kinetics

Generated by Doxygen 1.8.17

1 Class Index	1
1.1 Class List	1
2 Class Documentation	3
2.1 Kinematics Class Reference	3
2.1.1 Member Function Documentation	3
2.1.1.1 ForwardKin()	3
2.1.1.2 InverseKin()	4
2.1.1.3 Jacobian()	4
2.2 Kinetics Class Reference	5
2.2.1 Member Function Documentation	5
2.2.1.1 ForwardDynamics()	6
2.2.1.2 InverseDynamics()	6
2.3 Trajectory Class Reference	7
Index	9

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Kinematics	3					 																		3
Kinetics .																								5
Trajectory																								7

2 Class Index

Chapter 2

Class Documentation

2.1 Kinematics Class Reference

Public Member Functions

- Kinematics (bool state=true)
- Eigen::MatrixXd ForwardKin (const Eigen::MatrixXd &M, const Eigen::MatrixXd &Slist, const Eigen::VectorXd &thetaList)

Compute end effector frame.

bool InverseKin (const Eigen::MatrixXd &Slist, const Eigen::MatrixXd &M, const Eigen::MatrixXd &T, Eigen
 ::VectorXd &thetalist, double eomg, double ev)

Compute joints thetas given the end-effector configuration.

• Eigen::MatrixXd Jacobian (const Eigen::MatrixXd &Slist, const Eigen::MatrixXd &thetaList)

Gives the Jacobian.

Public Attributes

• bool space_state

2.1.1 Member Function Documentation

2.1.1.1 ForwardKin()

Compute end effector frame.

4 Class Documentation

Parameters

M,Home	configuration of end-effector
Slist	joint screw axis in (space_state by default, unless space_state is false for body state), when the manipulator is at home position.
thetaList	A list of joint coordinates.

Returns

T transformation matrix representing the end-effector frame when the joints are at the specified coordinates

2.1.1.2 InverseKin()

Compute joints thetas given the end-effector configuration.

Parameters

Slist	screw axis (space_state by default, unless space_state is false for body state),
М	is home configuration of end-effector
T	is the target configuration
thetalist	the the desired joint angles to calculate
eomg,ev	are error checkers

Returns

boolean success flag

2.1.1.3 Jacobian()

Gives the Jacobian.

Parameters

Slist	Screw axis
thetaList	joint configuration

Returns

6xn Spatial Jacobian

The documentation for this class was generated from the following files:

- /home/poetry/recovery/MR/kinetics/include/kinematics.hpp
- /home/poetry/recovery/MR/kinetics/src/kinematics.cpp

2.2 Kinetics Class Reference

Public Member Functions

• Eigen::VectorXd InverseDynamics (const Eigen::VectorXd &thetalist, const Eigen::VectorXd &dthetalist, const Eigen::VectorXd &ftip, const std::vector< Eigen::MatrixXd > &Mlist, const std::vector< Eigen::MatrixXd > &Glist, const Eigen::MatrixXd &Slist) const

Uses forward-backward Newton-Euler iterations to solve the equation: taulist = Mlist(thetalist) * ddthetalist + c(thetalist) + g(thetalist) + Jtr(thetalist) * Ftip.

Eigen::VectorXd ForwardDynamics (const Eigen::VectorXd &thetalist, const Eigen::VectorXd &dthetalist, const Eigen::VectorXd &ftip, const std::vector<
 Eigen::MatrixXd > &Mlist, const std::vector<
 Eigen::MatrixXd > &Glist, const Eigen::MatrixXd &Slist) const

Computes ddthetalist by solving: Mlist(thetalist) * ddthetalist = taulist - c(thetalist,dthetalist)

- void EulerStep (Eigen::VectorXd &thetalist, Eigen::VectorXd &dthetalist, const Eigen::VectorXd &ddthetalist, double dt) const
- Eigen::VectorXd ComputedTorque (const Eigen::VectorXd &thetalist, const Eigen::VectorXd &dthetalist, const Eigen::VectorXd &eint, const Eigen::VectorXd &g, const std::vector< Eigen::MatrixXd > &Mlist, const std::vector< Eigen::MatrixXd > &Glist, const Eigen::MatrixXd &Slist, const Eigen::VectorXd &thetalistd, const Eigen::VectorXd &dthetalistd, double Kp, double Kg, double Kd)
- std::vector< Eigen::MatrixXd > SimulateControl (const Eigen::VectorXd &thetalist, const Eigen::VectorXd &dthetalist, const Eigen::VectorXd &g, const Eigen::MatrixXd &Ftipmat, const std::vector< Eigen::MatrixXd > &Mlist, const std::vector< Eigen::MatrixXd > &Glist, const Eigen::MatrixXd &Slist, const Eigen::MatrixXd Xd &thetamatd, const Eigen::MatrixXd &ddthetamatd, const Eigen::WectorXd >ilde, const std::vector< Eigen::MatrixXd > &Mtildelist, const std::vector< Eigen::MatrixXd > &Gtildelist, double Kp, double Ki, double Kd, double dt, int intRes)

2.2.1 Member Function Documentation

6 Class Documentation

2.2.1.1 ForwardDynamics()

Computes ddthetalist by solving: Mlist(thetalist) * ddthetalist = taulist - c(thetalist,dthetalist)

• g(thetalist) - Jtr(thetalist) * Ftip

Parameters

thetalist	n-vector of joint variables					
dthetalist	netalist n-vector of joint rates					
taulist	An n-vector of joint forces/torques					
g	Gravity vector g					
Ftip	Spatial force applied by the end-effector expressed in frame {n+1}					
Mlist	List of link frames (i) relative to (i-1) at the home position					
Glist	Spatial inertia matrices Gi of the links					
Slist	Screw axes Si of the joints in a space frame, in the format of a matrix with the screw axes as the					
	columns.					

Returns

ddthetalist The resulting joint accelerations.

2.2.1.2 InverseDynamics()

Uses forward-backward Newton-Euler iterations to solve the equation: taulist = Mlist(thetalist) * ddthetalist + c(thetalist) + g(thetalist) + Jtr(thetalist) * Ftip.

Parameters

thetalist	n-vector of joint variables
dthetalist	n-vector of joint rates
ddthetalist	n-vector of joint accelerations
g	Gravity vector g
Ftip	Spatial force applied by the end-effector expressed in frame {n+1}
Mlist	List of link frames {i} relative to {i-1} at the home position
Glist	Spatial inertia matrices Gi of the links
Slist	Screw axes Si of the joints in a space frame, in the format of a matrix with the screw axes as the
	columns.

Returns

taulist The n-vector of required joint forces/torques

The documentation for this class was generated from the following files:

- /home/poetry/recovery/MR/kinetics/include/kinetics.hpp
- /home/poetry/recovery/MR/kinetics/src/kinetics.cpp

2.3 Trajectory Class Reference

Collaboration diagram for Trajectory:

8 Class Documentation

Index

```
ForwardDynamics
     Kinetics, 5
ForwardKin
     Kinematics, 3
InverseDynamics
     Kinetics, 6
InverseKin
     Kinematics, 4
Jacobian
     Kinematics, 4
Kinematics, 3
     ForwardKin, 3
     InverseKin, 4
     Jacobian, 4
Kinetics, 5
     ForwardDynamics, 5
     Inverse Dynamics, \, {\color{red} 6}
Trajectory, 7
```