

Dimensionality reduction

Van Du Tran

Vital-IT, SIB Swiss Institute of Bioinformatics

Nantes, 3-6 September 2025

Overview

- 01 Principal Component Analysis
- 02 Partial Least Squares
- 03 Canonical Correlation Analysis
- 04 Towards Nonlinearity

Questions in practice

A real-estate agency wants to see the similarity/difference between its properties

- Properties' characteristics: price, surface area, form, floors, bedrooms, bathrooms, entrances, garages, yards, etc.
- Access to nearby facilities
- Local living cost

Patients need stratifying for clinical trials

- Demographics
- Lifestyle
- Multi-omics patterns
- etc.

What is PCA?

Several features (variables) to consider

- Relationships between features
- Risk of violation on assumptions of modeling
- Risk of overfitting the model to data

⇒ Reduce the dimension of the feature space

- Feature selection: find a subset of input features
- Feature extraction: project high-dimensional space into a space of fewer dimensions

PCA

Karl Pearson – mathematician & biostatistician (1901)

When is PCA used?

- Cannot identify features to eliminate
- Need new features independent of one another
- Accept that the new independent features are less interpretable

Y: n samples $\times p$ features

Samples

How are samples grouped together into subgroups by similarity?

Features

What underlying factors influence the grouping?

- $Y = (Y_1 \ Y_2 ... \ Y_p)$
- REQUIRED: cleaning
- OPTIONAL: normalizing
- REQUIRED: centering

$$mean(Y_i) = 0$$

RECOMMENDED: appropriately scaling (after centering)

$$var(Y_i) = 1$$
, etc.

Data cleaning

GARBAGE IN, GARBAGE OUT

- Missing values: biologically or technically unidentified
 - ⇒ removal, imputation
- Inconsistent data: qualitative, ill-formatted data
 - ⇒ reformatting, correction
- Outlier and noisy data
 - \Rightarrow removal
- Redundancy
 - \Rightarrow removal

Data normalization

Account for biases (technical variation) from sample handling to instrumentation difference

Make samples more comparable (range, distribution)

Various normalization techniques

Data centering

Each variable fluctuates around zero instead of its mean value

WHY: Offsets complicate models with more parameters, introduce algorithmic problems

HOW: For each variable

Compute its mean

$$mean(Y_i) = 0$$

Subtract the mean from all its values

Data scaling

All variables are allocated an comparable importance.

WHY: Variables with higher variances dominate those of lower variances

HOW: For each centered variable, divide all variables centered values by the scaling factor

- Unit variance scaling: standard deviation $var(Y_i) = 1$
- Pareto scaling: square root of standard deviation

Principal component

Coordinate change: $(Y_1 \ Y_2 ... \ Y_p) \rightarrow (Z_1 \ Z_2 ... \ Z_p)$

Linear combination:

$$Z_1 = w_{11}Y_1 + w_{12}Y_2 + \dots + w_{1p}Y_p$$

 $Z_2 = w_{21}Y_1 + w_{22}Y_2 + \dots + w_{2p}Y_p$

 $\mathbf{Z}_p = w_{p1}\mathbf{Y}_1 + w_{p2}\mathbf{Y}_2 + \dots + w_{pp}\mathbf{Y}_p$

$$Z_1 = 0.8 Y_1 + 0.1 Y_2 + \cdots + 0.001 Y_p$$

Latent variables

Linear transformation

Principal component 1

Coordinate change: $(Y_1 \ Y_2 \dots \ Y_n) \rightarrow (Z_1 \ Z_2 \dots \ Z_n)$

Linear combination:

$$Z_1 = w_{11}Y_1 + w_{12}Y_2 + \dots + w_{1p}Y_p = Yw_1$$

=> projection of Y onto vector w_1

Find $w_1 (||w_1|| = w_1^T w_1 = 1)$ to maximize:

$$var(\mathbf{Z}_1) = \mathbf{w}_1^{\mathrm{T}} \operatorname{cov}(\mathbf{Y}) \mathbf{w}_1$$

Variance-covariance matrix

$$cov(\mathbf{Y}) = \begin{pmatrix} cov(\mathbf{Y}_1, \mathbf{Y}_1) & \cdots & cov(\mathbf{Y}_1, \mathbf{Y}_p) \\ \vdots & \ddots & \vdots \\ cov(\mathbf{Y}_p, \mathbf{Y}_1) & \cdots & cov(\mathbf{Y}_p, \mathbf{Y}_p) \end{pmatrix}$$

Solution: max var(Z_1) = max eigenvalue of cov(Y) at w_1 = corresponding eigenvector

Hint: Lagrange multiplier + derivative

Principal component 2

Coordinate change: $(Y_1 \ Y_2 ... \ Y_p) \rightarrow (Z_1 \ Z_2 ... \ Z_p)$

Linear combination:

$$\mathbf{Z}_2 = w_{21}\mathbf{Y}_1 + w_{22}\mathbf{Y}_2 + \dots + w_{2p}\mathbf{Y}_p = \mathbf{Y}\mathbf{w}_2$$

=> projection of Y onto vector w_2

 $w_2 \perp w_1$: independent projection

Find \mathbf{w}_2 ($\|\mathbf{w}_2\| = \mathbf{w}_2^T \mathbf{w}_2 = 1$ and $\mathbf{w}_2^T \mathbf{w}_1 = 0$) to maximize:

$$var(\mathbf{Z}_2) = \mathbf{w}_2^{\mathrm{T}} \operatorname{cov}(\mathbf{Y}) \mathbf{w}_2$$

Solution: max $var(\mathbf{Z}_2) = 2^{nd}$ max eigenvalue of $cov(\mathbf{Y})$ at $\mathbf{w}_2 = corresponding$ eigenvector

and so on

PCA implementation

Y: n samples $\times p$ features

Input: Y or cov(Y)

Output:

- sdev: square root of eigenvalues of cov(Y)
- scores: $(\boldsymbol{Z}_1 \ \boldsymbol{Z}_2 \ ... \ \boldsymbol{Z}_p)$
- loadings/rotation: $(w_1 \ w_2 \ ... \ w_p)$

Why does PCA work? Why should PCA be used?

- Covariance matrix: relation between features
- Eigenvectors of covariance matrix: directions of dispersion
- Eigenvalues of covariance matrix: importance of directions
- Assumption: variability ~ signal
- Application: data exploration, visualization of underlying patterns within correlated data sets, decorrelation, detection of outliers, data compression
- Disadvantage: linearity assumption, interpretability, sensitive to scaling and outliers

PCA: which number of principal components?

Variability explained with each component

PCA score plot

Score: projection measures of samples in each principal component

=> Coordinate of samples on each axis PC

PCA score plot

Transcriptomics dataset:

Gene expression profiles of different isolates of *Candida* albicans in vitro and during oral infection on mice

PC 1 (fraction of total variance: 0.33)

Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation Lembert *et al.*

https://doi.org/10.1101/2021.10.11.463

879

PCA score plot

25

PC1 (0.34)

PCA loading plot

Loading: contribution of given features to each principal component

- ⇒ Coordinate of given features on each axis PC
- ⇒ Highly correlated features: similar weights in the loading vectors; close

Overview

- 01 Principal Component Analysis
- 02 Partial Least Squares
- 03 Canonical Correlation Analysis
- 04 Towards Nonlinearity

Questions in practice

- A real-estate agency wants to know why some properties were sold quickly and some not.
 - Properties' characteristics: price, surface area, form, floors, bedrooms, bathrooms, entrances, garages, yards, etc; Access to nearby facilities; Local living cost
 - Properties' sold status
- Relation between lifestyle and clinical measurements of patients
 - Lifestyle
 - Clinical measurements

What is PLS?

Herman Wold – econometrician (1966)

Two sets of variables (features) to consider

- Many (predictors or independent/explanatory variables) vs One (response or dependent variable)
- Many vs Many

Reduce the dimension of the two variable spaces

Feature extraction: project high-dimensional space into a space of fewer dimensions

Find the relation between the two sets of variables: covariance

PLS: also Projection to Latent Structures

When is PLS used?

- Cannot identify variables to eliminate
- Need *new* variables independent of one another
- Accept that the *new* independent variables are less interpretable

X: n samples $\times p$ variables **Y**: n samples $\times q$ variables

Samples

Variables

How are variations in both response and predictor?

What underlying factors explain both variations?

Predict variables in Y using variables in X

PLS Discriminant Analysis (PLS-DA)

X: n samples $\times p$ variables

Y: n samples \times 1 categorical variable (labels)

- Supervised version of PCA
- Dimensionality reduction, feature selection, classification
- Maximize covariance between each latent variable and the labelling

PCA and PLS-DA

How does PLS work?

- PCA objective: calculate latent variables
 - best explaining variance in X
 - ⇒ Maximize variance in X latent variables

- PLS objective: calculate latent variables
 - best explaining variance in X
 - best explaining variance in Y
 - having greatest relationship between X and Y
 - ⇒ Maximize covariance between X and Y latent variables

Components 1

Coordinate change:

$$(X_1 \ X_2 \dots \ X_p) \rightarrow (U_1 \ U_2 \dots \ U_p)$$

 $(Y_1 \ Y_2 \dots \ Y_q) \rightarrow (V_1 \ V_2 \dots \ V_q)$

Linear combination:

=> projection of **X** onto vector w_1 and **Y** onto vector c_1

Find
$$w_1, c_1 (||w_1|| = ||c_1|| = w_1^T w_1 = c_1^T c_1 = 1)$$
 to maximize:

$$cov(U_1, V_1) = cor(U_1, V_1) \sqrt{var(U_1)} \sqrt{var(V_1)}$$

- best explaining variance in \mathbf{X} , given by $\sqrt{var(\mathbf{U}_1)} = \mathbf{U}_1^{\mathrm{T}} \mathbf{U}_1$
- best explaining variance in \mathbf{Y} , given by $\sqrt{var(\mathbf{V}_1)} = \mathbf{V}_1^{\mathrm{T}} \mathbf{V}_1$
- having greatest relationship between X and Y, given by $cor(U_1, V_1)$

Following components

- X-space: component 2 orthogonal to component 1
- Y-space:
 - Regression mode: not necessarily orthogonal (Y is deflated to the information from X)
 - Canonical mode: orthogonal (Y is deflated to the information from Y)
- Algorithm: iterative process
 - For component 1:

 w_1 = eigenvector corresponding to max eigenvalue of $\mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X}$ c_1 = eigenvector corresponding to max eigenvalue of $\mathbf{Y}^T \mathbf{X} \mathbf{X}^T \mathbf{Y}$

• For component 2:

 w_2 = eigenvector corresponding to max eigenvalue of

$$X_{deflated2}^{\bar{T}}Y_{deflated2}^{T}Y_{deflated2}^{T}X_{deflated2}^{T}$$

$$\mathbf{X}_{\text{deflated1}} = \mathbf{X}, \mathbf{X}_{\text{deflated2}} = \mathbf{X} - \mathbf{U}_1 \mathbf{U}_1^{\text{T}} \mathbf{X}_{\text{deflated1}}, \text{ etc.}$$

And so on, at most min(p, q)

Scores

- Maximum covariance between X-space scores (e.g. projection of X onto vector w_1) and Y-space scores (e.g. Y onto vector c_1)
- Not necessarily identical to PCA components => affected scores
- Visualize clusters, outliers, interesting patterns in sample distribution

Loadings

- Highly correlated variables: similar weights in the loading vectors; close together in the loading plots of all dimensions.
- Loading plot: superimpose loading plots from X and Y
- ⇒ Relationship between X variables, between Y variables, between all variables
- Loadings: weights on deflated (residual) matrices
- Loadings-star: weights on input matrices

$$egin{aligned} oldsymbol{U}_1 &= \mathbf{X} oldsymbol{w}_1^* = \mathbf{X}_{ ext{deflated1}} oldsymbol{w}_1 : & \mathbf{X}_{ ext{deflated1}} &= \mathbf{X}, & oldsymbol{w}_1^* &= oldsymbol{w}_1 \\ oldsymbol{U}_2 &= \mathbf{X} oldsymbol{w}_2^* = \mathbf{X}_{ ext{deflated2}} oldsymbol{w}_2 : & \mathbf{X}_{ ext{deflated2}} &= \mathbf{X} - oldsymbol{U}_1 oldsymbol{U}_1^T \mathbf{X}_{ ext{deflated1}}, oldsymbol{w}_2^* &\neq oldsymbol{w}_2 \end{aligned}$$

=> Interpret **Loadings-star** rather than Loadings when investigating relationships in PLS

Variability explained with components

Cumulative variance explained for each space

$$R_{\mathbf{X}}^{2} = 1 - \frac{\text{var}(\mathbf{X}_{deflated})}{\text{var}(\mathbf{X})}$$
$$R_{\mathbf{Y}}^{2} = 1 - \frac{\text{var}(\mathbf{Y}_{deflated})}{\text{var}(\mathbf{Y})}$$

• Plot of $R_{\mathbf{X}}^2$ and $R_{\mathbf{Y}}^2$ for each variable

$$R_{\mathbf{X},k}^{2} = 1 - \frac{\operatorname{var}(\mathbf{X}_{deflated,k})}{\operatorname{var}(\mathbf{X}_{k})}$$

$$R_{\mathbf{Y},k}^{2} = 1 - \frac{\operatorname{var}(\mathbf{Y}_{deflated,k})}{\operatorname{var}(\mathbf{Y}_{k})}$$

PLS implementation

X: n samples $\times p$ variables **Y**: n samples $\times q$ variables

Input: X, Y

Output:

- cor: correlations
- variates: $(\boldsymbol{U}_1 \ \boldsymbol{U}_2 ... \ \boldsymbol{U}_{ncomp})$, $(\boldsymbol{V}_1 \ \boldsymbol{V}_2 ... \ \boldsymbol{V}_{ncomp})$
- loadings: $(\boldsymbol{w}_1 \ \boldsymbol{w}_2 \ ... \ \boldsymbol{w}_{ncomp})$, $(\boldsymbol{c}_1 \ \boldsymbol{c}_2 \ ... \ \boldsymbol{c}_{ncomp})$
- loadings-star
- proportion of explained variance
- correlation between variates and input data

Orthogonal PLS

Johan Trygg and Svante Wold (2002)

Orthogonal: removes variation from predictors **X** that is

not correlated to responses Y

- Maximize explained variance on the first component(s) of predictors
- Remaining components capturing variance that is orthogonal to responses
- ⇒ Model separately variations of X correlated and uncorrelated to Y

$$\mathbf{X} = \mathbf{T}_p \mathbf{P}_p^{\mathsf{T}} + \mathbf{T}_o \mathbf{P}_o^{\mathsf{T}} + \mathbf{E}$$

Y = OPC versus in vitro

Predictive component ≅ PC1

Orthogonal component ≅ PC2

Y = 101 versus SC5314

Predictive component ≅ PC2

Orthogonal component ≅ PC1

PCA(X)

Orthogonal PLS

- Reduce model complexity: lower the number of latent variables
- Allow identification and investigation of the source of orthogonal variation
- Interpret more easily
- Produce more efficient predictive model, particularly when structured noise dominates

Overview

- 01 Principal Component Analysis
- 02 Partial Least Squares
- 03

 ─ Canonical Correlation Analysis
- 04 Towards Nonlinearity

Questions in practice

- Relation between lifestyle and clinical measurements of patients
 - Lifestyle
 - Clinical measurements
- Relation between two omics profiles

CCA versus PLS

PLS

$$\max_{w,c} \operatorname{cov} (\mathbf{X}w, \mathbf{Y}c)$$

subject to $||w|| = ||c|| = 1$

CCA (Harold Hotelling – statistician/economic theorist (1936))

$$\max_{w,c} \operatorname{cor} (\mathbf{X}w, \mathbf{Y}c)$$

subject to $\operatorname{var}(\mathbf{X}w) = \operatorname{var}(\mathbf{Y}c) = \mathbf{1}$

Components 1

Coordinate change:

$$(X_1 \ X_2 \dots \ X_p) \rightarrow (U_1 \ U_2 \dots \ U_p)$$

 $(Y_1 \ Y_2 \dots \ Y_q) \rightarrow (V_1 \ V_2 \dots \ V_q)$

Linear combination:

$$U_1 = w_{11}X_1 + w_{12}X_2 + \dots + w_{1p}X_p = Xw_1$$

 $V_1 = c_{11}Y_1 + c_{12}Y_2 + \dots + c_{1q}Y_q = Yc_1$

=> projection of **X** onto vector w_1 and **Y** onto vector c_1

Find
$$w_1$$
, c_1 (var($\mathbf{X}w_1$) = var($\mathbf{Y}c_1$) = $\mathbf{w}_1^T\mathbf{X}^T\mathbf{X}\mathbf{w}_1 = \mathbf{c}_1^T\mathbf{Y}^T\mathbf{Y}\mathbf{c}_1 = 1$) to maximize:

$$cor(\boldsymbol{U}_1, \boldsymbol{V}_1)$$

How does CCA works?

Solution:

```
max cor(U_1, V_1) = sqrt(max eigenvalue of <math>cov(X)^{-1}cov(X, Y)cov(Y)^{-1}cov(Y, X))
= sqrt(max eigenvalue of <math>cov(Y)^{-1}cov(Y, X)cov(X)^{-1}cov(X, Y))
at w_1, c_1 = corresponding eigenvectors
```

Hint: Lagrange multiplier + derivative

```
max cor(U_2, V_2) = 2^{nd} max eigenvalue at w_2, c_2 = corresponding eigenvectors
```

and so on

CCA versus PLS versus PCA

CCA implementation

X: n samples $\times p$ variables **Y**: n samples $\times q$ variables

Input: X, Y

Output:

- cor: correlations
- variates: $(\boldsymbol{U}_1 \ \boldsymbol{U}_2 ... \ \boldsymbol{U}_{ncomp})$, $(\boldsymbol{V}_1 \ \boldsymbol{V}_2 ... \ \boldsymbol{V}_{ncomp})$
- loadings: $(\boldsymbol{w}_1 \ \boldsymbol{w}_2 \ ... \ \boldsymbol{w}_{ncomp})$, $(\boldsymbol{c}_1 \ \boldsymbol{c}_2 \ ... \ \boldsymbol{c}_{ncomp})$
- proportion of explained variance
- correlation between variates and input data

Regularized CCA

Solution:

```
max cor(U_1, V_1) = sqrt(max eigenvalue of <math>cov(X)^{-1}cov(X, Y)cov(Y)^{-1}cov(Y, X))
= sqrt(max eigenvalue of <math>cov(Y)^{-1}cov(Y, X)cov(X)^{-1}cov(X, Y))
```

What if cov(X) or cov(Y) is not invertible? (singularity problem)

- Constant variables
- ⇒ remove
- Multicollinear variables (esp. when more variables than samples (p > n))
- \Rightarrow regularized CCA: $cov(X) \leftarrow cov(X) + \lambda_X I$, $cov(Y) \leftarrow cov(Y) + \lambda_Y I$
- \Rightarrow tuning for optimal values of λ_{X} , λ_{Y}

Overview

- 01 Principal Component Analysis
- 02 Partial Least Squares
- 03 Canonical Correlation Analysis
- 04 Towards Nonlinearity

Towards Nonlinearity

Map data points that cannot be linearly separated into a space of higher dimension: Kernel PCA

$$k(x,y) = (2^{\frac{-\|x-y\|^2}{2}})^{\frac{2}{2}}$$

https://commons.wikimedia.org/wiki/File:Kernel_pca_input.png https://commons.wikimedia.org/wiki/File:Kernel_pca_output.png https://commons.wikimedia.org/wiki/File:Kernel_pca_output_gaussian.png

Towards Nonlinearity

Generalize principal components from straight lines to curves: Autoencoder

Neural Networks

Activation functions on linear regressions

Loss optimization $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\mathbf{x}^{(i)}, \mathbf{W}), \mathbf{y}^{(i)})$

Autoencoder

Learning a lower-dimensional feature representation (compression) from unlabeled training data and learning a reconstruction back

Autoencoder application

- Image compression, denoising and generation, recommendation system, anomaly detection, feature extraction
- Life sciences
 - dimensionality reduction (clustering) in sequencing data
 - multi-omics and biomedical data integration

Swiss Institute of Bioinformatics

Thank you

