l metodo di Venton Problema: Pisablene f(x) = 0. I dec : linea raisons il problema Vicins als solutione. Consideriamo X'01 vieno a X 7eno pen 2, e seniviamo il polinemis di Taylon: $f(x) = f(x^{(0)}) + f(x^{(0)})(x - x^{(0)}) +$ $+\Theta((X-X^{(0)}))$ resto

Trosenciamo il nesto risalliams $\begin{cases}
\begin{pmatrix} x(0) \\ + \end{pmatrix} \\
\end{pmatrix} \begin{pmatrix} x(0) \\ (x - x(0)) \\
\end{pmatrix} = 0$ nispetto a x, se f(x(0)) 70. Denotiamo la Solutione con $\times^{(1)}: \times^{(1)} = \times^{(0)} - \frac{1}{2} (\times^{(0)})$ Procediamo anologomente pur ottenere × (2) × (3),... Questo mocedimento ha la seguente interpretatione geometries.

Considuians il polineurs di laylor di grado 1 di f con d'fogrange entrots in Valutato in X zero pen } $f(x) = f(x^{(k)}) + f(x^{(k)})(x - x^{(k)}) +$ $+\frac{1}{2}$ (C(K)), con c(K) new intervals d'estremi $\propto x \times (K)$ L(x) = 0, dividendo pen Essendo e mongonitato : l'enmin: $\frac{1}{x} = \frac{1}{x} \frac{1}{x} \frac{1}{x} = \frac{1}{x} \frac{1}{x}$

De eni segue $\times^{(K+1)} - \lambda = \frac{1}{2} \frac{1}$ C'o suggensce du se il fattore f(c(x)) si montieme l'autoto per <-> + 00, le succ. rue × (K) convergne a x, e la convergençe sorà d'emens quadratica Formet si ano l'ide: Thorema (d'Onvergeuse del metodo d Newton). Se f: I -> IR devidable 2 volte in I intonno di &, e sions f, f', f'' continue in I. Le & Aero sempliee par $f\left(f(x)=0, f(x)\neq 0\right)$.

Δι					(@	P)	_	6	00.	2,	7		+				
			St									Mi	m 13				
V			Q														
		×	K+1)	= ×	(K)	_	7(X _{(K,})		ا ر	< >	0				
								_	£ (>	ζ ^(Κ))							
Co	n Ve	roj	L	0	C	L	Ċ	D M	(). <i>q</i>	J. (<u>.</u>	OJ	LM	m	-	<u>L</u> .
0	, w	105	tra	410	Me												
$\int_{\mathcal{C}}$	To	J	lu	,	f ¹	ì	G	3nit	(m)	2	Į		4	(X)	#	٥	
3	($\overline{\int}$	= [_ _ _ _	۔ ٤	, «	.+ E	J	•	L, c				ommac			
f) (.	×۱	+ (Ω	H	×	ϵ	7					del	segmo	1	<u>, У</u>	= £'(x)
-	- (/		T		V	•	(J				_			x v		
(OM	<i>E</i> , 9	ln,	0v-0					040 ./	: =	(x)						
					4	:=	- 1	, —	viax CEJ	. (\	()		•				
					L.				min <€J	({	· (x)						

De X(0) e J t.c. M/X(0) Essendo X(0) e J, dall eq.me [*] segue du $|X^{(1)}-X| \leq M|X^{(0)}-X|^2$ da en : $1) | \times^{(1)} - | \times | \leq | M | \times^{(0)} - | \times | \times^{(0)} - | \times | < \epsilon$ $2) \text{ M} | \times^{(1)} - \times | \leq \left(\text{M} | \times^{(0)} - \times | \right)^2 < 1$ Ne segue du x(1) e J e M/x(1) x/2/2/21. Per indusione possous provone du $x^{(\kappa)} \in \int e M|x^{(\kappa)} - \alpha| < 1, \forall \kappa > 0.$ Dungue, ancora delle (x):

$$| \times^{(K)} - \alpha | \leq M | \times^{(K-1)} - \alpha |^{2} = >$$

$$= > M | \times^{(K)} - \alpha | \leq (M | \times^{(K-1)} - \alpha |)^{2} \leq$$

$$\leq (M | \times^{(K-2)} - \alpha |)^{4} \leq ... \leq (M | \times^{(0)} - \alpha |)^{2},$$

$$< 1$$

$$0 \leq M | \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M | \times^{(0)} - \alpha |)^{2}.$$

$$| \times^{(K)} - \alpha | \leq (M |$$

$$|x^{(K+1)} - x| = \frac{1}{2} \frac{f'(c^{(K)})}{f(x^{(K)})} |x - x^{(K)}|^{2}$$

$$|x| = \frac{1}{2} \frac{f'(x^{(K)})}{f'(x)} |x - x^{(K)}|^{2}$$

$$|x| = \frac{1}{$$

	<u>`</u> \	te	in'		di	`	Qn	(76	sto	•	Co	m		st.	iM	10Lr	le
l'		ln	nor	\e	a	SS-3,	lut	lo	5							10LP	
A	J.	.e(mο		7, بر	0		d	Ϥ,		SŒ	gli.	e Ma	S	>	(P)	
Su	P	,	Vi e	m	Q	- 0	()	24	W	J.							
			()	< (k	(1 1)	_	X	<	. ^	11	X	(K)	4	2	- J	K>/	0
	A	lov	C	_	1=	1/2	M(×e	J J	f"	×)		, -				ONM P	
				•	l		(M ו	i m (=J	‡(×)		d G	nung New	(led una tou).	ene (eo. d. mita	b
)(v	M	do		L		du	L	G	Ws	egy)QQ	L\	ou	4-е	-	
											V		1	Soft re	ugo e		
		X	(K)	_	人	=		X	(K)	- ×	(K-	+()_	+ >	< (k	+1)	- d	\ \
			<	X	(K)	- >	<(k	(+1)	14	-	X	(K+	<u> </u>	×	\ <		

0	Sze	No	4.C	Mi	7	MC	it.	du			(
(1		Vin	if	i dr	, (a/	W)	d	щ		Ν		K1)	1		
(9	UN		f (X (K)		(I (V	OM	_	tro			n e	e le))	
		\forall	K	<u>></u> ()											
(2	2)	5	, L		" S	res	d'()/// ₄	(1,1		рe	Q)	(,	W (due :
						((K).					J	
) (Mu	nto	_			/	7					
		(>	< ((+1) =	- '	\times	KI	+	0	\ ×	(K	\			
0	No	Ţ\.	ì.M	lo	;		λ×	(KI		()		\ \	K+1)	–)	× (\	<)
							(stim as	ra soluti	del	lehr	bne			