P-128-2012

금속분진 취급 공정의 화재폭발예방에 관한 기술지침

2012. 11

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한우섭
- o 제정 경과
 - 2012년 11월 화학안전분야 제정위원회 심의
- o 관련규격 및 자료
 - NFPA 654 (Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids (2006)
 - Eckhoff, R. K., Dust explosions in the process industries-3rd ed., Gulf professional publishing (2003)
 - 금속 퇴적분체의 화재폭발특성 연구, 한국산업안전보건공단 산업안전보건 연구원, 2011-연구원-1397 (2011)
- 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 11월 29일

제 정 자: 한국산업안전보건공단 이사장

금속분진 취급 공정의 화재폭발예방에 관한 기술지침

1. 목적

이 기술지침은 금속 분진을 제조하거나 취급하는 사업장에서 화재폭발사고 빈도가 높은 주된 공정과 이러한 공정에서의 위험성과 안전대책, 금속분진의 물성에 따른 화재폭발위험성, 금속분진의 취급 및 관리 그리고 교육 등의 안전에 필요한 사항을 제시하여 화재폭발사고를 예방하는데 그 목적이 있다.

2. 적용범위

이 지침은 금속 분진을 제조하거나, 사용, 취급하는 경우에 적용한다.

3. 정 의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다
 - (가) "기상반응(Gas phase reaction)"이라 함은 가연성 고체가 증발하여 생긴 증기 나 분해 생성가스가 공기 중의 산소와 산화 반응하여 연소하는 것을 말한다.
 - (나) "표면반응(Surface reaction)"이라 함은 가연성고체의 표면에서 열분해 및 증발을 일으키지 않고 고온을 유지하면서 산소와 반응하여 연소하는 현상을 말한다.
 - (다) "자기소화성(Self extinguishing)"이라 함은 외부의 열원 없이는 연소를 계속할 수 없는 물질의 성질을 말한다.
 - (라) "전하 완화(Charge relaxation)"라 함은 물체표면 등에 발생된 전하가 손실되어

P-128-2012

양전하와 음전하의 균형이 회복하는 것으로서 방전이나 물체 표면 또는 내부의 전기 전도에 의해 일어나는 현상을 말한다.

- (마) "최대폭발압력(Maximum explosion pressure)"이라 함은 밀폐공간 내의 분진운 이 발화하여 화염이 전파하고 발생한 열에 의해 용기 내의 압력이 상승하는데 반응이 분진운 전체로 진행하여 나타난 압력의 최대값을 폭발압력이라 하며 이러한 폭발압력이 농도 변화에 따라 가장 큰 값을 가질 때의 폭발압력을 말하다.
- (바)"퇴적분진 화염전파속도(Fire spread over dust layer)"라 함은 설비의 표면이나 작업장 바닥에 퇴적된 분진층의 일부분이 착화원에 의해 착화되어 화염이 퇴적 분진층 상부를 따라 전파하는데 단위 시간당 화염면이 이동하는 거리를 말하다.
- (2) 그밖에 용어의 뜻은 이 지침에서 규정하는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 따른다.

4. 금속분진의 화재폭발위험성

4.1 금속분진의 물리적 특성과 위험성

- (1) 금속분진의 화재폭발반응은 종류에 따라 기상반응 또는 표면반응에 의하여 이루어진다. 마그네슘(Mg), 알루미늄(Al), 마그네슘-알루미늄(Mg-Al) 합금에서는 기상반응이 일어나며, 티탄(Ti), 탄탈(Ta), 지르코늄(Zr), 철(Fe) 분진에서는 표면반응이 일어난다.
- (2) 금속분진의 연소열(kJ/kg)은 석유에 비하여 2~8배로 매우 크기 때문에 초고온의 화염온도가 발생하며 이에 따른 화재폭발 위험성이 높다.
- (3) 금속분진은 $\mathbb{E}(H_2O)$ 에 비하여 열용량이 작고 또한 열전도율이 크기 때문에 폭발 위험성이 유기물 분진에 비하여 높다.

- (4) Mg는 Al에 비하여 산화반응성이 높기 때문에 폭발발생 가능성이 보다 높다.
- (5) 나트륨(Na)은 공기중에서 자연발화할 정도로 발화위험성이 높아 화재사고는 많이 발생하지만 분진폭발사고사례는 거의 없다.
- (6) Zr은 최소착화에너지가 매우 작아 폴리에틸렌 재질의 비닐봉투에 넣어 흔들 때 발생하는 정전기에도 착화하여 폭발할 수 있다.
- (7) 설비나 작업장에 퇴적된 Mg-Al합금 분진은 착화에 따른 화염전파 위험성이 성분비율에 따라 변하는데, Al의 성분비율이 증가하여 40 %가 되는 Mg-Al(60: 40 wt%)합금의 퇴적분진에서는 착화되더라도 착화원을 제거하면 화염전파가 지속되지 못하고 자기소화성(Self extinguishing)이 이루어지며 이러한 경향은 Al의 성분비율이 증가할수록 높아진다.
- (8) 설비나 작업장에 퇴적된 Mg의 퇴적분진 화염전파속도(Fire spread over dust layer)는 약 1.8 mm/s이지만, Mg-Al(60:40 wt%) 및 Mg-Al(50:50 wt%)와 같이 Al의 성분비율이 증가할수록 퇴적 분진의 화염전파속도는 급격히 작아진다. 그러므로 Mg-Al합금 퇴적분진에서는 Al성분비율이 증가하면 퇴적분진 상태에서 의 화염전파 위험성은 낮아진다.
- (9) Ta는 비중이 크기 때문에 부유하기 어렵지만 입자 구조상 비표면적이 매우 크고 최소착화에너지(Minimum ignition energy)가 부유상태에서 30 mJ이하이며, 퇴적 상태에서는 0.2 mJ이기 때문에 폭발위험성이 높다.
- (10) Fe 분진은 입경이 10 μm이하의 경우에는 폭발위험성이 높다.

4.2 물성을 고려한 화재폭발 방지대책

- (1) Al 성분이 40 % 이상 함유된 Mg-Al합금 분진이 퇴적되어 있는 경우에는 착화 위험성이 크게 낮아진다. 그러나 공기중에 분산, 부유되면 폭발할 수 있으므로 퇴적분진 주변의 기류 발생에 유의한다.
- (2) Mg-Al합금 부유 분진에 있어서 Al의 성분 비율이 감소할수록 최대폭발압력은 증가하며 폭발하한농도는 감소하여 화재폭발위험성이 높아진다.
- (3) Al은 비중이 2.7로 작아 공기 중에 부유하기 쉬우며, 입경이 20 μm이하의 Al은 폭발압력이 9.8 bar로서 폭발위험성이 매우 높으므로 취급시에는 착화원 관리를 통한 폭발사고예방에 주의가 필요하다.
- (4) 가연성 금속분진을 보관, 취급하는 경우에는 부도체 용기의 사용을 금지하고 반 드시 도전성이 있는 용기를 사용한다.
- (5) 금속분진의 충진 작업은 가급적 자동화 작업으로 이루어지도록 하여 충진 작업

P-128-2012

- 이 종료할 때까지 작업자가 접근하지 않아도 되는 방식으로 한다.
- (6) 제조된 금속분진을 이동하거나 충진 작업 중에 공기와 처음으로 접하는 경우에는 급격한 산화반응에 따른 화재폭발위험성이 증가하므로 취급에 주의한다.
- (7) Zr분진은 부도체와 접촉하면 쉽게 대전되며 또한 방전이 되는 경우에는 불꽃방 전으로 화재폭발 가능성이 있으므로 가급적 소량씩 취급한다.
- (8) Mg-Al합금을 연마하는 경우에는 연삭기를 접지하고 도전성 롤러를 사용하며, 또한 작업자는 대전방지 작업복을 착용한다.
- (9) 연마기(Grinder) 및 작업대에 금속분진이 쌓이지 않도록 자주 청소를 하여 제거한다.
- (10)연마 분진을 흡인하는 장치를 사용하는 경우에는 덕트 내에 연마분이 퇴적하지 않도록 충분한 크기의 배출 공기량이 되도록 한다.

5. 금속분진의 위험성과 안전대책

- 5.1 금속분진 폭발사고 위험성이 높은 업종 폭발사고사례로부터 금속분진의 화재폭발 위험성이 높은 업종은 다음과 같다.
 - (1) 마그네슘, 알루미늄 분진의 제조, 광물의 정련(Refinning) 등과 같은 금속분을 제조하는 업종
 - (2) 다이캐스트품 제조, 불꽃(Fireworks)제조 등의 금속분을 사용하여 부품이나 기계 류, 화공품 등을 제조하거나 가공하는 업종
 - (3) 알루미늄 호일, 전자제품 케이스 등의 절삭, 연삭 작업 등과 같이 금속제품의 연마에 의해 금속분을 발생시키는 업종
 - (4) 금속 폐기물의 분쇄작업이 이루어지는 산업폐기물처리장이나 리싸이클링 시설 업종
 - (5) 금속분을 사용하는 새로운 제품이나 원료를 개발하는 연구업종

5.2 공정 위험성과 안전대책

- (1) 집진설비
 - (가) 집진 공정에서의 금속분진 폭발사고는 전 단계의 공정에서 발생한 착화원의 혼입에 의한 경우가 많기 때문에 이러한 요인을 배제하는 것이 필요하다.

- (나) 집진기에는 폭발압력을 시스템 밖으로 방출하기 위한 폭발방산구를 설치해 야 한다.
- (다) 폭발방산구의 설치가 곤란한 경우에는 사용분진의 최대폭발압력에 견딜 수 있도록 내압 설계한 집진기를 설치할 수 있다.
- (라) 금속분을 취급하는 연속공정에서의 분진폭발 피해확산을 방지하기 위해서는 폭발압력을 검출하여 긴급차단밸브를 작동시켜 폭발압력이 전파하지 않도록 하는 폭발억제장치를 사용해야 한다.
- (마) 가연성 금속분진의 제거를 위해 전기청소기를 사용하면 금속분이 플라스틱 재질의 호스 내를 유동층이 통과하면서 강하게 대전되고 필터에 축적되면서 불꽃방전을 일으키므로 일반적인 건식 전기청소기를 사용하지 않도록 한다.
- (바) 집진기에서 발생하는 정전기 착화예방을 위하여 집진기 도전체 전부를 접지하도록 하며 집진기 내부를 도장하는 경우에는 도전성 도료를 사용한다.
- (사) 전기기기가 설치되는 집진기를 방폭구획에 설치하는 경우에는 내압방폭형의 전기기기를 사용한다.
- (아) 집진기에서의 분진폭발방지를 위한 운전조건은 착화원을 완전히 배제하는 것이므로 운전 전의 점검 및 운전중의 일상점검과 보수관리의 철저가 화재 폭발사고 방지를 위하여 가장 중요하다.

(2) 분진이동 및 수송

- (가) 금속분진을 폴리에텔렌 비닐 봉투나 플렉시블 용기 등의 부도체 용기에 넣어 옮기지 않도록 한다.
- (나) 염화비닐관 등의 부도체 배관으로 분진을 수송하는 경우에는 분진과 관 벽의 마찰로 인해 양쪽이 대전하여 불꽃방전이나 연면방전과 같은 착화성정전기 방전이 발생하므로 염화비닐재질로 된 관을 사용하지 않는다.
- (다) 금속분진은 절연되면 불꽃방전이 일어날 수 있기 때문에 소량이더라도 발화 위험성이 있으므로 반드시 대전방지성능 또는 도전성이 있는 재질의 덕트를 사용한다.
- (라) 도전성이 있는 금속재료로 만들어진 용기라 하더라도 배출을 촉진시킬 목적으로 진동기기(vibrator)위에 올려놓아 사용하는 경우에는 전기적으로 절연될 위험성이 있으므로 확실하게 용기의 접지를 해야 한다.
- (마) 절연성 용기 및 도전성 재료에 있어서 내측이 절연물로 피복된 용기는 접지를 하더라고 전하 완화(Charge relaxation)가 없으므로 최소착화에너지가 3 mJ보다

작은 분진에서는 사용하지 않도록 한다.

- (바) 금속분진의 이송배관에서 플랜지 접속부는 연결하여 접지하도록 한다.
- (사) 금속분의 배관 내 이송 속도는 관벽에 퇴적하거나 체류하지 않을 정도로 하며 정전기 대전을 억제하기 위해서 가급적 최소화하도록 한다.
- (아) 분진을 저장용기나 저장조에 배출시키는 경우에는 폭발한계농도 이상의 분 진운이 발생하고 대전된 분진에 의한 방전 또는 배관벽면에 퇴적된 분진층 이 떨어지면서 생기는 방전 등에 의해 폭발이 발생할 수 있으므로 제전 방 지 대책을 사전에 실시해야 한다.

(3) 연마 및 분쇄 공정

- (가) 금속의 연마 작업에서 발생한 인화성 분진입자의 불꽃에 의한 발화위험성에 주의해야 한다.
- (나) 자동차 알루미늄 휠이나 Mg-Al합금 제품의 연마공정에서 발생하는 분진 농도는 일반적으로 낮기 때문에 폭발위험성이 높지 않지만, 연마 작업 시에 발생하는 분진 불꽃이 배관 또는 집진기 내부로 혼입되어 착화원으로 작용하면 분진폭발을 일으킬 수 있으므로 연마 작업시에는 자주 분진의 제거작업을 해야만 한다.
- (다) 분진제조 공정에서는 금속제품을 분쇄기로 파쇄하는 과정에서 발생한 미분 체가 파쇄기의 충격마찰이나 마찰열에 의해 착화하여 폭발할 위험성이 있다.
- (라) 금속분진폭발이 발생하기 쉬운 입자의 분쇄나 분급을 하는 경우에는 불활성 가스 분위기에서 실시해야 한다. 금속 분진의 종료나 입자경에 따라 다르지 만 10 %이하의 산소농도에서의 공정작업이 요구된다.
- (마) Mg-Al합금을 볼밀링(Ball milling)으로 미분쇄하는 공정의 경우에는 볼밀링 처리가 종료하고 밀을 회전시키면서 분쇄물을 배출하는 과정에서 정전기 발 생과 알루미늄 볼에 의한 충격 불꽃에 의한 착화로 폭발사고 위험성이 높으 므로 정전기발생 억제 및 폭발피해 확산을 방지하기 위한 대책이 필요하다.
- (바) 분쇄기나 분급기 내부에 고속회전하는 롤러인 경우에는 기계부분의 접촉 및 회전부의 마찰에 따른 발열이 발화원이 되지 않도록 회전축의 진동과 온도 점검, 정기적인 보수관리가 중요하다.

(4) 용접 및 절단 등의 보수작업

- (가) 기계류 수리 및 배관공사에 전기아크, 가스용접, 가스절단 등을 사용하는 과정에서 불꽃이 작업장 내의 퇴적 금속분진에 착화할 위험성이 있으므로 주의해야 한다.
- (나) 퇴적 금속분진에 착화한 경우에는 급격하게 화재폭발로 이어질 가능성은 낮지만 CO₂소화기나 분말소화기를 사용하거나 피해최소화를 위하여 착화된 분진을 안전한 장소로 옮기려고 하는 과정에서 부유분진이 발생하지 않도록 해야 한다.
- (다) 퇴적된 금속분진이 착화하여 발화된 경우에는 건조 모래 등을 사용하여 질식 소화에 의한 화재 진압이 효과적이다.

(5) 연구개발 시의 실험

- (가) 연구 개발 단계에서 사용되는 금속분진은 적은 양을 사용하는 경우가 많아 화재폭발 위험성의 인식이 낮고 안전대책을 고려하지 않는 경우가 있는데 실험 과정에서 착화원이 될 수 요인을 충분한 검토하고 안전대책을 강구해 야 한다.
- (나) 연구실험실에서 Al분진의 산화실험 중에 폭발사고사례가 있으며, Mg는 부유 상태만이 아니고 퇴적 상태에서의 착화위험성이 높기 때문에 실험조건, 사 용량 등에 따른 위험성에 주의해야 한다.

6. 금속분진의 취급 안전

6.1 분진폭발 예방을 위한 분진관리

- (1) 공정 설비 및 환기 장치에서 발생하는 분진을 극소화시킨다.
- (2) 집진 시스템과 집진 장치를 사용한다.
- (3) 바닥, 기계설비의 외부 표면, 천장, 창문 등에 분진의 퇴적을 감소시키고, 또한 청소하기 쉬운 표면이나 구조로 하여야 한다.
- (4) 설비 주변의 분진 퇴적에 대한 점검을 하기 위해서는 설비에 있어서 잘 보이지 않는 부분에까지 쉽게 접근 할 수 있도록 공간이 확보되어야 한다.
- (5) 분진의 퇴적 상황을 정기적으로 점검하고 분진이 퇴적될 수 있는 모든 부분에 대하여 점검을 실시한다.
- (6) 퇴적 분진에 대한 정기적인 청소를 한다.

P-128-2012

- (7) 착화원이 가까이에 존재하는 경우에는 분진운을 발생시키지 않는 청소 방법을 강구한다.
- (8) 분진의 집진에 적합하며 정전기발생 방지 기능을 갖는 진공청소기를 사용한다.
- (9) 안전밸브 등의 압력방출장치는 분진폭발 위험지역으로부터 격리한다.
- (10) 분진의 위험성평가, 퇴적 상황의 점검, 청소 및 분진 관리에 관한 사업장의 특성에 적합한 안전규칙을 제정하고 실시하도록 한다.

6.2 분진의 화재폭발위험 퇴적량

퇴적 분진의 화재폭발 가능성에 대하여 해당 분진의 위험퇴적량에 대한 판단기준은 다음과 같다.

- (1) 퇴적된 분진 표면의 아래에 있는 설비나 장비 또는 바닥면의 색상을 알 수 없는 경우
- (2) 퇴적 분진의 표면에 글씨를 쓸 때 새겨진 문자의 가장자리 부분이 약간 올라와 있는 경우

6.3 분진의 착화원 관리

- (1) 전기 기기 및 배선 방식을 적정하게 선정하고 사용하도록 한다.
- (2) 접지를 포함하여 정전기 관리를 철저히 한다.
- (3) 흡연, 화염 및 전기 불꽃의 관리에 주의한다.
- (4) 기계적인 전기 불꽃과 마찰원 관리를 철저히 한다.
- (5) 금속제거장치 등과 같은 이물질 제거장치를 사용한다.
- (6) 고온 배관 등의 열이 발생하는 부분이 분진과 접촉되지 않도록 한다.
- (7) 건조기나 소성로(Combustion furnace) 등의 가열 장치로부터 분진을 격리시킨다.
- (8) 방폭 대응형의 작업용 차량을 사용한다.
- (9) 분진관련 장치와 기기의 적절한 성능유지 및 관리를 철저히 한다.
- (10) 착화원에 따른 적절한 분진폭발방지대책을 이하와 같이 실시한다.
 - (가) 모터, 조명기구, 제어반 등의 전기 설비는 방폭형구조로 하고 정기적인 청소를 실시한다.
 - (나) 스위치의 불꽃, 퓨즈의 단선, 배선 불량 등 전기 기기의 문제로 인한 착화 원 방지를 위해서 방폭형구조 및 정기적인 청소를 실시한다.
 - (다) 스팀 배관, 열풍 발생기 덕트 등의 열원(Heat sources)에 대해서는 단열재

P-128-2012

에 의한 완벽한 보호와 스팀배관 등의 벽 관통부의 정기적인 점검을 실시한다.

- (라) 집진 및 배기 덕트에 퇴적된 분진의 축열에 대해서는 온도 감시와 정기적 인 청소를 실시한다.
- (마) 금속분진을 포집하는 집진장치는 도전성 섬유의 여과 천을 사용하여 대전을 방지하고 펄스 에어에 의한 분진의 제거 및 집진장치 전체를 접지하도록 한다.
- (바) 건조기는 다른 공정과 격리시키고 건조기 주위나 내부를 불연재로 피복 한다.
- (사) 열풍 발생기 등의 연소 장치는 방화 구획으로 격리시킨다.
- (아) 공사 작업에서 용접 등의 화기 사용시에는 공사 전에 충분히 청소를 실시 한다.

6.4 피해경감대책

- (1) 분진에 의한 폭발 위험이 있는 장소와는 이격 거리를 설정한다.
- (2) 방폭 벽 등에 의한 구획을 설정한다.
- (3) 건물, 공장 내, 작업 지역 등에 폭발억제장치(Explosion suppression system)를 사용한다.
- (4) 설비 및 기기에는 압력 방출 밸브를 사용한다.
- (5) 불꽃 및 화염 감지기와의 연동에 의한 소화 시스템을 설치한다.
- (6) 스프링클러 시스템을 설치한다.

6.5 교육

분진화재폭발 방지 설비나 분진의 위험관리방법이 체계적으로 되어 있더라도 작업 자의 잘못된 취급으로 인해 화재폭발이 일어날 가능성이 있으므로 교육의 실시가 중요 하며 다음과 같은 항목이 교육에 포함되어야 한다.

- (1) 분진의 물성 및 화재폭발 위험성
- (2) 분진폭발사고의 전형적인 착화원의 사례
- (3) 설치되어 있는 안전장치 및 그 취급 방법
- (4) 현재 실시되고 있는 분진화재폭발 예방 조치
- (5) 분진화재폭발 발생 시에 긴급 대응 절차

P-128-2012

- (6) 평소 분진 제거를 철저하게 유지해야 하는 것의 중요성
- (7) 공정 설비에서의 누설 등과 같이 분진이 관리 조건이나 상태에서 벗어난 경우의 즉각적인 보고
- (8) 안전 대책이 실시되고 있는 기기가 정상 작동 상태에서 일탈 한 경우에 점화원이 될 가능성에 대한 대책과 이에 대한 보고