AD-764 260

OPERATIONAL USE OF UH-1H HELICOPTERS IN SOUTHEAST ASIA

Raymond B. Johnson, Jr., et al

Technology, Incorporated

Prepared for:

Army Air Mobility Research and Development Laboratory

May 1973

DISTRIBUTED BY:

AD

USAAMRDL TECHNICAL REPORT 73-15

OPERATIONAL USE OF UH-1H HELICOPTERS IN SOUTHEAST ASIA

By
Raymond B. Johnson, Jr.
Larry E. Clay
Ruth E. Meyers

May 1973

EUSTIS DIRECTORATE U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY FORT EUSTIS, VIRGINIA

CONTRACT DAAJO2-71-C-0039 TECHNOLOGY INCORPORATED DAYTON, OHIO

Approved for public release; distribution unlimited.

764260

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

241

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fart that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

5713	White Section	V
	Bu. Citica	
084 01 173		
B 11 - 174		
	A MARKET AND C	3
b. ef	t 1 Speci	. AL
\wedge		
/ \	}	
1-1	1	

	MEN' CONTROL DATA - R & D	
(Security classification of title, body of abetra ORIGINATING ACTIVITY (Corporate author)	act and indexing annotation must be entered when the everall report in classifie 2a, REPORT SECURITY CLASSIFICATION	
Technology Incorporate	1	
reemotogy meet not at	26. GROUP	
	N/A	
REPORT TITLE		
OPERATIONAL USE OF UH	-1H HELICOPTERS IN SOUTHEAST ASIA	
DESCRIPTIVE NOTES (Type of report and inclusive		
Final Report: 16 April 19	•	
AUTHOR(\$) (First name, middle initial, last name)	71 to 31 october 1372	
Raymond B. Johnson, J	r., Larry E. Clay, and Ruth E. Meyers	
,	,,, ,	
May 1973	76. TOTAL NO. OF PAGES 18. NO. OF REPS 240 24/ 17	
E CONTRACT OR GRANT NO	SAL URIGINATOR'S REPORT NUMBER(S)	
DAA 102 71 C 0070	SE. CHISTOR FOR FREEDRY HOMEENED	
DAAJ02-71-C-0039		
D. PROJECT NO	USAAMRDL Technical Report 73-15	
	USAAMRDL Technical Report 73-15	ne el gra
e. Task 1F162208AA8203	USAAMRDL Technical Report 73-15	ie et gne
b. РВОЈЕСТ НО c. Task 1F162208AA8203 d.	USAAMRDL Technical Report 73-15	ne el gre
6. РВОЈЕСТ НО c. Task 1F162208AA8203 d.	USAAMRDL Technical Report 73-15	no ol gno
b. РВОЈЕСТ НО c. Task 1F162208AA8203 d.	USA AMRDL Technical Report 73-15 OD. OTHER REPORT NO(3) (Any other numbers that may be a this report)	oc of gne
e. Task 1F162208AA8203 d. DISTRIBUTION STATEMENT	USA AMRDL Technical Report 73-15 OD. OTHER REPORT NO(3) (Any other numbers that may be a this report)	ne el gre
e. Task 1F162208AA8203 a. DISTRIBUTION STATEMENT Approved for public release; distribution	USA AMRDL Technical Report 73-15 OD. OTHER REPORT NO(3) (Any other numbers that may be a this report)	ne el gne
E. Task 1F162208AA8203 d. O DISTRIBUTION STATEMENT	USAAMRDL Technical Report 73-15 96. OTHER REPORT HO(S) (Any other numbers that may be a this report) ion unlimited.	ocel gne

From operational usage parameter measurements on three UH-IH helicopters, 203 hours of valid multichannel flight data were recorded while the helicopters operated from bases in Southeast Asia. Data were processed and analyzed according to four flight phases, called mission segments: (1) ascent, (2) maneuver, (3) descent, and (4) steady state. Data are presented in the form of time and occurrence tables, cumulative frequency distribution curves, and exceedance curves. These data indicate the time spent in the mission segments and parameter ranges; the number of peak parameter values occurring in the ranges of the given parameter during each of the mission segments, and in the ranges of one or more related parameters; and the time to reach or exceed given maneuver or gust normal load factors. The data presented were recorded between September 1971 and March 1972.

DO POR 1472 REPLACES DO PORM 1475, 1 JAN 64, WHICH IS

Unclassified

Fort Eustis, Virginia

Security Classification

Unclassified

KEY WORDS	LIN	IKA LINKB LINI			IRA LINK B LINI			K C
REV WORDS	ROLE	WT	ROLE	WT	ROLE	wT		
UH-1H helicopters				П				
flight loads								
multichannel data			П	.1				
aircraft structures								
operational airloads								
flight spectrum								
helicopter operations					1			
					İ			
				İ				

Unclassified
Security Classification

16

DEPARTMENT OF THE ARMY U. S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY EUSTIS DIRECTORATE FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory and is considered to be technically sound.

The data presented were obtained from oscillograph recorders installed on three U.S. Army UH-1H helicopters performing operational missions in Southeast Asia. Figures and tabulations are used to present these data in the form of time and occurrence tables, cumulative frequency distribution curves, and exceedance curves. Finally, the UH-1H is compared, according to certain parameters of commonality, to similar data previously reported for both the AH-1G and CH-54A helicopters operating in Southeast Asia.

This report is published to define the combat use of the UH-1H and to present the data as an aid in the development of future aircraft.

The technical monitor for this contract was Mr. William T. Alexander Jr., Technology Applications Division.

Task 1F162208AA8203 Contract DAAJ02-71-C-0039 USAAMRDL Technical Report 73-15 May 1973

OPERATIONAL USE OF UH-1H HELICOPTERS IN SOUTHEAST ASIA

Final Report

Ву

Raymond B. Johnson, Jr. Larry E. Clay Ruth E. Meyers

Prepared by

Technology Incorporated Dayton, Ohio

for

EUSTIS DIRECTORATE
U.S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY
FORT EUSTIS, VIRGINIA

Approved for public release; distribution unlimited.

ABSTRACT

From operational usage parameter measurements on three UH-1H helicopters, 203 hours of valid multichannel flight data were recorded while the helicopters operated from bases in Southeast Asia. Data were processed and analyzed according to four flight phases, called mission segments: (1) ascent, (2) maneuver, (3) descent, and (4) steady state. Data are presented in the form of time and occurrence tables, cumulative frequency distribution curves, and exceedance curves. These data indicate the time spent in the mission segments and parameter ranges; the number of peak parameter values occurring in the ranges of the given parameter during each of the mission segments, and in the ranges of one or more related parameters; and the time to reach or exceed given maneuver or gust normal load factors. The data presented were recorded between September 1971 and March 1972.

FOREWORD

Technology Incorporated, Dayton, Ohio, prepared this report to cover its efforts on an operational usage data program to collect, process, and analyze a 200-hour sample of flight data obtained from three UH-1H helicopters operating in Southeast Asia. This program was sponsored by the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, under Contract DAAJO2·71-C-0039, DA Task 1F162208AA8203. The project monitor for the Army was Mr. William Alexander.

Of the 203 hours of data that were processed, 37 hours were read and digitized by U. S. Army personnel at Fort Eustis, Virginia, under the direction of Mr. Louis R. Bartek. The remainder of the data were read and digitized by Technology Incorporated. All final data processing, analysis, and documentation were performed by Technology Incorporated.

Technology Incorporated personnel responsible for this program were Mr. Joseph F. Braun, manager of the Systems and Electronics Department; Mr. Henry C. Pender, project manager, who directed the installation and operation of the data recording systems; Messrs. John F. Nash and William D. Harber, who directed the data processing; and Mr. Raymond B. Johnson, Jr., who directed the data analysis and presentation.

TABLE OF CONTENTS

																							Page
ABST	RACT .	•		•	•		•			•		•	•			•							iii
FORE	WORD .				•				,							•			•				v
LIST	OF IL	LUS'	TRAT	ΓIC	NS	3										•		•	•		•		ix
LIST	OF TA	BLES	S	ē				•		•	•									•	•	•	xiii
INTRO	DUCTI	ON			•	•		•				•	•		•	•			•	•		•	1
INST	RUMENT	ATI	ON			•							•	•	•	•		•	•				3
	Descr: Insta																						3 5
**** **										-6	·				•	•				•	•	•	_
UH-1F	ł DATA	CO	LLEC	TI	ON		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	7
DATA	DEFIN	ITI	ONS	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	8
	Record																				•	•	8
	Compu	ted on S	Par Segm	ram	et	er	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8 10
															•		•	•	•	•	•	•	
DATA	PROCES	SSIN	٧G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
	Data 1																						12
	Data																						13
	Final	Dan	ca A	CCC	ер	ta	nc	.e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
DATA	PRESE	NTAT	rion	i A	.ND	A	NA	LY	SI	S			•		•	•	•		•		•	•	16
	Intro	duct	tion	l							•												16
	Missi	on S	Segm	en	ts																	•	17
	Airspe							•	•		•			•		•		•		•	•	•	20
	Rotor						•	•	•	•	•			•	•	•	•	•	•	•	•	•	25
	Gross	Wei	ight		•	•	•	•	•	•	•	•		•	•	•		•	•	•	٠	٠	26
	Engine					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
	Altitu					•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	30
	Rate					• _	• _	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	Normal	L 01	r Ve	rt	1 C	al	L	oa	d	Fa	ct	01	`S	٠,		•	•	•	•	•	•	•	37
	Equiva	aler	it N	or	ma	1	oŗ	. 1	er	ti	ca	1	Lo	ad	F	ac	to	rs		•	٠	•	55
	Contro	or F	300S	t	Tu	be	L	oa	ds		•	٠	•	•	•	•	•	•	•	•	•	•	60
	Estab1	11S	ning	a	F	11	gh	t	Sp	ec	tr	un	1	•		•	•	•			•		68

$\underline{\textbf{TAPLE OF CONTENTS}} \ - \ \textbf{Concluded}$

																						Page
CONCLUSIONS	S .	•	•	•	•	•	•		•	•	۱•	•	•	•	•	•	•	•	•	•	,	69
RECOMMENDAT	1017	IS	•		•	•	•		•	•		•	•	•	•		•				•	70
LITERATURE	CIT	ΓED	•		•	•	•	•	•	•	•	•	•			•		•				71
APPENDIX.	Bas	sic	7	ab	u1	ar	. I	at	a	Pı	res	er	ıta	ıti	or	1	•	•	•	•	•	74
DISTRIBUTIO	N		_		_					_		_				_		_				225

LIST OF ILLUSTRATIONS

Figure		Page
1	UH-1H Helicopter	2
2	Block Diagram of UH-1H Instrumentation System	4
3	Multiview Drawing of UH-1H Helicopter With Instrumentation Locations	6
4	Comparison of Operational Data and Fatigue Spectra for Various Helicopters	18
5	Cumulative Airspeed Frequency Distribution by Mission Segment for the UH-1H	21
6	Cumulative Airspeed Frequency Distribution for the UH-1H Compared With CAM-6 and Design Fatigue Spectra	22
7	Cumulative Airspeed Frequency Distribution for the UH-1H Compared With Spectra Obtained for Other Turbine-Powered Helicopters With Design Normal Gross Weight <10,000 Lb	23
8	Comparison of Cumulative Airspeed Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters	24
9	Comparison of Cumulative Airspeed Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company	24
10	Cumulative Rotor Speed Frequency Distribution by Mission Segment for the UH-1H	25
11	Comparison of Cumulative Rotor Speed Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters	26
12	Comparison of Cumulative Rotor Speed Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company	27

LIST OF ILLUSTRATIONS - Continued

Figure		Page
13	Cumulative Gross Weight Frequency Distribution by Mission Segment for the UH-1H	27
14	Comparison of Cumulative Gross Weight Frequency Distribution for the UH-1H With Similar Data for the AH-1G, CH-54A, and CH-47 Helicopters	28
15	Cumulative Engine Torque Frequency Distribution by Mission Segment for the UH-1H	29
16	Comparison of Cumulative Engine Torque Frequency Distribution for the UH-1H With Similar Data for the AH-1G and the CH-54A Helicopters	30
17	Comparison of Cumulative Engine Torque Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company	31
18	Cumulative Density Altitude Frequency Distribution by Mission Segment for the UH-1H	31
19	Comparison of Cumulative Density Altitude Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters	32
20	Comparison of Cumulative Density Altitude Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company	32
21	Cumulative Rate-of-Climb Frequency Distribution by Mission Segment for the UH-1H	34
22	Cumulative Rate-of-Climb Frequency Distribution for the UH-1H Compared With Spectra Data Obtained for Other Turbine-Powered Helicopters With Design Normal Gross Weights <10,000 Lb.	35
23	Comparison of Cumulative Rate-of-Climb Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters	36

LIST OF ILLUSTRATIONS - Continued

Figure		Page
24	Composite Exceedance Curve for Incremental Gust Normal Load Factor Peaks	38
25	Cumulative Gust-Induced Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for All Other Turbine-Powered Helicopters	38
26	Cumulative Gust-Induced Positive Mormal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters	39
27	Cumulative Gust-Induced Negative Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters	39
28	Exceedance Curves for Incremental Maneuver Normal Load Factor Peaks by Mission Segment .	41
29	Cumulative Maneuver-Induced Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for All Other Turbine-Powered Helicopters	42
30	Cumulative Maneuver-Induced Positive Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters	44
31	Cumulative Maneuver-Induced Negative Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters	44
32	Exceedance Curves for Incremental Maneuver Normal Load Factor Peaks by Gross Weight Range	46
33	Diagram and Tabulation of Maneuver Normal Load Factor Peaks in Ranges of Rotor Tip Speed Ratio With Oscillograms Containing Extreme Values.	47

LIST OF ILLUSIRATIONS - Concluded

Figure		Page
34	Composite Cumulative Normal Load Factor Frequency Distribution by Airspeed for the UH-1H	51
35	Composite Cumulative Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters	52
36	Comparison of Composite Cumulative Normal Load Factor Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company	56
37	Exceedance Curves for Incremental Equivalent Maneuver Normal Load Factor Peaks by Mission Segment	57
38	Diagram of Equivalent Maneuver Normal Load Factor Frequency Distribution in Ranges of Rotor Tip Speed Ratio	58
39	Cumulative Frequency Distribution of Longitudinal Cyclic Boost Tube Load for the UH-1H by Gross Weight	61
40	Cumulative Frequency Distribution of Lateral Cyclic Boost Tube Load for the UH-1H by Gross Weight	62
41	Cumulative Frequency Distribution of Collective Boost Tube Load for the UH-1H by Gross Weight	63
42	Exceedance Curve for Incremental Longitudinal Cyclic Boost Tube Loads by Mission Segment .	64
43	Exceedance Curve for Incremental Lateral Cyclic Boost Tube Loads by Mission Segment .	65
44	Exceedance Curve for Incremental Collective Boost Tube Loads by Mission Segment	66
45	Comparison of Cumulative Frequency Distributions of the Incremental Longitudinal Cyclic, Lateral Cyclic, and Collective Boost Tube Loads	67

LIST OF TABLES

Table		Page
I	Parameter Ranges	9
II	Control Stick Boost Tube Normal Loads Used During Transient Mission Segments	13
III	Data Reading Variations by Parameter	14
IV	Helicopter Flight Parameter Limits	17
v	Sources of Presented Data	17
VI	Percentage of Time by Mission Segment for General Military Operational Spectra	20
VII	Time for Altitude Versus Airspeed by Weight and Mission Segment	75
VIII	Time for Longitudinal Cyclic Boost Tube Steady Load Versus Collective Boost Tube Steady Load by Mission Segment	y 80
IX	Time for Lateral Cyclic Boost Tube Steady Load Versus Collective Boost Tube Steady Load by Mission Segment	d 82
X	Time for C_T/σ Versus μ By Rate of Climb and Mission Segment	84
XI	Time for Engine Torque Versus Airspeed by Weight and Altitude	98
XII	Time for Engine Torque Versus Rotor Speed by Mission Segment, Rate of Climb, and Outside Air Temperature	104
XIII	Time for Longitudinal Cyclic Boost Tube Steady Load Versus Airspeed by Weight and Altitude	149
XIV	Time for Lateral Cyclic Boost Tube Steady Load Versus Airspeed by Weight and Altitude	d 153
xv	Time for Collective Boost Tube Steady Load Versus Airspeed by Weight and Altitude	158

LIST OF TABLES - Continued

<u>Table</u>		Page
XVI	Time for Longitudinal Cyclic Boost Tube Steady Load Versus Lateral Cyclic Boost Tube Load by Collective Boost Tube Steady Load	163
XVII	Longitudinal Cyclic Boost Tube Load Peaks for Airspeed Versus Incremental Longitudinal Cyclic Boost Tube Load by Mission Segment	168
XVIII	Lateral Cyclic Boost Tube Load Peaks for Airspeed Versus Incremental Lateral Cyclic Boost Tube Load by Mission Segment	169
XIX	Collective Boost Tube Load Peaks for Airspeed Versus Incremental Collective Boost Tube Load by Mission Segment	170
XX	Gust n_z Peaks for μ Versus n_z by Mission Segment Altitude, and C_T/σ	172
XXI	Gust n_z Peaks for Airspeed Versus n_z by Weight, Altitude, and Mission Segment	177
XXII	Maneuver n_Z Peaks for μ Versus n_Z by Mission Segment, Altitude, and C_T/σ	181
XXIII	Maneuver n_z Peaks for Airspeed Versus n_z by Weight, Altitude, and Mission Segment	192
XXIV	n_X Peaks for Airspeed Versus n_X by Weight	202
xxv	$n_{\mathbf{X}}$ Peaks for Airspeed Versus $n_{\mathbf{X}}$ by Altitude	203
XXVI	$n_{\mathbf{X}}$ Peaks for Longitudinal Cyclic Boost Tube Load Deflection Versus $n_{\mathbf{X}}$ by Mission Segment	204
XXVII	n_y Peaks for Airspeed Versus n_y by Weight	206
XXVIII	n_y Peaks for Airspeed Versus n_y by Altitude	207
XXIX	ny Peaks for Lateral Cyclic Boost Tube Load Deflection Versus ny by Mission Segment	208

LIST OF TABLES - Concluded

<u>Table</u>		Page
XXX	n_X Peaks for n_X Versus n_Z	210
XXXI	$n_{\boldsymbol{X}}$ Peaks for $n_{\boldsymbol{y}}$ Versus $n_{\boldsymbol{X}}$	210
XXXII	n_y Peaks for n_x Versus n_y	210
XXXIII	n_y Peaks for n_y Versus n_z	211
XXXIV	n_z Peaks for n_X Versus n_z	211
xxxv	n_z Peaks for n_y Versus n_z	211
XXXVI	$n_{\mbox{\scriptsize Ze}}$ Peaks for μ Versus $n_{\mbox{\scriptsize Ze}}$ by Altitude and Mission Segment	212
XXXVII	$n_{\mbox{\scriptsize Ze}}$ Peaks for Airspeed Versus $n_{\mbox{\scriptsize Ze}}$ by Altitude and Mission Segment	219
XXXVIII	Vibratory and Mean Boost Tube Control Loads for Representative Flight Conditions	224

INTRODUCTION

For the continued study of Army helicopter operations, a multichannel operational usage data program was conducted on three UH-1H helicopters flying combat missions in the Vietnam theater from September 1971 to March 1972. During this period, 203 hours of valid in-flight data were recorded and processed for each of 11 time-related parameters. The parameters were selected to reflect the operational usage of the helicopter.

The UH-1H is an all-metal, single-engine helicopter. A single, two-bladed, semirigid teetering main rotor provides lift, and a two-bladed, semirigid, delta-hinged tail rotor provides antitorque and directional control. Figure 1 presents a photograph and a summary of characteristics and limitations of the UH-1H helicopter.

An oscillograph type of recording system was used to measure the following 11 in-flight parameters: airspeed; altitude; vertical, lateral, and longitudinal acceleration at the helicopter's center of gravity; outside air temperature; main rotor speed; engine torque; and longitudinal cyclic boost tube, lateral cyclic boost tube, and collective boost tube loads -- all related in time. Field personnel logged additional information to permit the computer processing of the in-flight recordings. Such supplementary data consisted of time, fuel, and load at takeoff and loading; base pressure and temperature at takeoff; and mission type. The data processing derived additional parameters: specifically, the instantaneous weight, the rotor tip speed ratio, and the ratio of the thrust coefficient to the rotor solidity. As in previous programs, the data for each flight were divided into four mission segments: (1) ascent, (2) maneuver, (3) descent, and (4) steady state.

The objective of the program was to present comprehensive operational usage data based on the UH-1H's operation in the combat environment of Vietnam, and to analyze these data in an effort to improve the fatigue analyst's understanding of the operational flight spectrum of U.S. Army helicopters and its effect in defining reliable design criteria for helicopters.

This report describes the aircraft instrumentation and the recording system, details the data collection, defines the recorded and derived parameters, outlines the data processing and quality control, explains the data computations, and finally presents and analyzes the processed data. The results are presented as cumulative frequency distribution

curves of the percentage of time within various parameter ranges; as "exceedance" curves, that is, curves of the number of flight hours required for a parameter to reach or exceed given levels or curves of the cumulative number of occurrences of the parameter at a given level per thousand hours of flight; as tables of time distributed among coincident ranges of two or more parameters; and as tables of peak frequencies in the coincident ranges of the peaking parameter and other variables.

Characteristics

rotor diameter	48 ft
rotor solidity	0.0464
engine Lycoming	T-53-L-13
design max gross wt	9500 lb
empty weight (avg)	4920 1b

Limitations

normal rated power military rated power	1250 1400	
usable power (trans- mission limit)	1100	hp
100% rotor speed	324	rpm
max airspeed	120	kn

Figure 1. UH-1H Helicopter.

INSTRUMENTATION

To obtain the required operational usage data, oscillographic recording systems were installed in three UH-1H helicopters assigned to the 162nd Assault Helicopter Company (AHC) operating in the delta area of South Vietnam. Identified by serial numbers 70-15816, 69-15427, and 69-15432, these aircraft participated in the program from September 1971 until January 1972, when all three of the aircraft were transferred to the Vietnamese Air Force. As the 162nd AHC was scheduled to be deactivated, the recording systems were installed in three helicopters assigned to the 18th Aviation Company, which was located at the same data acquisition site. These three aircraft, serial numbers 70-15714, 70-15836, and 69-16699, were used until the data acquisition phase was terminated in the latter part of March 1972.

DESCRIPTION OF RECORDING SYSTEM COMPONENTS

Three Century Model 409B recorders, each with 14 data channels and capable of recording numerous dynamic parameters on 3-5/8-inch-wide photosensitive paper, were used in this program because of their inherent design to withstand severe shock and vibration and extreme environmental conditions. In this program, 11 channels were used to record the in-flight variables. Of the remaining three channels, one was used to monitor the voltage supply, another was used to delineate a time pattern reflecting a 1-minute cycling, and the last was used to trace a static line for measurement reference.

A Technology Incorporated Model 49776 signal conditioning unit was used to regulate the voltage signals from the various transducers.

To derive airspeed, a Statham Model PM96TC-.5-350 (0 to 0.5 psid) pressure transducer was used to measure the dynamic pressure. To derive altitude, a Statham Model P96-15A-350 (0 to 15 psia) pressure transducer was used to measure the ambient static pressure.

For the three linear acceleration measurements, a Statham Model A3-5-350 ($\pm 5\,\mathrm{g}$) accelerometer was used to sense vertical acceleration, and two Statham Model A3-1.5-350 ($\pm 1.5\,\mathrm{g}$) accelerometers were used to sense lateral acceleration and longitudinal acceleration.

A frequency-to-voltage converter and associated circuitry were incorporated in the recording system to measure the rotor speed by sensing the frequency of the rotor tachometer generator.

A Minco Model S-6B resistance thermal ribbon was used to measure the outside air temperature.

To measure the engine torque pressure, a Viatron Model PTB103 (0 to 100 psig) pressure transducer was connected in parallel with the helicopter's torque pressure transmitter.

Micro-Measurements Corporation Model EA-13-250BF-350 strain gages were installed on the longitudinal cyclic, lateral cyclic, and collective boost tubes for measurement of control stick strains. Two sets of gages were mounted side-by-side on each boost tube, and each set was wired into a Wheatstone bridge with two active arms and two inactive arms for temperature compensation. One set of gages was designated as "primary" and the other as a "spare." After their installation on the boost tubes, both the primary and the spare bridges were calibrated to provide a relationship between the bridge output in volts and the boost tube axial load in pounds.

The block diagram in Figure 2 illustrates the functional integration of the components making up the recording system.

Figure 2. Block Diagram of UH-1H Instrumentation System.

INSTALLATION OF RECORDING SYSTEM

The recorder and signal conditioning unit were mounted in the left-side baggage compartment. The torque transducer was mounted on the forward right-side firewall, with high-pressure hoses connecting the unit in parallel with the existing aircraft torque transmitter. The three accelerometers were attached to the transmission housing on the left side at the approximate aircraft center of gravity. The airspeed and altitude transducers were placed in the nose compartment and connected to the aircraft's pitot and static system behind the control panel. The rotor speed hookup was also made behind the control panel at a terminal strip. The OAT ribbons were attached to the outer skin just to the left of the aft searchlight. A circuit breaker was installed in the overhead circuit breaker panel and connected to the DC bus to provide 28-watt DC power. The 110-volt-AC, 400-Hz power was acquired from the AC circuit-breaker panel on the right side of the center console. An in-line fuse holder was connected to the AC bus for circuit protection.

The cabling was routed with existing aircraft cabling through the bottom of the baggage compartment, into the aft hydraulic compartment, through the area beneath the engine platform, and into the sling load hook area. From this area the cables divided: the OAT, altitude, airspeed, and rotor speed cables were directed forward under the cargo floor to the nose compartment; the rest were routed upward along the left side of the transmission area, where all but the torque and power lines were terminated. The torque cable was routed aft from the transmission into the engine compartment and across the front of the engine to the transducer. The power wires were routed from the top of the transmission into the cabin overhead area and forward to the respective circuit-breaker panels.

The field team assisted U.S. Army personnel in removing the existing control tubes and installing the instrumented units in the aircraft. Figure 3 is an outline drawing of the UH-1H helicopter showing the recording system component locations.

Figure 3. Multiview Drawing of UH-1H Helicopter With Instrumentation Locations.

UH-1H DATA COLLECTION

During the data collection period from 9 September 1971 to 31 March 1972, 457 hours of in-flight data were recorded. Of these hours, 232 were usable and 203 were processed. As presented in this report, the processed data represent 229 engine starts and 792 touchdowns. Some of the factors limiting the hours of usable data were erratic or insufficient trace deflection, malfunction of the oscillogram drive motor, and no supplemental flight data. Upon developing the oscillograms and observing trace anomalies, the field technician was aware of the cause of most of them and took remedial action as soon as possible.

After each recorded flight, the field technician filled out a special form to log the supplemental data needed to process the oscillogram data. Such additional information included the flight date; mission type; airspeed and rotor speed at check points; elevation, barometric pressure, and temperature at takeoff; and base, time, fuel weight, and passenger and cargo weight for both takeoff and landing. In addition, the field technician logged the serial number for each transducer so that the calibration data could be correlated with the recorded data during the final data processing.

DATA DEF! NITIONS

RECORDED PARAMETERS

The 11 in-flight parameters recorded on the oscillograms consisted of (1) altitude, (2) airspeed, (3) outside air temperature, (4) c.g. vertical acceleration, (5) c.g. lateral acceleration, (6) c.g. longitudinal acceleration, (7) rotor speed, (8) engine torque, (9) longitudinal cyclic boost tube load, (10) lateral cyclic boost tube load, and (11) collective boost tube load. For each of these parameters and the computed parameters presented below, Table I lists the ranges selected for the data blocks.

COMPUTED PARAMETERS

From the fuel, cargo, and passenger weights at takeoff and landing, as logged on the supplemental data sheets, the gross weight was computed for the start and end of each mission. A constant rate of fuel consumption was assumed to obtain the average weight-loss rate that was used to compute the instantaneous gross weight. Weight gains or losses because of cargo or passenger changes were introduced at the times noted on the supplemental data sheets.

For each data reading point, three derived parameters were added: (1) the rotor tip speed ratio, (2) the ratio of the thrust coefficient to the rotor solidity, and (3) the density altitude.

The rotor tip speed ratio, μ , was computed by the following equation:

$$\mu = \frac{V}{\Omega R} \tag{1}$$

where V = airspeed, ft/sec

 Ω = rotor angular velocity, rad/sec

R = rotor radius, 24.0 ft

The following equation was used in computing the ratio of thrust coefficient to the rotor solidity, that is, C_T/σ :

$$C_{\rm T}/\sigma = \frac{W}{\rho \pi^2 (\Omega R)^2 \sigma}$$
 (2)

where C_T = thrust coefficient
 W = gross weight (instantaneous), 1b

ρ = air density at altitude, slugs/ft³

 σ = rotor solidity = 0.0464

TABLE I. PARAMETER RANGES

		Recorded Parameters		
		Longitudinal, Lateral,		
n _x and n _v (g)	Airspeed (kn)	Longitudinal, Lateral, and Collective Stick Boost Tube Load (1b)	n _z (g)	OAT (°F)
<-0.40	<40	<-450	<0.2	<0
0.40 to -0.55	15 to 60	-450 to -400	0.2 to 0.4	0 to 10
0.35 to -0.30	60 to 65	-400 to -350	0.4 to 0.5	10 to 20
0.30 to -0.25	65 to 70	-350 to -300	0.5 to 0.6	20 to 30
0.25 to -0.20	70 to 75	-300 to -250	0.6 to 0.7	30 to 40
0.20 to -0.15	75 to 80	-250 to -200	0.7 to 0.8	40 to 50
0.15 to -0.10	80 to 85	-200 to -150	0.8 to 1.2	50 to 60
0.10 to 0:10	85 to 90	-150 to -100	1.2 to 1.3	60 to 70
0.10 to 0.15	90 to 95	-100 to 100	1.3 to 1.4	70 to 80
0.15 to 0.20	95 to 100	+ 100 to 150	1.4 to 1.5	80 to 90
0.20 to 0.25	100 to 105	150 to 200	1.5 to 1.6	>90
0.25 to 0.30	105 to 110	200 to 250	1.6 to 1.7	
0.30 to 0.35	110 to 115	250 to 300	1.7 to 1.8	
0.35 to 0.40	115 to 120	300 to 350	1.8 to 2.0	
>0.40	>120	350 to 400	2.0 to 2.2	
		400 to 450	2.2 to 2.4	
	RPM	>450	>2.4	
	<294			
	to 314			
	1 to 324			
	to 330			
330) to 339			
	>339	Computed Parameters		
n _{ze} (g)	Climb Rate (ft/mi	Rotor Tip in) Speed Ratio (μ)	Gross Weight (1b)	Torque (psi)
<0.2	<-2100	<0.05	<6000	<10
0.2 to 0.4	-2100 to -1800	0.05 to 0.10	6000 to 7000	10 to 20
0.4 to 0.5	-1800 to -1500	0.10 to 0.15	7000 to 8000	20 to 30
0.5 to 0.6	-1500 to -1200	0.15 to 0.20	8000 to 9500	30 to 40
0.6 to 0.7	-1200 to -900	0.20 to 0.25	>9500	40 to 50
0.7 to 0.8	-900 to -600	0.25 to 0.30		50 to 60
0.8 to 1.2	-600 to -300	>0.30		60 to 70
1.2 to 1.3	-300 to 300			>70
1.3 to 1.4	300 to 600		ar Salidity	Dengity
1.4 to 1.5	600 to 900	(CT/ a		Density ltitude (ft)
1.5 to 1.6	900 to 1200	<0.06		<1000
1.6 to 1.8	1200 to 1500	0.06 to 0	0.09	1000 to 2000
1.8 to 2.0	1500 to 1800	0.09 to 0		2000 to 5000
2.0 to 2.2	1800 to 2100	0.12 to 0		5000 to 10000
2.2 to 2.4	>2100	>0.15	-1	0000 to 15000

>15000

2.4 to 2.6

>2.6

The following equation (Reference 1) was used to compute density altitude, hd, since this parameter is normally used in describing helicopter performance:

$$h_d = 145,300 \left[1 - \left(\frac{518.4 P_a}{29.92(OAT + 460)} \right)^{0.235} \right]$$
 (3)

where P_a = static pressure, inches of mercury OAT = outside air temperature, °F

Each peak of c.g. vertical acceleration, a_Z , was measured directly from the oscillogram trace. To present normal load factor, n_Z , and incremental normal load factor, Δn_Z , the following relationships were used:

$$\Delta n_z = \frac{a_z}{g} \qquad (4)$$

$$n_z = \Delta n_z + 1.0 \tag{5}$$

For each of the normal load factor peaks, the equivalent normal load factor, $n_{Z_{\rm e}}$, was computed according to the relation

$$n_{z_e} = n_z \frac{W_i}{W_D} \tag{6}$$

where n_z = normal load factor peak

 W_i = instantaneous weight at time of acceleration peak W_D = design gross weight, 6600 lb

Since the pitot-static position error was judged to be negligible in the range of interest, only indicated airspeeds were considered. Rotor speed and outside air temperature were computed by applying the calibrations to the trace measurements. The measured trace displacements for the boost tube loads were converted to pounds of force. Based on the average slope of pressure altitude derived from the static pressure trace, the rate of climb was computed continuously during each segment. Engine torque was calibrated in units of psi as taken from the cockpit indicator.

MISSION SEGMENTS

For a more meaningful analysis of helicopter performance and loads, the data for each flight were separated into four mission segments: (1) ascent, (2) maneuver, (3) descent, and (4) steady state. The first three segments are the transient,

or unsteady, regimes of flight and were distinguished from the steady-state segment by the variations in the stick boost tube load, airspeed, and altitude traces. The segments were identified and defined as follows: ascent included both the takeoff and climb to the initial cruise altitude and all other unsteady ascents to other altitudes; maneuver included flight sections where ascents and descents were too short to be classified as such and were characterized by activity in the airspeed, altitude, and stick boost tube traces; descent included the unsteady part of flare and landing and all other unsteady descents; and steady state included cruise, hover, steady ascent (after the initial climb), and steady descent. Flare and landing initiated from hover was included in steady Such steady-state sections were identified by minimal fluctuation of the stick boost tube traces about mean values and the constancy or smooth change of the airspeed and altitude traces.

DATA PROCESSING

DATA EDITING

Each oscillogram was examined by the data processing editors for evidence of any instrumentation anomaly such as a missing trace and improper sensitivity. Any flight whose data was judged invalid and therefore unacceptable because of recorder malfunctioning evidence was not processed. The editors then timed all acceptable flights and identified the bounds for the four mission segments in each flight.

After demarcating the flights into mission segments, the editors marked the traces to govern the data reading. The vertical acceleration trace was marked wherever a peak met the following two conditions: (1) the peak fell outside prescribed threshold levels (±0.2g about the 1.0g mean), and (2) the peak had a rise and a fall (or fall and rise) that were each 50 percent of the primary peak value or 0.2g, whichever was greater. Although the prescribed thresholds were 0.8 and 1.2g, the editors used levels of 0.84 and 1.16g to ensure the inclusion of all valid peaks. However, any of the peaks read within the fixed threshold levels of 0.8 and 1.2g were eliminated during the processing. In addition, the editors identified each peak as being maneuver- or gust-induced. To determine whether a peak was induced by a maneuver or a gust, the editors noted the behavior of the n₇ and airspeed traces. An nz peak was coded as being gust-induced if the airspeed trace had a jagged pattern and the nz peak had a short duration and an exponential decay. All other peaks were coded as maneuvers.

The editors marked primary peaks on the lateral and longitudinal acceleration traces wherever they deflected outside the prescribed threshold of $\pm 0.1 g$. These peaks were not identified as being maneuver- or gust-induced. As before, to ensure the inclusion of all valid peaks, the editors used levels of $\pm 0.097 g$ instead of 0.1g. Again, however, any peaks read within the prescribed threshold of $\pm 0.1 g$ were eliminated during the computer processing.

In editing the three control stick boost tube load traces, the editors marked (') those peaks that fell outside the threshold of ± 100 pounds and (2) those peaks that had a rise and a fall that were each 50 percent of the primary peak value or 100 pounds, whichever was greater. The normal value used was dependent on the mission segment: for the steady-state mission segment, the normal used was the steady value of the boost tube traces just before and after the peak

load was encountered. For the three transient mission segments, an arbitrary set of normal values was chosen to approximate the boost tube loads during hover. The selected values are listed by aircraft serial number in Table II.

ABLE II. CONTROL STICK BOOST TUBE NORMAL LO DURING TRANSIENT MISSION SEGMENTS			
Aircraft Serial No.	Lateral Cyclic (1b)	Longitudinal Cyclic (1b)	Collective (1b)
70 - 15714 70 - 15816	-60	10	- 50 - 50
70-13010	40	10	30

At peaks of c.g. normal load factor, n_Z , the values of n_Z , c.g. longitudinal load factor, n_X , and c.g. lateral load factor, n_Y , were read. At the peaks of n_X , the values of n_X , n_Y , n_Z , and cyclic longitudinal stick boost tube were read. At the peaks of n_Y , the values of n_X , n_Y , n_Z , and the lateral cyclic boost tube were read. The traces for the other parameters—airspeed, altitude, rotor speed, torque, and outside air temperature—were marked for measurement at sufficient points to permit an adequate representation of the flight profile.

The peak values of the three linear accelerations were measured from the normal (static) positions of the respective traces. For n_X , n_Y , and n_Z , the normal positions were defined when the helicopter was in a cruise condition. The positive sense of n_X is acceleration forward, and the positive sense of n_Y is acceleration to the right.

DATA READING AND QUALITY CONTROL

All data points selected during the editing were measured on semiautomatic oscillogram readers which transcribed the measurements directly onto punched cards. When all data were extracted from a flight, a printout of the cards was given to the quality control personnel for preliminary data checking. Using standard quality control techniques, these personnel manually remeasured points constituting an adequate random sample and compared the measurements with those produced on the semiautomatic readers. The differences obtained between

the two sets of readings were used to establish the mean and standard deviations as a control of the desired accuracy. The flights whose measurements did not meet the accuracy standard so established were reread on the semiautomatic readers. In addition to obtaining accurate values, this procedure ensured a uniform interpretation and measurement of the traces. Some of the data processed for this report was edited and read by the U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, and the remainder was edited and read by Technology Incorporated. The procedures followed by both organizations were identical with the exception of the reading increment, which was 100 counts per inch at Fort Eustis and 200 counts per inch at Technology Incorporated.

When all data had been processed, the mean and the standard deviation were calculated for the entire data sample. Assuming a normal distribution of reading errors, 99.7 percent of the readings should be within three standard deviations of the true values. Based on average calibration values and the comparison of the data edited and read by the Army and the contractor, Table III shows the three-standard-deviation variation for each parameter.

TABLE III. DATA READING VARIATIONS BY PARAMETER

	3 c Variation		
Parameter	Contractor's Digitized Data	Army Digitized Data	All Digitized Data
Altitude (at 2000 feet)	± 100 ft	± 150 ft	± 110 ft
Airspeed (at 90 knots)	± 1.5 km	± 3.0 kn	± 2.0 kn
nx	± 0.026g	± 0.034g	± 0.028g
ny	± 0.027g	± 0.042g	± 0.030g
n ₂	$\pm 0.027g$	± 0.6 6	± 0.031g
OÄT	± 1.05°F	± 1.65°)	± 1.18°F
Rotor rpm	± 3.0 rpm	± 5.2 rp	± 3.6 rpm
Engine Torque	± 0.5 psi	± 1.0 psi	± 0.6 psi
Collective Boost Tube	±26.1 lb	±51.2 1b	±31.3 1b
Cyclic Lateral Boost Tube	±28.6 1b	:54.3 1b	±33.8 1b
Cyclic Longitudinal Boost Tube	±23.6 1b	±40.5 1b	±27.3 1b

FINAL DATA ACCEPTANCE

As the data for each flight were found acceptable by quality control, the data were processed on the CDC 6600 computer at Wright-Patterson Air Force Base. During the continuing data processing, the printouts of the processed data were compared with the corresponding oscillograms and supplementary data sheets to check extreme values and parameter distributions. If any errors in the data were detected, they were corrected and the entire flight was reprocessed through the computer. After flights were found acceptable following either the initial printout review or subsequent correction, their data were filed on a master tape containing the data from previously accepted flights. This procedure was repeated until all flights were merged on the master tape. When completed, this tape was used to generate the various tables presented in this report.

DATA PRESENTATION AND ANALYSIS

INTRODUCTION

As part of the continuing effort to improve the fatigue analyst's understanding of the operational flight spectrum of U.S. Army helicopters and to develop an improved definition of operational usage as it affects design criteria, the data gathered on the UH-1H helicopters flying various missions in SEA are analyzed and discussed in the following paragraphs. This analysis and presentation follows the procedure and format established in Reference 2. In general, these data are compared with the flight spectra for the AH-1G and CH-54A helicopters flying in SEA; with the flight spectrum data obtained for similar types of helicopters; with empirical fatigue spectra initially used to establish preliminary component service lives; and with the empirical spectrum defined in the Civil Aeronautics Manual 6, Appendix A. The analysis will be divided into ten sections: mission segments, airspeed, rotor speed, gross weight, engine torque, altitude, rate of climb, normal load factor, equivalent normal load factor, and control boost tube load.

The data presented in this report consist of two types of figures and two types of tables. The two graphical presentations are cumulative frequency distribution curves of various parameters such as airspeed, rotor speed, and engine torque, and exceedance curves of the time to reach or exceed given levels of the parameter or of the cumulative occurrences per 1000 hours at or below given levels of such parameters as Δn_z , rate of climb, and boost tube load. The two tabular formats are flight time distributed among the coincident ranges of two or more parameters, and frequency of acceleration peaks and incremental boost tube load peaks distributed among the coincident ranges of other variables. All times shown were rounded to the nearest tenth of a minute. Since in each subtable the total under the time column was computed and then rounded, a total may not agree with the sum of the rounded times in each line. Times between 0 and 0.05 minute were printed as ".0", and times equal to zero were printed as Tables having neither points nor time were not printed. Table headings are arranged so that the first-mentioned variable refers to the horizontal ranges at the top of the table and the second-mentioned variable refers to the vertical ranges at the left of the table. Where a third or a fourth variable is given, it is followed by its range in the heading. example, the heading "MINUTES FOR ALTITUDE VS AIRSPEED BY WEIGHT 6000 BY MISSION SEG. ASCENT" indicates the time spent in coincident ranges of altitude and airspeed at a weight

between 6000 and 7000 pounds during the ascent mission segment. All printed range values are the lower limits.

In comparing various flight-measured values for the UH-1H, AH-1G, and CH-54A helicopters, the limiting parameter values in Table IV were used.

Parameter	UH-1H	AH-1G	CH-54A
Airspeed - V _{ne}	120 kn	190 kn 158 kn	110 kn
Rotor Speed (Normal Operating range)		314- 324 rpm	100% 104%
Engine Torque (Transmission Input Limit)	50 psi	49.1 psi	163%
(Single for AH- Dual for CH-54			
Max Design Gross Weight	9500 lb	9500 lb	42,000 11

MISSION SEGMENTS

On the basis of the mission segments of ascent, maneuver, descent, and steady state defined in the Data Definitions section, the current UH-1H data are compared in Figure 4 with the UH-1H fatigue spectrum, with the CAM-6 data, and with the design fatigue and operational spectra of several other helicopters, namely, the UH-1B, AH-1G, CH-47A, and CH-54A; the data sources used for the latter helicopters are listed in Table V.

TABLE V. SOURCES OF PRESENTED DATA		
Helicopter	Fatigue Spectrum	Operational Data
UH-1B	3	4
AH-1G	5	6
CH-47A Armed CH-47A Transport	7 -	8 9
CH-54A	10	11

Figure 4. Comparison of Operational Data and Fatigue Spectra for Various Helicopters.

The current UH-1H helicopters spent the following percentage of time in each of the four mission segments: ascent, 21 percent; maneuver, 1 percent; descent, 21 percent; and steady state, 57 percent.

In the comparison of these data with the previously gathered data for other types of helicopters, several unusual relationships appear in Figure 4 for helicopters flying what would be assumed to be diverse missions. First, the UH-1H, CH-47A, and CH-54A helicopters all flew missions which had higher ascent and descent content and lower steady-state and maneuver content. In particular, the maneuver content for these helicopters was lower than those in their design fatigue spectra and was much lower than that for the AH-1G, UH-1B, and armed CH-47A helicopters. Second, it appears that the UH-1B, AH-1G, and armed CH-47A helicopters, operating in SEA or flying a simulated combat mission in the case of the UH-1B, flew a characteristic mission whose maneuver content was much higher than those in either their design fatigue spectra or the UH-1H, CH-47A (CARGO), and CH-54A missions. In Reference 12, the percentage of time in the various mission segments for the OH-6A and AH-1G helicopters did not compare favorably. However, in the context of the data presented in Figure 4, the OH-6A distribution within mission segments is very similar to that for the UH-1B, AH-1G, and armed CH-47A helicopters. Since the OH-6A data follow the same trends as these other helicopters, they were not presented again.

The relationships shown above are supported for the UH-1H helicopter when the types of missions are reviewed. Four basic missions were flown by the current UH-1H helicopters: combat assault, direct combat support, command and control, and passenger transport. Only the first mission can be considered similar to the AH-1G, armed CH-47A, and UH-1B missions since it includes operations in a hostile environment; the other missions are nonhostile operations consisting predominately of resupply and personnel transportation. The percentages for the four mission types in the 249 missions recorded during the current UH-1H program are as follows: combat assault, 16.5 percent; direct combat support, 71.1 percent; command and control, 8.4 percent; and passenger transport, 4.0 percent.

A review of the current UH-1H data and previously gathered data for the helicopters represented in Figure 4 indicates very poor correlation with the design fatigue spectrum obtained from Appendix A of CAM-6, Reference 13. The mission segment distribution of the flight time in the current UH-1H data is 21 percent in ascent, 1 percent in maneuver, 21 percent in descent, and 57 percent in steady state. CAM-6

specifies 6 percent in ascent, 17 percent in maneuver, 8 percent in descent, and 69 percent in steady state. No trend between the UH-1H data and CAM-6 requirements can be discerned. It should be noted that the percentage of time distribution for CAM-6 presented in Figure 4 differs from the breakdown given in Reference 12; the values used in Figure 4 were obtained by the same methods of classification as those used for the reduction of the operational data.

On the basis of the above information, it would appear that the gathered data further demonstrate the individuality of flight spectrum data and the importance of mission assignment in establishing the characteristics of the operational usage spectrum. However, it was also noted above that a general trend does exist for helicopters flying a general type of mission. The operational usage spectrum for component fatigue analysis could be much better approximated by defining a general usage spectrum for either military assault or military nonassault missions than by using any one of the design spectra in Figure 4; each of these proposed spectra is defined in Table VI.

TABLE VI.	PERCENTAGE OF TIME BY MI GENERAL MILITARY OPERATI						
ii ii	Time in Segment						
Segment	Military Assault	Military Nonassault					
Ascent	8%	25%					
Maneuver	60%	5 %					
Descent	8%	25%					
Steady State	24%	45%					

Because of the physical similarity of the UH-1H and AH-1G helicopters and the apparent mission similarity of the UH-1H and CH-54A helicopters, the following sections compare the UH-1H data with the AH-1G and CH-54A data.

AIRSPEED

The airspeed frequency distribution for the current UH-1H data is presented in several different formats for analysis purposes. These formats include airspeed comparisons of the UH-1H data with the CAM-6 data, the UH-1H fatigue spectrum, the AH-1G and CH-54A operational flight data, and the

operational flight data for helicopters weighing less than 10,000 pounds. The recorded values of airspeed are presented in terms of "Percent V_{ne} or V_h , whichever is lower." This nomenclature was used instead of "Percent V_A ," as in previous reports, to clarify the plotted data. V_A was previously defined as the maximum attainable level-flight airspeed, considering gross weight, usable power, blade stall, and structural limitations. V_{ne} is defined as the "never exceed" airspeed, considering gross weight, blade stall, and structural limitations. V_h is defined as the maximum attainable level-flight airspeed, considering usable power. Since V_{ne} may be less than, equal to, or greater than V_h , the expression "Percent V_{ne} or V_h , whichever is lower" is the same as Percent V_A as previously used in References 2 and 12.

The cumulative airspeed frequency distribution by mission segment for the UH-1H data is presented in Figure 5. This figure indicates that 100 percent of the mission time was spent below 100 percent V_{ne} . Although the UH-1H has enough power to exceed V_{ne} in level flight, it did not do so during this operational survey, probably because of the types of missions flown.

Figure 5. Cumulative Airspeed Frequency Distribution by Mission Segment for the UH-1!1.

Figure 6 compares the cumulative airspeed frequency distribution for the UH-1H data with that for the CAM-6 spectrum and the UH-1H design fatigue spectrum. The agreement between these curves is poor. As apparent, the distribution for the

UH-1H data is lower at low airspeed ranges but higher at high airspeed ranges than the distributions for both spectra. If it is assumed that most of the fatigue damage occurs at the higher airspeeds, then the CAM-6 and UH-1H fatigue spectra must be judged conservative since both spectra predict higher percentages of time at these higher airspeed values than were actually recorded.

Figure 6. Cumulative Airspeed Frequency Distribution for the UH-1H Compared With CAM-6 and Design Fatigue Spectra.

Figure 7 compares the cumulative airspeed frequency distribution for the UH-1H data with data previously recorded for turbine-powered helicopters having design normal gross weights less than 10,000 pounds. To simplify this comparison, only the ±1σ scatter band curves obtained by statistical analysis of the Reference 12 and 14 data are shown. These curves include the data for the original curves and the AH-1G and OH-6A data analyzed in Reference 12. In addition, the original ±1σ scatter band curves, presented in Reference 14, are shown as dashed lines. The UH-1H data are within the scatter band limits, indicating that the UH-1H airspeed data are in good agreement with the airspeed data obtained previously for helicopters in the weight classification below 10,000 pounds.

Figure 7. Cumulative Airspeed Frequency Distribution for the UH-1H Compared With Spectra Obtained for Other Turbine-Powered Helicopters With Design Normal Gross Weight <10,000 Lb.

The UH-1H airspeed data are also compared with similar data for the AH-1G and CH-54A helicopters in Figure 8. The UH-1H and CH-54A data compare favorably throughout the airspeed range. The AH-1G curve, however, does not compare as favorably with the UH-1H curve.

The comparison in Figure 9 of the UH-1H data obtained by Technology Incorporated with similar data obtained by Bell Helicopter Company, as reported in Reference 15, shows that Bell Helicopter recorded a larger percentage of data in the range of 55 percent to 75 percent $V_{\rm ne}$. This larger percentage may be attributed to Bell Helicopter's low 2-per-minute sampling rate or to differences in the types of missions flown. However, since both data samples were taken from helicopters which flew combat support, passenger transport, "ash and trash," and similar types of missions, the difference was likely due to the low data sampling rate.

Figure 8. Comparison of Cumulative Airspeed Frequency
Distribution for the UH-1H With Similar Data
for the AH-1G and CH-54A Helicopters.

Figure 9. Comparison of Cumulative Airspeed Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company.

ROTOR SPEED

The cumulative main rotor speed frequency distribution by mission segment for the UH-1H is presented in Figure 10 with respect to the operating rotor speed expressed as a percentage; these data are listed in the Appendix, Table XII. Figure 10 shows that 87, 5, and 8 percent of the recorded flight time were acquired at rotor rpm's between 98 and 102 percent, below 98 percent, and above 102 percent, respectively.

Figure 10. Cumulative Rotor Speed Frequency Distribution by Mission Segment for the UH-1H.

In Figure 11, the cumulative rotor speed frequency distribution for the UH-1H helicopter is compared with similar data for the AH-1G and CH-54A helicopters. The general shapes of the curves for the three helicopters are quite similar, as would be expected. The range of rotor speeds for the UH-1H, AH-1G, and CH-54A was 4 to 6 percent for 95 percent of the total mission time. Figure 11 indicates that the maximum normal rotor rpm limit of 100 percent for the UH-1H and AH-1G and of 104 percent for the CH-54A was exceeded during 28, 2, and 4 percent of their operation, respectively. The large exceedance of the upper limit for the UH-1H may be attributed to the mode of operation and the accuracy of the rotor rpm readings. A system error of 1 percent, or approximately 3 rpm, would change the percentage of operating time above 100 percent NR from 28 to 13 percent; the 30 reading

variation discussed in Table III would include the remaining data. It should be noted that changes in the rotor speed measurement system have been made by Technology Incorporated to decrease any possible system error and to decrease the reading error range on future recording programs.

Figure 11. Comparison of Cumulative Rotor Speed Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters.

The comparison in Figure 12 of the UH-1H data obtained by Technology Incorporated with the data obtained by Bell Helicopter Company, as reported in Reference 15, shows that 93 percent of the Bell data but only 72 percent of the Technology Incorporated data were taken at 100 percent rotor speed or below. This large difference may be attributed to two factors: the recording system accuracy of both systems and the low sampling rate of the Bell data.

GROSS WEIGHT

The cumulative gross weight frequency distribution by mission segment for the UH-1H is presented with respect to the ratio of operating gross weight to maximum design gross weight in Figure 13; these data are listed in the Appendix, Table VII.

Figure 12. Comparison of Cumulative Rotor Speed Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company.

Figure 13. Cumulative Gross Weight Frequency Distribution by Mission Segment for the UH-1H.

As shown in Figure 13 and tabulated below, more time was spent in the gross weight ratio ranges between 0.80 and 0.85 than in any other range. In addition, the UH-1H data are distributed symmetrically about the 0.80 to 0.85 range.

Gross Weight Ratio Range	% Time in Range
D-1 0 50	r
Below 0.70	3
0.70 to 0.75	6
0.75 to 0.80	20
0.80 to 0.85	36
0.85 to 0.90	22
0.90 to 0.95	6
0.95 to 1.00	5

In Figure 14, the cumulative gross weight frequency distribution for the UH-1H is compared with similar data for the AH-1G, CH-47A transport, and CH-54A helicopters. The CH-47A transport data were presented to prevent the drawing of any erroneous conclusions about the close agreement of the UH-1H and CH-54A data above gross weight ratios of 0.85. The time spent by the UH-1H at various gross weight ratios is also characteristic of the AH-1G. It is not surprising that these two models, which have the same power and maximum design gross weight, would accumulate time similarly.

Figure 14. Comparison of Cumulative Gross Weight Frequency Distribution for the UH-1H With Similar Data for the AH-1G, CH-54A, and CH-47 Helicopters.

ENGINE TORQUE

The cumulative engine torque frequency distribution by mission segment for the UH-1H is presented in Figure 15 with respect to the maximum allowable torque expressed as a percentage; these data are listed in the Appendix, Table XI.

Figure 15. Cumulative Engine Torque Frequency Distribution by Mission Segment for the UH-1H.

Figure 15 indicates that all of the data were acquired during operations at or below 100 percent of the maximum allowable torque. About 63 percent of the total time was spent between torque values of 50 and 75 percent of the maximum allowable torque.

In Figure 16 the cumulative engine torque frequency distribution for the UH-1H data is compared with similar data for the AH-1G and CH-54A helicopters. The general shapes of the curves for the helicopters are quite similar, as would be expected. The main difference between the curves is their location along the engine torque axis. The AH-1G curve differs from the curve presented in Reference 12 since the new curve was derived by using 49.1, instead of 50, psi as the pressure equal to 100 percent of the maximum allowable torque. The value of 49.1 psi was established as the torque limit in Reference 15. According to this new curve, the AH-1G spent about 70 percent of the total time between the torque values of 50 and 75 percent of the maximum allowable torque instead of the previously reported 63 percent (Reference 12).

Figure 16. Comparison of Cumulative Engine Torque Frequency Distribution for the UH-1H With Similar Data for the AH-1G and the CH-54A Helicopters.

In Figure 17, the UH-1H data obtained by Technology Incorporated are compared with similar data gathered by Bell Helicopter Company. The two sets of data are in good agreement.

ALTITUDE

The cumulative density altitude frequency distribution by mission segment for the UH-1H is presented in Figure 18; these data are listed in the Appendix, Table VII.

Figure 19 compares the density altitude data for the UH-1H with similar data for the AH-1G and CH-54A. The UH-1H and AH-1G data compare very closely. The CH-54A data do not agree as favorably with the UH-1H data; however, as discussed in Reference 12, the CH-54A helicopter normally cruised at higher altitudes to avoid ground fire. The UH-1H and AH-1G helicopters spent 96 and 97.5 percent of the time, respectively, below altitudes of 5000 feet, whereas the CH-54A spent only 82 percent of its time below this altitude. All three helicopters flew from bases at or very near sea level. The UH-1H did not spend an appreciable amount of time at altitudes above 10,000 feet.

Figure 20 compares the UH-1H data obtained by Technology Incorporated with the similar data obtained by Bell Helicopter Company. The two sets of data are in very good agreement.

Figure 17. Comparison of Cumulative Engine Torque Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company.

Figure 18. Cumulative Density Altitude Frequency Distribution by Mission Segment for the UH-1H.

Figure 19. Comparison of Cumulative Density Altitude Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters.

Figure 20. Comparison of Cumulative Density Altitude Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company.

RATE OF CLIMB

The cumulative rate-of-climb frequency distribution by mission segment for the UH-1H is presented in Figure 21; the rate-of-climb data were converted into the "or more" type of frequency distributions by cumulatively summing the percentages of time for each rate-of-climb range, starting at the highest positive or negative rate-of-climb value and continuing to the ±300 feet-per-minute threshold value. The basic data, prior to summation, are presented in Table X of the Appendix. Because of the basic definitions used to categorize the flight data into the four mission segments, some ascent time is included in the negative rate-of-climb data and some descent time is included in the positive rate-of-climb data. Also, the data should not be extrapolated beyond that presented, as highly erroneous predictions could result.

The cumulative rate-of-climb frequency distribution for the UH-1H is compared in Figure 22 with similar data for other turbine-powered helicopters having a normal design gross weight of less than 10,000 pounds (Reference 14). For rates of climb in excess of 900 feet per minute, the UH-1H data fell within the scatter bands; but for rates below 900 feet per minute, the data fell outside the upper scatter band. With respect to the rates of descent, the UH-1H data fell within the middle of the scatter bands for the entire rate-of-descent range. Once again, the ±1σ scatter band developed in Reference 14 for turbine-powered helicopters having a normal design gross weight of less than 10,000 pounds is a good representation of the rate-of-climb operation characteristic of the UH-1H.

In Figure 23, the cumulative rate-of-climb frequency distribution for the UH-1H helicopter is compared with similar data for the AH-1G and CH-54A helicopters. The UH-1H helicopter had milder rate-of-climb excursions; in general, it did not exceed rates of 1500 feet per minute. During descents, the UH-1H helicopter had a rate-of-descent operation similar to that of the CH-54A helicopter; the UH-1H made descents at rates up to 2100 feet per minute.

Figure 21. Cumulative Rate-of-Climb Frequency Distribution by Mission Segment for the UH-1H.

Figure 22. Cumulative Rate-of-Climb Frequency Distribution for the UH-1H Compared With Spectra Data Obtained for Other Turbine-Powered Helicopters With Design Normal Gross Weights <10,000 Lb.

Figure 23. Comparison of Cumulative Rate-of-Climb Frequency Distribution for the UH-1H With Similar Data for the AH-1G and CH-54A Helicopters.

NORMAL OR VERTICAL LOAD FACTORS

Both positive and negative load factor peaks experienced by the UH-1H helicopter during the current program are presented in several different ways for both gust and maneuver conditions. The peaks caused by gust conditions are compared with ±1σ scatter bands for all helicopters and with similar data for the AH-1G and CH-54A helicopters. The maneuver-induced load factor peaks are presented similarly as above; in addition, the distributions of these factors in gross weight and rotor tip speed ranges are compared. Also compared are the UH-1H, AH-1G, and CH-54A cumulative load factor peaks with an airspeed breakdown.

Three different types of exceedance curves were used to present the data in the formats discussed above. The basic data for gust and maneuver conditions are presented in terms of "hours to reach or exceed" a given normal load factor level. The comparisons of either the gust or the maneuver data are presented as the cumulative number of load factor peaks per 1000 hours experienced at or in excess of the corresponding value of Δn_2 ; these numbers were obtained by cumulatively summing the occurrences of load factor peaks, starting at the largest positive or negative load factor peaks and then converting these cumulative occurrence values to cumulative peaks per 1000 hours. The format of the comparison of cumulative load factor peaks by airspeed curves is similarly based on the cumulative number of load factor peaks per 1000 hours experienced at or below a given airspeed value; for each airspeed value, this curve was constructed as discussed above for the curves plotted versus Δn_z .

In all cases, the Δn_z value was derived by the equation of $\Delta n_z = n_z - 1$. The airspeed values were expressed in terms of the percentage of V_{ne} or V_h , whichever was lower. For the UH-1H and CH-54A helicopters, the V_{ne} speeds of 120 and 110 knots, respectively, were used; for the AH-1G helicopter, the V_h speed of 158 knots was used.

Figure 2. presents the composite exceedance curve of incremental gust-induced normal load factor peaks for the UH-1H. As can be seen, slightly more negative peaks were experienced than positive peaks; however, the magnitudes of both the positive and negative peaks are not significant when compared with the magnitudes of the maneuver-induced normal load factor peaks (see Figure 28).

Figure 25 compares the cumulative gust-induced normal load factor frequency distribution of the UH-1H data with the $\pm 1\sigma$ scatter band curves derived in Reference 2 for similar data

for all turbine-powered helicopters. This figure indicates that the UH-1H helicopter was not exposed to gust-induced loads above the lower scatter band; for both the positive and negative peaks, the number of peaks per 1000 hours was about an order of magnitude below the lower scatter band.

Figure 24.

Composite Exceedance Curve for Incremental Gust Normal Load Factor Peaks.

Figure 25.

Cumulative Gust-Induced Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for All Other Turbine-Powered Helicopters.

Figures 26 and 27 present the cumulative positive and negative gust-induced normal load factor frequency distributions for the UH-1H data in comparison with similar data for the AH-1G and CH-54A helicopters. As evident in both figures, the gust-induced loads for the UH-1H helicopter were equal to or below those for the AH-1G and CH-54A helicopters. From the above, it can be deduced that gust-induced normal load factor peaks experienced by the UH-1H helicopter are lower in both frequency and magnitude.

Figure 26.

Cumulative Gust-Induced Positive Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters.

Figure 27.

Cumulative Gust-Induced Negative Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters.

Figure 28 presents exceedance curves of incremental maneuverinduced normal load factor peaks by mission segment for the In general, more positive load factor peaks were experienced during all mission segments than negative peaks. Also, both positive and negative peaks occurred most frequently in the maneuver and descent mission segments. The high frequency of occurrence of load factor peaks in the maneuver segment would have been expected because of the definition of this segment; however, the reason for the high frequency of both positive and negative peaks in the descent segment is not as obvious. As an explanation of the relatively high frequency of positive and negative peaks during the descent segment. the pilot was faced with the stringent terrain-clearance requirements prior to touchdown; consequently, to maintain a safe descent, he had to continually input minor flight-path corrections which would have induced a larger number of positive and negative peaks. Another reason for the high frequency of negative peaks during the descent segment is that the mean vertical load factor was slightly less than unity; consequently, minor perturbations, which would have normally been filtered from the data for the other mission segments during processing, produced load factor peaks that were below the 0.8g threshold and were included in the data sample. The curve shape of the positive and negative peaks for the ascent and steady-state segments are very similar; the hours to reach or exceed a given value of Δn_z for the steady-state segment are about an order of magnitude greater than the hours for the ascent segment. largest positive peak of 0.6g occurred during all mission segments; the largest negative peak of 0.8g occurred during the maneuver segment only. Finally, the composite maneuver-induced normal load factor peak curve gives the range of the positive and negative values and shows that the UH-1H experienced more positive than negative peaks.

Figure 29 compares the cumulative maneuver-induced normal load factor frequency distribution of the UH-1H with the $\pm 1\sigma$ scatter band curves derived in Reference 2 for similar data for all turbine-powered helicopters. This figure indicates that the maneuver-induced loads of the UH-1H were basically within the $\pm 1\sigma$ scatter bands; only one data point fell outside the bounds of the curve at a Δn_z value of -0.7g.

Figure 28. Exceedance Curves for Incremental Maneuver Normal Load Factor Peaks by Mission Segment.

e) Composite Figure 28 - Concluded

Figure 29. Cumulative Maneuver-Induced Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for All Other Turbine-Powered Helicopters.

The cumulative positive and negative normal load factor peak curves for the UH-1H are compared with similar curves for the AH-1G and CH-54A helicopters in Figures 30 and 31 to determine operational similarities during maneuvering flight. As discussed above, these curves were constructed by cumulatively summing the occurrences of load factor peaks, starting at the largest positive or negative peak and converting these cumulative occurrence values to cumulative peaks per 1000 hours. Figure 30 compares positive normal load factor peaks for the various helicopters. For positive Δn_z values of approximately 0.4g to 0.6g, the UH-1H curve is nearly identical to the CH-54A curve; below 0.4g, the UH-1H had more positive load factor peaks than the CH-54A, but not nearly the number of peaks experienced by the AH-1G helicopter. At a Δn_z of 0.2g, the UH-1H, CH-54A, and AH-1G had about 7000, 2000, and 30000 peaks per 1000 hours, respectively. In contrast, Figure 31 for the negative normal load factor peaks shows very close similarity between the UH-1H and AH-1G experiences.

Throughout the entire range of negative normal load factor peaks, the UH-1H data were at or just below the corresponding values for the AH-1G data; within the same range, the CH-54A experienced far fewer negative peaks per 1000 hours. AH-1G and CH-54A data, the spread between the positive load factor peaks is much greater than that between the negative The interpretation of the foregoing data becomes difficult when trying to relate the UH-1H experience with that of some class of helicopter for the purpose of developing a realistic and conservative flight spectrum. The close agreement of the positive maneuver-induced normal load factors for the CH-54A and UH-1H helicopters may be attributed to the similarity of their mission segments. The large number of peaks in the AH-1G data occurred mostly in the maneuver mission segment. If the UH-1H had spent more time in the maneuver mission segment, it would likely have had the same experience as the AH-1G. In contrast, the above data show that UH-1H and AH-1G helicopters closely agreed in the distribution of negative maneuver-induced normal load factor peaks. The data in Reference 12 indicate that the normal load factor occurrences during the descent segment were similar to those during the maneuver segment, just as the UH-1H data show in Figure 28. Consequently, the similarity between the data of the UH-1H and AH-1G helicopters may be attributed to their similar size, gross weight, and response to negative g's during maneuvers and descents to landings.

For each of the above maneuvers, the values for rotor speed, indicated airspeed (V_i), density altitude, gross weight, μ , C_T/σ , outside air temperature (OAT), rate of climb, and engine torque were calculated at a time slice near the n_z peak

Figure 30. Cumulative Maneuver-Induced Positive Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters.

Figure 31. Cumulative Maneuver-Induced Negative Normal Load Factor Frequency Distribution for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters.

and written on a reproduction of the oscillogram section containing the maneuver. Then the recorded traces were identified by the parameter name; the reference lines for torque = 0 psi, $n_z = 1.0g$, rotor speed = 0.0 rpm, and $V_i = 0.0$ knot were indicated; and the calibration slopes (parameter change for 1.0-inch trace deflection) for torque, n_z , rotor speed, and V_i were noted. The following list gives the sign convention for the UH-1H oscillograph recording system:

- (1) Airspeed moves up the chart as airspeed increases.
- (2) Altitude moves down the chart as altitude increases.
- (3) Rotor speed moves up the chart as rpm increases.
- (4) OAT moves down the chart as OAT increases.
- (5) Torque moves down the chart as torque increases.
- (6) N_x, N_y, N_z movement up the chart is positive and down the chart is negative.
- (7) Longitudinal cyclic boost tube load moves <u>down</u> the chart when the load is positive.
- (8) Lateral cyclic boost tube load moves down the chart when the load is positive.
- (9) Collection boost tube load moves up the chart when the load is positive.

Figure 32 presents exceedance curves of maneuver-induced normal load factor peaks by gross weight ranges for the UH-1H. The rate of positive load factor peak accumulation, or its inverse, the hours to reach or exceed a given Δn_z , was nearly the same throughout the three weight ranges. In addition, the range of the positive Anz's remained constant throughout the three weight ranges. In contrast, the range of negative Δn_z 's decreased as the gross weight of the UH-1H increased. The rate of negative load factor peak accumulation was practically the same throughout the Δn_z range for the weight ranges of 7000 to 8000 pounds and 8000 to 9500 pounds. Above a Δn_z of 0.3g, the rate of negative peak accumulation was much greater for the 6000- to 7000-pound weight range. Although a satisfactory explanation for this fact would require more data about the helicopter's dynamic response, the phenomenon may have been a result of the control characteristics of the helicopter at low gross weights and the corresponding center-of-gravity locations.

Figure 33 presents a diagram and tabulation of maneuver-induced normal load factor peaks with respect to the tip speed ratio, μ . This figure also includes three sample oscillograms to show extreme n_z or μ values. As indicated in this figure, the higher load factor peaks occurred within the μ range of 0.10 to 0.25, and the lower load factor peaks fell between 0.15 and 0.20. Based on the data in Figure 33a, Figures 33b, c, and d show the maximum n_z , minimum n_z , and maximum μ values as 1.60g, 0.12g, and 0.257 μ , respectively.

Figure 32. Exceedance Curves for Incremental Maneuver Normal Load Factor Peaks by Gross Weight Range.

These oscillogram sections permit examination of the parameter time histories during the maneuvers of interest. For example, Figure 33b shows a maneuver with an n_z peak of 1.60g. distance between the nz reference line (1g) and the reading reference line is 1.40 inches, and the distance between the peak of the n_z trace and the reading reference line is 0.99 inch, giving \bar{a} trace deflection of $\bar{0}.41$ inch at the peak. The product of this deflection and the n_z slope (1.45g per inch) equals 0.60g as the incremental n_z value. The n_z value of 1.60 is the sum of the 0.60g incremental n_z value and the 1.0g reference nz value. Similar measurements yield trace deflections of 0.56 inch for torque, 2.72 inches for rotor speed, and 0.43 inch for V_i , which, after calibration, have values of 13.0 psi for torque, 328 rpm for rotor speed, and 0.51 inch of mercury (differential pressure) for airspeed. Converted to indicated airspeed, the differential pressure equals 103 knots. A short vertical line at the lower edge of the oscillogram indicates the time when the n₂ peak was measured, and a longer vertical line indicates the time when all other parameters were measured.

a) Composite Data

Figure 33. Diagram and Tabulation of Maneuver Normal Load Factor Peaks in Ranges of Rotor Tip Speed Ratio With Oscillograms Containing Extreme Values.

LOAD	TIP SPEED RATIO, u							
FACTOP To Z	<0.05	0.05 to 0.10	0.10 to 0.15	0.15 to 0.20	0.20 to 0.25	0.25 to 0.30	≥0, 3 0	TOTAL
1.7 to 1.8								
1.6 to 1.7			4	15	1			20
1.5 to 1.6		1	3	17	ь			27
1.4 to 1.5		1	19	68	1 t			102
1.3 to 1.4		11	83	138	26			258
1.2 to 1.3		5.5	259	547	124			985
0.8 to 1.2								
0.7 to 0.8		20	97	273	5.3			443
0.6 to 0.7		2	8	20	7			37
0.5 to 0.6			2	7	1			10
0.4 to 0.5				6		1		7
U.2 to 0.4				4				4
<0.2			٠	1				1
TOTAL		93	475	1000	229	l		1894

a) Composite Data (Continued)

b) Oscillogram of Maneuver for Maximum $n_{\rm Z}$ Figure 33 - Continued

c) Oscillogram of Maneuver for Minimum n_z

d) Oscillogram of Maneuver for Maximum μ Figure 33 - Concluded

The cumulative vertical load factor frequency distribution by airspeed for the UH-1H is presented in Figure 34 and is compared with similar data for the AH-1G and CH-54A helicopters in Figure 35. The frequency of normal load factor peaks are expressed as the cumulative number of gust- and maneuver-induced normal load factor peaks per 1000 hours experienced at or below the corresponding airspeed value. Airspeed values in Figures 34 and 35 are expressed in terms of percentage of $V_{\rm ne}$ or $V_{\rm h}$, whichever is lower. For the UH-1H and CH-54A helicopters, the $V_{\rm ne}$ speeds of 120 and 110 knots, respectively, were used; for the AH-1G, the $V_{\rm h}$ speed of 158 knots was used.

The cumulative vertical load factor by airspeed curves for the UH-1H indicate that, for all airspeed ranges, lower-magnitude incremental load factor peaks were more frequent than higher-magnitude peaks and that positive peaks of a given magnitude were more common than negative peaks of the same magnitude. Further, positive normal load factor peaks occurred most frequently in the V_{ne} range between 48 and 73 percent and independently of the normal load factor range. The negative load factor peaks display a similar dependence on airspeed for incremental values of -0.2g and -0.3g; however, for incremental values less than -0.3g, the greatest number of peaks occurred in the V_{ne} range between 58 and 70 percent.

Figure 35 indicates that, for all positive incremental load factor ranges, the UH-1H cumulative peak frequency distributions are quite similar to those for the AH-1G; however, in general, most of the AH-1G peaks occurred at Vh airspeeds between 25 and 75 percent. This larger range of airspeed for a given positive incremental peak range most likely indicates that most of the AH-1G peaks occurred in a wide airspeed range during the maneuver segment and that most of the UH-1H peaks occurred in a relatively narrow airspeed range during the descent segment.

The cumulative peak frequency curves for the CH-54A are much flatter and lower than those for the AH-1G and the UH-1H. For negative incremental load factor values, the UH-1H and AH-1G peak frequency versus airspeed curves again compare quite well. Again, the AH-1G peaks occurred over a larger airspeed range than the UH-1H peaks. The tendency of the UH-1H data to fall between the AH-1G and the CH-54A data is also observed; however, for a $\Delta n_{\rm Z}$ of -0.2g, the UH-1H curve displays more peaks throughout the airspeed range than the AH-1G curve. This could be due to a combination of the previously noted tendency of the UH-1H to encounter significantly large numbers of negative load factors at low gross weights and the generally higher gross weights borne by the AH-1G.

AIRSPEED AS % $v_{ne} \ \mbox{or} \ v_h$, WHICHEVER IS LOWER

Figure 34. Composite Cumulative Normal Load Factor Frequency Distribution by Airspeed for the UH-1H.

Figure 35. Composite Cumulative Normal Load Factor Frequency Distribution by Airspeed for the UH-1H Compared With Similar Data for the AH-1G and CH-54A Helicopters.

Figure 35 - Continued

i) +.6 Anz

k) -.8 Δn_z

Figure 35 - Concluded

Once again, the CH-54A curves do not compare favorably with the UH-1H curves throughout the entire range of negative Δn_z 's below -0.2g. The curve for a Δn_z of +.2g compares favorably in shape with the corresponding UH-1H curve; however, the largest number of peaks were encountered in the V_{ne} airspeed range from 60 to 90 percent.

Finally, in Figure 36, the composite cumulative normal load factor frequency distribution for the UH-1H based on data collected during the current program is compared with a similar distribution based on data collected by Bell Helicopter Company. As can be seen, the positive and negative curves based on the Bell data are significantly lower than the data collected during this program. Although some differences might be expected, the apparent differences are most likely due to Bell's using a very low data sampling rate such that many significant Δn_z 's were not recorded. The normal load factor data discussed above are listed in Tables XX through XXXV. In addition to the normal load factor data, longitudinal and lateral load factor, n_x and n_y , data are presented in Tables XXIV through XXXIII. The frequency of gust nz peaks in the coincident ranges of n_{Z} and μ and in the coincident ranges of n_z and airspeed are presented in Tables XX and XXI, respectively. Table XX has mission segment, altitude, and Cτ/σ breakdowns, and Table XXI has weight, altitude, and mission segment breakdowns. Maneuver n_z peaks are presented similarly in Tables XXII and XXIII. Tables XXIV, XXV, and XXVI present frequencies of n_X peaks in n_X ranges versus airspeed ranges by weight, versus airspeed ranges by altitude, and versus longitudinal cyclic boost tube load deflection ranges by mission segment, respectively. Tables XXVII, XXVIII, and XXIX present frequencies of n_{ν} peaks in n_{ν} ranges versus airspeed ranges by weight, versus airspeed ranges by altitude, and versus lateral cyclic boost tube load deflection ranges by mission segment, respectively. Tables XXX through XXXV present frequencies of n_X , n_V , and n_Z peaks in the coincident ranges of two of these parameters in various combinations.

EQUIVALENT NORMAL OR VERTICAL LOAD FACTORS

By using the procedure discussed in the Data Definitions section, the digitized normal load factor peaks for the UH-1H were converted into equivalent normal load factor peaks, which were then distributed by mission segment in Figure 37. The same trends portrayed in Figure 28 and discussed in the Normal or Vertical Load Factor subsection appear in the Figure 37 plots. Figure 38 presents a diagram of maneuverinduced equivalent normal load factor peaks with respect to tip speed ratio, μ . The higher and lower peaks occurred within the 0.10 to 0.15 range of μ . Further presentations of

equivalent normal load factor data were not made because of the differences in calculation methods discussed below.

Figure 36. Comparison of Composite Cumulative Normal Load Factor Frequency Distribution for the UH-1H With Similar SEA Data on the UH-1H Obtained by Bell Helicopter Company.

Figure 37. Exceedance Curves for Incremental Equivalent Maneuver Normal Load Factor Peaks by Mission Segment.

Figure 38. Diagram of Equivalent Maneuver Normal Load Factor Frequency Distribution in Ranges of Rotor Tip Speed Ratio.

Since previous helicopter surveys did not require the presentation of nze, the calculated values of nze presented in Reference 12 for the AH-1G and CH-54A were obtained from the nz tabular data. An approximation method had to be used to derive the number of n_{Ze} peaks from the n_Z frequency of occurrence data. First the sum of the gust and maneuver nz peaks was tabulated separately for the gross weight intervals given, and the average value of the upper and lower limits of each gross weight interval was defined as Wi. Then the limits of the vertical load factor intervals were multiplied by the ratio of the instantaneous gross weight to the design maximum gross weight to obtain the equivalent load factor intervals containing the recorded vertical load factor peaks. Then, assuming that the recorded peaks were uniformly distributed throughout the load factor intervals, the data were regrouped into equivalent load factor intervals, with interval limit values corresponding to the vertical load factor interval limits.

The data samples used for these n_{Ze} calculations had all of the n_Z peaks in the range of 0.8g to 1.2g removed. Since the maximum design gross weight, Wp, was not exceeded during the AH-1G and CH-54A surveys, there was a downward shift in the distribution of equivalent load factor peaks within the incremental load factor intervals toward the negative values because the ratio of W_i/W_D was less than one. A number of positive peaks were lost by crossing into the threshold region, and all the negative peaks were shifted toward greater negative values. In addition, the negative range adjacent to the threshold had fewer peaks than actually occurred because the threshold data was removed. The resultant n_{Ze} sample is thus skewed and distorted.

In contrast, the equivalent load factor peaks were calculated as the data were processed during this program, and the actual values of n_Z and W_i were used instead of range data. In addition, all digitized n_Z data within the 0.8g and 1.2g ranges were used.

Since the basic calculation methods differed widely as discussed above, any further presentation or comparison of the n_{Ze} data for the UH-1H would not provide meaningful results. Comparisons will be made in the future as more data are obtained and processed as described above. The existing AH-1G and CH-54A data could be reprocessed to obtain comparable n_{Ze} values. However, since significant conclusions concerning n_{Ze} were not developed in the Reference 12 report, it is doubtful that the reprocessed data would be of value.

CONTROL BOOST TUBE LOADS

In addition to the normal flight parameters recorded during the current program, the axial loads of the longitudinal, lateral, and collective boost tubes were measured and recorded. These loads were recorded to form a data base for the future analysis of control forces to determine whether these forces may be used as an indicator of fatigue damage.

As discussed in the Instrumentation section, the three control boost tubes were strain-gaged to record the axial loads experienced by the tubes. Because of the relatively high frequency of the boost tube loads and the low frequency of the oscillograph recording system, the strain gage signals were filtered so that only the mean strain value of each boost tube was recorded.

Figures 39 through 41 present the cumulative frequency distribution of the longitudinal, lateral, and collective boost tube loads for the UH-1H, respectively. These curves were constructed by cumulatively summing the time spent ir each load range, starting with the largest positive or negative load. As seen in Figures 39 and 40, the longitudinal and lateral boost tube loads were independent of gross weight and were very steep; the steepness about the threshold indicates that the boost tube loads were very near the threshold value most of the time. The curves in Figure 41 for the collective boost tube are neither as steep nor as close together as the longitudinal or lateral boost tube curves.

With a mission segment breakdown, Figures 42 through 44 present UH-1H exceedance curves for the longitudinal, lateral, and collective boost tube peaks in terms of "hours to reach or exceed" an incremental boost tube load, respectively. Figure 45 compares the three boost tube loads in terms of the cumulative number of peaks per 1000 hours experienced at or in excess of the corresponding incremental boost tube load. No specific trends are noted in either of these presentations; however, as more data on this and other helicopters are gathered, meaningful trends and comparisons should develop.

To show the relative magnitude of the vibratory and mean loads on the three boost tubes, the 1/revolution and 2/revolution loads for each of the boost tubes under various flight conditions were measured and listed in Table XXXVIII. Included in this table is a descent condition which shows 440 pounds for the maximum vibratory load of the lateral boost tube.

Figure 39. Cumulative Frequency Distribution of Longitudinal Cyclic Boost Tube Load for the UH-1H by Gross Weight.

Figure 40. Cumulative Frequency Distribution of Lateral Cyclic Boost Tube Load for the UH-1H by Gross Weight.

Figure 41. Cumulative Frequency Distribution of Collective Boost Tube Load for the UH-1H by Gross Weight.

Figure 42. Exceedance Curve for Incremental Longitudinal Cyclic Boost Tube Loads by Mission Segment.

Figure 43. Exceedance Curve for Incremental Lateral Cyclic Boost Tube Loads by Mission Segment.

Figure 44. Exceedance Curve for Incremental Collective Boost Tube Loads by Mission Segment.

Figure 45. Comparison of Cumulative Frequency Distributions of the Incremental Longitudinal Cyclic, Lateral Cyclic, and Collective Boost Tube Loads.

Tables VIII, IX, and XIII through XIX list the above data in bivariant and trivariant relationships.

ESTABLISHING A FLIGHT SPECTRUM

The preceding analysis of the operational usage data of the UH-1H established the composite mission flown during this program and further outlined the operation of this and similar class helicopters. Since the mission to which a helicopter is assigned plays such a key role in defining the operational usage and since various components of a helicopter will be sensitive to different portions of the operational flight envelope, several mission-oriented spectra should be defined instead of a single composite spectrum. This approach of defining several spectra will provide a better base for the definition of future fatigue design criteria and will give the fatigue analyst greater confidence in his fatigue analysis.

Further confidence could be achieved by the fatigue analyst if a high probability of success could be assigned to the defined spectra. Since the data acquired during this program are presented in a composite manner, rather than on the flight-by-flight basis into which they were processed, the probability that the composite parameter distributions are representative of any randomly selected UH-1H operating in SEA could be anywhere from 0.10 to 0.90, or possibly even 0.999, depending on the statistical variability associated with the UH-1H data. Because it is desirable to assign a relatively high probability to component fatigue life calculations, the individual probability of any element of the fatigue analysis, such as the operation usage spectrum, must be higher than the desired final probability. Consequently, a technique for defining realistic spectra with the desired probability based on existing usage data should be developed; this technique would modify the existing data processing and presentation procedures. Unfortunately, the modifications required to accomplish this goal are not intuitively obvious. Therefore, the statistical variability of existing operational usage data should be examined on a flight-by-flight, a missionby-mission, and an aircraft-by-aircraft basis. From this examination, the necessary techniques for data processing and presentation should be defined so that operational usage spectra with the desired probability and realistic fatigue design criteria may be derived.

CONCLUSIONS

On the basis of the operational usage data gathered during the current program and the various comparisons drawn between these and other data, it is concluded that:

- 1. The most influential factor in defining the operational usage of a helicopter is mission assignment.
- A much better approximation of helicopter usage could be made by defining a general usage spectrum for either military assault or military nonassault missions.
- 3. All significant missions to which a particular helicopter is assigned should be surveyed.
- 4. The UH-1H operation compares favorably with that of similar helicopters having a design gross weight of less than 10,000 pounds and with the CH-54A helicopter, except for normal load factor peak occurrences; such occurrences for the UH-1H are generally greater than those for the CH-54A.
- 5. Low sampling rates of operational usage data, especially in the measurement of "g" occurrences, may cause significant misinterpretations of the acquired data.

RECOMMENDATIONS

The following recommendations are based upon a study of the data presented in this report, as well as upon those presented in the referenced reports:

- 1. The number of mission segments should be increased from four to seven to include hover, transition, and autorotation segments. This increase in the number of mission segments will improve the resolution of the data as it relates to operational use.
- 2. Available operational usage data should be analyzed on a flight-by-flight, a mission-by-mission, and an aircraft-by-aircraft basis to determine the statistical variability of the data and to develop improved data processing and presentation techniques for deriving fatigue design and resubstantiation criteria based on operational usage data.

LITERATURE CITED

- 1. von Mises, Richard, THEORY OF FLIGHT, McGraw Hill Book Company, Inc., New York, 1945, p. 11.
- 2. Porterfield, John D., and Maloney, Paul F., CORRELATION AND EVALUATION OF CH-47A FLIGHT SPECTRA DATA FROM COMBAT OPERATIONS IN VIETNAM, Kaman Aerospace Corporation, Bloomfield, Connecticut; USAAVLABS Technical Report 69-79, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, November 1969.
- 3. Excerpts from FATIGUE LIFE SUBSTANTIATION OF MAIN ROTOR, TAIL ROTOR, AND CONTROL COMPONENTS FOR THE HU-1B AND UH-1B 44 FOOT ROTOR, Bell Helicopter Company, Fort Worth, Texas, Bell Helicopter Report No. 204-099-263, May 1962.
- 4. Clay, Larry E., and Braun, Joseph F., UH-1B HELICOPTER FLIGHT LOADS INVESTIGATION PROGRAM, Technology Incorporated, Dayton, Ohio; USAAVLABS Technical Report 66-46, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, May 1966, AD 634 502.
- 5. Excerpts from FATIGUE LIFE SUBSTANTIATION OF DYNAMIC COMPONENTS OF THE AH-1G HELICOPTER, Bell Helicopter Company, Fort Worth, Texas, Bell Helicopter Report No. 209-099-064, Revision B, June 1968.
- 6. Giessler, F. Joseph, Nash, John F., and Rockafellow, Ronald I., FLIGHT LOADS INVESTIGATION OF AH-1G HELI-COPTERS OPERATING IN SOUTHEAST ASIA, Technology Incorporated, Dayton, Ohio; USAAVLABS Technical Report 70-51, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, September 1970, AD 878 039.
- 7. Henrich, H., INVESTIGATION OF IMPACT OF RDN FLIGHT SURVEY DATA ON FATIGUE CRITICAL COMPONENTS, The Boeing Company, Morton, Pennsylvania, Boeing-Vertol Document No. 114-SS-025, July 1968.
- 8. Giessler, F. Joseph, and Braun, Joseph F., FLIGHT LOADS INVESTIGATION OF COMBAT ARMED AND ARMORED CH-47A HELI-COPTERS OPERATING IN SOUTHEAST ASIA, Technology Incorporated, Dayton, Ohio; USAAVLABS Technical Report 68-1, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, March 1968, AD 671 672.

LITERATURE CITED - Continued

- 9. Giessler, F. Joseph, and Braun, Joseph F., FLIGHT LOADS INVESTIGATION OF CARGO AND TRANSPORT CH-47A HELICOPTERS OPERATING IN SOUTHEAST ASIA, Technology Incorporated, Dayton, Ohio; USAAVLABS Technical Report 68-2, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, April 1968, AD 672 842.
- 10. Excerpts from FATIGUE SUBSTANTIATION OF S-64A AUXILIARY TAIL ROTOR ASSEMBLY, Sikorsky Aircraft Company, Stratford, Connecticut; Sikorsky Engineering Report 64103, Revision 3, May 1969.
- 11. Giessler, F. Joseph, Nash, John F., and Rockafellow, Ronald I., FLIGHT LOADS INVESTIGATION OF CH-54A HELI-COPTERS OPERATING IN SOUTHEAST ASIA, Technology Incorporated, Dayton, Ohio, USAAVLABS Technical Report 70-73, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, January 1971, AD 881 238.
- 12. Porterfield, John D., Smyth, William A., and Maloney, Paul F., THE CORRELATION AND EVALUATION OF AH-1G, CH-54A, AND OH-6A FLIGHT SPECTRA DATA FROM SOUTHEAST ASIA OPERATIONS, Kaman Aerospace Corporation, Bloomfield, Connecticut; USAAMRDL Technical Report 72-56, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, October 1972.
- 13. Federal Aviation Agency, ROTORCRAFT AIRWORTHINESS:
 NORMAL CATEGORY, Civil Aeronautics Manual 6, Appendix A,
 June 1962.
- 14. Porterfield, John D., and Maloney, Paul F., EVALUATION OF HELICOPTER FLIGHT SPECTRUM DATA, Kaman Aircraft Division, Kaman Corporation, Bloomfield, Connecticut; USAAVLABS Technical Report 68-68, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, October 1968, AD 680 280.
- 15. Graham, G.L., COMBAT OPERATIONAL FLIGHT PROFILES ON THE UH-1C, AH-1G, AND UH-1H HELICOPTELS, Bell Helicopter Company, Fort Worth, Texas; Presented at the 26th Annual Forum of the American Helicopter Society, June 1970.

LITERATURE CITED - Concluded

- 16. Finnestead, Rodger L., Laing, Emmett, Connor, William J., and Buss, Marvin W., ENGINEERING FLIGHT TEST AH-1G, U.S. Army Aviation Systems Test Activity, Edwards Air Force Base, California, USAASTA Technical Report 66-06, April 1970.
- 17. Excerpts from FATIGUE SUBSTANTIATION OF MAIN ROTOR, TAIL ROTOR, AND CONTROL COMPONENTS FOR THE UH-1D/UH-1H HELICOPTER, Bell Helicopter Company, Fort Worth, Texas; Bell Helicopter Report No. 205-099-135.

APPENDIX

BASIC TABULAR DATA PRESENTATION

Tables VII through XXXVIII present the data collected during the current program.

Two tabular formats present the flight time distributed among the coincident ranges of two or more parameters, and frequency of acceleration peaks and incremental boost tube load peaks distributed among the coincident ranges of other variables. All times shown were rounded to the nearest tenth of a minute. Since in each subtable the total under the time column was computed and then rounded, a total may not agree with the sum of the rounded times in each line. Times between 0 and 0.05 minute were printed as ".0", and times equal to zero were printed as "0.0". Tables having neither points nor time were Table headings are arranged so that the firstnot printed. mentioned variable refers to the horizontal ranges at the top of the table and the second-mentioned variable refers to the vertical ranges at the left of the table. Where a third or a fourth variable is given, it is followed by its range in the heading. As an example, the heading "MINUTES FOR ALTITUDE VS AIRSPEED BY WEIGHT 6000 BY MISSION SEG. ASCENT" indicates the time spent in coincident ranges of altitude and airspeed at a weight between 6000 and 7000 pounds during the ascent mission segment. All printed range values are the lower limits.

TABLE VII. TIME FOR ALTITUDE VERSUS AIRSPEED BY WEIGHT AND MISSION SEGMENT

	MINUTES	FOR AL	TITUDE	VS AIRS	PEED BY	WEIGHT	6000+	BY	MISSION	SEG.	ASCENT
LESS 40 60 65 70 75 80 85 90 100 105 110	LESS	1000 17.2 9.7 3.1 3.5 3.2 1.6 1.1 1.2	2000 16.0 23.9 14.7 19.3 19.9 19.8 19.9 12.7 7.1 3.0 1.1	5000 4.9 .8 .4 .9 1.3 .6 .1	10000	15000	SUM 33.2 38.8 18.6 23.2 24.1 22.7 21.6 14.0 7.7 3.0				
120 SUM	•3	41.1	157.4	9.2			207.9				
	MINUTES	FOR ALT	TITUDE	VS AIRS	PEED BY	WEIGHT	6000•	BY	MISSION	SEG.	MANUVR
LESS	LESS	1000	2000	5000	10000	15000	SUM				
40 60 65 70 75 80 85 90 95 100 105 110 115 120 SUM			1.3 .5 1.1 3.2 4.5 3.6 5.0 2.9 2.5 1.4 .2				1.3 .5 1.1 3.2 4.5 3.6 5.0 2.9 2.5 1.4 .2				
LESS 400 605 70 75 80 85 90 95 100 105 115 115	•4 •1 •1	1000 24.7 15.0 4.2 4.8 5.6 6.0 7.0 3.2 2.1	2000 13.5 11.1 6.3 7.0 48.3 57.4 41.0 25.9 10.1 3.4 1.1	5000 •0 •1 •0 •2 1.6 •1 8.2 4.5	PEED BY	WEIGHT 15000	5UM 38.9 26.4 10.6 15.8 33.1 56.8 64.7 51.4 30.9 10.2 3.7	ВУ	MISSION	556.	DESCNT
SUM	1.2	73.5	262.7	18.7			356.2				

TABLE VII - Continued MINUTES FOR ALTITUDE VS AIRSPEED BY WEIGHT 6000, BY MISSION SEG. STEADY SUM LESS 1000 2000 5000 10000 15000 LESS 23.7 25.9 49.6 40 . 3 .5 . 8 • 1 . 9 1.0 60 .0 1.5 1.5 . 3 70 4.6 4.9 33.1 75 .0 30.5 2.6 13.1 87.0 80 73.3 .9 110.4 85 180.2 68.8 1.6 147.8 90 32.4 181.8 6.7 95 69.6 . 2 62.8 100 . 1 11.9 13.4 1.3 2.5 105 2.4 . 1 110 115 120 625.3 **SUM** 28.0 472.5 124.9 MINUTES FOR ALTITUDE VS AIRSPEED BY WEIGHT 6000. BY MISSION SEG. SUM 5UM 1000 5000 10000 15000 LESS. 2000 121.7 •7 65.6 55.4 LESS. 4.9 67.3 25.0 36.8 .7 40 30.7 7.4 .9 60 • 1 22.4 .5 38.4 8.4 29.4 65 48.0 • 9 70 9.1 38.0 93.4 7.6 81.7 4.1 75 168.9 15.3 8.6 145.0 80 5.3 185.5 73.1 263.8 85 243.8 90 4.4 198.8 40.6 106.1 94.2 95 .8 11.1 24.5 26.0 . 2 100 1.3 6.4 105 6.0 1.1 110 1.1 115 120 1215.7 1.5 142.6 918.8 152.8 SUM MINUTES FOR ALTITUDE VS AIRSPEED BY WEIGHT 7000. BY MISSION SEG. ASCENT SUM LESS. 1000 2000 5000 10000 15000 90.3 159.5 LESS 5.6 63.5 • 1 203.7 40 1.9 61.1 135.3 3.5 1.9 21.9 100.1 123.3 1.1 60 • 3 137.8 26.0 106.4 5.3 65 • 1 .0 21.0 111.5 4.2 136.7 70 123.9 75 . 1 17.5 103.1 3.2 .1 11.1 89.8 3.8 104.7 80 94.8 •2 85 7.0 82.0 5.6 .6 3.0 49.7 45.9 90 • 3 23.3 • 3 95 2.6 20.2 • 2 1.0 7.5 8.7 100 • 2 3.8 105 2.0 1.8 .5 • 6 110 .2 .0 .0 115 120 1170.8 9.1 265.0 867.2 27.5 1.9 SUM

TABLE VII - Continued

	MINUTES	FOR AL	TITUDE	V5 AIRS	PEED BY	WEIGHT	7000•	Pγ	MISSION	SEG.	MANUVR
LESS	LESS	1000	2000	5000	10000	15000	SUM				
40			.7				.7				
60			•6				. 6				
65			2.7				2.7				
70			2.9				2.9				
75			4.4				4.4				
80			6.6				6.6				
85			10.2				10.2				
90			9.3				9.3				
95		4.0	2.7				6.7				
100		3.5	• 4				3.9				
105		3.3	• 2				3.4				
110		1.0					1.0				
115											
120											
SUM		11.8	40.6				52.4				
	MINUTES	FOR AL	TITUDE	VS AIRS	SPEED BY	WEIGHT	7000•	BY	MISSION		TT AT
	LESS	1000	2000	5000	10000	15000	SUM				
LESS	8.3	98.0	46.7				153.0				
40	2.9	71.7	45.1		.4		120.0				
60	• 5	20.4	25.4	• 2	• 1		46.6				
65	•0	18.9	32.4	•7	• 9		53.0				
70	.1	21.3	51.1	1.5	•5		74.5				
75	• 3	24.9	74.7	2.9			102.8				
80	_	23.1	131.3	5.6	•3		160.3				
85	•2	20.7	172.7	4.6	•6		198.7				
90	•0	15.4	154.5	1.8			171.7				
95		6.1	88.5	1.5			96.1				
100	•0	1.8	37.0	•2			39.0 12.2				
105		•5 •6	11.6				3.0				
110			2.3				•7				
115 120		•0	• 1				• '				
SUM	12.2	323.4	874.0	19.1	2.8		1231.5				
30"	1202	36364	014.0	1701	2.00						
	MINUTES	FOR AL	TITUDE	V5 AIRS	SPEED BY	WEIGHT	7000+	BY	MISSION	SEG.	STEADY
	LESS	1000	2000	5000	10000	15000	SUM				
LESS	15.7	170.7	85.2	J			271.6				
40		. 3	11.3	•3			11.9				
60		. 2	11.9	. 3			12.4				
65			25.0	.5			25.5				
70		.6	50.3	.8			51.7				
75		2.4	155.8	6.8	• 3		165.3				
80		6.4	441.9	20.6	4.1		473.1				
85		16.8	723.8	28.4	1.7		770.8				
90		8.5	915.7	27.7	1.2		953.4				
95		2.8	408.2	12.3	1.2		429.3				
100	4.1	• 1	108.1	4.4			116.6				
105		• 1	16.2	•0			16.3				
110			9.1				9.1				
115			• 3				• 3				
120	2/ 2	200 0	2042 0	102 1			3307.4				
SUM	24.9	204.0	2962.9	102.1	8.5		330747				

TABLE VII - Continued

	MINUTES	FOR AL	LTITUDE	V5 AIRS	PEED BY	WEIGHT	7000•	BY	MISSION	SEG.	SUM
	LESS	1000	2000	5000	10000	15000	SUM				
LESS	29.6	359.0	195.4	•1			584.1				
40	4.7	133.1	192.3	3.9	2.3		336.3				
60	. 7	42.4	136.1	1.6	•1		182.9				
65	.2	44.9		6.5	, 9		219.0				
70	•1	42.9		6.5	.5		265.8				
75	.3	44.8		12.9	.3		396.4				
80	•1	40.6		29.9	4.4		744.7				
85	.3	44.5		38.7	2.3	,	1074.5				
90	•6	•	1125.3	30.1	1.2		1184.1				
95	5.2	15.6	519.6	13.9	1.2		555.4				
100	4.3	6.3		4.6			168.3				
105	403	5.9	29.8	•0			35.8				
110		2.1	11.6	••			13.6				
115		.1	1.0				1.1				
120		• 1	110								
SUM	46.2	809.3	4744.7	148.7	13.1	E !	5762.1				
	MINUTES	FOR A	LTITUDE	VS AIRS	SPEED BY	WEIGHT	8000	BY	MISSION	SEG.	ASCENT
	LESS	1000	2000	5000	10000	15000	SUM				
LESS	10.7	77.3		•2		••••	154.4				
40	3.3	59.9		4.2			222.9				
60	1.5	29.3		3.3			149.5				
65	.5	28.6		8.7			156.1				
		25.7		2.3			153.2				
70	•1	-		_			126.4				
75	•2	15.8			•		120.5				
80	•1	13.9			•1		68.2				
85	•0	9.8					42.1				
90		5.6									
95		1.9					13.0				
100		•7		•4			2.7				
105		• 1					• 2				
110		•1					•1				
115											
120											
SUM	16.6	268.6	891.0	33.0	•1		1209.2				
	MINUTES	FOR A	LTITUDE	VS AIRS	PEED BY	WEIGHT	8000•	BY	MISSION	SEG.	MANUVR
	LESS	1000	2000	5000	10000	15000	SUM				
LE55			24.4								1
40		.5	.4				.9				
60		ž					2.5				
65		.1	2.3				2.4				
		.1					4.2				
70		.1	3.4				3.5				
75		• 1					8.6				
80		,•7					12.7				
85		1.6	11.2				12.7				
90		• 7	12.0				3.5				
95		•1	3.4				•8				
100		.5	•2				2.1				
105		2.1									
110		1.1					1.1				
115		.5					,5				
120		101 10									
SUM		8.3	47.2				55.5				
-											

TABLE VII - Continued

	MINUTES	FOR A	LTITUDE	VS AIRS	SPEED BY	WEIGHT	8000	BY	MISSION	SEG	DESCHT
	1 566	1000	2000	5000	10000	1.5000	2114				
	LESS	1000	2000	5000	10000	15000	SUM				
LESS		74.0	35.3				119.0				
40		50.4	42.8	• 4			95.6				
60		17.6	18.8	•2			37.0				
65		16.1	23.1	• 2			39.5				
70		14.4	33.7	•4			48.6				
75		18.3	69.5	•6			88.4				
[80)	17.2	102.5	2.0			121.7				
85	i	19.2	138.8	6.6			164.7				
90	}	14.1	137.4	10.8	• 2		162.5				
95	1	7.1	90.0	4.0	• 1		101.2				
100)	1.2	22.1	.6			24.0				
105	,	.7	3.1	•1			3.8				
1110		.1	1.0	• 2			1.3				
119		•	•1	• •			•1				
120			••								
SUM		250.6	718.2	26.1	•3		1007.2				
	MINUTES	FOR AL	TITUDE	VS AIRS	PEFD BY	WEIGHT	8000•	BY	MISSION	SEG.	STEADY
1	LESS	1000	2000	5000	10000	15000	SUM				
LESS	17.2	108.5	91.4	3000		.,,,,,	217.1				
40		.4	6.4				6.8				
60		.2	7.1				7.3				
65		.4	18.9	1.5			20.8				
70		.1	44.0	1.4			45.4				
75		1.3	136.0	4.5			141.8				
80		6.3	396.8	17.7	.7		421.5				
		-	770.8	-	8.3		845.4				
85		9.6		56.6							
90		11.9	712.5	31.8	2.4		758.5				
95		4.2		12.2			369.3				
100		2.7	67.9	• 5			71.1				
105			6.9				6.9				
110			• 4				• 4				
115											
120											
SUM	17.2	145.5	2612.1	126.2	11.4	7	2912.3				
	MINUTES	FOR A	LTITUDE	V5 AIRS	SPEFD BY	WEIGHT	8000•	₽Y	MISSION	SEG	SUM
	LESS	1000	2000	5000	10000	15000	SUM				
LESS		259.7	193.0	• 2			490.4				
40		111.2	205.1	4.5			326.1				
60		47.3	143.6	3.5			196.3				
65		45.1	162.7	10.4			218.8				
70			206.8	4.0			251.4				
75		35.5	313.3	11.1			160.2				
80		38.1			. 8		572.3				
85		40.2	977.4	65.0	8.3		1091.0				
90		32.3		43.2	2.6		975.8				
95		13.2	456.3	17.3	.1		487.0				
100		5.2	91.8	1.5	• .		98.6				
105		2.9		-1			13.0				
		_					2.8				
110		1.3	1.4	•2			•6				
115		.5	•1				• 0				
120 SUM		672.9	4268.4	185.3	11.8		5184.3				
"				• •			•				

TABLE VII - Concluded

40 10.7 269.3 434.2 13 60 2.6 97.1 3C4.1 6 65 .9 98.4 358.5 17 70 .4 92.3 460.6 11 75 .6 87.9 733.1 28 80 .2 87.3 1423.7 69 85 .4 90.1 2151.6 176 90 .6 63.5 2222.0 113 95 5.2 29.6 1070.1 42 100 4.3 11.8 269.3 7	IRSPEED B	WEIGHT SUM. BY MISSION SEG. SUM
40 10.7 269.3 434.2 13 60 2.6 97.1 3C4.1 6 65 .9 98.4 358.5 17 70 .4 92.3 460.6 11 75 .6 87.9 733.1 28 80 .2 87.3 1423.7 69 85 .4 90.1 2151.6 176 90 .6 63.5 2222.0 113 95 5.2 29.6 1070.1 42 100 4.3 11.8 269.3 7 105 9.1 45.9 110 3.3 14.0	00 10000	15000 SUM
40 10.7 269.3 434.2 13 60 2.6 97.1 3C4.1 6 65 .9 98.4 358.5 17 70 .4 92.3 460.6 11 75 .6 87.9 733.1 28 80 .2 87.3 1423.7 69 85 .4 90.1 2151.6 176 90 .6 63.5 2222.0 113 95 5.2 29.6 1070.1 42 100 4.3 11.8 269.3 7 105 9.1 45.9 110 3.3 14.0	. 2	1196.3
60 2.6 97.1 3C4.1 6 65 .9 98.4 358.5 17 70 .4 92.3 460.6 11 75 .6 87.9 733.1 28 80 .2 87.3 1423.7 69 85 .4 90.1 2151.6 176 90 .6 63.5 2222.0 113 95 5.2 29.6 1070.1 42 100 4.3 11.8 269.3 7 105 9.1 45.9 110 3.3 14.0	.3 2.3	729,7
65		409,9
70		476.1
75		565.2
80 •2 87•3 1423•7 69 85 •4 90•1 2151•6 176 90 •6 63•5 2222•0 113 95 5•2 29•6 1070•1 42 100 4•3 11•8 269•3 7 105 9•1 45•9 110 3•3 14•0		850.0
85		1585.9
90		2429.4
95 5.2 29.6 1070.1 42 100 4.3 11.8 269.3 7 105 9.1 45.9 110 3.3 14.0	•	2403.7
100 4.3 11.8 269.3 7 105 9.1 45.9 110 3.3 14.0		1148.5
105 9.1 45.9 110 3.3 14.0	_	292.9
110 3.3 14.0	í	55.2
	. 2	17.5
· 112 •0 1•1	12	1.7
		••
120	7 24 0	12162.1
SUM 93.7 1624.8 9932.0 486	•7 24•9	121000

TABLE VIII. TIME FOR LONGITUDINAL CYCLIC BOOST TUBE STEADY LOAD VERSUS COLLECTIVE BCOST TUBE STEADY LOAD BY MISSION SEGMENT

	-1-1116	EOM C	Y-LNG V	י כטררי	84 m12	s. SFG.	ASCENT											
5	LF55	-450	-400	-150	-300	-290	-200	-150	-100	100	150	200	250	300	350	400	450	SU
•									•1									
,									2.1	1.3	.9							
)									1.5	1.8	1.3	• 5						2
)								• 1	22.5	10.9	45.1	16.3	•1					13
)								. 9	62.0	123.7	117.0	117.8	14.7	1.7	.0			13
,								5.0	253.8	684.3	713.5	243.2	32.6	8.0	.2			193
)									. 6	. 3	9.1	.0		•				1
)									-1	. 9	1.4							
)											• •							
,																		
,															_			
•								2.9	350.3	884.8	411.4	379.8	47.9	10.1	• 5			250
S	MINUTE!	-450	++00	-390	-300	5. SFG.	-200	-150	-100	100	150	200	250	300	350	400	450	5
									.,	.7 .9 8.2 .6 .1	02 01 309 9302 203 09	.7 .9 4.4 36.9 .1	.5 4.4 10.5	2.2				11
											•1 •1	•0	•1					

					7	ΓAΒL	E V	III	- (Conc	1ud	ed						
	#thutes	FOR C	Y-LNG V	s (nll.	HY 4155	. SFG.	DESCRI					-	-	_				
F55	LF55	-65^	-400	-150	-100	-250	-200	-150	-100	100	150	200	290	300	350	400	450	SU
350 300 250 250 150 150 150 250 350 460							,3	2.4	.3 4.7 19.5 248.9 77.7 64.6 35.0 12.2 3.2	.1 .7 11.6 660.3 172.9 146.3 82.3 35.7 10.1	2.7 .7 .7 .5 .502.2 .150.9 .108.3 .55.3 .16.9 .2.5	1.5 .4 1.6 198.2 43.3 20.7 11.4 6.0 3.3	1 .7 30.8 4.2 1.9 2.7 1.8 .4	1.8 .8 .2 .1		•0		40 41 1444 449 342 186 74 25
450 513M							.3	2.5	. 5	. 9	2.9 858.6	3.0	43.6	3.0		•0		2594
	MINUTES	FOR C	Y-LNG V	COLL.	87 W155	. SEG.	STEARY											
55	LFS5	~440	-400	-350	-300	-250	-200	-15 0	00	100	150	200	250	300	350	400	450	SU
500000000000000000000000000000000000000							•1	4.6	.3 1.6 14.5 78.1 532.0 5.6 1.7 3.0	.7 8.9 113.8 170%.7 20.2 7.1 2.0 .8	3-1 23-1 48-4 145-6 2748-6 40-5 30-7 1-7	3,4 6,0 17,6 49,6 994,2 8,8 +2	1.0 5.5 198.1 .7	17.7	•2			31 90 392 6200 75
50 50							•1	5.0	636.8	1858.3	1041.5	1079.9	205.5	17.7	.2			6845
	MINUTES	FOR C	Y-LNG V	s coll.	84 MI24	. SEG.	511											
55 50 60 350	LF5S	-450	-400	-150	-300	-250	-200	-1*5	-100	. 4	150	200	250	300	350	400	450	5 0
000000000000000000000000000000000000000							.4	•1 1•2 9•0 •1	1.R 7.4 41.6 159.6 1035.2 85.1 66.9 38.1 12.2	2857.5 200.2 153.9 85.3 36.5 10.1	149.0 59.5 17.0	4.0 8.4 35.2 173.6 1472.5 54.1 21.0 11.6 8.1 3.4	21 2543 27240 449 241 248 148	1.8 29.7 1.2 .2	•0	•0		11 6: 23: 88: 969: 55: 39: 19: 7:
00									•4	2.0	2.5 .9 3.1	.5 .3	.2	•1				:

TABLE IX. TIME FOR LATERAL CYCLIC BOOST TUBE STEADY LOAD VERSUS COLLECTIVE BOOST TUBE STEADY LOAD BY MISSION SEGMENT

	LESS	-450	Y-LAT VS	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	50
55				7,70	-200	-6,0		-1,,,	•1		.,,	200	230	300	330		450	
100000000000000000000000000000000000000			.3	••		4.•	.9 1.6 32.9 1.2 .1	1.8 4.4 28.1 236.0 7.3 .4	4.2 1.5 5.1 23.5 134.0 408.1 1662.5 16.4 9.6 2.1	•0								13 43 193 2
00 00 00 00			.3	. 0		4.9	35.9	278.2	2267.3	.5								258
	#INUTES	FOR C	Y-LAT V	COLL.	87 MISS	5°G	PANUPA											
55 50 00	LF55	-490	-400	-350	-320	-250	-200	-150	-100	100	150	200	290	300	390	400	450	5
00 50 50 50 50 50 50							.1	.5 1.2 6.7 .5 .7 .6	2.3									11
50 50 JM						•0 •1	.1 .5 1.4	.0 .0 10.5										13
	MINUTES	FOP (Y-LAT VS	COLL.	BY M155	• 5FG.	DESCNT											
\$5 50 00 50	LESS	-450	-400	-390	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	5
50 50 50 50 50 50 50 50			•2 •1 •2	2.3	7.5 .7 .5 .1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	27.2 28.0 24.2 15.0 6.8 3.7 1.3	1.2 5.0 320.1 149.2 125.9 76.2 33.0 10.0 3.8	4.6 5.1 35.1 1053.7 268.0 169.2 91.0 34.2 11.3 3.1	.2								44 44 34 18 7
50			.6	1.9	8.0	10.6	139.4	4.5	1.7	•5								259
	MINISTES	fna c	Y-LAT VS	(01)	Av #188	. 456.	STEADY											
	LFSS	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	290	300	350	400	450	St
55 50 50 50 50				2,4	9.3	18.5 •1 •1	.1 .2 1.6 62.5 1.3	1.6 10.3 662.3 15.8 13.9	6.9 30.9 88.4 373.1 5444.9 58.6 25.7 6.5	.3	•1							31 90 392 6200 75
00																		

-																
	-LAT VS	-350	-300	5• 5FG. -250	5UM -200	-150	-100	100	150	200	250	300	350	400	450	SUM
					1.9	2.1	++2 1+5 11+9									11 11 42
	.6 .1 .2	4.2 2.3	16.6 .7	*1 20.4 1.6 1.7	4.3 152.6 30.4 24.6	8.0 52.5 1225.1 172.8	229.3 827.9 8265.4 345.3	.0	.1							230 230 004 9694 553 393
		•5	•1	.3	6.0 3.7 1.3	79.2 33.1 10.1 3.0 1.3	101.0 35.2 11.3 3.1 1.7									197 75 25 0
		LESS -450 -400	LESS =450 =400 =350	LESS -450 -400 -350 -300	*6 4.2 16.8 28.4 *1 2.3 .7 1.6 *2 *2 *5 1.7 *5 *1 1.2 *6 *3 *1 **	LESS -490 -400 -350 -300 -250 -200 -200 -200 -200 -200 -200 -200 -2	LESS =450 =400 =350 =300 =250 =200 =150 -150 =150 =150 =250 =200 =150 =150 =150 =150 =150 =150 =150 =1	LESS -450 -400 -350 -300 -250 -200 -150 -100 -100 -100 -100 -150 -100 -150 -100 -1 2-3 -5 -10 -152 -122 -122 -122 -122 -122 -122 -122	LESS -490 -400 -350 -300 -250 -200 -150 -100 100 -100 -100 -100 -100 -100 -100 -100	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200 210	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200 250 300 -250 =250 =250 =150 =100 100 150 200 250 300 -1	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200 210 300 390	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200 210 300 390 400	LESS =450 =400 =350 =300 =250 =200 =150 =100 100 150 200 210 300 350 400 450

TABLE X. TIME FOR C_T/σ VERSUS μ BY RATE OF CLIMB AND MISSION SEGMENT

		71					
	MINUTES	FOR CT	15 V5 MU	BY	RATE OF	CLIMB	LESS. BY MISSION SEG. MANUVR
				-			
	LESS	0.06	0.09	0.12	0.15	SUM	
LESS			••••		*****		
0.05							
0.10						•0	
0.15		.3					
		-				• 3	
0.20		• 1	_			•1	
0.25		•1	•1			•1	
0.30							
SUM	•1	• 4	•1			• 6	
ł	MINUTES	FOR CT	S VS MU	BY	RATE OF	CLIMB	LESS. BY MISSION SEG. DESCHT
ł						_	
)	LESS	0.06	0.09	0.12	0.15	SUM	
LESS					*****	-	
0.05		•1				•1	
0.10		1.1				2.0	
0.15	2.9	11.7				14.6	
0.20	•7	3.3				3.9	
0.25							
0.30							•
SUM	4.5	16.2				20.7	
1							
1	MINUTES	FOR CT	S VS MU	BY	RATE OF	CL TMB	LESS. BY MISSION SEG. SUM
Į.		,	5 10 10	-			
1	LESS	0.06	0.09	0.12	0.15	SUM	
1 700	CE33	0.00	0.07	0.12	0017	30	
LESS		• 1					
0.05		• 1				_ • <u>1</u>	
0.10	1.0	1.1				2.1	
0.15	3.0	12.0				14.9	
0.20	• 7	3.3				4.0	
0.25		•1	• 1			• 1	
0.30							
SUM	4.6	16.6	• 1			21.3	
	MINITES	FOR CT	/5 V5 MU	BY	RATE OF	CL TMB	-2100. BY MISSION SEG. MANUVR
l	WINO LES	104 61	/3 43		MATE O		
	LESS	0.06	0.09	0.12	0.15	SUM	
	_	0.00	0.09	0.12	0.17	30,1	
LESS							
0.05							
0.10							
0.15							
0.20	• 2	.1				• 3	
0.25							
0.30							
SUM		.1				• 3	
	-						N N N N N N N N N N N N N N N N N N N
	MINUTES	FJR CT	/5 V5 MU	BY	RATE OF	CLIMB	-2100. BY MISSION SEG. DESCAT
1	LESS	0.06	009	0.12	0.15	SUM	
1000			555,				
LESS		3				•3	
0.0		.2				4.7	
0.10		3.3					
0.15		15.4				20.2	
0.20		3.4				4.0	
0.25							
0.30							
SUN		22.4				29.2	

TABLE X - Continued

	MINUTES	FOR CT	75 V5 MU	BY	RATE OF	CLIMB	-2100 BY MISSION SEG. SUM
•	LESS	0.06	0.09	0-12	0.15	SUM	
LESS		••••		••••		•	
0.05	•1	.2				.3	
0.10	1.3	3.3				4.7	
0.15	4.8	15.4				20.2	
0.20	• 9	3.5				4.3	
0.25							
0.30 SUM	7.0	22.4				29.5	
304	7.0	22.7				2103	
	MINUTES	FOR CT	/S VS MU	BY	RATE OF	CLIMB	-1800. BY MISSION SEG. MANUVR
	LESS	0.06	0.09	0.12	0.15	SUM	
LESS							
0.05							
0.10							
0.15		•				-,	
0.20		•1				• 1	
0.25							
SUM		.1				.1	
"		••					
	MINITES	FOR CT	S VS MII	RY	DATE OF	CLIMB	-1800: BY MISSION SEG. DESCHT
		TON CI	, 3 V 3 MO	01	NATE OF	CETHO	-1000 OF MISSION SEG! DESCRI
	LESS	0.06	0.09	0.12	0.15	SUM	
LESS			••••				
0.05	•2	.7				. 9	
0.10	1.9	6.5				8.4	
0.15	6.6	23.6				30.2	
0.20	1.6	6.9				8.6	
0.25							
0.30 SUM	10.3	37.8				40.0	
305	10.3	31.0				48.0	
				8.4		C	AAAA BU MIREIAN ERE PERIAN
1	MINUTES	FOR CT	/5 V5 MU	BA	RATE OF	CLIMB	-1800. BY MISSION SEG. STEADY
	LESS	0.04	0.09	0.12	0.15	SUM	
LESS	LESS	0.06	0.09	0.12	0.15	3011	
0.05							
0.10	•1					• 1	
0.15	• 2	. 5				.7	
0.20	• 1	.1				• 2	
0.25							
0.30		-				_	
SUM	• 3	•6				• 9	
	MINUTES	FOR CT	75 VS MU	BY	RATE OF	CLIMB	-1800 + BY MISSION SEG. SUM
						GE 1	-1000 01 111031011 0204 00H
	LESS	0.06	0.09	0.12	0.15	SUM	
LESS							
0.05		• 7				.9	
0.10		6.5				8.5	
0.15		24.1				30.9	
0.20 0.25		7.1				8.8	
0.30							
SUM		38.4				49.1	
	.010	2017				7781	

TABLE X - Continued MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1500. BY MISSION SEG. ASCENT LESS 0.06 0.09 0.12 0.15 **SUM** LESS 0.05 • 1 .1 •2 .1 0.10 • 1 .2 0.15 • 1 0.20 .1 0.25 0.30 SUM .3 .6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1500+ BY MISSION SEG. MANUVR 0.09 LESS 0.06 0.12 0.15 SUM LESS 0.05 •2 . 2 .4 0.15 0.20 •1 0.25 0.30 SUM .1 .7 . 8 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1500. BY MISSION SEG. DESCHT 0.06 0.09 SUM 0.15 LESS 0.12 LES5 1.5 2.7 0.05 • 1 1.1 0.10 10.9 14.9 4.0 22.8 64.6 87.5 12.0 17.6 0.20 5.6 0.25 0.30 SUM 89.0 122.7 33.6 .1 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1500. BY MISSION SEG. STEADY LESS 0.06 0.09 0.15 SUM 0.12 LESS 0.05 • 1 • 1 •0 0.10 .0 1.9 0.15 •6 1.3 0.20 .3 . 2 • 5 0.25 0.30 SUM .9 1.6 2.5 MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -1500. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 3.0 0.05 1.3 1.6 • 1 11.1 0.10 4.1 15.2 90.1 23.6 0.15 66.6 0.20 5.9 12.3 18.2 0.25 0.30 SUM 34.8 91.6 •1 126.5

TABLE X - Continued BY RATE OF CLIMB -1200. BY MISSION SEG. ASCENT MINUTES FOR CT/S VS MU **SUM** LESS 0.06 0.09 0.12 0.15 LESS .5 .6 0.05 .1 0.10 . 3 .3 .6 .4 0.15 • 1 0.20 .0 .1 .1 0.25 0.30 1.3 1.6 SUM • 3 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1200. BY MISSION SEG. MANUVR SUM 0.09 0.12 0.15 0.06 LESS LESS 0.05 .1 0.10 •1 .7 .2 .8 0.15 . 8 0.20 • 3 0.25 0.30 1.7 SUM 1.0 .6 BY RATE OF CLIMB -1200. BY MISSION SEG. DESCHT MINUTES FOR CT/5 VS MU SUM LESS 0.06 0.09 0.12 0.15 LESS 5.4 6.9 0.05 1.6 24.6 32.1 7.6 0.10 172.7 36.6 136.1 0.15 27.5 5.5 33.1 0.20 0.25 0.30 51.3 193.6 244.9 SUM BY RATE OF CLIMB -1200. BY MISSION SEG. STEADY MINUTES FOR CT/S VS MU 0.09 SUM LESS 0.06 0.12 0.15 LESS •5 .4 .1 0.05 .7 • 1 .6 0.10 5.1 • 7 4.3 0.15 .5 0.20 0.25 0.30 7.2 5.9 SUM MINUTES FOR CT/S VS MU BY RATE OF CLIMB -1200. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM **LESS** 0.05 1.8 6.3 8.1 0.10 7.8 25.5 33.2 179.1 141.1 0.15 38.1 0.20 6.3 28.6 34.9 0.25 0.30 SUM 54.0 201.4 255.3

Sandan de la companya

TABLE X - Continued

	MINUTES	FOR CT	S VS MU	BY	RATE OF	CLIMB	-900•	BY	MISSION	SEG.	ASCENT
	LES5	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05	. 8	1.3				2.1					
0.10	• 2	.5				•7					
0.15	•7	1.7				2.4					
0.20	•1	.1				• 2					
0.25											
0.30											
SUM	1.9	3.6				5.4					
	MINUTES	FOR CT	/5 VS MU	BY	RATE OF	CLIMB	-900•	BY	MISSION	SEG.	MANUVR
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS		*****	•••		*****						
0.05											
0.10	•2	.6				.8					
0.15	2.5	3.7				6.1					
0.20	.1	4				.5					
0.25	••	•				• -					
0.30										•	
SUM	2.8	4.6				7.4					
	MINUTES	FOR CT	/5 V5 MU	BY	RATE OF	CLIMB	-900	ВУ	MISSION	SEG.	DESCNT
		0.04	0.00		0.18	SUM					
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS		21.2				30.1					
0.05		21.2				70.4					
0.10		51.2				274.1					
0.15		209.7				61.5					
0.20		50.7				0145					
0.25											
0.30		222 0				436.1					
SUM	103.5	332.8				43001					
	MINISTES	E00 CT	/5 V5 MU	RV	RATE OF	CLIMB	-900-	BY	MISSION	SEG.	STEADY
	WINDIES	FUR CI	/3 V3 MU				- 3000	٠.			
LESS	LESS	0.06	0.09	0.12	0.15	SUM					
0.05		1.5				3.0					
0.10		1.0				1.0					
0.15		17.5				21.1					
0.20		5.7				6.1					
0.25											
0.30											
SUM		25.7				31.2					
	MINUTES	FOR CT	75 V5 ML	J BY	RATE OF	F CLIMB	-900	В	MISSION	SEG.	SUM
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05	11.1	24.0				35.1					
0.10	19.7	53.3				73.0					
0.15		232.6				303.8					
0.20		56.9				68.3					
0.25											
0.30											
SUM	113.4	366.8				480.2					

THE RESERVE THE PROPERTY OF THE PARTY OF THE

TABLE X - Continued

MINUTES FOR CT/5 VS MU BY RATE OF CLIMB LESS 0.06 0.09 0.12 0.15 SUM 0.10 4.5 3.6 4.0 0.10 4.5 3.6 4.0 0.20 0.1 7 8.8 MINUTES FOR CT/5 VS MU BY RATE OF CLIMB -600. BY MISSION SEG. MANUVR LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM MINUTES FOR CT/5 VS MU BY RATE OF CLIMB -600. BY MISSION SEG. MANUVR LESS 0.06 0.09 0.12 0.15 SUM MINUTES FOR CT/5 VS MU BY RATE OF CLIMB -600. BY MISSION SEG. DESCNT LESS 0.06 0.09 0.12 0.15 SUM								
LESS 0.05 1.9 6.4 8.4 0.10 .5 3.6 4.0 0.15 2.1 8.2 10.2 0.20 .1 .7 88 0.25 0.25 0.20 .20 .1 .7 88 MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -600. BY MISSION SEC. MANUVR LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -600. BY MISSION SEC. MANUVR LESS 0.06 0.09 0.12 0.15 SUM LESS 0.00 0.00 0.01 D.15 SUM LESS 0.00 0.00 0.12 0.15 SUM LESS 0.		MINUTES	FOR CT	'S VS MU	ВУ	RATE OF	CLIMB	-600. BY MISSION SEG. ASCENT
0.05 1.9 6.4 8.4 0.10 .5 3.6 4.0 0.15 2.1 8.2 10.2 0.20 .1 .7 .8 0.20 0.30 SUM 4.6 1R.9 23.5 MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -600. BY MISSION SEC. MANUVR LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 1.5 .9 9.9 0.15 2.4 7.5 9.9 0.10 .4 .5 9.9 0.15 2.4 7.5 9.9 0.10 33.4 9.6 13.0 MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -600. BY MISSION SEG. DESCNT LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 0.05 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 0.05 0.09 0.12 0.15 SUM LESS 0.05 0.05 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 0.6 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 33.6 39.0 0.20 3.5 33.6 39.0 0.20 3.5 33.6 39.0 0.20 3.9 33.6 39.0 0.20 3.9 33.6 39.0 0.20 3.9 33.6 39.0 0.20 138.9 99.9 138.8 0.015 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30	1 555	LESS	0.06	0.09	0.12	0.15	SUM	
0-10	_	1.9	6-4				A.A	
0-15 2-1 8-2 10-2 0-20 -1 -7							-	
0.20	0.15	-						
0-30 SUM 4-6 1R.9 23.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. MANUVR LESS 0.06 0.09 0.12 0.15 SUM LESS 0.10 .4 .5 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	0.20	•1	.7				-	
SUM								
MINUTES FOR CT/S VS MU BY RATE OF CLIMB LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 0.10 .4 .5 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9			2121					
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 0.10 .4 .5 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	SUM	4.6	18.9				23.5	
LESS 0.05 0.05 0.05 0.00 0.00 0.12 0.15 SUM LESS 0.05 0.05 0.00 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 24.0 65.0 88.9 74.3 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM		MINUTES	FOR CT/	S VS MU	BY	RATE OF	CLIMB	-600. BY MISSION SEG. MANUVR
LESS 0.05 0.05 0.05 0.00 0.00 0.12 0.15 SUM LESS 0.05 0.05 0.00 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 24.0 65.0 88.9 74.3 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM		1 666	0.06	0.00	0.12	0.18	CLIM	
0.05 0.10 0.10 0.4 0.5 0.15 0.16 0.20 0.6 0.20 0.8 0.20 0.8 0.30 SUM 3.4 9.6 13.0 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. DESCNT LESS 0.05 24.0 0.10 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 0.20 9.4 64.9 74.3 0.22 0.20 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. DESCNT LESS 0.05 4.0 6.4 0.10 8.5 10.4 0.10 8.5 10.4 0.10 8.5 10.4 0.10 8.5 10.4 0.10 8.5 10.4 0.20 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.05 4.0 6.4 0.10 8.5 10.4 0.10 8.5 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.05 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.05 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.05 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.05 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	IFSS	1633	0.00	0.09	0.12	00.5	3014	
0-10								
0.15		.4	.5				. 9	
0.25 0.30 SUM 3.4 9.6 13.0 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 BY MISSION SEG. DESCNT LESS 0.06 0.09 0.12 0.15 SUM LESS 0.10 65.0 88.9 0.10 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM							-	
Name		-					2.2	
SUM 3.4 9.6 13.0 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. DESCNT LESS 0.06 0.09 0.12 0.15 SUM LESS 0.010 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 10.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 114.8 134.7 0.20 0.25 0.30 SUM 28.2 162.4 190.6 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 115.0 463.7 5.00 0.15 117.0 463.7 5.00 0.25 0.30 13.5 102.8 116.3 0.25 0.30 13.5 102.8 116.3 0.25								
MINUTES FOR CT/5 VS MU BY RATE OF CLIMB -600 BY MISSION SEG. DESCNT LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 5.0 88.9 0.10 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.00 0.09 0.12 0.15 SUM LESS 0.015 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30		_	_					
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 24.0 65.0 888.9 0.10 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. RY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM	SUM	3.4	9.6				13.0	
LESS 0.05		MINUTES	FOR CT	'S VS MU	BY	RATE OF	CLIMB	-600. BY MISSION SEG. DESCRT
0.05		LESS	0.06	0.09	0.12	0.15	SUM	
0.10 37.2 90.2 127.4 0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3		24.0	45.0				88.9	
0.15 92.7 333.2 425.9 0.20 9.4 64.9 74.3 0.20 9.4 64.9 74.3 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM			-					
0.20 9.4 64.9 74.3 0.25 0.30 SUM 163.2 553.3 716.5 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30								
0.25 0.30 SUM 163.2 553.3 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.40 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM							74.3	
MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 • BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600 • BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3								
MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. STEADY LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3	0.30							
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB ~600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3	SUM	163.2	553.3				716.5	
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 4.0 6.4 10.4 0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB ~600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3								
LESS 0.05	,	MINUTES	FOR CT	/S V5 MU	BY	RATE OF	CLIMB	-600 - RY MISSION SEG. STEADY
0.05	1 FSS		0.06	0.09	0.12	0.15	SUM	
0.10 .8 5.7 6.5 0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB ~600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30			6-4				10.4	
0.15 19.8 114.8 134.7 0.20 3.5 35.6 39.0 0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB ~600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30								
0.25 0.30 SUM 28.2 162.4 190.6 MINUTES FOR CT/S V5 MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30								
0.3U SUM 28.2 162.4 190.6 MINUTES FOR CT/5 V5 MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30			35.6				39.0	
SUM 28.2 162.4 190.6 MINUTES FOR CT/S VS MU BY RATE OF CLIMB -600. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30								
MINUTES FOR CT/S VS MU BY RATE OF CLIMB ~600 BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30			142 4				100 4	
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30	5UM	28.2	102.4				190.6	
LESS 0.06 0.09 0.12 0.15 SUM LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30		M. M. 10.55	E00 C=			DATE OF	CLIMP	-400 - RV MISSION SEG. SUM
LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30		MINUTES	FUR CT	/5 V5 MU	7 67	MAIL UP	CFIMB	-0004 01 W13310H 3501 30W
LESS 0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30		FSS	0.06	0.09	0.12	0-15	SUM	
0.05 29.9 77.7 107.7 0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30	IFSS		0.00	0 0 0 7	0012		30.1	
0.10 38.9 99.9 138.8 0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30			77.7				107.7	
0.15 117.0 463.7 580.7 0.20 13.5 102.8 116.3 0.25 0.30								
0.20 13.5 102.8 116.3 0.25 0.30			_					
0.30	0.20	13.5					116.3	
SUM 199.4 744.2 945.6							043 4	
	SUM	199.4	144.2				742.0	

TABLE X - Continued

						-			
	MINUTES	FOR CT	/5 V5 MU	ВУ	RATE OF	CLIMB	-300 · f	BY MISSION	SEG. ASCENT
	LESS	0.06	0.09	0.12	0.15	SUM			
LESS									
0.05	45.2	174.9				220.1			
0.10	15.9	102.3				118.3			
0.15	50.5	284.3				334.8			
0.20	3.0	30.6				33.6			
0.25									
SUM	114.6	592.1				706.7			
50/1									
	MINUTES	FOR CT	/5 V5 MU	BY	RATE OF	CLIMB	-300 ⋅ F	BY MISSION	SEG. MANUVR
	LESS	0.06	0.09	0.12	0.15	SUM			
LESS									
0.05		4 1				8.8			
0.10 0.15	2.7 12.8	6.1 47.7				60.5			
0.20	1.2	16.5				17.6			
0.25						- •			
0.30									
SUM	16.7	70.3				87.0			
	MINUTES	FOR CT	/5 V5 MU	BY	RATE OF	CLIMB	-300 • F	RY MISSION	SEG. DESCHT
	LESS	0.06	0.09	0.12	0.15	SUM			
LESS					·				
0.05	77.6	170.8				248.4			
0.10	45.4	106.3				151.7			
0.15	-	339.4				470.2 57.7			
0.20	6.6	51.0				9141			
0.30									
SUM	260.4	667.6				927.9			
_			18 VE MI	.	DATE OF	CI 140	-200 - 5		856 ETPAN
				0.12			#500 € t	DI M15510N	SEG. STEADY
LESS	LESS	0.06	0.09	0412	0.15	SUM			
0.05	129.9	383.1				513.0			
0.10	9.8	86.9				96.6			
0.15	588.6	-	.4		4	4973.9			
0.20	44.0	794.3				838.3			
0.25									
SUM	772.3	5649.2	.4			5421.9			
30.7			•		•				
	MINUTES	FOR CT	'/S V5 MU	BY	RATE OF	CLIMB	-300•	BY MISSION	SEG. SUM
	LESS	0.06	0.09	0.12	0.15	SUM			
LESS									
0.05		728.8				981.5			
0.10	73.8	301.7	-			375.5			
0.15	782.6 24.8	892.4	• 4			5839.3			
0.25	~ ₹⊕₫	076.7				947.2			
0.30									
	1164.0	6979.1	.4		1	8143.5			

TABLE X - Continued 300. BY MISSION SEG. ASCENT MINUTES FOR CT/S VS MU BY RATE OF CLIMB 0.06 0.09 0.12 0.15 SUM LESS LESS. 123.2 23.9 99.3 0.05 230.6 0.10 36.4 267.0 350.9 313.9 0.15 37.0 9.2 0.20 .6 8.6 0.25 0.30 SUM 97.9 652.4 750.3 300. BY MISSION SEG. MANUVR BY RATE OF CLIMB MINUTES FOR CT/S VS MU SUM 0.15 LESS 0.06 0.09 0.12 LESS • 2 0.05 . 2 .6 1.2 1.8 0.10 8.8 7.1 0.15 1.6 1.9 .7 1.3 0.20 0.25 0.30 12.7 SUM 9.6 3.1 300. BY MISSION SEG. DESCHT BY RATE OF CLIMB MINUTES FOR CT/S VS MU SUM ' 0.09 0.15 0.06 0.12 LESS. LESS 7.5 10.3 0.05 2.9 5.3 0.10 1.4 3.9 15.2 10.6 0.15 4.6 1.9 0.20 1.4 .6 0.25 0.30 32.7 SUM 9.5 23.3 300. BY MISSION SEG. STEADY BY RATE OF CLIMB MINUTES FOR CT/S VS MU SUM 0.15 LESS 0.06 0.09 0.12 LESS. 9.6 0.05 2.9 6.7 11.9 10.5 0.10 1.3 115.6 102.8 0.15 12.8 14.4 13.1 0.20 1.3 0.25 0.30 151.5 SUM 18.3 133.1 SUM MINUTES FOR CT/S VS MU BY RATE OF CLIMB 300. BY MISSION SEG. 0.09 0.15 SUM LESS. 0.06 0.12 LESS 0.05 29.9 113.5 143.4 285.9 0.10 39.7 246.1 0.15 56.0 434.4 490.4 27.4 24.3 0.20 3.î 0.25 0.30 947.1 SUM 128.8 818.3

TABLE X - Continued

	MINUTES	FOR CT/	5 V5 MU	BY	RATE OF	CLIMB	600.	BY	MISSION	SFG.	ASCENT
	LESS	0.06	0.09	0.12	0.15					-12-11	
LESS	, , , , , , , , , , , , , , , , , , ,					30					
0.05	14.4	49.4				63.8					
0.10	04.1	361.5				425.6					
0.15	30.2	178.0				208.2					
0.20	• 1	2.1				2.2					
0.25											
0.30											
SUM	108.8	590.9				699.7					
	MINUTES	FOR CT	'S VS MU	BY	RATE OF	CLIMB	600•	BY	MISSION	SEG,	MANUVR
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05		. 4				.4					
0.10		• 3				.5					
0.15	• -	1.6				3.0					
0.20	• 1	.6				•7					
0.25											
0.30 5UM		2.0									
5U [™]	1.7	2.9				4.6					
	MINUTES	FOR CT/	S VS MU	BY	RATE OF	CLIMB	600•	BY	MISSION	SEG.	DESCNT
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS	- 633	0.00	0.07	5512	0117	50					
0.05	1.3	1.6				2.9					
0.10	1.0	1.4				2.4					
0.15	3.4	4.8				8.2					
0.20	• 2	.5				•7					
0.25	•	-				-					
0.30											
SUM	5.9	8.3				14.2					
	M + AH ITPP	E00 CT -	e ve m:	a v	0475 65	C: 140	440	D 4	MICCIAN		*****
	MINUTES	PUR CI/	3 ¥3 MU	01	RAIL UP	CLIMD	600 €	DŢ	MISSION	256.	SIEADY
,	LESS	0.06	0.09	0.12	0.15	SUM					
LESS		3.0									
0.05	1.7	2.0				3.7 3.5					
0.10	2.2	3.5 18.1				20.3					
0.20	•1	1.1				1.2					
0.25	• 1	1 4 1				102					
0.30											
SUM	4-0	24.7				28.7					
	MINUTES	FOR CT/					600•	BY	MISSION	SEG.	SUM
Coupe	LESS	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05		53.3				70.7					
0.10	65.3	366.7				432.0					
0.15	37.2	202.5				239.7					
0.20	.4	4,3				4.8					
0.25											
0.30 SUM	120.4	626.8				747.2					
3011	15004										

TABLE X - Continued MINUTES FOR CT/S VS MU 900. BY MISSION SEG. ASCENT BY RATE OF CLIMB LESS 0.09 0.06 0.12 0.15 LESS 0.05 5.1 18.8 23.9 0.10 40.7 163.4 204.1 0.15 8.6 67.5 76.1 0.20 1.2 1.3 0.25 0.30 SUM 305.4 54.6 250.8 MINUTES FOR CT/S VS MU BY RATE OF CLIMB 900. RY MISSION SEG. MANUVR LESS. 0.06 0.09 0.12 0.15 LESS • 7 0.05 •7 0.10 .8 .2 1.0 .7 0.15 .7 1.4 0.20 • 1 • 1 0.25 0.30 SUM . 9 3.2 MINUTES FOR CT/S VS MU BY RATE OF CLIMB 900. BY MISSION SEG. DESCHT LESS 0.06 0.09 SUM LESS 0.05 .1 •1 . 2 . 2 0.10 •1 .3 0.15 . 2 .4 .6 0.20 . 1 0.25 0.30 SUM .5 .7 1.2 MINUTES FOR CT/S VS MU BY RATE OF CLIMB 900. BY MISSION SEG. STEADY LES5 0.06 0.09 SUM 0.12 0.15 LESS .7 0.05 • 2 .5 0.10 . 8 . 8 • 1 5.7 .9 0.15 4.8 0.20 .7 .7 0.25 0.30 SUM 8.0 1.2 900. BY MISSION SEG. SUM BY RATE OF CLIMB MINUTES FOR CT/S VS MU SUM 0.06 0.09 0.12 0.15 LESS LESS 25.5 0.05 6.1 19.4 164.6 206.3 41.7 0.10 83.7 0.15 10.4 . 2 1.9 2.2 0.20 0.25

0.30

SUM

58.5 259.2

The salest desired distribution of the basis of the salest

317.7

TABLE X - Continued

	MINUTES	FOR CT.	/5 V5 MU	BY	RATE OF	CLIMB	1200•	BY	MISSION	SEG.	ASCENT
02570	LESS	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05	•6	4.9				5.5					
0.10	11.2	36.3				47.5					
0.15	3.3	10.5				13.7					
0.20	• 1	.6				•7					
0.25											
0.30											
SUM	15.2	52.2				67.4					
	MINUTES	FOR CT	/5 V5 MU	BY	RATE OF	CLIMB	1200.	BY	MISSION	SEG.	MANUVR
177302430	LESS	0.06	0.09	0.12	0.15	SUM					
LESS											
0.05											
0.10	. 8	• 4				1.1					
0.15	• 5	.6				1.1					
0.20		• 1				• 1					
0.25											
0.30						g 0					
SUM	1.3	1.1				2.4					
	5.0				12-11-259 1-1-21	1 = 0200		200		02.002	20.
l.	MINUTES	FOR CT.	15 V5 MU	BY	RATE OF	CLIMB	1200.	BY	MISSION	SEG.	DESCNT
ŀ											
	LE55	0.05	0.09	0.12	0.15	SUM					
LESS											
0.05	• 1					•1					
0.10	• 1					• 1					
0.15	•2	• 3				.4					
0.20											
0.25											
0.30											
SUM	.4	.3				•6					
1	MINUTES	FOR CT	/5 V5 MU	BY	RATE OF	CLIMB	1200•	BY	MISSION	SEG.	STEADY
	LESS	0.06	0.09	0.12	0.15	SUM					
LESS						•					
0.05		• 1				•1					
0.10		.4				. 4					
0.15	• 3	1.4				1.7					
0.20		•1				.1					
0.25		•									
0.30											
SUM	• 3	1.9				2.3					
1	-					•					
	MINUTES	FOR CT	/6 V6 MII	80	RATE OF	CI 140			M166.55		-
	E2	- UP C1	,3 ¥3 mU	61	MAIE OF	CLIMA	1200	DY	MISSION	SEG.	SUM
l	LESS	0.06	0.09	0.12	0 1=	C1 144					
LESS	-633	0.00	0.07	0.12	0.15	SUM					
0.05	.7	5.0									
0.10	12.1	37.0				5.7					
0.15	4.3	12.7				49.1					
0.20	•1	.8				17.0					
0.25	• 1	• 0				• 9					
0.30											
SUM	17 1	55.6									
30"	17.1	22.0				72.7					
L											

TABLE X - Continued MINUTES FOR CT/S VS MU BY RATE OF CLIMB 1500. BY MISSION SEG. ASCENT LESS 0.06 0.09 0.12 0.15 LESS 0.05 • 3 .9 .6 10.3 0.10 3.1 13.4 . 9 4.5 0.15 3.6 0.20 • 1 0.25 SUM 14.8 •1 19.3 BY RATE OF CLIMB 1500. BY MISSION SEG. MANUVR MINUTES FOR CT/S VS MU LESS 0.06 0.09 0.12 0.15 LESS. 0.05 •2 •0 • 1 0.15 .0 0.20 0.25 0.30 SUM • 3 .1 BY RATE OF CLIMB 1500. BY MISSION SEG. DESCHT MINUTES FOR CT/S VS MU 0.09 0.12 0.15 SUM 0.06 LESS. 0.05 •1 0.10 0.15 0.20 0.25 0.30 . 2 .2 SUM BY RATE OF CLIMB 1500. BY MISSION SEG. MINUTES FOR CT/S VS MU SUM 0.09 0.12 0.15 0.06 LESS LESS 13.7 0.05 • 3 .6 10.4 - 1 3.3 0.10 4.8 1.1 3.7 0.15 . 5 .4 •1 0.20 0.25 0.30 19.9 4.7 SUM 15.0 • 1 BY RATE OF CLIMB 1800. BY MISSION SEG. ASCENT MINUTES FOR CT/S V5 MU 0.09 0.15 SUM LESS. 0.06 0.12 LESS. •1 5•6 4.7 0.05 0.10 .7 • 1 .5 0.15 0.20 0.25 0.30 6.5 • 1 SUM 1.1 5.3

TABLE X - Continued 1800. BY MISSION SEG. STEADY BY RATE OF CLIMB MINUTES FOR CT/S VS MU SUM 0.09 0.15 LESS 0.06 0.12 LESS 0.05 •2 0.10 .2 0.15 0.20 0.25 0.30 SUM • 2 SUM 1800. BY MISSION SEG. BY RATE OF CLIMB MINUTES FOR CT/S VS MU 0.09 0.15 SUM 0.12 LESS 0.06 LESS • 1 4.9 0.05 5.8 0.10 .1 .7 . 9 0.20 0.25 6.7 SUM 1.1 •1 BY RATE OF CLIMB 2100. BY MISSION SEG. ASCENT MINUTES FOR CT/S VS MU LESS 0.09 0.15 SUM 0.06 0.12 LESS • 1 •1 0.05 .4 0.10 • 3 0.15 .7 .0 .0 .0 0.20 0.25 0.30 1.2 1.5 **SUM** • 3 MINUTES FOR CT/S VS MU BY RATE OF CLIMB 2100. BY MISSION SEG. MANUVR 0.06 LESS SUM 0.09 0.12 0.15 LESS 0.05 0.10 •1 • 1 0.15 .0 .0 .0 .0 0.20 0.25 0.30 SUM . 1 . 1 BY RATE OF CLIMB 2100. BY MISSION SEC. STEADY MINUTES FOR CT/S VS MU 0.09 **SUM** LESS. 0.06 0.12 0.15 LESS 0.05 0.10 0.15 . 1 • 1 0.20 0.25 0.30 •1 . 1 SUM

TABLE X - Concluded MINUTES FOR CT/S VS MU BY RATE OF CLIMB 2100. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LESS ·1 ·4 ·8 •1 0.05 0.10 . 8 0.15 .0 . 1 .1 0.20 0.25 0.30 SUM 1.8 MINUTES FOR CT/S VS MU BY RATE OF CLIMB SUM. BY MISSION SEG. SUM LESS 0.06 0.09 0.12 0.15 SUM LES5 0.05 351.6 1031.3 0.10 311.6 1332.5 0.15 156.4 6739.8 1383.0 1644.4 7896.7 . 2 •4 0.20 99.2 1138.7 1237.9 0.25 •1 0.30 SUM 1918.710242.5 .8 12162.1

THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

TABLE XI. TIME FOR ENGINE TORQUE VERSUS AIRSPEED BY WEIGHT AND ALTITUDE

						-			
	MINUTES	FOR TOP	RQUE VS	AIRSPEE	D BY WE	IGHT	6000•	BY ALTITUDE	LESS
LESS 40 60 65 70 75 80 85 90	LESS	10	-1	30 •6 •3	- 40	50	60	70 SUM	
100 105 110 115 120 SUM		.6	•1	•9				1.5	
					ED BY WE		6000•	BY ALTITUDE	1000
LESS 40 60 65 70 75 80 85 90 95 100 115 120 SUM	1.8 1.0 1.3 .5 .9 .8 .2	10 6.7 11.2 2.4 2.7 2.9 3.4 2.5 1.6 .9 .1	20 15.9 2.2 1.0 1.4 2.8 2.0 4.2 2.4 1.6 .6	30 36.6 4.4 2.7 .7 2.3 1.2 .9 1.1 1.8	40 5.6 5.4 .3 2.2 .6 .1 .1	.6	60	70 SUM 65.6 25.0 7.4 8.4 9.1 7.6 8.6 5.3 4.4 .8 .2	
	MINUTES	FOR TO	RQUE VS	AIRSPE	ED BY WE	IGHT	6000•	BY ALTITUDE	2000
LESS 40 60 65 70 75 80 85 90 95 100 105 110	2.3 .7 1.0 1.5 2.9	10 4.6 8.2 5.1 5.3 6.0 12.9 21.0 27.2 14.9 13.8 2.1 .3	20 22.1 2.8 4.3 7.0 11.1 41.6 83.2 109.2 120.3 58.6 11.1 2.9	30 26.2 15.7 8.6 13.0 17.0 23.3 37.6 45.6 62.1 20.8 10.6 2.5	40 1.5 7.9 3.7 3.1 2.3 1.2 1.7 1.5	50	60	70 SUM 55.4 36.8 22.4 29.4 38.0 81.7 145.0 185.5 198.8 94.2 24.5 6.0 1.1	
SUM	15.1	121.5	474.9	283.0	24.3			918.8	

				TABLE	XI -	Conti	nued			
	MINUTES	FOR TO	RQUE VS	AIRSPF	ED BY W	EIGHT	6000•	BY	ALTITUDE	5000
LESS	LESS	10	20	30	40	50	60	70	SUM	
40				1.2	3.7				4.9	
60			•0	• 5	• 4				• 9	
65		• 1		•0	•4				•5	
70			•0	•7	• 2				• 9	
75		•1	1.3	2.7					4.1	
80 85		.8	8.4	6.1					15.3	
90		3.3	45.5 27.4	26.7					73.1	
95		2.0	8.9	9.9 •2					40.6	
100 105 110		2.00	1.3	**					11.1	
115 120 5UM		7.1	93.0	47.9	4.7				152.8	
	MINUTES				-	FIGHT	6000+	RV	ALTITUDE	Sum
				-		50	60	70	SUM	JUM
LESS	LE55 1.2	10 11.5	20 38.0	30 63•4	40 7•1	•6	90	70	121.7	
40	4.0	19.8	5.0	21.5	17.0	• 0			67.3	
60	1.7	7.6	5.3	11.8	4.4		•		30.7	
65	2.4	8.1	8.4	13.7	5.8				38.4	
70	2.0	9.0	13.9	20.0	3.1				48.0	
75	3.8	16.3	44.8	27.2	1.2				93.4	
80	2.4	24.2	95.8	44.6	1.8				168.9	
85	2.2	29.6	157.2	73.4	1.5				263.8	
90	• 9	19.1	149.3	73.8	.7				243.8	
95	• 3	16.0	68.1	21.0	•7				106.1	
100	•7	2.1	12.5	10.7					26.0	
105	• 4	• 4	2.9	2.6					6.4	
110		• 2	•9						1.1	
120 SUM	22.0	163.9	602.2	383.7	43.3	•6			1215.7	
	MINUTES	FOR TO	PRQUE VS	AIRSPE	ED BY W	EIGHT	7000•	BY	ALTITUDE	LESS
	LESS	10	20	30	40	50 •1	60	70		
LESS 40	•1 1•1	1.6	7.0	19.1	1.7	• 1			29.6	
60	•2	.3		1.6	•3				4.7	
65	•0	• •		•1	•0				• 2	
70	•0	.0		• 0	•				•1	
75	•0	. 2		•1					.3	
80				•0	•0				•1	
85		•0	•2	•0	• 1				• 3	
90	•0	_	. 3	•2	•0				•6	
95	ī	•0	4.1	• 6	• 3				5.2	
100	•0		3.5	• 8					4.3	
105 110										
115										
120										
SUM	1.6	4.0	15.0	23.1	2.5	.1			46.2	

TABLE X1 - Continued MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT 7000 • BY ALTITUDE 1000 LESS 20 10 30 40 50 60 SUM 70 22.0 LESS. 77.7 228.3 1.1 29.7 . 2 359.0 10.3 52.7 40 9.9 40.2 19.9 .1 133.1 4.0 13.7 7.0 60 3.3 14.4 42.4 65 3.8 12.7 2.7 20.5 5.1 . 1 44.9 15.6 70 2.3 12.6 8.2 4.2 42.9 12.5 75 2.6 13.1 12.6 4.0 44.8 80 1.8 11.1 17.3 7.9 2.6 .0 40.6 23.9 85 1.4 8.3 9.8 1.1 .0 44.5 90 1.2 5.5 12.7 6.6 .9 26.9 95 1.7 • 5 3.0 9.9 .4 15.6 . 9 .2 .7 100 .1 4.4 6.3 105 • 5 2.4 .0 2.8 5.9 110 .5 •1 1.5 • 1 2.1 115 •0 .0 • 1 120 SUM 29.2 154.2 172.5 373.2 .6 79.7 809.3 MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT 7000. BY ALTITUDE 2000 SUM LESS. 10 20 30 40 50 60 70 LESS. .1 12.1 34.2 136.3 12.6 195.4 19.2 192.3 10.9 31.2 98.5 32.5 40 22.0 60 7.6 16.0 23.4 69.1 138.1 6.7 18.7 36.2 84.2 20.7 65 166.4 70 14.4 215.8 9.0 27.9 58.2 106.3 338.1 669.7 75 10.0 37.7 151.0 127.3 12.1 386.6 80 9.2 60.5 7.1 206.4 635.8 7.3 988.7 85 6.0 72.4 267.1 64.5 90 6.5 648.4 402.3 3.7 1125.3 29.1 95 226.7 258.3 3.3 519.6 2.2 9.3 1.0 153.0 100 54.4 87.9 .4 105 2.2 8.2 19.3 .2 29.8 8.4 .1 110 2.0 1.1 11.6 115 .3 1.0 120 68.7 384.4 2283.2 1871.6 136.8 4744.7 SUM BY ALTITUDE MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT 7000 • 5000 LESS 10 20 30 40 50 60 70 SUM LESS. •1 . 1 3.9 2.1 40 1.6 . 2 .5 • 2 .7 1.6 60 •7 .3 5.1 .4 6.5 65 6.5 1.0 3.3 . 8 70 . 8 12.9 75 1.5 6.7 3.1 .6 1.0 29.9 2.4 21.2 5.1 •6 80 • 6 38.7 1.4 85 .6 22.0 14.6 .8 30.1 .7 16.4 12.2 90 3.1 13.9 95 1.4 .1 9.4 100 4.4 4.6 .1 • 1 .0 .0 105 110 115

5.2

148.7

120

SUM

6.1

6.9

71.4

59.1

	MINUTES	FOR TO	RQUE VS	AIRSPE	ED BY W	EIGHT	7000+	BY	ALTITUDE	10000
	LESS	10	20	30	40	50	60	70	SUM	
ESS.				•					2.3	
40 60	•1	.2	•2	• 3	1.5				•1	
65	• 7	.2							• 9	
70	• 3	. 2							•5	
75				.3					• 3	
80	• 3			4.1					4.4 2.3	
85	•6			1.7					1.2	
90 95				1.2					1.2	
100 105 110 115 120										
SUM	2.1	•6	•2	8.,8	1.5				13.1	
	MINUTES	FOR TO	RQUE VS	AIRSPE	ED BY	WEIGHT	7000•	BY	ALTITUDE	SUM
	LESS	10	20	30	40	50	60	70		
LESS	1.3	35.7	118.9	383.8	44.1	• 3			584 • 1 336 • 3	
40 60	22.5 12.1	85.9 30.0	29.5 27.2	142.2	56.2 29.7	•1			182.9	
65	12.0	31.6	39.1	109.8	26.3	.1			219.0	
70	12.5	41.3	67.3	125.3	19.3				265.8	
75	13.7	52.5	170.2	143.4	16.7	_			396.4	
80	11.9	73.9	425.0	223.5	10.3	•0	•		744.7	
85 90	8.6 8.4	82.2 70.7	681.9	293.2 422.6	8.5	•0			1074.5 1184.1	
95	4.1	31.0	236.8	279.6	3.9				555.4	
100	.7	9.6	58.7	97.5	1.9				168.3	
105		2.3	8.7	22.1	2.6	•1			35.8	
110		2.5	1.2	8.4	1.5				13.6	
115		• 7		• 3	•0				1.1	
120 SUM	107.7	550.0	2542.3	2335.7	225.7	•7			5762.1	
	MINUTES	FOR TO	RQUE VS	AIRSPE	ED BY W	EIGHT	8000•	BY	ALTITUDE	LESS
E e e	LESS	10	20	30	40	50	60	70	SUM	
.ESS 40	•3	1.6	5.2	27.8	3.0 1.0				37.5 5.3	
60	•2	.1	• 3	.7	.5				1.8	
65		• 1		• 5	•-				•6	
70		. 1		•1					•2	
75				• 2					•2	
80 85				•1					•1	
90				•0					•0	
95										
100										
105										
110										
115										
SUM	.4	3.3	5.7	32.0	4.5				45.9	

TABLE XI - Continued MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT 8000. BY ALTITUDE 1000 LESS. 10 20 30 40 50 60 SUM LESS 15.7 39.1 159.6 259.7 1.1 44.0 .2 24.7 40 7.2 32.6 11.7 35.0 111.2 3.9 60 11.0 4.7 16.0 11.7 47.3 9.9 65 3.4 5.1 19.9 6.8 45.1 2.5 18.3 70 8.2 5.2 6.1 40.3 75 3.0 5.4 11.3 12.0 3.8 35.5 80 2.0 8.3 13.1 10.9 3.8 38.1 10.2 85 1.8 8.5 18.2 1.5 40.2 15.6 90 5.2 1.2 9.8 32.3 95 2.0 4.7 • 4 .6 13.2 100 . 5 3.8 • 3 .5 5.2 105 1.0 1.5 • 3 2.9 110 .1 • 3 .9 1.3 115 .5 • 5 120 SUM 26.6 113.3 117.9 308.1 106.8 .2 672.9 MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT ***0008** BY ALTITUDE 2000 10 20 30 40 50 70 60 SUM LESS 10.9 127.8 31.4 22.6 .3 193.0 40 8.3 29.0 16.1 119.8 31.9 205.1 10.4 92.6 94.5 15.9 60 4.3 20.4 143.6 65 4.0 26.4 23.3 162.7 206.8 70 4.9 17.7 53.3 114.5 16.3 145.3 45.1 75 6.7 102.6 13.7 313.3 253.4 43.5 292.5 80 9.2 10.3 609.0 977.4 85 8.7 57.9 523.7 383.6 3.6 90 49.2 461.8 5.8 379.0 2.0 897.9 95 31.1 4.8 121.7 296.9 1.9 456.3 .2 91.8 100 8.1 17.8 65.3 .4 105 2.2 6.9 • 2 . 8 10.1 110 . 2 • 3 .5 1.4 • 1 115 120 57.7 318.4 1583.0 2162.9 146.4 SUM 4268.4 BY ALTITUDE MINUTES FOR TORQUE VS AIRSPEED BY WEIGHT 5000 8000 · SUM 60 10 20 30 40 50 70 LESS •2 • 2 LESS. 4.5 1.4 2.7 40 3.5 2.4 . 8 • 2 60 8.9 10.4 1.2 • 1 65 • 1 4.0 4.0 2.6 70 • 1 . 2 11.1 • 1 6.8 75 • 1 24.3 10.6 12.7 . 2 • 3 80 65.0 • 3 1.6 33.4 29.6 85 .6 19.8 20.2 43.2 2.6 90 17.3 3.8 11.5 95 1.7 • 3 1.5 • 2 100 • 1 105 • 1 110 .2 115 120 185.3 97.0 4.8 2.3 73.8 SUM 7.4

			,	TABLE	XI -	Conc1	uded		
	MINUTE	5 FOR	TORQUE V	S AIRSP	EED BY	WEIGHT	8000•	BY ALTITUDE	10000
	LESS	10	0 20	30	4	0 50	60	70 SUM	
LESS 40 60 65 70 75									
80				• 8				. 8	
85			_	8.3				8.3	
90 95			•2					2.6 •1	
100 105 110 115 120								••	
SUM			• 3	11.5				11.8	
	MINUTES	FOR T	ORQUE VS	AIRSPE	ED BY	WEIGHT	8000•	BY ALTITUDE	SUM
	LESS	10		30	40		60	70 SUM	
LESS	1.4	28.1	75.7	315.3	69.8			490.4	
40	15.9	63.2	28.0 20.8	158.6	60.3 33.5			326.1 196.3	
60 65	8.6 7.5	21.6	32.7	123.9	30.2			218.8	
70	7.5	26.1	59.4	135.5	22.8			251.4	
75	9.8	56.4	112.0	164.3	17.6			360.2	
80	11.5	52.1	316.2	278.0	14.5			672.3	
85	12.1	66.7		431.8	5.1			1091.0	
90	9.6	55.0		500.0	2.4			975.8	
95	6.9	33.5 9.1		313.9 69.8	2.5			487.0 98.6	
100 105	• 4	.8		7.9	1.5			13.0	
110	.4	.3		.7	.9			2.8	
115	.1				. 5			•6	
120						_		**	
SUM	92.1		1780.8				e. 144	5184.3	
						WEIGHT		BY ALTITUDE	SUM
LE55	LE55 4.0	10 75.4	20 232.6	30 762.5	120.9		60	70 SUM 1196.3	
40	42.4	168.9			133.5			729.7	
60	22.4	59.1			67.6			409.9	
65	21.9	64.1		247.4	62.3			476.1	
70	22.0	76.4		280.8	45.2			565.2	
75 80	27.3 25.8	125.3 150.2			35.6			850.0	
85	22.9		837.1 1414.4	546.1 198.4	26.6 15.1	•0		1585.9 2429.4	
90	18.9		1235.9	996.4	7.7			2403.7	
95	11.2	80.5			7.1			1148.5	
100	1.7	20.7		177.9	2.9			292.9	
105	• 7	3.5		32.6	4.1	• 1		55.2	
110	• 4	2.9		9.1	2.4			17.5	
115 120	•1	•7		• 3	•5			1.7	
SUM	221.8	1151-1	4925.3	5330_R	531.6	1.4		12162.1	
									

TABLE XII. TIME FOR ENGINE TORQUE VERSUS ROTOR SPEED BY MISSION SEGMENT, RATE OF CLIMB, AND OUTSIDE AIR TEMPERATURE

	MINUTES	FOR 1	PORQUE	V5	RPM RY	MISSION	SEG.	ASCENT .	RY RAT	E OF CLIME	-1500.	BY	OAT	
	LESS	10		20	30	40	50	60	70	SUM				
LE55 294										_				
314				•1	•1	-1				•2				
330				- •		٠.								
339 5UM				•2	•1	•1				• 4				
	MINUTES	FOR	TORQUE	: VS	RPM RY	MISSION	SFG.	ASCENT.	BY RA	TE OF CLIM	B -1500+	BY	DAT	
LE55 294	LESS	1	0	20	30	40	50	60	70	SUM				
314 324 330 339					•1					•1				
SUM					•1					•1				
	MINUTES	FOP	TORQU	E VS	RPM BY	MISSION	SFG.	ASCENT	BY RA	TT OF CLIM	B -1500•	BY	OAT	
	LESS	1	0	20	30	40	50	60	70	SUM				
LE55														
314 324 330					•1					•1				
339 SUM					•1					•1				
	MINUTES	FOR	TORQU	E VS	RPM SY	MISSION	SEG.	ASCENT .	BY R	TE OF CLIM	B -1500 •	BY	OAT	
	LESS	1	10	20	30	40	50	60	70	SUM				
LESS 294														
314				•1	•2					•3				
324 330				•1	•1	•1				•2				
339 SUM				•2	.3	•1				.6				
30				-		••				•-				
	MINUTES	FOR	TORQU	E V5	RPM BY	MISSION	SFG.	ASCENT .	BY R	TE OF CLIM	B -1200 ·	BY	OAT	
. 14.000	LESS	1	10	20	30	40	50	60	70	SUM				
LESS 294														
314			.0	•1		-1				•2				
324 330				•1		•1				• 2				
339 SUM			.0	•2		•1				.4				
	M. W		T000:	- 1/8	PDW 8-	MICCION	SFG.	ASCENT-	BY RA	TE OF CLIM	B -1200:	BY	OAT	
	MINUTES		TORGUI .0	50 E A2	30	40	50		70					
LESS	2633	•				•2				•2				
294 314				•1	•1	•4				•2				
324				•1						•1				
330 339				•2	•1	•2				.5				

	MINUTES	FOR TORG	UE VS	RPM BY	MISSION	SFG.	ASCENT.	84	RATE	OF CLIMB	-1200+	BY	OAT	9
E55	LESS	10	20	30	40	50	60		70	SUM				
294		•1	•2							•2				
324		•••	•1	•1	• 3					.4				
339 5UM		•1	•2	-1	•3					•7				
	MINUTES	FOR TOR	OUE VS	RPM RY	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	-1200.	BY	OAT	\$1
ESS	LESS	10	20	30	40	50	60		70	SUM				
294				_	• 2					•2				
314 324 330		•1	.3	:1	• 3					.8				
339 SUM		•1	.7	•2	•5					1.6				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	-900•	BY	OAT	
	LESS	10	20	30	40	50	60		70	5UM				
E55 294														
314 324 330			•1							•1				
339 SUM			•1							•1				
	MINUTES	FOR TOR	OUF VS	RPM RY	MISSION	SFG.	ASCENT.	BY	RATE	OF CLIMB	-900 •	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
E55 294 314				•1						•1				
324 330 339			•1							•1				
SUM			•1	•1						•2				
	MINUTES	FOR TOR	GUE VS	RPM BY	MISSION	SEG.	ASCENT.	ВУ	RATE	OF CLIMB	-900+	BY	OAT	
ES5	LESS	10	20	30	40	50	60		70	SUM				
294 314		.3	•5	.5	•0					1.4				
324 330		.2	• 2	• 2						• 4				
339 SUM		.5	•6	.7	•0					1.9				
30-														
			QUE VS	HPM RY	MISSION	SEG.	ASCENT	BY	RATE	OF CLIME	-900+	BY	OAT	
E55	LESS	10	20	30	40	50	60		70	SUM				
294 314		•2	.5	•0	•3					•0				
324		•-	• -	. 2	• 2					1.7				

LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM RY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM RY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 SUM		OAT	87	-900+	OF CLIMB	MATE	BY	ASCENT.	SFG.	MISSION	RPM BY	RQUE VS	FOR TO	MINUTES	
314					SUM	70		60	50	40	30	20	10	LESS	LFSS
### ### ### ### ### ### ### ### ### ##										•1		•2			294 314 324
LESS 10 20 30 40 50 60 70 SUM LESS 294 314					.0 0					•1	.6	•2			
LESS 294 294 305 294 306 295 307 307 308 309 307 309 307 309 309 309 309 309 309 309 309 309 309	51	OAT	BY	-900+	OF CLIMB	ATE	AY	ASCENT.	SEG.	MISSION	RPM BY	QUE VS	FOR TOR	MINUTES	
294					SUM	0		60	50	40	30	20	10	LESS	
324 330 320 320 330 320 320 330 320 320 330 320 32															
330													.5		
### ##################################												.3	.2		
LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM					5.4					.6	2.4	1.8	.7		
LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM *1 *1 *1 *1 *** *** *** *** ***		OAT	84	-600+	OF CLIMB	RATE	BY	ASCENT.	SEG.	MISSION	RPM BY	RQUF VS	FOR TO	MINUTES	
LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM															
#INUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 294 1 1 1 1 1 2 2 3339 SUM 339 339 SUM 33 1 4 MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 294 1 2-1 3-2 1-1 6-6 314 -1 2-1 3-2 1-1 6-6 3124 -1 2-1 3-2 1-1 6-6 3124 -1 1-6								V -	,,,		112	20	10	LESS	294 314
LESS 10 20 30 40 50 60 70 SUM LESS 294 314					•1										330 339
LESS 10 20 30 40 50 60 70 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 2.2 3.3 .1 7.2 324 1.2 .5 1.8 330 339 SUM 1.5 3.5 3.9 .1 9.1 MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB -600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM LESS 10 20 30 40 50 60 70 SUM	26	OAT	BY	-600+	OF CLIMB	RATE	ВУ	ASCENT.	SEG.	MISSION	RPM RY	RGUE VS	FOR TO	MINUTES	
314					SUM	70		60	50	40	30	20	10	LESS	LESS
### ##################################										•1					314 324
LESS 10 20 30 40 50 60 70 SUM LESS 294					•4					•1	•3				339
LESS 10 20 30 40 50 60 70 SUM LESS 294		OAT	BY	-600•	OF CLIMB	RATE	ВУ	ASCENT.	SFG.	MISSION	RPM BY	RQUF VS	FOP TO	MINUTES	
LESS 294															
314 1.5 2.2 3.3 .1 7.2 1.8 324 324 1.5 3.5 3.9 .1 9.1 9.1 MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 294 .1 .1 3.2 1.1 6.6 324 .4 1.0 .3 1.6					-1				-	-					
324 1.2 .5 1.8 1.8 330 330 330 9.1 9.1 9.1 MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 294					7.2					•1		2.2	1.5		
SUM 1.5 3.5 3.9 .1 9.1 MINUTES FOR TORQUE VS RPM BY MISSION SEG. ASCENT. BY RATE OF CLIMB =600. BY OAT LESS 10 20 30 40 50 60 70 SUM LESS 294 314 .1 2.1 3.2 1.1 6.6 324 .4 1.0 .3 1.6					1.8								J • -		324 330
LESS 10 20 30 40 50 60 70 SUM LESS 294					9.1					•1	3.9	3.5	1.5		
LESS 294 314 01 201 302 101 606 324 04 100 03 106		OAT	87	-600•	OF CLIMB	RATE	Ву	ASCENT.	SEG.	MISSION	RPM BY	RQUE VS	FOR TO	MINUTES	
LESS 294 314 01 201 302 101 606 324 04 100 03 106					SUM	70		60	50	40	30	20	10	LESS	
314 •1 2•1 3•2 1•1 6•6 324 •4 1•0 •3 1•6								•			•		• "		
324 .4 1.0 .3 1.6											3.2	2.1	-1		
					1.6						1.0	.4	•		324
339					• 4						• 3	•2			330 339

_		FAR	0110 140 1			Lec.	ARCENT	g.	0: 45	OF CL 14P	-400-	RY	OAT	90
										OF CLIMB	-6001	u	J-1	7
ESS	LESS	10	20	30	40	50	60		70	SUM				
294	_			• 1						2.9				
314	• 2	.1	1.7	1.0	•3					1.8				
330		. 1	.4	•1						•5				
339 SUM	•2	.4	2.3	2.0	• 3					5.2				
304	• •	••	,		• • •									
	MINUTES	FOP TOR	QUE VS	RPM RY	MISSION	SFG.	ASCENT.	PY	RATE	OF CLIMB	-600•	84	DAT	SU
	LESS	10	20	30	40	50	60		70	SUM				
LESS 294				•2	•1					•3				
314	• 2	1.7	6.1	7.5	1.4					16.9				
324 330		•2 •1	1.8	2.#	•6					5.4				
339														
SUM	•2	2.0	8.4	10.8	2.0					23.5				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SFG.	ASCENT.	AY	RATE	OF CLIMB	-300+	BY	DAT	4
	LESS	10	20	30	40	50	60		70	SUM				
LESS	FE 33	10	20	30	~0	,,	••							
294				•2						•2				
314				• 6						••				
330														
339 SUM				•2						•2				
3UR				• •										
	MINUTES	F0P 10	PQUE VS	RPM RY	MISSION	SEG.	ASCENT	84	RATE	OF CLIMB	-300+	BY	OAT	!
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294 314				3.2						3.2				
324				i						•1				
330 339														
SUM				3.2						3.2				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SEG.	ASCENT	. Ву	RATE	OF CLIMB	-300+	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LE55				.4						.4				
314			5.2	9.6	.7					15.5				
324			1.6	3.5	•1					5.2 .1				
330 339				•1										
SUM			6 • A	13.6	•7					21.2				
	MINUTES	FOP 10	PGUE VS	RPM RY	MISSION	SEG.	ASCENT	PY	RATE	OF CLIMB	-300+	BY	OAT	1
	LESS	10	20	30	40	50	60		70	SUM				
LESS		•												
314		1.4	•6 56•1	3.4 151.7	4.1	.1				8.1 221.9				
324		1	10.0	37.2	2.9	••				50.2				
330		. 2	2.2	7.6	.5					10.5				
339														

	MINUTES	FOR TO	RQUE VS	-	MISSION	SFG.	ASCENT.	ВУ	RATE	OF CLIMB	-300.	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LE55 294			.7	2.7	1.4					4.0				
314		.5	28.8	2.7	16.4	•2				4.8				
324		• • •	10.0	29.B	5.6	••				45.4				
330		.1	3.0	6.0	• 1					9.2				
339 SUM		.6	42.5	154.8	23.6	•2				221.7				
	MINUTES	FOR TO	DRQUE VS	PPM BY	MISSION	SFG.	ASCENT.	BY	RATE	OF CLIMB	-300+	BY	OAT	
	LESS	10	20	30	40	50			70	SUM				
LESS	=	-												
294		_	.2	3.0	.1					3.3				
314		•5	37.4	82.3	2.0					126.3				
330		.0	1.9	2.9	2.9					35.3 4.8				
339 SUM		1.0		108.5	9.2					169.7				
	MINUTES							BY		OF CLIMB	-300+	BY	OAT	51
LESS	LESS	10	20	30	40	50	60		70	SUM				
294			1.4	9.5	5.7					16.6				
314		2.3	127.6	363.4	35.9	. 3				529.5				
324		.5	33.1	90.9	11.5					24.6				
330 339		.3	7.0	16.6	• 6					. 700				
SUM		3.2	169.2	480.4	53.7	.3				706•7				
	MINUTES	FOR TO	DRQUE VS	RPM BY	MISSION	SEG.	ASCENT.	ВУ	RATE	OF CLIMB	300+	BY	OAT	•
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330				4.3						4.3				
339 SUM				4.3						4.3				
	MINUTES	FOR TO	RQUE VS	RPM RY	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	300+	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LE55		• •	•	.4						4				
314			. 8	18.1	1.7					20.6				
324 330				1.9	1-1					3.0 1.3				
339 SUM			. 6	21.7	2.8					25.3				
	MINUTES	FOR TO	PQUE VS	HPM BY	MISSION	SFG.	ASCENT.	BY	RATE	OF CLIMS	300.	RY	OAT	7
ESS	LESS	10	20	30	40	50	60		70	SUM	3001	01	UA 1	,
294			•1	1.0	1.1					2.2				
314		•0	16.9	226.9	25.2	.3			2	69.3				
			2.2	36.4	5.7					44.3				
324														
330				3.4	•6					3.9				

						-									
	MINUTES	FOR	TOR	CUE VS	RPM RY	MISSION	SFG.	ASCENT.	PY R	ATE	OF CLIMB	300+	BY	DAT	8
E55	LESS	1	0	20	30	40	50	60	71	n	SUM				
294				• •	5.3	4.6					9.9				
314				7.6	46.6	8.9					73.1 56.8				
330				• 1	8.6	. 9					9.7				
SUM				9.1	201.8	38.7				2	49.6				
	MINUTES	FOR	TOF	QUE VS	RPM RY	MISSION	SFG.	ASCENT.	BY R	RATE	OF CLIMB	300.	87	OAT	•
	LESS		10	20	30	40	50	60	7	70	SUM				
E55 294					4.3	• 3					4.6				
314 324				10.5 5.1	99.5	7.7 3.3					117•7 22•2				
330				2.6	4.3	763					6.9				
339 5UM				18.2	121.9	11.3					151.4				
					05		-	-5.			A . 120		200		5.
											OF CLIMB	300 •	ВЧ	OAT	St
E\$5	LESS		10	20	30	40	50	60	7	0	SUM				
294 314			.0	•l 35•7	10.9	6.0 58.9	.3				17.1 585.0				
324			••	8.7	98.7	18.9	•••				126.3				
330 339				2.8	17.6	1.5					21.9				
SUM			•0	47.3	617.3	85.4	• 3			•	750.3				
	MINUTES	FOR	TOP	QUE VS	RPM RY	MISSION	SEG.	ASCENT.	AY R	ATE	OF CLIMB	600.	BY	OAT	19
	LESS		10	20	30	40	50	60	7	0	SUM				
E55 294						_									
314					3.3 .5	•3					3.6				
330 339 SUM					3.8	• 3					4.0				
					,,,,	1.									
	MINUTES	FOF	10	RQUE VS	RPM RY	MISSION	SEG.	ASCENT.	BY F	RATE	OF CLIMB	600•	BY	OAT	
	LESS		10	20	30	40	50	60	1	70	SUM				
LE55 294															
314				.5	20.7	2.9					22.5 6.1				
324 330				• 3	• 2	207					• 2				
339 5UM				.8	23.7	4.3					29.8				
	MINUTES	FOR	TO	RQUE VS	RPM BY	MISSION	SEG.	ASCENT.	BY F	RATE	OF CLIMB	600•	84	OAT	
	LESS		10	20	30	40	50	60	1	70	SUM				
.E55 294					5.1	1.0					6.0				
314					173.5	46.1	• 1				224.9				
324 330				.3	24.4 3.6	14.5					39.2 5.4				
339															

TABLE	XII	-	Con	tiı	nued
-------	-----	---	-----	-----	------

		<u></u>													
	MINUTES	FOR	TORQUE	E VS	RPM BY	M15510N	SFG.	ASCENT.	BY	RATE	OF CLIMB	600•	BY	OAT	80
	LESS	1	10	20	30	40	50	60		70	SUM				
LE55 294				•1	3.9	4.0					8.0				
314				2.3	149.7	42.1	.1				194.2				
324				.6	40.6	13.4					54.6				
330				. 3	5.8	2.2					8.2				
SUM			1	3.3	199.9	61.6	•1				264.9				
	MINUTES	FOR	TORQUE	· vs	урм яч	MISSION	SFG.	ASCENT.	ВУ	RATE	OF CLIMB	600+	BY	OAT	90
	LES5	1	0	20	30	40	50	60		70	SUM				
LESS											7.7				
294 314			4	. 9	5.2 75.0	10.7					90.6				
324				.6	18.7	8.8					28.1				
330				• 2	2.0	•2					2.4				
339 5UM			9	3.A	100.8	19.7				,	126.2				
	MINUTES	FOR	TORQU	E VS	8PM 8Y	MISSION	SEG.	ASCENT.	ĦΥ	RATE	OF CLIMB	600•	87	OAT	SUM
LESS	LESS	1	10	20	30	40	50	60		70	SUM				
294				.1	14-1	4.9					19.2				
314			1	3.0	422.1	100.5	. 2				535.0				
324				1.9	87.0	39.6					128.4				
330				• 5	11.7	4.0					16.3				
302			1	5.5	534.9	149.1	• 2				699.7				
	MINUTES	FOR	TORQU	E VS	RPM BY	MISSION	516.	ASCENT	ВУ	RATE	OF CLIMB	900 •	87	OAT	50
LESS	LESS		10	20	30	40	50	60		70	SUM				
294					•2						•2				
324 330					••						••				
339 5UM					•2						•2				
	MINUTES	FOR	TORGU	E V5	RPM RY	MISSION	SFG.	ASCENT.	BY	RATE	OF CLIMB	900.	BY	OAT	60
	LESS		10	20	30	40	50			70	SUM				
LESS	525	•	••	•											
294					7.1	3.3					10.5				
314 324 330					1.6	.1					1.6				
339 SUM					8.9	3.4					12.3				
	MINUTES	FOR	TORQUE	V\$	RPM RY	MISSION	SEG.	ASCENT.	ĦΥ	RATE	OF CLIMB	900•	BY	OAT	70
	LESS	1	0	20	30	40	50	60		70	SUM				
ESS.					.6	1.4					2.0				
304				.5	64.9	44.5	.1			1	09.9				
294 314															
294 314 324				• -	14.3	14.7					29.0				
314 324 330				•,		14.7					1.2				
314				•5	14.3		•1			,					

									_		E				
	MINUTES	FOR	TORQU	E VS	RPM EY	M15510N	SFG.	ASCENT.	RY	RATE	OF CLIMB	900•	BY	DAT	•
	LESS	1	10	20	30	40	50	60		70	SUM				
55 94					1.4	1.2					2.6				
114				.1	54.5 10.0	34 • 1 9 • 8					89.0 19.9				
330				••	1.9	2.6					4.5				
339 5UM				•5	67.8	47.7				,	116.0				
	MINUTES	FOR	TORQU	E VS	ярм рү	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	900•	BY	OAT	
ESS	LESS	1	10	20	30	40	50	60		70	SUM				
294					1.2						1.2				
124				.5	20.3 3.6	3.4 3.5					7.4				
330				.1	1.6						1.7				
339 5UM				. 9	26.8	7.0					34.6				
	MINUTES	FOR	TORQU	E V5	RPM BY	MISSION	SEG.	ASCENT .	BY	RATE	OF CLIMB	900•	BY	OAT	51
E55	LESS		10	20	30	40	50	60		70	SUM				
294					3.3	2.6					5.8				
114				1.5	29.7	85.3 28.2	•1				233.9 58.2				
30				.1	4.3	3.1					7.5				
339 SUM				1.9	184.2	119.1	•1			;	305.4				
	MINUTES	FOR	TORQU	F VS	RPM RY	MISSION	SFG.	ASCENT.	ВУ	RATE	OF CLIMB	1200•	BY	OAT	1
ESS	LESS		10	20	30	40	50	60		70	SUM				
294 314					.8	• 3					1.1				
324 330 339					•1	:1					•2				
SUM					•9	•4					1.3				
	MINUTES	FOR	TORQUE	E V5	ярм Ву	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	1200+	BY	OAT	1
	LESS	1	10	20	30	40	50	60		70	SUM				
255 294						•2					•2				
114				• 2	8.9	15.4					24.4				
324 330					1.6	3.8					•2				
339 SUM				.2	10.7	19•4					30.3				
	MINUTES	FOR	TORGUI	E VS	RPM RY	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	1200•	BY	OAT	į
	LESS	1	10	20	30	40	50	60		70	SUM				
E55					•2	• 3					.5				
314				•1	7.2	10.0					17.4 7.2				
324			. 1		4.4	2.9					1.0				
33-			, .		-										

						TABLE									
	MINUTES	FOR	TORQUE	£ V 5	RPM BY	MISSION	SEG.	ASCENT.	84	RATE	OF CLIMB	1200.	84	OAT	90
	LESS	,	10	20	30	40	50	60		70	SUM				
ESS 294					.4						.4				
314				•1	4.5	1.4					6.0				
324				•2	1.6	1.0					.5				
339											9.0				
SUM				• 3	7.0	2.5					9.0				
	MINUTES	FOR	TOPQUE	! VS	RPM BY	MISSION	SEG.	ASCENT.	BY	PATE	OF CLIMB	1200.	BY	OAT	SUP
.ESS	LESS	1	10	20	30	40	50	60		70	SUM				
294					6						1.1				
314				.4	7.6	27.1 7.9					48.9 15.7				
330		•	.1	. 1	1.3	.3					1.7				
339 5UM		•	•1	•6	30.9	35.9					67.4				
	MINUTES	FOR	TORQUE	E VS	RPM DY	MISSION	SEG.	ASCENT.	BY	RATE	OF CLIMB	1500+	BY	OAT	40
	LESS	1	10	20	30	40	50	60		70	SUM				
LESS				_											
294 314					•1						• 1				
324				•1							• 1				
337											2				
SUM				•1	•1						•2				
	MINUTES	FOR	TORQUE	E VS	HPM BY	MISSION	SEG.	ASCENT.	, RY	RATE	OF CLIMB	1500 •	BY	DAT	50
	LESS	,	10	20	30	40	50	60		70	SUM				
LESS															
294 314					•1	1.5					1.6				
324 330															
339	1				-1	1.5					1.6				
SUM					•1	1.5					100				
	MINUTES	FOR	TORGUE	. V5	RPM BY	MISSION	SEG.	ASCENT .	BY	RATE	OF CLIMB	1500+	BY	OAT	60
	LESS	1	10	20	30	40	50	60		70	SUM				
LE55 294															
314					•1	.8					1.0				
324					•1						•1				
339 SUM					•3	.8					1.1				
30-					• •	••					• • •				
	MINUTES	FOR	TORQUE	V5	RPM 84	MISSION	SFG.	ASCENT .	PY	RATE	OF CLIMB	1500+	84	OAT	70
	LESS	1	10	20	30	40	50	60		70	SUM				
.ES5 294						•1					•1				
314					1.4	3.6					5.0 .7				
324					•3	• •					•3				
339					2.1	4.0					6.1				

		500	*000		084 AV	H166.00	8.05	ACCENT			05 CI 1MB	1500-		OAT	••
	LESS		10	20 20	30	#15510N	50.			70	OF CLIMB	1300+	01	OAT	80
.ESS 294				-		•2					•2				
314					1.7	3.9					5.6 1.2				
339 5UM					2.4	•1 4•7					•1 7•1				
,	INUTES	FOR	TORQU	E VS	RPM BY	PISSION	SFG.	ASCENT	84	RATE	OF CLIMB	1500•	BY	OAT	90
55	LESS	1	0	20	30	40	50	60		70	SUM				
94					. • 2	. 4									
30					1.1	1.3					•2				
SUM					1.3	1.8					3.2				
•	MINUTES	FOR	TORGU	E VS	RPM BY	MISSION	SFG.	ASCENT	BY	PATE	OF CLIMB	1500+	BY	DAT	SUM
55	LESS	1	0	20	30	40	50	60		70	SUM				
94					3.7	10.2					13.9				
30				• 1	2.3	2.2					4.5 .6				
339 SUM				•1	6.3	12.9					19.3				
	MINUTES	FOP	TORGU	E V5	PPM RY	MISSION	SFG.	ASCENT	BY	RATE	OF CLIMB	1800•	BY	OAT	40
55	LESS	1	0	20	30	40	50	60		70	SUM				
294 314 324					•1						•1				
330 339 50≦					•1						•1				
	M.M	500	*000	I= VE	00W 8V	M15510N	Sefi	ASCENT	. RY	DATE	OF CLIMB	1800+	BY	CAT	50
	LESS		10.440	20	30	40	50			70	SUM			•	-
E55 294	•000														
314 324 330						1.3					1.3				
339 5UM						1.3					1.3				
	MINUTES	FOR	TORGE	JE VS	RPM RY	MISSION	SFG.	ASCENT	• В	RATE	OF CLIMB	1800•	BY	DAT	60
ES5	LESS		10	20	30	40	50	60		70	SUM				
294 314 324						.6					.6				
330 339 5UM						.6					.6				

							- Co							
	MINUTES	FOR TORG	UE VS	RPM BY	MI55ION	SEG.	ASCENT.	87	RATE	OF CLIMB	1800+	BY	OAT	70
ESS.	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330 339				•1	1.3					1.4				
SUM				•1	1.8					1.9				
	MINUTES	FOR TORQ	UE VS	-	MISSION	SFG.	ASCENT .	BY	RATE	OF CLIMB	1800+	87	OAT	80
	LESS	10	20	30	40	50	60		70	SUM				
E55			•		-									
314			•1	•3	• 6					1.0				
339				•1						•1				
SUM			•1	•6	1.0					1.6				
	MINUTES	FOR TOR	DUE VS	RPM 84	MISSION	SEG.	ASCENT .	84	RATE	OF CLIMB	1800+	BY	OAT	9(
	LESS	10	20	30	40	50	60		70	SUM				
294				_						_				
314				•1	•3					• 5				
330 339				•0						•0				
SUM				•7	•3					.9				
	MINUTES	FOR TORG	UE VS	RPM BY	MISSION	SEG.	ASCENT .	BY	RATE	OF CLIMB	1800•	84	OAT	SUP
	LESS	10	20	30	40	50	60		70	SUM				
294										5.0				
314			•1	1.1	3.8 1.1					1.5				
330				•1	7.25					•1				
SUM			•1	1.6	4.9					6.5				
	MINUTES	FOR TORG	UE VS	RPM BY	MISSION	SEG.	ASCENT.	RY	RATE	OF CLIMB	2100.	BY	OAT	70
FSS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330					•2					•2				
339 5UM					•2					•2				
	MINUTES	FOR TOP	UF VS	RPM RY	MISSION	SEG.	ASCENT .	RY	RATE	OF CLIMB	2100•	BY	DAT	80
	LE55	10	20	30	40	50	60		70	SUM				
.F55					•1					•1				
314 324				•4	•4					• 0				
330 339														
SUM				• 4	•6					1.0				

						1	ABLE	XII	I - Co	on'	tin	ue	i				
	MINUTES	FOR	TORQUI	E VS	RPM	BY	MISSION	SEG.	ASCENT +	BY	RATE	OF	CLIMB	2100•	BY	DAT	90
	LESS		10	20		30	40	50			70	SU					
.ESS			10	•		3.			100								
294 314																	
324							•3						3				
330 339							•0					•	0				
SUM							•3					•	.3				
	MINUTES	FOR	TORGUI	E VS	RPM	RY	MISSION	SEG.	ASCENT.	BY	RATE	OF	CLIMB	2160•	87	DAT	SUM
	LESS		10	20	1	30	40	50	60		70	SU	JM				
294							•1						- 1				
314						.4	.6					1.	•0				
324 330							• 4						.0				
339						4	1.2					1.					
SUM						• 4	104					•	,				
	MINUTES	FOR	TORGUE	E VS	RPM	BY	MISSION	SEG.	MANUVR.	RY	RATE	OF	CLIMB	LESS.	87	CAT	80
	LESS		10	20	1	30	40	50	60		70	SU					
294	•3												. 3				
314	• 1											•	• 1				
324 330	•0											•	•0				
339 5UM	•6												. 6				
	MINUTES	FOR	TORQUE	E VS	RPM	RY	MISSION	SEG.	MANUVR .	BY	RATE	OF	CLIMB	LESS.	87	OAT	SUM
	LESS		10	20	,	30	40	50	60		70	SU					
LESS	• 3												.3				
294 314	•2											•	1				
324	•0											•	0				
330 339																	
SUM	•6											•	.6				
	MINUTES	FOR	TORQUE	E V5	RPM	BY	MISSION	SEG.	MANUVR.	AY	PATE	OF	CLIMB	-2100+	BY	OAT	80
	LESS		10	20		30	40	50	60		70	SU	JM				
LE55 294																	
314	_		•1										1				
324 330	•1			• 1								•	. 2				
339			•	•									, 3				
SUM	•1		•1	• 1								•	3				
1	MINUTES	FOR	TOPGUE	: V5	RPM	PY	MISSION	SEG.	MANUVR.	BY	RATE	OF	CLIMB	-2100 ·	BY	OAT	SUM
LESS	LESS	1	10	20	?	30	40	50	60		70	SU	M				
294																	
314	•1	•	•1	•1								•	1 2				
	• •			• •								_	•				
330																	

	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY		OF CLIMB	-1800+	BY	DAT	I
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330 339					•1					•1				
SUM					•1					•1				
	MINUTES	FOR TOR	QUE VS	HPM BY	MISSION	SFG.	MANUVR.	BY	RATE	OF CLIMB	-1800+	87	OAT	51
	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330					•1					•1				
339 SUM					•1					•1				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	MANUVR.	ВУ	RATE	OF CLIMB	-1500•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
294 314														
324 330		• 2								•2				
339 5UM		•2								•2				
		500 70 0		DD 4 BV	H16610N	456	MANITUD.	RV	DATE	OF CLIMB	-1500+	BY	DAT	
				30	40	50			70	SUM				
LESS		10	20	30	40	,,,				30				
294 314			•1		•1					•1				
324 330		•1	•1							•1 •2				
339)				•1					•4				
SUM		•1	•2		••					•••				
	MINUTES	FOR TOP	GUE VS	RPM BY	MISSION	SEG.	MANUVR .	RY	RATE	OF CLIMB	-1500•	BY	OAT	
LESS		10	20	30	40	50	60		70	SUM				
294 314														
324 330		.1	•1							•2				
339 SUM		•1	•1							•2				
	M 8 AU	500 TO	OUE	D6.2 R	M16616**	4.05	MANINE	p.	DATE	OF CLIMB	-1500-	RV	DAT	S
								37			-1,7001	31	041	3
LE\$5	LESS	10	20	30	40	50	60		70	SUM				
294			•1		•1					•1				
314		•2	• 1		• •					• 3				
330		• 2	• 2							• 3				
339 5UM		.4	• 3		-•1					. 6				

	MINUTES	FOR TORO	UE VS	5 HPM 81	M15510N	SEG.	MANUVR	В	RATE	OF CLIMB	-1200+	BY	OAT	
LESS		10	20	30	40	50	60		70	SUM				
294 314 324	•	•2								• 2				
330 339 5UM)	• 2								• 2				
	MINUTES	FOR TORQU	F V 5	ррм ВА	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	-1200•	BY	OAT	7
.ESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324		.4	.2	•1						•6				
339 SUM		.1	.5	•1						•1 1•0				
30		• •	• •	••						•••				
	MINUTES	FOR TORQU	E V5	PPM BY	MISSION	SEG.	HANUVR.	BY	RATE	OF CLIMB	-1200+	BY	OAT	8
ESS 294	LE55	10	20	30	40	50	60		70	SUM •1				
314 324 330	•0		•1	•1	•1					•3 •0 •0				
339 SUM	•1		•1	•1	•1					•4				
										AC C: 148		B.V.		į
	MINUTES LESS	FOR TORGU	20 20	30 30	#15510N	50	60	PT	70	SUM	-12001	01	041	97
E55 294 314	LE33	10	20	30	40	,,				30.				
324 330 339		•1						1	Þ.	•1				
SUM		•1								•1				
	MINUTES	FOR TORQU	E V5	RPM BY	MISSION	SEG.	MANUVR .	BY	RATE	OF CLIMB	-1200+	BY	OAT	50
LESS 294	LE55	10	20	30	40	50	60		70	SUM •1				
314		•4	• 3	•1	•1					•9				
324 330	•0	•3 •1	• 3							•6 •1				
339 SUM	•1	.7	•6	•1	•1					1.7				
	MINUTES	FOR TORGU	E VS	RPM RY	MISSION	SEG.	MANUVR.	ВУ	RATE	OF CLIMB	-900•	ВУ	OAT	l
.E55	LESS	10	20	30	40	50	60		70	SUM				
294				•2						•2				
324 330		.5		•						•5				
339 SUM		.5		•2										

TABLE XII - Continued

					TABLE	ΥI	1 - 0	on	tin	uea				
	MINUTES	FOR TO	RQUE VS	RPM BY	M15510N	SFG.	MANUVR	В	RATE	OF CLIMB	-900+	BY	OAT	7
LESS		10	20	30	40	50	60		70	SUM				
294 314		.5	.4	•2						1.1				
324		. 0	1.2	-						2.0				
330 339		+2	• •							•6				
SUM		1.5	2.0	•2						3.6				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SEG.	MANUVR.	RY	RATE	OF CLIMB	-900•	BY	OAT	
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314		.2	.7	•1	•1					1.2				
324		.4	2	.1	••					.7				
330 339		.1	.6							•7				
SUM		.8	1+4	•2	•1					2.6				
	MINUTES	FOR TOP	RQUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	-900+	BY	OAT	90
	LESS	10	20	30	40	50			70	SUM				
294 314		.1		=						•1				
324 330		,3	•1							.3				
339 SUM		.3	•1							•4				
		••	•							••				
	MINUTES	FOP TOR	QUE VS	RPM RY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	-900•	BY	OAT	SUP
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314		.8	1.1	•6	•1					2.6				
324		1.8	1.3	•1	••					3.2				
330 339		•5	1.1							1.6				
SUM		3.1	3.5	•7	•1					7.4				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SEG.	MANUVR .	BY	RATE	OF CLIMB	-600•	BY	OAT	6
	LESS	10	20	30	40	50			70	SUM				
LESS 294 314			•1	1.0						1.1			•	
324 330														
339 5UM			•1	1.0						1.1				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	-600+	BY	OAT	7
	LESS	10	20	30	40	50			70	SUM				
LESS		-												
294 314		.1	1.2	.4						1.6				
324 330		.1	2.9	1.5						•6				
339										6.9				
SUM		.5	4.5	1.9										

	MINUTES	FOR TOR	QUE VS	ЯРМ В Ү	MISSION	SEG.	MANUVR,	ĦY	RATE	OF CLIMB	-600•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LESS										. 0				
294 314	•0	•1	.4	1.1	.5					•0 2•1				
324		.1	•		•••					•1				
330	•0		• 3	. 2						• 5				
339 SUM	•1	.1	- 4	1.3	.5					2.6				
JUM	••	••	•6	,	• •					.,,				
	MINUTES	FOR TOP	QUF VS	-	MISSION	SEG.	MANUVR	BY	RATE	OF CLIMB	-600•	84	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LE55 294			_							~				
314		• 2	• 7	-1						•9				
324		.7	.6							ij				
339		••	•											
SUM		1.0	1.3	•1						2.4				
	MINUTES	FOR TOR	QUE VS		MISSION	SFG.	MANUVR.	AY	RATE	OF CLIMB	-600+	BY	CAT	5
	LESS	10	20	30	40	50	60		70	SUM				
LE55										_				
294	•0		2 2	2.5	.5					•0 5•7				
314		1.2	2.3 2.9	1.5	• >					5.6				
330	.0	.2	1.2	. 3						1.7				
339					_									
SUM	•1	1.7	6.5	4.3	•5					13.0				
	MINUTES	FOR: TO	ROUF VS	RPM BY	MISSION	SEG.	MANUVR	ВУ	RATE	OF CLIMB	-300+	BY	DAT	
				••	4.0		40		30	e				
LESS	してっち	10	20	30	40	50	60		70	SUM				
254														
314			4.1	8.4						12.5				
324		• 1		• 4						2.1				
339														
SUM		•1	5.7	8.8						14.6				
	MIMITES	FOR 10	BOI:e V&	POM 94	. MIEETAL		MANUNA			OF CLIMB				
	LESS	10	20	30	40	50 SFU		7 17	RATE 70	SUM	•300 •	84	OAT	
LESS		• •		30	40	,0	60		, ,	3014				
294		_												
314		•1	6.1	10.9						17-1				
330		.4	2.6	6.9	.5					3.6				
339				•0						7.0				
SUM		•7	23.4	18.5	•5					43.1				
	MINUTES	FOR TOR	OUE VS	PPM BY	MISSION	SEG.	MANUVR,	BY	RATE	OF CLIMB	-300•	BY	OAT	
			26	30	60	50	60		70	SUM				
LESS	LESS	10	20	30	40	20	ĐU		70	30"				
294														
314		. 3	6.5	8.8	5.0					20.6				
324		•1	1.2	•						1.3				
	•1	.6	.7	•2						107				
330 339			-											

	MINUTES	FOR T	DRQUE VS	RPM BY	MISSION	SEG.	MANUVR.	87	RATE	OF CLIMB	-300•	87	OAT	•
LESS	LESS	10	20	30	40	50	60		70	SUM				
294														
314			2.6	1.2						3.9				
324	.4	•1		• 2						. 3				
339	• •	• •	• ′							1.6				
SUM	.4	.5	3.4	1.4						5.8				
	MINUTES	FOR T	ORGUE VS	RPM BY	MISSION	SEG.	MANUVR.	ВУ	RATE	OF CLIMB	-300+	BY	OAT	SU
	LESS	10	20	30	40	50	60		70	SUM				
LF55														
294 314		.4	19.4	29.4	5.0					• • •				
324		.7		7.4	.5					54.2 26.1				
330	.5	1.4		. 8	• •					6.7				
339 SUM	.5	2.4	40.9	37.7	5.4					87.0				
	MINUTES	FOR T	ORQUE VS	RPM 8Y	MISSION			BY		OF CLIMB	300+	BY	OAT	6
LESS	LESS	10	20	30	40	50	60		70	SUM				
294														
314				.5						•5				
324			• 4							•4				
330 339														
SUM			.4	.5						. 0				
	MINUTES	FOP T	ORQUE VS	HDM BA	MISSION	SEG.	MANUVR.	RY	RATE	OF CLIMB	300•	BY	GAT	7
LESS	LESS	10	20	30	40	50	60		70	SUM				
294														
314			. 3	3.0	_					3.3				
324 330			1.1	2.7	• 2					3.9				
339				• 5						• 5				
SUM			1.4	6.1	• 2					7.7				
	MINUTES	FOR 1	ORQUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	300+	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294				, .	4									
314			•1	1.5	• 6					•5				
330			• ,	.4						.4				
339			_		-									
SUM			•5	2.1	•6					3.1				
	M 1 Au 1 T - F	EAD -	00012 45	DBM 84	M1661A.	250	MANINE	B.u	0400	AE 21 1MB	300•	pv	OAT	
								07		OF CLIMB	300	D ¥	041	90
	LESS	10	20	30	40	50	60		70	SUM				
LE55 294														
314			• 2	• 2						•3				
324			• 2							• 2				
330 339			.4							. 4				

													-	
	MINUTES	FOR TOP	QUE VS	RPM BY	MISSION	SFG.	MANUVR	RY R	ATE	OF CLIMB	300•	BY	OAT	5
LESS	LESS	10	20	30	40	50	60	7	0	SUM				
294				= .						= -				
314			2.0	5.1 2.0	.6					6.3 5.0				
330			•4	. 9						1.3				
339 SUM			3.1	8.8	.8					12.7				
	MINUTES	FOR TOP	QUE VS	RPM BY	MISSION	SEG.	MANUVR	. By p	ATE	OF CLIMB	600.	BY	OAT	
	LESS	10	20	30	40	50			0	SUM	8001	01	UAT	
LE55 294														
314 324 330				•1						•1				
339 5UM				•1						•1				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSIO	N SEG,	MANUVR	, BY F	RATE	OF CLIMB	600•	87	OAT	
LESS		10	20	30	40	50	60	13	70	SUM				
294 314			•2	1.0						1.2				
324				.5						•5				
330 339				•2						• 2				
SUM			• 2	1.6						1.8				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	MANUVR .	BY R	ATE	OF CLIMB	600•	84	OAT	
LESS	LESS	10 •0	20	30	40	50	60	7	0	SUM •0				
294 314			.3	.8	• 3					1.4				
324			•1	• 2						•1 •3				
330										1.7				
SUM		•0	.4	1.0	•3									
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY R	ATE	OF CLIMB	600+	BY	DAT	
	LESS	10	20	30	40	50	60	7	0	SUM				
294														
314 324			•1	.6						•1				
330		.1	•i	•0						• 3				
339 5UM		.1	•2	•7						• 9				
	MINUTES	FOH TOR	QUE VS	RPM BY	MISSION	SEG.	MANUVR.	BY RA	TE (OF CLIMB	600•	BY	OAT	\$(
	LESS	10	20	30	40	50	60	70	,	SUM				
E55		•0								•0				
294 314			. 4	2.5	• 3					3.3				
324 330		.1	• 2	•5						•6 •7				
339		••	• •	• -										

	MINUTES	FOR TO	RQUE VS	PPM BY	MISSION	SFG	MANUVR	BY	RATE	OF CLIMB	900•	RY	OAT	,
	LESS	10	20	30	40	50		,	70	SUM	7001		U -1	
LE55 294		_			_				. •					
314			•2							•2				
324 330														
339														
SUM			• 2							•2				
	MINUTES	FOR TO	RQUE VS	RPM RY	MISSION	SFG.	MANUVR .	ВУ	RATE	OF CLIMB	900•	BY	OAT	7
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294 314			•0	•2	.8					1.0				
324 330				•0 •3	• 2					•3				
339			_							1.6				
SUM			•0	•5	1.0					1.0				
	MINUTES	FOR TO	RQUE VS	PPM BY	MISSION	SEG.	MANUVR	BY	RATE	OF CLIMB	900+	81	OAT	6
	LESS	10	20	30	40	50	60		70	SUM				
LE55 294														
314			•0	• 9	•1					1.0				
324			•1	•2						.2				
339 SUM			•1	1.1	•1					1.3				
30				•										
	MINUTES	FOR TOP	QUE V5	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	900•	BY	OAT	90
	LESS	10	20	30	40	50	60		70	SUM				
E55														
314			•1							•1				
324														
339			•1							•1				
SUM			••											
	MINISTER	EOD TOS	QUE VS	RPM RY	MISSION	SFG.	MANUVR.	BY	RATE	OF CLIMB	900+	BY	OAT	SUP
	LESS	10	20	30	40	50	60		70	SUM				
E55	LL 33			•										
294 314			• 3	1.1	.9					2.3				
324			•1	.2	•2					.4				
339					1.1					3.2				
SUM			• •	1.6	. • .									
	MINUTES	FOR TO	QUE VS	RPM RY	MISSION	SEG.	MANUVR.	RY	RATE	OF CLIMB	1200+	BY	OAT	7
	LESS	10	20	30	40	50	60		70	SUM				
.E\$5 294														
314				.7	•1					.8				
324 330														
339														

TABLE	XII	-	Continued
-------	-----	---	-----------

	MINUTES	FOR	TORQUE	. V5	RPM BY	MISSION	SEG.	MANUVR .	BY	RATE	OF CLIMB	1200•	BY	OAT	80
	LESS		10	20	30	40	50	60		70	SUM				
LE55 294			.0								•0				
314					. 9	.5					1.4				
324					•0						•0				
330 339					•1						•1				
SUM			.0		1.0	•5					1.6				
	MINUTES	FOR	TORQUE	· V5	RPM RY	MISSION	SFG.	MANUVR .	BY	RATE	OF CLIMB	1200.	87	OAT	SUM
LESS	LESS		10	20	30	40	50	60		70	SUM				
294			.0								•0				
314					1.6	• 6					2.2				
330					•1						•1				
339															
SUM		,	• 0		1.7	•6					2.4				
	MINUTES	FOR	TORQUE	V5	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	1500•	84	OAT	70
	LESS		10	20	30	40	50	60		70	SUM				
LE55 294															
314						•1					•1				
330						• •					••				
339						_									
SUM						•1					•1				
	MINUTES	FOR	TORQUE	: VS	PPM PY	MISSION	SEG.	MANUVR .	ВУ	RATE	OF CLIMB	1500•	BY	OAT	. 80
	LESS		10	20	30	40	50	60		70	SUM				
LESS															
294 314				• 1	•?						. 2				
324				• 1	• 7						•3				
330															
339 SLIM				•1											
Julia				• 1	•5						•3				
,	MINUTES	FOR	TORGUE	V5	RPM RY	MISSION	SFG.	MANUVR .	PY	RATE	OF CLIMB	1500+	84	OAT	SUM
	LESS	1	0	20	30	40	50	60		70	SUM				
ESS															
294 314				.1	•2						•3				
324					••	•1					.1				
330															
339 5UM				•1	• 2	•1					.4				
									RY		OF CLIMB	2100•	BY	CAT	70
	LESS	1	10	20	30	40	50	60		70	SUM				
LE55 294															
314					•0						•0				
				•0							•0				
324															
324 330 339															

	MINUTES	FOR TORG	UE V5	RPM BY	MISSION	SEG.	MANUVR.	BY	RATE	OF CLIMB	2100•	BY	OAT	80
	LESS	10	20	30	40	50	60		70	SUM				-
ESS 294 314 324 330 339	\$2.55		10	•1	40	,,,				•1				
SUM				•1						•1				
	MINUTES	FOR TORG	DUE VS	RPM RY	MISSION	SEG.	MANUVR .	ВУ	RATE	OF CLIMB	2100.	BY	OAT	SU
	LESS	10	20	30	40	50	60		70	SUM				
.E55 294										-				
314 324			•0	• 1						•1				
330 339														
SUM			•0	•1						•1				
	M. M. 1905	E00 700	OUE VS		MISSION	SEG.	DESCNT.	RV	DATE	OF CLIMB	1.655	BY	OAT	4
						50		,	70	SUM	20301	•	•	
LESS		10	20	30	40	-50	•0		,,	30				
294 314	• 1									•1				
324 330														
339 5UM										•1				
				. 1 - 3-		_				12				
								BY		OF CLIMB	LESS.	BY	OAT	5
.E55	LESS	10	20	30	40	50	60		70	SUM				
294 314	1.9	-1								2.0				
324 330	•1									•3				
339 5UM	• 1									2.5				
30-	2.4	•1								2.63				
	MINUTES	FOR TOR	GUE VS	RPM BY	MISSION	SEG.	DESCHT.	BY	RATE	OF CLIMB	LESS.	84	OAT	.6
	LESS	10	20	30	40	50	60		70	SUM				
294	.3	•1								.4				
314	1.9	•2								1.9				
330	.1	••								•1				
339 5UM	2.6	.2								2.8				
		FOP TOR	GUE VS	RPM PY	MISSION	SEG.	DESCNT .	RY	RATE	OF CLIMB	LESS.	BY	OAT	7
LESS	LESS	10	20	30	40	50	60		70	SUM				
294	. 3		•1							• 4				
314	2.5	1.5 2.1	•0							4.0				
330	1.5	. 3								1.9				
339 5UM	6.6	3.9	•1							10.6				

				•	TABLE	XI	I - C	on	tin	ued				
	MINITES	FOR TOP	CUE VS	RDM AV	MISSION	SEG.	DESCRIT.	RY	RATE	OF CLIMB	1.555.	BY	OAT	586
			20	30	40	50	60		70	SUM	•••	•		
LESS	LESS	10	20	30	40	,,	***		10	JQ!!				
294	•1	. 2								• 3				
314	• 2	• 3								•5				
324 330	.7	.2								1.0				
339	.0									•0				
SUM	1.0	1.1								2.1				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	LESS.	87	OAT	90
	LESS	10	20	30	40	50	60		70	SUM				
LESS		•												
294 314	1.5	.2								1.7				
324	.5	. 1								.7				
330	• 1	.1								• 2				
339 SUM	2.2	.4								2.6				
								n.		05 CL 1MB	1 505	nv.	DAT	SU
	MINUTES	FOR TOP	ROUE VS	RPM BY	MISSION			гт		OF CLIMB	66224		0-1	•
	LE55	10	20	30	40	50	60		70	SUM				
LE55	.7	.2	.1							1.0				
314	8.1	2.1	•0							10.2 6.1				
324	3.5	2.6								3.2				
330	2.4	. 8								•1				
339 5UM	14.8	5.7	•1							20.7				
	MINUTES	FOR TOP	QUE VS	RPM BY	MISSION	SFG.	DESCNT.	BY	RATE	OF CLIMB	-2100+	BY	OAT	30
			20	30	40	50	60		70	SUM				
LESS	LESS	10	20	,,			-							
294										.5				
314	• 5									• •				
324 330														
339														
SUM	• 5									•5				
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-2100+	BY	OAT	4
	LESS	10	20	30	40	50			70	SUM				
LESS														
294										1.4				
314	1.4									•••				
330														
339										1.4				
SUM	1.4													
	MINUTES	FOP TO	PGUE VS	RPM RY	MISSION	SFG.	DESCNT.	Ву	PATE	OF CLIMB	-2100•	BY	OAT	5
	LESS	10	20	30	40	50	60		70	SUM				
LF55		• -	-											
294										1.1				
314	1.1									• 2				
324 330	• 2													
339										1.3				
SUM	1.3													

					TABLE	ΧI	I - C	Con	ntir	nued				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SFG.	DESCNT.	BY	RATE	CF CLI	MB -2100	. 87	OAT	60
LESS		10	20	30	40	50	60		70	SUM				
294 314														
324		.7								2.7				
330		• •								1.00				
339														
5UM	3.5	•7								4.3				
	MINUTES	FOR TOR	QUE VS	RPM RY	MISSION	SFG.	DESCNT.	BY	RATE	OF CLI	MB -2100	. BY	OAT	70
	LESS	10	20	30	40	50	90		70	SUM				
LF55				•			-							
294	. 1	. 1	•							6.5				
314	5.2 2.7	1.2	•1							5.4				
330		7	•							1.9				
339		•												
SUM		4.4	•4							14.0				
	MINUTES	FOR TORG	DUE VS	RPM BY	MISSION	SEG.	DESCRT.	BY	RATE	OF CLI	4B -2100	. BY	OAT	80
	LESS	10	20	30	40	50	60		70	SUM				
LESS		•												
294	.3	.3								.5				
314	.5	1.5	. 1	• 1						2.1				
324	.2	•6								. 8				
330	1.3	.5								1.8				
SUM	2.2	2.8	•1	•1						5.2				
	MINITES	FOR TORG	OUF VS	RDM RY	MISSION	SFG.	DESCNT.	HV.	DATE	0F CL11	4B =2100:	. BY	OAT	90
														_
LE55	LESS	10	20	30	40	50	60		70	SUM				
314	1.5	.6								2.2				
324	• 1	• 2								• 3				
330		•0	•0							- 1				
339 SUM	1.6	.9	•0							2.5				
	MINUTES	FOR TORG	DE VS	RPM BY	MISSION	SEG.	DESCHT.	BY	RATE	OF CLI	4B -2100	ВУ	OAT	SUM
	LESS	10	20	30	40	50			70	SUM				
LESS	FE 33	10	20	30	40	50	90			3011				
294	.3	. 3								.7				
314	12.8	3.3	• 2	•1						16.4				
324	4.1	3.9	• 2							8.2				
330	2.6	1,3	•0							3.9				
SUM	19.8	A.8	.5	•1						29.2				
	MINUTES	FOP TORG	UE VS	RPM BY	MISSION	SEG.	DESCRIT.	Ву	RATE	OF CLIP	B -1800	ВУ	OAT	30
					40	50	60		70					
LESS	LESS	10	20	30	-0	70	60		10	SUM				
294														
314														
	• 2									• 2				
324														
330														
	•2									•2				

TABLE	XII	-	Continued
-------	-----	---	-----------

	MINUTES	FOR TORQUE	E V5	RPM BY	MISSION	SEG.	DESCHT.	BY	RATE	OF CLIMB	-1800 •	87	DAT	5
	LESS	10	20	30	40	50	60		70	SUM				
ES5		_								_				
294		•1								•1 •5				
314 324	• 2	•2	•1							• 5				
330	• •		i							Ξí				
339			••											
SUM	.7	.4	. 1							1.1				
	MINUTES	FOR TORQU	E VS	RPM BY	MISSION	SEG.	DESCHT.	BY	RATE	OF CLIMB	-1800.	BY	OAT	•
E55	LESS	10	20	30	40	50	60		70	SUM				
314	2.7	.4	.1							3.2				
324	.6	1.1	• •							1.8				
330	• • •	.3								• 3				
339 SUM	3.4	1.8	•1							5.2				
•			••											
	MINUTES	FOR TORQU	E VS	RPM BY	MISSION	SEG.	DESCHT.	RY	RATE	OF CLIMB	-1800 •	87	OAT	1
	LE55	10	20	30	40	50	60		70	SUM				
.E55	• 1									•1				
294	0.0		_											
314	8.7	7.4	• 1							16.2				
324	3.0 2.1	5.0 1.4	• 0							8.0				
339	201	1								3.4				
SUM	13.9	13.7	•1							27.7				
	MINUTES	FOR TORQU	E VS	RPM RY	MISSION	SEG.	DESCHT.	ВУ	RATE	OF CLIMB	-1800 •	ВУ	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
ESS.	FE33	10	20	30	40	30	60		70	3 U F				
294	• 3	.3								.5				
314	3.4	3.7	. 4		• 1					7.5				
324	• 3	1.6	• 1	.1						2.1				
330	• 3	. 8		•1						1.1				
339 5(IM	4.3	6.3	.4	•2	•1					11.3				
									. 2000					
	MINUTES	FOR TOPGL	JE VS					• 8			-1800+	01	OAT	
LESS	LESS	10	20	30	40	50	60		70	SUM				
294	•1									. 1				
314	1.0	• 2								1.1				
324	.4	•2	. 3							. 9				
330	•1	•1	• 2							• 4				
339 5UM	1.6	.5	.4							2.5				
	MINUTES	FOR TORGU	e vs	DDM RV	MISSION	SEG.	DESCRIT.	RV	DATE	OF CL 1M8	-1800+	av	CAT	5(
	LESS	10	20	30	40	50			70		-10001	٥,	U-11	3(
ESS	•1	10	εU	30	-	70	90		70	SUM •1				
294		.4								. 7				
314	16.0	11.8	.5		•1					28.4				
324	4.9	F.0	. 4	-1						13.4				
330	2.5	2.5	.2	-1						5.3				
339	23.9	22.7								.0				
SUM	24.0	22.7	1.2	•2	.1					48.0				

				T7	ABLE	X11	- Co	nt	ınu	ea				
	MINUTES	FOR TOR	QUF VS	RPM BY	MISSION	SFG.	DESCRT.	ВУ	RATE	OF CLIMB	-1500+	BY	OAT	
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314	.7									•7			•	
324 330 339														
SUM	•7									•7				
					MISSION 40	SEG.	DESCNT.	AY	RATE 70	OF CLIMB	-1500+	87	OAT	4
LF55	LESS	10	20	30	40	30	80		, 0	301.				
294 314 324	•2									•2				
330 339 SUM	•2									•2				
30	••													
	MINUTES	FOR TOP	QUE VS	RPM BY	MISSION	SEG.	DESCNT .	BY	RATE	OF CLIMB	-1500+	84	OAT	!
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294 314 324	•2									•2				
330 339 5UM										•2				
	MINUTES	FOP TOR	QUE VS	RPM RY	MISSION	SEG.	DESCRT.	BY	RATE	OF CLIMB	-1500.	84	OAT	6
	LESS	10	20	30	40	50	60		70	SUM				
LESS		_								•2				
294 314	1.0	•2 4•5								5.5				
324	5	3.5	.1							4.1				
330	. 3	1.0	•1							1.4				
339 SUM	1.8	9.3	•2							11.2				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SFG.	DESCNT.	BY	RATE	OF CLIMB	-1500+	BY	OAT	1
LESS	LESS	70	20	30	40	50	60		70	SUM				
294	.3	.6	•1	•1						1.0				
314	18.8	27.4	1.6	•2						48.0				
324	5.4	13.6	. 8							20.0				
330	1.7	3.2	• 1							4.9				
339 SUM	26.1	45.0	2.6	.3						74.0				
	MINUTES	FOR TOP	IGUF VS	PPM BY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-1500+	BY	OAT	,
	LESS	10	20	30	40	50	60		70	SUM				
			• •		•1	. •	,			•1				
LESS	.4	.4	•1							• 9				
294		8.0	1.3	• 1						15.9 7.9				
294 314	6.5									107				
294	2.7 2.4	1.9	.4	.1	•1					29.2				

	MINUTES	FOR TO	DRQUE VS	RPM BY	MISSION	SEG.	DESCNT.	BY	RATE	OF CLIMB	-1500+	RY	CAT	9
	LESS	10	20	30	40	50			70	SUM	-45000		0,	
LESS	•0	•		••	7.5	,,	•		, ,	•0				
294	• 1	• 1								• 3				
314	1.6	2.5	• 4	•1						4.7				
324	• 2	.6	•4	•1						1.5				
339		•.0	• •							•7				
SUM	2.0	4.1	.9	•2						7.2				
	MINUTES	FOR T	ORQUE VS	RPM BY	MISSION	SEG.	DESCNT	. BY	RATE	OF CLIME	-1500.	BY	OAT	S
	LESS	10		30	40	50			70	SUM				
LESS					•1				. •	•1				
294		1.4		• 1						2.4				
314		42.4		• 4						75.2				
330		6.8	1.6	•1						33.5 11.5				
339 SUM		73.5		.6	.1					122.7				
								BY		OF CLIMB	-1200	84	DAT	
LE55 294		10	20	30	40	50	60		70	SUM				
314 324 330	•1									•1				
339 SUM	•1									•1				
	MINUTFS	FOR TO	RQUE VS	RPM BY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-1200+	BY	OAT	!
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330	•5	.8								.6				
339 5UM	.5	.8								1.3				
	MINUTES	FOR TO	DRQUE VS	RPM BY	MISSION	SFG.	DESCHT.	ВУ	RATE	OF CLIMB	-1200•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294		1.1	•							1.1				
314		3.3 5.4	•3							7.0				
324	.3	2.0	• 0							2.4				
339	• ,	- • •												
	2.8	11.8	1.1							15.7				

21.0 101.3

15.3

60 70

138.5

		F00 T0		08H 8H	M106100		D=4647			05 61 1119	-1200.		04.7	
								DY		OF CLIMB	-1200+	D T	UAT	•
	LESS	10	20	30	40	50	60		70	SUM				
E55 294	-1	.7	.1	•2						1.0				
314	7.4	22.9	4.9	.3						35.6				
324	4.3	20.8	2.3	•••						27.5				
330	. 8	3.4	. 3							4.5				
339	122			_										
SUM	12.8	47.7	7.6	•5						68.6				
	MINUTES	FOR TO	RGJE VS	RPM BY	MISSION	SEG.	DESCNT.	BY	RATE	OF CLIMB	-1200+	87	OAT	9
	LESS	10	20	30	40	50	60		70	SUM				
ESS	LE33	10	20	30		-	.17		. •					
294	• 2									• 2				
314	1.5	5.2	1.0	•1						7.8				
324	1.6	3.0	1.7	• 7	• 1					7.1				
330	•2	4.2	1.1	•1						5.5				
339 5UM	3.5	12.4	3.8	.9	•1					20.7				
		F00 T0	anie ve		MISSION	SEG.	DESCRIT.	AY	PATE	OF CLIMB	-1200 e	87	OAT	SU
									70	SUM				
LESS	LESS	10	20	30	40	50	80		70	4.3				
294	. 3	3.6	1	. • ?						132.0				
314	25.3	89.0	8.5	1.1	•1					83.3				
324 330	12.4	61.6	2.7	.1	••					25.3				
339			• • •	••										
SUM	40.7	174.0	27.8	2.2	•1					244.9				
	MINUTES	FOP TO	PCUF VS	RPM BY	MISSION	SEG.	DESCNT .	BY	PATE	OF CLIMB	-900•	BY	OAT	:
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294 314		•1								• 3				
324	• 1	.0								•0				
330		•0												
339														
SUM	.1	.1								• 3				
	MINUTES	FOR TO	RGUE VS	нрм Ру	MISSION	SFG.	DESCHT	PY	RATE	OF CLIMB	-900•	BY	OAT	!
	LF55	10	20	30	40	50	60		70	SUM				
LF55				-										
294		. 1								.1				
314	• 5	1.2	•6	• 1						2.4				
324			•1							•2				
330														
339 5UM		1.3	•7	•1						2.7				
	MINUTES	FOP TO	DRGUE VS	-	MI5510	SFG	DESCHT	, BY	RATE	OF CLIME	-900+	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LF55		.0		20		,			-					
294		.3	• 1							• 5				
(7 -		8.9	5.1							14.2				
314		4.3	3.2							8.7				
314		~ • 5												
314 324 330	1	7.5	• 5							•5				
314	1	14.5								23.9				

TABLE XII - Continued

_														
	MINUTES	FOR TO	RQUE VS	RPM BY	MISSION	SFG.	DESCRIT.	ВУ	RATE	OF CLIMB	-900•	۵Y	OAT	1
	LESS	10	20	30	40	50			70					
LESS				30	70	,0	80		70	SUM				
294	•1	. 9	.4	.4						1.8				
314	11.1	94.5	48.0	3.6	• 1					157.3				
330	4.6	36.3 15.1	16.0	.6	• 1					57.6 17.7				
339	••	• • • •	1.00							1101				
SUM	16.6	146.7	66.3	4.7	•2					234.4				
	MINUTES	FOR TO	RQUE VS	HPM RY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-900+	ÐΥ	DAT	
				••										
LF55	LFSS	10	20	30	40	50	60		70	SUM				
294	.0	.7	• 2	• 3						1.2				
314	5.6	4P.8	20.8	2.8	• 2					78.1				
324	4.2	23.4	12.1	• 7						40.4				
330 339	1.5	7.8	1.8	• 2						11.4				
SUM	11.4	80.7	34.R	4.0	•2					131.1				
	M . Au	F60	BO:- :	084 5			Dece							
	MINUTES LESS	FOR TO	RGUE VS	30	M15510N	5FG.		HY	RATE 70	OF CLIMB	-900 •	BY	DAT	9
LESS	61.33	10	20	30	₩0	90	60		70	3 U m				
194				• 1						• 3				
314	1.7	15.0	5.6	• 8	•1					23.2				
324 330	. 9	A.9	3.4	•6						13.8				
339	1.1	4.0	1.1							6 • 2 • 2				
SUM	4.0	28.0	10.1	1.6	•1					43.7				
				084 50			Dece	P.	04-	0E C 144	-044	pv	04*	SL
	"["UTFS	ד אטיי זו	~GUF V5	PAM WA	m12210N			⊓ ₹		OF CLIMB	-7001	ΠŢ	URI	30
	LESS	10	20	30	40	50	60		70	SUM				
LESS			-							3.8				
294 314		1.9 168.4	.7 80.2	7.4	.4					275.6				
324		74.0	34.8	1.9	. 1					120.6				
330		27.0	5.2	. 2						35.8				
339										434 1				
SUM	33.1	271.3	120.9	10.3	• 4					436.1				
	MINUTES	FOR TOP	GUF V5	RPM PY	MISSION	SFG.	DESCNT .	ĦΥ	RATE	OF CLIMB	-600+	BY	OAT	3
				30	40	50	60		70	SUM				
ES5 294	LESS	10	20	30	→ 0	70	80		, ,	30				
314 324		•1								•1				
330														
339 5UM		.1								•1				
		F00	ocue us	U.D.W. & P.	M165164	656	DESCUT	pv	DATE	OF CLIMB	-600-	RY	OAT	4
	MINUTES LESS	FOP TO	20 20	3n	MI5510N	5F9.		£ . ¥	70	SUM	-6004	.,,	0.71	
LFSS		10	211	31.	70	,,,			. 3					
294														
314			1 • 1	1.0						2.1				
324 330														
324			1.1	1•0						2•1				

	MINISTE	FOR	TOPCHE V	e num bi		. ec.	n-crait	Α.						
										E OF CLIMB	-600+	PIY	OAT	
LESS	LESS	1	0 20	30	40	50	0 60		70	SUM				
294														
314	•	•	5 1.9							2.4				
324	•	•	1							•1				
330														
339 5LIM			- 1.0											
31.00		•	7 1.9							2 • 6				
	MIMUTES	FOR T	TORQUE VS	, ирм еч	MISSION	SFG.	DESCRIT.	RY	RATE	OF CLIMB	-600•	BY	OAT	
	LESS	10	0 20	30	40	50	60		70	SUM				
LESS.														
294		2.4	22.4							-4				
314 324	• 3	1.5		.8						28.2 10.5				
330		1	• 8.4	•6						•1				
339			• •							••				
SUM	• 3	5,3	3 32.0	1.5						39.1				
	MINUTES	FOR 1	FORQUE VS	, HPM BY	MISSION	SFG.	DESCHT.	ev	RATE	OF CLIMB	-600•	BY	OAT	
	LESS	10	0 20	30	40	50	60		70	SUM				
LESS		-												
294	2	.8		• 2	-					2.6				
314	3.5	89.2		16.0	• 7				1	248.9				
324	2.0 .9	30.3		•9 •1	•1					69.2 16.0				
339	• ,		, 1000	••						10.0				
SUM	8.5	124.7	7 185.5	17.3	. 8				Í	336.R				
	MINITES	FUR T	OBCHE VS	DOM BY	MISSION	erg.	DESCRIT.	RY	PATE	OF CLIMB	-600 •	BY	OAT	
											.		-	
	LF55	10	20	30	40	50	60		70	SUM				
LE55		. 0	1.3	.7	•2					2.2				
294 314	6.7	0. 70.4	65.7	7.6	•6					150.9				
374	3.3	33.1		1.6	•1					64.2				
330	1.2	9.3		• ?						15.2				
339														
SUM	11.2	112.9	97.5	10.0	•9				4	232.5				
	MINUTES	FOR T	neque V5	PLM BY	MISSION	SFG.	DESCNT .	RY	PATE	ne CLIMB	-600 •	BY	OAT	
	LESS	10		30	40	50	60		70	SUM				
LESS	•0	10	, ,	30		, .				•0				
294	•2	.7	• 2	• 3						1.5				
314	2.6	35.9	22.2	2.7						63.4				
324	.7	14.4	7.0	1.3						23.4				
330	• 6	9.4		• 3						15.0				
339														
SUM	· · 1	60.4	34.1	4.7					,	103.3				

	MINUTES	FOR TO	RGUF VS	-	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-300+	BY	OAT	
	LESS	10	20	30	40	50			70	SUM	-			
ESS	2000	. •		-		-			. •	••				
294		_								_				
314		. 2								•2				
324														
330														
339										. 3				
SUM		• 2								• 2				
	MINUTES	FOP TO	RGUE VS	BDM BA	M15510N	SFG.	DESCNT.	RY	RATE	OF CLIMB	-300•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LF55														
294														
314				• 1						•1				
324														
330														
339										. 1				
\$UM				•1						•1				
	*****	***						2						
	wIMULE2	FOR TO	ROUE VS	ыры нү	MISSION	SFG.	DESCHT.	PY	RATE	OF CLIMB	-300•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294														
314	•1	.4	•5	.4						1.3				
324			•1							• 1				
330 339														
SUM	•1	.4	.7	.4						1.4				
	MINUTES	FOP TO	BUUE VS	PPM RY	MISSION	SFG.	DESCNT.	RY	RATE	OF CLIMB	-300+	BY	OAT	
	LFS5	10	20	30	40	50			70	SUM				
LFS5			• •	J.,	~~	,	",0		70	30-				
294		•1	• 2	• 2						. 5				
314	• 1	1.3	13.3	3.6						18.3				
324	• 1	• 7	2.6	1.5						4.9				
330				• 1						• 1				
339 51 M	- 1	2 1	14.1	9 4										
3(~	•1	2.1	16.1	5.4						23.7				
	MINUTES	FOR TO	RGUE VE	S RPM RY	MISSION	SFG.	DESCHT.	BY	RATE	OF CLIMB	-300+	BY	OAT	
	LF55	10	20	30	40	50	60		70	SUM				
LE55		• •	-	•			***							
294		. 9	2.4	2.1						5.3				
314	2.3	4R.0	159.5	61.1	2.1					272.9				
324		15.0	38.2	18.7	•6					73.7				
330		1.2	6.7	2.6						11.2				
339 5UM		45.0	206.8	84.4	2.8					363.1				
3 U**	٠.،	02.0	200.6	0444	2.00					30301				
	MINUTES	FOR TO	RGUE VS	HPM PY	MISSION	SEG.	DESCRIT.	PY	RATE	OF CLIMB	-300+	BY	OAT	
			20	10	4.0		40		70	e w				
LESS	LF55	10 •1	20	30	40	50	60		10	5UM •1				
294		1.2	2.3	3.2	.5					7.2				
314	1.2	50.9	103.2	56.0	6.0				;	217.3				
324	9.6	58.6	55.9	7.7	.9					.32.8				
	1.7	12.1	5.0	. 9						19.7				
330														
339 5(IM		172.8		67.9	7.3					377.0				

TABLE XII - Continued

	*********	500 T	TOTHE VS	anm by	M15510N	erg.	DESCRIT.	PY	DATE	nF	CLIMB	-300+	BY	OAT	90
								•					-		
	LESS	10	20	30	40	50	60		70	Sul	.M • O				
E55	•0	2.2		- 2						3 .					
294	• 2	23.2		19.8	1.5				,	102.					
314	. 4	23.2		19.8	1.5				,	38.					
324	1.3	12.7		8.0 .6						17.					
330	1.3	7.4	P 9 1	• * *							-1				
339 5UM	2.2	45.5	84.5	28.7	1.5				•	162.					
30	6.00	• • •		£ 17 =	• •										
	MINUTES	FOH T	OPQUE VS	PPM PY	MISSION	SFG.	DESCHT.	, RY	RATE	OF	CLIMB	-300+	BY	CAT	SU
	LESS	10		30	40	50	60		70		∪M •1				
LE55		4.3		5.7	.5					16.					
314		123.9		141.0	9.6					612.					
324		123.9 87.0		36.0	1.5					250.					
330		20.7		4.2	• • •					48.					
339		•		• •	•					•	• 1				
SUM		234.0	0 474.6	186.7	11.6				1	927					
	MINUTE!	5 FOR 1	TORGUE VS	S RPM BY	Y MISSION	ı SFG.	, DESCHT	, RY	Y RATE	E OF	CLIMB	300•	BY	DAT	6
	LESS			30	40	50			70		SUM .				
LESS															
294	•		1	- 7							.9				
314		.1		.7							• 2				
324		•0	נ	• 1							• 4				
330															
339			1	- A						1	.0				
SUM		•1	1 •1	• A							•0				
	MINUTES	5 FOR T	TORGUE VS	, ярм яч	MISSION	I SFG.	DESCRI	, PY	/ RATE	OF	CLIMB	300•	84	DAT	7
LFS5	1 F 5 5	10	0 20	30	40	50	60		70	51	UM.				
294			.5	•0	-1						•6				
314		.5		3.6	.4					10.					
324		. 3		.6	i						.4				
330		•1		• 2	•						.5				
339			•	•											
SLIM		. 8	8 7.6	4.5	•5					13.	•5				
	MINUTES	FOP T	rnegue ve	YA MOH S	MISSION	i SFG.	DESCNT	. BY	/ RATE	OF	CLIMB	300•	вч	OAT	8
	LESS	10		30	40	50			70		UM				
LES5															
294				• 2	• 3						• 5				
314		1.2		4.3							•0				
324		. 4	4 1.5	.9	• 1						. A				
330	• 1	. 5								1.	• 0				
339)									.,					
SUM		2 • l	1 4.4	5.4	. 4					12.	.4				
	MINUTE!	5 FOR T	TORQUE VS	, ppm ny	Y MISSION	1 5FG.	DESCAT	. Ву	Y PATE	E OF	CLIMB	300•	BY	OAT	•
	L E 5 5	10	0 20	30	40	50	60		70	51	UM				
LE55															
294	,	•1									•1				
		. 3									•0				
314				_	• 1						. 7				
314 324	•	• 4			• 1										
314 324 330	•	.6		.1	•1						•1				
314 324	•		6 .3		•1					1.					

						c	DESCAIR.	av .		OF CL 188	300.	BY	OAT	SUP
١									70	OF CLIMB	300•		0-1	30
.E55	LESS	10	20	30	40	50	60		10	30-				
294		.1	.5	.3	. 3					1.2				
314		2.1	9.8	9.6	• 4					7.1				
324	- •	1.0	3.6 1.0	2.2	• 3					2.5				
330 339	•1	1 . 2	1.00	• 3										
SUM	•1	4.4	14.9	12.4	1.0					32.7				
	MINUTES	FOR TO	RQUE VS	HDM PY	MISSION	SFG.	DESCNT.	RY	RATE	OF CLIMB	600+	BY	OAT	4
	LF55	10	20	30	40	50	60		70	SUM				
LE55 294														
314		.1								• j				
324			• 1							•1				
330 339														
SUM		•1	•1							• 1				
	MINUTES	FOR TO	RQUE VS	RPM PY	MISSION	SEG.	DESCNT	PY	RATE	OF CLIMB	600•	BY	OAT	5
	LESS	10	20	30	40	50	60		70	SUM				
LES5	6633			30		-								
294														
314		.2	•1	• 2						•4				
324 330				• 1						••				
339														
SUM		•2	•1	• 2						•5				
								ο						
								ВУ		OF CLIMB	600•	BY	DAT	6
	LESS	10	20	3∩	40	50	60		70	SUM				
LF55 294														
314		. 1	. 3	.7						1-1				
324			•											
330 339														
SUM		.1	۶,	• 7						1.1				
	MIAULTES	. EOG T	onche VS	U0# 07	MT6610		DESCRI	. Av	DATE	OF CLIMB	600+	BY	OAT	
	LESS	10	20	30	40	50			70	SUM	3001		,	
LESS		10	£ . 1	317	70	,	. 50							
294		•1		• 3						. 4				
314		.3	1.3	2.0	•1					3.8 1.3				
324 330		• 1	•1	• 2	• 1					•1				
339				F. 11										
51 M		.5	2.4	2.5	•1					5.5				
	MINUTES	5 FOP TO	POUF VS	RPM PY	MISSIO	N SFG.	DESCNT	. 81	/ RATE	OF CLIMB	600•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
LESS					•1					•1				
294		•1		•1	•					•2 2•7				
314		.2	1.4	• A	• 2					1.6				
330		.3	. 5	í	.1					1.0				
339				• 1						. 1				
SUM	.0	1.1	2.4	1.7	• 3					5.6				

	MINUTES	FOR TOP	QUE VS	HPM BY	MISSION	SFG.	DESCRIT.	RY	RATE	OF CLIMB	600•	84	OAT	119
	LESS	10	20	30	40	50	60		70	SUM				
E55 294				• 1						•1				
314		-1	.8	•2						1.0				
324 330		.1	•2							•2				
339														
SLIM		•2	1.0	• 2						1.4				
	MINUTES	FOH TO	RGUE VS	-	MISSION	SFG.	DESCRIT.	ΑY	RATE	OF CLIMB	600•	BY	OAT	5
	LESS	10	20	30	40	50	60		70	SUM				
E55		.1	•0	•5	• 1					•1				
314		.9	3.9	3.9	. 3					9.1				
324 330		.5	1.7	•9	•1 •1					3.2				
339		• •	•7	•1	• 1					1.2				
SUM	•0	2.0	6 • 2	5.4	•5					14.2				
	MINUTES	FOR TOR	CUF VS	-	MISSION	SFG.	DESCAT.	BY	RATE	OF CLIMB	900•	BY	OAT	•
.E55	LESS	10	20	30	40	50	60		70	5UM				
294														
314			•1	•3						•3				
330 339			•1	.3						•5				
SUM	W18117FE	ECU TOO			MISSION	SEG.	DESCRIT.	RV I	DATE	OF CLIMB	900•	RY	OAT	8
	LE55	10	20	30	40	50	60		70	SUM				
F55	12.0													
314		.1	•1	• 1						•1				
330		• •	• •							•				
339 51 4		.1	•1	•1						•3				
30		••	••	••						•,				
	MINUTES	FOP TOP	RGUE VS	ROM RY	MISSION	SFG.	DESCRIT.	RY	RATE	OF CLIMB	900•	BY	OAT	
	LF55	10	20	30	40	50	60		70	SUM				
.F55 294										•				
324			•2	•0						• 2				
330 339		•1	•?											
5UM		•1	.4	•0						•5				
	MINUTES	FOR TOP	QUE VS	PPM PY	MISSION	SEG.	DESCHT.	P·	RATE	OF CLIMB	900•	BY	OAT	51
	LF55	10	20	30	40	50	A 0		70	SUM				
F55													3	
294 314			•2	. 4						•6				
324		. 1	• 2	• 1						•4				
330		• 1	• /							• -				

	MINUTES	FOR TORC	OUF VS	HPM RY	MISSION	SFG.	DESCRI.	BY	RATE	OF CLIMB	1200+	BY	OAT	7
	LESS	10	20	30	40	50	60		70	SUM	1600	-	•	٠
.E55										•				
314	•1	•		•1						•1				
330 339		•0	•0							•1				
SUM	•1	•0	•0	•1						•3				
	MINUTES	FOR TOR	QUE VS	RPM RY	MISSION	SEG.	DESCRI	, #Y	RATE	OF CLIMB	1200•	BY	OAT	į
1/6	LESS	10	20	30	40	50	60		10	SUM				
294 314														
324					•1					•1				
339 5UM					•1					•1				
	MINUTES	FOR TOR	QUF VS	RPM RY	MISSIO	N SFG.	DESCHT	. B1	Y PATE	OF CLIMB	1200+	BY	OAT	
LESS	LESS	10	20	30	40	50			70	SUM				
294 314	•		•1	•1						•2				
324 330	•			•0						•0				
339 SUM)		. 1	•0						•0				
30			•1	•2						•3				
	MINUTES	FOR TOR								CF CLIMB	1200•	84	OAT	SU
LF55	LESS	10	20	30	40	50	60		70	SUM				
294 314			•1	•2						•3				
324		•		-1	-					•1				
330 339		•0	•0	•0	•1									
SUM		•0	•1	•3	•1					•6				
	MINUTES	FOR TOR	GUF VS	при ву	MISSION	SFG.	DESCRI	PY	RATE	OF CLIMB	1500•	BY	OAT	1
LESS	LESS	10	20	30	40	50	60		70	5UM				
294 314 324 330					•1					•1				
339 5(IM					•1					•1				
,	MINUTES	FOR TORG	UE VS 1	HPM RY	MISSION	SEG.	DESCNT.	RY	RATE	OF CLIMB	1500.	BY	OAT	9
.E55	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330			•0	•0						•1				
339 5UM			•0	•0						•1				

TABLE XII - Continued MINUTES FOR TORQUE VS HPM BY MISSION SEG. DESCRIT. BY RATE OF CLIMB 1500. BY DAT SUM SUM 50 60 70 LESS 294 314 324 330 339 SUM . 2 •0 .0 .0 .2 STEADY. BY RATE OF CLIMB +1800. BY OAT 70 MINUTES FOR TORQUE VS RPM RY MISSION SEG. 20 70 LESS. 10 40 SUM LESS 294 314 324 330 339 5UM • 3 . 1 .0 .0 • 2 .1 .0 MINUTES FOR TORQUE VS HOM BY MISSION SEG. STEADY. BY RATE OF CLIMB -1800. BY DAT 80 SUM 20 30 50 60 70 LESS 10 LESS 294 314 324 330 339 5UM • 5 . 1 . 2 . 2 .5 . i . 2 • 2 90 MINUTES FOR THROUF VS HOW BY MISSION SEG. STEADY. BY RATE OF CLIMB -1800. BY OAT 50 LESS 20 LESS 294 314 324 330 339 - 1 .1 • 1 . 1 SUM MINUTES FOR TORQUE VS RPM BY MISSION SEG. STEADY. BY RATE OF CLIMB -1800. BY DAT SUM 40 70 SUM 20 30 LESS 10 LESS 294 314 324 330 339 SUM . 1 .6 . 2 . 3 • 2 .3 • 2 . 2 • 3 HPM BY MISSION SEG. STEADY. BY RATE OF CLIMB -1500. 60 MINUTES FOR TOPGUE VS 50 70 SUM 20 LESS 294 314 324 330 339 5UM •1 • 1 ٠1

• 2

. 1

• 1

	MINUTES	FOR	TORGUE	. vs	-	MISSION	SEG.	STEADY.	ĦΥ	RATE	OF CLIMB	-1500+	BY	OAT	7
	LESS	1	0	20	30	40	50	60		70	SUM				
LESS															
294 314			3	.3							•7				
324			2	• 2	•1						. 5				
330				• 1							•1				
339 SLIM			,5	.6	-1						1.2				
••				••	•						•••				
	MINUTES	FOP	TORQUE	V 5	HPM PY	MISSION	SEG.	STEADY.	RY	RATE	OF CLIMB	-1500+	RY	OAT	80
	LESS	1	0	20	30	40	50	60		70	SUM				
LESS															
294 314				• 1							•1				
324		•	3	• 3	.2						.7				
330 339				. 3							• 3				
SUM			3	• 7	•2						1.1				
	MINUTES	FOR	TORGUE	V5	HPM RY			STEADY.	AY			-1500+	RY	DAT	90
LESS	LESS	1	0	20	30	40	50	60		70	SUM				
294					_										
314					•1						•1				
324 330															
339											1				
SLIM					•1						•1				
	MINUTES	FOR 1	TOROUE	vs	UDM RY	MISSION	SEG.	STEADY.	RV	DATE	OF CLIMB	-1800-	RV	OAT	SUM
												-13001		0.71	3011
LESS	LESS	10	,	20	30	40	50	60		70	SUM				
294											_				
314				• 4	•1						•9 1•2				
330		•		. 4	• •						4				
339					_										
SUM		• '	, 1	• 3	•3						2.5				
	MINUTES	FOR 1	TORGUE	V5		MISSION	SEG.	STFADY.	Pγ	RATE	OF CLIMB	-1200+	ВУ	OAT	60
	LESS	10		20	30	40	50	60		70	SUM				
.E55	2000	• •		- •	3.7		,,	0.0							
294 314				• 1							•1				
324				. i							. i				
330															
339 5UM				• 2							•2				
	MINUTES	FOP	TORGUE	V 5	ROM RY	MISSION	SFG.	STEADY.	PY	RATE	OF CLIMB	-1200+	BY	OAT	70
	LESS	1	0	20	30	40	50	60		70	SUM				
LFSS															
294		1.	0 1	. 3	.3						3.2				
294 314	. 6														
314 324	• 5	•	1	. 4	.1						•6				
314	•6		1								•6				

TABLE XII - Continued

				TA	BLE X	ΙΙ	- Con	ıti	.nue	∌d ———				
	MINUTES	FOR TOP	GUF V5	прм ду	MISSION	SFG.	STEADY,	, PY	PATE	OF CLIMB	-1200+	BY	OAT	
.E\$5	LESS	10	20	30	40	50			70	SUM				
294 314		.4	.4	•1						.9				
324 330		.5		•2						1.0				
339 5(IM		.9	. 7	.8						2.4				
	************	700 TOR	one VS	пом ру	415510N	SEG.	STFADY.	AY	PATE	OF CLIMB	-1200+	BY	DAT	90
	LESS	FOR YORK	20 20	30	#15510N	5FG.	60		70	SUM				
F55 294														
314		•2	•2	•2						•3				
330		•	•1	•1						. 2				
339 5(1M		•3	•3	•2						.8				
	MINUTES	FOR TOR	GUE VS	BDM BA	MISSION	SFG.	STEADY.	PY	RATE	OF CLIMB	-1200 •	RY	OAT	SUI
.E55	LFS5	10	20	30	40	50			70	SUM				
294	.6	1.6	1.8	•5						4.5				
324 330		.,7	1.1	• 2						2.0				
339 5UM	.6	2.2	3.1	1.3						7.2				
										* ME			- 4 4	
								, BY		OF CLIMB	-900∙	BY	CAY	5
LESS		10	20	an an	40	50	60		70	SUM				
294 314				•1						•1				
324				• 1						•1				
339 5UM				• 2						•2				
	MINUTES	S FOR TO	PGUF V5	, hbm ba	/ MISSION	I SFG.	STEADY	. BY	RATE	E OF CLIMB	900•	BY	OAT	
	LESS	10	20	30	40	50			70	SUM				
LE55 294														
314		.1	•1	• i • i						•1				
330 339														
SUM		•1	• 2	• 2						•5				
								PY		OF CLIMB	-900•	BY	OAT	7
ES5	LF55	10	20	30	40	50	40		70	SUM				
294 314	•6	4.2	6.7	•1 1•9	•1					•1 13•4				
324 330		.6	1.9	- 4						2.9				
339 5UM	•6	4.8	8.9	2.3	•1					16.7				

TABLE XII - Continued

	M	CAR		feren =					e.					
	MINUTES	"OF TO	MGUZ VS	HEN HY	MISSION	5€G.	STEADY.	BY	RATE	OF CLIMB	-900•	BY	DAT	80
	LESS	10	20	30	40	50	60		70	SUM				
LESS														
294														
314		. 2	3.3	. 9	•2	. 1				4.7				
324		. 9	2.5	1.3	• 1					4.8				
330		. 1	1.5	.7						2.2				
339		•		•										
SUM		1.2	7.3	2.9	• 2	•1				11.7				
-					• •	• •				1407				
	MINUTES	FOR TOP	POUE VS	BOM BA	MISSION	SEG.	STEADY.	BY	RATE	OF CLIMB	-900 •	87	CAT	90
	LESS	10	20	30	40	50	60		70	SUM				
LESS		• •					-		. •					
294														
314			. 8	•2						1.0				
			.7	. 3	. 1					1.1				
324			• '		• •									
330				• 1						•1				
339				_						9.1				
SUM			1.5	. 5	•1					2.1				
	MINUTES	FOR TO	ROUF VS	RPH BY	MISSION	SFG.	STEADY.	FY	RATE	OF CLIMB	-900 •	BY	OAT	SUM
						-								
	LESS	10	20	30	40	50	60		70	SUM				
LESS	2633				. •									
				.1						•1				
294	4	4.5	10.9	3.1	•2	.1				19.3				
314	.6	1.6	5.3	2.1	.2	• • •				9.2				
324					••					2.6				
330		.1	1.7	.7										
339			17.9	6.1	.4	.1				31.2				
SUM	.6	6.1	1109	991	• •	•••								
	MINUTES	FOR TOR	CUF VS	PPM RY	MISSION	SFG.	STEADY.	41s	RATE	OF CLIMB	-600+	ĦΥ	CAT	40
	LESS	10	70	30	40	50	60		70	SUM				
LESS		-												
294														
314				2.4						2.4				
324														
330														
339														
				2.4						2.4				
SUM				207										1
	M = M := = =	CAD	0011e 11e		MISSIAN	SEG	STEADY.	BY	RATE	OF CLIMB	4600 ·	BY	CAT	50
	#INUTES	FOR TO	ANDE AS	THE DI	w13210M	3500	215MD.A	- 1	~- 16	J41. J	200			
					4.0		60		70	SUM				
	LESS	10	20	30	40	50	60		70	30"				
LESS.														
294				_						1.4				1
314			1.3	• 1						1.4				1
324				•2						• 2				ŀ
330														1
339														
SLIM			1.3	.4						1.7				
]
	MINITER	FOR TOR	RQUE VS	HPM RY	MISSION	SFG.	STEADY.	PY	RATE	OF CLIMB	-600-	BY	DAT	60
								-			-001	•••	J	-0
			20	30	40	50	60		70	SUM				ĺ
	LESS	10	20				•		. •					I I
LESS		10	20	•										
		10	20	••										ł
LESS 294		10								7.3				1
LESS 294 314			6.2	1.1						7.3				
LESS 294 314 324		.2	6.2							4.3				
LESS 294 314 324 330			6.2	1.1										
LESS 294 314 324 330 339		•2	6.2 2.6 3.1	1.1						4.3 3.1				
LESS 294 314 324 330			6.2	1.1						4.3				
LESS 294 314 324 330 339		•2	6.2 2.6 3.1	1.1						4.3 3.1				

	MINUTES	FOR TO	RCUE VS	HPM BY	MISSION	SFG.	STEADY.	RΥ	RATE	OF CLIMB	-600•	BY	OAT	70
<i>-</i>	LESS	10	20	30	40	50	60		70	SUM				
E55 294			• ?	.3						.5				
314 324	•1	6.2	44.6	16.3	• 3					67.5 17.9				
330		.1	3.4	. 9						4.4				
339 Sum	•1	7.3	62.4	20.2	•3					90.3				
	MINUTES	FOR TO	RGUF VS	SDM BA	MISSION	SFG.	STEADY.	Pγ	RATE	OF CLIMB	-600•	BY	OAT	8
E55	LFSS	10	20	30	40	50	60		70	SUM				
294				.4						.4				
314 324		1.6	24.6 17.7	7.0 2.7	•4	•1				33.7 21.4				
330		.4	11.0	2.2						13.6				
339 St/M		2.9	53.3	12.3	.4	•1				69.1				
														-
	MINUTES	FOR TO	POUF V5	RPM RY	MISSION			BY		OF CLIMB	-600•	PΥ	OAT	90
E55	LESS	10	20	30	40	50	60		70	SUM.				
294 314		.0	5.4	-1 2.8						•1 8•2				
324		• 2	2.8	.5						3.5				
330 339			•7											
SUM		•2	8.8	3.4						12.5				
	MINUTES	FOP TO	PCUF V5	HDM RY	M15510N	SFG.	STEADY.	Pγ	RATE	OF CLIMB	-600•	84	OAT	SU
	LESS	10	20	30	40	50	40		70	SUM				
E55 294			•2	. A						1.0				
314	•1	7.9	82.1	29.6	•7	• 1				120.5				
324		2.3	37.2 18.2	7.R 3.1						47.3 21.8				
339 SLIM	.1	10.7	137.7	41.3	.7	. 1				190.6				
								-		6: 140		.		
								ΗΥ		OF CLIMB	- 300 •	C T	UAT	4
,E55		10	20	30	40	50	50		70	30m				
294 314				16.1						16.1				
324														
330 339														
SUM				16.1						16.1				
	MINUTES	S FOR TO	PCUF V	S HOM A	Y MISSIN	SFG.	STEADY	, A	Y RATE	E OF CLIMB	-300 •	EY	OAT	•
LF55	LESS	10	20	30	40	50	60		70	SUM				
294	, 1		30 .							48.3				
314			30 • 1 3 • 6	18.2 27.6						31.2				
330)													
339 SUM			33.7	45.8						79.5				

	MINISTES	FOR T	agaire V	E SOM BY	MT4510N	erg.	STEADY.	RY	PATE	OF CLIMB	-100.	BY	OAT	
			_								-300.		•	
	LESS	10	20	30	40	50	60		70	SUM				
294			.4	-5						.9				
314			197.8							326.4				
324		.1								97.8				
330			1.1							10.2				
339														
SUM		• •	233.3	505.1						435.4				
	MINUTES	FOR TO	DRGUE VS	S PPM RY	MISSION	SFG.	STEADY.	BY	PATE	OF CLIMB	-300•	84	OAT	7
	LESS	10	20	30	40	50	60		70	SUM				
.F55 294			6.6	15.4	1.5					23.5				
314			1481.1		5.8	.5			21	765.1				
324			358.8	362.7	2.5				7	724.3				
330			53.5	65.9					7	119.4				
339 5UM		2.9	1899.9	1719.2	9.8	.5			36	632.3				
	***********************	SAR T	annie V	- DOM RY	MICSION	erg.	CTEANY.	RY	PATE	OF CLIMB	-300+	BY	DAT	- 1
										SUM	-304		U ,	
LESS		10			40	50	60		70					
294			3.5		14.3				1.0	17.2				
314		5.4			14.3					005.7 540.2				
324 330		1.4			4.1				-	171.6				
339														
SUM		7.7	1001.7	706.6	18.8				17	734.7				
	MINUTES	FOR T	ORQUE V	S RPM RY	MISSION	SFG.	STEADY.	RY	RATE	OF CLIMB	-300+	BY	OAT	•
	LESS	10			40	50			70	SUM				
LESS		• -	-			-								
294			.8		• 3					4.7				
314		1.4	147.4	243.4	5.5				?	397.7				
324		-5			2.0					91•7 29•7				
330 339		.5	19.1	10.1						2901				
SLIM		2.4	223.7	290.0	7.8				•	523.8				
					- 1 - 1			~~		e: 1MB	300	RY	OAT	SI
	MINUTES	, FOR TO						BY		OF CLIMB	-300+	0.	UF.	•
	LESS	10	20	30	40	50	60		70	SUM				
LESS			11.3	32.9	2.2					46.4				
314		5.0	2419.2		25.6	.5				559.4				
324		6.2	790.9	679.5	8.6				1	485.2				
330		1.9	170.9	158.1						330.9				
339					94 - 4	.5	1		6	421.9				
SUM		13.0	3392.2	2979.8	36.4	• •			=	72.64.				
	MINUTES	5 FCP T	COUF V	S HOM PY	/ MISSION	1 SFG.	STEADY.	, BY	RATE	OF CLIMB	300•	BY	OAT	
	LESS	10	20	3 n	40	50	60		70	SUM				
LFSS		• •	•	-					, ,	-				
294														
				. 4						•4				
314														
324	•													
	,)													

				1 A	BLE X	11	- 601	1 L.	nue	u				
	MIMUTES	FOR TOR	CUF V5	нрм ру	MISSION	SFG.	STEADY.	ВУ	RATE	OF CLIMB	300•	8*	OAT	5
LESS	LF55	10	20	30	40	50	60		70	SUM				
294 314 324 330				1.0						1.0				
339 5UM				1 • 1						1.1				
	MINUTES	FOR TOP	QUF VS	RPM RY	MISSION	SFG.	STEADY.	RY	RATE	OF CLIMB	300 •	BY	OAT	6
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330			1.6	3.2 3.5						4.9 3.6				
339 5UM			1.8	6.7						A.5				
	MINUTES	FOR TOP	ROUE VS	RPM RY	MISSION	SFG.	STEADY.	ВҮ	RATE	OF CLIMB	300+	BY	OAT	7
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324 330		•1	25.8 3.6	37.2 7.6	•5					63.6 11.3				
339 SUM		• 2	30.0	45.3	.5					76.0				
	MINUTES	FOR TO	RGUE VS	HPM PY	MISSION	SFG.	STEADY	ВУ	RATE	OF CLIMB	300+	BY	OAT	
	LESS	10	20	30	40	50			70	SUM				
LE55 294			•2	•2						.4				
314		• 1	8.5	15.6	•6					24.8 16.2				
324 330		•1	7.0	A.5	•6					10.6				
339 5UM		•2	18.5	31.9	1.2					51.9				
		FOR 700	oue vs	DOM BY	MISSION	SEG.	STEADY.	ВУ	RATE	OF CLIMB	300 •	BY	OAT	9
	LESS	10	20	30	40	50			70	SUM				
LESS	PE33	••	•							•4				
294 314			2.1	7.4	•2					9.6				
324			2.1	.9	•3					3."				
330			• 2	• 2										
339 5UM			4.3	8.8	•4					13.6				
	MIPUTES	FOR TO	POUF VS	HDM RY	MISSION	SFG.	STEATY	Рγ	RATE	OF CLIMB	300•	PY	OAT	50
LFSS	LESS	10	50	30	40	50	60		70	SUM				
294		_	• 5	8						1.2				
314 324		• 2 • 1	38.0 12.8	64.6 20.6	1.3					104.2 34.4				
330		i	3.3	8.2	• /					11.7				
339														

					TABLE				-					
	MINUTES	S FOP TO	RGUE VS	S RPM R'	Y M155101	N SFG.	STEADY	. BY	RATE	E OF CLIMB	600+	87	OAT	
	LE55		20		40	50			70	SUM				
294 314 324 330	6		•	•2						•2				
339 5UM				•2						•2				
	MINUTES	, FOR TOR	RQUE VS	RPM BY	MISSION	SEG.	STEADY.	ВУ	RATE	OF CLIMB	600•	87	OAT	
.ESS		10	20	30	40	50	60		70	SUM				
294 314 324 330 339			•2	•1						•2				
339 5UM			• 2	•3						.,5				
	MINUTES	FOR TOR	QUE VS	RPM BY	MISSION	SEG.	STEADY.	RY	RATE	OF CLIMB	600+	BY	OAT	
.ES5		10	20	30	40	50	60		70	SUM				
294 314			2.7	7.2	•1					9.9				
324			1.0	1.1						2.0				
330 339				.5						•5				
SUM			3.6	8.8	•1					12.5				
1	MINUTES	FOR TOP	GUE VS	RPM BY	MISSION	SEG.	STFADY	BY	RATE	OF CLIMB	600•	BY	OAT	
	LESS	10	20	30	40	50	60		70	SUM				
E55														
294 314			2.5	5.0	•1					7.6				
324			. 9	3.1	.1					4.1				
330 339			.6	1.2						1.8				
339 SUM			4.0	9.3	•2					13.5				
	MINUTES	FOR TOR	IQUE VS	RPM BY	MISSION	SFG.	STEADY.	BY	RATE	OF CLIMB	600•	BY	OAT	
	LESS	10	20	30	40	50			70	SUM				
.E55 294				11										
314			• 3	•9						1.2				
324 330			.2	• 5						• 2				
339 SUM			•6	1.4						2.0				
*										OF CLIMB	600+	BY	OAT	9
.E55 294	LESS	10	20	30	40	50	60		70	SUM				
314			5.6	13.4	•2					19.2				
324			2.0	4.9 1.8	•1					7.0 2.5				
330														
SUM			8.4	20.1	• 3					28.7				

LESS 294 314 324 330 339 5UM	LESS	10	20	•2	40	50		RY	RATE 70	SUM	900•	BY	OAT	
294 314 324 330 339 5UM	MINUTES	FOR TOPO	GUF VS	•2 •2 RPM RY			60		70					
294 314 324 330 339 5UM				•2 •2	MISSION	eec				•2				
5UM E55 294 314				крм му	MISSION	ee6								
E55 294 314					MISSION	256				•2				
294 314	LESS	10	20	30		3r U e	STFADY.	Pγ	RATE	OF CLIMB	900•	BY	OAT	6
314					40	50	60		70	SUM				
330				•1						•1				
339 SUM				•1						•1				
	MINUTES	FOR TOP	OF VS	нрм Рү	M15510N	SFG.	STEADY.	Вү	PATE	OF CLIMB	900•	BY	OAT	7
Fee	LESS	10	20	30	40	50	60		70	SUM				
.E55 294 314 324			1.4	1.1	.5					3.0				
330			••	.4						•4				
339 5LIM			1.5	1.8	.5					3.9				
,	MINUTES	FOP TOR	QUE VS	HOM HY	MISSION	SFG.	STEADY.	ВУ	RATE	OF CLIMB	900•	BY	OAT	
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314			• 7	1.1						1.8 1.2				
324 330		.1	.4	• A						•3				
339 5UM		•1	1.1	2.0						3.3				
	MINUTES	FOR TOP	QUE VS	RPM RY	MISSION	SFG.	STEADY.	RY	RATE	OF CLIMB	900•	BY	OAT	9
LESS	LESS	10	20	30	40	50	60		70	SUM				
294 314 324			•1	•1	•1					•3				
330 339 SUM			•1	•0	•1					•6				
	MINUTES	FOR TOR	CUF V5	yri was	M15510N	srg.	STFARY.	PΥ	RATE	OF CLIMB	900+	ВУ	DAT	\$U
	LESS	10	20	30	40	50	60		70	SUM				
LESS 294			_	_	_					5.3				
314 324			2.2	1.5	•7					2.0				
330 339		.1		.6						•7				

	MINUTES	FOR TOR	OUF V5	RPM RY	MISSION	SFG.	STEADY.	PΥ	RATE	OF CLIMB	1200•	BY	OAT	5
	LESS	10	20	30	40	50	60		70	SUM				
LES5 294														
314				-1						•1				
324 330														
339 5UM				•1						•1				
	"INUTES	FOP TOP	GLIE VS	HPM PY	MISSION	SEG.	STEADY.	84	RATE	OF CLIMB	1200•	BY	DAT	7
	LESS	10	20	30	40	50	60		70	SUM				
LES5 294														
314 324			• 2	•1	•6					•9				
330				••										
339 SUM		•	• 2	• 2	.6					1.0				
	MINUTES	FOR TORG	OUE VS	-	MISSION	SFG.	STEADY.	PY	RATE	OF CLIMB	1200•	BY	OAT	8
	LESS	10	20	30	40	50	60		70	5UM				
294														
314				•1						•1				
324 330			.3	•3	•1					• 3				
339 SUM			.3	.7	•1					1.0				
	MINUTES	FOR TOR	OUF VS	RPM PY	MISSION	SFG.	STEADY.	BY	RATE	OF CLIMB	1200•	BY	OAT	9
	LFS5	10	20	30	40	50	60		70	SUM				
LE55 294														
314			• 1	• 1						• 2				
330														
339 S(IM			-1	•1						•2				
	MINUTES	FOR TORK	QUE VS	HPM BY	M15510N	SFG.	STEADY.	RY	RATE	OF CLIMB	1200•	BY	OAT	SU
	LESS	10	20	30	40	50	60		70	SUM				
LF55 294														
314			•2	• 4	•6					1.3				
330			• 3	• 3	••					.6				
339 SUM			• 5	1.0	•7					2.3				
		FOR		DB14 5										
								ĐΫ		OF CLIMB	1800	۳Y	CAT	8
F55	LESS	10	20	30	40	50	60		70	SUM				
294 314														
324				• 2						•2				
330 339														
SUM				• 2						•2				

TABLE XII - Concluded

7	MINUTES	FOR	TORGUE	V5	-	MISSION	SFG.	S, FADY.	PY	RATE	OF CLIMB	1800.	6A	DAT	SUP
	LE55		10	20	30	40	50			70	SUM				
.ES5															
294															
314					•?						• 2				
330															
339 504					• 2						•2				
5U~					•										
	MINUTES	FOR	TORGU	F VS	ye wee	MISSION	SFG.	STEADY	. PY	/ RATE	E OF CLIMB	2100•	BY	OAT	7
LF55	LE55		10	20	30	40	50	60		70	SUM				
294															
314					• 1						•1				
324 330															
339															
SUM					•1						• 1				
	MINUTES	FOR	TORGUE	V 5	RPM RY	MISSION	SFG.	STEADY.	PY	PATE	OF CLIMB	2100•	PY	DAT	SU
	LE55	•	10	20	30	40	50	60		70	SUM				
LESS															
294 314					- 1						•1				
324															
330															
339 5(IM					•1						•1				
	MINUTES	FOR	TORGUE	V 5	нрм рү	MISSION	SFG.	StiM.	PY	RATE	OF CLIMB	SUM.	BY	OAT	SU
	LESS		10	20	30	40	50	40		70	SUM				
LESS	.6		• 1	. ,	21 0	• 1					.8 147.3				
294 314	3.7 131.3	14.	.4 23 .8 3472	3.7 2.1 ⁻	81.9 3917.6	23.7 373.8	1.4				566.1				
324			.2 1154			124.0	• •			28	803.4				
330	25.1		.6 264		434.4	9.9				(644.0				
339	. 4				• 1					121	•5				

TABLE XIII. TIME FOR LONGITUDINAL CYCLIC BOOST TUBE STEADY LOAD VERSUS AIRSPEED BY WEIGHT AND ALTITUDE

	M 1 Am	FOC		Aut														
.ESS 40 60 65 70	MENUTES LESS	-450	-400	-350	-300	-250	-200	6000. -150	-100 -7	100 •4 •1	150 150 .3	200	250	300	350	400	450	SU
75 80 85 90 95 100 105 110							٠	, 45°					. 🗸	wij #Y	٠.			
120 SUM									.7	.4	.4							1
	MINUTES	FOR CY	cute u	ONG VS	AIRSPEED	BY WEI	GHT	6000•	ey A	LTITUDE	100	0						
.ESS 40 60 65 70 75 80 85 90 95 100 105 110 115	LESS	-450	-400	-350	-300	-250	+200	-150 3.6	-100 54-1 15-2 3-6 2-4 1-1 1-5 1-6 1-5	100 6.5 7.0 2.4 3.3 2.1 1.6 2.0 .3 .4	150 1.1 2.7 1.1 1.5 5.1 1.9 1.9 1.9	200 1.2 1.2 .9 1.7 2.8 .8	.1 .3 .8 1.0	300	350	400	450	SUM 65, 25, 7, 8, 7,
120 SUM							.2	3,6	82.3	26.4	19.6	8,3	2,2					142
	MINUTES	FOR CY	CLIC L	ONG VS	AIRSPEED	BY WEI		6000		LTITUDE	200							
ESS 40 60 65 70 75 80 85 90 105 110 115 120 5UM	LFSS	-450	•400	-350	-300	-2 0	-200	-150	-100 44.5 8.3 3.7 2.5 1.6 2.6 3.9 9.0 14.6 9.1	100 9.3 11.6 7.6 7.3 9.0 10.3 16.4 27.5 24.3 3.7 .6	150 1.6 11.8 7.3 16.8 19.7 44.4 71.0 63.4 91.5 38.3 9.1 1.2 .2	200 5.0 3.8 2.8 6.8 22.3 49.5 58.2 40.8 21.6 10.4 4.2 .6	250 •1 •0 2•1 4•3 7•3 6•4 1•9 •6	300	350	400	450	5UM 55. 36. 22. 27. 38. 145. 105. 108. 94. 24.
	MINUTES LESS	FOR CY	-400		AIRSPEED -300		-200	6000+ -150		100	500 150	200 0	250	100	150	400	440	SU
55 40		•		,,,			*"	-,,,		1.7	3.2			,,,,	- , , ,	-50	-,0	•••
60 65 70 75 80 85 90 95										.4 .2 .2 .0 .7 2.2	43,2 43,2 43,2 43,2	2.0 9.1 28.2 6.0 1.9 1.2	1.0					4 15 73 40 11
10																		

						TAB	LE X	(111	-	Cont	inu	ed						
LESS 40 60 65 75 80 85 90 95 100 115 115 115 115 115 115 115 115 11	MI^1∪TF55 LF55	FOR CY -450	-400	-390	-300	-250	1GHT -200 .2	6000. -150 3.6	-100 99.4 23.6 7.6 4.8 2.7 4.2 5.5 10.6 15.7 8.2	100 15.8 20.7 10.6 11.0 12.1 12.2 18.4 28.5 48.3 24.7 .8	150 2.7 18.0 8.9 18.6 25.6 48.9 79.0 128.5 125.1 47.8 9.3 1.2	200 5.0 4.0 4.0 7.6 26.0 61.4 87.2 47.3 23.5 11.8 4.3	250 •1 •1 •0 2•2 ••6 9•2 7•5 1.9 •6 •0	300	350	400	450	SUM 121.7 67.3 30.4 48.0 93.4 168.9 263.8 106.1 26.0 6.4
	MINISTER	E00 C	(C) 25 16	me ue			1647	3000										
LESS 40 60 65 70 75 80 85 95 100 105 110	MINUTES LFSS	-490	-400	-350	-300	-250	-20n	7000• =150	e100 27.3 1.9 .0 .0	100 2.0 2.0 2.0 .0 .0 .2 .0 .2	150 •4 •8 •3 •1 •0 •0 •1 •2 3•0 4•1	.0	•0	300	350	400	450	SUM 29.6 4.7 .7 .2 .1 .3 .1 .3 .5 .5 .2 4.3
SUM									29.8	6.8	9,4	•2	•0					46.2
	MINUTES	FOR CY	CLIC LO	ING VS	AIRSPEED	BY WE	TGHT	7000.	6Y (ALTITUDE	100	0						
LESS 40 60 65 70 75 80 85 95 100 105 110	LF55	-450	-400	-350	-300	-250	-200	-150 3.9	-100 302.8 48.6 7.9 5.9 48.6 3.0 2.1 1.5 .7	100 42.8 55.7 18.9 21.3 15.0 15.2 10.8 7.1 5.3 1.4	150 7.8 20.1 11.0 12.6 18.8 17.0 15.1 8.6 10.3 5.3 1.6 .2	200 .7 6.6 4.0 4.1 3.9 7.9 10.0 17.9 7.0 3.4 1.7 .5	250 .8 1.3 .3 .6 .5 1.6 2.2 8.4 2.4 3.9 2.2 3.0 .7	300 .7 .3 .4 .1 .1 .1 .1 .1 .1 .1 .4 .2	350	•00	450	SUM 359.0 193.1 42.4 44.9 44.8 40.6 44.9 26.9 15.6 6.3 5.9
120 SUM							•2	3.9	377.7	194.2	129.3	69.6	27.9	6.4		•0		809.3
	MINUTES	FOR C1	YCLIC LO	ONG VS	AIRSPEE	BY WE	TIGHT	7000+	87	ALTITUDE	200	0						
LESS 40 65 70 75 85 95 100 105 110	LESS	-450	-400	-350	-300	-250	-2 00	=150 •1	-100 154.4 30.8 8.7 10.1 7.4 9.2 6.7 18.5 32.5 20.0 5.4	124.9 182.5 227.5	150 13.0 57.2 43.2 56.4 130.1 294.6 468.0 632.6 303.7 80.8 12.3	200 .3 13.7 19.7 31.4 47.1 167.0 227.7 150.7 50.5 15.0 4.2 .9	1:1 .4 1:4 2:3 5:0 15:3 39:6 31:8 13:0 6:0	300 .3 .6 .8 2.3 1.7 3.5 7.4 5.9 .5	.1	400	450	SUM 195.4 192.3 138.1 166.4 215.8 338.1 667.7 887.7 1125.3 519.6 159.0 29.8 11.6
120 5UM								•1	304.3	1336.1	2183.5	779.7	117.6	23.1	. 3			4744.7

						TA	BLE	XII	I -	Cor	tin	ued						
LESS 60 60 70 75 90 95 100 105 110 115 120 SUM	MTMUTES LESS	FOR C =450	+ CLIC (-+ 00	-390	AIRSPEED -300	-290	-200	7000. -150	-100 -1	7.9 8.0 3.2 .0	500 150 11.99 1.92 3.22 2.86 17.0 18.7 6.2 1.5	200 •1 2.9 2.8 3.3 10.5 16.0 4.3 •1	250 •1	300	350	600	450	SUM
	#INUTF5	FOR C	YCLIC I	_ONG V5	ATRSPEED) BY WE	IGHT	7000+	87	ALTITUDE	1000	00						
LESS 40 60 65 70 75 80 90 95 100 105	L F 55	-450	-400	-390	-300	-250	-200	-150	-100	100 .5 .1 .6	150 .0 .3 .5 .3 4.4 2.3	1.2	250	300	350	400	450	SUM 2.3 .1 .9 .9 .3 .3 .4 .4 2.3 1.2
115 120 Sum				*					1.7	1.2	7,8	2.4						13.1
,	MINUTES	FOR C	ACTIC I	ONG VS	AIRSPEED	84 ME	IGHT	7000.	84	ALTITUDE	SU	M						
LESS 40 60 65 75 80 85 90 95 100 115	LESS	-450	-400	-350	-300	-250	-Z00 •2	-150 4.0	-100 -684-5 -63-1 16-9 16-0 12-0 12-3 20-1 33-2 20-6 -9	100 72.5 149.3 84.9 88.6 98.7 142.6 195.8 236.5 143.3 49.4 11.8 8.1	150 21.2 80.1 55.8 72.7 111.8 154.8 154.8 649.3 311.2 497.8 649.3 313.6 87.9 13.1 2.0	200 .9 20.5 23.7 38.4 38.1 78.3 187.5 263.7 174.9 59.3 17.0 5.9	250 2.4 .7 2.0 2.8 6.6 17.6 34.2 16.9 8.3 4.6	300 1.0 .9 1.2 2.4 1.9 3.9 7.1 1.6	350 •1 •2	•00	490	SUM 584.1 336.3 182.7 249.8 396.4 744.7 1074.9 1184.9 148.3 35.8 1.1
120 5UM							,2	4.0	713.6	1567.5	2391.5		145.6	29.5	.3	.0		5762.1
,	MINUTES	FOR C	VCLIC L	ONG VS	AIRSPEED	RY WF	IGHT	#000·	RY /	ALTITUÐE	LES	.5						
LESS 40 60 70 75 80 95 100 105 110	LF55	-450	-400	-350	-300	⇒25 0	-200	=150 •7	-100 33-8 2-2 -2	100 2.4 2.3 .9 .3 .1 .1	150 •5 •6 •5 •3 •1 •0	200	250	300	350	400	450	SUM 37.5 5.3 1.0 0.2 0.2 0.2
SUM								.7	36.2	6.2	2.1	.7						45.9

						TABI	LE XI	II -	Con	tin	ued						30
LES55 600 601 700 755 800 951 100 1100	£ F 5 5	FOR C1 -450	-400	ONG V5 -350	AIRSPEED -300		200 -150		2 54.2 9 22.6 0 21.1 6 17.7 9 14.9 6 13.9 9 11.6	190 190 9.6 18.6 12.5 12.5 12.9 16.6 18.6 7.4	200 1.5 3.7 5.1 4.9 6.0 3.3 4.9 8.2 4.1 2.0 .6	290 .3 .3 1.1 .5 .6 1.3 1.0 2.8 .9 1.2	300 .0 .3 .1	.0	400	490	SUM 259.7 111.2 47.3 45.1 40.3 35.5 38.1 40.2 32.3 13.2 2.9
115 120 50M							1.	.2 273.	5 198.6	139,4	46.5	•1 13.0	.1	•1			.5 672.9
	MITUTES	FOR C	CLIC L	ONG VS	AIRSPEFD	RY WEIGH	T 8000). BY	ALTITUDE	200	00						
LESS 400 65 70 75 80 85 90 100 105 110		-450	-400	-350	-300	-250 -	-200 -150	9 -100 9 157. 32. 7. 9. 6. 7. 10.	7 95.1 2 75.0 8 77.3 7 103.8 4 134.9 9 214.0 0 298.4 6 347.8	150 6-1 48-1 44-8 48-9 68-0 120-5 273-6 477-8 409-3 200-5 43-1 3-6	200 .4 28.5 16.0 24.5 25.6 38.6 87.3 157.4 100.2 35.6 5.1	250 .7 .7 1.9 10.3 26.7 35.8 29.6 16.0 1.7 .1	.2 .1 .6 .5	•0	400	450	SUM 193.0 205.1 143.6 162.7 206.8 313.3 609.0 977.4 897.9 456.3 91.8 10.1
120 5UM								9 248.	3 1625.0	1745.1	519.8	126.4	2.9	•0			4268.4
LESS	MINUTES	FDP C1	-400	ONG V5	# [PSPFED -300		iT 8000 •200 ÷ 150	-160	100 +2	150	200	250	300	350	400	450	SUM • 2
40 60 65 70 75 80 85 90 95 100 105 110								•	l .3	2.6 3.0 7.5 2.2 2.1 14.8 19.6 13.2 5.3	1.9 1.5 14.4 10.5 2.4 .2	1.0 .5 .1					4.5 3.5 10.4 4.0 11.1 24.3 65.0 43.2 17.3 1.5
120 50M									76.9	74.9	31.6	1.5					185.3
	HIMUTES LFSS	FOR C1	4400	24 940 -350	-370		IT POOC 200 -150		LOO	1900	200	250	300	350	400	450	SUM
LESS 40 60								,	,-,	.1							.0
45 70 75 80 85 90 95 100 105 110										6.0	2,3 2,4 •1						2.6

	MINUTES	FOR C	YCL1C (.ONG V5	ATRSPEEC	BY WE	1 GHT	B000 •	0 7 /	AL 7 I 7 U D (F 51	U M						
55	LF55	-450	-+00	-350	-300	-290	-200	-150 2.8	-100 410.8 69.2	100 62.4 153.4	150 12.2 70.2	200 2.0 32.3	250 •3 1•0	300	350	400	450	5 49 32
0									13.4	98.6	60.9	21.4	1.7					19
10									13.8	101.1	71.3	30.0	3.4	.2	.0			21
75									11.3	193.1	139.4	43.6	11.7		••			36
0									8.5	235.1	305.6	93.6	20.6					61
15									7.9	340.5	920.0	182.3	39.1	1.1				101
15									2.2		213.3	40.1	17.2	.0	.0			46
0										43.2	47.1	6.1	2.2					•
5										6.1	3,6	1.4	1.0	•1	•0			1
5										.1	. 9	.5	.1	-1				
M								2.8	558.3	1906.7	1968.6	603,4		3.5	.1			510
	MINUTES	FOR C	YCLIC L	ONG VS	AIRSPEED	87 WE1	IGHT	SUM,	8Y A	LTITUDE	50	JM.						
	LF55	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	5
5							. 4	10.4	175.8	150.7	36.1	2.9	1.1					119
0									37.7	194.2	140.3	57.8	3.5	1.0				72 40
5									34.6	200.7	142,5	72.4	4.5	1.4				47
9									25.0	234.2	220.0 343.3	77.3	6.2	2.5	.1			56 85
10									22.4	449.2	715.0	342.5	20.5	2.5				158
15									38.5	605.5	1146,3	533.1	44.2	9.7				242
90									59.8		1215.7	339.4	72.3	7.4	.2	.0		114
									30.9	382.2	574.7 144.3	123.0	35.9	1.7	•0			29
									.1	10.7	17.9	11.7	6.4	. 3	.0			5
95 00 05																		
5									. 9	6.5	3.1	3.0	1.6	• •				
0									.,	1.0	3.1	3.0	•1	:1				1

		_			 		TAB	LE :	(IV	- C	onti	nue	d			-			
LESS 400 600 650 753 809 853 905 1005 1105 1127	LF		FΩR C -650	YCLIC →÷O:	vs •350	≜1R5PFE(-300	* 8Y WF: -250	-200 2-5 1-7 -27 -1 -3 -1 1 -1	6000. -150 9.3 4.8 .9 1.3 1.5 1.9 3.9 1.8 .6	PY 4 =100 53.8 18.4 6.9 7.3 5.5 5.5 4.6 3.5 3.6 4.6	100	150	200	250	300	350	400	450	SUM 65 o 25 o 7 o 8 o 9 o 7 o 8 o 9 o 0 o 0 o
LE55 40 60 65 70 75 80 95 100 115 120 5LM	ui.		F09 C	-404 ACF1C	v5 >350	AIPSPEET -977	• C • C	-200 1.5 .5 .3 .9 1.9 4.6 6.2 5.4 1.6 .3	6000. -150 11.7 12.4 6.9 8.8 12.6 45.1 15.0 8.9 1.0 .7	-100 42.2 23.8 15.2 19.7 73.5 41.2 83.4 134.9 102.2 85.8 1.1	100 100 •0	2000	200	250 .	300	350	400	450	SUM 559 36 22 38 145 185 198 94 6 1
LESS 400 605 70 75 80 85 100 105 110 50 M	LE	UTES 55	F0# C -450	¥€LIC -40°	v5	-300	# 87 WE)	-200	/100. -150	# 100 4.7 .7 .5 .7 4.1 15.3 73.1 40.6 11.1 1.3	LTITUDE 100	5000	220	250	300	350	400	450	SUM 4.0 15.0 173.0 40.0 11.0
LESS 60 6 70 750 850 100 1050 1150 M		TES 55	F08 C	- 490	v\$ •350	aigspffn ⊷300	-240 -0	-200 4.0 7.3 8 1.0 2.2 4.7 6.3 5.4 1.7	6000. -150 21:2 17:3 7:8 10:1 14:1 37:7 50:3 46:7 15:7 8:9 1:0	-100 96.5 47.8 22.5 27.2 31.8 50.8 103.3 211.5 226.5 97.0 24.7 6.2 1.1	100 .0	50*	200	250	300	350	400	450	SUM 121.5 67.3 30.5 38.4 48.0 93.4 168.9 263.6 243.6 106.1 26.0 6.1

						T	ABLE	X I	V -	Con	tin	ue d		······				
ESS 40 60 67 77 80 85 90 95 100 105 110	MINUTES LESS	FOR C1 -450	-400	-350 -4	AIRSPEED -300 •1	=250 3.2 47 0 00	=200 2.9 .6 .2 .0	7000. =190 5.5 2.0 .4 .0 .2 .5 4.9	-100 17.4 1.4 00 01 01 01 01 02	ALTITUDE 100 •1	LE55	200	290	300	350	400	450	SUM 29.
119 120 SUM				.4	•1	♦.0	3.8	17.9	20.0	•1								46.
	MINUTES	FOR CY	rclic LA	T VS	AIRSPEED	BY WE	IGHT	7000.	87	ALTITUDE	1000	,						
40 60 65 70 75 80 85 95 100 105 110	LESS	-450	-400 •7 •2	-350 • 9 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 1 • 1	-300 -1 -3 -2 -0 -0 -1	-250 .9 .9 .3 .3 .7 .2 .6 .2 .1	-200 14.9 8.9 3.2 1.8 2.1 2.7 2.3 1.9 -2 -2	-150 71.8 35.4 10.9 11.2 12.4 9.5 6.6 3.5	-100 269.8 87.2 28.2 28.8 27.4 31.3 18.6 11.8 5.9 5.9	100	150	200	290	300	350	400	450	SUM 399.6 133.6 42.6 44.6 40.6 40.6 40.6 5.6 5.7
120 SUM			.9	6.2	1.1	4,3	36,1	162.1	576.6									609.
ESS 40 65 70 75 80 85 90 105 110 115 120	MINUTES LESS	FOR CY-450	-400	7 VS / -350	-300 -300 -2 -7 3.4 3.9 1.7	-250 .6	-200 9.7 4.6 1.9 3.9 4.4 5.1 9.5 17.2 13.0 5.3	7000 • -150 39 • 1 39 • 7 26 • 8 31 • 7 63 • 2 124 • 9 120 • 0 45 • 1 7 • 9 • 6 • 4 • 7	8Y 4 -100 148.0 148.1 135.7 179.5 269.6 844.8 983.0 463.8 29.2 11.2	ALTITUDE 100	2000	200	290	300	390	400	450	SUM 195- 192- 138- 100- 215- 339- 908- 1129- 1129- 119- 11- 1-
SUM				.6	10.0	0.0	76.8	616.2	4033.2									4744.7
LESS	MINUTES LESS	FOR C	*CL1C L4	17 VS +350	-300	-250	1GHT -200	7000. -150	-100	ALTITUDE 100	5000 150	200	250	300	350	400	450	SUM
40 60 65 70 75 80 85 90 95 100 105 110 115								.3 .4 .3 1.6 6.4 4.4	01 3.9 1.3 0.1 6.2 11.3 23.5 34.3 29.5 13.9									3. 1. 6. 12. 29. 38. 30. 13.
120 51:M								14.1	134.6									148,

						TA	BLE	XIV	V -	Cont	inu	ed			-			
80 85 80 85 80 80 85 80 80 85 80 85 80 85 80 85 80 85 80 85 80 80 80 80 80 80 80 80 80 80 80 80 80	MINUTES LFSS	FOR C1 -450	*CL1C LA*	7 VS -	AIRSPEED -300	8Y WET	GHT =200	7000. -150	8Y / -100 2.3 .1 .9 .5 .3 4.4 2.3 1.2 1.2	ALTITUDE 100	10000	200	290	300	390	400	450	SUP 2
255 40 65 70 75 85 90 95 100 110 110 110 120 5UM	MINUTES LESS	FOR CV =490	•400 •7 •2	7 VS =350 1.3 .6 .6 .4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	.1 .3 .8 3.5 3.9 1.7	-290 4.7 1.6 .4 .4 .9 .6 1.0 1.2 3.6 1.4 .7	-200 27.5 13.8 5.3 5.7 6.5 7.9 11.8 19.1 15.4 .5	7000+ -150 116.4 77-1 38.1 38.1 43.3 77.4 105.4 139.0 127.8 53.5 12.4 6.5 .7	-100 433.2 242.8 138.6 174.5 214.3 310.2 625.9 912.9 912.9 1032.4 491.0 153.0 35.1 13.2	100 •1	SUM 190	200	290	300	350	400	450	SU 564 336 182 245 394 1074 1184 555 148 35 148 35 148
E55 40 65 70 75 80 85 90 90 100 110 110 110 110 5 110	MINUTES LESS	FOP C1	-400	T VS -	AIRSPEED -300	8Y WET -250 .1 .2	-200 3.6 .7 .1	8000. -150 15.4 3.3 .7 .2 .1 .0	87 / -100 18.4 1.2 .8 .4 .1 .1	ALTITUDE 100	LESS 150	200	290	300	350	400	450	Su 37 9 1
40 60 65 70 75 80 85 90 100 110 110 110 120 5UM	M!NUTES LFSS	FOR C	-400	T VS -350	-300 -1 .0 .0	BY WE: -250 1.0 .7 .4 .5 .2 1.3 .6 .1	-200 13.8 7.0 2.6 3.5 2.3 2.5 1.8 1.7 1.1	8700 • -150 • 43•0 25•8 • 9•1 8•0 10•9 10•0 10•3 7•5 2•4 • 6• 2	87 -100 201.9 77.6 35.5 29.3 21.8 27.6 23.5 10.5 4.5 2.6 4.5 4.5	ALTITUDE 100 •1	1000	200	250	300	350	400	450	5t 255 111 41 45 46 35 36 40 31 13

	MINUTES	FOR C	YCLIC L	AT VS	AIRSPEED	84 ME1	GHT	8000.	RY A	LTITUDE	2000							
ESS 40 60 65 70 79 80 85 90 95 100 105 110 115	LESS	-450	-400	-350	-300	-250 .8 .7 .9 1.0 .5 .7 3.7 4.3 .0	-200 8.7 8.7 4.3 3.5 4.0 4.4 3.9 6.6 5.1 3.8	-150 31.8 34.8 15.6 27.3 53.0 83.2 106.2 93.4 92.8 3.5	-100 151.4 160.9 123.2	.3	.1	200	250	300	350	400	450	SU 193 205 143 143 206 313 609 977 897 456 91
120 SUM					6.7	13.0	53,9	504.6	3649.5	.7	.1							4248
	M1M: 1775	F00 (ve: 10 1	A. V.E	AIRSPEED		6u7	e000·		LTITUDE	5000							
ESS 40 60 65 70 75 80 85 90 95 100 105 110 115	LESS	-450	-400	-350	-300	-250	•200 •0	-150 .0 .3 .1 .7 .2 .3	-100 -2 4-5 3-5 10-1 3-9 10-3 24-3 64-8 42-9 16-9 1-1	100	150	200	290	300	350	400	450	9U 4 3 10 4 11 24 65 43 17
20 5UM							•0	2.5	182.8									185
	MINUTES	FOR C	ACFIC F	AT VS	AIRSPEED	BY WEI	GHT	8000•	BY A	LTITUDE	10000							
55 40 60 65 70	LESS	-450	-400	-350	-300	-250	-200	-150	-100	100	190	200	250	300	350	400	450	Su
85 90 95 100 105									8 · 3 2 · 6 • 1									2
20 5UM									11.6									11
	MINUTES	FOR C	YCLIC L	AT VS	AIRSPEED	BY WEI	GHT	#000·	BY A	LTITUDE	SUM							
55 40 60 65 70	LF55	-450	-400	-350	-300 -1 -0 -0	-250 1.9 1.4 .8 .5 1.3	-200 26.1 16.4 7.0 7.0 6.3 6.9	-150 90.2 64.0 25.7 31.1 35.8 64.8	-100 372.1 244.2 162.8 180.1 207.9 287.4	100	150	200	250	300	390	400	450	5U 490 326 196 218 251 360
80 85 90 95 00 05					3.6 1.8	2.0	5.7 8.3 6.3 4.1 1.0	93.2 116.7 101.2 35.6 4.5	570.5 958.0 862.2 446.1 93.0 12.6 2.8		•1							677 1097 979 487
115 120 5UM					6.9	17.8	95.2	A63.1	4400.4	.8	•1							510

						1 P		- XI	v - 	Con		ae a						
			YCLIC LAT	' VS /	A IRSPEED	BY WEI	GHT	SUM.	RY A	LTITUDE	SU	н						
ESS	LESS	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	290	300	350	400	450	SU
40			.7	1.3	•2	3.0	57.6 32.5	227.8	901.9	. 2								1190
60			••	. 3	. 2	1.2	12.0	71.6	323.9									729
70				• 3	•1	?	13.7	79.3	361.9									47
75				.6	•1	2.3	15.0	93.2		.3								56
80			• 1	. 4	1.2	3.1	23.7		1299.7	• • •								1585
90				1.4	4.4	5.5	32.9		2082.4		• 1							2429
95				.2	5.3 4.2	1.8	23.2		2121.0	.4								240
00					1.7	.7	1.7	18.0	270.8	• •								292
105					• 1	•0	.0	1.1	53.9									55
115								•5	17.1									17
120																		1
UM			. 9	7.2	10.1	34.2	242.5	1733.61	0174.4	. 9	.1							12162

	T	ABL	E X	V.	TIM	E F	OR (COLL	ECT :	IVE BY W	BOO EIG	ST T	TUBE AND	ST ALT	EAD ITU	Y LO	OAD	<u> </u>
.F55 40 60 45 70 75 80 85 90 95	MINUTES LESS	FOR C	-400	VE VS -350	AIRSPEED -300	BY WE -250	1 GMT +200	6000. -150	87 A =100 .6 .3	100	LE5 150	5 200 •1 •1 •1	250 •4	300	350	400	450	SUM
105 110 115 120 SUM									.•			.3	.4					1.
F55 40 65 70 75 85 90 95 100 105	MIPUTES	-450	-400	-350	-300	87 WE -290	-200 -4	-150 2.5 2.5 2.2 3.2 1	8Y A -100 56-5 11-3 4-0 4-5 4-7 3-0 5-5 3-9 4-0 -7 -2 -1	100 4.3 3.6 1.0 1.0 1.1 2.1 1.7 .7 .1	1000 150 1.2 3.7 .7 1.2 2.2 1.9 .6	200 .4 2.6 .6 .9 .8 .4 .0	250 •2 •6 •4 •1 •2 •4	300 •4 •1	350 •3 •1 •1 •1	400 •3 •1	•1	SUM 65. 25. 7. 8. 9. 7.
115 120 SUM							.4	5.3	98.4	16.0	12.5	6.0	2,3	,5	٠,	.4	•1	142,

	M1PU41P	FOR C	OLLECTI	VE VS	AIRSPEED	-	I GHT	6000.	87 4	LTITUDE	2000	•						
ESS 40 60 65 70 75 80 85 90 100 115	(FSS	-450	-400	-350	-300	-250 •1 •7 •1	-200 1.0 1.6 1.0 .1 .3 1.4	-150 3.4 5.3 3.9 3.0 1.4 2.4 4.3 2.4	-100 47.6 20.5 12.1 20.0 62.9 118.4 150.7 179.6 82.0 21.5	100 1.2 1.9 1.4 2.1 5.1 12.8 10.9 7.6 1.4	150 1.3 2.6 1.1 2.5 1.9 5.8 7.9 5.9 3.3 2.1	200 -4 2.2 1.7 1.4 1.6 2.1 1.3 3.0 2.0	290 •2 1.7 •6 •2 •2 1.3 1.5 1.0	300 -3 -2 -3 -2 -6 -4 -4	350 •1 •1 •1	.0 .0 .1 .1	450 .4 .3 .6 .6 .7 1.0 .5	29, 30, 01, 145, 105, 198, 24,
120 SUM						1.0	5.7	32,4	747,5	65.9	34,6	16.1	7.0	3,2	••	•7	4.2	910.
	MINUTES	FOR C	DLLECTI	vE VS	AIRSPEED	BY WEI	GHT	60001	BY A	LTITUDE	3000)						
.ESS	L E 55	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	290	300	350	400	450	SUM
40 60 65 70 75 80 85 90 95 100 105 110							.3 .0 .1 1.1 3.9 17.8 17.8	4.7 .8 .3 .2 .1 2.3 7.0 12.0 2.7	.0 .1 .6 2.9 8.9 47.6 10.9 5.5	•0 •5 •7								4. 15. 73. 40. 11.
115 120 5UM							44.1	30.1	77.3	1.3								152.
	*IMUTF5	F09 C	LLECTI	VE VS	ATRSPEED	BY WEI	GHT	6000.	BY A	LTITUDE	SUM							
ESS 40 60 65 70 75 80 85 90 100 105 110	LF55	-450	-400	-350	-300	-290 .1 .7 .1	-200 1.8 1.8 1.0 .2 .4 2.5 4.2 17.8 17.8	-150 5,9 12:2 5.0 3.5 4.1 1.7 4.7 11.2 14.4	-100 104-7 32-0 16-1 24-6 31-4 68-7 132-2 202-2 194-4 88-2 22-9 5-5	100 5.6 5.5 2.3 2.4 3.2 7.2 15.0 21.2 11.1 7.6 1.4	190 2.9 6.9 1.9 3.7 4.1 7.7 8.4 6.4 3.5 2.1	200 1.0 4.8 2.4 2.4 2.5 1.3 3.2 2.0	250 -4 2.7 -9 -7 -3 1.4 1.9 1.0	300 .3 .6 .5 .2 .8 .5 .2 .1 .1	390 .4 .1 .1 .2 .1 .1	400 .4 .1 .0 .1 .1	450	SUM 121. 67. 30. 48. 48. 243. 168. 243. 106. 26.
SUM						1.0	50,1	67.8	924.1	83.2	47.3	22.4	9.7	3.1	1.0	1.1	•••	1215.
					AIRSPEED			7000•		LTITUDE	LESS							
FSS 40 60	LF55	-450	- 400	-350	-300	-250	-200	-190 1.0 .1	-100 26.9 2.3 .3	100	.5 .5 .1	200 •1 •9 •3	250 •1 •3	300 .1	350 •3 •1	400	450	SUM 29.
70 75									.0	.2	•0	.0						
80 85 90									.1 .3 .6 5.1	•0	.0							5.
100									4,3	•	•0							4.
110																		

					=		TAE	BLE	xv	- Co	nti	nue	d					
			DLLECTIV				GHT -200	7000 ·	8Y A	LTITUDE	1000	0 200	290	300	350	400	450	SUM
LFSS 40 60 65 70 75 80 85 90 95 100 105 110 115 120	LFSS	-450	-400	-350	-500	-250 3.3 1.1	10.2	46.2 9.3 3.3 3.7 2.9 1.2 .8 .3 .4 1.2 3.5	277.1 68.2 23.3 27.3 26.2 26.9 32.2 21.07 4.8 2.02	12.3 16.4 4.6 3.3 5.5 6.7 6.7 6.8 2.7 .8	6.2 16.8 5.1 4.6 5.8 5.8 3.4 3.2 1.5 1.4	2.3 13.6 2.4 3.1 2.5 3.3 1.7 1.4 1.9	.6 4.7 2.1 1.7 1.1 .4 .4	.3 .8 .5 .5 .5 .3 .1	.2 .3 .0 .0 .0 .1	.3 .2 .0 .1 .0 .0	.4 .1 .0	359.0 133.1 42.4 44.9 42.8 40.6 44.8 40.6 5.9 25.9 2.1
5U#				•1	.5	4,4	14.1	74.5	546.1	66.1	52,1	32,4	13.1	3.6		••	•	
	MINUTE	5 FOR C	DLLECTIV	E VS A	TRSPEED	BY WEI	GHT	7000+	: 8Y A	LTITUDE	200	0						
LFSS 40 60 65 70 80 85 90 95 100 105 110	LFSS	-450	-400	•350 •5	-300 -3 -2 1-0 -3 -5	-250 2.0 .7 1.5 1.7 1.6	-200 8.7 10.6 8.5 6.4 8.0 7.1 3.2 2.5 8.2 .3	-150 33.8 37.1 21.4 24.9 21.5 31.7 47.7 35.4 41.0 20.1 11.8	-100 139.3 108.0 86.6 112.2 150.3 555.3 879.0 1008.8 459.0 128.2 26.0 10.7	100 6.4 10.0 7.8 13.2 22.3 30.4 36.5 42.9 18.4 6.8 1.6	150 3.7 9.3 5.5 11.4 14.9 20.0 19.0 21.7 4.3	200 .7 10.4 3.7 5.5 4.8 8.9 8.0 9.6 6.9 2.0 1.5	250 3.4 3.3 6 2.9 1.4 2.8 4.0 2.5 1.3	300 1.3 1.2 .9 .4 1.1 1.6	350 .4 .2 .3 .2 .3 .7 .2 .6	400 •1 •1 •1 •2 •1 •1	.1 .2 .1 .3 .8	SUM 195.4 192.3 130.1 166.4 215.8 338.1 669.7 988.7 1125.3 519.6 125.0 29.8 11.6
120 50M				.5	2.3	8.4	56.4	333.A		201,4	126.3	62.2	22.9	8.3	3,1	1.0	1.7	4744.7
	478 11.755	. EOD C	DLLECTIV	E VS.A	IRSPEED	av bet	GM T	7000 •	ay A	LTITUDE	5000	•						
LESS	LFSS	-440	-400	-350	-300	-250	-200	-150	-100	100	150	200	290	300	350	400	450	SUM .1
40 60 65 70 75 80 85 90 95 100 105			1.6	::	.4	.3 .1 .3 .1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.2 .7 2.6 4.5 4.8 5.2 10.0 5.7 2.6	1.1 3.0 1.1 4.5 19.4 28.1 16.7 6.2	.2 .1 .5 .8 1.6	.2 .4 .2 .2 .0	•1	.3 1.3 .1	.4	•3		.4	3.9 1.6 6.5 6.5 12.9 29.9 38.7 30.1 13.9
115 120 5UP			2.2	. 7	.4	3.7	14.5	36,4	81.0	4,2	1.1	•1	1,7	1.2	.3		1.1	148.7
	MINUITES	FOR CO	LLECTIV	F US A	185PEFN	Av ufi	GHT	7000.	9 v 4	LTITUDE	10000	•						
LESS	LF55	-450	-400	-350	-900	-250	-200	-150	-100	100	150	200	250	300	350	400	450	SUM
40 45 70 75 80 85		.1	1.7			•1 •3 ••1 1•7 1•2 1•2	•1	•3 •0 •2 •1	•1		:1	.7 .3 .3						2.3 .1 .9 .5 .3 4.4 2.3 1.2
95 100 105 110 115 120 5UM		•1	1.7			1.2 8.5	,1	,5	•1		•2	1.9						13.1

TABLE	XV	-	Continued

	MINUTES	S FOR CO	DLLECTIV	F VS	AIRSPEEC	BY WE	SHT	7000.	87 4	LTITUDE	SUI	a						
LESS 40 60 65 70 75 85 90 95 100 115 120	LF55	-450 .1	-400 3.3 .3 .3	-350 •1 •4 ••	-300 •8 •2 1•0 •3 •5	-290 5.3 2.2 1.7 2.0 1.6 1.1 4.9 2.6 1.2 1.2	-200 18.7 12.7 9.2 8.6 10.0 9.3 6.5 5.8 13.0 4	-150 -61.0 -67.0 -67.0 -729.5 -729.5 -739.5	482.1 137.9 28.7 11.7	100 10 45 20 45 11 45 11 45 11 45 11 45 11 46 11	190 10.4 26.7 10.6 10.2 15.7 20.7 23.5 22.5 13.2 4.5 11.3	200 3.2 24.9 6.4 9.3 7.6 12.2 10.0 11.6 8.9 2.0 1.5	290 1.3 8.3 5.4 2.9 4.6 2.4 3.2 4.3 2.6	300 2.2 1.7 1.4 1.4 1.2 1.8 2.2	390 .9 .9 .9 .2 .6 .7 .4 .6 .2 .1	400 .4 .3 .1 .2 .2 .2 .2	.9 .7 .5 .3 .8 .3	396. 744. 1074. 1184. 955. 168. 35.
SUM		,1	3,9	1,3	3,2	25.1	n5.1	445,4	4583.6	273.1	181.0	98.0	38.2	13.3	4.5	1.7	3.5	5762.
	MINUTES	FOP CO	LLECTIV	F V5 A	IRSPEED	84 ME1	GHT	8000.	BY A	LTITUDE	LESS							
LESS 40 40 65 70 75 80 85 90 95	LF55	-450	-400	-350	-300	-25)	-200	-150 1.9 .1	-100 32-f 3-7 1-1 -2 -1 -0	100 1.0 .4 .2 .1	150 •4 •3	200	\$50	,1	.1	400	450	SUM 37.5 5.3 1.6
105 110 115 120 5UM								1.1	39.3	1.8	•7	2.7	•2	.1	•1			45.
	MINUTES	s FOP CO	DLLECTIV	E V5	IRSPEED	BA MEI	GHT	6000 .	64 4	LTITUDE	100	•						
F55 40 60 65 70 75 80 85 90 95 100 105	LESS	-450	-400	-350	-300 1.0	-250 1.7 .2 .0 .0	-200 15.5 2.3 1.4 .2 .3 .0 .1	-150 43.0 10.7 5.4 4.6 4.5 1.2 .9 .4 .5 1.5	-100 186-1 62-6 27-6 27-6 26-6 21-9 25-9 26-5 10-9	100 8.0 12.5 5.67 3.4 4.6 7.7 2.8 .5	150 3.9 10.0 3.8 4.2 3.3 3.8 3.7 3.4	200 •7 •8•8 3•9 1•4 2•3 1•9 1•0 •6 •2	250 •1 3•1 1•2 1•6 •5 2•0 •2 •6 •0	1.0 .1 .4 .1 .0 .6	350 •1 •1 •1	400 e0	•50	SUN 259 1110 470 450 400 350 380 400 320 130
120 5UM					1.0	1.9	20.5	74.3	449.5	51.5	36,3	23,7	9,3	2.3	•4	•0	•0	672
	MINUTES	s FOR CO	DLLECTIV	E VS A	IRSPEED	DV WET	GHT	6000 .	1 v 4	LTITUDE	2004							
	LFS5	-450	-400	-350	-300	-250 -5	-200 7.6 13.3	-150 27.4 26.3	-170 147.5 133.1 97.6	100 4.1 7.5 4.6	150 2.8 9.9 2.8	200 .7 7.4	250 3.9 1.3	300 .0	350 •1 •1	400 •1	450	SUM 193. 205. 143.
E55 60 65 70 75 85 95 100 105 110 115 120				•2	1.1	.8 .7 .6 .3 .3	7.9 6.0 3.4 3.2 3.4 4.2 3.0 11.6	23.5 25.1 23.2 24.3 16.8 19.8 33.1 36.9 11.4	1139-8 240-7 531-4 887-9 813-2 3F0-5 71-9 8-8 1-1	4.7 7.6 13.5 30.9 31.1 19.0 14.2 3.4 .6	6.6 6.1 23.2 16.5 22.6 19.3 8.6 3.5	3.4 3.7 5.5 5.9 6.9 8.1 2.9	1.8 1.3 1.3 2.4 2.6 2.0 1.2	.2	.1 .2 .5 1.2	.1	•3 •2 •1	162 206 313 609 977 897 456 91

### ### ### ### ### ### ### ### ### ##			·				T	ABLE	χv	- (Conc	1ud	ed						
## PAUTES FOR COLLECTIVE VS AIRSPEED BY WEIGHT 8000. BY ALTITUDE 10000 10	60 65 70 75 80					-300	-240 .5 .9 3.1 .6 1.2 3.8	-200 .2 2.3 2.0 2.9 .9 3.0 2.0	-150 1.3 .1 1.8 .2 .9	-100 -2 -3 2-2 2-0 5-8 13-4	100 .1 .1 .1 .0 .2	150 .1 .1 .0 .0	200			350	•0	490	SUM -1 3-2 10-4 4-6 11-24-0
EFSS	90 95 100 105 110 115 120						1.3	:1	6.5	29.2 7.4 .7	•1	1.6	1.3				•1		105.1
EFSS																			
## PACE PACE										15.00	1,111			250	300	350	400	450	SUM
00	65 70	(733			-,,,	-300	-250	2200	-1,50	-100	100	1,0		.,,	,,,,	,,,			
120	90 95 100 105						4.4	•1											8.3 2.6
F55	120					6.0	5.7	•1											11.0
FSS		MINUTES	FOR C	DLLECTIVE	F V5 /	IRSPEED	BY WEI	GHT	8000.	8Y A	LTITUDE	90	,						
FIFUTES FOR COLLECTIVE VS AIRSPEED BY WEIGHT SUM, BY ALTITUDE LFSS -450 -400 -350 -300 -250 -200 -150 -100 100 100 200 250 300 350 400 450 SU FSS -450 -450 -400 -350 -300 -250 -200 -150 -100 100 100 100 200 250 300 350 400 450 SU LFSS -450 -450 -450 -450 -450 -450 -450 1602 2104 38.2 10.9 7.6 2.0 .6 .1 1106 1 3 9 1.0 3.4 21.4 58.8 254.0 20.4 10.2 10.6 8.8 3.3 .9 .6 .4 12 4788 60 1 3 9 1.0 3.4 21.4 58.8 254.0 20.4 10.2 10.6 8.8 3.3 .9 .6 .4 409 65 3 3 .5 6.1 17.7 65.4 310.3 22.1 24.7 17.9 6.9 2.1 .5 .0 15.5 450 70 2 8 3.6 10.9 59.0 397.0 33.0 20.2 15.2 6.7 2.9 .6 .5 .5 10.3 15.2 860 9.8 10.0 80.3 1304.9 89.5 52.5 7.1 2.6 1.0 .3 1.5 800 80 9.8 10.0 80.3 1304.9 89.5 52.5 7.1 2.6 1.0 .3 1.5 800 9.8 10.0 80.3 1304.9 89.5 52.5 7.1 2.6 1.0 .3 1.5 800 9.8 10.0 80.3 1304.9 89.5 52.4 10.1 7.8 3.0 1.4 .3 1.4 1585 85 3.9 13.2 31.8 75.9 2104.2 104.1 55.0 22.9 8.8 3.7 1.7 .2 1.4 24.20 90 2.1 7.7 24.1 103.8 2110.6 79.3 47.9 20.9 5.3 1.0 7 .2 2 4.2 240 100 1.2 1.9 28.2 237.6 12.6 8.7 1.8 .3 .1 .1 .1 .1 .1 282 101 2.2 4 1.3 14.1 .9 .5 .2 .2 110 2.2 4 1.3 14.1 .9 .5 .2 110 4 22 4 1.3 14.1 .9 .5 .2 110 1.2 42 4.1 3 14.1 .9 .5 .2 110 1.2 42 4.1 3 14.1 .9 .5 .2 110 1.2 42 4.1 3 14.1 .9 .5 .2 110 1.2 42 4.1 3 14.1 .9 .5 .2 110 1.2 42 4.1 3 14.1 .9 .5 .2	60 65 70 75 60 85 90 95 100 105 110			-400	-350	-300 1.0 1.1 .2 .3	-250 2 · 1 2 · 1 1 · 7 4 · 0 1 · 2 1 · 6 4 · 9 10 · 6 6 · 5 1 · 4	-200 23.3 17.9 11.2 9.1 4.5 6.2 5.5 8.2 3.2 11.8 1.4	-150 73.3 38.4 29.1 32.5 27.9 26.4 22.3 38.0 44.0 12.1	-100 366.4 199.8 127.2 143.4 188.6 268.6 570.9 964.5 869.9 399.0 76.8	100 13.0 20.5 8.5 8.5 11.2 17.7 35.8 39.1 22.2 15.2 4.4	7.1 20.2 6.7 10.8 9.4 27.1 20.5 26.7 21.6 10.8 3.7	3.5 16.8 7.8 6.2 5.1 7.8 8.2 10.0 3.2	.3 7.0 2.5 3.4 1.8 3.3 2.7 3.4 2.0 1.3	1.8 1.1 .6 .7 .9 1.2 1.4	.1 .1 .3	.1 .0 .3 .0	.0	SUM 490.4 326.1 196.3 218.6 251.4 360.2 672.3 1091.0 95.6 487.0 98.6 13.0
## F55				.4	•5	8.7	36.2	103.1	370.7	4106.4	196.9	164.8	76.8	27.8	8,2	2,6	,7	.5	5184.3
## F55		~IPUTES	F09 C	OLLECTIVE	F V5 4	IRSPEED	By WEI	GHT	SUM.	BY A	LTITUDE	SU	i M						
\$UP .1 4.2 1.5 11.9 62.2 238.2 884.9 9694.1 553.2 393.1 197.2 75.7 25.3 8.3 9.6 8.412162	F55 40 60 65 70 75 80 85 90 95 100 115		-450	-400 .4 3.3 .3	-350 •1 •6	-300 1.8 1.3 1.0 .5 .8	-250 7.4 4.3 3.4 6.1 3.6 2.8 9.8 13.2 7.7 2.6 1.2	-200 43.6 32.4 21.4 17.7 14.9 18.0 31.8 24.1 15.2 1.9	-150 160-2 97-5 58-8 65-4 59-0 65-3 75-9 103-8 91-7 28-2 1-3	-100 914.4 412.3 254.0 310.3 397.0 618.3 1304.9 2106.2 2110.6 969.3 237.6 44.0	100 38.2 52.6 20.4 22.1 33.6 54.9 89.5 104.1 79.3 42.0 12.6 2.7	190 19.9 53.2 19.2 29.2 55.5 52.4 55.6 47.9 26.1 8.7	200 7.6 46.6 16.6 17.9 15.2 22.5 19.1 22.9 20.9 5.9	2.0 18.0 8.8 6.9 7.1 7.8 8.6 5.3 3.8	2.0 2.0 2.6 3.7 1.0	.1 1.3 .9 .5 .6 1.0 1.4 1.7 .7	1.2 .6 .0 .5 .3 .3 .2 .2	1.5 1.5 1.5 1.4 1.4	2429.4
	รับ		.1	4,2	1.5	11.9	62.2	230,2	A84.9	9694,1	553,2	393.1	197.2	75.7	25.3	8.3	3,6	8.41	2162.1

TABLE XVI. TIME FOR LONGITUDINAL CYCLIC BOOST TUBE STEADY LOAD VERSUS LATERAL CYCLIC BOOST TUBE STEADY LOAD BY COLLECTIVE BOOST TUBE STEADY LOAD

		===																
	MINUTES	FOR C	CLIC L	ONG VS	CYCLIC	LAT BY	COLLECT	-450									•	
	LFSS	-450	-400	-950	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	SUR
LE55	6.00		- 100			•,,		- 120										
-400 -350																		
-300																		
-250 -200																		
-150 -100									•1									•1
100																		
500 500																		
300 350																		
400 450																		
SUM									•1									•1
Į							COLLECT					200	250	300	350	400	450	SUN
LESS	LF55	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	-90	304
-450 -400																		·
-350 -300																		
-250 -200																		
-150 -100									2.1	1.3	.9							4,2
100																		
200 250																		
300 350																		
400 450																		
SUM									2+1	1.3	.9							4,2
																		1
1							COLLECT											
LFSS	LF55	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	290	300	350	400	450	SUM
-450 -400																		
-350 -300 -250																		
-200																		
-150 -100									•3	.4	. 9							1.5
100																		
200 250																		
300 350																		
400																		
SUM									•3	.4	. 9							1.5
1	M 7 411.00 -	EDE C		ANG 40	eve. • •		co =	-100										
I							COLLECT		100	100	180	204	264	100	100	466	455	
LESS	LF55	-450	-400	-350	-300	-290	-200	#130	-100	100	150	200	250	300	350	•00	+30	3UF
-450 -400																		
-350 -300																		
-250 -200 -150																		
-100									1.0	1.8	4.4	4.0						11.9
150 200																		
200 250 300																		
350																		
450						••				, .								,, ,
SUM				••				••	1.8	1.8	4.4	4.0						11.9

						TA	BLE	XVI	T - 1	Cont	tinu	ed	····					
F\$\$	ITNUTES	FOR C	*CLIC L1 -400	ONG V5 (•350	-300	-250	COLLECT +200	-250 -150	-100	100	150	200	250	300	350	400	450	SUM
350 300 250 250 150 100 150 250 250 300									•1 1•0 ••3	1.2	.0 34.5	1,4	•1					2 59
350 600 650 5UM									7,4	11.7	34.6	8.4	• }					62,
	MINUTES	FO® C	YCLIC L	ONG VS	CYCLIC	LAT BY	COLLECT	-200										
55	L#55	-490	-400	-950	-300	-250	-200	-150	-100	100	150	\$00	250	300	350	400	450	SU
50 00 50 00 50 00 50								•1	4.3 36.9	63.9	2.0 92.3	1.1 34.0	2,1					229
50 50 50								•1	41.4	64,8	94,6	35,2	2.1					238
	MINUTES	FOR C	YCLIC L	DNG	CYCLIC	LAT RY	COLLECT	-150										
55 50 50 50	LFSS	-450	-400	-350	-370	-259	-200	-150	-100	100	150	200	250	300	350	400	450	SU
50 50 50 50 50 50								•1 •1 1•1	23.6	247.0	10.7		1.4 23.8	1.8	•0			92 827
50 50 50								1.2	159.6	250.0	273.4	173.6	25,3	1,8	•0			884
							COLLECT											
\$5 50 00 50	LESS	-450	-400	-350	-300	-250	-200	-150	-100	100 •1	150	200	250	2.6	350	400	450	SU
50 50 50 50 50 50 50							. 4	•9 ■•1	6.6 41.2 164.6	12.7	1.9 3.0 27.6 394.3	11.1 24.1 225.7 1221.6	7.1 5.1 11.8 57.2 190.3	22 2.9 23,9	.4			16 28 192 1229 8269
50 50 50							.•	9.0	1035.2	2857.5	4017,5	1472.5	272.0	29.7	.4			1694

<u> </u>			-:				rabl ——	E X	V 1 -	· Co	ntii	nued				 		
LESS	MINUTES LFSS	FO# C	4CL1C L0	NG VS (-300 CYCL1C (AT BY -250	COLLECT =200,	100 -150	-100	100	190 -	500	290	300 -	350	400	450	SUM
-450 -400											.1							,:
-350 -300 -250										•0	.,	.0	1.4	,1				1:
-200 -150 -100 100 150 200 250								•1	10.1 27.3 46.8	7.8 70.0 121.9	94.4 94.3 144.4	30.1	1.0	.0		•0		30. 172. 345.
350 400 450									= .			27.7				102		
SUM								•1	05.1	200.2	207.7	54.1	4.9	1.2		•0		553,
	MINUTES LESS	FOR (-400	-350	-300	-250	-200	150 -150	-100	100	150	200	250	300	350	400	450	SUP
-450 -400												• ?		.1				•
-350 -300 -250									.1	::	.•?	•1	•5					1
200 -150 -100 100 150 250 250 300									8.4 28.3 29.4	8.2 56.4 88.4	5,3 49 94.6	2.2 6.8 11.6	.0	:1				24- 140- 224-
490 5UM									66.9	153.9	149.0	21.0	2.1	.2				393
			ACTIC FO					200										
ES5	LESS	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	490	SU
-400 -350 -300												•1	,4					
-250 -200									4.2	•1 •4 5•6	2.8	2.1	. • 5					15
150 100 100 150 200 250 300									15.8 17.9	34.8	23.4 32.8	3.8 5.5	1.5					101
400 450 SUM									30.1	85.3	59.5	11.6	2.8					197
	MINUTES	FOP (YCLIC L	ONG VS	CYCLIC	LAT BY	COLLECT	250										
.ESS 450 400 350	LF5S	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	SU
250 250 150 100 100 200 250 300									1 • 2 6 • 4 4 • 6	2.9 15.6 10.0	1.8 6.9 8.0	.2 .8 2.8 4.3	1.5 .3	•1				33 35
350																		

							TABL	E X	VI ·	- Co	nti	nue	1					
LESS -450	MINUTFS LFSS	FOR CY -450	-400	-350	-300	1 48 7A <u>1</u> 085÷	**************************************	300 -150	-100	100	190	200	290	100	390	400 }	450	SUM
-350 -300 -250 -200 -150 -100 150 200 250									1.2 1.3	1.4 4.5 4.2	•1 •6 3•0 4•4	•2 •7 1•2 1•4	•3 •1					01 301 1001
300 350 400 450 SUM									3.2	10.1	0.1	3,4	,4					25.1
	MINUTES LESS	FOR CY	-400	NG V5	-300	-250	-200	390 -150	-100	100	150	200	250	300	350	400	450	SUM
-450 -400 -350 -300																		
-250 -200 -150 -100 150 200 250 300 350									•1	2.9 1.6	.9	,1	:1	.1				3.
400 450 50M									.4	4.7	2.5	•5	•2	•1				4,
LESS -450 -400 -350	MINUTES LESS	FOR CY	-400	-350	-300	-250	-20n	400 -150	-100	100	190	290	250	300	350	400	450	SUM
-300 -250 -250 -150 -100 100 150 200 250 300									•2	*2 *3 1*5	:17	•0 •2 •1	•1					1.
350 400 450 5LIM									•2	2.0		.3	,3					3.
							COLLECT	450										
LESS -450 -400 -350	LFS5	-450	-400	-350	-300	-250	-200	-150	-100	100	150	200	250	300	350	400	450	SUM
-350 -250 -250 -250 -150 -100 150 -200 -250									.0	.1	.1 .5 1.7	1.0 2.1	.4					2.0
300 350 400 450 5UM									.9	.9	3.1	3.0	.8					

TABLE XVII. LONGITUDINAL CYCLIC BOOST TUBE LOAD PEAKS FOR AIRSPEED VERSUS INCREMENTAL LONGITUDINAL CYCLIC BOOST TUBE LOAD BY MISSION SEGMENT

	VELOCI	TV 15 C	Y-LN6	PEAKS E	Y H155	ION SEG	MENT AS	CENT								
50000	LESS	40	60	65	70	75	•0	85	90	•5	100	105	110	115	120	3
0	5 22	1														
0	11	11	7		11	.4	29	1	. 2	}	1					2
0	15 14 3	49 47 14	27 24 12	27	36 29 17	23 22 16	23 17	27 13 11	14 10 10	7 2	•					2
0	1	7	1	\$	10	2	11	3	1	1 3		2	1			
0 0 M	72	132	71	92	104	74	67	56	47	2 21	7	2	1			,
	347,1	465,4	291.4	317.0		273.0	246,8	177.0	99,6	39,4	12.5	4,0	,7	.0	0.0	2587
000000000000000000000000000000000000000				1	1	1	2	1 1	2 2	1	1 1	2 2				
•	0.0	3.0	3,6	6.2	10,4	12.5	2 18.8	27.9	24.9	12.7	6.0	5.7	2.1	.5	0.0	134
				PEAKS B			MENT DE									
500000	LESS	40	60	65	70	75		85	•0	95	100	105	110	115	120	5
	40	2	2	.1		9		14	13	10	.3			_		1
	38 6 6	13	2 3 1 2	10	10	10	31 21 13 3	40 40 29 5	61 38 24 4 1	37 25 20 2 2	12	1 2 1	1 2	1		1
1	129	38	10	23	20	50	76	120	142	96	48	5	3	2		7
	310.9	241.9	94.2	105,2	138,4	224,3	338,7	428,1	385,6	228,2	73.1	19.7	5,3	. 6	0,0	2594

																
	VELOCI	TY V5 C	Y-LNG PE	EAKS B	Y MI35	ION SEG	MENT S	TEADY								
255	LESS	40	♦ 0	45	70	75	●0	65	90	95	100	109	110	115	120	SUM
50																
50																
00																
50																
50	3		1	1		1	1	1								
00	37							1	2	2						37
50	32							i	•	•						íó
50																
100																
00																
50																
UM	44		1	1		1	1	3	2	2						55
E	538.3	19.5	20.7	47.7	102.0	340.2	981.0	1794.4	1893,7	868.2	201.1	25.8	9,5	.3	0.0 4	845.0

T A	ABLE	XVI	11.	ΑI	RSP	EED	VER	SUS	INC	T TU REME MISS	NTA	L LA	TER	AL C		
	VELOC I	TY V5 C	Y-LAT P	EAKS B	Y M155	ION SEG	EA THEM	CENT								
LE55 -450 -400	LESS	40	60	65	70	75	80	85	90	45	100	105	110	115	120	SUM 1
-350 -300 -250 -200	1	l 2			1	1		1								1
-150 -100 100 150 200 250	25 57 14 -1	20 6 1	5 2	10 1	5	15	5	3	7	?		1	ı	1		56 136 38 3
300 350 400 450 SUM	103	42	12	10	13	23	10	5	•	11		2	1	1		249
TIME	347.1	465.4					246.8		99.6	39,4	12.5	4.0	•7	•0	0,0	2587,9
LESS -450 -400 -350	LESS	40 40	Y-LAT PI	65 65	7 H 133	75 75	MENT MA	85	90	•9	100	105	110	119	120	SUM
-300 -250 -200 -150 -100							1				1					2
100 150 200 250 300 350 400						1	2		1		1					1
450 SUM TIME	0.0	3.0	3,6	6,2	10,4	1 12,5	10.8	27,9	1 24,9	12.7	2 6.0	5.7	2.1	.5	0,0	8 134,2

					TAB	LE X	(VII	I -	Con	c1uc	le d					
	VEL DC 1	TY V5 C	Y-LAT P	EAKS B	v #155	ION SEG	MENT DE	SCNT				,				
55	LESS	40	60	69	70	75	€0	85	90	95	100	105	110	115	120	SUM
500	3	13 2 3		6	1 1 2		1	1	ı	1						17 10 19
50	33 120	11	17	12	23	22	19	16	3	5	1 2	ı				71 272
50	36 11	3	4	1 2	1	2	6	1.9	3	3		1				72 19 1
50	1															1
UM	207	63	25	27	37	35	30	25	15	9	3	2		20		478
E	310.0	241.9 TY V5 C'	94.2 Y-LAT PI	105.2 EAKS B			MENT ST		385.6	228,2	73.1	19,7	5,3	.6	0.0	2594.9
55 50 00 50	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
50 50	1 9															1 9
50	3								1	1						*
50 UM	17								1	1						19
E	538,3	19.5	20.7	47.7	102.0	340.2	981.4	1796.4	1893.7	868.2	201.1	25,8	9.5	, 3	0.0	6845.0

TA	BLE	XIX	1	/ERS		NCR	EME	NTAL			D PE					
VI	ELOCITY	VS COL	LECTIVE	PEAKS	8Y #155	ION SEG	MENT AS	CENT								
LESS	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
-450 -400 -350	1	1														1
-300 -250 -200 -150	1 6 16 79	6	,	1 2 6	1 2 3	1 7	3	2	1	1		1				30 127
-100 100 150	6	3	1	1	10	8	1	10	4 2	3	2					55 20 11
200 250 300 350	1	•				•	•	•								, 1
400 450 5UM	116	34	•	14	17	19	13	50	7	4	2	1				255
THE	347.1	465.4	291.4	317.0	313,9	273.0	246.8	177.0	99,6	39,4	12.5	4.0	.7	.0	0,0 2	587.9

					Т	ABLE	XI	Х -	Con	clud	led					
v	/F1 nC114	VS COL	· FC+ [VF	ofak s	44 MI\$1	Lton Spa	impuş mi	AMINO								
	LESS	40	60	A5	70	75 75	80 80	85	90	95	100	105	110	115	120	SUM
LESS -450 -400 -350 -300 -250		•		••		,•		•	,,	••	•••	107	***	117	***	₽ U⊓
-200 -150		1	1		1						1	6	1 3			2 13
-100 100					1			5	5			1				12
150 200 250				1		1	1		2	1						2 5 2
300 350						1	•	1								2
400 450 SUM		1	1	1 2	,	1 3		7	7	1	1 2	7	4			3
TIME	0.0	3.0	3,6	4,2	10.4	12,5	18,0	27.9	24,9	12.7	6,0	5.7	2,1	.5	0,0	134,2
٧	ELOCITY	VS COL	LECTIVE	PEAKS				ESCNT								
LESS -450 -400 -350	LESS 1	40	60	65	70	75	*0	85	90	95	100	105	110	115	120	SUM 1
-300 -250 -200	1							1		1	1					1 8
-150 -100	37	2	1		2		1	i	1	i	•		1			48
100 150	6	39	11	11	7	11	10	16	10	1	3		1			131
200 250 300	1	61 54 34	22 34 25	23 39 20	22 25 25	24 36 24	25 29 12	24 30 17	22 19 14	9 6 7	5 2 1	1 2 1	1			243 278 161
350 400	•	9	14	16	14	10	5	i	7 2	4	i	•				86 29
450 5UM	63	210	125	122	113	7 116	110	120	88	30	10	4	4			1131
TIME	310.9	241.9	94.2	105.2	138,9	224,3	338.7	428.1	385.4	228,2	73.1	19,7	5,3	.0	0.0	2594,9
y	ELOCITY	VS COL	LECTIVE	PEAKS	BY M155	310N 5EG	IMENT ST	TEADY								
LESS ~450 ~400 ~350 ~300 ~250 ~200	LESS	40	60	65	70	75		85	90	•5	100	105	110	115	120	SUM
-150 -100	1						3		1							5
100 150 200 250 300 350	3			1	1 2	1	3	11	5 3 2	7		1				30 12 2 2
400 450 SUM				1	3	1	13	14	11	7		1				59
	_		20.7		102.0								9.5			6845.0

TABLE XX. GUST n_{z} PEAKS FOR μ VERSUS n_{z} BY MISSION SEGMENT, ALTITUDE, AND C_{T}/σ

```
NZ BY MISSION SEGMENT ASCENT. ALTITUDE 1000. CT/S LESS
                     0.10
                                   0.20
                                         0.25
                                                0.30
 1.3
 1.2
 0 . B
SUM
TIME
                                          0.0
                                                 0.0 121.2
  GUST NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT ASCENT. ALTITUDE 1000. CT/S 0.06
             0.05
                    0.10
                            0.15
                                  0.20
                                         0.25
                                                        5UM
 1.2
TIME
                  175.6 105.5
                                   7.1
                                          0.0
  GUST NZ PEAKS FOR
                    MU VS NZ BY MISSION SEGMENT ASCENT. ALTITUDE
                                  0.20
                       2
 0.8
 0.7
 0.6
SUM
TIME
       0.0 221.8 221.9 122.9
                                   8.2
                                          0.0
                                                 0.0 574.8
                                BY MISSION SEGMENT ASCENT. ALTITUDE 2000. CT/S 0.06
 GUST NZ PEAKS FOR
                                               0.30
                                                       SUM
      LESS 0.05
                                  0.20
                                         0.25
 1.3
                                                         1
 1.2
 0.8
 0.6
 SUM
                                          0.0
       0.0 172.2 701.5 730.1
                                  36.0
TIME
 GUST NZ PEAKS FOR
                    MU VS NZ BY MISSION SEGMENT ASCENT. ALTITUDE
                                                                      2000
                                  0.20
                                         0.25
1.3
1.2
0.8
0.7
0.6
SUM
TIME
       0.0 206.0 826.7 843.9
                                  39.0
                                         0.0
                                                0.0 1915.5
```

expensional property of the second second second second second second second second second second second second

```
BY MISSION SEGMENT ASCENT
 GUST NZ PEAKS FOR MU VS NZ
                                           0.25
                                                  0.30
                                                           SUM
      LES5
                                    0.20
              0.05
                     0.10
 1.3
1.2
0.8
0.7
0.6
                         1
                 1
 SUM
TIME
        0.0 448.8 1087.2 1003.3
                                                   0.0 2587.9
 GUST NZ PEAKS FOR
                     MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 2000. CT/5 0.06
              0.05
                     0.10
 1.3
                                3
 1.2
 0.8
 0.7
 0.6
                                3
 SUM
                                       2
                                              • 1
                                                   0.0
TIME
        0.0
               0.0
                                     5.2
                             66.6
                    MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE
                                                                           2000
  GUST NZ PEAKS FOR
                             0.15
                                                  0.30
      LES5
              0.05
                     0.10
                                    0.20
 1.2
0.8
0.7
0.6
0.5
 SUM
TIME
                     15.2
                                                   0.0
                                                       114.1
 GUST NZ PEAKS FOR
                                  BY MISSION SEGMENT MANUVR
                     MU VS NZ
                                    0.20
              0.05
                     0.10
                             0.15
1.3
                                3
                                       1
 0.8
 0.7
0.6
0.5
 SUM
TIME
       0.0
                                                   0.0 134.2
  GUST NZ PEAKS FOR
                             NZ
                                  BY MISSION SEGMENT DESCRIT. ALTITUDE 1000+ CT/S LESS
              0.05
                     0.10
                             0.15
                                    0.20
                                                           SUM
 1.3
 1.2
 0.8
 0.7
                                       1
0.6
SUM
                                       1
TIME
       0.0
              76.2
                             49.0
                                     1.6
                                            0.0
                                                   0.0 178.7
```

Gu4=				.e 417		100 556	wew	ecu.	A1 777118P	1000 - 67	
GU51		AKS FOR			BY MISS				ALTITUDE	1000+ CT/	3 0.00
1.3	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.2			1	2	1			4			
0.8			•	-	•			•			
0.7					1			1			
0.6					•			•			
SUM			1	2	2			5			
TIME	0.0	171.4	131.0	153.6	12.8	0.0	0.0	468.7			
GUST	NZ PE	AKS FOR	MU 1	/5 NZ	BY MISS	ION SEG	MENT DE	SCNT.	ALTITUCE	1000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3											
1.2			2	4	1			7			
0.8											
0.7					2			2			
0 • 6 SUM			2	4	3			9			
IME	0.0	247.6	182.8	202.6	14.4	0.0	0.0	647.5			
GUST	NZ PE	AKS FOR	MU \	/5 NZ	BY MISS	ION SEG	MENT DE	SCNT.	ALTITUDE	2000 • CT/	S LESS
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3											
1.2				1				1			
0.8				_							
0.7				1				1			
0.6											
SUM				2				2			
IME	0.0	37.4	66.4	318.6	38.3	0.0	0.0	460.7			
GUST	NZ PE	AKS FOR	MU V	5 NZ	BY MISS	ION SEG	MENT DE	SCNT .	ALTITUDE	2000 • CT/	S 0.06
	LESS	0.05	0.10	0.15	0.20	0.25	0.50	SUM			
1.3				2				2			
0 • 8 SUM				2				2			
IME	0.0	86.1	162.7	944.1	201.3	0.0	0.0	1394.3			
GUST	NZ PE	AKS FOR	MU V	5 NZ	BY MI551	ION SEGN	MENT DE	SCNT .	ALTITUDE	2000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3				-				-		- 17	
1.2				3				3			
				1				1			
7.0											
D.8 D.7 D.6 SUM				4				4			

THE PERSON STREET, STR

```
GUST NZ PEAKS FOR MY VS NZ BY MISSION SEGMENT DESCRIT
                                                      10
 0.8
                                                       3
 0.6
SUM
  GUST NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000. CT/S LESS
                                                      SUM
                                      0.25
                                 0.20
 1.3
 0.8
 0.5
 SUM
TIME
                                               0.0 704.2
  GUST NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000. CT/S 0.06
                                      0.25
                                             0.30
                          0.15
                                 0.20
      LESS 0.05
                   0.10
 1.3
 1.2
 0.8
 0.6
SUM
                                               0.0 5343.2
TIME
       0.0 160.0 105.2 4275.0 803.0
                                         0.0
 GUST NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000
 1.3
 1.2
 0.8
 0.7
 0.6
 SUM
TIME
       0.0 204.8 116.2 4875.7 850.7
 GUST NZ PEAKS FOR MU V5 NZ BY MISSION SEGMENT STEADY. ALTITUDE 5000. CT/S 0.06
            0.05
                   0.10
                         0.15
                                 0.20
                                       0.25
                                              0.30
 0.7
 0.6
 0.5
 SUM
TIME
       0.0
             0.0
                    3.7 299.1
                                 30.0
                                        0.0
                                              0.0 332.8
```

TABLE XX - Concluded

GUST	NZ PE	AKS FOR	MU V	S NZ	BY M155	ION SEG	MENT ST	EADY.	ALTITUCE	5000
	LF55	0.05	0.10	0.15	0.20	0.25	0.30	SUM		
0.7										
0.6				1				1		
0.5 SUM				1				1		
IME	0.0	0.0	3.7	319.5	30.0	0.0	0.0	353.2		
GUST	NZ PE	AKS FOR	MU V	5 NZ	BY M155	ION SEG	MENT 51	EADY		
	LE55	0.05	0.10	0.15	0.20	0.25	0.30	SUM		
1.3				12						
1.2				2				2		
0.8 0.7				3				3		
0.0				2				ž		
0.5				_				_		
SUM				7				7		
IME	0.0	541.2	121.8	5280.6	901.4	0.0	0.0	6845.0		
GUST	NZ PE	AKS FOR	MU V	/5 NZ						
	LE55	0.05	0.10	0.15	0.20	0.25	0.30	SUM	ı	
1.3				, -	_			22		
1.2		1	4	15	2			22		
0.8		1	1	6	3			11		
0.6			•	3				3		
0.5										
SUM		2	5	24	5			36	•	
IME	0.0	1282.0	1666-6	/806.7	1237.9	•1	0.0	12162.1		

TABLE XXI. GUST n_z PEAKS FOR AIRSPEED VERSUS n_z BY WEIGHT, ALTITUDE, AND MISSION SEGMENT

	GL	157 NZ 1	PEAKS FO	P VELOC	117 VS	MZ AY	WFIGHT	6000+	ALTIT	TUDE	1000+ M1	ISSION	SEGMENT	ASCENT		
	LESS	40	60	69	70	75	80	85	90	95	100	105	110	115	20	SL
1.3			90		, ,	.,		67	70	,,		.03	***	,		3.
1 • 2 0 • A		1														
SUM IME	17.2	1 9.7	3.1	3.5	3.2	1.6	1.1	1.2	.6	0.0	0.0	0.0	0.0	0.0	0.0	41.
	• • • •	••	-		-,.				•	•	•••	•••	•••	-,-	•••	
	G	UST NZ	PEAKS FO	DR VELO	C177 VS	NZ AY	WFIGHT	6000.	ALTT	TUDE	1000					
1.3	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5
1.2		1														
0.8 5UM		1														
IME	65.6	25.0	7,4	8.4	59.1	7,6	8.6	5.3	4,4	, 8	.2	••	0.0	0,0	0.0	142
	G	UST NZ	PEAKS F	DR VELO	C[TY V5	NZ BY	V WF[GH1	6000								
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5
1.2		1														
0.8 5UM		1														
InE	121.7	67.3	30.7	38,4	48.0	93,4	168.9	263,8	243.8	106.1	26.0	6.4	1.1	0.0	0.0	1215
	6															
		UST NZ	PEAKS F	OR VELO	CITY V5	NZ RY	WEIGHT	7000	ALTI	TUDE	1000 · M	ISSION	SEGMENT	ASCENT		
	LESS	UST NZ	PEAKS FO	OR VELO	CITY V5 70	NZ RY	WEIGHT 90	7000 •	ALT1	TUDE 95		15510N 105	SEGMENT	ASCENT 115	120	5
1.3															120	5
1.2					70 1		90								120	5
1 • ? 0 • 8 5UM					70		90				100				120	
1 • ? 0 • 8 5UM	90.3	40 61.1	60	65 26 _e n	70 1 1 21.0	75 17,5	90 1	P5	90	2.6	100	2.0	.5	.0		
1.2	LE55	40 61.1	60 21.9 PEAKS FO	26.n	70 1 1 21.0	75 17,5	90 1 1 11.1	7.0	3.0	2.6	1.0	2.0	.5	.0		265
1.2 0.8 SUM	90.3	40 41,1 UST NZ 6	21.9	65 26 _e n	70 1 1 21.0	75 17.5 42 84 75	90 1 1 11.1 WEIGHT	7.0 7000.	90 3.0 ALTIT	2.6 CUDE 95	1.0 1.0	2.0	110 .5 SEGMENT	.0	0.0	265 SL
1.2 0.8 5UM 1ME	LE55	40 61.1 UST NZ F	60 21.9 PEAKS FO	26.n	70 1 1 21.0	75 17.5	90 1 1 11.1	7.0 7000.	90 3.0 ALTIT	95 2.6	1.0 1.0	2.0	110 .5 SEGMENT	.0	0.0	265 SL
1.7 0.8 SUM TME	LE55	40 41.1 957 NZ (40 2	60 21.9 PEAKS FO	26.n	70 1 1 21.0	75 17,5 42 84 75 2	90 1 1 11.1 WEIGHT	7.0 7000.	90 3.0 ALTIT	2.6 CUDE 95	1.0 1.0	2.0	110 .5 SEGMENT	.0	0.0	265 SL
1.2 0.8 5UM 1.4 1.3 1.2 0.7 0.7	90.3 GU LESS	40 61-1 UST NZ 6 40 2	21.9 PEAKS FO	65 26.0 0R VELOC 64	70 1 1 21.0 21.0	75 17.5 NZ RY 75 2	90 1 1 11.1 WEIGHT 80 2	7.0 7000. 85	90 3.0 ALTIT 90	2.6 CUDE 95 1 2	1.0 1.0	105 Z.O ISSION 105	.5 \$5 \$FGMFNT 110	.0 DESCRT	0.0	265 SL
1.2 0.8 SUM IME 1.3 1.2 0.7 0.7	LE55	40 41.1 957 NZ (40 2	60 21.9 PEAKS FO	26.n	70 1 1 21.0	75 17,5 42 84 75 2	90 1 1 11.1 WEIGHT	7.0 7000. 85	90 3.0 ALTIT	2.6 CUDE 95	1.0 1.0	2.0	110 .5 SEGMENT	.0	0.0	265 SL
1.2 0.8 SUM IME 1.3 1.2 0.7 0.7	90.3 GU LESS	40 61.1 957 NZ 6 40 2 2	21.9 PEAKS FO 60	26.0 26.0 64 18.9	70 1 1 71.0 21.0 21.3	17.5 NZ BY 75 2 24.9	90 1 1 11.1 WEIGHT 80 2 2 23.1	7.0 7000. 85 20.7	90 3.0 ALTIT 90	95 2.6 UDE 95 1 2 3 6.1	1.0 1.0 1000. MI 100	2.0 2.0 (SSION 105	.5 SEGMENT 110	.0 DESCNT 115	0.0	265 SL 323,
1.2 0.8 5UM 1ME 1.3 1.2 0.4 7 0.4 7 ME	90.3 GU LESS	40 61.1 957 NZ 6 40 2 2	21.9 PEAKS FO 60	26.0 26.0 64 18.9	70 1 1 71.0 21.0	17.5 17.5 12 RY 75 2 224.9	90 1 1 11.1 WEIGHT 80 2	7.0 7000. 85	90 3.0 ALTIT 90	95 2.6 2.6 95 1 2 3 6.1	1.0 1.0 1000. MI 100	105 Z.O ISSION 105	.5 \$5 \$FGMFNT 110	.0 DESCRT	0.0	265 SL 323.
1.2 0.8 5UM 1.3 1.0 1.0 1.0 7 7 ME	90.3 GU LESS 98.0	40 61.1 UST NZ F 40 2 71.7	21.9 PEAKS FO 60 20.4	26.0 26.0 64 18.9	70 1 1 71.0 21.0 21.3	17.5 NZ BY 75 2 24.9	90 1 1 11.1 WEIGHT 80 2 2 23.1	7.0 7000. 85 20.7	90 3.0 ALTIT 90	95 2.6 UDE 95 1 2 3 6.1	1.0 1.0 1000. MI 100	2.0 2.0 (SSION 105	.5 SEGMENT 110	.0 DESCNT 115	0.0	265 St. 323,
1.2 0.0 1 ME	90.3 GU LESS 98.0	40 61-1 UST NZ F 40 2 71-7	21.9 PEAKS FO 60 20.4	26.0 26.0 64 18.9	70 1 1 71.0 21.3	17.5 NZ RY 75 2 24.9	90 1 1 11.1 	7.0 7000. 85 20.7	90 3.0 ALTIT 90	95 2.6 2.6 95 1 2 3 6.1	1.0 1.0 1000. MI 100	2.0 2.0 (SSION 105	.5 SEGMENT 110	.0 DESCNT 115	0.0	365 50 323.
1 • ? 0 • 8 5UM	90.3 GU LESS 98.0	40 61-1 UST NZ F 40 2 71-7	21.9 PEAKS FO 60 20.4	26.0 26.0 64 18.9	70 1 1 71.0 21.3	17.5 NZ RY 75 2 24.9	90 1 1 11.1 	7.0 7000. 85 20.7	90 3.0 ALTIT 90	95 2.6 2UDE 95 1 2 3 6.1	1.0 1.0 1000. MI 100	2.0 2.0 (SSION 105	.5 SEGMENT 110	.0 DESCNT 115	0.0	265 St. 323,

	G	JST NZ	PEAKS F				WFIGHT						SEGMENT			81144
1.3	LESS	40	60	65	70	75	40	A 5	90	95	100	105	110	115	120	SUM .
1.2 0.8							ı									1
0.7						1										1
SUM						1	1						.2	0.0	0.0	867.2
TIME	63,5	135,3	100.1	106.4	111.5	103.1	89.8	82.0	45.9	20.2	7.5	1.6	• •	0.0	0.0	04.11
	G	UST NZ	PEAKS F	OR VELO	CITY VS	NZ BY	WEIGHT	7000	ALTI	TUDE	2000 . M	15510N	SEGMENT	MANUVR		
1	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.3 1.2							1	2		1						•
0.0									1	1						2
0.6							1			2						7
SUM		_	111		. 10		2	2	9,3	2.7	.4	.2	0.0	0.0	0.0	40.6
TIME	0.0	.7	.6	2,7	2,9	4.4	6.6	10.2	7, 3	241	•*	••	•••	-,-	•••	
	G	UST NZ	PEAKS F	OR VELO	CITY VS	NZ BY	WEIGHT	7000	ALTI	TUDE	2000. M	155104	SEGMENT	DESCNT		
	LFSS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.3						1	1									2
0.8										1						1
0 • 6 SUM						1	1			1						3
TIME	46.7	45.1	25.4	32,4	51.1	74.7	131.3	172.7	154,5	88.5	37.0	11.6	2.3	.7	0.0	874.0
1																
													SEGMENT	STEARY		
			PEAKS F				WEIGH1			TUDE 95		105	110	115	120	SUM
1.3	LESS	40	60	65	70	75	80	85	90	47	100	100	110	11.7	100	2
1.2							1		1							•
0.7									1							1
0.5 5UM							1		2							3
TIME	85,2	11.3	11.9	25,0	50.3	155.4	441.9	723.8	915.7	408.2	108.1	16,2	9.1	.3	0.0	2962.9
ł																0
l		UST NZ	PEAKS F			HZ PY	101			TUDE	2000					
1.3	LESS	40	50	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.2						1	4	2	1	1						9
0.7						1	1		1	2						ž
0 • 5 SUP						2	9	2	3	3						15
TIME	195,4	192.3	130,1	166.4	215.8	338,1	669.7	988.7	1125,3	517.6	193.0	29,8	11.6	1.0	0.0	4744,7
				4.1												
						NZ BY										
1.3	LESS	40		65	70	75	60	R5	90	95		105	110	115	120	SUM
1.2		2			1	3	7	2	1	2						18
0.7						1	1		1	4						2
0 . 5 SUM		2			1	•	•	2	3	•						26
TIME	584,1	336.3	102,9	219.0	265.8	396,4	744.7 1	1074.9	1184.1	555,4	168,3	35,8	13,6	1.1	0.0	5762.1

1.3 1.2 0.8 0.7 0.4 SUM	G LESS	40 2 1	PEAKS P	FOR VELO	70 CITY		Y WEIGHT	8000	ALTI	TUDE	1000 · M	15510N	SEGMENT	ASCENT		
1.2 0.8 0.7 0.6 SUM	LESS	2	60	65	70											
1.2 0.8 0.7 0.6 SUM					.,	75	•0	85	90	95	100	105	110	115	120	SI
0.7 0.6 SUM																
SUM																
IME		3														
	77,3	59.9	29,3	28,6	25.7	15,8	13,9	9,6	5.6	1.9	.7	.1	•1	0.0	0.0	268
	G	IIST NZ	DPAKS P	rne VFLÖ	CITY VS	NZ B	Y WEIGHT	ècco	. ALTI	TIME	1000					
	LESS	40	60	45	70	75	60	85	90	95	100	105	110	115	0	SL
1.3	6634		••	• -	,,		***	٠,	70	٠,	100	10>	110	117	120	31
1.2		2														
0.7		1														
SUM		3												_		
IME !	259,7	111,2	47.3	45,1	40,3	35.5	38,1	40,2	32,3	13,2	5.2	2,9	1,3	.5	0.0	672,
	6	iUST NZ	PEAKS F	FOR VELC	ocity vs	NZ B	WEIGHT	T 8000	. ALTI	TUDE	2000.	ISSION	SEGMENT	ASCENT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	
0.7			1													
O.6 SUM			1													
IME	46,3	155.5	115.4	118,3	125.0	104.5	101.7	56.6	36,0	9,9	1,6	.1	0.0	0.0	0.0	891
	G LESS	6UST NZ 40	PEAKS P	FOR VELO	70	NZ 8	00 BO	65 65	• ALTI	TUDE 95	2000 .	115510N 105	SEGMENT	DESCNT	120	\$(
1.3 1.2 0.8 SUM									1							
IME	35,3	42,8	18,8	23,1	33,7	69,5	102.5	138,8	137,4	90.0	22,1	3,1	1.0	.1	0.0	710
	GI	UST NZ	PEAKS F	OR VELO	CITY VS	NZ B	Y WEIGHT	8000	ALTI'	TUDE	2000 , M	ISSION	SEGMENT	STEADY		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5(
0.7					1		1	1								
0 . 6 SUM					1		1	1								
InE	91.4	6,4	7,1	18.9	44.0	136,0	396.8	770,8	712.5	353.0	67,9	6,9	.4	0.0	0,0	2612,
	GI	UST NZ	PEAKS F	OR VELO	CITY VS	NZ B	Y WEIGHT	8000•	ALTI	TUDE	2000					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	3(
1.3									1							
0.6			1		1		1	1								
0.6 SUM			1		1		1	1	1							
	0	205.1		162.7		313.3			897.9	444.3	91.8	10.1	1,4	.1	0.0	4268,

	_			 .				- Coi								
	(just nz	PEAKS F	OR VELC	CITY VS	NZ (SY WEIGH	HT 8000	. ALT	I TUDE	5000 · F	ISSION	SEGMENT	STEADY		
0.7	LESS	40	60	67	70	75 1	80	85	90	95	100	105	110	115	120	SI
SUM	0.0	0.0	0.0	1.5	1,4	4,5	17.7	56.6	31.0	12.2	.5	0.0	0.0	0.0	0.0	126
	•••	•••	.,.	•••		•	***			••••	·					
	(SUST NZ	PEAKS F	OR VELO	C1TY V5	NZ E	Y WEIGH	4T 8000	. ALT	TUDE	5000					
	LESS	40	60	65	70	75	•0	85	90	95	100	105	110	115	120	9
0.7 0.6 0.5 SUM						1										
TIME	.2	4.5	3,5	10.4	4.0	11,1	24.3	65.0	43.2	17.3	1,5	.1	.2	0.0	0.0	105
		147 MT 1	PEAKS FO	IR VELO	:17Y VS	NZ BY	/ WEIGH	T 8000								
	LESS	40	60	65	70	75	80	15	90	95	100	105	110	115	120	SU
1.3	6633	2	••						1							
0.8		1	1		1	1	ı	1								
0.5 SUM		3	1		1	1	1	1	1							
IME	490,4	326.1	196,3	218.6	251.4	360.2	672.3	1091.0	975.8	487,0	98,6	13.0	2,8	.6	0.0	5184.
	G	UST NZ	PEAKS F	OR VELO	CITY VS	NZ										
1.3	LESS	40	60	65	70	75	•0	85	•0	95	100	105	110	115	120	St
1.2		5			1	3	7	\$	2	2						1
0.8 0.7 0.6 0.5		1	1		1	1	1	1	1	•						1
SUM		6	1		2	5	9	3	4	6						1

TABLE XXII. MANEUVER n_{Z} PEAKS FOR μ VERSUS n_{Z} BY MISSION SEGMENT, ALTITUDE, AND C_{T}/σ

	NZ PE	KS FOR	MU VS	NZ	HY MISSI	ON SEGM	ENT AS	CENT .	ALTITUDE	LESSO CT/	5 LES
	LE55	0.05	0.10	C - 15	0.20	0.25	0.30	SUM			
1.3					1			2			
1.2		1			•			•			
SUM		1			1			2			
TIME	0.0	1.5	.4	•1	•1	0.0	0.0	2.1			
	•		•	-							
ANFUVER	NZ PE	AKS FOR	MU V5	NZ	BY MISSI	ON SEGN	ENT AS	CENT.	ALTITUDE	LESS+ CT/	5 0.0
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.5				1				1			
1.4			2	•				ž			
1.2		5	3	1				9			
0.8				_				_			
0.7				2				2			
0.6 SUM		5	5	4				14			
TIME	0.0	17.0	5.5	. 9	. 5	0.0	0.0	23.9			
ANEUVER									ALTITUDE	LESS	
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM	NZ PE LESS	0.05 6 6	MU V5	0.15 1 1 2 4	BY MISS: 0.20	O.O	0.30	SUM 1 2 11 2 16 26.0	ALTITUDE	LESS	
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME	0.0	6 6 18.4	0.10 2 3	0.15	1 1 .6	0.25	0.30	SUM 1 2 11 2 16 26.0	ALTITUCE		5 LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME	0.0	0.05 6 6 18.4	0.10 2 3 5 6.C	0.15 1 1 2 4 1.0	0.20 1 1 .6 BY MISS	0.25 0.0	0.30 0.0 *ENT AS	SUM 1 2 11 2 16 26.0 CENT. SUM			5 LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME	0.0	0.05 6 6 18.4 AK5 FOR	0.10 2 3 5 6.C	0.15 1 1 2 4 1.0	0.20 1 1 .6	0.25 0.0	0.30 0.0 *ENT AS	\$UM 1 2 11 2 16 26.0 CENT. SUM 3 11			5 LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME	0.0	0.05 6 6 18.4	0.10 2 3 5 6.C MU VS 0.10	0.15 1 1 2 4 1.0 NZ 0.15	0.20 1 1 .6 BY MISS	0.25 0.0	0.30 0.0 *ENT AS	SUM 1 2 11 2 16 26.0 CENT. SUM			S LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME	0.0	0.05 6 6 18.4 AK5 FOR	0.10 2 3 5 6.C MU VS 0.10	0.15 1 1 2 4 1.0 NZ 0.15	0.20 1 1 .6 BY MISS	0.25 0.0	0.30 0.0 *ENT AS	SUM 1 2 11 2 16 26.0 CENT. SUM 3 11 31 4			S LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME 1.5 1.4 1.3 1.2 0.8 0.7 0.6	0.0	0.05 6 6 18.4 AK5 FOR	0.10 2 3 5 6.C MU VS 0.10 1 6	0.15 1 1 2 4 1.0	0.20 1 1 .6 BY MISS	0.25 0.0	0.30 0.0 *ENT AS	5UM 1 2 11 2 16 26.0 CENT. 5UM 3 11 31			S LES
1.5 1.4 1.3 1.2 0.8 0.7 0.6 SUM TIME 1.5 1.4 1.3 1.2 0.8 0.7	0.0	0.05 6 6 18.4 AKS FOR 0.05	0.10 2 3 5 6.C MU VS 0.10 1 6 1: 2	0.15 1 1 2 4 1.0 NZ 0.15	0.20 1 1 .6 BY MISS	0.25 0.0	0.30 0.0 *ENT AS	SUM 1 2 11 2 16 26.0 CENT. SUM 3 11 31 4			S LES

MANFUVER	NZ PE	AKS FOR	MU V	5 NZ	8Y MISS!	ION SEG	MENT AS	CENT.	ALTITUDE	1000. CT/S	0.06
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7								_			
1.6			1	1	,			2			
1.5 1.4		1	4	2	2 2			8			
1.3		1	9	7	_			17			
1.2		13	3 7	29	6			85			
0.8					•			15			
0.7		3	5	6 2	1			2			
0.5				-							
SUM		18	56	47	11			132			
TIME	0.0	165.4	175.6	105.5	7.1	0.0	0.0	453.6			
MANEUVER	NZ PE	AKS FOR	MU V	5 N4	BY MISS	ION SEG	MENT AS	CENT.	ALTITUDE	1000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7			1	1				2			
1.5		1	•	-	2			3			
1.4		_	. 5	3	3			11			
1.3		2 24	15 48	11 38	6			28 116			
1.2		24	40	,,,	ď			•••			
0.7		3	7	8	1			19			
0.6		1	1	2				4			
0.5 SUM		31	77	63	12			163			
30~		٠,٠									
TIME	0.0	221.8	221.9	122.9	8.2	0.0	0.0	574.8			
MANEUVER	NZ PE	AKS FOR	MU V	S NZ	BY MI55	ION SEG	MENT AS	CENT .	ALTITUDE	2000 • CT/5	LESS
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.5		••••		•							
1.4			1					1 6			
1•3 1•2		3	12	2 22	1			38			
0.8		•	•-		-						
0.7			11	9	1			21			
0.6				1				1			
0.5 SUM		3	28	34	2			67			
TIME	0.0	33.8	125.2	113.8	3.0	c.o	0.0	275.8			
MANEUVER	NZ PE	AKS FOR	MU V	S NZ	BY MISS	ION SEG	MENT AS	CENT.	ALTITUCE	2000 • CT/S	0.06
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7								1			
1.6 1.5				1							
1.4			1	7				8			
1.3			13	8	_			21			
1.2		12	57	54	2			125			
0 • 8 0 • 7		7	45	48				100			
0.6		1	1	2				4			
0.5				1				1			
0 • 4 5 UM		20	117	121	2			260			
TIME	0.0	172.2			36.0	0.0	0.0	1639.7			

MITEUTEN	NZ PE	AKS FOR							ALTITUCE	2000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7				•				1			
1.6				1				•		•	
1.5			_	_				9			
1.4			2	7							
1.3			17	10	_			27			
1.2		15	69	76	3			163			
0.8											
0.7		7	56	57	1			121			
0.6		1	1	3				5			
0.5				1				1			
0.4											
SUM		23	145	155	4			327			
TIME	0.0	206.0	826.7	843.9	39.0	0.0	0.0	1915.5			
ANEUVER	NZ PE	AKS FOR	MU V	5 NZ	BY MISS	ION SEG	MENT AS	SCENT .	ALTITUDE	5000+ CT/S	0.0
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
0.8											
0.7		1						1			
0.6											
SUM		1						1			
TIME	0.0	1.6	29.5	32.8	1.0	0.0	0.0	64.9			
0+8 0+7 0+6 5UM	NZ PE LESS	AK5 FOR 0.05 1	MU V	5 NZ 0.15	0.20	0.25	0.30	5UM 1	ALTITUDE	5000	
TIME	0.0	2.4	30.9	35.4	1.0	0.0	0.0	69.7			
ANEUVER					BY MISS			SUM			
1.7	LE55	0.05	0.10	0.15	0.20	0.25	0.30	301			
1.6			1	2				3			
1.5		1	•	•	2			3			
1.4		•	7	11	3			21			
1.3		2	34	ži	_			57			
		45	120	115	10			290			
1.2		77	120	113	10			2,0			
0.8		11	4.7	67	2			143			
0.7		11	63 2	5	4			143			
0.6		2	•	1				i			
0.5								•			
		61	227	222	17			527			
SUM		٠.			_						

MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 1000. CT/5 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 1.1 6 8 0.8 0.7 1.2 3 0.6 1.1 1.1 1.4 TIME 0.0 .4 .4 3.3 16.0 0.0 0.0 20.1 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 0.8	0.06
1 0 4 2 2 2 2 1 1 1 6 8 8 0 0 8 0 0 7 1 2 3 3 0 6 0 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.3 1.2 1.1 6.8 0.8 0.7 0.6 1.2 3 0.6 0.5 SUM 1.2 1.1 14 TIME 0.0 0.4 0.4 3.3 16.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
1 2 1 1 6 8 0 8 0 7 1 2 3 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.7 0.6 0.5 SUM 1 2 11 14 TIME 0.0 .4 ,4 3.3 16.0 0.0 0.0 20.1 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUCE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 1.2 1 1 6 8	
0.6 0.5 SUM 1 2 11 14 TIME 0.0 .4 .4 3.3 16.0 0.0 0.0 20.1 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUCE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 1 1 6 8	
SUM 1 2 11 14 TIME 0.0 .4 .4 3.3 16.0 0.0 0.0 20.1 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 1 1 6 8	
TIME 0.0 .4 ,4 3.3 16.0 0.0 0.0 20.1 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUCE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1 1 1 6 8	
MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 1000 LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 1 1 6 8	
LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 1.2 1 1 6 8	
LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM 1.4 1.3 2 2 2 1.2 1 1 6 8	
1•4 1•3 1•2 1 1 6 8	
1.2 1 1 6 8	
0,7	
0.6	
0.5	
SUM 1 2 11 14	
TIME 0.0 .4 .4 3.3 16.0 0.0 0.0 20.1	
MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 2000. CT/S	LESS
1.7	
1.6	
1.5	
1.4 1.3 3 6 9	
1.3 3 6 1.2 3 16 2 21	
C • 8	
0.7 2 5 7	
0.6	
0.5 0.4	
0.2	
LE55 1 1	
SUM 8 32 2 42	
TIME 0.0 .9 6.1 22.9 3.2 0.0 0.0 33.0	
MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT MANUVR. ALTITUDE 2000. CT/S	0.06
LESS 0.05 0.10 0.15 0.20 0.25 0.30 SUM	
1•6 1•5 1 1 2	
1.4	
1.3 4 1 5	
1.2 20 7 27	
0.8 0.7 5 8 2 15	
0.7 5 8 2 15 0.6 2 2	
0.5	
5UM 5 36 12 53	
TIME 0.0 0.0 9.1 66.6 5.2 .1 0.0 81.0	

										2000 67/8	0-0
IANEUVER	NZ PE	AKS FOR	MU- V	5 NZ	BY MISS	ION SEG	MENT MA	NUVR.	ALTITUCE	2000+ 0175	0.00
	LES5	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
0.5			_								
0.4						1		1			
0.2											
SUM						1		1			
TIME	0.0	0.0	0.0	0.0	0.0	•1	0.0	•1			
ANFUVER	NZ PE	AKS FOR							ALTITUDE	2000	
	LESS	0.05	0,10	0.15	C.20	0.25	0.30	SUM			
1.7				_						•	
1.6				1	1			1			
1.5				2	1			3			
1.4				3	1			4			
1.3			3	10	1			14			
1.2			3	36	9			48			
0.8											
0.7			7	13	2			22			
0.6				2				2			
0.5											
0.4						1		1			
0.2											
LESS				1				1			
SUM			13	68	14	1		96			
TIME	0.0	.9 .KS FOR	15.2	89.4	8,4 RY MISS	.1		114.1			
		.9 AKS FOR	MU V	5 NZ							
	NZ PE	AKS FOR			BY MISS	ION SEG	MENT MA	NUVR			
ANFUVER	NZ PE	AKS FOR	MU V	5 NZ	BY MISS	ION SEG	MENT MA	NUVR			
IANFUVER	NZ PE	AKS FOR	MU V	5 NZ 0•15	BY MISS	ION SEG	MENT MA	NUVR SUM			
IANFUVER	NZ PE	AKS FOR	MU V	5 NZ 0+15	BY MISS 0.20	ION SEG	MENT MA	NUVR SUM			
1.7 1.6 1.5	NZ PE	AKS FOR	MU V	5 NZ 0•15	BY MISS 0.20	ION SEG	MENT MA	NUVR SUM 1 3			
1.7 1.6 1.5	NZ PE	AKS FOR	MU V:	5 NZ 0•15 1 2	BY MISS 0.20	ION SEG	MENT MA	NUVR SUM 1 3			
1.7 1.6 1.5 1.4	NZ PE	AKS FOR	MU V:	5 NZ 0.15 1 2 3	BY MISS 0.20	ION SEG	MENT MA	NUVR SUM 1 3 4 16			
1.7 1.6 1.5 1.4 1.3	NZ PE	AKS FOR	MU V:	5 NZ 0.15 1 2 3	BY MISS 0+20 1 1 3 15	ION SEG	MENT MA	NUVR SUM 1 3 4 16			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7	NZ PE	AKS FOR	MU V:	5 NZ 0•15 1 2 3 10 37	BY MISS 0.20	ION SEG	MENT MA	NUVR SUM 1 3 4 16 56			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6	NZ PE	AKS FOR	MU V:	5 NZ 0+15 1 2 3 10 37	BY MISS 0+20 1 1 3 15	ION SEGI	MENT MA	NUVR 5UM 1 3 4 16 56 25			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5	NZ PE	AKS FOR	MU V:	5 NZ 0+15 1 2 3 10 37	BY MISS 0+20 1 1 3 15	ION SEG	MENT MA	SUM 1 3 4 16 56			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4	NZ PE	AKS FOR	MU V:	5 NZ 0+15 1 2 3 10 37	BY MISS 0+20 1 1 3 15	ION SEGI	MENT MA	NUVR 5UM 1 3 4 16 56 25 3			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS	NZ PE	AKS FOR	MU V:	5 NZ 0+15 1 2 3 10 37 14 2	BY MI55 0.20 1 1 3 15 4	ION 5EG	MENT MA	NUVR 5UM 1 3 4 16 56 25 3 1			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4	NZ PE	AKS FOR	MU V:	5 NZ 0 • 15 1 2 3 10 37 14 2	BY MISS 0+20 1 1 3 15	ION SEGI	MENT MA	NUVR 5UM 1 3 4 16 56 25 3			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS	NZ PE	AKS FOR	MU V:	5 NZ 0+15 1 2 3 10 37 14 2	BY MI55 0.20 1 1 3 15 4	ION 5EG	MENT MA	NUVR 5UM 1 3 4 16 56 25 3 1			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM	NZ PE/ LESS	0.05	MU V. 0-10 3 4 7	5 NZ 0 • 15 1 2 3 10 37 14 2	BY MISS 0.20 1 1 3 15 4 1	1 1 .1	0.30 0.30	NUVR 5UM 1 3 4 16 56 25 3 1 110 134+2			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM	NZ PE/S	1.3	MU VS	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0+20 1 1 3 15 4 1 25 24+5	1 1 .1 ION SEG	O.O	NUVR SUM 1 3 4 16 56 25 3 1 110 134•2 SCNT•	ALTITUCE	LESS. CT/S	LES
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM TIME	NZ PE/ LESS	0.05	MU VS	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0.20 1 1 3 15 4 1	1 1 .1 ION SEG	0.30 0.30	NUVR 5UM 1 3 4 16 56 25 3 1 110 134+2	ALTITUDE	LESS+ CT/S	LES
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM TIME	NZ PE/S	1.3	MU V: 0.10 3 4 7 14 15.6 MU V: 0.10	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0+20 1 1 3 15 4 1 25 24+5	1 1 .1 ION SEG	O.O	SUM 1 3 4 16 56 25 3 1 110 134 2 SCNT SUM	ALTITUCE	LESS. CT/S	LES
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM TIME	NZ PE/S	1.3	MU VS	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0+20 1 1 3 15 4 1 25 24+5	1 1 .1 ION SEG	O.O	NUVR SUM 1 3 4 16 56 25 3 1 110 134•2 SCNT•	ALTITUDE	LESS+ CT/S	LES
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM TIME	NZ PE/S	1.3	MU V: 0.10 3 4 7 14 15.6 MU V: 0.10	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0+20 1 1 3 15 4 1 25 24+5	1 1 .1 ION SEG	O.O	SUM 1 3 4 16 56 25 3 1 110 134 2 SCNT SUM	ALTITUCE	LESS, CT/S	LES
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7 0.6 0.5 0.4 0.2 LESS SUM TIME	NZ PE/S	1.3	MU V: 0+10 3 4 7 14 15+6 MU V: 0+10 1	5 NZ 0+15 1 2 3 10 37 14 2 1 70 92+7	BY MISS 0+20 1 1 3 15 4 1 25 24+5	1 1 .1 ION SEG	O.O	NUVR SUM 1 3 4 16 56 25 3 1 110 134 2 SCNT SUM 1	ALTITUDE	LESS+ CT/S	LES

MANEUVER	NZ PE	AKS FOR	MU V	5 NZ	BY M155	ION SEG	MENT DE	SCNT.	ALTITUDE	LESS. CT/S	0.0
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3	200	0005	••••	••••	••	• • • •					
1.2		1	1	1				3			
0.8		•	•	•							
SUM		1	1	1				3			
****		14.4	2.4	.3	•0	0.0	0.0	19.1			
TIME	0.0	16.4	2.4	• •	••	•••					
ANEUVER	NZ PE	AKS FOR	MU V	5 NZ	BY M155	ION SEG	MENT DE	SCNT.	ALTITUCE	LESS	
	LESS	0.05	0.13	0.15	0.20	0.25	0.30	SUM			
1.4	2200	0002	***								
1.3			1					1			
1.2		1	i	1				3			
0.8		•	•	•							
SUM		1	2	1				4			
TIME	0.0	20.6	4,4	•6	•0	0.0	0.0	25.6			
MANFUVER	NZ PF	AKS FOR	MU V	5 NZ	BY MISS	ION SEG	MENT DE	SCNT .	ALTITUCE	1000 • CT/S	LES
AITEGIE	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7											
1.6				2				2			
1.5				2				2			
1.4		1	2	8	1			12			
-		i	4	6	i			12			
1.3		2	15	12	•			29			
1.2		2	19	12				. ,			
0.8			-					7			
0.7		1	2	4				í			
0.6			1					•			
0.5			24	34	2			65			
SUM		5	24	34	2			כח			
TIME	0.0	76.2	51.8	49.0	1.6	0.0	0.0	178.7			
MANFUVFR	NZ PF	AKS FOR	MU V	5 N2	BY MISS	ION SEG	MENT DE	SCNT.	ALTITURE	1000+ CT/S	0-0
											,,,,
1.7	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.6				5							
1.5			1	7	1			6			
1.4			4		1			9 20			
1.3		4	22	16 23	4			55			
		6		_							
1.2		,	54	64	11			130			
0.8		_	-								
0.7		2	7	4	3			16			
			1	2				3			
0.6								_			
0.5								1			
0.5				1							
0.5 0.4 0.2			an		10			240			
0.5		9	90	122	19 12.8	0.0	0.0	240 468.7			

MANEUVER		AKS FOR	MU V	VS NZ			MENT DE	SCNT .	ALTITUDE	1000. CT/5	0.09
0.8	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM.			
0.7		1						1			
0.6 5UM		1						1			
TIME	0.0	•1	0.0	0.0	0.0	0.0	0.0	•1			
MANEUVER					BY MISS				ALTITUCE	1000	
	LES5	0.05	0.10	0.15		0.25	0.30	SUM		•••	
1.7				,				_			
1.6			1 1	, 9							
1.4		1	6	24				11			
1.3		7	26	29				32 67			
1.2		3	69	76				159			
0.8		•	٠.		• •			127			
0.7		4	9	8	3			24			
0.6			ź	2	-			- 4			
0.5											
0.4				1				1			
0.2											
SUM	2.0	15	114	156				306			
TIME	0.0	247.6	162.8	202.6	14.4	0.0	0.0	647.5			
MANEUVER	NZ PE	AKS FOR							ALTITUDE	2000 • CT/5	LESS
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7											
1.6			1	1				2			
1.5		2	,	2				12			
1.4		3	1	7	-			12 34			
1.3		2 2	8 17	22 82	5			106			
0.8		•	• •		•			• • •			
0.7			4	21	5			30			
0.6			ī	5				4			
0.5			i	5				6			
0.4				5				5			
0.2				4				4			
LESS								220			
SUM		7	33	151	14			205			
TIME	0.0	37.4	66.4	318.6	38.3	0.0	0.0	460.7			
									ALTITUDE	2000 • CT/S	0.06
_	LES5	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7											
1.6			1	3				5			
1.5			1 4	20				7 28			
1.4 1.3			9	70 40				62			
1.2		3	39	125				202			
0.8	•	•	•	• • •	••						
0.7		4	11	68	17			100			
0.6			3	5				10			
0.5				i				2			
0.4											
SUM		7	68	266				416			
TIME	0.0	86.1	162.7	944.1	201.3	0.0	0.0	1394.3			

				TABL	E XXI	I - (Cont:	inued	l, 		
MANEUVER	NZ PE	AKS FOR	MU VS	NZ I	BY MI55	ION SEG	MENT DE	SCNT.	ALTITUDE	2000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7		••••		•••	••••	••	••••				
1 6			2	4	1			7		•	
1.7		•	1	6	2			9			
1.4		3 2	5 17	27 62	15			40 96			
1.2		5	56	207	40			308			
0.8		-									
0.7		4	15	89	22			130			
0.6			4	7	3			14			
0.5			1	6 5	1			8 5			
0.2				4				4			
LESS				•				•			
SUM		14	101	417	89			621			
TIME	0.0	123.5	229.0	262.7	239.7	0.0	0.0	1855.0			
MANEUVER	_	AK5 FOR	MU VS						ALTITUDE	5000 • CT/5	0.06
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.4			1	1				2			
1.3				i				i			
0.8				_							
0.7			1					1			
0.6					1			1			
0 • 5 5 UM			2	2	1			- 5			
TIME	0.0	0.0	2.1	50.6	7.4	0.0	0.0	60.1			
, , ,	0.0	0.0	•••	30.0			•••				
MANEUVER	NZ PE	AKS FOR	MU VS	S NZ	BY MISS	ION SEG	MENT DE	SCNT.	ALTITUCE	5000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	5UM			
1 • 4											
1.3			1	1				2			11
1 • 2 0 • 8				1				1			i
0.7			1					1			
0.6			-		1			ī			
0.5											
SUM			2	2	1			5			
TIME	0.0	0.0	2.1	52.6	9.2	0.0	0.0	63.9			
MANEUVER					BY M155						
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.7 1.6			3	11	1			15			
1.5			2	15	3			20			
1.4		4	11	51	6			72			
1.3		9	45	92	20			166			
1.2		9	126	285	51			471			
0.8 0.7		8	25	97	25			155			
0.6		-	6	9	4			19			
0.5			1	6	1			8			
0.4				6				6			
0.2 LESS				4				4			
SUM		30	219	576	111			936			
TIME	0.0	391.7	419.8	520.0	263.4	0.0	0.0	2594.9			

					10		101				
ANFUVER									ALTITUDE	LE55. C1/5	0.06
1.3	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.2					1			1			
0.8								1			
SUM					1			•			
TIME	0.0	28.0	0.0	1.1	6.3	0.0	0.0	35.5			
ANEUVER	NZ PE	ARS FOR	MU VS	NZ	BY M155	ION SEG	MENT ST	EADY.	ALTITUDE	LESS	
	LE 35	0.05	0.10	0.15	0.20	0.25	0.30	5UM			
1.3	EL 33	0.00	0010	00.2	000	0.25	****	33.			
1.2					1			1			
O.8 SUM					1			1			
TIME	0.0	33.0	0.0	1.1	8.0	0.0	0.0	42.1			
ANEUVER	NZ PE	AKS FOR	MU VS	NZ	BY MISS	ION SEG	MENT ST	EADY.	ALTITUCE	1000 • CT/S	0.06
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3		****	****								
1.2		1		1	1			3			
0.8				1				1			
0.6								-			
SUM		1		2	1						
TIME	0.0	217.8	• 7	58.2	9.6	0.0	0.0	281.3			
MANFUVER	NZ PI	AKS FOR	MU VS	. NZ	BY MISS	ION SEG	MENT 51	EADY.	ALTITUDE	1000 • CT/S	LESS
								SUM			
0.8	LESS	0.05	0.10	0.15	0.20	0.25	0.30	3UM			
0.7		1						1			
0.6		1						1			
SUM		1									
TIME	0.0	90.7	1.1	8.6	.7	0.0	0.0	101.1			
MANEUVER	NZ PE	AKS FOR	MU VS	NZ.	BY MISS	ION SEG	MENT ST	EAUY.	ALTITUDE	1000	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM			
1.3						,	-				
		1		1	1			3			
1.2				1				2			
0.8		1									
0.8 0.7 0.6		=			_			_			
0.8		1 2		2	1			5			

TABLE XXII - Continued MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000 . CT/5 LESS 0.10 0.20 0.30 1.4 1 1.3 1.2 0.8 0.7 2 27 5 32 7 2 9 0.6 0.5 SUM 37 45 1 TIME 11.0 600.7 0.0 704.2 MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000. CT/S 0.06 MANEUVER NZ PEAKS FOR 0.25 0.30 SUM 0.10 0.15 0.20 LESS 0.05 1.7 1.6 1.5 1.4 1.3 1 1 3 15 82 132 1.2 0.8 19 101 81 3 0.5 259 181 5UM 12 66 TIME 0.0 160.0 105.2 4275.0 803.0 MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 2000 SUM 0.10 0.15 0.20 1.7 1.6 1 1.5 3 109 164 0.8 0.7 1 88 21 116 0.6 6 0.5 5UM 13 73 218 304 TIME MANEUVER NZ PEAKS FOR MU VS NZ BY MISSION SEGMENT STEADY. ALTITUDE 5000 - CT/S 0.06 LESS 0.19 0.15 0.20 0.05 1.4 2 1.3 1.2 ı 1 8 0.6 0.5 1

0.0

1

30.0

3.7 299.1

11

0.0 332.8

0.4

SUM

TIME

0.0

0.0

TABLE XXII - Concluded

	LESS	0.05	0.10	0.15	0.20	0.25	0.30	SUM	
1.4	2230	0.07	0.10	0017	0020	0000	0430	3014	
1.3				2				2	
1.2				•				•	
0.8									
0.7			1	6	1			8	
0.6			•	•	•			•	
0.5			1					1	
0.4			•						
SUM			2	8	11			11	
30			-		_			* *	
TIME	0.0	0.0	3.7	319.5	30.0	0.0	0.0	353.2	
ANEUVER	NZ P	EAKS FOR	MU 1	VS NZ	BY MISS	ION SEG	MENT 5	TE AUY	
	LE55	0.05	0.10	0.15	0.20	0.25	0.30	SUM	
1.7									
1.6				1				1	
1.5			1					1	
1.4			1	3	1			5	
1.3			1	15	3			19	
1.2		1	9	110	48			168	
0.8									
0.7		1	2	95	22			120	
0.6				4	2			6	
0.5			1					1	
0.4									
SUM		2	15	228	76			321	
TIME	0.0	541.2	121.8	5280.6	901.4	0.0	0.0	6845.0	
ANEUVER		EAKS FOR	r MU \	/5 NZ					
	LE55	0.05	0.10	0.15	0.20	0.25	0.30	SUM	
1.7									
1.6			4	15	1			20	
1.5		1	3	17	6			27	
1.4		4	19	68	11			102	
1.3		11	83	138	26			258	
1.2		55	259	547	124			985	
0.8									
0.7		20	97	273	53			443	
0.6		2	8	20	7			37	
0.5			2	7	1			10	
0.4				6		1		7	
0.2				4				4	
LESS				1				1	
SUM		93	475	1096	229	1		1894	
TIME	0.0	1383.0	1644.4	1896.7	1237.9	•1	0.01	2162.1	

TABLE XXIII. MANEUVER n_{Z} PEAKS FOR AIRSPEED VERSUS n_{Z} by WEIGHT, ALTITUDE, AND MISSION SEGMENT

	MANEU	VER NZ	PLAKS FO	N VELO	CITY VS	NZ B	-	6000.	ALT11	TUDE	1000. M	ISSION	SEGMENT	ASCENT		
	LFSS	40	60	69	70	75	•0	85	90	95	100	105	110	115	120	SUP
1.3	1	2		1	2	2		1	1					•		11
0.8																
0.6 0.5 SUM	5	1		ı	2	2		1	1							21
IME	17.2	9.7	3.1	3,5	3.2	1.6	1.1	1.2		0.0	0.0	0.0	0.0	0.0	0.0	41.1
	MANEU	ER NZ I	EAKS FO	M AEFOC		NZ BY	PEIGHT	6000	ALTIT	606			SEGMENT			1415
. 7	LESS	40	•0	69	70	75	80	85	90	95	100	109	110	115	120	SUF
.5								1	1							1 2
.3	1	1 2	1	1	,	1	1 2					1				10
. 2) . 8) . 7	•	2	•		,	•	•									
SUM	1	6	1	1	3	3	3	1	1			1				21
ME	24.7	15.0	4,2	4,8	5.6	6.0	7.0	3,2	2.1	.6	.1	.2	0.0	0.0	0.0	73,5
	MANELIN		EAKS FO	. VE. 0	17V V2	NZ BY	WETSHT	6000.	ALTIT	UDF	1000 · P	ISSION	SEGMENT	STEADY		
	LESS	40	60	# VELOC	70	75	80	85	90	95	100	105	110	115	120	SUP
0 - 8 1 - 7 1 - 6 1 - M	1	40	•0	0,	,,			• • • • • • • • • • • • • • • • • • • •			•	•••				1
																1
ME	23.7	.3	.1	.0	,3	.0	.5	. 9	1.6	.2	.1	.1	0.0	0.0	0.0	28,0
	MANEUV	ER NZ P	EAKS FOI	R VELOC	1TY VS	NZ BY	WEIGHT	•000•	ALTIT	UDE	1000					
.7	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
.6								1	1							1
.4	1	1		1		1	1					1				2
.2	5	•	1	1	,	3	2	1	1							27
. 7	1	1														1
uM UM	7	15	1	2	•	5	3	2	2			1				43
#E	45.6	25.0	7.4	8,4	9.1	7.6	8.6	5.3	4,4		.2	,4	0.0	0.0	0.0	142.6
			-	200			Y WEIGHT						SEGMENT			
1.5	LESS	40	•0	6.5	70	75	90	85	90	95	100	105	110	115	120	Su
	1	4	2	1	1 2	6	1		1							2
1.3	-	3	1	2	3	4	1	1	·		1					1
1.2																
1.3 1.2 0.0 0.7 0.6	ı	,	3	,	6	11	2	5	5		1					4

TABLE XXIII - Continue	ed.
------------------------	-----

	MANEU	VER NZ	PEARS F	OM VELC	CITY VS	NZ B	A MEICH	T 6000	. ALTI	TUDE	2000 · M	155104	SEGMENT	MANUVR		
1.7	LESS	40	60	45	70	75	60	05	90	45	100	109	110	115	120	\$1
1.5						1			1							
1.4			1	1	1	2	4									
1.2				•	•	3	2	4	2	1	1	1				1
0.7		1			3		1	1	1							
0.5							-		1							
0.2 LE55						1			•							
SUM		1	1	1	•	1	7	,	5	1	1	1				1
TIME	0.0	1.3	.5	1.1	3,2	4,5	3,6	5.0	2.9	2,5	1.4	•2	0.0	0.0	0.0	26,
	MAMEU	/80 NZ	PEAKS FO	De VELO	CITY VS	NZ 81	r WEIGH	7 6000	. 41.77	TUDE	2000 a H	ISSION	SEGMENT	DESCRI		
	LESS	40	60	65	70	75	80	85	90	95	100	109	110	115	120	SI.
1.7			••	1			••	• •		.,	,,,,					
1.5	1	2		•	1	1										
1.3	•	5	1	4	i	; ;	17	10		1	1	1				1
0.8		1	•	1	1	2	1	,		3	1	1				
0.6		•		1	-	z	3	5		1	•					1
0.4				•		3	2	2								
LESS	1	13	1	7	6	14	29	17	12	9	3	2				11
TIME	13,5	11.1	4,3	7.4	10,2	27.0	48,3	57.4	41.0	25,9	10,1	3,4	1.1	0.0	0.0	242,
	MANEUV	ER NZ P	EAKS FO	W VELOC	:ITY V5	NZ BY	WEIGHT	6000	ALTIT	rude :	2000 • MI	5510N :	SEGMENT	STEADY		
1.4	LESS	40	●0	65	70	75	80	85	20	95	100	105	110	115	120	SU
1.3							,	1 5	1	3	1	1				11
0.8								5	2	1						
0.6								_	ĭ	•						
SUM							5	11	7	•	ı	1				21
IME	25.9	.5	.•	1.5	4.6	30.5	73.3	110.4	147.9	62.8	11.9	2,4	0.0	0.0	0,0	472.
	MANEUV	ER NZ F	EAKS FO	R VFLOC	ITY VS	NZ BY	WEIGHT	6000	ALTIT	'UDE :	2000					
	LESS	40	60	65	70	75		85	90	95	100	105	110	115	120	SU
1.7				1					1							
1.5	1	2			,	1										1
1.3	1	5	3	1 5	1	14	25	23	17	1 8	1	3				110
0.8		,	1	3	,	6	2	10	7		2	1				40
0.5				1		1 2	1	2	1	1						
0.4						3	2	2	1							
ESS SUM	2	21	,	11	20	1 34	43	30	29	14	6	4				221
IME	55.4	36.0	22,4	29,4	30.0	81.7	145.0	185,5	198,8	94,2	24.5	4.0	1.1	0.0	0.0	910,0

	MANEUV	ER NZ P	EARS FOR	VELOC	1 TY V5	NZ BY	WEIGHT	6000.	ALTIT	UDE !	9000 M	2210N 2	EGMENT	UESCNT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	150	\$0
.3			1					1						•		
• 2 ∪M			1					1								
uę.	0.0	0.0	• າ	.1	•c	.2	1.6	4.1	6.2	4.5	0.0	0.0	0.0	0.0	0.0	18.
	0.0	0.0	• ·	••	••	••								-		
	MANEUV	ER NZ	PEAKS FO	R VELOC	:ITY V5	NZ B	Y WEIGHT	6000•	ALT1	TUDE	5000					12
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	50
. 4			1					1								
1.3								1								
SUM			1						40.6	11.1	1.3	0.0	0.0	0.0	0.0	152
I ME	0.0	4.9	.•	.5	.9	4.1	15,3	73.1	40.8	1101	1,17	0,0	•			
	MANEUV	ER NZ I	PEAKS FO	R VELOC	ITY VS	NZ B	Y WEIGHT	6000								
	LF55	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SL
• 7				1					2							
.5		- 1		•		1		1								
1.3	1	3	4	2	3	2 6	9	2	2	1	1	1				1
.2	6	17	2	٨	14	17	27	24	19	8	3	3				14
7	1	?	1	3	7	6	2	10	7	1	2	1				•
0.5		1		1		2	3	-		•						
0.2						3	2 2	2	1							
55	_	400	_			39	46	41	31	14	6	5				21
SUM	9	36	7	13	25											1215
I ME	121.7	67.3	30.7	38,4	48.0	93.4	168.9	263.8	243.8	106,1	26.0	6.4	1.1	0.0	0.0	1417
		· · · · · · · · · · · · · · · · · · ·				والعبا	u uničus		ALTI	****	1 PSS . M	, ESTAN	SEGMENT	ASCENT		
		ER NZ	PEAKS FO				Y WEIGHT			95			110	115	120	5
1.3	LESS	•0	60	65	70	75	80	85	90	45	100	105	110	11.7	120	-
1.2	2	1				1					1					
0.7						1		1								
0 • 5 5UM	2	1				2		1			1					
IME	5,6	1.9	.3	.1	.0	.1	.1	.2	.3	. 3	•5	0.0	0.0	0.0	0.0	9
	MANEU	VER NZ	PEAKS F	OP VELO	CITY V5	NZ f	BY WEIGH	7000	. ALTI	TUDE		15510N	SEGMENT	DESCHT		
1.4	LESS	40	60	45	70	75	80	85	90	95	100	105	110	115	120	5
1.3	1			1		1										
	1			1		.3	0.0	• 2	.0	0.0	.0	0.0	0.0	0.0	0.0	
SUM SUM	8.3	2.9	. 5	• 0	. 1											12

	MANEUVE	RNZ	PEAKS FOR	VELOC	ITY VS	NZ BY	WEIGHT	7000•	ALTIT	UDE	LESS, MT	5510N	SEGMENT	STEADY		
1.5	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	150	Su
1.2										1						
0.8 5UM										1						
ImE	15,7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.3	4,8	4,1	0.0	0.0	0.0	0.0	24.
	MAMELIU	FO M7	PEAKS FOI	P VFLOC	117 VS	NZ BY	WEIGHT	7000+	ALTIT	UDE	LESS					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	Si
1.4	(133			1												
1.2	3	1		-		2				1	1					
0.7						1		1								
SUM	3	1		1		3		1	Total	1	1			0.0	0.0	46
INE	29,6	4,7	.7	•2	•1	,3	.1	.3	.6	5.2	4,3	0.0	0.0	0.0		•••
	MANEUV	ER NZ	PEAKS FOI	NELOC	117 VS	NZ BY	WEIGHT	7000•	ALTIT				SEGMENT			_
1.7	LESS	•0	60	65	70	75	•0	55	90	95	100	105	110	115	120	\$
1.6		1														
1.4		į	1	2	4	2	1	2		1						
1.2	•	16	•	7	•	6	1	2	2	3		1		1		
0.7	1	1	2		1	2	1 2			1						
0.5 SUM	10	24		9	9	10		4	2	9		1		1		
INE	90,3	61.1	21.9	26.0	21.0	17.5	11.1	7.0	3.0	2.6	1.0	2.0	.5	•0	0.0	265
	MANEUV	ER NZ	PEAKS FO	R VELO]TY V5	NZ B	WEIGHT	7000+	ALTIT	TUDE	1000 · M1	15510N	SEGMENT	MANUVR		
	LESS	40	60	65	70	75	•0	85	90	95	100	105	110	115	120	5
1.4												1	1			
0.8										1	1		1			
0.5										1		1	1			
SUM 14E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	3,5	3,3	1.0	0.0	0.0	11
	MANEUV	ER NZ	PEAKS FO	R VELO	CITY VS	NZ B	Y WEIGHT	7000 •	ALTI	rude	1000 • MI	ISSION	SEGMENT	DESCNT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5
1.7				1				1	1							
1.5	1	1	1	1	2	1	1 3	1	1		1					
1.4	1	10	3	10	9	11	1 6	6	2	1	2		1	1		
1.3					1	2			ı							
1.4 1.3 1.2 0.8 0.7	ı	1	-													
1.4 1.3 1.2 0.8 0.7 0.6	1	1	5													
1.3 1.2 0.8 0.7 0.6 0.9 0.4				, LT	192				1		_					
1.3 1.2 0.8 0.7 0.6 0.9	3 98.0	26 71.7	13	15 18.9	14	21 24,9	13 23.1	15	1 10 15.4	2 6.1	3 1.8	.5	1	1 •0	الت	1:

TABLE XXIII - Continued

																_
	MANEUV	ER NZ	PEAKS FOR	AET OC	ITY VS	NZ BY	WEIGHT	7000	A.TIT	UDE	1000 • M1	5510N	SEGMENT			
	LFSS	40	60	65	70	75	80	85	91	95	100	105	110	115	120	SUP
1.2										1						1
0 . 8 SUM										1						1
] ME	170.7	. 3	.2	0.0	.6	2,4	6.4	16.8	0.5	2.8	.1	.1	0.0	0.0	0.0	209.
		•	•-		•											
	MANEUV	ER NZ	PEAKS FOR	VELOC	174 VS	NZ BY	WEIGHT	7000•	ALTIT	UDE	1000					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SU
• 6		1		1				1	1							
.5	1	1 2	1	3	2	1 5	1	1	1	1	1					24
.3	1	30	5	17	13	17	•	5 8	2 6	6	2	1	1	ì		12
.7	2	2	4		2	•	1		1	1						1
0.6	ì	-	2		-		2				1					
0.5									1							-22
7 + Z 5UM	13	50	21	24	23	31	21	19	12	9	•	2	2	2		23
ME.	359.0	133.1	42,4	44,9	42.9	44.8	40.6	44,5	26.9	15.6	6.3	5.9	2.1	. 1	0.0	809.
	MANEU	ER NZ	PEAKS FO	R VELO	CITY VS	NZ B	WEIGHT	7000	ALTI	TUDE	2000 · M	ISSION	SEGMENT	ASCENT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SJ
1.7									1							
1.5		1				2	2									
1.3	3	12	3	2	3 10	6	1 5	1 7	3	1						1
0.8	2	8	5	9	6	7	6	5	3	1						9
0.6 SUM	,	24	17	20	19	15	14	13	7	6						14
IME	63,5	135.3		106.4	111.5	103.1	89.8	82.0	45,9	20,2	7,5	1.8	.2	0.0	0.0	867.
	03,		••••	••												
	MANEU	ER NZ	PEAKS FO	R VELC	CITY VS	NZ BY	WEIGHT	7000•	ALTI				SEGMENT			
1.6	LESS	40	60	65	70	75	80	65	90	95	100	105	110	115	120	SU
1.5							1					1				
1.3			1	1		1	i	1 3	3	2	1	1				1
0.8		z	•	•		•	1	2	1	•	2	_				
0.6			1			1	6	6	•	2	Ţ	2				,
SUM		2		2,7	?.9	4,4	6,6	10.2	9.3	2.7		.2	0.0	0.0	0.0	40.
InE	0.0	.7	• 6	٠.'		٦,٠	0 6 11	10.2	,,,,	• • '	• •	••	•••	- • •		
	MANEUN	ER NZ	PEAKS FO	R VELO	VS	NZ BY	WEIGHT	7000•	ALTT'	TUDE	2000 M	15510N	SEGMENT	DESCHT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SU
1.7				M	1				1		1					
1.5				1	2	3	5	4	3 2	2	1		1			2
1.3		1	1 5	14	21	23	20	21	8	12	3 5	1 5	1			14
0.8		•	,		5	10	3		12	4	2					9
0.7		1		1	,	10	,	•	i	1	1					
0.5							••	42		23	13	6	2			27
0.4						40	37	42	46	()	4.3		-			- '
O.4 SUM	46.7	45.1	25,4	21 32,4	31 51,1				154.5	88.5	37.0	11.6	2.3	.7	0.0	874.

TABLE XXIII - Continued

	MANEUV	ER NZ	PEAKS FOR	VELO	CITY VS	NZ BY	WEIGHT	7000	ALTI	TUDE	2000 · M	15510H	SEGMENT	STEADY		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.6					1		1									1
1.5 1.4 1.3				1	i	1		2	1	1 3						•
1.2			1	,	3	6	15	16	12	18	9	2				45
0.7				1		•	•	13	11	12	4					51
0.5 SUM			1	5	5	13	20	31	25	35	13	2				150
TIME	85,2	11.3	11.9	25.0	50,3	155.8	441.9	723.8	915.7	408,2	100.1	16,2	9.1	.3	0.0	2962.9
	MANEU	ER NZ	PEAKS FO	R VELO	CITY VS	NZ BY	WEIGHT	7000	. ALTT	TUDE	2000					
1.7	LESS	40	60	65	70	75	. 80	85	90	95	100	105	110	115	120	SUM
1.6					1		1		2		1	,	1			6
1.4		1	•	1 8	3 5	5	11	11	2	3	1	1				70
1.2	3	16	16	27	34	36	43	47	36	36	19		1			318
0.7	2	15	5	11	11	.73	14	28	27	17	8					161
0.5						1472			1	1,27	1					2 598
SUM	, ,	37	25	48	55	69	17	92	82	66	153,0	29.8	11.6	1.0	0.0	4744.7
TIME	195.4	192.3	138,1	166,4	215,8	338,1	069.7	988.7	1125.3	519.6	173,0	24.0	11.00	1.0	0.0	4,44.
	MANEU	ER NZ	PEAKS FO	R VELO	CITY V5	NZ BY	MEIGHT	7000	. ALTI	TUDE	5000 · M	15510N	SEGMENT	ASCENT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
0.7		1														1
0.6 SUM		1														1
TIME	.1	3.5	1,1	5.3	4.2	3,2	3.8	5,6	.6	•2	0,0	0.0	0.0	0.0	0.0	27.5
									. ALTT	TUDE	5000					
		_	PEAKS FO			NZ 81	WEIGHT 80	7000	90	95	100	105	110	115	120	SUM
0.8	LESS	40		65	70	/>	•0	92	***		•••	•0-				1
0.6		1														1
SUM		1		6,5	6,5	12.9	29.9	38.7	30.1	13,9	4,6	.0	0.0	0.0	0.0	148.7
TIME	,1	3.9		0,,			- 156	10.0								ı
	MANEL	VER NZ	PEAKS FO	R VELO	CITY VS	NZ B	A MEICH.	7000								
	LESS	40	_	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.7		1		1	1		1	1	3		1	•••	•••	•		9
1.5	1	i	. 1		i	10	1.2	10	2	4	2	1	1			12 54
1.3	14	18	9	12	11	55	15	16 55	11 42	43	4	2	1 2	1		119 453
0.9	4	10	9	11	,13	28	15	29	28	10						181
0.5	1	1		1	·		2		2	2	1					12
0.4		21.9							1							1
SUM	21	89		73	78	103	98	112	94	76	35	12	4			843
TIME	584,1	336.3	182.9	219,0	265.8	396.4	144.7	1074.5	1184,1	555,4	168,3	35,8	13.6	1.1	0.0	5762.1

	MANEUV	ER NZ	PEAKS FO	R VELOC	11Y V5	NZ BY	WEIGHT	●000•	ALTIT	UDE	LESS. MI	SSION	SEGMENT	ASCENT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUI
.5								1								
.3	3	1	1 3													;
UM	3	1						1								
46	10.7	3.3	1.5	.5	.1	.2	.1	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.
	MANEUV	ER NZ	PEAKS FO	R VELC	C TY VS	NZ BY	Y WEIGHT	8000+	ALTIT	UDE	LESS. M	15510N	SEGMENT	DESCHT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SU
•3		1														
UM		1														
ME	9.7	2.0	,3	•1	•1	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	12.
	MANEU	VEP NZ	PEAKS FO	OR VELO	CITY VS	NZ B	Y WEIGHT	*000.	ALTII	TUDE	LESS					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	S
.5								1		111						
• 3	3	1	1					-								
. B	,	2	4					1								
ME	37,5	5.3	1.8	.6	.2	.2	•1	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45
									٨				e e e u u u u	4805110		
			PEAKS FO				WEIGHT	8000.	ALTIT		1000 • MI					4
. 7	LESS	•0	60	65	70	75	80	85	90	95	100	105	110	115	120	SU
• 6					1					1		1				
. 3	1	2	1	1	1	1			1	1			1			
. 8	•	•	•	•		3	•	2	3	1						1
. 7	1	2	1	1	10	1 5	1	1	1	1		1	1			,
UM	6	12	7 29.3	10 28,6	10 25.7	15.8	13.9	9.8	5.6	1.9	٠,7	.1	.1	0.0	0.0	268,
ME	77,3	2717	6767	2040		.,,,	,		- ••		•	••	•	•••	•	
	MANEU\	ER NZ	PEAKS FO	R VELO	CITY VS	NZ BY	Y WFIGHT		ALTIT				SEGMENT			124
. 4	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5(
.3			1						ı		1	1	1	1		
.8			•					1	-				2			
								1	1		1	1	3	2		1
. 6																
UM	0.0	.5	.2	.1	.1	.1	.7	1.6	, 7	.1	.5	2.1	1,1	.5	0.0	

	20															
	MANEU	VER NZ	PEAKS F	OP VELO	CITY VS	NZ B	Y WEIGHT	8000+	ALTI	TUDE	1000 • M1	SSION	SEGMENT	DESCNT		
	LESS	40	60	69	70	75	80	85	90	95	100	105	110	115	120	5
. 6					,	1	2	i i	1	1						
. 5	1	6	1 2	i i	1 7	3	2	1 3	1	2 2						
2	•	i	12	10	ė	ŕ	12	ś	į	ē	2	1				
7	2	1	3		1	1	2	1		2	ે					
. 5 JM	3	16	10	12	18	18	21	12	9	16		1				1
Æ	74.0	50.4	17.6	16.1	14.4	18.3	17.2	19,2	14.1	7.1	1.2	.7	.1	0.0	0.0	250
	MANEU	VED N7	PEAKS F	OR VELO	C177 V5	NZ B	Y WEIGHT	8000+	ALTI	TUDE	1000 · M1	5510N	SEGMENT	STEADY		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	:
. 3		1		- 56			1									
8		•							1							
, 6 JM		1					1		1							
ME	108.5	.4	•5	••	•1	1.3	6.3	9.6	11.9	4.2	2.7	0.0	0.0	0.0	0.0	14
	MANEU	VER NZ	PEAKS FI	DR VELO	CITY V5	NZ B	v weight	8000+	ALTII	TUDE	1000					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	•
7					1	1	2	1								
5			2	2	i	1 4 5	2	1 3	1 1 2	2 3 2		1	1	1		
2	2	18	3 17	15	16	10	18	7	າຳ	9	3	2	1	i		1
7	3	3	4	1	1	2	3	2	2	3	2		2			
, 5 JM		27	26	22	28	23	28	16	17	20	5	3	4	2		:
4E	259.7	111.2	47.3	45.1	40,3	35.5	38.1	40.2	32.3	13.2	5.2	2.9	1.3	.5	0.0	672
	MANEU\	VER NZ	PEAKS FO	DR VELO	CITY VS	NZ B	WEIGHT	8000•	ALTIT	UDE	2000+ MI	SSION	SEGMENT	ASCENT		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5
5				_		1		1		1						
2	5	17	9	3	1	6	1	5	3	1						
7 6 5	1	8	4	13	8 1 1	1	10	1	4							
M	6	29	15	25	19	13	20	7	7	2						1
E	66,3	195.5	115.4	118,3	125.0	104.5	101.7	56.6	36,0	9.9	1.6	.1	0.0	0.0	0.0	891
	MANEU	VER NZ	PEAKS FO	DR VELO	CITY VS	NZ B	Y WEIGHT	8000•	ALTII	TUDE	2000 • MI	SSION	SEGMENT	MANUVR		
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	5
6 5 4 3					1		ı	1	1	1						
2					1	3	i	4	2	1	5					
7			1	2		1		1	3							

TABLE	XXIII	- Con	tinued

	MANEU	ER NZ	PEAKS FO	R VELO	CITY VS	NZ B	A MEIGHT	8000	ALTI	TUDE	2000 • M					
1.7	LESS	40	60	65	70	75	80	05	90	95	100	105	110	115	120	SUM
1.5		1					1	2	1	1						3 5
. 4			1	1	1	2	2	2	3	2	1			•		15
. 2		7		1	2	13	15	16	15	11	2	1 2				100
.0												-				62
3.7 3.6 3.5	1	2	2	1	•	9	1	13	7	8	7					7
SUM	1	16	11		12	30	32	39	34	28	13	3				227
ME	35,3	42.8	18.8	23.1	33.7	69,5	102.5	138,8	137,4	90,0	22.1	3,1	1.0	•1	0.0	710.2
	MANEU	ER NZ	PEAKS FO	OR VELO	CITY VS	NZ B	Y WEIGHT	8000	ALTI	TUDE	2000 • M	15510N	SEGMENT			
	LESS	40	60	65	70	75	60	85	90	95	100	105	110	115	120	SUM
1.5									1							1
1.3				1	1.6	4	13	10	2 9	15	1	2				61
1.2												-				51
0.6					1	3	13	14	9	7	1					3
0.5					12	7	31	25	21	23	3	2				125
SUM			7.1	18.9	44.0	136.0			712.5	353,0	67,9	6.9	.4	0.0	0.0	2612.1
IME	91.4	6.4	, • •	10,4	44.0	13010	3,0,0				10.40	•	•			
	MANEUV	ER NZ	PEAKS FO	R VELO	117 VS	NZ B	WEIGHT	8000•	ALT1	TUDE	2000					
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
1.7	6633						1	2								3
1.5		1					1	1	2	1	1					21
. 4			1	1	2	3 7	12	3 5	9	5	3	1				56
.3	5	24	2 17	15	20	26	38	35	29	28	6	4				247
0.8			7	16	16	17	29	29	23	15	8					174
0.6	2	12	•	10	2	1	2	3	1	2						ໍ້າ
0.5					1						12					523
0 • 4 5UM	7	45	27	36	45	54	85	78	68	55	18	5				
] ME	193.0	205.1	143,6	162.7	206.8	313,3	609.0	977.4	897.9	456,3	91.8	10.1	1.4	.1	0.0	4268,4
									4		M	E E 7 A W	SEGMENT	DESCNT		
			PEAKS F			NZ 6	WEIGHT	8000	90	TUDE 95	100	105	110	115	120	SU
1.3	LESS	40	60	65	70	13	nu	63		.,	•00					1
1.2									1							
0.8					1					1						
0.6																•
D.5 SUM					1				1	1						
IME	0.0	••	• 2	•2	.4	.6	2.0	6,6	10.8	4.0	.6	.1	•5	0.0	0.0	26.
		UPB MP	DEAPS -	00 2510	CITY UE	N7 B	Y WEIGH	0000	AL TI	I TUDE	5000- 8	15510N	SEGMENT	STEADY		
	MA ALES	AFE WE	50 60			75	AD AD	85	90	95		105		115	120	SU
	MANEU	4.5		65	70	, ,	***		70	,,						
1.4	MANEU LESS	40	•0					2								;
1.3	_	40	80													
1.3	_	40	•0													
1.3 1.2 0.6 0.7	_	40	•0		1			2			1					
1.3 1.2 0.8 0.7 0.6 0.5	_	40	•0		1			2			1					
1.4 1.3 1.2 0.6 0.7 0.6 0.5 0.4 5UM	_	40	80				4	2			1					11

TABLE XXIII - Concluded

	LE55	40		4.0	70	75	80	85	90	95	100	105	110	115	120	S
1.4	FE33	40	60	65	70	7.3			40	•		,		•••		
1.3								2								
1.2									1							
0.7					2		4	2			1					
0.6										1						
0.5					1											
SUM					3		4	4	1	1	1					
			11.						43.2	17.3	1.5	.1	.2	0.0	0.0	165
IME	,2	4.5	3,5	10,4	4.0	11,1	24.3	65.0	43,2	17.5	1.7	••	••	0,0	0,0	,
	MANEU	VER NZ	PEAKS F	OR VELO	' CITY VS	NZ 8	Y WEIGH	T 8000	1							
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	50
1.7	•						3									
1.6					1	1	i	3 2	3	3		1				
1.5		1	3	3	3	j	4	5	5	7	1		1			
1.3	Z	13	6	8	12	12	15	10	11	. 7	3	1		1		3
1.2	12	43	37	30	36	36	56	42	41	37	9	6	1			,
0.0	_				19	19	36	33	25	18	11		2			2
0.7	5	15	11	17	2	17	2	,,,	ĩ	14	• •		-			
0.6		•			ž	•	-		-							
0.4					-							_	-	2		7
SUM	19	76	57	58	76	77	117	99	86	76	24		4	•		
IME	490,4	326.1	196,3	218.8	251.4	360.2	672.3	1091.0	975.8	487.0	98.6	13.0	2.8	.6	0.0	5184
			PEAKS F			NZ	43			1000				115	120	SI
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	112	120	-
1.7		1		2	2	1	4	4	5		1					
1.5		ż	1	•	ž	3	2	4	7	3		2	1			
1.4	2	6	4	7	11	19	16	15	. 7	11	3		1	2		10
1.3	•	39	19	22	24	27	39	20	24	17 88	30	18	1 3	2		9
1.2	32	107	63	80	97	108	135	121	101	94	30	10		•		
0.7	10	40	21	31	39	53	53	72	60	40	21	1	2			44
0.6	i	6	2	1	2	2	5	6	4	7	1					
0.5				1	2	2	3		1 2		1					•
0.4						3	2	2	2							
0.2 E55						1	•	-								
	49	201	110	144	179	219	261	252	211	166	65	25	8	4		1.0
SUM																

TABLE XXIV. $n_{\mathbf{X}}$ PEAKS FOR AIRSPEED VERSUS $n_{\mathbf{X}}$ BY WEIGHT

		PEARS PO	M AIR	SPEED			EIGHT	4000						14	
LFSS	LF55	•0	60	65	70	75	80	05	90	95	100	105	110	115	120 \$
-0.40															
-0.15															
-0.25 -0.20	2														
-0.15	,	2													
0.10				1			i	1							
2.15	ī	•		•			•	•							
0.25	ı														
0.30	•														
0.35															
SUM	17	3		1			1	ı							
TIME	121.7	67.3	30.7	38,4	•■•0	93,4	148.9	203,8	243.8	106.1	26.0	•.•	1.1	0.0	0.0 1215
	NA LESS	PFAK5 FO	R AIR	SPEED 63	VS NA	8Y H	E1GHT 80	7000 8 5	90	93	100	105	110	119	120 50
LF 55															
-0.35															
-0.10 -0.25	1	1													
-0.20	17	2													11
-0.15	-														
0.10	6	2		1	2			2	3	3		1	2		
2.20	i			•											
1.25															
0.33															
^ 40	34	15		ı	2			2	3	3		1	2		
TIFE	544.1	336.1	182.9	219.0	265.8	396.4	744.7	1074.5	1184.1	555.4	168.3	35.8	13.6	1.1	0.0 5762
		PEARS FO			VS NX	ev we	: I GH T	8000							
							80	85	90	95	100	105	110	115	120 5
LESS	LESS	40	60	65	70	75	₩0	85	40	93	100	105	110	117	150 30
-0.40															
-0.30	_														
-0.25 -0.20	10														
-0.15	18	4	1	1	3	1			1		1				
0.10	•	3		1		1				3	2				
0.20 0.25 0.30	1			1											
0.35															
Sum	40	,	1	3	3	2			1	,	3				
					181 4	340 3	A72.3	1001 0	975.8	487 0	98.6	13.0	2.8	. 6	0.0 5184

TABLE XXV. $n_{\mathbf{X}}$ PEAKS FOR AIRSPEED VERSUS $n_{\mathbf{X}}$ BY ALTITUDE

	NJ PE	AKS FOR	AIRSPE	ED VS	HX 84	ALTI	TUDE	LESS								
	LESS	40	60	69	70	75	80			95	100	105	110	115	120	SUM
LF55		40		.,	.0			• 7	70	•••		,		,		-
-0.40																
-0.35																
-0.29																
-0.20																
-0.10																
0.10	1															î
0.20																
0.25																
0.35																
r) • • 0																,
5,UP	•															
TIPE	67.9	10.7	2.6	••	• •	.6	•2	•4	.6	5.2	4.3	0.0	0.0	0.0	0.0	93.7
							•									
		AKS FOR				7 ALTI 75	TUDE	1000		95	100	105	110	115	120	SUM
LF 55	LESS	•0	60	69	70	79	90	**	40	77	.00	.03		,		
-n.40																
-0.35 -0.30																
-0.25		1														17
-0.20 -0.15	17 29	7			2	1			1		1					41
-0.10										_	ū					22
0.10	7	3		1 2	2	1			ı	3			1			9
L.50	1	•		•												1
0.25	1															•
0.30																
0.40		1.0		3	4	2			2	3	1		1			96
SUM	66	14	12.									Ι <u>Ι</u> Ι.,				
TIME	A84.4	269.3	97.1	98.4	92.3	87.9	87.3	90.1	63.5	29.6	11.0	9.1	3.3	.6	U.O 1	624.8
		AKS FOR						2000								
LESS	LESS	40	60	69	70	75	80	85	90	95	107	109	110	115	120	SUM
-0.40																
-0.33																
-0.30 -0.25	2															2
-0.20	4	ļ		•												5
-0.15 -0.10	11	,	t	1	1											21
0.10	3	1		1			1	3	2	3	2	1	1			17
0.15																
0.25																
0.30																
0.40 SUM	19	9	1	2	ı		1	,	2	3	2	1	ı			45
TIME			304.1			733.1						45.9	14.0	1.1	0.0 9	932.0
			AIRSPE					5000								
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SUM
LE55 -0.40																
-0																
-0.55																
-7.30																1
-1.30 -1.25 -3.20	1															1
-0.30 -0.25 -0.20 -0.15	1	ı														
-0.30 -0.25 -0.20 -0.10 -0.10	1	1														
-0.30 -0.25 -0.20 -0.15 -0.10 0.10	1	1														
-7.30 -7.25 -9.20 -0.15 -0.10 0.10 0.15 0.20 0.25	1	1														
-7.30 -7.25 -9.20 -0.15 -0.10 0.10 0.15 0.20 0.25 0.30	1	1														
-0.30 -0.25 -0.15 -0.10 -0.10 -0.10 -0.20 -0.25 -0.30 -0.35																
0.15 0.20 0.25 0.30	1	1														2
-0.30 -0.25 -0.20 -0.15 -0.10 -0.10 -0.15 -0.20 -0.25 -0.35 -0.35			6.0	17.4	11.5	28.1	69.5	176.7	113.9	42.4	7.5	.1	.,	0.0	0.0	2 486.7

	NE OF A	KS FOR	AIMSPE	ED VS	N	ALTI	TUDE	1000								
L' 55	LESS	40	60	65	70	75	.0	85	•0	95	100	105	110	115	120	Su
-0.40																
-0.10 -0.25														•		
-0.20 -0.15		1														
0.10 0.10																
20																
C 30																
0.40 4(1M		1														
TIFE	0.0	2.3	•1	• 9:	.5	.3	5.2	10.6	3.7	1.3	0.0	0.0	0.0	0.0	0.0	24,
	YX PE	AKS FOR	ATHSPE	ED VS	NA 81	ALTI	TUDE	SUM								
LF55	LESS	•0	60	65	70	75	90	85	90	95	100	105	110	115	120	SL
-0.35																
-0.30 -0.25	10	1														1
-0.15	40	15	1	1	3	1			1		1					į
0.10	14	6		?	2	ι	1	3	3	6	2	1	2			
0.20	1	•		•												
7.19	•															
0.35																

TABLE XXVI.	n _X PEAKS LOAD DEF	FOR I	LONGITUI ON VERSI	DINAL (JS n _X l	CYCLIC BY MISS	BOOST TU ION SEGN	JBE ÆNT
	-LNG OFLECTN VS NX 8Y 1 -0.33 -0.30 -0.25 -		ASCENT 0.10	0.15 0.20	0.25 0.30	0.35 0.40	SUM
-4/10 -33-0 -31-1 -24-0 -24-0 -27-0 -15-0 -10-1	P	5 11	4				20
100 150 209 250 300	1	5 11 3 6 1 10 2 10	3 5	1			13 18 12
350 4n0 450 5UM	10	11 37	13	,			73

					TAE	BLE	XXV	I -	Con	clu	ded					
N	I PEAKS	FOR CY	-LNG DI	FLECTM V	/S NA BY	#155 .	SEG.	MANUVR								
LESS -490 -490 -390 -390 -290 -290 -190 -190	LESS	-0.40	-0.39	-0.30	-0.25	-0.20	-0.19	-0.10	0.10	0.19	0.20	0.25	0,30	0.35	0.40	SUM
100 150 200 250 300							1									1
350 400 450									1							1
SUM							1		1							z
LESS -450 -400 -350				-0.30				-D.LO	0.10	0.15	0.20	0.29	0.30	0.35	0.40	SUM
-300 -250 -200												1				1
-190 -100 100 150 200 250 300 350						7 3 1	9 5 9 2 1		5 7 4 1 2	2 2	1		•			21 14 15 8 2 2
450 5UM						11	22		24	4	ı	1				63
PER				LECTN V				STEADY								
1.655 +450 +400 +350 +300 +250				LECTN V =0.30					0.10	0.15	0.20	0,25	0.30	0.35	0.40	SUM
Lf 55 -450 -400 -350 -300 -250 -700 -100 100 150 200 250 300									0.10	0.15	0.20	0,25	0,30	0.35	0.40	SUM .
1.655 -450 -400 -350 -350 -250 -250 -100 -100 150 200 250					+0.25	+0 • 20 2	-0,15			0.15	0.20	0,25	0.30	0.35	0.40	
Lf 53 -400 -300 -300 -250 -200 -100 -100 -100 -100 -200	LESS	-0.40	-0.35		+0.25	⇒0 • 20 2	-0,15		,	0.15	0.20	0.25	0.30	0.35	0.40	11
LESS -400 -300 450 50M	LESS	#0.40	-0.35	-0.30	+0.25	≠0.20 2 M155.	-0,15 3	-0.10	,	0.15	0.20	0.23	0.30	0.35	0.40	11
LESS -490 -400 -390 -290 -290 -400 -390 -290 -290 -390 -490 -390 -490 -390 -490 -290 -390 -290 -390 -390 -390 -390 -390 -390 -390 -3	LESS	#0.40	-0.35	-0.30	+0.25	2 2 MI55.	-0.15 3 5 5 -0.15	-0.10	5							11 11 SUM
LE 55 -450 -450 -300 -300 -200 -200 -150 -200 -250 -200 -250 -200 -250 -200 -250 -200 -250 -200 -250 -200 -250 -200 -250	LESS	#0.40	-0.35	-0.30	+0.25	≠0.20 2 M155.	-0,15 3	-0.10	,			0.25				11 11 SUM

TABLE XXVII. $n_{\mathbf{y}}$ PEAKS FOR AIRSPEED VERSUS $n_{\mathbf{y}}$ BY WEIGHT

AN DEAKS FOR AIRSPEED VS NY BY WEIGHT 7000 LESS AN 60 69 70 75 80 85 90 95 100 105 110 115 120		47	PEAKS FOR	AIR	SPEED	V5 NY	87 HE	IGHT	6000						•	
-0.00 -0.15		LFSS	40	60	45	70	75	•0	45	90	95	100	105	110	115	120 5
-0.10	-0.40 -0.35 -0.30 -0.25															
0-10 10 3 1 2 2 0 1 2 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.15		1		1	1	z	1				1				
TIME 121.7 97.3 30.7 38.4 48.0 93.4 188.9 263.8 263.8 106.1 26.0 6.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.10 0.15 0.20 0.25 0.30	10	,			1			2							
VI DEAKS FOR AIRSPEED VS NV BY WEIGHT TOOD TOO	50 m	17	4		1	2	2	1	2			1				
	TIME	121.7	67.3	30.7	38,4	48.0	93.4	166.9	243,8	243,8	106.1	26.0	6.4	1.1	0.0	0.0 1219
		4,4	DEAKS FOR	AIR	SPEFC	VS NY	BY 4E	IGHT	7000							
	1155	LF55	A n	60	65	70	75	80	85	90	95	100	109	110	115	120 5
	-1. 15									1						
	20	1	1	1						1						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0.10	,	•		1		٠				,				1	
Type SAM_1 SAM_2 SAM_2 SAM_2 SAM_2 SAM_3 SAM_4 TAM_7 SAM_4	0.15 0.20 0.25 0.35		ı			1	1	2	•			•	•	•		
NY PEAKS FOR AIRSPEED VS NY BY WEIGHT 8000 LESS 40 60 69 70 75 80 85 90 95 100 105 110 115 120 LESS -0.40 -0.35	5UM	29		1												
LE55 40 60 69 70 75 80 85 90 99 100 109 110 115 120 LF55 -0.40 -0.40 -0.35 -0.410 -0.20 -0.10 0.10 1 1 2 2 4 2 2 2 4 4 1 -0.10 0.10 17 1 1 3 = 2 4 7 2 2 0.20 0.20 0.20 0.20 0.20 0.20 0.25	*1 F	584.t	376.3 1	92.9	219.0	265.*	394.4	744.7	1074,5	1184,1	555,4	168,3	35.8	13.6	1.1	0.0 5762
Lf55											04	100	105	110	118	120
-0.30 -0.27 -0.270 -0.310	-0.40	(13)	40	80	63	, ,	,,	40	,	,,,	*,	100	•	110	117	120
-0.20 -0.215 9 1 1 2 2 4 2 2 4 4 1 -0.210 17 1 1 3 = 2 4 7 2 2 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20	-0.25					1					1					
0	-0.20 -0.15	9	1			1	2	7	•	2		2	•	•	1	
0.20 0.20 1 330 0.35	0.10	17		1	,		2	4	7	5	2					
. 611	0.20									ı						
THE 400.0 320.1 190.3 210.8 251.4 360.2 672.3 1091.0 975.8 487.0 98.6 13.0 2.8 .6 0.0	• -	2#	?	1)	2	•	6	11	5	3	2	46	4	t	

TABLE XXVIII. $n_{\mathbf{y}}$ PEAKS FOR AIRSPEED VERSUS $n_{\mathbf{y}}$ BY ALTITUDE

	MY PE	AKS FOR	AIRSPE	D V5	NY BY	ALTI	TUDE	LESS								
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120	SU
LE55																
-0.35																
-0.30	1															
-0.20	•															
-0.15									1							
-0.10 0.10	6		1													
0.15	1															
0.20																
0.30																
0.40																
SUM	•		1						1							1
TIPE	67.9	10.7	2.4	.1	• •	.6	.2	•4	. 6	5.2	4.3	0.0	0.0	0.0	0.0	93,
								1000								
		ALS FOR	ATRSPE		NY BY	75	TUDE	1000	90	95	100	105	110	115	120	SU
LESS	LE55	40	40	65	, 0	.,	-0	-,	-70	.,	•					
-0.40																
-0.30																
-0.25	Z	1	1		1				1							
-0.15	15	3	•	Z	3	6		•	i		•	7	7	2		9
0.10	28	3		1	1	1	2	2	1	3	1		1			4
0.15	5	-		-	-	_										
0.20																
0.30																
0.35																
SUM	90	7	1	,	5	7	2	6	3	3	5	7	•	2		10
TIME	A54.4	269.3	97.1	98.4	92.3	87.9	87,3	90.1	63,5	29,4	11.0	9,1	3,3	.6	0.0	1624.
	NY PE	AKS FOR	AIRSPEE	D VS	NY BY	ALTI	TUDE	2000								
				65	70	75	60	85	90	95	100	105	110	115	120	SU
LFSS	LESS	40	60		,,	, ,	-0	•,	40	77	100	103	.10	,		30
-0.40 -0.35																
-0.30									1							
-0.25						1	1			1						
-0.20 -0.15	,	3				2	9		4		1		2			2
-0.10	9	2		2	1	1	1	4	2	1		1				2
0.15	7	•		•	•	i	•	•	•	i		-				•
0.20									1							
0.30									•							
0.35																
SUM	16	5		2	1	•	7	•		3	1	1	2			5
TIME	443,8	434,2	304,1 3	58.5	460.6	733.1	1423.7	2151.6	2222,0	1070.1	249.3	45.9	14.0	1.1	0.0	9932,
												•				
	NY PE	AKS FOR	AIRSPE	D v \$	NY 87	ALTI	TUDE	5000								
	LESS	40	60	65	70	75	80	85	100		100	100	110			SUI
LESS	2.33		30	3,	,,	.,	80		•0	77	100	109	110	117	120	301
-0.40																
-0.30																
-0.25 -0.20																
-0.15					1											1
-0.10 0.10							3	4								,
0.15							,	7								
0.20																
0.30																
0.35																
SUM					1		3	4								

										OII C	lude	u			
			_												
•															
	NY PEA	45 FOR	A1R5P	PED VS	NY 81	ALTI	TUDE	SUM							
	LESS	40	60	65	70	75	80	85	90	95	100	105	110	115	120 SU
L F 55		•••	•	•											
-0.40															
-0.35															
-0.30					,		1			1					
-0.20	1		1							•					
-0.15	22	6	•	2		1	5	4	6		5	7	•	2	•
-0.10												_	_		
0.10	43	5	1	3	2	2	6	10	3	•	1	1	1		
0.15	6					1				1					
0.20									1						
0.30									•						
0.35															
0.40														_	
5UM	74	12	2	5	7	12	12	14	12				10	2	18
											292.9		17.5	1.7	0.012162.

TABI	LE	XXI	х.	ny DEF	PEAK LECT	(S F ΓΙΟΝ	OR VE	LATE RSUS	ERAL S n _y	CY BY	CLIC	BO SSIO	OST N S	TUI EGMI	BE L ENT	OAI
N	V DFAE	S FOR C	Y-LAT DI	FETN	VS NY BY	H155.	SEG.	ASCENT								
LF55	LESS	-0.40	-0.35	-0.30	-0.25	-0.20	-0.15	-0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
-450																
-400																
-350 -300																
-250																
-200																_
-150							1		1							
-100					1	1	25		32	1		1				61
100							Z		7							3
150 200									,							,
250																
300																
350																
400																
450									22							70
5UM					1	1	28		38	1		1				70
411	PEAK	5 FOP (Y-LAT OF	LECTN V	S NY BY	M155,	SEG.	MANUVR								
	LE55	-0.40	-0.35	-0.30	-0.25	-0.20	-0.15	-0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
Lf 55 -450																
-436																
-350																
-300																
-250																
-200																
-150					1		17									21
-100					1		17		2							21
100																
200																
250																
300																
350																
400																
450							17			1						21
5UM					1		17		2	1						٤١

TABLE XXIX - Concluded

	LESS	-0.40	-0.39	-0.30	-0.25	-0.20	15	-0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	5
LESS											-					-
-450 -400																
-390																
-300																
-290							1									
-200																
-150 -100					1	1	25		1 22	2						,
100						•			**	•						
150							i		1							
200																
250																
300 350																
400																
450																
SUM					2	5	29		24	2						•
NY	PEARS	FOR CY	-LAT DF	LECTN V	/5 NY 8Y	M155.	SEG.	STEADY								
	LESS	-0.40	-0.35	-0.30	-0.25	-0.20	-0.15	-0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	Si
LF55				-												
-450																
-400 -350																
-300																
-250																
-200																
-150 -100				1			6		18	4						
100				•					• •	•						
150																
200																
250																
300 350																
400																
450																
5()M				1			6		10	4						
					-0.25			\$U# =0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	S
LESS																
-450 -400																
-350																
-300																
-250							1									
200									,							
-200				1	1 3	1 5	73		74			1				1
-150					,	,	4		74 2	•						•
-150 -100							1									
-150 -100 100																
-150 -100 100 150 200																
-150 -100 100 150 200 250																
-150 -100 100 150 200 250																
-150 -100 100 150 200 250 300 350																
-150 -100 100 150 200 250				1			80		62	В		1				1

			TAB	LE :	XXX.	n	x P	EAKS	FO	R n	x VE	ERSU	S n	z		
		-		<u> </u>	-											
			NX	PEAKS	FOR N	x vs	NZ									
	LESS	-0.40	-0.39	-0.30	-0.25	-0.20	-0.15	-0.10	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
2.4																
2.2																
2.0																
1.0																
1.7																
1.6																
1.5					1											•
1.4									;							;
1.2									•							
0.8					10	23	63		34	1	1	•				136
0.7						23	• • • • • • • • • • • • • • • • • • • •			•	•					1
0.6						•										-
0.5																
0.4																
0.2																
LESS																
SUM					11	24	63		43		1	1				149

								AKS		у						
						v vs					April 10 May 10			-		
	LESS .	-0.4C	-0.35	-0.30	-0.25	-0.20	-0.15	-0.1^	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
-0.49																
-n 35																
-0.30																
-7.25							1	10								11
-0.20							i	23								11
-0.15								10 23 63								63
-1 .10																
0.10						1		41	1							43
0.15								•								•
6.50								1								ì
0.25								1								1
C . 30																
0.35																

							,	EAKS		•••	X • 2		•	у		
			NY	PEAKS	FOR N	 1X V5	NY					-				
	LESS	-0.40	-0.35	-0.30	-0.25	-0.20	-0.15	-0.10	0.10	0.15	0.20	0.25	0,30	0.35	0.40	SUP
LESS		•		•		-	-	-								
-0.40																
-0.35																
-0.30									1							
-0.25								á	•							
-C.15						1	10	68	1							80
-0.10						-										
0.10							3	58	15	5	1					8
0.15						2		5	1							
0.20																
0.25																
0.30																
0.35						,	13	142	10	,						

		TA	BLE	xxx	111.	n	y F	PEAK	S FO	OR n	y V	ERS	US r	¹z		
2.4	LESS	-0.40			FOR NY			-0.10	0.10	0.19	0.20	0.25	0,30	0.35	0.40	SUM
2.0 1.8 1.7 1.6 1.5 1.4							2		2							4 2 11
1.2 0.8 0.7 0.6 0.5 0.4 0.2				1	•	,	70		3 75 1	•		1				164
LESS SUM				1	•	6	80		62	•		1				182

TABLE XXXVI. $n_{\mbox{\scriptsize ze}}$ PEAKS FOR μ VERSUS $n_{\mbox{\scriptsize ze}}$ BY ALTITUDE AND MISSION SEGMENT

	NZ	E PEAKS	FOR MU	V5 NZE	RY ALT	LESS	MIS-SF	G ASC	ENT	
2 • 4	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	
2.0 l.8 l.7			2	1						
6		1 4	1 2							
• 4		3		1	1			•		
) • 8) • 7										
0.6 0.5 0.4										
55			112	_	_					
UM.		12	5	3	1					
F	0.0	18.4	6.0	1.0	•6	0.0	0.0	0.0	0.0	
	NZE	PEAK5	FOR MU	VS NZE	PY ALT	1000	MIS-SE	G ASCE	:NT	
• 4	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	
• 2				1						
•0 •8		2	3	2	1 2					
• 7		1	8	3	ï					
•6 •5		6 1	13 24	10 20	2					
• 4		14	24	16	6					
• 3		11	23	11	,					
• 2 • 8		7	7	2						
• 7 • 6		1	1	1						
5										
• 2 5 5					1.2.2					
JM		43		66	12					
•	0.0	221.8	221.9	122.9	8.2	0.0	0.0	0.0	0.0	5

TABLE	XXXVI	-	Continued

	NZ	E PFAKS	FOR MU	V5 N7E	RY ALT	2000	MIS-S	EG ASC	ENT	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
2 • 4 2 • 2										
2.0				1						1
1.8			2	4						6
1.7		2	10 16	10						22
1.5		4	30	25 30	1					45 64
1.4		9	45	29	1					84
1.3		4 7	28	32	5					69
0.8			8	16						31
0.7			7	11	1					19
0.4										• •
0 • 5 0 • 4										
0.2										
LESS										
SUM		29	146	158	8					341
TIME	0.0	206.0	826.7	943.9	39.0	0.0	0.0	0.0	0.0	1915.5
			•				. ••	•••	0,0	191767
				_						
6	NZE	PFA"S	FOR MU	VS NZE	RY ALT	1000	MISHSE	G MANI	JVR	
(LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
2.4	6.00		••••							
2.2										
2.0 1.8										
1.7										
1.6					?					2
1.5			1	3	3					13
1.4				3	. 2					2
1 • 2										
9.0					•					1
0.7					1					•
0.5										
0.4										
0 • 2 LF55										
\$UH			1	3	17					21
TINF	0.0	.4	.4	3.3	16.0	0.0	0.0	0.0	0.0	20.1
115.6	0.0	• •	• •	247	1000	0 60	0.00	0.0	~ • •	F 0 # #

				Conti	AVI -				
	IVR	G MANU	MIS-SF	2000	PY ALT	VS NZF	FOR MU	PFAKS	MZE
SUI	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	LESS
						1			
					2	1			
1					2	14	1 3		
2 1	•				3	18 10	3		
						3	1		
				•		?			
				1					
8				1	11	1 68	8		
114.	0.0	0.0	0.0	•1	8.4	89.4	15.2	• 9	0.0
			W-6 55	. ===	.				
611			MIS-SF	l.ESS			FOR MU		
SU	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	LESS
							1		
						1	1	1 1 1	
								1	
25	0.0	0.0	0.0	0.0	•	1	2	3	
25.	0.0	0.0	0.0	0.0	•0	•6	4.4	50.4	\circ

TABLE XXXVI -	Continued
---------------	-----------

	NZ	E PEAKS	FOR MU	VS MZE	RY ALT	1000	M15-5	EG DES	CNT	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	su
2.4				1						
2.0			1	2						
1.8			6	18	2					2
1.7			8	18	2					2
1.6		4	26	27	7					6
1.5		4	30 33	51 40	5 5					ì
1.3		4	24	25	,					
1.2		1	9	6	2					i
0.8										
0.7			1	1						
0.6										
0.5				1						
0.2										
LESS										
SUM		17	138	190	23					36
JME	0.0	247.6	182.8	202,6	14.4	0.0	0.0	0.0	0.0	647
	NZF	PEAKS	FOR MU	VS NZE	PY ALT	2000	MTS-SF	G DESC	דא	
	LF55	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	S U
2.4				1						
2.0				4	2					
1.8			6	19	3					2
1.7		2	4	21	6					3
1.6		1	15	48	15					7 12
1.5		3	21	83 130	1 P 3 1					18
1.3		4	33	105	. 20					16
1.2		5	11	54	7					7
0.8										
0.7			2	7	3					1
0.6			1	3	2					
0.5			1	5 4						
0.4				5						
F55										
SUM		15	116	489	107					72
					239.7		0.0		0.0	

			ТА	BLE X	XXVI -	Conti	nued			
	NZE LESS	PEAKS	FOR MU	V5 NZE	RY ALT	5000 0.25	MIS-S	FG DES	CNT 0•40	SUM
2.4 2.2 2.0 1.8 1.7 1.6 1.5 1.4			1	1 1 1						1 2 1
1.2 0.8 0.7 0.6 0.5 0.4 0.2 LFSS SUM			1	3						4
TIME	0.0	0.0	2.1	52.6	9•2	0.0	0.0	0.0	0.0	63.9
	N/7 F	PFAKS	FOR MU	VS N7E	RY ALT	LESS	MIS-SF	G STEA	ADY	
2.4 2.2 2.0 1.8	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	SUM
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7		1			1					2
0.6 0.5 0.4 0.2 LESS SUM		1			2					3
TIME	0.0	33.0	0.0	1.1	8.0	0.0	0.0	0.0	0.0	42.1

	NZE	PEAKS	FOR MU	V5 NZE	BY ALT	1000	MIS-SE	G STE	ADY	
4	.ESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	9
2										
A 7				1						
6 5		1		1						
4				1	1 2					
2				1	ī					
A 7										
5 5										
4 2										
5 M		1		4	4					
	0.0	303.5	1.8	66.8	10.3	0.0	0.0	0.0	0.0	3 R 2
	NZE	PEAKS	FOR MU	VS NZE	RY ALT	2000	MIS-SE	G STE	ADY	
	.ESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	(
2										
9				3						
7 5			2	6 20	2 6					
5			4	64 126	22 45					:
4 3			2	83	38					
2				38	8					
9 7				7	2					
5 5										
4 2										
5			19	347	123					
7			1.4	341						

	NZE	PFAK5	FOR MU	VS NZF	PY ALT	5000	MIS-SF	G STEA	DY	
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	50
2.4										
2.0 1.8										
1.7				1						
1.6				1 2	1					
1.4				1						
1.2										
0.8			1							
0.6										
0.4										
0.2 £55										
SUM			1	5	1					
ME	0.0	0.0	3.7	319.5	30∙0	0.0	0.0	0.0	0.0	353
	NZE	PEAKS	FOR MU	VS MZE	SIJM					
	LESS	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	S
2.4			11	3	12					
2.0 1.8		?	1 17	7 48	3 7					
1.7		5	34	61	13 31					1 2
1.6		15 15	74 113	136 266	55					4
1.4		36	138	362	102					6
1.3		27 20	113	276 127	71 18					2
C.A			13	30	7					
0.6		1	1	5	2					
0.5			1	6		1				
0.4				5		•				
E SS		121	540	1 1337	309	1				23
			-	-						

TABLE XXXVII. n_{z_e} PEAKS FOR AIRSPEED VERSUS n_{z_e} BY ALTITUDE AND MISSION SEGMENT

	NZE	PEAKS	FOR VEL	VS NZE	BY ALT	LESS	M15-5EG	ASCEN	T							
	LFSS	40	60	70	75	80	89	•0	95	100	105	110	119	120	124	SU
4 2 0 8 7 6																
į		1	1					1								1
6 5	1		1 2													
3	3	1				1		1			1					
2																
5 .4 .3 .2 .8 .7 .6																
•4																
55 UM	11	2	•			1		2			1					2
E	16.3	5.5	1.8	.7	•5	.3	.2	.2	. 3	.3	. 2	0.0	0.0	0.0	0,0	26.
	42F	PEAKS	FOR VEL	VS NZE	BY ALT	LESS	MIS-SEG	DESCN	•							
4	LF55	40	40	70	75	•0	85	90	95	100	105	110	115	120	124	SUF
2																
7																
5	1	1		ı		1										
3	i					•										
20 R 7 6 5 4 3 2 8 7																
5																
2																
5.5 JM	2	2		1		1										
•	18.7	5.2	. 8	• ?	.2	.3	0.0	•2	•0	0.0	•0	0.0	0.0	0.0	0,0	25.
	NZF	PFAKS	FOR VE	L VS NZ	E MY ALI	r LESS	MIS-SFC	5 STEA	DY							
	LESS	40				60	65	90	95	100	105	110	115	120	124	5
2.2																
1.0																
.6																
3	1									1	1					
1.2																
0.6																
0.6																
0.6	1									1	1					

	4.7	00.00	FOR VEI	VS NZE	RV ALT	1000	MTS-5	FG ASC	ENT							
	42F	40	60 60	70	75	1000	85	90	95	100	105	110	115	120	124	
2.7		-			1											
1.0	1	,	1			ı			1	2		1				
1.7	1	7	3	5	1 2	1 2	3	2	1 2				1			
1.5	10	11	3	6	11	3	7	1	3	2 4 1		1		ı		
1.3	5	16	3	2	3	•	,	1		•						
0.7 0.6	1	1					1									
0.5																
0.2 E55		7.	· .			17	18	7	7	•		2	1	1		
SUM	30	130.7	14 54.3	30 58.0	49.9	34.0	26.1	16.0	9.2	4,6	1.7	2,1	. 5	.0	0.0	5
•	•		•													
	ηZF	PFAKS I	OR VFL	V5 N7E	RY ALT	1000	M I 5-5E	G MANI	JVR			1				
2.4	LFS5	•0	40	70	75	80	65	90	95	100	105	110	115	120	124	
2.2																
1.7												1		ı		
1.5			1					2	1	1	1	3	1 2	1 2		
1.3			•									2				
C.R											1					
0.6																
0.2																
E 55 SUM			1				_	2	1	4 1	3 4.1	•.3	3 2.1	.5	0.0	
IME	۰,٠	. 5	•5	.1	,1	,1	.1	1.6	.7	4.1	•••	•	•••	••		
		PEAKS (BY ALT	1000	M15-5F									
2.4	LF55	40	40	70	75	AO	85	90	95	100	105	110	115	120	124	
2.0			1	1	,	1	1	1	,	3						
1.7	1	3 11	2,	2	5	5	3	4	,	2 5	1	i	1	1		
1.5	; 2 2	12	6	10	12	10	14 9 6	10	11	5	2	1				
1.3	,	14 12 3	2	9 6 7	4	13	3	4		2						
0.7			:					1								
0.6 0.5 0.4									1							
C+2							_					_				
5U₩	A	55	32	39	46	55	41	36	27	20	5	2	1	1		

2		NZE	PFAKS	FOR VEL	. VS NZE	BY ALT	1000	M15-5	FG STE	ADY							
1	2.2	LF55	40	60	70	79	•0	05	•0	95	100	105	110	115	120	124	SU
1	1.0							1									
1	1.5		1				ı			i							
LESS SUM I	1.2 0.8 0.7 0.4 0.9									ı	2	1					
NZE PEAKS FOR VEL VS NZE BY ALT 2000 MIS-SEG ASCENT LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2.0 2.1 1 1 1 1 1 1 1 1.2 2 7 2 7 6 111 7 1 1 1 1 1.3 4 9 110 7 8 9 9 3 4 9 1.3 1 8 9 11 1 5 5 7 13 4 4 1 1 1.2 5 6 1 2 2 5 3 4 3 0.7 1 1 1 3 4 5 2 2 1 1 1.2 5 6 1 2 2 5 3 4 3 0.7 1 1 3 4 5 5 2 2 1 1 1.2 5 6 1 2 2 5 5 3 4 3 0.7 1 1 3 4 5 5 2 2 1 1 1.2 5 6 1 2 2 5 5 3 4 3 0.7 1 1 5 4 5 5 7 13 4 4 1 1 1.2 5 6 1 2 2 5 5 3 4 3 0.7 1 1 5 4 5 5 2 2 1 1 0.8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LFSS		t				1	1		2	3	1					
LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2] ME	302.9	1.0	.5	.4	1.0	3,0	13.2	27,4	22.0	7.1	2.9	.2	0.0	0.0	0.0	362,
2.0 2.2 2.2 2.2 2.2 2.2 2.3 1.1 2.5 2.6 2.7 2.7 2.7 3.1 3.1 2.3 3.1 1 1 1.5 2.7 2.7 3.1 3.1 2.3 3.1 1 1 1.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		NZE	PFAKS	FOR VEL	VS NZE	BY ALT	2000	M15-5	FG ASCI	ENT							
2.0 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.4	LESS	40	60	70	75	80	85	90	95	100	105	110	115	120	124	Su
1 0 2 7 2 7 0 11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0					Į.				1							2
1.3 1 8 9 11 5 3 7 13 4 4 1 1 1.2 5 6 1 2 2 5 3 4 3 0.7 1 1 3 4 5 2 2 1 0.6 0.9 0.9 0.4 0.2 1 1 1 5 4 5 2 2 1 10 0.4 0.2 1 1 1 5 4 5 2 2 1 10 0.4 0.2 1 1 1 5 4 5 2 2 1 10 0.4 0.2 1 1 1 5 4 5 2 2 1 10 0.4 0.2 1 1 1 3 4 5 2 1 1 10 0.4 0.2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6	2	7	10	7	6	11	7	1 3	4			1				
0.7	1.3	1	8	9	11	5	5	7	13	4	4	1		1			3
0.4 0.2 LESS SUM 17 61 40 43 41 43 36 32 16 8 2 1 1 IME 145,8 314,7 230,1 244,0 256,4 227,3 211,4 151,3 89,0 33,1 10,2 1.9 ,2 0.0 0.0 1915 NZE PFAKS FOR VEL VS NZE RY ALT 2000 MIS-SEG MANUVR LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2.4 2.2 2.0 1.8 1 1 2 1 1 1.6 1 1 2 1 1 1.6 1 1 2 3 3 1 5 3 2 3 1.4 1 2 3 3 3 2 2 3 1.5 1.7 1 1 1 1 1 1 1 1.7 1.8 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.7		1	1	3	•	5	2	2			1					1
THE 145,8 314,7 230,1 244,0 296,4 227,3 211,4 151,3 89,0 33,1 10,2 1.9 .2 0,0 0,0 1919 NUCE PEAKS FOR VEL VS NZE RY ALT 2000 MIS-SEG MANUVR LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2.4 2.2 2.0 1.8 1.7 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0	0.4 0.2 LESS																•
LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2.4 2.2 2.0 1.8 1.7 1.1 1.2 1.1 1.5 1.5 1.5 1.5 1.1 1.5 1.1 1.5 1.5 1.6 1.7 1.8 1.8 1.9 1.9 1.1 1.8 1.8 1.9 1.9															0.0	0.0 1	34 (915)
LESS 40 60 70 75 80 85 90 95 100 105 110 115 120 124 5 2.4 2.2 2.0 1.8 1.7 1.1 1.2 1.1 1.5 1.5 1.5 1.7 1.1 1.5 1.5																	
2.4 2.2 2.0 1.8 1.7 1 1.6 1.5 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.3 1.5 3.2 3.2 3.5 1.4 1.2 3.3 2.3 1.4 1.2 2.3 3.3 2.3 1.4 2.3 3.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3		n/E	PFAKS	FOR VEL	VS NZE	BY ALT	2000	#15-5	EG MANI	JVR							
2.0 1.8 1.7 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.4	LF55	40	60	70	75	RO	85	90	95	100	105	110	115	120	124	Su
1.5	2.0 1.8 1.7					1		_			1		1				
0.8 0.7 1 1 1 1 0.6 0.6 1 1 1	1.5		1	_	1 2		3	1 2	5	3 5	1	3	,				1 2 1
0.6 0.5	1.2			2	,	3	3	2	2		•		•				ì
0.2 LESS 1 SLIM 2 2 4 8 12 16 16 15 6 4 3	0.6		1					1	•								
	0.2 LESS SUM		2	2	•		12	16	16	15	6	4	3				

	4.4F	PFAKS	FOR VEL	V ' NZE	RY ALT	2000	# [S= 5	SEG DES	SCNT							
	LF55	40	60	70	75	80	65	90	95	100	105	110	115	120	124	
2.4 2.2 2.0 1.8 1.7 1.6 1.5	2 1	1 4 5 3 4 11	1 2 2 4 9 6 2	1 6 11 10 10	5 6 19 21	4 7 17 20 23	1 1 4 3 15 22 23 19 20	3 6 9 18 37 22	6 7 13 21 34 26	1 3 2 14 9 20 11	1 1 3 2 7 12	1 1 2 1 5	1 1 1			
0.7		1	•	1 1 1	·	2 2 3	3 1 3	2	1	i	i					
SUM IME	3 25,5	38 98.9	20 50.5	43 63,2	63 95,0	92 171.1	115 282.1	118	115 332.7	69 204,4	35 69,1	13 18,1	3 4.4	,•	0,0	185
					BY ALT	2000	M[5-5	SEG 571	EADY 95	100	105	110	115	120	124	
2.4	LF55	•0	60	70	75	#0	87	•	97	100	103	110	***	120		
2.0 1.8 1.7 1.6 1.5 1.4		1	1 1	1 2 5	2 2 4 10	1 6 6	3 4 3 16 30 10	11 16 39 29	2 3 18 39 27	1 7 19 36 25	1 11 13	2 2 5	1 1			
1.2 0.A C.7					1		,	3	3	•	1	1				
0.6 0.4 0.2 E55 5UM		1	2	а	20	24	73	113	104	99	35	10	2			
1 s· t	202.5	16.1	20.0	13.3	98.9	322.3	912.1	1605.1	1775.9	823,9	188.0	25,5	9.5	.3	0.0	604
	42E	PFAKS	FOR VEL	VS NZE		5000	M S=5		SCNT	7.1				120	124	
2.4 2.2 2.0 1.8 1.7	LESS	40	69	70	75	•0	#5 #1	•0	95	100	105	110	115			
1.7 1.6 1.5 1.4 1.3 1.2 0.8 0.7			ı		1			1	1							
0.5 C.4 P.2 LFSS			1		1			1	1							

	-				TA	BLE	XXX	VII	- (Conc	lude	d 				
	4Z F	PEAKS	FOR VE	L VS NZI	E BY ALT	5000	M [5-5	SEG S1	rEADY							
	LESS	40	60	70	75	80	85	90	99	100	105	110	115	120	124	
. 7							_	1								
1.5						1	1				1					
. 8					1											
. 7					1											
. 5																
55 SUM					1	1	2		2		1					
E	0.0	.3	,3	2.0	2,2	13.8		153,		31,1		.0	0.0	0.0	0.0	3
	NZE	PEAKS !	OR VEL	VS NZE	SUM											
	LESS	40	60	70	75	80	85	90	95	100	105	110	115	120	124	9
2					1		1	1								
0	1	. 5	1	2	11	•	11	3	12	2	i	1	-			
7	2	17	15	28	12 20	11 30	13 36	14 31	10 23	26	5	3	2	2		1
5	11 23	37 59	26	40	39 60	51 53	70 70	96	95	37	20 27	•	2	1 3		4
3	17	46	25	32	37	59	53	74	60	45	21	14	ž	•		4
2	10	24	5	8	17	20	35	36	23	13		3				•
7	1	4	2	1	7	7	3	11	1	1	3	1				
				i	•	2	3	•	1	•	•					
						3	1		1							
4							3	2								
5 4 2 5 5	72	225	116	168	205	247	302	331	288	212	88	37	11	6		23

TABLE XXXVIII. VIBRATORY AND MEAN BOOST TUBE CONTROL LOADS FOR REPRESENTATIVE FLIGHT CONDITIONS

Flight		il y	1.65	. 1	atera	1	Long	i tud i i	nal	Co	llecti	ve
Condition	A/S kn	N _R rpm	GW 1b	1/Rev ≟1b	2/Rev ±1b	Mean 1b	1/Rev ±1b	2/Rev	Mean 1b	1/Rev ±1b	2/Rev ±1b	Mean 1b
Autorotation	80	322	6450	282	188	- 29	213	128	48	164		-157
	83	325	6402	282	106	- 6	170	85	37	109	38	-266
	81	325	6364	117	7.5	-41	106	64	37	5.5	• •	-266
	0	280	6805	200	94	-76	149	85	-91	5.3		-394
	85	321	6305	188	94	-76	128	64	59	120	53	-194
	78	323	6263	164	71	18	170	106	- 5	160	54	87
Descent	89	326	7332	131	59	-111	141	22	228	54	27	93
	88	321	7201	119	47	-123	108	43	207	27		80
Des/Flare	78	320	7328	119	36	-100	152	87	80	40	•-	- 27
Hover	0	322	7322	142	9.5	- 53	97	65	-16	27		-80
	0	322	8785	95		-100	65		- 5	13	•-	-67
Ascent	60	326	9275	119	47	-76	108	11	197	27		-80
	73	324	8771	142	59	-147	130	43	228	54	27	- 27
Maneuver	87	319	6917	166	118	-182	130	22	276	108	• •	410
	65	320	7259	119	71	-170	216	108	410	108	54	120
Descent	50	327	8981	440	95	-182	260	87	101	54	27	348
Cruise	91	326	9258	107	24	-65	130	43	239	27	•	-67
	97	318	8346	98	0	-12	129	79	165	124		0