A Machine Learning Framework for Domain Generation Algorithm-Based Malware Detection

Lyu Jiuyang, Feb 1, 2022

Introduction

Authors: Yi Li, Kaiqi Xiong, Tommy Chin, Chengbin Hu. IEEE Access 2019.

Nouns

C2 server

command and control (C2) server. 攻击者用来操控通信的服务器。

DGA

Domain Generation Algorithm. 域生成算法。DGA是一种序列算法,用于定期生成大量域名,以逃避防火墙。它们易被人工识别而难以被机器检测。

识别DGA生成的域名的挑战在于,要识别出恶意性、DGA(?)和生成种子的值,才能在实行特定的防火墙规则以过滤这些恶意域名。

Contributions

- 提出了一个机器学习框架来执行 DGA 检测和预测。
- 提出了一个由分类和聚类组成的两级模型,首先对 DGA 域名进行分类,然后将 DGA 聚类到不同 DGA 的组中。
- 设计了一个基于HMM的时间序列预测器,以匹配域名的当前特征。
- 在大数据集上使用深度神经网络模型处理。

Methodology

Target

识别与聚类基于DGA的domain。

Data Collect

从Bambenek Consulting获得,格式为 domain names, malware origins, DGA schema, date

Machine Learning Framework

1. 动态黑名单

使用Gruber Regex 模式过滤,将过滤完的域名存储在黑名单中动态更新。

2. Features

语言特征

- 域名长度
- 有意义的词比重
- 数字字符的百分比
- 发音分数

In the linguistic sense, the pronounceable words usually consists of many viable com- binations of the phonemes. (啥玩意啊,做消融实验了吗就敢往上放)

- 最长有意义字符串 (LMS) 的长度百分比
- Levenshtein 编辑距离

DNS特征

Features	Description	Feature Class	(+/-)
Meaningful words	Ratio of meaningful words	Linguistic	+
Prounceability	How easy can it be pounced	Linguistic	+
% of numerical characters	# of numbers	Linguistic	-
% of the length of the LMS	Ratio of LMS in the string	Linguistic	+
length of the Domain Name	How long is the Domain Name	Linguistic	-
Levenshtein edit distance	Min # of edits from last domain	Linguistic	+
Expiration date	If longer than 1 year	DNS	+
Creation date	If longer than 1 year	DNS	+
DNS record	If DNS record is documented	DNS	+
Distinct IP addresses	#. IP addresses related to this domain	DNS	+
Number of distinct countries	#. countries related this domain	DNS	+
IP shared by domains	#. domains are shared by the IP	DNS	-
Reverse DNS query results	If DN in top 3 reverse query results	DNS	+
Sub-domain	If domain is related to other sub-ones	DNS	+
Average TTL	DNS data time cached by DNS servers	DNS	+
SD of TTL	Distribution SD of TTL	DNS	-
% usage of the TTL ranges	Distribution range of TTL	DNS	+
# of distinct TTL values	Different value of TTL on server	DNS	-
# of TTL change	How frequently TTL changes	DNS	+
Client delete permission	If Client has delete permission	DNS	-
Client update permission	If Client has update permission	DNS	-
Client transfer permission	If Client has transfer permission	DNS	-
Server delete permission	If Server has delete permission	DNS	-
Server update permission	If Client has update permission	DNS	-
Server transfer permission	If Client has transfer permission	DNS	-
Registrar	The domain name registrar	DNS	+
Whois Guard	If use Whois Guard to protect privacy	DNS	-
IP address same subnet	If IP address is in the same subnet	DNS	-
Business name	If domain has a corporation name	DNS	+
Geography location	If domain provides address	DNS	+
Phone number	If domain provides a phone number	DNS	+
Local hosting	If use local host machine	DNS	+
Popularity	If on the top 10000 domain list	DNS	+

3. 分类聚类模型

分类

使用7种机器学习算法进行分类:决策树-J48、ANN、SVM、逻辑回归、朴素贝叶斯、GBT 和随机森林。其中J48效果最好。

聚类

作者提出了DBSCAN算法。对于两个domain d_i,d_j ,他们之间的距离D由语言距离 D_l 和DNS相似度S组成,与特征类似。

$$D_{l}\left(d_{i},d_{j}
ight)=\sqrt{\sum_{k=1}^{6}\operatorname{distance}_{k}\left(d_{i},d_{j}
ight)}$$

$$\mathbf{M}_{k,l} = rac{1}{|\mathbb{D}(k)|}, \quad ext{for any } l = 1, \dots, L$$

其中 $\mathbb{D}(k)$ 为第一步分类的结果。对于 \mathbf{M} 做列方向上的正则化。

$$egin{aligned} \mathbf{N}_{k,l} &= rac{\mathbf{M}_{k,l}}{\sum_{k=1}^K \mathbf{M}_{k,l}}, & orall l = 1, 2, \dots, L \ S &= N^T \odot N \in \mathbb{R}^{L imes L} \ D\left(d_i, d_j
ight) &= S_{d_i, d_j} + \log\left(rac{1}{D_l\left(d_i, d_i
ight)}
ight) \end{aligned}$$

进行聚类。

4. 时间序列预测

使用HMM预测当前DGA未来会传入的域名。作者认为,隐藏状态满足 n 阶马尔可夫性质。

$$P\left(S_{1::T},Y_{1::T}
ight) = P\left(S_{1}
ight)P\left(Y_{1}\mid S_{1}
ight)\prod_{t=2}^{T}P\left(S_{t}\mid S_{t-1}
ight)P\left(Y_{t}\mid S_{t}
ight)$$

FIGURE 6. An example of the HMM model prediction.

Deep Learning

为了处理大型数据集,作者构建了一个深度学习模型来对 DGA 域和正常域进行分类,并与前文机器学习方法进行比较。

item	method	
目标	分类	
激活函数	ReLU	
损失函数	Logloss	
优化算法	SGD、Adagrad、Adam	

DNN效果优于机器学习算法。