1

Assignment 7

D V K M Rishab AI20MTECH14004

Download the latex file and the pdf doc from

https://github.com/Rishab9991/EE5609/tree/master/ Assignments/Assignment7

QUESTION

(Q.No.72, UGC June 2017)

Let m, n and r be natural numbers. Let A be an m \times n matrix with real entries such that $(\mathbf{A}\mathbf{A}^t)^r = \mathbf{I}$, where \mathbf{I} is the m \times m identity matrix and \mathbf{A}^t is the transpose of the matrix A. We can conclude that **Options**

1) m = n

- (2) $\mathbf{A}\mathbf{A}^{\mathbf{t}}$ is invertible
- 3) A^tA is invertible
- 4) if m = n, then **A** is invertible

SOLUTION

Option 1	To conclude that $m = n$
Assumptions	For the example: Without loss of generality, Let m = 2, n = 3 and $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
	$\implies \mathbf{A^t} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
	We know that $(\mathbf{A}\mathbf{A}^{t})^{r} = \mathbf{I}$ which is a square matrix of order m \times m
Proof	For any natural value of r, a square matrix (I) of order $m \times m$ is obtained
	Hence, we cannot conclude that $m = n$ because we get I of order $m \times m$
	even if $m \neq n$. To illustrate this, Consider the following example
	$\mathbf{A}\mathbf{A}^{\mathbf{t}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I} (\mathbf{A} \text{ and } \mathbf{A}^{\mathbf{t}} \text{ from Assumptions})$
	$(\mathbf{A}\mathbf{A}^{\mathbf{t}})^{r} = \mathbf{I}$
	Here $m \neq n$. Therefore, Option 1 is incorrect

TABLE I: Option 1

Option 2	To conclude that AA ^t is invertible
Assumptions	AA ^t is not invertible
Proof	$\implies \mathbf{A}\mathbf{A}^{\mathbf{t}} = 0 \implies (\mathbf{A}\mathbf{A}^{\mathbf{t}})^r = 0$
	$\implies (\mathbf{A}\mathbf{A}^{t})^r \neq \mathbf{I}\left(\left \mathbf{I}\right = 1\right)$
	Since, this is a contradiction to the assumption made we can conclude that
	AA ^t is invertible. Therefore, Option 2 is correct

TABLE II: Option 2

Option 3	To conclude that A ^t A is invertible
Assumptions	Without loss of generality, Let m = 2, n = 3 and $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
	$\implies \mathbf{A^t} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
Proof	$\Rightarrow \mathbf{A^t} \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \mathbf{A^t} \mathbf{A} = 0$ This means that $\mathbf{A^t} \mathbf{A}$ is not invertible. Therefore, Option 3 is incorrect

TABLE III: Option 3

Option 4	To conclude that if $m = n$ then A is invertible
Assumptions	Let $m = n$
	Since $(\mathbf{A}\mathbf{A}^{\mathbf{t}})^r = \mathbf{I} \implies (\mathbf{A}\mathbf{A}^{\mathbf{t}})^r = \mathbf{I} = 1$
Proof	$\implies (\mathbf{A} \mathbf{A}^t)^r = 1 \ (\mathbf{A} \text{ is a square matrix})$
	$\implies (\mathbf{A})^{2r} = 1$
	Therefore, Option 4 is correct

TABLE IV: Option 4