MGM657 Outils Numériques pour l'Ingénieur Optimisation

ludovic.charleux@univ-savoie.fr

www.polytech.univ-savoie.fr

- Introduction : courbe brachistochrone
- Formulation du problème général
- Méthodes de résolution
- Conclusions

Conclusions

- 1 Introduction : courbe brachistochrone
- Formulation du problème généra
- Méthodes de résolution
- Conclusions

Courbe brachistochrone

Problème

• On lâche une masse ponctuelle M de masse m en A à t=0s.

Méthodes de résolution

- Elle suit la trajectoire verte sans frottements.
- Elle arrive en B en $t = t_f$.
- Quelle trajectoire minimise le temps de parcours t_f

Courbe brachistochrone : problème simplifié

Problème

- Comment évolue l'accélération sur un segment ?
- Quel est le temps de parcours sur un segment ?

Courbe brachistochrone : problème simplifié

```
# CALCUL DU TEMPS DE PARCOURS
   def temps(Y):
    # On calcule l'energie potentielle en supposant qu'elle est nulle en A
    Ep = m * g * (Y - Y[0])
    # On calcule l'energie cinetique
    Ec = - Ep
7
    # On calcule la vitesse
8
    V = (2. / m * Ec) **.5
9
    # On calcule la vitesse moyenne sur chaque element
10
    Ve = (V[1:] + V[:-1]) / 2.
11
    # On calcule le pas en X:
12
     dx = X[1] - X[0]
13
    # On calcule la longueur de chaque element
14
     Le = ((Y[1:] - Y[:-1])**2 + dx**2)**.5
15
    # On calcule le temps de parcours par element
16
     te = Le / Ve
17
    # On calcule le temps de parcours total
18
     t = te.sum()
     return t
19
```


Courbe brachistochrone : problème simplifié à 1 nœud

Courbe brachistochrone : problème simplifié à 2 nœud

Courbe brachistochrone : problème simplifié à 2 nœud

Plan

- 1 Introduction : courbe brachistochrone
- 2 Formulation du problème général
- Méthodes de résolution
- Conclusions

Problème d'optimisation

- Minimiser une fonctionnelle f(X).
- La dimension N du problème est celle de X.

Approche pour résoudre

- Évaluer f le moins de fois possible.
- Trouver le minimum de f et pas un minimum local.

Champ d'application

- Il est très vaste : mécanique, physique, économie, . . .
- Sens de f : du temps, de l'énergie, de l'argent, . . .

Plan

- 1 Introduction : courbe brachistochrone
- Formulation du problème généra
- Méthodes de résolution
- Conclusions

Force brute

Fonctionnement

- Discrétisation de chacune de composantes de X en P valeurs.
- Évaluation de f en chaque point et recherche de la valeur minimale (P^N) .
- Question : évaluer f demande 1μ s. Avec P=20 et N=100, quel temps de calcul ?

Simplexe / Nelder-Mead

Fonctionnement

- Construction d'un simplexe arbitraire (triangle en dimension 2).
- Déformation du simplexe pour converger vers la solution.

Simplexe / Nelder-Mead : N = 10

Fonctionnement

- Calcul d'une direction de descente.
- Recherche linéaire dans cette direction
- Exemple : algorithme du gradient, de Newton, BFGS, ...

Plan

Introduction : courbe brachistochrone

Formulation du problème général

- Conclusions

Conclusions

Points positifs

- Méthodes à très large spectre d'application.
- Il faut juste formuler la fonctionnelle f.

Points négatifs

- Évaluation de la qualité de la solution.
- Difficultés dans le cas de problèmes bruités.
- Conditionnement du problème parfois difficile.