Solitons - Appareillage mathématique Symétrie - Modèles de l'univers Cosmologie -Quotidien en cosmologie théorique des particules

Solitons et cosmologie, ou un exemple de symétrie et de beauté intersidérale Conférence du vendredi

Éric Dupuis

Université de Montréal, département de physique des particules

- Solitons Appareillage mathématique
 - Équation d'ondes et soliton
 - Formalisme Lagrangien
 - Kink
- 2 Symétrie Modèles de l'univers
- 3 Cosmologie -
- 4 Quotidien en cosmologie théorique des particules

Équation d'ondes

• champ scalaire défini dans \mathbb{R}^n : $\phi(\vec{x},t)$

équation d'onde

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \Box \phi = 0 \tag{1}$$

Deux propriétés étudiées dans les solutions ϕ

- Forme et vitesse de l'onde conservées
- Deux ondes retrouvent asymptotiquement leur forme et vitesse

● Équation d'onde : V=0

Potentiels différents - Équations du mouvements modifiées

• terme dispersif : $\Box \phi + m^2 \phi = 0$ (Klein-Gordon)

1 onde plane : $k^2 \rightarrow k^2 + m^2$

2 terme non-linéaire : ϕ^3

En s'éloignant de l'équation d'onde, les deux propriétés peuvent être conservées : ondes solitaires et solitons

Équation d'ondes et soliton Formalisme Lagrangien Kink

Sur sa monture, John Russell poursuit sa destinée qui le mène vers l'onde solitaire

- Densité d'énergie d'un soliton $\epsilon(x,t)$: localisée dans l'espace
- $E[\phi] = \int dx dt (\mathcal{H}[\phi]) = \int dx dt \left[\frac{1}{2} \partial_x \phi(\partial_x \phi)^* + V\right]$
- Énergie finie :

$$\lim_{x\to\pm\infty}\partial_x E=0$$

$$\lim_{x \to \pm \infty} \phi[x] = g^{(i)}$$

Formalisme Lagrangien

- **1** Potentiel défini pour toutes valeurs possibles de ϕ : $V(\phi)$
- Otation covariante :

$$\mathbf{0} \ \ x^{\mu} = (x^0, \vec{x})$$

$$x^0 = ct; x^{1,2,3} = x, y, z$$

$$\mathbf{S} \quad \mathbf{x}^{\mu} = \eta^{\nu\mu} \mathbf{x}_{\nu} \; \mathsf{m\'etrique}$$

3 Action :
$$S[\phi] = \int dt (L[\phi]) = \int dt dx^n (\mathcal{L}[\phi])$$

- **1** Principe d'Hamilton : ϕ_0 | action minimisée
- Premier ordre nul pour un minimum d'action

6 Euler-Lagrange :
$$\partial_{\mu} \left(\frac{\mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = \frac{\partial \mathcal{L}}{\partial \phi}$$

Kink: cas de figure typique

Potentiel d'ordre 4

deux minimums absolus

$$V(\phi) = \frac{\lambda}{4}(|\phi|^2 - \frac{m^2}{\lambda})^2$$

a ..

$$\mathcal{L} = \frac{1}{2}(\partial_x \phi)^2 - V$$

$$\to \phi'' = \lambda \phi^3 - m^2 \phi$$

Solitons - Appareillage mathématique Symétrie - Modèles de l'univers Quotidien en cosmologie théorique des particules

Kink

Équation d'ondes et solito Formalisme Lagrangien Kink

- $\Phi \phi \phi(x,t): 1+1 \text{ dimensions}$
- onde solitaire : solution statique

Solitons - Appareillage mathématique
Symétrie - Modèles de l'univers
Cosmologie Quotidien en cosmologie théorique des particules

Thank you for your attention!

Potentiel à deux champs $\phi(x, t)$ et $\psi(x, t)$

$$V(\phi,\psi) = (\psi^2 - \delta_1)(\psi^2 - 1)^2 + \frac{\alpha}{\psi^2 + \gamma} [(\phi^2 - 1)^2 - \frac{\delta_2}{4}(\phi - 2)(\phi + 1)^2]$$

- 1+1 dimensions (x,t) mais on cherche une solution statique
- 2 Beaucoup de paramètres : $\alpha, \gamma, \delta_1, \delta_2$
- 3 Les champs sont couplés

Pourquoi bâtir un potentiel comme ça en premier lieu?!?!

 $\delta_1 \rightarrow$ contrôle du minima central Potentiel d'ordre 6, CLASSIQUE!

 α : importance 2ème terme

 γ : importance couplage

 $\delta_2
ightarrow$ contrôle de la séparation entre minimum