

SS ZG622:

Software Project Management

Contact Session # 6

Prof. Narasimha Bolloju, BITS-Pilani, Hyderabad Campus

Project planning - Topics

- Project planning in plan-driven methods
 - Mapping effort to duration (and schedule)
 - Example of effort distribution in waterfall methods
 - COCOMO II overview and application
 - Work breakdown structure (WBS)
 - Gantt charts and critical path(s)
- Project planning in agile methods
 - Example of effort distribution in agile methods
 - Example tool Pivotal Tracker (user stories, bugs, chores and milestones)

The Agile Paradigm Shift

Mapping effort to duration

- Effort in function points or KLOC (source lines of delivered code in thousands)
- Effort to duration
 - Experience-based and/or heuristics-based methods
 - Parametric methods like COCOMO81 and COCOMO II

CS6-#1 Estimate project duration

Assuming that the effort and productivity for the Mux-core project are as follows:

- -Function points ~ 500
- Average productivity 10 function points per month per member

What should be the ideal project duration?

https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

COCOMO formula for duration

COCOMO formula for duration calculation: $M = a \times E^b$ where E is the estimated effort and

Project Type	a	b
Organic	2.5	0.38
Semi-detached	2.5	0.35
Embedded	2.5	0.32

Assuming that Mux-Core is a semi-detached project type with 500 fp, the project duration should be 22 months

Example of effort distribution in achieve lead waterfall process

https://www.slideshare.net/brickedestimation/effort-distributiononwaterfallandagile

Software Cost Estimation Methods

- Cost estimation: prediction of both the person-effort and elapsed time of a project
- Methods:
 - Algorithmic
 - Expert judgement
 - Estimation by analogy
 - Parkinsonian

- Price-to-win
- Top-down
- Bottom-up
- Best approach is a combination of methods
 - compare and iterate estimates, reconcile differences
- COCOMO the "COnstructive COst MOdel"
 - COCOMO II is the update to Dr. Barry Boehm 's COCOMO 1981
- COCOMO is the most widely used, thoroughly documented and calibrated cost model

3

https://slideplayer.com/slide/7947860/

COCOMO Black Box Model

@USC-CSSE

https://slideplayer.com/slide/7947860/

Brief introduction https://www.geeksforgeeks.org/software-engineering-cocomo-ii-model/

COCOMO II Calculator (read chap 5 of the text book for details)

http://softwarecost.org/tools/COCOMO/

COCOMO II Calculator (read chap 5 of the text book for details)

Results

Software Development (Elaboration and Construction)

Effort = 169.9 Person-months Schedule = 20.0 Months Cost = \$4246906

Total Equivalent Size = 40000 SLOC Effort Adjustment Factor (EAF) = 1.00

Note: Assume \$ = INR for interpretation of the inputs and results;; i.e., 25k rupees average salary per month

Unified Process (for explaining

lead

estimation results)

Iterative Development

Business value is delivered incrementally in time-boxed cross-discipline iterations.

Time

Results

Software Development (Elaboration and Construction)

Effort = 169.9 Person-months Schedule = 20.0 Months Cost = \$4246906

Total Equivalent Size = 40000 SLOC Effort Adjustment Factor (EAF) = 1.00

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	10.2	2.5	4.1	\$254814
Elaboration	40.8	7.5	5.4	\$1019258
Construction	129.1	12.5	10.3	\$3227649
Transition	20.4	2.5	8.2	\$509629

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	1.4	4.9	12.9	2.9
Environment/CM	1.0	3.3	6.5	1.0
Requirements	3.9	7.3	10.3	0.8
Design	1.9	14.7	20.7	0.8
Implementation	0.8	5.3	43.9	3.9
Assessment	0.8	4.1	31.0	4.9
Deployment	0.3	1.2	3.9	6.1

https://csse.usc.edu/tools/COCOMOII.php

COCOMO II Calculator (read chap 5 of the text book for details)

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	1.4	4.9	12.9	2.9
Environment/CM	1.0	3.3	6.5	1.0
Requirements	3.9	7.3	10.3	0.8
Design	1.9	14.7	20.7	0.8
Implementation	0.8	5.3	43.9	3.9
Assessment	0.8	4.1	31.0	4.9
Deployment	0.3	1.2	3.9	6.1

Note: Assume \$ = INR for interpretation of the inputs and results;; i.e., 25k rupees average salary per month

http://softwarecost.org/tools/COCOMO/

Project Planning involves

- Work Breakdown Structure (WBS): Breaking down the work into parts and assign these to project team members, anticipate problems that might arise and prepare tentative solutions to those problems.
- Project Plan, which is created at the start of a project, is used to communicate how the work will be done to the project team and customers, and to help assess progress on the project.

Example of WBS fragment

3 Physical Design

3.01 Design or specify physical database

2 04 04	D .		1 . 1	
\prec 01 01	Review	Indical	database	decign
$\mathbf{J}.\mathbf{U}\mathbf{I}.\mathbf{U}\mathbf{I}$	INCVICVV	lugicai	database	ucsign

3 01 02	Determine access	methods to	he used
J.UI.UZ	Determine access	methods to	DE USEU

```
3.01.03 Normalize database
```

```
3.01.04 Design database architecture
```

3.01.06 Develop detailed database layout

3.01.07 Develop database file, record, and schema descriptions

3.01.08 Develop module calling sequences

3.01.09 Update data dictionary entries

3.01.10 Validate physical database design

See WBS waterfall.pdf on the course website for a complete decomposition

CS6-#3 Gantt Chart

Activity	Duration (weeks)	Depends on	ResouGrce
Α	3		SA
В	1	Α	SD1
С	2	Α	SD2
D	4	Α	SD2
Е	3	В	CD1
F	3	С	CD1
G	6	D	CD2
Н	3	E,F,G	SA

Prepare a Gantt Chart (on paper or any tool you can find) to find the critical path and project duration

Activity planning – Sample Gantt Charting tool

Tomsplanner (login using your BITS email ID)

All Sprint Review

5 % on

Review

in agile process (Scrum)

High Level Requirement and Priority Initial Architecture

10 % of total project effort spend on High Level Requirement and Planning

Sprint 1	Sprint2	Sprint n
# Requirement Evolve	# Requirement Evolve	# Requirement Evolve
# Test Driven Development	# Test Driven Development	# Test Driven Development
# Delivery and feedback	# Delivery and feedback	# Delivery and feedback
20% on Sprint1	15 % on Sprint2	50% on Sprint n
After high level R	equirement and Pl	anning generally

85 % of effort distribute among different Sprints.

Each Sprint contains separate effort, depending on

https://www.slideshare.net/brickedestimation/effort-distributiononwaterfallandagile

its size.

Pivotal Tracker

https://www.pivotaltracker.com/help/articles/creating_a_project/

21

Pivotal Tracker

- Epics
- Icebox
- My work
- Story types
 - Features
 - Chores
 - Bugs
 - Releases