Documento de Testes e Práticas de Qualidade de Software

Projeto Final – Engenharia de Software e Arquitetura de Sistemas Nome do Projeto: EconoVision

1. Introdução

Este documento apresenta de forma objetiva os testes realizados e as principais práticas de qualidade de software adotadas no desenvolvimento do sistema de dashboard interativo baseado na API do Banco Central. O foco principal foi garantir que os dados fossem carregados corretamente, que os gráficos fossem exibidos sem erros e que a funcionalidade de regressão linear operasse conforme o esperado.

2. Estratégia de Testes

2.1. Testes Manuais

A maior parte dos testes foi feita manualmente, simulando diferentes interações com a interface do usuário (via Streamlit), como:

- Seleção de múltiplos indicadores
- Alteração de datas de início para filtragem dos dados
- Verificação visual dos gráficos gerados
- Execução da regressão linear com diferentes combinações de dados

Esses testes foram suficientes para identificar e corrigir problemas simples, como:

- Indicadores com dados faltantes
- Formato de data inválido
- Falha na exibição de gráficos quando nenhum dado estava disponível

2.2. Testes Simples com Código

Alguns testes básicos foram implementados diretamente no código ou em notebooks de validação para garantir que:

- A função carregar_dados() realmente retornava DataFrames com dados válidos
- A função _preparar_comparacao() não quebrava quando um ou mais indicadores estavam ausentes
- A regressão linear conseguia rodar mesmo com uma quantidade reduzida de dados

Exemplo de teste simples feito durante o desenvolvimento:

```
# Validação do carregamento

df_selic, *_ = carregar_dados()

assert not df_selic.empty, "Erro: SELIC não foi carregado corretamente"
```

3. Práticas de Qualidade Adotadas

3.1. Organização em Módulos

O código foi dividido em três arquivos principais:

- PreparacaoDeDados.py: responsável por coletar e organizar os dados da API
- graph.py: contém os métodos de visualização (linha, barras, dispersão, boxplot e matriz de correlação)
- regression.py: executa a regressão linear e exibe os resultados

Isso facilitou a manutenção e leitura do projeto, separando claramente as responsabilidades.

3.2. Limpeza e Padronização

Durante o desenvolvimento, foram seguidas algumas boas práticas:

- Uso consistente de nomes de variáveis e funções
- Comentários explicando blocos importantes
- Tratamento de exceções simples (como datas inválidas ou colunas ausentes)

3.3. Testes Visuais como Verificação

A verificação visual dos gráficos foi fundamental. Por se tratar de uma aplicação interativa, testamos os seguintes pontos diretamente na interface:

- Gráficos estavam aparecendo corretamente com os dados selecionados
- Layout do Streamlit estava funcional em diferentes tamanhos de tela
- A regressão linear exibia uma linha ajustada com os coeficientes e métricas esperadas

4. Resultados Obtidos

- Todos os indicadores definidos no projeto foram testados com sucesso no dashboard.
- A regressão linear foi aplicada com sucesso em várias combinações (ex: SELIC vs IPCA, IPCA vs IGPM).

- A filtragem por data funcionou corretamente, inclusive em períodos com menos dados disponíveis.
- Pequenos bugs como datas com NaT, gráficos em branco e valores nulos foram identificados e tratados.

5. Melhorias Futuras

Caso o projeto continue a ser desenvolvido, algumas práticas e testes mais robustos podem ser implementados:

- Testes unitários com pytest para cada módulo
- Testes automatizados da interface com ferramentas como streamlit-testing
- Linting e verificação automática com flake8 ou black
- Monitoramento contínuo da qualidade do código com GitHub Actions

6. Conclusão

Apesar de o projeto não ter aplicado testes automatizados complexos, foram realizadas validações práticas e suficientes para garantir o bom funcionamento do sistema. A estrutura modular do código e a clareza da interface facilitaram a verificação manual, o que resultou em um produto final funcional, estável e adequado aos objetivos propostos.

Links e Referências

- Repositório GitHub: https://github.com/2025-1-NCC4/Projeto1
- API Banco Central: https://www3.bcb.gov.br/sgspub