Big Data Systems

Djellel Difallah
Spring 2023
Lecture 11 – Stream Processing
(Spark Streaming)

Outline

- Introduction
- Motivation
- Use Case (Telecom)
- Data Streaming Systems
- Spark Streaming

Big Velocity

- Data Arrival Speed How fast new data arrive?
 - 10K to 1M of tuples per second (and beyond?)
- Data Arrival Pattern How does the data arrive to the infrastructure?
 - Tuples arrive in streams (continuous, consistent or following some distribution)
- Data Processing What type of queries are executed?
 - Identify complex patterns in the stream
 - (Near-)Real-time data processing
 - Output: alerts, anomalies, trends etc.
- → Data Stream Management System (DSMS)

Application Domains

Real-time and Near Real-time data analytics

- Web
 - Click streams (ad placement)
- Monitoring
 - Anomaly detection, intrusion (networks), fraud (credit card usage)
- Financial services
 - High Frequency Trading (HFT), Market feed processing (News, Social Media)
- Sensor-based environment monitoring
 - Weather conditions, air quality, car traffic
 - Civil engineering, military applications, etc.
- Medical applications
 - Patient monitoring, equipment tracking

DBMS versus DSMS

Persistent relations

- One-time queries
- Random access
- Access plan determined by query processor and physical DB design

- Transient streams (and persistent relations)
- Continuous queries
- Sequential access
- Unpredictable data characteristics and arrival patterns

Continuous Queries

DBMS:

 One time queries: Run once to completion over the current data set

DSMS

- Continuous queries: Issued once and then continuously evaluated over the data.
- Example:
 - Notify me when the temperature drops below X
 - Tell me when prices of stock Y > 300

The (Simplified) Big Picture

Making Things Concrete

Self-Join

Find all outgoing calls longer than 2 hours

```
SELECT 01.call_ID, 01.caller
FROM Outgoing 01, Outgoing 02
WHERE 02.time - 01.time > 2
AND 01.call_ID = 02.call_ID
AND 01.event = "start"
AND 02.event = "end"
```

- We want to have this information continuously
- More importantly, output after 2hours of call time, i.e., before the call is over
- → Database overload (continuous join)

Group-by aggregation

Total connection time for each caller

```
SELECT 01.caller, sum(02.time - 01.time)

FROM Outgoing 01, Outgoing 02

WHERE 01.call_ID = 02.call_ID

AND 01.event = "start"

AND 02.event = "end"

GROUP BY 01.caller
```

- Provide current value continuously
- Trigger the computation automatically upon each new call
- → Database overload (keep in memory stats for all users)

Architectural Differences

DSMS

- Resource (memory, per-tuple computation) limited
- Reasonably complex, near real time, query processing
- Query Operator: One pass
- Query Plan: Adaptive

DBMS

- Resource (memory, disk, per-tuple computation) rich
- Extremely sophisticated query processing, analysis
- Query Operator: Arbitrary
- Query Plan: Fixed

DSMS Challenges

- Must cope with:
 - Stream rates that may be high, variable, bursty
 - Stream data type that may be variable
 - Query load may be high, variable
- →Overload need to use resources very carefully.
- → Changing conditions adaptive strategy.

Impact of Limited Memory

- Continuous streams grow unboundedly
- Queries may require unbounded memory (self join!)
- Solution / Tradeoff:
 - Approximate query evaluation

Approximate Query Evaluation

Why?

- Handling load streams arrive too fast
- Avoid unbounded storage and computation
- Ad hoc queries need approximate
- Follows the principle of "eventual consistency"

How?

- Sliding windows, synopsis, samples, load-shed
- Major Issues?
 - Set-valued queries (how to evaluate precision/recall?)
 - Composition of approximate operators
 - How is it understood/controlled by user?
 - Integrate into query language
 - Query planning and interaction with resource allocation

Window

- Mechanism for extracting a finite relation from an infinite stream
- Various window proposals for restricting operator scope.
 - Windows based on ordering attribute (e.g. time)
 - Windows based on tuple counts
 - Windows based on explicit markers (e.g. punctuations)
 - Variants (e.g., partitioning tuples in a window)

Windows

Terminology

Query Operators

- Selections and Projections on streams straightforward
 - Local per-tuple processing
 - Projection may need to include ordering attribute.
- Group by a bit more complex, but generally easy to implement
 - Window-based group by
 - Sampling-based group-by
- Joins Problematic
 - May need to join tuples that are arbitrarily far apart, or on different streams.
 - The majority of the solutions use Window-based joins

Basic Functionalities

DATA STREAMING SYSTEM

Simple (Wide) Data Model

- Stream: append-only sequence of tuples
- All tuples on a stream have the same schema

Query Model Example

Operators

Order-agnostic

- Filter
- Map
- Union

Order-sensitive

- Aggregate (bursts)
- Join (unaligned streams)
- Sort (latest value), Sample (skew)

Why do we need new operators?

Ops cannot block & cannot accumulate state that grows with input

Filter Example

Output tuples

Filter Example

Map Example

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

Map Example

Union Example

Union Example

Aggregate Example

Aggregate Example

Join Example

The distributed perspective

SPARK STREAMING

Challenges in DSMSs

- Dynamic Scaling
 - Scale by adding new resources
- Fault Tolerance
 - Crashes (node goes out of service)
 - Stragglers (one of the nodes is slower than others)

Challenges in DSMSs (cont.)

- DSMSs usually have an event-driven record-at-a-time processing model
 - Each node has mutable state
 - For each record, update state & send new records

Replication

- Duplicate each node and each input stream
- Fast recovery but 2x hardware cost

Upstream backup

- Replay the stream when failure occurs
- Slow recovery
- Synchronization is an issue in these solutions
- Neither approach handle stragglers

What is Spark Streaming?

- Extends Spark to support stream processing
- Efficient and fault-tolerant stream processing system
- Scales to 100s of nodes and achieves sub-second latencies
- Batch-like API for implementing complex algorithms

Spark Ecosystem

Spark SQL

Spark Streaming

MLlib (machine learning) GraphX (graph)

Apache Spark

Observations

- Lessons from Hadoop (MR / Spark)
 - Data processing models in clusters provide fault tolerance efficiently
 - Divide jobs into deterministic tasks
 - Rerun failed/slow tasks in parallel on other nodes
- Idea: Run streaming computation as a series of small, deterministic batch jobs
 - Same recovery scheme at much smaller timescale
 - Store state in RDD

Key Concepts

- DStream sequence of RDDs representing a stream of data
 - Abstraction: DStream containing RDDs for each time window
 - Data sources such as: Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets
- Transformations modify data from on DStream to another
 - Standard RDD operations map, countByValue, reduce, join, ...
 - Stateful operations window, countByValueAndWindow, ...
- Output Operations send data to external entity
 - saveAsHadoopFiles saves to HDFS
 - foreach do anything with each batch of results

Discretize Stream Processing

Discretize Stream Processing

Window Operations

Spark Streaming Internals

Fault Tolerance

- Executor with a receiver crashes
 - Restart receiver on a new executor
 - Use replicated data blocks
- RDD Checkpointing
 - Stateful stream processing can lead to long RDD lineages
 - Long lineage = bad for fault-tolerance, too much re-computation
 - RDD checkpointing saves RDD data to the fault-tolerant storage to limit lineage and re-computation
- Driver crashes
 - DStream checkpointing: save DAG periodically to storage (HDFS)
 - How about the lost data blocks?
 - Use Write Ahead Logs (WAL) i.e., write the data blocks to hdfs and read from it upon restart.
 - If Kafka is used, replay the log (next lecture!)