Actor-Critic Hung-yi Lee

Pathwise Derivative Policy Gradient

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, "Deterministic Policy Gradient Algorithms", ICML, 2014

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra, "CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING", ICLR, 2016

Another Way to use Critic

Original Actor-critic

Pathwise derivative policy gradient

From Q function we know that taking a' at state s is better than a

Action a is a continuous vector

$$a = arg \max_{a} Q(s, a)$$

Actor as the solver of this optimization problem

Pathwise Derivative Policy Gradient

$$\pi'(s) = arg \max_{a} Q^{\pi}(s, a)$$
 a is the output of an actor

This is a large network

Replay Buffer

Exploration

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

$$\theta^{\pi'} \leftarrow \theta^{\pi} + \eta \nabla_{\theta^{\pi}} Q^{\pi}(s, a)$$
Update $\pi \to \pi'$

$$s \longrightarrow Actor \longrightarrow a$$

$$\begin{array}{c} s \\ \\ Q^{\pi} \\ \\ a \end{array} \longrightarrow \begin{array}{c} Q^{\pi}(s,a) \\ \end{array}$$

Q-Learning Algorithm

- Initialize Q-function Q, target Q-function $\widehat{Q}=Q$
- In each episode
 - For each time step t
 - Given state s_t , take action a_t based on Q (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_{a} \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Every C steps reset $\hat{Q} = Q$

Q-Learning Algorithm Pathwise Derivative Policy Gradient

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$, actor π , target actor $\hat{\pi} = \pi$
- In each episode
 - For each time step t
 - 1 Given state s_t , take action a_t based on $\mathbb{Q}^-\pi$ (exploration)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - 2 Target $y = r_i + \max \hat{Q}(s_{i+1}, a) \hat{Q}(s_{i+1}, \hat{\pi}(s_{i+1}))$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Update the parameters of π to maximize $Q(s_i,\pi(s_i))$
 - Every C steps reset $\hat{Q} = Q$
 - Every C steps reset $\hat{\pi} = \pi$

Connection with GAN

Method	GANs	AC
Freezing learning	yes	yes
Label smoothing	yes	no
Historical averaging	yes	no
Minibatch discrimination	yes	no
Batch normalization	yes	yes
Target networks	n/a	yes
Replay buffers	no	yes
Entropy regularization	no	yes
Compatibility	no	yes

David Pfau, Oriol Vinyals, "Connecting Generative Adversarial Networks and Actor-Critic Methods", arXiv preprint, 2016