P425/
PURE MATHEMATICS
Paper 1
July, 2024
3 Hours

RESOURCEFUL MOCKS-2024 Uganda Advanced Certificate of Education PURE MATHEMATICS

Paper 1 3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and any five from section B.

Any additional question (s) answered will not be marked

All necessary working **must** be shown clearly

Begin each answer on a fresh sheet of paper

Silent non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

1. Solve the simultaneous equations:

$$x^2 + xy + 4y^2 = 6$$
 and $3x^2 + 8y^2 = 14$ (05 marks)

- 2. One side of a rectangle is three times the other. If the perimeter increases by 2%.

 What is the percentage increase in the area? (05 marks)
- 3. The points A and B have position vectors \mathbf{a} and \mathbf{b} respectively relative to the origin, where $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ and $\mathbf{b} = -4\mathbf{i} + s\mathbf{j} + t\mathbf{k}$. Find the possible values of \mathbf{s} and \mathbf{t} if |AB| = 7 and $\mathbf{s} = 2\mathbf{t}$ (05 marks)
- 4. The first three terms of a G.P are 2x 1, x + 1 and x 1 ($x \ne 0$). Find the value of x and the sum to infinity of the G.P. (05 marks)
- 5. If $t = \tan \theta$ and $\sec 2\theta + \tan 2\theta = k$, prove that $t = \frac{k-1}{k+1}$ (05 marks)
- 6. Show that: $\int_0^1 \frac{1}{(1+x^2)^2} dx = \frac{\pi}{8} + \frac{1}{4}$ (05 marks)
- 7. If y = mx + c is a tangent to the parabola $y^2 = 4ax$, show that $m = \frac{a}{c}$.

 (05 marks)
- 8. Find the value of k for which the lines 3x + 4y k = 0 and 12x 5y + 29 = 0 are equidistant from the point (1,3). (05 marks)

SECTION B(60 MARKS)

- 9. (a) If cosecA cotA = q, then show that $\frac{q^2-1}{q^2+1} + cosA = 0$ (05 marks)
 - (b) Solve the equation; $3tan^3\theta 3tan^2\theta = \tan\theta 1$ for $0 \le \theta \le 2\pi$ (07 marks)
- 10. (a) Find the cartesian equation of the plane passing through the points P(1,0,-2), Q(3,-1,1) and parallel to the line $r=3i+(2\alpha-1)j+(5-\alpha)k$ (07 marks)
 - (b) Find the length of the perpendicular drawn from a point (2, 3, -4) to the line $\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}$ (05 marks)

- 11. (a) The expression $f(x) = 6x^2 + x + 7$ leaves the same remainder when divided by x a and x + 2a. Find the value of a for which a > 0.

 (05 marks)
 - (b) The polynomial $P(x) = \alpha x^3 \mu x^2 + \beta x + 2$ gives a remainder -60 when divided by x + 2 and f(3) = 35. Given that 2x 1 is a factor of the polynomial. Find the values of α , μ and β . Hence evaluate P(x) = 0 (07 marks)
- 12. (a) The point (2, 1) lies on the curve $Ax^2 + By^2 = 11$ where A and B are constants. If the gradient of the curve at that point is A and B. (05 marks)
 - (b) A rectangular box without a lid is made from a thin cardboard. The sides of the base are 2xcm and 3xcm and the height of the box is hcm. If the total surface area is $200cm^2$, show that $h = \frac{20}{x} \frac{3x}{5}cm$. And hence find the dimensions of the box to give maximum volume. (07 marks)
- 13. (a) Find the values of x and y in: $\frac{x}{1+i} + \frac{y}{2-i} = 2 + 4i$ (06 marks)
 - (b) Given that P is represented by |Z 2| = 2|Z + 1|. Show that the locus of P is a circle and hence state it's radius and centre. (06 marks)
- 14. (a) Express $f(x) = \frac{32}{x^3 16x}$ into partial fractions. Hence find $\int f(x) dx$ (07 marks)
 - (b) Show that $: \int_{2}^{4} x \ln x dx = 14 \ln 2 3$ (05 marks)

- 15. (a) Find the length of the tangent to the circle $x^2 + y^2 4x 6y + 9 = 0$ from the point (5, 7). (05 marks)
 - (b) Prove that the circles $x^2 + y^2 10x 7y + 31 = 0$ and $x^2 + y^2 + 2x + 2y 23 = 0$ touch each other externally. (07 marks)
- 16. (a) Solve the differential equation; $(1+x^2)\frac{dy}{dx} = 1 + y^2 \text{ for } y = 3 \text{ and } x = 2$ (05 marks)
 - (b) At time, t hours, the rate of decay of a radioactive element is directly proportional to it's current mass.
 - (i) Show that $N = N_0 e^{-kt}$ where N is the mass of the radioactive element and N_0 is the original mass.
 - (ii) If the mass reduces to half the original mass in 4 hours, find the time it takes for the mass of the element to reach $\frac{1}{8}$ of the original mass.

(07 marks)

END