

Résolution numérique des équations non-linéaires Exercice 2

On se propose de résoudre numériquement l'équation (E): f(x)=0 dans I=[0,1] où la fonction f est donnée par:

$$f(x) = x^3 + 3x - 3, x \in I.$$

- ① Montrer que (E) admet une unique solution x^* dans]0,1[.
- 2 Montrer que la fonction $g(x) = \frac{3}{x^2 + 3}$ vérifie la relation suivante:

$$f(x) = 0 \iff g(x) = x.$$

3 Pour approcher x^* par la méthode du point fixe on définit la suite suivante:

$$\begin{cases} x_0 \in [0, 1], \\ x_{n+1} = g(x_n). \end{cases}$$

- a) Par comparaison, vérifier que $\forall x \in [0,1], |g'(x)| \leq M_0$, avec $M_0 = \frac{2}{3}$.
- b) Montrer que cette suite converge vers l'unique solution x^* .
- c) Estimer dans ce cas n_0 : le nombre d'itérations nécessaire pour déterminer x^* avec une précision de $\epsilon=10^{-3}$.
- d) Pour $x_0 = 0,5$ calculer les trois premières itérations.

- ① a) Déterminer n_1 le nombre des itérations nécessaires par la méthode de Dichotomie pour avoir une valeur approchée avec la même précision de $\epsilon=10^{-3}$.
 - b) Expliquer la différence entre n_0 et n_1 .
 - c) Calculer c_0 , c_1 et c_2 les premiers itérés de la méthode de dichotomie dans l'intervalle]0,1[.

Dans la suite, on s'intéresse à savoir l'importence de bien trouver le bon majorant de la fonction |g'(x)| pour déterminer ensuite le nombre minimal d'itérations pour estimer l'unique solution dans la méthode du point fixe en donnant une valeur de précision ϵ .

- ② a) Démontrer que $M_1=\frac{3}{8}$ est un maximum de la fonction |g'(x)| sur l'intervalle I.
 - b) Déduire qu'on peut approcher x^* avec la même précision $\epsilon=10^{-3}$ par un nombre des itérations n_2 plus petit que n_0 ?
 - c) n_2 est le nombre minimal d'itérations pour estimer x^* avec la tolérance $\epsilon=10^{-3}$? Justifier votre réponse.

Correction

① Existence: L'application $f: x \to x^3 + 3x - 3$ est continue sur [0,1] (un polynôme). D'autre part f(0) = -3 < 0 et f(1) = 1 > 0 alors f(0).f(1) < 0, il existe au moins un réel $x^* \in]0,1[$ tel que $f(x^*) = 0$ (Théorème des valeurs intermédiaires).

Unicité: L'application $f: x \to x^3 + 3x - 3$ est dérivable sur [0,1] et on a $f'(x) = 3x^2 + 3 > 0, \forall x \in [0,1]$. Donc f est strictement croissante sur [0,1].

Conclusion: I'équation (E) admet une unique solution $x^* \in]0,1[$.

② Pour la fonction $g(x) = \frac{3}{x^2+3}$, on'a

$$f(x) = 0 \Leftrightarrow x^3 + 3x - 3 = 0 \Leftrightarrow x^3 + 3x = 3 \Leftrightarrow x(x^2 + 3) = 3 \Leftrightarrow x = \frac{3}{x^2 + 3} \Leftrightarrow x = g(x).$$

Correction

③ a) la fonction g est dérivable sur $\mathbb R$ en particulier sur [0,1] et on'a $g'(x)=\frac{-6x}{(x^2+3)^2}$. Donc,

$$|g'(x)| = \left| \frac{-6x}{(x^2+3)^2} \right| = \frac{6x}{(x^2+3)^2}, x \in [0,1].$$

Alors, pour tout $x \in [0, 1]$

$$|g'(x)| \le \frac{6}{(x^2+3)^2} \le \frac{6}{3^2} = \frac{2}{3}.$$

Correction

b) Schéma du point fixe associé à (E):

$$\begin{cases} x_{n+1} = g(x_n) = \frac{3}{x_n^2 + 3} \\ x_0 \in [0, 1]. \end{cases}$$

Convergence de la méthode du point fixe:

 (H_1) : g est dérivable sur [0,1].

 (H_2) : $g'(x)=\frac{-6x}{(x^2+3)^2}<0$, alors g est décroissante sur [0,1] et

 $g([0,1]) = [g(1), g(0)] = [\frac{3}{4}, 1] \subset [0, 1].$

 (H_3) : D'après quustion précédente, $|g'(x)| \leq \frac{2}{3} < 1, \ \forall x \in [0,1].$

Comme les trois hypothèses sont bien vérifiées, g converge bien vers xst.

Correction

c) Le nombre n_0 de termes à calcuer pour obtenir une précision de 10^{-3} est

$$n_0 = E\left(\frac{\log(10^{-3}) - \log|1|}{\log(\frac{2}{3})}\right) + 1 = 18.$$

d) Pour
$$x_0 = 0, 5$$
, $x_1 = g(0, 5) = 0,9230$. $x_2 = g(0.923) = 0.7788$. $x_3 = g(0.7788) = 0.8318$.

Correction

- (4 a) on a d=|1-0|=1, $\varepsilon=10^{-3}$ et n_1 le nombre minimal pour estimer x^* à ε prés. n_1 doit vérifier: $n_1 \geq log_2(\frac{d}{\varepsilon})$, alors $n_1 \geq 9.9657$ donc $n_1=10$.
 - b) On'a $n_0 > n_1 \text{ car } M_0 > \frac{1}{2}$.
 - c) Les itérations sont décrites dans le tableau suivant:

n	a_n	c_n	b_n	Précison
0	0	$\frac{1}{2}$	1	$ b_0 - a_0 = 1$
	$f(a_0) < 0$	$f(c_0) < 0$	$f(b_0) > 0$	
1	$\frac{1}{2}$	$\frac{3}{4}$	1	$ b_1 - a_1 = 0.5$
	$f(a_1) < 0$	$f(c_1) < 0$	$f(b_1) > 0$	
2	$\frac{3}{4}$	$\frac{7}{16}$	1	$ b_2 - a_2 = 0.25$

Correction

(a) $|g'(x)| = \frac{6x}{(x^2+3)^2}$ est croissante sur [0,1] (on peut passer par la dérivée seconde qu'est donnée par $(|g'(x)|)' = \frac{6(9-x^4)}{(x^2+3)^4} > 0$, sur [0,1]) et par la suite |g'(x)| atteint son maximum en 1, ce qui donne

$$|g'(x)| \le \frac{3}{8} < 1 \quad \forall x \in [0, 1].$$

b) Le nombre n_2 de termes à calcuer pour obtenir une précision de 10^{-3} dans ce cas (avec $M_1=\frac{3}{8}$ commme majorant de |g'(x)|) est

$$n_2 = E\left(\frac{\log(10^{-3}) - \log|1|}{\log(\frac{3}{8})}\right) + 1 = 8.$$

c) Théoriquement n_2 est le nombre minimal d'itérations pour estimer x^* avec la tolérance $\epsilon = 10^{-3}$ car M_1 est le maximum de la fonction |g'(x)| sur [0,1] donc c'est le plus petit majorant de |g'(x)| sur [0,1].