Reproducible analysis workflows

A short introduction into reproducible analysis tools: Rmarkdown, Github and others

Cornelius Hennch

27.01.2022

Section 1

Introduction

Why do we need reproducible data analysis?

"Reproducibility is the ability to obtain identical results from the same statistical analysis and the same data"

= long-term and cross-platform reproducibility of data analyses

- Peikert and Brandmeier [1]

Reproducibility ≠ Replicability

same analysis, same data / same analysis, new data

4/27

Goals of reproducible workflows

- Reported results are consistent with the actual results
- Computational reproducibility (= hardware and software change over time)
- Wersion control (= keep track of any changes at any time)

Four essential tools for reproducible workflows

- Dynamic reports → R Markdown

 R
- ② Version control \rightarrow **Git & Github** \bigcirc

- ${\color{red} \textbf{ 0}} \ \, \text{Dependency management} \rightarrow \textbf{Make}$
- Containerization \rightarrow **Docker** \clubsuit

Highly versatile dynamic documents with R Markdown

https://timotheenivalis.github.io/workshops/RforRSB/rmarkdown notes.html

Happy knitting!

 $https://rmarkdown.rstudio.com/authoring_quick_tour.html$

Git & Github

♦ Git

- "Distributed version control system"
- Track and document changes ("commits")
- Retrieve older versions of code
- Enables collaboration on any kind of programming projects (scalable!)

Git & Github

♦ Git

- "Distributed version control system"
- Track and document changes ("commits")
- Retrieve older versions of code
- Enables collaboration on any kind of programming projects (scalable!)

Github

- Git repository hosting service
- Collaboration:
 - Many features for team/project management (scalable!)
 - ② Report bugs/issues, get help
 - 3 Contribute to open-source projects
- Post-publication platform

Collaboration with Git & Github

How to Update a Fork in Git

Containerized Applications

Section 2

Reproducible data analysis in action

Example analysis: How do R skills influence time to thesis completion.

Hypothesis: Years of experience with R are inversely correlated with the estimated time to thesis completion.

Simulate data

Examine data structure

```
head(sim_data, n = 8) %>%
  knitr::kable()
# glimpse(data)
```

using_r	r_exp	thesis_compl
no	0.00	1.74
yes	1.97	1.44
no	0.00	2.27
no	0.00	1.26
no	0.00	1.61
no	0.00	1.43
yes	0.91	1.60
yes	2.11	1.04

Data summary

Dependent: all		all
Experience with R (years) Est. time to thesis completion Using R for analysis	Mean (SD) Mean (SD) no yes	1.1 (1.2) 1.2 (0.6) 14 (46.7) 16 (53.3)

Visualize simulated data

https://forms.gle/Z3RVbscYMYp3aThr5

Cornelius Hennch Reproducible analysis workflows 27.01.2022 17/27

Let's get the real data!

```
url <- "https://docs.google.com/spreadsheets/d/17UDIvzhZknffptP0FQTGC0409QDDgfG9juZ39
# a.u.t.h.
googledrive::drive auth(email = "cornelius.hennch@gmail.com")
# get the data from the google sheet
real data <- googlesheets4::read sheet(url) %>%
  select(-Zeitstempel)
# rename columns
colnames(real data) <- colnames(sim data)</pre>
# wrange (convert everything to correct variable type)
real_data <- real_data %>%
  mutate(using r = factor(using r),
    r exp = map chr(r exp, as.double) %>% as.double(),
         thesis compl = map chr(thesis compl, as.double) %>% as.double())
```

Cornelius Hennch Reproducible analysis workflows 27.01.2022 18/27

Real data overview

Table 2: Survey summary, n = 22

Dependent: all		all
Experience with R (years) Est. time to thesis completion	Mean (SD) Mean (SD)	1.6 (2.0) 1.6 (0.8)
Using R for analysis	no yes	7 (31.8) 15 (68.2)

Vizualization of the "real" data with the same script

Section 3

How do I learn these tools?

Where to start

- Reproducible research with R:\
 https://www.bihealth.org/de/translation/innovationstreiber/quest-center/mission-ansaetze/ausbildung-und-training/reproducible-research-with-r
- datacamp.com
- 🗏 Books e.g. R for Data Science by Hadley Wickham
- More resources on my website: https://www.hennch.co/post/free-r-learning-resources/

22/27

Tidy data and analyses are essential for reproducibility

- Wickham and Grolemund [2]

Tidyverse tools

https://medium.com/@kadek/how-to-install-the-tidyverse-r-via-homebrew-macos-10-14-d749d2136cf1

24/27

Session Info

```
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS 10.16
##
## Matrix products: default
## BLAS:
           /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dvlib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dvlib
##
## locale:
## [1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   hase
##
## other attached packages:
    [1] finalfit 1.0.3 forcats 0.5.1 stringr 1.4.0
                                                        dplvr 1.0.7
    [5] purrr_0.3.4
                        readr 2.1.0
                                        tidyr 1.1.4
                                                        tibble 3.1.6
##
    [9] ggplot2 3.3.5 tidyverse 1.3.1 knitr 1.36
##
##
## loaded via a namespace (and not attached):
    [1] nlme 3.1-150
                            fs 1.5.0
                                                lubridate 1.8.0
    [4] httr 1.4.2
                            tools 4.0.2
                                                backports 1.3.0
   [7] utf8 1.2.2
                            R6 2.5.1
                                                DBI 1.1.0
## [10] mgcv 1.8-33
                            colorspace 2.0-2
                                                withr 2.4.2
## [13] tidyselect 1.1.1
                            curl 4.3
                                                compiler 4.0.2
## [16] cli 3.1.0
                            rvest 1.0.2
                                                mice 3.13.0
## [19] xml2 1.3.2
                            labeling 0.4.2
                                                scales 1.1.1
## [22] askpass 1.1
                            rappdirs 0.3.3
                                                digest 0.6.28
## [25] foreign_0.8-80
                            rmarkdown 2.11
                                                rio 0.5.16
## [28] ipeg 0.1-8.1
                            pkgconfig 2.0.3
                                                htmltools 0.5.2
## [31] labelled 2.9.0
                            dbplyr 2.1.1
                                                fastman 1.1.0
```

References

 $Github\ repository\ of\ this\ talk:\ https://github.com/corneliushennch/repro_workflow$

26/27

- [1] Aaron Peikert and Andreas Brandmeier. "A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker". In: *Preprint* (2021), pp. 1–47.
- [2] Hadley Wickham and Garrett Grolemund. *R for Data Science: Import, Tidy, Transform, Visualize, and Model Data*. 1st ed. O'Reilly Media, Jan. 2017. ISBN: 1491910399. URL: http://r4ds.had.co.nz/.