Task 2 : Prediction using decision tree algorithm

Name: Sharad Parmar

objective: In this task, we shall create the Decision Tree Classifier and visualize it graphically

```
In [13]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier,plot_tree
from sklearn.metrics import accuracy_score,confusion_matrix
from sklearn.tree import DecisionTreeRegressor
```

In [4]: df= pd.read_csv("Iris.csv")

Out[5]:

In [5]: df.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Information and statistics of datasets

```
In [6]: df.info()
       df.describe()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 150 entries, 0 to 149
       Data columns (total 6 columns):
        # Column Non-Null Count Dtype
           -----
                         -----
           Id
                         150 non-null
                                        int64
           SepalLengthCm 150 non-null
                                       float64
           SepalWidthCm 150 non-null
                                      float64
           PetalLengthCm 150 non-null
                                      float64
           PetalWidthCm 150 non-null
                                       float64
           Species
                         150 non-null
                                        object
       dtypes: float64(4), int64(1), object(1)
       memory usage: 6.5+ KB
Out[6]:
```

ouctol

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [8]: X= df.iloc [:,1:-1]
Y= df.iloc[:,-1]
X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.1, random_state=0)
```

```
In [9]: df=df.iloc[:,1:]
    sns.pairplot(df,hue='Species')
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1b9e8d78>


```
In [10]: lm= DecisionTreeClassifier(random_state=0)
lm.fit(X_train, Y_train)
```

Out[10]: DecisionTreeClassifier(random_state=0)

```
In [11]: Y_train_pred=lm.predict(X_train)
    Y_test_pred=lm.predict(X_test)
    print("Train accuracy score:",accuracy_score(Y_train,Y_train_pred))
    print("Test accuracy score:",accuracy_score(Y_test,Y_test_pred))

Train accuracy score: 1.0
Test accuracy score: 1.0
```

In [12]: plt.figure (figsize=(15,15))

plot_tree(lm, filled= True)
print()

