暨南大学本科实验报告专用纸

课程名称		模.	拟电子	技术	く实验		成绩评定			
实验项目	名称	晶体	管共	射极.	单管放大	器	指导老	师	赵钱孙,	李周吴
实验项目:	编号	08083	123456	601	实验项目	类型	<u> </u>	乡	 兴验地点	南海楼
学生姓名	郑	王冯,	陈褚	卫	学号	20	0201012	234,	2019051	234
学院 信	息科学	学技术	学院	系	电子		专业	E	电子科学-	与技术
实验日期	202	21年3	月 1	日 ~		3 月	1日	温度	e °C	湿度

一、实验目的

- 1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
- 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
- 3. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理

1. 实验原理

它的静态工作点可用下式估算:

$$U_B = \frac{R_{B1}}{R_{B1} + R_{B2}} U_{CC}$$

2. 实验内容

三、调试分析与测试结果

放大器的幅频特性是指放大器的电压放大倍数 A_U 与输入信号频率 f 之间的关系曲线。 A_{um} 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的 $1/\sqrt{2}$ 倍。

放大器的幅率特性就是测量不同频率信号时的电压放大倍数 A_{U} 。

暨南大学本科实验报告专用纸 (附页)

附录 (程序清单)

1. Problem.py

```
import numpy as np

print("Hello")

def incmatrix(genl1,genl2):
    m = len(genl1)
    n = len(genl2)
    M = None #to become the incidence matrix
    VT = np.zeros((n*m,1), int) #dummy variable

...
    return M
```

2. Problem.m

```
for n = 1:2
    for m = 1:3
        fprintf('n = %3u m = %3u \r', n, m)
        % This is a comment
    end
end
```

3. Problem.c

```
#include <stdio.h>
int main(){
    printf("Hello world");
    // This is a comment.
}
```