Математические основы информационной безопасности

Груздев Дмитрий Николаевич

Нейронные сети

Модель нейрона

 $q_i = \sigma_i^* q_i^{in} -$ заряд с i-го дендрита

Q = Σq_i – образовавшийся заряд в нейроне

Если Q ≥ q₀, то q^{out} – сигнал следующему нейрону

Нейрон проверяет $\Sigma \sigma_i^* q_i^{in} \ge q^0 \Leftrightarrow$ < $\sigma^* q^{in} > - q^0 \ge 0$. Т.е. нейрон — простой линейный классификатор.

Типичная структура нейрона

Математическая модель

$$y = \sigma(<\theta, x>)$$

Функции активации

Нейронная сеть

 $\Theta_{ij}^{(k)}$ — вес связи между і-м нейроном (k-1)-го слоя и ј-м нейроном k-го слоя, $y_i^{(k)}$ — значение выхода из і-го нейрона (k-1)-го слоя (причем $y_i^{(1)} = x^{(i)}$ и $y_0^{(j)} = 1$).

Нейронная сеть

$$y_i^{(k+1)} = \sigma_i^{(k+1)} \left(\sum_{0 \le j \le Hk} \Theta_{ji}^{(k)} y_j^{(k)} \right)$$

Количество обучаемых параметров = количество связей:

$$N = (n + 1) * H_1 + (H_1 + 1) * H_2 + ... + (H_1 + 1) * K$$

У человека:

- ~ 1.6 * 1010 нейронов
- ~ 104 связей у нейрона

У шароголового дельфина: 3.7*1010 нейронов

Google Translation Machine: 9*109 связей

Бинарные функции

Разделяющие прямые

Неразделяемый случай

AND(x(1), x(2))

XOR(x(1), x(2))

XOR

Обобщающая способность

С помощью линейных операций и одной нелинейной функции активации можно приблизить любую непрерывную функцию с любой желаемой точностью (Цыбенко 1989г).

Если все функции активации линейны, то выходные значения представляются линейными комбинациями от входных параметров. Использование скрытых слоев не имеет смысла.

ILSVRC

ImageNet Large Scale Visual Recognition Challenge – соревнования по классификации объектов с 2010 года.

	Ошибки	Кол-во связей (млн)
AlexNet, 2012	18.2	60
ZFNet, 2013	16.0	62
VGG-19, 2014	8.4	144
GoogleNet, 2014	7.9	4
ResNet-152, 2015	4.5	2

Задачи регрессии

 $(x_1, t_1), \ldots, (x_m, t_m)$ — обучающая выборка

$$X_{i} = (X_{1}^{(i)}, \ldots, X_{n}^{(i)}), t_{i} = (t_{1}^{(i)}, \ldots, t_{k}^{(i)})$$

Функция ошибки – квадратичная:

$$E = 0.5 * \Sigma (y_i - t_i)^2$$

Задачи классификации

Функция ошибки:

$$E = -\sum t_i * log(y_i); \ \partial E/\partial \Sigma_i = y_i - t_i$$

Обучение нейросети

```
(x_1, t_1), (x_2, t_2), \dots, (x_m, t_m) — обучающая выборка x_i = (x_1^{(i)}, \dots, x_n^{(i)}), t_i = (t_1^{(i)}, \dots, t_k^{(i)})
```

A : $\mathbb{R}^n \to \mathbb{R}^k$ — алгоритм, реализуемый нейросетью

После вычисления $A(x_i) = y_i$ известны:

```
х<sub>і</sub> – входные значения для нейросети;
```

у, – выходные значения из нейросети;

t_і – правильные выходные значения из нейросети;

Σ – входные значения для нейронов каждого слоя;

у_і(р) – выходные значения из нейронов каждого слоя;

 $\Theta_{xy}^{(z)}$ -текущие значение весов связей.

Необходимо:

вычислить $\Delta\Theta_{xy}^{(z)} = -\alpha * \partial E/\partial \Theta_{xy}^{(z)}$ для каждой связи

Обратное распространение ошибки

Обратное распространение ошибки

Изменение весов

Проблема затухания и взрыва градиента

$$\frac{\partial E}{\partial \Theta_{ij}^{(p+1)}} = \frac{\partial E}{\partial y_j^{(p+2)}} * y_i^{(p+1)} * (\sigma_j^{out}(\Sigma))'$$

$$\frac{\partial E}{\partial y_i^{(p+1)}} = \sum \frac{\partial E}{\partial y_j^{(p+2)}} * \Theta_{ij}^{(p+1)} * (\sigma_j^{out}(\Sigma))'$$

Если $|\theta_{ij}^{(p+1)}*(\sigma_{j}^{out}(\Sigma))'| < 1$, то возможно затухание градиента и замедление обучения.

Если $|\theta_{ij}^{(p+1)}| * (\sigma_{j}^{out}(\Sigma))'| > 1$, то возможен взрыв градиента и нестабильность обучения.

Выход: использовать подходящую функцию активации и следить за весами связей.

Невоспроизводимость эксперимента

Если область, сходящаяся к хорошему минимуму, мала, то вероятность попадания в нее при случайной инициализации весов также мала.

tensorflow

https://sesc-infosec.github.io/