MOTIVATING EXAMPLE

- Given a data set, we want to train a classification tree.
- We feel that a maximum tree depth of 4 has worked out well for us previously, so we decide to set this hyperparameter to 4.
- The learner ("inducer") $\mathcal I$ takes the input data, internally performs **empirical risk minimization**, and returns a fitted tree model $\hat f(\mathbf x) = f(\mathbf x, \hat \theta)$ of at most depth $\lambda = 4$ that minimizes empirical risk.

MOTIVATING EXAMPLE /2

- We are actually interested in the generalization performance $\operatorname{GE}\left(\hat{f}\right)$ of the estimated model on new, previously unseen data.
- We estimate the generalization performance by evaluating the model f̂ = I(D_{train}, λ) on a test set D_{test}:

$$\widehat{\operatorname{GE}}_{\mathcal{D}_{\operatorname{train}},\mathcal{D}_{\operatorname{best}}}(\mathcal{I},\boldsymbol{\lambda},\boldsymbol{n}_{\operatorname{train}},\boldsymbol{\rho}) = \boldsymbol{\rho}\left(\mathbf{y}_{\mathcal{D}_{\operatorname{best}}},\boldsymbol{F}_{\mathcal{D}_{\operatorname{best}},\hat{\boldsymbol{f}}}\right)$$

$$\stackrel{\mathcal{D}_{\operatorname{test}}}{\bigoplus}$$

$$\underset{\min_{\boldsymbol{\theta}}{}}{\underbrace{\widehat{\mathcal{D}}_{\operatorname{train}}}} \stackrel{\widehat{\boldsymbol{\theta}}}{\bigoplus}$$

$$\underset{\operatorname{const}}{\underbrace{\widehat{\boldsymbol{\theta}}}}$$

MOTIVATING EXAMPLE /3

- But many ML algorithms are sensitive w.r.t. a good setting of their hyperparameters, and generalization performance might be bad if we have chosen a suboptimal configuration.
- Consider a simulation example of 3 ML algorithms below, where
 we use the dataset mlbench. spiral and 10,000 testing points. As
 can be seen, variating hyperparameters can lead to big difference
 in model's generalization performance.

MOTIVATING EXAMPLE /4

For our example this could mean:

- Data too complex to be modeled by a tree of depth 4
- Data much simpler than we thought, a tree of depth 4 overfits
- Algorithmically try out different values for the tree depth. For each maximum depth λ, we have to train the model to completion and evaluate its performance on the test set.
 - We choose the tree depth λ that is optimal w.r.t. the generalization error of the model.

MODEL PARAMETERS VS. HYPERPARAMETERS

It is critical to understand the difference between model parameters and hyperparameters.

Model parameters θ are optimized during training. They are an **output** of the training.

×××

Examples:

- The splits and terminal node constants of a tree learner
- Coefficients θ of a linear model $f(\mathbf{x}) = \theta^{\top} \mathbf{x}$

MODEL PARAMETERS VS. HYPERPARAMETERS

In contrast, hyperparameters (HPs) λ are not optimized during tracing. They must be specified in advance, are an input of the el, i.e., training illy perparameters of the control the complexity of a model, i.e., how flexible the model is a They can an principle influence any structural property of a model or computational part of the training process.

The process of finding the best hyperparameters is called **tuning**.

The process of finding the best hyperparameters is called **tuning**. Examples:

Examplesinum depth of a tree

- Maximum depth of a tree asure to use for k-NN
- k and which distance measure to use for k₁NN_e included in a
- Number and maximal order of interactions to be included in a
- lineab@gressionimodel steps if the empirical risk minimization is done via gradient descent

MODEL PARAMETERS VS. HYPERPARAMETERS

We summarize all hyperparameters we want to tune in a vector $\lambda \in \Lambda$ of \bullet oNumber of optimization steps if the empirical risk minimization is

- o done via gradient descent
 - Minimal error improvement in a tree to accept a split
 - Bandwidths of the kernel density estimates for Naive Bayes
- Integer parameters, e.g.:
 - Neighborhood size k for k-NN
 - mtry in a random forest
- Categorical parameters, e.g.:
 - Which split criterion for classification trees?
 - Which distance measure for k-NN?

Hyperparameters are often **hierarchically dependent** on each other, e.g., *if* we use a kernel-density estimate for Naive Bayes, what is its width?

