ESPino Wi-Fi Development Course (Arduino Platform)

สอนโดย อ.ณัฐพล จะสูงเนิน

nattapholj@gmail.com

LINE: thaitechzone

Tel: 0939391546

Task1: การเตรียม Arduino IDE

- 1. Arduino IDE 1.6.5 (<u>www.arduino.cc</u>)
- 2. ทำการติดตั้งให้เรียบร้อย จากนั้น

File >> Preference

กรอกข้อมูล Additional Board URL

http://arduino.esp8266.com/stable/package_esp8266com_index.json เพื่อทำหน้าที่ Link Library ที่เกี่ยวข้องกับ ESP8266 เข้ามายัง Arduino IDE

AITECHZONE

Computer Management > Device Manager

Driver Link:
https://www.silabs.com/products/mcu/Pages/
USBtoUARTBridgeVCPDrivers.aspx

Task 2 รู้จัก ESP-WROOM-02 Board

ESP8266 Wi-Fi SoC จาก Espressif Systems

WROOM-02 ->32 bit MCU 80 MHz Flash Memory 4M

- รองรับมาตรฐาน IEEE 802.11 b/g/n ความดี่ 2.4 GHz
- มีวงจรแปลงสัญญาณอนาล็อกเป็นดิจิตอล (ADC)

ความละเจียด 10 บิตอยู่ภายใน แรงดันสูงสุด 1 โวลต์

- GPIO U1 0 1 2 3 4 5 12 13 14 15 16
- UART ປາ 1(Tx) 3(Rx) 15(Tx2) 13(Rx2)
- SPI (Software) ປາ 15(SS) 14(SCH) 13(MOSI) 12(MISO)
- I2C (Software) ขา 4(SDA) 5(SCL)
- ADC/TOUT (10-bit, 0 1 Vdc)

ESPino ใช้ชิฟสื่อสารรุ่น CP2104

ตำแหน่ง Pinout ใช้งาน บน ESPino

P1 (ซ้าย)	ขาสัญญาณ	P2 (ชวา)	ขาสัญญาณ
GND	Ground	5V	5 Volts
GND	Ground	3V3	3.3 Volts
GPIO16	GPIO16	EN	Enable
ADC/TOUT	ADC	GPIO14	GPIO14 / SCK
RESET	Reset	GPIO12	GPIO12 / MISO
GPIO5	GPIO5 / SCL	GPIO13	GPIO13 / MOSI / Rx2
GND	Ground	GPIO15	GPIO15 / SS / Tx2
TXD	Tx / GPIO1	GPIO2	GPIO2
RXD	Rx / GPIO3	GPIO0	GPIO0
GPIO4	GPIO4 / SDA	DTR	DTR
RTS	RTS	GND	Ground

nternal use only: อ.ณัฐพล

คำสั่ง Arduino (Digital) เบื้องต้น

- Digital
 - pinMode
 - digitalWrite
 - digitalRead

บกตัวอย่างการต่อวงจรจาก SCH -> Real

Task 4 (digital Output) ESPino

เขียนโปรแกรมควบคุม RELAY ด้วย CPIO16

#Code

```
unsigned char Relay1 = 16;

void setup() {
  pinMode(Relay1,OUTPUT);
}

void loop() {
  digitalWrite(Relay delay(1000);
}
```

จงทดสอบการทำงานของ Relay ทำงานในสถานะ Logic ใด Active High หรือ Active Low

Workshop (IOTs)

ESPino
Programming

OLED Show
Temp,Hum

Connect to
Wiffi
(Hotspot)

Send data

ThingSpeak

Task 5 (DHT11) with ESPino

เปิด Project : DHT_ESPino_Connect เขียนโปรแกรมเพิ่มเติมครับ

คำสั่งการใช้งาน DHT Library

DHT-sensor-library

```
#include "DHT.h"

#define DHTPIN 13
#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE,15);

void setup() {
    dht.begin();
}

Void loop() {
    float h = dht.readHumidity();
    float t = dht.readTemperature();
}
```

การใช้งาน DHT-Senor-Library มีคำสั่งใช้งานหลักๆดังนี้ dht.begin dht.readHumidity dht.readTemperature

ทดลองแสดงผล Temp, Humidity ทาง Serial Mornitor

คำสั่ง Serial สำหรับ Arduin,ESPino

Serial.begin Serial.print Serial.println

internal use only: อ.ณัฐพล

เปิด Project : OLED_Start_01 เขียนโปรแกรมเพิ่มเติมครับ

Task 6 (i2C OLED) with ESPino

Adafruit_SSD1306

OLED 128x64

Adafruit_SSD1306 Library

```
นำเข้าไลบรารี่ ที่เกี่ยวข้อง
                                                Wire.h จัดการ i2c bus
 OLED_Start_01 §
                                                Adafruit_GFX.h จัดการกราฝึก
 1 #include <Wire.h>
                                                ESP_Adafruit_SSD1206.h จัดการจอ OLED
 2 #include <Adafruit GFX.h>
 3 #include <ESP_Adafruit_SSD1306.h>
 5 #define OLED RESET 4
                                                  สืบทอด Object เพื่อใช้งานควบคุมจอ OLED
 6 Adafruit_SSD1306 display(OLED_RESET);
                                                  น่าน Object : display
 8 void setup() {
   display.begin(SSD1306 SWITCHCAPVCC, 0x78>>1);
10 display.display();
   delay(2000);
11
                                               ทำหนดค่าเริ่มต้นของ OLED, Addrees 0x78>>1
   display.clearDisplay();
12
13 }
14
15 void loop() {
16
17
18 }
19
```

internal use only: อ.ณัฐพล

จาก Project : OLED_Start_01 เขียน Function **showTemp** เพิ่มเติมครับ

```
23 void showTemp(float temp, float hud) {
24
    display.setTextSize(2);
                                      ทำหนดขนาดของ Font
    display.setTextColor(WHITE);
25
26 display.setCursor(0,0);
                                      ทำหนดจุดเริ่มต้นของ oLED
27
    display.print("T->");
                                                                  คัดลอกจาก Text File
28 display.print(temp);
                                                                  นำไปใช้งาน เพื่อความรวดเร็ว
29
    display.println("C");
    display.print("H->");
30
31
    display.print(hud);
32
    display.println("%");
33
34
    display.setTextSize(1);
                                         ทำหนดขนาดของ Font
35
    display.setTextColor(WHITE);
36
    display.println("----");
37
                                                               กำหนดจุดเริ่มต้นของ oLED
38
    display.println("my OLED Interfacing");
39
    display.println("----");
                                                                  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
    display.println("ESPino Dev Course");
40
41
42
    display.display();
    display.clearDisplay();
43
44 }
                                                                     Pixel at (6,13)
```

เรียกใช้งาน showTemp ใน loop โดยป้อนค่า temp, Hum จาก DHT11 ลงในฝังก์ชั่น เราจะได้มลการทำงานของ Sensor แสดงผลบน OLED อย่างง่ายดาย

float h = dht.readHumidity();

float t = dht.readTemperature();

void showTemp(float temp, float hud);

Task 7 ESP Wifi Connect.

ESPino เชื่อมต่อระบบ Network เพื่อเข้าถึง WebService หรือระบบ Cloud

ESP8266WiFi Library

นำไปสร้างฟังก์ชั่น void connectWifi() ทำหน้าที่เชื่อมต่อ Wifi เท่านั้น

nternal use only: อ.ณัฐพล

สร้างฟังก์ชัน connectWifi()

```
OLED_Start_03

1 #include "ESP8266WiFi.h"
2 #include <Wire.h>
3 #include <Adafruit_GFX.h>
4 #include <ESP_Adafruit_SSD1306.h>

6 #define OLED_RESET 4
7 Adafruit_SSD1306 display(OLED_RESET);

8
9 const char* MY_SSID = "myWifi";
10 const char* MY_PWD = "60936093";

11
```


คัดลอกจาก Text File นำไปใช้งาน เพื่อความรวดเร็ว

สร้างฟังก์ชัน connectWifi()

```
1158
```

```
55 void connectWifi()
56 {
                                                              คัดลอกจาก Text File
57
    WiFi.begin (MY SSID, MY PWD);
                                                              นำไปใช้งาน เพื่อความรวดเร็ว
      Serial.println("Connecting to "+ (String) (MY SSID));
58
      while (WiFi.status() != WL CONNECTED)
59
60
61
         delay (500);
         Serial.print("^=^ ");
62
63
64
    Serial.println("");
65
    Serial.println("WiFi connected");
66
67
    Serial.print("IP address: ");
68
    Serial.println(WiFi.localIP());
69
70
71 }//end connect
```

THAITECHZONE

internal use only: อ.ณัฐพล

Task8 ลงทะเบียน ThingSpeak

• ลงทะเบียนกับทาง เวป พพพ.ThingSpeak.com

∵ ThingSpea	l k ™	Sign In Sign Up 1
Sign up to start	using ThingSpeak	₩
User ID	thaitechzone	
Email	nattapholj@gmail.com	
Time Zone	(GMT+07:00) Bangkok	จำเป็นต้องใช้ Email Address
Password		เพื่อยืนยัน account ครับ
Password Confirmation		
	By signing up, you agree to the Terms of Use and Privacy Policy.	
	Create Account	

สร้าง Package สำหรับส่งให้ Web Server

Package ข้อมูลที่ จะใช้ส่งไปยัง WebServer ซึ่งจะประกอบไปด้วยค่าของ API Key และ ข้อมูลของ field

```
String postStr = apiKey;
100
      postStr += "&field1="; *
101
     postStr += String(temp);
102
     postStr += "&field2=";
     postStr += String(Hum);
103
                                                            BI36DJ2J7541VLW9
104
     postStr += "\r\n\r\n";
105
106
     client.print("POST /update HTTP/1.1\n");
107
    client.print("Host: api.thingspeak.com\n");
108
    client.print("Connection: close\n");
109 client.print("X-THINGSPEAKAPIKEY: " + apiKey + "\n");
110
    client.print("Content-Type: application/x-www-form-urlencoded\n");
111
    client.print("Content-Length: ");
112
     client.print(postStr.length());
113
     client.print("\n\n");
114
      client.print(postStr);
```

นำไปสร้าง Function สำหรับส่งข้อมูลไปยัง ThingSpeak

มาต่อกันเลยน่ะครับ สร้างฟังก์ชัน sendTeperatureTS ()


```
คัดลจกจาก Text File
นำไปใช้งาน เพื่อความ
รวดเร็ว
```

```
94 void sendTeperatureTS(float temp, float Hum)
       WiFiClient client;
 96
       if (client.connect(server, 80)) { // use ip 184.106.153.149 or api.thingspeak.com
 97
 98
       Serial.println("WiFi Client connected ");
 99
       String postStr = apiKey;
       postStr += "afield1=";
100
101
      postStr += String(temp);
102
      postStr += "afield2=";
      postStr += String(Hum);
103
104
       postStr += "\r\n\r\n";
105
106
      client.print("POST /update HTTP/1.1\n");
107
       client.print("Host: api.thingspeak.com\n");
       client.print("Connection: close\n");
108
109
      client.print("X-THINGSPEAKAPIKEY: " + apiKey + "\n");
110
      client.print("Content-Type: application/x-www-form-urlencoded\n");
111
       client.print("Content-Length: ");
112
      client.print(postStr.length());
113
      client.print("\n\n");
114
      client.print(postStr);
115
      delay(1000);
116
117
      }//end if
118 client.stop();
119 }//end send
```

https://api.thingspeak.com/update?api_key=RRHS37ETW76RFAWB&field1=(อุณหภูมิ)&field2=(ความชื่น)

```
ภาพรวมของโปรแกรมหลักที่เราได้เรียนรู้
```

```
24 void setup() {
25
        // set display
26
     Serial.begin(9600);
27
     connectWifi(); -
                               ้เชื่อมต่อ Wifi
28
     dht.begin();
29
    display.begin(SSD1306 SWITCHCAPVCC, 0x78>>1);
30
31
    display.display();
                                                              ค่าเริ่มต้นจอ OLED
32
     delay(2000);
33
     display.clearDisplay();
37 void loop() {
     float h = dht.readHumidity();
                                               อ่านค่า Temp, Hum
39
     float t = dht.readTemperature();
40
41
    if (isnan(h) || isnan(t)) {
      Serial.println("Failed to read from DHT sensor!");
42
43
       return;
44
45
                                   แสดงผลTemp,Hum บน OLED
46
     showTemp(t,h); <</pre>
47
     sendTeperatureTS(t,h); <</pre>
                                   ส่งค่า Temp,Hum ไปยัง Server
     delay(1000);
48
49
50 }
```


Internal use only: อ.ณัฐพล

เทคโนโลยีของ Cloud ที่น่าจับตา...

ผู้สนับสนุนหลัก

Task9 NETPIE เปิดทุกเชื่อมต่อบน IOTs

Microgear ฝังลงในอุปกรณ์

ระบบ Cloud จะทำการเชื่อมโยง

ขั้นตอนการสร้าง User บน NETPIE

1.เปิดเข้าเว็บไซต์ https://netpie.io

ขั้นตอนการสร้าง Application มีขั้นตอนดังนี้

สามารถควบคุม Device ได้ถึง 100 อุปกรณ์นั่นเอง หากต้องการมากกว่านั้น จำเป็นต้องซื้อครับ

เมื่อเลือก New Application แล้ว จะปรากฏให้ใส่ชื่อ Application ของเรา ในที่นี้ใช้ชื่อ "myNETPIE"

ทำการสร้าง Key ให้กับอุปกรณ์ที่เราจะเชื่อมถ่อ (เสมือนกุณแจบ้านเรา) ชื่อ "myESPino" และเลือก Session Key จากนั้นกด Create

Task 10 ทำ ESPino (Thing) ให้ติดต่อ NETPIE Server กันครับ

ıŪα File>> Example >>

ESP8266>> basic

ตัวอย่างโปรแกรมนี้ให้

เรา Save as ไปเก็บไว้ตามที่เราต้องการก่อนครับ เช่น Desktop เราจึงจะสามารถแก้ไขได้ครับ!!!

Project: NETPIEConnecting

NETPIEConnecting | Arduino 1.6.5
 File Edit Sketch Tools Help

Task 11 การส่งข้อมูล Temp, Humidity เข้าระบบ Cloud NETPIE พร้อมแสดงผลหน้าจอ OLED

Project: NETPIEConnecting

- 1. เพิ่ม Code Program สำหรับเชื่อมต่อ DHT11 หรือ DHT 22
- 2. เพิ่ม Code Program สำหรับจอ OLED แบบ i2C

ปล. เปิดจาก โปรแกรม NETPIEConnecting_Add_DHT_OLED

เป็นการนำโค้ดการใช้งานก่อนหน้ามารวมกันในโปรเจ็กต์ของ NETPIE ครับ


```
NETPIEConnecting_Add_DHT_OLED | Arduino 1.6.5
File Edit Sketch Tools Help
  NETPIEConnecting_Add_DHT_OLED §
  1 /* NETPIE ESP8266 basic sample
  2 /* More information visit : https://netpie.io
  4 #include <ESP8266WiFi.h>
  5 #include <MicroGear.h>
  6 #include <EEPROM.h>
  8 #include <Adafruit GFX.h>
                                         เพิ่ม Include ที่เกี่ยวข้องกับการจัดการ DHT และ OLED
  9 #include <ESP Adafruit SSD1306.h>
 10 #include <Wire.h>
 11 #include <DHT.h>
 13 #define OLED RESET 4
 14 #define DHTPIN 13
                         // what pin we're connected to
 15 #define DHTTYPE DHT11 // DHT 11
 17 Adafruit_SSD1306 display(OLED_RESET);
                                             สร้าง Object ของ OLED และ DHT
 18 DHT dht (DHTPIN, DHTTYPE, 15);
                                             ชื่อ display และ dht ตามลำดับ
 19
 20 const char* ssid
                        = "myWifi";
 21 const char* password = "60936093";
 23 #define APPID "myNETPIE"
 24 #define KEY
                    "OPZFgWfraE0GUTt"
 25 #define SECRET "QgliLamvvwrh4Mog0CjaxDYHU"
 26 #define ALIAS "ESPinoDevice"
 27
                                                                                                HAITECHZONE
 28 WiFiClient client;
```

2 แก้ไขคำสั่งใน void setup()

```
62 void setup() {
63
       /* Add Event listeners */
                                                          ทำหนดค่าเริ่มต้น DHT, OLED
       dht.begin();
64
65
       display.begin(SSD1306_SWITCHCAPVCC, 0x78>>1);
       display.display();
67
       delay (2000);
       display.clearDisplay();
68
69
70
       /* Call onMsghandler() when new message arraives */
       microgear.on (MESSAGE, onMsghandler);
71
72
73
       /* Call onFoundgear() when new gear appear */
74
       microgear.on(PRESENT, onFoundgear);
75
76
       /* Call onLostgear() when some gear goes offline */
77
       microgear.on (ABSENT, onLostgear);
78
```



```
105 void loop() {
                                                             แก้ไขคำสั่งใน void loop()
        /* To check if the microgear is still connected
106
107
       if (microgear.connected()) {
108
            Serial.println("connected");
            /* Call this method regularly otherwise the connection may be lost */
109
110
            microgear.loop();
                                                   ตัวแปรจาเรย์ temp, Humid เก็บจักขระ
111
112
            char temp[10];
113
            char humid[10];
                                                        อ่านค่า Temp, Hum จาก dht เก็บใน h, t
114
            float h = dht.readHumidity(); <
115
            float t = dht.readTemperature();
                                                 แสดงผล ออกทางจอ OLED
116
            showTemp(t,h);
117
            int tempread_decimal = (t - (int)t) * 100; 👉 การทำค่าทศนิยม ก่อนแปลงเป็นอักบระ
118
            int humidread decimal = (h - (int)h) * 100;
119
120
            sprintf(temp, "%d.%d", (int)t, tempread_decimal);
121
            sprintf(humid, "%d.%d", (int)h,humidread decimal);
122
                                                                 แปลงค่าตัวเลขเป็นจักขระ
123
            if (timer >= 1000) {
124
                Serial.println("Publish...");
                /* Chat with the microgear named ชื่อ ALIAS ที่เรากำหนดขึ้นเองได้
125
126
                //microgear.chat(ALIAS, "Hello");
                microgear.chat("ESPinoDevice/Temp", temp);
127
128
                microgear.chat("ESPinoDevice/Humd", humid);
129
130
                timer = 0;
                              ส่งค่า Temp, Humid แบบอับระ ไปยัง Netpie ผ่าน Microgear
131
                                                                                        HZONE
132
            else timer += 100;
```

```
145 void showTemp(float temp, float hud) {
146 // text display tests
     display.setTextSize(2);
148
     display.setTextColor(WHITE);
149
     display.setCursor(0,0);
150
     display.print("T->");
151
     display.print(temp);
152
     display.println("C");
153
     display.print("H->");
154
     display.print(hud);
155
     display.println("%");
156
157
     display.setTextSize(1);
158
     display.setTextColor(WHITE);
159
160
     display.println("-----
161
     display.println("Connect to NETPIE");
162
     display.println("----");
163
     display.print("ESPino: ");
164
     display.println(WiFi.localIP());
165
166
     display.display();
167
     display.clearDisplay();
168 }
```

4 เพิ่มฝังก์ชั่น showTemp

Task 12 การใช้งาน Freeboard

ขั้นตอนการตั้งค่าใช้งานให้กับ Freeboard ที่เราสร้างขึ้น

หลักการเพิ่ม datasource ติดต่อ NETPIE

เมื่อ DATASOURCE เชื่อมต่อ NETPIE สำเร็จ

จำได้มั้บเราสร้างตัวแปรใน Microgear ไว้ใน ESPino สำหรับส่งค่าไปยัง NETPIE

สร้าง WIDGET สำหรับแสดงผล Temperature

สร้าง WIDGET สำหรับแสดงผล Humidity

รูปการส่งข้อมูลการ Chat กันระหว่าง NETPIE กับ Device

NETPIE = Cloud Platform + Microgear Library

Network Platform for Internet of Everything

Library Support for multiple Devices

Portable Power Meter

Weather Station

วุปทรณ์ที่ต้องใช้

- รายการจุปกรณ์ที่ต้องใช้ในการฝึกอบรม ต่อ 1 ท่าน
 - บอร์ด ESPino จำนวน 1 ชุด (430)
 - ชุด LED 3 mm , Resistor (330 ohm) จำนวน 1 ชุด
 - DHT22 หรือ DHT11 จำนวน 1 ชุด
 - สาย Micro USB Cable จำนวน 1 ชุด
 - จอ OLED LCD จำนวน 1 ชุด
 - เบรดบอร์ดและสายต่อวงจร จำนวน 1 ชุด
 - เจกสารประกอบการฝึกอบรม จำนวน 1 ชุด

internal use only: อ.ณัฐพล