Chevalley-Warning et Erdös-Ginsburg-Ziv

Leçons: 120, 121, 123, 142, 144

Théorème 1

Soit $q = p^s$ où p est premier et $(f_a)_{a \in A}$ une famille finie de polynômes de $\mathbb{F}_q[X_1, \dots, X_m]$ tels que $\sum_{a \in A} \deg f_a < m$. Alors si $V = \{x = (x_1, \dots, x_m) \in K^m : \forall a \in A, f_a(x_1, \dots, x_m) = 0\}$, on a $Card(V) \equiv 0[p]$.

Démonstration. On note $K = \mathbb{F}_q$.

Étape 1 : Soit $u \in \mathbb{N}$ et $S(u) = \sum_{x \in K} x^u$. Montrons que S(u) = 0 si u = 0 ou $q - 1 \nmid u$ et -1 sinon.

D'abord, si u=0, avec la convention $0^0=1$, on a $S(0)=1+\sum_{x\in K^\times}1=q=0$ dans \mathbb{F}_q . Si $u\neq 0$, rappelons que K^\times est cyclique. Prenons en un générateur z, qui est donc d'ordre q, de sorte que $z^u=1 \Leftrightarrow q-1\mid u$.

Ainsi, si
$$q - 1$$
 ne divise pas u , $S(u) = \sum_{j=0}^{q-1} z^{ju} = \frac{z^{qu} - 1}{z^u - 1} = 0$ car $z^q = z$.

Et sinon,
$$S(u) = \sum_{j=1}^{q-1} 1 = q - 1 = -1$$
 dans \mathbb{F}_q .

Étape 2: soit $P = \prod_{a \in A} (1 - f_a^{q-1})$. Si $x \in V, P(x) = 1$ et si $x \notin V$, il existe $a \in A$ tel que $f_a(x) \neq 0$ donc $f_a(x)^{q-1} = 1$, si bien que P(x) = 0. Donc la fonction $x \mapsto P(x)$ est l'indicatrice $\mathbb{1}_V$.

Par ailleurs, le degré de V est inférieur à $\sum_{a \in A} (\deg f_a)(q-1) < m(q-1)$ par hypothèse. Donc P est une combinaison linéaire de monômes $X^u = X_1^{u_1} \dots X_m^{u_m}$ où $u_1 + \dots + u_m < m(q-1)$. Pour un tel monôme :

$$\sum_{x \in K^m} x^u = \sum_{x \in K^m} x_1^{u_1} \dots x_m^{u_m} = \prod_{j=1}^m \sum_{x_i \in K} x_i^{u_i} = \prod_{j=1}^m S(u_i).$$

Or, il existe i_0 tel que $u_{i_0} < q-1$ donc $\sum_{x \in K^m} x^u = 0$. Par linéarité, $\forall x \in \mathbb{F}_q, 0 = \sum_{x \in K^m} P(x) = \sum_{x \in K^m} \mathbb{1}_V(x) = \operatorname{Card}V$. Comme \mathbb{F}_q est de caractéristique p, le résultat désiré s'ensuit.

Proposition 2 (Erdös-Ginsburg-Ziv)

Soit $n \in \mathbb{N}^*$. Parmi 2n-1 entiers a_1, \ldots, a_{2n-1} , on peut en trouver n dont la somme est divisible par n.

Démonstration. Étape 1 : pour n = p premier. Introduisons les polynômes de $\mathbb{F}_p[X_1, ..., X_{2p-1}]$, $P_1(X_1, ..., X_{2p-1}) = \sum_{k=1}^{2p-1} X_k^{2p-1}$ et $P_2(X_1, ..., X_{2p-1}) = \sum_{k=1}^{2p-1} \overline{a_k} X_k^{2p-1}$. On a deg P_1 + deg P_2 = 2(p-1) < 2p-1

De plus, $P_1(0) = 0 = P_2(0)$ donc en reprenant les notations du théorème précédent, V est non vide donc par Chevalley-Warning, V est de cardinal au moins p. Il existe donc $x \neq 0$ tel que $P_1(x) = P_2(x) = 0$. Or, si $x = (x_1, \dots, x_{2p-1})$, $P_1(x) = \text{Card}\left\{i \in [1, 2p-1], x_i \neq 0\right\}$ donc il y a exactement p composantes de x non nulles.

Donc comme $P_2(x) = \sum_{k \in [\![1,2p-1]\!], x_k \neq 0} \overline{a_k} = 0$, il existe a_{i_1}, \ldots, a_{i_p} tels que $\sum_{k=1}^p \overline{a_{i_k}}$ soit divisible par p.

Étape 2: pour le cas général, on procède par récurrence forte sur n.

Si n est premier, il n'y a rien à démontrer; sinon, on écrit n=pn' avec p premier et n'>1. Soit $E=\{a_1,\ldots,a_{2n-1}\}$ un ensemble de 2n-1 entiers.

On a 2n-1=2pn'-1=(2n'-1)p+p-1. Selon l'étape 1, on peut trouver un ensemble E_1 de p entiers pris parmi a_1,\ldots,a_{2p-1} dont la somme est divisible par p; puis E_2 ensemble de p entiers pris dans $\left\{a_1,\ldots,a_{3p-1}\right\}\setminus E_1$ de somme divisible par p, etc...

On construit ainsi des ensembles deux à deux disjoints $E_1, \ldots, E_{2n'-1}$. On note $S_i = \sum_{x \in E_i} x$, et on peut donc écrire $S_i = pS_i'$.

Par hypothèse de récurrence, il existe $\{i_1,\ldots,i_{n'}\}\subset [\![1,2n'-1]\!]$ tel que $\sum_{k=1}^{n'}S'_{i_k}$ est divisible par n' de sorte que $\sum_{k=1}^{n'}S_{i_k}$ est divisible par n. Or, par construction, cette dernière somme est une somme de $n'\times p=n$ éléments de E ce qui termine la démonstration.

Références:

- Jean-Pierre Serre (1994). Cours d'arithmétique. Presses universitaires de France
- Maxime ZAVIDOVIQUE (2013). Un max de maths. Calvage et Mounet