1 Функция нескольких переменных

$$y = f(x) : x \in X \subset \mathbb{R}^n \to \mathbb{R}$$

Определение 1.1 Функция нескольких переменных – у

2 Метрическое пространство

2.1 Определение

Определение 2.1 X – метрическое пространство, если $\exists \rho : \forall x,y \in X, X \times X \to \mathbb{R}$ ρ называется метрикой, а $\rho(x,y)$ – расстоянием

2.2 Аксиомы метрики

- 1. $\rho(x,y) = 0 \leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$

2.3 Примеры метрик

- 1. $\mathbb{R}^1 : \rho(x,y) = |x-y|$
- 2. \mathbb{R}^1 : $\rho(x,y) = 2|x-y|$
- 3. \mathbb{M} : $\rho(x,x) = 0, \forall x \neq y \rho(x,y) = \emptyset$
- 4. \mathbb{R}^2 : $\rho(a,b) = \sqrt{(a_x b_x)^2 + (a_y b_y)^2}$
- 5. $\mathbb{R}^n : \rho(a,b) = \sqrt{\sum_{\xi}^{\xi \in n} (a_{\xi} b_{\xi})^2}$

3 Последовательности в \mathbb{R}^n

3.1 Определение фундаментальной последовательности

Определение 3.1 x_n – фундаментальная последовательность, если

$$\forall \varepsilon > 0, \ \exists \ N : \ \forall n, m \ge N, \ \rho(x_n, x_m) < \varepsilon$$

3.2 Определение предела последовательности

Определение 3.2 $\,A\,$ называется пределом последовательности $\,x_n,\,$ если

$$A = \lim_{n \to \infty} x_n : \forall \varepsilon > 0, \ \exists \ N : \forall n \ge N, \ \rho(x_n, A) < \varepsilon$$

3.3 Покоординатная сходимость

Определение 3.3

$$\vec{a} \to A \leftrightarrow \forall \xi \in n, \rho(a_{\xi}, A_{\xi}) \to 0$$

4 Нормированное пространство

4.1 Определение

Определение 4.1 X называется нормированным пространством, если $\exists ||x|| : \forall x \in X, X \to \mathbb{R}$

4.2 Аксиомы нормы

- 1. $||x|| = 0 \leftrightarrow x = 0$
- 2. $\forall \alpha \in \mathbb{R} : ||\alpha x|| = |\alpha|||x||$
- 3. $\forall x, y \in X : ||x + y|| \le ||x|| + ||y||$

4.3 Нормы для \mathbb{R}^1 , \mathbb{R}^2 и \mathbb{R}^n

- 1. $\mathbb{R}^1 : ||a|| = |a|$
- 2. \mathbb{R}^2 : $||a|| = \sqrt{a_x^2 + a_y^2}$
- 3. $\mathbb{R}^n : ||a|| = \sqrt{\sum_{\xi}^{\xi \in n} a_{\xi}^2}$

4.4 Метрика, рождённая нормой

$$\rho(x,y) = ||x - y||$$

5 Евклидово пространство

5.1 Определение

Определение 5.1 Линейное пространство X называется евклидовым, если в нём определена операция скалярного произведения:

$$<\!\!x,y\!\!>\!:\,x,y\in X,X\times X\to\mathbb{R}$$

5.2 Аксиомы скалярного произведения

- 1. $\langle x, x \rangle \geq 0, \langle x, x \rangle = 0 \leftrightarrow x \ 0$
- $2. \langle x, y \rangle = \overline{\langle y, x \rangle}$
- 3. < x + y, z > = < x, z > + < y, z >
- 4. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

5.3 Норма, рождённая скалярным произведением

$$||x||=\sqrt{<\!x,x\!>}$$