EJEMPLOS DE CÁLCULO DE PROBABILIDAD.

Ejemplo

Se tienen 27 tarjetas, cada una Pon las letras del alfabeto, si se extrae una al azar, encuentre la probabilidad de que ocurra cada uno de los siguientes eventos:

- a) A= Aparezca una vocal
- b) B= Aparezca una consonante
- c) C = Aparezcan cualquiera de las siguientes letras o, p, q, r, s, t, z.

Solución:

a) A= Aparezca una vocal.

b) Aparezca una consonante.

c) C= Aparezca una o, p, q, r, s, t, z.

diferentes, se extraen 3 bolitas al azar.	icas diferentes, 7 azules diferentes, 5 rojas Calcule la probabilidad de los siguientes
eventos:	
a)F= Todas sean azules.	

b) G= Todas son de distinto color.

c) H= Todas son del mismo color.

Ejemplo No. 3.

Con las letras a, b, c, d, e, f, g, h, i, se realiza el experimento: E= Formar palabras claves de 5 letras sin repetición. Determinar:

- a) El número de puntos muestrales de S
- b) Calcule la probabilidad de cada evento:

A= Formar palabras claves que empiecen con "a" y que terminen en "i", sin repetición.

B= Formar palabras que comiencen con vocal y termine en consonante

Solución:

a) El número de puntos muestrales de S

b) Calcule la probabilidad de cada evento:

A= Formar palabras claves que empiecen n con "a" y que terminen en "i", sin repetición.

B= Formar palabras que comiencen con vocal y termine en consonante, sin repetición:

El tema de la probabilidad se basa en tres reglas llamadas axiomas de probabilidad. Los axiomas son los siguientes:

- 1. Sea S un espacio muestral, entonces P(S) = 1
- 2. Para cualquier vento A, $0 \le P(A) \le 1$
- 3. Si A y B son eventos mutuamente excluyentes, entonces P(AUB) = P(A) + P(B).

De forma general
$$P(A_1UA_2U \dots U A_n) = P(A_1) + P(A_2) + \dots \cdot P(A_n)$$

Las principales consecuencias de estos axiomas son los siguientes teoremas:

TEOREMA 1

La probabilidad de que el evento A no ocurra es

$$P(A^c) = 1 - P(A)$$

TEOREMA 2

La probabilidad de un evento vacío es cero.

$$P(\emptyset) = 0$$

TEOREMA 3

Si el evento A esta incluido en el evento B.

Si
$$A \cap B$$
, entonces $P(A) \leq P(B)$

TEOREMA 4

Si A y B son 2 eventos cualesquiera entonces:

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

AMPLIACION DE TEOREMA4. PRINCIPIO DE INCLUSION EXCLUSION.

Si A, B, C, son eventos cualesquiera, entonces:

P(AUBUC)

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B) + P(A \cap C)$$

En diagrama de Conjuntos:

ANB ANBOC ANC BOC C

Ejemplo de aplicación de los teoremas y las Leyes de De Morgan.

Ejemplo 1

Sean A y B dos ventos cualesquiera

con
$$P(A) = \frac{3}{8}$$
; $P(B) = \frac{1}{2}$; $P(A \cap B) = \frac{1}{4}$

Determine:

- a) P(AUB)
- b) $P(A^c)$
- c) $P(B^c)$
- d) $P(A^c \cap B^c)$
- e) $P(A \cap B^c)$

Solución:

f) P(AUB)

- g) $P(A^c)$
- h) $P(B^c)$

i) $P(A^c \cap B^c)$

 $\mathbf{j}) \quad P(A \cap B^c)$

Ejemplo

En un país se publican tres periódicos matutinos: A, B y C, se realiza una encuesta, los resultados son los siguientes: 20% lee el periódico A; 16% lee B; 14% lee C; 8% lee los periódicos A y B; 5% lee A y C; 4% lee B y C; 2% lee los tres periódicos.

¿Qué porcentaje de personas leen al menos un periódico?

EJERCICIOS

1. Sean dos eventos cualesquiera A y B, y se sabe que $P(A) = \frac{1}{2}$; $P(B) = \frac{1}{3}$;

 $P(AUB) = \frac{2}{3}$. Calcular:

- a) $P(A^c)$
- b) $P(B^c)$
- c) $P(A \cap B)$
- d) $P(A^c \cap B^c)$
- e) $P(A^c U B^c)$
- f) $P(A \cap B^c)$
- g) $P(A^c \cap B)$
- h) $P(A^cUB)$

Repuestas:

- a) $\frac{1}{2}$ b) $\frac{2}{3}$ c) $\frac{1}{6}$ d) $\frac{1}{3}$ e) $\frac{5}{6}$ f) $\frac{1}{3}$ g) $\frac{1}{6}$ h) $\frac{2}{3}$

- 2. Si la probabilidad de comprar un par de zapatos es 0.5; la de comprar una camisa es 0.35; la de comprar un pantalón es 0.15; mientras que la probabilidad de comprar los zapatos y la camisa es 0.11; los zapatos y el pantalón es 0.05; la camisa y el pantalón es 0.09 y la probabilidad de comprar las 3 cosas es 0.01. ¿cuál es la probabilidad de que un cliente compre al menos una de las 3 cosas? R/0.76

Calcule la probabilidad