一、 概述

FM6316FE是一款应用于移动电源,集成了锂电池充电管理,DC-DC升压及负载检测功能于一体的便携式电源管理IC。

FM6316FE集成了包括涓流充电,恒流充电和恒压充电全过程的充电方式,并含有充电过程及充电结束状态指示灯;恒流充电电流通过外加电阻编程;系统在充电状态下会关闭输出放电路径;当外部输入电源去掉时,FM6316FE由电池向外部设备供电,若没有检测到外部设备的接入,则系统进入待机状态,整个系统待机电流为16uA。

FM6316FE具有多重保护设计,包括充电时防倒灌保护,软启动保护,过温及欠压保护等。

二、 特点

- ▶ 外围电路简单;
- ▶ 内置充电转灯功能;
- ▶ 空载检测关断功能;
- ▶ 待机电流 16uA;

- ▶ 涓流/恒流/恒压三段式充电;
- ▶ IC 升压效率高达 90%;
- ▶ 恒流充电电流值可外部编程;
- ▶ 封装形式: ESOP-8。

三、 产品应用

- ▶ 移动电源;
- ▶ IPAD 及其他数码设备备用电源。

四、 内部框图

五、 订购信息

FM6316FE (文件编号: S&CIC1096)

产品型号	封装形式
FM6316FE	ESOP-8

六、 引脚图及引脚说明

序号	引脚名称	引脚说明		
1	GND	芯片地。		
2	STDBY	充电充满指示端。充电结束时,STDBY 拉低,外接 LED 灯阴极。		
3	CHRG	充电指示端。VCC 电压大于 4.3V 时,开始充电,这时 CHRG 拉低。外接 LED 灯阴极。		
4	VCC	充电电压输入端。5V 电压输入。		
5	BAT	电池充电输入端。接电池正端。		
6	PROG	充电电流调整端。充电电流 lbat=(Vprog/Rprog)×1200A		
7	VOUT	升压输出端。5V 输出。		
8	LX	功率开关输出端。外接电感一端。		

七、电性能参数

推荐工作条件

输入电压	4V~5.5V
环境温度	20℃~85℃

▶ 正常工作参数(除非特别说明,否则 Vcc=5V, VBAT=3.8V, T=25℃)

符号参数	测试条件	最小值	典型值	最大值	单位	
------	------	-----	-----	-----	----	--

FM6316FE (文件编号: S&CIC1096)

1A移动电源专用管理IC

系统参数						
VCC	输入电源电压		4	5	5.5	V
VBAT	电池电压		3.2		4.3	V
Istandby	待机电流	No Vcc, No Load	10	16	30	uA
充电参数				•		II.
Vfloal	稳定输出(浮充)电压	25°C ≤Ta≤85°C	4.16	4.20	4.24	V
BAT Pin Current	BAT 倒灌电流	Vcc=3.5V, Vbat=4.2V		±0.5	±5	uA
Vtrikl	涓流充电门限电流		2.8	2.9	3.0	V
Vtrhys	涓流充电迟滞电压		60	80	100	mV
Vuv	Vcc 欠压闭锁门限	Vcc 低至高	3.5	3.7	3.9	V
Vuvhys	Vcc 欠压闭锁迟滞		150	200	300	mV
Vasd	Vcc-VBAT 闭锁门限电压	Vcc 低至高	60	100	140	mV
		Vcc 高至低	5	30	50	mV
△Vrechrg	再充电电池门限电压	Vfloal-Vrechrg	100	150	200	mV
Ron	Vcc 与 BAT 之间			650		mΩ
放电参数						
Vout	升压输出电压		5.05	5	5.15	V
Vuvlo	欠压锁定			2.85		V
Vuvlo_r	欠压锁定迟滞			0.1		V
lbat		VFB=0.66V, No switching	0.1	0.19	0.25	mA
lbat_w		VFB=0.55V, switching	0.6	0.75	0.85	mA
Fosc	振荡频率		0.8	1.0	1.2	MHz
η	转换效率	Vbat=3.3~4.3V&Vout= 5.2V&lout=0.1~1A		80	90	%
Tov	过温保护			160		$^{\circ}$ C
Tov_r	过温保护恢复			120		$^{\circ}$

八、外围器件的选择

▶ 电感的选择

在给定输入电压Vin和输出电压Vout,时钟频率一定的情况下,电流纹波随 电感的值增大而减小,电感值较大的电感可以减小电流纹波,对于1A升压的系统,推荐使用3.3uH的电感。

▶ 电容的选择

电池两端需要接一个电容,容值大于等于10uF。

▶ PROG引脚电阻选择

PROG 引脚可设置恒流充电电流和进行充电电流监测。从 PROG 引脚连接一个外部电阻到地端可以对充电电流进行编程。在预充电阶段,此管脚的电压被调制在 0.1V;在恒流充电阶段,此管脚的电压被固定在 1V。在充电状态的所有模式,测量该管脚的电压都可以根据下面的公式来估算充电电流:l_{BAT}=(V_{PROG}/R_{PROG})×1200客户应用中,可根据需求选取合适大小的 R_{PROG},R_{PROG}与充电电流的关系确定可参考下表:

R _{PROG} (K)	I _{BAT} (m A)
30	50
20	70
10	130
5	250
4	300
3	400
2	580
1. 66	690
1. 5	780
1. 33	900
1. 2	1000

注意事项: FM6316FE 放电状态下不带限流功能, 所以不支持重负载时带载热插拔。

九、应用电路图

应用电路图1

备注: 电阻 R3 在 FM6316FE 版本上是不贴,如果在画板时按此电路画板,则可以兼容 BE、CE 及以后的版本。

应用电路图 2

十、封装尺寸图

十一、注意事项

- 1、LAYOUT 时优先放置电感(3.3uH),使其距离 IC (Pin8)越近越好。
- 2、LAYOUT 时请将输出电容(47UF)尽量靠近二极管负端及 IC 输出脚(Pin7)。
- 3、GND (Pin1)脚地线尽可能地粗,降低接地的寄生电阻。
- 4、IC 底部散热焊盘覆铜面积越大越好,最好接到 USB 外壳,将热量通过 USB 结构的金属传递出去。
- 5、测试时请带上防静电手套,除了防止静电外,更重要是防止在上电测试过程中,人手直接碰触 PCB,造成某两个节点短路,造成模块工作异常引发失效或者漏电。
 - 6、电池的正负两极不能接反,否则会造成模块失效。请在生产环节中设置必要的措施来防止此问题的发生。

十二、 移动电源方案 (二合一硬件 5V/1A)

1、 电路图

2、 PCB 图

3、 BOM 表

序号	元件名称	型号&规格	单位	用量	位置
1	印制板	FM-6136FE1.0mm 玻纤板	PCS	1	17×22mm
2	贴片电阻	3K 5% 0603	PCS	1	R1

FM6316FE (文件编号: S&CIC1096)

1A移动电源专用管理 IC

3	贴片电阻	2K 5% 0603	PCS	2	R2
4	贴片电阻	100R 5% 0603	PCS	1	R3
5	贴片电阻	1K 5% 0603	PCS	1	R4
6	贴片电阻	75K 5% 0603	PCS	1	R5
7	贴片电阻	43K 5% 0603	PCS	1	R6
8	贴片电阻	51K 5% 0603	PCS	2	R7/R8
9	贴片电容	10UF 10% 0805	PCS	1	C1、C2
10	贴片电容	47UF 10% 1206	PCS	1	C3
11	贴片电容	104 10% 0603	PCS	1	C4
12	贴片电容	3.3nF 10% 0603	PCS	1	C5
13	贴片二极管	SS34 DO-214AC	PCS	1	D1
14	贴片 IC	FM6136FE ESOP-8	PCS	1	U1
15	贴片 IC	DW06D SOT23-6	PCS	1	U2
16	贴片电感	3.3uH CD54	PCS	1	L1
17	贴片发光二极管	白发蓝 0603	PCS	1	LED2
18	贴片发光二极管	白发红 0603	PCS	1	LED1
19	USB 母座	贴片 USB 14MM	PCS	1	J2 USB
20	贴片母座	全贴片迈克 5P,引脚需加长	PCS	1	J1 MIC 5P
21	贴片电阻	BE 版本贴 27K,CE、FE 不贴	PCS	1	R*