Assignment 4

Vishal Kumar, MIT2019090

Question

Explain Newton's method with equality constraints. Also explain Newton step with infeasible start.

Ans. -

Lets consider a problem with linear equality constraints.

$$\min_{x \in \mathcal{R}^N} \quad f(x)$$
s.t.
$$h(x) = 0$$

Here, assume f(x) is convex and twice differentiable.

Now, Let g(x) is gradient of f(x).

Let H(x) is Hessian of f(x) and

J(x) is Jacobian.

for non-constraint probelm, Newton' Method is:

$$x_{+} = x + \Delta x_{nt}$$

here, Newton's step is:

$$\Delta x_{nt} = -H(x)^{-1}g(x)$$

To solve Δx_{nt} , We have to solve this linear equation:

$$\begin{bmatrix} H(x) & J(x)^T \\ J(x) & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \lambda \end{bmatrix} = \begin{bmatrix} -g(x) \\ -h(x) \end{bmatrix}$$

Assume that h(x) = Ax and solution is feasible for h(x) = 0, then linear system:

$$\begin{bmatrix} H(x^k) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \lambda \end{bmatrix} = \begin{bmatrix} -g \\ 0 \end{bmatrix}$$

Let's suppose H(x) is strictly convex, and A is full rank matrix then linear system is solvable:

$$\begin{bmatrix} \Delta x \\ \lambda \end{bmatrix} = \begin{bmatrix} H(x^k) & A^T \\ A & 0 \end{bmatrix}^{-1} \begin{bmatrix} -g \\ 0 \end{bmatrix}$$

This is Newton's step with feasible start equation.

Algorithm 1 Newton's method with equality constraints

- 1: given starting point $x \in \text{dom } f$ and Ax = b, tolerance $\epsilon \neq 0$
- 2: repeat
- 3: Compute the Newton step and decrement Δx_{nt} , $\lambda(x)$.
- 4: Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$
- 5: Line search. Choose step size t by backtracking line search.
- 6: Update. $x := x + t\Delta x_{nt}$

Newton Step with Infeasible start:

The Newton step of f(x) at an infeasible point x for the linear equality constrained problem is given by the solution of:

$$\begin{bmatrix} H(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \lambda \end{bmatrix} = \begin{bmatrix} -g(x) \\ Ax - b \end{bmatrix}$$

Let x be the an infeasible point. Our goal is to find a step

 Δ x s.t. x + Δ x satisfies approximately the optimality condition. After linearization we get:

$$A(x+) = b,$$

$$g(x) + H(x) + A^{T}\lambda = 0,$$

i.e., the definition of the Newton step

These are the primal and dual conditions of Newton's method. We have to update x and λ both in order to satisfy the optimal conditions i.e. we have to update till Ax = b.

Algorithm 2 Newton's method with equality constraints

- 1: given starting point $x \in \text{dom } f, \lambda$ tolerance $\epsilon \neq 0, \alpha \in (0, 1/2), \beta \in (0, 1)$
- repeat
- 3: Compute primal and dual Newton steps $\Delta x_{nt}, \Delta \lambda_{nt}$
- 4: Backtracking line search on $||r||_2$

$$t := 1$$

while
$$|| r(x + t\Delta x_{nt}, \lambda + t\Delta \lambda_{nt} ||_2 > (1 - \alpha t) || r(x, \lambda) ||_2$$
. $t := \beta t$

5: Update, $x := x + t\Delta x_{nt}, \lambda := \lambda + t\Delta \lambda_{nt}$

until Ax=b and
$$|| r(x, \lambda) ||_2 \le \epsilon$$