

图神经网络的鲁棒性

教材: 图深度学习, 电子工业出版社 https://baike.baidu.com/item/图深度学习

- 图神经网络鲁棒性简介
- ◎ 图对抗攻击
- ◎ 图对抗防御

⇔ CNN的鲁棒性

⇔ CNN的鲁棒性

⇒ 模型不鲁棒的后果

- 金融系统
 - 欺诈检测
 - 金融违约预测

犯罪者能以极小的成本隐藏自己

⇒ 图对抗攻击和防御

- 图神经网络鲁棒性简介
- 图对抗攻击
- ◎ 图对抗防御

⇒ 图对抗攻击

加边

减边

更改特征

逃逸攻击

- □ GNN模型已经训练好且固定
- □ 进行图扰动
- □ 在被扰动的图上测试模型

投毒攻击

- □ 进行图扰动
- □ 在被扰动的图上训练模型
- □ 在被扰动的图上测试模型

白盒攻击

攻击者可以获得被攻击 的模型的完整信息

白盒攻击

攻击者可以获得被攻击 的模型的完整信息

灰盒攻击

攻击者可以获得被攻击 的模型的训练数据

白盒攻击

攻击者可以获得被攻击 的模型的完整信息

灰盒攻击

攻击者可以获得被攻击 的模型的训练数据

黑盒攻击

攻击者不能可以获得被攻 击的模型的任何信息

- ▶图对抗攻击
 - ▶白盒攻击
 - ▶灰盒攻击
 - ▶黑盒攻击

PGD拓扑攻击

Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective

PGD拓扑攻击

擎 PGD拓扑攻击

⇒ 基于积分梯度的攻击

参 基于积分梯度的攻击

参 基于积分梯度的攻击

- ▶图对抗攻击
 - ▶白盒攻击
 - ▶灰盒攻击
 - ▶黑盒攻击

灰盒攻击

攻击者可以获得被攻击 的模型的训练数据

攻击目标

- □ 攻击节点分类任务
- \Box 对于某个标签为 y_i 的节点 v_i ,攻击者希望GNN能把 它分类为其它标签

攻击的限制

$$\|\boldsymbol{A}' - \boldsymbol{A}\|_0 + \|\boldsymbol{F}' - \boldsymbol{F}\|_0 \leqslant \Delta$$

- □ 度的分布
- □ 特征共现

Adversarial Attacks on Neural Networks for Graph Data

⇒ 攻击的限制

特征共现

机器学习文献

训练

爸爸

梯度下降

家庭

深度学习

牛奶

灰盒攻击

攻击者可以获得被攻击 的模型的训练数据

攻击目标

- □ 攻击节点分类任务
- □ 攻击者希望的目标是降低 GNN在测试集上的整体效 果

攻击的限制
$$\|oldsymbol{A}'-oldsymbol{A}\|_0+\|oldsymbol{F}'-oldsymbol{F}\|_0\leqslant \Delta$$

- □ 度的分布
- □ 特征共现

Adversarial Attacks on Graph Neural Networks via Meta Learning

投毒攻击

- □ 进行图扰动
- □ 在被扰动的图上训练模型
- □ 在被扰动的图上测试模型

$$\min_{\mathbf{A}'} \quad \mathcal{L}_{atk} \ (GNN_{sur}(\mathbf{A}'; \Theta^*)) \quad s.t. \quad \Theta^* = \underset{\Theta}{\operatorname{arg\,min}} \quad \mathcal{L}_{tr} \ (GNN_{sur}(\mathbf{A}'; \Theta))$$

元梯度

$$\nabla_{\mathbf{A}'}^{meta} := \nabla_{\mathbf{A}'} \mathcal{L}_{atk} \left(GNN_{sur} \left(\mathbf{A}'; \Theta^* \right) \right) \quad \text{s.t.} \quad \Theta^* = \arg\min \quad \mathcal{L}_{tr} \left(GNN_{sur} \left(\mathbf{A}'; \Theta \right) \right)$$

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,min}} \quad \mathcal{L}_{\operatorname{tr}} \left(GNN_{\operatorname{sur}} \left(\mathbf{A}'; \Theta \right) \right)$$

元梯度下降

- □ 元梯度下降求解A'
- □ 得到的A'是稠密, 连续的

用元梯度做指示

- 口 加边 $S(i,j) = \nabla_{\mathbf{A}'[i,j]}^{meta}$
- \square 减边 $S(i,j) = -\nabla_{\mathbf{A}'[i,j]}^{meta}$
- □ 贪心算法:选择S(i,j)最大的节 点对进行改变 (加边/减边)

- ▶图对抗攻击
 - ▶白盒攻击
 - ▶灰盒攻击
 - ▶黑盒攻击

黑盒攻击

- □ 攻击者不能可以获得被攻击 的模型的任何信息
- □ 攻击者可以得知模型的预测结果

攻击目标

- □ 攻击节点分类任务
- \square 对于某个标签为 y_i 的节点 v_i , 攻击者希望GNN能把它分类 为其它标签

攻击的限制

$$|(\mathcal{E} - \mathcal{E}') \cup (\mathcal{E}' - \mathcal{E})| \leq \Delta$$

添加的边只能连接在原图中距离少于*d*的节点

Adversarial Attack on Graph Structured Data

马尔可夫决策过程: 当前的决策只基于当前的状态而与之前的决策无关

RL-S2V

状态空间

- □ 所有中间图
- □ 初始状态是 $S_1 = G$

行为空间

- □ 加边或减边
- □ 第t个行为: *a_t*

奖励

- □ 攻击成功: 1
- □ 攻击失败: -1
- □ 中间步骤: 0

攻击成功

目标模型基于被 攻击的图的预测 结果与原图不同

终止条件

攻击者修改的边的数量达到了预 算上限

- 图神经网络鲁棒性简介
- 图对抗攻击
- 图对抗防御

- ▶图对抗防御
 - ▶对抗训练
 - ▶图净化
 - ▶图结构学习
 - ▶图注意力机制

GNN

针对图结构的图对抗训练

针对图结构和节点特征的图对抗训练

$$egin{aligned} \min_{oldsymbol{\Theta}} \max_{oldsymbol{\zeta} \in D} \mathcal{L}_{ ext{train}} & \left(oldsymbol{A}, \mathbf{F}^{(1)} + oldsymbol{\zeta}; oldsymbol{\Theta}
ight), \ D = \left\{ \zeta; \left\| \zeta_{i},
ight\|_{2} \leqslant \Delta
ight\} \end{aligned}$$

- ▶图对抗防御
 - ▶对抗训练
 - ▶图净化
 - ▶图结构学习
 - ▶图注意力机制

参 图净化的主要思想

≫ 图净化:去掉"错误"的边

攻击者倾向于添加连接不相似的节点的边

按照一定的阈值去掉连接不相似节点的边

≫ 图净化: 低秩近似

攻击者会增加邻接矩阵的秩

利用SVM获得邻接矩阵的低秩近似

All You Need Is Low (Rank): Defending Against Adversarial Attacks on Graphs

- ▶图对抗防御
 - ▶对抗训练
 - ▶图净化
 - ▶图结构学习
 - ▶图注意力机制

图结构学习: Pro-GNN

$$\min_{\Theta_{oldsymbol{S}}} \mathcal{L}_{ ext{train}} \left(oldsymbol{S}, oldsymbol{F}; oldsymbol{\Theta}
ight) + \|oldsymbol{A} - oldsymbol{S}\|_F^2 + oldsymbol{eta}_1 \|oldsymbol{S}\|_1 + eta_2 \|oldsymbol{S}\|_* + oldsymbol{eta}_3 \cdot \operatorname{tr} \left(oldsymbol{F}^T oldsymbol{L} oldsymbol{F}
ight)$$

同时学习"干净"图结构以及最优的GNN模型

Graph Structure Learning for Robust Graph Neural Networks

- ▶图对抗防御
 - ▶对抗训练
 - ▶图净化
 - ▶图结构学习
 - ▶图注意力机制

0 3 4 7

对每条边学习注意力机制

- □ 希望对被攻击的边或节点学习较 小的注意力
- □ 减少被攻击的边或节点带来的不 良影响

Robust Graph Neural Networks (RGCN)

利用高斯分布来建模节点表示

$$\boldsymbol{h}_{i}^{(l)} \sim N(\boldsymbol{\mu}_{i}^{(l)}, diag(\boldsymbol{\sigma}_{i}^{(l)}))$$

$$\mu_i^{(l+1)} = \sum_{j \in N(i)} \frac{1}{\sqrt{\widetilde{\boldsymbol{D}}_{ii} \widetilde{\boldsymbol{D}}_{jj}}} (\boldsymbol{h}_j^{(l)} \odot \boldsymbol{\alpha}_j^{(l)}) \boldsymbol{W}_{\boldsymbol{\mu}}^{(l)}$$

$$\alpha_j^{(l)} = \exp(-\gamma \sigma_j^{(l)})$$

被攻击过的节点有较高的方差

Robust Graph Convolutional Networks Against Adversarial Attacks

- 图神经网络鲁棒性简介
- 图对抗攻击
- ◎ 图对抗防御

感谢聆听!

Thanks for Listening

