

## Numerical study of the effect of secondary electron emission on the dynamics of electron clouds in gyrotron guns

S. Guinchard<sup>1</sup>, G. Le Bars<sup>2</sup>

<sup>1</sup> Ecole Polytechnique Fédérale de Lausanne (EPFL), Physics Section (SPH), CH-1015 Lausanne, Switzerland

November 24, 2022

<sup>&</sup>lt;sup>2</sup> Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

## **EPFL** IIEE - implementation

- Recall: electronic yield  $\gamma(E) = \Lambda_{exp} * \frac{dE_{ions}}{dx}$
- Ion Induced Electrons have been modeled using a Poisson Law

• 
$$P(x = k) = e^{-\lambda} \frac{\lambda^k}{x^k} = e^{-\gamma(E_i)} \frac{\gamma(E_i)^k}{x^k}$$

## Module tests EPFL

- Vertical slice of He ions impinging on stainless steel electrode
  - Potential bias:  $\Delta \phi = 20kV$
  - Electrode radial positions:  $r_a = 10^{-3} m$ ,  $r_b = 10^{-2} m$
  - Acquired energy:  $E \propto \Delta \phi \log(r/r_a)/\log(r_b/r_a)$



Figure: Particles number as function of time

## **EPFL** Module tests

- Horizontal slice of He ions impinging on stainless steel electrode
  - Potential bias:  $\Delta \phi = 20kV$
  - Electrode radial positions:  $r_a = 10^{-3} m$ ,  $r_b = 10^{-2} m$
  - Acquired energy:  $E \propto \Delta \phi \log(r/r_a) / \log(r_b/r_a)$
  - Yield prediction: Slice 1:  $\gamma = 0.96$ , Slice 2:  $\gamma = 1.33$
  - Obtained yield: Slice 1: 967 e<sup>-</sup> for 1000 lost ions
  - Slice 2: 1325 for 1000 ions : Relative error  $\propto 1e 3$



Figure: Particles number as function of time