FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 2 Retículos

Retículos

- 1. Dar todos los diagramas posibles para retículos con 1, 2, 3, 4, 5, y 6 elementos respectivamente.
- 2. Mostrar que los siguientes posets son retículos:
 - a) $(P(X),\subseteq)$.
 - **b)** $(D_n, |)$, donde $D_n = \{x \in \mathbb{N} : x \mid n\}$.
 - c) (L,\subseteq) , donde L es el conjunto de subespacios vectoriales de \mathbb{R}^n .
 - d) Álgebra de Lindenbaum-Tarski.
- **3.** Sea (L, \leq) un retículo. Se definen las operaciones:

$$x \vee y = \sup\{x, y\}$$

$$x \wedge y = \inf\{x, y\}$$

Probar que para todo $x,y,z,w\in L,$ \forall y \land verifican las siguientes propiedades:

- a) $x \leq x \vee y$.
- **b)** $x \wedge y \leq x$.
- c) $x \le y \Leftrightarrow x \lor y = y \Leftrightarrow x \land y = x$.
- d) Asociatividad:

$$(x \lor y) \lor z = x \lor (y \lor z).$$

$$(x \land y) \land z = x \land (y \land z).$$

e) Conmutatividad:

$$x \lor y = y \lor x.$$

 $x \land y = y \land x.$

f) Idempotencia:

$$x \lor x = x = x \land x$$
.

g) Absorción:

$$x \lor (x \land y) = x = x \land (x \lor y).$$

h) Compatibilidad:

$$\begin{cases} x \le z \\ y \le w \end{cases} \Longrightarrow \begin{cases} x \lor y \le z \lor w \\ x \land y \le z \land w \end{cases}$$

4. Probar que:

Práctica 2 Retículos Página 1

a) Si $\mathcal{L} = (L, \leq)$ es un retículo, entonces las operaciones

$$x\vee y=\sup\{x,y\}$$

$$x \wedge y = \inf\{x, y\}$$

definen un retículo $\mathcal{L}^{alg} = (L, \vee, \wedge).$

b) Si $\mathcal{L} = (L, \vee, \wedge)$ es un retículo, entonces la relación

$$x \le y \Leftrightarrow x \lor y = y$$

define un retículo $\mathcal{L}^{ord} = (L, \leq)$.

- c) Estas construcciones son recíprocas.
- **5.** Sean $\mathcal{L}_1 = (L_1, \vee, \wedge)$ y $\mathcal{L}_2 = (L_2, \vee, \wedge)$ retículos. Probar:
 - a) Si $f: \mathcal{L}_1 \to \mathcal{L}_2$ es un morfismo de retículo, entonces $f: \mathcal{L}_1^{ord} \to \mathcal{L}_2^{ord}$ es un morfismo de orden. ¿Vale la recíproca?
 - b) $f: \mathcal{L}_1 \to \mathcal{L}_2$ es un isomorfismo de retículo si y solo si $f: \mathcal{L}_1^{ord} \to \mathcal{L}_2^{ord}$ es un isomorfismo de orden.
- **6.** Sea una función $f: X \to Y$. Considerar las funciones:

$$F: \mathcal{P}(Y) \to \mathcal{P}(X), \ F(B) = f^{-1}(B)$$
 (imagen inversa)
 $G: \mathcal{P}(X) \to \mathcal{P}(Y), \ G(A) = f(A)$ (imagen directa)

- a) Mostrar que F define un morfismo de retículo.
- b) Mostrar que G define un morfismo de retículo si y solo si f es inyectiva.
- 7. Sea (L, \preceq) un retículo. Un polinomio p en n-variables es una función $p: L^n \to L$ que pertenece al conjunto inductivo P_L :
 - $i \in \{1, ..., n\}$, $\pi_i \in P_L$, donde $\pi_i(x_1, ..., x_n) = x_i$.
 - Si $f, g \in P_L$ entonces $f \vee g \in P_L$, donde $(f \vee g)(\overline{x}) = f(\overline{x}) \vee g(\overline{x})$.
 - Si $f, g \in P_L$ entonces $f \wedge g \in P_L$, donde $(f \wedge g)(\overline{x}) = f(\overline{x}) \wedge g(\overline{x})$.

Probar que todo $p \in P_L$ es un morfismo de orden entre (L^n, \preceq) y (L, \preceq) .

8. Probar que $(D_n, |)$ y su retículo dual son isomorfos. ¿Es cierto para un retículo arbitrario?

 2

Página 2

Retículos acotados, complementados y completos

- **9.** Sea (L, \leq) retículo y (L, \vee, \wedge) su retículo asociado. Mostrar que son equivalentes:
 - a) L tiene máximo (resp. mínimo).
 - **b)** Existe $1 \in L$ tal que $x = x \wedge 1$ para todo $x \in L$ (resp. existe $0 \in L$ tal que $x = x \vee 0$ para todo $x \in L$).
 - c) Existe $1 \in L$ tal que $1 = x \vee 1$ para todo $x \in L$ (resp. existe $0 \in L$ tal que $0 = x \wedge 0$ para todo $x \in L$).
- 10. Determinar si los retículos del ejercicio 2 son acotados.
- 11. Sea $(X, \vee, \wedge, 0, 1)$ un retículo acotado. Probar que 0 y 1 son complementos uno del otro.
- 12. Determinar si cada uno de los siguientes retículos admite estructura de retículo complementado. En caso afirmativo, decidir cuántas funciones complemento distintas se pueden definir.

- 13. Un poset (L, \leq) es un *retículo completo* si todo subconjunto (posiblemente infinito) $S \subseteq L$ tiene ínfimo y supremo. Vale aclarar que en el caso $S = \emptyset$, todos los elementos de L son cotas inferiores y superiores de S. Mostrar que los siguientes posets son retículos completos:
 - a) $(\mathcal{P}(\mathbb{N}_0),\subseteq)$.
 - **b)** $(\mathbb{N}_0, |)$.
- 14. Probar que todo retículo completo es acotado. ¿Vale la recíproca?
- 15. Verificar que basta con pedir una de las condiciones en la definición de retículo completo. Es decir, si (L, \leq) es un poset tal que todo subconjunto $S \subseteq L$ tiene supremo (resp. ínfimo), entonces (L, \leq) es un retículo completo.
- **16.** Knaster-Tarski. Sea (L, \sqsubseteq) un retículo completo y $f: L \to L$ una función monónotona. Probar que el mínimo punto fijo de f es $\bigwedge \{x \in L | f(x) \sqsubseteq x\}$
- 17. Aplicar el resultado del ejercicio anterior para definir el conjunto inductivo de los números pares como el mínimo punto fijo de una función monótona. La definición inductiva del conjunto P de pares es:
 - $0 \in P$.
 - Si $n \in P$, entonces $n + 2 \in P$.
 - "Estos son todos".

3 Página 3

Subretículos, retículos distributivos y modulares

18. Determinar si en los siguientes diagramas, los puntos negros determinan un subretículo.

- 19. Sea (X, \leq) un retículo y $a, b \in X$ con $a \leq b$. Probar que los siguientes subconjuntos de X son subretículos.
 - **a)** $\{x \in X : x \le a\}$
 - **b)** $\{x \in X : b \le x\}$
 - c) $\{x \in X : a \le x \le b\}$
- **20.** Sea (X, \vee, \wedge) un retículo.
 - a) Probar que para todos $x, y, z \in X$ se satisface:

i.
$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$

ii.
$$x \land (y \lor z) \ge (x \land y) \lor (x \land z)$$

- b) Probar que si una de las desigualdades anteriores es una igualdad, la otra también lo es.
- 21. Determinar si los siguientes diagramas admiten estructura de retículo distributivo.

- **22.** Demostrar que si $(L, \vee, \wedge, 0, 1)$ es un retículo acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento. Utilizar este argumento para probar que los retículos del ejercicio anterior no son distributivos.
- 23. Probar que un orden total es un retículo distributivo.
- **24.** Probar que son equivalentes:
 - a) $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$ para todos $a, b, c \in L$.
 - **b)** $a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c$ para todos $a, b, c \in L$.

- c) $a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$ para todos $a, b, c \in L$
- **d)** $a \wedge (b \vee (a \wedge c)) = (a \wedge b) \vee (a \wedge c)$ para todos $a, b, c \in L$
- 25. Probar que todo retículo distributivo es modular. ¿Es cierta la recíproca?
- **26.** Demostrar que un subrretículo de un retículo modular (resp. distributivo) es modular (resp. distributivo).
- 27. Determinar si los siguientes retículos son distributivos y/o modulares:
 - a) (L,\subseteq) de subespacios vectoriales de \mathbb{R}^n .
 - **b)** $(D_n, |)$.

Álgebras de Boole

- **28.** Sea $(B, \vee, \wedge, 0, 1, ()^c)$ un álgebra de Boole. Probar que para todo $x, y \in B$:
 - a) $(x \vee y)^c = x^c \wedge y^c$.
 - **b)** $(x \wedge y)^c = x^c \vee y^c$.
- **29.** Probar que $(D_n, |)$ admite estructura de álgebra de Boole si y solo si n es producto de factores primos distintos.
- **30.** Mostrar que $f:(B_1,\vee,\wedge,0,1,()^c)\to (B_2,\vee,\wedge,0,1,()^c)$ es un isomorfismo de álgebra del Boole si y solo si $f:(B_1,\vee,\wedge)\to (B_2,\vee,\wedge)$ es un isomorfismo de retículo.

5

Página 5