```
I:
S: Рассмотрим испытание: подбрасывается игральная кость. События: A – выпало 3 очка и B –
выпало нечетное число очков являются:
+: Совместными
-: Несовместными
-: Равновозможными
-: Единственно возможными
I:
S: Результатом операции суммы двух событий C = A + B является:
+: произошло хотя бы одно из двух событий А или В;
-: А влечет за собой событие В;
-: произошло событие В
-: совместно осуществились события А и В.
I:
S: Выберите неверное утверждение:
+: вероятность появления одного из противоположных событий всегда
больше вероятности другого;
-: событие, противоположное достоверному, является невозможным;
-: сумма вероятностей двух противоположных событий равна единице;
-: если два события единственно возможны и несовместны, то они называются противоположными.
I:
S: Эксперимент состоит в подбрасывании один раз правильной шестигранной игральной кости.
События А={выпало число очков больше трех}; В ={выпало четное число очков}. Тогда множество,
соответствующее событию А+В, есть:
+: A+B = \{2; 4; 5; 6\};
-: A+B = \{4; 6\};
-: A+B = \{6\};
-: A+B = \{3; 4; 5; 6\}.
I:
S: Эксперимент состоит в подбрасывании один раз правильной шестигранной игральной кости. При
каких событиях А, В верно: А влечет за собой В?
+: A = \{выпало число 2\}, B = \{выпало четное число очков\};
-: A = \{выпало нечетное число очков\}, B = \{выпало число 3\};
-: A = \{выпало четное число очков\}, B = \{выпало число 5\};
-: A = \{выпало число 6\}, B = \{выпало число очков, меньше 6\}.
I:
S: Взятая наудачу деталь может оказаться либо первого (событие A), либо второго (событие B), либо
третьего (событие С) сорта. Что представляет
собой событие: A + C ?
+: {деталь второго сорта};
-: {деталь первого или третьего сорта};
-: { деталь третьего сорта};
-: {деталь первого и третьего сорта}.
I:
S: Заданы множества A = \{1, 3, 4\}, B = \{2, 3, 1, 4\}, тогда для них будет неверным утверждением
+: А и В не имеют общих элементов
-: множества А, В пересекаются;
-: множество А есть подмножество множества В;
-: множество А не равно множеству В.
I:
S: Известно, что P(A) = 0.65 тогда вероятность противоположного события равна ...
+: 0.35
-: 0.25
-: 0,30
-: 0,45
```

```
I:
S: При подбрасывании игральной кости выпадет число очков, большее 4. Вероятность этого события
равен ...
+:1/3
-: 1/2
-: 1/9
-: 1/4
I:
S: При подбрасывании монеты выпадет герб. Вероятность этого события равен ...
+: 1/2
-: 1/3
-: 1/9
-: 1/4
S: Из колоды карт (36 штук) достали туза. Вероятность этого события равен ...
+: 1/9
-: 1/3
-: 1/2
-: 1/4
I:
S: При подбрасывании игральной кости выпадет число очков, меньшее 4. Вероятность этого события
равен ...
+: 0,5
-: 0,6
-: 0,25
-: 0,4
S: Из урны, в которой 6 белых и 4 черных шара, наугад достали белый шар. Вероятность этого
события равен ...
+: 0,6
-: 0,5
-: 0,25
-: 0,4
I:
S: Из колоды карт (36 штук) достали карту бубновой масти. Вероятность этого события равен ...
+: 0.25
-: 0.6
-: 0,5
-: 0,4
S: При подбрасывании игральной кости выпадет число очков, кратное 3. Вероятность этого события
равен ...
+: 1/3
-: 0,4
-: 1/36
-: 0,6
I:
S: Из урны, в которой 6 белых и 4 черных шара, наугад достали черный шар. Вероятность этого
события равен ...
+: 0.4
-: 1/3
-: 1/36
-: 0,6
I:
S: Из колоды карт (36 штук) достали пиковую даму. Вероятность этого события равен ...
```

```
-: 1/3
-: 0,4
-: 0.6
I:
S: Число размещений из n по m ...
+: n!/(n-m)!
-: n!
-: n!/(m!(n-m))!
-: (n-m)!
S: Число перестановок ...
+: n!
-: n!/(n-m)!
-: n!/(m!(n-m))!
-: (n-m)!
S: Число сочетаний из n по m ...
+: n!/(m!(n-m))!
-: n!
-: n!/(n-m)!
-: (n-m)!
I:
S: Игральный кубик подбрасывается один раз. Тогда вероятность того, что на верхней грани выпадет
число очков больше трех, равно:
+: 1/2;
-: 1/3:
-: 2/3;
-: 1/6.
S: В урне 5 белых, 3 черных, 4 красных шаров. Вероятность того, что из урны вынут белый или
черный шар равна ...
+: 2/3;
-: 1/4;
-: 15/8;
-: 1/8.
I:
S: В группе 7 юношей и 5 девушек. На конференцию выбирают трех студентов случайным образом
(без возвращения). Вероятность того, что на конференцию поедут двое юношей и одна девушка,
равна:
+: 21/44;
-: 11/28;
-: 21/110;
-: 7/12.
S: В урне 6 белых и 4 черных шаров. Из урны вынимают два шара. Вероятность того, что оба шара
черные, равна:
+: 2/15;
-: 2/5;
-: 1/4;
-: 3/5.
I:
S: Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго
стрелков равна 0,6 и 0,9 соответственно. Тогда вероятность того, что цель будет поражена, равна:
+: 0,96
```

+: 1/36

```
-: 0.69
-: 0.86
-: 0.68
S: Количество перестановок в слове «ТВМС» равно:
+: 24
-: 12
-: 120
-: 8
I:
S: Сколько различных двузначных чисел можно составить из пяти цифр 1, 2, 3, 4, 5, если все цифры в
числе разные?
+: 20
-: 120
-: 24
-: 12
I:
S: Игральную кость бросают 5 раз. Вероятность того, что ровно 3 раза появится нечетная грань,
равна:
+: 5/16
-: 1/32:
-: 1/16:
-: 3/16.
I:
S: Наивероятнейшее число годных деталей среди 15 проверенных отделом технического контроля,
если вероятность того, что деталь стандартна, равна 0,7, равно....
+: 11
-: 10
-: 12
-: 9
I:
S: Количество трехзначных чисел, в записи которых нет цифр 5 и 6 равно:
+: 448;
-: 296;
-: 1024;
-: 526.
I:
S: Число m0 наступления события A в n независимых испытаниях, в каждом из которых вероятность
появления события равна р, определяемое из неравенства: pn - q < m0 < pn + q, называется:
+: наивероятнейшее;
-: наибольшее;
-: оптимальное;
-: минимальное.
I:
S: Потребитель может увидеть рекламу определенного товара по телевидению (событие A), на
рекламном стенде (событие В) и прочесть в газете (событие С). Событие А + В + С означает:
+: потребитель увидел хотя бы один вид рекламы;
-: потребитель увидел все три вида рекламы;
-: потребитель не увидел ни одного вида рекламы;
-: потребитель увидел рекламу по телевидению.
S: На пяти одинаковых карточках написаны буквы И, Л, О, С, Ч. Если перемешать их, и разложить
наудачу в ряд две карточки, то вероятность р получить слово ИЛ равна ....
+: 0.05
-: 0,5
```

```
-: 0.08
-: 0,07
I:
S: Если A и B – независимые события, то вероятность наступления хотя бы одного из двух событий
А и В вычисляется по формуле:
+: P(A+B) = P(A) + P(B),
-: P(A \cdot B) = P(A) \cdot P(B),
-: P(A \cdot B) = P(A) \cdot P(B) \cdot P(A \cdot B),
-: P(A \cdot B) = P(A)P(B/A).
I:
S: Сколькими способами можно составить список из пяти студентов? В ответ записать полученное
число.
+: 120
-: 24
-: 12
-: 720
I:
S: Подбрасываются две игральные кости. Найти вероятность Р того, что сумма выпавших очков
равна четырем. В ответ записать число 24Р.
+: 2
-: 1
-: 3
-: 4
I:
S: Партия из 10 телевизоров содержит 3 неисправных телевизора. Из этой партии выбираются наугад
2 телевизора. Найти вероятность Р того, что оба они будут неисправными. В ответ записать число 45
Ρ.
+: 3
-: 2
-: 6
-: 4
I:
S: Данное предприятие в среднем выпускает 20 % продукции высшего сорта и 70 % продукции
первого сорта. Найти вероятность Р того, что случайно взятое изделие этого предприятия будет
высшего или первого сорта. В ответ записать число 30 Р.
+: 27
-: 28
-: 26
-: 30
S: Студентам нужно сдать 4 экзамена за 6 дней. Сколькими способами можно составить расписание
сдачи экзаменов?
+: 360
-: 320
-: 270
-: 160
I:
S: Вероятность того, что случайно выбранный водитель застрахует свой автомобиль, равна 0,6.
Наивероятнейшее число водителей, застраховавших автомобиль, среди 100 равно...
+:60
-: 64
-: 62
-: 58
I:
```

S: В группе из 20 студентов 4 отличника и 16 хорошистов. Вероятности успешной сдачи сессии для них соответственно равны 0,9 и 0,65. Вероятность того, что наугад выбранный студент успешно сдаст сессию равна +: 0,7
-: 0,8 -: 0,6 -: 0,55
S: На плоскости нарисованы две концентрические окружности, радиусы которых 6 и 12 см соответственно. Вероятность того, что точка брошенная наудачу в большой круг, попадет в кольцо, образованное указанными окружностями равна: +: 0,75; -: 0,65; -: 0,12; -: 0,60. I:
S: Опыт состоит в том, что стрелок производит 3 выстрела по мишени. Событие AK - «попадание в мишень при k -ом выстреле ($k=1,2,3$). Выберите правильное выражение для обозначения события «хотя бы одно попадание в цель»: +: $A1 + A2 + A3$;
$A_1 \cdot A_2 \cdot A_3$; -: A1;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S: На сборку попадают детали с двух автоматов: 80 % из первого и 20 % из второго. Первый автомат дает 10 % брака, второй – 5 % брака. Вероятность попадания на сборку доброкачественной детали: +: 0,91; -: 0,90; -: 0,09; -: 0,15. I:
S: Некто купил два билета. Вероятность выигрыша хотя бы по одному билету равна 0,19, а вероятность выигрыша по одному лотерейному билету равна +: 0,1 -: 0,2 -: 0,25: 0,15.
I: S: Вероятность посещения магазина № 1 равна 0,6, а магазина № 2 – 0,4. Вероятность покупки при посещении магазина № 1 равна 0,7, а магазина № 2 – 0,2. Вероятность покупки равна +: 0,5 -: 0,65; -: 0,12; -: 0,60. I:
S: После бури на участке между 40-м и 70-м километрами телефонной линии произошел обрыв провода. Вероятность Р того, что разрыв произошел между 50-м и 55-м километрами равна (В ответ записать 60Р) +: 10 -: 11 -: 12
-: 12 -: 9. I:

S: Партия деталей изготовлена двумя рабочими. Первый рабочий изготовил 32 всех деталей, а второй -31. Вероятность брака для первого рабочего составляет 1%, а для второго -10%. На контроль взяли одну деталь. Получено, что вероятность (в процентах) того, что она бракованная равна... +: 4 -: 5 -: 3 -: 6 I: S: Вероятность того, что в течение одной смены возникнет неполадка станка, равна р. Вероятность того, что не произойдет ни одной неполадки за три смены равна: +: (1-p)3-: 3p; -: 3(1-p);-: p3. S: При классическом определении вероятность события определяется равенством ... +: P(A) = m/n-: P(A) = n/m-: P(A) = n/m2-: P(A) = 1/nS: Среди тридцати деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что утеряна нестандартная деталь, равна... +: 1/3-: 0,3-: 3,0 -: 1/5 S: Набирая номер телефона, абонент забыл последние три цифры и, помня, что эти цифры различны, набрал их наудачу. Вероятность того, что набраны нужные цифры, вычисляется по формуле... $I \mid A$ 10 C^3 10 $C_{10}^3 \mid A_{10}^3$ I: S: Вероятность появления одного из двух несовместных событий, безразлично какого, вычисляется по уравнению... P(A)+P(B)P(A)-P(B)P(B)+ P(A)+ P(AB)P(A)+P(B)-P(AB)I: S: Событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В, обозначается ... $A \cup B$ +: $A \cap B$ $A \setminus B$

 $A \subset B$

```
I:
S: Событие состоящее из элементарных событий, принадлежащих одновременно A и B,
обозначается...
       A \cap B
       A \cup B
       A \subset B
       A \setminus B
I:
S: Событие, состоящее из элементарных событий, принадлежащих A и не принадлежащих B,
обозначается...
     A \setminus B
     A \cap B
     A \cup B
      A \in B
-:
I:
S: Если из наступления события A следует наступление события B, т.е. событие B есть следствие
события А, то это записывается как...
      A \subset B
      A \cap B
      A \cup B
       A \setminus B
-:
I:
S: Вероятность достоверного события равна ...
    1,0
    0,5
    1.0
    0
-:
I:
S: Число комбинаций, состоящее из одних и тех же n различных элементов и отличающихся только
порядком их расположения, вычисляется по формуле ...
     n!
+:
     n(n-1)(n-2)...(n-m+1)
     n! (m!(n-m)!)
     P_m \mid C_n^m
I:
S: Число возможных размещений, составленных из n различных элементов по m элементов, которые
отличаются либо составом элементов, либо их порядком вычисляется по формуле ...
       n(n-1)(n-2)...(n-m+1)
+:
       n! (m!(n-m)!)
       P_m \mid C_n^m
        n!
I:
S: Число комбинаций, составленных из n различных элементов по m элементов, которые отличаются
хотя бы одним из элементов, вычисляется по формуле ...
```

n! (m!(n-m)!)

n(n-1)(n-2)...(n-m+1)

+:

-:

n!

```
P_m C_n^m
I:
S: Количество трехзначных чисел, которое можно составить из цифр 1,2,3, если каждая цифра входит
в изображение числа только один раз, вычисляют по формуле ...
    перестановок
    сочетаний
-:
    размещений
    вероятности
-:
I:
S:Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Вероятность того, что
найдена нужная цифра, равна ...
+: 0,1
    0,2
   1/2
    0/3.
-:
I:
S:Количество способов, которыми читатель может выбрать 4 книги из 11, равно:
+:330
-: 353
-: 341
-: 326
I:
S:Количество способов, которыми можно выбрать 5 экзаменационных билетов из 9, равно:
+: 126
-: 135
-: 121
-: 150
S: Количество способов, которыми можно сформировать экзаменационный билет из трех вопросов,
если всего 25 вопросов, равно:
+: 2300
-: 2500
-: 75
-: 575
I:
S: Количество способов, которыми можно выбрать двух дежурных из группы студентов в 20
человек, равно:
+: 190
-: 200
-: 20!
-: 18!
S: Количество способов, которыми могут 3 раза поразить мишень 10 стрелков, равно (каждый делает
1 выстрел):
+: 120
-: 10
-: 30
-: 720
I:
S: Три стрелка делают по одному выстрелу по мишени. Событие A_i – попадание в мишень i-м
стрелком. Событие A_i – промах i-м стрелком. Событие A – в мишень попали два раза представляется
в виде операций над событиями как...
```

 $+: A_1 \cdot A_2 \cdot A_3$

```
\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}
A_1 \cdot A_2 \cdot A_3 - (\overline{A_1} + \overline{A_2} + \overline{A_3})
\overline{A_1} \cdot A_2 \cdot A_3 + A_1 \cdot \overline{A_2} \cdot A_3 + A_1 \cdot A_2 \cdot \overline{A_3}
S: Укажите верные равенства (\varnothing - невозможное событие, \Omega - достоверное событие):
_{\perp} A + \Omega = \Omega
A \cdot \emptyset = A
A + \emptyset = \emptyset
A + \bar{A} = \emptyset
S: Два стрелка производят по одному выстрелу. Вероятности попадания в цель для первого и второго
стрелков равны 0,9 и 0,4 соответственно. Вероятность того, что в цель попадут оба стрелка, равна ...
+: 0,5
-: 0.4
-: 0.45
-: 0.36
I:
S: Сумма вероятностей событий A1, A2, ... An, образующих полную группу, равна ...
      P(A_1) + P(A_2) + ... P(A_n) = 1
      P(A_1)+P(A_2)+...P(A_n)=0
      P(A_1) + P(A_2) + ... P(A_n) = \infty
      P(A_1) + P(A_2) + ... P(A_n) = -\infty
I:
S: Сумма вероятностей противоположных событий равна ...
       P(A) + P(\overline{A}) = 1
      P(A) + P(\overline{A}) = 0
      P(A) + P(\overline{A}) = \infty
      P(A) + P(\overline{A}) = -\infty
I: S: Вероятность совместного появления двух событий вычисляют по формуле ...
      P(A) \cdot P(B \mid A)
      P(A) \cdot P(B)
      P(A)/P(B)
      P(A)/P(B \mid A)
I: S: Теорема умножения для независимых событий имеет вид ...
        P(AB) = P(A) \cdot P(B)
        P(AB) = P(B) \cdot P(A / B)
        P(AB) = P(A) \cdot P(B \mid A)
        P(AB) = P(A)/P(B/A)
I:
```

S: Вероятность появления хотя бы одного из трех независимых в совокупности событий равна ...

```
P(A) = 1 - q_1 \cdot q_2 \cdot q_3
    P(A) = 1 - P(\overline{A})

P(A) = 1 - P(\overline{A_1})
    P(A) = 1 - P(\overline{A_3})
I: S: Вероятность появления хотя бы одного из двух совместных событий равна ...
      P(A+B) = P(A) + P(B) - P(AB)
      P(A+B) = P(A) + P(AB) - P(B)
      P(A+B) = P(B)+P(AB)-P(A)
      P(A+B) = P(A) + P(B) + P(AB)
I:
S: Вероятность попадания стрелком в цель равна 0,7. Сделано 25 выстрелов. Наивероятнейшее
число попаданий в цель равно...
+: 18
-: 20
-: 16
-: 21
I:
S: Монета брошена 3 раза. Тогда вероятность того, что "герб" выпадет ровно 2 раза, равна ...
      3/8
      3/4
      1/8
-:
      2/3
-:
S: Количество способов выбора стартовой шестерки из восьми игроков волейбольной команды
равно ...
      28
+:
      113
-:
     720
-:
-:
     56
I:
S: Из ящика, где находится 15 деталей, пронумерованных от 1 до15, требуется вынуть 3 детали.
Тогда количество всевозможных комбинаций номеров вынутых деталей равно ...
-: 15!/12!
+: 15!/3!·12!
-: 15!
-: 3!
S:Вероятность достоверного события равна ...
-: 0
+: 1,0
-: 0,5
  1.0
-:
I:
S: По оценкам экспертов вероятности банкротства для двух предприятий, производящих
разнотипную продукцию равна 0,1 и 0,15. Тогда вероятность банкротства обоих предприятий равна
+: 0.015
-: 0,15
-: 0,25
-: 0,765
```

```
I:
S: По оценкам экспертов вероятности банкротства для двух предприятий, производящих
разнотипную продукцию равна 0,1 и 0,15. Тогда вероятность банкротства обоих предприятий равна
        0,015
+:
        0,15
-:
        0,25
-:
        0,765
-:
I:
S: Вероятность попадания в мишень 0,8. Тогда наиболее вероятное число попаданий при 5 выстрелах
равно ...
      4,0
+:
      3,8
-:
      4,8
       4,5
-:
I:
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие В). Найдите соответствующее событие для А+В:
+: Лицо является держателем акций или облигаций
-: Лицо является держателем акций и облигаций
-: Лицо является держателем только акций
-: Лицо является держателем только облигаций
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие В). Найдите соответствующее событие для А.В:
+: Лицо является держателем акций и облигаций
-: Лицо является держателем акций или облигаций
-: Лицо является держателем только акций
-: Лицо является держателем только облигаций
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие B). Найдите соответствующее событие для A - A \cdot B:
+: Лицо является держателем только акций
-: Лицо является держателем акций или облигаций
-: Лицо является держателем акций и облигаций
-: Лицо является держателем только облигаций
I:
S: Рассмотрим испытание: подбрасывается игральная кость. Выпало 3 очка. Это какое событие:
+: Достоверное событие
-: Невозможное событие
-: Это не событие
-: Неестественное событие
S: Рассмотрим испытание: подбрасывается игральная кость. Выпало больше 6 очков. Это какое
событие:
+: Невозможное событие
-: Достоверное событие
-: Это не событие
-: Неестественное событие
T:
```

S: Рассмотрим испытание: подбрасывается игральная кость.
События: А – выпало 3 очка и В – выпало нечетное число очков являются:
+: Совместными
-: Несовместными
-: Равновозможными
-: Противоположными
I:
S: Рассмотрим испытание: из урны, содержащей 3 белых и 7 черных шаров, достают наугад один шар. События: А – достали белый шар и В – достали черный шар являются:
+: Противоположными
-: Несовместными
-: Равновозможными
-: Совместными
I:
S: Несколько событий называются, если в результате испытания обязательно должно
произойти хотя бы одно из них.
+: Единственно возможными
-: Равновозможными
-: Несовместными
-: Противоположными
I:
S: События называются, если в результате испытания по условиям симметрии ни одно
из них не является объективно более возможным.
+: Равновозможными
-: Единственно возможными
-: Несовместными
-: Совместными
I:
S: События называются, если наступление одного из них исключает появление любого
другого.
+: Несовместными
-: Равновозможными
-: Единственно возможными
-: Противоположными
I:
S: Несколько событий образуют полную группу событий, если они являютсяи
исходами испытания.
+: Несовместными и единственно возможными
-: Противоположными и равновозможными
-: Равновозможными и совместными
-: Достоверными и несовместными
I:
S: Элементарными исходами (случаями, шансами) называются исходы некоторого испытания, если
они и .
+: Образуют полную группу событий и равновозможные
-: Совместны и достоверны
-: Достоверны и несовместны
-: Единственно возможны и противоположными
I:
S: На отрезке L длины 20 см помещен меньший отрезок 1 длины 5 см. Вероятность того, что точка,
наудачу поставленная на больший отрезок, попадет также и на меньший отрезок, равна
+: 0,25
-: 0,35
-: 0,345
-: 0,165

```
I:
```

S:.В урне 12 белых и 8 черных шаров. Вероятность того, что наудачу вынутый шар будет белым равна...

+: 0.6

-: 0.5

-: 0,7

-: 0,4

I:

S: Равенство
$$P(A + B) = P(A) + P(B)$$
 имеет место для событий

+: Несовместных

-: Произвольных

-: Противоположных

-: Единственно возможных

I:

S: Равенство
$$P(AB) = P(A) \cdot P(B)$$
 имеет место для______ событий

+: Совместных

-: Зависимых

-: Равновозможных

-: Произвольных

S: Сумма вероятностей событий, образующих полную группу равна ...

Ответ: единице; 1

+: 1

-: 0,5

-: 0

-: 0,75I:

S: Сумма вероятностей противоположных событий равна ...

+: 1

-: 0.5

-: 0

-: 0.75

S: В первом ящике 7 красных и 9 синих шаров, во втором – 4 красных и 11 синих. Из произвольного ящика достают один шар. Вероятность того, что он красный равна ...

$$\frac{1}{2} \cdot \left(\frac{7}{16} + \frac{4}{15} \right)$$

$$\begin{array}{c}
 \frac{7}{9} + \frac{4}{11} \\
 \vdots \quad \frac{1}{2} \cdot \left(\frac{7}{9} + \frac{4}{11}\right) \\
 \vdots \quad \frac{1}{2} \cdot \left(\frac{7}{9} + \frac{4}{11}\right)
\end{array}$$

$$\frac{1}{2} \cdot \frac{7+4}{9+11}$$

S: В первой урне 4 черных и 6 белых шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

+:0,45

-: 0.15

-: 0,4

S: Событие A может наступить лишь при условии появления одного из двух несовместных событий

 H_1 и H_2 , образующих полную группу событий. Известны вероятность

 $P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{1}{4}.$ Тогда вероятность P(A) равна ... вероятности

- +: 1/3
- -: 2/3
- -: 1/2
- -: 3/4

I:

S: Формула полной вероятности имеет вид ...

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
+:
$$P(A) = C_n^m p^m q^{n-m}$$
-:
$$P(A) = P(A_1) \cdot P_{A_1}(A_2)$$
-:
$$P(A) = \sum_{i=1}^{n} P(A_i)$$
-:
I:

S: В первой урне 3 белых и 7 черных шаров. Во второй урне 1 белый и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется черным, равна...

- +: 0.8
- -: 0.2
- -: 0.4
- -: 1,6

S: Формула Байеса имеет вид ...
$$P_{H}(A) \cdot P(H_{j}) = \frac{P_{H}(A) \cdot P(H_{j})}{P(A)} + :$$

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
$$P(A) = C_n^m p^m q^{n-m}$$

$$P(A) = C_n^m p^m q^{n-n}$$

$$P(A) = P(H) \cdot P_H(A)$$

S: Если произошло событие A, которое может появиться только с одной из гипотез H1, H2, ..., Hn образующих полную группу событий, то произвести количественную переоценку априорных (известных до испытания) вероятностей гипотез можно по ...

- +: Формуле Байеса
- -: Формуле полной вероятности
- -: Формуле Пуассона
- -: Формуле Муавра-Лапласа

I:

S:
$$P_n(m) = C_n^m p^m q^{n-m}$$
 это формула ...

- +: Бернулли
- -: Пуассона
- -: полной вероятности
- -: Локальная теорема Муавра-Лапласа

I:

```
P_n(m) pprox rac{\lambda^m e^{-\lambda}}{m!} это формула ...
```

+: Локальная теорема Муавра-Лапласа

- -: Бернулли
- -: полной вероятности
- -: Пуассона

$$P_n(m) pprox rac{arphi(x)}{\sqrt{npq}}$$
 это формула ...

- +: Бернулли
- -: Пуассона
- -: полной вероятности
- -: Байеса

I:

S: Событие A может наступить лишь при условии появления одного из трех несовместных событий $P(H_{\cdot}) = P(H_{\cdot}) = P(H_{\cdot})$

¹ 4, ² 2, H_1 , H_2 , H_3 , образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите P(A):

- +: 9/16
- -: 2/9
- -: 2/3
- -: 1/9

1: S: Событие A может наступить лишь при условии появления одного из трех несовместных событий $P(H) = _ P(H) = _$

¹ 4 ² 2 $H_{1},\ H_{2},\ H_{3}$, образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите $P_A(H_1)$:

- +: 2/9
- -: 9/16
- -: 2/3
- -: 1/9

¹ 4 ² 2 $H_{1},\ H_{2},\ H_{3}$, образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}$$
 и $P_{H_3}(A) = \frac{1}{4}$. Найдите $P_A(H_2)$:

- +: 2/3
- -: 9/16
- -: 2/9
- -: 1/9

I:

S: Событие A может наступить лишь при условии появления одного из трех несовместных событий $P(H_-) = \frac{1}{2} P(H_-) = \frac{1}{2}$

 H_1 , H_2 , H_3 , образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите $P_A(H_3)$:

+: 1/9

-: 9/16

```
-: 2/9
-: 2/3
I:
S: Стрелок стреляет по мишени 5 раз. Вероятность попадания в мишень при каждом выстреле
постоянна. Вероятность того, что стрелок попадет по мишени не менее двух раз, равна...
+: 1-P_5(0)-P_5(1)-P_5(2)
P_5(2) + P_5(3) + P_5(4) + P_5(5)
-1-P_5(0)-P_5(1)
-: 1-P_5(2)
S: В ходе проверки аудитор случайным образом отбирает 60 счетов. В среднем 3% счетов содержат
ошибки. Параметр λ формулы Пуассона для вычисления вероятности того, что аудитор обнаружит
два счета с ошибкой, равен ...
+: 1.8
-: 2,8
-: 3.1
-: 0.9
I:
S: Телефонная станция обслуживает 1000 абонентов. Вероятность позвонить любому абоненту в
течение часа равна 0,001. Вероятность того, что в течение часа позвонят точно 3 абонента,
приближенно равна...
   1
+: 6e
-: 0,001^3
-: 3e^{-3}
   3e^{-3}
    3!
I:
S: Укажите все условия, предъявляемые к последовательности независимых испытаний, называемой
схемой Бернулли
+: В каждом испытании может появиться только два исхода
-: Количество испытаний должно быть небольшим: n ≤ 50
-: Вероятность успеха во всех испытаниях постоянна
-: В некоторых испытаниях может появиться больше двух исходов
S: Сделано 10 выстрелов по мишени. Вероятность попадания при одном выстреле 0,7.
Наивероятнейшее число попаданий равно ...
+: 7
-: 8
-: 6
-: 9
I:
S: n \le 50
             это условие использования формулы ...
+: Бернулли
-: Пуассона
-: Локальная теорема Муавра-Лапласа
-: Байеса
I:
S: n \ge 50 и np = \lambda \le 10 это условие использования формулы ...
+: Пуассона
```

```
-: Бернулли
-: Локальная теорема Муавра-Лапласа
-: Байеса
```

S:
$$p = const$$
, $p \neq 0, p \neq 1, npq \geq 20$ это условие использования формулы ...

- +: Локальная теорема Муавра-Лапласа
- -: Бернулли
- -: Пуассона
- -: Байеса

I:

- S: Формулой Пуассона целесообразно пользоваться, если ...
- +: n = 100, p = 0.02
- -: n = 500, p = 0.4
- -: n = 500, p = 0.003
- -: n = 3, p = 0.05

I:

- S:. Теоремами Муавра-Лапласа целесообразно пользоваться, если ...
- +: n = 100, p = 0.5
- -: n = 100, p = 0.02
- -: n = 3, p = 0.5
- -: n = 500, p = 0.4

I:

- S: Монету подбросили 100 раз. Для определения вероятности того, что событие A появление герба наступит ровно 60 раз, целесообразно воспользоваться...
- +: Локальной теоремой Муавра-Лапласа
- -: Формулой Пуассона
- -: Формулой полной вероятности
- -: Интегральной теоремой Муавра-Лапласа

I:

- S: Монету подбросили 100 раз. Для определения вероятности того, что событие A появление герба наступит не менее 60 раз и не более 80 раз, целесообразно воспользоваться...
- +: Интегральной теоремой Муавра
- -: Локальной теоремой Муавра-Лапласа
- -: Формулой Пуассона
- -: Формулой полной вероятности

I:

- S: Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна 0,8. Вероятность того, что событие появится не менее 60 раз и не более 88 раз, равна:
- $_{+}$. $P_{100}(60 \le m \le 88) \approx \Phi(2) \Phi(-5)$
- $P_{100}(60 \le m \le 88) \approx \Phi(88) \Phi(60)$
- $P_{100}(60 \le m \le 88) \approx \Phi(88) + \Phi(60)$
- $P_{100}(60 \le m \le 88) \approx \Phi(8) \Phi(-20)$

I:

- S: Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна 0,8. Вероятность того, что событие появится точно 88 раз, равна:
- $+: \phi(2)$
- $\frac{1}{\sqrt{2\pi}}e^{-8}$
- $\frac{1}{\sqrt{2\pi}} \int_{0}^{8} e^{-\frac{t^{2}}{2}} dt$

```
\frac{1}{\sqrt{2\pi}} \int_{0}^{2} e^{-\frac{t^{2}}{2}} dt
\vdots
```

S: Укажите дискретные случайные величины:

- +: Число очков, выпавшее при подбрасывании игральной кости. Количество произведенных выстрелов до первого попадания. Оценка, полученная студентом на экзамене по теории вероятностей.
- -: Дальность полета артиллерийского снаряда. Расход электроэнергии на предприятии за месяц. Оценка, полученная студентом на экзамене по теории вероятностей.
- -: Расход электроэнергии на предприятии за месяц. Дальность полета артиллерийского снаряда. Количество произведенных выстрелов до первого попадания.
- -: Число очков, выпавшее при подбрасывании игральной кости. Расход электроэнергии на предприятии за месяц. Дальность полета артиллерийского снаряда. I:

S: Укажите непрерывные случайные величины

- +: Температура воздуха. Расход электроэнергии на предприятии за месяц.
- -: Количество произведенных выстрелов до первого попадания.
- -: Рост студента.

I:

+: 5 -: 3 -: 4 -: -1

-: Оценка, полученная студентом на экзамене по теории вероятностей.

S: Вероятность появления события A в 10 независимых испытаниях, проводимых по схеме Бернулли, равна 0,8. Тогда дисперсия числа появлений этого события равна ...

```
+: 1,6

-: 0,08

-: 0,16

-: 8,0

I:
```

S: Дискретная случайная величина задана законом распределения вероятностей:

X	-1	2	4
P	0,1	a	b

Тогда ее математическое ожидание равно 3,3 если ...

```
a = 0.2, b = 0.7
+:
     a = 0.1, b = 0.9
-:
     a = -0.1, b = 0.8
-:
     a = -0.8, b = 0.1
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(3):
+: 3
-: 4
-: 5
-: -1
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(2X):
+: 4
-: 3
-: 5
-: -1
I:
```

S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X+Y)

```
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X-Y):
+: -1
-: 3
-: 4
-: 5
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X \cdot Y):
-: 3
-: 4
-: 0
I:
S: Известно M(X) и M(X^2). M(X) = -0.4; M(X^2) = 4. Найти D(X):
+: 3,84
-: 1,89
-: 4,4
-: 4,2
I:
S: Известно M(X) и M(X^2). M(X) = 2,1; M(X^2) = 6,3. Найти D(X):
+: 1,89
-: 3,84
-: 4,4
-: 4,2
I:
```

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Математическое ожидание:

+: 2

-: 5

-: 0

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Моду:

+: 5

-: 2

-: 0

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Медиану:

+: 0

-: 2

-: 5

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-1	0	1

P	0,2	0,1	0,7

Значение $M(X^2)$ равно ...

+: 0.9

-: 0.8

-: 0.7

-: 0,5

I:

S: В денежной лотерее выпущено 100 билетов. Разыгрывается пять выигрышей по 500 рублей, пять выигрышей по 400 рублей и десять выигрышей по 100 рублей. Математическое ожидание выигрыша по одному лотерейному билету равно...

-: 65

-: 75

-: 45

S: Укажите справедливые утверждения для функции распределения случайной величины

$$\lim_{x \to +\infty} F(x) = 1 \quad 0 \le F(x) \le 1 \quad \lim_{x \to -\infty} F(x) = 0 \quad F(1) \le F(2)$$

$$F(x) \ge 0$$
 $F(1) \ge F(2)$

$$\lim F(x) = 0$$

$$\lim_{x \to +\infty} F(x) = 1$$

I:

S: Случайная величина задана плотностью распределения $\phi(x) = 2x$ в интервале (0; 1); вне этого

интервала $\phi(x) = 0$. Вероятность P(0 < X < 1/2) равна ...

- +: 0,25
- -: 0,3
- -: 0,4
- -: 0,5

I:

S:Случайная величина задана плотностью распределения $\varphi(x) = 2x$ в интервале (0; 1); вне этого интервала $\phi(x) = 0$. Математическое ожидание величины X равно ...

- +: 2/3
- -: 4/3
- -: 1
- -: 1/2

S: Случайная величина задана плотностью распределения $\phi(x) = x/2$ в интервале (0; 2); вне этого интервала $\phi(x) = 0$. Математическое ожидание величины X равно ...

- +: 4/3
- -: 2/3
- -: 1
- -: 1/2

I:

S: Непрерывная случайная величина равномерно распределена на отрезке [-11; 20]. Вероятность

$$P(X \le 0)$$
 -: 5/16

-: 11/32 +: 11/31 I:

-: 10/31

равна ...

```
S: Непрерывная случайная величина равномерно распределена на отрезке [-11; 26]. Вероятность
P(X > -4) pasha ...
+: 30/37
-: 10/31
-: 5/16
-: 29/38
I:
S: Математическое ожидание и среднее квадратическое отклонение нормально распределенной
случайной величины X соответственно равны 15 и 5. Вероятность того, что в результате испытания
Х примет значение из интервала (5; 20), равна:
+: \Phi(1) + \Phi(2)
-: \Phi(20) - \Phi(5)
-: \Phi(20) + \Phi(5)
-: \Phi(2) - \Phi(1)
I:
                                                                           \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
S: Нормально распределенная случайная величина X задана плотнотью
D(X) pabha ...
+: 1
-: 2
-: 0.5
-: -1
I:
                                                                            \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
S: Нормально распределенная случайная величина X задана плотностью
Математическое ожидание M(X) равно ...
+: 0
-: 1
-: 2
-: 3.5
I:
S: Математическое ожидание и дисперсия независимых случайных величин X и Y соответственно
равны M(X) = 2, D(X) = 3, M(Y) = 4, D(Y)=5.
Если случайная величина Z задана равенством Z = 2X - Y + 3, тогда M(Z) \cdot D(Z) равно...
+: 51
-: 60
-: 45
-: 65
I:
S: Производится 200 повторных независимых испытаний, в каждом из которых вероятность
события A равна 0,2. Дисперсия D(X) случайной величины X – числа появления события A в 200-х
испытаниях равна...
+:32
-: 25
-: 46
-: 50
S: Случайные величины X и Y независимы. Если известно, что
D(x) = 5, D(y) = 6, тогда дисперсия случайной величины z = 3x + 2y равна ...
+: 69
```

-:

27

```
51
    37
-:
I:
S: Дан закон распределения дискретной случайной величины X
        хi
                          2
                                 3
                                                 5
        pi
                0,14
                       0,28
                              0,17
                                      0,32
                                                p5
Тогда значение вероятности р5 равно:
+: 0,09
-: 0,1
-: 0.05
-: 0,2
I:
S: Закон распределения СВ X задан таблицей
       хi
                           2
              0,2
       pi
                      0,2
                            0,5
                                     0,1
Мода случайной величины Х равна:
+: 4
-: 5
-: 3
-: 1
I:
S: Закон распределения СВ X задан в виде таблицы
                          2
                                 3
                                        4
                                                 5
       хi
                  1
                                       0,1
                                                 0,2
                 0,1
                          0,4
                                0,2
       pi
Математическое ожидание СВ Х равно:
+: 2.9
-: 1,5
-: 3,2
-: 4,1
I:
S: СВ X задана таблично
                             4
       хi
              0,2
      pi
                     0,5
                             0,3
Математическое ожидание величины y = x^2 + 1 равно:
-: 10,5
-: 13,4
-: 9,8
S: Случайная величина распределена по нормальному закону, причем
M(X) = 15. Найти P(10 < X < 15), если известно, что P(15 < X < 20) = 0.25.
+: 0,25;
-: 0,10;
-: 0,15;
-: 0,20;
I:
S: Закон распределения случайной величины X задан таблицей:
          40
               42
                       44
                              45
                                     46
                       0.1
                              0.07
                                     0.03
     pi
Тогда вероятность события X < 44 равна...
+: 0.8
-: 0,7
-: 0,6
-: 0,5
```

S: Закон распределения случайной величины X имеет вид

Математическое ожидание случайной величины Х равно...

+: 0

-: 1

-: 2

-: 0,5

I:

S: График плотности распределения вероятностей непрерывной случайной величины X, распределен равномерно в интервале (-1; 4).

Тогда значение f(x) равно ...

+: 0,2

-: 0,33

-: 1,0

-: 0,25

I:

S: Дискретная случайная величина X задана законом распределения вероятностей:

X	-1	0	3
P	0,1	0,3	0,6

Тогда математическое ожидание величины Y = 2x равно ...

+: 4

-: 3,8

-: 3,7

-: 3,4

I:

S: CB X равномерно распределена на отрезке [-7, 18], тогда вероятность P(-3 < X) равна:

+: 11/15

-: 15/25

-: 21/25

-: 13/15

I:

S: Непрерывная случайная величина X задана плотностью распределения вероятностей

$$f(X) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{(X-5)^2}{32}}$$

. Дисперсия этой нормально распределенной величины равна:

+: 16

-: 27

-: 51

-: 37

Ţ.

S: Пусть X - случайная величина с функцией распределения:

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x}{6}, & 1 \le x < 2 \\ \frac{x}{8} + \frac{1}{2}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Тогда вероятность $P\{X \ge 1/2\}$ равна:

+: 11/12;

-: 1/12;

-: 3/8;

```
5/6.
-:
I:
S: Значение неизвестного параметра а функции плотности
f(x) = \begin{cases} 0, & x \notin [4, 6] \\ a \cdot x - \frac{1}{8}, & x \in [4, 6] \end{cases}
равно:
+: 1/8;
-: 1/2;
-: 1/4;
-: 1/6.
I:
S: Рассчитанная по выборке объемом 15 наблюдений выборочная дисперсия равна 28, тогда
несмещенная оценка дисперсии равна:
    30
    27
-:
   51
-:
    37
-:
I:
S: Центральный момент второго порядка случайной величины соответствует ...
+: дисперсии
  математическому ожиданию
   коэффициенту эксцесса
-:
    коэффициенту асимметрии
I:
S: Центральный момент третьего порядка характеризует форму кривой распределения относительно
нормального распределения на ...
    скошенность
-:
    островершинность
    симметрию
-:
    сглаженность
I:
S: Если случайная величина X распределена нормально, то абсолютная величина ее отклонения ...
+:
      не превосходит 3σ
      превосходит 3σ
-:
      равна 3σ
-:
-:
      равна 3о/2
I:
S: Случайная величина X называется нормированной (стандартизованной), если ее математическое
ожидание и дисперсия соответственно равны ...
      M(x) = 0, D(x) = 1
+:
      M(x) = 1, D(x) = 0
-:
      M(x) = 1, D(x) = 1
-:
      M(x) = 0, D(x) = 0.5
I:
S: Для нормального закона распределения случайной величины X коэффициент эксцесса (є) имеет
значение ...
     \varepsilon = 0
     \varepsilon > 0
     \varepsilon < 0
```

-:

I:

 $\varepsilon = 1$

- S: Дискретная случайная величина X может иметь закон распределения ...
- +: биноминальный
- -: равномерный
- -: показательный
- -: нормальный

S: Случайная величина X представлена рядом распределения:

X = m	0	1	 n
P	q n	npq n-1	p n

Закон распределения этого ряда называется ...

- +: биноминальный
- -: показательный
- -: Пуассона
- -: геометрический

I:

- S: Если случайная величина X имеет M(x) = np, D(x) = npq, то ее закон распределения (имеет вид) называется ...
- +: биноминальный
- -: геометрический
- -: нормальный
- -: гипергеометрический

I:

- S: Вероятность появления события A в 10 независимых испытаниях, проводимых по схеме Бернулли, равна 0,6. Тогда математическое ожидание числа появлений этого события равна ...
- +: 6
- -: 0,06
- -: 1,6
- -: 1,2

I:

- S: Дискретная случайная величина может быть распределена по закону...
- +: Пуассона
- -: нормальному
- -: показательному
- -: равномерному

I:

S: Случайная величина X представлена рядом распределения:

X	0	1	•••	m
P	e -a	a e -a	•••	a m· e −a/m!

Этот ряд соответствует закону распределения ...

- +: Пуассона
- -: Бернулли
- -: показательному
- -: геометрическому

I:

- S: Среднее число вызовов, поступающих на ATC в одну минуту, равно двум. Тогда вероятность того, что за 5 минут поступит не менее двух вызовов, определяется по закону ...
- +: Пуассона
- -: показательному
- -: биноминальному
- -: гипергеометрическому

I:

Если для случайной величины Х значения математического ожидания и дисперсии совпадают: M(x) = D(x) = a, тогда ей соответствует закон распределения ...

Пуассона +:

Бернулли -:

показательный -:

геометрический -:

I:

S: Если вероятность появления события A в 1000 независимых испытаний равная 0,02 вычисляется

$$P_n(m) = \frac{5^m \cdot e^{-5}}{m!}$$

по закону равны ...

, тогда математическое ожидание и дисперсия этой случайной величины

+:
$$M(x) = 5$$
; $D(x) = 5$

-:
$$M(x) = 1/5$$
; $D(x) = 2.5$

-:
$$M(x) = 2.5$$
; $D(x) = 1$

-:
$$M(x) = 5$$
; $D(x) = 1/5$

I:

S: Случайная величина X представлена рядом распределения:

X = m	0	1	2	 n - 1
P	p	pq1	pq2	 pq n-1

Этот ряд соответствует закону распределения вида ...

+: геометрический

нормальный -:

показательный -:

-: гипергеометрический

I:

$$M(x) = \frac{1-p}{p}$$
, а дисперсия

S: Если для случайной величины X математическое ожидание $D(x) = \frac{1-p}{}$

$$D(x) = \frac{1-p}{1-p}$$

$$p^2$$
 , тогда ее закон распределения имеет вид ...

геометрический

Пуассона -:

нормальный -:

-: показательный

I:

S: Из орудия производится стрельба по цели до первого попадания. При каждой попытке успех достигается с одной и той же вероятностью p = 0.6. Тогда вероятность того, что попадание в цель произойдет при третьем выстреле, равна ...

+: 0,6.0,43

 $0.62 \cdot 0.4$

0,6.0,4

0,6.0,42

показательным

S: Если плотность распределения непрерывной случайной величины: тогда ее распределение называют ...

равномерным +:

нормальным

биноминальным

 $f(x) = 1 (b-a), x \in [a,b],$

```
I:
S: Случайная величина X распределена равномерно на отрезке [a, b], где a = 1, b = 3. Тогда
математическое ожидание М (х) и дисперсия D (х), соответственно, равны ...
        2:
            1/3
+:
        1/3; 2
-:
        0,5; 2
-:
        2; 0,5
-:
I:
S: Случайные величины X и Y независимы. Если известно, что D(x) = 5, D(y) = 6, тогда дисперсия
случайной величины z = 3x + 2y равна ...
    69
+:
    27
-:
    51
-:
    37
-:
I:
S: По выборке объема n = 51 найдена смещенная оценка генеральной дисперсии (DB = 3).
Несмещенная оценка дисперсии генеральной совокупности равна:
+:3,06;
-:3,05;
-:3,51;
-:3,60;
I:
S: Из генеральной совокупности извлечена выборка объема n = 60, представленная статистическим
рядом
                7
          4
                     8
     хi
          30
                12
                     18
     mi
Точечная оценка генеральной средней арифметической по данной выборке равна:
+: 5,8;
-: 4,0;
-: 19/60;
-: 6,0;
-: 7,0
I:
S: Совокупность наблюдений, отобранных случайным образом из генеральной совокупности,
называется:
+: выборкой
-: репрезентативной
-: вариантой
-: частотой
-: частостью
I:
S: Укажите абсолютные показатели вариации для вариационного ряда
+: Среднее линейное отклонение, Выборочная дисперсия.
-: Выборочное среднее,
-: Коэффициент вариации,
-: Медиана
I:
S: Укажите относительные показатели вариации для вариационного ряда:
     +: Коэффициент вариации, Относительное линейное отклонение
     -: Выборочное среднее,
     -: Медиана
     -: Выборочная дисперсия.
I:
```

```
S: Математическое ожидание оценки \tilde{\theta}_n параметра \theta равно оцениваемому параметру. Оценка \bar{\theta}_n
является:
+: несмещенной
-: смещенной
-: состоятельной
-: эффективной
I:
S: Оценка \theta_n параметра \theta сходится по вероятности к оцениваемому параметру. Оценка \theta_n является:
+: состоятельной
-: смещенной
-: несмещенной
-: эффективной
S: Оценка \tilde{\theta}_n параметра \theta имеет наименьшую дисперсию из всех несмещенных оценок параметра
	heta, вычисленных по выборкам одного объема п. Оценка 	ilde{	heta}_n является:
+: эффективной
-: смещенной
-: несмещенной
-: состоятельной
I:
S: Точечная оценка математического ожидания нормального распределения равна 11. Тогда его
интервальная оценка может иметь вид...
     +: 10,5; 11,5
     -: 11; 11,5
     -: 10,5; 10,9
     -: 10,5; 11
I:
S: Дана выборка объема п. Если каждый элемент выборки увеличить в 5 раз, то выборочное среднее:
+: увеличится в 5 раз
-: не изменится
-: уменьшится в 5 раз
-: увеличится в 25 раз
I:
S: Любое предположение о виде или параметре неизвестного закона распределения называется:
+: Статистической гипотезой
-: Статистическим критерием
-: Нулевой гипотезой
-: Альтернативной гипотезой
I:
S: Правило, по которому нулевая гипотеза отвергается или принимается называется:
+:Статистическим критерием
-: Нулевой гипотезой
-: Статистической гипотезой
-: Альтернативной гипотезой
I:
S: Коэффициент асимметрии распределения случайной величины определяется формулой ...
     \mu 3 / \delta 3
+:
     \mu 4 / \delta 4
-:
     \mu 3 / \delta 3 - 3
-:
     \mu 4 / \delta 4 - 4
-:
I:
S: Коэффициент эксцесса распределения случайной величины определяется формулой ...
```

```
\mu 4 / \delta 4 - 3
     \mu 3 / \delta 3
-:
-: \mu 4 / \delta 4
     \mu 3 / \delta 3 - 3
I:
S: Квантиль порядка p = 0.5 случайной величины X называется ...
    медианой
    модой
    дисперсией
-:
    полигоном
-:
I:
S: Значение дискретной случайной величины, которое имеет наибольшую вероятность, называется
+:
     мода
-:
    перцентиль
    квартиль
-:
    медиана
-:
I:
S: Если плотность распределения случайной величины X определяется формулой
  f(x) = \begin{cases} 0, & x < 0 \\ \lambda \cdot e^{-\lambda x}, & x \ge 0 \end{cases}
тогда ее закон распределения называется ...
      показательным
      нормальным
-:
-:
      геометрическим
-:
      биноминальным
I:
S: Функция распределения случайной величины X имеет вид: F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0, \text{ если ее закон распределения} \end{cases}
распределения ...
+:
      показательный
-:
      нормальный
-:
      геометрический
      биноминальный
-:
I:
S: Случайная величина, распределенная по нормальному закону с математическим ожиданием
равным нулю и \sigma = 1, называется ...
+:
      нормированной
     смещенной
-:
     исправленной
-:
     симметричной
I:
S: Распределение вероятностей непрерывной случайной величины X, для которой коэффициенты
асимметрии и эксцесса равны нулю называют ...
      нормальным
+:
      показательным
-:
      равномерным
-:
-:
      геометрическим
I:
S: Для нормально распределенной случайной величины X M(x)=3, D(x)=16. Тогда ее мода (Mo) и
медиана (Ме) равны ...
      Mo = 3; Me = 3
+:
```

Mo = 3; Me = 16

-:

```
-: Mo = 16; Me = 16

-: Mo = 16; Me = 3
```

S: Случайная величина X, распределенная по показательному закону имеет M (x)=1/2 и σ =1/2, тогда D(x) равно ...

- +: 1/4
- -: 1/2
- -: 0,3
- -: 0,4

I:

S: Случайная величина X, распределенная по показательному закону имеет D(x)=1/9 и $\sigma=1/3$, тогда M(x) равно ...

- +: 1/3
- -: 1/6
- -: 1/9
- -: 0,6

I:

S: Вероятность попадания в интервал (a, b) случайной величины X, распределенной по показательному закону, равна ...

$$e^{-\lambda a} - e^{-\lambda b}$$

- -: $\lambda e^{-\lambda x}$
- -: $1-e^{-\lambda a}$
- -: $1-e^{-\lambda b}$

I:

S: Плотность распределения показательного закона с параметрами $\lambda = 6$ и $x \ge 0$ имеет вид ...

$$+: 6e^{-6x}$$

$$-: 1-6e^{-6x}$$

$$e^{-6a} - e^{-6b}$$

$$-: 1 - e^{-6b}$$

I:

S: Функция распределения показательного закона при $x \ge 0$ и λ =4 имеет вид ...

$$+: 1 - e^{-4x}$$

$$1 - e^{-4b}$$

$$1 - 4e^{-x}$$

$$-: 4e^{-4x}$$

I:

S: Случайная величина X, распределенная по показательному закону имеет M (x)=5 и D(x)=25, тогда параметр λ равен ...

- +: 1/5
- -: 1/25
- -: 0,5
- -: 0,25

I:

S:Какой логический элемент показан на рисунке?

$$x1 \lor x2 = y$$

$$x1 + x2 = y$$

+:элемент«ИЛИ»

- -:элемент«И»
- -:элемент«НЕ»
- -:элемент«ИЛИ-НЕ»

I:

S: Какой логический элемент называется инвертором?

- +:элемент «НЕ»
- -:элемент «И»
- -:элемент «ИЛИ»
- -:элемент «ИЛИ-НЕ»

I:

S: Какая логическая функция с двумя входами имеет значение 1 только тогда, когда обе входные переменные равны 0?

- +:функция «ИЛИ-НЕ»
- -:функция «И»
- -:функция «НЕ»
- -:функция «ИЛИ»

Ţ.

S: Какой логический элемент представлен на рисунке?

- +:элемент«И-НЕ»
- -:элемент«ИЛИ-НЕ»
- -:элемент«НЕ»
- -:элемент«ИЛИ»

S: Приведена таблица истинности ...

X_{1}	X_2	F
0	0	1
1	0	1
0	1	1
1	1	0

+:элемента«И-НЕ»

- -:элемента«ИЛИ-НЕ»
- -:элемента«НЕ»
- -:элемента«ИЛИ»

I:

S: Если две вершины соединены направленным отрезком, то пара называется упорядоченной, а отрезок называется ... графа.

- +:Ребром
- -:Петлей
- -:Дугой
- -: Маршрутом

T

S: На множестве $A = \{a,b,c,d\}$ задано бинарное отношение

 $R = \{(a,b),(a,c),(b,c),(c,d)\}$. Какие пары нужно добавить к R, чтобы получить его транзитивное замыкание?

- -:(d,a)
- +:(a,d),(b,d)
- -:никакие, так как R транзитивно;
- -:(a,d)

I:

S:Укажите последовательность символов, являющуюся формулой алгебры высказываний:

$$_+$$
 $\cdot ((P \rightarrow Q) \lor (Q \rightarrow P))$

$$\underline{\cdot} ((P \wedge Q)R \to \overline{S})$$

$$(P \leftrightarrow Q) \land RS$$

$$(P \vee Q) \equiv (Q \vee P)$$

I:

S:Упорядочить логические операции в соответствии с их приоритетом 1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция

- +:2; 1; 4; 3.
- -:1; 2; 4; 3.
- -:4; 1; 2; 3.
- -:2: 3: 4: 1.

Ţ.

S:Выберите набор значений пропозициональных переменных, на котором формула алгебры

высказываний $P \to (P \land \overline{Q})$ принимает значение 0:

$$_{+}$$
. $\lambda(P) = 1$, $\lambda(Q) = 1$

$$\lambda(P) = 1, \ \lambda(Q) = 0$$

$$\lambda(P) = 0, \ \lambda(Q) = 1$$

$$\therefore \lambda(P) = 0, \ \lambda(Q) = 0$$

I:

S:Укажите тождественно ложную формулу алгебры высказываний:

$$X \vee \overline{X}$$

$$+\cdot \overline{X \vee \overline{X}}$$

```
\begin{array}{c} -: X \to \overline{X} \\ -: \overline{X \to \overline{X}} \end{array}
S:Укажите тождественно истинную формулу алгебры высказываний:
+: X \vee \overline{X}
\overline{X} \vee \overline{X}
-: X \to \overline{X}
\overline{X} \to \overline{X}
S:Из приведенных равносильностей выберите закон поглощения:
A \lor A \equiv A
A \to B \equiv \overline{A} \vee B
_{+}: A \wedge (B \vee A) \equiv A
-\cdot \overline{A \wedge B} \equiv \overline{A} \vee \overline{B}
I:
S:Из приведенных формул алгебры высказываний выберите закон контрапозиции:
(P \to Q) \leftrightarrow (\overline{Q} \to \overline{P})
(P \land (Q \lor P)) \leftrightarrow P
.(P \to Q) \leftrightarrow (\overline{P} \to \overline{Q})
P \land (Q \lor P)) \leftrightarrow Q
I:
S:Тавтология ((P \land Q) \land R) \leftrightarrow (P \land (Q \land R)) определяет свойство ...
+:ассоциативность конъюнкции
-:идемпотентность конъюнкции
-:коммутативность конъюнкции
-: дистрибутивность конъюнкции относительно дизъюнкции
I:
S:СКНФ не существует у формулы алгебры высказываний, если она ...
+:тождественно истинная
-:тождественно ложная
-:выполнимая
-:опровержимая
S:СДНФ не существует у формулы алгебры высказываний, если она ...
+:тождественно ложная
-:тождественно истинная
-:выполнимая
-:опровержимая
S:По набору значений переменных (0, 1) укажите конъюнктивный одночлен, принимающий значение 1
только на этом наборе значений переменных:
-X \wedge Y
+: \overline{X} \wedge Y
X \wedge \overline{Y}
_{-}: \overline{X} \wedge \overline{Y}
S:По набору значений переменных (1, 0) укажите дизъюнктивный одночлен, принимающий значение 0
```

только на этом наборе значений переменных:

```
-: X \vee Y
+: \overline{X} \vee Y
X \vee \overline{Y}
\overline{X} \vee \overline{Y}
S:Среди формул алгебры высказываний выберите ДНФ:
(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})
(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})
(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})
S:Среди формул алгебры высказываний выберите КНФ:
(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})
(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})
(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})
S:Среди формул алгебры высказываний выберите СКНФ:
(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})
+: (X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y} \vee Z)
S:Среди формул алгебры высказываний выберите СДНФ:
(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})
(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})
(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor Z)
S:Укажите СКНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 0:
(X \vee \overline{Y}) \wedge (X \vee Y)
(X \wedge \overline{Y}) \vee (X \wedge Y)
+: (\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y})
-: \overline{X}
S:Укажите СДНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 1:
+: (X \wedge \overline{Y}) \vee (X \wedge Y)
(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y})
(X \vee \overline{Y}) \wedge (X \vee Y)
-:X
```

- I:
- S:Последовательно соединенным контактам РКС соответствует операция ...
- +:Конъюнкция
- -:Отрицание
- -:Дизъюнкция
- -:Импликация
- I:
- S:Параллельно соединенным контактам РКС соответствует операция ...
- +:Дизъюнкция
- -:Отрицание
- -:Конъюнкция
- -:Импликация

I:

х	у	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	0

называется ...

- S:Булева функция, заданная по правилу
- +:Сложение по модулю два
- -:Штрих Шеффера
- -:Стрелка Пирса
- -:Эквивалентность

I:

x	у	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

- S:Булева функция, заданная по правилу 0 1 0 1
- +:Штрих Шеффера
- -:Стрелка Пирса
- -:Сложение по модулю два
- -:Эквивалентность

I:

х	у	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

- S:Булева функция, заданная по правилу
- +:Стрелка Пирса
- -:Штрих Шеффера
- -:Сложение по модулю два
- -:Эквивалентность

I:

S:Релейно-контактной схеме

соответствует функция проводимости

$$+: (x'y \lor z)(x \lor y)$$

$$(x'y \lor xz)(x \lor y)$$

$$(x' \lor yz)(x \lor y)$$

$$\vdots$$
 $(x' \lor y \lor z)(x \lor y)$

T

- S:В виде формулы алгебры высказываний могут быть представлены ...
- +:Произвольные булевы функции
- -:Все булевы функции кроме тождественно истинных

- -:Все булевы функции кроме тождественно ложных -:Булевы функции от двух переменных

S:Таблица истинности конъюнкции имеет вид:

A	В	A∧B
1	1	1
1	0	0
0	1	0
0	0	0

A	В	A∧B
1	1	1
1	0	1
0	1	1
0	0	0

Α	В	$A \wedge B$
1	1	1
1	0	0
0	1	1
0	0	1

-			
	A	В	A∧B
	1	1	0
	1	0	0
	0	1	0
_•	0	0	1

I:

S: Таблица истинности дизъюнкции имеет вид:

A	В	A∨B
1	1	1
1	0	1
0	1	1
. 0	0	0

A	В	A∨B
1	1	0
1	0	0
0	1	0
0	0	1

A	В	A∨B
1	1	1
1	0	0
0	1	1
. 0	0	1

A	В	A∨B
1	1	1
1	0	0
0	1	0
 0	0	0

S:Таблица истинности импликации имеет вид:

	Α	В	А→В
	1	1	1
	1	0	0
	0	1	1
+:	0	0	1

 $\begin{array}{c|ccccc} A & B & A \rightarrow B \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$

 $\begin{array}{c|ccccc} A & B & A \rightarrow B \\ \hline 1 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 1 & 1 \\ 0 & 0 & 1 \\ \hline \end{array}$

 $\begin{array}{c|cccc} A & B & A \rightarrow B \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{array}$

I:

S:Таблица истинности эквивалентности имеет вид

	A	В	A↔B
	1	1	1
	1	0	0
	0	1	0
].[0	0	1

 $\begin{array}{c|ccccc} A & B & A \longleftrightarrow B \\ \hline 1 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 0 & 0 & 1 \\ \hline \end{array}$

S:Укажите лес

- -:а, б
- -:а, в
- +:a
- -:б
- I:

S:Найти цикл для графа

- -:1, 2, 3, 5, 6, 1
- -:1, 2, 3, 6, 5, 1
- +:6, 3, 4, 1, 2, 3, 5, 6
- -: 3, 4, 1, 2, 5
- I:

S:Найти сумму степеней вершин графа

- -:14
- -:16
- +:18
- -:20
- I:

S:Найти сумму степеней вершин графа

- -:20
- -:21
- -:19
- +:23

- -:15
- +:16
- -:12
- -:13

I:

S:Укажите псевдографы

- -:б, г
- -:В, Г
- +:а, б, в
- -:a, г

I:

S:... называется граф, изображенный на плоскости так, что его ребра пересекаются только в вершинах

- -:полным
- -:орграфом
- +:плоским
- -:неорграфом

I:

S:Укажите плоский граф

- -:б, в
- -:б
- +:a, B
- -:а, б

I:

S:Укажите гомеоморфные графы

- -:a, B
- -:б, в
- -:а, б, в
- +:а, б

I:

S:Несвязный граф, не содержащий циклов, называется...

- -:деревом
- +:лесом
- -:Эйлеровым
- -:Гамильтоновым

I:

S:Связный граф, не содержащий циклов, называется ...

- +:Деревом
- -:Эйлеровым
- -:Гамильтоновым
- -:Лесом

S:Найти сумму степеней вершин ографа

- -:16
- -:17
- -:13
- I:

S:Найти сумму степеней вершин ографа

- -:15
- +:16
- -:14
- -:11
- I:

S:Найти сумму степеней вершин ографа

- -:19
- -:15
- +:22
- -:16
- I:

S:Найти максимальную пропускную способность транспортной сети

- -:14
- -:10
- -:16
- +:12

I:

S:Вычислите 100!/98!

- +:9900
- -:9800
- -:9700
- -:9600

I:

S:Восстановите равенство $C_3^5 = C_3^4 + C_4^?$

- -:3
- +:2
- -:1
- -:4

```
I:
S:Восстановите равенство 3C_{10}^3 = ? \cdot C_{10}^2
-:7
-:5
+:8
-:6
I:
S:Вычислите C_{10}^3
-:110
-:115
-:105
+:120
I:
S:Если вершины соединены ненаправленным отрезком, то вершины называются неупорядоченными,
отрезок, их соединяющий, называется ...
-:Ребром
+:Дугой
-:Петлей
-: Маршрутом
S:Граф, содержащий только ребра, называется ...
-:Неориентированным
-:Псевдографо
+:Ориентированным
-:Полным
I:
S:Граф, содержащий только дуги, называется ...
-:Ориентированным
-:Псевдографом
  +:Неориентированным
-:Полным
S:Пара вершин может соединяться двумя или более ребрами одного направления, такие ребра
называются ...
  +:Кратными
-:Изолированными
-:Дугами
-:Пелями
I:
S:Дуга или ребро может начинаться или заканчиваться в одной вершине, такие дуги называются ...
-:Кратными
-:Изолированными
-:Дугами
  +:Петлями
S:Вершины, соединенные ребром или дугой называются ...
-:Кратными
+:Смежными
-:Инцидентными
-:Изолированными
S:Дуги, имеющие общие вершины называются ...
-:Инцидентными
+:Смежными
-:Изолированными
```

-:Кратными

```
I:
S:Ребро и любая из двух ее вершин называется ...
-:Смежными
-:Кратными
   +:Инцидентными
-:Изолированными
I:
S:Матрица, размерностью n \times m, такая что, Aij – равен числу ребер или дуг, соединяющую i – ю и j- ю
вершины, и равна 0 если вершины несмежны, называется ...
   +:матрицой смежности
-:единичной матрицой
-: матрицой инцидентности
-:квадратной матрицей
I:
S:... GA графа G=(X,Г) называется граф, в который входит лишь часть вершин графа G, образующих
множество А вместе с дугами, соединяющими эти вершины
-:частичным графом
-:полным графом
-:надграфом
+:подграфом
I:
S:... GA графа G=(X,\Gamma) называется граф, содержащий все вершины графа и только часть дуг графа
-:полным графом
-:подграфом
-:надграфом
+:частичным графом
I:
S:... в графе G называется такая последовательность дуг, в которой конец каждой предыдущей дуги
является началом следующей дуги
-: Маршрутом
-:Цепью
+:Путем
-:Циклом
I:
S:... пути М называется число K, равное числу дуг, составляющих путь М
-: Маршрутом
+:Длиной
-:Цепью
-:Шиклом
S:Путь, в котором ни одна дуга не встречается дважды, называется ...
 +:Простым
-:Цепью
-: Маршрутом
-:Циклом
I:
S:Путь, в котором ни одна вершина не встречается дважды, называется ...
-:Цепью
  +:Элементарным
-: Маршрутом
-:Шиклом
I:
S:... – это конечный путь M, у которого начальная и конечная вершина совпадают
-:Маршрут
  +:Контур
-:Цикл
-:Цепь
```

```
I:
S:Граф называется ..., если любые две его вершины можно соединить цепью
-:несвязным
+:связным
-: сильно связным
-:полным
I:
S:Если граф не связен, то его можно разбить на такие подграфы, что все вершины в каждом подграфе
связны, а вершины из различных подграфов не связны, такие подграфы называются ...
-:дополнением
-:полным
+:компонентами связности графа
-:связным
I:
S:Граф ..., если для любых вершин x и y существует путь, идущий из x в y
-:несвязен
+:сильно связен
-:связен
-:полон
I:
S:Степенью вершины и графа G называется число ребер, ... этой вершине
-:равных
-:неравных
+:иншидентных
-:смежных
I:
S:Объединение множеств и символически изображается.
_{+}. A \bigcup B = \{x; x \in A или x \in B\}
_. A \cup B = \{x; x \in A \text{ и } x \in B\}
\underline{\ }.\ A \bigcup B = \{x; \ x \in A, x \notin B\}
A \cup B = \{x; x \notin A, x \in B\}
S: Для конечного множества мощность булеана |2M| = ... |M|
+:2
-:m^2
-:m
-:Бесконечное т
I:
S: Пусть A и B —произвольные множества, тогда суммой или ... множеств A и B называют множество
С, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А и В.
+: Объединением
-:разъединением
-:Симметрической разностью
-:разностью
I:
S:Для того чтобы множество A было счетным, необходимо и достаточно, чтобы его можно было ...
-:Упорядочить
+: перенумеровать
-:Нацвечать
-:разъединить
Объединение счетного множества счетных множеств ....
+: счетно;
-:Несчетно
-:мошные
```

```
-:Бесконечное
I:
S: Множество целых чисел
-:несчетно
+:счетно
-:равным
-:множество с тремя элементами
I:
S:Пустым множеством называется...
+:множество неимеющий элементов.
-:множество с одним элементом
-:множество с двумя элементами.
-:множество с тремя элементами
S:A=\{1,2,3\} и B=\{2,3,5\} ,найти AUB ?
+:{1,2,3,5}
-:\{1,2,5\}
-:\{1,2,3,4,5\}
-:\{2,3,5\}
I:
S:Множество обычно обозначаются латынскими или греческими ... буквами
-:малыми
+:большими
-:малыми или большими
-:смешанными
S:Если A=\{1,2,3\} и B=\{2,3,5\}, найти пересечение A и B.
+:\{2,3\}
-:\{1,2,5\}
-:\{1,2,3,4,5\}
-:{2,3,5}
I:
S:Если A=\{1,3\} и B=\{2,3,5\} ,найти пересечение A и B.
+:{3}
-:\{1,2,5\}
-:\{1,2,3,4,5\}
-:{2,3,5}
I:
S:Если каждый элемент множества A имеется в множестве B, и обратное если каждый элемент
множества В имеется в множестве А,тогда множества А и В называются ...
+:равными(совпадающими)
-:множество А подмножества В
-:множество В подмножества А
-:несовпадающими
I:
S:Множество A называют ... множества B ,если все элементы из A входят в B.
+:подмножеством
-: собственным подмножеством
-:равными
-:несовпадающими
S:если все элементы из множества А входят в множество B,а в множестве B
имеются элементы невходящие множество А,то множество А называется ... множества В.
-:подмножеством
+: собственным подмножеством
-:равным
```

-:несовпадающими

```
I:
S: Объединением или суммой A и B ,называется множество который ....
-: состоит из общих элементов
+:состоит из всех элементов, полученных без повторения
-: состоит из элементов А
-: состоит из элементов В
S: Если A=\{1,2,3\} и B=\{2,3,5\}, найти AUB.
+:{1,2,3,5}
-: {1,2,5}
-:\{1,2,3,4,5\}
-:{2,3,5}
I:
S:Число всевозможных п.... из n элементов обозначается символом Pn.
+:ерестановок;
-:установок;
-:ересечений
-:одмножеству
I:
S: Упорядоченное n-элементное множество называется п.... из n элементов.
+:ерестановокой;
-:установокой;
-:ересечением
-:одмножеством
S: Число сочетаний из n элементов по k равно числу сочетаний из n элементов по ...
+: n-k
-:nk
-:n/k
-:n+k
I:
S:Арифметический треугольник еще называют треугольником .....
+:Паскаля;
-:Кантора
-:Ньютона
-:Булева
I:
S:A=\{1,2,3,a,c\}, B=\{2,a,b\}, найти симметрической разность A и B.
+:\{1,3,b,c\}
-:\{1,2,3,a,c\}
-:\{a,b,c\}
-:\{1,2,3\}
S:A=\{1,2,3\}, B=\{2,4,5\}, найти симметрической разность A и B.
+:{1,3,4,5}
-:{1,2,3}
-:{2}
-:{1,2,3,4,5,6}
S:A=\{x: x\square N, (x-1)(x+2)(x+5)=0\}, B=\{x: x\square Z, (x-2)(x+1)(x+5)=0\}, найти A / B.
+:{-2;1}
-:{-5;-2;-1;1;2}
-:{-5}
-:{1;2}
I:
```

```
\exists x P(x, f(a)) \land \neg \exists x S(x, f(a)). Какое из предложений
S:Дано функциональное высказывание:
соответствует этому высказыванию?
-:Некоторые политики лицемеры
-:Все любят Джейн, но она не любит ни кого.
-:Волга шире Днепра.
+: Многие знают тайну Н-ва, но никто о ней не говорит.
I:
                                          \exists x (P(x) \land R(x)). Какое из предложений соответствует этому
S:Дано функциональное высказывание:
высказыванию?
+:Некоторые политики лицемеры
-:Все любят Джейн, но она не любит ни кого.
-:Волга шире Днепра.
-:Каждый русский город строился на реке или холме.
I:
                                          \forall x(P(x) \rightarrow R(x)) Какое из предложений соответствует этому
S:Дано функциональное высказывание:
высказыванию?
-:Некоторые политики лицемеры
+:Все живущие смертны.
-:Волга шире Днепра.
-: Не всякое число делится на 3.
I:
                                          \neg \forall x(S(x,a)) Какое из предложений соответствует этому
S:Дано функциональное высказывание:
высказыванию?
-:Некоторые политики лицемеры
+: Не всякое число делится на 3.
-:Волга шире Днепра.
-:Простые числа обязательно нечетные числа.
I:
                                          (\forall x)\!((S(x)\land P(y)\to (\exists y)(Q(x,y)\lor Q(x,f(y)))). Какое из предложений
S:Дано функциональное высказывание:
соответствует этому высказыванию?
-:Некоторые политики лицемеры
+:Каждый студент знает хотя бы некоторых преподавателей или знает хотя бы их фамилию.
-:Волга шире Днепра.
-:Простые числа обязательно нечетные числа.
-: Ни одно доброе дело не остаётся безнаказанным.
S:A=\{1,2,3\} и B=\{2,3,5\} . AUB?
+:{1,2,3,5}
-:\{1,2,5\}
-:\{1,2,3,4,5\}
-:\{2,3,5\}
I:
S: Упорядочить логические операции в соответствии с их приоритетом 1) конъюнкция; 2) отрицание; 3)
импликация; 4) дизъюнкция
+:2; 1; 4; 3.
-:1; 2; 4; 3.
-:4; 1; 2; 3.
-:2; 3; 4; 1
Что такое система счисления?
```

А) Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;

В) правила арифметических действий;

С) компьютерная программа для арифметических вычислений;

D) это знаковая система, в которой числа записываются по определенным правилам, с помощь
знаков некоторого алфавита, называемых цифрами.*
Переведите число 37 из десятичной системы счисления в двоичную.
A)100101;*
B) 10101;
C) 10011;
D) 101101.
Переведите число 110102 из двоичной системы счисления в десятичную систему счисления.
A) 18;
B) 24;
C) 26;*
D) 14.
Какие системы счисления не используются специалистами для общения с ЭВМ?
А) десятичная;
В) троичная;*
С) двоичная;
D) шестнадцатеричная.
Что называется основанием системы счисления?
А) количество цифр, используемых для записи чисел;
В) отношение значений единиц соседних разрядов;*
С) арифметическая основа ЭВМ;
D) сумма всех цифр системы счисления.
Переведите число 138 из десятичной системы счисления в двоичную.
A)1001010;
B)10001010;*
C)10000110;
D)1111110.
Переведите число 11011012 из двоичной системы счисления в десятичную систему счисления
A)109;*
B)104;
C) 121;
D)209.
Какая система счисления используется специалистами для общения с ЭВМ?
А) двенадцатеричная;
В) троичная;
С)двоичная;*
D) пятеричная.
Все системы счисления делятся на две группы:
А) римские и арабские;
В) двоичные и десятичные;
С) позиционные и непозиционные;*D) целые и дробные.
Переведите число 243 из десятичной системы счисления в двоичную.
A)11110011;*
B)11001111;
C) 1110011;
D)110111.
Переведите число 11012 из двоичной системы счисления в десятичную систему счисления.
A)11;
B) 13;*
C) 15;
D)23.
Числовой разряд — это:
А) цифра в изображении числа;
В) позиция цифры в числе;*
С) показатель степени основания;

D) алфавит системы счисления.

В позиционных системах счисления основание системы счисления — это: А) максимальное количество знаков, используемое для записи числа;* В) цифры 1, 2, 3, 4, 5, 6, 7, 8, 9; С) правила арифметических действий; D) числовой разряд. Переведите число 49 из десятичной системы счисления в двоичную. A)100011; B)10101; C)110001;* D)101101. Переведите число 1110112 из двоичной системы счисления в десятичную систему счисления. A)58: B) 63: C) 59:* D)14. Почему в ЭВМ используется двоичная система счисления? А) потому что составляющие технические устройства могут надежно сохранять и распознавать только два различных состояния;* В) потому что за единицу измерения информации принят 1 байт; С) потому что ЭВМ умеет считать только до двух; D) потому что человеку проще общаться с компьютером на уровне двоичной системы счисления. Какое количество цифр используется в десятеричной системе счисления? A) 9: B) 10;* C) 2;D) бесконечное множество. Переведите число 27 из десятичной системы счисления в двоичную. A)11011;* B)1011; C)1101; D)11111. В позиционной системе счисления: А) используются только арабские цифры; В) количественное значение цифры не зависит от ее позиции в числе; С) цифра умножается на основание системы счисления; D) количественное значение цифры зависит от ее позиции в числе.* Сложите числа в двоичной системе счисления 10012 + 1112. A)10000;* B)10002; C) 1000; D)11000; Сложите числа в двоичной системе счисления 1112 + 1102. A) 221; B) 1101;* C) 1001; D)1111. Найдите разность двоичных чисел 111102 - 10112. A)11010; B)10111; C) 10010: D)10011.* Найдите разность двоичных чисел 111102-110112. A)11;* B)11010; C)10010; D)100010.

Укажите последовательность символов, являющуюся формулой алгебры высказываний:
a) $((P \rightarrow Q) \lor (Q \rightarrow P)) *$
6) $((P \wedge Q)R \to \overline{S})$
$(P \leftrightarrow Q) \land RS$

Упорядочить логические операции в соответствии с их приоритетом

- 1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция
- A) 2: 1: 4: 3.*

 Γ) $(P \vee Q) \equiv (Q \vee P)$

- B) 1; 2; 4; 3.
- C) 4; 1; 2; 3.
- D) 2; 3; 4; 1.

Формула алгебры высказываний называется ..., если она обращается в истинное высказывание при всех наборах значений пропозициональных переменных

- А) выполнимой
- В) тождественной истинной *
- С) тождественно ложной
- D) опровержимой

Выберите набор значений пропозициональных переменных, на котором формула алгебры высказываний $P \to (P \wedge \overline{Q})$ принимает значение 0:

A)
$$\lambda(P) = 1$$
, $\lambda(Q) = 1 *$

B)
$$\lambda(P) = 1$$
, $\lambda(Q) = 0$

C)
$$\lambda(P) = 0$$
, $\lambda(Q) = 1$

D)
$$\lambda(P) = 0$$
, $\lambda(Q) = 0$

Укажите тождественно ложную формулу алгебры высказываний:

A)
$$X \vee \overline{X}$$

B)
$$\overline{X \vee \overline{X}} *$$

C)
$$X \to \overline{X}$$

D)
$$\overline{X \to \overline{X}}$$

Укажите тождественно истинную формулу алгебры высказываний:

A)
$$X \vee \overline{X} *$$

B)
$$\overline{X \vee \overline{X}}$$

C)
$$X \to \overline{X}$$

D)
$$\overline{X \to \overline{X}}$$

Из приведенных равносильностей выберите закон поглощения:

A)
$$A \lor A \equiv A$$

B)
$$A \rightarrow B \equiv \overline{A} \vee B$$

C)
$$A \wedge (B \vee A) \equiv A *$$

D)
$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

Из приведенных формул алгебры высказываний выберите закон контрапозиции:

A)
$$(P \to Q) \leftrightarrow (\overline{Q} \to \overline{P}) *$$

B)
$$(P \land (Q \lor P)) \longleftrightarrow P$$

C)
$$(P \to Q) \leftrightarrow (\overline{P} \to \overline{Q})$$

D)
$$(P \land (Q \lor P)) \leftrightarrow Q$$

Из приведенных равносильностей выберите законы де Моргана:

A)
$$A \wedge B \equiv \overline{A} \vee \overline{B} *$$

B)
$$(A \to B) \equiv (\overline{B} \to \overline{A})$$

C)
$$\overline{A \vee B} \equiv \overline{A} \wedge \overline{B} *$$

D)
$$A \wedge (B \vee A) \equiv A$$

Тавтология $((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))$ **определяет свойство ...** А) идемпотентность конъюнкции В) коммутативность конъюнкции

С) ассоциативность конъюнкции *
D) дистрибутивность конъюнкции относительно дизъюнкции

СКНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная *
- В) тождественно ложная
- С) выполнимая
- D) опровержимая

СДНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная
- В) тождественно ложная *
- С) выполнимая
- D) опровержимая

По набору значений переменных (0, 1) укажите конъюнктивный одночлен, принимающий значение 1 только на этом наборе значений переменных:

- A) $X \wedge Y$
- B) $\overline{X} \wedge Y *$
- C) $X \wedge \overline{Y}$
- D) $\overline{X} \wedge \overline{Y}$

По набору значений переменных (1, 0) укажите дизъюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных:

- A) $X \vee Y$
- B) $\overline{X} \vee Y *$
- C) $X \vee \overline{Y}$
- D) $\overline{X} \vee \overline{Y}$

Среди формул алгебры высказываний выберите ДНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$
- C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$

Среди формул алгебры высказываний выберите КНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$
- D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$

Среди формул алгебры высказываний выберите СКНФ:

- A) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- D) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor Z) *$

Среди формул алгебры высказываний выберите СДНФ:

- A) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z}) *$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- D) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y} \vee Z)$

Укажите СКНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 0:

- A) $(X \vee \overline{Y}) \wedge (X \vee Y)$
- B) $(X \wedge \overline{Y}) \vee (X \wedge Y)$
- C) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y}) *$
- D) \overline{X}

Укажите СДНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 1:

- A) $(X \wedge \overline{Y}) \vee (X \wedge Y) *$
- B) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y})$
- C) $(X \vee \overline{Y}) \wedge (X \vee Y)$
- D) *X*

Последовательно соединенным контактам РКС соответствует операция ...

- А) Отрицание
- В) Конъюнкция *
- С) Дизъюнкция
- D) Импликация

Параллельно соединенным контактам РКС соответствует операция ...

- А) Отрицание
- В) Конъюнкция
- С) Дизъюнкция *
- D) Импликация

Булева функция, заданная по правилу

x	y	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	0

называется ...

- А) Штрих Шеффера
- В) Стрелка Пирса
- С) Сложение по модулю два *
- D) Эквивалентность

\boldsymbol{x}	y	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

Булева функция, заданная по правилу

называется ...

- А) Штрих Шеффера *
- В) Стрелка Пирса
- С) Сложение по модулю два
- D) Эквивалентность

x	у	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

Булева функция, заданная по правилу

называется ...

- А) Штрих Шеффера
- В) Стрелка Пирса *
- С) Сложение по модулю два
- D) Эквивалентность

соответствует функция проводимости

- A) $(x' \lor yz)(x \lor y)$
- B) $(x'y \lor xz)(x \lor y)$
- C) $(x'y \lor z)(x \lor y) *$
- D) $(x' \lor y \lor z)(x \lor y)$

В виде формулы алгебры высказываний могут быть представлены ...

- А) Все булевы функции кроме тождественно истинных
- В) Все булевы функции кроме тождественно ложных
- С) Произвольные булевы функции *
- Булевы функции от двух переменных

Таблица истинности конъюнкции имеет вид:

Α	В	A∧B
1	1	1
1	0	1
0	1	1
0	0	0
	-	1 1 1 0 0 1

A	В	A∧B
1	1	1
1	0	0
0	1	0
0	0	0

B)

A	В	A∧B
1	1	1
1	0	0
0	1	1
0	0	1

A	В	A∧B
1	1	0
1	0	0
0	1	0
0	0	1

Таблица истинности дизъюнкции имеет вид:

	A	В	$A \lor B$
	1	1	0
	1	0	0
	0	1	0
A)	0	0	1
-/	A	В	A∨B

A	В	A∨B
1	1	1
1	0	1
0	1	1
0	0	0

A	В	A∨B
1	1	1
1	0	0
0	1	1
0	0	1

C)

A	В	A∨B
1	1	1
1	0	0
0	1	0
0	0	0

,			
	A	В	А→В
	1	1	1
	1	0	1
	0	1	0
A)	0	0	1

	A	В	А→В
	1	1	0
	1	0	0
	0	1	1
)	0	0	1

B)

		_
A	В	А→В
1	1	1
1	0	0
0	1	1
0	0	1

C)

A	В	А→В
1	1	1
1	0	0
0	1	0
0	0	0

	A	В	A↔B
	1	1	1
	1	0	0
	0	1	0
A)	0	0	1

A	В	$A \leftrightarrow B$
1	1	0
1	0	1
0	1	1
0	0	0

B)

A	В	$A \leftrightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

	A	В	A↔B
-	1	1	1
-	1	0	1
-	0	1	0
-	0	0	0
D) [
Скольким	и спос	обами	і могут ра
местах?			
A) 4			
B) 16 C) 24*			
D) 12			
Сколько с	VIIIECTI	DVAT D	апиантлр
A) 6*	ущест	вуст в	ариантов
B) 4			
C) 2			
D) 8			
В шахмать	HOM TV	рнире	участвун
Сколько в			
A) 36*		•	
B) 18			
C) 72			
D) 16			
Выберите	число,	, на ко	торое не ,
A) 108			
B) 91			
C) 72			
D) 62*		-	
Скольким	и спос	обами	і могут ра
местах?			
A) 36			
B) 16			
,			
,	navous	MINI IV	иисал ма
	рсхэна	типых	THECH MU
,			
,			
D) 60*			
 C) 24* D) 12 Сколько т A) 24 B) 36 C) 45 	рехзна	чных	чисел мо

В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительная частота

Какова вероятность того, что при бросании игрального кубика выпадет более 4 очков?

Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений цифр?

Сколько существует вариантов выбора двух чисел из шести?

появления невсхожих семян?

A) 0,02* B) 0,05 C) 0,01D) 0,025

A) 1/4 B) 1/3* C) 2/3D) 1/2

> A) 25 B) 120* C) 60 D) 50

A) 12

В шашечном турнире участвуют 8 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно?
A) 36
B) 24
C) 28*
D) 16
Выберите число, на которое не делится число 20!
A) 76
B) 45
C) 46*
D) 910
Сколькими способами можно выбрать из восьми карандашей различного цвета четыре
карандаша?
A) 1680*
B) 840
C) 420
D) 240
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6 без повторений цифр?
A) 420
B) 360*
C) 240
D) 180
В партии из 500 деталей отдел технического контроля обнаружил 7 нестандартных деталей. Какова
относительная частота появления нестандартных деталей?
A) 0,07
B) 0,35
C) 0,14*
D) 0,035
Какова вероятность того, что при бросании игрального кубика выпадет менее 4 очков?
$\frac{1}{2}$
A) $\frac{1}{4}$
1
$B)\frac{1}{3}$
C) $\frac{2}{3}$ *
$C)\frac{\pi}{3}$
D) $\frac{1}{2}$
$^{D_{j}}$ 2
Сколькими способами можно составить расписание одного учебного дня из 5 различных уроков?
A) 30
B) 100
C) 120*
D) 5
В 9«Б» классе 32 учащихся. Сколькими способами можно сформировать команду из 4 человек для
участия в математической олимпиаде?
A) 128
B) 35960*
C) 36
D) 46788
Сколько существует различных двузначных чисел, в записи которых можно использовать цифры
1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
A) 10
B) 60

B) 16C) 10D) 15 *

C) 20
D) 30*
Вычислить: 6! -5!
A) 600*
B) 300
C) 1
D) 1000
В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика. Какова вероятность того, что выбранный наугад шарик будет белым?
10
A) $\frac{17}{45}$
² 45
B) $\frac{45}{43}$ *
$\frac{B}{43}$
43
C) $\frac{43}{45}$
17
D) $\frac{17}{45}$
Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?
A) $\frac{3}{2}$
B) 0,5
C) 0,125*
D) $\frac{1}{3}$
$\frac{D}{3}$
В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и 800 денежных
выигрышей. Какова вероятность выигрыша?
A) 0,02
B) 0,00012
C) 0,0008
D) 0,002*
Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?
A) 100
B) 30
C) 5
D) 120*
Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить, если в каждый
салат должно входить 2 различных вида овощей?
A) 3*
B) 6
C) 2
D) 1
Сколькими способами из 9 учебных предметов можно составить расписание учебного дня из 6
различных уроков.
A) 10000
B) 60480*
C) 56
D) 39450
Privile There
Вычислите: 6!
A) 2
B) 56*
C) 30
$^{-4}$
D) $\frac{4}{3}$

В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта –
туз?
$\frac{1}{2}$
A) $\frac{1}{36}$
B) $\frac{1}{35}$
a^{-1}
C) $\frac{1}{9}$ *
\sim 36
D) $\frac{36}{4}$
Бросают два игральных кубика. Какова вероятность того, что выпадут две четные цифры?
A) 0,25*
B) $\frac{2}{6}$
C) 0,5
D) 0,125
В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова вероятность того, что
выбранный гриб белый или рыжий?
A) 0,5*
B) 0,4
C) 0,04
D) 0,8
Сколькими способами можно расставить 4 различные книги на книжной полке?
A) 24*
B) 4
C) 16
D) 20
Сколько диагоналей имеет выпуклый семиугольник? A) 30
B) 21*
C) 14
D) 7
В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими
способами это можно сделать?
A) 22
B) 11
C) 150
D) 110*
Сократите дробь: $\frac{n!}{(n+1)!}$
A) 1
$R) \frac{n}{n}$
B) $\frac{n}{n+1}$
C *
C) $\frac{1}{n+1}$ *
\sim 2
D) $\frac{2}{n+1}$
Какова вероятность, что при одном броске игрального кубика выпадает число очков, равное
четному числу?
A) 1/6
B) 0,5*
C) 1/3
D) 0,25

Катя и Аня пишут диктант. Вероятность того, что Катя допустит ошибку, составляет 60%, а вероятность ошибки у Ани составляет 40%. Найти вероятность того, что обе девочки напишут
диктант без ошибок.
A) 0,25
B) 0,4
C) 0,48
D) 0,2*
Завод выпускает 15% продукции высшего сорта, 25% - первого сорта, 40% - второго сорта, а все
остальное – брак. Найти вероятность того, что выбранное изделие не будет бракованным. A) 0,8*
B) 0,1
, ,
C) 0,015
D) 0,35
Сколькими способами могут встать в очередь в билетную кассу 5 человек?
A) 5
B) 120*
C) 25
D) 100
Сколькими способами из 25 учеников класса можно выбрать четырех для участия в праздничном
концерте?
A) 12650*
B) 100
C) 75
D) 10000
Сколько существует трехзначных чисел, все цифры. Которых нечетные и различные.
А) 120
B) 30
,
C) 50
D) 60*
Упростите выражение: $\frac{(n+1)!}{(n-2)!}$
(n-2)!
A) 0,5
n+1
B) $\frac{n+1}{n-2}$
C) $n^3 - n^*$
D) $n^2 - 1$
Какова вероятность, что ребенок родится 7 числа?
A) 7/30
B) 7/12*
C) 7/31
D) 7/365
Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания первого стрелка
составляет 90%, второго – 80%, третьего – 70%. Найдите вероятность того, что все три стрелка
попадут в мишень?
A) 0,504*
B) 0,006
C) 0,5
D) 0,3
, ,
Из 30 учеников спорткласса, 11 занимается футболом, 6 – волейболом, 8 – бегом, а остальные
прыжками в длину. Какова вероятность того, что один произвольно выбранный ученик класса
занимается игровым видом спорта?
A) 17/30*
B) 0,5
C) 28/30

D) 14/30

Сколько существует вариантов рассаживания 6 гостей на 6 стульях?

B) 180
C) 720*
D) 300
Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию
фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов?
A) 14
B) 10
C) 21*
D) 30
,
Сколько существует обыкновенных дробей, числитель и знаменатель которых – простые
различные числа не больше 20?
A) 80
B) 56*
C) 20
D) 60
Упростите выражение: $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$.
$\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$
(n+1)!
A) $\frac{(n+1)!}{(n+2)!}$
(n+2)!
B) $\frac{n+1}{n}$ *
(n+2)!
C) $\frac{1}{(n+2)!(n+1)!}$
D) 0
Какова вероятность того, что выбранное двузначное число делится на 12?
A) 12/90
B) 4/45*
C) 12/45
D) 90/8
Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у
Николая составляет 70%, а у Леонида – 30%. Найдите вероятность того, что Леонид допустит
ошибку, а Николай нет.
A) 0,21
B) 0,49
C) 0,5
D) 0,09*
, ,
Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным во время
проверки музыкального слуха составляет 40%, а чувство ритма – 10%. Какова вероятность
положительного тестирования?
A) 0,5*
B) 0,4
C) 0,6
D) 0,04
Сколькими способами можно с помощью букв К, А, В, С обозначить вершины четырехугольника?
A) 12
B) 20
C) 24*
D) 4
На полке стоят 12 книг. Наде надо взять 5 книг. Сколькими способами она может это сделать?
A) 792*
B) 17
C) 60
D) 300
,

A) 36

В 12 – ти этажном доме на 1 этаже в лифт садятся 9 человек. Известно, что они выйдут группами в
2, 3 и 4 человека на разных этажах. Сколькими способами они могут это сделать, если на 2 – Ом
этаже лифт не останавливается?
A) 100
B) 720*
C) 300
D) 60
В ящике лежат карточки с буквами, из которых можно составить слово «электрификация».
Какова вероятность того, что наугад выбранная буква окажется буквой к?
A) 1/7*
B) 7
C) 1/14
D) 2/33
Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятность попадания 1
стрелка составляет 80%, второго – 70%, третьего – 60%. Найдите вероятность того, что двое из трех
стрелков попадет в мишень.
A) 0,336
B) 0,452*
C) 0,224
D) 0,144
В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова вероятность того, что
выбранный наугад фрукт будет бананом или яблоком?
A) 0,9*
B) 0,5
C) 0,34
D) 0,18
В корзине лежит: яблоко, апельсин, грейпфрут и манго. Сколькими способами 4 девочки могут
поделить фрукты? (одной девочке один фрукт)
A) 4
B) 24*
C) 20
D) 16
На плоскости расположены 25 точек так, что три из них не лежат на одной прямой. Сколько
существует треугольников с вершинами в этих точках?
A) 75
B) 100
C) 2300*
D) 3000
В теннисном турнире участвуют 10 спортсменов. Сколькими способами теннисисты могут
завоевать золото, серебро и бронзу?
A) 600
B) 100
C) 300
D) 720*
Вычислите: $\frac{P_4}{P_8} \cdot A^4$ 8
A) 1*
B) 13
C) 12
D) 32
Случайным образом открывается учебник литературы и находится второе слово на странице.
Какова вероятность того, что это слово начинается на букву л?
A) 1/33
B) 1/31*
C) 10/33

D) 10/31

Вступительный экзамен в лицей состоит из трех туров. Вероятность отсева в 1 туре составляет 60%, во втором - 40%, в третьем – 30%. Какова вероятность поступления в лицей?

- A) 0,24
- B) 0,12
- C) 0.18*
- D) 0,072

В коробке лежат 4 голубых, 3 красных, 9 зеленых, 6 желтых шариков. Какова вероятность того, что выбранный шарик будет не зеленым?

- A) 13/22*
- B) 0.5
- C) 10/22
- D) 15/22

Разложите на простые множители число 30. Сколькими способами можно записать в виде произведения простых множителей число 30?

- A) 6*
- B) 12
- C) 30
- D) 3

1. Упростите выражение:
$$\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$$
.

$$\frac{n+1}{(n+2)!}$$

- 2. $A=\{1,2,3\}$, $B=\{2,4,5\}$,найти симметрической разность A и B. {1,3,4,5}
- 3. Упорядочить логические операции в соответствии с их приоритетом 1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция 2; 1; 4; 3.
- 4. Таблица истинности конъюнкции имеет вид:

A	В	A∧B
1	1	1
1	0	0
0	1	0
0	0	0

- 5. Последовательно соединенным контактам РКС соответствует операция ... Конъюнкция *
- 6. В 12 ти этажном доме на 1 этаже в лифт садятся 9 человек. Известно, что они выйдут группами в 2, 3 и 4 человека на разных этажах. Сколькими способами они могут это сделать, если на 2 – Ом этаже лифт не останавливается? 720
- 7. В виде формулы алгебры высказываний могут быть представлены ... Произвольные булевы функции
- 8. Дуги, имеющие общие вершины называются ... Смежными
- 9. Вычислить: 6! -5!

10. Способ основан на известной формуле производной произведения: (uv)` = u`v + v`u

где u и v – некоторые функции от х

- 11. В шашечном турнире участвуют 8 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно?
- 12. Укажите тождественно истинную формулу алгебры высказываний:

$$X \vee \overline{X}$$

- 13. Тавтология $((P \wedge Q) \wedge R) \leftrightarrow (P \wedge (Q \wedge R))$ определяет свойство ... ассоциативность конъюнкции
- 14. Объединение счетного множества счетных множеств счетно;
- 15. Укажите СДНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 1:

$$(X \wedge \overline{Y}) \vee (X \wedge Y)$$

16. Укажите последовательность символов, являющуюся формулой алгебры высказываний:

$$((P \rightarrow Q) \lor (Q \rightarrow P))$$

17. Среди формул алгебры высказываний выберите СДНФ:

$$(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$$

- 18. Сколько существует вариантов выбора двух чисел из четырех?
- 19. Сколькими способами можно с помощью букв К, А, В, С обозначить вершины четырехугольника?
- 20. Граф, содержащий только ребра, называется ... Ориентированным
- 21. Среди формул алгебры высказываний выберите КНФ:

$$(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$$

- 22. Сколько существует обыкновенных дробей, числитель и знаменатель которых простые различные числа не больше 20? 56
- 23. Таблица истинности эквивалентности имеет вид

A	В	A↔B
1	1	1
1	0	0
0	1	0
0	0	1

$$\begin{bmatrix} x' & y \\ z & y \end{bmatrix}$$
 $\begin{bmatrix} x \\ y & y \end{bmatrix}$ $\begin{bmatrix} x \\ y & y \end{bmatrix}$

соответствует

$$(x'y \lor z)(x \lor y)$$

25. Из приведенных равносильностей выберите законы де Моргана:

$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

1. Вычислите
$$C_{10}^3$$

2. Дано функциональное

высказывание: $(\forall x)((S(x) \land P(y) \to (\exists y)(Q(x,y) \lor Q(x,f(y))))$. Какое из предложений соответствует этому высказыванию?

Каждый студент знает хотя бы некоторых преподавателей или знает хотя бы их фамилию

3. Сколько членов имеется в выражении (r+s+t+u+v)^4? 70.

4. Дано функциональное высказывание: соответствует этому высказыванию?

Некоторые политики лицемеры

Пункт	1	2	3	4
Груз (т)	8	9	7	6

для схемы городов решить

 $\exists x (P(x) \land R(x)).$ Какое из предложений

задачу единого среднего .масса грузов ,которые необходимо перевести ,указана в таблице.

склад нужно разместить в пункте 1

1. Таблица истинности импликации имеет вид:

A	В	А→В
1	1	1
1	0	0
0	1	1
0	0	1

2. Для того чтобы множество А было счетным, необходимо и достаточно, чтобы его можно было ...

перенумеровать

5.

$$\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$$

3. Упростите выражение:

$$\frac{n+1}{(n+2)!}$$

4. В виде формулы алгебры высказываний могут быть представлены ... Произвольные булевы функции

8!

6. Из приведенных равносильностей выберите законы де Моргана:

$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

- 7. A={1,2,3} и B={2,3,5} ,найти AUB ? $\{1,2,3,5\}$
- 8. Найти общее количество шестизначных чисел. 900000
- 9. Сколькими способами могут встать в очередь в билетную кассу 5 человек?
- 10. Граф ..., если для любых вершин х и у существует путь, идущий из х в у сильно связен
- 11. ... GA графа G=(X,Г) называется граф, содержащий все вершины графа и только часть дуг графа частичным графом
- 12. Тавтология $((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))$ определяет свойство ... ассоциативность конъюнкции
- 13. Сколько существует обыкновенных дробей, числитель и знаменатель которых простые различные числа не больше 20? 56
- 14. Сколько существует различных двузначных чисел, в записи которых можно использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
- 15. Пусть A и B —произвольные множества, тогда суммой или ... множеств A и B называют множество C, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B. Объединением Объединением
- 16. Число сочетаний из n элементов по k равно числу сочетаний из n элементов по ... n-k
- 17. если все элементы из множества A входят в множество B,а в множестве B имеются элементы невходящие множество A,то множество A называется ... множества B.

собственным подмножеством

- 18. ... GA графа G=(X,Г) называется граф, в который входит лишь часть вершин графа G, образующих множество A вместе с дугами, соединяющими эти вершины
- 20. Дуга или ребро может начинаться или заканчиваться в одной вершине, такие дуги называются ...

Петлями

21. Число всевозможных п.... из n элементов обозначается символом Pn. ерестановок;

x	у	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

 ot называется ...

- 22. Булева функция, заданная по правилу Штрих Шеффера
- 23. Из приведенных формул алгебры высказываний выберите закон контрапозиции: $(P \to Q) \leftrightarrow (\overline{Q} \to \overline{P})$
- 24. Среди формул алгебры высказываний выберите СДНФ:

$$(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$$

- 25. Сколькими способами могут разместиться 4 человека в салоне автобуса на четырех свободных местах? _{24*}
- 1. Связный граф, не содержащий циклов, называется ... Деревом

2. Найти сумму степеней вершин ографа ²⁰

3. Укажите плоский граф а, в

- 4. Найти сумму степеней вершин ографа
- 5. Объединение множеств и символически изображается.

$A \cup B = \{x; x \in A$ или $x \in B\}$

- 2. Объединением или суммой A и B ,называется множество который состоит из всех элементов, полученных без повторения
- 3. Сколько существует вариантов выбора двух чисел из четырех?

4. Упростите выражение:
$$\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$$
. $\frac{n+1}{(n+2)!}$

- 7. Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить, если в каждый салат должно входить 2 различных вида овощей?
- 8. В виде формулы алгебры высказываний могут быть представлены ... Произвольные булевы функции
- 9. Если A={1,2,3} и B={2,3,5},найти пересечение A и B . $\{2,3\}$

x	y	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

- 10. Булева функция, заданная по правилу 0 0 1 называется ... Стрелка Пирса
- 11. ... это конечный путь М, у которого начальная и конечная вершина совпадают
- 12. Граф, содержащий только ребра, называется ... Ориентированным
- 13. Упорядочить логические операции в соответствии с их приоритетом 1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция 2; 1; 4; 3.
- 14. A={1,2,3,a,c} , B={2,a,b} ,найти симметрической разность A и B. _{1,3,b,c}
- 15. Выберите число, на которое не делится число 30! 62
- 16. Для того чтобы множество А было счетным, необходимо и достаточно, чтобы его можно было ...

17. Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений цифр?

120

- 18. Сколькими способами из 9 учебных предметов можно составить расписание учебного дня из 6 различных уроков. 60480
- 19. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?
- 20. Сколькими способами можно с помощью букв К, А, В, С обозначить вершины четырехугольника?
- 21. Из приведенных равносильностей выберите законы де Моргана:

$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

22. Укажите тождественно истинную формулу алгебры высказываний:

$$X \vee \overline{X}$$

23. Если каждый элемент множества А имеется в множестве В ,и обратное если каждый элемент множества В имеется в множестве А,тогда множества А и В называются ...

равными(совпадающими)

- 25. В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительная частота появления невсхожих семян?
- 2. Объединение множеств и символически изображается.

$$A \cup B = \{x; x \in A$$
или $x \in B\}$

- 3. Сколько членов имеется в выражении (x+y+z)^6?
- 4. Чему равен коэффициент при члене $x^2y^3z^2$ в выражении $(x+y+z)^7$?

- 5. Найти сумму степеней вершин графа ₁₈
- 1. Если A={1,2,3} и B={2,3,5},найти AUB . {1,2,3,5}

- 2. Число всевозможных п.... из n элементов обозначается символом Pn. ерестановок;
- 3. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?
- 4. Сколькими способами могут разместиться 4 человека в салоне автобуса на четырех свободных местах?
- 5. Сколькими способами можно выбрать из восьми карандашей различного цвета четыре карандаша?

 1680
- 6. Сколько существует вариантов выбора двух чисел из шести?
- 7. Упорядоченное n-элементное множество называется п..... из n элементов. ерестановокой;
- 8. Пустым множеством называется... множество неимеющий элементов.
- 9. A={1,2,3,a,c} , B={2,a,b} ,найти симметрической разность A и B. _{1,3,b,c}
- 10. Степенью вершины и графа G называется число ребер, ... этой вершине инцидентных
- 11. Для конечного множества мощность булеана ¦2M¦ = ...|M|
- 12. В виде формулы алгебры высказываний могут быть представлены ... Произвольные булевы функции
- 13. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6 без повторений цифр?
- 14. Релейно-контактной схеме функция проводимости $(x'y \lor z)(x \lor y)$

15. Вычислите 100!/98! = 9900

- 16. ... это конечный путь М, у которого начальная и конечная вершина совпадают Контур
- 17. Вычислить: 6! -5! ₆₀₀
- 18. Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фрукто компотов может сварить Аня, если у нее имеется 7 видов фруктов?

- 19. Дуги, имеющие общие вершины называются ...
- 20. Последовательно соединенным контактам РКС соответствует операция ... Конъюнкция *
- 21. Множество А называют ... множества В ,если все элементы из А входят в В. подмножеством

8!

- 22. Вычислите: 6!
- 23. Граф называется ..., если любые две его вершины можно соединить цепью связным
- 24. Сколькими способами из 25 учеников класса можно выбрать четырех для участия в праздничном концерте? 12650
- 25. Формула алгебры высказываний называется ..., если она обращается в истинное высказывание при всех наборах значений пропозициональных переменных тождественной истинной
- 1. В почтовом отделений продаются открытки n=6 видов .Определить число способов покупки k=8 открыток.

 1287

- 2. Укажите плоский граф а. в
- 3. $A=\{x: x\in \mathbb{N}, (x-1)(x+2)(x+5)=0\}$, $B=\{x: x\in \mathbb{Z}, (x-2)(x+1)(x+5)=0\}$, найтиА / В. $\{-2;1\}$

- 4. Укажите псевдографы а, б, в
- 5. Дано функциональное высказывание: $\neg \forall x (S(x,a))$ Какое из предложений соответствует этому высказыванию? Не всякое число делится на 3.
- 1. Сколько существует различных двузначных чисел, в записи которых можно использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
- 2. Сколькими способами можно с помощью букв К, А, В, С обозначить вершины четырехугольника?

3. На полке стоят 12 книг. Наде надо взять 5 книг. Сколькими способами она может это сделать?

792

- 4. Пустым множеством называется... множество неимеющий элементов.
- 5. Выберите число, на которое не делится число 20!
- 6. Из приведенных равносильностей выберите закон поглощения: $A \lor A \equiv A$
- 7. Граф, содержащий только ребра, называется ... Ориентированным
- 8. Множество А называют ... множества В ,если все элементы из А входят в В. подмножеством
- 9. Если A={1,2,3} и B={2,3,5},найти пересечение A и B . $\{2,3\}$
- 10. Сколькими способами из 9 учебных предметов можно составить расписание учебного дня из 6 различных уроков. 60480
- 11. Таблица истинности импликации имеет вид:

A	В	А→В
1	1	1
1	0	0
0	1	1
0	0	1

- 12. Если две вершины соединены направленным отрезком, то пара называется упорядоченной, а отрезок называется ... графа. Ребром
- 13. Если A={1,2,3} и B={2,3,5},найти пересечение A и B . {2,3}
- 14. Сколькими способами могут встать в очередь в билетную кассу 5 человек?
- 15. Сколько существует обыкновенных дробей, числитель и знаменатель которых простые различные числа не больше 20? 56
- 16. ... пути М называется число К, равное числу дуг, составляющих путь М Длиной
- 17. если все элементы из множества A входят в множество B,а в множестве B имеются элементы невходящие множество A,то множество A называется ... множества B.

собственным подмножеством

$$\frac{n!}{(n+1)!}$$

$$\frac{1}{n+1}$$

$$\frac{(n+1)!}{}$$

- 19. Упростите выражение: (7
- 20. Ребро и любая из двух ее вершин называется ... Инцидентными
- 21. Выберите набор значений пропозициональных переменных, на котором формула алгебры высказываний $P \to (P \wedge \overline{Q})^0$ принимает значение 0: $\lambda(P) = 1, \ \lambda(Q) = 1$
- 22. A={1,2,3} , B={2,4,5} ,найти симметрической разность A и B. _{1,3,4,5}
- 23. Граф называется ..., если любые две его вершины можно соединить цепью связным
- 24. Укажите тождественно ложную формулу алгебры высказываний:

$$X \vee X$$

- 25. Сколько существует вариантов выбора двух чисел из четырех?
- 1. Дано функциональное высказывание: $\exists x P(x, f(a)) \land \neg \exists x S(x, f(a))$. Какое из предложений соответствует этому высказыванию? Многие знают тайну Н-ва, но никто о ней не говорит.
- 2. Сколько членов имеется в выражении (r+s+t+u+v)^4? 70.

3. Укажите плоский граф а, в

- 4. Найти цикл для графа 6, 3, 4, 1, 2, 3, 5, 6
- 5. Сколько членов имеется в выражении (x+y+z)^6?

Что такое система счисления?

- Е) Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;
- F) правила арифметических действий;
- G) компьютерная программа для арифметических вычислений;
- Н) это знаковая система, в которой числа записываются по определенным правилам, с помощью знаков некоторого алфавита, называемых цифрами.*

Переведите число 37 из десятичной системы счисления в двоичную.

- A)100101;*
- B) 10101;
- C) 10011;
- D) 101101.

Переведите число 11010₂ из двоичной системы счисления в десятичную систему счисления.

- A) 18;
- B) 24;
- C) 26;*
- D) 14.

Какие системы счисления не используются специалистами для общения с ЭВМ?

- А) десятичная;
- В) троичная;*
- С) двоичная;
- D) шестнадцатеричная.

Что называется основанием системы счисления?

- Е) количество цифр, используемых для записи чисел;
- F) отношение значений единиц соседних разрядов;*
- G) арифметическая основа ЭВМ;
- Н) сумма всех цифр системы счисления.

Переведите число 138 из десятичной системы счисления в двоичную.

- A)1001010;
- B)10001010;*
- C)10000110;
- D)1111110.

Переведите число 1101101_2 из двоичной системы счисления в десятичную систему счисления.

- A)109;*
- B)104;
- C) 121;
- D)209.

Какая система счисления используется специалистами для общения с ЭВМ?

- А) двенадцатеричная;
- В) троичная;
- С)двоичная;*
- D) пятеричная.

Все системы счисления делятся на две группы:

Е) римские и арабские;

E)
F) двоичные и десятичные;
G) позиционные и непозиционные;*
Н) целые и дробные.
Переведите число 243 из десятичной системы счисления в двоичную.
A)11110011;*
B)11001111;
C) 1110011;
D)110111.
Переведите число 11012 из двоичной системы счисления в десятичную систему
счисления.
A)11;
B) 13;*
C) 15;
D)23.
Числовой разряд — это:
Е) цифра в изображении числа;
F) позиция цифры в числе;*
G) показатель степени основания;
Н) алфавит системы счисления.
В позиционных системах счисления основание системы счисления — это:
Е) максимальное количество знаков, используемое для записи числа;*
F) цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;
G) правила арифметических действий;
Н) числовой разряд.
Переведите число 49 из десятичной системы счисления в двоичную.
A)100011;
B)10101;
C)110001;*
D)101101.
Переведите число 111011 ₂ из двоичной системы счисления в десятичную систему
счисления.
A)58;
B) 63;
C) 59;*
D)14.
Почему в ЭВМ используется двоичная система счисления?
Е) потому что составляющие технические устройства могут надежно сохранять
и распознавать только два различных состояния;*
и распознавать только два различных состояния, F) потому что за единицу измерения информации принят 1 байт;
G) потому что ЭВМ умеет считать только до двух;
Н) потому что человеку проще общаться с компьютером на уровне двоичной
системы счисления.
Какое количество цифр используется в десятеричной системе счисления?
A) 9; B) 10 *
B) 10;*
C) 2;
D) бесконечное множество.
Переведите число 27 из десятичной системы счисления в двоичную.
A)11011;*

B)1011;
C)1101;
D)11111.
В позиционной системе счисления:
Е) используются только арабские цифры;
F) количественное значение цифры не зависит от ее позиции в числе;
G) цифра умножается на основание системы счисления;
Н) количественное значение цифры зависит от ее позиции в числе.*
Сложите числа в двоичной системе счисления 10012 + 1112.
A)10000;*
B)10002;
C) 1000;
D)11000;
Сложите числа в двоичной системе счисления 1112 + 1102.
A) 221;
B) 1101;*
C) 1001;
D)1111.
Найдите разность двоичных чисел 11110 ₂ - 1011 ₂ .
A)11010;
B)10111;
C) 10010;
D)10011.*
Найдите разность двоичных чисел 11110 ₂ -11011 ₂ .
A)11;* P)11010.
B)11010;
C)10010; D)100010.
,
Укажите последовательность символов, являющуюся формулой алгебры высказываний:
a) $((P \rightarrow Q) \lor (Q \rightarrow P))$ *
6) $((P \land Q)R \rightarrow \overline{S})$
$B) (P \leftrightarrow Q) \land RS$
$\Gamma) \ (P \lor Q) \equiv (Q \lor P)$
Упорядочить логические операции в соответствии с их приоритетом
1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция
A) 2; 1; 4; 3.* B) 1, 2, 4, 3.*
B) 1; 2; 4; 3.
C) 4; 1; 2; 3.
D) 2; 3; 4; 1.
Формула алгебры высказываний называется, если она обращается в истинное
высказывание при всех наборах значений пропозициональных переменных
А) выполнимой В) тождественной истинной *
С) тождественной истинной С
D) опровержимой
D) only one printing in the pr

Выберите набор значений пропозициональных переменных, на котором формула
алгебры высказываний $P \to (P \wedge \overline{Q})$ принимает значение 0:

- A) $\lambda(P) = 1$, $\lambda(Q) = 1 *$
- B) $\lambda(P) = 1$, $\lambda(Q) = 0$
- C) $\lambda(P) = 0$, $\lambda(Q) = 1$
- D) $\lambda(P) = 0$, $\lambda(Q) = 0$

Укажите тождественно ложную формулу алгебры высказываний:

- A) $X \vee \overline{X}$
- B) $\overline{X \vee \overline{X}} *$
- C) $X \to \overline{X}$
- D) $\overline{X \to \overline{X}}$

Укажите тождественно истинную формулу алгебры высказываний:

- A) $X \vee \overline{X} *$
- B) $\overline{X \vee \overline{X}}$
- C) $X \to \overline{X}$
- D) $\overline{X \to \overline{X}}$

Из приведенных равносильностей выберите закон поглощения:

- A) $A \lor A \equiv A$
- B) $A \rightarrow B \equiv \overline{A} \vee B$
- C) $A \wedge (B \vee A) \equiv A *$
- D) $\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$

Из приведенных формул алгебры высказываний выберите закон контрапозиции:

- A) $(P \to Q) \leftrightarrow (\overline{Q} \to \overline{P}) *$
- B) $(P \land (Q \lor P)) \leftrightarrow P$
- C) $(P \to Q) \leftrightarrow (\overline{P} \to \overline{Q})$
- D) $(P \land (Q \lor P)) \leftrightarrow Q$

Из приведенных равносильностей выберите законы де Моргана:

- A) $\overline{A \wedge B} \equiv \overline{A} \vee \overline{B} *$
- $(A \to B) \equiv (\overline{B} \to \overline{A})$
- C) $\overline{A \vee B} \equiv \overline{A} \wedge \overline{B} *$
- \overrightarrow{D} $A \wedge (B \vee A) \equiv A$

Тавтология $((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))$ определяет свойство ...

- А) идемпотентность конъюнкции
- В) коммутативность конъюнкции
- С) ассоциативность конъюнкции *
- D) дистрибутивность конъюнкции относительно дизъюнкции

СКНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная *
- В) тождественно ложная
- С) выполнимая
- D) опровержимая

СДНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная
- В) тождественно ложная *
- С) выполнимая
- D) опровержимая

По набору значений переменных (0, 1) укажите конъюнктивный одночлен, принимающий значение 1 только на этом наборе значений переменных: A) $X \wedge Y$ B) $\overline{X} \wedge Y$ * C) $X \wedge \overline{Y}$ D) $\overline{X} \wedge \overline{Y}$ По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) $X \vee Y$ B) $\overline{X} \vee Y$ * C) $X \vee \overline{Y}$ C) $\overline{X} \vee \overline{Y}$ C Среди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ * C) $(X \vee Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ * C) $(X \vee Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ * C) $(X \vee Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C Среди формул алгебры высказываний выберите СКНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \vee \overline{Y})$ * C Среди формул алгебры высказываний выберите СКНФ: A) $(X \vee Y \vee Z) \vee (\overline{X} \vee \overline{Y})$ C Среди формул алгебры высказываний выберите СКНФ: A) $(X \vee Y \vee Z) \vee (\overline{X} \vee \overline{Y})$
A) $X \wedge Y$ B) $\overline{X} \wedge Y *$ C) $X \wedge \overline{Y}$ D) $\overline{X} \wedge \overline{Y}$ По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) $X \vee Y$ B) $\overline{X} \vee Y *$ C) $X \vee \overline{Y}$ D) $\overline{X} \vee \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ *
B) $\overline{X} \wedge Y$ * C) $X \wedge \overline{Y}$ D) $\overline{X} \wedge \overline{Y}$ По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) $X \vee Y$ B) $\overline{X} \vee Y$ * C) $X \vee \overline{Y}$ D) $\overline{X} \vee \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ * C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \vee (\overline{X} \vee \overline{Y})$
$C) \ X \wedge \overline{Y}$ $D) \ \overline{X} \wedge \overline{Y}$ $Bo \ hadopy значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) \ X \vee Y B) \ \overline{X} \vee Y * C) \ X \vee \overline{Y} D) \ \overline{X} \vee \overline{Y} C Среди формул алгебры высказываний выберите ДНФ: A) \ (X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y}) * C) \ (X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) * C) \ (X \wedge Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) C C Среди формул алгебры высказываний выберите КНФ: A) \ (X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y}) C C C C C C C C C C$
D) $\overline{X} \wedge \overline{Y}$ По набору значений переменных (1, 0) укажите дизъюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) $\overline{X} \vee Y$ B) $\overline{X} \vee Y$ C) $\overline{X} \vee \overline{Y}$ C) $\overline{X} \vee \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ Cреди формул алгебры высказываний выберите СКНФ:
По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных: A) $X \lor Y$ B) $\overline{X} \lor Y *$ C) $X \lor \overline{Y}$ D) $\overline{X} \lor \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y}) *$ C) $(X \lor Y \lor Z) \lor (\overline{X} \lor \overline{Y})$ D) $(X \land Y \lor Z) \lor (\overline{X} \lor \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C) $(X \lor Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C) $(X \lor Y \lor Z) \lor (\overline{X} \lor \overline{Y})$ C) $(X \lor Y \lor Z) \lor (\overline{X} \lor \overline{Y})$ C) $(X \lor Y \lor Z) \lor (\overline{X} \lor \overline{Y})$ Cреди формул алгебры высказываний выберите СКНФ:
принимающий значение 0 только на этом наборе значений переменных: A) $X \lor Y$ B) $\overline{X} \lor Y *$ C) $X \lor \overline{Y}$ D) $\overline{X} \lor \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y}) *$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y})$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C Среди формул алгебры высказываний выберите СКНФ:
A) $X \lor Y$ B) $\overline{X} \lor Y *$ C) $X \lor \overline{Y}$ D) $\overline{X} \lor \overline{Y}$ Cpeди формул алгебры высказываний выберите ДНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y}) *$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ Cpeди формул алгебры высказываний выберите КНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y})$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ Cpeди формул алгебры высказываний выберите СКНФ:
B) $\overline{X} \lor Y *$ C) $X \lor \overline{Y}$ D) $\overline{X} \lor \overline{Y}$ Cреди формул алгебры высказываний выберите ДНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y}) *$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ Cреди формул алгебры высказываний выберите КНФ: A) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ B) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$ D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ Cреди формул алгебры высказываний выберите СКНФ:
C) $X \vee \overline{Y}$ D) $\overline{X} \vee \overline{Y}$ Среди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
D) $\overline{X} \vee \overline{Y}$ Среди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
Среди формул алгебры высказываний выберите ДНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
В) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$ С) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите КНФ: А) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ В) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ С) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
$C)$ $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$ $D)$ $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C реди формул алгебры высказываний выберите КНФ: $A)$ $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ $B)$ $(X \land Y \land Z) \lor (\overline{X} \land \overline{Y})$ $C)$ $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$ * $D)$ $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$ C Среди формул алгебры высказываний выберите СКНФ:
$\begin{array}{l} \textbf{D)}\; (X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y}) \\ \textbf{Среди формул алгебры высказываний выберите КНФ:} \\ \textbf{A)}\; (X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y}) \\ \textbf{B)}\; (X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) \\ \textbf{C)}\; (X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) \; * \\ \textbf{D)}\; (X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y}) \\ \textbf{Среди формул алгебры высказываний выберите СКНФ:} \end{array}$
Среди формул алгебры высказываний выберите КНФ: A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$ * D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$ C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$ D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
$C)$ $(X\vee Y\vee Z)\wedge(\overline{X}\vee\overline{Y})$ * $D)$ $(X\wedge Y\vee Z)\vee(\overline{X}\wedge\overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$ Среди формул алгебры высказываний выберите СКНФ:
Среди формул алгебры высказываний выберите СКНФ:
$(V \cup V \cup Z) \land (\overline{V} \cup \overline{V})$
$A) (A \lor I \lor Z) \land (A \lor I)$
B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$
C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
D) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y} \vee Z) *$
Среди формул алгебры высказываний выберите СДНФ:
A) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$
B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z}) *$
C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
D) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y} \vee Z)$
Укажите СКНФ, удовлетворяющую условиям $F(1,0) = F(1,1) = 0$:
A) $(X \vee \overline{Y}) \wedge (X \vee Y)$
B) $(X \wedge \overline{Y}) \vee (X \wedge Y)$
C) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y}) *$
D) \overline{X}
Укажите СДНФ, удовлетворяющую условиям $F(1,0) = F(1,1) = 1$:
A) $(X \wedge \overline{Y}) \vee (X \wedge Y)$ *

Последовательно соединенным контактам РКС соответствует операция ...

B) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y})$ C) $(X \vee \overline{Y}) \wedge (X \vee Y)$

D) *X*

- Е) Отрицание
- F) Конъюнкция *
- G) Дизъюнкция
- Н) Импликация

Параллельно соединенным контактам РКС соответствует операция ...

- Е) Отрицание
- F) Конъюнкция
- G) Дизъюнкция *
- Н) Импликация

Булева функция, заданная по правилу

•/	-	•/
x	y	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	0

называется ...

- Е) Штрих Шеффера
- F) Стрелка Пирса
- G) Сложение по модулю два *
- Н) Эквивалентность

\boldsymbol{x}	y	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

Булева функция, заданная по правилу

называется ...

- Е) Штрих Шеффера *
- F) Стрелка Пирса
- G) Сложение по модулю два
- Н) Эквивалентность

x	у	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

Булева функция, заданная по правилу

называется ...

- Е) Штрих Шеффера
- F) Стрелка Пирса *
- G) Сложение по модулю два
- Н) Эквивалентность

Релейно-контактной схеме

соответствует функция проводимости

- E) $(x' \lor yz)(x \lor y)$
- F) $(x'y \lor xz)(x \lor y)$
- G) $(x'y \lor z)(x \lor y) *$
- H) $(x' \lor y \lor z)(x \lor y)$

В виде формулы алгебры высказываний могут быть представлены ...

- Е) Все булевы функции кроме тождественно истинных
- F) Все булевы функции кроме тождественно ложных

- G) Произвольные булевы функции *

Н) Булевы функции от двух переменных Таблица истинности конъюнкции имеет вид:

ица	истин	Іност	и конъю	H
	Α	В	A∧B	
	1	1	1	
	1	0	1	
	0	1	1	
E)	0	0	0	
_,	A	В	A∧B	
	1	1	1	
	1	0	0	
	0	1	0	
F)	0	0	0	*
	Α	В	A∧B	
	1	1	1	
	1	0	0	
	0	1	1	
G)	0	0	1	
<i>-</i> ,	A	В	A∧B	
	1	1	0	
	1	0	0	
	0	1	0	

Таблица истинности дизъюнкции имеет вид:

	1	1	U	
	1	0	0	
	0	1	0	
E) ,	0	0	1	
, [A	В	A∨B	
	1	1	1	
	1	0	1	
	0	1	1	
F)	0	0	0	>
	A	В	A∨B	
	1	1	1	
	1	0	0	
	0	1	1	
G)	0	0	1	
-,	A	В	A∨B	
	1	1	1	
	1	0	0	
	0	1	0	
п/	0	0	0	

Таблица истинности импликации имеет вид:

	A	В	А→В
	1	1	1
	1	0	1
	0	1	0
E)	0	0	1
_,	A	В	А→В
	1	1	0
	1	0	0
	0	1	1
F)	0	0	1
,	A	В	А→В
	1	1	1

0

Α	В	А→В
1	1	1
1	0	0
0	1	0
0	0	0

0 1

 Н)
 0
 0
 0

 Таблица истинности эквивалентности имеет вид

¬			
	A	В	A↔B
	1	1	1
	1	0	0
	0	1	0
E)	0	0	1

A	В	A↔B
1	1	0
1	0	1
0	1	1
0	0	0

A	В	А↔В
1	1	1
1	0	0
0	1	1
0	0	1
Δ	В	ΔΔR

G)

A	В	A↔B
1	1	1
1	0	1
0	1	0
0	0	0

H) — 0 — 0 — 0 — Сколькими способами могут разместиться 4 человека в салоне автобуса на четырех свободных местах?

- A) 4
- B) 16

C) 24*	
D) 12	
Сколько существует вариантов выбора двух чисел из четырех?	
E) 6*	
F) 4	
G) 2	
H) 8	
В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым п	0
одной партии. Сколько всего партий было сыграно?	
E) 36*	
F) 18	
G) 72	
H) 16	
Выберите число, на которое не делится число 30!	
E) 108	
r) 91	
G) 72	
H) 62*	
Сколькими способами могут разместиться 3 человека в четырехместном купе н	ıa
свободных местах?	
E) 36	
F) 16	
G) 24*	
H) 12	
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторени	й
цифр?	
E) 24	
F) 36	
G) 45	
H) 60*	
В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительн	ная
частота появления невсхожих семян?	
E) 0,02*	
F) 0,05	
G) 0,01	
H) 0,025	
Какова вероятность того, что при бросании игрального кубика выпадет более 4	
очков?	
A) 1/4	
B) 1/3*	
C) 2/3	
D) 1/2	
Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторени	Й
цифр?	
E) 25	
F) 120*	
G) 60	
H) 50	
Сколько существует вариантов выбора двух чисел из шести?	

E) 10
E) 12
F) 16
G) 10
H) 15 *
В шашечном турнире участвуют 8 человек. Каждый из них сыграл с каждым по
одной партии. Сколько всего партий было сыграно?
E) 36
F) 24
G) 28*
H) 16
Выберите число, на которое не делится число 20!
E) 76
F) 45
G) 46*
H) 910
Сколькими способами можно выбрать из восьми карандашей различного цвета
•
четыре карандаша?
E) 1680*
F) 840
G) 420
H) 240
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6 без повторений
цифр?
E) 420
F) 360*
G) 240
H) 180
В партии из 500 деталей отдел технического контроля обнаружил 7 нестандартных
деталей. Какова относительная частота появления нестандартных деталей?
E) 0,07
F) 0,35
G) 0,14*
H) 0,035
Какова вероятность того, что при бросании игрального кубика выпадет менее 4
очков?
1
A) $\frac{1}{4}$
$\frac{1}{R}$
$B)\frac{1}{3}$
2
C) $\frac{2}{3}$ * D) $\frac{1}{2}$
<i>3</i> 1
$D)^{\frac{1}{-}}$
Сколькими способами можно составить расписание одного учебного дня из 5
различных уроков?
A) 30
B) 100
C) 120*

D) 5
В 9«Б» классе 32 учащихся. Сколькими способами можно сформировать команду из
4 человек для участия в математической олимпиаде?
E) 128
F) 35960*
G) 36
H) 46788
Сколько существует различных двузначных чисел, в записи которых можно
использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
E) 10
F) 60
G) 20
H) 30*
Вычислить: 6! -5!
E) 600*
F) 300
G) 1 H) 1000
В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика.
Какова вероятность того, что выбранный наугад шарик будет белым?
какова вероятноств того, тто выоранным наугад шарик оудет ослым.
E) 17
E) $\frac{17}{45}$
E) 17 *
F) $\frac{17}{43}$ * G) $\frac{43}{45}$
G) ⁴³
$\frac{3}{45}$
H) $\frac{17}{45}$
Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?
E) $\frac{3}{2}$
2
F) 0,5
G) 0,125*
H) $\frac{1}{3}$
В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и 800
денежных выигрышей. Какова вероятность выигрыша?
E) 0,02
F) 0,00012
G) 0,0008
H) 0,002*
Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?
E) 100
F) 30
G) 5
H) 120*
Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить,
если в каждый салат должно входить 2 различных вида овощей?

E) 3*
F) 6
G) 2
H) 1 Сколькими способами из 9 учебных предметов можно составить расписание
учебного дня из 6 различных уроков.
Е) 10000
F) 60480*
G) 56
H) 39450
Вычислите: $\frac{8!}{6!}$
E) 2
F) 56*
G) 30
H) $\frac{4}{3}$
3
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность,
что эта карта — туз? —. 1
E) $\frac{1}{36}$
F) $\frac{1}{35}$
G) $\frac{1}{9}$ *
$\frac{1}{9}$
H) $\frac{36}{4}$
Бросают два игральных кубика. Какова вероятность того, что выпадут две четные
цифры?
E) 0,25*
F) $\frac{2}{6}$
G) 0,5
H) 0,125
В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова
вероятность того, что выбранный гриб белый или рыжий?
E) 0,5*
F) 0,4
G) 0,04
H) 0,8
Сколькими способами можно расставить 4 различные книги на книжной полке? E) 24*
F) 4
G) 16
H) 20
Сколько диагоналей имеет выпуклый семиугольник?
E) 30
F) 21*
G) 14

 H) 7 В футбольной команде 11 человек. Необходимо выбрать капитана и его заместит 	рпа
Сколькими способами это можно сделать?	CIIA.
E) 22	
F) 11	
G) 150	
H) 110*	
Сократите дробь: $\frac{n!}{(n+1)!}$	
E) 1	

Какова вероятность, что при одном броске игрального кубика выпадает число очков, равное четному числу?

- A) 1/6
- B) 0.5*
- C) 1/3
- D) 0,25

Катя и Аня пишут диктант. Вероятность того, что Катя допустит ошибку, составляет 60%, а вероятность ошибки у Ани составляет 40%. Найти вероятность того, что обе девочки напишут диктант без ошибок.

- E) 0,25
- F) 0,4
- G) 0,48
- H) 0,2*

Завод выпускает 15% продукции высшего сорта, 25% - первого сорта, 40% - второго сорта, а все остальное – брак. Найти вероятность того, что выбранное изделие не будет бракованным.

- E) 0.8*
- F) 0,1
- G) 0,015
- H) 0.35

Сколькими способами могут встать в очередь в билетную кассу 5 человек?

- E) 5
- F) 120*
- G) 25
- H) 100

Сколькими способами из 25 учеников класса можно выбрать четырех для участия в праздничном концерте?

- E) 12650*
- F) 100
- G) 75
- H) 10000

Сколько существует трехзначных чисел, все цифры. Которых нечетные и различные.

E) 120
F) 30
G) 50
H) 60*
Упростите выражение: $\frac{(n+1)!}{(n-2)!}$
E) 0,5
F) $\frac{n+1}{n-2}$
G) $n^3 - n^*$
H) $n^2 - 1$
Какова вероятность, что ребенок родится 7 числа?
A) 7/30
B) 7/12*
C) 7/31
D) 7/365
Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания первого стрелка составляет 90%, второго – 80%, третьего – 70%. Найдите
вероятность того, что все три стрелка попадут в мишень?
E) 0,504*
F) 0,006
G) 0,5
H) 0,3
Из 30 учеников спорткласса, 11 занимается футболом, 6 – волейболом, 8 – бегом, а
остальные прыжками в длину. Какова вероятность того, что один произвольно
<i>F</i>
выбранный ученик класса занимается игровым видом спорта?
A) 17/30*
A) 17/30* B) 0,5
A) 17/30* B) 0,5 C) 28/30
A) 17/30* B) 0,5 C) 28/30 D) 14/30
A) 17/30* B) 0,5 C) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях?
A) 17/30* B) 0,5 C) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? A) 36
A) 17/30* B) 0,5 C) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? A) 36 B) 180
A) 17/30* B) 0,5 C) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? A) 36 B) 180 C) 720*
A) 17/30* B) 0,5 C) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? A) 36 B) 180 C) 720* D) 300
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов?
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10 С) 21*
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10 С) 21* D) 30
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10 С) 21* D) 30 Сколько существует обыкновенных дробей, числитель и знаменатель которых — простые различные числа не больше 20? Е) 80
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10 С) 21* D) 30 Сколько существует обыкновенных дробей, числитель и знаменатель которых — простые различные числа не больше 20? Е) 80 F) 56*
А) 17/30* В) 0,5 С) 28/30 D) 14/30 Сколько существует вариантов рассаживания 6 гостей на 6 стульях? А) 36 В) 180 С) 720* D) 300 Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов? А) 14 В) 10 С) 21* D) 30 Сколько существует обыкновенных дробей, числитель и знаменатель которых — простые различные числа не больше 20? Е) 80

Упростите выражение: $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$.
A) $\frac{(n+1)!}{(n+2)!}$
B) $\frac{n+1}{(n+2)!}$ *
C) $\frac{1}{(n+2)!(n+1)!}$
D) 0
Какова вероятность того, что выбранное двузначное число делится на 12?
A) 12/90
B) 4/45*
C) 12/45
D) 90/8
Николай и Леонид выполняют контрольную работу. Вероятность ошибки при
вычислениях у Николая составляет 70%, а у Леонида – 30%. Найдите вероятность
того, что Леонид допустит ошибку, а Николай нет.
E) 0,21
F) 0,49
G) 0,5
H) 0,09*
Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным
во время проверки музыкального слуха составляет 40%, а чувство ритма – 10% .
Какова вероятность положительного тестирования?
E) 0,5*
F) 0,4
G) 0,6
H) 0,04
Сколькими способами можно с помощью букв К, А, В, С обозначить вершины
четырехугольника?
A) 12
B) 20
C) 24*
D) 4
На полке стоят 12 книг. Наде надо взять 5 книг. Сколькими способами она может
это сделать?
E) 792*
F) 17
G) 60
H) 300
В 12 – ти этажном доме на 1 этаже в лифт садятся 9 человек. Известно, что они
выйдут группами в 2, 3 и 4 человека на разных этажах. Сколькими способами они
могут это сделать, если на 2 – Ом этаже лифт не останавливается?
E) 100
F) 720*

G) 300 H) 60

В ящике лежат карточки с буквами, из которых можно составить слово
«электрификация». Какова вероятность того, что наугад выбранная буква окажется
буквой к?
E) 1/7*
F) 7
G) 1/14
H) 2/33
Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятност
попадания 1 стрелка составляет 80%, второго – 70%, третьего – 60%. Найдит
вероятность того, что двое из трех стрелков попадет в мишень.
E) 0,336
F) 0,452*
G) 0,224
H) 0,144
В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова
вероятность того, что выбранный наугад фрукт будет бананом или яблоком?
E) 0,9*
F) 0,5
G) 0,34
H) 0,18
В корзине лежит: яблоко, апельсин, грейпфрут и манго. Сколькими способами 4
девочки могут поделить фрукты? (одной девочке один фрукт)
E) 4
F) 24*
G) 20
H) 16
На плоскости расположены 25 точек так, что три из них не лежат на одной прямой.
Сколько существует треугольников с вершинами в этих точках?
E) 75
F) 100
,
G) 2300*
H) 3000
В теннисном турнире участвуют 10 спортсменов. Сколькими способами теннисисть
могут завоевать золото, серебро и бронзу?
E) 600
F) 100
G) 300
H) 720*
Вычислите: $\frac{P_4}{P_0} \cdot A^4_8$
8
E) 1*
F) 13
G) 12
11) 00

Случайным образом открывается учебник литературы и находится второе слово на странице. Какова вероятность того, что это слово начинается на букву л?

E) 1/33 F) 1/31* G) 10/33

H) 10/31
Вступительный экзамен в лицей состоит из трех туров. Вероятность отсева в 1 туре
составляет 60%, во втором - 40%, в третьем – 30%. Какова вероятность поступления
в лицей?
E) 0,24
F) 0,12
(G) 0,18*
H) 0,072
В коробке лежат 4 голубых, 3 красных, 9 зеленых, 6 желтых шариков. Какова
вероятность того, что выбранный шарик будет не зеленым?
E) 13/22*
F) 0,5
G) 10/22
H) 15/22
Разложите на простые множители число 30. Сколькими способами можно записать в
виде произведения простых множителей число 30?
E) 6*
F) 12
G) 30
H) 3
Что такое система счисления?
 Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;
J) правила арифметических действий;
К) компьютерная программа для арифметических вычислений;
L) это знаковая система, в которой числа записываются по определенным правилам,
с помощью знаков некоторого алфавита, называемых цифрами.*
Переведите число 37 из десятичной системы счисления в двоичную.
A)100101;*
B) 10101;
C) 10011;
D) 101101.
Переведите число 110102 из двоичной системы счисления в десятичную систему
счисления.
A) 18;
B) 24;
C) 26;*
D) 14.
Какие системы счисления не используются специалистами для общения с ЭВМ?
А) десятичная;
В) троичная;*
С) двоичная;
D) шестнадцатеричная.
Что называется основанием системы счисления?
I) количество цифр, используемых для записи чисел;
J) отношение значений единиц соседних разрядов;*
К) арифметическая основа ЭВМ;
L) сумма всех цифр системы счисления.
Переведите число 138 из десятичной системы счисления в двоичную.
1

```
A)1001010;
  B)10001010;*
  C)10000110;
  D)1111110.
Переведите число 11011012 из двоичной системы счисления в десятичную
систему счисления.
  A)109;*
  B)104;
  C) 121;
  D)209.
Какая система счисления используется специалистами для общения с ЭВМ?
  А) двенадцатеричная;
  В) троичная;
  С)двоичная;*
  D) пятеричная.
Все системы счисления делятся на две группы:
  I) римские и арабские;
  J) двоичные и десятичные;
  К) позиционные и непозиционные;*
  L) целые и дробные.
Переведите число 243 из десятичной системы счисления в двоичную.
  A)11110011;*
  B)11001111;
  C) 1110011;
  D)110111.
Переведите число 11012 из двоичной системы счисления в десятичную систему
счисления.
  A)11;
  B) 13;*
  C) 15;
  D)23.
Числовой разряд — это:
  I) цифра в изображении числа;
  J) позиция цифры в числе;*
  К) показатель степени основания;
  L) алфавит системы счисления.
В позиционных системах счисления основание системы счисления — это:
  I) максимальное количество знаков, используемое для записи числа;*
  J) цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;
  К) правила арифметических действий;
  L) числовой разряд.
Переведите число 49 из десятичной системы счисления в двоичную.
  A)100011;
  B)10101;
  C)110001;*
   D)101101.
Переведите число 1110112 из двоичной системы счисления в десятичную систему
счисления.
```

A)58;

B) 63; C) 59;*
D)14.
Почему в ЭВМ используется двоичная система счисления?
I) потому что составляющие технические устройства могут надежно сохранять
и распознавать только два различных состояния;*
J) потому что за единицу измерения информации принят 1 байт;
К) потому что ЭВМ умеет считать только до двух;
L) потому что человеку проще общаться с компьютером на уровне двоичной
системы счисления.
Какое количество цифр используется в десятеричной системе счисления? A) 9;
B) 10;*
C) 2;
D) бесконечное множество.
Переведите число 27 из десятичной системы счисления в двоичную.
A)11011;*
B)1011;
C)1101;
D)11111.
В позиционной системе счисления:
I) используются только арабские цифры;
J) количественное значение цифры не зависит от ее позиции в числе;
К) цифра умножается на основание системы счисления;
L) количественное значение цифры зависит от ее позиции в числе.*
Сложите числа в двоичной системе счисления 10012 + 1112.
A)10000;*
B)10002;
C) 1000;
D)11000;
Сложите числа в двоичной системе счисления 1112 + 1102.
A) 221;
B) 1101;*
C) 1001;
D) .
Найдите разность двоичных чисел 11110 ₂ - 1011 ₂ . A)11010;
B)10111;
C) 10010;
D)10011.*
Найдите разность двоичных чисел 111102-110112.
A)11;*
B)11010;
C)10010;
D)100010.
Укажите последовательность символов, являющуюся формулой алгебры
высказываний:
a) $((P \rightarrow Q) \lor (Q \rightarrow P)) *$
$6) ((P \wedge Q)R \rightarrow \overline{S})$

в)	$(P \leftrightarrow$	(O)	$\wedge RS$
υj	(1)	$\mathcal{L}_{\mathcal{L}}$	\ I\D

$$\Gamma$$
) $(P \lor Q) \equiv (Q \lor P)$

Упорядочить логические операции в соответствии с их приоритетом

- 1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция
- A) 2; 1; 4; 3.*
- B) 1; 2; 4; 3.
- C) 4; 1; 2; 3.
- D) 2; 3; 4; 1.

Формула алгебры высказываний называется ..., если она обращается в истинное высказывание при всех наборах значений пропозициональных переменных

- А) выполнимой
- В) тождественной истинной *
- С) тождественно ложной
- D) опровержимой

Выберите набор значений пропозициональных переменных, на котором формула алгебры высказываний $P \to (P \wedge \overline{Q})$ принимает значение 0:

- A) $\lambda(P) = 1$, $\lambda(Q) = 1 *$
- B) $\lambda(P) = 1$, $\lambda(Q) = 0$
- C) $\lambda(P) = 0$, $\lambda(Q) = 1$
- D) $\lambda(P) = 0$, $\lambda(Q) = 0$

Укажите тождественно ложную формулу алгебры высказываний:

- A) $X \vee \overline{X}$
- B) $\overline{X \vee \overline{X}}$ *
- C) $X \to \overline{X}$
- D) $\overline{X \to \overline{X}}$

Укажите тождественно истинную формулу алгебры высказываний:

- A) $X \vee \overline{X} *$
- B) $\overline{X \vee \overline{X}}$
- C) $X \to \overline{X}$
- D) $\overline{X \to \overline{X}}$

Из приведенных равносильностей выберите закон поглощения:

- A) $A \lor A \equiv A$
- B) $A \rightarrow B \equiv \overline{A} \vee B$
- C) $A \wedge (B \vee A) \equiv A *$
- D) $\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$

Из приведенных формул алгебры высказываний выберите закон контрапозиции:

- A) $(P \to Q) \leftrightarrow (\overline{Q} \to \overline{P}) *$
- B) $(P \land (Q \lor P)) \leftrightarrow P$
- C) $(P \to Q) \leftrightarrow (\overline{P} \to \overline{Q})$
- D) $(P \land (Q \lor P)) \leftrightarrow Q$

Из приведенных равносильностей выберите законы де Моргана:

- A) $\overline{A \wedge B} \equiv \overline{A} \vee \overline{B} *$
- B) $(A \to B) \equiv (\overline{B} \to \overline{A})$
- C) $\overline{A \vee B} \equiv \overline{A} \wedge \overline{B} *$
- $D) A \wedge (B \vee A) \equiv A$

Тавтология $((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))$ определяет свойство ...

- А) идемпотентность конъюнкции
- В) коммутативность конъюнкции
- С) ассоциативность конъюнкции *
- D) дистрибутивность конъюнкции относительно дизъюнкции

СКНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная *
- В) тождественно ложная
- С) выполнимая
- D) опровержимая

СДНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная
- В) тождественно ложная *
- С) выполнимая
- D) опровержимая

По набору значений переменных (0, 1) укажите конъюнктивный одночлен, принимающий значение 1 только на этом наборе значений переменных:

- A) $X \wedge Y$
- B) $\overline{X} \wedge Y *$
- C) $X \wedge \overline{Y}$
- D) $\overline{X} \wedge \overline{Y}$

По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных:

- A) $X \vee Y$
- B) $\overline{X} \vee Y *$
- C) $X \vee \overline{Y}$
- D) $\overline{X} \vee \overline{Y}$

Среди формул алгебры высказываний выберите ДНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$
- C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$

Среди формул алгебры высказываний выберите КНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- C) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y}) *$
- D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$

Среди формул алгебры высказываний выберите СКНФ:

- A) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- D) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor Z) *$

Среди формул алгебры высказываний выберите СДНФ:

A) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$

- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z}) *$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- $D) (X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y} \vee Z)$

Укажите СКНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 0:

- A) $(X \vee \overline{Y}) \wedge (X \vee Y)$
- B) $(X \wedge \overline{Y}) \vee (X \wedge Y)$
- C) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y}) *$
- D) \overline{X}

Укажите СДНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 1:

- A) $(X \wedge \overline{Y}) \vee (X \wedge Y) *$
- B) $(\overline{X} \vee Y) \wedge (\overline{X} \vee \overline{Y})$
- C) $(X \vee \overline{Y}) \wedge (X \vee Y)$
- D) *X*

Последовательно соединенным контактам РКС соответствует операция ...

- I) Отрицание
- J) Конъюнкция *
- К) Дизъюнкция
- L) Импликация

Параллельно соединенным контактам РКС соответствует операция ...

- I) Отрицание
- J) Конъюнкция
- К) Дизъюнкция *
- L) Импликация

Булева функция, заданная по правилу

-		•
х	y	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	0

называется ...

- І) Штрих Шеффера
- J) Стрелка Пирса
- К) Сложение по модулю два *
- L) Эквивалентность

$\boldsymbol{\mathcal{X}}$	у	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

Булева функция, заданная по правилу

называется ...

- I) Штрих Шеффера *
- J) Стрелка Пирса
- К) Сложение по модулю два
- L) Эквивалентность

х	у	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

Булева функция, заданная по правилу

называется ...

- I) Штрих Шеффера
- J) Стрелка Пирса *
- К) Сложение по модулю два
- L) Эквивалентность

Релейно-контактной схеме

соответствует функция проводимости

- I) $(x' \lor yz)(x \lor y)$
- $\mathbf{J)} \quad (x'y \vee xz)(x \vee y)$
- K) $(x'y \lor z)(x \lor y) *$
- L) $(x' \lor y \lor z)(x \lor y)$

В виде формулы алгебры высказываний могут быть представлены ...

- І) Все булевы функции кроме тождественно истинных
- J) Все булевы функции кроме тождественно ложных
- К) Произвольные булевы функции *
- L) Булевы функции от двух переменных

Таблица истинности конъюнкции имеет вид:

	Α	В	A∧B	
	1	1	1	
	1	0	1	
	0	1	1	
I) [0	0	0	
-/	A	В	A∧B	
	1	1	1	
	1	0	0	
	0	1	0	
J)	0	0	0	>
	A	В	A∧B	
	1	1	1	
	1	0	0	
	0	1	1	
K)	0	0	1	
/	A	В	A∧B	
	1	1	0	
	1	0	0	
				1

Таблица истинности дизъюнкции имеет вид:

нца	neimi	moci	и дизыо	1111
	A	В	A∨B	
	1	1	0	
	1	0	0	
	0	1	0	
I)	0	0	1	
	A	В	A∨B	
	1	1	1	
	1	0	1	
	0	1	1	
J)	0	0	0	*
	A	В	A∨B	
	1	1	1	
	1	0	0	
	0	1	1	
K)	0	0	1	
,	A	В	A∨B	
	1	1	1	
	1	0	0	
	0	1	0	
1.)	0	0	0	

L) 0 0 0 Taблица истинности импликации имеет вид:

	A	В	А→В
	1	1	1
	1	0	1
	0	1	0
I)	0	0	1
	A	В	А→В
	1	1	0
	1	0	0
	0	1	1
J)	0	0	1
- /	A	В	А→В
	1	1	1
	1	0	0
	0	1	1
K)	0	0	1
,	A	В	А→В
	1	1	1
	1	0	0
	0	1	0
L)	0	0	0

Таблица истинности эквивалентности имеет вид

	A	В	A↔B
	1	1	1
	1	0	0
	0	1	0
I)	0	0	1
1			

	A	В	А↔В
	1	1	0
	1	0	1
	0	1	1
I)	0	0	0

J)

	Α	В	$A \leftrightarrow B$
	1	1	1
	1	0	0
	0	1	1
	0	0	1
r			

K)

A	В	A↔B
1	1	1
1	0	1
0	1	0
0	0	0

L)

Сколькими способами могут разместиться 4 человека в салоне автобуса на четырех свободных местах?

- A) 4
- B) 16
- C) 24*
- D) 12

Сколько существует вариантов выбора двух чисел из четырех?

- I) 6*
- J) 4
- K) 2
- L) 8

В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно?

- I) 36*
- J) 18
- K) 72
- L) 16

Выберите число, на которое не делится число 30!

- I) 108
- J) 91
- K) 72
- L) 62*

Сколькими способами могут разместиться 3 человека в четырехместном купе на свободных местах?

- I) 36
- J) 16
- K) 24*

L) 12
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений
цифр?
I) 24
J) 36
K) 45
L) 60*
В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительная
частота появления невсхожих семян?
I) 0,02*
J) 0,05
K) 0,01
L) 0,025
Какова вероятность того, что при бросании игрального кубика выпадет более 4
очков?
A) 1/4
B) 1/3*
C) 2/3
D) 1/2
Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений
цифр?
I) 25
J) 120*
K) 60
L) 50
Сколько существует вариантов выбора двух чисел из шести?
I) 12
J) 16
K) 10
L) 15 *
В шашечном турнире участвуют 8 человек. Каждый из них сыграл с каждым по
одной партии. Сколько всего партий было сыграно?
I) 36
J) 24
K) 28*
L) 16
Выберите число, на которое не делится число 20!
I) 76
J) 45
K) 46*
L) 910
Сколькими способами можно выбрать из восьми карандашей различного цвета
четыре карандаша?
I) 1680*
J) 840
K) 420
L) 240
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6 без повторений
цифр?

1) 420
I) 420 J) 360*
K) 240
L) 180
В партии из 500 деталей отдел технического контроля обнаружил 7 нестандартных
деталей. Какова относительная частота появления нестандартных деталей?
I) 0,07
J) 0,35
K) 0,14*
L) 0,035
Какова вероятность того, что при бросании игрального кубика выпадет менее 4
очков?
A) $\frac{1}{4}$
4 1
$B)\frac{1}{3}$
C) $\frac{2}{3}$ *
D) $\frac{1}{2}$
$\frac{1}{2}$
Сколькими способами можно составить расписание одного учебного дня из 5
различных уроков?
A) 30
B) 100
C) 120*
D) 5
В 9«Б» классе 32 учащихся. Сколькими способами можно сформировать команду из
4 человек для участия в математической олимпиаде?
I) 128
J) 35960*
K) 36
L) 46788
Сколько существует различных двузначных чисел, в записи которых можно
использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
I) 10
J) 60
K) 20
L) 30*
Вычислить: 6! -5!
I) 600*
J) 300 V) 1
K) 1
L) 1000 В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика.
Какова вероятность того, что выбранный наугад шарик будет белым?

J) $\frac{17}{43}$ * K) $\frac{43}{45}$
43
L) $\frac{17}{45}$
Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?
I) $\frac{3}{2}$
J) 0,5
K) 0,125*
L) $\frac{1}{3}$
В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и 800
денежных выигрышей. Какова вероятность выигрыша?
I) 0,02
J) 0,00012
K) 0,0008
L) 0,002*
Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?
I) 100
J) 30
K) 5
L) 120*
Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить,
если в каждый салат должно входить 2 различных вида овощей?
I) 3*
J) 6
K) 2
L) 1 Сколькими способами из 9 учебных предметов можно составить расписание
учебного дня из 6 различных уроков.
I) 10000
J) 60480*
K) 56
L) 39450
Вычислите: 8!
6!
I) 2 I) 56*
J) 56*
K) 30
L) $\frac{4}{3}$
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность,
что эта карта – туз?
I) $\frac{1}{36}$
J) $\frac{1}{35}$

K) $\frac{1}{9}$ *
L) $\frac{36}{4}$
4
Бросают два игральных кубика. Какова вероятность того, что выпадут две четные
цифры?
I) 0,25*
J) $\frac{2}{6}$
K) 0,5
L) 0,125
В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова
вероятность того, что выбранный гриб белый или рыжий?
I) 0,5*
J) 0,4
K) 0,04
L) 0,8
Сколькими способами можно расставить 4 различные книги на книжной полке?
I) 24*
J) 4
K) 16
L) 20
Сколько диагоналей имеет выпуклый семиугольник?
I) 30
J) 21*
K) 14
L) 7
В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя
Сколькими способами это можно сделать?
I) 22
J) 11 V) 150
K) 150
L) 110*
Сократите дробь: $\frac{n!}{(n+1)!}$
I) 1
J) $\frac{n}{n+1}$
K) $\frac{1}{n+1}$ *
L) $\frac{2}{n+1}$

Какова вероятность, что при одном броске игрального кубика выпадает число

очков, равное четному числу?

A) 1/6 B) 0,5* C) 1/3 D) 0,25

Катя и Аня пишут диктант. Вероятность того, что Катя допустит ошибку,
составляет 60%, а вероятность ошибки у Ани составляет 40%. Найти вероятность
того, что обе девочки напишут диктант без ошибок.
•
I) 0,25
J) 0,4
K) 0,48
L) 0,2*
Завод выпускает 15% продукции высшего сорта, 25% - первого сорта, 40% - второго сорта, а все остальное – брак. Найти вероятность того, что выбранное изделие не
будет бракованным.
I) 0,8*
J) 0,1
K) 0,015
L) 0,35
Сколькими способами могут встать в очередь в билетную кассу 5 человек?
I) 5
J) 120*
K) 25
L) 100
Сколькими способами из 25 учеников класса можно выбрать четырех для участия в
праздничном концерте?
I) 12650*
,
J) 100
K) 75
L) 10000
Сколько существует трехзначных чисел, все цифры. Которых нечетные и
различные.
I) 120
J) 30
K) 50
L) 60*
Упростите выражение: $\frac{(n+1)!}{(n-2)!}$
I) 0,5
n + 1
$J) \frac{n+1}{n-2}$
K) $n^3 - n^*$
L) $n^2 - 1$
Какова вероятность, что ребенок родится 7 числа?
A) 7/30
B) 7/12*
C) 7/31
D) 7/365
'
Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания
первого стрелка составляет 90%, второго – 80%, третьего – 70%. Найдите

вероятность того, что все три стрелка попадут в мишень?

I) 0,504* J) 0,006 K) 0,5

T	1	Λ	2
•		. ,	

Из 30 учеников спорткласса, 11 занимается футболом, 6 — волейболом, 8 — бегом, а остальные прыжками в длину. Какова вероятность того, что один произвольно выбранный ученик класса занимается игровым видом спорта?

- A) 17/30*
- B) 0,5
- C) 28/30
- D) 14/30

Сколько существует вариантов рассаживания 6 гостей на 6 стульях?

- A) 36
- B) 180
- C) 720*
- D) 300

Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нее имеется 7 видов фруктов?

- A) 14
- B) 10
- C) 21*
- D) 30

Сколько существует обыкновенных дробей, числитель и знаменатель которых – простые различные числа не больше 20?

- I) 80
- J) 56*
- K) 20
- L) 60

Упростите выражение: $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$.

- A) $\frac{(n+1)!}{(n+2)!}$
- B) $\frac{n+1}{(n+2)!}$ *
- C) $\frac{1}{(n+2)!(n+1)!}$
- D) 0

Какова вероятность того, что выбранное двузначное число делится на 12?

- A) 12/90
- B) 4/45*
- C) 12/45
- D) 90/8

Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у Николая составляет 70%, а у Леонида — 30%. Найдите вероятность того, что Леонид допустит ошибку, а Николай нет.

- I) 0,21
- J) 0,49
- K) 0,5
- L) 0,09*

Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным
во время проверки музыкального слуха составляет 40% , а чувство ритма -10% .
Какова вероятность положительного тестирования?
I) 0,5*
J) 0,4
K) 0,6
L) 0,04
Сколькими способами можно с помощью букв К, А, В, С обозначить вершины
четырехугольника?
A) 12
B) 20
C) 24*
D) 4
На полке стоят 12 книг. Наде надо взять 5 книг. Сколькими способами она может
это сделать?
I) 792*
J) 17
K) 60
L) 300
В 12 – ти этажном доме на 1 этаже в лифт садятся 9 человек. Известно, что они
выйдут группами в 2, 3 и 4 человека на разных этажах. Сколькими способами они
могут это сделать, если на 2 – Ом этаже лифт не останавливается?
I) 100
J) 720*
K) 300
L) 60
В ящике лежат карточки с буквами, из которых можно составить слово
«электрификация». Какова вероятность того, что наугад выбранная буква окажется
буквой к?
I) 1/7*
J) 7 K) 1/14
K) 1/14
L) 2/33
Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятность попадания 1 стрелка составляет 80%, второго – 70%, третьего – 60%. Найдите
вероятность того, что двое из трех стрелков попадет в мишень.
I) 0,336
J) 0,452*
K) 0,224
L) 0,144
В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова
вероятность того, что выбранный наугад фрукт будет бананом или яблоком?
I) 0,9*
J) 0,5 K) 0.24
K) 0,34
L) 0,18
В корзине лежит: яблоко, апельсин, грейпфрут и манго. Сколькими способами 4
девочки могут поделить фрукты? (одной девочке один фрукт)
I) 4

J) 24*
K) 20
L) 16
На плоскости расположены 25 точек так, что три из них не лежат на одной прямой.
Сколько существует треугольников с вершинами в этих точках?
I) 75
J) 100
K) 2300*
L) 3000
В теннисном турнире участвуют 10 спортсменов. Сколькими способами теннисисты
могут завоевать золото, серебро и бронзу?
I) 600
J) 100
K) 300
L) 720*
Вычислите: $\frac{P_4}{P_8} \cdot A^4_8$
I) 1*
J) 13
K) 12
L) 32
Случайным образом открывается учебник литературы и находится второе слово на
странице. Какова вероятность того, что это слово начинается на букву л?
I) 1/33
J) 1/31*
K) 10/33
L) 10/31
Вступительный экзамен в лицей состоит из трех туров. Вероятность отсева в 1 туре
составляет 60%, во втором - 40%, в третьем – 30%. Какова вероятность поступления
в лицей?
I) 0,24
J) 0,12
K) 0,18*
L) 0,072
В коробке лежат 4 голубых, 3 красных, 9 зеленых, 6 желтых шариков. Какова
вероятность того, что выбранный шарик будет не зеленым?
I) 13/22*
J) 0,5
K) 10/22
L) 15/22
Разложите на простые множители число 30. Сколькими способами можно записать в
виде произведения простых множителей число 30?
I) 6*
J) 12
K) 30
L) 3
I:
г. S: Рассмотрим испытание: подбрасывается игральная кость. События: А – выпало 3 очка и В –
выпало нечетное число очков являются:

```
+: Совместными
-: Несовместными
-: Равновозможными
-: Единственно возможными
I:
S: Результатом операции суммы двух событий C = A + B является:
+: произошло хотя бы одно из двух событий А или В;
-: А влечет за собой событие В;
-: произошло событие В
-: совместно осуществились события А и В.
I:
S: Выберите неверное утверждение:
+: вероятность появления одного из противоположных событий всегда
больше вероятности другого;
-: событие, противоположное достоверному, является невозможным;
-: сумма вероятностей двух противоположных событий равна единице;
-: если два события единственно возможны и несовместны, то они называются противоположными.
I:
S: Эксперимент состоит в подбрасывании один раз правильной шестигранной игральной кости.
События А={выпало число очков больше трех}; В ={выпало четное число очков}. Тогда множество,
соответствующее событию А+В, есть:
+: A+B = \{2; 4; 5; 6\};
-: A+B = \{4; 6\};
-: A+B = \{6\};
-: A+B = \{3; 4; 5; 6\}.
I:
S: Эксперимент состоит в подбрасывании один раз правильной шестигранной игральной кости. При
каких событиях А, В верно: А влечет за собой В?
+: A = \{ \text{выпало число } 2 \}, B = \{ \text{выпало четное число очков} \};
-: A = \{выпало нечетное число очков\}, B = \{выпало число 3\};
-: A = \{выпало четное число очков\}, B = \{выпало число 5\};
-: A = \{выпало число 6\}, B = \{выпало число очков, меньше 6\}.
I:
S: Взятая наудачу деталь может оказаться либо первого (событие A), либо второго (событие B), либо
третьего (событие С) сорта. Что представляет
собой событие: A+C ?
+: {деталь второго сорта};
-: {деталь первого или третьего сорта};
-: { деталь третьего сорта};
-: {деталь первого и третьего сорта}.
I:
S: Заданы множества A = \{1, 3, 4\}, B = \{2, 3, 1, 4\}, тогда для них будет неверным утверждением
+: А и В не имеют общих элементов
-: множества А, В пересекаются;
-: множество А есть подмножество множества В;
-: множество А не равно множеству В.
I:
S: Известно, что P(A) = 0.65 тогда вероятность противоположного события равна ...
+: 0.35
-: 0.25
-: 0,30
-: 0,45
```

```
I:
S: При подбрасывании игральной кости выпадет число очков, большее 4. Вероятность этого события
равен ...
+:1/3
-: 1/2
-: 1/9
-: 1/4
I:
S: При подбрасывании монеты выпадет герб. Вероятность этого события равен ...
+: 1/2
-: 1/3
-: 1/9
-: 1/4
S: Из колоды карт (36 штук) достали туза. Вероятность этого события равен ...
+: 1/9
-: 1/3
-: 1/2
-: 1/4
I:
S: При подбрасывании игральной кости выпадет число очков, меньшее 4. Вероятность этого события
равен ...
+: 0,5
-: 0,6
-: 0,25
-: 0,4
S: Из урны, в которой 6 белых и 4 черных шара, наугад достали белый шар. Вероятность этого
события равен ...
+: 0,6
-: 0,5
-: 0,25
-: 0,4
I:
S: Из колоды карт (36 штук) достали карту бубновой масти. Вероятность этого события равен ...
+: 0.25
-: 0.6
-: 0,5
-: 0,4
S: При подбрасывании игральной кости выпадет число очков, кратное 3. Вероятность этого события
равен ...
+: 1/3
-: 0,4
-: 1/36
-: 0,6
I:
S: Из урны, в которой 6 белых и 4 черных шара, наугад достали черный шар. Вероятность этого
события равен ...
+: 0.4
-: 1/3
-: 1/36
-: 0,6
I:
S: Из колоды карт (36 штук) достали пиковую даму. Вероятность этого события равен ...
```

```
-: 1/3
-: 0,4
-: 0.6
I:
S: Число размещений из n по m ...
+: n!/(n-m)!
-: n!
-: n!/(m!(n-m))!
-: (n-m)!
S: Число перестановок ...
+: n!
-: n!/(n-m)!
-: n!/(m!(n-m))!
-: (n-m)!
S: Число сочетаний из n по m ...
+: n!/(m!(n-m))!
-: n!
-: n!/(n-m)!
-: (n-m)!
I:
S: Игральный кубик подбрасывается один раз. Тогда вероятность того, что на верхней грани выпадет
число очков больше трех, равно:
+: 1/2;
-: 1/3:
-: 2/3;
-: 1/6.
S: В урне 5 белых, 3 черных, 4 красных шаров. Вероятность того, что из урны вынут белый или
черный шар равна ...
+: 2/3;
-: 1/4;
-: 15/8;
-: 1/8.
I:
S: В группе 7 юношей и 5 девушек. На конференцию выбирают трех студентов случайным образом
(без возвращения). Вероятность того, что на конференцию поедут двое юношей и одна девушка,
равна:
+: 21/44;
-: 11/28;
-: 21/110;
-: 7/12.
S: В урне 6 белых и 4 черных шаров. Из урны вынимают два шара. Вероятность того, что оба шара
черные, равна:
+: 2/15;
-: 2/5;
-: 1/4;
-: 3/5.
I:
S: Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго
стрелков равна 0,6 и 0,9 соответственно. Тогда вероятность того, что цель будет поражена, равна:
+: 0,96
```

+: 1/36

```
-: 0.69
-: 0.86
-: 0.68
S: Количество перестановок в слове «ТВМС» равно:
+: 24
-: 12
-: 120
-: 8
I:
S: Сколько различных двузначных чисел можно составить из пяти цифр 1, 2, 3, 4, 5, если все цифры в
числе разные?
+: 20
-: 120
-: 24
-: 12
I:
S: Игральную кость бросают 5 раз. Вероятность того, что ровно 3 раза появится нечетная грань,
равна:
+: 5/16
-: 1/32:
-: 1/16:
-: 3/16.
I:
S: Наивероятнейшее число годных деталей среди 15 проверенных отделом технического контроля,
если вероятность того, что деталь стандартна, равна 0,7, равно....
+: 11
-: 10
-: 12
-: 9
I:
S: Количество трехзначных чисел, в записи которых нет цифр 5 и 6 равно:
+: 448;
-: 296;
-: 1024;
-: 526.
I:
S: Число m0 наступления события A в n независимых испытаниях, в каждом из которых вероятность
появления события равна р, определяемое из неравенства: pn - q < m0 < pn + q, называется:
+: наивероятнейшее;
-: наибольшее;
-: оптимальное;
-: минимальное.
I:
S: Потребитель может увидеть рекламу определенного товара по телевидению (событие A), на
рекламном стенде (событие В) и прочесть в газете (событие С). Событие А + В + С означает:
+: потребитель увидел хотя бы один вид рекламы;
-: потребитель увидел все три вида рекламы;
-: потребитель не увидел ни одного вида рекламы;
-: потребитель увидел рекламу по телевидению.
S: На пяти одинаковых карточках написаны буквы И, Л, О, С, Ч. Если перемешать их, и разложить
наудачу в ряд две карточки, то вероятность р получить слово ИЛ равна ....
+: 0.05
-: 0,5
```

```
-: 0.08
-: 0,07
I:
S: Если A и B – независимые события, то вероятность наступления хотя бы одного из двух событий
А и В вычисляется по формуле:
+: P(A+B) = P(A) + P(B),
-: P(A \cdot B) = P(A) \cdot P(B),
-: P(A \cdot B) = P(A) \cdot P(B) \cdot P(A \cdot B),
-: P(A \cdot B) = P(A)P(B/A).
I:
S: Сколькими способами можно составить список из пяти студентов? В ответ записать полученное
число.
+: 120
-: 24
-: 12
-: 720
I:
S: Подбрасываются две игральные кости. Найти вероятность Р того, что сумма выпавших очков
равна четырем. В ответ записать число 24Р.
+: 2
-: 1
-: 3
-: 4
I:
S: Партия из 10 телевизоров содержит 3 неисправных телевизора. Из этой партии выбираются наугад
2 телевизора. Найти вероятность Р того, что оба они будут неисправными. В ответ записать число 45
Ρ.
+: 3
-: 2
-: 6
-: 4
I:
S: Данное предприятие в среднем выпускает 20 % продукции высшего сорта и 70 % продукции
первого сорта. Найти вероятность Р того, что случайно взятое изделие этого предприятия будет
высшего или первого сорта. В ответ записать число 30 Р.
+: 27
-: 28
-: 26
-: 30
S: Студентам нужно сдать 4 экзамена за 6 дней. Сколькими способами можно составить расписание
сдачи экзаменов?
+: 360
-: 320
-: 270
-: 160
I:
S: Вероятность того, что случайно выбранный водитель застрахует свой автомобиль, равна 0,6.
Наивероятнейшее число водителей, застраховавших автомобиль, среди 100 равно...
+:60
-: 64
-: 62
-: 58
I:
```

S: В группе из 20 студентов 4 отличника и 16 хорошистов. Вероятности успешной сдачи сессии для них соответственно равны 0,9 и 0,65. Вероятность того, что наугад выбранный студент успешно сдаст сессию равна
+: 0,7 -: 0,8 -: 0,6
-: 0,55 I:
 S: На плоскости нарисованы две концентрические окружности, радиусы которых 6 и 12 см соответственно. Вероятность того, что точка брошенная наудачу в большой круг, попадет в кольцо, образованное указанными окружностями равна: +: 0,75; -: 0,65; -: 0,12; -: 0,60. I:
S: Опыт состоит в том, что стрелок производит 3 выстрела по мишени. Событие AK - «попадание в мишень при k -ом выстреле ($k=1,2,3$). Выберите правильное выражение для обозначения события «хотя бы одно попадание в цель»: +: $A1 + A2 + A3$;
-: $A_1 \cdot A_2 \cdot A_3$; -: A_1 ;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S: На сборку попадают детали с двух автоматов: 80 % из первого и 20 % из второго. Первый автомат дает 10 % брака, второй – 5 % брака. Вероятность попадания на сборку доброкачественной детали: +: 0,91; -: 0,90; -: 0,09; -: 0,15. I:
S: Некто купил два билета. Вероятность выигрыша хотя бы по одному билету равна 0,19, а вероятность выигрыша по одному лотерейному билету равна +: 0,1 -: 0,2 -: 0,25: 0,15.
I: S: Вероятность посещения магазина № 1 равна 0,6, а магазина № 2 – 0,4. Вероятность покупки при посещении магазина № 1 равна 0,7, а магазина № 2 – 0,2. Вероятность покупки равна +: 0,5 -: 0,65; -: 0,12; -: 0,60. I:
S: После бури на участке между 40-м и 70-м километрами телефонной линии произошел обрыв провода. Вероятность Р того, что разрыв произошел между 50-м и 55-м километрами равна (В ответ записать 60Р) +: 10
-: 11 -: 12
-: 9. I:

S: Партия деталей изготовлена двумя рабочими. Первый рабочий изготовил 32 всех деталей, а второй -31. Вероятность брака для первого рабочего составляет 1%, а для второго -10%. На контроль взяли одну деталь. Получено, что вероятность (в процентах) того, что она бракованная равна... +: 4 -: 5 -: 3 -: 6 I: S: Вероятность того, что в течение одной смены возникнет неполадка станка, равна р. Вероятность того, что не произойдет ни одной неполадки за три смены равна: +: (1-p)3-: 3p; -: 3(1-p);-: p3. S: При классическом определении вероятность события определяется равенством ... +: P(A) = m/n-: P(A) = n/m-: P(A) = n/m2-: P(A) = 1/nS: Среди тридцати деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что утеряна нестандартная деталь, равна... +: 1/3-: 0,3-: 3,0 -: 1/5 S: Набирая номер телефона, абонент забыл последние три цифры и, помня, что эти цифры различны, набрал их наудачу. Вероятность того, что набраны нужные цифры, вычисляется по формуле... $I \mid A$ 10 C^3 10 $C_{10}^3 \mid A_{10}^3$ I: S: Вероятность появления одного из двух несовместных событий, безразлично какого, вычисляется по уравнению... P(A)+P(B)P(A)-P(B)P(B)+ P(A)+ P(AB)P(A)+P(B)-P(AB)I: S: Событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В, обозначается ... $A \cup B$ +: $A \cap B$ $A \setminus B$

 $A \subset B$

```
I:
S: Событие состоящее из элементарных событий, принадлежащих одновременно A и B,
обозначается...
       A \cap B
       A \cup B
       A \subset B
       A \setminus B
I:
S: Событие, состоящее из элементарных событий, принадлежащих A и не принадлежащих B,
обозначается...
     A \setminus B
     A \cap B
     A \cup B
      A \in B
-:
I:
S: Если из наступления события A следует наступление события B, т.е. событие B есть следствие
события А, то это записывается как...
      A \subset B
      A \cap B
      A \cup B
       A \setminus B
-:
I:
S: Вероятность достоверного события равна ...
    1,0
    0,5
    1.0
    0
-:
I:
S: Число комбинаций, состоящее из одних и тех же n различных элементов и отличающихся только
порядком их расположения, вычисляется по формуле ...
     n!
+:
     n(n-1)(n-2)...(n-m+1)
     n! (m!(n-m)!)
     P_m \mid C_n^m
I:
S: Число возможных размещений, составленных из n различных элементов по m элементов, которые
отличаются либо составом элементов, либо их порядком вычисляется по формуле ...
       n(n-1)(n-2)...(n-m+1)
+:
       n! (m!(n-m)!)
       P_m \mid C_n^m
        n!
I:
S: Число комбинаций, составленных из n различных элементов по m элементов, которые отличаются
хотя бы одним из элементов, вычисляется по формуле ...
```

n! (m!(n-m)!)

n(n-1)(n-2)...(n-m+1)

+:

-:

n!

```
P_m C_n^m
I:
S: Количество трехзначных чисел, которое можно составить из цифр 1,2,3, если каждая цифра входит
в изображение числа только один раз, вычисляют по формуле ...
    перестановок
    сочетаний
-:
    размещений
    вероятности
-:
I:
S:Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Вероятность того, что
найдена нужная цифра, равна ...
+: 0,1
    0,2
   1/2
    0/3.
-:
I:
S:Количество способов, которыми читатель может выбрать 4 книги из 11, равно:
+:330
-: 353
-: 341
-: 326
I:
S:Количество способов, которыми можно выбрать 5 экзаменационных билетов из 9, равно:
+: 126
-: 135
-: 121
-: 150
S: Количество способов, которыми можно сформировать экзаменационный билет из трех вопросов,
если всего 25 вопросов, равно:
+: 2300
-: 2500
-: 75
-: 575
I:
S: Количество способов, которыми можно выбрать двух дежурных из группы студентов в 20
человек, равно:
+: 190
-: 200
-: 20!
-: 18!
S: Количество способов, которыми могут 3 раза поразить мишень 10 стрелков, равно (каждый делает
1 выстрел):
+: 120
-: 10
-: 30
-: 720
I:
S: Три стрелка делают по одному выстрелу по мишени. Событие A_i – попадание в мишень i-м
стрелком. Событие A_i – промах i-м стрелком. Событие A – в мишень попали два раза представляется
в виде операций над событиями как...
```

 $+: A_1 \cdot A_2 \cdot A_3$

```
\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}
A_1 \cdot A_2 \cdot A_3 - (\overline{A_1} + \overline{A_2} + \overline{A_3})
\overline{A_1} \cdot A_2 \cdot A_3 + A_1 \cdot \overline{A_2} \cdot A_3 + A_1 \cdot A_2 \cdot \overline{A_3}
S: Укажите верные равенства (\varnothing - невозможное событие, \Omega - достоверное событие):
_{\perp} A + \Omega = \Omega
A \cdot \emptyset = A
A + \emptyset = \emptyset
A + \bar{A} = \emptyset
S: Два стрелка производят по одному выстрелу. Вероятности попадания в цель для первого и второго
стрелков равны 0,9 и 0,4 соответственно. Вероятность того, что в цель попадут оба стрелка, равна ...
+: 0,5
-: 0.4
-: 0.45
-: 0.36
I:
S: Сумма вероятностей событий A1, A2, ... An, образующих полную группу, равна ...
      P(A_1) + P(A_2) + ... P(A_n) = 1
      P(A_1)+P(A_2)+...P(A_n)=0
      P(A_1) + P(A_2) + ... P(A_n) = \infty
      P(A_1) + P(A_2) + ... P(A_n) = -\infty
I:
S: Сумма вероятностей противоположных событий равна ...
       P(A) + P(\overline{A}) = 1
      P(A) + P(\overline{A}) = 0
      P(A) + P(\overline{A}) = \infty
      P(A) + P(\overline{A}) = -\infty
I: S: Вероятность совместного появления двух событий вычисляют по формуле ...
      P(A) \cdot P(B \mid A)
      P(A) \cdot P(B)
      P(A)/P(B)
      P(A)/P(B \mid A)
I: S: Теорема умножения для независимых событий имеет вид ...
        P(AB) = P(A) \cdot P(B)
        P(AB) = P(B) \cdot P(A / B)
        P(AB) = P(A) \cdot P(B \mid A)
        P(AB) = P(A)/P(B/A)
I:
```

S: Вероятность появления хотя бы одного из трех независимых в совокупности событий равна ...

```
P(A) = 1 - q_1 \cdot q_2 \cdot q_3
    P(A) = 1 - P(\overline{A})

P(A) = 1 - P(\overline{A_1})
    P(A) = 1 - P(\overline{A_3})
I: S: Вероятность появления хотя бы одного из двух совместных событий равна ...
      P(A+B) = P(A) + P(B) - P(AB)
      P(A+B) = P(A) + P(AB) - P(B)
      P(A+B)=P(B)+P(AB)-P(A)
      P(A+B) = P(A) + P(B) + P(AB)
I:
S: Вероятность попадания стрелком в цель равна 0,7. Сделано 25 выстрелов. Наивероятнейшее
число попаданий в цель равно...
+: 18
-: 20
-: 16
-: 21
I:
S: Монета брошена 3 раза. Тогда вероятность того, что "герб" выпадет ровно 2 раза, равна ...
      3/8
      3/4
      1/8
-:
      2/3
-:
S: Количество способов выбора стартовой шестерки из восьми игроков волейбольной команды
равно ...
      28
+:
      113
-:
     720
-:
-:
     56
I:
S: Из ящика, где находится 15 деталей, пронумерованных от 1 до15, требуется вынуть 3 детали.
Тогда количество всевозможных комбинаций номеров вынутых деталей равно ...
-: 15!/12!
+: 15!/3!·12!
-: 15!
-: 3!
S:Вероятность достоверного события равна ...
-: 0
+: 1,0
-: 0,5
  1.0
-:
I:
S: По оценкам экспертов вероятности банкротства для двух предприятий, производящих
разнотипную продукцию равна 0,1 и 0,15. Тогда вероятность банкротства обоих предприятий равна
+: 0.015
-: 0,15
-: 0,25
-: 0,765
```

```
I:
S: По оценкам экспертов вероятности банкротства для двух предприятий, производящих
разнотипную продукцию равна 0,1 и 0,15. Тогда вероятность банкротства обоих предприятий равна
        0,015
+:
        0,15
-:
        0,25
-:
        0,765
-:
I:
S: Вероятность попадания в мишень 0,8. Тогда наиболее вероятное число попаданий при 5 выстрелах
равно ...
      4,0
+:
      3,8
-:
      4,8
       4,5
-:
I:
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие В). Найдите соответствующее событие для А+В:
+: Лицо является держателем акций или облигаций
-: Лицо является держателем акций и облигаций
-: Лицо является держателем только акций
-: Лицо является держателем только облигаций
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие В). Найдите соответствующее событие для А.В:
+: Лицо является держателем акций и облигаций
-: Лицо является держателем акций или облигаций
-: Лицо является держателем только акций
-: Лицо является держателем только облигаций
S: Брокерская фирма имеет дело с акциями и облигациями. Фирме полезно оценить вероятность
того, что: лицо является держателем акций (событие А); лицо является держателем облигаций
(событие B). Найдите соответствующее событие для A - A \cdot B:
+: Лицо является держателем только акций
-: Лицо является держателем акций или облигаций
-: Лицо является держателем акций и облигаций
-: Лицо является держателем только облигаций
I:
S: Рассмотрим испытание: подбрасывается игральная кость. Выпало 3 очка. Это какое событие:
+: Достоверное событие
-: Невозможное событие
-: Это не событие
-: Неестественное событие
S: Рассмотрим испытание: подбрасывается игральная кость. Выпало больше 6 очков. Это какое
событие:
+: Невозможное событие
-: Достоверное событие
-: Это не событие
-: Неестественное событие
T:
```

S: Рассмотрим испытание: подбрасывается игральная кость.
События: А – выпало 3 очка и В – выпало нечетное число очков являются:
+: Совместными
-: Несовместными
-: Равновозможными
-: Противоположными
I:
S: Рассмотрим испытание: из урны, содержащей 3 белых и 7 черных шаров, достают наугад один шар. События: А – достали белый шар и В – достали черный шар являются:
+: Противоположными
-: Несовместными
-: Равновозможными
-: Совместными
I:
S: Несколько событий называются, если в результате испытания обязательно должно
произойти хотя бы одно из них.
+: Единственно возможными
-: Равновозможными
-: Несовместными
-: Противоположными
I:
S: События называются, если в результате испытания по условиям симметрии ни одно
из них не является объективно более возможным.
+: Равновозможными
-: Единственно возможными
-: Несовместными
-: Совместными
I:
S: События называются, если наступление одного из них исключает появление любого
другого.
+: Несовместными
-: Равновозможными
-: Единственно возможными
-: Противоположными
I:
S: Несколько событий образуют полную группу событий, если они являютсяи
исходами испытания.
+: Несовместными и единственно возможными
-: Противоположными и равновозможными
-: Равновозможными и совместными
-: Достоверными и несовместными
I:
S: Элементарными исходами (случаями, шансами) называются исходы некоторого испытания, если
они <u>и</u> .
+: Образуют полную группу событий и равновозможные
-: Совместны и достоверны
-: Достоверны и несовместны
-: Единственно возможны и противоположными
I:
S: На отрезке L длины 20 см помещен меньший отрезок l длины 5 см. Вероятность того, что точка,
наудачу поставленная на больший отрезок, попадет также и на меньший отрезок, равна
+: 0,25
-: 0,35
-: 0,345
-: 0,165
,

```
Ţ
```

S:.В урне 12 белых и 8 черных шаров. Вероятность того, что наудачу вынутый шар будет белым равна...

+: 0.6

-: 0.5

-: 0,7

-: 0,4

I:

S: Равенство P(A + B) = P(A) + P(B) имеет место для событий

+: Несовместных

-: Произвольных

-: Противоположных

-: Единственно возможных

I:

S: Равенство $P(AB) = P(A) \cdot P(B)$ имеет место для______ событий

+: Совместных

-: Зависимых

-: Равновозможных

-: Произвольных

I:

S: Сумма вероятностей событий, образующих полную группу равна ...

Ответ: единице; 1

+: 1

-: 0,5

-: 0

-: 0,75

I:

S: Сумма вероятностей противоположных событий равна ...

+: 1

-: 0,5

-: 0

-: 0,75

I:

S: В первом ящике 7 красных и 9 синих шаров, во втором -4 красных и 11 синих. Из произвольного ящика достают один шар. Вероятность того, что он красный равна ...

$$\frac{1}{2} \cdot \left(\frac{7}{16} + \frac{4}{15} \right)$$

$$\begin{array}{c}
\frac{7}{9} + \frac{4}{11} \\
\div \frac{1}{2} \cdot \left(\frac{7}{9} + \frac{4}{11}\right) \\
\div \frac{1}{2} \cdot \left(\frac{7}{9} + \frac{4}{11}\right)
\end{array}$$

$$\frac{1}{2} \cdot \frac{7+4}{9+11}$$

τ.

S: В первой урне 4 черных и 6 белых шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

+:0,45

-: 0.15

-: 0.4

S: Событие А может наступить лишь при условии появления одного из двух несовместных событий

 H_1 и H_2 , образующих полную группу событий. Известны вероятность

 $P(H_1) = \frac{1}{3}$ и условные

 $P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{1}{4}.$ Тогда вероятность P(A) равна ... вероятности

- +: 1/3
- -: 2/3
- -: 1/2
- -: 3/4

I:

S: Формула полной вероятности имеет вид ...

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
+:
$$P(A) = C_n^m p^m q^{n-m}$$
:
$$P(A) = P(A_1) \cdot P_{A_1}(A_2)$$
:
$$P(A) = \sum_{i=1}^{n} P(A_i)$$
:
I:

S: В первой урне 3 белых и 7 черных шаров. Во второй урне 1 белый и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется черным, равна...

- +: 0.8
- -: 0,2
- -: 0,4
- -: 1.6

I:

S: Формула Байеса имеет вид ...
$$P_{H}(A) \cdot P(H_{j})$$
+:
$$P_{A}(H_{j}) = \frac{P_{H}(A) \cdot P(H_{j})}{P(A)}$$

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
$$P(A) = C_n^m p^m q^{n-m}$$

$$P(A) = C_n^m p^m q^{n-m}$$

$$P(A) = P(H) \cdot P_H(A)$$

S: Если произошло событие A, которое может появиться только с одной из гипотез H1, H2, ..., Hn образующих полную группу событий, то произвести количественную переоценку априорных (известных до испытания) вероятностей гипотез можно по ...

- +: Формуле Байеса
- -: Формуле полной вероятности
- -: Формуле Пуассона
- -: Формуле Муавра-Лапласа

I:

S:
$$P_n(m) = C_n^m p^m q^{n-m}$$
 это формула ...

- +: Бернулли
- -: Пуассона
- -: полной вероятности
- -: Локальная теорема Муавра-Лапласа

I:

```
P_n(m) pprox rac{\lambda^m e^{-\lambda}}{m!} это формула ...
```

+: Локальная теорема Муавра-Лапласа

- -: Бернулли
- -: полной вероятности
- -: Пуассона

$$P_n(m) pprox rac{arphi(x)}{\sqrt{npq}}$$
 это формула ...

- +: Бернулли
- -: Пуассона
- -: полной вероятности
- -: Байеса

I:

S: Событие A может наступить лишь при условии появления одного из трех несовместных событий $P(H_{\cdot}) = \left[\begin{array}{cc} P(H_{\cdot}) = \\ \end{array} \right]$

¹ 4, ² 2, H_1 , H_2 , H_3 , образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите P(A):

- +: 9/16
- -: 2/9
- -: 2/3
- -: 1/9

1: S: Событие A может наступить лишь при условии появления одного из трех несовместных событий P(H) = P(H) = P(H)

¹ 4 ² 2 $H_{1},\ H_{2},\ H_{3}$, образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите $P_A(H_1)$:

- +: 2/9
- -: 9/16
- -: 2/3
- -: 1/9

¹ 4 ² 2 $H_{1},\ H_{2},\ H_{3}$, образующих полную группу событий. Известны вероятности:

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}$$
 и $P_{H_3}(A) = \frac{1}{4}$. Найдите $P_A(H_2)$:

- +: 2/3
- -: 9/16
- -: 2/9
- -: 1/9

I:

S: Событие A может наступить лишь при условии появления одного из трех несовместных событий $P(H_-) = \frac{1}{2} P(H_-) = \frac{1}{2}$

$$P_{H_1}(A) = \frac{1}{2}, P_{H_2}(A) = \frac{3}{4}, P_{H_3}(A) = \frac{1}{4}.$$
 Найдите $P_A(H_3)$:

+: 1/9

-: 9/16

```
-: 2/9
-: 2/3
I:
S: Стрелок стреляет по мишени 5 раз. Вероятность попадания в мишень при каждом выстреле
постоянна. Вероятность того, что стрелок попадет по мишени не менее двух раз, равна...
+: 1-P_5(0)-P_5(1)-P_5(2)
P_5(2) + P_5(3) + P_5(4) + P_5(5)
-1-P_5(0)-P_5(1)
-: 1-P_5(2)
S: В ходе проверки аудитор случайным образом отбирает 60 счетов. В среднем 3% счетов содержат
ошибки. Параметр λ формулы Пуассона для вычисления вероятности того, что аудитор обнаружит
два счета с ошибкой, равен ...
+: 1,8
-: 2,8
-: 3,1
-: 0.9
I:
S: Телефонная станция обслуживает 1000 абонентов. Вероятность позвонить любому абоненту в
течение часа равна 0,001. Вероятность того, что в течение часа позвонят точно 3 абонента,
приближенно равна...
+: 6e
-: 0,001^3
-: 3e^{-3}
   3e^{-3}
    3!
I:
S: Укажите все условия, предъявляемые к последовательности независимых испытаний, называемой
схемой Бернулли
+: В каждом испытании может появиться только два исхода
-: Количество испытаний должно быть небольшим: n ≤ 50
-: Вероятность успеха во всех испытаниях постоянна
-: В некоторых испытаниях может появиться больше двух исходов
S: Сделано 10 выстрелов по мишени. Вероятность попадания при одном выстреле 0,7.
Наивероятнейшее число попаданий равно ...
+: 7
-: 8
-: 6
-: 9
I:
S: n \leq 50
             это условие использования формулы ...
+: Бернулли
-: Пуассона
-: Локальная теорема Муавра-Лапласа
-: Байеса
I:
   n \ge 50_{\text{ M}} np = \lambda \le 10
                              это условие использования формулы ...
+: Пуассона
```

```
-: Бернулли
-: Локальная теорема Муавра-Лапласа
-: Байеса
I:
```

S:
$$p = const$$
, $p \neq 0, p \neq 1, npq \geq 20$ +: Локальная теорема Муавра-Лапласа

- -: Бернулли
- -: Пуассона
- -: Байеса

- S: Формулой Пуассона целесообразно пользоваться, если ...
- +: n = 100, p = 0.02
- -: n = 500, p = 0.4
- -: n = 500, p = 0.003
- -: n = 3, p = 0.05

- S:. Теоремами Муавра-Лапласа целесообразно пользоваться, если ...
- +: n = 100, p = 0.5
- -: n = 100, p = 0.02
- -: n = 3, p = 0.5
- -: n = 500, p = 0.4

I:

S: Монету подбросили 100 раз. Для определения вероятности того, что событие A – появление герба наступит ровно 60 раз, целесообразно воспользоваться...

это условие использования формулы ...

- +: Локальной теоремой Муавра-Лапласа
- -: Формулой Пуассона
- -: Формулой полной вероятности
- -: Интегральной теоремой Муавра-Лапласа

I:

- S: Монету подбросили 100 раз. Для определения вероятности того, что событие A появление герба – наступит не менее 60 раз и не более 80 раз, целесообразно воспользоваться...
- +: Интегральной теоремой Муавра
- -: Локальной теоремой Муавра-Лапласа
- -: Формулой Пуассона
- -: Формулой полной вероятности

I:

S: Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна 0,8. Вероятность того, что событие появится не менее 60 раз и не более 88 раз, равна:

$$_{+}$$
. $P_{100}(60 \le m \le 88) \approx \Phi(2) - \Phi(-5)$

$$P_{100}(60 \le m \le 88) \approx \Phi(88) - \Phi(60)$$

$$P_{100}(60 \le m \le 88) \approx \Phi(88) + \Phi(60)$$

$$P_{100} (60 \le m \le 88) \approx \Phi(8) - \Phi(-20)$$

I:

S: Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна 0,8. Вероятность того, что событие появится точно 88 раз, равна:

$$+: \phi(2)$$

$$\frac{1}{\sqrt{2\pi}}e^{-8}$$

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{8} e^{-\frac{t^{2}}{2}} dt$$

```
\frac{1}{\sqrt{2\pi}} \int_{0}^{2} e^{-\frac{t^{2}}{2}} dt
T:
```

S: Укажите дискретные случайные величины:

- +: Число очков, выпавшее при подбрасывании игральной кости. Количество произведенных выстрелов до первого попадания. Оценка, полученная студентом на экзамене по теории вероятностей.
- -: Дальность полета артиллерийского снаряда. Расход электроэнергии на предприятии за месяц. Оценка, полученная студентом на экзамене по теории вероятностей.
- -: Расход электроэнергии на предприятии за месяц. Дальность полета артиллерийского снаряда. Количество произведенных выстрелов до первого попадания.
- -: Число очков, выпавшее при подбрасывании игральной кости. Расход электроэнергии на предприятии за месяц. Дальность полета артиллерийского снаряда. I:
- S: Укажите непрерывные случайные величины
- +: Температура воздуха. Расход электроэнергии на предприятии за месяц.
- -: Количество произведенных выстрелов до первого попадания.
- -: Рост студента.
- -: Оценка, полученная студентом на экзамене по теории вероятностей.

S: Вероятность появления события A в 10 независимых испытаниях, проводимых по схеме Бернулли, равна 0,8. Тогда дисперсия числа появлений этого события равна ...

```
+: 1,6

-: 0,08

-: 0,16

-: 8,0
```

I:

-: 4 -: -1

I:

S: Дискретная случайная величина задана законом распределения вероятностей:

X	-1	2	4
P	0,1	a	b

Тогда ее математическое ожидание равно 3,3 если ...

```
+: a = 0,2, b = 0,7

-: a = 0,1, b = 0,9

-: a = -0,1, b = 0,8

-: a = -0,8, b = 0,1
```

```
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(3):
+: 3
-: 4
-: 5
-: -1
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(2X):
+: 4
-: 3
-: 5
-: -1
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X+Y)
+: 5
-: 3
```

```
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X-Y):
+: -1
-: 3
-: 4
-: 5
I:
S: Известно, что M(X) = 2, M(Y) = 3 и X, Y – независимы. Найдите M(X \cdot Y):
-: 3
-: 4
-: 0
I:
S: Известно M(X) и M(X^2). M(X) = -0.4; M(X^2) = 4. Найти D(X):
+: 3,84
-: 1,89
-: 4,4
-: 4,2
I:
S: Известно M(X) и M(X^2). M(X) = 2,1; M(X^2) = 6,3. Найти D(X):
+: 1,89
-: 3,84
-: 4,4
-: 4,2
I:
```

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Математическое ожидание:

+: 2

-: 5

-: 0

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Моду:

+: 5

-: 2

-: 0

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-5	0	5
P	0,1	0,4	0,5

Найти Медиану:

+: 0

-: 2

-: 5

-: -5

I:

S: Дискретная случайная величина X задана законом распределения вероятностей

X	-1	0	1

P	0,2	0,1	0,7

Значение $M(X^2)$ равно ...

+: 0,9

-: 0,8

-: 0,7

-: 0,5

I:

S: В денежной лотерее выпущено 100 билетов. Разыгрывается пять выигрышей по 500 рублей, пять выигрышей по 400 рублей и десять выигрышей по 100 рублей. Математическое ожидание выигрыша по одному лотерейному билету равно...

+: 55

-: 65

-: 75

-: 45

I:

S: Укажите справедливые утверждения для функции распределения случайной величины

$$\lim_{x \to +\infty} F(x) = 1 \quad 0 \le F(x) \le 1 \quad \lim_{x \to -\infty} F(x) = 0 \quad F(1) \le F(2)$$

$$F(x) \ge 0$$
 $F(1) \ge F(2)$

$$\lim F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

I:

S: Случайная величина задана плотностью распределения $\phi(x) = 2x$ в интервале (0; 1); вне этого

интервала $\phi(x) = 0$. Вероятность P(0 < X < 1/2) равна ...

+: 0,25

-: 0,3

-: 0,4

-: 0,5

I:

S:Случайная величина задана плотностью распределения $\phi(x) = 2x$ в интервале (0; 1); вне этого интервала $\phi(x) = 0$. Математическое ожидание величины X равно ...

+: 2/3

-: 4/3

-: 1

-: 1/2

I:

S: Случайная величина задана плотностью распределения $\phi(x) = x/2$ в интервале (0; 2); вне этого интервала $\phi(x) = 0$. Математическое ожидание величины X равно ...

+: 4/3

-: 2/3

-: 1

-: 1/2

I:

S: Непрерывная случайная величина равномерно распределена на отрезке [-11; 20]. Вероятность

$$P(X \le 0)$$
 -: 5/16

+: 11/31 -: 11/32

I:

-: 10/31

равна ...

```
S: Непрерывная случайная величина равномерно распределена на отрезке [-11; 26]. Вероятность
P(X > -4) pasha ...
+: 30/37
-: 10/31
-: 5/16
-: 29/38
I:
S: Математическое ожидание и среднее квадратическое отклонение нормально распределенной
случайной величины X соответственно равны 15 и 5. Вероятность того, что в результате испытания
Х примет значение из интервала (5; 20), равна:
+: \Phi(1) + \Phi(2)
-: \Phi(20) - \Phi(5)
-: \Phi(20) + \Phi(5)
-: \Phi(2) - \Phi(1)
I:
                                                                           \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
S: Нормально распределенная случайная величина X задана плотнотью
D(X) pabha ...
+: 1
-: 2
-: 0.5
-: -1
I:
                                                                            \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
S: Нормально распределенная случайная величина X задана плотностью
Математическое ожидание M(X) равно ...
+: 0
-: 1
-: 2
-: 3.5
I:
S: Математическое ожидание и дисперсия независимых случайных величин X и Y соответственно
равны M(X) = 2, D(X) = 3, M(Y) = 4, D(Y)=5.
Если случайная величина Z задана равенством Z = 2X - Y + 3, тогда M(Z) \cdot D(Z) равно...
+: 51
-: 60
-: 45
-: 65
I:
S: Производится 200 повторных независимых испытаний, в каждом из которых вероятность
события A равна 0,2. Дисперсия D(X) случайной величины X – числа появления события A в 200-х
испытаниях равна...
+:32
-: 25
-: 46
-: 50
S: Случайные величины X и Y независимы. Если известно, что
D(x) = 5, D(y) = 6, тогда дисперсия случайной величины z = 3x + 2y равна ...
+: 69
```

-:

27

```
51
    37
-:
I:
S: Дан закон распределения дискретной случайной величины X
        хi
                          2
                                 3
                                                 5
        pi
                0,14
                       0,28
                              0,17
                                      0,32
                                                p5
Тогда значение вероятности р5 равно:
+: 0,09
-: 0,1
-: 0.05
-: 0,2
I:
S: Закон распределения СВ X задан таблицей
       хi
                           2
              0,2
       pi
                      0,2
                            0,5
                                     0,1
Мода случайной величины X равна:
+: 4
-: 5
-: 3
-: 1
I:
S: Закон распределения СВ X задан в виде таблицы
                          2
                                 3
                                        4
                                                 5
       хi
                  1
                                       0,1
                                                 0,2
                 0,1
                          0,4
                                0,2
       pi
Математическое ожидание СВ Х равно:
+: 2.9
-: 1,5
-: 3,2
-: 4,1
I:
S: СВ X задана таблично
                             4
       хi
              0,2
      pi
                     0,5
                             0,3
Математическое ожидание величины y = x^2 + 1 равно:
-: 10,5
-: 13,4
-: 9,8
S: Случайная величина распределена по нормальному закону, причем
M(X) = 15. Найти P(10 < X < 15), если известно, что P(15 < X < 20) = 0.25.
+: 0,25;
-: 0,10;
-: 0,15;
-: 0,20;
I:
S: Закон распределения случайной величины X задан таблицей:
          40
               42
                       44
                              45
                                     46
                       0.1
                              0.07
                                     0.03
     pi
Тогда вероятность события X < 44 равна...
+: 0.8
-: 0,7
-: 0,6
-: 0,5
```

S: Закон распределения случайной величины X имеет вид

Математическое ожидание случайной величины Х равно...

+: 0

-: 1

-: 2

-: 0,5

I:

S: График плотности распределения вероятностей непрерывной случайной величины X, распределен равномерно в интервале (-1; 4).

Тогда значение f(x) равно ...

+: 0,2

-: 0,33

-: 1,0

-: 0,25

I:

S: Дискретная случайная величина X задана законом распределения вероятностей:

X	-1	0	3
P	0,1	0,3	0,6

Тогда математическое ожидание величины Y = 2x равно ...

+: 4

-: 3,8

-: 3,7

-: 3,4

I:

S: CB X равномерно распределена на отрезке [-7, 18], тогда вероятность P(-3 < X) равна:

+: 11/15

-: 15/25

-: 21/25

-: 13/15

I:

S: Непрерывная случайная величина X задана плотностью распределения вероятностей

$$f(X) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{(X-5)^2}{32}}$$

. Дисперсия этой нормально распределенной величины равна:

+: 16

-: 27

-: 51

-: 37

Ţ.

S: Пусть X - случайная величина с функцией распределения:

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x}{6}, & 1 \le x < 2 \\ \frac{x}{8} + \frac{1}{2}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Тогда вероятность $P\{X \ge 1/2\}$ равна:

+: 11/12;

-: 1/12;

-: 3/8;

```
5/6.
-:
I:
S: Значение неизвестного параметра а функции плотности
f(x) = \begin{cases} 0, & x \notin [4, 6] \\ a \cdot x - \frac{1}{8}, & x \in [4, 6] \end{cases}
равно:
+: 1/8;
-: 1/2;
-: 1/4;
-: 1/6.
I:
S: Рассчитанная по выборке объемом 15 наблюдений выборочная дисперсия равна 28, тогда
несмещенная оценка дисперсии равна:
    30
    27
-:
   51
-:
    37
-:
I:
S: Центральный момент второго порядка случайной величины соответствует ...
+: дисперсии
  математическому ожиданию
   коэффициенту эксцесса
-:
    коэффициенту асимметрии
I:
S: Центральный момент третьего порядка характеризует форму кривой распределения относительно
нормального распределения на ...
    скошенность
-:
    островершинность
    симметрию
-:
    сглаженность
I:
S: Если случайная величина X распределена нормально, то абсолютная величина ее отклонения ...
+:
      не превосходит 3σ
      превосходит 3σ
-:
      равна 3σ
-:
-:
      равна 3о/2
I:
S: Случайная величина X называется нормированной (стандартизованной), если ее математическое
ожидание и дисперсия соответственно равны ...
      M(x) = 0, D(x) = 1
+:
      M(x) = 1, D(x) = 0
-:
      M(x) = 1, D(x) = 1
-:
      M(x) = 0, D(x) = 0.5
I:
S: Для нормального закона распределения случайной величины X коэффициент эксцесса (є) имеет
значение ...
     \varepsilon = 0
     \varepsilon > 0
     ε < 0
```

-:

I:

 $\varepsilon = 1$

- S: Дискретная случайная величина X может иметь закон распределения ...
- +: биноминальный
- -: равномерный
- -: показательный
- -: нормальный

S: Случайная величина X представлена рядом распределения:

X = m	0	1	•••	n
P	q n	npq n-1		p n

Закон распределения этого ряда называется ...

- +: биноминальный
- -: показательный
- -: Пуассона
- -: геометрический

I:

- S: Если случайная величина X имеет M(x) = np, D(x) = npq, то ее закон распределения (имеет вид) называется ...
- +: биноминальный
- -: геометрический
- -: нормальный
- -: гипергеометрический

I:

- S: Вероятность появления события A в 10 независимых испытаниях, проводимых по схеме Бернулли, равна 0,6. Тогда математическое ожидание числа появлений этого события равна ...
- +: 6
- -: 0,06
- -: 1,6
- -: 1,2

I:

- S: Дискретная случайная величина может быть распределена по закону...
- +: Пуассона
- -: нормальному
- -: показательному
- -: равномерному

I:

S: Случайная величина X представлена рядом распределения:

X	0	1	•••	m
P	e -a	a e -a	•••	a m· e −a/m!

Этот ряд соответствует закону распределения ...

- +: Пуассона
- -: Бернулли
- -: показательному
- -: геометрическому

I:

- S: Среднее число вызовов, поступающих на ATC в одну минуту, равно двум. Тогда вероятность того, что за 5 минут поступит не менее двух вызовов, определяется по закону ...
- +: Пуассона
- -: показательному
- -: биноминальному
- -: гипергеометрическому

I:

Если для случайной величины Х значения математического ожидания и дисперсии совпадают: M(x) = D(x) = a, тогда ей соответствует закон распределения ...

- Пуассона +:
- Бернулли -:
- показательный -:
- геометрический -:

I:

S: Если вероятность появления события A в 1000 независимых испытаний равная 0,02 вычисляется

$$P_n(m) = \frac{5^m \cdot e^{-5}}{m!}$$

по закону равны ...

, тогда математическое ожидание и дисперсия этой случайной величины

+:
$$M(x) = 5$$
; $D(x) = 5$

-:
$$M(x) = 1/5$$
; $D(x) = 2.5$

-:
$$M(x) = 2.5$$
; $D(x) = 1$

-:
$$M(x) = 5$$
; $D(x) = 1/5$

I:

S: Случайная величина X представлена рядом распределения:

X = m	0	1	2	 n - 1
P	p	pq1	pq2	 pq n-1

Этот ряд соответствует закону распределения вида ...

- +: геометрический
- нормальный -:
- показательный -:
- -: гипергеометрический

I:

$$M(x) = \frac{1-p}{p}$$
, а дисперсия

S: Если для случайной величины X математическое ожидание $D(x) = \frac{1-p}{}$

$$D(x) = \frac{1-p}{1-p}$$

$$p^2$$
 , тогда ее закон распределения имеет вид ...

- геометрический
- Пуассона -:
- нормальный -:
- -: показательный

I:

S: Из орудия производится стрельба по цели до первого попадания. При каждой попытке успех достигается с одной и той же вероятностью p = 0,6. Тогда вероятность того, что попадание в цель произойдет при третьем выстреле, равна ...

- +: 0,6.0,43
- $0.62 \cdot 0.4$
- 0,6.0,4
- 0,6.0,42

показательным

S: Если плотность распределения непрерывной случайной величины: тогда ее распределение называют ...

- равномерным +:
- нормальным
- биноминальным

 $f(x) = 1 (b-a), x \in [a,b],$

```
I:
S: Случайная величина X распределена равномерно на отрезке [a, b], где a = 1, b = 3. Тогда
математическое ожидание М (х) и дисперсия D (х), соответственно, равны ...
        2:
            1/3
+:
        1/3; 2
-:
        0,5; 2
-:
        2; 0,5
-:
I:
S: Случайные величины X и Y независимы. Если известно, что D(x) = 5, D(y) = 6, тогда дисперсия
случайной величины z = 3x + 2y равна ...
    69
+:
    27
-:
    51
-:
    37
-:
I:
S: По выборке объема n = 51 найдена смещенная оценка генеральной дисперсии (DB = 3).
Несмещенная оценка дисперсии генеральной совокупности равна:
+:3,06;
-:3,05;
-:3,51;
-:3,60;
I:
S: Из генеральной совокупности извлечена выборка объема n = 60, представленная статистическим
рядом
                7
          4
                     8
     хi
          30
                12
                     18
     mi
Точечная оценка генеральной средней арифметической по данной выборке равна:
+: 5,8;
-: 4,0;
-: 19/60;
-: 6,0;
-: 7,0
I:
S: Совокупность наблюдений, отобранных случайным образом из генеральной совокупности,
называется:
+: выборкой
-: репрезентативной
-: вариантой
-: частотой
-: частостью
I:
S: Укажите абсолютные показатели вариации для вариационного ряда
+: Среднее линейное отклонение, Выборочная дисперсия.
-: Выборочное среднее,
-: Коэффициент вариации,
-: Медиана
I:
S: Укажите относительные показатели вариации для вариационного ряда:
     +: Коэффициент вариации, Относительное линейное отклонение
     -: Выборочное среднее,
     -: Медиана
     -: Выборочная дисперсия.
I:
```

```
S: Математическое ожидание оценки \tilde{\theta}_n параметра \theta равно оцениваемому параметру. Оценка \bar{\theta}_n
является:
+: несмещенной
-: смещенной
-: состоятельной
-: эффективной
I:
S: Оценка \theta_n параметра \theta сходится по вероятности к оцениваемому параметру. Оценка \theta_n является:
+: состоятельной
-: смещенной
-: несмещенной
-: эффективной
S: Оценка \tilde{\theta}_n параметра \theta имеет наименьшую дисперсию из всех несмещенных оценок параметра
	heta, вычисленных по выборкам одного объема п. Оценка 	ilde{	heta}_n является:
+: эффективной
-: смещенной
-: несмещенной
-: состоятельной
I:
S: Точечная оценка математического ожидания нормального распределения равна 11. Тогда его
интервальная оценка может иметь вид...
     +: 10,5; 11,5
     -: 11; 11,5
     -: 10,5; 10,9
     -: 10,5; 11
I:
S: Дана выборка объема п. Если каждый элемент выборки увеличить в 5 раз, то выборочное среднее:
+: увеличится в 5 раз
-: не изменится
-: уменьшится в 5 раз
-: увеличится в 25 раз
I:
S: Любое предположение о виде или параметре неизвестного закона распределения называется:
+: Статистической гипотезой
-: Статистическим критерием
-: Нулевой гипотезой
-: Альтернативной гипотезой
I:
S: Правило, по которому нулевая гипотеза отвергается или принимается называется:
+:Статистическим критерием
-: Нулевой гипотезой
-: Статистической гипотезой
-: Альтернативной гипотезой
I:
S: Коэффициент асимметрии распределения случайной величины определяется формулой ...
     \mu 3 / \delta 3
+:
     \mu 4 / \delta 4
-:
     \mu 3 / \delta 3 - 3
-:
     \mu 4 / \delta 4 - 4
-:
I:
S: Коэффициент эксцесса распределения случайной величины определяется формулой ...
```

```
\mu 4 / \delta 4 - 3
     \mu 3 / \delta 3
-:
-: \mu 4 / \delta 4
     \mu 3 / \delta 3 - 3
I:
S: Квантиль порядка p = 0.5 случайной величины X называется ...
    медианой
    модой
    дисперсией
-:
    полигоном
-:
I:
S: Значение дискретной случайной величины, которое имеет наибольшую вероятность, называется
+:
     мода
-:
    перцентиль
    квартиль
-:
    медиана
-:
I:
S: Если плотность распределения случайной величины X определяется формулой
  f(x) = \begin{cases} 0, & x < 0 \\ \lambda \cdot e^{-\lambda x}, & x \ge 0 \end{cases}
тогда ее закон распределения называется ...
      показательным
      нормальным
-:
-:
      геометрическим
-:
      биноминальным
I:
S: Функция распределения случайной величины X имеет вид: F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0, \text{ если ее закон распределения} \end{cases}
распределения ...
+:
      показательный
-:
      нормальный
-:
      геометрический
      биноминальный
-:
I:
S: Случайная величина, распределенная по нормальному закону с математическим ожиданием
равным нулю и \sigma = 1, называется ...
+:
      нормированной
     смещенной
-:
     исправленной
-:
     симметричной
I:
S: Распределение вероятностей непрерывной случайной величины X, для которой коэффициенты
асимметрии и эксцесса равны нулю называют ...
      нормальным
+:
      показательным
-:
      равномерным
-:
-:
      геометрическим
I:
S: Для нормально распределенной случайной величины X M(x)=3, D(x)=16. Тогда ее мода (Mo) и
медиана (Ме) равны ...
      Mo = 3; Me = 3
+:
```

Mo = 3; Me = 16

-:

```
-: Mo = 16; Me = 16

-: Mo = 16; Me = 3

I:
```

S: Случайная величина X, распределенная по показательному закону имеет M (x)=1/2 и $\sigma = 1/2$, тогда D(x) равно ...

- +: 1/4
- -: 1/2
- -: 0,3
- -: 0,4

I:

S: Случайная величина X, распределенная по показательному закону имеет D(x)=1/9 и $\sigma=1/3$, тогда M(x) равно ...

- +: 1/3
- -: 1/6
- -: 1/9
- -: 0,6

I:

S: Вероятность попадания в интервал (a,b) случайной величины X, распределенной по показательному закону, равна ...

$$+:$$
 $e^{-\lambda a} - e^{-\lambda b}$

- -: $\lambda e^{-\lambda x}$
- -: $1-e^{-\lambda a}$
- -: $1-e^{-\lambda b}$

I:

S: Плотность распределения показательного закона с параметрами $\lambda = 6$ и $x \ge 0$ имеет вид ...

+:
$$6e^{-6x}$$

-: $1 - 6e^{-6x}$
-: $e^{-6a} - e^{-6b}$

 $-: 1 - e^{-6b}$

I:

S: Функция распределения показательного закона при $x \ge 0$ и λ =4 имеет вид ...

$$+: 1 - e^{-4x}$$

$$-1 - e^{-4b}$$

$$1 - 4e^{-x}$$

$$-: 4e^{-4x}$$

I:

S: Случайная величина X, распределенная по показательному закону имеет M (x)=5 и D(x)=25, тогда параметр λ равен ...

- +: 1/5
- -: 1/25
- -: 0,5
- -: 0,25

Что такое система счисления? А) Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9; В) правила арифметических действий; С) компьютерная программа для арифметических вычислений; D) это знаковая система, в которой числа записываются по определенным правилам, с помощью знаков некоторого алфавита, называемых цифрами.* Переведите число 37 из десятичной системы счисления в двоичную. A)100101;* B) 10101; C) 10011; D) 101101. Переведите число 110102 из двоичной системы счисления в десятичную систему счисления. A) 18; B) 24; C) 26:*D) 14. Какие системы счисления не используются специалистами для общения с **ЭВМ?** А) десятичная; В) троичная;* С) двоичная; D) шестнадцатеричная. Что называется основанием системы счисления? А) количество цифр, используемых для записи чисел; В) отношение значений единиц соседних разрядов;* С) арифметическая основа ЭВМ; D) сумма всех цифр системы счисления. Переведите число 138 из десятичной системы счисления в двоичную. A)1001010; B)10001010;* C)10000110; D)1111110. Переведите число 11011012 из двоичной системы счисления в десятичную систему счисления. A)109;* B)104; C) 121; D)209. Какая система счисления используется специалистами для общения с ЭВМ?

А) двенадцатеричная;

А) римские и арабские;

В) двоичные и десятичные;

Все системы счисления делятся на две группы:

В) троичная; С)двоичная;* D) пятеричная.

С) позиционные и непозиционные;*
D) целые и дробные.
Переведите число 243 из десятичной системы счисления в двоичную.
A)11110011;*
B)11001111;
C) 1110011;
D)110111.
Переведите число 11012 из двоичной системы счисления в десятичную систему
счисления.
A)11;
B) 13;*
C) 15;
D)23.
Числовой разряд — это:
А) цифра в изображении числа;
В) позиция цифры в числе;*
С) показатель степени основания;
D) алфавит системы счисления.
В позиционных системах счисления основание системы счисления — это:
А) максимальное количество знаков, используемое для записи числа;*
В) цифры 1, 2, 3, 4, 5, 6, 7, 8, 9;
С) правила арифметических действий;
с) правила арифметических денетвии,D) числовой разряд.
Переведите число 49 из десятичной системы счисления в двоичную.
А)100011;
B)10101;
C)110001;*
D)101101.
Переведите число 111011 ₂ из двоичной системы счисления в десятичную
систему счисления.
А)58;
B) 63;
C) 59;*
D)14.
Почему в ЭВМ используется двоичная система счисления?
А) потому что составляющие технические устройства могут надежно
сохранять и распознавать только два различных состояния;* В) потому что за единицу измерения информации принят 1 байт;
С) потому что ЭВМ умеет считать только до двух;
D) потому что человеку проще общаться с компьютером на уровне двоичной
системы счисления.
Какое количество цифр используется в десятеричной системе счисления?
A)9; B)10.*
B) 10;*
C) 2;
D) бесконечное множество.
Переведите число 27 из десятичной системы счисления в двоичную. A)11011;*

```
B)1011;
  C)1101;
  D)11111.
В позиционной системе счисления:
  А) используются только арабские цифры;
  В) количественное значение цифры не зависит от ее позиции в числе;
  С) цифра умножается на основание системы счисления;
  D) количественное значение цифры зависит от ее позиции в числе.*
Сложите числа в двоичной системе счисления 10012 + 1112.
   A)10000;*
   B)10002;
   C) 1000;
   D)11000;
Сложите числа в двоичной системе счисления 111_2 + 110_2.
   A) 221:
  B) 1101:*
   C) 1001;
   D)1111.
Найдите разность двоичных чисел 111102 - 10112.
   A)11010;
   B)10111;
   C) 10010;
   D)10011.*
                 Найдите разность двоичных чисел 111102-110112.
  A)11;*
  B)11010;
  C)10010;
  D)100010.
   Укажите последовательность символов, являющуюся формулой алгебры
                                 высказываний:
a) ((P \rightarrow Q) \lor (Q \rightarrow P)) *
6) ((P \land O)R \rightarrow \overline{S})
B) (P \leftrightarrow Q) \land RS
\Gamma) (P \lor Q) \equiv (Q \lor P)
     Упорядочить логические операции в соответствии с их приоритетом
1) конъюнкция; 2) отрицание; 3) импликация; 4) дизъюнкция
A) 2; 1; 4; 3.*
B) 1; 2; 4; 3.
C) 4; 1; 2; 3.
D) 2; 3; 4; 1.
Формула алгебры высказываний называется ..., если она обращается в
истинное высказывание при всех наборах значений пропозициональных
```

переменных

- В) тождественной истинной * C) тождественно ложной D) опровержимой

Выберите набор значений пропозициональных переменных, на котором

формула алгебры высказываний $P \to (P \land \overline{Q})$

принимает значение 0:

A)
$$\lambda(P) = 1$$
, $\lambda(Q) = 1 *$

B)
$$\lambda(P) = 1$$
, $\lambda(Q) = 0$

C)
$$\lambda(P) = 0$$
, $\lambda(Q) = 1$

D)
$$\lambda(P) = 0$$
, $\lambda(Q) = 0$

Укажите тождественно ложную формулу алгебры высказываний:

A)
$$X \vee \overline{X}$$

B)
$$\overline{X \vee \overline{X}} *$$

C)
$$X \to \overline{X}$$

D)
$$\overline{X \to \overline{X}}$$

Укажите тождественно истинную формулу алгебры высказываний:

A)
$$X \vee \overline{X} *$$

B)
$$\overline{X \vee \overline{X}}$$

C)
$$X \to \overline{X}$$

D)
$$\overline{X \to \overline{X}}$$

Из приведенных равносильностей выберите закон поглощения:

A)
$$A \lor A \equiv A$$

B)
$$A \rightarrow B \equiv \overline{A \lor B}$$

$$(C) A \wedge (B \vee A) \equiv A *$$

D)
$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

Из приведенных формул алгебры высказываний выберите закон

контрапозиции:

A)
$$(P \rightarrow Q) \leftrightarrow (\overline{Q} \rightarrow \overline{P}) *$$

B)
$$(P \land (Q \lor P)) \leftrightarrow P$$

C)
$$(P \to Q) \leftrightarrow (\overline{P} \to \overline{Q})$$

D)
$$(P \land (Q \lor P)) \leftrightarrow Q$$

_Из приведенных равносильностей выберите законы де Моргана:

A)
$$A \wedge B \equiv A \vee B$$
 *

$$\overrightarrow{B}$$
 $(A \rightarrow B) \equiv (\overline{B} \rightarrow \overline{A})$

C)
$$\overline{A \vee B} \equiv \overline{A} \wedge \overline{B} *$$

$$\stackrel{\frown}{\mathrm{D}} A \wedge (B \vee A) \equiv A$$

Тавтология $((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))$

определяет свойство ...

- А) идемпотентность конъюнкции
- В) коммутативность конъюнкции
- С) ассоциативность конъюнкции *
- D) дистрибутивность конъюнкции относительно дизъюнкции

СКНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная *
- В) тождественно ложная
- С) выполнимая
- D) опровержимая

СДНФ не существует у формулы алгебры высказываний, если она ...

- А) тождественно истинная
- В) тождественно ложная *

- С) выполнимая
- D) опровержимая

По набору значений переменных (0, 1) укажите конъюнктивный одночлен, принимающий значение 1 только на этом наборе значений переменных:

- A) $X \wedge Y$
- B) $\overline{X} \wedge Y *$
- C) $X \wedge \overline{Y}$
- D) $\overline{X} \wedge \overline{Y}$

По набору значений переменных (1, 0) укажите дизьюнктивный одночлен, принимающий значение 0 только на этом наборе значений переменных:

- A) $X \vee Y$
- B) $\overline{X} \vee Y *$
- C) $X \vee \overline{Y}$
- D) $\overline{X} \vee \overline{Y}$

Среди формул алгебры высказываний выберите ДНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y}) *$
- C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$
- D) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$

Среди формул алгебры высказываний выберите КНФ:

- A) $(X \wedge Y \vee Z) \vee (\overline{X} \wedge \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- C) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y}) *$
- D) $(X \land Y \lor Z) \lor (\overline{X} \land \overline{Y})$

Среди формул алгебры высказываний выберите СКНФ:

- A) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z})$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- D) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor Z) *$

Среди формул алгебры высказываний выберите СДНФ:

- A) $(X \vee Y \vee Z) \wedge (\overline{X} \vee \overline{Y})$
- B) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y} \wedge \overline{Z}) *$
- C) $(X \wedge Y \wedge Z) \vee (\overline{X} \wedge \overline{Y})$
- D) $(X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor Z)$

Укажите СКНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 0:

- A) $(X \vee \overline{Y}) \wedge (X \vee Y)$
- $\mathrm{B}\big)\ (X\wedge\overline{Y})\vee(X\wedge Y)$

C)
$$(X \lor Y) \land (X \lor Y)$$
 *

D)
$$X$$

Укажите СДНФ, удовлетворяющую условиям F(1,0) = F(1,1) = 1:

A)
$$(X \wedge \overline{Y}) \vee (X \wedge Y) *$$

$$\mathbf{B}\big)\ (\overline{X}\vee Y)\wedge (\overline{X}\vee \overline{Y})$$

C)
$$(X \vee \overline{Y}) \wedge (X \vee Y)$$

D) X

Последовательно соединенным контактам РКС соответствует операция ...

- А) Отрицание
- В) Конъюнкция *
- С) Дизъюнкция
- D) Импликация

Параллельно соединенным контактам РКС соответствует операция ...

- А) Отрицание
- В) Конъюнкция
- С) Дизъюнкция *
- D) Импликация

Булева функция, заданная по правилу

x	У	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	0

называется ...

- А) Штрих Шеффера
- В) Стрелка Пирса
- С) Сложение по модулю два *
- D) Эквивалентность

\boldsymbol{x}	у	f(x,y)
1	1	0
1	0	1
0	1	1
0	0	1

Булева функция, заданная по правилу

называется ...

- А) Штрих Шеффера *
- В) Стрелка Пирса
- С) Сложение по модулю два
- D) Эквивалентность

x	y	f(x,y)
1	1	0
1	0	0
0	1	0
0	0	1

Булева функция, заданная по правилу

называется ...

- А) Штрих Шеффера
- В) Стрелка Пирса *
- С) Сложение по модулю два
- D) Эквивалентность

- A) $(x' \lor yz)(x \lor y)$
- B) $(x'y \lor xz)(x \lor y)$
- C) $(x'y \lor z)(x \lor y) *$
- D) $(x' \lor y \lor z)(x \lor y)$

В виде формулы алгебры высказываний могут быть представлены ...

- А) Все булевы функции кроме тождественно истинных
- В) Все булевы функции кроме тождественно ложных
- С) Произвольные булевы функции *
- D) Булевы функции от двух переменных

Таблица истинности конъюнкции имеет вид:

		1
A	В	A∧B
1	1	1
1	0	1
0	1	1
0	0	0

A)	A	В	A∧B
,	1	1	1
	1	0	0
	0	1	0
	0	0	0

B)	*
D)	

	Α	В	$A \wedge B$
	1	1	1
	1	0	0
	0	1	1
C)	0	0	1
\sim			

A	В	A∧B
1	1	0
1	0	0
0	1	0
0	0	1

D) 0 0 1 1 Таблица истинности дизъюнкции имеет вид:

A	В	A∨B
1	1	0
1	0	0
0	1	0
0	0	1

A)	A	В	A∨B
	1	1	1
	1	0	1
	0	1	1
	0	0	0

1)	1
ı	`	1
•	_	,

	A	В	A∨B
	1	1	1
	1	0	0
	0	1	1
١	0	0	1

	A	В	A∨B
	1	1	1
	1	0	0
	0	1	0
D)	0	0	0
,			

Таблица истинности импликации имеет вид:

		,
A	В	А→В
1	1	1
1	0	1
0	1	0
0	0	1

A)	A	В	А→В
	1	1	0
	1	0	0
	0	1	1
	0	0	1

	-	_	_
B)	A	В	А→В
	1	1	1
	1	0	0
	0	1	1
	0	0	1

C)		_	
	1	1	1
	1	0	0
	0	1	0
D)	0	0	0

Таблица истинности эквивалентности имеет вид

A	В	A↔B
1	1	1
1	0	0
0	1	0
0	0	1

A)			
	A	В	А↔В
	1	1	0
	1	0	1
	0	1	1
B)	0	0	0

B) ≀	Ü)
D)	A	В	А↔В
	1	1	1
	1	0	0
	0	1	1
C)	0	0	1
\sim)			

$A \mid B \mid A \leftrightarrow B$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D) \square
Сколькими способами могут разместиться 4 человека в салоне автобуса на
четырех свободных местах?
A) 4
B) 16
C) 24*
D) 12
Сколько существует вариантов выбора двух чисел из четырех?
A) 6*
B) 4
C) 2
D) 8
В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым по
одной партии. Сколько всего партий было сыграно?
A) 36*
B) 18
C) 72
D) 16
Выберите число, на которое не делится число 30!
A) 108
B) 91
C) 72
D) 62*
Сколькими способами могут разместиться 3 человека в четырехместном купе на
свободных местах?
A) 36
B) 16
C) 24*
D) 12
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений
цифр?

A) 24 B) 36 C) 45 D) 60*

В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительная частота появления невсхожих семян?

- A) 0,02*
- B) 0,05
- C) 0,01
- D) 0,025

Какова вероятность того, что при бросании игрального кубика выпадет более 4 очков?

A) 1/4

- A) 0,07
- B) 0,35 C) 0,14*
- D) 0,035

Какова вероятность того, что при бросании игрального кубика выпадет менее 4 очков?

A)
$$\frac{1}{4}$$

1
B) $\frac{1}{3}$ C) $\frac{2}{3}$ D) $\frac{1}{2}$
$\overset{3}{2}$
$C) \frac{1}{2} *$
1
D) $\frac{1}{2}$
Сколькими способами можно составить расписание одного учебного дня из 5
Сколькими способами можно составить расписание одного учебного дня из 3
различных уроков?
A) 30
B) 100
C) 120*
D) 5
В 9«Б» классе 32 учащихся. Сколькими способами можно сформировать
команду из 4 человек для участия в математической олимпиаде?
A) 128
B) 35960*
C) 36
D) 46788
Сколько существует различных двузначных чисел, в записи которых можно
использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?
A) 10
B) 60
C) 20
D) 30*
Вычислить: 6! -5!
A) 600*
B) 300
C) 1
D) 1000
В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика
Какова вероятность того, что выбранный наугад шарик будет белым?
A) $\frac{17}{45}$ B) $\frac{17}{43}$ C) $\frac{43}{45}$
´ 45 17
B) $\frac{1}{42}$ *
43
C) 45
D) $\frac{17}{45}$

Бросают три монеты. Какова вероятность того, что выпадут два орла и однарешка?

A) $\frac{3}{2}$ B) 0,5
C) 0,125*

D) $\frac{1}{3}$
В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и800
денежных выигрышей. Какова вероятность выигрыша?
A) 0,02
B) 0,00012
C) 0,0008
D) 0,002*
Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?
A) 100
B) 30
C) 5
D) 120*
Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить,
если в каждый салат должно входить 2 различных вида овощей?
A) 3*
B) 6
C) 2
D) 1
Сколькими способами из 9 учебных предметов можно составить расписание
учебного дня из 6 различных уроков.
A) 10000
B) 60480*
C) 56
D) 39450
_ Вычис лите: ^{8!}
6!
A) 2
B) 56*
C) 30
D) $\frac{4}{3}$
\mathcal{J}
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова
3
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз?
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз? A) $\frac{1}{36}$
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз? A) $\frac{1}{36}$
В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз?

Бросают два игральных кубика. Какова вероятность того, что выпадут две четные цифры?

- A) 0.25*B) $\frac{2}{6}$
- C) 0,5
- D) 0,125

В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова вероятность того, что выбранный гриб белый или рыжий?

- A) 0.5*
- B) 0.4
- C) 0.04
- D) 0.8

Сколькими способами можно расставить 4 различные книги на книжной полке?

- A) 24*
- B) 4
- C) 16
- D) 20

Сколько диагоналей имеет выпуклый семиугольник?

- A) 30
- B) 21*
- C) 14
- D) 7

В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?

- A) 22
- B) 11
- C) 150
- D) 110*

Сократите дробь: $\frac{n!}{(n+1)!}$

- A) 1
- B) $\frac{n}{+1}n$ C) $\frac{1}{n+1}*$ D) $\frac{2}{-1}$

Какова вероятность, что при одном броске игрального кубика выпадает число очков, равное четному числу?

- A) 1/6
- B) 0.5*
- C) 1/3
- D) 0.25

Катя и Аня пишут диктант. Вероятность того, что Катя допустит ошибку, составляет 60%, а вероятность ошибки у Ани составляет 40%. Найти вероятность того, что обе девочки напишут диктант без ошибок.

A) 0,25

B) 0,4

C) 0,48

D) 0,2*

Завод выпускает 15% продукции высшего сорта, 25% - первого сорта, 40% - второго сорта, а все остальное – брак. Найти вероятность того, что выбранноеизделие не будет бракованным.

A) 0,8*

B) 0,1
C) 0,015
D) 0,35
Сколькими способами могут встать в очередь в билетную кассу 5 человек?
A) 5
B) 120*
C) 25
D) 100
Сколькими способами из 25 учеников класса можно выбрать четырех для
участия в праздничном концерте?
A) 12650*
B) 100
C) 75
D) 10000
Сколько существует трехзначных чисел, все цифры. Которых нечетные и
различные.
A) 120
B) 30
C) 50
D) 60*
Упростите выражение: $\frac{(n+1)!}{(n-2)!}$
A) 0,5
B) $\frac{n+1}{n-2}$
C) $\frac{n^3 - n}{n^2 + 1}$
$\frac{C}{D}$ $n^2 - 1$
Какова вероятность, что ребенок родится 7 числа?
A) 7/30
B) 7/12*
C) 7/31
D) 7/365
Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания
первого стрелка составляет 90%, второго – 80%, третьего – 70%. Найдите
вероятность того, что все три стрелка попадут в мишень?
A) 0,504*
B) 0,006
C) 0,5
D) 0,3
Из 30 учеников спорткласса, 11 занимается футболом, 6 – волейболом, 8 – бегом,
остальные прыжками в длину. Какова вероятность того, что один произвольно

выбранный ученик класса занимается игровым видом спорта?

- A) 17/30* B) 0,5
- C) 28/30
- D) 14/30

Сколько существует вариантов рассаживания 6 гостей на 6 стульях?

A) 36

- B) 180
- C) 720*
- D) 300

Аня решила сварить компот из фруктов 2-ух видов. Сколько различных вариантов (по сочетанию фруктов) компотов может сварить Аня, если у нееимеется 7 видов фруктов?

- A) 14
- B) 10
- C) 21*
- D) 30

Сколько существует обыкновенных дробей, числитель и знаменатель которых – простые различные числа не больше 20?

- A) 80
- B) 56*
- C) 20
- D) 60

Упростите выражение: $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$.

- A) $\frac{(n+1)!}{(n+2)!}$
- B) $\frac{n+1}{(n+2)!}$ *
- C) $\frac{1}{(n+2)!(n+1)!}$

 $\stackrel{ ext{D}}{ ext{C}}^0$ Какова вероятность того, что выбранное двузначное число делится на 12?

- A) 12/90
- B) 4/45*
- C) 12/45
- D) 90/8

Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у Николая составляет 70%, а у Леонида – 30%. Найдите вероятность того, что Леонид допустит ошибку, а Николай нет.

- A) 0,21
- B) 0,49
- C) 0,5
- D) 0,09*

Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным во время проверки музыкального слуха составляет 40%, а чувстворитма – 10%. Какова вероятность положительного тестирования?

B) 0,4

C) 0,6

D) 0,04

Сколькими способами можно с помощью букв К, А, В, С обозначить вершины четырехугольника?

A) 12

B) 20
C) 24*
D) 4
На полке стоят 12 книг. Наде надо взять 5 книг. Сколькими способами она
может это сделать?
A) 792*
B) 17
C) 60
D) 300
В 12 – ти этажном доме на 1 этаже в лифт садятся 9 человек. Известно, что они
выйдут группами в 2, 3 и 4 человека на разных этажах. Сколькими способамиони
могут это сделать, если на 2 – Ом этаже лифт не останавливается?
A) 100
B) 720*
C) 300
D) 60
В ящике лежат карточки с буквами, из которых можно составить слово
«электрификация». Какова вероятность того, что наугад выбранная буква
окажется буквой к?
A) 1/7*
B) 7
C) 1/14
D) 2/33
Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятность
попадания 1 стрелка составляет 80%, второго – 70%, третьего – 60%. Найдите
вероятность того, что двое из трех стрелков попадет в мишень.
A) 0,336
B) 0,452*
C) 0,224
D) 0,144
В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова вероятность того, что выбранный наугад фрукт будет бананом или яблоком?
A) 0,9*
B) 0,5
C) 0,34
D) 0,18
В корзине лежит: яблоко, апельсин, грейпфрут и манго. Сколькими способами 4
девочки могут поделить фрукты? (одной девочке один фрукт)

A) 4 B) 24* C) 20

D) 16

На плоскости расположены 25 точек так, что три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

- A) 75
- B) 100
- C) 2300*
- D) 3000

В теннисном турнире участвуют 10 спортсменов. Сколькими способамитеннисисты могут завоевать золото, серебро и бронзу?

- A) 600
- B) 100
- C) 300
- D) 720*

Вычислите: $\frac{P_4}{P_8} \cdot A_8^4$

- A) 1*
- B) 13
- C) 12
- D) 32

Случайным образом открывается учебник литературы и находится второе словона странице. Какова вероятность того, что это слово начинается на букву л?

- A) 1/33
- B) 1/31*
- C) 10/33
- D) 10/31

Вступительный экзамен в лицей состоит из трех туров. Вероятность отсева в 1туре составляет 60%, во втором - 40%, в третьем – 30%. Какова вероятность поступления в лицей?

- A) 0.24
- B) 0.12
- C) 0.18*
- D) 0,072

В коробке лежат 4 голубых, 3 красных, 9 зеленых, 6 желтых шариков. Какова вероятность того, что выбранный шарик будет не зеленым?

- A) 13/22*
- B) 0,5
- C) 10/22
- D) 15/22

Разложите на простые множители число 30. Сколькими способами можнозаписать в виде произведения простых множителей число 30?

- A) 6*
- B) 12
- C) 30
- D) 3

1. Найти сумму степеней вершин ографа

✓ 20

2. В почтовом отделений продаются открытки n=6 видов .Определить число способов покупки k=8 открыток.

✓ 1287

3. Сколько существует целочисленных решений уравнения $x_1+x_2+x_3+x_4=7$?

✓ 120

4. Чему равен коэффициент при члене $x^2y^3z^2$ в выражении $(x+y+z)^7$?

✓ 210

5. Сколько членов имеется в выражении (r+s+t+u+v)^4?

✓ 70.

6. Найти сумму степеней вершин ографа $_{1}$

✓ 22

7. $A=\{x: x\in \mathbb{N}, (x-1)(x+2)(x+5)=0\}$, $B=\{x: x\in \mathbb{Z}, (x-2)(x+1)(x+5)=0\}$, найтиА / В.

✓ {-2;1}

8. определите код ,соответствующий следующему дереву

✓ 001011001011

9. Укажите лес $\frac{2}{4}$ $\frac{1}{5}$ $\frac{7}{a}$ $\frac{6}{11}$ $\frac{9}{11}$ $\frac{2}{4}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{3}{6}$

✓ a

10. Дано функциональное высказывание:

 $(\forall x)((S(x) \land P(y) \to (\exists y)(Q(x,y) \lor Q(x,f(y))))$. Какое из предложений соответствует этому высказыванию?

- ✓ Каждый студент знает хотя бы некоторых преподавателей или знает хотя бы их фамилию
- 11. Найти сумму степеней вершин графа

✓ 18

- 12. Объединение множеств и символически изображается.
- Arr $A \cup B = \{x; x \in A$ или $x \in B\}$

13. Найти сумму степеней вершин графа

✓ 16

- 14. Дано функциональное высказывание: $\exists x (P(x) \land R(x))$. Какое из предложений соответствует этому высказыванию?
- ✔ Некоторые политики лицемеры
- 15. Найти цикл для графа

✓ 6, 3, 4, 1, 2, 3, 5, 6

- 16. ... называется граф, изображенный на плоскости так, что его ребра пересекаются только в вершинах
- **✓** плоским
- 17. Эквивалентные множества также называют равно
- ✔ мощными
- 18. Укажите гомеоморфные графы

~

а, б

19. Найти максимальную пропускную способность транспортной сети

✓ 12

20. Восстановите равенство $3C_{10}^3 = ? \cdot C_{10}^2$

✓ 8

Topshiriq 2
Talaba BATISHEV BOGDAN KUDRATOVICH

Boshlandi 10.11.2022 11:34

Tugadi 10.11.2022 12:37

To'g'ri 20

Foiz 100.0

4/4