

Chapter 1

Python pandas

Prof. Dr. K. Verbarg

Outline

Introduction

About our motives and Python basics

Repetition Relational Database Management System (RDBMS)

The requirements list for RDBMS

- 1) Define the structure of the data (schema) by a data-definition language (DDL)
- 2) Manipulate and <u>query the data</u> using a data-manipulation language (DML) This should be convenient (by using a special language)

 Example in <u>SQL</u> (pronounced "sequel": this is the standard for RDBMS):

 SELECT balance FROM Accounts WHERE accountNo = 123456;
- 3) Support <u>large</u> amounts of data over a long period of time → access to the data should be efficient (fast)
- 4) Enable <u>durability</u> or persistence: data should be safe (a "bank") and recoverable in case of failures, errors or misuse.
- 5) <u>Many users</u> access data at once being protected against unexpected interactions (called isolation).
- 6) Reliability: The system is available 99.999...% of the time

What do we need for analysing static datasets (just once maybe)?

- Would be nice, but pandas will try to infer the schema automatically from data.
- Yes, we will see the pandascounterparts for SQL commands.
 However, pandas provides a more functional approach.
- 3) Yes, but this may be an issue when we have all data in the RAM.
- 4) No
- 5) No (especially not transactions)
- 6) No

RDBMS – relational algebra

A <u>relation</u> is a relation schema (name of the relation plus a list of attributes) plus the data stored in the relation (a bag or multiset of tuples).

Example:

Basic commands of relational algebra:

- Projection (π "pi"): Select only some of the columns
- Selection (σ "sigma"): Select only some of the rows
- Renaming (ρ "rho"): The instance is the same, only the schema changes
- Duplicate elimination (δ "delta")
- Grouping and aggregation result (γ "gamma")

RDBMS - SQL

- CREATE TABLE with primary, foreign key and check constraints
- SELECT with GROUP BY / ORDER BY / Subqueries
- Joins (Cartesian product, natural join, left outer join, theta join, equijoin)

```
We can compute R \times S with the <u>nested loop algorithm</u>: for i = 1 to n := |R| for j = 1 to m := |S| print R[i], S[j]

The runtime is O(n^2), assuming that n > m (otherwise exchange R and S).
```

- INSERT / DELETE / UPDATE
- NULL arithmetic
- \circ Standard functions in the SELECT column list (e.g. string concatenation with " $\mid\mid$ ")
- Views

RDBMS – entity relationship modelling

Entities, relations, attributes, keys, multiplicity with Chen or UML-crowfoot notation.

Mapping of ERM to relations.

Learning database basics

If you want to refresh your DB knowledge, this is a good reference.

It is available in our library as online PDF (accessible from within the HOST network)

https://ebookcentral.proquest.com/lib/hs-stralsund/detail.action?docID=6363308

Motives for having alternatives to RDBMS

RDBMS proved to be highly beneficial for many applications. A RDBMS is "automatically" <u>efficient</u> and <u>scales</u> well to large dataset (on disk). <u>SQL</u> provides a simple declarative, yet extremely powerful toolset to query and maintain data.

But it comes with a large <u>overhead</u> to provide the guarantees like ACID (atomicity, consistency, isolation, durability). <u>Operating</u> a RDBMS requires considerable effort and cost (licensing, administration, hardware).

Therefore, for specific applications various alternative approaches were developed.

- Think of replacing relations with other data structures like JSON documents, key/value pairs, graphs, linked data (NoSQL databases)
- distributed databases for better scalability in exchange for absolute consistency
- unstructured data
- stream data from sensors

To quickly develop one-time statistical evaluations, data science applications, providing a data basis for machine learning...

... we look into **Python pandas** now.

Ironically, when such pandas projects grow, performance and memory limitations may get an issue again.

What we want to do now

There is some discussion indeed, whether Python pandas or **R** plus **tidyverse** / **dyplr** is the best solution.

If you are interested, look into https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/

For an overview of dyplr operations, see https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf

We leave this discussion to the reader. It may depend on your background and the ecosystem you are familiar with (R for statistics, Python for programmers or machine learning). You might even want to mix the approaches.

Reasons to go with Python pandas here are:

- <u>Python</u> is a very easy (to learn) programming / script language. It provides very powerful functions and interfaces so that we are completely equipped.
- If you want to extend data flows in <u>SAP</u> Data
 Warehouse Cloud, you need Python pandas (and not SAP ABAP).

Our goals are:

- review the very basics of Python to be able to proceed
- working with relational data in pandas along the lines of what we know from SQL commands
- o input and output of data
- data cleansing and basic descriptive statistics

Disclaimer: In contrast to SQL tool set, in pandas there are many competing solutions to a problem and lots of very specific functions. We aim to show one way through.

Programming environment

In your VM, the **anaconda** distribution (cost-free individual edition) is installed and necessary Python packages activated in the standard Environment "base".

You can install new packages with the "Anaconda Prompt".

The command used is conda.

To update conda itself, first do:

conda update conda

To update all installed packages, do:

conda update --all

Disclaimer: There is a high rate of progress in this area.

Anaconda Prompt (Anaconda3)

App

Anaconda Prompt (Anaconda3)

(base) C:\Users\verbarg>conda update conda
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

environment location: C:\Users\verbarg\Anaconda3

added / updated specs:

- conda

The following packages will be downloaded:

package	build	
qtconsole-5.1.1	pyhd3eb1b0_0	98
tk-8.6.11	h2bbff1b_0	3.3
traitlets-5.1.0	pyhd3eb1b0_0	89

JupyterLab

We will not use the **JupyterLab** notebook editor.

We prefer **VSCode** with Extensions Python / Jupyter.

https://code.visualstudio.com/docs/datascience/jupyternotebooks

A notebook (.ipynb file) is attached to a <u>kernel</u> (a Python process). Unless you restart the kernel, it keeps its current state (values of variables).

The notebook consists of <u>cells</u> containing code. Cells can be executed one by one. This supports a incremental development workflow of investigating intermediate results before coding the next cell.

You can also comment on your code using <u>markdown</u> formatted cells.

You later may <u>export</u> (main toolbar ... > Export) your notebook e.g. as code script or as HTML with comments and outputs. You may then use standard print dialog and use the printer ("<u>Als **PDF** speichern</u>").

Key	
Cursor up/down	Navigate between cells
a / b	Insert a cell above or below
x/c/v	Cut / copy / paste a cell
Z	Undo last cell operation
m/y/r	Changes the type of a cell to <u>markdown</u> , (Python) <u>code</u> , or <u>raw</u> (ignore it)
Enter / ESC	Toggle between edit mode and command mode
Ctrl-Enter Shift-Enter	Execute the cell (format markdown or execute the code). Shift-Enter additionally walks to the next cell.
TAB / Shift-TAB	Auto-completion / show signature in edit mode (IPython command – may take a second)
Shift-M	Merge cells
CTRL-Shift-minus	Split cell

Markdown

Markdown is a simple way to format text.

In JupyterLab, see Menu: Help > Markdown Reference for a cheat sheet and a tutorial.

You might also use LATEX to type mathematical formulas

A math formula using LaTeX:
$$a^2 + \frac{1}{b}$$

A math formula using LaTeX: $a^2 + \frac{1}{b}$

_	_			
т	٠,	_	\sim	•
	١,	m	$\boldsymbol{\omega}$	-
	v	v	L	•
	•			

Italic

Bold

Heading 1

Heading 2

* List

* List

* List

To get this output:

Italic

Bold

Heading 1

Heading 2

List

List

List

`Inline code` with backticks

Inline code with backticks

Sources for learning Python

Website and Books

A good starting point is the homepage of Python itself https://www.python.org/

There you find a tutorial https://docs.python.org/3/

Just for the sake of completeness: We do also have many (> 140!) books in the horary, including (too) extensive introductions:

Thomas Theis

Michael Weigend

Online books

https://doi.org/10.1007/978-3-658-26133-7
(from within the HOST network or your VM)
Chapter 4 through 8 are just 40 pages.

You should at least go through this (read and to

You should at least go through this (read and try in your JupyterLab environment)!

https://doi.org/10.1007/978-3-658-28976-8

(from within the HOST network or your VM)

Sebastian Dörn

Python lernen
in abgeschlossenen
Lerneinheiten
Programmieren für Einsteiger
mit vielen Beispielen
2. Auflage

Springer Vieweg

http://dx.doi.org/10.1007/978-3-658-20705-2

(from within the HOST network or your VM)

Sources for learning Python

Online courses

For those you have the time and like to go through an online video course, there are free courses on

- New openSAP course for beginners https://open.sap.com/courses/python1
- Udemy
- datacamp
- o coursera
- https://ocw.mit.edu/courses/electrical-engineeringand-computer-science/6-0001-introduction-tocomputer-science-and-programming-in-python-fall-2016/

Kaggle

https://www.kaggle.com/

is a community for data science.

You will find datasets (!) together with code, discussions, courses, competitions,..

You can run your Notebooks there.

Python basics

Here comes a list of things, you need to understand at least to proceed:

- Basic syntax: indentation 4 blanks
- o print()
- o Writing string literals as
 raw string: r'Backslash \n is printed here'
 formatted string: f'value of Variable {a}'
- o **Data types** int, str
- Data structures: list [...], tupel (...), dictionary {...}
- Defining a function with def
- o Control flow: if, while, for
- o True, False, None
- o assert 1 + 1 == 3, "1+1 should be 3"
- o 1 000 000 is the same as 1000000

Helpful might be to know:

- o type (variable) shows the data type of the variable
- o isinstance(df, pd.core.frame.DataFrame)
 checks the type of the variable
- o dir (variable) shows all attributes of the variable
- o help(variable) shows documentation of the object

IPython commands:

- o variable? gives Information about the variable
 variable?? about the implementation, too
- o %xmode minimal in JupyterLab (IPython) notebook reduces length of error messages
- o %timeit command measures the time needed
- Output not just the result of the last command in a cell from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast node interactivity = "all"

Schema

The Python pandas basic data structures DataFrame, Series and Index

1 Python pandas © Prof. Dr. K. Verbarg

17

pandas DataFrame

A **DataFrame** d with n rows and m columns is a two-dimensional array d[i,j] for

$$i \in \{0, ..., n-1\} = I_0,$$

 $j \in \{0, ..., m-1\} = I_1,$

plus an Index d.index to access rows and an Index d.columns to access columns.

The data type of every column is uniformly defined.

Technically, a (row) **Index** is an array of labels d. index[i] for $i \in I_0$.

The labels do not have to be unique!

When no Index is specified, then d index[i] = i.

For a label l, we want to use the Index to access rows with d. index[i] = l.

A **Series** is a one-dimensional DataFrame.

A DataFrame is comparable to a **DB relation**, but:

- Ordering of rows is fixed and relevant.
- Although it seems that a DataFrame is <u>symmetric</u> with respect to rows and columns in many respects, this is not 100% true: the data type is defined for columns not rows, and the naïve access is using columns / looping over rows. Although with axis=1 many commands work equally on columns as they do on rows, for simplicity we will prefer sticking to a "relational" use of the DataFrame.
- RDMBS-Index columns belong to the relation, pandas-Index labels are not part of the data array d[i,j]. But they serve the same purpose: accessing rows efficiently.

There is exactly one pandas (row-) Index at a time.

The pandas Index for columns corresponds to the relation schema. Column labels do not have to be unique.

Constructor to create a DataFrame...

...from a Python Dictionary of Lists

	year	state	cases
0	2000	MV	0
1	2001	MV	1
2	2002	Saxen	55
3	2000	Bayern	33

Explicitly define the Indexes for rows and columns:

```
CREATE TABLE df AS SELECT ...
SELECT * FROM df;
SQL
```

...from a Python List of Lists

	0	1	2
0	2000	MV	0
1	2001	MV	1
2	2002	Saxen	55
3	2001	Bayern	33

	year	state	cases
start	2000	MV	0
one	2001	MV	1
two	2002	Saxen	55
tre	2001	Bayern	33

Get schema information of a DataFrame: shape and data types

The shape is the number of rows and columns:

The column data types are:

```
df.dtypes

year int64
state object
cases int64
dtype: object
```

The (quite irrelevant) overall dtype of the DataFrame is object, since this is the only one covering int64 and object columns.

Available data types in pandas are:

Pandas dtype	Usage
object	Mixed data types, like Text (Python str), numeric, – usually less efficient, since calculations are done on Python level
Int64	Integer numbers (not "int64")
Float64	Floating point numbers (not ("float64")
boolean	True / False values (not "bool")
string	This is not chosen by default ;-((object is preferred)
datetime64[ns]	Date and time with unit nanoseconds
timedelta[ns]	Differences between two datetimes
category	Enumerated list of values of some dtype

DESCRIBE df;
SELECT COUNT(*) FROM df;
Oracle SQL

```
df.columns
Index(['year', 'state', 'cases'], dtype='object')

df.index
RangeIndex(start=0, stop=4, step=1)
```

The RangeIndex is for the case df. index[i] = i

```
[*pd.RangeIndex(start=0, stop=4, step=1, name='id')]
[0, 1, 2, 3]
```

```
The Indexes have a name attribute

df.columns.name = 'schema'

df.columns

Index(['year', 'state', 'cases'], dtype='object', name='schema')

df.index.name = 'id'

df.index

RangeIndex(start=0, stop=4, step=1, name='id')
```

A nice overview is given by

```
DESCRIBE df;

SELECT COUNT(*) FROM df;

SELECT COUNT(*) FROM df WHERE year IS NOT NULL;

SELECT COUNT(*) FROM df WHERE state IS NOT NULL;

SELECT COUNT(*) FROM df WHERE cases IS NOT NULL;

Oracle SQL
```

Modify the dtype

convert dtypes() tries to use the new datatypes:

```
data = {"year": [2000, 2001, 2002, 2000],
       "state": ['MV', 'MV', 'Saxen', 'Bayern'],
       "cases": [0, 1, 55, 33]}
df = pd.DataFrame(data).convert dtypes()
df.dtypes
year
          Int64
        string
state
          Int64
cases
dtype: object
```

Alternatively, we can define the desired dtypes in a Dictionary and apply them (we could do this already when reading data from CSV):

```
mydtypes = {"year": "string", "state": "object", "cases": "float64"}
df.astype(mydtypes).dtypes
                                                                      Float64
            string
year
            object
state
          float64
                     Float64
cases
dtype: object
                                    pd.to_numeric(df["year"])
                                                                pd.to datetime(df["year"])
                                         2000
                                                                     2000-01-01
Or use a helper function: <sup>v</sup><sub>1</sub>
                                         2001
                                                                     2001-01-01
                                         2002
                                                                     2002-01-01
                                         2000
                                                                     2000-01-01
                                    Name: year, dtype: int64
                                                                Name: year, dtype: datetime64[ns]
                                                                     © Prof. Dr. K. Verbarg
```

If we want to have this persistent, we have to overwrite the DataFrame or a column of it:

```
df.dtypes
         Int64
year
state
         string
cases
         Int64
dtype: object
df = df.astype(mydtypes)
df.dtypes
year
state
        float64 Float64
cases
dtype: object
df["state"] = df["state"].astype("string")
df.dtypes
         string
year
state
        float64 Float64
dtype: object
 ALTER TABLE df
 MODIFY state VARCHAR2(100);
```

Projection

Working on columns and computing new columns

Projection (one column)

```
\pi_{\text{year}}(\text{df}):
                                              SELECT "year" FROM df;
                        df["year"]
                               2000
                               2001
                               2002
                               2000
```

Please avoid writing df.year (can be confused with a method "year"; works only with Python identifiers not with blanks in the name e.g.).

A note on **quotations marks**:

In Python you can use " and ' interchangeably.

We will use this rule similar to SQL code: | df["state"] = 'FarAway'

- For string literals, use single quotes.
- For identifiers, use double quotes.

```
UPDATE df SET "year" = 'FarAway';
```


	year	state	cases
0	2000	FarAway	0.0
1	2001	FarAway	1.0
2	2002	FarAway	55.0
3	2000	FarAway	33.0
		© Prof. D	r. K. Verl

Note that this one-dimensional result is a Series:

```
type(df["year"])
pandas.core.series.Series
```

We can construct a DataFrame from one or more Series, or, from many other objects:


```
states = df["state"]
pd.DataFrame({"year":years, "state":states})
```

3 2000 Bayern

	year	state
0	2000	MV
1	2001	MV
2	2002	Saxen

Projection (multiple columns)

π_{cases} , state, cases, year(df):

```
SELECT "year", "state", "year" FROM df;
```

This way, we can also <u>reorder</u> the columns of a DataFrame.

If the column index is not unique, then the result is not a Series, but will contain all matching columns:

dup["cases"]				
	cases	cases		
0	0	0		
1	1	1		
2	55	55		
3	33	33		
3	33	33		

Extended projection

Unlike SQL, this only works for <u>one</u> calculated column at a time.

What happens?

Two Series are <u>aligned according to the index</u> and division is <u>computed for each element</u>.

We can use the result to create a **new column** in the DataFrame (or to overwrite an existing column):

For more complex calculations, we need the apply() method (see section on grouping/aggregatoin later in this chapter).

Extended projection

Alternatively, use assign():

df.assign(mortality = df["death"] / df["cases"] * 100)

	year	state	cases	death	mortality
0	2000	MV	0	0	NaN
1	2001	MV	1	0	0.000000
2	2002	Saxen	55	7	12.727273
3	2000	Bayern	33	4	12.121212

Remember that the original DataFrame df is not modified.

Con: Only simple identifiers are possible.

Pro: It can be chained with other transformations of a DataFrame. Multiple calculated columns are possible in one command (like in SQL).

Rename a column

```
df.rename(columns={"mortality": "m", "year": "y"})
```

	у	state	cases	death	m
0	2000	MV	0	0	NaN
1	2001	MV	1	0	0.000000
2	2002	Saxen	55	7	12.727273
3	2000	Bayern	33	4	12.121212

```
SELECT "year" AS "y",
    state,
    cases,
    death,
    "mortality" AS "m"
FROM df;
SQL
```

Drop a column

```
ALTER TABLE df DROP COLUMN mortality;
ALTER TABLE df DROP COLUMN year;
SQL
```

This can be achieved using the Python del command, the pandas pop() or drop() methods.

inplace=True will do it in the original DataFrame.
inplace=False (the default) will return the modified DataFrame. This can be used to chain commands.

Alternatively, select the columns you do <u>not</u> want to drop:

Interlude

Some remarks not fitting elsewhere

Shallow vs. deep copy (SettingWithCopyWarning)

Achtung shallow oder deep copy

Bei einer shallow copy warnt ggf. IPython, wenn man anschließend eine Zuweisu Diese wird dennoch ausgeführt und verändert dann auch df.

Simple assignment is doing only a shallow copy (= reference = a view).

So sometimes, the outcome (view or copy) is <u>unpredictable</u> and that is the reason for the SettingWithCopyWarning.

https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#why-does-assignmentfail-when-using-chained-indexing Normally, we don't have to worry too much about it. Usually, we will subsequently assign intermediate results to new variables and not tamper with "old" variables any more.

To avoid the warning, do an explicit deep copy earlier in your code.

NEW: Always do a **Copy on Write** https://phofl.github.io/cow-introduction.html

pd.set option("mode.copy on write", True)

Other findings so far

- If you want to modify the original df, assign the result to the same Series / DataFrame again (df = ...), or use inplace=True.
- Operations on Series / DataFrame usually work <u>elementwise</u>. First, the Series / DataFrame are <u>aligned</u> according to its indexes.

df*2							
	state	cases	death				
0	MVMV	0	0				
1	MVMV	2	0				
2	SaxenSaxen	110	14				
3	BayernBayern	66	8				

What is left to do

We need to finish the standard SQL topics:

- Operations on <u>rows</u> (selection, sorting)
- INSERT / UPDATE / DELETE
- NULLs
- Grouping and aggregation
- Joins

Then, we can do more fancy stuff like time series, ...

You might hear a lot about

It is a library like pandas. pandas uses NumPy internally. It is optimized for mathematical vector operations. It has different data types. For simplicity, we are avoiding to know and use NumPy directly.

Fancy Python tools

PEP8 defines coding syntax, e.g. whitespace https://pep8.org/#introduction

This syntax can be automatically checked.

PEP20 defines coding principles.

The http://www.pythontutor.com/ visualizes code. This helps to understand what's happening behind the scenes.

But it has some limitations (loading csv from pandas not possible), which may makes not so helpful. Rather suitable for small learning examples.

Literature

Wes McKinney is the founder of pandas and hence his book is a good reference.

There are more Python and Python pandas books in our library.

There are so many tutorials, videos and online courses: google what you need, but don't get too confused!

Besides these sources, the important reference is the pandas home page

https://pandas.pydata.org/pandas-docs/stable/

When using a command, check out the API reference first.

You will find many suggestions in the net, but here you find the correct or good way of doing it. Take into account that the pandas package is still under development and avoid outdated syntax.

Read and write data

Pandas supports reading/writing data from/to various sources like: CSV, text, **MS Excel**, **JSON**, **XML**, **HTML webpages**, **SQL**, **SAS**,...

We focus on CSV now.

If you reading CSV manually (e.g. in Python) you come across many problems:

- o header line?
- separator is a comma or a semicolon (as in Germany)?
- quoting of special characters with "" quoting of quotes?
- o number format, thousands separator
- Fields with multiline text (it is not sufficient to read a file line-by-line)

A help is the Python <code>csv-package</code>, but even better is the pandas <code>read_csv()</code> command. It is basically a worry-free package and has lots of options if needed.

<pre>pd.read_csv('GBI_Data.csv')</pre>										
	OrderNumber	OrderItem	YEAR	MONTH	Date	Customer	CustDescr	City	SalesOr	
0	100001	10	2007	1	2007- 01-01	17000	Cruiser Bikes	Hannover	DN0	
1	100001	20	2007	1	2007- 01-01	17000	Cruiser Bikes	Hannover	DN0	
2	100001	30	2007	1	2007-	17000	Cruiser	Hannover	DN0	

Exercise: improve the command to take care of data types and remove superfluous columns. Save the modified data as CSV and as MS Excel.

We even can read CSV from a <u>URL</u>:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3

From a database

2 2020-11-14 Stralsund

M-V

This case depends on the database brand. You need a specific driver to connect to the DB. In the case of Oracle, you would need to install cx_oracle first.

-42 HST@me.de

From a webpage

WV

Charleston

Jun 20, 1863

1,793,716

24,230

62,756

See exercises!

West Virginia

Instead of CSV

CSV is a well-known format, but not very efficient.

To <u>save space (and thus time</u>), use a modern format like these:

```
large_df.to_parquet('output.parquet')
large_df.to_feather('output.feather')
large_df.to_pickle('output.pickle')
```

In addition, these file formats also retain the <u>data</u> type of each column.

Print a df or a Series

When we display the contents of a df or Series in the JupyterLab notebook, the output is truncated when too large.

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

If we want to overcome this, here is the trick:

print	(tips.to_st	ring())					
	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	
9	14.78	3.23	Male	No	Sun	Dinner	
10	10.27	1.71	Male	No	Sun	Dinner	
11	35.26	5.00	Female	No	Sun	Dinner	4
12	15.42	1.57	Male	No	Sun	Dinner	:
13	18.43	3.00	Male	No	Sun	Dinner	4
14	14.83	3.02	Female	No	Sun	Dinner	
15	21.58	3.92	Male	No	Sun	Dinner	
16	10.33	1.67	Female	No	Sun	Dinner	
17	16.29	3.71	Male	No	Sun	Dinner	
18	16.97	3.50	Female	No	Sun	Dinner	
19	20.65	3.35	Male	No	Sat	Dinner	
20	17.92	4.08	Male	No	Sat	Dinner	:
21	20.29	2.75	Female	No	Sat	Dinner	
22	15.77	2.23	Female	No	Sat	Dinner	:
23	39.42	7.58	Male	No	Sat	Dinner	4
24	19.82	3.18	Male	No	Sat	Dinner	:
Dr. K . V erba	arg 17.81	2.34	Male	No	Sat	Dinner	4
26	13.37	2.00	Male	No	Sat	Dinner	- 1

Selection

Selection of rows

Define an index (yet a MultiIndex with multiple columns)

gbi = pd.read_csv('GBI_Data.csv') gbi.set_index(["Date", "Customer", "Product"], inplace=True)

```
assert(gbi.index.is_unique)
```

AssertionError

gbi.head()

			OrderNumber	OrderItem	YEAR	MONTH	CustDescr	City	SalesOrg
Date	Customer	Product							
2007- 01-01	17000	PRTR1000	100001	10	2007	1	Cruiser Bikes	Hannover	DN00
		DXTR1000	100001	20	2007	1	Cruiser Bikes	Hannover	DN00
		DXRD2000	100001	30	2007	1	Cruiser Bikes	Hannover	DN00
		ORWN1000	100001	40	2007	1	Cruiser Bikes	Hannover	DN00
2007- 01-03	15000	PRTR1000	100002	10	2007	1	Bavaria Bikes	München	DS00

Remove the index (replace it by the RangeIndex)

<pre>gbi.reset_index(inplace=True)</pre>	
-h: h4/)	

gbi.head()

	Date	Customer	Product	OrderNumber	OrderItem	YEAR	MONTH	CustDescr	Cit
0	2007- 01-01	17000	PRTR1000	100001	10	2007	1	Cruiser Bikes	Hannove
1	2007- 01-01	17000	DXTR1000	100001	20	2007	1	Cruiser Bikes	Hannove
2	2007- 01-01	17000	DXRD2000	100001	30	2007	1	Cruiser Bikes	Hannove
3	2007- 01-01	17000	ORWN1000	100001	40	2007	1	Cruiser Bikes	Hannove

Selection using the index (labels)

Remarks about the index:

- There is exactly <u>one</u> index at a time (some columns, or, an artificial RangeIndex)
- The purpose of the index is not having faster access as it is true for RDBMS. The purpose is basically to explicitly <u>access</u> certain rows, or, for <u>aligning</u> data (for joining along the index).
- You don't have to use indexes at all, or, redefine a suitable index for each and every different access.
 But when there is a "natural" index, it might make sense to use it. Operations in the sequel might be easier then.
- O When joining two DataFrames via non-index columns, the information in the index "columns" is "lost" (not contained in the result). You can avoid this be using reset index() before the join.

Access of rows via the index using loc[]:

```
gbi.loc['2007-01-01']
                             OrderNumber OrderItem CustDescr
                                                                     City SalesOrg Country
 Date Customer
                    Product
2007-
          17000
                  PRTR1000
01-01
                                                  10
                                                                             DN00
                                   100001
                                                                 Hannover
                                                                                         DE
                                                                             DN00
                  DXTR1000
                                                  20
                                                                 Hannover
                                                                                         DE
                                   100001
                  DXRD2000
                                   100001
                                                  30
                                                                             DN00
                                                                                         DE
                                                                 Hannover
                 ORWN1000
                                   100001
                                                                 Hannover
                                                                             DN00
                                                                                         DE
```

```
SELECT * FROM gbi
WHERE "Date" = '2007-01-01'; -- Date is a string
SQL
```

Some loc[] examples using the index

Slicing is possible, i.e. defining an interval instead of a single value. Syntax for a slice is:

```
a:b means all values in [a,b]
:b means all values in \leq b
a: means all values in \geq a
: means all values (no restriction)

gbi.loc['2007-01-01':'2007-01-29']

SELECT * FROM gbi
WHERE "Date" BETWEEN '2007-01-01' AND '2007-01-29';
```

Caution 1: When the index is not sorted you may get a

```
PerformanceWarning: indexing past lexsort depth may impact performance.

gbi.index.is_monotonic_increasing

remedy

gbi.sort_index()
```

Caution 2: The <u>index</u> must be <u>sorted</u> to allow slicing:

```
gbi = gbi.sort_values(by="Product")

gbi.loc['2007-01-01':'2007-01-29']

UnsortedIndexError: 'Key length (1) was greater than MultiIndex lexsort depth (0)'
```

For a **MultiIndex**, you can specify all columns:

```
gbi.loc['2007-01-01', 17000, ['PRTR1000','DXTR1000']]

SELECT * FROM gbi
WHERE "Date" = '2007-01-01'
AND "Customer" = 17000
AND "Product IN ('PRTR1000','DXTR1000');
SQL
```

and use slicing-wildcard at every position:

```
gbi.loc[:, 17000, :]

SELECT * FROM gbi
WHERE "Customer" = 17000;
SQL
```

Caution: Again, slicing depends on sorting. Hence, more complex slicing scenarios may fail.

A MultiIndex is not good for slicing or yet more complex logical conditions.

loc[] horizontally

Besides selection of rows, the method loc[] also allows to "select" columns (**projection**).

```
df.loc[row_indexer, column_indexer]
```

Hence, the following two expressions are identical:

```
gbi.loc[:, "City"] == gbi["City"]
```

Warning: By convention, the syntax df [df.year>2000] (masking) or df[1:3] (slicing) is interpreted to work on rows, not columns. This may be convenient sometimes, but is very confusing. We advise not to use this ("syntactical sugar" as Wes McKinney names it).

We would like to advise to stick with the df[...] notation for <u>projections</u> of columns and df.loc[...] for <u>selections</u> of rows using the index.

We can do both at the same time

```
gbi.loc['2007-01-01']["City"]

Date Customer Product
2007-01-01 17000 PRTR1000 Hannover
```

But we cannot use this on the left side of an assignment

```
gbi.loc['2007-01-01']["City"] = 'Atlantis'

<ipython-input-19-8ba73951bc2d>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

In this case, we need .loc[] with the *column_indexer*

```
gbi.loc['2007-01-01', "City"] = 'Atlantis'
```

```
UPDATE gbi
SET "City" = 'Atlantis'
WHERE "Date" = '2007-01-01';
SQL
```

Problems with loc[row_indexer, col_indexer] for MultiIndex

For a MultiIndex having both, row- <u>and</u> column-indexer gives an error (two many commas):

```
gbi.loc['2007-01-01', 17000, ['PRTR1000','DXTR1000'], ["City", "Country"]]
IndexError: list index out of range
```

The elements of a MultiIndex are <u>Tuples</u>: so we better write it with parenthesis:

```
gbi.loc[('2007-01-01', 17000, ['PRTR1000', 'DXTR1000']), ["City", "Country"]]
```

City Country

				,	,
	Date	Customer	Product		
200	7-01-01	17000	PRTR1000	Hannover	DE
			DXTR1000	Hannover	DE

This does not work in combination with slicing:

```
gbi.loc[('2007-01-01', 17000:18000, ['PRTR1000','DXTR1000']), ["City", "Country"]]

File "<ipython-input-51-99581a08af90>", line 1
    gbi.loc[('2007-01-01', 17000:18000, ['PRTR1000','DXTR1000']), ["City", "Country"]]

SyntaxError: invalid syntax
```

Solution for MultiIndex and slicing at the same time: use "pd.IndexSlice":

```
| City | Country | Date | Customer | Product | PRTR1000 | Hannover | DE | DXTR1000 | Hannover | DE | DXTR1000 | DXTR
```

Selection by position (iloc[])

iloc[] accesses rows and columns not via the index labels like loc[], but using integer positions.

Remember, our DataFrame is a two-dimensional array d[i,j] for $i \in \{0,\dots,n-1\} = I_0, j \in \{0,\dots,m-1\} = I_1$. Then, d.iloc[a:b, c:d] is the data set d[i,j] for $i \in [a,b] \cap I_0, j \in [c,d] \cap I_1$ (extend it to special cases of slicing where not both bounds are given; the (row) index and columns (index) are sliced accordingly).

Both .iloc[] and .loc[] also take <u>lists</u> of values:

tips.iloc[[5,2,3]]										
	total_bill	tip	sex	smoker	day	time	size			
5	25.29	4.71	Male	No	Sun	Dinner	4			
2	21.01	3.50	Male	No	Sun	Dinner	3			
3	23.68	3.31	Male	No	Sun	Dinner	2			

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3

Vector arithmetic and alignment of DataFrame, Series and Scalars

- 1) First, for operations between objects, they are <u>aligned</u> according to the index and the columns (index)
- 2) Then, the operation is done <u>element-wise</u>.
- 3) Missing values in the result (due to alignment) are filled with pd. NA ("NULL" value).

Two Series:

$$\begin{vmatrix} a & \begin{bmatrix} 7.3 \\ c \\ e \\ 1.1 \\ 4 \end{vmatrix} \end{vmatrix} + \begin{vmatrix} a & \begin{bmatrix} 1 \\ -2 \\ 4 \end{vmatrix} \end{vmatrix} = \begin{vmatrix} d & 8.3 \\ c & \\ d & \\ 5.1 \\ \end{vmatrix}$$

Two DataFrames:

$$\begin{vmatrix} a & V & W \\ a & \begin{bmatrix} 7.3 & 7 \\ -2 & 7 \\ 1.1 & 7 \\ 4 & 7 \end{vmatrix} \end{vmatrix} + \begin{vmatrix} K & V \\ a \begin{bmatrix} 1 & 2 \\ -2 & 5 \\ 4 & 2 \end{vmatrix} \end{vmatrix} = \begin{vmatrix} a & K & V & W \\ & 9.3 & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & & & & & & & & & &$$

DataFrame and Series is more complicated.

More interesting for us now is **DataFrame/Series and Scalar** (index and columns remain unchanged):

$$\begin{bmatrix} m & 2.3 & 2 \\ n & -2 & 2 \\ 0 & 1.1 & 3 \\ 4 & 3 \end{bmatrix} | *2 = \begin{bmatrix} m & 4.6 & 4 \\ n & -4 & 4 \\ 0 & 2.2 & 6 \\ p & 8 & 6 \end{bmatrix}$$

$$\left(\begin{vmatrix} m & 2.3 & 2 \\ n & -2 & 2 \\ 0 & 1.1 & 3 \\ p & 4 & 3 \end{vmatrix} \right) < 0 = \begin{vmatrix} m & False \\ n & True & False \\ p & False & False \\ False & False \end{vmatrix}$$

Once again two Series, now with a <u>logical operator</u> & (and)

Selection with loc[] for non-index columns

Doing a logical operation with a Series defines a

True/False/<NA> vector:

tips	["tip"] > 7
0 1 2 3 4	False False False False False

This vector can be used to filter rows in the DataFrame:

```
tips.loc[tips["tip"] > 7]
     total bill
                                          time size
                 tip
                      sex smoker
                                   day
                7.58 Male
 23
        39.42
                                    Sat Dinner
              10.00 Male
                                    Sat Dinner
170
        50.81
212
        48.33
               9.00 Male
                                    Sat Dinner
```

```
SELECT * FROM tips
WHERE tip > 7;
SQL
```

More complicated Boolean expressions using & (and), | (or), $^{\land}$ (exclusive-or), $^{\sim}$ (not) and $^{\lt}$, $^{\gt}$, $^{!=}$, $^{==}$, $^{!=}$, $^{$

```
(tips["tip"] > 7) & ~(tips["smoker"] == 'Yes')
       False
       False
       False
       False
                    SELECT * FROM tips
       False
                    WHERE tip > 7
                    AND NOT smoker = 'Yes';
239
       False
240
       False
241
       False
242
       False
       False
243
Length: 244, dtype: bool
tips.loc[(tips["tip"] > 7) & ~(tips["smoker"] == 'Yes')]
     total bill
                   sex smoker day
                                      time size
 23
        39.42
             7.58 Male
                                Sat
                                     Dinner
212
        48.33 9.00 Male
                            No Sat Dinner
```

Two more simple operations on rows

head() / tail() / sample()

Return the top n rows – for the equivalent in RDBMS we would need to use a suitable sorting.

SELECT * FROM tips WHERE ROWNUM < 6 ORDER BY ???;

SELECT * FROM tips FETCH NEXT 5 ROWS ONLY ORDER BY ???; SELECT TOP 5 *
FROM tips
ORDER BY ???;
SAP HANA SQL

Sorting

...using the index,

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2

No Sun Dinner

tips.sort index(inplace=True)

24.59 3.61 Female

or using some columns (also works for the index)

tips.sort_values(by=["total_bill", "sex"], ascending=[True, False], inplace=True)
tips

tips.head()

	total_bill	tip	sex	smoker	day	time	size
67	3.07	1.00	Female	Yes	Sat	Dinner	1
92	5.75	1.00	Female	Yes	Fri	Dinner	2
172	7.25	5.15	Male	Yes	Sun	Dinner	2
111	7.25	1.00	Female	No	Sat	Dinner	1
149	7.51	2.00	Male	No	Thur	Lunch	2

SELECT * FROM tips
ORDER BY "total_bill", "sex" DESC;
SAP HANA SQL

pd.NA

Working with NULL values

SQL	evaluates to												
1 + 2	3		•										
1 + NULL	NULL	NULL											
3 * NULL	NULL			AND(A, B)					OR(A, B)	
1 > NULL	UNKNOWN	NOT(A)		AAB		В			AVB		B U T		
		Α	¬A			F	U	Т				U	T
1 = 1	TRUE	F	Т		F	F	F	F		F	F	U	Т
42 = NULL	UNKNOWN	U	U	Α	U	F	U	U	Α	U	U	U	Т
NULL = NULL	UNKNOWN	т	F		Т	F	U	Т		Т	Т	Т	Т
NULL IS NULL	TRUE							© wiki	pedia, "ł	Kleene	three-\	/alued	logic".
(1=1) AND $(1=1)$	TRUE								-				-
(1=1) AND (1=NULL)	UNKNOWN												

The truth about pd.NA

There is a bunch of values, which might serve as a database NULL equivalent:

- o The Python None value
- In NumPy there is the notion of a not-a-number
 np.NaN. This is a float datatype and cannot be used
 across all datatypes. It was used in pandas in the past.
- o Pandas introduced a new value pd.NA

We recommend using pd.NA only (displayed as "<NA>" / "NAN" / "NA").

In contrast, pd. NA implements the expected logic:

Problems with pd. NA

Python bool only has the values True / False

```
s = pd.Series([1,2,pd.NA])
s == 2

false
True
False
dtype: bool

s == pd.NA

false
False
false
false
false
dtype: bool
```

Even worse:

```
if(pd.NA < 13):
    print('kleiner')
else:
    print('groß')

TypeError: boolean value of NA is ambiguous</pre>
```

Solution: explicitly check for Null-values using pd.isna()

We can normalize all values to be pd.NA

We can fill missing data, or, drop rows with missing data:

Converting the data type to numeric may fail,

```
df = pd.DataFrame({"year": ["2020", 2021, None, "hugo"]})

    year
0  2020
1  2021
2  None
3  hugo

pd.to_numeric(df["year"])

ValueError: Unable to parse string "hugo"
```

but can be marked by pd. NA values:

```
pd.to_numeric(df["year"], errors="coerce").convert_dtypes()

0    2020
1    2021
2    <NA>
3    <NA>
Name: year, dtype: Int64
```

Interpolate missing values

Missing values can be <u>linear</u> interpolated:

Interpolation can also be <u>axis-aware</u> (for time series) or use various methods (e.g. <u>spline</u>, quadratic, piecewise polynomial).

Grouping and aggregation

We look at all tuples having the identical values for all **grouping attributes** and make one new tuple for them. Each **non-grouping attributes** can be aggregated to one single value (per group).

SELECT a,b,c, SUM (...
FROM ...
GROUP BY a,b,c
SQL

Titanic data set

https://hbiostat.org > Titanic5 data set (legend can be found in the titanic.xlsx file)

only passengers (to show CSV import)

Emanuel

titanic = pd.read csv(url)

url = 'https://hbiostat.org/data/repo/titanic5.csv'

titanic = pd.read excel(url, sheet name="Titanic5 all")

```
# better read from the MS Excel file

url = 'https://hbiostat.org/data/repo/titanic5.xlsx'

titanic = pd.read_excel(url, sheet_name="Titanic5_all")

titanic.head()

3.4s

C:\Users\Student\AppData\Local\Temp\ipykernel_3312\687780751.py:7: FutureWarning: Inferring datetime64[ns] from data containing strings is deprecated and will be removersion. To retain the old behavior explicitly pass Series(data, dtype=datetime64[ns])
```

N	lame_ID	Name	Female	Male	Sex	Age	Class/Dept	Class	Ticket	Joined	 Title	First	DoB	Year_Birth	Date_Death	DoB_Clean	Age_F_Code
0	531	DEAN, Miss Elizabeth Gladys 'Millvina'	1	0	female	0.17	3rd Class Passenger	3	2315	Southampton	 Miss	Elizabeth Gladys 'Millvina'	1912- 02-02	NaN	2009-05-31 00:00:00	1912-02- 02 00:00:00	С
1	498	DANBOM, Master Gilbert Sigvard	0	1	male	0.33	3rd Class Passenger	3	347080	Southampton	 Master	Gilbert Sigvard Emanuel	1911- 11-16	NaN	1912-04-15 00:00:00	1911-11- 16 00:00:00	C

Variable	Description					
Name_ID	Unique ID for Passenger / Crew me	ember				
Name	Full Name (LAST, Title First)					
Female	Female indicator					
Male	Male indicator					
Sex	Sex (text, male/female)					
Age	Age, numeric (fractional - 10 mont	:hs = 0.8333)				
Class/Dept	Text field for passenger class or crew department					
Class	1st/2nd/3rd Class Passenger Deck Crew Engineering Crew Band Restaurant Staff Victualling Crew	1/2/3 D E B R V				
Ticket	Ticket number					
Joined	Port of embarcation					
Occupation	Job / Career					
Boat [Body]	Boat (rescued survivor), Body (ide	ntified victim)				
Price	Price of ticket, Pounds					
Job	Second field of career info / compa	any, role, various				
Survived	Survived indicator					

Variable	Description
URL	Encylopedia Titanic URL filename (starts with http://www.encyclopedia-titanica.org)
Last	Last Name
Title	Title / Salutation
First	First Name
DoB	Date of birth if available
Year_Birth	Year or Year/Month of birth if available
Date_Death	Date of death
DoB_Clean	Date of birth, cleaned, derived when only year or month/year of birth available, supplemented with values from "Age" variable if "DoB" or "Year_Birth" not available
Age_F_Cod e	A code to indicate the method by which Age_F was derived
Age_F	Age "Final" - all ages for which any data exists, see "Age_F_Code" for how it was derived
sibsp	Number of Siblings/Spouses Aboard - obtained from familiar "Titanic3" dataset, merged via "Name_ID" varibale
parch	Number of Parents/Children Aboard - obtained from familiar "Titanic3" dataset, merged via "Name_ID" varibale

1 Python pandas © Prof. Dr. K. Verbarg 60

Range of values

Simple trick to find out all occuring values in a column: convert the column to a Python **set**:

```
set(titanic["Sex"])
{'female', 'male'}

set(titanic["Embarked"])
{'C', 'Q', 'S', nan}
```

Grouping

The simplest form of grouping is done by specifying the grouping attributes (the "keys"):

```
grouped = t.groupby(by=["Pclass", "Sex"])
grouped
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002028BD33190>
```

This returns a pandas "GroupBy" object.

It has the <u>groupings</u> calculated. For each group, it contains a DataFrame with all (!) attributes of the original. <u>Sorting</u> within the groups is preserved.

You can display this with the groups-Attribute: it is a Dictionary of the grouping keys and the indexes of that group.

We can use <u>projection</u> on all grouping and non-grouping attributes. (We use head() to display something for each group.)

gro	uped[[ˈ	"Pclass	", "S	ex", "	', "Age", "Cabin", "Name"]].head(1)				
	Pclass	Sex	Age	Cabin	Name				
0	3	male	22.0	NaN	Braund, Mr. Owen Harris				
1	1	female	38.0	C85	Cumings, Mrs. John Bradley (Florence Briggs Th				
2	3	female	26.0	NaN	Heikkinen, Miss. Laina				
6	1	male	54.0	E46	McCarthy, Mr. Timothy J				
9	2	female	14.0	NaN	Nasser, Mrs. Nicholas (Adele Achem)				
17	2	male	NaN	NaN	Williams, Mr. Charles Eugene				

len(grouped)

That helps to output the groups alone:

```
grouped.groups.keys()

dict_keys([(1, 'female'), (1, 'male'), (2, 'female'), (2, 'male'), (3, 'female'), (3, 'male')])
```

Grouping

We can iterate through the groups

```
for (pclass, sex), group in grouped:
    print()
    print(pclass, '-', sex)
    print(group.drop(columns=["Name","SibSp","Parch","Ticket"]))
1 - female
     PassengerId Survived Pclass
                                                       Fare Cabin Embarked
                                              Age
                                                    71.2833
                                                              C85
                                             38.0
3
               4
                                     female
                                             35.0
                                                    53.1000
                                                             C123
                                            58.0
                                                    26.5500
              12
                                                             C103
31
              32
                                                   146.5208
                                                              B78
                                                                         C
52
              53
                                                    76.7292
                                                                         C
                                     female
                                            49.0
                                                              D33
856
             857
                                            45.0
                                                   164.8667
                                                                         S
                                                              NaN
                                                    25.9292
862
             863
                                     female
                                            48.0
                                                              D17
871
             872
                                    female 47.0
                                                    52.5542
                                                              D35
                                                    83.1583
879
             880
                                            56.0
                                                              C50
                                                                         C
                                 1 female 19.0
             888
                                                    30.0000
887
                                                              B42
[94 rows x 8 columns]
1 - male
     PassengerId Survived Pclass
                                                                 Cabin Embarked
                                            Age
                                                     Fare
                                    male
                                                                   E46
6
                                           54.0
                                                  51.8625
23
              24
                                          28.0
                                                  35.5000
                                                                    А6
              28
27
                                          19.0
                                                 263.0000 C23 C25 C27
30
              31
                                          40.0
                                                  27.7208
                                                                   NaN
              35
                                           28.0
                                                  82.1708
                                                                              C
                                                                   NaN
```

We can select a single group

rou	ped.get_gro	up((3, "n	nale"))			
	Passengerld	Survived	Pclass	Name	Sex	Age
0	1	0	3	Braund, Mr. Owen Harris	male	22.0
4	5	0	3	Allen, Mr. William Henry	male	35.0
5	6	0	3	Moran, Mr. James	male	NaN
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0
12	13	0	3	Saundercock, Mr. William Henry	male	20.0

SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	A/5 21171	7.2500	NaN	S
0	0	373450	8.0500	NaN	S
0	0	330877	8.4583	NaN	Q
3	1	349909	21.0750	NaN	S
0	0	A/5. 2151	8.0500	NaN	S

. . .

Aggregation

The size of each group (including Nulls)

```
grouped.size()
Pclass Sex
                         SELECT "Pclass" ", "Sex", COUNT(*)
       female
                  94
       male
                         FROM "titanic"
                 122
       female
                 76
                         GROUP BY "Pclass", "Sex";
       male
                 108
       female
                 144
       male
                 347
```

The number of non-Null values for "Age" of each group

```
grouped["Age"].count()
```

Pclass	Sex	
1	female	85
	male	101
2	female	74
	male	99
3	female	102
	male	253

```
SELECT "Pclass" ", "Sex", COUNT("Age")
FROM "titanic"
GROUP BY "Pclass", "Sex";
SQL
```

Some standard aggregation methods:

size	Number of rows in group
count	Number of non-Null values
sum	Sum of non-Null values
mean	Average of non-Null values
median	Median of non-Null values
min, max	Minimum, maximum of non-Null values
nunique	Number of distinct values

Aggregation

To have more control and do multiple aggregations at the same time, the following syntax helps:

```
grouped.agg(
    nof_persons = ("Survived", "size"),
    nof_survived = ("Survived", "sum"),
    avg_fare = ("Fare", "mean"),
    min_fare = ("Fare", "min")
).assign(survival_rate = lambda grp: grp["nof_survived"] / grp["nof_persons"])
```

avg_fare min_fare survival_rate

				_		
Pclass	Sex					
1	female	94	91	106.125798	25.9292	0.968085
	male	122	45	67.226127	0.0000	0.368852
2	female	76	70	21.970121	10.5000	0.921053
	male	108	17	19.741782	0.0000	0.157407
3	female	144	72	16.118810	6.7500	0.500000
	male	347	47	12.661633	0.0000	0.135447

nof_persons nof_survived

```
SELECT "Pclass", "Sex",

COUNT(*) AS "nof_persons,

SUM("Survived") AS "nof_survived",

AVG("Fare") AS "avg_fare",

MIN("Fare") AS "min_fare",

SUM("Survived")/COUNT(*) AS "survival_rate"

FROM "titanic"

GROUP BY "Pclass", "Sex";
```

No aggregation – return only the groups

Several rather complicated solutions...

```
grouped.first().reset_index()[["Pclass", "Sex"]]
   Pclass
           Sex
      1 female
                       SELECT "Pclass", "Sex"
      1 male
                        FROM "titanic"
      2 female
                       GROUP BY "Pclass", "Sex";
      2 male
      3 female
      3 male
titanic.drop duplicates(subset=["Pclass", "Sex"])[["Pclass", "Sex"]]
grouped[["Pclass", "Sex"]].head(1)
grouped.head(1)[["Pclass", "Sex"]]
pd.DataFrame(grouped.groups.keys(), columns=["Pclass", "Sex"])
```

grouped.groups.keys() is my favorite.

No grouping – do aggregation over all rows

Use the aggregation functions on a column

```
(
    titanic["Age"].mean().round(1),
    titanic["Survived"].sum()
)
(29.7, 342)
```

```
SELECT AVG("Age"),
SUM("Survived")
FROM "titanic";
SQL
```

Warning: check whether or not the desired function is defined on your pandas-object (SeriesGroupBy, DataFrame,..).

Building the groups

pd.NA usually is not a group unless we wish it to be so.

Caution: The group is named np.NaN (I would expect pd.NA instead).

Aggregation within a group

Repetition: Aggregation methods ignore Null values. Some aggregation methods do have an option to change this behaviour to skipna=False

In SQL, we specify a non-grouping attribute plus an aggregation function, e.g. SUM (age). The result is one single value (per group).

To give an overview of aggregation methods in pandas, we differentiate according to the sizes of the input / the result and how the calculation is done.

a) We start with most basic method, which returns one value per group, but does not really look into any values of the group.

b) for each given column(s), based on the values of that column, calculate several figures per group, resp.

Number of rows in group

describe (count, mean, std, min, 25%, 50%, 75%, max) statistics for each group

c) for each given column(s), based on the values of that column, calculate one value per group, resp.

count	Number of non-Null values
sum	Sum of non-Null values
prod	Product of non-Null values
min, max	Minimum, maximum of non-Null values
mean	Average of non-Null values
median	Median of non-Null values
std, var, skew, kurt, mad	Standard deviation, variance (n-1 in denominator), skew, kurtosis, mean absolute deviation
quantile(0.9)	90 % quantile

Sometimes it is possible to apply a method to all columns of the groupby-object, sometimes we have to project to some columns first.

```
grouped.min()

ValueError: Wrong number of items passed 2, placement implies 4

grouped["Age"].min()

Pclass Sex
1 female 2.00
male 0.92
2 female 2.00
male 0.67
3 female 0.75
male 0.42

Name: Age, dtype: float64
```

grouped.sum()

Sometimes, columns with unsuitable dtype are silently dropped. [grouped.count()]

		Passengerld	Survived	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Pclass	Sex										
1	female	94	94	94	85	94	94	94	94	81	92
	male	122	122	122	101	122	122	122	122	95	122
2	female	76	76	76	74	76	76	76	76	10	76
	male	108	108	108	99	108	108	108	108	6	108
3	female	144	144	144	102	144	144	144	144	6	144
	male	347	347	347	253	347	347	347	347	6	347

0							
		Passengerld	Survived	Age	SibSp	Parch	Fare
Pclass	Sex						
1	female	44106	91	2942.00	52	43	9975.8250
	male	55599	45	4169.42	38	34	8201.5875

d) for each given column(s), <u>search</u> within the values of the column and return one value

idxmin, idxmax	Return the <u>index value</u> (within the original non-grouped DataFrame) of the first row having the minimal value for the group.	
nlargest	Largest value of <u>one</u> column within group	
argmin, argmax	Caution: This method is not available for groups, it only works on entire (nongrouped) DataFrame. Return the <u>position</u> (starting with 0) of the first row having the minimal value.	

The overall youngest passenger is

Example:

The index of the youngest passenger within each group is

and print the related passenger for each group

titanic.loc[idx][["Sex", "Pclass", "PassengerId", "Name", "Age"]]

	Sex	Pclass	Passengerld	Name	Age
297	female	1	298	Allison, Miss. Helen Loraine	2.00
305	male	1	306	Allison, Master. Hudson Trevor	0.92
530	female	2	531	Quick, Miss. Phyllis May	2.00
755	male	2	756	Hamalainen, Master. Viljo	0.67
469	female	3	470	Baclini, Miss. Helene Barbara	0.75
803	male	3	804	Thomas, Master. Assad Alexander	0.42

1 Python pandas © Prof. Dr. K. Verbarg 70

Test to demonstrate that idxmin() is really returning the index, not the position:

Aggregation methods

```
t = titanic.set_index(["Cabin", "Sex", "PassengerId"])
print(f'Index is unique: {t.index.is_unique}')
idx = t.groupby(["Sex", "Pclass"])["Age"].idxmin()
print(idx)

t.loc[idx].reset_index()[["PassengerId", "Name", "Age"]]
```

```
Index is unique: True

Sex Pclass
female 1 (C22 C26, female, 298)
2 (nan, female, 531)
3 (nan, female, 470)
male 1 (C22 C26, male, 306)
2 (nan, male, 756)
3 (nan, male, 804)
```

Name: Age, dtype: object

	Passengerld	Name	Age
0	298	Allison, Miss. Helen Loraine	2.00
1	531	Quick, Miss. Phyllis May	2.00
2	470	Baclini, Miss. Helene Barbara	0.75
3	306	Allison, Master. Hudson Trevor	0.92
4	756	Hamalainen, Master. Viljo	0.67
5	804	Thomas, Master. Assad Alexander	0.42

e) for the total of all projected columns, select / compute some information within the group.

first, las	First, last, nth value within group according to index sorting
head	first n rows within group according to index sorting head(1) is not the same as first(): the index of the result is different (see later)
any	Return True when any of the values within the group (for all selected rows and columns of the group) is truthful ("True" Boolean or non-zero number or non-empty text).
all	Return ${\tt True}$ when all values within the group are truthful.

	-				
				Name	Sex
Pcla	ass	Sex			
	1	female	Cumings, Mrs. John Bradley (Florence	Briggs Th	female
		male	McCarthy, M	r. Timothy J	male
	2	female	Nasser, Mrs. Nicholas (Ac	dele Achem)	female
		male	Williams, Mr. Cha	rles Eugene	male
	3	female	Heikkinen	Miss. Laina	female
		male	Braund, Mr. 0	Owen Harris	male
<pre>grouped[["Name", "Sex"]].head(1)</pre>					
			e , sex]].Nead(1)		
			Name	Sex	
0				Sex male	
0	Cu	ımings, M	Name		
	Cu	ımings, M	Name Braund, Mr. Owen Harris	male	
1	Cu	ımings, M	Name Braund, Mr. Owen Harris rs. John Bradley (Florence Briggs Th	male female	
1 2	Cu		Name Braund, Mr. Owen Harris rs. John Bradley (Florence Briggs Th Heikkinen, Miss. Laina	male female female male	
1 2 6	Cu		Name Braund, Mr. Owen Harris rs. John Bradley (Florence Briggs Th Heikkinen, Miss. Laina McCarthy, Mr. Timothy J	male female female male	

Aggregation transformation methods

f) return the original DataFrame (not grouped any more), but after some computation within the groups took place

cumsum	Compute the cumulated sum within each group	
cumprod	Same with cumulated product	
cummin, cummax	Cumulated minimum / maximum, i.e. the minimum of the first i rows.	
diff	Difference to value in previous row (result for first row is np.nan)	
pct_change	Percentage change to value in previous row (result for first row is pd.NA)	

```
data = {"x" : [10,1,3,21]}
df = pd.DataFrame(data)
df["cumsum(x)"] = df["x"].cumsum()
df["cummin(x)"] = df["x"].cummin()
df["diff(x)"] = df["x"].diff()
df["pct_change(x)"] = df["x"].pct_change()*100
                       x cumsum(x) cummin(x)
                                                  diff(x) pct_change(x)
                      10
                                   10
                                                     NaN
                                                                    NaN
                                   11
                                                                   -90.0
                                                      -9.0
                                   14
                                                      2.0
                                                                   200.0
                                   35
                                                     18.0
                                                                   600.0
  1 Python pandas
```

The effect of cumulated sums with the groups is not obvious in the ordering of the original DataFrame.

grouped.cumsum()						
	Passengerld	Survived	Age	SibSp	Parch	Fare
0	1	0	22.00	1	0	7.2500
1	2	1	38.00	1	0	71.2833
2	3	1	26.00	0	0	7.9250
3	6	2	73.00	2	0	124.3833
4	6	0	57.00	1	0	15.3000

After reordering according to the grouping, the output makes more sense

```
titanic["cumsum(Age)"] = grouped["Age"].cumsum()
titanic.set_index(["Pclass", "Sex"]).sort_index()[["Age", "cumsum(Age)"]].head(3)
```

Pclass	Sex		
1	female	38.0	38.0
	female	35.0	73.0
	female	58.0	131.0

Age cumsum(Age)

© Prof. Dr. K. Verbarg

Grouping and the index

Usually the aggregation returns a DataFrame having an index according to the grouping keys.

But for some methods the <u>index of the original non-grouped DataFrame</u> is returned, namely for head() and the methods in f)

```
grouped["Fare"].cumsum().index
RangeIndex(start=0, stop=891, step=1)
```

To get rid of the index columns, you would call reset index() afterwards...

or use as_index=False already when creating the groupings.

```
      titanic.groupby(["Pclass", "Sex"], as_index=False)["Fare"].sum()

      Pclass
      Sex
      Fare

      0
      1 female
      9975.8250

      1
      1 male
      8201.5875

      2
      2 female
      1669.7292

      3
      2 male
      2132.1125

      4
      3 female
      2321.1086

      5
      3 male
      4393.5865
```

Free aggregation / transformation methods

- **g) Apply** any function f to the groups. f should return
- i) a <u>scalar</u> (thus it is an aggregation reducing each group to one value), or,
- ii) a <u>DataFrame</u> or Series; the individual group results will then be assembled using concat()

Example: Use the Series-function argmin() on groups to find out which row attains the minimum fare.

Check that 5 is indeed the row with the minimum fare:

Example: Replace missing values with the average within each group.


```
df.groupby(...).apply(f)
```

Here, f is applied to all groups, i.e. for each group we do one call to f(g) where g is the df of the group.

f: df \mapsto x (DataFrame is mapped to a number)

```
def weighed fare(df):
   total = df["Fare"].sum()
    nof kids = df["Parch"].count() # questionable
    return total / nof kids
weighed fare(titanic)
32.204207968574636
grouped.apply(weighed_fare)
Pclass Sex
        female
                  106.125798
                  67.226127
       male
       female
                  21.970121
       male
                  19.741782
       female
                  16.118810
                  12.661633
        male
```

```
df.apply(f, axis='columns')
```

When we work on a df without grouping, then f is called for each <u>row</u> of the df.

f: row \mapsto x (row of DataFrame is mapped to a number)

```
titanic.apply(
    lambda row: row["Fare"] / row["Age"]
    , axis='columns'
)

0    0.329545
1    1.875876
2    0.304808
3    1.517143
4    0.230000
```

Warning: apply() is inherently <u>slow</u>, because it executes a function on each and every row. Better is to use a vectorized operation (based on aligning with the help of an index) if possible.

Free aggregation / transformation methods

h) Transform all values group wise, returning a DataFrame with the <u>same shape</u>. It is comparable to f) before, but transformed using some arbitrary function.

```
titanic["survived_per_class"] = (
    titanic.groupby("Pclass")["Survived"].transform('count')
)
titanic[["Pclass", "Name", "survived_per_class"]].head()
```

	Pclass	Name	survived_per_class
0	3	Braund, Mr. Owen Harris	491
1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	216
2	3	Heikkinen, Miss. Laina	491
3	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	216
4	3	Allen, Mr. William Henry	491

There are more methods, we haven't mentioned yet. Just a (growing) list for inspiration and my relief:

rank	Provide a rank number based on the sorted values
unique	Returns the DataFrame with duplicates removed
filter	Return rows belonging to groups which fulfil the filter condition. This is not like SQL-HAVING which returns the filtered groups. Rather, it is a selection in the original DataFrame – see f) before.

You might also use an arbitrary function instead of standard aggregations like count.

Joins

Combining DataFrames

Relational algebra	SQL
R ⋈ S	SELECT FROM R NATURAL JOIN S WHERE
R ⋈ _{<condition></condition>} S	SELECT FROM R JOIN S ON <condition> WHERE</condition>
R ≥< <a><a><a><a><a><a><a><a><a><a><a><a><a>	SELECT FROM R LEFT OUTER JOIN S ON <condition> WHERE</condition>

NULL, NULL, ...

Equijoin without using index

First, we need a DataFrame to join to:

	town_abbrev	town	country
0	С	Cherbourg	France
1	Q	Queenstown	Ireland
2	S	Southampton	England

Observations:

- Index of "titanic" vanished. We have a new RangeIndex.
- All joined <u>columns are preserved</u> in the result ("Embarked" and "town abbrev").

Now, do the join using merge ()

```
titanic2 = titanic.merge(towns, how="inner", left_on="Embarked", right_on="town_abbrev")
titanic2.head()
```

Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	town_abbrev	town	country
Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	S	Southampton	England
liss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	S	Southampton	England
ques 'el)	female	35.0	1	0	113803	53.1000	C123	S	S	Southampton	England
У	male	35.0	0	0	373450	8.0500	NaN	S	S	Southampton	England
/ J	male	54.0	0	0	17463	51.8625	E46	S	S	Southampton	England

```
SELECT *
FROM "titanic"
JOIN "towns" ON "titanic"."Embarked" = "towns"."town_abbrev";
SQL
```

Left outer join

The inner join "lost" some passengers where we don't know the town of embarkment:

```
dict(titanic=titanic.shape, joined=titanic2.shape)
{'titanic': (891, 12), 'joined': (889, 15)}

titanic.groupby("Embarked", dropna=False).size()

Embarked
C     168
Q     77
S     644
NaN     2
```

Remedy is a left outer join

```
titanic3 = titanic.merge(towns, how="left", left_on="Embarked", right_on="town_abbrev")
titanic3.shape

(891, 15)

titanic3.loc[titanic3["Embarked"].isna()]
```

Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	town_abbrev	town	country
' Miss. Amelie	female	38.0	0	0	113572	80.0	B28	NaN	<na></na>	<na></na>	<na></na>
rtha elyn)	female	62.0	0	0	113572	80.0	B28	NaN	<na></na>	<na></na>	<na></na>

Define the index on the right (lookup) table:

```
towns.set_index("town_abbrev", inplace=True)
towns
```

	town	country
town_abbrev		
С	Cherbourg	France
Q	Queenstown	Ireland
S	Southampton	England

Equijoin using index

In the (left) "titanic" table, an index on "PassengerId" would make sense, but is not helpful in this situation.

	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	town	country
ınd, Mr. Owen	Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	Southampton	England
۹n, Miss	. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	Southampton	England
\ear Ma	th (Lily y Peel)	female	35.0	1	0	113803	53.1000	C123	S	Southampton	England
∕illiam	Henry	male	35.0	0	Ο	373450	8.0500	NaN	ς	Southamnton	Fngland

Observations:

- It is a little bit confusing, what columns survive and what the final index is in this situation (a mixture of joining by attribute(s) in one df and the index in the other df).
- o Usually, we would do left_on/right_on, or, use the index in both df.

Remarks on joining

Observations

- Only <u>Equijoin</u> is possible using merge()!
- Specify the columns for the join condition:
 - Use left_on= or left_index=True for the left
 table
 - Use right_on= or right_index=True for the right
 table
 - Use on= when the column names match in both df's
 - When you omit to specify the join columns, a natural join is done (join columns with identical names in both tables)
- When using an index in both df to join, the index column(s) are preserved in the result.
 In contrast, if you do not use the index as a join condition (left_on= / right_on=), then the index is ignored and lost! If you need the index later, you need to preserve it before: df["index"] = df.index
 Don't make assumptions about row order in the result.
- o To avoid ambiguity for identical column names in both tables, a <u>suffix</u> " $_{x}$ " / " $_{y}$ " is appended (can be defined).

Hints

- dtypes of joined columns should match, otherwise you need to adapt them before joining.
- Check out additional options of merge ()
- validate="1:1" (or 1:m, m:1) checks the
 cardinalities of the join
- Forget the join() method. It is just a wrapper around merge() to save some typing if you want to join along an index.
- o Forget also concat (..., axis='columns'). This also glues two tables together horizontally based on matching column names (like a natural join in SQL). However, concat () comes handy, when you "join" multiple Series into a df.

RDBMS versus pandas

DML operations

To complete the introduction along the lines of SQL, we need to look at some more commands. Let's start with INSERT, UPDATE, DELETE.

How to do an **INSERT**?

We could create a new DataFrame with the desired information and append it. This can be done using concat().

UPDATE

We already did updates by computing new columns (extended projection).

How to mimic the WHERE-condition?

We can select the rows first using loc[] and then apply() the intended function.

DELETE

Do a selection of the rows you <u>don't</u> want to delete. Example:

```
o = o.loc[o.country.isin(['DE','DK'])]
```

Set operations

UNION / UNION ALL

Use concat()

Warning: append() is just a special version of concat, but not really as efficient, since it creates a new DataFrame each time.

MINUS

There is no fitting command.

If we want to do a minus just with respect to one single column, we could filter for values not occurring in the other set, like so:

```
df_a.loc[df_a["col"].isin(df_b["col"]) == False]
```

INTERSECT

There are no direct equivalents as to my knowledge.

But there is a method doing the intersection() of a (multi) index, which could be used to solve one task.

A solution might also be to do a suitable inner join instead.

Subqueries

Subqueries can be used at several places within an SQL.

Nested subquery in FROM clause

Example:

Solution: Compute the FROM-clause first, and then continue with the outer SELECT.

Observation: In contrast to SQL, we have to <u>materialize</u> the intermediate results.

Subquery in the SELECT-list

Subquery in WHERE clause

We have to distinguish certain cases: is the shape of the subquery 1x1, 1xn, 2xn,...?

IN / EXISTS / ALL / ANY comparisons.

Correlated subqueries

All this is getting more complex and there are no simple recipes. Solutions include translating it into a join expression first (which usually will do the RDBMS for you).

The ultimate comparison

RDBMS

SQL has few but powerful concepts.

- Data structure is the <u>relation</u>.
- Work is row-oriented (first filter based on WHERE condition and then do modifications on that data).
- <u>Indexes</u> are used for performance tuning (and unique constraints).

 Supports <u>transactional</u> use and hence comes with an overhead in terms of operation and resources.

pandas

- pandas has a vast number of very specific commands
 more to learn, tricky to use (and read), solutions can be elegant and quick.
- Data structures are DataFrame, Series, GroupBy and other object types.
- Work is more <u>column-oriented</u> (manipulate entire columns = Series at once with vector operations).
- Index is used to <u>align</u> data to facilitate further operations. There is only one (row) index.
- pandas is open source for commercial support use
 e.g. Anaconda distribution
- Optimized for (one-shot) data analysis of static files. In this application domain it has advantages: easy to set up, faster to develop, nice documentation with Jupyter notebooks.

Memory usage

Working with large datasets or creating too many copies of the data may cause a memory error.

```
import pandas as pd
d = pd.read_csv("OrgxProj Geocodes.csv")
z = pd.concat([y,y,y,y,y,y,y,y,y,y,y])
z.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 318113928 entries, 0 to 23626
Data columns (total 16 columns):
    Column
                 Dtype
                 float64
                 int64
    project id
   project acronym object
                 float64
    project cost
                object
    role
    org id
                 int64
                 object
    org name
    country
                 object
    post code
                 int64
    city
                 object
   street
                 object
   org url
                 object
   lat
                 float64
                 float64
 13 lng
 14 places_found
                 int64
 15 place id
                object
dtypes: float64(4), int64(4), object(8)
memory usage: 40.3+ GB
```

After DataFrame z, the Python process had already 9 GiB.

,			
^		35%	78%
Name	Status	CPU	Arbeitssp
Python		0%	8.739,0 MB
Python		0%	15,9 MB

The next step crashes:

```
t = pd.concat([z,z,z,z,z,z,z,z,z,z,z,z,z,z,z])
```

MemoryError: Unable to allocate 9.48 GiB for an array with shape (4, 318113928)

Memory usage

My PC with 16 GB RAM tried to swap data to hard disk, but for processing it still needs to go into the RAM. RAM is already some time on the top edge before the crash.

To clean up the memory you can delete objects.

```
del(y)
del(z)
del(t)
```

After the automatic run of the Python garbage collector, the space will be freed.

You can force the garbage collector run using

Still this does not mean that all memory is returned to the system. Although the memory is free now, Python keeps a portion of it – just in case.

^		3%	50%
me	Status	CPU	Arbeitssp
Python		0%	3.688,3 MB
Python		0%	18,1 MB

Scalability and performance

As we have seen, scalability is an issue in pandas. For larger data sets, performance is an issue, too.

Outside pandas, currently there are:

As a symptom for this situation, there are various solutions to it.

Project **ibis** to do SQL-like operations on various backends including pandas, sqlalchemy (hence RDBMS) and Spark. But this would mean to work with ibis instead of pandas.

Tricks within pandas:

- o Load only needed data by filtering columns in read csv(..., usecols=...)
- Use efficient data types
- You can read and process data files in chunks using read parquet()
- Enhancing performance by programming extension in C or other advanced approaches, see:
 https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html

Use Apache **Spark** instead of pandas. It is a cluster computing platform also providing "DataFrames" and SQL.

Use Apache Spark as a backend for pandas. Apache **arrow** (pyarrow) is the bridge between Python and the Spark JVM process. https://towardsdatascience.com/spark-vs-pandas-part-4-recommendations-35fc554573d5

Most promisingly: **dask** allows to scale pandas
DataFrames. The dask DataFrame and commands very
much look like pandas, but they also live on disk or a
remote computer. New: **polars** is comparable to pandas,
but support parallel execution on CPU cores.

SAP HANA

[1]: import hana_ml.dataframe as dataframe
 conn = dataframe.ConnectionContext(userkey='MYHANA')
 df_remote = conn.table('USEDCARS')

Lassen Sie sich einige wenige Zeilen der Tabelle anzeigen.

[2]: df_remote.head(5).collect()

[2

:[:		CAR_ID	BRAND	MODEL	VEHICLETYPE	YEAROFREGISTRATION	HP	FUELTYPE	GEARBOX
	0	717	volkswagen	golf	limousine	2004	75	benzin	manuell
	1	860	volkswagen	golf	limousine	1999	75	benzin	manuell
	2	1557	volkswagen	golf	limousine	1999	75	benzin	manuell
	3	1891	volkswagen	golf	limousine	1996	75	benzin	manuell
	4	2326	volkswagen	qolf	limousine	2000	75	benzin	manuell

Alternatively, process data within a data base, e.g. SAP HANA.

Library hana_ml has pandas-ish commands. With collect() retrieve data into a local pandas-df.

Performance and scalability solved.