CLAIMS

What is claimed is:

1	1. A method for imaging contrast agents, comprising:			
2	transmitting power-modulated ultrasonic pulses comprising a predetermined			
3	transmit sequence having a plurality of transmit lines into a patient's body;			
4	receiving a plurality of ultrasonic echoes comprising contrast-agent generated			
5	echoes and tissue-generated echoes from the patient's body;			
6	processing the received ultrasonic echoes to generate a plurality of ultrasonic			
7	echo signals responsive to both the contrast-agent generated and tissue-generated			
8	echoes;			
9	processing the plurality of ultrasonic-echo signals to suppress tissue-generated			
10	echoes;			
11	processing the plurality of ultrasonic-echo signals to suppress stationary			
12	contrast-agent generated echoes;			
13	applying the plurality of contrast-agent generated echo signals to a color-flow			
14	algorithm to generate a plurality of data points responsive to contrast-agent motion;			
15	and			
16	displaying the plurality of data points over time.			
1	·			
1	2. The method of claim 1, wherein processing to suppress tissue			
2	generated signals comprises applying a finite-impulse-response (FIR) filter to the			
3	received ultrasonic echoes.			
1				
1	3. The method of claim 1, wherein processing to suppress stationary			
2	contrast-agent generated echoes comprises applying a two-stage clutter filter to the			
3	received ultrasonic echoes.			
1				
1	4. The method of claim 1, wherein the plurality of data points responsive			
2	to contrast-agent motion contain information related to direction of motion and			
3	relative velocity.			
1				
1				

1	5.	The method of claim 1, wherein the plurality of transmit lines are
2	generated wit	h transmit signals having different voltage amplitudes.
1		
1	6.	The method of claim 1, wherein the plurality of transmit lines are
2	generated wit	h transmit signals having different phases.
1		
1	7.	The method of claim 1, wherein the plurality of transmit lines are
2	generated wit	h transmit signals having different polarities.
1		
1	8.	The method of claim 1, wherein the plurality of data points responsive
2	to contrast-ag	ent motion contain information related to direction of motion and
3	relative veloc	ity.
1		
1	9.	The method of claim 2, wherein a plurality of first coefficients are
2	applied to the	received ultrasonic echoes.
1		
1	10.	The method of claim 4, wherein displaying is performed after a
2	determination	that the intensity of the velocity information exceeds a threshold.
1		
1	11.	The method of claim 4, wherein displaying is performed after
2	correcting the	velocity information for tissue motion.
1		
1	12.	The method of claim 9, wherein a plurality of second coefficients are
2	applied to the	received ultrasonic echoes.
1		
1	13.	The method of claim 10, wherein B-mode image data is displayed after
2	a determination	on that the intensity of the velocity information fails to meet the
3	threshold.	
1		
1		
1		
1		
1		

1		14.	An ultrasound-imaging system, comprising:
2		means	for reducing tissue-generated ultrasonic echo signals;
3		means	for reducing stationary contrast-agent generated ultrasonic-echo signals
4	and		
5		means	for imaging moving contrast-agent generated ultrasonic-echo signals.
1			
1		15.	The system of claim 14, wherein reducing tissue-generated ultrasonic
2	echo si	gnals c	omprises a power-modulation technique that uses multiple-transmit line
3	subpac	kets.	
1			
1		16.	The system of claim 14, wherein imaging comprises applying the
2	moving	g contra	st-agent generated ultrasonic-echo signals to a color-flow processor.
1			
1		17.	The system of claim 14, wherein reducing stationary contrast-agent
2	generat	ted ultra	asonic-echo signals comprises applying a first clutter filter.
1			
1		18.	The system of claim 15, wherein the power-modulation technique
2	compri	ses rep	etitively firing the multiple-transmit line subpackets.
1			
1		19.	The system of claim 16, wherein the color-flow processor generates
2	informa	ation re	sponsive to the direction and the rate of motion of moving contrast
3	agent.		
1			
1		20.	The system of claim 17, wherein the first clutter filter comprises a one-
2	zero fil	ter.	
1			
1		21.	The system of claim 20, wherein the one-zero filter is time-shifted
2	filter o	ver mul	tiple samples generated from a plurality of ultrasonic-echo signals.
1			
1		22.	The system of claim 21, further comprising:
2		means	for determining tissue velocity, and
3	means for combining the tissue velocity with the information responsive to th		
4	direction	on and t	the rate of motion of moving-contrast agent.
1			29

1	23.	The system of claim 22, wherein determining tissue velocity comprises			
2	applying the	received ultrasonic-echo signals to a second clutter filter prior to the			
3	means for reducing tissue-generated ultrasonic-echo signals.				
1					
1	24.	An improved ultrasound-imaging system, comprising:			
2	an ex	citation-signal source configured to generate a power-modulated			
3	transmit-line sequence;				
4	a transducer coupled to the excitation-signal source, the transducer configured				
5	to emit a plurality of ultrasonic-pulses responsive to the power-modulated transmit-				
6	line sequence into a medium and to convert a plurality of received ultrasonic echoes				
7	responsive to both tissue and one or more contrast agents within the medium to a				
8	plurality of e	cho signals;			
9	an ult	rasound-processing system coupled to the transducer, the ultrasound-			
10	processing system configured to reduce tissue-generated ultrasonic-echo signals and				
11	reduce stationary contrast-agent generated ultrasonic-echo signals, while passing				
12	ultrasonic-echo signals generated from moving contrast agent; and				
13	a disp	play-processing system coupled to the ultrasound-processing system, the			
14	display-processing system configured to receive and generate a graphic representation				
15	responsive to	the ultrasonic-echo signals generated from moving contrast agent.			
1					
1	25.	The system of claim 24, wherein the power-modulated transmit-line			
2	sequence is g	enerated with transmit signals having different voltage amplitudes.			
1					
1	26.	The system of claim 24, wherein the power-modulated transmit-line			
2	sequence is g	enerated with transmit signals having different polarities.			
1					
1	27.	The system of claim 24, wherein the power-modulated transmit-line			
2	sequence is g	enerated with transmit signals having different phases.			
1					
1	28.	The system of claim 24, wherein the ultrasound-processing system			
2	comprises a c	clutter filter.			
1					
1					

1	29. The system of claim 28, wherein the ultrasound-processing system			
2	comprises a plurality of two-dimensional imaging processors.			
1				
1	30. The system of claim 29, wherein the ultrasound-processing system			
2	comprises a color-flow processor.			
1				
1	31. The system of claim 28, wherein the clutter filter comprises a multiple			
2	sample one-zero filter.			
1				
1	32. The system of claim 31, wherein the clutter filter time shifts the zero			
2	between adjacent ultrasonic-echo signal samples.			
1				
1	33. The system of claim 32, further comprising:			
2	a tissue-velocity processor coupled to the ultrasound-processing system, the			
3	tissue-velocity processor configured to generate a first output signal responsive to			
4	motion of tissue-generated ultrasonic-echo signals;			
5	an arbiter coupled to a second output signal from the color-flow processor and			
6	a third output signal from at least one of the plurality of two-dimensional image			
7	processors, the arbiter configured to forward the second output signal from the color-			
8	flow processor when the intensity of the second output signal exceeds a threshold; and			
9	an arithmetic junction coupled to an output of the arbiter and the first output			
10	signal, the arithmetic junction configured to perform a subtraction of the first output			
11	signal from the second output signal.			
1				
1	34. The system of claim 33, wherein the arbiter is configured to forward			
2	the third output signal from at least one of the plurality of two-dimensional image			
3	processors when the intensity of the second output signal fails to exceed a threshold.			
1				