

# Small Vehicle Image Classification for Pedestrian-Friendly Lanes and Streets



Deep Learning Assignment 2

# Highlights



- This project compare 5 difference transfer learning models (VGG16, EfficientNetB7, MobileNetV2, ResNet50, InceptionResNetV2) for 3 classes classification problem (mountain bike, tricycle and tuk tuk)
- You will see what the performance would be for transfer learning
- The interesting question is whether a more complicated model would result a better performance? You can find the answer in this project
- This project applying Grad-CAM to VGG16 model to understand how the model classifies each class

# Agenda



## Why these small vehicles for image classification?

Cities across the globe become more welcoming to pedestrians and tend to reduce motorized transport amid the self-isolation to curtail the COVID-19 pandemic.

This allows citizens to return to the street at a social distance rather than banning traffic.

Many strategy execution processes for pedestrian-friendly streets are employed nowadays. For example, they provide adequately sized sidewalks and amenities for pedestrians and transit riders. They ensure a good co-existence between motorists and pedestrians.

However, pedestrian's experience should be more pleasant and any inconvenience or danger should be minimized.





# Why these small vehicles for image classification?



There are other ways to enhance pedestrian-friendly routes and design to reduce other smaller vehicle-bikes such as mountain bikes, tricycles and Thai tuk-tuk accessing these areas.

Several tech organizations and various disciplines have benefited from CNN and image processing techniques.

Hence, we would like to apply the image classification techniques via CNN to fill this gap and prevent other unwanted vehicles.

ImageNet was also used to explore this because of an extensive image database that has helped advance CNN's research into computer vision and deep learning.

## **Purpose**



#### The aims of this study are:

- To study multi-label classification task in the effectiveness of small vehicle image classification using five CNN models for pedestrianfriendly lanes and streets \*
- To compare the effectiveness of small vehicle image classification using five CNN models for pedestrian-friendly lanes and streets \*

- \* The five CNN models in this study are:
  - 1)VGG-16 2) EfficientNetB7 3) MobileNetV2 4)ResNet50 5)InceptionResNetV2
- \*\* These models are randomized to investigate the results according to our class lesson.

#### Classes









#### The dataset contains 3 different classes:

- 1. Mountain bike, all terrain-bike, off-roader (class id on IMAGENET: 671)
- 2. Tricycle, trike, velocipede (class id on IMAGENET: 870)
- 3. Tuk tuk (no class on IMAGENET)

## **Image scraping**

```
timeStarted = time.time()
                                                                                              Waiting...
while True:
   imageElement = driver.find element by xpath("""//*[@id="Sva75c"]/div/div/div[3]/div[2]/c-wiz/
   imageURL= imageElement.get attribute('src')
   if imageURL != previewImageURL:
       #print("actual URL", imageURL)
   else:
       #making a timeout if the full res image can't be loaded
       currentTime = time.time()
       if currentTime - timeStarted > 10:
           print("Timeout! Will download a lower resolution image and move onto the next one")
           break
#Downloadina image
                                                                                              60.jpg.webp
   download image(imageURL, folder name, i)
   print("Downloaded element %s out of %s total. URL: %s" % (i, len containers + 1, imageURL))
                                                                                              Downloaded element 11 out of 301 total. URL: https://wikiimg.tojsiabtv.com/wikipedia/commons/thumb
                                                                                              de.jpg/225px-The American Velocipede.jpg
   print("Couldn't download an image %s, continuing downloading the next one"%(i))
```

```
Downloaded element 1 out of 301 total. URL: https://upload.wikimedia.org/wikipedia/commons/6/6e/Ve
Downloaded element 2 out of 301 total. URL: https://cdn.britannica.com/69/19469-004-9BCC238A/Veloc
es-M-Ives-1869.ipg?w=400&h=300&c=crop
Downloaded element 3 out of 301 total. URL: http://img.kansasmemory.org/00617259.jpg
Downloaded element 4 out of 301 total, URL: https://merriam-webster.com/assets/mw/images/gallery/g
e1698295689-2097-c406a28e99fca87db3c0feac78b61723@1x.ipg
Downloaded element 5 out of 301 total. URL: https://upload.wikimedia.org/wikipedia/commons/c/ce/Ve
Downloaded element 6 out of 301 total. URL: https://io.wp.com/ageofrevolution.org/wp-content/uploa
pg?fit=2569%2C1788&ssl=1
Downloaded element 7 out of 301 total. URL: https://www.ccpl.org/sites/default/files/Goddard veloc
Downloaded element 8 out of 301 total. URL: https://img.pixers.pics/pho wat(s3:700/FO/43/64/58/81/
9af53f14244bfd93f7ff.jpg,700,670,cms:2018/10/5bd1b6b8d04b8 220x50-watermark.png,over,480,620,jpg)/
Downloaded element 9 out of 301 total. URL: http://dict.drkrok.com/wp-content/uploads/2016/07/velo
Downloaded element 10 out of 301 total. URL: https://www.prints-online.com/p/164/latest-style-amer
```



The dataset was mainly scraped from the open dataset and free for use, for instance, pixabay, in which the composition of the images didn't have an identity that can identify the person/people in the images unless the images have the URL reference.

## **Image preparation**

```
for filename in arr:
     file destination = folder path + filename
     img = cv2.imread(file destination)
      try:
           if img.shape[0] < 224 or img.shape[1] < 224 or img.shape[2] != 3:</pre>
                print(filename, img.shape)
      except:
           print(filename)
x = []
y = []
for filename in arr:
   file destination = folder path + filename
   img = cv2.imread(file destination)
   RGB img = cv2.cvtColor(img, cv2.COLOR BGR2RGB) #CAUTION! SAVED IN RGB NOT BGR
   img = cv2.resize(RGB img, desired size)
   #print(img.shape)
   plt.imshow(img)
   x.append(img)
   y.append(1)
print(x)
print(y)
```



The selected image will be converted to size 224\*224 and converted to an array with labels indicating which class they belong to. With this process, the images whose pixel size are smaller than the desired size (224\*224) are eliminated. Eventually, there are 200 images/arrays left per class.



In order to show the big picture of training process, we'll introduce the VGG-16 model to be the based model for transfer-learning and fine-tuning with initial set up as shown below.

- Python 3.8.5
- Numpy 1.22.0 fixed random seed = 1234
- Tensorflow 2.7.0 fixed random seed = 5678



1. Load the VGG-16 model as pretrained model with only feature extractor section

| 8900480/58889256 [======   | ] -                   | 0s Ous/step |  |
|----------------------------|-----------------------|-------------|--|
| odel: "vgg16"              |                       | Param #     |  |
| Layer (type)               |                       |             |  |
| input_1 (InputLayer)       | [(None, 224, 224, 3)] | 0           |  |
| block1_conv1 (Conv2D)      | (None, 224, 224, 64)  | 1792        |  |
| block1_conv2 (Conv2D)      | (None, 224, 224, 64)  | 36928       |  |
| block1_pool (MaxPooling2D) | (None, 112, 112, 64)  |             |  |
| block2_conv1 (Conv2D)      | (None, 112, 112, 128) | 73856       |  |
| block2_conv2 (Conv2D)      | (None, 112, 112, 128) | 147584      |  |
| block2_pool (MaxPooling2D) | (None, 56, 56, 128)   |             |  |
| block3_conv1 (Conv2D)      | (None, 56, 56, 256)   | 295168      |  |
| block3_conv2 (Conv2D)      | (None, 56, 56, 256)   | 590080      |  |
| block3_conv3 (Conv2D)      | (None, 56, 56, 256)   | 590080      |  |
| block3_pool (MaxPooling2D) | (None, 28, 28, 256)   |             |  |
| block4_conv1 (Conv2D)      | (None, 28, 28, 512)   | 1180160     |  |
| block4_conv2 (Conv2D)      | (None, 28, 28, 512)   | 2359808     |  |
| block4_conv3 (Conv2D)      | (None, 28, 28, 512)   | 2359808     |  |
| block4_pool (MaxPooling2D) | (None, 14, 14, 512)   |             |  |
| block5_conv1 (Conv2D)      | (None, 14, 14, 512)   | 2359808     |  |
| block5_conv2 (Conv2D)      | (None, 14, 14, 512)   | 2359808     |  |
| block5_conv3 (Conv2D)      | (None, 14, 14, 512)   | 2359808     |  |
| block5_pool (MaxPooling2D) | (None, 7, 7, 512)     |             |  |

| input_1 inpu      |            | , 224, 224, 3)[   | [(None, 224, 224, 3)] |
|-------------------|------------|-------------------|-----------------------|
| InputLayer outp   | ut:        |                   |                       |
|                   |            |                   |                       |
|                   | iput: (No  | ne, 224, 224, 3)  | (None, 224, 224, 64)  |
| CONVED            | igus.      |                   |                       |
| block1_conv2 in   | put        | •                 |                       |
|                   | put: (Nor  | re, 224, 224, 64) | (None, 224, 224, 64)  |
|                   |            |                   |                       |
| block1_pool is    | iput:      | •                 | T                     |
| MaxPooling2D or   | tput: (No  | ne, 224, 224, 64) | (None, 112, 112, 64)  |
|                   |            | 1                 |                       |
|                   | (Non       | e, 112, 112, 64)  | (None, 112, 112, 128) |
| Conv2D out        | put .      |                   |                       |
|                   |            |                   |                       |
| Conv2D out        |            | , 112, 112, 128)  | (None, 112, 112, 128) |
| CONTRD ON         | rui.       |                   |                       |
| block2_pool is    | put:       | •                 | 1                     |
|                   | tput: (No  | ne, 112, 112, 128 | (None, 56, 56, 128)   |
|                   |            |                   |                       |
| block3_conv1 i    | nput:      |                   | A1 . E5 E5 NEO        |
| Conv2D o          | utput: (No | me, 56, 56, 128)  | (None, 56, 56, 256)   |
|                   |            | 1                 |                       |
|                   | nput: (Ne  | me, 56, 56, 256)  | (None, 56, 56, 256)   |
| Conv2D o          | utput:     |                   |                       |
|                   |            |                   |                       |
|                   | nput: (No  | me, 56, 56, 256)  | (None, 56, 56, 256)   |
| CONTED            | ugac.      |                   |                       |
| block3_pool       | input      | •                 | 1                     |
|                   | utput: (N  | one, 56, 56, 256) | (None, 28, 28, 256)   |
|                   |            |                   |                       |
|                   | nput:      | me, 28, 28, 256)  | (None, 28, 28, 512)   |
| Conv2D o          | utput:     | 100, 40, 40, 420) | (14000, 20, 20, 312)  |
|                   |            |                   |                       |
|                   | nput: (No  | me, 28, 28, 512)  | (None, 28, 28, 512)   |
| Conv2D 0          | utput:     |                   |                       |
| Total and a Total | -          | •                 |                       |
|                   | nput: (No  | me, 28, 28, 512)  | (None, 28, 28, 512)   |
|                   |            |                   |                       |
| block4_pool       | input:     |                   |                       |
|                   | nutput: (N | one, 28, 28, 512) | (None, 14, 14, 512)   |
|                   |            | 1                 |                       |
|                   | nput:      | me. 14, 14, 512)  | (None, 14, 14, 512)   |
| Conv2D o          | utput:     | 100, 14, 14, 111, | (14000), 14, 14, 5113 |
|                   |            |                   |                       |
|                   | nput: (No  | me, 14, 14, 512)  | (None, 14, 14, 512)   |
| Conv2D o          | utput      |                   |                       |
| Model on all      |            | +                 |                       |
|                   | nput: (No  | me, 14, 14, 512)  | (None, 14, 14, 512)   |
|                   | •          |                   |                       |
| block5_pool       | input:     | •                 |                       |
|                   | output: (7 | None, 14, 14, 512 | (None, 7, 7, 512)     |
|                   |            |                   |                       |

2. Input the data which were prepared to be 3 classes (0 = mountain bike, 1 = tricycle, 2 = tuk tuk) and split data into train and test sets with test size = 20% as shown below.

```
1 #Train Test Split
2 from sklearn.model_selection import train_test_split
3
4 test_size = 0.2
5 x_train, x_test = train_test_split(x, test_size = test_size, random_state = 3)
6 y_train, y_test = train_test_split(y, test_size = test_size, random_state = 3)
7
8 print(x_train.shape)
9 print(y_train.shape)
10 print(x_test.shape)
11 print(y_test.shape)
12 print(y_test.shape)
1480, 224, 224, 3)
(480,)
(120, 224, 224, 3)
(120,)
```





3. Freeze the layers in model by setting the Trainable to False

```
1 #Recursively freeze all layers in the model first
 2 vgg extractor.trainable = False
 4 for i, layer in enumerate(vgg extractor.layers):
 5 print(f'Layer {i}: Name = {layer.name}, Trainable = {layer.trainable}')
Layer 0: Name = input 1, Trainable = False
Layer 1: Name = block1 conv1, Trainable = False
Layer 2: Name = block1 conv2, Trainable = False
Layer 3: Name = block1 pool, Trainable = False
Layer 4: Name = block2 conv1, Trainable = False
Layer 5: Name = block2 conv2, Trainable = False
Layer 6: Name = block2 pool, Trainable = False
Layer 7: Name = block3 conv1, Trainable = False
Layer 8: Name = block3 conv2, Trainable = False
Layer 9: Name = block3 conv3, Trainable = False
Layer 10: Name = block3 pool, Trainable = False
Layer 11: Name = block4 conv1, Trainable = False
Layer 12: Name = block4 conv2, Trainable = False
Layer 13: Name = block4 conv3, Trainable = False
Layer 14: Name = block4 pool, Trainable = False
Layer 15: Name = block5 conv1, Trainable = False
Layer 16: Name = block5 conv2, Trainable = False
Layer 17: Name = block5 conv3, Trainable = False
Layer 18: Name = block5 pool, Trainable = False
```



#### 4. Add new classification head for tuk tuk classification

```
1 x = vgg_extractor.output
2
3 #Add our custom layer(s) to the end of the existing model
4 x = tf.keras.layers.Flatten()(x)
5 x = tf.keras.layers.Dense(512, activation = 'relu')(x)
6 x = tf.keras.layers.Dropout(0.5)(x)
7 new_outputs = tf.keras.layers.Dense(10, activation = 'softmax')(x)
8
9 #construct the main model
10 model = tf.keras.models.Model(inputs = vgg_extractor.inputs, outputs = new_outputs)
11
12 model.summary()
```

| Layer (type)               | Output Shape          | Param # |
|----------------------------|-----------------------|---------|
| input_1 (InputLayer)       | [(None, 224, 224, 3)] | 0       |
| block1_conv1 (Conv2D)      | (None, 224, 224, 64)  |         |
| block1_conv2 (Conv2D)      | (None, 224, 224, 64)  | 36928   |
| block1_pool (MaxPooling2D) | (None, 112, 112, 64)  |         |
| block2_conv1 (Conv2D)      | (None, 112, 112, 128) | 73856   |
| block2_conv2 (Conv2D)      | (None, 112, 112, 128) | 147584  |
| block2_pool (MaxPooling2D) | (None, 56, 56, 128)   |         |
| block3_conv1 (Conv2D)      | (None, 56, 56, 256)   | 295168  |
| block3_conv2 (Conv2D)      | (None, 56, 56, 256)   | 590080  |
| block3_conv3 (Conv2D)      | (None, 56, 56, 256)   | 590080  |
| block3_pool (MaxPooling2D) | (None, 28, 28, 256)   |         |
| block4_conv1 (Conv2D)      | (None, 28, 28, 512)   | 1180166 |
| block4_conv2 (Conv2D)      | (None, 28, 28, 512)   | 2359808 |
| block4_conv3 (Conv2D)      | (None, 28, 28, 512)   | 2359808 |
| block4_pool (MaxPooling2D) | (None, 14, 14, 512)   |         |
| block5_conv1 (Conv2D)      | (None, 14, 14, 512)   | 2359808 |
| block5_conv2 (Conv2D)      | (None, 14, 14, 512)   | 2359808 |
| block5_conv3 (Conv2D)      | (None, 14, 14, 512)   | 2359808 |
| block5_pool (MaxPooling2D) | (None, 7, 7, 512)     |         |
| flatten (Flatten)          | (None, 25088)         |         |
| dense (Dense)              | (None, 512)           | 1284556 |
| dropout (Dropout)          | (None, 512)           |         |
|                            | (None, 10)            | 5130    |

| least 1 lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input_1   Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hinch1_conv1   hipst   (None, 224, 224, 3)   (None, 224, 224, 64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conv2D output: (9888, 224, 224, 3) (9888, 224, 224, 64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| block1_ceev2 input: (None, 224, 224, 64) (None, 224, 224, 64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Coav2D output (Note, 224, 224, 64) (Note, 224, 224, 64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block1_pool inpet   (None, 224, 224, 64)   (None, 112, 112, 64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Historian of the last of the l |
| block2_conv1   input   man 122 122 122 122 122 122 122 122 122 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conv2D output (None, 112, 112, 64) (None, 112, 112, 128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block2_conv2 input (None, 112, 112, 128) (None, 112, 112, 128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Conv2D output (room, 112, 112, 120) (room, 112, 112, 120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block2_pool inpet:<br>  MasPooling2D output: (None, 112, 112, 128) (None, 56, 56, 128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Marcong20 outo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| blockl_cored input and to the core to the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conv2D output: (None, 56, 56, 128) (None, 56, 56, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block3_com2 input: (None, 56, 56, 256) (None, 56, 56, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conv2D cutyat (None, 56, 56, 256) (None, 56, 56, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| block3_conv3 lapat: (None, 56, 56, 256) (None, 56, 56, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Conv2D estpat (5000, 50, 50, 256) (5000, 50, 50, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MaxPooling2D output: (None, 56, 56, 256) (None, 28, 28, 256)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block4_court input and to the transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conv2D output: (None, 28, 28, 256) (None, 28, 28, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| None, 28, 28, 512   None, 28, 28, 512   None, 28, 28, 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Conv2D suspet (5000, 28, 26, 512) (5000, 28, 28, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Minch4_conv3   Input: (None, 28, 28, 512)   (None, 28, 28, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carratr   super                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block4_pool input (Nova 28 28 512) (Nova 14 14 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MacPooling2D output: (None, 28, 28, 512) (None, 14, 14, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| block5_conv1 input: (None, 14, 14, 512) (None, 14, 14, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Conv2D output (Soor, 14, 14, 512) (Noor, 14, 14, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| binds_conv2   input:<br>  Conv2D   exput: (None, 14, 14, 512)   (None, 14, 14, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conv2D output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| block5_conv3 laper and 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Conv2D output (None, 14, 14, 512) (None, 14, 14, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Meck5_pool input: (Ness, 14, 14, 512) (Ness, 7, 7, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MasPooling2D (1988) (14, 14, 15, 512) (1988, 7, 7, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flaton corpor: (None, 7, 7, 512) (None, 25088)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| riana super                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [down I book ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dense output (None, 25088) (None, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dropout input: (New 727) (New 727)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dissport curpus (None, 512) (None, 512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dense_1 input: (None, 512) (None, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dense output (NUR, 112) (NUR, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Vgg extractor

```
| block1_row1 | injust | (None, 224, 224, 3) | (None, 224, 224, 64) |
| black1_com/2 | inper | (None, 224, 224, 64) | (None, 224, 224, 64) |
| hinck1_post | input | (Nese, 224, 224, 64) | (Nese, 112, 112, 64) |
| None, 112, 112, 64| | None, 112, 112, 128|
| block2_conv2 | input | (None, 112, 112, 128) | (None, 112, 112, 128) |
| block2_pool | input | (Ness, 112, 112, 128) | (Noss, 56, 56, 128) |
 | block3_rose1 | input: | (Noor, 56, 56, 128) | (Noor, 56, 56, 256) | | Corr/2D | estret: |
  | block3_com2 | input: | (None, 56, 56, 256) | (None, 56, 56, 256) |
 | black1_com/3 | input | (Nooe, 56, 56, 256) | (Nooe, 56, 56, 256) |
 | MacK1_pool | Input | (None, 56, 56, 256) | (None, 28, 28, 256) |
  | Mincle4_conv1 | Imput: | (Noos, 28, 28, 256) | (Noos, 28, 28, 512) |
  | Minck4_conv2 | Input: | (None, 28, 28, 512) | (None, 28, 28, 512) |
  | block4_cosr3 | input: | (Noor, 28, 28, 512) | (Noor, 28, 28, 512) |
| block4_pool | input | (None, 28, 28, 512) | (None, 14, 14, 512) | |
  | Minck5_conv1 | Imper. | (Noos, 14, 14, 512) | (Noos, 14, 14, 512) |
  | block5_com2 | input:
| Conv2D | output: (None, 14, 14, 512) | (None, 14, 14, 512)
   | None, 14, 14, 512 | None, 14, 14, 512 | None, 14, 14, 512 |
  | Nock5_pool | Input | (None, 14, 14, 512) | (None, 7, 7, 512) |
```

#### Our new model

```
| Input_1 | Input: | [(Nooe, 224, 224, 3)] | [(Nooe, 224, 224, 3)]
  | block1_coav1 | input | (None, 224, 224, 3) | (None, 224, 224, 64) | |
| block1_conv2 | input | (None, 224, 224, 64) | (None, 224, 224, 64) |
| block1_pool | inper | (None, 224, 224, 64) | (None, 112, 112, 64) |
| block2_conv1 | input | (None, 112, 112, 64) | (None, 112, 112, 128) |
| block2_pool | input | (Noon, 112, 112, 128) | (Noon, 56, 56, 128) | |
  | block3_conv1 | input:
| Conv2D | output: (None, 56, 56, 128) | (None, 56, 56, 256)
  | block3_conv2 | input | (None, 56, 56, 256) | (None, 56, 56, 256) |
  | None, 56, 56, 256 | None, 56, 56, 256 | None, 56, 56, 256 |
  | block1_peel | input | (None, 56, 56, 256) | (None, 28, 28, 256) | | MacPooling2D | output: |
  | block4_conv1 | input | (None, 28, 28, 256) | (None, 28, 28, 512) |
  | block4_conv2 | input | (None, 28, 28, 512) | (None, 28, 28, 512) |
  | block4_conv3 | input | (None, 28, 28, 512) | (None, 28, 28, 512) |
  block4_pool input (None, 28, 28, 512) (None, 14, 14, 512)
MacPooling2D output:
  | block5_conv1 | input: | (None, 14, 14, 512) | (None, 14, 14, 512) |
  | block5_conv2 | input: | (None, 14, 14, 512) | (None, 14, 14, 512) |
  | block5_conv3 | input | (None, 14, 14, 512) | (None, 14, 14, 512) |
  | Mock5_pool | Input | (None, 14, 14, 512) | (None, 7, 7, 512) |
        dense input:
Dense output: (None, 25088) (None, 512)
          dropout input (None, 512) (None, 512)
          dense_1 inper: (Nees, 512) (Nees, 10)
```



The classification section for tuk tuk image classifier



#### 5. Model training by transfer-learning

Loss : Cross Entropy (Sparse Categorical)

Optimizer : AdamMetrics : AccuracyBatch Size : 128

Epoch Number : 20

```
1 model.compile(loss = 'sparse categorical crossentropy', optimizer = 'adam', metrics = ['acc'])
2 history = model.fit(x train vgg, y train, batch size = 128, epochs = 20, verbose = 1, validation split = 0.2)
Epoch 1/20
3/3 [=========] - 34s 5s/step - loss: 22.7171 - acc: 0.5755 - val loss: 6.9981 - val acc: 0.9479
Epoch 2/20
Epoch 3/20
Epoch 4/20
  Epoch 5/20
Epoch 6/20
Epoch 9/20
Epoch 13/20
3/3 [============= ] - 4s 2s/step - loss: 0.0000e+00 - acc: 1.0000 - val loss: 10.0057 - val acc: 0.9792
3/3 [==============] - 4s 2s/step - loss: 0.0000e+00 - acc: 1.0000 - val loss: 9.3413 - val acc: 0.9688
```

## VGG-16 Model



## VGG-16 Model





## **EfficientNetB7 Model**



# EfficientNetB7 Model





## **MobileNetV2 Model**







# **MobileNetV2 Model**





## **ResNet50 Model**







## **ResNet50 Model**





# InceptionResNetV2 Model







# **InceptionResNetV2 Model**





## **Model Evaluation on Test Set**



| Models            | Accuracy | Loss  |
|-------------------|----------|-------|
| VGG-16            | 0.992    | 2.265 |
| EfficientNetB7    | 0.967    | 2.894 |
| MobileNetV2       | 0.975    | 0.436 |
| ResNet50          | 0.967    | 2.737 |
| InceptionResNetV2 | 0.958    | 0.952 |

### **Conclusion**



According to the experiment, Google was a source for our image scraping and collecting. As the result of five CNN model studies, there were accuracy between 0.958-0.992 and loss between 0.436-2.737. However, the VGG-16 model was shown the best accuracy (0.992) at a loss of 2.265. Thus, we suggest applying the VGG-16 model to classify smaller vehicle bikes for pedestrian-friendly streets

# **Gradient-weighted Class Activation Mapping (Grad-CAM)**

- Grad-CAM uses the gradients of target flowing into the final convolutional layer to produce a map highlighting regions in the image for predicting the concept (Ref: Understand your Algorithm with Grad-CAM | by Daniel Reiff | Towards Data Science)
- Applied Grad-CAM to our modified VGG16 model to study which image area the model focus on to classify the mountain bike, tricycle, and tuk-tuk
- The higher heatmap value (colored red in 'jet' colormap) shows the important area for prediction probability



Grad-CAM applied on dog and cat image
(Ref: Understand your Algorithm with Grad-CAM | by Daniel Reiff | Towards Data Science)

### **Grad-CAM for Mountain Bike**



#### Finding for Mountain Bike

 The model seems to identify the Mountain Bike by looking at the center core part of the mountain bike



Grad-CAM applied on mountain bike image

# **Grad-CAM for Tricycle**



#### Finding for Tricycle

- The model seems to identify the Tricycle by looking at
- □ the wheel
- ☐ the handle



Grad-CAM applied on tricycle image

## **Grad-CAM for Tuk Tuk**



#### Finding for **Tuk Tuk**

- The model seems to identify the Tuk-Tuk by looking at overall unique characteristics of tuk-tuk such as
- ☐ the front lights
- ☐ the side
- the front windshield



Grad-CAM applied on tuk tuk image

# **Gradient-weighted Class Activation Mapping (Grad-CAM)**

#### **Grad-CAM Conclusion**

- Because the differences between the each class are quite obvious
- Applying Grad-CAM to each class shows that the model classifies each class by looking at the class's outstanding features

#### **Grad-CAM Code**



```
def alter model for GradCAM(model, last conv layer name):
    last conv output = model.get laver(last conv laver name).output
    old weights = [x.numpy() for x in model.layers[-1].weights]
    new_config = model.layers[-1].get_config()
    new config['activation'] = tf.keras.activations.linear
    new config['name'] = 'prediction linear'
    out_linear = tf.keras.layers.Dense(**new_config)(model.layers[-2].output)
    out softmax = tf.keras.activations.softmax(out linear)
    new_model = tf.keras.Model(inputs=model.inputs, outputs=[out_softmax, out_linear, last_conv_output])
    new model.layers[-2].set weights(old weights)
    return new_model
def my CNN GradCAM(model, in img, class index):
    in img = tf.cast(in img, tf.float32)
    with tf.GradientTape() as tape:
       tape.watch(in img)
       y softmax, y linear, last conv activation = model(in img)
       one class score = y linear[..., class index]
    gradient = tape.gradient(one class score, last conv activation)
    gradient = gradient.numpy().squeeze(axis=0)
    alpha = np.mean(gradient, axis=(0,1))
    last conv activation = last conv activation.numpy().squeeze(axis=0)
   heatmap = np.dot(last conv activation, alpha)
    heatmap = np.maximum(0, heatmap)
    return heatmap
new model = alter model for GradCAM(model, 'block5 pool')
new model.summary()
```

```
# SHOW 4X4 GRAD-CAM IMAGES FROM SELECTED CLASS
# Input ########
selected class = 2 #class index {0:'mtbike', 1:'tricycle', 2:'tuktuk'}
import random
import cv2
predict_encode = {0:'mtbike', 1:'tricycle', 2:'tuktuk'}
rand_idx = []
if selected class -- 0:
   xxx = x0
    yyy = y0
elif selected class == 1:
   xxx = x1
    yyy - y1
elif selected class -- 2:
    xxx = x2
   yyy = y2
   print('Wrong Class Provided')
for i in range(4): #4 images to show
   rand_idx.append(random.randint(0,len(xxx)))
fig = plt.figure(figsize=(10,10))
for i in range(len(rand idx)):
   print(rand_idx[i])
    x_input = xxx[rand_idx[i]][np.newaxis, ...]
    y_pred = np.argmax(model.predict(x_input))
    print(f'Predicted Class: {predict encode[v pred]}')
    print(f'Actual Class: {predict encode[vvv[rand idx[i]]]}')
    heatmap = mv CNN GradCAM(new model, x input, v pred)
    img = xxx[rand_idx[i]]
    ax = fig.add subplot(2,2,i+1)
    ax.imshow(img)
    alpha = 0.6
    im = ax.imshow(cv2.resize(heatmap, img.shape[:2]), cmap='jet', alpha=alpha)
   plt.colorbar(im, ax-ax)
plt.subplots adjust(wspace=0.1, hspace=0)
plt.show()
```

## **Discussion**

- The results are quite good with 99.2% accuracy for the VGG-16 model, and all 5 models we selected have more than 95% accuracy. For the next step, we may consider running all models with the same CPU and GPU condition to compare the processing time for each model which will be another key criterion in case of a real implementation.
- Another improvement is to add more classes for small vehicle image classification such as pedestrian, trolley, food truck, etc. To be more beneficial and can be used for more purposes.

### References



Python Version: 3.8.5

#### Python Library

- Matplotlib 3.5.1
- Numpy 1.22.0
- OpenCV 4.5.5
- Tensorflow 2.7.0

#### Source Code

- Transfer Learning: BADS7604 by Asst. Prof. Thitirat Sribiborbornratanakul (CNN2\_ex3)
- Grad-CAM: BADS7604 by Asst. Prof. Thitirat Sribiborbornratanakul (CNN3\_ex2)

#### **Datasets**

Please look at the Citing page

# Citing

- For those who want to use the dataset images,
- ☐ For mountain bike dataset, please read and use the image under the pixabay.com policy
- ☐ For tricycle dataset, referenced URL are provided in image\_references\_tricycle.txt
- ☐ For tuk-tuk dataset, cite them as a format provided in image\_references\_tuktuk.txt

 For those who want to use any other image but not the dataset images, please reference the image in bibtex format

#### **Team Members**

6310412018

Pongsarat Chootai (25%) Develop image scrapping coding for team, Image Scraping (Tricycle), Develop original coding for model transfer-learning for team and evaluate VGG-model, Result Discussion for improvement

6310412021

Theethut Narksenee (25%)

Image Scraping (Mountain bike), Image preparation, Transfer Learning of EfficientNetB7 model and InceptionResNetV2 model

6310412024

Saranchai Angkawinijwong (25%)

Highlights, Image Scraping (Tuk Tuk), VGG Transfer Learning, Grad-CAM, Miscellaneous(References, Citing, End Credit)

6420400001

Krittipat Chuenphitthayavut (25%)

Introduction composition, Image scaping, Experimental variation on resnet50 and MobileNetV2

### **End Credit**



This project is a part of **Deep Learning** course

Course code: BADS7604

Syllabus: Business Analytics and Data Science (BADS)

Institute: National Institute of Development Administration (NIDA)

Semester: **2/2021** 

# Thank you for your attention