Diffusion Generative Flow Samplers: Improving Learning Signals Through Partial Trajectory Optimization

Dinghuai Zhang*, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron Courville & Yoshua Bengio

Thomas Mousseau

October 20, 2025

ntroduction Methodology Results and Limitations Conclusion

Overview

1. Introduction

- 1.1 Problem Statement
- 1.2 Limitations of Prior Work

2. Methodology

2.1 DGFS framework

3. Results and Limitations

3.1 Results

4. Conclusion

- 4.1 Key Insights
- 4.2 Future Directions and Usage since its release

1ethodology

Results and Limitatio

Sampling from Unnormalized Densities

Goal. Sample from a *D*-dimensional target with unnormalized density $\mu(x)$:

$$\pi(x) = \frac{\mu(x)}{Z}, \qquad Z = \int_{\mathbb{R}^D} \mu(x) \, dx \text{ (unknown)}.$$

We assume we can evaluate $\mu(x)$, but we have no samples from π and do not know Z.

Context. We seek a *sampler* (similar to MCMC/VI) that produces calibrated samples and, ideally, estimates of $\log Z$, *without* any dataset from π .

Chemistry (small-molecule conformers). Different 3D conformations have a formation energy from force-field terms (bonds, angles, dihedrals, nonbonded); lower energy \Rightarrow higher Boltzmann probability. A well-calibrated sampler is needed to draw conformers in proportion to these probabilities, which is important in binding-pose ranking/free-energy estimation, Boltzmann-weighted property prediction (e.g., NMR shifts), and generating diverse realistic 3D conformers for screening.

/lethodology

Results and Limitation

From sampling to control: reference dynamics

Reference (uncontrolled) diffusion.

$$dx_t = \sigma dW_t$$
, $x_0 \sim \nu$ (simple, e.g. Gaussian).

More generally, introduce a feedback control $u_t = u(x_t, t)$:

$$dx_t = u(x_t, t) dt + \sigma dW_t, \qquad x_0 \sim \nu.$$

Let Q^{ref} be the path law of the uncontrolled process ($u \equiv 0$), with known terminal marginal p_T^{ref} . Our goal is to choose a control u so that the terminal law of the controlled process matches the target $\pi(x) \propto \mu(x)$.

Introduction

SOC formulation

SOC objective. Choose a control u to minimize

$$\mathbb{E}_{Q^u}\left[\int_0^T \frac{1}{2\sigma^2} \|u(x_t,t)\|^2 dt + \Psi(x_T)\right].$$

Pick the terminal cost to encode the target.

$$\Psi(x_T) = \log \frac{p_T^{\mathrm{ref}}(x_T)}{\mu(x_T)}$$
 (equivalently $-\log \mu(x_T)$ up to $\log p_T^{\mathrm{ref}}$).

Key theorem (path–KL ⇔ **SOC).** Define the *target path measure* by terminal reweighting:

$$P(x_{0:T}) \propto Q^{\text{ref}}(x_{0:T}) \frac{\mu(x_T)}{p_T^{\text{ref}}(x_T)}.$$

Then, under standard regularity.

$$D_{\mathrm{KL}}(Q^u \| P) = \mathbb{E}_{Q^u} \Big[\int_0^T rac{1}{2\sigma^2} \|u\|^2 dt + \log rac{
ho_T^{\mathrm{ref}}(x_T)}{\mu(x_T)} \Big] + \mathrm{const}$$

Steps 1–2: Build forward & reference diffusions

Step 1 (controlled forward process). Parameterize a sampler as a controlled diffusion:

$$dx_t = f(x_t, t) dt + \sigma dW_t, \qquad x_0 \sim p_0^{\text{ref}},$$

with drift $f(\cdot,\cdot)$ (the control) to be learned. Let Q denote the path law of this process.

Step 2 (uncontrolled reference). Use the same noise but zero drift:

$$dx_t = \sigma dW_t, \qquad x_0 \sim p_0^{\text{ref}},$$

whose marginals p_t^{ref} are known in closed form. Let Q^{ref} be its path law.

Goal. Choose f so that the terminal marginal of Q matches the target $\pi(x) = \mu(x)/Z$ (no data, Z unknown).

Step 3: Target path measure via terminal reweighting

Construct a target measure on paths by reweighting only the terminal state:

$$P(x_{0:T}) \propto Q^{\text{ref}}(x_{0:T}) \frac{\mu(x_T)}{p_T^{\text{ref}}(x_T)}.$$

Key property (endpoint correctness). By construction, the terminal marginal of P satisfies

$$P(x_T) \propto \mu(x_T) \implies P(x_T) = \pi(x_T)$$
 up to the (unknown) normalizer Z.

Takeaway. We have a principled path-space target P whose endpoint is exactly the desired distribution, without ever using Z along the way.

Step 4: Path-KL equals an SOC objective

Match the target on path space by minimizing a KL divergence:

$$\min_{f} \ D_{\mathrm{KL}}(Q \parallel P).$$

KL-control identity (Girsanov + chain rule). Under standard regularity.

$$D_{\mathrm{KL}}(Q\|P) = \mathbb{E}_Q \Big[\int_0^T rac{1}{2\sigma^2} \|f(x_t,t)\|^2 dt + \log rac{p_T^{\mathrm{ref}}(x_T)}{\mu(x_T)} \Big] + \mathrm{const}$$

Interpretation (SOC).

- Running cost: $\frac{1}{2\sigma^2} ||f||^2$ (control effort).
- Terminal cost: $\log p_T^{\text{ref}}(x_T) \log \mu(x_T)$ (rewards high- μ endpoints).
- The additive constant absorbs $+ \log Z \Rightarrow Z$ cancels.

Therefore: Minimizing $D_{KL}(Q||P)$ is *equivalent* to solving a stochastic optimal control problem.

Step 5 & intuition: why this works, what remains hard

Continuous-time view (optional). With T fixed and finer discretization, the discrete sum becomes

$$\min_{f} \mathbb{E}_{Q} \Big[\int_{0}^{T} \frac{1}{2\sigma^{2}} \|f(x_{t}, t)\|^{2} dt + \log \frac{\rho_{T}^{\text{ref}}(x_{T})}{\mu(x_{T})} \Big],$$

the classic entropy-regularized SOC form.

Intuition (why it works).

- We steer a simple diffusion toward regions where μ is large, trading control effort vs. terminal reward.
- The endpoint of the ideal optimizer matches $\pi = \mu/Z$ (calibrated sampling), while never needing Z explicitly.
- Training only requires evaluating $\mu(x_T)$ (and optionally $\nabla \log \mu$), not intermediate-time scores.

What remains hard (motivation for DGFS).

ullet The loss provides signal *only at terminal time* \Rightarrow poor credit assignment, high-variance gradients.

Introduction

Diffusion Process

Idea. Let the target "diffuse to Gaussian" via a reference process (VP/VE SDE). The reverse-time dynamics can, in principle, generate target samples if we know the score $\nabla_x \log p_t(x)$:

$$\underbrace{dx_t = \sigma \, dW_t}_{\text{forward/noising}} \iff \underbrace{dx_t = \left[f_{\text{ref}}(x,t) - \sigma^2 \nabla_x \log p_t(x)\right] dt + \sigma \, d\bar{W}_t}_{\text{reverse/generative}}.$$

What is score matching? Learn a network $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ by regressing on noised data:

$$\min_{ heta} \ \mathbb{E}_t \, \mathbb{E}_{x_0 \sim p_{\mathsf{data}}} \, \mathbb{E}_{arepsilon} ig| s_{ heta}(x_t,t) -
abla_x \log p_t(x_t) ig|^2,$$

which is equivalent to denoising a corrupted sample x_t back toward x_0 .

Why Denoising Score Matching is *not* applicable here

• We have no dataset from π , only the unnormalized $\mu(x)$ (and maybe $\nabla \log \mu$).

Alternative to DSM: learn the vector field (control)

Reverse SDE drift (generative side).

$$dx_t = [f_{\mathsf{ref}}(x, t) - \sigma^2 \nabla_x \log p_t(x)] dt + \sigma d\bar{W}_t.$$

DSM route (data world). Learn the *score* $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ from noised *data*, then plug it into the reverse drift.

Vector-field route (our setting). Directly learn the *control/drift* $u_{\theta}(x,t)$ instead of the score. The two are *equivalent* via:

$$u_{\theta}(x,t) = f_{\text{ref}}(x,t) - \sigma^2 s_{\theta}(x,t) \iff s_{\theta}(x,t) = \frac{f_{\text{ref}}(x,t) - u_{\theta}(x,t)}{\sigma^2}.$$

Why do this here?

- We have no dataset from π , so DSM can't form expectations over p_t ; scores $\nabla \log p_t$ are unavailable.
- Instead, treat u_{θ} as a *control* and *learn it* by minimizing a Z-free *path-space* KL that uses only the given $\mu(\cdot)$.
- This sets up diffusion samplers à la PIS/DDS and enables DGFS's improvements (intermediate, subtrajectory credit).

Notation tip. Use u_{θ} (or f) for the vector field to avoid clashing with $\mu(\cdot)$, which denotes the unnormalized density.

Sampling as a Stochastic Optimal Control problem

Forward (controlled) process *Q*. A Markov chain with Gaussian transitions:

$$Q(x_{0:N}): \quad x_0 \sim p_0^{\text{ref}}, \quad x_{n+1} \sim P_F(\cdot \mid x_n) = \mathcal{N}(x_n + h f(x_n, n), h\sigma^2 I).$$

Reference process Q^{ref} . Same covariance, zero drift:

$$x_{n+1} \sim P_F^{\text{ref}}(\cdot \mid x_n) = \mathcal{N}(x_n, h\sigma^2 I), \qquad x_0 \sim p_0^{\text{ref}}, p_n^{\text{ref}} \text{ known.}$$

Target process P. Tie the terminal marginal to π via the reference:

$$P(x_{0:N}) := Q^{\text{ref}}(x_{0:N}) \frac{\pi(x_N)}{p_N^{\text{ref}}(x_N)}.$$

Then $P(x_N) \propto \mu(x_N)$, making P a valid path-space target.

Introduction

Sampling as a Stochastic Optimal Control problem

Learning objective (discrete-time SOC). Learn *f* by minimizing the path KL:

$$\min_{f} D_{\mathrm{KL}}(Q \parallel P) \iff \min_{f} \mathbb{E}_{Q} \Big[\sum_{n=0}^{N-1} \frac{h}{2\sigma^{2}} \left\| f(x_{n}, n) \right\|^{2} + \log \Psi(x_{N}) \Big],$$

with
$$\Psi(x_N) = \frac{p_N^{\rm ref}(x_N)}{\mu(x_N)}$$
. (Continuous-time limit recovers the classic VE-SDE SOC formulation.)

Why SOC, and what still hurts (motivation for DGFS)

Why SOC/control-as-inference?

- Principled path-space objective; Z cancels, so only μ (and optionally $\nabla \log \mu$) is needed.
- Calibrated sampling by steering a simple reference process toward the target.

Pain point in prior SOC samplers (PIS/DDS).

 Training signal sits only at terminal time N and losses use full trajectories ⇒ poor credit assignment. high variance, weaker mode coverage.

DGFS in one line.

• Keep the same SOC/path-KL setup, but introduce a learned flow function $F_n(x_n)$ and enforce subtrajectory balance to inject intermediate learning signals and enable partial-trajectory training.

Conclusion