Biostatistics 682: Applied Bayesian Inference Lecture 12: Bayesian Linear Regression

Jian Kang

Department of Biostatistics University of Michigan, Ann Arbor

Bayesian linear regression

- Linear regression is the most common statistical model.
- The multiple linear regression model is

$$Y_i \sim N\left(\beta_0 + \sum_{j=1}^p X_{i,j}\beta_j, \sigma^2\right),$$

for i = 1, ..., n. Y_i are independently across the n observations.

ullet Bayesian and classical linear regression are similar if n>>p and the priors are uninformative

Review of least squares

 \bullet The least squares estimate of $\boldsymbol{\beta}=(\beta_0,\beta_1,\ldots,\beta_p)^{\mathrm{T}}$ is

$$\hat{\beta}_{\text{OLS}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - \mu_i)^2,$$

where $\mu_i = \beta_0 + X_{i,1}\beta_1 + \dots, + X_{i,p}\beta_p$.

- \bullet $\hat{\beta}_{OLS}$ is unbiased even if the errors are non-Gaussian.
- If the errors are Gaussian then the likelihood is proportional to

$$\prod_{i=1}^{n} \exp \left\{ -\frac{(Y_i - \mu_i)^2}{2\sigma^2} \right\} = \exp \left\{ -\frac{\sum_{i=1}^{n} (Y_i - \mu_i)^2}{2\sigma^2} \right\}.$$

• Therefore, if the errors are Gaussian $\hat{\beta}_{OLS}$ is also the MLE.

Review of least squares

- Linear regression is often simpler to describe using linear algebra notation.
- Let $\mathbf{Y} = (Y_1, \dots, Y_n)^{\mathrm{T}}$ be the response vector and \mathbf{X} be the $n \times (p+1)$ matrix of covariates.
- ullet Then the mean of Y is Xeta and the least squares solution is

$$\boldsymbol{\beta}_{\mathrm{OLS}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}.$$

If the errors are Gaussian then the sampling distribution is

$$\hat{\pmb{\beta}}_{\rm OLS} \sim {\rm N}\left[\pmb{\beta}, \sigma^2(\mathbf{X}^{\rm T}\mathbf{X})^{-1}\right].$$

• If the variance σ^2 is estimated using the mean squared residual error then the sampling distribution is multivariate t.

. Kang Bios 682 4

Bayesian regression

The likelihood remains

$$Y_i \mid \boldsymbol{\beta}, \sigma^2 \sim N\left(\beta_0 + X_{i,1}\beta_1 + \ldots + X_{i,p}\beta_p, \sigma^2\right)$$

independent for $i = 1, \ldots, n$ observations.

- A Bayesian analysis also requires priors for β and σ .
- We will focus on prior specification since this piece is uniquely Bayeisan.

Priors

- For the purpose of setting priors, it is helpful to standardize both the response and each covariate to have mean zero and variance one.
- Many priors for β have been considered:
 - Improper priors
 - Gaussian priors
 - Double exponential priors
 - Many, many more ...

Improper priors

- The Jeffrey's prior is flat $\pi(\beta) \propto 1$.
- This is improper, but the posterior is proper under the same conditions required by least squares.
- If σ is known then

$$\boldsymbol{\beta} \mid \mathbf{Y} \sim \mathrm{N}\left[\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}, \sigma^2(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\right].$$

• How is this result different from the least squares?

Improper priors

- We rarely know σ^2 in practice.
- \bullet The Jeffreys prior for $({\cal B},\sigma^2)$ is

$$\pi(\boldsymbol{\beta}, \sigma^2) \propto 1/\sigma^2,$$

which is the limit case of an inverse gamma distribution with shape and rate parameters approaching zero.

• Then the posterior of β follows a multivariate t centered on $\hat{\beta}_{OLS}$.

Multivariate normal prior

Another common prior for is Zellner's g-prior

$$\boldsymbol{\beta} \mid \sigma^2 \sim \mathrm{N}\left[0, \frac{\sigma^2}{g} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1}\right].$$

- This prior is proper assuming X is full rank.
- Then

$$\boldsymbol{\beta} \mid \sigma^2, \mathbf{Y}, \mathbf{X} \sim \mathrm{N} \left[\frac{1}{1+g} \hat{\boldsymbol{\beta}}_{\mathrm{OLS}}, \frac{1}{1+g} \sigma^2 (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \right].$$

- This shrinks the least squares estimate towards zero.
- ullet g controls the amount of shrinkage.
- \bullet g=1/n is common, and called the unit information prior.

Univariate Gaussian priors

- ullet If there are many covariates or the covariates are collinear, then \hat{eta}_{OLS} is unstable.
- Independent priors can counteract collinearity

$$\beta_j \sim N(0, \sigma^2/g)$$

independent over j.

• The posterior mode is

$$\arg\min_{\beta} \sum_{i=1}^{n} (Y_i - \mu_i)^2 + g \sum_{j=1}^{p} \beta_j^2.$$

• In classical statistics, this is known as the ridge regression solution and is used to stabilize the least squares solution.

BLASSO

- An increasingly-popular prior is the double exponential or Bayesian LASSO prior
- The prior is $\beta_j \sim \mathrm{DE}(\tau^2)$ which has the probability density function

$$\pi(\beta_j) \propto \exp\left(-\frac{|\beta|}{\tau^2}\right).$$

- The square in the Gaussian prior is replaced with an absolute value
- The shape of the PDF is thus more peaked at zero
- The BLASSO prior favors settings where there are many β_j near zero and a few large β_j .
- That is, p is large but most of the covariates are noise.

BLASSO

The posterior model is

$$\arg\min_{\beta} \sum_{i=1}^{n} (Y_i - \mu_i)^2 + \tau^{-2} \sum_{j=1}^{p} |\beta_j|.$$

- In classical statistics, this is known as the LASSO solution
- It is popular because it adds stability by shrinking estimates towards zero, and also sets some coefficient to zero
- Covariates with coefficients set to zero and can be excluded from the model.
- LASSO performs variable selection and estimation simultaneously.

Spike and Slab Priors

Mixture Prior

$$\beta_j \mid \gamma_j \sim (1 - \gamma_j) N(0, c_0^2) + \gamma_j N(0, c_1^2).$$

 $\gamma_j \sim \text{Bernoulli}(\pi).$

- The constant c_0^2 is small, so that if $\gamma_j=0$, " β_j could be safely estimated by 0".
- The constant c_1^2 is large, so that if $\gamma_j=1$, "a non-zero estimate of β_j should probably be included in the final model".
- It works well for computing the marginal inclusion probability of each covariate and for model averaging
- This model is computationally convenient and extremely flexible

Spike and Slab Priors

Posterior computation for Bayesian linear model

- With flat or Gaussian (with fixed prior variance) priors the posterior is available in closed-form and Monte Carlo sampling is not needed
- With Gaussian priors all full conditionals are Gaussian or inverse gamma, and so Gibbs sampling is simple and fast
- With the BLASSO prior the full conditionals are more complicated
 - There is a trick to make all full conditional conjugate so that Gibbs sampling can be used
 - Metropolis sampling works fine too
- With the Spike Slab prior the full conditionals are available
- JAGS can handle all of them

Summarizing the results

- The standard summary is a table with marginal means and 95% intervals for each β_j .
- This becomes unwieldy for large p
- Picking a subset of covariates is a crucial step in a linear regression analysis
- Common methods include cross-validation and information criteria.

Predictions

- Say we have a new covariate vector $\mathbf{X}_{\mathrm{new}}$ and we would like to predict the corresponding response Y_{new} .
- A plug-in approach would fix $m{\beta}$ and σ at their posterior means $\hat{m{\beta}}$ and $\hat{\sigma}$ to make predictions

$$Y_{\text{new}} \mid \boldsymbol{\beta}, \hat{\sigma}^2 \sim \text{N}(\mathbf{X}_{\text{new}} \hat{\boldsymbol{\beta}}, \hat{\sigma}^2).$$

- However, this plug-in approach suppresses uncertainty about β and σ^2 .
- Therefore these prediction intervals will be slightly too narrow leading to under coverage.

Posterior predictive distribution (PPD)

- We should really account for all uncertainty when making predictions, including our uncertainty about β and σ^2 .
- We really want to PPD

$$\pi(Y_{\text{new}} \mid \mathbf{Y}) = \int \pi(Y_{\text{new}}, \boldsymbol{\beta}, \sigma^2 \mid \mathbf{Y}) d\boldsymbol{\beta} d\sigma^2$$
$$= \int \pi(Y_{\text{new}} \mid \boldsymbol{\beta}, \sigma^2) \pi(\boldsymbol{\beta}, \sigma^2 \mid \mathbf{Y}) d\boldsymbol{\beta} d\sigma^2$$

Marginalizing over the model parameters accounts for their uncertainty

J. Kang Bios 682 19 / 20

Posterior predictive distribution (PPD)

- ullet MCMC naturally gives draws from $Y_{
 m new}$'s PPD
 - For MCMC iteration t we have $\boldsymbol{\beta}^{(t)}$ and $\sigma^{2(t)}$.
 - ullet For MCMC iteration t we sample

$$Y_{\text{new}}^{(t)} \sim N\left(\mathbf{X}\boldsymbol{\beta}^{(t)}, \sigma^{2(t)}\right).$$

- $Y_{\text{new}}^{(1)}, \dots, Y_{\text{new}}^{(S)}$ are samples from the PPD.
- Thus, "Bayesian methods" naturally quantify uncertainty.
- JAGS can handle it.

lang Bios 682