Lecture 05 – 27 January 2009

HWK 1: Due Tonight HWK 2: Out now, due Tuesday, 03 February 2009, 23:59 SCIENCE TOPICS:
 Kepler, Newton and
 Gravity

READINGChapter I

PRACTICE

p.40 Review: I-9, I2-I5

p.40 Self-Test: I-I5

p.41 Problems: 4-6, 9

Homework 01 is due in tonight, 11:59pm

Homework 02 is out now!

<u>Planet</u>	eccentricity	
Mercury	0.205	
Venus	0.006	
Earth	0.017	
Mars	0.093	
Jupiter	0.049	
Saturn	0.055	
Uranus	0.044	
Neptune	0.011	
(Pluto)	(0.248)	

Kepler's Laws

- I. The orbits of planets are ellipses with the Sun a one focus.
- 2. During their orbits around the sun, the planets sweep out equal areas in equal times (they move faster when they are closer to the Sun)
- 3. $P^2 = a^3$

Orbit of Mars

Planet	Orbital Period (yrs)	Distance (AU)	P ²	a ³
Mercury	0.24	0.387	0.058	0.058
Venus	0.61	0.723	0.372	0.378
Earth	1.00	1.00	1.00	1.00
Mars	1.88	1.523	3.53	3.53
Jupiter	11.9	5.204	141.6	140.9
Saturn	29.6	9.582	876.I	879.7
Uranus	84.3	19.23	7106	7111
Neptune	164.8	30.4	27,159	28,094

So, Kepler's Laws tell us HOW the planets move,

BUT

we also want to know WHY the planets move the way they do...

Sir Isaac Newton

- 1643 1727
- English (Cambridge)
- 1687: Principia
 Mathematica
- Invents: modern day mathematics, physics optics and engineering.
- (Arguably) the No. I scientist of all time.

Newton has 3 Laws of motion....

and also one of Gravitation.

Newton's Laws of Motion

- I. An object will not change its state of motion unless compelled by an external force.
- 2. F = m a
- 3. For every action there is an equal and opposite reaction.

Newton I

 An object will not change its state of motion unless compelled by an external force.

- e.g. If you are at rest, you will remain at rest unless acted on by a force. If you are moving, you will continue to move - at a constant speed - unless acted on by a force.
- Imagine one of those air hockey tables, very large...
- Opposing forces on Earth: friction, air resistance, gravity

Newton's Laws of Motion

I. An object will not change its state of motion unless compelled by an external force.

- 2. F = m a
 - 3. For every action there is an equal and opposite reaction.

Newton II

Force = Mass x Acceleration

Force: measured in "Newtons"

Mass: measured in kilograms

Acceleration: measured in m/s/s

Newton's Laws of Motion

- I. An object will not change its state of motion unless compelled by an external force.
- 2. F = m a
- 3. For every action there is an equal and opposite reaction.

Newton III

For every action there is an equal and opposite reaction.

e.g.

Gravity

Newton's Law of Universal Gravitation

$$F = \frac{G M_1 M_2}{R^2}$$

F is for Force (measured in "Newtons")

G is just a number, 6.67x10⁻¹¹ m³ kg⁻¹ s⁻²

 M_1 is the mass of object I (in kg).

M₂ is the mass of object 2 (in kg).

R is the distance between M_1 and M_2 (in m).

Illustration of Newton's Law of Gravitation

$$F = \frac{G M_1 M_2}{R^2}$$

Why does the Earth Orbit The Sun?

