

WHAT IS CLAIMED IS:

- 1 1. A process for the preparation of organic isocyanates, said
2 process comprising:
3 a) mixing an organic formamide compound or its amine and
4 formate precursors with a diorganocarbonate to form a
5 reaction mixture;
6 b) subjecting said reaction mixture to an elevated temperature
7 sufficient to generate the isocyanate corresponding to said
8 organic formamide compound; and
9 c) isolating said isocyanate from said reaction mixture.
- 1 2. The process of claim 1, wherein said organic formamide
2 compound is one of the formula
3 $R(NHCHO)_n$
4 where n is an integer from 1 to 10 and R is an organic radical.
- 1 3. The process of claim 2, wherein R comprises an optionally
2 substituted C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{4-20} cycloalkyl, C_{4-20}
3 cycloalkenyl, C_{6-30} aryl, C_{7-30} aralkyl, C_{7-30} alkaryl group, a silane or siloxane or
4 oligomer thereof wherein formamide group(s) are bound to an Si-bound hydrocarbon
5 linking group, and wherein each of the above R may contain one or more chain or
6 ring heteroatoms.
- 1 4. The process of claim 2, wherein R is selected from the group
2 consisting of optionally substituted phenyl, diphenylmethane, and tolyl groups.
- 1 5. The process of claim 4, wherein R is the 2,4-bis(N -formamide)
2 of toluene diamine.

1 6. The process of claim 1, wherein steps a) and b) are combined
2 such that the reaction temperature of step a) is maintained at a temperature wherein
3 isocyanate is produced directly.

1 7. The process of claim 6, wherein the temperature of steps a)
2 and b) are in the range of 150°C to 240°C.

1 8. The process of claim 1, wherein the temperature of step a) is
2 maintained below 190°C and at a first temperature such that no substantial
3 production of isocyanate occurs, said process further comprising:

4 a)i) isolating an intermediate, isocyanate precursor mixture
5 containing a carbamate group-containing reaction
6 product, and thermolyzing said isocyanate precursor
7 mixture at a second, higher temperature to obtain the
8 isocyanate corresponding to said organic formamide.

1 9. The process of claim 8, wherein said isocyanate precursor
2 reaction mixture comprises in excess of 80 mol percent of the carbamate
3 corresponding to said organic formamide, said mol percent based on the total of
4 mols of isocyanate, carbamates and isocyanate/carbamate contained in said
5 isocyanate precursor reaction mixture.

1 10. The process of claim 1, wherein said diorganocarbonate is
2 selected from aliphatic, cycloaliphatic, aryl, and mixed aliphatic/aryl or
3 cycloaliphatic/aryl carbonates.

1 11. The process of claim 1, wherein said diorganocarbonate is
2 diphenylcarbonate.

1 12. The process of claim 2, wherein R is aliphatic or
2 cycloaliphatic, said process further comprising adding to said reaction mixture an
3 effective carbamide-cleaving amount of a metal catalyst.

1 13. The process of claim 1, wherein the ratio of mols of
2 diorganocarbonate to organic formamide is greater than 1:1 based on mols of
3 formamide groups.

1 14. The process of claim 1, wherein the ratio of mols of
2 diorganocarbonate to mols of formamide groups is 2:1 to 5:1.

1 15. The process of claim 1, wherein one or more organic di- or
2 polyamines, an organoformate ester, and diorganophenol carbonate comprise said
3 reaction mixture.

1 16. The process of claim 15, wherein said organo group of said
2 organoformate is the same as at least one of the organo groups of said
3 diorganocarbonate, said organo groups selected from the group consisting of C₁₋₂₀
4 aliphatic, C₄₋₂₀ cycloaliphatic, C₆₋₂₀ aryl, C₇₋₃₀ aralkyl, and C₇₋₃₀ alkaryl groups, their
5 heteroatom substituted analogs, and mixtures thereof.

1 17. The process of claim 15, wherein said organo groups are
2 selected from the group consisting of C₁₋₂₀ alkyl, C₅₋₈ cycloalkyl, and optionally
3 substituted C₆₋₁₀ aryl.

1 18. The process of claim 15, wherein all organo groups are
2 phenyl.

1 19. The process of claim 15, which is a continuous process
2 wherein organoformate is removed from said reaction mixture and recycled to said
3 reaction mixture with additional organic di- or polyamine.

1 20. A process for the direct manufacture of an organic isocyanate
2 from the corresponding formamide, said process comprising:

3 a) reacting an organic formamide containing from 1 to 10
4 formamide groups per molecule with from 1 to about 10 mol
5 of diorganocarbonate per mol of formamide groups to form a

6 reaction mixture, said reacting taking place at a temperature
7 such that themolysis of products contained in said reaction
8 mixture generates the isocyanate corresponding to said
9 organic formamide;
10 b) separating said isocyanate from said reaction mixture.

1 21. The process of claim 20, wherein said isocyanate separated
2 from said reaction mixture also contains partially thermolyzed products containing
3 carbamates corresponding to said organic formamide and/or mixed
4 isocyanate/carbamide compounds corresponding to said organic formamide, said
5 process further comprising:

6 b)i) further thermolyzing said partially thermolyzed
7 products to form additional isocyanate corresponding
8 to said organic formamide; or
9 b)ii) returning said partially thermolyzed products to said
10 reaction mixture; or
11 b)iii) performing both of b)i) and b)ii).

1 22. The process of claim 20, wherein diphenylcarbonate is
2 employed as said diorganocarbonate, reaction takes place in phenol solvent, and said
3 isocyanate separated from said reaction mixture contains phenol and phenol formate
4 ester, said process further comprising recycling said phenol formate ester by reacting
5 said phenol formate ester with an organic amine corresponding to said organic
6 formamide to form said organic formamide.

1 23. A continuous process for producing organic isocyanates, said
2 process comprising:

3 a) reacting an aryl di- or polyformamide or an amine and
4 formate precursor thereof, with diphenyl carbonate at a
5 temperature at least sufficient to form a reaction mixture
6 containing O-phenylcarbamates corresponding to said aryl di-
7 or polyformamide;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

- b) thermolyzing all or a portion of said reaction mixture to generate an isocyanate-containing mixture comprising organic isocyanate(s) corresponding to said aryl di- or polyformamide;
- c) separating said organic isocyanate from said isocyanate-containing mixture to obtain a purified organic isocyanate, and an organic isocyanate depleted mixture c)i);
- d) separating phenol from said isocyanate-containing mixture or from said organic isocyanate-depleted mixture to form a phenol-depleted mixture d)i);
- e) separating carbamates and carbamate/isocyanates from said isocyanate-containing mixture or from said mixture c)i), or d)i) and further processing said carbamates and carbamate/isocyanates by one or both of
 - e)i) further thermolyzing to form said organic isocyanate(s) corresponding to said aryl di- or polyformamide; or
 - e)ii) cycling said carbamates and/or said carbamate/isocyanates into said reaction mixture of step a), to form a carbamate-depleted mixture e)iii)
- f) separating from one or more of said isocyanate-containing mixture, c)i), d)i), or e)iii) phenol formate ester, and
- g) optionally reacting said phenol formate ester with an organic amine to form the formamide corresponding to said organic amine.

1 24. The process of claim 23, wherein said step of thermolyzing
2 takes place at a temperature of from 150°C to 240°C.

1 25. A process for the preparation of an O-organocarbamate, said
2 process comprising reacting an organic formamide or its amine and formate
3 precursors with a diorganocarbonate at a temperature below that at which significant

4 thermolysis of O-organocarbamate to isocyanate occurs, and separating said O-
5 organocarbamate from other reaction products.

A

XPS
AI
and
CS