Introdução

PEDRO MARTINS

Contents

1	Antenas e Guias de Onda - Aula Introdutória	3
2	Organização das aulas teóricas	3
3	Avaliação	3
4	Introdução	4
	4.1 Cap 1. Utilização de linhas de transmissão em circuitos RF	4
	4.2 Cap. II - Guais de onda em paredes metálicas	5
	4.3 Cap.III - Fibras Óticas	5
	4.4 Cap IV - Radiação	5
5	Simuladores a serem usados nas aulas práticas	6
6	Bibliografia	6

1 Antenas e Guias de Onda - Aula Introdutória

Corpo Docente:

- Teóricas:
 - Nuno Borges de Carvalho
 - nbcarvalho@ua.pt
- Práticas:
 - Adão Silva
 - adao@ua.pt

2 Organização das aulas teóricas

Aulas de 1 hora + 30/45 min de exerc+icios

3 Avaliação

• Prática (50%)

1. Trabalho de filtros

- É dada uma especificação de um filtro
- Guiões seguem as perspetiva de que temos uma missão/problema
- O guião fornece as **apenas** especificações/requisitos que o filtro têm de cumprir
- Implica a elaboração de um Relatório
- 2. **Trabalho de Amplificadores**¹ > Qandor um engenheiro de RF faz um amplificador sai um oscilador, quando fazemos um oscilador sai um amplificador
 - Apenas simulação

3. Trabalho de Antenas

- Vamos montar antenas
- Teórica (50%)
 - 1. Exame a meio do semestre
 - 2. Exame na época de exames

¹Mesmo supondo componentes ideais

4 Introdução

- · Seguimento de POE
- Conmceitos de propagação em linha
- · Conceitos importantes
 - stub
 - adaptação
 - VSWR
 - Impendância característica
 - Linhs de Transmissão

4.1 Cap 1. Utilização de linhas de transmissão em circuitos RF

Em RF:

- Uso matrizes de parâmetros S e parâmetros T para caracterizar os circuitos
- Os circuitos amplificadores convencionais não servem
 - Não posso assumir que são instantâneos
 - Ocorre propagação do sinal no interior do amplificador
 - Os circuitos de amplicação a que estavamos habituados até agora não podem existir.
 - É preciso repensar os amplificadores para circuitos RF
 - Será necessário **polarizar** estes amplifcadores usando circuitos RF
- Devo assumir que estou em **condições de propagação de sinal** sempre que: $d = \approx \frac{1}{16}\lambda$
- Não podemos desprezar as capacidades parasitas:
 - mesmo sendo da ordem de grandeza dos fF, terão implicações na propagação do sinal, porque a frequência é grande
- Qualquer fio representa uma linha de transmissão
- O que interessa é a potência, não a tensão e/ou corrente
- Todos os circuitos são passa baixo, eventualmente
 - A sua largura de banda é sempre finita
 - Existirá sempre uma frequência que irão atenuar
- Não posso fazer filtros com circuitos RC: Dissipam potência: $P=RI^2$ A energia à entrada do circuito não chega na totalidade à saída 2 diminuir/eliminar a dissipação \implies substituir a resistência \implies circuito LC
- Desenhar filtros implica:
 - Obter uma função de transferência em função de uma dada resposta em frequência pretendida
 - A obtenção dos pólos e dos zeros dessa função de transferência é feita usando a decomposição das frações em tipos especiais de polinómios, $H(jw) = \frac{P(w)}{O(w)}$

²Mesmo supondo componentes ideais

 Como transformar as caractereósticas da resposta em frequência do filtro para obter os coeficientes do filtro

- 1. Partir da resposta em freq
- 2. Dimensionar pólos e zeros dos filtros
- 3. converter em polinómios
- 4. Implementar o circuito que implementa esses polinómios
- O descrito só se aplica a filtros passivos.

4.2 Cap. II - Guais de onda em paredes metálicas

• Para frequências mutio elevadas não posso usar cabos coaxiais

• Guia de Onda:

- Forçar a energia da onda a propagar-se a dentro de um meio guiado
- tubos metálicos com forma cilindrica, retangular, quadrada, etc
- Objetivo: guiar a propagação da onda que seria, caso contrário, feita em meio livre

· Formas de propagação:

- ou tipicamente campo elétrico
- ou tipicamente campo magnético
- uma das duas

•

4.3 Cap.III - Fibras Óticas

- Que Tipos de fibras?
- Como caracterizar a Onda refletida?

4.4 Cap IV - Radiação

- Antenas
- Não guias de onda
- Tenho de transmitir o meu cmpo electromagnéticos para o espaço

Tipos de Antenas:

- · Patched antenna
- Antenas YAGGI

Grande parte do desenho de antenas é por intuição

5 Simuladores a serem usados nas aulas práticas

- Princípio de funcionamento equivalente ao Cadence, mas para RF
- Harmonic Balance
- Microwave Office
- ADS (Advanced Digital System)
- CST (Computer Simualtion System)
 - Simulação Eletromagnética
 - Simualões medicinais
 - Simulações de aviões, carros, etc
 - Antena vai ser construída usando CST

6 Bibliografia

- David M. Pozar, Microwave Engineering (60%)
- Gerd Keiser, Optical Fiber Communications (10%)
- Constantine A. Balanis, Antenna Theory Analysis and Design (30%)