Vehicle Make and Model Recognition System

A Presentation by

V. Vikramraj

G.Bhagyasri

P. Radha Krishna

S.Saimanoj

Guided by

Smt.K.Aruna Kumari Assistant Professor

Abstract

- Vehicle monitoring and identification is an important part in area of traffic control and monitoring.
- We need large databases and domain specific features with machine learning.
- In this proposed system we used CNN with transfer learning on relatively small database.

Problem Statement

The main goal of this project is to predict the make and model of a vehicle with the help of models made from convolution neural networks with the help of transfer learning.

Existing Models

- Automatic Number Plate Recognition
- Works using Machine learning feature Extractors.

Proposed System

To use CNN with transfer learning to attain a high accuracy with small dataset.

Dataset

- > We gathered dataset based on most stolen cars in India
- Hyundai Creta (98)
- Hyundai Santro(100)
- Hyundai Venue(92)
- Kia Seltos(97)
- Mahindra Bolero(82)
- Mahindra Scorpio(85)
- Maruti Suziki Vitara Brezza(94)
- MG Hector(79)
- ➤ With variances ¾, Front, Back, Side views

Reasons for Deep Learning

- Very helpful in solving problems such includes computer vision, speech recognition etc.
- With is we can avoid 'reverse engineering' required by traditional ML algorithms.
- Neural networks adjust and adapt to every new piece of data.

Pre-process the dataset

- Fetch and visually inspect a dataset
- Image Pre-processing
 - Address Imbalanced Dataset Problem
 - dataset into training, validation and testing groups
 - Augment training data
 - Limit overlap between training and testing data
 - Sufficient testing and validation datasets

PREPROCESSING

- Removes inconsistencies and incompleteness in the raw data and cleans it up for model consumption
- Techniques:
 - Black background
 - Rescaling, gray scaling
 - Sample wise centering, standard normalization
 - Feature wise centering, standard normalization
 - RGB → BGR

DATA AUGMENTATION

- Improves the quantity and quality of the dataset
- Helpful when dataset is small or some classes have less data than others
- Techniques:
 - Rotation
 - Horizontal & Vertical Shift, Flip
 - Zooming & Shearing

Training

Framework: TensorFlow

Networks: Inception v3 and VGG16

VGG16

Model Evaluation and Results

MODEL	ACCURACY	SIZE
Inception-V3	82%	118 MB
VGG-16	88%	312 MB

Conclusion

- Based on our requirements the choice of topology and framework will differ.
- In addition to work with small image dataset there is still more room for progress

Thank You