⇒ 由于 ● ← 【(X,Y) , 丁有品. 後短. 鑑. 结证显然 ← T{xex: ||x||=1 / 有者 : T有品 2,1,2,(1) " ₽>" for ∀x, 11x11≤1. $\|Ax\| = \|X\| \cdot \|A\frac{X}{\|X\|}\| \le \|A\frac{X}{\|X\|}\| \le \zeta up \|Ax\| = \|A\|$ take sup for x. 11x11 = 1 Sup 11 AXII = 11 XII (Z) " ≥" SUP 11Ax 11 & SUP 11Ax 11 = 11 A11. " ≤ " for 4670, take x se 11x11=1. 11 Ax11 2 11 A11 - E. (We only need to consider A +0 otherwise, it is trivial. ! :. 11A11-6" = 11A×11 = 1-6 11 A C1-6)× 4 E TE SUP MAXIL let 270. ||A|| & 5mp ||Ax|| 21.5. #f #? : $\exists x \text{ s.t. } f(x) \neq 0$: $f\left(\frac{x}{f(x)}\right) = 1 \Rightarrow d \neq +\infty$. for ∀x, 11x11=1. fix1 + ? We have $f\left(\frac{x}{f(x)}\right) = 1$ $\exists \|\frac{x}{f(x)}\| \ge d$. $\frac{|f(x)|}{||x||} \le \frac{1}{d}$. Tile. for $\forall ||x|| = 1$, f(x) = 0, or $\frac{|f(x)|}{||x||} \le \frac{1}{d} \Rightarrow ||f|| \le \frac{1}{d}$. for \$670. take x 5.6 11x11 ≤ d+ €. fix1=1. (since of is bounded we know d + 0) : 11f1 > 1fx1 > dts. let 670 11f1 > d] 2.1.6. if f=0, it is trivial. if f +0, for ∀870, ∃ x0, 11x011=1. s.t. 1f(x0) | 2 11 f 11- 11- 11 f whole we assume fixed > "fil - f. otherwise we can consider - x. if I small enough, []

2.1.7. (1). for $x,y \in N(T)$ $T(ax+by) = aTx+bTy = 0 \Rightarrow ax+by \in N(T)$ $\therefore N(T)$ is a linear subspace. for $x_n \in N(T)$, $x_n \to x_0$. Since T is continous $0 = Tx_n \to Tx_0$ $\therefore Tx_0 = 0 \Rightarrow x_0 \in N(T)$ $\therefore N(T)$ is closed. (2) |VO|. Take any banach space X, and its hampel basis $\{e_{\lambda}\}_{\lambda \in \Lambda}$.

We define $T: X \to X$. $e_{\lambda} \mapsto f_{\lambda}$ but T is not bounded. Since $||T|| \ge \frac{||Te_{\lambda}||}{||e_{\lambda}||} = n$ for $\forall n$. $e_{\lambda} \mapsto f_{\lambda}$ $e_{\lambda} \mapsto f_{\lambda}$

Rmk: 298 书的发演是不对的 例为 化空间在 化心花数下不延定备厨 侧与 an= (1,2,…...................) 作是 Cauchy 31. 但不饭缸.

G1. =) by (1)

(= we suppose f is not bounded. :. $\frac{1}{100} = \frac{1}{100} = \frac{$

: $y_n - y_i \in N(T)$ $\Rightarrow -y_i \in N(T)$ stage N(T) is closed. However, $f(-y_i) = -1 \neq 0$. Contradiction!

: f is bounded.

: for $\forall x = \sum_{i=1}^{n} a_i e_i$ $\|x\| = 1$: $\|x\|_0 = \left(\sum_{i=1}^{n} a_i^2\right)^{1/2}$ $\|a_i\|_1 \le C$.

If $Tx = \|a_i\|_1 = \|a_i|_1 \le M$ if $\|a_i\|_1 = M\sqrt{n}$ if $\|a_i\|_1 \le M\sqrt{n}$ if

2". like 2.1.701. take Hamel hasis $fen_{n=1}^{+\infty} \perp f_{\lambda} \mid_{\lambda \in n} f \times$ and define $T: \times \rightarrow Y$. where $y \in Y$, $y \neq 0$, $p \in Y$. $p \in Y$.