19 - Operatori Bilineari Continui, Derivabilità Doppia e Formula di Taylor

₩ Definizione: Operatore bilineare

Siano X, Y, E tre spazi vettoriali.

Sia $T: X \times Y \rightarrow E$ una funzione.

T si dice **operatore bilineare** quando $T(\cdot, \mathbf{y})$ è lineare per ogni $\mathbf{y} \in Y$, e $T(\mathbf{x}, \cdot)$ è lineare per ogni $\mathbf{x} \in X$.

Se X, Y e E sono dotati di norma, si può parlare anche di continuità degli operatori bilineari.

Proposizione 19.1: Criterio di continuità degli operatori bilineari

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Sia $T: X \times Y \rightarrow E$ un operatore bilineare.

Le seguenti affermazioni sono equivalenti:

- 1. T è continuo;
- 2. T è continuo in $(\mathbf{0}_X, \mathbf{0}_Y)$;
- 3. Esiste k > 0 tale che $||T(\mathbf{x}, \mathbf{y})||_E \le k ||\mathbf{x}||_X ||\mathbf{y}||_Y$ per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$.
- \bigcap Dimostrazione: 1. \Rightarrow 2.

Evidente.

\bigcap Dimostrazione: 2. \Rightarrow 3.

Si supponga T continuo in $(\mathbf{0}_X, \mathbf{0}_Y)$;

si provi la disuguaglianza espressa nel punto 3.

In corrispondenza a $\varepsilon = 1$ esiste allora $\delta > 0$ tale che, per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$ con $\|(\mathbf{x}, \mathbf{y})\|_{X \times Y} < \delta$, si abbia $\|T(\mathbf{x}, \mathbf{y})\|_{E} < 1$.

Si consideri su $X \times Y$ la norma $\|\cdot\|_{\infty}$.

Si fissi quindi $(\mathbf{x}, \mathbf{y}) \in X \times Y$, e si supponga per il momento $\mathbf{x} \neq \mathbf{0}_X$ e $\mathbf{y} \neq \mathbf{0}_Y$ cosicché $\|\mathbf{x}\|_X \neq 0$ e $\|\mathbf{y}\|_Y \neq 0$.

Allora, è ben definita la coppia $\left(\frac{\delta \mathbf{x}}{2\|\mathbf{x}\|_X}, \frac{\delta \mathbf{y}}{2\|\mathbf{y}\|_X}\right)$, che ha norma $\frac{\delta}{2} < \delta$.

Per costruzione di δ , si ha allora $\left\|T\left(\frac{\delta \mathbf{x}}{2\|\mathbf{x}\|_X}, \frac{\delta \mathbf{y}}{2\|\mathbf{y}\|_X}\right)\right\|_E < 1$, ossia $\frac{\delta^2}{4\|\mathbf{x}\|_X\|\mathbf{y}\|_Y}\|T(\mathbf{x})\|_E < 1$ per linearità di T e per assoluta omogeneità di $\|\cdot\|_Y$.

Ne segue che $||T(\mathbf{x})||_Y < \frac{4}{\delta^2} ||\mathbf{x}||_X ||\mathbf{y}||_Y$; questa disuguaglianza vale per ogni $\mathbf{x} \in X \setminus \{\mathbf{0}_X\}$ e per ogni $\mathbf{y} \in Y \setminus \{\mathbf{0}_Y\}$.

D'altra parte, per $\mathbf{x} = \mathbf{0}_X$ oppure per $\mathbf{y} = \mathbf{0}_Y$ si ha $T(\mathbf{x}, \mathbf{y}) = \mathbf{0}_E$ per bilinearità di T, e dunque $||T(\mathbf{x})||_E = 0 = \frac{4}{\delta^2} ||\mathbf{x}||_X ||\mathbf{y}||_Y$.

Ne segue che $\|T(\mathbf{x})\|_Y \leq \frac{4}{\delta^2} \|\mathbf{x}\|_X \|\mathbf{y}\|_Y$ per ogni $(\mathbf{x},\mathbf{y}) \in X \times Y$.

\triangleright Dimostrazione: $3. \Rightarrow 1.$

Si supponga l'esistenza di k > 0 tale che $||T(\mathbf{x}, \mathbf{y})||_E \le k ||\mathbf{x}||_X ||\mathbf{y}||_Y$ per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$;

si provi la continuità di T in tutto $X \times Y$.

Si fissi dunque $(\mathbf{x}_0, \mathbf{y}_0) \in X \times Y$, e si mostri la continuità di T in $(\mathbf{x}_0, \mathbf{y}_0)$.

Si osserva intanto che, per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$, si ha

$$\|T(\mathbf{x},\mathbf{y})-T(\mathbf{x}_0,\mathbf{y}_0)\|_E=\|T(\mathbf{x},\mathbf{y})-T(\mathbf{x}_0,\mathbf{y})+T(\mathbf{x}_0,\mathbf{y})-T(\mathbf{x}_0,\mathbf{y}_0)\|_E$$

$$\mathbf{x} = \|T(\mathbf{x} - \mathbf{x}_0, \mathbf{y}) + T(\mathbf{x}_0, \mathbf{y} - \mathbf{y}_0)\|_E$$
 Per bilinearità di T

$$\leq \|T(\mathbf{x} - \mathbf{x}_0, \mathbf{y})\|_E + \|T(\mathbf{x}_0, \mathbf{y} - \mathbf{y}_0)\|_E$$
 Per sub-additività delle norme

$$\leq k \|\mathbf{x} - \mathbf{x}_0\|_X \|\mathbf{y}\|_Y + k \|\mathbf{x}_0\|_X \|\mathbf{y} - \mathbf{y}_0\|_Y$$
 Per ipotesi

Poiché
$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{x}_0,\mathbf{y}_0)} k \|\mathbf{x}-\mathbf{x}_0\|_X \|\mathbf{y}\|_Y + k \|\mathbf{x}_0\|_X \|\mathbf{y}-\mathbf{y}_0\|_Y = 0$$
, segue per confronto che

$$\lim_{\mathbf{x},\mathbf{y} o (\mathbf{x}_0,\mathbf{y}_0)} \|T(\mathbf{x},\mathbf{y}) - T(\mathbf{x}_0,\mathbf{y}_0)\|_E = 0$$
, cioè T è continua in $(\mathbf{x}_0,\mathbf{y}_0)$.

\mathcal{H} Notazione: Lo spazio $\mathcal{BL}(X \times Y, E)$

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Si denota con $\mathcal{BL}(X \times Y, E)$ lo spazio degli operatori bilineari continui da $X \times Y$ in E.

Evidentemente, $\mathcal{BL}(X \times Y, E)$ è uno spazio vettoriale con le operazioni di somma di funzioni e di prodotto di una funzione per una costante.

Il prossimo obiettivo è quello di rendere $\mathcal{BL}(X \times Y, E)$ uno spazio normato.

Si ha questo fatto:

Proposizione 19.2: Identificazione degli operatori bilineari

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Sia $\mathcal{K}:\mathcal{BL}(X imes Y,E) o \mathcal{L}ig(X,\mathcal{L}(Y,E)ig)$ la mappa definita ponendo

$$\mathcal{K}(T) = T(\circ, \cdot)$$
 per ogni $T \in \mathcal{BL}(X \times Y, E)$
 $(T(\circ, \cdot) : X \to \mathcal{L}(Y, E)$ è definita ponendo $T(\circ, \cdot)(\mathbf{x}) = T(\mathbf{x}, \cdot)$ per ogni $\mathbf{x} \in X$).

 \mathcal{K} è lineare e biunivoca.

Osservazioni preliminari

 \mathcal{K} è ben definita, cioè che $T(\circ,\cdot)\in\mathcal{L}\big(X,\mathcal{L}(Y,Z)\big)$ per ogni $T\in\mathcal{BL}(X imes Y,E)$.

La linearità di $T(\circ, \cdot)$ è evidente; si mostri la continuità.

Fissati $\mathbf{x} \in X$ e $\mathbf{y} \in Y$, si ha

$$\|(T(\circ,\cdot)(\mathbf{x}))(\mathbf{y})\|_E = \|T(\mathbf{x},\cdot)(\mathbf{y})\|_E$$
 Per definizione di $T(\circ,\cdot)$
 $= \|T(\mathbf{x},\mathbf{y})\|_E$ Per definizione di $T(\mathbf{x},\cdot)$
 $\leq k \|\mathbf{x}\|_X \|\mathbf{y}\|_Y$, per qualche $k > 0$ Per la [Proposizione 19.1], essendo T bilineare e continua

Per arbitrarietà di $\mathbf{y} \in Y$, ne segue che $T(\circ, \cdot)(\mathbf{x})$ è continua e $\|T(\circ, \cdot)(\mathbf{x})\|_{\mathcal{L}(Y, E)} \leq k \|\mathbf{x}\|_{X}$; per arbitrarietà di $\mathbf{x} \in X$, ne segue che $T(\circ, \cdot)$ è continua e $\|T(\circ, \cdot)\|_{\mathcal{L}(X, \mathcal{L}(Y, E))} \leq k$.

Dimostrazione

Si provi ora la linearità di X.

Siano dunque $S, T \in \mathcal{BL}(X \times Y, E)$, e siano $\lambda, \mu \in \mathbb{R}$.

Per ogni $\mathbf{x} \in X$, si ha

$$\mathcal{K}(\lambda S + \mu T)(\mathbf{x}) = (\lambda S + \mu T)(\mathbf{x}, \cdot)$$
 Per definizione di \mathcal{K}

$$= \lambda S(\mathbf{x}, \cdot) + \mu T(\mathbf{x}, \cdot)$$
 Per linearità della mappa $\mathcal{BL}(X \times Y, E) \to \mathcal{L}(Y, E) : T \mapsto T(\mathbf{x}, \cdot)$

$$= \lambda \mathcal{K}(S)(\mathbf{x}) + \mu \mathcal{K}(T)(\mathbf{x})$$
 Per definizione di \mathcal{K}

Dunque, si ha $\mathcal{K}(\lambda S + \mu T) = \lambda \mathcal{K}(S) + \mu \mathcal{K}(T)$, da cui segue la linearità di \mathcal{K} .

Si provi ora che *X* è biunivoca.

Жè iniettiva;

infatti, dato $T\in \mathcal{BL}(X imes Y,E)$ tale che $\mathcal{K}(T)=\mathbf{0}_{\mathcal{L}(X,\mathcal{L}(Y,E))}$, si ha

$$T(\circ,\cdot) = \mathbf{0}_{\mathcal{L}(X,\mathcal{L}(Y,E))}$$
 Per definizione di \mathcal{K}

$$\implies T(\circ, \cdot)(\mathbf{x}) = \mathbf{0}_{\mathcal{L}(Y, E)}$$
 per ogni $\mathbf{x} \in X$

$$\Longrightarrow T(\mathbf{x},\cdot) = \mathbf{0}_{\mathcal{L}(Y,E)}$$
 per ogni $\mathbf{x} \in X$ Per definizione di $T(\circ,\cdot)$

$$\implies T(\mathbf{x},\cdot)(\mathbf{y}) = \mathbf{0}_E$$
 per ogni $\mathbf{x} \in X$ e per ogni $\mathbf{y} \in Y$

$$\implies T(\mathbf{x}, \mathbf{y}) = \mathbf{0}_E$$
 per ogni $\mathbf{x} \in X$ e per ogni $\mathbf{y} \in Y$ Per definizione di $T(\mathbf{x}, \cdot)$

$$\implies$$
 $T = \mathbf{0}_{\mathcal{BL}(X \times Y), E}$ per ogni $\mathbf{x} \in X$ e per ogni $\mathbf{y} \in Y$

Жè suriettiva;

infatti, si fissi
$$\Phi \in \mathcal{L}(X,\mathcal{L}(Y,E))$$
;

sia
$$T: X \times Y \to E$$
 la mappa definita ponendo $T(\mathbf{x}, \mathbf{y}) = (\Phi(\mathbf{x}))(\mathbf{y})$ per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$.

T è bilineare, essendo Φ lineare ed essendo $\Phi(\mathbf{x})$ lineare per ogni $\mathbf{x} \in X$.

$$\mathcal{K}(T) = \Phi$$
; infatti, per ogni $\mathbf{x} \in X$, si ha

$$\mathcal{K}(T)(\mathbf{x}) = T(\circ, \cdot)(\mathbf{x})$$
 Per definizione di \mathcal{K}

$$=T(\mathbf{x},\cdot)$$
 Per definizione di $T(\circ,\cdot)$ $=\Phi(\mathbf{x})$ Per definizione di T

\mathcal{H} Definizione: Norma su $\mathcal{BL}(X \times Y, E)$

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati. Sia $\mathcal{K} : \mathcal{BL}(X \times Y, E) \to \mathcal{L}(X, \mathcal{L}(Y, Z))$ la mappa definita come nella [Proposizione 19.2].

Si definisca $\|\cdot\|_{\mathcal{BL}(X\times Y,E)}:\mathcal{BL}(X\times Y,E)\to\mathbb{R}_{\geq 0}$ ponendo $\|T\|_{\mathcal{BL}(X\times Y,E)}=\|\mathcal{K}(T)\|_{\mathcal{L}(X,\mathcal{L}(Y,E))}$ per ogni $T\in\mathcal{BL}(X\times Y,E)$

Osservazioni

- $\|\cdot\|_{\mathcal{BL}(X\times Y,E)}$ è una norma ben definita;
- \mathcal{K} è un'isometria lineare tra $\mathcal{BL}(X \times Y, E)$ e $\mathcal{L}(X, \mathcal{L}(Y, Z))$;

$$\bullet \quad \|T\|_{\mathcal{BL}(X\times Y,E)} = \sup_{\substack{\mathbf{x}\in X\,,\, \|\mathbf{x}\|_X=1\\\mathbf{y}\in Y\,,\, \|\mathbf{y}\|_Y=1}} \|T(\mathbf{x},\mathbf{y})\|_E = \sup_{\substack{\mathbf{x}\in X\,,\, \|\mathbf{x}\|_X\leq 1\\\mathbf{y}\in Y\,,\, \|\mathbf{y}\|_Y\leq 1}} \|T(\mathbf{x},\mathbf{y})\|_E = \sup_{\substack{\mathbf{x}\in X\,\backslash\, \{\mathbf{0}_X\}\\\mathbf{y}\in Y\,\backslash\, \{\mathbf{0}_Y\}}} \frac{\|T(\mathbf{x},\mathbf{y})\|_E}{\|\mathbf{x}\|_X\, \|\mathbf{y}\|_Y} \;,$$

per ogni $T \in \mathcal{BL}(X \times Y, E)$.

Infatti, $\|\cdot\|_{\mathcal{BL}(X\times Y,E)}$ è assolutamente omogenea e sub-additiva per linearità di \mathcal{K} e per assoluta omogeneità e sub-additività di

 $||\cdot||_{\mathcal{L}(X,\mathcal{L}(Y,E))};$

 $\|\cdot\|_{\mathcal{BL}(X\times Y,E)}$ è definita positiva per positiva definitività di $\|\cdot\|_{\mathcal{L}(X,\mathcal{L}(Y,E))}$ e per iniettività di \mathcal{K} .

 \mathcal{K} è allora un'isometria lineare tra $\mathcal{BL}(X \times Y, E)$ e $\mathcal{L}(X, \mathcal{L}(Y, Z))$, essendo lineare, suriettiva ed essendo per definizione $\|T\|_{\mathcal{BL}(X \times Y, E)} = \|\mathcal{K}(T)\|_{\mathcal{L}(X, \mathcal{L}(Y, E))}$ per ogni $T \in \mathcal{BL}(X \times Y, E)$;

per le osservazioni sulle isometrie lineari fatte nel Capitolo 10, tali condizioni sono sufficienti affinché $\mathcal K$ sia un'isometria lineare.

Si fissi $T \in \mathcal{BL}(X \times Y, E)$; si ha

$$||T||_{\mathcal{BL}(X\times Y,E)} = ||\mathcal{K}(T)||_{\mathcal{L}(X,\mathcal{L}(Y,E))}$$
 Per definizione di $||\cdot||_{\mathcal{BL}(X\times Y,E)}$

$$= \sup_{\mathbf{x}\in X, \, ||\mathbf{x}||_X = 1} ||T(\mathbf{x},\cdot)||_{\mathcal{L}(Y,E)}$$
 Per la prima delle definizioni di $||\cdot||_{\mathcal{L}(X,\mathcal{L}(Y,E))}$

$$= \sup_{\mathbf{x}\in X, \, ||\mathbf{x}||_X = 1} ||T(\mathbf{x},\mathbf{y})||_E$$
 Per la prima delle definizioni di $||\cdot||_{\mathcal{L}(Y,E)}$

$$= \sup_{\mathbf{x}\in X, \, ||\mathbf{x}||_X = 1} ||T(\mathbf{x},\mathbf{y})||_E$$
 Per la prima delle definizioni di $||\cdot||_{\mathcal{L}(Y,E)}$

D'altra parte, si ha anche

$$\begin{split} & \|T\|_{\mathcal{BL}(X\times Y,E)} = \|\mathcal{K}(T)\|_{\mathcal{L}(X,\mathcal{L}(Y,E))} & \text{Per definizione di } \|\cdot\|_{\mathcal{BL}(X\times Y,E)} \\ & = \sup_{\mathbf{x}\in X, \; \|\mathbf{x}\|_X \leq 1} \|T(\mathbf{x},\cdot)\|_{\mathcal{L}(Y,E)} & \text{Per la seconda delle definizioni di } \|\cdot\|_{\mathcal{L}(X,\mathcal{L}(Y,E))} \\ & = \sup_{\mathbf{x}\in X, \; \|\mathbf{x}\|_X \leq 1} \|T(\mathbf{x},\mathbf{y})\|_E & \text{Per la seconda delle definizioni di } \|\cdot\|_{\mathcal{L}(Y,E)} \\ & = \sup_{\mathbf{x}\in X, \; \|\mathbf{x}\|_X \leq 1} \|T(\mathbf{x},\mathbf{y})\|_E & \text{Per la seconda delle definizioni di } \|\cdot\|_{\mathcal{L}(Y,E)} \end{split}$$

e infine anche

$$||T||_{\mathcal{BL}(X\times Y,E)} = ||\mathcal{K}(T)||_{\mathcal{L}(X,\mathcal{L}(Y,E))}$$
 Per definizione di $||\cdot||_{\mathcal{BL}(X\times Y,E)}$

$$= \sup_{\mathbf{x} \in X \setminus \{\mathbf{0}_X\}} \frac{\|T(\mathbf{x}, \cdot)\|_{\mathcal{L}(Y, E)}}{\|\mathbf{x}\|_X}$$
Per la terza delle definizioni di $\|\cdot\|_{\mathcal{L}(X, \mathcal{L}(Y, E))}$

$$\sup_{\mathbf{x} \in X \setminus \{\mathbf{0}_X\}} \frac{\|T(\mathbf{x}, \mathbf{y})\|_E}{\|\mathbf{x}\|_X \|\mathbf{y}\|_Y}$$
Per la terza delle definizioni di $\|\cdot\|_{\mathcal{L}(Y, E)}$

$$\sup_{\mathbf{y} \in Y \setminus \{\mathbf{0}_Y\}} \frac{\|T(\mathbf{x}, \mathbf{y})\|_E}{\|\mathbf{x}\|_X \|\mathbf{y}\|_Y}$$

Dunque, $(\mathcal{BL}(X \times Y, E), \|\cdot\|_{\mathcal{BL}(X \times Y, E)})$ è uno spazio normato.

Dalla proposizione precedente segue subito la seguente disuguaglianza:

Proposizione 19.3: Disuguaglianza fondamentale della norma degli operatori bilineari continui

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Sia $(\mathbf{x}, \mathbf{y}) \in X \times Y$.

Sia $T \in \mathcal{BL}(X \times Y, E)$.

Si ha $||T(\mathbf{x}, \mathbf{y})||_Y \leq ||T||_{\mathcal{BL}(X \times Y, E)} \cdot ||\mathbf{x}||_X \cdot ||\mathbf{y}||_Y$.

Dimostrazione

Segue direttamente dal fatto che
$$\|T\|_{\mathcal{BL}(X\times Y,E)} = \sup_{\substack{\mathbf{x}\in X\smallsetminus\{\mathbf{0}_X\}\\\mathbf{y}\in Y\smallsetminus\{\mathbf{0}_Y\}}} \frac{\|T(\mathbf{x},\mathbf{y})\|_E}{\|\mathbf{x}\|_X\|\mathbf{y}\|_Y}$$
, per quanto osservato sulla norma $\|\cdot\|_{\mathcal{BL}(X\times Y,E)}$.

Dunque, se $\mathbf{x} \neq \mathbf{0}_X$ e $\mathbf{y} \neq \mathbf{0}_Y$, si ha

$$\frac{\|T(\mathbf{x},\mathbf{y})\|_Y}{\|\mathbf{x}\|_X\|\mathbf{y}\|_Y} \leq \|T\|_{\mathcal{BL}(X \times Y,E)}$$
, da cui

$$||T(\mathbf{x}, \mathbf{y})||_Y \le ||T||_{\mathcal{BL}(X \times Y, E)} \cdot ||\mathbf{x}||_X \cdot ||\mathbf{y}||_Y;$$

d'altra parte, se $\mathbf{x} = \mathbf{0}_X$ oppure $\mathbf{y} = \mathbf{0}_Y$ si ha

$$||T(\mathbf{x}, \mathbf{y})||_Y = 0 = ||T||_{\mathcal{BL}(X \times Y, E)} \cdot ||\mathbf{x}||_X \cdot ||\mathbf{y}||_Y.$$

Proposizione 19.4: Condizione per la completezza dello spazio degli operatori bilineari continui

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ due spazi normati. Si supponga $(E, \|\cdot\|_E)$ di Banach.

Allora, lo spazio normato $(\mathcal{BL}(X \times Y, E), \|\cdot\|_{\mathcal{BL}(X \times Y, E)})$ è di Banach.

Dimostrazione

Essendo E di Banach per ipotesi, per la [Proposizione 6.8] lo spazio $(\mathcal{L}(X,Y), \|\cdot\|_{\mathcal{L}(X,Y)})$ è anch'esso di Banach;

allora, sempre per la [Proposizione 6.8] anche lo spazio $\left(\mathcal{L}(X,\mathcal{L}(Y,E)),\|\cdot\|_{\mathcal{L}(X,\mathcal{L}(Y,E))}\right)$ è di Banach.

Infine, essendo lo spazio $\mathcal{BL}(X \times Y, E)$ linearmente isometrico a $\mathcal{L}(X, \mathcal{L}(Y, E))$ (tramite la mappa \mathcal{K} definita precedentemente) e preservando le isometrie la completezza, segue allora la completezza di $\mathcal{BL}(X \times Y, E)$.

Derivabilità doppia

₩ Definizione: Derivabilità doppia, Derivata seconda

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati. Sia $A\subseteq X$. Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \rightarrow Y$ una funzione.

Si dice che f è derivabile due volte secondo Gateaux (rispett. Fréchet) in \mathbf{x}_0 quando esiste un intorno aperto $U \subseteq A$ di \mathbf{x}_0 tale che f sia derivabile in U secondo Gateaux (rispett. Fréchet), e f' è anch'essa derivabile in \mathbf{x}_0 secondo Gateaux (rispett. Fréchet).

La derivata $(f')'(\mathbf{x}_0)$ appartiene a $\mathcal{L}(X, \mathcal{L}(X, Y))$; si dice **derivata doppia** di f in \mathbf{x}_0 , e si denota con $f''(\mathbf{x}_0)$, l'operatore bilineare continuo $\mathcal{K}^{-1}((f')'(\mathbf{x}_0))$.

Cioè, si ha $f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v}) = \big((f')'(\mathbf{x}_0)(\mathbf{u})\big)(\mathbf{v})$ per ogni $(\mathbf{u}, \mathbf{v}) \in X \times X$.

$\mbox{\em H}$ Definizione: Funzioni di classe C^2

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia f:A o Y.

f si dice **di classe** C^2 quando f è di classe C^1 , e f' è anch'essa di classe C^1 .

$\ensuremath{\mathsf{Q}}$ Osservazione: Operatori lineari continui sono di classe C^2

Siano $(X,\|\cdot\|_X)$ e $(Y,\|\cdot\|_Y)$ due spazi normati. Sia $T\in\mathcal{L}(X,Y)$.

Allora, T è di classe C^2 , e si ha $T''(\mathbf{x})(\mathbf{u}, \mathbf{v}) = \mathbf{0}_Y$ per ogni $\mathbf{u}, \mathbf{v} \in X$.

Infatti, per ogni $\mathbf{x} \in X$, è già stato osservato che T è di classe C^1 , e si ha

$$T'(\mathbf{x})(\mathbf{u}) = T(\mathbf{u})$$
 per ogni $\mathbf{u} \in U$.

Ne segue che T^\prime è costante, dunque anch'essa di classe C^1 , e si ha

$$T''(\mathbf{x})(\mathbf{u}, \mathbf{v}) = ((T')'(\mathbf{x})(\mathbf{u}))(\mathbf{v}) = \mathbf{0}_{\mathcal{L}(X,Y)}(\mathbf{v}) = \mathbf{0}_{Y}.$$

Proposizione 19.5: Derivazione della valutazione della derivata

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \to Y$ una funzione G-derivabile due volte in \mathbf{x}_0 ;

sia dunque $U \subseteq A$ un intorno aperto di \mathbf{x}_0 tale che f sia derivabile in U, che esiste essendo f derivabile due volte in \mathbf{x}_0 .

Sia $\mathbf{v} \in X$.

Sia $f'(\cdot)(\mathbf{v}): U \to Y$ la mappa definita ponendo $\mathbf{x} \mapsto f'(\mathbf{x})(\mathbf{v})$ per ogni $\mathbf{x} \in U$.

 $f'(\cdot)(\mathbf{v})$ è G-derivabile in \mathbf{x}_0 , e $\big(f'(\cdot)(\mathbf{v})\big)'(\mathbf{x}_0)(\mathbf{u}) = f''(\mathbf{x}_0)(\mathbf{u},\mathbf{v})$ per ogni $\mathbf{u} \in X$.

Dimostrazione

Si fissi $\mathbf{v} \in X$.

Per acquisire la tesi, basta mostrare che

$$\lim_{\lambda o 0} rac{f'(\mathbf{x}_0 + \lambda \mathbf{u})(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v})}{\lambda} = f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v}).$$

Si ha

$$\lim_{\lambda \to 0} \left\| \frac{f'(\mathbf{x}_0 + \lambda \mathbf{u})(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v})}{\lambda} - f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v}) \right\|_{Y} = \lim_{\lambda \to 0} \left\| \frac{f'(\mathbf{x}_0 + \lambda \mathbf{u})(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v})}{\lambda} - \left((f')'(\mathbf{x}_0)(\mathbf{u}) \right)(\mathbf{v}) \right\|_{Y}$$
Per definizione di $f'(\mathbf{x}_0 + \lambda \mathbf{u})(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v}) - f'(\mathbf{v}_0)(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v}) - f'(\mathbf{v}_0)(\mathbf{v}) - f'(\mathbf{$

$$\lim_{\lambda o 0} \left\| \left(rac{f'(\mathbf{x}_0 + \lambda \mathbf{u}) - f'(\mathbf{x}_0)}{\lambda}
ight) (\mathbf{v}) - ig((f')'(\mathbf{x}_0) (\mathbf{u}) ig) (\mathbf{v})
ight\|_Y$$

$$=\lim_{\lambda o 0}\left\|igg(rac{f'(\mathbf{x}_0+\lambda\mathbf{u})-f'(\mathbf{x}_0)}{\lambda}-(f')'(\mathbf{x}_0)(\mathbf{u})igg)(\mathbf{v})
ight\|_Y$$

$$\leq \lim_{\lambda \to 0} \left\| \frac{f'(\mathbf{x}_0 + \lambda \mathbf{u}) - f'(\mathbf{x}_0)}{\lambda} - (f')'(\mathbf{x}_0)(\mathbf{u}) \right\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{v}\|_X$$

$$= 0$$

norme di operatori li Essendo
$$\lim_{\lambda \to 0} \frac{f'(\mathbf{x}_0 + \lambda \mathbf{u}) - f'(\mathbf{x}_0 + \lambda \mathbf{u})}{\lambda}$$

Per confronto dei lin disuguaglianza fonda

$$\lambda \rightarrow 0$$
 per doppia derivabili

Dunque,
$$\lim_{\lambda \to 0} \frac{f'(\mathbf{x}_0 + \lambda \mathbf{u})(\mathbf{v}) - f'(\mathbf{x}_0)(\mathbf{v})}{\lambda} = f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v})$$
, come si voleva.

Teorema 19.6: Teorema di Schwartz, di simmetria della derivata seconda

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia f:A o Y una funzione F-derivabile due volte in \mathbf{x}_0 .

Si ha $f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v}) = f''(\mathbf{x}_0)(\mathbf{v}, \mathbf{u})$ per ogni $(\mathbf{u}, \mathbf{v}) \in X \times X$.

Formule di Taylor

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto e convesso.

Sia $f: A \to Y$ una funzione di classe C^2 .

Siano $\mathbf{x}, \mathbf{z} \in A$.

Si ha $f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x}) \in \frac{1}{2} \overline{\operatorname{conv}} \left(\left\{ f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x}) \mid \lambda \in \left] 0; 1 \right[\right\} \right)$

Osservazioni preliminari

Sia $\varphi \in Y^*$.

Sia $\gamma:[0;1] \to \mathbb{R}$ la funzione definita ponendo $\gamma(\lambda) = \varphi\big(f\big(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x})\big)\big)$ per ogni $\lambda \in [0;1]$.

 γ è di classe C^2 .

Infatti:

- La mappa $s:[0;1] \to A$ definita ponendo $\lambda \mapsto \mathbf{x} + \lambda(\mathbf{z} \mathbf{x})$ è di classe C^2 essendo somma di una funzione costante $(\lambda \mapsto \mathbf{x})$ e una lineare continua $(\lambda \mapsto \lambda(\mathbf{z} \mathbf{x}))$;
- f è di classe C^2 per ipotesi;
- φ è di classe C^2 essendo lineare continua.

 γ è allora di classe C^2 essendo pari a $\varphi \circ f \circ \mathcal{S}$, composizione di funzioni di classe C^2 .

Applicando due volte la derivazione delle funzioni composte si ricava che, per ogni $\lambda \in [0;1]$, vale

$$\dot{\gamma}(\lambda) = \varphi ig(f' ig(\mathbf{x} + \lambda (\mathbf{z} - \mathbf{x}) ig) (\mathbf{z} - \mathbf{x}) ig).$$

$$\ddot{\gamma}(\lambda) = \varphi(f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x})).$$

Si proceda per assurdo, supponendo che

$$f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})
otin rac{1}{2} \overline{\operatorname{conv}} \left(\left\{ f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x}) \mid \lambda \in \left] 0; 1 \right[
ight\}
ight).$$

Per il Teorema di Separazione ([Teorema 7.10]) applicato all'insieme $\frac{1}{2}\overline{\operatorname{conv}}\left(\left\{f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))(\mathbf{u}-\mathbf{x},\mathbf{z}-\mathbf{x})\mid\lambda\in]0;1[\right\}\right)$, chiuso e convesso, e all'insieme $\left\{f(\mathbf{z})-f(\mathbf{x})-f'(\mathbf{x})(\mathbf{z}-\mathbf{x})\right\}$ compatto, convesso e disgiunto dal primo insieme per ipotesi di assurdo, esiste allora $\varphi\in Y^*$ tale che

$$rac{1}{2} \sup_{\mathbf{y} \in \overline{\operatorname{conv}}(C)} arphi(\mathbf{y}) < arphiig(f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})ig).$$

In particolare, essendo $C \subseteq \overline{\operatorname{conv}}(C)$, ne segue che $\frac{1}{2}\varphi \left(f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x})\right) < \varphi \left(f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})\right)$ per ogni $\lambda \in]0;1[$.

Si definisca ora la funzione $\gamma:[0;1] \to \mathbb{R}$ ponendo $\gamma(\lambda) = \varphi \big(f \big(\mathbf{x} + \lambda (\mathbf{z} - \mathbf{x}) \big) \big)$ per ogni $\lambda \in [0;1]$.

Per le osservazioni preliminari, γ è di classe C^2 e, per ogni $\lambda \in [0;1]$, si ha

$$\dot{\gamma}(\lambda) = \varphi \big(f'(\mathbf{x} + \lambda(\mathbf{u} - \mathbf{x}))(\mathbf{u} - \mathbf{x}) \big).$$

$$\ddot{\gamma}(\lambda) = \varphi \big(f''(\mathbf{x} + \lambda(\mathbf{u} - \mathbf{x}))(\mathbf{u} - \mathbf{x}, \mathbf{u} - \mathbf{x}) \big).$$

Allora, su γ è applicabile la formula di Taylor per funzioni reali con resto nella forma di Lagrange, secondo cui esiste $\tilde{\lambda} \in]0;1[$ tale per cui

$$\gamma(1) = \gamma(0) + \dot{\gamma}(0) + \frac{1}{2}\ddot{\gamma}(\tilde{\lambda});$$

si ha cioè

$$\varphi(f(\mathbf{z})) = \varphi(f(\mathbf{x})) - \varphi(f'(\mathbf{x})(\mathbf{u} - \mathbf{x})) - \frac{1}{2}\varphi(f''(\mathbf{x} + \tilde{\lambda}(\mathbf{u} - \mathbf{x}))(\mathbf{u} - \mathbf{x}, \mathbf{u} - \mathbf{x})),$$
 da cui segue

 $\varphi(f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})) = \frac{1}{2}\varphi(f''(\mathbf{x} + \tilde{\lambda}(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x}))$, in contraddizione con la disuguaglianza ottenuta inizialmente per costruzione di φ .

Corollario 19.8: Maggiorazione dell'errore della formula di Taylor

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto e convesso.

Sia $f: A \to Y$ una funzione di classe C^2 .

Siano $\mathbf{x}, \mathbf{z} \in A$.

Si ha
$$\|f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})\|_Y \leq \frac{1}{2} \sup_{\lambda \in [0;1[} \|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{BL}(X \times X,Y)} \|\mathbf{z} - \mathbf{x}\|_X^2.$$

Dimostrazione

Per ogni $\lambda \in]0;1[$, si ha

$$\|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x})\|_Y \le \|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{BL}(X \times X, Y)} \|\mathbf{z} - \mathbf{x}\|_X^2$$
 Per la disuguaglianza fondamentale delle norme di operatori bilineari continui

$$0 \leq \sup_{\lambda \in [0;1]} \|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{BL}(X imes X, Y)} \, \|\mathbf{z} - \mathbf{x}\|_X^2 \, .$$

Ne viene quindi che

$$\left\{f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))(\mathbf{z}-\mathbf{x},\mathbf{z}-\mathbf{x})\mid \lambda\in \left]0;1
ight[
ight\}\subseteq \overline{B}\Big(\left.\mathbf{0}
ight., \sup_{\lambda\in\left]0;1
ight[}\|f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))\|_{\mathcal{BL}(X imes X,Y)}\,\|\mathbf{z}-\mathbf{x}\|_{X}^{2}\,\Big);$$

essendo il secondo insieme chiuso e convesso, ne viene allora che

 $\overline{\operatorname{conv}}\left(\left\{f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))(\mathbf{z}-\mathbf{x},\mathbf{z}-\mathbf{x})\mid\lambda\in\left]0;1\right[\right\}\right)\subseteq\overline{B}\bigg(\mathbf{0}\,,\,\sup_{\lambda\in\left]0;1\right[}\|f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))\|_{\mathcal{BL}(X\times X,Y)}\|\mathbf{z}-\mathbf{x}\|_{X}^{2}\bigg),\operatorname{per}\left(\left\{f''(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))(\mathbf{z}-\mathbf{x},\mathbf{z}-\mathbf{x})\mid\lambda\in\left]0;1\right[\right\}\right)$

definizione di chiusura convessa.

Si ha allora

$$f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x}) \in rac{1}{2} \overline{\operatorname{conv}} \left(\left\{ f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}, \mathbf{z} - \mathbf{x}) \mid \lambda \in \left] 0; 1 \right[
ight\}
ight)$$

Per la formula di Taylor nella forma di Lagrange ([Proposizione 19.7])

$$0 \leq rac{1}{2}\overline{B}\Big(\, {f 0} \,, \, \sup_{\lambda \, \in \,]0;1[} \|f''({f x} + \lambda({f z} - {f x}))\|_{{\mathcal B}{\mathcal L}(X imes X,Y)} \, \|{f z} - {f x}\|_X^2 \, \Big)$$

Per quanto osservato finora

 $= \overline{B}\Big(\, oldsymbol{0} \,,\, frac{1}{2} \sup_{\lambda \,\in\,]0;1[} \|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{BL}(X imes X, Y)} \, \|\mathbf{z} - \mathbf{x}\|_X^2\, \Big)$

da cui segue che

$$\|f(\mathbf{z}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{z} - \mathbf{x})\|_Y \leq rac{1}{2} \sup_{\lambda \in \]0;1[} \|f''(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{BL}(X imes X, Y)} \, \|\mathbf{z} - \mathbf{x}\|_X^2.$$

Proposizione 19.9: Formula di Taylor nella forma di Peano

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto e convesso.

Sia $f: A \to Y$ una funzione di classe C^2 .

Sia $\mathbf{x}_0 \in A$.

$$\text{Si ha} \lim_{\mathbf{u} \to \mathbf{0}} \frac{f(\mathbf{x}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u}) - f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{u})}{\|\mathbf{u}\|_X^2} = \mathbf{0}_Y.$$

Q Osservazioni preliminari

Si definisca la funzione $g: A \to Y$ ponendo $g(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) - \frac{1}{2}f''(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0, \mathbf{x} - \mathbf{x}_0)$ per ogni $\mathbf{x} \in A$.

g è di classe C^2 in quanto tutti gli addendi lo sono, e fissato $\mathbf{x} \in A$ si ha

$$g'(\mathbf{x})(\mathbf{u}) = f'(\mathbf{x})(\mathbf{u}) - f'(\mathbf{x}_0)(\mathbf{u}) - f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{x} - \mathbf{x}_0)$$
, per ogni $\mathbf{u} \in X$;

$$g''(\mathbf{x})(\mathbf{u}, \mathbf{v}) = f''(\mathbf{x})(\mathbf{u}, \mathbf{v}) - f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v})$$
, per ogni $\mathbf{u}, \mathbf{v} \in X$.

Dimostrazione

Si definisca la funzione $g: A \to Y$ ponendo $g(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) - \frac{1}{2}f''(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0, \mathbf{x} - \mathbf{x}_0)$ per ogni $\mathbf{x} \in A$.

g è di classe C^2 in quanto tutti gli addendi lo sono; fissati $\mathbf{x} \in A$ e $\mathbf{u} \in X$, si ha

$$g'(\mathbf{x})(\mathbf{u}) = f'(\mathbf{x})(\mathbf{u}) - \mathbf{0}_Y - f'(\mathbf{x}_0)(\mathbf{u}) - rac{1}{2}ig(f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{x} - \mathbf{x}_0) + f''(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0, \mathbf{u})ig)$$

Per derivazione di una combinazione lineare di funzioni, e usando la [Proposizione 17.4] per derivare

$$f''(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0,\mathbf{x}-\mathbf{x}_0)$$

$$f''(\mathbf{x}_0)(\mathbf{u},\mathbf{x}-\mathbf{x}_0)=f''(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0,$$

per il teorema di Schwartz ([Teorema 19.6])

 $=f'(\mathbf{x})(\mathbf{u})-f'(\mathbf{x}_0)(\mathbf{u})-f''(\mathbf{x}_0)(\mathbf{u},\mathbf{x}-\mathbf{x}_0)$

fissati quindi $\mathbf{x} \in A$ e $\mathbf{u}, \mathbf{v} \in X$, si ha allora

 $g''(\mathbf{x})(\mathbf{u}, \mathbf{v}) = f''(\mathbf{x})(\mathbf{u}, \mathbf{v}) - f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{v})$, per derivazione di una combinazione lineare di funzioni.

Si fissi ora $\varepsilon > 0$;

si provi che esiste $\delta > 0$ tale che, per ogni $\mathbf{u} \in B(\mathbf{x}_0, \delta)$, si ha

$$\|f(\mathbf{x})-f(\mathbf{x}_0)-f'(\mathbf{x}_0)(\mathbf{u})-f''(\mathbf{x}_0)(\mathbf{u},\mathbf{u})\|_Y$$

Così facendo, la tesi sarebbe allora acquisita.

Per continuità di f'' essendo f di classe C^2 per ipotesi ed essendo $\mathbf{x}_0 \in A$ aperto, esiste $\delta > 0$ tale che $B(\mathbf{x}_0, \delta) \subseteq A$ e

 $||f^{-}(\mathbf{x}) - f^{-}(\mathbf{x}_0)||_{\mathcal{BL}(X \times X, Y)} < \varepsilon \text{ per ogni } \mathbf{x} \in \mathcal{B}(\mathbf{x}_0, o).$

Per legge di g'', si ha allora $\|g''(\mathbf{x})\|_{\mathcal{BL}(X\times X,Y)} < \varepsilon$ per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta)$; in particolare, si ha dunque $\|g''(\mathbf{x}_0 + \lambda \mathbf{u})\|_{\mathcal{BL}(X\times X,Y)} < \varepsilon$ per ogni $\mathbf{u} \in B(\mathbf{0}, \delta)$ e per ogni $\lambda \in]0;1[$;

Per ogni $\mathbf{u} \in B(\mathbf{x}_0, \delta)$, si ha allora $\sup_{\lambda \in [0;1[} \|f''(\mathbf{x} + \lambda \mathbf{u})\|_{\mathcal{BL}(X \times X, Y)} \le \varepsilon$, e dal [Corollario 19.8] viene quindi che

$$\|g(\mathbf{x}_0+\mathbf{u})-g(\mathbf{x}_0)-g'(\mathbf{x}_0)(\mathbf{u})\|_Y \leq rac{1}{2}\sup_{\lambda \ \in \]0;1[}\|f''(\mathbf{x}+\lambda\mathbf{u})\|_{\mathcal{BL}(X imes X,Y)}\,\|\mathbf{u}\|_X^2 \leq rac{1}{2}arepsilon\|\mathbf{u}\|_X^2.$$

Infine, si osserva che vale

$$g(\mathbf{x}_0 + \mathbf{u}) - g(\mathbf{x}_0) - g'(\mathbf{x}_0)(\mathbf{u}) = f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u}) - \frac{1}{2}f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{u}) \text{ per ogni } \mathbf{u} \in X.$$

Dunque, per ogni $\mathbf{u} \in B(\mathbf{x}_0, \delta)$ si ha

$$||f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u}) - \frac{1}{2}f''(\mathbf{x}_0)(\mathbf{u}, \mathbf{u})||_Y = ||g(\mathbf{x}_0 + \mathbf{u}) - g(\mathbf{x}_0) - g'(\mathbf{x}_0)(\mathbf{u})||_Y \le \frac{1}{2}\varepsilon ||\mathbf{u}||_X^2$$
, come volevasi ottenere.