Bringing HPC Algorithms to Big Data Platforms

Nikolay Malitsky
Brookhaven National Laboratory

Outline

- ☐ Spark as an integrated platform for experimental facilities
- □ Ptychographic application
- ☐ Spark-MPI approach
- Summary

National Synchrotron Light Source II

- ☐ highly optimized 3rd generation synchrotron facility
- □ started operations in 2014 at Brookhaven National Laboratory, New York State
- ☐ suite of six experimental programs:
 - Hard X-Ray Spectroscopy
 - Imaging & Microscopy
 - Structural Biology
 - Soft X-Ray Scattering & Spectroscopy
 - Complex Scattering
 - Diffraction & In Situ Scattering

DOE Science Drivers

Many years ago ...

Now

NSLS-II is here

Closing a gap between Big Data and HPC computing

Three directions

☐ Spark + MPI-oriented extension

■ MPI + Spark-oriented extension

New model

topic of this talk

Spark an integrated platform for experimental facilities

Ptychographic Application

Ptychography

Ptychography is one of the essential image reconstruction techniques used in light source facilities. This method consists of measuring multiple diffraction patterns by scanning a finite illumination (also called the probe) on an extended specimen (the object).

SHARP-NSLS2 application

Next: near-real-time ptychographic pipeline

Tomographic experiment based on 100 ptychographic projections

Spark-MPI Approach

Deep Learning Parallel Approaches*

Model Parallelism

(Some) Spark-Based Distributed Deep Learning Models*

SHARP-SPARK Benchmark Application*

Sum of 2M arrays of floats across the Spark workers

Message Passing Interface (MPI) Framework

Major open-source implementations:

- MPICH, 1992 present: Argonne National Laboratory
- MVAPICH, 2001 present: Ohio State University
- OpenMPI, 2003 present: multiple members

MVAPICH2 architecture*:

MPI Application									Process Manager	
MVAPICH2										mpirun_rsh
CH3 (OSU enhanced)								Nemesis	mpirun, mpiexec, mpiexec.hydra	
OFA-IB	OFA- iWARP	OFA- RoCE (v1/v2)	TrueScale (PSM)	Omni- Path (PSM2)	Shared- Memory	TCP/IP	OFA-IB (OSU enhanced)	TCP/IP	Shared- Memory	STITEM

From SHARP-SPARK to the MPI Framework

	SHARP-SPARK	MPI Framework				
Application Programming Interface	Communicator interface	MPI-3 Standard: point-to-point, collective, etc.				
Inter-Process Initialization Mechanism	RDMA address exchange server	Process Manager Interface (PMI-1 and PMI-2) with the support of several internal and external process managers				
Inter-Process Communication	CaffeOnSpark RDMA library	Abstract Device Interface (ADI-3) with multiple communication adapters				

Spark-MPI Conceptual Demo

https://github.com/SciDriver/spark-mpi/tree/master/examples/spark/

```
Create the rdd collection associated with the MPI workers
rdd = sc.parallelize(env, partitions)
Define the MPI application
def allreduce(kvs):
                          PMI Server variables
    os.environ["PMI PORT"] = kvs["PMI PORT"]
     os.environ["PMI ID"] = str(kvs["PMI ID"]]
     from mpi4py import MPI
    comm = MPI.COMM WORLD
     rank = comm.Get rank()
     # image
    n = 2*1000000
    sendbuf = np.arange(n, dtype=np.float32)
    recvbuf = np.arange(n, dtype=np.float32)
     sendbuf[n-1] = 5.0;
                                   MPI interface
     comm.Allreduce(sendbuf, recvbuf, op=MPI.SUM)
    out = {
        'rank' : rank,
        'time' : (t2-t1),
        'sum' : recvbuf[n-1]
    return out
Run MPI application on Spark workers and collect the results
results = rdd.map(allreduce).collect()
for out in results:
   print ("rank: ", out['rank'], ", sum: ", out['sum'], ", ]
rank: 0 , sum: 20.0 , processing time: 0:00:00.014500
rank: 1 , sum: 20.0 , processing time: 0:00:00.015380
rank: 2 , sum: 20.0 , processing time: 0:00:00.014479
rank: 3 , sum: 20.0 , processing time: 0:00:00.015245
```


MPICH and MVAPICH Common Process Managers

Summary: Path towards the Spark-MPI Applications

CaffeOnSpark: Spark + RDMA inter-worker interface + complex initialization

procedure based on the Spark RDD mechanism

SHARP-SPARK: Spark + CaffeOnSpark inter-worker interface + RDMA address

exchange server

Spark-MPI: Spark + MPI inter-worker interface + PMI Server

Kitware and BNL. An in situ, streaming, data- and compute-intensive platform for experimental data. DOE ASCR SBIR Phase I grant. Feb 21, 2017

Acknowledgement

Scientific Computing, Kitware: A. Chaudhary, P. O'Leary

CaffeOnSpark Team, Yahoo: A. Feng, J. Shi, M. Jain

SHARP Team, CAMERA, LBNL: H. Krishnan, S. Marchesini, T. Perciano, J. Sethian, D. Shapiro

Computational Science Initiative, BNL: N. D' Imperio, K. Kleese van Dam, R. D. Zhihua,

Information Technology Division, BNL: R. Perez

NSLS-II, BNL: M. Cowan, L. Flaks, A. Heroux, X. Huang, L. Li, R. Petkus, T. Smith

Funding: National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704

Thank You.

malitsky@bnl.gov

