

Seminar Advances in Deep Learning for Time Series (ADLTS)

Lecture 4: Time-Aware Models

Naga Venkata Sai Jitin Jami, MSc.

Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg 25.04.2025

Team: FAU & PUCV

Dr. Dario Zanca (FAU) dario.zanca@fau.de

Naga Venkata Sai Jitin Jami, M. Sc. (FAU) <u>jitin.jami@fau.de</u>

Dr. Christtoffer Loeffler (PUCV) christoffer.loffler@pucv.cl

Organisational Information

Seminar Advances of Deep Learning for Time Series (MLTS)

- 5 ECTS
- Team-based project (more details on the second lecture)
- Evaluation:
 - FAU students: 60% written report, 40% oral presentation
 - PUCV students: 20% code, 40% written report, 40% presentation

Topics overview

Recorded Lectures

- I. Introduction
- II. The Tool Tracking dataset
- III. DL for Time Series
- IV. Time-aware models
- V. XAI for Time Series part 1
- VI. Active Learning for Time Series part 1
- VII. Semi-supervised Learning
- VIII.Domain-shifts, Ethics, and Bias
- IX. XAI for Time Series part 2
- X. Active Learning for Time Series part 2

Topics overview

Recorded Lectures

- Introduction
- II. The Tool Tracking dataset
- III. DL for Time Series

IV. Time-Aware Models

- V. XAI for Time Series part 1
- VI. Active Learning for Time Series part 1
- VII. Semi-supervised Learning
- VIII.Domain-shifts, Ethics, and Bias
- IX. XAI for Time Series part 2
- X. Active Learning for Time Series part 2

Lecture outline

- 1. Time-Aware Models
- 2. Ordinary Differential Equations
- 3. Residual Networks and ODENet
- 4. Backpropogation for ODENet
- 5. Applications of ODENet on Time Series

Time Aware Models

Technische Fakultät 21. April 2025

Time-Series Modeling

- Time series data is a sequence of data points collected at (usually) consistent time intervals.
- Examples:
 - Weather Data
 - Electricity Consumption
 - Patient vital signs (e.g., blood pressure, heart rate)
 - Equipment maintenance logs

Time series analysis helps in understanding trends, seasonality, and patterns over time.

Time-Series Forecasting

- Time series forecasting involves predicting future values based on historical data.
- For example, we can predict temperature in a location by considering historical data at the same location (univariate) or surrounding areas (multi-variate).
- Some successful forecasting architectures:
 - Recurrent Neural Nets (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRUs)
 - Temporal Convolutional Networks (TCNs)
 - Transformer

= Collected data

= Predicted by a model

Assumptions in Time-Series Forecasting

FAU

- Traditional time series models often rely on certain assumptions about the data.
- These assumptions simplify the modeling process but may not always hold true in real-world scenarios.
- Two major assumptions come to mind:
 - Constant Sampling Interval, i.e., Δt is constant
 - Prediction Interval same as input Δt.

Example: Predicting the melting of ice in the arctic circle through satellite imagery for every day for the next 3 months.

Assumption: Satellite images are recorded at high quality every day.

Reality: There's a quality drop-off from the satellite imagery and is only recorded once a week.

Problem: Data is available every week but we want to make predictions on a daily basis.

Technische Fakultät 21. April 2025

Introducing Time Aware Deep Learning models

- There has been plenty of research in irregularly sampled time series forecasting.
- They can largely be divided into the following categories:
 - Discretization: Converting irregular time series problem to a regular time series problem with missing values.
 - Interpolation:
 - Deterministic Linear or Non-Linear Interpolation with Kernel methods
 - Probabistic Gaussian Processes
 - Attention based: Transformers
 - Graph based
 - Recurrence: RNN-based, ODE-based

In this lecture, we will discuss the paper "Neural Ordinary Differential Equations" by Chen et al.

[1] A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series

Technische Fakultät 21. April 2025

Machine Learning
Data Analytics

1st Order ODEs

$$\frac{d\mathbf{x}(\mathbf{t})}{d\mathbf{t}} = f(\mathbf{x}(\mathbf{t}), \mathbf{t}, \theta)$$

- x(t) is the dependent variable.
- \bullet t is the independent variable (often representing time).
- $\frac{dx(t)}{dt}$ is the derivative of x(t) with respect to t, representing the rate of change of x(t).
- f is a function that defines how the rate of change of x depends on t, x(t), and possibly other parameters θ .

1st Order ODEs

$$\frac{dx(t)}{dt} = r \cdot x(t)$$

- x(t) is the amount of money at time t.
- $\frac{dx(t)}{dt}$ is the rate of change of the amount of money with respect to time t.
- r is the interest rate, which is a constant parameter (θ) .
- The function $f(x(t), t, \theta)$ from the general form is $r \cdot x(t)$.

Initial Value Problem

Initial Value Problem

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); x(t_0) \text{ is given; } x(t_1) = ?$$

Solution: Analytical Integration

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, \theta) dt$$

Analytical Integration

Compound Interest Solution

-- Can't be integrated?

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} r \cdot x(t) dt$$

$$\frac{dx(t)}{dt} = r \cdot x(t)$$

$$\implies \frac{1}{x}\frac{dx}{dt} = r \implies \int \frac{1}{x}\frac{dx}{dt} = \int rdt$$

$$\implies ln(x) = rt + C \implies x = e^{rt + C}$$

$$\implies x(t) = Ke^{rt} \implies x(t=0) = K$$

Suppose initial investment is x(0) = K = \$20000 and r = 10% year:

$$x(t=1) = x(t=0) + \int_0^1 r \cdot x(t)dt$$

$$x(t=1) = x(t=0) + \int_0^1 r \cdot Ke^{r \cdot t}dt$$

$$x(t=1) = x(t=0) + r \cdot K \cdot \int_0^1 e^{r \cdot t}dt$$

$$x(t=1) = x(t=0) + r \cdot K \cdot (e^r - e^0)$$

$$x(t=1) = 20000 + 0.1 \times 20000 \times e^{0.1}$$

$$x(t=1) \approx 22103$$

Numerical Integration

Initial Value Problem

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); x(t_0) \text{ is given; } x(t_1) = ?$$

Solution

Can't be integrated?

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, \theta) dt$$

Approximations to the integral i.e. **Numerical Integration**:

- Euler Method
- Runge-Kutta methods

• ...

Numerical Integration

Initial Value Problem

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); x(t_0) \text{ is given; } x(t_1) = ?$$

Solution

Can't be integrated?

$$x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(x(t), t, \theta) dt$$

Euler's Method:

$$t_{n+1} = t_n + h$$

$$x(t_{n+1}) = x(t_n) + h \cdot f(x(t), t, \theta)$$

https://www.freecodecamp.org/news/eulers-method-explained-with-examples/

Numerical Integration

Euler's Method on our Compound Interest example:

$$\frac{dx(t)}{dt} = f(x(t), t, r) = r \cdot x(t); \ x(0) = 20000; \ r = 0.1; \ x(1) = ?$$

$$(\text{Solution: } x(t) = Ke^{r \cdot t}; \ x(t = 1) \approx 22103)$$

$$h = 0.25$$

$$x(t = 0.25) = x(t = 0) + 0.25 \cdot f(x(t = 0)) = 20000 + 0.25 \cdot 0.1 \cdot 20000 = 20500$$

$$x(t = 0.5) = x(t = 0.25) + 0.25 \cdot f(x(t = 0.25)) = 20500 + 0.25 \cdot 0.1 \cdot 20500 = 21012.5$$

$$x(t = 0.75) = x(t = 0.5) + 0.25 \cdot f(x(t = 0.5)) = 21012.5 + 0.25 \cdot 0.1 \cdot 21012.5 = 21537.8125$$

$$x(t = 1) = x(t = 0.75) + 0.25 \cdot f(x(t = 0.75)) = 21537.81 + 0.25 \cdot 0.1 \cdot 21537.81 = 22,076.25$$

Numerical Integration

Initial Value Problem

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); x(t_n) \text{ is given; } x(t_{n+1}) = ?$$

Solution

Technische Fakultät 21. April 2025

Vanilla Neural Networks

Here we have a simple schematic of a block in a Vanilla Neural Network.

- \bullet There's an input vector \mathbf{x} .
- It gets passed into a neuron layer where its multiplied to a weight matrix.
- It goes through a **ReLU** Activation layer.
- Perhaps it goes through another layer to give the final output $g(\mathbf{x})$.

This can be reformulated as block t, in larger Neural Network, with weights θ_t and input \mathbf{x}_t has output \mathbf{x}_{t+1} , where:

$$\mathbf{x}_{t+1} = g(\mathbf{x}_t, \theta_t)$$

ResNet^[1]

 \mathbf{X}

Here we have a similar schematic of a block but in a ResNet.

- There's an input vector \mathbf{x} .
- It gets passed into a neuron layer where its multiplied to a weight matrix.
- It goes through a **ReLU** Activation layer.
- Perhaps it goes through another layer.
- Finally the input **x** is added to give the final output $g(\mathbf{x}) + \mathbf{x}$.

This can be reformulated as block t, in larger Neural Network, with weights θ_t and input \mathbf{x}_t has output \mathbf{x}_{t+1} , where:

$$\mathbf{x}_{t+1} = \mathbf{x}_t + g(\mathbf{x}_t, \theta_t)$$

[2] Deep Residual Learning for Image Recognition

ResNet^[1] vs Vanilla Neural Network

Why do Residual Blocks help networks achieve higher accuracies and grow deeper?

- Skip connections help information flow through the network.
- This helps stabilize the training as only the skip connections are sending information in the beginning.
- ResNet blocks allow for stacking, forming very deep networks.
- This is because of the nature of backpropogation of the $\frac{dL}{d\theta}$.
- The chain rule calculation in the intermediate layers has a higher probability for explosive or vanishing gradients the deep the network is.

[2] Deep Residual Learning for Image Recognition

ResNet^[1] and its similarity with Euler Method

Residual Networks

$$\mathbf{x}_{t+1} = \mathbf{x}_t + g(\mathbf{x}_t, \theta_t)$$

Forward pass in a ResNet looks like this:

$$\mathbf{x}_1 = \mathbf{x}_0 + g(\mathbf{x}_0, \theta_0)$$

$$\mathbf{x}_2 = \mathbf{x}_1 + g(\mathbf{x}_1, \theta_1)$$

$$\mathbf{x}_3 = \mathbf{x}_2 + g(\mathbf{x}_2, \theta_2)$$

.

$$\mathbf{x}_t = \mathbf{x}_{t-1} + g(\mathbf{x}_{t-1}, \theta_{t-1})$$

$$\mathbf{y}_{pred} = \mathbf{ResNet}(\mathbf{x}_0)$$

Euler Method for ODEs

$$\mathbf{x}_{t+1} = \mathbf{x}_t + h \cdot f(\mathbf{x}_t, t, \theta)$$

Euler calculation between t=0 and t=t, looks like this:

$$\mathbf{x}_1 = \mathbf{x}_0 + h \cdot f(\mathbf{x}_0, 0, \theta)$$

$$\mathbf{x}_2 = \mathbf{x}_1 + h \cdot f(\mathbf{x}_1, 1, \theta)$$

$$\mathbf{x}_3 = \mathbf{x}_2 + h \cdot f(\mathbf{x}_2, 2, \theta)$$

:

$$\mathbf{x}_t = \mathbf{x}_{t-1} + h \cdot f(\mathbf{x}_{t-1}, t-1, \theta)$$

$$\mathbf{x}_t = \mathbf{ODESolve}(f(\mathbf{x}(t), t, \theta), \mathbf{x}_0, 0, t)$$

ResNet^[1] and its structural similarity with Euler Method

Residual Networks

$$\mathbf{x}_{t+1} = \mathbf{x}_t + g(\mathbf{x}_t, \theta_t)$$

Forward pass in a ResNet looks like this:

$$\mathbf{y}_{pred} = \mathbf{ResNet}(\mathbf{x}_0)$$

Euler Method for ODEs

$$\mathbf{x}_{t+1} = \mathbf{x}_t + h \cdot f(\mathbf{x}_t, t, \theta)$$

Euler calculation between t=0 and t=t, looks like this:

$$\mathbf{x}_t = \mathbf{ODESolve}(f(\mathbf{x}(t), t, \theta), \mathbf{x}_0, 0, t)$$

f from **ODESolve** is a **Neural Network!**

Earlier a neural network was pre-defined/hand-designed according to the domain, here we would estimate a function *f* that suits our objective.

- The depth of the network t is equivalent to time t in the ODE formulation.
- Hence, a forward pass through the ResNet is equivalent to going though the iterations and finding the value of f at t with the Euler Method and a constant step size h.
- Since there are better higher order methods than Euler for ODESolve, we can replace ResNet with these methods.

Introducing ODENet

Replacing NNet. forward() with ODESolve

NNet

```
def f(x, t, \theta):

return nnet(x, \theta_t)

def ResNet(x, \theta):

for t in range(1, T):

x = x + g(x, t, \theta)

return x
```

- As demonstrated, we iteratively pass through the depths of the Neural Network.
- Evaluating the function **g** means inputting the value at the specific depth of the Neural Network.
- Parameters Θ are specific to layers/depth.
- Function evaluations are carried out just once per layer failing to capture the complexity.

ODENet

```
def f(x, t, \theta):

return nnet([x,t], \theta)

def ODENet(x, \theta):

for t in range(1, T):

x = x + f(x, t, \theta)

return x
```

- As demonstrated, we iteratively pass through the network as if it is an ODESolve
- Evaluating the fuunction f mean inputing the value into the ODESolve an solving for that depth.
- In each function call, there's intermediate steps based on which ODESolve is chosen.
- Parameters O are shared across layers/depth.
- The number of total executions within a layer depicts how complex the function is, this is based on the task of the network.

ResNet vs ODENet

Function evaluations

- Consider the underlying function f (or g) to be modeled as a continuous function.
- ResNet like architectures only evaluate this function at specific depths/times.
- The image on the left depicts different inputs in the same function space as different black lines.
- The black dots represent function calls/evaluations, which are done only at specific points along the depth.
- The Proposed ODENet replaces ResNet with ODESolve.
- Based on the algorithm, function is evaluated at different points irrespective of "depth", as by definition it has intermediate depths.
- This allows ODENet to capture the complexity better.

[2] Neural Ordinary Differential Equations

Backpropogation

Technische Fakultät 21. April 2025

Backpropogation

Loss Calculation

Neural Networks

Loss calculation

$$\mathbf{L} = Criterion(\mathbf{y}_{pred} - \mathbf{y}_{true})$$

Backpropogation:

$$\mathbf{L}(\mathbf{y}_{pred})
ightarrow rac{d\mathbf{L}}{d heta}$$

Update θ to reduce **L**.

ODENet

Loss calculation

$$\mathbf{L} = Criterion(\mathbf{x}_{t_{pred}} - \mathbf{x}_{t_{true}})$$

Backpropogation:

$$\mathbf{L}(\mathbf{x}_{t_{pred}})
ightarrow rac{d\mathbf{L}}{d heta}$$

Update θ to reduce **L**.

- But how?
- Backpropogate through the ODE Solver, but that has high memory cost as you would have to save all steps in the middle.

Adjoint Method for Backpropogation

Adjoint State

 Let us first consider calculating how our loss changes with respect of x(t) at t.

$$a(t) = \frac{dL}{d\mathbf{x}(t)}$$

- We want to know a(t) at every time/depth t.
- At the output, this is rather easy as we have the loss and the x_i:

$$a(t_{pred}) = \frac{dL}{d\mathbf{x}_{t_{pred}}}$$

Since we want to know a(t) at every t we need to find:

$$\frac{da(t)}{dt}$$

But lets go back a step, what we really need is:

$$\frac{dL}{d\mathbf{x}_t} = \frac{dL}{d\mathbf{x}_{t+\epsilon}} \frac{d\mathbf{x}_{t+\epsilon}}{d\mathbf{x}_t} \implies \frac{dL}{d\mathbf{x}(t)} = \frac{dL}{d\mathbf{x}(t+\epsilon)} \frac{d\mathbf{x}(t+\epsilon)}{d\mathbf{x}(t)}$$

• But since we know **x(t)** follows our original ODE:

$$\mathbf{x}(t+\epsilon) = \mathbf{x}(t) + \int_{t}^{t+\epsilon} f(\mathbf{x}(t), t, \theta) dt = T_{\epsilon}(\mathbf{x}(t), t)$$

Plugging it back in, we get:

$$a(t) = \frac{dL}{d\mathbf{x}(t)} = \frac{dL}{d\mathbf{x}(t+\epsilon)} \frac{d\mathbf{x}(t+\epsilon)}{d\mathbf{x}(t)}$$

$$\implies a(t) = a(t+\epsilon) \frac{dT_{\epsilon}(\mathbf{x}(t),t)}{d\mathbf{x}(t)}$$

Adjoint Method for Backpropogation

Adjoint State

So we have:

$$a(t) = a(t + \epsilon) \frac{dT_{\epsilon}(\mathbf{x}(t), t)}{d\mathbf{x}(t)}$$

Since we want to know **a(t)** at every **t** we need to find:

$$\frac{da(t)}{dt} = -a(t)\frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}$$

(Proof in Appendix B.1 of the original paper)

- This is basically another ODE, more complex than the older one but an ODE nonetheless.
- Now it can be solved for any t_k by using t_{output} as initial value:

$$a(t_k) = a(t_{pred}) + \int_{t_{pred}}^{t_k} \frac{da(t)}{dt} dt$$

Or to get how our loss relates to the initial state $x(t_0)$:

$$a(t_0) = a(t_{pred}) + \int_{t_{pred}}^{t_0} -a(t) \frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)} dt$$

$$\implies a(t_0) = \mathbf{ODESolve} \left(-a(t) \frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}, a(t_{pred}), t_{pred}, t_0 \right)$$

$$\implies \frac{dL}{d\mathbf{x}_{t_0}} = \mathbf{ODESolve} \left(-\frac{dL}{d\mathbf{x}(t)} \frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}, \frac{dL}{d\mathbf{x}_{t_{pred}}}, t_{pred}, t_0 \right)$$

$$\therefore a(t_0) = \frac{dL}{d\mathbf{x}_{t_0}}; a(t_{pred}) = \frac{dL}{d\mathbf{x}_{t_{pred}}}$$

But since we need the intermediate depth between t_{pred} and t_0 , we also need to solve in tandem:

$$x(t_0) = \mathbf{ODESolve}\left(f(\mathbf{x}(t), t, \theta), x_{t_{pred}}, t_{pred}, t_0\right)$$

The original ODESolve but in reverse!

Adjoint Method for Backpropogation

Machine Learning
Data Analytics

Simultaneuous ODESolve for Backpropogation

So we have:

$$x(t_0) = \mathbf{ODESolve}\left(f(\mathbf{x}(t), t, \theta), x_{t_{pred}}, t_{pred}, t_0\right)$$

$$\frac{dL}{d\mathbf{x}_{t_0}} = \mathbf{ODESolve}\left(-\frac{dL}{d\mathbf{x}(t)} \frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}, \frac{dL}{d\mathbf{x}_{t_{pred}}}, t_{pred}, t_0\right)$$

We have from the paper (Appendix B.2):

$$\frac{dL}{d\theta} = \int_{t_{pred}}^{t_0} -a(t) \frac{df(\mathbf{x}(t), t, \theta)}{d\theta} dt$$

$$\implies \frac{dL}{d\theta} = \mathbf{ODESolve} \left(-a(t) \frac{df(\mathbf{x}(t), t, \theta)}{d\theta}, \mathbf{0}_{|\theta|}, t_{pred}, t_0 \right)$$

$$\implies \frac{dL}{d\theta} = \mathbf{ODESolve} \left(-\frac{dL}{d\mathbf{x}(t)} \frac{df(\mathbf{x}(t), t, \theta)}{d\theta}, \mathbf{0}_{|\theta|}, t_{pred}, t_0 \right)$$

$$\begin{bmatrix} x(t_0) \\ \frac{dL}{d\mathbf{x}_{t_0}} \\ \frac{dL}{d\theta} \end{bmatrix} = \mathbf{ODESolve} \begin{pmatrix} \begin{bmatrix} f(\mathbf{x}(t), t, \theta) \\ -\frac{dL}{d\mathbf{x}(t)} \frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)} \\ -\frac{dL}{d\mathbf{x}(t)} \frac{df(\mathbf{x}(t), t, \theta)}{d\theta} \end{bmatrix}, \begin{bmatrix} x(t_{pred}) \\ \frac{dL}{d\mathbf{x}_{t_{pred}}} \\ \mathbf{0}_{|\theta|} \end{bmatrix}, t_{pred}, t_0 \end{pmatrix}$$

Application of ODENet on Time Series

Technische Fakultät 21. April 2025

Combination with RNN

To solve for future/past and intermediate time step

Figure 6: Computation graph of the latent ODE model.

- So lets say we have observations depicting stock market or other time series data at time steps $t_0, t_1, \ldots t_N$.
- In a regular RNN, this information can be encoded into the hidden states of the RNN and get to a Latent Space.
- We encode this hidden state latent space into a continuous distribution (like a Gaussian) just like in a VAE.
- We then sample from that gaussian a z_0 that will serve as the initial value of your ODESolve.

[2] Neural Ordinary Differential Equations

36

Combination with RNN

To solve for future/past and intermediate time step

Figure 6: Computation graph of the latent ODE model.

- Now that we z_{t0} as the initial value, we perform an ODESolve to get the latent space representations of all the other time steps z_{t1} till z_{tN} .
- We then decode them into the data space to get our prediction for t1 to tN.
- To then calculate the reconstruction loss from observed and predicted values.
- The advantage of this once trained, is that we can extrapolate the same ODESolve+Decode to a time step in the future.
- This method has no limitations when it comes to irregularly sampled data or extrapolation for different Δt.

[2] Neural Ordinary Differential Equations

Combination with RNN

To solve for future/past and intermediate time step

Figure 2: The Latent ODE model with an ODE-RNN encoder. To make predictions in this model, the ODE-RNN encoder is run backwards in time to produce an approximate posterior over the initial state: $q(z_0|\{x_i,t_i\}_{i=0}^N)$. Given a sample of z_0 , we can find the latent state at any point of interest by solving an ODE initial-value problem. Figure adapted from Chen et al. [2018].

- A future paper from the same group suggested a LatentODE model to specifically combat irregularly sampled time series.
- They propose getting latent representations of the time-series data through a GRU where its regularly sampled.
- But wherever irregularly sampled they push it through an ODE as this helps fill up the missing values.
- The remaining structure remains the same.

References

To solve for future/past and intermediate time step

- [1] A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series.
- [2] Neural Ordinary Differential Equations.
- [3] Latent ODEs for Irregularly-Sampled Time Series.
- [4] Dr. Vikram Voleti's talk and slides.
- [5] Machine Leaning @ Berkeley blog post by Aidan Abudlali.
- [6] Lecture by Dr. Andriy Drozdyuk.

Tutorials:

- 1. <u>Jupyter notebook from UCL Artificial Intelligence Society</u>
- 2. University of Amsterdam Deep Learning Lectures by Phillip Lippe
- 3. <u>Blog post from Mikhail Surtsukov</u>.

[3] Latent ODEs for Irregularly-Sampled Time Series

Thank you for your attention

Appendix B.2 Explanation

Technische Fakultät 21. April 2025

Appendix B.2

From appendix B.1, we have the following:

$$\frac{da(t)}{dt} = -a(t)\frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}$$

 This rule applies to any ODE and its corresponding adjoint defined in the same way:

$$a(t) = \frac{dL}{d\mathbf{x}(t)}$$

We have from our original formaultion:

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), t, \theta)$$

• Similarly: $a_{\theta}(t) = \frac{dL}{d\theta}; a_{t}(t) = \frac{dL}{dt(t)}; \frac{d\theta}{dt} = 0; \frac{dt}{dt} = 1$

· We can combine these to form an augmented state

$$\frac{d}{d\theta} \begin{bmatrix} \mathbf{x}(t) \\ \theta \\ t \end{bmatrix} = f_{aug}([\mathbf{x}(t), \theta, t]) \coloneqq \begin{bmatrix} f([\mathbf{x}(t), \theta, t]) \\ 0 \\ 1 \end{bmatrix}$$

• Similarly an augmented adjoint can also be defined:

$$a_{aug}(t) = \begin{bmatrix} \frac{dL}{d\mathbf{x}(t)} \\ \frac{dL}{d\theta(t)} \\ \frac{dL}{dt(t)} \end{bmatrix} = \begin{bmatrix} a(t) \\ a_{\theta}(t) \\ a_{t}(t) \end{bmatrix}$$

Appendix B.2

• The Jacobian of f_{aug} , i.e., f_{aug} differentiated with all its variables is:

$$\frac{df_{aug}}{d([\mathbf{x}(t), \theta, t])} = \begin{bmatrix} \frac{df}{d\mathbf{x}(t)} & \frac{df}{d\theta} & \frac{df}{dt} \\ \frac{d\theta}{d\mathbf{x}(t)} & \frac{d\theta}{d\theta} & \frac{d\theta}{dt} \\ \frac{d1}{d\mathbf{x}(t)} & \frac{d1}{d\theta} & \frac{d1}{dt} \end{bmatrix} = \begin{bmatrix} \frac{df}{d\mathbf{x}(t)} & \frac{df}{d\theta} & \frac{df}{dt} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Remember, that adjoint can be defined as:

$$\frac{da(t)}{dt} = -a(t)\frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}$$

• Similarly, our augmented adjoint is:

$$\frac{da_{aug}(t)}{dt} = -a_{aug}(t) \frac{df_{aug}}{d([\mathbf{x}(t), \theta, t])}$$

Substituting our Jacobian into the equation:

$$\frac{da_{aug}(t)}{dt} = -\begin{bmatrix} a(t)\frac{df}{d\mathbf{x}(t)} & a(t)\frac{df}{d\theta} & a(t)\frac{df}{dt} \end{bmatrix}$$

• This implies that:

$$\frac{da_{\theta}(t)}{dt} = -a(t)\frac{df}{d\theta}$$

Similar to:

$$\frac{da(t)}{dt} = -a(t)\frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}$$

Appendix B.2

So we have:

$$\frac{da_{\theta}(t)}{dt} = -a(t)\frac{df}{d\theta}$$

Similar to:

$$\frac{da(t)}{dt} = -a(t)\frac{df(\mathbf{x}(t), t, \theta)}{d\mathbf{x}(t)}$$

• So we can solve it similar to an ODE, integrating from end to beginning:

$$a_{\theta}(t_k) = a_{\theta}(t_{pred}) + \int_{t_{pred}}^{t_k} \frac{da_{\theta}(t)}{dt} dt$$

• Or to get how our loss relates to the parameters θ :

$$a_{\theta}(t_{0}) = a_{\theta}(t_{pred}) + \int_{t_{pred}}^{t_{0}} -a_{\theta}(t) \frac{f(\mathbf{x}(t), t, \theta)}{d\theta} dt$$

$$\implies a_{\theta}(t_{0}) = \mathbf{ODESolve} \left(-a_{\theta}(t) \frac{f(\mathbf{x}(t), t, \theta)}{d\theta}, a_{\theta}(t_{pred}), t_{pred}, t_{0} \right)$$

$$\implies \frac{dL}{d\theta(t_{0})} = \mathbf{ODESolve} \left(-\frac{dL}{d\theta} \frac{f(\mathbf{x}(t), t, \theta)}{d\theta}, \frac{dL}{d\theta(t_{pred})}, t_{pred}, t_{0} \right)$$

$$\therefore a_{\theta}(t_{0}) = \frac{dL}{d\theta(t_{0})}; a_{\theta}(t_{pred}) = \frac{dL}{d\theta(t_{pred})}$$

Thank you for your attention