COURSE 1

Groups, rings and fields

Definition 1. By a binary operation on a set A we understand a map

$$\varphi: A \times A \to A$$
.

Since all the operations considered in this section are binary operations, we briefly call them **operations**. Usually, we denote operations by symbols like *, \cdot , +, and the image of an arbitrary pair $(x,y) \in A \times A$ is denoted by x * y, $x \cdot y$ (multiplicative notation), x + y (additive notation), respectively.

Examples 2. a) The usual addition and multiplication are operations on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , but not on the set of irrational numbers.

- b) The usual subtraction is an operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} , but not on \mathbb{N} .
- c) The usual division is an operation on $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$, but not on $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{N}, \mathbb{Z}, \mathbb{N}^*$ or \mathbb{Z}^* .

Definitions 3. Let * be an operation on A. We say that:

i) * is associative if

$$(a_1 * a_2) * a_3 = a_1 * (a_2 * a_3), \forall a_1, a_2, a_3 \in A;$$

ii) * is **commutative** if

$$a_1 * a_2 = a_2 * a_1, \ \forall a_1, a_2 \in A.$$

iii) $e \in A$ is an **identity element** for * if

$$a * e = e * a = a, \forall a \in A.$$

When using the multiplicative or additive notation, an identity element e is usually denoted by 1 or 0, respectively.

Definition 4. Let A be set and let \cdot be an operation with an identity element 1. An element $a \in A$ has an inverse if there exists an element $a' \in A$ such that

$$a \cdot a' = a' \cdot a = e$$
.

We say that a' is an **inverse** for a.

When using the multiplicative notation, the inverse of a is denoted by a^{-1} . When using the or additive notation the inverse of a is denoted by -a, and it is called **the opposite of** a.

Definitions 5. A pair (A, *) is called **monoid** if * is associative and it has an **identity element**. A monoid with a commutative operation is called **commutative monoid**.

Definition 6. A pair (A, \cdot) is called **group** if it is a monoid in which every element has an inverse. If the operation is commutative as well, the structure is called **commutative** or **Abelian group**.

Examples 7. a) $(\mathbb{N}, +)$ and (\mathbb{Z}, \cdot) are commutative monoids, but they are not groups.

- b) (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , (\mathbb{C},\cdot) are commutative monoids, but they are not groups since 0 has no inverse.
- c) $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, (\mathbb{Q}^*,\cdot) , (\mathbb{R}^*,\cdot) , (\mathbb{C}^*,\cdot) are Abelian groups.

Remark 8. The group definition can be rewritten: (A, \cdot) is a **group** if and only if it follows the following conditions:

- (i) $(a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3), \ \forall a_1, a_2, a_3 \in A \ (\cdot \text{ is associative});$
- (ii) $\exists 1 \in A, \ \forall a \in A : \ a \cdot 1 = 1 \cdot a = a$ (there exists an identity element for \cdot);
- (iii) $\forall a \in A, \exists a^{-1} \in A : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (all the elements of A have inverses).

Definitions 9. Let φ be an operation on the set A and $B \subseteq A$. We say that B is closed under φ if

$$b_1, b_2 \in B \Rightarrow \varphi(b_1, b_2) \in B$$
.

If B is closed under φ , one can define an operation on B as follows:

$$\varphi': B \times B \to B, \ \varphi'(b_1, b_2) = \varphi(b_1, b_2).$$

We call φ' the **operation induced** by φ on B or, briefly, the **induced operation**. Most of the time, we denote it also by φ .

Remarks 10. a) Let φ be an operation on the set $A, B \subseteq A$ closed under φ and let φ' be the induced operation on B. If φ is associative or commutative, then φ' is associative or commutative, respectively.

b) Let φ_1 and φ_2 be operations on A, let $B \subseteq A$ be closed under φ_1 and φ_2 , and let φ'_1 and φ'_2 be the operations induced by φ_1 and φ_2 on B, respectively. If φ_1 is distributive with respect to φ_2 , i.e.

$$\varphi_1(a_1, \varphi_2(a_2, a_3)) = \varphi_2(\varphi_1(a_1, a_2), \varphi_1(a_1, a_3)), \forall a_1, a_2, a_3 \in A,$$

then φ'_1 is distributive with respect to φ'_2 .

c) The existence of an identity element is not always preserved by induced operations. For instance, \mathbb{N}^* is closed in $(\mathbb{N}, +)$, but $(\mathbb{N}^*, +)$ has no identity element.

Definition 11. Let (G,\cdot) be a group. A subset $H\subseteq G$ is called a subgroup of G if:

i) H is closed under the operation of (G, \cdot) , that is,

$$\forall x, y \in H, \quad x \cdot y \in H;$$

ii) H is a group with respect to the induced operation.

Examples 12. a) \mathbb{Z} , \mathbb{Q} , \mathbb{R} are subgroups of $(\mathbb{C}, +)$, \mathbb{Z} , \mathbb{Q} are subgroups of $(\mathbb{R}, +)$ and \mathbb{Z} is a subgroup of $(\mathbb{Q}, +)$.

- b) \mathbb{Q}^* , \mathbb{R}^* are subgroups of (\mathbb{C}^*, \cdot) and \mathbb{Q}^* is a subgroup of (\mathbb{R}^*, \cdot) .
- c) \mathbb{N} is closed in $(\mathbb{Z}, +)$, but it is not a subgroup.
- d) Every non-trivial group (G, \cdot) has two subgroups, namely $\{1\}$ and G. Any other subgroup of (G, \cdot) is called **proper subgroup**.

Definition 13. Let (G, *), (G', \bot) be two groups. A map $f : G \to G'$ is called **homomorphism** (or **morphism**) if

$$f(x_1 * x_2) = f(x_1) \perp f(x_2), \ \forall \ x_1, x_2 \in G.$$

A bijective homomorphism is called **isomorphism**. A homomorphism of (G, *) into itself is called **endomorphism** of (G, *). An isomorphism al lui (G, *) into itself is called **automorphism** of (G, *). If there exists an isomorphism $f: G \to G$, we say that the groups (G, *) and (G', \bot) are isomorphic and we denote this by $G \simeq G'$ or $(G, *) \simeq (G', \bot)$.

Let us come back to the multiplicative notation.

Theorem 14. Let (G, \cdot) and (G', \cdot) be groups, and let 1 and 1', respectively, be the identity element of (G, \cdot) and (G', \cdot) , respectively. If $f: G \to G'$ is a group homomorphism, then:

- (i) f(1) = 1';
- (ii) $[f(x)]^{-1} = f(x^{-1}), \forall x \in G.$

Proof.

Definition 15. Let R be a set. A structure $(R, +, \cdot)$ with two operations is called:

(1) **ring** if (R, +) is an Abelian group, \cdot is associative and the distributive laws hold (that is, \cdot is distributive with respect to +).

(2) unitary ring if $(R, +, \cdot)$ is a ring and there exists a multiplicative identity element.

Definition 16. Let $(R, +, \cdot)$ be e unital ring. An element $x \in R$ which has an inverse $x^{-1} \in R$ is called **unit**. The ring $(R, +, \cdot)$ is called **division ring** if it is a unitary ring, $|R| \ge 2$ and any $x \in R^*$ is a unit. A commutative division ring is called **field**.

Definition 17. Let $(R, +, \cdot)$ be a ring. An element $x \in R^*$ is called **zero divisor** if there exists $y \in R^*$ such that

$$x \cdot y = 0$$
 or $y \cdot x = 0$.

We say that R is an **integral domain** if $R \neq \{0\}$, R is unitary, commutative and has no zero divisors.

Remarks 18. (1) Notice that $x \in R^*$ is not a zero divisor iff

$$y \in R$$
, $x \cdot y = 0$ or $y \cdot x = 0 \implies y = 0$.

(2) A ring R has no zero divisors if and only if

$$x, y \in R$$
, $x \cdot y = 0 \Rightarrow x = 0$ or $y = 0$.

- (3) $(R, +, \cdot)$ is a division ring if and only if it satisfies the following conditions:
 - i) (R, +) is an Abelian group;
 - ii) R^* is closed in (R, \cdot) and (R^*, \cdot) is a group;
 - iii) \cdot is distributive with respect to +.
- (4) The fields have no zero divisors. Moreover, every field is an integral domain.

Examples 19. (a) $(\mathbb{Z}, +, \cdot)$ is an integral domain, but it is not a field. Its units are -1 and 1.

- (b) $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ are fields.
- (c) Let $\{0\}$ be a single element set and let both + and \cdot be the only operation on $\{0\}$, defined by 0+0=0 and $0\cdot 0=0$. Then $(\{0\},+,\cdot)$ is a commutative unitary ring, called the **trivial ring** (or **zero ring**). The multiplicative identity element is, of course, 0, hence we can write 1=0. As matter of fact, this equality characterize the trivial ring.

Remark 20. If $(R, +, \cdot)$ is a ring, then (R, +) is a group and \cdot is associative, so that we may talk about multiples and positive powers of elements of R.

Definition 21. Let $(R,+,\cdot)$ be a ring, let $x\in R$ and let $n\in\mathbb{N}^*$. Then we define

$$n \cdot x = \underbrace{x + x + \dots + x}_{n \text{ terms}}, \ 0 \cdot x = 0, \ (-n) \cdot x = -n \cdot x,$$

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ factors}}.$$

If R is a unitary ring, then we may also consider $x^0 = 1$. If R is a division ring, then we may also define negative powers of nonzero elements x by

$$x^{-n} = (x^{-1})^n$$
.

Remark 22. Notice that in the definition $0 \cdot x = 0$, the first 0 is the integer zero and the second 0 is the zero element of the ring R, i.e., the identity element of the additive group (R, +).

Theorem 23. Let $(R, +, \cdot)$ be a ring and let $x, y, z \in R$. Then:

(i)
$$x \cdot (y-z) = x \cdot y - x \cdot z$$
, $(y-z) \cdot x = y \cdot x - z \cdot x$;

(ii) $x \cdot 0 = 0 \cdot x = 0$;

(iii)
$$x \cdot (-y) = (-x) \cdot y = -x \cdot y$$
.

Proof.

Definition 24. Let $(R, +, \cdot)$ be a ring and $A \subseteq R$. Then A is a subring of R if:

(1) A is closed under the operations of $(R, +, \cdot)$, that is,

$$\forall x, y \in A, x + y, x \cdot y \in A;$$

(2) $(A, +, \cdot)$ is a ring.

Remarks 25. (a) If $(R, +, \cdot)$ is a ring and $A \subseteq R$, then A is a subring of R if and only if A is a subgroup of (R, +) and A is closed in (R, \cdot) .

This follows directly from subring definition and Remark 10 b).

(b) A ring R may have subrings with or without (multiplicative) identity, as we will see in a forthcoming example.

Definition 26. Let $(K, +, \cdot)$ be a field and let $A \subseteq K$. Then A is called a **subfield of** K if:

(1) A is closed under the operations of $(K, +, \cdot)$, that is,

$$\forall x, y \in K, \ x + y, \ x \cdot y \in K;$$

(2) $(A, +, \cdot)$ is a field.

Remarks 27. (a) From (2) it follows that for a subfield A, we have $|A| \geq 2$.

- (b) If $(K, +, \cdot)$ is a field and $A \subseteq K$, then A is a subfield if and only if A is a subgroup of (K, +) and A^* is a subgroup of (K^*, \cdot) .
- (c) f $(K, +, \cdot)$ is a field and $A \subseteq K$, then A is a subfield if and only if A is a subring of $(K, +, \cdot)$, $|A| \ge 2$ and for any $a \in A^*$, $a^{-1} \in A$.

Examples 28. (a) Every non-trivial ring $(R, +, \cdot)$ has two subrings, namely $\{0\}$ and R, called the **trivial subrings**.

- (b) \mathbb{Z} is a subfield of $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$, \mathbb{Q} is a subfield of $(\mathbb{R}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$, \mathbb{R} is a subfield of $(\mathbb{C}, +, \cdot)$.
- (c) If K is a field, then $\{0\}$ is a subring of K which is not a subfield.

Definition 29. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings and $f: R \to R'$. Then f is called a **(ring)** homomorphism if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in R$$

$$f(x \cdot y) = f(x) \cdot f(y), \ \forall x, y \in R.$$

The notions of (ring) isomorphism, endomorphism and automorphism are defined as usual.

We denote by $R \simeq R'$ the fact that two rings R and R' are isomorphic.

Remark 30. If $f: R \to R'$ is a ring homomorphism, then the first condition from its definition tells us that f is a group homomorphism between (R, +) and (R', +). Thus,

$$f(0) = 0'$$
 and $f(-x) = -f(x), \forall x \in R$.

But in general, even if R and R' have multiplicative identities, denoted by 1 and 1' respectively, in general it does not follow that a ring homomorphism $f: R \to R'$ has the property that f(1) = 1'.

Examples 31. (a) Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings and let $f: R \to R'$ be defined by

$$f(x) = 0', \ \forall x \in R.$$

Then f is a homomorphism, called the **trivial homomorphism**. Notice that if R and $R' \neq \{0'\}$ have identities, we do not have f(1) = 1'.

- (b) Let $(R, +, \cdot)$ be a ring. Then the identity map $1_R : R \to R$ is an automorphism of R.
- (c) Let us take $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$ (where \overline{z} is the complex conjugate of z). Since

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2} \ \text{and} \ \overline{\overline{z}} = z,$$

f is an automorphism of $(\mathbb{C}, +, \cdot)$ and $f^{-1} = f$.

Definition 32. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be unitary rings with the multiplicative identity elements 1 and 1' respectively and let $f: R \to R'$ be a ring homomorphism. Then f is called a **unitary homomorphism** if f(1) = 1'.

Theorem 33. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be rings with identity elements 1 and 1' respectively and let $f: R \to R'$ be a unitary ring homomorphism. If $x \in R$ has an inverse element $x^{-1} \in R$, then f(x) has an inverse and $f(x^{-1}) = [f(x)]^{-1}$.

Proof.

Remark 34. Any non-zero homomorphism between two fields is a unitary homomorphism. Indeed, ...

The polynomial ring over a field

Let $(K, +, \cdot)$ be a field and let us denote by $K^{\mathbb{N}}$ the set

$$K^{\mathbb{N}} = \{ f \mid f : \mathbb{N} \to K \}.$$

If $f: \mathbb{N} \to K$ then, denoting $f(n) = a_n$, we can write

$$f = (a_0, a_1, a_2, \dots).$$

For $f = (a_0, a_1, a_2, ...), g = (b_0, b_1, b_2, ...) \in K^{\mathbb{N}}$ one defines:

$$f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots)$$
 (1)

$$f \cdot g = (c_0, c_1, c_2, \dots) \tag{2}$$

where

$$c_0 = a_0b_0,$$

$$c_1 = a_0b_1 + a_1b_0,$$

$$\vdots$$

$$c_n = a_0b_n + a_1b_{n-1} + \dots + a_nb_0 = \sum_{i+j=n} a_ib_j,$$

$$\vdots$$

Theorem 35. $K^{\mathbb{N}}$ forms a commutative unitary ring with respect to the operations defined by (1) and (2) called **the ring of formal power series over** K.

Proof. HOMEWORK

Let $f = (a_0, a_1, a_2, \dots) \in K^{\mathbb{N}}$. The **support of** f is the subset of \mathbb{N} defined by

$$\operatorname{supp} f = \{ k \in \mathbb{N} \mid a_k \neq 0 \}.$$

Let us denote by $K^{(\mathbb{N})}$ the subset consisting of all the sequences from $K^{\mathbb{N}}$ with a finite support. We have

$$f \in K^{(\mathbb{N})} \Leftrightarrow \exists n \in \mathbb{N} \text{ such that } a_i = 0 \text{ for } i \geq n \Leftrightarrow f = (a_0, a_1, a_2, \dots, a_{n-1}, 0, 0, \dots).$$

Theorem 36. i) $K^{(\mathbb{N})}$ is a subring of $K^{\mathbb{N}}$ which contains the multiplicative identity element. ii) The mapping $\varphi: K \to K^{(\mathbb{N})}, \ \varphi(a) = (a,0,0,\ldots)$ is an injective unitary ring morphism.

The ring $(K^{(\mathbb{N})}, +, \cdot)$ is called **polynomial ring** over K. How can we make this ring look like the one we know from high school?

The injective morphism φ allows us to identify $a \in K$ with $(a,0,0,\ldots)$. Thi way K can be seen as a subring of $K^{(\mathbb{N})}$. The polynomial

$$X = (0, 1, 0, 0, \dots)$$

is called **indeterminate** or **variable**. From (2) one deduces that:

$$\begin{split} X^2 &= (0,0,1,0,0,\dots) \\ X^3 &= (0,0,0,1,0,0,\dots) \\ \vdots \\ X^m &= (\underbrace{0,0,\dots,0}_{m~ori},1,0,0,\dots) \\ \vdots \\ \end{split}$$

Since we identified $a \in K$ with (a, 0, 0, ...), from (2) it follows:

$$aX^{m} = (\underbrace{0, 0, \dots, 0}_{m \text{ or } i}, a, 0, 0, \dots)$$
 (3)

This way we have

Theorem 37. Any $f \in K^{(\mathbb{N})}$ which is not zero can be uniquely written as

$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \tag{4}$$

where $a_i \in K$, $i \in \{0, 1, ..., n\}$ and $a_n \neq 0$.

We can rewrite

$$K^{(\mathbb{N})} = \{ f = a_0 + a_1 X + \dots + a_n X^n \mid a_0, a_1, \dots, a_n \in K, \ n \in \mathbb{N} \} \stackrel{\text{not}}{=} K[X].$$

The elements of K[X] are called **polynomials over** K, and if $f = a_0 + a_1X + \cdots + a_nX^n$ then $a_0, \ldots, a_n \in K$ are **the coefficients of** $f, a_0, a_1X \ldots, a_nX^n$ are called **monomials**, and a_0 is **the constant term of** f. Now, we can rewrite the operations from $(K[X], +, \cdot)$ as we did in high school (during the seminar).

If $f \in K[X]$, $f \neq 0$ and f is given by (4), then n is called **the degree of** f, and if f = 0 we say that the degree of f is $-\infty$. We will denote the degree of f by deg f. Thus we have

$$\deg f = 0 \Leftrightarrow f \in K^*$$
.

By definition

$$-\infty + m = m + (-\infty) = -\infty, -\infty + (-\infty) = -\infty, -\infty < m, \forall m \in \mathbb{N}.$$

Therefore:

- i) $\deg(f+g) \leq \max\{\deg f, \operatorname{grad} g\}, \forall f, g \in K[X];$
- ii) $\deg(fg) = \deg f + \deg g, \forall f, g \in K[X];$
- iii) K[X] is an integral domain (during the seminar);
- iv) a polynomial $f \in K[X]$ este is a unit in K[X] if and only if $f \in K^*$ (during the seminar). Here are some useful notions and results concerning polynomials:

If $f, g \in K[X]$ then

$$f \mid g \Leftrightarrow \exists \ h \in R, \ g = fh.$$

The divisibility | is reflexive and transitive. The polynomial 0 satisfies the following relations

$$f \mid 0, \ \forall f \in K[X] \text{ and } \nexists f \in K[X] \setminus \{0\} : \ 0 \mid f.$$

Two polynomials $f, g \in K[X]$ are associates (we write $f \sim g$) if

$$\exists \ a \in K^*: \ f = ag.$$

The relation \sim is reflexive, transitive and symmetric.

A polynomial $f \in K[X]^*$ is **irreducible** if deg $f \geq 1$ and

$$f = gh \ (g, h \in K[X]) \Rightarrow g \in K^* \text{ or } h \in K^*.$$

The gcd and lcm are defined as for integers, the product of a gcm and lcma af two polynomials f, g and the product fg are associates and the polynomials divisibility acts with respect to sum and product in the way we are familiar with from the integers case.

If
$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \in K[X]$$
 and $c \in K$, then

$$f(c) = a_0 + a_1c + a_2c^2 + \dots + a_nc^n \in K$$

is called the evaluation of f at c. The element $c \in K$ is a root of f if f(c) = 0.

Theorem 38. (The Division Algorithm in K[X]) For any polynomials $f, g \in K[X]$, $g \neq 0$, there exist $q, r \in K[X]$ uniquely determined such that

$$f = gq + r \text{ and } \deg r < \deg g. \tag{5}$$

Proof. (optional) Let $a_0, \ldots, a_n, b_0, \ldots, b_m \in K$, $b_m \neq 0$ and

$$f = a_0 + a_1 X + \dots + a_n X^n$$
 si $q = b_0 + b_1 X + \dots + b_m X^m$.

The existence of q and r: If f = 0 then q = r = 0 satisfy (5).

For $f \neq 0$ we prove by induction that that the property holds for any $n = \deg f$. If n < m (since $m \geq 0$, there exist polynomials f which satisfy this condition), then (5) holds for q = 0 and r = f.

Let us assume the statement proved for any polynomials with the degree $n \geq m$. Since $a_n X^n$ is the maximum degree monomial of the polynomial $a_n b_m^{-1} X^{n-m} g$, for $h = f - a_n b_m^{-1} X^{n-m} g$, we have deg h < n and, according to our assumption, there exist $g', r \in R[X]$ such that

$$h = qq' + r$$
 and $\deg r < \deg q$.

Thus, we have $f = h + a_n b_m^{-1} X^{n-m} g = (a_n b_m^{-1} X^{n-m} + q') g + r = gq + r$ where $q = a_n b_m^{-1} X^{n-m} + q'$. Now, the existence of q and r from (5) is proved.

The uniqueness of q and r: If we also have

$$f = gq_1 + r_1$$
 and $\deg r_1 < \deg g$,

then $gq + r = gq_1 + r_1$. It follows that $r - r_1 = g(q_1 - q)$ and $\deg(r - r_1) < \deg g$. Since $g \neq 0$ we have $q_1 - q = 0$ and, consequently, $r - r_1 = 0$, thus $q_1 = q$ and $r_1 = r$.

We call the polynomials q and r from (5) the quotient and the remainder of f when dividing by g, respectively.

Corollary 39. Let K be a field and $c \in K$. The remainder of a polynomial $f \in K[X]$ when dividing by X - c is f(c).

Indeed, from (5) one deduces that $r \in K$, and since f = (X - c)q + r, one finds that r = f(c). For r = 0 we obtain:

Corollary 40. Let K be a field. The element $c \in K$ is a root of f if and only if $(X - c) \mid f$.

Corollary 41. If K is a field and $f \in K[X]$ has the degree $k \in \mathbb{N}$, then the number of the roots of f from K is at most k.

Indeed, the statement is true for zero-degree polynomials, since they have no roots. We consider k > 0 and we assume the property valid for any polynomial with the degree smaller than k. If $c_1 \in K$ is a root of f then $f = (X - c_1)q$ and $\deg q = k - 1$. According to our assumption, q has at most k - 1 roots in K. Since K is a field, K[X] is an integral domain and from $f = (X - c_1)q$ it follows that $c \in K$ is a root of f if and only if $c = c_1$ or c is a root of f. Thus f has at most f roots in f.