Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 11. Content Authentication

Lecturer: Jin HUANG

The Motivation

- Has the Work been altered in any way whatsoever?
- Has the Work been significantly altered?
- What parts of the Work have been altered?
- Can an altered Work be restored?

Exact Authentication

Even a single bit change can be detected.

A Straightforward Method

- LSB
- Compare with predefined bit sequence.
- Limited authentication capabilities.

Embedded Signatures

Making the watermark "link" to cover.

- Signatures, e.g. SHA, MD5.
- But embedding change the cover.

戏和扶扶教

- Partition the cover into two parts
 - One for signatures.
 - One for embedding.

Erasable Watermarks

It is the original unmodified work.

But there is watermark in it!

The idea:

- ullet c_w is a work with authentication w_r .
- ullet I can get the true original unmodified c_o .
 - ullet remove $\mathbf{w_r}$ from $\mathbf{c_w}$.
- Verify w_r with c_o .

An Example

Simply use E_BLIND and D_LC with integer $\mathbf{w}_{\mathbf{r}}.$

$$\mathbf{c}_{\mathbf{w}} = \mathbf{c}_{\mathbf{o}} + \mathbf{w}_{\mathbf{r}}.$$

An Example

Simply use E_BLIND and D_LC with integer $\mathbf{w_r}$.

$$\mathbf{c_w} = \mathbf{c_o} + \mathbf{w_r}$$
.

- But, the clamping of the value.
- Picking right w_r to avoid this problem?

An Example

Simply use E_BLIND and D_LC with integer $\mathbf{w_r}$.

$$\mathbf{c}_{\mathbf{w}} = \mathbf{c}_{\mathbf{o}} + \mathbf{w}_{\mathbf{r}}.$$

- But, the clamping of the value.
- Picking right w_r to avoid this problem?
 - No. It should be the signature.

A Solution

Modulo addition.

$$\mathbf{c_w} = \mathbf{c_o} + \mathbf{w_r} \mod 256$$
. As $\mathbf{k} \Rightarrow \mathbf{k} \mathbf{l}$

From the viewpoint of human:

Salt-and-pepper noise.

Illustration

Detection

From the viewpoint of detector:

- Introduce some noise: from 253 + 5 to 3.
- Compare to clamp: $255 \Rightarrow 3$.

Change of w_r

- Original: 5.
- Clamp: 2.
- Modulo : -250.

Illustration

If the values of pixels are far from the borders.

Illustration

If the values of pixels are close to the borders.

- Blank and white strips.
- Images with equalized histograms.

Practical Solutions for Erasability

Difference expansion

- Neighboring pixels are more likely to have similar values. 相外像素大概并僅相似。
- Difference between two neighboring pixels
 has a smaller dynamic range. 個個本文章

Using the difference as the channel.

1. # MDS 2. # X MDS

各一种分对在场低、高强度道

意见一对像来的形式男人

One Bit Only

Giving two neighboring pixels

$$x_1, x_2 \in \{0, \cdots, 255\}.$$

Transform

$$\frac{(y_1, y_2) = T(x_1, x_2) = (2x_1 - x_2, 2x_2 - x_1)}{\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \left(\text{Id} + \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.}$$

Example:

$$T(59, 54) \Rightarrow (64, 49).$$

Modulo 3

How to embed?

- Modulo 3: $y_1 y_2 = 3(x_1 x_2)$.
- embed 1: $y_1 + = 1$. embed 0: $y_1 = 1$.

How to detect?

- $y_1 y_2 \mod 3$.
 - 0: no message.
 - 1. 1.
 - **2**: 0.

Convert It Back

After extracting the message and restore y_1 :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = T^{-1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
= \frac{1}{6} \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
= \begin{pmatrix} (4y_1 + 2y_2)/6 \\ (2y_1 + 4y_2)/6 \end{pmatrix}$$

An example

• Embedding 0:

$$c_o=x=(59,54)$$

$$c_y=Tx=(64,49)$$

$$c_{y_0}=(63,49).$$

• Extract message:

Extract message:
$$(63-49) \mod 3 = 14 \mod 3 = 2 \Rightarrow 0$$

$$(63 - 49) \mod 3 = 14 \mod 3 = 2 \Rightarrow 0$$
• Recover c_o :
$$14 \Rightarrow 15$$

$$63 \Rightarrow 49 + 15 = 64$$

$$63 \Rightarrow 49 + 15 = 64$$

 $c'_{0} = T^{-1}(64, 49)^{T} = (59, 54)^{T}.$

Illustration

For More Symbols

For 2n symbols $(-n, \dots, -2, -1, 1, 2, \dots, n)$:

$$(y_1, y_2) = T_n(x_1, x_2)$$

$$= ((n+1)x_1 - nx_2, (n+1)x_2 - nx_1)$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \left(\text{Id} + n \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Modifying y_1 by at most n.

Embeddable Pixel Pair 如果以一人的证据

好, 场,

Both values in the pairs $(y_1 - n, y_2)$ and $(y_1 + n, y_2)$ are within the dynamic range $\{0,\cdots,255\}.$

How to know?

OW TO KNOW?

中间集 $\geq n+1$ 表示设有数 message $y_1-y_2 \mod (2n+1)=0.$

How to do?

- (-2) To Cornecption. • Modify x_1 to make $x_1 + c - x_2$ MDS信息演员后,再记后 mod (2n + 1) = 0.爱州山佳夏
- The correct c is part of payload.

Illustration

n = 3.

Wait a Moment

It is stupid to make it so complex!

Wait a Moment

It is stupid to make it so complex! Why not directly change x_1 so that:

$$x_1 - x_2 \mod 3 = 2 \text{ for } 0, \cdots$$

Benefit

$$y_1 + y_2 = x_1 + x_2$$
.

- Less change on (average) brightness.
- Noisy is better than block change.

More Importantly

- $\mathbf{c_o} = (59, 54), (60, 54), m = 0.$
- By T, unique:
 - $\mathbf{y} = (64, 49), (66, 48).$
 - $\mathbf{c_w} = (63, 49), (65, 48).$

 - $\mathbf{c}'_{\mathbf{o}} = (59, 54), (60, 54).$
- By $x_1 x_2$, not unique:
 - $\mathbf{c}_{\mathbf{w}} = (59, 54).$
 - $\mathbf{c}'_{\mathbf{o}} = (59, 54), (60, 54) \dots$

Fundamental Problem with Erasability

Perfect erasable watermarking

- 100% effectiveness.
- Unique Restoration.
- Low false positive.

It is impossible!

- \bullet Media space cannot hold c_o and its c_w simultaneously.
- 100% effectiveness leads to 100% false positive.

Difference expansion

Expand the marking space by (2n + 1).

- Half of pixels are kept, and others become the difference in a small range.
- The difference part is expanded for message separation.