DMA Domácí úkol č. 4b

Tento úkol vypracujte a pak přineste na cvičení č. 5.

- **1.** Dokažte, že když moduly $m, n \in \mathbb{N}$ splňují $m \mid n$ a čísla $a, b \in \mathbb{Z}$ splňují $a \equiv b \pmod{n}$, pak $a \equiv b \pmod{m}$.
- **2.** Nechť $p, q \in \mathbb{N}$. Dokažte, že když čísla $a, b \in \mathbb{Z}$ splňují $a \equiv b \pmod{pq}$, pak $a \equiv b \pmod{p}$ a $a \equiv b \pmod{q}$.

Řešení:

1. Vezmeme a, b libovolné $\in \mathbb{Z}$. Vyjdeme z předpokladů,

$$\begin{array}{l} m\mid n\iff \exists k\in\mathbb{Z}:\ n=km\\ a\equiv b\ (\mathrm{mod}\ n)\iff \exists l\in\mathbb{Z}:\ b=a+ln \end{array} \right\}\ \mathrm{tedy}\ b=a+l(km)=a+(lk)m\ \mathrm{a}\ lk\in\mathbb{Z}.$$

Proto $a \equiv b \pmod{m}$.

2. Vezmeme a, b libovolné $\in \mathbb{Z}$. Z předpokladu b = a + k(pq) pro nějaké $k \in \mathbb{Z}$.

$$\operatorname{Pak} \left\{ \begin{array}{l} b = a + (kq)p, \ (kq) \in \mathbb{Z} \implies a \equiv b \pmod{p}; \\ b = a + (kp)q, \ (kp) \in \mathbb{Z} \implies a \equiv b \pmod{q}. \end{array} \right.$$