Datenstrukturen und Algorithmen, WS2024, Übungsblatt 1 $_{\rm Abzugeben\ bis\ siehe\ TC.}$

Asymptotische Schranken

Hausaufgaben

Aufgabe 1 (2 Points). Prove that $\sum_{i=1}^n i \in \mathcal{O}(n^2).$

Aufgabe 2 (2 Points). Prove or disprove that $2^{2n} \in \mathcal{O}(2^n)$.

Aufgabe 3 (2 Points). Prove or disprove using the limit criterion: $\sqrt{n} = \mathcal{O}(\log n)$.

Aufgabe 4 (2 Points). Let $f, f', g, g' : \mathbb{N} \to \mathbb{R}^+$ such that $f \in \mathcal{O}(g)$ and $f' \in \mathcal{O}(g')$. Show that:

$$ff'\in\mathcal{O}(gg').$$

Does this statement also hold analogously for asymptotically tight bounds?

Aufgabe 5 (2 Points). Prove or disprove that $1 + \sum_{k=2}^{\frac{n}{2}} \log(2k) \in \mathcal{O}(n \log n)$.

Aufgabe 6 (2 Points). Show that $\sum_{i=0}^{\log_2(n)-1} 8^i \in O(n^3).$