Package 'Giotto'

July 19, 2020

```
Title Spatial single-cell transcriptomics toolbox
Version 0.3.6.9007
Description Toolbox to process, analyze and visualize spatial single-cell expression data
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://rubd.github.io/Giotto/, https://github.com/RubD/Giotto
BugReports https://github.com/RubD/Giotto/issues
RoxygenNote 7.1.1
Depends base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports data.table (>= 1.12.2),
      deldir,
      ggplot2 (>= 3.1.1),
      Matrix,
      magick,
      matrixStats (\geq 0.55.0),
      methods,
      uwot (>= 0.0.0.9010),
      cowplot (>= 0.9.4),
      grDevices,
      graphics,
      RColorBrewer (>= 1.1-2),
      dbscan (>= 1.1-3),
      farver (>= 2.0.3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      If a (>= 1.12.0),
      igraph (>= 1.2.4.1),
      irlba,
      plotly,
      parallel,
```

reticulate (>= 1.14),

2 R topics documented:

```
magrittr,
  limma,
  ggdendro,
  smfishHmrf,
  devtools,
  reshape2,
  ggraph,
  Rcpp,
  Rfast,
  Rtsne (>= 0.15),
  rlang (>= 0.4.3),
  R.utils,
  fitdistrplus,
Suggests knitr,
  rmarkdown,
  MAST,
  scran (>= 1.10.1),
  png,
  FactoMineR,
  tiff.
  biomaRt.
  trendsceek,
  multinet (>= 3.0.2),
  RTriangle (>= 1.6-0.10)
biocViews
VignetteBuilder knitr
LinkingTo Rcpp,
  RcppArmadillo
Remotes lambdamoses/smfishhmrf-r
R topics documented:
```

addHMRF..........

9

19

average_gene_gene_expression_in_groups
binSpect
calculateHVG
calculateMetaTable
calculateMetaTableCells
cellProximityBarplot
cellProximityEnrichment
cellProximityHeatmap
cellProximityNetwork
cellProximitySpatPlot
cellProximitySpatPlot2D
cellProximitySpatPlot3D
cellProximityVisPlot
changeGiottoInstructions
changeImageBg
clusterCells
clusterSpatialCorGenes
combCCcom
combineCellProximityGenes
combineCPG
combineMetadata
convertEnsemblToGeneSymbol
convert_mgImage_to_array_DT
createCrossSection
createGiottoImage
createGiottoInstructions
createGiottoObject
createGiottoVisiumObject
createHeatmap_DT
createMetagenes
createNearestNetwork
createSpatialDelaunayNetwork
createSpatialEnrich
createSpatialGrid
createSpatialGrid_2D
createSpatialGrid_3D
createSpatialKNNnetwork
•
1
create_average_DT
create_cell_type_random_cell_IDs
create_crossSection_object
create_screeplot
crossSectionGenePlot
crossSectionGenePlot3D
crossSectionPlot
crossSectionPlot3D
decide_cluster_order
detectSpatialCorGenes
detectSpatialPatterns
dimCellPlot
dimCellPlot2D

4

imGenePlot	31
	32
	35
	36
	38
	91
)1)4
01101000	٠.
oHMRF	
oKmeans	
oLeidenCluster	
oLeidenSubCluster	
oLouvainCluster	
oLouvainCluster_community	
oLouvainCluster_multinet)3
oLouvainSubCluster)4
oLouvainSubCluster_community)6
oLouvainSubCluster_multinet)8
oRandomWalkCluster)9
oSNNCluster	10
stimateImageBg	
xportGiottoViewer	
xprCellCellcom	
xtractNearestNetwork	
DataDT	
lterCellProximityGenes	
lterCombinations	
lterCPG	
lterDistributions	
lterGiotto	
ndCellProximityGenes	
ndCPG	
ndGiniMarkers	
ndGiniMarkers_one_vs_all	
ndMarkers	
ndMarkers_one_vs_all	
ndMastMarkers	
ndMastMarkers_one_vs_all	
ndNetworkNeighbors	32
ndScranMarkers	33
ndScranMarkers_one_vs_all	34
et10Xmatrix	35
etClusterSimilarity	35
etDendrogramSplits	36
etDistinctColors	37
etGiottoImage	
et_os	
iotto-class	
eatmSpatialCorGenes	
yperGeometricEnrich	
nsertCrossSectionGenePlot3D	
nsertCrossSectionSpatPlot3D	
ackstrawPlot	

loadHMRF
makeSignMatrixPAGE
makeSignMatrixRank
mergeClusters
node_clusters
normalizeGiotto
PAGEEnrich
pDataDT
plotCCcomDotplot
plotCCcomHeatmap
plotCellProximityGenes
plotCombineCCcom
plotCombineCellCellCommunication
plotCombineCellProximityGenes
plotCombineCPG
plotCPG
plotGiottoImage
plotHeatmap
plotICG
plotInteractionChangedGenes
plotly_axis_scale_2D
plotly_axis_scale_2D
plotMetaDataCellsHeatmap
plotMetaDataHeatmap
plotPCA
plotPCA_2D
plotPCA_3D
plotRankSpatvsExpr
plotRecovery
plotRecovery_sub
plotStatDelaunayNetwork
plotTSNE
plotTSNE_2D
plotTSNE_3D
plotUMAP
plotUMAP_2D
plotUMAP_3D
print.giotto
rankEnrich
rankSpatialCorGroups
readExprMatrix
readGiottoInstructions
removeCellAnnotation
removeGeneAnnotation
replaceGiottoInstructions
runHyperGeometricEnrich
runPAGEEnrich
runPCA
runRankEnrich
runSpatialEnrich
runtSNE
min I M A D

6

screePlot	204
selectPatternGenes	205
select_expression_values	206
show,giotto-method	207
showClusterDendrogram	207
showClusterHeatmap	208
showGiottoImageNames	
showGiottoInstructions	
showGrids	
showNetworks	
showPattern	
showPattern2D	
showPattern3D	
showPatternGenes	
showProcessingSteps	
showSaveParameters	
showSpatialCorGenes	
signPCA	
silhouetteRank	
spatCellCellcom	
spatCellPlot	
spatCellPlot2D	
spatDimCellPlot	
spatDimCellPlot2D	
spatDimGenePlot	
spatDimGenePlot2D	
spatDimGenePlot3D	
•	
spatDimPlot	
spatDimPlot2D	
spatDimPlot3D	
spatGenePlot	
spatGenePlot2D	
spatGenePlot3D	
spatialAEH	
spatialDE	
spatNetwDistributions	
spatNetwDistributionsDistance	
spatNetwDistributionsKneighbors	
spatPlot	
spatPlot2D	
spatPlot3D	
specificCellCellcommunicationScores	
split_dendrogram_in_two	
stitchFieldCoordinates	
stitchTileCoordinates	
subClusterCells	
subsetGiotto	
subsetGiottoLocs	
trendSceek	279
updateGiottoImage	280
viewHMRFresults	280
viewHMRFresults2D	281

addCellIntMetadata 7

	viewHMRFresults3D	282
	violinPlot	283
	writeHMRFresults	284
	write_giotto_viewer_annotation	285
	write_giotto_viewer_dim_reduction	285
	write_giotto_viewer_numeric_annotation	286
Index		287

addCellIntMetadata

addCellIntMetadata

Description

Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.

Usage

```
addCellIntMetadata(
  gobject,
  spatial_network = "spatial_network",
  cluster_column,
  cell_interaction,
  name = "select_int",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

spatial_network

name of spatial network to use

cluster_column column of cell types

cell_interaction

cell-cell interaction to use

name

name for the new metadata column

return_gobject return an updated giotto object
```

Details

This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendrocytes" and "other". Where "other" is all other cell types found within the selected cell type column.

Value

Giotto object

8 addCellMetadata

Examples

```
addCellIntMetadata(gobject)
```

addCellMetadata

addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  vector_name = NULL,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

```
gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

vector_name (optional) custom name if you provide a single vector

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional cell metadata in two manners:

- 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject)
- 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

```
giotto object
```

```
addCellMetadata(gobject)
```

addCellStatistics 9

addCellStatistics

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

```
addCellStatistics(gobject)
```

10 addGenesPerc

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

```
gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT

column_gene_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

Value

giotto object

Examples

```
addGeneMetadata(gobject)
```

addGenesPerc

addGenesPerc

Description

calculates the total percentage of (normalized) counts for a subset of selected genes

Usage

```
addGenesPerc(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  vector_name = "gene_perc",
  return_gobject = TRUE
)
```

addGeneStatistics 11

Arguments

Value

```
giotto object if return_gobject = TRUE, else a vector with
```

Examples

```
addGenesPerc(gobject)
```

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
detection_threshold
detection threshold to consider a gene detected
return_gobject boolean: return giotto object (default = TRUE)
```

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

Value

```
giotto object if return_gobject = TRUE
```

Examples

addGeneStatistics(gobject)

 ${\tt addGiottoImage}$

add Giot to Image

Description

Adds giotto image objects to your giotto object

Usage

```
addGiottoImage(gobject, images)
```

Arguments

gobject giotto object

images list of giotto image objects, see createGiottoImage

Value

an updated Giotto object with access to the list of images

Examples

```
addGiottoImage(mg_object)
```

 $add {\tt GiottoImageToSpatPlot}$

addGiottoImageToSpatPlot

Description

Add a giotto image to a spatial ggplot object post creation

Usage

```
addGiottoImageToSpatPlot(spatpl = NULL, gimage = NULL)
```

Arguments

spatpl a spatial ggplot object

gimage a giotto image, see createGiottoImage

addHMRF 13

Value

an updated spatial ggplot object

Examples

addGiottoImageToSpatPlot(mg_object)

addHMRF

Description

Add selected results from doHMRF to the giotto object

addHMRF

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

HMRF output from doHMRF()

k number of domains

hmrf_name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

14 addNetworkLayout

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

```
addNetworkLayout(gobject)
```

addStatistics 15

addStatistics

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

adjustGiottoMatrix adjustGiottoMatrix

Description

normalize and/or scale expresion values of Giotto object

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

batch_columns metadata columns that represent different batch (max = 2)

covariate_columns

metadata columns that represent covariates to regress out

return_gobject boolean: return giotto object (default = TRUE)

update_slot expression slot that will be updated (default = custom)
```

Details

This function implements the removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

Examples

```
adjustGiottoMatrix(gobject)
```

```
all_plots_save_function 
 all_plots_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
all_plots_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
```

```
default_save_name = "giotto_plot",
    save_format = NULL,
    show_saved_plot = F,
    ncol = 1,
    nrow = 1,
    scale = 1,
    base_width = NULL,
    base_height = NULL,
    base_aspect_ratio = NULL,
    units = NULL,
    dpi = NULL,
    limitsize = TRUE,
    ...
)
```

Arguments

```
gobject
                  giotto object
plot_object
                  object to plot
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
                  name of plot
save_name
default_save_name
                  default name to save a plot
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
                  number of columns
ncol
nrow
                  number of rows
scale
                  scale
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
                  When TRUE (the default), ggsave will not save images larger than 50x50 inches,
limitsize
                  to prevent the common error of specifying dimensions in pixels.
```

See Also

```
{\tt general\_save\_function}
```

Examples

```
all_plots_save_function(gobject)
```

additional parameters to ggplot_save_function or general_save_function

18 annotateGiotto

annotateGiotto

annotate Giotto

Description

Converts cluster results into provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Arguments

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

giotto object

```
annotateGiotto(gobject)
```

annotateSpatialGrid 19

```
annotate Spatial Grid \qquad annotate Spatial Grid
```

Description

annotate spatial grid with cell ID and cell metadata (optional)

Usage

```
annotateSpatialGrid(
  gobject,
  spatial_grid_name = "spatial_grid",
  cluster_columns = NULL
)
```

Arguments

Value

annotated spatial grid data.table

Examples

```
annotateSpatialGrid()
```

```
annotateSpatialNetwork
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column,
  create_full_network = F
)
```

Arguments

Value

annotated network in data.table format

Examples

```
annotateSpatialNetwork(gobject)
```

```
annotate\_spatlocs\_with\_spatgrid\_2D \\ annotate\_spatlocs\_with\_spatgrid\_2D
```

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

```
annotate_spatlocs_with_spatgrid_2D()
```

```
annotate\_spatlocs\_with\_spatgrid\_3D \\ annotate\_spatlocs\_with\_spatgrid\_3D
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_3D()
```

```
average_gene_gene_expression_in_groups

average_gene_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(
  gobject,
  cluster_column = "cell_types",
  gene_set_1,
  gene_set_2
)
```

Arguments

```
gobject giotto object to use
cluster_column cluster column with cell type information
gene_set_1 first specific gene set from gene pairs
gene_set_2 second specific gene set from gene pairs
```

22 binSpect

Details

Details will follow soon.

Value

data.table with average expression scores for each cluster

Examples

```
average_gene_gene_expression_in_groups(gobject)
```

binSpect

binSpect

Description

Previously: binGetSpatialGenes. BinSpect (Binary Spatial Extraction of genes) is a fast computational method that identifies genes with a spatially coherent expression pattern.

Usage

```
binSpect(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 30,
  do_fisher_test = TRUE,
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

binSpect 23

iter_max kmeans: iter.max parameter

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

verbose be verbose

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) or using multiple cores can accelerate the speed.

Value

data.table with results (see details)

Examples

binSpect(gobject)

24 calculateHVG

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
method
                  method to calculate highly variable genes
reverse_log_scale
                  reverse log-scale of expression values (default = FALSE)
                  if reverse_log_scale is TRUE, which log base was used?
logbase
expression_threshold
                  expression threshold to consider a gene detected
nr_expression_groups
                  number of expression groups for cov_groups
{\tt zscore\_threshold}
                  zscore to select hvg for cov_groups
HVGname
                  name for highly variable genes in cell metadata
difference_in_cov
                  minimum difference in coefficient of variance required
show_plot
                  show plot
return_plot
                  return ggplot object
```

calculateMetaTable 25

Details

Currently we provide 2 ways to calculate highly variable genes: 1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (difference_in_cov) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)
# 3. highly variable genes detection
VC_small <- calculateHVG(gobject = VC_small)</pre>
```

calculateMetaTable

calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

26 calculateMetaTableCells

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

 ${\tt calculateMetaTableCells}$

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

```
calculateMetaTableCells(gobject)
```

cellProximityBarplot 27

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

```
gobject
                  giotto object
                  CPscore, output from cellProximityEnrichment()
CPscore
                  filter on minimum original cell-cell interactions
min_orig_ints
                  filter on minimum simulated cell-cell interactions
min_sim_ints
p_val
                  p-value
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot barplot
```

```
cellProximityBarplot(CPscore)
```

```
cell Proximity Enrichment \\ cell Proximity Enrichment
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

```
cellProximityEnrichment(gobject)
```

cellProximityHeatmap 29

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
giotto object
gobject
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
color_breaks
                  numerical vector of length 3 to represent min, mean and maximum
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot heatmap
```

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = c("Fruchterman", "DrL", "Kamada-Kawai"),
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityNetwork"
```

Arguments

```
giotto object
gobject
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
{\tt edge\_weight\_range\_depletion}
                  numerical vector of length 2 to rescale depleted edge weights
```

cellProximitySpatPlot 31

```
edge_weight_range_enrichment
```

numerical vector of length 2 to rescale enriched edge weights

layout algorithm to use to draw nodes and edges

only_show_enrichment_edges

show only the enriched pairwise scores

edge_width_range

range of edge width

node_size size of nodes
node_text_size size of node labels

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

cellProximityNetwork(CPscore)

 ${\tt cellProximitySpatPlot} \ \ \textit{cellProximitySpatPlot}$

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

gobject giotto object

... Arguments passed on to cellProximitySpatPlot2D

interaction_name cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

```
cell_color color for cells (see details)
cell_color_code named vector with colors
color_as_factor convert color column to factor
show_other_cells decide if show cells not in network
show_network show spatial network of selected cells
show_other_network show spatial network of not selected cells
network_color color of spatial network
spatial_network_name name of spatial network to use
show_grid show spatial grid
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
coord_fix_ratio fix ratio between x and y-axis
show_legend show legend
point_size_select size of selected points
point_select_border_col border color of selected points
point_select_border_stroke stroke size of selected points
point_size_other size of other points
point_alpha_other opacity of other points
point_other_border_col border color of other points
point_other_border_stroke stroke size of other points
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters from all_plots_save_function
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D

Examples

cellProximitySpatPlot(gobject)

```
{\tt cellProximitySpatPlot2D}
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

Arguments

sdimy y-axis dimension name (default = 'sdimy') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show spatial network of selected cells show_other_network show spatial network of not selected cells network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_alpha_other opacity of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

```
cellProximitySpatPlot2D(gobject)
```

```
cellProximitySpatPlot3D
```

cellProximitySpatPlot2D

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show\_other\_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

gobject giotto object interaction_name cell-cell interaction name cluster_column cluster column with cell clusters x-axis dimension name (default = 'sdimx') sdimx sdimy y-axis dimension name (default = 'sdimy') sdimz z-axis dimension name (default = 'sdimz') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show spatial network of selected cells show_other_network show spatial network of not selected cells network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use show_legend show legend point_size_select size of selected points point_size_other size of other points point_alpha_other opacity of other points axis_scale scale of axis custom_ratio custom ratio of axes x_ticks ticks on x-axis y_ticks ticks on y-axis ticks on z-axis z_ticks show_plot show plots return_plot return plotly object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param additional parameters

cellProximityVisPlot 37

Details

Description of parameters.

Value

plotly

Examples

```
cellProximitySpatPlot3D(gobject)
```

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
 gobject,
 interaction_name = NULL,
 cluster_column = NULL,
  sdimx = NULL,
 sdimy = NULL,
 sdimz = NULL,
 cell_color = NULL,
 cell_color_code = NULL,
 color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
 grid_color = NULL,
 spatial_grid_name = "spatial_grid",
 coord_fix_ratio = 1,
  show_legend = T,
 point_size_select = 2,
 point_select_border_col = "black",
 point_select_border_stroke = 0.05,
 point_size_other = 1,
 point_alpha_other = 0.3,
 point_other_border_col = "lightgrey",
 point_other_border_stroke = 0.01,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
```

38 cellProximityVisPlot

```
z_ticks = NULL,
plot_method = c("ggplot", "plotly"),
...
)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
{\tt point\_other\_border\_col}
                  border color of other points
point_other_border_stroke
                  stroke size of other points
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
cellProximityVisPlot(gobject)
```

change Giot to Instructions

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)

return_gobject (boolean) return giotto object
```

Value

giotto object with one or more changed instructions

```
changeGiottoInstructions()
```

40 clusterCells

changeImageBg

changeImageBg

Description

Function to change the background color of a magick image plot to another color

Usage

```
changeImageBg(
  mg_object,
  bg_color,
  perc_range = 10,
  new_color = "#FFFFFF",
  new_name = NULL
)
```

Arguments

mg_object magick image or giotto image object bg_color estimated current background color

perc_range range around estimated background color to include (percentage)

new_color new background color

new_name change name of Giotto image

Value

magick image or giotto image object with updated background color

Examples

```
changeImageBg(mg_object)
```

clusterCells

clusterCells

Description

cluster cells using a variety of different methods

Usage

```
clusterCells(
  gobject,
  cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
        "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
```

clusterCells 41

```
pyth_leid_resolution = 1,
     pyth_leid_weight_col = "weight",
     pyth_leid_part_type = c("RBConfigurationVertexPartition",
        "ModularityVertexPartition"),
     pyth_leid_init_memb = NULL,
     pyth_leid_iterations = 1000,
     pyth_louv_resolution = 1,
     pyth_louv_weight_col = NULL,
     python_louv_random = F,
     python_path = NULL,
     louvain_gamma = 1,
     louvain\_omega = 1,
     walk\_steps = 4,
     walk_clusters = 10,
     walk_weights = NA,
     sNNclust_k = 20,
     sNNclust_eps = 4,
     sNNclust_minPts = 16,
     borderPoints = TRUE,
     expression_values = c("normalized", "scaled", "custom"),
     genes_to_use = NULL,
     dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
     dim_reduction_name = "pca",
     dimensions_to_use = 1:10,
     distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
        "manhattan", "canberra", "binary", "minkowski"),
     km_{centers} = 10,
     km_iter_max = 100,
     km_nstart = 1000,
     km_algorithm = "Hartigan-Wong",
     hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
        "mcquitty", "median", "centroid"),
     hc_k = 10,
     hc_h = NULL
     return_gobject = TRUE,
     set\_seed = T,
     seed_number = 1234
   )
Arguments
   gobject
                   giotto object
   cluster_method community cluster method to use
                   name for new clustering result
   name
   nn_network_to_use
                   type of NN network to use (kNN vs sNN)
   network_name
                   name of NN network to use
   pyth_leid_resolution
                   resolution for leiden
   pyth_leid_weight_col
                   column to use for weights
```

42 clusterCells

pyth_leid_part_type

partition type to use

 $\verb|pyth_leid_init_memb| \\$

initial membership

pyth_leid_iterations

number of iterations

pyth_louv_resolution

resolution for louvain

pyth_louv_weight_col

python louvain param: weight column

python_louv_random

python louvain param: random

python_path specify specific path to python if required

louvain_gamma louvain param: gamma or resolution

louvain_omega louvain param: omega

walk_steps randomwalk: number of steps
walk_clusters randomwalk: number of clusters
walk_weights randomwalk: weight column
sNNclust_k SNNclust: k neighbors to use

sNNclust_eps SNNclust: epsilon

sNNclust_minPts

SNNclust: min points

borderPoints SNNclust: border points

expression_values

expression values to use

 $genes_to_use = NULL,$

 ${\tt dim_reduction_to_use}$

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

 $distance_method$

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject | boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

clusterSpatialCorGenes

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

43

Examples

```
clusterCells(gobject)
```

clusterSpatialCorGenes

cluster Spatial Cor Genes

Description

Cluster based on spatially correlated genes

Usage

```
clusterSpatialCorGenes(
  spatCorObject,
  name = "spat_clus",
  hclust_method = "ward.D",
  k = 10,
  return_obj = TRUE
)
```

Arguments

```
spatCorObject spatial correlation object
name name for spatial clustering results
hclust_method method for hierarchical clustering
k number of clusters to extract
```

return_obj return spatial correlation object (spatCorObject)

Value

spatCorObject or cluster results

```
clusterSpatialCorGenes(gobject)
```

combCCcom

combCCcom

Description

Combine spatial and expression based cell-cell communication data.tables

Usage

```
combCCcom(
  spatialCC,
  exprCC,
  min_lig_nr = 3,
  min_rec_nr = 3,
  min_padj_value = 1,
  min_log2fc = 0,
  min_av_diff = 0
)
```

Arguments

```
spatialCC spatial cell-cell communication scores
exprCC expression cell-cell communication scores
min_lig_nr minimum number of ligand cells
min_rec_nr minimum number of receptor cells
min_padj_value minimum adjusted p-value
min_log2fc minimum log2 fold-change
min_av_diff minimum average expression difference
```

Value

combined data.table with spatial and expression communication data

Examples

```
combCCcom(gobject)
```

```
combine \textit{CellProximityGenes} \\ combine \textit{CellProximityGenes}
```

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCellProximityGenes(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpgObject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells
                  minimum number of interacting cell type
min_fdr
                  minimum adjusted p-value
                  minimum absolute spatial expression difference
min_spat_diff
                  minimum absolute log2 fold-change
min_log2_fc
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

```
{\tt combineCellProximityGenes(gobject)}
```

46 combineCPG

combineCPG

combineCPG

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCPG(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpg0bject
                  cell proximity gene score object
selected_ints
                  subset of selected cell-cell interactions (optional)
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
                  minimum number of interacting cell type
min_int_cells
                  minimum adjusted p-value
min_fdr
min\_spat\_diff
                  minimum absolute spatial expression difference
min_log2_fc
                  minimum absolute log2 fold-change
do_parallel
                  run calculations in parallel with mclapply
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

```
combineCPG(gobject)
```

combineMetadata 47

combineMetadata

combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from createSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

```
gobject Giotto object
spat_enr_names names of spatial enrichment results to include
```

Value

Extended cell metadata in data.table format.

Examples

```
combineMetadata(gobject)
```

```
convertEnsemblToGeneSymbol
```

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

48 createCrossSection

Examples

```
convertEnsemblToGeneSymbol(matrix)
```

```
convert\_mgImage\_to\_array\_DT \\ convert\_mgImage\_to\_array\_DT
```

Description

converts a magick image object to a data.table

Usage

```
convert_mgImage_to_array_DT(mg_object)
```

Arguments

```
mg_object magick image or Giotto image object
```

Value

data.table with image pixel information

Description

Create a virtual 2D cross section.

Usage

```
createCrossSection(
 gobject,
 name = "cross_section",
 spatial_network_name = "Delaunay_network",
  thickness_unit = c("cell", "natural"),
 slice_thickness = 2,
 cell_distance_estimate_method = "mean",
 extend_ratio = 0.2,
 method = c("equation", "3 points", "point and norm vector",
    "point and two plane vectors"),
 equation = NULL,
 point1 = NULL,
 point2 = NULL,
 point3 = NULL,
 normVector = NULL,
 planeVector1 = NULL,
 planeVector2 = NULL,
 mesh\_grid\_n = 20,
 return\_gobject = TRUE
```

createCrossSection 49

Arguments

gobject giotto object

name name of cress section object. (default = cross_sectino)

spatial_network_name

name of spatial network object. (default = Delaunay_network)

thickness_unit unit of the virtual section thickness. If "cell", average size of the observed

cells is used as length unit. If "natural", the unit of cell location coordinates

is used.(default = cell)

slice_thickness

thickness of slice

cell_distance_estimate_method

method to estimate average distance between neighboring cells. (default = mean)

extend_ratio deciding the span of the cross section meshgrid, as a ratio of extension compared

to the borders of the vitural tissue section. (default = 0.2)

method method to define the cross section plane. If equation, the plane is defined by

a four element numerical vector (equation) in the form of c(A,B,C,D), corresponding to a plane with equation Ax+By+Cz=D. If 3 points, the plane is define by the coordinates of 3 points, as given by point1, point2, and point3. If point and norm vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of one norm vector (normVector) to the plane. If point and two plane vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of two vectors (planeVector1,

planeVector2) in the plane. (default = equation)

equation equation required by method "equation".equations needs to be a numerical vec-

tor of length 4, in the form of c(A,B,C,D), which defines plane Ax+By+Cz=D.

point1 coordinates of the first point required by method "3 points", "point and norm

vector", and "point and two plane vectors".

point2 coordinates of the second point required by method "3 points" coordinates of the third point required by method "3 points"

normVector coordinates of the norm vector required by method "point and norm vector"

planeVector1 coordinates of the first plane vector required by method "point and two plane

vectors"

planeVector2 coordinates of the second plane vector required by method "point and two plane

vectors"

mesh_grid_n numer of meshgrid lines to generate along both directions for the cross section

plane.

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a virtual 2D cross section object for a given spatial network object. The users need to provide the definition of the cross section plane (see method).

Value

giotto object with updated spatial network slot

50 createGiottoImage

Description

Creates a giotto image that can be added to a Giotto object and/or used to add an image to the spatial plotting functions

Usage

```
createGiottoImage(
  gobject = NULL,
  spatial_locs = NULL,
  mg_object,
  name = "image",
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0
)
```

Arguments

```
giotto object
gobject
spatial_locs
                  spatial locations (alternative if giobject = NULL)
mg_object
                  magick image object
name
                  name for the image
xmax_adj
                  adjustment of the maximum x-value to align the image
xmin_adj
                  adjustment of the minimum x-value to align the image
                  adjustment of the maximum y-value to align the image
ymax_adj
ymin_adj
                  adjustment of the minimum y-value to align the image
```

Value

```
a giotto image object
```

```
createGiottoImage(mg_object)
```

createGiottoInstructions 51

```
createGiottoInstructions
```

createGiottoInstructions

Description

Function to set global instructions for giotto functions

Usage

```
createGiottoInstructions(
  python_path = NULL,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_dir = NULL,
  plot_format = NULL,
  dpi = NULL,
  units = NULL,
  height = NULL,
  width = NULL
```

Arguments

```
python_path
                  path to python binary to use
                  print plot to console, default = TRUE
show_plot
                  return plot as object, default = TRUE
return_plot
                  automatically save plot, dafault = FALSE
save_plot
                  path to directory where to save plots
save_dir
plot_format
                  format of plots (defaults to png)
                  resolution for raster images
dpi
                  units of format (defaults to in)
units
                  height of plots
height
width
                  width of plots
```

Value

named vector with giotto instructions

See Also

More online information can be found here https://rubd.github.io/Giotto_site/articles/instructions_and_plotting.html

Examples

createGiottoInstructions()

52 createGiottoObject

Description

Function to create a giotto object

Usage

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
  gene_metadata = NULL,
  spatial_network = NULL,
  spatial_network_name = NULL,
  spatial_grid = NULL,
  spatial_grid_name = NULL,
  spatial_enrichment = NULL,
  spatial_enrichment_name = NULL,
  dimension_reduction = NULL,
  nn_network = NULL,
  images = NULL,
  offset_file = NULL,
  instructions = NULL,
  cores = NA
```

Arguments

```
matrix with raw expression counts [required]
raw_exprs
spatial_locs
                  data.table or data.frame with coordinates for cell centroids
                  normalized expression values
norm_expr
norm_scaled_expr
                  scaled expression values
custom_expr
                  custom expression values
cell_metadata
                  cell annotation metadata
gene_metadata
                  gene annotation metadata
spatial_network
                  list of spatial network(s)
spatial_network_name
                  list of spatial network name(s)
spatial_grid
                  list of spatial grid(s)
spatial_grid_name
                  list of spatial grid name(s)
```

createGiottoObject 53

spatial_enrichment

list of spatial enrichment score(s) for each spatial region

spatial_enrichment_name

list of spatial enrichment name(s)

dimension_reduction

list of dimension reduction(s)

nn_network list of nearest neighbor network(s)

images list of images

offset_file file used to stitch fields together (optional)

instructions list of instructions or output result from createGiottoInstructions cores how many cores or threads to use to read data if paths are provided

Details

[Requirements] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. This matrix can be provided as a base matrix, sparse Matrix, data.frame, data.table or as a path to any of those. To include spatial information about cells (or regions) you need to provide a matrix, data.table or data.frame (or path to them) with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- · spatial enrichments
- · dimensions reductions
- · nearest neighbours networks
- images

Value

giotto object

```
createGiottoObject(raw_exprs, spatial_locs)
```

```
create {\it Giotto Visium Object} \\ {\it create Giotto Visium Object}
```

Description

creates Giotto object directly from a 10X visium folder

Usage

```
createGiottoVisiumObject(
  visium_dir = NULL,
  expr_data = c("raw", "filter"),
  gene_column_index = 1,
  png_name = NULL,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  instructions = NULL,
  cores = NA
)
```

Arguments

```
visium_dir
                  path to the 10X visium directory [required]
expr_data
                  raw or filtered data (see details)
gene_column_index
                  which column index to select (see details)
                  select name of png to use (see details)
png_name
xmax_adj
                  adjustment of the maximum x-value to align the image
                  adjustment of the minimum x-value to align the image
xmin_adj
ymax_adj
                  adjustment of the maximum y-value to align the image
ymin_adj
                  adjustment of the minimum y-value to align the image
instructions
                  list of instructions or output result from createGiottoInstructions
                  how many cores or threads to use to read data if paths are provided
cores
```

Details

- expr_data: raw will take expression data from raw_feature_bc_matrix and filter from filtered_feature_bc_matrix
- gene_column_index: which gene identifiers (names) to use if there are multiple columns (e.g. ensemble and gene symbol)
- png_name: by default the first png will be selected, provide the png name to override this (e.g. myimage.png)

Value

giotto object

createHeatmap_DT 55

Examples

```
createGiottoVisiumObject(visium_dir)
```

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

Usage

```
createHeatmap_DT(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D",
  gene_order = c("correlation", "custom"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete"
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 genes to use
genes
cluster_column name of column to use for clusters
cluster_order
                 method to determine cluster order
cluster_custom_order
                 custom order for clusters
cluster_cor_method
                 method for cluster correlation
cluster_hclust_method
                 method for hierarchical clustering of clusters
                 method to determine gene order
gene_order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
```

56 createMetagenes

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
createHeatmap_DT(gobject)
```

createMetagenes

createMetagenes

Description

This function creates an average metagene for gene clusters.

Usage

```
createMetagenes(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  gene_clusters,
  name = "metagene",
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object
expression_values
expression values to use
gene_clusters numerical vector with genes as names
name name of the metagene results
return_gobject return giotto object
```

Details

```
An example for the 'gene_clusters' could be like this: cluster_vector = c(1, 1, 2, 2); names(cluster_vector) = c('geneA', 'geneB', 'geneC', 'geneD')
```

Value

giotto object

```
createMetagenes(gobject)
```

createNearestNetwork 57

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

Usage

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  name = "sNN.pca",
  return_gobject = TRUE,
  k = 30,
  minimum_shared = 5,
  top_shared = 3,
  verbose = T,
  ...
)
```

Arguments

```
giotto object
gobject
type
                 sNN or kNN
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
expression_values
                 expression values to use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
                 number of k neighbors to use
minimum_shared minimum shared neighbors
top_shared
                 keep at ...
                 be verbose
verbose
                 additional parameters for kNN and sNN functions from dbscan
. . .
```

Details

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

- from: cell_ID for source cell
- to: cell_ID for target cell
- distance: distance between cells
- weight: weight = 1/(1 + distance)

Output for sNN:

- from: cell_ID for source cell
- to: cell_ID for target cell
- distance: distance between cells
- weight: 1/(1 + distance)
- shared: number of shared neighbours
- rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

createNearestNetwork(gobject)

 ${\tt createSpatialDelaunayNetwork}$

create Spatial Delaunay Network

Description

Create a spatial Delaunay network based on cell centroid physical distances.

Usage

```
createSpatialDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  name = "Delaunay_network",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  verbose = T,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject giotto object method package to use to create a Delaunay network dimensions which spatial dimensions to use (default = all) name name for spatial network (default = 'delaunay network') maximum_distance distance cuttof for Delaunay neighbors to consider. If "auto", "upper wisker" value of the distance vector between neighbors is used; see the boxplotgraphics documentation for more details.(default = "auto") minimum_k minimum number of neighbours if maximum_distance != NULL (geometry) String containing extra control options for the underlying Qhull options command; see the Qhull documentation (../doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems) Υ (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound-(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation j from the output. S (RTriangle) Specifies the maximum number of added Steiner points. verbose verbose return_gobject boolean: return giotto object (default = TRUE) Other additional parameters

Details

Creates a spatial Delaunay network as explained in delaunayn (default), deldir, or triangulate.

Value

giotto object with updated spatial network slot

```
createSpatialDelaunayNetwork(gobject)
```

60 createSpatialGrid

createSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

Usage

```
createSpatialEnrich(...)
```

Arguments

Arguments passed on to runSpatialEnrich
gobject Giotto object
enrich_method method for gene signature enrichment calculation
sign_matrix Matrix of signature genes for each cell type / process
expression_values expression values to use
reverse_log_scale reverse expression values from log scale
logbase log base to use if reverse_log_scale = TRUE
p_value calculate p-value (default = FALSE)
n_times (page/rank) number of permutation iterations to calculate p-value
top_percentage (hyper) percentage of cells that will be considered to have
gene expression with matrix binarization
output_enrichment how to return enrichment output
name to give to spatial enrichment results, default = PAGE
return_gobject return giotto object

See Also

runSpatialEnrich

createSpatialGrid

createSpatialGrid

Description

Create a spatial grid.

Usage

```
createSpatialGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

createSpatialGrid_2D 61

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid(gobject)
```

```
createSpatialGrid\_2D createSpatialGrid\_2D
```

Description

create a spatial grid for 2D spatial data.

Usage

```
createSpatialGrid_2D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid_3D createSpatialGrid_3D
```

Description

Create a spatial grid for 3D spatial data.

Usage

```
createSpatialGrid_3D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_3D(gobject)
```

createSpatialKNNnetwork

createSpatialKNNnetwork

Description

Create a spatial knn network.

Usage

```
createSpatialKNNnetwork(
  gobject,
  method = "dbscan",
  dimensions = "all",
  name = "knn_network",
  k = 4,
  maximum_distance = NULL,
  minimum_k = 0,
  verbose = F,
  return_gobject = TRUE,
  ...
)
```

Arguments

gobject giotto object

method method to create kNN network

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider for kNN network

minimum_k minimum nearest neighbours if maximum_distance != NULL

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

... additional arguments to the selected method function

Value

giotto object with updated spatial network slot

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

maximum_distance: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

64 createSpatialNetwork

Examples

```
{\tt createSpatialKNNnetwork(gobject)}
```

```
create Spatial Network \\  \  \  \  \  \  \  \  \  \  create Spatial Network
```

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  name = NULL,
  dimensions = "all",
  method = c("Delaunay", "kNN"),
delaunay_method = c("deldir", "delaunayn_geometry", "RTriangle"),
  maximum_distance_delaunay = "auto",
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  minimum_k = 0,
  knn_method = "dbscan",
  k = 4,
  maximum_distance_knn = NULL,
  verbose = F,
  return_gobject = TRUE,
)
```

Arguments

gobject	giotto object
name	name for spatial network (default = 'spatial_network')
dimensions	which spatial dimensions to use (default = all)
method	which method to use to create a spatial network. (default = Delaunay)
delaunay_method	
	Delaunay method to use
maximum_distance_delaunay	
	distance cuttof for nearest neighbors to consider for Delaunay network
options	(geometry) String containing extra control options for the underlying Qhull command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)
Υ	(RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh boundary.
j	(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.

S (RTriangle) Specifies the maximum number of added Steiner points.

minimum_k minimum nearest neigbhours if maximum_distance != NULL

knn_method method to create kNN network

k number of nearest neighbors based on physical distance

maximum_distance_knn

distance cuttof for nearest neighbors to consider for kNN network

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)
... Additional parameters for the selected function

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. For Delaunay method, neighbors will be decided by delaunay triangulation and a maximum distance criteria. For kNN method, number of neighbors can be determined by k, or maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

Value

giotto object with updated spatial network slot

Examples

```
createSpatialNetwork(gobject)
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0
)
```

create_average_DT

Arguments

```
gobject giotto object

meta_data_name name of metadata column to use

expression_values

which expression values to use

detection_threshold

detection threshold to consider a gene detected
```

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom")
)
```

Arguments

```
gobject giotto object

meta_data_name name of metadata column to use
expression_values

which expression values to use
```

Value

data.table with average gene epression values for each factor

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

Examples

```
{\tt create\_cell\_type\_random\_cell\_IDs(gobject)}
```

```
create\_crossSection\_object \\ create\_crossSection\_object
```

Description

```
create a crossSection object
```

Usage

```
create_crossSection_object(
  name = NULL,
  method = NULL,
  thickness_unit = NULL,
  slice_thickness = NULL,
  plane_equation = NULL,
  mesh_grid_n = NULL,
  mesh_obj = NULL,
  cell_subset = NULL,
  cell_subset_spatial_locations = NULL,
  cell_subset_projection_locations = NULL,
  cell_subset_projection_PCA = NULL,
  cell_subset_projection_coords = NULL)
)
```

Arguments

name of cress section object. (default = cross_sectino)

method method to define the cross section plane.

thickness_unit unit of the virtual section thickness. If "cell", average size of the observed

cells is used as length unit. If "natural", the unit of cell location coordinates

is used.(default = cell)

slice_thickness

thickness of slice

plane_equation a numerical vector of length 4, in the form of c(A,B,C,D), which defines plane

Ax+By+Cz=D.

mesh_grid_n numer of meshgrid lines to generate along both directions for the cross section

plane.

mesh_obj object that stores the cross section meshgrid information.

cell_subset cells selected by the cross section

cell_subset_spatial_locations

locations of cells selected by the cross section

cell_subset_projection_locations

3D projection coordinates of selected cells onto the cross section plane

cell_subset_projection_PCA

pca of projection coordinates

cell_subset_projection_coords

2D PCA coordinates of selected cells in the cross section plane

cell_distance_estimate_method

method to estimate average distance between neighboring cells. (default = mean)

extend_ratio deciding the span of the cross section meshgrid, as a ratio of extension compared

to the borders of the vitural tissue section. (default = 0.2)

create_screeplot 69

Description

create screeplot with ggplot

Usage

```
create_screeplot(pca_obj, ncp = 20, ylim = c(0, 20))
```

Arguments

```
pca_obj pca dimension reduction object
```

ncp number of principal components to calculate

ylim y-axis limits on scree plot

Value

ggplot

```
{\tt crossSectionGenePlot} \quad {\it crossSectionGenePlot}
```

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot(
  gobject = NULL,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionGenePlot",
  ...
)
```

Arguments

```
gobject giotto object

crossSection_obj

crossSection object

name name of virtual cross section to use

spatial_network_name

name of spatial network to use

default_save_name

default save name for saving, don't change, change save_name in save_param

parameters for spatGenePlot2D
```

70 crossSectionGenePlot3D

Details

Description of parameters.

Value

ggplot

See Also

spatGenePlot3D and spatGenePlot2D

```
crossSectionGenePlot3D
```

crossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSectionGenePlot3D",
  ...
)
```

Arguments

```
gobject giotto object

name name of virtual cross section to use
spatial_network_name

name of spatial network to use

default_save_name

default save name for saving, don't change, change save_name in save_param

parameters for spatGenePlot3D
```

Details

Description of parameters.

Value

ggplot

```
crossSectionGenePlot3D(gobject)
```

crossSectionPlot 71

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionPlot",
   ...
)
```

Arguments

```
gobject giotto object

name name of virtual cross section to use

spatial_network_name
 name of spatial network to use

default_save_name
 default save name for saving, don't change, change save_name in save_param

... parameters for spatPlot2D
```

Details

Description of parameters.

Value

ggplot

See Also

crossSectionPlot

72 crossSectionPlot3D

crossSectionPlot3D crossSectionPlot3D

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  show_other_cells = T,
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSection3D",
  ...
)
```

Arguments

Details

Description of parameters.

Value

ggplot

```
{\tt crossSectionPlot3D(gobject)}
```

decide_cluster_order 73

```
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cor_method = "pearson",
  hclust_method = "ward.D"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters

cor_method method for correlation
hclust_method method for hierarchical clustering
```

Details

Calculates order for clusters.

Value

custom

Examples

```
decide_cluster_order(gobject)
```

detectSpatialCorGenes detectSpatialCorGenes

Description

Detect genes that are spatially correlated

Usage

```
detectSpatialCorGenes(
  gobject,
  method = c("grid", "network"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  network_smoothing = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use for spatial averaging
expression_values
                  gene expression values to use
subset_genes
                  subset of genes to use
spatial_network_name
                  name of spatial network to use
network_smoothing
                  smoothing factor beteen 0 and 1 (default: automatic)
spatial_grid_name
                  name of spatial grid to use
min_cells_per_grid
                  minimum number of cells to consider a grid
cor_method
                  correlation method
```

Details

For method = network, it expects a fully connected spatial network. You can make sure to create a fully connected network by setting $minimal_k > 0$ in the createSpatialNetwork function.

- 1. grid-averaging: average gene expression values within a predefined spatial grid
- 2. network-averaging: smoothens the gene expression matrix by averaging the expression within one cell by using the neighbours within the predefined spatial network. b is a smoothening factor that defaults to 1 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

The spatCorObject can be further explored with showSpatialCorGenes()

detectSpatialPatterns 75

Value

```
returns a spatial correlation object: "spatCorObject"
```

See Also

```
showSpatialCorGenes
```

Examples

```
detectSpatialCorGenes(gobject)
```

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
                  scale features
scale_unit
                  number of principal components to calculate
ncp
show_plot
                  show plots
PC_zscore
                  minimum z-score of variance explained by a PC
```

76 dimCellPlot

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

```
spatial pattern object 'spatPatObj'
```

Examples

```
detectSpatialPatterns(gobject)
```

dimCellPlot

dimCellPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot(gobject, ...)
```

```
gobject
                 giotto object
                 Arguments passed on to dimCellPlot2D
                 dim_reduction_to_use dimension reduction to use
                 dim_reduction_name dimension reduction name
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 cell_annotation_values numeric cell annotation columns
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color_code named vector with colors for cell annotation values
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
```

dimCellPlot 77

```
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of dim. reduction points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot2D()

Examples

```
dimCellPlot(gobject)
```

78 dimCellPlot2D

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

dimCellPlot2D 79

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
                     dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color_code
                     named vector with colors for cell annotation values
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
```

80 dimCellPlot2D

```
center_point_border_col
                  border color of center points
center_point_border_stroke
                  border stroke size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_alpha
                  transparancy of dim. reduction points
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot()

Examples

```
dimCellPlot2D(gobject)
```

dimGenePlot 81

dimGenePlot

dimGenePlot

Description

Visualize gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(...)
```

Arguments

Arguments passed on to dimGenePlot2D gobject giotto object expression_values gene expression values to use genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE network_color color of NN network edge_alpha column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter point_shape point with border or not (border or no_border) point_size size of point (cell) point_alpha transparancy of points cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits point_border_col color of border around points point_border_stroke stroke size of border around points show_legend show legend legend_text size of legend text background_color color of plot background axis_text size of axis text axis_title size of axis title cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align

show_plot show plots

return_plot return ggplot object

82 dimGenePlot2D

```
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D()

Examples

```
dimGenePlot(gobject)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize gene expression according to dimension reduction coordinates

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
```

dimGenePlot2D 83

```
point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      legend_text = 8,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimGenePlot2D"
Arguments
   gobject
                     giotto object
    expression_values
                     gene expression values to use
    genes
                     genes to show
    dim_reduction_to_use
                     dimension reduction to use
   dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
   nn_network_to_use
                     type of NN network to use (kNN vs sNN)
   network_name
                     name of NN network to use, if show_NN_network = TRUE
    network_color
                     color of NN network
    edge_alpha
                     column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     point with border or not (border or no_border)
   point_shape
   point_size
                     size of point (cell)
   point_alpha
                     transparancy of points
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
```

84 dimGenePlot2D

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
background_color
                  color of plot background
                  size of axis text
axis_text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot3D(), dimGenePlot()

Examples

```
dimGenePlot2D(gobject)
```

dimGenePlot3D 85

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3\_to\_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot3D"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dim_neduction_name
dimension reduction name
```

86 dimPlot

```
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
                  dimension to use on z-axis
dim3_to_use
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot()

Examples

```
dimGenePlot3D(gobject)
```

dimPlot dimPlot

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot(...)
```

dimPlot 87

Arguments

Arguments passed on to dimPlot2D gobject giotto object group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show NN network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell color paramselect_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_shape point with border or not (border or no_border) point_size size of point (cell) point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points title title for plot, defaults to cell_color parameter show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background axis_text size of axis text axis_title size of axis title

88 dimPlot2D

```
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot(gobject)
```

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
```

dimPlot2D

```
cell_color_code = NULL,
      cell_color_gradient = c("blue", "white", "red"),
     gradient_midpoint = NULL,
      gradient_limits = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 0.5,
      show_cluster_center = F,
      show_center_label = T,
     center_point_size = 4,
      center_point_border_col = "black",
     center_point_border_stroke = 0.1,
      label_size = 4,
      label_fontface = "bold",
      edge_alpha = NULL,
     point_shape = c("border", "no_border"),
     point_size = 1,
     point_alpha = 1,
     point_border_col = "black",
     point_border_stroke = 0.1,
      title = NULL,
      show_legend = T,
     legend_text = 8,
     legend_symbol_size = 1,
     background_color = "white",
      axis_text = 8,
     axis_title = 8,
     cow_n_col = 2,
     cow_rel_h = 1,
      cow_rel_w = 1,
     cow_align = "h",
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "dimPlot2D"
Arguments
   gobject
                    giotto object
                    create multiple plots based on cell annotation column
   group_by
   group_by_subset
                    subset the group_by factor column
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
                    dimension to use on x-axis
   dim1_to_use
   dim2_to_use
                    dimension to use on y-axis
```

90 dimPlot2D

```
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
                  color for cells (see details)
cell_color
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
center_point_border_col
                  border color of center points
center_point_border_stroke
                  border stroke size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
                  transparancy of point
point_alpha
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  title for plot, defaults to cell_color parameter
title
```

dimPlot3D 91

```
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot2D(gobject)
```

dimPlot3D	dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

92 dimPlot3D

Usage

```
dimPlot3D(
      gobject,
      dim_reduction_to_use = "umap",
      dim_reduction_name = "umap",
      dim1_to_use = 1,
      dim2_to_use = 2,
      dim3_to_use = 3,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 2,
      show_NN_network = F,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      color_as_factor = T,
      cell_color = NULL,
      cell_color_code = NULL,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      edge_alpha = NULL,
      point_size = 3,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dim3D"
Arguments
    gobject
                    giotto object
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
    select_cell_groups
                    select subset of cells/clusters based on cell_color parameter
                    select subset of cells based on cell IDs
    select_cells
    show_other_cells
                    display not selected cells
   other_cell_color
                    color of not selected cells
   other_point_size
```

size of not selected cells

dimPlot3D 93

```
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  show legend
show_legend
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot3D(gobject)
```

94 doHclust

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL
  name = "hclust",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

```
giotto object
gobject
expression_values
                  expression values to use
genes_to_use
                  subset of genes to use
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimensions reduction name
dimensions_to_use
                  dimensions to use
distance_method
                  distance method
{\tt agglomeration\_method}
                  agglomeration method for hclust
k
                  number of final clusters
h
                  cut hierarchical tree at height = h
                  name for hierarchical clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
```

doHMRF 95

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

```
doHclust(gobject)
```

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "Delaunay_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "test",
  k = 10,
  betas = c(0, 2, 50),
  tolerance = 1e-10,
  zscore = c("none", "rowcol", "colrow"),
  numinit = 100,
  python_path = NULL,
  output_folder = NULL,
  overwrite_output = TRUE
)
```

96 doKmeans

```
spatial_genes
                  spatial genes to use for HMRF
spatial_dimensions
                  select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                  use another dimension reduction set as input
dim_reduction_name
                  name of dimension reduction set to use
dimensions_to_use
                  number of dimensions to use as input
name
                  name of HMRF run
k
                  number of HMRF domains
betas
                  betas to test for
tolerance
                  tolerance
zscore
                  zscore
numinit
                  number of initializations
python_path
                  python path to use
output_folder
                  output folder to save results
overwrite_output
                  overwrite output folder
```

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

Examples

```
doHMRF(gobject)
```

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
```

doKmeans 97

```
"manhattan", "canberra", "binary", "minkowski"),
centers = 10,
iter_max = 100,
nstart = 1000,
algorithm = "Hartigan-Wong",
name = "kmeans",
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
```

Arguments

gobject giotto object

expression_values

expression values to use

genes_to_use subset of genes to use

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimensions reduction name

dimensions_to_use

dimensions to use

distance_method

distance method

centers number of final clusters iter_max kmeans maximum iterations

nstart kmeans nstart algorithm kmeans algorithm

name name for kmeans clustering

return_gobject | boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

kmeans

Examples

doKmeans(gobject)

98 doLeidenCluster

doLeidenCluster doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

gobject giotto object name for cluster name nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use python_path specify specific path to python if required resolution resolution weight column to use for edges weight_col partition_type The type of partition to use for optimisation. init_membership initial membership of cells for the partition n_iterations number of interations to run the Leiden algorithm. If the number of iterations is negative, the Leiden algorithm is run until an iteration in which there was no improvement. return_gobject boolean: return giotto object (default = TRUE) set_seed set seed seed_number number for seed

doLeidenSubCluster 99

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the https://github.com/vtraag/leidenalgleidenalg github page or the https://leidenalg.readthedocs.io/en/stable/index.htmlreadthedocs page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does *not* use the resolution parameter

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLeidenCluster(gobject)
```

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(
  gobject,
  name = "sub_pleiden_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
 n_{iterations} = 500,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
```

100 doLeidenSubCluster

```
return_gobject = TRUE,
verbose = T
)
```

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution of Leiden clustering

n_iterations number of interations to run the Leiden algorithm.

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

doLouvainCluster 101

See Also

doLeidenCluster

Examples

```
doLeidenSubCluster(gobject)
```

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set\_seed = F,
  seed_number = 1234,
)
```

```
gobject
                  giotto object
                  implemented version of Louvain clustering to use
version
                  name for cluster
name
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
python_path
                  [community] specify specific path to python if required
resolution
                  [community] resolution
weight_col
                  weight column name
                  [multinet] Resolution parameter for modularity in the generalized louvain method.
gamma
                  [multinet] Inter-layer weight parameter in the generalized louvain method
omega
                  [community] Will randomize the node evaluation order and the community eval-
louv_random
                  uation order to get different partitions at each call
```

```
return_gobject boolean: return giotto object (default = TRUE)
set_seed set seed
seed_number number for seed
... additional parameters
```

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

See Also

doLouvainCluster_community and doLouvainCluster_multinet

Examples

```
doLouvainCluster(gobject)
```

```
\label{lower} do Louvain {\it Cluster\_community} \\ do Louvain {\it Cluster\_community}
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

```
doLouvainCluster_community(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

```
gobject
                  giotto object
name
                  name for cluster
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
                  specify specific path to python if required
python_path
resolution
                  resolution
weight_col
                  weight column to use for edges
louv_random
                  Will randomize the node evaluation order and the community evaluation order
                  to get different partitions at each call
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed\_number
                  number for seed
```

Details

This function is a wrapper for the Louvain algorithm implemented in Python, which can detect communities in graphs of nodes (cells). See the https://python-louvain.readthedocs.io/en/latest/index.htmlreadthedocs page for more information.

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_community(gobject)
```

```
\label{lower-multinet} do Louvain Cluster\_multinet \\ do Louvain Cluster\_multinet
```

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

```
doLouvainCluster_multinet(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  gamma = 1,
  omega = 1,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

104 doLouvainSubCluster

Arguments

```
gobject giotto object
name name for cluster
nn_network_to_use
```

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

gamma Resolution parameter for modularity in the generalized louvain method.

omega Inter-layer weight parameter in the generalized louvain method.

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See glouvain_ml from the multinet package in R for more information.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_multinet(gobject)
```

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

```
doLouvainSubCluster(
 gobject,
 name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
```

doLouvainSubCluster 105

```
gamma = 1,
omega = 1,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

gobject giotto object

name name for new clustering result version version of Louvain algorithm to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

 $hvg_min_perc_cells$

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork resolution resolution for community algorithm

gamma gamma omega omega

python_path specify specific path to python if required

 $nn_network_to_use$

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLouvainCluster_multinet and doLouvainCluster_community
```

Examples

```
doLouvainSubCluster(gobject)
```

```
\label{loss} do Louvain SubCluster\_community \\ do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(
  gobject,
  name = "sub_louvain_comm_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

```
gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters
```

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain community algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain community clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_community

Examples

doLouvainSubCluster_community(gobject)

```
\label{lower} do Louvain SubCluster\_multinet \\ do Louvain SubCluster\_multinet
```

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

Usage

```
doLouvainSubCluster_multinet(
  gobject,
 name = "sub_louvain_mult_clus",
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  gamma = 1,
  omega = 1,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

```
giotto object
gobject
name
                  name for new clustering result
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
```

doRandomWalkCluster 109

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma
omega omega
nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject | boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain multinet algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain multinet clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet

Examples

doLouvainSubCluster_multinet(gobject)

 $do Random Walk Cluster \qquad do Random Walk Cluster$

Description

Cluster cells using a random walk approach.

doSNNCluster

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

giotto object gobject name name for cluster nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name number of walking steps walk_steps walk_clusters number of final clusters walk_weights cluster column defining the walk weights return_gobject boolean: return giotto object (default = TRUE) set_seed set seed

Details

 $seed_number$

See cluster_walktrap function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

number for seed

Examples

doRandomWalkCluster(gobject)

 $do SNN Cluster \\ do SNN Cluster$

Description

Cluster cells using a SNN cluster approach.

doSNNCluster 111

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (only works on kNN)

network_name name of kNN network to use

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

```
doSNNCluster(gobject)
```

112 exportGiottoViewer

 $\verb"estimateImageBg"$

estimateImageBg

Description

helps to estimate which color is the background color of your plot

Usage

```
estimateImageBg(mg_object, top_color_range = 1:50)
```

Arguments

```
mg_object magick image or Giotto image object top_color_range top possible background colors to return
```

Value

vector of pixel color frequencies and an associated barplot

Examples

```
estimateImageBg(mg_object)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

Usage

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  factor_annotations = NULL,
  numeric_annotations = NULL,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("scaled", "normalized", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = 2,
  overwrite_dir = T,
  verbose = T
```

exprCellCellcom 113

Arguments

```
gobject
                  giotto object
output_directory
                  directory where to save the files
spat_enr_names spatial enrichment results to include for annotations
factor_annotations
                  giotto cell annotations to view as factor
numeric_annotations
                  giotto cell annotations to view as numeric
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
verbose
                  be verbose
```

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

Value

writes the necessary output to use in Giotto Viewer

Examples

exportGiottoViewer(gobject)

exprCellCellcom exprCellCellcom

Description

Cell-Cell communication scores based on expression only

114 exprCellCellcom

Usage

Arguments

```
giotto object to use
gobject
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values, without considering the spatial position of cells. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on expression only

```
exprCellCellcom(gobject)
```

extractNearestNetwork 115

 ${\tt extractNearestNetwork} \ \ \textit{extractNearestNetwork}$

Description

Extracts a NN-network from a Giotto object

Usage

```
extractNearestNetwork(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  output = c("igraph", "data.table")
)
```

Arguments

Value

igraph or data.table object

Examples

extractNearestNetwork(gobject)

 ${\sf fDataDT}$

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject giotto object

Value

data.table with gene metadata

Examples

```
pDataDT(gobject)
```

```
filterCellProximityGenes
```

filter Cell Proximity Genes

Description

Filter cell proximity gene scores.

Usage

```
filterCellProximityGenes(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

Arguments

```
cpg0bject
                  cell proximity gene score object
\min_{cells}
                  minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells
                  minimum number of interacting neighbor cell type
min_int_cells_expr
                  minimum expression level for interacting neighbor cell type
                  minimum adjusted p-value
min_fdr
                  minimum absolute spatial expression difference
min_spat_diff
min_log2_fc
                  minimum log2 fold-change
min_zscore
                  minimum z-score change
zscores_column calculate z-scores over cell types or genes
                  differential expression directions to keep
direction
```

Value

cpgObject that contains the filtered differential gene scores

```
filterCellProximityGenes(gobject)
```

filterCombinations 117

filterCombinations filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterCombinations")
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_thresholds
                  all thresholds to consider a gene expressed
gene_det_in_min_cells
                  minimum number of cells that should express a gene to consider that gene fur-
                  ther
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
                  ggplot transformation for x-axis (e.g. log2)
scale_x_axis
x_axis_offset
                  x-axis offset to be used together with the scaling transformation
                  ggplot transformation for y-axis (e.g. log2)
scale_y_axis
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
                  show plot
show_plot
return_plot
                  return only ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

118 filterCPG

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

filterCombinations(gobject)

filterCPG

filterCPG

Description

Filter cell proximity gene scores.

Usage

```
filterCPG(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

```
cpgObject
                 cell proximity gene score object
                 minimum number of source cell type
min_cells
min_cells_expr minimum expression level for source cell type
min_int_cells
                 minimum number of interacting neighbor cell type
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
min_fdr
                 minimum adjusted p-value
min_spat_diff
                 minimum absolute spatial expression difference
min_log2_fc
                 minimum log2 fold-change
                 minimum z-score change
min_zscore
zscores_column calculate z-scores over cell types or genes
                 differential expression directions to keep
direction
```

filterDistributions 119

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCPG(gobject)
```

filterDistributions filterDistributions

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterDistributions"
)
```

```
giotto object
gobject
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
return_plot
                  return ggplot object
```

120 filterGiotto

Value

ggplot object

Examples

```
filterDistributions(gobject)
```

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

```
giotto object
```

Examples

```
filterGiotto(gobject)
```

```
findCellProximityGenes
```

findCellProximityGenes

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCellProximityGenes(
 gobject,
 expression_values = "normalized",
  selected_genes = NULL,
 cluster_column,
  spatial_network_name = "Delaunay_network",
 minimum_unique_cells = 1,
 minimum_unique_int_cells = 1,
 diff_test = c("permutation", "limma", "t.test", "wilcox"),
 mean_method = c("arithmic", "geometric"),
 offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
 nr_permutations = 1000,
 exclude_selected_cells_from_test = T,
 do_parallel = TRUE,
  cores = NA
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
diff_test
                  which differential expression test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
```

```
adjust_method which method to adjust p-values

nr_permutations

number of permutations if diff_test = permutation

exclude_selected_cells_from_test

exclude interacting cells other cells

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- · diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

findCellProximityGenes(gobject)

findCPG 123

findCPG findCPG

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCPG(
  gobject,
  expression_values = "normalized",
  selected_genes = NULL,
  cluster_column,
  spatial_network_name = "Delaunay_network",
  minimum_unique_cells = 1,
  minimum_unique_int_cells = 1,
  diff_test = c("permutation", "limma", "t.test", "wilcox"),
  mean_method = c("arithmic", "geometric"),
  offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
  nr_permutations = 100,
  exclude_selected_cells_from_test = T,
  do_parallel = TRUE,
  cores = NA
)
```

```
giotto object
gobject
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
                  which differential expression test
diff_test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
adjust_method
                  which method to adjust p-values
nr_permutations
                  number of permutations if diff_test = permutation
```

124 findGiniMarkers

```
exclude_selected_cells_from_test exclude interacting cells other cells
```

do_parallel run calculations in parallel with mclapply
cores number of cores to use if do_parallel = TRUE

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

• genes: All or selected list of tested genes

• sel: average gene expression in the interacting cells from the target cell type

• other: average gene expression in the NOT-interacting cells from the target cell type

• log2fc: log2 fold-change between sel and other

· diff: spatial expression difference between sel and other

• p.value: associated p-value

• p.adj: adjusted p-value

• cell_type: target cell type

• int_cell_type: interacting cell type

• nr_select: number of cells for selected target cell type

• int_nr_select: number of cells for interacting cell type

• nr_other: number of other cells of selected target cell type

• int_nr_other: number of other cells for interacting cell type

• unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

findCPG(gobject)

 ${\it find Gini Markers}$

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

findGiniMarkers 125

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
group_2
                  group 2 cluster IDs from cluster_column for pairwise comparison
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter on minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
rank_score
                  rank scores for both detection and expression to include
                  minimum number of top genes to return
min_genes
```

Details

Detection of marker genes using the https://en.wikipedia.org/wiki/Gini_coefficientgini coefficient is based on the following steps/principles per gene:

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster
- 3. calculate gini-coefficient for av. expression values over all clusters
- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined score = detection rank x expression rank x expr gini-coefficient x detection gini-coefficient
- 7. for each gene sort on expression and detection rank and combined score

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
findGiniMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  verbose = TRUE
)
```

findMarkers 127

```
detection_threshold
```

detection threshold for gene expression

rank_score rank scores for both detection and expression to include

min_genes minimum number of top genes to return

verbose be verbose

Value

data.table with marker genes

See Also

findGiniMarkers

Examples

```
findGiniMarkers_one_vs_all(gobject)
```

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column = NULL,
  method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank\_score = 1,
  min\_genes = 4,
  group_1_name = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
)
```

128 findMarkers

Arguments

gobject giotto object expression_values gene expression values to use cluster_column clusters to use method method to use to detect differentially expressed genes subset_clusters selection of clusters to compare group 1 cluster IDs from cluster_column for pairwise comparison group_1 group_2 group 2 cluster IDs from cluster_column for pairwise comparison min_expr_gini_score gini: filter on minimum gini coefficient for expression min_det_gini_score gini: filter minimum gini coefficient for detection detection_threshold gini: detection threshold for gene expression rank_score gini: rank scores to include minimum number of top genes to return (for gini) min_genes

group_1_name mast: custom name for group_1 clusters

group_2_name mast: custom name for group_2 clusters

adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)

... additional parameters for the findMarkers function in scran or zlm function in

MAST

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

 $find Scran Markers, find Gini Markers \ and \ find Mast Markers$

Examples

findMarkers(gobject)

```
find {\it Markers\_one\_vs\_all} \\ {\it find Markers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner.

Usage

```
findMarkers_one_vs_all(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 cluster_column,
  subset_clusters = NULL,
 method = c("scran", "gini", "mast"),
 pval = 0.01,
 logFC = 0.5,
 min\_genes = 10,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
 detection_threshold = 0,
  rank_score = 1,
 adjust_columns = NULL,
 verbose = TRUE,
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  method to use to detect differentially expressed genes
method
pval
                  scran & mast: filter on minimal p-value
logFC
                  scan & mast: filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
```

130 findMastMarkers

```
verbose be verbose
... additional parameters for the findMarkers function in scran or zlm function in MAST
```

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

```
find Scran Markers\_one\_vs\_all, find Gini Markers\_one\_vs\_all \ and \ find Mast Markers\_one\_vs\_all \ and \ find Markers\_one\_v
```

Examples

```
findMarkers_one_vs_all(gobject)
```

findMastMarkers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  ...
)
```

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_1_name custom name for group_1 clusters
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
```

```
group_2_name custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
... additional parameters for the zlm function in MAST
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes.

Value

data.table with marker genes

Examples

```
findMastMarkers(gobject)
```

```
findMastMarkers_one_vs_all findMastMarkers_one_vs_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

```
gobject giotto object
expression_values
gene expression values to use
cluster_column clusters to use
subset_clusters
selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
pval filter on minimal p-value
```

```
logFC filter on logFC
```

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

... additional parameters for the zlm function in MAST

Value

data.table with marker genes

See Also

findMastMarkers

Examples

```
findMastMarkers_one_vs_all(gobject)
```

```
findNetworkNeighbors findNetworkNeighbors
```

Description

Find the spatial neighbors for a selected group of cells within the selected spatial network.

Usage

```
findNetworkNeighbors(
  gobject,
  spatial_network_name,
  source_cell_ids = NULL,
  name = "nb_cells"
)
```

Arguments

Value

data.table

```
findNetworkNeighbors(gobject)
```

findScranMarkers 133

findScranMarkers findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  ...
)
```

Arguments

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

```
findScranMarkers(gobject)
```

```
find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

Usage

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  subset of clusters to use
pval
                  filter on minimal p-value
logFC
                  filter on logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
                  additional parameters for the findMarkers function in scran
```

Value

data.table with marker genes

See Also

findScranMarkers

```
findScranMarkers_one_vs_all(gobject)
```

get10Xmatrix 135

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data, gene_column_index = 1)
```

Arguments

```
path_to_data path to the 10X folder gene_column_index which column from the features or genes .tsv file to use for row ids
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix and tt has 3 files:

- barcodes.tsv(.gz)
- features.tsv(.gz) or genes.tsv(.gz)
- matrix.mtx(.gz)

By default the first column of the features or genes .tsv file will be used, however if multiple annotations are provided (e.g. ensembl gene ids and gene symbols) the user can select another column.

Value

sparse expression matrix from 10X

Examples

```
get10Xmatrix(path_to_data)
```

```
getClusterSimilarity
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

136 getDendrogramSplits

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

getDistinctColors 137

distance distance method to use for hierarchical clustering

h height of horizontal lines to plot

h_color color of horizontal lines

show_dend show dendrogram

verbose be verbose

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

getDendrogramSplits(gobject)

getDistinctColors get

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

getDistinctColors(n)

Arguments

n

number of colors wanted

Value

number of distinct colors

138 get_os

 ${\tt getGiottoImage}$

getGiottoImage

Description

get get a giotto image from a giotto object

Usage

```
getGiottoImage(gobject, image_name)
```

Arguments

gobject

giotto object

image_name

 $name\ of\ giotto\ image\ show {\tt GiottoImageNames}$

Value

a giotto image

Examples

```
getGiottoImage(gobject)
```

get_os

get_os

Description

 $return\ the\ type\ of\ operating\ system,\ see\ https://conjugateprior.org/2015/06/identifying-the-os-from-r/$

Usage

```
get_os()
```

Value

character osx, linux or windows

giotto-class 139

giotto-class

S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

```
raw_exprs raw expression counts
norm_expr normalized expression counts
norm_scaled_expr normalized and scaled expression counts
custom_expr custom normalized counts
spatial_locs spatial location coordinates for cells
cell_metadata metadata for cells
gene_metadata metadata for genes
cell_ID unique cell IDs
gene_ID unique gene IDs
spatial_network spatial network in data.table/data.frame format
spatial_grid spatial grid in data.table/data.frame format
spatial_enrichment slot to save spatial enrichment-like results
dimension_reduction slot to save dimension reduction coordinates
nn_network nearest neighbor network in igraph format
images slot to store giotto images
parameters slot to save parameters that have been used
instructions slot for global function instructions
offset_file offset file used to stitch together image fields
OS_platform Operating System to run Giotto analysis on
```

 $heatmSpatialCorGenes \quad \textit{heatmSpatialCorGenes}$

Description

Create heatmap of spatially correlated genes

Usage

```
heatmSpatialCorGenes(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_cluster_annot = TRUE,
  show_row_dend = T,
  show_column_dend = F,
  show_row_names = F,
  show_column_names = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "heatmSpatialCorGenes",
  ...
)
```

Arguments

```
gobject
                 giotto object
                 spatial correlation object
spatCorObject
                 name of clusters to visualize (from clusterSpatialCorGenes())
use_clus_name
show_cluster_annot
                 show cluster annotation on top of heatmap
                 show row dendrogram
show_row_dend
show_column_dend
                 show column dendrogram
show_row_names show row names
show_column_names
                 show column names
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters, see showSaveParameters
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 additional parameters to the Heatmap function from ComplexHeatmap
. . .
```

Value

Heatmap generated by ComplexHeatmap

```
heatmSpatialCorGenes(gobject)
```

hyperGeometricEnrich

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(...)
```

Arguments

```
Arguments passed on to runHyperGeometricEnrich
gobject Giotto object
sign_matrix Matrix of signature genes for each cell type / process
expression_values expression values to use
reverse_log_scale reverse expression values from log scale
logbase log base to use if reverse_log_scale = TRUE
top_percentage percentage of cells that will be considered to have gene expression with matrix binarization
output_enrichment how to return enrichment output
p_value calculate p-values (boolean, default = FALSE)
name to give to spatial enrichment results, default = rank
return_gobject return giotto object
```

See Also

run Hyper Geometric Enrich

insertCrossSectionGenePlot3D

insertCrossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
insertCrossSectionGenePlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  mesh_grid_color = "#1f77b4",
  mesh_grid_width = 3,
```

```
mesh_grid_style = "dot",
sdimx = "sdimx",
sdimy = "sdimy",
sdimz = "sdimz",
show_other_cells = F,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatGenePlot3D_with_cross_section",
...
)
```

Arguments

```
gobject
                  giotto object
name
                  name of virtual cross section to use
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
                  z-axis dimension name (default = 'sdimy')
sdimz
show_other_cells
                  display not selected cells
                  axis_scale
axis_scale
                  custom_ratio
custom_ratio
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default\_save\_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatGenePlot3D
. . .
```

Details

Description of parameters.

Value

ggplot

Examples

```
insertCrossSectionGenePlot3D(gobject)
```

```
insert {\tt CrossSectionSpatPlot3D} \\ insert {\tt CrossSectionSpatPlot3D}
```

Description

Visualize the meshgrid lines of cross section together with cells

Usage

```
insertCrossSectionSpatPlot3D(
 gobject,
 crossSection_obj = NULL,
 name = NULL,
 spatial_network_name = "Delaunay_network",
 mesh_grid_color = "#1f77b4",
 mesh_grid_width = 3,
 mesh_grid_style = "dot",
 sdimx = "sdimx",
 sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 default_save_name = "spat3D_with_cross_section",
)
```

```
gobject
                  giotto object
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimy')
show_other_cells
                  display not selected cells
```

144 jackstrawPlot

```
axis_scale axis_scale

custom_ratio custom_ratio

default_save_name

default save name for saving, don't change, change save_name in save_param

... parameters for spatPlot3D
```

Details

Description of parameters.

Value

ggplot

Examples

insertCrossSectionSpatPlot3D(gobject)

jackstrawPlot

jackstrawPlot

Description

identify significant prinicipal components (PCs)

Usage

```
jackstrawPlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 genes_to_use = NULL,
 center = FALSE,
 scale_unit = FALSE,
 ncp = 20,
 ylim = c(0, 1),
 iter = 10,
  threshold = 0.01,
 verbose = T,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "jackstrawPlot"
```

loadHMRF 145

Arguments

gobject giotto object
expression_values

expression values to use

reduction cells or genes

genes_to_use subset of genes to use for PCA

center center data before PCA scale_unit scale features before PCA

ncp number of principal components to calculate

ylim y-axis limits on jackstraw plot
iter number of interations for jackstraw
threshold p-value threshold to call a PC significant
verbose show progress of jackstraw method

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for jackstraw method

Examples

jackstrawPlot(gobject)

loadHMRF

loadHMRF

Description

load previous HMRF

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
```

Arguments

name_used name of HMRF that was run

output_folder_used

output folder that was used

k_used number of HMRF domains that was tested

betas_used betas that were tested

python_path_used

python path that was used

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

loadHMRF(gobject)

make Sign Matrix PAGE

makeSignMatrixPAGE

Description

Function to convert a list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option. Each cell type or process should have a vector of cell-type or process specific genes. These vectors need to be combined into a list (sign_list). The names of the cell types or processes that are provided in the list need to be given (sign_names).

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

sign_names vector with names for each provided gene signature

sign_list list of genes (signature)

Value

matrix

See Also

PAGEEnrich

Examples

makeSignMatrixPAGE()

makeSignMatrixRank 147

makeSignMatrixRank

makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(sc_matrix, sc_cluster_ids, gobject = NULL)
```

Arguments

```
sc_matrix matrix of single-cell RNAseq expression data
sc_cluster_ids vector of cluster ids
gobject if giotto object is given then only genes present in both datasets will be consid-
```

Value

matrix

See Also

rankEnrich

Examples

```
{\tt makeSignMatrixRank()}
```

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
```

148 node_clusters

```
max_sim_clusters = 10,
return_gobject = TRUE,
verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
new_cluster_name
                  new name for merged clusters
min_cor_score min correlation score to merge pairwise clusters
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
max_sim_clusters
                  maximum number of clusters to potentially merge to reach force_min_group_size
return_gobject return giotto object
verbose
                  be verbose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value. The force_min_group_size might not always be reached if clusters have already been merged before A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

node_clusters

node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

```
node_clusters(hclus_obj, verbose = TRUE)
```

normalizeGiotto 149

Arguments

hclus_obj hclus object verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

normalizeGiotto

normalizeGiotto

Description

fast normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  log_offset = 1,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
```

```
gobject
                  giotto object
                  normalization method to use
norm_methods
library_size_norm
                  normalize cells by library size
scalefactor
                  scale factor to use after library size normalization
log_norm
                  transform values to log-scale
log_offset
                  offset value to add to expression matrix, default = 1
logbase
                  log base to use to log normalize expression values
scale_genes
                  z-score genes over all cells
scale_cells
                  z-score cells over all genes
scale_order
                  order to scale genes and cells
verbose
                  be verbose
```

PAGEEnrich PAGEEnrich

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

normalizeGiotto(gobject)

PAGEEnrich

runPAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(...)
```

Arguments

Arguments passed on to runPAGEEnrich
gobject Giotto object
sign_matrix Matrix of signature genes for each cell type / process
expression_values expression values to use
reverse_log_scale reverse expression values from log scale
logbase log base to use if reverse_log_scale = TRUE
output_enrichment how to return enrichment output
p_value calculate p-values (boolean, default = FALSE)
name to give to spatial enrichment results, default = PAGE
return_gobject return giotto object

pDataDT 151

See Also

runPAGEEnrich

pDataDT

pDataDT

Description

show cell metadata

Usage

```
pDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table with cell metadata

Examples

pDataDT(gobject)

 ${\tt plotCCcomDotplot}$

plot CC com Dot plot

Description

Plots dotplot for ligand-receptor communication scores in cell-cell interactions

```
plotCCcomDotplot(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  cluster_on = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
 aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomDotplot"
```

152 plotCCcomHeatmap

Arguments

```
gobject
                  giotto object
                  communinication scores from exprCellCellcom or spatCellCellcom
comScores
selected_LR
                  selected ligand-receptor combinations
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
show_LR_names
                  show ligand-receptor names
show_cell_LR_names
                  show cell-cell names
                  values to use for clustering of cell-cell and ligand-receptor pairs
cluster_on
                  correlation method used for clustering
cor_method
                  agglomeration method used by hclust
aggl\_method
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCCcomDotplot(CPGscores)
```

plotCCcomHeatmap plotCCcomHeatmap

Description

Plots heatmap for ligand-receptor communication scores in cell-cell interactions

```
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCCcomHeatmap")
```

Arguments

```
gobject
                  giotto object
comScores
                  communinication scores from exprCellCellcom or spatCellCellcom
selected_LR
                  selected ligand-receptor combinations
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
show_LR_names
                  show ligand-receptor names
show_cell_LR_names
                  show cell-cell names
show
                  values to show on heatmap
                  correlation method used for clustering
cor_method
                  agglomeration method used by hclust
aggl_method
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
{\tt default\_save\_name}
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCCcomHeatmap(CPGscores)
```

```
plot Cell Proximity Genes \\ plot Cell Proximity Genes
```

Description

Create visualization for cell proximity gene scores

Usage

```
plotCellProximityGenes(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCellProximityGenes"
```

Arguments

```
gobject
                  giotto object
cpgObject
                  cell proximity gene score object
method
                  plotting method to use
min_cells
                  minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells
                  minimum number of interacting neighbor cell type
min_int_cells_expr
                  minimum expression level for interacting neighbor cell type
min_fdr
                  minimum adjusted p-value
min_spat_diff
                  minimum absolute spatial expression difference
                  minimum log2 fold-change
min_log2_fc
min_zscore
                  minimum z-score change
zscores_column calculate z-scores over cell types or genes
direction
                  differential expression directions to keep
cell_color_code
                  vector of colors with cell types as names
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

plotCombineCCcom 155

Value

plot

Examples

```
plotCellProximityGenes(CPGscores)
```

plotCombineCCcom

plotCombineCCcom

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCCcom(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCCcom"
)
```

```
gobject
                  giotto object
{\sf combCCcom}
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
```

```
facet_nrow ggplot facet nrow parameter

colors vector with two colors to use

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCCcom(CPGscores)
```

```
plot {\tt Combine Cell Cell Communication} \\ plot {\tt Combine Cell Cell Communication} \\
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCellCellCommunication(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCellCellCommunication"
```

Arguments

```
giotto object
gobject
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
                  ggplot facet ncol parameter
facet_ncol
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCellCellCommunication(CPGscores)
```

```
plot {\tt Combine Cell Proximity Genes} \\ plot {\tt Combine Cell Proximity Genes}
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCellProximityGenes(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
```

```
simple_plot_facet = c("interaction", "genes"),
facet_scales = "fixed",
facet_ncol = length(selected_gene_to_gene),
facet_nrow = length(selected_interactions),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineCPG"
```

Arguments

```
gobject
                  giotto object
combCpgObject
                  CPGscores, output from combineCellProximityGenes()
selected_interactions
                  interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

```
plotCombineCellProximityGenes(CPGscores)
```

plotCombineCPG 159

plotCombineCPG plotCombineCPG

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCPG(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCPG"
)
```

Arguments

```
gobject
                 giotto object
combCpgObject
                 CPGscores, output from combineCellProximityGenes()
selected_interactions
                 interactions to show
selected_gene_to_gene
                 pairwise gene combinations to show
detail_plot
                 show detailed info in both interacting cell types
simple_plot
                 show a simplified plot
simple_plot_facet
                 facet on interactions or genes with simple plot
facet_scales
                 ggplot facet scales paramter
facet_ncol
                 ggplot facet ncol parameter
facet_nrow
                 ggplot facet nrow parameter
colors
                 vector with two colors to use
show_plot
                 show plots
return_plot
                 return plotting object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters from all_plots_save_function
default_save_name
```

default save name for saving, don't change, change save_name in save_param

160 plotCPG

Value

ggplot

Examples

```
plotCombineCPG(CPGscores)
```

plotCPG

plotCPG

Description

Create visualization for cell proximity gene scores

Usage

```
plotCPG(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_cells_expr = 1,
  min_int_cells = 3,
  min_int_cells_expr = 1,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCPG"
)
```

```
gobject giotto object
cpgObject cell proximity gene score object
method plotting method to use
min_cells minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells minimum number of interacting neighbor cell type
min_int_cells_expr
minimum expression level for interacting neighbor cell type
```

plotGiottoImage 161

min_fdr minimum adjusted p-value

min_spat_diff minimum absolute spatial expression difference

min_log2_fc minimum log2 fold-change min_zscore minimum z-score change

zscores_column calculate z-scores over cell types or genes direction differential expression directions to keep

cell_color_code

vector of colors with cell types as names

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plot

Examples

plotCPG(CPGscores)

plotGiottoImage plotGiottoImage

Description

get plot a giotto image from a giotto object

Usage

```
plotGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

Value

plot

```
plotGiottoImage(gobject)
```

162 plotHeatmap

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

Usage

```
plotHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_color_code = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D"
  gene_order = c("correlation", "custom"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
  gradient_colors = c("blue", "yellow", "red"),
  gene_label_selection = NULL,
  axis_text_y_size = NULL,
  legend_nrows = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotHeatmap"
)
```

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
cluster_color_code
color code for clusters
cluster_cor_method
method for cluster correlation
```

plotHeatmap 163

```
cluster_hclust_method
                  method for hierarchical clustering of clusters
                  method to determine gene order
gene_order
gene_custom_order
                  custom order for genes
{\tt gene\_cor\_method}
                  method for gene correlation
gene_hclust_method
                  method for hierarchical clustering of genes
show_values
                  which values to show on heatmap
size_vertical_lines
                  sizes for vertical lines
gradient_colors
                  colors for heatmap gradient
gene_label_selection
                  subset of genes to show on y-axis
axis_text_y_size
                  size for y-axis text
legend_nrows
                  number of rows for the cluster legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name
```

Details

If you want to display many genes there are 2 ways to proceed:

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

Value

ggplot

```
## Not run:
plotHeatmap(gobject)
## End(Not run)
```

164 plotICG

plotICG plotICG

Description

Create barplot to visualize interaction changed genes

Usage

```
plotICG(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotICG"
)
```

Arguments

```
gobject
                  giotto object
                  cell proximity gene score object
cpgObject
source_type
                  cell type of the source cell
source_markers markers for the source cell type
ICG_genes
                  named character vector of ICG genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotICG(CPGscores)
```

```
plotInteraction {\tt Changed Genes} \\ plotInteraction {\tt Changed Genes} \\
```

Description

Create barplot to visualize interaction changed genes

Usage

```
plotInteractionChangedGenes(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotInteractionChangedGenes")
```

Arguments

```
gobject
                  giotto object
cpgObject
                  cell proximity gene score object
                  cell type of the source cell
source_type
source_markers markers for the source cell type
ICG_genes
                  named character vector of ICG genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default\_save\_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotInteractionChangedGenes(CPGscores)
```

plotly_axis_scale_3D

```
plotly_axis_scale_2D plotly_axis_scale_2D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_2D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_2D(gobject)
```

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

```
plotly_axis_scale_3D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
sdimz z axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_3D(gobject)
```

plotMetaDataCellsHeatmap

plotMetaDataCellsHeatmap

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_values_order = NULL,
  values_cor_method = "pearson",
  values_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 8,
  x_{text} = 45,
  y_text_size = 8,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataCellsHeatmap"
)
```

Arguments

gobject giotto object annotation columns found in pDataDT(gobject) metadata_cols spat_enr_names spatial enrichment results to include value_cols value columns to use first_meta_col if more than 1 metadata column, select the x-axis factor second_meta_col if more than 1 metadata column, select the facetting factor which values to show on heatmap show_values custom_cluster_order custom cluster order (default = NULL) clus_cor_method correlation method for clusters clus_cluster_method hierarchical cluster method for the clusters custom_values_order custom values order (default = NULL) values_cor_method correlation method for values values_cluster_method hierarchical cluster method for the values midpoint midpoint of show_values size of x-axis text x_text_size x_text_angle angle of x-axis text y_text_size size of y-axis text strip_text_size size of strip text show plot show_plot return ggplot object return_plot directly save the plot [boolean] save_plot list of saving parameters, see showSaveParameters save_param default_save_name default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

Examples

plotMetaDataCellsHeatmap(gobject)

plotMetaDataHeatmap 169

plotMetaDataHeatmap plotMetaDataHeatmap

Description

Creates heatmap for genes within aggregated clusters.

Usage

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson",
  gene_cluster_method = "complete",
  gradient_color = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataHeatmap"
```

```
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
gradient_color vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
x_text_size
                  size of x-axis text
                  angle of x-axis text
x_text_angle
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name
```

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups. Calculation of cluster or gene order is done on the provided expression values, but visualization is by default on the z-scores. Other options are the original values or z-scores rescaled per gene (-1 to 1).

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

Examples

plotMetaDataHeatmap(gobject)

plotPCA 171

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                  show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                  center_point_border_col border color of center points
                 center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
```

172 plotPCA_2D

```
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

plotPCA(gobject)

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

plotPCA_2D 173

Usage

```
plotPCA_2D(
      gobject,
      dim_reduction_name = "pca",
      default_save_name = "PCA_2D",
    )
Arguments
    gobject
                     giotto object
    dim_reduction_name
                     name of PCA
    default_save_name
                     default save name of PCA plot
                      Arguments passed on to dimPlot2D
    . . .
                     group_by create multiple plots based on cell annotation column
                     group_by_subset subset the group_by factor column
                     dim1_to_use dimension to use on x-axis
                     dim2_to_use dimension to use on y-axis
                     spat_enr_names names of spatial enrichment results to include
                      show_NN_network show underlying NN network
                     nn_network_to_use type of NN network to use (kNN vs sNN)
                     network_name name of NN network to use, if show_NN_network = TRUE
                     cell_color color for cells (see details)
                     color_as_factor convert color column to factor
                     cell_color_code named vector with colors
                     cell_color_gradient vector with 3 colors for numeric data
                     gradient_midpoint midpoint for color gradient
                     gradient_limits vector with lower and upper limits
                      select_cell_groups select subset of cells/clusters based on cell_color param-
                          eter
                     select_cells select subset of cells based on cell IDs
                     show_other_cells display not selected cells
                     other_cell_color color of not selected cells
                     other_point_size size of not selected cells
                     show_cluster_center plot center of selected clusters
                     show_center_label plot label of selected clusters
                     center_point_size size of center points
                     center_point_border_col border color of center points
                     center_point_border_stroke border stroke size of center points
                     label_size size of labels
                     label_fontface font of labels
                     edge_alpha column to use for alpha of the edges
                     point_shape point with border or not (border or no_border)
```

point_size size of point (cell)
point_alpha transparancy of point

plotPCA_3D

```
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotPCA_2D(gobject)
```

plotPCA_3D

plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
   ...
)
```

plotPCA_3D 175

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                 save_plot directly save the plot [boolean]
                 save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_2D(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotPCA_3D(gobject)
```

176 plotRankSpatvsExpr

plotRankSpatvsExpr plotRankSpatvsExpr

Description

Plots dotplot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRankSpatvsExpr(
  gobject,
  combCC,
  expr_rnk_column = "LR_expr_rnk",
  spat_rnk_column = "LR_spat_rnk",
  midpoint = 10,
  size\_range = c(0.01, 1.5),
  xlims = NULL,
  ylims = NULL,
  selected_ranks = c(1, 10, 20),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRankSpatvsExpr"
)
```

```
gobject
                  giotto object
combCC
                  combined communinication scores from combCCcom
expr_rnk_column
                  column with expression rank information to use
spat_rnk_column
                  column with spatial rank information to use
midpoint
                  midpoint of colors
                  size ranges of dotplot
size_range
xlims
                  x-limits, numerical vector of 2
ylims
                  y-limits, numerical vector of 2
selected_ranks numerical vector, will be used to print out the percentage of top spatial ranks are
                  recovered
show_plot
                  show plots
                  return plotting object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

plotRecovery 177

Value

ggplot

Examples

```
plotRankSpatvsExpr(CPGscores)
```

plotRecovery

plotRecovery

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery(
   gobject,
   combCC,
   expr_rnk_column = "exprPI_rnk",
   spat_rnk_column = "spatPI_rnk",
   ground_truth = c("spatial", "expression"),
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotRecovery"
)
```

Arguments

```
giotto object
gobject
                  combined communinication scores from combCCcom
combCC
expr_rnk_column
                  column with expression rank information to use
{\tt spat\_rnk\_column}
                  column with spatial rank information to use
ground_truth
                  what to consider as ground truth (default: spatial)
                  show plots
show_plot
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotRecovery(CPGscores)
```

```
plotRecovery_sub plotRecovery_sub
```

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery_sub(combCC, first_col = "LR_expr_rnk", second_col = "LR_spat_rnk")
```

Arguments

```
combCC combined communinication scores from combCCcom
first_col first column to use
```

second_col second column to use

Examples

```
plotRecovery_sub(CPGscores)
```

```
plotStatDelaunayNetwork
```

plot Stat Delaunay Network

Description

Plots network statistics for a Delaunay network..

```
plotStatDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotStatDelaunayNetwork",
)
```

plotTSNE 179

Arguments

gobject giotto object

method package to use to create a Delaunay network

dimensions which spatial dimensions to use (maximum 2 dimensions)

maximum_distance

distance cuttof for Delaunay neighbors to consider

minimum_k minimum neighbours if maximum_distance != NULL

options (geometry) String containing extra control options for the underlying Qhull

command; see the Qhull documentation (../doc/qhull/html/qdelaun.html) for the

available options. (default = 'Pp', do not report precision problems)

Y (RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh bound-

ary.

j (RTriangle) If TRUE jettisons vertices that are not part of the final triangulation

from the output.

S (RTriangle) Specifies the maximum number of added Steiner points.

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

 ${\tt default_save_name}$

default save name for saving, don't change, change save_name in save_param

... Other parameters

Value

giotto object with updated spatial network slot

Examples

 $\verb|plotStatDelaunayNetwork(gobject)|$

plotTSNE plotTSNE

Description

Short wrapper for tSNE visualization

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

180 plotTSNE

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                  Arguments passed on to dimPlot2D
. . .
                  group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                  spat_enr_names names of spatial enrichment results to include
                  show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                  select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                  other_point_size size of not selected cells
                  show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                  center_point_size size of center points
                  center_point_border_col border color of center points
                  center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
                  edge_alpha column to use for alpha of the edges
                 point_shape point with border or not (border or no_border)
                 point_size size of point (cell)
                 point_alpha transparancy of point
                 point_border_col color of border around points
                 point_border_stroke stroke size of border around points
                 title title for plot, defaults to cell_color parameter
                  show_legend show legend
                 legend_text size of legend text
                 legend_symbol_size size of legend symbols
                 background_color color of plot background
```

plotTSNE_2D 181

```
axis_text size of axis text

axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA_3D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotTSNE(gobject)
```

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
  ...
)
```

182 plotTSNE_2D

Arguments

gobject giotto object dim_reduction_name name of TSNE default_save_name default save name of TSNE plot Arguments passed on to dimPlot2D . . . group_by create multiple plots based on cell annotation column group_by_subset subset the group_by factor column dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_shape point with border or not (border or no_border) point_size size of point (cell) point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points title title for plot, defaults to cell_color parameter show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background

plotTSNE_3D 183

```
axis_text size of axis text

axis_title size of axis title

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotTSNE_2D(gobject)
```

```
plotTSNE_3D
```

plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D",
   ...
)
```

184 plotTSNE_3D

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                 save_plot directly save the plot [boolean]
                 save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP 185

plotUMAP plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
                 group_by create multiple plots based on cell annotation column
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                  show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 center_point_border_col border color of center points
                 center_point_border_stroke border stroke size of center points
                 label_size size of labels
                 label_fontface font of labels
```

186 plotUMAP_2D

```
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D()
```

Examples

plotUMAP(gobject)

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

plotUMAP_2D 187

```
plotUMAP_2D(
      gobject,
      dim_reduction_name = "umap",
      default_save_name = "UMAP_2D",
    )
Arguments
    gobject
                     giotto object
    dim_reduction_name
                     name of UMAP
    default_save_name
                     default save name of UMAP plot
                      Arguments passed on to dimPlot2D
    . . .
                     group_by create multiple plots based on cell annotation column
                     group_by_subset subset the group_by factor column
                     dim1_to_use dimension to use on x-axis
                     dim2_to_use dimension to use on y-axis
                     spat_enr_names names of spatial enrichment results to include
                      show_NN_network show underlying NN network
                     nn_network_to_use type of NN network to use (kNN vs sNN)
                     network_name name of NN network to use, if show_NN_network = TRUE
                     cell_color color for cells (see details)
                     color_as_factor convert color column to factor
                     cell_color_code named vector with colors
                     cell_color_gradient vector with 3 colors for numeric data
                     gradient_midpoint midpoint for color gradient
                     gradient_limits vector with lower and upper limits
                      select_cell_groups select subset of cells/clusters based on cell_color param-
                          eter
                     select_cells select subset of cells based on cell IDs
                     show_other_cells display not selected cells
                     other_cell_color color of not selected cells
                     other_point_size size of not selected cells
                     show_cluster_center plot center of selected clusters
                     show_center_label plot label of selected clusters
                     center_point_size size of center points
                     center_point_border_col border color of center points
                     center_point_border_stroke border stroke size of center points
                     label_size size of labels
                     label_fontface font of labels
                     edge_alpha column to use for alpha of the edges
                     point_shape point with border or not (border or no_border)
                     point_size size of point (cell)
                     point_alpha transparancy of point
```

188 plotUMAP_3D

```
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotUMAP_2D(gobject)
```

```
plotUMAP_3D
```

plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_3D",
   ...
)
```

plotUMAP_3D 189

Arguments

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                 save_plot directly save the plot [boolean]
                 save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP()
```

Examples

```
plotUMAP_3D(gobject)
```

190 rankEnrich

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(...)
```

Arguments

... Arguments passed on to runRankEnrich

gobject Giotto object

 $sign_matrix\ Matrix\ of\ signature\ genes\ for\ each\ cell\ type\ /\ process$

expression_values expression values to use

reverse_log_scale reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE output_enrichment how to return enrichment output p_value calculate p-values (boolean, default = FALSE) name to give to spatial enrichment results, default = rank

return_gobject return giotto object

See Also

runRankEnrich

rankSpatialCorGroups 191

```
rankSpatialCorGroups rankSpatialCorGroups
```

Description

Rank spatial correlated clusters according to correlation structure

Usage

```
rankSpatialCorGroups(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_plot = NA,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "rankSpatialCorGroups")
```

Arguments

```
giotto object
gobject
spatCorObject
                  spatial correlation object
                  name of clusters to visualize (from clusterSpatialCorGenes())
use_clus_name
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

data.table with positive (within group) and negative (outside group) scores

Examples

```
rankSpatialCorGroups(gobject)
```

192 readGiottoInstructions

readExprMatrix

readExprMatrix

Description

Function to read an expression matrix into a sparse matrix.

Usage

```
readExprMatrix(path, cores = NA, transpose = FALSE)
```

Arguments

path to the expression matrix

cores number of cores to use transpose transpose matrix

Details

The expression matrix needs to have both unique column names and row names

Value

sparse matrix

Examples

```
readExprMatrix()
```

 ${\tt readGiottoInstructions}$

read Giot to Instrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

giotto object or result from createGiottoInstructions()

param parameter to retrieve

Value

specific parameter

removeCellAnnotation 193

Examples

readGiottoInstrunctions()

removeCellAnnotation removeCellAnnotation

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the cell metadata

Value

giotto object

Examples

removeCellAnnotation(gobject)

remove Gene Annotation remove Gene Annotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the gene metadata

Value

giotto object

Examples

removeGeneAnnotation(gobject)

replaceGiottoInstructions

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

gobject giotto object

instructions new instructions (e.g. result from createGiottoInstructions)

Value

giotto object with replaces instructions

Examples

replaceGiottoInstructions()

run Hyper Geometric Enrich

runHyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

runPAGEEnrich 195

Usage

```
runHyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  top_percentage = 5,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

Giotto object gobject sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use reverse_log_scale reverse expression values from log scale log base to use if reverse_log_scale = TRUE logbase top_percentage percentage of cells that will be considered to have gene expression with matrix binarization output_enrichment how to return enrichment output calculate p-values (boolean, default = FALSE) p_value to give to spatial enrichment results, default = rank name return_gobject return giotto object

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

runPAGEEnrich runPAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

196 runPAGEEnrich

Usage

```
runPAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  n_times = 1000,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  Giotto object
                  Matrix of signature genes for each cell type / process
sign_matrix
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
logbase
                  log base to use if reverse_log_scale = TRUE
output_enrichment
                  how to return enrichment output
                  calculate p-values (boolean, default = FALSE)
p_value
                  to give to spatial enrichment results, default = PAGE
name
return_gobject return giotto object
                  number of permutations to calculate for p_value
n_time
```

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\check{\ }mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

makeSignMatrixPAGE

runPCA 197

runPCA runPCA

Description

runs a Principal Component Analysis

Usage

```
runPCA(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = "hvg",
  return_gobject = TRUE,
  center = F,
  scale_unit = F,
  ncp = 100,
  method = c("irlba", "factominer"),
  rev = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  cells or genes
reduction
                  arbitrary name for PCA run
name
                  subset of genes to use for PCA
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                  center data first (default = FALSE)
center
scale_unit
                  scale features before PCA (default = FALSE)
                  number of principal components to calculate
ncp
                  which implementation to use
method
                  do a reverse PCA
rev
                  verbosity of the function
verbose
                  additional parameters for PCA (see details)
. . .
```

Details

See prcomp_irlba and PCA for more information about other parameters.

- genes_to_use = NULL: will use all genes from the selected matrix
- genes_to_use = <hvg name>: can be used to select a column name of highly variable genes, created by (see calculateHVG)
- genes_to_use = c('geneA', 'geneB', ...): will use all manually provided genes

198 runRankEnrich

Value

giotto object with updated PCA dimension recuction

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small)
plotPCA(VC_small)</pre>
```

runRankEnrich

runRankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
runRankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  p_value = FALSE,
  n_times = 1000,
  name = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object
sign_matrix Matrix of signature genes for each cell type / process
expression_values
expression values to use
reverse_log_scale
reverse expression values from log scale
```

runSpatialEnrich 199

```
logbase
                  log base to use if reverse log scale = TRUE
output_enrichment
                  how to return enrichment output
                  calculate p-values (boolean, default = FALSE)
p_value
                  to give to spatial enrichment results, default = rank
name
return_gobject return giotto object
                  number of permutations to calculate for p_value
n_time
```

Details

sign_matrix: a rank-fold matrix with genes as row names and cell-types as column names. Alternatively a scRNA-seq matrix and vector with clusters can be provided to makeSignMatrixRank, which will create the matrix for you.

First a new rank is calculated as $R = (R1*R2)^{\Lambda}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: RBP = $(1 - 0.99) * (0.99)^{(R - 1)}$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

See Also

makeSignMatrixRank

runSpatialEnrich runSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using an enrichment test.

```
runSpatialEnrich(
 gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
 expression_values = c("normalized", "scaled", "custom"),
 reverse_log_scale = TRUE,
  logbase = 2,
 p_value = FALSE,
 n_{times} = 1000,
  top_percentage = 5,
 output_enrichment = c("original", "zscore"),
 name = NULL,
  return_gobject = TRUE
)
```

200 runtSNE

Arguments

Giotto object gobject method for gene signature enrichment calculation enrich_method sign_matrix Matrix of signature genes for each cell type / process expression_values expression values to use reverse_log_scale reverse expression values from log scale log base to use if reverse_log_scale = TRUE logbase p_value calculate p-value (default = FALSE) n_times (page/rank) number of permutation iterations to calculate p-value (hyper) percentage of cells that will be considered to have gene expression with top_percentage matrix binarization output_enrichment how to return enrichment output to give to spatial enrichment results, default = PAGE name return_gobject return giotto object

(page) number of genes of permutation iterations to calculate p-value

Details

n_genes

For details see the individual functions:

PAGE: runPAGEEnrichPAGE: runRankEnrich

• PAGE: runHyperGeometricEnrich

Value

Giotto object or enrichment results if return_gobject = FALSE

runtSNE runtSNE

Description

run tSNE

```
runtSNE(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
```

runtSNE 201

```
name = "tsne",
genes_to_use = NULL,
return_gobject = TRUE,
dims = 2,
perplexity = 30,
theta = 0.5,
do_PCA_first = F,
set_seed = T,
seed_number = 1234,
verbose = TRUE,
...
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for tSNE run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
dims
                 tSNE param: number of dimensions to return
perplexity
                 tSNE param: perplexity
                 tSNE param: theta
theta
do_PCA_first
                 tSNE param: do PCA before tSNE (default = FALSE)
                 use of seed
set_seed
seed_number
                 seed number to use
verbose
                 verbosity of the function
                 additional tSNE parameters
```

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple tSNE results can be stored by changing the *name* of the analysis

202 runUMAP

Value

giotto object with updated tSNE dimension recuction

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small)
VC_small <- runTSNE(VC_small, dimensions_to_use = 1:5, n_threads = 2)
plotTSNE(gobject = VC_small)</pre>
```

runUMAP

runUMAP

Description

run UMAP

```
runUMAP(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "umap",
  genes_to_use = NULL,
  return_gobject = TRUE,
  n_neighbors = 40,
  n_{components} = 2,
  n_{epochs} = 400,
  min_dist = 0.01,
  n_{threads} = 1,
  spread = 5,
  set\_seed = T,
  seed_number = 1234,
  verbose = T,
)
```

runUMAP 203

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                 UMAP param: number of neighbors
n_neighbors
n_components
                 UMAP param: number of components
                 UMAP param: number of epochs
n_epochs
                 UMAP param: minimum distance
min_dist
                 UMAP param: threads to use
n_threads
spread
                 UMAP param: spread
set_seed
                 use of seed
seed_number
                 seed number to use
                 verbosity of function
verbose
                 additional UMAP parameters
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)</pre>
```

204 screePlot

```
VC_small <- addStatistics(gobject = VC_small)
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small)
VC_small <- runUMAP(VC_small, dimensions_to_use = 1:5, n_threads = 2)
plotUMAP(gobject = VC_small)</pre>
```

screePlot

screePlot

Description

identify significant prinicipal components (PCs) using an screeplot (a.k.a. elbowplot)

Usage

```
screePlot(
 gobject,
 name = "pca",
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 method = c("irlba", "factominer"),
 rev = FALSE,
 genes_to_use = NULL,
 center = F,
  scale_unit = F,
 ncp = 100,
 ylim = c(0, 20),
 verbose = T,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "screePlot",
)
```

Arguments

selectPatternGenes 205

```
scale_unit
                  scale features before PCA
                  number of principal components to calculate
ncp
                  y-axis limits on scree plot
ylim
verbose
                  verobsity
                  show plot
show_plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional arguments to pca function, see runPCA
```

Details

Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a 'elbow method').

Screeplot will use an available pca object, based on the parameter 'name', or it will create it if it's not available (see runPCA)

Value

ggplot object for scree method

Examples

```
screePlot(gobject)
```

selectPatternGenes sel

selectPatternGenes

Description

Select genes correlated with spatial patterns

```
selectPatternGenes(
   spatPatObj,
   dimensions = 1:5,
   top_pos_genes = 10,
   top_neg_genes = 10,
   min_pos_cor = 0.5,
   min_neg_cor = -0.5,
   return_top_selection = FALSE
)
```

Arguments

spatPatObj Output from detectSpatialPatterns

dimensions dimensions to identify correlated genes for.

top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.

min_pos_cor Minimum positive correlation score to include a gene.

min_neg_cor Minimum negative correlation score to include a gene.

return_top_selection

only return selection based on correlation criteria (boolean)

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

Examples

selectPatternGenes(gobject)

```
select_expression_values
```

 $select_expression_values$

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

show, giotto-method 207

show, giotto-method show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

 $\verb|showClusterDendrogram| showClusterDendrogram|$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
distance distance method to use for hierarchical clustering
h height of horizontal lines to plot
h_color color of horizontal lines
```

208 showClusterHeatmap

Details

Expression correlation dendrogram for selected clusters.

Value

ggplot

Examples

```
showClusterDendrogram(gobject)
```

showClusterHeatmap showClusterHeatmap

Description

Creates heatmap based on identified clusters

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

gobject giotto object

expression_values

expression values to use

genes vector of genes to use, default to 'all' cluster_column name of column to use for clusters cor correlation score to calculate distance

distance distance method to use for hierarchical clustering

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

... additional parameters for the Heatmap function from ComplexHeatmap

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

showClusterHeatmap(gobject)

showGiottoImageNames showGiottoImageNames

Description

Prints the available giotto images that are attached to the Giotto object

Usage

```
showGiottoImageNames(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object verbose verbosity of function

Value

a vector of giotto image names attached to the giotto object

Examples

```
showGiottoImageNames(gobject)
```

showGrids

```
showGiottoInstructions
```

show Giot to Instructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

gobject

giotto object

Value

named vector with giotto instructions

Examples

showGiottoInstructions()

showGrids

showGrids

Description

Prints the available spatial grids that are attached to the Giotto object

Usage

```
showGrids(gobject, verbose = TRUE)
```

Arguments

gobject

a giotto object

verbose

verbosity of function#'

Value

vector

Examples

showGrids()

showNetworks 211

showNetworks

showNetworks

Description

Prints the available spatial networks that are attached to the Giotto object

Usage

```
showNetworks(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object

verbose verbosity of function#'

Value

vector

Examples

showNetworks()

showPattern

showPattern

Description

show patterns for 2D spatial data

Usage

```
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

... Arguments passed on to showPattern2D

dimension dimension to plot trim Trim ends of the PC values.

background_color background color for plot

grid_border_color color for grid
show_legend show legend of ggplot

point_size size of points
show_plot show plot

return_plot return ggplot object

212 showPattern2D

```
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Value

ggplot

See Also

showPattern2D

Examples

showPattern(gobject)

 ${\it showPattern2D}$

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D")
```

Arguments

gobject giotto object

 ${\tt spatPatObj} \qquad {\tt Output} \ from \ detectSpatial Patterns$

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

showPattern3D 213

```
grid_border_color
                  color for grid
show_legend
                  show legend of ggplot
point_size
                  size of points
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

showPattern2D(gobject)

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

```
showPattern3D(
 gobject,
 spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
 show_legend = T,
 point_size = 1,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showPattern3D"
)
```

214 showPatternGenes

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of plot point_size adjust the point size

axis_scale scale the axis

custom_ratio cutomize the scale of the axis

 x_{ticks} the tick number of x_{axis} y_{ticks} the tick number of y_{axis} z_{ticks} the tick number of z_{axis}

show_plot show plot

return_plot return plot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plotly

Examples

showPattern3D(gobject)

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

showPatternGenes 215

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

Arguments

gobject	giotto object
spatPatObj	Output from detectSpatialPatterns
dimension	dimension to plot genes for.
top_pos_genes	Top positively correlated genes.
top_neg_genes	Top negatively correlated genes.
point_size	size of points
return_DT	if TRUE, it will return the data.table used to generate the plots
show_plot	show plot
return_plot	return ggplot object
save_plot	directly save the plot [boolean]
save_param	list of saving parameters, see showSaveParameters
default_save_name	
	default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

```
showPatternGenes(gobject)
```

216 showSaveParameters

 $show Processing Steps \qquad show Processing Steps$

Description

shows the sequential processing steps that were performed in a summarized format

Usage

```
showProcessingSteps(gobject)
```

Arguments

gobject

giotto object

Value

list of processing steps and names

Examples

showProcessingSteps(gobject)

showSaveParameters

showSaveParameters

Description

Description of Giotto saving options, links to all_plots_save_function

Usage

```
showSaveParameters()
```

Value

Instruction on how to use the automatic plot saving options within Giotto

Examples

showSaveParameters()

showSpatialCorGenes 217

 $show Spatial Cor Genes \hspace{30pt} show Spatial Cor Genes \\$

Description

Shows and filters spatially correlated genes

Usage

```
showSpatialCorGenes(
  spatCorObject,
  use_clus_name = NULL,
  selected_clusters = NULL,
  genes = NULL,
  min_spat_cor = 0.5,
  min_expr_cor = NULL,
  min_cor_diff = NULL,
  min_rank_diff = NULL,
  show_top_genes = NULL
)
```

Arguments

```
spatCorObject
                  spatial correlation object
use_clus_name
                  cluster information to show
selected_clusters
                  subset of clusters to show
                  subset of genes to show
genes
                  filter on minimum spatial correlation
min_spat_cor
                  filter on minimum single-cell expression correlation
min_expr_cor
                  filter on minimum correlation difference (spatial vs expression)
min_cor_diff
                  filter on minimum correlation rank difference (spatial vs expression)
min_rank_diff
show_top_genes show top genes per gene
```

Value

data.table with filtered information

Examples

```
\verb|showSpatialCorGenes(gobject)|
```

218 signPCA

signPCA signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
 gobject,
 name = "pca",
 method = c("screeplot", "jackstraw"),
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 pca_method = c("irlba", "factominer"),
  rev = FALSE,
  genes_to_use = NULL,
  center = T,
  scale_unit = T,
 ncp = 50,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_ylim = c(0, 1),
  verbose = TRUE,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "signPCA"
)
```

Arguments

gobject giotto object name of PCA object if available name method to use to identify significant PCs method expression_values expression values to use reduction cells or genes pca_method which implementation to use do a reverse PCA rev subset of genes to use for PCA genes_to_use center center data before PCA scale features before PCA scale_unit number of principal components to calculate ncp y-axis limits on scree plot scree_ylim

silhouetteRank 219

```
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
jack_ylim
                  y-axis limits on jackstraw plot
verbose
                  verbosity
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a. 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

silhouetteRank

silhouetteRank

Description

Previously: calculate_spatial_genes_python. This method computes a silhouette score per gene based on the spatial distribution of two partitions of cells (expressed L1, and non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, exponentially weighted function to represent the local physical distance between two cells.

```
silhouetteRank(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

220 spatCellCellcom

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use

subset_genes only run on this subset of genes

rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette

python_path specify specific path to python if required
```

Value

data.table with spatial scores

Examples

```
silhouetteRank(gobject)
```

spatCellCellcom spatCellCellcom

Description

Spatial Cell-Cell communication scores based on spatial expression of interacting cells

Arguments

gobject giotto object to use

spatial_network_name

spatial network to use for identifying interacting cells

cluster_column cluster column with cell type information

random_iter number of iterations

gene_set_1 first specific gene set from gene pairs
gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

min_observations

minimum number of interactions needed to be considered

adjust_method which method to adjust p-values

adjust_target adjust multiple hypotheses at the cell or gene level

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

verbose verbose

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
spatCellCellcom(gobject)
```

spatCellPlot spatCellPlot

Description

Visualize cells according to spatial coordinates

```
spatCellPlot(...)
```

Arguments

Arguments passed on to spatCellPlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect cells select subset of cells based on cell IDs point_shape shape of points (border, no_border or voronoi) point_size size of point (cell) point_alpha transparancy of spatial points point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot

```
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot2D()

Examples

```
spatCellPlot(gobject)
```

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

```
spatCellPlot2D(
  gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  cell_color_gradient = c("blue", "white", "red"),
```

```
gradient_midpoint = NULL,
gradient_limits = NULL,
select_cell_groups = NULL,
select_cells = NULL,
point_shape = c("border", "no_border", "voronoi"),
point_size = 3,
point_alpha = 1,
point_border_col = "black",
point_border_stroke = 0.1,
show_cluster_center = F,
show_center_label = F,
center_point_size = 4,
center_point_border_col = "black",
center_point_border_stroke = 0.1,
label_size = 4,
label_fontface = "bold",
show_network = F,
spatial_network_name = "Delaunay_network",
network_color = NULL,
network_alpha = 1,
show_grid = F,
spatial_grid_name = "spatial_grid",
grid_color = NULL,
show_other_cells = T,
other_cell_color = "lightgrey",
other_point_size = 1,
other_cells_alpha = 0.1,
coord_fix_ratio = NULL,
show_legend = T,
legend_text = 8,
legend_symbol_size = 1,
background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatCellPlot2D"
```

Arguments

```
gobject giotto object
show_image show a tissue background image
```

gimage a giotto image name of a giotto image image_name x-axis dimension name (default = 'sdimx') sdimx y-axis dimension name (default = 'sdimy') sdimy spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs point_shape shape of points (border, no_border or voronoi) point_size size of point (cell) point_alpha transparancy of spatial points point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points center_point_border_stroke border stroke size of center points size of labels label_size label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells

```
other_cell_color
                  color of not selected cells
other_point_size
                  point size of not selected cells
other_cells_alpha
                  alpha of not selected cells
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot()

Examples

spatCellPlot2D(gobject)

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot(...)
```

Arguments

```
Arguments passed on to spatDimCellPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
plot_alignment direction to align plot
spat_enr_names names of spatial enrichment results to include
cell_annotation_values numeric cell annotation columns
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1 to use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
sdimx = spatial dimension to use on x-axis
sdimy = spatial dimension to use on y-axis
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell color param-
select_cells select subset of cells based on cell IDs
dim_point_shape dim reduction points with border or not (border or no_border)
dim_point_size size of points in dim. reduction space
dim_point_alpha transparancy of dim. reduction points
dim_point_border_col border color of points in dim. reduction space
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
dim_show_center_label provide a label for each cluster
```

```
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim_label_size size of the center label
dim_label_fontface font of the center label
spat_show_cluster_center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the spatial center points
spat_center_point_border_col border color of the spatial center points
spat_center_point_border_stroke stroke size of the spatial center points
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
nn_network_name name of NN network to use, if show NN network = TRUE
dim_edge_alpha column to use for alpha of the edges
spat_show_network show spatial network
spatial_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
spat_show_grid show spatial grid
spatial_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
coord_fix_ratio ratio for coordinates
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
```

```
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot2D()

Examples

```
spatDimCellPlot(gobject)
```

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
 cell_annotation_values = NULL,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 sdimx = "sdimx",
  sdimy = "sdimy",
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
```

```
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "black",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
nn_network_name = "sNN.pca",
dim_edge_alpha = 0.5,
spat_show_network = F,
spatial_network_name = "Delaunay_network",
spat_network_color = "red",
spat_network_alpha = 0.5,
spat_show_grid = F,
spatial_grid_name = "spatial_grid",
spat_grid_color = "green",
show_other_cells = TRUE,
other_cell_color = "grey",
dim_other_point_size = 0.5,
spat_other_point_size = 0.5,
spat_other_cells_alpha = 0.5,
show_legend = T,
legend_text = 8,
legend_symbol_size = 1,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
vor_alpha = 1,
axis_text = 8,
axis_title = 8,
coord_fix_ratio = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
```

```
cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimCellPlot2D"
    )
Arguments
    gobject
                     giotto object
    show_image
                     show a tissue background image
    gimage
                     a giotto image
    image_name
                     name of a giotto image
    plot_alignment direction to align plot
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    sdimx
                     = spatial dimension to use on x-axis
                     = spatial dimension to use on y-axis
    sdimy
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    dim_point_shape
                     dim reduction points with border or not (border or no_border)
    dim_point_size size of points in dim. reduction space
    dim_point_alpha
                     transparancy of dim. reduction points
    dim_point_border_col
                     border color of points in dim. reduction space
    dim_point_border_stroke
```

border stroke of points in dim. reduction space

shape of points (border, no_border or voronoi)

size of spatial points

spat_point_shape

spat_point_size

spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the spatial center points spat_center_point_border_col border color of the spatial center points spat_center_point_border_stroke stroke size of the spatial center points spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network

spat_network_alpha

alpha of spatial network

```
spat_show_grid show spatial grid
spatial_grid_name
                 name of spatial grid to use
spat_grid_color
                 color of spatial grid
show_other_cells
                 display not selected cells
other_cell_color
                 color of not selected cells
dim_other_point_size
                 size of not selected dim cells
spat_other_point_size
                 size of not selected spat cells
spat_other_cells_alpha
                 alpha of not selected spat cells
show_legend
                 show legend
legend_text
                 size of legend text
legend_symbol_size
                 size of legend symbols
dim_background_color
                 background color of points in dim. reduction space
spat\_background\_color
                 background color of spatial points
vor_border_color
                 border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                 transparancy of voronoi 'cells'
axis_text
                 size of axis text
axis_title
                 size of axis title
coord_fix_ratio
                 ratio for coordinates
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters, see showSaveParameters
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

234 spatDimGenePlot

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot()

Examples

```
spatDimCellPlot2D(gobject)
```

spatDimGenePlot

spatDimGenePlot

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(...)
```

Arguments

. . .

Arguments passed on to spatDimGenePlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image expression_values gene expression values to use plot_alignment direction to align plot genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size dim reduction plot: point size dim_point_alpha transparancy of dim. reduction points dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network show_spatial_network show underlying spatial netwok nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE dim_network_color color of NN network dim_edge_alpha dim reduction plot: column to use for alpha of the edges

spatDimGenePlot 235

```
scale_alpha_with_expression scale expression with ggplot alpha parameter
sdimx spatial x-axis dimension name (default = 'sdimx')
sdimy spatial y-axis dimension name (default = 'sdimy')
spatial_network_name name of spatial network to use
spatial_network_color color of spatial network
show_spatial_grid show spatial grid
grid_color color of spatial grid
spatial_grid_name name of spatial grid to use
spat_point_shape spatial points with border or not (border or no_border)
spat_point_size spatial plot: point size
spat_point_alpha transparancy of spatial points
spat_point_border_col color of border around points
spat_point_border_stroke stroke size of border around points
spat_edge_alpha edge alpha
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
show_legend show legend
legend_text size of legend text
dim_background_color color of plot background for dimension plot
spat_background_color color of plot background for spatial plot
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot3D()

236 spatDimGenePlot2D

Examples

```
spatDimGenePlot(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 genes,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_alpha = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
 dim_network_color = "gray",
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 dim_edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spatial_network_name = "Delaunay_network",
  spatial_network_color = NULL,
  show_spatial_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  spat_point_shape = c("border", "no_border", "voronoi"),
  spat_point_size = 1,
  spat_point_alpha = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
  spat_edge_alpha = NULL,
  cell_color_gradient = c("blue", "white", "red"),
```

spatDimGenePlot2D 237

```
gradient_midpoint = NULL,
      gradient_limits = NULL,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
      legend_text = 8,
      dim_background_color = "white",
      spat_background_color = "white",
      vor_border_color = "white",
      vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot2D"
    )
Arguments
   gobject
                     giotto object
                     show a tissue background image
    show_image
                     a giotto image
   gimage
                     name of a giotto image
    image_name
    expression_values
                     gene expression values to use
   plot_alignment direction to align plot
    genes
                     genes to show
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim_point_shape
                     dim reduction points with border or not (border or no_border)
   dim_point_size dim reduction plot: point size
    dim_point_alpha
                     transparancy of dim. reduction points
   dim_point_border_col
                     color of border around points
   dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
```

show underlying NN network

show_spatial_network show underlying spatial netwok dim_network_color color of NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name dim_edge_alpha dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter sdimx spatial x-axis dimension name (default = 'sdimx') spatial y-axis dimension name (default = 'sdimy') sdimy spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use spat_point_shape spatial points with border or not (border or no_border) spat_point_size spatial plot: point size spat_point_alpha transparancy of spatial points spat_point_border_col color of border around points $spat_point_border_stroke$ stroke size of border around points spat_edge_alpha edge alpha cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits cowplot param: how many columns cow_n_col cow_rel_h cowplot param: relative height cowplot param: relative width cow_rel_w cow_align cowplot param: how to align show legend show_legend legend_text size of legend text

spatDimGenePlot3D 239

```
dim_background_color
                  color of plot background for dimension plot
spat_background_color
                  color of plot background for spatial plot
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot3D(), spatDimGenePlot()

Examples

```
spatDimGenePlot2D(gobject)
```

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

240 spatDimGenePlot3D

```
spatDimGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
 genes,
 cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
  genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_{ticks} = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatDimGenePlot3D"
```

spatDimGenePlot3D 241

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
genes
                 genes to show
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
dim_point_size dim reduction plot: point size
spatial_network_name
                 name of spatial network to use
spatial_grid_name
                 name of spatial grid to use
spatial_point_size
                 spatial plot: point size
show_plot
                 show plots
return_plot
                 return plotly object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters, see showSaveParameters
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
                 show legend
show_legend
```

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot()

Examples

```
spatDimGenePlot3D(gobject)
```

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot(...)
```

Arguments

. . .

```
Arguments passed on to spatDimPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
plot_alignment direction to align plot
dim_reduction_to_use dimension reduction to use
dim reduction name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
sdimx = spatial dimension to use on x-axis
sdimy = spatial dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
dim_point_shape point with border or not (border or no border)
dim_point_size size of points in dim. reduction space
dim_point_alpha transparancy of point in dim. reduction space
dim_point_border_col border color of points in dim. reduction space
```

```
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no_border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
dim_show_center_label provide a label for each cluster
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim_label_size size of the center label
dim_label_fontface font of the center label
spat_show_cluster_center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the center point
spat_center_point_border_col border color of spatial center points
spat_center_point_border_stroke border strike size of spatial center points
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
nn_network_alpha column to use for alpha of the edges
show_spatial_network show spatial network
spat_network_name name of spatial network to use
spat_network_color color of spatial network
spat_network_alpha alpha of spatial network
show_spatial_grid show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
dim_show_legend show legend of dimension reduction plot
spat_show_legend show legend of spatial plot
legend_text_size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
```

```
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot2D and spatDimPlot3D for 3D visualization.

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot3D()
```

Examples

```
spatDimPlot(gobject)
```

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot2D(
 gobject,
 show_image = F,
 gimage = NULL,
  image_name = "image",
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy"
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
  cell_color_code = NULL,
```

```
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
select_cell_groups = NULL,
select_cells = NULL,
dim_point_shape = c("border", "no_border"),
dim_point_size = 1,
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "blue",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
nn_network_alpha = 0.05,
show_spatial_network = F,
spat_network_name = "Delaunay_network",
spat_network_color = "blue",
spat_network_alpha = 0.5,
show_spatial_grid = F,
spat_grid_name = "spatial_grid",
spat_grid_color = "blue",
show_other_cells = T,
other_cell_color = "lightgrey",
dim_other_point_size = 1,
spat_other_point_size = 1,
spat_other_cells_alpha = 0.5,
dim_show_legend = F,
spat_show_legend = F,
legend_text = 8,
legend_symbol_size = 1,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
```

```
vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot2D"
    )
Arguments
   gobject
                     giotto object
                     show a tissue background image
    show_image
                     a giotto image
    gimage
    image_name
                     name of a giotto image
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    sdimx
                     = spatial dimension to use on x-axis
    sdimy
                     = spatial dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    dim_point_shape
                     point with border or not (border or no_border)
    dim_point_size size of points in dim. reduction space
    dim_point_alpha
                     transparancy of point in dim. reduction space
    dim_point_border_col
```

border color of points in dim. reduction space

dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point ${\tt spat_center_point_border_col}$ border color of spatial center points spat_center_point_border_stroke border strike size of spatial center points spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges show_spatial_network

show spatial network

```
spat_network_name
                 name of spatial network to use
spat_network_color
                 color of spatial network
spat_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color
                 color of spatial grid
show_other_cells
                 display not selected cells
other_cell_color
                 color of not selected cells
dim_other_point_size
                 size of not selected dim cells
spat_other_point_size
                 size of not selected spat cells
spat_other_cells_alpha
                 alpha of not selected spat cells
dim_show_legend
                 show legend of dimension reduction plot
spat_show_legend
                 show legend of spatial plot
legend_text
                 size of legend text
legend_symbol_size
                 size of legend symbols
dim_background_color
                 background color of points in dim. reduction space
spat_background_color
                 background color of spatial points
vor_border_color
                 border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                 transparancy of voronoi 'cells'
axis_text
                 size of axis text
                 size of axis title
axis_title
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters, see showSaveParameters
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot3D
```

Other spatial and dimension reduction visualizations: spatDimPlot3D(), spatDimPlot()

Examples

```
spatDimPlot2D(gobject)
```

spatDimPlot3D

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
spatDimPlot3D(
 gobject,
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
 label_size = 16,
  select_cell_groups = NULL,
  select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
 cell_color = NULL,
 color_as_factor = T,
  cell_color_code = NULL,
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "Delaunay_network",
```

```
network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_{ticks} = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      legend_text_size = 12,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot3D"
    )
Arguments
                     giotto object
   gobject
   plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
   dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    sdimx
                     = spatial dimension to use on x-axis
                     = spatial dimension to use on y-axis
    sdimy
    sdimz
                     = spatial dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    show_cluster_center
                     show the center of each cluster
    show_center_label
                     provide a label for each cluster
    center_point_size
                     size of the center point
    label_size
                     size of the center label
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
```

show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_point_size size of spatial points show_plot show plot return ggplot object return_plot directly save the plot [boolean] save_plot save_param list of saving parameters, see showSaveParameters default_save_name default save name for saving, don't change, change save_name in save_param dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spatial_network_color color of spatial network spatial_other_point_size size of not selected spatial points spatial_other_cells_alpha alpha of not selected spatial points dim_other_point_size size of not selected dim. reduction points show_legend show legend

252 spatGenePlot

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot()

Examples

```
spatDimPlot3D(gobject)
```

 ${\tt spatGenePlot}$

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(...)
```

Arguments

Arguments passed on to spatGenePlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') expression_values gene expression values to use genes genes to show cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits show_network show underlying spatial network network_color color of spatial network spatial_network_name name of spatial network to use edge_alpha alpha of edge show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use midpoint expression midpoint

spatGenePlot 253

```
scale_alpha_with_expression scale expression with ggplot alpha parameter
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of points
point_border_col color of border around points
point_border_stroke stroke size of border around points
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot3D()

```
spatGenePlot(gobject)
```

254 spatGenePlot2D

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(
 gobject,
  show_image = F,
 gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  edge_alpha = NULL,
 show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 1,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
 legend_text = 8,
 background_color = "white",
 vor_border_color = "white",
  vor_alpha = 1,
  vor_max_radius = 200,
 axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
```

spatGenePlot2D 255

```
default_save_name = "spatGenePlot2D"
)
```

Arguments

gobject giotto object

show_image show a tissue background image

gimage a giotto image

image_name name of a giotto image

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

expression_values

gene expression values to use

genes genes to show

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

edge_alpha alpha of edge show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_shape shape of points (border, no_border or voronoi)

point_size size of point (cell)

point_alpha transparancy of points

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

legend_text size of legend text

background_color

color of plot background

vor_border_color

border colorr for voronoi plot

256 spatGenePlot3D

```
vor_alpha
                  transparancy of voronoi 'cells'
vor_max_radius maximum radius for voronoi 'cells'
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
{\sf show\_plot}
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D
```

Other spatial gene expression visualizations: spatGenePlot3D(), spatGenePlot()

Examples

```
spatGenePlot2D(gobject)
```

spatGenePlot3D	spatGenePlot3D
Spatuellel Iutsu	spaidener ioisb

Description

Visualize cells and gene expression according to spatial coordinates

spatGenePlot3D 257

Usage

```
spatGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  show_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  edge_alpha = NULL,
  show\_grid = F,
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
  point_size = 2,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatGenePlot3D"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
                  genes to show
genes
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
```

258 spatialAEH

```
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
                  size of point (cell)
point_size
                  show legend
show_legend
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  color of spatial grid
grid_color
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot()

additional parameters for cowplot::save_plot()

Examples

spatGenePlot3D(gobject)

spatialAEH spatialAEH

Description

Compute spatial variable genes with spatialDE method

spatialDE 259

Usage

```
spatialAEH(
  gobject = NULL,
  SpatialDE_results = NULL,
  name_pattern = "AEH_patterns",
  expression_values = c("raw", "normalized", "scaled", "custom"),
  pattern_num = 6,
  l = 1.05,
  python_path = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

This function is a wrapper for the SpatialAEH method implemented in the ...

Value

An updated giotto object

Examples

```
spatialAEH(gobject)
```

spatialDE spatialDE

Description

Compute spatial variable genes with spatialDE method

260 spatialDE

Usage

```
spatialDE(
  gobject = NULL,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "SpatialDE"
)
```

Arguments

Giotto object gobject expression_values gene expression values to use size size of plot color low/medium/high color scheme for plot sig_alpha alpha value for significance unsig_alpha alpha value for unsignificance specify specific path to python if required python_path show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters, see showSaveParameters default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function is a wrapper for the SpatialDE method implemented in the ...

Value

a list of data.frames with results and plot (optional)

```
spatialDE(gobject)
```

spatNetwDistributions 261

```
{\tt spatNetwDistributions} \ \textit{spatNetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributions(
  gobject,
  spatial_network_name = "spatial_network",
  distribution = c("distance", "k_neighbors"),
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributions"
)
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
                  show the distribution of cell-to-cell distance or number of k neighbors
distribution
hist_bins
                  number of binds to use for the histogram
test_distance_limit
                  effect of different distance threshold on k-neighbors
                  number of columns to visualize the histograms in
ncol
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Details

The **distance** option shows the spatial distance distribution for each nearest neighbor rank (1st, 2nd, 3th, ... neigbor). With this option the user can also test the effect of a distance limit on the spatial network. This distance limit can be used to remove neigbor cells that are considered to far away. The **k_neighbors** option shows the number of k neighbors distribution over all cells.

Value

```
ggplot plot
```

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat Netw Distributions Distance \\ spat Netw Distributions Distance
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributionsDistance(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsDistance")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
                  number of binds to use for the histogram
hist_bins
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat Netw Distributions Kneighbors \\ spat Netw Distributions Kneighbors
```

Description

This function returns a histogram displaying the number of k-neighbors distribution for each cell

Usage

```
spatNetwDistributionsKneighbors(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsKneighbors")
```

Arguments

```
Giotto object
gobject
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

```
spatNetwDistributionsKneighbors(gobject)
```

264 spatPlot

spatPlot

spatPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot(...)
```

Arguments

```
Arguments passed on to spatPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
group_by create multiple plots based on cell annotation column
group_by_subset subset the group_by factor column
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
    eter
select_cells select subset of cells based on cell IDs
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
center_point_border_col border color of center points
center_point_border_stroke border stroke size of center points
label_size size of labels
label_fontface font of labels
show_network show underlying spatial network
spatial_network_name name of spatial network to use
```

spatPlot 265

```
network_color color of spatial network
network_alpha alpha of spatial network
show_grid show spatial grid
spatial_grid_name name of spatial grid to use
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
title title of plot
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot2D(), spatPlot3D()

```
spatPlot(gobject)
```

266 spatPlot2D

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
```

spatPlot2D 267

```
title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
                  a giotto image
gimage
                  name of a giotto image
image_name
                  create multiple plots based on cell annotation column
group_by
group_by_subset
                  subset the group_by factor column
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  shape of points (border, no_border or voronoi)
point_shape
point_size
                  size of point (cell)
```

268 spatPlot2D

point_alpha transparancy of point point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points center_point_border_col border color of center points ${\tt center_point_border_stroke}$ border stroke size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color alpha of spatial network network_alpha show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' spatPlot3D 269

```
vor_alpha
                  transparancy of voronoi 'cells'
                  size of axis text
axis_text
                  size of axis title
axis_title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot3D(), spatPlot()

Examples

```
spatPlot2D(gobject)
```

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot3D(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
```

270 spatPlot3D

```
select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 0.5,
 other_cell_alpha = 0.5,
  show_network = F,
  network_color = NULL,
 network_alpha = 1,
  spatial_network_name = "Delaunay_network",
  show_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_{ticks} = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spat3D"
)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
other_cell_alpha
                  alpha of not selected cells
                  show underlying spatial network
show_network
```

spatPlot3D 271

color of spatial network network_color network_alpha opacity of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid grid_alpha opacity of spatial grid spatial_grid_name name of spatial grid to use title title of plot show_legend show legend axis_scale the way to scale the axis custom_ratio customize the scale of the plot x_ticks set the number of ticks on the x-axis y_ticks set the number of ticks on the y-axis z_ticks set the number of ticks on the z-axis show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

list of saving parameters, see showSaveParameters save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

See Also

Other spatial visualizations: spatPlot2D(), spatPlot()

```
spatPlot3D(gobject)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(
 gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column = "cell_types",
  random_iter = 100,
  cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
 gene_set_1,
 gene_set_2,
 log2FC_addendum = 0.1,
 min_observations = 2,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  verbose = T
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
random\_iter
                  number of iterations
                  first cell type
cell_type_1
cell_type_2
                  second cell type
gene_set_1
                  first specific gene set from gene pairs
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
                  which method to adjust p-values
adjust_method
adjust_target
                  adjust multiple hypotheses at the cell or gene level
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
specificCellCellcommunicationScores(gobject)
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend

dendrogram object

Value

list of two dendrograms and height of node

Examples

```
split_dendrogram_in_two(dend)
```

stitchFieldCoordinates

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

274 stitchFieldCoordinates

Usage

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

Arguments

```
location_file
                location dataframe with X and Y coordinates
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

```
stitchFieldCoordinates(gobject)
```

stitchTileCoordinates 275

```
stitchTileCoordinates
```

Description

Helper function to stitch tile coordinates together to form one complete picture

Usage

```
stitchTileCoordinates(location_file, Xtilespan, Ytilespan)
```

Arguments

```
\begin{array}{ll} \mbox{location\_file} & \mbox{location dataframe with } X \mbox{ and } Y \mbox{ coordinates} \\ \mbox{Xtilespan} & \mbox{numerical value specifying the width of each tile} \\ \mbox{Ytilespan} & \mbox{numerical value specifying the height of each tile} \\ \end{array}
```

Details

•••

Examples

```
stitchTileCoordinates(gobject)
```

subClusterCells

subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(
 gobject,
 name = "sub_clus",
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 1,
```

276 subClusterCells

```
n_iterations = 1000,
gamma = 1,
omega = 1,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

```
gobject
                 giotto object
                 name for new clustering result
name
cluster_method clustering method to use
cluster_column cluster column to subcluster
selected_clusters
                 only do subclustering on these clusters
                 parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                 threshold for detection in min percentage of cells
hvg_mean_expr_det
                 threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                 parameters for runPCA
pca_param
                 parameters for parameters for createNearestNetwork
nn_param
                 number of k for createNearestNetwork
k_neighbors
resolution
                 resolution
n_iterations
                 number of interations to run the Leiden algorithm.
gamma
                 gamma
omega
                 omega
python_path
                 specify specific path to python if required
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
return_gobject boolean: return giotto object (default = TRUE)
verbose
                 verbose
```

Details

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do clustering

subsetGiotto 277

Value

giotto object with new subclusters appended to cell metadata

See Also

 ${\tt doLouvainCluster_multinet}, {\tt doLouvainCluster_community} \ and \ @see also \ {\tt doLeidenCluster}$

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiot to

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose

Value

giotto object

Examples

subsetGiotto(gobject)

278 subsetGiottoLocs

subsetGiottoLocs

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

Usage

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

Arguments

```
gobject
                 giotto object
                 maximum x-coordinate
x_max
                 minimum x-coordinate
x_min
y_max
                 maximum y-coordinate
                 minimum y-coordinate
y_min
                 maximum z-coordinate
z_max
                 minimum z-coordinate
z\_min
return_gobject return Giotto object
                 be verbose
verbose
```

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

```
subsetGiottoLocs(gobject)
```

trendSceek 279

trendSceek	trendSceek
LI CHUSCECK	HEHUSCEK

Description

Compute spatial variable genes with trendsceek method

Usage

```
trendSceek(
  gobject,
  expression_values = c("normalized", "raw"),
  subset_genes = NULL,
  nrand = 100,
  ncores = 8,
  ...
)
```

Arguments

Details

This function is a wrapper for the trendsceek_test method implemented in the trendsceek package

Value

data.frame with trendsceek spatial genes results

```
trendSceek(gobject)
```

280 viewHMRFresults

updateGiottoImage

Description

Updates the boundaries of a giotto image attached to a giotto object

Usage

```
updateGiottoImage(
  gobject,
  image_name,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
image_name spatial locations

xmax_adj adjustment of the maximum x-value to align the image

xmin_adj adjustment of the minimum x-value to align the image

ymax_adj adjustment of the maximum y-value to align the image

ymin_adj adjustment of the minimum y-value to align the image

return_gobject return a giotto object
```

Value

a giotto object or an updated giotto image if return_gobject = F

Examples

```
updateGiottoImage(gobject)
```

viewHMRFresults viewHMRFresults

Description

View results from doHMRF.

viewHMRFresults2D 281

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... additional paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

visPlot

Examples

viewHMRFresults(gobject)

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

282 viewHMRFresults3D

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

Examples

viewHMRFresults2D(gobject)

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

gobject giotto object

 $\begin{array}{ll} \mbox{HMRF output from doHMRF} \\ \mbox{k} & \mbox{number of HMRF domains} \end{array}$

betas_to_view results from different betas that you want to view

... paramters to visPlot()

violinPlot 283

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot3D
```

Examples

```
viewHMRFresults3D(gobject)
```

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to plot
cluster_column name of column to use for clusters
```

284 writeHMRFresults

```
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
                  size of strip text
strip_text
axis_text_x_size
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
                  show plot
show_plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

violinPlot(gobject)

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

gobject giotto object

HMRF output from doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

Description

write out factor-like annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object annot_name name of the annotation output_directory directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(
  dim_reduction_cell,
  dim_red = NULL,
  dim_red_name = NULL,
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  output_directory = getwd()
)
```

Arguments

Value

write a .txt and .annot file for the selection annotation

Description

write out numeric annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_numeric_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Index

*Topic giotto ,	<pre>cellProximitySpatPlot, 31</pre>
giotto-class, 139	cellProximitySpatPlot2D, 31, 32, 33
print.giotto, 190	cellProximitySpatPlot3D, 32, 35
show, giotto-method, 207	cellProximityVisPlot, 37
*Topic giotto	${\it changeGiottoInstructions}, 39$
createGiottoObject, 52	changeImageBg, 40
*Topic object	cluster_walktrap, <i>110</i>
giotto-class, 139	clusterCells, 40
print.giotto,190	clusterSpatialCorGenes,43
show, giotto-method, 207	combCCcom, 44, 176-178
	combineCellProximityGenes, 44
addCellIntMetadata, 7	combineCPG, 46
addCellMetadata, 8, 53	combineMetadata,47
addCellStatistics, 9, 15	<pre>convert_mgImage_to_array_DT, 48</pre>
addGeneMetadata, 10, 53	<pre>convertEnsemblToGeneSymbol, 47</pre>
addGenesPerc, 10	<pre>create_average_detection_DT, 65</pre>
addGeneStatistics, 11, <i>15</i>	create_average_DT, 66
addGiottoImage, 12	<pre>create_cell_type_random_cell_IDs, 67</pre>
addGiottoImageToSpatPlot, 12	<pre>create_crossSection_object, 67</pre>
addHMRF, 13	create_screeplot, 69
addNetworkLayout, 14	<pre>createCrossSection, 48</pre>
addStatistics, 15	createGiottoImage, 12, 50
adjustGiottoMatrix, 15	createGiottoInstructions, 51, 53, 54
all_plots_save_function, 16, 25, 27, 29,	createGiottoObject, 52, 274
31, 32, 34, 36, 117, 120, 142,	<pre>createGiottoVisiumObject, 54</pre>
152–154, 156–159, 161, 164, 165,	createHeatmap_DT, 55
176, 177, 216, 261–263	createMetagenes, 56
<pre>annotate_spatlocs_with_spatgrid_2D, 20</pre>	createNearestNetwork, 57
<pre>annotate_spatlocs_with_spatgrid_3D, 21</pre>	createSpatialDelaunayNetwork, 58
annotateGiotto, 18	createSpatialEnrich, 60 , 113
annotateSpatialGrid, 19	createSpatialGrid, 60
annotateSpatialNetwork, 19	<pre>createSpatialGrid_2D, 61</pre>
<pre>average_gene_gene_expression_in_groups,</pre>	<pre>createSpatialGrid_3D,62</pre>
21	createSpatialKNNnetwork, 63
	createSpatialNetwork, 64, 74
binSpect, 22	crossSectionGenePlot,69
	crossSectionGenePlot3D,70
calculateHVG, 24, 197, 201, 203	crossSectionPlot, 71,71
calculateMetaTable, 25	crossSectionPlot3D,72
calculateMetaTableCells, 26	
cellProximityBarplot, 27	decide_cluster_order,73
cellProximityEnrichment, 28	delaunayn, 59
cellProximityHeatmap, 29	deldir, 59
cellProximityNetwork, 30	detectSpatialCorGenes, 74

288 INDEX

detectSpatialPatterns, 75	getClusterSimilarity, 135
${\tt dimCellPlot}, 76, 80$	getDendrogramSplits, 136
dimCellPlot2D, <i>76</i> , <i>77</i> , 78	<pre>getDistinctColors, 137</pre>
dimGenePlot, 81, 84, 86	getGiottoImage, 138
dimGenePlot2D, <i>81</i> , <i>82</i> , <i>82</i> , <i>86</i>	giotto (giotto-class), 139
dimGenePlot3D, 82, 84, 85	giotto-class, 139
dimPlot, 86, 91, 93, 172, 174, 175, 181, 183,	glouvain_ml, <i>104</i>
184, 186, 188, 189	
dimPlot2D, 87, 88, 88, 93, 171-175, 180-189	hclust, 95
dimPlot3D, 80, 88, 91, 91, 172, 174, 175, 181,	Heatmap, <i>140</i>
183, 184, 186, 188, 189	heatmSpatialCorGenes, 139
doHclust, <i>43</i> , 94	hyperGeometricEnrich, 141
doHMRF, 95	
doKmeans, <i>43</i> , 96	<pre>insertCrossSectionGenePlot3D, 141</pre>
doLeidenCluster, 43, 98, 101, 277	<pre>insertCrossSectionSpatPlot3D, 143</pre>
doLeidenSubCluster, 99	
doLouvainCluster, 43, 101	jackstrawPlot, 144
doLouvainCluster_community, 43, 102, 102,	
106, 107, 277	kmeans, 97
doLouvainCluster_multinet, 43, 102, 103,	knn, <i>58</i>
106, 109, 277	
doLouvainSubCluster, 104	layout_with_drl, 14
doLouvainSubCluster_community, 106	loadHMRF, 145
doLouvainSubCluster_multinet, 108	L 01 W 1 B 05 146 106
doRandomWalkCluster, 43, 109	makeSignMatrixPAGE, 146, 196
doSNNCluster, 43, 110	makeSignMatrixRank, 147, 199
	mergeClusters, 147
estimateImageBg, 112	1 1 1 140
exportGiottoViewer, 112	node_clusters, 148
exprCellCellcom, 113, <i>152</i> , <i>153</i>	normalizeGiotto, 149
extractNearestNetwork, 115	DACEEnrich 146 150
25 . 55 445	PAGEEnrich, <i>146</i> , 150 PCA, <i>197</i>
fDataDT, 115	
filterCellProximityGenes, 116	pDataDT, <i>19</i> , 151 permutationPA, <i>145</i> , <i>219</i>
filterCombinations, 117, 120	plotCCcomDotplot, 151
filterCPG, 118	• • •
filterDistributions, 119	plotCCcomHeatmap, 152
filterGiotto, 120	plotCellProximityGenes, 153
findCellProximityGenes, 121	plotCombineCCcom, 155
findCPG, 123	plotCombineCellCellCommunication, 156
findGiniMarkers, 124, 127, 128	plotCombineCellProximityGenes, 157
findGiniMarkers_one_vs_all, 126, 130	plotCombineCPG, 159
findMarkers, 127, 133	plotCPG, 160
findMarkers_one_vs_all, 129	plotGiottoImage, 161
findMastMarkers, 128, 130, 132	plotHeatmap, 162
findMastMarkers_one_vs_all, 130, 131	plotICG, 164
findNetworkNeighbors, 132	plotInteractionChangedGenes, 165
findScranMarkers, 128, 133, 134	plotly_axis_scale_2D, 166
findScranMarkers_one_vs_all, 130, 134	plotly_axis_scale_3D, 166
general cove function 17	plotMetaDataCellsHeatmap, 167, 170
general_save_function, 17	plotMetaDataHeatmap, 168, 169
get10Xmatrix, 135	plotPCA, 88, 91, 93, 171, 174, 175, 181, 183,
get_os, 138	184, 186, 188, 189

INDEX 289

plotPCA_2D, 88, 91, 93, 172, 172, 175, 181,	showPatternGenes, 214
183, 184, 186, 188, 189	showProcessingSteps, 216
plotPCA_3D, 88, 91, 93, 172, 174, 174, 181,	showSaveParameters, 77, 80, 82, 84, 86, 88,
183, 184, 186, 188, 189	91, 93, 140, 163, 168, 170, 172, 174,
plotRankSpatvsExpr, 176	175, 179, 181, 183, 184, 186, 188,
plotRecovery, 177	189, 191, 208, 209, 212–215, 216,
plotRecovery_sub, 178	223, 226, 229, 233, 235, 239, 241,
plotStatDelaunayNetwork, 178	244, 248, 251, 253, 256, 258, 260,
plotTSNE, 88, 91, 93, 172, 174, 175, 179, 183,	265, 269, 271, 284
184, 186, 188, 189	showSpatialCorGenes, 75, 217
plotTSNE_2D, 88, 91, 93, 172, 174, 175, 181,	signPCA, 218
181, 184, 186, 188, 189	silhouetteRank, 219
plotTSNE_3D, 88, 91, 93, 172, 174, 175, 181,	sNN, 58
183, 183, 186, 188, 189	sNNclust, 111
plotUMAP, 88, 91, 93, 172, 174, 175, 181, 183,	
184, 185, 188, 189	spatCellCellcom, 152, 153, 220
plotUMAP_2D, 88, 91, 93, 172, 174, 175, 181,	spatCellPlot, 221, 226
	spatCellPlot2D, 222, 223, 223
183, 184, 186, 186, 189	spatDimCellPlot, 227, 234
plotUMAP_3D, 88, 91, 93, 172, 174, 175, 181,	spatDimCellPlot2D, 227, 229, 229
183, 184, 186, 188, 188	spatDimGenePlot, 234, 239, 242
prcomp_irlba, 197	spatDimGenePlot2D, 234, 235, 236, 242
print.giotto, 190	spatDimGenePlot3D, 235, 239, 239
	spatDimPlot, 242, 249, 252
rankEnrich, 147, 190	spatDimPlot2D, 242, 244, 244, 252
rankSpatialCorGroups, 191	spatDimPlot3D, 244, 249, 249
readExprMatrix, 192	spatGenePlot, 252, 256, 258
readGiottoInstructions, 192	spatGenePlot2D, 70, 252, 253, 254, 258
removeBatchEffect, 16	spatGenePlot3D, 70, 253, 256, 256
removeCellAnnotation, 193	spatialAEH, 258
removeGeneAnnotation, 193	SpatialDE, 259
replaceGiottoInstructions, 194	spatialDE, 259
Rtsne, 201	spatNetwDistributions, 261
runHyperGeometricEnrich, 141, 194, 200	spatNetwDistributionsDistance, 262
runPAGEEnrich, 150, 151, 195, 200	spatNetwDistributionsKneighbors, 263
runPCA, 197, 205	spatPlot, 264, 269, 271
runRankEnrich, 190, 198, 200	spatPlot2D, 264, 265, 266, 271, 282
runSpatialEnrich, 60, 199	spatPlot3D, 265, 269, 269, 283
runtSNE, 200	•
runUMAP, 202	specificCellCellcommunicationScores, 272
screePlot, 204	split_dendrogram_in_two, 273
select_expression_values, 206	stitchFieldCoordinates, 53, 273
selectPatternGenes, 205	stitchTileCoordinates, 275
show, giotto-method, 207	subClusterCells, 275
showClusterDendrogram, 207	subsetGiotto, 277
showClusterHeatmap, 208	subsetGiottoLocs, 278
showGiottoImageNames, 138, 161, 209	
showGiottoInstructions, 210	trendSceek, 279
showGrids, 19, 210	trendsceek_test, 279
showNetworks, 211	triangulate, 59
showPattern, 211	
showPattern2D, 211, 212, 212	umap, 203
showPattern3D, 213	updateGiottoImage, 280

290 INDEX

```
viewHMRFresults, 280
viewHMRFresults2D, 281
viewHMRFresults3D, 282
violinPlot, 283
visPlot, 281
write_giotto_viewer_annotation, 285
write_giotto_viewer_dim_reduction, 285
write_giotto_viewer_numeric_annotation, 286
writeHMRFresults, 284
zlm, 131
```