פתרון 7 לוגיקה מתמטית ₋ תרגיל

- $\mathbf{W}^{\mathrm{M}}=\{\ 0,\ 1\ \}$, $oldsymbol{\phi}=(\ x=y\)$: הוגמה: $\mathbf{M}\models_{\mathsf{S}}oldsymbol{\phi}$, אדי s(x)=s(y)=0 $\mathbf{M}\not\models_{\mathsf{S}}\forall x\phi$ ולכן $\mathbf{M}\not\models_{\mathsf{S}}:\phi$, s'(x)=1 , s'(y)=0 ולכן
- $\mathbf{M} \vDash_{s'} \mathbf{\phi}$ א לכן לכל \mathbf{S}' שמתלכדת עם \mathbf{S} פרט אולי על א לכן לכל $\mathbf{M} \vDash_{s} \mathbf{\phi}$ ב. $\mathbf{M} \vDash_{s} \mathbf{\phi} \quad \mathbf{S}' = \mathbf{S}$ בפרט עבור
- \mathbf{x} ג. כיוון אחד: $\mathbf{M} \models_{\mathbf{s}} \forall \mathbf{x} \mathbf{\phi}$, לכן לכל $\mathbf{M} \models_{\mathbf{s}} \forall \mathbf{x} \mathbf{\phi}$, לכן לפי (ב) לכל $\mathbf{M} \models_{\mathbf{s}} \mathbf{\phi}$
- כיוון שני: $\mathbf{M} \vDash \mathbf{\phi}$ לכן לכל \mathbf{s} ובפרט לכל 's שמתלכדת עם $\mathbf{m} \vDash \mathbf{\phi}$ כיוון שני: $\mathbf{M} \vDash \mathbf{v}$ לכן $\mathbf{M} \vDash_{\mathbf{s}} \forall \mathbf{x}$ ולכן $\mathbf{M} \vDash_{\mathbf{s}} \mathbf{v}$.
- 2. א. נכון. $oldsymbol{\phi}$ שקרי במבנה $oldsymbol{M}$ והשמה $oldsymbol{s}$, לכן לפי הגדרה $oldsymbol{\phi}$ אמיתי באותו המבנה וההשמה, ז"א $oldsymbol{\phi}$ ה
- s(x)=0, s(y)=1 אם . $\phi=($ x=y) , $W^M=\{$ 0, 1 $\}$. $\phi=($ x=y) , $W^M=\{$ 0, 1 $\}$. $\phi=($ x=y) , $\phi=($ y=y . $\phi=($ y=y) , $\phi=($ y=y . $\phi=($ y=y) , $\phi=($ y=y . $\phi=($ y=y) . $\phi=($ y=y . $\phi=($ y=y . $\phi=($ y=y) . $\phi=($ y=y . $\phi=($ y=y
- ג. נכון. מכיוון ש ϕ אזי קיימת השמה s כך ש ϕ מכיוון ש ϕ פסוק $M \not\models_s \phi$ מכיוון ש ϕ פסוק $M \not\models_s \phi$ אז לכל השמה $M \not\models_s \phi$ ולכן לכל השמה $M \not\models_s \phi$ ולכן לכל השמה
 - ד. לא נכון. דוגמה: ניקח מבנה ונוסחה מדוגמה בסעיף ב) ונסיק $\, \phi \,
 eq \, וגם \,$ ד. $\, \phi \,
 eq \, + \,$
 - $\phi = \forall x \forall y (\ x = y\) \ , W^{M2} = \{\ 1, 2\ \} \ , W^{M1} = \{\ 1\ \}$ ה. איז $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq 0$ ולכן $\phi \neq 0$ אבל גם $\phi \neq 0$ ולכן $\phi \neq$
 - : אוי: $Q^M = \emptyset$, $R^M = \{1\}$, $W^M = \{1,2\}$ אוי: $Q^M = \emptyset$, $R^M = \{1\}$, $R^M = \{1,2\}$, $R^M = \{1,2\}$, אוי: $R^M = \{1,2\}$, $R^M = \{1,2\}$, אוי: $R^M = \{1,2\}$, אוי: R
- x אמיתית לוגית. מכיוון שבכל מבנה $|\mathbf{W}^{M}| > 0$ אזי אם לכל השמה עבור $\mathbf{\phi}$ אמיתית אזי קיימת השמה $\mathbf{s}(\mathbf{x})$ ב \mathbf{w} בה $\mathbf{\phi}$ אמיתית.
- ג. אמיתית לוגית. ברור ש- ϕ אמיתית לכל (s(x) ו s(x) ו במבנה כלשהו) אמ"מ ϕ אמיתית לכל (s(x) ו s(x) (באותו המבנה).

- אזי ϕ = (x = y) , W^M = { 1, 2 } ... ד. לא אמיתית לוגית. דוגמה: $M \neq \exists y \forall x \phi$ אבל $M \models \forall x \exists y \phi$
- ה. אמיתית לוגית. אם קיימת השמה $\mathbf{s}(\mathbf{y})$ כך שלכל $\mathbf{\phi} \ \mathbf{s}(\mathbf{x})$ אמיתית (במבנה כלשהו) אזי באותו מבנה אם ניקח $\mathbf{s}(\mathbf{y})$ הנ"ל לכל $\mathbf{s}(\mathbf{x})$ אזי $\mathbf{\phi}$ אמיתית.

$$\varphi = \exists y (f(y,y) = x \land \neg (x = y))$$