Best model's parameters

- learning rate 0.001
- epochs 100
- layers
 - conv1.weight torch.Size([6, 3, 5, 5])
 - conv1.bias torch.Size([6])
 - conv2.weight torch.Size([16, 6, 5, 5])
 - conv2.bias torch.Size([16])
 - fc1.weight torch.Size([120, 400])
 - fc1.bias torch.Size([120])
 - fc2.weight torch.Size([84, 120])
 - fc2.bias torch.Size([84])
 - out.weight torch.Size([10, 84])
 - out.bias torch.Size([10])
- Process of learning

Confusion matrix

ENet - A deep neural architecture for real-time semantic segmentation

Overview

ENet (Efficient Neural Network) gives the ability to perform pixel-wise semantic segmentation in real-time. ENet is upto 18x faster, requires 75x less FLOPs, has 79x less parameters and provides similar or better accuracy to existing models. Tested on CamVid, CityScapes and SUN datasets.

• architecture in the pictures below

Table 1: ENet architecture. Output sizes are given for an example input of 512×512 .

Name	Type	Output size
initial		$16 \times 256 \times 256$
bottleneck1.0	downsampling	$64 \times 128 \times 128$
$4 \times bottleneck1.x$		$64 \times 128 \times 128$
bottleneck2.0	downsampling	$128 \times 64 \times 64$
bottleneck2.1		$128 \times 64 \times 64$
bottleneck2.2	dilated 2	$128 \times 64 \times 64$
bottleneck2.3	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.4	dilated 4	$128 \times 64 \times 64$
bottleneck2.5		$128 \times 64 \times 64$
bottleneck2.6	dilated 8	$128 \times 64 \times 64$
bottleneck2.7	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.8	dilated 16	$128\times64\times64$
Repeat section 2	, without bottlened	k2.0
bottleneck4.0	upsampling	$64 \times 128 \times 128$
bottleneck4.1		$64 \times 128 \times 128$
bottleneck4.2		$64 \times 128 \times 128$
bottleneck5.0	upsampling	$16 \times 256 \times 256$
bottleneck5.1		$16\times256\times256$
fullconv		$C \times 512 \times 512$

Figure 2: (a) ENet initial block. MaxPooling is performed with non-overlapping 2×2 windows, and the convolution has 13 filters, which sums up to 16 feature maps after concatenation. This is heavily inspired by [28]. (b) ENet bottleneck module. conv is either a regular, dilated, or full convolution (also known as deconvolution) with 3×3 filters, or a 5×5 convolution decomposed into two asymmetric ones.

The visual representation of:

- The initial Block is the one shown in (a)
- And the bottleneck blocks are shown in (b)

Each bottleneck module consists of:

- 1x1 projection that reduces the dimensionality
- A main convolution layer (conv) (either regular, dilated or full) (3x3)
- 1x1 expansion
- and they place Batch Normalization and PReLU between all convolutional layers.
- If the bottleneck is downsampling, a max pooling layer is added to the main branch. Also, the first 1x1 projection is replaced with 2x2 convolution with stride=2.
- The zero pad the activations to match the number of feature maps.
- The conv is sometimes asymmetric convolution i.e. a sequence of 5 * 1 and 1 * 5 convolutions.
- For the regularizer they use Spatial Dropout
 - with p = 0.01 before bottleneck2.0
 - \circ with p = 0.1 afterwards
- Stage 1, 2, 3 the encoder consists of 5 bottleneck blocks (with exception that Stage 3 doesn't downsample).
- Stage 4, 5- the decoder Stage 4 contains 3 bottlenecks and Stage 5 contains 2 bottlenecks

- \bullet Followed by a fullconv which outputs the final output with dimension C * 512 * 512 , where C is the number of filters.
- A few more facts
 - They didn't use bias terms in any of the projections
 - Between each convolutional layer and activation, they use Batch Normalization
 - In decoder, MaxPooling is replaced with MaxUnpooling
 - In decoder, Padding is replaced with Spatial Convolution without bias
 - No use of pooling indices in the last(5.0) upsampling module
 - The last module of the network is a bare full convolution, which alone takes up a sizeable portion of the decoder of processing time.
 - \circ Each side branch has a Spatial Dropout with p = 0.01 for Stage 1 and p = 0.1 for stages afterwards.