Lógica para Computação Aula 19 - Lógica de Predicados¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, introduzimos Dedução Natural para Lógica de Predicados.
- Este material foi construído com base nos slides do prof. Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica de Predicados

2 Próxima Aula

Lógica de Predicados - Relembrando ...

- Predicado
- Quantificadores: Universal e Existencial
- Definição de Termo
- Definição de Fórmula
- Variável livre / ligada
- Fórmula aberta / fechada
- Substituição de Variáveis

Lógica de Predicados: Dedução Natural

- As demonstrações de Dedução Natural para Lógica de Predicados são semelhantes às da Lógica Proposicional.
- As regras que estudamos valem também para a Lógica de Predicados.
- Teremos, evidentemente, novas regras para tratar os quantificadores.
 - Iniciaremos com as regras de eliminação e introdução do quantificador universal ∀.

$$\frac{\forall x. \varphi}{\varphi[t/x]} \forall x_e$$

• A regra consiste em substituir o termo t nas ocorrências livres de x em φ , sendo que tais ocorrências de t deve continuar livre após as substituições.

- O termo t pode ser visto como um exemplo concreto de x.
 - Exemplo: "Toda pessoa do sexo feminino é uma mulher": $\forall x.((P(x) \land F(x)) \rightarrow M(x))$, onde:
 - P(x): x é uma pessoa.
 - F(x): x é do sexo feminino.
 - M(x): x é mulher.
 - se x ∈ {ana, maria, luciana}, podemos eliminar o quantificador universal substituindo x por ana (a):
 - $(P(a) \wedge F(a)) \rightarrow M(a)$

• Exemplo 1 - Considere o argumento:

$$P(t), \forall x. (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$$

- 1. P(t) premissa
- 2. $\forall x.(P(x) \rightarrow \neg Q(x))$ premissa
- 3. $P(t) \rightarrow \neg Q(t)$ $\forall x_e \ 2$
- 4. $\neg Q(t) \rightarrow e \ 3.1$

• Exemplo 2 - Considere o argumento:

$$\forall x. \forall y. ((G(x) \land P(y)) \rightarrow L(x,y)), G(m) \land P(c) \vdash L(m,c)$$

$$1. \quad \forall x. \forall y. ((G(x) \land P(y)) \rightarrow L(x,y)) \quad \text{premissa}$$

$$2. \quad G(m) \land P(c) \quad \text{premissa}$$

$$3. \quad \forall y. ((G(m) \land P(y)) \rightarrow L(m,y)) \quad \forall x_e \ 1$$

$$4. \quad (G(m) \land P(c)) \rightarrow L(m,c) \quad \forall x_e \ 3$$

$$5. \quad L(m,c) \quad \rightarrow e \ 4.2$$

• Exemplo 3 - Considere o argumento:

$$\neg G(m) \vdash \neg \forall x. G(x)$$

1.	$\neg G(m)$	premissa
2.	$\forall x. G(x)$	hipótese
3.	G(m)	$\forall x_e \ 2$
4.		$^{\lnot}e$ 3,1
5.	$\neg \forall x. G(x)$	¬i 2-4

- Atividade I: Prove o sequente dos argumentos abaixo usando dedução natural.

 - $\forall x.(\neg G(x) \rightarrow \neg F(x)), F(c) \vdash G(c)$

- Atividade II: Traduza as sentenças abaixo para Lógica de Predicados e prove o sequente dos seus argumentos usando dedução natural.
 - Todo papagaio é vermelho. José é um papagaio. Logo, José é vermelho.
 - 2 Todo estudante é honesto. João não é honesto. Logo, João não é um estudante.
 - 3 Todo atleta é forte. Todo aquele que for inteligente e forte terá sucesso em sua carreira. Pedro é um atleta e é inteligente. Logo, Pedro terá sucesso em sua carreira.

Lógica de Predicados: Dedução Natural - Introdução do ∀

$$\frac{\varphi(t)}{\forall x. \varphi[x/t]} \forall x_i$$

- Para que esta regra possa ser aplicada, a constante c
 - poderá ser substituída por uma variável x em uma fórmula φ , se nenhuma parte de φ da forma $\exists x. \psi$ ou $\forall x. \psi$ contiver uma ocorrência de t.
 - não ocorrer em uma premissa e nem em uma hipótese vigente.

Lógica de Predicados: Dedução Natural - Introdução do ∀

• Exemplo 1 - Considere o argumento:

$$\forall x. (F(x) \land G(x)) \vdash (\forall x. F(x) \land \forall x. G(x))$$

- 1. $\forall x.(F(x) \land G(x))$ premissa 2. $F(a) \land G(a)$ $\forall x_e \ 1$ 3. F(a) $\land e_1 \ 2$ 4. G(a) $\land e_2 \ 2$ 5. $\forall x.F(x)$ $\forall x_i \ 3$
- 6. $\forall x. G(x)$ $\forall x_i \neq 0$
- 7. $\forall x.F(x) \land \forall x.G(x) \land i \ 5,6$

Lógica de Predicados: Dedução Natural - Introdução do ∀

• Exemplo 2 - Considere o argumento:

$$\forall x. (P(x) \land Q(x)) \vdash \forall x. F(x)$$

- 1. $\forall x.(F(x) \land G(x))$ premissa
- 2. $F(a) \wedge G(a) \quad \forall x_e \ 1$
- 3. $F(a) \wedge e_1 2$
- 4. $\forall x. F(x) \quad \forall x_i \ 3$

- Atividade III: Prove o sequente dos argumentos abaixo usando dedução natural.

- Atividade IV: Traduza as sentenças abaixo para Lógica de Predicados e prove o sequente dos seus argumentos usando dedução natural.
 - Todos os papagaios amam Julieta. Quem ama Julieta detesta Romeu. Quem detesta Romeu tem bom gosto. Logo, todos os papagaios têm bom gosto.
 - Nenhuma arara é vermelha. Todos os papagaios são vermelhos. Logo, nenhuma arara é um papagaio.
 - Todos amam todos. Logo, Romeu ama Julieta e Julieta ama Romeu.

Leitura

- Mortari, C. A. Introdução à Lógica: Capítulo 14
- Huth & Ryan. Lógica em Ciência da Computação:
 Modelagem e Argumentação sobre Sistemas: Capítulo 2