Analysis 3 – Quiz zur Vorlesungswiederholung robin.mader@campus.lmu.de 8.2.2023

 $Gelten\ die\ folgenden\ Aussagen?\ Begr\"{u}nde\ deine\ Behauptungen.$

#	Aussage	Ja	Nein	Begründung
1	Sei $f \colon [0,1] \to \mathbb{R}$ integrierbar. Dann gilt für Lebesgue-fast alle $x \in [0,1]$: $f(x) \le \operatorname{ess\ sup}_{y \in [0,x]} f(y) .$			
2	Für f wie eben ist die Funktion $]0,1[\to\mathbb{R}, x\mapsto \int_{[0,x]}f(y)dy,$ fast überall differenzierbar.			
3	Die Menge der Lebesgue-messbaren Mengen in \mathbb{R}^N ist eine σ -Algebra.			
4	Wenn $\lambda^*(E) = 0$ für $E \subset \mathbb{R}^N$, dann ist E Lebesgue-messbar.			
5	Eine nichtleere offene Menge im \mathbb{R}^N hat positives Lebesgue-Maß.			
6	Die Funktion $\mathbb{1}_{\mathbb{Q}\cap[0,1]}$ ist Riemannintegrierbar.			
7	Seien $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ nicht integrierbar. Dann ist $f+g: \mathbb{R} \to \mathbb{R}$ nicht integrierbar.			
8	Überabzählbare Lebesgue-Mengen haben positives Lebesgue-Maß.			
9	Die Menge der Maße auf einem messbaren Raum bildet einen \mathbb{R} -Vektorraum.			
10	Es gibt eine Lebesgue-messbare Menge $E \subset \mathbb{R}$ mit $ E = \infty$, auf der die Funktionenfolge $(\mathbbm{1}_{[n,n+1]})_{n\in\mathbb{N}}$ gleichmäßig konvergiert.			
11	Sei $A\subset\mathbb{R}^2$ messbar. Für alle Kurven (d.h., 1-dim. Untermannigfaltigkeiten) $C\subset\mathbb{R}^2$ sei $A\cap C$ abzählbar. Dann gilt: $ A =0$.			
12	Seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f_n \colon \Omega \to \mathbb{R}, n \in \mathbb{N}$, eine Folge messbarer Funktionen. Dann gilt: $\{\omega \in \Omega \mid (f_n(\omega))_{n \in \mathbb{N}} \text{ konvergiert}\} \in \mathcal{A}.$			

#	Aussage	Ja	Nein	Begründung				
13	Sei $E \subset \mathbb{R}$ Lebesgue-messbar. Dann ist $f: [0,1] \to \mathbb{R}, x \mapsto [0,x] \cap E $, messbar.							
14	Seien $f: \mathbb{R}^N \to \mathbb{R}^N$ Borel- und $g: \mathbb{R}^N \to \mathbb{R}^N$ Lebesgue-messbare Funktionen. Dann ist $f \circ g$ Lebesgue-messbar.							
15	Für f und g wie eben ist $g \circ f$ Lebesguemessbar.							
16	Auf jedem nichtleeren messbaren Raum (Ω, \mathcal{A}) existieren zwei verschiedene Maße.							
17	Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum mit $\mu(\Omega) = 1$, und seien $A_1, A_2, \ldots, A_7 \in \mathcal{A}$ mit $\mu(A_i) \geq \frac{1}{2}$ für alle $1 \leq i \leq 7$. Dann gibt es $1 \leq i_1 < i_2 < i_3 < i_4 \leq 7$ mit $A_{i_1} \cap A_{i_2} \cap A_{i_3} \cap A_{i_4} \neq \emptyset$.							
18	$L^2(\mathbb{R}) \subset L^1(\mathbb{R}).$							
19	Sei $f: \mathbb{R} \to \mathbb{R}$ messbar. Dann gilt: $\int_{\mathbb{R}} f d\lambda$ existiert $\Leftrightarrow \forall r \in \mathbb{R} \colon \int_{[-r,r]} f d\lambda$ existiert.							
20	Sei $A \subset [0,1]$ Lebesgue-messbar mit $ A > 0$. Dann gibt es $x, y \in A$ mit $xy \in \mathbb{R} \setminus \mathbb{Q}$.							
Folge	Folgende Aufgaben stammen von der künstlichen Intelligenz "ChatGPT". # Aussage Ja Nein Begründung							
21	Seien $f, g \in L^1(\mathbb{R})$. Dann: $f * g \in L^1(\mathbb{R})$.							
22	Sei $f \in L^1(\mathbb{R})$ stetig differenzierbar. Dann ist die Fouriertransformierte \hat{f} differenzierbar.							
23	Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum mit $\mu(\Omega) < \infty$. Definiere eine Äquivalenzrelation auf Ω durch $A \sim B : \Leftrightarrow \exists N \in \mathcal{A} \colon \ (A \setminus B) \cup (B \setminus A) \subset N,$ $\mu(N) = 0$. Dann gilt: $ \Omega/\sim < \infty$.							
Folgende Aufgaben stammen aus dem Buch "Counterexamples in Measure and Integration".								
#	Aussage	Ja	Nein	Begründung				
24	Sei (Ω, \mathcal{A}) ein messbarer Raum und $\mu \colon \mathcal{A} \to [0, \infty]$ σ -additiv. Angenommen, es gibt $A \in \mathcal{A}$ mit $\mu(A) < \infty$. Dann ist μ ein Maß.							
25	Es gibt eine stetiges $f: [0,1] \to \mathbb{R}^2$, sodass das Bild $f([0,1])$ Lebesgue-messbar mit $ f([0,1]) > 0$ ist.							