INTEGRATION FORMULAS

DIFFERENTIATION FORMULA	INTEGRATION FORMULA	DIFFERENTIATION FORMULA	INTEGRATION FORMULA
$1. \frac{d}{dx}[x] = 1$	$\int dx = x + C$	8. $\frac{d}{dx}[-\csc x] = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$2. \ \frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r \ (r \neq -1)$	$\int x^{r} dx = \frac{x^{r+1}}{r+1} + C \ (r \neq -1)$	$9. \ \frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$
$3. \frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$	10. $\frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x \ (0 < b, b \ne a)$	1) $\int b^x dx = \frac{b^x}{\ln b} + C \ (0 < b, b \ne 1)$
$4. \frac{d}{dx}[-\cos x] = \sin x$	$\int \sin x dx = -\cos x + C$	11. $\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$5. \frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$
$6. \ \frac{d}{dx}[-\cot x] = \csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$