Session 2: Lecture notes exercise solutions

Exercise 2.1

Create a suitable table and obtain Kaplan-Meier estimates of the survivor function (a) in the whole group, (b) separately by IM status. The Kaplan-Meier plots are shown in Figure 2.3 - check that you can recreate these from your table.

The results for the whole group are shown below (in Stata and R output). The 'Survivor function' column (Stata) and the 'survival' column (R) give the Kaplan-Meier estimates.

. sts list

failure _d: death
analysis time _t: time

Time	Beg. Total	Fail	Net Lost	Survivor Function	Std. Error	[95% Con	f. Int.]
19	45	1	0	0.9778	0.0220	0.8525	0.9968
22	44	1	0	0.9556	0.0307	0.8338	0.9887
23	43	1	0	0.9333	0.0372	0.8074	0.9780
25	42	1	0	0.9111	0.0424	0.7803	0.9657
30	41	1	0	0.8889	0.0468	0.7534	0.9522
34	40	1	0	0.8667	0.0507	0.7271	0.9378
37	39	1	0	0.8444	0.0540	0.7012	0.9226
38	38	1	0	0.8222	0.0570	0.6758	0.9068
42	37	1	0	0.8000	0.0596	0.6509	0.8905
46	36	1	0	0.7778	0.0620	0.6264	0.8737
47	35	1	0	0.7556	0.0641	0.6022	0.8565
51	34	1	0	0.7333	0.0659	0.5785	0.8388
56	33	1	0	0.7111	0.0676	0.5551	0.8208
57	32	1	0	0.6889	0.0690	0.5320	0.8025
61	31	1	0	0.6667	0.0703	0.5092	0.7838
66	30	1	0	0.6444	0.0714	0.4867	0.7648
67	29	1	0	0.6222	0.0723	0.4646	0.7455
73	28	1	0	0.6000	0.0730	0.4427	0.7260
74	27	1	0	0.5778	0.0736	0.4211	0.7061
77	26	1	0	0.5556	0.0741	0.3998	0.6860
78	25	1	0	0.5333	0.0744	0.3787	0.6657
86	24	1	0	0.5111	0.0745	0.3579	0.6450
89	23	1	0	0.4889	0.0745	0.3374	0.6241
115	22	1	0	0.4667	0.0744	0.3172	0.6030
122	21	0	1	0.4667	0.0744	0.3172	0.6030
123	20	0	1	0.4667	0.0744	0.3172	0.6030

130) 19	0	2	0.4667	0.0744	0.3172	0.6030
133	3 17	0	1	0.4667	0.0744	0.3172	0.6030
134	16	0	1	0.4667	0.0744	0.3172	0.6030
136	5 15	0	1	0.4667	0.0744	0.3172	0.6030
14:	1 14	0	1	0.4667	0.0744	0.3172	0.6030
143	3 13	0	1	0.4667	0.0744	0.3172	0.6030
144	12	0	1	0.4667	0.0744	0.3172	0.6030
148	3 11	0	1	0.4667	0.0744	0.3172	0.6030
15:	1 10	0	1	0.4667	0.0744	0.3172	0.6030
152	2 9	0	1	0.4667	0.0744	0.3172	0.6030
153	8	0	1	0.4667	0.0744	0.3172	0.6030
154	1 7	0	1	0.4667	0.0744	0.3172	0.6030
156	6	0	1	0.4667	0.0744	0.3172	0.6030
162	2 5	0	1	0.4667	0.0744	0.3172	0.6030
164	1 4	0	1	0.4667	0.0744	0.3172	0.6030
165	5 3	0	1	0.4667	0.0744	0.3172	0.6030
182	2 2	0	1	0.4667	0.0744	0.3172	0.6030
189	9 1	0	1	0.4667	0.0744	0.3172	0.6030

> btrial.km<-survfit(Surv(time=time,event=death)~1,data=breastcancer)

Call: survfit(formula = Surv(time = time, event = death) ~ 1, data = breastcancer)

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
19	45	1	0.978	0.0220		0.936		1.000
22	44	1	0.956	0.0307		0.897		1.000
23	43	1	0.933	0.0372		0.863		1.000
25	42	1	0.911	0.0424		0.832		0.998
30	41	1	0.889	0.0468		0.802		0.986
34	40	1	0.867	0.0507		0.773		0.972
37	39	1	0.844	0.0540		0.745		0.957
38	38	1	0.822	0.0570		0.718		0.942
42	37	1	0.800	0.0596		0.691		0.926
46	36	1	0.778	0.0620		0.665		0.909
47	35	1	0.756	0.0641		0.640		0.892
51	34	1	0.733	0.0659		0.615		0.875
56	33	1	0.711	0.0676		0.590		0.857
57	32	1	0.689	0.0690		0.566		0.838
61	31	1	0.667	0.0703		0.542		0.820
66	30	1	0.644	0.0714		0.519		0.801
67	29	1	0.622	0.0723		0.496		0.781
73	28	1	0.600	0.0730		0.473		0.762
74	27	1	0.578	0.0736		0.450		0.742
77	26	1	0.556	0.0741		0.428		0.721

> summary(btrial.km,censored = T)

78	25	1	0.533	0.0744	0.406	0.701
86	24	1	0.511	0.0745	0.384	0.680
89	23	1	0.489	0.0745	0.363	0.659
115	22	1	0.467	0.0744	0.341	0.638
122	21	0	0.467	0.0744	0.341	0.638
123	20	0	0.467	0.0744	0.341	0.638
130	19	0	0.467	0.0744	0.341	0.638
133	17	0	0.467	0.0744	0.341	0.638
134	16	0	0.467	0.0744	0.341	0.638
136	15	0	0.467	0.0744	0.341	0.638
141	14	0	0.467	0.0744	0.341	0.638
143	13	0	0.467	0.0744	0.341	0.638
144	12	0	0.467	0.0744	0.341	0.638
148	11	0	0.467	0.0744	0.341	0.638
151	10	0	0.467	0.0744	0.341	0.638
152	9	0	0.467	0.0744	0.341	0.638
153	8	0	0.467	0.0744	0.341	0.638
154	7	0	0.467	0.0744	0.341	0.638
156	6	0	0.467	0.0744	0.341	0.638
162	5	0	0.467	0.0744	0.341	0.638
164	4	0	0.467	0.0744	0.341	0.638
165	3	0	0.467	0.0744	0.341	0.638
182	2	0	0.467	0.0744	0.341	0.638
189	1	0	0.467	0.0744	0.341	0.638

Exercise 2.2

(a) Complete table 2.5 and compare your results with those shown graphically in Figure 2.5. (b) What was the probability of surviving 5 years or more? What was the probability of surviving 2.5 years or more?

In the first row you should get $p_1 = 456/2418 = 0.188$, giving the survivor function 0.814.

In the second row you should get $p_2 = 226/(1962 - 39/2) = 0.116$, giving the survivor function 0.720 (after multiplying (1-0.116) by 0.814).

etc.

The probability of surviving 5 years or more is 0.521 - see the survivor function in row 5 of your table.

The probability of surviving 2.5 years or more is 0.720 - note that the survivor function is flat at that time.

Exercise 2.3

State the null hypothesis for the log rank test applied to the breast cancer example. Interpret the above results from performing the log rank test.

The null hypothesis is that the survivor curves in the two exposure groups (IM positive

and negative) are the same. The log rank test statistic is 5.49. Comparing this with the χ_1^2 distribution gives a p-value of 0.0191. There is quite strong evidence against the null hypothesis.

Bonus exercise: Here is how to derive the result for a 95% CI given in equation (2.17)

The 95% confidence interval for $\log\{-\log S(t)\}$ is such that

$$\log\{-\log \hat{S}(t)\} - 1.96v(t) < \log\{-\log S(t)\} < \log\{-\log \hat{S}(t)\} + 1.96v(t).$$

Taking the exponential gives:

$$\{-\log \hat{S}(t)\} \exp(-1.96v(t)) < -\log S(t) < \{-\log \hat{S}(t)\} \exp(1.96v(t)).$$

We now multiply everything by -1, giving:

$$\log{\{\hat{S}(t)\}} \exp(1.96v(t)) < \log{S(t)} < \log{\{\hat{S}(t)\}} \exp(-1.96v(t)).$$

Finally, take the exponential again:

$$\hat{S}(t)^{\exp(1.96v(t))} < S(t) < \hat{S}(t)^{\exp(-1.96v(t))}.$$