#### Ph.D. Dissertation Defense Presentation

# Boosted Feature Selection for Class Dedicated SVM and its Application in Fetal Health Prediction

Jinpyo Lee

# 1. Introduction

#### Motivation of Research

- SVM is high performance machine learning algorithm with advantages in high correct classification rate (CCR) and ability to avoid overfitting.
- This research intends to develop new feature selection / extraction and classification methodologies by overcoming high computational complexity on large-scale or multiclass data.
- For the purpose, this research searches for efficient algorithm by applying to Cardiotocography data, which is used in medical diagnosis of fetal state.

## Motivation of Research – Boosted Feature Selection

- Feature ranking methodologies apply reasonable criteria to individual feature.
- Applying the criteria to all instances of individual features is inefficient.
- The instances can be divided into 2 groups:
   (1) Easy to classify (2) Hard to classify.
- Feature selection focusing on (2) group is more efficient methodology to increase classification performance on Cardiotocography data.



Example of features with long vs. short distance

#### Motivation of Research – Class Dedicated SVM

- SVM is originally binary classifiers, developed for binary classification.
- Either One vs. One or One. vs. All classification architecture should be selected for multiclass classification.
- The classification performance of One vs. All classification is better even if it is more computationally expensive.
- One vs. All is favorable in feature selection depending on each binary classifications.

SVM 1

SVM 2

SVM 3

## Motivation of Research – Feature Extraction

• Feature extraction can increase classification performance by creating newly extracted features.

- New features extraction by clustering algorithm overcomes the disadvantage of one vs. all classification architecture, i.e., unbalanced number of instances in each class of binary classifications.
- New feature reconstruction by clustering algorithm resulted in improved sensitivity in literature of Cardiotocography data (Chamidah and Wasito, 2015)

## **Problem Description**

| The optimization method Av (% |                            | Average computing time (sec) |
|-------------------------------|----------------------------|------------------------------|
| GA 99                         | 9.0583<br>9.2708<br>9.0625 | 116.52<br>2063.60<br>908.45  |



#### Comparison of 3 optimization methods

Particle Swarm Optimization

- High complexity of SVM is due to parameter optimization of RBF by Grid Search.
- GS is more efficient than other optimization methods, GA or PSO with same CCR.
- This research intends to develop methodology for highest CCR and less complexity.

# **Problem Description**



The flow of diagnosis activity using Cardiotocography data

- Cardiotocography data is used in diagnosing fetal status until delivery.
- 3-class which consists of normal, suspect and pathologic class
- High dimensionality with 21 features

# **Fetal Disease Description**

The pathologic fetal state can be caused by the following disease conditions.

- Congenital malformation on bone, digestive organs etc.
- Hemolytic disease: Blood disorder in a fetus
- Hemorrhagic disease: Lack of blood clotting in a fetus
- Fetal obstructive uropathy: Abnormality in kidney or urine function.
- Low weight fetus: Fetus are not growing normally while pregnancy.

## **Problem Description**

#### The details of 3 classes

| No. | Code | Fetal<br>State | Number of<br>Instances | Ratio |
|-----|------|----------------|------------------------|-------|
| 1   | N    | Normal         | 1,655                  | 77.8% |
| 2   | S    | Suspect        | 295                    | 13.9% |
| 3   | P    | Pathologic     | 176                    | 8.3%  |
| Sum |      | 2,126          | 100.0%                 |       |

- Classification performance in literature is low CCR 91.6%, sensitivity 0.852
- 14.8% of pathologic status is incorrectly classified.
- Low reliability and inefficiency of decision support system
- Additional medical examination and cost are needed.

# **Problem Description**



Yilmaz and Kilikcier, 2013



Chamidah and Wasito, 2015

- Binary Decision Tree (BDT) architecture has a limitation.
- The misclassifications from SVM 1 negatively affects performance of SVM 2.
- This research developed improved feature selection / extraction and classification methodology to increase the accuracy.

#### Research Framework

#### Four Phases of Research Flow



- 1st Phase: Develop feature ranking PCA ensemble and validate performance
- 2<sup>nd</sup> Phase: Compare feature ranking criteria- LDA,PCA, Distance between classes
- 3rd Phase: Develop ranking method using distance among misclassified instances
- 4th Phase: Apply boosted feature selection, clustering and class-dedicated SVM.

## Research Objectives

- Develop classification methodology by applying
  - Various ranking criteria (CCR, PCA, LDA, Distance between classes)
  - Various kernels (Linear, Polynomial, Sigmoid, Radial Basis Function)
- Develop efficient algorithm depending on feature type
- Develop feature selection / extraction methodology for Cardiotocography data
- Develop classification methodology for multiclass Cardiotocography data, overcoming the limitation in literature.

# Research Contribution and Significance

- SVM ensemble achieves equivalent or higher CCR with less time complexity compared to literature.
- Developed boosting-based feature selection methodology, and evaluated the effectiveness.
- Developed improved classification methodology for Cardiotocography data and validated the effectiveness.
- Reliable and efficient decision support system to diagnose fetal status by predicting pathologic status accurately.

# Research Uniqueness and Contribution

- This research developed efficient ensemble algorithm by kernels selection in SVM and its combination with feature selection / extraction methods.
- This research developed new feature selection methodology based on distance between two classes on misclassified instances from SVM.
- This research developed new feature extraction methodology from clustering by adjusting number of clusters for improved classification on multiclass data.
- This research used Class-dedicated classification architecture for Cardiotocography data, contributing to building accurate decision support system.

# 2. Literature Review

# Comparison between Feature Selection and Feature Extraction

- Feature selection: Process to select features which contribute most to prediction variable or output
- Feature extraction: Process to extract new features which are informative and not redundant

| Method     | Advantages                                           | Disadvantages                  |
|------------|------------------------------------------------------|--------------------------------|
|            |                                                      | Discriminative power           |
| Selection  | Preserving data characteristics for interpretability | Lower shorter training times   |
|            |                                                      | Reducing overfitting           |
| Extraction | Higher discriminating power                          | Loss of data interpretability  |
| LAU deulon | Control overfitting when it is unsupervised          | Transformation maybe expensive |

Comparison between Feature Selection and Extraction (Hira and Gillies, 2015)

## **Feature Selection**

#### **Three Major Categories in Literature**

Filter, Wrapper, Embedded method

1. Filter method - Feature selection independent of the learning algorithm.



# **Example of Filter Method**

 Variable Ranking - Sort or arrange features of data according to certain criteria. (Chang, Y.W et al. 2008)

 mRMR - Penalize the feature's redundancy and maximize relevance of a feature set for the class. (Peng, H. et al, 2005)

Others: Relief-F, Chi Squared (CS), Gain Ratio (GR)

2. Wrapper method - Feedback from classifier is used to evaluate the quality of selected features.



# **Example of Wrapper Method**

Particle Swarm Optimization (PSO)- Optimizes a problem by iteratively trying
to improve a candidate solution
(Unler & Murat 2010, Yilmaz & Kilikcier, 2013)

Genetic Algorithm (GA) - Search problems by using operator such as mutation, crossover and selection.
 (Huang, C.L. et al. 2006, Zhang & Yang 2008, Ocak, H, 2012)

# 3. Embedded method - Construct feature subsets as part of building a classifier



• Example: Genetic Algorithm + Iterated Local Search (Duval, 2009)

#### **Feature Extraction**

- Principal Component Analysis (PCA) Extracts uncorrelated features in smaller dimensions. Unsupervised method.
   (Zhai,G. et al. 2015, Gao, X. et al. 2016)
- 2. Linear Discriminant Analysis (LDA) Reduces the dimension by maximizing the ratio of between-class scatter to within-class scatter (Safo & Ahn, 2016, Silva, A et al. 2016, Uncini, A et al. 2017)



#### **Feature Extraction**

- Canonical Correlation Analysis (CCA) Linear combinations of 2 vectors which have maximum correlation with each other.
   (Wang, Z. et al. 2007, Shen, C. et al. 2014)
- **4. ISOMAP** Nonlinear dimensionality reduction method (Park, H. 2012, Bu,Y. et al. 2014)  $A = U \Sigma V^T$



**5. Locally Linear Embedding (LLE)** – A method similar to ISOMAP, but more efficient. (Liu, X. et al. 2013, Coy,B. 2012)



## Classification

- Ensemble Results in CCRs with higher reliability compared to single model.
  - 1. Bagging: training identical model by restored random sampling data
  - 2. Boosting: assign weighted value on model which solved the difficult problem.





Bagging

Boosting

## Classification

3. **Stacking :** create model for best performance by combining different models.



Stacking

Ensemble method is used in the literature, Huang et al. 2017, Pujari & Gupta, 2012, Zhang & Yang, 2008, etc.

# Summary of Literature on Feature Selection/Extraction and Ensemble

- Wrapper method has an advantage of higher CCR compared to filter.
- PCA is effective in dimensional reduction and noise elimination.
- Ensemble methods are effective in increasing performance of model.
- The simultaneous use of various kernels has been researched.
- Lack of literature researching the advantage and disadvantage of kernels.
- Classification performance and complexity are in trade-off relation.

# Literature on Feature Selection / Classification of Cardiotocography Data

- LS-SVM and Particle Swarm Optimization by using BDT architecture (Yilmaz & Kilikcier, 2013)
  - Overall CCR 91.62%, sensitivity 0.767, specificity 0.969.
- Evaluation of fetal well-being by using SVM and Genetic Algorithm (GA) on 2-class (only normal & pathologic) data

(Ocak, H, 2013)

# Literature on Feature Selection / Classification of Cardiotocography Data

- Hybrid K-means and SVM in classification of fetal state by using BDT architecture and feature extraction (Chamidah & Wasito, 2015)
  - CCR, 90.6%. sensitivity 0.852, specificity 0.912. Seven extracted features used.

- Hybrid K-means and SVM for breast cancer diagnosis (Zheng, B et al. 2014)
  - Reduced computation time by maintaining the highest accuracy in literature.

# Literature on Feature Selection / Classification of Cardiotocography Data

- In literature of 3-class Cardiotocography data, Class-dedicated architecture has not been researched.
- Clustering algorithm has not been used with class-dedicated SVM.



The architecture of method in Yilmaz and Kilikcier, 2013





Research method in Chamidah and Wasito, 2015

#### Literature Review on Performance Criteria

There are 2 kinds of literatures: 2-class data vs. 3- class data

#### 1) Literature on 2-Class Cardiotocography data

The definition of sensitivity and specificity has been used in literature.
 (Krupa, N et al. 2011, Ocak, 2013)

• Only the literature which used 2-class (Normal & Pathologic) Cardiotocography data used the terms 'sensitivity' and 'specificity'.

• The 2-class classification methodology is not applicable to actual diagnosis activity because it distorts actual patterns of all patients.

#### Literature Review on Performance Criteria

#### 2) Literature on 3-Class Cardiotocography data

• The literature of this category calculated the correctly classified ratio per each class, not referring them as sensitivity or specificity.

• The term 'The CCR of class 2', which is used in this dissertation, has not been used in literature.

 However, it is the same as 'the percentage of suspect data points which are correctly classified as suspect'. (Yilmaz & Kilikcier, 2013)

# Gaps in Literature and Methodologies in This Research

• 6 Gaps in literature and methodologies in this research are summarized.

| No. | Referenced literature                                                                                | Gaps                                                                                          | The proposed methodology in this research                                                                                |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1   | Zhai, G. et al. (2015)<br>Gao, X. et al. (2016)<br>Maldonado, S. et al. (2009)<br>Li and Sun (2011)  | Feature classification rate ranking method and PCA were not used simultaneously.              | Feature classification rate ranking method and PCA were used complementarily to merge the advantages of both algorithms. |
| 2   | Li and Sun (2011)<br>Abdiansah, A. et al. (2015)<br>Gao, X. et al. (2016)<br>Lee, S.B. et al. (2017) | Reducing instances of training data to reduce computation time for grid search, was not used. | This research reduced instances of training data to reduce computation time for grid search.                             |

# Gaps in Literature and Methodologies in This Research

| No. | Referenced literature                                                                                                                               | Gaps                                                                                                                 | The proposed methodology in this research                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 3   | Huang & Wang (2006)<br>Chang & Lin (2008)<br>Maldonado, S. et al. (2009)<br>Chen, G. et al. (2015)<br>Lin, X. et al. (2018)                         | Searching for algorithms depending on feature type was not used.                                                     | This research searched for algorithms depending on feature type to reduce the computation time further.   |
| 4   | Wang, Z. et al. (2007) Bhavsar, H. et al. (2012) Wang, Z. et al. (2014) Abdiansah, A. et al. (2015) Gao, X. et al. (2016) Huang, M.W. et al. (2017) | Various options regarding the choice between the correct classification rate and computation time were not provided. | This research provided various algorithms with different correct classification rate and computation time |

# Gaps in Literature and Methodologies in This Research

| No. | Referenced literature                                                                                                                                                      | Gaps                                                                                                                                                                                            | The proposed methodology in this research                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | Chang, Y.W. et al. (2008)<br>Maldonado, S. et al. (2009)<br>Ocak, H (2012)<br>Ocak, H (2013)<br>Chamidah & Wasito (2015)<br>Yilmaz & Kilikcier (2013)<br>Wang & You (2013) | Boosted feature selection<br>methodology by using<br>wrapper method based on<br>sorting according to the<br>distance between classes<br>among misclassified<br>instances, has not been<br>used. | This research used boosted feature selection methodology and proved the effectiveness by applying to other data and classifiers.                         |
| 6   | Ocak, H (2012)<br>Ocak, H (2013)<br>Chamidah & Wasito (2015)<br>Yilmaz & Kilikcier (2013)                                                                                  | Class-dedicated SVMs<br>have not been applied to<br>the classification of 3-<br>class Cardiotocography<br>data.                                                                                 | This research developed class-dedicated classification architecture to increase the performance of classification methodology for Cardiotocography data. |

# 3. Methodology

#### Research Framework

#### Four Phases of Research Flow

#### 4th Phase 2<sup>nd</sup> Phase 3rd Phase 1st Phase Develop Develop Feature Develop Boosted Compare Classification Selection/Extraction Feature Selection Performance of Methodology for Methodology and Various Feature Method and Validate Cardiotocography Evaluate Ranking Criteria Performance data. Performance

- 1st Phase: Develop feature ranking PCA ensemble and validate performance
- 2<sup>nd</sup> Phase: Compare ranking criteria i.e, LDA,PCA, Distance between classes
- 3<sup>rd</sup> Phase: Develop ranking method using distance among misclassified instances
- 4th Phase: Apply boosted feature selection, clustering and class-dedicated SVM.

# 1st Phase: Develop Feature Selection / Extraction Methodology

Developing 4 kinds of Feature ranking-PCA ensemble algorithms



 Develop and evaluate performance of feature ranking – PCA ensemble algorithms by composing different combinations with kernels.

# 4 Kinds of Rank-PCA Ensemble Algorithms

| Feature selection or extraction | Fe         | ature   | ranki  | ng     | PCA        |         |        |        |  |
|---------------------------------|------------|---------|--------|--------|------------|---------|--------|--------|--|
| Kernel in SVM                   | Polynomial | Sigmoid | Radial | Linear | Polynomial | Sigmoid | Radial | Linear |  |
| 8 Combinations                  | 0          | 0       | 0      | 0      | 0          | 0       | 0      | 0      |  |
| 6 Combinations                  | 0          | 0       |        | 0      | 0          | 0       |        | 0      |  |
| 4 Combinations                  | 0          |         | 0      | 0      |            |         | 0      |        |  |
| 2 Combinations                  |            |         |        | 0      |            |         |        | 0      |  |

- 8 Combinations includes all kernels to maximize the CCR regardless of time.
- 6 Combinations excludes the most time-consuming RBF, degrading CCR.
- 4 Combinations includes RBF, and exclude other kernels not contributing to CCR.
- 2 Combinations includes only linear SVMs, pursuing the least time complexity.

# 1<sup>st</sup> Phase: Develop Feature Selection / Extraction Methodology

Developing efficient algorithms depending on feature type



- Develop efficient ensemble depending on number of classes or feature type
- Finally, compare performance on the same data in literature.

# 2<sup>nd</sup> Phase: Comparing Performance of Various Feature Ranking Criteria



- Compare the effectiveness of various of feature ranking criteria and PCA.
- Analyze the condition on which each method is the most effective.

# 3<sup>rd</sup> Phase: Developing Boosted Feature Selection and Validating Performance



- Boosted Feature Selection uses the distance between classes only on misclassified instances, as feature ranking criteria.
- Apply to Cardiotocography, other data and other classifiers

# 4<sup>th</sup> Phase: Developing Classification Methodology for Cardiotocography Data



- Implement boosted feature selection, K-means clustering, class-dedicated SVM
- Compare performance with literature on the same conditions.
- Validate effectiveness by applying to different multiclass data

### Data Preparation – 2-class and Multiclass data

| No. | Data                       | Number<br>of<br>Classes | Number<br>of<br>instances | Number<br>of<br>features |
|-----|----------------------------|-------------------------|---------------------------|--------------------------|
| 1   | Parkinson disease          | 2                       | 195                       | 22                       |
| 2   | Sonar                      | 2                       | 208                       | 60                       |
| 3   | Heart disease              | 2                       | 270                       | 14                       |
| 4   | Ionosphere                 | 2                       | 351                       | 33                       |
| 5   | Breast cancer (diagnostic) | 2                       | 569                       | 30                       |
| 6   | Breast cancer              | 2                       | 683                       | 9                        |
| 7   | Australian credit card     | 2                       | 690                       | 14                       |
| 8   | Indian diabetes            | 2                       | 768                       | 8                        |
| 9   | German credit card         | 2                       | 1,000                     | 20                       |
| 10  | NBA rookie                 | 2                       | 1,340                     | 19                       |

| No. | Data          | Number<br>of<br>Classes | Number<br>of<br>instances | Number<br>of<br>features |
|-----|---------------|-------------------------|---------------------------|--------------------------|
| 1   | Zoo           | 7                       | 101                       | 16                       |
| 2   | Iris 3        |                         | 150                       | 4                        |
| 3   | Soybean       | 15                      | 266                       | 35                       |
| 4   | Dermatology   | 6                       | 358                       | 34                       |
| 5   | Vehicle       | 4                       | 846                       | 18                       |
| 6   | Flare         | 6                       | 1,389                     | 12                       |
| 7   | Contraceptive |                         |                           | 9                        |

- 17 data (10 2-class & 7 multi) of different instances and features are prepared.
- Omissions in data sets were deleted and all features were normalized.

# Data preparation – Cardiotocography data

- 2,126 instances, 21 features and 3 classes (Fetal state)
- 17 metric and 4 categorical features
- Outliers are not found in the normalized feature values.

#### The distribution of 3 classes

| No. | Code | Fetal<br>State | Number of<br>Instances | Ratio  |
|-----|------|----------------|------------------------|--------|
| 1   | N    | Normal         | 1,655                  | 77.8%  |
| 2   | S    | Suspect        | 295                    | 13.9%  |
| 3   | P    | Pathologic     | 176                    | 8.3%   |
|     | Su   | m              | 2,126                  | 100.0% |

#### The description and type of features

| No. | Name of Feature | Detail Description                                      | Feature Type<br>(M: Metric<br>C: Categorical) |
|-----|-----------------|---------------------------------------------------------|-----------------------------------------------|
| 1   | LB              | FHR base line (beats per minute)                        | M                                             |
| 2   | AC              | Number of accelerations per second                      | M                                             |
| 3   | FM              | Number of fetal movements per second                    | M                                             |
| 4   | UC              | Number of uterine contractions per second               | M                                             |
| 5   | DL              | Number of light decelerations per second                | M                                             |
| 6   | DS              | Number of severe decelerations per second               | С                                             |
| 7   | DP              | Number of prolonged decelerations per second            | С                                             |
| 8   | ASTV            | Percentage of time with abnormal short term variability | M                                             |
| 9   | MSTV            | Mean value of short term variability                    | M                                             |
| 10  | ALTV            | Percentage of time with abnormal long term variability  | M                                             |
| 11  | MLTV            | Mean value of long term variability                     | M                                             |
| 12  | Width           | Width of FHR histogram                                  | M                                             |
| 13  | Min             | Minimum of FHR historgram                               | M                                             |
| 14  | Max             | Maximum of FHR histogram                                | М                                             |
| 15  | Nmax            | Number of histogram peaks                               | M                                             |
| 16  | Nzeros          | Number of histogoram zeros                              | С                                             |
| 17  | Mode            | Histogram mode                                          | M                                             |
| 18  | Mean            | Histogram mean                                          | М                                             |
| 19  | Median          | Histogram median                                        | М                                             |
| 20  | Variance        | Histogram variance                                      | M                                             |
| 21  | Tendency        | Histogram tendency                                      | С                                             |

## Feature Ranking Method

| Order of input | Combination of features                               |
|----------------|-------------------------------------------------------|
| 1              | Top1                                                  |
| 2              | Tap 1, Top2                                           |
| 3              | Top 1, Top2, Top3                                     |
| 4              | Tap 1, Top2, Top3, Top4                               |
| 5              | Tap 1, Tap 2, Tap 3, Tap 4, Tap 5                     |
| 6              | Tap1, Tap2, Tap3, Tap4, Tap5, Tap8                    |
| 7              | Tap 1, Tap 2, Tap 3, Tap 4, Tap 5, Tap 6, Tap 7       |
| 8              | Tap 1, Top2, Top3, Top4, Tap5, Tap6, Tap7, Top8       |
| 9              | Тар 1, Тор2, Тор3, Тор4, Тар5, Тар6, Тар7, Тор8, Тор9 |



#### Criteria:

- Same classifier
- LDA
- Distance between classes
- The possible combinations of feature increases exponentially as number of feature increases.
- Ranking method is effective in feature selection if appropriate criteria is applied.

# Feature Ranking Method (referred as 'Rank') by CCR from SVM

- 1. Calculate CCR of each feature by SVM and sort features accordingly.
- 2. Searching for parameters by cumulatively adding top-ranked features.
- 3. Test by using the optimized parameters and obtain CCR.



- Advantage: The characteristics of original feature can be used
- Disadvantage: Multicollinearity among features decreases CCR

# Principal Component Analysis (PCA)

- Convert correlated features into linearly uncorrelated features, i.e., principal components (PC).
- Extracts features into smaller dimensions.





| Order of input | Combination of principal components         |
|----------------|---------------------------------------------|
| 1              | PC1                                         |
| 2              | PC1, PC2                                    |
| 3              | PC1, PC2, PC3                               |
| 4              | PC1, PC2, PC3, PC4                          |
| 5              | PC1, PC2, PC3, PC4, PC5                     |
| 6              | PC1, PC2, PC3, PC4, PC5, PC8                |
| 7              | PC1, PC2, PC3, PC4, PC5, PC8, PC7           |
| 8              | PC1, PC2, PC3, PC4, PC5, PC8, PC7, PC8      |
| 9              | PC1, PC2, PC3, PC4, PC5, PC8, PC7, PC8, PC9 |

Advantage: Effective in reducing high dimensions of data with multicollinearity

# Linear Discriminant Analysis (LDA)





|    | Order of input | Combination of features                              |
|----|----------------|------------------------------------------------------|
|    | 1              | Top1                                                 |
|    | 2              | Top1, Top2                                           |
|    | 3              | Top1, Top2, Top3                                     |
|    | 4              | Top1, Top2, Top3, Top4                               |
|    | 5              | Tap1, Top2, Top3, Top4, Tap5                         |
|    | 6              | Tap1, Top2, Top3, Top4, Tap5, Tap8                   |
| ly | 7              | Tap1, Tap2, Tap3, Tap4, Tap5, Tap6, Tap7             |
|    | 8              | Tap1, Tap2, Tap3, Tap4, Tap5, Tap6, Tap7, Tap8       |
|    | 9              | Top1, Top2, Top3, Top4, Top5, Top6, Top7, Top8, Top9 |

- Reduces the dimension by maximizing the ratio of between-class scatter to within-class scatter after supervised learning.
- Advantage: Computation time is short.
- Disadvantage: works well only on data with linear characteristics.

#### Distance between Classes

Feature selection by using discriminatory power from distance between two classes

$$d_{ij} = \frac{1}{N_i N_j} \sum_{k=1}^{N_i} \sum_{m=1}^{N_j} dist(\mathbf{x}_i^k, \mathbf{x}_j^m)$$

 $X_i^k: k^{th}$  sample in class  $w_i$   $dist(\mathbf{x}_i^k, \mathbf{x}_j^m)$ : Distance between the 2 samples  $N_i$ : The total number of samples in class  $w_i$ 





Example of features with long vs. short distance

- The distance represents degree of separation of two classes.
- Long distance means high discriminatory power.
- Advantage : CCR can increase further
- Disadvantage: Calculation is computationally expensive if data is large.

# Support Vector Machine (SVM)

• Searches for a hyperplane maximizing margin between the points in the two classes, which is closest to the hyperplane.





• Perform non-linear classification by kernel trick, which maps inputs into high-dimensional feature spaces.



## Parameter Optimization of SVM kernels

Polynomial, sigmoid and RBF require parameter optimization before training.

1. Linear 
$$k(x_1, x_2) = x_1^T x_2$$
 No parameter

- 2. Polynomial  $k(x_1, x_2) = (\gamma x_1^T x_2 + \text{Coef})^d$  Search for  $\gamma$
- 3. Radial basis  $k(x_1, x_2) = \exp(-\gamma ||x_1 x_2||^2)$  Search for  $\gamma$  and C
- 4. Sigmoid  $k(x_1, x_2) = \tanh(\gamma x_1^T x_2 + \text{Coef})$  Search for  $\gamma$
- Search for the parameters which produces highest CCR.
- Searching for γ and C in RBF is the most time-consuming due to grid search

# Architecture of Rank-PCA based SVM Ensemble Algorithm



- Applied techniques are
  - Various feature ranking criteria (CCR, PCA, LDA, Distance between classes)
  - Various kernels in SVM (Linear SVM, Polynomial, Sigmoid, RBF)
  - Wrapper method
  - Ensemble method

# Efficient Algorithm Depending on Feature Type

#### Criteria of classifying feature type

| Feature type Description of type |                                                         |  |  |  |  |  |  |
|----------------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| Motrio                           | (1) Continuous values (e.g. 0.3826)                     |  |  |  |  |  |  |
| Metric                           | (2) Integers representing degree (e.g. 1, 2, 3, 4,, 10) |  |  |  |  |  |  |
| Categorical                      | Symbols representing category (e.g. 1,2,3, & A, B, C)   |  |  |  |  |  |  |

- Features in all data is marked as Metric or Categorical.
- The ratio of metric features is calculated per each data.
- To eliminate redundancy, compose efficient ensemble by selecting only the kernels which contributes to highest CCR.

# Comparison of Classification Architecture







**Class-Dedicated SVM** 

- BDT has been used in literature to extend the binary SVM to multiclass.
- In BDT, misclassification from SVM1 negatively affects SVM2.
- Dedicated SVM improves performance, focusing on increasing CCR of each class.
- In this research, the performances of the two architecture are compared.

#### **Boosted Feature Selection**



Flow of algorithm – Feature ranking by SVM + Distance between classes + SVM

- Select misclassified instances from SVM, applying boosting concept.
- Calculate the distance between classes among the misclassified instances.
- Sort features according to the distance and use wrapper method to select feature subset for the highest CCR.

# Validation of Boosted Feature Selection by Applying to Other Classifiers



- Applied to AdaBoost and Random Forest to verify effectiveness regardless of classifiers.
- The feature ranking is based on misclassification from decision tree because they use decision tree as basic classifier.

# Validation of Boosted Feature Selection by Applying to Other Classifiers



PCA + AdaBoost + Wrapper method for dimension decision

• In case of AdaBoost which is sensitive to noise, PCA is also implemented as a preprocessing because PCA reduces noise in data.

# Flow of Algorithm - Improved Classification Methodology



Boosted feature selection selects the features with higher discriminatory power.

$$d_{ij} = \frac{1}{N_i N_j} \sum_{k=1}^{N_i} \sum_{m=1}^{N_j} dist(\mathbf{x}_i^k, \mathbf{x}_j^m)$$

 $X_i^k: k^{th}$  sample in class  $w_i$ 

 $dist(\mathbf{x}_{i}^{k},\mathbf{x}_{j}^{m})$ : Distance between the 2 samples

 $N_i$ : The total number of samples in class  $w_i$ 

The optimum number of clusters are determined by k-means clustering algorithm.

$$\min_{S} \sum_{i=1}^{k} \sum_{x \in s_i} ||x - \mu_i||^2$$

Calculate the values of mean by K-means clustering algorithms.

New Features are extracted by Fuzzy Membership Function

FuzzyMembershipFunction

$$\begin{split} f_{np}\left( \ \mathbf{X}_{\mathbf{j}}^{\mathbf{i}} \ \right) &= 1 - \frac{|X_{j}^{\mu_{np}} - X_{j}^{\mathbf{i}}|}{\max |X_{j}^{\mu_{np}} - X_{j}^{n}|} \quad \text{if } \min(X_{j}^{n}) \leq X_{j}^{\mathbf{i}} \leq \max(X_{j}^{n}), \ \forall \mathbf{n} \in S_{np} \end{split}$$
 
$$f_{np}\left( \ \mathbf{X}_{\mathbf{j}}^{\mathbf{i}} \ \right) &= 0 \qquad \qquad \text{if otherwise}; \end{split}$$

• Calculate the output value of fuzzy membership function by using the information on new patterns.

#### New Feature Extraction

$$\begin{split} EF_{np} = & \frac{1}{NSF} \sum_{j=1}^{NSF} f_{np} \left( X_j^i \right), \ 1 \leq np \leq K^N + K^S + K^P \ \ \text{(clustering within N and within S+P)} \\ & 1 \leq np \leq K^N + K^{S+P} \ \text{(clustering within N and within N+P)} \\ & 1 \leq np \leq K^S + K^{N+P} \ \text{(clustering within S and within N+P)} \\ & 1 \leq np \leq K^P + K^{N+S} \ \text{(clustering within P and within N+S)} \end{split}$$

- Extract new features by summing the output of all patterns.
- Search for improved model by adjusting the number of clusters.

Confusion Matrix

Original



Specificity = CCR of Class 
$$1 = \frac{TP_1}{TP_1 + FP_1}$$
 CCR of Class  $2 = \frac{TP_2}{TP_2 + FP_2}$  Sensitivity = CCR of Class  $3 = \frac{TP_2}{TP_2 + FP_2}$ 

CCR of Class 
$$2 = \frac{TP_2}{TP_2 + FP_2}$$

Sensitivity = CCR of Class 
$$3 = \frac{TP_3}{TP_3 + FP_3}$$

- Each of the binary classifications is class-dedicated SVM.
- In each, Normal, Suspect, Pathologic is regarded as positive, respectively.

# 4. Experimental Result on 2-Class and Multiclass Data

## Performance of 4 Kinds of Rank-PCA Ensemble Algorithms



100.0% 90.0% 80.0% 67.5% 66.8% 65.1% 65.3% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0%

CCR vs. Time

Feature reduction rate

- Various combinations show different performance of CCR and time complexity.
- Reduced data is applied to GS of RBF (Rank  $\frac{1}{12}$ , PCA  $\frac{1}{3}$ ) in 4 combinations.
- Feature reduction rates are almost at the same level.

# Summary of Performance of 3 Kinds of Algorithms



• Time reduction rates increase significantly as instances increase.

# Performance of Efficient Algorithm Depending on Feature Type – 2 class data

|     | Dete          | Number of | Number         | Number<br>of       | Ratio of          | High                   | est CCR                             | Efficient                    |  |
|-----|---------------|-----------|----------------|--------------------|-------------------|------------------------|-------------------------------------|------------------------------|--|
| No. | Data          | instances | of<br>features | Metric<br>features | Metric<br>feature | Feature ranking or PCA | Kernel                              | Algorithm                    |  |
| 1   | Parkinson     | 195       | 22             | 22                 | 100.0%            | PCA                    | Radial                              |                              |  |
| 2   | Sonar         | 208       | 60             | 60                 | 100.0%            | PCA                    | Radial                              |                              |  |
| 3   | Breast (diag) | 569       | 30             | 30                 | 100.0%            | PCA                    | Linear                              | Feature                      |  |
| 4   | Breast        | 683       | 9              | 9                  | 100.0%            | PCA                    | Sigmoid/Radial/Linear               | ranking (L)<br>+ PCA (S/R/L) |  |
| 5   | Rookie        | 1,340     | 19             | 19                 | 100.0%            | Feature ranking        | Linear                              | . 1 0/1 (0/11/2)             |  |
| 6   | Diabetes      | 768       | 8              | 8                  | 100.0%            | Feature ranking        | Linear                              |                              |  |
| 7   | Ionosphere    | 351       | 33             | 32                 | 97.0%             | PCA                    | Radial                              |                              |  |
| 8   | Australian    | 690       | 14             | 8                  | 57.1%             | Feature ranking        | Polynomial                          | Feature                      |  |
| 9   | Heart         | 270       | 14             | 5                  | 35.7%             | Feature ranking        | Polynomial/Sigmoid<br>Radial/Linear | ranking                      |  |
| 10  | German        | 1,000     | 20             | 4                  | 20.0%             | Feature ranking        | Radial                              | (P/S/R/L)                    |  |

- Only the kernels contributing to highest CCR, are selected.
- Feature ranking is more effective on data with lower metric ratio.
- Further time reduction is 39%, compared to 4 combination algorithm.

# Performance of Efficient Algorithm depending on Feature Type – Multiclass data

| No  | Dete          | Number of | Number of | Number of | Number of<br>Metric | Ratio of          | Highes                    | st CCR                | Efficient          |
|-----|---------------|-----------|-----------|-----------|---------------------|-------------------|---------------------------|-----------------------|--------------------|
| No. | Data          | classes   | instances | features  | features            | Metric<br>feature | Feature ranking<br>or PCA | Kernel                | Algorithm          |
| 1   | Iris          | 3         | 150       | 4         | 4                   | 100.0%            | Feature ranking           | Sigmoid               |                    |
| 2   | Vehicle       | 4         | 846       | 18        | 18                  | 100.0%            | Feature ranking<br>PCA    | Radial                |                    |
| 3   | Soybean       | 15        | 266       | 35        | 35                  | 100.0%            | Feature ranking           | Radial                |                    |
| 4   | Contraceptive | 3         | 1473      | 9         | 2                   | 22.2%             | Feature ranking           | Radial                | Feature<br>ranking |
| 5   | Dermatology   | 6         | 358       | 34        | 1                   | 2.9%              | Feature ranking<br>PCA    | Sigmoid/Radial/Linear | (S/R)              |
| 6   | Zoo           | 7         | 101       | 16        | 0                   | 0.0%              | Feature ranking<br>PCA    | Sigmoid/Radial/Linear |                    |
| 7   | Flare         | 6         | 1389      | 12        | 0                   | 0.0%              | Feature ranking           | Radial                |                    |

- PCA is not effective in producing higher CCR on multiclass data.
- Further time reduction is 70%, compared to 4 combination algorithm.

# Performance of 4 combinations of Rank-PCA Ensemble on 2-class data

NF = Number of used Features

|                                |               |             | Pı          | roposed  |         |     | GA                        | ı   | Propo | sed  | GA-ens                    | emble | Proposed |      | SVM RF | E+AT |
|--------------------------------|---------------|-------------|-------------|----------|---------|-----|---------------------------|-----|-------|------|---------------------------|-------|----------|------|--------|------|
| No.                            | Data          | Sensitivity | Specificity | CC       | R       | NF  | CCR                       | NF  | CCR   | NF   | CCR                       | NF    | CCR      | NF   | CCR    | NF   |
|                                |               | ,           |             | Training | Testing |     | 0011                      |     |       |      |                           |       |          |      | 0011   |      |
| 1                              | Parkinson     | 1.000       | 0.750       | 91.7     | 94.9    | 6   |                           |     |       |      |                           |       |          |      |        |      |
| 2                              | Breast (diag) | 1.000       | 1.000       | 100.0    | 100.0   | 4   |                           |     |       |      |                           |       |          |      |        |      |
| 3                              | Rookie        | 0.838       | 0.564       | 83.0     | 73.9    | 5   |                           |     |       |      |                           |       |          |      |        |      |
| 4                              | German        | 0.397       | 0.939       | 90.2     | 78.0    | 13  | 85.6                      | 13  |       |      |                           |       |          |      |        |      |
| 5                              | Australian    | 0.855       | 0.916       | 97.6     | 97.1    | 1   | 88.1                      | 3   |       |      |                           |       |          |      |        |      |
| 6                              | Diabetes      | 0.579       | 0.885       | 89.9     | 80.5    | 7   | 81.5                      | 3.7 |       |      |                           |       |          |      |        |      |
| 7                              | Heart         | 1.000       | 1.000       | 100.0    | 100.0   | 1   | 94.8                      | 5.4 |       |      |                           |       |          |      |        |      |
| 8                              | Breast        | 0.981       | 0.989       | 97.5     | 100.0   | 2   | 96.2                      | 1   |       |      |                           |       |          |      |        |      |
| 9                              | Sonar         | 0.798       | 0.929       | 97.1     | 90.5    | 11  | 98                        | 15  | 87.8  | 10.0 | 84.0                      | 12    |          |      |        |      |
| 10                             | Ionosphere    | 1.000       | 0.938       | 98.6     | 97.1    | 10  | 98.6                      | 6   | 98.6  | 11.0 | 93.5                      | 10    | 97.1     | 15   | 86.3   | 5    |
|                                | Average       | 0.845       | 0.891       | 94.6     | 91.2    | 6.0 | 91.8                      | 6.7 | 93.2  | 10.5 | 88.7                      | 11.0  | 97.1     | 15.0 | 86.3   | 5.0  |
| Cross-validation Training 90%, |               |             | , Testing 1 | 0%       | -       |     | Training 80%, Testing 20% |     |       | 20%  | Training 50%, Testing 50% |       |          |      |        |      |

- Performances are compared to literature with the same Cross-validation.
- The comparison results are graphically represented in upcoming slides.

# Performance of Efficient Ensemble Algorithm for Multiclass Data

| No.              | Data        | Proposed                  |                                   |                                   | SVM-RFE-Taguchi |                                   |                                   | Difference |                                     |
|------------------|-------------|---------------------------|-----------------------------------|-----------------------------------|-----------------|-----------------------------------|-----------------------------------|------------|-------------------------------------|
|                  |             | CCR                       | Original<br>Number of<br>Features | Number of<br>Selected<br>Features | CCR             | Original<br>Number of<br>Features | Number of<br>Selected<br>Features | CCR        | Feature<br>Reduction<br>Rate<br>(%) |
| 1                | Dermatology | 98.6                      | 34                                | 34                                | 95.4            | 34                                | 23                                | 3.2        | -47.8%                              |
| 2                | Zoo         | 100.0                     | 12                                | 8                                 | 97              | 12                                | 12                                | 3.0        | 33.3%                               |
| Average          |             | 99.3                      | 23.0                              | 21.0                              | 96.2            | 23.0                              | 17.5                              | 3.1        | -20.0%                              |
| Cross-validation |             | Training 80%, Testing 20% |                                   |                                   |                 |                                   |                                   |            |                                     |
| Cross-validation |             | Fraining 80%, Testing 20% |                                   |                                   |                 |                                   |                                   |            |                                     |

- Compared to literature, proposed efficient algorithm shows higher CCR by 3.1%
- Compared to literature, the feature reduction rate is not always lower.

# Comparison with Approaches in Literature



- Compared to GA, proposed method shows equivalent CCR.
- Compared to GA-ensemble (SVM, DT, ANN) & variations of SVM, proposed method shows higher CCR.

## Comparison with Approaches in Literature



 However, the number of used features are not always less, compared to literature.

#### Comparison of 4 Different Feature Ranking Criteria

|         |               | Number Number |                 | Number         | Ratio of             | Correct Classification Rate (%)  |                     |                     |                                  |  |  |  |
|---------|---------------|---------------|-----------------|----------------|----------------------|----------------------------------|---------------------|---------------------|----------------------------------|--|--|--|
| Class   | Data          | of<br>Classes | of<br>Instances | of<br>Features | Numerical<br>feature | Rank by SVM(RBF)<br>+ Linear SVM | PCA<br>+ Linear SVM | LDA<br>+ Linear SVM | Rank by Distance<br>+ Linear SVM |  |  |  |
|         | Breast        | 2             | 683             | 9              | 100.0%               | 97.8                             | 98.5                | 98.5                | 99.3                             |  |  |  |
|         | Parkinson     | 2             | 195             | 22             | 100.0%               | 92.3                             | 89.7                | 92.3                | 94.9                             |  |  |  |
|         | Sonar         | 2             | 208             | 60             | 100.0%               | 80.5                             | 75.6                | 80.5                | 70.7                             |  |  |  |
|         | Breast(diag)  | 2             | 569             | 30             | 100.0%               | 100.0                            | 100.0               | 100.0               | 100.0                            |  |  |  |
| 2       | Diabetes      | 2             | 768             | 8              | 100.0%               | 78.4                             | 76.5                | 77.1                | 80.4                             |  |  |  |
|         | NBA rookie    | 2             | 1,340           | 19             | 100.0%               | 73.9                             | 73.5                | 73.9                | 74.6                             |  |  |  |
|         | lonosphere    | 2             | 351             | 33             | 97.0%                | 97.1                             | 97.1                | 97.1                | 97.1                             |  |  |  |
|         | Heart         | 2             | 270             | 14             | 35.7%                | 100.0                            | 100.0               | 100.0               | 100.0                            |  |  |  |
|         | German        | 2             | 1,000           | 20             | 20.0%                | 72.0                             | 73.0                | 71.0                | 72.5                             |  |  |  |
|         | Average       | 2.0           | 598.2           | 23.9           |                      | 88.0                             | 87.1                | 87.8                | 87.7                             |  |  |  |
|         | Iris          | 3             | 150             | 4              | 100.0%               | 96.7                             | 96.7                | 93.3                | 89.0                             |  |  |  |
|         | Soybean       | 15            | 266             | 35             | 100.0%               | 90.6                             | 83.0                | 88.7                | 98.2                             |  |  |  |
|         | Vehicle       | 4             | 846             | 18             | 100.0%               | 78.1                             | 79.3                | 78.1                | 88.6                             |  |  |  |
| Multi   | Contraceptive | 3             | 1,473           | 9              | 22.2%                | 50.7                             | 50.7                | 53.9                | 100.0                            |  |  |  |
| IVIUILI | Dermatology   | 6             | 358             | 34             | 2.9%                 | 97.2                             | 98.6                | 95.8                | 99.1                             |  |  |  |
|         | Flare         | 6             | 1,389           | 12             | 0.0%                 | 75.9                             | 75.9                | 75.5                | 89.9                             |  |  |  |
|         | Zoo           | 7             | 101             | 16             | 0.0%                 | 100.0                            | 100.0               | 100.0               | 100.0                            |  |  |  |
|         | Average       | 6.3           | 654.7           | 18.3           |                      | 84.2                             | 83.5                | 83.6                | 95.0                             |  |  |  |
| Total   | Average       | 3.9           | 622.9           | 21.4           |                      | 86.3                             | 85.5                | 86.0                | 90.9                             |  |  |  |

- 4 feature ranking criteria are compared on 2-class and multiclass data
- The highest CCRs are red-colored.

## Comparison of 4 Different Feature Ranking Criteria on 2-class Data

0.0

Rank by

SVM(RBF)

+ Linear SVM





CCR of each data

Average CCR

+ Linear SVM +Linear SVM

PCA

LDA

CCR of the 4 methods are almost same (87.55 ± 0.45%)

Rank by

Distance

+ Linear SVM

## Comparison of 4 Different Feature Ranking Criteria on Multiclass Data







CCR of each data

Average CCR

- Distance between classes is the most effective. (95.0%)
- Effective on multiclass & large data with large instances or high dimension.
- The effectiveness is also strengthened by one. vs. all multiclass classification.

#### 5. Experimental Result on Cardiotocography Data

#### Boosted Feature Selection of Cardiotocography Data

Comparison of performance – SVM without FS vs. Boosted FS

| Class     | Number of<br>Instances                              | SVM (<br>with No Featt<br>(A          | re Selection                     | Rank by Dis<br>missclassifica<br>+ SVM (I | tion by SVM                      | Improvement (B-A)                     |                                  |  |
|-----------|-----------------------------------------------------|---------------------------------------|----------------------------------|-------------------------------------------|----------------------------------|---------------------------------------|----------------------------------|--|
| Class     | used for Calculating<br>Distance between<br>Classes | Correct<br>Classification<br>Rate (%) | Number<br>of Selected<br>Feature | Correct<br>Classification<br>Rate (%)     | Number<br>of Selected<br>Feature | Correct<br>Classification<br>Rate (%) | Feature<br>Reduction<br>Rate (%) |  |
| 1 vs. 2&3 | 151                                                 | 92.6                                  | 21                               | 94.0                                      | 11                               | 1.4                                   | 47.6                             |  |
| 2 vs. 1&3 | 179                                                 | 92.2                                  | 21                               | 93.5                                      | 10                               | 1.3                                   | 52.4                             |  |
| 3 vs. 1&2 | 61                                                  | 97.4                                  | 21                               | 97.7                                      | 11                               | 0.3                                   | 47.6                             |  |
| Average   | 130.3                                               | 94.1                                  | 21.0                             | 95.1                                      | 10.7                             | 1.0                                   | 49.2                             |  |

- CCR increases by 1.0%, features reduced by 49.2%, sensitivity & specificity increases by 2.8% (0.739) and 0.2% (0.997), compared to none feature selection.
- CCR increases by 3.5 % compared to literature (BFS + One vs. all architecture).

#### Validation by Applying to Other Data (Contraceptive Data)

#### Comparison of performance – SVM without FS vs. Boosted FS

|           | Number of<br>Instances                              | SVM (<br>with No Featu<br>(A          | ne Selection                     | Rank by Dis<br>mis sclass ifica<br>+ SVM (F | tion by SVM                      | Improvement (B-A)                     |                                  |  |
|-----------|-----------------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------------|----------------------------------|---------------------------------------|----------------------------------|--|
| Class     | used for Calculating<br>Distance between<br>Classes | Correct<br>Classification<br>Rate (%) | Number<br>of Selected<br>Feature | Correct<br>Classification<br>Rate (%)       | Number<br>of Selected<br>Feature | Correct<br>Classification<br>Rate (%) | Feature<br>Reduction<br>Rate (%) |  |
| 1 vs. 2&3 | 482                                                 | 67.2                                  | 9                                | 69.5                                        | 3                                | 2.3                                   | 66.7                             |  |
| 2 vs. 1&3 | 339                                                 | 76.9                                  | 9                                | 78.7                                        | 5                                | 1.8                                   | 44.4                             |  |
| 3 vs. 1&2 | 361                                                 | 66.3                                  | 9                                | 67.6                                        | 8                                | 1.3                                   | 11.1                             |  |
| Average   | 394.0                                               | 70.1                                  | 9.0                              | 71.9                                        | 5.3                              | 1.8                                   | 40.7                             |  |

- Contraceptive data has 3 classes, 1,473 instances and 9 features (2 M & 7 C).
- The CCR increases by 1.8%, and the features are reduced by 40.7%.

### Validation of Boosted Feature Selection by Applying to Other Classifiers



- Boosted Feature Selection increases the CCR of AdaBoost & Random Forest by 1.6% and 2.0% respectively.
- In case of AdaBoost, boosted feature selection is more effective than PCA.

## Result of Improved Classification Methodology for Cardiotocography Data

Methodologies in BDT vs. Class-dedicated architectures

| Classific | ation /     | Architecture                        | Binary        | Decisio       | n Tree       | 3 Class-dedicated SVMs |                                                          |               |                  |  |
|-----------|-------------|-------------------------------------|---------------|---------------|--------------|------------------------|----------------------------------------------------------|---------------|------------------|--|
| cv        | Pei         | iteria for<br>formance<br>valuation | C&W<br>(2015) | Y&K<br>(2013) | SVM<br>(RBF) | SVM<br>(RBF)           | Boosted<br>Feature<br>Selection<br>+ Clustering<br>+ SVM | Ada-<br>Boost | Random<br>Forest |  |
| Train:    | CCR         | Training                            | N/A           | N/A           | 91.2         | 94.6                   | 98.6                                                     | 97.3          | 94.2             |  |
| 90%       | (%)         | Testing                             | 90.6          | 91.6          | 89.5         | 92.7                   | 98.5                                                     | 90.6          | 92.9             |  |
| Test:     | Sensitivity |                                     | 0.852         | 0.767         | 0.778        | 0.712                  | 0.983                                                    | 0.824         | 0.882            |  |
| 10%       | Specificity |                                     | 0.912         | 0.969         | 0.968        | 0.968                  | 0.995                                                    | 0.975         | 0.988            |  |
| Train:    | CCR         | Training                            |               |               |              | 93.8                   | 98.7                                                     | 96.4          | 94.1             |  |
| 75%       | (%)         | Testing                             |               |               |              | 90.6                   | 96.3                                                     | 91.9          | 93.6             |  |
| Test:     | Se          | ensitivity                          |               |               |              | 0.718                  | 0.983                                                    | 0.881         | 0.881            |  |
| 25%       | Sį          | pecificity                          |               |               |              | 0.978                  | 0.996                                                    | 0.973         | 0.988            |  |

Class-dedicated SVM is implemented on both 10-fold CV and 4-fold CV.

#### Comparison of BDT and Class Dedicated Architecture



- Two architectures are compared on same condition, SVM with RBF kernel.
- Class-dedicated architecture shows 3.2% higher CCR but 0.066 lower sensitivity.

#### Comparison of Proposed Methodology with Literature



- The proposed methodology overcomes disadvantage of class-dedicated architecture.
- CCR, sensitivity, specificity are increased by 6.9%, 0. 216, 0.026 respectively.

#### Comparison of 4 Methodologies in Class Dedicated Architecture



- The methodology outperforms SVM (RBF kernel), AdaBoost and RF in all criteria.
- The CCR is higher than RF by 2.7%. The sensitivity is higher than RF by 0.102.

#### Tree Diagram in Searching for the High Performance Model



- The number of extracted features can be reduced by merging other classes.
- The performance can be improved by increasing k in the low CCR class.

#### Determining Optimal Number of Clusters (k) for Improved Model

| Мо          | del                           | Α     | В                        | С     | D     | E     |
|-------------|-------------------------------|-------|--------------------------|-------|-------|-------|
| Number      | Class N                       | k=1   | k=3 (N) vs.<br>k=2 (S&P) | k=3   | k=3   | k=3   |
| of          | Class S                       | k=1   | k=2 (S) vs.<br>k=3 (N&P) | k=2   | k=3   | k=4   |
| Clusters    | Class P                       | k=1   | k=3 (P) vs.<br>k=2 (N&S) | k=3   | k=3   | k=3   |
|             | Number of<br>Reduced Features |       | 5                        | 8     | 9     | 10    |
| CCR         | Training                      | 90.0  | 97.3                     | 98.7  | 97.7  | 98.2  |
| (%)         | Testing                       | 82.6  | 94.8                     | 96.3  | 96.3  | 96.9  |
| Sensitivity |                               | 0.721 | 0.978                    | 0.983 | 0.920 | 0.898 |
| Speci       | ficity                        | 0.978 | 0.987                    | 0.996 | 0.996 | 0.998 |

- The model B and C show the higher performances compared to other models.
- Model B reduced features from 21 to 5. (The least is 7, Chamidah and Wasito, 2015)
- The number of clusters in Class S is critical in increasing sensitivity.

#### Comparison of Clustering Structure between Model B and Model C



- In model B, k is determined within target class and within merged other classes.
- In model C, k is determined in each of the 3 classes.

#### Performance Evaluation by Sensitivity & Specificity

The performance of 5 models depending on different number of clusters (k)



• Both the model B (0.983 / 0.996) and C (0.978 / 0.987) show the higher performances in terms of sensitivity / specificity compared to other models.

#### Procedure to Apply to Diagnosis Activity

Positive predictive value:
 Probability that subjects with a positive screening test truly have the disease

Negative predictive value:
 Probability that subjects with a negative screening test truly don't have the disease

Apply the concept to 3 classes of Cardiotocography data.

#### Procedure to Apply to Diagnosis Activity

 Calculate (1) Normal (Negative) (2) Suspect (3) Pathologic (Positive) Predictive Values, respectively.



Normal Predictive Value = 
$$\frac{TP_1}{TP_1 + FN_1}$$
 Suspect Predictive Value =  $\frac{TP_2}{TP_2 + FN_2}$ 

Pathologic Predictive Value =  $\frac{TP_3}{TP_3 + FN_3}$ 

In Model B, Predictive values are 95.1%(Normal), 98.1%(Suspect), 100.0%(Pathologic)

#### Tree Diagram for Diagnosing Fetal State

- Prioritize use of class-dedicated SVM of higher predictive value: Class3 > Class 2
- Class 1-dedicated SVM is not needed because the predictive value is the lowest.



- If prediction from class 3 dedicated SVM is class 3, the outcome is Pathologic.
- If prediction is class 1 or 2, the outcome depends on class 2 dedicated SVM.

90

## Result of Validation of Methodology by Applying to Other Multiclass Data

| No. | Data               | Number<br>of<br>Classes | Number<br>of<br>Instances | _        | Number<br>of<br>Extracted<br>Features | Perfo       | eria for<br>ormance<br>luation | SVM<br>(RBF)<br>(A) | Boosted<br>Feature<br>Selection<br>+ Clustering<br>+ SVM<br>(B) | AdaBoost | Random<br>Forest | Increase<br>(B-A) |
|-----|--------------------|-------------------------|---------------------------|----------|---------------------------------------|-------------|--------------------------------|---------------------|-----------------------------------------------------------------|----------|------------------|-------------------|
|     |                    |                         |                           |          |                                       | CCR         | Training                       | 93.8                | 98.7                                                            | 96.4     | 94.1             | 4.9               |
| 1   | Cardio-            | 3                       | 2 126                     | 2,126 21 | 8                                     | (%)         | Testing                        | 90.6                | 96.3                                                            | 91.9     | 93.6             | 5.7               |
| 1   | tocography         |                         | 2,126                     | 21       | 0                                     | Sen         | sitivity                       | 0.718               | 0.881                                                           | 0.265    |                  |                   |
|     |                    |                         |                           |          |                                       | Specificity |                                | 0.978               | 0.996                                                           | 0.973    | 0.988            | 0.018             |
|     | Contra-<br>ceptive | 3                       |                           |          |                                       | CCR         | Training                       | 62.0                | 87.7                                                            | 53.5     | 43.2             | 25.7              |
|     |                    |                         |                           |          |                                       | (%)         | Testing                        | 34.9                | 67.2                                                            | 41.4     | 43.1             | 32.3              |
| 2   |                    |                         | 1,473                     | 9        | 6                                     | Class 1 CCR |                                | 0.473               | 0.811                                                           | 0.497    | 0.529            | 0.338             |
|     |                    |                         |                           |          | _                                     | Class 2 CCR |                                | 0.183               | 0.681                                                           | 0.345    | 0.299            | 0.498             |
|     |                    |                         |                           |          |                                       | Clas        | s 3 CCR                        | 0.277               | 0.498                                                           | 0.360    | 0.400            | 0.221             |
|     |                    |                         |                           |          | 13                                    | CCR         | Training                       | 83.4                | 87.9                                                            | 78.4     | 67.4             | 4.5               |
|     |                    | 4                       | 846                       | 18       |                                       | (%)         | Testing                        | 65.8                | 81.0                                                            | 65.4     | 73.0             | 15.2              |
| 3   | Vehicle            |                         |                           |          |                                       | Clas        | s 1 CCR                        | 0.933               | 0.955                                                           | 0.883    | 1.000            | 0.022             |
| 3   | venicie            |                         |                           |          |                                       | Clas        | s 2 CCR                        | 0.458               | 0.676                                                           | 0.311    | 0.333            | 0.218             |
|     |                    |                         |                           |          |                                       | Clas        | s 3 CCR                        | 0.429               | 0.727                                                           | 0.464    | 0.518            | 0.298             |
|     |                    |                         |                           |          |                                       | Clas        | s 4 CCR                        | 0.844               | 0.860                                                           | 0.900    | 1.000            | 0.016             |

The methodology is applied to data with different number of instances and features.

#### Comparison of CCR on 3 Multiclass Data



- Proposed methodology outperforms Random Forest and SVM on all 3 data.
- CCR is higher than RF by 11.6 %, and higher than SVM by 17.7% on average.

#### Comparison of CCR of Each Class on Contraceptive Data



The proposed methodology shows balanced higher sensitivity, specificity, CCR of class compared to SVM without FS, AdaBoost and Random Forest.

#### Comparison of CCR of Each Class on Vehicle Data



• The proposed methodology shows balanced higher sensitivity, specificity, CCRs of class compared to SVM without FS, AdaBoost and Random Forest.

#### 6. Conclusion

# 1. Implemented various methodologies in terms of feature selection / extraction methods, kernel selection in SVM and composition of ensemble methods to improve the performance of SVM.

- The CCR of proposed feature ranking-PCA ensemble outperforms the method on the same 2-class and multiclass data in literature.
- Proposed efficient methodology for large-scale data by reducing data size for Grid Search of RBF kernel. Time complexity is significantly reduced.
- Proposed efficient methodology depending on feature type.
- Compared feature ranking criteria and selected suitable one for multiclass data.

## 2. Proposed Boosted feature selection methodology on Cardiotocography data, prioritizing the features with maximum discriminatory power.

- Features reduced by 49.2% compared to SVM without feature selection.
- CCR increases by 3.5% compared to literature.
- CCR increases by 1.0% compared to SVM without feature selection.
- Effective on other multiclass data. (feature reduction rate 40.7%)
- The methodology is more effective on data with larger error rate.
- The methodology is effective on AdaBoost and Random Forest.

## 3. This research proposed improved classification methodology on Cardiotocography data for more accurate diagnosis on fetal state.

- Used the boosted feature selection, feature extraction by K-means clustering and class-dedicated SVM for 3-class Cardiotocography data.
- Overcame the disadvantage of BDT classification architecture.
- Increase: CCR by 6.9%, sensitivity by 0.131 compared to literature.
- The pathologic class is predicted 13.1% more accurately compared to literature.
- The features are reduced from 21 to 5, reducing computational complexity.
- Contribute in building more reliable and efficient decision support system.

#### Titles of Two Paper Drafts

- 1. Boosted Feature Selection Methodology for Class Dedicated SVM and Its Application in Fetal Health Prediction. (focused on Methodology)
- 2. Boosted Feature Selection for Class Dedicated SVM and Its Application in Fetal Health Prediction. (focused on Application)

#### Acknowledgement

I deeply thank faculty advisor, Professor Susan Lu and Committee members, Professor Nagendra Nagarur, Professor Harold W. Lewis, Professor Changqing Cheng for a lot of advices for my dissertation research and writing of this dissertation.