# **Diffusion Generative Flow Samplers: Improving Learning Signals Through Partial Trajectory Optimization**

Dinghuai Zhang\*, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron Courville & Yoshua Bengio

Thomas Mousseau

October 20, 2025

### Overview

#### 1. Introduction

- 1.1 Problem Statement
- 1.2 Stochastic Optimal Control

### 2. Diffusion Generative Flow Samplers

2.1 Motivation: Credit Assignment in Path Space

#### 3. Results and Limitations

3.1 Results

#### 4. Conclusion

- 4.1 Key Insights
- 4.2 Future Directions and Usage since its release

000

# **Generative Modeling**

#### Task

Sample from a complex (high-dimensional and multimodal) distribution D

D can be given under the form of:

• A dataset of samples  $\{x_i\}_{i=1}^N \sim D$  (e.g., images, text, audio)



• An unnormalized density  $\mu(x)$  where D has density  $\pi(x) \propto \mu(x)$  (e.g., energy-based models, physics/chemistry)



### **Sampling from Unnormalized Densities**

**Goal.** Sample from a *D*-dimensional target with unnormalized density  $\mu(x)$  where  $\mathbb{R}^D \to \mathbb{R}^+$ .

$$\pi(x) = \frac{\mu(x)}{Z}, \qquad Z = \int_{\mathbb{R}^D} \mu(x) \, dx \text{ (unknown)}.$$

We assume we can evaluate  $\mu(x)$ , but we have no samples from  $\pi$  and do not know Z.

**Context.** We seek a *sampler* (similar to MCMC/VI) that produces calibrated samples and, ideally, estimates of  $\log Z$ , *without* any dataset from  $\pi$ .

Chemistry (small-molecule conformers). Different 3D conformations have a formation energy from force-field terms (bonds, angles, dihedrals, nonbonded); lower energy  $\Rightarrow$  higher Boltzmann probability. A well-calibrated sampler is needed to draw conformers in proportion to these probabilities, which is important in binding-pose ranking/free-energy estimation, Boltzmann-weighted property prediction (e.g., NMR shifts), and generating diverse realistic 3D conformers for screening.

## **Diffusion Generative Flow Samplers**

**Idea.** We will reframe sampling from an unnormalized target  $\pi(x) \propto \mu(x)$  as a stochastic optimal control (SOC) problem: learn a control that steers a simple reference diffusion so its terminal marginal matches  $\pi$ .

#### Why this helps.

- Gives a path-space training objective/metric: a KL on trajectories  $\mathrm{KL}(Q \parallel P)$  where P is the reference paths reweighted by  $\mu(x_T)$ .
- The partition function Z cancels inside this objective, so we can train using only  $\mu$  (and optionally  $\nabla \log \mu$ ).
- ullet Lets us optimize without samples from  $\pi$  and still measure closeness to the true normalized endpoint.

Caveat (sets up DGFS). This path-KL places supervision *only at the terminal time*  $\Rightarrow$  poor *credit assignment* and high-variance gradients.

**DGFS fix (preview).** Inject *intermediate* learning signals via a GFlowNet-inspired *learned flow* and *subtrajectory balance*, enabling partial-trajectory training and more stable learning.

# Steps 1–2: Forward & Reference in discrete time

Controlled forward transition (learned drift).

$$P_F(x_{n+1} | x_n) = \mathcal{N}(x_{n+1}; x_n + h f(x_n, n), h\sigma^2 I)$$

Controlled path law.

$$Q(x_{0:N}) = p_0^{\text{ref}}(x_0) \prod_{n=0}^{N-1} P_F(x_{n+1} \mid x_n)$$

Uncontrolled (reference) transition (zero drift).

$$P_F^{\text{ref}}(x_{n+1} \mid x_n) = \mathcal{N}(x_{n+1}; x_n, h\sigma^2 I)$$

Reference path law and marginals.

$$Q^{\text{ref}}(x_{0:N}) = p_0^{\text{ref}}(x_0) \prod_{n=0}^{N-1} P_F^{\text{ref}}(x_{n+1} \mid x_n), \qquad p_n^{\text{ref}}(x) \text{ is closed form.}$$

**Goal.** Learn f so that the terminal marginal  $Q(x_N)$  matches  $\pi(x) = \mu(x)/Z$  (no data, Z unknown).

# Step 3: Path target & $KL \Rightarrow SOC$ objective

Target path measure via terminal reweighting.

$$P(x_{0:N}) \propto Q^{\text{ref}}(x_{0:N}) \frac{\mu(x_N)}{p_N^{\text{ref}}(x_N)} \Longrightarrow P(x_N) \propto \mu(x_N).$$

KL decomposition.

$$\mathrm{KL}(Q\|P) = \mathbb{E}_Qigg[\lograc{Q}{Q^{\mathrm{ref}}}igg] + \mathbb{E}_Qigg[\lograc{p_N^{\mathrm{ref}}(\mathsf{x}_N)}{\pi(\mathsf{x}_N)}igg] \ .$$

Running control cost (Gaussian mean-shift) Girsanov theorem.

$$\mathbb{E}_{Q}\left[\log \frac{Q}{Q^{\text{ref}}}\right] = \mathbb{E}_{Q} \sum_{n=0}^{N-1} \frac{h}{2\sigma^{2}} \|f(x_{n}, n)\|^{2}.$$

Terminal potential from the target Girsanov theorem.

$$\mathbb{E}_{Q}\left[\log \frac{p_{N}^{\text{ref}}(\mathsf{x}_{N})}{\pi(\mathsf{x}_{N})}\right] = \mathbb{E}_{Q}\left[\log p_{N}^{\text{ref}}(\mathsf{x}_{N}) - \log \mu(\mathsf{x}_{N})\right] + \log Z.$$

000

# **SOC** objective

SOC objective (discrete-time).

$$\min_{f} \ \mathbb{E}_{Q} \Big[ \sum_{n=0}^{N-1} \frac{h}{2\sigma^{2}} \| f(x_{n}, n) \|^{2} \ + \ \log p_{N}^{\text{ref}}(x_{N}) - \log \mu(x_{N}) \Big]$$

we will be using this discrete-time objective as our loss function to optimize the drift f. Thus we can model the drift with a neural network  $f_{\theta}$  and optimize the parameters  $\theta$  backpropagating through time (BPTT) while avoiding to use the stochastic-adjoint method necessary for a neural SDE.

# **Credit Assignment Problem in Path Space**

•

### **Conclusion**