Novel real-time calibration and alignment procedure for LHCb Run II

Claire Prouve, on behalf of LHCb collaboration

New challenges in Run II

- Increase in energy: $\sqrt{s} = 7(8) \text{ TeV} \Rightarrow 13 \text{ TeV}$
- 15% increase of inelastic collision rate
- 20% increase of multiplicity per collision
- 60% increase of $\sigma_{\rm bb}$ and $\sigma_{\rm cc}$
- Reduced bunch spacing: 50 ns ⇒ 25 ns

Real Time Alignment and Calibration

- Particle identification useable in HLT2
- Overall improved HLT2 efficiency
- Stable quality of alignment
- No more differences between online and offline

LHCb Trigger Schemes

The LHCb Detector

Performance and Impact on Physics

Alignment Farm and Framework

- Alignments performed for each fill
- HLT farm with 1700 nodes
- HLT1 line for each task
- Event reconstruction parallelised
- 1 iterator + 1700 analysers
- Steered by the run control using a Finite State Machine

Position of the tracking elements in x and y

- VELO, Tracker + Calibrations: automatic update of the constants if they differ by a given value
- RICH alignment + Muon System: monitoring mode

Tracker Alignment: VELO, Tracker, Muon System

constraints (e.g. magnetic field, particle masses)

Minimisation of residual of Kalman track fit using additional

RICH Calibration

HPD image calibration: Sobel fit performed for each HPD and used to provide calibration for each anode element.

Calorimeter Calibration

Occupancy calibration for each cell

- Scale the High Voltage by factor α to keep the gain stable by evaluating the variation of the occupancy $O = \frac{\sum^{ADC>thresh.} N_{events}}{N_{events}}$
- Updated per fill

Calibrate to the neutral π mass

- Fit the π^0 mass distribution for each cell for $\pi^0 \rightarrow \gamma \gamma$, one γ has its seed in the cell and use the offset to the nominal π^0 mass as calibration
- Run on the HLT-farm during TS

Independent alignments:

- VELO & Tracker: every O(1) fills
- Tracker: every O(1) weeks
- Muon system: XXX

Fill number [a.u.]

Example of alignment sequence

Read in alignment

find misalignments RUNNING

Set up Brunel

Reconstruct

events and fill histograms.

Reconstruct events and fil

histograms.

Outer Tracker Calibration

Global time alignment for all modules

Fit the residual of the drift time to extract the global time delay to caused by readout electronics

$$t_{\text{meas}} = t_0 + t_{\text{flight}} + t_{\text{drift}} + t_{\text{prop}}$$

Update triggered every O(10) runs

RICH Mirror Alignment

Orientation of the RICH mirrors in x and y

Fit the variation of the Cherenkov angle $\Delta\theta$ as a function of the polar angle φ to extract the misalignments on the detector plane (Θ_x, Θ_y) : $\Delta\theta = \Theta_x \sin\varphi + \Theta_v \cos\varphi$

Monitoring mode, update O(10) times a year