Stein Variational Gradient Descent (SVGD)

Jaewoo Park

Department of Applied Statistics, Yonsei University

Remind: Variational Inference (VI)

- Approximates the posterior through $q_{\xi}(W, b)$ (variational distribution)
- Find $q_{\xi}(W, b)$ that minimizes the Kullback–Leibler (KL) divergence between $q_{\xi}(W, b)$ and p(W, b|X, Y)
 - We need to set a class of distributions (e.g., Gaussian)
 - A practical option for BNN
- How can we choose a class of distributions?
 - This can be a model-by model

Jaewoo Park (Yonsei) 2/15

Main Idea

(Liu an Wang, 2016)

- Iteratively transports a set of particles to approximate the posterior
 - Perturbation direction is determined through a gradient descent
 - Functional gradient descent that minimizes the KL divergence
- Goal: Find a set of particles that represent the posterior well
- Can be applied to general Bayesian inference (not just Bayes NN)

Jaewoo Park (Yonsei) 3/15

Particle Perturbation

• Smooth transforms from a tractable reference distribution

Jaewoo Park (Yonsei) 4/15

Notation

- Posterior distribution: $\pi(\theta) \propto p(\mathbf{D}|\theta)p(\theta)$
 - $oldsymbol{ heta}$ can be neural network parameters $(oldsymbol{W},oldsymbol{b})$
- Variational distribution: $q(\theta)$
- Kernel: $k(\theta, \theta')$: $\Theta \times \Theta \to \mathbb{R}$
 - Example: RBF kernel, $\exp(-\frac{1}{h}\|\theta-\theta'\|^2)$
- Arbitrary smooth function: $\phi(\theta)$

Jaewoo Park (Yonsei) 5/15

Stein's Identity

• Stein's identity (1-D case):

$$\mathbb{E}_{\pi}[\mathcal{A}_{\pi}\phi(\boldsymbol{\theta})] = \int_{\Theta} \frac{\partial}{\partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta})\phi(\boldsymbol{\theta}) + \frac{\partial}{\partial \boldsymbol{\theta}}\phi(\boldsymbol{\theta})\pi(\boldsymbol{\theta})d\boldsymbol{\theta}$$
$$= \int_{\Theta} \frac{\partial}{\partial \boldsymbol{\theta}} \Big[\pi(\boldsymbol{\theta})\phi(\boldsymbol{\theta})\Big]d\boldsymbol{\theta} = 0$$

where \mathcal{A}_{π} is a stein operator (function)

 \bullet if Stein's identity holds, ϕ is in the Stein class of π

Jaewoo Park (Yonsei) 6/15

Stein's Identity (contd.)

• Stein's identity (1-D case):

$$\begin{split} \mathbb{E}_{\pi}[\mathcal{A}_{\pi}\phi(\boldsymbol{\theta})] &= \int_{\Theta} \frac{\partial}{\partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta})\phi(\boldsymbol{\theta}) + \frac{\partial}{\partial \boldsymbol{\theta}}\phi(\boldsymbol{\theta})\pi(\boldsymbol{\theta})d\boldsymbol{\theta} \\ &= \int_{\Theta} \frac{\partial}{\partial \boldsymbol{\theta}} \Big[\pi(\boldsymbol{\theta})\phi(\boldsymbol{\theta})\Big]d\boldsymbol{\theta} = 0 \end{split}$$

- When the above identity holds?
 - $\pi(\theta)\phi(\theta) \to 0$ as $\theta \to \infty$ or $\pi(\theta)\phi(\theta) = 0$ at the boundary of Θ
 - Example: $\pi(oldsymbol{ heta})$ is a Gaussian density, $\phi(oldsymbol{ heta}) = aoldsymbol{ heta} + b$
 - Most situations, it holds

Jaewoo Park (Yonsei) 7/15

Stein's Discrepancy

• Maximum violation of Stein's identity for function ϕ in a set \mathcal{F}

$$\mathbb{S}(q,\pi) = \max_{\phi \in \mathcal{F}} \{ \mathbb{E}_q[\mathsf{trace}(\mathcal{A}_\pi \phi(oldsymbol{ heta}))] \}$$

where, \mathcal{F} is a set of function

• Intuitively, stein's discrepancy can measure differences between π , q

8/15

Kernerlized Stein Discrepancy (KSD)

ullet KSD assumes that the set ${\cal F}$ is defined through the unit ball

$$\mathbb{S}(q,\pi) = \max_{\phi \in \mathcal{F}} \{ \mathbb{E}_q[\mathsf{trace}(\mathcal{A}_\pi \phi(\boldsymbol{\theta}))], \text{ s.t. } \|\phi\| \leq 1 \}$$

The optimal solution of KSD is

$$\phi(\boldsymbol{\theta}) = \frac{\phi_{\boldsymbol{q},\pi}^*(\boldsymbol{\theta})}{\|\phi_{\boldsymbol{q},\pi}^*\|}$$

where $\phi_{q,\pi}^*(\cdot) = E_q[(\mathcal{A}_{\pi}k(\theta,\cdot))]$ and the optimal discrepancy is

$$\mathbb{S}(q,\pi) = \|\phi_{q,\pi}^*\|$$

9/15

Kernerlized Stein Discrepancy (KSD) (contd.)

Note:

$$\mathcal{A}_{\pi}k(\boldsymbol{\theta},\cdot) = \frac{\partial}{\partial \boldsymbol{\theta}}\log \pi(\boldsymbol{\theta})k(\boldsymbol{\theta},\cdot) + \frac{\partial}{\partial \boldsymbol{\theta}}k(\boldsymbol{\theta},\cdot)$$

and

$$\phi_{q,\pi}^*(\cdot) = E_q[(\mathcal{A}_{\pi}k(\boldsymbol{\theta},\cdot))]$$

• Then we can write down the KSD as

$$\mathbb{S}(q,\pi) = \Big\| \int_{\Theta} \Big[\frac{\partial}{\partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta}) k(\boldsymbol{\theta},\cdot) + \frac{\partial}{\partial \boldsymbol{\theta}} k(\boldsymbol{\theta},\cdot) \Big] q(\boldsymbol{\theta}) d\boldsymbol{\theta} \Big\|$$

Jaewoo Park (Yonsei) 10 / 15

Variational inference using Smooth Transforms

- VI: Find a variational dist that minimizes KL divergence with $\pi(\theta)$
- SVGD: Find set of particles through smooth transformations
 - Start with a tractable reference distribution $heta \sim q(heta)$
 - $\boldsymbol{\xi} = \mathbb{T}(\boldsymbol{\theta})$, where $\mathbb{T}: \Theta \to \Theta$ is a smooth one-to-one transformation
 - By using the change of variables formula we have

$$q_{\mathbb{T}}(oldsymbol{\xi}) = q_0(\mathbb{T}^{-1}(oldsymbol{\xi})) \Big| rac{\mathbb{T}^{-1}(oldsymbol{\xi})}{\partial oldsymbol{\xi}} \Big|$$

• How can we find \mathbb{T} that makes $q_{\mathbb{T}}(\xi)$ close to $\pi(\theta)$?

Jaewoo Park (Yonsei) 11 / 15

Stein Operator as the Derivative of KL Divergence

• Let $\pmb{\xi} = \mathbb{T}(\pmb{\theta}) = \pmb{\theta} + \epsilon \phi(\pmb{\theta})$ and $q_{\mathbb{T}}(\pmb{\xi})$ is it's density when $\pmb{\theta} \sim q(\pmb{\theta})$, we have

$$rac{\partial}{\partial \epsilon} \mathsf{KL}(q_{\mathbb{T}} || \pi)_{\epsilon=0} = -\mathbb{E}_q[\mathsf{trace}(\mathcal{A}_{\pi} \phi(\boldsymbol{\theta}))]$$

and the optimal direction is

$$\phi_{q,p}^*(\cdot) = \mathbb{E}_q \left[\frac{\partial}{\partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta}) k(\boldsymbol{\theta}, \cdot) + \frac{\partial}{\partial \boldsymbol{\theta}} k(\boldsymbol{\theta}, \cdot) \right]$$

• Implications: $\phi_{q,p}^*(\cdot)$ is the optimal direction to minimize $\mathsf{KL}(q_{\mathbb{T}}||\pi)$

Jaewoo Park (Yonsei) 12 / 15

Algorithm

- $oldsymbol{0}$ Draw a set of particles $\{oldsymbol{ heta}_i^0\}_{i=1}^p \sim q_0(oldsymbol{ heta})$ (e.g., prior)
- ② At tth iteration, each particle θ_i is updated as

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t + \epsilon \widehat{\phi^*}(\boldsymbol{\theta}_i^t)$$

where

$$\widehat{\phi^*}(\boldsymbol{\theta}) = \frac{1}{p} \sum_{j=1}^{p} \left[\frac{\partial}{\partial \boldsymbol{\theta}_j^t} \log \pi(\boldsymbol{\theta}_j^t) k(\boldsymbol{\theta}_j^t, \boldsymbol{\theta}) + \frac{\partial}{\partial \boldsymbol{\theta}_j^t} k(\boldsymbol{\theta}_j^t, \boldsymbol{\theta}) \right]$$

Repeat the above until converges

Jaewoo Park (Yonsei)

Interpretations of the Update Rule

$$\widehat{\phi^*}(\boldsymbol{\theta}) = \frac{1}{p} \sum_{j=1}^{p} \left[\frac{\partial}{\partial \boldsymbol{\theta}_j^t} \log \pi(\boldsymbol{\theta}_j^t) k(\boldsymbol{\theta}_j^t, \boldsymbol{\theta}) + \frac{\partial}{\partial \boldsymbol{\theta}_j^t} k(\boldsymbol{\theta}_j^t, \boldsymbol{\theta}) \right]$$

- The first term (blue) moves particles towards the high mass of $\pi(\theta)$
 - Following a smoothed (weighted sum) gradient direction of all particles
 - Similarity is measured through $k(\theta_i^t, \theta)$
- The second term (red) acts as a repulsive force
 - Avoid all particles to collapse together
- If we set p=1, collapse to the gradient descent algorithm for MAP

14 / 15

A Toy Example

- Red lines indicate $\pi(\theta)$ and green lines indicate densities of the particles
- ullet As iteration goes on, particles can approximate $\pi(oldsymbol{ heta})$ well
- Demonstrates the ability of escaping the local mode

Jaewoo Park (Yonsei)