Total Functions for Automated Reasoning

Building Terminating Theorem Provers

Alexander Gryzlov

(IMDEA Software Institute)

Lambda World 2025 October 24, Cádiz, Spain

Agenda

- 1. Al & automated reasoning
- 2. Total programming
- 3. Unification
- 4. SAT & DPLL
- 5. Iterative DPLL

As you can guess/deduce from the title, this is a talk about combining *two topics* I've been working on for the past couple of years.

Agenda

- 1. Al & automated reasoning
- 2. Total programming
- 3. Unification
- 4. SAT & DPLL
- 5. Iterative DPLL

Part 1

The domain:

Al & Automated Reasoning

Al through time

Al is somewhat like "teenage music".

For every decade, it could mean something different:

- 1960s The Beatles & Expert systems
- 1990s Backstreet Boys & Spam filter/recommenders
- 2020s Ariana Grande & Large Language Models

Let us go back to the basics!

Classic Al tasks

Formulated back in 1950s as "human-level activities performed by computer:"

- Machine translation and text comprehension
- Speech and pattern recognition
- Game playing (chess, checkers, Go, etc)
- Theorem proving

We'll focus on the last one:

Here, symbolic (rather than statistical) methods are typically used, and precise guarantees matter the most.

Theorem proving landscape

- SAT/SMT solvers (Z3/cvc5)
- Computer algebra systems (Mathematica, MAPLE)
- Automated provers (Vampire, E, iProver)
- Logic programming languages (Prolog, λProlog, Datalog)
- Proof assistants (HOL, Coq, Agda, Lean)

There's a struggle between the power of the system and automation.

More versatile systems converge toward general-purpose programming languages.

Automation vs power

Shoham, [2019] "Verification of Distributed Protocols Using Decidable Logic"

We'll use an interactive tool (Agda) to build and verify some simple automated ones.

Automated reasoning

The subfield of symbolic AI focused on theorem proving is referred to as "automated reasoning."

Typically involves:

- operating on syntax with variables
- synthesizing terms/proofs/refutations (not always)
- computing finite representations of functions (maps)

The algorithms we'll see use first-order syntax: no binders (like λ) inside terms.

Variables and contexts

An important notion when reasoning about variables: context.

This is what logicians/type theorists write as capital Greek letters (Γ/Δ).

A finite set of all variables in the expression.

An overapproximation - can include extra variables not in the term!

We'll use a special (quotient) type Ctx for sets of variables (the order and multiplicity in it don't matter).

Has the usual set operators and predicates: E, union, rem, minus

Part 2

The technique:

Total programming

The nature of functions

We're going to compute maps/functions, but can we be precise about them?

" a function from a set X to a set Y assigns to each element of X exactly one element of Y

(Pure) functions in FP are close to the mathematical definition of a function.

But how do we guarantee the "each" and "exactly one" part?

Computational functions

Two problems beyond purity:

- not every X is assigned a Y
- a Y is never produced

```
head :: [a] -> a
head [] = error "oops"
head (x:_) = x
```

```
loop :: a -> a
loop x = loop x
```

Termination matters

Can be costly in critical systems, we typically expect each request/component to finish, even if the system is interactive:

44 916 such CVE's between 2000 and 2022

"Large-scale analysis of non-termination bugs in real-world OSS projects" (2022)

For reasoning algorithms, this means we always get an answer (though it may take a long time).

Total programming

We can only write programs which:

- cover all inputs
- terminate

The *first* part is relatively trivial (though often requires restructuring your program),

however the *second* involves recursion :(

Structural recursion

Programs which "consume" syntactically smaller pieces of input:

Beyond structural

Here's a simple example that doesn't fit this pattern:

Euclid's GCD algorithm

```
{-# TERMINATING #-}

gcd: \mathbb{N} \to \mathbb{N} \to \mathbb{N}

gcd n m =

if m == 0

then n

else gcd m (n % m)
```

```
gcd(105, 30) \rightarrow 105\%30 = 15

gcd(30, 15) \rightarrow 30\%15 = 0

gcd(15, 0) = 15
```

We know n % m < m but this is not structural!

Well-founded recursion

We have to introduce a "measure" that decreases on a type T according to a *well-founded* order.

If you come up with any sequence \dots < tx < ty < tz < \dots , it cannot decrease forever.

A canonical type with such an order is $(\mathbb{N}, <)$.

Any sequence will eventually end with 0.

Called a linear order, but orders can be branching.

Well-founded language

Let's introduce a special type for this goal:

```
record \square (A: T \rightarrow \mathcal{U}) (x: T): \mathcal{U} where
   field call: (x : T) \rightarrow y < x \rightarrow A y
fix : (A : T \rightarrow \mathcal{U})
       \rightarrow (\{t : T\} \rightarrow \square A t \rightarrow A t)
       \rightarrow ({t : T} \rightarrow A t)
-- a non-total fixpoint would be
-- fix : (A \rightarrow A) \rightarrow A
```

□A means "A can only be called with an argument smaller than its index". If the order is well-founded, we can implement the fixed-point combinator!

Well-founded language - sugar

```
-- implicit
fix : (A : T \rightarrow \mathcal{U})
      \rightarrow (\{t : T\} \rightarrow \square A t \rightarrow A t)
      \rightarrow (\{t : T\} \rightarrow A t)
-- sugar!
fix : (A : T \rightarrow \mathcal{U})
      \rightarrow \forall [ \Box A \Rightarrow A ]
     \rightarrow \forall [ A ]
```

```
-- explicit

fix : (A : T → W)

→ ((t : T) → □ A t → A t)

→ ((t : T) → A t)

-- sugar!

fix : (A : T → W)

→ Π[ □ A ⇒ A ]

→ Π[ A ]
```

Sometimes we want to hide the decreasing argument (make it implicit), other times it's crucial to computation.

Well-founded GCD

Here's an example of computing a GCD function like this (uses the explicit form):

```
gcd-ty : \mathbb{N} \to \mathcal{U}
gcd-ty x = (y : \mathbb{N}) \rightarrow y < x \rightarrow \mathbb{N}
gcd-loop : \Pi[ \Box gcd-ty \Rightarrow gcd-ty ]
gcd-loop x rec y y<x =</pre>
   case^d y = 0 of
      λ where
             (yes y=0) \rightarrow x
             (no y\neq 0) \rightarrow
              rec .call
   -- it is safe to do the recursive call
                   y < x (x % y)
   -- remainder is smaller
                   (%-r-< x y)
                       (\not\geq \rightarrow < \$ \text{ contra } \le 0 \rightarrow = 0 \text{ } y \ne 0))
```

To kick-start the computation, we just need to decide which argument goes first:

Part 3

The tutorial level:

Unification

Unification

Sometimes called "a Swiss army knife operator".

A family of (semi)algorithms for solving equations.

Match a pattern with gaps in it against data to fill the gaps.

- logic programming
- type inference
- 1st order logic provers
- program synthesis
- ...

Most General Unifier

First-order MGU: a classical form described in Pierce's TAPL.

Given a pair of terms (or generally a list of pairs), find a substitution that makes all of them equal (or fail):

Terms & constraints

- Terms are just binary trees with two kinds of leaves
- Variables are an abstract type with equality (think N/String)
- Constraints are pairs of terms

We need both internal and external substitution:

```
-- internal
2 sub1 : Var → Term → Term → Term
3 sub1 v t (^x x) =
  if v == x then t else `` x
5 sub1 v t (p \otimes q) =
  sub1 v t p ⊗ sub1 v t q
  sub1 v t (sy s) =
    sy s
  subs1 : Var → Term → List Constr → List Constr
  -- external
  Sub : %
  Sub = Map Var Term
```

Unification code

```
1 unify : List Constr → Maybe Subst
2 unify [] = just emptyM
3 unify ((tl, tr) :: cs) =
4 if tl == tr
   then unify cs
   else unifyHead tl tr cs
8 unifyHead : Term → Term
9 → List Constr → Maybe Subst
10 unifyHead (`` v) tr
if occurs v tr then nothing
12 else map (insertM v tr) $
   unify (subs1 v tr cs)
14 unifyHead tl (``v) cs =
15 ... -- symmetrical
16 unifyHead (lx \otimes ly) (rx \otimes ry) cs =
unify ((lx , rx) :: (ly , ry) :: cs) -- adds constraints!
18 unifyHead
  nothing
```

Why does it terminate?

- Can't just count constraints they increase for the ⊗ case
- Option 1: context size (count variables) substitution *removes* variables; however, the context size **stays the same** for ⊗
- Option 2: count total term size in constraints *decreases* for ⊗ (one level gets dismantled), but can **grow** for var case

```
tm-size : Term \rightarrow \mathbb{N}

tm-size (p \otimes q) = 1 + tm-size p + tm-size q

tm-size _ = 1

tm-sizes : List Constr \rightarrow \mathbb{N}
```

Solution: combine 1 and 2!

Lexicographic order

We can combine two (or generally N) well-founded orders:

```
(a,b) < (x,y) := a < x OR (a = x AND b < y)
```

One component always decreases!

For unification this means:

- Either context decreases (var case),
- Or it stays the same but the total term size does (⊗ case)

```
1 Input : W
2 Input = Ctx × List Constr
3
4 wf-tm : Ctx → Term → W
5 wf-tm c t = vars t ⊆ c
6
7 wf-input : Input → W
8 -- each term in the constraint
9 -- list is WF
```

```
unify-ty : \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{U}
unify-ty (x , y) =
     (inp : Input)
     \rightarrow wf-input inp
     \rightarrow x = size (inp .fst)
     \rightarrow y = term-sizes (inp .snd)
     \rightarrow Maybe Sub
```

Terminating case for ⊗

```
1 -- before
 2 unifyHead (lx \otimes ly) (rx \otimes ry) cs =
    unify ((lx, rx) :: (ly, ry) :: cs)
5 -- after
 6 unify-head-loop rec (ctx , cs) wf (lx ⊗ ly) (rx ⊗ ry) wl wr ex ey =
   rec .call prf-<</pre>
        (ctx , ls') prf-wf
        refl refl
10
    where
    cs' : List Constr
12
     cs' = (lx , rx) :: (ly , ry) :: cs
13
     prf-< : (size ctx , term-sizes cs') < (size ctx , term-sizes cs)</pre>
14
     prf-< = ...
     prf-wf : wf-input (ctx , cs')
15
    prf-wf = ...
```

Part 4

The main quest: SAT & DPLL

The SAT problem

Classical constraint satisfaction task:

Given a boolean formula with variables,

find an assignment of variables that makes it true (or fail).

Compared to unification:

- we restrict the range of variables (only True/False)
- but we add a semantical constraint (Boolean evaluation)

The SAT problem examples

```
-- tautologies (true for every assignment)
  True
4 P \land O \Rightarrow P \lor O
5 ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P -- aka Peirce's law
   -- satisfiable (there is an assignment)
  10
                         -- simplifes to True ⇒ False
  -- unsatisfiable
13
  P \wedge \neg P
```

Exponential search

- The most widely used approach is backtracking search
- Naively we can try each variable and flip a previous choice when getting False
- However that's 2^n operations where n = #variables
- Can we do better?

Generally, in the worst case, **no**! :(

Cook—Levin theorem (1971): SAT is NP-complete (btw, this is the birth of NP-completeness concept). But some *heuristics* can make less-than-worst cases tractable.

DPLL

Davis-Putnam-Logemann-Loveland algorithm, 1961

- Still fundamentally performs backtracking search
- But uses 3 heuristics to prune the search substantially
- These are unit propagation, pure literal rule and literal selection

CNF

DPLL and similar algorithms assume the input is in a *conjunctive normal form*: a big conjunction of disjunctions of possibly negated literals (*clauses*)

```
( A V ¬B)

^ (¬C V D V E)

^ •••
```

We can always transform into one thanks to boolean reasoning principles (i.e. DeMorgan rule: $\neg (P \lor Q) = \neg P \land \neg Q$)

```
True ~ Ø

False ~ ()

P ∨ Q ~ (P ∨ Q)

P ∧ Q ~ (P) ∧ (Q)

P ∧ Q ⇒ Q ∧ R ~ (¬P ∨ ¬Q ∨ R)
```

CNF encoding

Unlike in unification, we push the well-formedness constraint into the literals:

```
data Lit (\Gamma : Ctx) : \mathcal{U} where
   Pos : (v : Var) \rightarrow v \in \Gamma \rightarrow Lit \Gamma
  Neg: (v : Var) \rightarrow v \in \Gamma \rightarrow Lit \Gamma
var : Lit \Gamma \rightarrow Var
var (Pos v) = v
var (Neg v) = v
positive : Lit \Gamma \rightarrow Bool
positive (Pos _ _) = true
positive = false
```

```
Clause : Ctx \rightarrow \mathcal{U}

Clause \Gamma = List (Lit \Gamma)

CNF : Ctx \rightarrow \mathcal{U}

CNF \Gamma = List (Clause \Gamma)

literals : CNF \Gamma \rightarrow List (Lit \Gamma)

literals = nub \circ concat
```

Unit propagation aka 1-literal rule

Heuristic 1: If a clause consists of a single literal, it must be true, propagate it through the formula:

```
(A ∨ ¬B)
∧ (C)
∧ ...
```

```
1 unit-clause : CNF \Gamma \rightarrow Maybe (Lit \Gamma)
2 unit-clause [] = nothing
3 unit-clause ( [] :: c) = unit-clause c
 4 unit-clause ((x :: []) :: c) = just x
 5 unit-clause ((_ :: _ :: _) :: c) = unit-clause c
7 unit-propagate : (l : Lit \Gamma) \rightarrow CNF \Gamma \rightarrow CNF (rem (var 1) \Gamma)
 8 unit-propagate 1 [] = []
 9 unit-propagate l (f :: c) =
    if has 1 f
    then unit-propagate 1 c
        else delete-var (var l) f :: unit-propagate l c
12
   one-lit-rule : CNF \Gamma \rightarrow Maybe (\Sigma[1 : Lit \Gamma] (CNF (rem (var 1) \Gamma)))
15 one-lit-rule cnf =
    map (\lambda 1 \rightarrow 1 , unit-propagate 1 cnf) $
16
    unit-clause cnf
```

Pure literal rule

Heuristic 2 (aka affirmative-negative rule):

The idea is to delete every literal that occurs strictly positively or strictly negatively (purely).

```
pure-literal-rule :
    (c : CNF Γ)
    → (Σ[ purelits : List (Lit Γ) ]
        (let vs = map var purelits in
            (vs ◊ Γ) × CNF (minus Γ vs)))
    ⊎ (∀ {1} → 1 ∈ literals c → negate 1 ∈ literals c)
...
```

Literal selection

The previous two rules try to eliminate guessing as much as possible, but eventually, we're going to have to guess a value.

This is where backtracking still happens.

The splitting rule guarantees a result after the pure literal one.

```
posneg-count : CNF \Gamma \rightarrow \text{Lit } \Gamma \rightarrow \mathbb{N}
   posneq-count cnf l =
     n = count (has $ negate 1) cnf
        in
     m + n
   splitting-rule : (c : CNF \Gamma)
                     → Any positive (literals c)
 9
                     \rightarrow Lit \Gamma
10
```

Putting it all together

```
Answer = Map Var Bool
   dpll-loop: (CNF \Gamma \rightarrow Maybe Answer)
               \rightarrow CNF \Gamma \rightarrow Maybe Answer
   dpll-loop rec cnf =
     if null? cnf then just emptyM -- trivially true
        else if has [] cnf then nothing
                                              -- trivially false
          else
            maybe
10
               (maybe
                  (let l = splitting-rule cls in
12
                   map (either (insertLit 1)
13
                                 (insertLit (negate 1))) $
14
                        rec (unit-propagate 1 cnf)
15
                  <+> rec (unit-propagate (negate 1) cnf))
16
                  (\lambda (ls , c) \rightarrow map (insertLits ls) $ rec c)
                  (pure-literal-rule cnf))
               (\lambda (1, c) \rightarrow map (insertLit 1) \$ rec c)
               (one-lit-rule cnf)
```

Why does this terminate?

Context always decreases:

- For unit propagation by 1
- For pure literal by some $n \ge 1$
- For recursive call by 1

This is actually simpler than unification!

We don't need the lexicographic pair, just a single number:

```
DPLL-ty : \mathbb{N} \to \mathcal{U}

DPLL-ty x =
\{\Gamma : Ctx\}
\to x = size \Gamma
\to CNF \Gamma \to Maybe Answer
```

Part 5

The boss fight:

Iterative DPLL

Iterative DPLL

- Again, the core of the algorithm is backtracking search
- However, the backtracking information is kept on the system stack
 - no tail recursion
- Actual implementations work tail-recursively (iteratively)

Trail blazing

- We make the stack a first-class object, usually called a trail
- Need add a flag do determine if the literal is guessed, which then serves as a backtrack point

```
data Flag : \mathcal{U} where
  quessed deduced : Flag
Trail : Ctx \rightarrow \mathcal{U}
Trail \Gamma = List (Lit \Gamma × Flag)
trail-lits : Trail Γ → List (Lit Γ)
trail-lits = map fst
trail \rightarrow answer : Trail \Gamma \rightarrow Answer
trail→answer =
  fold-r emp \lambda (l , \underline{\phantom{a}}) \rightarrow upd (var l) (positive l)
```

Heuristics redux

We get rid of the pure literal rule but perform unit propagation in batches:

Iterative DPLL loop

Then we either run into an inconsistency and have to backtrack:

```
1 backtrack : Trail \Gamma \rightarrow Maybe (Lit \Gamma \times Trail \Gamma)
2 backtrack []
                                     = nothing
3 backtrack (( , deduced) :: ts) = backtrack ts
 4 backtrack ((p , guessed) :: ts) = just (p , ts)
 6 dpli-loop : CNF Γ
        \rightarrow (Trail \Gamma \rightarrow Maybe Answer)
       \rightarrow Trail \Gamma \rightarrow Maybe Answer
9 dpli-loop cnf rec tr =
    let (cnf' , tr') = unit-subpropagate cnf tr in
     11
12
         maybe
      nothing
            (\lambda \ (p \ , trb) \rightarrow rec \ ((negate p \ , deduced) :: trb))
14
15
          (backtrack tr)
16
      else
```

Iterative DPLL loop

Or we have to make a choice:

Why does any of this terminate?

For unit propagation, the measure is the count of literals still unused in the trail: (x2 because of polarity)

```
y = 2 \cdot \text{size } \Gamma - \text{length tr}
```

However this, only works when the trail is *unique* (invariant #1)

Main loop termination

For the guess case, the unused trail literals also work:

```
rec ((splitting-rule' cls ps , guessed) :: tr)
```

We take the old trail and add a new literal onto it, exhausting unused ones. But what about the backtracking case?

```
rec ((negate p , deduced) :: trb)
```

Here trb is a suffix of the old trail - it shrinks!

We had the same situation in unification: two kinds of recursive calls, one decreases a measure, the other one increases.

Looks like we need to use the lexicographic product again, but with what?

Main loop termination - idea

- Intuitively, it's the search space that decreases for backtracking
- But the search tree is generated on the fly
- We need to find a proxy

If we look closely at this tree, we notice that we never return to discarded branches. So what sticks around is *rejected literals*.

Main loop termination - measure

- However, we can't lump them all together the deduced literals get discarded after backtracking.
- We need to keep a vector of these rejected sets.
- The first part of the measure, then, is a vector of counts of still-available literals.

The full measure is then a lexicographic product of a vector (N-ary product) of non-rejected assignments corresponding to the guessed level and the number of unused variables in the trace!

(whew)

DPLI termination invariants

For all of this to work, we need the old trail uniqueness invariant and a new one:

- 1. Variable + polarity should not repeat
- 2. If a guessed variable is in the trail, its negation doesn't appear before it The rejected vector/stack also needs an invariant:

If a variable is on level *n*, its negation appears in the trail after dropping the first *n* guessed variables.

Just need to prove that all of these are preserved:/

DPLI termination type

Conclusion

Lessons learned

- Writing out termination proofs forces you to understand how the algorithm actually works, in the form of its invariants.
- Control flow tricks make termination harder:(
- Once you determine the invariants, you have more freedom to restructure your algorithm, make it more modular, experiment with different representations, and so on.

Lessons learned

- More generally, from a mathematical point of view, automated reasoning is about syntax, finite sets, maps, and intricate order relations.
- And order theory is just a cut-down version of category theory, but that is a story for another time...

References

- Automated Reasoning @ SEP
- Shi, Xie, Li, Zhang, Chen, Li, [2022] "Large-scale analysis of non-termination bugs in real-world OSS projects"
- Cook, Podelski, Rybalchenko, [2011] "Proving program termination"
- Hoder, Voronkov, [2009] "Comparing unification algorithms in first-order theorem proving"
- Vardi, [2015] "The SAT Revolution: Solving, Sampling, and Counting"
- Harrison, [2009] "Handbook of Practical Logic and Automated Reasoning"

Contacts & repo

- https://www.linkedin.com/in/alexgryzlov/
- https://software.imdea.org/~aliaksandr.hryzlou/
- http://clayrat.github.io/
- https://twitter.com/clayrat/

Alexander Gryzlov
Research Software Engineer at IMDEA
Software Institute

https://github.com/clayrat/lw25-talk

