TABLE 2.1. Simple exponential families with dispersion parameter

	to lutear modera.	$ xp \left\{ \frac{y\theta - b(\theta)}{\phi} \omega + \right\} $	$\left\{-c(y,\phi,\omega)\right\}$	
A granighted to	r chasing, to avoi	o prostillas ins	of the products of the	STEEL STEEL
	(a) Component	s of the exponent	tial family	
Distribution		$ heta(\mu)$	b(heta)	ϕ
Normal	$N(\mu,\sigma^2)$		$\theta^2/2$	σ^2
Bernoulli	$B(1,\pi)$		$\log(1 + \exp(\theta))$	edep
Poisson	$P(\lambda)$	$\log \lambda$	$\exp(heta)$	1
Gamma	$G(\mu, u)$	$-1/\mu$	$-\log(- heta)$	ν^{-1}
Inverse Gaussian	$IG(\mu,\sigma^2)$	$1/\mu^2$	$-(-2\theta)^{1/2}$	σ^2
els applies U	(b) Exp	ectation and varia	pendix Al. So the data as well, some	qA s
		aw Eddylar and St	var(a) = b''(0) + b	PAT
	$E(y) = b'(\theta)$			
		Then w is the m	ations are grouped.	
Distribution	$\mu = \theta$	Then w is the m suggested ease.	bequoty are another σ^2/ω to lo l	
Distribution Normal	$\mu = \theta$ $\pi = \frac{\exp(\theta)}{1 + \exp(\theta)}$	Then w is the m suggested ease.	σ^2/ω $\pi(1-\pi)/\omega$	
Distribution Normal Bernoulli	$\mu = \theta$ $\pi = \frac{\exp(\theta)}{1 + \exp(\theta)}$ $\lambda = \exp(\theta)$	$\pi(1-\pi)$	bequoty are another σ^2/ω to lo l	

