
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Thu Jun 07 17:57:20 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10728979 Version No: 1.0

Input Set:

Output Set:

Started: 2007-06-07 09:28:31.766

Finished: 2007-06-07 09:28:33.424

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 658 ms

Total Warnings: 38

Total Errors: 0

No. of SeqIDs Defined: 93

Actual SeqID Count: 93

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)

Input Set:

Output Set:

Started: 2007-06-07 09:28:31.766

Finished: 2007-06-07 09:28:33.424

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 658 ms

Total Warnings: 38

Total Errors: 0

No. of SeqIDs Defined: 93

Actual SeqID Count: 93

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110	1	NEC (MIYAF NAKA2	KAWA,	Tor	noya											
		ASOGA	AWA,	Mino	oru											
<120	>	Seque	ence	Disp	play	Meth	nod a	and I	Homo	geny	Sear	rch I	Metho	od		
<130	>	Q7885	53													
<140	>	10728	3979													
<141	>	2007-	-06-0	7												
<150	>	JP	2002	2-358	3407											
<151	>	200	2-12	2-10												
450			. / = 0.		-											
<150 <151		US 10 2003-			9											
\1J1.		2003	12 (, ,												
<160	>	93														
<170	> :	Pater	ntIn	vers	sion	3.1										
<210	>	1														
<211		1560														
	12> DNA 13> Artificial Sequence															
<213	,	Artii	ICL	al Se	equer	ice										
<220	>															
<223	>	QUERY	Z Pol	Lynuo	cleot	ide										
<220	>															
<221		CDS														
<222	>	(1).	. (156	60)												
< 400	>	1														
		gag														48
Met '	TIIT	GIU	ьeu	ьуs 5	Ala	гуз	GIY	PIO	10	Ala	PIO	птѕ	vai	15	GIY	
ggc	ccg	CCC	tcc	ccc	gag	gtc	gga	tcc	cca	ctg	ctg	tgt	cgc	cca	gcc	96
Gly 1	Pro	Pro		Pro	Glu	Val	Gly		Pro	Leu	Leu	Cys	-	Pro	Ala	
			20					25					30			
gca (ggt	ccg	ttc	ccg	ggg	agc	cag	acc	tcg	gac	acc	ttg	cct	gaa	gtt	144
Ala	Gly	Pro	Phe	Pro	Gly	Ser	Gln	Thr	Ser	Asp	Thr	Leu	Pro	Glu	Val	
		35					40					45				
tca	acc	ata	cct	atc	tcc	cta	gac	aaa	cta	ctc	ttc	cct	caa	CCC	tac	192
_	_	Ile				_	_								_	1,2
	50					55	_	_			60		-		•	
_		cag Gln	_			_	_	_	_	_	_	_	_	_	_	240
65	- + <u>y</u>	O 111		110	70	P	Jiu	-175		75	P	O 111	O 111	201	80	

-	-				gca Ala			-	-	-	-				_	288
		_	_		agt Ser			_	_	_	_		_	_	_	336
_	-	_	_		ctg Leu	_							_	_		384
	_			_	tgc Cys		_		-			_	_			432
	_			_	gat Asp 150		_	-	-		_		_			480
		_		_	agc Ser				-	_	-		-	-		528
	_	_	_	_	cat His			_				_			_	576
	_	_	_		ccg Pro	-			_						-	624
		_	_		ccg Pro	_	_	-				_				672
_	_				gag Glu 230					_		_	_			720
		_	_		ggc Gly			-				_		_	_	768
_	_			-	gca Ala			-	-	-	-		_	-	-	816
	_				ccc Pro		_	-	_			_	-		_	864
-				-	tcc Ser	-	-	-		-		-	-			912
cac	gtg	cct	atc	ctg	cct	ctc	aat	cac	gcc	tta	ttg	gca	gcc	cgc	act	960

His 305	Val	Pro	Ile	Leu	Pro 310	Leu	Asn	His	Ala	Leu 315	Leu	Ala	Ala	Arg	Thr 320	
	_	_	_	-	-	_	_		-		ggg	_		-	_	1008
_	-		-	_	_					_	gcc Ala	_			-	1056
-	-	-		-			-	-			ccg Pro		-	-		1104
	_	_	_						_	-	ttc Phe 380	_	_		_	1152
	_		_				-				gcc Ala			_		1200
_	-					-		-			gca Ala	-		-	_	1248
	_	_			_		_	_	_	_	cga Arg					1296
			_				_	-	_		gcc Ala	_	_		_	1344
_					_		_		_		tgc Cys 460		_			1392
				_		_	_		_		gcg Ala	_	_		_	1440
_		_			-		-	_		_	cgg Arg	-		_		1488
			_		-	_	_	-			gcc Ala					1536
	-				aac Asn											1560

```
<212> PRT
<213> Artificial Sequence
<220>
<223> QUERY Polypeptide
<400> 2
Met Thr Glu Leu Lys Ala Lys Gly Pro Arg Ala Pro His Val Ala Gly
1 5 10 15
Gly Pro Pro Ser Pro Glu Val Gly Ser Pro Leu Leu Cys Arg Pro Ala
     20 25 30
Ala Gly Pro Phe Pro Gly Ser Gln Thr Ser Asp Thr Leu Pro Glu Val
   35 40 45
Ser Ala Ile Pro Ile Ser Leu Asp Gly Leu Leu Phe Pro Arg Pro Cys
  50 55 60
Gln Gly Gln Asp Pro Ser Asp Glu Lys Thr Gln Asp Gln Gln Ser Leu
           70
                    75
65
Ser Asp Val Glu Gly Ala Tyr Ser Arg Ala Glu Ala Thr Arg Gly Ala
         Gly Gly Ser Ser Ser Pro Pro Glu Lys Asp Ser Gly Leu Leu Asp
   100 105 110
Ser Val Leu Asp Thr Leu Leu Ala Pro Ser Gly Pro Gly Gln Ser Gln
   115 120 125
Pro Ser Pro Pro Ala Cys Glu Val Thr Ser Ser Trp Cys Leu Phe Gly
  130 135 140
Pro Glu Leu Pro Glu Asp Pro Pro Ala Ala Pro Ala Thr Gln Arg Val
                       155
145
            150
                                     160
Leu Ser Pro Leu Met Ser Arg Ser Gly Cys Lys Val Gly Asp Ser Ser
     165 170 175
Gly Thr Ala Ala Ala His Lys Val Leu Pro Arg Gly Leu Ser Pro Ala
```

180 185

190

<211> 520

Arg	Gln	Leu 195	Leu	Leu	Pro	Ala	Ser 200	Glu	Ser	Pro	His	Trp 205	Ser	Gly	Ala
Pro	Val 210	Lys	Pro	Ser	Pro	Gln 215	Ala	Ala	Ala	Val	Glu 220	Val	Glu	Glu	Glu
225			Glu		230				_	235			_		240
			Leu	245					250					255	
			Ala 260 Ser					265					270		
		275	Gly				280					285			
	290		Ile			295					300				
305 Arg	Gln	Leu	Leu	Glu	310 Asp	Glu	Ser	Tyr	Asp	315 Gly	Gly	Ala	Gly	Ala	320 Ala
Ser	Ala	Phe	Ala	325 Pro	Pro	Arg	Thr	Ser	330 Pro	Суз	Ala	Ser	Ser	335 Thr	Pro
Val	Ala		340 Gly	Asp	Phe	Pro	_	345 Cys	Ala	Tyr	Pro		350 Asp	Ala	Glu
Pro	_	355 Asp	Asp	Ala	Tyr		360 Leu	Tyr	Ser	Asp		365 Gln	Pro	Pro	Ala
	370 Lys	Ile	Lys	Glu		375 Glu	Glu	Gly	Ala		380 Ala	Ser	Ala	Arg	
385 Pro	Arg	Ser	Tyr		390 Val	Ala	Gly	Ala		395 Pro	Ala	Ala	Phe		400 Asp
				405					410					415	

Phe Pro Leu Gly Pro Pro Pro Pro Leu Pro Pro Arg Ala Thr Pro Ser

420 425 430

Arg Pro Gly Glu Ala Ala Val Thr Ala Ala Pro Ala Ser Ala Ser Val 435 440 445

Ser Ser Ala Ser Ser Ser Gly Ser Thr Leu Glu Cys Ile Leu Tyr Lys 450 455 460

Ala Glu Gly Ala Pro Pro Gln Gln Gly Pro Phe Ala Pro Pro Pro Cys 465 470 475 480

Lys Ala Pro Gly Ala Ser Gly Cys Leu Leu Pro Arg Asp Gly Leu Pro \$485\$

Ser Thr Ser Ala Ser Ala Ala Ala Ala Gly Ala Ala Pro Ala Leu Tyr 500 505 510

Pro Ala Leu Gly Leu Asn Gly Leu 515 520

<210> 3

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> QUERY 1-60 Polynucleotide

<400> 3

atgactgage tgaaggcaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee 60

<210> 4

<211> 57

<212> DNA

<213> Unknown Sequence

<220>

<223> gnl|dbSNP|rs2008112 polynucleotide

<400> 4

atgactgage tgaggcaaag ggtcccccgg ctcccacgtg gcgggcggcc gcccttc 57

<210> 5

<211> 60

<212> DNA

<213> artificial

<220>

```
<223> gi|35651|emb|X51730.1|HSPREC
<400> 5
atgactgage tgaaggeaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee
<210> 6
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|4102792|gb|AF016381.1|AF016381 Polynucleotide
<400>
      6
atgactgage tgaaggeaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee
                                                                     60
<210> 7
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|4505766|ref|NM Polynucleotide
<400> 7
atgactgage tgaaggeaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee
                                                                     60
<210> 8
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|189934|gb|M15716.1|HUMPGRR Polynucleotide
<400> 8
atgactgagc tgaaggcaaa gggtccccgg gctccccacg tggcgggcgg cccgcctcc
                                                                     60
<210> 9
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|22759951|dbj|AB085845.1| Polynucleotide
<400> 9
atgactgagc tgaaggcaaa gggtccccgg gctccccacg tggcgggcgg cccgccctcc 60
<210> 10
<211> 60
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> gi|22759949|dbj|AB085844.1| Polynucleotide
<400> 10
atgactgagc tgaaggcaaa gggtccccgg gctccccacg tggcgggcgg cccgcctcc
                                                                     60
<210> 11
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|22036116|dbj|AB085683.1| Polynucleotide
<400> 11
atgactgagc tgaaggcaaa gggtccccgg gctccccacg tggcgggcgg cccgcctcc
                                                                    60
<210> 12
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|20278870|dbj|AB084248.1| Polynucleotide
<400> 12
atgactgage tgaaggeaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee
<210> 13
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|22759947|dbj|AB085843.1| Polynucleotide
<400> 13
atgactgage tgaaggeaaa gggteeeegg geteeecacg tggegggegg eeegeetee
                                                                     60
<210> 14
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|14245763|dbj|AP001533.4| Polynucleotide
<400> 14
atgactgage tgaaggeaaa gggteeeegg geteeeeaeg tggegggegg eeegeeetee
                                                                     60
```

```
<210> 15
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> QUERY 1801-1860 Polynucleotide
<400> 15
tacttatgtg ctggaagaaa tgactgcatc gttgataaaa tccgcagaaa aaactgccca
                                                                     60
<210> 16
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|19692498|emb|AL709143.1|AL709143 Polynucleotide
<400> 16
tacttatgtg ctggaagaaa tgactgcatc gttgataaaa tccgcagaaa aaactgccca
                                                                     60
<210> 17
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|15938608|gb|BI827058.1|BI827058 Polynucleotide
<400> 17
tacttatgtg ctggaagaaa tgactgcatc gttgataaaa tccgcagaaa aaactgcccg
                                                                     60
<210> 18
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|15943587|gb|BI832037.1|BI832037 Polynucleotide
<400> 18
tacttatgtg ctggaagaaa tgactgcatc gttgataaaa tccgcagaaa aaactgcccg
                                                                     60
<210> 19
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|22921092|gb|BU570792.1|BU570792 Polynucleotide
```

<400> 19

```
tacttatgtg ctggaagaaa tgactgcatc gttgataaaa tccgcagaaa aaactgccca
                                                                     60
<210> 20
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|24718432|gb|CA388844.1|CA388844 Polynucleotide
<400> 20
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                     60
<210> 21
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|24117946|gb|BU929216.1|BU929216 Polynucleotide
<400> 21
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                     60
<210> 22
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|14002248|gb|BG723061.1|BG723061 Polynucleotide
<400> 22
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                    60
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|11005321|dbj|AU143800.1|AU143800 Polynucleotide
<400> 23
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                     60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> gi|9868500|dbj|AV647486.1|AV647486 Polynucleotide
<400> 24
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
<210> 25
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|9868497|dbj|AV647483.1|AV647483 Polynucleotide
<400> 25
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                     60
<210> 26
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|9868443|dbj|AV647429.1|AV647429 Polynucleotide
<400> 26
tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca
                                                                     60
<210> 27
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> gi|4687594|gb|AI636264.1|AI636264 Polynucleotide
<400> 27
```

tacctatgtg ctggaaggaa tgattgcatc atcgataaaa ttcgaagaaa aaactgccca