Gestion de Portefeuille

TP-3: Modèle à un facteur

Paul Giraud , Kouamé YAO & Loïc Turounet

Version: 26 fév 2022

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
library(broom)
library(quadprog)
```

Données

Séries de rendement mensuel pour 11 valeurs:

```
monthly.ret.file <- "./monthly.ret.rda"
load(monthly.ret.file)
index(monthly.ret) <- floor_date(index(monthly.ret), "month")</pre>
```

Matrice de covariance des rendements:

```
kable(cov(monthly.ret), "latex", booktabs=T) %>%
kable_styling(latex_options=c("scale_down", "HOLD_position"))
```

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	$_{ m HD}$	PG	КО
AAPL	0.0079015	0.0035933	0.0028724	0.0036506	0.0021193	0.0033242	0.0012183	0.0019158	0.0012159	0.0009073	0.0009576
AMZN	0.0035933	0.0097937	0.0026625	0.0025940	0.0020258	0.0030033	0.0011468	0.0016726	0.0016066	0.0003831	0.0013968
MSFT	0.0028724	0.0026625	0.0044949	0.0032132	0.0017774	0.0022969	0.0009976	0.0012898	0.0015753	0.0007414	0.0011363
F	0.0036506	0.0025940	0.0032132	0.0226257	0.0032869	0.0034954	0.0017697	0.0034663	0.0032642	0.0014660	0.0014993
SPY	0.0021193	0.0020258	0.0017774	0.0032869	0.0017549	0.0019207	0.0012159	0.0016906	0.0015105	0.0008284	0.0009008
QQQ	0.0033242	0.0030033	0.0022969	0.0034954	0.0019207	0.0025159	0.0010479	0.0016973	0.0016125	0.0007561	0.0008650
XOM	0.0012183	0.0011468	0.0009976	0.0017697	0.0012159	0.0010479	0.0025213	0.0015076	0.0008121	0.0006409	0.0007365
MMM	0.0019158	0.0016726	0.0012898	0.0034663	0.0016906	0.0016973	0.0015076	0.0032027	0.0016559	0.0009968	0.0008642
$^{\mathrm{HD}}$	0.0012159	0.0016066	0.0015753	0.0032642	0.0015105	0.0016125	0.0008121	0.0016559	0.0037458	0.0005615	0.0005566
PG	0.0009073	0.0003831	0.0007414	0.0014660	0.0008284	0.0007561	0.0006409	0.0009968	0.0005615	0.0018508	0.0009004
KO	0.0009576	0.0013968	0.0011363	0.0014993	0.0009008	0.0008650	0.0007365	0.0008642	0.0005566	0.0009004	0.0019550

Rendement moyen mensuel

Table 1: Rendement moyen mensuel

	Rendement
AAPL	0.0254037
AMZN	0.0298355
MSFT	0.0151864
\mathbf{F}	0.0115177
SPY	0.0075856
QQQ	0.0122593
XOM	0.0016595
MMM	0.0079299
$_{ m HD}$	0.0151356
PG	0.0073821
КО	0.0100164

Taux sans risque

Le taux sans risque mensuel est obtenu de la Réserve Fédérale US. A diviser par 12 pour être cohérent avec les rendement des titres.

```
tmp <- read.csv("DP_LIVE_01032020211755676.csv", header=TRUE, sep=";")[, c("TIME", "Value")]
dt <- ymd(paste(tmp$TIME, "-01", sep=""))
rf_rate <- xts((tmp$Value/100.0)/12, dt)
colnames(rf_rate) <- "Rf"
monthly.ret.2 <- merge.xts(monthly.ret, rf_rate, join="inner")</pre>
```

Estimation d'un modèle à un facteur

• Utiliser l'indice SPY comme proxy pour le marché et estimer pour chaque titre le modèle:

Figure 1: taux sans risque mensuel

$$R_i(t) - R_f(t) = \alpha + \beta (R_M(t) - R_f(t)) + \epsilon(t)$$

en utilisant la fonction 1m. - Placer chaque titre sur un diagramme rendement/beta et calculer par regression la droite de marché des titres risqués. - En déduire les titres qui, selon ce modèle, *semblent* chers et ceux qui semblent sous-évalués.

```
names <- colnames(monthly.ret.2)
df <- data.frame(setNames(rep(list(0), length(names)), names))
number.assets = dim(monthly.ret.2)[2]

ret.proxy.spy <- monthly.ret.2$SPY - monthly.ret.2$Rf
for (i in 1:number.assets){
   ret <- monthly.ret.2[,i] - monthly.ret.2$Rf
   linear_model <- lm(ret ~ ret.proxy.spy)
   df[1:2,i] <- linear_model$coefficients
}
row.names(df) <- c("alpha", "beta")</pre>
```

```
kable(df, "latex", booktabs=T, caption="Alpha and Beta for each asset") %>%
kable_styling(latex_options=c("scale_down", "HOLD_position"))
```

Table 2: Alpha and Beta for each asset

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	КО	Rf
alpha	0.0167401	0.0212874	0.0073307	-0.0008543	0	0.0039254	-0.0031066	0.0007451	0.0080456	0.0034204	0.0056304	0
beta	1.1948376	1.1465481	1.0148488	1.8508513	1	1.0959372	0.6751296	0.9608010	0.8746106	0.4693130	0.5136098	0

Ainsi, nous pouvons observer d'après la Table 2, que le alpha du SPY est nul et que son beta est égale à 1. Cela nous permet de valider nos calculs de alpha et beta, en effet, le SPY a été choisi comme proxy pour le marché.

Résultats :

- •
- •
- •
- •
- .
- •
- _

Est-ce que ces mesures de cherté relative vous semble correctes? Essayez de mesurer la robustesse de ce calcul en estimant le modèles sur des sous-intervalles de temps.

Présentez vos résultats de manière synthétique.