Re:Mind

4분반 5조 김다혜, 선다혜, 오찬희, 심우석

TABLE OF CONTENTS

01 02 03

Motivation & Objective Project Overview Technologies Used

04 05 06
Implementation Detail Progress Role & Plan

01 Motivation & Objective

Project (Re:Mind)
Motivation & Objective

너를 만났다: '가상현실' 속 그리 운 사람과의 재회, 실제 치유가 될까?

部に記述の

2020년 2월 14일

Motivation (Reminiscence)

故 터틀맨 AI 기술로 복원…12년 만에 '거북이' 완전체 무대

급기원 특 / 기사들인 : 2020-12-10 09 58 55

fy J P N b

Mnet '다시 한번'…그리운 아티스트 음성·모습 복원 AI 음악 프로젝트

혼성 그룹 거북이가 12년 만에 완전체로 무대에 섰다. Mnet 'Al 프로젝트 다시 한번'(이하 '다 시 한번')을 통해 Al 기술로 복원된 터톨맨과 함께했다.

"안중근 의사, 인공지능으로 되살아나다"

A 윤영주 기자 ② 인력 2021.06.28 19:07 田 댓글 2 ♡ 종이요 0

'대한황실문화의 관리·지원과 디지털 복원 방안' 주제 정책포럼 철저한 고증 기반, AI 기술로 안중근 의사 모습을 생생하게 재현 ㈜비빔블, 관객과 실시간 상호 소통 가능한 AI 디지털 휴먼 제작 국내 AI 디지털 휴먼 기술 활용한 역사인물 복원 가능성 열어

Motivation (Fun)

Motivation (Compare other Apps)

- Not a smartphone app
- Paid Service

- Just FaceSwap (Deepfake)
- Vulnerable to security

- Just Lip-Syncing
- Bad User Experience

Objective

DeepFake (Face Swap)

Lip-Syncing (Using My voice file)

Objective

DeepFake (Face Swap) + Lip Syncing (+My Voice)

Result MP4 file

Objective

Cross Platform Application (Web + Mobile)

Project Overview

Key Features

- For fun & reminiscence
- DeepFake (FaceSwap) + Lip Syncing
- Cross Platform App (Windows, Mac, Android)
 - Easy To Use
 - Better UI/UX
- Training One-shot (Picture)
- High Quality + Done Quickly
- Various templates

Project Overview

Divide into two tracks

1. Gif file (3~4 seconds) + No Voice file

Source Picture

Result Gif file

Project Overview

Divide into two tracks

2. MP4 file (30~60 Seconds) + Voice file

Source Picture

Source Voice File

Result MP4 file

Sequence Diagram

Usecase Diagram

Structure

Model

X Requirements - Training Time, Convenience

Model - Deep Fake (Ref_SimSwap)

FUNIT + SPADE + AdaIN

 \downarrow

PatchGAN + Pix2PixHD + AdaIN

Model - Deep Fake (Ref_SimSwap)

Overcome the defects in generalization and attribute preservation

Generalization to Arbitrary Identify + Preserving the Attributes of the Target

Model - Deep Fake (Ref.SimSwap)

Image To Gif

Source

Target

Result

Model - Lip Syncing (Ref.Wav2lip)

Extraction -> Training -> Converting

Model - Lip Syncing (Ref.Wav2lip)

Image + Voice To MP4

illiage · voice to MF4

Source

Target

Result

Model - Voice Extraction (Ref.Spleeter)

Extract only voice from mp3, mp4 or wav file

→ Better Quality !!

Cross Platform Application (Flask + Flutter)

Python Application & Cross Platform

O4 Implementation Detail Implementation Detail,

Model - Python Library

- Deepfake (SimSwap) Insightface, torch, torchVision, Cuda, cv2, tensorflow
- Lip-Syncing (Wav2lip) Opency, torch, torchVision, Cuda, librosa, tensorflow
- Voice Extraction (Spleeter) tensorflow, ffmpegpython, norbert, librosa, typer

Model - Deepfake (Ref.SimSwap)

1. Set Image Size

2. Set Option (Weights)

```
apt = TestOptions()

opt.initialize()

opt.parser.add_argument('-f') ## downy and to evoid bug

opt = opt.parse()

opt.pic_a_path = './deno_file/Iron_man.jpg' ## or replace it with image from your own google drive

opt.video_path = './deno_file/multi_people_1888p.mp4' ## or replace it with video from your own google drive

opt.video_path = './deno_file/multi_people_1888p.mp4' ## or replace it with video from your own google drive

opt.output_path = './output/demo.ep4'

opt.temp_path = './output/demo.ep4'

opt.temp_path = './arcface_oudel/arcface_checkpoint.tar'

opt.isTrain = False

opt.use_mask = True ## new feature up-to-date
```

Model - Deepfake (Ref.SimSwap)

3. Convert (Main)

```
ef convert(image):
  with torch.no_grad():
      imageStr = base64.b64decode(image)
      nparr = np.fromstring(imageStr, np.vint8)
      img_a_whole = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
      img_a_align_crop, _ = app.get(img_a_whole_crop_size)
      img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0]_cv2.CoLOR_BGR2RGB))
      img_s = transformer_Arcface(img_s_align_crop_pil)
      img_id = img_a.view(-1, img_a.shape[8], img_a.shape[1], img_a.shape[2])
      img_id = img_id.cuda()
```

Model - Lip-Syncing (Ref.Wav2lip)

1. Data Parse

```
parser.add_arqueent('--rnecknoint_noth', itsmestr.
parser.add_argument('--faim', typp=str.
perser.sog_argument("-modin", tons=str.
parser.add_argument('--pytfile', typestr, helps Video path to eave result. See default for an e.g.',
parser.add_arqueent('--statio', Type=bool,
parser.edd_argument( - fps', type=ftest, heth='Can be upecified only if input in a static image (menuitt: 25)'.
```

2. Face Detect

```
face_detect(inages):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._20,
batch_size = args.face_det_batch_size
           predictions extend(detector.get detections for batch(np.array(images[i:i + batch size])))
       if batch size == 1:
       batch size //= 2
       print( Recovering from 00H error: New batch size: [ .format(batch_size))
```

Model - Lip-Syncing (Ref.Wav2lip)

3. Data Generation

```
datagen(frames_mets):
ind batch, mel batch, frame batch, courds batch = [], [], [], []
if args.box[8] == -1:
    if not args statio:
        face_det_results = face_detect(frames) = BSHTRGB for CAN face detection
        face_det_results = face_detect([frames[0]])
    y1, y2, x1, x2 = args.box
    face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for it n in enumerate(mets):
    idx = 0 if args.static mlsm iNlmn(frames)
    frame_to_save = frames[idx].copy()
    face, coords = face_det_results[idx].copy()
    face = cv2.resize(face, (args.ing_size, args.ing_size))
```

4. Load Model & Weights

```
_load(checkpoint_path):
  If device == 'cudh':
      checkpoint = torch.load(checkpoint_path)
      checkpoint = torch.load(checkpoint path.
                               map liquisions Limbon: storage, loc: storage)
ef load_model(path):
  model = Wav2Lip()
  s = checkpoint["state_dist"]
  model = model.to(device)
  return model.eval()
```

Model - Lip-Syncing (Ref.Wav2lip)

5. Main

```
ef main():
  if not os.path.isfile(args.face):
  elif args.face.split(' ')[1] in ['jpg', 'png', 'jpeg']:
      full_frames = [cv2.imread(args.face)]
      fps = args.fps
      video_stream = cv2.VideoCapture(args.face)
      fps = video_stream.get(cv2.CAP_PROP_FPS)
      full frames = []
          still_reading_frame = video_stream.read()
              video stream.release()
          if args.resize_factor > 1:
              frame = cv2.resize(frame (frame.shape[1]//args.resize_factor frame
```

Model - Voice Extraction (Ref.Spleeter)

Main (In Lip-Syncing)

```
video_path = "D:/SimSwap/SimSwap/output/demo.mp4"
audio_path = "D:/SimSwap/SimSwap/output/demoa.wav"
spleeter_wav_path = "D:/SimSwap/SimSwap/output/after.wav"
def get_stems(filePath, fileSavePath):
    separator = Separator('spleeter:2stems')
   separator.separate_to_file(filePath, fileSavePath,
def set_path(vid, aud):
get_stems(audio_path, spleeter_wav_path)
inference.convert(video_path, spleeter_wav_path)
```

Flask (Backend)

1. Gif transformation

```
@app.route('/face_swap', methods = ['GET', 'POST'])

def face_swap():
    data = request.get_json()

    if 'image' not in data:
        return "", 400
    elif 'templete' not in data:
        return "", 400
    main.convert(data['image'], data['templete'])
```

2. MP4 transformation

```
#임시 링크
video_path = 'D:/SimSwap/SimSwap/output/demo.mp4'
audio_path = 'D:/SimSwap/SimSwap/output/demoa.wav'

@app.route('/lip', methods = ['GET', 'POST'])
def lip():
    Wav2Lip.main.set_path(video_path, audio_path)
    Wav2Lip.main()
```

Flutter (Frontend)

Modeling -> Return the Result

```
var encodedData = await compute(base64Encode, imageData);
Response response = await dio.post('http://18.0.2.2:5000/face_swap',
    data: [
      'image': encodedData,
      'templete': templeteData
String result = response.data;
return compute(base64Decode, result);
```

1st Mentoring Feedback

- 1. Processing speed, model capacity problem
 - → Lightweight model
- 1. Wav2lip model is a model tailored to English
 - → Since the **expected user is Korean**, training after **changing the data set**.

Lightweight model

To shorten the learning time, The Training file is built in advance.

wav2lip.pth wav2lip_gan.pth	2021-12-04 오후 4:57 2021-12-07 오전 1:07	PTH 파일 PTH 파일	425,594KB 425,588KB
arcface_checkpoint	2021-11-30 오전 4:51	ALZip TAR File	748,898KB
latest_net_D1.pth	2020-04-22 오후 9:05	PTH 파일	27,213KB
latest_net_D2.pth	2020-04-22 오후 9:05	PTH 파일	27,213KB
latest_net_G.pth	2020-04-22 오후 9:06	PTH 파일	215,082KB

Lightweight - Deepfake

Parameter was **changed** in consideration of Running Time & Quality

```
hparams = HParams(
    num_mels=70, # Number of me
    # network
    rescale=True, # Whether to
    rescaling_max=0.7, # Rescal

# Use LWS (https://github.co
# It"s preferred to set True
# Does not work if n_fflt is
    use_lws=False,

    n_fft=800, # Extra window s
    hop_size=200, # For 16000Hz
    win_size=800, # For 16000Hz
    sample_rate=16000, # 16000H
```

num_mels, rescaling_max, batch_size, num_workers, checkpoint_interval, eval_interval, syncnet_batch_size, syncnet_eval_interval, Syncnet_checkpoint_interval etc...

Lightweight - Lip-syncing

Parameter was **changed** in consideration of Eval model's sync & train loss

Mel_step_size, learning_rate, Fps (frame), nepochs, num_workers, syncnet_wt, syncnet_batch_size, syncnet_eval_interval etc...

Changing weight dataset - Lip-syncing

Compare them according to the environment of each dataset(LRW, LRS2, LRS3)

Translating sounds from the Eastern languages: LRS3 > LRS2

But LRS3 has a lot of artifacts around the face.

Use LRS2

Lightweight result

Computing Specs

Processor - Intel i5-6600

RAM - 16GB

Graphics - GTX 960

Face Swap

- Ex) 3 ~ 4 Seconds GIF

20 Seconds → **14 Seconds**

- Ex) 30 Seconds Video

 $3 \text{ Min} \rightarrow 2 \text{ Min}$

Lip sync

- Ex) 30 Seconds Video

2 Min → **1.5 Min**

Voice extraction - Ex) 30 Seconds Voice

10 Seconds → **10 Seconds**

2nd Mentoring Feedback

- 3. Cloud Server Instance & Cost Problems
 - → We must use CUDA, Need GPU Server So, Looking for a solution

Cloud Server Instance & Cost

We are using the CUDA -> Must use GPU Server

Trying to deploy the Cloud GPU Server

AWS Cloud Service

Google Cloud Service

Cloud Server Instance & Cost

Very Expensive Server cost → **Looking for a solution**

AWS Cloud Service

P2 인스턴스 세부 정보

이름	GPU	vCPU	RAM(GiB)	네트워크 대역폭	시간당 요금*	시간당 RI요 급**
p2.xlarge	*	4	61	*8	0.900 USD	0.425 USD

Google Cloud Service

월별 예상 가격

US\$255.22

시간당 약 US\$0.35

You have US\$358,067.00 free trial credits remaining

사용한 만큼만 비용 지불: 선불 비용 없이 초당 청구

Naver Cloud Service

제공사망			이용 요공			
GPU	GPU 메모리	VCPU	메모리	디스크	시간	2
425	0400	14.00	4400	50GB(HDD) / 100GB(HDD)	1,667월 / 1,671월	1,200,000월 / 1,202,880월
17 24GB 47	4/8	30GB	50GB(SSD) / 100GB(SSD)	1.671월 / 1.679월	1,202,880월 / 1,208,640월	

Template (GIF)

Template (MP4)

GIF Template Demo

Source Picture

Target GIF

Result Gif file

MP4 (Video) Template Demo

Source Picture

Source Voice File

Result MP4 file

OUR TEAM Role

심우석 201636417

qkqh8639@gmail.com

- Lightweight, Server

오찬희 201735855

fasvvc@gmail.com

-Modeling, Lightweight

선다혜 201835466

adad05011@gachon.ac.kr

- Modeling, flutter

김다혜 201835414

ekgp3987@naver.com

- Modeling, flutter

Plan

Wiki & YouTube

https://github.com/dntjr41/Graduation_project/wiki

RESOURCES

Papers & Web Sites

- https://giphy.com/
- https://arxiv.org/pdf/2008.10010.pdf
- https://arxiv.org/pdf/2106.06340v1.pdf
- https://anaconda.org/deezer-research/spleeter

Github Pages

- https://github.com/neuralchen/SimSwap
- https://github.com/deepinsight/insightface
- https://github.com/zllrunning/face-parsing.PyTorch
- https://github.com/deezer/spleeter
- https://github.com/Rudrabha/Wav2Lip
- https://github.com/r9y9/deepvoice3_pytorch
- https://github.com/1adrianb/face-alignment

THANKS

Do you have any questions?

4분반 5조 -김다혜, 선다혜, 오찬희, 심우석 담당 교수님 - 한명묵 교수님

