The group G is isomorphic to the group labelled by ["could not identify G!!!"] in the Small Groups library. Ordinary character table of $G \cong A7$:

	1a	2a	3a	3b	4a	5a	6a	7a	7b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	6	2	3	0	0	1	-1	-1	-1
χ_3	10	-2	1	1	0	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_4	10	-2	1	1	0	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_5	14	2	2	-1	0	-1	2	0	0
χ_6	14	2	-1	2	0	-1	-1	0	0
χ_7	15	-1	3	0	-1	0	-1	1	1
χ_8	21	1	-3	0	-1	1	1	0	0
χ_9	35	-1	-1	-1	1	0	-1	0	0

Trivial source character table of $G \cong A7$ at p = 2:

Trivial source character table of $G = At$ at $p = 2$.																	
Normalisers N_i		N_1 N_2							Λ	V_3	N_4					N_5	N_6
p-subgroups of G up to conjugacy in G			P_1					P_2			P_4				P_5	P_6	
Representatives $n_j \in N_i$			3b	7a	7b	5a	1a	3a	1a	3a	1a	3a	3b	3c	3d	1a	1a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	72	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	64	4	-2	1	1	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	56	-4	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	24	0	3	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	24	0	3	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	40	4	4	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	100	4	-2	2	2	0	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	20	2	2	-1	-1	0	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	22	-2	1	1	1	2	2	2	2	2	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	2	-1	0	0	-1	2	2	2	-1	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	30	6	0	2	2	0	2	2	0	0	2	2	2	2	2	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	3	0	-1	-1	1	2	-1	0	0	2	2	-1	-1	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	70	-2	-2	0	0	0	2	2	0	0	2	-1	2	-1	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	2	0	0	-1	2	-1	0	0	2	-1	-1	2	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	2	0	0	-1	2	-1	0	0	2	-1	-1	-1	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	50	2	-1	1	1	0	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0 1 1	0 1 1		2 2 1	$\begin{array}{c} -1 \\ \hline 2 \\ \hline 1 \end{array}$	0 0 1	0 0 1	2 0 1				2 0 1	0 2 1	$\begin{array}{c} 0 \\ \hline 0 \\ \hline 1 \end{array}$

```
P_1 = Group([()]) \cong 1
```

$$P_4 = Group([(2,6)(3,4),(2,4)(3,6)]) \cong C2 \times C2$$

$$P_5 = Group([(2,3,4,6)(5,7),(2,4)(3,6)]) \cong C4$$

$$P_6 = Group([(2,4)(5,7),(3,6)(5,7),(2,6)(3,4)]) \cong D8$$

$N_1 = AlternatingGroup([1..7]) \cong A7$

- $N_2 = Group([(1,2,4),(1,2)(5,7),(1,2)(3,6),(3,5)(6,7)]) \cong (C6 \times C2) : C2$
- $N_3 = Group([(3,6)(5,7),(2,4)(5,7),(3,7)(5,6),(2,3,7)(4,6,5)]) \cong S4$
- $N_4 = Group([(1,5,7),(3,4,6),(1,5)(2,6)]) \cong (C3 \times A4) : C2$
- $N_5 = Group([(2,4)(3,6),(2,6,4,3)(5,7),(3,6)(5,7)]) \cong D8$
- $N_6 = Group([(3,6)(5,7),(2,4)(5,7),(2,3)(4,6)]) \cong D8$

 $P_2 = Group([(3,6)(5,7)]) \cong C2$

 $P_3 = Group([(2,4)(5,7),(3,6)(5,7)]) \cong C2 \times C2$