

F6 Interferens och böjning

Dagens föreläsning

- F4 Elektromagnetiska vågor
- F5 Böjning och upplösning
- F6 Interferens och böjning
- F7 Interferens i tunna skikt
- F8 Polarisation

- Youngs dubbelspaltsförsök
- Interferens från många spalter
- Gitter

Avbildningsfel

Dispersion

• Brytningsindex beror på våglängden

Avbildningsfel

Kromatisk aberration

Kromatisk aberration

Exempel

Avbildningsfel

Sfärisk aberration

Exempel: Sfärisk aberration

Hubble-teleskopet

• 2 mikrometers felslipning längs kanterna

Exempel

Sfärisk aberration

• Spiralgalaxen M100 fotograferad av Hubble-teleskopet

Före korrektion

Efter korrektion

Svenska solteleskopet

Adaptiv optik för att motverka aberration från atmosfären

Böjning och interferens

Böjning Interferens

Interferens

Många spalter

Youngs dubbelspaltförsök

Dubbelspalt

Vägskillnad

- Interferensmaxima: $d \sin \theta = m \lambda$, där $m = 0, \pm 1, \pm 2, \pm 3, ...$
- Böjningsminima: $b \sin \theta = m \lambda$, där $m = \pm 1, \pm 2, \pm 3, ...$

Exempeluppgift

Youngs dubbelspaltsförsök

Vid en demonstration av Youngs dubbelspaltförsök var avståndet mellan de ljusa interferensfransarna 5,0 mm då skärmen befann sig 5,00 meter ifrån dubbelspalten. Hur stort var spaltavståndet om ljuskällan var en grön HeNe-laser med våglängden 543 nm?

N spalter

Exempel

Intensitetsfördelning – 6 spalter

Mellan två huvudmaxima finns N-1 minima och N-2 bimaxima

Interferens

N spalter

- Intensitetsfördelning: $I(\theta) = I_0 \left(\frac{\sin N\gamma}{\sin \gamma}\right)^2$, där $\gamma = \frac{\pi d}{\lambda} \sin \theta$
- Huvudmaxima identifieras då
 - Bidragen från alla spalter är i fas,
 - Då nämnaren $\sin \gamma \rightarrow 0 \Longrightarrow d \sin \theta = m\lambda$, där $m = 0, \pm 1, \pm 2, \pm 3, ...$
- Bimaxima identifieras då
 - Då täljaren $\sin N\gamma = 1$
- Detta ger:
 - N-2 bimaxima mellan två huvudmaxima
 - N-1 nollställen mellan två huvudmaxima

N spalter

Hur många spalter var det?

Böjning och interferens

Lunds Tekniska Högskola

$$I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2 \left(\frac{\sin N\gamma}{\sin \gamma}\right)^2$$

$$\sum_{0.5}^{0.5} \frac{1}{0.5}$$

$$0.5 = \frac{1}{\sqrt{2}}$$

$$0.5 = \frac{1}{\sqrt{2}}$$

$$0.5 = \frac{1}{\sqrt{2}}$$

-6

-2

0

γ/π

2

6

Exempel

Uppgift 17.8

Parallellt ljus från en laser infaller vinkelrätt mot en trippelspalt. Alla tre spalterna har samma bredd och avståndet mellan dem är detsamma. Intensitetsfördelningen på en skärm 10 meter bort ser ut som nedan. Beskriv intensitetsfördelningen om:

- a) Spalten B blockeras
- b) Spalten C blockeras
- c) Spalterna A och C blockeras

Många spalter

Gitter

Optisk komponent med regelbundet mönster (spalter eller ritsar) som används bland annat inom spektroskopi för att dela upp ljus beroende på våglängd.

Gitter

Transmission eller reflektion

Gitterspektrometer

Tillämpning

Gitter

Formler

- Intensitetsmaxima fås då: $d(\sin \alpha_2 \sin \alpha_1) = m\lambda$
 - där ordningen $m=0,\pm 1,\pm 2,\pm 3,...$
 - Vinklarna α_1 och α_2 ligger på motstående sida om normalen

Transmissionsgitter

Reflektionsgitter

