Stima della pressione sanguigna da video mediante framework FaceQs

Relatore: Prof. Giuliano Grossi

Correlatore: Prof. Raffaella Lanzarotti

Tommaso Amadori - Laurea Magistrale in Informatica

Anno accademico 2021-2022

Sommario

- Segnale fisiologico BP (Blood Pressure) e PPG (PhotoPlethysmoGraphy)
- Framework FaceQs
- Pipeline per la stima di BP e componenti utilizzati
- Uso di Random Forest e Deep Neural Network per la stima (regressione)
- Risultati sperimentali

La pressione sanguigna

Blood pressure (BP):

- Systolic BP (SBP)
- Diastolic BP (DBP)
- Mean Arterial Pressure (MAP)

PhotoPlethysmoGraphy (PPG) tecnica ottica non-invasiva utilizzata per misurare il volume sanguigno nelle vene (Blood Volume Pulse BVP)

Pressione sanguigna tramite sfigmomanometro

BVP tramite pulsossimetro

Segnale rPPG - pyVHR

Framework FaceQs

Framework sviluppato per analisi di segnali facciali:

- Stima di segnali fisiologici
- Stima audio, video, gaze, ...
- Gestione datasets
- Utilities di training, test e di plot

Struttura interna del package

Pipeline BP (FaceQs)

Analisi morfologica del segnale rPPG - NeuroKit2

- Analizzatore morfologico del segnale PPG
- Produce indici (circa 90) legati all'HRV:
 - HRV_MedianNN: The median of the RR intervals
 - *HRV_SD2*: Standard deviation along the identity line
 - *HRV_Prc80NN*: The 80th percentile of the RR intervals
 - HRV_MCVNN: The median absolute deviation of the RR intervals (HRV_MadNN) divided by the median of the RR intervals (HRV_MedianNN)

NeuroKit2

Random Forest (RF)

- Algoritmo tradizionale supervised
- RF Regressore
- Basato su circa 100/200 DT casuali
- Input → circa 10 parametri di
 NeuroKit2
- Output → Valori BP
 - Media dei risultati di ogni DT

Sottoalbero di un RF implementato in FaceQs

Deep Neural Network

- DNN regressore
- Input → 50 parametri NeuroKit2
- Output → valori BP
- Hidden layer: 3-4 con dropout
- Neuroni: 32-256

Training dei modelli

 RF: Randomized e grid search con cross-validation

n_estimators	[100, 200,, 2000]
min_samples_split	[2, 5, 10]
min_samples_leaf	[1, 2, 4]
max_features	[log2, sqrt, None]
max_depth	[10, 20,, 110]
bootstrap	[True, False]

Tabella di iperparametri ricercati per RF

DNN: ricerca empirica

#epoche	[50, 75,, 200]
optimizer	[Adam, SGD]
#neuroni	[16, 32,, 512]

Tabella di parametri ricercati per DNN

Dataset utilizzati

- V4V dataset principale (video e segnale BP) **stima BP da remoto**
- MIMIC-II e VitalDB dataset secondari per identificare i limiti della pipeline

Metriche e parametri di valutazione

- Finestrature: 20, 30, 40, 50 e 60 secondi (*)
- Modelli: RF e DNN
- Metodi di estrazione rPPG: holistic e patches
- Stima errore: MAE

(*) 30 e 40 secondi nel caso dei dataset secondari

Distribuzione MAE V4V - DBP e SBP

SBP

Risultati DBP e SBP

Finestra (sec)	Holistic (MAE)		Patches (MAE)	
	RF	DNN	RF	DNN
20	8.07	7.80	8.46	8.32
30	7.51	7.48	7.87	8.77
40	6.70	7.02	8.54	8.45
50	6.51	5.64	7.40	8.47
60	8.05	10.19	8.84	9.42

V4V

Finestra (sec)	RF	DNN
30	8.14	7.50
40	6.74	6.67
MIMIC-II		

Finestra (sec)	RF	DNN
30	9.99	10.04
40	9.90	9.98

DBP

VitaIDB

Finestra (sec)	Holistic (MAE)		Patches (MAE)	
	RF	DNN	RF	DNN
20	13.66	13.85	14.25	14.82
30	13.31	13.81	12.45	12.85
40	14.51	13.99	12.63	16.21
50	13.83	16.00	13.49	14.37
60	13.83	16.48	10.51	13.82

V4V

Finestra (sec)	RF	DNN
30	14.31	11.41
40	10.94	10.26

Finestra (sec)	RF	DNN
30	13.80	13.64
40	14.35	14.18

VitalDB MIMIC-II

Conclusioni e sviluppi futuri

- Sviluppo di dataset ricchi e omogenei
- Selezione dei segnali rPPG tramite patches
- Ampliare la ricerca per la stima di nuovi segnali fisiologici applicando la stessa pipeline

Grazie per l'attenzione