分块矩阵乘法的几何意义

叶卢庆*

2015年1月30日

在此我们探讨分块矩阵乘法的几何意义. 设 $T_1: \mathbf{R}^n \to \mathbf{R}^m, T_2: \mathbf{R}^m \to \mathbf{R}^l$ 是两个线性变换. 其中 n,m,l 都是正整数. $\alpha=(v_1,\cdots,v_n)$ 是 \mathbf{R}^n 中的一组有序基, $\beta=(w_1,\cdots,w_m)$ 是 \mathbf{R}^m 中的一组有序基, $\gamma=(r_1,\cdots,r_l)$ 是 \mathbf{R}^l 中的一组有序基. 则可得 $[T_1]^\beta_\alpha$ 是一个 $m\times n$ 矩阵, $[T_2]^\beta_\gamma$ 是一个 $l\times m$ 矩阵.

将矩阵 $[T_1]^{\beta}_{\alpha}$ 同时位于第 $q,\cdots,q+i-1$ 行 $(1\leq q\leq m,1\leq q+i-1\leq m)$,第 $k,\cdots,k+j-1$ 列的元素 取出 $(1\leq k\leq n,1\leq k+j-1\leq n)$,按照这些元素在矩阵 $[T_1]^{\beta}_{\alpha}$ 中原本的顺序重新排成一个 $i\times j$ 矩阵,则这个矩阵是 $[T_1]^{\beta}_{\alpha}$ 的子矩阵. 虽然仅凭这个子矩阵,我们无法知道线性映射 T_1 如何将有序基 α 中的 j 个向量 v_k,\cdots,v_{k+j-1} 张成的位于 \mathbf{R}^n 中的平行体 S 映射成 \mathbf{R}^m 中的平行体 S'. 但是我们可以确定 \mathbf{R}^m 中的平行体 S' 在向量 w_q,\cdots,w_{q+i-1} 张成的子空间中的投影.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com