, and time-shared operation between D/A and A/D functions. The data and status latches are high speed which makes the Am6081 capable of interfacing with high speed microprocessors. The DE and SE control signals allow the data and status latches to be updated

individually or simultaneously.

Monotonic multiplying performance is maintained over a more than 40 to 1 reference current range. Matching within ± 1 LSB between reference and full scale current eliminates the need for full scale trimming in most applications.

The Am6081 guarantees full 8-bit monotonicity. Nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the full power supply voltage and temperature range.

Applications for the Am6081 include microprocessor compatible data acquisition systems and data distribution systems, 8-bit A/D converters, servo-motor and pen drivers, waveform generators, programmable attenuators, analog meter drivers, programmable power supplies, CRT display drivers and high speed modems.

CONNECTION DIAGRAM Top View CODE SEL CODE SELECT 1 24 POSITIVE POWER SUPPLY (MSB) D₇ INPUT 2 OUT SEL 23 OUTPUT SELECT D₆ INPUT 3 $\overline{10_2}$ 22 OUTPUT 2 D₅ INPUT 4 102 21 OUTPUT 2 D₅ 20 OUTPUT 1 D₄ INPUT 5 D₄ 10-D₃ INPUT 6 D₃ 19 OUTPUT 1 Am6081 D₂ INPUT 7 D₂ 18 NEGATIVE POWER SUPPLY D. INPUT 8 D. 17 COMPENSATION 15 POSITIVE REFERENCE V_{REF(+)} WRITE 11 W 14 STATUS LATCH ENABLE DE 13 DATA LATCH ENABLE

ORDERING INFORMATION

Package	Temperature	Nonlinearity	Order
Type	Range		Number
Hermetic	-55°C to +125°C	±.1%	Am6081ADM
DIP		±.19%	Am6081DM
Hermetic	0°C to +70°C	±.1%	Am6081ADC
DIP		±.19%	Am6081DC
Molded	0 0 10 +70 0	±.1%	Am6081APC
DIP		±.19%	Am6081PC

	FUNCTIONAL PIN DESCRIPTION Function	CODE	Code Select – Input to the CODE SEL latch. The latch is transparent when $\overline{\text{CS}}$, SE and $\overline{\text{W}}$ are active and is latched when any of the above signals
CS	Chip Select – This active low input signal enables the Am6081. Writing into the data or status latches occurs only when the device is selected.		go inactive. When CODE SEL latch = 0, the MSB (D_7) is inverted and 1 LSB balance current is added to the $\overline{I_0}$ output.
DE	Data Latch Enable - This active low input is used	OUT	Output Select - Input to the OUT SEL latch. The
378	to enable the data latch. The CS, DE, and W must be active in order to write into the data latch.	SEL	latch is transparent when $\overline{\text{CS}}$, $\overline{\text{SE}}$ and $\overline{\text{W}}$ are active and is latched when any of the above signals go inactive. When the OUT $\overline{\text{SEL}}$ latch is low, the
SE	Status Latch Enable – This active high input is used to enable the status latches. The \overline{CS} , SE, and \overline{W} must be active in order to write into the		channel 1 output pair (I_{O1} , \overline{I}_{O1}) is selected. When the OUT SEL latch is high, the channel 2 output pair (I_{O2} , \overline{I}_{O2}) is selected.
	and W must be active in order to write into the status latches.		Positive and negative reference voltage to the ref-
W	Write - This active low control signal enables the	V _{REF(-}	erence bias amplifier. These differential inputs allow the use of positive, negative and bipolar references.
	data and status latches when the $\overline{\text{CS}}$, $\overline{\text{DE}}$, and $\overline{\text{SE}}$ inputs are active.	COMP	Compensation – Frequency compensating terminal for the reference amplifier.
D ₀ -D ₇	D_0 - D_7 are the input bits 1-8 to the input data latch. Data is transferred to the data latch when \overline{CS} , \overline{DE} , and \overline{W} are active and is latched when any of the	$I_{01}, \overline{I_{01}}$ $I_{02}, \overline{I_{02}}$	These high impedance current output pairs are selected by the output select latch. I_{O1} and I_{O2} are true outputs and $\overline{I_{O1}}$ and $\overline{I_{O2}}$ are complementary
	enable signals go inactive.		outputs.

FUNCTION TABLES

	DATA	A LATO	CH CONTROL	3.0 5	TAT	JS LA	TCH CONTROL		 E SELECT AND PUT SELECT
S	w	DE	Data Latch	cs	w	SE	CODE SEL and OUT SEL Latch	CODE	Function

CS	W	DE	Data Latch	
0	0	0	Transparent	
X	X	1	Latched	
X	1	X	Latched	
1	X	X	Latched	

CS	W	SE	OUT SEL Latch
0	0	1	Transparent
X	X	0	Latched
X	1	X	Latched
1	Х	X	Latched

SEL	Function
7	MSB Inverted (Note 1)
- Basi	MSB Non-inverted
0	Output Channel 1
1	Output Channel 2
	SEL -

X = Don't Care

Note 1. 1LSB balance current is added to the $\overline{I_0}$ output.

MAXIMUM RATINGS

Operating Temperature		Power Supply Voltage	±18V
Am6081ADM, Am6081DM	-55°C to +125°C	Logic Inputs	-5V to +18V
Am6081ADC, Am6081DC		Analog Current Outputs	-12V to +18V
Am6081APC, Am6081PC	0°C to +70°C	Reference Inputs (V ₁₅ , V ₁₆)	V- to V+
Storage Temperature	-65°C to +150°C	Reference Input Differential Voltage (V ₁₅ to V ₁₆)	±18V
Lead Temperature (Soldering, 60 sec)	300°C	Reference Input Current (I ₁₅)	1.25mA

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	8 bits	
Monotonicity	8 bits	

Am6081

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_+ = +5V$, $V_- = -15V$, $I_{REF} = 0.5mA$, over the operating temperature range unless otherwise specified. Output characteristics refer to all outputs.

la ramata	0 105	animal	bris barrey I Conditions	Min	Am6081 A		Min	Am6081	Mov	Unit
arameter	Resolutio	scription	Conditions Straight coding/Sign Magnitude	Min. 8/9	Typ. 8/9	Max. 8/9	Min. 8/9	Typ. 8/9	Max. 8/9	bits
OFF D	Monotoni	UU aal of	Straight coding/Sign Magnitude Straight coding/Sign Magnitude	8/9	8/9	8/9	8/9	8/9	8/9	bits
D.N.L.	Differenti	al 9 tine in	Straight country sign Magnitude	-	- 5/9	±0.19	Asset siz	b ert ak	±0.39	%FS
N.L.	Nonlinea		aled indino Lieuteus	1 terzion		±0.1		L 15-1	±0.19	%FS
I _{FS}	Full Scale	Art reper	$V_{REF} = 10.000V$ $R_{15} = R_{16} = 20.000k\Omega$ $T_{A} = 25^{\circ}C$	1.984	1.992	2.000	1.976	1.992	2.008	mA
TCI _{FS}	Full Scale	e Tempco	Den syllago to ear and high	ett saids	±5	±20	ard ender	±10	±40	ppm/°C
TOIFS	i uli ocali	rempco	the podswanue 9MOD 5	E bitt	±.0005	±.002	'alches	±.001	±.004	%FS/°0
V _{OC}	Output V Complia	0	for the retember and the land to the control of the	-10	Silom er	+18	-10	evinos ente	+18	Volts
I _{FSS}	Full Scale Symme		$I_{FS1} - \overline{I_{FS1}}$ or $I_{FS2} - \overline{I_{FS2}}$	6 <u>5</u> , 13 It fo yn	±0.1	±1.0	ther bu	±0.2	±2.0	μΑ
loss	Output S Symme		I _{FS1} - I _{FS2} or I _{FS1} - I _{FS2}	-	±0.1	±1.0	vilosni e	±0.2	±2.0	μΑ
Izs	Zero Sca	le Current	57 E 87 1800	Thurst I'm	0.01	0.4	-	0.01	0.8	μΑ
I _{DIS}	Output D Current		Output of mpx "Off" Channels	-	0.01	0.05	-	0.01	0.05	μΑ
		e Current	V- = -5V	0	0.5	0.55	0	0.5	0.55	mA
I _{RR}	Range	00.00	V- = -15V	0	0.5	1.1	0	0.5	1.1	
V _{IL}	Logic	Logic "0"	E OUT SEL Lawn Sile	-77	23-	0.8	dotte in	sg -	0.8	Volts
VIH	Input Levels	Logic "1"	1 0 thenogenerT	2.0	0-	-	2.0	or -	0 0	VOILS
I _{IN}	Logic Inp	ut Current	V _{IN} = -5V to +18V	1 -X	.× _	40	<u>Þ</u> eria	U = 1	40	μΑ
VIS	Logic Inp	ut Swing	V- = -15V	-5	X_	+18	-5	W _ [+18	Volts
I ₁₆	Reference		Latched	12	-0.5	-2.0	bedo	-0.5	-2.0	μΑ
dI/dt	Reference Slew Ra		$R_{15(EQ)} = 800\Omega$ CC = 0pF	4.0	8.0	_	4.0	8.0	<u>-</u>	mA/μs
PSSI _{FS+}	Power S	upply	V+ = +4.5V to $+5.5V$, $V- = -15V$	sanelad	±0.0005	±0.01	-	±0.0005	±0.01	~ =0
PSSI _{FS}	Sensitiv	ity	V- = -13.5V to $-16.5V$, $V+ = +5V$		±0.0005	±0.01		±0.0005	±0.01	%FS
V+	Power S	upply	I _{REF} = 0.5mA, V _{OUT} = 0V	4.5	- 1	18	4.5	-	18	Volts
V-	Range		TREF - 0.5IIIA, VOUT - 0V	-18	-	-4.5	-18	-	-4.5	VOILS
1+			V+ = +5V, V- = -5V	-	9.8	14.7	-	9.8	14.7	
I			V+ - +5V, V5V	_	7.4	-9.9	-	-7.4	-9.9	
1+	Power S	upply	V+ = +5V, V- = -15V	-	9.8	14.7	-	9.8	14.7	mA
I	Current		V+ = +5V, V- = -15V		-7.4	-9.9	-	-7.4	-9.9	l IIIA
1+			V+ = +15V, V- = -15V		9.8	14.7		9.8	14.7	MEN OC
1=			VI = F13V, V = 13Vnl signal 30	dS/+_6)	-7.4	-9.9	N	-7.4	-9.9	N Joh JA
			V+ = +5V, V- = -5V	-	86	123	- 5	86	123	Am60
PD	Power Dissipat		V+ = +5V, V- = -15V	VIII OF C	160	222	- /	160	222	mW
	Gar		V+ = +15V, V- = -15V	10 +150	258	369		258	369	Storage

AC CHARACTERISTICS

 $V_{+}=+5V,\,V_{-}=-15V,\,I_{REF}=0.5mA,\,R_L<500\Omega,\,C_L<15pF$ over the operating temperature range unless otherwise specified

				f I to doctorer	ommerc mp. Gra		Te	Military mp. Gra		edT
arameter	D	escription	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
ts	Settling Time,	All Bits Switched	T _A = 25°C Settling to ±1/2LSB		200	(3)(()	yolt = 2	200	· uP	ns
t _{PLH}	Propagation	Each bit	T _A = 25°C		90	180	361318	90	180	ns
t _{PHL}	Delay	All bits switched	50% to 50%		90	180		90	180	113
tos	Output Switch	Settling Time	$T_A = 25^{\circ}C$ to $\pm 1/2LSB$ of I_{FS}	empansa-	250	untinim s	encons.	250	ensten OA	ns
t _{OP}	Output Switch Delay	Propagation	T _A = 25°C, 50% to 50%	otimikan.	150	300	R ₁₅ . The Illation a	150	300	ns
t _{DH}	Data Hold Tim	ne	See timing diagram	10	-30		10	-30		ns
t _{DS}	Data Set Up 1	Time	See timing diagram	80	35		100	35		ns
t _{DW}	Data Write Tir	ne	See timing diagram	80	35		100	35	involend.	ns
t _{SH}	Status Hold T	ime	See timing diagram	10	-70	0.00	10	-70	m2 = 2m	ns
t _{SS}	Status Set Up	Time	See timing diagram	200	100		250	100		ns
tsw	Status Write T	ime	See timing diagram	200	100		250	100	R) 4382	ns

- Notes: 1. t_{DW} is the overlap of \overline{W} low, \overline{CS} low, and \overline{DE} low. All three signals must be low to enable the latch. Any signal going inactive latches the data.

 2. t_S is measured with the latches open from the time the data becomes stable on the inputs to the time when the outputs are settled to within ±1/2 LSB. All bits switched on or off.
 - 3. t_{SW} is the overlap of \overline{W} low, \overline{CS} low and SE high, all three signals must be active to enable the latch and any signal going inactive will latch
 - 4. The internal time delays from CS, W, SE and DE inputs to the enabling of the latches are all equal.

APPLICATION HINTS

1. Reference current and reference resistor

There is a 1 to 4 scale up between the reference current (IREF) and the full scale output current (I_{FS}). If $V_{REF} = +10V$ and I_{FS} = 2mA, the value of the R₁₅ is:

$$R_{15} = \frac{4 \times 10 \text{ Volt}}{2\text{mA}} = 20\text{K}\Omega$$

2. Reference amplifier compensation

For AC reference applications, a minimum value compensation capacitor (C_C) is normally used. The value of this capacitor depends on R₁₅. The minimum values to maximize bandwidth without oscillation are as follows:

Table 2 **Compensation Capacitor** $(I_{FS} = 2mA, I_{REF} = 0.5mA)$

R_{REF} ($k\Omega$)	C _C (pF)
20	100
10	50
5	25
2	10
Assess Tourne res	5
.5	0

Reference Amplifier Frequency Response

LIC-005 A $0.01\mu F$ capacitor is recommended for the fixed reference operation.

Reference Amplifier Biasing REFERENCE COMP c_{C} LIC-007

Reference Configuration	R ₁₅	R ₁₆	RIN	CC	I _{REF}
Positive Reference	V _{R+}	0V	N/C	.01μF	V _{R+} /R ₁₅
Negative Reference	OV	V _R -	N/C	.01µF	-V _{R-} /R ₁₅
Lo Impedance Bipolar Reference	V _{R+}	0V	V _{IN}	(Note 1)	(V _{R+} /R ₁₅) + (V _{IN} /R _{IN}) (Note 2)
Hi Impedance Bipolar Reference	V _{R+}	VIN	N/C	(Note 1)	(V _{R+} - V _{IN})/R ₁₅ (Note 3)
Pulsed Reference (Note 4)	V _{R+}	0V	VIN	No Cap	$(V_{R+}/R_{15}) + (V_{IN}/R_{IN})$

Notes: 1. The compensation capacitor is a function of the impedance seen at the $+V_{REF}$ input and must be at least $C = 5pF \times R_{15(EQ)} (in k\Omega)$. For $R_{15} < 800\Omega$ no capacitor is necessary.

2. For negative values of V_{IN} , V_{R+}/R_{15} must be greater than $-V_{IN}$ Max/ R_{IN} so that the amplifier is not turned off.

3. For positive values of V_{IN} , V_{R+} must be greater than V_{IN} Max so the amplifier is not turned off.

4. For pulsed operation, V_{R+} provides a DC offset and may be set to zero in some cases. The impedance at pin 15 should be 800Ω or less and an additional resistor may be connected from pin 15 to ground to lower the impedance.

со	DE FORMAT	CODE	OUT	CON- NECTIONS	OUTPUT SCALE	OUT	MSB D7	D6	D5	D4	D3	D2		LSB D0	I ₁ (mA)	I ₂ (mA)	V _{OUT}
(AMOO	Straight binary: one polarity with true input	STATE 4D STA	0	a-e b-g	Positive full scale Positive full scale – LSB Zero scale	X X X	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 0 0	1.992 1.984 .000	0 0	9.960 9.920 .000
	code, true zero output.	TAG CI	1	c-e d-g													
UNIPOLAR	Complementary binary: one polarity with	IMA A	0	a-g b-e	Positive full scale Positive full scale – LSB Zero scale	X X X	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 1 1	1.992 1.984 .000	0 0 0	9.960 9.920 .000
	complementary input code, true zero output.		1	c-g d-e	2 BIM CURROL Y												
	Signed magnitude binary:		1	4.0	Positive full scale Positive full scale – LSB	1	1	1	1 1	1	1 1	1	1 1	1 0	1.992	.000	9.960
SIGNED	8 bits + sign reflected code, overlapping true zero output.	1 <	Y	a-e c-f	(+) Zero scale (-) Zero scale Negative full scale - LSB Negative full scale	0 0 0	0 0 1 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 0 1	.000 .000 .000	.000 .000 1.984 1.992	.000 .000 -9.920 -9.960
MAGNITUDE	Complementary signed magnitude:	ameno (7,0	b-e	Positive full scale Positive full scale – LSB (+) Zero scale	1 1 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	0 1 1	1.992 1.984 .000	.000	9.96 9.92
	8 bits + sign complementary reflected code, overlapping true zero output.	1000	-/.	d-f	(-) Zero scale Negative full scale - LSB Negative full scale	0 0	0 0	0 0	0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 1 0	.000	.000 1.984 1.992	-9.92 -9.96
	Straight offset binary: offset half scale,		0	a-e b-f	Positive full scale Positive full scale – LSB (+) Zero scale	X X X	1 1 1	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 0 0	1.992 1.984 1.000	.000 .008 .992	9.96 9.88 .04
SYMMETRICAL	symmetrical about zero, no true zero output.	THEN	1	c-e d-f	(-) Zero scale Negative full scale - LSB Negative full scale	X X	0 0	0 0	1 0 0	1 0 0	0 0	0 0	0 0	1 1 0	.992 .008 .000	1.000 1.984 1.992	04 -9.88 -9.96
OFFSET	1's complement: offset half scale, symmetrical about zero,	er leg	0	a-e b-f	Positive full scale Positive full scale – LSB (+) Zero scale	X X X	0 0 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 0 0	1.992 1.984 1.000	.000 .008 .992	9.96 9.98 .04
	no true zero output MSB complemented. (need inverter at D ₇)	(Note 1)	1	c-e d-f	(-) Zero scale Negative full scale - LSB Negative full scale	X	1 1 1	0 0	1 0 0	1 0 0	0 0	0 0	1 0 0	1 1 0	.992 .008 .000	1.000 1.984 1.992	04 -9.88 -9.96
	Offset binary: offset half scale, true zero output	0	0	a-e b-f	Positive full scale Positive full scale – LSB + LSB Zero scale	X X X	1 1 1	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 0 1	1.992 1.984 1.008	.008 .016 .992	9.92 9.84 .08
OFFSET WITH	MSB complemented remainder add to I _O . (need inverter at D ₇)	(Note 1)	1	c-e d-f	- LSB Negative full scale + LSB Negative full scale	X X X	0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 1 0	1.000 1.992 .008 .000	1.000 1.008 1.992 2.000	08 -9.92 -10.00
TRUE	2's complement: offset half scale	0	0	a-e b-f	Positive full scale Positive full scale – LSB +1 LSB Zero scale	X X X	0 0 0	1 1 0 0	1 1 0 0	1 1 0	1 1 0 0	1 1 0	1 1 0	1 0 1	1.992 1.984 1.008 1.000	.008 .016 .992 1.000	9.92 9.84 .08
	true zero output MSB complemented.	0	1	c-e d-f	Zero scale -1 LSB Negative full scale + LSB Negative full scale	X X X	0 1 1 1	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 1 0	.000 .992 .008	1.000 1.008 1.992 2.000	08 -9.92 -10.00

Note 1: An external inverter is necessary since the code select inverts the MSB and adds a 1 LSB balance current to $\overline{I_0}$. Only one of the two features is desired for these codes.

ADDITIONAL CODE MODIFICATIONS

- 1. Any of the offset binary codes may be complemented by reversing the output terminal pair.
- 2. The sign on any of the sign-magnitude codes may be changed by reversing the output terminal pair.
- 3. The polarity of the unipolar codes may be changed by driving the opposite side of the balanced load.

SYSTEM APPLICATIONS

Am9080A DATA SYSTEM: SEPARATE UPDATE OF DATA AND STATUS

SELECT OUTPUT PORT 1

MVI A, 2 : SET STATUS TO 0 (SELECT OUTPUT 1)

OUT 1 : SEND STATUS

MOV A, M : GET DATA FROM MEMORY

OUT 0 : SEND DATA

SELECT OUTPUT PORT 2

MVI A, 3 : SET STATUS TO 1 (SELECT OUTPUT 2)

OUT 1 : SEND STATUS

MOV A,M : GET DATA FROM MEMORY

OUT 0 : SEND DATA

MVI A, 1

SELECT OUTPUT PORT 2 AND 2's COMPLEMENT CODE

: SET STATUS TO 3 (OUTPUT 2, MSB COMP)

OUT 1 : SEND STATUS

MOV A, M : GET DATA FROM MEMORY

OUT 0 : SEND DATA

LIC-009

Am9080A DATA SYSTEM: SIMULTANEOUS UPDATE OF DATA AND STATUS

MOV A, M : GET DATA IN ACCUMULATOR

OUT 0 : OUTPUT DATA TO PORT 1, 2'S COMPLEMENT
OUT 1 : OUTPUT DATA TO PORT 2, 2'S COMPLEMENT
OUT 2 : OUTPUT DATA TO PORT 1, STRAIGHT BINARY
OUT 3 : OUTPUT DATA TO PORT 2, STRAIGHT BINARY

LIC-010

Am9080A DATA SYSTEM: 8-BIT PLUS SIGN CONVERSION

MOV A, M : LOAD MAGNITUDE (8-BITS)
OUT 0 : SEND POSITIVE OUTPUT

OUT 1 SEND NEGATIVE OUTPUT

LIC-011

Am2900 DATA SYSTEM: MULTIPLE ANALOG OUTPUTS

SYSTEM APPLICATIONS (Cont.)

D/A CONVERSION WITH 12-BIT DYNAMIC RANGE

A/D CONVERSION WITH AUTO RANGING AND DIFFERENTIAL INPUT

LIC-013

SYSTEM APPLICATIONS (Cont.)

ANALOG/DIGITAL TRANSCEIVER WITH HARDWARE CONTROLLED SUCCESSIVE APPROXIMATION A/D CONVERSION

LIC-015

ANALOG/DIGITAL TRANSCEIVER WITH SOFTWARE CONTROLLED A/D CONVERSION

LIC-016

17

	Allioo	80A SOFTWARE FOR A/D AND D	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ion conta zano	
SEQ	SOURCE STATEMENT	SCHVER WITH HARDWARE	SEQ	SOURCE STATEM	MENT
0 PORT1	EQU 00H		18	CMA	
1 PORT3	EQU 02H		19	CRA A	;SET SIGN FLAG
2 PORT2	EQU 01H		20	JM NEXT	;IF SMALLER GO TO NEXT B
3	ORG 3E50H		21	MOV D,E	;SAVE RESULT
4 START:	LXI SP,STAKS-16	;INITIAL STAKS POINTER	22 NEXT:	MOV A,B	GET NEXT TRIAL BIT
5 SAMPLE:	CALL ADCON	;CALL A/D CONVERSATION	23	RAR	;SHIFT RIGHT ONCE
6	CMA		24	RC	;RETURN ON CARRY
7	CALL DACON	;CALL D/A CONVERSION	25	MOV B,A	;STORE TEST BIT
8	JMP SAMPLE	;NEXT SAMPLE	26	ADD D	;ACCUMULATE RESULT
9 ADCON:	XRA A	:CLEAR ACC	27	JMP LOOP	;TRY NEXT BIT
10	MOV D,A	;CLEAR D REG	28 DACON:	OUT PORT 2	;OUTPUT TO D/A
11	STC	;SET CARRY	29	MVI C,05H	;LOAD C REG WITH TIME
12	RAR	;SET BIT 7 TO 1	30	DCR C	;TIME DELAY
13	MOV B,A	STORE TEST BIT AT B REGISTER	31	RZ	;RETURN
14 LOOP:	MOV E,A	;STORE TEST WORD	32 FILT:	RET	
15 (HVIY 620)	CMA		33 STAKS:	DS 16	
16	OUT PORT1	;OUTPUT TO A/D	34	END START	

ADVANCED MICRO DEVICES DATA CONVERSION PRODUCTS

Digital	to	Analog	Converters

IN PORT3

AmDAC-08 - 8-Bit High Speed Multiplying D/A Converter

Am1508/1408 - 8-Bit Multiplying D/A Converter

INPUT FROM COMP

Am6070 – 8-Bit Companding D/A Converter for Control Systems (μ-law)
 Am6071 – 8-Bit Companding D/A Converter for Control Systems (A-law)
 Am6072 – 8-Bit Companding D/A Converter for Telecommunications (μ-law)
 Am6073 – 8-Bit Companding D/A Converter for Telecommunications (A-law)

Am6080 — 8-Bit High Speed Multiplying D/A Converter System/Microprocessor Compatible
Am6081 — 8-Bit High Speed Multiplying D/A Converter System/Microprocessor Compatible

*Am6689 - 8-Bit, Ultra High Speed D/A Converter (ECL)
*Am6012 - 12-Bit High Speed Multiplying D/A Converter

Analog to Digital Converters

*Am6688 - 4-Bit Quantizer (Ultra High Speed A/D Converter)

Successive Approximation Registers

Am2502 — 8-Bit Successive Approximation Registers
Am2503 — 8-Bit Successive Approximation Registers
Am2504 — 12-Bit Successive Approximation Registers

Sample and Hold Amplifiers

LF198/398 — Monolithic Sample and Hold Amplifier
*Am6098 — Precision Sample and Hold Amplifier

Comparators

LM111/311 — Precision Voltage Comparator LM119/319 — Dual Comparator Am686 — High Speed Voltage Comparator

High Speed Operational Amplifiers

Am118/318 — High Speed Operational Amplifier LF155/156/157 — JFET Input Operational Amplifiers LF355/356/357 — JFET Input Operational Amplifiers

^{*} To be announced.

3

APPLICATIONS

Instrumentation and Control

Data Acquisition
Data Distribution
Data Transceiver
Function Generation
Servo Controls
Programmable Power Supplies
Digital Zero Scale Calibration
Digital Full Scale Calibration
Digitally Controlled Offset Null

Audio

Music Distribution Digitally Controlled Gain Potentiometer Replacement Digital Recording Speech Digitizing

Signal Processing

CRT Displays
Floating Point Analog Processors
IF Gain Control
Four Quadrant Multiplexer
8 x 8 Digital Multiplication
Line Driver

A/D Converters

Ratiometric ADC
Differential Input ADC
Multiple Input Range ADC
Two Channel ADC
Microprocessor Controlled ADC

D/A Converters

Single Quadrant Multiplying DAC Two Quadrant Multiplying DAC Four Quadrant Multiplying DAC Two Channel DAC Multiple Output Range DAC

Metallization and Pad Layout

DIE SIZE 0.085" X 0.124"

COMPANDING DAC DEVICES

By Dragan Milojkovic

TABLE OF CONTENTS

INTRODUCTION	3-97	TYPICAL CIRCUIT APPLICATIONS 3-111
Companding Principles	3-97	Basic Circuit Connections
Analog to Digital Conversion Using DACs	3-98	Operating Modes 3-114
Companding DACs in Industrial Systems	3-99	Microprocessor Based Data Acquisition
Companding DACs in PCM		Systems Applications
Transmission Systems	3-99	Motion Control Systems Applications
		Audio System Applications 3-120
COMPANDING DAC CIRCUIT DESCRIPTION 3	3-100	Telecommunication Systems Applications
General Circuit Description		
Detailed Circuit Description 3		SUMMARY
Generation of the μ -Law and A-Law Characteristics . 3		SUMMARY3-129
Output Current Tables		
Parametric Analysis and Recommendations		REFERENCES

INTRODUCTION

Modern electronic systems are replacing many of the analog signal processing and transmission functions with digital data processing. The use of digital electronics can lead to improvements in system cost, performance, accuracy and reliability. Digital systems can transmit many signals on the same line in a multiplexed mode and do not suffer from the same kinds of noise and crosstalk problems that are inherent in analog systems. The digital processing of analog information requires conversion of the analog signal into digital form and the reverse conversion of the digital result back into an analog signal. Analog to digital converters, (ADC), and digital to analog converters, (DAC), perform these functions. The DAC is the key circuit element in both of these processes since it is used in a feedback loop to generate the ADC function. Monolithic technology has advanced dramatically in the last few years making low cost 8-bit DACs a reality today; in the near future, 10 and 12-bit monolithic DACs will also become available. This trend in DAC technology will help accelerate the trend toward more digital processing and transmission of analog information.

Many analog signals vary in amplitude from very small values to very large values. The dynamic range of a converter is a measure of its ability to handle a wide range of input amplitudes and is defined as the ratio of the largest resolvable signal (V_{IN} max.) to the smallest signal (V_{IN} min.) that can be handled. This ratio is often expressed in decibels using the conversion formula 20 log (V_{IN}max/V_{IN}min). Linear DACs resolve a ratio of $2^{\rm n}$:1, (n equals the number of bits), or n • 6dB. An 8-bit linear DAC, for example, resolves a ratio of 256:1 or 48dB.

The accuracy of a converter is a prime concern in most applications. Accuracy is generally specified with respect to the full scale output (as a percent of full scale) or to the smallest step size (i.e., $\pm 1/2$ LSB refers to $\pm 1/2$ of the smallest step size). Linear converters tend to be more accurate as the number of steps increases because the step size decreases. Many systems require high accuracy as a percent of the input signal level rather than as a percent of full scale. The accuracy as a percent of input signal level decreases because the amount of error is constant. An 8-bit linear DAC with an accuracy of .2% of full scale $(\pm 1/2$ LSB) has an accuracy of .2% of reading for input signals near full scale, but an accuracy of only 20% of reading for an input near 1% of full scale.

For many types of applications, the accuracy and dynamic range of an 8-bit linear DAC are sufficient. However, there are many classes of problems that require a wider dynamic range to handle signal ratios of several thousand to one. Voice processing, speed control and music synthesis fall into this category. A 12-bit linear DAC provides a wider dynamic range, 72dB, and higher accuracy than an 8-bit linear DAC. However, these devices are very expensive, and, furthermore, it turns out that while most applications require the dynamic range of the 12-bit linear DAC they do not require its accuracy. A nonlinear DAC can provide such performance with fewer digital bits. It does so by using a nonlinear transfer characteristic to compress an analog signal into a digital word, and a complementary transfer characteristic to expand the digital values into analog signals with a wide dynamic range.

An 8-bit nonlinear DAC can achieve a 72dB dynamic range with accuracy expressed as a percent of reading that ranges from 1.6% to 3.2% over the entire dynamic range of the device. The overall nonlinear analog to digital and digital to

analog conversion procedure is called the companding process. This note will discuss the Am6070 family of Companding DACs and their applications.

Companding Principles

Companding transfer functions were originally developed to satisfy the requirements of telephone voice communication systems. Studies of speech signals have shown that the distribution of amplitudes covers a range of several thousand to one and that the lower amplitude signals occur more often than the large amplitude signals. More attention should, therefore, be paid to the low level signals. It is important to maintain a better signal to distortion ratio (the ratio of signal level to conversion error) for low level signals at the expense of a poorer ratio for the less probable high level signals. In order to accomplish this goal, a logarithmic type of transfer characteristic is used with more steps at low levels and fewer steps at high levels.

A true logarithmic function has a discontinuity at zero and thus cannot be used directly for signal compression. A modified transfer characteristic with the form "log (1+x)" can be used to smooth the characteristic near zero. Two popular schemes have been developed — the μ -law by the Bell system for use in U.S. telephone systems and the A-law by the CCITT for use in European systems. They can be described by the following mathematical equations:

 μ -Law: Y = 0.18 ln (1+ μ | X|) sgn (X) A-Law: Y = 0.18 (1 + ln (A|X|)) sgn (X), 1/A \leq |X| \leq 1

 $Y = 0.18 (A |X|) sgn (X), 0 \le |X| \le 1/A$

where: X = analog signal level normalized to unity

(encoder input or decoder output)
 Y = digital signal level normalized to unity
 (encoder output or decoder input)

 $\mu = 255 \text{ and A} = 87.6$

Both functions require that the size of the analog output change increase for each increasing digital code. In order to implement such a function, an overly complex analog circuit would be needed. This requirement is met, instead, by a piecewise linear approximation. In this approximation, an 8-bit digital word generates 256 analog outputs with a transfer characteristic which is symmetrical about the origin. Figure 1 shows the μ -law and A-law transfer characteristics and the linear 8-bit DAC transfer characteristic. The positive 128 steps are divided into 8 segments or chords of 16 steps each, from step 0 to step 15. The step size is constant within a chord and doubles for each increasing chord. If the step size in the first chord, chord 0, is assigned a value of 1, the next chord, chord 1, has a step size of 2, chord 2 has a step size of 4, etc. The last chord has a step size of 128 units and ends roughly at the value 4000. The 128 steps represent a 7-bit digital word with a dynamic range of 72dB, 20 log (4000:1), which is equivalent to the dynamic range of a 12-bit linear

The above description describes the μ -law curve. The A-law differs from the μ -law only in the first two chords. The step size in the A-law DAC does not change between the first and second chords, but doubles in all succeeding chords. The A-law DAC has a 1/2 step offset at zero so that the positive and negative zero codes do not generate the same point. The A-law DAC has a dynamic range of 62dB which is equivalent to an 11-bit linear DAC.

Fig. 1. Transfer Functions for $\mu\text{-Law}$ and A-Law Decoders.

Analog to Digital Conversion Using DACs

A digital input word to a DAC corresponds to an exact and unique analog output level. The total number of discrete output levels, m, depends on the number of DAC binary inputs, $(m=2^n, n = number of input bits)$, and each output level is specified to be within a certain error band of its ideal value. An analog input to an ADC, on the other hand, may have an infinite number of signal levels which must be represented with only a finite number of digital output combinations. The output code, ideally, identifies the digital word that most closely represents the analog input. The classical way to generate a fast ADC function is to use a DAC in a feedback loop together with special ADC logic, employing a comparator and a successive approximation register (SAR). The feedback loop compares the DAC output with the analog input and decides whether the digital code is greater than or less than the input to the DAC. The input to the DAC is then increased or decreased accordingly, and another comparison is made. This technique causes each bit to be changed one at a time, and, by comparing the DAC's output with the analog input, the value of that bit is determined. Modification of one bit at a time, starting with the most significant bit and ending with the least significant bit, leads to an output which with each successive bit becomes a closer approximation of the input level. A total of n comparisons are needed for an n-bit converter.

The overall transfer characteristic of the entire ADC system is shown in Figure 2a. The ADC logic approximates the input analog signal by rounding off to the closest lower digital value. The maximum uncertainty in the digital representation of the analog input will be a full bit. In order to reduce this uncertainty, the ADC transfer curve can be modified to round to the nearest digital code, instead of the lowest, by adding a half step offset to the characteristic as shown in Figure 2b. The ADC now changes its outputs for analog inputs halfway between digital code points and gives a reading with $\pm 1/2$ step uncertainty. The half step offset necessary for better ADC accuracy is easily provided by increasing the DAC's analog output level by a half step whenever the DAC is used in an ADC scheme. This additional half step is easy to generate with linear DACs because of their constant step size throughout the entire dynamic range. For a Companding DAC this addition is much more difficult since the step size varies with signal value. In order to alleviate this problem, the Companding DAC has a built in capability to produce an appropriate half step offset signal at its output by a logic command. When this command input (E/D pin) is at logic 0, the Companding DAC is in the decode mode and the output will not contain the half step offset current. When the command input is at logic 1, the DAC is in the encode mode, i.e., within an ADC scheme, and the output current is increased by the correct half step for any input mode.

Fig. 2. Transfer Characteristic of an A to D Conversion System.

Companding DACs in Industrial Systems

Companding DACs differ from linear DACs in output dynamic range, transfer function, and the size of intermediate output steps. Comparable 8-bit linear DACs, such as the popular AmDAC-08, have a linear transfer characteristic with 256 linear steps, where each step is $8\mu A$ in size. The AmDAC-08 has a dynamic range of only 48dB while the 8-bit Companding DAC, (Am6070), has an output dynamic range of 72dB, which is also achievable with a 12-bit linear DAC. The output current increments of the Companding DAC, corresponding to small output signals, are significantly smaller than 8μ A, which is the step size for the AmDAC-08. The step sizes in the first four chords of the Companding DAC transfer function are $0.5\mu A$, $1.0\mu A$, $2.0\mu A$, and $4.0\mu A$, respectively, with a total of 64 steps and a current value at the end of the fourth chord of approximately 100 µA. By comparison, the AmDAC-08 uses only 12 uniform steps to resolve a 100μA output current level.

Given the assumption that most industrial systems employ an 8-bit digital data bus, the 8-bit DAC is a logical choice for interfacing with these systems. Companding DACs can be used in the same general applications as the AmDAC-08, particularly for reconstruction of analog signals with dynamic ranges that exceed 48dB. One example is the measurement of gas or liquid pressure, in an industrial environment, by pressure transducers with a pressure range of 0 to 3000PSI. Another example is digital recording of sound signals which usually exhibit a very large dynamic range.

The Companding DAC's logarithmic-like nonlinear transfer function suggests the application of this device for simulation of nonlinear waveforms which can be generated by converting a sequence of bytes, from an 8-bit processor, into an analog

signal with an exponential shape. This type of signal can be used in nonlinear control systems such as motor velocity controllers. Additionally, the high resolution and accuracy of the Companding DAC transfer function, for small output signal levels, provide a very smooth and precise analog control signal to devices whose outputs are voltage or current dependent

In general, the Companding DAC should be used in any system where a large dynamic range is needed. Such systems include servo motor controls, electromechanical positioning, voice and music synthesis and recording, secure communications, log sweep generators, digital control of gain and attenuation, and microprocessor controlled signal generation.

Companding DACs in PCM Transmission Systems

The companding laws were developed to satisfy the requirements of the telephone system for the digital transmission of voice signals. Voice signals exhibit a dynamic range of several thousand to one. To transmit this information with 8-bit words and retain reasonable accuracy at low levels, a companding transfer characteristic must be used to compress the analog signal prior to transmission and to restore the original signal after reception. The transmission of an analog signal in a digital format involves sampling, quantizing (A to D conversion), and compressing the analog signal as shown in Figure 3. The receiver must perform the complementary functions of expansion, digital to analog conversion and filtering to restore the analog signal waveform. The entire procedure is known as pulse code modulation, (PCM), and is the prevalent technique for digital transmission in communication systems. Currently, the Bell μ -law is the standard in the United States and the CCITT A-law is the standard in Europe.

Fig. 3. Pulse Code Modulation Example.

Fig. 4 One-Way PCM Transmission System Block Diagram.

Fig. 5. One-Way PCM Transmission System Implemented with Companding DAC.

A simplified block diagram of a PCM transmission system is shown in Figure 4. The analog signal must be sampled at a rate that is at least twice as fast as the maximum bandwidth of the system, (3.4KHz), in order to achieve satisfactory signal reproduction at the receiver site. (This requirement is based on the Nyquist sampling theorem.) The telephone system uses a sampling rate of 8kHz which allows 125μ s between samples. During this time the entire signal sampling, quantizing, encoding, and multiplexing must be completed.

The companding DAC is a complete PCM decoder (receiver) that performs both the decoding and D/A conversion. The DAC has additional encoding capabilities which make it very attractive for use in CODECs (a CODEC is both an Encoder and Decoder). The transfer characteristics of this device closely follow the characteristics defined by the μ -law, (Am6072), or A-law, (Am6073). A typical connection of a Companding DAC in a PCM transmission system is shown in Figure 5. In the transmitter side, the Companding DAC operates in a feedback loop using a SAR to perform the data encoding function. The corresponding logarithmic transfer curve for the entire feedback loop portion of the transmitter is also shown in Figure 5. The value of the sampled signal is estimated by a series of 9 iterations until its appropriate quantized digital representation appears at the 8-bit parallel data output of the SAR. This 8-bit digital code will be transmitted to the digital inputs of another Companding DAC for the decoding operation. The input/output transfer function for the Companding DAC is also shown in Figure 5.

The Companding DAC can be used in PCM decoders, encoders or complete CODECs. It is a high speed device that is capable of handling more than one channel in a multiplexed system. In multi-channel systems Companding DACs can be configured in a variety of ways depending on the number of channels, the method of transmission, (serial or parallel data), and synchronization of the system. A single Companding DAC can be used, for example, to decode all 24 channels in a standard Bell D3 data bank.

COMPANDING DAC CIRCUIT DESCRIPTION

General Circuit Description

The basic function of the 8-bit, Companding DAC is to convert a digital input value into an analog output current. The output current is a function of the digital data inputs and the input reference current. The full scale current, $\rm I_{FS}$, is generated by the 7-bit data input binary code 111 1111, and is a linear function of the reference current, $\rm I_{REF}$. There are two operating modes, Encode and Decode, which are controlled by the Encode/Decode, (E/\overline{D}), digital control signal. The output dynamic ranges achieved with the sign-plus-7-bit Companding DACs are 62dB (A-law) and 72dB (μ -law) which correspond to the output dynamic ranges of sign-plus-11-bit and sign-plus-12-bit linear binary DACs. Digital data and control inputs provide for easy digital control of converter operations in computer based data conversion systems.

The internal device design assures the accuracy and monotonicity of the Companding DAC over the entire dynamic and temperature ranges by maintaining the chord end points and step size deviations within allowable limits. Parametric deviations and requirements can be expressed in terms of corresponding step fractions which are applied throughout the entire output dynamic range. In industrial environments it is customary to specify allowable deviations from ideal parametric values within \pm half a step. However, the μ -law and A-law based PCM communication systems specify the output current deviations in terms of dB, with respect to IFS. Furthermore, these communication requirements in dB cannot be translated to some reasonable "step fraction" deviation which will be common for the entire output dynamic range. Consequently. Companding DACs applied in communication systems must be tested against specific output current values which are calculated separately for each step of the transfer characteristic. This difference between communication and industrial Companding DAC devices is recognized by Advanced Micro Devices which offers u-law and A-law devices for both the industrial market, Am6070 and Am6071, and the telecommunication market. Am6072 and Am6073.

These Companding DACs are manufactured in an 18-pin package. There are seven digital data inputs, [B1 through B7), two control digital input signals, (SB, E/D), and four analog current outputs, ($I_{OD(+)}$, $I_{OD(-)}$, $I_{OE(+)}$, $I_{OE(-)}$). The maximum output current value or full scale current, I_{FS} , is determined by the value of the reference current, I_{REF} , supplied to the Companding DAC via two analog reference inputs, ($V_{R(+)}$ and $V_{R(-)}$). There are three power supply connections (V_- , V_+ and Ground).

Detailed Circuit Description

The block diagram of the Companding DAC is shown in Figure 6. The circuit consists of the following five major blocks:

- The chord generator produces the total current for each chord or segment of the curve.
- The pedestal generator generates the pedestal or starting point for each chord.
- The step generator generates the proper step current for each chord.
- The chord decoding logic decodes the chord inputs and controls the inputs to the pedestal and step generator circuits
- The output switching matrix sums the step and pedestal currents and routes them to the proper output node.

To understand the circuitry of the Companding DAC it is important to understand how the companding curve is generated. The companding curve is a piecewise linear approximation of an exponential characteristic. It consists of 16 linear segments centered around the origin. The curve is symmetrical around the origin so we need only examine the positive portion of the curve. Each segment or chord consists of sixteen steps, step 0 through step 15, and the size of each step doubles as the chord number increases. In order to smooth out the characteristic as the chords change, the step current value for the first step of each higher chord, step 0, is set to be 1 1/2 times larger than the step current values in the lower chord. The succeeding fifteen steps, step 1 to step 15, are 2 times larger than steps of the previous chord. Figure 7 shows a detailed synthesis of the companding function. The first

Fig. 6. Companding DAC Functional Block Diagram.

Fig. 7. Construction of μ -Law Transfer Function.

chord, C0, is generated from a current source, I_{C0} . The second chord, C1, starts at current I_{P1} , (known as the pedestal current), and is generated from a current source, I_{C1} , which is twice the value of I_{C0} . The next chord current source, I_{C2} , starts at a pedestal current I_{P2} and has a total value equal to four times I_{C0} . This process continues with each chord N having a total chord current equal to 2^NI_{C0} and starting at a pedestal current which equals the summation of all currents in the lower chords:

$$I_{PN} = \sum_{M=0}^{N-1} \left(I_{CM} + 1.5 \bullet I_{M} \right) = 16.5 \sum_{M=0}^{N-1} I_{M}, \, (I_{P0} = 0),$$

where I_M is the step current value in chord M.

The generation of the pedestal current by summing the lower chords ensures monotonic behavior in the transition between chords. The selection of the proper step within the given chord is accomplished by routing the chord current, I_{CN} , through a step generator which chooses the proper fraction of the chord current necessary to generate the selected number of steps. The resulting net output current I_{OUT} , can be expressed in terms of step currents, I_N , corresponding to the chord N:

$$I_{OUT} = I_{PN} + S \cdot I_{N} = (16.5 \sum_{M=0}^{N-1} I_{M}) + S \cdot I_{N}, (I_{P0} = 0),$$

where S = step number = 0, 1, ..., 15 and N = chord number = 0, 1, ..., 7.

The circuit has 9 digital inputs, an 8-bit word and a control bit. The 8-bit digital input word is broken into three parts. The first bit is the sign bit and specifies whether the output lies in the positive or negative portion of the curve. The next three bits define which of the 8 chords is to be selected. This three bit field has a value designated as N which is between 0 and 7. The last four bits specify one of the sixteen steps and has a value equal to S. The control bit is the E/\overline{D} signal which controls the output switching.

The chord generator is the key element in the DAC. It must generate eight binary weighted chord currents and is similar to an 8-bit linear DAC. The detailed schematic, shown in Figure 8, shows a master/slave ladder arrangement biased from a reference amplifier and transistor. The reference amplifier forces the base voltage of the reference transistor. (Qn), to the value required to sink the reference current. This voltage will bias the master ladder so that Q1 runs at 2 lage, Q2 at IREF, Q3 at .5•IREF, and Q4A and Q4B at .25•IREF each. The slave array uses a binary weighted resistor array to generate the lower four chord currents by dividing the current from Q4B. An 8-bit linear DAC does not require the resistor array in the slave ladder but the Companding DAC does, in order to ensure 12-bit linearity in Chord 0. The LSB current in an AmDAC-08 is $8\mu A \pm 4\mu A$ while the Chord 0 current source in an Am6070 has a value of $8\mu A \pm .5\mu A$.

Fig. 8. Chord Current Generator Diagram (Indicated current values correspond to the μ -law DAC).

Fig. 9. μ -Law Step Current Generator.

Fig. 10. A-Law Step Current Generator.

The chord select inputs, B1, B2, B3, control a one of eight decoder that selects one of the chords, routes that chord current source to the step generator and switches all the lower order chord current sources to the pedestal generator.

The step generator for the $\mu\text{-law}$ characteristic is shown in detail in Figure 9. This circuit divides the total chord current source, I_{CN} , into 33 equal parts, and the step current value, I_{N} , is equal to 2/33 of the chord current source. The 33 parts accommodate the required 1.5 step transition between chords, so that the total internal chord current source is equal to 16.5 steps. The step generator is similar to a four bit DAC but has six current source outputs to generate 8, 4, 2, 1, 1 and 1/2 step currents. This current division can be done using emitter area scaling with enough accuracy to meet the

monotonicity and linearity specifications without the use of emitter resistors. The four step bit inputs can choose from 0 to 15 steps to be switched into the output summing network. The 1/2 step current is used as the encode offset current in the encode mode and will track the value of the chord current. When the transition to the next chord is made, the full chord current is switched to the pedestal generator causing a change in the output of 1.5 steps, i.e., from 15 steps to 16.5 steps. The step selector uses a fully differential current switch to ensure high speed performance. This switch does not require capacitive charging and discharging of low current nodes and has a nearly constant 40ns propagation delay over the dynamic range of the varying chord currents, from the first step current on chord 0 of .5 μ A to the last step current on chord 7 of .5mA.

Companding DAC

The output summing network sums the outputs of the pedestal generator, step generator, and encode current, and routes the current to the output selected by the combination of SB and E/\overline{D} . If the E/\overline{D} input is high, the encode current, I_{EN} , is summed with the step and pedestal currents and is routed to $I_{OE(+)}$, if SB is 1, or to $I_{OE(-)}$, if SB is 0. If E/\overline{D} is low, only the step and pedestal currents are summed and sent to the output; the output current is routed to $I_{OD(+)}$ or $I_{OD(-)}$ depending on the state of SB. Only one output will be active and the other outputs will be in a high impedance, off, state.

Generation of the μ -Law and A-Law Characteristics

The μ -law and A-law devices have similar characteristics which differ in the chords near zero. In the μ -law device, the step size doubles when chord 0 ends and chord 1 begins and the first step of chord zero is equal to zero, and the points for positive and negative zero are the same. In the A-law curve, the step size does not change between chord 0 and chord 1. The first two chords are colinear and the step size does not start doubling until chord 2. Additionally, the A-law curve has a 1/2 step offset at the zero point so that positive and negative zero are not equal. These differences in the two companding laws are relatively minor and the two laws can be generated from the same integrated circuit with only minor modifications.

The μ -law curve is generated using the earlier described step generator. If step size in the first chord is set to be .5 μ A, the internal chord 0 current source must be 8.25 μ A (16.5 x .5 μ A). Each succeeding internal chord current source doubles in value so that the last two chord current sources are 528 μ A and 1056 μ A. The reference current is equal to 1/2 the largest current source, so the required reference current is 528 μ A. The full scale output current can be calculated by summing all the internal current sources and subtracting 1.5 steps from the most significant chord, because the full scale current output requires only 15 steps out of the available 16.5 steps to be switched into the output. This gives a full scale current 02007.75 μ A. The output current for any point on the companding curve can be calculated in terms of the internal chord 0 source, 8.25 μ A, and its step value, .5 μ A, using the following formula:

$$I_{N,S} = ((2^N - 1) \cdot 8.25\mu A) + (S \cdot 2^N \cdot 5\mu A)$$

TABLE 1
NORMALIZED A-LAW DECODER OUTPUT
(SIGN BIT EXCLUDED)

STEP (S)				CHOR	D (C)			
SIEP (S)	0	1	2	3	4	5	6	7
0	1	33	66	132	264	528	1056	2112
1	3	35	70	140	280	560	1120	2240
2	5	37	74	148	296	592	1184	2368
3	7	39	78	156	312	624	1248	2496
4	9	41	82	164	328	656	1312	2624
5 6	11	43	86	172	344	688	1376	2752
6	13	45	90	180	360	720	1440	2880
7	15	47	94	188	376	752	1504	3008
8	17	49	98	196	392	784	1568	3136
9	19	51	102	204	408	816	1632	3264
10	21	53	106	212	424	848	1696	3392
11	23	55	110	220	440	880	1760	3520
12	25	57	114	228	456	912	1824	3648
13	27	59	118	236	462	944	1888	3776
14	29	61	122	244	488	976	1952	3904
15	31	63	126	252	504	1008	2016	4032
STEP SIZE	2	2	4	8	16	32	64	128

where N represents the chord number and S the step number. The first term represents the pedestal current value; the second term the value of the steps in the selected chord.

The A-law curve is generated by using the step generator shown in Figure 10. The internal chord current source is divided into 32 equal parts with current source values of 8, 4, 2, 1, 1/2 and 1/2 steps. The zero offset is generated by summing a 1/2 step current with the output of the step generator independent of input code. The range of output values of the step generator is from 1/2 step to 15.5 steps, and the internal chord current source has a value equal to 16 steps. The 1.5 step transition is accomplished by switching the total internal chord current source to the pedestal generator, i.e., adds 1/2 step, (the encode current $\rm l_{EN}$), and summing the 1/2 step offset current from the next higher chord, which is the same as one step on the lower chord.

The A-law Companding DAC doubles the size of the chord 0 current source I_{C0} from the $\mu\text{-law}\ I_{C0}$ value by connecting the collector of Q8B to Q8A instead of its base as indicated in Figure 8, so that it is equal to the chord 1 current source. The reference current is adjusted to set the first chord step size to $1\mu\text{A}$ and the internal chord 0 current source value to $16\mu\text{A}$. The last two chords will have internal current source values of $512\mu\text{A}$ and $1024\mu\text{A}$ each. The reference current required to bias the chord generator is $512\mu\text{A}$. The full scale output current sources and subtracting 1/2 step from the last chord, because only 15.5 steps of the 16 steps in the last chord sewitched to the output. The full scale current is nominally $2016\mu\text{A}$. The current at any point on the A-law companding curve can be calculated by using the following formula:

$$\begin{array}{l} I_{N,S} = (2S+1) \bullet .5 \mu A, \mbox{ for N=0, and} \\ = (2^{N-1} \bullet 16.5 \mu A) + (2^{N-1} \bullet S \bullet 1 \mu A), \mbox{ for N} \geqslant 1. \end{array}$$

Output Current Tables

All output current values on the A-law transfer characteristic curve are higher than corresponding μ -law current values, because of the larger step sizes in chord 0 for the A-law characteristic. The different step sizes in chord 0 were originally suggested by the International Telegraph and Telephone

TABLE 2 NORMALIZED μ -LAW DECODER OUTPUT (SIGN BIT EXCLUDED)

STEP (S)				CHO	RD (C)			
SIEP (S)	0	1	2	3	4	5	6	7
0	0	33	99	231	495	1023	2079	4191
1	2	37	107	247	527	1087	2207	4447
2	4	41	115	263	559	1151	2335	4703
3	6	45	123	279	591	1215	2463	4959
4	- 8	49	131	295	623	1279	2591	5215
5	10	53	139	311	655	1343	2719	5471
6	12	57	147	327	687	1407	2847	5727
7	14	61	155	343	719	1471	2975	5983
8	16	65	163	359	751	1535	3103	6239
9	18	69	171	375	783	1599	3231	6495
10	20	73	179	391	815	1663	3359	6751
11	22	77	187	407	847	1727	3487	7007
12	24	81	195	423	879	1791	3615	7263
13	26	85	203	439	911	1855	3743	7519
14	28	89	211	455	943	1919	3871	7775
15	30	93	219	471	975	1983	3999	8031
STEP SIZE	2	4	8	16	32	64	128	256

TABLE 3
IDEAL A-LAW DECODER OUTPUT VALUES EXPRESSED
IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

TABLE 4
IDEAL μ -LAW DECODER OUTPUT VALUES EXPRESSED
IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

STEP				CHC	ORD			
SIEP	0	1	2	3	4	5	6	7
0	-69.11	-38.74	-35.72	-26.70	-20.68	-14.66	-8.64	-2.62
1	-59.57	-38.23	-32.21	-26.19	-20.17	-14.15	-8.13	-2.11
2	-55.13	-37.75	-31.73	-25.71	-19.68	-13.66	-7.64	-1.62
3	-52.21	-37.29	-31.27	-25.25	-19.23	-13.21	-7.19	-1.17
4	-50.03	-36.85	-30.83	-24.81	-18.79	-12.77	-6.75	-0.73
5	-48.28	-36.44	-30.42	-24.40	-18.38	-12.36	-6.34	-0.32
6	-46.83	-36.05	-30.03	-24.00	-17.98	-11.96	-5.94	+0.08
7	-45.59	-35.67	-29.65	-23.63	-17.61	-11.59	-5.57	+0.46
8	-44.50	-35.31	-29.29	-23.27	-17.24	-11.22	-5.20	+0.82
9	-43.54	-34.96	-28.94	-22.92	-16.90	-10.88	-4.86	+1.16
10	-42.67	-34.62	-28.60	-22.58	-16.56	-10.54	-4.52	+1.50
11	-41.88	-34.30	-28.28	-22.26	-16.24	-10.22	-4.20	+1.82
12	-41.15	-33.99	-27.97	-21.95	-15.93	-9.91	-3.89	+2.13
13	-40.48	-33.69	-27.67	-21.65	-15.63	-9.61	-3.59	+2.43
14	-39.86	-33.40	-27.38	-21.36	-15.34	-9.32	-3.30	+2.72
15	-39.28	-33.12	-27.10	-21.08	-15.06	-9.04	-3.02	+3.00

				CHC	ORD			
STEP	0	1	2	3	4	5	6	7
0	-	-44.73	-35.18	-27.82	-21.20	-14.90	-8.74	-2.65
1 0	-69.07	-43.73	-34.51	-27.24	-20.66	-14.37	-8.22	-2.13
2	-63.05	-42.84	-33.88	-26.70	-20.15	-13.87	-7.73	-1.65
3	-59.53	-42.03	-33.30	-26.18	-19.66	-13.40	-7.27	-1.19
4	-57.03	-41.29	-32.75	-25.70	-19.21	-12.96	-6.83	-0.75
5	-55.10	-40.61	-32.24	-25.24	-18.77	-12.53	-6.41	-0.33
6	-53.51	-39.98	-31.75	-24.80	-18.36	-12.13	-6.01	+0.08
7	-52.17	-39.39	-31.29	-24.39	-17.96	-11.74	-5.63	+0.44
8	-51.01	-38.84	-30.85	-23.99	-17.58	-11.37	-5.26	+0.81
9	-49.99	-38.32	-30.44	-23.61	-17.22	-11.02	-4.91	+1.16
10	-49.07	-37.83	-30.04	-23.25	-16.87	-10.68	-4.57	+1.49
11	-48.25	-37.37	-29.66	-22.90	-16.54	-10.35	-4.25	+1.82
12	-47.49	-36.93	-29.29	-22.57	-16.22	-10.03	-3.93	+2.13
13	-46.80	-36.51	-28.95	-22.25	-15.91	-9.73	-3.63	+2.43
14	-46.15	-36.11	-28.61	-21.94	-15.61	-9.43	-3.34	+2.72
15	-45.55	-35.73	-28.29	-21.63	-15.32	-9.15	-3.06	+3.00

Consultive Committee (CCITT), in its recommendation for the encoding laws in Pulse Code Modulation communication systems for voice frequency signals of commercial quality.

This recommendation contains several different tables with information for A-law and μ -law encoding requirements. The most important pair of tables contain all 128 distinctive decoder output current values expressed in normalized units. The normalized current output values for A-law and μ -law Companding DACs are presented in Tables 1 and 2, respectively. Step 0 of chord 0 in the A-law table is equal to the value of one normalized unit, whereas the corresponding normalized zero current value in the μ -law table is zero. The actual size of this normalized unit is NOT REQUIRED TO BE THE SAME for A-law and for u-law, and entries in Tables 1 and 2 should not be used for any comparison of the two encoding laws. Each table, independently, provides the information for a particular encoding law about required relationships between the output current magnitudes. In addition, the input data coding for Table 2, which contains entries for the μ -law normalized output values, is the one's complement of the input data codes suggested by the original CCITT and Bell D3 specification. However, data input coding shown in Tables 1 and 2 is accepted as standard input data coding in order to have consistent data coding for μ -law and A-law Companding DACs. The maximum normalized current values in Tables 1 and 2 are 4032 and 8031, respectively, and these values can be easily derived by summing all of the 128 normalized steps.

Additional conditions beyond the two maximum normalized values are related to the ratios, in $\mu A,$ between the amplitudes corresponding to full scale current values, and the amplitudes of output currents which are chosen as the reference outputs for A-law and for μ -law decoding devices. These reference outputs are generated as sinusoidal waveforms of 1kHz by applying a periodic sequence of eight 8-bit data words at the Companding DAC's inputs at an 8kHz rate. These sequences are specified separately for both encoding laws. The signal level at the peaks of these reference sinusoidal waveforms is chosen as the reference 0dB level. This level is implied to be the same for both encoding laws. The dB levels, calculated by using the peaks of the 1kHz sinusoidal waveforms with amplitudes which correspond to the

theoretical maximum output current values, are specified to be +3.14dB and +3.17dB above the common reference level for the A-law and μ -law decoding devices, respectively. The small difference in the specified theoretical maximum output current levels implies a very small difference between actual full scale current values for A-law and μ -law decoders. In practice, the actual level for the full scale output current values for both laws is set to be +3.00dB above the reference 0dB level. The ideal decoder output values expressed in dB down from the full scale current output for A-law and μ -law are presented in Tables 3 and 4. The reference 0dB level can be found in these tables between steps 5 and 6 on chord 7. Comparison of the numbers corresponding to step 1 in chord 0 shows a difference between the two encoding laws with respect to the output dynamic ranges. The output dynamic range is 62.57dB for A-law, (+3.00dB to -59.57dB), and 72.07dB for μ -law, (+3.00dB to -69.07dB).

In order to make the electrical designs of A-law and μ -law Companding DACs as similar as possible, the normalized unit value of current in Table 1, A-law table, is chosen to be $0.5\mu A$ and the normalized unit current quantity in Table 2, μ -law table, is chosen to be 0.25 µA. These different "unit" values will cause the steps in chord 0 for A-law Companding DACs to be twice as large as the corresponding μ -law device step sizes. Consequently, the ideal full scale absolute current values corresponding to 4032 and 8031 normalized units are 2016μA for A-law and 2007.75μA for μ-law DACs. Tables 5 and 6 contain all 128 absolute decoder output current values in μA . These tables can be further expressed in terms of percent of full scale current output, which may be important for some "percentage" oriented applications. Tabulated summaries of step and chord endpoint sizes which can be extracted from Tables 1 through 6 are presented in Tables 7 and 8. The last column in these tables points out that the best resolution and accurac e re achieved in chord 0 of the Companding DAC's transfer function.

The output current values presented in Tables 5 and 6 are ideal output currents with ideal reference currents of $528\mu A$ and $512\mu A$, respectively. The output current deviations for the communication application of Companding DACs are specified by the compandor tracking system requirements which are illustrated for both decoders in Figures 11 and 12. In both figures a dotted line represents a total gain deviation, in dB, for

TABLE 5
IDEAL A-LAW DECODER OUTPUT CURRENT IN MICROAMPS (SIGN BIT EXCLUDED)

STEP	200		12	CH	IORD		7079	
	0	1	2	3	4	5	6	7
0	.500	16.500	33.000	66.000	132.00	264.00	528.00	1056.00
1	1.500	17.500	35.000	70.000	140.00	280.00	560.00	1120.00
2	2.500	18.500	37.000	74.000	148.00	296.00	592.00	1184.00
3	3.500	19.500	39.000	78.000	156.00	312.00	624.00	1248.00
4	4.500	20.500	41.000	82.000	164.00	328.00	656.00	1312.00
5	5.500	21.500	43.000	86.000	172.00	344.00	688.00	1376.00
6	6.500	22.500	45.000	90.000	180.00	360.00	720.00	1440.00
7	7.500	23.500	47.000	94.000	188.00	376.00	752.00	1504.00
8	8.500	24.500	49.000	98.000	196.00	392.00	784.00	1568.00
9	9.500	25.500	51.000	102.000	204.00	408.00	816.00	1632.00
10	10.500	26.500	53.000	106.000	212.00	424.00	848.00	1696.00
11	11.500	27.500	55.000	110.000	220.00	440.00	880.00	1760.00
12	12.500	28.500	57.000	114.000	228.00	456.00	912.00	1824.00
13	13.500	29.500	59.000	118.000	236.00	472.00	944.00	1888.00
14	14.500	30.500	61.000	122.000	244.00	488.00	976.00	1952.00
15	15.500	31.500	63.000	126.000	252.00	504.00	1008.00	2016.00
STEP SIZE	1	1	2	4	8	16	32	64

TABLE 6 IDEAL μ -LAW DECODER OUTPUT CURRENT IN MICROAMPS (SIGN BIT EXCLUDED)

				CHO	RD			
STEP	0	1	2	3	4	5	6	7
0	.000	8.250	24.750	57.750	123.75	255.75	519.75	1047.75
1	.500	9.250	26.750	61.750	131.75	271.75	551.75	1111.75
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.75
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.75
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.75
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.75
6	3.000	14.250	36.750	81.750	171.75	351.75	711.75	1431.75
7	3.500	15.250	38.750	85.750	179.75	367.75	743.75	1495.75
8	4.000	16.250	40.750	89.750	187.75	383.75	775.75	1559.75
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.75
10	5.000	18.250	44.750	97.750	203.75	415.75	839.75	1687.75
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.75
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.75
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.75
14	7.000	22.250	52.750	113.750	235.75	479.75	967.75	1943.75
15	7.500	23.250	54.750	117.750	243.75	495.75	999.75	2007.75
STEP	.5	1	2	4	8	16	32	64

TABLE 7
A-LAW DECODER STEP SIZE AND CHORD SIZE SUMMARY

Chord	Step Size Normalized to Full Scale	Chord Endpoints Normalized to Full Scale	Step Size in μA with 2016μA F. S.	Chord Endpoints in μA with 2016μA F. S.	Step Size as a % of Full Scale	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale	Resolution & Accuracy of Equivalent Binary DAC
0	2	31	1.0	15.5	0.05%	0.77%	-42.28	Sign + 11 Bits
1	2	63	1.0	31.5	0.05%	1.56%	-36.12	Sign + 11 Bits
2	4	126	2.0	63.0	0.1%	3.13%	-30.10	Sign + 10 Bits
3	8	252	4.0	126.0	0.2%	6.25%	-24.08	Sign + 9 Bits
4	16	504	8.0	252.0	0.4%	12.5%	-18.06	Sign + 8 Bits
5	32	1008	16.0	504.0	0.8%	25.0%	-12.04	Sign + 7 Bits
6	64	2016	32.0	1008.0	1.6%	50.0%	-6.02	Sign + 6 Bits
7	128	4032	64.0	2016.0	3.2%	100%	0	Sign + 5 Bits

TABLE 8 $\mu\text{-LAW}$ DECODER STEP SIZE AND CHORD SIZE SUMMARY

Chord	Step Size Normalized to Full Scale	Chord Endpoints Normalized to Full Scale	Step Size in µA with 2007.75µA FS	Chord Endpoints in μA with 2007.75μA FS	Step Size as a % of Full Scale	Chord Endpoints as a % of Full Scale	Chord Endpoints in dB Down from Full Scale	Resolution & Accuracy of Equivalent Binary DAC	
0	2	30	0.5	7.5	0.025%	0.37%	-48.55	Sign + 12 Bits	
1	4	93	1.0	23.25	0.05%	1.16%	-38.73	Sign + 11 Bits	
2	8	219	2.0	54.75	0.1%	2.73%	-31.29	Sign + 10 Bits	
3	16	471	4.0	117.75	0.2%	5.86%	-24.63	Sign + 9 Bits	
4	32	975	8.0	243.75	0.4%	12.1%	-18.32	Sign + 8 Bits	
5	64	1983	16.0	495.75	0.8%	24.7%	-12.15	Sign + 7 Bits	
6	128	3999	32.0	999.75	1.6%	49.8%	-6.06	Sign + 6 Bits	
7	256	8031	64.0	2007.75	3.2%	100%	0	Sign + 5 Bits	

Fig. 11. CCITT A-Law Compandor Tracking Specification.

various signal levels which can be distributed over the encoder and decoder portions of a "one way" communication system. It is understood that encoder and decoder system portions are implemented with corresponding Companding DACs. For the Bell D3 system μ -law tracking specification, the -37dBmo and -50dBmo output current levels can be found between steps 11 and 12 on chord 1, and steps 8 and 9 on chord 0, respectively. For the CCITT A-law compandor tracking specification, the -40dBmo, -50dBmo, and -55dBmo output current levels can be found in the corresponding A-law tables between steps 13 and 14 on chord 0, steps 4 and 5 on chord 0, and steps 2 and 3 on chord 0, respectively. Conversion of the requirements imposed by Figures 11 and 12 to absolute current values produces corresponding absolute decode output current tables with minimum, ideal and maximum values specified for each step.

Fig. 12. Bell D3 System Compandor Tracking Specification.

TABLE 9

ABSOLUTE DECODER OUTPUT CURRENT LIMITS IN μ A

CONFORMING TO BELL D3 COMPANDOR TRACKING SPECIFICATIONS

STEP	CHORD NO.							
NO.	0	1	2	3	4	5	6	7
90.86	250	7.789	24.048	56.112	120.24	248.49	505.00	1018.0
0	.000	8.250	24.750	57.750	123.75	255.75	519.75	1047.7
	.250	8.739	25.473	59.436	127.36	263.22	534.93	1078.3
50.0-	.250	8.733	25.991	59.998	128.01	264.04	536.10	1080.3
1	.500	9.250	26.750	61.750	131.75	271.75	551.75	1111.
	.750	9.798	27.531	63.553	135.60	279.69	567.86	1144.
	.750	9.677	27.934	63.885	135.79	279.59	567.19	1142.
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.
	1.250	10.857	29.590	67.670	143.83	296.15	600.80	1210.
	1.250	10.621	29.878	67.771	143.56	295.13	598.28	1204.
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.
anieqbail b	1.750	11.917	31.648	71.787	152.06	312.62	633.73	1275.
aless lind	1.750	11.565	31.821	71.658	151.33	310.68	629.37	1266.
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.
28,85-	2.250	12.976	33.706	75.904	160.30	329.09	666.66	1341.
67)86-	2.250	12.509	33.764	75.544	159.10	326.22	660.46	1328.
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.
X2 ng-	2.750	14.035	35.765	80.020	168.53	345.55	699.60	1407.
10,85-	2.750	13.453	35.707	79.431	166.88	341.77	691.56	1391.
6	3,000	14.250	36.750	81.750	171.75	351.75	711.75	1431.
1 30.84	3.250	15.094	37.823	84.137	176.77	362.02	732.53	1473.
7	3.250	14.397	37.651	83.317	174.65	357.32	722.65	1453.
,	3.500 3.750	15.250 16.154	38.750 39.882	85.750 88.254	179.75 185.00	367.75 378.49	743.75 765.47	1495. 1539.
100	3.750							
8	4.000	15.341 16.250	39.594 40.750	87.204 89.750	182.42 187.75	372.86 383.75	753.74 775.75	1515. 1559.
0	4.250	17.213	41.940	92.371	193.23	394.96	798.40	1605.
and and the state of the state	4.248	16.285	41.537	91.090	190.20	388.41	784.83	1577.
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.
in tina and	4.767	18.272	43.998	96.488	201.47	411.42	831.34	1671.
ontanones	4.720	17.229	43.480	94.977	197.97	403.95	815.92	1639.
10	5.000	18.250	44.750	97.750	203.75	415.75	839.75	1687.
DOSTRES N	5.296	19.331	46.057	100.604	209.70	427.89	864.27	1737.
and it beautiful	5.192	18.173	45.424	98.863	205.74	419.50	847.02	1702.
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.
THE UNITED	5.826	19.812	48.115	104.721	217.93	444.36	897.21	1802.
CHI TOTT OF	5.664	19.675	47.367	102.750	213.52	435.05	878.11	1764.
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.
bns 61 a	6.356	20.841	50.174	108.838	226.17	460.82	930.14	1868.
a bone	6.136	20.647	49.310	106.636	221.29	450.59	909.20	1826.
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.
2100 1200	6.885	21.871	52.232	112.955	234.40	477.29	963.07	1934.
14	6.608	21.619	51.253	110.523	229.06	466.14	940.29	1888.
14	7.000	22.250	52.750	113.750	235.75	479.75	967.75	1943.
CSTINACT (7.415	22.900	54.290	117.072	242.63	493.76	996.01	2000.
15	7.080 7.500	22.590 23.250	53.197	114.409	236.83	481.68	971.39	1950.
15	7.500	23.250	54.750 56.349	117.750 121.188	243.75 250.87	495.75 510.23	999.75 1028.94	2007. 2066.
STEP	1/		7					
SIZE	.5	1	2	4	8	16	32	64

The decoder output current values which comply with the Bell D3 compandor tracking requirements are presented in Table 9. A similar table can be generated for the CCITT A-law compandor tracking specification. The corresponding encode output values can be derived from the decode output values by adding a half a step to all entries in a given decode table. The specified limit values include the combined effects of chord end point deviations, step nonlinearity, encode output errors, full scale current deviation from ideal, full scale symmetry error, zero scale current error, full scale drift, and output impedance change over the specified voltage compliance and temperature ranges. The adjacent step current levels in Table

9 for any particular Companding DAC will not overlap, as might be implied from the presented minimum and maximum values, because the device is guaranteed to be monotonic.

If the decode output limits for the $\mu\text{-law}$ Companding DAC are specified to be $\pm 1/2$ step from the ideal values, Table 9 can be replaced by a similar table. The most important difference between the two tables would be found in the limit values corresponding to the lower step current values in chords 1 through 7. The approximate representations of $\pm 1/2$ step, ± 1 step limits and the corresponding Bell D3 compandor tracking limits in Table 9 are illustrated in Figure 13.

Fig. 13. Output Current Limit Diagrams for D3, $\pm 1/2$ Step, and ± 1 Step Tolerance Specifications.

Parametric Analysis and Recommendations

A detailed specification for a digital-to-analog converter should include information about important DAC parameters such as resolution, monotonicity, dynamic range, settling time, nonlinearity, full scale and zero scale current errors, gain error, output voltage compliance, input, output and reference signal levels, operating temperature range, power supply range and power dissipation.

The resolution of a DAC is determined by the maximum number of digital input combinations which can be used to generate analog output signals. The resolution for Companding DACs with sign-plus-7 bit digital data input signals is ±128 steps. A converter is monotonic if its analog output always increases with an increase in the digital value of the input data code. Monotonicity for the Am6070/71/72/73 devices, is guaranteed over the full operating temperature range and for both groups of 128 steps. Two parameters which are used to describe nonlinear errors in a DAC's transfer function are the DAC's nonlinearity and the differential nonlinearity error. The nonlinearity of a Companding DAC is defined as the maximum deviation of the actual output values from an ideal piece-wise linear characteristic calculated from measurements of the actual full scale and zero scale current values. These two current measurements can be used to compute the corresponding theoretical chord endpoint values, and nonlinearity is measured as the difference between this calculated transfer characteristic and the actual current values at the output of the DAC. The differential nonlinearity of the device is a measure of how much any single step current value varies with respect to its theoretical value, (calculated from the actual full scale output current). Differential nonlinearity of ±1/2 step will ensure monotonic behavior. These errors and all other transfer function related errors are specified for the Am6070 Companding DAC Family by the limit current values in the corresponding Absolute Decoder Output Current Level Table.

The DAC's current outputs have a very high impedance, and the output current will not change its value significantly with changes in the applied voltage at the DAC's outputs. The output voltage compliance range is defined as the maximum range of voltages, at the DAC's output, that can be sustained while meeting the output current specifications. The absolute

maximum output voltage swing, ($I_{REF}=528\mu A$), is specified between V- plus 10V and V- plus 36V, where V- is the Companding DAC's negative power supply. The maximum range for the reference inputs $V_{R(-)}$ and $V_{R(+)}$ is specified to be between the V- and V+ power supply values. The maximum power supply range, V+ to V-, is specified at 36V, and maximum power dissipation for temperatures less than 100°C is rated at 500mW.

The settling time for a DAC is defined as the elapsed time, after an input code transition, required for the DAC's output to reach a final value within specified limits. These limits are generally ±1/2 of the corresponding step current value. The settling time is usually specified for the input code transition from zero scale to full scale value, and for the Companding DAC Am6070 family the typical value is 300ns. However, this is not the worst case transition. Because of the different step sizes, the output current settling error band changes as the chord current changes, becoming smaller for lower chords. Settling times in chord 7 are measured when the output settles within $\pm 32\mu A$ of its final value, while settling times in chord 0 are measured when the output settles to within ±.25 µA of it's final value. The worst case transition is, therefore, the transition from full scale current down to zero scale current value, and requires a settling time of $4\mu s$ for μ -law DACs and 2.5 µs for A-law DACs.

The currents of each of the four Companding DAC's analog outputs can be measured using the circuit shown in Figure 14. This circuit contains 4 resistors, R1, R2, R3, R4, and two operational amplifiers, A1 and A2. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately 2µA at full scale). The input offset current of the operational amplifier also increases the output measurement error. This error is most significant near zero scale. The Am101A and Am308 devices, for example, may be used for A1 and A2, since their maximum offset currents which would add directly to the measurement error, are only 10nA and 1nA, respectively. The input offset voltage of the amplifiers, with output resistor values of $2.5k\Omega$, also contributes to the output measurement error by a factor of 400nA for every mV of offset voltage. Therefore, to minimize this error, the offset voltages of A1 and A2 should be nulled.

Fig. 14. Companding DAC Output Current DC Test Circuit.

The recommended operating range for the reference current I_{REF} is 0.1mA to 1.0mA. The full scale output current, I_{FS} , is a linear function of the reference current, and may be approximated using the equation $I_{FS}=3.9^{\circ}I_{REF}$. This tight relationship alleviates the requirement for trimming the I_{REF} current if the R_{REF} resistors' values are within $\pm 1\%$ of the calculated value. Lower values of I_{REF} will reduce the negative power supply current, and will increase the reference amplifier negative common mode input voltage range. However, the device accuracy specifications are not guaranteed at reference currents below 0.5mA.

The ideal value for the reference current, (V_{REF}/R_{REF}) , is $528\mu A$ for μ -law and $512\mu A$ for A-law Companding DACs. The corresponding ideal full scale decode current values are $2007.75\mu A$ and $2016\mu A$, respectively. A percentage change from the ideal I_{REF} value produced by changes in the V_{REF} or R_{REF} values produces the same percentage change in the decode and encode output current values. The positive voltage supply, V+, may be used, with certain precautions, for the positive reference voltage. In this case, the reference resistor $R_{REF(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of about $0.01\mu F$. The total resistor value should provide the required reference current. The $R_{REF(-)}$ resistor value should approximately equal the $R_{REF(+)}$ value in order to compensate for errors caused by the reference amplifier's input bias current.

An alternative to the positive reference voltage biasing is the application of a negative voltage to the $V_{R(-)}$ terminal through the resistor $\mathsf{R}_{\mathsf{REF}(-)}$ with the $\mathsf{R}_{\mathsf{REF}(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathsf{V}_{R(-)}$ terminal while the reference current flows from ground through $\mathsf{R}_{\mathsf{REF}(+)}$ into the $\mathsf{V}_{R(+)}$ terminal.

The Companding DAC can be used as a multiplying DAC by varying the reference current. It is important that the reference current have a DC component that guarantees an uninterrupted flow of current INTO the $V_{R(+)}$ terminal. The input reference amplifier has sufficient bandwidth and slew rate, $(0.12\text{m}\text{A}/\mu\text{s}\text{ minimum})$, to handle small signal inputs up to 5% of reference current at frequencies up to 500KHz, and large signal inputs of up to 50% of reference current at frequencies up to 80kHz.

The Companding DAC has a wide output voltage compliance suitable for driving a variety of loads. Using the ideal recommended value for I_{REF} and V-=-15V, the positive voltage compliance limit is +18V and the negative voltage compliance limit is -5.0V. For other values of I_{REF} and V-, the negative voltage compliance limit, $V_{\text{OC}(-)}$, may be calculated as follows:

$$V_{OC(-)} = (V-) + 2 (I_{REF} \cdot 1.55k\Omega) + 8.4V,$$

where 1.55k Ω and 8.4V are equivalent worst case values for the Companding DAC.

The V_{LC} input controls the input logic threshold voltage, allowing the device to interface with various logic families. This input should be placed at a potential which is 1.4V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 15. For TTL-level logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than -5V.

Fig. 15. Interfacing Circuits for ECL, CMOS, HTL and NMOS Logic Inputs.

With the V- voltage between -15V and -11V, the $V_{OC(-)}$ value, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- value chosen. With V+ between +5V and +15V, the reference amplifier common mode positive voltage range and the V $_{LC}$ input values are reduced by an amount equivalent to the difference between +15V and the V+ value chosen.

TYPICAL CIRCUIT APPLICATIONS

Basic Circuit Connections

The Companding DAC belongs to the class of multiplying D to A converters with true current outputs. The input reference current can be generated by a unipolar constant reference voltage source or by a bipolar AC reference voltage. The applied bipolar reference source usually modulates the reference current, IREE, supplied from the constant reference voltage as shown in Figure 16. Figure 16a shows a high input impedance configuration where the bipolar input signal VIN modulates the voltage level at the V_{R(+)} input by forcing the voltage across R_{REF} to be V_{REF} - V_{IN}, which in turn modifies IREF. Figure 16b shows low input impedance connections, where I_{RFF} equals the sum of the DC reference current from V_{REF} and the AC input current from V_{IN}. For both low impedance and high impedance connections, the minimum reference current value at the reference input, $V_{R(+)}$ should be at least 0.1mA and the maximum value should not exceed

The wide output voltage compliance range, $(-5V \text{ to } +18V \text{ with } I_{REF} = 528\mu\text{A}$ and V-=-15V), allows a variety of loads to be driven. Two typical connections are shown in Figure 17. Voltage output relationships for single ended and differential resistive output connections are described in the output voltage table of Figure 17a. The reference current in this resistive load example is set to be $528\mu\text{A}$ (μ -law Companding DAC). The resulting negative voltage generated by the cur-

Fig. 16. Companding DAC's Multiplying Connections.

rents at the outputs A, B, and C, does not exceed the minimum value of $-5\mathrm{V}$, which corresponds to the lower limit of the output voltage compliance range. In the example with balanced load connections, the sum of the common mode voltage, V_{CM} , and the differential voltage across the load should also be within the $-5\mathrm{V}$ and $+18\mathrm{V}$ output voltage compliance limit.

Fig. 17. Companding DAC's Output Connections.

Operational amplifiers and/or comparators can be driven by Companding DACs. The circuits shown in Figure 18 demonstrate various voltage ranges which can be achieved at the outputs of operational amplifiers. The circuit in Figure 18a provides 0V at the op-amp output whenever the E/D input is set to logic 1. When the circuit is in the decode mode, $E/\overline{D} = 0$ the output voltage polarity is determined by the sign bit input level. With the sign bit set low, the IOD(-) output is active and the corresponding full scale output current, $I_{FS} \approx$ 2mA, will generate a maximum negative voltage of -5V at the op-amp's positive input. The chosen resistor values and their connections provide the op-amp with a gain of 2 and a maximum negative output voltage of -10V. With the sign bit set high the I_{OD(+)} output is active and the op-amp's negative input will be held at virtual ground. With a full scale current of 2mA flowing into the IOD(+) pin, the op-amp will act as a transconductance amplifier supplying 2mA to the I_{OD(+)} pin via the $5k\Omega$ feedback resistor. This current will generate a maximum of +10V at the output, which will make the total output voltage swing between -10V and +10V. The circuit in Figure 18b similarly provides a voltage swing between -5V and +5V across the output capacitor. The output dynamic range expander circuit connections, shown in Figure 19, extend the μ -law Companding DAC's dynamic range from 72dB to 78dB. The A-law Companding DAC's dynamic range can be similarly increased from 62dB to 66dB. In this circuit, the

outputs $I_{OD(+)}$ and $I_{OE(+)}$ are tied together, and $I_{OD(-)}$ and $I_{OE(-)}$ are tied together; the E/D input is used as a fifth step which represents the least significant digital data input, and provides the desired interleaving between the encode and decode current levels. Each chord now contains 32 uniform steps, with the smallest step size value $0.25\mu A$ and the largest value $32\mu A$. The resulting full scale current is equal to the corresponding full scale encode current value, and the ratio between the full scale current value and the smallest current step value, $I_{\rm FS}/0.25$, exceeds 8000 for the μ -law Companding DAC. The smallest and the largest current step sizes will generate $0.625 {\rm mV}$ and $80 {\rm mV}$ changes, respectively, at the op-amp output.

Digital inputs SB and E/\overline{D} can be used together with data inputs B1 through B7 to provide an output multiplexing capability when connected as shown in Figure 20. The logarithmic digital attenuator circuit combines the companding DAC's multiplying capabilities with the multiplexing function which is accomplished by using the SB and E/\overline{D} inputs as channel select inputs. The analog signal, V_{IN} , applied at the $V_{R(-)}$ reference input can be attenuated by approximately 0.3dB per step and 6dB per chord, throughout most of the output dynamic range. The SB and E/\overline{D} inputs provide signal switching combinations which will multiplex the attenuated analog signal into four different analog channels.

Fig. 18. Some Output Voltage Expansion Schemes.

Fig. 19. Output Dynamic Range Expander.

Fig. 20. Logarithmic Digital Attenuator.

For applications where the output dynamic range is to be smaller than 78dB, the circuit connection shown in Figure 21 can be used. With given $V_{\rm REF}$ and $V_{\rm IN}$ values, there are three resistor values, $R_{\rm REF}$, R1, and R2, which need to be determined. The starting assumption is that a maximum gain of unity from $V_{\rm IN}$ to $V_{\rm OUT}$, (0dB), is achieved with all digital inputs set to logic 1. The digital inputs all set to logic 0 will determine the minimum gain of the circuit and consequently the desired output dynamic range. Considering the currents flowing through resistors R1, R2, and $R_{\rm REF}$, and the DAC's output with digital inputs at all 1's, the following relationships can be established:

$$\begin{split} I_{R1} &= V'_{OUT}/R1 = I_{OUT} + I_{R2}; \, I_{OUT} \approx 3.8 \, I_{REF}; \, I_{R2} = V_{IN}/R2; \\ I_{REF} &= (V_{REF} - V_{IN})/R_{REF} \end{split} \eqno(1)$$

The relationship between output voltages V'_{OUT} and V_{OUT} and input voltages, V_{REF} and V_{IN} , can be expressed as follows:

$$V'_{OUT} = 3.8 (R1/R_{REF}) V_{REF} - [3.8(R1/R_{REF}) + R1/R2] \cdot V_{IN}$$
(2)

$$V_{OUT} = -[3.8 (R1/R_{REF}) + R1/R2] \cdot V_{IN}$$

In order to have unity gain, $V_{OUT}/V_{IN} = 1$, the coefficient for V_{IN} in the equations (2) must also be 1:

$$-[3.8 (R1/R_{REF}) + R1/R2] = 1$$
 (3)

Two additional conditions for calculating R_{REF} , R1 and R2 values are the minimum gain value G_{min} , and the requirements for the minimum and maximum I_{REF} values, 0.1mA and 1mA, respectively:

$$G_{min,dB} = 20 \log [V_{OUT}/V_{IN}] = -20 \log (R2/R1),$$
 (4)

and
$$0.1\text{mA} \le (V_{REF} - V_{IN})/R_{REF} \le 1\text{mA}$$
 (5)

The op-amp output in Figure 21 has a DC component that will be attenuated as well as the AC input signal. The output coupling capacitor is used to remove the DC level. However, during switching, the change in DC level will cause a step transient or "click" at the output.

Fig. 21. AC Coupled Digital Attenuator, Adjustable Range.

Operating Modes

The Companding DAC has two basic operating modes, decode and encode, which are controlled by the Encode/Decode, E/\overline{D} , input signal. A logic 0 applied to the E/\overline{D} input places the Companding DAC in the decode mode, and current will flow into the $I_{OD(+)}$ or $I_{OD(-)}$ output, depending on the state of the sign bit, SB, input. A logic 1 at the E/\overline{D} input places the Companding DAC in the encode mode, which differs from the decode mode by a half step offset current in each chord, and current flows into one of the I_{OE} outputs.

The basic decoder connection for the Companding DAC is shown in Figure 22. The E/\overline{D} input is grounded, which keeps the Companding DAC in the decode mode. The eight digital data inputs generate an output decode current which is converted by an operational amplifier to a bipolar voltage, $E_{\rm O}$. Several discrete $E_{\rm O}$ values are tabulated in Figure 22 for both $\mu\text{-law}$ and A-law versions of Companding DACs. The values indicated in parenthesis correspond to the A-law Companding DAC.

The Companding DAC can be used together with a Successive Approximation Register, SAR, a comparator, and additional SSI logic elements to perform the encoding or compression of an analog signal. The circuit, Figure 23, represents an Analog-to-Digital data conversion system. The first

task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input. When the proper START, S, and CONVERSION COMPLETE, CC, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/D input with a logic 0 level. No current flows into the IOE outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with ground which is applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the other input to the exclusive-or gate is held at a logic 0 level by the logic shown in Figure 23. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E/\overline{D} input back to a logic 1 level because the \overline{CC} signal changes. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Companding DAC. Depending upon the SB input level, the Companding DAC's output current will flow into the $I_{OE(+)}$ or $I_{OE(-)}$ output.

Fig. 22. Detailed Companding DAC Decoder Connection.

Fig. 23. Detailed Companding DAC Encode Connection.

Nine clock pulses are required to obtain a digital, non-complemented, binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog input signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the input analog signals are usually prevented by using sample and hold circuitry.

When the Companding DAC is used in a feedback loop with a SAR, the data input transitions in the successive approximation search technique exhibit a maximum change of two adjacent bits, and the starting pattern is 0111 1111. The next successive pattern after the first iteration, will be either 00111111 or 10111111. The worst case settling times are experienced during step bit changes in chord 0, where the output current must settle to ±0.25μA. The worst case settling time is about 600ns for code changes in the upper end of chord zero and 1800ns for code changes near zero. The system clock must take into account the settling time of the DAC. the switching speed of the comparator and the time delays in the SAR. In general, the DAC is the slowest component, (comparator Am311's delay is about 200ns and SAR delays are about 46ns), and will determine the clock rate. For optimum accuracy the clock rate should accommodate the 1800ns settling time near zero scale current. However, faster clock rates (1100ns-1800ns) can be used with some degradation in accuracy for signals near zero.

Microprocessor Based Data Acquisition Systems Applications

High output resolution with guaranteed monotonicity over its entire dynamic range and digitally controllable inputs makes the Companding DAC very attractive for application in data acquisition and control systems. The encoding capability, in

particular, provides an acquisition system with considerable flexibility, limited only by the rate of change of the acquired analog input signals.

A typical data acquisition system using the Companding DAC is shown in Figure 24. The A to D data conversion procedure is controlled by the 9080A Microprocessor set, (Am9080A 8-bit Microprocessor, Am8224 Clock Generator and Driver, and Am8238 System Controller and Bus Driver). The START one-shot circuit, Am26S02 will be activated by the START A/D command, $(\overline{CS} = 0, \overline{IOW} = 0)$, which will initiate the A to D procedure by setting the S input of the SAR circuit, Am2502, to a logic 0. The width of the one-shot pulse must be greater than the period of the DATA CLOCK signal to initialize the SAR logic. The duration of DATA CLOCK period must accommodate the worst settling time of the DAC and comparator Am311, to ensure valid data at the SAR input. The one-shot circuit may be eliminated, provided that the expected worst case settling time does not exceed 1 µs and the SYSTEM CLOCK, \$1, does not exceed 2MHz. The first data clock after S goes low sets the CC output high, which in turn switches the input sample and hold circuit, (LF198), into the hold mode and puts the microprocessor into a wait state. After eight subsequent DATA CLOCK periods, (8 x 2µs), the conversion complete signal, CC, changes from logic 1 to logic 0. which puts the S & H circuit into the sample mode and allows the microprocessor to resume its functions by removing the logic 0 from the RDYIN input of the Am8224 chip. With a logic 1 at the SAR's S input, the DATA CLOCK cannot change the SAR's digital data outputs after completion of conversion. Thus, these outputs will be stable and available for subsequent interrogation. The microcomputer will issue a READ A/D command, ($\overline{CS} = 0$, $\overline{IOR} = 0$), which enables the threestate data buffer, Am25LS241, and transfers the data outputs of the SAR to the system data bus and into the micro-

Fig. 24. Microprocessor Controlled Data Acquisition System.

processor's accumulator. A subsequent memory write command, then stores this data in the desired memory location. For the next A to D data conversion, the microprocessor must generate another START A/D signal. An A to D data acquisition can be achieved using only three 9080A instructions.

OUT (to ADC device) -generation of START A/D command IN (from ADC device) -generation of READ A/D command STA (to MEMORY) -store digital representation of the acquired analog signal into memory

If the required nine DATA CLOCK periods present a prohibitively long wait state for the processor, the A to D procedure can be more efficiently handled using a suitable interrupt scheme. The logic shown in Figure 25 illustrates the A to D and D to A conversion using three interrupts. The external interrupt signal, VALID RECEIVE DATA, which initializes the A to D conversion, is received and processed by the Am9519 Universal Interrupt Controller. It's output, GINT, is recognized by the 9080A Microprocessor logic and generates the INTA signal at the output of the Am8238. The VALID RECEIVE DATA signal will cause the receive S & H circuit to switch into the hold mode after 5 µs, via Am26S02 and associated flipflop circuitry. This delay is needed to satisfy the sample time requirements for the (Am)LF398 S & H circuit, with Ch = 1000pF. This one-shot circuit may be eliminated if the analog input data is maintained unchanged for about $25\mu s$ after recognition of the VALID RECEIVE DATA signal. Upon receipt of an INTA signal, the Am9519 provides the address of an appropriate subroutine to the CPU. This subroutine will initiate the A to D conversion by generating the START A/D command. After A to D conversion is complete, the DATA READY signal, identical to the CC signal, generates an interrupt for the 9080A microprocessor to read and store the results of the A to D data conversion via an octal, non-inverting, three-state driver, the Am25LS241A. The CC signal at the same time will

switch the receiving S & H circuitry into the sample mode. Two sequences of 9080A instructions which perform the acquisition operations described are detailed in Table 10. The corresponding functional flow charts are shown in general form in Figure 26.

The addition of SSI logic shown in Figure 25 generates signals CS2 and CS3 which transmit an analog signal generated by the DAC from digital information stored in the system memory. An external interrupt request for transmission of the analog signal, TRANSMISSION REQUEST, will initiate the D to A conversion subroutine. A corresponding word in memory will be fetched into the 9080A accumulator and then latched into the Am25LS374, Octal D type register, via signals CS2 and IOW. At the same time, the non-inverting three-state data bus transceivers, Am8T28, will be turned to the direction which corresponds to the D to A conversion procedure. The latch captures valid 9080A accumulator data, which will be used as the digital inputs throughout the D to A conversion procedure. The next instruction in sequence will be a command to start sampling the Companding DAC's decode outputs, (CS3 = 0, IOW = 0), which will be already settled. Assuming that one 9080A I/O instruction takes about 5 µs at a system clock frequency of 2MHz, the next command in the instruction sequence may generate a signal VALID TRANS-MISSION DATA, (CS3 = 0, IOR = 0), which will put the transmission S & H circuitry into the hold mode and return the data transceivers. Am8T28, to the direction which corresponds to the A to D conversion procedure. Input data for the Companding DAC is supplied by the SAR circuitry. A sequence of 9080A instructions which could handle the D to A conversion procedure and analog signal transmission through the programming I/O interrupt scheme shown, is presented in Table 10. The corresponding functional flow chart is shown in Figure 26.

Fig. 25. Microprocessor Controlled Single Channel Transceiver Converter System.

Fig. 26. Functional Interrupt Subroutine Flow Charts for Data Transceiving Converter.

TABLE 10
INTERRUPT SUBROUTINES FOR SINGLE CHANNEL DATA TRANSCEIVING
CONVERTER SYSTEM IMPLEMENTED WITH 9080A INSTRUCTIONS

VALID RECEIVE DAT	TA Interrupt Subroutine:	
OUT (to ADC)	- Generate START A/D command.	
El	- Enable other CPU interrupts.	
RET	- Return to main program.	
DATA READY Interre	upt Subroutine:	
STA (to TEMP)	- Save accumulator content.	
IN (from ADC)	Read digital results from SAR outputs into accumulator.	
STA (to Memory)	Store accumulator's content into memory.	
LDA (from TEMP)	Restore accumulator's content before subroutine.	
EI	- Enable other CPU interrupts.	
RET	- Return to main program.	
TRANSMISSION REG	QUEST Interrupt Subroutine:	
STA (to TEMP)	- Save Accumulator content.	
LDA (from DATA)	Load accumulator with digital data which will be converted to an analog signal.	
OUT (to LATCH)	Output data for D to A conversion to the latch circuit and START D/A conversion.	
OUT (to DAC)	Generate Transmission SAMPLE command for S & H circuitry, CS3 = 0, IOW = 0.	
IN (from DAC)	Generate Transmission HOLD command for S & H circuitry, and VALID TRANSMISSION DATA signal.	
LDA (from TEMP)	Restore accumulator's content before interrupt subroutine.	
EI	- Enable other CPU interrupts.	
RET	- Return to main program.	

Motion Control Systems Applications

The high resolution and accuracy of the Companding DAC transfer function for small output signal levels provide a very smooth and precise analog control signal to devices whose outputs are voltage or current dependent. However, when major disturbances are detected in the system, the Companding DAC will produce correspondingly larger control analog signals which cause very fast output response of the controlled analog device. Figure 27 shows the Companding DAC used in a feedback loop to provide a small analog error signal to control the speed and direction of a voltage controlled motor in order to properly position the shaft. The shaft encoder generates an 8-bit digital word which represents the current shaft position of the motor.

There are 256 discrete positions of the shaft which can be identified at the shaft encoder's output. This output will be

sampled and latched using an 8-bit register, Am25LS273. The sampling rate is determined by dividing the time for one shaft revolution at the motor's highest speed by 256. The maximum rate will be limited by propagation delays through the comparator and ALU chips and by the settling time of the Companding DAC. The output of the shaft position sampling register, data "B", is digitally compared with the desired shaft position, data "A". The magnitude of the difference between digital words "A" and "B" is directly porportional to the error of the motor shaft position. The sign of this digital subtraction provides information about the polarity of the analog error signal which drives the motor in the direction necessary to decrease the error. The speed of the motor is proportional to the magnitude of the error |A-B|. The sign and magnitude of the error are determined by two comparator chips, (Am9324 Four-Bit Comparator), and two ALU chips, (Am25LS381

Figure 27. Nonlinear, Computer Controlled, Digital-to-Shaft-Position Conversion System.

Four-Bit Arithmetic Logic Unit). The end of the motor shaft correction procedure is indicated to the computer via the comparator's output "A=B".

The eight digital bits of the error magnitude |A-B| are applied to the seven data inputs of the Am6070 and to the E/\overline{D} input. The Am6070 outputs are connected to provide 32 steps per chord, which totals 256 steps or a 78dB output dynamic range. The smallest and largest step sizes are $0.25\mu A$ and $32\mu A$, respectively. The sign bit value is taken from the "A>B" output of the comparator circuit, and determines the polarity of the op-amp, (Am)LF356, output voltage.

The computer function in Figure 27 is mainly confined to initializing the shaft correction procedure by latching the desired shaft position, data "A". Clear commands may be issued during the power-up procedure in order to bring the motor shaft to some initial position. The application of the Companding DAC with its nonlinear transfer characteristic and its non-uniform step sizes which are proportional to the magnitude of the error, |A-B|, significantly reduces system transient response effects such as over-shoots and ringing while minimizing the time required to reach the new shaft position. The system can be programmed to be either critically damped (minimum response time) or under damped (no overshoot).

Figure 28 shows a Companding DAC in a feedback loop which provides small analog error signals for control of the velocity of a voltage controlled motor. This is a paper cutting control system where paper is unwound from a feed roll and cut to size by a mechanical knife. In this application the Companding DAC is in the velocity feedback path and its output is used to generate a velocity profile command signal. The motor rotation is initiated from a front panel by depressing the START button. A COUNT-UP command from a microprocessor sets the binary counter to its count up mode, which drives the Companding DAC inputs. When some predetermined number of counts has been reached, the counter stops and the Companding DAC is held at a constant output value. The incremental encoder produces pulse counts proportional

Fig. 28. Paper Cutting Control System.

to the distance of paper travel. The desired paper size expressed as a number of incremental encoder pulse counts is stored in a CPU storage register. The outputs of the incremental encoder are constantly accumulated in an internal CPU counter and are compared with the content of the CPU storage register throughout the entire velocity control procedure. When a match is found, the corresponding COUNT DOWN command is issued to the counter, the internal counter is cleared, and a new value is loaded into the internal storage register.

The values which control the velocity of the motor are stored in a register, external to the CPU, and its content is compared with the outputs of a binary up/down counter during the motor's acceleration and deceleration phases. Whenever a match is achieved, an interrupt signal will be generated and the working mode of the external counter changes. The final stop position is approached in a well controlled manner which stops the paper and cuts it with a minimum of overshoot and error.

Figure 29 shows the necessary logic for generation of the velocity profile control signal. The CPU will first load the external storage register, Am25LS273, via the LOAD signal, to the desired count-up value for the external up/down counter. Am25LS193. Upon recognition of the START request, the CPU issues the COUNT-UP command which enables the 8-bit comparator chip, Am25LS2521. The zero initial digital code at the Companding DAC inputs produces zero voltage at the output, Vour. Every enabled conversion clock pulse will increase the Companding DAC output current by a corresponding amount, and the VOUT increases in accordance with the Companding DAC transfer characteristic. This portion of the velocity profile control signal corresponds to the motor acceleration phase. When the counter outputs match the content of the external storage register, the interrupt signal INT1 is generated, and the UP flip-flop is reset.

This stops the up/down counter and the motor continues to rotate with a constant velocity, V1. Duration of the acceleration phase depends on the value initially stored in the external storage register and the frequency of the conversion clock. Upon recognition of the INT1 signal, the CPU will load a new value into the external storage register, which is used to decelerate the motor from velocity V1 to a lower velocity, V2.

During the constant velocity phase, V1, the encoder pulses accumulate in the CPU counter until the value "m", stored in the CPU internal storage register, is reached. At this time the CPU will issue a COUNT DOWN command and reload the internal storage register with the value "n". The sum of these two values, m+n, should represent the length of the paper expressed in encoder pulses. This value is "p" pulses shorter than the desired ideal paper length.

The COUNT DOWN command initiates the count-down mode of the external up/down counter, PHASE I, and enables the comparator. When the counter outputs match the value stored in the external storage register, the interrupt signal $\overline{\text{INT2}}$ is generated and counting stops. The motor continues to rotate with some constant velocity, V2, which is significantly smaller than velocity V1. This velocity, V2, is a function of the conversion clock frequency and the motor's mechanical parameters such as inertia, weight, etc. The mechanical parameters may cause synchronization difficulties between the second deceleration phase of the voltage waveform at V_OUT and the actual velocity of the motor. The velocity V2 is much smaller than V1 and allows a smooth, well controlled stop of the motor at the end of the PHASE II of count-down mode, and thus ensures the smallest possible overshoot and error.

Fig. 29. Microprocessor Controlled Generation of Motor Velocity Control Signal.

The INT2 signal automatically clears the external storage register to all zeros and informs the CPU that the deceleration PHASE I is complete. The CPU continues, internally, to accumulate the encoder pulses until their number becomes "n". At this time the CPU issues a new COUNT DOWN command to initiate PHASE II of the count-down mode, and reloads the internal storage register with a final number "p". This number, when summed with the previous two numbers "m" and "n", determines the final length of paper, m+n+p, and is accumulated in the internal CPU counter during PHASE II of counter's count-down mode. At the end of this phase, the INT3 signal is generated and counting stops. The number of encoder pulses in the internal counter will be compared with the number "p" stored in the internal storage register. If a satisfactory match is found, the CPU issues a CUT command to the paper cutting station and the paper is cut to the desired size. Finally, the CPU issues the CLEAR command to initialize the INT flip-flops and clear the internal counter. It also reloads both internal and external storage registers with appropriate values, so that a new velocity profile control signal can be generated. Much of the logic shown could be implemented in software, but this would require that much of the microprocessor resources be dedicated to this speed control function.

Audio System Applications

Audio system equipment applications require signal converters which can process bipolar analog audio signals within a ± 10 V range. A DAC, in an audio system, provides digital gain and/or attenuation of input audio signals. This requires a multiplying DAC, i.e., it must accept an audio signal either in single ended or differential form, and process it as a function of the digital control inputs. Ideally, an audio level control device provides an equal change, in dB, of relative signal level

between any two adjacent digital codes or steps throughout its entire output dynamic range. However, differences between steps which exceed 1dB can be annoying to the human ear. For high quality audio systems, the DAC must have low signal distortion, (on the order 0.05% or less over most of the dynamic range), large working dynamic range, (80dB or more), wide bandwidth, large signal to noise ratio, S/N, (80dB or more), and transient-free output gain-change operation which is independent of digital input states.

The Companding DAC with its multiplying feature and its ability to extend its dynamic range up to 78dB, satisfies or exceeds most of these requirements. It handles audio input signals up to $\pm 10 \text{V}$, and its output signal distortion is 0.02% or less over most of the audio signal range. Its nominal level/step resolution is 0.15dB, and its S/N ratio is 80dB or better when referred to a 1V output. However, its total useful audio dynamic range, with a maximum 1dB difference between two adjacent steps, is only 59dB, and its output exhibits DC gain step transient effects, due to the required DC bias current.

The Companding DAC's DC output current potential "click" effects must be suppressed for applications in audio systems where there are large changes in the digital input code. Figure 30 shows the connection for the necessary DC output current compensation. The output dynamic range can be adjusted by varying the value of resistor R2. To suppress the DC step transients, the current I₂ compensates for all DC changes in current I₁. The I₃ current reflects only the AC changes in current I₁ and the current through resistor R2 due to changes in the V_{IN} signal. This allows the attenuated V_{IN} signal to be DC coupled through op-amp A2. The maximum gain for the circuit is assumed to be unity, (0dB), when all digital inputs are set

Fig. 30. DC Coupled Digital Attenuator, Adjustable Range.

at logic 1. A determination of the resistor values R_{REF+} , R1 and R2, was discussed in the section on the AC coupled digital attenuator. The R_{REF-} value should be identical to R_{REF+} value and the R3 and R4 values must be equal, so that the current, I_2 , will compensate for the DC component of I_1 .

The 1dB audio resolution requirement truncates approximately 19dB from the Companding DAC's total dynamic range of 78dB. The level ratio becomes greater than 1dB between the 9th and 8th step of chord 0, (0.25 µA/step). If the 1dB resolution criterion is applied to a comparable sign-plus-13 bit linear DAC, the corresponding 1dB requirement also takes off 19dB, and the breakpoint occurs between the 9th and 8th step of the linear 13-bit DAC transfer characteristic. The subtle difference between the 13-bit linear DAC and the sign-plus-8 bit Companding DAC lies in the distribution of the dB ratio values within the steps of the 59dB workable audio dynamic range. For a linearly scaled 13-bit linear DAC, the level ratios in dB among the steps close to the full scale current are very small. The ratios increase as the step numbers decrease toward zero. On the other hand, the sign-plus-8 bit Companding DAC maintains a near constant 0.15dB between steps over the entire dynamic range, with the exception of steps in chord 0.

The 59dB working dynamic range is not wide enough for high quality audio systems which require an 80dB audio control range. To satisfy this requirement, two DACs can be cascaded with their digital inputs driven in parallel. The total dynamic range is now increased to 156dB and the working range, (1dB/step or less), is now approximately 106dB. A cascading scheme for Companding DACs, which also provides for DC transient-free operation, is shown in Figure 31. The advantage of the cascaded Companding DAC's scheme over a similar cascaded linear DAC's scheme is in the number of control bits required to achieve the 106dB range and in the 0.3dB/step uniform attenuation distribution

over most of the 106dB range. The audio signal, V_{IN} , is shown in Figure 31 as a single input.

All three Companding DACs in Figure 31 have their SB inputs tied to logic 1. The reference currents for all three DACs should be maintained at positive values throughout the attenuation procedure by proper selection of the input resistor, $R_{IN} = V_{IN}/I_{IN}$, where $I_{IN} < I_{REF}$. In Figure 31, the maximum IIN value is equal to one half of the DC reference current, and the maximum value of VIN is only limited by the output voltage swings of operational amplifiers A2 and A3. The DC transient effects in the cascaded DACs are compensated for by using a Companding DAC followed by the A1 op-amp. The DC compensation circuitry is completely isolated and independent of the AC effects of the applied audio signal VIN. and the only critical requirement is matching R₁ and R_{REF(+)}. The step sizes in all chords should be matched for all three Companding DACs. For audio signals with amplitudes not more negative than -5V, (Companding DAC's maximum negative output voltage is -5V), the A1 op-amp can be eliminated, and the positive inputs of the A2 and A3 op-amps can be driven by the DC compensating DAC directly.

Companding DACs, with their logarithmic transfer function, are natural generators for the attack and decay analog signal waveforms used in electronic organs and musical synthesizers. A waveform's attack, sustain, and decay times, together with additional harmonic content information, determine the sounds of a particular musical instrument. For example, woodwinds have very short attack and decay times. The circuit shown in Figure 32 generates trapezoidal-like waveforms with exponential rise and fall times under the control of an 8-bit microprocessor, Am9080A. Digital inputs are supplied by two pairs of 4-bit binary counters, Am25LS191, which are set to the Count Down mode. All of the counters are simultaneously loaded by the LOAD command which is decoded from the microprocessor's

Fig. 31. DC Coupled Cascaded Digital Attenuator.

Fig. 32. Microprocessor Controlled Waveform Generator, Attack, Sustain and Decay Signal Waveforms.

address signal combination. Companding DACs 1 and 2 are in the decode mode. The SB inputs are determined by the most significant data bit, DB7, which is stored in the flip-flop during counter loading. The Companding DACs' decode outputs which have the same polarity are tied together and fed into an LF356 operational amplifier. After the settling time required for the Companding DAC's outputs, the currents at the op-amp's inputs should be equal, and its output, Vout, should be 0V. A command COUNT #1 closes the analog switch, AH0014, and enables counters 1A and 1B via their ENABLE inputs. The 500kHz clock frequency allows sufficient settling time for the Companding DAC's outputs. The initial rise of the op-amp output voltage, Vour, depends on the number initially stored in the counters, i.e., it depends on the starting point of the Companding DAC transfer characteristic. When Counter #1 reaches zero, the INT1 signal indicates underflow, further counting stops, and the microprocessor is informed about the end of Counter #1 operation. After a certain sustain time, which can be preprogrammed, the microprocessor issues the COUNT #2 command and the Vour waveform starts its decay portion. The time duration of the Attack and Decay slopes generated by the logic in Figure 32 are equal and is specified by the starting count in Counters #1 and #2

Note that the microprocessor can control the counting functions and the external counter could be replaced with simple, octal data latches. With the increased use of digital techniques and microprocessors for control functions in complex audio systems, microprocessor controlled analog waveforms, similar to those generated by the logic in Figure 32, may become very desirable and attractive tools for the generation of various audio effects. However, it is important to remember that the output from the Companding DAC consists of discrete, non-uniform steps and is not continuous. To obtain a real, continuous signal from the output, some filtering or integration may be required.

Telecommunication System Applications

Digital PCM transmission systems compress analog speech signals into a train of 8 digital bits for each sample. They transmit this information and then decode and expand it back into analog signals. The Companding DAC represents a monolithic solution for most requirements of the PCM encoding and decoding procedures. This device replaces a considerable number of discrete and hybrid components in existing PCM transmission schemes. At the same time, the Companding DAC provides increased signal-to-noise ratio in the system, reduces system signal distortions and stimulates further development and wider usage of digital channel switching techniques.

Currently, most transmission systems in the United States follow the Bell D3 communication channel bank specifications, where each channel bank consists of 24 voice channels and the necessary transmission equipment. The entire signal sampling, encoding and multiplexing procedure in the 24 channel bank system must be performed within 125 μ s. The PCM channel time slot distribution, within a one 125 μ s time frame, is shown in Figure 33. Each slot contains an 8-bit digital representation of a particular signal sampled from a corresponding voice channel. The total number of bits in the D3 channel bank time frame is calculated as follows: (24 channels x 8 bit/channel)+ 1 signalling bit = 193 bits. The additional single bit is used to identify the beginning of a frame, and data is transmitted at 1.544MHz (193 bits/samples x 8000 samples/sec). In addition, in every sixth frame the

Fig. 33. PCM Channel Timing Frame Format.

least significant bit in each channel slot is used for communication signalling purposes. Consequently, the signal samples in every sixth frame are represented with only 7 digital bits. The increase in signal distortions in this time frame is slight and is not considered significant for PCM voice transmission performance. When the Companding DAC is used as a simple decoder at the receiving side of a system, the connection shown in Figure 19 can be used to minimize distortion caused by the absence of the least significant bit, B7, during these signalling frames. When the signalling frame is recognized, the Companding DAC output is increased by a half step from its corresponding decode output value by switching the E/\overline{D} input from a logic 0 level to a logic 1. However, the European systems, using A-law devices, have 32 channels per bank where the 2 channels are used for signalling information. Each frame requires 256 (32 x 8) bits. The corresponding data transmission rate is 2.048MHz (256 bits/sample x 8000 sample/sec).

In a two-way PCM communication system, a single Companding DAC can perform the time shared encoder and decoder functions known as the CODEC function. The logic state of the $E/\overline{\rm D}$ input determines the operating mode of the Companding DAC and switches the output current to the appropriate outputs. The Companding DAC digital inputs during the encode operation are generated by the successive approximation procedure. In the decode mode, the eight digital inputs are supplied from an external source, either in serial or parallel. The basic diagram for a typical CODEC is shown in Figure 34.

The logic in Figure 34 provides automatic handling of the E/D signal levels during the CODEC's XMT mode of operation. The first task of the system is to initialize the SAR circuit by proper manipulation of the START input for the successive approximation procedure. The XMT COMMAND should be synchronized with the low-to-high transition of the START pulse, and its level must be held at logic 1 for the next 8 CLOCK pulses to keep the three-state XMT buffer, 74126, in the low impedance state. During the A to D conversion period, a serial train of 8 digital bits, which represent the sample at the TRANSMIT ANALOG INPUT in Figure 34, appears on the XMT DATA line. XMT and RECEIVE commands are mutually exclusive.

The CODEC in Figure 34 is set to the receive mode of operation by setting the RECEIVE command signal to a logic

Fig. 34. PCM Encoder/Decoder or Transceiving Converter.

0 level after the START pulse returns to its positive level. A serial data source, DATA STORAGE, supplies a digital train of 8 bits to the serial input D of the SAR circuit via the three-state buffer, RCV, 74126. At the same time, the RECEIVE command signal level keeps the exclusive-or gate output separated from the same SAR's serial D input via another three-state buffer, SEP. The same command also keeps the E/D input of the Companding DAC at logic 0 throughout the entire D to A procedure via the MODE flip-flop in the successive approximation logic. In this CODEC's receive mode, the SAR circuit acts as a serial-to-parallel shift register for the incoming data on the RECEIVE DATA line. After the 8 clock pulses, the outputs of the SAR are ready for the D to A conversion. An analog current representation of the RECEIVE DATA train appears at the RECEIVE ANALOG OUTPUT, after an appropriate settling time. During this time the SAR outputs must remain unchanged and the START signal must remain at logic 1. The RECEIVE command signal must be held at logic 0 for the entire D to A conversion time which includes the Companding DAC's settling time. The CODEC must sample the analog input prior to each A/D conversion. During this sampling period the analog input signal will be changing and the Companding DAC cannot be used to encode this signal. The total encoding time must include the sampling time and the A/D conversion time. If the sampling time period is greater than the time required for the

decoding procedure, the Companding DAC can be used as a decoder during this time period and thus, the decoding operation will not require any additional system time.

The CODEC operations in PCM communication systems can be performed on a single channel or on multiple channels in a multiplexed channel switching scheme. The final number of multiplexed channels which can be served by a single Companding DAC with a data sampling rate of 8kHz is limited by the CODEC's sampling and settling times.

Two examples of a single channel PCM CODEC are shown in Figure 35 and 36. The major difference is in the structure of the XMT and RECEIVE data bus. The parallel data I/O CODEC in Figure 35 transmits and receives digital data in parallel form. The parallel data CODEC contains data bus transceivers, (Am)8T26, for handling data in communications systems which might be controlled by one of the popular 8-bit microprocessors. A parallel data I/O CODEC has a considerably shorter D to A conversion time than a serial I/O CODEC.

The circuits shown in Figures 35 and 36 are controlled asynchronously with START, XMT, RECEIVE and their corresponding SAMPLE COMMANDS, which are generated and supplied externally by a communication system. The CLOCK signal is also externally supplied, and in the case of a serial data I/O CODEC, it must be synchronized with the incoming

Fig. 35. Single Channel PCM Codec Parallel Data I/O.

Fig. 36. Single Channel PCM Codec Serial Data I/O.

and outgoing serial data train. The CODEC's only output control signal, CONVERSION COMPLETE, CC, provides the external communication system with information necessary to generate a XMT signal during the encoding procedure. XMT and RECEIVE commands are mutually exclusive. The transmit and receive data transfers can be performed either alternately or simultaneously. In the latter case the external communication system must employ separate transmit and receive data buses. In addition, storage devices external to the CODEC logic must be provided for the receive data. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for sign and magnitude. The SAC data bus, as a result, yields "high zeros" density for small output signal amplitudes.

To perform a transmit operation cycle, the START pulse must be held low for one clock cycle. Data conversion for a transmit operation is completed in 9 clock cycles, where the ninth cycle initializes the SAR for the next successive approximation procedure.

The RECEIVE operation in parallel data I/O CODEC is performed without using SAR logic, and the corresponding D to A data conversion does not require a CLOCK signal. Duration of the RECEIVE command signal must accommodate the Companding DAC's settling time, plus the sampling time ($\approx 5\mu s$) required by the S & H circuit, used at the CODEC's analog output. The typical settling time for the worst case input code transition from all ones to all zeros is about $4\mu s$. The receiving data must not change during this time. A XMT command must be issued after a high-to-low transition of the CC signal, and its duration depends on the time required by the external system logic to sample the correct content from the 8-bit parallel data bus. A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Companding DAC's settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.

In the serial CODEC the duration of XMT and RECEIVE command signals must similarly accommodate all signal propagation delays, as well as the settling and sampling times, necessary for conversion of an outgoing or an incoming series of 8 digital bits. During the receive operation, the SAR is acting as a serial-in to parallel-out shift register for data supplied from an external serial source. Shifting data into the SAR requires 9 clock pulses. A sample command pulse for a transmit cycle must be issued before an XMT command signal; its duration depends on the S & H sampling time used at the CODEC analog input. A sample command pulse for a receive cycle must be delayed by a time equal to the Companding DAC's settling time after a high-to-low transition of the CC signal occurs. The data transmission rate at the receive line is limited only by the shifting speed of the SAR which is rated at 15MHz. The data transmission rate at the serial CODEC's data XMT line is limited by the settling time of the Companding DAC and propagation delays through the comparator, exclusive-or, buffer (74126), and SAR devices.

In a one-way PCM communication system the Companding DAC can be used as the decoder at the receiver end of a system or as a part of the encoder at the transmission end of a system. The transmission data bit rate for 24 communication channels sampled at 8kHz is 1.544 megabits/sec. This trans-

mission rate allocates 0.64 µs for each of 193 bits within a 125μs long 24-channel time frame. A 24-channel PCM decoder which is capable of handling this transmission bit rate is shown in Figure 37. This schematic does not show the logic necessary for recognition of frame and signalling bits. To handle a single bit in 0.64 µs the total signal propagation time through the 8-bit D-type register, Am25LS273, the Companding DAC, Am6072, and the op-amp must not exceed 8 x $0.64\mu s = 5.12\mu s$. This corresponds to the total shifting time of 8 bits through the serial-in, parallel-out, shift register, Am25LS164. The most critical propagation delay is caused by Companding DAC's worst case settling time which corresponds to the worst possible input transition of 1111111 to 0000000, which can occur during D to A conversion. If $4\mu s$ are taken for the worst case settling times of the DAC and op-amp, only $1.12\mu s$ are left to be distributed to all other time delays in the system. The 4-bit counter, Am25LS161, and 8-bit shift register, Am25LS164, are synchronized with the system supplied data clock at 1.544MHz. The additional logic in Figure 37 consists of analog switches AH0014 and AM9712, and the corresponding SSI control logic. This switching scheme provides a minimum of crosstalk between output analog channels which may occur due to a possible breakbefore-make switching problem. The output analog channel hold capacitor values depend a lot on the type of a load at these outputs. The Bell D3 specification specifies system performance down to signal levels of -50dB (00000111 code on the transfer curve). Worst case settling time from full scale to -50dB is about 2.5 \(\mu s. \) Decoders in excess of 24 channels, can be built using this settling time but they will have somewhat higher distortion for signal levels below -50dB.

In the PCM encoder schematic shown in Figure 38, the maximum settling time for the Am6072 is assumed to be $1.2\mu s$ for the worst input bit change. The Bell D3 specification can be satisfied using a settling time of $1.2\mu s$, which is the worst case settling time in the successive approximation procedure for signals near -50dB (lowest level on D3 specification). There will be some additional error for very low level signals, but the overall system will meet the D3 specification. The additional logic delay in the feedback path is estimated to be 100ns maximum, and is distributed among the comparator, Am686, the digital 2:1 multiplexer, Am74S258, the exclusive-or circuit, 74LS86, and the SAR, Am2502. This yields $1.3\mu s$ for one successive approximation iteration. Further timing analysis shows that, with no additional delays, 12 channels can be encoded within the $125\mu s$:

 $1.3\mu s \cdot 8 \cdot 12 = 10.4\mu s \cdot 12 = 124.8\mu s$ Clock = $1/1.3\mu s = 769.23 kHz$

Two methods are used in the schematics in Figure 38, to prevent additional delays. First, a special switching scheme of analog input signals is employed to sample a channel from one group while a channel from the other group is encoded. This sampling scheme saves the time required for sampling of an analog input and provides a solution for encoding a maximum number of channels for the given "one-bit iteration" time. This design uses analog multiplexers, AM9712, and sample and hold circuits, (Am)LF398. The analog multiplexer at the Companding DAC output, AH0014, switches to another comparator during the time allocated for the first bit iteration, when the sign bit of a sample is established and no current flows through I_{OE} outputs. Secondly, a one shot circuit is used to modulate the positive period of the first data clock pulse, after the SAR's CC signal is generated. The one shot pulse should split the positive portion of this first clock pulse into

Fig. 37. 24-Channel PCM Decoder.

two positive pulses, and the positive edge of the second pulse will initialize the SAR and eliminate the need for a ninth pulse. The net effect of this pulse modulation is a reduction of the time available to the SAR for the determination of the sign bit value and reduction of the time available for recording the SAR outputs with the correct least significant bit value. However, the time for sign bit evaluation is $1\mu s$, and the LSB value can be taken from the SAR's serial data input D at the time of conversion completion. The encoding logic in Figure 38 is fully synchronized with the system supplied data clock which is input at a frequency of 769.23kHz. A similar encoding scheme provides encoding of 8 channels within the 125 µs time without the circuits which are enclosed by dotted lines in Figure 38. Only one S & H circuit and one comparator can be used, and the AH0014 and 74S258 circuits can be eliminated. This D3 system's 8-channel PCM encoder has 15.6 µs for an A/D conversion, which allows 5.2 µs for the

analog multiplexer, (AM9712), and S & H, (LF398), to switch and settle prior to the actual A/D conversion which takes $10.4\mu s$.

One multiplexed CODEC using a single Companding DAC is shown in Figure 39. The CODEC's entire activity is synchronized with a data clock which drives the RECEIVING REGISTER, Am25LS22 (8-bit Serial/Parallel Register), the SAR, Am2502, and the 4-bit binary counter, Am25LS161. Maximum clock frequency is limited by the delays involved in the encoding path and by the data transfer protocol chosen for the XMT and RECEIVE data lines. Using 1.8 μ s for the Companding DAC's longest settling time and 150ns for all other propagation delays in the encoding path, the minimum time for eight iterations amounts to 8 x 1.95 μ s = 15.6 μ s. The corresponding Data Clock frequency is 512.82kHz. A time frame of 125 μ s contains eight time-slots of 15.6 μ s each.

Fig. 38. 12-Channel PCM Encoder.

The CODEC in Figure 39 has four multiplexed channels, and uses the data conversion protocol illustrated in Figure 40. This protocol allocates equal time to the encoding and decoding procedures. Although this is not the most economical timing scheme, it significantly simplifies the CODEC's logic. The value of the most significant bit, MSB, of the 4-bit counter controls the switching between the encode and decode functions, and the switching of the input and output analog channels in the analog multiplexers, AM9712, via 1 of 4 decoder

circuit, Am25LS2539, (Dual 1 of 4 decoder). During the negative half of the MSB period, the S & H circuit is placed in the hold mode, the DATA CLOCK and the outputs of BUFFER REGISTER, Am25LS373, (Octal Transparent Latch), are enabled and the Companding DAC is placed in the encode mode. At the same time, the RECEIVING REGISTER, Am25LS22, is receiving data with its outputs in the high impedance state. All analog switches, XMT and RECEIVE, are open during this negative portion of the MSB signal.

During the positive half of the MSB signal period, data clock inputs to the SAR and RECEIVING REGISTER, and START input to the SAR, are kept at logic 0. The S & H circuit is put into the sample mode, the BUFFER REGISTER is put in the high Z state, the RECEIVING REGISTER outputs are enabled, and the Companding DAC is put into the decode mode. During this positive period, the currently addressed XMT and RECEIVE analog switches are closed. The positive going edge of the MSB signal also updates the address code for the analog switches.

Additional timing analysis reveals that by using different and reduced maximum settling times, for the encode and decode portions of the above described data conversion protocol, the number of multiplexed channels can be significantly increased. However, the necessary logic for control and timing of unequal encode and decode data conversion time periods will be more complex than the logic shown in Figure 39. The same encode/decode alternating timing procedure, with 1.1 µs allocated for the A/D settling time, and with only 5.6 µs allowed for D to A conversion, (not limited by the DAC), will result in eight multiplexed channels. Systems requiring more than eight channels can be built using multi sample and hold circuits to reduce the input sampling time period. The maximum number of channels, limited by the Companding DAC's settling times, can be further increased by adjusting data clock frequency to its optimal values for each of the successive approximation bit-iterations, repeatedly, for every A/D data conversion.

SUMMARY

The Companding DAC was originally developed for the needs and requirements of PCM communication systems. When used to perform a decoder function, at an 8kHz sampling rate, a single Companding DAC can comfortably serve up to 24 voice channels. As a part of the encoding scheme, the Companding DAC can accommodate 12 D3 communication channels. For implementation in CODEC functions, the Companding DAC is ideal for single channel CODEC schemes. The length of the output current's settling time is the most important parameter to be considered for the Companding DAC's implementation in multiple channel CODEC schemes. An 8 channel CODEC is probably an optimum number of channels which can be served by a single Companding DAC.

The timing restrictions are not of such importance in industrial systems. A logarithmic-like, piece-wise transfer function and the very fine resolution and accuracy of a 12-bit linear DAC which are achievable in the Companding DAC's chord 0, provides industrial systems with a very sensitive tool. In addition, the Companding DAC's compatibility with 8-bit microprocessors offers a very powerful control vehicle in the areas of data acquisition and instrumentation systems. A wide dynamic range of 78dB which can be extended by a cascading scheme to 156dB or more, and a high signal-to-distortion ratio of 80dB, allow usage of the Companding DACs for attenuation functions even in a high fidelity audio system. Industrial applications represent a large potential market for Companding DACs and they should be given serious consideration by industrial system designers.

REFERENCES

Transmission Systems for Communications, Bell Telephone Labs, Revised Fourth Edition, December 1971.

The International Telegraph and Telephone Consultative Committee, CCITT, Green Book, Volume III - 2, 1973.

American Telephone and Telegraph Company: The D3 Channel Bank Compatibility Specification, Issue 2, 1974. PCM Update – Parts 1 and 2, GTE Lenkurt, San Carlos, CA, 1975.

A User's Handbook of D/A and A/D Converters, E.R. Hnatek, John Wiley & Sons, 1976.

A Versatile Integrated CODEC for PCM Systems, J.A. Schoeff, 1976 International Zurich Seminar on Digital Communications.

Application Considerations for IC Data Converters Useful in Audio Signal Processing, W.G. Jung, 55th Convention of the Audio Engineering society, 1976, An Audio Engineering Society preprint.

A Monolithic Companding D/A Converter, J.A. Schoeff, 1977 ISSC Conference, Digest of Technical Papers, Philadelphia, PA, USA.

The Am6071, Am6071, Am6072 and Am6073 Data Sheets, Advanced Micro Devices, Sunnyvale, CA, 1977.

Fig. 39. 4-Channel PCM CODEC with Simultaneous XMT and Receive Data Transfers.

Fig. 40. Ideal Timing Diagrams for 4-Channel PCM CODEC.

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Line Drivers/Receivers - Section IV

Am1488	Quad RS-232C Line Driver 4-1
Am1489	Quad RS-232C Line Receiver
Am1489A	Quad RS-232C Line Receiver 4-4
Am1692/3692	Three-State Differential Line Drivers 4-8
Am25LS240	Octal Buffer; Inverting, Three-State 4-13
Am25LS241	Octal Buffer; Non-Inverting, Three-State
Am25LS242	Quad Three-State Bus Transceiver 4-21
Am25LS243	Quad Three-State Bus Transceiver 4-21
Am25LS244	Octal Buffer, Non-Inverting, Three-State
Am26LS29	Quad Three-State Single-Ended RS-423 Line Driver
Am26LS30	Dual Differential RS-422 Party Line/Quad Single-Ended
	RS-423 Line Driver
Am26LS31	Quad RS-422 High-Speed Differential Line Driver 4-36
Am26LS32	Quad RS-422 and RS-423 Differential Line Receiver 4-40
Am26LS33	Quad Differential Line Receiver 4-40
Am26S10	Quad Bus Transceiver 4-57
Am26S11	Quad Bus Transceiver 4-57
Am26S12	Quad Bus Transceiver
Am26S12A	Quad Bus Transceiver
Am2614	Quad Single-Ended Line Driver
Am2615	Dual Differential Line Receiver 4-72
Am2616	Quad MIL-188C and RS-232C Line Driver
Am2617	Quad RS-232C Line Receiver
Am2905	Quad Two-Input OC Bus Transceiver with Three-State Receiver 4-86
Am2906	Quad Two-Input OC Bus Transceiver with Parity 4-92
Am2907	Quad Bus Transceiver with Interface Logic
Am2908	Quad Bus Transceiver with Interface Logic
Am2915A	Quad Three-State Bus Transceiver with Interface Logic
Am2916A	Quad Three-State Bus Transceiver with Interface Logic
Am2917A	
	Quad Three-State Bus Transceiver with Interface Logic
Am3212	8-Bit Input/Output Port
Am3216	4-Bit Parallel Bidirectional Bus Driver
Am3226	
Am3448A	IEEE-488 Quad Bidirectional Transceiver
Am54LS/74LS240	Octal Buffer; Inverting, Three-State
Am54LS/74LS241	Octal Buffer; Non-Inverting, Three-State
Am54LS/74LS242	Quad Three-State Bus Transceiver 4-21
Am54LS/74LS243	Quad Three-State Bus Transceiver 4-21
Am54LS/74LS244	Octal Buffer; Non-Inverting, Three-State
Am54S/74S240	Octal Buffer/Line Driver/Line Receiver
4 540/740044	with Three-State Outputs
Am54S/74S241	Octal Buffer/Line Driver/Line Receiver
	with Three-State Outputs
Am54S/74S242	Octal Buffer/Line Driver/Line Receiver
	with Three-State Outputs
Am54S/74S243	Octal Buffer/Line Driver/Line Receiver
	with Three-State Outputs
Am54S/74S244	Octal Buffer/Line Driver/Line Receiver with Three-State Outputs
	with Three-State Outputs
Am55/75107B	Dual Line Receiver4-147
Am55/75108B	Dual Line Receiver 4-147
Am55/75109	Dual Line Driver 4-153
Am55/75110	Dual Line Driver
Am71LS/81LS95	Three-State Octal Buffers
Am71LS/81LS96	Three-State Octal Buffers 4-159

Line Drivers/Receivers — Section IV (Cont.)

Am71LS/81LS97	Three-State Octal Buffers	4-159
Am71LS/81LS98	Three-State Octal Buffers	
Am73/8303B	Octal Three-State Inverting Bidirectional Transceiver	
Am73/8304B	Octal Three-State Bidirectional Transceiver	
Am78/8820	Dual Differential Line Receiver	
Am78/8820A	Dual Differential Line Receiver	4-173
Am78/8830	Dual Differential Line Driver	4-178
Am78/8831	Three-State Line Driver	
Am78/8832	Three-State Line Driver	
Am78/8838	Quad Unified Bus Transceiver	
Am8T26	Schottky Three-State Quad Bus Driver/Receiver	
Am8T26A	Schottky Three-State Quad Bus Driver/Receiver	
Am8T28		
Am8212	Schottky Three-State Quad Bus Driver/Receiver 8-Bit Input/Output Port	4-125
Am8216	4-Bit Parallel Bidirectional Bus Driver	
Am8226		
Am9614	4-Bit Parallel Bidirectional Bus Driver	4-200
Am9615	Dual Differential Line Receiver	
Am9616	Triple EIA RS-232C/MIL-STD-188C Line Driver	
Am9617	RS-232C Line Receiver	
AIII3017	A AFT A CASA	4-209
Application Notes		
Use of the Am26LS2	29, 30, 31 and 32 Quad Driver/Receiver	

Distinctive Characteristics:

- Conforms to EIA specification RS-232C
- · Short circuit protected output
- · Simple slew rate control with external capacitor
- 100% reliability assurance testing in compliance with MIL STD 883
- TTL/DTL compatible input

FUNCTIONAL DESCRIPTION

The Am1488 is a quad line driver that conforms to EIA specification RS-232C. Each driver accepts one or two TTL/DTL inputs and produces a high-level logic signal on its output. The HIGH and LOW logic levels on the output are defined by the positive and negative power supplies to the drivers. For power supplies of plus and minus nine volts, the output levels are guaranteed to meet the $\pm 6\text{-volt}$ specification with a $3k\Omega$ load. There is an internal 300Ω resistor in series with the output to provide current limiting in both the HIGH and LOW logic levels. The Am1488 driver is intended for use with the Am1489 or Am1489A quad line receivers.

LOGIC SYMBOL

V- = Pin 1 = Pin 14 GND = Pin 7

LIC-316

CIRCUIT DIAGRAM (one driver shown)

Am1488 ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	0°C to +75°C	MC1488L
Molded DIP	0°C to +75°C	AM1488PC
Dice	0°C to +75°C	AM1488XC

CONNECTION DIAGRAM Top View

NOTE: Pin 1 is marked for orientation.

LIC-318

LIC-317

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +175			
Temperature (Ambient) Under Bias	0°C to +75°C			
Supply Voltage to Ground Potential		0 V ⁺ +15V 2 V [−] −15V		
DC Voltage Applied to Outputs for High Output State		$(V^+ +5.0V) \ge V_o \ge (V^5.0V)$		
OC Input Voltage		±15V		

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The following conditions apply unless otherwise specified:

 $T_A = 0^{\circ} C \text{ to } +75^{\circ} C, V^+ = +9.0 V, V^- = -9.0 V$

arameters	Description	Test C	conditions	Min.	Typ. (Note 1)	Max.	Units	
IIL	Logical "0" Input Current	V _{IN} = 0V		Jan.	-1.0	-1.6	mA	
1 _{IH}	Logical "1" Input Current	V _{IN} = +5.0V		Bh is	0.005	10.0	μΑ	
		$R_L = 3.0 k\Omega$,	V ⁺ = 9.0V, V ⁻ = -9.0V	6.0	7.0		Volts	
V _{OH}	High Level Output Voltage	V _{IN} = 0.8V	V ⁺ = 13.2V, V ⁻ = -13.2V	9.0	10.5		Volts	
V	Land and Outside Male	$R_L = 3.0k\Omega$,	V ⁺ = 9.0V, V ⁻ = -9.0V	-6.0	-6.8		Volts	
VOL	Low Level Output Voltage	V _{IN} = 1.9V	V ⁺ = ♦ 3.2V, V ⁻ = −13.2V	-9.0	-10.5		Volts	
I _{SC} +	High Level Output Short-Circuit Current	V _{OUT} = 0V, V _{IN} = 0.8V	emperate	-6.0	-10.0	-12.0	mA	
I _{SC} -	Low Level Output Short-Circuit Current	V _{OUT} = 0V, V _{IN} = 1.9V		6.0	10.0	12.0	mA	
ROUT	Output Resistance	$V^+ = V^- = 0V$, $V_{OUT} = \pm 2$.	0V	300	18 9		Ω	
H. 11-17		7 N 10 N 10 4 N 10 H 10 1		V ⁺ = 9.0V, V ⁻ = -9.0V		15.0	20.0	mA
		V _{IN} = 1.9V	V ⁺ = 12V, V ⁻ = -12V		19.0	25.0	mA	
11	Positive Supply Current	1	$V^{+} = 15V, V^{-} = -15V$		25.0	34.0	mA	
ICC+	(Output Open)		V ⁺ = 9.0V, V ⁻ = 9.0V		4.5	6.0	mA	
		V _{IN} = 0.8V	V ⁺ = 12V, V ⁻ = -12V	d n	5.5	7.0	mA	
	V ⁺ = 15V, V ⁻ = -15V	V ⁺ = 15V, V ⁻ = -15V		8.0	12.0	mA		
			V ⁺ = 9.0V, V ⁻ = -9.0V		-13.0	-17.0	mA	
		V _{IN} = 1.9V	V ⁺ = 12V, V ⁻ = -12V	111	-18.0	-23.0	mA	
	Negative Supply Current		V ⁺ = 15V, V ⁻ = -15V		-25.0	-34.0	mA	
ICC-	(Output Open)	mises a ber	V ⁺ = 9.0V, V ⁻ = -9.0V		-1.0	-15	μА	
		V _{IN} = 0.8V	V ⁺ = 12V, V ⁻ = -12V		-1.0	-15	μΑ	
			V ⁺ = 15V, V ⁻ = -15V		-0.01	-2.5	mA	
D	Davies Dissipation	V ⁺ = 9.0V, V ⁻ = -9.0V			252	333	mW	
Pd	Power Dissipation	V ⁺ = 12V, V ⁻ = -12V			444	576	mW	

Switching Characteristics ($T_A = 25^{\circ}\text{C}$, $V^+ = +9.0\text{V}$, $V^- = -9.0\text{V}$)

Parameters	Definition	Test Conditions	Min	Тур	Max	Units
tPLH	Delay from input LOW to output HIGH			275	350	ns
tPHL	Delay from input HIGH to output LOW	$Z_1 = 3.0 \text{ k}\Omega$		110	175	ns
tr	Output rise time	and 15 pF		55	100	ns
t _f	Output fall time			45	75	ns

Note 1. Typical values are for $T_A = 25^{\circ} C$.

TYPICAL CHARACTERISTICS

LIC-319

Metallization and Pad Layout

DIE SIZE 0.053" X 0.054"

Am1489 • Am1489A

Quad RS-232C Line Receivers

Distinctive Characteristics:

- Compatible with EIA specification RS-232C
- Input signal range ±30 volts

- 100% reliability assurance testing in compliance with MIL STD 883
- Includes response control input and built-in hysterisis

FUNCTIONAL DESCRIPTION:

The Am1489 and Am1489A are quad line receivers whose electrical characteristics conform to EIA specification RS-232C. Each receiver has a single data input that can accept signal swings of up to ± 30 V. The output of each receiver is TTL/DTL compatible, and includes a 2kΩ resistor pull-up to V_{CC}. An internal feedback resistor causes the input to exhibit hysterisis so that AC noise immunity is maintained at a high level even near the switching thresholds. For both devices, when a receiver is in a LOW state on the output, the input may drop as LOW as 1.25 volts without affecting the output. Both devices are guaranteed to switch to the HIGH state when the input voltage is below 0.75 V. Once the output has switched to the HIGH state, the input may rise to 1.0 V for the Am1489 or 1.75 V for the Am1489A without causing a change in the output. The Am1489 is guaranteed to switch to a LOW output when its input reaches 1.5 V and, the Am1489A is guaranteed to switch to a LOW output when its input reaches 2.25 V. Because of this hysterisis in switching thresholds, the devices can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am1488.

Am1489 Am1489A Package Temperature Order Order Number Туре Range Number 14-pin Molded DIP 0°C to +75°C AM1489PC AM1489APC 14-pin Hermetic DIP 0°C to +75°C MC1489L MC1489AL Dice 0°C to +75°C AM1489XC AM1489AXC

Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous DC Voltage Applied to Outputs for High Output State

-0.5 V to +10 V

 $-0.5 \text{ V to } + \text{V}_{\text{CC}} \text{ max}$

-30 V to +30 V

Output Current, Into Outputs

30 mA

DC Input Current

Input Signal Range

Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am1489, Am1489A $T_A = 0$ °C to +75°C $V_{CC} = 5.0 \text{ V} \pm 1\%$ Response control pin open

arameters	Description	Test Condition	IS	Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.5 \text{ m/s}$ $V_{IN} = +0.75 \text{ V}$		2.6	4.0	os a sid sacito i ad A alugni logi	Volts
V _{OL}	Output LOW Voltage	$I_{OL} = 10 \text{ mA}$ $V_{IN} = 3.0 \text{ V}$	21 1109	and indinates	0.2	0.45	Volts
VIH	Input HIGH Level Threshold	T _A = 25°C	Am1489	1.0	1.25	1.5	Volts
IH	input man Level miesnold	$V_{OL} = 0.45 \text{ V}$	Am1489A	1.75	1.95	2.25	VOILS
VIL	Input LOW Level Threshold	$T_A = 25$ °C, V_C	_{DH} = +2.5 V	0.75		1.25	Volts
	Input LOW Current	$V_{1N} = -3.0 \text{ V}$		-0.43			mA
IIL	input LOW Current	$V_{IN} = -25 \text{ V}$		-3.6		-8.3	IIIA
1	Input HIGH Current	$V_{IN} = +3.0 \text{ V}$		0.43			mA
I _{IH}	input High Current	$V_{IN} = +25 \text{ V}$		3.6		8.3	IIIA
I _{sc}	Output Short Circuit Current	$V_{1N} = 0.0 V$			3.0		mA
		$V_{OUT} = 0.0 V$			7.0880.00		
I _{cc}	Power Supply Current	$V_{CC} = MAX.$			20	26	mA

Note: 1) Typical Limits are at $V_{\rm CC} = 5.0 \ \rm V$, 25°C ambient and maximum loading.

Switching Characteristics ($T_A = 25$ °C, response control pin open, $C_L = 15$ pF)

Parameters	Definition	Test Conditions	Min	Тур	Max	Units
tPLH	Delay from Input LOW to Output HIGH	$R_L = 3.9 \text{ k}\Omega$		25	85	ns
tPHL	Delay from Input HIGH to output LOW	$R_L = 390 \Omega$	3 14 11 7	25	50	ns
t _r	Output Rise Time (10% to 90%)	$R_L = 3.9 \text{ k}\Omega$	15.15	120	175	ns
tf	Output Fall Time (90% to 10%)	$R_L = 390 \Omega$		10	20	ns

4

TYPICAL CHARACTERISTICS

LIC-323

DIE SIZE 0.047" X 0.059"

Am1692/3692

Three-State Differential Line Drivers

DISTINCTIVE CHARACTERISTICS

- Individual three-state enables for each driver
- Dual differential driver or quad single ended line driver
- Short circuit protection for both source and sink outputs
- Individual rise time control for each output
- 50Ω transmission line drive capability
- High capacitive load drive capability
- Low I_{CC} and I_{EE} power consumption Differential mode 35mW/driver Single-ended mode 26mW/driver
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am1692/Am3692 are low power Schottky TTL line drivers with three-state outputs. They feature $\pm 10V$ output common mode range in three-state and 0V output unbalance when operated with $\pm 5V$ power supplies. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.

A mode control input provides a choice of operation either as four independent line drivers or two differential line drivers. A rise time control pin allows the use of an external capacitor to reduce rise time for suppression of near end crosstalk to other receivers in the cable.

The Am1692/3692 is constructed using advanced low-power Schottky processing.

LOGIC DIAGRAM (1/2 Circuit Shown)

LIC-326

ORDERING INFORMATION

per
92J
92F
92J
92N
(

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-327

Am1692/3692

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature		-65°C to +150°C
Supply Voltage V+	merential Line Drivers	7.0V
V-		-7.0V
Power Dissipation		600mW
Input Voltage	FUNCTIONAL DESCRIPTION	−0.5 to +15V
Output Voltage (Power Off)	wol are SB8EmA\SE8tmA edT	tevrio dosa rol usidane stale-conflictible ±15V
Lead Soldering Temperature (10	seconds)	300°C

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:

Am1692 (MIL) $T_A = -55^{\circ}\text{C to} + T_A = 0^{\circ}\text{C to} + 70^{\circ}$

 $T_{A} = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 5.0\text{V} \pm 10\%, V_{EE} = \text{GND}$ $V_{CC} = 5.0\text{V} \pm 5\%, V_{EE} = \text{GND}$

Mode Voltage ≤ 0.8V

DC CHARACTERISTICS over the operating temperature range

Parameters	Description	Test Cond	itions (Note 2)	Min.	Typ. (Note 1)	Max.	Units
Vo	Differential Outrat Vallege V	V _{IN} =				6.0	Volts
Vo	- Differential Output Voltage, V _{A,B}	R _L = ∞	V _{IN} = 0.8V	-2.5	-3.6	-6.0	Volts
V _T	Differential Output Veltage V	D 4000	V _{IN} = 2.0V	2	2.6		Volts
VT	Differential Output Voltage, V _{A,B}	$R_L = 100\Omega$	V _{IN} = 0.8V	-2	-2.6		Volts
Vos, Vos	Common-Mode Offset Voltage	$R_L = 100\Omega$	- (d)	2.5	3	Volts	
$ V_T - \overline{V_T} $	Difference in Differential Output Voltage	$R_L = 100\Omega$			0.05	0.4	Volts
Vos - Vos	Difference in Common-Mode Offset Voltage	$R_L = 100\Omega$		(3)	0.05	0.4	Volts
V _{SS}	$ V_T - \overline{V_T} $	$R_L = 100\Omega$		4.0	4.8		Volts
IXA			V _O = 15V		10	150	μΑ
I _{XB}	Output Leakage Current	$V_{CC} = 0$	$V_0 = -15V$		-10	-150	μΑ
		V _{IN} = 2.4V, \			-150	μΑ	
lox	Three-State Output Current	$V_{1N} = 0.4V, V_{1N}$	/ ₀ ≤ 15V	-0 100		150	μΑ
		V 0.4V	V _{OA} = 6.0V		80	150	mA
Isa	Outrot Chart Circuit Course	$V_{IN} = 2.4V$	V _{OB} = 0V		-80	-150	mA
lan	Output Short Circuit Current	V _{IN} = 0.4V	V _{OA} = 0V		-80	-150	mA
I _{SB}		VIN - 0.4V	V _{OB} = 6.0V		80	150	mA
lcc	Supply Current				18	30	mA

Notes: 1. Typical limits are at $V_{CC} = 5.0V$, $V_{EE} = GND$, 25°C ambient and maximum loading.

2. R_L connected between each output and its complement.

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:

Am1692 (MIL)

Am3692 (COM'L)
Mode Voltage ≤ 0.8V

DC CHARACTERISTICS over the operating temperature range unless otherwise noted

Parameters	Descriptio	n	Test Conditions		Min.	Typ. (Note 1)	Max.	Units		
Vo	Outnut Valtage		D	V _{IN} = 2.4V	7	8.5	12	Volts		
Vo	Output Voltage		R _L = ∞	V _{IN} = 0.4V	-7	-8.5	-12	Volts		
V _T	- Output Voltage	0	D 0000	V _{IN} = 2.4V	6	7.3		Volts		
V _T	- Output voltage		$R_L = 200\Omega$	V _{IN} = 0.4V	-6	-7.3		Volts		
$ V_T - V_T $	Output Unbalance	- 0	$ V_{CC} = V_{EE} , R_L$	= 200Ω		0.02	0.4	Volts		
lx ⁺	Output Leakage Power OFF		V V 0V	V _O = 15V		20	150	μΑ		
I _X			Output Leakage Power OFF VCC = VEE = 0V	$V_{CC} = V_{EE} = 0V$	$V_0 = -15V$		-20	-150	μΑ	
	There State Outer A O		$V_{1N} = 2.4V, V_0 \ge -$				-150	μΑ		
lox	Three-State Output Cu	irrent	$V_{1N} = 0.4V, V_0 \le 10$	V	NA PRINCIPAL	THE CO. ST.	150	μΑ		
ls ⁺	O. 4- 4 Ch - 4 Ci 14 O 4		V 0V	V _{IN} = 2.4V		-80	-150	mA		
Is -	Output Short Circuit Ci	Output Short Circuit Current		Current V _O = 0V		V _{IN} = 0.4V	X	80	150	mA
I _{SLEW}	Slew Control Current				, ,	±140		μΑ		
Icc	Positive Supply Currer	nt	$V_{IN} = 0.4V$, $R_L = \infty$			18	30	mA		
IEE	Negative Supply Curre	nt	V _{IN} = 0.4V, R _L = ∞	VOE		-10	-22	mA		
V _{IH}	High Level Input Voltage	ge	411		2	4.03	100	Volts		
VIL	Low Level Input Voltage	e	-13-a runu	V8			0.8	Volts		
39702				V _{IN} = 2.4V		1	40	μΑ		
IH	High Level Input Curre	nt	±5.25 ≤ V _{EE} ≤ 0V	V _{IN} ≤ 15V		10	100			
I _I L	Low Level Input Currer	nt		V _{IN} = 0.4V	JANCEY	-30	-200	μΑ		
VI	Input Clamp Voltage			$I_{IN} = -12mA$			-1.5	Volts		

Note: Typical values are at $V_{CC} = 5.0V$, $V_{EE} = -5.0V$, $25^{\circ}C$ ambient and maximum loading.

AC CHARACTERISTICS TA = 25°C

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
$V_{CC} = 5.0V$, Mode Select = 8.0V					
t _r	Differential Output Rise Time	$R_L = 100\Omega, C_L = 500pF, (Fig. 1)$		120	200	ns
t _f	Differential Output Fall Time	$R_L = 100\Omega$, $C_L = 500pF$, (Fig. 1)		120	200	ns
t _{PDH}	Output Propagation Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 1)$		120	200	ns
t _{PDL}	Output Propagation Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 1)$		120	200	ns
t _{PZL}	Three-State Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 2)$	- A	180	250	ns
t _{PZH}	Three-State Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 2)$		180	250	ns
t _{PLZ}	Three-State Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 2)$		80	150	ns
t _{PHZ}	Three-State Delay	$R_L = 100\Omega, C_L = 500pF, (Fig. 2)$.79	80	150	ns
$V_{CC} = 5.0V$, $V_{EE} = -5.0V$, Mode Select $= 0$.8V				
t _r	Differential Output Rise Time	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 1)		190	300	ns
tf	Differential Output Fall Time	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 1)		190	300	ns
t _{PDL}	Output Propagation Delay	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 1)		190	300	ns
t _{PDH}	Output Propagation Delay	$R_L = 200\Omega, C_L = 500pF, (Fig. 1)$		190	300	ns
t _{PZL}	Three-State Delay	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 2)		180	250	ns
t _{PZH}	Three-State Delay	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 2)		180	250	ns
t _{PLZ}	Three-State Delay	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 2)		80	150	ns
t _{PHZ}	Three-State Delay	$R_L = 200\Omega$, $C_L = 500pF$, (Fig. 2)		80	150	ns

Am1692/3692 FUNCTIONAL TABLE

	Inp	uts	Outputs		
Mode	A(D)	B(C)	A(D)	B(C)	
0	0	0	0	1	
0	0	1	Z	Z	
0	1	0	1	0	
0	1, 1	1	Z	Z	
1	0	0	0	0	
₈ 1	0	v 1	0	1	
1	1 00	0	1 1 3	0	
1	1	1	1	1	

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT

*Current probe is the easiest way to display a differential waveform.

Figure 1. Rise and Fall Time

BLI-010 BLI-010

and behilve a one showner main bas application

Am1692/3692 USED AS A DRIVER **MEETING MIL-STD-188-114**

Am25LS240 • Am54LS/74LS240

Octal Three-State Inverting Drivers

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data-to-output propagation delay times 18ns MAX.
- Enable-to-output 30ns MAX.
- Am25LS240 specified at 48mA output current
- 20 pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The 'LS240 is an octal inverting line driver fabricated using advanced low-power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.

Three-state outputs are provided to drive bus lines directly. The Am25LS240 is specified at 48mA and 24mA output sink current, while the Am54/74LS240 is guaranteed at 12mA over the military range and 24mA over the commercial range. Four buffers are enabled from one common line and the other four from a second enable line.

Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

LOGIC DIAGRAM

INP	UTS	OUTPUT
G A		Υ
Н	X	Z
L	Н	L
L	L	Н

Note: All devices have input hysteresis.

LIC-331

LIC-332

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

V_{CC} = Pin 20 GND = Pin 10

LIC-333

Am25LS240 ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L $T_A = 0$ °C to +70°C $V_{CC} = 5.0V \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V)

MIL $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C V}_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

arameters	Des	criptio	n	Test C	Min.	Typ. (Note 2)	Max.	Units	
V	High-Level Output	Voltage			V_{CC} = MIN., V_{IH} = 2.0V I_{OH} = -3.0mA, V_{IL} = V_{IL} MAX.		3.4		Volts
V _{OH}	riigii-Levei Outpui	voitage	An	V _{CC} = MIN.,	MIL, $I_{OH} = -12mA$	2.0		1000	VOILS
		0.5 Ama		$V_{IL} = 0.5V$	COM'L, I _{OH} = -15mA	2.0			
amaté .	6.0 BS.0 LL C		kerSt = not JtA	All I _{OL} = 12mA		0.25	0.4		
VOL	Low-Level Output	Voltage	Am	V _{CC} = MIN.	All I _{OL} = 24mA		0.35	0.5	Volts
atieu	The state of the s			COM'L I _{OL} = 48mA	consti	Of Superior Learning	0.55		
VIH	High-Level Input \	/oltage		Guaranteed inpu voltage for all in	0	2.0	Manual Inc.		Volts
V	Laure Laure Llaure A.V.		COM'L					0.8	Volts
VIL	Low-Level Input V	ortage	MIL	Vos = MINL II = -18mA		0.0	Samp Volta	0.7	VOITS
VIK	Input Clamp Volta	ge		$V_{CC} = MIN., I_I = -18mA$		(_y\	T +TV) sine	-1.5	Volts
	Hysteresis (V _{T+} - V _{T-})		V _{CC} = MIN.	9.612V	0.2	0.4	off-St	Volts	
lozh	Off-State Output (ed	V _{CC} = MAX.	V _O = 2.7V	Delitiga	ganuv tove I) tograC an	20	
I _{OZL}	Off-State Output (Low-Level Voltage		d	$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$	V _O = 0.4V	tauiqqa mu(niz)	Manoview Maniperior	-20	μΑ
I _I	Input Current at M Input Voltage	laximur	n	V _{CC} = MAX., V _I	= 7.0V	regist, Asy	Strong leve	0.1	mA
I _{IH}	High-Level Input (evel Input Current, Any Input		V _{CC} MAX., V _{IH}	= 2.7V	TOWN	Direct Ince	20	μΑ
IIL	Low-Level Input Current			V _{CC} = MAX., V _I	L = 0.4V	nemu2 ja	Circuit Outp	-200	μΑ
I _{SC}	Short Circuit Outp	ut Curre	ent (Note 3)	V _{CC} = MAX.	DIK stugtuO flA	-40		-225	mA
Am	10 85	W	MAY	All Outputs HIGH	H Gu etiagica IIA		13	23	00
Icc	Supply Current V _{CC} = MAX. Outputs open		All Outputs LOW			26	44	mA	
			Outputs at Hi-Z	Outputs at Hi-Z		29	50		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

2. All typical values are $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ} \text{ C}$.

3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	Se di Lacare de la companya del companya del companya de la compan	-65°C to +150°C
Temperature (Ambient) Under Bias	The Sale of Sale	-55°C to +125°C
Supply Voltage to Ground Potential	Control Control	-0.5V to +7.0V
DC Voltage Applied to Outputs for HIGH Output State	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-0.5V to +V _{CC} max.
DC Input Voltage	10-6 0 BAL :	-0.5V to +7.0V
DC Output Current	2 3 3 X 5	150mA
DC Input Current		-30mA to +5.0mA

Am25LS/54LS/74LS240

Am54LS/74LS240 **ELECTRICAL CHARACTERISTICS**

The Following Conditions Apply Unless Otherwise Specified:

COM'L $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $V_{CC} = 5.0\text{V} \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V) $T_A = -55^{\circ}\text{C to } + 125^{\circ}\text{C V}_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

arameters	Desci	riptio	n	Test C	Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
V	High Lavel Output	2.4			$V_{CC} = MIN., V_{IH} = 2.0V$ $I_{OH} = -3.0mA, V_{IL} = V_{IL}MAX.$		3.4		V-105
V _{OH}	High-Level Output Voltage		V _{CC} = MIN.,	MIL, $I_{OH} = -12mA$	2.0			Volts	
			$V_{IL} = 0.5V$	COM'L, I _{OH} = -15mA	2.0				
V	Low-Level Output Voltage		V BAIN	All, I _{OL} = 12mA		0.25	0.4	Volts	
V _{OL}			V _{CC} = MIN.	COM'L, I _{OL} = 24mA	operiov	0.35	0.5	VOILS	
VIH	High-Level Input Voltage			Guaranteed inpu		2.0			Volts
Bridge		0.2	COM'L	stugiff lis reli egatlov		aballo	HUSBIT RESERVE	0.8	14.1
VIL	Low-Level Input Vol	itage	MIL		LIMICO			0.7	Volts
VIK	Input Clamp Voltage			V _{CC} = MIN., I _I =	= -18mA	The section is not as a second	17 Joseph James	-1.5	Volts
Volts	Hysteresis (V _{T+} - V _{T-})			V _{CC} = MIN.	Vec = Mills Ip =	0.2	0.4	Input	Volts
l _{OZH}	Off-State Output Cu High Level Voltage	A CONTRACTOR	ed	V _{CC} = MAX.	V _O = 2.7V	(_7V	- ₊₇ VI alas	20	
lozL	Off-State Output Cu Low-Level Voltage			$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$. $V_{O} = 0.4V$	V _O = 0.4V	beliqqA 	egistia V Insta Octobro Great	-20	μΑ
I _I	Input Current at Ma Input Voltage	ximur	n	V _{CC} = MAX., V _I	= 7.0V	Bellega	agedlo V leve	0.1	mA
I _{IH}	High-Level Input Cu	gh-Level Input Current, Any Input V _{CC} MAX., V _{IH} = 2.7V		= 2.7V		egstlak	20	μΑ	
IIL	Low-Level Input Cur	rrent		V _{CC} = MAX., V _I	A Memi	O talquil liove	-200	μΑ	
Isc	Short Circuit Output	t Curr	ent (Note 3)	V _{CC} = MAX.		-40	O regni leve	-225	mA
Am	ES- -	Dh =		All Outputs HIGH	H XAM = 50V (8 eto)	патью д	13	23	_ 02
Icc	Supply Current		= MAX.	All Outputs LOW	All Outputs HIGV		26	44	mA
Am	Outputs open		Outputs at Hi-Z	1907	29	50	nat		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

All typical values are V_{CC} = 5.0 V, T_A = 25° C.
 Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

	A A CHES BASELO	Am25LS240			Am54LS/74LS240			(Same	Test Conditions	
Parameters	Description	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	(Notes 1-5)	
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output	etenu	8.0	12	in tal	9.0	14	ns		
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	annon	12	16		12	18	ns	$C_L = 45pF$ $R_L = 667\Omega$	
t _{PZL}	Output Enable Time to Low Level	on Theo	19	27		20	30	ns		
tpZH	Output Enable Time to High Level	earol bar	14	20		15	23	ns		
t _{PLZ}	Output Disable Time from Low Level	if dablive	14	23	11 0	15	25	ns	$C_L = 5.0pF$	
t _{PHZ}	Output Disable Time from High Level	the ynon	10	18	kyl m8	10	18	ns	$R_L = 667\Omega$	

Am25LS ONLY SWITCHING CHARACTERISTICS		Am25LS	S COM'L	Am25L	S MIL		
	VER OPERATING RANGE*		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V \pm 5\%$ Min. Max.		to +125°C 0V ±10% Max.	Units	Test Conditions
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output	21.8 A	16		19	ns	
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output		22		25	ns	$C_L = 45pF$ $R_L = 667\Omega$
t _{PZL}	Output Enable Time to Low Level	- 24	37		42	ns	
t _{PZH}	Output Enable Time to High Level	- Int	27		31	ns	W
t _{PLZ}	Output Disable Time from Low Level		31		36	ns	$C_L = 5.0pF$
t _{PHZ}	Output Disable Time from High Level	7	25	Phod	28	ns	$R_L = 667\Omega$

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

THREE-STATE OUTPUTS TEST POINT VCC S1 FROM OUTPUT UNDER TEST C S1 IN916 OR IN3064

LIC-334

LOAD CIRCUIT FOR

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-335

- Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - 2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. PRR \leq 1.0MHz, $Z_{OUT} \approx 50\Omega$ and $t_r \leq$ 2.5ns, $t_f \leq$ 2.5ns.

Am25LS241 • Am54LS/74LS241 Am25LS244 • Am54LS/74LS244

Octal Three-State Buffers

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data-to-output propagation delay times 18ns MAX.
- Enable-to-output 30ns MAX.
- Am25LS241 and 244 specified at 48mA output current
- 20 pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The 'LS241 and 'LS244 are octal buffers fabricated using advanced low-power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.

Three-state outputs are provided to drive bus lines directly. The Am25LS241 and Am25LS244 are specified at 48mA and 24mA output sink current, while the Am54LS/74LS241 and Am54LS/74LS244 are guaranteed at 12mA over the military range and 24mA over the commercial range. Four buffers are enabled from one common line and the other four from a second enable line.

The 'LS241 has enable inputs of opposite polarity to allow use as a transceiver without overlap. The 'LS244 enables are of similar polarity for use as a unidirectional buffer in which both halves are enabled simultaneously.

Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

LOGIC DIAGRAMS

CONNECTION DIAGRAMS Top Views

LOGIC SYMBOLS

Am25LS241 · Am25LS244 **ELECTRICAL CHARACTERISTICS**

The Following Conditions Apply Unless Otherwise Specified:

 $T_A = 0$ °C to +70°C $V_{CC} = 5.0V \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V)

 $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C V}_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

arameters	Desc	riptio	n	Test C	Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
V	High Lovel Output	Valtage		$V_{CC} = MIN., V_{IH}$ $I_{OH} = -3.0 \text{mA},$	2.4	3.4	Leinstel	Volts	
V _{OH}	High-Level Output Voltage		$V_{CC} = MIN.$, MIL , $I_{OH} = -12mA$		2.0	West in		VOILS	
		Amet Amet		$V_{IL} = 0.5V$	$COM'L$, $I_{OH} = -15mA$	2.0			
atleV			Amst = Jot IIA	All I _{OL} = 12mA	anathay	0.25	0.4		
VOL	Low-Level Output	Voltage	Amil	V _{CC} = MIN.	All I _{OL} = 24mA		0.35	0.5	Volts
-attov					COM'L, I _{OL} = 48mA	epalla	Cludni Java.	0.55	woV.
VIH	High-Level Input V	oltage		Guaranteed inpu	312.0150	2.0	James lave	Land	Volts
V	Low-Level Input Voltage COM'L			All a			0.8	Volts	
VIL	Low-Level input vo	oitage	MIL	Amer - I , will - 20 V		46	SJOY qmelQ	0.7	Voits
VIK	Input Clamp Voltage			V _{CC} = MIN., I _I =	= -18mA	1-1-Y	+1V) stes	-1.5	Volts
	Hysteresis (V _{T+} - V _{T-})		V _{CC} = MIN.	MAM work	0.2	0.4	8-80	Volts	
lozh	Off-State Output Current, High Level Voltage Applied		V _{CC} = MAX.	V _O = 2.7V	,mayru	A record one	20		
lozL	Off-State Output C Low-Level Voltage		d	$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$.	V _O = 0.4V	murrice	in as anemu Q	-20	μΑ
I _I , ,	Input Current at Ma Input Voltage	aximun	n	V _{CC} = MAX., V _I	= 7.0V 1000 y	nA ,/memu	Jugal leva.	0.1	mA
I _{IH}	High-Level Input Current, Any Input		V _{CC} = MAX., V	_{IH} = 2.7V	Televan	D jugat tave	20	μΑ	
IIL	Low-Level Input Current			V _{CC} = MAX., V	L = 0.4V	minus tu	Day Inmig	-200	μΑ
Isc	Short Circuit Outpu	ut Curre	ent (Note 3)	V _{CC} = MAX.	WAS STREET	-40		-225	mA
ARI			MANY	All Outputs HIGI	HOS BURBO IIA	murmin Change	13	23	201
Icc	Supply Current		= MAX.	All Outputs LOV	VI I'm 26 allogisti		27	46	mA
	anberen	Outp	uts open	Outputs at Hi-Z	author economics with each AA	S so Milki	32	54	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

2. All typical values are V_{CC} = 5.0 V, T_A = 25° C.

3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Storage Temperature		-65°C to +150°C
Temperature (Ambient) Under Bias	Switzer and Switzer	-55°C to +125°C
Supply Voltage to Ground Potential	EAS OF THE BEST OF	-0.5V to +7.0V
DC Voltage Applied to Outputs for HIGH Output State	THE REPORT OF THE PARTY OF THE	-0.5V to +V _{CC} max.
DC Input Voltage		-0.5V to +7.0V
DC Output Current	1VI SI 12 1VI	150mA
DC Input Current		-30mA to +5.0mA

Am25LS/54LS/74LS241/244

Am54LS/74LS241 • Am54LS/74LS244 ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $V_{CC} = 5.0\text{V} \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V) MIL $T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C V}_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

arameters Description				Test C	conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
V	High-Level Output Voltage			$V_{CC} = MIN., V_{IH}$ $I_{OH} = -3.0 \text{mA}, V_{IH}$	2.4	3.4		Volts	
V _{OH}				V _{CC} = MIN.,	MIL, $I_{OH} = -12mA$	2.0	DOLLAR SERVE	-11844	VOILS
				$V_{IL} = 0.5V$	COM'L, I _{OH} = -15mA	2.0			
VOL	Low-Level Output Voltage		V _{CC} = MIN.	All, I _{OL} = 12mA		0.25	0.4	Volts	
OL				COM'L, I _{OL} = 24mA	- semilav	0.35	0.5		
VIH	High-Level Input Voltage			Guaranteed inpu voltage for all in	2.0			Volts	
V	Lauri Lauri Janua Valle	0.5	COM'L	plune la sil applica		egillige	Frich Brau	0.8	Volts
VIL	Low-Level Input Voltage		MIL		011		0.7	Voits	
VIK	Input Clamp Voltage			V _{CC} = MIN., I _I =	ALL REPARE	V Jugat tave	-1.5	Volts	
esto V	Hysteresis (V _{T+} - V _{T-})			V _{CC} = MIN.	0.2	0.4	numni	Volts	
l _{OZH}	Off-State Output Current, High Level Voltage Applied			V _{CC} = MAX.	V _O = 2.7V	I. J. W	- J. V. sleer	20	μΑ
I _{OZL}	Off-State Output Current, Low-Level Voltage Applied		$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$.	V _O = 0.4V	belingA)	galloV leve	-20		
I _I	Input Current at Maximum Input Voltage			V _{CC} = MAX., V _I	beliggA	evel Veltage	0.1	mA	
I _{IH}	High-Level Input Current, Any Input			V _{CC} = MAX., V _I		acette V	20	μΑ	
I _{IL}	Low-Level Input Current			V _{CC} = MAX., V _I	AA Joenik	Laurent Inva	-200	μΑ	
Isc	Short Circuit Output Current (Note 3)			V _{CC} = MAX.	-40	D succes Love	-225	mA	
Aur	88-1	V _{CC} = MAX.		All Outputs HIGH	District In	13	23	mA	
Icc	Supply Current Output			All Outputs LOW		27	46		
			is open	Outputs at Hi-Z		Wed and	32		54

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

2. All typical values are V_{CC} = 5.0 V, T_A = 25°C.

3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

	S/74LS243	Am25LS241 Am25LS244			Am54LS/74LS241 Am54LS/74LS244			Test Conditions		
Parameters	Description	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	(Notes 1-5)	
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output		10	15	III S	12	18	ns		
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	LAMOR	12	18		12	18	ns	$C_L = 45pF$ $R_L = 667\Omega$	
t _{PZL}	Output Enable Time to Low Level	A AFAL	20	30		20	30	ns		
t _{PZH}	Output Enable Time to High Level		15	23	8	15	23	ns		
t _{PLZ}	Output Disable Time from Low Level	as Chico	15	25	igns MA	15	25	ns	$C_L = 5.0pF$	
t _{PHZ}	Output Disable Time from High Level	Elomai I	10	18		10	18	ns	$R_L = 667\Omega$	

Am25LS ONLY SWITCHING CHARACTERISTICS OVER OPERATING RANGE*		Am25L	S COM'L	Am25LS MIL				
		T _A = 0°C to +70°C V _{CC} = 5.0V ±5%		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V \pm 10\%$				
Parameters	Description	Min.	Max.	Min.	Max.	Units	Test Conditions	
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output	23/1/4	21	242	24	ns		
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	- 185	25		28	ns	$C_L = 45pF$ $R_L = 667\Omega$	
t _{PZL}	Output Enable Time to Low Level	241	41		47	ns		
t _{PZH}	Output Enable Time to High Level		31		47	ns		
t _{PLZ}	Output Disable Time from Low Level	1 1 11 11	34		36	ns	$C_L = 5.0pF$	
t _{PHZ}	Output Disable Time from High Level		25		28	ns	$R_1 = 667\Omega$	

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

- Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. 4. Pulse generator characteristics: PRR \leq 1.0MHz, $Z_{OUT} \approx 50\Omega$, $t_r \leq$ 15ns, $t_f \leq$ 6ns. 5. When measuring t_{PLH} and t_{PHL} , switches S_1 and S_2 are closed.

Am25LS242 • Am54LS/74LS242 Am25LS243 • Am54LS/74LS243

Quad Bus Transceivers with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data to output propagation delay times 18ns MAX.
- Enable to output 30ns MAX.
- Am25LS242 and Am25LS243 are specified at 48mA output current
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The 'LS242 and 'LS243 are quad bus transceivers designed for asynchronous two-way communications between data buses.

The 'LS242 and 'LS243 have the two 4-line data paths connected input-to-output on both sides to form an asynchronous transceiver/buffer with complementing enable inputs. The 'LS242 is inverting, while the 'LS243 presents non-inverting data at the outputs.

Three-state outputs are provided to drive bus lines directly. The Am25LS242 and Am25LS243 are specified at 48mA and 24mA output sink current, while the Am54/74LS242 and 243 are guaranteed at 12mA over the military range and 24mA over the commercial range.

Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

4

Am25LS242 • Am25LS243 ELECTRICAL CHARACTERISTICS

The Following Conditions Apply unless Otherwise Specified:

COM'L $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V)

MIL $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C V}_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

arameters	Descrip	tion	Test C	Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units	
V _{OH}	High-Level Output Voltage			$V_{CC} = MIN., V_{IH} = 2.0V$ $I_{OH} = -3.0mA, V_{IL} = V_{IL}MAX.$		3.4	en Labrilli	Volts	
AOH	High-Level Output voit	age	V _{CC} = MIN.,	$I_{CC} = MIN.$, MIL , $I_{OH} = -12mA$	2.0			VOILS	
		0.5 A	$V_{IL} = 0.5V$	COM'L, I _{OH} = -15mA	2.0				
Volus	105.0		Amust = jg/us	All I _{OL} = 12mA	and the	0.25	0.4		
VOL	Low-Level Output Voltage		V _{CC} = MIN. All	All I _{OL} = 24mA		0.35	0.5	Volts	
stioV		0.5	Hall hall	COM'L, I _{OL} = 48mA	965	dioV stemi in	0.55		
V _{IH}	High-Level Input Voltage	je	Guaranteed input logical HIGH voltage for all inputs		2.0	utlest mont	ann Lucia	Volts	
V	COM'L				THAT I		0.8	Volts	
V _{IL}	Low-Level Input Voltage	MIL	,Ams)	V.cc = MIN. II		at mon de	0.7	VOIL	
VIK	Input Clamp Voltage		V _{CC} = MIN., I _I =	= -18mA	1000	LA L MIAN	-1.5	Volt	
	Hysteresis (V _{T+} - V _{T-})		V _{CC} = MIN.	V XAM = maV	0.2	0.4	WS/6-17U	Volt	
lozh		Off-State Output Current, High Level Voltage Applied		V _O = 2.7V	200	ougus Cuer	40		
I _{OZL}	Off-State Output Curre Low-Level Voltage App		$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$.	V _O = 0.4V	moun	ive VI ht anish	-200	μΑ	
II Au	Input Current at Maxin	num	Vaa - MAY	$V_1 = 7.0V$, $\overline{G}AB$ or GBA		1 900	0.1	mA	
(894)	Input Voltage		ACC - MAY.	$V_I = 7.0V$, $\overline{G}AB$ or $\overline{G}BA$ $V_I = 5.5V$, A or B	TOTAL SEE	Total Turbers II	0.1	mA	
I _{IH}	High-Level Input Curre	nt, Any Input	V _{CC} = MAX., V		200	moutaget)	20	μΑ	
I _{IL}	Low-Level Input Currer	nt	V _{CC} = MAX., V	IL = 0.4V	A STETLL	and and and	-200	μΑ	
Isc	Short Circuit Output C	ort Circuit Output Current (Note 3)		V _{CC} = MAX.			-225	mA	
V _{CC} = MAX. I _{CC} Supply Current Outputs open	MAY	All Outputs HIGH	'LS242, 'LS243	Deputs on	22	38			
	Supply Current O	itputs open	All Outputs LOW	'LS242, 'LS243	lera 4)	29	50	mA	
	(N	ote 4)	Outputs at	'LS242		29	50		
	and Suine		Hi-Z	'LS243	0 A K II 9	32	54		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

- 2. All typical values are V_{CC} = 5.0V, T_A = 25°C.
- 3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- 4. For 'LS242 and 'LS243 ICC is measured with transceivers enabled in one direction only, or with all transceivers disabled.

MAXIMUM RATINGS above which the useful life may be impaired

MAXIMOW RATINGS above which the useful life may be impaired	
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +7.0V
DC Output Current	150mA
DC Input Current	-30mA to +5.0mA

Am25LS/54LS/74LS242/243

Am54LS/74LS242 • Am54LS/74LS243 ELECTRICAL CHARACTERISTICS

The Following Conditions Apply unless Otherwise Specified:

DC CHARACTERISTICS OVER OPERATING RANGE

rameters	Desc	riptio	n	Test (Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
V	AE AS		$V_{CC} = MIN., V_{IH} = 2.0V$ $I_{OH} = -3.0mA, V_{IL} = V_{IL}MAX.$		2.4	3.4		Volts	
V _{OH}	High-Level Output \	voitage	2	V _{CC} = MIN.,	MIL, $I_{OH} = -12mA$	2.0	DW-CASPIDION IS	Med-usily	VOILS
			S	$V_{IL} = 0.5V$	COM'L, I _{OH} = -15mA	2.0			
V	Lavel Output V	la lana		V _{CC} = MIN.	AII, I _{OL} = 12mA		0.25	0.4	Volts
V _{OL}	Low-Level Output V	oitage		$COM'L$, $I_{OL} = 24mA$	COM'L, I _{OL} = 24mA	1	0.35	0.5	VOIL
VIH	High-Level Input Voltage		Guaranteed inp		2.0			Volt	
enev	COM'L			nius d'Oi et anatou	op)	HoV sugnil is	0.8	100	
VIL	Low-Level Input Vo	Itage	MIL			John T.		0.7	Volts
VIK	Input Clamp Voltage		V _{CC} = MIN., I _I	= -18mA	184 7 99	Mov Jugal I	-1.5	Volt	
- and V	Hysteresis (V _{T+} - V _{T-})		V _{CC} = MIN.	r = al. Vibl = aaV	0.2	0.4	ni Dimoni Cin	Volt	
l _{OZH}	Off-State Output Current, High Level Voltage Applied		V _{CC} = MAX.	V _O = 2.7V	(-	1Y - 21Y) =	40		
l _{OZL}	Off-State Output Current, Low-Level Voltage Applied		$V_{IH} = 2.0V$ $V_{IL} = V_{IL}MAX$.	V _O = 0.4V	boilge	A agnitoV le	-200	μΑ	
1	Input Current at Ma	ximur	n	V _{CC} = MAX.	$V_1 = 7.0V$, $\overline{G}AB$ or GBA	B-site	nA anatoV h	0.1	mA
I _I	Input Voltage		Ago	$V_{CC} = WAX$. $V_{I} = 5.5V$, A or B			Sans XII. San San San	0.1	mA
I _{IH}	High-Level Input Cu	ırrent,	Any Input	V _{CC} MAX., V _{IH}	= 2.7V	W 18 2 3 3 5	epet	20	μΑ
IIL A	Low-Level Input Current		V _{CC} = MAX., V	_{IL} = 0.4V	VoA Int	in Drown Curr	-200	μΑ	
Isc	Short Circuit Output Current (Note 3)		V _{CC} = MAX.	= aV XAN = asV	-40	exect townill	-225	mA	
Aci	225	V	MAY	All Outputs HIGH	'LS242, 'LS243	d) menus	22	38	
Icc	Supply Current	Outp	= MAX. uts open	All Outputs LOW	'LS242, 'LS243	SC = MAP	29	50	mA
	28 60	(Note	3 4)	Outputs at	'LS242	do strain	29	50	1
	da be			Hi-Z	'LS243	(later4).	32	54	-

Notes: 1. For conditions shown as MIN' or MAX., use the appropriate value specified under recommended operating conditions.

- 2. All typical values are V_{CC} = 5.0V, T_A = 25°C.
- 3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- 4. For 'LS242 and 'LS243 ICC is measured with transceivers enabled in one direction only, or with all transceivers disabled.

Am25LS242 • Am54LS/74LS242 SWITCHING CHARACTERISTICS Am25LS242 Am54LS/74LS242 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$ **Test Conditions Parameters** Description Min. Typ. Max. Min. Typ. Max. Units (Notes 1-5) Propagation Delay Time, 9.0 14 ns t_{PLH} 8.0 12 Low-to-High-Level Output $C_L = 45pF$ Propagation Delay Time, 12 16 12 18 ns **t**PHL High-to-Low-Level Output $R_L = 667\Omega$ Output Enable Time to Low Level 20 30 t_{PZL} 20 30 ns Output Enable Time to High Level 15 **t**PZH 23 23 15 $C_L = 5.0pF$ Output Disable Time from Low Level 15 25 ns tPLZ 15 25 Output Disable Time from High Level 10 $R_L = 667\Omega$ 10 18 18 ns t_{PHZ}

Am25LS242 ONLY SWITCHING CHARACTERISTICS OVER OPERATION RANGE* Parameters Description		Am25L	S COM'L	Am25	LS MIL		
		-	to +70°C 5.0V ±5% Max.	,,	C to +125°C .0V ±10% Max.	Units	Test Conditions
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output		16		19	ns	- DBRSHI
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output		22		25	ns	$C_L = 45pF$ $R_L = 667\Omega$
tpZL	Output Enable Time to Low Level		37		42	ns	
t _{PZH}	Output Enable Time to High Level	september of the	29	on taxonerry drips	33	ns	Of Transport
t _{PLZ}	Output Disable Time from Low Level	uction and raid	33	es lungini rima	38	ns	$C_L = 5.0pF$
t _{PHZ}	Output Disable Time from High Level	Special to the state	25	MAT SATISTICS	28	ns	$R_L = 667\Omega$

Am25LS243 • Am54LS/74LS243 **SWITCHING CHARACTERISTICS** Am25LS243 Am54LS/74LS243 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$ **Test Conditions Parameters** Description Min. Тур. Max. Тур. Max. Units (Notes 1-5) Propagation Delay Time, 12 18 tPLH 10 15 ns Low-to-High-Level Output Propagation Delay Time, $C_L = 45pF$ 12 18 t_{PHL} ns 12 18 $R_L = 667\Omega$ High-to-Low-Level Output Output Enable Time to Low Level 20 30 tPZL ns 20 30 Output Enable Time to High Level 15 23 **t**PZH 15 23 ns tPLZ Output Disable Time from Low Level 15 25 15 25 ns $C_L = 5.0pF$ $R_L = 667\Omega$ Output Disable Time from High Level 10 18 t_{PHZ} 10 18 ns

Am25LS243 ONLY SWITCHING CHARACTERISTICS		AM25LS COM'L AM25LS MIL		LS MIL			
	ERATION RANGE* Description	-	to +70°C 5.0V ±5% Max.		C to +125°C .0V ±10% Max.	Units	Test Conditions
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output		21		24	ns	
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output		25		28	ns	$C_L = 45pF$ $R_L = 667\Omega$
t _{PZL}	Output Enable Time to Low Level		41		47	ns	
t _{PZH}	Output Enable Time to High Level		33		49	ns	
t _{PLZ}	Output Disable Time from Low Level		36		38	ns	$C_L = 5.0pF$
t _{PHZ}	Output Disable Time from High Level		25		28	ns	$R_1 = 667\Omega$

LIC-350

SWITCHING CHARACTERISTICS TEST CONDITIONS

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-351

Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

- 2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
- 4. Pulse generator characteristics: PRR \leq 1MHz, Z_{OUT} \approx 50 Ω , t_r \leq 15ns, t_f \leq 6ns.

5. When measuring tpLH and tpHL, switches S₁ and S₂ are closed.

FUNCTION TABLES

Am54LS/74LS242

CONTROL INPUTS		DA OUT	
GAB	GBA	А	В
Н	Н	ō	1
L	Н	*	*
Н	L	ISOL	ATED
L	L	1	O

I = Input	H = HIGH
O = Output	L = LOW
O - Laurantina Outaut	

Am54LS/74LS243

CONTROL		DA OUT	TA
GAB	GBA	А	В
Н	Н	0	1
L	Н	*	*
Н	L	ISOL	ATED
L	L	1	0

^{*}Possible destructive oscillation may occur if the transceivers are enable in both directions at once.

Am26LS29

Quad Three-State Single Ended RS-423 Line Driver

DISTINCTIVE CHARACTERISTICS

- Four single ended line drivers in one package for maximum package density
- Output short-circuit protection
- · Individual rise time control for each output
- 50Ω transmission line drive capability
- · High capacitive load drive capability
- Low I_{CC} and I_{EE} power consumption (26mW/driver typ.)
- Meets all requirements of RS-423
- Three-state outputs for bus oriented systems
- Outputs do not clamp line with power off or in hi-impedance state over entire transmission line voltage range of RS-423
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Available in military and commercial temperature range
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS29 is a quad single ended line driver, designed for digital data transmission. The Am26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.

A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

The Am26LS29 has three-state outputs for bus oriented systems. The outputs in the hi-impedance state will not clamp the line over the transmission line voltage of RS-423. A typical full duplex system would use the Am26LS29 line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS29 line drivers with only one enabled at a time and all others in the three-state mode.

The Am26LS29 is constructed using advanced low-power Schottky processing.

ORDERING INFORMAT	ION
-------------------	-----

Temperature Range	Order Number
-55°C to +125°C	AM26LS29DM
-55°C to +125°C	AM26LS29FM
-55°C to +125°C	AM26LS29XM
0°C to +70°C	AM26LS29DC
0°C to +70°C	AM26LS29PC
0°C to +70°C	AM26LS29XC
	Range -55°C to +125°C -55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

BLI-004

BLI-001

Am26LS29

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Supply Voltage	
V+	7.0V
V-	-7.0V
Power Dissipation	600mW
Input Voltage	-0.5 to +15.0V
Output Voltage (Power Off)	±15V
Lead Soldering Temperature (10 seconds)	300°C

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:

DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

	Description	Test Cond	litions	Min.	Typ. (Note 1)	Max.	Units
Vo	0	of Possels in Val	V _{IN} = 2.4V	4.0	4.4	6.0	Volts
Vo	Output Voltage	of R _L = ∞ In is this	V _{IN} = 0.4V	-4.0	-4.4	-6:0	Volts
VT	Output Voltage	D 4500	V _{IN} = 2.4V	3.6	4.1		Volts
VT	Output Voltage	R _L = 450Ω	V _{IN} = 0.4V	-3.6	-4.1		Volts
$ V_T - \overline{V_T} $	Output Unbalance	VCC = VEE , RL =	450Ω		0.02	0.4	Volts
1X+	Output Leakage Power Off	V _{CC} = V _{FF} = 0V	V _O = 10V	II - Into A	2.0	100	μΑ
I _X -	Outbut reakage Lower Oil	$V_0 = -10V$		-2.0	-100	μА	
IS+	Output Short Circuit Current	V _O = 0V	V _{IN} = 2.4V		-70	-150	mA
I _S -	Cutput Short Circuit Current		V _{IN} = 0.4V		60	150	mA
Slew	Slew Control Current	V _{SLEW} = V _{EE} + 0.9	V		±110		μА
1cc	Positive Supply Current	V _{IN} = 0.4V, R _L = ∞			18	30	mA
IEE	Negative Supply Current	V _{IN} = 0.4V, R _L = ∞	LA FORM		-10	-22	mA
10	Off State (High Impedance)	VCC = MAX.	V ₀ = 10V		2.0	100	μΑ
.0	Output Current	· CC	V _O = -10V		-2.0	-100	μА
VIH	High Level Input Voltage	Supermount - 1		2.0			Volts
VIL	Low Level Input Voltage					0.8	Volts
Local	Ui-b I I I O	V _{IN} = 2.4V	27000		1.0	40	μΑ
IH	High Level Input Current	V _{IN} ≤ 15V			10	100	μΑ
I _I L	Low Level Input Current	V _{IN} = 0.4V	14		-30	-200	μА
V _I	Input Clamp Voltage	I _{IN} = -12mA				-1.5	Volts

AC CHARACTERISTICS

 $V_{CC} = 5.0V, V_{EE} = -5.0V, T_A = 25^{\circ}C$

Parameters	Description	Test Conditions			Typ. (Note 1)	Max.	Units
	Diag Time	D 4500 C 500-F Fig 4	$C_C = 50pF$	un ragine.	3.0	- 00000	μs
tr	Rise Time	$R_L = 450\Omega$, $C_L = 500pF$, Fig. 1	C _C = 0pF		120	300	ns
	LITTING MODELS of	Te same	C _C = 50pF	To Marie	3.0	WU Sits	μs
t _f Fall Time	$R_L = 450\Omega$, $C_L = 500pF$, Fig. 1 $C_C = 0pF$	3 4 1 39	120	300	ns		
Src	Slew Rate Coefficient	$R_L = 450\Omega$, $C_L = 500$ pF, Fig. 1		PC to 170	.06	alti pila	μs/pF
t _{LZ}	- Character Co. of	B 4500 0 500-5 0 0-	F F:- 0	OX+ of ON	180	300	No.V
t _{HZ}	0.1-15-11-1-0.1-1	$R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0pF$, Fig. 2		UNIT OF COL	250	350	ns
tzL	Output Enable to Output	B - 4500 C - 500pE C - 0pE Fig 2			250	350	115
tzH	$R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0pF$, Fig.		71 , 1 lg. 2		180	300	

Notes: 1. Typical limits are at $V_{CC}=5.0V$, $V_{EE}=-5.0V$, 25°C ambient and maximum loading. Symbols and definitions correspond to EIA RS-423 where applicable.

DISTINCTIVE CHARACTERISTICS

- Dual RS-422 line driver or guad RS-423 line driver
- Driver outputs do not clamp line with power off or in hi-impedance state
- Individually three-state drivers when used in differential mode
- Low I_{CC} and I_{EE} power consumption
 RS-422 differential mode
 RS-423 single-ended mode
 26mW/driver typ.
- Individual slew rate control for each output
- 50Ω transmission line drive capability (RS-422 into virtual ground)
- Low current PNP inputs compatible with TTL, MOS and CMOS
- High capacitive load drive capability
- Exact replacement for DS16/3691
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS30 is a line driver designed for digital data transmission. A mode control input provides a choice of operation either as two differential line drivers which meet all of the requirements of EIA Standard RS-422 or four independent single-ended RS-423 line drivers.

In the differential mode the outputs have individual three-state controls. In the hi-impedance state these outputs will not clamp the line over a common mode transmission line voltage of $\pm\,10V$. A typical full duplex system would be the Am26LS30 differential line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS30 differential drivers.

A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

The Am26LS30 is constructed using Advanced Low Power Schottky processing.

LOGIC DIAGRAMS

Logic for Am26LS30 with Mode Control HIGH (RS-423)

Logic for Am26LS30 with Mode Control LOW (RS-422)

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	AM26LS30DM
Hermetic Flat Pak	-55°C to +125°C	AM26LS30FM
Dice	-55°C to +125°C	AM26LS30XM
Hermetic DIP	0°C to +70°C	AM26LS30DC
Molded DIP	0°C to +70°C	AM26LS30PC
Dice	0°C to +70°C	AM26LS30XC

CONNECTION DIAGRAM - Top View

Am26LS30

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Supply Voltage	Duel Oliferentia: RS-422 Perty L
V+	7.0V
V-	-7.0V
Power Dissipation	600mW
Input Voltage	-0.5 to +15.0V
Output Voltage (Power Off)	±15V
Lead Soldering Temperature (10 seconds)	300°C

ELECTRICAL CHARACTERISTICS over the operating temperature range

The Following Conditions Apply Unless Otherwise Specified:

DC CHARACTERISTICS over the operating temperature range

Parameters	Description	Test Conditi	ons (Note 3)	Min.	Typ. (Note 1)	Max.	Units
Vo	divorte.	D	V _{IN} = 2.0V	FO-SI	3.6	6.0	Volts
Vo	Differential Output Voltage, VA, B	R _L = ∞	V _{IN} = 0.8V	adama I	-3.6	-6.0	Volts
VT	Differential Output Voltage V	R _L = 100Ω	V _{IN} = 2.0V	2.0	2.4	B VIIIIdsB	Volts
VT	Differential Output Voltage, VA, B	HE - 10022	V _{IN} = 0.8V	-2.0	-2.4	emar	Volts
Vos, Vos	Common Mode Offset Voltage	R _L = 100Ω			2.5	3.0	Volts
$ V_T - \overline{V_T} $	Difference in Differential Output Voltage	$R_L = 100\Omega$			0.005	0.4	Volt
Vos - Vos	Difference in Common Mode Offset Voltage	R _L = 100Ω			0.005	0.4	Volt
VSS	$ V_T - \overline{V_T} $	R _L = 100Ω		4.0	4.8		Volt
VCMR	Output Voltage Common Mode Range	VENABLE =	2.4V	±10	na nat nina		Volt
IXA		V _{CC} = 0V	V _{CMR} = 10V	RI HO IN	lonico et	100	μА
IXB	Output Leakage Current	vCC - 0 v	V _{CMR} = -10V			-100	μΑ
lox	Off State (High Impedance)	V _{CC} = MAX.	V _{CMR} ≤ 10V		Later 1	100	μΑ
·OX	Output Current	VCC - WAX.	V _{CMR} ≥ -10V			-100	μА
	ARTHORING IN THE PARTY OF THE P	V _{IN} = 2.4V	V _{OA} = 6.0V		80	150	mA
I _{SA} , I _{SB}	Output Short Circuit Current	VIN - 2.4V	V _{OB} = 0V		-80	-150	mA
'SA, 'SB	Output Short Circuit Current	V _{IN} = 0.4V	V _{OA} = 0V		-80	-150	mA
S. T. Const.		VIIV - 0.44	V _{OB} = 6.0V		80	150	mA
Icc	Supply Current				18	30	mA
VIH	High Level Input Voltage	A LANGE RALLA	(2 Jennijon si	2.0			Volt
VIL	Low Level Input Voltage				/	0.8	Volt
I _{IH}	High Level Input Current	V _{IN} = 2.4V			1.0	40	μА
		V _{IN} ≤ 15V	GUIORTNOD KO		10	100	μΑ
IIL	Low Level Input Current	V _{IN} = 0.4V			-30	-200	μА
VI	Input Clamp Voltage	I _{IN} = -12mA	q.ft.etub			-1,5	Volt

AC CHARACTERISTICS

EIA RS-422 Connection, $V_{CC} = 5.0V$, $V_{EE} = GND$, Mode = 0.4V, $T_A \pm 25^{\circ}C$

Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
t _r	Differential Output Rise Time	Fig. 2, $R_1 = 100\Omega$, $C_1 = 500pF$	TA PAUSIN	120	200	ns
tf	Differential Output Fall Time	Fig. 2, R _L = 100Ω, C _L = 500pF		120	200	ns
t _{PDH}	Output Propagation Delay	Fig. 2, $R_L = 100\Omega$, $C_L = 500pF$	Reads	120	200	ns
t _{PDL}	Output Propagation Delay	Fig. 2, $R_L = 100\Omega$, $C_L = 590pF$	0184154 of 0	120	200	ns
t _{LZ}	E 191000 H	$R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0pF$, Fig. 3	Orbit + of O	180	300	allumis
t _{HZ}	Output Enable to Output	n_ = 45002, C_ = 500pr, C_ = 0pr, Fig. 5	0°651+ 6/0	250	350	NO
t _{ZL}	Output Enable to Output	D 4500 0 500-5 0 0-5 5i- 0	0 07-10	250	350	ns
tzH	p manual [111] b [18]	$R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0pF$, Fig. 3	0400	180	300	NO UNI

Notes: 1. Typical limits are at $V_{CC} = 5.0V$, $V_{EE} = GND$, 25°C ambient and maximum loading. 2. Symbols and definitions correspond to EIA RS-422 where applicable.

3. R_L connected between each output and its complement.

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:

DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

Parameters	Description	Description Test Conditions		Min.	Typ. (Note 1)	Max.	Units
Vo	Output Valence	R _L = ∞,	V _{IN} = 2.4V	4.0	4.4	6.0	Volts
VO	Output Voltage	V _{CC} = V _{EE} = 4.75V	V _{IN} = 0.4V	-4.0	-4.4	-6.0	Volts
VT	Output Voltage	$R_L = 450\Omega$,	V _{IN} = 2.4V	3.6	4.1		Volts
VT	Output Voltage	V _{CC} = V _{EE} = 4.75V	V _{IN} = 0.4V	-3.6	-4.1	- I av	Volts
$ V_T - \overline{V_T} $	Output Unbalance	VCC = VEE , RL = 45	0Ω	es veco and	0.02	0.4	Volts
1X+	Output Leakage Power Off	VCC = VEF = 0V	V _O = 6.0V	//	2.0	100	μА
IX-	Output Leakage Fower Off	ACC - AEE - OA	V _O = -6.0V	10 JK 1	-2.0	-100	μА
ls+	Output Short Circuit Current	V _O = 0V	V _{IN} = 2.4V		-80	-150	mA
I _S -	Output Short Circuit Current	ΛΟ - 0Λ	V _{IN} = 0.4V		80	150	mA
Slew	Slew Control Current	V _{SLEW} = V _{EE} + 0.9V	V _{SLEW} = V _{EE} + 0.9V		±140		μΑ
lcc	Positive Supply Current	V _{IN} = 0.4V, R _L = ∞			18	30	mA
IEE	Negative Supply Current	V _{IN} = 0.4V, R _L = ∞		are to make	-10	-22	mA
VIH	High Level Input Voltage			2.0	if a value		Volts
VIL	Low Level Input Voltage	Control for RS-423	Lastil Loon		S was It at	0.8	Volts
		V _{IN} = 2.4V			1.0	40	μΑ
TIH	High Level Input Current	V _{IN} ≤ 15V			10	100	μΑ
III.	Low Level Input Current	V _{IN} = 0.4V	EVAN SME	DAIN	-30	-200	μΑ
VI	Input Clamp Voltage	$I_{IN} = -12mA$	STATE INDEED	State of the last		-1.5	Volts

AC CHARACTERISTICS

RS-423 Connection, $V_{CC}=5.0V$, $V_{EE}=-5.0V$, Mode = 2.4V, $T_{A}=25^{\circ}C$

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
динтис	Rise Time	Fig. 1 B - 4500 C - 5000F	C _C = 50pF		3.0		μs
tr	nise Time	Fig. 1, $R_L = 450\Omega$, $C_L = 500pF$	C _C = 0	may	120	300	ns
* TMS A DA	Fall Time	Fig. 1 B 4500 C 5000F	C _C = 50pF		3.0		μs
tf	rall Time	Fig. 1, $R_L = 450\Omega$, $C_L = 500pF$	C _C = 0		120	300	ns
Src	Slew Rate Coefficient	Fig. 1, $R_L = 450\Omega$, $C_L = 500pF$.06		μs/pF
t _{PDH}	Output Propagation Delay	Fig. 1, $R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0$			180	300	ns
t _{PDL}	Output Propagation Delay	Fig. 1, $R_L = 450\Omega$, $C_L = 500pF$, $C_C = 0$			180	300	ns

Notes: 1. Typical limits are at V_{CC} = 5.0V, V_{EE} = -5.0V, 25°C ambient and maximum loading. 2. Symbols and definitions correspond to EIA RS-423 where applicable.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS FOR EIA RS-423 CONNECTION

Figure 1. Rise Time Control for RS-423.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT FOR RS-422 CONNECTION

*Current probe is the easiest way to display a differential waveform.

Figure 2.

Figure 3. Three-State Delays.

Am26LS30 FUNCTION TABLE

1513	INP	UTS	OUTI	PUTS
MODE	A(D)	B(C)	A(D)	B(C)
0	0	0	0	1
0	0	1	Z	Z
0	1	0	1	0
0	-61	1	Z	Z
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Slew Rate (Rise or Fall Time) Versus External Capacitor

Am26LS30 EQUIVALENT CIRCUIT

BLI-020

Metallization and Pad Layout

BLI-032

Am₂₆LS31

Quad High Speed Differential Line Driver

DISTINCTIVE CHARACTERISTICS

- Output skew 2.0ns typical
- Input to output delay 12ns
- Operation from single +5V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when V_{CC} = 0
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100 Ω terminated transmission lines
- Available in military and commercial temperature range
- Advanced low-power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS31 is a quad differential line driver, designed for digital data transmission over balanced lines. The Am26LS31 meets all the requirements of EIA standard RS-422 and federal standard 1020. Is is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The Am26LS31 features 3-state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.

The Am26LS31 is constructed using advanced low-power Schottky processing.

LOGIC DIAGRAM

LIC-352

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	AM26LS31DM
Flat Pak	-55°C to +125°C	AM26LS31FM
Dice	-55°C to +125°C	AM26LS31XM
Hermetic DIP	0°C to +70°C	AM26LS31DC
Molded DIP	0°C to +70°C	AM26LS31PC
Dice	0° C to $+70^{\circ}$ C	AM26LS31XC

CONNECTION DIAGRAM (Top View)

Note: Pin 1 is marked for orientation.

LIC-353

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:

Parameters	Description	Test Co	nditions	Min.	Typ. (Note 1)	Max.	Units
VOH	Output HIGH Voltage	V _{CC} = Min., I _{OH} =	-20mA	2.5	3.2	ne des misir	Volts
VOL	Output LOW Voltage	V _{CC} = Min., I _{OL} =	20mA	AT THE SER	0.32	0.5	Volts
VIH	Input HIGH Voltage	V _{CC} = Min.		2.0			Volts
VIL	Input LOW Voltage	V _{CC} = Max.	E. H. Transler	MILLI	rioritation d	0.8	Volts
IIL	Input LOW Current	V _{CC} = Max., V _{IN} =	0.4V		-0.20	-0.36	mA
TiH	Input HIGH Current	V _{CC} = Max., V _{IN} =	2.7V	Standard H.	0.5	20	μА
11	Input Reverse Current	V _{CC} = Max., V _{IN} =	7.0V		0.001	0.1	mA
10	Off-State (High Impedance)	VCC = Max.	V _O = 5.5V	mer leionem	0.5	20	felisvA.
	Output Current	VCC IVIAX.	V _O = 0.5V	processing	0.5	-20	μΑ
VI	Input Clamp Voltage	V _{CC} = Min., I _{IN} = 1	8mA	ning to Mil	-0.8	-1.5	Volts
Isc	Output Short Circuit Current	V _{CC} = Max.		-30	-60	-150	mA
Icc	Power Supply Current	V _{CC} = Max., all out	puts disabled		60	80	mA
tPLH	Input to Output	V _{CC} = 5.0V, T _A = 3	25°C, Load = Note 2		12	20	ns
tPHL	Input to Output	V _{CC} = 5.0V, T _A = 3	25°C, Load = Note 2		12	20	ns
SKEW	Output to Output	V _{CC} = 5.0V, T _A = 3	25°C, Load = Note 2		2.0	6.0	ns
tLZ	Enable to Output	V _{CC} = 5.0V, T _A = 2	25°C, C _L = 10pF		23	35	ns
tHZ	Enable to Output	V _{CC} = 5.0V, T _A = 25°C, C _L = 10pF			17	30	ns
tZL	Enable to Output	V _{CC} = 5.0V, T _A = 25°C, Load = Note 2		g RJS	35	45	ns
tZH	Enable to Output	V _{CC} = 5.0V, T _A = 3	25°C, Load = Note 2	Mark and the	30	40	ns

Notes: 1. All typical values are $V_{CC} = 5.0V$, $T_A = 25$ °C.

2. C_L = 30pF, V_{IN} = 1.3V to V_{OUT} = 1.3V, V_{PULSE} = 0V to +3.0V, See Below.

TYPICAL APPLICATION

Am26LS32 • Am26LS33

Quad Differential Line Receivers

DISTINCTIVE CHARACTERISTICS

- Input voltage range of 15V (differential or common mode) on Am26LS33; 7V (differential or common mode) on Am26LS32
- ±0.2V sensitivity over the input voltage range on Am26LS32; ±0.5V sensitivity on Am26LS33
- The Am26LS32 meets all the requirements of RS-422 and RS-423
- · 6k minimum input impedance
- 30mV input hysteresis
- Operation from single +5V supply
- 16-pin hermetic and molded DIP package
- Fail safe input-output relationship. Output always high when inputs are open.
- Three-state drive, with choice of complementary output enables, for receiving directly onto a data bus.
- Propagation delay 17ns typical
- Available in military and commercial temperature range
- Advanced low-power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The Am26LS32 features an input sensitivity of 200mV over the input voltage range of $\pm 7V$.

The Am26LS33 features an input sensitivity of 500mV over the input voltage range of $\pm 15V$.

The Am26LS32 and Am26LS33 provide an enable and disable function common to all four receivers. Both parts feature 3-state outputs with 8mA sink capability and incorporate a fail safe input-output relationship which keeps the outputs high when the inputs are open.

The Am26LS32 and Am26LS33 are constructed using Advanced Low-Power Schottky processing.

LOGIC DIAGRAM

BLI-024

ORDERING INFORMATION

		Am26LS32	Am26LS33
Package Type	Temperature Range	Order Number	Order Number
Hermetic DIP	-55°C to +125°C	AM26LS32DM	AM26LS33DM
Flat Pak	-55°C to +125°C	AM26LS32FM	AM26LS33FM
Dice	-55°C to +125°C	AM26LS32XM	AM26LS33XM
Hermetic DIP	0°C to +70°C	AM26LS32DC	AM26LS33DC
Molded DIP	0°C to +70°C	AM26LS32PC	AM26LS33PC
Dice	0°C to +70°C	AM26LS32XC	AM26LS33XC

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-360

Am26LS32 • Am26LS33

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage		7.0V
Common Mode Range	Ogad Differential Line Receivers	±25V
Differential Input Voltage		±25V
Enable Voltage		7.0V
Output Sink Current		50mA
Storage Temperature Range		-65°C to +165°C

ELECTRICAL CHARACTERISTICS Over the operating temperature range

The following conditions apply unless otherwise specified:

Am26LS32XM, Am26LS33XM (MIL) $T_A = -55^{\circ}C$ to +125°C $V_{CC} = 5.0V \pm 10\%$ Am26LS32XC, Am26LS33XC (COM'L) $T_A = 0^{\circ}C$ to +70°C $V_{CC} = 5.0V \pm 5\%$

rameters	Description	Те	st Conditions	E	Min.	Typ. (Note 1)	Max.	Unit
VTH	Differential Input Voltage	VOUT = VOL or VOH	Am26LS32, −7V ≤ V _{CM} ≤ +7V		0.2	0.06	0.2	Volt
3990 1/m			Am26LS33, −15V ≤ V _{CM} ≤ +15V		0.5	0.12	0.5	VOILS
RIN	Input Resistance	-15V ≤ V _{CM} ≤ +15V (One input AC ground)		6.0k	8.5k	ugai Vm	Ω	
I _{IN}	Input Current (Under Test)	V _{IN} = +15V, Other Input −15V ≤ V _{IN} ≤ +15V		d bable	etic and In	2.3	mA	
I _{IN}	Input Current (Under Test)	V _{IN} = −15V, Other Input −15V ≤ V _{IN} ≤ +15V		relatio	ngtue-tuer	-2.8	mA	
V _{OH} Output	Output HIGH Voltage	V _{CC} = Min., ΔV _{IN} = +1.0V COM'L VENABLE = 0.8V, I _{OH} = -440μA MIL		2.7	3.4	duqui na	N-I	
	Output HIGH Voltage			MIL	2.5	3.4	ibles, for	Volts
V-	Output LOW Voltage	V _{CC} = Min., ΔV _{IN} = -1.0V		legio y a	delay 17m	0.4	Volta	
V _{OL} Output LOW Voltage	Output LOW Voltage			I _{OL} = 8.0mA	oo bins	pasition o	0.45	Volts
VIL	Enable LOW Voltage	SSRATTR-11M ou union		ana ana	Fire sees or	0.8	Volt	
VIH	Enable HIGH Voltage			2.0	No.	memorius	Volt	
VI	Enable Clamp Voltage	V _{CC} = Min., I _{IN} = -18mA				-1.5	Volt	
La	Off-State (High Impedance)	V _{CC} = Max.	Voc = Max V ₀ = 2.4V				20	
Output Current		$V_{O} = 0.4V$		V _O = 0.4V			-20	μА
IIL	Enable LOW Current	V _{IN} = 0.4V				-0.2	-0.36	mA
I _{IH}	Enable HIGH Current	V _{IN} = 2.7V			0.5	20	μА	
11	Enable Input High Current	V _{IN} = 5.5V		19 - AJE/4	1	100	μА	
Isc	Output Short Circuit Current	V _O = 0V, V _{CC} = Max., ΔV _{IN} = +1.0V		-15	-50	-85	mA	
1cc	Power Supply Current	V _{CC} = Max., All V _{IN} = GND, Outputs Disabled			52	70	mA	
V _{HYST}	Input Hysteresis	T _A = 25°C, V _{CC} = 5.0V, V _{CM} = 0V		1	30		mV	
tPLH	Input to Output	$T_A = 25^{\circ}$ C, $V_{CC} = 5.0$ V, $C_L = 15$ pF, see test cond. below			V	17	25	ns
tPHL	Input to Output	$T_A = 25^{\circ}C$, $V_{CC} = 5.0V$, $C_L = 15pF$, see test cond. below				17	25	ns
tLZ	Enable to Output	$T_A = 25^{\circ} C$, $V_{CC} = 5.0 V$, $C_L = 5pF$, see test cond. below			2.16	20	30	ns
tHZ	Enable to Output	$T_A = 25^{\circ}C$, $V_{CC} = 5.0V$, $C_L = 5pF$, see test cond. below			15	22	ns	
^t ZL	Enable to Output	$T_A = 25^{\circ}C$, $V_{CC} = 5.0V$, $C_L = 15pF$, see test cond. below			15	22	ns	
tZH	Enable to Output	T _A = 25°C, V _{CC} = 5.0V, C _L = 15pF, see test cond. below		N HIT	15	22	ns	

Note: 1. All typical values are V_{CC} = 5.0 V, T_A = 25°C.

LINE TERMINATION

It is important in a digital communication system to have the minimum amount of noise generated by undesired reflections at the driver and receiver. There are numerous ways of matching to the line. The line can be matched at the driver, at the receiver or both, each method has advantages and disadvantages. Generally for any but the longest lines it is sufficient to match at one place, and only when there are discontinuities in the line, party line operation, or lack of a reasonable match at the opposite end of the line is the extra hardware of matching at both ends justified. The majority of transmission lines have fairly low characteristic impedances (in the range of 50 to 200 ohms) and the currents involved for a reasonable voltage swing are quite large. It is more difficult to couple noise into this low impedance, but it is also more difficult to drive, and line drivers must have the ability to supply large currents.

Various matching techniques that can be employed are shown in Figure 1. These impedance charts are useful in showing what happens to wave fronts traveling down a line, when the line delay is longer than the wave front transition. The DC input characteristic of the receiver, including any external components, is plotted on the V-I graph together with the output characteristic of the driver, including any external components used at the driving end. There are always quiescent points points where the driver and receiver characteristics cross. These points represent the DC voltage/current conditions, which must eventually be satisfied. To determine the effect of switching from one quiescent point to the other, a line with a slope equal to the characteristic impedance of the transmission line is plotted, starting at the initial quiescent point and ending at the applicable output impedance characteristic. The point of intersection gives the voltage and current at the output of the driver (and the input of the transmission line immediately after the driver switched states). From this point a line having an equal but opposite slope is drawn to the input characteristic and, at the intersection shows the voltage/current conditions of the wave front at the input of the receiver. This procedure is repeated to the output characteristic and so on at each intersection of the characteristic, the voltage/current relationship for a particular reflection is given. The resulting time/

voltage relationships for the traveling wavefront at the two ends of the transmission line are shown alongside.

From the graphs several important features can be seen. If the line is not matched at either end considerable transient voltage swings can occur. In fact if the input and output characteristics are at right angles to one another, the reflections continue for an infinite time if the line is assumed to have zero loss. Most lines have extremely low losses, and, therefore, a very undesirable situation exists if the line is not matched at either end.

If the line is matched at the receiver, a voltage wave of constant amplitude travels down the line and is absorbed at the termination. Note whether the line is terminated to ground or to the power supply the system consumes DC power, either in the HIGH logic level or in the LOW logic level. In order to reduce the power dissipation, a blocking capacitor can be used in series with the receiver termination. The capacitor can be chosen to look like a short circuit to the voltage wavefront but stop DC (current) flow. Since the capacitor must be charged and discharged through the line, the data rate is reduced, when this technique is employed.

If the line is matched with a series resistor at the driver, then the line input initially rises to one half the final voltage. This wave front travels down the line and is reflected at the receiver. When the reflection reaches the driver the voltage at the driver rises to its final amplitude. The receiver, however, sees one transition from the initial to the final amplitude. When the driver switches from HIGH to LOW a similar situation occurs. in which the input of the line sees at first a step to one half the final value and, two line delays later, the final LOW condition. This back matching mode of operation consumes no DC power if the input impedance of the receiver is infinite. The advantage of the method is that if the input impedance of the receiver is high, very little power is dissipated and current only flows during the transition time, which is twice the line delay time. If back matching is used in a balanced system the terminating series resistance must be divided into two equal resistances with resistors inserted in series with each wire in order to maintain a balanced system.

EIA RS-422 AND 423 APPLICATIONS

By David A. Laws and Roy J. Levy

INTRODUCTION

Today's high-performance data processing systems demand significantly faster data communications rates than are possible with the EIA RS-232 specifications in use for the past ten years.

Two new standards prepared by the Electronic Industries Association address this need. EIA RS-423 is an unbalanced, bipolar voltage specification designed to interface with RS-232C, while greatly enhancing its operation. It permits the communication of digital information over distances of up to 2000 feet and at data rates of up to 300 Kilobaud. EIA RS-422 is a balanced voltage digital interface for communication of digital data over distances of 4000 feet or data rates of up to 10 megabaud.

Advanced Micro Devices has developed a family of monolithic Low-power Schottky quad line drivers and receivers to meet the requirements of these specifications.

The Am26LS29 and 30 line drivers and the Am26LS32 receiver meet all requirements of RS-423 while the Am26LS31 differential line driver and the Am26LS32 receiver meet the requirements of RS-422.

A second receiver element, the Am26LS33 is available for use in high common mode noise environments, exceeding the common mode voltage requirements of RS-422 and RS-423.

This application note reviews the use of these devices in implementing the new standards. Emphasis is given to the EIA R\$-422 balanced interface.

EIA STANDARD SPECIFICATIONS

Two basic forms of operation are available for transmission of digital data over interconnecting lines. These are the single ended and differential techniques.

The single-ended form uses a single conductor to carry the signal with the voltage referenced to a single return conductor. This may also be the common return for other signal conductors. Figure 1a.

The single-ended form is the simplest way to send data as it requires only one signal line per circuit. This simplicity, however, is often offset by the inability of this form to allow discrimination between a valid signal produced by the driver, and the sum of the driver signal plus externally induced noise signals.

A solution to some of the problems inherent in the single-ended form of operation is offered by the differential form of operation. Figure 1b. This consists of a differential driver (essentially two single-ended drivers with one driver always producing the complementary output signal level to the other driver), a twisted pair transmission line and a differential line receiver. The driver signal appears as a differential voltage to the line receiver, while the noise signals appear as a common mode signal. The two signals, therefore, can be discriminated by a line receiver with a sufficient common mode voltage operating range.

The Electronic Industries Association, EIA, has defined a number of specifications standardizing the interface between data terminal equipment and data circuit terminating equipment based on both single-ended and differential operation.

Figure 1. Data Communication Techniques.

The most widely used standard for interfacing between data terminal equipment and data communications equipment today, is EIA RS-232C, issued in August 1969. The RS-232C electrical interface is a single-ended, bipolar-voltage, unterminated circuit. This specification is for serial binary data interchange over short distances (up to 50 feet) at low rates (up to 20 Kilobaud). It is a protocol standard as well as an electrical standard, specifying hand shaking signals and functions between terminal and the communications equipment. As already noted, single-ended circuits are susceptible to all forms of electromagnetic interference. Noise and cross talk susceptibility are proportional to length and bandwidth. RS-232C places restrictions on both. It limits slew rate of the drivers (30V/ μ s) to control radiated emission on neighboring circuits and allows bandwidth limiting on the receivers to reduce susceptibility to cross talk. The length and slew rate limits can adequately control reflections on unterminated lines, and the length and bandwidth limits are more than adequate to reduce susceptibility to noise.

Like EIA RS-232C, the new EIA RS-423 is also a single-ended, bipolar-voltage unterminated circuit. It extends the distance and data rate capabilities of this technique to distances of up to 4000 feet at data rates of 3000 baud, or at higher rates of up to 300 Kilobaud over a maximum distance of 40 feet.

EIA RS-422 is a differential, balanced voltage interface capable of significantly higher data rates over longer distances. It can accommodate rates of 100 Kilobaud over a distance of 4000 feet or rates of up to 10 megabaud. These performance improvements stem from the advantages of a balanced configuration which is isolated from ground noise currents. It is also immune to fluctuating voltage potentials between system ground references and to common mode electromagnetic interference. Figure 2 compares the driver output waveforms for the three EIA standard configurations, while Table I compares the key characteristics required by drivers and receivers intended for these applications. Since RS-232C has been in use for many years, RS-422 and 423 parameter values have been selected to facilitate an orderly transition from existing designs to new equipment.

Figure 2. Driver Output Waveforms.

TABLE I
KEY PARAMETERS OF EIA SPECIFICATIONS

Characteristics	EIA RS-232C	EIA RS-423	EIA RS-422	Units
Form of Operation	Single Ended	Single Ended	Differential	egh sid? Jiustis i
Max. cable length	50	2000	4000	Feet
Max. data rate	20K	300K	10M	Baud
Driver output voltage, open circuit*	vos ±25 mento estara montos estatos an estatos	on Holise Too Noles Too Noles Too State of the state o	6 volts between outputs	Volts (Max.)
Driver output voltage, Loaded output*	±5 to ±15	±3.6	2 volts between outputs	Volts (Min.)
Driver output resis- tance power off Driver output short	Ro = 300Ω	100μA between -6 to +6V	100μA between +6 and25V	Min.
circuit current I _{SC}	±500	±150	±150	mA (Max.)
Driver output slew rate	30 V/μsec Max.	Slew rate must be controlled based	No control necessary	
		upon cable length and modulation rate	etor Output.	1A RS-2220 Gener
Receiver input resistance Rin	3K to 7K	≥4K	≥4K	Ω
Receiver input thresholds	-3 to +3	-0.2 to +0.2	-0.2 to +0.2	Volts (Max.)
Receiver input voltage	-25 to +25	-12 to +12	-12 to +12	Volts (Max.)

^{*±} indicates polarity switched output.

INTEGRATED CIRCUIT CHARACTERISTICS

Most semiconductor manufacturers offer integrated circuits designed to satisfy the old RS-232C standard. A number of them have designs in progress to meet the new EIA specifications. Products available from Advanced Micro Devices to meet these needs are shown in Table II.

The Am26LS29, 30, 31 and 32 are a family of quad drivers and receivers designed specifically to meet the new EIA standards. These products utilize Low-Power Schottky technology to incorporate four drivers or four receivers, together with control logic, in the standard 16-pin package outlines.

The Am26LS29/30 and the Am26LS32 are driver and receiver pairs designed to implement the single-ended EIA RS-423 standard. The Am26LS31 is a differential line driver designed for use with the Am26LS32 receiver in a differential mode to meet EIA RS-422.

Am26LS29 AND Am26LS30 QUAD RS-423 LINE DRIVERS

The Am26LS29 and 30 consist of four single-ended line drivers designed to meet or exceed the requirements of RS-423. The buffered driver outputs are provided with sufficient source and sink current capability to drive 50 ohm to a virtual ground transmission line and high capacitive loads. The Am26LS29 has a three-state output control while the Am26LS30 has a Mode Control input that allows it to operate as a dual RS-422 driver (with suitable power supply changes), Figure 3.

Each of the four driver inputs, as well as the Enable/Mode Control input is a PNP Low-Power Schottky input for reduced

input loading, one-half the normal fan-in. Since there are two inverters from each input to output, the driver is non-inverting. When operating in the RS-423 mode, the Am26LS29 and 30 require both +5V and -5V nominal value power supplies. This allows the outputs to swing symmetrically about ground – producing a true bipolar output. The Mode Control (Pin 4) of the Am26LS30 should be HI or tied to

TABLE II ADVANCED MICRO DEVICES' EIA COMPATIBLE DEVICES

EIA Standard	Drivers	Receivers	
(he unit interv	Am1488	Am1489, 1489A	
modulation ret 206ns	Quad Driver	Quad Receivers with response control pin	
SHOUL	Am9616	Am9617	
RS-232C	Triple Driver with logic control	Triple Receiver with optional hysteresis	
	Am2616	Am2617	
	Quad Driver also specified for CCITT V.24 and MIL-188C	Quad Receiver specified over MIL range	
RS-422	Am26LS31	Am26LS32	
	Quad Differential with three-state control gating	Quad Differential Driver single-ended Receiver	
RS-423	Am26LS29	Am26LS32	
settid in sector	Quad Driver with three-state output	Quad single-ended/ Differential Receiver	
- Mm - V	Am26LS30 Quad Driver with slew rate control	28	

Figure 3. Am26LS29 and Am26LS30 Drivers.

 $V_{CC}.$ Each output is designed to drive the RS-423 load of 50 ohms with an output voltage equal or greater than +3.6 volts in the HI state and -3.6 volts in the LO state. Each output is current limited to 150mA max. in either logic state. A Slew Rate control pin is brought out separately for each output allow output ramp rate (rise and fall time) control. This provides suppression of near end cross talk to other receivers in the cable. Connecting a capacitor from this node to that

driver's respective output will produce a ramp (10% to 90%) of 50ns typical for each picofarad of capacitance in that capacitor. RS-423 establishes recommended ramp rates versus length of line driven and modulation rate, Figure 4.

The Am26LS30 can be used at low data rates as a dual EIA RS-422 driver with three-state outputs by connecting the V_{EE} supply and the mode control input to ground.

Am26LS31 QUAD RS-422 DRIVER

The Am26LS31 is a quad differential line driver designed to meet the RS-422 specification while operating with a single +5 volt supply. A common enable and disable function controls all four drivers, Figure 5. The driver features high speed, de-skewed differential outputs with typical propagation delays of 12ns and residual skew of 2ns. Both differential line outputs are designed for three-state operation to allow two-way half duplex and multiplex, data bus applications.

Table III is a summary of the essential requirements of the RS-422 standard. Section A describes the key characteristics satisfied by the Am26LS31 driver.

The balanced differential line driver consists of two halves, each of which is similar to a Low-power Schottky TTL gate with equal source and sink current capability. The two halves are emitter coupled in a differential input configuration. One side of the input circuit is tied to a fixed TTL bias threshold and the other side is tied to a sink diode in normal DTL/TTL fashion. This configuration offers complementary outputs with very low skew, dependent only upon component matching, a necessity to meet RS-422.

Figure 4. Data Modulation Rate or Cable Length Versus Risetime for EIA RS-423.

The circuit diagram of the driver is shown in Figure 6. The emitter-coupled input circuit is formed by Q2 and Q3, which are biased by a current source. This source is a current mirror, formed by Q1 which supplies the current, and D6 which is diode connected transistor matched to Q1. The fixed bias for Q3, formed by D5 and D6, is 2Vps, A 2Vps bias, less the D2 Schottky diode drop, provides the normal Low-power Schottky TTL threshold, V_{IL} = 0.7V. R19 provides a boost to 0.8V for a full 400mV TTL noise margin. The differential outputs of the emitter coupled stage, A and A, drive emitter followers Q14 and Q15, which provide the required speed and matching characteristics. The emitter followers, drive phase splitters Q4 and Q5, which in turn drive totem-pole outputs. The outputs at the line interface are of standard Low-power Schottky TTL configuration, except that circuit values are modified to provide high sourcing capability. The outputs are designed to source or sink 20mA each, so that they can generate a voltage of at least 2.0V across a 100 ohm load, as required by RS-422. Additional circuitry has been included to make the line outputs three-state for two-way bus applications. The Am26LS31 meets the RS-422 requirement that the driver not load the line in the powered down condition ($I_v \leq 100\mu A$) or if the power supply to that device should fail.

Am26LS32 QUAD RS-422 AND 423 RECEIVER

The Am26LS32 is a quad line receiver which, operating from a single 5 volt supply, can be used in either differential or single-ended modes to satisfy RS-422 and 423 applications respectively. A complementary enable and disable feature, similar to that on the driver, controls all four receivers, Figure 7. The device's three-state outputs, which can sink 8mA, incorporate a fail-safe input-output relationship which keeps the outputs high when the inputs are open.

The Am26LS32 meets the receiver input specification of Table III, a 200mV threshold sensitivity with common mode rejection exceeding the supply line potentials, (greater than 7 volts). The same design feature of the input circuit which provides the common mode rejection also insures excellent power supply ripple rejection, which is important when switching the high currents involved in a system's interfaces. Furthermore, unlike operational amplifiers, where the DC common mode and power supply rejection ratios roll off with open loop gain, the full rejection capability of this line receiver is maintained at high frequencies. The receiver hysteresis of typically 30mV, provides differential noise immunity. Signals received on long lines can have slow transition times, and without hysteresis, a small amount of noise around the switching threshold can cause errors in the receiver output.

Figure 5. Am26LS31 Logic Diagram.

TABLE III SUMMARY OF EIA RS-422 STANDARD FOR A BALANCED DIFFERENTIAL INTERFACE

 Line Driver Open Circuit Voltage (either logic state) Differential V_{do} ≤ 6.0 	B. Line Receiver Signal Voltage Range Differential V _d ≤ 6.0V			
Common Mode V _{cmo} ≤ 3.0	Common Mode $ V_{cM} \le 7.0V$			
Differential Output Voltage (across 100 ohm load) Either logic state $ V_d \ge \max (0.5V_{do}, 2.0V_{do})$	Single-Ended Input Current (power ON or OFF) Either Input at V_x $ V_x = 10V$			
Output Impedance Either logic state $R_G \le 100 \text{ ohm}$				
$\begin{array}{lll} \text{Mark-Space Level Symmetry (across 100 ohm load)} \\ \text{Differential} & V_{dS} - V_{dM} \leqslant 0.4 \\ \text{Common Mode} & V_{cmS} - V_{cmM} \leqslant 0.4 \\ \end{array}$	Either Input Open Circuit $ V_B \le 3.0$ \ Single-Ended Input Impedance (other input grounded) Either Input $R_L \ge 4000$ ohm			
Output Short Circuit Current (to ground) Either Output I _{SC} ≤ 150m	Differential Threshold Sensitivity Common Mode Voltage Range $ V_{cm} \le 7.0$ V Either Logic State $ V_T \le 200$ mV			
Output Leakage Current (power off) Voltage Range $-0.25V \le V_x \le +6.0$ Either Output at V_x $ I_X \le 100\mu$	Absolute Maximum Input Voltage			
Rise and Fall Times (across 100 ohm load) $T = \text{Baud Interval} \qquad (t_r, t_f) \leq \text{max (0.1T, 20ns)}$ Ringing (across 100 ohm load) $Definitions \qquad V_{dSS} = V_d \text{ (steady state)}$	Input Balance (threshold shift) Common Mode Voltage Range $ V_{cm} \le 7.0$ Differential Threshold (500 ohms in series with eacinput) Either Logic State $ V_t \le 400m$			
$V_{SS} = V_{dS} - V_{dM}$ (steady state) Limits (either logic state) Percentage $ V_d - V_{dSS} \le 0.1V_S$	Termination (optional) $R_T > 90$ ohms			
Absolute $ V_d \le 6.0$	Multiple Receivers (bus applications) Up to 10 receivers allowed. Differential threshold sensitivity of 200mV must be maintained.			
	Hysteresis (optional)			
	As required for applications with slow rise/fall time a receiver, to control oscillations.			
	As required by application to provide a steady WARK of			

C. Interconnecting Cable

Type

Twisted Pair Wire or Flat Cable Conductor Pair

Conductor Size

 $\begin{array}{ll} \mbox{Copper Wire (solid or stranded)} & 24 \mbox{ AWG or larger} \\ \mbox{Other (per conductor)} & \mbox{R} \leqslant 30 \mbox{ ohms/1000 ft.} \end{array}$

Capacitance

Pair-to-Pair Cross Talk (balanced)
Attenuation at 150KHz

A ≥ 40d

Figure 6. Am26LS31 Circuit Diagram (Only one driver shown).

The balanced differential line receiver is a three-stage circuit. The input stage consists of a low-impedance differential current amplifier with series resistor inputs to convert line signal voltage to current and provide a moderate input impedance. The input resistors provide an impedance greater than 6K on each input, power on or power off, which exceeds the requirements of RS-422 and RS-423. This is one advantage of the current amplifier input circuit. Another advantage is that is can operate with immunity to common mode voltages above V_{CC} and below ground. The differential threshold sensitivity of this circuit is 200mV, as required by RS-422. The second stage is a differential voltage amplifier, which interfaces to the single-ended output stage through an emitter follower. The output stage is a standard Low-power Schottky TTL totem-pole output with three-state capability.

The full circuit is shown in Figure 8. Resistors R_{20} and R_{21} , which connect the non-inverting input to V_{CC} and the inverting input to ground, provide the fail-safe feature, which guarantees a HIGH logic state for the receiver output when there is no signal on the line. The differential voltage amplifier in the second stage is formed by $\Omega 6$ and $\Omega 3$ which are biased by current source $\Omega 9$. The hysteresis in the re-

ceiver switching characteristic is provided by Q4 and Q5, a differential pair biased by current source Q6, whose collectors are connected in positive feedback to the input pull-up circuits. A small amount of current is switched by Q4 and Q5, which must be overcome by the different voltage signal, resulting in the hysteresis. The output stage is driven from one side of the differential second stage by emitter follower Q17, which is a multiple emitter transistor, the second emitter is the control point for the three-state output.Q17 drives the phase splitter Q12, which in turn drives the three-state totempole output. The remainder of the circuit is the output enable control logic. This three-state capability on the receiver TTL side of the interface is a useful feature for modularizing two-way bus design.

A mask option of the input resistors (R₁, R₂, R₂₀ and R₂₁) modifies the receiver characteristics to improve operation in high common mode noise environments. This device, known as the Am26LS33, has these resistors at twice the value of the Am26LS32. An input differential or common mode voltage range of ± 15 volts is achieved at the expense of a minor decrease of input threshold sensitivity, to ± 500 mV from ± 200 mV.

Figure 7. Am26LS32 Logic Diagram.

Figure 8. Am26LS32 and Am26LS33 Circuit Diagram (Only one receiver shown).

APPLICATIONS IN MIXED RS-232 AND 422/3 SYSTEMS

A system implemented with the RS-422 differential output cannot be used to drive an RS-232C system directly. An RS-423 single-ended driver, such as the Am26LS29 or Am26LS30, may be used provided certain precautions are observed.

- Although the RS-423 driver output specification of between 4 to 5V does not meet the RS-232C specification of 6V, operation is usually satisfactory with RS-232C receivers. This is achieved because the short cable lengths permitted by RS-232C cause very little signal degredation and because of the low source impedance of the RS-423 driver.
- 2. RS-232C specifies that the rise time for the signal to pass through the ±3.0V transition region shall not exceed 4% of the signal element duration. RS-423 requires much slower rise times, specified from 10% to 90% of the total signal amplitude, to reduce cross talk for operation over longer distances. Therefore, the RS-423 driver in the equipment must be waveshaped. This is achieved by selection of a capacitor value for the Am26LS30 to simultaneously meet the requirements of both RS-423 and RS-232C for data rates covered by RS-232C.
- RS-423 specifies one common return ground for each direction of transmission, RS-232C requires only one for both directions of transmission. Care must be taken to insure that a return ground path has been created when interfacing between the two systems.
- RS-232C does not require termination, while it may be necessary for RS-422 and 423. Detailed consideration of termination is covered in the next section.

Note that RS-422 and RS-423 specifies that receivers should not be damaged by voltages up to 12V, while RS-232C allows drivers to produce output voltages up to 25V. The Am26LS32 receiver has been designed to avoid this hazard and can withstand input voltages of ± 25 volts.

RS-422 TRANSMISSION LINE FEATURES

Any time a receiver and transmitter are connected with more than a few inches of a wire, problems due to reflections can arise if care is not exercised to terminate the line correctly. RS-422 describes the cable as a twisted pair of approximately 120Ω impedance terminated in a resistor R_T. R_T is not specified because there are two extreme values which may be chosen for the two following general classes of usage: (1) single direction transmission; and (2) multi-direction and multiple source transmission (party line). Considering the cable impedance only, the termination should equal the cable impedance of 120Ω . However this reduces the terminated cable resistance as seen by the driver to only 60Ω , with resulting loading of the output signal. This loading causes a reduction of S/N ratio at the received terminal due to the decrease in signal voltage swing. The solution lies in a compromise between an R_T of 120Ω which provides maximum power transfer at a reduced S/N ratio or R_T of 240Ω which causes a mis-match of 2-to-1 but no S/N reduction. The choice is left to the user as it is system dependent. Both schemes will work for an average line length and should only approach the margins at maximum line length and maximum bit rates.

Electronic Industries Association, when preparing EIA Stan-

dard RS-422 conducted their tests with 24 gauge twisted pair wire. The resulting length vs. data rate, is published as a guideline in RS-422 (Figure 9). This shows two important results: (1) Unmodulated baseband (NRZ) signalling is not recommended at distances greater than 4000 feet; (2) At data

Figure 9. Data Rate Versus Cable Length for Balanced, Twisted Pair Cable (From EIA RS-422).

rates above about 100KHz, the maximum cable length for acceptable signal quality is inversely proportional to data rate.

Result (1) above is due to the DC resistance of the cable. For a 4000 foot cable with a DC resistance of 30 ohms/1000 feet, the DC series loop resistance is 240 Ω . The minimum allowable terminated differential load impedance is 90 Ω . The DC voltage attentuation is 90/(90 – 240) = 1/4(6db), which is arbitrarily chosen as the maximum allowable limit.

Result (2) is due to line losses. Laboratory tests using the 26LS31 Line Driver connected to the 26LS32 Line Receiver by 800 feet of ordinary 20 AWG twisted pair (Beldon #8205 plastic-jacketed wire), terminated in its characteristic impedance of 100Ω were evaluated. The input waveform was a 500KHz square wave with (10% to 90%) rise and fall times of less than 10ns. The output waveform produced rise and fall times which together accounted for approximately one-half the period $(t_r + t_f = 500 \text{ns})$. This was due to line loss and constant capacity. The energy per cycle of the output waveform is approximately 25% lower than that of the input. The input rise and fall times are not a function of line length, assuming matching termination. The output rise and fall times are dependent upon length in a complex manner. Furthermore, it can be shown by observation that they build up along the line.

Many good reference sources are available on the subject of transmission lines (References 1, 2, 3 and 4). These will provide background information to the following discussion.

Seshadri in Reference (1) has analyzed a line with series resistance losses and has shown that rise time varies with the square of the length. This shows series resistance to be a function of the square root of frequency. However when one tries to use this result in combination with the previous result, it becomes apparent just how difficult the problem is. In Reference (2), the authors point out that skin depth implies a frequency dependent series inductance as well as resistance, and that one cannot be considered without the other.

4

They go on to show how this leads to the same result; namely that rise and fall times vary with the square of distance.

No attempt will be made to explain here why Figure 5 shows maximum length varying inversely with frequency rather than with the square of frequency. Certainly many complex factors are involved. Our laboratory observations showed a dependence somewhere in between linear and square law.

The Am26LS31 Quad Line Driver and the Am26LS32 Quad Line Receiver are capable of good, clean operation to the distance limits and data rate limits of RS-422.

SYSTEM APPLICATIONS

The Am26LS30, 31, 32 and 33 can be combined in various

signaling networks. Using Am26LS29, Am26LS30 and Am26LS32, Figure 10, a unidirectional RS-423 communication can be constructed. Allowing for the voltage variation described earlier, RS-232C requirements can be satisfied. It should be noted that the Am26LS29 or Am26LS30 is used above to meet the bipolar requirements. If a single-ended line, Figure 11, is required without a bipolar requirement, the Am26LS31 can be used by biasing the reference terminal of the receiver to approximately 1.5 volts. Note that additional resistors will enhance fail safe operation.

Figure 12 shows the use of the Am26LS31 and Am26LS32 to meet a balanced line, single direction RS-422 application. If bidirectionality is required, an additional termination should be added as shown in Figure 13.

Figure 10. Unidirectional RS-423 (partial RS-232C).

Figure 11. Single-Ended Line Without Bipolar Requirement.

Figure 12.

Figure 13. Bidirectional RS-422.

Figure 14. Party Line Configuration.

Figure 15.

Figure 15. (Cont.)

The high speed capability of RS-422 has attracted the interest of many computer designers for use in the party line mode (Figure 14). The most common usage is that of a four wire full duplex exchange system (Figure 15). This mode of operation involves two pairs of wires each handling a single direction of traffic. The outgoing direction consists of one driver (Am26LS30 or Am26LS31) and n receivers (Am26LS32 or Am26LS33). The incoming direction consists of one receiver (Am26LS32 or Am26LS33) and n drivers (Am26LS30 or Am26LS31). This seems extremely simple to organize. However, problems arise when system ground is considered. If the network of receiver and driver span a moderate to long physical distance, ground loop noise or differences are developed changing the voltage that appears at the terminals of all receivers and drivers except for the one driver that is active. It remains the system reference as long as it is active. This induced or system developed voltage is referred to as Common Mode voltage (CMV) and as such must be considered as a device parameter. All manufacturers specify CMV capability of their receiver in compliance with RS-422 (approx. 7 volts plus signal) but there is no specification for drivers. If the dimensions of the system are short compared to 1/4 wave length of the maximum date rise and fall times, the CMV can be assumed to be minimal and drivers with single voltage supply and limited negative CMV can be used, i.e., Am26LS31. If the system dimensions are large, the CMV will cause problems in that the driver will clamp to the ground the moment the collective or apparent voltage swings below minus 0.5 volts relative to the driver ground, causing a short in the line and increasing level shift and noise. The clamping is caused in part by conduction of the I/C substrate diode. The problem can be avoided by using a driver with an output common mode range (Am26LS30). The Am26LS30 quarantees an output CMV range of ±10 volts about the driver ground reference. New international standards are under consideration to specify this mode of operation. In conclusion, a good system of 4 wire full duplex for data communication would use as an outgoing pair an Am26LS30 line driver and up to 12 - Am26LS32 line receivers, with a termination at the near and far ends of the cable. The same system would use as an incoming pair an Am26LS32 line receiver and up to 32 - Am26LS30 line drivers with only one enabled at a time and all others in three-state mode with cable termination at both near and far ends of the cable.

Many other applications are possible using this family of devices. Although the designs are based on the requirements of the EIA data communications specifications, they are not limited to these situations. Aircraft buses and internal equipment interconnections will benefit from the features offered by these products.

REFERENCES

- Seshadri, S. R., Fundamental of Transmission Lines and Electromagnetic Fields, (U. of Wisconsin), Addison-Wesley, Reading, Mass., 1971.
- Adler, R. B., L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, (MIT), John Wiley & Sons, New York, 1963.
- 3. Matick, R. E., Transmission Lines for Digital and Communication Networks, (IBM), McGraw-Hill, New York, 1969.
- Reference Data for Radio Engineers, (ITT), Fifth Edition, Howard W. Sams & Company, Indianapolis, 1974.
 Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal, RS-232C, August, 1969.
- Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1220, Rev. RS-422, September 21, 1976.
- Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1221, Rev. RS-423, September 21, 1976.

Am26S10 · Am26S11

Quad Bus Transceivers

Distinctive Characteristics

- Input to bus is inverting on Am26S10
- Input to bus is non-inverting on Am26S11
- Quad high-speed open collector bus transceivers
- Driver outputs can sink 100mA at 0.8V maximum
- Bus compatible with Am2905, Am2906, Am2907
- Advanced Schottky processing
- PNP inputs to reduce input loading
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am26S10 and Am26S11 are quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100mA at 0.8 volts and four high-speed bus receivers. Each driver output is connected internally to the high-speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving ten Schottky TTL unit loads.

An active LOW enable gate controls the four drivers so that outputs of different device drivers can be connected together for party-line operation. The enable input can be conveniently driven by active LOW decoders such as the Am25LS139.

The bus output high-drive capability in the LOW state allows party-line operation with a line impedance as low as 100Ω . The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2.0 volts.

The Am26S10 and Am26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has two ground pins to improve ground current handling and allow close decoupling between V_{CC} and ground at the package. Both GND₁ and GND₂ should be tied to the ground bus external to the device package.

ORDERING INFORMATION

Package Type	Temperature Range	Am26S10 Order Number	Am26S11 Order Number
Molded DIP	0°C to +70°C	AM26S10PC	AM26S11PC
Hermetic DIP	0°C to +70°C	AM26S10DC	AM26S11DC
Dice	0°C to +70°C	AM26S10XC	AM26S11XC
Hermetic DIP	-55°C to +125°C	AM26S10DM	AM26S11DM
Hermetic Flat Pack	-55°C to +125°C	AM26S10FM	AM26S11FM
Dice	-55°C to +125°C	AM26S10XM	AM26S11XM

CONNECTION DIAGRAMS Top Views

LOGIC DIAGRAMS

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	Tear Conditions	notion	-65° C to $+150^{\circ}$ C
Temperature (Ambient) Under Bias		Amassago	-55°C to +125°C
Supply Voltage to Ground Potential			-0.5V to +7V
DC Voltage Applied to Outputs for High Out	put State	Am26S11	-0.5V to +V _{CC} max.
DC Input Voltage	Fig. Boss		-0.5V to +5.5V
Output Current, Into Bus	Cg = 80pF (Note 1)	Am26610	200 mA
Output Current, Into Outputs (Except Bus)		201	30 mA
DC Input Current		Transma	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions (Note	1)	Min.	Typ. (Note 2)	Max.	Units
V	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -1.0mA	MIL	2.5	3.4		Volts
V _{OH}	(Receiver Outputs)	VIN = VIL or VIH	COM'L	2.7	3.4		VOITS
VOL	Output LOW Voltage (Receiver Outputs)	V _{CC} = MIN., I _{OL} = 20mA V _{IN} = V _{IL} or V _{IH}	00		sugat	0.5	Volts
VIH	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs	Guaranteed input logical HIGH		V 3		Volts
VIL	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		×	Ā	0.8	Volts
V _I	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -18mA				-1.2	Volts
IIL	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.4V	Enable			-0.36	mA
'IL	(Except Bus)	houseness and a	Data			-0.54	MA
Чн	Input HIGH Current	VCC = MAX., VIN = 2.7V	Enable			20	
'IH	(Except Bus)	HOAL DITAM SERVERS	Data	nA		30	μΑ
I _I	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 5.5V				100	μΑ
Output Short Circuit Current		V MAY (Note 2)	MIL	-20		-55	^
ISC	(Except Bus)	V _{CC} = MAX. (Note 3)	COM'L	-18		-60	mA
1	Power Supply Current	V _{CC} = MAX.	Am26S10		45	70	
CCL	(All Bus Outputs LOW)	Enable = GND	Am26S11			80	mA

Bus Input/Output Characteristics

Parameters	Description	Test C	onditions (N	ote 1)	Min.	Typ. (Note 2)	Max.	Units
	Name of the state		1	I _{OL} = 40mA		0.33	0.5	
			MIL	I _{OL} = 70mA		0.42	0.7	
	Output LOW Voltage	V = MINI		I _{OL} = 100mA		0.51	0.8	Volts
VOL	VOL Output LOW Voltage	V _{CC} = MIN.		I _{OL} = 40mA		0.33	0.5	VOITS
		COM'L	1 _{OL} = 70mA		0.42	0.7		
				I _{OL} = 100mA		0.51	0.8	
				V _O = 0.8V		mes &	-50	
10	Bus Leakage Current	V _{CC} = MAX.	MIL	V _O = 4.5V			200	μА
			COM'L	V _O = 4.5V			100	
IOFF	Bus Leakage Current (Power Off)	V _O = 4.5V	225			North I	100	μΑ
V _{TH}	Receiver Input HIGH Threshold	Bus Enable = 2.4	4V	MIL	2.4	2.0		Malaa
* 1H	The ceiver input in Gri Tilleshold	V _{CC} = MAX		COM'L	2.25	2.0		Volts
VTL	Receiver Input LOW Threshold	Bus Enable = 2.4	4V	MIL		2.0	1.6	Volts
- 12		V _{CC} = MIN		COM'L		2.0	1.75	Voits

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am26S10 • Am26S11

Switching Characteristics (T_A = +25°C, V_{CC} = 5.0V)

Parameters	Description	n	Test Conditions	Min.	Тур.	Max.	Units
tPLH	"ae-	Am26S10			10	15	nperatur
tPHL	Data Innut to Bur	AIII20310			10	15	ns
tPLH	Data Input to Bus	Am26S11	out State	uO doiH a	12	19	Moltage
tPHL		Amzosti	R _B = 50Ω		12	19	7 maal
tPLH	Am26S10		CB = 50pF (Note 1)		14	18	102 10N
tPHL	Enable Input to Bus			Can El Sympo	13	18	ns
tPLH	Enable Input to bus	Am26S11			15	20	113
t _{PHL}		Amzosiii			14	20	
tPLH	Bus to Receiver Out	stroid selected	$R_B = 50\Omega$, $R_L = 280\Omega$	201733	10	15	ns
tPHL	Bus to rieceiver Out	KAN VITA	C _B = 50pF (Note 1), C _L = 15pF	"GT = et 0 10	10	15	O XOT ESS
t _r	Bus Vala = .	A.SV T. VE.A	$R_B = 50\Omega$	4.0	10	C1123SmA .	ns
tf	Bus		C _B = 50pF (Note 1)	2.0	4.0		ns

Note 1. Includes probe and jig capacitance.

	Am2	6S10		TRUTH TABLES		Am2	6S11	
Inp	uts	Out	puts	Am05 = 301 , All	Inpu	uts	Out	puts
Ē	1	B	Z	30 V 90 -	Ē	T	B	Z
L	L 0,5	Н	L	Idanper lagrasi HIGH	ni IIL rot	L	L	Н
L	Н	L	Н		L	Н	Н	L
Н	X	Y	\overline{Y}	WQJ Igalogi Fuguri barra	Н	X	Y	Y

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Don't Care
- Y = Voltage Level of Bus (Assumes Control by Another Bus Transceiver)

Note 1. Includes Probe and Jig Capacitance.

Am26S12·Am26S12A

Quad Bus Transceiver

Distinctive Characteristics

- Quad high-speed bus transceivers
- Driver outputs can sink 100mA at 0.7V typically
- 100% reliability assurance testing in compliance with MIL-STD-883
- Choice of receiver hysteresis characteristics

FUNCTIONAL DESCRIPTION

The Am26S12 • Am26S12A are high-speed quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100mA at 0.7 volts and four high-speed bus receivers. Each driver output is brought out and also connected internally to the high-speed bus receiver. The receiver has an input hysteresis characteristic and a ITL output capable of driving ten TTL Loads.

An active LOW, two-input AND gate controls the four drivers so that outputs of different device drivers can be connected together for party-line operation. The enable inputs can be conveniently driven by active LOW decoders such as the Am548/74S139.

The high-drive capability in the LOW state allows party-line operation with a line impedance as low $_{\rm JS}$ $100\Omega.$ The line can be terminated at both ends, and still give considerable noise margin at the receiver. The

hysteresis characteristic of the Am26S12 receiver is chosen so that the receiver output switches to a HIGH logic level when the receiver input is at a HIGH logic level and moves to 1.4 volts typically, and switches to a LOW logic level when the receiver input is at a LOW logic level and moves to 2.0 volts typically. This hysteresis characteristic makes the receiver very insensitive to noise on the bus.

The Am26S12A is functionally identical to the Am26S12 but has a different hysteresis characteristic so that the output switches with the input being typically at 1.2 volts or 2.25 volts. In both devices the threshold margin, the difference between the switching points, is greater than 0.4 volts.

LIC-381

Package Type	Temperature Range	Am26S12 Order Number	Am26S12A Order Number
Molded DIP	0°C to +75°C	AM26S12PC	AM26S12APC
Hermetic DIP	0°C to +75°C	AM26S12DC	AM26S12ADC
Dice	0°C to +75°C	AM26S12XC	AM26S12AXC
Hermetic DIP	-55°C to +125°C	AM26S12DM	AM26S12ADM
Flat Pak	-55°C to +125°C	AM26S12FM	AM26S12AFN
Dice	-55°C to +125°C	AM26S12XM	AM26S12AXN

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-382

Am26S12/Am26S12A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
Output Current, Into Outputs (BUS)	200mA
Output Current, Into Outputs (Receiver)	30mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

arameters	Description	Test Conditions	Min.	Typ.(Note 2)	Max.	Units
Icc	Power Supply Current	V _{CC} = MAX.	*	46	70	mA
IBUS	Bus Leakage Current	V _{CC} = MAX. or 0V; V _{BUS} = 4.0V; Driver in OFF State	rê tisub haqo naqo idtiw tr	name of the drive	100	μΑ

Driver Characteristics

		receiver very insensities	COM'L	I _{OL} = 100mA	e alexages	0.7	0.8	Volts
VOL	Output LOW Voltage	V _{CC} = MIN. V _{IN} = V _{IH} or V _{IL} MI	SVE		be contred	0.55	0.7	anughue .
(Note 1)		VIN - VIH OF VIL	MIL	I _{OL} = 100 mA	nevnea sa 139.	0.7	0.85	Volts
VIH	Input HIGH Voltage	granar than 0.4 volts.	rists	a rury-link opera	2.0	MITY IN The LOW	diagra sylvio	Volts
VIL	Input LOW Voltage	(n) can be terminated at			on magic	alderable reco. By	0.8	Volts
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA				-1.2	Volts	
I ₁	Input Current at Maximum Input Voltage	V _{CC} = MAX., V _I = 5.5V				1.0	mA	
I _{IH}	Unit Load Input HIGH Current	V _{CC} = MAX., V _I = 2.4V			1.0	40	μА	
IIL	Unit Load Input LOW Current	V _{CC} = MAX., V _I =	0.4V			-0.4	-1.6	mA

Receiver Characteristics

V _{OH}	Output HIGH Voltage		IIN., I _{OH} = -800μA I _{IL} (Receiver)	2.4			Volts
VOL	Output LOW Voltage		IIN., I _{OL} = 20mA IL (Receiver)	U	0.4	0.5	Volts
Vivia HCUL and Threshold		Am26S12	1.8	2.0	2.2		
VIH	/IH Input HIGH Level Threshold	E = H	Am26S12A	2.05	2.25	2.45	Volts
		E = H	Am26S12	1.2	1.4	1.6	
VIL	Input LOW Level Threshold	E=H	Am26S12A	1.0	1.2	1.4	Volts
V _{TM}	Input Threshold Margin	E = H		0.4	62		Volts
Ios	Output Short Circuit Current	V _{CC} = N	MAX., V _{OUT} = 0.0V	-20		-55	mA

Notes: 1. For the Am26S12FM, Am26S12AFM the output current must be limited at 60mA or the maximum case temperature limited to 125°C for correct operation.

2. Typical limits are at $V_{CC} = 5.0 \,\text{V}$, 25° C ambient and maximum loading.

Switching Characteristics (T_A = 25°C, V_{CC} = 5.0V)

Parameters	Description	Conditions	Min.	Тур.	Max.	Units
tPLH	Turn Off Delay Input to Bus	C _{LB} = 15pF, R _{LB} = 100 Ω	10 X 5 (1280 M)	7	11	ns
tPHL	Turn On Delay Input to Bus	$C_{LB} = 300 pF, R_{LB} = 50 \Omega$	M35128M	14	21	ns
tPLH	Turn Off Delay Enable to Bus	C_{LB} = 15pF, R_{LB} = 50 Ω	WEALS FORESTVS	10	15	ns
†PHL	Turn On Delay Enable to Bus	C _{LB} = 15pF, R _{LB} = 50Ω		10	15	ns
tPLH	Turn Off Delay Bus to Output	C _L = 15pF		18	26	ns
tPHL	Turn On Delay Bus to Output	C _L = 15pF		18	26	ns

LIC-387

TRUTH TABLE Am26S12/26S12A

In	outs	Out	puts	
Ē	1	B	Z	
L	L	Н	L	
L	Н	L	Н	
Н	X	Y	Y	

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Y = Voltage Level of Bus

Table I

TRUTH TABLE MSI INTERFACING RULES

Interfacing	Equiv Input U			
Digital Family	HIGH	LOW		
Advanced Micro Devices 9300/2500 Series	1	1		
FSC Series 9300	1	1		
TI Series 54/7400	1	1		
Signetics Series 8200	2	/ 2		
National Series DM 75/85	1	1		
DTL Series 930	12	1		

Table II

PERFORMANCE CURVES

Am26S12 Typical Receiver Input Characteristic

Figure 3

Am26S12A Typical Receiver Input Characteristic

Figure 4

LIC-388

INPUT/OUTPUT CIRCUITRY

Figure 5

LIC-389

Am26S12/26S12A APPLICATION ADDRESS A₀ 1/2 Am54S/74S139 10 11 12 13 10 11 12 13 11 12 10 13 10 11 12 13 RECEIVER OUTPUTS RECEIVER OUTPUTS RECEIVER RECEIVER Am26S12/26S12A Z₂ Am26S12/26S12A Z₂ Am26S12/26S12A Z₂ Am26S12/26S12A _ OUTPUTS _ OUTPUTS 100Ω 100Ω 100Ω ••••• 100Ω 100Ω ~~~ 100Ω 100Ω PARTY-LINE OPERATION. LIC-390

Am2614

Quad Single-Ended Line Driver

Distinctive Characteristics

- Quad single-ended driver for multi-channel common ground operation
- Single 5V power supply
- DTL, TTL compatible

- Short-circuit protected outputs
- ullet Capable of driving 50Ω terminated transmission lines
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2614 is a DTL, TTL compatible line driver operating off a single 5V supply. The Am2614 is a quad inverting driver with two separate inputs and one common-strobe input for each pair of drivers. The device has active pull-up outputs for high-speed and HIGH capacitance drive. The Am2614 is ideal for single-ended transmission line driving, or as a high-speed, high-fan-out driver for semiconductor memory decoding, buffering, clock driving and general logic use.

The Am2614 has short circuit protected active pull-ups, and incorporates input clamp diodes to reduce the effect of line transients, and also is capable of driving 50Ω terminated transmission lines.

CIRCUIT DIAGRAM

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	AM2614DM
Flat Pak	-55°C to +125°C	AM2614FM
Dice	-55°C to +125°C	AM2614XM
Hermetic DIP	0°C to +70°C	AM2614DC
Molded DIP	0° C to $+70^{\circ}$ C	AM2614PC
Dice	0°C to +70°C	AM2614XC

CONNECTION DIAGRAM

LIC-392

Storage Temperature	-65°C to +150°C
	==00
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	$-0.5 \text{ V to } + \text{V}_{CC} \text{ max}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	mA
DC Input Current	Note 1

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

Am2614XM (MIL) Am2614XC (COM'L) $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$ $T_A = 0^{\circ} \text{C to } +70^{\circ} \text{C}$ V_{CC}MIN. = 4.50V V_{CC}MIN. = 4.75V V_{CC}MAX. = 5.50V V_{CC}MAX. = 5.25V

DC Characteristics (Note 2)

				LIMITS TAMIN. +25°C T						ΛΑΧ.	
arameters	Description	Test	Test Conditions		Max.	Min.	Typ.	Max.		Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -10mA	Ny Current Versut Temperature	2.4		2.4	3.2	Current Sply Vel	2.4		Volts
VOL	Output LOW Voltage	V _{CC} = MIN.,	MIL	1007	0.4		0.2	0.4	GIAGIA	0.4	Volt
VOL	Output LOW Voltage	IOL = 40mA	COM'L	24270	0.45		0.2	0.45		0.45	Voits
VIH	Input HIGH Voltage	V _{CC} = MIN.	MIL	2.0		1.7	1.5		1.4	4	Volt
VIH	input HIGH Voltage	vcc - wild.	COM'L	1.9	5 3	1.8	1.5	1318-L	1.6	- 2	VOIL
VIL	Input LOW Voltage	V _{CC} = MAX.	MIL		0.8		1.3	0.9		0.8	Volts
VIL.	Input LOW Voltage	VCC - IVIAA.	COM'L		0.85		1.3	0.85		0.85	Voit
1 _E	Input Load Current	V _{CC} = MAX.	V _F = 0.4 V, MIL		-2.4					Total R	A
'F	Input Load Current	ACC - MAX.	V _F = 0.45V, COM'L			L	-1.65	-2.4		-2.4	mA
IR	Reverse Input Current $V_{CC} = MAX$. $V_{R} = 4.5V$		WA - AT	90		HOV - SM	90	N/3 - 53	90	μΑ	
I _{SC}	Short Circuit Current	$V_{CC} = MAX.,$ $V_{O} = 0V$				-40	-90	-120			mA
	astrajenteren Characterieria	V _{CC} = MAX., Inputs = 0V	eathaireteanado sate	our T	48.7		33	48.7	pagord	48.7	
IPD	Power Supply Current	V _{CC} = 7.0V,	COM'L	OW.			46	70	NIE Y	L. Constitution	
	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Inputs = 0V	MIL	Tayle	- 12		46	65.7	0,8 - 300		3
Lamir	Reverse Output Current	V _{CC} = MAX.	V _{CEX} = 5.5V, MIL		100		10	100	195	200	μΑ
ICEX	Heverse Output Current	VCC - MAX.	V _{CEX} = 5.25V, COM'L		100		10	100		200	μA
V _{OLC}	Output Low Clamp Voltage	V _{CC} = MAX., I _{OLC} = -40m/	4				-0.8	-1.5		- 20	Volt
V _{IC}	Input Clamp Voltage	$V_{CC} = MIN.,$ $I_{IC} = -12mA$			1 6		-1.0	-1.5		- 151	Volt

Switching Characteristics (T_A = 25°C unless otherwise specified)

			A	m2614XN	/	Δ	m2614X0		
Parameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
*pd+	Turn Off Delay	V _{CC} = 5.0V, C ₁ = 30pF,		8	12	7.00	8	15	ns
t _{pd} _	Turn On Delay	V _M = 1.5V, Refer to Fig. 92		7	10		7	12	ns

Notes: 1. Maximum current defined by DC input voltage.

^{2.} For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type or grade.

TYPICAL ELECTRICAL CHARACTERISTICS

Output Low Current Versus Output Low Voltage

Output High Current Versus Output High Voltage

Logic Levels Versus Ambient Temperature

Supply Current Versus Supply Voltage

Supply Current Versus Temperature

Supply Current Versus Operating Frequency

Propagation Delay Time Versus Temperature

Transfer Characteristics Versus Temperature

Transfer Characteristics Versus Supply Voltage

LIC-394

USER NOTES

LIC-395

SINGLE ENDED LINES. The Am2614 guad line driver and the Am2615 dual differential amplifier allow data to be transmitted with only a single data wire per channel and a common ground for typically 8 data wires. This single-ended mode of interconnection offers considerable savings in integrated circuit packages required and effectively halves the number of interconnections as compared to a balanced differential system. The method still gives ±15V common mode rejection and DC noise margin of interconnected TTL logic. The common ground wire should be twisted in with the data wires so that any injected noise is common to all wires. If a multiwire cable with screen is used one of the wires is used as the common ground line, and the screen is tied to ground at the driving end only.

MATCHING. Transmission lines can be matched in a number of ways. The most widely used method is to terminate the line at the receiving end in its characteristic impedance. This impedance is connected across the input terminals of the receiver. A 130Ω resistor is included at the + input of each receiver for matching twisted pairs and this resistor, or if the characteristic impedance is not 130Ω , a discrete resistor is connected between the two receiver inputs. This method of

matching causes a DC component in the signal. Power is dissipated in the resistor and the signal is attenuated. The DC component can be effectively removed by connecting a large capacitor in series with the terminating resistor.

The transmission line can also be terminated through the receiver power supply by placing equal value resistors from the + input of the receiver to $V_{\mbox{\footnotesize{CC}}}$ and from the - input to ground. This method again has the disadvantage that a DC signal component exists, attenuation occurs, and power is dissipated in the terminating resistors but it does allow multiplexed operation in the balanced differential mode.

An alternate method of matching at the receiver is to back match at the driver. A resistor is placed in series with the line so that the signal from the driver which is reflected at the high input impedance of the receiver is absorbed at the driver. This method does not have a DC component and therefore no attenuation occurs and power is not dissipated in the resistor. For balanced differential driving a resistor is required in series with each line. The table below shows the value of each matching resistor required for lines of different characteristic impedance.

TYPICAL DC CHARACTERISTICS FOR MATCHING TO TRANSMISSION LINE

BACK MATCHING TABLE

	R _M (ohms)
Zo	SINGLE ENDED
50	24
75	51
92	68
100	75
130	110
300	280
600	580

LOADING RULES

			Far	nout
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output
Strobe A	1	3		
Input A	2	1.5		
Input A	3	1.5		
Output A ₁	4	-	166	25
Input A ₂	5	1.5	-	-
Input A ₂	6	1.5		_
Output A ₂	7		166	25
GND	8	of god a s g anguage	-	_
Output B ₂	9	or - restrict	166	25
Input B ₂	10	1.5	J	
Input B ₂	11	1.5		_
Output B ₂	12	-	166	25
Input B ₁	13	1.5	_	_
Input B,	14	1.5		_
Strobe B	15	3	_	
V _{CC}	16	I mirella		
		1 201011		

APPLICATIONS

Single-Ended Back-Matched Operation
With Common Ground

1/2 Am2614

Am2615

LIC-396

SWITCHING CIRCUITS AND WAVEFORMS

LIC-397

$$\begin{split} & \text{INPUT PULSE} \\ & \text{Frequency} = 500 \text{ kHz} \\ & \text{Amplitude} = 3.0 \ \pm 0.1 \text{ V} \\ & \text{Pulse Width} = 110 \ \pm 10 \text{ ns} \\ & t_r = t_f \leq 5.0 \text{ ns} \end{split}$$

LIC-398

Figure 1.

Distinctive Characteristics:

- Dual differential receiver (Am9615) pin-for-pin equivalent to the Fairchild 9615
- Dual differential receiver for single-ended data (Am2615)
- · Single 5-volt supply
- High common-mode voltage range (±15 volts)
- Frequency response control, strobe, and internal terminating resistor
- · Am2615 has fail safe capability
- Choice of uncommitted collector or active pull-up outputs
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2615 and Am9615 are dual differential line receivers designed to receive digital data from transmission lines and operate over the military and industrial temperature ranges using a single 5 volt supply. The Am2615 can receive 3 volt single ended and the Am9615 ±500 mV differential data in the presence of high level (±15 V) common mode voltages and deliver undisturbed logic levels to the following DTL or TTL circuitry. The response time of each receiver and thereby immunity to AC noise can be controlled by an external capacitor. A strobe is provided for each receiver together with a 1300 input terminating resistor. Each output has an uncommitted collector with an active pull-up network available on an adjacent pin.

The Am2615 is identical to the Am9615 except for the input offset (threshold) voltage. The Am2615 has an input threshold of $\sim\!1.5\,\mathrm{V}$ compatible with DTL & TTL logic. The Am9615 has an input threshold of $\sim\!0\,\mathrm{V}$. The Am2615 can directly replace the Am9615 and give fail safe protection in differential systems where the input difference is $>\!2.0\,\mathrm{V}$.

	ORDERIN	G INFORMATION		CONNECTION DIAGRAM Top View				
Part Number	Package Type	Temperature Range	Order Number	OUTPUT A 1	16 V _{CC} +5V			
	Hermetic DIP Flat Pak	-55°C to +125°C -55°C to +125°C	AM2615DM AM2615FM	ACTIVE PULL-UP A 2	15 OUTPUT B			
Am2615	Dice	-55°C to +125°C	AM2615XM	STROBE A 3	14 ACTIVE PULL-UP B			
	Hermetic DIP	0°C to +75°C	AM2615DC	RESPONSE CONTROL A 4	13 STROBE B			
	Molded DIP Dice	0°C to +75°C 0°C to +75°C	AM2615PC AM2615XC	+ INPUT A 5	12 RESPONSE CONTROL B			
Mary Ki	Hermetic DIP	-55°C to +125°C	9615DM	130Ω Α 6	11 + INPUT B			
	Flat Pak	-55°C to +125°C	9615FM	70-00 = 0 V 03 = V	RX TOTAL RETURNED NO MUT.			
Am9615	Dice	-55°C to +125°C	AM9615XM	-INPUT A ☐ 7	10 130Ω B			
	Hermetic DIP	0°C to +75°C	9615DC	GND B	9			
	Molded DIP	0°C to +75°C	9615PC	30 00 = 30 00	-INPUT B			
	Dice	0°C to +75°C	AM9615XC	NOTE: PIN 1 is m	arked for orientation. LIC-401			

Am2615/9615

MAXIMUM RATINGS (Above which the useful life may be impaired)

(Above which the decid me may be impared)	
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +13.2 V
DC Strobe Input Voltage	-0.5 V to +5.5 V
DC Data Input Voltage	-20 V to +20 V
Output Current, Into Outputs	30 mA
DC Input Current	maximum current is defined by DC Input Voltage

Am2615 ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE below-of public to the second s

		MIL-STD-883		T _A =	Min	T	LIMITS	°C	-	Max	
arameters	Description	Test Conditions		Min	Max	Min	Тур	Max	Min	Max	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -5.0 \text{ mA}$ $V_{IN+} = +0.8 \text{ V}, V_{IN-} = 0 \text{ V}$				2.4	3.2		2.4	ETESM M2515	Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MAX$ $I_{OH} = 15.0 \text{ mA}$	MIL grade	hanooma	0.40	indus	.18	0.40	eni	0.40	Volts
OL	Output LOW Voltage	$V_{\rm IN+} = +2.0 \text{ V}, V_{\rm IN-} = 0 \text{ V}$	COM'L grade		0.45	108 ±	.25	0.45	and of h	0.45	VOILS
	Output Leakage Current	$V_{CC} = MIN$ $V_{IN+} = 0 V$ $V_{CEX} = 12 V$	MIL grade	ne foll	100	leyel mit a	togic spons	100	undis	200	μА
CEX	Output Leakage Current	$V_{IN-} = 0 \text{ V}$ $V_{IN-} = 4.5 \text{ V}$ $V_{CEX} = 5.25 \text{ V}$	COM'L grade		100	nsa		0/1 0	unity	200	lome!
I _{sc}	Output Short Circuit $ \begin{array}{c} V_{CC} = MAX \\ V_{OUT} = 0 \ V \\ V_{IN+} = +0.8 \ V \\ V_{IN-} = 0 \ V \end{array} $		MIL grade	-15	-80	-15	-39	-80	-15	-80	mA
			COM'L grade	-14	-100	-14	-39	-100	-14	-100	
I _{IL} ar me	Input Load Current	$V_{CC} = MAX$ $V_{IN} = V_{OL\ MAX}$, other input = V_{CC}			-0.9	to bi	-0.49	-0.7	i ns	-0.7	mA
I _{IL(ST)}	Strobe Input Low Current	$V_{CC} = MAX$ $V_{IN+} = +2.0 V$ $V_{ST} = V_{OL} MAX$ $V_{IN-} = 0 V$			-2.4	HUGH	-1.15	-2.4	(MOLE)	-2.4	mA
I _{IL(RC)}	Response Control Input Load Current	$egin{array}{lll} V_{CC} = MAX & V_{IN+} = +2 \ V_{RC} = V_{OL} MAX & V_{IN-} = 0 V_{IN-} \end{array}$				-1.2	-3.4				mA
V _{CM}	Common Mode Voltage	$V_{CC} = 5.0 \text{ V} V_{IN+} - V_{IN-} =$	0.4 or 2.4 V	-15	+15	-15	±17.5	+15	-15	+15	V
I _{IH(ST)}	Strobe Input HIGH	$V_{CC} = MIN$ $V_{ST} = 4.5 V$	MIL grade		X			2.0		5.0	μΑ
918-0- WH 91	Current	$V_{IN+} = +0.8 \text{ V}$ $V_{IN-} = 0 \text{ V}$	COM'L grade	TK	4	9		5.0		10.0	
	La David	V _{CC} = 5.0 V	MIL grade			77	130	167			Ω
R _{IN}	Input Resistor $V_{IN+} = 0 \text{ V}$ $V_{RFS} = 1.0 \text{ V}$		COM'L grade			74	130	179			22
V _{TH}	Differential Input Threshold Voltage	V _{CM} = 0 V		+0.8	+2.0	+0.8	+1.5	+2.0	+0.8	+ 2.0	٧
	Summer Su	V _{CC} = MAX	MIL grade	de la constant	50	igaa .	28.7	50	i de	50	m A
CC	Power Supply Current $V_{IN+} = +2.0 \text{ V}$ $V_{IN-} = 0 \text{ V}$		COM'L grade		50		28.7	50		50	mA

Switching Characteristics (T_A = 25°C)

Parameters		Test Conditions	Min	Am2615XM Typ	Max	Min	Am2615XC Typ	Max	Units	
t _{pd+}	Turn Off Delay	$R_L = 3.9 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}, C_L = 30 \text{ pF}$		30	50	1:0°88-	30	75	ns
t_{pd-}	Turn On Delay	$R_L = 390 \Omega$	Refer to figure 4		30	50	11 3 B	30	75	113
t _{pd+}	Turn Off Delay	Strobe to Output	$R_L = 3.9 \text{ k}\Omega, C_L = 30 \text{ pF}$		7	12	12 O 0	7	15	no
t _{pd} _	Turn On Delay	Strobe to Output	$R_L = 390 \Omega$		10	15		10	20	ns

Am9615 ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Am9615XC		= 0 C to +/5 C (COM*L g	mid0		Min	T	LIMITS	C	T _A =		
arameters	Description	Test Conditions	gluð	Min	Max	Min	Тур	Max	Min	Max	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -5.0 \text{ mA}$ $V_{IN+} = -0.5 \text{ V}, V_{IN-} = 0 \text{ V}$	1	2.4	П	2.4	3.2		2.4	W WA	Volts
V	Output LOW Voltage	$V_{CC} = MAX$	MIL grade		0.40	T YB	.18	0.40		0.40	Volts
V _{OL}	Output LOW Voltage	$I_{OH} = 15.0 \text{ mA}$ $V_{IN+} = +0.5 \text{ V}, \ V_{IN-} = 0$	COM'L grade		0.45		.25	0.45		0.45	VOILS
	Output Leakage Current	$V_{CC} = MIN$ $V_{CEX} = 12 V$	MIL grade		100	П	240	100		200	μА
I _{CEX}	Output Leakage Current	$V_{IN+} = 0 V V_{IN-} = V_{CC} V_{CEX} = 5.25 V$	COM'L grade		100			100		200	μΑ
I _{sc}	Output Short Circuit	$V_{CC} = MAX$ $V_{OII} = 0 V$		-15	-80	-15	-39	-80	-15	-80	mA
	Current	$V_{IN+} = -0.5 \text{ V}$ $V_{IN-} = 0 \text{ V}$	COM'L grade	-14	-100	-14	-39	-100	-14	-100	100000
I _{IL}	Input Load Current	$V_{CC} = MAX$ $V_{IN} = V_{OL MAX}$, other input = V_{CC}			-0.9		-0.49	-0.7		-0.7	mA
I _{IL(ST)}	Strobe Input Low Current	$egin{array}{ll} V_{CC} = MAX & V_{IN+} = +0.5 \ V \ V_{ST} = V_{OL\ MAX} & V_{IN-} = 0 \ V \end{array}$			-2.4	Ourgus cteriat	-1.15	-2.4	T	-2.4	mA
I _{IL(RC)}	Response Control Input Load Current	$V_{CC} = MAX$ $V_{IN+} = +0.5 V$ $V_{RC} = V_{OL MAX}$ $V_{IN-} = 0 V$				-AT	-1.2	-3.4		AOFLE	mA
V _{CM}	Common Mode Voltage	$V_{CC} = 5.0 \text{ V}$ $V_{IN+} - V_{IN-}$	= ±2.0 V	-15	+15	-15	±17.5	+15	-15	+15	V
I _{IH(ST)}	Strobe Input HIGH	$V_{CC} = MIN$ $V_{ST} = 4.5 \text{ V}$	MIL grade					2.0		5.0	μΑ
	Current	$V_{IN+} = -0.5 \text{ V}$ $V_{IN-} = 0 \text{ V}$	COM'L grade					5.0	100V s	10.0	
D	Input Resistor	$V_{CC} = 5.0 \text{ V}$	MIL grade			77	130	167			Ω
R _{IN}	input Resistor	$V_{IN+} = 0 \text{ V}$ $V_{RES} = 1.0 \text{ V}$	COM'L grade		No.	74	130	179	Ш	§ 32	
V _{TH}	Differential Input Threshold Voltage	V _{CM} = 0 V	NIN - STROBE IMP	-0.5	+0.5	-0.5	±0.02	+0.5	-0.5	+0.5	٧
	Davier Cumply Cumpet	$V_{CC} = MAX$	MIL grade		50		28.7	50		50	mA
Icc	Power Supply Current	$V_{IN+} = +0.5 V$ $V_{IN-} = 0 V$	COM'L grade		50	Verte V	28.7	50		50	IIIA

Switching Characteristics

Switching Characteristics (1, = 25°C)			Am9615XM			Am9615XC				
Paran	neters		Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
t _{pd+}	Turn Off Delay	$R_L = 3.9 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}, C_1 = 30 \text{ pF}$	100 × 10	30	50		30	75	ns
t _{pd-}	Turn On Delay	$R_L = 390 \Omega$	Refer to figure 4	04-05 D 05-1	30	50		30	75	110
t _{pd+}	Turn Off Delay	Strobe to Output	$R_L = 3.9 \text{ k}\Omega, C_L = 30 \text{ pF}$	$3.9 \text{ k}Ω$, $C_L = 30 \text{ pF}$ 7		12		7	15	ns
t _{pd-}	Turn On Delay	Strobe to Output	$R_L = 390 \Omega$		10	15		10	20	110

D. C. CHARACTERISTICS

Output Voltage Versus Ambient Temperature

Strobe Input-Output Transfer Characteristic Versus V_{CC}

Strobe Input-Output Transfer Characteristic **Versus Ambient Temperature**

Output Voltage Versus Common Mode Voltage (Am9615)

Input Current Versus Input Voltage

- INPUT CURRENT

Z

Power Supply Current Versus Power Supply Voltage

Power Supply Current Ambient Temperature

Switching Time Versus Ambient Temperature

LIC-402

THRESHOLD CHARACTERISTICS

Am2615

Am9615

LIC-403

SWITCHING TIME TEST CIRCUIT & WAVEFORMS

LIC-404

LIC-406

LIC-407

Figure 4

LIC-405

FREQUENCY RESPONSE CONTROL

Am2615/9615 LOADING RULES

Input

Fanout

			IIIput	ranout			
(Input/Output	Pin No.'s	Unit Load	Output HIGH	Output		
	Out	1	-	o/c	10		
	Active Pull-Up	2		83	_		
Receiver A	Response Control	3	-	- i	_		
Seiv	Strobe	4	1.5	_			
Rec	+ In	5	0.5	_	_		
	130 Ω	6	-	_	-		
	— In	7	0.5	_	_		
(GND	8	-	_	_		
	— In	9	0.5	_	-		
-4	130 Ω	10		-	-		
Receiver B	+ In	11	0.5	_	_		
Seiv	Response Control	12	_	_	-		
Rec	Strobe	13	1.5	_	-		
	Active Pull-Up	14	_	83	-		
	Out	15		o/c	10		
(V _{CC}	16	_	_			

Frequency Response Versus Capacitance

Distinctive Characteristics

- Conforms to EIA RS-232C, CCITT V.24 and MIL-188C specifications
- Short circuit protected output
- Internal slew rate limiting

- Supply independent output swing
- 100% reliability assurance testing in compliance with MIL-STD-883
- TTL/DTL compatible input

FUNCTIONAL DESCRIPTION

The Am2616 is a quad line driver specifically designed to meet the EIA RS-232C, CCITT V.24 and MIL-188C interface requirements. Each driver accepts DTL/TTL logic levels and converts them to the requisite levels for data transmission between equipment. The output slew rate of each driver is internally limited, but can be lowered by an external capacitor. All outputs are short circuit protected, and protected against fault conditions specified in RS-232C. A HIGH logic level on the inhibit input forces the driver output to VOL or mark state. For 188C interface the output impedance is guaranteed to be less than 100 ohms and the positive and negative output voltage amplitudes are guaranteed to be within 10 percent of each other.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	0°C to +75°C	AM2616DC
Molded DIP	0° C to $+75^{\circ}$ C	AM2616PC
Dice	0° C to $+75^{\circ}$ C	AM2616XC
Hermetic DIP	-55°C to +125°C	AM2616DM
Flat Pack	-55°C to +125°C	AM2616FM
Dice	-55°C to +125°C	AM2616XM

CONNECTION DIAGRAM Top View

4

Am2616

MAXIMUM RATINGS (Above which the useful life may be impaired)

-65°C to +150°C
−55°C to +125°C
+15 V
−15 V
V 61± orms to EIA HS 232C, COITT V 24 and ±15 V
enousember -1.5 V to +6 V
rugtuo beraeroro nuorio 300°C

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

 $(COM'L) T_A = 0°C to +75°C$

(MIL) T_A = 0 C to +75 C (MIL) T_A = -55° C to +125 $^{\circ}$ C $^{\circ$

arameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
V _{OH}	Output HIGH Voltage (Note 2)	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 0.8 V$	+5.0	+6.0	+7.0	Volts
VoL	Output LOW Voltage (Note 2)	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 2.0 V$	-7.0	-6.0	-5.0	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage	2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage			0.8	Volts
IIL	Input LOW Current	V _{IN1} = V _{IN2} = 0.4 V or V _{INHIBIT} = 0.4 V		-1.2	-1.6	mA
I _{IH}	Input HIGH Current	V _{IN1} = V _{IN2} = 2.4 V or V _{INHIBIT} = 2.4 V		SEE N	40	μА
I _{SC}	Output Short Circuit Current (Positive) (Note 3)	$R_L = 0 \Omega$ V_{IN_1} or $V_{IN_2} = V_{INHIBIT} = 0.8 V$		-17	-30	mA
I _{SE}	Output Short Circuit Current (Negative) (Note 3)	$R_L = 0 \Omega$ V_{IN_1} or $V_{IN_2} = V_{INHIBIT} = 2.0 V$	+10	+17	+30	mA
Icc	Total Positive Supply Current	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 0.8 V$	- Y	19	28	mA
Total Fositi	rotari ostave odpory durient	V _{IN1} = V _{IN2} = V _{INHIBIT} = 2.0 V		9.5	17	1103
I _{EE}	Total Negative Supply Current	V _{IN1} = V _{IN2} = V _{INHIBIT} = 0.8 V		0	-2	mA
'EE	Total Negative Supply Sufferit	V _{IN1} = V _{IN2} = V _{INHIBIT} = 2.0 V		-20	-30	1111/4

Notes: 1. Typical values are at V_{CC} = 12 V, V_{EE} = -12 V, T_A = 25°C.

2. V_{OH} and V_{OL} are guaranteed to be equal within ± 10 percent of each other for MIL-188C operation. (i.e., V_{OH} = 6.0V then V_{OL} = -6.0V ± 0.6 V).

3. The I_{SC} and I_{SE} minimum limits guarantee the output impedance to be less than 100 ohms.

Switching Characteristics (TA = 25°C, VCC = +12.0 V, VEE = -12.0 V)

arameters	Description	Test Conditions	Min.	Тур.	Max.	Units
t _{PLH}	Delay from Input LOW to Output HIGH	C _L = 15 pF, R _L = ∞	est on U	320	650	ns
tPHL	Delay from Input HIGH to Output LOW		0311-01-0	320	650	ns
dV/dt (+)	Positive Slew Rate	0.5E < 0 < 2500 - 5 B > 210	4.0	15	30	V/µs
dV/dt(-)	Negative Slew Rate	$0 \text{ pF} \le C_L \le 2500 \text{ pF}, R_L \ge 3 \text{ k}\Omega$	-30	-15	-4.0	V/µs

4

TYPICAL CHARACTERISTICS

Transfer Characteristics

Short-Circuit Output Current

Maximum Operating Temperature versus Power-Supply Voltage

LIC-414

DEFINITION OF TERMS

FUNCTIONAL TERMS

RS-232C A specification of the Electronic Industries Association that defines the electrical characteristics of data signals transmitted between two pieces of digital equipment.

R_L Load resistance. The DC resistance between the driver output and ground.

MIL-188C A Military specification that defines the electrical interface and characteristics of data signals transmitted between two pieces of digital equipment.

 ${\tt CCITT}$ V.24 A European specification similar to the MIL-188C and RS-232 specifications.

SWITCHING TEST CIRCUIT & VOLTAGE WAVEFORMS

Note: Omit $V_{\mbox{\scriptsize IN2}}$ for channels B, C and D.

Pulse Generator Rise Time = 10 ± 5ns.

LIC-416

DEFINITION OF TERMS

Metallization and Pad Layout

DIE SIZE

Distinctive Characteristics

- Full military temperature range
- Compatible with EIA specification RS-232C
- Input signal range ± 30 volts

- Guaranteed input thresholds over full military temperature range
- 100% reliability assurance testing in compliance with MIL-STD-883
- Includes response control input and built-in hysterisis

FUNCTIONAL DESCRIPTION

The Am2617 is a quad line receiver whose electrical characteristics conform to EIA specification RS-232C. Each receiver has a single data input that can accept signal swings of up to ±30V. The output of each receiver is TTL/DTL compatible, and includes a $2k\Omega$ resistor pull-up to V_{CC}. An internal feedback resistor causes the input to exhibit hysterisis so that AC noise immunity is maintained at a high level even near the switching thresholds. For example, at 25°C when a receiver is in a LOW state on the output, the input may drop as LOW as 1.25 volts without affecting the output. The device is guaranteed to switch to the HIGH state when the input voltage is below 0.75V. Once the output has switched to the HIGH state, the input may rise to 1.75V without causing a change in the output. The Am2617 is guaranteed to switch to a LOW output when its input reaches 2.25V. Because of this hysterisis in switching thresholds, the device can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am2616.

LIC-417

(One Receiver)

ORDERING INFORMATION

	Temperature Range	Order Number
Molded DIP	0°C to +75°C	AM2617PC
Hermetic DIP	0°C to +75°C	AM2617DC
Dice	0°C to +75°C	AM2617XC
Hermetic DIP	-55° C to $+125^{\circ}$ C	AM2617DM
Hermetic Flat Pack	-55°C to +125°C	AM2617FM
Dice	-55°C to +125°C	AM2617XM

CONNECTION DIAGRAM Top View

Am2617

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +175°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +10 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V _{CC} max
Input Signal Range Sevo ablorased a rugine beating was 19.	−30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current and police and some was well deliver 2001 .	Defined by Input Voltage Limit

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

$T_A = 0^{\circ} C \text{ to } +75^{\circ} C$	$V_{CC} = 5.0 V \pm 5\%$	Response control pin open.
$T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	$V_{CC} = 5.0 V \pm 10\%$	Response control pin open.

		Typ.						
arameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units		
VOH	Output HIGH Voltage	I _{OH} = -0.5 mA, V _{IN} = 0.4 V or open	2.4	4.0	ilative or hi	Volts		
VOL	Output LOW Voltage	I _{OL} = 10 mA, V _{IN} = 3.0 V	e) biribily.	0.2	0.45	Volts		
1	Input LOW Current	V _{IN} = -3.0 V	-0.43	ort of the orange of the	sistema in a	mA		
11L		V _{IN} = -25 V	-3.6	eyn aint in se	-8.3	an ineer		
Local	Input HIGH Current	V _{IN} = +3.0 V	0.43	s drive stempts	WINDER DOMES	m A		
IH		V _{IN} = +25 V	3.6	n Ver tillige en	8.3	mA		
Isc	Output Short Circuit Current	V _{IN} = 0.0 V, V _{OUT} = 0.0 V	1.9	2.5	3.8	mA		
1 _{CC}	Power Supply Current	V _{CC} = MAX.	PRINTER CY	20	26	mA		

Note 1. Typical Limits are at V_{CC} = 5.0 V, 25° C ambient and maximum loading.

Threshold Characteristics (Note 2)

Parameters	Description	Test Conditions	TA	Min.	Typ. (Note 1)	Max.	Units
			-55°C	2.3		3.1	
V _T ÷			0°C	1.9	N.	2.5	
	Positive-Going Threshold Voltage	V _{OL} = 0.45V, V _{CC} = 5.0V	25°C	1.75	2.0	2.25	Volts
			75° C	1.45		1.90	
			125° C	1.20	AAA	1.65	
	THE STREET STREET	e Profesional States	−55° C	0.85		1.65	
			0°C	0.75		1.40	
V _T _	Negative-Going Threshold Voltage	V _{OH} = 2.5V, V _{CC} = 5.0V	25° C	0.75	0.95	1.25	Volts
			75°C	0.60		1.10	
	and Delivery law 1		125°C	0.50		0.95	

Notes: 1. Typical Limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

2. The input threshold margin for the device is greater than the voltage computed as the V_{T+}-V_{T-} value. For the minimum value see the input threshold margin versus temperature graph.

Switching Characteristics (T_A = 25°C, response control pin open, C_L = 15 pF)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
tPLH	Delay from Input LOW to Output HIGH	R _L = 3.9 kΩ	The state of the state of	25	85	ns
tPHL	Delay from Input HIGH to Output LOW	R _L = 390 Ω		25	50	ns
t _r	Output Rise Time (10% to 90%)	R _L = 3.9 kΩ		120	175	ns
tf	Output Fall Time (90% to 10%)	R _L = 390 Ω		10	20	ns

TYPICAL CHARACTERISTICS

LIC-420

DEFINITION OF TERMS

FUNCTIONAL TERMS

Response Control Pin A pin available on each receiver that allows the user to set the switching thresholds and frequency response of the receiver.

Threshold Voltage The voltage level on the input that will cause the output to change state. Because the device exhibits hysterisis, the LOW level input threshold is different from the HIGH level input threshold. Both thresholds can be moved by applying a bias to the response control pin.

RS-232C A specification of the Electronic Industries Association that defines the electrical characteristics of data signals transmitted between two pieces of digital equipment.

Input Signal Range The permitted range of DC voltages that can be applied to the receiver input without damage to the device.

SWITCHING TIME TEST CIRCUIT & WAVEFORMS

Metallization and Pad Layout

DIE SIZE 0.047" X 0.059"

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 100 mA at 0.8V max.
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2905 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches that feature three-state outputs.

This LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input (\overline{BE}) is used to force the driver outputs to the high-impedance state. When \overline{BE} is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the Ai data is stored in the register and when S is HIGH, the Bi data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\text{RLE}}$) input. When the $\overline{\text{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{\text{OE}}$ LOW). When the $\overline{\text{RLE}}$ input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\text{OE}}$) input. When $\overline{\text{OE}}$ is HIGH, the receiver outputs are in the high-impedance state.

V_{CC} = Pin 24 GND₁ = Pin 6 GND₂ = Pin 18

MPR-063

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

MPR-064

4

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential	-0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	closses (2) sorm selectrominos A. golfagili de -0.5V to +7V
DC Output Current, Into Outputs (Except Bus)	Am06 four multiplexers, When S is LOW, the A; data is stored
DC Output Current, Into Bus	200 mA
DC Input Current	-30mA to +5,0mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Co	nditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
	On Suns	I _{OL} = 40mA		. State o	paebaamer	0.32	0.5	revisaer
VOL	Bus Output LOW Voltage	V _{CC} = MIN.	I _{OL} = 70mA	IOL = 70mA		0.41	0.7	Volts
		I _{OL} = 100				0.55	0.8	
			V _O = 0.4V				-50	μА
10	Bus Leakage Current	V _{CC} = MAX.	V _O = 4.5V	MIL			200	
			VO = 4.5V	COM'L			100	
IOFF	Bus Leakage Current (Power OFF)	V _O = 4.5V					100	μΑ
VTH	Receiver Input HIGH	Bus spekle = 2.41			2.4	2.0		Volts
* I H	Threshold	Bus enable = 2.4V COM'L			2.3	2.0		VOILS
VTL	Receiver Input LOW	Bus enable = 2.4V		MIL		2.0	1.5	Volts
ALC: NITE	Threshold	COM'L				2.0	1.6	VOILS

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

The following conditions apply unless otherwise noted: $\begin{array}{lll} \text{Am2905XC (COM'L)} & \text{T}_{A} = 0^{\circ}\text{C to +70^{\circ}C} & \text{V}_{CC}\text{MIN.} = 4.75\,\text{V} & \text{V}_{CC}\text{MAX.} = 5.25\,\text{V} \\ \text{Am2905XM MIL)} & \text{T}_{A} = -55^{\circ}\text{C to +125^{\circ}C} & \text{V}_{CC}\text{MIN.} = 4.50\,\text{V} & \text{V}_{CC}\text{MAX.} = 5.50\,\text{V} \\ \end{array}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		1)	Min.	Typ. (Note 2)	Max.	Units
V	Receiver Output	V _{CC} = V _{IN} MIL, I _{OH} = -1.0mA		= -1.0mA	2.4	3.4		1/-10-
VOH	HIGH Voltage	$V_{IN} = V_{IL} \text{ or } V_{IH}$	COM'L, IC	H = -2.6 mA	2.4	3.4		Volts
		V _{CC} = MIN.	IOL = 4m/	- KI		0.27	0.4	
VOL	Receiver Output LOW Voltage	V _{CC} - WIIV.	IOL = 8m/	4		0.32	0.45	Volts
	2011 Voltage	VIN VILOVIA	I _{OL} = 12m	A	1	0.37	0.5	
VIH	Input HIGH Level (Except Bus)	Guaranteed input log	Guaranteed input logical HIGH for all inputs					Volts
	Input LOW Level	Guaranteed input logi	Guaranteed input logical LOW N		EL		0.7	Volts
VIL	(Except Bus)	for all inputs	COM'L	11 4		0.8		
V _I	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -	V _{CC} = MIN., I _{IN} = -18mA				-1.5	Volts
IIL	Input LOW Current (Except Bus)	V _{CC} = MAX., V _{IN} =				-0.36	mA	
t _{IH}	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} =	V _{CC} = MAX., V _{IN} = 2.7V				20	μА
I _I	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} =	V _{CC} = MAX., V _{IN} = 5.5V				100	μА
Receiver Off-State		V _{CC} = MAX.	V ₀ = 2.4 V				20	
.0	Output Current	VCC WAX.	V _O = 0.4 V	ou share	0.08	-20	μA	
I _{SC}	Receiver Output Short Circuit Current	V _{CC} = MAX.	-12	The state of	-65	mA		
Icc	Power Supply Current	V _{CC} = MAX., All inputs = GND				69	105	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

			1	Am2905X	M	1	Am2905X0	2	
arameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ.	Max.	Unit
tPHL	D (L. L. (DDOD) D.	THE RESERVE		21	40		21	36	
tPLH	Driver Clock (DRCP) to Bus	C _L (BUS) = 50pF	30	21	40	81-31-3	21	36	ns
tPHL	2 5 11 (55) - 5	R _L (BUS) = 50Ω	0.1	13	26	OM - A	13	23	
tPLH	Bus Enable (BE) to Bus			13	26		13	23	ns
ts		IG WAY EFORMS	25	112		23			
th	Data Inputs (A or B)		8.0			7.0			ns
t _S	Salara Januar (G)		33	3		30			ns
th	Select Input (S)		8.0	1 1		7.0			
tpW	Driver Clock (DRCP) Pulse Width (HIGH)		28			25			ns
tPLH	Bus to Receiver Output	1111111	117	18	37	2,m.8	18	34	ns ns
tPHL	(Latch Enable)	C _L = 15pF	1272	18	37	-	18	34	
tPLH	Latch Enable to Receiver Output	$R_L = 2.0 k\Omega$		21	37		21	34	
tPHL	Later Enable to Neceiver Output			21	37	1500	21	34	
t _S	Bus to Latch Enable (RLE)	/	21	To the second		18	92		ns
th	Bus to Latch Enable (RLE)		7.0			5.0			1115
tZH	0 0			14	28		14	25	
tZL	Output Control to Receiver Output		1	14	28	134	14	25	ns
tHZ	Output Control to Receiver Output		A	14	28		14	25	ns
tLZ	Output Control to Receiver Output			14	28		14	25	IIS

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

^{3.} Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS DRIVEN INPUT DRIVING OUTPUT Vcc $$\label{eq:BE} \begin{split} \overline{\text{BE}} &= 3.3 \, \text{k} \Omega \\ \overline{\text{RLE}} &= 5 \, \text{k} \Omega \\ \overline{\text{OE}} &= 5 \, \text{k} \Omega \\ A, B, S &= 10 \, \text{k} \Omega \\ DRCP &= 10 \, \text{k} \Omega \end{split}$$ **₹** 150Ω IIL 10 INPUT O I_{IH} IOL 公 Note: Actual current flow direction shown. MPR-066 TYPICAL PERFORMANCE CURVES **Bus Output Low Voltage** Receiver Threshold Variation VOLTS Versus Ambient Temperature Versus Ambient Temperature 2.5 Vcc +5.0V 2.4 2.3 0.8 VOLTAGE 2.2 V_{CC} = 5.25 V 0.6 2.1 THRESHOLD 2.0 - BUS OUTPUT BUS 0.4 1.9 1.8 I_{BUS} = 40 mA V_{CC} = 4.5 V 1.7 0.2 1.6 1.5 -55 -35 -15 5 25 45 65 85 105 125 -55 -35 -15 5 25 45 65 85 105 125 TA - AMBIENT TEMPERATURE - °C T_A - AMBIENT TEMPERATURE - °C MPR-068 MPR-067 SWITCHING WAVEFORMS OV BUS 2.0V Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the BUS to R combinatorial delay. MPR-069

FUNCTION TABLE

FUNCTION	ОИТРИТ	BUS	NTERNAL TO DEVICE				S	INPUT			
PAG CAS	Ri	BUSi	Qi	Di	ŌĒ	RLE	BE	DRCP	Bį	Ai	S
Driver output disable	X	Z	X	X	X	X	Н	X	X	Х	X
Receiver output disable	Z	X	X	X	Н	X	X	X	X	X	X
Driver output disable and	Н	L	L	X	L	L	Н	X	X	X	X
receive data via Bus input	L	Н	Н	X	L	L	Н	X	Х	X	X
Latch received data	X	X	NC	X	X	Н	X	X	X	X	X
	X	X	X	L	X	X	X	1	X	L	L
Load driver register	×	X	X	Н	X	X	X	1	X	Н	L
Load driver register	×	X	X	L	X	X	X	1	L	X	Н
	×	X	X	Н	Х	X	X	1	Н	X	Н
No driver clock restriction	X	X	X	NC	X	X	Х	L	X	X	X
INO GITTER GIOCK TESTITICTION	X	X	X	NC	X	X	X	Н	X	X	X
	×	Н	X	L	X	X	L	X	X	X	X

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2905PC	P-24	С	C-1
AM2905DC	D-24	C	C-1
AM2905DC-B	D-24	С	B-1
AM2905DM	D-24	M	C-3
AM2905DM-B	D-24	M	B-3
AM2905FM	F-24	M	C-3
AM2905FM-B	F-24	M	B-3
AM2905XC	Dice	С	Visual inspection to MIL-STD-883
AM2905XM	Dice	М	Method 2010B.

Notes:

- P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline.
 Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
- 2. $C = 0^{\circ}C$ to $+70^{\circ}C$, $M = -55^{\circ}C$ to $+125^{\circ}C$.

Am2905

RIIS

See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

LOAD TEST CIRCUIT

DEFINITION OF FUNCTIONAL TERMS

BE

RLE

A₀, A₁, A₂, A₃ The "A" word data input into the two input multiplexer of the driver register.

B₀, B₁, B₂, B₃ The "B" word data input into the two input multiplexers of the driver register.

S Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is LUCH, the

ister. When the select input is HIGH, the B word is applied to the driver register.

DRCP Driver Clock Pulse. Clock pulse for the driver register.

Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance

BUS₀, BUS₁ The four driver outputs and receiver inputs (data is inverted).

R₀, R₁, R₂, R₃ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.

Receiver Latch Enable. When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of

OE

Output Enable. When the OE input is

HIGH, the four three state receiver outputs are in the high-impedance state.

all other inputs.

Metallization and Pad Layout

O TEST

O TEST POINT

MPR-070

The Am2905 is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty}$

MPR-071

Using the Am2905 and Am26S10 in a terminated Bus system for the Am9080 MOS Microprocessor.

MPR-072

Distinctive Characteristics

- Quad high-speed LSI bus transceiver.
- Open-collector bus driver.
- Two-port input to D-type register on driver.
- Bus driver output can sink 100 mA at 0.8V max.
- Internal odd 4-bit parity checker/generator.
- Receiver has output latch for pipeline operation.
- Receiver outputs sink 12 mA.
- Advanced low-power Schottky processing.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am2906 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches. The device also contains a four-bit odd parity checker/generator.

This LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input (\overline{BE}) is used to force the driver outputs to the high-impedance state. When \overline{BE} is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the $A_{\hat{I}}$ data is stored in the register and when S is HIGH, the $B_{\hat{I}}$ data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (RLE) input. When the RLE input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input.

The Am2906 features a built-in four-bit odd parity checker/generator. The bus enable input (\overline{BE}) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When \overline{BE} is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

Note: Pin 1 is marked for orientation;

MPR-074

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential	−0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
DC Output Current, Into Outputs (Except Bus)	30mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

V_{CC} MAX. = 5.25V V_{CC} MAX. = 5.50V

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Co	nditions (Note 1)	manufactures on	Min.	Typ. (Note 2)	Max.	Units
	Bus Output LOW Voltage	200 Till ac 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0.32	0.5	
VOL			I _{OL} = 70mA	in summit have	110-3107-Y	0.41	0.7	Volts
			I _{OL} = 100mA	CHI ATAMA OR		0.55	0.8	- Second
	Bus Leakage Current		V _O = 0.4V	V _O = 0.4V		es vavist) l	-50	lous and
10		V _{CC} = MAX.	V _O = 4.5V	MIL	ot tulqui a	pb blgif-8 j	200	μА
			VO - 4.5V	COM'L	si Jugnico-	TORS DIV.	100	Vehen
IOFF	Bus Leakage Current (Power OFF)	V _O = 4.5V		error-sen or in of all sit vivis	b. salt 11 t	ma baharan kempengan	100	μΑ
VTH	Receiver Input HIGH	Bus enable = 2.4V		MIL	2.4	2.0		1/-1-
· IH	Threshold Bus enable = 2.4			COM'L	2.3	2.0		Volts
VTL	Receiver Input LOW Bus enable = 2.4V			MIL		2.0	1.5	Volts
ea mua	Threshold	THE SHOP STATE	COM'L		2.0	1.6	Voit	

The following conditions apply unless otherwise noted:

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Cond	Test Conditions (Note 1)			Typ. (Note 2)	Max.	Units
	Receiver Output	V _{CC} = MIN.	MIL	I _{OH} = -1mA	2.4	3.4		
Vari	HIGH Voltage	VIN = VIL or VIH	COM'L	I _{OH} = -2.6mA	2.4	3.4		Volts
VOH	Parity Output	V _{CC} = MIN., I _{OH} = -	-660µA	MIL	2.5	3.4		Voits
	HIGH Voltage	VIN = VIH or VIL		COM'L	2.7	3.4	- 450	
		N/ MINI	I _{OL} = 4r	nA		0.27	0.4	
VOL	Output LOW Voltage (Except Bus)	V _{CC} = MIN. V _{IN} = V _{II} or V _{IH}	IOL = 8r	nA	3	0.32	0.45	Volts
	(Except bus)	AIM - AIT OL AIH	I _{OL} = 12	2mA	1	0.37	0.5	
VIH	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
V	Input LOW Level	Guaranteed input log	ical LOW	MIL	1		0.7	Volts
VIL	(Except Bus)	for all inputs		COM'L			0.8	VOIL
VI	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -	18mA				-1.2	Volts
I _{IL}	Input LOW Current (Except Bus)	V _{CC} = MAX., V _{IN} =	0.4V	a fautaia takan			-0.36	mA
ЧН	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} =	2.7V	TYPICAL RE			20	μА
I ₁	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 5.5V		as Lauren	d and	100	μА	
Isc	Output Short Circuit Current (Except Bus)	V _{CC} = MAX.		-12	A su system	-65	mA	
Icc	Power Supply Current	V _{CC} = MAX., All inp	outs = GND		1 1 400	72	105	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

			A	m2906XI	VI	A			
Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
tPHL				21	40		21	36	ns
tPLH	Driver Clock (DRCP) to Bus	C _L (BUS) = 50pF		21	40		21	36	l ns
tPHL	Bus Enable (BE) to Bus	R_L (BUS) = 50Ω		13	26	51 - 25 - 50 647 - T	13	23	ns
tPLH	Bus Eliable (BE) to Bus			13	26		13	23	115
t _S	Data Inputs (A or B)	7100	25			23			ns
th	Data Inputs (A of B)	EMBORRUAN ARIAS	8.0			7.0			113
ts	Select Inputs (S)		33			30			ns
th	Select Inputs (5)		8.0			7.0			115
tpW	Clock Pulse Width (HIGH)		28		, , ,)	25			ns
tPLH	Bus to Receiver Output			18	37		18	34	ns ns
tPHL	(Latch Enabled)		and the	18	37		18	34	
tPLH	Latch Enable to Receiver Output		XX	21	37	2413	21	34	
tPHL	Laten Enable to Neceiver Output	$C_L = 15pF$ $R_L = 2.0k\Omega$	THE	21	37	1	21	34	
t _S	Bus to Latch Enable (RLE)	HL - 2.0K32	21	-		18			ns
th	Bus to Later Enable (ALE)		7.0			5.0			113
tPLH	A or B Data to Odd Parity Output			21	40	7177	21	36	ns
tPHL	(Driver Enabled)			21	40	77	21	36	IIS
tPLH	Bus to Odd Parity Output			21	40		21	36	ns
tPHL	(Driver Inhibited, Latch Enabled)		14	21	40		21	36	115
tPLH	Latch Enable (RLE) to			21	40	T. T. STATE	21	36	ns
tPHL	Odd Parity Output			21	40		21	36	113

Notes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS DRIVING OUTPUT DRIVEN INPUT RIIS Vcc \overline{BE} = 3.3k Ω \overline{RLE} = 5k Ω \overline{OE} = 5k Ω A, B, S = 10k Ω DRCP = 10k Ω 150Ω 9 IL ЮН 10 O R;, ODD INDIT O J_{IH} IOL Note: Actual current flow direction shown. MPR-076 TYPICAL PERFORMANCE CURVES **Bus Output Low Voltage** Receiver Threshold Variation VOLTS Versus Ambient Temperature **Versus Ambient Temperature** - VOLTS V_{CC} = +5.0V 0.8 2.3 VOLTAGE 2.7 0.6 2.1 20 BUS OUTPUT 0.4 1 9 BUS 1.7 0.2 VOL - B 1.6 -35 -15 5 25 45 65 85 105 125 -55 -35 -15 5 25 45 65 85 105 125 TA - AMBIENT TEMPERATURE - °C TA - AMBIENT TEMPERATURE - °C MPR-077 MPR-078 SWITCHING WAVEFORMS BUS 2.0V t_{PHL} VOL Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the BUS to R combinatorial delay. MPR-079

4

FUNCTION TABLE

FUNCTION	ОИТРИТ	BUS		INTER TO DE			S	INPUT			
A A	Ri	BUSi	Qi	Di	ŌĒ	RLE	BE	DRCP	Bį	Ai	S
Driver output disable	X	Z	X	X	X	X	Н	×	Χ	X	X
Receiver output disable	Z	X	X	X	Н	X	X	X	Χ	X	X
Driver output disable and	н	L	L	X	L	L	Н	X	X	X	X
receive data via Bus input	L	Н	Н	X	L	L	Н	X	X	X	X
Latch received data	X	X	NC	X	X	Н	X	×	Χ	X	X
	X	X	X	L	X	X	X	1	X	L	L
Load driver register	X	X	X	Н	X	X	X	1	X	Н	L
Load driver register	×	X	X	L	X	X	X	1	L	X	Н
	×	X	X	Н	X	X	X	1	Н	X	Н
No driver clock restriction	X	X	X	NC	X	X	X	L	X	X	X
INO GITVET CLOCK TESTITICTION	X	X	X	NC	X	X	X	Н	X	X	X
Drive Bus	X	Н	X	L	X	X	L	X	X	X	X
Drive Bus	X	L	X	Н	X	X	L	X	X	X	X

= Don't care

↑ = LOW to HIGH transition

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2906PC	P-24	С	C-1
AM2906DC	D-24	С	C-1
AM2906DC-B	D-24	С	B-1
AM2906DM	D-24	M	C-3
AM2906DM-B	D-24	M	B-3
AM2906FM	F-24	М	C-3
AM2906FM-B	F-24	M	B-3
AM2906XC AM2906XM	Dice Dice	C M	Visual inspection to MIL-STD-883 Method 2010B.

Notes

i = 0, 1, 2, 3

- P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline.
 Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
- 2. $C = 0^{\circ}C$ to $+70^{\circ}C$, $M = -55^{\circ}C$ to $+125^{\circ}C$.
- See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

DEFINITION OF FUNCTIONAL TERMS

Z = HIGH Impedance

NC = No change

H = HIGH

L = LOW

- A₀, A₁, A₂, A₃ The "A" word data input into the two input multiplexer of the driver register.
- B₀, B₁, B₂, B₃ The "B" word data input into the two input multiplexers of the driver register.
- S Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the

B word is applied to the driver register.

- DRCP Driver Clock Pulse. Clock pulse for the driver register.
- BE Bus Enable. When the Bus Enable is HIGH,
 - the four drivers are in the high impedance state.
- $\overline{\text{BUS}}_0$, $\overline{\text{BUS}}_1$ The four driver outputs and receiver inputs (data is inverted).
- R₀, R₁, R₂, R₃ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
- RLE

 Receiver Latch Enable. When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of
- OE

 Output Enable. When the OE input is HIGH, the four three state receiver outputs are in the high-impedance state.

all other inputs.

LOAD TEST CIRCUIT

Metallization and Pad Layout

DIE SIZE 0.080" X 0.130"

Am2907 • Am2908

Quad Bus Transceivers with Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- D-type register on driver
- Bus driver output can sink 100mA at 0.8V max.
- Internal odd 4-bit parity checker/generator

- Am2907 has 2.0V input receiver threshold; Am2908 is "DEC Q or LSI-II bus compatible" with 1.5V receiver threshold
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12mA
- Advanced Low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2907 and Am2908 are high-performance bus transceivers intended for bipolar or MOS microprocessor system applications. The Am2908 is Digital Equipment Corporation "Q or LSI-II bus compatible" while the Am2907 features a 2.0V receiver threshold. These devices consist of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches, that feature three-state outputs. The devices also contain a four-bit odd parity checker/generator.

These LSI bus transceivers are fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100mA at 0.8V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input $(\overline{\rm BE})$ is used to force the driver outputs to the high-impedance state. When $\overline{\rm BE}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_i data into this driver register on the LOW-to-HIGH transition.

Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted form driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (\overline{RLE}) input. When the \overline{RLE} input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and \overline{OE} LOW). When the \overline{RLE} input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control (\overline{OE}) input. When \overline{OE} is HIGH, the receiver outputs are in the high-impedance state.

The Am2907 and Am2908 feature a built-in four-bit odd parity checker/generator. The bus enable input (BE) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When BE is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

The Am2907 has receiver threshold typically of 2.0V while the Am2908 threshold is typically 1.5V.

 $V_{CC} = Pin 20$ $GND_1 = Pin 5$ $GND_2 = Pin 15$

MPR-083

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

MPR-084

ORDERING INFORMATION

Package Type	Temperature Range	Am2907 Order Number	Am2908 Order Number
Molded DIP	0°C to +70°C	AM2907PC	AM2908PC
Hermetic DIP	0°C to +70°C	AM2907DC	AM2908DC
Dice	0°C to +70°C	AM2907XC	AM2908XC
Hermetic DIP	-55°C to +125°C	AM2907DM	AM2908DM
Hermetic Flat Pak	-55°C to +125°C	AM2907FM	
Dice	-55°C to +125°C	AM2907XM	

MAXIMUM RATINGS (Above which the useful life may be impaired) Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V _{CC} max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description		onditions (Note		Min.	Typ. (Note 2)	Max.	Units
	The same of the sa		I _{OL} = 40mA	Evin stab 2	URD eduqui	0.32	0.5	Bhughi
V _{OL}	Bus Output LOW Voltage	V _{CC} = MIN.	I _{OL} = 70mA	or property certification of the	to discount	0.41	0.7	Volts
	and the second second		I _{OL} = 100mA	Morrison ins	bris studio	0.55	0.8	aerica
			V _O 4 0.4V	E Jugai (30	a lontred .	sin in-aerio	-50	po bene
lo	Bus Leakage Current	V _{CC} = MAX.	V 4.5V	MIL	CAULUI SVB	SHELLIN	200	μΑ
	Trude and to the animal and set in		$V_0 = 4.5V$	COM'L	I menuther	BORSKYA	100	mA en
loff	Bus Leakage Current (Power Off)	V _O = 4.5V	AMELICAL DISCONSIST	mgo jaran tu	AND THE STREET	Arthur si	100	μΑ
				MIL	2.4	2.0	Maria LLC	SITO BUT
1000E-1-1	COSSINA	Bus Enable = 2.4V	Am2907	COM'L	2.3	2.0	it A em i	Volts
V _{TH}	Receiver Input HIGH Threshold		4 0000	MIL	1.9	1.5	rong pro	
		Part South Carl	Am2908	COM'L	1.7	1.5	fi box b	
Odesenva	OUTGELMA D'OTT-OUG'T	' 910 oftenmals	4 0007	MIL		2.0	1.5	uig SU
CARDON	GX106ShIA T DT01 H ELD 0	en/d	Am2907	COM'L	d Honsend	2.0	1.6	06.20
V _{TL}	Receiver Input LOW Threshold	Bus Enable = 2.4V		MIL	Decl. Mi	1.5	1.1	Volts
	MODESMA STREET OFFICE	100 C	Am2908	COM'L		1.5	1.3	
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -	-18mA		111111111111111111111111111111111111111		-1.2	Volts

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Con	ditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
.,	Receiver	V _{CC} = MIN.	MIL: IOH = -	-1mA	2.4	3.4		M-la-
VOH	Output HIGH Voltage	VIN = VIL or VIH	COM'L: IOH	= -2.6mA	2.4	3.4	7 400	Volts
	Parity	V _{CC} = MIN., I _{OH} =	-660µA	MIL	2.5	3.4	Total C	Volts
VOH	Output HIGH Voltage	VIN = VIH or VIL		COM'L	2.7	3.4	S and S	VOILS
	Output LOW Voltage	VCC = MIN.	IOL = 4mA			0.27	0.4	
VOL	(Except Bus)		IOL = 8mA			0.32	0.45	Volts
	(Except Bus)	VIN = VIL or VIH	I _{OL} = 12mA			0.37	0.5	100
V.	Input HIGH Level	Guaranteed input lo	Guaranteed input logical HIGH		2.0	Pulse Width (166	Cleak	Volts
VIH	(Except Bus)	for all inputs	for all inputs		2.0	and Company		VOILS
V III	Input LOW Level			MIL		(betchnG)	0.7	Volts
VIL	(Except Bus)			COM'L			0.8	Vaits
VI	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -18mA		Jugh One	Enable to Recutu	-1.2	Volts	
I _{IL}	Input LOW Current (Except Bus)	V _{CC} = MAX., V _{IN}	= 0.4 V		13.	F) oldanii dobul	-0.36	mA
I _{IH}	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN}	= 2.7 V			odd Pent Out	20	μΑ
I	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN}	V _{CC} = MAX., V _{IN} = 5.5 V			Oss Parity Out	100	μΑ
I _{SC}	Output Short Circuit	VCC = MAX.		-12	And the same	-65	mA	
	Current (Except Bus)	DR 17. 12	100 12 11 11 11 11 11 11		- bb/	Hol (- IIIIs) sidenta	riota.J	19,85
Icc	Power Supply Current	V _{CC} = MAX., All Inputs = GND				75	110	mA
10	Off-State Output Current	Vcc = MAX.	V _O = 2.4 V				20	μΑ
200	(Receiver Outputs)	00	V _O = 0.4 V			SPECIAL OF REPORT CAN	-20	

VER OP	ERATING TEMPERATURE R	ANGE	A	m2907XI	VI	A	m2907XC		33
arameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Unit
tPHL			17	21	40		21	36	-
tPLH	Driver Clock (DRCP) to Bus	C _L (BUS) = 50pF		21	40		21	36	ns
tPHL	a = (-	$R_L(BUS) = 50\Omega$		13	26		13	23	127
tPLH	Bus Enable (BE) to Bus			13	26	MARIE	13	23	ns
ts	Data Inputs		18			15			no
th	Data Inputs		8.0			7.0			ns
tpW	Clock Pulse Width (HIGH)		28		11 80 34 1	25			ns
tPLH	Bus to Receiver Output	0.045-5		18	37		18	34	ns
tPHL	(Latch Enabled)			18	37		18	34	ns
tPLH	Latch Enable to Receiver Output			21	37		21	34	ns
tPHL	Laten Enable to Receiver Output			21	37		21	34	115
t _S		$C_L = 15pF$ $R_L = 2.0k\Omega$	21			18			ns
th	Bus to Latch Enable (RLE)	11[- 2.0 ksz	7.0			5.0			
tPLH	Data to Odd Parity Out			21	40		21	36	
tPHL	(Driver Enabled)			21	40		21	36	ns
tPLH	Bus to Odd Parity Out	A CONTRACTOR OF THE STATE OF TH		21	40	INF SET	21	36	ns
tPHL	(Driver Inhibit)			21	40		21	36	ns
tPLH	Latch Enable (RLE) to Odd			21	40		21	36	ns
tPHL	Parity Output			21	40		21	36	I
tZH	00			14	28		14	25	ns
tZL	Output Control to Output			14	28		14	25	
tHZ	Current Control to Current	C _L = 5.0pF		14	28		14	25	ns
tLZ	Output Control to Output	$R_L = 2.0 k\Omega$		14	28		14	25	ns

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical limits are at $V_{CC} = 5.0V$, $25^{\circ}C$ ambient and maximum loading.

^{3.} Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

arameters	Description	Test Conditions	Min.	(Note 2)	Max.	Min.	(Note 2)	Max.	Units
tpHL		DAAR BRUTARS	MET I	21	40	avo s	21	36	AHO
t _{PLH}	Driver Clock (DRCP) to Bus	(r. ásaid) shoil	iono3)	21	40	0	21	36	ns
t _{PHL}	Due Feeble (DE) to Due	Amin = eight. Die		13	26		13	23	200
t _{PLH}	Bus Enable (BE) to Bus	$C_L(BUS) = 50pF$	BIA	13	26	epario	13	23	ns
tr	Bus Output Rise Time	R _L (BUS): 91Ω to	5	10		7	10	ADEAL TO	ns
tf	Bus Output Fall Time	200Ω to GND	3	6		4	6		
ts	Data laura	And a p	18	Million D.3	of .	15	W WOJ TU	STREE	
th	Data Inputs	Amil' = u	8.0			7.0	100/0 3310		ns
t _{PW}	Clock Pulse Width (HIGH)	HERIN IS	28	Castama	B	25	NU HOH I	ughi,	ns
t _{PLH}	Bus to Receiver Output			18	38		18	35	
t _{PHL}	(Latch Enabled)	110 000.00	The state of the state of	18	38		18	35	ns
t _{PLH}		C ₁ = 50pF		21	38	avenue)	21	35	ns ns
t _{PHL}	Latch Enable to Receiver Output	$R_L = 2.0k\Omega$	T. T. VAL	21	38		21	35	
ts	Bus to Lateb Faceble (BLF)		21			18	BUD WOU	Man!	
th	Bus to Latch Enable (RLE)		7.0			5.0	Spell age	SAME IN	
t _{PLH}	Data to Odd Parity Out	VE	S. In record	21	40	- 1 FDG	21	36	ns
t _{PHL}	(Driver Enabled)			21	40		21	36	IIS
t _{PLH}	Bus to Odd Parity Out	V 8	SE MIN	21	40		21	36	ns
t _{PHL}	(Driver Inhibit)	C _L = 15pF		21	40	zium	21	36	IIS
t _{PLH}	Latch Enable (RLE) to Odd	$R_L = 2.0k\Omega$		21	40	(not)	21	36	ns
t _{PHL}	Parity Output	9/10/ × 8/ V	ignt ILA	21	40	Alpseville	21	36	115
tzH	Output Control to Output			14	28	THE WALLS	14	25	ns
tzL	Cutput Control to Cutput	A 20 = 0		14	28		14	25	115
t _{HZ}	Output Control to Output	C _L = 5.0pF		14	28	ARAH	14	25	200
t _{LZ}	Output Control to Output	$R_L = 2.0k\Omega$		14	28	SHEE	14	25	ns

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics fo the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

4

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

MPR-086

TYPICAL PERFORMANCE CURVES

Bus Output Low Voltage Versus Ambient Temperature

Am2907 Receiver Threshold Variation Versus Ambient Temperature

Am2908
Receiver Threshold Variation
Versus Ambient Temperature

Am2907/08 SWITCHING WAVEFORMS

1. INPUT SET-UP AND HOLD TIMES.

4

Am2907/08 SWITCHING WAVEFORMS AND LOAD TEST CIRCUITS (Cont.)

6. RECEIVER TRI-STATE WAVEFORMS

ODD PARITY OUTPUT WAVEFORMS

LOAD FOR RECEIVER TRI-STATE TEST

LOAD FOR PARITY OUTPUT

TRUTH TABLE

	II	NPUT	s	V0	TO DE	RNAL	BUS	ОИТРИТ	FUNCTION			
Ai	DRCP	BE	RLE	ŌĒ	Di	Qi	Bi	Ri	TUATIO TUATIO			
X	X	Н	X	X	X	X	Н	Х	Driver output disable			
X	X	X	X	Н	X	X	X	Z	Receiver output disable			
X	X	Н	la b	L	×	L	L	Н	Driver output disable and receive dat			
X	X	Н	L	L	X	Н	Н	L	via Bus input			
X	X	X	Н	X	X	NC	X	X	Latch received data			
L	1	X	X	X	L	X	X	X	Load driver register			
Н	1	X	X	X	Н	X	X	X	Load driver register			
X	L	X	X	Х	NC	X	X	X	No driver clock restrictions			
X	Н	X	X	X	NC	X	X	X	No driver clock restrictions			
X	X	i L	X	Х	-L	X	Н	X	Drive Bus			
X	X	L	X	X	Н	X	L	X	Drive bus			

L = LOW

H = HIGH Z = High Impedance X = Don't Care

i = 0, 1, 2, 3

PARITY OUTPUT FUNCTION TABLE

BE	ODD PARITY OUTPUT
L	ODD = $A_0 \oplus A_1 \oplus A_2 \oplus A_3$
Н	$ODD = Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3$

DEFINITION OF FUNCTIONAL TERMS

DRCP Driver Clock Pulse. Clock pulse for the driver register.

BE Bus Enable. When the Bus Enable is LOW, the four drivers are in the high impedance state.

BUS₀, BUS₁, BUS₂, BUS₃ 'The four driver outputs and receiver inputs (data is inverted).

Ro, R1, R2, R3 The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is noninverted.

RLE Receiver Latch Enable, When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.

ODD Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.

OE Output Enable. When the OE input is HIGH, the four three-state receiver outputs are in the high-impedance state.

Metallization and Pad Layout

DIE SIZE 0.088" X 0.103"

The Am2907 can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

MPR-091

Using the Am2907 and Am26S10 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2915A

Quad Three-State Bus Transceiver With Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48mA at 0.5V max.
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12mA
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883
- 3.5V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2915A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches that feature three-state outputs.

This LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48mA at 0.5V maximum. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When BE is HIGH, the driver is disabled. The V_{OH} and V_{OL} of the bus driver are selected for compatibility with standard and Low-Power Schottky inputs.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_i data is stored in the register and when S is HIGH, the B_i data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (RLE) input. When the RLE input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and OE LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\rm OE}$) input. When $\overline{\rm OE}$ is HIGH, the receiver outputs are in the high-impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential	-0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	$-0.5V$ to $+V_{CC}$ max.
DC Input Voltage	-0.5V to +7V
DC Output Current, Into Outputs (Except Bus)	30mA
DC Output Current, Into Bus	100mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Condit	ions (Note 1)		Min.	Тур.	Max.	Units	
VOL	Bus Output LOW Voltage	V _{CC} = MIN.	= 24 mA		(2) fount	0.4	Volts		
VOL	Bus Output LOW Voltage	VCC = IVITIV.	IOL:	= 48mA			0.5	VOITS	
VOH	Bus Output HIGH Voltage	200	COM'L, IOH	= -20mA	SIVI SELIGI (TI	HO) MOD	Sevis C	1/-1	
VOH	Bus Output HIGH Voltage	V _{CC} = MIN.	MIL, IOH = -15mA		2.4		HEITH	Volts	
0	1 48 8		V _O =	= 0.4 V	Isqu	Hecewar C	-200	μА	
10	Bus Leakage Current (High Impedance)	V _{CC} = MAX. Bus enable = 2.4 V	Vo=	= 2.4 V		- Hildens	50		
199	(Trigit Tripedance)	Bus enable - 2.4 v	V _O =	= 4.5 V	gryÖ nivînsi	B eroldend	100		
loss	Bus Leakage Current	V _O = 4.5 V					100	μА	
OFF	(Power OFF)	V _{CC} = 0 V			T. History				
VIH	Receiver Input HIGH Threshold	Bus enable = 2.4 V			2.0			Volts	
VIL	Receiver Input LOW Threshold	Bus enable = 2.4 V	COM	1'L	CONTRACTOR	at knunge v	0.8		
· IL	receiver input Low Tilleshold	Bus enable - 2.4 v	MIL				0.7	Volts	
Isc	Bus Output Short Circuit Current	$V_{CC} = MAX$. $V_{O} = 0 V$	indimixem bile	trialdris 3	-50	-120	-225	mA	

ameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units	
	THE PROPERTY OF THE PARTY OF TH	V _{CC} = MIN. MI		OH = -1.0 mA	2.4	3.4		
VOH	Receiver Output HIGH Voltage	VIN = VIL or VIH	COM'L: I _{OH} = -2.6mA		2.4	3.4	-0.09	Volts
	Output man voltage	V _{CC} = 5.0 V, I _{OH} = -10	00μΑ		3.5			
		VMIN	10	I _{OL} = 4.0mA		0.27	0.4	
VOL	Output LOW Voltage (Except Bus)	V _{CC} = MIN. V _{IN} = V _{IL} or V _{IH}		I _{OL} = 8.0 mA		0.32	0.45	Volts
	(Except Bus)			I _{OL} = 12mA		0.37	0.5	
VIH	Input HIGH Level (Except Bus)	Guaranteed input logica for all inputs		2.0		0 8	Volt	
VIL	Input LOW Level	Guaranteed input logical LOW for all inputs		MIL	TLO I		0.7	Volts
- 11	(Except Bus)			COM'L			0.8	
VI	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -18	mA				-1.2	Volt
	Input LOW Current (Except Bus)	V _{CC} = MAX., V _{IN} = 0.4	41/	BE, RLE			-0.72	mA
IIL	Input LOW Current (Except Bus)	VCC - MAX., VIN - 0.2	+ V	All other inputs	-		-0.36	
ПН	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 2.7	7 V			Luciel	20	μΑ
I ₁	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 7.0	V				100	μА
I _{SC}	Output Short Circuit Current (Except Bus)	V _{CC} = MAX.			-30		-130	mA
Icc	Power Supply Current	V _{CC} = MAX.		THE VIEW		63	95	mA
10	Off-State Output Current	V _{CC} = MAX.		V _O = 2.4 V			50	
.0	(Receiver Outputs)	ACC - MAY.		V _O = 0.4 V			-50	μΑ

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

			A	m2915AX	M	A	n1 30		
Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
tPHL	Driver Clock (DRCP) to Bus			21	36	aroa	21	32	
tPLH	Driver Clock (DRCP) to Bus	C _L (BUS) = 50pF		21	36	district vis	21	32	
tZH, tZL	D - F - 11 / (25)	$R_L(BUS) = 130\Omega$	v + dystile	13	26	D'0 = A	13	23	9 Crais
tHZ, tLZ	Bus Enable (BE) to Bus	VOLUE - NAM DOV VOL	F - 101 (10)	13	21	88-TA	13	18	ns
t _S	SHATURE RANGE	OPERATING TEMP	15	DITER	STOAR	12	UNTUO	TURN	BUS
th	Data Inputs (A or B)	(I see tooldbac) a	8.0			6.0		71.67	ns
t _S	Select Input (S)	= (0)	28			25			
th	Select Input (S)	2 tol	8.0		1000	6.0	Tug Dutput		ns
tpW	Driver Clock (DRCP) Pulse Width (HIGH)	- HO1 J 1803	20		9081	17	tuctuG ad	34	ns
tPLH	Bus to Receiver Output	No. AV		18	33		18	30	
tPHL	(Latch Enable)	C _L = 15pF	IN GOV	18	30	Inettulä	18	27	ns
tPLH	Latch Enable to Receiver Output	$R_L = 2.0 k\Omega$	The Birth	21	33	1, 1, 10, 11, 12	21	30	
tPHL	Later Enable to Neceiver Output	- Y		21	30		21	27	ns
ts	Provide Land 5 - 11 (21.5)		15			13	TO SHOW THE		OT
th	Bus to Latch Enable (RLE)	V-X-C = e)e	6.0		to the of	4.0			ns
tZH, tZL				14	26		14	23	ns
tHZ, tLZ	Output Control to Receiver Output	C _L =5pF, R _L =2.0kΩ	and sug	14	26	11/QL/ 744	14	23	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

MPR-162

SWITCHING TEST CIRCUIT

MPR-163

SWITCHING WAVEFORMS

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the $\overline{\text{BUS}}$ to R combinatorial delay.

FUNCTIONAL TABLE

			INPUT	S			TO DE		BUS	ОИТРИТ	FUNCTION
S	Ai	Bį	DRCP	BE	RLE	ŌĒ	Di	Qi	BUSi	Ri	
X	X	X	X	Н	X	X	X	X	Z	X	Driver output disable
X	X	X	X	X	X	Н	X	X	X	Z	Receiver output disable
X	X	X	X	Н	L	L	X	L	L	Н	Driver output disable and
X	X	Х	X	Н	L	L	X	Н	Н	L	receive data via Bus input
X	X	X	X	X	Н	X	X	NC	X	X	Latch received data
L	L	X	1	X	X	X	L	X	X	X	
L	Н	X	1	X	X	X	Н	X	X	X	Load driver register
Н	X	L	1	Х	X	X	L	X	X	X	Load driver register
Н	X	Н	1	X	X	X	Н	X	X	X	market 1
X	X	X	L	X	X	X	NC	X	X	X	No driver clock restriction
X	X	X	Н	X	X	X	NC	X	X	X	140 driver clock restriction
X	X	X	X	L	X	X	L	X	Н	X	Drive Bus
X	×	×	X	L	×	X	H	×	L	×	Dilive Dus

Metallization and Pad Layout

DIE SIZE .074" X .130"

puts are in the high-impedance state.

DEFINITION OF FUNCTIONAL TERMS

A ₀ , A ₁ , A ₂ , A ₃	The "A" word data input into the two input multiplexer of the driver register.	$\overline{\text{BUS}}_0$, $\overline{\text{BUS}}_1$ $\overline{\text{BUS}}_2$, $\overline{\text{BUS}}_3$	The four driver outputs and receiver inputs (data is inverted).
B ₀ , B ₁ , B ₂ , B ₃	The "B" word data input into the two input multiplexers of the driver register.	R ₀ , R ₁ , R ₂ , R ₃	The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
S	Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.	RLE	Receiver Latch Enable. When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed
DRCP	Driver Clock Pulse. Clock pulse for the driver register.		and will retain the data independent of all other inputs.
BE	Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance	ŌĒ	Output Enable. When the $\overline{\text{OE}}$ input is HIGH, the four three state receiver out-

INTERPACE CONDITIONS

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2915APC	P-24	C	C-1
AM2915ADC	D-24	C	C-1
AM2915ADC-B	D-24	С	B-1
AM2915ADM	D-24	M	C-3
AM2915ADM-B	D-24	M	B-3
AM2915AFM	F-24	M	C-3
AM2915AFM-B	F-24	M	B-3
AM2915AXC AM2915AXM	Dice Dice	C M	Visual inspection to MIL-STD-883
AIVIZ9TJAAIVI	Dice	IVI	Method 2010B.

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.

2. $C = 0^{\circ}C$ to $+70^{\circ}C$, $M = -55^{\circ}C$ to $+125^{\circ}C$.

3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

The Am2915A is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces.

MPR-165

Using the Am2915A and Am8T26 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2916A

Quad Three-State Bus Transceiver With Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48mA at 0.5V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Receiver outputs sink 12mA
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883
- 3.5V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2916A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edgetriggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches. The device also contains a four-bit odd parity checker/generator.

The LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5V maximum. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When $\overline{\text{BE}}$ is HIGH, the driver is disabled.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_i data is stored in the register and when S is HIGH, the B_i data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data in non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (\overline{RLE}) input. When the \overline{RLE} input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the \overline{RLE} input is HIGH, the latch will close and retain the present data regardless of the bus input.

The Am2916A features a built-in four-bit odd parity checker/ generator. The bus enable input (\overline{BE}) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When \overline{BE} is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

Top View

Note: Pin 1 is marked for orientation

MPR-168

MAXIMUM RATINGS (Above which the useful life may be impaired)

MARKET THE CONTROL THE MARKET THE MARKET THE HIRLY DE I	ilpalica)
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential	-0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	$-0.5V$ to $+V_{CC}$ max.
DC Input Voltage	-0.5V to +7V
DC Output Current, Into Outputs (Except Bus)	30mA
DC Output Current, Into Bus	100mA
DC Input Current	-30 m A to +5 0 m A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Condi	tions (Note 1)	Min.	Тур.	Max.	Units	
VOL	Bus Output LOW Voltage	VCC = MIN.	I _{OL} = 24 mA			0.4		
VOL	Sus Odiput LOW Voltage	VCC - WITH.	I _{OL} = 48mA		(balds	0.5	Volts	
VOH	Bus Output HIGH Voltage	15 V MINI	COM'L, IOH = -20mA	-		denti danci	1	
OH	Bus Output HIGH Voltage	V _{CC} = MIN.	MIL, I _{OH} = -15mA	2.4	Miscall Utald		Volts	
		V 844.V	V _O = 0.4 V			-200		
10	Bus Leakage Current (High Impedance)	V _{CC} = MAX. Bus enable = 2.4 \	V _O = 2.4 V	183	50		μА	
	(Tigit Timpedance)	Bus enable = 2.4 V	V _O = 4.5 V	incompletely will	C - Jeff Santani	100	14 11	
IOFF	Bus Leakage Current	V _O = 4.5 V			(balder	100	μА	
	(Power OFF)	$V_{CC} = 0 V$		142	Marine Comme	D of man	μп	
VIH	Receiver Input HIGH Threshold	Bus enable = 2.4 \		2.0	ten F, bed idid		Volts	
VIL	Receiver Input LOW Threshold	Bus enable = 2.4 \	, COM'L	1	TO THE STATE	0.8	Volts	
-12	18 18	Dus criable - 2.4 V	MIL		y Output	0.7		
ISC	Bus Output Short Circuit Current	$V_{CC} = MAX.$ $V_{O} = 0 V$	-50	-120	-225	mA		

Am2916A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

ameters	Description	Test Cond	litions (N	ote 1)	Min.	(Note 2)	Max.	Units	
		V _{CC} = MIN. MIL:		OH = -1.0 mA	2.4	3.4		E D [®]	
VOH	Receiver Output HIGH Voltage	VIN = VIL or VIH	COM'L	: I _{OH} = -2.6mA	2.4	3.4	KOH	Volts	
	Output man voltage	V _{CC} = 5.0 V, I _{OH} = -	100μΑ		3.5				
V _{OH}	Parity	V _{CC} = MIN., I _{OH} = -	660 µA	MIL	2.5	3.4	CHL	Volts	
VOH	Output HIGH Voltage	VIN = VIH or VIL		COM'L	2.7	3.4		VOILS	
		V _{CC} = MIN.		I _{OL} = 4.0mA	and the same	0.27	0.4	gA	
VOL	Output LOW Voltage (Except Bus)	VIN = VII or VIH		I _{OL} = 8.0 mA		0.32	0.45	Volts	
	(Except Bus)			I _{OL} = 12mA	- 1 - 5	0.37	0.5		
VIH	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0	h	-0=	Volt	
VIL	Input LOW Level	Guaranteed input logi	cal LOW	MIL			0.7	Volts	
VIL.	(Except Bus)	for all inputs		COM'L			0.8		
VI	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -	I8mA			4	-1.2	Volt	
L.	Input LOW Current (Except Bus)	V _{CC} = MAX., V _{IN} = (241/	BE, RLE			-0.72	mA	
IIL	input LOW Current (Except Bus)	ACC - MAY., AIN -	J.4 V	All other inputs			-0.36		
I _{IH}	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 2.7 V					20	μА	
Ip.	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 7.0 V					100	μА	
Isc	Output Short Circuit Current	Vcc = MAX.		RECEIVER	-30		-130	mA	
50	(Except Bus)	00		PARITY.	-20	1 9 f	-100	MILES DE STATE DE LE COMP	
Icc	Power Supply Current	VCC = MAX., All Inp	uts = GND			75	110	mA	

SWITCHING CHARACTERISTICS OVER **OPERATING TEMPERATURE RANGE**

arameters	Description	Test Conditions	Min.	Typ.	KM Max.	A Min.	m2916AX Typ.	Max.	Units
tPHL	Description	Test conditions	- Iviiii.	21	36	IVIII.	21	32	Oiiits
tPLH	Driver Clock (DRCP) to Bus	C ₁ (BUS) = 50pF	4	21	36		21	32	ns
tZH, tZL		$R_{\rm I}$ (BUS) = 130 Ω		13	26		13	23	
tHZ, tLZ	Bus Enable (BE) to Bus			13	21	CINAT	13	18	ns
t _s			15	10	CONTRAL WY	12	1 VIOUS 800	Honos p	Model of
th	Data Inputs (A or B)	Vasa = losmost	8.0	PROSY .	5° 01	6.0	HAT S	(CONF	ns
ts	TAKE BOOK TO STATE	VDS.E × .XAMBSV.	28	in anim		25	th Transactor	(J. (SA) AC	LABIOC.
th	Select Inputs (S)	REMPER	8.0		-	6.0	1 1 1 1 1 1	00110	ns
tpW	Clock Pulse Width (HIGH)	(Femal) anchibr	20			17	ibiaCl .		ns
tPLH	Bus to Receiver Output	MH 82 = 101	Inter a	18	33	e-celate	18	30	10.00
tPHL	(Latch Enabled)	Soil - Interest	4	18	30		18	27	ns
tPLH		- PONT, JOH 2009	Della de	21	33	a sister of the	21	30	1.176.37
tPHL	Latch Enable to Receiver Output	with a right street	14 A	21	30		21	27	ns
t _S		V4.0 - pV	15			13			
th	Bus to Latch Enable (RLE)	C _L = 15pF	6.0	8		4.0	A sharpers L	10140	ns
tPLH	A or B Data to Odd Parity Output	$R_L = 2.0 k\Omega$		32	46		32	42	
tPHL	(Driver Enabled)		24.6V	26	40	imes	26	36	ns
tPLH	Bus to Odd Parity Output		A8-0	21	36		21	32	ne
tPHL	(Driver Inhibited, Latch Enabled)	. VI	s. Palcierre	21	36	MY HON	21	32	ns
tPLH	Latch Enable (RLE) to	THIOD I WAR	e Vinaline	21	36	man win	21	32	ns
tPHL	Odd Parity Output	.1181.		21	36		21	32	ns

Notes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test shoul not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS DRIVING OUTPUT DRIVEN INPUT **\$**5kΩ **₹**17kΩ \$ 60Ω 50Ω Гон ГОН O OUTPUT, ODD OL loL Note: Actual current flow direction shown. MPR-170 SWITCHING TEST CIRCUIT

FUNCTION TABLE

FUNCTIO	ОИТРИТ	BUS		INTER TO DE			S	INPUT			
1 010110	Ri	BUSi	Qį	Di	ŌĒ	RLE	BE	DRCP	Bį	Ai	s
er output disable	X	Z	X	X	X	X	Н	X	X	X	X
eiver output disable	Z	X	X	X	Н	X	X	X	X	X	X
er output disable a	Н	L	L	X	L	L	Н	Х	X	Х	X
receive data via Bus input	L	Н	Н	X	L	L	Н	X	Х	X	X
h received data	X	X	NC	X	X	Н	X	X	Х	X	X
	X	X	X	L	X	X	X	1	X	L	L
d driver register	×	X	X	н	X	X	X	1	X	Н	L
i driver register	X	X	X	L	X	X	X	1	L	X	Н
	X	X	X	Н	X	X	X	1	Н	X	Н
driver clock restricti	X	X	X	NC	X	X	X	L	X	X	X
inver clock restricti	×	X	X	NC	X	X	X	Н	×	X	X
e Bus	×	Н	X	L	X	X	L	X	X	X	X
e Dus	X	L	X	Н	X	X	L	×	X	X	X

Metallization and Pad Layout

DIE SIZE .074" X .130"

puts are in the high-impedance state.

DEFINITION OF FUNCTIONAL TERMS

state.

A ₀ , A ₁ , A ₂ , A ₃	The "A" word data input into the two input multiplexer of the driver register.	$\overline{\text{BUS}}_0$, $\overline{\text{BUS}}_1$	The four driver outputs and receiver inputs (data is inverted).
B ₀ , B ₁ , B ₂ , B ₃	The "B" word data input into the two input multiplexers of the driver register.	R ₀ , R ₁ , R ₂ , R ₃	The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
S	Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.	RLE	Receiver Latch Enable. When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed
DRCP	Driver Clock Pulse. Clock pulse for the driver register.		and will retain the data independent of all other inputs.
BE	Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance	ŌĒ	Output Enable. When the \overline{OE} input is

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

	Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
A	AM2916APC	P-24	C	C-1
	AM2916ADC	D-24	C	C-1
	AM2916ADC-B	D-24	С	B-1
	AM2916ADM	D-24	M	C-3
	AM2916ADM-B	D-24	M	B-3
	AM2916AFM	F-24	M	C-3
	AM2916AFM-B	F-24	M	B-3
	AM2916AXC AM2916AXM	Dice Dice	C M	Visual inspection to MIL-STD-883 Method 2010B.

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.

2. $C = 0^{\circ}C$ to $+70^{\circ}C$, $M = -55^{\circ}C$ to $+125^{\circ}C$.

 See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2917A

Quad Three-State Bus Transceiver With Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- D-type register on driver
- Bus driver output can sink 48mA at 0.5V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12mA
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883
- 3.5V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2917A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches, that feature three-state outputs. The device also contains a four-bit odd parity checker/generator.

The LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48mA at 0.5V maximum. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When BE is HIGH, the driver is disabled.

The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_i data into this driver register on the LOW-to-HIGH transition.

Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (\overline{RLE}) input. When the \overline{RLE} input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and \overline{OE} LOW). When the \overline{RLE} input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control (\overline{OE}) input. When \overline{OE} is HIGH, the receiver outputs are in the high-impedance state.

The Am2917A features a built-in four-bit odd parity checker/generator. The bus enable input (\overline{BE}) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When \overline{BE} is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

V_{CC} = Pin 20 GND₁ = Pin 5 GND₂ = Pin 15

MPR-175

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be	e impaired)	
Storage Temperature		-65°C to +150°C
Temperature (Ambient) Under Bias		-55°C to +125°C
Supply Voltage to Ground Potential	RISTICS OVER	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	DINERANGE	-0.5 V to +V _{CC} max.
DC Input Voltage		-0.5 V to +7 V
DC Output Current, Into Outputs (Except BUS)	an us	30 mA
DC Output Current, Into Bus		100 mA
DC Input Current	3007 = (2) (B) (c)	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Condi	tions (Note 1)	Min.	Тур.	Max.	Units
V-	Bus Output LOW Voltage	Mary - Mark	I _{OL} = 24mA			0.4	Volts
VOL	Bus Output LOW Voltage	V _{CC} = MIN.	I _{OL} = 48mA			0.5	VOITS
VOH	Bus Output HIGH Voltage	at	COM'L, $IOH = -20mA$	0.4	Stranger rook		1/-1
чОН	Bus Output HIGH Voltage	V _{CC} = MIN.	MIL, $IOH = -15mA$	2.4	S LIBRES TOR	1 03 m/6	Volts
	132 22 38	V NAN	V _O = 0.4 V	100	Vend back	-200	HIGH
10	Bus Leakage Current (High Impedance)	V _{CC} = MAX. Bus enable = 2.4 V	V _O = 2.4 V		. lbylisin	50	μА
	(mg/ mpedance)	Dus enable – 2.4 v	V _O = 4.5 V		Carlly Car	100	HITT
IOFF	Bus Leakage Current	V _O = 4.5 V			- Involde	100	
-011	(Power OFF)	V _{CC} = 0 V			(3JFI) utde	100	μА
VIH	Receiver Input HIGH Threshold	Bus enable = 2.4 V	1	2.0	TANCES	Chaire	Volts
VIL	Receiver Input LOW Threshold	Bus enable = 2.4 \	, COM'L		C or Joven	0.8	Shirts
*IL	ricceiver input Low Threshold	Bus enable - 2.4 v	MIL			0.7	Volts
Isc	Bus Output Short Circuit Current	V _{CC} = MAX. V _O = 0 V	or the appropriate value of Sold from And the Andre Tone	-50	-120	-225	mA

Am2917A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

rameters	Description	Test Conc			Min.	Typ. (Note 2)	Max.	Units
		V _{CC} = MIN.	MIL: I	OH = -1.0 mA	2.4	3.4		
VOH	Receiver Output HIGH Voltage	VIN = VIL or VIH	COM'L	: I _{OH} = -2.6mA	2.4	3.4	10-	Volts
	Output High Voltage	V _{CC} = 5.0 V, I _{OH} = -	-100 μΑ		3.5	-		
VOH	Parity	V _{CC} = MIN., I _{OH} = -660 μA M		MIL	2.5	3.4	0	Volts
VOH	Output HIGH Voltage	VIN = VIH or VIL		COM'L	2.7	3.4		VOILS
3377		V MINI		I _{OL} = 4.0mA		0.27	0.4	
VOL	Output LOW Voltage (Except Bus)	V _{CC} = MIN. V _{IN} = V _{II} or V _{IH}		I _{OL} = 8.0 mA		0.32	0.45	Volts
	(Except Bus)	AIM - AIT OL AIH		I _{OL} = 12mA	-05	0.37	0.5	-0 sA
V _{IH}	Input HIGH Level (Except Bus)	Guaranteed input logi for all inputs	cal HIGH		2.0			Volt
VIL	Input LOW Level	Guaranteed input logic	cal LOW	MIL			0.7	Volt
- 1L	(Except Bus)	for all inputs		COM'L			0.8	Voit
VI	Input Clamp Voltage (Except Bus)	V _{CC} = MIN., I _{IN} = -1	18mA				1.2	Volt
L. STERLE OF	Input LOW Current (Except Bus)	VCC = MAX., VIN = (2.4.1/	BE, RLE			-0.72	0
IIL	Input Low Current (Except Bus)	VCC - MAX., VIN - C	J.4 V	All other inputs			-0.36	mA
I _{IH}	Input HIGH Current (Except Bus)	VCC = MAX., VIN = 2	2.7 V				20	μА
I ₁	Input HIGH Current (Except Bus)	V _{CC} = MAX., V _{IN} = 7	7.0 V				100	μА
Isc	Output Short Circuit Current	V _{CC} = MAX.		RECEIVER	-30		-130	mA
	(Except Bus)	LICHNA ACKO		PARITY	-20		-100	2.184
Icc	Power Supply Current	V _{CC} = MAX.				63	95	mA
10	Off-State Output Current	VCC = MAX.	ilsami ed	V _O = 2.4 V	util dalitiu	susciAl 21	50	μА
9314	(Receiver Outputs)			V _O = 0.4 V			-50	µA.

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

01 -11/11/11	NO ILIVII LINATONE NAMEL			-		_	THE RESERVE OF THE PARTY OF THE	THE PERSON NAMED IN	106110 V
V (+ n) V				m2917AX Typ.			m2917AX Typ.		Juga
arameters	Description	Test Conditions	Min.	(Note 2)	Max.	Min.	(Note 2)	Max.	Unit
tPHL	D: 01 1 (DD0D) - D		NE IT	21	36		21	32	hatne
tPLH	Driver Clock (DRCP) to Bus	C _L (BUS) = 50pF		21	36		21	32	ns
tZH, tZL	P. 5-11 (DE) - 2	R _L BUS) = 130Ω		13	26		13	23	
tHZ, tLZ	Bus Enable (BE) to Bus			13	21	UHBIG	13	18	ns
ts			15	:09	en enwire	12	o vique me	ribass on	foliowi
th	A Data Inputs	VecMAX = 5.25V	8.0	Work	200	6.0	AT III	MO31 51	ns
tpW	Clock Pulse Width (HIGH)	V VCC MAX. = 5.50V	20			17	A.		ns
tPLH	Bus to Receiver Output	PERATING TEMPER	WHOL	18	33	PARIATE	18	30	INIT D
tPHL	(Latch Enabled)	(trates) enoithmot	786T	18	30	noiseir	18	27	ns
tPLH	Latch Enable to Receiver Output	10L - 24mA		21	33		21	30	
tPHL	Laten Enable to Receiver Output	/m8h = _jgj	F125147	21	30	P. GOLDON	21	27	ns
t _S		100 HD 20 tu	15			13			
th	Bus to Latch Enable (RLE)	C _L = 15pF	6.0			4.0	THE WHITE	0000	ns
tPLH	A Data to Odd Parity Out	$R_L = 2.0 k\Omega$		32	46		32	42	
tPHL	(Driver Enabled)	VAS = 5V VAS	100	26	40	10011	26	36	ns
tPLH	Bus to Odd Parity Out	A97= 0A		21	36		21	32	
tPHL	(Driver Inhibit)		V8.0 = c	21	36	termin	21	32	ns
tPLH	Latch Enable (RLE) to Odd		V0 - 00	21	36		21	32	110
tPHL	Parity Output	VAS	etdune z	21	36	at Walk	21	32	ns
t _{ZH} , t _{ZL}	Output Control to Output	J1000		14	26		14	23	
tHZ, tLZ	Output Control to Output	C _L =5pF, R _L =2.0kΩ	Inquite a	14	26	ana wa.	14	23	ns

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical limits are at $V_{CC} = 5.0 \,\text{V}$, 25° C ambient and maximum loading.

^{3.} Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS DRIVEN INPUT DRIVING OUTPUT BUS **₹** 17kΩ **\$**5kΩ **₹** 60Ω ₹ 50Ω IL ГОН IL ГОН O OUTPUT, ODD INPUT O-OL IOL

Note: Actual current flow direction shown.

MPR-178

SWITCHING TEST CIRCUIT

SWITCHING WAVEFORMS

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the BUS to R combinatorial delay.

FUNCTION TABLE

FUNCTION	ОИТРИТ	BUS		TO DE		s	IPUT	IN	
La La La La	Ri	BUSi	Qi	Di	ŌĒ	RLE	BE	DRCP	Ai
Driver output disable	X	Z	X	X	X	X	Н	X	Χ
Receiver output disable	Z	X	X	X	Н	Х	X	X	Χ
Driver output disable and	Н	L	L	X	L	L	Н	X	X
receive data via Bus input	L	Н	Н	X	L	L	Н	X	Χ
Latch received data	X	X	·NC	X	X	Н	X	Х	X
Load driver register	X	X	X	L	X	Х	X	1	L
Load driver register	X	X	X	Н	X	X	X	1	Н
No driver clock restrictions	X	X	X	NC	Х	X	X	L	Χ
INO driver clock restrictions	X	X	X	NC	X	X	X	Н	X
D: D	X	Н	X	L	X	X	L	X	X
Drive Bus	X	L	X	Н	X	X	L	×	X

Metallization and Pad Layout

DIE SIZE .074" X .130"

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2917APC	P-20	С	C-1
AM2917ADC	D-20	C	C-1
AM2917ADC-B	D-20	C	B-1
AM2917ADM	D-20	M	C-3
AM2917ADM-B	D-20	M	B-3
AM2917AFM	F-20	M	C-3
AM2917AFM-B	F-20	M	B-3
AM2917AXC AM2917AXM	Dice Dice	C M	Visual inspection to MIL-STD-883 Method 2010B.

Notes:

- P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline.
 Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
- 2. $C = 0^{\circ}C$ to $+70^{\circ}C$, $M = -55^{\circ}C$ to $+125^{\circ}C$.
- See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

DEFINITION OF FUNCTIONAL TERMS

DRCP Driver Clock Pulse. Clock pulse for the driver register.

BE Bus Enable. When the Bus Enable is LOW, the four drivers are in the high impedance state.

 BUS_0 , BUS_1 , BUS_2 , BUS_3 The four driver outputs and receiver inputs (data is inverted).

 R_0 , R_1 , R_2 , R_3 The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.

 $\overline{\text{RLE}}$ Receiver Latch Enable. When $\overline{\text{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When $\overline{\text{RLE}}$ is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.

ODD Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.

 $\overline{\text{OE}}$ Output Enable. When the $\overline{\text{OE}}$ input is HIGH, the four three-state receiver outputs are in the high-impedance state.

PARITY OUTPUT FUNCTION TABLE

BE	ODD PARITY OUTPUT
L	ODD = $A_0 \oplus A_1 \oplus A_2 \oplus A_3$
Н	$ODD = Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3$

The Am2917A can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

MPR-181

Using the Am2917A and Am8T26 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am3212·Am8212

Eight-Bit Input/Output Port

Distinctive Characteristics

- Fully parallel, 8-bit data register and buffer replacing latches, multiplexers and buffers needed in microprocessor systems.
- 4.0V output high voltage for direct interface to MOS microprocessors, such as the Am9080A family.
- Input load current 250μA max.
- Reduces system package count

- Available for operation over both commercial and military temperature ranges.
- Advanced Schottky processing with 100% reliability assurance testing in compliance with MIL-STD-883.
- Service request flip-flop for interrupt generation
- Three-state outputs sink 15mA
- Asynchronous register clear with clock over-ride

FUNCTIONAL DESCRIPTION

All of the principal peripheral and input/output functions of a Microcomputer System can be implemented with the Am3212 • Am8212. The Am3212 • Am8212 input/output port consists of an 8-latch with 3-state output buffers along with control and device selection logic, which can be used to implement latches, gated buffers or multiplexers.

LOGIC DIAGRAM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-424

PIN DEFINITION

DI1-DI8	DATA IN
DO ₁ -DO ₈	DATA OUT
$\overline{DS_1} - DS_2$	DEVICE SELECT
MD	MODE
STB	STROBE
ĪNT	INTERRUPT (ACTIVE LOW)
CLR	CLEAR (ACTIVE LOW)

ORDERING INFORMATION

Package Type	Temperature Range	Order Number		
Hermetic DIP	-55°C to +125°C	AM8212DM		
Hermetic DIP	0°C to +70°C	D8212		
Molded DIP	0°C to +70°C	P8212		
Dice	0°C to +70°C	AM8212XC		
Hermetic DIP	0°C to +70°C	D3212		
Hermetic DIP	-55°C to +125°C	MD3212		
Molded DIP	0°C to +70°C	P3212		

FUNCTIONAL DESCRIPTION (Cont'd)

Data Latch

The 8 flip-flops that make up the data latch are of a "D" type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock (C) returns low.

The data latch is cleared by an asynchronous reset input (CLR). (Note: Clock (C) Overrides Reset (CLR)).

Output Buffer

The outputs of the data latch (Q) are connected to 3-state, non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the buffer to transmit the data from the outputs of the data latch (Q) or disables the buffer, forcing the output into a high impedance state. (3-state). This high-impedance state allows the Am3212 • Am8212 to be connected directly onto the microprocessor bi-directional data bus.

Control Logic

The Am3212 • Am8212 has control inputs DS₁, DS₂, MD And STB. These inputs are used to control device selection, data latching, output buffer state and service request flip-flop.

DS₁, DS₂ (Device Select)

These 2 inputs are used for device selection. When \overline{DS}_1 is low and DS_2 is high $(\overline{DS}_1 \cdot DS_2)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

MD (Mode)

This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.

When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{DS}_1 \cdot DS_2$).

When MD is low (input mode) the output buffer state is determined by the device selection logic $(\overline{DS}_1 \cdot DS_2)$ and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

This input is used as the clock (C) to the data latch for the input mode MD = 0) and to synchronously reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The SR flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the CLR input (active low). When the (SR) flip-flop is set it is in the non-interrupting state.

The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{\mbox{DS}}_1$ · DS₂). The output of the "NOR" gate ($\overline{\mbox{NNT}}$) is active low (interrupting state) for connection to active low input priority generating circuits.

TRUTH TABLE

STB MD		$\overline{DS_1} - DS_2$	Data Out Equals		
0	0	0	Three-State		
1	0	0	Three-State		
0	1	0	Data Latch		
1	1	0	Data Latch		
0	0	1	Data Latch		
1	0	1	Data In		
0	1	1	Data In		
1	1	1	Data In		

CLR — Resets Data Latch
- Sets SR Flip-Flop (no effect on Output Buffer)
* Internal SR Flip-Flop

CLR	$\overline{DS_1} - DS_2$	STB	SR*	INT
0	0	0	1	1
0	1	0	1	0
1	1	7	0	0
1	1	0	1	0
1	0	0	1	1
1	1	~	1	0
			Le la la	Lated
		sterile su		

Am3212/Am8212

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage 13 High South and to senior and solutions	-0.5 V to +7.0 V
Output Voltage	-0.5V to +7.0N
Input Voltages and successo and labour successor along at QN as	nesses the periods a light at IOF maps also set = 41.0 V to +5.5 V
Output Current (Each Output)	well amudes (3) stacks all 125mA

FLECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

P8212, D8212, P3212, D3212 (COM'L) Am8212DM, MD3212 (MIL)

 $T_{\Delta} = 0^{\circ} C \text{ to } +70^{\circ} C$ $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$ $V_{CC} = 5.0V \pm 5\%$ VCC = 5.0V ± 10%

DC CHARACTERISTICS

arameters	Description	Test Cond	itions	Min.	Typ. (Note 1)	Max.	Units	
1 _F	Input Load Current ACK, DS ₂ , CR, DI ₁ – DI ₈ Inputs	V _F = 0.45V	ore a high rite	na output i Hinpedance	er, toreing te). This big	-0.25	mA	
1 _F	Input Load Current MD Input	V _F = 0.45V	renaim aut atua	Ambalin par	pennos es es	-0.75	mA	
1 _F	Input Load Current DS ₁ Input	V _F = 0.45V			SDU 57.812.58	-1.0	mA	
IR	Input Leakage Current ACK, DS, CR, DI ₁ - DI ₈ Inputs	V _R = 5.25V				10	μА	
IR	Input Leakage Current MO Input	V _R = 5.25V	USA, DS2, MD	stugni, lenz	(212 has con	30	μА	
IR	Input Leakage Current DS ₁ Input	V _R = 5.25V	device selection,	10/15/100 05	buts are used	40	μΑ	
	Least Fernand Valtage Classes	I _C = -5.0mA	COM'L	powraz bas	Buffler state	-1.0	Volts	
VC	Input Forward Voltage Clamp		MIL		A Comment	-1.2		
V.	Input LOW Voltage	to rugni gairiev	com'L			0.85	Volts	
VIL	Input LOW Voltage	date is con-leave	MIL		TOTAGE TOT DE	0.80	VOITS	
VIH	Input HIGH Voltage	ger a later tation	one in the parameter	2.0	1200		Volts	
VOL	Output LOW Voltage	I _{OL} = 15mA	SUPPLIES STD. OFFE	in a street	andsover il	0.45	Volts	
	20100 00 20100	1.0-1	COM'L	3.65	4.0			
VOH	Output HIGH Voltage	H Output HIGH Voltage	I _{OH} = -1.0mA	MIL	3.3	4.0		Volts
		I _{OH} = -0.5mA	MIL	3.4	4.0			
I _{SC}	Short Circuit Output Current	V _O = 0V		-15		-75	mA	
l ₁₀ l	Output Leakage Current High Impedance	V _O = 0.45V/5.25V	/			20	μΑ	
1cc	Power Supply Current	Note 2	1 WELL		90	130	mA	

AC CHARACTERISTICS (Note 3)

arameters	Description		Min.	Typ. (Note 1)	Max.	Units
t _{pw}	Pulse Width	1000	30	8		ns
t _{pd}	Data to Output Delay	0001.030		12	30	ns
t _{we}	Write Enable to Output Delay	TOPES ESTED		18	40	ns
t _{set}	Data Set-up Time	WINDS	15	1.4	4	ns
th	Data Hold Time	OI ESEU	20			ns
t _r	Reset to Output Delay	ni essu		18	40	ns
t _S	Set to Output Delay		Date Latell	15	30	ns
t _e	Output Enable/Disable Time	Date of Southern to Share on	gor 1 64 7	14	45	ns
t _C	Clear to Output Delay		1	25	55	ns

CAPACITANCE (Note 4)

F = 1.0MHz, VBIAS = 2.5 V, VCC = +5.0 V, TA = 25°C

Parameters	Description	Тур.	Max.	Units
CIN	DS ₁ MD Input Capacitance	9.0	12	pF
CIN	DS ₂ , CK, ACK, DI ₁ -DI ₈ Input Capacitance	5.0	9.0	pF
COUT	DO ₁ – DO ₈ Output Capacitance	8.0	12	pF

- Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
 2. CLR = STB = HIGH; DS₁ = DS₂ = MD = LOW; all data inputs are gound, all data outputs are open.
 3. Conditions of Test: a) Input pulse amplitude = 2.5V
 b) Input rise and fall times 5.0ns

 - c) Between 1.0V and 2.0V measurements made at 1.5V with 15mA and 30pF Test Load. 4. This parameter is sampled and not 100% tested.

\$ 300Ω

TEST LOAD (15mA and 30pF)

*Including Jig and Probe Capacitance. LIC-425

TYPICAL APPLICATIONS OF THE Am8212

GATED BUFFER (3-STATE)

By tying the mode signal low and the strobe input high, the data latch is acting as a straight through gate. The output buffers are then enabled from the device selection logic $\overline{\text{DS}}_1$ and DS_2 .

When the device selection logic is false, the outputs are 3-state.

When the device selection logic is true, the input data from the system is directly transferred to the output.

Bi-Directional Bus Driver

Two Am3212 • Am8212's wired back-to back can be used as a symmetrical drive, bi-directional bus driver. The devices are controlled by the data bus input control which is connected to $\overline{\rm DS}_1$ on the first Am3212 • Am8212 and to DS2 on the second. While one device is active, and acting as a straight through buffer the other is in its 3-state mode.

Interrupting Input Port

The Am3212 • Am8212 accepts a strobe from the system input source, which in turn clears the service request flip-flop and interrupts the processor. The processor then goes through a service routine, identifies the port, and causes the device selection logic to go true — enabling the system input data onto the data bus.

TYPICAL APPLICATIONS OF THE Am8212 (Cont'd)

Interrupt Instruction Port

The Am3212 ● Am8212 can be used to gate the interrupt instruction, normally RESTART instructions, onto the data bus. The device is enabled from the interrupt acknowledge signal from the microprocessor and from a port selection signal. This signal is normally tied to ground. (DS1 could be used to multiplex a variety of interrupt instruction ports onto a common bus).

Output Port (With Hand-Shaking)

The Am3212 • Am8212 is used to transmit data from the data bus to a system output. The output strobe could be a hand-shaking signal such as "reception of data" from the device that the system is outputting to. It in turn, can interrupt the system signifying the reception of date. The selection of the port comes from the device selection logic. (DS₁ · DS₂).

Am9080A Status Latch

The input to the Am3212 • Am8212 latch comes directly from the Am9080A data bus. Timing shows that when the SYNC signal is true $(\overline{DS}_1 \text{ input})$, and $\phi 1$ is true,

(DS₁ input) then the status data will be latched into the Am3212 ● Am8212. The mode signal is tied high so that the output on the latch is active and evabled all the time.

Am3216 · Am3226 · Am8216 · Am8226

Four-Bit Parallel Bidirectional Bus Driver

Distinctive Characteristics

- Data bus buffer driver for 8080 type CPU's
- Low input load current 0.25mA maximum
- High output drive capability for driving system data bus — 50mA at 0.5V
- 100% reliability assurance testing in compliance with MII-STD-883
- Am3216 and Am8216 have non-inverting outputs
- Output high voltage compatible with direct interface to MOS
- Three-state outputs
- Advanced Schottky processing
- Available in military and commercial temperature range
- Am3226 and Am8226 have inverting outputs

FUNCTIONAL DESCRIPTION

The Am3216, Am3226, Am8216 and Am8226 are four-bit, bi-directional bus drivers for use in bus oriented applications. The non-inverting Am3216 and Am8216, and inverting Am3226 and Am8226 drivers are provided for flexibility in system design.

Each buffered line of the four bit driver consists of two separate buffers that are three-state to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this side is used to interface to the system side components such as memories, I/O, etc., because its interface is TTL compatible and it has high drive (50mA). On the other side of the driver the inputs and outputs are separated to provide maximum flexibility. Of course, they can be tied

together so that the driver can be used to buffer a true bi-directional bus. The DO outputs on this side of the driver have a special high voltage output drive capability so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity.

The $\overline{\text{CS}}$ input is a device enable. When it is "high" the output drivers are all forced to their high-impedance state. When it is a "LOW" the device is enabled and the direction of the data flow is determined by the $\overline{\text{DIEN}}$ input.

The DIEN input controls the direction of data flow which is accomplished by forcing one of the pair of buffers into its high impedance state and allowing the other to transmit its data. A simple two gate circuit is used for this function.

Am3216/3226/8216/8226

MAXIMUM RATINGS (Above which the useful life may be impaired)

Temperature (Ambient) Under Bias	−55°C to +125°C
Storage Temperature	−65°C to +150°C
AN Output and Supply Voltages	-0.5 V to +7.0 V
All Input Voltages	-1.0 V to +5.5 V
Output Currents	125 mA

Am3216, Am3226, Am8216 AND Am8226 MILITARY ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (-55°C to +125°C) and 4 SEmA

The following conditions apply unless otherwise specified:

MD3216, MD8216, MD3226, MD8226 (MIL) $T_A = -55^{\circ} \text{C to } + 125^{\circ} \text{C}$

V_{CC} = 5.0V ± 10%

DC CHARACTERISTICS

rameter	s Description		Test Cor	nditions	Min.	Typ. (Note 1)	Max.	Units
I _{F1}	Input Load Current DIEN, CS	Winumini saloa	V _F = 0.45	MOT TO DUTTO A STE	CALEFOR	-0.15	-0.5	mA
I _{F2}	Input Load Current All Other I	nputs	V _F = 0.45	animal satisfaction at	ed and	-0.08	-0.25	mA
I _{R1}	Input Leakage Current DIEN, C	S	V _R = 5.5V	d toetilb aveirlos at stat	a-nervis.	eta tsult m	80	μΑ
I _{R2}	Input Leakage Current DI Input	ts a solveb and	V _R = 5.5V	to edit to only encists of	erlitation	ectional c	40	μΑ
VC	Input Forward Voltage Clamp	I off you bening	I _C = -5.0mA	DELL'EUR PRODUCTION AND AND AND AND AND AND AND AND AND AN	MI BALL	SHE TENTO	-1.2	Volts
V	Input LOW Voltage	Am3216, Am8216	ortage is The DIEN	, erd., because its into	0\1 ,29 0\1 ,29	sortem sa	0.95	Volts
VIL	Input LOW Voltage	Am3226, Am8226		equi ens atuqtuo bris	atuqri	river the	0.9	VOITS
VIH	Input HIGH Voltage				2.0			Volts
	Output Leakage Current	DO	V 0.45\//5.5\/				20	
10	(Three-State)	DB	V _O = 0.45V/5.5V	218 * Aura210	Child		100	μΑ
	Power Supply Current	Am3216, Am8216				95	130	mA
ICC	rower supply current	Am3226, Am8226				85	120	MA
V _{OL1}	Output LOW Voltage	-4-1-010	DO Outputs I _{OL} = 15mA DB Outputs I _{OL} = 25mA			0.3	0.45	Volts
V _{OL2}	Output LOW Voltage	130-1-10	DB Outputs IOL = 45mA	S-		0.5	0.6	Volts
V _{OH1}	Output HIGH Voltage		DO Outputs	I _{OH} = -0.5mA	3.4	4.0		Volts
OHI	Output High Voltage	010	DO Outputs	I _{OH} = -2.0mA	2.4			VOIL
V _{OH2}	Output HIGH Voltage	3	DB Outputs I _{OH} = -5.0n	nA	2.4	3.0		Volts
Ios	Output Short Circuit Current		DO Outputs ≅ 0V, V _{CC} =	= 5.0V	-15	-35	-65	mA
.05	Catpat onort official Guirent		DB Outputs = 0V, V _{CC} =	5.0V	-30	-75	-120	IIIA

AC CHARACTERISTICS

arameters	Description		Test Conditions	Min.	Typ. (Note 1)	Max.	Units
tPD1	Input to Output Delay DO Outputs		$C_L = 30pF, R_1 = 300\Omega, R_2 = 600\Omega$		15	25	ns
****	Input to Output Delay DB Outputs	Am3216, Am8216	0 = 200=5 D = 200 D = 1000	300	20	33	
tPD2	input to Output Delay DB Outputs	Am3226, Am8226	$C_L = 300 pF, R_1 = 90\Omega, R_2 = 180\Omega$	0 -125	16	25	ns
	TOTAL RING WILL BE THE REST OF THE PERSON OF	Am3216	Note 3	0,410,C	45	75	mall:
tE	Output Enable Time	Am8216	Note 2	1.017	45	75	ns
		Am3226, Am8226	Note 3	0.024	35	62	agnisela.
	Output Disable Time	Am3216, Am8216	P8216 P8226	D°OV+C	20	40	bloM
tD	Output Disable Time	Am3226, Am8226	Note 4	D-08+0	16	38	ns

Am3216, Am3226, Am8216 AND Am8226 COMMERCIAL ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (0°C to +70°C)

The following conditions apply unless otherwise specified:

The following conditions apply unless otherwise specified: D3216, D8216, D3226, D8226, P3216, P3226, P3226, P3226, P3226, P3226, P3226 (COM'L) $T_A = 0^{\circ} C \text{ to } +70^{\circ} C \text{ V}_{CC} = 5.0 \text{V} \pm 5\%$

DC CHARACTERISTICS

arameters	Descript	ion 18.14905 - 10.049	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
I _{F1}	Input Load Current DIEN, CS	March III - Couppe Hy - Su Moving Color 5,005 Per - Su	V _F = 0.45	A ROS	-0.15	-0.5	mA
I _{F2}	Input Load Current All Other In	puts	V _F = 0.45	real bulge	-0.08	-0.25	mA
I _{R1}	Input Leakage Current DIEN, CS		V _R = 5.25V			20	μА
I _{R2}	Input Leakage Current DI Inputs	AVEFORVS	V _R = 5.25V			10	μΑ
VC	Input Forward Voltage Clamp		I _C = -5.0mA	id to the		-1.0	Volts
VIL	Input LOW Voltage					0.95	Volts
VIH	Input HIGH Voltage	III a Yes Latel	No. of the second	2.0			Volts
D = 1	Output Leakge Current	DO	V _O = 0.45V/5.5V			20	
101	(Three-State)	DB				100	μΑ
	Device Council Council	Am3216, Am8216		9	95	130	
Icc	Power Supply Current	Am3226, Am8226	TV81		85	120	mA
V _{OL1}	Output LOW Voltage		DB Outputs I _{OL} = 15mA DB Outputs IOL = 25mA		0.3	0.45	Volts
V -	Outrout LOW Valence	Am3216, Am8216	DB Outputs IOL = 55mA		0.5	0.6	Male
V _{OL2}	Output LOW Voltage	Am3226, Am8226	DB Outputs IOL = 50mA	ST. SELECTION	0.5	0.6	Volts
V _{OH1}	Output HIGH Voltage	\/\	DO Outputs I _{OH} = -1.0mA COM'L	3.65	4.0		Volts
V _{OH2}	Output HIGH Voltage		DB Outputs I _{OH} = -10mA	2.4	3.0		Volts
(246-24)	Output Short Circuit Current		DO Outputs ≅ 0V	-15	-35	-65	^
los	Gatpat Short Circuit Carrent		DB Outputs V _{CC} = 5.0V	-30	-75	-120	mA

AC CHARACTERISTICS

arameters	Description	VOITAGE	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
tPD1	Input to Output Delay DO Outputs		$C_L = 30pF, R_1 = 300\Omega, R_2 = 600\Omega$	P = 1	15	25	ns
****	Input to Output Delay DB Outputs	Am3216, Am8216	- C _L = 300pF, R ₁ = 90Ω, R ₂ = 180Ω -		20	30	=
tPD2	Imput to Output Delay DB Outputs	Am3226, Am8226			16	25	ns
		Am3216	Note 3		45	65	
tE	Output Enable Time	Am8216	Note 2		45	65	ns
		Am3226, Am8226	Note 3		35	54	
tD	Output Disable Time	- X.Z	Note 4		20	35	ns

TEST CONDITIONS

Input pulse amplitude of 2.5 V. Input rise and fall times of 5.0 ns between 1.0 and 2.0 volts. Output loading is 5.0 mA and 10 pF. Speed measurements are made at 1.5V levels.

TEST LOAD CIRCUIT

Am3216/3226/8216/8226

CAPACITANCE (Note 5)

CAPACITANO	E (Note 5)			Typ.		
Parameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units
CIN	Input Capacitance	V - 25V V - 50V	orhenvisi	4.0	8.0	pF
C _{OUT1}	Output Capacitance	$V_{BIAS} = 2.5V, V_{CC} = 5.0V$ $T_{\Delta} = 25^{\circ}C, f = 1.0MHz$	85554,015	6.0	10	pF
C _{OUT2}	Output Capacitance	TA - 25 C, 1 - 1.0MH2		13	18	pF

- Notes: 1. Typical values are for T_A = 25°C, V_{CC} = 5.0 V.

 2. DO outputs, C_L = 30 pF, R₁ = 300/10 kΩ, R₂ = 180/1.0 kΩ; DB outputs, C_L = 300 pF, R₁ = 90/10 kΩ, R₂ = 180/1.0 kΩ.

 3. DO outputs, C_L = 30 pF, R₁ = 300/10 kΩ, R₂ = 600/1.0 kΩ; DB outputs, C_L = 300 pF, R₁ = 90/10 kΩ, R₂ = 180/1.0 kΩ.

 4. DO outputs, C_L = 5.0 pF, R₁ = 300/10 kΩ, R₂ = 600/1.0 kΩ; DB outputs, C_L = 5.0 pF, R₁ = 90/10 kΩ, R₂ = 180/1.0 kΩ.

 5. This parameter is periodically sampled and not 100% tested.

SWITCHING WAVEFORMS

FUNCTION TABLE

			82	16	82	26
DIEN	CS		DB	DO	DB	DO
L	L	DI ⇒ DB	DI	Z	DI	Z
Н	L	DB ⇒ DO	Z	DB	Z	DB
L	Н		Z	Z	Z	Z
Н	Н		Z	Z	Z	Z

H = HIGH

L = LOW

LIC-444

LIC-443

TYPICAL APPLICATION

MEMORY AND I/O INTERFACE TO A BI-DIRECTIONAL BUS

Am3448A

IEEE-488 Quad Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

- Four independent driver/receiver pairs
- Three-state outputs
- High impedance inputs
- Receiver hysteresis 600mV (Typ.)
- Fast Propagation Times 50-20ns (Typ.)
- TTL compatible receiver outputs
- Single +5 volt supply
- Open collector driver output option with internal passive pull up
- Power up/power down protection (No invalid information transmitted to bus)
- No bus loading when power is removed from device
- Required termination characteristics provided
- Advanced Schottky processing
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am3448A is a quad bidirectional transceiver meeting the requirement of IEEE-488 standard digital interface for programmable instrumentation for the driver, receiver, and composite device load. One pull-up enable input is provided for each pair of transceivers which controls the operating mode of the driver outputs as either an open collector or active pull-up configuration.

The receivers feature input hysteresis for improved noise immunity in system applications. The device bus (receiver input) changes from standard bus loading to a high impedance load when power is removed. In addition no spurious noise is generated on the bus during power-up or power-down.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	0°C to +70°C	MC3448AL
Molded DIP	0°C to +70°C	MC3448AP
Dice	0°C to +70°C	AM3448AX

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

ABSOLUTE MAXIMUM RATINGS above which the useful life may be impaired

Ctavasa Tamparatura		-65°C to +150°C
Storage Temperature	sortelled Twee Conditions	-03 C to +130 C
Supply Voltage	Outquit Lew to High	7.0V
Input Voltage		5.5V
Driver Output Current	THE TANK AND THE TANK OF THE T	150mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

 $T_A = 0$ °C to 70°C V_{CC} MIN. = 4.75V V_{CC} MAX. = 5.25V

DC ELECTRICAL CHARACTERISTICS over operating temperature range

arameters	Description	Test Co	nditions	Min.	Typ. (Note 1)	Max.	Units
Bus Char	acteristics eldana qual	Open Columber to Pu	(c. fi/) sna ot al	(188) E - 1	SERIES TOWN	IIII I	314
V _(BUS)	B. W.II.	Bus Pin Open, V _{I(S/R)} =	0.8V	2.75	-	3.7	1/-14-
V _{IC(BUS)}	Bus Voltage	$I_{(BUS)} = -12mA$		-	-	-1.5	Volts
		5.0V ≤ V _(BUS) ≤ 5.5V		0.7	12 2 11	2.5	Fellin
I _(BUS)	Bus Current	$V_{(BUS)} = 0.5V$		-1.3	-	-3.2	mA
		$V_{CC} = 0V, 0V \leqslant V_{(BUS)}$	≤ 2.75V	-	-	0.04	
Driver Ch	aracteristics						
V _{IC(D)}	Driver Input Clamp Voltage	$V_{I(S/R)} = 2.0V, I_{IC(D)} =$	-18mA	-	-	-1.5	Volts
V _{OH(D)}	Driver Output Voltage - High Logic State	$V_{I(S/R)} = 2.0V, V_{IH(D)} = V_{IH(E)} = 2.0V, I_{OH} = -5$	2.0V, 2mA	2.5	- 1	1-4	Volts
V _{OL(D)}	Driver Output Voltage - Low Logic State	$V_{I(S/R)} = 2.0V, I_{OL(D)} =$	48mA	90-19	-	0.5	Volt
I _{OS(D)}	Output Short Circuit Current	$V_{I(S/R)} = 2.0V, V_{IH(D)} = V_{IH(E)} = 2.0V$	2.0V	-30	-	-120	mA
V _{IH(D)}	Driver Input Voltage - High Logic State	$V_{I(S/R)} = 2.0V$	9	2.0	-	-	Volt
V _{IL(D)}	Driver Input Voltage - Low Logic State	V _{I(S/R)} = 2.0V	100 \$	-4	-	0.8	Volt
I _{I(D)}			$0.5 \le V_{I(D)} \le 2.7V$	-200	-	40	
I _{IB(D)}	Driver Input Current - Data Pins	$V_{I(S/R)} = V_{I(E)} = 2.0V$	$V_{I(D)} = 5.5V$	PN	-	200	μΑ
Receiver	Characteristics		2 -				
V _{HYS(R)}	Receiver Input Hysteresis	$V_{I(S/R)} = 0.8V$	E T	400	600		mV
V _{ILH(R)}		$V_{I(S/R)} = 0.8V$, Low to Hi	gh	/-	1.6	1.8	14-11
V _{IHL(R)}	Receiver Input Threshold	$V_{I(S/R)} = 0.8V$, High to L	ow	0.8	1.0	42	Volt
V _{OH(R)}	Receiver Output Voltage - High Logic State	$V_{I(S/R)} = 0.8V, I_{OH(R)} = V_{(BUS)} = 2.0V$	-800μΑ,	2.7	- 1	- 4	Volt
V _{OL(R)}	Receiver Output Voltage - Low Logic State	$V_{I(S/R)} = 0.8V, I_{OL(R)} =$	16mA, V _(BUS) = 0.8V	nd bus	sic a - buic	0.5	Volt
I _{OS(R)}	Receiver Output Short Circuit Current	$V_{I(S/R)} = 0.8V, V_{(BUS)} =$	2.0V	-15	-	-75	mA
Enable, S	end/Receive Characteristics						
I _{I(S/R)}		$0.5 \le V_{I(S/R)} \le 2.7V$		-100	_	20	
I _{IB(S/R)}	Input Current - Send/Receive	$V_{I(S/R)} = 5.5V$	Yeld integral tree!	-	_	100	μΑ
I _{I(E)}		0.5 ≤ V _{I(E)} ≤ 2.7V	9 1 7	-200	-	20	
I _{IB(E)}	Input Current - Enable	$V_{I(E)} = 5.5V$	08.6	1	A -s	100	μΑ
Power Su	pply Current	ef			1 1 2	(m)	
ICCL	The Control of the Was No.	Listening Mode - All Rec	eivers On	1-10	63	85	SO.AUH
Іссн	Power Supply Current	Talking Mode - All Driver	s On	2 1	106	125	mA

Note 1. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading.

LIC-449

LIC-451

SWITCHING CHARACTERISTICS (V_{CC} = 5.0V, T_A = 25°C unless otherwise noted)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
t _{PLH(D)}	Propagation Delay of Driver (Fig. 2)	Output Low to High	_		15	200
t _{PHL(D)}	Propagation Delay of Driver (Fig. 2)	Output High to Low			17	ns
t _{PLH(R)}	Propagation Delay of Passiver (Fig. 1)	Output Low to High	-		25	ns
t _{PHL(R)}	Propagation Delay of Receiver (Fig. 1)	Output High to Low	-		23	115
t _{PHZ(R)}		Logic High to Third State	-		30	
t _{PZH(R)}	Propagation Delay Time - Send/Receiver to Data	Third State to Logic High	-		30	ns
t _{PLZ(R)}	(Fig. 4)	Logic Low to Third State	_		30	115
t _{PZL(R)}		Third State to Logic Low	SIMA	DAPA	30	MATE.
t _{PHZ(D)}		Logic High to Third State	I SSERIE	elquit len	30	nimalio
t _{PZH(D)}	Propagation Delay Time - Send/Receiver to Bus	Third State to Logic High	34 - E	ULCIU	30	ns
t _{PLZ(D)}	(Fig. 3)	Logic Low to Third State	图印入	HARIO.	30	115
t _{PZL(D)}	2007	Third State to Logic Low			30	
t _{POFF(E)}	Turn-On Time - Enable to Bus (Fig. 5)	Pull-Up Enable to Open Collector	loidq <u>u</u> ross		30	no
t _{PON(E)}	Tutti-Off fillie - Effable to bus (Fig. 5)	Open Collector to Pull-Up Enable	-	1 12	20	ns

TRUTH TABLE

Send/Rec.	Enable	Into Flow	Comments
0	X	Bus → Data	
1	1	Data →Bus	Active Pull-Up
1	0	Data → Bus	Open Collector

X = Don't Care

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

OUTPUT 1.5V $t_{PLH(R)}$ $t_{PLH(R)}$ t_{OH} t_{OH}

Duty Cycle = 50%

e Capacitance.

Figure 1. Bus Input to Data Output (Receiver).

LIC-450

0V 1.5V 1.5V 0V 0V 0V VOL

 $\begin{array}{l} f = 1.0 \text{MHz} \\ t_{\text{TLH}} = t_{\text{THL}} \leqslant 5.0 \text{ns (10-90\%)} \\ \text{Duty Cycle} = 50\% \end{array}$

Figure 2. Data Input to Bus Output (Driver).

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS (Cont.)

C_L = 15pF (Includes Jig and Probe Capacitance)

LIC-453

Figure 3. Send/Receive Input to Bus Output (Driver).

LIC-454

LIC-455

Figure 4. Send/Receive Input to Data Output (Receiver).

LIC-456

LIC-457

Figure 5. Enable Input to Bus Output (Driver).

Am3448A

TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

TYPICAL BUS LOAD LINE

LIC-459

TYPICAL APPLICATION

16 LINES TOTAL
(FOUR Am3448A'S FOR EACH BUS INTERFACE)

LIC-460

TYPICAL MEASUREMENT SYSTEM APPLICATION

Am54S/74S240 · Am54S/74S241 Am54S/74S242 · Am54S/74S243 Am54S/74S244

Octal Buffers/Line Drivers/Line Receivers With Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Advanced Schottky processing
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- V_{OL} of 0.55V at 64mA for Am74S; 48mA for Am54S
- Data-to-output propagation delay times: Inverting – 7.0ns MAX
- Non-inverting 9.0ns MAX

 Enable-to-output 15.0ns MAX
- 100% reliability assurance testing in compliance with MIL-STD-883
- 20 pin hermetic and molded DIP packages for Am54S/ 74S240, Am54S/74S241, and Am54S/74S244

FUNCTIONAL DESCRIPTION

These buffers/line drivers, used as memory-address drivers, clock drivers, and bus oriented transmitters/receivers, provide improved PC board density. The outputs of the commercial temperature range versions have 64mA sink and 15mA source capability, which can be used to drive terminated lines down to 133Ω. The outputs of the military temperature range versions have 48mA sink and 12mA source current capability.

Featuring 0.2V minimum guaranteed hysteresis at each low-current PNP data input, they provide improved noise rejection and high-fan-out outputs to restore Schottky TTL levels completely.

The Am54S/74S240, Am54S/74S241 and Am54S/74S244 have four buffers which are enabled from one common line, and the other four buffers are enabled from another common line. The Am54S/74S240 is inverting, while the Am54S/74S241 and Am54S/74S244 present true data at the outputs.

The Am54S/74S242 and Am54S/74S243 have the two 4-line data paths connected input-to-output on both sides to form an asynchronous transceiver/buffer with complementing enable inputs. The Am54S/74S242 is inverting, while the Am54S/74S243 presents non-inverting data at the outputs.

ORDERING INFORMATION

Package	Temperature			Order Number		
Туре	Range	Am54S/74S240	Am54S/74S241	Am54S/74S242	Am54S/74S243	Am54S/74S244
Hermetic	-55°C to +125°C	SN54S240J	SN54S241J	SN54S242J	SN54S243J	SN54S244J
Dice	-55°C to +125°C	AM54S240X	AM54S241X	AM54S242X	AM54S243X	AM54S244X
Hermetic	0° C to $+70^{\circ}$ C	SN74S240J	SN74S241J	SN74S242J	SN74S243J	SN74S244J
Molded	0° C to $+70^{\circ}$ C	SN74S240N	SN74S241N			SN74S244N
Dice	0°C to +70°C	AM74S240X	AM74S241X	AM74S242X	AM74S243X	AM74S244X

Storage Temperature	-65°C to +150°
Temperature (Ambient) Under Bias	-55°C to +125°
Supply Voltage to Ground Potential	-0.5V to +7.0
DC Voltage Applied to Outputs for HIGH Output	-0.5V to +V _{CC} ma
DC Input Voltage	-0.5V to +7.0
DC Output Current	150m
DC Input Current	-30mA to +5.0m

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

rameters	CAL CHARAC	Description		Test Co	nditions (N		Min.	Typ. (Note 2)	Max.	Unit	
VIH	High-Level Input	Voltage		A RINGHENING			2.0			Volt	
VIL	Low-Level Input	Voltage	Numer 25						0.8	Volt	
VIK	Input Clamp Volt	age		V _{CC} = MIN.,	I _I = -18mA		17. 1		-1.2	Volt	
	Hysteresis (V _{T+} -	- V _T _)	vant n	V _{CC} = MIN.		ethin 7	0.2	0.4		Volt	
		and a second		V _{CC} = MIN.	COM'L, I)H = -1mA	2.7				
VOH	High-Level Outpu	t Voltage		V _{IL} = 0.8V	I _{OH} = -3r		2.4	3.4		Volt	
VOH	riigii-Level Outpu	t voltage		V _{CC} = MIN.	MIL, IOH	= -12mA	2.0			Voit	
		million de la company		V _{IL} = 0.5V	COM'L, I	OH = -15mA	2.0		1 74 11 38	FOLL	
VOL	Low-Level Outpu	t Voltage		V _{CC} = MIN.	MIL, IOL	= 48mA			0.55	Volt	
VOL	Low-Level Outpu	t voltage		V _{IL} = 0.8V	COM'L, I)L = 64mA		lai Faust	0.55	VOIL	
lozh	Off-State Output			in and same man	V _O = 2.4	'S240, 'S241, 'S244		elecen 2 is a substantial control of the control of	50		
	High-Level Voltag	ge Applied	0.75	V _{CC} = MAX.			'S242, 'S243			100	
I _{OZL}	Off-State Output	The second secon	ET\SEMA	V _{IH} = 2.0V V _{IL} = 0.8V	V _O = 0.5	'S240, 'S241, 'S244			-50	μA 50	
17 Late	Low-Level Voltag	e Applied		Fried	ENTYSPE EURO Care	'S242, 'S243	9713		-500		
t ₁	Input Current at Input Voltage	Maximum	A DS BI	V _{CC} = MAX.,	V _I = 5.5V	10		A A	1.0	mA	
I _{IH}	High-Level Input	Current, Any Input	X	V _{CC} = MAX., V _{IH} = 2.7V				50	μΑ		
		0	Any A	V _{CC} = MAX.,	V = 0.5\				-400	μΑ	
IIL	Low-Level Input	Current	Any G	VCC WAX.,	VIL 0.5 V		1		-2.0	mA	
Ios	Short-Circuit Out	put Current (Note 3)	V _{CC} = MAX.			-50		-225	mΑ	
			All Outputs	APPLICATI		MIL	10.1	80	123		
			HIGH			COM'L	635	80	135		
		Am54S/74S240	All Outputs	V _{CC} = MAX.	SU SUS	MIL		100	145	m.A	
		Am54S/74S242	LOW	Outputs open		COM'L		100	150	1117	
		199 37	Outputs at LE 7	nu sike		MIL		100	145		
1 _{CC}	Supply Current		Outputs at Hi-Z	PER DE LA	The rail	COM'L		100	150		
	98		All Outputs	< 1-	-	MIL		95	147		
			HIGH	一个生		COM'L		95	160		
		Am54S/74S241	All Outputs	V _{CC} = MAX.		MIL		120	170	m.A	
		Am54S/74S243 Am54S/74S244	LOW	Outputs open	TY TO	COM'L	10 YO	120	180	111/-	
		D=127-1				MIL	- 9x - VS	120	170		
201-50		Tonkey Truly	Outputs at Hi-Z	The state of	UST WILL TO SEE	COM'L		120	180		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.

2. All typical values are $V_{CC} = 5.0V$, $T_A = 25^{\circ}$ C.

3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SWITCHING CHARACTERISTICS (V_{CC} = 5V, T_A = 25°C)

			Am5	45/7452	40/242	Am54S	/74\$241	1/243/24	1/244	
arameter	Description	Test Conditions	Min.	Тур.	Max. Min. Typ. Max. 7.0 6.0 9.0 7.0 6.0 9.0 15 10 15 10 8.0 12 15 10 15	. Units				
tPLH	Propagation Delay Time, Low-to-High-Level Output	ZXXXX	KV	4.5	7.0		6.0	9.0	ns	
tPHL	Propagation Delay Time, High-to-Low-Level Output	$C_L = 50pF, R_L = 90\Omega \text{ (Note 3)}$		4.5	7.0		6.0	9.0	ns	
tZL	Output Enable Time to Low Level			10	15		10	15	ns	
tZH	Output Enable Time to High Level			6.5	10		8.0	12	ns	
tLZ	Output Disable Time from Low Level	$C_1 = 5.0 \text{pF}, R_1 = 90 \Omega \text{ (Note 3)}$		10	15		10	15	ns	
tHZ	Output Disable Time from High Level	CL - 3.061 , TT - 9012 (Note 3)		6.0	9.0		6.0	9.0	ns	

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-466

- Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control,
 - 2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. PRR \leq 1.0MHz, $Z_{OUT} \approx 50\Omega$ and $t_r \leq$ 2.5ns, $t_r \leq$ 2.5ns,

FUNCTION TABLES

Am54S/74S242

- 11	NPUT	S	OUTPUTS
1G	2G	Α	Υ
Н	L	X	Z
L	Н	L	Н
L	Н	Н	L

Am54S/74S240

INP	UTS	OUTPUT
G	Α	E YXA
Н	X	Z
L	Н	L
L	L.O	Н

Am54S/74S241 Am54S/74S243

Ì	- 11	UDILIT	_	
	- 11	VPUT	S	OUTPUTS
	1G	2G	Α	Υ
	Н	L	X	Z
	L	Н	H	Н
	L	Н	L	L

Am54S/74S244

INP	UTS	OUTPUT
G	Α	(9)
Н	X	Z
L	Н	Н
L	L	L

APPLICATIONS

Am54S/74S241'S USED AS REPEATER/LEVEL RESTORER

LIC-468

'S240 USED AS SYSTEM AND/OR MEMORY BUS DRIVER – 4-BIT ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

APPLICATIONS (Cont.) INDEPENDENT 4-BIT BUS PARTY-LINE BUS SYSTEM DRIVERS/RECEIVERS WITH MULTIPLE INPUTS, OUTPUTS, AND RECEIVERS IN A SINGLE PACKAGE PARTY-LINE MULTIPLE INPUT/OUTPUT BUS TO OTHER BUFFERS TO OTHER BUFFERS OUTPUT A OUTPUT B OUTPUT RECEIVERS INPUT OUTPUT BUS LIC-471 LIC-470 Metallization and Pad Layouts Am54S/74S240 Am54S/74S242 Am54S/74S241 Am54S/74S243 Am54S/74S244 VCC 20 1A2 4 1A3 6

- 13 2A2

- 11 2A1

DIE SIZE 0.077" X 0.124"

1A4 8

3A/Y 5

CAMPIER LEVEL GND

DIE SIZE 0.077" X 0.124"

Am55/75107B · Am55/75108B

Dual Line Receivers

Distinctive Characteristics

- Input sensitivity 3mV typical
- Common mode range of ±3V
- Common mode range of more than ±15V using external attenuator
- TTL compatible output

- High common mode rejection ratio
- Blocking diodes provide high input impedance
- Strobe and gate inputs for flexibility
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am55/75107B and Am55/75108B are high speed dual line receivers designed for use as data receivers in balanced, unbalanced or party-line transmission systems. The two line receivers in each package share the common voltage and ground busses. The Am55/75107B has a standard active pull-up totempole output while the Am55/75108B has an open collector output for bus organized systems.

Each receiver has a high impedance differential input for minimum transmission line loading. The differential inputs of the Am55/75107B and Am55/75108B are designed to detect input signals of 25mV or greater and provide TTL compatible outputs.

All devices contain blocking diodes in the input differential transistor pair collectors to provide high input impedance in the power-off condition. The SN55/75107A and SN55/75108A are identical devices except for these input protection diodes.

Each receiver has a separate gate input, G. When the gate is LOW, the output is HIGH regardless of the other inputs. The device also has a common strobe, S, which can be used to gate both receivers simultaneously. When the strobe is LOW, the output is HIGH regardless of the other inputs.

Note: Output HIGH on the Am55/75108B is high impedance condition.

MAXIMUM RATINGS (Above which the useful life may be impaired).

Storage Temperature			-65°C to +150°C
Temperature (Ambient) Under Bias			-55°C to +125°C
Positive Supply Voltage V _{CC+} to Ground Potential Continuous	- Marin Special Commission	Tourned or II fam A	+7.0V
Negative Supply Voltage V _{CC} - to Ground Potential Continuous	theis - yn	- Langue of B bns A	-7.0V
DC Voltage Applied to Outputs for HIGH Output State	4q 08 = JS	19 G 64 S 19 Output	0.5V to +V _{CC+} max.
DC Input Voltage - Strobe		100101-01-0-10-0	-0.5V to +5.5V
Differential Input Voltage			±6.0V
Common Mode Input Voltage (with Respect to GND Terminal)		Auguo or S bits A	±5.0V
Any Differential Input to Ground	.0.00€ = JR	regiu0 of 8 bnd A	-5.0V to +3.0V
		THOUSE DEPOSITE	37.173

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:

Am75107B, Am75108B (COM'L)

 $T_A = 0^{\circ} C \text{ to } 70^{\circ} C$

V_{CC+} = 5.0 V ± 5%

 $V_{CC-} = -5.0 V \pm 5\% (COM'L)$ $V_{CC-} = -5.0 \text{ V} \pm 5\% \text{ (MIL)}$

Am55107B, Am55108B (MIL)

 $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$

V_{CC+} = 5.0 V ± 10%

arameters	Description	Test Conditions (Notes 1, 4, & 5)		Min.	Typ. (Note 2)	Max.	Units
V _{OH}	Output HIGH Voltage (Am55/75107B Only)	$V_{CC+} = MIN., V_{CC-} = MIN.$ $I_{OH} = -400\mu A, V_{IC} = -3V \text{ to } 3$	3V	2.4		9	Volts
VOL	Output LOW Voltage	V _{CC+} = MIN., V _{CC} _ = MIN. I _{OL} = 16mA, V _{IC} = -3V to 3V				0.4	Volts
VIH	Strobe or gate input HIGH Voltage	See Test Table		2.0			Volts
VIL	Strobe or Gate Input LOW Voltage	See Test Table				0.8	Volts
V _{IDH}	Differential Input Voltage for Output HIGH	See Test Table		0.025		5.0	Volts
V _{IDL}	Differential Input Voltage for Output LOW	See Test Table		-5.0		-0.025	Volts
I _{IH}	Input HIGH Current into 1A or 2A	V _{CC+} = MAX., V _{CC-} = MAX. V _{ID} = 0.5V, V _{IC} = -3V to 3V			30	75	μА
III.	Input LOW Current into 1A or 2A	V _{CC+} = MAX., V _{CC-} = MAX. V _{ID} = -2V, V _{IC} = -3V to 3V				-10	μΑ
I _{IH}	Input HIGH Current	V _{CC+} = MAX., V _{CC} = MAX. V _{IH} = 2.4V	S			80 40	μА
I ₁	Input HIGH Current	V _{CC+} = MAX., V _{CC-} = MAX. V _{IH} = V _{CC+} MAX.	S G	,,		2	mA
IIL	Input LOW Current	V _{CC+} = MAX., V _{CC-} = MAX. V _{IL} = 0.4V	S	-/		-3.2 -1.6	mA
ГОН	HIGH Level Output Leakage (Am55/75108B Only)	$V_{CC+} = MIN., V_{CC-} = MIN.$ $V_{OH} = V_{CC+} MAX.$				250	μА
I _{SC}	Output Short Circuit Current (Note 3) (Am55/75107B Only)	V _{CC+} = MAX., V _{CC-} = MAX.	y	-18		-70	mA
I _{CCH+}	Positive Power Supply Current	V _{CC+} = MAX., V _{CC} _ = MAX. V _{ID} = 25mV, T _A = 25°C	nid By	mwellshieb s	18	30	mA
ICCH-	Negative Power Supply Current	V _{CC+} = MAX., V _{CC-} = MAX. V _{ID} = 25mV, T _A = 25°C	au Or	adental un berli	-8.4	-15	mA
VI	Input Clamp Voltage, S or G	V _{CC+} = MIN., V _{CC} = MIN. I _{IN} = -12mA, T _A = 25° C	7 7 7 1	and the second of the second	1 506 9001 900	-1.5	Volts

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC+} = 5.0V, V_{CC-} = -5.0V, T_A = 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. V_{IC} = common mode voltage with respect to GND terminal.

V_{ID} = differential voltage (V_A - V_B).

SWITCHING CHARACTERISTICS (TA = +25°C, V_{CC}+ = 5V, V_{CC} - = -5V)

arameters	Description	Test Conditions		Min.	Typ.	Max.	Unit
Am55/75107B O	nly				sel 8 rebo	(Amblent) Us	brutered
tPLH	A and B to Output		cinucus.	Potential Con	17	25	ns
tPHL	A and B to Output	$R_L = 390 \Omega$	auguring	d Potential Co	17	25	ns
tPLH	G or S to Output	C ₁ = 50 pF		design to the last	10	15	ns
tPHL	G or S to Output				8	15	ns
Am55/75108B O	Only						
tPLH	A and B to Output		Declieves	ect to GND T	19	25	ns
tPHL	A and B to Output	$R_L = 390 \Omega$			19	25	ns
tPLH	G or S to Output	C _L = 15 pF			13	20	ns
tPHL	G or S to Output	And File and Provide			13	20	ns

AC PARAMETER MEASUREMENT INFORMATION **TEST CIRCUIT** Q VCC-DIFFERENTIAL O Am55107B Am75107B Am75207 V_{ref} 100 mV PULSE GENERATOR (See Note 1) ₹50 Ω CL 50 pF 9 V_{CC+} 390 Ω ~~ V_{CC+} PULSE GENERATOR (See Note 1) LIC-475

- Notes: 1. The pulse generators have the following characteristics: $Z_{out} = 50 \, \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz, $t_{p2} = 1$ ms, PRR = 500 kHz.
 - Strobe input pulse is applied to Strobe 1G when inputs 1A 1B are being tested, to Strobe S when inputs 1A 1B or 2A - 2B are being tested, and to Strobe 2G when inputs 2A - 2B are being tested.
 - 3. C_L includes probe and jig capacitance.

PERFORMANCE CURVES

High-Level Input Current Into 1A or 2A Versus Ambient Temperature

High-Logic-Level Supply Current Versus

Am55107B, Am75107B Propagation Delay Time Differential Inputs Versus

Recommended Combinations of Input Voltage for Line Receivers

Propagation Delay Time Low-to-High Level Differential Inputs Versus

Am55108B, Am75108B

Am55108B, Am75108B
Propagation Delay Time
High-to-Low Level
Differential Inputs
Versus

Am55107B, Am75107B Propagation Delay Time Strobe Inputs Versus Ambient Temperature

Am55108B, Am75108B Propagation Delay Time Strobe Inputs Versus

Note: Use 0°C to +70°C temperature range only for commercial (Am75 Series) devices.

FUNCTION TABLE

Differential	In	Output	
Input Voltage V _{ID} = V _A - V _B	Gate G	Strobe S	Υ
V _{ID} ≥ +25mV	×	X	Н
-25mV < V _{ID} < +25mV	H	Н	70 v
V _{ID} ≤ -25mV	Н	Н	L
X	THE LAND	X	H
X	X	ON COL	Н

H = HIGH

L = LOW

X = Don't Care

? = Don't Know

DEFINITION OF FUNCTIONAL TERMS

1A, 2A The non-inverting input of the line receivers.

1B, 2B The inverting input of the line receivers.

1Y, 2Y The output of each line receiver.

1G, 2G The gate input of each line receiver. A LOW on the gate input force: the output HIGH.

S The strobe input that is common to both line receivers. A LOW on the strobe forces both (1Y and 2Y) outputs HIGH.

VIC Input Common Mode voltage with respect to ground terminal.

VID Differential Input voltage (VA - VB).

DEFINITION OF SWITCHING TERMS

(All switching times are measured at the 1.5V logic level unless otherwise noted.)

tPLH The propagation delay time from an input change to an output LOW-to-HIGH transition.

tpHL The propagation delay time from an input change to an output HIGH-to-LOW transition.

 t_{r} Rise time. The time required for a signal to change from 10% to 90% of its measured values.

t_f Fall time. The time required for a signal to change from 90% to 10% of its measured values.

DC TEST TABLE

Parameter	1A	2A	1B 2B	VIC (Common Mode)	V _{ID} (Differential)	1Y 2Y	1G		S S C S C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C	Note
V _{IDH}				-3V to 3V	Test	-400μA (Note 2)	+	-5V	+5V	1
VIDL		REDIEVE	207128	-3V to 3V	Test	16mA	A prost	5V	+5V	1
I _{IH} @ A		emil Vale	l noinme	-3V to 3V	+0.5V	Open	0	pen	Open	1
I _{IL} @A		- Situa	Si c oire I	−3V to 3V	-2V	Open	Open		Open	1
VOL@Y	-	- 81	DUY -	−3V to 3V	-25mV	16mA	VIH		VIH	1
V _{OH} @.Y	-	- Parature	Part Australia	-3V to 3V	+25mV	-400μΑ	VIH		VIH	1 & 2
V _{OH} @Y	-		- 4	-3V to 3V	-25mV	-400µA	VIL		VIH	1 & 2
VOH@Y	-			-3V to 3V	-25mV	-400μA	VIH		VIL	1 & 2
IOH@Y	-		308	−3V to 3V	+25mV	V _{CC+} MAX.	VIH		VIH	1 & 3
IOH@Y	-		+ +	−3V to 3V	-25mV	V _{CC+} MAX.	,	VIL	VIH	1 & 3
IOH@Y			-	-3V to 3V	-25mV	V _{CC+} MAX.		VIH.	VIL	1 & 3
I _{IH} @ 1G	+25mV	GND	GND	W - 3	-	Open	VIH	GND	GND	-
I _{IH} @ 2G	GND	+25mV	GND	H 1 - H	-/	Open	GND	VIH	GND	-
I _{IH} @S	+25mV	+25mV	GND	4-10-1	-	Open	GND	GND	VIH	-
I _{IL} @1G	-25mV	GND	GND		_	Open	VIL	GND	4.5V	-
I _{IL} @ 2G	GND	-25mV	GND	II. 4n =	-	Open	GND	VIL	4.5V	-
I _{IL} @S	-25mV	-25mV	GND	-	-	Open	4.5V	4.5V	VIL	-
15 @ Y	+2!	5mV	GND	-	-	GND	G	ND	GND	-
10 71 7	+2!	5mV	GND	-	4	Open	+	5V	+5V	-
Myster Trans	+2!	5mV	GND	-	-	Open	4	-5V	+5V	-

on testing one channel, the inputs of the other channels are grounded.

5/75107B only.

APPLICATIONS

BUS-ORGANIZED SYSTEM

LIC-478

Metallization and Pad Layouts

Am55/75107B

Am55/75108B

DIE SIZE: 0.049" X 0.056"

DIE SIZE: 0.049" X 0.056"

Am55/75109 • Am55/75110

Dual Line Drivers

Distinctive Characteristics

- Input is TTL compatible.
- High common-mode output range of -3V to +10V.
- Separate and common output inhibits.

- Open-collector differential outputs for bus-organized systems.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am55/75109 and Am55/75110 are dual line drivers characterized for applications in balanced, unbalanced, and party-line systems. The drivers provide a constant current output that is switched to either of the two differential output terminals under the control of the A and B inputs. When A and B are HIGH, the Y output is HIGH and Z output is LOW

These drivers feature a separate inhibit input, C, that is used to switch off the constant current output. This leaves the driver differential output in the high impedance state for use in bus organized systems. A LOW on the C input

forces the driver to the OFF state by switching off the current source of the differential output transistor pair. Likewise, the two drivers have a common inhibit input, D, that forces both drivers to the OFF state, A LOW on the D inputs turns off the output current sources of both drivers such that both differential outputs are in the high impedance state.

The driver outputs have a common mode voltage range of -3V to +10V. The Am55/75109 output current is typically 6mA while the Am55/75110 output current is typically 12mA.

ORDERING INFORMATION

Package Type	Temperature Range	Am55/75109 Order Number	Am55/75110 Order Number
Molded DIP	0°C to +70°C	SN75109N	SN75110N
Hermetic DIP	0°C to +70°C	SN75109J	SN75110J
Dice	0° C to +70° C	AM75109X	AM75110X
metic DIP	-55° C to +125° C	SN55109J	SN55110J
Dice	-55° C to +125° C	AM55109X	AM55110X

CONNECTION DIAGRAM Top View

LOGIC SYMBOL

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature				BURNI	MOLEDNO	-65°C to +150°C
Temperature (Ambient) Under Bias		270	TUO	attigu	TIERRINI	-55°C to +125°C
V _{CC+} Supply Voltage to Ground Potential			Y	0	5	+7V
V _{CC} — Supply Voltage to Ground Potential	smolynder	330	110	×		-7V
Common Mode DC Voltage Applied to Outputs	AF	OFF	930		×	-5V to +12V
DC Input Voltage	BT	990	610	H	E REAL TO	-0.5V to +V _{CC+} max.
DC Input Current	91	990	NO	H	H	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:

arameters	Description	Test Conditions (No	te 1)	Min.	Typ. (Note 2)	Max.	Units
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs	ı	2.0		5.5	Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		0		0.8	Volts
		V MAY V OAV	A, B			-3	
IIL	Input Low Current	V _{CC+} = MAX., V _{IN} = 0.4 V	С			-1.6	mA
(Note 3)	Am55/75109	V _{CC} -= MAX.	D			-3	
III	Input LOW Current	V _{CC+} = MAX., V _{IN} = 0.4 V	A, B, C		artorna sure	-3	
(Note 3)	Am55/75110	V _{CC} -= MAX.	D		was V	-6	mA
I _{IH}	Ambient Temperature	V _{CC+} = MAX., V _{IN} = 2.4 V	A, B, C		e leisus Voltage	40	
(Note 3)	Input HIGH Current	V _{CC} - = MAX.	D			80	μΑ
	Away da	V _{CC+} = MAX., V _{IN} = MAX.	A, B, C			1301	
11	Input HIGH Current	V _{CC} -= MAX.	D		THE PROPERTY OF	2	mA
		V _{CC+} = MAX.	109	2		7	15
IO(on)	Output Current On-State	V _{CC} - = MAX.	110	2		15	mA
		V _{CC+} = MIN.	109	3.5		18.	1
I _O (on)	Output Current On-State	V _{CC} _ = MAX.	110	6.5	N		mA
I _O (off)	Output Current Off-State	V _{CC+} = MIN. V _{CC} = MIN.				100	μΑ
	Positive Supply Current;	A and B = 0.4V	109		18	30	
I _{CC+} (on)	Driver Enabled	C and D = 2.0V	110	2.1	23	35	mA
	Negative Supply Current;	A and B = 0.4V	109		-18	-30	
ICC-(on)	Driver Enabled	C and D = 2.0V	110		-34	-50	mA
	Positive Supply Current;	psion Dalay Time	109		18	žmA.	
I _{CC+} (off)	Driver Disabled	All Inputs = 0.4V	110	Enabled	21 / 100	Supply Curr	mA
1 / 555	Negative Supply Current;	Varsus	109		-10		
I _{CC} —(off)	Driver Disabled	All Inputs = 0.4V	110		-17	dana.	mA

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC+} = 5.0 V, V_{CC-} = -5.0 V, T_A = 25° C ambient and maximum loading.

3. Actual input currents = Unit Load Current X Input Load Factor (See Loading Rules).

Switching Characteristics (TA = +25°C)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
tpLH	A or B to Y or Z	TAN TANDEST TRANSPORT OF	J S BRUTAR	9	15	ns
tPHL	A or B to Y or Z	$V_{CC+} = 5.0 \text{ V}, V_{CC-} = -5.0 \text{ V},$		9	15	ns
tPLH	C or D to Y or Z	$R_L = 50 \Omega$, $C_L = 40 pF$		16	25	ns
tPHL	C or D to Y or Z		SLO UTT OF O OF IL	13	25	ns

m55/751	09/110	C	D	Y	Z
X	×	L	X	OFF	OFF
X	×	X	L	OFF	OFF
DO L	×	Н	Н	ON	OFF
X	m3L	Н	Н	ON	OFF
Н	Н	Н	Н	OFF	ON

H = HIGH L = LOW

ON = I_O(on) Current OFF = I_O(off) Current

X = Don't Care

D	Y	Z	Input/Output	Pin No.'s	Am55/ 75109	Am55/ 75110	Output	Output
X	OFF	OFF		261	TENO DI	4.7/0		
L	OFF	OFF	1A	1111	1-7/8	1-7/8	lo V. Gral el	nolvi Trum
Н	ON	OFF	1B	2	1-7/8	1-7/8	61101	loV Euco
Н	ON	OFF	1C	3	1	1-7/8	-	- 1
Н	OFF	ON	2C	4	1	1-7/8		100 100
1	1 011	011	2A	5	1-7/8	1-7/8	-	-
			2 B	6	1-7/8	1-7/8	-	-
			GND	7	-	-	-	-
			2Y	8	-	_	(D	ff \
			2Z	9	-	-	(out	put)
			D	10	1-7/8	3-3/4	_	-
		139M2T	V _{CC} -	11	EPLET	TOAR	AHOJA	DIRTO:
			1Z	12	28 PU V	qqA=ino	/ D	iff \
		JUN - 55V	1Y	13	Value of	MINE SON	out	put)
		JITM Jook	V _{CC+}	14	Village -	MIM-pp	V 01+88	mA , mit a

A TTL Unit Load is defined as 40 μ A measured at 2.4 V HIGH and -1.6mA measured at 0.4 V LOW.

PERFORMANCE CURVES

(Typical)

Am55109, Am75109
Output Current
Versus
Logic Input Voltage

Am55110, Am75110
Output Current
Versus
Logic Input Voltage

Am55109, Am75109 Supply Current With Driver Enabled Versus

Am55110, Am75110
Supply Current With Driver Enabled
VersusAmbient Temperature

Propagation Delay Time
Logic Inputs
Versus
Ambient Temperature

Propagation Delay Time Inhibit Inputs Versus Ambient Temperature

Note: For Am75 Series use 0°C to +70°C temperature range only.

DC TEST TABLE

		INF	PUTS		OUTI	
Parameter	Α	В	С	D	Y	Z
VIH	Test	Open	VIH	VIH	OFF	ON
VIH	Open	Test	VIH	VIH	OFF	ON
VIL	Test	V _{CC+}	VIH	VIH	ON	OFF
VIL	V _{CC+}	Test	VIH	VIH	ON	OFF
I _{IH}	Test	GND	VIH	VIH	GND	GND
I _{IH}	GND	Test	VIH	VIH	GND	GND
IIL vo	Test	4.5 V	VIH	VIH	GND	GND
IIL	4.5 V	Test	VIH	VIH	GND	GND
VIH	VIH	VIH	Test	Open	OFF	ON
VIH	VIH	VIH	Open	Test	OFF	ON
VIH	VIL	VIL	Test	Open	ON	OFF
VIH	VIL	VIL	Open	Test	ON	OFF
VIL	VIH	VIH	Test	Open	OFF	OFF
VIL	VIH	VIH	Open	Test	ÒFF	OFF
VIL	VIL	VIL	Test	V _{CC+}	OFF	OFF
VIL	VIL	VIL	V _{CC+}	Test	OFF	OFF
I _{IH}	GND	GND	Test	GND	GND	GND
11Н	GND	GND	GND	Test	GND	GND
IIL	GND	GND	Test	4.5 V	GND	GND
IIL	GND	GND	4.5 V	Test	GND	GND
IO(on)	VIL	VIL	VIH	VIH	Test	Note 1
IO(on)	VIL	VIH	VIH	VIH	Test	Note 1
IO(on)	VIH	VIL 2/10	VIH CAO	VIH	Test	Note 1
1 _{O(on)}	VIH	VIH	VIH	VIH	Note 1	Test
IO(off)	VIH	VIH	VIH	VIH	Test	Note 1
IO(off)	VIL	Currently Velta	mode V _{IH} material	VIH	Note 1	Test
IO(off)	VIL	VIH TO VIH TO THE	40 LA VIV. Augus	VIH	Note 1	Test
IO(off)	VIH	Vano VILmos	VIE VIH ASOS	VIH	Note 1	Test
IO(off)	X	X	VIL	VIL	Test	Test
I _{O(off)}	X	X	VIL	VIH	Test	Test
IO(off)	X	X 100.0-	V _{IH}	VIL	Test	Test
I _{CC+(on)}	VIL	VAO VIE MAIL	VASVIH AGON	VIH ACABA	GND	GND
ICC-(on)	VIL	VIL TO C	VACVIH ADDE	VIH HATTH	GND	GND
ICC+(off)	VIL	VIL	VIL	VIL	GND	GND
ICC-(off)	VIL	VIL	VIL	VIL	GND	GND

X = Don't Care; Note 1: Output not under test must have a low impedance ($<50\Omega$) termination to GND.

- Notes: 1. The pulse generators have the following characteristics: $Z_{out} = 50 \Omega$, $t_r = t_f = 10 \pm 5 ns$; $t_{pw1} = 500 ns$, PRR = 1 MHz; $t_{pw2} = 1 \mu s$, PRR = 500 kHz.
 - 2. C_L includes probe and jig capacitance.
 - 3. For simplicity, only one channel and the inhibitor connections are shown.

LIC-484

UNIT LOAD DEFINITIONS

	HI	GH	LO	W
SERIES	Current	Measure Voltage	Current	Measure Voltage
Am25/26/2700	40μΑ	2.4 V	-1.6mA	0.4 V
Am25S/26S/27S	50μΑ	2.7 V	-2.0mA	0.5 V
Am25L/26L/27L	20μΑ	2.4 V	-0.4 mA	0.3 V
Am25LS/26LS/27LS	20μΑ	2.7 V	-0.36 mA	0.4 V
Am54/74	40μΑ	2.4 V	-1.6mA	0.4 V
54H/74H	50μΑ	2.4 V	-2.0mA	0.4 V
Am54S/74S	50μΑ	2.7 V	-2.0mA	0.5 V
54L/74L (Note 1)	20μΑ	2.4 V	-0.8mA	0.4 V
54L/74L (Note 1)	10μΑ	2.4 V	-0.18mA	0.3 V
Am54LS/74LS	20μΑ	2.7 V	-0.36 mA	0.4 V
Am9300	40μΑ	2.4 V	-1.6mA	0.4 V
Am93L00	20μΑ	2.4 V	-0.4mA	0.3 V
Am93S00	50μΑ	2.7 V	-2.0mA	0.5 V
Am75/85	40μΑ	2.4 V	-1.6mA	0.4 V
Am8200	40μΑ	4.5 V	-1.6mA	0.4 V

Note: 1. 54L/74L has two different types of standard inputs.

DEFINITION OF FUNCTIONAL TERMS

1A, 2A, 1B, 2B The TTL data inputs to each driver.

1C, 2C The TTL inhibit inputs to each driver. A LOW input forces both outputs to the off-state.

D The common TTL inhibit input to both drivers. A LOW input forces all four outputs to the off-state.

1Y, 2Y, 1Z, 2Z The differential output of each driver.

LIC-486

APPLICATIONS

Am55/75109 or Am55/75110 in a unbalanced or single-ended connection.

Two line drivers connected in parallel for higher current.

Metallization and Pad Layouts

DIE SIZE 0.056" X 0.056"

DIE SIZE 0.056" X 0.056"

Am71/81LS95 • Am71/81LS96 Am71/81LS97 • Am71/81LS98

Three-State Octal Buffers

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus line directly
- Typical propagation delay Am71/81LS95, Am71/81LS97 13ns Am71/81LS96, Am71/81LS98 10ns
- Typical power dissipation Am71/81LS95, Am71/81LS97
 Am71/81LS96, Am71/81LS98
 65mW
- PNP inputs reduce DC loading on bus lines
- Am71/81LS96 and Am71/81LS98 are inverting;
 Am71/81LS95 and Am71/81LS97 are non-inverting
- 20-pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am71/81LS95, Am71/81LS96, Am71/81LS97 and Am71/81LS98 are octal buffers fabricated using Advanced Low-Power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.

The Am71/81LS95 and Am71/81LS97 present true data at the outputs, while the Am71/81LS96 and Am71/81LS98 are inverting. The Am71/81LS95 and Am71/81LS96 have a common enable for all eight buffers with access through a 2-input NOR gate. The Am71/81LS97 and Am71/81LS98 octal buffers have four buffers enabled from one common line, and the other four buffers enabled from another common line. In all cases the outputs are placed in the three-state condition by applying a high logic level to the enable pins. All parts feature low current PNP inputs.

Am71/81LS95		Am71/8	1LS96	Am71/	81LS97	Am71/8	81LS98
G ₁ 1	20 V _{CC}	\overline{G}_1	20 V _{CC}	$\overline{G}_1 \square 1$	20 Vcc	G ₁ 1 •	20 V _{CC}
A ₁ 2	19 🔲 🖫 📆	A ₁ 2	19 🗖 🖫 📆	A ₁ 2	19 🔲 🖫 📆	A ₁ 2	19 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Y ₁ 3	18 A ₈	Y ₁ 3	18 A ₈	Y ₁ 3	18 A ₈	Y ₁ 3	18 A ₈
A ₂ 4	17 Y ₈	A ₂ 4	17 Y ₈	A ₂ 4	17 Y ₈	A ₂ 4	17 Y ₈
Y ₂ 5	16 A ₇	Y ₂ 5	16 🗆 A ₇	Y ₂ 5	16 A7	Y ₂ 5	16 A7
6	15 Y ₇	A ₃ 6	15 Y ₇	A ₃ 6	15 Y ₇	A ₃ 6	15 Y ₇
7	14 A6	Y ₃ □ 7	14 A6	Y ₃ 7	14 A ₆	Y ₃ 7	14 A6
44	13 Y ₆	A ₄ 🔲 8	13 Y ₆	A ₄ 🗌 8	13 Y ₆	A ₄ 🗆 8	13 Ye
	12 A5	Y ₄ 🔲 9	12 A5	Y ₄ 🔲 9	12 A5	Y ₄ 9	12 A ₅
D	11 Y ₅	GND 10	11 Y ₅	GND 10	11 Y ₅	GND 🔲 10	11 Y ₅

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +7.0V
DC Output Current	150mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS OVER OPERATING RANGE

Am71/81LS95 Am71/81LS96 Am71/81LS97 Am71/81LS98

Parameter	s Descr	iption		Test	Conditions	S , sHM1 > RR9 es	Min.	(Note 1)	Max.	Units
VIH	High Level Input					DE 42 ZEGOLIZE JAJO	2	(Volts
VIL	Low Level Input			SWOT	TAGLISS	IA .			0.8	Volts
VI	Input Clamp Volt	age	V _{CC} = Min., I	_I = -18mA	A SAMPANA	n or appropriate	MOLETHUR		-1.5	Volts
			MIL		1		-1.0			
ЮН	High Level Outpu	it Current	COM'L	MICONYGROUNT RIP.	IONTONO.				-2.6	mA
		120	V _{CC} = Min., V	/ = 2 OV	COM'L	$I_{OH} = -5.0 \text{mA}$	2.4			
VOH	High Level Outpu	ut Voltage	$V_{IL} = 0.8V$	VIH - 2.0V	CONTE	$I_{OH} = -2.6 \text{mA}$	2.7	2.7		Volts
		L VI	VIII 0.0.1		MIL, IOH	= -1.0mA	2.5			
loL	Low Level Outpu	t Current	COM'L				- TURITUR JORTH	16		mA
OL	Low Level Outpu	Current	MIL				8	IIIA		
V _{OL}	Low Level Outpu	t Voltage	V _{CC} = Min., V _{IH} = 2.0V		COM'L,	I _{OL} = 16mA			0.5	V
VOL	Low Lover Outpu	t voltage	$V_{IL} = 0.8V$ MIL, $I_{OL} = 8.0$ mA					0.4	H No.	
l _{O(OFF)}	Off-State (High-Ir		V _{CC} = Max.,	V _{IH} =2.0V		$V_0 = 0.4V$		1941	-20	μΑ
'O(OFF)	State) Output Cu	rrent	$V_{IL} = 0.8V$		$V_0 = 2.$	4V			20	μΑ
I _I	Input Current at I Input Voltage	Maximum	V _{CC} = Max.,	V _I = 7.0V					0.1	mA
I _{IH}	High Level Input	Current	V _{CC} = Max.,	V _I = 2.7V					20	μΑ
	Low Level	A Input		Both G Inpu	uts at 2.0V	V _I = 0.5V			-50	μΑ
IIL	Input Current		V _{CC} = Max.	Both G Inpu	uts at 0.4V	$V_I = 0.4V$			-0.36	mA
		G Input		209		$V_1 = 0.4V$			-0.36	
los	Short Circuit Out	put Current	V _{CC} = Max. (Note 2)			-30	-60	-130	mA
lcc	Supply Current		V _{CC} = Max.	Am71/81L	S95, Am71/	81LS97		16	26	mA
.00	Cuppiy Current		VCC - Max.	Am71/81L	S96, Am71/	81LS98		13	21	IIIA

Notes: 1. All typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$.

2. Not more than output should be shorted at a time, and duration of the short circuit should not exceed one second.

SWITCHING CHARACTERISTICS V _{CC} = 5.0V, T _A = 25°C			Am71/81LS95 Am71/81LS97			Am71/81LS96 Am71/81LS98			
Paramete	ers Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	1 1 1		11	16		6	10	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$C_L = 15pF$, $R_L = 2k\Omega$		15	22		13	17	ns
[†] ZH	Output Enable Time to High Level		1 4 4 5	16	25		17	27	ns
tzL	Output Enable Time to Low Level			13	20		16	25	ns
t _{HZ}	Output Disable Time from HIGH Level	C - EnE D - 0k0		13	20		13	20	
t _{LZ}	Output Disable Time from Low Level	$C_L = 5pF, R_L = 2k\Omega$		19	27		18	27	ns

SWITCHING CHARACTERISTICS TEST CONDITIONS

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-495

- Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - 2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 - 4. Pulse generator characteristics: PRR < 1MHz, $Z_{OUT} \approx 50\Omega$, $t_f < 15$ ns, $t_f < 6$ ns. 5. When measuring tp_H and tpHL, switches S₁ and S₂ are closed.

APPLICATIONS

Am71/81LS96 USED AS SYSTEM AND/OR MEMORY BUS DRIVER

LIC-497

LIC-496

INDEPENDENT 4-BIT BUS DRIVERS/RECEIVERS IN A SINGLE PACKAGE

ORDERING INFORMATION

		Order Number						
	Package Type	Temperature Range	Am71/81LS95	Am71/81LS96	Am71/81LS97	Am71/81LS98		
	Molded DIP Hermetic DIP Hermetic DIP Dice	0°C to +70°C 0°C to +70°C -55°C to +125°C 0°C to +70°C	DM81LS95N DM81LS95J DM71LS95J AM81LS95X	DM81LS96N DM81LS96J DM71LS96J AM81LS96X	DM81LS97N DM81LS97J DM71LS97J AM81LS97X	DM81LS98N DM81LS98J DM71LS98J		
-	OF LEAVE EMPRISH A		state condition	nuntral rawar	seing Jahoe state during	ворого управод из	THE PLAN	
	11.0							

Am73/8303B

Octal Three-State Inverting Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

- · 8-bit bidirectional data flow reduces system package count
- Three-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC}-1.15V V_{OH} interfaces with TTL, MOS, and CMOS
- 48mA, 300pF bus drive capability
- Transmit/Receive and Chip Disable simplify control logic
- 20 pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8303Bs are 8-bit three-state Schottky inverting transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a three-state condition.

The output high voltage ($V_{\rm OH}$) is specified at $V_{\rm CC}$ -1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

LOGIC DIAGRAM

LIC-499

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

V_{CC} = Pin 20 GND = Pin 10

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°	C to +150°C
Supply Voltage	A PORT DATA MODE SPECIFICATIONS	7.0V
Input Voltage	Propagation Delay to a Logical "0" from 1 CO = 0,4V, T/R = 0,4V (Round 1)	5.5V
Output Voltage	B Port to A Port $P_1 = P_2 = P_3$, $P_4 = P_4$, $P_5 = P_4$, $P_6 = P_6$	5.5V
Lead Temperature (Soldering, 10 seconds)	Propagation Delay to a Logical "1" from CD = 0.4V. Tiffl = 0.4V (Figure 1)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

 $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$

 $V_{CC}MIN = 4.5V$ $V_{CC}MAX = 5.5V$

Am8303B

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

 $V_{CC}MIN = 4.75V$ $V_{CC}MAX = 5.25V$

DC ELECTRICAL CHARACTERISTICS over operating temperature range

arameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units		
2000		A PORT	(A ₀ -A ₇)		he9 B of p	09 A	BING	
VIH	Logical "1" Input Voltage	$CD = 0.8V, T/\overline{R} = 0.8V$	= 2.0V	H yal	2.0			Volts	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	CD = 0.8V,	Am8	303B	silved a largic	spation Delay to a Loc	0.8	Volts	
VIL	Logical "0" Input Voltage	$T/\overline{R} = 2.0V$		303B	Total III	no B Pon	0.7	Voits	
V _{OH}	Logical "1" Output Voltage	CD = 0.8V,		= -0.4mA	V _{CC} -1.15	V _{CC} -0.7	-	Volts	
ОН	Logical 1 Output Voltage	$T/\overline{R} = 0.8V$	$I_{OH} = -3.0$ mA		2.7	3.95	etreciT	82	
VOL	Logical "0" Output Voltage	CD = 0.8V,		= 8mA	o i s mon y	0.3	0.4	Volts	
·OL	g		Am8303B, I _{OL} = 16mA		CO to B Pd	0.35	0.50	RXB	
los	Output Short Circuit Current	$CD = 0.8V$, $T/R = V_{CC} = MAX$., No	$\bar{8} = 0.8V, V_O = 0V,$ Note 2		-10	-38	-75	mA	
I _{IH}	Logical "1" Input Current	$CD = 0.8V, T/\overline{R}$	= 2.0V,	$V_1 = 2.7V$	1001001	0.1	80	μΑ	
lı	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC}$	= MAX	$V_{I} = V_{CC} MAX.$			1	mA	
I _I L ²⁰	Logical "0" Input Current	$CD = 0.8V, T/\overline{R}$	= 2.0V,	$V_I = 0.4V$	G CON CO.	-70	-200	μΑ	
V _C	Input Clamp Voltage	CD = 2.0V, I _{IN} =	-12m/	4		-0.7	-1.5	Volts	
lop	Output/Input Three-State Current	$V_0 = 0.4V$ $V_0 = 4.0V$				-200	μΑ		
OD	Cutput input Triree-State Current			a Lamenta	staCl. nothers	80			
GIA.		B PORT	. 0 1)	c9 A of FIT	mott etata-	Tares	NZN	
V _{IH}	Logical "1" Input Voltage	$CD = 0.8V, T/\overline{R} = 0.8V$		2.0			Volts		
VIL	Logical "0" Input Voltage	$CD = 0.8V, T/\overline{R}$	= 0.8V Am8303B Am7303B		OJ A MON Y	geton Dela State from	0.8	Volts	
	Logical "1" Output Voltage	$CD = 0.8V, T/\overline{R} = 2.0V$		$I_{OH} = -0.4 \text{mA}$	V _{CC} -1.15	V _{CC} -0.8		Volts	
V _{OH}					2.7	3.9	AJUST I		
				$I_{OH} = -10mA$	2.4	3.6			
VOL	Logical "0" Output Voltage	CD = 0.8V, T/\overline{R} = 2.0V $\frac{I_{OL} = 20mA}{I_{OL} = 48mA}$		n La most v	0.3	0.4	Volts		
02					69. B of AT	0.4	0.5	73.	
los	Output Short Circuit Current	$CD = 0.8V, T/\overline{R} = 2.0V, V_{O} = 0V, V_{CC} = MAX., Note 2$		-25	-50	-150	mA		
Ін	Logical "1" Input Current	$CD = 0.8V, T/\overline{R}$	= 0.8V,	$V_1 = 2.7V$	DA W OLD WIT	0.1	80	μΑ	
85	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC}$	= MAX	$v_1 = v_{CC} MAX.$	Mail more	BieU monego	gord .	mA	
I _{IL}	Logical "0" Input Current	$CD = 0.8V, T/\overline{R}$	= 0.8V,	$V_I = 0.4V$	and and the	-70	-200	μΑ	
V _C	Input Clamp Voltage	$CD = 2.0V, I_{IN} =$	-12m/	Alital	e9 0 a Rd	-0.7	-1.5	Volts	
lop	Output/Input Three-State Current	$CD = 2.0V$ $V_O = 0.4V$ $V_O = 4.0V$			son Hinon s	station Date	-200	μΑ	
-00				0	99 8 of A\1	/"T" lepigo.	200		
		CONTROL INF	PUTS	D, T/R	23V 10l tr	a nevig neut	sv lepigy) (B 1 8	
V _{IH}	Logical "1" Input Voltage	benore		2.0	and Bis au	the este Att	Volts		
V _{IL}	Logical "0" Input Voltage	STORY HERONOME				0.8	Volts		
Iн	Logical "1" Input Current	V _I = 2.7V - 14MO (14MO)				0.5	20	μΑ	
l _l	Input Current at Maximum Input Voltage	V _{CC} = MAX., V _I = V _{CC} MAX.				1.0	mA		
IIL	Logical "0" Input Current	V _I = 0.4V		T/R		-0.1	25	mA	
				CD		-0.25	5		
VC	Input Clamp Voltage	I _{IN} = -12mA	1 W 0:::	in variability and in		-0.8	-1.5	Volts	
	S-iH	POWER SUPP							
lcc	Power Supply Current	CD = 2.0V, V _{CC} = MAX., V _{IN} = 0.4V				60	130	mA	
		$CD = V_{INA} = 0.4V, T/\overline{R} = 2V, V_{CC} = MAX.$				80	160		

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0V, T_A = 25°C)

Figure F	arameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Unit	
Popular B Port to A Port Popagation Delay to a Logical "1" from B Port to A Port Popagation Delay from a Logical "1" from B Port to A Port Popagation Delay from a Logical "1" for B Popagation Delay from Three-State to a Logical "0" from CD to A Port B Popagation Delay from Three-State to a Logical "1" from CD to A Port Popagation Delay from Three-State to a Logical "1" from CD to A Port Popagation Delay from Three-State to a Logical "1" from CD to A Port Popagation Delay from Three-State to a Logical "1" from CD to A Port Popagation Delay from Three-State to a Logical "0" from A Port to B Port DATA/MODE SPECIFICATIONS ### Popagation Delay from A Logical "0" from A Port to B Port DATA/MODE SPECIFICATIONS ### Popagation Delay from A Logical "0" from A Port to B Port DATA/MODE SPECIFICATIONS ### Popagation Delay from A Logical "1" from Popagation Delay from Three-State to a Logical "0" from CD to B Port Popagation Delay from Three-State to a Logical "0" from CD to B Port Popagation Delay from A Logical "1" to A Popagation De		A POR	T DATA/MODE SPECIFICATIONS			5981	ov yle	
	DHLA				8	ge	ns	
Propagation Delay from a Logical "0" to Sa = 1, Rs = 1k, C4 = 15pF 11	DLHA			10 secon	7 08	enularec	ns	
Propagation Delay from a Logical "1" to Sa = 0.4V, Tife = 0.4V (Figure 3)	LZA		B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3)		11		ns	
PZLA a Logical "0" from CD to A Port S ₃ = 1, R ₅ = 1k, C ₄ = 30pF 2/	HZA		B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3)	raina	8	D JACK	ns	
Fight Fig	ZLA			PERC.	27	ing Dend = J	ns	
Propagation Delay to a Logical "0" from A Port to B Port R ₁ = 100Ω, R ₂ = 1k, C ₁ = 300pF R ₁ = 667Ω, R ₂ = 5k, C ₁ = 45pF 7 R ₁ = 667Ω, R ₂ = 5k, C ₁ = 45pF 8 R ₂ = 667Ω, R ₂ = 44, T/R = 2.4V (Figure 3) R ₂ = 1k, C ₂ = 130pF R ₂ = 1k, C ₂ = 13pF R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂ = 1k, C ₂ = 30pF R ₂ = 1k, R ₂	ZHA		0 ,		19	= 41	ns	
Propagation Delay to a Logical "0" from A Port to B Port R ₁ = 100Ω, R ₂ = 1k, C ₁ = 300pF R ₁ = 667Ω, R ₂ = 5k, C ₁ = 45pF 7		B POR	T DATA/MODE SPECIFICATIONS	Hallon	ARTER A	HOITHIG	-11-11-11	
Propagation Delay from a Logical "1" from A Port to B Port Propagation Delay from a Logical "1" from A Port to B Port Propagation Delay from a Logical "0" to B Port Propagation Delay from a Logical "1" to Three-State from CD to B Port Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port Depagation Delay from Transmit Mode to a Logical "0", T/R to A Port Depagation Delay from Receive Mode Delay f	dieli) je	gy - grange, or not come		noiteho	12	8	letsmi	
H ₁ = 6671, H ₂ = 5K, C ₁ = 45pF 7	DHLB						ns	
Propagation Delay for a Logical "1" from A Port to B Port No. Propagation Delay from a Logical "0" to Three-State from CD to B Port Sq. 1, Rg = 1k, C4 = 300pF 13	way I	ATORIO DI OR		- and	7			
R ₁ = 667Ω, R ₂ = 5k, C ₁ = 45pF 7	DLHB			egetic	10	legipa.)	ns	
PILZB		A POR to B POR	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$		7		-11	
Three-State from CD to B Port S ₃ = 0, R ₅ = 1k, C ₄ = 15pF O	LZB			egetio\	13	Legical	ns	
tpzlb Propagation Delay from Inree-State to a Logical "0" from CD to B Port S ₃ = 1, R ₅ = 100Ω, C ₄ = 300pF 32 tpzhb Propagation Delay from Three-State to a Logical "1" from CD to B Port A ₀ to A ₇ = 2.4V, T/R = 2.4V (Figure 3) 26 tphzhb Propagation Delay from CD to B Port TRANSMIT RECEIVE MODE SPECIFICATIONS 26 tphzh Propagation Delay from a Logical "1" to Three-State from T/R to A Port CD = 0.4V (Figure 2) 7 tplzR Propagation Delay from a Logical "0" to Three-State from T/R to A Port CD = 0.4V (Figure 2) 7 tphzr Propagation Delay from a Logical "1" to Three-State from T/R to B Port CD = 0.4V (Figure 2) 10 tphzr Propagation Delay from a Logical "1" to Three-State from T/R to B Port CD = 0.4V (Figure 2) 10 tplzT Propagation Delay from a Logical "0" to Three-State from T/R to B Port CD = 0.4V (Figure 2) 16 tplzT Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port 17 17 tpRh Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port 17R to A Port 17R to A Port tpRh Propagation Delay from Receive Mode 18R to Three Transmit Apple to Three Transmit M	нzв		A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3)	egatio\	8	Lagical	ns	
S ₃ = 1, R ₅ = 667Ω, C ₄ = 45pF 16 A ₀ to A ₇ = 2.4V, T/R̄ = 2.4V (Figure 3) 26 S ₃ = 0, R ₅ = 1k, C ₄ = 300pF 3 = 0, R ₅ = 667Ω, C ₄ = 45pF 14 TRANSMIT RECEIVE MODE SPECIFICATIONS Propagation Delay from a Logical "1" to Three-State from T/R̄ to A Port S ₂ = 0, R ₃ = 1k, C ₂ = 15pF 7 Propagation Delay from a Logical "0" to Three-State from T/R̄ to A Port S ₂ = 1, R ₃ = 1k, C ₃ = 300pF 3 = 1k, C ₃ = 300pF 3 = 1k, C ₃ = 15pF Propagation Delay from a Logical "1" to Three-State from T/R̄ to B Port S ₂ = 1, R ₃ = 1k, C ₃ = 15pF 16 Propagation Delay from a Logical "1" to Three-State from T/R̄ to B Port S ₂ = 1, R ₃ = 5k, C ₂ = 30pF 16 Propagation Delay from Transmit Mode to a Logical "0", T/R̄ to A Port t _{PRL} = t _{PRL} + t _{PDLHA} 23 Propagation Delay from Transmit Mode to a Logical "1", T/R̄ to A Port t _{PRL} = t _{PLZT} + t _{PDLHA} 28 Propagation Delay from Receive Mode t _{PRL} = t _{PLZT} + t _{PDLHA} 27 t _{PRL} = t _{PLZT} + t _{PDLHA} 28 Propagation Delay from Receive Mode t _{PRL} = t _{PLZT} + t _{PDLHA} 27 t _{PRL} = t _{PLZT} + t _{PDLHA} 28 Propagation Delay from Receive Mode t _{PRL} = t _{PLZT} + t _{PDLHA} t _{PRL} =	ZLB			Current	32	Output	ns	
Propagation Delay from Three-State to a Logical "1" from CD to B Port S ₃ = 0, R ₅ = 1k, C ₄ = 300pF 14	311	a Logical O from CD to B Port	$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	menu	16	Logical		
TRANSMIT RECEIVE MODE SPECIFICATIONS TRANSMIT RECEIVE MODE SPECIFICATIONS TRANSMIT RECEIVE MODE SPECIFICATIONS Three-State from T/R to A Port Three-State from T/R to B Port Three-State	ZHB			Agril returnist	26	D tugni	ns	
TRANSMIT RECEIVE MODE SPECIFICATIONS tpHZR Propagation Delay from a Logical "1" to Three-State from T/R to A Port Propagation Delay from a Logical "0" to Three-State from T/R to A Port Propagation Delay from a Logical "1" to Three-State from T/R to A Port Propagation Delay from a Logical "1" to Three-State from T/R to B Port Propagation Delay from a Logical "1" to Three-State from T/R to B Port Propagation Delay from a Logical "0" to Three-State from T/R to B Port Propagation Delay from a Logical "0" to Three-State from T/R to B Port Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port Propagation Delay from Receive Mode	May 1	a Logical "1" from CD to B Port	$S_3 = 0$, $R_5 = 667\Omega$, $C_4 = 45pF$		14	O burnel I		
The Propagation Delay from a Logical 1 to Three-State from T/R to A Port $S_1 = 1, R_4 = 100\Omega, C_3 = 300pF$ $S_2 = 0, R_3 = 1k, C_2 = 15pF$ The Propagation Delay from a Logical "0" to Three-State from T/R to A Port $S_1 = 1, R_4 = 100\Omega, C_3 = 300pF$ $S_2 = 0, R_3 = 1k, C_2 = 15pF$ The Propagation Delay from a Logical "1" to Three-State from T/R to A Port $S_1 = 1, R_4 = 100\Omega, C_3 = 300pF$ $S_2 = 0, R_4 = 1k, C_3 = 300pF$ $S_2 = 1, R_3 = 1k, C_2 = 15pF$ The Propagation Delay from a Logical "1" to Three-State from T/R to B Port $S_2 = 1, R_3 = 1k, C_3 = 15pF$ $S_2 = 1, R_3 = 5k, C_2 = 30pF$ Three-State from T/R to B Port $S_1 = 1, R_4 = 100\Omega, C_3 = 300pF$ $S_2 = 0, R_4 = 1k, C_3 = 15pF$ $S_2 = 1, R_3 = 5k, C_2 = 30pF$ Three-State from T/R to B Port $S_2 = 1, R_3 = 1k, C_3 = 15pF$ $S_2 = 0, R_3 = 1k, C_3 = 15pF$ $S_2 = 0, R_3 = 1k, C_3 = 15pF$ $S_3 = 0, R_4 = 1k, C_3 = 15pF$ $S_3 = 0, R_4 = 1k, C_3 = 15pF$ $S_3 = 0, R_4 = 1k, C_3 = 15pF$ $S_2 = 0, R_4 = 1k, C_3 = 15pF$ $S_3 = 0, R_4 = 1k, C_3 = 15pF$ $S_4 = 0, R_4 = 1k, C_3 = 15pF$ $S_4 = 0, R_4 = 1k, C_3 = 15pF$ $S_4 = 0, R_4 = 1k, C_3 = 15pF$ $S_4 = 0, R_4 = 1k, C_3 = 15pF$ $S_5 = 0, R_4 = 1k, C_3 = 15pF$ $S_7 = 0, R_4 = 1k, C_3 = 15p$	Fini	TRANSMI		-				
Propagation Delay from a Logical "0" to Three-State from T/R to A Port Propagation Delay from a Logical "1" to Three-State from T/R to B Port Propagation Delay from a Logical "1" to Three-State from T/R to B Port Propagation Delay from a Logical "1" to Three-State from T/R to B Port Propagation Delay from a Logical "0" to Three-State from T/R to B Port Propagation Delay from a Logical "0" to Three-State from T/R to B Port Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port Propagation Delay from Receive Mode The Propagation Delay from Receive Mode	HZR		$S_1 = 1, R_4 = 100\Omega, C_3 = 300pF$	D. Balo	7	100,00	ns	
tpHZT Propagation Delay from a Logical "1" to Three-State from T/R to B Port S ₂ = 1, R ₃ = 5k, C ₂ = 30pF tpLZT Propagation Delay from a Logical "0" to Three-State from T/R to B Port S ₂ = 1, R ₃ = 5k, C ₂ = 30pF tpLZT Propagation Delay from a Logical "0" to Three-State from T/R to B Port S ₂ = 0, R ₃ = 1k, C ₃ = 15pF S ₂ = 0, R ₃ = 1k, C ₃ = 15pF S ₂ = 0, R ₃ = 1k, C ₃ = 30pF tpRL Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port tpRH tpLZT + tpDHLA 23 tpRH Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port tpRH tpLZT + tpDLHA 28 tpRH Propagation Delay from Receive Mode to a Logical "1", T/R to A Port tpPHLA tpLZT + tpDLHA 28	LZR		CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF	egatic	10	IsolgaJ	ns	
to the propagation Delay from a Logical "0" to the propagation Delay from a Logical "0" to the propagation Delay from Transmit Mode to a Logical "0", T/R to A Port to a Logical "1", T/R to A Port to a Logical "1", T/R to A Port the propagation Delay from Transmit Mode to a Logical "1", T/R to A Port the propagation Delay from Transmit Mode to a Logical "1", T/R to A Port the propagation Delay from Receive Mode	HZT		$S_1 = 0$, $R_4 = 1k$, $C_3 = 15pF$	ecallev	16	Logical	ns	
to a Logical "0", T/R to A Port to a Logical "0", T/R to A Port tent	LZT		$S_1 = 1$, $R_4 = 1$ k, $C_3 = 15$ pF	epallov	17	Logical	ns	
to a Logical "1", T/R to A Port Propagation Delay from Receive Mode to a Logical "1", T/R to A Port Propagation Delay from Receive Mode	RL		t _{PRL} = t _{PHZT} + t _{PDHLA}	Ing ntto	23	SUOTUO	ns	
	RH		t _{PRH} = t _{PLZT} + t _{PDLHA}	ent munix	28) tuorii [ns	
to a Logical O , T/R to B Port	TL	Propagation Delay from Receive Mode to a Logical "0", T/R to B Port	t _{PTL} = t _{PHZR} + t _{PDHLB}	6	23	a mont	ns	
Propagation Delay from Receive Mode to a Logical "1", T/R to B Port tpTH tpLTR + tpLZR + tpDLHB	тн		t _{PTH} = t _{PLZR} + t _{PDLHB}	State Curr	24	Curput	ns	

Notes: 1. All typical values given are for V_{CC} = 5.0V and T_A = 25°C.

2. Only one output at a time should be shorted.

FUNCTIONAL TABLE

Inputs	C	ondition	S
Chip Disable	0	0	1
Transmit/Receive	0	1	×
A Port	Out	In	HI-Z
B Port	In	Out	HI-Z

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

LIC-502

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.

LIC-503

LIC-504

Figure 2. Propagation Delay from T/R to A Port or B Port.

LIC-505

LIC-506

Figure 3. Propagation Delay from CD to A Port or B Port.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	DP7303BJ
Hermetic DIP	0°C to +70°C	DP8303BJ
Molded DIP	0°C to +70°C	DP8303BN
Dice	0°C to +70°C	AM8303BX

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- Three-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC}-1.15V V_{OH} interfaces with TTL, MOS, and CMOS
- 48mA, 300pF bus drive capability
- Transmit/Receive and Chip Disable simplify control logic
- 20 pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8304Bs are 8-bit three-state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a three-state condition.

The output high voltage (V_{OH}) is specified at V_{CC} -1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

LOGIC DIAGRAM

LIC-508

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-509

LOGIC SYMBOL

V_{CC} = Pin 20 GND = Pin 10

Am73/8304B

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Supply Voltage	7.0V
Input Voltage	5.5V
Output Voltage	5.5V
Lead Temperature (Soldering, 10 seconds)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

Am7304B $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$ $V_{CC} \text{MIN} = 4.5V$ $V_{CC} \text{MAX} = 5.5V$ $V_{CC} \text{MAX} = 5.25V$ $V_{CC} \text{MIN} = 4.75V$ $V_{CC} \text{MAX} = 5.25V$ DC ELECTRICAL CHARACTERISTICS over operating temperature range

ramete	ers Description		Condit		Min.	Typ. (Note 1)	Max.	Units
Michael -	and the distribution of the Color A Alex	A PORT	$(A_0 - A_7)$		rid tencilasi	ibid rea Ar	n9 – 19w	Low po
V _{IH} .	Logical "1" Input Voltage	CD = VIL MAX., T/	$\bar{R} = 2.0V$		2.0	tessong yet	torial be	Volts
	Logical "O" Input Valtage	CD = VIL MAX.,	Am83	04B	ub etate eon	sbegmirin	0.8	Volts
VIL	Logical "0" Input Voltage	$T/\overline{R} = 2.0V$	Am73	04B	of prinsess	ie sone wa	0.7	VOILS
.,	Laciani "4" Outrot Valtana	CD = V _{IL} MAX.,	I _{OH} =	-0.4mA	V _{CC} -1.15	V _{CC} -0.7	8:17911	Volts
Vон	Logical "1" Output Voltage	$T/\overline{R} = 8.0V$	I _{OH} =	-3.0mA	2.7	3.95		VOILS
.,	Laciaal "O" Output Valtage	CD = VIL MAX.,	I _{OL} =	8mA		0.3	0.4	Volts
VOL	Logical "0" Output Voltage	T/R = 8.0V	Am83	04B, I _{OL} = 16mA		0.35	0.50	VOILS
los	Output Short Circuit Current	CD = V _{IL} MAX., T/ V _{CC} = MAX., Note		$V_{0} = 0V_{0}$	-10	-38	-75	mA
IH	Logical "1" Input Current	CD = VIL MAX., T/	$\overline{R} = 2.0$	$V_1 = 2.7V$	100	0.1	80	μΑ
1	Input Current at Maximum Input Voltage	CD = 2.0V, V _{CC} =	MAX., V	I = VCC MAX.	Q ^d		1	mA
IL	Logical "0" Input Current	CD = VIL MAX., T/	$\bar{R} = 2.0$	$V_1 = 0.4V$		-70	-200	μΑ
/c	Input Clamp Voltage	CD = 2.0V, I _{IN} = -				-0.7	-1.5	Volts
	Str. Str.	T-72	4-75-c	V _O = 0.4V	72		-200	
OD	Output/Input Three-State Current	CD = 2.0V		$V_0 = 4.0V$	TIT		80	μΑ
		B PORT	(Bo-B7)					
/IH	Logical "1" Input Voltage	CD = V _{II} MAX., T/			2.0		and the same of th	Volt
In	Logical 1 mpar rollago	CD = V _{IL} MAX.,	· · · L	Am8304B			0.8	JEARTO
IL.	Logical "0" Input Voltage	$T/\overline{R} = V_{IL} MAX.$		Am7304B			0.7	Volt
		The state of the s	1					
V _{OH} Logical "1" Output Voltage	$CD = V_{IL} MAX., T/\overline{R} = 2.0V$		$I_{OH} = -0.4\text{mA}$	V _{CC} -1.15	-	7-1	Volt	
				2.7	3.9		- 401	
	d		$I_{OH} = -10$ mA	2.4	0.3	0.4		
OL.	Logical "0" Output Voltage	$CD = V_{IL} MAX., T/\overline{F}$	$\bar{R} = 2.0 \text{V}$	I _{OL} = 20mA		0.3	0.4	Vol
		CD V MAY T	<u> </u>	I _{OL} = 48mA		0.4	0.5	-
os	Output Short Circuit Current	$CD = V_{IL} MAX., T/V_{CC} = MAX., Note$	2		-25	-50	-150	mA
IH .	Logical "1" Input Current	CD = V _{IL} MAX., T/	- 10			0.1	80	μΑ
1	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC} =$	MAX., V	I = V _{CC} MAX.	LREAD HO	DNMECT	1	mA
IL	Logical "0" Input Current	CD = V _{IL} MAX., T/	$\overline{R} = V_{IL}$	$MAX., V_{I} = 0.4V$	WSIV A	-70	-200	μΑ
/c	Input Clamp Voltage	$CD = 2.0V, I_{1N} = -$	-12mA			-0.7	-1.5	Volt
OD	Output/Input Three-State Current	CD = 2.0V		$V_0 = 0.4V$			-200	μΑ
OD	Output input Timee State Guiterit	OD = 2.0V		$V_0 = 4.0V$	and the first	0 00 00 0	200	μΛ
		CONTROL INF	PUTS C	D, T/R				
/ _{IH}	Logical "1" Input Voltage			11 57	2.0	F TF DF		Volts
/IL	Logical "0" Input Voltage			Am8304B		7-1	0.8	Volts
VIL	Logical o input voltage			Am7304B	8466.500	(PE)	0.7	VOIL
IH	Logical "1" Input Current	$V_1 = 2.7V$				0.5	20	μΑ
	Input Current at Maximum Input Voltage	V _{CC} = MAX., V _I =	V _{CC} MA	X.			1.0	mA
	Lacial "O" lacua Coment			T/R	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-0.1	-,25	
IL	Logical "0" Input Current	$V_I = 0.4V$		CD		-0.25	5	mA
/c	Input Clamp Voltage	$I_{IN} = -12mA$				-0.8	-1.5	Volt
		POWER SUPP	LY CUR	RENT				
5.01	Power Supply Current	CD = 2.0V, V _{CC} =	MAX., V	IN = 0.4V	alus and too	60	100	
CC	Power Supply Current	$CD = V_{INA} = 0.4V$			Market State	80	130	mA

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0V, T_A = 25°C)

Parameters		Test Conditions	Min.	Typ. (Note 1)	Max.	Unit	
	A POR	T DATA/MODE SPECIFICATIONS					
t _{PDHLA}	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF		14	18	ns	
t _{PDLHA}	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF		13	18	ns	
t _{PLZA}	Propagation Delay from a Logical "0" to Three-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF		11	15	ns	
t _{PHZA}	Propagation Delay from a Logical "1" to Three-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$		8	15	ns	
t _{PZLA}	Propagation Delay from Three-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 30$ pF		27	35 /	ns	
t _{PZHA}	Propagation Delay from Three-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$		19	25	ns	
	B POR	T DATA/MODE SPECIFICATIONS					
†PDHLB	Propagation Delay to a Logical "0" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega$, $R_2 = 1$ k, $C_1 = 300$ pF	2007 > N 2009 or	18	23	ns	
1 51125	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$		11	18		
t _{PDLHB}	Propagation Delay to a Logical "1" from	CD = 0.4V, $T/R = 2.4V$ (Figure 1) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$		16	23	ns	
	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$		11	18	tra-0	
t _{PLZB}	Propagation Delay from a Logical "0" to Three-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF		13	18	ns	
t _{PHZB}	Propagation Delay from a Logical "1" to Three-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$		8	15	ns	
t _{PZLB}	Propagation Delay from Three-State to	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300$ pF		32	40	40 ns	
	a Logical "0" from CD to B Port	$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$		16	22		
t _{PZHB}	Propagation Delay from Three-State to	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 300pF$		26	35	ns	
	a Logical "1" from CD to B Port	$S_3 = 0, R_5 = 667\Omega, C_4 = 45pF$	177	14	22	10	
Day 19	TRANSMI	RECEIVE MODE SPECIFICATIONS					
t _{PHZR}	Propagation Delay from a Logical "1" to Three-State from T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 1k$, $C_2 = 15pF$		7	12	ns	
t _{PLZR}	Propagation Delay from a Logical "0" to Three-State from T/R to A Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 1, R ₃ = 1k, C ₂ = 15pF		10	14	ns	
t _{PHZT}	Propagation Delay from a Logical "1" to Three-State from T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 15pF S ₂ = 1, R ₃ = 5k, C ₂ = 30pF	3608 or	16	22	ns	
t _{PLZT}	Propagation Delay from a Logical "0" to Three-State from T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 1, R ₄ = 1k, C ₃ = 15pF S ₂ = 0, R ₃ = 1k, C ₂ = 30pF		17	22	ns	
t _{PRL}	Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port	t _{PRL} = t _{PHZT} + t _{PDHLA}		25	40	ns	
t _{PRH}	Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port	t _{PRH} = t _{PLZT} + t _{PDLHA}		30	40	ns	
t _{PTL}	Propagation Delay from Receive Mode to a Logical "0", T/R to B Port	t _{PTL} = t _{PHZR} + t _{PDHLB}		25	35	ns	
t _{РТН}	Propagation Delay from Receive Mode to a Logical "1", T/R to B Port	t _{PTH} = t _{PLZR} + t _{PDLHB}		26	35	ns	

Notes: 1. All typical values given are for V_{CC} = 5.0V and T_A = 25°C.
2. Only one output at a time should be shorted.

FUNCTIONAL TABLE

Inputs	Conditions				
Chip Disable	0	0	1		
Transmit/Receive	0	. 1	X		
A Port	Out	In	HI-Z		
B Port	In	Out	HI-Z		

ORDERING INFORMATION

Package Type Hermetic DIP Hermetic DIP Molded DIP	Temperature Range -55°C to +125°C 0°C to +70°C 0°C to +70°C	Order Number DP7304BJ DP8304BJ DP8304BN	SESSIVE and Amy 8 (SESS).		
Dice	0°C to +70°C	AM8304BX			
	¥, WASS				

Distinctive Characteristics:

- Dual differential receiver pin-for-pin equivalent to the National 78/8820 and 78/8820A
- 500mV sensitivity at ±3V common mode
 1V sensitivity at ±15V common mode
- Single 5-volt supply
- Frequency response control, strobe and internal terminating resistor
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am78/8820 and Am78/8820A are dual differential line receivers designed to receive digital data from transmission lines and provide up to 15 volts of common mode rejection with a single 5-volt supply.

The device would normally be used in systems using twisted pair lines for connection, with each receiver having a terminating resistor included. The receivers respond to small differential signals and reject considerable amounts of common mode noise.

Each receiver has a strobe that enables the output and a response control that allows the time constant of the output circuit to be controlled by an external capacitor and give noise rejection of high frequency noise and short logic spikes.

Companion differential line drivers are the Am78/8830, Am78/8831 and Am78/8832.

V_{CC} = Pin 14 GND = Pin 7

Am78/

ORDERING INFORMATION

Am78/

8820A 8820 Package Temperature Order Order Range Number Number Type DM8820AN Molded DIP 0°C to +75°C DM8820N 0°C to +75°C DM8820J DM8820AJ Hermetic DIP AM8820AX Dice 0°C to +75°C AM8820X -55°C to +125°C DM7820J DM7820AJ Hermetic DIP Hermetic Flat Pak -55°C to +125°C DM7820W DM7820AW Dice -55°C to +125°C AM7820X AM7820AX

LIC-519

Am7820 • Am8820

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

arameters	Description	Test Conditions	Min.	Typ.(Note 1)	Max.	Units
VOH	Output HIGH Voltage	I _{OH} ≤ 0.2mA	2.5	4.0	5.5	Volts
VOL	Output LOW Voltage	I _{OL} ≤ 3.5mA	0.0	mA :suigtil	0.4	Volts
Nan CC		V _{CM} = 0V	8/8820A	+0.06	+0.5	
V _{TH} Differential Threshold Voltage	-15V≤V _{CM} ≤+15V		+0.06	+1.0	Volts	
V _{TH}	Differential Threshold Voltage	V _{CM} = 0V	-0.5	-0.08		VOILS
	-15V ≤V _{CM} ≤+15V	-1.0	-0.08			
I _{IH}	Strobe Input HIGH Current	V _{STROBE} = 5.5V		0.01	5.0	μА
IIL	Strobe Input LOW Current	V _{STROBE} = 0.4V	-1.4	-1.0		mA
	V _{CM} = +15V		+3.0	+4.2		
IIN INV	Inverting Input Current	V _{CM} = 0V	-0.5	0	SERV LIPRO	mA
		V _{CM} = -15V	-4.2	-3.0	STOP AT	A058
		V _{CM} = +15V		+5.0	+7.0	trotest
IIN NINV	Non-Inverting Input Current	V _{CM} = 0V	-1.6	-1.0	5	mA
SHEW	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V _{CM} = -15V	-9.8	-7.0		HI.
SHOW.	- 10	V _{CM} = +15V	IO -	+3.9	+7.0	
Icc	Power Supply Current (Each Receiver)	V _{CM} = 0V	oltsee /600	+6.5	+10.2	mA
(Each Receiver)	V _{CM} = -15V	103/	+8.3	+15.0		
RININV	Inverting Input Resistance	Audos - Tuot veise tu	3.6	5.0	DEPART N	kΩ
RINNINV	Non-Inverting Input Resistance	Audout = 400 / 100 = 400 / 100 /	1.8	2.5		kΩ
RTERM	Input Terminating Resistor	T _A = 25°C	120	170	250	Ω

Notes: 1. For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100°C/W and a maximum junction temperature of 160°C for the AM7820, or 150°C/W and 115°C maximum junction temperature for the AM8820.

2. Typical values given are for V_{CC} = 5.0V, T_A = 25°C and V_{CM} = 0V unless stated differently.

Switching Characteristics (TA = 25°C, VCC = 5.0 V)

Parameters	Description 8 1	Test Conditions	Min.	Typ.	Max.	Units
tRESP	Response Time	C _{delay} = 0		40		ns
tRESP	Response Time	C _{delay} = 100 pF		150		ns

Am78/8820 • Am78/8820A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C	to +150°C		
Temperature (Ambient) Under Bi	-55°C to +12!			
Supply Voltage to Ground Potent	-0.5 V	/ to +8.0 V		
DC Common Mode Voltage	- 1994		-20\	V to +20 V
DC Strobe Input Voltage	MAR THE	N11912314111312 2010 F	−0.5 V	/ to +8.0 V
DC Data Input Voltage	8.5	Aug. 0.5 EQ1	-20 N	V to +20 V
Output Current, Into Outputs:	Am78/8820	Amd.£ > Jpl	- Output LOW Voltaga	25mA
	Am78/8820A			50mA
Power Dissipation (Note 1)		URSeason Valles		600 mW

Am7820A • Am8820A

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Parameters	Description	0.1	rest Conditions	Min.	Typ.(Note 1)	_
Danamastana	Description		Test Conditions	0.0:	Tree (s)	
Am7820A	$T_A = -55^{\circ} \text{C to } + 125^{\circ} \text{C}$	$V_{CC} = 5.0V \pm 10\%$	$V_{CM} = -15V \text{ to } +15V$			
Am8820A		$V_{CC} = 5.0V \pm 5\%$	$V_{CM} = -15V \text{ to } +15V$			

rameters	Description	Test Conditions	Min.	Typ.(Note 1)	Max.	Units
VOH	Output HIGH Voltage	V _{DIFF} = +1V, I _{OH} = -400μA	2.5	4.0	5.5	Volts
VOL	Output LOW Voltage	V _{DIFF} = -1V	0		0.4	Volts
VIH	Strobe Input HIGH Level Voltage	V _{DIFF} = -3V V _{OUT} ≤0.4V, I _{OUT} = 16mA	2.1	supply Current: entitle)	of the last	Volts
VIL	Strobe Input LOW Level Voltage	$V_{DIFF} = -3V$ $V_{OUT} \ge 2.5V$, $I_{OUT} = -400\mu A$		p Input Péustance	0.9	Volts
524	1.8	-3V ≤V _{CM} ≤+3V, I _{OUT} = -400μA	100	+0.06	+0.5	WATER ME
v 9	120 470 550	-15V≤V _{CM} ≤+15V, I _{OUT} = -400μA		+0.06	+1.0	MRST
V _{TH}	Differential Threshold Voltage	-3V ≤V _{CM} ≤+3V, I _{OUT} = 16mA	-0.5	-0.08	0.0711781800	Volt
	OSSEMA	-15V ≤V _{CM} ≤+15V, I _{OUT} = 16mA	-1.0	-0.08	dr 101.0 08	to p
I _{IH}	Strobe Input HIGH Current	V _{STROBE} = 5.5V, V _{DIFF} = +3V		0.01	5.0	μА
IIL	Strobe Input LOW Current	V _{STROBE} = 0.4V, V _{DIFF} = -3V	-1.4	-1.0		mA
	Inverting Input Current	V _{CM} = +15V		+3.0	+4.2	mA
I _{IN INV}		V _{CM} = 0V	-0.5	0		
		V _{CM} = −15V	-4.2	-3.0		
	Non-Inverting Input Current	V _{CM} = +15V		+5.0	+7.0	mA
IIN NINV		V _{CM} = 0V	-1.6	-1.0	Charactar	
		V _{CM} = −15V	-9.8	-7.0		
Isc	Output Short Circuit Current	V _{OUT} = 0V, V _{STROBE} = 0V, V _{CC} = 5.5V	-6.7	-4.5	-2.8	mA
		V _{CM} = +15V, V _{DIFF} = -1V		+3.9	+6.0	
Icc	Power Supply Current (Each Receiver)	V _{CM} = 0V, V _{DIFF} = -0.5V		+6.5	+10.2	mA
	(Each Receiver)	V _{CM} = -15V, V _{DIFF} = -1V		+9.2	+14.0	
RININV	Inverting Input Resistance		3.6	5.0		kΩ
RINNINV	Non-Inverting Input Resistance		1.8	2.5		kΩ
RTERM	Input Terminating Resistor	T _A = 25°C	120	170	250	Ω

Notes: 1. For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100° C/W and a maximum junction temperature of 160° C for the AM7820A, or 150° C/W and 115° C maximum junction temperature for the AM8820A.

2. Typical values given are for V_{CC} = 5.0V, T_A = 25° C and V_{CM} = 0V unless stated differently.

Switching Characteristics (TA = 25°C)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tpHL	Differential Input to Output LOW		The state of the	25	45	ns
tPLH	Differential Input to Output HIGH	V _{CC} = 5.0 V		22	40	ns
tPHL	Strobe Input to Output LOW	See Switching Waveforms		16	25	ns
tPLH	Strobe Input to Output HIGH			15	30	ns

4

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATION

TYPICAL TWISTED PAIR DIFFERENTIAL COMMUNICATION SYSTEM 1/2 Am78/8830 TWISTED PAIR LINE TWISTED PAIR LINE CR CR

LIC-523

The Am78/8830 drives a twisted pair line which is terminated at the receiving end by an RC network. The R is approximately equal to the line impedance (170 Ω) and is part of the Am78/8820A differential receiver. The Cg is a blocking capacitor which stops DC current flow, and for low duty cycles reduces power consumption. The value of this capacitor depends upon the data rate, Cg must be large compared to $\frac{1}{10^4 R}$ where fd is the data rate. The capacitor Cg is used to control the response time of the receiver and limit high frequency noise. $C_R \sim 4 \times 10^3 \frac{1}{10^4}$ where C is in pF and fn is the lowest noise frequency expected in MHz.

Am78/8830

Dual Differential Line Driver

Distinctive Characteristics

- Single 5-volt power supply
- Input diodes for prevention of line ringing
- Low output skew between NAND and AND propagation delays.
- Clamped outputs for reduction in positive and negative voltage transients.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am78/8830 is a dual differential line driver suitable for driving differential lines with characteristic impedances in the range 50Ω to 500Ω .

Each driver consists of a 4-input AND gate in parallel with a 4-input NAND gate. The inputs to the gates are clamped to reduce the effect of line transients. The differential outputs are balanced and have approximately the same delay so as to minimize skew problems, and have high drive capability at both the LOW and HIGH logic levels.

The device is ideal for driving differential transmission lines, and forms a very noise insensitive balanced digital communication system with excellent common mode noise rejection when used in conjunction with the Am78/8820A dual differential receiver.

LOGIC DIAGRAM

V_{CC} = Pin 14 GND = Pin 7

LIC-524

Note: Only one driver shown

LIC-525

Am78/8830 ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Molded DIP	0°C to +75°C	DM8830N
Ceramic DIP	0°C to +75°C	DM8830J
Hermetic DIP	-55°C to +125°C	DM7830J
Hermetic Flat Pak	-55°C to +125°C	DM7830W
Dice	0°C to +75°C	AM8830X
Dice	-55°C to +125°C	AM7830X

Am78/8830

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
Output Current, Into Outputs	100 mA
DC Input Current	-30mA to +5.0mA
Output Short Circuit Duration at 125°C	1 sec
	And the second processed in the second second

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8830 $T_A = 0^{\circ} \text{C to } +75^{\circ} \text{C}$ Am7830 $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$

 $V_{CC} = 5.0V \pm 5\%$ $V_{CC} = 5.0V \pm 10\%$

Parameters Description **Test Conditions** Min. Typ. (Note 1) Max. Units 2.9 $I_{OH} = -40 \, \text{mA}$ 1.8 V_{CC} = MIN., VOH Output HIGH Voltage Volts $V_{1N} = 0.8V$ $I_{OH} = -0.8 \, \text{mA}$ 2.4 3.3 IOL = 40 mA 0.22 0.5 VCC = MIN., Output LOW Voltage Volts VOL $V_{IN} = 0.8V$ $I_{OL} = 32 mA$ 0.2 0.4 Guaranteed input logical HIGH V_{IH} Input HIGH Level Voltage 2.0 Volts voltage for all inputs Guaranteed input logical LOW VIL Input LOW Level Voltage 0.8 Volts voltage for all inputs -3.0 -4.8 HL Input LOW Current $V_{CC} = MAX., V_{IN} = 0.4V$ mA Input HIGH Current $V_{CC} = MAX., V_{IN} = 2.4V$ 120 TIH mA Input HIGH Current VCC = MAX., VIN = 5.5V 2.0 ISC (Note 2) Output Short Circuit Current $V_{CC} = 5.0 \, V, \, V_{OUT} = 0.0 \, V$ -40 -100 -120mA Power Supply Current⁴ 11 18 Icc V_{CC} = MAX. (Each Driver) mA

Note 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading. Note 2. Limits for T_A = +125°C only.

Switching Characteristics (TA = 25°C)

arameters	Description	Conditions	Min.	Тур.	Max.	Units	
tPLH	Delegional Lands of Colonia (AND Colonia	Logisa	5°C	8 0	12	ns	
tPHL	Delay from Inputs to Output of AND Gate Delay from Inputs to Output of NAND gate	V _{CC} = 5.0V, C _L = 15pF	MG - 57,851	11	18	ns	
tPLH		See Figure 1	A Da	8	12	ns	
tPHL		XGE3Y	IA 2 US	5	8	ns	
t ₁	- Differential Delay	8:11	V _{CC} = 5.0V, C _L = 5000pF		12	16	ns
t ₂		$R_L = 100\Omega$, See Figure 2		12	16	ns	

LIC-530

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT 5000 pl NAND OUTPUT Figure 1. Figure 2. LIC-527 LIC-528 LIC-529

DATA INPUT FREQUENCY - MHz

APPLICATIONS

LIC-531

TYPICAL TWISTED PAIR DIFFERENTIAL COMMUNICATION SYSTEM

The Am78/8830 drives a twisted pair line which is terminated at the receiving end by an RC network. The R is approximately equal to the line impedance (170 Ω) and is part of the Am78/8820A differential receiver. The CB is a blocking capacitor which stops DC current flow, land for low duty cycles reduces power consumption. The value of this capacitor depends upon the data rate, CB must be large compared to $\frac{1}{fd-R}$ where fd is the data rate. The capacitor CR is used to control the response time of the receiver and limit high frequency noise. $C_R \sim 4 \times 10^3 \frac{1}{fn}$ where C is in pF and fn is the lowest noise frequency expected in MHz.

Metallization and Pad Layout

DIE SIZE 0.050" x 0.063"

LIC-532

Am78/8831·Am78/8832

Three-State Line Driver

Distinctive Characteristics

- Three-State Line Drivers pin-for-pin equivalent to the DM78/8831 and DM78/8832
- Mode control for quad single-ended or dual differential operation
- Common bus operation
- High-drive capability

LIC-533

- 40 mA sink and source current
- Series 54/74 compatible
- 13 ns typical propagation delay
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am78/8831 and Am78/8832 line drivers can be used either as a quad single-ended driver or as a dual differential driver. Each driver has a three-state output making the device particularly suitable for party-line operation where several drivers are directly connected to the same bus. The Am78/8832 does not have the VCC clamp diodes found on the Am74/8831.

When used for single-ended operation the two differential/single-ended control inputs are held LOW. The device then operates as four independent non-inverting drivers. For differential working at least one differential/single-ended control input is held HIGH. The A-channel inputs are connected together and the B-channel inputs are connected together. Signal inputs will then pass non-inverted to the A2 and B2 outputs and inverted on the A1 and B1 outputs.

For party-line operation outputs of different channels are tied together, and outputs of all channels except one are forced into the third high impedence state by having at least one of the channel disable inputs HIGH. The channel that is enabled has both channel disable inputs LOW, and the low-output impedance of this output at both logic levels controls the level of the bus, provides good capacitance drive and insures good waveform integrity.

The channel which is enabled can conveniently be selected by a decoding matrix using Am9301 1-of-10 or Am9311 1-of-16 active LOW output decoders. The high drive capability at both logic levels enables drivers to drive a low impedance line and still supply the inverse leakage current of several disabled drivers.

VCC = Pin 16

GND = Pin 8

ORDERING INFORMATION

Package Type	Temperature Range	Am78/ 8831 Order Number	Am78/ 8832 Order Number
¹olded DIP	0°C to +75°C	DM8831N	DM8832N
netic DIP	0°C to +75°C	DM8831J	DM8832J
ice :	0°C to +75°C	AM8831X	AM8832X
? DIP	-55°C to +125°C	DM7831J	DM7832J
at Pak	-55°C to +125°C	DM7831W	DM7832W
	-55°C to +125°C	AM7831X	AM8832X

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

Am78/8831 • Am78/8832

MAXIMUM RATINGS (Above which the useful life may be impaired)

eltiw eansilé mod ni enitre agnerosse vtilidaile : 2001 .

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V _{CC} max
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current Significance 6 \\Address Series \$	-30 mA to +5.0 mA
Time that 2 Bus-Connected Devices May Be in Opposite Low Impedance States Simultaneously	onitatego lair∞

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8831, Am8832 T_A = 0°C to +75°C Am7831, Am7832 $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$

V_{CC} = 5.0V ±5% (COM'L) MIN. = 4.75V MAX. = 5.25V $V_{CC} = 5.0V \pm 10\%$ (MIL) MIN. = 4.5V MAX. = 5.5V

Parameters Description		scription Test Conditions		Min.	Typ. (Note 1)		
	The state of the s		I _{OH} = -40 mA	1.8	2.8	ected together	nado ena Is oa ant
VOH	Output HIGH Voltage	V _{CC} = MIN.,	Am7831, 32 I _{OH} = -2 mA	2.4	3.1	time overette	Volts
		V _{IN} = V _{IH} or V _{IL}	Am8831, 32 I _{OH} = -5.2 mA	2.4	electrisco (la	to saugano be	
	O - + - + 1 OW V-14	V _{CC} = MIN.,	I _{OL} = 40 mA	Hei TS gn	0.29	0.5	Volts
VOL	Output LOW Voltage	VIN = VIH or VIL	I _{OL} = 32 mA	arai duch	0.2	0.4	VOITS
VIH	Input HIGH Level Voltage	Guaranteed input lo	gical HIGH voltage for all inputs	2.0	contrals there	opic tevels or	Volts
VIL	Input LOW Level Voltage	Guaranteed input lo	gical LOW voltage for all inputs	BUNGLINE	e body abrus	0.8	Volts
IL	Unit Load Input LOW Current	V _{CC} = MAX., V _{IN} = 0.4 V			-1.0	-1.6	mA
I _{IH}	Unit Load Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.4 V		il eprabi	6.0	40	μΑ
11	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5 V				1.0	mA
	Output Lookers Comment	$V_{CC} = MAX., \overline{E} = 2$.4 V, V _{OUT} = 2.4 V		5,	40	μΑ
ILK	Output Leakage Current	$V_{CC} = MAX., \overline{E} = 2$.4 V, V _{OUT} = 0.4 V	0 13 15	-5	-40	μΑ
VI	Input Clamp Diode Voltage	V _{CC} = 5.0 V, I _I = -	12 mA, T _A = 25°C	1	a Chill	-1.5	Volts
v _O	Output Clamp Diode Voltage	V _{CC} = 5.0 V, I _I = 12 mA, T _A = 25°C Am78/8831 Only			John John St.	V _{CC} + 1.5V	Volts
v _O	Output Substrate Diode Voltage	V _{CC} = 5.0 V, I _I = -12 mA, T _A = 25°C				-1.5	Volts
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX., V _{OUT} = 0.0 V, T _A = MAX.		-40	1000	-120	mA
Icc	Power Supply Current	VCC = MAX.		prop	57	90	mA

Notes: 1. Typical limits are at V_{CC} = 5.0 V, 25 $^{\circ}$ C ambient and maximum loading. 2. Only one output should be shorted at a time.

SWITCHING CHARACTERISTICS (TA = 25°)

Parameters	Description	Min.	Typ.	Max.	Units
tPLH	Delay from Inputs A ₁ , A ₂ , B ₁ , B ₂ and		LEGGRANG 13 LITERSMC	25	ns
tPHL	Single-Ended/ Diff. Control to Output		13	25	ns
tHZ	Delay from Output Enable to Output		6	12	ns
tLZ	Delay from Output Enable to Output		14	22	ns
tZH	Delay from Output Enable to Output		14	22	ns
tZL	Delay from Output Lilable to Output		18	27	ns

TYPICAL PERFORMANCE CHARACTERISTICS

TRUTH TABLE (Shown for A Channels Only)

	-ENDED/ ONTROL	A EN	ABLE	IN A ₁	OUT A ₁	IN A ₂	OUT A ₂
L	L	L	L	A ₁	A ₁	A ₂	A ₂
Н	X	L	L	A ₁	Ā ₁	A ₂	A ₂
X	Н	L	L	A ₁	A ₁	A ₂	A ₂
X	X	Н	X	X	F	X	F
X	×	X	Н	×	F	X	F

H = HIGH Voltage Level X = Don't Care L = LOW Voltage Level F = Floating Output

TABLE I

MSI INTERFACING RULES

Equivalent Input Unit Load		
HIGH	LOW	
- 1	1	
1	1	
1	1	
1	1	
2	2	
1	1	
12	1	
	1 1 1 1 2 1 1	

TABLE III

LOADING RULES (In Unit Loads)

			Fan-out		
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output	
Enable B	1	1	18- of	-	
Enable B	2	1 1	ialy roon—a	-	
B ₂ Out	3	e le l a la	1000	25	
B ₂ In	4	1 1	7 4 5 4 7	11 - I	
B ₁ Out	5	-	1000	25	
B ₁ In	6	1		_	
SE/Diff	7	1	-	-	
GND	8	_	-	_	
SE/Diff	9	1	-	1	
A ₁ In	10	1		-	
A ₁ Out	11	-	1000	25	
A ₂ In	12	1	-	_	
A ₂ Out	13	-	1000	25	
Enable A	14	1	-	_	
Enable A	15	1		_	
V _{CC}	16	-	-	_	

TABLE II

INPUT/OUTPUT INTERFACE CONDITIONS

APPLICATIONS

PARTY LINE DIFFERENTIAL OPERATION

PARTY LINE SINGLE-ENDED OPERATION

Metallization and Pad Layout

Am7838 · Am8838

Quad Unified Bus Transceiver

DISTINCTIVE CHARACTERISTICS

- 4 totally separate driver/receiver pairs per package.
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minimum bus noise immunity of 1.3V, 2V typ.
- Temperature insensitive receiver thresholds track bus logic
- 20μA typical bus terminal current with normal V_{CC} or with $V_{CC} = 0V$
- Open collector driver output allows wire-OR connection
- High-Speed

LIC-541

- Series 74 TTL compatible driver and disable inputs and receiver outputs
- Advanced Schottky processing

FUNCTIONAL DESCRIPTION

The Am7838 • Am8838 are quad high-speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when V_{CC} = 0V. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu s/V$.

B ₁	B ₂	B ₃	B ₄	
Ĭ	Ĭ	Ĭ	Ĭ	
15	12	1	4	
Vo	cc =	PIN	16	
	D =			

ORDERING INFORMATIO

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	DS7838J
Hermetic DIP	0°C to +70°C	DS8838J
Molded DIP	0°C to +70°C	DS8838N

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-543

ower Dissi	pation								600ml
perating 7	emperature Range								
Am7838							Ehill.	–55°C t	o +125°
Am8838	The second of				0.0000			0°C	to +70°
torage Ter	nperature Range					11000	AHANU.	-65°C 1	o +150°
	erature (Soldering, 10 sec.)	CONTRACTOR OF THE PARTY OF THE		-district	4	12011	Thy soot	May yell	300°
	d hw teknologist 12000 incongence	PET TREATMENT	isun' i	iced to have	revisor to me		ryl staryard	and was	
LEOTO	CAL CHARACTERISTICS								
- - - -	I AI (HARALIERISIII)								
		final.							
he follow	ing conditions apply unless otherwise speci		toma						
	ing conditions apply unless otherwise speci L) $T_A = -55^{\circ}C$ to $+125^{\circ}C$ V_{CCM}	ified: IIN = 4.50V IIN = 4.75V		AX = 5.50V AX = 5.25V					
he follow m7838 (M	ing conditions apply unless otherwise speci L) $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$ V_{CCM}	IIN = 4.50V	V _{CCM}						
The follow Am7838 (M Am8838 (Co Parameters	ing conditions apply unless otherwise speci L) $T_A = -55^{\circ}C$ to $+125^{\circ}C$ $V_{CC}M$ DM'L) $T_A = 0^{\circ}C$ to $+70^{\circ}C$ $V_{CC}M$	IIN = 4.50V	V _{CCM}	4X = 5.25V			Тур.		
The follow am7838 (Mam8838 (Co Parameters	ing conditions apply unless otherwise speci L) TA = -55°C to +125°C VCCM Description d Disable Inputs	IIN = 4.50V IIN = 4.75V	V _{CCM}	AX = 5.25V t Condition	s	Min.	Тур.		
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH	ing conditions apply unless otherwise specific. L) TA = -55°C to +125°C VCCM DESCRIPTION Description d Disable Inputs Logical "1" Input Voltage	IIN = 4.50V IIN = 4.75V	V _{CCM} A Tes	AX = 5.25V t Condition	s		Тур.		Units
The follow am7838 (Mam8838 (Co Parameters	ing conditions apply unless otherwise speci L) TA = -55°C to +125°C VCCM Description d Disable Inputs	IIN = 4.50V	V _{CCM} A Tes	AX = 5.25V t Condition	s	Min.	Тур.	Max.	Units
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH VIL	ing conditions apply unless otherwise specific. L) $T_A = -55^{\circ}C$ to $+125^{\circ}C$ VCCM $T_A = 0^{\circ}C$ to $+70^{\circ}C$ VCCM Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage	11N = 4.50V 11N = 4.75V	/ V _{CCM} A	AX = 5.25V t Condition	s	Min.	Тур.	Max.	Units Volts Volts
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH VIL II	ing conditions apply unless otherwise speci L) $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ V _{CC} M DM'L) $T_A = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$ V _{CC} M Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current	IIN = 4.50V IIN = 4.75V	Tes	AX = 5.25V t Condition	s	Min.	Тур.	Max.	Volts Volts mA
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH VIL II	ing conditions apply unless otherwise specicles $A_A = -55^{\circ}C$ to $+125^{\circ}C$ V _{CCM} $A_A = -55^{\circ}C$ to $+70^{\circ}C$ V _{CCM} $A_A = 0^{\circ}C$ To $+70^{\circ}C$ To	V V V I I	V _{CCM} Tes	AX = 5.25V t Condition	S	Min.	Тур.	Max. 0.8 1.0 40	Units Volts Volts mA μA
The follow Am7838 (MAm8838 (CC) Parameters Oriver an VIH VIL II IIH VCL	ing conditions apply unless otherwise specific. L) TA = -55°C to +125°C VCCM DM'L) TA = 0°C to +70°C VCCM Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current Logical "1" Input Current Logical "1" Input Current Logical "0" Input Current	V V V I I	Tes N = 5.5V N = 2.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V N = 0.4V	AX = 5.25V t Condition	S	Min.	Typ. (Note 1)	0.8 1.0 40 -1.6	Volts Volts MA
Parameters Oriver an VIH VIL III IIII VCL Oriver Ou	ing conditions apply unless otherwise specific conditions apply unless conditions apply unles	V V V IE T,	Tes IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C	AX = 5.25V t Condition	BUS = -12mA,	Min.	Typ. (Note 1)	0.8 1.0 40 -1.6	Volts Volts MA
Parameters Oriver an VIH VIL III VCL Oriver Ou	ing conditions apply unless otherwise specicle $A_{\rm C} = -55^{\circ}{\rm C}$ to $+125^{\circ}{\rm C}$ V _{CCM} $A_{\rm C} = -55^{\circ}{\rm C}$ to $+70^{\circ}{\rm C}$ V _{CCM} $A_{\rm C} = -55^{\circ}{\rm C}$ V _{CCM} $A_{\rm C} $	V V V V V V V V V V V V V V V V V V V	Tes IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C	AX = 5.25V t Condition $N = -12mA, I$ $= 2.0V, I_{BUS}$	BUS = -12mA,	Min.	Typ. (Note 1)	0.8 1.0 40 -1.6	Units Volts Volts MA μA mA Volts
Parameters Oriver an VIH VIL III IIII VCL Oriver Ou	ing conditions apply unless otherwise specific conditions apply unless conditions apply unles	V V V V V V V	IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C DIS = 0.8V, V _{IN} IN = 0.8V, V _{BUS}	AX = 5.25V t Condition N = -12mA, I = 2.0V, I _{BUS} = 4.0V, V _{CC}	BUS = -12mA, = 50mA = VMAX.	Min.	Typ. (Note 1) -1.0	0.8 1.0 40 -1.6 -1.5	Units Volts Volts MA μA MA Volts
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH VIL II IIH IIL VCL Driver Ou Volb IIHB IILB	ing conditions apply unless otherwise specic L) TA = -55°C to +125°C VCCM DM'L) TA = 0°C to +70°C VCCM Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current Logical "1" Input Current Logical "0" Input Current Input Diode Clamp Voltage Itput/Receiver Input Low Level Bus Voltage Maximum Bus Current Maximum Bus Current	V V V V V V V V V V V V V V V V V V V	Tes IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C DIS = 0.8V, V _{IN} IN = 0.8V, V _{BUS} IN = 0.8V, V _{BUS}	AX = 5.25V t Condition N = -12mA, I = 2.0V, IBUS = 4.0V, VCC = 4.0V, VCC	BUS = -12mA, = 50mA = VMAX.	Min.	Typ. (Note 1) -1.0 0.4 20	0.8 1.0 40 -1.6 -1.5	Units Volts Volts MA μA Volts Volts μA μA μA
The follow Am7838 (MAm8838 (CC) Parameters Oriver an VIH VIL III VIL VCL Oriver Out VOLB IIHB	ing conditions apply unless otherwise specic L) TA = -55°C to +125°C VCCM Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current Logical "1" Input Current Logical "0" Input Current Input Diode Clamp Voltage Itput/Receiver Input Low Level Bus Voltage Maximum Bus Current	V V V V V V V V V V V V V V V V V V V	IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C DIS = 0.8V, V _{IN} IN = 0.8V, V _{BUS}	AX = 5.25V t Condition N = -12mA, I = 2.0V, IBUS = 4.0V, VCC = 4.0V, VCC	BUS = -12mA, = 50mA = V _{MAX} . = 0V	Min. 2.0	Typ. (Note 1) -1.0 0.4 20 2.0	0.8 1.0 40 -1.6 -1.5	Units Volts Volts MA μA Volts Volts
The follow Am7838 (M Am8838 (CC Parameters Driver an VIH VIL II IIH IIL VCL Driver Ou Volb IIHB IILB	ing conditions apply unless otherwise specic L) TA = -55°C to +125°C VCCM DM'L) TA = 0°C to +70°C VCCM Description d Disable Inputs Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current Logical "1" Input Current Logical "0" Input Current Input Diode Clamp Voltage Itput/Receiver Input Low Level Bus Voltage Maximum Bus Current Maximum Bus Current	V V V V V V V V V V V V V V V V V V V	Tes IN = 5.5V IN = 2.4V IN = 0.4V DIS = -12mA, I _{IN} A = 25° C DIS = 0.8V, V _{IN} IN = 0.8V, V _{BUS} IN = 0.8V, V _{BUS}	AX = 5.25V t Condition N = -12mA, I = 2.0V, IBUS = 4.0V, VCC = 4.0V, VCC = 16mA	BUS = -12mA, 5 = 50mA = VMAX. = 0V Am7838	Min. 2.0	Typ. (Note 1) -1.0 0.4 20 2.0 2.25	0.8 1.0 40 -1.6 -1.5	Units Volts Volts MA μA Volts Volts μA μA μA

Receiver Output

VOH	Logical "1" Output Voltage	$V_{IN} = 0.8V$, $V_{BUS} = 0.5V$, $I_{OH} = -400\mu A$	2.4			Volts
VOL	Logical "0" Output Voltage	V _{IN} = 0.8V, V _{BUS} = 4.0V, I _{OL} = 16mA		0.25	0.4	Volts
Ios	Output Short Circuit Current	$V_{DIS} = 0.8V$, $V_{IN} = 0.8V$, $V_{BUS} = 0.5V$, $V_{OS} = 0V$, $V_{CC} = V_{MAX}$ (Note 3)	-18	anan	-55	mA
Icc	Supply Current	V _{DIS} = 0V, V _{IN} = 2.0V, (Per Package)		50	70	mA

AC CHARACTERISTICS (V_{CC} = 5.0V, T_A = 25°C unless otherwise specified)

10000000000000000000000000000000000000	Disable to Bus "1"	(Note 4)		19	30	ns	
		Disable to Bus "0"	(Note 4)		15	23	ns
		Driver Input to Bus "1"	(Note 4)		17	25	ns ns
t _{pd}	Propagation Delays	Driver Input to Bus "0"	(Note 4)	4-151	9.0	15	ns
*pa	Tomo Eller	Bus to Logical "1" Receiver Output	(Note 5)	w 5 88-	20	30	ns
	THE STATE OF THE S	Bus to Logical "0" Receiver Output	(Note 6)	0100	18	30	ns

- Notes: 1. Typical values are for TA = 25°C and V_{CC} = 5.0V.

 2. All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max. or min. on absolute value basis.
 - 3. Only one output at a time should be shorted.
 - 4. 91 Ω from bus pin to V_{CC} and 200 Ω from bus pin to ground, C_{LOAD} = 15pF total. Measured from V_{IN} = 1.5V to V_{BUS} = 1.5V, V_{IN} = 0V to
 - 5. Fan-out of 10 load, C_{LOAD} = 15pF total. Measured from V_{IN} = 1.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3.0V pulse.
 6. Fan-out of 10 load, C_{LOAD} = 15pF total. Measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3.0V pulse.

Distinctive Characteristics

- Advanced Schottky technology
- 40mA driver sink current
- Three-state outputs on driver and receiver
- PNP inputs

- 20ns max. driver propagation delay
- 18ns max. receiver propagation delay
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8T26 is a high speed bus transceiver consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.

One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B/E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable allows input data to be transferred onto the data bus.

A HIGH on the receiver enable (R/E) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

V_{CC} = Pin 16 GND = Pin 8

LIC-544

LOGIC DIAGRAM

LIC-545

ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
Molded DIP	0°C to +75°C	N8T26B
Hermetic DIP	0°C to +75°C	N8T26F
Dice	0°C to +75°C	AM8T26XC
Hermetic DIP	-55°C to +125°C	S8T26F
Dice	-55°C to +125°C	AM8T26XN

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-546

4

Am8T26

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

N8T26	$T_A = 0^{\circ}C \text{ to } +75^{\circ}C$	V _{CC} = 5.0V ±5%
S8T26	$T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	$V_{CC} = 5.0V \pm 10\%$

arameters	Description	Test Conditions (No	e 1)	Min.	Typ. (Note 2)	Max.	Units
V _{OH}	Driver Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -10mA V _{IN} = V _{IH} or V _{IL}		2.6	3.1	ance trute. To be transfe	Volts
VOL	Driver Output LOW Voltage	V _{CC} = MIN., I _{OL} = 40mA V _{IN} = V _{IH} or V _{IL}	rces the fou	a Jugai (3	S I sklans no	0.5	Volts
VOH	Receiver Output HIGH Voltage	V _{CC} = MIN. I _{OH} = -	2mA, COM'L	2.6	3.1	uldam ham	Volts
VOH	Neceiver Output mon voltage	VIN = VIH or VIL IOH = -	1mA, MIL	2.4	compact the	inen edt pi	VOILS
VOL	Receiver Output LOW Voltage	V _{CC} = MIN., I _{OL} = -16mA V _{IN} = V _{IH} or V _{IL}	V _{CC} = MIN., I _{OL} = -16mA		uni glasna se	0.5	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0	Deviseb at my	delive funday	Volts
V	Input LOW Level	Guaranteed input logical LOV	V COM'L			0.85	Volts
VIL	Input LOW Level	voltage for all inputs	MIL			0.80	VOILS
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -5mA				-1.0	Volts
I _{IL} (Note 3)	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.4V				-0.2	mA
I _{IH} (Note 3)	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.25V				25	μΑ
	Output Short Circuit Current	V _{CC} = MAX., V _{OUT} = 0.0V	Driver	-50	(Ball	-150	^
ISC	(Note 4)	VCC - WAX., VOUT - 0.0V	Receiver	-30	2-11/S	-75	mA
Icc	Power Supply Current	V _{CC} = MAX.				87	mA
10	Bus Leakage Current with Driver Off	V _{CC} = MAX., V _{BUS} = 2.6V V _{IN} = V _{IH} or V _{IL}				100	μА

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).

4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics (TA = +25°C, VCC = 5.0V)

arameters	Description	Test Conditions		Тур.	Max.	Units
tPLH	Driver Input to Bus	Figure 1		16	20	
tPHL	Driver input to bus	Figure 1		16	20	ns
tpLH	B D 0	Figure 2	ex fact	13	18	27
tPHL	Bus to Receiver Output	Figure 2	- Santa	6	10	ns
tZL		TENTE MARKETERS	725	29 38	38	s 20
tLZ	Driver Enable to Bus	Figure 3		35	43	ns
tZL	Receiver Enable to		20	30		
tLZ	Receiver Output	Figure 4		10	17	ns

DEFINITION OF FUNCTIONAL TERMS

Do, D1, D2, D3 The four driver inputs.

 B_0 , B_1 , B_2 , B_3 The four driver outputs and receiver inputs (data is inverted).

 R_0 , R_1 , R_2 , R_3 The four receiver outputs. Data from the bus is inverted while data from the driver inputs is non-inverted.

B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.

R/E Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

LOADING RULES (In Unit Loads)

		LOW	Fan-out		
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output	
R/E	1	1/8	-	_	
R ₀	2		50	10	
В0	3	1/16	250	25	
D ₀	4	1/8			
R ₁	5		50	10	
В1	6	1/16	250	25	
D ₁	7	1/8		-	
GND	8	- 1111	-	-	
D ₂	9	1/8			
B ₂	10	1/16	250	25	
R ₂	11		50	10	
D ₃	12	1/8	-	-	
В3	13	1/16	250	25	
R ₃	14		50	10	
B/E	15	1/8	_	-	
Vcc	16	4 - 11-		11-	

A TTL Unit Load is defined as -1.6 mA measured at 0.4V LOW and $40 \mu A$ measured at 2.4V HIGH.

DRIVER FUNCTION TABLE

INPUTS		OUTPUT
B/E	Di	Bi
L	X	Z
Н	L	Н
H	Н	L

L = LOW H = HIGH X = Don't Care Z = High Impedance

i = 0, 1, 2, or 3

RECEIVER FUNCTION TABLE

INPUTS		OUTPUT
R/E	Bi	Ri
Н	X	Z
L	SPY L P	Н
L	Н	L

L = LOW H = HIGH X = Don't Care Z = High Impedance

i = 0, 1, 2, or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

AC TEST CIRCUITS AND WAVEFORMS PROPAGATION DELAY (Data In to Bus) 2.6V Q 9 V_{CC} = 5.0V Q 2.6V B₁ B/E 0 R/E B₂ - tPLH -0 Do B3 -0 OUTPUT PULSE GENERATOR 0 -0 D_2 INPUT PULSE: $t_r = t_f = 5 ns (10\% to 90\%)$ freq = 10MHz (50% duty cycle) Amplitude = 2.6V R₂ D3 -0 R₃ LIC-549 LIC-548 LIC-550 Figure 1 PROPAGATION DELAY (Bus to Receiver Out) 9 VCC = 5.0V INPUT 0 PULSE GENERATOR R/E -0 - tPLH Q 2.6V Do 0 OUTPUT D₁ 0 92Ω € 0 INPUT PULSE: t_r = t_f = 5ns (10% to 90%) freq = 10MHz (50% duty cycle) Amplitude = 2.6V D3 **\$**1.3kΩ LIC-552 LIC-551 LIC-553 Figure 2 PROPAGATION DELAY (Bus Enable to Bus Output) Q v_{cc} 2.6V Q INPUT tzL--0 0 OUTPUT -0 0 D₂ 0 -0 LIC-555 干 LIC-554 LIC-556 Figure 3 PROPAGATION DELAY. (Receive Enable to Receive Output) Vcc Q INPUT Q 5.0V T_{ZL} B₂ D₀ B3 D₁ Ro OUTPUT **₹** 2.4kΩ 240Ω ₹ D₂ D₃ -0 INPUT PULSE $t_{\rm r}=t_{\rm f}=5{\rm ns}~(10\%~{\rm to}~90\%)$ freq = 5MHz (50% duty cycle) Amplitude = 2.6V 5KΩ (PROBE) LIC-558 LIC-557 LIC-559 Figure 4

APPLICATION

LIC-560

Metallization and Pad Layout

DIE SIZE 0.063" X 0.082"

Am8T26A·Am8T28

Schottky Three-State Quad Bus Driver/Receiver

Distinctive Characteristics

- Advanced Schottky technology
- 48mA driver sink current
- Three-state outputs on driver and reciever
- PNP inputs
- Am8T26A has inverting outputs
- Am8T28 has non-inverting outputs

- Driver propagation delay 14ns max. for 8T26A; 17ns max, for 8T28
- Receiver propagation delay 14ns max. for 8T26A; 17ns max, for 8T28
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8T26A/Am8T28 are high speed bus transceivers consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.

One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B/E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable allows input data to be transferred onto the data bus.

A HIGH on the receiver enable (R/E) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

V_{CC} = Pin 16 GND = Pin 8

LIC-561

LOGIC DIAGRAMS

Am8T26A Inverting Output (Three-State)

Am8T28 Non-Inverting Output (Three-State)

ORDERING INFORMATION

Package Type	Temperature Range	Am8T26A Order Number	Am8T28 Order Number
Molded DIP	0°C to +75°C	N8T26AB	N8T28B
Hermetic DIP	0°C to +75°C	N8T26AF	N8T28F
Dice	0°C to +75°C	AM8T26AXC	AM8T28XC
Hermetic DIP	-55°C to +125°C	S8T26AF	S8T28F
Dice	-55°C to +125°C	AM8T26AXM	AM8T28XM

(Top View)

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	−0.5V to +7V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.
DC Input Voltage	-0.5V to +5.5V
DC Output Current, Into Outputs (Receiver)	30mA
DC Output Current, Into Outputs (BUS)	Ample and the second second profile that the second
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:

N8T26A, N8T28 $T_A = 0^{\circ}C \text{ to } +75^{\circ}C (COM'L)$ MIN. = 4.75 V MAX. = 5.25 V

S8T26A, S8T28 $T_A = -55^{\circ}C$ to $+125^{\circ}C$ (MIL) MIN. = 4.50 V MAX. = 5.50 V

arameters	Description		Test Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
Driver							
IIL	Low Level Input Current		V _{IN} = 0.4 V			-200	μΑ
IIL	Low Level Input Current (Disabled)		V _{IN} = 0.4 V			-25	μА
I _{IH}	High Level Input Current (DIN, DE)		VIN = VCCMAX.		7	25	μΑ
VOL	Low Level Output Voltage	miletari ent	I _{OUT} = 48 mA (Note 5)			0.5	Volts
V _{OH}	High Level Output Voltage	W-IS 20 URGOU	I _{OUT} = -10 mA, V _{CC} = V _{CC} MIN.(Note 6)	2.4			Volts
Ios	Short Circuit Output Current		V _{OUT} = 0 V, V _{CC} = V _{CC} MAX.(Note 4)	-50	Tankan.	-150	mA
Receiver							
I _{IL}	Low Level Input Current	REVISO	V _{IN} = 0.4 V	MOLTON	HER FUR	-200	μΑ
TiH	High Level Input Current (RE)		VIN = VCCMAX.			25	μΑ
VOL	Low Level Output Voltage		I _{OUT} = 20 mA (Note 5)	ST8mA		0.5	Volts
VOH	VOH High Level Output Voltage	9-0-0	I _{OUT} = -100 μA, V _{CC} = 5.0 V	3.5			Volts
•ОН	Aigh Level Output Voltage		I _{OUT} = -2.0 mA (Note 6)	2.4		1 348	VOILS
Ios	Short Circuit Output Current		V _{OUT} = 0 V, V _{CC} = V _{CC} MAX.	-30		-75	mA
oth Drive	er and Receiver						MF-I
V _{TL}	Low Level Input Threshold Vo	oltage		0.85			Volts
V _{TH}	High Level Input Threshold V	oltage			100	2.0	Volts
10	Low Level Output Off Leakag	e Current	V _{OUT} = 0.5 V	mili	netl = X	-100	μΑ
.0	High Level Output Off Leakag	e Current	V _{OUT} = 2.4 V	easybagse)	n up in security	100	μΑ
VI	Input Clamp Voltage		I _{IN} = -12mA			-1.0	Volts
PWR/	Bounes/Coursest Consumenting	Am8T26A	V _{CC} = V _{CC} MAX.			457/87	mW/m
ICC Power/Current Consumption	Am8T28	Vcc = VccMAX.	ATT DOME		578/110	mw/m	

Switching Characteristics (T _A = +25°C, V _{CC} = 5.0 V)		Am8T26A			Am8T28				
Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Тур.	Max.	Units
tPLH	Driver Input to Bus	Figure 1		10	14		13	17	
tPHL				10	14		13	17	ns
tPLH	Bus to Receiver Output	Figure 2		9.0	14		12	17	ns
tPHL	Bus to Neceiver Output			6.0	14		9.0	17	115
tZL	Driver Enable to Bus	Figure 3		19	25		21	28	
tLZ		Figure 3		15	20		18	23	ns
tZL	Receiver Enable to Receiver Output			15	20		18	23	ns
tLZ		Figure 4		10	15		13	18	1 115

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at $V_{\rm CC}$ = 5.0 V, 25°C ambient and maximum loading. 3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).

4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

5. Output sink current is supplied through a resistor to VCC.

6. Measurements apply to each output and the associated data input independently.

(data is inverted).

R₀, R₁, R₂, R₃ The four receiver outputs. Data from the bus is inverted while data from the driver inputs is non-inverted.

B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.

 $\mbox{R/E}$ $\,$ Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

		LUVV	ı air-uut			
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW		
R/E	1	1/8	- Accord	A VICTORY		
R ₀	2	an extension	50	10		
В0	3	1/16	250	25		
D ₀	4	1/8		A		
R ₁	5		50	10		
B ₁	6	1/16	250	25		
D ₁	7	1/8	-			
GND	8	aing Luan	AMILIA	JIM LAS		
D ₂	9	1/8	ORIGINAL III	una bille		
B ₂	10	1/16	250	25		
R ₂	11	and som	50	10		
D ₃	12	1/8	-	_		
В3	13	1/16	250	25		
R ₃	14		50	10		
B/E	15	1/8	-			
V _{CC}	16		_	_		

A TTL Unit Load is defined as -1.6mA measured at 0.4V LOW and $40\mu\text{A}$ measured at 2.4V HIGH.

DRIVER FUNCTION TABLE

INPUTS		S Am8T26A OUTPUT	
B/E	Di	Bi	Bi
L	X	Z	Z
Н	L	Н	L
Н	Н	L	Н

L = LOW

X = Don't Care Z = High Impedance

H = HIGH

i = 0, 1, 2, or 3

RECEIVER FUNCTION TABLE

INPUTS		Am8T26A OUTPUT	Am8T28
R/E	Bi	Ri	Ri
Н	X	Z	Z
L	L	н	L
L	Н	L	Н

L = LOW H = HIGH X = Don't Care

Z = High Impedance

i = 0, 1, 2, or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

Am9614

Dual Differential Line Driver

Distinctive Characteristics

- Dual differential line driver with complementary outputs
- Single 5-volt supply
- DTL, TTL compatible

- Short-circuit protected outputs
- Able to drive 50Ω terminated transmission lines
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am9614 is a DTL, TTL compatible line driver operating off a single 5V supply.

The Am9614 is designed to drive either differential or single-ended, back-matched or terminated transmission lines. The device has the active pull-down and active pull-up circuits split and brought out to adjacent pins. This allows multiplex operation (wire-AND) at the driving end in either the single-ended mode via the uncommitted collector or in the differential mode by use of the active pull-ups on one side and the uncommitted collectors on the other. The complementary outputs of the Am9614 give great application flexibility.

The Am9614 has short-circuit protected active pull-ups, and incorporates input clamp diodes to reduce the effect of line transients, and can drive into 50Ω terminated transmission lines.

ODDEDING	INICODALATION
UNDERING	INFORMATION

Temperature Range		Order Number
-55°C to +125°C		9614DM
-55°C to +125°C		9614FM
-55°C to +125°C		AM9614XM
0° C to $+70^{\circ}$ C		9614DC
0° C to $+70^{\circ}$ C		9614PC
0°C to +70°C		AM9614XC
	-55°C to +125°C -55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C	-55°C to +125°C -55°C to +125°C -55°C to +125°C 0°C to +70°C 0°C to +70°C

Am9614

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5V to +5.5V
Output Current, Into Ouputs	200mA
DC Input Current	Note 1

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

9614XM (MIL) 9614XC (COM'L) $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$ $T_A = 0^{\circ} \text{C to } +70^{\circ} \text{C}$ V_{CC}MIN. = 4.50V V_{CC}MIN. = 4.75V V_{CC}MAX. = 5.50V V_{CC}MAX. = 5.25V o Single 5 volt supply

DC Characteristics (Note 2)

			TA MIN.			+25°C		TAI			
arameters	Description	Test	Conditions	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
v _{OH}	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -10mA	tiat cup	2.4	on the	2.4	3.2	evitas	2.4	and Ac	Volts
VOL	Output LOW Voltage	V _{CC} = MIN.,	MIL	SALIMAN	0.4	ito esta it resise	0.2	0.4	A thou	0.4	Volts
VOL	Output LOW Voltage	I _{OL} = 40mA	COM'L	Series VI	0.45	e hoto	0.2	0.45	de and	0.45	VOILS
VIH	Input HIGH Voltage	V MIN	MIL	2.0	the adr.	1.7	1.5	ib gmi	1.4	oratus i	Volts
VIH	input man voltage	VCC - WITH.	COM'L GO	1.9	of Cade	1.8	1.5	of aviat	1.6	ne ,zjo	VOIL
VIL Input LOW Voltage	Input I OW Voltage	VNAAY	MIL		0.8		1.3	0.9		0.8	Volt
VIL	Input LOW Voltage	VCC - IVIAX.	COM'L		0.85	1940	1.3	0.85		0.85	VOIL
		101	V _F = 0.4V, MIL	EL LINE	-1.6		-1.1	-1.1		-1.6	
1 _F	Input Load Current	put Load Current V _{CC} = MAX.	V _F = 0.45V, COM'L		-1.6		-1.0	-1.6		-1.6	mA
IR	Reverse Input Current	V _{CC} = MAX. V _R = 4.5V		-Ko	60	1813		60		60	μА
I _{SC}	Short Circuit Current	V _{CC} = MAX., V _O = 0V			, a	-40	-90	-120	6		mA
		V _{CC} = MAX., Inputs = 0V		100	48.7	11	33	48.7		48.7	mA
IPD	Total Country Total Countr		IIIA								
		Inputs = 0V	MIL				46	65.7		0.4 0.45 0.85 -1.6 -1.6	
1	Reverse Input Current VCC = MA VR = 4.5V Short Circuit Current VCC = MA VO = 0V VCC = MA Inputs = 0 VCC = 7.6 Inputs = 0 VCC = MA VCC = MA VCC = MA VCC = MA VCC = MA VCC = MA	Vac = MAX	V _{CEX} = 12V, MIL		100	por mine	10	100		200	
ICEX	neverse Output Current	VCC - IVIAX	V _{CEX} = 5.25V, COM'L		100		10	100		200	μΑ
V _{OLC}	Output Low Clamp Voltage	V _{CC} = MAX., I _{OLC} = -40mA	Mary and American	李		5.0	-0.8	-1.5			Volt
VIC	Input Clamp Voltage	V _{CC} = MIN., I _{IC} = -12mA	House a country				-1.0	-1.5			Volt

Switching Characteristics (T_A = 25°C unless otherwise specified)

		9614XM			9614XC				
Parameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
t _{pd+}	Turn Off Delay	V _{CC} = 5.0V, C ₁ = 30pF,		14	20	1074 of 0	14	30	ns
₹pd—	Turn On Delay	V _M = 1.5V, Refer to Fig. 1	91	18	20	C to +70° (18	30	ns

Notes: 1. Maximum current defined by DC input voltage.

^{2.} For conditions shown as MIN. or MAX, use the appropriate value specified under electrical characteristics for the applicable device type or

4

TYPICAL ELECTRICAL CHARACTERISTICS

Output Low Current Versus
Output Low Voltage

TA = 25°C
VCC = 5.5 V
VCC = 5.5 V
VCC = 4.5 V

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

VOL - OUTPUT VOLTAGE - VOLTS

LIC-582

Am9614

USERS NOTES

DIFFERENTIAL LINES. The Am9614 dual differential line driver can be used with the Am9615 dual differential line receiver to form an interconnection system which can tolerate extremely noisy environments and interconnect equipments where there is a ±15V difference in voltage level of the equipment grounds. Two wires are used for each channel to form a balanced transmission line. This method of sending data between equipments offers extremely high protection from common mode noise and also gives excellent DC noise margins.

MATCHING. Transmission lines can be matched in a number of ways. The most widely used method is to terminate the line at the receiving end in its characteristic impedance. This impedance is connected across the input terminals of the receiver. A 130Ω resistor is included at the + input of each receiver for matching twisted pairs and this resistor, or if the characteristic impedance is not 130Ω , a discrete resistor, is connected between the two receiver inputs. This method of matching causes a DC component in the signal. Power is dissipated in the resistor and the signal is attenuated. The DC component can be effectively removed by connecting a large capacitor in series with the terminating resistor.

The transmission line can also be terminated through the receiver power supply by placing equal value resistors from the + input of the receiver to V_{CC} and from the - input to

ground. This method again has the disadvantage that a DC signal component exists, attenuation occurs, and power is dissipated in the terminating resistors but it does allow multiplexed operation in the balanced differential mode.

An alternate method to matching at the receiver is to back match at the driver. A resistor is placed in series with the line so that the signal from the driver which is reflected at the high input impedance of the receiver is absorbed at the driver. This method does not have a DC component and therefore no attenuation occurs and power is not dissipated in the resistor. For balanced differential driving a resistor is required in series with each line. The table below shows the value of each matching resistor required for lines of different characteristic impedance.

MULTIPLEXING. When operating in the balanced differential mode the Am9614 driver can be OR tied with other devices to allow multiplexed operation. The open collector NAND outputs are connected together and the active pull-up AND outputs are connected together. Selection of the active driver can be made by two of the three logic inputs on the driver. Multiplexed operation can only be performed with the lines terminated to the appropriate voltage level at the driver so that this method has a DC component and power is dissipated in the terminating resistors.

TYPICAL DC CHARACTERISTICS FOR MATCHING TO TRANSMISSION LINE

BACK MATCHING TABLE

7	R _M (ohms)
Zo	Differential
50	12
75	24
92	33
100	36
130	54
300	140
600	290

LOADING RULES

			Fanout				
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output			
APU A	1	- 1	166	-			
Output A	2			25			
Output A	3	_	_	25			
APU A	4	_	166	_			
Input A	5	1	-				
Input A	6	1	_	_			
Input A	7	1	_	_			
GND	8	_	_	_			
Input B	9	1	_	_			
Input B	10	1		_			
Input B	11	1	_	-			
APU B	12		166	_			
Output B	13	4	_	25			
Output B	14	_	_	25			
APU B	15		166	-			
V _{CC}	16	and the same	-	-			

LIC-583

SWITCHING CIRCUITS AND WAVEFORMS

LIC-584

$$\begin{split} & \text{INPUT PULSE} \\ & \text{Frequency} = 500 \text{ kHz} \\ & \text{Amplitude} = 3.0 \pm 0.1 \text{ V} \\ & \text{Pulse Width} = 110 \pm 10 \text{ ns} \\ & t_r = t_f \leq 5.0 \text{ ns} \end{split}$$

LIC-585

APPLICATION

LIC-586

Metallization and Pad Layout

Distinctive Characteristics

- Conforms to EIA RS-232C and CCITT V.24 specifications and/or MIL-STD-188C
- Short circuit protected output
- Internal slew rate limiting

- Supply independent output swing
- 100% reliability assurance testing in compliance with MIL-STD-883
- TTL/DTL compatible input

FUNCTIONAL DESCRIPTION

The Am9616 is a triple line driver specifically designed to meet the EIA RS-232C and CCITT V.24 and/or MIL-STD-188C electrical interface requirements. Each driver accepts DTL/TTL logic levels and converts them to EIA/CCITT levels for data transmission between equipment. The output slew rate of each driver is internally limited, but can be lowered by an external capacitor. All outputs are short circuit protected, and protected against fault conditions specified in RS-232C. A HIGH logic level on the inhibit input forces the driver output to Volor mark state.

The Am9616EXC and Am9616XM meets the requirements of MIL-STD-188C and EIA RS-232C. The Am9616XC conforms to the requirements of EIA RS-232C.

(One Driver Shown)

Am9616 ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	9616DM
Dice	-55°C to +125°C	AM9616XM
Hermetic DIP	0°C to +75°C	9616EDC
Hermetic DIP	0°C to +75°C	9616DC
Molded DIP	0° C to $+75^{\circ}$ C	9616EPC
Molded DIP	0°C to +75°C	9616PC
Dice	0° C to $+75^{\circ}$ C	AM9616XC

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-5

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	AMACTEMISTICS BIANS 232-C	-65°C to +150°C
Temperature (Ambient) Under Bias	NOTE FOREY OF STORY OF THE STORY	0°C to +75°C
Supply Voltage to Ground Potential VCC VEE	STICS OF ER OPERATING TEMPERATURE RANGE Per-liptor Test Conduines	+15 V -15 V
DC Voltage Applied to Outputs	ASSOCIATION AND ASSOCIATION OF THE PROPERTY OF	±15 V
DC Input Voltage	BELOW William 7 - 2.0 V	-1.5 V to +6 V
Lead Temperature (Soldering, 30 sec.)	aparlov RADE in grand and a best of the part of the pa	300°C

Am9616XM AND Am9616EXC RS232-C AND MIL-STD-188C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted: $\begin{array}{lll} \text{Am9616XM (MIL)} & \text{T}_{A} = -55^{\circ}\text{C to +125^{\circ}\text{C}} \\ \text{Am9616EXC (COM'L)} & \text{T}_{A} = 0^{\circ}\text{C to +70^{\circ}\text{C}} \\ \text{V}_{CC} = +12\text{V} \pm 10\%, \text{V}_{EE} = -12\text{V} \pm 10\%, \text{R}_{L} = 3k\Omega \end{array}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	awodibe	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
V _{OH}	Output HIGH Voltage	The part of the last	ORIF IS	5.0	6.0	7.0	Volts
VOL	Output LOW Voltage			-7.0	-6.0	-5.0	Volts
7917	Ripple Rejection	Power Supply	Ripple = 2.4V _{D-D} , f = 400Hz		0.25		% of Vou
V _{OH} to	Output HIGH Voltage to Output LOW Voltage, Magnitude Matching Error	TVPICAL CHARACTERISTICS				±10	%
ROUT	Output Resistance, Power On	$R_L = 6k\Omega, \Delta I$	L = 10mA	3 1 14 11 11	75		Ω
I _{SC+}	Positive Output Short Circuit Current	President and the second secon		J TECHNO	22	100	mA
I _{SC} -	Negative Output Short Circuit Current			-100	-22		mA
VIH	Input HIGH Voltage			2.0	V 18 6		Volts
VIL	Input LOW Voltage	60万円 72巻		-	a sample T	0.8	Volts
Los	Input HIGH Current	V _{IN} = 2.4V			- e 3	40	μΑ
I _{IH}	Input HIGH Current	V _{IN} = 5.5V			140.9	1.0	mA
IIL	Input LOW Current	V _{IN} = 0.4V		-1.6			mA
R _{OUT}	Output Resistance, Power Off	All Inputs and	-2.0V ≤ V _{OUT} ≤ +2.0V All Inputs and Supply Pins Grounded				Ω
	Basisian Company	T	V _{IN1} = V _{IN2} = V _{INHIBIT} = 0.8V		15	22	
I ₊ Po	Positive Supply Current	1 A = +25°C	V _{IN1} = V _{IN2} = V _{INHIBIT} = 2.0V	250 1/0 40	7.5	13	mA
	Nanativa Supply Current	T - 105°0	V _{IN1} = V _{IN2} = V _{INHIBIT} = 0.8V	iy Tuski -	0	-1	^
1_	Negative Supply Current	$T_A = +25^{\circ}C$ $V_{IN1} = V_{IN2} = V_{INHIBIT} = 0.8V$ $V_{IN1} = V_{IN2} = V_{INHIBIT} = 2.0V$			-15	-22	mA

AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE OF TA = 0°C TO 70°C (Note 2)

arameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
	Positive Slew Rate	$0pF \le C_L \le 2500pF$ $R_L \ge 3k\Omega$	4.0	15	30	V/μs
	Negative Slew Rate	$0pF \le C_L \le 2500pF$ $R_L \ge 3kΩ$	-30	-15	-4.0	V/μs
tpLH	Propagation Delay Time	No Load		320		ns
tPHL	Propagation Delay Time	No Load		320		ns

Notes: 1. Typical values are at V_{CC} = 12V, V_{EE} = -12V, T_A = 25°C.

2. An external capacitor may be needed to meet signal wave shaping requirements of MIL-STD-188C at the applicable modulation rate.

Am9616XC

ELECTRICAL CHARACTERISTICS

EIA RS-232-C

The Following Conditions Apply Unless Otherwise Noted: $T_A = 0^{\circ} C$ to +75° C, $V_{CC} = +12 V \pm 10\%$, $V_{EE} = -12 V \pm 10\%$, $R_L = 3 k \Omega$

DC CHARACTER	RISTICS OVER OPER	ATING TEMPERATURE RANGE
Parameters	Description	Test Conditions

arameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units
V _{OH}	Output HIGH Voltage	V_{IN_1} or $V_{IN_2} = V_{INHIBIT} = 0.8 V$	+5.0	+6.0	+7.0	Volts
VOL	Output LOW Voltage	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 2.0 V$	-7.0	-6.0	-5.0	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage	2.0	Soldering	enumera	Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage			0.8	Volts
IIL	Input LOW Current	$V_{1N_1} = V_{1N_2} = 0.4 \text{ V or } V_{1NH1B1T} = 0.4 \text{ V}$		-1.2	-1.6	mA
I _{IH}	Input HIGH Current	$V_{IN_1} = V_{IN_2} = 2.4 \text{ V or } V_{INHIBIT} = 2.4 \text{ V}$			40	μА
I _{SC}	Output Short Circuit Current (Positive)	$R_L = 0 \Omega$ V_{IN_1} or $V_{IN_2} = V_{INHIBIT} = 0.8 V$	-8	-17	-30	mA
I _{SE}	Output Short Circuit Current (Negative)	$R_L = 0 \Omega$ V_{IN_1} or $V_{IN_2} = V_{INHIBIT} = 2.0 V$		+17	+30	mA
Icc	Total Positive Supply Current	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 0.8 V$		15	22	mA
	Total Control Copply Culture	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 2.0 V$	PINA I	7.5	13	
I _{EE}	Total Negative Supply Current	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 0.8 V$	1 - 64 D P8	0	-1	mA
.EE	. Star regards supply outlieft	$V_{IN_1} = V_{IN_2} = V_{INHIBIT} = 2.0 V$	75+645	-15	-22	u salas

AC CHARACTERISTICS

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
tPLH	Delay from Input LOW to Output HIGH	C ₁ = 15 pF, R ₁ = ∞	100	320	650	ns
tPHL	Delay from Input HIGH to Output LOW	С[- 15 рг, н[- ш		320	650	ns
allo v	Positive Slew Rate	0.55 < 0 < 2500 = 5 D > 2100	4.0	15	30	V/µs
(NO.	Negative Slew Rate	$0 \text{ pF} \le C_L \le 2500 \text{ pF}, R_L \ge 3 \text{ k}\Omega$	-30	-15	-4.0	V/µs

TYPICAL CHARACTERISTICS

Transfer Characteristics VOLTS V_{CC} = +12V V_{EE} = -12V VOLTAGE OUTPUT 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Vin - INPUT VOLTAGE - VOLTS

3kΩ

SWITCHING TEST CIRCUIT

Note: Omit V_{IN2} for channel "C".

VOLTAGE WAVEFORMS

Pulse Generator Rise Time = 10 ± 5 ns.

LIC-592

Metallization and Pad Layout

DIE SIZE 0,069" X 0,103"

Am9617

RS-232C Line Receiver

Distinctive Characteristics

- Compatible with EIA RS-232C and CCITT V24 specifications.
- Input signal range ±30 volts
- Available in commercial and military temperature range
- Variable hysteresis
- 100% reliability assurance testing in compliance with MIL-STD-883
- Includes response control input and built-in hysteresis.

FUNCTIONAL DESCRIPTION

The Am9617 is a triple line receiver that meets both the CCITT TV24 and EIA RS-232C specifications. Each receiver has single data input that can accept signal swings of up to $\pm 30V$. The output of each receiver is TTL/DTL compatible, and includes a $2k\Omega$ resistor pull-up to $V_{CC}.$ Each receiver has a hysteresis input so that the hysteresis can be controlled by means of a series resistor between the HYST input and a response control input RESP.

Because of this hysteresis in switching thresholds, the device can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am9616.

Package Temperature Order Type Range Number -55°C to +125°C Hermetic DIP 9617DM 0°C to +75°C Hermetic DIP 9617DC 0°C to +75°C Molded DIP 9617PC -55°C to +125°C Dice AM9617XM Dice 0°C to +75°C AM9617XC

ORDERING INFORMATION

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +175°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	$-0.5 \text{ V to } + \text{V}_{\text{CC}} \text{ max.}$
Input Signal Range	-30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current	Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

Am9617XM (MIL) $T_A = -55^{\circ}\text{C}$ to +125° C V_{CC} MIN. = 4.50V V_{CC} MAX. = 5.50V Am9617XC (COM'L) $T_A = 0^{\circ}\text{C}$ to +70° C V_{CC} MIN. = 4.75V V_{CC} MAX. = 5.25V Response Control Pin Open Unless Otherwise Specified

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
R _{IN}	Input Resistance	V _{IN} = ± 25V	6 K	3.0	4.0	7.0	kΩ
VIN	Open Circuit Input Voltage		7-4		0.2	2.0	Volts
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.2$ mA, $V_{CC} = Min$. $V_{IN} = -3.0$ V, 0V or Open Circ	uit	2.4	3.0		Volts
V _{OL}	Output LOW Voltage	I _{OL} = 8mA, V _{CC} = Min. V _{IN} = +3.0V			0.3	0.4	Volts
100 010	and Basponse Pine.	cinnical between Oncount basimin	−55° C	2.3	of the total	3.1	
			0°C	1.9		2.5	
VIH	Input HIGH Level Threshold	V _{OL} = 0.45V, V _{CC} = 5.0V	25°C	1.75	2.0	2.25	Volts
	Rp = Otapun Threshold Voltage Adjustment	Resp-Hyst Connected	75°C	1.45		1.90	
		toemstujkA sessio	125°C	1.20	Journal Current	1.65	
	0.0		−55° C	0.85		1.65	
			0°C	0.75		1.40	
VIL	Input LOW Level Threshold	V _{OH} = 2.5V, V _{CC} = 5.0V	25°C	0.75	0.95	1.25	Volts
		Resp-Hyst Connected	75°C	0.60		1.10	
			125°C	0.50	PALE	0.95	
	La Paris de La Carta de la Car		25°C	0.4	1.0	1.2	8
V _{IO}	Open Loop Input Threshold			0.4		1.4	Volts
			25° C	-3.6		-8.0	
IIF	Input LOW Current	V _{IN} = -25V	0.5-0.6	253 81	0.810 0.8-	-8.3	mA
		V-BSATJUV RUMI-IN	25°C	3.6	BALLOV FURN	8.0	
IH	Input HIGH Current	V _{IN} = +25V	Yale III			8.3	mA
Isc	Output Short Circuit Current	V _{IN} = 0.0V, V _{OUT} = 0.0V	1		2.5		mA
Icc	Power Supply Current	V _{IN} = 5.0V, V _{CC} = Max.	isie .	0-0	12	18	mA

Notes: 1. Typical Limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

2. The input threshold margin for the device is greater than the voltage computed as the V_{T+}-V_T value. For the minimum value see the input threshold margin versus temperature graph.

Switching Characteristics (TA = 25°C, response control pin open, CL = 15 pF)

arameters	Definition	Test Conditions	Min.	Тур.	Max.	Units
t _{pd+}	Delay from Input LOW to Output HIGH	$R_L = 3.9 \text{ k}\Omega$		25	85	ns
tpd-	Delay from Input HIGH to Output LOW	R _L = 390 Ω		25	50	ns
tr	Output Rise Time (10% to 90%)	R _L = 3.9 kΩ	0.00	120	175	ns
tf	Output Fall Time (90% to 10%)	R _L ≠ 390 Ω	1917	15	40	ns

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

LIC-596

Note: Wiring capacitance should be minimized between Outputs, Hysterisis and Response Pins.

LIC-597

TYPICAL CHARACTERISTICS

VIN O-

LIC-598

SWITCHING TIME TEST CIRCUIT & WAVEFORMS

LIC-599

NOTE: Wiring capacitance should be minimized between Outputs, Hysterisis and Response Pins.

LIC-600

Metallization and Pad Layout

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

MOS Memory and Microprocessor Interface - Section V

Am0026/0026C	5MHz Two-Phase MOS Clock Driver	5-1
Am0056/0056C	5MHz Two-Phase MOS Clock Driver	5-7
Am8224	Clock Generator and Driver	5-13
Am8228	System Controller and Bus Driver	5-20
Am8238	System Controller and Bus Driver	5-20
Am8238	System Controller and Bus Driver	5-20

Am0026/Am0026C

5MHz Two-Phase MOS Clock Driver

Distinctive Characteristics

- 20 ns rise and fall times with 1000 pF load
- 20 V output voltage swing
- ±1.5 amps output current drive

- High speed 5 to 10 MHz depending on load
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am0026 is a dual high speed MOS clock driver and interface circuit. The device is particularly suitable for driving two phase MOS circuits and can provide high speed operation even when driving into high capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. The output pulse width of the device is determined by the input pulse width.

The Am0026 can operate with a variety of MOS circuits. A popular application is a two-phase clock timer for driving

long silicon gate shift registers such as the Am1402/3/4 series. A single clock driver is able to drive 10k bits at 5MHz. The device can also be used with standard dynamic MOS RAMS such as the 1103 to provide address and precharge drive for memories up to 8k by 16-bits.

The device is available in an 8-lead TO-5, one watt copper lead frame 8-pin mini-DIP, a one and one-half watt TO-8 package, and a 14-pin ceramic package.

ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
TO-99	0°C to 70°C	MH0026CH
Mini-DIP	0°C to 70°C	MH0026CN
TO-8	0°C to 70°C	MH0026CG
Ceramic DIP	0°C to 70°C	MMH0026CL
Dice	0°C to 70°C	AM0026XC
TO-99	–55°C to +125°C	MH0026H
TO-8	–55°C to +125°C	MH0026G
Ceramic DIP	−55°C to +125°C	MMH0026L
Dice	−55°C to +125°C	AM0026XM

Am0026/0026C

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V ⁺ – V ⁻ Differential Voltage	22 V
Input Current	100 mA
Input Voltage (VIN-V ⁻)	5.5 V
Peak Output Current	1.5 A
Power Dissipation	See curves

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

	$T_{\Delta} = 0^{\circ} \text{C to } 85^{\circ} \text{C (COM Range)}$	$V^{+} - V^{-} = 10 \text{ V to } 20 \text{ V}$
Am0026C		V - V = 10 V to 20 V
Am0026	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C \text{ (MIL Range)}$	Unless Otherwise Specified

Parameter Description		Test Conditions (Note 1)	(Note 1) Min. Typ.(1		Max.	Units	
V _{OH}	Output HIGH Voltage	V ⁺ = +5.0 V, V ⁻ = -12.0 V V _{IN} = -11.6 V	4.0	4.3		Volts	
	(Logical "O")	V _{IN} - V ⁻ = 0.4 V	V ⁺ -1.0	V ⁺ -0.7			
VOL	Output LOW Voltage	$V^{+} = +5.0 \text{ V}, V^{-} = -12.0 \text{ V}$ $V_{1N} = -9.5 \text{ V}$		-11.5	-11.0	Volts	
(Logical "I")		V _{IN} - V ⁻ = 2.5 V		V-+0.5	V-+1.0		
VIH	Input HIGH Level	V _{OUT} = V ⁻ +1.0 V	2.5	1.5		Volts	
VIL	Input LOW Level	V _{OUT} = V ⁺ -1.0 V		0.6	0.4	Volts	
IIL	Input LOW Current	$V_{IN} - V^{-} = 0 V, V_{OUT} = V^{+} - 1.0 V$		-0.005	-10	μΑ	
I _{IH}	Input HIGH Current	$V_{IN} - V^{-} = 2.5 \text{ V}, V_{OUT} = V^{-} + 1.0 \text{ V}$		10	15	mA	
ICC ON	"ON" Supply Current	$V^{+} - V^{-} = 20 \text{ V}, \text{ V}_{1N} - V^{-} = 2.5 \text{ V}$		30	40	mA	
ICC OFF	"OFF" Supply Current V ⁺ - V ⁻ = 20 V, V _{IN} - V ⁻ = 0.0 V		COM'L	10	100	μΑ	
	or a cappiy current	ν – ν – 20 ν, ν N – ν – 0.0 ν		50	500	Jar.	

Notes: 1. These specifications apply for $V^+ - V^- = 10 \text{ V}$ to 20 V, $C_L = 1000 \text{ pF}$, over the temperature range -55°C to $+125^{\circ}\text{C}$ for the Am0026 and 0°C to $+85^{\circ}\text{C}$ for the Am0026C.

2. All typical values for TA = 25°C.

Switching Characteristics (Notes 1 and 2 Above)

arameter	Description	Test Conditions	Min.	Typ.	Max.	Units
tPHL	Turn On Delay	MHOOCOCH HOOCOCHM	5.0	7.5	12	ns
tPLH	Turn Off Delay	мноозвем мноозвем	5.0	10 12	15	ns
- Ampre		$V^+ - V^- = 17 \text{ V, C}_L = 250 \text{ pF}$	0.04 9	12	B-OT	
tr	Rise Time (Note 3)	$V^{+} - V^{-} = 17 \text{ V, C}_{L} = 500 \text{ pF}$	2000	15	18	ns
	9.07	$V^{+} - V^{-} = 17 \text{ V, C}_{L} = 1000 \text{ pF}$	915-91-91	20	35	
	a A TUBE	$V^{+} - V^{-} = 17 \text{ V, C}_{L} = 250 \text{ pF}$	0 +125°C	10	1607	
tf	Fall Time (Note 3)	$V^{+} - V^{-} = 17 \text{ V, C}_{L} = 500 \text{ pF}$	0-125°C	12	16	ns
		$V^+ - V^- = 17 V, C_L = 1000 pF$	0+125°C	10 0 17	25	

Note: 3. Rise and fall times are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic "1" which is voltage fall. See switching time waveforms.

5

TYPICAL PERFORMANCE CHARACTERISTICS

AC TEST CIRCUIT 100 pF 100 pF

APPLICATION INFORMATION

POWER DISSIPATION

The total average power dissipation of the Am0026 is the sum of the DC power and AC transient power. This total must be less than the given package power rating.

With the device dissipating only 2 mW when the output is at a HIGH voltage (MOS logic "0"), the dominant factor in average DC power is the duty cycle or fraction of the time the output is at a LOW voltage level (MOS logic "1"). For the shift register driving where the duty cycle is less than 25%, PDC is usually negligible. For RAM address line driver applications PDC dominates since duty cycle can exceed 50%.

DC Power per driver:

DC power is given by,

$$P_{DC} = (V^+ - V^-) \times I_{S (LOW)} \times Duty Cycle$$
 where $I_{S (LOW)}$ is $I_{SUPPLY(ON)}$ at $(V^+ - V^-)$

$$I_{SUPPLY (ON)}$$
 is 40 mA x $\frac{(V^+ - V^-)}{20 \text{ V}}$ worst case or 30 mA x $\frac{(V^+ - V^-)}{20 \text{ V}}$ typically

AC transient power per driver:

AC transient power is given by,

$$P_{AC} = (V^+ - V^-)^2 \times C_L \times f \times 10^{-3} \text{ in mW}$$

where f = frequency of operation in MHz and C_L = load capacitance including all strays and wiring in pF.

PACKAGE SELECTION

Power ratings are based on a maximum junction rating of 175°C. The following guidelines are suggested for package selection. Graphs shown in the Performance Curves illustrate derating for various operating temperatures.

TO-5 ("H") Package: Rated at 600 mW in still air (derate at 4.0 mW/°C above 25°C) and rated at 900 mW with clip-on heat sink (derate at 6.0 mW/°C above 25°C). This popular hermetic package is recommended for small systems. Low cost (about 10¢) clip-on-heat sink increases driving power dissipation capability by 50%.

8-pin ("N") Molded Mini-DIP: Rated at 600 mW still air (derate at 4.0 mW/°C above 25°C) and rated at 1.0 watt soldered to PC board (derate at 6.6 mW/°C). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic

insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)

$$C_L \text{ (max.)} = \frac{10^3}{n} \frac{(P_{\text{max.}} \text{ Req } -10^3_n \text{ (V}^+ - \text{V}^-)^2 \text{ Duty Cycle})}{\text{Req } (\text{V}^+ - \text{V}^-)^2 \times \text{f}}$$

where n is the number of drivers used in the package.

P_{max.} is the package power rating in milliwatts for given package, heat sink, and maximum ambient temperature.

Req is the equivalent resistance $(V^+ - V^-)/I_{S(LOW)} = 500\Omega$ (worst case over temperature or 600Ω (typically).

Duty cycle is the fraction of the time that the output signal is in the LOW state.

f is the input signal frequency in MHz.

 $C_{L\,(\text{max.})}$ is the maximum load capacitance per driver in picofarads which can be driven without exceeding device power limits.

When used as a non-overlapping two phase driver with each side operating at the same frequency and duty cycle, and with (V^+-V^-) -17V, the above equation simplifies to

$$C_L = \frac{10^3}{f} \left[\frac{P_{\text{max.}}}{578} - \text{Duty Cycle} \right]$$

Table I gives maximum drive capability for various system conditions using the above equation.

PULSE WIDTH CONTROL

The Am0026 is intended for applications in which the input pulse width sets the output pulse width; i.e., the output pulse width is logically controlled by the input pulse. The output pulse width is given by:

$$(PW)_{OUT} = (PW)_{IN} + t_f = PW_{IN} + 25 \text{ ns}$$

Two external input coupling capacitors are required to perform the level translation between TTL/DTL and MOS logic levels. Selection of the capacitor size is determined by the desired output pulse width. Minimum delay and optimum performance is attained when the voltage at the input of the Am0026 discharges to just above the devices threshold (about 1.5 V). If the input is allowed to discharge below the threshold, $t_{\rm r}$ and $t_{\rm f}$ will be degraded. The graph in the Performance Curves shows optimum values for $C_{\rm IN}$ versus desired output pulse width. The value for $C_{\rm IN}$ may be roughly predicted by:

$$C_{IN} = (2 \times 10^{-3}) (PW)_{OUT}$$

For an output pulse width of 500 ns, the optimum value for $C_{\mbox{\footnotesize{IN}}}$ is:

$$C_{INI} = (2 \times 10^{-3}) (500 \times 10^{-9}) = 1000 \, pF$$

5

RISE AND FALL TIME CONSIDERATIONS (Note 3)

The Am0026's peak output current is limited to 1.5 A. The peak current limitation restricts the maximum load capacitance which the device is capable of driving and is given by:

$$I = C_L \frac{dv}{dt} \le 1.5 A$$

The rise time, tr, for various loads may be predicted by:

$$t_r = (\triangle V) (250 \times 10^{-12} + C_1)$$

Where: $\triangle V$ = the change in voltage across C_1

$$\simeq V^{+} - V^{-}$$

C₁ = The load capacitance

for
$$V^+ - V^- = 20 V$$
, $C_L = 1000 pF$, t_r is:

$$t_r \approx (20 \text{ V}) (250 \times 10^{-12} + 1000 \times 10^{-12})$$

= 25 ps

For small values of C_L , the equation above predicts optimistic values for t_r . The graph in the performance curves shows typical rise times for various load capacitances.

The output fall time (see Graph) may be predicted by:

$$t_f \cong 2.2 R \left(C_S + \frac{C_L}{h_{FE} + 1} \right)$$

CLOCK OVERSHOOT

The output waveform of the Am0026 can overshoot. The overshoot is due to finite inductance of the clock lines. It occurs on the negative going edge when Ω_7 saturates, and on the positive edge when Ω_3 turns OFF as the output goes through $V^+ - V_{be}$. The problem can be eliminated by placing a small series resistor in the output of the Am0026. The

critical valve for $R_S = 2VL/C_L$ where L is the self-inductance of the clock line. In practice, determination of a value for L is rather difficult. However, R_S is readily determined emperically, and values typically range between 10 and 51 Ω . R_S does reduce rise and fall times as given by:

$$t_r = t_r \cong 2.2R_S C_I$$

CLOCK LINE CROSS TALK

At the system level, voltage spikes from ϕ_1 may be transmitted to ϕ_2 (and vice-versa) during the transition of ϕ_1 to MOS logic "1". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Transistors Q3 and Q4 on the ϕ_2 side of the Am0026 are essentially "OFF" when ϕ_2 is in the MOS logic "0" state since only micro-amperes are drawn from the device. When the spike is coupled to ϕ_2 , the output has to drop at least 2 VBF before Q3 and Q4 come on and pull the output back to V⁺. A simple method for eliminating or minimizing this effect is to add bleed resistors between the Am0026 outputs and ground causing a current of a few milliamps to flow in Q4. When a spike is coupled to the clock line Q₄ is already "ON" with a finite h_{fe}. The spike is quickly clamped by Q4. Values for R depend on layout and the number of registers being driven and vary typically between 2 k and $10 k \Omega$.

POWER SUPPLY DECOUPLING

Adequate power supply decoupling is necessary for satisfactory operation. Decoupling of V⁺ to V⁻ supply lines with at least $0.1\,\mu\text{F}$ noninductive capacitors as close as possible to each Am0026 is strongly recommended. This decoupling is necessary because otherwise 1.5 ampere currents flow during logic transition in order to rapidly charge clock lines.

TABLE I - WORST CASE MAXIMUM DRIVE CAPABILITY FOR Am0026*

Packag	де Туре		3 with t Sink	100	O-8 e Air	Mini- Soldere	-DIP d Down		Mini-DIP e Air	14-Pin DIP Soldered Down
Max. Operating Frequency	Max. Ambient Duty Temp. Cycle	60°C	85°C	60°C	85°C	60°C	85°C	60°C	85°C	70°C
100 kHz	5%	30 k	24 k	19 k	15k	13 k	10 k	7.5 k	5.1 k	11k
500 kHz	10%	6.5 k	5.1 k	4.1 k	3.2k	2.5 k	1.9 k	1.4k	1.1 k	2k
1 MHz	20%	2.9 k	2.2k	1.8 k	1.4k	1.1 k	840	600	420	860
2MHz	25%	1.4 k	1.1 k	850	650	540	400	280	190	390
5MHz	25%	620	470	380	290	220	160	110	75	165
10MHz	25%	280	220	170	130	110	79	55	37	90

Note: Values in pF and assume both sides in use as non-overlapping 2 phase driver; each side operating at same frequency and duty cycle with (V -V*) = 17 V.

TYPICAL APPLICATIONS

AC Coupled MOS Clock Driver

TTL 1000 pF 4

Am0026

TWO PHASE CLOCK TO SHIFT REGISTERS

LIC-606

DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

Distinctive Characteristics

- 20ns rise and fall times with 1000pF load
- 20 V output voltage swing
- ± 1.5 amps output current drive

- High speed 5 to 10MHz depending on load
- 100% reliability assurance testing in compliance with MIL-STD-883
- Improved V_{OH} compared with Am0026

FUNCTIONAL DESCRIPTION

The Am0056 is a dual high speed MOS clock driver and interface circuit. The device is particularly suitable for driving two phase MOS circuits and can provide high speed operation even when driving into high capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. The output pulse width of the device is determined by the input pulse width.

The Am0056 can operate with a variety of MOS circuits. A popular application is a two-phase clock timer for driving long silicon gate shift registers such as the Am1402/3/4 series. A single clock driver is able to drive 10k bits at 5MHz. The device can also be used with standard dynamic MOS

RAMS such as the 1103 to provide address and precharge drive for memories up to 8k by 16-bits.

The device is available in a TO-99, one watt copper lead frame 8-pin mini-DIP, a one and one-half watt TO-8 package, and a ceramic DIP.

The V_{BB} terminal is intended to be connected through a series resistor to a supply higher than V⁺. This connection will enable the output to pull-up to V⁺-0.1V. Under no conditions should the V_{BB} terminal be connected directly to a positive supply as the device will be damaged when the driver switches LOW.

SCHEMATIC DIAGRAM (One Driver Shown)

LIC-610

ORDERING INFORMATION

Package	Temperature	Order
Type	Range	Number
TO-99	0°C to 70°C	DS0056CH
Mini-DIP	0°C to 70°C	DS0056CN
Ceramic DIP	0°C to 70°C	DS0056CJ
Dice	0°C to 70°C	AM0056XC
TO-99	-55°C to +125°C	DS0056H
Ceramic DIP	-55°C to +125°C	DS0056J
Dice	-55°C to +125°C	AM0056XM

CONNECTION DIAGRAMS

5

Am0056/Am0056C

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature			-65°C to +150°C
Temperature (Ambient) Under Bias		CONTROL ON THE STATE OF THE STA	-55°C to +125°C
V ⁺ – V ⁻ Differential Voltage		the state of the s	22 V
Input Current	or dipendengil .	istios istios	100mA
Input Voltage (VIN-V-)	• 100% reliability	beat focuul dhw sens	5.5 V
Peak Output Current		evine thereto	1.5A
Power Dissipation			See curves
V _{BB} Voltage	NOTTHROSE	LAMOITONUR	V ⁺ +5.0 V
Current Into V _{BB}	entras nous channes	dust high si and MUS cook driver and the device of principal to anisate for	50 mA
Operating Temperature—Am0056 Am0056C	iclisve at solven and	been did stiven as the chical 2014 will also evitions did one grivin a	-55 C to +125 C

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

arameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
VoH	Output HIGH Voltage	V _{IN} - V ⁻ = 0.4 V V _{BB} Open Circuit (R _{BB} = ∞)		V ⁺ -2.5	V ⁺ -1.4		Volts
VOH	(Logical "0" Output Voltage)	$V_{IN} - V^{-} = 0.4 V$ $R_{BB} = 1 k\Omega; V_{BB} V_{B} \ge V^{+} +1.0 V$	I APPLIE	V ⁺ -0.3	V ⁺ -0.1		Voits
V _{OL}	Output LOW Voltage (Logical "1" Output Voltage)	V _{IN} - V ⁻ = 2.4V			V-+0.7	V=+1.0	Volts
VIH	Input HIGH Level	V _{OUT} = V ⁻ +1.0 V		2.0	1.5		Volts
VIL	Input LOW Level	V _{OUT} = V ⁺ -1.0 V	- N		0.6	0.4	Volts
IIL	Input LOW Current	$V_{IN} - V^{+} = 0 V, V_{OUT} = V^{+} - 1.0 V$			-0.005	-10	μΑ
I _{IH}	Input HIGH Current	$V_{IN} - V^{-} = 2.4V$, $V_{OUT} = V^{-} + 1$.0V		10	15	mA
ICCON	"ON" Supply Current	V ⁺ - V ⁻ = 20 V, V _{IN} - V ⁻ = 2.4 V			15	30	mA
			COM'L		10	100	μΑ
CCOFF	"OFF" Supply Current	$V^{+} - V^{-} = 20 V, V_{1N} - V^{-} = 0.0 V$	MIL		50	500	pri
I _{BB}	"ON" Supply Current	$V^{+} - V^{-} = 20 \text{ V}, \text{ V}_{\text{IN}} - V^{-} = 2.4 \text{ V}$ $V_{\text{BB}} = V^{+} + 3.0 \text{ V}, \text{ R}_{\text{BB}} = 1 \text{ k}\Omega$	- 14		22		mA

Notes: 1. These specifications apply for $V^+ - V^- = 10 \text{ V}$ to 20 V, $C_L = 1000 \text{ pF}$, over the temperature range -55°C to $+125^{\circ}\text{C}$ for the Am0056 and 0°C to $+70^{\circ}\text{C}$ for the Am0056C.

2. All typical values for $T_A = 25^{\circ}\text{C}$.

SWITCHING CHARACTERISTICS (Notes 1 and 2 Above)

arameters Description		Test Co	Test Conditions			Max.	Units
tPHL	Turn ON Delay	I A A Dax	USOOBECH	5.0	8.0	1200	ns
tPLH	Turn OFF Delay		Losanoan	5.0	12	15	ns
tr	Rise Time (Note 3) V ⁺ – V ⁻ = 17	V ⁺ - V ⁻ = 17 V,	C _L = 500pF	0.00 018	15	18	
tr Hise Time (Note 3)		C _L = 1000pF	C to HIZE	20	35	ns	
t _f Fall Time (Note 3	Fall Time (Note 3)	V ⁺ -V ⁻ = 17 V,	C _L = 500pF	2 to ±125°12	12	16	
	**************************************	V -V -1/V,	C _L = 1000pF		17	25	ns

Note: 3. Rise and fall times are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic "1" which is voltage fall. See switching time waveforms.

5

TYPICAL PERFORMANCE CURVES

Optimum Input Capacitance Versus Output Pulse Width

10000

SWITCHING TIME WAVEFORMS

LIC-613

AC TEST CIRCUIT

LIC-614

Am0056/Am0056C

APPLICATION INFORMATION

POWER DISSIPATION

The total average power dissipation of the Am0056 is the sum of the DC power and AC transient power. This total must be less than the given package power rating.

With the device dissipating only 10 mW when the output is at a HIGH voltage (MOS logic "0"), the dominant factor in average DC power is the duty cycle or fraction of the time the output is at a LOW voltage level (MOS logic "1"). For the shift register driving where the duty cycle is less than 25%, PDC is usually negligible. For RAM address line driver applications PDC dominates since duty cycle can exceed 50%.

DC Power per Driver

DC power is given by,

$$P_{DC} = (V^+ - V^-) \times I_{S(LOW)} \times Duty Cycle$$

where Is (LOW) is Isupply (ON) at (V+-V-)

I_{SUPPLY} (ON) is 30mA x
$$\frac{(V^+ - V^-)}{20 \text{ V}}$$
 worst case

or 15 mA x
$$\frac{(V^+ - V^-)}{20 V}$$
 typically

AC Transient Power per Driver

AC transient power is given by,

$$P_{AC} = (V^+ - V^-)^2 \times C_L \times f \times 10^{-3} \text{ in mW}$$

where f = f frequency of operation in MHz and $C_L = l$ load capacitance including all strays and wiring in pF.

PACKAGE SELECTION

Power ratings are based on a maximum junction rating of 175°C. The following guidelines are suggested for package selection. Graphs shown in the Performance Curves illustrate derating for various operating temperatures.

TO-99 ("H") Package: Rated at 600 mW in still air (derate at 4.0 mW/°C above 25°C) and rated at 900 mW with clip-on heat sink (derate at 6.0 mW/°C above 25°C). This popular hermetic package is recommended for small systems. Low cost (about 10¢) clip-on-heat sink increases driving power dissipation capability by 50%.

8-pin ("Ń") Molded Mini-DIP: Rated at 600 mW still air (derate at 4.0 mW/°C above 25°C) and rated at 1.0 watt soldered to PC board (derate at 6.6 mW/°C). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)

TO-8 ("G") Package: Rated at 1.5 watts still air (derate at 10mW/°C above 25°C) and 2.3 watts with clip on heat sink (Wakefield type 215-1.9 or equivalent — derate at 15mW/°C). Selected for its power handling capability and moderate cost, this hermetic package will drive very large systems at the lowest cost per bit.

MAXIMUM LOAD CONSIDERATIONS

The maximum capacitive load that the Am0056 can drive is determined by:

The AC power consumed =
$$nVs^2$$
 $C_Lf \times 10^{-3}$ mW

The DC power consumed =
$$\frac{\text{nVs}^2}{\text{Reg}} \text{ p } \times 10^3 \text{ mW}$$

The package power rating for a given package, heatsink, and maximum ambient temperature = Pmax

mW

Combining these expressions:

$$Pmax = \frac{nVs^2 \ \rho \times 10^3}{Req} + nVs^2 \ C_L f \times 10^{-3}$$

from which the maximum capacitive load:

$$C_{L(max)} = \frac{10^3}{n} \cdot \frac{(Pmax Req - nVs^2 \rho \times 10^3)}{Vs^2 f Req}$$

Where n = number of drivers employed in the package

Vs = total supply voltage (V⁺-V⁻) across device

 $ho = {
m duty\ cycle} = {
m time\ in\ output\ LOW\ state}/$ time in output LOW + time in output HIGH

Req =
$$(V^+ - V^-)/I_{CC}$$
 ON = 1000 Ω worst case
or 1300 Ω TYP

CL = load capacitance per driver in pF

f = input signal frequency in MHz

When used as a non-overlapping, two-phase driver with each side operating at the same frequency and duty cycle and with $V_s = 17 \text{ V}$, the above equation reduces to:

$$C_{L(max)} = \frac{10^3}{f} \left(\frac{Pmax}{578} - \rho \right)$$

Table 1 gives maximum drive capability using above equation.

PULSE WIDTH CONTROL

The Am0056 is intended for applications in which the input pulse width sets the output pulse width; i.e., the output pulse width is logically controlled by the input pulse. The output pulse width is given by:

$$(PW)_{OUT} = (PW)_{IN} + t_f = PW_{IN} + 17 \text{ ns}$$

Two external input coupling capacitors are required to perform the level translation between TTL/DTL and MOS logic levels. Selection of the capacitor size is determined by the desired output pulse width. Minimum delay and optimum performance is attained when the voltage at the input of the Am0056 discharges to just above the devices threshold (about 1.5 V). If the input is allowed to discharge below the threshold, t_{Γ} and $t_{\bar{\Gamma}}$ will be degraded. The graph in the Performance Curves shows optimum values for C_{IN} versus desired output pulse width. The value for C_{IN} may be roughly predicted by:

For an output pulse width of 500 ns, the optimum value for $C_{\rm IN}$ is:

$$C_{INI} = (3 \times 10^{-3}) (500 \times 10^{-9}) = 1500 pF$$

RISE AND FALL TIME CONSIDERATIONS (Note 3)

The Am0056's peak output current is limited to 1.5 A. The peak current limitation restricts the maximum load capacitance which the device is capable of driving and is given by:

$$I = C_L \frac{dv}{dt} \le 1.5 A$$

5

The rise time, tr, for various loads may be predicted by:

$$t_r = (\triangle V) (250 \times 10^{-12} + C_1)$$

Where: $\triangle V$ = the change in voltage across C_L

$$\cong V^+ - V^ C_L = \text{The load capacitance}$$
for $V^+ - V^- = 20 \text{ V}$, $C_L = 1000 \text{ pF}$, t_r is:
 $t_r \cong (20 \text{ V}) (250 \times 10^{-12} + 1000 \times 10^{-12})$
 $= 25 \text{ ns}$

For small values of C_L , the equation above predicts optimistic values for $t_{\rm r}$.

The output fall time may be predicted by:

$$t_{f} \cong 2.2 \; R \left(C_{S} + \frac{C_{L}}{h_{FE} + 1} \right)$$

CLOCK OVERSHOOT

The output waveform of the Am0056 can overshoot. The overshoot is due to finite inductance of the clock lines. It occurs on the negative going edge when Ω_7 saturates, and on the positive edge when Ω_3 turns OFF as the output goes through V $^+$ – V $_{be}$. The problem can be eliminated by placing a small series resistor in the output of the Am0056. The critical value for $R_S = 2\sqrt{L/C_L}$ where L is the self-inductance of the clock line. In practice, determination of a value for L is

rather difficult. However, R_S is readily determined emperically, and values typically range between 10 and 51 Ω . R_S does reduce rise and fall times as given by:

$$t_r = t_f \cong 2.2R_S C_L$$

CLOCK LINE CROSS TALK

At the system level, voltage spikes from ϕ_1 may be transmitted to ϕ_2 (and vice-versa) during the transition of ϕ_1 to MOS logic "1". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Transistors Q3 and Q4 on the ϕ_2 side of the Am0056 are essentially "OFF" when ϕ_2 is in the MOS logic "0" state since only micro-amperes are drawn from the device. When the spike is coupled to ϕ_2 , the output will drop until Q4 becomes active. A simple method for eliminating or minimizing this effect is to add bleed resistors between the Am0056 outputs and ground causing a current of a few milliamps to flow in Q4. When a spike is coupled to the clock line Q4 is already "ON" with a finite hfe. The spike is quickly clamped by Q4. Values for R depend on layout and the number of registers being driven and vary typically between 2k and $10k\Omega$.

POWER SUPPLY DECOUPLING

Adequate power supply decoupling is necessary for satisfactory operation. Decoupling of V⁺ and V⁻ supply lines with at least 0.1 μ F noninductive capacitors as close as possible to each Am0056 is strongly recommended. This decoupling is necessary because of the 1.5 ampere currents which flow during logic transition when charging clock lines.

TABLE I - WORST CASE MAXIMUM DRIVE CAPABILITY FOR Am0056*

Packa	ige Type	TO-8 with TO-8 Mini-DIP TO-5 and pe Heat Sink Free Air Soldered Down Free												Mini-DIP e Air	14-Pin DIP Soldered Down
Max.		P _{Max} mW	1775	1400	1150	900	769	604	460	360	665				
Operating Frequency	Duty Cycle	Ambient Temp.	60°C	85°C	60°C	85°C	60°C	85°C	60°C	85°C	70°C				
100 kHz		5%	30k	24 k	19 k	15 k	13 k	10k	7.5 k	5.1 k	11k				
500kHz		10%	6.0 k	4.6 k	3.8 k	2.9 k	2.5 k	1.9k	1.4k	1.0 k	2k				
1 MHz	1	20%	2.9 k	2.2k	1.8k	1.4k	1.1 k	840	600	420	860				
2MHz	1	25%	1.4k	1.1 k	870	650	540	400	270	190	390				
5MHz	1	25%	560	440	350	260	220	160	110	75	165				
10MHz	z 25%		25% 280 220		170 130		110 80		55	37	90				

^{*}Note: Values in pF and assume both sides in use as non-overlapping 2 phase driver; each side operating at same frequency and duty cycle with $(V^+ - V^+) = 17 V$.

TYPICAL APPLICATIONS DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only) TWO PHASE CLOCK DO SHIFT REGISTERS TO ADDRESS LINES ON Am1103 MEMORY DEVICES LIC-615

DIE SIZE 0.056" X 0.074"

Distinctive Characteristics

- Single chip clock generator/driver for 8080A compatible CPU
- Power-up reset for CPU
- Ready synchronizing flip-flop
- Status strobe signal
- Oscillator output for external system timing
- Am8224-4 version available for use with 1μsec instruction cycle of Am9080A-4
- Available for operation over both commercial and military temperature ranges
- Crystal controlled for stable system operation
- Reduces system package count
- Advanced Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8224 is a single chip Clock Generator/Driver for the Am9080A and 8080A CPU. It contains a crystal-controlled oscillator, a "divide by nine" counter, two high-level drivers and several auxiliary logic functions, including a power-up reset, status strobe and synchronization of ready. Also provided are TTL compatible oscillator and ϕ_2 outputs for external system timing. The Am8224 provides the designer with a significant reduction of packages used to generate clocks and timing for the Am9080A or 8080A for both commercial and military temperature range applications. A high speed Am9080A-4.

LOGIC DIAGRAM

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	-55°C to +125°C	AM8224DM
Hermetic DIP	0°C to +70°C	D8224
Molded DIP	0°C to +70°C	AM8224PC
Dice	0°C to +70°C	AM8224XC
Hermetic DIP	0° C to $+70^{\circ}$ C	AM8224-4DC*

*For use with Am9080A-4 with clock period between 250ns and 320ns.

PIN DEFINITION

XTAL 1	Sant W. Cowell District Wherea
XTAL 2	CONNECTIONS FOR CRYSTAL
TANK	USED WITH OVERTONE XTAL
OSC	OSCILLATOR OUTPUT
$\phi_2(TTL)$	φ ₂ CLK (TTL LEVEL)
Vcc	+5.0 V
V _{DD}	+12V
GND	OV
RESIN	RESET INPUT
RESET	RESET OUTPUT
RDYIN	READY INPUT
READY	READY OUTPUT
SYNC	SYNC INPUT
STSTB	STATUS STB (ACTIVE LOW)
Φ1	
φ2	Am9080A/8080A CLOCKS

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-620

5

7.5 V 15V

VDD

Maximum Output Current ϕ_1 and ϕ_2 (Note 1)

100mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:

Am8224XC, Am82244XC (COM'L) $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$ Am8224XC (MIL)

 $T_A = -55^{\circ} \text{C to} + 125^{\circ} \text{C}$ $V_{CC} = 5.0 \text{V} \pm 10\%$ $V_{DD} = 12 \text{V} \pm 10\%$

 $V_{CC} = 5.0V \pm 5\%$

arameters	Description	Test Condi		V DD - 12V .	Min.	Typ. (Note 2)	Max.	Units	
1F	Input Current Loading	V _F = 0.45 V	eds tol	neviaCined	era Genera	O cirio algrid	-0.25	mA	
IR	Input Leakage Current	V _R = 5.25 V	bellent	roo-listayra	Bonsains a	IJ JUSO AD	10	μΑ	
.,			Statute	COM'L	DATE TO THE	o- omm ve	-1.0	Volts	
VC	Input Forward Clamp Voltage	$I_C = -5.0 \mathrm{mA}$		MIL	b selection	reference ber	-1.2	Volts	
VIL	Input LOW Voltage	V _{CC} = 5.0 V	107 821	erroo eti	as redallin	e eldinagar	0.8	Volt	
	Triging parts I wash	5	Tengen	COM'L	2.6	2.2	note:	e lents	
VIH -	Input HIGH Voltage	Reset input		MIL	2.8	2.2	ningarin.	Volt	
	10 av	All other inputs	A STATE OF	attender side	2.0		escalition in	DESIGNATION OF THE PARTY OF THE	
VIH-VIL	RESIN Input Hysteresis	V _{CC} = 5.0 V	duid se	refflyy begin	0.25	0.5	A ent_ eo	Vol	
VoL	vo	(ϕ_1, ϕ_2) , Ready, Reset, \overline{S}^* $I_{OL} = 2.5 \text{ mA}$	тѕтв				0.45	In A b	
	Output LOW Voltage	All other inputs IOL = 15mA			MAR 324	KO 91963	0.45	Volts	
	TERTED YOUR	100 1		COM'L	9.4	11			
	The last to the	$\phi_1, \phi_2; I_{OH} = -100 \mu A$		MIL	V _{DD} -1.6V	V _{DD} -1.0V	Astono Par	T DATE	
У ОН	Output HIGH Voltage	READY, RESET; IOH =	1004	COM'L	3.6	4.0		Volt	
		READT, RESET, TOH -	-100μΑ	MIL	3.35	4.0		THAT	
	An DOROAL BREDA CLOCKS	All other outputs; IOH =	-1.0 mA		2.4	3.0			
sc	Output Short Circuit Current (All Low Voltage Outputs Only)	V _O = 0 V V _{CC} = 5.0 V	Larry,		-10	930 65 15 463	-60	mA	
СС	Power Supply Current	V _{CC} = MAX. (Note 3)	N ALEST			70	115	mΑ	
DD	Power Supply Current	V _{DD} = MAX.	4781	-61		5.0	12	mA	

Notes: 1. Caution: ϕ_1 and ϕ_2 outputs do not have short circuit protection. 2. Typical limits are at $\sqrt[7]{CC} = 5.0 \text{ V}$, $V_{DD} = 12 \text{ V}$, 25°C ambient and maximum loading.

3. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

CRYSTAL REQUIREMENTS

Tolerance: .005% at 0°C - 70°C Resonance: Series (Fundamental)* Load Capacitance: 20-35pF Equivalent Resistance: 75-20 ohms Power Dissipation (Min): 4mW

*With frequency in excess of 18MHz use 3rd overtone XTALs and tank

circuit.

TEST CIRCUIT

AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

			Aı	n8224)	CM	Ar	n8224>	(C	Am	8224-4 (Note 2		
arameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _{φ1}	ϕ_1 Pulse Width		$\frac{2t_{CY}}{9}$ -23ns			$\frac{2t_{CY}}{9}$ –20ns		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45			
t _φ 2	ϕ_2 Pulse Width		5t _{CY} _35ns			5tCY 9 -35ns		V	110	14		
tD1	φ ₁ to φ ₂ Delay	C _L = 20pF	0			0			0			
t _{D2}	ϕ_2 to ϕ_1 Delay	to 50pF	$\frac{2t_{CY}}{9} - 17ns$	EAR SE		2tCY 9 -14ns			35	-4		ns
t _{D3}	ϕ_1 to ϕ_2 Delay		2t _{CY} 9		2t _{CY} +22ns	2tCY 9		2t _{CY} +20ns	55		76	
tr	ϕ_1 and ϕ_2 Rise Time			377	20			20	H. F.	-	20	
tf	ϕ_1 and ϕ_2 Fall Time				20		17.71	20			20	
[†] Dφ2	ϕ_2 to ϕ_2 (TTL) Delay	$φ_2$ (TTL), $C_L = 30pF$ $R_1 = 300Ω$ $R_2 = 600Ω$	-5.0		15	-5.0		15	-5.0		15	ns
tDSS	φ ₂ to STSTB Delay		$\frac{6t_{CY}}{9}$ –33ns		6t _{CY}	6tCY _ 30ns	1	6t _{CY} 9	137	SI YE	167	
tPW	\$TSTB Pulse Width	STSTB, C _L = 15pF,	*CY 18ns			$\frac{t_{CY}}{9}$ –15ns			18			ns
^t DRS	RDYIN Set-up Time to Status Strobe	$R_1 = 2.0k\Omega$ $R_2 = 4.0k\Omega$	50ns-4t _{CY}			50ns-4t _{CY} 9			-61	mali		l n
^t DRH	RDYIN Hold Time After STSTB		45 _{CY}			4tCY 9		812	111			
^t DR	RDYIN or RESIN to φ ₂ Delay	Ready and Reset $C_L = 10pF$ $R_1 = 2.0k\Omega$ $R_2 = 4.0k\Omega$	4tCY		X	4tCY 9 -25ns		2	86	interest	no T	n
tCLK	CLK Period			t _{CY}			tCY 9			28		
fMax.	Maximum Oscillating Frequency		27		X.	28.12			36	1,35		МН
C _{in}	Input Capacitance	V _{CC} = 5.0V V _{DD} = 12V V _{BIAS} = 2.5V f = 1.0MHz			8.0			8.0			8.0	pf

AC CHARACTERISTICS (For t_{CY} = 488.28ns)

 $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$ $V_{CC} = +5.0 \text{ V} \pm 5\%$ $V_{DD} = +12 \text{ V} \pm 6\%$

arameters	Description	Test Conditions	Min.	Typ.	Max.	Units
t _φ 1	φ ₁ Pulse Width	The formula for the	89			ns
t _{φ2}	φ ₂ Pulse Width		236			ns
t _{D1}	Delay ϕ_1 to ϕ_2		0	The set of si	du to had	ns
t _{D2}	Delay ϕ_2 to ϕ_1	ϕ_1 and ϕ_2 Loaded $C_1 = 20$ to 50 pF	95	aria seems 9	te legge regge	ns
t _{D3}	Delay ϕ_1 to ϕ_2 Leading Edges	CE - 20 to sope	109		129	ns
t _r	Output Rise Time		e discount decay	es nes course	20	ns
tf	Output Fall Time				20	ns
tDSS	φ ₂ to STSTB Delay	The Charle Cener	296		326	ns
t _{Dφ2}	ϕ_2 to ϕ_2 (TTL) Delay		-5.0	12/19/11	15	ns
tpW	Status Strobe Pulse Width		40	I Drawin	a la dia real la	ns
tDRS	RDYIN Set-up Time to STSTB	Ready and Reset Loaded	-167	born at wh	essen al "	ns
t _{DRH}	RDYIN Hold Time After STSTB	C _L = 20 to 50pF	217	diseas his	politic o to	ns
tDR	Ready or Reset to ϕ_2 Delay	$R_1 = 2.0 \text{k}\Omega$, $R_2 = 4.0 \text{k}\Omega$	192	To line moon.	IIIw istayi	ns
FREQ	Oscillator Frequency	aris design from the smooth strong air	ET NOTES OF	e de Oleves, qu	18.432	MHz

Notes: 1. All measurements referenced to 1.5V unless specified otherwise.

2. Am8224-4 parameter limits are given for t_{CY} = 250ns or an oscillating frequency of 36MHz. Between 28.12MHz and 36MHz min. and max. limits should be ratioed between the calculated Am8224XC limits at 28.12MHz and the given 36MHz parameter limits.

Oscillator

The oscillator circuit derives its basic operating frequency from an external, series resonant, fundamental mode crystal. Two inputs are provided for the crystal connections (XTAL1, XTAL2).

The selection of the external crystal frequency depends mainly on the speed at which the CPU is to be run. Basically, the oscillator operates at 9 times the desired processor speed.

The formula to determine the crystal frequency is:

$$f(XTAL) = \frac{1}{{}^{t}CY} \text{ times } 9$$

When using crystals above 10MHz a small amount of frequency "trimming" is necessary to produce the desired frequency. The addition of a selected capacitance (20pF-30pF) in series with the crystal will accomplish this function.

Another input to the oscillator is TANK. This input allows the use overtone mode crystals. This type of crystal generally has a much lower output at its rated frequency and has a tendency to oscillate at its fundamental.

To avoid the unwanted oscillation and increase the desired frequency output it is necessary to provide a parallel tuned resonant circuit of low impedance. The external LC network is connected to the TANK input and is AC coupled. See typical application with Am8228 and Am9080A in Figure 2.

The formula for the LC network is:

$$F = \frac{1}{2\pi \sqrt{100}}$$

The output of the oscillator is buffered and brought out on OSC (pin 12) so that other system timing signals can be derived from this stable, crystal-controlled source.

Clock Generator

The Clock Generator consists of a synchronous "divide by nine" counter and the associated decode gating to create the waveforms of the two clocks and auxiliary timing signals.

The waveforms generated by the decode gating follow a simple 2-5-2 digital pattern. See Figure 2. The clocks generated; ϕ_1 and ϕ_2 , can best be thought of as consisting of "units" based on the oscillator frequency. Assume that one "unit" equals the period of the oscillator frequency. By multiplying the number of "units" that are contained in a pulse width or delay, times the period of the oscillator frequency, the approximate time in nanoseconds can be derived.

5

The outputs of the clock generator are connected to two high level drivers for direct interface to the CPU. A TTL level phase 2 is also brought out ϕ_2 (TTL) for external timing purposes. It is especially useful in DMA dependent activities. This signal is used to gate the requesting device onto the bus once the CPU issues the Hold Acknowledgement (HLDA).

Several other signals are also generated internally so that optimum timing of the auxiliary flip-flops and status strobe (STSTB) is achieved.

Figure 1. Clock Generator Waveforms.

STSTB (Status Strobe)

At the beginning of each machine cycle the CPU issues status information on its data bus. This information tells what type of action will take place during that machine cycle. By bringing in the SYNC signal from the CPU, and gating it with an internal timing signal (ϕ_{1A}) , an active low strobe can be derived that occurs at the start of each machine cycle at the earliest possible moment that status data is stable-on the bus. The STSTB signal connects directly to the Am8228 System Controller

The power on Reset also generates STSTB, but of course, for a longer period of time. This feature allows the Am8228 to be automatically reset without additional pins devoted for this function.

Power-On Reset and Ready Flip-Flops

A common function in microcomputer systems is the generation of an automatic system reset and start-up upon initial power-on. The Am8224 has a built-in feature to accomplish this feature.

An external RC network is connected to the $\overline{\text{RESIN}}$ input. The slow transition of the power supply rise is sensed by an internal Schmitt Trigger. This circuit converts the slow transition into a clean, fast edge when its input level reaches a predetermined value. The output of the Schmitt Trigger is connected to a "D" type flip-flop that is clocked with ϕ_{2D} (an internal timing signal). The flip-flop is synchronously reset and an active high level that complies with the microprocessor input spec is generated. For manual switch type system Reset circuits, an active low switch closing can be connected to the RESIN input in addition to the power-on RC network.

The READY input to the CPU has certain timing specifications such as "set-up and hold" thus, an external synchronizing flip-

flop is required. The Am8224 has this feature built-in. The RDYIN input presents the asynchronous "wait request" to the "D" type flip-flop. By clocking the flip-flop with $\phi_{\rm 2D}$, a synchronized READY signal at the correct input level, can be connected directly to the CPU.

Figure 2. Typical Application with Am8224 and Am9080A.

APPLICATION PRECAUTIONS WHEN USING Am8224 UP TO 36MHz

Usage with Third Harmonic Crystal or Am9080A-4

The use of the Am8224 with a third harmonic crystal requires a minor modification to the external circuitry associated with the Am8224. The changes are as follows:

- Series capacitor in conjunction with the xtal
- Adding a tuned circuit in the "tank" lead
- Tuning of circuit to proper frequency

It is necessary to maintain the crystal activity to a proper level if an xtal controlled circuit is to operate properly. A 20-30pfd capacitor placed in series will help achieve this level in third overtone crystal, while helping to suppress the fundamental mode. The Am8224 has an auxiliary port provided to allow for a tuned circuit. This tuned circuit eliminates the tendency of the circuit to oscillate at the crystal's fundamental. The tank or tuned circuit must have the following properties:

- It must be parallel resonant at the crystal frequency (third order).
- The off resonance impedance must be low enough to spoil the AC gain of the Am8224.
- 3. The circuit must be DC decoupled (or returned to V_{CC}) at a low impedance (substantially below 100 Ω).

All frequency determining components must be in close proximity to the Am8224. Insert crystal and tune tank for best waveform at Pin 12 (OSC). If counter is available, adjust for match of crystal marking. The circuit in Figure 3 will accomplish the above result for the 36MHz range.

VCC Ground

Due to the nature of our device (fast switching, higher voltage) it is necessary to provide a bypass capacitor from VCC to ground in the immediate proximity of the Am8224. This insures proper operation of the device while reducing noise spiking on adjacent circuits.

Resin Bypass

The use of a high impedance capacitor for timing R-C, and/or timing components remotely located from the Am8224 device may cause a disturbance to occur during the linear transition region. The capacitor for this function should be of the ceramic type and a value of 1000pF or greater.

This can be cured by placing a >1000pfd ceramic capacitor from Resin (Pin 2) to Ground (Pin 8) in the immediate proximity of the device. This will allow the timing R-C to be placed at will.

APPLICATIONS

The Am8224 can be driven from an external source of frequency by connecting as shown and driven with approximately 500mV over a wide frequency range.

The Am8224 can oscillate without a xtal by placing a small value capacitor ($10 \rightarrow 200 pF$) in place of a crystal.

Am8228 · Am8238

System Controller and Bus Driver for 8080A Compatible Microprocessors

Distinctive Characteristics

- Multi-byte instruction interrupt acknowledge
- Selectable single level vectored interrupt (RST-7)
- 28-pin molded or hermetic DIP package
- Single chip system controller and data bus driver for Am9080/8080A systems
- Am8238-4 high speed version available for use with 1μsec instruction cycle of Am9080A-4
- Bi-directional three-state bus driver for CPU independent operation
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883
- Available in military and commercial temperature range
- Am8238 has extended IOW/MEMW pulse width

FUNCTIONAL DESCRIPTION

The Am8228 and Am8238 are single chip System Controller Data Bus drivers for the Am9080A Microcomputer System. They generate all control signals required to directly interface Am9080A/8080A compatible system circuits (memory and I/O) to the CPU.

Bi-directional bus drivers with three-state outputs are provided for the system data bus, facilitating CPU independent bus operations such as direct memory access. Interrupt processing is accommodated by means of a single vectored interrupt or by means of the standard 8080A multiple byte interrupt vector operation.

LOGIC DIAGRAM

ORDERING INFORMATION

Package Type	Temperature Range	Am8228 Order Number	Am8238 Order Number
Molded DIP	0°C to +70°C	AM8228PC	AM8238PC
Hermetic DIP	0°C to +70°C	D8228	D8238
Hermetic DIP	-55°C to +125°C	AM8228DM	AM8238DM
Dice	0°C to +70°C	AM8228XC	AM8238XC
Hermetic DIP	0°C to +70°C		AM8238-4DC*
Molded DIP	0°C to +70°C		AM8238-4PC*

*For use with Am9080A-4 with minimum clock period of 250ns.

LOGIC SYMBOL

V_{CC} = Pin 28 GND = Pin 14

LIC-629

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-630

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Volatge to Ground Potential (Pin 28 to Pin 14) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V _{CC} max.
DC Input Voltage	-1.5V to +7.0V
DC Output Current, Into Outputs	50mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Noted:

 $T_A = -55^{\circ} \text{C to } +125^{\circ} \text{C}$ $V_{CC}MIN. = 4.50V$ $V_{CC}MAX. = 5.50V$ $V_{CC}MAX. = 5.25V$ Am8228XM, Am8238XM Am8228XC, Am8238XC, Am8238-4XC

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

arameters	Description	Test Conditions (Note 2)				Min.	(Note 1)	Max.	Units
					MIL	3.35	3.8		
Vон	Output HIGH Voltage	V _{CC} = MIN.	N. $I_{OH} = -10\mu A$	D ₀ -D ₇	COM'L	3.6	3.8	- 4 - 10 - 1	Volts
			$I_{OH} = -1.0 \text{mA}$	All other	outputs	2.4			
V-	Outros I am Valence	V MIN	I _{OL} = 2.0mA	D ₀ -D ₇		100		0.45	Volts
VOL	Output Low Voltage VCC		$V_{CC} = MIN.$ $I_{OL} = 2.0mA$ $I_{OL} = 10mA$	All other	outputs			0.45	VOILS
VC	Input Clamp Voltage (All Inputs)	V _{CC} = MIN., I _C = -5.0mA					-0.75	-1.0	Volts
VTH	Input Threshold Voltage (All Inputs)	V _{CC} = 5.0V				0.8	DE ALE	2.0	Volts
	Taller to the state of the stat	STSTB			UI.	to the second	-500	1 . 1	
1 _F	Input Load Current			D ₂ and [06	NA HT	Land in	-750	μΑ
				All other	inputs	E THE		-250	-250
1-	Input Leakage Current	\/= MAY	V F 2FV	DB ₀ -DE	37			20	μА
IR	input Leakage Current	ACC - INIAX	., V _R = 5.25V	All other	inputs			100	
INT	NTA Current	See INTA tes	st circuit			1	He book	5.0	mA
Lazares	Offstate Output Current (All Control Outputs)	V _{CC} = MAX	., V _O = 5.25V					100	
lo(OFF)	Officiate Output Current (All Control Outputs)	V _O = 0.45V					-100	μΑ	
los	Short Circuit Current (All Outputs)	V _{CC} = 5.0V			/	-15		-90	mA
Icc	Power Supply Current	V _{CC} = MAX.			E 11	140	190	mA	

	RACTERISTICS PERATING TEMPERATU S Description	RE RA	NGE Test Conditions		Am82282 Am82382 Typ. (Note 1)	XM		Am8228) Am8238) Typ. (Note 1)	KC		m8238-4 Typ. (Note 1)		Units
tpw	Width of Status Strobe			22			22			22			ns
tss	Set-up Time, Status Inputs Dn-D7		1	12			8.0	1 Made		8.0			ns
tSH	Hold Time, Status Inputs Do-D7			5.0	100		5.0			5.0			ns
'SH	Delay from STSTB to MEMR			20	30	60	20	30	60	20	30	40	1.0
	Delay from STSTB to INTA, IOR		CL = 100pF	20	30	60	20	30	60	20	30	45	ns
tDC	Delay from STSTB to all other Control Signals Delay from DBIN to Control Outputs			20	30	60	20	30	60	20	30	60	
tRR				11/16	15	35		15	30		15	30	ns
	Delay from DBIN to	Enable	C ₁ = 25pF		25	45	191	25	45		12	20	ns
tRE	8080A Bus	Disable			25	45	3.0	25	45	eith	25	35	
t _{RD}	Delay from System Bus to 8080A Bus During Read				15	30		15	30		15	20	ns
twR	Delay from WR to Control Outputs		N. T.	5.0	20	45	5.0	20	45	5.0	20	45	ns
tWE	Delay to Enable System Bus DB ₀ -DB ₇ After STSTB				25	36		25	30	Call	25	30	ns
tWD	Delay from 8080A Bus D ₀ -D ₇ to System Bus DB ₀ -DB ₇ During Write		C _L = 100pF	5.0	20	40	5.0	20	40	5.0	20	40	ns
tE	Delay from System Bus Enable to System Bus DB ₀ -DB ₇				25	35		25	30		20	30	ns
tHD	HLDA to Read Status Outputs				15	28		15	25		15	25	ns
tDS	Set-up Time, System Bus Inputs to HLDA		Y Smod V8.	10	alpast fin	yamma (10	0-00 11	njeg n	10	Resmitte	lov	ns
tDH	Hold Time, System Bus Inputs to HLDA			20	0.0		20			20			ns

Notes: 1. Typical values are for $T_A = 25^{\circ}$ C and nominal supply voltages. 2. For conditions shown as MIN. or MAX., use the appropriate value specified under electrical characteristics for the applicable device type.

FUNCTIONAL DESCRIPTION

Bi-Directional Bus Driver: An eight-bit, bi-directional bus driver is provided to buffer the Am9080A/8080A data bus from Memory and I/O devices. The Am9080A data bus has an input requirement of *3.0 volts (min) and can drive (sink) a current of at least 3.2mA. The Am8228 • Am8238 data bus driver matches these input requirements and provides enhanced noise immunity. The output drive is set for 10mA typical for Memory and I/O devices.

The Bi-Directional Bus Drive is controlled by signals from the Gating Array for proper bus flow and the outputs can be forced to high impedance state (three-state) for DMA activities.

Status Latch: The Am8228 • Am8238 stores the status information in the Status Latch when the STSTB input goes "LOW". The output of the Status Latch is connected to the Gating Array and is part of the Control Signal generation.

Gating Array: The Gating Array generates control signals (MEM R, MEM W, I/O R, I/O W and INTA) by gating the outputs of the Status Latch Am9080A signals; i.e., DBIN, WE, and HLDA.

*The 8080 A has an input requirement of 3.3V and can drive a maximum current of 1.9mA.

The "read" control signals (MEM R, I/O R and INTA) are derived by combinational logic from Status Bit and the DBIN input.

The "write" control signals (MEM W, I/O W) are similarly derived from the Status Bits and the WR input.

All Control Signals are ''active LOW'' and directly interface RAM, ROM and I/O components.

The INTA control signal is normally used to gate the "interrupt instruction port" onto the bus. It also provides a special feature in the Am8228 • Am8238. If only one basic vector is needed in the interrupt structure, the Am8228 • Am8238 can automatically insert a RST 7 instruction onto the bus. To use this option, connect the INTA output of the Am8228 • Am8238 (pin 23) to the +12 volt supply through a series resistor (1k ohms). The voltage is sensed internally by the Am8228 • Am8238 and logic is "set-up" so that when the DBIN input is active, a RST 7 instruction is gated on to the bus when an interrupt is acknowledged.

When using a multiple byte instruction as an Interrupt Instruction, the Am8228 ● Am8238 will generate an INTA pulse for each of the instruction bytes.

The BUSEN (Bus Enable) input of the Gating Array is an asynchronous input that forces the data bus output buffers and control signal buffers into their high-impedance state if it is a "HIGH". If BUSEN is a "LOW", normal operation of the data buffer and control signals take place. This facilitates CPU independent bus operations such as direct memory access.

STSTB

DEFINITION OF FUNCTIONAL TERMS

D7-D0	Data bus to-from Am9080A/8080A
DB7-DB0	Data bus to-from user system
I/OR	Input/output read strobe output active LOW
I/OW	Input/output write strobe output active LOW
MEM R	Memory read strobe, output, active LOW
MEM W	Memory write strobe, output, active LOW
DBIN	Data bus input strobe, input active HIGH
INTA	Interrupt acknowledge strobe, input, active LOW
HLDA	Hold input from Am9080A/8080A active HIGH
WR	Write input strobe, active HIGH
BUSEN	RUS ENARI E INPLIT input 3-state output

Metallization and Pad Layout

bus into status latch, active LOW

control, active LOW for 3-state out

Status Strobe, input, strobes status on data

LOADING RULES

Signal	Pin No.	input Load	Output Sink	Output Source
D ₀	15	250μΑ	2mA	-10μΑ
D ₁	17	250μΑ	2mA	-10μΑ
D ₂	12	750µA	2mA	-10µA
D ₃	10	250μΑ	2mA	-10µA
D ₄	6	250μΑ	2mA	-10μΑ
D ₅	19	250μΑ	2mA	-10μΑ
D ₆	21	750μΑ	2mA	-10μΑ
D ₇	8	250μΑ	2mA	-10µA
DB ₀	13	250μΑ	10mA	-1mA
DB ₁	16 120	250μΑ	10mA	-1mA
DB ₂	11	250μΑ	10mA	-1mA
DB ₃	9	250μΑ	10mA	-1mA
DB ₄	5	250μΑ	10mA	-1mA
DB ₅	18	250μΑ	10mA	-1mA
DB ₆	20	250μΑ	10mA	-1mA
DB ₇	7	250μΑ	10mA	-1mA
STSTB	1	500μΑ	_	_
DBIN	4	250μΑ		
WR	3	250μΑ		
HLDA	2	250μΑ		
MEM R	24		10mA	-1mA
MEM W	26		10mA	-1mA
I/OR	25	J	10mA	-1mA
IOW	27		10mA	-1mA
BUSEN	22	250μΑ		
INTA	23		10mA	-1mA
GND	14		HELL	
Vcc	28		TRIBURI	

W Look of OU S MEM) along a leating STATUS WORD CHART

		WE BELLEVI				TYPE	OF MA	CHINE C	YCLE			C tuel Isnoits
Data Bus Bit	Status Information	Instruction Fetch	Memory Read	Memory Write	Stack Read	Stack Write	Input Read	Output Write	Interrupt Acknowledge	Halt Acknowledge	Interrupt Acknowledge While Halt	or behives; al Oli bas yromes
		1	2	3	4	5	6	7	8	9	10	N STATUS
D ₀	INTA	0	0	0	0	0	0	0	mental and	0	1	WORD
D ₁	WO	11 1200	10.5	0	100	0	1 1	0	1.	1	1	menunity. The
D ₂	STACK	0	0	0	11	1 1	0	0	0	0	0	want I/O devid
D ₃	HLTA	0	0	0	0	0	0	0	0	1	1	COLUMN COLOR SIGNATURE AC
D ₄	OUT	0	0	0	0	0	0	1 8/3	0	.0	0	Oiregional Bu
D ₅	M ₁	/g 1.15 A	0 and	0 ,	0 0	0	0	0	neo al ugitur	0	roll ald rec	Array for pro
D ₆	INP	0	0	0	0	0	1	0	0	0	0	co high impeda
D ₇	MEM R	088 1a sa	stic1 si	0	1	0	0	0	0	1	0	
		11-1937	Terral Inn	2008	40 0	2000	77.6					,
eales A		wiedgad. Will genen will genen	oyte ine 18238 1944s,	No res A # 850 noticus	rai ne n a ya Sana	nariye. Rubina Orbi un		1-10 190 190	he status in	1238 stores 8 ct STS	MA Entle	- INTA - (NONE) - INTA - I/O W - I/O R - MEM W - MEM W - MEM W
ned Instruction A police Writing is not but		Frances Medged train on as will genen out of the as the day	oyte ine 18238 1944s,	i da irmi Alc dass A e 801 Alc dass Alc dass	eri ne Roya Roya Roya II 1485	nariye. Rubina Orbi un	euc d'Ad ioli est act v.:	1-10 190 190	of sure self self self self self self self sel	1238 stores 8 ct STS	To not work and the work and the work Am 300	- (NONE) - INTA - I/O W - I/O R - MEM W - MEM R

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883
COMPARATORS 2
DATA CONVERSION PRODUCTS
LINE DRIVERS/RECEIVERS
MOS MEMORY AND MICROPROCESSOR INTERFACE
OPERATIONAL AMPLIFIERS OPERATIONAL AMPLIFIERS OPERATIONAL AMPLIFIERS Dual Frequency Comparisonal Amplifier AMPLIFICATIONAL AMPLIFIERS Dual Operational Amplifier
SPECIAL FUNCTIONS
VOLTAGE REGULATORS
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

Operational Amplifiers - Section VI

Am101/201/301	Operational Amplifier	6-1
Am101A/201A/301A	Operational Amplifier	
Am102/202/302	Voltage Follower	
Am107/207/307	Frequency Compensated Operational Amplifier	6-14
Am108/208/308	Operational Amplifier	
Am108A/208A/308A	Operational Amplifier	
Am110/210/310	Voltage Follower	
Am112/212/312	Compensated, High-Performance Operational Amplifier	
Am118/218/318	High-Speed Operational Amplifier	
Am124/224/324	Quad Operational Amplifier	
Am124A/224A/324A	Quad Operational Amplifier	
Am148/248/348	Quad 741 Operational Amplifier	6-41
Am149/249/349	Quad 741 Operational Amplifier	
LF155/255/355	Monolithic JFET Input Operational Amplifier	6-43
LF155A/255A/355A	Monolithic JFET Input Operational Amplifier	6-43
LF156/256/356	Monolithic JFET Input Operational Amplifier	6-43
LF156A/256A/356A	Monolithic JFET Input Operational Amplifier	6-43
LF157/257/357	Monolithic JFET Input Operational Amplifier	6-43
LF157A/257A/357A	Monolithic JFET Input Operational Amplifier	6-43
Am216/316	Compensated, High-Performance Operational Amplifier	6-51
Am216A/316A	Compensated, High-Performance Operational Amplifier	
Am715/715C	High-Speed Operational Amplifier	6-55
Am725/725C	Instrumentation Operational Amplifier	
SSS725/725B/725E	High-Performance Operational Amplifier	
Am741/741A/741C/741E	Frequency-Compensated Operational Amplifier	6-70
SSS741/741C	High-Performance Operational Amplifier	
Am747/747A/747C/747E	Dual Frequency-Compensated Operational Amplifier	
SSS747/747C	Dual 741 Operational Amplifier	6-64
Am748/748C	Operational Amplifier	6-84
Am1501	Dual Operational Amplifier	
Am1558/1458	Dual Frequency-Compensated Operational Amplifier	
LH2101A/LH2201A/		
I H2301A	Dual Operational Amplifier	6 00

Description: The Am101/201/301 monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the National LM101, and LM201. They are available in the hermetic TO-99 metal can, dual-inline packages, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883 Class B.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am101/201/301 are differential input, class AB output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30pF capacitor.

APPLICATIONS

INPUT/OUTPUT OVERLOAD PROTECTION

If an input is driven from a low-impedance source, a series resistor, R, should be used to limit the peak instantaneous output current of the source to less than 100 mA. A large capacitor $(>0.1\mu\text{F})$ is equivalent to a low source impedance and should be protected against by an isolation resistor

The amplifier output is protected against damage from shorts to ground or to the power supplies by device design. Pro-tection of the output from voltages exceeding the specified operating power supplies can be obtained by isolating the output via limiting resistors R, or Rc.

The power supplies must never become reversed, even under transient conditions. Reverse voltages as low as 1 volt can cause damage through excessive current. This hazard can be reduced by using clamp diodes of high peak current rating connected to the device supply lines.

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0° C to $+70^{\circ}$ C	LM301D
Am301	Metal Can	0° C to $+70^{\circ}$ C	LM301H
	Dice	0° C to $+70^{\circ}$ C	LD301
Am201	DIP	-25°C to +80°C	LM201D
7111201	Metal Can	-25° C to $+80^{\circ}$ C	LM201H
	DIP	-55°C to +125°C	LM101D
Am101	Metal Can	-55°C to +125°C	LM101H
	Dice	-55°C to +125°C	LD101

CONNECTION DIAGRAMS Top Views

Flat Package

Metal Can

NOTES:

- (1) On Metal Can,
- (2) On DIP, pin 6 is connected to bottom of package.
- (3) On Flat Package, pin 5 is connected to bottom of package.

Am101/201/301

MAXIMUM RATINGS

Supply Voltage	±22V
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	±30V
Input Voltage (Note 2)	±15V
Output Short-Circuit Duration	Indefinite
Operating Temperature Range Am 101 Am 201 Am 301 Esta villaging a 2000 complete page of the page of th	-55°C to +125°C -25°C to +85°C Language didilerons from the company of to +70°C
Storage Temperature Range	nig-tal-nig ban viscists/ale viscostan -65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	O°008 ent to the National LM101, and LM201, They are

ELECTRICAL CHARACTERISTICS	(T _A = 25°C unless otherwise specified)	(Note 3)
-----------------------------------	--	----------

Parameter			Am301			Am 201		
see definitions)	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$	30.1	2.0	7.5		1.0	5.0	mV
Input Offset Current	0 4	bata	100	500	has alua	40	200	nA
Input Bias Current	INVERTING COLUMN	-mos	250	1500	n are High	120	500	nA
Input Resistance	34,371	0.1	0.4	.70	0.3	0.8	xe ne illiw	MΩ
Supply Current	$V_S = \pm 20V$		1.8	3.0		1.8	3.0	mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V,$ $R_L > 2 \text{ k}\Omega$	20	150		50	160		V/mV
The Following Specifications App	ly Over The Operating Temperature	Ranges						
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			10			6.0	mV
Input Offset Current	$T_A = T_{A \text{ (min)}}$ $T_A = T_{A \text{ (max)}}$		150 50	750 400		100 10	500 200	nA nA
Input Bias Current	$T_A = T_{A \text{ (min)}}$	14	0.32	2		0.28	1.5	μΑ
Large Signal Voltage Gain	$V_S = \pm 15 \text{ V}, V_{OUT} = \pm 10 \text{ V},$ $R_L > 2 \text{ k}\Omega$	15			25			V/mV
Input Voltage Range	$V_S = \pm 15 \text{ V}$	±12			±12			V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	65	90		70	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB
Output Voltage Swing	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega,$ $R_L = 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13	Marie Lastin	V
Supply Current	$T_A = +125$ °C $V_S = \pm 20$ V	1	1130-0-11	G SHE		1.2	2.5	mA

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C.

2. For supply voltages less than ± 15 V, the maximum input voltage is equal to the supply voltage. 3. Unless otherwise specified, these specifications apply for supply voltages from ± 5 V to ± 20 V and C_I = 30 pF.

GUARANTEED PERFORMANCE CURVES

(Curves apply over the Operating Temperature Ranges)

LIC-638

PERFORMANCE CURVES

LIC-643

FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

Two Pole Compensation

Feedforward Compensation

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

Compensating for Stray Input
Capacitance/Large Feedback Resistance

C2

R1

R2

INPUT O OUTPUT
FREC.
COMP.
B

C2 = R1 CS
R2

Isolating Large Capacitive Loads

R2

C2

R4

COMP.

FREQ.

COMP.

B

FREQ.

COMP.

CO

LIC-644

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10k\Omega$, stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF. If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

Metallization and Pad Layout

49 x 56 Mils

Description: The Am101A, Am201A and Am301A monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the National LM101A, LM201A, and LM301A. They are available in the hermetic TO-99 metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100% reliability ssurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am101A/Am201A/Am301A are differential input, class AB output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the Am101A/Am201A/ Am301A amplifiers for low level and general purpose applications.

FUNCTIONAL DIAGRAM

LIC-645

APPLICATIONS INPUT/OUTPUT OVERLOAD PROTECTION

If an input is driven from a low-impedance source, a series resistor, R, should be used to limit the peak instantaneous output current of the source to less than 100 mA. A large capacitor (>0.1 µF) is equivalent to a low-source impedance and should be protected against by an isolation resistor.

The amplifier output is protected against damage from shorts to ground or to the power supplies by device design. Protection of the output from voltages exceeding the specified operating power supplies can be obtained by isolating the output via limiting resistors

The power supplies must never become reversed, even under transient conditions. Reverse voltages as low as 1 volt can cause damage through excessive current. This hazard can be reduced by using clamp diodes of high peak current rating connected to the device supply

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0°C to +70°C	LM301AD
Am301A	Metal Can	0°C to +70°C	LM301AH
AIIISUTA	Molded DIP	0°C to +70°C	LM301AN
	Dice	0°C to +70°C	LD301A
	DIP	-25°C to +85°C	LM201AD
Am201A	Metal Can	-25°C to +85°C	LM201AH
	Flat Pak	-25°C to +85°C	Lm201AF
	DIP	-55°C to +125°C	LM101AD
Am101A	Metal Can	-55°C to +125°C	LM101AH
	Flat Pak	-55°C to +125°C	LM101AF
	Dice	-55°C to +125°C	LD101A

CONNECTION DIAGRAM **Top Views**

BALANCE

Am101A/201A/301A

MAXIMUM RATINGS

Supply voltage	±22V ±18V
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	±30V
Input Voltage (Note 2)	±15V
Output Short-Circuit Duration	Indefinite
Operating Temperature Range Am101A Am201A Am301A	-55°C to +125°C
Storage Temperature Range	misement entire stigligize and wart. A MistA −65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	2°000 metal can dual-in-line and flat packages

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 3)

arameter		Am 301		Am 101A Am 201A			
see definitions)	Conditions	Min Typ Max		Min	Тур	Max	Units
Input Offset Voltage	$R_S \leq 50 \text{ k}\Omega$	2.0	7.5	MOR	0.7	2.0	mV
Input Offset Current		3	50	- 4 202 m	1.5	10	nA
Input Bias Current		70	250	ifiers Tuc	30	75	nA
Input Resistance	DISTRICTION SEL	0.5 2	mplifiers mo	1.5	4	a patient o	MΩ
Supply Current	$V_S = \pm 20V$ $V_S = \pm 15V$	ans asion 1.8	3.0	xternal 30g ds, low-pT	1.8	3.0	mA mA
Large Signal Voltage Gain	$V_S = \pm 15 \text{ V}, \ V_{OUT} = \pm 10 \text{ V}, \ R_L > 2 \text{ k}\Omega$	25 160	alfy ine Am and general	50	160	no re val migms A	V/m\
Slew Rate	$V_S = \pm 20V, A_V = +1$	0.5			0.5		V/µs
Input Offset Current			70			20	nA
The Following Specifications Apply Input Offset Voltage	Over The Operating Temperatur $R_c \le 50 \text{ k}\Omega$	e Ranges	10			3.0	mV
Average Temperature	$T_{A(min)} \leq T_A \leq T_{A(max)}$	6.0	30		3.0	15	μV/°C
Coefficient of Input Offset Voltage							
Average Temperature Coefficient of Input Offset Current	$25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{A (max)}}$ $\text{T}_{\text{A (min)}} \leq \text{T}_{\text{A}} \leq 25^{\circ}\text{C}$	0.01 0.02	0.3 0.6		0.01	0.1 0.2	nA/°
Input Bias Current		THE PERSON NAMED IN COLUMN	300			100	nA
Large Signal Voltage Gain	$V_S = \pm 15 \text{ V}, \ V_{OUT} = \pm 10 \text{ V}, \ R_L > 2 \text{ k}\Omega$	25		25			V/m\
Input Voltage Range	$V_S = \pm 20 \text{ V}$ $V_S = \pm 15 \text{ V}$	+15, -12		±15			V
Common Mode Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	70 90		80	96		dB
Supply Voltage Rejection Ratio	$R_S \leq 50 \text{ k}\Omega$	70 96		80	96	4 .	dB
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$,	±12 ±14 ±10 ±13		±12 ±10	±14 ±13	- A	V
	11 - 2 102,	_ 10 _ 10					(**)

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C, and the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V for the 101A and 201A, and from ±5 V to ±15 V for the 301A.

FREQUENCY COMPENSATION CIRCUITS

Two Pole Compensation

Feedforward Compensation

LIC-648

Figure 1

Figure 2

Figure 3

LIC-650

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

Compensating for Stray Input Capacitance/Large Feedback Resistance

Isolating Large Capacitive Loads

LIC-651

Figure 4

Figure 5

LIC-55

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than 10kΩ, stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF. If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

PERFORMANCE CURVES (Note 3)

6

GUARANTEED PERFORMANCE CURVES (Note 3)

(Curves apply over the Operating Temperature Ranges)

011

PERFORMANCE CURVES (Note 3)

Am102/202/302

Voltage Follower

Distinctive Characteristics

- The Am102/202/302 are functionally, electrically, and pin-for-pin equivalent to the National LM102/202/302
- Slew rate: 20V/μs
- Small signal bandwidth: 20MHz
- Input current: 100nA max. over temperature
- Supply voltage range: ±5.0V to ±18V
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected dice for hybrid manufacturers
- Available in metal can, hermetic dual-in-line or hermetic flat packages

FUNCTIONAL DESCRIPTION

The Am102/202/302 is a monolithic Operational Amplifier internally connected as a unity gain non-inverting amplifier. This circuit is ideal for such applications as fast sample and hold circuits, active filters, or as a general purpose buffer. Super-beta transistors are used allowing the devices to operate at very low input currents without sacrificing speed. It may be used to replace conventional op amps such as 101 and the 741 in voltage follower applications, where lower offset voltage, drift, bias current, noise, plus higher speed and a wider operating voltage range is desirable.

LIC-655

TYPICAL APPLICATION

Fast Integrator With Low-Input Current

LIC-656

Part	Package	Temperature	Order
Number	Type	Range	Number
Am302	TO-99	0°C to +70°C	LM302H
	Hermetic DIP	0°C to +70°C	LM302D
	Dice	0°C to +70°C	LD302
Am202	TO-99	-25°C to +85°C	LM202H
	Hermetic DIP	-25°C to +85°C	LM202D
Am102	TO-99	-55°C to +125°C	LM102H
	Hermetic DIP	-55°C to +125°C	LM102D
	Flat Pak	-55°C to +125°C	LM102F

-55°C to +125°C

ORDERING INFORMATION

LD102

MAXIMUM RATINGS

Supply Voltage	±18V
Internal Power Dissipation (Note 1)	500mW
Input Voltage (Note 2)	±15V
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range Am102 Am202 Am302	55°C to +125°C -25°C to + 85°C 0°C to + 70°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 60 sec)	300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 4)

	A NOT BY WAR THE TOTAL THE		A202			Am102 Am202		
arameter (see definitions)	Conditions	Min.	Am302 Typ.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage			2.5	15	75 H	2.0	5.0	mV
Input Bias Current	inage-Gain	Ø .	2.0	30	THE DIE	3.0	10	nA
Input Resistance		103	106	Fvair	104	106		MΩ
Input Capacitance			1.5	1250	C. I	1.5		pF
Large-Signal Voltage Gain	$R_L = 8.0 k\Omega$, $V_{OUT} = \pm 10 V$, $V_S = \pm 15 V$	0.9985	0.9995		0.999	0.9996	O PE	V/V
Output Resistance	THE RESERVE OF THE PARTY OF THE		0.75	2.5	W. F.E.	0.8	2.5	Ω
Supply Current	THE PERSON OF TH		3.9	5.5	JUZ	3.9	5.5	mA
Slew Rate	$V_S = \pm 15V$, $V_{IN} = \pm 10V$, $R_L = 10k\Omega$	exet	20		1,41	20		V/µs
The Following Specifications Ap	ply Over The Operating Temperature F	Range	a-E		85-11			
Input Offset Voltage	The state of the s	2500 2		10.0		B-0101	7.5	mV
Input Bias Current	HINGE MOLE IN	100		10.0	arin) is	30	100	nA
Large-Signal Voltage Gain	$R_L = 10k\Omega$, $V_{OUT} = \pm 10V$, $V_S = \pm 15V$	0.9985			0.999	STULL STEEL		V/V
Output Voltage Swing (Note 5)	$R_L = 10k\Omega, V_S = \pm 15V$	±10			±10			V
Supply Current	T _A 7 +125° C					2.0	4.0	mA
Supply Voltage Rejection Ratio	±5.0V ≤ V _S ≤ ±18V	60			70	A Jugard		dB
	0°C ≤ T _A ≤ +70°C	1	20		7-7-11	700	-gy Tabl	μV/°C
Average Temperature Coefficient of Input Offset Voltage	-55° C ≤ T _A ≤ +85° C			Ref.	4 1 14	6.0		μV/°C
The state of the s	+85° C ≤ T _A ≤ +125° C			L. N.		12		μV/°C

- Notes: 1. Derate Metal Can package 6.8mW/°C for operation at ambient temperatures above 75°C, the Dual-In-Line at 9.0mW/°C for operation at ambient temperatures above 95°C, and the Flat Packages at 5.4mW/°C for operation at ambient temperatures above 57°C.
 For supply voltages less than ±15V, the maximum input voltage is equal to the supply voltage.
 To prevent damage when the output is shorted, it is necessary to insert a resistor larger than 2.0kΩ in series with the input. Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +70°C for the 102/202. For 302, the corresponding temperatures are +70°C and +55°C respectively.
 Unless otherwise specified, these specifications apply for supply voltages from ±5.0V to ±18V.
 Greater output voltage swing can be obtained by connecting a resistor from booster terminal to V—.

TYPICAL PERFORMANCE CURVES

Am107/207/307

Frequency Compensated Operational Amplifier

Description: The Am107/207/307 Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the National LM107/207/307. They are available in the hermetic metal can, flat package, and dual-in-line packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am107/207/307 monolithic operational amplifiers are internally frequency compensated and input/output overload protected. These differential input, class AB output amplifiers are intended to provide high accuracy and lower noise in high impedance applications. The Am107/207/307 provide improved electrical parameters and are pin-for-pin replacements for the 709, 101, 101A and 741 in most applications.

APPLICATIONS

Input/Output Protection

If an input is driven from a low-impedance source, a series resistor, R_1 should be used to limit the peak instantaneous output current of the source to less than 100 mA. A large capacitor ($>0.1\mu F$) is equivalent to a low source impedance and should be protected against by an isolation resistor .

The amplifier output is protected against damage from shorts to ground or to the power supplies by device design. Protection of the output from voltages exceeding the specified operating power supplies can be obtained by isolating the output via limiting resistors R_{\star} or R_{\circ} .

The power supplies must never become reversed, even under transient conditions. Reverse voltages as low as 1 volt can cause damage through excessive current. This hazard can be reduced by using clamp diodes of high-peak current rating connected to the device supply lines.

LIC-665

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0°C to +70°C	LM307D
Am307	Metal Can	0°C to +70°C	LM307H
	Dice	0°C to +70°C	LD307
	DIP	-25°C to +85°C	LM207D
Am207	Metal Can	-25°C to +85°C	LM207H
	Flat Package	-25°C to +85°C	LM207F
	DIP	-55°C to +125°C	LM107D
Am107	Metal Can	-55°C to +125°C	LM107H
A11107	Flat Package	-55°C to +125°C	LM107F
	Dice	-55°C to +125°C	LD107

CONNECTION DIAGRAMS Top View

NOTES:

- (1) On Metal Can,
- pin 4 is connected to case
- (2) On DIP, pin 6 is connected to bottom of package.
- (3) On Flat Package, pin 5 is connected to bottom of package

NON-INVERTING

MAXIMUM RATINGS

Supply Voltage Am107, Am207, Am307		
Internal Power Dissipation (Note 1)		500 mW
Differential Input Voltage	Parlack South File	±30V
Input Voltage (Note 2)	Control of the second s	±15V
Output Short-Circuit Duration		Indefinite
Operating Temperature Range Am107 Am207 Am307		-55°C to +125°C -25°C to +85°C 0°C to +70°C
Storage Temperature Range		-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)		300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 3)

Parameter	(1 _A = 25 C unless otherw		Am307			Am107 Am207		
(see definitions)	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_{S} \leq 50 \text{ k}\Omega$		2.0	7.5	1	0.7	2.0	mV
Input Offset Current		1 1 12	3	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2		1.5	4		МΩ
Supply Current	$V_S = \pm 20V$ $V_S = \pm 15V$	0 0	1.8	3.0	IST ON IST	1.8	3.0	mA mA
Large Signal Voltage Gain	$V_S = \pm 15 V, \ V_{OUT} = \pm 10 V, \ R_L \ge 2 k\Omega$	25	160		50	160	X ALLEY FOR	V/mV
Slew Rate	$R_L \ge 2 k\Omega$	0.2	0.5		0.2	0.5	Curr	V/μs
The Following Specifications Apply		Ranges			Valle ev			3
Input Offset Voltage	$R_{S} \leq 50 \text{ k}\Omega$			10			3.0	mV
Input Offset Current				70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$T_{A(min)} \leq T_A \leq T_{A(max)}$		6.0	30	Hall F	3.0	15	μV/°C
Average Temperature Coefficient of Input Offset Current	$\begin{array}{c} 25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{A (max)}} \\ \text{T}_{\text{A (min)}} \leq \text{T}_{\text{A}} \leq 25^{\circ}\text{C} \end{array}$		0.01	0.3	Fiff	0.01	0.1	nA/°C
Input Bias Current				300			100	nA
Large Signal Voltage Gain	$V_S = \pm 15 \text{ V}, \ V_{OUT} = \pm 10 \text{ V}, \ R_L > 2 \text{ k}\Omega$	25			25		01 6 0	V/mV
Input Voltage Range	$V_S = \pm 20 \text{ V} $ $V_S = \pm 15 \text{ V}$	+15, -12	2	an the second	±15		U9280	V
Common Mode Rejection Ratio	$R_S \leq 50 \text{ k}\Omega$	70	90	10187	80	96	Орен Гро	dB
Supply Voltage Rejection Ratio	$R_{S} \leq 50 \text{ k}\Omega$	70	96		80	96		dB
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$,	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V
Supply Current	$T_A = +125$ °C $V_S = \pm 20$ V				-10 3-1	1.2	2.5	mA

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C, the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 75°C.

2. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

3. Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V for the Am107 and Am207 and from ±5 V to ±15 V

for the Am307.

GUARANTEED PERFORMANCE CURVES (Note 3)

(Curves apply over the Operating Temperature Ranges)

PERFORMANCE CURVES (Note 3)

ADDITIONAL APPLICATION INFORMATION

Stray Input Capacitance/Large Feedback Resistance

Large Capacitive Loads

LIC-669

LIC-668

Stability is guaranteed for source resistances less than $10 \, k\Omega$, stray capacitances on the summing junction less than $5 \, pF$, and capacitive loads smaller than $100 \, pF$. If any of these conditions is not met, lead capacitors may be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads. Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card.

Metallization and Pad Layout

ß

Am108/208/308·Am108A/208A/308A

Operational Amplifiers

Description: The 108, 208, 308, 108A, 208A and 308A monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalents to the National LM108, LM208, LM308, LM108A, LM208A and LM308A. They are available in the hermetic TO-99 metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

These differential input, precision amplifiers provide low input current and offset voltage competitive with FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of ±2V to ±20V. The amplifiers may be frequency compensated with a single external capacitor and are pin-for-pin interchangeable with the 101A/ 201A/301A. The 108A, 208A, and 308A are high performance selections from the 108/208/308 amplifier family.

INVERTING AMPLIFIER LIC-671

Connection of Input Guards

APPLICATIONS

FOLLOWER LIC-672 *Use to compensate for large source resistances.

NON-INVERTING AMPLIFIER LIC-673 Must be LOW impedance

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	Hermetic DIP	0°C to +70°C	LM308D
4 200	TO-99	0°C to +70°C	LM308H
Am308	Molded DIP	0°C to +70°C	LM308N
	Dice	0°C to +70°C	LD308
	Hermetic DIP	0°C to +70°C	LM308AD
Am308A	TO-99	0°C to +70°C	LM308AH
AIIISUOA	Molded DIP	0°C to +70°C	LM308AN
	Dice	0°C to +70°C	LD308A
Am208	Hermetic DIP	-25°C to +85°C	LM208D
Am208	TO 99	-25°C to +85°C	LM208H
	Hermetic DIP	-25°C to +85°C	LM208AD
Am208A	TO-99	-25°C to +85°C	LM208AH
	Hermetic DIP	-55°C to +125°C	LM108D
Am108	TO-99	-55°C to +125°C	LM108H
	Dice	-55°C to +125°C	LD108
	Hermetic DIP	-55°C to +125°C	LM108AD
Am108A	TO-99	-55°C to +125°C	LM108AH
	Dice	-55°C to +125°C	LD108A

CONNECTION DIAGRAMS

Dual-In-Line Dual-In-Line Flat Package NOTES:

Top Views

Metal Can

- (1) On Metal Can, pin 4 is connected to case.
- (2) On DIP, pin 7 is connected to bottom of package.

(3) On Flat Package, pin 6 is connected to bottom of package. LIC-674

7	-	
		1

MAXIMUM	RATINGS				
Supply Voltage Am108, 208, Am308, 308A	108A, 208A,	RECRIMANCE CURVES		Q	±20 V ±18 V
Internal Power	Dissipation (Note 1)				500 mW
Differential Inp	ut Current (Note 2)	s many delig Error	elli ili	Input Currents	±10 mA
Input Voltage	(Note 3)				±15 V
Output Short-C	ircuit Duration				Indefinite
Operating Tem Am108, 108/ Am208, 208/ Am308, 308/			tor -		-55°C to +125°C -25°C to +85°C 0°C to +70°C
Storage Temp	erature Range		WDE 1602 - 10		-65°C to +150°C
Lead Tempera	ture (Soldering, 60 sec.)				300°C

arameter 22 - 33KA12R39 TUN		-	Am30	08	A	m30	8A		4m1(4m2(m108		
see definitions)	Conditions	Min.	Тур.	Max.	Min.	3								Units
Input Offset Voltage			2.0	7.5		0.3	0.5		0.7	2.0	100	0.3	0.5	mV
Input Offset Current	THE RESERVE SEE	dole s	0.2	1.0		0.2	1.0	1 100	0.05	0.2	refi te	0.05	0.2	nA
Input Bias Current	120 (20)		1.5	7		1.5	7		0.8	2.0		0.8	2.0	nA
Input Resistance		10	40		10	40	900	30	70		30	70		ΜΩ
Supply Current	$V_S = \pm 20 \text{ V} $ $V_S = \pm 15 \text{ V}$		0.3	0.8		0.3	0.8	W.15	0.3	0.6		0.3	0.6	mA
Large Signal Voltage Gain	$\label{eq:VS} \begin{array}{l} V_S = \pm 15 \; V, V_{OUT} = \pm 10 \; V, \\ R_L \geq 10 \; k\Omega \end{array}$	25	300		80	300		50	300	X	80	300		V/mV
The Following Specifications Apply	Over The Operating Temper	ature	Rang	es					M	M	Times.	100		2
Input Offset Voltage	DALLE FLUID			10	H		0.73	18	123	3.0			1.0	mV
Input Offset Current				1.5			1.5	-34	15/	0.4	1-1/2	11-12	0.4	nA
Average Temperature Coefficient of Input Offset Voltage	900 stock 20		6.0	30	0 LL	1.0	5.0	0/11	3.0	15		1.0	5.0	μV/°(
Average Temperature Coefficient of Input Offset Current			2	10		2.0	10		0.5	2.5	LISH Y	0.5	2.5	pA/°(
Input Bias Current				10			10			3.0			3.0	nA
Large Signal Voltage Gain	$\begin{aligned} V_S &= \pm 15 \text{ V, } V_{OUT} = \pm 10 \text{ V,} \\ R_L &\geq 10 \text{ k} \Omega \end{aligned}$	15			60			25			40			V/m\
Input Voltage Range	$V_S = \pm 15 \text{ V}$	±13.5	5		±13.5	5		±13.5	5		±13.5	5		V
Common Mode Rejection Ratio	7/100	80	100		96	110		85	100	127	96	110		dB
Supply Voltage Rejection Ratio	Acres of the Committee	80	96		96	110		80	96	/ [8]	96	110		dB
Output Voltage Swing	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega,$	±13	±14		±13	±14		±13	±14	HIN	±13	±14		V
Supply Current	$V_S = \pm 20 \text{ V}$ $V_S = \pm 15 \text{ V}$		0.6	1.0	essi di	0.6	0.8		0.15	0.4		0.15	0.4	mA

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C.

2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
 3. For supply voltages less than ±15V, the maximum input voltage is equal to the supply voltage.

4. Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V for the 108, 208, 108A and 208A and from ±5 V to ± 15 V for the 308 and 308A.

TYPICAL PERFORMANCE CURVES

6

ADDITIONAL APPLICATION INFORMATION

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration.)

Board layout for Input Guarding with TO-99 package.

Metallization and Pad Layout

Am110/210/310

Voltage Follower

Distinctive Characteristics

- The Am110/210/310 are functionally, electrically, and pin-for-pin equivalent to the National LM 110/210/310
- Slew rate: 30V/μs
- · Small signal bandwidth: 20 MHz
- Input current: 10 nA max. over temperature
- Supply voltage range: ±5V to ±18V

- 100% reliability assurance testing in compliance with MIL STD 883.
- · Electrically tested and optically inspected dice for hybrid manufacturers.
- · Available in metal can, hermetic dual-in-line or hermetic flat packages.

FUNCTIONAL DESCRIPTION

The Am110/210/310 are voltage followers featuring highspeed, low-input currents and large input voltage range. They are internally compensated with provision for external offset adjustment. Operation over wide supply voltages and temperature is possible.

FUNCTIONAL DIAGRAM

LIC-676

TYPICAL APPLICATION

Fast Integrator With Low-Input Current

	ORDERING	G INFORMATION	
Part Number	Package Type	Temperature Range	Order Number
	TO-99	0°C to +70°C	LM310H
	DIP	0° C to $+70^{\circ}$ C	LM310D
Am310	Flat Package	0°C to +70°C	LM310F
	Molded DIP	0° C to +70° C	LM310N
	Dice	0° C to $+70^{\circ}$ C	LD310
	TO-99	-25°C to +85°C	LM210H
Am210	DIP	-25° C to $+85^{\circ}$ C	LM210D
	Flat Pak	-25° C to $+85^{\circ}$ C	LM210F
	TO-99	-55°C to +125°C	LM110H
Am110	DIP	-55°C to +125°C	LM110D
74111110	Flat Package	-55°C to +125°C	LM110F
	Dice	-55°C to +125°C	LD110

	m	
В.	w	
	I	

MAXIMUM	RATINGS		
Supply Voltage	ge	PERFERENCE CURVES	±18 V
Internal Power	er Dissipation (Note 1)	en e	500 mW
Input Voltage	(Note 2)	Alternative graduation of Authorities and TVATE in Authorities and	±15 V
Output Short-	-Circuit Duration (Note 3)	anelleV askut turtus	Indefinite
Operating Te	mperature Range Am110 Am210 Am310	101 + 50 010 - 5	-55°C to +125°C -25°C to +85°C 0°C to +70°C
Storage Tem	perature Range		-65°C to +150°C
Lead Temper	ature (soldering, 60 sec)		300°C

Parameter	TICS $(T_A = 25^{\circ}C unless otherwise speci$	neu) (No	Am310			Am110 Am210		
(see definitions)	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage			2.5	7.5	74 69 4	1.5	4.0	mV
Input Bias Current			2.0	7.0	1	1.0	3.0	nA
Input Resistance	nie S. sentiali	104	106		104	106		MΩ
Input Capacitance	000000		1.5			1.5		pF
Large-Signal Voltage Gain	$R_L = 8 \text{ k}\Omega$, $V_{out} = \pm 10 \text{ V}$, $V_S = \pm 15 \text{ V}$	0.999	0.9999	- Part	0.999	0.9999		V/V
Output Resistance		1	0.75	2.5	EL III	0.75	2.5	Ω
Supply Current			3.9	5.5		3.9	5.5	mA
Slew Rate	$V_S = \pm 15 \text{ V}, V_{IN} = \pm 10 \text{ V}, R_L = 10 \text{ k}\Omega$		30	- F-112	20	30		V/μs
The Following Specifications Apply	Over The Operating Temperature Ranges							ğ
Input Offset Voltage	0 4	F - 8	4	10.0	W. I		6.0	mV
Input Bias Current		8 - 57 12		10.0		TE 3415	10.0	nA
Large-Signal Voltage Gain	$R_L = 10 \text{ k}\Omega, \ V_{out} = \pm 10 \text{ V}, \ V_S = \pm 15 \text{ V}$	0.999		1/1	0.999	o. it	pel	V/V
Output Voltage Swing (Note 5)	$R_L = 10 \text{ k}\Omega, \ V_S = \pm 15 \text{ V}$	±10	1000		±10	SOUGHT		V
Supply Current	$T_A = +125^{\circ}C$					2.0	4.0	mA
Supply Voltage Rejection Ratio	±5 V ≤ V _S ≤ ±18 V	70			70			dB
Sittes Output String	$0^{\circ} \le T_{A} \le 70^{\circ}C$	milities.	10		ions:slas	Output R		μV/°(
Average Temperature Coefficient of Input Offset Voltage	$-55^{\circ}C \le T_{A} \le 85^{\circ}C$ $+85^{\circ}C \le T_{A} \le 125^{\circ}C$					6 12	5. In	μV/°

Notes: 1. Derate Metal Can package 6.8 mW/°C for operation at ambient temperatures above 75°C, the Dual In-Line at 9 mW/°C for operation at ambient temperatures above 95°C, and the Flat Packages at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

3. To prevent damage when the output is shorted, it is necessary to insert a resistor larger than 2 kΩ in series with the input. Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70°C for the 110/210. For 310, the corresponding temperatures are 70°C and 55°C respectively.

4. Unless otherwise specified, these specifications apply for supply voltages from ±5 to ±18 V.

5. Greater output voltage swing can be obtained by connecting a resistor from booster terminal to V-.

PERFORMANCE CURVES

Am 112/212/312 Compensated, High-Performance Operational Amplifier

Distinctive Characteristics

- The Am112/212/312 are functionally, electrically, and pin-for-pin equivalents to the National LM112/212/312.
- Low input bias currents: Aq008 Low input offset currents: 50pA Low power consumption: 3mW
- Internal frequency compensation.
- Offset nulling provisions.

- 100% reliability assurance testing in compliance with MIL-STD-883.
- · Electrically tested and optically inspected die for assemblers of hybrid products.
- Mixing privileges for obtaining price discounts. Refer to price list.
- · Available in metal can, hermetic dual-in-line or hermetic flat packages.

FUNCTIONAL DESCRIPTION

The Am112/212/312 are compensated high-performance operational amplifiers featuring very low offset voltage and input current errors competitive with FET and chopperstabilized amplifiers. The devices will operate over a supply voltage range of ±2V to ±20V, drawing a typical quiescent current of only 300µA. The Am112/212/312 are internally frequency compensated and provision is made for offset adjustment with a single potentiometer. Overcompensation providing a greater stability margin is possible and the internal protection of the MOS capacitor makes it immune to overvoltage transients.

Connection of input guards and offset null Am112

TYPICAL APPLICATIONS

LIC-688 FOLLOWER

NON-INVERTING AMPLIFIER Must be LOW impedance

R₁+R₂

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0°C to +70°C	LM312D
Am312	Metal Can	0°C to +70°C	LM312H
	Dice	0°C to +70°C	LD312
H PERMIT	DIP	-25°C to +85°C	LM212D
Am212	Metal Can	-25°C to +85°C	LM212
	Flat Pak	-25° C to $+85^{\circ}$ C	LM212F
	DIP	-55°C to +125°C	LM112D
0.0444.0	Metal Can	-55°C to +125°C	LM112
AM112	Flat Pak	-55°C to +125°C	LM112F
	Dice	-55°C to +125°C	LD112

CONNECTION DIAGRAMS Top Views

Dual-In-Line BALANC NOTES: Flat Package LIC-690

Metal Can

- (1) On metal can, pin 4 is connected to case.
- (2) On DIP, pin 7 is connected to bottom of package.
- (3) On flat package, pin 6 is connected to bottom of package. Compensation terminal is not brought out on the flat package.

MAXIMUM RATINGS	S VAUG SSIMBLAG REN SAGITY T	
Internal Power Dissipation (Note 1)		500 mW
Differential Input Current (Note 2)	YOU STAND FROM DEM	±10mA
Input Voltage (Note 3)		±15V
Output Short-Circuit Duration		Indefinite
Operating Temperature Range Am112 Am212 Am312	000 8	–55°C to +125°C –25°C to +85°C 0°C to +70°C
Storage Temperature Range	5 21121-55'C 114 C 125'C 214 C 125'C	−65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	12.000=14.6000	300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 4)

nrameter) Conditions		312	Am Am		
ee definitions)			Max.	Min.	Max.	Units
Input Offset Voltage		P 1 1 2 1 9	7.5	1007 81-14	2.0	mV
Input Offset Current	1/100	a aviviere e	1 1		0.2	nA
Input Bias Current			7		2.0	nA
Input Resistance	Service South and Leader of	10	3031	30	101 61	MΩ
Supply Current	aH-YOROU	dian	0.8	el – ravater	0.6	mA
Large Signal Voltage Gain	$V_{OUT} = \pm 10 \text{ V}, V_{S} = \pm 15 \text{ V}$ R _L > 10 k Ω	25		50		V/mV
The Following Specifications Apply Ov	ver The Operating Temperature Range	5		mint I month	lok:	
Input Offset Voltage			10		3.0	mV
Average Temperature Coefficient of Input Offset Voltage	AT one	711	30		15	μV/°C
Input Offset Current			1.5		0.4	nA
Average Temperature Coefficient of Input Offset Current		250-A1	10		2.5	pA/°C
Input Bias Current	3 ac \$ 14 15 15		10	1	3.0	nA
Supply Current	T _A = +125° C	Ball I	18 1 18	TALL A	0.4	mA
Large Signal Voltage Gain	V _{OUT} = ±10V, V _S = ±15V R _L > 10 kΩ	15	90	25	1 1 Joe	V/mV
Output Voltage Swing	$V_S = \pm 15 \text{V}, R_L = 10 \text{k}\Omega$	±13		±13	Allama	V
Input Voltage Range	V _S = ± 15 V	±13.5		±13.5		V
Common Mode Rejection Ratio		80	11 11 15 1	85		dB
Supply Voltage Rejection Ratio	unlower Pulse	80	- II Y	80	Large Stg	dB

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C, and the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in

excess of 1 V is applied between the inputs unless some limiting resistance is used.

3. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

4. Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V for the Am112, Am212 and from ±5 V to ±15 V for the Am312.

ADDITIONAL APPLICATION INFORMATION

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 112 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard Am741 and Am101A pin configuration.)

Note: Board layout for input Guarding with TO-99 package.

6

Metallization and Pad Layout

Am118/218/318

High-Speed Operational Amplifier

Distinctive Characteristics

- The Am118/218/318 are functionally, electrically, and pin-for-pin equivalent to the National LM118/218/318
- Slew rate: 70V/us
- Small signal bandwidth: 15MHz Internal frequency compensation
- Supply voltage range: ±5V to ±20V

- 100% reliability assurance testing in compliance with MII -STD-883.
- Electrically tested and optically inspected dice for hybrid manufacturers
- Available in metal can, hermetic dual-in-line, hermetic flat package or plastic minidip.

FUNCTIONAL DESCRIPTION

The Am118/218/318 are internally compensated highspeed operational amplifiers featuring minimum slew rate of 50V/us. low input bias currents, large input voltage range and excellent performance over a wide range of supply voltages and temperature. They have provision for increased speeds when operating in the inverting mode,

FUNCTIONAL DIAGRAM

TYPICAL APPLICATIONS Fast Sample and Hold

ORDERING INFORMATION

Part	Package	Temperature	Order	
Number	Type	Range	Number	
	Metal Can	0°C to +70°C	LM318H	
	DIP	0°C to +70°C	LM318D	
Am318	Flat Package	0°C to +70°C	LM318F	
	Molded DIP	0°C to +70°C	LM318N	
	Dice	0°C to +70°C	LD318	
Am218	Metal Can	-25°C to +85°C	LM218H	
	DIP	-25°C to +85°C	LM218D	
	Flat Pak	-25°C to +85°C	LM218F	
	Metal Can	-55°C to +125°C	LM118H	
Am118	DIP	-55°C to +125°C	LM118D	
	Flat Package	-55°C to +125°C	LM118F	
	Dice	-55°C to +125°C	LD118	

CONNECTION DIAGRAMS Top Views

Flat Package

Metal Can

- Notes: 1. On Metal Can, pin 4 is connected to case.
 - 2. On DIP, pin 6 is connected to bottom of package.
 - 3. On Flat Package, pin 5 is connected to bottom of package.

MAXIMUM RATINGS	
Supply Voltage	±20V
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Note 2)	±5V
Input Voltage (Note 3)	±15V
Output Short-Circuit Duration	Indefinite
Operating Temperature Range Am118 Am218 Am318	–55°C to +125°C –25°C to +85°C 0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	300°C

ECTRICAL CHARACTERI	ISTICS ($T_A = 25^{\circ}$ C unless oth	nerwise specified) (Note 4) Am318			Am118 Am218			
e definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \leq 5k\Omega$		4	10		2	4	mV
Input Offset Current		W	30	200		6	50	nA
Input Bias Current			150	500	1	120	250	nA
Input Resistance		0.5	3		1.0	3		MΩ
Supply Current	V _S = ±20V		5	10		5	8	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	25	200		50	200	6	V/mV
Slew Rate	$A_V = +1, V_S = \pm 15V \text{ (Fig.1)}$ $R_L = 2k\Omega, C_L = 30pF$	50	70		50	70		V/µs
Small Signal Bandwidth	V _S = ±15V	aut Curre	15		218	15	A	MHz
The Following Specifications Apply	Over The Operating Temperature R	anges	028					K.
Input Offset Voltage	$R_S \leq 5k\Omega$			15			6	mV
Input Offset Current	0.0		99	300			100	nA
Input Bias Current			3	750	72 2		500	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	20			25			V/mV
Input Voltage Range	V _S = ±15V	±11.5			±11.5		eta + aV g	V
Common Mode Rejection Ratio	$R_S \leq 5k\Omega$	70	والبسط		80	10.00	er es es	dB
Supply Voltage Rejection Ratio	$R_S \leq 5k\Omega$	65			70		1	dB
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2k\Omega$	±12	±13	1018 11100	±12	±13	***	V
Supply Current	$V_S = \pm 20V, T_{\Delta} = 125^{\circ}C$			Lave III	MX SE		7	mA

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C, the Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 57°C.
 The inputs are shunted with diodes for overvoltage protection. To limit the current in the protection diodes, resistances of 2 kΩ or greater should be inserted in series with the input leads for differential input voltages greater than ±5 V.
 For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.
 Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V.

PERFORMANCE CURVES

PERFORMANCE CURVES

The high gain and large bandwidth of the Am118 make it mandatory to observe the following precautions in using the device, as is the case with any high-frequency amplifier. Circuit layout should be arranged to keep all lead lengths as short as possible and the output separated from the inputs. The values of the feedback and source impedances should be kept small to reduce the effect of stray capacitance at the inputs. The power supplies must be bypassed to ground at the supply leads of the amplifier with low inductance capacitors. Capacitive loading must be kept to minimum, or the amplifier must be isolated as shown in the applications.

ADDITIONAL APPLICATIONS

Wien Bridge Oscillator

Figure 10

L1-10V-14mA bulb ELDEMA 1869 R1 = R₂ C₁ = C₂ $f = \frac{1}{2\pi R1C1}$

Figure 11

LIC-7

C40 177

LIC-706

Metallization and Pad Layout

MIIIILTH/LLTH/ULTH

Quad Op Amps

Distinctive Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated
- Internally frequency compensated for unity gain
- Large dc voltage gain 100dB
- Wide bandwidth (unity gain) 1MHz (temperature compensated)

- Wide power supply range:
 Single supply 3V to 30V
 Dual supplies ±1.5V to ±15V
- Very low supply current drain (800µA) essentially independent of supply voltage (1mW/op amp at +5V)
- Low input biasing current 45nA (temperature compensated)
- Low input offset voltage 2mV and offset current — 5nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing − 0V to V⁺ −1.5V

FUNCTIONAL DESCRIPTION

The Am124 series consists of four independent, high gain, internally frequency compensated operational amplifiers designed primarily to operate from a single power supply over a wide range of voltages. These devices can also operate from split power supplies and the low power supply current drain is independent of the magnitude of the power supply voltage.

Functional applications consist of all the conventional op amp circuits which can now be more easily implemented in single power supply systems along with transducer amplifiers and dc gain blocks.

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-708

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	Hermetic DIP	0°C to +70°C	LM324D
Am324	Molded DIP	0°C to +70°C	LM324N
	Dice	0°C to +70°C	LD324
Am224	Hermetic DIP	-25°C to +85°C	LM224D
	Hermetic DIP	-55°C to +125°C	LM124D
Am124	Flat Pack	-55°C to +125°C	LM124F
	Dice	-55°C to +125°C	LM124
	Hermetic DIP	0°C to +70°C	LM324AD
Am324A	Molded DIP	0°C to +70°C	LM324AN
	Dice	0°C to +70°C	LM324A
Am224A	Hermetic DIP	-25°C to +85°C	LM224AD
	Hermetic DIP	-55°C to +125°C	LM124AD
Am124A	Flat Pack	-55°C to +125°C	LM124AF
	Dice	-55°C to +125°C	LD124A

SCHEMATIC DIAGRAM (Each Amplifier)

P		7
ř	-	7
ı.	8	
K.		á

			А	m124	IA.	Д	m224	A	Am324A			Am1	24/A	m224	Am324			
arameter	VE.0-	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Vol	tage	T _A = 25°C (Note 5)		1.0	2.0		1.0	3.0		2.0	3.0		±2.0	±5.0	11	±2.0	±7.0	mV _{DC}
Input Bias Curre (Note 6)	nt	I _{IN(+)} or I _{IN(-)} , T _A = 25°C		20	50		40	80		45	100		45	150		45	250	nADC
Input Offset Cur	rent	I _{IN(+)} - I _{IN(-)} , T _A = 25°C		2.0	10		2.0	15		5.0	30		±3.0	±30		±5.0	±50	nADO
Input Common-N Voltage Range (N		V+ = 30 V _{DC} , T _A = 25°C	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	0	PIRCI	V ⁺ -1.5	VDC
0 1 0		R _L = ∞, V _{CC} = 30 V		1.5	3.0		1.5	3.0	Jake.	1.5	3.0		1.5	3.0	MC N	1.5	3.0	mADC
Supply Current	0	R _L = ∞		0.7	1.2		0.7	1.2		0.7	1.2	1 65	0.7	1.2		0.7	1.2	ADC
Large Signal Voltage Gain		$V^+ = 15 V_{DC}$ (For large V_O swing) $R_L \ge 2.0 k\Omega$, $T_A = 25^{\circ}C$	50	100		50	100		25	100		50	100	101	25	100	() Ins	V/mV
Output Voltage	Swing	R _L = 2.0 kΩ, T _A = 25°C										0		V ⁺ -1.5	0		V ⁺ -1.5	VDC
Common-Mode Rejection Ratio	0.5	DC, T _A = 25°C	70	85		70	85		65	85		70	85		65	70	SmAll	dB
Power Supply Rejection Ratio	y O ° di	DC, TA = 25°C	65	100		65	100		65	100		65	100		65	100	EmA\	dB
Amplifier to Am Coupling (Note 8		f = 1.0 kHz to 20 kHz, T _A = 25°C (Input referred)		-120		-	-120			-120		(2)	-120	010	eprije. Idalji	-120		dB
	Source	V _{IN} += 1.0 V _{DC} , V _{IN} -= 0 V _{DC} , V ⁺ = 15 V _{DC} , T _A = 25°C	20	40		20	40		20	40		20	40		20	40		
Output Current Sink	V _{IN} -= 1.0 V _{DC} , V _{IN} += 0 V _{DC} , V+= 15 V _{DC} , T _A = 25°C	10	20	TUNA	10	20	WIF.	10	20	3.1	10	20		10	20	8	mA _D (
	V _{IN} -= 1.0 V _{DC} , V _{IN} += 0 V _{DC} , T _A = 25°C, V _O = 200 mV _{DC}	12	50		12	50		12	50		12	50		12	50		µАро	
Short Circuit to	Ground	T _A = 25°C (Note 2)		40	60		40	60		40	60		40	60		40	60	mADO
Input Offset Vol	tage	Note 5			4.0			4.0			5.0			±7.0			±9.0	mV _D
Input Offset Voltage Drift		R _S = 0 Ω	0 :0	7.0	20		7.0	20		7.0	30	equorie	7.0	131	7.0			μV/°(
Input Offset Cur	rent	I _{IN} (+) - I _{IN} (-)			30			30		15	75			±100			±150	nAD
Input Offset Current Drift				10	200		10	200		10	300		10		1.4	10		pA _{DC} /
Input Bias Curre	nt	l _{IN} (+) or l _{IN} (-)	Voc	40	100	T	40	100		40	200	VITA:SE	40	300	1	40	500	nADO
Input Common-I Voltage Range (I		V+ = 30 VDC	0		V ⁺ -2.0	0		V+-2.0	0		V ⁺ -2,0	0		V ⁺ -2.0	0		V ⁺ -2.0	VDC
Large Signal Voltage Gain		$V^{+} = +15 V_{DC}$ (For large V_{O} swing) $R_{L} \ge 2.0 k\Omega$	25			25	1		15		-avr	25	V		15			V/m\
		V+ = +30 V _{DC} , R _L = 2.0 kΩ	26	1 V	100	26			26			26	11		26			Ver
Output Voltage Swing	VOH	R _L ≥ 10kΩ	27	28		27	28		27	28		27	28	1	27	28		VDC
oig	VOL	V+ = 5.0 V _{DC} ' R _L < 10kΩ		5.0	20		5.0	20		5.0	20		5.0	20		5.0	20	mVD0
Output Current	Source	V _{IN} + = 1.0 V _{DC} , V _{IN} - = 0 V _{DC} , V+ = 15 V _{DC}	10	20	1-51-	10	20		10	20	E OI	10	20	-/85	10	20		mA
	Sink	$V_{IN} = 1.0 V_{DC}, V_{IN} = 0 V_{DC}, V_{T} = 15 V_{DC}$	10	15		5.0	8.0		5.0	8.0		5.0	8.0		5.0	8.0		
Differential Inpu Voltage	it	Note 7			V+			V+			V+			V+			V+	VDC

- Notes: 1. For operating at high temperatures, the Am324 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The Am224 and Am124 can be derated based on a +150°C maximum junction temperature. The dissipation is the total of all four amplifiers — use external resistors, where possible to
 - allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

 2. Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
 - This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish
 - when the input voltage, which was negative, again returns to a value greater than -0.3V.

 4. These specifications apply for $V^+ = +5V_{DC}$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise stated. With the Am224, all temperature specifications are limited to $-25^{\circ}C \le T_{A} \le +85^{\circ}C$ and the Am324 temperature specifications are limited to $0^{\circ}C \le T_{A} \le +70^{\circ}C$.

 5. $V_O \cong 1.4V$, $R_S = 0.0$ with V^+ from 5V to 30V; and over the full input common-mode range (0V to $V^+ = 1.5V$).

 6. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the outputs on the input stage.

 - output so no loading change exists on the input lines.
 - The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V⁺ -1.5V, but either or both inputs can go to +32V without damage.
 - 8. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitive coupling increases at higher frequencies.

Am124/224/324 • Am124A/224A/324A

MAXIMUM RATINGS (Above which the useful life may be impaired)

									32V or ±16V
A A	Am324	1	PSSA	A	A	PSIR	A		32V
Max: W	lin. Typ.	Wax. N	.gyT	nith	,xelV	-gyT	mild	Conditions	-0.3V to +32V
0.0	9.5	1.13	1.01		-0.8	127		TO NOW DESCRIPTION	gaile Viteri Voltage
									570mW
90	a e	48	100		101	0.0		3°85 - A1 1- Mill - 4- Mill	900mW
121-14	- L.a.	Ter-w		- 0	21-14		0	9'25 - AT 250'08 - "V	800mW
0.00	B. C.	but "	8.5		3.0	21		V02-20V18	
C	6.0	101	- 20		5.1	7.0		P - P	Continuous
									50mA
									0°C to +70°C
	40 10			UK		100	138	No. of Contraction	-25°C to +85°C
	1903 1900		001	80		601	252	578\$ ≠ <u>1</u> 7 15 -	55°C to +125°C
									65°C to +150°C
I Little	700		1000	No.		BEL		Description of the last transfer to the last transfer transfer to the last transfer tra	300°C
	Max. W	06 48 50 061 061 061 061 061 061 061 061 061 06	SC A SO	Typ, 184x, Min. Typ, 180x, Min	A C C C C C C C C C C C C C C C C C C C	06	00 20 00 00 00 00 00 00 00 00 00 00 00 0	C 15 15 15 15 15 15 15 15 15 15 15 15 15	Conditions (i.i. Typ. Max. Min. Typ. Max. Min. Typ. Max. Vin. Typ.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (Cont.)

Output Characteristics

APPLICATION INFORMATION

The Am124 series are op amps primarily operating from a single power supply voltage and have true-differential inputs remaining in the linear mode with an input common-mode voltage of OV. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. The bias network of the amplifier establishes a drain current independent of the magnitude of the power supply voltage over the range of from 3V to 30V.

The pin configuration is designed to simplify PC board layouts. Since the amplifier outputs are placed at the corners of the package (pins 1, 7, 8, and 14) and are adjacent to the inverting inputs.

Extra care should be taken to insure that the power for the circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket. This prevents a possible fusing of the internal conductors and becoming a destroyed unit which could occur from the unlimited current surge through the resulting forward diode within the IC.

The use of input differential voltage protection diodes is not needed since large differential voltages can be readily applied resulting in no large input currents. The differential input voltage may be larger than V⁺ without damaging the device. Protection, such as an input clamp diode with a resistor to the IC input terminal, should be provided to prevent the input voltages from going negative more than -0.3V (at 25°C).

The amplifiers contain a class A output stage for small signal levels which converts to class B in a large signal mode, to reduce the power supply current drain. Since this allows the amplifiers to both source and sink large output currents, both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to rise approximately 1 diode drop above

ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For AC coupled applications crossover distortion can be minimized by utilizing a resistor from the output of the amplifier to ground. However, in DC applications, where the load is directly coupled, there is no crossover distortion.

To maintain resistance to destruction, output short circuits either to ground or to the positive power supply should be restricted to short time durations. The possibility of destruction exists, not as a result of the short circuit current metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short circuits on more than one amplifier at a time increases the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see section on typical performance characteristics) than a standard IC op amp.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50pF can be accommodated using the worst case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The series, as presented in the section on typical applications, emphasize operations on only a single power supply voltage. Yet, if complementary power supplies are available, all of the standard op amp circuits can be implemented. A unique feature in introducing a pseudo-ground (a bias voltage reference of $V^+/2$) is allowing operation above and below this value in single power supply systems. In most cases, input biasing is not required and input voltages which range to ground can be easily accomodated.

Am148 · Am149

Quad 741 Operational Amplifiers

Distinctive Characteristics

- 741 op amp operating characteristics
- Low supply current drain 0.6mA/amplifier
- Class AB output state no crossover distortion
- Pin compatible with the Am124
- Low input offset voltage 1.0mV
- Low input offset current 4.0nA

- Low input bias current 30nA
- Gain bandwidth product Am148 (unity gain) — 1.0MHz Am149 (A_V ≥ 5) — 4.0MHz
- High degree of isolation between amplifiers 120dB
- Overload protection for inputs and outputs

FUNCTIONAL DESCRIPTION

The Am148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low-power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers

has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The Am149 series has the same features as the Am148 plus a gain bandwidth product of 4.0MHz at a gain of 5.0 or greater.

The Am148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

	ORDERING	INFORMATION	
Part	Package	Temperature	Order
Number	Type	Range	Number
Am348	Hermetic DIP Molded DIP Dice	0°C to +70°C 0°C to +70°C 0°C to +70°C	LM348D LM348N LD348
Am248	Hermetic DIP	-25°C to +85°C	LM248D
Am148	Hermetic DIP	-55°C to +125°C	LM148D
	Dice	-55°C to +125°C	LD148
Am349	Hermetic DIP	0°C to +70°C	LM349D
	Molded DIP	0°C to +70°C	LM349N
	Dice	0°C to +70°C	LD349
Am249	Hermetic DIP	-25°C to +85°C	LM249D
Am149	Hermetic DIP	−55°C to +125°C	LM149D
	Dice	−55°C to +125°C	LD149

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-713

6

		-00.
±22V	±18V	±18V
Continuous	Continuous	Continuous
ier A Guin bundy	nt drain — 0,6mA/ampiri	Low supply curren
	570mW	500mW
EP LANGE CONTRACTOR	150°C/W	150°C/W
900mW	900mW	900mW
100°C/W	100°C/W	100°C/W
150°C	110°C	100°C
-55° C \leq T _A \leq +125 $^{\circ}$ C	-25° C \leq T _A \leq $+85^{\circ}$ C	$0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C$
-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
300°C	300°C	300°C
	900mW 100°C/W 150°C −55°C ≤ T _A ≤ +125°C −65°C to +150°C	Continuous Continuous 570mW 150° C/W 900mW 900mW 100° C/W 1100° C/W 1100° C 110° C -55° C \leq TA \leq +125° C -25° C \leq TA \leq +85° C -65° C to +150° C -65° C to +150° C

See Am741 for Typical Performance Characteristics.

ELECTRICAL CHARACTERISTICS (Note 3)

			Am	148/An	1149	Am	248/An	1249	Am	n349		
arameters	C	onditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$T_A = 25^{\circ}C$,	R _S ≤ 10kΩ		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C			4.0	25		4.0	50		4.0	50	nA
Input Bias Current	T _A = 25°C			30	100		30	200		30	200	nA
Input Resistance	T _A = 25°C		0.8	2.5		8.0	2.5		0.8	2.5	The second	MΩ
Supply Current All Amplifiers	T _A = 25°C,	$T_A = 25^{\circ} C$, $V_S = \pm 15 V$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain		$T_A = 25^{\circ} C$, $V_S = \pm 15 V$ $V_{OUT} = \pm 10 V$, $R_L \ge 2.0 k\Omega$		160		25	160		25	160		V/mV
Amplifier to Amplifier Coupling	T _A = 25°C, (Input Refe	f = 1.0Hz to 20kHz rred)	4-1	-120	-		-120		R	-120		dB
Small Signal Bandwidth	T _A = 25°C	Am148 Series	1000	1.0	SCT.	3.4	1.0	207		1.0		
Small Signal Bandwidth	1 A = 25°C	Am149 Series		4.0		7 1	4.0	THY.		4.0		MHz
Phase Margin	T _A = 25°C	Am148 Series (A _V = 1)		60		1	60	- 13		60		degrees
Filase Margin	1A = 25 C	Am149 Series (A _V = 5)		60			60			60	uegrees	
Slew Rate	T _A = 25°C	Am148 Series (A _V = 1)		0.5			0.5			0.5		V/μs
	1A - 25 C	Am149 Series (A _V = 5)		2.0			2.0			2.0		ν/μς
Output Short Circuit Current	T _A = 25°C			25			25	and S		25		mA
Input Offset Voltage	$R_S \leq 10k\Omega$				6.0			7.5		- Eb	7.5	mV
Input Offset Current					75			125			100	nA
Input Bias Current	BOATS MOD	DEWINDS			325		TO CHEST &	500	相自树	BELLEG	400	nA
Large Signal Voltage Gain	$R_L > 2.0 k\Omega$		25		Drdes dataset	15	SHIP FIRE	reeT	15	Packaga		V/mV
Output Voltage Swing	Vo = +15V	$R_L = 10k\Omega$ $R_L = 2.0k\Omega$	±12	±13	COMPAN	±12	±13	100	±12	±13	net	V
		$R_L = 2.0k\Omega$	±10	±12	750 N2 hu	±10	±12	12 1	±10	±12	id	
Input Voltage Range	V _S = ±15V		±12			±12	T BATT	a M. M.	±12	6310		V
Common-Mode Rejection Ratio	R _S ≤ 10kΩ		70	90	CUNTA	70	90	3978-	70	90	MATERIAL STATES	dB
Supply Voltage Rejection	$R_S \leq 10k\Omega$	A Street	77	96	SALE	77	96	D. US	77	96		dB

Notes: 1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

3. These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range $(T_L \leqslant T_A \leqslant T_H)$ unless otherwise noted.

4. For supply voltages less than $\pm 15 \text{V}$, the maximum input voltage is equal to the supply voltage.

^{2.} The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{jmax} , θ_{jA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{jmax}, -T_A)/\theta_{jA}$ or the 25°C P_{dmax} , whichever is less. Derate Dual In-Line package at 9mW/°C for operation at ambient temperatures above 95°C.

LF155/LF156/LF157

Monolithic JFET Input Operational Amplifiers

DISTINCTIVE CHARACTERISTICS

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance - very low 1/f corner
- · Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (10,000pF) without stability problems
- Internal compensation and large differential input voltage capability

GENERAL DESCRIPTION

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors. These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

The LF155, LF156, LF157 series are direct replacements for National LF155, LF156, LF157 series.

COMMON FEATURES (LF155A, LF156A, LF157A)

Low input bias current	30pA
Low input offset current	3.0pA
High input impedance	1012Ω
Low input offset voltage	1.0mV
Low input offset voltage temperature drift	3.0µ√/°C
Low input noise current	0.01pA/√Hz
High common-mode rejection ratio	100dB
Large dc voltage gain	106dB

UNCOMMON FEATURES

	LF155A	LF156A	LF157A (A _V = 5)	Units
Extremely fast settling time to 0.01%	4.0	1.5	1.5	μs
Fast slew rate	5.0	12	50	V/μs
Wide gain bandwidth	2.5	5.0	20	MHz
Low input noise voltage	20	12	12	nV/√Hz

CONNECTION DIAGRAMS **Top Views**

Metal Can

Dual-In-Line

Notes: 1. On Dual-In-Line Pin 1 is marked for orientation.

2. On Metal Can Pin 4 is connected to case.

APPLICATIONS

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- · Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

ORDERING INFORMATION

Part	Package	Temperature	Order		
Number	Type	Range	Number		
LF355	Metal Can	0°C to +70°C	LF355H		
	Molded DIP	0°C to +70°C	LF355N		
	Dice	0°C to +70°C	LD355		
LF255	Metal Can	-25°C to +85°C	LF255H		
LF155	Metal Can	-55°C to +125°C	LF155H		
	Dice	-55°C to +125°C	LD155		
LF355A	Metal Can	0°C to +70°C	LF355AH		
	Dice	0°C to +70°C	LD355A		
LF155A	Metal Can	-55°C to +125°C	LF155AF		
	Dice	-55°C to +125°C	LD155A		
LF356	Metal Can	0°C to +70°C	LF356H		
	Molded DIP	0°C to +70°C	LF356N		
	Dice	0°C to +70°C	LD356		
LF256	Metal Can	-25°C to +85°C	LF256H		
LF156	Metal Can	-55°C to +125°C	LF156H		
	Dice	-55°C to +125°C	LD156		
LF356A	Metal Can	0°C to +70°C	LF356AF		
	Dice	0°C to +70°C	LD356A		
LF156A	Metal Can	-55°C to +125°C	LF156AH		
	Dice	-55°C to +125°C	LD156A		
LF357	Metal Can	0°C to +70°C	LF357H		
	Molded DIP	0°C to +70°C	LF357N		
	Dice	0°C to +70°C	LD357		
LF257	Metal Can	-25°C to +85°C	LF257H		
LF157	Metal Can	-55°C to +125°C	LF157H		
	Dice	-55°C to +125°C	LD157		
LF357A	Metal Can	0°C to +70°C	LF357AH		
	Dice	0°C to +70°C	LD357A		
LF157A	Metal Can	-55°C to +125°C	LF157AH		
	Dice	-55°C to +125°C	LD157A		

ABSOLUTE MAXIMUM RATINGS

		LF155A/6A/7A	LF155/6/7	LF255/6/7	LF355A/6A/7A LF355/6/7
Supply Voltage	qyr mor sold agr a	±22V	±22V	±22V	±18V
Power Dissipat	ion (Note 1) TO-99 (H Package)	670mW	670mW	570mW	500mW
Operating Tem	perature Range	-55°C to +125°C	-55°C to +125°C	-25°C to +85°C	0°C to +70°C
T _J (Max.)	9.8	150°C	150°C	115°C	100°C
Differential Inj	out Voltage	±40V	±40V	±40V	±30V
Input Voltage	Range (Note 2)	±20V	±20V	±20V	±16V
Output Short (Circuit Duration	Continous	Continuous	Continuous	Continuous
Storage Tempe	rature Range	-65° C to $+150^{\circ}$ C	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Lead Temperar	ture (Soldering, 10 seconds)	300°C	300°C	300°C	300°C

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Note 3) DC CHARACTERISTICS

			LF1	55A/6A	/7A	LF3			
Parameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		$R_S = 50\Omega$, $T_A = 25^{\circ}C$		1.0	2.0	A PROPERTY	1.0	2.0	mV
Vos	Input Offset Voltage	Over Temperature			2.5			2.3	mV
ΔV _{OS} /ΔT	Average TC of Input Offset Voltage	$R_S = 50\Omega$		3.0	5.0		3.0	5.0	μV/°C
ΔTC/ΔV _{OS}	Change in Average TC with VOS Adjust	$R_S = 50\Omega$, (Note 4)		0.5			0.5		μV/°C per m\
		$T_J = 25^{\circ}C$, (Note 3, 5)		3.0	10	S-All	3.0	10	рА
los	Input Offset Current	TJ≤THIGH			10	(A-24)	Unteel	1.0	nA
In Japut Pice Current	T _J = 25°C, (Notes 3, 5)		30	50	003	30	50	рА	
B	Input Bias Current	TJ < THIGH			25	2 1000		5.0	nA
RIN	Input Resistance	T _J = 25°C		1012	44	D.P	1012		Ω
		$V_S = \pm 15V, T_A = 25^{\circ}C$	50	200		50	200		V/mV
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 10V$, $R_L = 2k\Omega$ Over Temperature	25	watk a	J. N.	25			V/mV
V _O	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$	±12	±13		±12	±13	*	Volts
VO	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2k\Omega$	±10	±12		±10	±12		Volts
V _{CM}	Input Common-Mode Voltage Range	V _S = ±15V	±11	+15.1 -12	at 8,4	±11	+15.1 -12		Volts
CMRR	Common-Mode Rejection Ratio		85	100	SEL AT	85	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100	LE-HIBIT	dB

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE AC CHARACTERISTICS (TA = 25°C, VS = ±15V)

			LF155A/355A		LF156A/356A			LF157A/357A				
arameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
SR Slew Rate	LF155A/6A: A _V = 1	3.0	5.0		10	12	A VEI	TOTAL STATE	E analys	OLENDSKIE A	V/µs	
	LF157A: A _V = 5	Wares	of vicas	en el inal	time as as	mil 45	A.D. Asset	40	50	tere will	V/µs	
GBW	Gain-Bandwidth Product	Marie go Him n Papy Wha di anuono heny	STOTAL TAKES	2.5	TO DESI	4.0	4.5	(N) B BEE	15	20	AVENE S	MHz
ts	Settling Time to 0.01%	(Note 7)	matesta o	4.0	PRODUCTION	Marie Marie	1.5			1.5	PRINT OF	μs
mer areastur uga çaksınga lamaşıyarı	$R_S = 100\Omega$	or both	attel H	e lasticada	A HERA	No.	leşin sa	LANGE S	61.789710	0.01019-12	marries.	
en	Equivalent Input Noise Voltage	f = 100Hz	mining.	25		CHILDREN W.	15	Statut Z	of Party	15	र कार्यातु का	nV/√Hz
Voltage	Voltage	f = 1000Hz		20			12	A STATE OF	The second	12	LIA PERSONAL DE	
in Equivalent Input Noise Current	f = 100Hz	et 17.4 t	0.01	siyaanaa	1 127 1097	0.01	half is to	(BIST)	0.01	walt or	pA/√Hz	
	f = 1000Hz	ra diraya.	0.01	et link	gann sa	0.01	rugni pr	17 18 18 18 18 18 18 18 18 18 18 18 18 18	0.01	Draw Suit		
CIN	Input Capacitance	NAME OF TAXABLE PARTY OF THE PA	-	3.0		INCHES !	3.0	1277	21.72	3.0		pF

LF155/LF156/LF157

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE ATTAR MUMIXAM STULK DC CHARACTERISTICS (Note 3)

C 2 5 5 1 6 / 7			L	F155/6	/7	L	F255/6	/7	LF355/6/7			
arameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Venno P	Input Offset Voltage	$R_S = 50\Omega$, $T_A = 25^{\circ} C$		3.0	5.0		3.0	5.0	LOTTE	3.0	10	mV
Vos	Input Offset Voltage	Over Temperature		Paren	7.0			6.5			13	mV
ΔV _{OS} /ΔT	Average TC of Input Offset Voltage	R _S = 50Ω	7. 7	5.0			5.0			5.0		μV/°C
ΔTC/ΔV _{OS}	Change in Average TC with Vos Adjust	R _S = 50Ω, (Note 4)		0.5			0.5		10.00	0.5	Dan I	μV/°C per m\
la.	OS Input Offset Current	$T_J = 25^{\circ}C$, (Notes 3, 5)		3.0	20		3.0	20		3.0	50	рА
Ios	Input Offset Current	TJ≤THIGH			20			1.0			2.0	nA
A Mary or		$T_J = 25^{\circ}C$, (Notes 3, 5)		30	100		30	100		30	200	рА
IB	Input Bias Current	TJ≤THIGH		LILIE .	50		(8)	5.0	FINE, T	integ i	8.0	nA
RIN	Input Resistance	$T_J = 25^{\circ}C$		1012			1012			1012		Ω
	TERMINAL TO THE REST	V _S = ±15V, T _A = 25°C	50	200		50	200		25	200		8
AVOL	Large Signal Voltage Gain	$V_0 = \pm 10V$, $R_L = 2k\Omega$ Over Temperature	25	Kin		25			15		V/mV	
V -	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$	±12	±13		±12	±13		±12	±13		Volts
V _O	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2k\Omega$	±10	±12		±10	±12		±10	±12	4	Voits
V _{CM}	Input Common-Mode Voltage Range	V _S = ±15V	±11	+15.1 -12	ABSS	ER O	+15.1 -12	Tala	±11	+15.1	J AO L	Volts
CMRR	Common-Mode Rejection Ratio	LF15uA/6AF/A Win, Typ. Wes	85	100		85	100	oitgites	80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100	P gR	85	100	agest	80	100		dB

DC CHARACTERISTICS (TA = 25°C, VS = ±15V)

An 01	LF155A LF155		LF3	55	LF15		LF35	6A/356	LF19		LF357	7A/357	
Parameters	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Units
Supply Current	2.0	4.0	2.0	4.0	5.0	7.0	5.0	10	5.0	7.0	5.0	10	mA

AC CHARACTERISTICS (TA = 25°C, VS = ±15V)

arameters	Description	Test Conditions	LF155/255/ LF355 Typ.	LF156/256 Min.	LF156/256/ LF356 Typ.	LF157/257 Min.	LF157/257 LF357 Typ.	Units
CD	Cl. D. SI-	LF155/6: A _V = 1,	5.0	7.5	12	av e galamiografia	Sy andrin	V/µs
SR Slew Rate	LF157: A _V = 5			Range	30	50	V/µs	
GBW	Gain-Bandwidth Product	as long as	2.5	(6 exekt)	5.0	ojtage Roji otioi	20	MHz
t _S	Settling Time fo 0.01%	(Note 7)	4.0		1.5		1.5	μs
en	Equivalent Input Noise Voltage	R _S = 100Ω f = 100Hz	25		15	elfine in the	15	nV/√Hz
	Vortage	f = 1000Hz	20		12		12	
	Equivalent Input	f = 100Hz	0.01		0.01		0.01	
in	Noise Current	f = 1000Hz	0.01	Augenaging	0.01	and and a	0.01	pA/√Hz
CIN	Input Capacitance	acrem and	3.0	DESCRIPTION S	3.0	TO PERSON	3.0	pF

Notes: 1. The TO-99 package must be derated based on a thermal resistance of 150°C/W junction to ambient or 45°C/W junction to case; for the DIP package, the device must be derated based on thermal resistance of 175°C/W junction to ambient.

2. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

3. These specifications apply for $\pm 15V \leqslant V_S \leqslant \pm 20V$, $-55^{\circ}C \leqslant T_A \leqslant +125^{\circ}C$ and $T_{HIGH} = +125^{\circ}C$ unless otherwise stated for the LF155A/6A/7A and the LF155/6/7. For the LF255/6/7, these specifications apply for $\pm 15V \leqslant V_S \leqslant \pm 20V$, $-25^{\circ}C \leqslant T_A \leqslant +85^{\circ}C$ and $T_{HIGH} = 85^{\circ}C$ unless otherwise stated. For the LF355A/6A/7A, these specifications apply for $\pm 15V \leqslant V_S \leqslant \pm 20V$, $0^{\circ}C \leqslant T_A \leqslant +70^{\circ}C$ and $T_{HIGH} = +70^{\circ}C$, and for the LF355A/7 these specifications apply for $V_S = \pm 15V$ and $0^{\circ}C \leqslant T_A \leqslant +70^{\circ}C$. V_{OS} , I_B and I_{OS} are measured at $V_{CM} = 0$.

4. The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5µV/°C) typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.

5. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature T_j. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_j = T_A + Θ_{jA}Pd where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

6. Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
7. Settling time is defined here, for a unity gain inverter connection using 2 kΩ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF157, A_V = -5, the feedback resistor from output to input is 2kΩ and the output step is 10V (See Settling Time Test Circuit, page 9).

6

LIC-717

TYPICAL DC PERFORMANCE CHARACTERISTICS

TYPICAL AC PERFORMANCE CHARACTERISTICS

6

TYPICAL AC PERFORMANCE CHARACTERISTICS (Cont.)

These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The max mum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

TYPICAL CIRCUIT CONNECTIONS AND PAD LAYOUT

V_{OS} is adjusted with a 25 k potentiometer. The potentiometer wiper is connected to V⁺ Due to a unique output stage design these amplifiers have the ability to drive large capacitive loads and still maintain stability. C_L Max. $\geqslant 0.01~\mu F$ Overshoot $\leqslant 20\%$ Settling time (t_c) $\geqslant 5.0\mu s$

Settling Time Test Circuit

Settling time is tested with the LF155/156 connected as unity gain converter and LF157 connected for $A_V=-5.0$ Output = 10V step $^*A_V=-5.0$ for LF157

A Large Power BW Amplifier (LF157)

For distortion ≤ 1% and a 20Vp-p VOUT swing, power bandwidth is: 500kHz.

Metallization and Pad Layout

75 x 45 Mils

Distinctive Characteristics

- The Am216/Am216A/Am316/Am316A are functionally, electrically, and pin-for-pin equivalent to the National LM216/LM216A/LM316/LM316A.
- Low input bias currents: 50pA
- Low input offset currents: 15pA
- Low power consumption: 3mW
- Internal frequency compensation
- Offset nulling provisions

- 100% reliability assurance testing in compliance with MIL-STD-883.
- · Electrically and optically inspected dice for assemblers of hybrid products.
- Available in metal can, hermetic dual-in-line and flat packages.

FUNCTIONAL DESCRIPTION

The Am216/Am216A/Am316/Am316A are compensated high performance operational amplifiers featuring extremely low input-current errors. High input impedance achieved using supergain transistors in a Darlington input stage produces input bias currents that are equal to high quality FET amplifiers. These devices are internally frequency compensated and provision is made for offset adjustment with a single potentiometer.

Inverting Amplifier *Use to compensate for large source resistances.

LIC-726

LIC-727

Non-Inverting Amplifier

NOTE:

Must be LOW impedance LIC-728

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0°C to +70°C	LM316D
Am316	Metal Can	0°C to +70°C	LM316H
AIIISTO	Flat Pak	0°C to +70°C	LM316F
	Dice	0°C to +70°C	LD316
Am361A	DIP	0°C to +70°C	LM316AD
	Metal Can	0°C to +70°C	LM316AH
AIIISOTA	Flat Pak	0°C to +70°C	LM316AF
	Dice	0°C to +70°C	LD316A
100	DIP	-25°C to +85°C	LM216D
Am216	Metal Can	-25°C to +85°C	LM216H
	Flat Pak	-25°C to +85°C	LM216F
	Dice	-25°C to +85°C	LD216
	DIP	-25°C to +85°C	LM216AD
Am216A	Metal Can	-25°C tó +85°C	LM216AH
AIIIZIOA	Flat Pak	-25°C to +85°C	LM216AF
	Dice	-25°C to +85°C	LD216A

CONNECTION DIAGRAMS Top Views

Dual-In-Line BALANCE

Metal Can

- Notes: (1) On Metal Can, pin 4 is connected to case.
- On DIP, pin 7 is connected to
 - bottom of package. On Flat Package, pin 6 is connected to bottom of package. Compensation terminal is not brought out on the flat package.

Am216/316 • Am216A/316A

MAXIMUM RATINGS

Supply Voltage	±20 V
Power Dissipation (Note 1)	bnsmtober-dg in belset eqmod 500 mW
Differential Input Current (Note 2)	±10 mA
Input Voltage (Note 3)	±15 V
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	ally, electrically, and pin-for-pin equivalent to the
Am216/Am216A	-25° C to 85° C
Am316/Am316A	0°C to 70°C
Storage Temperature Range	−65°C to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C
Lead Temperature (Soldering, 10 Sec.)	Time Inodumitando antida A 200

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified) (Note 4)

e definitions)	Conditions	Am216	Am216A	Am316	Am316A	Units
Input Offset Voltage	000	10	3	10	3	mV
Input Offset Current	TOPPIC TOPPIC	50	15	50	15	pA
Input Bias Current		150	50	150	50	pA
Input Resistance	Date Control	1	5	1	5	GΩ
Supply Current		0.8	0.6	0.8	0.6	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10k\Omega$	20	40	20	40	V/mV
The Following Specifications Apply (Over The Operating Temperature Ran	ges				
Input Offset Voltage		15	6	15	6	mV
Input Offset Current		100	30	100	30	рА
Input Bias Current	A SHOTESTIC MIN SECTION	250	100	250	100	рА
Supply Current	TA = TMAX.		0.5		0.5	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10 \text{ k}\Omega$	10	20	15	30	V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 k\Omega$	±13	±13	±13	±13	V
Input Voltage Range	V _S = ±15V	±13	±13	±13	±13	V
Common Mode Rejection Ratio	Cast Cast Cast Cast Cast Cast Cast Cast	80	80	80	80	dB
Supply Voltage Rejection Ratio	and the same	80	80	80	80	dB

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C, and the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage

in excess of 1 V is applied between the inputs unless some limiting resistance is used.

3. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

4. Unless otherwise specified, these specifications apply for supply voltages from ±5 V to ±20 V.

6

TYPICAL PERFORMANCE CHARACTERISTICS

Amotelate - AmoteAlateA

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the Am216 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration.)

Note: Board layout for input Guarding with TO-99 package.

Metallization and Pad Layout

Description: The Am715 and Am715C high-speed operational amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild µA715 and μA715C. Both are available in the hermetic metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am is a differential input, single-ended output operational amplifier having wide bandwidth and high slew rate. It has internal lead compensation and four points for external lag compensation networks, providing many possible combinations of frequency compensation. In addition, a point is brought out for use with an external diode to prevent latch-up in voltage follower applications.

APPLICATIONS

LIC-732

LIC-733

ORDERING	INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	Metal Can	0°C to +70°C	715HC
Am715C	DIP	0° C to $+70^{\circ}$ C	715DC
	Dice	0° C to $+70^{\circ}$ C	715XC
	Metal Can	-55°C to +125°C	715HM
Am715	DIP	-55°C to +125°C	715DM
AIII715	Flat Pak	-55°C to +125°C	715FM
	Dice	-55°C to +125°C	715XM

CONNECTION DIAGRAMS Top Views **Dual-In-Line** Metal Can COMP 1B OUTPUT NON-INVERT

NOTES:

- (1) On Metal Can, pin 5 is connected to case.
- (2) On DIP, pin 10 is connected to bottom of package.
- (3) On Flat Package, pin is connected to bottom of package.

Am715/715C

MAXIMUM RATINGS

	AND DEEDER	±18 V
onal Amplifter	High-Speed Operati	500 mW
		±6 V
		±15 V
Distinctive Chara	715 and Am715C high-speed op-	0°C to +70°C MA =1-55°C to +125°C
galbuloni galsest	are functionally, electrically, and	-65°C to +150°C
oyeling, centrileg	ent to the fairbhild pA 15 and reliable in the hemotic metal can.	300°C
	Onal Amplifier Distinctive Charactering Including	High-Speed Operational Amplitier 75 and Am715C high-speed op- Distinctive Chark- are functionally, electrically, and testing including are to the Fatrohild pA715 and cycling, contribu-

ELECTRICAL CHARACTERISTICS ($V_s = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise specified)

Parameter see definitions)	Conditions	Min	m7150 Typ	Max	Min	Am715 Typ	Max	Units
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$	sevi II o	2.0	7.5	PETHS AND	2.0	5.0	mV
Input Offset Current		est terre	70	250	in and for	70	250	nA
Input Bias Current		gridinot	0.4	1.5	providing	0.4	0.75	μΑ
Input Resistance			1.0	ot shalls	smelke r	1.0	est voi file	MΩ
Input Voltage Range	EI GIA		±12		±10	±12	rewolle) e	galle Vil
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		92		74	92		dB
Supply Voltage Rejection Ratio	$R_{\rm S} \leq 10~{\rm k}\Omega$		70	400		70	300	μV/V
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$		30	M (VSI)	15	30		V/mV
Output Voltage Swing	$R_L \ge 2 k\Omega$		±13		±10	±13		V
Output Resistance			75			75		Ω
Supply Current	AMOSTACI		5.5	10		5.5	7.0	mA
Power Consumption			165	300		165	210	mW
Transient Response (Voltage Risetime Follower) Overshoot	$V_{out} = \pm 200 \text{ mV},$ $R_L = 2 \text{ k}\Omega, C_L = 30 \text{ pF}$		30 30	75 50	DH REATH	30 30	60 40	ns %
Slew Rate	$Av = 100 \text{ (Fig. 8)} \qquad V_{out} = 0 \text{ to } +10 \text{ V},$ $Av = 10 \text{ (Fig. 7)} \qquad R_L = 2 \text{ k}\Omega,$ $Av = 1 \text{ (Figs. 1 & 2) } C_1 = 30 \text{ pF}$		65 40 20	3000	15	65 40 20		V/μs V/μs V/μs
The Following Specifications App	ply Over The Operating Temperature Range	es	0.0	1 10	di Kriss			
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			10	1877	1	7.5	mV
Input Offset Current	$T_{A} = T_{A \text{ max}}$ $T_{A} = T_{A \text{ min}}$		+	250 750		10	250 800	nA nA
Input Bias Current	$T_{A} = T_{A \text{ max}}$ $T_{A} = T_{A \text{ min}}$			1.5 7.5			0.75 4.0	μ A μ A
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	74			74	100		dB
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		1	400			300	μV/V
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$	8.0			10			V/mV
Output Voltage Swing	$R_L \ge 2 k\Omega$	±10		MOLITAN	±10	141111111111111111111111111111111111111		V

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C, the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

PERFORMANCE CURVES

Voltage Follower

Figure 1

X1 Inverting Amplifier

The high gain and large bandwidth of the Am715 make it mandatory to observe the following precautions in using the device, as is the case with any high frequency amplifier. Circuit layout should be arranged to keep all lead lengths as short as possible and the output separated from the inputs and frequency compensation pins. The values of the feedback and source impedances should be kept small to reduce the effect of stray capacitance of the inputs. The power supplies must be bypassed to ground at the supply leads of the amplifier with low inductance capacitors. Capacitive loading must be kept to an absolute minimum, since the amplifier cannot tolerate more than 30 pF directly at its output with full feedback.

Follower & X1 Inverter Positive Large-Signal Pulse Response

X1 Inverter Small-Signal Pulse Response

Follower & X1 Inverter Negative Large-Signal Pulse Response

Voltage Follower Small-Signal Pulse Response

The Am725 and Am725C monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the Fairchild 725 and 725C. They are available in the hermetic metal can and DIP packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The 725/725C are instrumentation operational amplifiers. Device design has been optimized to provide low noise voltage, low offset voltage, low offset voltage drift and high common mode rejection. The 725 is offset voltage adjustable and is pin-for-pin compatible with the 108 and 101A amplifiers. However, additional frequency compensation components are required and should be determined by the desired closed loop gain.

APPLICATION Thermocouple Amplifier

LIC-742

ORDERING INFORMATION Part Package Temperature Order Number Туре Range Number TO-99 0°C to +70°C 725HC 0°C to +70°C DIP 725DC Am725C 0°C to +70°C Molded DIP 725CN 0° C to $+70^{\circ}$ C Dice 725XC TO-99 -55°C to +125°C 725HM DIP -55°C to +125°C Am725 725DM

Dice

-55°C to +125°C

725XM

Differential Input Voltage	±5V
Input Voltage (Note 2)	±22V
Operating Temperature Range Am725 Am725C	-55°C to +125°C 0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	300°C

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$, $T_\Delta = 25^{\circ}C$ unless otherwise specified)

			Am725C		Am725			
Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage (Without external trim)	R _S ≤10 kΩ		0.5	2.5		0.5	1.0	mV
Input Offset Current			3.0	35		2.0	20	nA
Input Bias Current			50	125	attay realts	42	100	nA
Input Noise Voltage	f _O = 10Hz f _O = 100Hz f _O = 1kHz	GUTALINA MA	15 12 8.0	ios enetie Ins A (0)	s offset w bris EQ (ord	15 9.0 8.0	ratio unid-	nV/√H nV/√H nV/√H
Input Noise Current	f _O = 10Hz f _O = 100Hz f _O = 1kHz	O THERE	1.0 0.8 0.6	politista p		1.0 0.3 0.15		pA/√H pA/√H pA/√H
Input Resistance	1890		3.0			1.5		MΩ
Input Voltage Range		±13.5	±14		±13.5	±14		V
Large Signal Voltage Gain	R _L ≥2kΩ VOUT = ±10V	0.25	3.0		1.0	3.0		V/µV
Common Mode Rejection Ratio	R _S ≤10kΩ	96	120	-	110	120		dB
Power Supply Rejection Ratio	R _S ≤10kΩ	7	2.0	35		2.0	10	μV/V
Output Voltage Swing	$R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$	±12 ±10	±13 ±13		±12 ±12	±13.5 ±13.5		V
Output Resistance	Design of the second		150			150		Ω
Power Consumption			80	150		80	105	mW
The Following Specifications A	Apply Over The Operat	ing Temper	ature Ran	ges				
Input Offset Voltage (Without external trim)	R _S ≤10kΩ		0.8	3.5			1.5	mV
Average Temperature Coefficient of Input Offset Voltage (Without external trim)	R _S = 50Ω	0-	1.2			2.0	5.0	μV/°C
Average Temperature Coefficient of Input Offset Voltage (With external trim)	R _S = 50Ω		0.5	Police	5-7	0.6		μV/° (
Input Offset Current	TA(max) TA(min)		1.2 4.0	35 50		1.2 7.5	20 40	nA nA
Average Temperature Coefficient of Input Offset Current		- m 3	25			25	150	pA/°C
Input Bias Current	TA(max) TA(min)		25 100	125 250		20 80	100 200	nA nA
Large Signal Voltage Gain	$R_L \ge 2k\Omega T_A(max)$ $R_L \ge 2k\Omega, T_A(min)$	0.125 0.125			1.0 0.25	пи антя	G80	V/µV
Common Mode Rejection Ratio	R _S ≤10kΩ		115		100			dB
Power Supply Rejection Ratio	R _S ≤10kΩ		20				20	μV/V
Output Voltage Swing	R _I ≥2kΩ	±10	±13		±10	B	CIDEN T	V

Notes: 1. Derate at $6.8 \text{ mW/}^2\text{C}$ for operation at ambient temperatures above 75°C .

2. For supply voltages less than $\pm 22 \text{ V}$, the absolute maximum input voltage is equal to the supply voltage.

PERFORMANCE CURVES

PERFORMANCE CURVES

Common Mode Rejection

SSS725·SSS741·SSS747

High-Performance Operational Amplifiers

Functional Description

The SSS series are high-performance operational amplifiers designed for systems demanding extremely high accuracy. Superior DC and AC characteristics of low input offset voltage, low input offset current, low input bias current and high large signal voltage gain provide performance comparable to discrete or hybrid modules. The SSS series are functionally, electrically and pin-for-pin equivalent to the PMI SSS series.

Distinctive Characteristics

- Superior DC and AC characteristics V_{OS}, I_{OS}, A_{VO}, I_B, CMRR, PSRR
- 100% reliability assurance testing in compliance with MIL-STD-883

MAXIMUM RATINGS HIGH PERFORMANCE INSTRUMENTATION OF AMP SSS725 ±22V Supply Voltage Internal Power Dissipation (Note 1) 500mW Metal Can (TO-99) ±5V Differential Input Voltage Input Voltage (Note 2) ±22V -65°C to +150°C Storage Temperature Range Operating Temperature Range -55°C to +125°C SSS725 -25°C to +85°C SSS725B SSS725E 0°C to +70°C 300°C Lead Temperature (Soldering, 60 sec.) Output Short-Circuit Duration Indefinite

$/_{S} = \pm 15V, T$	A = 25°C Unless Otherwise Noted)		SSS725/	725E	SSS725B	
ymbol	Parameter	Condition	Min.	Max.	Min. Max.	Units
V _{os}	Input Offset Voltage (Without external trim)	$R_{\rm S} \le 20 \rm k\Omega$	EX 65 × 18	0.5	PUSTOV (WHO) 0.75	mV
Ios An	Input Offset Current			5.0	tremus realto rus.0	nA
I _B	Input Bias Current			80	80	nA
e _n	Input Noise Voltage (Note 3)	$f_0 = 10 \text{ Hz}$ $f_0 = 100 \text{ Hz}$ $f_0 = 1 \text{ kHz}$	VRIA- _A V	15.0 9.0 7.5	15.0 9.0 7.5	nV/√H nV/√H nV/√H
i _n 💛	Input Noise Current (Note 3)	$f_0 = 10 \text{ Hz}$ $f_0 = 100 \text{ Hz}$ $f_0 = 1 \text{ kHz}$	Vaut ** PU V ₆ = ±16 V ₁ R R ₁ ≥ 2 PU	1.2 0.6 0.25	1.2 0.6 0.25	pA/√H pA/√H pA/√H
Rin	Input Resistance		0.7		0.7	MΩ
A _{vo}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$ $V_0 = \pm 10 V$	1,000,000		1,000,000	
V _{om}	Maximum Output Voltage Swing	$R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$ $R_L \ge 1 k\Omega$	±12.5 ±12.0 ±11.0	Regio	±12.5 ±12.0 ±11.0	V V
CMVR	Input Voltage Range		±13.5	Annual to be de-	±13.5	V
CMRR	Common Mode Rejection Ratio	$R_s \leq 20 \mathrm{k}\Omega$	120		110	dB
PSRR	Power Supply Rejection Ratio	$R_S \leq 20 k\Omega$	SERVICE OF SERVICE	5.0	5.0	μV/V
Pd	Power Consumption			120	120	mW
A _{vo}	Large Signal Voltage Gain	$R_L \ge 500 \Omega$ $V_0 = \pm 0.5 V$ $V_S = \pm 3 V$	100,000		100,000	e e
Pd	Power Consumption	$V_s = \pm 3V$		6	6	mW

The Following	Specifications.	Apply	Over	The	Operating	Temperature Range
---------------	-----------------	-------	------	-----	-----------	-------------------

Symbol	Parameter	Condition	SSS725 Min. Max.	SSS7	25E Max.	SSS72 Min.	25B Max.	Units
Vos	Input Offset Voltage (Without external trim)	$R_S \le 20 k\Omega$	0.7	pis	0.6	мен Зиррју I	1.0	mV
	Average Input Offset Voltage Drift (Without external trim) (Note 4)	$R_S = 50 \Omega$	2.0	woc set o'	2.0 (Note 3)	skoeg nso la	2.8 (Note 3)	μV/°C
	Average Input Offset Voltage Drift (With external trim) (Note 4)	$R_s = 50 \Omega$	1.0	dogue teating	0.6	of all years to	1.0 (Note 3)	μV/°C
Ios	Input Offset Current	T _A MAX. T _A MIN.	4.0 18.0	JO GU	5.0 7.0		5.0 14.0	nA nA
	Average Input Offset Current Drift	gain	90		40 (Note 3)	estloV mgr	90 (Note 3)	pA/°C
IB	Input Bias Current	T _A MAX. T _A MIN.	70 180		80 100		80 150	nA nA
CMRR	Common Mode Rejection Ratio	$R_S \le 20 k\Omega$	110	115		106		dB
PSRR	Power Supply Rejection Ratio	$R_S \le 20 \mathrm{k}\Omega$	8.0		7.0		8.0	μV/V
A _{vo}	Large Signal Voltage Gain	$V_0 = \pm 10 \text{ V}; T_A \text{ MAX}.$ $R_L \ge 2 \text{k}\Omega; T_A \text{ MIN}.$	1,000,000 500,000	1,000,000		1,000,000 500,000		
V _{om}	Maximum Output Voltage Swing	$R_L \ge 2k\Omega$	±12.0	±12.0		±12.0	THE R	V

Notes 1. Derate at 6.8 mW/°C for operation at ambient temperatures above 75°C.

2. For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage.

3. Parameter is not 100% tested. 90% of all units meet these specifications.

Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent the realization of the performance indicated if both sides of the contacts are not kept at approximately the same temperature. Therefore, the device ambient temperature should not be altered without simultaneously changing the contact temperature.

MAXIMUM RATINGS	HIGH-PERFORMANCE FREQUENCY COMPENSATED	OP AMP SSS741/741C
Supply Voltage SSS741 SSS741C		±22V ±18V
Internal Power Dissipation (Note 1)	500mW
Differential Input Voltage		±30V
Voltage between Offset Nul	and V	±0.5V
Input Voltage (Note 2)		±15V
Output Short-Circuit Durati	on (Note 3)	Indefinite
Operating Temperature Ran SSS741 SSS741C	ge	−55°C to +125°C 0°C to +70°C
Storage Temperature Range		-65°C to +150°C
Lead Temperature (Solderin	g, 60 sec.)	300°C

mbol	CAL CHARACTERISTICS (TA Parameter	Conditions	SSS Min.	741 Max.	SSS7 Min.	41C Max.	Units
Vos	Input Offset Voltage	$R_S \le 50 \mathrm{k}\Omega$		2.0	Tamerne to	5.0	mV =
Ios	Input Offset Current			5.0	ליונטן לעויים	20	nA
IB	Input Bias Current			50	mymuO apil	100	nA
R _{in}	Input Resistance	29402 = 24	2.0	No. of the last	1.0		MΩ
A _{vo}	Large-Signal Voltage Gain	$V_s = \pm 15 V$, $R_L \ge 2 k\Omega$ $V_{out} = \pm 10 V$	100		50		V/mV
V _{om}	Output Voltage Swing	$V_S = \pm 15 V$, $R_L \ge 10 k\Omega$	±12	(E stoid)	±12		V
om	Output Voltage Swing	$R_L \ge 2k\Omega$	±10		±10		V
CMVR	Input Voltage Range	V _S = ±15 V	±12		±12	s zagat	V
	000,000,1	$V_S = \pm 20 V$	±15		erioV langik		23.9
CMRR	Common Mode Rejection Ratio	$R_{\rm S} \le 50 \rm k\Omega$	80		70		dB
PSRR	Power Supply Rejection Ratio	$R_S \le 50 \mathrm{k}\Omega$	0	100	Frigric mu	150	μV/V
Pd	Power Consumption	V _S ≤ ±15 V		85		85	mW
The Follow	ring Specifications Apply Over the Opera	ting Temperature Range			in ortalialloy	10841	BVM
Vos	Input Offset Voltage	$R_S \le 50 k\Omega$		3.0	301 30 000 700	6.0	mV
los	Input Offset Current			10	nido-muumnii	50	nA
I _B	Input Bias Current			100		200	nA
A _{vo}	Large-Signal Voltage Gain	$V_S = \pm 15 \text{ V}, R_L \geqslant 2 \text{ k}\Omega$ $V_{\text{out}} = \pm 10 \text{ V}$	25	annes d	25	Largo &	V/mV
V _{om}	Output Voltage Swing	$V_S = \pm 15 V, R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$	±12 ±10	ad Francis	±12 ±10		V
CMVR	Input Voltage Range	V _S = ±20 V	±15	1500000			V
CMRR	Common Mode Rejection Ratio	$R_S \le 50 \mathrm{k}\Omega$	80		70	CONTRACTOR OF THE PARTY OF THE	dB
PSRR	Power Supply Rejection Ratio	$R_s \leq 50 k\Omega$	STEEDS IN 1991	100	- gerte V	150	μV/V

Notes 1.

Derate metal can package at $6.8\,\mathrm{mW}/^\circ$ C for operation at ambient temperatures above 75°C. For supply voltages less than ±15V, the maximum input voltage is equal to the supply voltage. Short circuit may be to ground or either supply. Rating applies to $\pm 125^\circ$ C case temperature or $\pm 75^\circ$ C ambient temperature. The SSS741 specifications apply for ± 5 V ± 5

GUARANTEED PERFORMANCE

MAXIMUM RATINGS HIGH-PERFORMANCE DUAL FREQUENCY COMPENSATED OP AMP SSS747/747C

Supply Voltage			
SSS747 SSS747C	acteae	The nocouple Amplifier	±22V ±18V
Internal Power Dissipation (Note 1)			
DIP, Metal Can			800mW
Flat Package			500mW
Differential Input Voltage	Turning		±30V
Voltage between Offset Null and V			±0.5V
Input Voltage (Note 2)			±15V
Output Short-Circuit Duration (Note 3)			Indefinite
Operating Temperature Range			
SSS747			-55°C to +125°C
SSS747C			0°C to +70°C
Storage Temperature Range			-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)			300°C

ELECTRICAL CHARACTERISTICS (TA = 25°C) (Note 4)

			SSS	747	SSS		
Symbol	Parameter	Conditions	Min.	Max.	Min.	Max.	Units
Vos	Input Offset Voltage	$R_S \le 50 k\Omega$	10	2.0	10/60 00 19	5.0	mV
Ios	Input Offset Current			5.0		20	nA
IB	Input Bias Current			50		100	nA
Rin	Input Resistance		2.0		1.0		МΩ
A _{vo}	Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_S = \pm 15 V$, $V_{out} = \pm 10 V$	100		50		V/mV
V _{om}	Output Voltage Swing	$V_S = \pm 15 V$, $R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$	±12 ±10		±12 ±10	119	V
CMVR	Input Voltage Range	$V_S = \pm 15 V$ $V_S = \pm 20 V$	±15	TOWNSON -	±12		V
CMRR	Common Mode Rejection Ratio	$R_S \le 50 k\Omega$	80		70	4.1	dB
PSRR	Power Supply Rejection Ratio	$R_S \le 50 k\Omega$	musil .	100		150	μV/V
Pd	Power Dissipation	V _S ≤ ±15 V		85	1	85	mW
CS	Channel Separation		100				dB
The Followin	Specifications Apply Over The Operating	Temperature Ranges					
Vos	Input Offset Voltage	$R_S \le 50 k\Omega$		3.0		6.0	mV
Ios	Input Offset Current			10		50	nA
IB	Input Bias Current			100		150	nA
A _{vo}	Large Signal Voltage Gain	$V_S = \pm 15 V$, $V_O = \pm 10 V$, $R_L \ge 2 k\Omega$	25		25	0	V/mV
V _{om}	Output Voltage Swing	$V_S = \pm 15 \text{ V}, \text{ R}_{L} \ge 10 \text{ k}\Omega$ $\text{R}_{L} \ge 2 \text{ k}\Omega$	±12 ±10		±12 ±10		V V
CMVR	Input Voltage Range	V _S = ±20 V	±15		1-1-4		V
CMRR	Common Mode Rejection Ratio	$R_S \le 50 k\Omega$	80	de Lato	70		dB
PSRR	Power Supply Rejection Ratio	$R_s \leq 50 \mathrm{k}\Omega$		100		150	μV/V

- Notes 1. Derate metal can package at 6.8 mW/°C for operation at ambient temperatures above 30°C, the dual-in-line package at 9 mW/°C for operation at ambient temperatures above 57°C.
 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
 3. Short circuit may be ground or either supply. Rating applies to 125°C case temperature or +60°C ambient temperature for each side.
 4. The SSS747 specifications apply for ±5V ≤ V_S ≤ ±20V, unless otherwise noted.

Am741/741C/741A/741E

Frequency-Compensated Operational Amplifier

Description:

The Am741 Series Frequency Compensated Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild μ 741 series. The are available in the hermetic metal can, flat package, and dual-in-line packages as well as plastic dual-in-line.

The Am741A and Am741E are tested to the electrical characteristics of the current revision of MIL-M-38510/10101.

Distinctive Characteristics:

100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am741 series are differential input, class AB output amplifiers intended for general purpose applications. They are protected against faults at input and output, and require no external components for frequency compensation.

FUNCTIONAL DIAGRAM

LIC-760

APPLICATIONS

DIFFERENTIATOR

UNITY GAIN VOLTAGE FOLLOWER

INTEGRATOR

	ONDENING	INFORMATION	
Part Number	Package Type	Temperature Range	Order Number
TEMPE	Metal Can	0°C to +70°C	741HC
Am741C	Hermetic DIP	0°C to +70°C	741DC
	Dice	0°C to +70°C	741XC
	Metal Can	-55°C to +125°C	741HM
A 741	Hermetic DIP	-55°C to +125°C	741DM
Am741	Flat Pack	-55°C to +125°C	741FM
	Dice	-55°C to +125°C	741XM
A741E	Metal Can	0°C to +70°C	741EHC
Am741E	Hermetic DIP	0°C to +70°C	741EDC
	Metal Can	-55°C to +125°C	741AHN
Am741A	Hermetic DIP	-55°C to +125°C	741ADN
	Flat Pack	-55°C to +125°C	741AFM

CONNECTION DIAGRAMS Top Views

300°C

Supply Voltage	HAMILE A COLUMN TO SERVICE STREET TO SERVICE STREET	
Am741/741A/741E		±22 V
Am741C		±18 V
Internal Power Dissipation (Note 1)		500 mW
Differential Input Voltage	ame was work of the followers to come	±30 V
Voltage between Offset Null and V	TVALUE VALUE OF THE STATE OF TH	±0.5 V
Input Voltage (Note 2)	Short to Option Signally	±15 V
Output Short-Circuit Duration (Note 3)	90 14	Indefinite
Operating Temperature Range	08 1 - VET = 6V: 0301 (007 = 38 - VEE = 55V:	
Am741/741A		-55°C to +125°C
Am741C/741E		0°C to +70°C
Storage Temperature Range		-65°C to +150°C

Lead Temperature (Soldering, 60 sec.)

Parameter		A	m741	C		Am741		
(see definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200	651	20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0	SUBSTITUTE	MΩ
Input Capacitance		celvi a AT	1.4		100	1.4	ALL STORY	pF
Offset Voltage Adjustment Range		0 es 2 6	±15			±15		mV
Input Voltage Range	1.0.0	±12	±13		-±12	±13	D symmal	V
Large-Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$	20	200		50	200		V/m\
Output Resistance	Top I was a second		75			75	numbers	Ω
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		30	150	Page	30	150	μV/V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90	- Volume	dB
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption	Article Michigan Article Control		50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\rm V_{in} = 20~mV,~R_L = 2~k\Omega,~C_L \leq 100~pF$	exade)	0.3 5.0	tri Hoose	DOKTO AN	0.3	satigat an	μs %
Slew Rate	$R_L \geq 2 \ k\Omega$	0.3	0.4	are market	0.3	0.4	Chuck har	V/μs
The Following Specifications Appl	y Over The Operating Temperature Range	s						
Input Offset Voltage	$R_{S} \leq 10 \text{ k}\Omega$		White person	7.5	e reed a		6.0	mV
Input Offset Current	T _{A(max)} T _{A(min)}		9.0 35	300 300		7.0 85	200 500	nA nA
Input Bias Current	T _{A(max)} T _{A(min)}		0.04 0.13	0.8		0.03 0.3	0.5 1.5	μA μA
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		30	150		30	150	$\mu V/V$
Large-Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$	15			25			V/m\
Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V V
Supply Current	T _{A(max)} T _{A(min)}		1.6 1.8	3.3 3.3		1.5	2.5 3.3	mA mA
Power Consumption	T _{A(max)} T _{A(min)}		48 54	100 100		45 60	75 100	mW mW

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C, the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C, and the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.

2. For supply voltages less than ±15V, the maximum input voltage is equal to the supply voltage.

3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature.

Am741/741C/741A/741E

Parameters (see definitions)	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \le 50\Omega$		0.8	3.0	mV
Input Offset Current			3.0	30	nA
Input Bias Current (Note 5)			30	110	nA
Power Supply Rejection Ratio (Note 6)	$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$		15	50	μV/V
Common Mode Rejection	V _{CM} = ±15V	80			dB
Output Short Circuit Current	$\pm V_{CC} = \pm 15V$, $V_{O} = \pm 15V$ Short to Other Supply	9	V COB TRAV	40	mA
Power Dissipation		10	arolty molifer	150	mW
	$\pm V_{CC} = \pm 20V$; R ₁ = $2k\Omega$, $10k\Omega$; $V_{O} = \pm 15V$	50	Range	nostron	V/mV
Large Signal Voltage Gain	$\pm V_{CC} = \pm 5V$; R _I = $2k\Omega$, $10k\Omega$; $V_{O} = \pm 2V$	10		At	V/mV
Transient Response (unity gain)				319	(10 T4 Tm/
Rise Time			0.30	0.8	μѕ
Overshoot		13577	5.0	20	%
Adjustment for Input Offset Voltage	(Note 7)	7.5			mV
Large Signal Voltage Swing	R _L = 10kΩ	32	Y-1		Volts
	$R_L = 2k\Omega$	30			Volts
Slew Rate (unity gain)	V _{IN} = ±10V	0.3	0.42		V/µs
Noise	Bandwidth = 5kHz			15	μV RM
	Bandwidth = 5kHz			40	μV Pea
The Following Specifications Apply fo	r Min ≤ T _A ≤ Max			100	
Input Offset Voltage				4.0	mV
Average Input Offset Voltage Drift	000 00			15	μV/°C
At 000 05	T _{A(max)}			30	nA
Input Offset Current	T _A (min)			70	nA
. 84	25°C ≤ T _A ≤ Max		The Year	200	pA/°C
Average Input Offset Current Drift	Min ≤ T _A ≤ 25° C		nami Pancon	500	pA/°C
I Di O (NI E)	TA(max)	1.0		110	nA
Input Bias Current (Note 5)	TA(min)	1.0		265	nA
Output Short Circuit Current	TA(max)	9.0	The state of the s	40	mA
Output Short Circuit Current	TA(min)	9.0		55	mA
Power Dissipation	T _A (max)		mentu	135	mW
ower Dissipation	TA(min)	R, 5 10 kg	oilsA no	165	mW
Large Signal Voltage Swing	R _L = 10kΩ	32	oltaF no	DataSt Air	Volts
Large Orginal Voltage Swillig	$R_L = 2k\Omega$	30			Volts
Large Signal Voltage Gain	$\pm V_{CC} = \pm 20V$; R _L = $2k\Omega$, $10k\Omega$; $V_{O} = \pm 15V$	32			V/mV
- S. S. S. Voltage Galli	$\pm V_{CC} = \pm 5V$; R _L = $2k\Omega$, $10k\Omega$; $V_{O} = \pm 2V$	10		THE PART OF THE	V/mV

Notes: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mW/°C for the metal can, 8.3mW/°C for the DIP and 7.1mW/°C for the Flatpak.

and 7. Imwy C for the Flatpax.

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.

4. TA(min) for 741A is -55°C and for 741E is 6°C. TA(max) for 741A is +125°C and for 741E is +70°C.

5. Input bias currents are measured individually to specified limits.

6. PSRR measured separately for positive and negative supply to specified limits.

VOS adjust is measured in both positive and negative direction to the specified limit.

PERFORMANCE CURVES

-60 -20

LIC-765

Slew Rate and Transient Response **Test Circuit**

60 100

TEMPERATURE - °C

PERFORMANCE CURVES (Cont.) Input Offset Current As A Function Of Supply Voltage Input Offset Current As A Function Of Ambient Temperature Power Consumption As A Function Of Ambient Temperature 140 T_A = 25°C V_S = ±15V 70 120 Am741/741A INPUT OFFSET CURRENT 30 INPUT OFFSET CURRENT 100 NOI 60 Am741 80 POWER CONSUMPT Am741C/741E Am741/7410 20 50 Am741A 60 Am741A/741E 40 40 10 20 30 $V_S = \pm 15V$ 10 20 60 100 140 SUPPLY VOLTAGE - ±V TEMPERATURE - °C TEMPERATURE - °C Output Voltage Swing As A Function Of Load Resistance Output Short-Circuit Current As A Function Of Ambient Temperature Absolute Maximum Power Dissipation As A Function Of Ambient Temperature 28 35 600 ШA Am741/741A DUAL N-LIN 26 TO-PEAK OUTPUT SWING 500 30 24 SHORT CIRCUIT CURRENT 22 400 Am741C/741E DISSIPATION 20 25 METAL 300 18 16 20 200 14 12 15 100 10 45 65 85 105 125 5.0 10 100 0.1 0.2 0.5 1.0 2.0 -60 -2020 60 140 TEMPERATURE - °C TEMPERATURE-°C LOAD RESISTANCE – $k\Omega$ Input Noise Voltage As A Function Of Frequency Input Noise Current As A Function Of Frequency Broadband Noise For Various Bandwidths - A2/Hz 100 10-10-21 ±15V 25°C ±15V INPUT. CURRENT 10-MEAN SQUARE VOLTAGE 10 10-100 kHz 10 10-3 REFERRED NOISE -10 kHz 10 - 1 kHz 10 10-2 MEAN SQUARE 10 NOISE 10 10 10 TOTAL 100 100 10 100 1k 10k 100k 10 100 1k 10k 100k SOURCE RESISTANCE – Ω FREQUENCY - Hz FREQUENCY - Hz Open Loop Voltage Gain As A Function Of Frequency Open Loop Phase Response As A Function Of Frequency Output Voltage Swing As A Function Of Frequency 10 TO-PEAK OUTPUT SWING - V $V_S = \pm 15V$ $T_A = 25^{\circ} C$ 36 = ±15V _ = 25 C = 10kΩ 32 dB - DEGREES 10 28 VOLTAGE GAIN 24 10 -90 20 10 16 PHASE 12 8 -180 10 10 100 1k 10k 100k 1M 10M 10 100 1k 10k 100k 1M 10M 100 1k 10k 100k FREQUENCY - Hz FREQUENCY - Hz FREQUENCY - Hz LIC-767

LIC-769

INVERTING AMPLIFIER

NON-INVERTING AMPLIFIER

LIC-770

Metallization and Pad Layout

56 X 56 Mils

Description:

LIC-772

The Am747 Series Dual Frequency-Compensated Operational Amplifiers are functionally, electrically, and pinfor pin equivalent to the Fairchild μ A747 series. They are available in the hermetic metal can, dual-in-line and flat packages as well as plastic dual-in-line.

The Am747A and Am747E are tested to the electrical characteristics of the current revision of MIL-M-38510/10102.

Distinctive Characteristics:

100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am747 is a dual Am741 internally compensated operational amplifier. The Am747 Series are differential input, class AB output amplifiers intended for general purpose applications. They are protected against faults at input and output, and require no external components for frequency compensation.

Note: V⁺A and V⁺B connected internally. For separate V⁺ pins order as 747-1.

LIC-771

APPLICATIONS

NOTCH FILTER USING THE Am747 AS A GYRATOR

		ORDERING	INFORMATION	
P	art	Package	Temperature	Order
Nu	mber	Type	Range	Number
est		Hermetic DIP	0°C to +70°C	747DC
Λ.	747C	Metal Can	0°C to +70°C	747HC
		Molded DIP	0° C to $+70^{\circ}$ C	747PC
		Dice	0°C to +70°C	747XC
		Hermetic DIP	-55°C to +125°C	747DM
	747	Metal Can	-55°C to +125°C	747HM
An	1747	Flat Pak	-55°C to +125°C	747FM
		Dice	-55°C to +125°C	747XM
Wn		Hermetic DIP	0°C to +70°C	747EDC
An	1747E	Metal Can	0° C to $+70^{\circ}$ C	747EHC
		Hermetic DIP	-55°C to +125°C	747ADM
An	1747A	Metal Can	-55°C to +125°C	747AHM
		Flat Pak	-55°C to +125°C	747AFM

Dual-In-Line Dual-In-Line Metal Can Metal

Am747/747C/747A/747E

MAXIMUM RATINGS

Supply Voltage Am747, Am747A, Am747E Am747C	and the state of t	±22 V ±18 V
Internal Power Dissipation (Note 1) DIP, Metal Can Flat Package		800 mW 500 mW
Differential Input Voltage		±30 V
Voltage between Offset Null and V-	Seeks that be considered to a Ocean	±0.5 V
Input Voltage (Note 2)	range (2004) and the first of the Contraction of the State of the Stat	±15 V
Output Short-Circuit Duration (Note 3)		Indefinite
Operating Temperature Range Am747, Am747A Am747C, Am747E		C to +125°C
Storage Temperature Range	-65°C	to +150°C
Lead Temperature (Soldering, 60 sec.)		300°C
		-

ELECTRICAL CHARACTERISTICS—Each Amplifier (V_c = ±15 V, T_A = 25°C unless otherwise specified)

Parameter (see definitions)	Conditions	Min.	Am747 Typ.	C Max.	Min.	Am747 Typ.	Max.	Units
Input Offset Voltage	$R_S \leq 10 \; k\Omega$	* 9.1	2.0	6.0	att in it	1.0	5.0	mV
Input Offset Current		111111	20	200		20	200	nA
Input Bias Current		11510	80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		MΩ
Input Capacitance			1.4		-	1.4		pF
Offset Voltage Adjustment Range			±15			±15		mV
Input Voltage Range		±12	±13		±12	±13		V
Large-Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$	25	200		50	200		V/mV
Output Resistance			75			75		Ω
Output Short-Circuit Current		111826	25			25		mA
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		30	150	116931	30	150	μV/V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB
Supply Current	The state of the s		1.7	2.8		1.7	2.8	mA
Power Consumption			50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\rm V_{in}=20~mV,~R_L=2~k\Omega,~C_L\leq 100~pF$		0.3 5.0			0.3 5.0		μS %
Slew Rate	$R_L \geq 2 k\Omega$	0.3	0.4	-	0.3	0.4	47-16	V/μs
Channel Separation	$R_S = 50 \Omega$, $R_L \ge 10 \text{ k}\Omega$		120		1	120		dB
The Following Specifications Appl	y Over The Operating Temperature Rang	es						
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$			7.5			6.0	mV
Input Offset Current	T _{A(max)} T _{A(min)}		9.0 35	300 300		7.0 85	200 500	nA nA
Input Bias Current	T _{A(max)} T _{A(min)}		0.04 0.13	0.8	est sto	0.03	0.5 1.5	μ A μ A
Input Voltage Range	ent la constitución	±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		30	150		30	150	μV/V
Large-Signal Voltage Gain	$R_L \geq 2 k\Omega$, $V_{out} = \pm 10 V$	15			25		10	V/mV
Output Voltage Swing	$\begin{array}{l} R_L \geq 10 \; k\Omega \\ R_L \geq 2 \; k\Omega \end{array}$	±12 ±10	±14 ±13		±12 ±10	±14 ±13	· · · · · · · · · · · · · · · · · · ·	V
Supply Current	T _{A(max)} T _{A(min)}	1-	1.6 1.8	3.3 3.3	3.	1.5 2.0	2.5 3.3	mA mA
Power Consumption	T _{A(max)} T _{A(min)}		48 54	100 100		45 60	75 100	mW mW

Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 30°C, the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 60°C, and the Flat Package at 5.4 mW/°C for operation at ambient temperatures above 57°C.
 For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
 Short circuit may be ground or either supply. Rating applies to 125°C case temperature or +60°C ambient temperature for each side.

Am747/747C/747A/747E

Parameters (see definitions)	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \leqslant 50\Omega$	Failed	0.8	3.0	mV
Input Offset Current	19 muono A rA	100	3.0	30	nA
Input Bias Current (Note 5)			30	110	nA
Power Supply Rejection Ratio (Note 6)	$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$	h The	15	50	μV/V
Common Mode Rejection	V _{CM} = ±15V	80		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dB
Output Short Circuit Current	$\pm V_{CC} = \pm 15V$, $V_O = \pm 15V$ Short to Other Supply	9		40	mA
Power Dissipation	S NAME AND A S	10		150	mW
	$\pm V_{CC} = \pm 20V; R_L = 2k\Omega \ 10k\Omega; V_O = \pm 15V$	50		1	V/mV
Large Signal Voltage Gain	$\pm V_{CC} = \pm 5V$; R _L = $2k\Omega$ $10k\Omega$; $V_{O} = \pm 2V$	10			V/mV
Transient Response (unity gain) Rise Time			0.30	0.8	μs
Overshoot	564 KET DB 15 GE 49-		5.0	20	%
Adjustment for Input Offset Voltage	(Note 7)	7.5	DATE OF VIEW	The state of the s	mV
	$R_L = 10k\Omega$	32			Volts
Large Signal Voltage Swing	$R_L = 2k\Omega$	30			Volts
Slew Rate (unity gain)	V _{IN} = ±10V	0.3	0.42		V/µs
Noise	Bandwidth = 5kHz			15	μV RM:
Noise	Bandwidth = 5kHz			40	μV Peal
The Following Specifications Apply for	r Min ≤ T _A ≤ Max				
Input Offset Voltage				4.0	mV
Average Input Offset Voltage Drift			ROME	15	μV/°C
1 0	T _A (max)			30	nA
Input Offset Current	T _{A(min)}			70	nA
Average Input Offset Current Drift	25° C ≤ T _A ≤ Max			200	pA/°C
Average input offset current britt	Min ≤ T _A ≤ 25° C			500	pA/°C
Input Bias Current (Note 5)	T _{A(max)}	1.0		110	nA
input Bias Current (Note 5)	T _{A(min)}	1.0		265	nA
Output Short Circuit Current	T _{A(max)}	9.0		40	mA
oatput onort circuit carrent	T _{A(min)}	9.0		55	mA
Power Dissipation	T _{A(max)}		The state of	135	mW
Otto: Dissipation	T _A (min)			165	mW
Large Signal Voltage Swing	$R_L = 10k\Omega$	32			Volts
Edigo orginal voltage overlig	$R_L = 2k\Omega$	30			Volts
Large Signal Voltage Gain	$\pm V_{CC} = \pm 20V$; R _L = 2k Ω , 10k Ω ; V _O = ±15V	32			V/mV
Large Orginal Voltage Call	$\pm V_{CC} = \pm 5V$; R _L = $2k\Omega$, $10k\Omega$; $V_{O} = \pm 2V$	10			V/mV

Notes: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mW/°C for the metal can, 8.3mW/°C for the DIP and 7.1mW/°C for the Flatpak.

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.

4. T_A(min) for 741A is -55°C and for 741E is 0°C. T_A(max) for 741A is +125°C and for 741E is +70°C.

5. Input bias currents are measured individually to specified limits.

6. PSRR measured separately for positive and negative supply to specified limits.

7. V_{OS} adjust is measured in both positive and negative direction to the specified limit.

PERFORMANCE CURVES

(Each Amplifier)

Input Bias Current As A Function Of Ambient Temperature 500

Input Resistance As A Function Of Ambient Temperature

LIC-776

Transient Response **Test Circuit**

PERFORMANCE CURVES (Cont.)

(Each Amplifier)

ADDITIONAL APPLICATIONS COMPRESSOR/EXPANDER AMPLIFIERS COMPRESSOR STRANGER ANALOG MULTIPLIER ANALOG MULT

Am748/748C

Operational Amplifier

Description: The Am748/748C Monolithic Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild μ A748 and μ A748C. Both are available in the hermetic metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883 Class B.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION:

The Am748 and Am748C are differential input class AB output amplifiers intended for general-purpose application. They are protected against faults at input and output, and may be frequency compensated with an external 30 pF capacitor.

LIC-783

APPLICATIONS

DIFFERENTIATOR

INTEGRATOR

LIC-784

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	Metal Can	0°C to +70°C	748HC
Am748C	Hermetic DIP	0°C to +70°C	748DC
	Dice	0°C to +70°C	748XC
	Metal Can	-55°C to +125°C	748HM
Am748	Hermetic DIP	-55°C to +125°C	748DM
	Dice	-55°C to +125°C	748XM

CONNECTION DIAGRAMS Top Views

BALANCE

(3) On Flat Package, pin 5 is connected to bottom of package

MAXIMUM RATINGS			
Supply Voltage Am748 Am748C	PERFORMANCE CHAVES		±22 V ±18 V
Power Dissipation (Note 1)	POTENTIA AND THE	E CONTRACTOR CONTRACTO	500 mW
Differential Input Voltage		Sulph April 4	±30 V
Input Voltage (Note 2)	908		±15 V
Output Short-Circuit Duration (Note 3)		In	definite
Operating Temperature Range Am748 Am748C		−55°C to - 0°C to	+125°C +70°C
Storage Temperature Range		-65°C to -	+150°C
Lead Temperature (Soldering, 60 sec.)			300°C
			6 7

ELECTRICAL CHARACTERISTICS ($V_s = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$ unless otherwise specified)

Parameter	Am748C		Am74					
(see definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_{S} \leq 10 \text{ k}\Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200		20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		MΩ
Input Capacitance			1.4			1.4		pF
Offset Voltage Adjustment Range			±15			±15		mV
Input Voltage Range		±12	±13		±12	±13		V
Large-Signal Voltage Gain	$R_L \geq 2 k\Omega$, $V_{out} = \pm 10 V$	50	200		50	200		V/mV
Output Resistance			75	-		75		Ω
Output Short-Circuit Current	TUOVO-1	55 TraX	25		571	25		mA
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		30	150	1,602 3	30	150	$\mu V/V$
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90		dB
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption	The state of the s	15	50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\label{eq:vin} V_{in} = 20 \text{ mV}, \ R_L = 2 \text{ k}\Omega, \ C_L \leq 100 \text{ pF}$		0.3 5.0			0.3 5.0		μs %
Slew Rate	$R_L \geq 2 \ k\Omega$	0.2	0.5		0.2	0.5		V/μs
The Following Specifications Appl	y Over The Operating Temperature Range	es						
Input Offset Voltage	$R_S \leq 10 \ k\Omega$			7.5	1		6.0	mV
Input Offset Current	T _{A(max)} T _{A(min)}		9.0 35	300 300		7.0 85	200 500	nA nA
Input Bias Current	T _{A(max)} T _{A(min)}		0.04 0.13	0.8		0.03	0.5 1.5	μA μA
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	70	90		70	90	Till y	dB
Supply Voltage Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	-133	30	150		30	150	μV/V
Large-Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$	25			25			V/m\
Output Voltage Swing	$R_L \geq 10 \ k\Omega$ $R_L \geq 2 \ k\Omega$	±12 ±10	±14 ±13		±12 ±10	±14 ±13		V
Supply Current	$T_{A(max)}$ $T_{A(min)}$		1.6 1.8	3.3 3.3		1.5 2.0	2.5 3.3	mA mA
Power Consumption	T _{A(max)} T _{A(min)}		48 54	100 100		45 60	75 100	mW mW

Notes: 1. Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 75°C and the Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 95°C.

2. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature.

PERFORMANCE CURVES

SUPPLY VOLTAGE - ±V

LIC-787

TRANSIENT RESPONSE TEST CIRCUIT

 $C_L \le 100 pF$ $R_L = 2 k\Omega$

Input Offset Current As A Function Of Supply Voltage 40 $T_A = 25^{\circ}C$ NA

PERFORMANCE CURVES

Power Consumption As A Function Of Ambient Temperature

Output Short-Circuit Current As A Function Of Ambient Temperature

Absolute Maximum Power Dissipation As A Function Of Ambient Temperature

Input Noise Voltage As A Function Of Frequency

Input Noise Current As A Function Of Frequency

Open Loop Voltage Gain
As A Function Of
Frequency

Open Loop Phase Response As A Function Of Frequency

Output Voltage Swing
As A Function Of
Frequency

PERFORMANCE CURVES Input Resistance And **Output Resistance** Common Mode Rejection Input Capacitance As A Function Of Frequency As A Function Of Frequency Ratio As A Function Of Frequency dB 100 10M $V_S = \pm 15V$ $T_A = 25^{\circ}C$ REJECTION RATIO 500 80 70 INPUT CAPACITANCE RESISTANCE RESISTANCE 400 60 300 50 40 200 COMMON MODE 100k 30 20 10 10k 100k 1M 100 10k 100 1k 10k 100k 1M 10M 10k 100 1k FREQUENCY - Hz FREQUENCY - Hz FREQUENCY - Hz Frequency Characteristics As A Function Of Voltage Follower Transient Response Large-Signal Pulse Response Supply Voltage 28 10 $V_S = \pm 15V$ $T_A = 25^{\circ}C$ $C_1 = 30 \text{ pF}$ $T_A = 25^{\circ}C$ 24 TRANSIENT 20 RESPONSE VALUE \ \ \ OUTPUT VOLTAGE 16 12 0 OUTPUT RELATIVE OUTPUT $V_S = \pm 15V$ $T_A = 25^{\circ}C$ $R_L = 2k\Omega$ $C_L = 100pF$ -2 CLOSED LOOP 0.8 BANDWIDTH 10% C₁ = 30 pF -8 RISE TIME 0 10 20 30 40 50 60 70 80 90 10 15 0.5 1.0 1.5 2.0 2.5 TIME - µS SUPPLY VOLTAGE - ±V $\mathsf{TIME} - \mu \mathsf{S}$ Frequency Characteristics As A Function Of Ambient Temperature Open Loop Voltage Gain As A Function Of Supply Voltage 1.4 V_S = ±15V $T_A = 25^{\circ}C$ 105 TRANSIENT ATIVE VALUE RESPONSE 100 GAIN SLEW RATE 95 1.0 /OLTAGE 90 REL CLOSED LOOP 85 0.8 BANDWIDTH 80 -60 20 60 100 140 8 10 12 14 16 18 20 TEMPERATURE - °C SUPPLY VOLTAGE - ±V Output Voltage Swing As A Function Of Supply Voltage Input Common Mode Voltage Range As A Function Of Supply Voltage $R_L \ge 2k\Omega$ 36 OUTPUT SWING RANGE 32 12 28 VOLTAGE 10 24 20 PEAK 16 COMMON MODE 12 10 0 10 15 20 15 SUPPLY VOLTAGE - ±V SUPPLY VOLTAGE - ±V LIC-790

BASIC Am748

AMPLIFIER

APPLICATIONS

TOUT CUITETIES, PSEY O THEIR VO

INVERTING AMPLIFIER

	GAIN	R _i .	R ₂	B.W.	R _{IN}
	1	10 kΩ	10 kΩ	1 MHz	10 kΩ
	10	1 kΩ	10 kΩ	100 kHz	1 kΩ
	100	1 kΩ	100 kΩ	10 kHz	1 kΩ
LIC-792	1000	100 Ω	100 kΩ	1 kHz	100 Ω

NON-INVERTING AMPLIFIER

GAIN	R	1	R	2	В.	.W.	R	N
10	1	kΩ	9	kΩ	100	kHz	400	MΩ
100	100	Ω	9.9	kΩ	10	kHz	280	MΩ
1000	100	Ω	99.9	kΩ	1	kHz	80	MΩ

Metallization and Pad Layout

49 x 56 Mils

Am1501

Dual Operational Amplifiers

Distinctive Characteristics

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics

- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier

FUNCTIONAL DESCRIPTION

The Am1501 series are differential input, class AB output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the Am1501 series amplifiers for low level and general purpose applications.

DESCRIPTION

The Am1501 series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. They are functionally, electrically and pin-for-pin equivalent to the National LH2101A series. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion smaller size than two singles.

The Am1501M is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The Am1501L is specified for operation over the -25° C to $+85^{\circ}$ C temperature range. The Am1501C is specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

FUNCTIONAL DIAGRAM

LIC-794

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic Dip	0°C to +70°C	AM1501DC
Flat Pak	0° C to $+70^{\circ}$ C	AM1501FC
Hermetic Dip	-25°C to:+85°C	AM1501DL
Flat Pak	-25°C to +85°C	AM1501FL
Hermetic Dip	-55°C to +125°C	AM1501DM
Flat Pak	-55°C to +125°C	AM1501FM
	Type Hermetic Dip Flat Pak Hermetic Dip Flat Pak Hermetic Dip	Type Range Hermetic Dip 0°C to +70°C Flat Pak 0°C to +70°C Hermetic Dip -25°C to +85°C Flat Pak -25°C to +85°C Hermetic Dip -55°C to +125°C

CONNECTION DIAGRAMS Top Views

Dual-In-Line

Flat Package

Note: Pin 1 is marked for orientation.

			Am1501
MAXIMUM RATINGS			
Supply Voltage Am1501M, Am1501L Am1501C			±22V ±18V
Internal Power Dissipation (Note 1)			500mW
Differential Input Voltage			±30 V
Input Voltage (Note 2)	Two Daly Companyation	Single Pole Companiosion	±15V
Output Short-Circuit Duration			Indefinite
Operating Temperature Range Am1501M Am1501L Am1501C		-25°	C to +125°C C to + 85°C C to + 85°C
Storage Temperature Range	nave - restar	-65°	C to +150°C
Lead Temperature (Soldering, 60 sec.)			300°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 3) (EACH AMPLIFIER)

			m15010	oo als si		Am 1501 Am 1501		
Parameter (see definitions)	Conditions		Тур.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage	$R_S \le 50 k\Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current		1 1	3.0	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2.0	5 10 11	1.5	4.0		MΩ
Supply Current (Total Both Amplifiers)	V _S = ±20V V _S = ±15V	aSingy	3.6	6.0	O H towns	3.6	6.0	mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V,$ $R_L > 2.0k\Omega$	25	160		50	160		V/mV
Slew Rate	$V_S = \pm 20V$, $A_V = +1.0$	0.2	0.5	-	0.2	0.5		V/μs
The Following Specifications Apply Over The Oper	rating Temperature Ranges			V		+		
Input Offset Voltage	$R_S \leq 50k\Omega$			10	-//-	TURNE	3.0	mV
Input Offset Current		TURINGO-		70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$T_{A(min.)} \leq T_{A} \leq T_{A(max.)}$	100	6.0	30		3.0	15	μV/°C
Average Temperature Coefficient of Input Offset Current	25° C ≤ T _A ≤ T _A (max.) T _A (min.) ≤ T _A ≤ 25° C	-71 -41	0.01	0.3		0.01	0.1 -	nA/°C
Input Bias Current	*	PA PA		300			100	nA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V,$ $R_L > 2.0k\Omega$	25		Figure 4	25			V/mV
Input Voltage Range	V _S = ±20V V _S = ±15V	+15,-12			±15			V
Common Mode Rejection Ratio	R _S ≤ 50kΩ	70	90		80	96		dB
Supply Voltage Rejection Ratio	R _S ≤ 50kΩ	70	96		80	96		dB
Quarantee stability only for the Villa Science	$V_S = \pm 15V, R_L = 10k\Omega$	±12	±14	rig seu	±12	±14		V
Output Voltage Swing	$R_L = 2.0 k\Omega$	±10	±13	TSIBIROT	±10	±13		V
Supply Current (Total Both Amplifiers)	$T_A = +125^{\circ} C, V_S = \pm 20 V$	CONTROL ST	arek a re	paulis c	12252990	2.4	5.0	mA

Notes: 1. The maximum junction temperature of the Am1501M is 150°C, while that of the Am1501L and Am1501C is 100°C. For operating temperatures, devices in the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

2. For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

^{3.} These specifications apply for $\pm 5\text{V} \leqslant \text{V}_S \leqslant \pm 20\text{V}$ and $\pm 5\text{C} \leqslant \text{T}_A \leqslant \pm 125\text{C}$, unless otherwise specified. With the Am1501L, however, all temperature specifications are limited to $\pm 25\text{C} \leqslant \text{T}_A \leqslant \pm 85\text{C}$. For the Am1501C these specifications apply for $\pm 15\text{V} \leqslant 15\text{C} \leqslant 15\text{C}$

FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

Two Pole Compensation

Feedforward Compensation

Figure 1

Figure 2

Figure 3

LIC-796

LIC-797

LIC-798

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

Compensating for Stray Input Capacitance/Large Feedback Resistance

Isolating Large Capacitive Loads

Figure 4

Figure 5

LIC-799

LIC-800

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10k\Omega$, stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF. If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

PERFORMANCE CURVES (Note 3)

LIC-801

OUT = ±5 mA

FREQUENCY-Hz

100k

10-3

10 100 1k 10k

10k 100k 1M 10M

FREQUENCY-Hz

20

10 100 1k 10k 100k

FREQUENCY-Hz

GUARANTEED PERFORMANCE CURVES (Note 3)

(Curves apply over the Operating Temperature Ranges)

PERFORMANCE CURVES (Note 3)

Description

The Am1558 and Am1458 Dual Frequency Compensated Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Motorola MC1558 and MC1438. Both are available in the hermetic metal can package.

Distinctive Characteristics

- 100% reliability assurance testing including hightemperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883
- Electrically tested and optically inspected dice for the assemblers of hybrid circuits

FUNCTIONAL DESCRIPTION

The Am1558 is a dual 741 internally compensated operational amplifier. The Am1558 and Am1458 are differential input, class AB output amplifiers intended for general purpose applications. They are protected against faults at input and output, and require no external components for frequency compensation.

APPLICATIONS

QUADRATURE OSCILLATOR

NOTCH FILTER USING THE 1558 AS A GYRATOR

V |

LIC-804

	ORDERIN	IG INFORMATION	
Part	Package	Temperature	Order
Number	Type	Range	Number
Am1458	Metal Can	0°C to +70°C	AM1458H
	Dice	0°C to +70°C	LD1458
Am1558	Metal Can	-55°C to +125°C	AM1558H
	Dice	-55°C to +125°C	LD1558

See Am747 for dice layout

CONNECTION DIAGRAM Top View

Note: Pin 4 Connected to Case.

LIC-807

6

Am1558/1458

MAXIMUM RATINGS

Supply Voltage	THE RESERVE
Am1558	±22V
Am1458	±18V
Internal Power Dissipation (Note 1)	
Metal Can	800mW
Differential Input Voltage	±30V
Input Voltage (Note 2)	±15V
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	lear end thing love
Am1558	-55°C to +125°C
Am1458	0° C to + 70° C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	300°C

ELECTRICAL CHARACTERISTICS—Each Amplifier ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified)

	legal de la legal	Am		3		Am1558	3	
arameter (see definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \le 10 k\Omega$	hug late	2.0	6.0	ni stali	1.0	5.0	mV
Input Offset Current	A Service Birth	SERGER SE	20	200	eloero a	20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance	Day of Day of Control	0.3	2.0		0.3	2.0		MΩ
Input Capacitance	AND		1.4			1.4		pF
Offset Voltage Adjustment Range			±15			±15		mV
Input Voltage Range		±12	±13	7 26	±12	±13		V
Large-Signal Voltage Gain	$R_L \ge 2.0 k\Omega$, $V_{OUT} = \pm 10 V$	20	100		50	200		V/mV
Output Resistance			75			75		Ω
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$R_S \le 10 k\Omega$	NA.	30	150		30	150	μV/V
Common Mode Rejection Ratio	R _S ≤ 10kΩ	70	90	ROTAL	70	90	0.10	dB
Supply Current (Both Amplifiers)	Notch Frequency As A	THE REST	3.4	5.6		3.4	5.6	mA
Power Consumption (Both Amplifiers)	pa to necessary		100	170		100	170	mW
Transient Response (Unity Gain) Risetime Overshoot	V_{IN} = 20mV, R_L = 2.0k Ω , C_L \leq 100pF		0.3 5.0		8	0.3 5.0		μs %
Slew Rate	$R_L \geqslant 2.0 k\Omega$	0.3	0.5		0.3	0.5	7-1	V/µs
Channel Separation	$R_S = 50\Omega$, $R_L \ge 10k\Omega$		120	TING		120	14 30	dB
The Following Specifications Apply	Over The Operating Temperature Ran	ges	1	TAN PARTY	S Inperi			
Input Offset Voltage	$R_S \le 10 k\Omega$			7.5			6.0	mV
Input Offset Current	TA MAX. TA MIN.		9.0 35	300 300	- def	7.0 85	200 500	nA
Input Bias Current	TA MAX. TA MIN.		0.04 0.13	0.8		0.03	0.5 1.5	μА
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \leq 10 k\Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 k\Omega$		30	150		30	150	μV/V
Large-Signal Voltage Gain	$R_L \ge 2.0 k\Omega$, $V_{OUT} = \pm 10 V$	15	V-O	TAMBE	25	NESOR		V/mV
Output Voltage Swing	$R_L \geqslant 10k\Omega$ $R_L \geqslant 2.0k\Omega$	±12 ±10	±14 ±13	mocratu	±12 T±10	±14 ±13	69	·v
Supply Current (Both Amplifiers)	TA MAX. TA MIN.	Mumb ANT 45	1.6 1.8	3.3 3.3	0	3.0 4.0	5.0 6.6	mA
Power Consumption (Both Amplifiers)	TA MAX.	LD145	100	170 200	0	90	150 200	mW

Notes: 1. Derate Metal Can package at 6.8mW/°C for operation at ambient temperatures above 30°C.

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

3. Short circuit may be ground or either supply. Rating applies to +125°C case temperature or +60°C ambient temperature for each side.

PERFORMANCE CURVES

(Each Amplifier)

FREQUENCY - Hz

100 1k 10k 100k 1M 10M

10

10

10-

10 100 10k 100k

1k

FREQUENCY - Hz

12

8 PEAK-

100

1k

10k

FREQUENCY - Hz

100k

PERFORMANCE CURVES (Each Amplifier) Output Resistance As A Function Of Frequency Common Mode Rejection Ratio As A Function Of Frequency Input Resistance And Input Capacitance As A Function Of Frequency dB 100 100 10M ±15V = 25°C $V_S = \pm 15V$ $T_A = 25^{\circ}C$ 90 COMMON MODE REJECTION RATIO C 500 C 80 INPUT CAPACITANCE 70 OUTPUT RESISTANCE RESISTANCE 60 300 50 40 200 100k 30 20 0 10k 10 100 1k 10k 100k 1M 10M 100 FREQUENCY - Hz FREQUENCY - Hz FREQUENCY - Hz Frequency Characteristics As A Function Of Supply Voltage Voltage Follower Large-Signal Pulse Response Transient Response 28 10 1.4 $T_A = 25^{\circ}C$ $V_S = \pm 15V$ $T_A = 25^{\circ}C$ 24 TRANSIENT OUTPUT VOLTAGE - V 20 RESPONSE RELATIVE VALUE 90% 16 12 DUTPUT 1.0 $V_S = \pm 15V$ $T_A = 25^{\circ}C$ $R_L = 2k\Omega$ $C_L = 100pF$ CLOSED LOOP 0.8 -10 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 60 70 80 90 10 15 20 TIME - µS TIME $-\mu S$ SUPPLY VOLTAGE - ±V Input Bias Current As A Function Of Ambient Temperature Frequency Characteristics As A Function Of Ambient Temperature Open Loop Voltage Gain As A Function Of Supply Voltage 25°C = +15V 105 400 TRANSIENT RELATIVE VALUE 100 RESPONSE INPUT BIAS CURRENT VOLTAGE GAIN-300 SI FW BATE Am1558 90 200 CLOSED LOOP 85 Am1458 0.8 BANDWIDTH 100 80 0.6 100 -60 -20 20 60 100 140 6 8 10 12 14 16 18 20 -20 20 60 140 TEMPERATURE - °C TEMPERATURE - °C SUPPLY VOLTAGE - ±V Input Resistance As A Function Of Ambient Temperature Output Voltage Swing As A Function Of Supply Voltage Input Common Mode Voltage Range As A Function Of Supply Voltage PEAK-TO-PEAK OUTPUT SWING - V 40 10.0 $R_L \ge 2k\Omega$ ±15V 36 COMMON MODE VOLTAGE RANGE MS 32 12 3.0 28 NPUT RESISTANCE 10 24 Am1458 20 1.0 16 Am1558 0.5 12 0.3 10 15 10 15 20 60 100 SUPPLY VOLTAGE - ±V TEMPERATURE - °C SUPPLY VOLTAGE - ±V LIC-810

6

LH2101A/LH2201A/LH2301A

Dual Operational Amplifiers

Distinctive Characteristics

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics

- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10V/\mu s$ as a summing amplifier

FUNCTIONAL DESCRIPTION

The LH2101A series are differential input, class AB output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the LH2101A series amplifiers for low level and general purpose applications.

DESCRIPTION

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. They are functionally electrically and pin for pin equivalent to the National LH2101A series. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles.

The LH2101A is specified for operation over the -55° C to +125°C military temperature range. The LH2201A is specified for operation over the -25° C to +85°C temperature range. The LH2301A is specified for operation over the 0°C to +70°C temperature range.

FUNCTIONAL DIAGRAM

LIC-811

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
LH2301A	DIP Flat Pak	0°C to +70°C 0°C to +70°C	LH2301AD LH2301AF
LH2201A	DIP Flat Pak	-25°C to +85°C -25°C to +85°C	LH2201AD LH2201AF
LH2101A	DIP Flat Pak	-55°C to +125°C -55°C to +125°C	LH2101AD LH2101AF

CONNECTION DIAGRAMS Top Views

Dual-In-Line

Flat Package

Note: Pin 1 is marked for orientation.

LH2101A/LH2201A/LH2301A

MAXIMUM RATINGS

Supply Voltage		
LH2101A, LH2201A		±22V
LH2301A		±18V
Internal Power Dissipation (Note 1)		500mW
Differential Imput Voltage		±30V
Input Voltage (Note 2)	6 T	±15V
Output Short-Circuit Duration	Figs. Oak	Indefinite
Operating Temperature Range	Clarate and A	(18 18) galarin trada espainisteks i 💌
LH2101A		-55°C to +125°C
LH2201A		-25° C to $+85^{\circ}$ C
LH2301A		0°C to +70°C
Storage Temperature Range		-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)	and the selection of th	300°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified) (Note 3) (Each Amplifier)

Parameter		LH2101A LH2301A LH2201A						
see definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	$R_S \le 50 k\Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current			3.0	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2.0	- 1-4	1.5	4.0		МΩ
Supply Current (Total Both Amplifiers)	V _S = ±20 V V _S = ±15 V		3.6	6.0	A)	3.6	6.0	mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L > 2k\Omega$	25	160		50	160		V/mV
Slew Rate	V _S = ±20V, A _V = +1	0.2	0.5		0.2	0.5		V/µs
The Following Specifications Apply Over The Oper	ating Temperature Ranges	12				100		
Input Offset Voltage	$R_S \le 50 k\Omega$			10			3.0	mV
Input Offset Current				70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$T_{A(MIN)} \leq T_{A} \leq T_{A(MAX)}$		6.0	30		3.0	15	μV/°(
Average Temperature Coefficient of Input Offset Current	$25^{\circ} \text{C} \leq \text{T}_{A} \leq \text{T}_{A}(\text{MAX})$ $\text{T}_{A}(\text{MIN}) \leq \text{T}_{A} \leq 25^{\circ} \text{C}$	W.	0.01	0.3	511	0.01	0.1	nA/°(
Input Bias Current	,			300			100	nA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L > 2k\Omega$	25			25			V/m\
Input Voltage Range	$V_S = \pm 20V$ $V_S = \pm 15V$	+15,-12			±15			Volts
Common Mode Rejection Ratio	$R_S \le 50 k\Omega$	70	90		80	96		dB
Supply Voltage Rejection Ratio	$R_S \le 50 k\Omega$	70	96		80	96		dB
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12	±14		±12	±14		Volts
Supply Current (Total Both Amplifiers)	$T_A = +125^{\circ}C$, $V_S = \pm 20V$	_10	0			2.4	5.0	mA

Notes: 1. The maximum junction temperature of the LH2101A is 150°C, while that of the LH2201A and LH2301A is 100°C. For operating temperatures, devices in the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

3. These specifications apply for ±5V ≤ V_S ≤ +20V and −55°C ≤ T_A ≤ 125°C, unless otherwise specified. With the LH2201A, however, all temperature specifications are limited to −25°C ≤ T_A ≤ 85°C. For the LH2301A these specifications apply for 0°C ≤ T_A < 70°C, ±5V and ≤ V_S ≤ ±15V. Supply current and input voltage range are specified as V_S = ±5V for the LH2301A. C₁ = 30pF unless otherwise specified.

G

FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

Two Pole Compensation

Feedforward Compensation

Figure 1

Figure 2

Figure 3

LIC-813

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

LIC-816

Figure 4

Figure 5

LIC-817

LIC-815

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10k\Omega,$ stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF. If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

Metallization and Pad Layout

PERFORMANCE CURVES (Note 3)

GUARANTEED PERFORMANCE CURVES (Note 3) (Curves apply over the Operating Temperature Ranges)

PERFORMANCE CURVES (Note 3)

Input Noise Voltage

Current Limiting

Voltage Gain

Supply Current

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Special Functions - Section VII

Am592 Am733/733C Differential Video Amplifier 7-1
Differential Video Amplifier 7-2

Distinctive Characteristics

- The Am592 and Am592C differential video amplifiers are functionally, electrically and pin-for-pin equivalent to the Signetics SE592 and NE592.
- Bandwidths: 40 to 120 MHz
- Rise times: 2.5 to 10 ns
- Propagation delay: 3.6 to 10 ns
- 100% reliability assurance testing in compliance with
 MIL-STD-883A
- Electrically tested and optically inspected dice for hybrid manufacturers
- 120 MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
 - Available in metal can, hermetic dual-in-line or plastic dual-in-line packages

FUNCTIONAL DESCRIPTION

The Am592/Am592C is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

Note: On Metal Can, pin 5 is conneted to case.

LIC-820

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
8	TO-100	0°C to +70°C	AM592HC
Am592C	DIP	0° C to $+70^{\circ}$ C	AM592DC
	Molded DIP	0° C to $+70^{\circ}$ C	AM592PC
	Dice	0° C to $+70^{\circ}$ C	LD592C
	TO-100	-55°C to +125°C	AM592HM
Am592	DIP	-55° C to $+125^{\circ}$ C	AM592DM
	Dice	-55°C to +125°C	LD592

Metallization and Pad Layout

DIE SIZE 41 X 41 mils

7

Am592

ABSOLUTE MAXIMUM RATINGS

Supply Voltage			±8V
Differential Input Voltage	Tell The Dennie Williams . The		±5V
Common Mode Input Voltage	*	AND THE REST OF SHEET	±6V
Output Current .	TAC STAVESTERS	- 2 # AP	10mA
Operating Temperature Range Am592 Am592C		Difficu	-55°C to +125°C 0°C to + 70°C
Storage Temperature Range		to the district of the state of	-65°C to +150°C

ELECTRICAL CHARACTERISTICS Standard Conditions ($T_A = \pm 25^{\circ}C$, $V_S = \pm 6V$, $V_{CM} = 0$ unless otherwise specified)

					Am5920			Am592	•	
arameter			Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
B.//	Gain 1	Note 1		250	400	600	300	400	500	
Differential Voltage Gain	Gain 2	Note 2	$R_L = 2k\Omega$, $V_{OUT} = 3V p-p$	80	100	120	90	100	110	Parline.
Des de data	Gain 1	Note 1			40			40		
Bandwidth	Gain 2	Note 2	341 10		90	RU	1,000	90	an Lan	MHz
Disa Time	Gain 1	Note 1	V W	- · ·	11	To Illian	F I	11	71 13	The state of the s
Rise Time	Gain 2	Note 2	V _{OUT} = 1V p-p		6.0	12		6.0	10	ns
D. I.	Gain 1	Note 1	J. 10		7.5			7.5		
Propagation Delay	Gain 2	Note 2	V _{OUT} = 1V p-p		6.0	10		6.0	10	ns
1	Gain 1	Note 1	1-1		4.0			4.0		T
Input Resistance			2		30		20	30		kΩ
Input Capacitance	Gain 2	Note 2			2.0			2.0		pF
Input Offset Current					0.4	5.0		0.4	3.0	μА
Input Bias Current					9.0	30		9.0	20	μΑ
Input Noise Voltage	Late of the	BW 1kH	z to 10kHz		12			12		μV rms
Input Voltage Range						±1.0			±1.0	Volts
O Mada Baiania Buia	Gain 2	VCM ± 1	V, F <100kHz	60	86		60	86		dB
Common Mode Rejection Ratio	Gain 2	VCM ± 1	V, F = 5MHz		60		V 1 2	60		
Supply Voltage Rejection Ratio	Gain 2	ΔVS = ±	0.5V	50	80		50	80		dB
Output Offset Voltage	Gain 3	Note 3	R _L = ∞		0.2	0.75		0.2	0.75	Volts
Output Common Mode Voltage		R _L = ∞		2.4	2.9	3.4	2.4	2.9	3.4	Volts
Output Voltage Swing		R _L = 2k	Ω, Single Ended	3.0	3.9	- Jiga i	3.0	3.9		Volts
Output Resistance					20			20		Ω
Power Supply Current		R _L = ∞			16	24		16	24	mA

Recommended Operating Supply Voltage ($V_S = \pm 6.0V$)
Notes: 1. Gain select pins G_{1A} and G_{1B} connected together.
2. Gain select pins G_{2A} and G_{2B} connected together.
3. All gain select pins open.

TYPICAL APPLICATIONS

DISC/TAPE PHASE MODULATED READBACK SYSTEMS

DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION

FOR FREQUENCY F₁ \ll 1/2 π (32) C

 $v_0 \ge 1.4 \times 10^4 c \frac{dvi}{dT}$

LIC-822

FILTER NETWORKS

$$\frac{v_0(s)}{v_1(s)} \ge \frac{1.4 \times 10^4}{Z(s) + 2r_e}$$
$$\ge \frac{1.4 \times 10^4}{Z(s) + 32}$$

Z NETWORK	FILTER TYPE	V_0 (s) TRANSFER V_1 (s) FUNCTION
oRo	LOW PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{1}{s + R/L} \right]$
0	HIGH PASS	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
0	BAND PASS	$\frac{1.4 \times 10^{4}}{L} \left[\frac{s}{s^{2} + R/Ls + 1/LC} \right]$
- R	BAND REJECT	$\frac{1.4 \times 10^{4}}{R} \left[\frac{s^{2} + 1/LC}{s^{2} + 1/LC + s/RC} \right]$

Note: In the networks above, the value used is assumed to include 2r_e, or approximately 32 ohms.

LIC-823

TEST CIRCUITS

 $(T_A = 25^{\circ}C \text{ Unless Otherwise Noted})$

LIC-824

LIC-825

Am733/733C

Differential Video Amplifier

Distinctive Characteristics

The Am733 and Am733C differential video amplifiers are functionally, electrically and pin-for-pin equivalent to the Fairchild $\mu \rm A733$ and 733C.

 Bandwidths: 40 to 120 MHz • Rise Times: 2.5 to 10 ns

• Propagation Delay: 3.6 to 10 ns

100% reliability assurance testing in compliance with MIL STD 883.
Electrically tested and optically inspected dice for hybrid manufacturers.
Available in metal can, hermetic dual-in-line or hermetic flat packages.

FUNCTIONAL DESCRIPTION

The Am733 is a monolithic two-stage differential input, emitter follower differential output video amplifier. Internal series-shunt feedback is used to obtain fixed gains of 10, 100 or 400, and adjustable gains from 10 to 400 by the use of an external resistor.

TYPICAL APPLICATION HIGH-GAIN WIDEBAND AMPLIFIER

LIC-827

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	TO-99	0° C to $+70^{\circ}$ C	733HC
Am733C	DIP	0° C to $+70^{\circ}$ C	733DC
	Dice	0° C to $+70^{\circ}$ C	733XC
Am733	TO-99	-55°C to +125°C	733HM
	DIP	-55°C to +125°C	733DM
	Flat Pak	-55°C to +125°C	733FM
	Dice	-55°C to +125°C	733XM

CONNECTION DIAGRAMS Top Views

Dual-In-Line

NOTES:

- (1) On Metal Can, pin 5 is connected to case
- (2) On DIP, pin 5 is connected to bottom of package.
- (3) On Flat Package, pin 4 is connected to bottom of package.

MAXIMUM RATINGS

Supply Voltage				±8 V
Differential Input Voltage			Had the server in the bound to the server in the	±5 V
Common Mode Input Voltage	Latin or his			±6 V
Output Current				10 mA
Internal Power Dissipation (Note 1)				500 mW
Operating Temperature Range Am733C Am733				0°C to +70°C −55°C to +125°C
Storage Temperature Range	31	JH -	The state of the s	-65°C to +150°C
Lead Temperature (Soldering, 60 sec.)				300°C
		-		

ELECTRICAL	CHARACTERISTICS	(T 25°C \	$l_s = \pm 6.0 \text{ V unless}$	otherwise specified)
ELECTRICAL	CHANACIENISTICS	114 = 20 0.1	v = ±0.0 v uilless	Otherwise specified)

Parameter	0 100		m_733			Am733		
see definitions)	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)		250 80 8.0	400 100 10	600 120 12	300 90 9.0	400 100 10	500 110 11	
Bandwidth Gain 1 Gain 2 Gain 3	$R_S = 50 \Omega$		40 90 120			40 90 120		MHz MHz MHz
Risetime Gain 1 Gain 2 Gain 3	$R_S = 50 \Omega$, $V_{out} = 1 Vpp$		10.5 4.5 2.5	12		10.5 4.5 2.5	10	ns ns ns
Propagation Delay Gain 1 Gain 2 Gain 3	$R_S = 50 \Omega$, $V_{out} = 1 Vpp$		7.5 6.0 3.6	10		7.5 6.0 3.6	10	ns ns ns
Input Resistance Gain 1 Gain 2 Gain 3		10	4.0 30 250		20	4.0 30 250		kΩ kΩ kΩ
Input Capacitance	Gain 2		2.0			2.0		pF
Input Offset Current			0.4	5.0		0.4	3.0	μA
Input Bias Current			9.0	30		9.0	20	μΑ
Input Noise Voltage	$R_S = 50 \Omega$, BW = 1 kHz to 10 MHz		12			12		μVrm
Input Voltage Range		±1.0			±1.0			V
Common Mode Rejection Ratio Gain 2 Gain 2	$V_{cm} = \pm 1 \text{ V, } f \le 100 \text{ kHz} $ $V_{cm} = \pm 1 \text{ V, } f = 5 \text{ MHz}$	60	86 60		60	86 60		dB dB
Supply Voltage Rejection Ratio Gain 2	$\Delta V_S = \pm 0.5 \text{ V}$	50	70		50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3	,		0.6 0.35	1.5 1.5		0.6 0.35	1.5 1.0	V
Output Common Mode Voltage		2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	Single Ended	3.0	4.0		3.0	4.0		Vpp
Output Sink Current		2.5	3.6		2.5	3.6		mA
Output Resistance			20			20		Ω
Power Supply Current			18	24		18	24	mA
The Following Specifications App	ly Over The Operating Temperature Ran	nges						
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)		250 80 8.0	400 100 10	600 120 12	200 80 8.0	400 100 10	600 120 12	
Input Resistance Gain 1 Gain 2 Gain 3		8.0	4.0 30 250		8.0	4.0 30 250		kΩ kΩ kΩ
Input Offset Current			0.4	6.0		0.4	5.0	μA
Input Bias Current	(11 to 1)		9.0	40		9.0	40	μΑ
Input Voltage Range		±1.0			±1.0			V

Am733/733C

Parameter (see definitions)	Conditions	Min.	Am 733 Typ.	C Max.	Min.	Am733 Typ.	Max.	Units
The Following Specifications Appl	y Over The Operating Temperature	Ranges						
Common Mode Rejection Ratio Gain 2	$V_{cm} = \pm 1 \text{ V}, \text{ f} \leq 100 \text{ kHz}$	50	86	1	50	86		dB
Supply Voltage Rejection Ratio Gain 2	$\Delta V_S = \pm 0.5 \text{ V}$	50	70		50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3		\	0.6 0.35	1.5 1.5		0.6 0.35	1.5 1.2	V
Output Voltage Swing	Single Ended	2.8	4.0		2.5	4.0	ale on leads	Vpp
Output Sink Current		2.5	3.6		2.2	3.6		mA
Power Supply Current			1	27			27	mA

- Derate metal can package at 6.8 mW/°C for operation at ambient temperatures above 85°C and Dual In-Line package at 9 mW/°C for operation at ambient temperatures above 100°C.
 Gain Select pins G_{1A} and G_{1B} connected together.
 Gain Select pins G_{2A} and G_{2B} connected together.
 All Gain Select pins open.

PERFORMANCE CURVES

PERFORMANCE CURVES

FREQUENCY - MHz

2 3 4 5 6 7 8 9 10

Pulse Response Vs. Temperature

Differential Overdrive Recovery Time

Supply Current Vs. Supply Voltage

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Voltage Regulators - Section VIII

 Am105/205/305/305A
 Voltage Regulator
 8-1

 Am723/723C
 Voltage Regulator
 8-5

Am105/205/305/305A Voltage Regulator

Distinctive Characteristics

- The Am105/205/305/305A are functionally, electrically, and pin-for-pin equivalent to the National LM 105/205/305/305A.
- Output voltage adjustable from 4.5V to 40V.
- Output currents in excess of 10A possible by adding external transistors.
- 100% reliability assurance testing in compliance with MIL STD 883.
- · Electrically tested and optically inspected die for assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am105/205/305/305A is a positive voltage regulator which can be used in the series, shunt, linear or switching modes of operation. The circuits feature low stand-by current drain, operation under minimum load conditions and an output current capability of up to 20 mA.

TYPICAL APPLICATIONS

Current Regulator

	ORDERING INFORMATION				
Part Number	Package Type	Temperature Range			
Am305A	TO-99	0° C to $+70^{\circ}$ C			
Am305	TO-99	0°C to +70°C			

LIC-833

Am305	TO-99	0°C to +70°C	LM305H
	Dice	0°C to +70°C	LD305
Am205	TO-99	–25°C to +85°C	LM205H
Am105	TO-99	-55°C to +125°C	LM105H
	Dice	-55°C to +125°C	LD105

CONNECTION DIAGRAM **Top View** Metal Can

NOTES: (1) On Metal Can, pin 4 is connected to case.

LIC-835

Order

Number LM305AH

Am105/205/305/305A

MAXIMUM RATINGS

MAXIMOM HATTI	100	1864 "U. 1. 설계상 및 20 U.H "H. 1. 1874 (1974) 및 보냈다 "H. 1.	
Input Voltage Range	Am105/205/305A Am305	and the state of t	50 V 40 V
Input-Output Voltage	Differential	Anni Amilia (1915). Anni Ric Carallega (1916). Section (1917).	40 V
Internal Power Dissip Metal Can (Similar			500 mW 800 mW
Operating Temperatu Am105 Am205 Am305/305A	ure Range		−55°C to +125°C −25°C to +85°C 0°C to +70°C
Storage Temperature	e Range	-	-65°C to +150°C
Lead Temperature (S	Soldering, 60 sec.)	HOLDEN COMP	300°C
	ALL LUMBOURLES HOW COLUMN		

	TERISTICS $(T_A = 25^{\circ}C)$ unle		Am305			Am305/			Am105 Am205		
arameter see definitions)	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Typ	Max	Units
Input Voltage Range		8.5		40	8.5	ali todi	50	8.5	e Direct	50	V
Output Voltage Range		4.5		30	4.5	-11 000	40	4.5	U x	40	V
Input-Output Voltage Differential		3.0		30	3.0		30	3.0	yrrites	30	V
Line Regulation (Note 3)	V_{in} - $V_{out} \le 5 V$ V_{in} - $V_{out} \ge 5 V$		0.025 0.015	0.06 0.03		0.025 0.015	0.06		0.025 0.015	0.06	%/V %/V
Load Regulation (Note 3)	$\begin{array}{l} 0 \leq I_{O} \leq 12 \text{ mA} \\ R_{SC} = 18 \ \Omega, \ T_{A} = 25 ^{\circ}\text{C} \\ R_{SC} = 15 \ \Omega, \ T_{A} = T_{A}(\text{max}) \\ R_{SC} = 10 \ \Omega, \ T_{A} = T_{A}(\text{max}) \\ R_{SC} = 18 \ \Omega, \ T_{A} = T_{A}(\text{min}) \end{array}$		0.02 0.03	0.05 0.1 0.1					0.02 0.03 0.03	0.05 0.1 0.1	% % %
	$\begin{array}{l} 0 \leq I_{O} \leq 45 \text{mA} \\ R_{SC} = 0 \Omega, \ T_{A} = 25^{\circ} \text{C} \\ R_{SC} = 0 \Omega, \ T_{A} = T_{A} (\text{max}) \\ R_{SC} = 0 \Omega, \ T_{A} = T_{A} (\text{min}) \end{array}$					0.02 0.03 0.03	0.2 0.4 0.4				% % %
Feedback Sense Voltage		1.63	1.70	1.81	1.55	1.70	1.85	1.63	1.70	1.81	V
Ripple Rejection	$C_{REF} = 10 \mu f$, $f = 120 Hz$		0.003	0.01		0.003			0.003	0.01	%/V
Output Noise Voltage	10 Hz \leq f \leq 10 kHz $C_{REF} = 0$ $C_{REF} > 0.1 \mu f$		0.005 0.002			0.005 0.002			0.005 0.002		%
Standby Current Drain	$V_{in} = 40 \text{ V}$ $V_{in} = 50 \text{ V}$		0.8	2.0		0.8	2.0	V by	0.8	2.0	mA
Long Term Stability			0.1	1.0		0.1	1.0		0.1	1.0	%
Temperature Stability			0.3	1.0		0.3	1.0		0.3	1.0	%
Current Limit Sense Voltage (Note 4)	$R_{SC} = 10 \Omega, T_A = 25^{\circ}C$ $V_{out} = 0 V$	225	300	375	225	300	375	225	300	375	mV

Notes: 1. Derate Metal Can package at 6.8mW/° C for operation at ambient temperatures above 25° C.

Defate Metal Can package at 6.8mW/C for operation at ambient temperatures above 25°C.
 These specifications apply over the operating temperature range, for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of 2kΩ, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
 The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be

roughly equal to the composite current gain of the added transistors.

4. With no external pass transistor.

5. Connect booster output to unregulated input when no external pass transistor is used.

8

PERFORMANCE CURVES

Transient Response

Supply Voltage Rejection

Current Limiting Characteristics

Minimum Output Voltage

Minimum Input Voltage

Regulator Dropout Voltage

ADDITIONAL APPLICATIONS

LIC-837

Metallization and Pad Layout

Description: The Am723 and Am723C monolithic voltage regulators are functionally and electrically equivalent to the Fairchild μ A723 and μ A723C. Both are available in the hermetic dual-in-line and metal can packages and are pin for pin replacements for the Fairchild μ A723 and μ A723C.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am723 is intended for use with positive or negative supplies as a series, shunt, switching or floating regulator. It is applicable to remote shutdown and current limiting operations and will accept either PNP or NPN external pass elements to increase output current capability.

LIC-839

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	DIP	0°C to +70°C	723DC
A 7000	Metal Can	0° C to $+70^{\circ}$ C	723HC
Am723C	Molded DIP	0° C to $+70^{\circ}$ C	723PC
	Dice	0° C to $+70^{\circ}$ C	723XC
	DIP	-55°C to +125°C	723DN
Am723	Metal Can	-55°C to +125°C	723HN
	Dice	-55°C to +125°C	723XN

CONNECTION DIAGRAMS Top Views

NOTES: (1) On Metal Can, pin 5 is connected to case. (2) On DIP, pin 7 is connected to case.

LIC-840

8-5

Am723/723C

MAXIMUM RATINGS

		50 V
	Charles Carried	40 V
		40 V
		150 mA
magnitude in Chapterin	Latine sinche de Carlos Dan 2016	25 mA
nutral interpretation	deferite as albitrations and their	15 mA
		850 mW
And the indicatent		0°C to +70°C -55°C to +125°C
		-65°C to +150°C
		300°C
	mental à Deputeira professi politic professi politica pol	north of present and seed of the control of the con

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified) (Note 2)

Parameter		Α.	m723	С		Am723	3	
(see definitions)	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Line Regulation (Note 3)	$V_{IN} = 12 \text{ V to } V_{IN} = 15 \text{ V}$ $V_{IN} = 12 \text{ V to } V_{IN} = 40 \text{ V}$		0.01	0.1 0.5		0.01	0.1	% V _{OUT} % V _{OUT}
Load Regulation (Note 3)	$I_L = 1 \text{ mA to } I_L = 50 \text{ mA}$		0.03	0.2		0.03	0.15	% Vout
Ripple Rejection	$f=50$ Hz to 10 kHz, $C_{REF}=0$ $f=50$ Hz to 10 kHz, $C_{REF}=5~\mu F$		74 86			74 86		dB dB
Short Circuit Current Limit	$R_{SC} = 10 \Omega$, $V_{OUT} = 0$		65			65		mA
Reference Voltage		6.80	7.15	7.50	6.95	7.15	7.35	V
Output Noise Voltage	BW = 100 Hz to 10 kHz, $C_{REF} = 0$ BW = 100 Hz to 10 kHz, $C_{REF} = 5 \mu F$		20 2.5			20 2.5		μV_{rms} μV_{rms}
Long Term Stability			0.1			0.1		%/1000 hrs
Standby Current Drain	$I_L = 0, V_{IN} = 30 \text{ V}$		2.3	4.0		2.3	3.5	mA
Input Voltage Range	V S D S = 1	9.5		40	9.5		40	V
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	V
The Following Specifications App	oly Over The Operating Temperature Range	s						
Line Regulation	$V_{ N} = 12 \text{ V to } V_{ N} = 15 \text{ V}$			0.3			0.3	% V _{OUT}
Load Regulation	$I_L = 1 \text{ mA to } I_L = 50 \text{ mA}$			0.6			0.6	% V _{OUT}
Average Temperature Coefficient of Output Voltage			0.003	0.015		0.002	0.015	%/°C

Derate Metal Can package at 6.8 mW/°C for operation at ambient temperatures above 25°C and Dual-In-Line package at 9 mW/°C for operation at ambient temperatures above 50°C.
 Unless otherwise specified, T_A = 25°C, V_{IN} = V+ = V_C = 12 V, V− = 0 V, V_{out} = 5 V, I_L = 1 mA, R_{SC} = 0, C_I = 100 pF, C_{REF} = 0 and divider impedance as seen by error amplifier ≤10 kΩ when connected as shown in Fig. 3.
 The load & line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

PERFORMANCE CURVES

Standby Current Drain As A Function Of Input Voltage

Maximum Load Current As A Function Of Input-Output Voltage Differential

Load Regulation Characteristics With Current Limiting

Current Limiting Characteristics As A Function of Junction

Maximum Load Current As A Function Of Input-Output Voltage Differential

Load Regulation Characteristics Without Current Limiting

Load Transient Response

Am

VOLTAGE DEVIATION -

Line Regulation As A Function Of Input-Output Voltage Differential

Load Regulation Characteristics With Current Limiting

Load Regulation As A Function Of Input-Output Voltage Differential

Current Limiting Characteristics

LIC-843

HIGH VOLTAGE REGULATOR $(V_{out} = 7 \text{ to } 37 \text{ Volts})$ $V_{REF} V_{OUT}$ $V_{REF} V_{OUT}$ $V_{REF} V_{OUT}$ $V_{REF} V_{OUT}$ $V_{REF} V_{OUT}$ $V_{REG} V_{REGULATED}$ $V_{REGULATED}$ $V_{REGULATED}$

Figure 3

110 044

Figure 2

FOLDBACK CURRENT LIMITING REGULATOR

Figure 4

LIC-845

Metallization and Pad Layout

APPLICATIONS

45 x 53 Mils

ALPHA NUMERIC INDEX FUNCTIONAL INDEX SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION MIL-M-38510/MIL-STD-883	1
COMPARATORS	2
DATA CONVERSION PRODUCTS	3
LINE DRIVERS/RECEIVERS	4
MOS MEMORY AND MICROPROCESSOR INTERFACE	5
OPERATIONAL AMPLIFIERS	6
SPECIAL FUNCTIONS	7
VOLTAGE REGULATORS	8
PACKAGE OUTLINES GLOSSARY AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS	9

Section IX

Package Outlines	9-1
Glossary	9-5
AMD Field Sales Offices, Sales Representatives, Distributor Locations	9-10

SEMILITED BOTH BALL

METAL CAN PACKAGES

D	Н	-8-1	H-	10-1	G-	12-1	
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	
A	.165	.185	.165	.185	.155	.180	
е	.185	.215	.215	.245	.390	.410	
e1	.090	.110	.105	.125	.090	.110	
F	.013	.033	.013	.033	.020	.030	
k	.027	.034	.027	.034	.024	.034	
k1	.027	.045	.027	.045	.024	.038	
L	.500	.570	.500	.610	.500	.600	
L ₁		.050		.050			
L ₂	.250		.250				
α	45°	BSC	36°	BSC	45°		
ϕ b	.016	.019	.016	.019			
φ b 1	.016	.021	.016	.021	.016	.021	
ϕD	.350	.370	.350	.370	.590	.610	
ϕD_1	.305	.335	.305	.335	.540	.560	
φ D 2	.120	.160	.120	.160	.390	.410	
Q	.015	.045	.015	.045			

Notes: 1. Standard lead finish is bright acid tin plate or gold plate. 2. ϕb applies between L_1 and L_2 . ϕb_1 applies between L_1 and 0.500" beyond reference plane.

P-8-1 8-LEAD MOLDED DUAL-IN-LINE

P-16-1 16-LEAD MOLDED DUAL-IN-LINE

P-24-1 24-LEAD MOLDED DUAL-IN-LINE

P-14-1 14-LEAD MOLDED DUAL-IN-LINE (TO-116)

P-20-1 20-LEAD MOLDED DUAL-IN-LINE

P-28-1 28-LEAD MOLDED DUAL-IN-LINE

DIMENSIONS (inches)

	P-	8-1	P-1	4-1	P-1	6-1	P-2	0-1	P-2	4-1	P-2	8-1
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
A	.150	.200	.150	.200	.150	.200	.150	.200	.170	.215	.150	.200
b	.015	.022	.015	.020	.015	.020	.015	.020	.015	.020	.015	.020
b ₁	.055	.065	.055	.065	.055	.065	.055	.065	.055	.065	.055	.065
С	.009	.011	.009	.011	.009	.011	.009	.011	.009	.011	.009	.011
D	.375	.395	.745	.775	.745	.775	1.010	1.050	1.240	1.270	1.450	1.480
E	.240	.260	.240	.260	.240	.260	.250	.290	.515	.540	.530	.550
E ₂	.310	.385	.310	.385	.310	.385	.310	.385	.585	.700	.585	.700
е	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110
L	.125	.150	.125	.150	.125	.150	.125	.150	.125	.160	.125	.160
Q	.015	.060	.015	.060	.015	.060	.015	.060	.015	.060	.015	.060
S ₁	.010	.030	.040	.065	.010	.040	.025	.055	.035	.065	.040	.070

D-8-1

8-LEAD HERMETIC DUAL-IN-LINE

14-LEAD HERMETIC DUAL-IN-LINE

D-14-1

†D-14-3 14-LEAD METAL HERMETIC DUAL-IN-LINE

D-16-1 16-LEAD HERMETIC DUAL-IN-LINE

D-20-1 20-LEAD HERMETIC DUAL-IN-LINE

D-24-1 24-LEAD HERMETIC DUAL-IN-LINE

D-28-1 28-LEAD HERMETIC DUAL-IN-LINE

DIMENSIONS (inches)

Parameters	Parameters D-8-1		D-1	4-1		14-3 te 2)	D-1	16-1	D-20-1		D-24-1		D-2	8-1
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
A	.130	.200	.130	.200	.100	.200	.130	.200	.140	.220	.150	.225	.150	.225
b	.016	.020	.016	.020	.015	.023	.016	.020	.016	.020	.016	.020	.016	.020
b ₁	.050	.070	.050	.070	.030	.070	.050	.070	.050	.070	.045	.065	.045	.065
C	.009	.011	.009	.011	.008	.011	.009	.011	.009	.011	.009	.011	.009	.012
D	.370	.400	.745	.785	.660	.785	.745	.785	.935	.970	1.230	1.285	1.440	1.490
E	.240	.285	.240	.285	.230	.265	.240	.310	.245	.285	.510	.545	.510	.545
E ₁	.300	.320	.290	.320	.290	.310	.290	.320	.290	.320	.600	.620	.600	.620
е	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110
L	.125	.150	.125	.150	.100	.150	.125	.150	.125	.150	.120	.150	.125	.150
Q	.015	.060	.015	.060	.020	.080	.015	.060	.015	.060	.015	.060	.015	.060
S ₁	.004	T.G	.010	The state of	.020	120 0	.005	our	.005	1 810	.010		.010	
α	3°	13°	3°	13°	3°	13°	3°	13°	3°	13°	3°	13°	3°	13°

PACKAGE OUTLINES (Cont.)

F-10-1 10-LEAD CERPAK

10-LEAD CERPAK

†F-10-2 10-LEAD FLAT PACKAGE

F-14-1 14-LEAD CERPAK

F-16-1 16-LEAD CERPAK

F-20-1 20-LEAD CERPAK

F-24-1 24-LEAD CERPAK

F-28-2 28-LEAD FLAT PACKAGE

DIMENSIONS (inches)

Davamatava	F-1	0-1	F-1	0-2	F-1	4-1	F-1	6-1	F-2	20-1	F-2	24-1	F-2	28-1
Parameters	Min.	Max.	Min.	Max.	Min.	Max.								
A	.045	.080	.045	.080	.045	.080	.045	.085	.045	.085	.050	.090	.045	.080
b	.015	.019	.012	.019	.015	.019	.015	.019	.015	.019	.015	.019	.015	.019
С	.004	.006	.003	.006	.004	.006	.004	.006	.004	.006	.004	.006	.003	.006
D	.230	.255	.235	.275	.230	.255	.370	.425	.490	.520	.580	.620	.360	.410
D ₁	180	Avg		.275					385		2.211	s l Oles		.410
E	.240	.260	.240	.260	.240	.260	.245	.285	.245	.285	.360	.385	.360	.410
E ₁		.275		.280	T.	.275		.290		.290	-	.410		.410
е	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055
L	.300	.370	.300	.370	.300	.370	.300	.370	.300	.370	.265	.320	.270	.320
L ₁	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980	.955	1.000
Q	.010	.040	.010	.040	.010	.040	.020	.040	.020	.040	.020	.040	.010	.040
S ₁	.005	18.1	.005	78	.005		.005	7	.005	-	.005		0	

GLOSSARY

△IOS/△TA Average Temperature Coefficient of Input Offset Current — The ratio of the change in input offset current, over the operating temperature range, to the operating temperature range. (pA/°C)

 $\triangle V_{OS}/\triangle T_{A}$. Average Temperature Coefficient of Input Offset Voltage — The ratio of the change in input offset voltage, over the operating temperature range, to the operating temperature range. $(\mu V)^{\circ}C$

BW Bandwidth - The frequency at which the gain of the device is 3 dB below its low frequency value.

CS Channel Separation — The log of the ratio of the input of an undriven amplifier to the output of an adjacent driven amplifier. (dB)

VOHC Clamped Output High Voltage — The voltage potential necessary to turn on (forward bias) the clamping diode on

VOLC Clamped Output Low Voltage — The voltage potential necessary to turn off (reverse bias) the clamping diode on the output pin. (V)

Clock Frequency — The reciprocal of the clock period; the clock repetition rate.

Clock Input, Amplitude — The peak amplitude of the clock signal.

tpw Clock Input, Width - The time duration of the clock pulse.

fclock

VDO

 ${\color{red}\textbf{Common Mode Gain}} - {\color{blue}\textbf{The ratio of the output voltage change to the input common mode voltage producing that change.}$

Common Mode Input Overload Recovery Time – The time delay between removal of an input common mode voltage outside the input common mode range, and resumption of normal device operation. (ns)

Common Mode Input Resistance — The value of resistance with respect to a common mode signal, seen when looking into both inputs. (Ω)

Common Mode Input Voltage Swing — The peak value of the common mode input voltage at which the device will operate in a linear fashion. (V)

 $\begin{tabular}{ll} \textbf{Common Mode Output Voltage} - \textbf{The output voltage resulting from the application of a voltage common to both inputs and the average of the two output voltages of a differential output amplifier. (V) \\ \end{tabular}$

CMRR Common Mode Rejection Ratio — The ratio of the change in input offset voltage to the total change in common mode voltage producing it. (dB)

VCM Common Mode Voltage — The arithmetic mean of the voltage present at the differential inputs with respect to the device ground reference. (V)

t_d Delay Time — See Propagation Delay. (ns)

Differential Input Bias Current — The current required in the differential input stage to bias the stage into operation.

Differential Input Capacitance - The effective capacitance between the two inputs, operating open loop.

Differential Input Impedance — The impedance seen looking between the input terminals.

Differential Input Offset Current — The difference in currents required by the transistors in the input stage to bias the input stage to its quiescent operation point.

Differential Input Overload Recovery Time — The time delay between removal of a differential input voltage that exceeds the differential input voltage operating range, and resumption of normal device operation.

Differential Input Resistance - The effective resistance between the two inputs, operating open loop.

Differential Input Threshold Voltage — The voltage difference between the + and — inputs required to guarantee the output logic state.

Differential Load Rejection — The ratio of the change in input offset voltage to the change in differential load current

Differential Output Resistance — The resistance measured between the two output terminals.

Differential Output Voltage Swing — The peak differential output voltage that can be obtained without clipping the output voltage waveform.

Differential Voltage Gain — The ratio of the change in differential output voltage to the change in differential input voltage.

Dropout Voltage — The input-output voltage differential that causes the output voltage to decrease by 5% of its initial value. (V)

	GLOSSARY (Cont.)
^t ZH	Enable HIGH — The delay time from a control input change to the three-state output high-impedance to HIGH-level transition.
tZL	Enable LOW — The delay time from a control input change to the three-state output high-impedance to LOW-level *transition.
in	Equivalent Input Noise Current — The input noise current that would reproduce the noise seen at the output if all amplifier noise sources were set to zero and the source impedances were large compared to the optimum source impedance. (pA/\dagger/Hz)
e _n	Equivalent Input Noise Voltage — The input noise voltage that would reproduce the noise seen at the output if all amplifier noise sources and the source resistances were set to zero. (nV/√Hz)
tf	Fall Time — The time required for the signal to fall from 90% to 10% of its output value into a specified load network. (ns)
	Feedback Capacitance — The effective value of the capacitive coupling from output to input.
V _{sense}	Feedback Sense Voltage — The voltage measured on the feedback terminal of the regulator, with respect to ground, when the device is operating in regulation. (V)
	Frequency Response — The frequency at which the output drops to 0.707 of its low frequency value.
ft	Gain Bandwidth Product - The frequency at which the small signal ac gain of the device reduces to unity. (MHz)
Н	HIGH — Applying to a HIGH voltage level.
hfe	High Frequency Current Gain — The small signal ac current gain at a specified frequency.
tHZ	HIGH to Disable — The delay time from a control input change to the three-state output HIGH-level to high-impedance transition (measured at 0.5V change).
th	Hold Time — The time interval for which a signal must be retained at one input after an active transition occurs at another input terminal.
ΔV_{TH}	Hysteresis — The voltage difference between the switching points of the device. See Lower Input Threshold Voltage and Upper Input Threshold Voltage.
1	Input.
IBIAS	Input Bias Current — The average of the two input currents with no signal applied. (nA or pA) Input Bias Current Drift — The change in input bias current with temperature supply voltage, or time. (ΔIBIAS/ΔT, ΔVS, Δt)
CIN	Input Capacitance — The equivalent capacitance of either input with the other input grounded. (pF)
VIH	Input HIGH Voltage — The range of input voltages that represents a logic HIGH in the system.
Vc	Input Clamp Diode Voltage — The most negative voltage at an input when 18 mA is forced out of that input terminal. This parameter guarantees the integrity of the input diode which is intended to clamp negative ringing at the input terminal.
CMVR	Input Common Mode Voltage Range — The range of common mode input voltage over which the device will operate within specifications. (V)
IIN	Input Current — The current flowing into the input with a specified voltage applied to the input.
	Input Current at Maximum Input Voltage — The current into a TTL or DTL input with the absolute maximum allowed input voltage applied to the input.
1 _F	Input Forward Current — See Input LOW Current.
I _{IH}	Input HIGH Current — The current flowing out of an input when a specified LOW voltage is applied.
VIH	Input HIGH Voltage — The range of input voltages that represents a logic HIGH in the system.
	Input Latch Voltage — See Input Clamp Diode Voltage.
IIL	Input LOW Current — The current flowing out of an input when a specified LOW voltage is applied.
VIL	Input LOW Voltage — The range of input voltages that represents a logic LOW in the system.
	Input Noise Voltage $-$ The rms noise voltage present at the amplifier output divided by the gain of the amplifier measured with the inputs connected to ground through a low resistance.(e _n)
los	Input Offset Current — The difference in current into the two input terminals with the output voltage at zero. In a comparator, it is the difference between the two input currents with the output at the logic threshold voltage. Also, it is defined as the difference in input currents required to give equal output currents from a matched pair of devices. (nA or pA)
$\triangle I_{OS}/\triangle T$ $\triangle V$, $\triangle t$	Input Offset Current Drift – The change in input offset current produced with time, voltage or temperature ΔV , Δt (pA/°C, V, s)

 v_{OS}

 $\textbf{Input Offset Voltage} - \textbf{The voltage applied between the input terminals to obtain zero output voltage. In Comparation of the property of$

9

GLOSSARY (Cont.)

ators, it is the voltage applied to the input terminals to give the logic threshold voltage at the output. It is also defined as the input voltage differential required to give equal output currents from a matched pair of devices. (mV)

 $\triangle V_{OS}/\triangle T$, Input Offset Voltage Drift — The change in input offset voltage with time, voltage or temperature. ($\mu V/^{\circ}C$, V, s)

 $\triangle V, \triangle t$

RIN

Input-Output Voltage Differential — The voltage range between the unregulated input voltage and the regulated output voltage in which a regulator operates within specifications.

Input Resistance — The equivalent resistance seen looking into either input terminal with the other terminal

grounded. (M Ω)

Input Reverse Current – See Input HIGH Current. (μA)

Input to Output Delay - See Propagation Delay.

VIN Input Voltage – The voltage potential between the input terminal and the device ground reference. (V)
VIN(MIN) Input Voltage (Min) – The minimum voltage required to bias the reference to specification limits. (V)

VIN Input Voltage Range — The range of voltage on an input terminal over which the device operates as specified. (V)

Large Signal Voltage Gain — The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

 $\Delta \textbf{V}_{\textbf{OUT}}/\Delta \textbf{V}_{\textbf{IN}} \quad \textbf{Line Regulation} - \textbf{The change in output voltage for a specified change in input voltage. (mV or \%)}$

Linearity - The deviation of the characteristic from a straight line.

 $\Delta \textbf{VOUT}/\Delta \textbf{I} \textbf{L} \qquad \textbf{Load Regulation} - \textbf{The change in output voltage for a specified change in load current. (mV or \%)}$

L LOW — Applying to a LOW voltage level.

tLZ LOW to Disable — The delay time from a control input change to the three-state output LOW-level to high-im-

pedance transition (measured at 0.5V change).

VILMAX Maximum input LOW voltage — The maximum allowed input LOW in a system. This value represents the guaran-

teed input LOW threshold for the device.

VIHMIN Minimum input HIGH Voltage — The minimum allowed input HIGH in a logic system. This value represents the

guaranteed input HIGH threshold for the device.

V_T— Negative-going Threshold Voltage — The input voltage of a variable threshold device that is interpreted as a V_{IL}

as the input transition falls from above V_{T+(MAX)}

Negative Current — Current flowing out of the device.

NF Noise Figure — The ratio of the input signal-to-noise ratio to the output signal-to-noise ratio. Usually expressed as

common log. (dB)

1/F Noise - The noise measured at a specified low frequency below the frequency range where the device noise

spectrum is essentially flat. (nV)

AVOL Open Loop Voltage Gain - The ratio of the output signal voltage to the differential input signal voltage, with no

feedback applied. (dB or V/mV)

Oscillator Control Sensitivity - The ratio of the change in oscillator frequency to the change in control voltage

causing it.

Oscillator Pull-In Range — The range of free-running frequency over which the oscillator is locked to the incoming

signal.

O Output.

Output Common Mode Voltage - The arithmetic mean of the two output voltages for devices with differential

outputs.

IOH Output High Current — The current flowing out of an output which is in the HIGH state.

VOH Output HIGH Voltage - The minimum voltage at an output terminal for the specified output current IOH and at

the minimum value of V_{CC}.

VOL Output Low Voltage - The maximum voltage at an output terminal sinking the maximum specified load current

IOL and at the minimum value of VCC.

Zo Output Impedance – The equivalent impedance seen looking into the output terminal. (Ω)

ICEX Output Leakage Current — The leakage current into the output transistor at the specified output voltage potential

for uncommitted or open-collector outputs. $(\mathring{\mu}A)$

IOL Output LOW Current — The current flowing into an output which is in the LOW state.

GLOSSARY (Cont.)

	GLOSSARY (Cont.)
e _{no}	Output Noise Voltage — The rms value of the noise voltage measured at the output with constant load current and no input ripple. (μ V)
IOZH	Output Off Current HIGH $-$ The current flowing into a disabled 3-state output with a specified HIGH output voltage applied.
IOZL	Output Off Current LOW — The current flowing out of a disabled 3-state output with a specified LOW output voltage applied.
	Output Offset Voltage — The voltage difference between the two outputs with both inputs grounded.
RO	Output Resistance — The small signal ac resistance seen looking into the output with no feedback applied and the output dc voltage near zero. For comparators, it is the resistance seen looking into the output with the dc output level at the logic threshold. (Ω)
	Output Saturation Voltage — The dc voltage between output and ground in the saturated condition.
Isc	Output Short Circuit Current — The current flowing out of an output which is in the HIGH state when that output is short circuited to ground (or other specified potential).
ISINK	Output Sink Current — The maximum current into the collector of an open-collector device. (mA)
Vout	Output Voltage — The voltage present at the output terminal referred to ground. (V)
△Vout	Output Voltage Range — The range of output voltages over which the specifications apply. (V)
±Vout	Output Voltage Swing — The peak output voltage swing, referred to zero, that can be obtained wihtout clipping the output voltage waveform. (V)
	Overshoot — The difference between the peak amplitude of the output and the final value of the output divided by the output times 100%. (%)
IOUT(Pk)	Peak Output Current — The maximum current delivered by the device for a period too short for thermal protection to be activated. (A)
	Phase Margin $-$ The difference between 180° and the phase shift at the frequency where the open loop gain equals unity.
V _T +	Positive-going Threshold Voltage $-$ The input voltage of a variable threshold device that is interpreted as a V_{IH} as the input transition rises from below $V_{T-(MIN)}$.
tpW	Pulse Width — The time between the leading and trailing edges of a pulse.
	Power Bandwidth The maximum frequency at which the maximum output can be maintained without significant distortion.
	Power Consumption — The dc power required to operate the device under no load conditions.
PD(MAX)	Power Dissipation (Max) — The maximum power that can be dissipated in the device with a given heat sink beyond which the device may not perform to specification. (mW)
ISS	Power Supply Current — The current required from the power supply to operate the amplifier with no load and no signal applied. (mA)
PSRR	Power Supply Rejection Ratio — The ratio of the change in input offset voltage to the change in power supply voltage producing it. ($\mu V/V$)
	Power Supply Sensitivity - The ratio of the change of a specified parameter to the change in supply voltage.
t _{pd}	Propagation Delay - The time interval between application of an input voltage step and its arrival at the output.
IQ	Quiescent Current — That part of a regulator input current that is not delivered to the load. (mA)
intered in min	Quiescent Output Current — The output current with no signal applied to the input.
IREF	Reference (Control) Current – The current drawn or supplied by the reference (control) terminal. (μA)
VREF	Reference Voltage — The output of the reference amplifier measured with respect to the negative supply. (V)
IRIN	Response Control Input Current — The current flowing out of the response control pin that is available to charge the response control capacitor.
tresp	Response Time — The interval between the application of an input step function and the time when the output voltage crosses the logic threshold level. (ns)
t _{rr}	Reverse Recovery Time — The time taken for the reverse recovery current to fall to a specified value after removal of the reverse bias under specified conditions. (ns)
tR	Release Time — The time interval for which a signal may be indeterminant at one input terminal before an active transition occurs at another input terminal. (The release time falls within the set-up time interval and is specified by some manufacturers as a negative hold time):

GLOSSARY (Cont.) Ripple Rejection - The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage. Rise Time – The time interval required for a signal to rise from 10% to 90% of its final amplitude. (ns or μ s) Settling Time - The time from a step change of input to the time the corresponding output settles to within a specified percentage of the final value. (ns) Set-up Time - The time interval for which a signal must be applied and maintained at one input terminal before an active transition occurs at another input terminal. Short-Circuit Current Limit - The output current of a regulator with the output shorted to common (ground). Short-Circuit Load Current - The maximum output current which the device will provide into a short-circuit. Slew Rate – The maximum rate of change of output under large signal conditions. (V/ μ s) Standby Current Drain — The supply current drawn by a regulator with no output load and no reference voltage load (see Quiescent Current). Storage Time - The propagation delay due to stored charge in the transistor. (ns) Strobe Activation Voltage - The voltage applied to the strobe terminal beyond which the device does not respond to the conditions at the input terminals. (V) Strobe Current - The maximum current taken by the strobe terminal during activation. (µA) Strobe Strobe Release Time - The time required for the outputs to rise to the logic threshold voltage after the strobeterminal has been activated. Strobed Output Level - The dc output voltage, independant of input voltage, with the voltage on the strobe terminal in excess of the strobe activation voltage. (V) ICC Supply Current - The current flowing into the VCC supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation. Supply Regulation — The change in internal device supply voltage for a specified change in external power supply voltage Vcc Supply Voltage - The range of power supply voltage over which the device is guaranteed to operate within the specified limits. Supply Voltage Rejection Ratio - See Power Supply Rejection Ratio. Switching Speed - See Propagation Delay.

tPLH The propagation delay time from an input change to an output LOW-to-HIGH transition. The propagation delay time from an input change to an output HIGH-to-LOW transition. **tPHL**

Temperature Coefficient – See Average Temperature Coefficient of specific parameter.

 $\Delta V_{OUT}/\Delta T_{A}$ Temperature Stability - The percentage change in output voltage over a specified ambient temperature range

Terminating Resistance — The resistance normally used to provide a termination to a transmission line.

Threshold Voltage - The input voltage at which the output logic level changes state. (V)

Toggle Frequency/Operating Frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function.

Total Harmonic Distortion — The rms value of the harmonic content of a signal expressed as a percentage of the rms value of its fundamental.

Transient Response - The closed loop step function response of the circuit under small signal conditions.

Transition Time, HIGH to LOW Output - See Fall Time. ${\bf Transition\ Time,\ LOW\ to\ HIGH\ Output-See\ Rise\ Time.}$

tPHL Turn-on Time - See Propagation Delay Time, HIGH to LOW Output. (ns)

ft Unity Gain Bandwidth - The frequency at which the open loop gain is reduced to unity. (MHz)

Upper Threshold Voltage - The input voltage that causes the output to change logic stage, when the input voltage VTH+ is increasing in a device with hysteresis.

tr

ts

SR

VTH

fMAX

THD

AV

Voltage Gain - The ratio of the output voltage to the input voltage under small signal conditions. For comparators, it is the ratio of the change in output voltage to the change in voltage between the input terminals, with the dc output in the vicinity of the logic threshold. (dB or V/mV)