

LÓGICA: HISTÓRIA E FUNDAMENTOS (GCH272)

Listas de Exercícios

Nome: Ayron Sanfra Silva Marinho

Matrícula: 202120158

LISTA I

1- Preencha as lacunas considerando as valorações informadas:

Legenda: X = V; Y = F; A = V; B = F

Obs.: Veja o que está sendo pedido em cada tópico, atenção para as regras de cada operador solicitado. A legenda indica o valor fixo das constantes, basta aplicar a isso usando as regras.

A - Qual o valor da disjunção das proposições abaixo:

XVY

- \rightarrow X = V
- → X = F
- \rightarrow XVY=YVF=V

YVB

- → Y = F
- → B = F
- → YVB=FVF=F

B - Qual o valor da conjunção das proposições abaixo:

X ^ Y

- → X = V
- \rightarrow Y = F
- \rightarrow X \land Y = V \land F = F

- → A = V
- → X = V
- \rightarrow X \wedge A = V \wedge V = V

C - Qual o valor da condicional das proposições abaixo:

$X \rightarrow Y$

- → X = V
- → X = F
- \rightarrow X \rightarrow Y = V \rightarrow F = F

$(X \wedge Y) \rightarrow (A \vee B)$

- → X = V
- → Y = F
- → A = V
- → B = F
- \rightarrow (X \land Y) \rightarrow (A \lor B) = (\lor \land F) \rightarrow (\lor \land F) = F \rightarrow V = \lor

D - Qual o valor da bicondicional das proposições abaixo:

$$X \leftrightarrow Y$$

- → X = V
- \rightarrow Y = F
- \rightarrow X \leftrightarrow Y = (V \wedge F) V (\neg V \wedge F) = F V V = V

$$X \leftrightarrow A$$

- → X = V
- → A = V
- \rightarrow X \leftrightarrow A = (V \land V) V (\neg V \land \neg V) = V V V = V

E - Qual o valor da negação das proposições abaixo:

- → X = V
- \rightarrow B = F
- → ¬(X ∧ B) = ¬(V ∧ F) = ¬F = V

$$\sim$$
[(A V B) $^{\land}$ (X \rightarrow Y)]

- → A = V
- → B = F
- → X = V
- \rightarrow Y = F
- \rightarrow $\neg[(V \lor F) \land (V \rightarrow F)] = \neg[V \land F] = \neg F = V$

LISTA II

1 - Considerando:

V1 - X= não sairei de casa; Y = vou ao cinema.

V2 - X = Está frio; Y = Não há ônibus.

Traduza os enunciados usando as duas referências (V1 e V2):

- A) ~X
 - → (Não sairei de casa)
- B) $Y \leftrightarrow X$
 - → (Vou ao cinema se e somente se não sairei de casa)
- C) Y ^ X
 - → (Vou ao cinema e não sairei de casa)
- D) $\sim X \rightarrow Y$
 - → (Se não sairei de casa, então vou ao cinema)
- E) ~~ X
 - → (Não não sairei de casa, ou seja, sairei de casa)
- F)X V ~Y
 - → (Não sairei de casa ou não vou ao cinema)
- G) $X V Y \rightarrow \sim Y$
 - → (Se está frio ou não há ônibus, então não há ônibus)
- H) ~X ^ ~Y
 - → (Não está frio e não há ônibus.)
- I) $(X \lor Y) \rightarrow (Y \lor X)$
 - → (Se está frio ou não há ônibus, então há ônibus ou está frio.)
- $J) (\sim X \wedge Y) \leftrightarrow (\sim X)$
 - → (Não está frio e há ônibus, se e somente se não está frio.)

2 - Considerando:

- P = André foi ao centro
- S = Não há dinheiro
- Z = O banco está fechado

Coloque os enunciados em linguagem simbólica:

- A) Se André foi ao centro e não há dinheiro, então o banco está fechado.
 - **→** (P∧S)→Z
- B) O banco está fechado e não há dinheiro, se e somente se, André foi ao centro.
 - \rightarrow $(Z \land S) \leftrightarrow P$
- C) Não há dinheiro ou o banco está fechado, André não foi ao centro.
 - → (~PVZ) \ ~P
- D) Se André foi ao centro e o banco não está fechado, então há dinheiro.
 - **→** (P ∧ ~Z)→~S
- 3 As proposições abaixo são tautológicas, contraditórias ou contingentes? (construa a tabela de verdade de cada uma)

V: Verdadeiro, F: Falso

A)
$$\sim$$
(F V B) \leftrightarrow (\sim F V \sim B)

Tautologia

B) A V (
$$A \rightarrow B$$
)

Contingência

Contingência

D)
$$\sim$$
(A V B) \rightarrow \sim (C ^ B)

Contingência

$$E) \: [P {\rightarrow} \: (P \to Q)] \to Q$$

Contingência

$$F) [(P \rightarrow Q) \rightarrow R] \leftrightarrow [(Q \rightarrow P) \rightarrow R]$$

Contingência

LISTA III

1 - Utilize as tabelas rápidas e indique se as proposições abaixo são tautologias, contradições ou contingências:

$$A - (p \lor q) \land \sim p$$

Contingente

B - p
$$\wedge$$
 (p \rightarrow q) \wedge (p \rightarrow ~q)

Contradição

$$C - p \land (p \lor q) \rightarrow (p \lor q) \land q$$

Contingente

$$D - \sim (p \rightarrow q) \ \land \ ((\sim p \ \land \ q) \ \lor \ \sim (p \ \lor \ q))$$

Contingente

$$E - \sim p \rightarrow (p \lor \sim (p \lor \sim q))$$

Contradição

$$F - (P \rightarrow Q) \leftrightarrow (\sim Q \rightarrow \sim P)$$

Tautologia

$$G - (P \rightarrow Q) \leftrightarrow [(P \lor Q) \leftrightarrow Q]$$

Contingente

$$H - [P \rightarrow (Q \rightarrow R)] \leftrightarrow [Q \rightarrow (P \rightarrow R)]$$

Tautologia

Contradição

$$J - \sim B \rightarrow (C V F)$$

Contingente

2 - Simbolize e indique se os enunciados são tautologias:

a)Mover o bispo é suficiente para perder o peão, mas se eu movimentar a rainha, poderei tomar a torre. Além disso, há possibilidade de eu empatar se e somente se nem perder o peão, nem tomar a torre.

P: Mover o bispo é suficiente para perder o peão.

Q: Mover a rainha.

R: Tomar a torre.

S: Perder o peão.

T: Empatar.

Simbolização: $(P \land \neg S) \land (Q \rightarrow R) \land (T \leftrightarrow \neg (S \lor R))$

A expressão não é uma tautologia.

b) Se um computador está em condições de alterar a sua programação sempre que é útil aos cientistas que se preocupam com a teoria do aprendizado e ele, na verdade, não é útil, então o computador não está em condições de alterar a sua programação. Além disso, se o computador altera a sua programação, ele há de ser útil.

A: O computador está em condições de alterar a sua programação.

B: É útil aos cientistas que se preocupam com a teoria do aprendizado.

C: O computador altera a sua programação.

Simbolização: $(A \land B \land \neg C) \rightarrow \neg A \land (C \rightarrow B)$

A expressão não é uma tautologia.

3 - Os argumentos abaixo são válidos ou inválidos? Apresente o teste:

a)
$$1 - A \rightarrow B$$
$$2 - C \rightarrow \sim B$$
$$C - A \rightarrow \sim C$$

Teste: A conclusão segue logicamente das premissas? Podemos usar a regra do modus tollens para verificar.

$$(1)A \rightarrow B$$

 $(2)C \rightarrow ^{\sim} B$
∴ $C \rightarrow ^{\sim} A$

Se supomos que C é verdadeiro, então ~B é verdadeiro (usando 2). Como A→B, então ~A é verdadeiro. Portanto, a conclusão segue logicamente.

Conclusão: O argumento é válido.

b) 1 - (A V B)
$$\rightarrow$$
 C ^(D ^E) 2 - B C - C ^ D

Teste: A conclusão segue logicamente das premissas? Vamos analisar: Aqui, não podemos derivar C \(\D \) D diretamente das premissas. Portanto, o argumento é inválido.

c) 1 - (A ^B)
$$\rightarrow$$
 (C ^D) 2 - \sim C C - \sim A

Teste: O argumento (c) é uma tentativa de usar a regra de contraposição. A regra de contraposição diz que p \rightarrow q é logicamente equivalente a $^{\sim}q\rightarrow^{\sim}p$. Portanto, aplicando isso ao item 1, teríamos:

$$^{\sim}(C \wedge D) \rightarrow ^{\sim}(A \wedge B)$$

No entanto, a premissa 2 (~C) não é suficiente para permitir a aplicação direta dessa regra. O argumento é inválido porque a conclusão não pode ser logicamente derivada das premissas fornecidas.

d)
1 - (D ^E)
$$\rightarrow$$
 ~F
2 - F V (G ^H)
3 - D \leftrightarrow E
C - D \rightarrow G

Aqui, a conclusão (C) é D→G. Vamos analisar as premissas:

 $(D \land E) \rightarrow {}^{\sim}F$: Isso significa que se $D \land E$ for verdadeiro, então ${}^{\sim}F$ é verdadeiro.

 $FV(G \land H)$: Isso significa que F é verdadeiro ou $G \land H$ é verdadeiro.

D↔E: Isso significa que D é verdadeiro se e somente se E é verdadeiro.

A conclusão $D \rightarrow G$ não segue logicamente das premissas fornecidas. Portanto, o srgumento é inválido. O raciocínio para $D \rightarrow G$ não é suportado pelas premissas fornecidas.

LISTA IV

1- Prove a equivalência lógica entre as seguintes expressões usando a tabela verdade:

Ambas as colunas são idênticas, provando a equivalência lógica.

B)
1.
$$p \rightarrow q$$

2. $\neg p \lor q$

Ambas as colunas são idênticas, provando a equivalência lógica.

Ambas as colunas são idênticas, provando a equivalência lógica.

Ambas as colunas são idênticas, provando a equivalência lógica.

Ambas as colunas são idênticas, provando a equivalência lógica.

2 - Prove a consistência lógica entre as seguintes expressões usando o teste rápido:

Vamos usar as leis de absorção, distributiva e identidade para provar a consistência lógica entre as expressões sem recorrer à tabela verdade.

```
A)
1 - (p \land q) \lor (\neg p \land \neg q)
2 - (p \lor q) \land (\neg p \lor \neg q)
Prova:
(p \land q) \lor (\neg p \land \neg q)
=[(p \land q) \lor \neg p] \land [(p \land q) \lor \neg q]
=[\neg p \lor (p \land q)] \land [\neg q \lor (p \land q)]
=(\neg p \lor \neg q) \land (p \land q)
```

Ambas as expressões são equivalentes após aplicar as leis de absorção. Portanto, são logicamente consistentes.

```
B)
1 - (p \lor q) \land (\neg p \lor q)
2 - (p \land \neg q) \lor (q \land r)
Prova:
(p \lor q) \land (\neg p \lor q)
= (p \land \neg p) \lor (p \land q) \lor (q \land \neg p) \lor (q \land q)
= 0 \lor (p \land q) \lor 0 \lor q
= (p \land q) \lor q
```

Ambas as expressões não são logicamente equivalentes, mas não há uma contradição lógica evidente entre elas.

```
C)

1 - p \land (q \lor r)

2 - (p \land q) \lor (p \land r)

Prova:

p \land (q \lor r)

= (p \land q) \lor (p \land r)
```

As expressões são equivalentes devido à lei distributiva. Portanto, são logicamente consistentes.