UPDATE:

Integrating telemetry data into SCR for improved inference about cost functions

Gates Dupont

University of Massachusetts - Amherst gdupont@umass.edu 10/04/2020

Background

Model structure

Integrated likelihood framework

- Single model, composed of SCR and movement submodels
- Submodels share 2 params:
 - \square α_2 Cost parameter
 - $\ \square \ \sigma$ Distance from home range center
- Leverages SCR data and telemetry data

(Note: I chose this approach over the RSF approach because I could understand it, and because incorporating a movement model is a better fit for the special feature as per Brett's original emails.)

Submodels

The SCR model

- Basic SCR model (w/ Gaussian encounter probability model)
- Modified to estimate cost (Royle et al. 2013)

The movement model (Sutherland et al. 2018 TWS presentation)

- Basic model of Markovian movement
 - Step length determined by LCP (ecological) distance
 - Includes distance from activity center for SCR-like data
 - □ So, four params:

Parameter	Description		
α_2	Cost value		
σ	Space use - home range		
v	Space use - step length		
ψ	pr(Moved)		

Preliminary results

SCR_{cost} (base, no telem)

Scenario settings

SCR DATA

Parameter	Value	Description
abundance	300	Abundance
alpha2	1,2,3,4,5	Cost value
sigma	0.5	Space use - home range
р0	0.2	Baseline encounter probability
K	5	Number of sampling occasions

STATE-SPACE

Parameter	Value	Description
rr	sigma/4	State-space & cost resolution
Incol = Inrow	10/rr	State-space dimensions
d0	${\sf abundance}/({\sf Incol*Inrow})$	Per-pixel density

Only 50 simulations per cost value

Cost estimation

Density estimation

SCR_{cost} + telem

Scenario settings

SCR DATA:

• Same as above

STATE-SPACE:

• Same as above

MOVEMENT DATA:

Parameter	Value	Description
upsilon	sigma/4	Space use - step length
psi	0.7	pr(Moved)
nfix	90*24	Number of pings
telemetry_n	8	Number of individuals tagged

Only 50 simulations per cost value

Simulating movement data

Cost estimation

Density estimation

Comparisons

Compare cost

Compare density

Closing remarks

- These (preliminary) results are very promising.
- Next steps:
 - □ decide/finalize sim scenarios.
 - \square run scenarios for >50 sims.
- Introduction is written. Structure of rest of paper is bulleted.