Vysoké učení technické v Brně

Fakulta informačních technologií

Technická zpráva projektu do IMS Ozimá řepka olejka

Autoři: Zdeněk Jelínek (xjelin47)

Adam Gregor (xgrego18)

Obsah

1. Úvo	od	3
1.1.	Autoři a zdroje informací	
1.2.	Ověření validity	3
2. Roz	zbor tématu a použitých technologií	3
2.1.	Použité postupy pro vytvoření modelu	e
2.2.	Použité metody a jejich původ	e
3. Konce	epce	e
4. Archit	tektura simulačního modelu	7
4.1.	Rozbor implementace	8
5. Podst	ata simulačních experimentů a jejich průběh	8
5.1.	Postup experimentování	8
5.2.	Dokumentace experimentů	8
5.3.	Závěry experimentů	<u>9</u>
6. Shrnu	tí simulačních experimentů a závěr	10
Bibliogra	afie	10

1. Úvod

Tento dokument vznikl jako součást projektu do předmětu IMS, na téma řepka olejka. Nalézá se zde popis reálií, včetně jejich zdrojů, popis námi vytvořeného modelu a popis a vyhodnocení experimentů. V rámci studie zkoumáme vliv velikosti pole na náklady spojené s pěstováním ozimé řepky, vliv použité technologie obdělání půdy na celkové náklady a hledáme nejnákladnější operace v tomto cyklu. Bylo potřeba nastudovat správný postup pěstování řepky, jaké vhodné přípravky se používají a s jakým dávkováním.

1.1. Autoři a zdroje informací

Na studii se autorsky podílela dvojice Zdeněk Jelínek (xjelin47) a Adam Gregor (xgrego18). Problematika byla konzultována s Petrem Havlátem ze zemědělské fakulty Mendelovy univerzity. Dále jsme vycházeli z Pěstitelského rádce Řepky ozimé od Davida Bečky z České zemědělské univerzity v Praze. Význačným zdrojem informací byla pro nás studie Miroslava Kavky Normativy pro zemědělskou a potravinářskou výrobu.

1.2. Ověření validity

Validita byla ověřena na základě testování a porovnání výsledků s daty, které nám poskytl dříve zmíněný Petr Havlát a která odpovídají zkušenostem z praxe.

2. Rozbor tématu a použitých technologií

Na základě získaných informací z Pěstitelského rádce [2] jsme sestavili pořadí akcí, které je nutné vykonat v určité etapě pěstování za určitých podmínek. Také množství hnojiva, postřiků, herbicidů a regulátorů růstu jsme čerpali z Pěstitelského rádce [2].

Pěstování ozimé řepky se dělí do čtyř etap. První etapa obsahuje přípravu půdy pro řepku a následné setí osiva. Druhá etapa, podzimní ošetřování, se sestává z hnojení a aplikací herbicidů, postřiků proti škůdcům a regulátorů růstu. Třetí etapou je jarní ošetřování, které obsahuje stejné činnosti jako etapa druhá, avšak s jiným množstvím hnojiva a proti jiným škůdcům. Čtvrtou a poslední etapou je sklizeň vzrostlé řepky.

Etapa přípravy půdy a setí:

- 1. Úklid zbytků předplodiny, které na poli zůstali po sklizni.
- 2. Aplikace hnojiv (320 kg/ha síranu draselného a 200 kg/ha Kieseritu)
- 3. Obdělání půdy, která může mít více postupů:
 - Klasické půda se připravuje radličným podmítačem a následně je zorána.
 - Minimalizační půda je připravena talířovými podmítači. Oproti klasické metodě je půda zpracována do nižší hloubky.
 - Bezorebná půda není nijak rozrývána.
- 4. Zanesení osiva do půdy.

Etapa podzimního ošetřování:

- 1. Aplikace herbicidu (1.5 2.0 l/ha Teridox 500EC, 0.15 0.25 l/ha Command 36 CS)
- 2. Postřik proti škůdcům, podmíněný jejich výskytem:
 - Krytonosec šešulový (Decis Mega 0.1 0.15 l/ha)
 - Dřepčík olejkový (Karate Zeon 5 0.15 l/ha)
 - Hraboš polní (Stutox I 5.0 10.0 kg/ha)

- Pilatka řepková (Nurelle D 0.6 l/ha)
- 3. Aplikace regulátoru růstu (CCC 1,7 2,1l/ha, Caramba 0.4 0,8 l/ha)

Etapa jarního ošetřování:

- 1. Regenerační hnojení dusíkem (LAV 90.0-100.0 kg/ha)
- 2. Produkční hnojení (DAM 390 60.0 kg/ha)
- 3. Podmíněný postřik proti krytonosci řepkovému (Nurelle D 0.6 l/ha)
- 4. Aplikace regulátoru růstu (Caramba 0,8 1.0 l/ha)
- 5. Podmíněný postřik proti blískáčku řepkovému (Decis Mega 0.15 l/ha)
- 6. Aplikace listových hnojiv (Campofort Special B 10.0 l/ha)
- 7. Dolaďovací dávka dusíku (LAV 30 kg/ha)
- 8. Podmíněný postřik proti bejlomorce kapustové (Talstar 10 EC 0.1 l/ha)
- 9. Podmíněný postřik proti krytonosci šešulovému (Decis Mega D 0.125 0.15 l/ha)
- 10. Podmíněný postřik proti mšicím (Primor 50 WG 0.3 kg/ha)

Etapa sklizně:

1. Sklizení úrody řepky za pomoci kombajnu

Každá akce spotřebovává palivo. Zde uvádíme spotřebu paliva podle právě prováděné akce.

Akce	Spotřeba nafty
Klasická příprava půdy	11,3 – 11,5 l/ha
Minimalizační příprava půdy	5,8 – 6,1 l/ha
Setí	7,8 – 8,3 l/ha
Hnojení do 300kg	1,8 – 2,2 l/ha
Hnojení od 301 do 500 kg	2,3 – 2,5 l/ha
Hnojení od 500 kg	2,6 – 3,0 l/ha
Aplikace postřiku	2,5 – 2,8 l/ha
Úklid předplodiny	1,3 – 1,6 l/ha
Sklizeň řepky	14,9 – 15,5 l/ha

Informace pocházejí ze zdroje Normativy pro zemědělskou a potravinářskou výrobu [1]

Ceny hnojiv používaných při pěstování řepky jsou uvedeny v následující tabulce.

Cena
18 271 – 22 886 Kč/t
10 225 – 14 472 Kč/t
7 986 – 8 410 Kč/t
8 168 – 8 894 Kč/t
38,0 – 47,0 Kč/l

Informace pocházejí ze zdroje: http://www.agronormativy.cz/docs/2040008_rslt.html

Pravděpodobnosti výskytu škůdců jsou uvedeny v následující tabulce.

Škůdce	Šance výskytu
Krytonosec šešulový	70,43%
Dřepčík olejkový	53,58%
Hraboš polní	69,29%
Pilatka řepková	12,5%
Krytonosec řepkový	55,02%
Blísáček řepkový	65,35%
Bejlomorka kapustová	11,83%
Mšice	12,40%

Informace pocházejí ze zdroje [3]

Ceny postřiků používaných při pěstování řepky jsou uvedeny v následující tabulce.

Postřik	Cena
Decis Mega	1 472,0 Kč/l
Karate Zeon 5	2 341,0 Kč/l
Stutox I	181,5 Kg/l
Nurelle D	1 020 Kč/l
Talstar 10 EC	6 600 Kč/l
Primor 50 WG	4 800 Kč/kg

Zdroje cen postřiků:

Postřík	Zdroj
Decis mega	https://www.agrochemie.cz/495-decis-mega-5l.html
Karate Zeon 5	https://agromanualshop.cz/?sekce=kategorie&filtry[fulltext]=karate
Stutox I	http://www.agrochema-shop.cz/rodenticidy/19-stutox-i.html
	https://agromanualshop.cz/cz-detail-1273-nurelle-d-
Nurelle D	51.html?gclid=Cj0KCQiA6JjgBRDbARIsANfu58GVVvnxW1lkuLdQKQ76Xsmo8G
	xVApilgJXGyScaKLkJLa1Z6Y7fKSAaApa7EALw_wcB
Talstar 10 EC	http://www.tlumacak.cz/?1018,talstar-10-ec-50-ml
Primor 50 WG	https://www.izelezarstvi.cz/katalog/zbozi/zahrada/substraty/produkt/agro-
Printion 50 WG	pirimor-50-wg-2x1-5g

Ceny zbývajících prostředků:

Prostředek	Cena
Osivo	2 400 – 2 800 Kč/VJ
Herbicid Teridox 500 EC	1 126 Kč/l
Herbicid Command 36 CS	4 385 Kč/l
Regulátor růstu CCC	121 Kč/l
Cena nafty	28,35 – 33,32 Kč/l
Regulátor růstu Caramba	1 057,4 Kč/l

Zdroje cen zbývajiciích prostředků

Prostředek	Cena
Osivo	http://www.agronormativy.cz/docs/rpttab2040005.pdf č.3
Herbicid Teridox	https://agromanualshop.cz/?sekce=kategorie&filtry[fulltext]=teridox
500 EC	
Herbicid Command	https://agromanualshop.cz/cz-detail-449-command-36-cs-1l.html
36 CS	
Regulátor růstu CCC	http://www.morava-mod.cz/files/Helivo-2015-soub.pdf
Cena nafty	https://www.czso.cz/csu/czso/ceny-pohonnych-hmot-od-roku
Regulátor růstu	https://substraty-hnojiva.heureka.cz/basf-caramba-10-
Caramba	l/specifikace/#section

2.1. Použité postupy pro vytvoření modelu

Abstraktní model (IMS, 10) byl navržen jako jeden proces (IMS, 121), který představuje přípravu, pěstování a sklizeň ozimé řepky. Tento přístup jsme zvolili, neboť nejvíce odpovídá postupu pěstování řepky, který je posloupností úkonů. Simulační model (IMS, 10) byl implementovaný v jazyce C++.

2.2. Použité metody a jejich původ

Návrh systému jsme provedli pomocí sady stavů, kterými model projde, přičemž některé z nich obsahují procentuální šanci výskytu nějakého jevu (např. výskyt škůdce). V každém stavu se spočítá rovnice, která odpovídá jedné z činností při pěstování řepky.

V simulačním modelu využíváme generátor náhodných čísel, který byl implementován formou kongruentního generátoru (IMS, 98).

3. Koncepce

Pro sestavení abstraktního modelu jsme převedli dané činnosti při pěstování řepky ozimé na stavy, ve kterých se počítají rovnice, jejichž výsledek odpovídá vydaným nákladům na tuto činnost.

Seznam stavů, seřazený podle chronologického pořadí a odpovídající rovnice:

- 1. Úklid pole spotřeba nafty
- 2. Aplikace hnojiv spotřeba nafty, aplikace hnojiv
- 3. Příprava půdy spotřeba nafty
- 4. Setí spotřeba nafty, aplikace osiva
- 5. Aplikace herbicidů spotřeba nafty, aplikace herbicidů
- 6. Ochrana proti krytonosci šešulovému spotřeba nafty, aplikace postřiku
- 7. Ochrana proti dřepčíkovi spotřeba nafty, aplikace postřiku
- 8. Ochrana proti hraboši polnímu spotřeba nafty, aplikace postřiku
- 9. Aplikace regulátoru růstu spotřeba nafty, aplikace regulátoru
- 10. Ochrana proti pilatce spotřeba nafty, aplikace postřiku
- 11. Regenerační hnojení spotřeba nafty, aplikace hnojiva
- 12. Produkční hnojení spotřeba nafty, aplikace hnojiva

- 13. Ochrana proti krytonosci řepkovému spotřeba nafty, aplikace postřiku
- 14. Aplikace regulátoru růstu spotřeba nafty, aplikace regulátoru
- 15. Ochrana proti blýskáčkovi spotřeba nafty, aplikace postřiku
- 16. Aplikace listového hnojiva spotřeba nafty, aplikace hnojiva
- 17. Aplikace dolaďovacího dusíku spotřeba nafty, aplikace hnojiva
- 18. Ochrana proti bejlomorce spotřeba nafty, aplikace postřiku
- 19. Ochrana proti krytonosci šešulovému spotřeba nafty, aplikace postřiku
- 20. Ochrana proti mšicím spotřeba nafty, aplikace postřiku
- 21. Sklizeň spotřeba nafty

Spotřeba nafty:

$$cena * spotřeba * velikost = náklady$$

,kde cena vyjadřuje cenu nafty v Kč/l, spotřeba vyjadřuje spotřebu nafty při konání činnosti v Kč/ha a velikost vyjadřuje velikost pole v hektarech. Náklady jsou v Kč.

Aplikace hnojiv/herbicidů/regulátorů/osiva:

$$cena * dávka * velikost = náklady$$

, kde cena vyjadřuje cenu hnojiva/herbicidu/regulátoru/osiva v Kč/l nebo Kč/kg, záleží na typu produktu. Dávka produktu je v kg/ha nebo l/ha. Velikost vyjadřuje velikost pole v hektarech. Náklady jsou Kč

Aplikace postřiků:

Postřiky se aplikují při výskytu daného škůdce. Pravděpodobnost výskytu byla spočítána na základě dat z práce Reginy Tesařové, Výskyt škůdců řepky ozimé na území ČR za posledních let. Při výskytu škůdce se aplikuje potřebný postřik. Aplikace je vyjádřena rovnicí:

$$cena * dávka * velikost = náklady$$

, kde cena je cena postřiku v Kč/l, dávka vyjadřuje množství dávky postřiku v Kč/l a velikost je velikost pole v hektarech. Náklady jsou v Kč.

4. Architektura simulačního modelu

Spuštění programu lze provést příkazem make run. Program ke spuštění využívá dvou argumentů. Prvním argumentem je velikost pole v hektarech a druhý představuje výběr technologie přípravy půdy (1 – klasická, 2 – minimalizační, 3 - bezorebná). Při běhu programu se na standardní výstup vypisují statistiky o ceně jednotlivých akcí a celkových nákladech.

Příklad výpisu:

Regenerační hnojení Celkové náklady

760,4 Kc (Z toho nafty: 88Kc) 12 487 Kc

4.1. Rozbor implementace

Simulační model se sestává z třídy pripravaPudy, která obsahuje metody simulující činnosti pro přípravu půdy a setí, dále z třídy jaro, která obsahuje metody simulující činnosti pro sklizeň a pěstování řepky v období jara. V podzim.h se nachází funkce simulující činnosti pěstování řepky v období podzimu. Třída nafta.hpp obsahuje metody simulující spotřebu nafty pro různé činnosti. Funkce pro generování náhodných čísel jsou nadeklarovány v rand.h.

V main.c se volají metody/funkce v následujícím pořadí:

- Příprava půdy
- Setí
- Podzimní ošetřování
- Jarní ošetřování
- Sklizeň

5. Podstata simulačních experimentů a jejich průběh

Experimentováním chceme zjistit, jaká je závislost nákladů na velikosti pole, jaké operace jsou cenově nejnákladnější a jak vysoce ovlivňuje výběr způsobu přípravy půdy celkové náklady. Simulujeme jeden životní cyklus řepky olejky.

5.1. Postup experimentování

Simulaci spustíme 30x, s velikostmi pole od jednoho do deseti hektarů a různými technologiemi přípravy půdy. Takto získaná data zanalyzujeme a vyvodíme závěry.

5.2. Dokumentace experimentů

Při experimentování jsme zvyšovali velikost pole o 1 ha a pozorovali jsme vývoj celkových nákladů. Ty jsou znázorněny v *grafu 1.* Používali jsme různé technologie přípravy půdy. *Graf 2* znázorňuje procentuální zastoupení dílčích výdajů v celkovém nákladu. Hodnoty jsme spočítali zprůměrováním výsledných hodnot, které vyšli z experimentů. V *grafu 3* je znázorněno procentuální zastoupení ceny vydané na technologii přípravy půdy z celkové ceny.

graf 1 Vývoj celkových nákladů s růstem plochy

graf 2 Procentuální zastoupení dílčích výdajů v celkovém nákladu

graf 3 Procentuální zastoupení ceny technologie přípravy půdy z celkové ceny

5.3. Závěry experimentů

Bylo provedeno 30 experimentů, z kterých lze odvodit růst nákladů při růstu velikosti pole. Dále z nich lze získat informace o procentuálním zastoupení výdajů jednotlivých operací při pěstování řepky a jaký vliv má výběr technologie přípravy půdy na celkové náklady.

6. Shrnutí simulačních experimentů a závěr

Na základě 30 námi vyhotovených experimentů jsme zjistili, že celkové náklady na pěstování řepky ozimé lineárně rostou s rostoucí velikostí pole. Na jeden hektar je potřeba v průměru 22954,14 Kč. Tato hodnota odpovídá nejen zkušenostem z praxe, ale i z Pěstitelského rádce [2].

Na celkových nákladech se nejvíce podílí hnojivo. Zastupuje průměrně 45,09%. To vysvětluje všeobecně známý fakt, že pěstitelé využívají co nejlevnější hnojiva, která ale mohou mít špatný vliv na půdu a z dlouhodobého hlediska ji mohou poškodit.

Z experimentů jsme zjistili, že výběr technologie přípravy půdy má minimální vliv na celkové náklady a volba klasické přípravy půdy představuje spíše časovou náročnost. Klasická technologie přípravy půdy tvoří 4,38% celkových nákladů. Minimalizační tvoří 1,07% a bezorebná 0,20%.

Bibliografie

- [1] Kavka, M. (2004). http://www.agroporadenstvi.cz. Načteno z Agro poradenství: http://www.agroporadenstvi.cz/poradenstvi/op/dokumenty/normativy/normativy.pdf
- [2] Bečka, D (2007). Řepka ozimá Pěstitelský rádce. Praha: Kurent s.r.o.
- [3] Tesařová, R. (2010). Výskyt škůdců řepky ozimé na území ČR za posledních 10 let. Brno.