Web 信息处理与应用:课后作业3 数据准备 + 分类 + 聚类部分

请于 2020 年 12 月 31 日前将作业电子版发送至课程邮箱: ustcweb2019@163.com

邮件标题与作业文件命名为: PBXXXXX_XXX(姓名)_HW3

1 计算题

1.1 考虑下表中的事务性数据集:

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	$\{a,b,c,e\}$
2	0012	$\{a,b,d,e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b,d,e\}$
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	$\{a,d,e\}$
5	0038	$\{a,b,e\}$

- 1) 每个事务 ID 对应一条事务, 计算{e}, {b, c}, {b, c, e}的支持度。
- 2) 使用(1)的计算结果,计算关联规则{b, c}→{e}和{e}→{b, c}的置信度。
- 3) 从(2)的结果看,置信度是对称的吗?请根据计算公式分析其对称性。

1.2 考虑如下二元分类的数据集:

User interest	User occupation	Click
Tech	Professional	1
Fashion	Student	0
Fashion	Professional	0
Sports	Student	0
Tech	Student	1
Tech	Retired	0
Sports	Professional	1

- 1) 计算分别以属性 User interest 和 User occupation 划分时的信息增益。构建决策树将会选择哪个属性?
- 2) 计算分别以属性 User interest 和 User occupation 划分时的 Gini 指数。构建决策树将会选择哪个属性?

1.3 已知正例点 $x_1 = (2.5, 2.5)^T$, $x_2 = (5, 2)^T$, 和负例点 $x_3 = (1.5, 1.5)^T$, 试用 SVM 对其进行分类,求最大间隔分离超平面,并指出所有的支持向量。

- 2 问答题 (言之有理即可)
- 2.1 主成分分析的基本流程是什么? 与特征值有何关系?:
- 2.2 如果从信息检索的视角,可以将寻找最近邻的过程视作检索最相关的 K 个文档的过程。 那么,这一过程是否可以利用倒排索引的思路加以实现?如何实现?
- 2.3 无论是 K 最近邻分类还是 K 均值聚类, 都涉及到 K 的取值问题。请简述两个问题各自选取合适 K 值的思路, 并比较两者在思路上有何不同?
- 2.4 K-mediods 算法描述:
 - a) 首先随机选取一组聚类样本作为中心点集
 - b) 每个中心点对应一个簇
 - c) 计算各样本到各个中心点的距离(如欧几里得距离),将样本点放入距离中心点最短的那个簇中
 - d) 计算各簇种, 据簇内各样本点距离的绝对误差最小的点, 作为新的中心点
 - e) 如果新的中心点集和原中心点集相同,算法中止;如果新的中心点集与原中心点集不完全相同,返回 b)

试着:

- a) 阐述 K-mediods 算法和 K-means 算法相同的缺陷
- b) 阐述 K-mediods 算法相比于 K-means 算法的优势
- c) 阐述 K-mediods 算法相比于 K-means 算法的不足