Programme

- Introduction
- Le langage de la LP (syntaxe)
- La sémantique de la LP
- Équivalence logique et Substitution
- Conséquence logique
- Formes normales et clausale
- Méthode de résolution
- Méthode des tableaux
- Méthode de Davis et Putnam
- Initiation à la logique des prédicats

Littéral

- Un littéral est une fbf réduite à un symbole propositionnel ou à la négation d'un symbole propositionnel
 - On parle de littéral positif (ex. p)
 ou de littéral négatif (ex. ¬p)
- On parle du littéral opposé d'un littéral donné (ex. ¬p et p sont opposés)
- Exercice : définir la fonction lit qui associe à une fbf donnée l'ensemble de ses littéraux

Formes conjonctive et disjonctive

- Une fbf est dite sous *forme conjonctive* lorsqu'elle est composée d'une conjonction de disjonctions de littéraux
 - Exemple : $(p \lor q) \land (\neg p \lor q \lor r)$
- Une fbf est dite sous forme disjonctive lorsqu'elle est composée d'une disjonction de conjonctions de littéraux
 - Exemple : $(\neg p \land \neg q) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q)$

Formes normales

- Une fbf P est dite sous forme normale conjonctive (resp. disjonctive) lorsqu'elle est sous une forme conjonctive (resp. disjonctive) telle que tous les symboles propositionnels (ceux de P ou ceux de l'ensemble S considéré) apparaissent dans chaque disjonction (resp. conjonction)
 - Ex. de FNC : $(p \lor q \lor \neg r) \land (p \lor q \lor r) \land (\neg p \lor q \lor r)$
 - Ex. de FND: $(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r)$
- Remarque : un littéral seul est à la fois FNC et FND
- Propriété: A une permutation des littéraux, conjonctions et disjonctions près, les FNC et FND sont uniques pour un S donné.
 - On peut donc tester l'équivalence de deux fbf en comparant syntaxiquement leur FNC (ou FND)

D'une FC/FD à une FNC/ND

 Pour passer d'une forme conjonctive (resp. d'une forme disjonctive) à une forme normale conjonctive (resp. disjonctive) on introduit les symboles manquants à l'aide des équivalences suivantes :

$$D \equiv (D \lor p) \land (D \lor \neg p) \qquad C \equiv (C \land p) \lor (C \land \neg p)$$

• Exemple:

```
(pvq) ∧ (¬pvqvr)
  (pvq r?) ∧ (¬pvqvr)
  = (pvqv¬r) ∧ (pvqvr) ∧ (¬pvqvr)
```

Formes normales (suite)

- Les FND et FNC s'obtiennent à partir d'une table de vérité :
 - FND : on fait la disjonction des conjonctions des littéraux associés aux interprétations donnant la valeur 1 à la fbf
 - FNC : on fait la conjonction des disjonctions des opposés des littéraux associés aux interprétations donnant la valeur 0 à la fbf
- Exemple :

Clause

- Une clause est une représentation ensembliste de disjonctions de littéraux
 - Exemple : $\{\neg p,q,\neg r,s\}$
 - La sémantique d'une clause est complètement définie par l'ensemble des littéraux qui la composent
 - Une infinité de disjonctions de littéraux peut être associée à une clause mais elles sont toutes sémantiquement équivalentes
 - idempotence, associativité et commutativité de la disjonction
- On associe la proposition ⊥ à la clause vide (notée Ø)
 - toute disjonction associée à une clause
 C={L₁,L₂,...,L_k} est logiquement équivalente à ((L₁∨L₂∨...∨L_k)∨⊥)
 - La sémantique de Ø est donc 0

Forme clausale

- Une forme clausale est une représentation ensembliste d'une forme conjonctive
 - Exemple : $\{\{p,q,\neg r\}, \{p,\neg s\}, \{\neg r,\neg s\}, \{q\}\}\}$
 - La sémantique d'une forme clausale est complètement définie par l'ensemble des clauses qui la composent
 - Une infinité de formes conjonctives peut être associée à une forme clausale mais elles sont toutes sémantiquement équivalentes
 - idempotence, associativité et commutativité de la conjonction
- On associe la proposition T à l'ensemble vide de clause
 - toute forme disjonctive associée à une forme clausale $F=\{C_1,C_2,...,C_k\}$ est logiquement équivalente à $((C_1 \land C_2 \land ... \land C_k) \land T)$
 - La sémantique de l'ensemble vide de clause est donc 1

Mise sous forme clausale

Théorème

- « On peut associer à toute fbf P une forme clausale F logiquement équivalente à P »
- Il n'y a pas d'unicité!
- Algorithme de mise sous forme clausale (par formulaires)
 - 1. Éliminer les \Leftrightarrow $(P \Leftrightarrow Q) \equiv ((P \to Q) \land (Q \to P))$
 - 2. Éliminer les \rightarrow $(P \rightarrow Q) = (\neg P \lor Q)$
 - 3. Ramener la négation devant les symboles propositionnels et supprimer les négations multiples

$$\neg \neg P \equiv P \qquad \neg (P \land Q) \equiv (\neg P \lor \neg Q) \qquad \neg (P \lor Q) \equiv (\neg P \land \neg Q)$$

- 4. Inverser les disjonctions de conjonction $((P \lor (Q \land R) = ((P \lor Q) \land (P \lor R)))$
- 5. Passer de la forme conjonctive obtenue à sa forme clausale

Propriétés des clauses

 Dans la suite, on emploie indifféremment le terme de clause pour parler de l'ensemble de littéraux ou d'une des fbf disjonctives que l'on peut lui associer

Propriétés

- Une clause est valide ssi elle contient un littéral et son opposé
- Une clause non vide ne contenant pas de littéraux opposés est contingente
- Seule la clause vide est insatisfiable

Définition

- Une clause C subsume une clause C' ssi C ⊆ C'
- Propriétés
 - Si C subsume C' alors C |= C'
 - Si C' non valide et C |= C' alors C subsume C'

Propriétés des formes clausales

- Soit F une forme clausale et soit C une clause valide de F, on a F ≡ F - {C}
 - On peut donc éliminer les clauses tautologiques des formes clausales en conservant leur sémantique
- Soit F une forme clausale et soit C, C' (avec C ≠ C')
 deux clauses de F t.q. C subsume C', on a
 F ≡ F {C'}
 - On peut donc éliminer les clauses subsumées des formes clausales en conservant leur sémantique

Clause de Horn

- Une clause de Horn est une clause ayant au plus un littéral positif
 - Exemple : $\{\neg p,q,\neg r,\neg s\}$ ou $\{\neg r,\neg s\}$
- On appelle règle de Horn, une fbf composée d'une implication entre deux conjonctions de littéraux positifs
 - Exemple : $p1 \land p2 \dots \land pn$ → $c1 \land c2 \dots \land cn$
- Propriété:
 - « La forme clausale d'un ensemble de règles de Horn ne contient que des clauses de Horn »