CIS 471/571 (Winter 2020): Introduction to Artificial Intelligence

Lecture 7: Expectimax, Utilities

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcements

- Project 2: Multi-agent Search
 - Deadline: Feb 02, 2020

- Homework 2: CSPs and Games
 - Deadline: Feb 03, 2020

Thanh H. Nguyen 1/28/20

Today

Expectimax Search

Utilities

20 (3)

Thanh H. Nguyen 1/28/20

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Expectimax Pseudocode

def value(state): if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state)

if the next agent is EXP: return exp-value(state)

def max-value(state): initialize v = -∞ for each successor of state: v = max(v, value(successor)) return v

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

Expectimax Pseudocode

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

$$v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

- Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

• The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

• Example: How long to get to the airport?

Time:

Probability:

20 min

0.25

_

30 min

0.50

ı

60 min

 \mathbf{X}

0.25

35 mir

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

• Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman	}	
Expectimax Pacman		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:

Terminals have utility tuples

Node values are also utility tuples

• Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...

Utilities

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

- Principle of maximum expected utility:
 - A rational agent should chose the action that maximizes its expected utility, given its knowledge

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging even makes sense?
 - What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function

Utilities: Uncertain Outcomes

Preferences

- An agent must have preferences among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

A Prize

A Lottery

- Notation:
 - Preference: $A \succ B$
 - Indifference: $A \sim B$

Rationality

Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

```
Orderability
    (A \succ B) \lor (B \succ A) \lor (A \sim B)
Transitivity
    (A \succ B) \land (B \succ C) \Rightarrow (A \succ C)
Continuity
    A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B
Substitutability
    A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]
Monotonicity
    A \succ B \Rightarrow
        (p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])
```


Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

• Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

• Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

$$U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$$

- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility

Human Utilities

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - Compare a prize A to a standard lottery L_p between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u with probability 1-p
 - Adjust lottery probability p until indifference: $A \sim L_p$
 - Resulting p is a utility in [0,1]

Human Utilities: Example

- •A person is given the choice between 2 scenarios:
 - Guaranteed scenario: the person receives \$50
 - Uncertain scenario: a coin is flipped to decide the person receive \$100 or not.

• Which choice would that person make?

36

Thanh H. Nguyen

Risk Aversion

•Risk averse: would accept the guaranteed payment of (less than) \$50 rather than take the gamble

•Risk neutral: indifferent between the bet and the guaranteed \$50 payment

•Risk seeking: would accept the bet even when the guaranteed payment is more than \$50

Thanh H. Nguyen

Prospect Theory: Utility Function

- Risk aversion: convexity
 - Risk averse regarding gain
 - Risk seeking regarding loss

Loss aversion

Losses are felt more strong than gains

Endowment effect

- We values things we own more highly
- Reference point: differentiate gains and loss

Source: https://www.economicshelp.org/blog/glossary/prospect-theory/

