Spacecraft Sensors and Actuators

Space System Design, MAE 342, Princeton University Robert Stengel

- Attitude Measurements
- Attitude Actuators
- Translational Measurements
- Mechanical Devices

Copyright 2008 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Attitude Control System

UARS Attitude Control System

Attitude Measurements

- Measurement of an angle or angular rate of the spacecraft with respect to a reference frame, e.g.,
 - Earth's magnetic field
 - Magnetometer
 - Direction to the sun
 - Sun sensor
 - Earth's shape
 - · Earth horizon sensor
 - Inertial frame of the universe
 - · Star sensor
 - Gyroscopes
- Mission requirements dictate spacecraft sensor configuration

Potential Accuracies of Attitude Measurements

Reference object	Potential accuracy
Stars	1 arc second
Sun	1 arc minute
Earth (horizon)	6 arc minutes
RF beacon	1 arc minute
Magnetometer	30 arc minutes
Narstar Global Positioning System (GPS)	6 arc minutes

Note: This table gives only a guideline. The GPS estimate depends upon the 'baseline' used (see text).

Fortescue

Body Orientation from Magnetometer

- Earth's magnetic field vector, b, function of spacecraft position, (x, y, z)
- Body orientation vector, \mathbf{b}_B , related to \mathbf{b}_I by rotation matrix, \mathbf{C} , from inertial to body frame and calibration rotation matrix, S

$$\begin{aligned} \mathbf{b}_{B} &= \mathbf{C}\mathbf{b}_{I} \\ \mathbf{b}_{B} &= \mathbf{S}_{mag}\mathbf{b}_{mag} \\ \mathbf{b}_{B} &= C\mathbf{b}_{I}(x,y,z) + error \\ \mathbf{S}_{mag}(\varepsilon_{I}, \varepsilon_{2}, \varepsilon_{3}) &= calibration\ rotation\ matrix \\ \mathbf{C}(\psi, \theta, \phi) &= inertial\ to\ body\ rotation\ matrix \\ &= direction\ cosine\ matrix \end{aligned}$$

- Estimation of yaw, ψ , pitch, θ , and roll, ϕ , angles requires additional information
 - Equation has 2 degrees of freedom, but there are 3 unknowns

Magnetometer

- Flux gate magnetometer
 - Alternating current passed through one coil
 - Permalloy core alternately magnitized by electromagnetic field
 - Corresponding magnetic field sensed by second coil
 - Distortion of oscillating field is a measure of one component of the Earth's magnetic field
- Three magnetometers required to determine Earth's magnetic field vector

Sun Sensor

- Transparent block of material with known refractive index, n, coated with opaque material
- Slit etched in top, receptive areas etched in bottom
- Light from sun passing through slit forms a line over photodetectors

Sun Sensor

- Distance from centerline measured by sensed pattern, which determines angle, α
- With index of refraction, n, angle to sun, α' , is determined
- Photodetectors may provide digital (coarse) or analog (fine) outputs

 $\tan \alpha = d/h$ $\sin \alpha' = n \sin \alpha \quad (Snell's \ law)$ $n = index \ of \ refraction$

Dual Sun Sensors

Orthogonal sun sensors determine direction (two angles) to the sun

- Two measurements, three unknowns
- Three-axis attitude determination requires additional information

Static Earth Horizon Sensor

- · Infrared sensing to reduce optical error
- Static horizon sensor has field of view larger than the entire earth's edge (limb)
- Provides orientation with respect to the nadir

Goodrich Multi-Mission Horizon Sensor

Characteristics

Infrared spectral band: 14 to 16 µm
Detectors: Micro-machined (MEMS) thermopiles
Total field-of-view: 16° long by 10° wide
Spacecraft keep-out-zone: 15° cone around aperture

GEO Performance (redundant, 2-telescope assembly)
Pitch accuracy (E-W); +/- 0.013°, 3-σ for either telescope
Roll accuracy (N-S); +/- 0.03σ°, 3-σ for either telescope
(Above is RSS accuracy at null, based on 30°C long-term
thermal drift and 18° peak-to-peak diurnal)
Operating range: +/- 6° fine pitch measurement
+/- 2° fine roll measurement
Acquieltion range: 16° maximum Earth detection

Scanning Earth Horizon Sensor

- Spinning assembly identifies light and dark areas (infrared)
- Width of light area identifies spacecraft roll angle, ϕ

 $t_{LOS/AOS}$: Time of loss/acquisition of signal

 $\Omega = \omega_{scanner}(t_{LOS} - t_{AOS})$

Star Sensor/Tracker

- · Instrument has narrow field of view
- · Star location catalog helps identify target
- · Instrument must have low angular velocity
- x and y location of star on focal plane determines angles to the star

Goodrich Star Tracker

Performance Category	Narrow FOV	Wide FOV
Field of View	8° x 8°	20° circular
Magnitude Sensitivity Power (avg. at +45°C)	+6.5 10W	+5.1 10W
Weight (with lightshade)	8.5 lb	7.5 lb
Update Rate	6 Hz	2 Hz
Stars Simultaneously Tracked	6	6
Overall Accuracy		
-Pitch/Yaw, rms	2 arc sec	5 arc sec
-Roll, rms	40 arc sec	40 arc sec

Mechanical Gyroscopes

Body-axis moment equation

$$\mathbf{M}_{R} = \dot{\mathbf{h}}_{R} + \tilde{\mathbf{\omega}}_{R} \mathbf{h}_{R}$$

Angular momentum:
$$\mathbf{h}_B = \mathbf{I}_B \mathbf{\omega}_B$$

$$\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} (\boldsymbol{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B})$$

- Assumptions
 - Constant nominal spin rate, n, about z axis
 - $I_{xx} = I_{yy} << I_{zz}$
 - Small perturbations in ω_{ν} and ω_{ν}

Typical Spacecraft Sensor Configurations

- Most precise measurements (e.g., scientific satellites)
 - star trackers
- Moderate accuracy requirements
 - coarse digital sun sensors
 - horizon sensors
 - magnetometers
- Spinning satellites
 - single-axis sun sensors
 - magnetometers
 - horizon sensors
- · High-altitude (e.g., geosynchronous) satellites
 - optical sensors
 - gyroscopes
 - magnetic field too weak for use

Gyroscope Equations of Motion

 Linearized equations of angular rate change

$$\begin{bmatrix} \Delta \dot{\omega}_x \\ \Delta \dot{\omega}_y \\ 0 \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ 0 \end{bmatrix} - \begin{pmatrix} 0 & -n & \Delta \omega_y \\ n & 0 & -\Delta \omega_x \\ -\Delta \omega_y & \Delta \omega_x & 0 \end{pmatrix} \begin{pmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{pmatrix} \begin{pmatrix} \Delta \omega_x \\ \Delta \omega_y \\ n \end{pmatrix}$$

$$\begin{bmatrix} \Delta \dot{\omega}_x \\ \Delta \dot{\omega}_y \\ 0 \end{bmatrix} = \begin{bmatrix} M_x - n(I_z - I_{yy}) \Delta \omega_y \end{bmatrix} / I_{xx} \\ M_y - n(I_{xx} - I_z) \Delta \omega_x \end{bmatrix} / I_{yy} \\ 0 \end{bmatrix}$$

• or
$$\begin{bmatrix} \Delta \dot{\omega}_x \\ \Delta \dot{\omega}_y \end{bmatrix} = \begin{bmatrix} 0 & n(I_{yy} - I_{zz})/I_{xx} \\ n(I_{zz} - I_{xx})/I_{yy} & 0 \end{bmatrix} \Delta \omega_x + \begin{bmatrix} M_x/I_{xz} \\ M_y/I_{yy} \end{bmatrix}$$

Gyroscope Natural Frequency

· Laplace transform of dynamic equation

$$\begin{bmatrix} s & -n(I_{yy} - I_{zz})/I_{xx} \\ -n(I_{zz} - I_{xx})/I_{yy} & s \end{bmatrix} \Delta \omega_{y}(s) = \begin{bmatrix} M_{x}(s)/I_{xx} \\ M_{y}(s)/I_{yy} \end{bmatrix}$$

Characteristic equation

$$\Delta(s) = s^2 + n^2 \left(\frac{I_{zz}}{I_{xx}} - 1\right)^2 = 0$$

• Natural frequency, ω_n , of small perturbations

$$\omega_n = n \left(\frac{I_{zz}}{I_{xx}} - 1 \right) \quad rad/\sec$$

Example

$$n = 36,000 \ rpm = 3,770 \ rad/sec$$

Thin disk: $\frac{I_{zz}}{I_{xz}} = 2$
 $\omega_n = 3,770 \ rad/sec = 600 \ Hz$

Single-Degree of Freedom Gyroscope

 Gyro axis, θ, constrained to rotate in its case with respect to the output axis, y, only

$$\begin{bmatrix} \Delta \dot{\theta} \\ \Delta \dot{\omega}_{y} \end{bmatrix} = \begin{bmatrix} \Delta \omega_{y} \\ \left(h_{rotor} \Delta \omega_{x} + M_{y_{control}} \right) / I_{yy} \end{bmatrix}$$

- "Synchro" measures axis rotation, and "torquer" to keep θ small
- Torque applied is a measure of the input about the x axis

$$M_{y_{control}} = k_{\theta} \Delta \theta + k_{\omega} \Delta \omega_{y} + k_{c} \Delta u_{c}$$

Two-Degree of Freedom Gyroscope

- · Free gyro mounted on a gimbaled platform
- Gyro "stores" reference direction in space
- Angle pickoffs on gimbal axes measure pitch and yaw angles
- Direction can be precessed by applying a torque

Rate and Integrating Gyroscopes

- · Large angle feedback produces a rate gyro
 - Analogous to a mechanical spring restraint

$$\Delta \dot{\omega}_{y_{SS}} = 0 = \left(h_{rotor} \Delta \omega_{x_{SS}} + k_{\theta} \Delta \theta_{SS} \right) / I_{yy}$$

$$\Delta \theta_{SS} = -\frac{h_{rotor}}{k_{\theta}} \Delta \omega_{x_{SS}}$$

- · Large rate feedback produces an integrating gyro
 - Analogous to a mechanical damper restraint

$$\Delta \dot{\omega}_{y_{SS}} = 0 = \left(h_{rotor} \Delta \omega_{x_{SS}} + k_{\omega} \Delta \omega_{y_{SS}} \right) / I_{yy}$$

$$\Delta \omega_{y_{SS}} = -\frac{h_{rotor}}{k_{\omega}} \Delta \omega_{x_{SS}}$$

$$\Delta \theta_{SS} = \Delta \phi_{SS}$$

Optical Gyroscopes

- Sagnac interferometer measures rotational rate, Ω
 - $-\Omega$ = 0, photons traveling in opposite directions complete the circuit in the same time
 - Ω≠ 0, travel length and time are different

$$\begin{aligned} t_{CCW} &= \frac{2\pi R}{c} \left(1 - \frac{R\Omega}{c} \right); \quad t_{CW} &= \frac{2\pi R}{c} \left(1 + \frac{R\Omega}{c} \right) \\ \Delta t &= t_{CW} - t_{CCW} = \frac{4\pi R^2}{c^2} \Omega = \frac{4A}{c^2} \Omega \end{aligned}$$

c: speed of light

R: radius

A: area

Ring Laser Gyro

- Laser in optical path creates photon resonance at wavelength λ
- Frequency change in cavity is proportional to angular rate
- Three RLGs needed to measure three angular rates

P: perimeter length

Fiber Optic Gyro

- · Long length of fiber cable wrapped in a circle
- Photon source and sensor are external to the fiber optics
- Length difference for opposite beams is

$$\Delta L = \frac{4AN}{c}\Omega$$
A: included area
N: number of turns

Phase difference is proportional to angular rate

$$\Delta \varphi = \frac{8\pi AN}{\lambda c} \Omega$$

Force Rebalance Accelerometer

$$\Delta \ddot{x} = f_x / m = (-k_d \Delta \dot{x} - k_s \Delta x) / m$$

 Voltage required to re-center the proof mass becomes the measure of acceleration

MicroElectroMechanical System (MEMS)Accelerometer

Inertial Measurement Units

Gimbaled Physical Platform

- 3 accelerometers
- 3 rate or rate-integrating gyroscopes
- Platform orientation "fixed" in space
- Vehicle rotates about the platform
- · Need for high precision
- Drift due to errors and constants of integration
- Platform re-oriented with external data (e.g., GPS)

Integrated Inertial Navigation/GPS System

Gimbal-less Physical Platform

- Peacekeeper IMU*
- Reduced errors due to hydraulic suspension
- Instruments subjected to low dynamic range, allowing high precision

Servo-driven reference frame

*IEEE Control Systems Magazine, 2/08

Strapdown Inertial Measurement Units

- Rate gyros and accelerometers rotate with the vehicle
- High dynamic range of instruments is required
- Inertial reference frame is computed rather than physical
- Use of direction cosine matrix and quaternions for attitude reference

Angular Attitude Actuators

- Momentum/reaction wheels
- Control moment gyroscope
- · Magnetic coils
- Thrusters
- Nutation dampers
- Solar radiation pressure

MicroElectroMechanical (MEMS) Strapdown Inertial Measurement Units

- · Less accurate than precision physical platform
- High drift rates
- Acceptable short-term accuracy
- Inexpensive
- Updated with GPS

Momentum/ Reaction Wheels

- · Flywheel on a motor shaft
- Momentum wheel operates at high rpm and provides spin stability
- Reaction wheel rpm is varied to trade angular momentum with the spacecraft for control
 - Three orthogonal wheels vary all components of angular momentum
 - Fourth wheel at oblique angle provides redundancy

Control Moment Gyroscope

- · Control moment gyros operate at constant rpm
- Small torque on input axis produces large torque on output axis, modifying spacecraft momentum
- · One or two degrees of freedom

Magnetic Torquers

- Current flowing through a loop generates a magnetic torque through interaction with the Earth's magnetic field
 - Torque rods
 - Loops around spacecraft exterior (e.g., TIROS-2)

- N: number of loops
- I: current
- A: included area of loops
- i: unit vector along coil axis
- B: local flux density

Reaction Control Thrusters

- Direct control of angular rate
- Unloading momentum wheels or control-moment gyros
- · Reaction control thrusters are typically on-off devices using
 - Cold gas
 - Hypergolic propellants
 - Catalytic propellant
 - lon/plasma rockets

- Issues
 Specific impulse
 Propellant mass
- Expendability
- · Thrusters commanded in pairs to cancel velocity change

Nutation Dampers

- Nutation dampers dissipate angular energy, damping angular oscillations
 - Mass moving in a gas or viscous fluid
 - Eddy current on a conducting pendulum in a magnetic field

Solar Radiation Pressure Control Panels

- Solar radiation pressure
- · Vanes deflected differentially
- · Long moment arm from center of mass

Sensors and Actuators for Spacecraft
Mechanisms

Potentiometer, Synchro, and Tachometer

Attitude Encoder

Rotary pulse generator

Linear Variable Differential Transformer

Electric Actuator: Brushed DC Motor

- · Current flowing through armature generates a magnetic field
- · Permanent magnets torque the armature
- When armature is aligned with magnets, commutator reverses current and magnetic field
- Multiple poles added to allow motor to smooth output torque and to start from any position

Strain Gage

Electric Actuator: Brushless DC Motor

- Armature is fixed, and permanent magnets rotate
- Electronic controller commutates the electromagnetic force, providing a rotating field
- Advantages
 - Efficiency
 - Noise
 - Lifetime
 - Reduced EMI
 - Cooling

Electric Actuator: Stepper Motor

- Brushless, synchronous motor that moves in discrete steps
- Precise quantized control without feedback
- Armature teeth offset to induce rotary motion

Next Time: Attitude Control

Hydraulic Actuator

- Used principally for launch vehicle thrust vector and propellant control
- · Not widely used on spacecraft