Midterm Problems

January 21, 2022

1. Barometric Formula The barometric formula is given by

$$P_h = P_0 e^{-\frac{Mgh}{RT}}$$

where P_h is the pressure at height h, P_0 is the pressure at ground level, M is the molar mass of air (28.97 g/mol), R is the gas constant, and T is the temperature. This formula has been used to approximate the elevation of mountains. Report to 3 significant figures.

- (a) A hiker brings a mercury barometer to measure the height of Mount Everest. At the summit, the hiker reports the barometric pressure to be 253.0 Torr at -9° C. Use the barometric formula to approximate the height of Mount Everest.
- (b) Mount Everest has an official height of 8,485 meters. Is the calculated height in (a) overestimated or underestimated? Explain potential errors.
- (c) Given the barometric pressure in (a), compute the partial pressure of $O_2(g)$ at the summit (P_{O2}) assuming that the atmosphere is made of 21% O_2 . With the oxyhemoglobin dissociation curve, estimate the percent hemoglobin saturated with O_2 assuming that the P_{O2} in the blood is equivalent to the P_{O2} at the summit.

- 2. Isothermal Compression Suppose 1.87 moles of $Cl_2(g)$ at 35°C are compressed isothermally from a volume of 15.0L to 4.79L. Report to 3 significant figures.
- (a) Sketch the process on the PV diagram. Define all variables and show what corresponds to the work (w) done on the gas
- (b) Compute the work (w) and the heat (q) in kJ/mol.
- (c) What is the final pressure of the gas?
- 3. **Decomposition of N**₂O₄(**g**) Supposed a sample of N₂O₄(**g**) has a pressure of 6.6 kPa. After some time, a portion of it decomposes to form NO₂(**g**). The total pressure of the mixture of gases is then 9.8 kPa. Assume the volume and the temperature do not change. What percentage of N₂O₄(**g**) has decomposed? Report to 3 significant figures.