## SSL 프로토콜 (Secure Socket Layer)

- 1) 웹 브라우저를 위한 보안 프로토콜
- 2) 이후에 버전 3.0에 대한 수정, 보완 과정을 거쳐 TLS(Transparent Layer Security) 라는 이름으로 표준화
- 3) SSL/TLS로 통신을 수행할 때의 URL은 https://로 시작
- 4) 전송 계층 상에서 클라이언트, 서버에 대한 인증 및 데이터 암호화 수행
- 5) SSL/TLS 상에 HTTP를 올리는 것 -> 프로토콜의 이중 구조 -> HTTP 통신 도청 방지

HTTP 클라이언트 (웹 브라우저) SMTP 클라이언트, POP3 클라이언트 HTTP SMTP SSL/TLS

6) 인터넷 프로토콜 TCP 계층과 LDAP, IMAP과 같은 응용 계층 사이에서 동작



<제어 프로토콜 (Control Protocol)> -> 2개의 계층으로 이루어진 프로토콜

#### (1) HandShake Protocol

- Client 와 Server 간에 <mark>상호 인증</mark>
- 암호 알고리즘, 암호 키, MAC 알고리즘 등의 보안 속성을 협상, 세션 키 생성
- 레코드 단위에서 동작되는 행동
- SSL/TLS 의 레코드에 적용할 알고리즘과 키 교환
- 상호 송수신을 위한 암호화 스펙이 핸드쉐이크 프로토콜에 의해 공유

#### ② Change CipherSpec Protocol

- 협상된 암호 규격과 암호 키를 이용하여, 추후의 레코드 계층 메시지를 보호할 것 명시
- 암호화 알고리즘과 보안 정책을 송수신 측 간에 <mark>조율</mark>하기 위해 사용
- 이 이후부터 협상된 압축, MAC, 암호화 방식 등이 적용됨을 상대방에게 알림

### ③ Alert Protocol

- 다양한 에러 메시지를 전달
- 2바이트로 구성, 첫 번째 byte에는 warning 또는 fatal이 들어가고, 두 번째 byte에는 handshake, change cipher spec, record protocol 수행 중 발생하는 오류 메시지 들어감

#### <레코드 프로토콜 (Record Protocol)>

- (4) Record Layer
  - 합의된 암호 알고리즘을 이용한 암호화
  - 합의된 MAC을 이용한 무결성 기능
  - 메시지 분할, 합의된 압축 알고리즘을 이용한 메시지 압축 기능
  - 상층에 위치하는 4개의 프로토콜에 기밀성, 무결성 같은 보안 서비스 제공
- 4) 기능

SSL

Client

- ① 사이트 인증: 상대 사이트에 대한 신뢰성 있는 인증 제공
- ② 데이터 기밀성: 인터넷을 통해 전달되는 데이터 보호
- ③ 메시지 무결성: 웹 브라우저에서 웹 서버까지 전달되는 동안 메시지가 변경되지 않도록 보 장
- 5) SSL HandShake Protocol (★★★)
- 핸드쉐이크는 서버와 클라이언트 사이에 인증과 암호화 과정 및 MAC 알고리즘을 교환하여 SSL 레코



# <SSL 레코드 프로토콜 데이터 포맷>

## ② Record Protocol 메시지 포맷

|          | _ 2     | L 5 —  | n                | 1     |
|----------|---------|--------|------------------|-------|
| Protocol | Version | Length | Protocol message | (RAG) |

각 필드에 대한 길이와 포함하는 내용은 다음과 같다.

| 필드                  | 길이(바이트)                  | 설명                                                                                                  |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------|
| Protocol            | j                        | Record Layer 프로토콜이 감싸고 있는 프로토콜이 무엇인지<br>표시 합니다. 즉 Record Layer 프로토콜 안의 내용이 어떤<br>프로토콜의 것인지를 표시 합니다. |
| Version             | 2                        | SSL의 버전을 표시 합니다. 주로 3,001 사용 됩니다.                                                                   |
| Length              | 2                        | Record Layer 프로토콜이 감싸고 있는 프로토콜의 내용의<br>길이를 표시 합니다. 이 길이는 2°14 의 값, 즉<br>16384바이트를 넘을 순 없습니다.        |
| Protocol<br>Message | 16384바이트<br>이내의 길이       | Record Layer 프로토콜이 감싸고 있는 프로토콜의<br>내용입니다.                                                           |
| MAC (옵션)            | 메시지<br>압축알고리즘에<br>따라 달라짐 | Protocol Message 내용의 MAC 값입니다.<br>메시지 인증 기능을 사용할 경우 사용 됩니다. 따라서 이<br>필드의 사용은 옵션입니다.                 |

Protocol 필드 값에 따른 상위 프로토콜은 다음과 같다.

| 필드 값 | 프로토콜                      |
|------|---------------------------|
| 20   | ChangeCipherSpec Protocol |
| 21   | Alert Protocol            |
| 22   | Handshake Protocol        |
| 23   | 어플리케이션 프로토콜               |

## <SSL 레코드 프로토콜 동작 방식>

- 데이터의 압축을 수행하여 안전한 TCP 패킷으로 변환하고, 데이터 암호화 및 무결성을 위한 메시지 인증을 수행



- 1. 전송할 메시지(Application Data)를 일정한 크기의 레코드 프로토콜 유닛으로 단편화 (Fragmentation은 2^14 바이트로 된다.)
- 2. 사전에 협의한 규칙에 맞게 SSL 핸드쉐이크 프로토콜을 통해 메시지를 압축하고, 전자서 명을 붙임

Note: 현재 모든 주요 SSL 구현은 압축을 지원하지 않고 있다.

- 3. 압축된 유닛마다 해시를 이용한 MAC을 생성하고 핸드쉐이크가 끝난 후, 클라이언트와 서 버는 MAC을 포함한 메시지를 암호화하여 통신
- 4. 마지막으로 SSL Record Header를 암호문에 붙인다. content-type, major version, minor version, compressed length 필드를 갖고 있음
- 5. 데이터의 압축을 수행하여 안전한 TCP 패킷으로 변환하고, 데이터 암호화 및 무결성을 위한 메시지 인증을 수행, 이를 TCP로 전달

## Securing HTTP Communication

- SSL은 보통 웹 브라우저와 웹 서버 간의 HTTP 통신을 안전하게 만드는 데에 사용되며, 이 경우 non-secure한 HTTP를 사용하지 않는 것이 아니라, SSL 위에서 일반적인 plain HTTP를 구현하는 것임.
- HTTPS를 이용할 때, HTTP와 다른 서버 포트(default 443)를 사용하지 않는 것이 아니라, HTTPS라는 URL scheme을 사용하는 것