СИНТЕЗ УПРАВЛЯЮЩИХ АВТОМАТОВ С ЖЕСТКОЙ ЛОГИКОЙ

4.1. Цель работы

- 1. Разработка графа микропрограммы вычислительной процедуры машинной операции для заданной системы микрокоманд.
 - 2. Синтез управляющего автомата для реализации микропрограммы.

4.2. Функции операционного и управляющего автоматов Граф микропрограммы

Вычислительное устройство с программным управлением всегда можно представить в виде композиции двух устройств - управляющего (УА) и операционного (ОА) автоматов (рис. 4.1). ОА состоит из регистров для приема и хранения информации, поступающей извне, и арифметико-логического устройства (АЛУ) для преобразования информации под действием управляющих микрокоманд Y_m (m=1, ...,M) с одновременным формированием для управляющего блока признаков или осведомительных сигналов X={ x_k } (k=1, ...,K).

Алгоритм выполнения некоторой процедуры (операции) преобразования информации, представленный в форме последовательности микрокоманд, образует микропрограмму этой процедуры (операции). Исходными данными для синтеза

Рис. 4.1. Вычислительное устройство с программным управлением

УА являются: схема операционного автомата с функциями, определенными в виде списка реализуемых микрокоманд, и содержательная граф-схема алгоритма или, используя введенное выше определение, граф микропрограммы этой операции.

На рис. 4.2,a представлена структурная схема операционного автомата, включающая АЛУ комбинационного типа с регистром флагов F, регистровое запоминающее устройство из 4 регистров общего назначения (РОН) и аккумулятора Acc, который наделен преимущественными функциями при выполнении арифметических и логических микрокоманд. В процессе выполнения каждой микрокоманды комбинационное АЛУ взаимодействует с регистрами, являющимися обычно источниками и приемниками операндов. С целью упрощения схемы мультиплексирования регистрового ЗУ с внутренней магистралью ОА выбран такой его вариант, когда один и тот же регистр ЗУ является как источником, так и приемником информации. Регистры РОН выполнены на обычных триггерах- защёлках, которые являются прозрачными для входных информационных сигналов при активном уровне синхросигнала CLK. С целью разрыва порочной петли «регистр РОН - комбинационное АЛУ - регистр РОН», введён специальный буферный регистр Z (один для всех) с противофазной (относи-

тельно регистров РОН) синхронизацией. Режимы работы и состояния основных узлов операционного устройства приведены в таблице 4.1.

Таблица 4.1

Сигнал	Режимы работы или состояния					
CLK	РОН	Буфер <i>Z</i>	Acc и F	АЛУ		
		Переход в новое				
1	Хранение	состояние (про-	Хранение	Выполнение		
		зрачен для выход-		микрокоманды		
		ных сигналов		Y_m		
		POH)				
			Переключение в			
			новое состояние,			
			запись результа-			
			тов микрокоманды			
	Переключение в					
0	новое состояние,	Хранение	Хранение			
	запись результа-					
	тов микрокоманды					

В табл. 4.2 приведены список микрокоманд, реализуемых ОА, их соответствие управляющим микрокомандам Y_m , а также дополнительная информация по установке флагов по результатам каждой микрокоманды.

Список включает 52 микрокоманды, которые можно разбить на 3 группы: микрокоманды пересылки, двоичной арифметики, логической обработки, сдвига и вращения. На основе данных микрокоманд и будет проводиться разработка графа микропрограммы. Граф микропрограммы представляет собой ориентированный граф, содержащий одну начальную, одну конечную и произвольное множество промежуточных вершин - операторных и условных. Операторная вершина соответствует одной микрокоманде, а условная - проверяемому логическому условию (флагу). При построении графа микропрограммы необходимо руководствоваться следующими правилами:

- 1. Входы и выходы различных вершин соединяются дугами с указанием направления передачи информации.
 - 2. Каждый выход соединяется только с одним входом.
- 3. Для любой вершины графа существует по крайней мере один путь из нее к конечной вершине.

Рассмотрим пример на построение графа микропрограммы для задачи подсчета числа нулей в байте. В микропрограмме *приняты* следующие условия:

- **Входные параметры:** исследуемый байт находится в регистре R1, а с помощью регистра R4 организован счетчик цикла.
- **Выходные параметры:** результат (число нулей) помещается в аккумулятор Acc.

Граф микропрограммы с необходимыми комментариями приведен на рис. 4.4. Исполнение микропрограммы начинается при выполнении логического условия ПУСК=1, которое реализуется воздействием на УА одноименным командным сигналом.

Puc. 4.2. Структура операционного (a) и управляющего (б) автоматов

Имея в своем распоряжении граф микропрограммы можно приступить к синтезу управляющего автомата, оговорив предварительно его тип, а также некоторые ограничения в реализации подобных схем на лабораторном стенде УМ11М. Существуют два типа управляющих автоматов:

- 1. УА с жесткой или схемной логикой.
- 2. УА с логикой, хранимой в памяти (с программируемой логикой).

В соответствии с целью данной работы ограничимся рассмотрением УА с жесткой логикой, функционирование которых задается, как правило, моделями автоматов Мили или Мура. Управление таким сложным объектом, каким является операционное устройство универсального назначения (рис.4.2,*a*), предо пределяет и сложную схему УА, что противоречит целям проведения лабораторного занятия.

 $Puc.\ 4.3.$ Временные диаграммы работы ОУ с управляющим автоматом типа Мили (a) и Мура (δ)

Список микрокоманд (МК), реализуемых в ОА

Таблица 4.1

Выходной Мнемокод Содержание		Влияние на флаги F	
сигнал в УА	MK		
$Y_1 \div Y_4$	MOV A, R	$(Acc) \leftarrow (R);$ $(R): R1, R2, R3, R4$	
$Y_5 \div Y_8$	MOV R, A	$(R) \leftarrow (Acc)$	He
Y_9	MOV A, data 8	(Acc) ← data 8	влияет
$Y_{10} \div Y_{13}$	MOV R, data 8	$(R) \leftarrow data \ 8$	
$Y_{14} \div Y_{17}$	ADD R	$(Acc) \leftarrow (Acc) + (R)$	
$Y_{18} \div Y_{21}$	ADCR	$(Acc) \leftarrow (Acc) + (R) + CF$	Влияет
$Y_{22} \div Y_{25}$	SUB R	$(Acc) \leftarrow (Acc)$ - (R)	на все
$Y_{26} \div Y_{29}$	SBB R	$(Acc) \leftarrow (Acc)$ - (R) - CF	флаги
Y ₃₀ , Y ₃₁	CMP R	(Acc)-(R); (R): R1, R2	
Y_{32}, Y_{33}	DECR	$(R) \leftarrow (R)-1;$ $(R): R3, R4$	Влияет на все
Y ₃₄ , Y ₃₅	INC R	$(R) \leftarrow (R)+1; \qquad (R): R3, R4$	флаги, кроме <i>CF</i>
$Y_{36} \div Y_{39}$	AND R	$(Acc) \leftarrow (Acc) \land (R)$	Влияет на все
$Y_{40} \div Y_{43}$	OR R	$(Acc) \leftarrow (Acc) \lor (R)$	флаги,
$Y_{44} \div Y_{47}$	XOR R	$(Acc) \leftarrow (Acc) \oplus (R)$	OF=CF=0
Y ₄₈	RCL	CF Acc	Только на
Y ₄₉	RCR	$CF \longrightarrow Acc$	флаг <i>СF</i>
Y ₅₀	SAR	Acc \longrightarrow CF	Все флаги
Y ₅₁	SAL	$CF \longleftarrow Acc \longleftarrow -0$	Все флаги)*
Y ₅₂	CLC	CF=0	CF=0

^{*)} OF=1, если произошло изменение старшего бита Acc

На рис. 4.2,6 представлена одна из возможных декомпозиций УА, включающая три составные части: дешифратор кода вычислительной процедуры, собственно управляющий автомат, генерирующий последовательность управляющих сигналов для микрокоманды Y_m ,

Таблица 4.2

и формирователь микроинструкций FM для управления отдельными узлами операционного устройства (точнее, настройки OA на выполнение заданной микрокоманды Y_m):

Флаги условий	CF	ZF	SF	OF
сигналы условий $\{x_k\}$	x_1	x_2	<i>x</i> ₃	x_4

$$Y_m \Rightarrow \left(\{b_i\}, \{c_j\}, \dots, \{h_p\} \right)_m. \tag{4.1}$$

Такой формирователь легче всего представить в виде памяти, содержание ячеек которой соответствует правой части соотношения (4.1). Адрес ячейки памяти определяется номером микрокоманды Y_m . Объектом синтеза в лабораторной работе представляется среднее звено (рис. 4.2, δ) применительно к реализации простых вычислительных процедур.