ITT Pascal, Cesena, 14 febbraio 2024

piante • IT

Giardino di Budrio (piante)

La provincia di Forlì-Cesena ha deciso di incentivare il rinnovamento del verde indicendo un concorso per il miglior giardino del territorio.

Per questo Matteo ha comprato un giardino a Budrio e ora vuole renderlo il più rigoglioso di tutta la Romagna.

Il giardino di Matteo è composto da N piante in fila. L'i-esima pianta si trova in un vaso che dista H_i metri dal suolo.

Figura 1: Il nuovo giardino di Matteo

Purtroppo però, prendersi cura delle piante è un lavoro faticoso: infatti bisogna innaffiarle ogni giorno! Per semplificare il lavoro, Matteo ha collegato ogni coppia di vasi adiacenti con un canale che l'acqua può attraversare solo dal vaso più alto a quello basso. Se un canale è orizzontale (cioè collega due vasi alla stessa altezza) l'acqua ristagna e non riesce ad attraversarlo.

Così facendo, innaffiando un vaso direttamente, l'acqua può diffondersi anche ad altri vasi.

Matteo è pigro, aiutalo a determinare qual è il numero minimo di vasi che deve innaffiare direttamente per far sì che l'acqua raggiunga tutti i vasi.

Implementazione

Dovrai sottoporre un unico file, con estensione .cpp o .py.

Tra gli allegati a questo task troverai dei template piante.cpp e piante.py con un esempio di implementazione.

Dovrai implementare la seguente funzione:

C++		<pre>int pollice_verde(int N, vector<int> H);</int></pre>
	Python	<pre>def pollice_verde(N: int, H: List[int]) -> int:</pre>

- L'intero N rappresenta il numero di piante.
- L'array H, indicizzato da 0 a N-1, contiene l'altezza a cui si trovano le piante.

piante Pagina 1 di 2

• La funzione deve restituire il minimo numero di piante in cui versare dell'acqua per innaffiarle tutte.

Grader di prova

Nella directory relativa a questo problema è presente una versione semplificata del grader usato durante la correzione, che potete usare per testare le vostre soluzioni in locale. Il grader di esempio legge i dati da stdin, chiama la funzione che devi implementare e scrive su stdout, secondo il seguente formato.

Il file di input è composto da 2 righe, contenenti:

- Riga 1: l'intero N.
- Riga 2: gli interi H_0, \ldots, H_{N-1} .

Il file di output è composto da un'unica riga, contenente il valore restituito dalla funzione pollice_verde.

Assunzioni

- $1 \le N \le 100000$.
- $1 \le H_i \le 10^9$ per ogni $0 \le i < N$.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test che lo compongono.

- Subtask 1 [0 punti]: Casi d'esempio.
- Subtask 2 [3 punti]: $H_i < H_{i+1}$ per ogni $0 \le i < N-1$.
- Subtask 3 [15 punti]: $N \le 20$.
- Subtask 4 [24 punti]: $N \le 3000$.
- Subtask 5 [58 punti]: Nessuna limitazione aggiuntiva.

Esempi di input/output

stdin	stdout
5 4 8 7 2 1	1
10 21 18 14 13 13 11 10 10 10 12	4

Spiegazione

Nel **primo caso d'esempio** la soluzione ottimale è quella di innaffiare direttamente solo la pianta 1, dalla quale l'acqua scorre attraverso i canali a tutte le altre piante. E' possibile dimostrare che non è possibile bagnare tutte le piante innaffiandone direttamente meno di una, e di conseguenza la risposta è 1

piante Pagina 2 di 2