

Manufacturing Downtime Insights

Project Team:
Nedaa Megahed
Zeinab Shaban
Saber Essam
Mohamed Waleed
Mohamed Osman

Instructor
Dr. Amal Mahmoud
Apr-2025

Introduction

Objective

Data overview

Previous work

Challenges

<u>Methodology</u>

Key insights

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Introduction

This dataset contains detailed records of manufacturing downtime in a soft drink production facility.

The data captures key aspects of unplanned interruptions during production:

The duration of downtime events

Associated operators

Affected products

Factors contributing to each incident.

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Objective:

we're investigating the root cause analysis for a soft drinks production line downtime and its impact on production efficiency

Identify Downtime Issue

Recognizing the production line is inactive

Investigate Root Causes

Analyzing factors contributing to downtime

Assess Impact on Efficiency

Evaluating how downtime affects output

Objective of the Analysis

• The objective of this analysis is to identify patterns and insights that can help minimize downtime and enhance overall productivity. The analysis aims to:

Operator Performance:

Evaluate downtime trends by operator to identify training needs or best practices that can be shared across teams.

Product Impact: Compare downtime occurrences across different soft drink products to determine which are more prone to production interruptions and investigate potential root causes.

Downtime Factors: Analyze the various causes of downtime to classify them by frequency and duration, highlighting the most critical areas requiring process improvements or preventive maintenance.

4 W's Framework for manufacturing downtime analysis

Analyzing Manufacturing Downtime: Key Factors and Relationships

4 How's Framework for manufacturing downtime analysis

Transforming Downtime Data into Actionable Insights

How: Data Collection

Identifying responsible parties and frequency of data collection

Using tools to analyze data and identify trends

How: Data Processing

Cleaning, structuring, and storing data for analysis

How: Insight implementation

Communicating insights and measuring impact

Smart KPI's for a successful data analytics

Comprehensive Downtime Analytics KPI's Overview

operator efficiency and contribution

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Data Overview

Downtime Data Overview

Metric	value	
Number of sheets	4	
Number of rows	1039	
Number of Operators	14	
Number of Downtime factors	12	

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Previous Work: Literature Review and Existing Existing Solutions

Manufacturing downtime Insights

We reviewed existing research on downtime analysis in manufacturing. We explored various methodologies, tools, and best practices used by industry professionals.

The executed analysis was somewhat exciting but still missed some insights which we tried to explore

Overall line efficiency sits at 64%

We should have special focus on Mac

The top 5 factors account for 80% of the Down Time

So ignore the rest and focus on the top 5

3 out of 5 main down time factors are due to the operator error

We should focus machine adjustment for all and batch change for Mac

Recommendations:

- 1. Offer training sessions on machine adjustments for all operators.
- 2. Deliver specialized training focused on batch changes for Mac.
- 3. Implement a preventive maintenance program for the machinery.
- 4. Monitor inventory levels closely.

Sophia Paul Pandian's Data Analytics Project | Maven Analytics

Previous Work: Literature Review and Existing Existing Solutions

Aspect	DEPI team project	Similar analysis case (attached link)
Dataset	Expanded by generative AI to a bigger dataset for better analysis	Normal & short
Tools used	Excel, Power BI & Tableau	Excel only
Analysis breakdown	We considered all possible parameters impact on line downtime	It considered all aspects
Recommendations	Covered all downtime causes: machine downtime, human downtime error, maintenance program, training programs, supply chain insurance	good
Analysis dashboard	We created 3 aspects for Dashboards	There is only 1 dashboard

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

 We used python and AI tools to increase the number of rows and operators

Metric	value
Number of sheets	4
Number of rows	38
Number of Operators	4
Number of Downtime factors	12

Metric	value	
Number of sheets	4	
Number of rows	1039	
Number of Operators	14	% =
Number of Downtime factors	12	
Number of Downtime factors	12	

Data Generation using Al & Python

Analyzing Limited Data in Power BI

I'm having a power bi engineer program for database, I've a project for analysis of the attached files,

the file sheets contain only 39 rows which is very little

the sheets rows contain unique batch numbers

date: but there is more than one batch each date from 7 to 12 batch

there is 12 factors for production downtime, may be operator error or not

operator: there is 4 different operator names

products: there is 5 different products one of which has 2 sizes

so i need your help to create a csv file containing 1000 row for sheet line productivity & line downtime only but with keeping the original 39 rows and creating more 961 rows, provided that you generate data in the same pattern with the following:

missing value

wrong format

outlier

feature engineering

scaling

just remember to keep the original data as it's, expand the columns of batch in the same pattern, expand the column operator but with same 4 operator names only but with same pattern expand the column product but with same 6 product names only but with same pattern the output will keep 2 sheets same (Products & Downtime factors) and 2 expanded sheets with 1000 row (Line productivity & Line downtime)

the output file will be a csv file

Before

2. Relation between Line downtime & Downtime factors table

Line downtime table

						Downtime f	actor					
Batch	1	2	3	4	5	6	7	8	9	10	11	12
422111		60.00					15.00					
422112		20.00						20.00				
422113		50.00										
422114				25.00		15.00						
422115										24.00		
422116												
422117		10.00				5.00						
422118						14.00	16.00				10.00	20.00
422119				25.00								
422120				20.00	15.00				17.00			
422121							15.00					
422122							25.00					
422123				43.00			30.00					
422124					20.00	20.00						
422125											10.00	10.00
422126								44.00				
422127						23.00						
422128					22.00		30.00					
//22129												15.00

Downtime factors table

4	Α	В	С
	Facto ▼	Description	Operator Error 🔻
	1	Emergency stop	No
	2	Batch change	Yes
	3	Labeling error	No
	4	Inventory shortage	No
	5	Product spill	Yes
	6	Machine adjustment	Yes
	7	Machine failure	No
	8	Batch coding error	Yes
	9	Conveyor belt jam	No
	10	Calibration error	Yes
	11	Label switch	Yes
	12	Other	No

After

2. Relation between Line downtime & Downtime factors table

Line downtime table

Using Unpivot columns to aggregate 12 columns into 1 column

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Methodology: Analysis Techniques and Tools Used

Used

Analysis Techniques

We used analysis approach through using Python, to describe the data, mention the data formats, missing data, check outliers (if any) then we corrected all mis-aligned data by correcting formats, removing duplicates and fill some missing data (if any)

Data Cleaning and Analysis for Production Data

hi, I'm working on a data analysis project, have an excel file with 4 sheets, 2 of which have 1000 rows with up to 12 columns, the data contains duplicate, missing, wrong format, outliers

i want to act as a professional python engineer, start with me step by step to clean the available data before i can start the analysis

the data is about a production line producing 6 products, there is almost 4 or 5 workers, and there are 12 reasons for production line down, 6 of which are human and 6 are due to non-human so first write me the code for describing the data in python (min., max, missing, 1st quartile,...)

Certainly! Let's start by loading the data and performing an initial descriptive analysis. We'll use the pandas library in Python, which is excellent for data manipulation and analysis. If you haven't already installed pandas, you can do so using pip install pandas.

Here's a step-by-step guide to describe your data:

1. Import necessary libraries:

import pandas as pd

2. Load the Excel file:

Assuming your Excel file is named production_data.xlsx , we'll load all sheets into a dictionary of DataFrames.

file path = 'production data.xlsx sheets_digt = pd.read_excel(file_path, sheet_name=None)

3. Describe the data:

We'll loop through each sheet and provide a summary of the data, including min, max, missing values,

Message DeepSeek DeepThink (R1) ⊕ Search

Methodology: Analysis Techniques and Tools Used Used

=	+ Cod	le + Te	ext						
_		Sheet2	Statistics	:					
એ	₹			tch	1	2	3	4 \	
		count	999.0000				00000 245.00		
<i>x</i> }		mean	422610.0000				86957 30.289		
		std	288.5307				05443 17.760		
-		min	422111.0000				00000 1.000		
_		25% 50%	422360.5000				00000 16.000 00000 29.000		
		75%	422859.5000				00000 48.00		
		max	423109.000				00000 48.00		
		iliax	423103.0000	00.00	00.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000	3000	
			5	6	7		8 9	10	\
		count	208.00000	253.000000	257.000000	249.00000	0 272.000000	239.000000	
		mean	29.81250	29.837945	30.953307	30.14457	8 30.937500	30.309623	
		std	16.35383	17.351222	17.121514	17.04155	2 17.470475	17.250635	
		min	1.00000	1.000000	1.000000	1.00000	0 1.000000	1.000000	
		25%	16.00000	14.000000	16.000000	16.00000	0 16.750000	15.000000	
		50%	28.50000	31.000000	29.000000	29.00000	0 31.500000	30.000000	
		75%	42.25000	44.000000	47.000000	43.00000		45.000000	
		max	60.00000	60.000000	60.000000	60.00000	0 60.000000	60.000000	
			11	13	3				
		count	252.000000	238,000000					
		mean	28.809524	29.899160					
		std	16.410430	16.910734					
		min	1.000000	1.000000					
< >		25%	15.000000	16.000000					
		50%	29.000000	29.000000					
==1		75%	44.000000	44.750000					
رنسا		max	60.000000	60.000000					

Methodology: Analysis Techniques and Tools Used

• In Power BI model, We build relations between tables using common ID's, we changed one table structure by unpivoting to create a common ID with another table

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Key Insights: Excel Dashboard (overview)

Key Insights: Excel Dashboard (Product analysis)

Key Insights: Excel Dashboard (Operator analysis)

Power Bl

Power BI Dashboard

Key Insights: Power BI Dashboard (overview)

Key Insights: Power BI Dashboard (Product analysis)

Key Insights: Power BI Dashboard (Operator Analysis)

Tableau Dashboard

Key Insights: Tableau Dashboard

Key Insights: The top 4 frequent errors

1. Batch Coding Error

We found that Batch Coding Error is the most frequent cause of operator downtime factors, impacting production efficiency significantly.

2. Inventory Shortages

We found that Inventory Shortages is the most frequent cause of non-operator downtime factors, impacting production efficiency significantly.

3. Product spill

We found that Product spill error is the second frequent cause of operator downtime factor, impacting production efficiency significantly.

4. Machine adjustment

Machine adjustment was the third highest operator downtime factor

Key Insights: Analysis of operator & product

- The least efficient worker is **Mac** with efficiency rate 44%. His highest error is labeling error.
- The most defective product is **CO-2L**, and its highest factor is inventory shortage.

Introduction

Objective

Data overview

Previous work

Challenges

Methodology

Key insights

Recommendations: Strategies for Downtime Reduction and Reduction and Prevention

1. Operator Training

Provide comprehensive operator training to reduce human errors and improve equipment handling practices. As we found that operator's errors are higher.

3. Preventive Maintenance

Implement a comprehensive preventive maintenance program to identify potential issues before they cause downtime.

2. Supplier Management

Strengthen supplier relationships, ensuring reliable and timely material delivery to minimize supply chain disruptions. As we found Inventory Shortages is the second highest error

4. Equipment Upgrades

Consider upgrading equipment to enhance reliability, reduce maintenance requirements, and minimize downtime.

Conclusion

By implementing these recommendations, manufacturing companies can significantly reduce downtime, enhance production efficiency, improve product quality, and achieve greater customer satisfaction.

Thank You

Any Questions?