NUS-ISSIntelligent Sensing and Sense Making

Module 1 - Introduction to intelligent sensing system

by Nicholas Ho

© 2020 National University of Singapore. All Rights Reserved.

About Nicholas Ho

- nicholas.ho@nus.edu.sg
- Lecturer at NUS ISS; Courses covered include:
 - > Problem Solving using Pattern Recognition
 - > Autonomous Robots and Vehicles
 - >Human Robot System Engineering
- BEng and PhD degree from School of Mechanical Engineering, NUS
- Specialized in architecture, design & development
 - > Artificial Intelligence
 - > Augmented/Virtual Reality
 - Internet-of-Things (IoT) & Cyber-Physical System (CPS)

Let's take at a look at some signals

40 60 80 100 120 140 PAL 15° 2002 nm/s BRNJ 266 MANY 12 ARNY 353 50 local explosion 100 YLE 54" 681 nm/s 150 200 Distance (km) BINY 316° 241 nm/s 250 SDMD 240° 190 nm/s 300 350 400 450 500 MCWV 259° 550 0 20 40 60 80 100 120 140 160

Time (sec)

Source: http://911research.wtc7.net/mirrors/guardian2/wtc/seismic /WTC_PENT_KIM.htm

What is signal?

Source: https://volcanoes.usgs.gov/vhp/seismic_signals.html

- In signal processing, signal is a function that conveys information about a phenomenon
- A signal can also be defined as an observable change in a quantity (property)
- Any physical quantity that exhibits variation in space or time can be a signal

Example: ECG

For Heart!

Example: EEG

For Brain!

Normalized amplitude 2 1 0 -1 -2 -3 0 500 1000 1500 Sample

Normal (left, FP1-T3)

Using Brain Signals via EEG to Control Robot by MIT CSAIL (Computer Science & Artificial Intelligence Laboratory)

Source: https://www.youtube.com/watch?v=Zd9WhJPa2Ok

issm/m1.1/v1.0

Example: Electropherogram

For DNA!

Source: https://www.nucleics.com/peaktrace/peaktrace-box-overview.html

Example: 4 walking strides from an elderly

Source: doi:10.3390/s150306419

Visually unable to decipher anything. But with algorithms, we may be able to make sense out of these signals!

Example: Acceleration and velocity in

rowing

Time Series Prediction!

Source: DOI: 10.1109/ISSNIP.2014.6827684

Example: Ultrasound

image

Source: https://www.cliniciansbrief.com/article/liver-ultrasound-guided-fine-needle-aspiration

Sensors that produce signals

Sensors are getting more and more important to make the world 'smart'

"One way to think of loT is second phase of internet", by The Economist

Need IoT technologies to help manage, transfer, store the data; making sense of data make the city smart!

Temperature sensors

Source: https://icon-library.net/icon/temperature-sensor-icon-19.html

• Function: measure amount of heat energy that allows to detect a physical change in temperature from a particular source

- In early days mostly used in Aircon, refrigerators
- Now, Manufacturing: as some machines require specific environment temperature, need monitoring
- Now, agriculture: soil temperature is crucial for crop growth; helps with plants production, maximizing output

Proximity sensors

- Function: detects the presence or absence of a nearby object, or properties of that object without getting in contact with them.
- Used in vehicles a lot, also for parking availability
- In retail industry, detect motion and the correlation between customer and the product they are interested in
- Some sensors specifically detect metallic objects

Source: https://icon-library.net/icon/proximity-icon-6.html

issm/m1.1/v1.0

Distance sensors: E.g. LiDAR Sensors

LiDAR = Light Detection and Ranging

issm/m1.1/v1.0

Pressure sensors

- Function: sense pressure and converts it into electric signal
- Often used to check if pressure deviates from standard range
- Useful in manufacturing
- Useful in maintenance / monitoring of whole water systems and healting systems, as it is easy to detect any fluctuation or drops in pressure

Source: https://www.123rf.com/profile_vectori1

Water quality sensors

WATER QUALITY SENSOR

Source:

https://stock.adobe.com/sg/contributor/207708434/anton-shaparenko

issm/m1.1/v1.0

- Function: monitor water quality and ion
- Chlorine residual sensor: measure chlorine residual
- Total organic carbon sensor:
 measure organic element in water
- Turbidity sensor: measure suspended solids in water, typically used in river
- pH sensor: measure pH level in water

More than data

Intelligent sense making

- •Signals are just numbers
- Need to extract useful information from signal - making sense out of the signal
- Understand the underlying events that produce the signals, then make prediction, or take action, or suggest possible actions
- Create values for user and customer

Source: https://www.slideshare.net/muralidhar9s/data-analytics-for-iot

Value is created by making sense of data

Smart city

Find an empty parking spot

Park quickly without frustration

Suggest possible actions

Smart home

Connected lock

Detect when I come home

Disarm the alarm when I unlock the door Smart car

Bluetooth dongle reading vehicle data

Detect collisions

Automatically call emergency services

Take action Take action

Source: vmob.me/loT

Apple watch leading to actionable insights

Source: https://www.youtube.com/watch?v=b_96eFGwrOk

Individual exercise (15~20 mins)

Suggest an example on intelligent sense making. Avoid re-use any examples given in the lecture notes.

Refer to the given "use case exercise" template with some examples in it.

You are to describe clearly:

- (a) how the sensor(s) is used/deployed and what is the acquired signal,
- (b) what are the findings you are looking for from the signal
- (c) what are the possible actions after the finding

Fundamentals of signals

Signal as function

Real - Real

Continuous function of real indepedent variables

•1 dimensional:
$$z = f(x)$$

•2 dimensional:
$$z = f(x, y)$$

$$z, x, y \in R$$

Limitation in detecting the signals in real-time in the actual situation!

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Signal as function

Real - Discrete

 Continuous function of real indepedent variables

•1 dimensional:
$$z = f[i]$$

•2 dimensional:
$$z = f[i, j]$$

$$z \in R$$
 $i, j \in Z^+$

Practical situation: Collecting the signals in specific time intervals

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

issm/m1.1/v1.0

Signal as function

Discrete - Discrete

Sampled analog readings is relatable and can be converted to digital signals

Continuous function of real indepedent variables

•1 dimensional: z = f[i]

•2 dimensional: z = f[i, j]

$$z \in Z$$
 $i, j \in Z^+$

Signals from real world supposed to be continuous and smooth, but limitations of sensor devices can only enable us to collect data at certain time intervals

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

issm/m1.1/v1.0

Sampling

Sampling rate is same for all graphs!

Highlights importance of choosing the correct sampling rate. How to ensure original signals are retained??

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Nyquist-Shannon theorem

- •Suppose the highest frequency component, in hertz, for a given analog signal is f_{max}.
- •According to the Nyquist-Shannon theorem, the sampling rate must be at least 2f_{max}, or twice the highest analog frequency component.
- •If the sampling rate is less than $2f_{max}$, some of the *highest frequency components* in the analog input signal will not be correctly represented in the digitized output

Source: http://www.writeopinions.com/nyquist-ndash-shannon-sampling-theorem

Source: https://whatis.techtarget.com/definition/Nyquist-Theorem

Sampling

Under Sampling Example

- Wheel of a forward-moving car is seemed rotating backward when by right it should rotate forward
- •Can be explained by undersampling. If movie is filmed at 20 frames per second, but wheel rotates more than 12 times per second, under-sampling likely creates the impression of backward rotation

Source: https://www.howitworksdaily.com/question-of-the-day-why-do-car-wheels-look-like-they-are-spinning-backwards-at-high-speed/

Question

 A telephone company digitize voice by assuming a maximum frequency of 4000 Hz

•What should be the sampling rate?

Question

- •A complex signal has a bandwidth of 200 kHz.
- •What is the minimum sampling rate for this signal?

Signal types

Periodic | Aperiodic

• A signal is periodic if there exists a positive constant T_0 such that

$$f(t + T_0) = f(t) \quad \forall t$$

Source:

http://pilot.cnxproject.org/content/collection/col10064/latest/module/m1005

34 of 35

Signal types

Even | Odd

 Even signals can be easily spotted as they are symmetric around vertical axis An odd signal is a signal such that

$$f(t) = f(-t)$$

$$f(t) = -f(-t)$$

Source: https://www.slideshare.net/mihirkjain/ch1-46505880

Superposition, decomposition

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Superposition, decomposition

- When dealing with linear systems, signals can only be combined by scaling and adding, no signalsignal multiplication
- Synthesis: The process of combining signals through scaling and addition
- The beauty of decomposition:
 Instead of trying to understand how complicated signals behave as a whole, we study the individual components, which are simpler signals

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith