

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

21 de Marzo de 2022

Gráfico de subconjuntos de ${\mathbb R}$

En virtud de la relación menor o igual definida en \mathbb{R} se puede pensar en ordenar esquemáticamente los números reales de menor a mayor. Los números reales se representan sobre una recta horizontal tal que a cada x en \mathbb{R} se le asocia un punto sobre la recta siguiendo las siguientes convenciones:

- Si x < y entonces x está a la izquierda de y.
- ② Si x < y entonces $m = \frac{x + y}{2}$ es punto medio del trazo \overline{xy} .

Gráfico de subconjuntos de R

Definición. (Intervalos)

Sean $a, b \in \mathbb{R}$ tal que $a \leq b$. Los siguientes subconjuntos de \mathbb{R} se llaman intervalos:

Intervalo abierto a coma b:

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}.$$

② Intervalo cerrado a coma b:

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}.$$

Intervalo a coma b cerrado por la derecha y abierto por la izquierda:

$$(a,b] = \{x \in \mathbb{R} : a < x \leqslant b\}.$$

Gráfico de subconjuntos de R

Definición. (continuación)

 Intervalo a coma b cerrado por la izquierda y abierto por la derecha:

$$[a,b) = \{x \in \mathbb{R} : a \leqslant x < b\}.$$

Intervalos no acotados:

$$(-\infty, a] = \{x \in \mathbb{R} : x \leq a\},$$

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\},$$

$$[a, +\infty) = \{x \in \mathbb{R} : a \leq x\},$$

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}.$$

Gráfico de subconjuntos de ${\mathbb R}$

Observación

- Para denotar un intervalo abierto (a, b) también se puede ocupar los paréntesis]a, b[.
- ② Se puede anotar el conjunto $\mathbb R$ como el intervalo no acotado $(-\infty,\infty)$.
- \odot Si a = b entonces $(a, b) = (a, a] = [a, a) = \emptyset$ y $[a, a] = \{a\}$.

Definición. (Inecuación)

Una inecuación de una incógnita es una desigualdad que puede ser verdadera o falsa dependiendo del valor asignado a la incógnita. Resolver una inecuación de una incógnita consiste en determinar todos los números reales para los cuales la inecuación es verdadera.

Enunciaremos un método para resolver algunas inecuaciones del tipo

$$\frac{P(x)}{Q(x)}<0\;,$$

donde el signo < puede ser también > 0, \le o \ge .

Nos concentraremos en el caso en que P(x) y Q(x) son productos de factores lineales de primer orden del tipo (ax + b). Diremos que el x = -b/a es un punto crítico para este factor y corresponde al valor en el cual el factor es cero.

Resolución de Inecuaciones

El método para resolver estas inecuaciones es:

- Determinar todos los puntos críticos de los factores lineales involucrados.
- Ordenar los puntos críticos de menor a mayor y formar los intervalos encerrados entre ellos.
- **1** Mediante una tabla de signos determinar el signo de la expresión $\frac{P(x)}{Q(x)}$ en los intervalos dados por el paso 2.
- Escoger los intervalos para los cuales se satisface la inecuación dada.

EJEMPLO 1 Resuelva las siguientes inecuaciones

$$2 \frac{2x+1}{x+2} < 1$$

$$3 \frac{x^2 - 8x + 15}{x - 4} < 0$$

$$3 + \frac{1}{x - 1} > \frac{1}{2x + 1}$$

EJEMPLO 2 Resuelva las siguientes inecuaciones con valor absoluto

1
$$2|x| < |x-1|$$

$$|x^2 - |3 + 2x|| < 4$$