Введение

Алгоритм Форда-Сиди был предложен в 1987 году математиками Уильямом Фордом и Авраамом Сиди для решения задачи ускорения сходимости рядов. Данный метод был предложен в [1] как реализация рекурсивного алгоритма генерализации процесса экстраполяции Ричардсона, представленного в [2], позволяющая решить задачу экстраполяции более быстро и эффективно по сравнению с непосредственным решением системы линейных уравнений, определяющих экстраполяцию. Также, стоит отметить, что данный алгоритм схож с *E*-алгоритмом и, более того, математически эквивалентен *E*-алгоритму, но при этом является более вычислительно эффективным.

Экстраполяция Ричардсона

Рассмотрим основную идею процесса экстраполяции Ричардсона [6].

Пусть $\{S_n\}$ – последовательность, а $(g_j(n)), j=1,2$... - известные вспомогательные последовательности. Предположим, что существуют неизвестные константы $(c_j), j=1,\ldots,k$, такие что:

$$S_{n+i} = T_k^{(n)} + \sum_{j=1}^k c_j g_j(n+i), i = 0, \dots, k.$$
 (1)

Если система линейных уравнений (1) является невырожденной, то по правилу Крамера $T_k^{(n)}$ можно выразить как отношение двух определителей:

$$T_{k}^{(n)} = \frac{\begin{vmatrix} S_{n} & \dots & S_{n+k} \\ g_{1}(n) & \dots & g_{1}(n+k) \\ \vdots & \ddots & \vdots \\ g_{k}(n) & \dots & g_{k}(n+k) \end{vmatrix}}{\begin{vmatrix} 1 & \dots & 1 \\ g_{1}(n) & \dots & g_{1}(n+k) \\ \dots & \ddots & \vdots \\ g_{k}(n) & \dots & g_{k}(n+k) \end{vmatrix}}.$$
 (2)

При этом данная формулировка позволяет наиболее обобщенно определить процесс экстраполяции, что позволяет использовать различные известные преобразования (трансформации) рядов вида $(S_n) \mapsto (T_k^{(n)})$ для ускорения сходимости изначального ряда $\{S_n\}$ [3].

Е-алгоритм, предложенный независимо Шнайдером [6],

Основная проблема заключается в необходимости вычисления (2), решаемая различными рекурсивными алгоритмами. При этом, большая часть алгоритмов рассчитана на использование конкретного преобразования ряда, что приводит к необходимости использования различных алгоритмов для различных трансформаций рядов. Известны два рекурсивных алгоритма для вычисления $T_k^{(n)}$:

- Е-алгоритм, предложенный независимо К. Брезински [3], Т. Хейви [4] и К. Шнайдером [5]. Шнайдер и Хёви вывели его методом Гауссова исключения, а Брезински – с использованием тождества Сильвестра для определителей.
- 2) Алгоритм Форда-Сиди [1], который требует меньшего числа арифметических операций, чем E-алгоритм. Форд и Сиди вывели свой алгоритм, используя тождество Сильвестра.

Форд и Сиди [1] отметили основное различие в рекурсии *E*-алгоритма и алгоритма Форда-Сиди. Брезински и Редиво Дзалья [7] вывели оба алгоритма, используя операторы аннигиляции разностей, и установили связи между ними.

Далее покажем, что *E*-алгоритм и алгоритм Форда-Сиди математически эквивалентны в следующем смысле: оба алгоритма вычисляют одни и те же величины, но разными способами, и рекуррентные соотношения *E*-алгоритма могут быть выведены из соотношений алгоритма Форда-Сиди, и наоборот. Также предложим эффективную реализацию алгоритма Форда-Сиди, которая немного экономичнее оригинальной.

E-алгоритм

Пусть $S=(S_n)$ - любая последовательность, которую нужно преобразовать, а $(g_j(n)), j=1,2\dots$ - любые вспомогательные последовательности. Обозначим 1 как постоянную последовательность с $1_n=1$ для $n=0,1,\dots$ Предположим, что все знаменатели ненулевые.

E-алгоритм определяется следующим образом. Для n=0, 1, ... величины $E_k^{(n)}$ и $g_{k,j}^{(n)}$ определяются как

$$E_0^{(n)} = S_n,$$

$$g_{0,j}^{(n)} = g_j(n),$$

$$j = 1, 2, ...,$$

$$E_{k-1}^{(n)} g_{k-1,k}^{(n+1)} - E_k^{(n+1)} g_{k-1,k}^{(n)}, k = 1, 2...$$

$$E_k^{(n)} = \frac{E_{k-1}^{(n)} g_{k-1,k}^{(n+1)} - E_k^{(n+1)} g_{k-1,k}^{(n)}}{g_{k-1,k}^{(n+1)} - g_{k-1,k}^{(n)}}, k = 1, 2, ...,$$
(3)

$$g_{k,j}^{(n)} = \frac{g_{k-1,j}^{(n)} g_{k-1,k}^{(n+1)} - g_{k-1,j}^{(n+1)} g_{k-1,k}^{(n)}}{g_{k-1,k}^{(n+1)} - g_{k-1,k}^{(n)}}, k = 1, 2, ...,$$

$$(4)$$

$$j = k + 1,$$

Рекуррентные соотношения (3) и (4) называются основным правилом и вспомогательным правилом E-алгоритма соответственно. Брезински [3] доказал следующую теорему с использованием тождества детерминантов Сильвестра.

 $\underline{\mathit{Teopema}\ \mathit{1}}$: для n=0,1, ..., и k=1,2, ... , $E_k^{(n)}$ и $g_{k,i}^{(n)}$ представляются как

$$E_k^{(n)} = \frac{\begin{vmatrix} S_n & \dots & S_{n+k} \\ g_1(n) & \dots & g_1(n+k) \\ \vdots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}}{\begin{vmatrix} 1 & \dots & 1 \\ g_1(n) & \dots & g_1(n+k) \\ \dots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}},$$

$$g_{k,j}^{(n)} = \frac{\begin{vmatrix} g_j(n) & \dots & g_j(n+k) \\ g_1(n) & \dots & g_1(n+k) \\ \vdots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}}{\begin{vmatrix} 1 & \dots & 1 \\ g_1(n) & \dots & g_1(n+k) \\ \dots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}}, \qquad j > k.$$

соответственно.

Если положить $c_k^{(n)}=g_{k-1,k}^{(n)}/(g_{k-1,k}^{(n+1)}-g_{k-1,k}^{(n)})$, то (3) и (4) становятся

$$E_k^{(n)} = E_{k-1}^{(n)} - c_k^{(n)} (E_{k-1}^{(n+1)} - E_{k-1}^{(n)}), \qquad k > 0,$$
(5)

$$g_{k,j}^{(n)} = g_{k-1,j}^{(n)} - c_k^{(n)} (g_{k-1,j}^{(n+1)} - g_{k-1,j}^{(n)}), \qquad k > 0, \qquad j > k,$$
(6)

соответственно.

Для заданных $S_0, ..., S_N$ вычисление $E_k^{(n-k)}, 0 \le N, 0 \le k \le n$, требует $\frac{1}{3}N^3 + O(N^2)$ операций. Количество операций для E-алгоритма, как упомянуто в [3], составляет $\frac{5}{3}N^3 + O(N^2)$, в то время как с использованием (5) и (6) оно становится $N^3 + O(N^2)$. Более точно, последнее равно $N^3 + \frac{5}{2}N^2 + \frac{3}{2}N$.

Отметим, что Форд и Сиди [1] реализовали Е-алгоритм, переписав его в формах

$$E_k^{(n)} = \frac{E_{k-1}^{(n+1)} - c_k^{(n)} E_{k-1}^{(n)}}{d_{\nu}^{(n)}}, \qquad k > 0,$$
(7)

$$g_{k,j}^{(n)} = \frac{g_{k-1,j}^{(n+1)} - c_k^{(n)} g_{k-1,j}^{(n)}}{d_k^{(n)}}, \qquad k > 0, \qquad j > k,$$
(8)

где
$$c_k^{(n)} = g_{k-1,k}^{(n+1)}/g_{k-1,k}^{(n)}$$
, а $d_k^{(n)} = 1 - c_k^{(n)}$.

Реализация с использованием (7) и (8) требует точно такого же количества арифметических операций, как и с использованием (5) и (6). Однако можно избежать потери значимых цифр, используя (5) и (6).

Алгоритм Форда-Сиди

Алгоритм Форда-Сиди определяется следующим образом. Пусть $u=(u_n)$ - одна из последовательностей $S=(S_n)$ или $g_j=\left(g_j(n)\right)$. Величины $\psi_k^{(n)}(u)$ определяются как

$$\psi_0^{(n)}(u) = \frac{u_n}{g_1(n)},\tag{9}$$

$$\psi_k^{(n)}(u) = \frac{\psi_{k-1}^{(n+1)}(u) - \psi_{k-1}^{(n)}(u)}{\psi_{k-1}^{(n+1)}(g_{k+1}) - \psi_{k-1}^{(n)}(g_{k+1})}, \qquad k > 0.$$
(10)

Форд и Сиди [1] доказали следующую теорему с использованием тождества детерминантов Сильвестра следующим образом.

Пусть

$$f_N^j(u) = \begin{vmatrix} g_1(j) & \dots & g_N(j) & u(j) \\ g_1(j+1) & \dots & g_N(j+1) & u(j+1) \\ \vdots & \ddots & \vdots & \vdots \\ g_N(j+N-1) & \dots & g_N(j+N-1) & u(j+N-1) \end{vmatrix},$$
(11)

$$G_p^j = \begin{vmatrix} g_1(j) & \dots & g_p(j) \\ \vdots & \ddots & \vdots \\ g_1(j+p-1) & \dots & g_p(j+p-1) \end{vmatrix}.$$
 (12)

При этом (2) можно представить в виде:

$$T_k^{(n)} = \frac{f_k^{(n)}(u)}{f_k^{(n)}(g)}. (13)$$

Определим:

$$\psi_p^j(u) = \frac{f_p^j(u)}{G_{p+1}^j}. (14)$$

Следовательно, можно выразить (13) в виде

$$T_k^{(n)} = \frac{\psi_k^{(n)}(S)G_{k+1}^{(n)}}{\psi_k^{(n)}(1)G_{k+1}^{(n)}} = \frac{\psi_k^{(n)}(S)}{\psi_k^{(n)}(1)}.$$
 (15)

Заметим, что $f_p^{\ j}(u)$ и $G_{p+1}^{\ j}$ с точки зрения определителя отличаются лишь последним столбцом, поэтому будет естественно вывести соотношение между ними. Для этого воспользуемся теоремой Сильвестра.

 $\underline{Teopema~2~(meopema~Cuльвестра)}$: пусть C — матрица, $C_{\rho\sigma}$ - матрица, получаемая из C путем удаления строки ρ и столбца σ , $C_{\rho\rho'\sigma\sigma'}$ - матрица, получаемая из C путем удаления строк ρ и ρ' и столбцов σ и σ' , $\rho<\rho'$, $\sigma<\sigma'$

Тогда

$$\det C \det C_{\rho\rho'\sigma\sigma'} = \det C_{\rho\sigma} \det C_{\rho'\sigma'} - \det C_{\rho\sigma'} \det C_{\rho'\sigma}. \tag{16}$$

При этом, если C – матрица 2×2 , то $\det C_{\rho\rho'\sigma\sigma'} = 1$.

Если применить данную теорему к $f_p^j(u)$ размером $(p+1)\times(p+1)$ при $\rho=1$, $\sigma=p,\sigma'=\rho'=p+1$ то получим:

$$\det C \det C_{\rho\rho'\sigma\sigma'} = \det C_{\rho\sigma} \det C_{\rho'\sigma'} - \det C_{\rho\sigma'} \det C_{\rho'\sigma}. \tag{17}$$

Тогда можем получить следующее соотношение:

$$f_p^j(u)G_{p-1}^{j+1} = f_{p-1}^{j+1}(u)G_p^j - f_{p-1}^j(u)G_p^{j+1}.$$
 (18)

Пусть:

$$D_p^j = \frac{G_{p+1}^j G_{p-1}^{j+1}}{G_p^j G_p^{j+1}}. (19)$$

Тогда из (18) и (19) можно выразить

$$\psi_p^j(u) = \frac{\left[\psi_{p-1}^{j+1}(u) - \psi_{p-1}^j(u)\right]}{D_p^j}.$$
 (20)

Из (16) и (20) можем видеть, что $\psi_k^{(n)}(u)$ и $T_k^{(n)}$ могут быть вычислены рекурсивно. Следовательно, задача сводится к эффективному вычислению $D_p^{(j)}$. При этом учитывая отсутствия конкретных данных о $g_i(n)$, учитывая, что $G_{p+1}^{(j)} = f_p^{(j)}(g_{p+1})$ согласно (4) и (5) можем сделать вывод, что:

$$\psi_p^j(g_{p+1}) = 1. (21)$$

Из этого можем выразить:

$$D_n^{(j)} = \psi_{n-1}^{(j+1)}(g_{n+1}) - \psi_{n-1}^{(j)}(g_{n+1}). \tag{22}$$

Из чего следует, что

$$\psi_p^{(n)}(u) = \frac{\psi_{p-1}^{(n+1)}(u) - \psi_{p-1}^{(n)}(u)}{\psi_{p-1}^{(n+1)}(g_{k+1}) - \psi_{p-1}^{(n)}(g_{k+1})}.$$
(23)

То есть (15) и (23) позволяет рекурсивно решить поставленную задачу экстраполяции.

Рассмотрим непосредственно сам алгоритм:

1) Для j = 0, 1 ... вычислим:

$$\psi_0^{(j)}(s) = \frac{s(j)}{g_1(j)}, \psi_0^{(j)}(1) = \frac{1}{g_1(j)}, \psi_0^{(j)}(g_k) = g_k, k = 2, 3 \dots$$

2) Для j=0,1,... и p=1,2,... вычислим

$$D_p^{(j)} = \psi_{p-1}^{(j+1)}(g_{p+1}) - \psi_{p-1}^{(j)}(g_{p+1}).$$

А также вычислим

$$\psi_p^{(j)}(u)$$
 при $u=s,u=1,u=g_k,k=p+2,p+3$
$$\psi_p^{(j)}(u)=\frac{\psi_{p-1}^{(j+1)}(u)-\psi_{p-1}^{(j)}(u)}{D_p^{(j)}}.$$

И, соответственно, вычислим:

$$T_k^{(n)} = \frac{\psi_k^{(n)}(S)}{\psi_k^{(n)}(1)}.$$

Процесс вычисления $\psi_p^{(j)}(u)$ можно представить следующим образом:

$\psi_0^{(0)}(u)$			
$\psi_0^{(1)}(u)$	$\psi_1^{(0)}(u)$		
:	•	·.	
$\psi_0^{(L)}(u)$	$\psi_1^{(L-1)}(u)$		$\psi_L^{(0)}(u)$

Таблица 1. Представление массива $\psi_p^{(j)}(u)$

Замечание. Несмотря на кажущуюся необходимость в вычислении g_{L+1} , для вычисления каждого $T_p^{(j)}$, $0 \le j+p \le L$, на практике, это нужно только для $D_L^{(0)}$, чтобы затем вычислить $\psi_L^{(0)}(S)$ и $\psi_L^{(0)}(1)$, и, соответственно, $T_L^{(0)}$. Однако, как было отмечено в [6], на практике этих вычислений можно избежать, вычислив $T_n^{(0)}$, n=1,2,... по формуле:

$$T_k^{(0)} = \frac{\psi_{k-1}^{(1)}(S) - \psi_{k-1}^{(0)}(S)}{\psi_{k-1}^{(1)}(1) - \psi_{k-1}^{(0)}(1)}.$$
 (24)

 $\underline{\textit{Теорема 3}}$: для n=0,1 ..., и k=1,2 ... , $\psi_k^{(n)}(u)$ представляются как

$$\psi_k^{(n)}(u) = \frac{\begin{vmatrix} u_n & \dots & u_{n+k} \\ g_1(n) & \dots & g_1(n+k) \\ \vdots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}}{\begin{vmatrix} g_{k+1}(n) & \dots & g_{k+1}(n+k) \\ g_1(n) & \dots & g_1(n+k) \\ \dots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix}}.$$

Следовательно, по теоремам 1 и 3, $T_k^{(n)}$ можно вычислить как

$$T_k^{(n)} = \frac{\psi_k^{(n)}(S)}{\psi_k^{(n)}(1)}. (25)$$

Следуя реализации Форда и Сиди [1], вычисление $T_k^{(n-k)}$, $0 \le n \le N$, $0 \le k \le n$, требует $\frac{1}{3}N^3 + \frac{3}{2}N^2 + \frac{7}{6}N$ вычитаний и $\frac{1}{3}N^3 + \frac{5}{2}N^2 + \frac{25}{6}N + 2$ делений, всего $\frac{2}{3}N^3 + 4N^2 + \frac{16}{3}N + 2$ арифметических операций. Псевдокод для алгоритма Форда-Сиди представлен на $\underline{Pucyhke\ 1}$, а пример его применения представлен на $\underline{Pucyhke\ 2}$.

Вход: последовательность S_n (1), вспомогательные последовательности $g_j(n)$, j=1,2..., максимальный порядок экстраполяции K, количество используемых членов последовательности N

Выход: $T_k^{(n)}$ (13)

Получить S_n , $g_i(n)$, K, N

#Инициализация (аналогично (9)):

for *j* от 0 до *N*:

$$\psi_0^{(j)}(S) = \frac{S_j}{g_1(j)}, \psi_0^{(j)}(1) = \frac{1}{g_1(j)}$$

for k = 2.3 ...:

$$\psi_0^{(j)}(g_k) = g_k(j)$$

#Рекурсивное вычисление (аналогично (20))

for *p* от 1 до *N*:

for j от 0 до N - p:

Вычислить $D_p^{(j)} # (22)$

Для всех последовательностей $u \in \{S, 1, g_{k+2}, \dots, g_{k+1}\}$:

Вычислить $\psi_k^n(u)$ (аналогично (20)) #**Теорема 2**

for *k* от 1 до *N*:

for n от 0 до N - k:

Вычислить $T_k^{(n)}$ #<u>15</u>

return $T_k^{(n)}$

Рисунок 1. Псевдокод для алгоритма Форда-Сиди.

Вход:
$$S_n = \sum_{i=1}^n \frac{(-1)^i}{(i+1)^2}, g_j(n) = \frac{1}{(n+1)^j}, K = 3, N = 8$$

Выход: $T_k^{(n)} = 0.7311$

Рисунок 2. Пример применения алгоритма Форда-Сиди.

Замечание. (1) Алгоритм Форда-Сиди требует g_{k+1} для вычисления $\psi_k^{(n)}$. Однако для вычисления $T_k^{(n)}$ алгоритм Форда-Сиди не требует g_{k+1} . Причина кроется в следующем: пусть a_1,\dots,a_{k+1} - любая последовательность, такая что

$$\begin{vmatrix} a_1 & \dots & a_{k+1} \\ g_1(n) & \dots & g_1(n+k) \\ \vdots & \ddots & \vdots \\ g_k(n) & \dots & g_k(n+k) \end{vmatrix} \neq 0.$$

Пусть

$$\bar{\psi}_{k}^{(n)}(u) = \frac{\begin{vmatrix} u_{1} & \dots & u_{k+1} \\ g_{1}(n) & \dots & g_{1}(n+k) \\ \vdots & \ddots & \vdots \\ g_{k}(n) & \dots & g_{k}(n+k) \end{vmatrix}}{\begin{vmatrix} a_{1} & \dots & a_{k+1} \\ g_{1}(n) & \dots & g_{1}(n+k) \\ \vdots & \ddots & \vdots \\ g_{k}(n) & \dots & g_{k}(n+k) \end{vmatrix}}.$$

Тогда из (25) следует

$$T_k^{(n)} = \frac{\bar{\psi}_k^{(n)}(S)}{\bar{\psi}_k^{(n)}(1)}.$$

Используя этот прием, когда заданы $S_0,\dots,S_N,g_1,\dots,g_N,$ можно определить все $T_k^{(n)}$, $0\leq n+k\leq N,$ с помощью алгоритма Форда-Сиди.

(2) Более того, ни значение g_{k+1} , ни последовательность a_1 , ..., a_{k+1} не требуются для вычисления $T_k^{(n)}$, когда используется

$$T_k^{(n)} = \frac{\psi_{k-1}^{(n+1)}(S) - \psi_{k-1}^{(n)}(S)}{\psi_{k-1}^{(n+1)}(1) - \psi_{k-1}^{(n)}(1)},$$

что выводится из (10) и (25). Реализация этого факта и есть эффективный алгоритм Форда-Сиди, которая будет описана позже.

Вывод алгоритма Форда-Сиди из Е-алгоритма

Пусть $u=(u_n)$ – любая последовательность. Предположим, что преобразованная последовательность E_k : ли $u=(u_n)\mapsto =E_k(u)=(E_k^{(n)}(u))$ определены как

$$E_0^{(n)} = u_n, (26)$$

$$E_k^{(n)}(u) = \frac{E_{k-1}^{(n)}(u)E_{k-1}^{(n+1)}(g_k) - E_{k-1}^{(n+1)}(u)E_{k-1}^{(n)}(g_k)}{E_{k-1}^{(n+1)}(g_k) - E_{k-1}^{(n)}(g_k)},$$
(27)

k > 0.

Предположим, что преобразования последовательностей ψ_k : $u=(u_n)\mapsto \psi_k(u)$ =($\psi_k^{(n)}(u)$) определены как

$$\psi_k^{(n)}(u) = \frac{E_k^{(n)}(u)}{E_k^{(n)}(g_{k+1})}, \qquad k = 0,1,\dots.$$
 (28)

 $\underline{\textit{Теорема 4}}$: величины $\psi_k^{(n)}(u)$, определенные (28), удовлетворяют (9) и (10).

Доказательство. Из (26) и (28) следует, что $\psi_0^{(n)}(u)=u_n/g_1(n)$. Используя математическую индукцию по k, легко доказать, что $E_k^{(n)}(1)=1$. Таким образом, имеем

$$\psi_k^{(n)}(1) = \frac{1}{E_k^{(n)}(g_{k+1})}, \qquad k = 0,1 \dots$$
 (29)

Из (28) следует

$$\psi_k^{(n)}(g_j) = \frac{E_k^{(n)}(g_j)}{E_k^{(n)}(g_{k+1})}, \qquad k = 0, 1 \dots; \qquad j = k+1, k+2, \dots$$
 (30)

Из (27) и (30) получаем

$$\psi_{k-1}^{(n+1)}(g_{k+1}) - \psi_{k-1}^{(n)}(g_{k+1}) = \frac{E_{k-1}^{(n+1)}(g_{k+1})}{E_{k-1}^{(n+1)}(g_k)} - \frac{E_{k-1}^{(n)}(g_{k+1})}{E_{k-1}^{(n)}(g_k)} =$$

$$= \frac{E_{k-1}^{(n)}(g_{k+1})E_{k-1}^{(n+1)}(g_k) - E_{k-1}^{(n+1)}(g_{k+1})E_{k-1}^{(n)}(g_k)}{E_{k-1}^{(n+1)}(g_k) - E_{k-1}^{(n)}(g_k)} = \frac{E_{k-1}^{(n)}(g_{k+1})E_{k-1}^{(n)}(g_k) - E_{k-1}^{(n+1)}(g_k)}{E_{k-1}^{(n+1)}(g_k)E_{k-1}^{(n)}(g_k)} =$$

$$= E_k^{(n)}(g_{k+1}) \left(\frac{1}{E_{k-1}^{(n+1)}(g_k)} - \frac{1}{E_{k-1}^{(n)}(g_k)} \right). \tag{31}$$

Разделив обе части (13) на $E_k^{(n)}(g_{k+1})$, получаем

$$\frac{E_{k}^{(n)}(u)}{E_{k}^{(n)}(g_{k+1})} = \frac{\frac{E_{k-1}^{(n)}(u)}{E_{k-1}^{(n)}(g_{k})} - \frac{E_{k-1}^{(n+1)}(u)}{E_{k-1}^{(n+1)}(g_{k})}}{E_{k}^{(n)}(g_{k+1}) \left(\frac{1}{E_{k-1}^{(n)}(g_{k})} - \frac{1}{E_{k-1}^{(n+1)}(g_{k})}\right)},$$

следовательно, из (14) и (17) получаем

$$\psi_k^{(n)}(u) = \frac{\psi_{k-1}^{(n+1)}(u) - \psi_{k-1}^{(n)}(u)}{\psi_{k-1}^{(n+1)}(g_{k+1}) - \psi_{k-1}^{(n)}(g_{k+1})}.$$

Отметим, что Брезински и Редиво Залья [7] вывели соотношения (28)-(30) из своих определений $E_k^{(n)}(u)$ и $\psi_k^{(n)}(u)$.

Вывод Е-алгоритма из алгоритма Форда-Сиди

Предположим, что преобразования последовательностей ψ_k удовлетворяют (9) и (10) для любой последовательности $u=(u_n)$. Пусть преобразования последовательностей E_k определены как

$$E_k^{(n)}(u) = \frac{\psi_k^{(n)}(u)}{\psi_k^{(n)}(1)}. (32)$$

 $\underline{\textit{Теорема 5}}$: $E_k^{(n)}(u)$, определенные (32), удовлетворяют (26) и (27).

Доказательство. Из (10), имеем

$$\psi_k^{(n)}(g_{k+1}) = 1.$$

Следовательно, по определению (32), получаем

$$E_k^{(n)}(g_{k+1}) = \frac{1}{\psi_k^{(n)}(1)}. (33)$$

Из (32) и (10) следует

$$E_{k}^{(n)}(u) = \frac{\psi_{k}^{(n)}(u)}{\psi_{k}^{(n)}(1)} = \frac{\psi_{k-1}^{(n+1)}(u) - \psi_{k-1}^{(n)}(u)}{\psi_{k-1}^{(n+1)}(1) - \psi_{k-1}^{(n)}(1)} =$$

$$= \frac{\frac{E_{k-1}^{(n+1)}(u)}{E_{k-1}^{(n+1)}(g_{k})} - \frac{E_{k-1}^{(n)}(u)}{E_{k-1}^{(n)}(g_{k})} =$$

$$= \frac{E_{k-1}^{(n+1)}(g_{k})E_{k-1}^{(n)}(u) - E_{k-1}^{(n)}(g_{k})E_{k-1}^{(n+1)}(u)}{E_{k-1}^{(n+1)}(g_{k}) - E_{k-1}^{(n)}(g_{k})}.$$

Следовательно, по теоремам 4 и 5, считаем, что E-алгоритм и алгоритм Форда-Сиди математически эквивалентны.

Эффективная реализация для алгоритма Форда-Сиди

Пусть $\psi_k^{(n)}(u)$ определены (9) и (10). Из (25) и (10) следует, что $T_k^{(n)}$ в уравнении (2) представляется как

$$T_k^{(n)} = \frac{\psi_k^{(n)}(S) - \psi_{k-1}^{(n)}(S)}{\psi_k^{(n)}(1) - \psi_{k-1}^{(n)}(1)}, \qquad k > 0.$$
(34)

Вычисление $T_k^{(n-k)}$, $0 \le n \le N$, $0 \le k \le n$ с использованием эффективной реализации для алгоритма Форда-Сиди требует $\frac{1}{3}N^3 + N^2 + \frac{2}{3}N$ вычитаний и $\frac{1}{3}N^3 + 2N^2 + \frac{8}{3}N$ делений, всего $\frac{2}{3}N^3 + 3N^2 + \frac{10}{3}N$ арифметических операций. Хотя количество операций предложенного метода и алгоритма Форда-Сиди асимптотически равны, предложенный метод немного более экономичен, чем алгоритм Форда-Сиди.

Предположим, что ускорение сходимость обычной последовательности происходит с помощью подходящего метода, такого как u-преобразование Левина в двойной точности, и что $T_N^{(0)}$ - оптимальное экстраполированное значение. Тогда обычно $10 \le N \le 20$. (см., например, [8, 9].) Таким образом, предложенный метод на практике на 6-11% более экономичен, чем алгоритм Форда-Сиди. Псевдокод для эффективной реализации алгоритма Форда-Сиди представлен на $\underline{Pucyнкe}\ 3$, а пример её применения представлен на $\underline{Pucyнke}\ 4$.

Вход: (аналогично канонической форме алгоритма)

Выход: $T_k^{(n)}$ (34)

Получить S_n , $g_i(n)$, K, N

#Инициализация (аналогично канонической форме алгоритма):

#Прямое вычисление $T_k^{(n)}$ (34)

for *k* от 1 до *K*:

for n от 0 до N - k:

Вычислить числитель #34

Вычислить знаменатель #34

Вычислить $T_k^{(n)}$ = числитель / знаменатель

return $T_k^{(n)}$

Рисунок 3. Псевдокод для эффективной реализации алгоритма Форда-Сиди.

Вход:
$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k!+1}$$
, $g_j(n) = \frac{1}{(n!)^j}$, $K = 2$, $N = 6$

Выход: $T_k^{(n)} = 0.403652$

<u>Рисунок 4</u>. Пример применения эффективной реализации алгоритма Форда-Сиди.

Заключение

В данной работе были рассмотрены E-алгоритм и алгоритм Форда-Сиди, выведена его рекуррентная формула, а также была доказана математическая эквивалентность алгоритма Форда-Сиди и E-алгоритма. Также была предложена эффективная реализация алгоритма Форда-Сиди, которая немного экономичнее оригинальной.

Список литературы

- 1. An Algorithm for a Generalization of the Richardson Extrapolation Process // SIAM J. Numer. Anal. 24 (5) // W. F. Ford, A. Sidi 1987. P. 1212–1232.
- 2. Some Properties of a Generalization of the Richardson Extrapolation Process // Journal of Computational and Applied Mathematics // A. Sidi. 1979. P. 327-346.
- 3. A general extrapolation algorithm // Numer. Math. 35 // C. Brezinski. 1980. P. 175–187.
- 4. Generalized neville type extrapolation schemes // BIT 19 // T. Håvie. 1979. P. 204–213.
- 5. Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfällen // Numer. Math. 24 // C. Schneider. 1975. P. 177– 184.
- 6. The E-algorithm and the Ford–Sidi algorithm // Journal of computational and applied mathematics 122 (1) // N. Osada. 2000. P. 223-230.
- 7. A general extrapolation procedure revisited // Adv. Comput. Math. 2 // C. Brezinski, M. Redivo Zaglia. 1994. P. 461-477.
- 8. Acceleration of linear and logarithmic sequence // SIAM J. Numer. Anal, 16 (2) // D.A. Smith, W.F. Ford. 1979. P. 223–240.
- 9. Extrapolation Methods, Theory and Practice // // C. Brezinski, M. Redivo Zaglia. 1991.