Manejo e Implementación de Archivos

Guatemala 19 de agosto de 2020

Ing. David Luna

Agenda

Almacenamiento según el tipo de Acceso

Cierre

Almacenamiento según el tipo de Acceso

- No se puede leer o escribir un dato en particular hasta que todos los datos que lo preceden hayan sido leídos o escritos en orden.
- Hemos de recorrer desde el principio todas las posiciones hasta llegar a la deseada.

- Es la forma más simple y quizás la más intuitiva de manipular archivos.
- Cuando se abre el archivo, el sistema operativo apunta el primer bloque de información de archivo.
- Lee a partir de la posición inicial y así sucesivamente hasta que se llega al final del archivo.

Métodos que utilizan acceso secuencial

Cintas Magnéticas

Las cintas se presentan en una diversidad de formas, tamaños y velocidades.

Pistas sobre una banda plástica con un material magnetizado (Oxido de hierro).

Video, audio, datos.

1951

Grabación:

Corriente Aplicada > Cabezal de grabación > Magnetización de la cinta.

Reproducción:

Corriente Inducida> Cabezal de grabación

Parámetros Importantes:

- Magnitud del entrehierro, nos limita la máxima frecuencia a grabar.
- Ancho de la cinta, cuanto mayor sea su anchura la cantidad de información a grabar se reduce.

Clasificación de Tecnologías de cintas magnéticas:

- > Anchura de la cinta
 - Cinta de Alta Capacidad (1/2 Pul.)
- Método de grabación
 - **≻** Lineal
 - > Helical

- ➤ Método de grabación
 - **≻** Helical

Caracterísiticas Técnicas

- Distribución de los bloques.
 - > Separación entre registros.
- ➤ Tiempo de acceso.
 - > Latencia
- Compresión de los datos.
 - > Algoritmos propios.
 - LZ (Lempel Ziv) la mayoría

Cintas Magnéticas

Las cintas magnéticas en la actualidad

Relación entre precio y capacidad de almacenamiento.

A pesar que estos soportes ya no se utilizan de forma masiva, las grandes empresas siguen prefiriéndolos por sobre los sistemas de discos duros convencionales. La razón es muy sencilla: en una pulgada cuadrada se pueden almacenar 45GB de datos y esto permite crear cartuchos de hasta 50TB, según ha anunciado el Instituto Tecnológico de Tokio en conjunto con Hitachi Maxell, Ltd.

- IBM 330 TB
 - 201 Gb por pulgada cuadrada

Hoy en día, el uso de la cinta magnética se ha ampliado en múltiples áreas donde el <u>almacenamiento masivo de datos</u> es la prioridad sin ser tan necesaria una enorme velocidad de acceso a estos datos. Ejemplos de uso de estos cartuchos son encontrados en **las grandes bibliotecas** o **las oficinas de registros públicos**, donde el almacenamiento a largo plazo de los datos es el fundamento del negocio. En la actualidad incluso, se lo considera como un medio de almacenamiento "verde o ecológico" debido a los escasos recursos energéticos que consume para lograr un almacenamiento eficiente de datos.

Acceso directo

- Permiten el acceso justo en la posición en la que están guardados los datos.
 - ❖ Discos, memoria flash, etc.

 Las unidades de disco consisten en un conjunto de cabezas de lectura y escritura, interpuestas entre uno o más platos (recubiertos de una fina película magnética).

Componentes:

Pista: es el conjunto de bytes en la superficie de un disco al cual puede accederse sin mover el brazo de acceso.

Sector: es la porción más pequeña, a la cual se puede hacer referencia en un disco. Cada pista está divida en varios sectores.

Cilindros: son pistas que están directamente unas sobre otras. La importancia del cilindro es que se puede tener el acceso a toda la información almacenada en uno solo sin mover el brazo que sostiene las cabezas de lectura y escritura.

Almacenamiento en Disco – Memoria Flash

Utiliza circuitos electrónicos para almacenar la información, los cuales no necesitan moverse para efectuar tal función.

Los discos SSD permiten hasta un 56% más de rapidez de respuesta del equipo en comparación a los discos duros tradicionales, son extremadamente resistente, puede soportar golpes y choques sin perder datos.

Utilizan la misma interfaz que los discos duros tradicionales

Diversidad de Discos Duros

Discos duros tecnología magnética

SSD

 Sistemas de arreglos de discos, RAID (Redundant Arrays of Inexpensive Disks)

Interfaz del Disco Duro

Se entiende por interfaz la conexión física y funcional entre dos aparatos o sistemas independientes. En este caso uno es el disco duro y otro el equipo al que está conectado.

 Hay grandes estándares que normalizan los interfaces de los discos:

IDE: (Integrated Drive Electronics) o ATA(Advanced Technology Attachment)

Fue hasta el año 2004 la interfaz estándar más versátil y por lo tanto la más utilizada por los equipos, son anchos, planos y muy resistentes.

• Es el que actualmente utilizan las computadoras de escritorio y laptop de última generación

Utiliza un bus de tipo serie para la transferencia de datos

- Tres versiones de velocidades:
 - SATA 1: Tasa de transferencia de hasta 150MB/s
 - SATA 2 : Tasa de transferencia de hasta 300MB/s
 - SATA 3 con una tasa de transferencia de hasta 600MB/s

SCSI: (Small Computer System Interface)

- Una interfaz de gran velocidad de rotación y capacidad de almacenamiento.
- Utiliza 7 milisegundos para acceso a datos.
- Tres tipos:
 - SCSI estándar. Velocidad secuencial de transmisión de datos 5Mbit/s.
 - SCSI rápido. Velocidad secuencial de transmisión de datos 10 Mbit/s.
 - SCSI ancho-rápido. Velocidad secuencial de transmisión de datos 20 Mbit/s.

SCSI: (Small Computer System Interface)

 Un controlador SCSI puede trabajar asincrónicamente con respecto al microprocesador incrementando la velocidad de transferencia.

SAS: (SERIAL Attached SCSI)

- Permite la conexión y desconexión en caliente e incrementa la velocidad de transferencia al aumentar la cantidad de dispositivos conectados, lo que posibilita la transferencia constante de datos para cada dispositivo.
- Utiliza un conector SATA, por lo consiguiente una unidad SATA puede ser utilizada por controladores SAS pero no lo contrario.

Gracias

¿ALGUNA PREGUNTA?