Answer all the questions.

1. (a) In the context of *data structures*, explain what is meant by a

```
(i) queue; [2 marks]
```

- (ii) stack. [2 marks]
- (b) State **one** computer application for which a queue is a suitable data structure. [1 mark]

Consider the following class.

```
class Node
{
   public int item;
   public Node next;

   public Node(int d)
   {
      item = d;
      next = null;
   }

   public void displayNode()
   {
      output(item + " ");
   }
}
```

(c) Statement Node x = new Node (5); creates an object of class type Node.

State the output produced by the call x.displayNode();. [1 mark]

(This question continues on the following page)

(Question 1 continued)

Examine the following linked list implementation of a queue.

```
class MyQueue
{ private Node first;
  private Node last;
  public MyQueue() { first = null; last = null; }
  public boolean isEmpty() { return first == null; }
  public void enqueue(int x)
  { Node newNode = new Node(x);
    if (isEmpty())
    { first = newNode; }
    else
    { last.next = newNode; }
    last = newNode;
  }
  public int dequeue()
    // Code missing that will remove a node from the queue
  public void displayQueue()
  { if (first == null)
    { output("The queue is empty!"); }
    else
     { Node temp = first;
       while (temp != null)
       { temp.displayNode();
         temp = temp.next;
    }
  }
}
```

- (d) The statement MyQueue x = new MyQueue(); creates an empty queue.
 - (i) State the output that will be produced after execution of the following statement.

```
x.displayQueue(); [1 mark]
```

- (ii) Construct the code for the method dequeue(). The method should remove one item from x and return the value of the removed item. [4 marks]
- (iii) State the output that will be produced after execution of the following statements.

```
x.enqueue(2);
x.enqueue(4);
int y = x.dequeue();
output("Deleted item: " + y);
x.enqueue(1);
x.enqueue(7);
output("Items in the queue: ");
x.displayQueue();
[3 marks]
```

(e) Explain how the elements in a non-empty queue could be reversed using a stack. [6 marks]

2. A car company sells five different models of cars and employs four salesmen. A record of sales for each month can be represented by a table. The first row of the table contains the number of sales of each model by Salesman 1; the second row contains the number of sales of each model by Salesman 2, and so on.

	Model 1	Model 2	Model 3	Model 4	Model 5
Salesman 1	12	0	0	5	6
Salesman 2	11	1	3	1	3
Salesman 3	10	11	5	3	0
Salesman 4	9	8	5	4	5

(a) (i) Calculate the total number of sales for Salesman 2.

[1 mark]

(ii) Calculate the total number of sales of Model 3.

[1 mark]

The sales data as given above is input into a two-dimensional array named Sales, declared as int[][] Sales = new int[4][5]; that can be logically represented as follows.

Sales		[0]	[1]	[2]	[3]	[4]
	[0]	12	0	0	5	6
	[1]	11	1	3	1	3
	[2]	10	11	5	3	0
	[3]	9	8	5	4	5

Examine the following code.

```
public void mystery(int[][] Sales)
{
    for (int n = 0; n < 4; n = n + 1)
    {
        int total = 0;
        for (int m = 0; m < 5; m = m + 1)
        {
            total = total + Sales[n][m];
        }
        output("Total number of sales for Salesman " + (n + 1) + " is " + total);
    }
}</pre>
```

(b) State the output of the method call mystery (Sales).

[4 marks]

(Question 2 continued)

(c) Construct the method that will output the total number of sales for each of the five car models.

[6 marks]

Assume that the prices of cars are given in the following one-dimensional array.

```
double[] ModelPrice = {10288.00, 12999.99, 18456.00, 20345.00, 45799.00}
```

For example:

ModelPrice[1] holds value 12999.99.

This means that the price of Model 2 is 12999.99.

(d) Construct a method that will accept a one-dimensional array ModelPrice and a two-dimensional array Sales. The method should determine the best salesman (the one with the highest total number of sales); and it should output the best salesman and the highest total number of sales. Assume there will not be a tie for best salesman.

[8 marks]