BASIC TECHNIQUES FOR COMPUTER SIMULATIONS WPO – 4TH SESSION INTERPOLATION AND EXTRAPOLATION

INTRODUCTION

• You are given the following data set for the values of (an unknown) function f(x) at points x_i :

X	0	20	50	100
f(x)	1	4	6	7

• What is the value of the function f at x = 30?

 \rightarrow INTERPOLATION: estimate the desired value of f(x) that lies inside the range of the known base points $x_1, x_2, ..., x_n$

• What is the value of the function f at x = 150?

 \rightarrow EXTRAPOLATION: estimate the desired value of f(x) that lies outside the range of the known base points $x_1, x_2, ..., x_n$

We can express function f in the form of a polynomial and then use this polynomial to determine the desired values.

POLYNOMIAL INTERPOLATION

Method used to create the unique (n-1)th order polynomial that fits n data points.

$$f(x) = P_{n-1}(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

X	0	20	50	100
f(x)	1	4	6	7

<u>Step 1</u>: Determine the order of the polynomial:

$$f(x) = P_3(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3$$

<u>Step 2</u>: The polynomial passes through each one of the n points of the dataset:

$$a_0 1 + a_1 0^1 + a_2 0^2 + a_3 0^3 = 1$$

$$a_0 1 + a_1 20^1 + a_2 20^2 + a_3 20^3 = 4$$

$$a_0 1 + a_1 50^1 + a_2 50^2 + a_3 50^3 = 6$$

$$a_0 1 + a_1 100^1 + a_2 100^2 + a_3 100^3 = 7$$

System of 4 linear algebraic equations with 4 unknowns: a_0 , a_1 , a_2 , a_3

POLYNOMIAL INTERPOLATION

Step 3: Solve the system for the unknows a:

$$xa=y$$
 (in the form of $Ax=b$)

Solve for a

PYTHON

def main(): Define matrix **x** and vectors **a** and **y**

def polynomial_inter(..): 1) Solve for a

2) Create the polynomial $P_3(x)$ (can be done with numpy.poly1d) using the obtained elements of **a**

LEAST-SQUARES FIT

Finding the best-fitting curve to a given set of points, by minimizing the sum of the square of the offsets of the points from the curve.

Linear

Nonlinear

source: Chapra SC. Applied numerical methods with MATLAB for engineers and scientistic, 2008.

PYTHON: numpy.polyfit to find the polynomial's coefficients numpy.poly1d to create the polynomial

! Order of regression (degree of polynomial) has to be defined, when calling polyfit

DANGERS OF HIGHER ORDER REGRESSION

- Runge's function: $f(x) = \frac{1}{1+25x^2}$
- 11 equally spaced points in the range [-1, 1]: x = -1, -0.8, -0.6, ..., 1
- \rightarrow 10th order polynomial $P_{10}(x) = a_0 + a_1 x^1 + a_2 x^2 + ... + a_{10} x^{10}$

dashed line: f(x)line: $P_{10}(x)$

bad interpolation

source: Chapra SC. Applied numerical methods with MATLAB for engineers and scientistic, 2008.

PIECEWISE INTERPOLATION: CUBIC SPLINES

• Given a set of n data "base" points $(x_i, f(x_i))$, cubic spline S(x) derives a 3^{rd} order polynomial Ci(x) for each interval between points $x_0, x_1, ..., x_n$

$$C_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$$

$$C_{1}(x) , x_{0} \le x \le x_{1}$$

$$C_{i}(x) , x_{i-1} \le x \le x_{1}$$

$$C_{n}(x) , x_{n-1} \le x \le x_{n}$$

• In order to determine S(x), we need to determine a_i , b_i , c_i , d_i for every polynomial $C_i(x)$ (4n unknowns in total)

OTHER PIECEWISE INTERPOLATION METHODS

• <u>Linear</u>: Straight lines (first-order polynomials) connect points $x_1, x_2, ..., x_n$

$$C_i(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i)$$

 <u>Nearest-neighbor</u>: Sets the value of an interpolated point to the value of the nearest existing data point.
 The interpolation looks like a series of plateaus, which can be thought as zero-order polynomials.

: scipy.interpolate.interp1d (see theory .pdf p. 37)

kind = 'linear', 'nearest' or 'cubic' (cubic splines)

! For extrapolation: scipy.interpolate.interp1d(..., fill_value='extrapolate')!

source: Chapra SC. Applied numerical methods with MATLAB for engineers and scientistic, 2008.

Coarse mesh (14 elements) Nomal mesh (112 elements) Fine mesh (448 elements) Very fine mesh (1792 elements)

INTERPOLATION IN SIMULATIONS

Meshing: the computational domain is divided into discrete cells.

<u>Solution</u>: properties are calculated at discrete points, located at the corners or centres of the mesh cells.

<u>Post-processing</u>: Interpolation is used to estimate the properties (pressure, temperature, stress etc.) at points within these cells.