

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 📮 : 6932327283 - 6955058444

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 15 Απριλίου 2020

Γ' ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Ορισμοί

ΑΠΟ ΟΛΗ ΤΗΝ ΥΛΗ

ΟΡΙΣΜΟΣ 1: Πραγματική Συνάρτηση

Πραγματική συνάρτηση με πεδίο ορισμού ένα σύνολο A είναι μια διαδικασία (αντιστοίχηση) με την οποία κάθε στοιχείο $x \in A$ αντιστοιχεί σε ένα μόνο πραγματικό αριθμό $y \in \mathbb{R}$. Το y λέγεται τιμή της συνάρτησης f στο x και συμβολίζεται f(x).

ΟΡΙΣΜΟΣ 2: Σύνολο τιμών

Σύνολο τιμών μιας συνάρτησης f με πεδίο ορισμού A λέγεται το σύνολο που περιέχει όλες τις τιμές f(x) της συνάρτησης για κάθε $x \in A$. Συμβολίζεται με f(A) και είναι

$$f(A) = \{y \in \mathbb{R} : y = f(x)$$
 για κάθε $x \in A\}$

ΟΡΙΣΜΟΣ 3: Γραφική παράσταση

Γραφική παράσταση μιας συνάρτησης f με πεδίο ορισμού ένα σύνολο A ονομάζεται το σύνολο των σημείων της μορφής M(x,f(x)) για κάθε $x\in A$. Συμβολίζεται με C_f

$$C_f = \{M(x, y) : y = f(x)$$
 για κάθε $x \in A\}$

ΟΡΙΣΜΟΣ 4: Ίσες συναρτήσεις με κοινό πεδίο ορισμού

Δύο συναρτήσεις f, g που έχουν το ίδιο πεδίο ορισμού A ονομάζονται ίσες δηλαδή f = g όταν ισχύει f(x) = g(x) για κάθε $x \in A$.

ΟΡΙΣΜΟΣ 5: Ίσες συναρτήσεις με διαφορετικά πεδία ορισμού

Δύο συναρτήσεις f, g με πεδία ορισμού A, B αντίστοιχα, ονομάζονται ίσες δηλαδή f = g όταν ισχύει f(x) = g(x) για κάθε $x \in A \cap B$. Αν $A \cap B = \emptyset$ τότε δεν είναι ίσες.

ΟΡΙΣΜΟΣ 6: Πράξεις μεταξύ συναρτήσεων

Δίνονται δύο συναρτήσεις f, g με πεδία ορισμού A, B αντίστοιχα.

- 1. Η συνάρτηση f+g του αθροίσματος των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο f(x)+g(x) και πεδίο ορισμού $D_{f+g}=A\cap B$.
- 2. Η συνάρτηση f-g της διαφοράς των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο f(x)-g(x) και πεδίο ορισμού $D_{f-g}=A\cap B$.
- 3. Η συνάρτηση $f \cdot g$ του γινομένου των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο $f(x) \cdot g(x)$ και πεδίο ορισμού $D_{f \cdot g} = A \cap B$.
- 4. Η συνάρτηση $\frac{f}{g}$ του πηλίκου των δύο συναρτήσεων ορίζεται ως η συνάρτηση με τύπο $\frac{f(x)}{g(x)}$ και πεδίο ορισμού $D_{\frac{f}{g}}=\{x\in A\cap B:g(x)\neq 0\}.$

Αν $A \cap B = \emptyset$ τότε οι παραπάνω συναρτήσεις δεν ορίζονται.

ΟΡΙΣΜΟΣ 7: Σύνθεση συναρτήσεων

Η σύνθεση μιας συνάρτησης f με μια συνάρτηση g με πεδία ορισμού A, B αντίστοιχα, ονομάζεται η συνάρτηση $g \circ f$ με τύπο και πεδίο ορισμού

$$(g \circ f)(x) = g(f(x))$$
 , $D_{g \circ f} = \{x \in \mathbb{R} | x \in A \text{ kan } f(x) \in B\}$

- Διαβάζεται «σύνθεση της f με τη g» ή «g σύνθεση f».
- Για να ορίζεται η συνάρτηση $g \circ f$ θα πρέπει να ισχύει $f(A) \cap B \neq \emptyset$.
- Αντίστοιχα ορίζεται και η σύνθεση $f \circ g$ με πεδίο ορισμού το $D_{f \circ g} = \{x \in \mathbb{R} | x \in B \text{ και } g(x) \in A\}$ και τύπο $(f \circ g)(x) = f(g(x))$.

ΟΡΙΣΜΟΣ 8: Γνησίως μονότονη συνάρτηση

Δίνεται μια συνάρτηση f ορισμένη σε ένα διάστημα Δ του πεδίου ορισμού της και έστω x_1, x_2 δύο στοιχεία του Δ . Η f θα ονομάζεται

1. γνησίως αύξουσα στο Δ αν για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) < f(x_2)$:

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

2. γνησίως φθίνουσα στο Δ αν για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) > f(x_2)$:

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

Η f σε κάθε περίπτωση λέγεται γνησίως μονότονη.

ΟΡΙΣΜΟΣ 9: Ολικά ακρότατα

Έστω μια συνάρτηση f με πεδίο ορισμού ένα σύνολο A και έστω $x_0 \in A$. Η f θα λέμε ότι παρουσιάζει

1. ολικό μέγιστο στο x_0 το $f(x_0)$ όταν

$$f(x) \le f(x_0)$$
 για κάθε $x \in A$

2. ολικό ελάχιστο στο x_0 το $f(x_0)$ όταν

$$f(x) \ge f(x_0)$$
 για κάθε $x \in A$

Το ολικό μέγιστο και ολικό ελάχιστο μιας συνάρτησης ονομάζονται **ολικά ακρότατα**. Το x_0 λέγεται θέση ακρότατου.

ΟΡΙΣΜΟΣ 10: Συνάρτηση 1-1

Μια συνάρτηση $f:A\to\mathbb{R}$ ονομάζεται 1-1 εάν κάθε στοιχείο $x\in A$ του πεδίου ορισμού αντιστοιχεί μέσω της συνάρτησης, σε μοναδική τιμή f(x) του συνόλου τιμών της. Για κάθε ζεύγος αριθμών $x_1,x_2\in A$ του πεδίου ορισμού της f θα ισχύει

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

ΟΡΙΣΜΟΣ 11: Αντίστροφη συνάρτηση

Έστω μια συνάρτηση $f:A\to\mathbb{R}$ με σύνολο τιμών f(A). Η συνάρτηση με την οποία κάθε $y\in f(A)$ αντιστοιχεί σε ένα μοναδικό $x\in A$ λέγεται αντίστροφη συνάρτηση της f.

- Συμβολίζεται με f^{-1} και είναι $f^{-1}: f(A) \to A$.
- Το πεδίο ορισμού της f^{-1} είναι το σύνολο τιμών f(A) της f, ενώ το σύνολο τιμών της f^{-1} είναι το πεδίο ορισμού A της f.
- Ισχύει ότι $x = f^{-1}(y)$ για κάθε $y \in f(A)$.

ΟΡΙΣΜΟΣ 12: Συνέχεια συνάρτησης σε σημείο

Μια συνάρτηση f ονομάζεται συνεχής σε ένα σημείο x_0 του πεδίου ορισμού της όταν το όριο της στο x_0 είναι ίσο με την τιμή της στο σημείο αυτό. Δηλαδή

$$\lim_{x \to x_0} f(x) = f(x_0)$$

ΟΡΙΣΜΟΣ 13: Συνέχεια συνάρτησης σε σύνολο

- 1. Μια συνάρτηση f θα λέμε ότι είναι συνεχής εάν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της.
- 2. Μια συνάρτηση f θα λέγεται συνεχής σε ένα ανοιχτό διάστημα (a, β) εάν είναι συνεχής σε κάθε σημείο του διαστήματος.
- 3. Μια συνάρτηση f θα λέγεται συνεχής σε ένα κλειστό διάστημα $[a, \beta]$ εάν είναι συνεχής σε κάθε σημείο του ανοιχτού διαστήματος και επιπλέον ισχύει

$$\lim_{x \to a^+} f(x) = f(a) \text{ kan } \lim_{x \to \beta^-} f(x) = f(\beta)$$

ΟΡΙΣΜΟΣ 14: Εφαπτομένη της C_f σε σημείο $A(x_0, f(x_0))$

Αν υπάρχει το όριο

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

και είναι πραγματικός αριθμός λ , τότε ορίζουμε ως εφαπτομένη της C_f στο σημείο $A(x_0, f(x_0))$ την ευθεία που διέρχεται από το A και έχει συντελεστή διεύθυνσης λ .

3

ΟΡΙΣΜΟΣ 15: Παράγωγος σε σημείο

Μια συνάρτηση f ονομάζεται παραγωγίσιμη σε ένα σημείο x_0 του πεδίου ορισμού της αν το όριο

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

υπάρχει και είναι πραγματικός αριθμός. Το όριο αυτό ονομάζεται **παράγωγος** της f στο x_0 και συμβολίζεται με $f'(x_0)$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

ΟΡΙΣΜΟΣ 16: Παραγωγίσιμη συνάρτηση

Θα λέμε ότι μια συνάρτηση f με πεδίο ορισμού D_f είναι παραγωγίσιμη, αν είναι παραγωγίσιμη σε κάθε σημείο x_0 του πεδίου ορισμού της.

ΟΡΙΣΜΟΣ 17: Παραγωγίσιμη συνάρτηση σε ανοιχτό διάστημα (a, β)

Θα λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα ανοιχτό διάστημα (a, β) αν είναι παραγωγίσιμη σε κάθε σημείο του διαστήματος (a, β) .

ΟΡΙΣΜΟΣ 18 : Παραγωγίσιμη συνάρτηση σε ανοιχτό διάστημα (a, β)

Θα λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα ανοιχτό διάστημα (a, β) αν είναι παραγωγίσιμη σε κάθε σημείο του διαστήματος (a, β) και επιπλέον

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \in \mathbb{R} \text{ kat } \lim_{x \to \beta^-} \frac{f(x) - f(\beta)}{x - \beta} \in \mathbb{R}$$

ΟΡΙΣΜΟΣ 19: Πρώτη παράγωγος της f

Έστω A_1 το σύνολο όλων των σημείων του D_f της f για τα οποία η f είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε $x \in A_1$ στο f'(x) ορίζουμε τη συνάρτηση

$$f': A_1 \to \mathbb{R} \ , \ x \to f'(x)$$

η οποία ονομάζεται πρώτη παράγωγος της f.

ΟΡΙΣΜΟΣ 20: Δεύτερη και ν-οστή παράγωγος της f

Έστω A_1 το σύνολο όλων των σημείων του D_f της f για τα οποία η f είναι παραγωγίσιμη και έστω ότι το σύνολο αυτό είναι διάστημα ή ένωση διαστημάτων. Η παράγωγος της f' αν υπάρχει, τότε λέγεται δεύτερη παράγωγος της f και συμβολίζεται f''. Γενικότερα ορίζεται η ν -οστή παράγωγος της f ως

$$f^{(\nu)} = \left[f^{(\nu-1)} \right]', \ \nu \ge 3$$

ΟΡΙΣΜΟΣ 21: Ρυθμός μεταβολής

Αν δύο μεταβλητά ποσά x, y συνδέονται με μια σχέση y = f(x) όπου η f είναι παραγωγίσιμη στο x_0 , τότε ονομάζουμε ρυθμό μεταβολής του y ως προς x στο x_0 την παράγωγο $f'(x_0)$.

ΟΡΙΣΜΟΣ 22: Τοπικά ακρότατα

1. Τοπικό μέγιστο

Μια συνάρτηση f, με πεδίο ορισμού D_f , θα λέμε ότι παρουσιάζει τοπικό μέγιστο στο $x_0 \in D_f$, όταν υπάρχει $\delta > 0$ τέτοιο ώστε

$$f(x) \le f(x_0)$$
 για κάθε $x \in D_f \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται θέση τοπικού μέγιστου, ενώ το $f(x_0)$ τοπικό μέγιστο της f.

2. Τοπικό ελάχιστο

Μια συνάρτηση f, με πεδίο ορισμού D_f , θα λέμε ότι παρουσιάζει τοπικό ελάχιστο στο $x_0 \in D_f$, όταν υπάρχει $\delta>0$ τέτοιο ώστε

$$f(x) \geq f(x_0)$$
 για κάθε $x \in D_f \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται θέση τοπικού ελάχιστου, ενώ το $f(x_0)$ τοπικό ελάχιστο της f.

Το τοπικό μέγιστο και το τοπικό ελάχιστο μιας συνάρτησης f λέγονται **τοπικά ακρότατα**.

Πηγή:

Μαθηματικά Προσανατολισμού Γ΄ Λυκείου, Οδηγός προετοιμασίας για τις πανελλαδικές εξετάσεις - Συλλογικό Έργο - Εκδόσεις Ελληνοεκδοτική - 2016 lysari team