3)
$$Var(A_t) = \frac{9}{2}a_j^2 Var(Y_{t-j})$$

puisque les Y_t , $t \in \mathbb{Z}$ pont i i d.

$$= 1 - 6^2 \left(\sigma^2 = Var\left(\frac{Y_t}{t} \right) \right)$$

= 1 5° (0° = Var (Y_E)

29+1

Donc la suite {A_E} est moires dispersée que le

suite
$$\{Y_t\}$$
.

4) On cherche α, β et δ tels que
$$(1 + \alpha B + \beta B^2 + \delta^2)(at + b) = at + b$$

$$(1) \{ (1 + \alpha B + \beta B^2 + \delta B^3) \leq \xi = 0$$

$$(1 + \alpha B + \beta B^2 + \delta B^3) \leq \xi = 0$$

$$\begin{cases} (1+d) + \beta & b \\ (1+d) + \beta$$

$$\Leftrightarrow \left\{ at \left(1 + \alpha + \beta + \delta \right) + b \left(1 + \alpha + \beta + \delta \right) + a \left(-\alpha - 2\beta - 3\delta \right) = at + b \right.$$

$$\left\{ S_{t} - \alpha S_{t} + \beta S_{t} - \delta S_{t} = 0 \right.$$