RK808 开发指南

文件标识: RK-KF-YF-66

发布版本: V1.0.1

日期: 2022-05-30

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2022 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: <u>fae@rock-chips.com</u>

前言

概述

本文档主要介绍 RK808 的各个子模块,介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

产品版本

芯片名称	内核版本
RK808	3.10、4.4、4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	张晴	2019-11-25	初始版本
V1.0.1	黄莹	2022-05-30	修改格式

目录

RK808 开发指南

- 1. 基础
 - 1.1 概述
 - 1.2 功能
 - 1.3 芯片引脚功能
 - 1.4 重要概念
 - 1.5 上电条件和时序
- 2. 配置
 - 2.1 驱动和 menuconfig
 - 2.1.1 3.10 内核配置
 - 2.1.2 4.4 内核配置
 - 2.1.3 4.19 内核配置
 - 2.2 DTS 配置
 - 2.2.1 **3.10 内核 DTS 配置**
 - 2.2.2 **4.4 内核 DTS 配置**
 - 2.2.3 **4.19 内核 DTS 配置**
 - 2.3 函数接口
- 3. Debug
 - 3.1 3.10内核
 - 3.2 4.4内核
 - 3.3 4.19内核

1. 基础

1.1 概述

RK808 是一款高性能 PMIC,RK808 集成 4 个大电流 DCDC、8 个 LDO、2个开关SWITCH、1 个 RTC、可调上电时序等功能。

系统中各路电源总体分为两种: DCDC 和 LDO。两种电源的总体特性如下(详细资料请自行搜索):

- 1. DCDC: 输入输出压差大时,效率高,但是存在纹波比较大的问题,成本高,所以大压差,大电流负载时使用。一般有两种工作模式。PWM模式:纹波瞬态响应好,效率低;PFM模式:效率高,但是负载能力差。
- 2. LDO:输入输出压差大时,效率低,成本低,为了提高 LDO 的转换效率,系统上会进行相关优化如: LDO 输出电压为 1.1V,为了提高效率,其输入电压可以从 VCCIO_3.3V 的 DCDC 给出。所以电路上如果允许尽量将 LDO 接到 DCDC 输出回路,但是要注意上电时序。

1.2 功能

从使用者的角度看, RK808 的功能概况起来可以分为 4 个部分:

1. regulator 功能:控制各路 DCDC、LDO 电源状态;

2. rtc 功能:提供时钟计时、定时等功能;

3. clk 功能:有两个32.768KHZ时钟输出,一个不可以控常开,一个是软件可控。

1.3 芯片引脚功能

下面描述中,SLEEP 和 INT 引脚需要重点关注:

NO	NAME	SUPPLIES	FUNCTIONAL	TYPE	I/O	DESCRIPTION	PU/PD
			BLOCK				
9	VCCRTC	VCCRTC		Power	0	RTC power supply	NO
		/AGND					
65	OSC32KIN	VCCRTC		Analog	- 1	32KHz crystal oscillator	NO
		/DGND				input	
66	OSC32KOUT	VCCRTC		Analog	- 1	32KHz crystal oscillator	NO
		/DGND	RTC			output	
68	CLK32KOUT1	VCCRTC		Digital	0	32KHz clock output 1,OD	NO
		/DGND				output	
						(always on)	
67	CLK32KOUT2	VCCRTC		Digital	0	32KHz clock output 2,OD	PD
		/DGND				output	
37	VREF	VCCA		Analog	0	bandgap voltage	PD
		/REFGND	REFERENCE				
64	VREFGND	REFGND		Analog	Gnd	reference ground	NO
36	VCCA	VCCA	Analog Power	Power	- 1	power supply for	NO
		/GNDA					
6	VPPOTP	VPPOTP	Analog Power	Power	- 1	OTP power supply	NO
		/GNDA					
45	VCC1	VCC1		Power	I/O	buck1 dc-dc power	NO
		/GND1				supply	
44	VCC1	VCC1		Power	I/O	buck1 dc-dc power	NO
		/GND1				supply	
43	SW1	VCC1		Power	I/O	buck1 dc-dc switch	PD
		/GND1				output	
42	SW1	VCC1	BUCK1				
		/GND1	BOOKI				
41	GND1	VCC1		Power	Gnd	buck1 dc-dc switch	NO
		/GND1				ground	
40	GND1	VCC1					
		/GND1					
39	VFB1	VCC1		Analog	- 1	buck1 dc-dc switch	PD
		/REFGND				feedback voltage	
	VCC2	VCC2	BUCK2	Power	- 1	buck2 dc-dc power	NO
23		/GND2	BOOKZ			supply	

rowei management system

	VCC2	VCC2		Power	- 1	buck2 dc-dc power	NO
24		/GND2				supply	
25	SW2	VCC2		Power	I/O	buck2 dc-dc switch	PD
		/GND2				output	
	SW2	VCC2		Power	I/O	buck2 dc-dc switch	PD
26		/GND2				output	
	GND2	VCC2		Power	Gnd	buck2 dc-dc switch	NO
27		/GND2				ground	
	GND2	VCC2		Power	Gnd	buck2 dc-dc switch	NO
28		/GND2				ground	
	VFB2	VCC2		Analog	- 1	buck2 dc-dc switch	PD
29		/REFGND				feedback voltage	
	VCC3	VCC3		Power	- 1	buck3 dc-dc power	NO
59		/GND3				supply	
	SW3	VCC3		Power	I/O	buck3 dc-dc switch	PD
58		/GND3	DUIGICA			output	
	GND3	VCC3	BUCK3	Power	Gnd	buck3 dc-dc switch	NO
57		/GND3				ground	
	VFB3	VCC3		Analog	- 1	buck3 dc-dc switch	PD
56		/REFGND				feedback voltage	
	VCC4	VCC4		Power	- 1	buck4 dc-dc power	NO
60		/GND4				supply	
	SW4	VCC4		Power	I/O	buck4 dc-dc switch	PD
61		/GND4	DUIGICA			output	
	GND4	VCC4	BUCK4	Power	Gnd	buck4 dc-dc switch	NO
62		/GND4				ground	
	VFB4	VCC4		Analog	- 1	buck4 dc-dc switch	PD
63		/REFGND				feedback voltage	
	NC						
47							
	GND5	VCCA		Power	Gnd	ground	NO
46		/GND5					
	NC						
48							
	VCC6	VCC6		Power	- 1	LDO1,LDO2 power	NO
32		/AGND				supply	
4	VCC7	VCC7	LDO 1~8,	Power	- 1	LDO3,LDO7 power	NO
		/AGND	SWITCH1,2			supply	
8	VCC8	VCC8		Power	- 1	SWITCH1 power	NO
		/AGND				supply	
	I		<u> </u>			1	

	V/000	1/000				L DOLL DOS	NO
	VCC9	VCC9		Power	'	LDO4,LDO5 power	NO
13		/AGND				supply	
1	VCC10	VCC11		Power	1	LDO6 power supply	NO
		/AGND					
	VCC11	VCC11		Power	1	LDO8 power supply	NO
16		/AGND					
	VCC12	VCC12		Power	- 1	SWITCH2 power	NO
10		/AGND				supply	
	VLDO1	VCC7		Power	0	LDO1 regulator output	PD
31		/AGND					
	VLDO2	VCC7		Power	0	LDO2 regulator output	PD
33		/AGND					
3	VLDO3	VCC8		Power	0	LDO3 regulator output	PD
		/AGND					
	VLDO4	VCC9		Power	0	LDO4 regulator output	PD
12		/AGND					
	VLDO5	VCC10		Power	0	LDO5 regulator output	PD
14		/AGND					
2	VLDO6	VCC9		Power	0	LDO6 regulator output	PD
		/AGND					
5	VLDO7	VCC1		Power	0	LDO7 regulator output	PD
		1/AGND					
	VLDO8	VCC11		Power	0	LDO8 regulator output	PD
15		/AGND					
7	VSWOUT1	VCC8		Power	0	Switch 1 output	PD
		/AGND					
	VSWOUT2	VCC12		Power	0	Switch 2 output	PD
11	10110012	/AGND				omion 2 octput	, 5
	AGND	POWER	Analog ground	Power	Gnd	Analog ground	NO
30	AONE	PAD	Analog ground	1 Ower	Ond	Analog ground	110
	VLDOA	POWER	LDOA	Power	I/O	supply for internal analog	NO
35	VLDOA	PAD	LDOA	Fower	1/0	circuit	NO
33	DCND		Digital around	Dawer	Cod		NO
38	DGND	POWER PAD	Digital ground	Power	Gnd	Digital ground	NO
30	VDDIO			Decree	1/0	Digital I/O naves superior	NO
47	VDDIO	VDDIO		Power	I/O	Digital I/O power supply	NO
17	0.555	/DGND		B1. ** *		A 11 - 10	
	SLEEP	VDDIO		Digital	1	Active-Sleep state	NO
50		/DGND	10			transition control signal	
	NRESPWRON	VDDIO		Digital	I/O	Power off reset for AP/	PD in
20		/DGND				External reset digital	power-off
						core(excludes RTC)	state

					_		_
	INT	VDDIO		Digital	0	Interrupt flag (polarity	Program
49		/DGND				is I2C programmable,	mable
						default active high)	PU/PD
	PWRON	VCCRTC		Digital	- 1	External switch-on	NO
51		/DGND	10			control signal(ON button)	
	SDA	VDDIO		Digital	I/O	I2C data signal	NO
18		/DGND					
	SCL	VDDIO		Digital	I/O	I2C clock signal	NO
19		/DGND					
	воото	VCCRTC		Digital	- 1	Power-up sequence	NO
52		/DGND				selection	
	BOOT1	VCCRTC		Digital	- 1	Power-up sequence	NO
53		/DGND				selection	
	EXT_EN	VCCRTC		Digital	0	Output enable for	PD
55		/DGND				external BUCK in	
						two-battery-cells	
						application	
	DVS1	VDDIO		Digital	- 1	BUCK1 DVS voltage	NO
22		/DGND				/normal voltage transition	
						control signal(polarity is	
			10			I2C programmable,	
						default active high)	
	DVS2	VDDIO		Digital	- 1	BUCK2 DVS voltage	NO
21		/DGND				/normal voltage transition	
						control signal(polarity is	
						I2C programmable, default	
						active high)	
	DVSOK	VDDIO		Digital	0	BUCK1 and BUCK2 power	PD
54		/DGND		-		good flag after dynamic	
						voltage setting	
	VDC	VDC		Digital	ı	Adapter voltage detect	NO
34		/AGND		_		input	

1.4 重要概念

• I2C 地址

7 位从机地址: 0x1b

- PMIC有3种工作模式
 - 1. PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式,此时 pmic_sleep 为低电平。

2. PMIC sleep 模式

系统休眠时需要待机功耗尽量低,PMIC 会切到 sleep 模式减低自身功耗,这时候一般会降低某些路的输出电压,或者直接关闭输出,这可以根据实际产品需求进行配置。系统待机时拉高pmic_sleep 即可让 PMIC 进入 sleep 状态;当 SoC 唤醒时 pmic_sleep 恢复为低电平,PMIC 退出休眠模式。

3. PMIC shutdown 模式

当系统进入关机流程的时候,PMIC 需要完成整个系统的电源下电操作。AP 通过 I2C 指令把pmic_sleep 配置成 shutdown 模式,然后拉高 pmic_sleep 即可让 PMIC 进入 shutdown 状态。

• pmic_sleep 引脚

常态为低电平,PMIC 处于 normal 模式。当引脚拉高的时候会切换到 sleep 或者 shutdown 的模式。

● pmic_int 引脚

常态为高电平,当有中断产生的时候变为低电平。如果中断没有被处理,则会一直维持低电平。

• pmic_pwron 引脚

pwrkey 的功能需要硬件上将 power 按键接到这个引脚,驱动通过这个引脚来判断按下/释放。

• 各路 DCDC 的工作模式

DCDC 有 PWM(也叫 force PWM)、PFM 模式,但是 PMIC 有一种模式会动态切换 PWM、PFM,这就是我们通常所说的 AUTO 模式。PMIC 支持 PWM、AUTO PWM/PFM 两种模式,AUTO 模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑,运行时都是设置为 PWM 模式,系统进入休眠时会选择切换到 AUTO PWM/PFM。

• DCDC3 电压调节

DCDC3 这路电源比较特殊,不能通过寄存器修改电压,只能通过外部电路的分压电阻进行调节, 所以如果需要修改电压请修改外围硬件,在 Rockchip 的方案上一般作为 VCC_DDR 使用。

- DCDC 和 LDO 的运行时电压调节范围
 - 1. DCDC 电压范围连续:

电压范围(V)	步进值(mV)	具体档位值(V)
0.7125 ~ 1.45	12.5	0.7125、0.725、0.737.5、、1.45
1.8 ~ 3.3	100	1.8、1.9、2.0、2.2、3.3

2. LDO 电压连续:

电压范围(V)	步进值(mV)	具体档位值(V)
0.8 ~ 3.4	100	0.8、0.9、1.0、1.1、1.2、3.4

1.5 上电条件和时序

1. 上电条件

只要满足下面任意一个条件即可以实现 PMIC 上电:

- EN 信号从低电平变高电平触发
- EN 信号保持高电平,且 RTC 闹钟中断触发
- EN 信号保持高电平,按 PWRON 键触发

2. 上电时序

每款 SOC 平台对各路电源上电时序要求可能不一样,目前上电时序有如下情况,具体请参考最新的 datasheet:

9 POWER SEQUENCE

	Power On	Preset	Power On	Preset	Power On	Preset	Power On	Preset
	Sequence	Voltage	Sequence	Voltage	Sequence	Voltage	Sequence	Voltage
Boot1,	0	0	0	1		0	11	
Boot0		U	0	1	'	U	''	
BUCK1	4	1.1V/ON	4	1.2V/ON	4	1.0V/ON	OTP	OTP
BUCK2	5	1.1V/ON	5	1.2V/ON	4	1.0V/ON	OTP	OTP
BUCK3	2	1.2V/ON	2	1.2V/ON	3	1.2VON	OTP	OTP
BUCK4	1	3.0V/ON	1	3.0V/ON	1	3.0V/ON	OTP	OTP
LDO1		3.3V/OFF		3.3V/OFF	1	3.3v/ON	OTP	OTP
LDO2		3.3V/OFF	2	3.3V/ON		3.3V/OFF	OTP	OTP
LDO3	3	1.1V/ON	3	1.2V/ON	2	1.0V/ON	OTP	OTP
LDO4	3	2.5V/ON		2.5V/OFF	2	1.8V/ON	OTP	OTP
LDO5		2.8V/OFF		2.8V/OFF		2.8V/OFF	OTP	OTP
LDO6		1.2V/OFF		1.2V/OFF		1.2V/OFF	OTP	OTP
LDO7		1.8/OFF		1.8V/OFF		1.8V/OFF	OTP	OTP
LDO8		3.3V/OFF		1.8V/OFF		3.3V/OFF	OTP	OTP

Version 0.5 www.rock-chips.com 25

RK808

Power Management System

SWITCH1	1	3.0V/ON	1	3.0V/ON	5	3.0V/ON	OTP	OTP
SWITCH2		3.0V/OFF		3.0V/OFF		3.0V/OFF	OTP	OTP

2. 配置

2.1 驱动和 menuconfig

2.1.1 3.10 内核配置

RK808 驱动文件:

drivers/mfd/rk808.c
drivers/mfd/rk808-irq.c
drivers/rtc/rtc-rk808.c

RK808 dts文件可参考:

arch/arm/boot/dts/rk808.dtsi
arch/arm/boot/dts/rk3288-evb-android-rk808-edp.dts

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808
CONFIG_RTC_RK808
```

2.1.2 4.4 内核配置

RK808 驱动文件:

```
drivers/mfd/rk808.c
drivers/rtc-rk808.c
drivers/regulator/rk808-regulator.c
drivers/clk/clk-rk808.c
```

RK808 dts文件可参考:

```
arch/arm64/boot/dts/rockchip/rk3399-evb-rev3.dtsi
```

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808
CONFIG_RTC_RK808
CONFIG_COMMON_CLK_RK808
```

2.1.3 4.19 内核配置

RK808 驱动文件:

```
drivers/mfd/rk808.c
drivers/rtc-rk808.c
drivers/regulator/rk808-regulator.c // 跟4.4内核不同
drivers/clk/clk-rk808.c
```

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808
CONFIG_RTC_RK808
CONFIG_COMMON_CLK_RK808
```

2.2 DTS 配置

2.2.1 3.10 内核 DTS 配置

DTS 的配置包括: I2C 挂载、主体、regulator、rtc、poweroff 等部分。

```
&i2c1 {
    rk808: rk808@1b {
        reg = <0x1b>;
        status = "okay";
    };
};
/include/ "rk808.dtsi"
&rk808 {
    gpios = <&gpio0 GPIO_A4 GPIO_ACTIVE_HIGH>,
             <&gpio0 GPIO_B3 GPIO_ACTIVE_LOW>;
    rk808, system-power-controller;
    rtc {
        status = "disabled";
    };
    regulators {
        rk808_dcdc1_reg: regulator@0 {
             regulator-always-on;
             regulator-boot-on;
             regulator-min-microvolt = <750000>;
             regulator-max-microvolt = <1400000>;
             regulator-init-microvolt = <1300000>;
             regulator-name = "vdd_arm";
             regulator-state-mem {
                 regulator-off-in-suspend;
             };
        };
        rk808_dcdc2_reg: regulator@1 {
                     . . . . . . . . . . . . .
        };
        rk808_dcdc3_reg: regulator@2 {
                     . . . . . . . . . . . . . . . .
        };
    };
};
```

1. I2C 挂载

整个完整的 rk808 节点挂在对应的 i2c 节点下面,并且配置 status = "okay";

- 2. 主体部分
- 不可修改部分

可修改部分

gpios:指定 pmic_int(第一个)和 pmic_sleep(第二个)引脚;

- 3. regulator 部分
- regulator-name: 电源名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配这个名字;
- regulator-min-microvolt:运行时可调节的最小电压;
- regulator-max-microvolt:运行时可调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-state-mode: 休眠时 DCDC 工作模式,一般配置为 2。1: force pwm,2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on:存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on:存在这个属性时,运行时不允许关闭这路电源且会在注册的时候使能这路电源;
- regulator-state-enabled: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-state-disabled";
- regulator-state-uv:休眠不断电情况下的待机电压。

说明:

如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则在注册这个 regulator 的时候系统框架默认会把这个电压设置下去并使能这路电源,不需要使用者干预。

如果 regulator-boot-on 或者 regulator-always-on 存在,则系统框架在注册这路regulator 的时候默认会进行 enable,此时的这路 regulator 的电压有 2 种情况:如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则系统框架会把这路电压设置为当前这个电压值;如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压不相等,则此时的电压是 PMIC 的本身的硬件默认上电电压。

4. rtc 部分

如果不想使能 RTC 的功能(如 box 产品上),则需要像上面那样增加节点,显式指明为 status = "disabled"。如果需要使能的的话则可以把整个 RTC 节点去掉或者设置状态为 status = "okay"即可。

5. poweroff 部分

因为 RK808 驱动自动拦截关机命令,执行写I2C关闭PMIC输出。

rk808_shutdown是注册syscore shutdown,用于一些准备工作,如打印关机电压,关闭RTC中断等。

```
static void rk808_shutdown(void)
{
   int ret,i,val;
   u16 reg = 0;
   struct rk808 *rk808 = g_rk808;

   printk("%s\n",__func__);
   /************get dc1\dc2 voltage ***********/
   for(i=0;i<2;i++){</pre>
```

rk808_device_shutdown是真正写I2C关闭PMIC输出。

```
static void rk808_device_shutdown(void)
{
    int ret,i;
    u8 reg = 0;
    struct rk808 *rk808 = g_rk808;
    for(i=0;i < 10;i++){
        printk("%s\n",__func__);
        ret = rk808_i2c_read(rk808,RK808_DEVCTRL_REG,1,&reg);
        if(ret < 0)</pre>
            continue;
        ret = rk808_i2c_write(rk808, RK808_DEVCTRL_REG, 1,(reg | (0x1 <<3)));</pre>
        if (ret < 0) {
            printk("rk808 power off error!\n");
            continue;
        }
    }
    while(1)wfi();
EXPORT_SYMBOL_GPL(rk808_device_shutdown);
```

2.2.2 4.4 内核 DTS 配置

DTS 的配置包括: i2c 挂载、主体、rtc、clk、regulator 等部分。

```
&i2c1 {
    status = "okay";
    rk808: pmic@1b {
        compatible = "rockchip,rk808";
        reg = <0x1b>;
        interrupt-parent = <&gpio1>;
        interrupts = <21 IRQ_TYPE_LEVEL_LOW>;
        pinctrl-names = "default";
```

```
pinctrl-0 = <&pmic_int_l &pmic_dvs2>;
        rockchip,system-power-controller;
        wakeup-source;
        #clock-cells = <1>;
        clock-output-names = "rk808-clkout1", "rk808-clkout2";
        vcc1-supply = <&vcc3v3_sys>;
        vcc2-supply = <&vcc3v3_sys>;
        vcc3-supply = <&vcc3v3_sys>;
        vcc4-supply = <&vcc3v3_sys>;
        vcc6-supply = <&vcc3v3_sys>;
        vcc7-supply = <&vcc3v3_sys>;
        vcc8-supply = <&vcc3v3_sys>;
        vcc9-supply = <&vcc3v3_sys>;
        vcc10-supply = <&vcc3v3_sys>;
        vcc11-supply = <&vcc3v3_sys>;
        vcc12-supply = <&vcc3v3_sys>;
        vddio-supply = <&vcc1v8_pmu>;
        regulators {
            vdd_log: DCDC_REG1 {
                regulator-always-on;
                regulator-boot-on;
                regulator-min-microvolt = <750000>;
                regulator-max-microvolt = <1350000>;
                regulator-ramp-delay = <6001>;
                regulator-name = "vdd_log";
                regulator-state-mem {
                    regulator-on-in-suspend;
                    regulator-suspend-microvolt = <900000>;
                };
            };
            vdd_cpu_1: DCDC_REG2 {
                regulator-always-on;
                regulator-boot-on;
                regulator-min-microvolt = <750000>;
                regulator-max-microvolt = <1350000>;
                regulator-ramp-delay = <6001>;
                regulator-name = "vdd_cpu_1";
                regulator-state-mem {
                    regulator-off-in-suspend;
                };
            };
            vcc_ddr: DCDC_REG3 {
                 . . . . . . . . . . . . . . . . .
            };
        };
    };
};
```

1. i2c 挂载

整个完整的 rk808 节点挂在对应的 i2c 节点下面,并且配置 status = "okay";

2. 主体部分

• 不可修改:

```
compatible = "rockchip,rk808";
reg = <0x1b>;
rockchip,system-power-controller;
wakeup-source;
#clock-cells = <1>;
```

• 可修改(按照 pinctrl 规则)

interrupt-parent: pmic_int 隶属于哪个 gpio;

interrupts: pmic_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性;

pinctrl-names:不修改,固定为 "default";

pinctrl-0:引用 pinctrl 里定义好的 pmic_int 引脚;

3. rtc

如果 menuconfig 选中了这个模块,但是实际又不需要使能这几个驱动,那么可以在 dts 里增加 rtc节点,并且显式指明状态为 status = "disabled",这样就不会使能驱动,但是开机信息会有错误 log 报出,可以忽略;如果要使能驱动,则可以去掉相应的节点,或者设置状态为 status = "okay"。

4. regulator

- regulator-compatible: 驱动注册时需要匹配的名字,不能改动,否则会加载失败;
- regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配 这个名字;
- regulator-init-microvolt: u-boot阶段的初始化电压,kernel阶段无效;
- regulator-min-microvolt:运行时可以调节的最小电压;
- regulator-max-microvolt:运行时可以调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 的工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-mode: 休眠时 DCDC 的工作模式,一般配置为 2。1: force pwm,2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on:存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on:存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能这路电源;
- regulator-ramp-delay: DCDC 的电压上升时间,固定配置为 12500;
- regulator-on-in-suspend: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-off-in-suspend";
- regulator-suspend-microvolt: 休眠不断电情况下的待机电压。

5. poweroff 部分

4.4上使用pm_power_off_prepare,实现PMIC关机前的准备工作,如关闭RTC中断,配置一些特殊寄存器等。

注册syscore shutdown, 真正用于PMIC关机。

6. clk 部分

如果某个节个需要引用 RK808 的 clk 进行使用,引用格式如下:

```
clocks = <&rk808 1>;
 第一个参数: &rk808 固定,不可改动;
 第二个参数: 引用 rk808 的哪个 clk, 只能是 0 或者 1, 其中 0: rk808-clkout1, 1: rk808-
clkout2;
2.2.3 4.19 内核 DTS 配置
请参考4.4内核DTS配置。差异点: 4.19内核的DTS配置不再需要gpio子节点,但其他模块依然使用
gpios = <&rk808 0 GPIO_ACTIVE_LOW>; 的方式引用和使用rk808的pin脚。
2.3 函数接口
如下几个接口基本可以满足日常使用,包括 regulator 开、关、电压设置、电压获取等:
  1. 获取 regulator:
    struct regulator *regulator_get(struct device *dev, const char *id)
   dev 默认填写 NULL 即可,id 对应 dts 里的 regulator-name 属性。
  2. 释放 regulator
    void regulator_put(struct regulator *regulator)
  3. 打开 regulator
    int regulator_enable(struct regulator *regulator)
  4. 关闭 regulator
    int regulator_disable(struct regulator *regulator)
  5. 获取 regulator 电压
 int regulator_get_voltage(struct regulator *regulator)
  6. 设置 regulator 电压
 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
 传入的参数时保证 min_uV = max_uV,由调用者保证。
  7. 范例
 struct regulator *rdev_logic;
```

说明: 4.4或者4.19内核还提供了 devm_ 开头的regulator接口帮开发者管理要申请的资源。

3. Debug

3.1 3.10内核

因为 PMIC 涉及的驱动在使用逻辑上都不复杂,重点都体现在最后的寄存器设置上。所以目前常用的 debug 方式就是直接查看 rk808 的寄存器,通过如下节点:

/sys/rk808/rk808_test

读寄存器:

echo r [addr] > /sys/rk808/rk808_test

写寄存器:

echo w [addr] [value] > /sys/rk808/rk808_test

一般写操作执行完之后最好再读一遍确认是否写成功。

3.2 4.4内核

命令格式同 3.10 内核一样,只是节点路径不同,4.4 内核上的 debug 节点路径是:

/sys/rk8xx/rk8xx_dbg

3.3 4.19内核

请参考4.4内核命令。