5.6 DMA 方式

· 一、DMA方式的特点

直接地址访问

· 二、DMA接口的功能和组成

· 三、DMA 的工作过程

· 四、DMA接口的类型

一、DMA方式的特点

- 1. DMA 和程序中断两种方式的数据通路
- · 2. DMA 与主存交换数据的三种方式
 - (1) 停止 CPU 访问主存
 - (2) 周期挪用(或周期窃取)
 - (3) DMA 与 CPU 交替访问

5.6 DMA 方式

一、DMA方式的特点

1. DMA 和程序中断两种方式的数据通路

2. DMA 与主存交换数据的三种方式 5.6

(1) 停止 CPU 访问主存

控制简单

CPU 处于不工作状态或保持状态

未充分发挥 CPU 对主存的利用率

2015/4/29

(2) 周期挪用(或周期窃取)

5.6

DMA 访问主存有三种可能

- · CPU 此时不访存
- · CPU 正在访存
- · CPU 与 DMA 同时请求访存 此时 CPU 将总线控制权让给 DMA

2015/4/29

(3) DMA 与 CPU 交替访问

5.6

CPU 工作周期 $\left\{ egin{aligned} & C_1 & \xi \in DMA & \xi \in C_2 \\ & C_2 & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & & \xi \in CPU & \xi \in$

不需要 申请建立和归还 总线的使用权

二、DMA接口的功能和组成

5.6

- 1. DMA 接口功能
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理系统总线、控制数据传送
 - (4) 确定 数据传送的 首地址和长度

修正 传送过程中的数据 地址 和 长度

(5) DMA 传送结束时,给出操作完成信号

2. DMA接口组成

5.6

53

三、DMA的工作过程

5.6

1. DMA 传送过程

预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息

- 通知 DMA 控制逻辑传送方向(入/出)
- ·设备地址 → DMA 的 DAR
- 主存地址 → DMA 的 AR
- · 传送字数 → DMA 的 WC

(2) DMA 传送过程示意

CPU

预处理:

主存起始地址 → DMA 设备地址 → DMA 传送数据个数 → DMA 启动设备

数据传送:

继续执行主程序 同时完成一批数据传送

后处理:

中断服务程序 做 DMA 结束处理

继续执行主程序

(4) 数据传送过程(输出)

5.6

校验送入主存的数是否正确

是否继续用 DMA

测试传送过程是否正确,错则转诊断程序

由中断服务程序完成

58

(1) 具有公共请求线的 DMA 请求

(2) 独立的 DMA 请求

5.6

3. DMA 方式与程序中断方式的比较 5.6

中断方式 DMA 方式

(1) 数据传送 程序 硬件

(2) 响应时间 指令执行结束 存取周期结束

(3) 处理异常情况 能 不能

(4) 中断请求 传送数据 后处理

(5) 优先级 低高

四、DMA接口的类型

2015/4/29

5.6

在物理上连接多个设备 1. 选择型 在逻辑上只允许连接一个设备 系统总线 DMA接口 设备1 字计数器 主存地址寄存器 设备 2 主存 CPU 数据缓冲寄存器 选 择线 控制状态寄存器 设备地址寄存器 设备n 时序电路

哈尔滨工业大学 刘宏伟

61

2. 多路型 在物理上连接多个设备 5.6 在逻辑上允许连接多个设备同时工作

3. 多路型 DMA 接口的工作原理 5.6

