Claims

1. A compound of formula (I)

a stereochemically isomeric form thereof, an N-oxide form thereof, or a pharmaceutically acceptable acid or base addition salt thereof, wherein

-R¹-R²- is a bivalent radical of formula

-O-CH ₂ -O-	(a-1),
-O-CH ₂ -CH ₂ -	(a-2),
-O-CH ₂ -CH ₂ -O-	(a-3),
-O-CH ₂ -CH ₂ -CH ₂ -	(a-4),
-O-CH ₂ -CH ₂ -CH ₂ -O-	(a-5),
-O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(a-6),
-O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -O-	(a-7),
-O-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(a-8),

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C_{1-6} alkyl or hydroxy,

R³ is hydrogen, halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

 R^4 is hydrogen, halo, C_{1-6} alkyl; C_{1-6} alkyl substituted with cyano, or C_{1-6} alkyloxy; C_{1-6} alkyloxy; cyano; amino or mono or di(C_{1-6} alkyl)amino;

R⁵ is hydrogen or C₁₋₆alkyl, and the -OR⁵ radical is situated at the 3- or 4-position of the piperidine moiety;

L is a radical of formula

wherein each Alk is C₁₋₁₂alkanediyl; and

R⁶ is aryl;

 \mathbb{R}^7 is aryl;

X is O, S, SO₂ or NR⁸; said R⁸ being hydrogen or C₁₋₆alkyl;

R⁹ is aryl;

Y is a direct bond, O, S, or NR¹⁰ wherein R¹⁰ is hydrogen or C₁₋₆alkyl; and aryl represents phenyl substituted with 1, 2 or 3 substituents each independently selected from hydroxycarbonyl.

WO 2005/003121

- 2. A compound as claimed in claim 1 wherein the -OR⁵ radical is situated at the 3-position of the piperidine moiety having the trans configuration.
- 3. A compound as claimed in claim 2 wherein the absolute configuration of said piperidine moiety is (3S, 4S).
- 4. A compound as claimed in any of claims 1 to 3 wherein L is a radical of formula (b-2) wherein Alk is C₁₋₄alkanediyl, and R⁷ is aryl wherein aryl is phenyl substituted with hydroxycarbonyl.
- 5. A compound as claimed in claim 4 wherein Alk is 1,3-propanedlyl or 1,4-butanedlyl.
- 6. A compound as claimed in claim 5 wherein R⁷ is aryl wherein aryl is phenyl substituted with hydroxycarbonyl situated at the 3- or 4-position of the phenyl moiety.
- 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound according to any of claims 1 to 6.
- 8. A process for preparing a pharmaceutical composition according to claim 7 wherein a therapeutically active amount of a compound according to any of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.
- 9. A compound according to any of claims 1 to 6 for use as a medicine.
- 10. A process for preparing a compound of formula (I) wherein
 - a) an intermediate of formula (II) is reacted with an carboxylic acid derivative of formula (III) or a reactive functional derivative thereof;

b) an intermediate of formula (IV) is N-alkylated with an intermediate of formula (V), in a reaction-inert solvent and, optionally in the presence of a suitable base;

$$L-W + H-N \longrightarrow CH_2-N-C \longrightarrow R^4$$

$$(IV) \qquad (V) \qquad R^1 \longrightarrow R^2$$

wherein in the above reaction schemes the radicals -R¹-R²-, R³, R⁴, R⁵, and L are as defined in claim 1 and W is an appropriate leaving group;

c) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.