Matrix Factorization Applications in Data Mining

Uzair Ahmad

Contents

- Linear Algebra Primer
- Singular Value Decomposition
- Principal Component Analysis
- Exploratory Factor Analysis
- Independent Component Analysis

System of linear Equations

- Ax = b
- Where $A \in \mathbb{R}^{m \times n}$ is a known matrix,
- b ∈ R ^m is a known vector, and
- $x \in \mathbb{R}^n$ is a vector of unknown variables we would like to solve for.
- Each element x_i of x is one of these unknown variables.
- Each row of A and each element of b are constraints.
 - $A_{1,1} X_1 + A_{1,2} X_2 + \cdots + A_{1,n} X_n = b_1$

Definitions

- Scalars, Vectors, Matrices, Tensors
- Matrix Rank
 - # of Non Zero and Linearly Independent Rows/Columns
- Matrix Multiplication
 - C = AB \rightarrow C_{i,i}= $\sum_k A_{i,k} B_{k,j}$
 - Vector Multiplication → Dot Product
 - Similar Vs Orthogonal
- Matrix Multiplication Attributes
 - Distributive \rightarrow A(B + C) = AB + AC
 - Associative → A(BC) = (AB)C
 - not commutative → AB != BA
 - Vector multiplication is $x^Ty = y^Tx$
 - $A^T B^T = (AB)^T$
- Transpose: (A^T)_{i,j}= A_{j,i}

Definitions

- Broadcasting C = A + b (Addition of Matrix and a vector)
- Identity Matrix I
 - IA = A → 1s at the diagonal and 0s elsewhere
- Square Matrix
 - Rows == Columns
- Inverse Matrix
 - For every square matrix A
 - There is an inverse matrix B
 - Such that AB = I or BA = I and BAB = B
- Symmetric Matrix
 - $A^T = A$

Definitions

- Unit Vectors
 - A unit vector is a vector with unit norm; $||x||_2 = 1$
- Orthogonal Vectors
 - $x^{T}y = 0$
- Orthonormal
 - Orthogonal and Unit norm
- Orthogonal Matrix
 - Rows/colus are mutually orthonormal
 - $AA^{T} = A^{T}A = I \rightarrow A^{-1} = A^{T}$
- Linear Independence

Solving a System of linear Equations

$$\bullet Ax = b$$

•
$$A^{-1} A = I_n$$

• $A^{-1} Ax = A^{-1}b$

•
$$A^{-1} Ax = A^{-1}b$$

•
$$I_n x = A^{-1}b$$

$$\bullet x = A^{-1}b$$

If A⁻¹ exists, finding it in closed form is possible algorithmically.

Theoretically, the same inverse matrix can then be used to solve the equation for different values of b

However, A-1 is primarily useful as a theoretical tool, and should not actually be used in practice for most software applications. Because A⁻¹ can be represented with only limited precision on a digital computer, algorithms that make use of the value of b can usually obtain more accurate estimates of x.

Matrix Decomposition

- Central to many fundamental Linear Algebra problems
- Eigen Value Decomposition
- Singular Value Decomposition

$$A_{V} = \lambda_{V}$$

An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A alters only the scale of v:

If V is an eigenvector of A, then so is any rescaled vector sV (s != 0). sV still has the same eigenvalue. For this reason, we usually only look for unit eigenvectors.

- Singular Matrix
 - The matrix is singular if and only if any of the eigenvalues are zero.
- Positive Definite
 - eigenvalues are all +ve
- Positive Negative
 - eigenvalues are all –ve
- Positive Semi-Definite
 - +ves and some zeros

Singular Value Decomposition

- singular vectors and singular values
- some of the same kind of information as the eigen-decomposition
 - But more generally applicable
 - Eigen-decomposition requires Square matrix
- Every real matrix has a singular value decomposition, but the same is not true of the eigenvalue decomposition.
- For example, if a matrix is not square, the eigen-decomposition is not defined, and we must use a singular value decomposition instead.

SVD

Non –ve, Diagonal, Orthogonal, Decreasing, not necessarily square

~100 Years

X = USVT

Orthogonal

U is an m × m matrix: Left Singular vectors

S is an m × n matrix: singular values

V is an $n \times n$ matrix: Right Singular vectors

SVD

Non –ve, Diagonal, Orthogonal, Decreasing, not necessarily square

~100 Years

 $U \rightarrow$ eigenvectors of XX^T

 $V \rightarrow$ eigenvectors of X^TX

 $S \rightarrow Square roots of eigenvalues of X^TX or XX^T$

SVD

A hidden feature space where the **Set 1** and **Set 2** have feature vectors that are closely aligned. So, when we compute X=U×s×V,

U → The feature vectors corresponding to the **Set 1** in the hidden feature space

V → The feature vectors corresponding to the **Set 2** in the hidden feature space.

Question: Is ith member of Set 1 is related to jth member of Set 2 ? Set1SVs\$i dotproduct Set2SVs\$j

Note: Set 1 and Set 2 should be known

- Collaborative Filtering
- Data Compression
- Document Clustering
- Topic Modelling
- Recommender Systems: B.M. Sarwar, G. Karypis, J.A. Konstan, and J.Reidl. Application of dimensionality reduction in recommender system a case study. In ACM WebKDD 2000 Web Mining for E-Commerce Workshop, 2000
- Linear Algebra

	M1	M2	M3	M	Mn
U1	1	1	0	0	0
U2	0	1	1	0	1
U3	0	0	1	1	0
•••	1	1	0	0	0
Um	0	1	0	1	1

- 1. 500k X 17k Sparse Matrix (84 in 85 cells are empty: Netflix)
- 2. SVD De-sparses the large matrix \rightarrow K*(17K+500K)
- 3. Precomputing SVD: Incremental solutions

Social Graph: Os are **missing values** to be predicted

	U1	U2	U3	U	Un
U1	1	1	0	0	0
U2	0	1	1	0	1
U3	0	0	1	1	0
•••	1	1	0	0	0
Um	0	1	0	1	1

- 1. If Ui is friends with Uj
- 2. SVD De-sparses the large matrix
- 3. Precomputing SVD: Incremental solutions

- If meaningful generalities can help you represent your data with fewer numbers, finding a way to represent your data in fewer numbers can often help you find meaningful generalities. (Sifter)
- Compression == Understanding

Why Dimensionality Reduction

- Not handful observations but sheer data sizes 100s x 100ks?
- Groups in data
 - How Variables / Observations hang together
 - Multiple variable explain similar things

Dimensions Reduction Goals

- Reduce dimensions of Population
 - Cluster Analysis
 - K-Means, Hierarchical, Density
- Reduce dimensions of the Problem/Model/Construct
 - Singular Value Decomposition
 - Principal Component Analysis (PCA)
 - Exploratory Factor Analysis (EFA)

Vocabulary

- Latent Variables:
 - Hidden / Unobservable variables
- Loadings
 - Weight of Relationship between each variable and component
- Communality
 - The amount of variance of each variable explained by the factor structure

Important in factor analysis to measure error

- Uniqueness
 - The amount of variance of each variable not explained by the component/factor (1 – Communality)

Dimensions Reduction Goals

- Reduce dimensions of the Problem/Model/Construct
 - Principal Component Analysis (PCA)
 - Exploratory Factor Analysis (EFA)

Can 6 different variables represented by just 1; the Social Skills

PCA

Fewer higher-order components EXPLAIN/CAPTRUE the maximum amount of variance in lower order variables

Teacher Quality

- Present
- Explain
- Communicate
- Teach
- Workload
- Difficulty

	Present	Explain	Communi	Teach	Workload	Difficulty
Present	1.000	0.855	0.603	0.800	0.151	0.043
Explain	0.855	1.000	0.756	0.891	0.056	-0.026
Communi	0.603	0.756	1.000	0.819	0.128	0.060
Teach	0.800	0.891	0.819	1.000	0.138	0.081
Workload	0.151	0.056	0.128	0.138	1.000	0.719
Difficulty	0.043	-0.026	0.060	0.081	0.719	1.000

```
Rotation:
                 PC1
                              PC2
                                          PC3
                                                       PC4
                                                                   PC5
                                                                                PC6
           0.4812739
                                  -0.63443650 -0.03777691
                                                                        -0.22094091
                                                            0.55990582
Present
Explain
           0.5127898
                       0.12651133 - 0.16342075 - 0.06968290 - 0.34260959
                                                                         0.75637171
Communi
           0.4670223
                      0.04023162
                                   0.73502722
                                                0.15324099
                                                                         0.05866729
                                                            0.46160796
                                   0.10233296 -0.10077104 -0.58073509
                                                                        -0.60916901
Teach
           0.5188259
                      0.04304370
Workload
           0.1167782 -0.69214922 -0.11178861
                                                0.69377824 -0.11331686
                                                                         0.02503335
                                                                         0.06270205
Difficulty 0.0670437 -0.70662842
                                   0.08689213 -0.69191860
```

Applying PCA

Correlation Matrix: Pairwise Correlation of all variables

Calculate Eigenvectors and Eigenvalues

- Eigenvectors: are the Principal Components (Transformed Variables/New coordinate system)
- Eigenvalues: are the amount of variance each PC explains

Applying PCA

How many components?

• Eigenvalue > 1 (Kaiser-Guttman Rule) [Norman Cliff's critic]

• Percentage of variance: Combined variance is more than T (50%?)

• Scree plot: discard scree

Applying PCA

- cor()
 - Data Standardization
- Orthogonality and correlation
- Orthogonality and components

EFA

Thurstone (1931)

- Dimension Reduction
- Structure (of variable relationships) discovery

The concept of shared variance

- Standard Scores (Z)
- Correlation $\leftarrow \rightarrow Z$
- Squared Correlation (R^2)

A subjective variable is determined to have

Underlying/latent factors

Dimensions Reduction Goals

- Reduce dimensions of the Problem/Model/Construct
 - Principal Component Analysis (PCA)
 - Exploratory Factor Analysis (EFA)

Can 6 different variables represented by just 1; the Social Skills

EFA

- PCA Vs EFA
 - Objective Vs Subjective
 - No Measurement Error Vs Error is allowed
 - Total Vsd Common/Shared Variability/Variance
 - PCA Robust, EFA Sensitive to Non-normality

• EFA Subsumes all of the dimensions within a single factor

	PAl	PA2
SS loadings	3.19	1.45
Proportion Var	0.53	0.24
Cumulative Var	0.53	0.77
Proportion Explained	0.69	0.31
Cumulative Proportion	0.69	1.00

EFA Example

```
Factor Analysis using method = pa
Call: fa(r = corMat, nfactors = 2, rotate = "varimax", fm = "pa")
Standardized loadings (pattern matrix) based upon correlation matrix
                                             PAl PA2
               PA2
          PA1
Present 0.83 0.06
                   SS loadings
                                            3.19 1.45
Explain 0.97 -0.04
                   Proportion Var
                                           0.53 0.24
Communi 0.79 0.06
                   Cumulative Var 0.53 0.77
Teach 0.96 0.07
                   Proportion Explained 0.69 0.31
Workload 0.10
              0.85
              0.85
Difficulty 0.01
                   Cumulative Proportion 0.69 1.00
```

- Only eyes are not enough in the
- Hang upside down to see things correct

Concept of Rotation

- Geometric spinning of axes in multidimensional space ... but ...
- Initial result of FA is not the most interpretable one
 - You have to rotate
- VariMax (Variance Maximization) Rotation
 - Variance is maximal on a Regression line (2d) or plane (3d) or ... example
 - Leftover/Residual Variance around the line can be captured be another line that is orthogonal to regression line
 - Because each consecutive factor is defined to maximize the variability that is not captured by the preceding factor, consecutive factors are independent of each other.
 - consecutive factors are uncorrelated or *orthogonal* to each other
- Oblique
 - Allows somewhat correlated
 - represent "clusters" of variables without orthogonality condition
 - Promax

Concept of Rotation

Source: dell.com

T/F?

- Which of the following techniques can be used to reduce the dimensions of the population?
- Cluster Analysis partitions the columns of the data, whereas principal component and exploratory factor analyses partition the rows of the data. True or false?
- PCA explains the total variance
- EFA explains the common variance
- EFA identifies measures that are sufficiently similar to each other to justify combination
- PCA captures latent constructs that are assumed to cause variance

ICA

- Independent Component Analysis
 - Blind Source Seperation (BSS)
- Unsupervised Learning Problem
 - Probabilistic Model → Latent Structure → Data
 - ICA discovers that structure

ICA Assumptions

uncorrelated and independent variables

ICA Vs PCA

- Local/Fundamental Vs. Average features
 - Faces
 - Natural scenes
 - Text corpus
- Direction Sensitive Vs. Direction Neutral
- BSS Vs. Common Source Extraction

http://www.ats.ucla.edu/stat/r/pages/svd_demos.htm