® 日本国特許庁(JP)

⑩特許出願公告

許 公 報(B2) ⑫特

平5-44946

Solution Cl.

Solu C 07 D 327/00 31/385 31/39 A 61 K // C 07 K 15/00

識別記号

庁内整理番号

❷❸公告 平成5年(1993)7月7日

ADV ADU

7252-4C

発明の数 3 (全12頁)

❷発明の名称

環式ジスルホン酸エステル化合物

201特 顧 昭60-500579

多夕出 顧 昭60(1985)1月14日

外1名

❷国際出願 PCT/US85/00057 **匈国際公開番号WO85/03075**

囫囡際公開日 昭60(1985) 7月18日

❸公 表 番 号 昭61-501089

❸公 表 日 昭61(1986)5月29日

優先権主張

図1984年1月16日 図米園(US) ⑩570,786

700発明。者 クロニン, マーシャ アメリカ合衆国オレゴン97210、ポートランド、ノースウ

ル・ダブリュ

エスト・ルレイ・テラス3232番

勿出 願 人 クロニン, マーシャ

アメリカ合衆国オレゴン97210、ポートランド、ノースウ

ル・ダブリユ

エスト・ルレイ・テラス3232番

四代 理 人 審査官

弁理士 青 山 葆

官坂 初男

88参考文献 オーストリア国特許210874

1

砂糖水の範囲

1 式:

$$SO_2-O$$
 $R-C-H$
 $(CH_2)_n$
 SO_2-O

[式中、RはH、CH:、またはCH2CH2であり、 nは、RがHの時、2~5であり、RがCH.また はCH₂CH₂の時、2である]

で示される環式ジスルホン酸エステル化合物。

2 RがHである第1項に記載の化合物。

3 nが2または5である第2項に記載の化合 物。

4 式:

$$SO_2-O$$
 $R-C-H (CH_2)_n$
 SO_2-O

【式中、RはH、CH:、またはCH2CH2であり、 nは、RがHの時、2~5であり、RがCH。また 20 2

はCH₂CH₂の時、2である]

で示される環式ジスルホン酸エステル化合物の製 造方法であつて、

式:

5

[式中、RはH、CH:、またはCH:CH:である] 10 で示されるアルカンジスルホニルクロリドを炭酸 銀と反応させて相当するアルカンジスルホン酸銀 を生成させ、そのジスルホン酸銀を式:

 $X-(CH_2)$ n-X

[式中、XはBrまたは I、nは2~5である] 15 で示されるジハロアルカンと反応させることを特 徴とする方法。

5 式:

nは、RがHの時、2~5であり、RがCH2また はCH₂CH₂の時、2である]

で示される環式ジスルホン酸エステル化合物の製 造方法であつて、

式:

[式中、RはH、CH₂、またはCH₂CH₃である] で示されるアルカンジスルホニルクロリドを式:

$$HO-(CH_2)$$
 $n-OH$

[式中、nは2~5である]

で示されるアルカンジオールと、テトラヒドロフ ランまたはグライムおよび脂肪族第3級アミンま 20 たは芳香族第3級アミンの存在下、-20℃以下の 反応温度で反応させることを特徴とする方法。

1 発明の分野

本発明は二官能性アルキル化化合物に関し、更 に詳しくは、環式ジスルホン酸エステルアルキル 25 CH₃、CH₃CH₂またはCl] 化化合物に関する。

2 背景

アルキル化剤は、癌の主要な化学療法化合物で ある。臨床的に使用されている大部分のアルキル よびそれに関連するタンパク質などの生体分子と 反応し、これをフラグメント化するか、または架 橋結合させ得る2個の化学反応中心を持つた二官 能性化合物である。このアルキル化剤を使用して 核酸の複製および/または転写に於いて種々の欠 損が生じるが、これは、正常な体細胞よりも急速 に増殖する癌細胞にとつて、より致命的なことで ある。

治療に使用される線状の非電荷ジスルホネートが あり、その一例としてブサルフアン(Busulfan) (ミレラン (Myleran)、ブロー・ウエルカム (Burroughs Wellcome)) が挙げられる〔ガイ

ド・ツー・セラピユーチック・オンコロジー (Guide to Therapeutic Oncology)、パーケビ ン (Bergevin), P.R.ら、編者:ウイリアムス (Williams) およびウイルキンス (Wilkins)、バ [式中、RはH、CH:、またはCH:CH:であり、 5 ルチモア/ロンドン (1979)、p110% この種の 化合物は、標的となる生体分子、例えばDNA塩 基と求核反応することにより作用を開始し、この 標的をアルキル化し、遊離の、荷電したスルホン 酸基を分離させる。次ぎに非荷電スルホン酸エス 10 テルアルキル化基が第2の求核反応を起こし、も との標的分子と第2の標的とを架構し、第2のス ルホン酸基を分離させる。即ち、この二官能性反 応系には、非荷電中間体アルキル化基が関与す る。この1、4ープタンジオールスルホネート 15 [ブルサルフアン (Bulsulfan)] は、これよりア ルキル鎖の短い、あるいは長い線状スルホネート 類よりも治療効果が高い。

3 本発明の要約

本発明は一般構造式:

〔式中、m=0または1、n=1~5、R=H、

で示される環式ジスルホン酸エステルに関するも のである。本発明の化合物は、DNAの如き生体 分子をフラグメント化したり、あるいは核酸類や その関連タンパク質の様な各種の求核性含有生体 化剤は、2本鎖DNAの相対する鎖、即ちDNAお 30 分子を架橋結合させるための二官能性薬剤として 有用である。m=0、n=2、そしてR=Hであ る環式ジスルホン酸エステルは、哺乳動物のリン パ球性白血病、リンパ球様白血病、黒色癌、ヒト の乳癌多植腫瘍(ヒトの乳癌をマウスの腎臓に移 生体分子をアルキル化すると、細胞内代謝、特に 35 植して作成した腫瘍) および卵巣癌を含む種々の 動物の癌の治療に有効である。m=0、n=3ま たは4、R=Hである環式ジスルホン酸エステル 類も抗白血病活性があることがわかつた。

線状ジスルホン酸エステル類とは違つて(この 二官能性アルキル化剤の1種に、通常白血病の 40 場合はブタンジオール化合物が最も治療活性が高 い)、本発明の環式化合物の中では、エタンジオ ール(n = 2)およびペンタンジオール(n = 5) のジスルホン酸エステルが白血病動物を治療 するのに最も有効である。本発明の環式エステル

類は、本明細書に示した様に、白血病以外の癌、 特に黒色癌、乳癌移植腫瘍(プレスト・キセノグ ラフト)および卵巣癌の治療にも有効である。

プサルフアンの様な非荷電線伏アルカンジスル ホネート類と違つて、ジェステル環が開き、本発 5 明の環式ジェステル化合物への、初めの求核的攻 撃によつて、荷電スルホン酸末端基を持つた中間 体線状スルホネートが生じる。従つて、本発明 は、より一般的には、最初のヌクレオフアイルー*

*N」と反応して式:

$$R$$

-N₁-(CH₂)_n-O-SO₂-(CH₂)_m-CH-SO₃-

〔式中、n、mおよびRは前記と同意義である〕 で示されるヌクレオフアイルー反応性中間体を生 成することができる二官能性架橋結合剤を包含す るものである。この結合剤は前記の環式化合物の タイプであつてもよいし式:

$$R$$
 R CH_2O_3-

で示される線状化合物であつてもよい。

本発明はまた、前配の環式ジスルホン酸エステ ル化合物の合成法を提供するものである。前記の 15 構造に於いてn=1である環式ジスルホン酸エス テルを合成するための特に有用な1つの方法は、 アルカンジスルホニルクロリドを銀塩と反応させ て相当すを銀ジスルホネートを生成させ、これを ロアルカンと反応させる。 n=2~5である化合 物を製造するのに有用な第2の方法は、脂肪族ま たは芳香族第3級アミン、例えばトリエチルアミ ンまたはコリジンの存在下でアルカンジスルホニ ことである。生成したエステルによるアミンのア ルキル化を避けるために、第3級アミンを、その 他の反応体に、低温で滴下する。

本発明のもう1つの目的は、治療有効量の環式 を処置することからなる、哺乳動物の癌、特にリ ンパ球性およびリンパ球様白血病、黒色癌、ヒト の乳癌移植腫瘍および卵巣癌を治療する方法を提 供するものである。

本発明の総体的な目的は、種々のタイプの癌の 35 治療に有効な新しい系列の架構結合化合物を提供 することにある。

本発明のもう1つの目的は、第1番目のヌクレ オフアイルと反応して荷電したスルホン酸末端基 を持つたヌクレオフアイルー反応性中間体を生成 40 で示される環式ジスルホン酸エステルを提供する し得るジスルホン酸エステル二官能性架構結合剤 を提供することにある。

更に、本発明のもう1つの目的は、薬物試験お よび製造にみあう収率で容易に製造される環式二 官能性アルキル化化合物群を提供することにあ

本発明のこれらの目的や特徴、およびその他の 目的や特徴は、以下の本発明の詳細な説明および 実施例から、より明らかとなろう。

本発明の詳細な説明

本発明の環式ジスルホン酸エステルは、以下の ジプロモエタンまたはジヨードメタンの様なジハ 20 第1節に述べる新規な方法により合成される。第 2節では、DNA鎖の破壊および関連タンパク質 へのDNAの架橋結合を生じる環式ジスルホン酸 エステルとDNAとの反応について述べる。この 節では、荷電したスルホン酸末端基を持つた線状 ルクロリドを直接アルカンジオールと反応させる 25 ジスルホン酸エステルについても考察する。この 化合物は、環式化合物の場合と同様に2本鎖 DNAと反応する。この線状の荷電架橋結合剤の 合成法についても記載する。5つの異なつたタイ プの哺乳動物の癌の治療に選択された環式ジスル ジスルホン酸化合物で癌にかかつている哺乳動物 30 ホン酸エステル化合物を使用する各種の薬物治療 法については第3節で概説する。

> Ⅰ ジスルホン酸エステル 架橋結合剤の合成 本発明は一般構造式:

$$R-CH-SO_2-O$$
 $(CH_2)_n-SO_2-O$

〔式中、m=0または1、n=1~5、R=H、 CH₁、CH₁CH₂または口である〕

ものである。

第1番目の合成法は、n=1であるこのタイプ の化合物の合成に特に適している。この方法は一 般に、式:

R-CH-SO₂CI (CH₂)_m-SO₂Cl

〔式中、mおよびRは前記と同意義である〕 当する銀ジスルホネートが得られる条件下で、銀 塩、好ましくは炭酸銀と反応させることからな る。実験の結果、この反応は完全に無水の条件下 で暗所で行なうのが好ましいことがわかつた。メ ホニルクロリドを、アセトニトリルの様な適当な 溶媒に溶かし、この溶液に、ジスルホニルクロリ ド1モル当たり2モルよりやや過剰の銀の割合 で、炭酸銀の様な銀塩を添加する。この混合物の で24時間攪拌する。生成した塩化銀の粉末を沪去 する。以下の実施例1で述べる方法により、理論 量の約88.5%に当たるメタンジスルホン酸銀が得 られる。

カンジスルホン酸銀を式:

 $X-(CH_2)_n-X$

る)

当な溶媒、例えばアセトニトリルに溶解したメタ ンジスルホン酸銀を、約1:1のモル比でジハラ イドに加え、この混合物を室温で数週間放置する か、あるいは光の存在下で数日間加熱還流する。 沈殿した銀塩を沪過し、沪液を減圧下で蒸発させ 30 $m n=2\sim5$ 、m R=Hまたは $m CH_2$ である構造の化合 ると通常淡褐色の油状残留物が得られ、これに所 望の生成物が含まれている。この残留物を塩化メ チレンの様な適当な溶媒に溶かし、これを脱色炭 の様な精製剤をその溶媒に加えて処理してもよ サンの様な2番目の溶媒を、上澄が濁るまで添加 する。シクロヘキサン:塩化メチレン(2:1) の溶媒系で再結晶して所望の純度にしてもよい。 生成物の確認は、例えばCHzおよびSOz伸縮提動 の様な赤外(IR) 特性値、および、例えばCH2 40 ーSOzプロトン、末端ーCHiーOプロトンおよび 中央のCHェプロトンなどのプロトン核磁気共鳴 (NMR) 特性値によつて行なうことができる。 更に、生成物の元素分析実測値を理論値と比較す

8

ることによつて、生成物を確認することができ

実施例Ⅱは、1-4ジプロモブタンおよびメタ ンジスルホン酸銀からのテトラメチレンメタンジ で示されるアルカンジスルホニルクロリドを、相 5 スルホネート (m=0、n=4、R=H)、別名 1, 5, 2, 4-ジオキサジチオカンー2, 2, 4, 4ーテトロキシドの製造について記載してい る。この方法で、再結晶後に小さい白色針状晶が 得られ、その最終重量によると通算収率は約3.79 タンジスルホニルクロリドの様なアルカンジスル 10 %であつた。実施例11には、メタンジスルホン酸 銀と1,3ージプロモプロパンからトリメチレン メタンジスルホネート(m=0、n=3、R= H、別名1, 5, 2, 4-ジオキサジチオカンー 2, 2, 4, 4ーテトロキシドを製造する方法が 初期の発熱反応の間40℃以下に保ち、次いで室温 15 記載されている。トリメチレンメタンジスルホネ ートと同定された小さい白色結晶が約11%の収率 で得られた。実施例Ⅳはエチレンメタンジスルホ ネートの合成について記載している。この実施例 に記載されている別法の収率は、シクロヘキサン この合成法の第2段階では、生成したてのアル 20 一塩化メチレン混合物からの再結晶後、2.18%お よび2.78%であつた。メチレンメタンジスルホネ ート (m=0、n=1、R=H)、別名1.5. 2, 4ージオキサジチアン-2, 2, 4, 4ーテ トロキシドの合成法は、実施例Vに記載されてお で示されるジハライドと反応させる。例えば、適 25 り、ここではメタンジスルホン酸銀を、アセトニ トリル中、略当モル量のジョードメタンと反応さ せている。全生成物の収率は約2.22%であった。

> 本発明の新規な環式ジスルホネートエステル類 を合成するための第2の一般的方法は、m=0、 物に特に好適である。この方法は、一般的に、 式:

 $OH-(CH_2)_n-OH$

〔式中、n=2~5である〕

い。この生成物を結晶化させるため、シクロヘキ 35 で示されるジオールをテトラヒドロフランまたは エチレングリコールのジメチルエーテル (グライ ム)などの溶媒に添加し、この溶液に、同じ溶媒 に入れた式:

〔式中、R=HまたはCH:である〕 で示される約当モル量のアルカンジスルホニルク

ロリドを加える。この混合物を少なくとも約-20 ℃に冷却し、脂肪族または芳香族第3級アミンを 滴加する。好ましい第3級アミンにはトリエチル アミンおよびコリジン、第3級芳香族アミン、が 含まれる。この反応混合物を0℃またはそれより 5 た。 僅かに高い温度まで温め、生成した塩酸塩を沪去 する。沪液を減圧下で蒸発させ、通常、淡黄色油 を含んでいる残留物を適当な溶媒、例えば塩化メ チレンに溶解する。塩化メチレン:シクロヘキサ ンなどの適当な溶媒から再結晶すると、所望の再 10 明らかであろう。 結晶生成物である軽い結晶性粉末が得られる。生 成物は、前配した様なIRおよびNMR特性値およ び元素分析により確認することができる。

実施例VIは、上に記載した方法でペンタメチレ H)、別各1, 5, 2, 4ージオキサジチオカン - 2, 4, 4ーテトロキシドを製造する方法を記 載している。グライム中の1-5-ペンタンジオ ール溶液を、同一溶媒に入れたメタンジスルホニ ルクロリドと混合し、この混合物に、無水条件下 20 でトリエチルアミンを適加した。アミンの塩酸塩 残渣を除いて溶媒を蒸発させた後、油伏残留物を 塩化メチレンに再溶解し、水性洗液で3回洗浄 し、塩化メチレン:シクロヘキサン溶媒系から結 生成物を得た。実施例収および堰は、コリジンを **滴下しながらテトラヒドロフラン中でエチレング** リコールとメタンジスルホニルクロリドからエチ レンメタンジスルホネート (m=0、n=2、R る。再結晶した生成物を25%の収率で得た。実施 例IXおよびXは、それぞれトリメチレンおよびテ トラメチレンメタンジスルホネートを製造するた めの同様の反応について記載している。

(実施例XII)、n=3(実施例XIII) およびn=2 (実施例IX) の 1, 1-エタンジスルホネート (m=0、R=CH₃)の合成について記載してい る。 n=1である環式ジスルホネート化合物はこ すべきである。実施例別では、ペンタメチレン 1, 1-エタンジスルホネートが2%の収率で得 られた。実施例准では、精製したテトラメチレン 1, 1-エタンジスルホネートが0.2%の収率で 得られた。実施例XⅢの方法により、トリメチレ ン1,1-エタンジスルホネートが約36%の収率 で得られ、実施例XNでは精製したエチレン 1, 1-エタンジスルホネートが25%の収率で得られ

ここに記載した一般的な合成法に於いて、特に アルカンジスルホニルクロリド出発物質について 変更を加えることにより、提示した各種のR基お よびm値の化合物を製造し得ることは実施例から

Ⅱ 環式ジスルホネートエステルアルキル化反応 本発明の環式ジスルホン酸エステル化合物は、 ヌクレオフアイル含有生体内分子と反応すること ができる化学反応中心を各CH2-O基炭素に持つ ンメタンジスルホネート (m=0, n=5, R=15) ている。 1番目のヌクレオフアイル $(-N_1)$ と呼 ぶ)と環式ジスルホン酸エステルとの初期アルキ ル化反応の結果、式:

$$R$$
 $-N_1-(CH_2)_n-O-SO_2-(CH_2)_m-CH-SO_3-$

で示される負に荷電したSO。で末端基を持つた 線状の中間体が生成する。この線状化したアルキ ル化中間体は、環式化合物とは著しく異なつた溶 解性および荷電特性を持つていることは理解され 晶化させた。この方法により約6.75%の収率で純 25 るはずである。これらの荷電および溶解特性が、 この化合物が、アルキル化された生体内分子に対 してとる立体配置に影響を与えると期待される。 具体的にいうと、この荷電した末端基は、2本鎖 DNAに関連している正に荷電したヒストンと相 =H)を合成する同様の反応について記載してい 30 互作用する。本発明を支持するために行なわれた **予備実験の結果、環式エチレンジスルホン酸エス** テル (n = 2) は、ヒト胎児肺線維芽細胞、 IMR-90セルラインおよびそのSV-40-形質転 換対応物、VAー13セルライン(これは、グアニ 実施例XIーXIVは、n = 5 (実施例XI)、n = 4 35 ンの06位に於ける小アルキル障害を修復する能力 を欠いている)の両者に於いて、DNAとDNA関 連タンパク質を架構結合させる活性を有すること が判明した。興味あることは、n=2の化合物で 処理された両細胞に於いて、両方のフランク鎖の の合成法では製造することができないことに注意 40 ハイレベルな破壊およびアルカリー不安定障害 (PHI26) が観察されたが、n=2の化合物で処 理された細胞中ではDNA/DNA架橋がほとん ど、あるいは全く観察されなかつたことである。 検出された鎖の破壊がハイレベルであつたこと、

およびIMR-90セルライン(これはグアニンの 06位に於ける小さいアルキル障害を除去すること ができる) に於いて毒性が低かつたことは、観察 された鎖の破壊は薬物によつて惹起されるのでは 示唆している。

初期のアルキル化に続いて、椋状化した荷電コ ンプレツクスが、第2のヌクレオフアイルN₂と、* *2番目の求核反応に関与することができ、架橋結 合した-N₁-(CH₂)_n-N₂コンプレツクスを形成 し、第2の荷電スルホン酸を放出する。

12

本発明は、もつと一般的に言えば、初期アルキ なく、酵素の修復活性によつて惹起されることを 5 ル化反応の後のスルホン酸末端基により特徴づけ られるジスルホン酸エステルを目的物質とするも のである。この性質を持つた線状ジスルホン酸エ ステルは、一般構造式:

 $-SO_3 - \stackrel{\frown}{C}H - (CH_2)_m - SO_2 - O - (CH_2)_n - O - SO_2 - (CH_2)_m - \stackrel{\frown}{C}H - SO_3 - O$

[式中、m=0、 $n=1\sim5$ 、R=H、 CH_3 、 CH₂CH₂stt(CI)

で示される。この構造をみると、O-CH2炭素に 於ける、ヌクレオフアイルN,による初期の求核 15 よつて判定した)。 攻撃により、相当する環式ジスルホン酸エステル が関与する初期求核反応の結果生じるコンプレツ クスと同じNiーアルキル化剤コンプレツクスが 生じることがわかる。

ルメタンスルホン酸)エタン(m=0、R=H、 n=2)の合成法を示している。この方法では、 メタンジスルホニルクロリドを、ジエチルエーテ ルの存在下で水と反応させ、相当するクロロスル ホニルメタンスルホン酸を生成させる。この化学 25 の腫瘍サイズの比で表わした。 中間体のスルホン酸基を、既知の方法に従い、ト リメチルシリルクロリドまたはセープチルジメチ ルシリルクロリドと反応させて保護する。次いで この化合物をグライムの様な適当な溶媒中、芳香 ルアミンを-20°Cで適加しながら、エチレングリ コールと反応させる。その生成物をH₂Oおよび 重炭酸塩で処理して化合物中のシリルエステルを 加水分解し、この生成物の所望の塩を生成せしめ る。

夏 環式メタンジスルホネートエステルの抗癌活 性

種々のタイプの哺乳動物の癌に対する環式メタ ンジスルホネートの有効性を調べた。この実験で ると確認されたマウスの個々の個体を使用した: リンパ球性白血病、リンパ球様白血病、黒色癌、 ヒトの乳癌移植腫瘍および卵巣癌。それぞれのタ イブの癌につき、ほおぼ同じサイズおよび体重の

一群の動物を、被験薬物の量が増加していく各種 投与レベルの1つで処置して最適投与量を決めた (これは、最大の存在期間または腫瘍増殖阻止に

各試験に於いて、動物を等しい動物数の2群に わけた。対照群には薬物の担体のみを与え、処置 群には担体に入れた最適投与量の薬物を与えた。 リンパ球性白血病、リンパ球様白血病、黒色癌お 実施例XVは、1,2-ピス(オキシスルホニ 20 よび卵巣癌に関する実験では、対照動物の生存日 数の中央値に)に対する処置動物の生存日数の中央 値ITIの割合、即ちT/C比、で薬物の有効性を表 わした。ヒトン乳癌移植腫瘍に対する薬物の有効 性は、対照動物の腫瘍サイズICIに対する処置動物

エチレンメタンスルホネート薬物処置の処置プ ロトコールおよび得られた結果を実施例XVIに記 載した。そのデータによると、エチレンメタンス ルホネートは、実施例に記載された全てのタイプ 族または脂肪族の第3級アミン、例えばトリエチ 30 の癌について、生存期間を延長し、または腫瘍の 増殖を阻止する。

更に、n=2~4の架橋結合鎖長を持つた環式 ジスルホン酸エステルの治療効果を比較する目的 で、リンパ球性白血病のマウス2群を、トリメチ 35 レンメタンジスルホネート (n=3) およびテト ラメチレンメタンジスルホネート (n=4) のい ずれかで処置した。試験条件およびプロトコール は実施例XⅥの試験の場合と実質的で同じであ り、n=3およびn=4の化合物について、それ は、以下のタイプの癌のいずれか1つを持つてい 40 ぞれ実施例XWIおよびXWIに記載した。トリメチ レンおよびテトラメチレンメタンジスルホネート 化合物は共に、T/C比で測定した結果、有意な 抗一白血病活性を示した。しかし、白血病動物の 生存期間を延長させる点では、両者とも、環式エ

チレンメタンジスルホネートエステルより明らか に有効性が劣つていた。

以上のことから、本発明の各種の目的が理解さ れよう。本明細書に記載の環式ジスルホン酸エス テルは、その構造および反応性が非荷電線状ジス 5 実施例 Ⅱ ルホン酸エステルと全く異なる新しい系列の架橋 結合剤である。本発明に係る新規化合物群の内の 1つは、白血病、卵巣癌、黒色癌およびヒトの乳 癌移植腫瘍を含む種々の癌の治療に有効であるこ とが判明した。

本発明の化合物は、本明細書で詳述した方法の いずれか1つ、または両方の方法で容易に製造さ れ、その化合物の内の数種のものは、約25%以上 の収率で得ることができる。

ついて実施例を挙げるが、これは本発明の範囲を 限定することを意図したものではない。

実施例 [

無水メタンジスルホン酸銀の製造

た。ガラス器具はすべて、乾燥機中、110°Cで少 くとも 1 時間半加熱した。メタンジスルホニルク ロリドは、既知の方法で合成した〔例えばシユロ ーター、G.アナーレン・デア・ケミー 参照る 再蒸留したメタンジスルホニルクロリド (2.00 f 、0.009モル)を、パーデイック・アン ド・ジャクソン研究所(マスキーゴン、ミシガ >) (Burdick and Jackson Laboratories 15元に入れて平衡商下ロートに移した。アセトニ トリルは、P2Osを入れて蒸留した。J.T.ベーカ ー・ケミカル社(フイリツプスパーグ、ニユージ ヤージー) (J. T. Baker Chemical Co. 酸銀(99.8%)を量り(5.22 &、0.019モル)、平 衡ロート、乾燥管付きの運流冷却器および温度計 を備えた三口フラスコに入れた。攪拌パーを入れ た後、ジスルホニルクロリド溶液を徐々に滴下し た。混合物は発熱し、気体が発生した。氷水浴に 40 入れて温度を40°C以下に保つた。提拌パーをなる べく早く始動させ、混合物を室温で約24時間攪拌 した。反応混合物を沪過して、塩化銀および未反 応の炭酸銀を含有する淡紫色の粉末を得た。乾燥

14

した後の粉末の重量は2.99 %であり、炭酸銀が完 全に反応した場合の塩化銀の理論重量を0.29 8 上 回つた。この数値に基くと、沪液中のメタンジス ルホン酸銀の収率は約88.5%であった。

テトラメチレンメタンジスルホネートの製造 アルドリツチ・ケミカル社(ミルウオーキー、 ウイスコンシン) (Aldrich Chemical Co. (Milwaukee.WI)] より入手した純粋な1, 4-10 ジプロモブタン (2.03%、0.009モル) を、新し く調製した実施例【のアセトニトリル中のメタン ジスルホン酸銀溶液100㎡を入れたフラスコに加 えた。フラスコに栓をして暗所に室温で8週間置 くと、その間に黄緑色の沈殿が生成し、フラスコ 以下に各種の合成法および処置プロトコールに 15 の底に沈んだ。この懸濁液を沪過し、沪液を乾燥 アセトニトリルで洗滌すると、臭化銀懸濁した。 この懸濁液を沪過し、沪液を実施例】に従つて乾 燥した。沪過物の乾燥重量は2.34グラムであり、 ジプロモブタンとメタンジスルホン酸銀が完全に 全製造工程を、完全に無水な暗条件下で実施し 20 反応した場合に生じる臭化銀の理論重量の67.7% であつた。

もとの戸液を減圧下で乾燥すると、淡茶色の油 状物質が得られた。この油状物質を塩化メチレン で洗滌すると、茶色のゴム状物質および濁つた上 (Schroeter、G., Ann Chem) (1919) 161-257 25 清が得られた。上清をデカントして脱色炭で処理 した。沪遇して脱色炭を除去すると無色透明な溶 液が得られた。減圧下で溶媒を除去すると微小な 白色の立方体結晶が得られた。この結晶をシクロ ヘキサンー塩化メチレン (2/1) 混液より再結 (Muskegon MI)) から入手したアセトニトリル 30 晶した。微小な白色の針状結晶が得られ、乾燥し た後秤量した。その重さは、0.082gであり、こ れは収率3.79%に相当する。生成物の融点は、 143-144℃であった。生成物のNMRおよびIRス ペクトル分析は、テトラメチルメタンジスルホネ (Phillipsburg NJ)) より入手した分析等級の炭 35 ートと思われるスペクトル特性を示した。生成物 の元素分析(C_sH₁₀O_sS_zとして)は理論値がC、 26.08; H、4.38; S、27.85であり、実測値はC、 26.08; H、4.77; S、27.66であった。

宴族例Ⅱ

トリメチレンメタンジスルホネートの製造

新しく調製した実施例【の乾燥アセトニトリル 100㎡中のメタンジスルホン酸銀溶液に、アルド リツチ・ケミカル社より入手した純粋な1,3-ジプロモプロパン(4.76分、0.024モル)を加え

た。この混合物を82°で3日間加熱還流すると、 黄緑色の粉末が生成した。この粉末を戸過し、乾 燥アセトニトリルで洗滌した後、沪過し、乾燥 し、次いで重さを量つた。乾燥重量5.92グラム は、ジプロモプロパンとメチレンメタンジスルホ 5 ン酸銀の完全な反応に基く臭化銀の期待重量の 65.5%に相当する。還流反応物の溶媒を減圧下で 除去し、残留した由状物質を実施例Ⅱにおけるテ トラメタンジスルホネートの精製に記載した方法 ラムであつて、これは収率11%に相当し、融点 156~157.5℃および185.5~186.5℃を示す。 2回 再結晶した化合物のNMRおよびIRスペクトル は、トリメチレンメタンジスルホネートに特有の 理論値がC、22.22; H、3.72; およびS、29.66 であり、実測値はC、22.31; H、3.69; および S、28.91であった。

実施例 IV

エチレンメタンジスルホネートの製造

新しく調製した、実施例『に従つて得られたア セトニトリル約100ml中のメタンジスルホン酸銀 溶液に、アルドリッチ・ケミカル社より入手した 純粋な1, 2ージプロモエタン(4.42g、0.024 モル)を加えた。82℃で4日間加熱運流した後、25 値:C、12.91;H、2.14;S、34.16 反応混合物を冷却して沪過した。こうして得られ た黄緑色の粉末をアセトニトリルで洗滌し、乾燥 して重量を測定した。この乾燥粉末4.01グラム は、反応が完全に行なわれた場合に生じる臭化銀 沪液を減圧下で除去すると淡茶色の粘性の油状物 質が得られた。この油状物質を、実施例Ⅱと同様 に塩化メチレンで処理すると、濁つた白色の上済 および不透明な茶色のゴム状物質が生成した。上 した。これを沪過した後の溶液は無色透明であつ た。減圧下で溶媒を除去すると微小な白色結晶が 得られた。これをシクロヘキサン一塩化メチレン 混液より再結晶し、真空乾燥した。乾燥後の重量 融点は約170℃であった。再結晶した生成物のIR およびNMRスペクトルはエチレンメタンジスル ホネートに特有な特徴を示した。元素分析は CaHeOeSaの計算値に一致した。

純粋な1, 2ージプロモエタン5.09 & (0.028) モル) およびメタンジスルホン酸銀溶液100 転を 使用して、上記と同じ操作を行なつた。反応は82 ℃で1日加熱選流して行なつた。黄緑色の粉末は 3.55 f あり、AgBrの期待重量より0.75 f 少なか つた。総重量0.162 年、収率2.78%の微小な白色 針状結晶を得た。

実施例 V

メチレンメタンジスルホネートの製造メタンジ で処理した。得られた微小な白色結晶は0.563グ 10 スルホン酸銀溶液約100㎡を入れたフラスコに、 還流冷却器および乾燥管を付けた。アルドリツ チ・ケミカル社より入手した純粋なジョードメタ ン (5.09 %、0.019モル) を加え、溶液を 2 日間 加熱運流した。生成した淡黄色の粉末を実施例Ⅱ 特徴を示した。元素分析 (CaHaOaSaとして) は 15 と同様にして、沪過し、洗滌し、次いで乾燥し た。乾燥した沈殿の重量は5.79%であり、期待さ れるAgIの重量の72.0%に相当した。 沪液を実施 例Ⅱに記載した方法で処理すると、総重量0.081 グラム、収率2.22%、融点146℃~146.5℃の微小 20 な白色針状結晶が得られた。さらに再結晶を行っ た後の白色針状結晶のIRおよびNMRスペクトル 分析は、メチレンメタンジスルホネートに特有な 特徴を示した。元素分析 (C₂H₄O₅S₂として);理 論値:C、12.76;H、2.14;S、34.09、実測

実施例 VI

ペンタメチレンメタンジスルホネートの製造 本実施例および以下の実施例加一個は、アルカ ンジスルホニルクロリドと、HO-(CH₂)_n-OH の重量の44.5%に相当する。還流反応物より得た 30 [式中、n=2、3、4または5である]で示さ れる型のジオールの反応による環式アルカンジス ルホン酸エステルの合成を説明するものである。 パーデイツク・アンド・ジャクソン研究所より入 手したエチレングリコールのジメチルエーテル 清をデカントして脱色炭およびケイソウ土で処理 35 (グライム)をナトリウムおよびペンソフェノン を入れて蒸留し、精製した。精製したグライム 350元中に入れた、アルドリッチ・ケミカル社よ り入手した 1, 5ーペンタンジオール (125%、 0.12モル)溶液を、スターラーおよび温度計を備 は0.113 f であつて理論収量の2.18%に相当し、40 えた 1 ℓ の三口丸底フラスコ中で攪拌した。反応 フラスコはドワールードライアイス浴で-20°Cの 温度に保つた。フイールド・Mおよびリーク・ H.P.(Fild, M.and Rieck, H.P.) のケム・ツア イツング (Chem Zeitung) (1976) 109(9) 9):

391に記載された方法によつて調製したメタンジ スルホニルクロリド (25.6%、0.12モル) をグラ イム25叫に溶解したものを60叫の滴下ロートより 徐々に加えた。イーストマン・オーガニック・ケ チエスター、ニューヨーク (Rochester、NY)) より入手したトリエチルアミン (24.3%、0.24モ ル)をグライム125 礼に入れた溶液を、1時間で 溶器に滴下した。CaCl2を入れた乾燥管を滴下ロ た。商下が完了した後、反応混合物を室温に戻し て 2時間攪拌した。

反応混合物を減圧沪過して固形のトリエチルア ミンヒドロクロリドを除去した。固状のアミン塩 ると重さは37.0分であつて、これは理論上の収量 の104%に相当した。 炉液をロータリーエパポレ ーターを使用して37°C以下で蒸留し、グライムを 除去した。残留物を塩化メチレン100㎡に再溶解 した後、以下の一連の冷却した水性洗液で洗滌し 20 た:(a)5%の重炭酸ナトリウム30×1で3回、(b)蒸 留水30×1で1回、および(c)5%の塩酸30×1で3 回。これらの洗液は4℃に冷却して生成物の加水 分解を最小限にした。最終的に得られた有機層を ーを使用して塩化メチレンを留去した。粗生成物 を最小量の塩化メチレンに再溶解した。シクロへ キサンを加えて混合物を1か月間冷蔵庫に置き、 混合物が透明になつたら周期的にシクロヘキサン 白色の粉末を沪過し、次いで乾燥した。給量0.22 グラム、収率6.75%の結晶化した生成物を得た。 この生成物は102°C~105°Cで分解する。この化合 物は、特有のCH。、SO。のIR特性およびCH。-(SO₂)₂、CH₂-O、-CH₂-のプロトンNMR特 35 性によつて同定した。

実施例 VII

エチレンメタンジスルホネートの製造ー方法 2 パーデイツク・アンド・ジャクソン研究所より トリウムペンプフエノンを入れて新たに蒸留し た。アルドリッチ・ケミカル社より入手したエチ レングリコール (1.24グラム) をテトラヒドロフ ラン200 以に入れた溶液を、乾燥管に連結した50

別の圧平衡滴下ロート、攪拌機および低温温度計 を備えた500利の三口フラスコに入れた。この溶 液を一20℃に冷却し、テトラヒドロフラン50ml中 のメタンジスルホニルクロリド4.26グラム(0.02 ミカルズ (Eastman Organic Chemicals) (ロ 5 モル)を15分間で滴下ロートより加えた。次い で、テトラヒドロフラン120元中のイーストマ ン・オーガニツク・ケミカルズより入手したコリ ジン(4.85%、0.04モル)を、約1時間で徐々に フラスコに加えた。反応混合物を10℃まで温めた ートに付けて水との接触を避けるように注意し 10 後、生成したコリジン塩酸塩を沪去した。沪液を 20mm圧のロータリーエパポレーターで濃縮した。 残留物を高真空(1-2mm)下に約15分間置き、 次いで5%の冷HCI50×を加えてこの混合物を冷 蔵庫で一夜放置した。沪過し、次に真空乾燥して 酸塩残留物質をグライムで洗滌し、次いで乾燥す 15 メタンジスルホン酸のエチレングリコールエステ ル1.02 f を得たが、これは収率25%に相当し、m. p.165-169℃であった。生成物は、IRおよびプロ トンNMRスペクトルで確認した。

実施例 证

エチレンメタンジスルホネートの製造一方法3 実施例Ⅷに記載の方法を一部変更して、テトラ ヒドロフランの代わりにグライムを、コリジンの 代わりにトリエチルアミンを使用した。トリエチ ルアミンの塩酸塩の沪過を行わず、最後の反応溶 MgSO4で乾燥した後、ロータリーエパポレータ 25 液を減圧蒸留した後に残留物を氷水に取って沪過 すると、メタンジスルホニルクロリド0.04モルよ りエチレンメタンジスルホネート467 8(57%収 率) が得られた。生成物を、95°C-102°Cに加熱 した浴中、0.5-1.0maHgの真空下で昇華させて更 を追加し、生成物の結晶化を促進した。生成した 30 に精製した。昇華によつて、NMRスペクトルに よつて検出された不純物の1つが除かれ昭た。 昇 華した物質を生物試験にかけた。

実施例 IX

トリメチレンメタンジスルホネートの製造一方

エチレングリコールの代わりに1.3ープロパ ンジオールを使用し、実施例種に記載の操作を、 溶媒としてグライムを使用し、塩基としてトリエ チルアミンを使用して行なつた。グライムを蒸留 入手したテトラヒドロフランを、常法に従い、ナ 40 した後の残留物を塩化メチレンに取り、続いて重 炭酸ナトリウム、水、次いで5%の塩酸で洗滌し た。無水硫酸マグネシウムで塩化メチレンを乾燥 した後、シクロヘキサンを加えて結晶化をうなが した。1,3-プロパンジオール25.6 f (0.12モ

ル) およびトリエチルアミン24.3 # (0.24モル) より、トリメチレンメタンジスルホネート2.6% (10%収率)を得た。この化合物は139℃-142℃ の融点(分解)、およびIR並びにNMRスペクト ルで確認した。

実施例 X

.

テトラメチレンメタンジスルホネートの製造ー 方法2

エチレングリコールの代わりに 1, 4ープタン 操作を行ない、等モル量の試薬より7%収率のエ ステルを得、これをm.p.135°C-136°C (分解) お よびIR、NMRスペクトルによつて確認した。

実施例 XI

の製造

1, 5ーペンタンジオール (4.17%、0.04モ ル)を1リツトルの丸底フラスコ中のグライム 350 対に溶解し、この溶液を-20℃に冷却した。 操作で合成した1,1-エタンジスルホニルクロ リドをグライム25mlに溶解し、この溶液をフラス コ中の溶液に滴下した。トリエチルアミン (8.08 ダ、0.08モル)をグライム125mlに溶解し、この ホニルクロリド溶液に加えた。添加完了後、この 混合物を水浴中、45分間かけて25℃にした。混合 物を35°C以下の温度で減圧回転蒸発させた。残留 物を5%の重炭酸ナトリウム20㎡で3回洗滌し、 得られたエマルジョンを遠心分離した。この洗浄 30 0.01グラム以下しか溶解しなかつた。 操作で最終的に得られた油状物質より水をデカン トし、塩化メチレンを加えた。この溶媒は、明ら かにすべての、あるいはほとんどの不純物を溶解 したが、本生成物は溶液中に懸濁したままであつ (Whatman#5) 定性ろ紙で減圧沪過することに よつて得られた。

乾燥した生成物は0.22グラム、収率約2%であ った。生成物は、特有のIRおよびプロトンNMR ~142℃で起こつた。化合物の溶解度が低いこと は、乾燥した生成物0.03グラムをアセトニトリル 1 叫および塩化メチレン 1 叫に溶解して確認し た。どちらの場合も不溶性の固形物よりデカント

した上清を蒸発させた結果、生成物、ペンタメチ レンエタンジスルホネートが各溶媒に0.01グラム 以下しか溶解しないことがわかつた。

実施例 XI

5 テトラメチレン1、1ーエタンジスルホネート の製造

アルドリツチ・ケミカル社より入手した1.4 ープタンジオール (3.6%、0.04モル) を1リツ トルの丸底フラスコ中のグライム75 礼に溶解し ジオールを使用して実施例値に配載の操作と同じ 10 た。グライム25元に溶解した 1, 1ーエタンジス ルホニルクロリド (9.1%、0.04モル) 溶液を溜 下ロートよりフラスコに加えた。反応混合物をダ ウアノールードライアイス浴で-20℃以下に保っ た。グライム100叫に溶解したトリエチルアミン ペンタメチレン 1, 1-エタンジスルホネート 15 (8.08 g、0.08モル) を、125 mLの滴下ロートより 1時間で混合物に加えた。CaCleを入れた乾燥管 を滴下ロートに付け、無水条件を維持するように した。反応混合物を冷水浴で25℃にした。グライ ムは、37℃以下の温度で回転蒸発させて除去し メタンジスルホニルクロリド(実施例I)と同じ 20 た。グライムを除去した後に得られた油質の黄色 残留物質を5%の重炭酸ナトリウム100元で1回、 および冷蒸留水50㎡で1回洗滌し、生成したエマ ルジョンを直ちに速心して生成物を分離し、水性 の物質をデカントした。残留した沈殿を真空下で 溶液を1時間でペンタンジオール/エタンジスル 25 乾燥させた。得られた白色の粉末状固形物は0.90 8、収率9.2%であった。生成物は、特有のIRお よびプロトンNMRスペクトル特性によつて確認 した。生成物は115~138℃で分解した。生成物は 塩化メチレンあるいはアセトニトリル1 型に約

実施例 XI

トリメチレン1。1-エタンジスルホネート アルドリツチ・ケミカル社より入手した 1、3 ープロパンジオール(6.1g、0.08モル)を、ス た。この生成物は、溶液をワットマン#5 35 ターラーおよび温度計を備えた 1ℓ の三口丸底フ ラスコ中の蒸留グライム350元に溶解した。フラ スコの下に置いたダウアノールードライアイス で、溶液を-20°Cに保つた。グライム25mlに溶解 した1。1-エタンジスルホニルクロリド (18.2) スペクトルで確認した。生成物の分解は、141°C 40 f、0.08モル)を60×1の滴下ロートより徐々に加 えた。次いで、この容器にグライム125元に溶解 したトリエチルアミン (16.29、0.16モル) 混合 物を1時間で滴下した。滴下ロートにCaClzを入 れた乾燥管を付け、水との接触を避けるようにし

た。すべての添加が終つた後、反応混合物を室温 にして3時間攪拌した。

混合物を減圧沪過し、固体のトリエチルアミン 塩酸塩を除去した。沪液を37℃以下の温度で回転 物を最小量の塩化メチレンに再溶解し、混合物に 濁りが生じるまでシクロヘキサンを加えた。生成 した最初の結晶を、減圧沪過して溶液より除去 し、更にシクロヘキサンを加えて2番目の結晶群 晶を冷蒸留水で洗滌して表面の油膜を除いた。得 られた固形物の最終重量は収率36%に相当した。 この化合物を予め加熱された融点測定装置に入れ ると、151℃~155℃で分解した。CH₂CHおよび SOzのIRスペクトル特性により、およびCH、15 ルにより確認した。 CH₂O、-CH₂-および-CH₂のプロトンNMR特 性によつて生成物を確認した。

実施例 XIV

エチレン1, 1-エタンジスルホネートの製造 ンジスルホネートを製造する反応操作を採用し、 実施例XIIで使用した1.3ープロパンジオール の代わりにエチレングリコール (5.0グラム、 0.008モル)を用いて行なつた。反応混合物を室 温で3時間攪拌して固体の残留物、アミン塩酸塩 25 溶液を塩化メチレンで洗滌し、次いで蒸発させて を除去した後、沪液を回転蒸発させてグライムを 除いた。得られた租生成物を最小量の塩化メチレ ンに溶解し、次いでミクロヘキサンを加えると直 ちに白色結晶が生成した。さらにシクロヘキサン を加えて遠心分離すると、総量5.84グラムとなる 30 数群の結晶が得られた。この物質をさらに再結晶 させて合計4.37グラムの生成物を得た。これは収 率25.2%に相当した。生成物の融点は、92℃~93 ℃であった。CH2CHおよびSO2についてのIRス プロトンNMR特性によつて生成物を確認した。

実施例 XV

ナトリウム1, 2ーピス (オキシスルホニルメ タンスルホネート) エタンの製造

ル)を、無水エーテル200mlを入れた500mlの丸底 フラスコに加えた。この溶液を予め攪拌してお き、氷浴で冷却しながら徐々に水2.19 (0.117モ ル)を加えた。水を加え終えた後、氷浴をはずし

て溶液を 4時間攪拌した。回転蒸発してエーテル を除去し、PCR・リサーチ・ケミカルズ社 (PCR Research Chemicals, Inc.) (ゲインズビ ル、フロリダ (Gainesville, FL)) より入手し、 蒸発させてグライムを除去した。7.95gの粗生成 5 新たに蒸留したトリメチルシリルクロリド37g (0.35モル) を気体の発生を制御するためのパブ ラーを使用しながら徐々に加えた。トリメチルシ リルクロリドを加えた後、気体の発生が終わるま で、溶液を数時間加熱還流した。過剰量のトリメ を生成させ、これも沪過して除去した。両者の結 10 チルシリルクロリドを留去し、次いで残留物を精 留すると、bp102℃-104℃、0.2m圧で、あるい は110℃-11℃、0.4m圧でトリメチルシリルクロ ロスルホニルメタンスルホネート249 (77%) が 得られた。生成物は、滴定およびNMRスペクト

ナトリウムおよびペンゾフエノンより新たに蒸 留して-20℃に冷却したグライム25減中のトリメ チルシリルクロロスルホニルメタンスルホネート 5.52 ダ (0.0207モル) 溶液に、グライム25 11中の 実施例X頁に記載のトリメチレン1,1ーエタ 20 エチレングリコール0.62g(0.01モル)およびト リエチルアミン1.75 # (0.02モル) 溶液を滴下し た。次いで、この溶液を室温に戻して沪過し、グ ライムを蒸発除去した。水中の2当量の重炭酸ナ トリウムを加え、気体の発生が終わつた後に水性 1, 2-ピス(オキシスルホニルメタンスルホン 酸)エタンのナトリウム塩を含有する白色の泡状 残留物質を得た。

実施例 XVI

エチレンメタンジスルホネートの抗癌活性

この実験では、以下のタイプの癌のいずれか1 つを持つていると確認されたマウスの個々の個体 を使用した:リンパ球性白血病 (PS)、リンパ球 様白血病 (LE)、黒色癌 (B1)、ヒトの乳癌移植 ベクトル特性およびCH、CH:、CH:についての 35 腫瘍(MB)および卵巣癌(M5)。 表 1 の左欄に は、実施した6種類の実験系が記載されており、 これには2つの異なつたリンパ球様白血病、 LE31およびLE37が含まれている。各実験系にお いて6~10匹の動物が使用され、表の投与量載囲 メタンジスルホニルクロリド25.0g(0.117モ 40 の欄に示した1日量のエチレンメタンジスルホネ ートが投与された。表の左から第3番目の欄に は、腹腔内 (IP)、脳内 (IC) または皮下 (SC) のいずれかの注入経路を示した。投与量範囲は、 表示した注入経路による場合、特定の癌に対して

最も治療効果が高いことがわかつた量である。同 じ数の動物に、薬物を投与するのに使用した媒質 のみを毎日投与した (対照)。

対照群および薬物処置群共に、全動物が死亡す 対照群の3倍以上になった少数の実験系では、試 験動物は治癒したものとみなした。表1の右欄に 示したT/C比は、処置動物の生存日数の中央値 「TTを対照動物の生存日数(C)の中央値で割つたもの という値は、処置動物の生存日数の中央値が、非 処置動物の生存日数の中央値の270%、即ち2.7倍 であることを示している。ヒトの乳癌移植腫瘍の 実験系(MBG5)では、処置動物の腫瘍サイズ 対非処置動物の腫瘍サイズの値を示している。7 15 という値は、処置動物の腫瘍の平均が非処置動物 の増殖の約7%であることを意味している。

	3X	1	
実験系	投与量範囲	注入 経路	T/C値
3 PS 31	25-50mg/kg	IP	270
3 LE 31	25-50mg/kg	IP	271
06 LE 37	6.25-25.0 kg/kg	IC	183
3 B 131	12.5 - 25.0 kg/kg	IP	166
3 MB G5	50-300 mg/kg	SC	(7)
3 M5 31(M)	12.5-50 mg/kg	IP	217
3 M5 31(F)	25-50mg/kg	ΙP	267

表1のデータは、エチレンメタンジスルホネー トが、実験した5つのタイプの癌の全てを治療す るのに、種々の投与用範囲で有効であること、お 30 よび薬物投与は、種々の注入経路で行ない得るこ とを示している。

実施例 XVI

トリメチレンメタンジスルホネートの抗白血病

活性 リンパ球性白血病に対するトリメチレン メタンジスルホネートの有効性を調べるために、 表 I のPS31に相当する実験を行なった。実験の プロトコールは実施例XVIのPS31実験系のもの るまでこの投与を行なつた。ただし、生存期間が 5 と同じであつた。ただし、最適投与量範囲、6.5 ~12.5mg薬物/体重kgで行なつた。処置および非 処置動物の生存日数の中央値に基いて計算した T/C比は160であり、これは、この薬物はリン パ球性白血病の治療に有効であるが、エチレンメ である。例えば、PS31実験系に於いてT/C270 10 タンジスルホネートより実質的に劣ることを示し ている。

24

実施例 XVI

テトラメチレンメタンジスルホネートの抗白血 病活性

実施例XVIのPS31実験系と同様の実験系で、 リンパ球性白血病の治療に於けるテトラメチレン メタンジスルホネート化合物の有効性を調べた。 実施例XVIのPS31実験系に記載したものと同じ 数の動物数および注入経路を含む同じ一般的プロ 20 トコールを使用した。ただし、テトラメチレンメ タンジスルホネート化合物の最適投与量範囲、 12.5~25mg/体重kgで行なつた。処置および非処 置動物の生存日数の中央値に基いて計算したT/ C比は188であり、トリメチレンメタンジスルホ 25 ネートの場合の結果と同様であった。

以上、本発明の好ましい態様および特定の例に ついて述べたが、本発明の思想を逸脱することな く種々の変更および改良を行なうことが可能であ ることは容易に理解されよう。