## LISTA 1

## Questão 1

a) Abaixo o gráfico de u, para  $T_s=0.1$  segundo.



b) Abaixo o gráfico de y.



## Questão 2

a) Abaixo o gráfico de u, para  $T_s=10$  segundos.



b) Abaixo o gráfico de y:



c) Abaixo a comparação, considerada uma constante igual a 3000:



Como vemos, a forma dos sinais é semelhante. Acreditamos que a diferença seja graças aos tempos diferentes de amostragem.

## Questão 3

a) O primeiro modelo é não linear, pelo termo u multiplicado por y'(t), ao contrário do segundo, em que y'(t) é multiplicado por uma constante. Além disso, aplica-se facilmente a transformada de Laplace no segundo modelo e consegue-se a função de transferência  $H(s) = \frac{K}{\tau s + 1}$ .

Seja 
$$y_1$$
 a solução de:  $5u(t)\frac{dy}{dt}+y(t)-10u(t)=0 \Rightarrow \frac{dy}{dt}=2-\frac{y(t)}{u(t)}.$ 

Como vemos na figura abaixo, para degraus de altura sempre a mesma, o tempo necessário para atingir o estado estacionário aumenta:



Portanto o modelo é não linear.

Seja 
$$y_2$$
 a solução de:  $5\frac{dy}{dt} + y(t) - 10u(t) = 0 \Rightarrow \frac{dy}{dt} = \frac{10u(t) - y(t)}{5}$ .

Como vemos na figura abaixo, para degraus de altura sempre a mesma, a forma da saída é sempre a mesma, para todo ponto de operação:



Portanto o modelo é linear.

b) Pela função de transferência H(s), temos que  $\tau$  é a constante de tempo de  $y_2$ . À medida que  $\tau \to 0$ , o módulo do expoente aumenta. À medida que  $\tau \to \infty$ , o expoente tende a 1 e a resposta ao impulso tende a ficar constante.

No primeiro sistema,  $\tau(u)=5u(t)$ , aproximadamente. A constante de tempo depende do próprio u, como uma velocidade com que o sistema responde a variações na entrada. Quanto mais  $\tau(u)$  próximo de uma constante, mais próximo de linear o sistema.

c)  $H(s)=\frac{K/ au}{s+1/ au}$ . Pela transformada de Laplace inversa,  $h(t)=\frac{K}{ au}\exp(-t/ au), t\geq 0$ .

Creio não ser possível calcular facilmente a transformada de Laplace do produto  $u(t)y^{\prime}(t).$ 

Versão de 22/abril/2022\* por Vinicius Claudino Ferraz.

Matrícula: 2019435823.

<sup>\*</sup>Fora da caridade não há salvação.