Planarity

Problem: Let G be a graph. Can G be drawn in such a manner so that no two edges intersect?

Example 1. Example Graph here

Any drawing of K_5 or $K_{3,3}$ have (at lease) 2 edges which cross (Proof to come)

Definition 1. A graph G is said to be planer if it can be drawn in \mathbb{R}^2 so that no two edges cross. Such a drawing is called a plane drawing. The graph associated with a plane drawing is usually referred to as a plane graph.

Remark. 1. Any subgraph of a planer graph is planer.

2. Every plane graph is planar.

graph here is a planer but not plane.

Our aim is to determine condition which ensures that a graph G is planar. Let G be a plane graph. Consider the set S obtained from \mathbb{R}^2 by deleting (the vertices and edges) of G. We observe that S is the disjoint union of finitely many subsets $F_1, F_2, \ldots F_l$ of \mathbb{R}^2 having the following two properties:

- 1. Any two points of F_i can be joined by a curve not crossing G.
- 2. Any curve in \mathbb{R}^2 which joins a point of F_i to one of F_i , $i \neq j$, must cross G

Definition 2. Let G be a plane graph. The sets $F_1, \ldots F_l$ described above are called the <u>faces</u> of G.

Example 2.

Remark. One face is always unbounded, with the remaining faces all bounded.

Definition 3. Let F be a face of a plane graph G. The boundary of F consists of a finite # of vertices and edges of G

The length of a closed walk around the boundary of F is called the <u>degree of F</u>, usually denoted deg F

Example 2. (Cont.)

1.
$$\deg F_1 = \deg F_2 = 5$$

2. deg $F_2 = 2$ the closed walk is $x \to y \to x$

3.
$$\deg F_1 = \deg F_2 = 3$$

 $\deg F_3 = 6$

Theorem 1. (Euler's Formula, 1780) Let G be a connected plane graph. If G has n nodes and f faces then

$$n - m + f = 2$$

proof of **Theorem 1** requires a couple of preliminarily lemmas.

Lemma. Let G be a plane graph. G contains a cycle if and only if the number of faces of $G \ge 2$.

Proof. \to Let C be a cycle of G. Let x and y be in the interior and exterior of C, respectively, then any curve in \mathbb{R}^2 connecting x and y must cross C, have cross G

Choosing x, y not lying on G x and y belong to

different faces of G.

 \leftarrow The absence of a cycle, G is a forest. On induction on the number of components of G shows G has only one (unbounded) face.

Lemma. Let e be an edge of a plane graph G.

- 1. If e is a bridge then it lies on boundary of exactly one face.
- 2. if e is not a bridge then it lies on the boundary of exactly two faces of G

Proof. 1. Let H_1 and H_2 be the components of Gne. The edge e lies in face F_1 of H_1 , as well as a face F_2 of H_2 . The intersetion $F_1 \cap F_2$ contains a unique face F_o of G. e lies on the boundary of F_o and is the unique face of G.

2. Let C be a cycle containing e. The edge e lies on the boundary of one face lying in the interior of C and one face lying in the exterior of C. Thus, e lies on the boundary of at least 2 faces of G.

The fact faces are disjoint can be used to show that e lies on the boundary of at most 1 face lying in the interor of C, and one face lying in the exterior of C. Then e lies in the boundary of at most 2 faces.

Corollary. (Handshaking Lemma for Planar Graphs) If G is a plane graph of size m then

$$2m = \sum_{faces F} \deg F$$

Proof. Each edge e of G contributes 2 to the sum on the right:

If e is a bridge lying on the face F_o then it contributes 2 to deg F_o and 0 to the remaining deg F.

If e is not a bridge then it contributes 1 to the degree of two distinct faces of G, and 0 to the remaining.

Proof. Proof of Euler's Formula

We proved by induction on # of faces of G on the case f=1. Lemma 2 asserts G is a forest, where G is a tree. Thus, m=n-1, and hence n-m+f=n-(n-1)+1=2

Assume the result is true f connected plane graph H having f faces, and let G have f+1 faces, say $F_1, F_2, \ldots, F_l, F_{l+1}$. If n = |G|, m = e(G) then we are required to show

$$n - m + (f+1) = 2$$

Since $f + 1 \ge 2$, G contains a cycle C (**Lemma 2**). Fix an edge e lying on C. Assume e is not a bridge of G. **Lemma 2** ensures that e lies on the boundary of 2 distince faces of G, say F_l and F_{l+1} .

Construst the subgraph H = Gne. We note H is a connected plane graph of order n and size m-1. Furthermore, the number of faces of H is f. denoted each of the faces $F_1, f_2, \ldots F_{l-1}$ of G occur on faces of H. Assume e does not appear in the boundary of any of these faces.

Teh remaining faces of H is obtained by joining F_l and F_{l+1} along the edge e.

$$\hat{F}_l = F_l \cup F_{l+1} \cup e$$

Since H has f faces, the inducation hypotheses allows in G to conclude that

$$2 = n - (m - 1) + f = n - m + (f + 1)$$

as required

Corollary. Let G be a connected planer graph. Each plane drawing of G has the same number of faces, namely 2 + m - n

Euler's formula can be used to obtain a necessary condition for a simple connected graph to be planar.

Definition 4. Let G be a graph, If G contains a cycle then the **girth** gr(G) is defined as the length of the smallest cycle in G. If G is a forest then we set $gr(G) = \infty$

Example 3.

Remark. If G is simple then $gr(G) \geq 3$

Theorem 2. Let G be a connected simple planar graph. If G has order n and size m then

$$m \le \begin{cases} n-1 & \text{if } gr(G) = \infty\\ \frac{gr(G)}{gr(G)-2}(n-2) & \text{if } gr(G) \text{ is finite} \end{cases}$$
 (1)

Proof. If $gr(G) = \infty$ then G is a tree, hence m = n - 1 if gr(G) is finite then G has ≥ 2 faces. In this case, the boundary of each face of G contains a cycle, hence

$$\deg(F) \ge gr(G)$$

If each face F of G, therefore, if f = # of faces of G then the handshaking lemma of planer graphs

$$2m = \sum_{\text{faces } F} \deg F \ge \sum gr(G) = gr(G)f$$

From Euler's formula, f = 2 + m - n, substitues f_i in the preceding yields

$$2m > qr(G)(2+m-n)$$

Example 4. 1. Does there exist a simple connected planar graph G of order 12 and size 40?

Solution 1. Suppose such a graph G exists, Note that G cannot be a tree, hence gr(G) is finite. Thus, **Theorem 3** asserts

$$40 \ge \frac{gr(G)}{gr(G) - 2}(12 - 2)$$

Solving for gr(G)

$$gr(G) \le \frac{8}{3} < 3$$

This contradicts that $gr(G) \geq 3$ No such G exists.

2. Let G be a planar graph of size and girth 5. What can one say about n = |G|

Solution 2. From Theorem 2

$$14 \le \frac{S}{S-2}(n-2)$$

solving f n yields $n \ge 52/5$ some n is an integer $n \ge 11$.

Corollary. K_5 and $K_{3,3}$ are non-planar

Proof here

Exercise Show that Peterson is non-planar

Corollary. Let G be a simple connected planar graph.

- 1. if G has order $n \ge 3$ then $e(G) \le 3n 6$
- 2. Furthermore, if G contains no triangles then $e(G) \leq 2n-4$

proof here

Remark. The preceding two results are often used as tools for non-planarity, they are weakter then the full theorem 2.

Corollary. Every simple planar graph G contains a vertex of degree at most $5(\delta(G) \le 5)$

proof here

Example 5. K_n is non-planar of $n \geq 7$. Each vertex of K_n has degree $n-1 \geq 6$

Example 6. The condition of theorem 4 (as well as it corollories) is only necessary for planarity, not sufficient. For example, the following graph G is non-planar, as it contains a copy of $K_{3,3}$

On the other hand, |G| = 8, e(G) = 12 and gr(G) = 4

$$\frac{4}{4-2}(8-2) = 12$$

Remark. Euler's formula can be extended to disconnected plane graphs using induction on the # of components. If G is aplnar graph of order n size m with f faces and k components then

$$n - m + f = k + 1$$

There are also analogue for Theorem 3 and its corollories.

We have already observed that Theorem 3 and its corollories present many necessary conditions for a graph to be planar.

Definition 5. Let G and H be graphs. H is said to be a <u>subdivion</u> of G if the formal graph can be constructed from the latter by introduction a finite # of new vertices along existing edges.

Example 7.

c.) Each cycle graph C_n is a subdivision of $C_1.C_n$ can be obtained from C_1 by the addition of n-1 new vertices on the single edge of C_1

Remark. 1. The process of subdivion only introduces new vertices of degree 2

2. Note that if H is a subdivion of G then H has the same shape as G.

Definition 6. Two graphs G and H are said to be homeomorphism if they are both subdivision of a common graph.

Example 8. 1. If $n, m \ge 1$ then C_n is homeomorphism to C_m as both are subdivion of C_1 .

2. If $n, m \geq 2$ then P_n and P_m are homoeomorphism as both are subdivion of P_2

Remark. 1. G and H are homeomorphic if the latter can be obtained from the former by a finite sequence of following 2 operations:

- (a) addition of new vertex along an existing edge.
- (b) filling in of an existing verted of degree 2.

2. homeomorphic graphs have the same shape.

Theorem 3. A graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Example 9. The graph

an alternate characterization of non-planar graphs can be obtained using the notion of contradictions.

Definition 7. Let G and H be graphs. G is said to be <u>contractible to H</u> if H can be obtained from G by successivily contracting a finite number of edges.

Theorem 4. A graph G is planar if and only if it contains no subgraph which is contractible to K_5 or $K_{3,3}$.

Example 10. Peterson graph is contractible to K_5 .

Thus peterson is non-planar.

We have observed that K_5 and $K_{3,3}$ are non-planar. What happens if we consult other surface?

Example 11. Torous (Donut)

Definition 8. A non-planar graph G is said to be <u>toroidal</u> if it can be drawn on the torus so as no two edges cross.

Example 12. 1. K_5 is torodial

2. $K_{3,3}$ is torodial

Question: Is there analogous of Euler's Formula for the toros?

Theorem 5. Let G be a simple connected torodial graph of order n, size m and f faces, Then

$$n - m + f = 0$$

Furthermore,

$$m \le \frac{gr(G)}{gr(G) - 2}n$$

Definition 9. A graph G is said to have genus g if G can be drawn on a surface of genus g with no edges crossing, but no drawing on a surface of genus g-1 exists. (i.e planar = genus g, torodial = genus g)

Theorem 6. Let G be a connected graph of genus g, order n, size m, and face f. Then

$$n - m + f = 2 - 2g$$

Furthermore, if G is simple of finite girth then

$$m \le \frac{gr(G)}{gr(G) - 2}(n + 2g - 2)$$

Corollary. Let G be a connected simple graph of genus g, order $n \geq 3$ and size m then,

$$m \le 3(n+2g-2)$$

$$m \leq 2(n+2g-2)$$
 if no triangle present

Corollary. Let G be a connected simple graph of order $n \geq 4$ and size m. Then the genus g satisfies

$$g \ge \lceil \frac{m-3n}{6} + 1 \rceil$$

[x] = least integer greater than or equal to x

Remark. Let G be a graph. The <u>crossing number</u> cr(G) is the minimum # of crossing that can occur when G is drawn in the plane.

Example 13. graph here

Theorem 7. The genus of the graph G is $\leq cr(G)$

Dual Graphs

Definition 10. Let G be a planar graph. The <u>geometric dual</u> G^* of G is the graph constructed as follows:

- 1. denote each face of G, choose a point v^* . The v^* forms the vertex set $V(G^*)$
- 2. For each edge e of G, join the vertices v^* and w^* in the adjacent face by a curve e^* that crosses e and no other edge of G. The collection of e^* from the edge set $E(G^*)$

Example 14.

Platonic Graphs

Graphs	Geometric Dual	
tetrahedron	tetrahedron	self-dual
cube	octahedron	
octahedron	cube	
dodecahedron	icosahedron	
icosahedron	dodecahedron	

Remark. 1. The contrustion of G^* depends on the plane drawing of G. For example, the grphs G in example 13 (i) and (ii) are isomorphic, bnut their geometric duals are not. One has vertex of degree 5 but the other has no such vertex.

2. G^* is planar and connected.

Lemma. Let G be a connected planar graph of order n, size m, and face f. If G^* is a geometric dual then the nodes n^* size m^* and number of faces f^* satisfies

$$n^* = f, m^* = m, f^* = f$$

Theorem 8. Let G be a connected planar graph. Then G^{**} is isomorphic to G.

Theorem 9. Let G be a connected planar graph and G^* a geometric dual of G, A subset of E(G) forms a cycle of G if and only if the corresponding subset of $E(G^*)$ is a cutset of G^* .

Remark. If e is an edge of G then there is a unique edge e^* of G^* which crosses a

Corollary. Let G be a connected planar graph. A set of edges of G forms a cutset if and only if the corresponding edges of G^* forms a cycle.

Theorem 10. Let G be a connected plant graph G is bipartite if and only if G^* is eulerian.

Theorem 11. Let G be a connected planar graph. If G is 3-edge connected then G^* is simple (of order ≥ 3)

Definition 11. Let G be a graph. A graph G^* is said to be an <u>abstract dual</u> of G if there exists a one-one correspondence between the edge of G and the of G^* with the property that a subset of E(G) forms a cycle \leftrightarrow correspong subset of $E(G^*)$ forms a cutset

Example 15. If G is plane then its geometric dual G^* is an abstract dual (Theorem 11)

Theorem 12. If G^* is an abstract dual of G then G is an abstract dual of G^* . Abstract duals provide another characterization of planar graphs.

Theorem 13. A graph G is planar if and only if G has an abstract dual.