96/34888 (November 7, 1996) and (2) demonstrate diligence starting prior to these effective dates and continuing to the inventors' constructive reduction to practice of the invention.

Applicants now enclose their Rule 131 declaration for the Examiner's full consideration. Attached to the inventors' declaration are Exhibits 1 and 2. Exhibit 1 is a conception record for applicants' invention. Exhibit 2 is a supporting declaration of Dr. Krul demonstrating the inventors' diligence.

As noted in the inventors' Rule 131 declaration, they conceived the invention prior to November 7, 1996, *i.e.*, prior to the effective dates of both WO 96/39168 (December 12, 1996) and WO 96/34888 (November 7, 1996). The actual dates have been redacted from the submitted conception record. The submitted conception record shows that the inventors had a conception of the complete and operative invention of using a peptide as an immunogen, such as the C-teminal 26 amino acids of CETP conjugated to a carrier protein such as thyroglobulin or Keyhole Limpet hemocyanin, for generating an autoimmune response that neutralizes endogenous CETP. Booster injections would be given periodically after the initial immunization to generate a high titer antibody response against the peptide, which antibodies would also recognize intact endogenous plasma CETP.

As noted in the inventors' Rule 131 declaration, they also were diligent in seeking to reduce their invention to practice from a date starting prior to November 7, 1996, *i.e.*, prior to the effective dates of both WO 96/39168 (December 12, 1996) and WO 96/34888 (November 7, 1996) and proceeding continuously until the constructive reduction to practice of the application by their filing the original application on January 21, 1997. The pending application is a Continued Prosecution Application of a continuation of this original application.

The inventors' diligence is established by Exhibit 2, a declaration of Dr. Elanie Krul, which declaration is attached to the inventors' declaration.

Dr. Krul, who is not an inventor of the invention defined by the pending claims, testifies, that both she and individuals working under her direction and control, worked every day, save for weekends and Searle holidays, in an effort to reduce the invention to practice on behalf of the inventors. The work continued uninterrupted from a date starting prior to the effective dates of both WO 96/39168 (December 12, 1996) and WO 96/34888 (November 7, 1996) and proceeding through a date subsequent to the January 21, 1997 constructive reduction to practice. Dr. Krul's declaration has attached as Exhibit A the relevant pages of notebook records memorializing the work that was done during the recited time frame. Examiner Davis was shown Exhibit A during the interview. Applicants would also like to repeat the offer made at the interview to provide whatever assistance she requires to understand the contents of Exhibit A.

Applicants submit that Exhibits 1 and 2, when considered with their Rule 131 declaration, establishes prior conception and diligence to the constructive reduction to practice of their invention. As a result, neither WO 96/39168, nor WO 96/34888 can properly be cited against the pending claims.

During the interview, Examiner Davis also alluded to her desire to have explained on the record the patentable distinction between the claimed invention and the subject matter of several documents previously cited in submitted information disclosure statements, *viz*, [A19] Swenson et al. J. Biol. Chem., 264:14318-14326, 1989; [A21] Whitlock et al.J. Clin. Invest., 84:129-137, 1989; [A22] Evans et al.l J. Lipid Res 35:1634-1645, 1994; and [A23] Zuckerman et al.Lipids, 30:307-311, 1995.

As explained to Examiner Davis at the interview, each of these documents was identified and distinguished within the body of the pending application. Each of these articles is directed to passive xenogenic immunization and thus differs radically from the active autogenic immunization of the pending claims.

The cited articles simply chronicle the temporary reductions in CETP that might be accomplished using passive immunization with xenogenic antibodies (a "process in which antibodies [produced] from an animal of one species are administered to an animal of another species, [see application page 13 ln 31-33]). The following examples of passive xenogenic immunizations from these documents are thus specifically discussed/distinguished in the subject application:

3

- Monoclonal antibody TP2 was produced by hyridoma technology (using xenogenic human CETP). "TP2 is directed against an epitope within the last 26 amino acids of CETP (SEQ ID NO:29) . . .[and] has been shown to block CETP-mediated lipid transfer . ." .(page 6, ln 7-15).

 [A19] Swenson et al. J. Biol. Chem., 264:14318-14326, 1989.
- "[R]abbits were intravenously injected with TP1 [xenogeneic mouse monoclonal antibodies], resulting in an initial 70 percent inhibition of CETP-mediated CE transfer activity.

 (Page 6, ln 16-21). [A21] Whitlock et al.J. Clin. Invest., 84:129-137, 1989
- "[A] single sub-cutaneous injection of TP2 monoclonal antibodies in another illustration of passive administration of xenogeneic antibodies [into hamster] . . . raised HDL cholesterol 24 percent. [page 6, ln 33 through page 7, ln 6] [A22] . Evans et al.l J. Lipid Res 35:1634-1645, 1994; [A23] Zuckerman et al.Lipids, 30:307-311, 1995.

As discussed during the interview, notable limitations of passive xenogenic immunization disclosed in the subject application include the fact that:

- "Passive immunization with the use of xenogeneic antibodies can only be utilized for a short-term period of time because host animals develop antibodies to the xenogeneic immunoglobulin." [pg 8, ln 18-21] and
 - The need for, and "problems associated with [frequently] repeated administration. [page

10, ln 16-21]

Passive xenogenic immunizations can be readily distinguished from the patentably distinct active autogenic immunization defined by the pending application and claims as set forth in the Table below:

	SOURCE OF ANTIBODIES	СЕТР	Injectant	FREQUENCY OF INJECTION (TO MAINTAIN ELEVATED HDL- CHOLESTEROL)	SIDE EFFECTS	EXAMPLES
PASSIVE XENOGENIC IMMUNIZATIONS	Produced by donor animal	Xenogenic to host	Antibodies against CETP	Every few days	Anaphylaxis, elicits antibody response to injected antibodies	A19 Swenson et al. A21 Whitlock et al. A22. Evans et al. A23 Zuckerman et al.
ACTIVE AUTOGENIC IMMUNIZATION	Endogenousl y produced by treated subject	Autogenic to host	СЕТР	Every 9-18 months	No anti- antibody response (antibodies not injected)	Present invention

As examiner Davis herself observed at the interview, the success of autogenic immunization in view of a prior disclosure of passive xenogenic immunization would not have been expected because of mechanisms normally leading to self tolerance (e.g. central T cell tolerance, peripheral T

cell tolerance, T cell anergy, etc.) (Cellular and Molecular Immunology, 4th ed. Eds. Abbas, Lichtman, and Pober, Saunders Company, 2000). Moreover, in view of, for example, the work of L. Sherman and others, the action of CTLA-4 would be expected to prevent antibody production against "self" (autogenic) proteins (J Immunol. 2001 Mar 15; 166(6):3908-14).

On the basis of the above, applicants respectfully request consideration of the subject application.

Please charge our Deposit Account No. 19-0733 for any fee.

Respectfully submitted,

Dated: April 18, 2002

Joseph M. Skerpor Registration No. 29,864

Banner & Witcoff, Ltd. 1001 G Street, N.W., Eleventh Floor Washington, D.C. 20001-4597 (202) 508-9100 JMS/

COMPANY CONFIDENTIAL

DISCLOSURE OF INVENTION MONSANTO CORPORATE RESEARCH

DISCLOSURE NO.

This disclosure has been read and is understood by me:

ROUTE (as appropriate):

SIGNATURE

DATE

Dr. Kevin C. Glenn

Associate Fellow

26:160

Dr. Una S. Ryan

Research Director

Mas . Lyan

Dr. Philip Needleman

Corp. Vice President

And heeleware

Paul Passley

Patent Counsel

Paul 1 Parly

Dennis Bennett

Attorney

Almin & Bener

1. SUGGESTED TITLE:

Improvement of Plasma HDL and LDL Cholesterol Levels By Generation of Autoimmune Neutralization of Plasma Cholesteryl Ester Transfer Protein (CETP)

2. (a) Give a short statement of invention.

Peptide or peptido-mimetic immunogens are used to generate a neutralizing autoimmune reaction to endogenous plasma CETP that significantly elevates plasma HDL cholesterol and lowers LDL cholesterol sufficient to markedly reduce an individual's risk of coronary artery disease.

(b) Describe the invention in a broad manner and give at least one complete example. (Use additional sheets if necessary.)*

AUL PASSLEY

ECHIVED

Mortality statistics for the past several decades demonstrate an "epidemic" rise in the incidence of coronary artery disease (CAD) in Western industrialized countries, with a sizable number directly linked to disturbances in blood lipoprotein levels. Numerous

*Attach, sign and date all additional sheets.

drugs are available for treating elevated plasma low density lipoprotein cholesterol (LDLc) levels. However, several recent clinical studies have established an inverse relationship between plasma high density lipoprotein cholesterol (HDLc) and the incidence of (CAD), suggesting that increased HDLc may protect or even reverse coronary disease related to high LDLc.

It has recently been shown that the presence and level of cholesteryl ester transfer protein (CETP) in the plasma correlates with elevated LDLc and lowered HDLc. CETP's normal function is to transfer cholesteryl ester from HDL to LDL. Individuals genetically deficient in CETP have remarkably high HDLc and low LDLc, and appear to live normal healthy lives while enjoying remarkable longevity into their 80's and 90's. CETP is a 74,000 dalton acidic glycoprotein. Deletion of the C-terminus of CETP renders it inactive for promoting lipid transfer between HDL and LDL. Site-directed mutagenesis and a monoclonal antibody that blocks CETP action have shown that the C-terminal 26 amino acids are essential for binding of CETP to LDL and HDL for lipid transfer. An effective inhibitor of CETP could represent a breakthrough product that could supplant current therapies focused on improving an individual's plasma cholesterol profile.

The current invention involves the use of a peptide or peptido-mimetic as an immunogen for generating an autoimmune response that neutralizes endogenous CETP. Central to the invention is the concept that auto-immunologic inhibition of CETP will result in marked elevation of HDLc and reduced LDLc, similar to that seen in individuals that are genetically deficient in CETP. The peptide or peptido-mimetic immunogens could represent all or part of the CETP protein molecule, including but not restricted to the C-terminal 26 amino acid region of CETP shown to account for CETP-facilitated lipid transfer activity.

An example would be the use of a chemically synthesized peptide of 26 amino acids in length with the sequence:

RDGFLLLQMDFGFPEHLLVDFLQSLS

representing the C-terminal 26 amino acids of human CETP. This peptide would be conjugated to a carrier protein, such as thyroglobulin or Keyhole Limpet hemocyanin (KLH), and injected subcutaneously with an adjuvant. Booster injections would be given 4 to 6 weeks after the initial immunization and every 3 to 4 weeks subsequently, in order to generate a high titer response against the peptide that will also recognize intact endogenous plasma CETP. Plasma HDLc and LDLc is measured before and after immunizations to monitor efficacy of the method towards improving an individual's lipoprotein levels such that they have a reduced risk of CAD.

(c) List variables and alternatives which can be used.

The 26 amino acid C-terminal peptide of CETP is so hydrophobic that it may be able to serve as a suitable immunogen without the need for conjugation to a carrier protein. Other regions of CETP, or the full length protein may also be suitable immunogens for generating an autoimmune neutralizing antiserum against CETP activity in the plasma. It would be valuable to use peptides smaller than the full-length CETP or even regions of CETP such as its 26 amino acid C-terminal region to generate a neutralizing immunological response to endogenous CETP. In fact, a peptide may not be necessary,

but instead a peptido-mimetic that is functionally equivalent to the critical region of CETP required to generate antibodies that neutralize endogenous CETP but that chemically is more stable or immunogenic than the native peptide chemical structure. Substitution of amino acids unique to human CETP with the analogous amino acid from another species may enhance generation of neutralizing antibodies. Alternatively, non-natural amino acids (e.g. D versus L-form) at specific places within the immunogen may facilitate generation of high potency autoimmune-generated neutralizing antibodies.

In place of synthetically generated peptide immunogen, the pGEX system of producing a fusion protein between CETP or CETP-derived peptide and glutathione S-transferase protein (GST) in E. coli could present a viable immunogen for generating autoimmune antibodies that neutralize endogenous CETP activity.

The adjuvant vehicle and route of immunization is another set of variables that could influence the probability of generating a neutralizing autoimmune reaction to endogenous CETP. Several types of adjuvant are possible: Complete and Incomplete Freund's adjuvant, synthetic adjuvants (such as muramyl dipeptide derivatives sold by Ribi Immunochem Research, Inc, Hamilton MT or TiterMax sold by CytRx Corp., Norcross, GA), and/or oil emulsions. Alternatives to subcutaneous injections include transdermal, intramuscular, or intravenous injection or combinations of the above. Another option is to alternate the carrier protein for different injections. For example, the first injection could be with the peptide conjugated to Carrier "A" (e.g. thyroglobulin or GST) and booster injections could be with Carrier "B" (e.g. KLH or peptide alone).

(d) How does this differ from the previous work of others. Give citations and attach references (if available).

To date, the only published attempt to neutralize CETP action has been with a mouse monoclonal antibody that blocks CETP-mediated lipid transfer in vitro (Hesler, C.B., Tall, A.R., Swenson, T.L., Weech, P.K., Marcel, Y.L. and Milne, R.W. (1988) J. Biol. Chem. 263: 5020-5023, Swenson, M.J., Hesler, C.B., Brown, M.L., Quinte, E., Trotta, P.P., Haslanger, M.F., Gaeta, F.C.A., Marcel, Y.L., Milne, R.W., and Tall, A.R. (1989) J. Biol. Chem. 264: 14318-14326). Passive immunization of rabbits with the blocking monoclonal antibody produced a modest decrease in plasma LDLc (~20%) and modest increase in plasma HDLc (~10%) (Whitlock, M.E., Swenson, T.L., Romakrishnan, R., Leonard, M.T., Marcel, Y.L., Milne, R.W. and Tall, A.R. (1989) J. Clin. Invest. 84: 129-137). The marginal effect of the monoclonal antibody could be owing to 1) the short duration of the passive immunization protocol (7 days), 2) the generation of endogenous anti-rabbit antibodies that impaired passive antibody activity, 3) less than complete inhibition of endogenous CETP by inappropriate dosage of the blocking monoclonal antibody, or 4) their showing that TP2 could inhibit rabbit CETP approximately 62%. The present invention would involve generation of an autoimmune response to endogenous CETP that would be a significant improvement over the previous work by others by avoiding the complicating issues listed above.

3. (a) When was the invention first thought of?

The invention was first developed at a meeting with Dr. Phillip Needleman at a meeting held. Contributors to the initial conceptualization of the invention of

autoimmune neutralization of endogenous CETP as a way of improving an individual's plasma HDL and LDL profile included Dr's: Needleman, Ryan and Glenn.

(b) Give date of the first written description (include notebook page numbers).

The first written documentation of the invention was a printout of a ccMAIL message from Dr. Needleman dated and a substitution of the included as an attachment to notebook page as a part of Dr. Glenn's complete description of the invention on that page, dated

4. To whom and on what date did you first disclose or suggest this invention to others, either orally or in writing?

The people present at the meeting held included: Dr. Needleman, Dr. Una Ryan, Dr. Donald Laird, Michele Melton, Dianne Stockhausen and myself. Since the time of that meeting, the invention has also been discussed with other Monsanto or Searle employees including: Dr. Gwen Krivi, Dr. Robert Manning, Dr. Ben Schwartz, Dr. Dan Connolly, Tim Keane, and Dennis Bennett, and presented at the Vascular Biology Targets meeting.

It has never been disclosed outside Monsanto/Searle, either orally or in writing.

 Give dates and details regarding samples, information, or publication, relating to this invention which have been or are currently planned to be given to persons outside Monsanto.

Currently, no plans exist for providing samples, information or publication of information.

Signature: _	106		Date
Print Name:	Kevin	<i>C.</i>	Glenn
	First	Middle	Last
Signature: _	Una S. Rya	ri	Date
Print Name:	UNA	S.	RYAN
	First //	Middle	Last
Signature: _	py need	cuan	Date
Print Name:	HILLY	_	PEEDLEHON
	First	Middle	Last

Signature/Date

PATENT

IN THE UNTIED STATES PATENT AND TRADEMARK OFFICE

In Re Application Of:)
Needleman et al.) Group Art Unit 1642
Serial No. 09/387,340) Examiner: Minh-Tam Davis
Filed: August 31, 1999) Atty. Docket: MON-102.0-C3119-C) 061765.00367
Continued Prosecution Application Filed: January 4, 2002)
)

For: AN IMMUNOLOGICAL PROCESS FOR INCREASING HDL CHOLESTEROL CONCENTRATION (AS AMENDED)

DECLARATION OF ELAINE KRUL PURSUANT TO 37 C.F.R. §1.131

The Honorable Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

I, ELAINE KRUL, Ph.D. hereby declare that:

- 1. I am presently employed by Pharmacia Corporation.
- 2. I received my Ph.D. degree from McGill University, Montreal, Quebec, Canada in 1982, majoring in biochemistry;
- 3. Between February of 1994 and February of 1998, I was employed by G.D. Searle, Co., ("SEARLE"), now a wholly owned subsidiary of Pharmacia. Pharmacia, formerly known as Monsanto Company, is the assignee of the above-identified patent application.
- 4. The work described in this Declaration was carried out in the State of Missouri, the United States of America, by me or by one or more persons under my direction and control and the work described in this declaration was done on behalf of the inventors of the above-identified patent application.

Serial No.: 09/387,340

- 5. The work described in this Declaration occurred during an interval ("INTERVAL") beginning on a date prior to November 7, 1996 (the date of publication of WO 96/34888) and continuing to a date subsequent to January 21, 1997 (the date of filing of U.S. Patent Application Serial No. 08/788,882 for which priority of the above-identified patent application is claimed).
- 6. During the INTERVAL, such work was conducted towards reducing to practice a vaccination method using an inoculum comprising a vaccine construct for treating human patients to produce antibodies against endogenous CETP such as for the purpose of treating human pro-atherogenic dyslipoproteinemias (e.g., atherosclerosis).
- 7. Such work comprised (1) vaccinating laboratory animals with inocula, each inoculum containing a vehicle and a CETP construct (CETP immunogen), wherein such constructs consisted of either tuberculin purified protein derivative (PPD) of multiple antigenic peptide (MAP) as an exogenous antigenic carrier polypeptide peptide-bonded to amino acids 42-61, 150-169, 306-325, 345-364, 370-389, or 475-496 of the human CETP amino acid sequence, (2) analyzing the time course of the resultant lipoprotein and cholesterol levels, anti-CETP antibody produced, and endogenous CETP activity levels in the vaccinated animals, and (3) developing a new transgenic mouse model for atherosclerosis to serve as an alternative confirmatory platform to the established rabbit model for testing and validating such vaccination method.
- 8. As many as five full-time SEARLE employees contributed to the work under my direction.
- 9. Excepting weekends and SEARLE holidays, such work was conducted every day during the INTERVAL.
- 10. I make the foregoing statements regarding such work after a review of several laboratory notebooks, such notebooks each being bound and paginated and each page being signed and dated by me or by one of the five full-time SEARLE employees working under my direction, or control. True copies of the relevant pages of the notebook records are appended hereto as Exhibit A
 - 11. I am over 18 years of age and of competent mind.
- 12. All statements made of my own knowledge are true and all statements made on information and belief are believed to be true; and further, these statements were made with the knowledge that willful, false statement so made are punishable by fine or imprisonment or both, under 18 U.S.C. § 1001and that such willful, false statements may jeopardize the validity of the above-identified application or any patent issuing thereon.

4/17/02

Elaine Krul

Elaine Krul

Date

ok Number DS - 5734	Subject CETP associated Igm:	Project Number
054	Bincary is start	SEARLE
Hypothesis: C CETP prep Cby Neid	CETP assoc. Igm is binding exemilipeds on from Heidi Hope (6/12/96) with onto Pierce Igm column	CETP COURADS to OXID as applied
She un to Azgon	obtained & 8.7 Ml g elus Le Pience Lludan Buffer (~ m)	led provein 2019/me by
_	l 8.7 ml sahnated CNH. In several days @ 4°C.	7) 2504 dispose
	10,000 rpm in JA notor t see precipitate - saw ! on wall of tube - Disso gs.	(7/19/96). cloudy " lved in
Performed	d Lowry. (see p.056)	
Oxidized page	LOL147 from Annexe Frick.	an appointe
rigamed	Lowry (see p.056)	
3 Signature	Date , Read and Understood By	Date
laine Ku	l 10/26/96 Denie Na Cho	wick 10-1-97

Autho

	-
,	_]
	E) de
IRLE	— "
IN LE	
s to oxa	a]
1	
•	-
in 2 by	·
- My	
	_
, .	_
'ngave	ھى_
	_
,	
).	-
	-
	-
	-
	-
	-1
	_
_	
rte	_
	_
	-
	-
	-
	_
_	
_	-]
	-1

Project Number	Subject	CETP anscrated Igm: Binding to excel	GDS -	" <i>5734</i>
SEARLE		Binding to oxcor	Page	055

CU²⁺ OXIDATION OF LDL

Refs: 1) Steinbrecher, U.P., Witztum, J.L., Parthasarathy, S. and Steinberg, D. (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL, <u>Arteriosclerosis 7:</u> 135-143.

2) Barnhart, R.L., Busch, S.J. and Jackson, R.L. (1989) Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation, <u>J. Lipid Res. 30</u>: 1703-1710.

Materials

- 1 mM CuSO₄•5H₂O (0.025g QS to 100 ml)
- EDTA-free PBS (regular PBS)
- LDL (at least a 2 ml solution diluted to 300 μg/ml protein with PBS)
- Buffer A 0.01 M sodium phosphate, 0.15 M NaCl, 0.01% EDTA, pH 7.4
 1.56 g NaH₂PO₄●H₂O
 4.07 g Na₂HPO₄
 8.8 g NaCl
 0.1 g EDTA (or 0.54 ml of a 0.5 M EDTA STOCK, pH 8)
 Bring up in approx. 900 ml of deionized H₂O. Adjust pH to 7.4 and QS to 1 liter.

Procedure

- 1. Dialyze LDL versus EDTA-free PBS to remove any EDTA or DTPA. (These chelating agents will block the interaction of Cu²⁺ with LDL).
- 2. Dilute dialyzed LDL solution to a concentration of 300 μ g/ml with PBS and put LDL solution into a clean screw-cap tube.
- 3. Add 1 mM CuSO₄ to LDL solution to a final concentration of 10 μ M (1:100 dilution).
- 4. Incubate LDL-CuSO₄ mixture at 37°C in loosely capped tube overnight.
- 5. Terminate reaction by dialyzing LDL solution against Buffer A at 4°C overnight.

A:CUOXLDL.EK 02-21-90

Elaine Rul 10/26/96 Denie Nachweak 10-1-97	Author's Signature Kul	Date 10/26/96	Denie Nachawiak	10-1-97
--	------------------------	---------------	-----------------	---------

Book Number GDS - 5734
Page 056

Subject

CETP associated Igm: Bunding to oxide

SEARLE

Project Number

	1	2	3	4	6	•	7	8	9	10	11	12	
4	-0.001	0.001	0.274	0.243	0.176	0.161	-0.034	-0.035	-0.035	-0.034	-0.035	-0.036	READ DATE:
4	0.072	0.074	0.446	0.455	0.020	0.023	-0.034	-0.035	-0.035	-0.034	-0.035	-0.032	7/23/98
q	0.120	0.110	0.598	0.601	0.028	0.034	-0.034	-0.035	-0.035	-0.034	-0.034	-0.027	ASSAY NAME:
q	0.201	0.200	0.251	0.237	0.000	0.001	-0.022	-0.031	-0.035	-0.034	-0.034	-0.031	
4	0.357	0.365	0.414	0.412	0.011	0.014	-0.021	-0.034	-0.035	-0.034	-0.034	-0.033	PLATE NUMBER:
뒥	0.503	0.493	0.556	0.552	0.000	0.001	-0.032	-0.035	-0.035	-0.034	-0.034	-0.034	072396p1
q	0.683	0.688	0.134	0.133	0.000	0.000	-0.033	-0.035	-0.035	-0.034	-0.032	-0.025	READER NUMBER:
H	0.909	0.863	0.167	0.170	-0.002	-0.001	-0.033	-0.035	-0.035	-0.034	-0.034	-0.022	

MARKWE	LL PROTE	YASSA NE					
ยดู			MEAN	SD		 	CALC
STD	OD 1	OD 2	00	OD			STD
٥	-0.001	0.001	0.000	0.001	m	ь	-0.480
1	0.072	0.074	0.073	0.001			1.058
2	0.120	0.110	0.115	0.007			1.971
4	0.201	0.200	0.201	0.001			3.902
8	0.357	0.365	0.361	0.008			7,841
12	0.503	0.493	0.498	0.007			11.634
20	0.683	0.688	0.686	0.004		•	17.863
30	0.909	0.883	0.886	0.033			27.646

SAMPLE	RESULTS	(DUPLICA	TES)						
SAMP.				MEAN	SD	CALC.	CALC.	DF	mg/mi
NO.	(ml)	OD 1	OD 2	OD	00	up	ug/mi	-	PROT
LDL147	0.010	0.274	0.243	0.259	0.022	5.274	527.380	10,000	5.274
LDL147	0.020	0.446	0.455	0.451	0.008	10.264	513,187	10,000	5.132
LDL147	0.030	0.598	0.601	0.600	0.002	14,813	493,760	10.000	4.938
LDL148	0.010	0.251	0.237	0.244	0.010	4.926	492.592	10.000	4.926
LDL148	0.020	0.414	0.412	0.413	0.001	9.225	461.257	10.000	4.813
LDL148	0.030	0.556	0.552	0.554	0.003	13.341	444.689	10,000	4.447
cod_DL	0.010	0.134	0.133	0.134	0.001	2.381	238.077	1.000	0.238
codLDL	0.020	0.167	0.170	0.169	0.002	3.168	158.390	1.000	0.158
ooLDL.	0.030	0.176	0.161	0.169	0.011	3.168	105.593	1.000	0.106
lgM	0.010	0.020	0.023	0.022	0.002	-0.033	-3.348	1.000	-0.003
lgM	0.020	0.028	0.034	0.031	0.004	0.166	8.281	1.000	0.008
12	0.020	0.000	0.001	0.001	0.001	#DIV/0!	#DIV/01	1.000	#DIV/0!
13	0.020	0.011	0.014	0.013	0.002	#DIV/0!	#DIV/0!	1.000	#DIV/01
14	0.020	0.000	0.001	0.001	0.001	#DIV/0!	#DIV/O!	1.000	#DIV/O
15	0.020	0.000	0.000	0.000	0.000	#DIV/0!	#DIV/0!	1.000	#DIV/0!
16	0.020	-0.002	-0.001	-0.002	0.001	#DIV/OI	#DIV/0!	1.000	#DIV/0!
17	0.020	-0.034	-0.035	-0.035	0.001	#DIV/01	#DIV/01	1.000	#DIV/01
- 18	0.020	-0.034	-0.035	-0.035	0.001	#DIV/OI	#DIV/O!	1.000	#DIV/DI
19	0.020	-0.034	-0.035	-0.035	0.001	#DIV/0!	#DIV/01	1.000	#DIV/01
20	0.020	-0.022	-0.031	-0.027	0.006	#DIV/01	#DIV/OI	1.000	#DIV/O
21	0.020	-0.021	-0.034	-0.028	0.009	#DIV/0!	#DIV/0!	1.000	#DIV/OI
22	0.020	-0.032	-0.035	-0.034	0.002	#DIV/0!	#DIV/0!	1.000	#DIV/01
23	0.020	-0.033	-0.035	-0.034	0.001	#DIV/01	#DIV/0!	1.000	#DIV/01
24	0.020	-0.033	-0.035	-0.034	0.001	#DIV/O!	#DIV/0!	1.000	#DIV/OI
25	0.020	-0.035	-0.034	-0.035	0.001	#DIV/O!	#DIV/O!	1.000	#DIV/0!
26	0.020	-0.035	-0.034	-0.035	0.001	#DIV/01	#DIV/OI	1.000	#DIV/OI
27	0.020	-0.035	-0.034	-0.035	0.001	#DIV/O	#DIV/01	1.000	#DIV/O!
28	0.020	-0.035	-0.034	-0.035	0.001	#DIV/0!	#DIV/O!	1.000	#DIV/0!
29 30	0.020	-0.035	-0.034	-0.035	0.001	#DIV/0!	#DIV/OI	1.000	#DN/01
	0.020	-0.035	-0.034	-0.035	0.001	#DIV/0!	#DIV/01	1.000	#DIV/0!
31 32	0.020	-0.035	-0.034	-0.035	0.001	#DIV/01	#DIV/0!	1.000	#D(V/01
	0.020	-0.035	-0.034	-0.035	0.001	_#DIV/0!	#DIV/0! _	_1.000	#DIV/01
33	0.020	-0.035	-0.036	-0.036	0.001	#DIV/O!	#DIV/O!	1.000	#DIV/01
34 35	0.020	-0.035	-0.032	-0.034	0.002	#DIV/O	#DIV/01	1.000	#DIV/01
	0.020	-0.034	-0.027	-0.031	0.005	#DIV/0!	#DIV/01	1.000	#DIV/01
36 37	0.020	-0.034	-0.031	-0.033	0.002	#DIV/OI	#DIV/0!	1.000	#DIV/0!
	0.020	-0.034	-0.033	-0.034	0.001	#DIV/O	#DIV/OI	1.000	#DIV/0!
38	0.020	-0.034	-0.034	-0.034	0.000	#DIV/OI	#DIV/DI	1.000	#DIV/O!
39 40	0.020	-0.032	-0.025	-0.029	0.005	FON/O	#DIV/OI	1.000	#DIV/OI
	0.020	-0.034	-0.022	-0.028	0.008	#DIV/O!	#DIV/O!	1.000	#DIV/Q!

LOL 147 $\overline{x} = 5.11$ LOL 14P $\overline{x} = 4.66$ OXLOL $\overline{x} = 0.198$ (onut 3rd point)

Propatty yring use.

Tem below.

Igm below detection elimit

Claire Kul 10/26/96 Pead and Understood By Date 10-1-97

File 1

Sample Solver Conc (Dil.)

SAMPLI

1

2

Book Number Project Number Subject CETP associated Igm: GDS -*3734* Binding to OXCOL RLE SEARLE · No Igm was recovered after the attempt to precipitate at with ammonium sulfate. Since we don't know what's in the Pierce clubing buffer this may have affected precipitation or Ight may have been to dilute for farming good precipitates. · Will my again another CETP prep from Heidi (8/7/96, see her notebook 6821052) was used to concentrate I proled eliked fractions 4,5,6 Used Centican-30 to concentrate Igm. Washed the Centucar-30 ance w H2O to remove glycerol. Then concentrated Igm as jer manufactuer's unstructions. De-salked versus PBS. : 10-22-1996 Date ---> Quantitation Results Report <---Time : 01:12:40 Operator : Not Entered .11 File Name : Data not stored yet .66 Sample Name Analytical Wavelength: 280 nm Reference Wavelength: None Selected 198 Solvent Name : Confirmation Wavelengths : None Selected Conc Units point) Dil. Factor : Integration Time : 1 seconds 1.00 SAMPLE # Sample Name Wavelength Func. Res. Concentration ion +0.0000 blank PBS Analytical -> 41.6 ug/ml IgM NRAT +0.0583 Analytical (prepflom 8/7/96) Heidi Hope Notebook 6821052 ane Kul 10/26/26 -1-97

CETP Associated Igm: GDS - 5734 Binding to ox LOL 058 **SEARLE** Tested ability of the Igm purified from that which was assiciated with human plasma CETP. * and a control human Igm from Sigma (1-8260, Lot 085H-4842). Essentally performed EUSA assays) as described by Horko, 5 et. al. (1996) J. Celn. Invest. 98 (3):815-25. Used Cardidepin (C-1649, Lot 85H8380 Sigma) to coat one place. This is because anhbodies (Igms) to Oxioi in humany kind to react with the Oxidized phospholipido - are seen when you let Cardiolipin coat plashé wells. " 40µg/ml candislipin STOCK in 100% EXDH (10 mg OS to 250 Ml 100% EXDH) OXIDE and LOW were und (OXCOLI47 & LOCA47) (198 µg/me) (5110 µg/me) coasted plakes to Suglme Sigma Igm 940 µg/ml 580µl deluked to 2.41 mls => 10µg/ml CETP Igm 41.6 µg/ml 2bul QSU to 2.40 ml. Dicutions of Igms made in 190 BSA, TBS buffer 1.2 ml + 1.2 ml, etc. 10/26/96 Denie Nachowisk sine Kul

Doluk

10-1-97

Project Mumber Subject CETP Associated IgM: Binding to oxibl GDS - 5734 059 SEARLE RLE Hate DATE: 1033/96 'ed 3):815-25. Dilukno TgM 5, 10 hIOM CETHISM hIgm CETTIGM oxual coat DATE: ASSAY: 12 11 Used Signa A-3437 C 0.3125 ā hunan D 0.625 E 0 044-8904 COPIGN cellign 1 Tan 1:3700c diluhi Ethanol coat cardiolipin count Author's signature Lul Date 10/26/96 Read and Understood By Date 10-1-97 Nachowa -1-97

Book Number GDS - 5734 060

Subject

CETP Associated Igm: Binding to OXCOL

Project Number

SEARLE

	1	2	3	4	5	6	7	8	9	10	11	12	
A	0.101	0.103	0.100	0.096	0.113	0.101	0.097	0.102	0.093	0.107	0.116	0.112	READ DATE:
8	0.121	0.134	0.131	0.107	0.125	0.125	0.109	0.111	0.111	0.127	0.100	0.107	10/25/96
d	0.141	0.115	0.105	0.106	0.143	0.139	0.109	0.105	0.130	0.129	0.106	0.122	ASSAY NAME:
Q	0.133	0.126	0.100	0.096	0.177	0.171	0.127	0.123	0.155	0.161	0.120	0.118	
Ę	0.164	0.168	0.132	0.110	0.272	0.270	0.186	0.162	0.222	0.213	0.114	0.126	PLATE NUMBER:
F	0.274	0.248	0.131	0.148	0.413	0.429	0.208	0.247	0.415	0.360	0.145	0.148	102596p1
G	0.330	0.313	0.150	0.224	0.633	0.645	0.358	0.354	0.598	0.558	0.183	0.272	READER NUMBER:
Н	0.558	0.497	0.215	0.290	1.032	0.953	0.764	0.729	0.910	0.923	0.274	0.277	

Human IgM

[lgM]	LDL		Mean	No Coat		Mean	Net LDL
0	0.113	0.101	0.107	0.101	0.103	0.102	0.005
0.156	0.125	0.125	0.125	0.121	0.134	0.128	-0.003
0.3125	0.143	0.139	0.141	0.141	0.115	0.128	0.013
0.625	0.177	0.171	0.174	0.133	0.126	0.130	0.045
1.25	0.272	0.270	0.271	0.164	0.168	0.168	0.105
2.5	0.413	0.429	0.421	0.274	0.246	0.260	0.161
5	0.633	0.645	0.639	0.330	0.313	0.322	0.318
10	1.032	0.953	0.993	0.558	0.497	0.528	0.465
							Net
	oxLDL.		Mean	No Coat		Mean	oxLDL
0	0.093	0.107	0.100	0.101	0.103	0.102	-0.002
0.156	0.111	0.127	0.119	0.121	0.134	0.128	-0.009
0.3125	0.130	0.129	0.130	0.141	0.115	0.128	0.002
0.625	0.155	0.161	0.158	0.133	0.126	0.130	0.029
1.25	0.222	0.213	0.218	0.164	0.168	0.166	0.052
2.5	0.415	0.360	0.388	0.274	0.248	0.260	0.128
5	0.598	0.558	0.578	0.330	0.313	0.322	0.257
10	0.910	0.923	0.917	0.558	0.497	0.528	0.389

CETP IgM

[lgM]	LDL		Mean	No Coat		Mean	Net LDL
0	0.097	0.102	0.100	0.100	0.096	0.098	0.002
0.156	0.109	0.111	0.110	0.131	0.107	0.119	-0.009
** 0.3125	0.109	0.105	0.107	0.105	0.106	0.106	0.002
0.625	0.127	0.123	0.125	0.100	0.096	0.098	0.027
1.25	0.186	0.162	0.174	0.132	0.110	0.121	0.053
2.5	0.208	0.247	0.228	0.131	0.148	0.140	0.088
5	0.358	0.354	0.356	0.150	0.224	0.187	0.169
10	0.764	0.729	0.747	0.215	0.290	0.253	0.494
							Net
[lgM]	cod_DL		Mean	No Coat		Mean	oxLDL.
0	0.116	0.112	0.114	0.100	0.096	0.098	0.018

0.104

0.114

).625	-0.120 ··	0.118	0.119	0.100	··· 0.096 ···	~0.0 98 ~	0.021	
1.25	0.114	0.126	0.120	0.132	0.110	0.121	-0.001	
2.5	0.145	0.148	0.147	0.131	0.148	0.140	0.007	
5	0.183	0.272	0.228	0.150	0.224	0.187	0.041	
10	0.274	0.277	0.276	0.215	0.290	0.253	0.023	

0.131

0.105

0.107

0.106

0.119

0.106

-0.016

0.008

Author's Signature Elame Kul

0.156

0.100

0.108

0.107

0.122

10/26/26

Rood and Understood By Dervie Na Chowick

Book Number Subject Project Number CETP ASSOCIATED Igm: Binding to OXUC GDS - 5734 Page 061 **SEARLE** 0.092 0.103 0.104 0.093 0.101 0.091 0.090 0.093 0.010 0.009 0.010 0.010 **READ DATE:** 0.106 0.101 0.096 0.094 0.094 0.100 0.091 0.088 0.011 0.009 0.010 0.008 10/25/96 0.111 0.109 0.104 0.104 0.109 0.113 0.096 0.091 0.013 0.009 0.012 0.012 ASSAY NAME: 0.121 0.129 0.106 0.105 0.111 0.118 0.098 0.103 0.019 0.008 0.011 0.010 0.144 0.127 0.119 0.112 0.121 0.117 0.097 0.098 0.010 0.009 0.012 0.012 PLATE NUMBER: 0.212 0.191 0.136 0.128 0.138 0.160 0.103 0.115 0.008 0.011 0.009 0.008 102596p2 0.252 0.194 0.148 0.171 0.178 0.185 0.162 0.173 0.013 0.009 0.009 0.008 READER NUMBER: 0.461 0.408 0.241 0.224 0.247 0.239 0.186 0.219 0.009 0.008 0.004 0.007 Human IgM (lgM) Cardiolipin Mean **EtOH** cost Mean Net Cardiolipin 0 0.092 0.091 0.092 0.101 0.103 0.102 -0.0110.156 0.094 0.100 0.097 0.106 0.101 0.104 -0.007 0.3125 0.109 0.113 0.111 0.111 0.109 0.110 0.001 0.625 0.111 0.118 0.115 0.129 0.121 -0.011 0.125 1.25 0.121 0.117 0.119 0.144 0.127 0.138 -0.017 2.5 0.138 0.160 0.149 0.212 0.191 0.202 -0.053 5 0.178 0.185 0.182 0.252 0.194 0.223 -0.04210 0.247 0.239 0.243 0.461 0.408 0.435 -0.192**CETP IgM** [lgM] Cardiolipin EtOH coat Mean Net Cardiolipin Mean 0.090 0.093 0.092 0.104 0.093 0.099 -0.007 0.156 0.091 0.088 0.090 0.096 0.094 0.095 -0.0080.3125 0.096 0.091 0.094 0.104 0.104 0.104 -0.011 0.625 0.098 0.103 0.101 0.106 0.105 0.106 -0.005 1.25 0.097 0.098 0.098 0.119 0.112 -0.018 0.116 2.5 0.103 0.115 0.109 0.136 0.128 0.132 -0.0235 0.162 0.173 0.168 0.148 0.171 0.160 0.008 0.186 0.219 0.203 0.241 0.224 0.233 -0.030Author's Signature Date 10/26/96 Road and Understood By Denie Nachowiak -1-97 10-1-97

?LE

ATE:

AME:

MBER:

JMBER:

ip1

Book Number

GDS - 5734

Page 062

Subject CETP Associated Igm:

Binding to oxide SEARLE

Author's Signature Kull 10/26/96 Denice Nachowisk Date 10-1-97

Author

Project Number OFTP Associated Igm: GDS - 5734 Binding to ox col 063 RLE SEARLE The COCHT probably has some modification oxidative epitypes on ut such that a communical source of heman Igm has the ability to bind conclusions: to it. I didn't we an irrelevant immune globulin (Igh duested to a specific anhgen) as a conhol. Next rine should do this. Problem is that most human Igms should bind to OXUDE - use very fresh ca next hime too as a combol. 2) The CETP assoc. Igm bound almost equally on a ug/me basis to the COL - therefore does not have I proportion of Abs to a specific up epitope, but appears to have some affinity for low. 3 The Ruman IgM bound unhally equally to OXCOL as LOL untreased. Therefore the spityes regid were sufficient on the starting LOCX Custog oxidaha did not enhance / a lose any epityes. (4) CETP Igm, on the Other hand, and olid not bund ox UPL suggesting that Cuzt exidation deshased the epitone recognized (or it was the dealysis step or deluter eliminated by step, etc. 5 Specific on UDL. Is it lipid or provein? Oxidized lipid? Or lipid provein complex.

Date 10/26/96

Read and Understood By

Denie Nachowisk

10-1-97

1-97

Elaire Kul

Book Number GDS - 5734

064

Lipid Assayo on Anhoera from CETP lephale Immunized Rabbilo

Project Number

SEARLE

1 Rub01 pre 10/27/96	i			
2 Re601 12/495				
3!Rab01 3/8/96				
4 Rab02 pre 10/27/95				
5 Rat02 12/4/95				
6 Rati02 3/8/96				
7 Rab02 10/25/96				
8 Rab03 pre 10/27/96				
9 Rab03 12/4/95				
101Rab04 pre 10/27/95				
11 Rab04 12/4/95			 	
12 Reb05 pre 10/27/95 13 Reb05 12/4/95				
14 Rsb08 pre 10/27/96				
18 Rab06 12/4/95				
17 Rab07 12/4/95				
18 Rub07 3/8/96			<u> </u>	
19 108001 1012090			-	
29 Ratb08 pre 10/27/95				
21 Rab08 12/4/95				
22 Rab06 3/5/96		-	 	
23 Rab06 10/25/96 26 Rab09 pre 10/27/95	<u> </u>		 	
251Rab09 12/4/95	-	 		
27 Rab010 12/4/95	:			
281Rab1 pre 5/30/95	i			
291Rab1 7/5/95	<u>:</u>		!	
201Rab1 10/5/95	<u> </u>		-	
31 Rab1 3/8/96			 	
32 Rab2 pre 5/30/95 33 Rab2 7/5/95	├		 	
36 Rab2 10/5/95				
36 Rab2 3/8/96			<u> </u>	
361Rab3 pre 5/30/95				
37 Reb3 7/5/95				
38 Reb3 8/9/95	<u> </u>	<u> </u>	└	<u> </u>
291Reb4 pre 5/30/95			⊢ —	
481Rab4 7/5/95	 	 		
41/Rab4 8/9/95 42/Rab5 pre 5/30/95			├	├
43:Rab5 7/5/95				
44 Rab5 89/95	:		-	
48 iRab6 pre 5/30/95	!			
48 Rab6 7/5/95	<u> </u>			
47 Rab6 8/9/95	<u> </u>			<u> </u>
48 Reb7 pre 5/30/95	<u> </u>	Ļ	├	!
49 Rub7 7/5/95	 		+	-
59 Rab7 8/9/95 51 Rab8 pre 5/30/95	:	 	-	
\$2 Rab6 7/5/95		 	 	
\$31Rab6 8/9/95	: 		! 	1
54 Rab9 pre 5/30/95	i		1	
\$5 Rub9 7/5/95	<u> </u>	Ī		L
961Rab9 8/9/95		Ε	<u> </u>	
57 Rab10 pre 5/30/95	<u> </u>	ļ	1	ļ
58 (Rab 10 7/5/95			+	
59 Rab 10 8/9/95		 	+-	
891Rsb11 pre 5/30/95	!	 -		
81 (Rab11 7/5/96 82 (Rab11 10/5/96	+	- -	+	
63 (Rab11 3/8/96	 	 	$\overline{}$	i
84 Rab12 pre 5/30/95	 	<u> </u>		
65 Rab 12 7/5/95	-	T	Ī	I
65 Rab12 10/5/95				
67 Reb12 3/8/96	1			
69		<u> </u>		<u> </u>

10/27/95 → 12/4/95 38 days
12/4/95 → 3/8/96 95 → 133days
3/8/96 → 10/25/96 231 → 364 days
5/30/95 → 7/5/95 36 days
-7/5/95 → 10/5/95 92 → 128 days
10/5/95 → 3/8/96 155 → 283 days

17/5/95 -> 8/9/95 35 -> 7/ days

18/9/95 35 -> 7/ days

18/9/95 35 -> 7/ days

18/9/95 25

18/9/95 25

18/9/95 25

18/9/95 114

18/9/95 114

18/9/95 114

Authors Signature | Cul 12/2/96 Denie Nachowiak 10-1-97

S

Author's S

35/

.-97

Project Number

Subject Lypid Assays on Anhoria

GDS - 5734

Page 065

60)	ul s	an	ple	,		TOTCHOLK BOL						Plate		
ATE:		4/9												
DON1.			1	4	8	6	7		9	10	11	12		
A	570	-	1		9		17		25	-	BIL			
В			2		10		18		26		at	BIK		
c	_		3-		11	_	19		27		C 2	ret		
D			w-		12		20		28	7-1	C			
E			-		73-	_	21		29					
F	(<u>_</u>	4		14		22		30-					
G			2		15		23		31-					
Н			8		16		24		32		\rightarrow			

Totate +HOL Plate DATE: P SU B Đ 37 E F a

Author's Signature	Krul	Date 12/2/96	Read and Understood By Denne Nachowiak	Date 10-1-97

Book Number **GDS** - 5734

066

Lipid Assays on Andrsera from CETP Pephde Immunized labbits

Project Number

SEARLE

_	1	2	3	4	6	8	7	8	9	10	11	12_
A	-0.005	0.004	0.246	0.241	0.135	0.133	0.142	0.144	0.244	0.251	-0.001	-0.001
8	0.039	0.042	0.179	0.168	0.195	0.204	0.079	0.079	0.199	0.208	-0.001	-0.001
þ	0.080	0.083	0.127	0.128	0.234	0.232	0.053	0.054	0.303	0.294	0.207	0.209
q	0.187	0.167	0.176	0.169	0.125	0.122	0.090	0.089	0.130	0.127	0.382	0.391
4	0.294	0.308	0.167	0.171	0.082	0.080	0.108	0.106	0.100	0.097	0.001	0.000
用	0.436	0.449	0.105	0.101	0.082	0.084	0.057	0.058	0.053	0.057	0.000	0.000
Q	0.585	0.600	0.095	0.094	0.095	0.094	0.042	0.045	0.098	0.093	0.001	0.000
4	0.717	0.747	0.132	0.135	0.142	0.137	0.196	0.191	0.475	0.475	0.001	0.001

READ DATE: 11/14/36 ASSAY NAME: 1114/36p1 PLATE NUMBER: READER NUMBER:

CHOL	ESTEROL.	YASSA									
UQ			MEAN	\$D							CALC
STD	OD 1	OD 2	OD	00							STD
0	-0.005	0.004	-0.001	0.008	m	ь					-0.116
0.5	0.039	0.042	0.041	0.002	0.0728	0.0080	#N/A	#N/A	#N/A	#N/A	0.447
1	0.080	0.083	0.082	0.002	0.0007	0.0037	#N/A	EN/A	#N/A	#N/A	1,010
2	0.167	0.167	0.167	0.000	0.9994	0.0070	SN/A	#N/A	EN/A	SN A	2.185
4	0.294	0.308	0.301	0.010	******	6.000	#N/A	#N/A	SN/A	#N/A	4.026
8	0.438	0.449	0.443	0.009	0.515	0.000	#N/A	#N/A	SN/A	#N/A	5.970
8	0.585	0.600	0.593	0.011							8.031
10	0.717	0.747	0.732	0.021							9.948

SAMPLE	RESULTS	(DUPLICA	TES)						
SAMP.				MEAN	SD	CALC.	CALC.	DF	mg/di
NO.	(ml)	OD 1	OD 2	00	OD	ug	ug/ml		CHOL
1	0.060	0.246	0.241	0.244	0.004	3.236	53.932	20.000	107.865
2	0.060	0.179	0.168	0.174	0.008	2.274	37.903	20.000	75.807
3	0.060	0.127	0.128	0.128	0.001	1.642	27.370	20.000	54,740
4	0.060	0.178	0.169	0.173	0.005	2.260	37.674	20.000	75.349
5	0.060	0.167	0.171	0.169	0.003	2.212	36.873	20.000	73.746
6	0.080	0.105	0.101	0.103	0.003	1.306	21.760	20.000	43.520
7	0.080	0.095	0.094	0.095	0.001	1.189	19.813	20.000	39.627
8	0.060	0.132	0.135	0.134	0.002	1.725	28.744	20.000	57.488
9	0.060	0.135	0.133	0.134	0.001	1.732	28.858	20.000	57.717
10	0.060	0.195	0.204	0.200	0.008	2.631	43.857	20.000	87.714
11	0.000	0.234	0.232	0.233	0.001	3.092	51.528	20.000	103.056
12	0.060	0.125	0.122	0.124	0.002	1.587	26.454	20.000	52.908
13	0.060	0.082	0.080	0.081	0.001	1.003	16.722	20.000	33.444
14	0.080	0.082	0.084	0.083	0.001	1.031	17.180	20.000	34.360
15	0.060	0.095	0.094	0.095	0.001	1.189	19.813	20.000	39.627
16	0.080	0.142	0.137	0.140	0.004	1.807	30.118	20.000	60.236
17	0.080	0.142	0.144	0.143	0.001	1.855	30.919	20.000	61,839
18	0.060	0.079	0.079	0.079	0.000	0.978	16.264	20.000	32.528
19	0.060	0.053	0.054	0.054	0.001	0.626	10.425	20.000	20.850
20	0.060	0.090	0.089	0.090	0.001	1.120	18.669	20.000	37.337

STD CLRRVE

y = 0.07281 + 0.008

R² = 0.9994

0.800

0.400

2 0.200

0.000

0 ug CHOL 10

0.060 0.108 0.106 0.107 0.001 1.361 22.676 20.000 45.352 22 0.080 0.057 0.056 0.057 0.001 0.687 11.112 20.000 22.224 0.080 0.042 0.045 0.044 0.002 0.488 8.135 20.000 16.270 0.060 0.196 0.191 0.194 2.549 20.000 0.004 42.483 84,968 0.060 0.244 0.005 3.291 54.848 109,697 0.251 0.248 20 000 26 27 0.060 0.199 44.544 0.203 20.000 0.208 0.005 2.673 89.088 0.060 0.303 0.294 0.299 0.006 3.992 68.527 20,000 133,053 28 29 0.060 1.656 0.130 27.599 20,000 0.127 0.129 0.002 55,198 0.060 0.100 0.097 0.099 0.002 1.244 20.729 20,000 41.459 30 0.060 0.053 0.057 0.055 0.003 0.646 10.789 20.000 21.537 31 0.095 0.060 0.096 0.083 0.002 1.189 19.813 20.000 39.627 32 0.080 0.475 0.475 0.475 0.000 6.417 106.943 20.000 213.885 blank 0.060 -0.001 -0.001 -0.001 0.000 -0.123 -2.055 20.000 -4.109 blank 0.060 -0.001 -0.001 -0.001 0.000 -0.123 -2.055 20.000 -4.109 (ACTUAL) Cardio1 0.060 0.207 0.209 0.208 0.001 2.748 45.803 40.000 183.214 191 Cardio2 0.080 0.382 0.391 0.387 0.008 5.201 88.677 40.000 346.710 361 0.080 0.001 0.000 0.001 0.001 -0.103 -1.711 20.000 -3.422 0.060 0.000 0.000 0.000 0.000 20.000 -3.651 -0.110 -1.826 0.080 0.001 0.000 0.001 20.000 0.001 -3.422 -0.103-1.711 -1.597 0.001 0.001 0.001 0.000 -0.096 20.000 3.193

Author's Signature Kul Date 12/2/96 Denise Nachowak 10-1-97

Project

Author's

0.060

0.060

0.060

0.060

0.060

0.060

0.060

0.060

0.060

0.080

0.060

62

63

65

67

blenk

0.076

0.074

.0.137

0.091

0.069

0.060

0.005

0.003

0.213

0.391

0.003

0.075

0.073

0.139.

0.094

0.075

0.059

0.005

0.005

0.211

0.373

0.005

RLE

DATE: 114/96 Y NAME:

MUMBER

-97

Lipid Assay on Anhoeia.... Subject Project Number **SEARLE**

Book Number

GDS - 5734 Page

067

READ DATE:

11/14/98

ASSAY NAME:

111496p2 PLATE NUMBER READER NUMBE

		2	3	4	5	•	7	8	•	10	11	12
. 5		0.001	0.194	0.182	0.101	0.106	0.162	0.159	0.175	0.174	0.091	0.094
4	-0.001		0.091	0.092	0.158	0.160	0.124	0.131	0.107	0.107	0.089	0.075
٩	0.041	0.049		0.048	0.095	0.101	0.147	0.145	0.143	0.133	0.060	0.059
q	0.087	0.094	0.047	0.131	0.056	0.060	0.100	0.100	0.207	0.212	0.005	0.005
q	0.160	0.174	0.130		0.136	0.140	0.082	0.079	0.114	0.116	0.003	0.005
4	0.319	0.316	0.078	0.079		0.104	0.321	0.323	0.076	0.075	0.213	0.211
A	0.452	0.460	0.078	0.080	0.105		0.191	0.194	0.074	0.073	0.391	0.373
d	0.584	0.602	0.178	0.168	0.080	0.082			0.137	0.139	0.003	0.005
н	0.733	0.753	0.100_	0.100	0.231_	0.249	0.171	0.167	0.137	0.130	0.000	0.000

	CHOL	ESTEROL A	ASSAY									
	ug STD	OD 1	OD 2	MEAN	SD OD							STD
	0	-0.001 0.041	0.001 0.049	0.000 0.045	0.001 0.006	m 0.0733	ь 0.0127	#N/A	#N/A	#N/ A	#N/A	-0.174 0.440
	0.5 1	0.087	0.094	0.091	0.005	0.0009	0.0048	#N/A	#N/A	#N/A	#N/A #N/A	1.060 2.104
1	2	0.160 0.319	0.174 0.316	0.167 0.318	0.010 0.002	0.9991 #######	0.0087 6.000	SN/A SN/A	#N/A	#N/A	#N/A	4.156
	8	0.452	0.460	0.458 0.593	0.008	0.523	0.000	#N/A	#N/A	#N/A	SN/A	6.044 7.912
ı	8	0.584 0.733	0.602 0.753	0.743	0.013							9.958

10	0.733	0.753	0.743	0.014					
SAMPLE	RESULTS	(DUPLICA	TES)						
SAMP.				MEAN	SD	CALC.	CALC.	DF	mg/dil
NO.	(ml)	OD 1	OD 2	OD	OD	ug	ug/ml		CHOL
33	0.060	0.194	0.182	0.188	0.008	2.390	39.831	20.000	79.662
34	0.060	0.091	0.092	0.092	0.001	1.074	17.900	20.000	35.800
35	0.060	0.047	0.048	0.048	0.001	0.474	7.901	20.000	15.802
36	0.060	0.130	0.131	0.131	0.001	1.606	26.763	20.000	53.527
37	0.060	0.078	0.079	0.079	0.001	0.897	14.946	20.000	29.892
38	0.060	0.078	0.080	0.079	0.001	0.904	15.059	20.000	30.119
39	0.060	0.176	0.168	0.171	0.007	• 2.158	35.967	20.000	71.935
40	0.060	0.100	0.100	0.100	0.000	1,190	19.832	20.000	39.664
41	0.060	0.101	0.108	0.104	. 0.004	1.238	20.627	20.000	41.255
42	0.060	0.158	0.160	0.158	0.003	1.981	33.013	20.000	66.026
43	0.060	0.095	0.101	0.098	0.004	1.163	19.377	20.000	38.755
44	0.060	0.056	0.060	0.058	0.003	0.817	10.287	20.000	20.574
45	0.060	0.136	0.140	0.138	0.003	1.708	28.468	20.000	56.936
46	0.060	0.105	0.104	0.105	0.001	1.251	20.855	20.000	41.709
47	0.060	0.080	0.082	0.081	0.001	0.931	15.514	20.000	31.028
48	0.060	0.231	0.249	0.240	0.013	3.099	51.648	20.000	103.297
49	0.060	0.162	0.159	0.161	0.002	2.015	33.581	20.000	67.162
50	0.060	0.124	0.131	0.128	0.005	1.565	26.082	20.000	52.163
51	0.060	0.147	0.145	0.146	0.001	1.817	30.288	20.000	60.572
52	0.060	0.100	0.100	0.100	0.000	1.190	19.832	20.000	39.684
53	0.060	0.082	0.079	0.081	0.002	0.924	15.400	20.000	30.801
54	0.060	0.321	0.323	0.322	0.001	4.217	70.284	20.000	140.568
55	0.060	0.191	0.194	0.193	0.002	2.451	40.854	20.000	81.707
58	0.060	0.171	0.167	0.169	0.003	2.131	35.513	20.000	71.026
57	0.060	0.175	0.174	0.175	0.001	2.208	38.783	20.000	73.526
58	0.060	0.107	0.107	0.107	0.000	1.285	21.423	20.000	42.848
59	0.060	0.143	0.133	0.138	0.007	1.708	28.488	20.000	56.936
80	0.060	0.207	0.212	0.210	0.004	2.683	44.717	20.000	89.434
61	0.060	0.114	0.116	0.115	0.001	1.394	23.241	20.000	48.482

0.076

0.074

0.138

0.093

0.072

0.060

0.005

0.004

0.212

0.382

0.004

0.001

0.001

0.001

0.002

0.004

0.001

0.000

0.001

0.001

0.013

0.001

STD CURVE

0.856

0.829

1.708

1.088

0.808

0.638

-0.105

-0.119

2.717

5.035

-0.119

14.264

13.810

28.468

18.127

13.469

10.628

-1.758

-1.965

45,285

83,919

-1.985

20.000

20.000

20.000

20.000

20.000

20,000

20,000

20.000

40,000

40.000

20,000

-3.970

181.141

335.678

-3.970

ACTUAL)

191

361

GDS - 5784

Page 068

Subject Lypid Assaup on Anhsera for CETP- Pephde Immunized Rabbits

Project Number

SEARLE

10 -0.001 0.002 0.221 0.226 0.138 0.139 0.100 0.108 0.104 0.108 0.002 0.001 0.043 0.055 0.095 0.100 0.135 0.130 0.213 0.215 0.004 0.003 0.135 0.134 0.084 0.093 0.201 0.208 0.088 0.089 0.188 0.207 0.098 0.104 0.120 0.120 0.169 0.178 0.155 0.390 0.391 0.305 0.303 0.155 0.279 0.271 0.112 0.115 0.003 0.318 0.331 0.237 0.242 0.078 0.083 0.088 0.090 0.177 0.178 0.005 0.446 0.455 0.211 0.211 0.112 0.112 0.074 0.075 0.108 0.108 0.003 0.008 0.596 0.605 0.209 0.209 0.097 0.101 0.060 0.061 0.129 0.128 0.004 0.004 0.738 0.744 0.208 0.209 0.218 0.216 0.198 0.219 0.218 0.002 0.004

READ DATE: 11/14/96 ASSAY NAME: 1114/96/3 PLATE NUMBER READER NUMBER

HDL C	HOLESTER										
ug		•	MEAN	SD						-	CALC
STD	OD 1	OD 2	OD	00							STD
0	-0.001	0.002	0.001	0.002	m	b					-0.203
0.5	0.043	0.055	0.049	0.008	0.0731	0.0153	#N/A	EN/A	SN/A	EN VA	0.480
1	0.084	0.093	0.089	0.008	0.0011	0.0056	#N/A	#N/A	SNA	SN/A	1.001
2	0.169	0.178	0.174	0.008	0.9987	0.0108	#N/A	#N/A	#N/A	STN/A	2.163
4	0.316	0.331	0.324	0.011	******	6.000	SN/A	#N/A	#N/A	ENV A	4.214
6	0.448	0.455	0.451	0.006	0.520	0.001	#N/A	#N/A	#N/A	SNV A	5.951
8	0.596	0.805	0.601	0.006							8.003
10	0.736	0.744	0.740	0.006							9.911

	0.700	0.744	0.770	0.000					
SAMPLE	RESULTS	(DUPLICA	(TES)						
SAMP.		1		MEAN	SD	CALC.	CALC.	DF	mg/dl
NO.	(imi)	OD 1	OD 2	OD	OD	ug	ug/mi		CHOL
1	0.060	0.221	0.226	0.224	0.004	2.847	47.447	5.500	26.096
2	0.080	0.095	0.100	0.098	0.004	1.124	18.727	5.500	10.300
3	0.080	0.208	0.207	0.208	0.001	2.628	43.800	5.500	24.090
4	0.060	0.305	0.303	0.304	0.001	3.948	65.796	5.500	36,188
5	0.060	0.237	0.242	0.240	0.004	3.068	51.094	5.500	28.102
6	0.060	0.211	0.211	0.211	0.000	2.676	44.598	5.500	24.529
7	0.060	0.209	0.209	0.209	0.000	2.649	44.142	5.500	24.278
8	0.060	0.206	0.209	0.208	0.002	2.628	43.800	5.500	24.090
9	0.060	0.138	0.139	0.139	0.001	1.684	28.073	5.500	15.440
10	0.060	0.135	0.134	0.135	0.001	1.630	27.161	5.500	14.938
11	0.060	0.098	0.104	0.101	0.004	1.171	19.525	5.500	10.739
12	0.060	0.155	0.155	0.155	0.000	1.910	31.833	5.500	17.508
13	0.060	0.078	0.083	0.080	0.005	0.877	14.824	5.500	8.043
14	0.080	0.112	0.112	0.112	0.000	1.322	22.032	5.500	12.118
15	0.060	0.097	0.101	0.089	0.003	1.144	19.069	5.500	10.488
16	0.060	0.216	0.220	0.218	0.003	2.772	48.193	5.500	25.408
17	0.060	0.100	0.106	0.103	0.004	1.199	19.981	5.500	10.989
18	0.060	0.135	0.130	0.133	0.004	1.602	26.705	5.500	14.688
19	0.080	0.120	0.120	0.120	0.000	1.431	23.856	5.500	13.121
20	0.060	0.112	0.115	0.114	0.002	1.342	22.374	5.500	12.308
21	0.080	0.086	0.090	0.088	0.003	0.994	18.562	5.500	9.109
22	0.060	0.074	0.075	0.075	0.001	0.809	13,485	5.500	7.417
23	0.060	0.080	0.061	0.081	0.001	0.618	10,294	5.500	5.861
24	0.060	0.216	0.198	0.207	0.013	2.621	43.686	5.500	24.027
25	0.080	0.104	0.108	0.108	0.003	1.240	20,665	5.500	11.366
26	0.060	0.213	0.215	0.214	0.001	2.717	45.282	5.500	24.905
27	0.060	0.068	0.089	0.089	0.001	1.001	16.676	5.500	9.172
28	0.060	0.279	0.271	0.275	0.006	3.551	59.186	5.500	32,552
29	0.060	0.177	0.178	0.178	0.001	2.218	36,962	5.500	20.329
30	0.060	0.108	0.108	0.108	0.000	1.267	21.120	5.500	11.616
31	0.060	0.129	0.128	0.129	0.001	1.548	25,793	5.500	14.188
32	0.080	0.219	0.218	0.219	0.001	2.778	48,307	5.500	25.469

STD CURVE
y = 0.0731x + 0.0153
R² = 0.9867
0.600
0.400
0.400
0.400
0 ug ĆHOL 10

(ACTUAL) 191 381

Author's Signature Elaune Krul

0.060

0.060

0.080

0.060

0.080

0.080

0.080

0.080

0.002

0.004

0.188

0.390

0.003

0.003

0.004

0.001

0.003

0.201

0.391

0.005

0.008

0.004

0.004

0.002

0.004

0.195

0.391

0.004

0.005

0.004

0.001

0.001

0.009

0.001

0.001

0.002

0.000

0.001

-0.189

-0.162

2.450

5.131

-0.155

-0.148

-0.155

-0.169

Date 12/2/96

Road and Understood By Dennie Nathowisk

-1.735

-1.484

163.348

342.050

-5.170

-4.942

-5.170

-5.626

-3.155

-2,699

40.837

85.512

-2.585

-2.471

-2.585

-2.813

5.500

5.500

40,000

40.000

20.000

20.000

20.000

20.000

10-1-97

Auth

Project Number

SEARLE

Subject

Lipid Assays on Anhseia....

Book Number GDS -

Page

069

ARLE

READ DATE: 11/14/98 ISSAY NAME: 111496p3 ATE NUMBER

LOER NUMBER

20153

1	2	3	4_	- 5	6	7	В	9	10	11	12_
-0.002	0.002	0.203	0.204	0.285	0.279	0.182	0.191	0.277	0.278	0.178	0.173
		0.105	0.108	0.248	0.250	0.187	0.188	0.198	0.201	0.165	0.162
			0.083	0.180	0.173	0.252	0.263	0.289	0.293	0.114	0.115
			0.160	0.133	0.133	0.157	0.163	0.244	0.244	0.003	0.003
				0.266	0.270	0.164	0.169	0.165	0.167	0.008	0.003
		•		0.174	0.174	0.161	0.167	0.149	0.150	0.200	0.199
					0.171	0.150	0.149	0.135	0.138	0.390	0.383
					0.191		0.223	0.179	0.182	0.005	800.0
	1 -0.002 0.044 0.089 0.157 0.305 0.449 0.589 0.727	0.044 0.050 0.069 0.095 0.157 0.173 0.305 0.320 0.449 0.484 0.589 0.595	0,044 0,050 0,105 0,089 0,095 0,083 0,157 0,173 0,161 0,305 0,320 0,126 0,449 0,484 0,165 0,589 0,595 0,233	0,044 0.050 0.105 0.108 0,089 0.095 0.083 0.083 0,157 0.173 0.161 0.160 0,305 0.320 0.128 0.129 0,449 0.484 0.165 0.165 0,589 0.595 0.233 0.232	-0.002 0.002 0.203 0.204 0.285 0.044 0.050 0.105 0.108 0.248 0.089 0.095 0.083 0.083 0.180 0.157 0.173 0.161 0.160 0.133 0.305 0.320 0.128 0.129 0.268 0.449 0.484 0.165 0.165 0.174 0.589 0.595 0.233 0.232 0.168	0.002 0.002 0.203 0.204 0.285 0.279 0.044 0.060 0.105 0.108 0.248 0.250 0.089 0.095 0.083 0.083 0.180 0.173 0.157 0.173 0.161 0.160 0.133 0.133 0.133 0.305 0.320 0.128 0.129 0.268 0.270 0.449 0.484 0.165 0.165 0.174 0.174 0.589 0.595 0.233 0.232 0.168 0.171	0.002 0.002 0.203 0.204 0.285 0.279 0.182 0.044 0.050 0.105 0.108 0.248 0.250 0.187 0.089 0.095 0.083 0.083 0.180 0.173 0.252 0.157 0.173 0.161 0.160 0.133 0.133 0.157 0.305 0.320 0.126 0.129 0.266 0.270 0.184 0.449 0.484 0.165 0.165 0.174 0.174 0.181 0.589 0.595 0.233 0.232 0.168 0.171 0.150	-0.002 0.002 0.203 0.204 0.285 0.279 0.182 0.191 0.044 0.050 0.105 0.108 0.248 0.250 0.187 0.188 0.089 0.095 0.083 0.083 0.180 0.173 0.252 0.263 0.157 0.173 0.161 0.160 0.133 0.133 0.157 0.163 0.305 0.320 0.128 0.129 0.268 0.270 0.164 0.169 0.449 0.464 0.165 0.165 0.174 0.174 0.161 0.167 0.589 0.595 0.233 0.232 0.168 0.171 0.150 0.149	-0.002 0.002 0.203 0.204 0.285 0.279 0.182 0.191 0.277 0.044 0.050 0.105 0.108 0.248 0.250 0.187 0.188 0.198 0.089 0.095 0.083 0.083 0.180 0.173 0.252 0.263 0.289 0.157 0.173 0.161 0.160 0.133 0.133 0.157 0.163 0.244 0.305 0.320 0.128 0.129 0.268 0.270 0.164 0.169 0.165 0.449 0.484 0.165 0.165 0.174 0.174 0.161 0.167 0.149 0.589 0.595 0.233 0.232 0.168 0.171 0.150 0.149 0.135	-0.002 0.002 0.203 0.204 0.285 0.279 0.182 0.191 0.277 0.278 0.044 0.050 0.105 0.108 0.248 0.250 0.187 0.188 0.198 0.201 0.089 0.095 0.083 0.083 0.180 0.173 0.252 0.263 0.289 0.283 0.157 0.173 0.161 0.160 0.133 0.137 0.157 0.163 0.244 0.244 0.305 0.320 0.128 0.129 0.266 0.270 0.164 0.169 0.165 0.167 0.449 0.484 0.165 0.165 0.174 0.174 0.161 0.167 0.149 0.155 0.589 0.595 0.233 0.232 0.168 0.171 0.150 0.149 0.135 0.138	-0.002 0.002 0.203 0.204 0.285 0.279 0.182 0.191 0.277 0.278 0.178 0.044 0.050 0.105 0.108 0.248 0.250 0.187 0.188 0.198 0.201 0.165 0.089 0.095 0.083 0.083 0.180 0.173 0.252 0.263 0.289 0.289 0.283 0.114 0.157 0.173 0.161 0.160 0.133 0.137 0.157 0.163 0.244 0.244 0.003 0.305 0.320 0.126 0.129 0.266 0.270 0.164 0.169 0.165 0.167 0.008 0.449 0.484 0.165 0.165 0.174 0.174 0.161 0.169 0.150 0.200 0.589 0.595 0.233 0.232 0.168 0.171 0.150 0.149 0.135 0.138 0.390

READ DATE:
11/14/96
ASSAY NAME:
111498p4
PLATE NUMBER
READER NUMBER

HDL CH	LESTERO	L ASSAY									
ug			MEAN	SD							CALC
STD	OD 1	OD 2	00	OD							STD
0	-0.002	0.002	0.000	0.003	m	ь					-0.196
0.5	0.044	0.050	0.047	0.004	0.0724	0.0142	#N/A	#N/A	#N/A	SN/A	0.453
1	0.089	0.095	0.092	0.004	0.0009	0.0048	#N/A	#N/A	#N/A	#N/ A	1.074
2	0.157	0.173	0.165	0.011	0.9991	0.0069	#N/A	SNIA	#N/A	EN/A	2.082
4	0.305	0.320	0.313	0.011	******	6.000	#N/A	#N/A	#N/A	SN/A	4.118
6	0.449	0.484	0.457	0.011	0.510	0.000	#N/A	#N/A	#N/A	#N/A	6.105
8	0.589	0.595	0.592	0.004							7.976
10	0.727	0.734	0.731	0.005							9.888

SAMP.				MEAN	SD	CALC.	CALC.	DF	mg/di
NO.	(ml)	001	OD 2	00	OD	ug	ug/ml		CHO
33	0.060	0.203	0.204	0.204	0.001	2.813	43.554	5,500	23.95
34	0.060	0.105	0.108	0.107	0.002	1.274	21.239	5.500	11.68
35	0.060	0.083	0.083	0.083	0.000	0.950	15.833	5.500	8.708
36	0.060	0.181	0.160	0.161	0.001	2.020	33.662	5.500	18.51
37	0.060	0.126	0.129	0.128	0.002	1.584	28.070	5.500	14.33
38	0.060	0.165	0.165	0.165	0.000	2.082	34.697	5.500	19.08
39	0.000	0.233	0.232	0.233	0.001	3.014	50.226	5.500	27.62
40	0.060	0.161	0.164	0.163	0.002	2.047	34.122	5.500	18.76
41	0.080	0.285	0.279	0.282	0.004	3.697	61.613	5.500	33.88
42	0.060	0.248	0.250	0.248	0.001	3.241	54.022	5.500	29.71
43	0.060	0.180	0.173	0.177	0.005	2.241	37.343	5.500	20.53
44	0.060	0.133	0.133	0.133	0.000	1.640	27.336	5.500	15.03
45	0.060	0.268	0.270	0.268	0.003	3.504	58.393	5.500	32.11
46	0.060	0.174	0.174	0.174	0.000	2.206	38.768	5.500	20.22
47	0.060	0.168	0.171	0.170	0.002	2.144	35.733	5.500	19.65
40	0.000	0.400	0.404	0.400	0.004	2 455	40 000	8 800	22 50

		0.700	0.000	0.000	0.000	0.050	45 000	E 500	8,708
35	0.060	0.083	0.083	0.083	0.000	0.950	15.833	5.500	8.708 18.514
36	0.060	0.181	0.160	0.161	0.001	2.020	33.862	5.500 5.500	14,339
37	0.060	0.126	0.129	0.128	0.002 0.000	1.584 2.082	28.070 34.697	5.500	19.083
38	0.060	0.165	0.165	0.165				5.500	27.624
39	0.000	0.233	0.232	0.233	0.001	3.014	50.226		
40	0.060	0.161	0.164	0.163	0.002	2.047	34.122	5.500	18.767 33.887
41	0.060	0.285	0.279	0.282	0.004	3.697	61.613	5.500	
42	0.060	0.248	0.250	0.248	0.001	3.241	54.022	5.500	29.712
43	0.060	0.180	0.173	0.177	0.005	2.241	37.343	5.500	20.539
44	0.060	0.133	0.133	0.133	0.000	1.640	27.336	5.500	15.035
45	0.060	0.268	0.270	0.268	0.003	3.504	58.393	5.500	32.116
46	0.060	0.174	0.174	0.174	0.000	2.206	36.768	5.500	20.222
47	0.060	0.168	0.171	0.170	0.002	2.144	35.733	5.500	19.653
48	0.060	0.193	0.191	0.192	0.001	2.455	40.909	5.500	22.500
49	0.060	0.182	0.191	0.187	0.006	2.379	39.643	5.500	21.804
50	0.060	0.187	0.188	0.188	0.001	2.392	39.873	5.500	21.930
51	0.060	0.252	0.263	0.258	0.008	3.350	55.977	5.500	30.787
52	0.060	0.157	0.163	0.160	0.004	2.013	33.547	5.500	18.451
53	0.060	0.164	0.169	0.167	0.004	2.103	35.042	5.500	19.273
54	0.060	0.161	0.167	0.184	0.004	2.068	34.467	5.500	18.957
55	0.060	0.150	0.149	0.150	0.001	1.868	31.131	5.500	17.122
56	0.060	0.232	0.223	0.228	0.006	2.945	49.076	5.500	26.992
57	0.060	0.277	0.278	0.278	0.001	3.635	60.578	5.500	33.318
58	0.060	0.198	0.201	0.200	0.002	2.558	42.834	5.500	23.449
59	0.060	0.289	0.293	0.291	0.003	3.821	63.684	5.500	35.026
60	0.060	0.244	0.244	0.244	0.000	3.172	52.871	5.500	29.079
61	0.060	0.165	0.167	0.166	0.001	2.096	34.927	5.500	19.210
62	0.060	0.149	0.150	0.150	0.001	1.868	31.131	5.500	17.122
63	0.060	0.135	0.138	0.137	0.002	1.688	28.141	5.500	15.477
.64	0.060	_0.179	0.182	0.181	0.002	2.296	38.263	5.500	21.045
6 5	0.060	0.178	0.173	0.178	0.004	2.227	37.113	5.500	20.412
68	0.060	0.165	0.162	0.164	0.002	2.061	34.352	5.500	18.894
67	0.060	0.114	0.115	0.115	0.001	1.385	23.080	5.500	12.694
blank	0.080	0.003	0.003	0.003	0.000	-0.154	-2.571	5.500	-1.414
blank	0.080	0.008	0.003	0.006	0.004	-0.120	-1,996	5.500	-1.098
Cardio1	0.080	0.200	0.199	0.200	0.001	2.558	42.634	40.000	170.538
Cardio2	0.060	0.390	0.383	0.387	0.005	5.139	85.854	40.000	342.616
blank	0.080	0.005	0.008	0.007	0.002	-0.108	-1.786	20.000	-3.532

(ACTUAL) 191 361

Elawetral 12/2/96 Read and Understood By Date Author's Signature 10-1-97

0-1-97

_		_	
. 1	DI	1	

7 TC 7 HDL-C

B TC B HDL-C

HDL-C TC HDL-C

100

Project Number

Subject CETP Transfer Achiety in Sera from CETP-Pephale Immunized Rabbits

GDS - 5-734

^{Page} 073

SEARLE

See bev Kelec Notebook #5748, p. 151 for the CETP activity analy naw data. Below are the Summaries.

Assay used 1:20 delukon of labbit semme 4 conducted for 4 hr includation.

Rabbit 07 below was the only CETP achiety that decreased concernitantly with an elevation of HOL (see previous page).

	RAB SERA	PLATE 1								
	CETP 618			BLANK	10610.5					
	11/27/96									
			CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
		BLANK	10708.3	11038.6	10653					
		BLANK	10233.1	10087.6	10667.6					
		BLANK	11209.7	10987.6	11034.3					
		BLANK	10576.5	10234.2	11084.2					
		BLANK	10676.2	10625	10053.5					
		BLANK	10047.5	10189.6	10902.1					
		POS	2254.77	2740.44	2171.42	78.75	74.17	79.54	77.49	2.90
		NEG	9629.3	9864.26	9518.62	9.25	7.03	10.29	8.86	1.66
1	Rab01 pre 1	0/27/95	9012.24	9502.85	8241.26		10.44	22.33	15.94	5.99
	Rab01 12/4/		8259.51	8726.84			17.75	22.26	20.72	2.57
3	Rab01 3/8/9	6	10566.2	9323.15	9536.1	0.42	12.13	10.13	7.56	6.27
4	Rab02 pre 1	0/27/95	10114.1	8181.17	8412.6	4.68	22.90	20.71	16.10	9.95
	Rab02 12/4/		10136	9739.06	8983.88	4.47	8.21	15.33	9.34	5.52
6	Reb02 3/8/9	6	9302.78	9212.79	8725.57	12.32	13.17	17.76	14.42	2.93
7	Rab02 10/25	5/96	8419.03	8191.19	8426.62	20.65	22.80	20.58	21.35	1.26
8	Rab03 pre 1	0/27/95	8792.16	8906.49	8196,75	17.14	16.06	22.75	18.65	3,59
	Rab03 12/4/		8743.68	9119.08	9092.86	17.59	14.06	14.30	15.32	1.98
10	Rab04 pre 1	0/27/95	8119.24	7743.19	8836.78	23.48	27.02	16.72	22.41	5.24
	Reb04 12/4/		8925.17	7544.31	8308.22	15.88	28.90	21.70	22.16	6.52
12	Rab05 pre 1	0/27/95	8381.97	7789.06	8847.97	21.00	26.59	18.50	22.03	4.14
	Rab05 12/4/		9813.49	9203.93	9662.6	7.51	13.26	8.93	9.90	2.99
14	Rab06 pre 1	0/27/95	9846.44	9315.92	9067.38	7.20	12.20	14.54	11.31	3.75
15	Rab06 12/4/	96	9620.38	8990.1	9737.27	9.33	15.27	8.23	10.94	3.79
<u>116</u>	Rab07 pre 1	0/27/95	9309.37	8929.87	9379.61	12.26	15.84	11.60	13.23	2.28
	Reb07 12/4/		8378.32	8160.07	8082.44	21.04	23.09	24.01	22.72	1.52
	Rab07 3/8/9		7948.98			25.08	17.33	18.50	20.31	4.18
	Rab07 10/25		10048.1	10291.7	10192.9	5.32	3.00	3.94	4.09	1.16
	Rab08 pre 1		9051.83	9461.79		14.69	10.83	12.92	1281	1.93
	Rab08 12/4/		9255.08	9036.05			14.84	13.77	13.79	1.03
	Rab08 3/8/9		8774.37	9884.1		17.30	6.85	16.74	13.63	5.88
	Rab08 10/2		9258.79				5.68	8.08	8.83	3.59
	Reb09 pre 1		9322.28				7.17	16.25	11.85	4.55
	1. ——— Ja 0 i									

an why. + Hat -6) appeared -CTP-7 imp

1-97

Author's Signature Eul	Date 12/2/96	Denie Nachowiak	0ate 10-1-97

Book Number GDS - 5734 Page 074

Arhera from CETP-Pephale Immunized Rabbib Project Number

SEARLE

RAB SERA	PLATE 2								
- CETP618			-BLANK-	10503.0					
11/27/96									
		CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
	BLANK	11282.2	10339.9	10494.8					
	BLANK	11017.4	11239.6	9986.81					
	BLANK	11006.6	11586.5	10983.2	-				
	BLANK	11114.8	10649.8	10276.2					
	BLANK	7210.34	10757.7	10340.8					
	BLANK	9808.3	10603.1	10356.1					
	POS	1973.51	2451.96	2474.61	81.21	76.65	76.44	78.10	2.69
	NEG	9809.02	10570.6	9869.69	6.61	-0.64	6.03	4.00	4.03
25 Rab09 12/4	/95	9585.36	8612.11	8683.51	8.74	18.00	17.32	14.69	5.16
26 Rab010 pre	10/27/95	9191.15	8489.56	8887.09	12.49	19.17	15.39	15.68	3.35
27 Rab010 12/		8071.4	7608.58	7770.91	23.15	27.56	26.01	25.57	2.24
28 Rab1 pre 5/	30/95	8363.19	7508.84	8132.82	20.37	28.51	22.57	23.82	4.21
29 Rab1 7/5/95		9113.94	8269.4	8413.38	13.23	21.27	19.90	18.13	4.30
30 Rab1 10/5/9	95	8318.46	8156.34	8187.48	20.80	22.34	22.05	21.73	0.82
31 Rab1 3/8/96	3	10379.7	8945.67	9019.57	9 1.17	14.83	14.12	10.04	7.69
32 Rab2 pre 5/	30/95	8298.45	8121.16	8340.71	20.99	22.68	20.59	21.42	1.11
33 Rab2 7/5/95	5	7370.99	8480.69	8384.95	29.82	19.25	20.17	23.08	5.85
34 Rab2 10/5/9	95	7666.33	8402.66	8714.38	27.01	20.00	17.03	21.35	5.12
35 Rab2 3/8/96	3	9285.39	9895.01	9315.07	11.59	5.79	11.31	9.56	3.27
36 Rab3 pre 5	/30/95	9571.67	9752.46	9427.22	8.87	7.15	10.24	8.75	1.55
37 Rab3 7/5/9	5	9066.08	9559.74	9427.08	13.68	8.98	10.24	10.97	2.43
38 Rab3 8/9/95	5	8999.02	9667.69	8402.9	14.32	7.95	20.00	14.09	6.02
39 Rab4 pre 5/	30/95	8019.45	8212.66	7808.4	23.65	21.81	25.66	23.70	1.93
40 Rab4 7/5/9		9453.04	9090.95	8065.25	10.00	13.44	23.21	15.55	6.85
41 Rab4 8/9/9	5	8089.22	9194.37	8746.71	22.98	12.46	16.72	17.39	5.29
42 Rab5 pre 5	30/95	8829.54	9717.02	8952.29	15.93	7.48	14.76	12.73	4.58
43 Rab5 7/5/9		8516.51	9987.64	9604.42	18.91	4.91	8.56	10.79	7.27
44 Rab5 8/9/9	5	9072.69	9874.18		13.62	5.99	10.38	10.00	3.83
45 Rab6 pre 5	30/95	8469.02	9238.24	9653.13	19.37	12.04	8.09	13.17	5.72
46 Rab6 7/5/9		8991.33	9504.15	9788.33	14.39	9.51	6.80	10.24	3.85
47 Rab6 8/9/9	5	7722.64	8505.77		26.47	19.02	19.20	21.56	4.25
48 Rab7 pre 5	/30/95	8240.6	9020.81	8988.58	21.54	14.11	14.42	16.69	4.20

Rabbit 2 staved & CETP at last blood. This rabbit had consistent decrease is total cholesterol. - indicates, either poor health or overall & lipoprosein Synthems & this may account for & CETP actuity (low cott man due to & Seum cholesterol). Other rabbit#1 did not show this, is probably unrelated to inmunisation.

Elaine Kul

12/2/96

Denie Nachowiak

10-1-97

Author's

Project Number

SEARLE

Subject CETP Transfer Aduly m Anhera fam CETP-Pephde Immunized Rabbib Book Number

GDS - 5734

Page 075

RLE

TDEV 2.69 4.03 5.16 3.35 2.24 4.21 4.30 0.82 7.69 1.11 5.85 5.12 3.27 1.55 2.43 6.02 1.93 6.85 5.29 4.58 7.27 3.83 5.72 3.85 4.25 4.20

bit over abbit#1 zaha.

-1-97

	RAB SERA	PLATE 3					T	T	Т	
\vdash	CETP618			BLANK	10641.7			 	 	<u> </u>
	11/27/96						 	 	 	
\vdash			CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
Г		BLANK	11755	11175.2	11040.6					0.024
		BLANK	10591.1	10163.1	11345.6		†			
		BLANK	10656.6	10384.9	11051.5		 	 		
Г		BLANK	9925.84	9460.2	10845.5		†	 	 	
Г		BLANK	10694.9	10054.4	10636.4			 	 	
Г		BLANK	10326.9	10346.4	11097.2		†	 	 	
		POS	2089.87	2422.13	2399.78	80.36	77.24	77.45	78.35	1.75
		NEG	10534.1	9918.48	9540.3	1.01	6.80	10.35	6.05	4.71
44	Rab7 7/5/95		9237.54	8913	8333.44	13.20	16.24	21.69	17.04	4.30
55	Rab7 8/9/95		8258.68	8941.53	8852.33	22.39	15.98	16.82	18.40	3.49
51	Rab8 pre 5/30)/95	8512.38	8896.61	8121.48	20.01	16.40	23.68	20.03	3.64
	Rab8 7/5/95		9413.3	8910.75	9439.19	11.54	16.27	11.30	13.04	2.80
	Rab8 8/9/95		8694.87	8989.74	8716.37	18.29	15.52	18.09	17.30	1.54
3	Rab9 pre 5/30)/95	7720.48	8551.09	7977.01	27.45	19.65	25.04	24.05	4.00
3	Rab9 7/5/95		7750.23	8723.74	9015.18	27.17	18.02	15.28	20.16	6.22
	Rab9 8/9/95		8055.35	8291.32	7873.01	24.30	22.09	26.02	24.14	1.97
57	Rab10 pre 5/3	0/95	8579.67	7909.08	8875	19.38	25.68	16.60	20.55	4.65
	Rab10 7/5/95		9027.55	8162.52	8941.2	15.17	23.30	15.98	18.15	4.48
	Rab10 8/9/95		8578.41	8976.45	8962.59	19.39	15.65	15.78	16.94	2.12
60	Rab11 pre 5/3	0/95	8344.44	8058.18	8349.21	21.59	24.28	21.54	22.47	1.57
	Rab11 7/5/95		9097.25	9635.55	9635.24	14.51	9.46	9.46	11.14	2.92
	Rab11 10/5/95	5	9932.16	9223.43	9531.58	6.67	13.33	10.43	10.14	3.34
	Rab11 3/8/96		10474.1	9505.89	9884.74	1.58	10.67	7.11	6.45	4.58
64	Rab12 pre 5/3	0/95	9460.02	8476.52	8583.1	11.10	20.35	19.34	16.93	5.07
	Rab12 7/5/95		8598.62	10379.7	9104.66	19.20	2.46	14.44	12.04	8.62
	Rab12 10/5/95	j	7502.73	9091.06	7972.8	29.50	14.57	25.08	23.05	7.67
67	Rab12 3/8/96		8929.18	10351.3	9343.77	16.09	2.73	12.20	10.34	6.87
			10594	11717	11683.6	0.45	-10.10	-9.79	-6.48	6.00
			10874.6	12001.5	11596.5	-2.19	-12.78	-8.97	-7.98	5.36
			9719.78	11477.5	10783.6	8.66	-7.85	-1.33	-0.17	8.32
		I	10828.9	11947	10791.4	-1.76	-12.27	-1.41	-5.14	6.17
			11358.3	12153.7	11568.4	-6.73	-14.21	-8.71	-9.88	3.87

Rabbit 11 Shaved & CETP acholy. Lee p. 071 to note that Ital was not elevated in this nation. Total cholesterol dropped over dine. This may andbute to & CETP mass due to & Serum cholesterol.

Note: Can't really understand why cholesterols

appear to dup over dine for most rabbits. May
be diet switch, but seems to take a long time.

Claine Kul

Date 12/2/96

Reed and Understood By Denie Nachowia

10-1-97

Book Number	Subject FPLC Analysis on A	appix ne	Project Number
gds - 5734 076	from CETP- Pephale Immunization	ne su	SEARLE
Renformed of	10/31/96.		
V	um added to 375ml	? EDTA-Sau	line
	fexered thru 0.22 a		
	(column)	250µl q	
	500 ul fractions, med	t 60 ul 6	varrup.
		·	
/			
Author's Signature	ul 12/2/96 Reed and Understo	Nachowis	Date 10-1-97

Project

Author's

Subject

0.005

0.829

0.601

0.009

0.021

Project Number **SEARLE** FPIC Analysis on Rabbit 08 from CETP-Pephde. Immunizations

Book Number 5734 GDS -

077

Page

10 0.016 0.001 0.001 0.001 -0.008 -0.006 0.014 0.003 -0.003 0.009 0.013 -0.003 0.011 0.024 0.005 -0.001 -0.003 -0.010 -0.010 0.054 0.003 0,011 0.020 0.047 -0.001 -0.001 -0.010 -0.010 0.031 0.005 0.091 0.005 0.001 0.029 0.012 0.086 0.001 -0.008 -0.010 0.035 0.005 0.001 0.003 0.039 0.005 0.192 -0.001 0.174 -0.008 -0.010 -0.001 0.001 0.001-0.001 0.046 0.003 0.036 0.342 -0.001 0.328 -0.008 -0.010 A) 001 0.764 0.043 0.005 0.032 0.001 0.507 0.001 0.013 0.473 -0.010 1.544 -0.010 -0.001 0.032 0.007 0.027 0.003 0.001 0.005 0.629 0.615 -0.002 -0.008 -0.010

0.017

0.001

-0.002

0.012

READ DATE: 11/1/96 ASSAY NAME: PLATE NUMBER: 110196p1 READER NUMBER:

CHOLESTEROL CALC MEAN SD STD OD 002 OD STD OD 1 -0.134 0.000 0.004 m 0 -0.003 0.003 0.502 **SN/A** 0.005 0.0793 0.0107 **#N**/A #N/A **ENVA** 0.051 0.5 0.047 0.054 0.981 #N/A #N/A SNIA #N/A 0.0013 0.0069 0.004 0.068 0.091 0.089 #N/A #N/A #N/A #N/A 2.172 0.9984 0.0129 0.013 2 0.174 0.192 0.183 #N/A **SN**A 4.088 ***** #N/A SNIA 0.328 0.342 0.335 0.010 6.000 #N/A #N/A 6.042 **EN/A** #NVA 0.490 0.024 0.612 0.001 0.473 0.507 6 7.712 0.616 0.623 0.009 8 0.629 10.138 0.815 0.801 0.829 10

Author's Signature Kul Date 12 Read and Understood By Nachowa 10-1-97

?LE

GDS - 5734

FPLC-Rabbit08

Project Number

SEARLE

078

	ESULTS (SING	CLICATES)						
SAMP.			CALC	CALC	FXN	ng	CMIT	TOTAL
NO.	(mi)	00	ug	ug/ml	VOL	FXN	(-)	LIPID
1	0.060	-0.003	-0.172	-2.870	0.500	-1.435	0.000	31.448
2	0.080	0.003	-0.097	-1.610	0.500	-0.805	0.000	
3	0.060	0.005	-0.071	-1.190	0.500	-0.595	0.000	
4	0.080	-0.001	-0.147	-2.450	0.500	-1.225	0.000	10 01 /7 401
5	0.060	-0.001	-0.147	-2.450 	0.500 0.500	-1.225	0.000	VLDL(5-13)
7	0.060	0.001	-0.122 -0.122	-2.030 -2.030	0.500	-1.015 -1.015	0.000	%
8	0.080	0.005	-0.122	-1.190	0.500	-0.595	0.000	0.11
9	0.060	0.009	-0.021	-0.349	0.500	-0.175	0.000	U
10	0.060	0.011	0.004	0.071	0.500	0.035	0.035	
11	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
12	0.060	0.003	-0.097	-1.610	0.500	-0.805	0.000	
13	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
14	0.080	0.013	0.029	0.491	0.500	0.245	0.245	LDL(14-29)
15	0.060	0.005	-0.071	-1.190	0.500	-0.595	0.000	17.335
16	0.080	0.009	-0.021	-0.349	0.500	-0.175	0.000	%
17	0.060	0.013	0.029	0.491	0.500	0.245	0.245	55.12
18	0.000	0.02	0.118	1.961	0.500	0.981	0.981	
19	0.060	0.029	0.231	3.852	0.500	1.926	1.926	
20 21	0,080 0,080	0.039 0.048	0.357	5.953 7.423	0.500	2.976	2.976 3.712	
21 22	0.060	0.043	0.445 0.408	7.423 6.793	0.500 0.500	3.712 3.396	3.712 3.396	
23	0.060	0.032	0.406	4.482	0.500	3.366 2.241	2.241	
24	0.060	0.021	0.130	2.171	0.500	1.086	1.088	
25	0.060	0.014	0.042	0.701	0.500	0.350	0.350	
26	0.060	0.011	0.004	0.071	0.500	0.035	0.035	
27	0.060	0.012	0.017	0.281	0.500	0.140	0.140	
28	0.060	0.005	-0.071	-1.190	0.500	-0.595	0.000	i
29	0.060	0.003	-0.097	-1.810	0.500	-0.805	0.000	
30	0.060	0.005	-0.071	-1.190	0.500	-0.595	0.000	HDL(30-47)
31 92	0.060	0.007	-0.046	-0.770	0.500	-0.385	0.000	14.078
32 33	0.060	0.012	0.017	0.281	0.500	0.140	0.140	% 44.77
33 34	030.0 030.0	0.016 0.024	0.087 0.168	1.121 2.802	0.500 0.500	0.581 1.401	0.561 1.401	44.77
35	0.060	0.024	0.168	4.272	0.500	2.136	2.138	
36	0.060	0.035	0.307	5.112	0.500	2.558	2.156	
37	0.060	0.038	0.319	5.322	0.500	2.681	2.681	
38	0.060	0.032	0.269	4.482	0.500	2.241	2.241	
39	0.080	0.027	0.208	3.432	0.500	1.716	1.716	
40	0.060	0.017	0.080	1.331	0.500	0.688	0.666	
41	0.080	0.001	-0.122	-2.030	0.500	-1.015	0.000	
42	0.060	0.005	-0.071	-1.190	0.500	-0.585	0.000	İ
43	0.060	0.005	-0.071	-1.190	0.500	-0.595	0.000	
44	0.060	0.005	-0.071	-1.190	0.500	-0.585	0.000	
45	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
46 47	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
47 48	0.060 0.060	0.003	-0.097	-1.610	0.500	-0.805 -1.015	0.000	
48 49	0.060	0.001 0.001	-0.122 -0.122	-2.030 -2.030	0.500 0.500	-1.015 -1.015	0.000 0.000	
5 0	0.060	-0.001	-0.122 -0.147	-2.450 -2.450	0.500	-1.015 -1.225	0.000	
50 51	0.060	-0.001 -0.001	-0.147 -0.147	-2.450 -2.450	0.500	-1.225 -1.225	0.000	
52	0.080	0.001	-0.122	-2.030	0.500	-1.015	0.000	
53	0.000	0.001	-0.122	-2.030	0.500	-1,015	0.000	
54	0.060	-0.001	-0.147	-2.450	0.500	-1.225	0.000	
55	0.060	-0.001	-0.147	-2.450	0.500	-1.225	0.000	
56	0.060	-0.002	-0.160	-2.660	0.500	-1.330	0.000	
57	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
58	0.000	-0.003	-0.172	-2.870	0.500	-1.435	0.000	
59	0.060	-0.001	-0.147	-2.450	0.500	-1.225	0.000	
60	0.060	0.001	-0.122	-2.030	0.500	-1.015	0.000	
61	0.060	-0.001	-0.147	-2.450	0.500	-1.225	0.000	ACTUAL
Cardio1	0.060	0.764	0.764	12.733	10.000	127.333		194
Cardio2	080.0 080.0	1,544 -0,002	1.544	25.733	10.000	257.333		361
444	0.000	-0.002	-0.160	-2.660	10.000	-26.602		

Author's Signature Eucl

Date 12/2/96

Read and Understood By Denice Nachowick

10-1-97

SEARLE

?LE

Project Number Subject FRIC-Rabbit 08 Book Number

GDS - 5739 Page

1	2	3	4	5	•	7	8		10	11	12
-0.00	0.001	0.001	0.006	0.009	0.013	0.010	0.010	0.003	0.003	-0.005	0.003
B 0.050	0.057	0.001	0.009	0.010	0.010	0.015	0.008	0.008	0.001	-0.005	-0.005
d 0.093	0.097	0.002	0.005	0.015	0.008	0.018	0.009	0.005	0.003	-0.005	-0.005
0.178		0.001	0.004	0.021	0.006	0.019	0.007	0.004	0.003	-0.005	-0.006
	0.358-	0.002	0.003	-0.028-	0.006	0.019	0.006	- 0.004	0.003	0.004	0.005
0.505		0.002	0.005	0.027	0.007	0.018	0.005	0.003	0.750	-0.005	-0.005
0.670		0.002	0.010	0.023	0.008	0.016	0.004	0.004	1.521	-0.005	-0.004
0.818	_	0.006	0.007	0.017	0.009	0.014	0.005	0.003	0.003	-0.004	-0.005

READ DATE:
11/1/98
ASSAY NAME:
PLATE NUMBER:
110196p2
READER NUMBER:

CHOLESTEROL ASSAY											
ug			MEAN	SD		• ,					CALC
STD	OD 1	OD 2	OD	OD							STD
0	-0.001	0.001	0.000	0.001	m	ь					-0.171
0.5	0.050	0.057	0.054	0.005	0.0803	0.0137	#N/A	#N/A	#N/A	#N/A	0.495
1	0.093	0.097	0.095	0.003	0.0010	0.0053	SN/A	SN/A	#NVA	SN/A	1.012
2	0.178	0.187	0.183	0.006	0.9990	0.0100	STVA	#N/A	#N/A	#N/A	2.102
4	0.336	0.358	0.347	0.016	*****	6.000	EN/A	#N/A	#NVA	#N/A	4.151
6	0.505	0.496	0.501	0.006	0.627	0.001	#NVA	ENV A	#N/A	#N/A	6.063
8	0.670	0.616	0.643	0.038							7.837
10	0.818	0.817	0.818	0.001							10.011

Book Number POCORO RABBITS - CETP Subject Project Number GDS -Imnumzahan Resulb SEARLE RLE Debbie Hewerman organized the immunisation of I goat and 2 nabbits with Ruman recombinant corp at Pocono Farms. Summarized here are the souls obtained by Annexe Frick on the unhibitory achury of the purposed Igos from these animals. See arnette tricke novembe 6865 pp.063-for From: ANNETTE G FRICK at MONSL708 Date: 9/23/96 11:25 AM Priority: Normal Receipt Requested TO: ELAINE S KRUL at MONRCC02 CC: DEBORAH M HEUVELMAN Subject: Pocono Antibodies Hello! I tested the nine antibodies in the two hour inhibition assay with rCETP: Assay setup- made up 50µg 1ml stocks of each antibody; used TP2 as my control IgG; used rCETP prep 838 at a 1:300 dilution (which should yield ~20% transfer); used HDL146 & LDL149 as source of Lipoprotein pool. -performed 1:2 serial dilutions 4x's of each antibody (50µg, 25µg, 12.5µg, 6.25µg, 3.125µg) -IqG Wells: added 150µl Lipoprotein pool + 25µl IgG + 25µl CETP -Control wells: added 150µl Lipo pool + 25µl CETP + 25µl Buffer -Blanks: added 150µl of Lipo pool + 50µl Buffer Results: the only antibody that inhibited was the control(TP2); I have attached the excel spread sheets (version 4.0) and also the graphs (Delta Graph). If you have any questions, please let me know. I will repeat the assays using the above conditions just to make sure the results are correct. Annette Author's Signature Kul 1/24/97 Read and Understood By 10-1-97

GDS - 5734
Page 084

Subject

Pocono Rabbib -CETP Immunizahas Project Number

SEARLE

Pocono IgG 9-19-96

Author's Signeture Kul Date 1/24/97 Denie Nachowick 10-1-97

Project .

Author's S

Project Number

Subject

Paceno Rabbib
CETP Immunization

Page

085

1RLE

-(-97

Pocono IgG 9-19-96

Conclusions: I did not really look carefully of
the initial data from Annette. It
is true that the goat ant-human CETP
anthody did not appear to initibit at the
doses kerted compared to monocloral TP2.

lawever, both nabbib showed contibilian of CETP activity. The 1050 of TP2 & 2-4 nm and shat of the polyclimal publish appears to be 100 nm in our corp about.

Need to determine whether the tab would whitist pabbit COTP, because we could possibly treat rabbits passively to this IgG to whilst cerp over a longer term.

Claime Kul 1/24/97 Denie Nachowick Date 10-1-97

Project Number 505711 SEARLE	Subject TB2 / Week 190 Chol Oce	Book Number GDS - 5748 Page 125
7001 olien p. 95 5 n	pare CETP-TE and Non-Tg W/ 1% Cholisticol Diet for e pn 10/25) Ketro-arkita 50 pd - Cardiae Stick, w un + 24 hour time pt . Lo Cholisticol & counts.	I week (Begin I wyest of HOL 151, ender cos
Rev	Tg ruce 6 5 min 6 24 H 3 # 12851 # 1009960902 B 6-1-96	n group A Group B
F 2		oup C oup D

Brury Kepic

200

1-1-90

Read and Understood By

Roah 80

Dato 1/27/19

Project Number Book Number Subject 5748 GDS -565711 T62, aut **SEARLE** 126 flumas weglots 10/31 Group A Group B Non-Tq 24 H. Non-Tg 5 7mm A1 32.2 g. BI 30,5 وس مرح \mathcal{O}^{τ} 31.1 رحم 29.7 32 A2 33 31.3 07 A3 33.6 8 B4 30.6 31.5 A 4 **B**5 Q 27.6 A 5 31.6 BL 25.7 A 6 33.4 1/1 Group C Group U @ DKI. 37 A9 24 H. 5 min احن 07 Di 25.8 26.8 g CI O7 ð 30.0 C2 25.3 02 7 B 03 C3 26.7 27.9 9 22.0 D4 C4 22.6 C5 Q D5 23.1 23.3 06 23.6 06 23.8

סו

lio ex Co

Authors

Project Number Subject Book Number GDS.5748 565711 TG2 , and. *SEARLE* 10/31 and 1/1 Do cardiae stick for sampling 26 gauge \$1/2" mide EDM microtainer De use. Spin. Save serum. Count 10 pl sera in 1 ml micro seint 20, 24 necle peate , Data Pile Name: PPLC.037 Save Bach Plate to a Pile: no 10/31 CPM A tSIS 123.40 24.545 Blank 58.62 21.385 91.60 19.682 87.88 30.944 152.30 24.258 1/1 60.22 22.650 5 min 6224.66 20.934 A 314.76 22.120 B 10 µ 3918.40 21.024 AZ 244 240.92 21.641 B2 4651.78 20.716 A3 233.92 21.016 B3 4212.18 20.078 A4 201.12 23.50664 321.48 23.212 85 4173.52 19.779 AS 4368.78 21.179 Ab 414.90 21.229 BV 233.54 21.842 O 6119.66 20.682 c) 7146.76 19.102 cz 264.34 22.234 p2 **5374.58 20.895** 45 223.68 24.461 p5 7958.26 20.790 C4 239.38 21.270 04 1834.62 20.186 c5 250.92 25.469 DS 6280.58 21.601 c6 186.68 20.697 P.6 50.56 25.955 Blank 41.88 36.843 Hank

live 200 pl inch to make pools. 1200 pl total / group Fictor. lipping 500 pl to FPIC. (Superose 6 x2) Count 200 pl / fx in / ml Sount 20 Do chalustoral profes on fx's.

29.02 21.416

36.56 30.003

36.14 19.621

44.48 23.211

55.24 27.716 67.12 19.764 34.20 22.627

Book Number
GDS - 5748
Page

Subject

TB2, cont.

Project Number
5057(1
SEARLE

FPLC.037.XLS

Non-Ta 5 min	01 Nov 96 13:40	
/ 239.88 21.347 A	A A	GROWP B FPIC.038. XLS
141.16 19.385	CPM A tSIS	3,444
215.12 12.974	-49 195.96 21.507	NON-TG 24 H
204.70 22.249	136.30 21.854	
382.96 17.688	161.46 18.403	6
252.40 17.550	140.94 23.046	GROUPC FPLC 039 XLS
453.54 19.964	207.04 19.124	TE 5 MIN
331.86 19.364	102.06 24.766	
288.76 18.095	132.58 24.636	
10 254.00 20.633	94.66 28.684	GROUP O FPLC 040 XLS
349.88 20.042	110.60 24.419	
191.24 18.292	134.08 25.568	TG 244
240.36 21.545	187.06 18.626	
196.54 20.314	60 87.04 24.861	
247.78 18.812	82.06 29.703 Blank.	
265.24 19.297	68.98 23.645	
398.86 18.202	71.32 25.086 "	
269.68 18.754	87.46 28.126 Blanki	
361.00 20.812	127.08 25.122	
<i>2</i> 0328.32 19.718	61.70 23.008	
361.04 19.103	89.40 29.209	
383.78 19.584	63.00 30.181	
450.32 17.651	69.64 26.034	
299.70 18.316	85.10 27.344)
283.70 19.889	119.52 23.382	
253.72 18.245	62.00 30.500 ¥	
305.32 18.926 404.74 20.044		
634.12 17.430		
30889.14 18.614		
1604.98 18.621	· ·	
3009.00 18.156		,
5111.74 18.608	\	
6682.70 17.738		/
8224.08 16.785	/	/
11915.0 18.110	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
13994.4 17.948	\sim	
11286.4 18.008	λ	
7128.88 18.744	`	· · · · · · · · · · · · · · · · · · ·
404095.04 18.430	· ·	· · · · · · · · · · · · · · · · · · ·
2155.02 17.664	\mathcal{N}	
1341.28 18.533		
823.46 19.024	· / /	, :
538.90 18.430	\sim /	/
338.28 18.171		\smile
260.64 19.023		
261.82 18.733		
42.76 18.666		•
1.5		

Parting Signature

Date

11-45-96

Page and property

Date

1/27/9

Author

Project Number
505711
SEARLE

S

TG2, cont.

Book Number
GDS - 5748
Page

GROUP D FPLCOUC XLS

Subject

CPM A tSIS 79.72 27.230 37.88 33.513 41.68 40.009 54.78 31.989 70.94 24.300 101.12 23.576 179.36 21.051 158.36 21.395 112.56 21.648 100.50 25.053-10 88.62 28.486 70.94 26.321 88.34 29.045 80.38 28.029 89.46 23.081 106.68 28.913 125.14 23.723 106.48 21.804 129.56 23.944 123.10 22.680-30 124.46 24.326 129.26 23.217 111.08 23.174 78.44 26.358 88.32 32.112 69.48 29.114 67.14 29.255 81.62 30.162 97.72 23.871 78.64 24.628-30 114.76 23.151 122.54 24.311 147.80 20.301 168.20 21.131 198.06 19.326 253.28 19.703 321.66 19.672 327.14 19.425 240.92 20.739 39

01 Nov 96 22:17 TopCount - 3.01 CPM A tSIS 184.12 21.468 40 141.84 21.307 115.12 23.792 104.46 24.942 88.14 21.722 81.34 25.328 90.98 29.855 117.30 24.722 66.08 32.312 73.18 27.715 Blank 59.26 31.93949 59.62 42.027 50 63.98 27.809 72.34 37.876 44.78 37.042 50.16 34.145 44.20 29.876 55.80 29.434 56.36 28.807 78.20 32.987 54.52 35.825 56.12 33.481 6c 39.84 32.848 Buffir (200 pt) 42.72 40.845 " gum of cpin's 48.60 34.293 " 90483 . 29156.5 12.142 300 pe pool A 1316.74 12.845 · 8 100 68 39106.1 12.210 C 117664 1168.92 12.939 47.38 37.041 Bank 61.46 32.212 82.94 35.925 6468 45.22 32.732

Book Number

GDS-5748

130

TGJ, went

565711 SEARLE Project Na

1% CHOL DIET 1 WEEK FPLC COUNTS

She counts are gone after 24 hours. Next experiment will go for 4 hours.

Author's Signature

127/99

127/99

Authors

Project Number Subject
5757//
SEARLE

TO2, cont.

Book Number
GDS - 5748
Page 121

<u>13</u>

ATE: //-/-95 SSAY: 7 CHOL			96				1				
88AY:	1 /	170L	T								
	1	2	3	4	8	- 6	7		10	- 11	12
A	5	0	AL		83		<u>c5</u>	 A			
•	×	****			اجدا			 _			
8	0.5		H3		Pu		06	B			_
C			A3		135		DI	c			
D	a		Fiel		B6		DZ	 D			
			AS		CI		DЗ	CON			├
E	4		1-1-					1			
F	le		A6		02		04	CON			
a	Ş		BI		<u>C</u>		D5				
н	10		E2		24	•	D6				

Dangers 1:10 use 40 w + 60,00 H20 (30,00 mm + 200,0008) Con 11-20 ms Hour + 60,00 H20 (20, 11-20 ms Hour + 60,00 H20

TAL CHOL	ESTER	OL	↓ }		
11/4/96				 	TG
		NON-TG	NON-TG	TG	
		5 MIN	24 H	5 MIN	24 H
		GROUP A	GROUP B	GROUP C	GROUP D
		76.4	99.8	71.2	65.9
		56.4	84.9	75.2	83.5
		69.2	+	76.2	58.2
		62.3	48.6	62.1	58.7
		69.0	68.8	53.3	22.8
		66.8	58.5	68.4	58.5
+		 			
	MEAN	66.5	71.7	67.7	57.9
	STDEV	7.1	20.6	8.7	19.7

TGATCH. XLS

Jotal choustwols show no change between to and Non-Tg of between 5 min and 24 hour.

Author & Squature	0ate 11 - 5 - 96	Reduced and Updaystood By	Date 1/27/89
W. C. Branch			

Book Number
GDS - 5748
Page 132

T62

190 CHUL DIET I WEEK

Project Number

505711

SEARLE

TG2				
11/4/96				
1-WEEK 1% CHOL	DIET			
FPLC PROFILE SU				
	NON-TG	NON-TG	TG	TG
	5 MIN	24 H	5 MIN	24 H
	GRP A	GRP B	GRP C	GRP D
VLDL fx 5-13	16.2	8.7	21.6	21.2
%	4	3	7	7
LDL fx 14-29	52.3	91.8	41.1	51.8
%	14	26	12	18
HDL fx 30-47	304.7	247.9	263.6	207.2
%	79	70	80	71
TOTAL ug CHOL	385.4	352.7	330.9	291.7

VLDL is up compare to previous exp (on regular chow) LDL up slightly.
HDL is the same see pg. 111

Authory Signature Date 11-5-96 Respond ungerstrod By Date 1/27/99

Project ^

5

//-

F

Author's

Project Number Book Number Subject GDS - 5748 TG3 565711 190 CHOLESTEROL CHOW/ 2 WEEK SEARLE 12 mice (le Tg and le Non-Tg) en 190 chol det 11-le since 10/25 (12 days). Micki Melton will sing 50 pl HOL 151, p. 95. Va (4 hour ineabation. proutal sinus. Under 600 bued via cardiae stick use EDTA tubes, pn use 30.8 g. Group A Non-Tg AI 30.4 A2 A3 30.0 đ A4 28.4 **∂**™ A5 28.7 A 6 3 26.7 22.7 9. Moup B CETP Tq BI B2 8 21.5 B3 8 22.8 F5 9 231, 232 8-1-96 F5 87 241, 242, 243 8-9-96 F5 9 231,232 B4 5 22.4 25.8 8 B5 BL 23.8 CPM A tSIS FPLC. 041 1238.54 21.029 A 10 pl sera in Ind seint 20 607.96 20.839 A2 1245.32 21.503 A3 1737.68 21.216 A4 1119.26 18.198 A5 1582.14 20.580 A6 693.54 17.554 BI 752.00 18.205 B2 **825.46 20.082** 63 1825.60 18.602 BH 883.86 15.315 B5

Author's Signature	Date	Read and Understood By	Date 1/17/99
Durry Kikee	11-6-96	165.700	10.1

277.80 18.114 Bb

Book Number
GDS - 5748
Page 4 0 4

T

TG3, cont.

SEARLE

11-6-96

200 per rach, group A feeter 1500 per appeire to FPIC

Group B, 135 pl each feter 500 pl appeid

Count 200 M of each fx on top count, in 1 ml secret 20. FPLC. 644 Groups - Tg. FPLC. 043 Groups - Non-Tg.

Author's Gignature	Date	Read and Understood By	Date 1 1) 7 /89
- 1 murly Reker	11-8-96	1000	/62/1/

Project Number 565711 **SEARLE**

TG3, cont

GDS - 5748

135

4 Hour CETP Activity in vivo

		L
	TG	NON-TG
VLDL	4488	1887
% of total	15	7
LDL	6586	5180
% of total	22	18
HDL	16245	19428
% of total	54	68
Total	30170	28449

Counts % of Total

The Tg VIOL is up (15%). There may be some Transfer activity going on We may need to get total counts up wen higher and get cholisterol up higher.

Authorigsignature	Date 11 - \$-96	Read and Understood By	Dato 1/27/98
0			

Book Number

Page

5748 GDS -

136

Subject

TO3, wnt 2 wk dut/4 hour

565711 **SEARLE**

2 WEEK DIET/4 HOUR 11-7-96

filename: TG3 SUM. XLS

TG3		
11/7/96		
2 WEEK 1% DIET		
4 HOUR		
	NON-TG	CETP-TG
	GRP A	GRP B
VLDL fx 5-13	6.6	21.5
%	2	8
LDL fx 14-29	79.9	31.2
%	21	11
HDL fx 30-47	288.2	219.9
%	74	78
T TAL ug CHOL	387.3	282.3

uthor's Sgnature	Date	Read Bits Under sold By	Date 1 ha Kis
mury Repec	11-8-96	(FOBIL	121/11

S

Project Number
505711
SEARLE

TB3. 2 week dut, 4 kour Book Number GDS - 5748

Page

137

Lipid profile, p. 136, phones VIOL up to 8 % from 1% (mormel chow, p. 111)

Sotal cholisterol is not higher - we may need a longer time period or we may need additional fat in diet. Check witnesture.

TOTAL CHO	LESTE	SOL .	
11/7/96			
		NON-TG	CETP-TG
		4 HOUR	4HOUR
		GROUP A	GROUP B
		99.8	65.6
		43.0	
		62.3	68.4
		91.7	88.5
		73.9	90.3
		104.4	
	MEAN	79.2	78.2
	STDEV	23.8	13.0

Subject

GDS - 5748
Page 138

Subject

Lipoprotein Isolation

Project Number

SEARLE

Mouse Lipoproteins

Cholesterol (µg/ml)

Whole Sera		1181
	*	60.7
% VLDL	5.9	69.7
% LDL	10.9	128.7
% HDL	65.0	767.7
VLDL fraction		539
LDL fraction		907
HDL fraction		11740

Hamster Lipoproteins

Cholesterol (µg/ml)

Whole	Sera		923
		8	
ક	VLDL	16.8	155.1
ક્ર	LDL	20.1	185.5
ક	HDL	47.2	435.7
VLDL	fractio	n	846
LDL f	raction		820
HDL f	raction		7468

from mouse a hamster lipoprotein zisolation, p. 124.

Author's Agnature

11-8-96

Rept and Understood By

Date 1/27/91

//

]]

.

Author

GDS - 5748 Rabbit Lipoproteun Isolatron *SEARLE* 11-13-96 100 me of pre-immune Rabbit sera obtained from Harriet Kurlander D = 1.020 Divide into 4 tuber 20 ml each add ~ 3 ml 1,006 EDTA Na. ildra-cfg. 48 K 4° 24 H. nobrahe The remaining 13 ml of sera - aliquot 250 ul ea. Store -40c. 11-14-96 Collect VLDL (top) into 50 ml corrient. ~ 25 ml. Speet. 12.5 rul lach + 10 ml 1.006 Edta Da. Discard middle. 3 Collect LOL/HOL (bottom). Black rubber stopper part of cap broke off during spin Some with particles of it contaminated the bottom. 20.2 me D= 1.055

gramo of NaBr = 20.2 (1.063-1.055/1-(0.2447 x 1.063) = 20.2 (0.008/1-0.026) = 20.2 (.008/.74) = 0.218 0=1.062

Had 3 me 1.006 EDTH Na

4 Spin VLOL and LOL/HOL 48K 24 hours 10°c

Authoric Signature

Powerly Kipes

11-14-96

Regulard Ingertated By

Date 12-129

191

GDS - 5748 Rabbix LDC/HDL , Step, Cont. 11-18-96 a Superior of the top & place of VIDL send LOL (top) / HDL (bottom) were removed from etgg on 11/15. LDL/HDL, seperated, stored 4°c. LDL D = 1.008 Vol = 6.6 ml protocol p. 115 V2 = 6.6 (1.008 - 1.020) / (1.020-1.006) = 6.6 (-0.012)/(0.014) = 6.6 (-,000168) = -.0011088 ???? Consult Elaine: Add 15 me of 1.006 pol. (wash) Spin 48 K 10°C 0=1.078 vol. = 13.8 ml HOL grams Na Br. = 13.8 (1.21 - 1.078) / 1- (0.2447 x 1.21) = 13.8 (0.132)/1-0.296 = 1.822 / 0.704 = 2.588 Add this amount of Na Bs. Add 5 ml 1.21 sol. D = 1.199 Spin 48 K 10°C 43 Hours.

Author's sighature

Date 11-19-96 PD 70 Date 1299

Author

TG4 3Keck/2 Hour

Book Number GDS - 5448

11-15-96

6 PETP-TQ Group B

Subject

mice on 1% chal diet price 10/25. Inj. 3HOL 151 (p. 95) 50 pl via prontal Junus.

T6 # 200, 201, 222, 223, 235, 229, 230?

21.79. GroupB B1 32.99. AI Group A BZ 23.1 29.6 Aa B3 20.6 29.2 A3 23.8 B4 T A4 26.1 24.9 T 28.4 B5 A5 26.7 27.7 86 A6

At 5 min do eya stick n/ capillary two for counts: Spin. Count 10 pl in 200 pl scint 20. FPLC . 049

> CPM A tSIS 2379.44 18.744A 1663.72 19.121⁶² 5213.60 20.09343 5314.74 18.808A4 1818.54 18.0529s 3389.66 18.922A6 4217.52 19.89781 2097.76 20.0468न 6357.04 20.8398 2691.96 20.14184 4276.56 17.6738s 3851.26 19.87886 3613.66 21.858 -> See. of HOL 151 (1:10)

Book Number Project Number GDS - 5748 TO4 - cont. 565711 **SEARLE** Jake Cardiae stick into EDTA muro tamers 200 pl sira each for pool fetter 500 pl applied 800 pl sera, except #3 100 pl and 100 pl #5 fector 500 ul appliel For total cholisteral use 40 pel of 1:10 sol. 11-18-96 0.003 -0.011 -0.012 READ DATE: -0.013 0.035 0.036 0.244 0.116 0.119 -0.012 -0.012 -0.013 -0.013 -0.013 11/18/96 ASBAY NAME: 0.073 -0.012 0.081 0.218 0.221 0.001 0.005 -0.011 -0.011 -0.013 -0.011 -0.012 0.158 -0.012 TG4 TCHOL 0.162 0.257 0.156 0.158 -0.013 -0.012 -0.012 0.284 -0.012 -0.008 0.304 0.319 0.282 0.282 0.244 -0.011 -0.011 -0.012 -0.011 -0.012 0.249 -0.011 0.244 0.262 0.158 0.162 -0.001 -0.009 -0.010 -0.013 eg 8TD 0.003 0.036 **OD** 1 STD 002 0.003 0.036 0.003 0.000 0.001 -0 014 0.0752 0.0041 0.418 #N/A **SN/A** 0.073 0.077 0.006 0.0005 0.0025 #NA 0.081 #N/A 0.970 0.003 0.0048 #N/A #N/A MVA #N/A 2.074 0.160 0.319 0.011 6.000 MWA 4.089 0.312 0.458 0.001 0.550 0.000 6.024 0.604 0.605 0.605 0.001 7.986 AMPLE RESULTS (DUPLICATES) CHOLESTEROL STD CURVE CALC. MEAN CALC. mg/di CHOL (mt) 0.040 GD 2 00 00 0.208 0.005 2759 68.970 68.970 0.215 0.212 0.040 0.244 0.254 0.249 0.007 3.258 81.439 0.218 0.221 0.220 71.630 10.000 0.040 0.257 0.264 0.261 0.005 3.410 85.282 10.000 85.262 92.411 82.769 0.200 0.040 0.282 0.282 0.282 0.253 0.000 3.696 10,000 92.411 10.000 0.244 0.013 3.311 82,769 0.177 0.040 0.184 0.181 0.005 2.347 58.663 10.000 58.663 8 9 10 0.040 0.191 62.154 0.190 0.192 0.001 2.486 10.000 0.040 1.781 44.532 10.000 0.040 0.116 0.119 0.118 37.716 10.000 37.716 0.040 0.001 0.005 0.003 0.003 -0.014 -0.355 10,000 -0.355 12 13 0.158 50.849 10,000 0.158 0.157 0.001 2.034 50.849 0.040 0 244 0.247 0.004 3.224 80.608 10.000 80.608 0.180 2074 0.182 51.847 felinance: TG4 CH . XLS

11-19-96

Author's

50

45

40

25

15

5

Project Number

505711

SEARLE

Subject

TG4, cont.

GDS 5748

Page

143

TOTAL CH	OLESTER	KOL		
3 WEEK D	HET/2 HOL	JR		
11/15/96				
		NON-TG		CETP-TG
1.		2 HOUR		2 HOUR
		GROUP A		GROUP B
		69.0	Г	58.663
		81.4		62.154
		71.6		44.532
		85.3	\vdash	37,716
		92.4		
		82.8	_	50.849
			_	
	MEAN	80.4		50.8
	STDEV	8.7		10.0

TOTAL CHOLESTEROL 3 WEEK/2 HOUR

FPLC PROFILE

FRACTION NO.

from 2 WK study, p. 136 in CETH-Tq. mice.

fireme: TG4 SUM. XLS

	NON-TG	CETP-TG
	GRP A	GRP B
VLDL fx 5-13	20.8	28.6
%	6	12
LDL fx 14-29	55.3	55.1
%	15	24
HDL fx 30-47	281.7	138
%	76	60
TOTAL ug CH L	369.5	230.4

Author's Sanature	Date 11-19-96	Read and Independed By	Date 1/27/99
Mueria kikee			

198

Book Number GDS - 5748

Subject

TB4 3wk/2 Hour

Project Number

5657 (/

SEARLE

2 Hour CETP Activity in vivo

We would like to get the counts up higher. M. Milton write oblicts HDL 151 so not can my 100 ml, raising counts, but not doubling which would be too many counts

We will try a 4 week feeding study to stablize luces.

Fixoname:
TB4 FPLCA = CETP-TE (GROUPB)
TB4 FPLCB.XLS = NON-TE (GROUPA)

Author Signature
12 Mercy Keric 11-19-96 Program Wigers Jody By

Date 1/27/99

// ·

Н

11-5

Book Number Project Number Rappit GDS-5748 545711 HOL Prep, cont. from p. 140 SEARLE 11-20-96 LOL Shere so no kiseble LOL layer on the bottom. Collect top a middle together since they look the same Save 40c Collect lestorm (LDL) Save 4°c. Remore top (HOL) There is no middle. Save HAL bottom 4°C. top: 0 = 1.156 Vol = 8.8 ml V2 = 8.8 (1.156 - 1.000)/(1.000 - 1.006) = 8.8 (0.136)/(0.014) = 85.49 ml and this amount of 1006 sol. 85.49 + 8.8 = 94.29 ml D = 1.016 Spect between 4 tubes. Drop one tube & lost some. 48K 24H 10°C 11-21-96 HIDL : Remove top and middle. Save bottom (HOL) 1 = 1.025 VA = 9.5 ml cout -

Author's Signature

Date

Book Number Subject Project Number GDS -5748 Rubbit Apoprotein Hourour 565711 Page 46 **SEARLE** 0.002 0.002 0.193 0.078 0.072 0.022 0.018 0.038 0.040 -0.001 0.001 0.224 0.031 0.868 1.322 0.002 -0.001 11/22/98 0.031 0.015 0.018 0.003 0.008 0.858 0.079 0.078 0.065 0.074 0.019 0.023 0.228 0.224 0.399 0.452 0.000 0.000 AREAY HAME 0.151 0.009 Rabbit Lipoprotein 0.153 0.249 0.288 0.083 0.092 0.002 0.003 0.007 0.004 0.002 0.297 0.425 0.060 0.002 0.000 T Chol 0.304 0.422 0.148 0.149 0.061 0.126 0.119 0.472 0.439 0.034 0.034 0.009 -0.002 0.001 0.000 -0.002 0.004 0.002 0.013 0.612 0.607 0.147 -0.002 -0.002 -0.002 0.007 0.002 0.743 0.754 0.600 0.660 0.183 0.188 -0.002 0.001 -0.001 0.000 0.003 0.008 CHOLESTEROL ASSAY 21D MEAN 8D CALC **QD 1** OD 2 STD OD OD 0.002 0.002 0.024 0.002 0.000 0.5 0.031 0.031 0.031 0.000 0.0754 0.0002 #N/A #N/A 0.408 1 2 0.079 0.078 0.079 0.001 0.0005 0.0026 #N/A #NVA #N/A #N/A 1.038 #N/A 0.151 0.153 0.152 0.001 0.9997 0.0048 #N/A #N/A #N/A 2.013 0.297 **EN/A** #N/A #N/A 0.304 0.301 0.005 6.000 **SN/A** 3.981 0.439 #N/A SNVA 6.036 0.472 0.456 0.023 0.563 0.000 #N/A **SNVA** 0.612 0.607 0.610 0.004 8.078 CHOLESTEROL STD CURVE 0.743 0,008 9.921 y = 0.0754x + 0.0002 SAMPLE RESULTS SAMP MEAN CALC CALC mg/di CHOL o 0.600 NO. OD 2 (ml) OD 1 00 OD **ug** 2.762 0.020 0.193 138.082 10,000 138.082 0.224 0.209 0.022 0.020 0.015 0.018 0.017 0.002 0.216 10.801 10.000 10.801 O 0.200 3 0.020 0.065 0.074 0.070 0.006 0.919 45.936 10.000 45.936 0.020 0.249 0.288 0.269 0.424 0.028 3.557 177.857 10 000 177 857 hdi sera 0.422 140.305 0.040 5.612 10.000 140.305 un CHOLESTEROL 0.002 0.040 0.034 10.000 0.034 0.034 0.000 0.448 11.201 11.201 0.040 0.139 0.147 0.143 0.008 1.893 47,330 10.000 47.330 0.040 0.630 0.600 0.680 0.042 8.350 208.752 10,000 208 752 hdi 0.020 0.078 0.004 30.000 0.072 0.075 0.992 49.582 148.746 10 0.020 0.003 0.008 0.006 0.004 0.070 3.509 30.000 11 12 ď 0.020 0.019 0.023 0.021 0.003 0.278 13.784 30.000 41.363 0.020 0.006 173,606 0.083 0.082 0.088 1.157 57,869 30,000 13 0.040 0.148 0.149 0.148 0.002 1.953 48.822 30.000 146.486 vidi idi 14 15 18 0.040 0.009 0.013 0.011 0.003 3.578 30.000 10.733 0.040 0.043 0.045 0.044 0.001 0.581 14.518 30,000 43.547 0.040 0.183 0.188 0.188 0.004 2.457 61,417 30,000 184,252 8.748 0.022 0.018 0.020 0.003 10.000 8.748 idi top & mid 18 19 0.030 0.868 0.863 0.007 11.439 381.310 10.000 381.310 0.030 0.228 0.224 0.228 0.003 2.994 99.789 10,000 99.789 hdi 11/20 20 0.030 0.030 hdl -t 11/21 0.002 0.003 0.003 0.001 1.013 10,000 1.013 0.061 21 22 23 24 25 26 27 0.030 0.081 0.060 0.001 0.799 26.646 10.000 26.646 ndi-m 11/21 0.030 -0.002 0.001 -0.001 0.002 -0.009 -0.312 10.000 -0.312 -0.002 -0.002 denk 0.030 -0.001 -0.002 0.001 -0.023 -0.754 10,000 -0.754 abenik 0.030 -0.312 10.000 -0.312 -0.001 0.002 -0.009 0.001 0.060 0.038 0.040 0.039 0.001 0.514 8.572 10.000 8,572 idi top & mid 0.080 1.426 1.322 1.374 0.074 18.214 303.573 10.000 303.573 77777 hdi 11/20 hdi -t 11/21 hdi-m 11/21 0.080 0.399 0.452 0.426 0.037 5 639 93,979 10 000 83 979 0.060 0.007 0.103 10.000 1.722 0.009 0.008 0.001 1.722 0.126 0.119 0.005 27.024 ug/ml what the ?? to all the ?? **TOTAL ug CHOL** % OF SERA ml VLDL* 108.2 16 1731.2 1.5 LDL. 445.5 3.2 1425.6 1.2 HDL* 1861.2 9.8 18239.6 15.9 TOTAL 21396.4 18,6 LDL-top/mid 86.6 20 1732 1.5 ???? 3424.4 2 6848.8 6 HDL-b t (11/20) 968.8 10 9688 8.4 HDL-top (11/21) 13.7 29 397.3 0.3 HDL-mid (11/21) 268.4 43 11541.2 10.1 TOTAL 30207.3 26.3 **SERA** 1434 80 114720 1/27/99 Date willy Like

Project I

5

1

Book Number Project Number Subject CETT Heturty 4 ssay GDS - 5748 545711 Rabbiel OFTP Vaccines **SEARLE** 67 samples from Etaine Kriel 1:20 délineion in PBS (not away bufor) Lipo Pool LDL 149 10.84 mg/mi 200 pg/ml = 0.0185 × 18 ml = 0.333 ml 10840 pg/ml HDL. 146 1.3 mg/nut <u>35 mg/ml</u> = 0.019 x 18 ml = 0.346 mf 1300 mg/ml 0.333 ruf LDL 0.346 MDL. 18-0.679 = 17.321 arraysuffer use some / niet Dentuce control CETP 822 1:40 negative control Non-Tg Mouse sera 1:5 Samples 1:20

use 50 per/ will.

,7

Foctor protocol p. 10-11 surrugist insubation

GDS - 5748

148

Subject

CETP Heterity Rab CETP Vaccine

565711

SEARLE

RAB SER	A PLATE 1							ļ	
CETP 617			BLANK	11723.2					
11/21/96									
		CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
	BLANK	- 12666	11685.1	12020.2					
	BLANK	11329.2	11979.2	10114.5					
	BLANK	11486.2	11389.2	11668.2					
	BLANK	11558.7	12072.8	11696.1					
	BLANK	11893.8	11811.4	12879.1					
	BLANK	11795	10997.2	11976.5			<u> </u>		
	POS	2065.56	1891.29	2495.94	82.38	83.87	78.71	81.65	2.65
	NEG	11462.8	12032.6	12551	2.22	-2.64	-7.06	-2.49	4.64
1 Rab01 pre	10/27/95	3875.9	3666.05	3398.83	66.94	68.73	71.01	68.89	2.04
2 Rab01 12/4	1/95	3882.56	4256.04	3085.96	66,88	63.70	73.68	68.08	5.10
3 Rab01 3/8/	96	8349.12	8944.58	8303.97	28.78	23.70	29.17	27.22	3.05
4 Rab02 pre	10/27/95	4581.58	4865.07	3961.44	60.92	58.50	66.21	61.88	3.94
5 Rab02 12/4	1/95	4377.45	4494.86	4247.6	62.66	61.66	63.77	62.70	1.06
6 Rab02 3/8/	96	4618.67	4447.03	4734.88	60.60	62.07	59.61	60.76	1.24
7 Rab02 10/2	25/96	4550.99	4086.02	4094.02	61.18	65.15	65.08	63.80	2.27
8 Rab03 pre	10/27/95	4415.27	4823.46	4487.94	62.34	58.86	61.72	60.97	1.86
9 Rab03 12/4	1/95	4307.01	4553.17	4959.84	63.26	61.16	57.69	60.70	2.81
10 Rab04 pre	10/27/95	3555.2	3178.02	3762.43	69.67	72.89	67.91	70.16	2.53
11 Rab04 12/4	1/95	3037.46	3073.36	3032.19	74.09	73.78	74.14	74.00	0.19
12 Rab05 pre	10/27/95	3437.81	3648.62	3563.36	70.68	68.88	69.60	69.72	0.90
13 Rab05 12/4	/95	5400.6	5268.01	4801.46	53.93	55.06	59.04	56.01	2.68
14 Rab06 pre	10/27/95	4242.56	3766.96	3427.64	63.81	67.87	70.76	67.48	3.49
15 Rab06 12/4	V95	3383.78	3501.59	3390.78	71.14	70.13	71.08	70.78	0.58
16 Rab07 pre	10/27/95	4379.79	4159.54	3891.65	62.64	64.52	66.80	64.65	2.09
17 Rab07 12/4	/95	2788.94	3926.74	3735.38	76.21	66.50	68.14	70.28	5.20
18 Rab07 3/8/	96	3432.09	4473.96	4595.72	70.72	61.84	60.80	64.45	5.46
19 Rab07 10/2	25/96	4413.87	4946.2	5412.43	62.35	57.81	53.83	58.00	4.26
20 Rab08 pre	10/27/95	4184.52	4522.74	4926.46	64.31	61.42	57.98	61.23	3.17
21 Rab08 12/4	1/95	3890.42	5312.94	4429.14	66.81	54.68	62.22	61.24	6.13
22 Rab08 3/8/	96	3824.96	5096.74	4409.04	67.37	56.52	62.39	62.10	5.43
23 Rab08 10/2	25/96	5655.9	5653.7	6396.09	51.75	51.77	45.44	49.66	3.65
24 Rab09 pre	10/27/95	2806.88	4412.42	3469.69	76.06	62.36	70.40	69.61	6.88

Author's Signature

[MWW. Kikic Date 1/27/98 12-2-46

Project Number

Subject

565711 SEARLE

Cety Activity

Book Number

GDS- 5748

Page

149

RAB SERA	PLATE 2								
CETP617			BLANK	11542.0		<u> </u>			
11/21/96		-				<u> </u>			
		CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DE
	BLANK	11347.1	11022.3	11989	-1				
	BLANK	12009.7	11456.3	11436.2					
	BLANK	12789.7	10995	11853.9					
	BLANK	11805.9	10728.8	11752.7					
- 1	BLANK	11892	11180.9	11693.5					
	BLANK	11272.6	10781.4	11749.4					
	POS	1984.07	1737.95	2241.83	82.81	84.94	80.58	82.78	2.18
	NEG	11714.8	10221.3	13439.7	-1.50	11.44	-16.44	-2.17	13.95
25 Rab09 12/4		2876.7	3372.84	2784.53	75.08	70.78	75.87	73.91	2.74
26 Rab010 pre		3481.83	3825.55	3489.92	69.83	66.86	69.76	68.82	1.70
27 Rab010 12/		3513.93	2634.1	2470.25	69.56	77.18	78.60	75.11	4.86
28 Rab1 pre 5/	30/95	4122.71	3332.43	3644.45	64.28	71.13	68.42	67.94	3.45
29 Rab1 7/5/95		4280.54	3625.52	3844.06	62.91	68.59	66.70	66.07	2.89
30 Rab1 10/5/9	95	4447.04	4638.03	3626.82	61.47	59.82	68.58	63.29	4.65
31 Rab1 3/8/96	3	3863.95	4152.48	4086.49	66.52	64.02	64.59	65.05	1.31
32 Rab2 pre 5/	30/95	3319.47	3094.2	3437.6	71.24	73.19	70.22	71.55	1.51
33 Rab2 7/5/95		3572	3856.23	4154.3	69.05	66.59	64.01	66.55	2,52
34 Rab2 10/5/9	95	3846.54	3924.51	4825.64	66.67	66.00	58.19	63.62	4.71
35 Rab2 3/8/96	3	4159.24	4448.53	4382.08	63.96	61.46	62.03	62.49	1.31
36 Rab3 pre 5	/30/95	3839.38	4387.02	4324.64	66.74	61.99	62.53	63.75	2.60
37 Rab3 7/5/95		4115.6	4115.16	4189.82	64.34	64.35	63.70	64.13	0.37
38 Rab3 8/9/95	5	4352.96	4656.58	5002	62.29	59.66	56.66	59.53	2.81
39 Rab4 pre 5/		3894.24	3518.18	4289.08	66.26	69.52	62.84	66.21	3.34
40 Rab4 7/5/95		3641.36	4282.17	3699.12	68.45	62.90	67.95	66.43	3.07
41 Rab4 8/9/95		3911.56	5721.82	4245.9	66.11	50.43	63.21	59.92	8.35
42 Rab5 pre 5/		4170.85	5068.07	4585.3	63.86	56.09	60.27	60.08	3.89
43 Rab5 7/5/95		3664.33	4471.52	4706.89	68.25	61.26	59.22	62.91	4.74
44 Rab5 8/9/95		4652.84	5501.02	4763.51	59.69	52.34	58.73	56.92	3.99
45 Rab6 pre 5/		4596.19	4913.98	4798.5	60.18	57.43	58.43	58.68	1.39
46 Rab6 7/5/95		3867.07	5507.57	4565.05	66.50	52.28	60.45	59.74	7.13
47 Rab6 8/9/95		3830.81	4305.69	5033.29	66.81	62.70	56.39	61.97	5.25
48 Rab7 pre 5/		2868.99	3751.48	3494.88	75.14	67.50	69.72	70.79	3.93

Author's Signature	
Bevery	11.6
Lowerly	Kipie
1	

GDS - 5748

150

Rab l'accine (CETP) CETP Activity

565711

SEARLE

	RAB SERA	PLATE 3					T	T	1	
\Box	CETP617			BLANK	11711.3				 -	
	11/21/96				_ : : : : : : : : : : : : : : : : : : :		14.5	 	1	
			CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
		BLANK	11566.9	11370.4	12201.8					<u> </u>
		BLANK	11384.8	11650.9	10820.9		<u>† </u>	† 	 	
		BLANK	12289.2	11042.5	12221.4		1	 	 	
		BLANK	11225.7	11313.8	11772.6		 	 		·
		BLANK	11350.8	11637.2	12781.4		<u> </u>		 	
		BLANK	11139.5	12509.2	12524.9				† 	
		POS	1897.2	2000.09	2516.98	83.80	82.92	78.51	81.74	2.84
		NEG	11694.9	11904.4	11835.9	0.14	-1.65	-1.06	-0.86	0.91
49	Rab7 7/5/9	5	4182	3731.66	3931.64	64.29	68.14	66.43	66.29	1.93
50	Rab7 8/9/9	5	5435.63	3554.6	3861.19	53.59	69.65	67.03	63.42	8.62
	Rab8 pre 5/		4857.51	4150.68	4684.63	58.52	64.56	60.00	61.03	3.15
52	Rab8 7/5/9	5	5050.31	3949.26	4755.3	56.88	66.28	59.40	60.85	4.87
53	Rab8 8/9/9	5	6240.13	4871.13	5092.99	46.72	58.41	56.51	53.88	6.27
	Rab9 pre 5/		3564.33	3524.95	3166.44	69.57	69.90	72.96	70.81	1.87
	Rab9 7/5/95		4249.85	3850.43	3330.32	63.71	67.12	71.56	67.47	3.94
	Rab9 8/9/95		5141.1	5161.1	4539.72	56.10	55.93	61.24	57.76	3.02
	Rab10 pre		3699.63	4213.13	3900.3	68.41	64.03	66.70	66.38	2.21
	Rab10 7/5/9		3835.52	4467.33	4275.84	67.25	61.85	63.49	64.20	2.77
	Rab10 8/9/9		4466.25	5027.27	5166.34	61.86	57.07	55.89	58.27	3.16
	Rab11 pre		3547.52	3616.64	3568.83	69.71	69.12	69.53	69.45	0.30
	Rab11 7/5/9		4189.18	4020.36	4084.37	64.23	65.67	65.12	65.01	0.73
	Rab11 10/5		4274.55	4582.15	4306.03	63.50	60.87	63.23	62.54	1.45
	Rab11 3/8/9		4690.97	4912.59	4273.73	59.95	58.05	63.51	60.50	2.77
64	Rab12 pre 5		4965.01	4364.85	4419.14	57.61	62.73	62.27	60.87	2.83
		XXXXXX	3777.11	18872.3	18283.3	67.75	-61.15	-56.12	-16.50	73.01
		XXXXXX	3669.25	18744.9	17655	68.67	-60.06	-50.75	-14.05	71.79
		XXXXXXX	4254.16	20575.8	20256.2	63.67	-75.69	-72.96	-28.33	79.69
	Rab12 7/5/9		4171.08	5196.97	4444.92	64.38	55.62	62.05	60.68	4.54
	Rab12 10/5		4134.73	5422.2	5410.88	64.69	53.70	53.80	57.40	6.32
67	Rab12 3/8/9		4672.65	4655.12	5305.19	60.10	60.25	54.70	58.35	3.16
		XXXXXX	17926.3	20072.4	20994.1	-53.07	-71.39	-79.26	-67.91	13.44
		XXXXXX	19278.5	20677.3	17893.3	-64.61	-76.56	-52.79	-64.65	11.89

Pos & Neg controls look good.

he may have reached a plateau sence all the beenly have similar activity fry a 4 hour incubation

Project Number

565711 SEARLE Repeat CETP Nativity on Rab. CETP Vaccine Sira Book Number

GDS - 5748

Page

151

Repeat CETI activity assay on Rubbit sera, p. 147-150. Do a 4 hour incubation of sepopool and 1:20 delection of sera

	RAB SERA PLATE 1							↓	
	CETP 618		BLANK	10610.5				ļ	
	11/27/96					<u></u>	1		
		CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DE
	BLANK	10708.3	11038.6	10653			<u> </u>	<u> </u>	
	BLANK	10233.1	10087.6	10667.6					
	BLANK	11209.7	10967.6	11034.3					
	BLANK	10576.5	10234.2	11084.2					
	BLANK	10676.2	10625	10053.5					
	BLANK	10047.5	10189.6	10902.1					
	POS	2254.77	2740.44	2171.42	78.75	74.17	79.54	77.49	2.90
	NEG	9629.3	9864.26	9518.62	9.25	7.03	10.29	8.86	1.66
1	Rab01 pre 10/27/95	9012.24	9502.85	8241.26	15.06	10.44	22.33	15.94	5.99
2	Rab01 12/4/95	8259.51	8726.84	8249.08	22.16	17.75	22.26	20.72	2.57
3	Rab01 3/8/96	10566.2	9323.15	9536.1	0.42	12.13	10.13	7.56	6.27
4	Rab02 pre 10/27/95	10114.1	8181.17	8412.6	4.68	22.90	20.71	16.10	9.95
	Rab02 12/4/95	10136	9739.06	8983.88	4.47	8.21	15.33	9.34	5.52
6	Rab02 3/8/96	9302.78	9212.79	8725.57	12.32	13.17	17.76	14.42	2.93
7	Rab02 10/25/96	8419.03	8191.19	8426.62	20.65	22.80	20.58	21.35	1.26
8	Rab03 pre 10/27/95	8792.16	8906.49	8196.75	17.14	16.06	22.75	18.65	3.59
9	Rab03 12/4/95	8743.68	9119.08	9092.86	17.59	14.06	14.30	15.32	1.98
10	Rab04 pre 10/27/95	8119.24	7743.19	8836.78	23.48	27.02	16.72	22.41	5.24
11	Rab04 12/4/95	8925.17	7544.31	8308.22	15.88	28.90	21.70	22.16	6.52
12	Rab05 pre 10/27/95	8381.97	7789.06	8647.97	21.00	26.59	18.50	22.03	4.14
13	Rab05 12/4/95	9813.49	9203.93	9662.6	7.51	13.26	8.93	9.90	2.99
14	Rab06 pre 10/27/95	9846.44	9315.92	9067.38	7.20	12.20	14.54	11.31	3.75
15	Rab06 12/4/95	9620.38	8990.1	9737.27	9.33	15.27	8.23	10.94	3.79
16	Rab07 pre 10/27/95	9309.37	8929.87	9379.61	12.26	15.84	11.60	13.23	2.28
17	Rab07 12/4/95	8378.32	8160.07	8062.44	21.04	23.09	24.01	22.72	1.52
18	Rab07 3/8/96	7948.98	8771.81	8647.07	25.08	17.33	18.50	20.31	4.18
_	Rab07 10/25/96	10046.1	10291.7	10192.9	5.32	3.00	3.94	4.09	1.16
20	Rab08 pre 10/27/95	9051.83	9461.79	9240.05	14.69	10.83	12.92	12.81	1.93
_	Rab08 12/4/95	9255.08	9036.05	9149.94	12.77	14.84	13.77	13.79	1.03
_	Rab08 3/8/96	8774.37	9884.1	8833.92	17.30	6.85	16.74	13.63	5.88
	Rab08 10/25/96	9258.79	10007.7	9752.97	12.74	5.68	8.08	8.83	3.59
	Rab09 pre 10/27/95	9322.28	9849.85	8886.41	12.14	7.17	16.25	11.85	4.55

Authors Signature

Date 12-2-96

Read and Understood By

Date 1/27/99

34

Book Number

GDS - 5748

152

Subject

cont

Project Number

565711

SEARLE

RAB SERA	PLATE 2							 	
CETP618	ı		BLANK	10503.0				1	
11/27/96									
		CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
	BLANK	11282.2	10339.9	10494.8					
	BLANK	11017.4	11239.6	9986.81					
	BLANK	11006.6	11586.5	10983.2					
	BLANK	11114.8	10649.8	10276.2					
	BLANK	7210.34	10757.7	10340.8					
	BLANK	9808.3	10603.1	10356.1				<u> </u>	
	POS	1973.51	2451.96	2474.61	81.21	76.65	76.44	78.10	2.69
	NEG	9809.02	10570.6	9869.69	6.61	-0.64	6.03	4.00	4.03
25 Rab09 12/4	95	9585.36	8612.11	8683.51	8.74	18.00	17.32	14.69	5.16
26 Rab010 pre		9191.15	8489.56	8887.09	12.49	19.17	15.39	15.68	3.35
27 Rab010 12/	4/95	8071.4	7608.58	7770.91	23.15	27.56	26.01	25.57	2.24
28 Rab1 pre 5/		8363.19	7508.84	8132.82	20.37	28.51	22.57	23.82	4.21
29 Rab1 7/5/95		9113.94	8269.4	8413.38	13.23	21.27	19.90	18.13	4.30
30 Rab1 10/5/9		8318.46	8156.34	8187.48	20.80	22.34	22.05	21.73	0.82
31 Rab1 3/8/96		10379.7	8945.67	9019.57	1.17	14.83	14.12	10.04	7.69
32 Rab2 pre 5/		8298.45	8121.16	8340.71	20.99	22.68	20.59	21.42	1.11
33 Rab2 7/5/95		7370.99	8480.69	8384.95	29.82	19.25	20.17	23.08	5.85
34 Rab2 10/5/9		7666.33	8402.66	8714.38	27.01	20.00	17.03	21.35	5.12
35 Rab2 3/8/96		9285.39	9895.01	9315.07	11.59	5.79	11.31	9.56	3.27
36 Rab3 pre 5		9571.67	9752.46	9427.22	8.87	7.15	10.24	8.75	1.55
37 Rab3 7/5/95		9066.08	9559.74	9427.08	13.68	8.98	10.24	10.97	2,43
38 Rab3 8/9/95		8999.02	9667.69	8402.9	14.32	7.95	20.00	14.09	6.02
39 Rab4 pre 5/		8019.45	8212.66	7808.4	23.65	21.81	25.66	23.70	1.93
40 Rab4 7/5/95		9453.04	9090.95	8065.25	10.00	13.44	23.21	15.55	6.85
41 Rab4 8/9/95		8089.22	9194.37	8746.71	22.98	12.46	16.72	17.39	5.29
42 Rab5 pre 5/		8829.54	9717.02	8952.29	15.93	7.48	14.76	12.73	4.58
43 Rab5 7/5/95		8516.51	9987.64	9604.42	18.91	4.91	8.56	10.79	7.27
44 Rab5 8/9/95		9072.69	9874.18	9412.75	13.62	5.99	10.38	10.00	3.83
45 Rab6 pre 5/		8469.02	9238.24	9653.13	19.37	12.04	8.09	13.17	5.72
46 Rab6 7/5/95		8991.33	9504.15	9788.33	14.39	9.51	6.80	10.24	3.85
47 Rab6 8/9/95		7722.64	8505.77	8486.19	26.47	19.02	19.20	21.56	4.25
48 Rab7 pre 5/		8240.6	9020.81	8988.58	21.54	14.11	14.42	16.69	4.20

Authors Signature

Milly Kiku

12-2-96

Recorded Minderly stoped By

Date 1/27/99

Author's

LE

Book Number

GDS - 5748

Page

153

SEARLE

Lont.

	RAB SERA	PLATE 3								
	CETP618			BLANK	10641.7					
	11/27/96									
			CPM	CPM	CPM	% T	% T	% T	AVE % T	ST DEV
		BLANK	11755	11175.2	11040.6					
	1	BLANK	10591.1	10163.1	11345.6					
		BLANK	10656.6	10384.9	11051.5					İ
		BLANK	9925.84	9460.2	10845.5					
		BLANK	10694.9	10054.4	10636.4					
		BLANK	10326.9	10346.4	11097.2					
		POS	2089.87	2422.13	2399.78	80.36	77.24	77.45	78.35	1.75
-		NEG	10534.1	9918.48	9540.3	1.01	6.80	10.35	6.05	4.71
49	Rab7 7/5/95	,	9237.54	8913	8333.44	13.20	16.24	21.69	17.04	4.30
50	Rab7 8/9/95	5	8258.68	8941.53	8852.33	22.39	15.98	16.82	18.40	3.49
51	Rab8 pre 5/	30/95	8512.38	8896.61	8121.48	20.01	16.40	23.68	20.03	3.64
	Rab8 7/5/95		9413.3	8910.75	9439.19	11.54	16.27	11.30	13.04	2.80
53	Rab8 8/9/95	5	8694.87	8989.74	8716.37	18.29	15.52	18.09	17.30	1.54
54	Rab9 pre 5/	30/95	7720.48	8551.09	7977.01	27.45	19.65	25.04	24.05	4.00
	Rab9 7/5/95		7750.23	8723.74	9015.18	27.17	18.02	15.28	20.16	6.22
56	Rab9 8/9/95	5	8055.35	8291.32	7873.01	24.30	22.09	26.02	24.14	1.97
57	Rab10 pre 5	5/30/95	8579.67	7909.08	8875	19.38	25.68	16.60	20.55	4.65
58	Rab10 7/5/9	95	9027.55	8162.52	8941.2	15.17	23.30	15.98	18.15	4.48
59	Rab10 8/9/9	95	8578.41	8976.45	8962.59	19.39	15.65	15.78	16.94	2.12
60	Rab11 pre 5	5/30/95	8344.44	8058.18	8349.21	21.59	24.28	21.54	22.47	1.57
61	Rab11 7/5/9	95	9097.25	9635.55	9635.24	14.51	9.46	9.46	11.14	2.92
62	Rab11 10/5	/95	9932.16	9223.43	9531.58	6.67	13.33	10.43	10.14	3.34
63	Rab11 3/8/9	6	10474.1	9505.89	9884.74	1.58	10.67	7.11	6.45	4.58
64	Rab12 pre 5	5/30/95	9460.02	8476.52	8583.1	11.10	20.35	19.34 ·	16.93	5.07
	Rab12 7/5/9		8598.62	10379.7	9104.66	19.20	2.46	14.44	12.04	8.62
66	Rab12 10/5	/95	7502.73	9091.06	7972.8	29.50	14.57	25.08	23.05	7.67
	Rab12 3/8/9		8929.18	10351.3	9343.77	16.09	2.73	12.20	10.34	6.87
			10594	11717	11683.6	0.45	-10.10	-9.79	-6.48	6.00
			10874.6	12001.5	11596.5	-2.19	-12.78	-8.97	-7.98	5.36
			9719.78	11477.5	10783.6	8.66	-7.85	-1.33	-0.17	8.32
			10828.9	11947	10791.4	-1.76	-12.27	-1.41	-5.14	6.17
			11358.3	12153.7	11568.4	-6,73	-14.21	-8.71	-9.88	3.87

There is much l'archbity between replicates and no apparent CETT inhibition. The sera muy not be stable in a 1:20 dilution - these are the same as privious oussay (p. 148 150) thus was a 4 hour insubation (previous assay was an overnight inentiation) and may not have been long enough.

felinami CETP 618

Author's Signature
Drury Kekee

Date 12-2-96

Read and Understood By

Date 1/27/99

7/99

Book Number

GDS - 5748

Page

154

Subject

TG 5

5057//

SEARLE

Nov. 27

18 (CETF-Tg) mies en 1% chot dut 3 weeks

271, 272, 273, 274, 275, 276, 277, 278, BRISTAN 279, 280, 281, 282, 268, 269, 290, 291, 292, 293

Juj 100 pl of HOL 151 (dutid) via retro-octotal' sinux. Offer 5 min, 2 hour, 4 hour do cardiae stick.

Group B 2 Hour. Group A 5 min 9 19.2 g 19.29. 131 AI 132 H2 9 20.9 19.7 133 H3 9 18.9 19.6 134 A4 النق 23.6 đ 19.0 19.6 O H5 σ 24.7 B5 0 136 46 3 24.9 21.6

From & 4 Hour (had huge tongue) Ç 16.7 Ci 20.3 C.2 C3 P 20.3 04 O 22.9 C5 O 24.0 66 07 23.9

CETP-TC

Author) Signature

Date

Date

12-2-96

Reserve And Indepted By

Date 1/27/99

Auth

Project Number

E

Subject

565711 SEARLE

cont.

Book Number

GDS-5748

Page

155

food 200 me each / group (Grp 8 # 6 only 100 ml, grp A # 2 only 100 me) 127.99

fector
apply 500 me on to Superose 6 x 2 7 217

method 9 Burk 5

FPLC SUMMARY TG5

FPLC PROFILE			
TG5 3 WEEK			
	GROUP A	GROUP B	GROUP C
	CETP-TG	CETP-TG	CETP-TG
	5 MIN	2 HOUR	4 HOUR
VLDL fx 5-13	13.4	12.3	22.5
%	8	7	10
LDL fx 14-29	22.3	33.7	34.2
%	13	19	16
HDL fx 30-47	130.5	129.7	155.2
%	77	73	70.8
TOTAL ug CHOL	170.3	178.8	219.3

Durry Kikee

Date 12-9-96

Read and Understood By

Date 1/27/98

Book Number

Page

GDS - 5748

156

Subject

TES-

dont.

Project Numbe

565711

SEARLE

	1	2	. 3	4	5	6_	7	8	9	10	. 11	12
4	0.001	0.001	0.001	0.022	0.018	0.012	0.036	0.026	0.010	0.001	0.001	0.001
В	0.037	0.041	0.001	0.018	0.019	0.012	0.067	0.016	0.005	0.003	0.003	0.003
q	0.068	0.088	0.003	0.012	0.021	0.012	0.097	0.012	0.006	0.003	0.003	0.003
O	0.168	0.171	0.001	0.012	0.022	0.014	0.123	0.012	0.003	0.003	0.003	0.003
턕	0.322	0.328	0.003	0.012	0.022	0.012	0.155	0.012	0.004	0.004	0.010	0.003
F	0.481	0.484	0.012	0.016	. 0.019	0.014	0.150 -	0.016	0.004	0.005	0.003	- 0.004
G	0.633	0.624	0.034	0.016	0.016	0.018	0.100	0.021	0.003	0.004	0.003	0.008
HE	0.779	0.775	0.036	0.018	0.014	0.023	0.052	0.019	0.003	0.003	0.004	0.005

READ DATE:
12/2/96
ASSAY NAME:
GRPA 5 MIN
TG5 FPLC-A
,

CHOL	ESTEROL	ASSAY									
ug			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.001	0.001	0.001	0.000	m	ь					-0.088
0.5	0.037	0.041	0.039	0.003	0.0776	0.0078	#N/A	#N/A	#N/A	#N/A	0.402
1	0.088	0.088	0.088	0.000	0.0008	0.0040	#N/A	#N/A	#N/A	#N/A	1.034
2	0.166	0.171	0.169	0.004	0.9994	0.0074	#N/A	#N/A	#N/A	#N/A	2.072
4	0.322	0.328	0.325	0.004	******	6.000	#N/A	#N/A	#N/A	#N/A	4.090
6	0.481	0.484	0.483	0.002	0.585	0.000	#N/A	#N/A	#N/A	#N/A	6.121
8	0.633	0.616	0.625	0.012			 -			/	7.951
10	0.779	0.775	0.777	0.003						_	9.918

Authors Signature
PRIVERELY NEEDE

12-2-96

Respring Enderglood By

Date 1/27/98

Author

Project Number

565711 SEARLE Subject

TQ.5

cont.

Book Number

GDS - 5748

Page

157

		_	_		_	_	_	_	_			
_	<u> </u>		3	4	<u>.5</u>	- 6	7	- 8	9	. 10	11	<u> 12</u>
A	0.001	0.002	0.002	0.021	0.021	0.018	0.043	0.031	0.003	0.001	0.001	0.002
В	0.036	0.046	0.003	0.018	0.024	0.017	0.089	0.019	0.002	0.001	0.001	0.003
d	0.086	0.067	0.002	0.013	0.025	0.019	0.095	0.013	0.002	0.002	0.001	0.003
d	0.159	0.171	0.002	0.014	0.028	0.020	0.123	0.010	0.001	0.001	0.002	0.003
目	0.325	0.327	0.003	0.014	0.025	0.023	0.154	0.010	0.001	0.001	0.002	0.005
_	_0.475	0.483	0.011	0.018	0.023	0.025	0.137	0.011	0.002	0.001	0.001	0.003_
d	0.632	0.632	0.032	0.020	0.020	0.027	0.067	0.012	0.001	0.001	0.003	0.008
H	0.762	0.775	0.036	0.023	0.018	0.034	0.050	0.012	0.002	0.001	0.003	0.003

READ DATE:
12/2/96
ASSAY NAME:
CETP-TG 2 HOUR
TG5 FPLC-B

ug			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.001	0.002	0.002	0.001	· m	ь					-0.09
0.5	0.036	0.048	0.041	0.007	0.0770	0.0084	SN/A	#N/A	#N/A	#N/A	0.423
1	0.086	0.087	0.087	0.001	0.0008	0.0041	#N/A	#NVA	#N/A	#N/A	1.015
2	0.159	0.171	0.165	0.006	0.9994	0.0077	SN/A	STN/A	SNA	#N/A	2.035
4	0.325	0.327	0.326	0.001	******	6.000	#N/A	#N/A	SNIA	#N/A	4.127
6	0.475	0.483	0.479	0.006	0.576	0.000	#N/A	#N/A	#NVA	#N/A	6.115
8	0.632	0.616	0.624	0.011							7.999
10	0.762	0.775	0.769	0.009							9.877

Book Number

GDS -

Page

5748

748

Subject

158

Ta5

Cont.

Project Number

565711

SEARLE

Projec

		2	3	4	6	6	7	8	9	10	11	12
۸F	0.001	0.001	-0.001	0.025	0.016	0.011	0.041	0.031	0.004	0.000	-0.002	-0.002
3			0.000	0.023	0.021	0.015	0.063	0.019	0.002	0.000	-0.001	0.000
	0.035	0.038			0.020	0.011	0.094	0.017	0.003	0.003	0.005	0.002
9	0.086	0.087	0.008	0.019	0.020	0.017	0.119	0.010	0.007	0.009	0.007	0.002
P	0.168	0.168	0.000	0.014			0.169	0.011	0.004	- 0.005	•	0.001
튁	0.320	0.317	0.006	0.012	0.023	0.027		0.017	0.006	0.006	0.008	0.004
F	0.482	0.484	0.019	0.016	0.020	0.027	0.179			0.002	0.007	0.003
G	0.634	0.632	0.046	0.019	0.017	0.023	0.122	0.014	0.003		0.003	0.012
н	0.789	0.782	0.047	0.019	0.013	0.030	0.071	0.010	0.001	0.000	V.UU3	0.012

	READ DATE:
	12/2/98
	ASSAY NAME:
:	CETP-TG 4HOUR
	TG5 FPLC-C
,	

CHOL	ESTEROL	ASSAY								-	
ug STD	OD 1	OD 2	MEAN OD	SD OD							CALC STD -0.049
0	0.001	0.001	0.001	0.000	m	Ь				MARIA	0.404
0.5	0.035	0.038	0.037	0.002	0.0783	0.0049	#N/A	#N/A	#N/A	#N/A	1.043
1	0.086	0.087	0.087	0.001	0.0006	0.0034	#NVA	#NVA	#N/A	#N/A	
2	0.168	0.168	0.168	0.000	0.9996	0.0063	#NA	#N/A	#N/A	#N/A	2.085
4	0.320	0.317	0.319	0.002	******	6.000	#N/A	SENJA	#N/A	#N/A	4,008
6	0.482	0.484	0.483	0.001	0.595	0.000	#N/A	#N/A	#N/A	#N/A	6.110
8	0.834	0.616	0.625	0.013							7.924
10	0.789	0.782	0.786	0.005							9.975

Author's Signature

MUSCLY Kikia

Date 12-2-96

Programmed Understood By

Date 1/27 /9x

Autho

Project Number

505)11

SEARLE

Subject

TO 5, Cont

Page 159

TG 5 CETP Activity in vivo

TG 5 CETP Activity in vivo

Authorasignature

Date

19×

GDS - 5748

Subject

160

TB5, cont

Project Number

SEARLE

	5 min	2 hour	4 hour
VĻDL	5445	2904	2362
% of total	7	9	12
LDL	7992	6860	3850
% of total	10	21	20
HDL	65561	21545	12663
% of total	80	66	64
Total	81775	32471	19668
% transfered	16.43	30.07	31 58

F:

12.

G

61

Author's Signature MUNUL Like	Date 12-9-96	And I was	Date 1/27/99
1 morning cinco	10 /)0	100	

Authors

Project Number

505711

TO6

SEARLE

3 Week diet

Book Number

GDS - 5748

Page

161

3 groups, 6 animuls each. HII CETP-TG
on 190 cholisteral deet for 3 wieks.
Inject 100 pl HDL 151 retro A6 sinus (ene coz)
3 time points: 5 mm, I hour, 2 hour.
Pento buro IP for cardiae Aticis EDTA mucrotauner tubes

F5 CETP-Tg # 248, 249, 250, 283, 285, 286, 287, 287, 288, 289, 296, 297, 303, 304, 305, 306, 307, 308, 309

Group A 5 min (actually 10 min)

A1 Q 23.6 q

A2 Q 29.4

A3 Q 23.9

A4 07 24.5

A5 07 26.4

A6 09 22.0

Group B / How B1 & 19.7
B2 & 19.8
B3 & 18.8
B4 & 24.0
B5 & 25.2
B6 & 24.9

Croup C 2 Hour
C1 & 19.2
C2 & 19.0
C3 & 22.9
C4 & 23.8
C5 & 25.8
C6 & 24.5

p. 95 HOL 151 12-10-96

HDL 151 = 16 m Ci/ml

.016 m Ci/ml × 50 ml = 0.8 m Ci

For disposal 2.05 m Ci/g
20g monne = 1 m Ci

Dience HDL 151 to 10 m Ci/mo

Ding. 100 ml

Author assignature

Date

Page

GDS - 5748

162

Subject

TO 6

Project Number

565711

SEARLE

Project

	1	2	3	4	5	6	7 .	8	9	10	11	12
A	0.001	0.001	0.001	0.021	0.016	0.010	0.050	0.027	0.005	0.001	0.001	-0.013
	0.034	0.038	0.001	0.014	0.016	0.010	0.068	0.014	0.003	0.003	0.001	-0.012
d	0.083	0.080	0.003	0.010	0.018	0.012	0.089	0.012	0.001	0.001	0.001	-0.013
	0.157	0.165	0.001	0.010	0.016	0.012	0.127	0.008	0.001	0.001	0.001	-0.012
	0.306	0.323	0.003	0.012	0.016	0.016	0.172	0.010	0.001	0.001	0.001	-0.012
ᆲ	0.463	0.470	0.014	0.016	0.014	0.020	0.168	0.014	0.003	0.001	0.001	-0.012
G	0.615	0.621	0.038	0.016	0.012	0.025	0.112	0.016	0.003	0.001	0.003	-0.012
Н	0.757	0.773	0.038	0.019	0.010	0.034	0.058	0.014	0.003	0.001	0.003	-0.012

READ DATE:
12/9/96
ASSAY NAME:
TG6FPLCA

		ESTEROL.	ASSAY									
ſ	ug STD	OD 1	002	MEAN OD	SD							CALC STD
Ħ	0	0.001	0.001	0.001	0.000	តា	Þ					-0.036
ı	0.5	0.034	0.038	0.036	0.003	0.0765	0.0038	#N/A	#N/A	#N/A	#N/A	0.421
	1	0.083	0.080	0.082	0.002	0.0004	0.0023	#N/A	\$N/A	#N/A	#N/A	1.016
1	2	0.157	0.165	0.161	0.006	0.9998	0.0044	#N/A	#N/A	#N/A	#N/A	2.054
	4	0.306	0.323	0.315	0.012	******	6.000	#N/A	#N/A	#N/A	. #N/A	4.060
ı	6	0.463	0.470	0.467	0.005	0.570	0.000	#N/A	#N/A	#N/A	#N/A	6.046
ı	8	0.615	0.616	0.616	0.001							7.993
L	10	0.757	0.773	0.765	0.011							9.946

Author's Signature
DWYNLY Kipic

12-9-96

Read Bid Engles shod By

Date 1/27/89

Author

Project Number
505711
SEARLE

Subject

TG6

Book Number

GDS -

5748

Page

163

	4	2	3	4	5	6	7	8	9	10	11_	12	
A P	0.001	0.000	-0.001	0.018	0.011	0.007	0.040	0.021	0.000	-0.002	-0.014	-0.013	READ DATE:
a	0.033	0.036	-0.001	0.011	0.012	0.007	0.065	0.012	0.002	-0.002	-0.014	-0.014	12/9/96
d	0.082	0.074	-0.001	0.008	0.014	0.008	0.087	0.008	0.001	-0.002	-0.014	-0.015	ASSAY NAME:
ď	0.159	0.164	0.000	0.008	0.014	0.008	0.124	0.005	-0.001	-0.002	-0.014	-0.015	TG6 FPLC-B
긤	0.315	0.324	0.001	0.008	0.013	0.009	0.161	0.005	-0.001	-0.002	-0.014	-0.014	
7	0.457	0.464	0.012	0.009	0.011	0.014	0.145	0.007	0.003	-0.002	-0.014	-0.014	•
a	0.614	0.606	0.038	0.011	0.011	0.018	0.092	0.005	0.005	-0.001	-0.012	-0.013	
J	0.767	0.757	0.034	0.014	0.008	0.024	0.045	0.005	0.000	-0.002	-0.010	-0.008	

	ESTEROL.	ASSAY	_								
ug STD	OD 1	00 2	MEAN OD	SD			•				CALC STD
0	0.001	0.000	0.001	0.001	m	ь					-0.039
0.5	0.033	0.036	0.035	0.002	0.0762	0.0035	#N/A	#N/A	#N/A	#N/A	0.407
1	0.082	0.074	0.078	0.006	0.0007	0.0035	#N/A	#N/A	#N/A	#N/A	0.977
2	0.159	0.164	0.162	0.004	0.9996	0.0066	#N/A	#N/A	#N/A	#N/A	2.073
4	0.315	0.324	0.320	0.006	******	6.000	#N/A	#N/A	#N/A	#N/A	4.146
6	0.457	0.464	0.461	0.005	0.565	0.000	#N/A	#N/A	#N/A	#N/A	5.996
a	0.614	0.616	0.815	0.001							8.023
10	0.762	0.757	0.760	0.004							9.919

GDS - 5748

Page 164

Subject TG 6

FILC Raw data

Project Number

565711

SEARLE

Project I

1	2	3	4	5	6	7	8	9	10	11	12
0.001	0.001	0.001	0.018	0.012	0.010	0.043	0.028	0.005	0.001	0.001	0.001
					0.010	0.065	0.018	0.001	0.001	0.001	0.001
					0.012	0.087	0.012	0.001	0.001	0.001	0.001
					0.014	0.118	0.010	0.001	0.001	0.005	0.003
					0.016	0.154	0.012	0.001	0.001	0.001	0.003
					0.019	0.144	0.014	0.001	0.001	0.001	0.003
		-			0.023	0.094	0.016	0.001	0.001	0.001	0.003
					0.030	0.051	0.012	0.001	-0.001	0.001	0.003
	1 0.001 0.034 0.077 0.161 0.313 0.471 0.610 0.746	0.034 0.039 0.077 0.084 0.161 0.160 0.313 0.322 0.471 0.472 0.610 0.612	0.001 0.001 0.001 0.034 0.038 0.001 0.077 0.084 0.001 0.161 0.160 0.001 0.313 0.322 0.005 0.471 0.472 0.016 0.610 0.612 0.038	0.001 0.001 0.001 0.018 0.034 0.039 0.001 0.012 0.077 0.084 0.001 0.008 0.161 0.160 0.001 0.008 0.313 0.322 0.005 0.008 0.471 0.472 0.018 0.010 0.610 0.612 0.038 0.012	0.001 0.001 0.001 0.018 0.012 0.034 0.039 0.001 0.012 0.012 0.077 0.084 0.001 0.008 0.014 0.161 0.160 0.001 0.008 0.014 0.313 0.322 0.005 0.008 0.014 0.471 0.472 0.016 0.010 0.012 0.610 0.612 0.038 0.012 0.012	0.001 0.001 0.001 0.018 0.012 0.010 0.034 0.039 0.001 0.012 0.012 0.010 0.077 0.084 0.001 0.008 0.014 0.012 0.161 0.160 0.001 0.008 0.014 0.014 0.313 0.322 0.005 0.008 0.014 0.016 0.471 0.472 0.018 0.010 0.012 0.019 0.610 0.612 0.038 0.012 0.012 0.023	0.001 0.001 0.001 0.018 0.012 0.010 0.043 0.034 0.039 0.001 0.012 0.012 0.010 0.065 0.077 0.084 0.001 0.008 0.014 0.012 0.087 0.161 0.160 0.001 0.008 0.014 0.014 0.118 0.313 0.322 0.005 0.008 0.014 0.016 0.154 0.471 0.472 0.018 0.010 0.012 0.019 0.144 0.610 0.812 0.038 0.012 0.012 0.023 0.094	0.001 0.001 0.001 0.018 0.012 0.010 0.043 0.028 0.034 0.039 0.001 0.012 0.012 0.010 0.065 0.018 0.077 0.084 0.001 0.008 0.014 0.012 0.087 0.012 0.161 0.160 0.001 0.008 0.014 0.014 0.118 0.010 0.313 0.322 0.005 0.008 0.014 0.016 0.154 0.012 0.471 0.472 0.018 0.010 0.012 0.019 0.144 0.014 0.610 0.812 0.038 0.012 0.012 0.023 0.094 0.016	0.001 0.001 0.001 0.018 0.012 0.010 0.043 0.028 0.005 0.034 0.039 0.001 0.012 0.012 0.010 0.065 0.018 0.001 0.077 0.084 0.001 0.008 0.014 0.012 0.087 0.012 0.001 0.161 0.160 0.001 0.008 0.014 0.014 0.118 0.010 0.001 0.313 0.322 0.005 0.008 0.014 0.016 0.154 0.012 0.001 0.471 0.472 0.018 0.010 0.012 0.019 0.144 0.014 0.010 0.610 0.812 0.038 0.012 0.012 0.023 0.094 0.016 0.001	0.001 0.001 0.001 0.018 0.012 0.010 0.043 0.028 0.005 0.001 0.034 0.039 0.001 0.012 0.012 0.010 0.065 0.018 0.001 0.001 0.077 0.084 0.001 0.008 0.014 0.012 0.087 0.012 0.001 0.001 0.161 0.160 0.001 0.008 0.014 0.014 0.118 0.010 0.001 0.001 0.313 0.322 0.005 0.008 0.014 0.016 0.154 0.012 0.001 0.001 0.471 0.472 0.016 0.010 0.012 0.019 0.144 0.014 0.011 0.001 0.001 0.610 0.812 0.038 0.012 0.012 0.023 0.094 0.016 0.001 0.001	0.001 0.001 0.001 0.018 0.012 0.010 0.043 0.028 0.005 0.001 0.001 0.034 0.039 0.001 0.012 0.012 0.010 0.065 0.018 0.001 0.001 0.001 0.077 0.084 0.001 0.008 0.014 0.012 0.087 0.012 0.001 0.001 0.001 0.161 0.160 0.001 0.008 0.014 0.014 0.118 0.010 0.001 0.001 0.313 0.322 0.005 0.008 0.014 0.018 0.154 0.012 0.001 0.001 0.471 0.472 0.016 0.010 0.012 0.019 0.144 0.014 0.014 0.016 0.001 0.001 0.610 0.812 0.038 0.012 0.012 0.018 0.014 0.010 0.014 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

READ DATE: 12/9/98 ASSAY NAME: TG6 FPLC-C

	ESTEROL.	ASSAY									
ug			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD		•					STD
0	0.001	0.001	0.001	0.000	m	b					-0.047
0.5	0.034	0.039	0.037	0.004	0.0764	0.0048	#N/A	#N/A	#N/A	#N/A	0.418
1	0.077	0.084	0.081	0.005	0.0006	0.0034	#N/A	#N/A	#N/A	#N/A	0.994
2	0.161	0.160	0.161	0.001	0.9996	0.0063	#N/A	#N/A	#N/A	#N/A	2.042
4	0.313	0.322	0.318	0.008	******	6.000	#N/A	#N/A	#N/A	#N/A	4.097
6	0.471	0.472	0.472	0.001	0.567	0.000	#N/A	#N/A	#N/A	#N/A	6.113
8	0.610	0.616	0.613	0.004							7.966
10	0.746	0.778	0.762	0.023							9.917

Author Signature

13-9-94

Read and Underlined By

Date 1/27/99

Author

Project Number 545711 Subject

Book Number

GDS - 5748

Page

165

SEARLE TO 6

	1	2 _	_ 3	4	6	6	7	8	9	10		12
4	0.001	0.001	0.182	0.171	0.144	0.145	0.084	0.088	0.285	0.266	0.231	0.243
7	0.032	0.036	0.146	0.154	0.148	0.145	0.150	0.172	0.352	0.343	0.247	0.278
a	0.080	0.082	0.116	0.117	0.080	0.080	0.123	0.139	0.198	0.183	0.197	0.198
3	0.150	0.160	0.163	0.164	0.154	0.157	0.150	0.183	0.254	0.247	0.108	0.105
4	0.301	0.295	0.225	0.222	0.179	0.191	0.119	0.132	0.164	0.149	0.245	0.245
a	0.430	0.436	0.170	0.176	0.142	0.145	0.103	0.117	0.184	0.175	0.193	0.194
à	0.578	0.567	0.162	0.162	0.133	0.137	0.096	0.103	0.171	0.164	0.250	0.243
H	0.719	0.735	0.142	0.148	0.189	0.191	0.087	0.098	0.117	0.111	0.238	0.231

READ DATE:	
12/9/96	
ASSAY NAME:	
 TG6 TCHOL & HEAL-CH	

CHOL	ESTEROL	ABBAY									
Ug			MEAN	SD							CALC
STD	OD 1	OĐ 2	œ	OD							STD
0	0.001	0.001	0.001	0.000	m	ь					-0.052
0.5	0.032	0.036	0.034	0.003	0.0719	0.0048	#N/A	#N/A	#N/A	#N/A	0.407
1	0.060	0.082	0.081	0.001	0.0006	0.0033	#N/A	#N/A	SIN/A	MN/A	1.061
2	0.150	0.160	0.155	0.007	0.9995	0.0082	#N/A	#WA	STN/A	#N/A	2.091
4	0.301	0.295	0.298	0.004	*******	6.000	#N/A	#N/A	#N/A	#N/A	4.081
6	0.430	0.438	0.433	0.004	0.502	0.000	#N/A	#N/A	#N/A	#NVA	5.960
8	0.578	0.567	0.573	0.008							7.901
10	0.719	0.735	0.727	0.011							10.051

AMP.				MEAN	SD.	CALC.	CALC.	DF	mg/di	ì
NO.	(ml)	OD 1	OD 2	00	00	ug	ugimi		CHOL	
1	0.040	0.162	0.171	0.167	0.006	2.251	56.275	10.000		A1 TCHOL
2	0.040	0.146	0.154	0.150	0.006	2.021	50.534	10.000	50.534	A2
3	0.040	0.116	0.117	0.117	0.001	1.555	38.879	10.000	38.879	A3
4	0.040	0.163	0.164	0.164	0.001	2.209	55.231	10.000	55.231	м
5	0.040	0.225	0.222	0.224	0.002	3.044	76.106	10.000	76.106	A5 .
6	0.040	0.170	0.176	0.173	0.004	2.341	58.536	10.000	58.536	A6 '
7	0.040	0.182	0.162	0.162	0.000	2.188	54.709	10.000		POOLA .
8	0.040	0.142	0.148	0.145	0.004	1.952	48.795	10.000	48.795	B 1
9	0.040	0.144	0.145	0.145	0.001	1.945	48.621	10.000	48.621	B2
10	0.040	0.146	0.145	0.148	0.001	1.959	48.969	10.000		B 3
11	0.040	0.080	0.080	0.080	0.000	1.047	26.180	10.000		B4
12	0.040	0.154	0.157	0.158	0.002	2.098	52.448	10.000		B5
13	0.040	0.179	0.191	0.185	0.008	2.508	62.711	10.000		B6
14	0.040	0.142	0.145	0.144	0.002	1.931	48.273	10.000		POOL B
15	0.040	0.133	0.137	0.135	0.003	1.813	45.315	10.000	45.315	C1
16	0.040	0.189	0.191	0.190	0.001	2.578	64.451	10.000		CZ
17	0.040	0.084	0.088	0.088	0.003	1.131	28.268	10.000		C3
18 .	0.040	0.150	0.172	0.161	0.018	2.174	54.361	10.000	54.361	C4
19	0.040	0.123	0.139	0.131	0.011	1.757	43.924	10.000	43.924	C5
20	0.040	0.150	0.183	0.167	0.023	2.251	56.275	10.000		C 8
21	0.040	0.119	0.132	0.126	0.009	1.680	42.010	10.000		POOL C
22	0.040	0.103	0.117	0.110	0.010	1.485	36.618	5.500	20.140	
23	0.040	0.096	0.103	0.100	0.005	1.319	32.985	5.500		A2
24	0.040	0.087	0.098	0.093	0.008	1.221	30.529	5.500	16.791	A3
25	0.040	0.265	0.266	0.276	0.013	3.768	94.197	5.500	51.809	A4 '
26	0.040	0.352	0.343	0.348	0.008	4.770	119.247	5,500		A5
27	0.040	0.198	0.183	0.191	0.011	2.585	64.625	5.500		A6
28	0.040	0.254	0.247	0.251	0.005	3.420	85.499	5.500		POOL A
29	0.040	0.164	0.149	0.157	0.011	2.112	52.796	5.500		B1
30	0.040	0.184	0.175	0.180	0.008	2.432	60.798	5.500		B2
31	0.040	0.171	0.164	0.168	0.006	2.265	56.623	5.500		B3
32	0.040	0.117	0.111	0.114	0.004	1.520	38.009	5.500		B4
33	0.040	0.231	0.243	0.237	0.008	3.232	80.803	5.500		86
34	0.040	0.247	0.278	0.263	0.022	3.587	89.674	5.500		96
35	0.040	0.197	0.196	0.198	0.001	2.682	67.060	5.500		POOL B
36	0.040	0.108	0.105	0.107	0.002	1.416	36.400	5.500	19.470	cs ය
37	0.040	0.245	0.245	0.245	0.000	3.343	83.586	5.600	45.972	C4
38	0.040	0.193	0.194	0.194	0.001	2.627	65.668	5.500	36.118	C5
39	0.040	0.250	0.243	0.247	0.005	3.364	84.108	5.500	48.25 9	C 8
40	0.040	0.236	0.231	0.234	0.004	3.183	79.585	5,500	43,772	POOL C

Book Number
GDS - 5748

TG 6 Results

Page 166

Subject Project Number 565711

SEARLE

Projec

,

FPLC PROFILE			
TG6 3 WEEK			
	GROUP A	GROUP B	GROUP C
	CETP-TG	CETP-TG	CETP-TG
	5 MIN	1 HOUR	2 HOUR
VLDL fx 5-13	17.4	15.7	15.8
%	8	9	9
LDL fx 14-29	27.6	18.2	20.4
%	13	11	11
HDL fx 30-47	155.9	133.6	140
%	76	79	78
TOTAL ug CHOL	206.1	170.2	179.2

Author's Signature

| Date | D

C

Project Number
505711
SEARLE

Subject

TG6 Results

Book Number
GDS - 5748
Page 167

TG6 3 WEEK		GROUP A CETP-TG 5 MIN	GROUP B CETP-TG 1 HOUR	GROUP C CETP-TG 2 HOUR
BENES,		56.3	48.8	45.3
Particle 11 To	- ***	50.5	48.6	64.5
		38.9	49.0	28.3
		55.2	2 6.2	54.4
		76.1	52.4	43.9
		·58.5	62.7	56.3
	MEAN	55.9	48.0	48.8
	STDEV	12.1	12.0	12.6
HDL-CH	•	20.1	29.0	
****		18.1	33.4	,
		16.8	31.1	19.5
		51.8	20.9	46.0
		65.6	44.4	36.1
		35.5	49.3	48.3
	MEAN	34.7	34.7	37.0
	STDEV	20.3	10.4	12.6

COUNTS

TG 6 CETP Activity in vivo

Author's Signature
Detail 12-9-96 Fix Kilonor Date 12-9-96

Subject

TG 6 CETP Activity in vivo

<u> </u>	5 min	1 hour	2 hour
VLDL	2356	3795	2423
% of total	3	8	7
LDL	4092	6082	4324
% of total	6	12	12
HDL	64371	38698	29705
% of total	91	79	81
Total	71077	48806	36672
% transfered	9.07	20.24	18.40

Author's Signature

| Date | 12-9-96 | Read-and Understood By | Date 1/21/99

Author

Project Number Subject Book Number Rubbit Lipoprotun GDS -5748 565711 Z-axis LE 169 **SEARLE** 12-4-96 50 pl rab prep + 5 pl super blue Use 8 µl/lane Pre-Run 10 mm 100 V. comb was not set deep enough & sera syrread. Lane 1 sera fettered sira VLDL Laner 7,8,9: Sample LOL is higher in get HOL 7777 HDL - bottom 11/20 10 HOL - middle 11/21 Run 6 hours 100 V. Stain tvernight Destain in Am with one change of destain

Author's signature

| Date | 12-9-96 | Regist aft understood By | Date 1/27/99

Book Number GDS - 5748 565711 3 week chol deet / 142 Hour **SEARLE** 12-11-96 BEISTIGG CETP-Tg + Non-Tg 3 Groups: 6 animals each Group A 1 Hour CETP-Tay \$ 19.2 > wt. taken before beed AI A2 9 20.7 A3 ₽ 18.5 O A4 25.4 \mathcal{O}^{r} AS 23.9 A6 \mathcal{O}^{7} 24.7 CETP-TQ 2 Hour 131 9 22.0 B2 Q 18.4 ßЗ ç 19.0 B4 07 24.1 BS 07 25.2 Died after 34-HDL ing B6 0 Lot# 9960902 Group C 2 Hour 우 27.2 29.8 c2 9 c3 2 30.8 CY 07 29.6 CS σ 295 C6 سم 32.3

CETP-Tg # 310,311,321,322-328, 294,295

Authors Signature

Date

12-11-96

Red and understood By

Date
1/29/59

Author's

Book Number Project Number 5748 GDS -565711 TG7 **SEARLE** 19.12 16 are more put on diet (Tekend 92181) (190 chol) en Nov. 20. There were just down w/ cos and 3H-HDL 151 (p. 161) 100 at ins orbital sinus After appropriate time mice were given pentobands IP and cardiac sticks done. Spin blevod Pool Ava for FAC Crp B 200 pl # 1, 2, 5 0577-Ty 6 100 M # 4 Orp c 200 we were 1111-Tq 6 Make 1:10 clustion of samples a pools for Tchol. Count 200 Me

79

Authorassimaturo
Powerun Kikec

12-12-96

Read and Ingelstood By

Date 1/27/99

Book Number
GDS - 5748
Page 470

Subject

TG7

Project Number

SEARLE

_	1	2	3	_ 4	5	•	7		•	10	11	12
্ৰ	0.001	0.001	0.175	0.173	0.131	0.134	0.180	0.156	-0.014	-0.014	-0.014	-0.013
뼥	0.033	0.038	0.155	0.158	0.124	0.130	0.189	0.184	-0.014	-0.013	-0.014	-0.013
þ	0.089	0.085	0.170	0.169	0.194	0.185	0.221	0.216	-0.014	-0.013	-0.013	-0.013
q	0.159	0.169	0.084	0.085	0.158	0.168	0.181	0.177	-0.014	-0.013	-0.013	-0.013
턕	0.318	0.324	0.214	0.213	0.166	0.170	0.001	0.002	-0.013	-0.013	-0.013	-0.011
-	0.471	0.479	0.182	0.185	0.153	0.163	0.002	0.001	-0.014	-0.013	-0.012	-0.013
G	0.614	0.630	0.163	0.167	0.164	0.165	0.002	0.002	-0.013	-0.013	-0.013	-0.013
H	0.758	0.787	0.205	0.205	0.167	.0.175	. 0.000	.0.000	-0.012	-0.013	-0.009	-0.013

READ DATE:
12/12/96
ASSAY NAME:
TOP TONOL

_	CHOL	ESTEROL	ASSAY									
Γ	ug STD	OD 1	00.2	MEAN	8D 0D		,				-	CALC
1	0	0.001	0.001	0.001	0.000	m	ь					-0.059
ł	0,5	0.033	0.038	0.036	0.004	0.0773	0.0056	#RVA	#N/A	#N/A	#N/A	0.388
	1	0.089	0.085	0.087	0.003	0.0006	0.0034	#N/A	#N/A	SN/A	#N/A	1.054
	2	0.159	0.169	0.184	0.007	0.9996	0.0083	#N/A	#N/A	#N/A	#N/A	2.051
ı	4	0.318	0.324	0.321	0.004	*****	6.000	#N/A	#N/A	#N/A	#N/A	4.083
1	6	0.471	0.479	0.475	0.006	0.580	0.000	#N/A	#N/A	#N/A	#N/A	6.077
ı	8	0.614	0.630	0.622	0.011							7.979
L	10	0.758	0.787	0.773	0.021							9.927

AMPLE	RESULTS	(DUPLICA	TES)						
SAMP.				MEAN	8D	CALC.	CALC.	DF	mg/dl
NO.	(ml)	OD 1	OD 2	00	OD	ug	ug/ml		CHOL
1	0.040	0.175	0.173	0.174	0.001	2.180	54.508	10.000	54.508
2	0.040	0.155	0.156	0.156	0.001	1.941	48.522	10.000	48.522
3	0.040	0.170	0.169	0.170	0.001	2.122	53.052	10.000	53.052
4	0.040	0.084	0.085	0.085	0.001	1.022	25.548	10.000	25.546
5	0.040	0.214	0.213	0.214	0.001	2.682	67,291	10.000	67.291
6	0.040	0.182	0.185	0.184	0.002	2.303	57.582	10.000	57.582
. 7	0.040	0.163	0.167	0.165	0.003	2.064	51.596	10.000	51.596
8	0.040	0.205	0.205	0.205	0.000	2.582	84.540	10.000	64.540
9	0.040	0.131	0.134	0.133	0.002	1.643	41.079	10.000	41.079
10	0.040	0.124	0.130	0.127	0.004	1.572	39.299	10.000	39.299
11	0.040	0.194	0.185	0.190	0.008	2.381	59.524	10.000	59.524
12	0.040	0.158	0.168	0.163	0.007	2.038	50.949	10.000	50.949
13	0.040	0.166	0.170	0.168	0.003	2.103	52.567	10.000	52.567
14	0.040	0.153	0.163	0.158	0.007	1.973	49.331	10.000	49.331
15	0.040	0.164	0.165	0.165	0.001	2.057	51.434	10.000	51.434
16	0.040	0.167	0.175	0.171	0.006	2.141	53,537	10.000	53.537
17	0.040	0.160	0.156	0.158	0.003	1.973	49.331	10.000	49.331
18	0.040	0.189	0.184	0.187	0.004	2.342	58.553	10.000	58.553
19	0.040	0.221	0.216	0.219	0.004	2.758	68.909	10.000	68.909
20	0.040	0.181	0.177	0.179	0.003	2.245	58.128	10.000	56.126

0.800	1200000	R [®] E U. Septe	
0.600			
0.400			
0.200			
0.000	4000		

TG7 3 WEEK		GROUP A CETP-TG 1 HOUR	GROUP B CETP-TG 2 HOUR	GROUP C NON-TG 2 HOUR
T-CHOL	MEAN STDEV	54.5 48.5 53.1 25.5 67.3 57.6 51.1	64.540 41.079 39.299 59.524 50.949 51.1 11.1	49.3 51.4 53.5 49.3 58.6 68.9 55.2 7.6

Authors Signature
BURNLY KURLE

12-12-96

Let Spy San

Date 1/27/9

Project Number Subject

SEARLE

TOT

GDS - 5748

Page 173

READ DATE: 12/12/98 ASSAY NAME: TG7 FPLC-A

1	2	3	4	6	6	7_	8	8	10	11	12	_
0.002	0.020	0.000	0.016	0.011	0.013	0.052	0.029	0.003	0.001	-0.009	-0.010	
	0.040	0.002	0.009	0.014	0.012	0.072	0.017	0.002	0.002	-0.013	-0.013	
	0.089	0.002	0.008	0.015	0.015	0.102	0.012	0.003	0.001	0.011	-0.012	
		0.003	0.010	0.018	0.016	0.138	0.010	0.003	0.001	-0.012	-0.013	
		0.005	0.010	0.017	0.020	0.176	0.012	0.003	0.001	-0.010	-0.010	
		0.014	0.012	0.016	0.024	0.162	0.016	0.003	0.001	-0.008	``-0.011	
			0.015	0.016	0.028	0.103	0.022	0.003	0.002	-0.012	-0.011	
	0.774	0.029	0.017	0.012	0.036	0.053	0.015	0.003	0.000	-0.008	-0.010	
	1 0.002 0.038 0.086 0.161 0.321 0.478 0.627 0.774	0.038 0.040 0.086 0.089 0.161 0.165 0.321 0.326 0.478 0.486 0.627 0.634	0.036 0.040 0.002 0.086 0.089 0.002 0.161 0.165 0.003 0.321 0.326 0.005 0.478 0.486 0.014 0.627 0.634 0.031	0.036 0.040 0.002 0.009 0.086 0.089 0.002 0.008 0.161 0.165 0.003 0.010 0.321 0.326 0.005 0.010 0.478 0.486 0.014 0.012 0.627 0.634 0.031 0.015	0.036 0.040 0.002 0.009 0.014 0.086 0.089 0.002 0.008 0.015 0.161 0.165 0.003 0.010 0.018 0.321 0.326 0.005 0.010 0.017 0.478 0.486 0.014 0.012 0.016 0.627 0.634 0.031 0.015 0.016	0.036 0.040 0.002 0.009 0.014 0.012 0.086 0.089 0.002 0.008 0.015 0.015 0.161 0.165 0.003 0.010 0.018 0.016 0.321 0.326 0.005 0.010 0.017 0.020 0.478 0.486 0.014 0.012 0.016 0.024 0.627 0.634 0.031 0.015 0.016 0.028	0.036 0.040 0.002 0.009 0.014 0.012 0.072 0.086 0.089 0.002 0.008 0.015 0.015 0.102 0.161 0.165 0.003 0.010 0.018 0.016 0.138 0.321 0.326 0.005 0.010 0.017 0.020 0.176 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.627 0.634 0.031 0.015 0.016 0.028 0.103	0.002 0.020 0.000 0.016 0.011 0.013 0.052 0.029 0.036 0.040 0.002 0.009 0.014 0.012 0.072 0.017 0.086 0.089 0.002 0.008 0.015 0.015 0.102 0.012 0.181 0.185 0.003 0.010 0.016 0.016 0.138 0.010 0.321 0.326 0.005 0.010 0.017 0.020 0.176 0.012 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.016 0.627 0.634 0.031 0.015 0.016 0.028 0.103 0.022	1 2 3 4 5 6 7 8 9 0.002 0.020 0.000 0.016 0.011 0.013 0.052 0.029 0.003 0.036 0.040 0.002 0.009 0.014 0.012 0.072 0.017 0.002 0.086 0.088 0.002 0.008 0.015 0.015 0.102 0.012 0.003 0.161 0.185 0.003 0.010 0.018 0.016 0.138 0.010 0.003 0.321 0.326 0.005 0.010 0.017 0.020 0.176 0.012 0.003 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.016 0.003 0.627 0.634 0.031 0.015 0.016 0.028 0.103 0.022 0.003	1 2 3 4 5 6 7 8 9 10 0.002 0.020 0.000 0.016 0.011 0.013 0.052 0.029 0.003 0.001 0.036 0.040 0.002 0.009 0.014 0.012 0.072 0.017 0.002 0.002 0.086 0.089 0.002 0.008 0.015 0.015 0.102 0.012 0.003 0.001 0.161 0.185 0.003 0.010 0.018 0.018 0.138 0.010 0.003 0.001 0.321 0.326 0.005 0.010 0.017 0.020 0.176 0.012 0.003 0.001 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.016 0.003 0.001 0.627 0.634 0.031 0.015 0.016 0.028 0.103 0.022 0.003 0.002	1 2 3 4 5 6 7 8 9 10 11 0.002 0.020 0.000 0.016 0.011 0.013 0.052 0.029 0.003 0.001 -0.009 0.086 0.089 0.002 0.009 0.014 0.012 0.072 0.017 0.002 0.002 -0.013 0.086 0.089 0.002 0.008 0.015 0.015 0.102 0.012 0.003 0.001 0.011 0.181 0.185 0.003 0.010 0.018 0.18 0.010 0.003 0.001 -0.012 0.321 0.326 0.005 0.010 0.017 0.020 0.016 0.012 0.016 0.003 0.001 -0.010 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.016 0.003 0.001 -0.008 0.627 0.634 0.031 0.015 0.016 0.028 0.103	1 2 3 4 5 6 7 8 9 10 11 12 0.002 0.020 0.000 0.016 0.011 0.013 0.052 0.029 0.003 0.001 -0.009 -0.010 0.036 0.040 0.002 0.009 0.014 0.012 0.072 0.017 0.002 0.002 -0.013 -0.013 0.086 0.088 0.002 0.008 0.015 0.015 0.102 0.012 0.003 0.001 0.011 -0.013 0.181 0.185 0.003 0.010 0.018 0.018 0.138 0.010 0.003 0.001 -0.012 -0.013 0.321 0.326 0.005 0.010 0.016 0.024 0.162 0.016 0.003 0.001 -0.010 -0.010 0.478 0.486 0.014 0.012 0.016 0.024 0.162 0.016 0.003 0.001 -0.008 -0.011

		ESTEROL.	ASSAY									
ſ	nB			MEAN	SD							CALC
- 1	STD	OD 1	OD 2	00	OD							STD
1	0	0.002	0.020	0.011	0.013	m	b					0.021
ı	0.5	0.036	0.040	0.038	0.003	0.0770	0.0094	#N/A	#N/A	#N/A	#N/A	0.371
ı	1	0.086	0.089	0.088	0.002	0.0007	0.0037	#N/A	#N/A	#N/A	#N/A	1.014
B	2	0.161	0.165	0.163	0.003	0.9995	0.0070	#N/A	#N/A	#N/A	#N/A	1.995
Ì	4	0.321	0.326	0.324	0.004	******	6.000	#N/A	#N/A	#N/A	#N/A	4.080
ł	8	0.478	0.486	0.482	0.006	0.576	0.000	#N/A	#N/A	#N/A	#N/A	6.138
- 1	8	0.627	0.616	0.622	0.008							7.950
ı	10	0.774	0.774	0.774	0.000							9.931

GDS - 5748

Page

174

Subject

TB7

Project Number

565711

SEARLE

_	1	2	3	4	5	6	7	8	9	10	11	12
4	0.001	0.002	0.003	0.016	0.015	0.013	0.058	0.033	0.008	0.003	-0.010	-0.011
티	0.056	0.042	0.002,	0.010	0.018	0.023	0.075	0.020	0.006	0.004	-0.010	-0.011
q	0.090	0.089	0.002	0.010	0.018	0.017	0.106	0.013	0.005	0.004	-0.010	-0.011
q	0.165	0.171	0.004	0.010	0.020	0.017	0.158	0.012	0.005	0.004	-0.010	-0.011
4	0.322	0.328	0.005	0.010	0.020	0.025	0.208	0.011	0.006	0.004	-0.009	-0.009
F	0.476	0.482	0.014	0.012	- 0.017-	0.030	0.190	0.013	0.005	0.004 -	-0.009	-0.010
Q	0.628	0.633	0.031	0.018	0.016	0.032	0.118	0.016	0.006	0.008	-0.009	-0.010
H	0.761	0.782	0.029	0.018	0.016	0.043	0.061	0.014	0.006	0.004	-0.008	-0.010

READ DATE:
12/12/98
ASSAY NAME:
TG7 FPLC-B

CHOL	ESTEROL .	ASSAY									
ug		*	MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.001	0.002	0.002	0.001	m	ь					-0.130
0.5	0.056	0.042	0.049	0.010	0.0768	0.0115	#N/A	#N/A	#N/A	#N/A	0.490
1	0.090	0.089	0.090	0.001	0.0007	0.0036	#NVA	#N/A	SNIA	#N/A	1.018
2	0.165	0.171	0.168	0.004	0.9995	0.0067	#N/A	#N/A	#N/A	#N/A	2.043
4	0.322	0.328	0.325	0.004	******	6.000	#N/A	#N/A	#N/A	EN/A	4.092
6	0.476	0.482	0.479	0.004	0.571	0.000	#N/A	#N/A	#N/A	#N/A	6.101
8	0.628	0.616	0.622	0.008							7.968
10	0.761	0.782	0.772	0.015							9.919

Authora Signature
DWerly Klipic

Date 12-12-96

Refad Strid Wholevistood By

Date 1 /27/59

Auth

Project Number Subject

SISTIL

SEARLE

TOT

Book Number GDS - 5748

99 17

	1	2.	3	4	6	6	7	8	9	10	11	12
4	0.001	0.001	0.001	0.014	0.012	0.014	0.065	0.033	0.003	0.001	-0.014	-0.014
3	0.034	0.037	0.001	0.014	0.016	0.012	0.088	0.019	0.001	0.001	-0.014	-0.015
a	0.082	0.088	0.001	0.008	0.019	0.012	0.127	0.012	0.001	-0.001	-0.014	-0.014
Ы	0.160	0.167	0.001	0.010	0.022	0.014	0.193	0.008	0.001	0.001	-0.014	-0.014
립	0.312	0.319	0.003	0.008	0.019	0.018	0.243	0.006	0.001	-0.001	-0.014	-0.014
큠	0.470	0.479	0.012	0.014	- 0.016 -	0.022	-0.220	0.010	0.001	-0.001	0.013 -	-0.014
a	0.616	0.624	0.027	0.016	0.019	0.032	0.133	0.010	0.001	-0.001	-0.013	-0.014
H	0.754	0.777	0.026	0.016	0.012	0.043	0.068	0.008	0.001	-0.001	-0.012	-0.014

READ DATE:
12/12/96
ASSAY NAME:
TG7 FPLC-C

	ESTEROL				_						
rn8			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
l o	0.001	0.001	0.001	0.000	· m	ь					-0.057
0.5	0.034	0.037	0.036	0.002	0.0766	0.0054	#N/A	#N/A	#N/A	#N/A	0.393
1	0.082	0.088	0.085	0.004	0.0007	0.0035	SNIA	#N/A	#N/A	#N/A	1.039
2	0.160	0.167	0.164	0.005	0.9995	0.0066	#N/A	#N/A	#N/A	#N/A	2.064
4	0.312	0.319	0.316	0.005	******	6.000	#N/A	#N/A	#N/A	#N/A	4.048
6	0.470	0.479	0.475	0.006	0.571	0.000	#N/A	#N/A	#N/A	#N/A	6.123
8	0.616	0.616	0.616	0.000							7.969
10	0.754	0.777	0.766	0.016							9.920

Author's Signature
Privery Kekic

12-12-96 A

The CUSING

Date 1/27/83

Book Number
GDS - 5748

Page 176

Subject

Froject Number

SEARLE

FPLC PROFILE			
TG7 3 WEEK			
	GROUP A	GROUP B	GROUP C
	CETP-TG	CETP-TG	NON-TG
	1 HOUR	2 HOUR	2 HOUR
VLDL fx 5-13	8.5	7.2	10.8
%	5	4	5
LDL fx 14-29	14	15.9	27
%	8	9	11
HDL fx 30-47	145.2	161.3	201.6
%	86	87	84
TOTAL ug CHOL	168.8	184.9	241

counts from FPLC - FPLC.058

Uther Signature Werlcy Kehre	12-12-96	Resident Understood By	Date / 2019

Project .

15

Author's

Project Number Subject GDS - 5748 565711 TES 4 weik **SEARLE** 12-18-96 (Tekcar 92181) 12 CETP-TE muce on 1% Chol dut for 4 weeks (fines Nov. 20) # 300,301,302 ,312,315,314,315,316,317, 315,319 ,320 all F5 6 NON-TG mere on 100 Chal. dut since Nov. 20 BD 6-1-96 10t 996 0902 100 pl 34-HOL (p. 161) unto senier cavity, under Group A - CETP-Tg / Hour Group B - CETT To 2 Hour croup c - Non-Tg & Hour - all deed after my of HOL Reason for death unknown - stress, age? B1 9 21.8 **?** ` Ai 31.5 B2 9 20.3 22.0 A2 P 20.6 (suid) B3 9 A3 21.3 **e** B4 0 23.9 87 28.0 A4 B5 01 94.3 8 A5 84.4

Group A+B - 200 pel each pooled (6/groups, grp A only 5)
FPLC puter, 500 pe appeir to FPLC

26.2

B6 0

AG

0

27.9

Author's Signature	12-20-96	Read and yndprestood By	Deto / 27/38
- June legisland	1000 10	14.47	

GDS - 5748 Page

178

Subject

TO8

FPLC - Chal

Project Number

565711

SEARLE

Project I

. 7	1	2	3	4	5	6	7	8	9	10	11	12
_^	0.001	0.001	0.001	0.015	0.012	0.010	0.059	0.030	0.001	-0.001	-0.015	-0.015
ᄩ	0.031	0.038	-0.001	0.010	0.014	0.010	0.084	0.016	0.002	-0.001	-0.015	
q	0.083	0.087	0.000	0.007	0.015	0.013	0.119	0.010	0.000	0.000		-0.015
미	0.157	0.172	-0.001	0.008	0.017	0.017	0.190	0.007	-0.001		-0.015	-0.014
턕	0.311	0.325	0.001	0.007	0.016	0.020	0.130	0.007		-0.001	-0.014	-0.014
F	0.467	0.470	0.011	0.009	0.015	0.025	0.228		-0.001	-0.002	-0.014	-0.015
G	0.609	0.618	0.033	0.012	0.013			0.007	0.000	0.001	-0.014	-0.013
нf	0.755	0.755	0.030			0.031	0.140	0.017	0.000	-0.002	-0.015	-0.015
		0.733	0.030	0.013	0.010	0.042	0.064	0.007	0.000	-0.002	-0.014	-0.014

READ DATE:
12/20/96
ASSAY NAME:
TG8 FPLCA
CETP-TG
-4 WK/1 HOUR

	ESTEROL	ASSAY									
ug STD	00.4		MEAN	SD							CALC
	OD 1	OD 2	OD	OD							STD
0	0.001	0.001	0.001	0.000	m	ь					-0.076
0.5	0.031	0.038	0.035	0.005	0.0757	0.0068	#N/A	#N/A	#N/A	#N/A	0.368
1	0.083	0.087	0.085	0.003	0.0008	0.0043	#N/A	#N/A	#N/A	#N/A	
2	0.157	0.172	0.165	0.011	0.9993	0.0080	#N/A	#N/A	#N/A	#N/A	1.033
4	0.311	0.325	0.318	0.010	******	6.000	#N/A	#N/A	#N/A		2.083
6	0.467	0.470	0.489	0.002	0.557	0.000	#N/A	#N/A		#N/A	4.111
8	0.609	0.616	0.613	0.005	0.007	0.000	HIVA	HWA	#N/A	#N/A	6.099
10	0.755	0.755	0.755	0.000							8.001 9.883

12-20-96

Date

Project Number 565711

SEARLE

Subject

TC8

Book Number

GDS.5748

Page

FPLC-Chol

179

	1	2	3	4	6	6	7	8	9	10	11	12
Ā	0.001	0.001	0.001	0.022	0.015	0.017	0.067	0.034	0.005	0.003	-0.012	-0.013
В	0.028	0.042	0.001	0.015	0.017	0.025	0.100	0.019	0.004	0.001	-0.012	-0.011
a	0.081	0.090	0.001	0.011	0.018	0.020	0.110	0.013	0.003	0.003	-0.012	-0.012
Ы	0.164	0.162	0.002	0.011	0.018	0.022	0.168	0.010	0.003	0.004	-0.011	-0.012
d	0.322	0.320	0.004	0.012	0.018	0.029	0.231	0.008	0.004	0.002	-0.011	-0.012
Ā	0.461	0.487	0.016	0.013	0.016	0.032	0.220	0.015	0.003	0.003	-0.011	-0.013
d	0.617	0.621	0.044	0.016	0.019	0.037	0.135	0.012	0.002	0.001	-0.012	-0.011
н	0.768	0.763	0.039	0.017	0.013	0.048	0.071	0.010	0.002	0.000	-0.012	-0.012

7	READ DATE:
r	12/20/96
L	ASSAY NAME:
Ĭ	TG8 FPLC-B
L	CETP-TG
	2 HOUR
Я	

ug			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.001	0.001	0.001	0.000	m	ь					-0.06
0.5	0.028	0.042	0.035	0.010	0.0767	0.0059	#N/A	#N/A	#N/A	#N/A	0.380
1	0.081	0.090	0.086	0.006	0.0007	0.0039	#N/A	#N/A	#N/A	#N/A	1.039
2	0.164	0.162	0.163	0.001	0.9994	0.0074	#N/A	#N/A	#NVA	#N/A	2.050
4	0.322	0.320	0.321	0.001	******	6.000	#N/A	#N/A	#N/A	#N/A	4.111
6	0.461	0.487	0.474	0.018	0.571	0.000	#N/A	#N/A	#N/A	#N/A	6.107
8	0.617	0.616	0.617	0.001							7.966
10	0.768	0.763	0.766	0.004							9.910

Author's Signature
1 Diverty Kepie

12-20-96

Read and University by

Date 1/27/99

Book Number Subject Project Number

GDS - 5748

^{^200} 180

TO8 4 Nacek

565711 SEARLE

_	1	2	3	4	5	6	7	8	•	10	11	12 _
A	0.002	0.002	0.193	0.193	0.210	0.211	-0.012	-0.013	-0.014	-0.014	-0.013	-0.012
	0.033	0.041	0.178	0.165	0.165	0.177	-0.012	-0.012	-0.013	-0.013	-0.012	-0.012
þ	0.081	0.086	0.002	0.003	0.215	0.219	-0.011	-0.012	-0.013	-0.013	-0.012	-0.013
d	0.183	0.162	0.201	0,191	0.001	0.003	-0.012	-0.011	-0.013	-0.013	-0.013	-0.013
4	0.308	0.311	0.195	0.186	0.248	0.247	-0.012	-0.012	-0.013	-0.013	-0.013	-0.009
4	0.466	0.475	0.210	0.217	0.213	0.213	-0.010	-0.012	-0.014	-0.013	-0.013	-0.012
a	0.606	0.619	0.201	0,195	0.001	0.002	-0.011	-0.012	-0.014	-0.013	-0.012	0.009_
н	0.748	0.758	0.202	0.199	0.000	0.002	-0.011	-0.012	-0.014	-0.013	-0.013	-0.009

READ DATE:	
12/20/98	_
ASSAY NAME:	_
TG8 TCHOL	_
_	

CHOLESTEROL ASSAY											
STD	OD 1	OD 2	MEAN OD	SD OD							CALC STD
0	0.002	0.002	0.002	0.000	m	ь					-0.054
0.5	0.033	0.041	0.037	0.006	0.0756	0.0061	#N/A	#N/A	#N/A	#PVA	0.409
1	0.081	0.085	0.083	0.003	0.0007	0.0037	#N/A	#N/A	#N/A	#N/A	1.017
2	0.163	0.162	0.163	0.001	0.9995	0.0070	#N/A	#N/A	#N/A	#N/A	2.069
4	0.308	0.311	0.310	0.002	*******	6.000	#N/A	#N/A	#N/A	#N/A	4.014
6	0.466	0.475	0.471	0.006	0.556	0.000	#N/A	#N/A	#N/A	#N/A	6.143
8	0.606	0.619	0.613	0.009							8.022
10	0.748	0.758	0.753	0.007							9.880

SAMP.				MEAN	SD	CALC.	CALC.	DF	mg/dl	1
NO.	(mi)	001	00 2	00	OD	ag	ug/ml		CHOL	B .
1	0.040	0.193	0.193	0.193	0.000	2.472	61.812	10.000	61.812	A1 ·
2	0.040	0.178	0.165	0.172	0.009	2.188	54.702	10.000	54.702	A2
3	0.040	0.002	0.003	0.003	0.001	-0.047	-1.187	10.000		DIED
4	0.040	0.201	0.191	0.196	0.007	2.512	62.804	10.000	62.804	A4 ~~
5	0.040	0.195	0.186	0.191	0.006	2.439	60.965	10.000	60.985	A5
6	0.040	0.210	0.217	0.214	0.005	2.744	68.561	10.000	68.591	A6
· 7	0.040	0.201	0.196	0.198	0.004	2.539	63.466	10.000	63.466	POOL A
8	0.040	0.202	0.199	0.201	0.002	2.572	64.292	10,000	64.292	B1
9	0.040	0.210	0.211	0.211	0.001	2.704	67.599	10.000	67.599	B2
10	0.040	0.165	0.177	0.171	0.008	2.181	54.537	10,000	54.537	B 3
11	0.040	0.215	0.219	0.217	0.003	2.790	69.749	10.000	69.749	B4
12	0.040	0.001	0.003	0.002	0.001	-0.054	-1.352	10.000		NO SERUI
13	0.040	0.248	0.247	0.248	0.001	3.193	79.835	10.000	79.835	B6
14	0.040	0.213	0.213	0.213	0.000	2.737	68.426	10.000	68.426	POOL B

T 8 4 WEEK ALL CETP-TG

		•
	GROUP A	GROUP B
	1 HOUR	2 HOUR
	61.8	64.3
	54.7	67.6
	H	54.5
	62.8	69.7
•	61.0	
	68.6	79.8
MEAN	61.8 ["]	67.2
STDEV	5.0	9.2
	\	•

Jotal chol are about the same between the 2 different time periods

Author's Signature
12-20-96 PS/LOBINST Date 1/27/99

Author

Project Number
505711
SEARLE

Subject

Cont,

Book Mumber GDS - 5748

" 181

TG8		
4 WEEK		
ALL CETP-TG		
	GROUP A	GROUP B
	CETP-TG	CETP-TG
	1 HOUR	2 HOUR
VLDL fx 5-13	4.3	7
%	5	7
LDL fx 14-29	7.1	13
%	8	13
HDL fx 30-47	79	79.9
%	87	79
TOTAL ug CHOL	90.5	101.1

She Cholisteral profile is about the same between the two different time points

Authory Signature MUSTLE KIKEC	Date 12-20-96	Read and Understood By	Oato 1/27/79

Book Number Subject GDS - 5748 Page

TB8

4 wk study

3H courts from FPLC profile.

TG8 C	TG8 CETP Activity/ 4 weeks on diet								
	TG-1 hr		TG 2 hr						
	CPM		CPM						
1	83.76		61.44						
2	46.24	1	49.4						
3	69.86		55.66						
. 4	67.28		67.12						
5	132.36		134.2						
6	244.56		294.14						
7	619.28		782.76						
8	558.76		728.68						
9	349.62		443.08						
10	241.76		305.9						
11	223.76		239.28						
12	177.12		222.54						
13	214.02	2761	240.78 3391						
14	207.96	2101	238.2	_					
15			266.76						
16	322.46		331.98						
17	385.82		376.52						
18	426.32		403.12						
19	498.14		463.86						
20	511.64		458.56						
21	512.3		460.78						
22	464.48		403.54						
23	397.74		339.34						
24	338.12		281.8						
25	297.86		282.14						
26	295.02		278.68						
27	292.48		276.52						
28	350.56		327.64						
29	400.54	5965	372.32 5562						
30	534.54		477.12	-					
31	812.84		684.34						
32			1122.9						
88			1863.64						
34	3690.64		2710.38						
35	4753.26		3267.3						
36	7842.72		5123.02						
87	10209.7		6787.34						
38			6273.06						
89	5482.58		4188.54						
40	2628.62		2084.46						
41	1263.58		984.26						
42	668.1		522.82						
43	400.68		319.08						
44	284.62		195.04						
45	160.3		135.06						
46	107.5		90.68						
47		51901	77.08 36906						
48	60.36	•	49.82	_					
	·	60955	46148						

Project Number
505711
SEARLE

TG8 4 wk study

Book Number
GDS - 5748
Page 183

TG8 CETP Activity/ 4 weeks on diet

VLDL % of total LDL	TG- 1 hr 2761 5 5965	TG 2 hr 3391 7 5562	0 0 #DIV/0! 0
		3391	#DIV/0!
	•	5562	#D1470.
% of total	10	12	#DIV/0!
HDL	51901	36906	0
% of total	85	80	#DIV/0!
Total	60955	46143	U
% transfere	14.32	19.40	#DIV/0!

1-10-97 We have clicided to change the diet to a 1% chal with cocoa feather to try to increase the lipids. The LAC A VLIL is not high enough to accept any CE being transfered.

Author's Stonature

12-20-96

Refer and Understood By

Date 1/27/99

GDS - 5748

″ 184

FALC Profile on Rabbit Scra

Project Number

565711

SEARLE

1-14-97 Rubbit sera (obtained from Harriet Kurlumen) and Sipoproteins solvered (p. 145) and stored -4°c.

Showed and pooled 6 vials, ~ 2000 ul, fittered. I ma, injected 500 ul x 3 onto superosi 6x2 FPIC.

	RAB 1	RAB 2	RAB :
	RABI	NAD 4	10.0
VLDL fx 5-13 /ug.	10.2	8.6	10.4
% 0	1.4	1.3	1.6
LDL fx 14-29	609.6	576	518.5
%	86	85	81.5
HDL fx 30-47	82	81.4	91.7
%	11.6	12	14.4
TOTAL COUNTS (HOL			
TOTAL COUNTS (HU	709.4	677.1	636.2

Author's Signature

MUKILY KERLE

1-14-47

Report and Anderstood By

Dato 1/27/99

Author's

LE

Project Number 5057// SEARLE Subject

Rab. Sera FALC profice

Book Number

GDS - 5748

Page

185

	1	2	3	4	5	6	7	8	9	10	11	12	
A	0.001	0.001	0.001	0.034	0.111	0.148	0.039	0.027	0.003	0.002	-0.014	-0.014	READ DATE:
В	0.035	0.039	0.003	0.030	0.204	0.073	0.053	0.020	0.003	0.005	-0.013	-0.013	1/14/97
d	0.084	0.087	0.002	0.023	0.374	0.041	0.070	0.017	0.003	0.003	-0.013	-0.013	ASSAY NAME:
d	0.182	0.164	0.003	0.021	0.569	0.025	0.075	0.016	0.003	0.003	-0.013	-0.014	R Sera 1 Tchol
貞	0.324	0.306	0.003	0.025	0.688	0.021	0.071	0.012	0.003	0.005	-0.013	-0.014	Í
티	-0.459 -	0.482	0.003	0.033	0.627	0.019	0.060	0.010	0.003	0.002	-0.013	-0.014	
G	0.577	0.636	0.011	0.046	0.458	0.021	0.048	0.009	0.008	0.002	-0.013	-0.013	
н	0.755	0.752	0.017	0.068	0.292	0.029	0.035	0.007	0.003	0.003	-0.013	-0.013	

ug			MEAN	SD							CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.001	0.001	0.001	0.000	m	ь					-0.090
0.5	0.035	0.039	0.037	0.003	0.0749	0.0078	#N/A	#N/A	#N/A	#N/A	0.390
1	0.084	0.087	0.086	0.002	0.0009	0.0049	#N/A	#N/A	#N/A	#N/A	1.038
2	0.162	0.164	0.163	0.001	0.9991	0.0092	#N/A	#N/A	#N/A	#N/A	2.072
4	0.324	0.306	0.315	0.013	*******	6.000	#N/A	#N/A	#N/A	#N/A	4.101
6	0.459	0.482	0.471	0.016	0.546	0.001	#N/A	#N/A	#N/A	#N/A	6.177
8	0.577	0.616	0.597	0.028							7.858
10	0.755	0.752	0.754	0.002							9.954

199

Author's Signature
POWYLUZKELEC

Date 1-14-97 Relad any finders to be the

Date 1/27 198

Book Number GDS - 5748
Page 186

| ---

Rab Sera FPLC Profee , cont

565711 SEARLE

Project Number

	1	_ 2	3	4	5	6	7	8	9	10	11	12
A	0.003	0.000	0.000	0.028	0.103	0.151	0.034	0.023	0.002	0.001	-0.016	-0.016
В	0.033	0.037	0.000	0.026	0.193	0.075	0.050	0.017	0.001	0.001	-0.016	-0.016
q	0.084	0.088	0.000	0.020	0.350	0.039	0.067	0.014	0.022	0.001	-0.016	-0.017
q	0.157	0.182	0.000	0.021	0.552	0.025	0.074	0.012	0.001	0.001	-0.015	-0.017
턕	0.324	0.319	0.001	0.023	0.660	0.019	0.069	0.009	0.002	0.001	-0.016	-0.014
F	0.466	0.464	0.001	0.031	0.599	0.017	0.058	0.008	0.004	0.000	-0.011	-0.017
G	0.612	0.604	0.005	0.043	0.432	0.020	0.046	0.006	0.002	0.001	-0.016	-0.016
H	0.757	0.780	0.012	0.065	0.267	0.025	0.033	0.004	0:002	0.000	-0.016	-0.016

L	READ DATE:
	1/14/97
	ASSAY NAME:
Г	R Sera 2 Tchol
l	
Г	

CHOL	ESTEROL	ASSAY									
ug			MEAN	SD	•						CALC
STD	OD 1	OD 2	OD	OD							STD
0	0.003	0.000	0.002	0.002	m	ь					-0.041
0.5	0.033	0.037	0.035	0.003	0.0768	0.0046	#N/A	#N/A	#N/A	#N/A	0.397
1	0.084	0.086	0.085	0.001	0.0006	0.0032	#N/A	#N/A	#N/A	#N/A	1.049
2	0.157	0.162	0.160	0.004	0.9996	0.0060	#N/A	#N/A	#N/A	#N/A	2.022
4	0.324	0.319	0.322	0.004	******	6.000	#N/A	#N/A	#N/A	#N/A	4.137
6	0.466	0.464	0.465	0.001	0.571	0.000	#N/A	#N/A	#N/A	#N/A	6.010
8	0.612	0.616	0.814	0.003		_					7.955
10	0.757	0.780	0.769	0.016		-					9.972

Author's Signature	
Murey	Kekei
- 0	

Project Number	Subject
565711	1
CEADLE	İ

Cont.

Book Numb	
GDS -	5748
Page	

187

	1	2	3	4	5	6	7	8	9	10	11	12	
	0.000	0.001	-0.001	0.029	0.083	0.114	0.032	0.022	0.005	0.003	-0.015	-0.015	READ
- 70	0.000	0.001							0.040	0.000	0.044	0.046	1/1
ы	0.031	0.038	0.001	0.028	0.172	0.059	0.046	0.021	0.010	0.003	-0.014	-0.015	, ,,,
몍						0.000	0.000	0.017	0.008	0.005	-0.014	-0.015	ASSA
di	0.077	0.088	0.004	0.021	0.330	0.033	0.062	0.017	0.000				
a	0.160	0.163	0.003	0.021	0.517	0.025	0.071	0.014	0.006	0.008	-0.013	-0.015	R Sena
ч				-		•	0.067	0.011	0.006	0.009	-0.012	-0.014	
ᇤ	0.304	. 0.308	0.003	0.023	. 0.592 _	0.019	0.067	0.011					
ᆲ	0.445	0.465	0.005	0.027	0.518	0.022	0.058	0.010	0.006	0.013	-0.013	-0.015	
7	0.440						0.050	0.044	0.007	0.007	-0.013	-0.016	
G₽	0.615	0.609	0.003	0.039	0.377	0.033	0.056	0.014	0.007	0.007	-0.013	-0.010	
-		•		-	0.222	0.024	0.033	0.006	0.005	0.003	-0.013	-0.015	1
H	0.759	0.754	0.013	0.056	0.222	0.024	0.055	0.000	<u> </u>	0.000	-0.010		,

	READ D	
Γ	1/14/1	
L	R Sera 3	
	K Sera 3	CHO
Н		

CHOL	ESTEROL	ASSAY									
ug STD	OD 1	OD 2	MEAN OD	SD OD							STD
0	0.000	0.001	0.001	0.001	m	b					-0.034
0.5	0.031	0.038	0.035	0.005	0.0758	0.0031	#N/A	#N/A	#N/A	#N/A	0.415
1	0.077	0.088	0.083	0.008	0.0005	0.0029	#N/A	#N/A	#NVA	#NVA	1.048
2	0.160	0.163	0.162	0.002	0.9997	0.0054	#N/A	#N/A	#N/A	#N/A	2.090
4	0.304	0.308	0.306	0.003	*******	6.000	#N/A	#N/A	#N/A	#N/A	3.997
6	0.445	0.465	0.455	0.014	0.558	0.000	#N/A	#N/A	#N/A	#N/A	5.963
8	0.815	0.616	0.616	0.001							8.080
10	0.759	0.754	0.757	0.004						_	9.941

Author's fignature Date 1-14

4-97 (Verse | Cold by

Date 1177/59

Book Number Subject Project Number GDS - 5748 565711 LDL 151 Chausters 188 **SEARLE** -0.017 -0.015 12 -0.017 0.001 0.040 0.093 0.147 0.002 0.005 -0.016 -0.012 -0.016 -0.010 -0.018 -0.016 -0.011 -0.016 0.001 0.038 0.145 READ DATE: 0.000 -0.017 1/20/97 0.002 0.139 0.145 0.085 0.002 0.006 -0.014 -0.013 -0.015 -0.015 -0.016 -0.018 0.203 0.210 0.160 0.173 0.212 0.210 0.005 0.007 -0.016 -0.014 -0.016 -0.016 -0.017 LDL151 TCHOL -0.016 0.315 0.315 0.267 0.288 0.010 0.010 -0.011 -0.012 -0.009 -0.013 -0.016 -0.017 0.006 0.005 -0.016 -0.012 -0 017 0.476 0.476 0.286 0.283 0.010 -0.015 -0.016 -0.016 -0.015 -0.011 -0.016 -0.017 0.627 0.359 0.354 0.006 -0.012-0.016 0.621 -0.015 CHOLESTEROL ASSAY STD 0.001 0.040 0.093 0.000 0.003 0.001 0.036 0.001 0.038 -0.0540 ь 0.0052 0.0778 0.421 0.5 #N/A #N/A #NVA #N/A 0.085 0.089 0.006 0.0006 0.0027 #N/A #N/A #N/A #N/A 1.077 0.173 0.167 0.009 0.0051 #N/A #N/A #N/A #N/A 2.073 0.160 0.315 0.315 0.000 6.000 #N/A #N/A #N/A #N/A 3.982 0.315 6.052 7.955 0.476 0.476 0.476 0.000 0.588 0.000 #N/A 0.627 0.621 0.624 0.004 SAMPLE RESULTS (DUPLICATES) CHOLESTEROL STD CURVE y = 0.0778a + 0.0052 MEAN CALC. CALC 00 ug/ml 0.020 0.147 0.139 0.210 90.486 904.862 879.149 _ 0.000 0.145 0.148 0.001 1.810 100.000 0.145 0.203 1.758 2.588 o 0.400 0.142 0.207 0.004 87.915 100,000 0.030 0.005 86.252 100.000 862.517 0 0.200 0.030 0.212 0.210 0.211 0.001 2.645 88.180 100.000 881.802 0.000 0.040 0.040 0.287 0.288 0.283 0.288 0.001 3,629 90.724 100.000 907.235 0.285 3.590 89.759 100.000 897,593 0.286 0.002 0.050 0.359 0.354 0.357 0.004 4.516 90.321 100.000 up CHOLESTEROL 903.210 0.002 4.587 100.000 8939 mg/ml 7.94 mg/ml filename: LOL151CH. XLS

Data given to Delbie Hewelmen.

-20-97

murryKine

Author's

Project

3H - H.

,