Linear Algebra Done Right 6A

1. 证明:如果 $v_1, \dots, v_m \in V$,那么

$$\sum_{j=1}^{m} \sum_{k=1}^{m} \langle v_j, v_k \rangle \geqslant 0$$

Proof.

我们有

$$||v_1 + \dots + v_m||^2 = \sum_{j=1}^m ||v_j||^2 + 2 \sum_{j,k \in \{1,\dots,m\}, j \neq k} \langle v_j, v_k \rangle$$
$$= \sum_{j=1}^m \sum_{k=1}^m \langle v_j, v_k \rangle$$

于是

$$\sum_{j=1}^{m} \sum_{k=1}^{m} \langle v_j, v_k \rangle = ||v_1 + \dots + v_m||^2 \geqslant 0$$