华东师范大学 2020-2021 第一学期《线性代数 A》期末试卷 (B 卷)

姓 ______ 考 场:____ 专

注意:答案写在答题纸上。本试卷总分 100 分,共有七题。

- 一、选择填空题(每题4分,共20分)
 - 1. 设 $A \neq 2$ 阶方阵, |A| = 12, 且 A 的迹为 8, 则 A 的特征值为 ____ 和 ___.
 - 2. 在四维标准欧式空间 \mathbb{R}^4 中, 向量 $\alpha = (1,1,0,1)^T$ 和 $\beta = (1,1,1,1)^T$ 的内积为 $_{\alpha}$ 和 β 的夹角为 $_{\alpha}$
 - 3. 以下集合中,可以组成 $P_3[x] = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$ 的一组基的是______.

- (A) $\{1, x^2, x^2 2\};$ (B) $\{2, x^2, x, 2x + 3\};$ (C) $\{x + 2, x + 1, x^2 1\};$ (D) $\{x^2 + 2, x^2 1\}.$
- 4. 下列集合不是二维实向量空间 \mathbb{R}^2 的子空间的是 _____ (以下选项中 X= $(x_1, x_2)^T$).
 - (A) $W_1 = \{X \in \mathbb{R}^2 | x_1 x_2 = 0\}; \text{ (B) } W_2 = \{X \in \mathbb{R}^2 | 2x_1 = 3x_2\};$
 - (C) $W_3 = \{X \in \mathbb{R}^2 | x_1 + x_2 = 0\}$; (D) $W_4 = \{X \in \mathbb{R}^2 | x_1 = x_2 = 0\}$.
- 5. 下列命题错误的是 .
 - (A) 若矩阵 A 与 B 相似, 则 A 与 B 有同样的特征值;

 - (C) 若向量 α_1 不能由向量 α_2 和向量 α_3 线性表示,则 $\alpha_1,\alpha_2,\alpha_3$ 线性无关;
 - (D) 若矩阵 A 满足 $A^2 = A$, 则 3E A 可逆.
- 二、(10 分) 化二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 - 3x_3^2 - 2x_1x_3 - 2x_2x_3$$

为标准型,求出所作的非退化线性代换,并给出二次型的正、负惯性指数.

三、(15分)用基础解系表示出下列方程组的全部解:

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 1, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 2, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 1, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 5. \end{cases}$$

四、(15 分) 已知实向量
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.

1. 证明 $\alpha_1, \alpha_2, \alpha_3$ 构成 \mathbb{R}^3 的一组基;

2. 求从基
$$\varepsilon_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\varepsilon_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\varepsilon_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 到基 α_1 , α_2 , α_3 的过渡矩阵;

- 3. 求从基 α_1 , α_2 , α_3 到基 ε_1 , ε_2 , ε_3 的过渡矩阵;
- 4. 分别给出向量 $\gamma = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$ 在以上两组基下的坐标.

五、(15 分) 设矩阵
$$A=\begin{bmatrix}1&1&a\\1&a&1\\a&1&1\end{bmatrix}$$
 , $\beta=\begin{bmatrix}1\\1\\-2\end{bmatrix}$, 已知方程组 $Ax=\beta$ 有解但不唯一.

- 1. 试求 a 的值;
- 2. 求正交矩阵 Q 及对角阵 B 使得 $Q^TAQ = B$.

六、(15 分) 已知矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & x & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 和矩阵 $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{bmatrix}$ 相似.

- 2. 求可逆矩阵 P, 使得 $P^{-1}AP = B$.
- 3. 对任意正整数 k, 求 A^k .

七、(10 分) 设 A 为 n 阶矩阵, 证明 $r(A^n) = r(A^{n+1})$.

[试题结束]