Pumping Lemma

Non-Regular language

ex. C= { w/ ~ has equal number of 1s and 0s}

The Lemma

Let L be a negular language

then there is a positive integer P when

TWEL where INI > P, there is a way to write w=xy= where

1. 141 >0

2. 1xy1 & P

3. 41 > 0, Xy = EL

Generalized Pumping Luma

Same as above, but for strings and EL, axy'zb EL (only need to purp middle, not beginning head)

Minimizing DFA's

Theorem: for every language in them is a unique minimal-state DFA MM such that L=L(m").

There is an efficient absorbtion think will

There is an efficient algorithm think will yreduce such as M*

Extending transition function 8 to things

Criven DPA M=(Q, E, S, 20, F), extend S to a funtion

D: Q x Z* : Q as follows:

b(2, 2) = q

1 (2, 0) = 8 (2,0)

D(q, 5,... 5, +1)= 8(D(q, 5, ... 5, 1), 5, +1)

(note B(q, w): the state of Mreached offer reading w from q)

B(20, W) & F @ M occepts w

Distinguishability

Def. we Σ^{α} distinguishes states Q_1, Q_2 if exactly one of $D(Q_1, \omega)$, $D(Q_2, \omega) \in F$

Def! states 1, 9 are distinguishable if there exists such a w (p = 0) Def: states p, 9 are indistinguishable it there exists no such w (p = 0) Pairs of indistinguishable others are redundant.

~ is an equivalence operation; partitions & into disjoint equivalence classes

ex.

Minimization Algorithm

Input! DPA Monin when L(M) = L(Monin)

where Monin has no inaccessible states

and all states in Monin are distraprishable

Monin is the unique uninimal DPA Equivalent to un

States of Musin will be equivalence classes of M Discovery via Table-Filing Algorithm (DP to work indistinguishable states) Steps:

- 1. Remove all ineccessible states from M
- 2. Ann Table Filling Algorithm to get; Eally = 2 [2] | q is an accessible state of m5
- 3. Define! Main = (Quin, Z, Somm, Zowin, Finin)

where

Qmn = EQIVILIN

10 min = [4.]

Fmin = 2[2] | 2 EPf

Smin ((25,0) = [8(2,0)]

Myhill-Nerode Thoren

Definitions

Let $L \subseteq \mathbb{Z}^n$, $\lambda, y \in \mathbb{Z}^n$ Then x = y if $\forall z \in \mathbb{Z}^n$,

[xz & L <=> yz & L]

Ze is an equivalence relation

The theorem

A language L is regular iff the number of equivalence classes of \equiv_{χ} is regular

Usefulness: if we show that there is a distriguishing string or for L, than all strings in L are distinguishables so the language has informed equivalence classes, so it is not regular.

Learning DFA'S

PAC Learning (Probably Approximately Cornect)

learn concepts of duses (e.g. cats and do js) and learn to distinguish

> Inhou space X

- Conept clas ((for s over x)

-> Hypothesis eles H (foi's over X)
Proper berry'. H= C

Algorithm A PAC-luras C it:

When X: distributed according to D and outputs

he H where

Pra [Pro [h(x) + L(x)] > 8] < E

PAL- Larning DFA's

Convey regular language L, examples with these inputs

Define L! to be "partially defined language" where WEL!, or unknown

Ti president x' à it ge move eyer xe er, leste

If x = y then x, y cannot be distriguished by L?

Related to Myhill-Newde but set of examples has to be carefully schedied: PAC-learning whereastering quarter