CMPE 2020A TEST 3: Open book open notes.

NAME: GT ID#:

Prob 1 (10 points):

The state transition table of a 3-state FSM (2 flip flops) is given below. The state AB =11 is unused.

1 0
0 1
0 0
0 1
0 1
1 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$X \bigcirc X \bigcirc$

(a) Draw its state transition diagram below.

(b) You are to design a finite state machine that realizes the above state transition diagram/state transition with D flip flops. Below, fill in the K-maps for D(A), D(B) and Z (see figure on next page) and write the miminal Boolean expressions for the same. Make sure that the machine is not caught in a self-loop if it starts up in the state AB=11.

A	BI	00	01	11	10	
	0	0		0	1	
	1	0	0	×	X	-
		D(A)	=	AB	工.	+ BI

A		00	01	11	10	
-	0	1	0	0	0	
-	1	0		X	×	

/	BI					
A		00	01	11	10	
	0	Ò		D	0	
	1	D	0	×	X	

$$Z = \overline{A}I + A\overline{I}$$

(c) Draw a circuit diagram for the finite state machine showing all logic, FSM input and output and the two D flip flops corresponding to A and B.

Prob 2. (10 points)

A FSM has two flip flops with outputs A and B and inputs D(A) and D(B) respectively (as in the previous problem, part (c)). The FSM has an input I and one output Z (as in the previous problem). The equations for the FSM are given below. The flip flops are **positive edge** triggered.

$$D(A) = (A + B) \oplus I$$
 (\oplus = XOR, XOR = exclusive OR)
 $D(B) = \overline{A} \oplus B$ (note again, $D(B) = ((A \text{ bar}) \text{ XOR } B)$!)

Z = B + I

Initially, at t=0, A(0) = B(0) = 0.

Draw the waveforms for the outputs of the flip flops corresponding to A and B and the output Z below, given the waveform for the input I.

Prob 3 (10 points)

Consider the following truth table of 4 input variables.

						11/20
	W	X	Y	Z	F = f(W, X, Y, Z)	WY = 00 $WY = 01$
0	0	0	0	0	0	X7/E XZ/F
1	0	0	0.	1	1	XZIE
V	0	0	1	0	1	00 0 00
-	0	0	1	1	0	0111 01 0
V	0	1	0	0	1	
L	0	1	0	1	0	10 0
-	0	1	1	0	0	$T = T = (X^{+2})$
2	0	1	1	1	0	T V 1007
L	1	0	0	0	1	F=XOZ WY=11
1 _	1	0	0	1	1	$\omega Y = 10 \qquad \qquad \omega Y = 11 \\ \times Z = 1$
1	-1	0	1	0	0	WYSIUXZIT
^	1	0	1	1	1	XZ + F=X.Z 00 0
-	1	1	0	0	1	77 F=X/2 00 F
	1	1	0	1	0	00
	1	1	1	0	0 -	01 1 10 0 F=XZ
	1	1	1	1	0	10 11 0
	**			1	. 11 . 1 . 11 . 1-1-1-	vision of to I may with control signals connected to W

You are to realize this truth table using a 4-to-1 mux with control signals connected to W and Y (see Figure) and additional logic whose inputs are driven by the signals X and Z. Please draw your circuit (additional logic) below and show all steps.

