PATENT SPECIFICATION

(11) 1 422 057

22 057

(21) Application No. 27094/73

(22) Filed 6 June 1973

(31) Convention Application No. 56332/72

(32) Filed 6 June 1972 in

(33) Japan (JA)

(44) Complete Specification published 21 Jan. 1976

(51) INT CL² G03C 1/10; C07C 53/24; C07D 249/18; G03C 1/16, 1/18, 1/22, 1/24

(52) Index at acceptance

G2C C19E2A C19E4 C19G5 C19GX C19HX C19K7 C2C 1452 20Y 213 226 246 250 252 25Y 292 29Y 30Y 366 367 37X 628 67Y 69Y 77Y 798 79Y CM ZG

(54) SPECTRALLY SENSITIZED SILVER HALIDE PHOTOSENSITIVE ELEMENTS

(71) We, FUJI PHOTO FILM CO., LTD., a Japanese Company, of No. 210, Nakanuma, Minami/Ashigara-Shi, Kanagawa, Japan, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following 5 5 This invention relates to a photosensitive silver halide composition containing at least 30 mole % of silver iodide and which is spectrally sensitized with an organic It is well known that a gelatino-silver halide photographic emulsion containing silver iodide in an amount below 30 mole % for example, such 10 10 emulsions containing silver iodobromide, silver iodochlorobromide or silver iodochloride, can be spectrally sensitized by the use of sensitizing dyes, such as cyanine dyes, merocyanine dyes, rhodacyanine dyes, complex merocyanine dyes, styryl dyes and like methine dyes, in addition to organic dyes such as those described in "Cyanine Dyes and Related Compounds" by F. M. Hamer, published by Interscience Publishing Co. (1964). 15 15 It is also known that gelatino-silver halide photographic emulsions containing small amounts (<30 mole %) of silver iodide can be effectively sensitized by means of various chemical ripening treatments, including: sulphur sensitization with the use of sulphur-containing compounds such as aryl isothiocyanates, thiourea and 20 20 sodium thiosulphate; reduction sensitization using reducing compounds such as hydrazine, stannous chloride and cystine; noble metal sensitization with the use of ERRATA .. -15 SPECIFICATION No. 1,422,057

• • • • • • • • • • • • • • • • • • • •	
Page 3, line 28, for zoles) read zole) Page 10, line 36, after or insert a Page 12, line 56, for zylenol read xylenol Page 13, line 4, for butyl-2- read butyl-5-	30
Page 14, line 17, for resnious read resinous Page 18, line 1, after of (first occurrence) insert a Page 18, line 13, for patterned read pattern	35
Page 21, Table 3 (continued), 2nd footnote, for 49 ml. read 40 ml. Page 23, line 17, for optaionly read optionally	
Page 24, line 50, for wherin read wherein THE PATENT OFFICE	40

PATENT SPECIFICATION

(11)1 422 057

(21) Application No. 27094/73 (22) Filed 6 June 1973

(31) Convention Application No. 56332/72

(32) Filed 6 June 1972 in

(33) Japan (JA)

(44) Complete Specification published 21 Jan. 1976

(51) INT CL2 G03C 1/10; C07C 53/24; C07D 249/18; G03C 1/16, 1/18, 1/22, 1/24

(52) Index at acceptance

G2C C19E2A C19E4 C19G5 C19GX C19HX C19K7 C2C 1452 20Y 213 226 246 250 252 25Y 292 29Y 30Y 366 367 37X 628 67Y 69Y 77Y 798 79Y CM ZG

(54) SPECTRALLY SENSITIZED SILVER HALIDE PHOTOSENSITIVE ELEMENTS

(71) We, FUJI PHOTO FILM CO., LTD., a Japanese Company, of No. 210, Nakanuma, Minami/Ashigara-Shi, Kanagawa, Japan, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following

This invention relates to a photosensitive silver halide composition containing at least 30 mole % of silver iodide and which is spectrally sensitized with an organic

5

10

15

20

25.

30

35

40

45

4

It is well known that a gelatino-silver halide photographic emulsion containing silver iodide in an amount below 30 mole % for example, such emulsions containing silver iodobromide, silver iodochlorobromide or silver iodochloride, can be spectrally sensitized by the use of sensitizing dyes, such as cyanine dyes, merocyanine dyes, rhodacyanine dyes, complex merocyanine dyes, styryl dyes and like methine dyes, in addition to organic dyes such as those described in "Cyanine Dyes and Related Compounds" by F. M. Hamer, published by Interscience Publishing Co. (1964).

15

5

10

It is also known that gelatino-silver halide photographic emulsions containing small amounts (<30 mole %) of silver iodide can be effectively sensitized by means of various chemical ripening treatments, including: sulphur sensitization with the use of sulphur-containing compounds such as aryl isothiocyanates, thiourea and sodium thiosulphate; reduction sensitization using reducing compounds such as hydrazine, stannous chloride and cystine; noble metal sensitization with the use of noble metal salts such as sodium aurous thiocyanate, potassium platinous tetra-chloride, potassium iridium tetrachloride; and heavy metal sensitization with the use of heavy metal salts such as lead nitrate, cadmium chloride, thallium nitrate, as described in "The Theory of the Photographic Process", 3rd edition, edited by C. H. K. Mees & T. H. James, published by The Macmillan Co., N.Y., (1966). Sensitization is also effected by adding to a silver halide emulsion or developer liquid a compound such as lauryl pyridinium bromide, 1-phenyl-3-pyrazolidone, hydrazine sulphate or a polyalkylene oxide.

25

20

However, a silver iodide-containing photographic emulsion is known to have a somewhat inferior chemical ripening behaviour and to exhibit a relatively slow developing rate, as reported, for instance, in the "Journal of Photographic Science", vol. 8, pages 118—123, by E. A. Southerns; the "Journal of Physical Chemistry", vol. 33, pages 864—872 (1929); ibid, pages 1583—1592 (1929) by F. E. E. German and D. K. Shen; and "Photographic Science and Engineering", Vol. 5, pages 216—218, by T. H. James, W. Vanselow and R. F. Quirk (1961), which literature also discloses useful conditions for forming such emulsions. In the case literature also discloses useful conditions for forming such emulsions. In the case

35

30

attain a desirably high sensitizing effect by simply applying known sensitizing techniques. Moreover, unlike ordinary mixed silver halide particles which have a crystalline structure like that of rock salt, silver halide particles containing more than 30 mole % of silver iodide and are said to have a wurtzite structure or a zinc

of sensitizing a silver iodide photographic emulsion, therefore, it is difficult to

40

45

blende structure, so that it is impossible to form silver halide particles with a silver

"SEE ERRATA SLIP ATTACHED

BNSDOCID: <GB___1422057A__I_>

-	1,02,03.	2
	iodide content above 30 mole % having a rock salt structure by any conventional method employed for preparing mixed silver halide particles. This is true even if	
	the motal fatio of the logine ions used is increased	
5	Moreover, the photosensitive characteristics, for instance, sensitivity, ease of	•
•	development and particularly the spectral sensitization of a silver halide containing above 30 mole %, preferably more than 40 mole %, of silver iodide is markedly different from that of others	5
	marked different from that of other conventional mixed cities believe	
	ritus a silver fialide Diffolographic emilision containing of locat 20 molt- of	
10	conventional methine type dve which is in general effective for conventional	40
	names protographic chimision commining less than 30 male of cities is 1:1. E.	.10
		•
	dicarbocyanine iodide and anhydro-3-(sulphopropyl)-4,5,4',5'-dibenzothia-9-ethyl-3'-(sulphopropyl)trimethine cyanine hydroxide show this effect; and the use of	
15	phonogenation, which give a sensitiving effect to a citizer independent.	15
	rosuld in a declease in the sensitivity of a cityer todide photograph:	1,5
	composition containing at least 30 mole % of silver iodide which has improved	
	opeotial sommittelly.	
20	A photosensitive silver halide composition according to the invention	20
	iodide, and a spectrally sensitizing dye adsorbed on the surface of the city	
25	a difference in values between its oxidation potential and its reduction potential of at least 2.00 volts (these values are expressed to two places of decimals).	
	the photosomitive silver hande composition of this invention which can be	25
	The same of more / silver indice has milen improved atalities as a	
	compositions containing other mixed silver halide particles so that it is useful not only as (i) a gelatino photosensitive emulsion which forms images by a usual liquid developing procedure but also as (ii) a heart during the second silver halide	
30		20
•	""" TO THE HILLER OF A LICINIAL HEVELOPING PROCEDURE and as (iii) a """ - "	30
	The primary feature of this invention resides in the use of the aformula	
	sometime dye of the afolesaid botentials	
35	The reduction potential (Ered value) and the oxidation potential (Eox value)	35
	described and reported in various literature att. The method of measurement is	
	schaften" Vol. 47, pages 353 and 512, by Astanienda, 1960; "New Instrumental Methods in Electrochemistry" by P. Delbay, artificial New Instrumental	
Ю	Methods in Electrochemistry" by P. Delahay, published by Inter-science Publishers Co., 1954; and "Polarographic Techniques", 2nd F. Lingson	
:	published by Interscience Publishers Co. 1965	40
	. LIC CICU VAIUE defines the electric notantial at a little	•
	reduced by the injection of an electron at the cathode in voltammetry, and it is considered to primarily and approximately correlate with an excited energy level	
5		45
<i>.</i> :	The Eox value defines the electric potential at which an electron is ejected at	45
	energy level occupied at the normal state of the sex with the maximum electron	
	AN MOUNT THE HIVEHILLON THE PERCHAPITA TO ACCOMMEND A 1	
50		50
	litre of the compound to be measured) and by using a X 10 ⁻⁶ to 1 x 10 ⁻⁶ moles per	••.
	at 25°C while taking SCE (standard Calomel electrode) as the reference electrode, and thereafter obtaining the half-ways potential for a sthe reference electrode,	
	and thereafter obtaining the half-wave potential from the previously obtained	
5 .	sodium perchlorate as the supporting electrolyte in combinational life in some solutions and solutions are supporting electrolyte in combinational life in supporting electrolyte in combinations.	55
	A series of Ered and Eox values measured will permit the correction of any	
0	deviation at a maximum of approximately 100 millivolts due to the influence of liquid-to-liquid contact electric potential, imperfections in the correction of the liquid resistance of the sample solution, hinderness that the correction of the	
	liquid resistance of the sample solution, hindrance by the effect of the anion of sensitizing dye and the influence of dye descentiations in the correction of the	60
	corrected for by taking 3 3' diethyl thiosentration. Such deviation may also be	
	sample so as to ensure the reproducibility of the value of the potential to be	-
5	measured.	65
	·	65

10

15

5

10

15

The dye used in accordance with the present invention must have an Eox value not exceeding 1.00 volts and have a difference between the Eox and Ered values at least 2.00 volts, and should preferably fall inside the region designated "zone I" shown in Figure 1 of the accompanying drawings, which is a graph of oxidation and reduction potentials showing regions which are referred to as zones I, II and III according to the values of Eox and Ered in volts.

A preferred minimum Eox value is more than 0.00 volt, and a preferred

maximum Ered value is 3.00 volts.

The sensitizing dyes used in the present invention are most preferably sensitizing non-methine or (poly) methine dyes, i.e. one without any methine bridge between the two halves of the molecule or with more than one methine group in such bridge and especially cyanine dyes, which are usually merocyanine dyes or hemicyanine dyes. Many Examples of such dyes are given in the aforesaid "The Theory of the Photographic Process" at pp. 201—232 (the section: "Cyanine and Related Dyes").

Preferred classes of such sensitizing dyes used in the present invention are

those represented by the following general formulae (I), (II) and (III).

General Formula 1:

In the above general formula (I): 20 Z^1 and Z^2 each represent the atoms necessary to form a five- or six- membered 20 nitrogen-containing heterocyclic nucleus, oxazole, naphthoxazole, thiazole, benzithiazole, selenazole, naphthoselenazole, imidazole, benzimidazole, naphthoselenazole, imidazole, pyridine, indolenine and quinoline nuclei, which may be substituted. Preferred examples of heterocyclic nuclei containing Z¹ or Z² are oxazole nuclei (e.g., phenylbenzoxazoles (e.g., 5-phenyl benzoxazole), halogenobenzoxazoles (e.g., 5-chlorobenzoxazole or 5-bromobenzoxazole), alkylbenzoxazoles (e.g. 6-methyl or 5-methylbenzoxazole), alkoxybenzoxazoles (e.g., 5-methoxybenzoxazoles), hydroxybenzoxazoles (e.g., 5-hydroxybenzoxazole), alkoxycarbonylbenzoxazoles (e.g., methoxycarbonyl benzoxazole), carboxybenzoxazole, naphthoxazoles, (e.g. 6,7-dihydroxy-naphthoxazole), indolenines (e.g. 1,1-dimethyl indolenine), thiazole nuclei e.g., halogenobenzothiazoles (e.g., 5-chlorobenzothiazole), alkylbenzothiazoles (e.g., 5-methylbenzothiazoles (e.g., 5-phenylthiazole), alkoxythiazoles (e.g., 5-methoxythiazole), selenazole nuclei (e.g., benzoselenazole, alkylbenzoselenazoles (e.g., 5-methylbenzoselenazole), naphthoselenazole), imidazole nuclei, e.g., cyanobenziminitrogen-containing heterocyclic nucleus, oxazole, naphthoxazole, thiazole, benz-25 25 30 30 selenazole nuclei (e.g., benzoselenazole, alkylbenzoselenazoles (e.g., 5-methylbenzoselenazole), naphthoselenazole), imidazole nuclei, e.g., cyanobenzimidazoles (e.g., 5-cyanobenzimidazole), trifluoromethylbenzimidazoles (e.g., 5-trifluoromethylbenzimidazole), halogenobenzimidazoles (e.g., 5,6-dichlorobenzimidazole, 5-trifluoromethyl-6-chlorobenzimidazole), benzimidazole, alkoxycarbonyl benzimidazoles (e.g., 5-methoxycarbonyl benzimidazole), alkyl sulphamoyl benzimidazoles (e.g., 5-methyl sulphamoyl benzimidazole), morpholinosulphobenzimidazole (e.g., 5-morpholinosulpho-6-chloro-benzimidazole), alkylcarbamolylbenzimidazoles (e.g., 5-methyl carbamoyl benzimidazole), naphthoimidazole, pyridines, alkylquinolines (e.g., 6-methylquinoline) and alkoxyquinolines (e.g., 6-methoxy-quinolines). .35 35 40 40 6-methoxy-quinoline).

L¹, L² and L³ each represents an optionally substituted methine group, for example those methine groups substituted with an alkyl group (e.g., methyl, 45 45 ethyl or propyl group), a halogen atom (e.g., chlorine), an alkoxy group (e.g., methoxy) or a phenyl group,

R¹ and R² each represents an optionally substituted alkyl or aryl group.

The alkyl group preferably has 1 to 4 carbon atoms, e.g., methyl, ethyl, propyl, butyl or isobutyl, and may be substituted alkyl such as hydroxyalkyl groups (e.g., 50 50 hydroxyethyl or hydroxymethyl), carboxyalkyl groups (e.g., 3-carboxypropyl or 3-carboxybutyl), sulphoalkyl groups (e.g., sulphopropyl or 4-sulphobutyl), sulphoalkoxyalkyl groups (e.g., 2-(3-sulphopropoxy)ethyl or 2-[2-(3-sulphopropoxy)ethyl), aminoalkyl groups (e.g., sulphopropyl aminocthyl or dimethyl aminoathyl) arallyl groups wherein the arul moiety contains a heavene 55 55 dimethyl aminoethyl), aralkyl groups wherein the aryl moiety contains a benzene

10

15

20

25

30

35

ring (e.g., benzyl or p-methyl benzyl), cyanoalkyl groups (e.g., cyano-propyl), carbamoyl alkyl groups (e.g., morpholinocarbamoyl ethyl) or allyl. The aryl groups preferably contain a benzene ring (e.g., phenyl and p-sulphophenyl groups).

X¹ represents an anion forming a salt with a nitrogen cation included in the cyanine dyes, such as a halogen anion (e.g., iodide or bromide), or organic acid anion (e.g., p-toluene sulphonate or ethyl sulphate) or mineral acid anion (e.g. perchlorate ion).

I is the number 0 or 1; p is 0 or 1 but is 1 when the dye forms a betainelike intermolecular salt.

10 General formula II:

5

15

.20

25

30

35

40

 z^{3} c $(1^{4}-1^{5})_{m}$ c z^{4} (11)

In the above general formula (II):

Z³ represents the atoms needed to form a five- or six-membered nitrogencontaining heterocyclic nucleus. Examples of such heterocyclic nuclei include
thiazole nuclei [e.g., phenyl thiazole (e.g., 4-phenyl thiazole), benzothiazole, alkyl
benzothiazoles (e.g., 5-methyl-benzothiazole)], thiazoline nuclei, oxazole nuclei
[e.g., benzoxazole, halogeno-benzoxazoles (e.g., 5-chlorobenzoxazole), alkoxycarbonyl-benzoxazoles (e.g., 5-ethoxycarbonyl benzoxazole)], oxazoline nuclei
[e.g., alkyloxazolines (e.g. 5,5-dimethyl oxazoline, 5-methyl oxazoline)], pyrrolidine nuclei, piperazine nuclei, imidazole nuclei [e.g., halogenoimidazoles (e.g.,
5,6-dichloroimidazole), trifluoromethylimidazoles (e.g., 6-trifluoromethyl-5chloroimidazole), alkoxycarbonylimidazoles (e.g., 5-methoxycarbonyl imidazole),
and tetrazole nuclei.

Z' represents the atoms needed to form a ketomethylene-heterocyclic nucleus for example, 2-thiohydantoin nuclei, rhodanine nuclei and 4-oxo-2-thioxo-1,3-

R³ is an optionally substituted alkyl or aryl group, as was defined for R¹ and R² in general formula (I).

L⁴ and L⁵ each represents an optionally substituted mathing.

L⁴ and L³ each represents an optionally substituted methine group as claimed for L¹, L² or L³. m is an integer of 0 or 1.

General formula III

$$z^{5}$$
 $C \leftarrow CH - CH \rightarrow W$
 R^{5}
 $C \leftarrow CH - CH \rightarrow W$
 $C = CH - CH \rightarrow W$

In the above general formula (III):

Z⁵ represents the atoms needed to form a benzene ring or naphthalene ring. The imidazole nucleus formed therewith may be, for example, halogenobenzimidazole (e.g., 5,6-dichlorobenzimidazole), cyanobenzimidazole (e.g., 5-cyanobenzimidazole), alkoxycarbonyl benzimidazole (e.g., 5-methoxycarbonyl benzimidazole), naphtho imidazole or hydroxybenzimidazole (e.g., 5-hydroxybenzimidazole).

R⁴ and R³ are each optionally substituted alkyl groups or aryl groups, as was defined for R¹ and R² in general formula (I).

W represents a divalent group and typically includes, for example = N — A wherein A is an aryl group wherein the aryl moiety contains a benzene ring,

$$= C \Big|_{R^7}$$

wherein R⁶ and R⁷ is each a cyano group, alkyl carbonyl group or alkoxycarbonyl group wherein the alkyl moiety preferably has 1—4 carbon atoms (e.g., methoxy carbonyl or ethoxy carbonyl), five and/or six membered nitrogen-containing heterocyclic nuclei usually contained in cyanine dyes (e.g., benzimidazole or benzothiazole), an aryl group wherein the aryl moiety contains a benzene ring (e.g., phenyl or aminophenyl) or a cyano group. n is 0, 1 or 2.

Examples of 27 specific dyes employed as sensitizers in this invention are shown hereinbelow together with their respective Fred and Fox values.

shown hereinbelow together with their respective Ered and Eox values.

I
$$C_{2H5}$$
 C_{2H5} $C_$

C2H5

-1.440

0.605

Č2H5

BNSDOCID: <GB___1422057A__I_>

$$\begin{array}{c} X \\ & \downarrow \\ &$$

-1.416 0.637

$$XII \xrightarrow{H_3C} CH - C \xrightarrow{S} I \xrightarrow{C_2H_5} I$$

-1.135 1.00

XIII

$$C_{2H5}$$
 C_{2H5}
 C_{2H5}

XIV

XY

$$CF_3$$
 $C=CH-CH=C$
 $C=S$
 $C=S$

XVI

XVII

XIX ·

XX

XXI

-1·780 0·590

XXII

XXIII

-1.570 0.556

XXIV

XXV

The sensitizing dye used in this invention is preferably present in an amount of 1 x 10⁻⁶ to 1 x 10⁻¹ mole per mole of the silver halide.

The effect of the values of Ered and Eox will be demonstrated with reference to the following Table 1, in which dye (I) is a sensitizer according to the invention, dyes (a), (c) and (e) lie outside the scope of the invention since their values of Eox are greater than 1.00, while dyes (d) and (b) are outside the scope of the invention since the difference between their values of Eox and Ered is below 2.00.

TABLE 1

	Dye	Ered (volt)	Eox (volt)
Dye (I)	Anhydro-5,5'-diphenyl-3,3'-disulphopropylbenzoxa-9-ethyl trimethine hydroxide	-1.274	0.878
Dye (a)	3,3'-diethyl benzoxa-mono methine bromide	-1.700	1.494
Dye (b)	3,3'-diethylbenzoxa-pentamethine iodide	-1.010	0.647
Dye (c)	Anhydro(6-methyl-1-ethyl-2-quinoline)-5-ethoxycarbonyl-3-sulphobutyl monomethine hydroxide	-1.215	1.131
Dye (d)	Anhydro-3-(sulphopropyl)-4,5,4'-5'-dibenzothia-9-ethyl-3'-sulphopropyl trimethine cyanine hydroxide	-1.211	0.591
Dye (e)	Phenosafranine	-0.658	1.460

Comparative dyes (a), (b), (c) and (d) each give low spectral sensitivity, and dye (e) does not give any spectral sensitivity at all. On the other hand, dye (I) gives extremely high spectral sensitivity.

There has hitherto been no clear understanding of the mechanism of spectral sensitization of silver halide particles containing more than 30 mole % of silver iodide. We have found that the dyes included in zone I of Fig. 1 give highly increased sensitivity independently of whether they are used alone or in

The second characteristic feature of this invention resides in the nature of the silver halide composition, such as silver bromoiodide, silver chlorobromoiodide or silver iodide; it comprises at least 30 mole %, preferably at least 40 mole %, of silver iodide particles.

The silver iodide particles may have incorporated therewith a minor quantity

5

15

20

BNSDOCID: <GB___1422057A__I_>

15

	1,422,037	10
5	of other metallic compounds, such as salts of Group Ib metals of the Periodic Table (e.g., a gold salt or copper salt), salts of Group IIb metals (e.g., a mercury or cadmium salt), salts of Group III metals (e.g., a thallium salt), salts of Group V metals (e.g., a tin or lead salt) and salts of Group VIII metals (e.g., a palladium, iridium or platinum salt). It is preferred to use these metal compound(s) in an amount of from 10 ⁻⁷ to 10 ⁻³ mole based on 1 mole of Ag of the silver halide.	5
10	or metal sulphate) or a complex salt with, for example, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion (e.g., octahedral metal complex groups as anions), such as zinc chloride, cadmium chloride, gold chloride, mercuric sulphate, thallium sulphate, sodium hexahalogeno ruthenate, sodium hexahalogeno palladate, sodium hexahalogeno iridate and sodium hexahalogeno	10
15	The grain size of the silver halide(s) used in this invention is not particularly limited, but a particularly preferred grain size is within the range of from 0.005μ to 0.8μ in diameter (measured by the "projected area" method). The silver halides used can however be either coarse grains or fine grains	15
20	Due to the relatively small solubility of silver iodide particles, the rate of crystal growth is so slow that they tend to cause cohesion or agglomeration of the particles, and it is necessary to employ special methods for preparing the silver iodide emulsion. Examples of such methods are as follows: (a) A solvent for silver iodide, such as ammonia, and an excess of potassium iodide solution are used.	20
25	(b) A gelatin-based photographic emulsion containing silver bromide or silver chloride particles, or mixed silver halide particles thereof, can be subjected to conversion by reacting with iodine ions. (c) A suitable organic silver salt (such as silver behanate, silver stearate, silver palmitate, silver myristate, silver laurate, silver behanate, silver saltinger as silver behanate.	25
30	butyral and polyvinyl pyrrolidone), and then an iodide compound such as ammonium iodide, mercury iodide or cadmium iodide is added thereto to prepare a silver iodide photosensitive emulsion. This third method is extremely useful for preparing heat-developable photosensitive material (as described by useful for	30
35	Fourthly, silver or silver salt deposited on the surface of a suitable support is contacted with iodine gas so as to form silver iodide particles on the support. The support can then be coated with a layer of a suitable binder (see below) to form a photosensitive material.	35
40	The photosensitive silver halide elements of the invention may be prepared as follows. The sensitizing dye may be added to the photosensitive silver halide emulsion as a solution in a water-soluble organic solvent such as methanol, ethanol, butanol, ketones, pyridine or an alkoxy ethanol	40
45	The sensitizing dye may be directly added in finely divided form to the emulsion and dissolved in the colloidal binder of the emulsion (by which it is adsorbed onto the silver halide). Alternatively, the sensitizing organic compound may be added to the emulsion after being dissolved in water or an organic solvent together with a proton donor silver in the content of the content	45
50	sulphoxide or 2-methoxy ethanol. The most preferred proton donors are mineral or organic acids such as hydrochloric acid, sulphuric acid, methyl sulphonate, benzene sulphonate or perchloric acid. Examples of the other metallic ions are noble metal ions such as gold ions and mercury ions	50
55	In the case when the proton source or silver ion is present in a sufficient amount together with the dye, a complex salt or adduct is formed therebetween. For instance, when 0.5 ml. of 0.1 N hydrogen chloride solution is added to 100 ml. of a 1 x 10 ⁻³ mole methanol solution of dye III, there is formed a complex salt having the following formula:	55

10

15

20

25

30

35

40

45

5

20

25

30

35

40

45

$$\begin{bmatrix} CH_{2}CH=CH_{2} & CH_{2}CH=CH_{2} \\ CI & N & CI \\ CI & N & CI \\ (CH_{2}CH_{2}O)_{3}C_{3}H_{6}SO_{3}^{\Theta} & (CH_{2}CH_{2}O)_{2}C_{3}H_{6}SO_{3}^{\Theta} \end{bmatrix}$$

When this complex salt is added to a silver halide photographic emulsion, it is neutralized under ordinary pH conditions (i.e., pH = 6.0 - 7.5) with the dissociation of the proton.

Accordingly, there results the same condition of adsorption (of the dye to

silver halide) as if a methanol solution of the dye III was added thereto.

In another example, 1 ml. of a 0.1 N solution of silver perchlorate (AgClO₄) is added to 100 ml. of a 1 x 10⁻³ mole methanol solution of dye XIX, and there is formed in the resultant solution a complex ion having the following formula:

$$\begin{bmatrix} S & C = CH - CH = C & C = S \\ C & C = N \\ C_{2H5} & Ag0 & C_{2H5} \end{bmatrix} \bigoplus C_{104} \bigoplus C_$$

When this ion is added to a silver halide photographic emulsion, dissociation of silver ion takes place under normal conditions (i.e., pAg = 5.0 - 10). Accordingly, the same adsorption of the dye on the silver halide results as if silver ions had been prepared in the emulsion in an amount equivalent to that brought into the emulsion.

The sensitizing dye may also be added to the silver halide emulsion after it has been dissolved in an oil solvent and the resultant oily solution dispersed into the emulsion as minute oily globules, the size of which can be as small as I micron or

Any other technique which has been commonly employed for the addition of such a material to a gelatin-based silver halide photographic emulsion may be employed.

Various protective colloids which have been known and widely used in conventional photosensitive silver halide materials may be used as binder in this invention. Examples of such protective colloids used in the photosensitive silver halide element of this invention include gelatin and gelatin derivatives (e.g., those described in our copending Patent Application Serial No. 1,396,970 i.e., the reaction products of gelatin with aromatic or aliphatic acid anhydrides, halogen atom-containing compounds, isocyanates, N-acryl vinyl sulphonamide, for example, phthalated gelatin, acetylated gelatin, gelatin maleate, carboxymethyl gelatin, gelatin benzene sulphonate, gelatin trimellitate, gelatin benzoate, gelatin sulpho-phthalate or gelatin succinate), and water soluble synthetic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl methacrylate and copolymers thereof.

Where the silver halide which has been prepared by converting a suitable organic silver salt with a halide salt containing iodine ions the binder is preferably a polymer such as polyvinyl butyral, polyvinyl methyl methacrylate, cellulose acetate butyrate, polyvinyl chloride, polyisobutylene or polyethylene oxide.

Furthermore, they may be used in combination with polymer latices and

The emulsion usually contains 0.0001 to 3.0 moles of silver halide per 100 grams of binder. The silver halide emulsion in this invention may also contain any of a variety of known additives, such as materials capable of improving photosensitivity, i.e., chemical sensitizers, stabilizers, fog-inhibitors; materials capable of accelerating developing speed, e.g., reducing agents acting as developing agents, developing aids, e.g., polyalkylene oxide and organic amine compounds, coating aids and hardeners; and dyes and pigments.

	1,422,037	12
	The emulsion is then coated on a support; typical support materials generally employed in this invention include, for example, cellulose acetate, cellulose nitrate, polyvinyl acetal, polystyrene, polyethylene terephthalate, polycarbonates,	
_	paper (including parvia paper and resin-laminated naners) synthetic paper and	
5	inicial sheets, dyes or digments may be included in the support	
	A Dicierred embodiment of the invention will now be described as a second	5
	manicity the heat-developable element mentioned previously. These algorithms	
	on price on a support, (1) all organic sliver sair (7) a light-concitive cilica-	
10	halide, (3) a reducing agent and (4) a sensitizing dye as hereinbefore disclosed. The organic silver salts used in the heat-developable element are not	
	perception in the heat development	10
	inglic-schillive inaterial of the present invention to provide an image of sufficient	
	WY HOLD IN THE DICTURE AT A THE TOWEVER SHIVER COME AT ACCOUNT AND A CONTRACTOR AS A CONTRACTO	
15	on voi saits of netelocyclic compolings confaining an imino group of managed	
•	group. The most preferred silver salts of organic carboxylic acids are those of aliphatic carboxylic acids having more than 10 carbon atoms in the chain.	15
	Specific examples of silen organic silver salts used in this ambadiment	
	sirver saits of alibitatic carboxviic acids such as silver laurate silver ministration	
20	on ve pullingue, silvel signific and silver nepenate cilver connecte on mall at	
20	sit of sait of ocurotiazoic, the silver sait of sacchasin the silver and a	20
	organic silver salts are relatively stable to light and when avecaged to light	
	TOWARD OF A LOUGDING ARCHIT HINDH DESTING BY THE COTORNER COLOR OF A COLOR OF	
0.5	to give a suver image. Freieffell Organic silver salts as may he used in the manner	
25	mitorition have sausage-shaped particles where the overall length is 0.01 s	25
	midians, pictorably v.i—I micron and the thickness on diameter (23
	normal to the overall length) is 0.0001—0.5 microns, preferably 0.005—0.1 microns. The organic silver salts may however, be substantially spherical, preferably having	
	a diamotor of 0.01 to 5 interolls. Higher preferance (1) to 1 micron	
30	the amount of the organic silver salt used in this embediment is that	20
	nocossaly to bloying all lillage of slifficient dencity. The misual carrier of	30
	vary greatly, but in general from 0.2 to 3 g/m ² , calculated as silver, should be applied to the support. Preferably, to provide a safety factor, at least 0.4 g/m ² is	
	about our sold off will into the like of the like of the section o	•
35 .	"it it out any substantial Delicit in image density	25
	As the reducing agent of this embodiment, any compound capable of	· 3 5
	reducing the organic silver salt to give a silver image when heated in the presence of exposed silver halide can be used, for example, substituted phenols, substituted or unsubstituted hisphenols, substituted	
40 .		
	associate and its derivatives. (ii- or higher noiv-nambibilization and a	40
	mono- or di- carboxylic acid esters of ascorbic acid, reducing sugar, 5-hydroxy-2-hydroxymethyl-p-pyrone, 4-isopropyltropolones, substituted or unsubstituted 1-	
45	at Jr-5-pyrazondones, which can be alky (CC) alkovy (C C)	
	o in the state of all the state of the state	45
	saostitutou.	
	Specific examples of such materials are: hydroquinone, methylhydroquinone, chlorohydroquinone, bromohydroquinone, phenylhydroquinone, hydroquinone	
50	mono-sulphonate, t-octylhydroguinone, thutylhydroguinone, hydroquinone	
	quinone, 2,0-uninethymydrodunone, methoxyhydroduinone, athoxyhydroduinone	50
	p-inclined placed by the property of the prope	
	Pyroganol, 16301 Childl. N-aminonnenol A-aminonhanol Ni moskul - ai i i	
-	2 monoxy-1-diminophenol, 2.4-di-aminophenol, 2-g-bydeovyothyl 4 cm:	•
55	p-t-butylphenol, p-t-amylphenol, p-cresol, 2,6-di-t-butyl-p-cresol, p-acetophenol, p-phenylphenol, o-phenylphenol, 1,4-dimethoxyphenol, 3,4-xylenol, 2,4-zylenol,	55
	2,0 united to A volicion. I - amino - / - nannino coid	00
	"Idpittiffed in the supplied of the supplied o	
_		
0		60
	naphthol, 1.1'-dihydroxy-2.2'-binaphthyl 4.4'-dimethory 1.1' dihydroxy-2.2'-binaphthyl 4.4'-dimethory 1.1' dihydroxy-2.2'-binaphthyl	60
	"1" "Ulliquillityl, DistZ-liv(IfOxV-l-nanhthyl)methane bicmbonel A 1.1.1.75	
5		
	hydroxy-3,5-dimethylphenyl)-3,5,5-trimethylhexane, 2,4,4-trimethylpentyl-bis-(2-	ő 5
	•	

	1,122,057	13
	hydroxy-3,5-dimethylphenyl)methane, bis - (2-hydroxy-3-t-butyl-5-methylphenyl)-imethane, bis-(2-hydroxy-3,5-di-t-butylphenyl)methane, 4,4'-methylene-bis-(3-methyl-5-t-butylphenyl) 4.4' methylphenyl)	
	methyl-5-t-butylphenol), 4,4'-methylenebis-(2,6-di-t-butylphenol), 2,2'-methylene-bis - (2-t-butyl-4-ethylphenol), 2,6-methylenebis-(2-hydroxy-3-t-butyl-2-methylphenol)	
5	PUCHVII-4-INCIDVINDENOI ((\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5
	diethyl-p-phenylene diamine furcin beauti diester, p-oxyphenylglycine, N,N-	
	hydroxyletronic acid N N-di-(2 athoxyletholic, methyl gallate, propyl gallate,	
10	1-phenyl-3-pyrazolidone 4-methyl 4-bydrovyramine, glucose, lactose,	10
	methylamine and $\alpha, \alpha' = (3.5 - d) = t - hydroxymboxymboxymboxymboxymboxymboxymboxymb$	••
	A relatively strong reducing agent such as a bisphenol is suitable for a silver salt of a higher fatty acid such as silver behavior while and a silver behavior.	
15	agent such as a substituted phenol is suitable for a silver relatively weak reducing	15
	used for silver behenate for example only a least such as p-(t-butyl)-phenol is	13
	when a strong reducing agent such as hydroquinone is used for silver laurate, for example, the fog increases with a lowering of the case o	
20	The quantity of the reducing agent to the contrast of the image.	
	depend on the specific organic silver salt and reducing agent combination, but is preferably 0.1 to 5 moles per mole of the organic silver salt and combination, but is	20
	mole to 1 mole per mole of the organic silver salt, more preferably 0.5	
~ 25	(at least 30 mole % being silver indide) in a patchetic	
	prepared and added as one constituent of the light-sensitive layer of the invention and may be added as a photographic silver helido and may be added as a photographic silver helido and may be added as a photographic silver helido and the invention	25
	form the silver halide in situ by proceeding at the multiple of the silver halide in situ by proceeding at	
30	the light-sensitive silver halide For example a halide capable of forming	
	added to a polymeric dispersion of silver laurate prepared as mentioned herein- before, whereby a part of the silver laurate and appropriate in the silver laurate prepared as mentioned herein-	30
	form silver iodide, which is confirmed by a change in the work of the reacted to	
35	Halides suitable for thus forming the alleged to the second	
	compounds represented, for example, by MX _n in which M represents a hydrogen atom, ammonium group or metal atom. Y represents helper the state of t	35
	which is iodide and n represents the steeplesents halogen at least 30 mole % of	
40	chromium, sodium barium iron carino lini, strontium, cadmium, zinc, tin,	
	beryllium, lithium, manganese, gollium, indiony, gold, cobalt, mercury, lead,	40 .
	iridium, platinum, thallium, bismuth and mintum, ridinenium, palladium,	
45	halogenated hydrocarbons such as jodoform (trij) todide and butyl todide, and	45
	The quantity of the light consisting all the tree of the light consisting all the lig	43
	the same is preferably 0.001 to 0.5 mole per malide or halide present for forming preferably 0.01 mole to 0.1 mole of the halide per male of the organic silver salt, more	
50	The reaction of the halide to form silver halide to more or the organic silver salt.	50
•	about 0.5 mole is used the quantity of silvers half is lowered, while if more than	50
•	halide gradually blackens under the influence of room light, excessive silver halide leads to a blackening of the non-image area of room light, excessive silver halide	
55	allowed to stand under room light and consciously developed material when it is	55
	The reaction of the inorganic or especial to the	33
	inorganic or organic halide with a relemblified really, and it suffices to mix the	
60	room temperature for a time of 1 population of the organic silver salt at	60
	and typically at 0°C to 80°C, more preferably at 2000 seconds to 30 minutes,	60
65	In the heat-developable light-sensitive composition used in some embodiments of the invention there may be incorporated any binder which is	65
		65

	1,422,05/	14
	ordinarily hydrophobic, but hydrophilic binders can also be used. The binders are transparent or semitransparent, for example, natural materials such as gelatin, gelatin derivatives and cellulose derivatives, and synthetic polymeric substances	
5 .	such as polyvinyl compounds and acrylamide polymers. Other synthetic polymer compounds used are dispersed vinyl compounds of the latex type. Moreover, desirable high molecular weight materials and resins include polyvinyl butyral, cellulose acetate butyrate, polymethyl methacrylate, polyvinyl	5
10	pyrrolidone, ethyl cellulose, polystyrene, polyvinyl chloride, cellulose propionate, cellulose nitrate, phthalated geltain, polyvinyl acetate, polyvinylidene chloride, polyvinyl formal chlorinated rubber, polyisobutylene, butadiene-styrene copolymers, vinyl chloride-	10
	the organic silver salt is preferably 4 to 1 to 1 to 4 parts. Any material can be used as the support member of the heat-developable.	
15	cellulose ester films, poly(vinyl acetal) films, polystyrene films, polyethylene terephthalate films, polycarbonate films, resnious materials, glass, paper and metals. The only limitation on the support member is that it not be excessively	15
20	degraded during the exposure or heat development steps nor, of course, be composed of a material which would adversely affect the light-sensitive elements. The thickness of the heat-developable light-sensitive layer can vary greatly in the present invention, but generally speaking, thicknesses of from 1 micron to 15 microns, more preferably 3 microns to 10 microns, are used in combination with	20
25	an overcoat layer having a thickness of from 1 micron to 20 microns, more preferably 2 microns to 10 microns. The heat-developable light-sensitive material used for the practice of the invention can be provided with an anti-static layer or an electrically conductive	25
30 ·	layer. Moreover, an antihalation substance or antihalation dye can be incorporated in the light sensitive layer. It is preferred that the sensitive layer be overcoated with a polymer layer, preferably of a polymer which withstands temperatures above 115° F is colourless and is soluble in an organic solvent used to form the overcoating layer as claimed in our copending application No. 21993/73 (Ser. No. 1,387,541).	30
15	The heat-developable light-sensitive material according to the invention may further contain a matting agent such as starch, titanium dioxide, zinc oxide or silica, and a brightening agent of the stilbene type, triazine type, oxazole type or coumarin type.	35
0	The heat-developable light-sensitive layer according to the invention can be coated by various coating methods, for example, an immersion method, an air-knife method, a curtain coating method and an extrusion coating method using a hopper as described in U.S. Patent 2,681,294. If desired, two or more layers can simultaneously be coated.	40
5 .	Furthermore, optical sensitizing dyes may be used in the elements of the invention so as to impart light-sensitivity thereto. Optical sensitization is ordinarily carried out, for example, by adding a sensitizing dye in the form of a solution or dispersion in an organic solvent. As such optical sensitizers, hemicyanine, cyanine and merocyanine dyes are usually used.	45
0	A latent image formed by exposing the above-mentioned elements of the heat-developable light-sensitive material to a light source such as a xenon lamp, tungsten lamp or mercury lamp can be developed merely by heating the elements. In embodiments of the invention, a latent image in the elements of the exposed heat-developable light-sensitive material may be developed by heating at 100° to 160°C until the desired image is developed. The developing temperature is	50
5	temperature or lower temperature may optionally be used by shortening or lengthening the heating time. A developed and stabilized image is ordinarily obtained in 1 to 60 seconds. The heating of the above-mentioned elements can be carried out by any suitable method such as by contacting the elements with a	55
)	heating space or subjecting them to high-frequency heating. Detailed procedures for preparing typical silver iodide photosensitive elements used in this invention will be given in the following examples:	60
5	Preparation Example 1: (A) Twelve grams of gelatin and 32 g of potassium iodide are weighed and dissolved in 160 ml of water to give Solution 1. 40 g of silver nitrate are dissolved in	65
	·	

	The invention will be more fully explain	ed by the following Examples	
35			
33	Samples each of one kilogram of gela	tin-silver iodide Emulsion A were	
	an average particle diameter of I miscon a	an iodine content of 100 mole %,	
40			
٠.			
	weight % solution of sodium nonythenzene su	and a coating aid (20 ml of a l	
-			
45			
43			
	temperature of 2854°K through a No. K-12 ve	sten light source having a colour	
50	THE EXPOSED HIM WAS DEVELOPED AT 2000	[an 10 minutes 6" . 1	
50	the covereper having the lor	lowing composition:	
	Water Metol	500 ml	
	Anhydrous sodium sulphite	2 g	
	Hydroguinone	90 g 8 g	
55	Sodium carbonate monohydrate	52.5 g	
	Potassium bromide Water to make	5 g	
		1000 നി	
	The strips were subjected to densitome manufacutred by Fuji Photo Film Co. to det characteristic curves were obtained	try using an S-type densitometer	
60	characteristic curves were obtained	rmine their densities, from which	
	Inc results are given in Table 2	·	
	Meanwhile, identical strips were exposed developed in a similar manner to obtain a specific production.	with a spectrographic camera and	
	It will be seen from Table 2 that the array	ctrogram.	
65	It will be seen from Table 2 that the organia particularly strong sensitizing effect.	c dye(s) used in this invention have	
	3		
		·	

	d		TABLE 2		ā	
	Org	Organic compound used	Relative	Relative		
Test No.	Dye	Molar concentration per liter ml.	filter ** sensitivity	filter *** sensitivity	Fogging	Spectrogram
1 (control)	None	ı	*	100	0.04	Fig. 2, Curve 1
2	I	(2×10^{-3}) 20	100	100	0.04	Fig. 2, Curve 2
		40	. 107	126	0.06	
		08	118	9/	0.07	
.3 (comparison)	(a)	(4 ×.10 ⁻³) 10		107	0.04	Fig. 3, ,, 3
		. 20		107	0.04	
4 (comparison)	(Q)	(1×10^{-3}) 40	. 18	79	90.0	Fig. 3, ,, 4
			. 12	. 43	80.0	
5 (comparison)	(0)	(4 ×,10 ⁻³) 10		85	0.04	Fig. 4 5
		20		70	0.04	
6 (comparison)	(p)	(5 × 10 ⁻³) 40	18	19	0.05	Fig. 5 ,, 6
		80	18	63	90.0	· .
7 (comparison)	(e)	(1×10^{-3}) 20		99	0.04	Fig. 6, ,, 7
		08		09	0.05	

* The sensitivity was so low that the value could not be calculated.

** The relative yellow filter sensitivity is given as a relative sensitivity by taking the sensitivity of dye I (20 mf., 2×10^{-3} molar concentration per liter) as 100.

*** The relative blue filter sensitivity is given as a relative sensitivity by taking the sensitivity where no dye is present in the element as 100.

5	The procedure of Example 1 was repeate iodobromide Emulsion B (iodine content: 97 measured by projected area: 0.6 μ; pAg: 5 mole/100 g) was used as the photosensitive emu 3 with the dyes and amounts used.	ed except that mole %; aver i 4: silver half	age particle diameter	5				
10	EXAMPLE 3. The procedure of Example 1 was repeated except that 1 kg of gelatin-silver iodobromide Emulsion C (iodine content: 95 mole %; average particle size: 0.2μ; pAg: 7.31; silver halide/binder ratio: 0.45 mole/100 g) was used as the photosensitive emulsion. The results are given in Table 4 with the dyes and amounts used. EXAMPLE 4							
15	EXAMPLE 4. To a solution of 6 g of benzotriazole in 100 ml of tricresyl phosphate kept at 15°C there was dropwise added 100 ml of 1 mole % aqueous solution at 0°C of an AgNO ₃ -ammonia complex. The complex salt was a silver amine complex which could be written as Ag(NH ₃) ₂ NO ₃ . The thus-obtained silver benzotriazole was washed with water and acetone, then dispersed in 120 g of a 15% by weight							
20	solution of polyvinyl butyral in isopropanol, using a ball mill. The thus-obtained silver benzotriazole had a spindle-like or sausage shape with an overall length (along the major axis) of approximately 3 μ and a minor axis length of approximately 0.04 μ . A liquid coating composition was prepared by adding to 40 g of the above silver salt dispersion the following approximately 3.							
25	silver salt dispersion the following compone minutes:	nts at room	to 40 g of the above temperature over 20	25				
		Sample A	Sample B					
	Ascorbic acid monopalmitate	2 g	2 g					
	2-Methoxy ethanol	8 ml	8 ml					
	NH ₄ I (8.5% by weight solution in methanol)	1 ml	1 ml					
	Dye XIII (0.2% by weight solution in methanol)	nil .	2 ml					
	2-Mercapto-3,4-methylthiazole (2% by weight solution in 2-methoxy ethanol)	1 ml	1 ml					
	The above coating composition was applie support in such an amount that the coated film metre. It was then dried at 50°C for 30 minutes	1 Carried I 7 a	hylene terephthalate of silver per square					
30	metre. It was then dried at 50°C for 30 minutes. The thus coated, dried film was further top-coated with a 15% tetrahydro- furan solution of an 85:15 by weight vinyl chloride-vinyl acetate copolymer, then dried at 50°C for an hour. The thus obtained heat-developable photosenstive material was exposed with a tungsten lamp at an exposure of 250,000 lux through a toned negative pattern, and then thermally developed by heating at 130°C for 30							
35	seconds. As a result of this exposure test, Sample while Sample B gave a high-contrast, deeply to The spectrogram obtained from Sample A is	eloped by hear A gave only a oned clear po	iting at 130°C for 30 a dim positive image, sitive image.	35				
40	A had a peak at about 425 nm, but Sample B ga about 520 nm in addition to a peak at about 4	en from the s		40				
45	EXAMPLE 5. To a solution of 11 g of lauric acid in 100 m there was dropwise added 100 ml of an aqueou which had been acidified to a pH of 2 with nitric further combined with 50 ml of a 1 mole % soluti AgNO, as in Example 4 to prepare silver laurate	is solution of c acid. The res ion of an amor	20.5 g of Hg(NO ₃) ₂ sultant solution was	45				

. 5	with water and methanol and then dispersed in 12 polyvinyl butyral in isopropanol. The silver laurat an approximate diameter of 0.1 μ . A liquid coating composition was prepared by dispersion to the following composition at room	e was in the f	orm of globules of	5
		Sample A	Sample B	
	NH ₄ I (3.2% by weight solution in methanol)	1 mi	1 ml	
	Dye I (0.1% by weight solution in methanol)	nil	1 ml	
	Phthalazinone (25% by weight solution in 2-methoxy-ethanol)	1 ml	1 mi	
	p-Phenyl phenol (70% by weight solution in 2-methoxy-ethanol)	2 ml	2 ml	
10	A polyethylene terephthalate film was co composition so that the coated film carried 1.0 g was then dried at 50°C for 30 minutes. The coated coated with a 15% solution in tetrahydrofuran of ar vinyl acetate copolymer and was further dried at The thus-obtained heat-developable photose through a toned negative patterned to a tungsten 250,000 lux, then there all developed by heating a figure only a blurged at discourse only a blurged at the control of the	of silver per s and dried filr 185:15 by weig 50°C for one ensitive mate damp, at an ex	quare metre, and n was further top- ght vinyl chloride- e hour. rial was exposed (posure dosage of	10
15	deeply toned, clear positive image. The spectrogram obtained from Sample A is githat of sample B is given as curve 22 in Fig. 19. A Sample A had a peak at about 425 nm. but Sample I	iven as Curve according to	21 in Fig. 19, and the spectrograms,	15
20	peak at about 545 nm in addition to the one at a	bout 425 nm.	cettally sellsitized	20
25 30	EXAMPLE 6. To a solution of 5.7 g of behenic acid in 100 ml there was dropwise added 100 ml of an aqueous; which had been adjusted to a pH of 2 with nitric a further combined with 50 ml of 1 mole % aqueo complex salt of AgNO ₃ (as in Example 4) to prep silver behenate was washed with water, toluene and g of a 15 weight % solution of polyvinyl butyral in The silver behenate had the form of globules of an A liquid coating composition was prepar composition to 20 g of the silver behenate dispersion minutes.	solution of 0. cid. The resulus solution of the solution of th	17 g of Hg(NO ₃) ₂ tant solution was f an ammoniacal henate. After the as dispersed in 40 using a ball mill. diameter of 0.3 μ .	2 5
	·	Sample A	Sample B	
	NH ₄ I (3.2% by weight solution in methanol)	1 ml	1 ml	
	Dye XIX (0.2% by weight solution in chloroform)	nil	1 ml	
	Phthalazinone (2.2% by weight solution in 2-methoxy-ethanol)	1 ml	1 ml	
	1,1-Bis(2-hydroxy-3,5-dimethylphenyl)- 3,5,5-trimethyl hexane (10% by weight solution in acetone)	10 ml	10 ml	
35	According to the procedure of Example 5, Sar heated and developed to give positive images. The spectrogram obtained from Sample A is given as Curve 24 of Fig. 20. It gives a peak at about 425 nm, while sample B has peabout 425 nm.	ven as Curve 2	23 of Fig. 20, and	35

BNSDOCID: <G8___1422057A_I_>

S. 1. 1. 3

TABLE 3

		Spectrogram		i	Figure 7, Curve 8			Figure 8,	Curve 9		
		Fogging	0.12	0.12	0.12	0.13	. 0.14	0.13	0 13	0.12	0.11
	Relative	filter sensitivity	100	100	. 8	06	7.5	06	85	50	. 22
	Relative	filter sensitivity	*	85	100	63	92 .	95	100	*	*
:		m!		10	. 02	10	50	70	40	70	80
	Organic compound used	Molar concentration per liter		2 × 10 ⁻³		L × 10 ⁻³		5 × 10 ⁻⁴		1×10^{-3}	
	Organic c	Dye	None	Τ		(b) (Comparison)		(d) (Comparison)		(e) (Comparison)	
		Test No.	∞	6		10		11		12	

The sensitivity was so low that the value could not be calculated,

TABLE 3 (continued)

Spectrogram			Fig. 9, Curve 10	Fig. 10, ", 11		•		Fig. 11, ", 12		Fig. 12, ", 13		Fig. 13, ,, 14		Fig. 14, Curve 15	
	Fogging	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
Relative	filter *** sensitivity	100	85	71	112	107	71	7.1	79	7.1	92	85	91	91	
Relative	filter ** sensitivity	*	63	20	68	100	117	91	. 100	. 135	100	112	06	100	
	mi.		70	. 04	20		40	80	20	40	20	. 40	10	40 20	
Organic compound used	Molar concentration per liter	1	(2×10^{-3})		(5×10^{-4})		(5 × 10 ⁻⁴)		(1×10^{-3})		(5 × 10 ⁻⁴)		(2×10^{-3}) (1×10^{-3})	(2×10^{-3}) (1×10^{-4})	
Orga	Dye	None	II		III		^		IA		IIIA		· IXXX	XXVI	
	Test No.	13 (control)	14		15		16		17		18		19		

TABLE 3 (continued)

	Spectrogram			Fig. 15, Curve 16		Fig. 16, ,, 17	
	Fogging	0.04		0.04		0.04	0.05
Relative	olue filter *** sensitivity	63		09		76	99
Relative	yenow filter ** sensitivity	98		100		50	99
	m.	40	20	94	40	40	80
Organic compound used	Molar concentration per liter	(2×10^{-3})	(5 × 10 ⁻⁴)	(2 < 10 ⁻³)	(5 × 10 ⁻⁴)	(1×10^{-3})	
Org	Dye	† II		<u></u>		ΛXX	
	Test No.	20				21	

* and *** each has the same meaning as in Table 1.

** The relative yellow filter sensitivity is given as a relative sensitivity taking the sensitivity of Dye III (49 ml., molar concentration of 5 × 10*3 moles per liter) as 100.

TABLE 4

	Spectrogram						rig. 17, Curve 18	
	Fogging	0.04	0.04	0.04	0.04	0.05	0.05	90.0
Relative	filter *** sensitivity	100	100	200	152	200	250	178
Relative	filter #* sensitivity	#	98	100	112	158	200	200
	ml.		40	80	40	. 08	160	240
Organic compound used	Molar concentration per liter	l	(1×10^{-3})	•	(1×10^{-3})	•		
	Dye	Nonc	I		XVI			
ar i	Test No.	22 (contrast)	23		24			

and *** each has the same meaning as in Table 1.

***: The relative yellow filter sensitivity is given as a relative sensitivity taking the sensitivity of an emulsion containing Dye I (80 ml., 1 × 10⁻³ mole per liter concentration) as 100.

WHAT WE CLAIM IS:-

1. A photosensitive composition which comprises grains of photosensitive silver halide of which at least 30 mole % is silver iodide, and a spectrally sensitizing dye adsorbed on the surface of the silver halide grains, which sensitizing dye has an oxidation potential not exceeding 1.00 volt and a difference in values between its oxidation potential and its reduction potential of at least 2.00 volts.

2. A photosensitive composition as claimed in Claim 1, wherein the sensitizing dye is a merocyanine or hemicyanine dye.

3. A photosensitive composition as claimed in Claim 2, wherein the dye has no

ŝ

9

2

methine bridge or has a polymethine bridge.

4. A photosensitive composition as claimed in Claim 1, 2 or 3, wherein the sensitizing dye has the general formula I:

10

15

20

25

30

35

5

10

20

25

30

35

$$z^{(1)} \xrightarrow{C} C \xrightarrow{L^{1} - L^{2} - L^{3} - C} \xrightarrow{(1)} (x^{1} \xrightarrow{\Theta})_{p} (1)$$

wherein Z^1 and Z^2 each represents the atoms needed to form a five- or six-membered nitrogen-containing heterocyclic nucleus, L^1 , L^2 and L^3 each represents an optionally substituted methine group, R^1 and R^2 each represents an optionally substituted alkyl or aryl group, X^1 represents an anion, l is 0 or 1, and p is 0 or 1.

5. A photosensitive composition as claimed in Claim 1, 2 or 3, wherein the sensitizing dye has the general formula:

$$z^{3} \qquad c \qquad (L^{4} - L^{5})_{\overline{M}} \qquad c \qquad z^{4} \qquad (II)$$

wherein Z³ represents the atoms needed to form a five- or six-membered nitrogencontaining heterocyclic nucleus, Z⁴ represents the atoms needed to form a ketomethylene-heterocyclic nucleus, R³ is an optionally substituted alkyl or aryl group, L⁴ and L⁵ each represents an optionally substituted methion

L⁴ and L⁵ each represents an optionally substituted methine group, and m is 0 or 1.

6. A photosensitive composition as claimed in Claim 1, 2 or 3, wherein the sensitizing dye has the general formula:

wherein Z^5 represents the atoms needed to form a benzene ring or naphthalene ring, R^4 and R^5 are each optaionly substituted alkyl groups or aryl groups, W represents a divalent group and n is 0, 1 or 2.

7. A photosensitive composition as claimed in Claim 4, wherein Z¹ and Z² are each selected from oxazole, naphthoxazole, thiazole, benzthiazole, selenazole, naphthoselenazole, imidazole, benzimidazole, naphthoimidazole, pyridine, indolenine and quinoline nuclei, which may be substituted.

8. A photosensitive composition as claimed in Claim 4, 5 or 6, wherein R¹, R², R³, R⁴ and R⁵ are selected from alkyl, carboxyalkyl, sulphoalkyl, sulphoalkoxyalkyl, aminoalkyl, benzalkyl, cyanoalkyl, allyl groups, and aryl groups containing a benzene ring

9. A photosensitive composition as claimed in Claim 6, wherein W is the group =N-aryl wherein the aryl moiety contains a benzene ring.

10. A photosensitive composition as claimed in Claim 6, wherein W is the group

wherein R^6 and R^7 is each a cyano group, alkyl carbonyl group or alkoxycarbonyl group wherein the alklyl moiety has I to 4 carbon atoms, 5- or 6-membered nitrogen-containing heterocyclic nucleus, benzene-containing aryl group or cyano group.

BNSDOCID: <GB___1422057A__I_>

	1,422,037	24
	11. A photosensitive composition as claimed in any preceding claim, wherein the dye has a maximum reduction potential of 3.00 volts. 12. A photosensitive composition as claimed in any preceding claim, wherein	
5	the dye is any of 27 dyes designated I to XXVII of the formulae shown hereinbefore.	5
	13. A photosensitive composition as claimed in any preceding claim, wherein the sensitizing dye is present in an amount of 1×10^{-6} to 1×10^{-1} mole per mole of silver halide.	
10	14. A photosensitive composition as claimed in any preceding claim, wherein the halide contains at least 40 mole % of silver iodide. 15. A photosensitive composition as claimed in any of Claims 1 to 14, in the	10
	form of a photographic silver halide emulsion. 16. A photographic emulsion as claimed in Claim 15 wherein the silver halide grains have a diameter of 0.005 to 0.8 micron.	
15	17. A photographic emulsion as claimed in Claim 15 or 16, wherein the emulsion also contains a compound of a metal of Group Ib, III, V or VIII of the Periodic Table.	15
20	18. A photographic emulsion as claimed in Claim 17, wherein the metal compound is present in an amount of 10 ⁻⁷ to 10 ⁻³ moles per mole of silver of the silver halide.	00
20	19. A photographic emulsion as claimed in any of Claims 15 to 17, wherein the silver halide is held in a binder which serves as a protective colloid and which is gelatin, a derivative of gelatin, or a water-soluble synthetic polymer. 20. A photographic emulsion as claimed in any preceding claim, which has	20
25	been prepared substantially as hereinbefore described in Preparation Example 1 or 2.	25
	21. A photographic emulsion as claimed in Claim 15, substantially as hereinbefore described with reference to any of the samples of Examples 1 to 3 wherein Dye I is used.	
30	22. A photographic emulsion as claimed in any of Claims 15 to 21 wherein the sensitizing dye has been added directly to the silver halide emulsion. 23. A photographic emulsion as claimed in any of Claims 15 to 22 wherein the sensitizing dye has been added to the emulsion whilst dissolved in an organic solvent together with a proton donor or a metal ion.	30
35	24. A photographic emulsion as claimed in any of Claims 15 to 21 wherein the sensitizing dye has been added to the emulsion in the form of globules of a solution in an oily solvent.	35
40	25. A photographic element which comprises a layer of a photosensitive silver halide emulsion as claimed in any of Claims 15 to 24 coated on a support. 26. A heat-developable photosensitive material comprising, coated on a	40
40	defined in Claim 1, (3) a reducing agent and (4) a sensitizing dye as defined in any of Claims 1 to 13.	40
45	27. A heat-developable material as claimed in Claim 26, wherein the organic silver salt (1) is a silver salt of an organic carboxylic acid or of a heterocyclic compound containing a mercapto or imino group. 28. A heat-developable material as claimed in Claim 27 or 28, wherein the salt is a silver salt of an alignatic carboxylic acid being claim 27 or 28.	45
50	is a silver salt of an aliphatic carboxylic acid having more than 10 carbon atoms in the chain. 29. A heat-developable light-sensitive material as claimed in Claim 27 or 28,	50
30	wherin the organic silver salt is a silver salt of benzotriazole, saccharin or phthalazinone. 30. A heat-developable light-sensitive material as claimed in any of Claims 25	30
55	composition the organic silver halide (2) has been prepared by reacting in the composition the organic silver salt (1) with an organic or inorganic halide. 31. A heat-developable light-sensitive material as claimed in Claim 30, wherein the reaction is with an inorganic halide of the formula MXn, where X is	55
	halogen at least 30 mole % of which is iodide, n is the valence of M, and M is hydrogen, ammonium or a metal. 32. A heat-developable light-sensitive material as claimed in any of Claims 26	
60	to 31, wherein the amount of organic silver salt calculated as silver per square metre of support is from 0.2 to 3 grams. 33. A heat-developable light-sensitive material as claimed in any of Claims 26	60
65	to 32, wherein the silver halide or halide present for forming the silver halide is present in an amount of from 0.001 mole to 0.5 mole per mole of the organic silver salt, the reducing agent is present in an amount of from 0.01 mole to 5 moles per	65

		23
	mole of the organic silver salt, and the weight ratio of binder to organic silver salt is 4:1 to 1:4.	
5	34. A heat-developable light-sensitive material as claimed in any of Claims 26 to 33, wherein said layer is overcoated with a polymer which withstands to temperatures above 115°F, is colourless and is soluble in an organic solvent used to form the overcoating layer.	5
	35. A heat-developable light-sensitive material as claimed in Claim 26, substantially as hereinbefore described with reference to any of the samples of Examples 4 to 6, wherein one of Dyes I to XXVII is used.	
10	a photographic element as claimed in Claim 25 and developing the exposed	10
	37. A process for forming a visible image, which comprises imagewise exposing a photosensitive material as claimed in any of Claims 26 to 35 and heating the exposed material at a temperature of 1008 at 1008.	
15	obtained.	15
	38. Sheets bearing visible images formed by the process of Claim 36 or 37.	

GEE & CO.,
Chartered Patent Agents,
Chancery House, Chancery Lane,
London WC2A IQU
— and —
39 Epsom Road,
Guildford, Surrey.
Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1976. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

FIG. 1

1422057 COMPLETE SPECIFICATION

3 SHEETS This drawing is a reproduction of the Original on a reduced scale

Sheet 2

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale

Sheet 3

