Contents

			-	
W	W_			4
·w	v o	Ω	ĸ	-

	Friday, October 2	2
We	eek 2	
	Monday, October 5	4
	Wednesday, October 7	6
	Friday, October 9	6

Week 1

Friday, October 2

- ▶ Determing formal charge:
 - Formula: $FC = V N \frac{B^1}{2}$
 - V = valance electrons of element
 - N = lone pair electrons; B = bonded electrons
- 1. What is the formal charge on P in the following structure? Each F and O has three lone pair of electrons.
 - \circ P = 5 O 8(0.5); P = +1
- 2. What is the formal charge on O in the structure above?
 - \circ O = 6 6 2(0.5); O = -1
- 3. What is the formal charge on P in the following structure? Each F still has three lone pairs of electrons, and O had the tow pairs indicated.
 - \circ P = 5 0 10(0.5); P = **0**
- 4. Of the two structures shown for POF₃, which is the most stable, and will, therefore, be the most abundant form?
 - Structure II
 - O has formal charge of **0** and is the most electronegative element with difference in charge between the resonance structures.
 - F has greater electronegativity, but remains the same between both structures, so it's not relevant.
 - Key difference: the double bond in structure II gives oxygen the lower magnitude formal charge between the two.
- 5. The fundamental concept upon which VSEPR, and hence molecular shapes, is based is that:
 - Electrons pairs repel each other;
 - negative charge repels other negative charges.
 - Electron repulsion is minimized by maximum angular separation;
 - in other words, angular separation maximizes distance between electrons.
 - Bonding pair electrons and lone pair electrons both occupy regions around the central atom:

- if they didn't occupy the same space than they wouldn't interact and thus wouldn't affect shape.
- The electron dommain geometry and the molecular geometry is identical if there all of the electrons are bonding electrons;
 - the lone pairs are have a greater influence than bonded pairs, resulting in less space for bonded pairs.

All of the above

- ▷ General method of determining structure:
 - Count steric number—the total number of electron pairs in a molecule.
 Can be bonds or lone pairs.
 - 2. Determine predicted geometrical structure predicted (EDG) by VSEPR using steric number.
 - Octahedral:6, Bipyramid:5, Tetrahedral:4, Trigonal:3, Linear:2
 - 3. Determin impact (the MG) of lone pairs; more lone pairs results in less space between bonded pairs. Shape depends on EDG.
- 6. A resonance form of SOF₂, completely consistent with the octet rule, is shown below. What is the electron domain geometry (EDG), and molecular geometry (MG) of this molecule?

Tetrahedral EDG and trigonal pyramidal MG

7. Draw a Lewis dot structure of formaldehyde (CH_2O): what is the molecular shape of this molecule?

- Steric number = 3
 - Double bonds count as 1 for steric number.
- No lone pairs on central atom, C, so it's shape planar.
- Trigonal planar
- 8. The EDG for CH_3^- (a carbanion) is tetrahedral, and the MG is trigonal pyramidal. Why are the H-C-H bond angles less than 109.5° as in a perfect tetrahedron?
 - The lone pair electrons take up more space than bonding pair electrons.

Week 2

Monday, October 5

1. The concept of orbital shapes comes directly from the wave model of the atom. What is the shape of an s orbital?

> Spherical

- o S orbital is the most simple orbital, with only two electrons.
- Alternative shapes come from *nodes*; i.e. when *destructive interferences* cancels out the wave function.
- o Not circular, orbitals are three-dimensional.
- 2. What is the shape of a p orbital?

Dumbell shaped

- P orbital can hold 6 electrons (3 pairs).
- Each pair has one angular node, squeezing shape into dumbell in each direction (x, y, z).
- 3. When atomic orbitals overlap to form a covalent bond, the resultant bonding orbital is:

Lower in energy than the atomic orbitals from which it was formed

- Electrons in a covalent bond are in a more stable (lower energy) state due to multiple nuclei hodling them in place.
- Only when nodes are present do the electrons create a destabalized molecular orbit, incraseing the energy.
- 4. Why can't pure p orbitals be used in forming four equivalent bonds as in methane?
 - the three 2p orbitals can only hold 6 electrons.
 - True, we need to make four bonds for methane.
 - ▶ the bonds would have to be 90° apart.
 - If p had enough space then it would result in planar geometry with 90°, but the true arrangement is tetrahedral with angles of 109.5°
 - ▷ electron-electron repulsion would not be minimized.
 - Planar minimization would be 90°, but we have 3d space to work with, so it's not minimized.

> all of the above

- 5. When s and p orbitals combine to form hybrid orbitals, the resultant hybridized orbitals are:
 - ▷ lower in energy than the p orbitals
 - ▶ higher in energy than the s orbitals
 - both of the above
 - It takes energy to move the electron up from the s orbital and hybridize the p orbitals.
 - The new hybridized sp orbital also has more energy than the sorbital.
- 6. What is the difference between a sigma bond and a pi bond?
 - \triangleright in a π bond, electron density lies above and below the axis that conects the two nuclei; in a σ bond, the electronegative density lies along the axis that connets the two nuclei
 - \circ σ bond has circular symmetry with respect to the bond axis (axis that connets the two nuclei). i.e. it's along the axis.
- 7. What is the hybridization of the C in CH2Cl2?

 \triangleright sp³

- Look at central atom C
- o Determin groups (number of bonds, π bonds count as 1, and lone pairs attached) 4
- o for groups 1-4; sp^x ; x = groups 1(3)
- This is also a trigonal planar, due to lone pairs on Cl I guess? (lone pairs not drawn)
- 8. What is the hybridization of each C in benzene (shown below)?
 - $\triangleright sp^2$
 - Each carbon has 2H and π bond between, so groups = 3.
 - Groups 1 = 2, so sp^2
 - \circ Though, each π bond is delocalized, or free to spread across all the carbons. Still counts as 1 group.

Wednesday, October 7

 \triangleright

Friday, October 9

 \triangleright