选择题

- 1
- DADCA BDA
- 2
- DCDAD B
- 3
- BCADB CDB
- 4
- BABDC D
- **(5)**
- BCABD B
- 6
- BACBB CDA
- 7
- BCAC

填空题

(1)

填空题(本题共6小题,每小题3分,共18分)

- 1. 不定积分 $\int (x-\sin x)dx = \frac{1}{2}\chi^2 + \cos \chi + C$
- 2. 设函数 $f(x) = \begin{cases} \arcsin(\frac{\tan x}{2x}), & x < 0 \\ a, & x > 0 \end{cases}$, 且 f(x) 在 x = 0 处连续,则 $a = \frac{3}{2}$
- 3. 若积分 $\int_a^b \frac{dx}{(x-a)^q}$ 收敛,则 q 的取值范围是 $\frac{\mathbf{\xi} < \mathbf{1}}{2}$
- 4. 设 $f(x) = \int_0^{x^2} \sin \sqrt{t} dt$, 则 $f'(\frac{\pi}{4}) = \frac{\sqrt{2}}{4}$.
- ↓ the following of the following f (1/4) = 4/4 = 4
- 6. 极限 $\lim_{x\to 0} \frac{1}{x} (\frac{1}{x} \cot x) = \frac{1}{3}$.

(2)

二、填空题(本题共 4 小题, 每小题 3 分, 共 12 分)

- 1. 设 $y = e^{x \sin x}$, 则 $y \in x = \frac{\pi}{2}$ 处的微分等于 $e^{\frac{x}{2}} dx$
- 2. 设函数 $f(x) = \begin{cases} \frac{\ln(1-x)}{2x}, & x < 0 \\ a + e^{2x}, & x \ge 0 \end{cases}$, 且 f(x) 在 x = 0 处连续,则 $a = \frac{-2}{2}$.
- 3. 不定积分 $\int_{x^2}^{1} \cos \frac{1}{x} dx = \sin \frac{1}{x} + C$

3

- 1. 平面 $\Pi_1: x-y+2z-6=0$ 和平面 $\Pi_2: 2x+y+z-5=0$ 的夹角为 3 ;
- 2. 设 L 是从 $A(1,\frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,则 $\int \frac{2x}{v} dx \frac{x^2}{v^2} dy = 0$;
- 4. 若级数 $\sum_{n=0}^{\infty} b_n \sin nx$ 在 $(0,\pi)$ 内的和函数为 S(x)=1+x,则此级数在 $x=3\pi$ 处收敛

(4)

 $\widehat{(5)}$

- 1. 函数 $y = x + 2\cos x$ 在闭区间 $[0, \frac{\pi}{2}]$ 上的最大值是 $\frac{\pi}{6} + \sqrt{3} \leftrightarrow \frac{\pi}{6}$ 2. 函数 $y = \ln(4 - x^2)$ 的单调减少区间是__
- 3. 微分方程 (x+1)y'-2y=0 的满足 $y(1)=\frac{1}{4}$ 的特解是 $\frac{1}{16}(x+1)^{2}$
- 4. $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x + \cos x) \sin x dx =$

(6)

- 1. $\lim_{x \to \infty} \frac{ax + \sin x}{x} = 2$. $\lim_{x \to \infty} a = 2$
- 2. $ixy = \sin(2x + \frac{\pi}{3})$, $ixy = \frac{2\cos(2x + \frac{\pi}{3})dx}{1}$.
- 3. $\int (e^{-2x} + 1)dx = \frac{1}{2}e^{-2x} + x + c$
- 4. 微分方程 y'x = y 满足 y(1) = 3 的特解为
- 5.设函数 $f(x) = \begin{cases} (1+x)^{\frac{1}{2s}}, & x \neq 0 \\ a, & x = 0 \end{cases}$, 且 f(x) 在 x = 0 处连续,则 $a = e^{\frac{1}{2s}}$
- 6. $y = \ln(1-x)$ 的带佩亚诺余项的 n 阶麦克劳林表达式为 $-x \frac{1}{2}x^2 \frac{1}{3}x^3 \dots \frac{1}{n}x^n + o(x^n)$

 $\overline{7}$

- $\lim_{x \to 0} (e^x x)^{\frac{1}{x^2}} = \frac{1}{e^2}$
- 2. $\int_{-1}^{1} x (1+x^{2005}) (e^{x}-e^{-x}) dx = \frac{4}{e}$ 2. $\int_{-1}^{1} x (1+x^{2005}) (e^{x}-e^{-x}) dx = \frac{4}{e}$ 3. 设函数 y = y(x) 由方程 $\int_{-1}^{x+y} e^{-t^{2}} dt = x$ 确定,则 $\frac{dy}{dx}|_{x=0} = e-1$.
- 4. $\mathfrak{L} f(x) = \int_{1}^{x} t f(t) dt = f(x)$, f(0) = 1, $\mathfrak{M} f(x) = e^{\frac{1}{2}x^{2}}$.
- 5. 微分方程 y'' + 4y' + 4y = 0 的通解为 $y = (C_1 + C_2 x)e^{-2x}$

计算题

1

三、计算题(共6小题,每小题6分,共36分)

7. 设 $y = e^{2x} - \ln \cot x$, 求dy. $y' = 2e^{2x} - \frac{1}{\omega t x} \cdot (- \cot x)$ $= 2e^{2x} + \frac{1}{\omega s x \cdot s i n x}$ $\therefore dy = (2e^{2x} + \frac{1}{\omega s x \cdot s i n x}) dx$

得分 2. $y = \arctan x + x \ln \sqrt{x}$, 求 $\frac{d^2y}{dx^2}\Big|_{x=1}$ 的值 $\frac{dy}{dx} = \frac{1}{1+x^2} + \ln \sqrt{x} + \frac{1}{2}$ $\frac{dy}{dx^2} = \frac{-2x}{(1+x)^2} + \frac{1}{2x}$ $\frac{d^3y}{dx^2}\Big|_{x=1} = -\frac{1}{2} + \frac{1}{2} = 0$

4. 求函数 $f(x) = (x-2)^2 \cdot \sqrt[3]{x^2}$ 的极值.

$$f(x) = (x-2)^2 x^{1/3} \times 6(-\infty, +\infty)$$

 $f'(x) = 2(x-2) x^{1/3} + \frac{2}{3}(x-2)^2 x^{1/3} = \frac{4}{5} \cdot \frac{(x-2)(2x-1)}{3\sqrt{x}}$
 $f'(x) = 0 \implies x = 1/2, \quad \text{if } x = 2$

K	(- al)	(0.12)	1/2	(2, 2)	2	12, 10
"	-	+	0	-	0	+
1	\	a		\\		7

得分

5. 已知 f(x) 的一个原函数是 $\ln \sin x$,求 $\int x f(1-x^2) dx$. 由已知. $dh\sin x = \int (x) dx$...

$$\int x f(r-x^2) dx = -\frac{1}{2} \int f(r-x^2) d(r-x^2) \frac{r-x^2 \pm t}{= -\frac{1}{2} \int f(t) dt}$$

$$= -\frac{1}{2} \int f(t) dt$$

得分

6. 计算 $\int_0^2 (1+\frac{x}{2})\sqrt{2x-x^2} dx$.

-: N2X-X2= N+(X+1)2 .: \(X-1=t.

原格为= 5+(達+芝) N F-t ott
= 351 NF-t dt
=3.47

得分

四、[本题 10 分]

1. [4 f] 方程 $\ln(x^2 + y) = x^3 y + \cos x$ 确定隐函数 y = y(x), 求 y'(0).

2x+ y' = 3xy + xy' - Sin × X=0 Af $\ln y = 1$ => y = 0 $\therefore y'(0) = 0$

- 2. [6 %] 求微分方程 $y'' + 2y' 3y = xe^{-3x}$ 的通解. Q Y + 2t - 3 = 0 \Rightarrow $(t + 3) (t + 1) = 0 \Rightarrow f(-1)$. $Y_2 = -3$ $Y = G e^X + G e^{-3X}$
 - ③ m=1. $\lambda=3$ { 错解 $y^*=(ax+b)\cdot x e^{-3x}=(ax^2+bx)e^{-3x}$ $y^*'=[-3ax^2+(2a-3b)x+b]e^{-3x}$ $y^{*''}=[-9ax^2+(-12a+9b)x+(2a-6b)]e^{-3x}$ 代入 信. a=-1% b=1/6 : $y^*=\frac{\pi}{8}(-2x+1)e^{-3x}$
 - 9 值解 y= ~(-2x+1)e =x+ c, ex+ c, ex+

三、小型计算题 (共3小题,每小题4分,共12分)

1. 求曲线 y = 2ln x + x² + 3 平行于直线 y = 4x + 1 的切线方程

 $\langle h^{2} \rangle$ 2. 隐函数 y = y(x) 由方程 $e^{x} - e^{y} = \sin(xy)$ 确定,求 y'(0).

解
$$\pm e^{x} - e^{y} = \sin(xy)$$
 で同です 発
 $e^{x} - e^{y} y' = \cos(xy)(y + xy') (11) 2$
 $2 : x = 0 \quad y = 0$ (2) 「
代 $\lambda(1)$ 的 $y'(0) = 1$

得分 3. 求极限 $\lim_{x\to 0} (x+e^x)^{\frac{2}{x}}$.

四、计算题 (共 4 小题, 每小题 5 分, 共 20 分)

刊分 1. 求极限
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin x)}{(\pi - 2x)^2}$$
.

五、计算题(共2小题,每小题6分,共12分).

(分) 1. 求定积分
$$\int_{0}^{1} \frac{\ln(1+x)}{(2+x)^{2}} dx$$
.

(日) $\int_{0}^{1} \frac{\ln(1+x)}{(2+x)^{2}} dx$.

 $= -\int_{0}^{1} \frac{\ln(1+x)}{2+x} dx$
 $= -$

f(x)的表达式。

$$\frac{\partial x}{\partial t} = \int_{0}^{x} t^{2} \int_{0}^{x-t} t^{2} dt = \int_{0}^{x} (xu) du du$$

$$= x \int_{0}^{x} f(u) du - \int_{0}^{x} u f(u) du \cdots 3^{-1} du$$

:
$$fx = f(x) = x$$

\(\int \begin{align*} \frac{1}{x} & \

六、(共2小题,每小题6分,共12分).

得分

2. 求微分方程 $y'' - 3y' + 2y = xe^{2x}$ 的通解.

1. 设
$$f(x,y) = x \ln(x + \ln y)$$
, 求 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$.

(本) $\frac{\partial f}{\partial y} = \ln(x + \ln y)$, 求 $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$.

(本) $\frac{\partial f}{\partial y} = \ln(x + \ln y)$, 求 $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$.

(本) $\frac{\partial f}{\partial y} = \frac{x}{y(x + \ln y)}$ ----3'

2. 判定级数 $\sum_{n=1}^{\infty} \frac{\sin(n^2)}{n\sqrt{n}}$ 的敛散性,并给出理由(若是收敛,要说明是条件收

敛还是绝对收敛)。

得分

3. if
$$y = 0$$
 be the problem of $y^2 = x$ by $y = x - 2$ filting the problem of $y^2 = x$ by $y = x - 2$ filting the problem of $y = 1$ for y

分 4. 立体Ω由曲面 $x^2 + y^2 = 4z$ 和平面z = 4所因成、求其表面积。

解 22表面可分 2上 2下130下分

$$Z_{+} = 120 \times 13 = 11 + 2^{2} = 160$$

 $Z_{+} = 120 \times 13 = 160$
 $Z_{+} = 160 \times 13 = 160$
 Z_{+}

5. 東 [の]
$$e^{x^2+y^2}$$
 dx dy
$$= \begin{cases} e^{t^2} e^{t^2} dt dt - - \cdot 2 \\ = \int_0^2 dt \int_0^1 e^{t^2} dt dt - - \cdot 2 \\ = \int_0^2 dt \int_0^1 e^{t^2} dt dt - - \cdot 2 \\ = \mp \left[e^{t^2} \right]_0^1$$

$$= \mp \left[e^{t^2} \right]_0^1$$

 $\frac{\partial y}{\partial x}$ 6. 求级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域和它的和函数.

原式=
$$\lim_{x\to 1} \frac{\ln x - x + 1}{(x-1)\ln x}$$

$$=\lim_{x\to 1}\frac{\frac{1}{x}-1}{lnx+\frac{x-1}{x}}=\lim_{x\to 1}\frac{1-x}{xlnx+x-1}$$

$$= \lim_{x \to 1} \frac{-1}{\ln x + 2} = -\frac{1}{2} \frac{1}{2}$$

2. 设函数
$$y = f(x)$$
 由方程 $e' = y \sin x + 1$ 所确定,求 $y'(0)$.

设
$$e^y = y sin x + 1$$
 ① \leftarrow

方程 $e^y = y \sin x + 1$ 两边对x求导有↔

$$e^y \cdot y' = y' \cdot \sin x + y \cos x$$
 (2)

3. 求
$$f(x) = 2x^2 - \ln x$$
 的极值.

函数f(x)的定义域为(0,+∞)↔

$$f'(x) = 4x - \frac{1}{x} \leftrightarrow$$

$$f'''(x) = 4 + \frac{1}{x^2}$$

令
$$f'(x) = 0$$
 => $x_1 = \frac{1}{2}, x_2 = -\frac{1}{2}(舍去) \oplus$

$$f''\left(\frac{1}{2}\right) = 8 > 0$$
 $\therefore x_1 = \frac{1}{2}$ 为 $f(x)$ 的极小值点 \Leftrightarrow

$$f(x)$$
的极小值为 $f\left(\frac{1}{2}\right) = \frac{1}{2} + ln2 \leftrightarrow$

$$f''(x) = 4 + \frac{1}{x^2}$$
, $f(x)$ 无极大值

4. 求曲线
$$\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$$
 在 $t = 2$ 对应点处的切线方程.

t = 2对应点为M₀(5,8)↔

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2}{2t} = \frac{3}{2}t^{c/2}$$

$$K = \frac{dy}{dx}|_{M_0} = 3e^{i}$$

所求切线方程为y-8=3(x-5), 即y=3x-7

方程对应的特征方程为 $r^2-4r+4=0$,其根为 $r_1=r_2=2$ $\because y_1=e^{2x},y_2=xe^{2x}$

原方程通解为
$$y = C_1 e^{2x} + C_2 x e^{2x} = e^{2x} (C_1 + C_2 x)$$

6. 设
$$\lim_{x \to \infty} \left(\frac{x-k}{x}\right)^{-2x} = \lim_{x \to \infty} x \sin \frac{2}{x}$$
,求 k 的值.
$$\pm = \lim_{x \to \infty} \left[\left(1 + \frac{-k}{x}\right)^{\frac{-K}{x}} \right]^{2k} = e^{2k}$$

$$\pm \lim_{x \to \infty} \frac{\sin \frac{2}{x}}{\frac{2}{x}} \cdot 2 = 2$$

$$\div e^{2k} = 2, \quad \square k = \frac{\ln 2}{2}$$

初分 1.
$$f(x) = \begin{cases} \int_0^{\infty} \sin 2t dt \\ x \\ a + e^x \end{cases}$$
 $x > 0$, (1) 当 a 取何值 $f(x)$ 任 $x = 0$ 处连续? (2) $f(x)$ 任 $x = 0$ 是 否可是? (1) 作 (x) 在 $x = 0$ 连续 $x = 0$ 是 否可是? (1) 作 (x) 在 $x = 0$ 连续 $x = 0$ 是 x

得分 2. f(x) 在闭区间[0,1]连续,证明 $\int_{0}^{\pi} f(\sin x) dx = \int_{0}^{\pi} f(\cos x) dx$,并由此计算

积分
$$\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$$
 的值.
$$\int_0^{\frac{\pi}{2}} f(\sin x) \stackrel{x = \frac{\pi}{2} - t}{\Longrightarrow} \int_{\frac{\pi}{2}}^0 f(\cos t)(-dt) = \int_0^{\frac{\pi}{2}} f(\cos t) dt e^{\omega}$$
 由上面的结果可知 $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin x + \cos x} dx e^{\omega}$ 从而 $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (\sin^2 x - \sin x \cos x + \cos^2 x) dx e^{\omega}$
$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \sin x \cos x) dx = \frac{1}{2} \left[x - \frac{\sin^2 x}{2} \right] \prod_0^{\frac{\pi}{2}} = \frac{\pi - 1}{4} e^{\omega}$$

1. 求极限
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$$

$$= \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x}$$

$$= 2 \in \mathbb{Z}$$

2. 设
$$y = \ln \sqrt{4 - x^2}$$
, 求 $\frac{dy}{dx}|_{x=1}$ 的值.

$$y = \frac{1}{2}\ln (4 - x^2) \leftrightarrow$$

$$y' = \frac{1}{2} \frac{1}{4 - x^2} (4 - x^2)' = \frac{-x}{4 - x^2} \leftrightarrow$$

$$\frac{dy}{dx}|_{x=1} = -\frac{1}{3} \leftrightarrow$$

3. 求函数
$$f(x) = x^2 + \frac{1}{4x}$$
 的极值.

$$f'(x) = 2x - \frac{1}{4x^2}$$
 $f''(x) = 2 + \frac{1}{2x^3} \in$

$$\diamondsuit f'(x) = 0$$
得 $x = \frac{1}{2}$ 为 $f(x)$ 驻点 \hookleftarrow

$$f''\left(\frac{1}{2}\right) = 6 > 0$$

$$\therefore f\left(\frac{1}{2}\right) = \frac{3}{4}$$
为 $f(x)$ 的极小值. $f(x)$ 无极大值

4. 已知
$$\begin{cases} x = e^{-t} \cos t \\ y = e^{-t} \sin t \end{cases}$$
, 求 $\frac{dy}{dx}$.

$$x_t = e^{-t}(-cost - sint) \in$$

$$y_t = e^{-t}(cost - sint) \leftarrow$$

$$\frac{dy}{dx} = \frac{y_t}{x_t} = \frac{\sin t - \cos t}{\sin t + \cos t}$$

5. 米 arcsin xdx.

$$\int arcsinx dx = xarcsinx - \int xdarcsinx dx$$

$$= x \arcsin x - \int x \frac{1}{\sqrt{1-x^2}} dx e^{-x}$$

$$=xarcsinx + \frac{1}{2}\int (1-x^2)^{-\frac{1}{2}}d(1-x^2)e^{-\frac{1}{2}}$$

$$= xarcsinx + \sqrt{1 - x^2} + c \leftarrow$$

」 6. 计算
$$I = \int_0^2 x^2 \sqrt{4 - x^2} dx$$
.
 $x = 2 sint dx = 2 cost dt \in I$

$$x = 2sint dx = 2costdt \leftarrow$$

$$x = 0$$
 $t = 0; x = 2$ $t = \frac{\pi}{2}$

$$I = \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} 16 \sin^{2} t \cos^{2} t dt$$

$$=4\int_{0}^{\frac{\pi}{2}}\sin^{2}2tdt=2\int_{0}^{\frac{\pi}{2}}(1-\cos 4t)dt$$

$$=2[t-\frac{1}{4}sin4t]_0^{\frac{\pi}{2}}=\pi^{\omega}$$

1. [4分]方程 $xy + e^{y^2} - x = 0$ 确定隐函数y = y(x), 求曲线y = y(x)在点(1,0)处的切线方程.

在
$$xy + e^{y^2} - x = 0$$
两边对 x 求导 \leftrightarrow

$$y + xy' + e^{y^2} 2yy' - 1 = 0$$

$$y'|_{(1,0)} = 1 \leftarrow$$

2. [6分] 求微分方程 $y'' + 5y' - 6y = xe^{-2x}$ 的通解.

$$y'' + 5y' - 6y = 0 (1)^{c}$$

$$r^2 + 5r - 6 = 0 (2)^{c}$$

$$r^2 + 5r - 6 = 0$$
 (2)

$$r_1 = -6, r_2 = 1$$

$$Y = C_1 e^{-6x} + C_2 e^x$$
为(1)的通解 \leftrightarrow

$$x = -2$$
不是 $r^2 + 5r - 6 = 0$ 根 e

::原方程特解可设为
$$y^* = (ax + b)e^{-2x} \leftrightarrow ax + b$$

将y*,y*′,y*″代入原方程整理得↩

$$-12ax + a - 12b = x = > a = -\frac{1}{12}, b = -\frac{1}{144}$$

$$y^* = (-\frac{1}{12}x - \frac{1}{144})e^{-2x_{\leftarrow}}$$

故原方程通解为
$$y = y^* + Y \leftarrow$$

$$\mathbb{R} y = C_1 e^{-6x} + C_2 e^x - (\frac{1}{12}x + \frac{1}{144})e^{-2x_{\leqslant 1}}$$

应用题

四、应用题[本题共15分]

得分

月、(5分) 東面銭
$$x=t$$
、 $y=-t^2$ 、 $z=3t-1$ 上、点处与平面 $x+2y+z=4$ 平行的切践 月 日本 $y=-t^2$ 、 $y=-t^2$ $y=-t^2$

2. (10 分) 设 前 面 $S: \frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$ 和 平 迫 $\pi: 2x + 2y + z + 5 = 0$.

(1) 试求曲面S上平行于平面π的切平面方程:

t= 立 M₁(1, 立, 1) かわれ 2(メー)+2(ソーシ)+(シー)=し t= 立 M₂(H, -立 ー) +が年まれ。2(メー)+2(ソセシ)+(シー)=し 2! M. M2到产和平面下。 能高分别多 $d_1 = \frac{|2xt2y+2t5|}{3}|_{M_1} = \frac{8t}{3} = 3$ $d_2 = \frac{|2x+2y+2+5|}{3} M_2 = \frac{1}{3}$ 图拟脚沿和输服短额高

(5)

1. 求由曲线 $y = \sqrt{x-2}$ 与该曲线过坐标原点的切线及 x 轴所围图形的面积.

解:

设切点为 (x_0, y_0) , 则过原点的切线方程为 $y = \frac{1}{2\sqrt{x_0 - 2}}x$,

由于点 (x_0,y_0) 在切线上,带入切线方程,解得切点为 $x_0=4,y_0=\sqrt{2}$3

$$s = \int_0^2 \frac{1}{2\sqrt{2}} x dx + \int_2^4 (\frac{1}{2\sqrt{2}} x - \sqrt{x - 2}) dx = \frac{2\sqrt{2}}{3}$$

2. 设平面图形 $D \oplus x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定,试求 D 绕直线 x = 2 旋转一周所生成的 旋转体的体积.

解: 法一, $V = V_1 - V_2$

= = = = = = = (x+1) - (x+2) d x

$$= \int_{0}^{1} \pi \left[2 - (1 - \sqrt{1 - y^{2}}) \right]^{2} dy - \int_{0}^{1} \pi (2 - y)^{2} dy$$

$$= 2\pi \int_{0}^{1} \left[\sqrt{1 - y^{2}} - (y - 1)^{2} \right] dy$$

$$= 2\pi \left[\frac{\pi}{4} - \frac{1}{3} (y - 1)^{3} \right]_{0}^{1} = 2\pi (\frac{\pi}{4} - \frac{1}{3})$$

$$\stackrel{!}{=} 2\pi \int_{0}^{1} (2 - x)(\sqrt{2x - x^{2}} - x) dx$$

$$= 2\pi \int_{0}^{1} (2 - x)\sqrt{2x - x^{2}} dx - 2\pi \int_{0}^{1} (2x - x^{2}) dx$$

$$= \pi \int_{0}^{1} \left[(2 - 2x)\sqrt{2x - x^{2}} + 2\sqrt{2x - x^{2}} \right] dx - \frac{4}{3}\pi$$

$$= \pi \left[\frac{2}{3} (2x - x^{2})^{\frac{3}{2}} \right]_{0}^{1} + 2 \times \frac{1}{4}\pi \times 1 \right] - \frac{4}{3}\pi$$

$$= \frac{2}{3}\pi + \frac{1}{2}\pi^{2} - \frac{4}{3}\pi = \frac{1}{2}\pi^{2} - \frac{2}{3}\pi$$

$$= \frac{2}{3}\pi + \frac{1}{2}\pi^{2} - \frac{4}{3}\pi = \frac{1}{2}\pi^{2} - \frac{2}{3}\pi$$

3. 设a > 1, f(t) = a' - at 在 $(-\infty, +\infty)$ 内的驻点为 t(a). 向a 为何值时t(a) 最小? 并求最小值.

当a > e'时,t'(a) > 0;当a < e'时,t'(a) < 0,于是a = e'为t(a)的极小值点......2

故
$$a = e^{\epsilon}$$
为 $t(a)$ 的最小值点,最小值为 $t(e^{\epsilon}) = 1 - \frac{\ln e}{e} = 1 - \frac{1}{e}$

证明题

1

(2)

| 六、证明題[本題 5分]
设正項級数
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} v_n$ 滿足 $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ 、证明: 当級数 $\sum_{n=1}^{\infty} v_n$ 数数时, $\sum_{n=1}^{\infty} u_n$ | Light | $= U_2$. U_3 . U_4 . U_{n+1} | $= V_2$. U_{n+1} |

$$\frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial t} + \frac{\partial f(x)}{\partial t} = 0.$$

$$\frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial t} + \frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial t} + \frac{\partial f(x)}{\partial$$

(4)

设函数 f(x) 在[0,1]上连续,在(0,1) 內可导且 $f(0)=f(1)=0, f(\frac{1}{2})=1$,

试证明至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi)=1$.

可知在 $(\frac{1}{2},1)$ 内至少存在一点 η ,使得 $F(\eta)=0$, $\eta\in(\frac{1}{2},1)\subset(0,1)$, $F(0)=F(\eta)=0$ 由 ROLLE 中值定理得 至少存在一点 $\xi\in(0,\eta)\subset(0,1)$ 使得 $F'(\xi)=0$ 即 $f'(\xi)-1=0$,证毕......3