Harmonic Analysis

Ikhan Choi

May 8, 2022

Contents

I	I Fourier analysis		2
1	1 Fourier series		3
2	2 Fourier transform		4
	2.1 Fourier transform of L^1 functions		4
	2.2 Fourier transform of L^p functions		4
	2.3 Tempered distributions	• • • • • • • • • • • • • • • • • • • •	4
3	3		5
II	II Singular integral operators		6
4	4 Caldéron-Zygmund theory		7
	4.1 Hilbert transform		7
	4.2 Calderón-Zygmund operator of convolution		7
	4.3 L^2 -boundedness of truncated integrals		8
	4.4 Calderón-Zygmund operator of non-convolu	tion type	8
5	5 Littlewood-Paley theory		9
6	6 Multiplier theorems		10
II	III Pseudo-differential operators	1	l 1
IV	IV Oscillatory integral operators	1	12

Part I Fourier analysis

Fourier series

Fourier transform

2.1 Fourier transform of L^1 functions

inversion Riemann-Lebesgue

2.2 Fourier transform of L^p functions

plancherel and for L^2 ,

2.3 Tempered distributions

Part II Singular integral operators

Caldéron-Zygmund theory

4.1 Hilbert transform

4.2 Calderón-Zygmund operator of convolution type

4.1 (Calderón-Zygmund decomposition of sets). Let $E_n f$ be the conditional expectation with repect to the σ -algebra generated by dyadic cubes with side length 2^{-n} . Let $Mf = \sup_n E_n |f|$ be the maximal function, and let $\Omega := \{x : Mf(x) > \lambda\}$ for fixed $\lambda > 0$. For $x \in \Omega$ let Q_x be the maximal dyadic cube such that $x \in Q_x$ and

$$\frac{1}{|Q_x|} \int_{Q_x} |f| > \lambda.$$

- (a) $\{Q_x : x \in \Omega\}$ is a countable partition of Ω .
- (b) We have an weak type estimate $|\Omega| \leq \frac{1}{\lambda} ||f||_{L^1}$.
- (c) $||f||_{L^{\infty}(\mathbb{R}^d\setminus\Omega)} \leq \lambda$.
- (d) For $x \in \Omega$

$$\frac{1}{|Q_x|} \int_{Q_x} |f| \le 2^d \lambda.$$

4.2 (Calderón-Zygmund decomposition of functions). Let

$$g(x) := \begin{cases} |f(x)| & , x \notin \Omega \\ \frac{1}{|Q_x|} \int_{Q_x} |f| & , x \in \Omega \end{cases}$$

and $b_i := (|f| - g)\chi_{Q_i}$ so that |f| = g + b where $b = \sum_i b_i$.

- (a) $||g||_{L^1} = ||f||_{L^1}$ and $||g||_{L^\infty} \lesssim_d \lambda$.
- (b) $||b||_{L^1} \le 2||f||_{L^1}$ and $\int b_i = 0$.

Proof.

4.3 (Calderón-Zygmund operator of convolution type). Let $T: \mathcal{D}(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ be a *singular integral* operator of convolution type in the sense that there is $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$ such that

$$Tf(x) = \int K(x - y)f(y) \, dy$$

for all $f \in \mathcal{D}(\mathbb{R}^d)$, whenever $x \notin \text{supp } f$. If T is L^2 -bounded

$$||Tf||_{L^2} \lesssim ||f||_{L^2}$$

and satisfies the Hörmander condition

$$\int_{|x|>2|y|} |K(x-y)-K(x)| \, dx \lesssim 1,$$

then it is called a Calderón-Zygmund operator.

Let $f = g + b = g + \sum_i b_i$ be the Calderón-Zygmund decomposition, and let $\Omega^* := \bigcup_i Q_i^*$ where Q_i^* is the cube with the same center as Q_i and whose sides are $2\sqrt{d}$ times longer.

(a) The L^2 -boundedness implies

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(b) The Hörmander condition implies

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(c)

Proof. (a) Using the Chebyshev inequality and the Hölder inequality,

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \le \frac{4}{\lambda^2} ||Tg||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^1(\Omega)} ||g||_{L^{\infty}(\Omega)}.$$

(b) Write

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \leq \frac{2}{\lambda} \int_{\mathbb{R}^d \setminus \Omega^*} |Tb(x)| \, dx \leq \frac{2}{\lambda} \sum_i \int_{\mathbb{R}^d \setminus \Omega^*} |Tb_i(x)| \, dx.$$

Since $x \in \mathbb{R}^d \setminus Q_i^*$ does not belong to supp $b_i \subset Q_i$ and $\int b_i = 0$, we have

$$Tb_{i}(x) = \int_{Q_{i}} K(x - y)b_{i}(y) dy = \int_{Q_{i}} [K(x - y) - K(x)]b_{i}(y) dy,$$

and

$$\int_{\mathbb{R}^d \setminus Q_i^*} |Tb_i(x)| \, dx = \int_{Q_i} |b_i(y)| \int_{\mathbb{R}^d \setminus Q_i^*} |K(x-y) - K(x)| \, dx \, dy \lesssim ||b_i||_{L^1}.$$

(We need to show it is valid even though b_i is not smooth)

(c)

4.3 L^2 -boundedness of truncated integrals

4.4 Calderón-Zygmund operator of non-convolution type

standard kernels

Exercises

4.4 (Gradient size condition). Let $|\nabla K(x)| \lesssim \frac{1}{|x|^{d+1}}$ for $x \neq 0$. Then, convolution with K is a Calderón-Zygmund operator.

Littlewood-Paley theory

Multiplier theorems

Part III Pseudo-differential operators

Part IV Oscillatory integral operators