Introduction to Algorithms 알고리즘개론 2018 Spring Semester

Jinkyu Lee

Dept. of Computer Science and Engineering (and Software), Sungkyunkwan University (SKKU)

Rules for all homework

- You should follow instructions.
 - Complier
 - You will get no point if your program cannot be complied with the specified complier
 - Input/output format
 - You will get no point if TA's automatic evaluation program cannot parse your input or output.
 - Permitted modification scope
 - You will get no point if you modify code outside of the permitted modification scope
 - All other rules
 - You will get severe penalty or no point if you violate the given rules.

Complier and input/output rules for all homework

- Every implementation homework will be evaluated by TA's automatic evaluation program with the following complier.
 - Complier: GCC 6.3
 - You will get no point if your program cannot be complied with GCC 6.3.
 - You can use standard library such as *stdlib.h* and *math.h*.

■ Input/output format

- You will get no point if TA's automatic evaluation program cannot parse your input or output according to the following rules.
- Use stdin and stdout

- Recommended development environment (Windows)
 - IDE: CodeBlocks (http://www.codeblocks.org/downloads/26)
 - Compiler: MinGW (https://sourceforge.net/projects/mingw)
 - You can use the corresponding compliers for Linux and Mac.

Homework 4

- 7.5 points (7.5%)
 - 4A: 1.5 points (1.5%)
 - 4B: 3.5 points (3.5%)
 - 4C: 2.5 points (2.5%)
- Due data: 2018/6/11 Monday 23:59
 - Delay penalty: 1% per hour
 - Delay and evaluation will be applied to each file.
 - TA will only evaluate the latest version of your homework with time stamp.
 - Your time management is very important!
- Submission to iCampus
- TA: Jaeheon Kwak
 - <u>OjaehunnyO@gmail.com</u>

Homework 4

- 4A
 - No file submission
- 4B
 - Code: Yourid_HW4B.c
 - The file type should be c, not cpp.
 - The file should be a single file.
 - Submit to "Homework 4B Code"
 - Report: Yourid_HW4B.hwp
 - The file type can be hwp, doc(x) or pdf, not others
 - Submit to "Homework 4B Report"
- 4C
 - Code: Yourid_HW4C.c
 - The file type should be c, not cpp.
 - The file should be a single file.
 - Submit to "Homework 4C Code"
 - Report: Yourid_HW4C.hwp
 - The file type can be hwp, doc(x) or pdf, not others
 - Submit to "Homework 4C Report"

■ 1.5 points (1.5%)

- You will have a in-class quiz in 5/28 (Mon), 5/30 (Wed) or 6/4 (Mon).
 - The coverage is all contents in Lecture Note 12 and 13.
 - If you have any reasonable possibility to be absent in those days, please tell me as soon as possible.
 - You will get no point if you miss the quiz.

- Solve a Problem: Animal Ranking List
 - David is a faithless zookeeper. He wastes his time comparing which animals are stronger, at work time. To prevent him from wasting time anymore, you decide to make an animal ranking list.
 - You designed some rules of the animal ranking list.
 - Animal's ranking is determined by several comparisons that inform which one of the two animals is stronger than another.
 - If an animal A1 is stronger than A2, and A2 is stronger than A3, then A1 is stronger than A3 (If A1 > A2, and A2 > A3, then A1 > A3).
 - If an animal is not weaker than any other animals, its ranking is **1**.
 - If there are multiple possible rankings, choose the smallest number.
 - You cannot make an animal ranking list when any cycle exists in the comparisons.
 - There may be several animals with the same ranking.
 - The number of ranking is always continuous.
 - You are given N animals and C comparisons, make an animal ranking list.

Input

- The input starts with two integers **N** and **C**, the number of animals and the number of comparisons between them.
- The second line of the input is a string, which includes animals' name.
- The next C lines consist of two animal name A1 and A2, meaning that the animal A1 is stronger than the animal A2.
- Animal names never ends with white space.
- The names are separated by slash (/).
- Animal names are never duplicated.
- Example

3 2

Raccoon dog/Raccoon/Red Panda

Raccoon/Red Panda

Raccoon/Raccoon dog

Output

- The output should contain **N** lines. Each line contains the ranking of the animal, a space, and the name of the animal, from the smallest number to the largest number. If there is the same ranking for several animals, then sort them in a lexicographical order.
- When you cannot make the animal ranking list, just print "Stupid David!\n".
- Example
 - 1 Raccoon
 - 2 Raccoon dog
 - 2 Red Panda
- Constraints
 - $1 \le N < 100$
 - $1 \le C < 1000$
 - $1 \le length \ of \ animal \ name < 20$

- Sample input & output 1
 - Input

5 4

Raccoon dog/Raccoon/Red Panda/Dog/Panda

Raccoon/Red Panda

Raccoon/Raccoon dog

Red Panda/Panda

Raccoon dog/Dog

- Output
- 1 Raccoon
- 2 Raccoon dog
- 2 Red Panda
- 3 Dog
- 3 Panda

- Sample input & output 2
 - Input

3 3

Raccoon dog/Raccoon/Red Panda

Red Panda/Raccoon dog

Raccoon/Red Panda

Raccoon dog/Raccoon

OutputStupid David!

- Sample input & output 3
 - Input

5 4

Raccoon dog/Raccoon/Red Panda/Dog/Panda

Raccoon/Raccoon dog

Red Panda/Panda

Raccoon dog/Dog

Dog/Panda

- Output
- 1 Raccoon
- 1 Red Panda
- 2 Raccoon dog
- 3 Dog
- 4 Panda

Jinkyu Lee

- Total score: 3.5 points (3.5%)
- Performance evaluation (3.0 points)
 - TA will test several cases.
 - For each case, the result should be printed within 10 seconds.
 - Your C code is tested with the following complier.
 - GCC 6.3
 - You will get zero point if your program cannot be complied with GCC 6.3.
 - You should follow the input and output format.
 - You will get zero point if the TA's automatic evaluation program cannot parse your input or output.

- Report evaluation (0.4 points)
 - Explain your code using an example
 - No more than 2 pages
 - In English or Korean
- Code readability (and rules) evaluation (0.1 points)
 - Indent properly
 - Use meaningful names of variables
 - Write sufficient comments in English
 - Do not include any other natural language than English in you code.
 - Use correct file names

- Implement Prim's algorithm as follows:
 - You will be given 4 files
 - "main. c"
 - "header. h"
 - "implemented. c"
 - "prim. c" (Blank File)
 - Implement 4 functions in "prim.c"
 - void minHeapify(MinHeap * M, int Index)
 - Vertex * extractMin(MinHeap * M)
 - void decreaseKey(MinHeap * M, int V, int Key)
 - void addVertexToHeap(MinHeap * M, Graph * G, int V)
 - int primAlgorithm(Graph * G)

- There are 7 functions are implemented in "implemented.c"
 - Vertex * initVertex(Vertex * Vert, int N, int V)
 - Graph * initGraph(int V)
 - void connectVertexes(Graph * G, int ParaA, int ParaB, int ParaW)
 - MinHeap * initMinHeap(int V)
 - void swapVertex(Vertex ** ParaA, Vertex ** ParaB)
 - int isEmptyHeap(MinHeap * M)
 - int isInMinHeap(MinHeap * M, int V)
- How can I compile them? (example: Linux)
 - \$ gcc main. c implemented. c prim. c o out
- Replace "prim. c" filename with your student ID and submit it.
 - That is, Yourid_HW4C.c
 - Do not submit "main. c", "header. h" or "implemented. c".

Input

- The first line contains two integers **V** and **E**, the number of vertexes and the number of edges. The next **E** lines consists of three integers, vertex **V1**, vertex **V2** and weight **W**. It means that vertex **V1** and **V2** is connected with weight **W**.
- Example

2 1

0 1 1

Output

- The output will contain a single number representing the sum of the minimum spanning tree's edge weights.
- Example

1

Constraints

■ $2 \le V \le 100$, $1 \le E$, Output $\le INT_MAX$

- Sample input & output 1
 - Input
 - 3 3
 - 0 1 1
 - 022
 - 123
 - Output

3

- Sample input & output 2
 - Input
 - 5 6
 - 0 1 3
 - 028
 - 128
 - 1 3 10
 - 237
 - 2 4 3
 - Output
 - 21

- Total score: 2.5 points (2.5%)
- Performance evaluation (2.1 points)
 - TA will test several cases.
 - For each case, the result should be printed within 10 seconds.
 - Your C code is tested with the following complier.
 - GCC 6.3
 - You will get zero point if your program cannot be complied with GCC 6.3.
 - You should follow the input and output format.
 - You will get zero point if the TA's automatic evaluation program cannot parse your input or output.

- Report evaluation (0.3 points)
 - Explain your code using an example
 - No more than 2 pages
 - In English or Korean
- Code readability (and rules) evaluation (0.1 points)
 - Indent properly
 - Use meaningful names of variables
 - Write sufficient comments in English
 - Do not include any other natural language than English in you code.
 - Use correct file names