12 DE OCTUBRE DE 2023

MATEMATICAS III

Guía del segundo parcial

MARTINEZ LARA SANTIAGO DE LA CRUZ (177685) FÁTIMA GUADALUPE ESTRADA GUITIÉRRES (180799) CABRERA MEZA JUAN ANTONIO (175166) FERMIN MORALES ROBLES

Guía de Matemáticas III, Otoño 2023. Segundo Parcial

Subespacios Vectoriales

1. Determine si los siguientes conjuntos son sub-espacios vectoriales:

a.
$$V=M_{22}; H=\{A=\begin{pmatrix}0&a\\-a&0\end{pmatrix}, a\in R\}$$
 b. $V=M_{22}; H=\{A=\begin{pmatrix}a&b\\-b&c\end{pmatrix}, a,b,c\in R\}$ c. $V=P_4; H=\{p\in P_4: P(0)=0\}$ d. $V=R^3; H=\{\begin{pmatrix}a\\b\\c\end{pmatrix}, x^2+y^2+z^2-(vt)^2=1\}$

Combinación Lineal

1. Dados los vectores u=(2,1,4), v=(1,-1,3) y w=(3,2,5). Exprese los siguientes vectores como combinaciones lineales de u,v y w.

a.
$$(5, 5, 9)$$

$$\begin{bmatrix} 2 & 1 & 3 & 5 \\ 1 & -1 & 2 & 5 \\ 4 & 3 & 5 & 9 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{bmatrix} 4 & 3 & 5 & 9 \\ 1 & -1 & 2 & 5 \\ 2 & 1 & 3 & 5 \end{bmatrix} \xrightarrow{R_2 + \left(-\frac{1}{4}\right)R_1} \xrightarrow{R_2 \leftrightarrow R_2}$$

$$\begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{11}{4} \\ 2 & 1 & 3 & 5 \end{bmatrix} \xrightarrow{R_3 + \left(-\frac{1}{2}\right)R_1} \begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{11}{4} \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_2}$$

$$\begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{11}{4} \\ 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \xrightarrow{R_3 + \left(-\frac{2}{7}\right)R_2} \begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{11}{4} \\ 0 & 0 & \frac{2}{7} & -\frac{2}{7} \end{bmatrix} \xrightarrow{R_3} \begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{11}{4} \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_2 + \left(-\frac{3}{4}\right)R_3} \xrightarrow{R_2 + \left(-\frac{3}{4}\right)R_3}$$

$$\begin{bmatrix} 4 & 3 & 5 & 9 \\ 0 & -\frac{7}{4} & 0 & \frac{7}{2} \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_1 + \left(-5\right)R_3} \begin{bmatrix} 4 & 3 & 0 & 14 \\ 0 & -\frac{7}{4} & 0 & \frac{7}{2} \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_2 - \frac{7}{4}} \xrightarrow{R_2 - \frac{7}{4}} \xrightarrow{R_3 + \frac{11}{4}} \xrightarrow{R_2 - \frac{7}{4}} \xrightarrow{R_3 + \frac{11}{4}} \xrightarrow{R_3 + \frac{7}{4}} \xrightarrow{R_3$$

b.
$$(2,0,6)$$

c. (2, 2, 3)

$$\begin{bmatrix} 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 2 \\ 4 & 3 & 5 & 3 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{bmatrix} 4 & 3 & 5 & 3 \\ 1 & -1 & 2 & 2 \\ 2 & 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_2 + (-\frac{1}{4})R_1} \begin{bmatrix} 4 & 3 & 5 & 3 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{5}{4} \\ 2 & 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_2} \xrightarrow{R_3 + (-\frac{1}{2})R_2} \xrightarrow{R_3 + (-\frac{1}{2})R_2} \xrightarrow{R_3 + (-\frac{1}{2})R_2} \xrightarrow{R_3 + (-\frac{1}{2})R_3} \xrightarrow{R_3 + (-\frac{1}{2})R_$$

d. $(-1,3,\frac{1}{2})$

$$\begin{bmatrix} 2 & 1 & 3 & -1.0 \\ 1 & -1 & 2 & 3.0 \\ 4 & 3 & 5 & 0.5 \end{bmatrix} \underbrace{R_3 \leftrightarrow R_1}_{4 & 3} \underbrace{\begin{bmatrix} 4 & 3 & 5 & 0.5 \\ 1 & -1 & 2 & 3.0 \\ 2 & 1 & 3 & -1.0 \end{bmatrix}} \underbrace{R_2 + (-\frac{1}{4})R_1}_{2} \underbrace{\begin{bmatrix} 4 & 3 & 5 & 0.5 \\ 0 & -\frac{7}{4} & \frac{3}{4} & 2.875 \\ 2 & 1 & 3 & -1.0 \end{bmatrix}} \underbrace{R_3 + (-\frac{1}{2})R_1}_{2} \underbrace{R_3 + (-\frac{1}{2})R_1}_{2} \underbrace{R_3 + (-\frac{1}{2})R_2}_{2} \underbrace{R_3 + (-\frac{1}{2})R_3}_{2} \underbrace{R_3 + (-\frac{1}{2})R_$$

2. Si $p_1=2+x+4x^2$, $p_2=1-x+3x^2$ y $p_3=3+2x+5x^2$. Exprese los siguientes polinomios como una combinación de p_1 , p_2 y p_3 .

a. $9x + 5 - 5x^2$

$$\begin{bmatrix} 4 & 3 & 5 & -5 \\ 1 & -1 & 2 & 9 \\ 2 & 1 & 3 & 5 \end{bmatrix} \underbrace{R_1 \leftrightarrow R_1}_{1} \begin{bmatrix} 4 & 3 & 5 & -5 \\ 1 & -1 & 2 & 9 \\ 2 & 1 & 3 & 5 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{4})R_1}_{2} \begin{bmatrix} 4 & 3 & 5 & -5 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{41}{4} \\ 2 & 1 & 3 & 5 \end{bmatrix}}_{2} \underbrace{R_3 + (-\frac{1}{2})R_1}_{2} \underbrace{R_3 + (-\frac{1}{2})R_1}_{2} \underbrace{R_3 + (-\frac{1}{2})R_2}_{2} \underbrace{R_3 + (-\frac{1}{2})R_3}_{2} \underbrace{R_3 + (-\frac$$

b. $2+6x^2$

$$\begin{bmatrix} 4 & 3 & 5 & 6 \\ 1 & -1 & 2 & 0 \\ 2 & 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_1} \begin{bmatrix} 4 & 3 & 5 & 6 \\ 1 & -1 & 2 & 0 \\ 2 & 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_2 + (-\frac{1}{4})R_1} \begin{bmatrix} 4 & 3 & 5 & 6 \\ 0 & -\frac{7}{4} & \frac{3}{4} & -\frac{3}{2} \\ 2 & 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_1} \xrightarrow{R_3 + (-\frac{1}{2})R_2} \xrightarrow{R_3 + (-\frac{1}{2})R_3} \xrightarrow{R_3 + (-\frac{1}{2})R$$

c. $3-2^{-1}x^2+x$

$$\begin{bmatrix} 4 & 3 & 5 & -0.5 \\ 1 & -1 & 2 & 1.0 \\ 2 & 1 & 3 & 3.0 \end{bmatrix} \underbrace{R_1 \leftrightarrow R_1}_{2} \begin{bmatrix} 4 & 3 & 5 & -0.5 \\ 1 & -1 & 2 & 1.0 \\ 2 & 1 & 3 & 3.0 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{4})R_1}_{2} \begin{bmatrix} 4 & 3 & 5 & -0.5 \\ 0 & -\frac{7}{4} & \frac{3}{4} & 1.125 \\ 2 & 1 & 3 & 3.0 \end{bmatrix}}_{R_3 + (-\frac{1}{2})R_1} \underbrace{R_3 + (-\frac{1}{2})R_1}_{2} \underbrace{R_3 + (-\frac{1}{2})R_2}_{2} \underbrace{R_3 + (-\frac{1}{2})R_3}_{2} \underbrace{R_3 +$$

d. $7x-2x^2+1$

$$\begin{bmatrix} 4 & 3 & 5 & -2 \\ 1 & -1 & 2 & 7 \\ 2 & 1 & 3 & 1 \end{bmatrix} \underbrace{R_1 \leftrightarrow R_1}_{-1} \begin{bmatrix} 4 & 3 & 5 & -2 \\ 1 & -1 & 2 & 7 \\ 2 & 1 & 3 & 1 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{4})R_1}_{-2} \begin{bmatrix} 4 & 3 & 5 & -2 \\ 0 & -\frac{7}{4} & \frac{3}{4} & \frac{15}{2} \\ 2 & 1 & 3 & 1 \end{bmatrix}}_{-2} \underbrace{R_3 + (-\frac{1}{2})R_1}_{-2} \xrightarrow{R_3 + \frac{15}{2}}_{-2} \underbrace{R_3 + (-\frac{1}{2})R_2}_{-2} \xrightarrow{R_3 + \frac{15}{2}}_{-2} \underbrace{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_3}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_3}_{-2} \underbrace{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_3}_{-2} \underbrace{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_3}_{-2} \underbrace{R_3 + (-\frac{2}{7})R_2}_{-2} \xrightarrow{R_3 + (-\frac{2}{7})R_3}_{-2} \underbrace{R_3 +$$

3. Escriba a ${\cal B}$ como una combinación lineal del conjunto de vectores ${\sf A}$

$$\mathsf{a.}\ B = \begin{pmatrix} -1 \\ -2 \\ 4 \end{pmatrix}, A = \{ \begin{pmatrix} -2 \\ -1 \\ -5 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix} \}$$

$$\begin{bmatrix} -2 & 4 & 3 & -1 \\ -1 & -1 & 1 & -2 \\ -5 & -2 & -3 & 4 \end{bmatrix} \underbrace{R_3 \leftrightarrow R_1}_{-5} \begin{bmatrix} -5 & -2 & -3 & 4 \\ -1 & -1 & 1 & -2 \\ -2 & 4 & 3 & -1 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{5})R_1}_{-2} \begin{bmatrix} -5 & -2 & -3 & 4 \\ 0 & -\frac{3}{5} & \frac{8}{5} & -\frac{14}{5} \\ -2 & 4 & 3 & -1 \end{bmatrix}}_{-3} \underbrace{R_3 + (-\frac{2}{5})R_1}_{-2} \underbrace{R_3 + (-\frac{1}{5})R_1}_{-2} \underbrace{R_3 + (-\frac{1}{5})R_3}_{-2} \underbrace{R_3 +$$

b. $B=-x^2+2x, A=\{x^2-1, x^2+1, x^2-x-1, x^2+5x\}$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 0 & -1 & 5 & 2 \\ -1 & 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{R_3 \to R_1 + R_3}_{A_3 \to A_1 + R_3} \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 0 & -1 & 5 & 2 \\ 0 & 2 & 0 & 0 & -1 \end{bmatrix} \underbrace{R_2 \leftrightarrow R_3}_{A_2 \to A_3 \to A_1} \begin{bmatrix} 1 & 0 & 1 & 1 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -1 & 5 & 2 \end{bmatrix} \xrightarrow{-R_3} \begin{bmatrix} 1 & 0 & 1 & 1 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 5 & -2 \end{bmatrix} \xrightarrow{R_1 \to -R_3 + R_1}_{A_1 \to A_2 \to A_3} \begin{bmatrix} 1 & 0 & 0 & 6 & \frac{3}{2} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 5 & -2 \end{bmatrix} \therefore c_1 = \frac{3}{2}, c_2 = -\frac{1}{2}, c_3 = -2, c_4 = 0$$

Vectores Linealmente Independientes y Dependientes

1. Determine los valores de k para que el conjunto $H = \left\{ \begin{pmatrix} k \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -2k \\ -1 \end{pmatrix}, \begin{pmatrix} k \\ 0 \\ 3 \end{pmatrix} \right\}$ sea lineal-mente independiente.

$$A = \left[egin{array}{ccc} k & 2 & k \ -2 & -2k & 0 \ 3 & -1 & 3 \end{array}
ight]$$

$$|A|
ightarrow -6k^2 + 2k - (-6k^2 - 12)
ightarrow 6k^2 + 2k + 6k^2 - 12
ightarrow 2k + 12 dots K = -6$$

- 2. Sea V el espacio vectorial de todas las funciones con valore real definidas sobre la recta real completa. ¿Cuáles de los siguientes conjuntos de vectores en V son lineal-mente dependientes?
- a. $\{2, 4\sin^2 x, \cos^2 x\}$ Nos da un sistema incosistente, por lo tanto es linealmente dependiente.
- b. $\{x, \cos x\}$

$$\begin{bmatrix} x & \cos x & 0 \\ 1 & -\sin x & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -\sin x & 0 \\ x & \cos x & 0 \end{bmatrix} \xrightarrow{-xR_1 + R_2} \begin{bmatrix} 1 & \sin x & 0 \\ 0 & \cos x + x \sin x & 0 \end{bmatrix} \xrightarrow{\cos x + x \sin x} \xrightarrow{R_2} \xrightarrow{R_1 + R_2} \xrightarrow{R_2 + x \sin x} \xrightarrow{R_2 + x \cos x} \xrightarrow{R_2$$

 $\begin{bmatrix} 1 & -\sin x & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\sin x R_2 + R_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \therefore C_1 = C_2 = 0 \therefore \text{ Solución consistente, por lo tanto es linealmente independiente.}$

c. $\{1, \sin x, \sin 2x\}$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ \sin x \\ \sin 2x \end{bmatrix} \therefore \begin{bmatrix} 1 & \sin x & \sin 2x & 0 \\ 0 & \cos x & 2\cos 2x & 0 \\ 0 & -\sin x & -4\sin 2x & 0 \end{bmatrix} \underbrace{\frac{1}{\cos x} R_2}_{0} \begin{bmatrix} 1 & \sin x & \sin 2x & 0 \\ 0 & 1 & 2\frac{\cos 2x}{\cos x} & 0 \\ 0 & -\sin x & -4\sin 2x \end{bmatrix} \underbrace{-\sin x R_2 + R_1}_{\sin x R - 2 + R_3} \underbrace{$$

 $\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\end{bmatrix}$ \therefore Solución consistente donde $c_1=c_2=c_3=0$ Por lo tanto es linealmente independiente

- d. $\{\cos 2x, \sin^2 x, \cos^2 x\}$ El sistema es linealmente independiente por ser un sistema consistente con soluciones infinitas.
- 3. Para que los valores de k, las siguientes matrices son linealmente independientes de $M_{22}\begin{bmatrix}1&0\\1&k\end{bmatrix}$, $\begin{bmatrix}-1&0\\k&1\end{bmatrix}$, $\begin{bmatrix}2&0\\1&3\end{bmatrix}$

$$\begin{bmatrix} 1 & -1 & 2 & a \\ 0 & 0 & 0 & b \\ 1 & k & 1 & c \\ k & 0 & 3 & d \end{bmatrix} \therefore$$

4. Construya un conjunto de vectores $H=\{v_1,v_2,v_3\}\in R^3$ tal que sean linealmente independientes y $v_1^TV_2=v_2^Tv_3=0$.

$$egin{aligned} V_1 &= egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, V_2 &= egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, V_3 &= egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \ A &= egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} \therefore |A| = 0 \ V_1^T V_2 &= egin{bmatrix} 1 & 0 & 0 \end{bmatrix} egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} = 0 \ V_2^T V_3 &= egin{bmatrix} 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = 0 \ \ddots \ V_1^T V_2 &= V_2^T V_1 = 0 \end{aligned}$$

5. Sea $H=\{v_1,v_2,v_3\}\in R^3$. Demuestre que si $det(H)=det([v_1,v_2,v_3])=0$, entonces H es lineal-mente independiente.

Bases y Cambios de Base

- 1. Determine una base para el espacio de funciones que satisface: $rac{dy}{dx}-2y=0$.
- $\textbf{2. Considera las bases } B = \left\{u_1, u_2\right\} \, \textbf{y} \, B' = \left\{u_1', u_2'\right\} \, \textbf{para R^2, donde:} \, u_1 = \left(\frac{2}{2}\right), u_2 = \left(\frac{4}{-1}\right), u_1' = \left(\frac{1}{3}\right), u_2' = \left(\frac{-1}{-1}\right), u_2' = \left(\frac{1}{2}\right), u_3' = \left(\frac{1}{2}\right), u_4' = \left(\frac{1}{2}\right), u_5' =$
- a. Calcula la matriz de transición de B' hacia B

$$\begin{bmatrix} 2 & 4 & 1 & -1 \\ 2 & -1 & 3 & -1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_1} \begin{bmatrix} 2 & 4 & 1 & -1 \\ 2 & -1 & 3 & -1 \end{bmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{bmatrix} 2 & 4 & 1 & -1 \\ 0 & -5 & 2 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_2} \begin{bmatrix} 2 & 4 & 1 & -1 \\ 0 & -5 & 2 & 0 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 2 & 4 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} & 0 \end{bmatrix} \xrightarrow{R_1 + (-1)R_1} \begin{bmatrix} 2 & 0 & \frac{13}{5} & -1 \\ 0 & 1 & -\frac{2}{5} & 0 \end{bmatrix} \xrightarrow{R_1} \begin{bmatrix} 1 & 0 & \frac{13}{10} & -\frac{1}{2} \\ 0 & 1 & -\frac{2}{5} & 0 \end{bmatrix}$$

b. Calcula la matriz de transición de B hacia B^\prime

$$\begin{bmatrix} 1 & -1 & 2 & 4 \\ 3 & -1 & 2 & -1 \end{bmatrix} \underbrace{R_2 \leftrightarrow R_1}_{1} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 1 & -1 & 2 & 4 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{3})R_1}_{1} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & -\frac{2}{3} & \frac{4}{3} & \frac{13}{3} \end{bmatrix} \underbrace{R_2 \leftrightarrow R_2}_{1} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & -\frac{2}{3} & \frac{4}{3} & \frac{13}{3} \end{bmatrix} \underbrace{R_2 \leftrightarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & -\frac{2}{3} & \frac{4}{3} & \frac{13}{3} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix} \underbrace{R_1 \leftarrow R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & -\frac{2}{3} & \frac{4}{3} & \frac{13}{3} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix} \underbrace{R_1 \leftarrow R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & -\frac{2}{3} & \frac{4}{3} & \frac{13}{3} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \begin{bmatrix} 3 & -1 & 2 & -1 \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix} \underbrace{R_2 \leftarrow R_2}_{2} \underbrace{R_1 \leftarrow R_2 \leftarrow R_2}_{2} \underbrace{R_2 \leftarrow R_2}_{2} \underbrace{R_2 \leftarrow R_2}_{3} \underbrace{R_2 \leftarrow$$

c) Dado el vector $w=inom{3}{-5}$, calcula $[w]_B$ y $[w]_{B'}$.

$$[W]_B = \begin{bmatrix} 2 & 4 & 3 \\ 2 & -1 & -5 \end{bmatrix} \underbrace{R_1 \leftrightarrow R_1}_{1} \begin{bmatrix} 2 & 4 & 3 \\ 2 & -1 & -5 \end{bmatrix} \underbrace{R_2 + (-1)R_1}_{1} \begin{bmatrix} 2 & 4 & 3 \\ 0 & -5 & -8 \end{bmatrix} \underbrace{R_2 \leftrightarrow R_2}_{1} \begin{bmatrix} 2 & 4 & 3 \\ 0 & -5 & -8 \end{bmatrix} \underbrace{R_2}_{1} \underbrace{R_2}_{1} \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & \frac{8}{5} \end{bmatrix} \underbrace{R_1 + (-4)R_2}_{1} \underbrace{R_2 \leftrightarrow R_2}_{1} \underbrace{R_2 \leftrightarrow R_2}_{1} \underbrace{R_2 \leftrightarrow R_2}_{1} \underbrace{R_2 \leftrightarrow R_2}_{2} \underbrace{R_2 \leftrightarrow$$

$$[W]_{B'} = \begin{bmatrix} 1 & -1 & 3 \\ 3 & -1 & -5 \end{bmatrix} \underbrace{R_2 \leftrightarrow R_1}_{1} \begin{bmatrix} 3 & -1 & -5 \\ 1 & -1 & 3 \end{bmatrix} \underbrace{R_2 + (-\frac{1}{3})R_1}_{1} \begin{bmatrix} 3 & -1 & -5 \\ 0 & -\frac{2}{3} & \frac{14}{3} \end{bmatrix} \underbrace{R_2 \leftrightarrow R_2}_{2} \begin{bmatrix} 3 & -1 & -5 \\ 0 & -\frac{2}{3} & \frac{14}{3} \end{bmatrix} \underbrace{\frac{R_2}{-\frac{2}{3}}}_{-\frac{2}{3}} \begin{bmatrix} 3 & -1 & -5 \\ 0 & 1 & -7 \end{bmatrix} \underbrace{\frac{R_1}{-\frac{2}{3}}}_{-\frac{2}{3}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -7 \end{bmatrix}$$

3. Sean los polinomios $p_1=x^2+x-2,\,p_2=3x^2-x$, realiza los siguientes ejercicios:

a.
$$p_3=2p_1-p_2$$

$$2x^2 + 2x - 4 - 3x^2 - x = -x^2 + 3x - 4$$

b) El conjunto $\{p_1,p_2,p_3\}$, ¿forman una base? Justifica.

$$A = egin{bmatrix} 1 & 1 & -2 \ 3 & -1 & 0 \ -1 & 3 & -4 \end{bmatrix} \therefore |A| = 0 \therefore ext{ No es base y es linealmente dependiente}$$

4. Dado el siguiente sistema de ecuaciones lineales homogéneo:

$$-x + 3y + z = 0$$

 $2x + 2y - z = 0$
 $3x - y - 2z = 0$

Determina la base(si es que existe) del conjunto solución del problema

$$\begin{bmatrix} -1 & 3 & 1 & 0 \\ 2 & 2 & -1 & 0 \\ 3 & -1 & -2 & 0 \end{bmatrix} \xrightarrow{-R1} \begin{bmatrix} 1 & -3 & 1 & 0 \\ 2 & 2 & -1 & 0 \\ 3 & -1 & -2 & 0 \end{bmatrix} \xrightarrow{-2R_1 + R_2} \xrightarrow{-3R_1 + R_3}$$

$$\begin{bmatrix} 1 & -3 & -1 & 0 \\ 0 & 8 & 1 & 0 \\ 0 & 8 & 1 & 0 \end{bmatrix} \xrightarrow{\frac{1}{8}R_2} \begin{bmatrix} 1 & -3 & -1 & 0 \\ 0 & 1 & \frac{1}{8} & 0 \\ 0 & 8 & 1 & 0 \end{bmatrix} \xrightarrow{3R_2 + R_1} \xrightarrow{-8R_2 + R_3}$$

$$\begin{bmatrix} 1 & 0 & -\frac{5}{6} & 0 \\ 0 & 1 & \frac{1}{8} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \therefore x = \frac{5}{8}z, y = -\frac{1}{8}z, z \in R$$

$$z \begin{bmatrix} \frac{5}{8} \\ -\frac{5}{8} \\ 1 \end{bmatrix} = S$$

$$dim(S) = 1$$

5. Dados los vectores y bases siguientes:

$$V = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, Z = \left\{ \begin{bmatrix} -1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}, W = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

a. Calcula $[V]_{W}$.

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 3 \end{bmatrix} \underbrace{R_1 \leftrightarrow R_1}_{} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 3 \end{bmatrix} \underbrace{R_2 + (1)R_1}_{} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \underbrace{R_2 \leftrightarrow R_2}_{} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \underbrace{\frac{R_2}{1}}_{} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \underbrace{R_1 + (0)R_2}_{} \underbrace{R_1 + (0)R_2}_{} \underbrace{R_1 + (0)R_2}_{} \underbrace{R_2 \leftrightarrow R_2}_{} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \underbrace{\frac{R_2}{1}}_{} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \underbrace{R_1 + (0)R_2}_{} \underbrace{R_2 \leftrightarrow R_2}_{} \underbrace{R_1 + (0)R_2}_{} \underbrace{R_2 \leftrightarrow R_2}_{} \underbrace{R_2 \leftrightarrow R_$$

b. Calcula la matriz de transición de W hacia Z

$$\begin{bmatrix} -1 & 1 & 1 & 0 \\ -3 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} -3 & 0 & -1 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 + (-\frac{1}{3})R_1} \begin{bmatrix} -3 & 0 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_2} \begin{bmatrix} -3 & 0 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} -3 & 0 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} -3 & 0 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} -3 & 0 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix}$$

c. Calcula $\lceil V \rceil_Z$ utilizando la matriz de transición del inciso anterior.

$$\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{4}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

- 6. Dado el siguiente conjunto de vectores: $(\frac{1}{2},-7,0),(-\frac{1}{3},0,2),(0,-7,\frac{1}{5})$.
- a. Determine si el conjunto genera a \mathbb{R}^3

$$\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & 0 & a \\ -7 & 0 & -7 & b \\ 0 & 2 & \frac{1}{5} & c \end{bmatrix} \xrightarrow{2R_1} \begin{bmatrix} 1 & -\frac{2}{3} & 0 & 2a \\ -7 & 0 & -7 & b \\ 0 & 2 & \frac{1}{5} & c \end{bmatrix} \xrightarrow{7R1 + R_2} \xrightarrow{TR1 + R_2} \begin{bmatrix} 1 & -\frac{2}{3} & 0 & 2a \\ 0 & 2 & \frac{1}{5} & c \end{bmatrix} \xrightarrow{-\frac{3}{14}R_2} \begin{bmatrix} 1 & -\frac{2}{3} & 0 & 2a \\ 0 & 1 & \frac{2}{3} & -3a - \frac{3}{14}b \\ 0 & 2 & \frac{1}{5} & c \end{bmatrix} \xrightarrow{-\frac{3}{14}R_2} \begin{bmatrix} 1 & 0 & 1 & -2a - \frac{1}{7}b \\ 0 & 1 & \frac{3}{2} & -3a - \frac{3}{14}b \\ 0 & 0 & -\frac{14}{5} & 6a + \frac{3}{7}b - 2c \end{bmatrix} \xrightarrow{-\frac{5}{14}R_3} \begin{bmatrix} 1 & 0 & 1 & -2a - \frac{1}{7}b \\ 0 & 1 & \frac{3}{2} & -3a - \frac{3}{4}bb \\ 0 & 0 & 1 & 6a + \frac{3}{7}b - c \end{bmatrix} \xrightarrow{-R_3 + R_1} \begin{bmatrix} 1 & 0 & 0 & 8a - \frac{4}{7}b + 2c \\ 0 & 1 & 0 & 12a - \frac{6}{6}b + 3c \\ 0 & 0 & 1 & 6s + \frac{3}{7}b - 2c \end{bmatrix}$$

 \therefore Si es consistente, genera R^3

b. Genere un espacio vectorial de 3 elementos usando el conjunto de vectores.

c. Con los vectores, construya un sistema de ecuaciones lineales homogéneo y determine la base de las soluciones del sistema

$$C_1=C_2=C_3=0$$

Sistema consistente, que genera a R^3

7. Sea
$$V=inom{-1}{5}$$
 y $[V]_W=inom{-2}{7}$ determine la base W , sabiendo que $W=\left\{inom{x}{2y},inom{-y}{-3x}\right\}$

$$\text{8. Sea } [V]_S = \begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix} \text{y } [V]_W = \begin{pmatrix} -3 \\ 7 \end{pmatrix} \text{, sabiendo que } W = \left\{ \begin{pmatrix} 3 \\ y \end{pmatrix}, \begin{pmatrix} x \\ 5 \end{pmatrix} \right\} \text{y } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{, determine: } S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1$$

- b. Matriz de transición de la base S hacia W
- c. Matriz de transición de la base W hacia S

9. Calcular las coordenadas de
$$V = \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$$
 en términos de base $H = \left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \right\}$. Calcule $||V||$ y $||V_H||$. ¿Porué $||V|| \neq ||V_H||$?

Rango y Nulidad de una matriz

1. Determine el valor de k para que la matriz M tenga V=2

$$M = egin{bmatrix} 1 & -1 & 1 & 4 \ 3 & -1 & 3k & 1 \ 5 & -5 & 7 & 9 \end{bmatrix} \therefore |M|
ightarrow k = rac{5}{3}$$

$$M = \begin{bmatrix} 1 & -2 & 1 & 4 \\ 3 & -1 & 5 & 1 \\ 5 & -5 & 7 & 9 \end{bmatrix} \underbrace{ \begin{matrix} 2R_2 + R_1 \\ -5R_2 + R_3 \end{matrix}}_{2R_2 + R_3} \begin{bmatrix} 1 & 0 & \frac{9}{5} & -\frac{2}{5} \\ 0 & 1 & \frac{2}{5} & -\frac{11}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vdots$$

$$x = -\frac{9}{5}z + \frac{2}{5}w$$

$$y = -\frac{2}{5}z + \frac{11}{5}w$$

$$z \in R$$

$$w \in R$$

$$\vdots$$

$$z \begin{bmatrix} -\frac{9}{5} \\ 1 \\ 0 \end{bmatrix}, w = \begin{bmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \\ 1 \end{bmatrix} : V = 2$$

2. Encuentre todos los valores posibles del rango de la matriz A y P(A), si k es una variable.

$$A = egin{bmatrix} 1 & 2 & k \ -2 & 4k & 2 \ k & -2 & 1 \end{bmatrix}, |A|
ightarrow k = \left\{ egin{matrix} -1 \ 2 \end{matrix}
ight.$$

K = -1

$$\begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ -1 & -2 & 1 \end{bmatrix} \underbrace{\begin{matrix} 2R_1 + R - 2 \\ R_1 + R_2 \end{matrix}}_{2R_1 + R_2} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x = -2y + z$$

$$y \in R$$

$$z \in R$$

$$\vdots$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2y + z \\ y \\ z \end{bmatrix} \therefore y \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$V(A) = 2, P(A) = 1$$

K = 2

$$\begin{bmatrix} 1 & 2 & 2 \\ -2 & 8 & 2 \\ 2 & -2 & 1 \end{bmatrix} \xrightarrow{2R_1 + R_2} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 12 & 8 \\ 0 & -6 & -3 \end{bmatrix} \xrightarrow{\frac{1}{12}R_2}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & \frac{2}{3} \\ 0 & -6 & -3 \end{bmatrix} \xrightarrow{-2R_2 + R_1} \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 0 & \frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-\frac{2}{3}R_3 + R_1} \xrightarrow{\frac{2}{3}R_3 + R_2}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\vdots$$

$$x = 2$$

$$y = -\frac{1}{2}z$$

$$z = 0$$

$$\vdots$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ -\frac{1}{2}z \\ 0 \end{bmatrix} = z \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \end{bmatrix}$$