

Description

The VST03P051 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =-30V, I_D =-90A $R_{DS(ON)}$ =5.1m Ω (typical) @ V_{GS} =-10V $R_{DS(ON)}$ =7.4m Ω (typical) @ V_{GS} =-4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175°C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST03P051-T2	VST03P051	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-30	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-90	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-63.6	А	
Pulsed Drain Current	I _{DM}	-300	А	
Maximum Power Dissipation	P _D	75	W	
Derating factor		0.6	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	℃	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	1.0	°C/W
---	------------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-30		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-1.0	-1.5	-2.2	V
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-20A	-	5.1	5.6	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-20A	-	7.4	8.0	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-20A	-	30	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	3914	-	PF
Output Capacitance	C _{oss}	V_{DS} =-15V, V_{GS} =0V, F=1.0MHz	-	1263	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	50	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	10.5	-	nS
Turn-on Rise Time	t _r	V_{DD} =-15 V , I_{D} =-20 A	-	9	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =1.6 Ω	-	40	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	\/ - 45\/	-	52	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-15V, I_{D} =-20A,	-	9.6		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	7.0		nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-20A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-90	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =-20A	-		24	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-		68	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=-20V,VG=-10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance