Otimização - Trabalho 1

Fernanda Yukari Kawasaki, Vinícius Teixeira Vieira dos Santos {fyk18, vtvs18}@inf.ufpr.br

31 de julho de 2022

1 Introdução

O objetivo do trabalho consiste em modelar e implementar, por programação linear, uma solução para o problema do despacho hidrotérmico do sistema elétrico de uma cidade.

1.1 O problema

A rede elétrica de uma cidade é abastecida por uma usina hidrelétrica e uma usina termoelétrica. A hidrelétrica tem custo de geração nulo, mas precisa atender a restrições de balanço hídrico, enquanto a termoelétrica tem um custo associado a cada MWatt gerado. Neste problema, você deve conceber um plano de geração mensal em um período de n meses que minimiza o custo total. Além do custo de geração termoelétrica, há o custo ambiental (convertido em R\$) associado à variação do reservatório da hidrelétrica, para mais ou para menos, de um mês para o seguinte. Os custos de geração de 1MWatt pela termoelétrica (CT) e da variação de 1m³ no reservatório (CA) são constantes dadas. Para resolver este problema, você deve considerar as seguintes informações:

- O reservatório começa com um volume inicial de água (v_{ini}) e tem limites mínimo e máximo (constantes dadas) para o volume de água (m^3) e que devem ser respeitados, respectivamente v_{min} e v_{max} .
- A cada mês, o reservatório recebe um volume de água (m³) proveniente de chuvas, afluências, etc. Essas informações foram estimadas para os n meses do planejamento e são constantes dadas, y₁, y₂, ..., y_n.
- A única forma do volume de água no reservatório diminuir é turbinando a água para gerar energia. A cada 1m³ de água turbinada, gera-se kMWatt de energia, onde k é uma constante dada.
- \bullet Há uma capacidade máxima de geração mensal da termoelétrica, que é uma constante $t_{\rm max}$ dada;
- As demandas mensais da cidade (MWatt) também são constantes d₁, d₂, ..., d_n dadas e devem ser atendidas pela geração de energia da hidrelétrica e da termoelétrica. Gerar mais do que a demanda não é um problema (a energia restante vai para outra cidade, por exemplo).

2 Modelagem

A partir da descrição dada, podemos formular as variáveis para solucionar o problema.

2.1 Variáveis

As seguintes variáveis foram utilizadas para modelar o problema em um programa linear:

- CA: Custo ambiental da variação de 1m³ no reservatório.
- CA_i : Custo ambiental no mês i.
- A_i : Alteração no volume do reservatório no mês i.
- CT: Custo de geração de 1MWatt pela usina termoelétrica.
- CT_i: Custo de geração da usina termoelétrica no mês i.
- t_{max}: Capacidade máxima de geração mensal da termoelétrica.
- PT_i: Produção de energia elétrica pela usina termoelétrica no mês i.
- PH_i: Produção de energia elétrica pela usina hidrelétrica no mês i.
- V_i: Volume do reservatório no mês i.
- V_{ini}: Volume inicial do reservatório.
- $\bullet~V_{\rm min}$: Volume mínimo do reservatório.
- V_{max}: Volume máximo do reservatório.
- Y_i : Volume de chuvas e afluências no mês i.
- VP_i: Volume do reservatório utilizado para produção de energia no mês i.
- k: Coeficiente da geração de KWatts a cada m³ de água turbinada pela usina hidrelétrica.
- n: Quantidade de meses do planejamento.
- d_i : Demanda mensal no mês i.
 - *Os valores n, d_i , y_i , V_{ini} , V_{min} , V_{max} , k, t_{max} , CT e CA devem ser fornecidos no arquivo de entrada.

2.2 Função Objetivo e restrições

Considerando a especificação, a função objetivo é a minimização do custo total, e pode ser escrita da seguinte forma:

Minimizar:

$$\sum_{i=1}^{n} (CA_i + CT_i)$$

Sujeito a:

$$CA_i = CA \times A_i$$

Os custos ambientais de cada mês correspondem à variação no volume mensal (A_i) vezes o custo da variação por m³ (CA).

$$A_i = |V_i - V_{i-1}|$$

A alteração do volume no reservatório (A_i) consiste na diferença entre o volume do mês atual e o volume do mês anterior, em módulo.

Para transformar o módulo em uma função linear, dividimos A_i entre seu valor absoluto e em módulo utilizando variáveis extras **não negativas**:

$$x_i + z_i = V_i - V_{i-1}$$

$$x_i - z_i = V_{i-1} - V_i$$

Então, A_i passa a ser:

$$A_i = x_i + z_i$$

$$CT_i = CT \times PT_i$$

Os custos de geração da usina termoelétrica de cada mês correspondem à produção de energia elétrica da usina termoelétrica do mês (PT_i) vezes o custo de geração da usina termoelétrica (CT).

$$0 < PT_i < t_{max}$$

A produção de energia elétrica do mês (PT_i) não tem como ser negativa e deve ser menor que o máximo (t_{max}) .

$$V_i = V_{i-1} + Y_i - VP_i$$

O volume do reservatório do mês (V_i) é o volume do reservatório no mês anterior (V_{i-1}) somado com o volume de afluências do mês atual (Y_i) e subtraindo o volume utilizado para produção de energia do mês (VP_i)

$$VP_i \geq 0$$

O volume de água utilizado para produção de energia do mês não pode ser negativo.

$$PH_i + PT_i \ge d_i$$

A produção de energia hidrelétrica e de energia termoelétrica do mês deve suprir a demanda (d_i) , ou seja, deve ser maior ou igual a d_i .

$$PH_i = k \times VP_i$$

A produção de energia hidrelétrica do mês (PH_i) é o coeficiente de geração de $KWatts/m^3$ (k) pelo volume utilizado para produção de energia do mês (VP_i)

$$V_{min} \le V_i \le V_{max}$$

O volume do reservatório no mês (V_i) deve ser maior ou igual ao volume mínimo (V_{\min}) e menor ou igual ao volume máximo (V_{\max})

Portanto, o problema pode ser escrito como:

Minimizar:

$$\sum_{i=1}^{n} (CA_i + CT_i)$$

Sujeito a:

$$CA_{i} = CA \times A_{i}$$

$$CT_{i} = CT \times PT_{i}$$

$$A_{i} = x_{i} + z_{i}$$

$$x_{i} + z_{i} = V_{i} - V_{i-1}$$

$$x_{i} - z_{i} = V_{i-1} - V_{i}$$

$$V_{i} = V_{i-1} + Y_{i} - VP_{i}$$

$$PH_{i} + PT_{i} \ge d_{i}$$

$$PH_{i} = k \times VP_{i}$$

$$V_{min} \le V_{i} \le V_{max}$$

$$V_{0} = V_{ini}$$

$$0 \le PT_{i} \le t_{max}$$

$$VP_{i} \ge 0$$

$$x_{i}, z_{i} \ge 0$$

$$1 < i < n$$

Onde V_{ini} , V_{min} , V_{max} , Y_i , t_{max} , d_i , n, k, CA e CT são valores dados.

3 Código e implementação

O código foi escrito em Python (versão 3.9.2) e testado nas máquinas dos laboratórios do Departamento de Informática e seu executável está no arquivo despacho acompanhado por um Makefile. O arquivo de entradas deve ser passado usando a entrada padrão (stdin) e o resultado com a descrição do programa linear é passado pela saída padrão seguindo o formato lp_solve.

Para rodar: ./despacho < entrada.txt

3.1 Exemplos

Exemplos de entrada e de saída podem ser encontrados no diretório exemplos no formato exemplo_entrada<número> com sua respectiva saída esperada exemplo_saida<número> .lp.

3.2 Erros

Caso o arquivo de entrada não esteja no formato correto, o programa irá encerrar sua execução. Isso pode ocorrer em duas situações:

- O número de linhas da entrada é diferente de 6.
- A quantidade de demandas e afluências difere da quantidade de meses.