General Purpose Transistor

NPN Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	200	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C	P _D	1.5 12	W mW/°C
Thermal Resistance Junction–to–Ambient (Note 1)	$R_{\theta JA}$	83.3	°C/W
Thermal Resistance Junction-to-Lead #4	$R_{\theta JA}$	35	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

^{1.} FR-4 with 1 oz and 713 mm² of copper area.

ON Semiconductor®

http://onsemi.com

SOT-223 CASE 318E STYLE 1

MARKING DIAGRAM

1AM = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
PZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
SPZT3904T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Chara	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS (Note 2)					
Collector - Emitter Breakdown Voltage (No	V _{(BR)CEO}	40	_	Vdc	
Collector – Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)			60	-	1
Emitter-Base Breakdown Voltage (I _E = 1	V _{(BR)EBO}	6.0	-	1	
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} =	I _{BL}	-	50	nAdc	
Collector Cutoff Current (V _{CE} = 30 Vdc, V	I _{CEX}	-	50	1	
ON CHARACTERISTICS (Note 3)					
DC Current Gain (Note 2)				- 300 - -	-
					Vdc
$\begin{aligned} &\text{Base-Emitter Saturation Voltage (Note 3}\\ &\text{(I}_{\text{C}} = 10 \text{ mAdc, I}_{\text{B}} = 1.0 \text{ mAdc)}\\ &\text{(I}_{\text{C}} = 50 \text{ mAdc, I}_{\text{B}} = 5.0 \text{ mAdc)} \end{aligned}$	V _{BE(sat)}	0.65	0.85 0.95	Vdc	
SMALL-SIGNAL CHARACTERISTICS		•	•	•	•
Current-Gain - Bandwidth Product (I _C =	10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} =$	0, f = 1.0 MHz)	C _{obo}	-	5.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$,	f = 1.0 MHz)	C _{ibo}	-	8.0	
Input Impedance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0$	mAdc, f = 1.0 kHz)	h _{ie}	1.0	10	kΩ
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C	C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5	8.0	X 10 ⁻⁴
Small-Signal Current Gain (V _{CE} = 10 Vd	h _{fe}	100	400	_	
Output Admittance ($V_{CE} = 10 \text{ Vdc}, I_{C} = 1.$	h _{oe}	1.0 40 μ		μMhos	
Noise Figure (V_{CE} = 5.0 Vdc, I_{C} = 100 μ A	nF	-	5.0	dB	
SWITCHING CHARACTERISTICS					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc},$	t _d	_	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	t _r	-	35	1
Storage Time	(V _{CC} = 3.0 Vdc,	t _s	-	200	1
Fall Time	$I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	t _f	-	50	1

- 2. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

TYPICAL CHARACTERISTICS

Figure 19. Safe Operating Area

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	_	10°

STYLE 1:

- PIN 1. BASE 2. COLLECTOR
 - 3 FMITTER
 - COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

PZT3904T1 PZT3904T1G SPZT3904T1G PZT3904