CME 2003 Digital Logic

ALGORITHMIC STATE MACHINES

Şerife YILMAZ

Introduction to Sequential

Logic

- Output depends on current as well as past inputs
 - Depends on the history
 - Have "memory" property
- Sequential circuit consists of
 - Combinational circuit
 - Feedback circuit
 - Past input is encoded into a set of state variables
 - Uses feedback (to feed the state variables)
 - □ Simple feedback
 - □ Uses flip flops

Introduction...

Main components of a typical synchronous sequential circuit (synchronous = uses a clock to keep circuits in lock step)

State-Holding Memory Elements

- Latch versus Flip Flop
 - Latches are level-sensitive: whenever clock is high, latch is transparent
 - Flip-flops are edge-sensitive: data passes through (i.e. data is sampled) only on a rising (or falling) edge of the clock
 - Latches cheaper to implement than flip-flops
 - > Flip-flops are easier to design with than latches
- In this course, primarily use D flip-flops

D Flip-Flop with Synchronous

- Asynchronous active-low clear: Q immediately clears to 0
- Synchronous active-low clear: Q clears to 0 on risingedge of clock

Şerife SUNGUN

Other Types of Flip-Flops

D Flip-Flop

D	Q(t+1)
0	0
1	1

Set-Reset (SR) Flip-Flop

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	not allowed

Toggle (T) Flip-Flop

Т	Q(t+1)
0	Q(t)
1	Q(t)

JK Flip-Flop

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Register

In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus.

M.

Shift Register

(a) Circuit

(b) A sample sequence

Read Only Memory (ROM)

- Similar to RAM except read only
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)

Finite State Machines (FSMs)

- Any Circuit with Memory Is a Finite State Machine
 - Even computers can be viewed as huge FSMs
- Design of FSMs Involves
 - Defining states
 - Defining transitions between states
 - Optimization / minimization
- Above Approach Is Practical for Simple FSMs Only

Mealy vs. Moore State Machines

- Finite State Machines (FSM) are of two types:
- Moore Machines
 - Next State = Function(Input, Present State)
 - Output = Function(Present State)
- Mealy Machines
 - Next State = Function(Input, Present State)
 - Output = Function(Input, Present State)

Moore FSM

Output Is a Function of a Present State Only

DEU CSE

Mealy FSM

Output Is a Function of a Present State and Inputs

DEU CSE

Moore Machine

Mealy Machine

Moore vs. Mealy FSM

- Moore and Mealy FSMs can be functionally equivalent
 - Equivalent Mealy FSM can be derived from Moore FSM and vice versa
- Mealy FSM Has Richer Description and Usually Requires Smaller Number of States
 - Smaller circuit area

Moore vs. Mealy FSM...

- Mealy FSM computes outputs as soon as inputs change
 - Mealy FSM responds one clock cycle sooner than equivalent Moore FSM
- Moore FSM Has no combinational path between inputs and outputs
 - Moore FSM is more likely to have a shorter critical path
 - Moore outputs synchronized with clock; Mealy outputs may not be (may have race conditions, timing issues, etc.)

Example: Moore FSMMoore FSM that Recognizes Sequence "10"

Meaning of states: S0: No elements of the sequence observed

S1: "1" observed S2: "10" observed

Serife SUNGUN

Example: Mealy FSM

Mealy FSM that Recognizes Sequence "10"

S0: No

Meaning elements

of states: of the

sequence

observed

S1: "1"

observed

Example: Moore & Mealy FSMs

FSM Limitations

- Simple finite state machines (those expressed using state diagrams and state tables) good only for simple designs
 - Many inputs and many outputs make it awkward to draw state machines
 - Often only one input affects the next change of state
 - Most outputs remain the same from state to state
- Instead use algorithmic state machines (ASM)

Algorithmic State Machine (ASM)

- Complex digital systems can be represented by algorithmic state machines
- Simple finite state machines (expressed using state diagrams and state tables) good only for simple designs
- Algorithmic State Machines (ASM) are
 - flow-chart type diagrams to represent finite state machines
 - suitable for a larger number of inputs and outputs compared to simple FSMs

(c) Conditional output box

State Box

- State box represents a state.
- Equivalent to a node in a state diagram or a row in a state table.
- Contains register transfer actions or output signals
- Moore-type outputs are listed inside of the box.
- It is customary to write only the name of the signal that has to be asserted in the given state, e.g., z instead of z=1.
- Also, it might be useful to write an action to be taken, e.g., count = count + 1, and only later translate it to asserting a control signal that causes a given action to take place.

Decision Box

Decision box –
indicates that a given
condition is to be
tested and the exit
path is to be chosen

accordingly

The condition expression consists of one or more inputs to the FSM.

Conditional Output Box

- Conditional output box
- Denotes output signals that are of the Mealy type.
- The condition that determines whether such outputs are generated is specified in the decision box.

ASMs representing simple FSMs

 Algorithmic state machines can model both Mealy and Moore simple finite state machines

Example 1: Moore FSM –State diagram

Example 2: Mealy FSM –State diagram

Example 2: ASM Chart for Mealy FSM

Example 3 – ASM Complex Counter Problem

A sync. 3 bit counter has a mode control M. When M = 0, the counter counts up in the binary sequence. When M = 1, the counter advances through the Gray code sequence.

Binary: 000, 001, 010, 011, 100, 101, 110, 111 Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior:

Mode Input M	Current State	Next State (Z2 Z1 Z0)
0	000	001
0	001	010
1	010	110
1	110	111
1	111	101
0	101	110
0	110	111

Example- Finite State Machine

One state for each output combination Add appropriate arcs for the mode control

Şerife SUNGUN

Example – State Diagram

State Diagram

State Table

Present	Next State Input (x)		Output
State			(z)
	0	1	
Α	Α	В	0
В	В	С	0
С	С	D	1
D	D	А	1

Example – State Table

State assignments:

 $00 \rightarrow A$

 $01 \rightarrow B$

 $10 \rightarrow C$

 $11 \rightarrow D$

Input	Present State		Next State		Output
Х	Q ₁	Q_2	Q ⁺ ₁	Q ⁺ ₂	(z)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	0	0	1

$$Q_1 = \overline{x}Q_1 + x(Q_1 \oplus Q_2)$$

$Q_1 Q_2$					
X	00	01	11	10	
0	0	1	1	0	
1	0	1	1	0	

$$z = Q_2$$

$$Q_2 = \overline{x}Q_2 + x\overline{Q}_2 = x \oplus Q_2$$

Circuit Implementation

Wave Form

