WEIGHTED GRADIENT ESTIMATES OF SOLUTIONS TO DEGENERATE AND SINGULAR ELLIPTIC EQUATIONS

DAT CAO

Abstract. We study the weight- $W^{1,p}$ estimates of weak solutions to the equation

$$\left\{ \begin{array}{rcl} \operatorname{div}[\mathbb{A}(x)\nabla u] &=& \operatorname{div}[\mathbf{F}] & & \text{in} & \Omega, \\ u &=& 0 & & \text{on} & \partial\Omega, \end{array} \right.$$

where $\Omega \subset \mathbb{R}^n$ is an open bounded domain, $\mathbf{F}: \Omega \to \mathbb{R}^n$ is a given vector field, and the coefficient matrix $\mathbb{A}: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ is symmetric, measurable, and satisfying the degenerate/singular elliptic condition:

$$\Lambda \mu(x)|\xi|^2 \le \langle \mathbb{A}(x)\xi, \xi \rangle \le \Lambda^{-1}\mu(x)|\xi|^2, \quad \forall \xi \in \mathbb{R}^n, \quad \text{a.e.} \quad x \in \mathbb{R}^n,$$

with fixed $\Lambda > 0$, and a non-negative weight μ in some Muckenhoupt class.

We obtain weighted estimates of solutions under a smallness condition on the mean oscillation of the coefficients with the weight μ and a flatness condition on the boundary of the domain Ω .

This is a joint work with Tadele Mengesha (University of Tennessee) and Tuoc Phan (University of Tennessee).