11 Variables aléatoires finies

🌵 2 semaines

- Contenu
 - ✓ Variable aléatoire réelle : modélisation du résultat numérique d'une expérience aléatoire ; formalisation comme fonction définie sur l'univers et à valeurs réelles.
 - ✓ Loi d'une variable aléatoire.
 - ✓ Espérance, variance, écart type d'une variable aléatoire.
- Capacités
 - ✓ Interpréter en situation et utiliser les notations $\{X = a\}$, $\{X \le a\}$, P(X = a), $P(X \le a)$. Passer du registre de la langue naturelle au registre symbolique et inversement.
 - ✓ Modéliser une situation à l'aide d'une variable aléatoire.
 - ✓ Déterminer la loi de probabilité d'une variable aléatoire.
 - ✓ Calculer une espérance, une variance, un écart type.
 - Utiliser la notion d'espérance dans une résolution de problème (mise pour un jeu équitable...).
- Démonstrations

a)

- Algorithmes
 - ✓ Algorithme renvoyant l'espérance, la variance ou l'écart type d'une variable aléatoire.
 - a) /F/YEMALEMACE/BI/AMAGEMIYIMAN/BES/NELLHES/BI/YHY/NELME/BIMAKE/BELL/FYEMAGEMS//EM/EYYGLEGS.
- Approfondissements
 - ✓ Formule de König-Huygens.
 - a) Plount DX travitation as the control of the cont
- Expérimentations
 - ✓ Simuler une variable aléatoire avec Python.
 - ✓ Lire, comprendre et écrire une fonction Python renvoyant la moyenne d'un échantillon de taille n d'une variable aléatoire.
 - Étudier sur des exemples la distance entre la moyenne d'un échantillon simulé de taille n d'une variable aléatoire et l'espérance de cette variable aléatoire.
 - ✓ Simuler, avec Python ou un tableur, N échantillons de taille n d'une variable aléatoire, d'espérance μ et d'écart type σ .
 - Si m désigne la moyenne d'un échantillon, calculer la proportion des cas où l'écart entre m et μ est inférieur ou égal à $\frac{2\sigma}{n}$