Reducción de Dimensiones

75.06 - Organización de Datos Octubre 2018

Motivación

- Combatir la maldición de la dimensionalidad.
 - Para poder estudiar si un algoritmo mejora o empeora cambiando la dimensión de los datos.

- Performance

- Poder usar un algoritmo inviable con nuestro set de datos por la cantidad de dimensiones que tiene
- Adaptarlo por limitaciones de recursos (disco, memoria).

Motivación

Mecanismo de Feature Engineering

- Reducir el nuevo set de datos filtrando features ruidosos y devolviendo un set con una menor cantidad de ruido.
- Estos features pueden agregarse a los otros, aumentando el nivel de señal de los datos.

Motivación

Visualización de Datos

- Cerebro Humano entrenado para poder entender datos en dos dimensiones y tres (en menor medida).
- Uso de algoritmos para llevarlos a estas representaciones
 - Manifold Learning

De 2D a 1D.

Dado un set de datos o features en los que x1 y x2 representan cm y pulgadas.

De 2D a 1D.

Nos gustaria encontrar esta línea/recta a la que todos los datos parecen estar muy cerca y proyectar los mismos sobre ella.

De 2D a 1D.

Al realizar la proyección sobre esa recta, obtendremos un nuevo feature z1, que estaría representado por un único valor (la posición en la recta), reduciendo las dimensiones de 2D a 1D.

Conceptualmente es similar proyectando sobre un plano.

SVD (Singular Value Decomposition)

Sea $A \in \Re^{mxn}$ de rango r, existen $U \in \Re^{mxm}$ unitaria, $V \in \Re^{nxn}$ unitaria y $\Sigma \in \Re^{mxn}$ tal que: $A = U\Sigma V^T$

 Σ es una matriz diagonal donde cada elemento $\sigma_i = \sqrt{\lambda_i}$ siendo λ_i los autovalores de A^TA ordenados de forma desc.

V son los autovectores de A^TA asociados a los λ_i U se puede despejar en función de las otras dos

SVD. Ejemplo

$$A = U\Sigma V^{T} = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 9 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

Se puede notar que la última columna de la matriz de autovalores no agrega ningún valor. Podemos simplemente quitarla y también quitar la última fila de Vt, obteniendo una SVD reducida de A:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 9 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 9 & 0 \end{pmatrix}$$

SVD. Geometría

Los autovalores son los que estiran la elipse

V y U se comportan como matrices de rotación

SVD: Aproximación de Rango k

- La idea es quedarnos con los k autovalores no nulos, siendo k < rango(A). (Si k = rango(A) aún podemos reconstruir la matriz original)
- Sabemos que los vectores de V están ordenados según su importancia.
- Podemos tomar los k primeros vectores para representar los datos.

La SVD nos da la mejor aproximación de rango k posible a la matriz original

Dimensión intrínseca de los Datos

- La clave es ∑ que contiene los valores singulares ordenado de mayor a menor.
- Podemos calcular la energía que conservamos usando los k valores singulares más significativos:

 \sum (valores singulares)²

Dimensión intrínseca de los Datos

- Visualmente también podemos graficar los valores singulares e identificar para qué valor de k hace un codo.
- En el ejemplo tendríamos que probar con k=3 a 5

Figure 9.3: Valores Singulares de A

PCA

 Puede ser vista como una rotación del espacio, para encontrar un eje que mejor exprese la variabilidad de los datos.

PCA y SVD buscan preservar la varianza de los datos

En qué consiste el método:

- Centrar la matriz X restando a cada columna su promedio
- Calcular la matriz de Covarianza:

$$cov(X) = \frac{1}{n-1}X^tX$$

 Calcular autovalores y Autovectores de la matriz de Covarianza

MDS (Multidimensional Scaling)

Contamos con una matriz de distancias

- Buscamos obtener las coordenadas que respeten esas

distancias

D -> Distancias

X -> puntos que queremos conocer

MDS

En qué consiste el método:

- Partimos de la matriz de distancias
- Elevamos la matriz de distancias al cuadrado
- Centramos la matriz para que tanto filas como columnas tengan promedio cero
- Calculamos la SVD de la matriz
- Las primeras q columnas de U nos dan las coordenadas de nuestros puntos (en q dimensiones)

NO LINEAL

ISOMAP

- Partimos de la construcción de un grafo no dirigido
 - Cada punto estará conectado con los k vecinos mas cercanos (KNN)
- Calculamos las distancias (Floyd-Warshall)
- Utilizamos MDS para obtener una representación en dos (o tres) dimensiones

T-SNE

 Partimos calculando la probabilidad de que un punto sea vecino de otro

 Buscaremos que, si dos puntos son cercanos en el espacio original, lo sean también en el reducido

T-SNE

- Probabilidad de que un punto sea cercano a otro:

$$p_{i|j} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k|| / 2\sigma_i^2)}$$

- Probabilidad de que dos puntos en el espacio original sean cercanos: $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$

- Probabilidad de que dos puntos mapeados en el nuevo espacio sean cercanos:

$$q_{ij} = \frac{(1+||y_i-y_j||^2)-1}{\sum_{k\neq i} (1+||y_k-y_i||^2)-1}$$

T-SNE

T-SNE busca que los puntos que estaban cerca, sigan cerca.

- Buscamos que puntos que originalmente estaban cerca, sigan cerca en el nuevo espacio (si pij es un valor cercano a 1 entonces qij sea un valor cercano a 1 y si pij es un valor cercano a cero entonces qij puede quedar libre)
- Utilizaremos la divergencia de Kullback-Leibler:

$$KL(P||Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Buscamos minimizarla.

Teorema fundamental de la dimensionalidad

No siempre es conveniente reducir la dimensionalidad de un set de datos