Classical Iwasawa theory Arizona Winter School 2018

21. Foundational material

The lecture will briefly cover, without proofs, the background in algebra and number the ony needed at the beginning of Iwasawa theory. Throughout, p will denote an arbitrary prime number, and Γ a topological group which is isomorphic to the additive group of p-adic integers \mathbb{Z}_p . Thus, for each n > 0, Γ will have a closed subgroup of index p^n , which we will denote by Γ_n , and Γ/Γ_n will then be a cyclic group of order p^n . The Iwasawa algebra $\Lambda(\Gamma)$ of Γ is defined by

$$\Lambda(\Gamma) = \lim_{n \to \infty} \mathbb{Z}_p \left[\Gamma / \Gamma_n \right],$$

and it is endowed with the natural topology coming from the β -adic topology on the $\mathbb{Z}_p \left[\Gamma/\Gamma_p\right]$.

1.1 Some relevant algebra

We recall without proof some of the basic algebra needed in classical Iwasawa theory. Let $R = \mathbb{Z}_p[T]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_p . Then R is a Noetherian regular local ring of dimension 2 with maximal ideal OOG = (p,T). We say that a monic polynomial $q(T) = \sum_{i=0}^{n} a_i T^i$ in R is distinguished if $a_0, ..., a_{n-1} \in p \mathbb{Z}_p$. The Weierstrass preparation theorem for R tells us that every non-zero f(T) in R can be written uniquely in the form $f(T) = p \cdot f(T) = f(T) = f(T) = f(T)$, where f(T) = f(T) = f(T) = f(T) = f(T) is a written f(T) = f(T

Proposition 11. Let y be a fixed topological generator of Γ . Then there is a unique isomorphism of \mathbb{Z}_p -algebras

which maps of to 1+T.

In the following, we shall often identify $\Lambda(\Gamma)$ and R, bearing in mind that Γ will not usually have a canonical topological generator.

Let \times be any profinite abelian ρ -group, on which Γ acts continuously. Then the Γ -action extends by continuity and linearity to an action of the whole. Iwasawa algebra $\Lambda(\Gamma)$. Moreover, \times will be finitely generated over $\Lambda(\Gamma)$ if and only if $\times/006 \times$ is finite, where $006 = (\rho, \gamma - 1)$, with γ a topological generator of Γ , is the massimal ideal of $\Lambda(\Gamma)$. We write $R(\Gamma)$ for the category of finitely generated $\Lambda(\Gamma)$ -modules. If \times is in $R(\Gamma)$, we define the $\Lambda(\Gamma)$ -rank of \times to be $P(\Gamma)$ -dimension of $\times \otimes P(\Gamma)$, where $P(\Gamma)$ denotes the field of fractions of $\Lambda(\Gamma)$. We say \times is $\Lambda(\Gamma)$ -topsion if it has $\Lambda(\Gamma)$ -rank O, or equivalently if $\times \times = O$ for some non-zero \times in $\Lambda(\Gamma)$.

although $\Lambda(\Gamma)$ is not a principal ideal domain, there is nevertheless a beautiful structure theory for modules in $\mathbb{Q}(\Gamma)$ (see Bourbaki, Commutative algebra, Chap. 7, § 4), which can be summarized by the following result:
Theorem 1.2. For each X in $\mathbb{Q}(\Gamma)$, we have an exact sequence of $\Lambda(\Gamma)$ -modules

o \rightarrow D, \rightarrow X \rightarrow $\Lambda(\Gamma) \oplus \bigoplus \Lambda(\Gamma)/(f_i) \rightarrow$ D, \rightarrow 0, where D, and D, have finite cardinality, and $f_i \neq 0$ for i=1,...,m. Moreover, the ideal $C(X)=f_i...f_m\Lambda(\Gamma)$ is uniquely determined by X when T=0.

 $f_{x}(T) = h^{\mu(x)} q_{x}(T) u(T),$

where $\mu(X)$ is an integer $\gg 0$, $q_X(T)$ is a distinguished polynomial, and u(T) is a unit in $\Lambda(T)$. Clearly $\mu(X)$ and $q_X(T)$ are uniquely determined by X. We define $\mu(X)$ to be the μ -invariant of X, and we define the degree $\chi(X)$ of $q_X(T)$ to be χ -invariant of χ .

Ext. assume X in $\mathbb{R}(\Gamma)$ is $\Lambda(\Gamma)$ -torsion. Prove that X is finitely generated as a \mathbb{Z}_p -module if and only if $\mu(X)=0$.

Recall that I'm denotes the unique subgroup of I'm of indesc for. Thus, if I has a topological generator of then I'm is topologicall generated by I'm. If X is in R(I), we define X mand X, to be the largest submodule and quotient module of X, respectively, on which I'm acts trivially. Thus

 $(\times)_{\Gamma_n} = \times/(\gamma^{n-1}) \times$

 $\frac{\log a}{n}$. Assume \times is in $R(\Gamma)$, and that, for all n > 0, we have

 \mathcal{P}_{μ} -dimension of $(X) \otimes \mathcal{P}_{\mu}$ = $m \not h^m + 8m$, where m is independent of n, and 8n is bounded as $n \to \infty$. Prove that X has $\Lambda(\Gamma)$ -rank equal to m, and that 8n is constant for n sufficiently large.

Ex. 3. Assume \times in $\Re(\Gamma)$ is $\Lambda(\Gamma)$ -tassion, and let $f_X(T)$ be any characteristic element. Prove that the following are equivalent: $-(i) f_X(0) \neq 0$, $(ii) \times_{\Gamma}$ is finite, and $(iii) \times_{\Gamma}$ is finite. When all three are valid, prove the Euler characteristic formula $|f_X(0)|^{-1} = \#(\times_{\Gamma})/\#(\times^{\Gamma})$.

facto from abelian class field theory which will be used repeatedly later. As always, h is any prime number. Set F be a finite extension of Q, and K an extension of F. We recall that an infinite place v of F is said to ramify in K if v is real and if there is at least one complex prime of K above v. In these lectures, we will mainly be concerned with the massimal abelian h-extension L of F, which is unramified at all finite and infinite places of F (i.e. L is the p-Hilbert class field of F), and with the massimal abelian h-extension M of F, which is unramified at all infinite places of F and with the massimal abelian h-extension M of F, which is unramified at all infinite places of F and all finite places of F which do not lie above p. Artin's global reciprocity law gives the following explicit descriptions of Gal (L/F) and Gal (M/F), in which we simply write isomorphisms for the relevant Artin maps. Firstly, we have

AF ~ Gal (L/F),

where A_F denotes the μ -primary subgroup of the ideal class group of F. Secondly, for each place ν of F lying above μ , write V_{ν} for the group of local units in the completion of F at ν which are $\equiv 1 \mod \nu$. Put

UF = TTU .

If Wio any Zp-module, we define the Zp-rank of W to be dim (W& Pp). Then Up is a Zp-module of Zp-rank equal to [F: D]. Let Ep be the group of all global units of F which are = I mod v for all primes v of F above p. By Dirichlet's theorem, Ep has Z-rank equal to T+T-I, where T is the of F. Now we have the obvious embedding of Ep p-adic topology of the image of Ep (equivalently, Ep is the Zp-submodule of Up which is generated by the image of Ep. Secondly, the artin map then induces an isomorphism

UF/EF ~ Gal(M/L),

where, as above, L is the p. Helbert class field of F. Clearly, the Zp-module Ep must have Zp-rank equal to T, +T5-1-8 for some integer 8, >0, and so we immediately obtain:

Theorem 13. Let M be the massimal abelian p-extension of F which is unramified outside the primes of Flying above p. Then Gal (M/F) is a finitely generated Zp-module of Zp-rank equal to T2+1+8 F.p.

Lespoldt's Conjecture. $S_{F,h} = 0$.

The conjecture follows from Baher's theorem on linear forms in the p-adic logarithms of algebraic numbers when F is a finite abelian extension of either P or an imaginary quadratic field.

1.3. Zp-estensions.

Set F be a finite extension of Q. a Zy. extension of F is defined to be any Galois extension Fo of F such that the Galois group of Fo over F is topologically isomorphic to Zy. The most basic example of a Zy. extension is the cyclotomic Zy. extension of F. For each m>1, let μ_m denote the group of m-th roots of unity, and put $\mu_p = U$ $\mu_p = U$ and injection of the Galois group of $Q(\mu_p a)$ over Q on $\mu_p a$ defines is an isomorphism by the inveducibility of the p-power is isomorphic to Z_p under the p-adic logarithm. Then $Z_p = \mu_2 \times V$ when p = 2, and $\mu_{p-1} \times V$ when p > 2. Hence $Gal(Q(\mu_p a)/Q) = A \times \Gamma$, where $\Gamma = Z_p$, and Δ is cyclic of order a or a or a or a. Thus a a or a or a or a.

will be a Zp-extension of Q, which we call the cyclotomic Zp-extension. Theorem 1.3 shows that it is the unique Zp-extension of Q. If now Fio any finite extension, the compositum FQo will be a Zp-extension of F, called the cyclotomic Zp-extension of F. Note that, if Fio totally real, we see from Theorem 1.3 that, provided Leopoldt's conjecture is valid for F, then the cyclotomic Zp-extension is the unique Zp-extension of F.

Here is another escample of a Z, - extension. Let K be an imaginary quadratic field, and let p be a rational prime which splits in K into two distinct primes go and p. Then global class field theory shows that there is a unique Zy-extension Kes of K in which only the prime go (but not p.) is ramified. If now F is any finite extension of K, the compositum Fo = F Ko will be another escample of a Zy-extension of F, which is not the cyclotomic Zy-extension. We shall call this Zy-extension the split prime Zy-extension of F. Interestingly, the cyclotomic and the split prime Zy-extension of F. Interestingly, the cyclotomic and the split prime Zy-extension of F. Interestingly, the cyclotomic and the split prime Zy-extension of F.

Exp- extension of F, prove that there are only finitely many places of Fox lying above each finite prime of F. If F contains an imaginary quadratic field K, and p splits in K, prove the same assertion for the split prime Zp- extension of F.

Finally, we point out the following result.

Proposition 1.4. Let F be a finite extension of \mathcal{G} , and \mathcal{J}_{∞}/F a galois extension such that $Gal(\mathcal{J}_{\infty}/F) = \mathbb{Z}_p$ for some $d \geq 1$. If a prime v of F is ramified in \mathcal{J}_{∞} , then v must divide p.

Proof. If v is a prime of Fnot dividing for, then its inertia group in Jo/F must be tamely ramified. But then, by class field theory, such a tamely ramified group must be finite, and so it must be 0 in Gal (Jo/F).