

Esteira Classificadora de Produtos I

Experimento #7

PCS3335 - Laboratório Digital A 09/06/2022

Natanael Magalhães Cardoso, 8914122 Renato Naves Fleury, 11805269

Professor: Glauber de Bona

Turma: 10
Bancada: B3

Universidade de São Paulo

Escola Politécnica

Departamento de Eng. de Computação e Sistemas Digitais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

Departamento de Eng. de Computação e Sistemas Digitais

Esteira Classificadora de Produtos I

Natanael Magalhães Cardoso, Renato Naves Fleury

1. INTRODUÇÃO

No ambiente industrial, uma máquina muito comum em linhas de produção são as esteiras classificadoras de produtos. Essas máquinas transportam produtos em fileira e de acordo com a dinâmica da produção transportam diferentes produtos para diferentes setores. Nesse projeto, será desenvolvido um circuito digital que controla um exemplo de esteira classificadora de produtos.

2. OBJETIVOS

O objetivo deste experimento é projetar e construir um fluxo de dados para uma esteira classificadora de produtos que compara o tipo do produto e o setor de destino com o configuração interna de produto para cada setor, e se as informações lidas forem iguais à configuração interna armazenada, uma esteira de desvio do produto para o seu respectivo setor é ativada.

3. PLANEJAMENTO

3.1. FLUXO DE DADOS DA ESTEIRA CLASSIFICADORA

3.1.1 Síntese do Circuito Combinatório

Das especificações do projeto, sabe-se que, o sistema tem 4 entradas, sendo o Produto e o Setor a serem Configurados (2 bits cada) e o Produto e o Setor Lidos (2 bits cada) durante o funcionamento da esteira, 2 saidas indicando o Setor Determinado (2 bits) e o comando de Acionamento do setor de destino do produto. Os sinais Reset inicia o sistema, Próximo armazena o produto e o setor configurados e o Clock é o relógio do sistema. Além disso, o fluxo de dados do sistema deve armazenar os tipos de produtos e os setores de trabalho.

Com isso, podemos iniciar escolhendo dois registradores para armazenar os produto e os setores que serão inicialmente configurados no acinamento da máquina, nesse projeto, escolheu-se o registrador 74195. Logo em seguida, pensando no funcionamento da esteira é preciso que ela

compare as informações dos produtos que passam por ela com os produtos e respectivos setores configurados. Para isso, será utilizado o comparador 7485.

3.1.2 Diagrama lógico

A Fig. 1 mostra o diagrama lógico do fluxo de dados da esteira classificadora de produtos. Ele é constituido de 5 componentes, dois registradores 74195, dois comparadores 7485 e uma porta OR (CI TTL 7432).

Figura 1: Diagrama lógico do fluxo de dados da esteira classificadora.

3.1.3 Levantamento dos materiais necessários

■ Tabela 1: Unidades requeridas para cada CI

Slot	Operação	CI	Un. Requeridas	Un. Disponíveis
1	Registrador	74195	1	1
2	Registrador	74195	1	1
3	Comparador	7485	1	1
4	Comparador	7485	1	1
5	OR2	7432	1	4

Para garantir que o circuito projetado respeite as restrições de montagem, fizemos um levantamento dos recursos necessários para este circuito mostrado na Tabela 1. Ela mostra a quantidade

de unidades lógicas requeridas para cada CI utilizado. As especificações de cada CI foi obtido pelos respectivos *datasheets*.

3.1.4 Simulação

A Fig. 2 mostra a carta dos tempos obtida com a simulação do Fluxo de Dados. Essa simulação visa imitar uma situação na qual o operador da máquina inicialmente configura os prdutos e seus respectivos setores e logo em seguida passam todas as conbinações de produtos e setores para verificar se apenas os predutos e setores configurados forneceriam saída alta do circuito.

Como é possível ver na simulação, esses sinais mostram que o resultado esperado foi alcançado na simulação.

Figura 2: Carta dos tempos para o circuito do fluxo de dados da Esteira Classificadora com sinias de entrada Clock, Reset, *Pc*1, *Pc*0, *Sc*1, *Sc*0, Proximo, *Pl*1, *Pl*0, *Sl*1 e *Sl*0, sinais de depuração *d_Pc*1_*A*, *d_Pc*0_*A*, *d_Sc*1_*A*, *d_Sc*0_*A*, *d_Pc*1_*B*, *d_Pc*0_*B*, *d_Sc*1_*B*, *d_Sc*0_*B*, e sinais de saída Acionamento, *Sd*1 e *Sd*0

3.1.5 Metodologia de montagem e testes

O circuito será montado no painel de montagem e testado à medida que for montado. Incialmente, monta-se um registrador e um comparador, testa-se então o seu comportamento, logo em seguida monta-se os demais componentes. Após estar todo montado será avaliado com a tabela de testes (Tab. 2).

3.1.6 Tabela de Testes

As Tabelas 2 e 3 são as tabelas de testes para os sinais de saída e depuração, respectivamente.

■ Tabela 2: Tabela de testes para o sinal de saída

Entrada											Saída			
Clk	Rst	Pc_1	Pc_0	Sc_1	Sc_0	Prox	Pl_1	Pl_0	Sl_1	Sl_0	Ac	Sd_1	Sd_0	
\uparrow	0	0	0	0	0	0	0	0	0	0	1	0	0	
\uparrow	1	0	1	0	0	1	0	0	0	0	1	0	0	
\uparrow	1	1	0	0	1	1	0	0	0	0	1	0	0	
\uparrow	1	0	0	0	0	0	1	1	1	1	0	1	1	
\uparrow	1	0	0	0	0	0	0	0	0	0	0	0	0	
\uparrow	1	0	0	0	0	0	0	0	0	1	0	0	1	
\uparrow	1	0	0	0	0	0	0	0	1	0	0	1	0	
\uparrow	1	0	0	0	0	0	0	0	1	1	0	1	1	
\uparrow	1	0	0	0	0	0	0	1	0	0	1	0	0	
\uparrow	1	0	0	0	0	0	0	1	0	1	0	0	1	
\uparrow	1	0	0	0	0	0	0	1	1	0	0	1	0	
\uparrow	1	0	0	0	0	0	0	1	1	1	0	1	1	
\uparrow	1	0	0	0	0	0	1	0	0	0	0	0	0	
\uparrow	1	0	0	0	0	0	1	0	0	1	1	0	1	
\uparrow	1	0	0	0	0	0	1	0	1	0	0	1	0	
\uparrow	1	0	0	0	0	0	1	0	1	1	0	1	1	
\uparrow	1	0	0	0	0	0	1	1	0	0	0	0	0	
\uparrow	1	0	0	0	0	0	1	1	0	1	0	0	1	
\uparrow	1	0	0	0	0	0	1	1	1	0	0	1	0	
	1	0	0	0	0	0	1	1	1	1	0	1	1	

■ Tabela 3: Tabela de testes para os sinais de depuração

Entrada								Depuração								
$\overline{Pc_1}$	Pc_0	Sc_1	Sc_0	Prox	Pl_1	Pl_0	Sl_1	Sl_0	$\overline{Pc_1^A}$	Pc_0^A	Sc_1^A	Sc_0^A	Pc_1^B	Pc_0^B	Sc_1^B	Sc_0^B
0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0
0	0	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0
0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0
0	0	0	0	0	0	0	1	1	1	0	0	1	0	1	0	0
0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0
0	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	0
0	0	0	0	0	0	1	1	0	1	0	0	1	0	1	0	0
0	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0	0
0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0
0	0	0	0	0	1	0	0	1	1	0	0	1	0	1	0	0
0	0	0	0	0	1	0	1	0	1	0	0	1	0	1	0	0
0	0	0	0	0	1	0	1	1	1	0	0	1	0	1	0	0
0	0	0	0	0	1	1	0	0	1	0	0	1	0	1	0	0
0	0	0	0	0	1	1	0	1	1	0	0	1	0	1	0	0
0	0	0	0	0	1	1	1	0	1	0	0	1	0	1	0	0
0	0	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0

4. RESULTADOS

O circuito digital foi implementado com sucesso na placa de montagem. Ele apresentou os mesmos resultados que os obtidos nas simulações. A montagem do circuito pode ser visto na Fig. 3.

■ Figura 3: Montagem do Fluxo de Dados do projeto da esteira classificadora de produtos.

5. DESAFIO

O próximo passo é introduzir uma unidade de controle ao circuito juntamente com o fluxo de dados projetado. Consideramos, agora, que o circuito possui dois modos de funcionamento: configuração e operação, que são controlados pelo sinal externo *modo*. Adotamos a convenção de que o circuito entra em estado de configuração quando o sinal *modo* está em nível lógico alto e em estado de operação quando o sinal *modo* está em nível lógico baixo. Com esta escolha, o sinal *enable* possui a expressão lógica *enable* = *modo* · *proximo*. É o sinal *enable* que controla a entrada *proximo* do fluxo de dados, permitindo a configuração de um novo produto apenas se o circuito estiver em estado de configuração. O diagrama de blocos do circuito descrito é mostrado na Fig. 4.

Figura 4: Diagram de blocos da esteira classificadora incluindo a unidade de controle

6. CONCLUSÃO

Com este experimento, pudemos projetar um Fluxo de dados de uma projeto de uma esteira classificadora de produtos. O desenvolvimento do fluxo de dados foi feito a partir do diagrama de blocos fornecido e da descrição de funcionamento da máquina. Durante a implantação não houve nenhuma alteração do planejamento e o circuito operou como planejado.

Universidade de São Paulo

Escola Politécnica

Departamento de Eng. de Computação e Sistemas Digitais