







# Lecture 11 Unsupervised Learning





## **Unsupervised Learning**

Unlike the supervised case, there is no "desired response" for any stimulus.

Instead, the system tries to *infer* some characteristic structural aspect of the data, e.g. clustering or lower-dimensional representation.

#### **An Important Observation:**

Unsupervised learning is mainly useful when the data/stimulus has *redundancy*, i.e., the actual information it carries is less than the "representational volume" of the signal.

#### **Example:** ISOMAP



2-dimensional dataembedded in3-dimensional space.

Tenenbaum, J.B., de Silva, V. and Langford, J.C. (2000) A global geometric framework for nonlinear dimensionality reduction, *Science* **290**: 2319-2323.





## **What Unsupervised Learning Can Do**

Similarity Detection: Deciding whether the current stimulus similar to something seen (and learned) before? And how similar?

Associative Memory: Recalling classes or objects based on similarity.

Clustering: Grouping data into clusters based on feature similarity.

Prototyping: Extracting prototypical representations of classes obtained by clustering.

Principal Component Extraction: Extracting the principal components of a dataset.

Dimensionality Reduction: Mapping high-dimensional data to fewer dimensions.

Recoding: Generating more concise representations of complex data.

Feature Mapping: Creating a topographic map of the input based on feature similarity.

We will focus mainly on *clustering* and *feature mapping*.

## **Clustering: Essential Elements**

**Feature space:** The space in which the data lives

Similarity measure: A function which quantifies the similarity between two data points.

e.g. 
$$s(x^1, x^2) = \frac{x^{1^1} x^2}{\|x^1\| \|x^2\|}$$
 • Direction cosine Cosine similarity where

single stripes the cosine of the angle between  $x^1$  and  $x^2$  and  $s(x^1, x^2) = 1$  if  $x^1$  and  $x^2$  are collinear, 0 if orthogonal.

<u>Distance measure</u>: A norm measuring the distance between data points, e.g. Euclidean norm.

<u>Cluster center</u>: An archetypal "center" or "mean" vector in feature space typifying a given cluster (sometimes called a centroid, but that is less general)

## **K-Means Clustering**

Given data 
$$\left| x^q \right|$$
  $x^q \in X \leq \Re^n$ 

and a pre-specified set of clusters =  $C^k$  k = 1,2, ..., K

- 1. Choose *K* points from  $x^q$  and make each one a cluster center  $\alpha^r$ ,  $r = 1, \ldots, K$
- 2. For all remaining points in  $x^q$ , assign each one to the cluster with whose center it has the greatest similarity (or minimum distance)
- 3. Compute the centroid of each cluster and make each centroid the center for its cluster

$$\alpha^r = \frac{1}{N_r} \sum_{x^q \in C^r} x^q$$

- 4. Reassign all points with respect to new cluster centers
- 5. If no reassignments occur, stop. else repeat from step 3



## **K-Means Clustering Critique**

- + Easy to implement
- + Often works well.
- Must know *K* a priori
   (often impractical, since finding *K* is usually the key problem)
- Gets stuck in sub optimal configuration

One alternative Self-Organized Feature Maps.

## **Assessing Cluster Quality**

#### **The Silhouette Metric**

P.J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". *Computational and Applied Mathematics*. 20: 53-65.

Suppose a clustering  $C = \{C_1, \dots, C_m\}$  has been done with point  $x^q \to \text{cluster } C_k$ 

We calculate a silhouette value for  $x^q$  as:

$$\sigma(x^q) = \frac{b(x^q) - a(x^q)}{\max(a(x^q), b(x^q))}$$

where  $a(x^q) \equiv \text{mean distance of } x^q \text{ from all other points in } C_k$  $b(x^q) \equiv \text{mean minimum distance of } x^q \text{ from all clusters other than } C_k$ 

- 1 ≤
$$\sigma(x^q)$$
 ≤1 where a score near 1 implies that  $a(x^q) \ll b(x^q)$ 

Silhouette score of the clustering: 
$$S(C) = \frac{1}{N} \sum_{q} \sigma(x^q)$$
 *N* is the number of points

*K* can be chosen to maximize the silhouette score.

## **Competitive Learning Networks**

We have a 1-layer network of linear units, and inputs  $x_i$ 



$$S_i = \sum_{j=1}^n w_{ij} X_j = w_i^T X$$

The weight vectors are all normalized, i.e.

$$\|w_i\| = \sqrt{\sum_j w_{ij}^2} = 1$$

## **Network Operation**

- 1. Apply input vector *x*
- 2. Determine  $S_i = W_i^T X$   $\forall i = 1,...,l$
- 3. Determine the winner  $i^*$ , the unit with the largest  $s_i$

$$i^* = \arg \max(s_i)$$

4. Set 
$$y_{i^*} = 1$$

$$y_i = 0 \quad \forall i \neq i^*$$
Winner take all (WTA)

5. Update weights 
$$\Delta w_{ij} = \eta y_i (x_j - w_{ij})$$

This learning rule works best if the *x* vectors are also normalized. Otherwise, we can use

$$\Delta w_{ij} = \eta y_i \left( \frac{x_j}{\|x\|} - w_{ij} \right)$$

This helps keep the W s normalized because  $W_i$  is attracted to  $\overline{\overline{X}}$  not  $\overline{\overline{X}}$ 

(Note that only the winners weights get updated by this rule)

## What does this algorithm do?

WTA  $\rightarrow$  find the neuron whose weight vector is most "similar to" the input vector. i.e.  $w_{i*}^T x > w_i^T x \quad \forall i \neq i^*$ 



Learning Rule  $\rightarrow$  Move the winning neuron's weight vector "closer to" x.

→ Each neuron's weight vector converges to the centroid of all input patterns for which it wins = *cluster center* 

To see that the learning moves  $w_i$  towards  $x_i$ , consider:

$$w_{ij}(t+1) = w_{ij}(t) + \eta(x_j - w_{ij}(t))$$
 for the winning unit  $i$ 

$$s_{i}(t+1) = \sum_{j} w_{ij}(t+1) x_{j}$$

$$= \sum_{j} (w_{ij}(t) + \eta x_{j} - \eta w_{ij}(t)) x_{j}$$

$$= (1 - \eta) s_{i}(t) + \eta \sum_{j} x_{j}^{2} = s_{i}(t) + \eta (x^{T}x - w_{i}^{T}(t)x)$$

$$\text{since } s_{i}(t) = w_{i}^{T}(t) x \text{ and } \sum_{j} x_{j}^{2} = x^{T}x$$

$$\therefore s_{i}(t+1) = s_{i}(t) + \eta \left[x^{T}x - w_{i}^{T}(t)x\right] \geq s_{i}(t)$$

$$\geq 0 \text{ (if } x \text{ and } w_{i} \text{ are normalized)}$$

when 
$$w_i = x$$
,  $s_i(t+1) = s_i(t) \rightarrow \text{convergence}$ 

#### **Non-Radial Clusters**

Using  $S_i = w_i^T X$  to choose the winner works when the clusters are "radial"



But what if the clusters are not radial?



Use *non-normalized* weights with

$$|s_i| = ||x - w_i||$$
 for  
WTA  $\rightarrow i^* = \arg\min(s_i)$   
 $\Delta w_{ij} = \eta y_i (x_j - w_{ij})$ 

#### **Non-Radial Clusters**

Using  $S_i = w_i^T X$  to choose the winner works when the clusters are "radial"



But what if the clusters are not radial?



Use *non-normalized* weights with

$$s_i = ||x - w_i||$$
 for  $WTA \rightarrow i^* = arg min(s_i)$  Note  $\Delta w_{ij} = \eta y_i (x_j - w_{ij})$ 



In this case, the weight vectors converge to cluster centers



The algorithm performs a Voronoi tessellation around the cluster centers



The cluster centers can be regarded as *prototype vectors* for each cluster

For normalized x,  $w_{i}$ , using  $w_{i}^{T}x$  to determine the winner is equivalent to using  $||x - w_{i}||$ 

$$||x - w_i|| = \sqrt{(x - w_i)^T (x - w_i)}$$

$$= \sqrt{x^T x + w_i^T w_i - 2w_i^T x}$$

$$= \sqrt{\text{constant} - 2w_i^T x}$$

$$\to \text{ Largest } w_i^T x \Rightarrow \text{ smallest } ||x - w_i||$$

In hardware (or even in simulation) WTA can be achieved by lateral inhibition



Whoever reaches firing threshold first, inhibits all others.

In fact, competitive learning corresponds exactly to the K-means clustering method (its on-line variant).

Competitive learning can create <u>dead units</u>: neurons that never win, and therefore never learn.

To prevent these, we can

- Initialize weight vectors using actual input patterns

or

- Use <u>leaky learning</u>, where losing neurons also learn, but at a much lower rate
- → Their weight vectors drift closer to where the data is. or
- Use a <u>conscience scheme</u>, where no unit is allowed to win more than a fraction of the time. (This is hard to stabilize in some cases)



College of Engineering & Applied Science

# **Self-Organized Feature Map**

## **Self-Organized Feature Maps (SOFM)**

Kohonen, 1982

Self-organized feature maps use competitive learning in a network whose neurons are arranged in a metric space, e.g., a 2-dimensional grid.



 $r_i$  = position of unit i on the grid.

$$w_i = [w_{i1} \ w_{i2} \ . . . w_{in}]^T$$

## **Learning in the SOFM**

#### **Training Algorithm**

Given training data points,  $X = \{x^k\}$ 

- 1 Present vector  $x^q \in X$
- Determine winning unit  $i^*$   $i^* = \arg \min \|w_i x^q\|$
- 3 Update all weights by

$$\Delta w_{ij} = \eta \Lambda(i, i^*, t)(x_j^q - w_{ij})$$

4 Repeat from 1

$$\Lambda(i, i^*, t)$$
 is a time dependent   
neighborhood function   
with a peak at  $i = i^*$ 

A typical choice is

$$\Lambda(i,i^*,t) = \exp\left[\frac{-\|r_i - r_{i^*}\|^2}{2\sigma^2(t)}\right]$$

$$\sigma(t) = \sigma_o \exp\left(-\frac{t}{\tau_N}\right)$$



where  $\sigma_o$  and  $\tau_N$  are fixed parameters.

## **Effect of Training**

- The weight vector,  $w_{i*}$ , of the winning neuron moves closer to  $x^q$
- The weight vectors of neurons physically close to  $i^*$  move towards  $x^q$  by smaller amounts that depend monotonically on their distance from  $i^*$ .
- The weight vectors of neurons far from  $i^*$  do not move much at all.

Over the course of learning, the activity of neurons on the 2-d (or even 1-d) surface comes to represent the topological/statistical relationships of data in the input feature space.

→ similar inputs have similar output representations but are represented by activity on a lower-dim manifold.

#### This is useful for

- Clustering
- Visualization
- Removal of redundancy (data compression)
- Organization of information onto spatial maps (useful in the brain)
- Inference of structure in the input space.

#### **Network Functionality:**

Over the course of learning, the activity of neurons on the 2-d (or even 1-d) surface comes to represent the topological/statistical relationships of data in the input feature space.

→ similar inputs have similar output representations

but are represented by activity on a lower-dim manifold.

#### This is useful for

- Clustering
- Visualization
- Removal of redundancy (data compression)
- Organization of information onto spatial maps (useful in the brain)
- Inference of structure in the input space.

## **Two-Phase Learning**

Experience has shown that it is often beneficial to divide the learning of SOFM into two phases with learning rate varied over time by

$$\eta(t) = \eta_o \exp\left(-\frac{t}{\tau_L}\right)$$

#### **The Self-Organizing Phase:**

This is where the weights go from their initial random organization to one reflecting the structure of the data:

- Start with  $\eta_o = 0.1$ ,  $\tau_L = 1000$ .
- Set the neighborhood function  $\Lambda(i, i^*, 0)$  to cover almost the whole network. This can be done by setting  $\sigma_0 \approx 0.5 \, r_{max}$
- Shrink the neighborhood function slowly over 1000 or so iterations. This can be done by setting  $\tau_N = 1000 / \ln \sigma_0$  so that  $\sigma(1000) = 1$

#### **The Convergence Phase:**

This refines the learned weights.

- Maintain  $\eta$  (t)  $\approx 0.01$  and  $\Lambda(i, i^*, t) \approx 1$  (only the nearest neighbors)
- Train for about 500 times the number of data points.

## **Example 1: Density Mapping**

 $Data \rightarrow 2$ -dimensional

Neural layer  $\rightarrow$  2-dimensional



The distribution of weight vectors comes to reflect the distribution of data

## **Example 2: Dimensionality Reduction**

Data → 2-dimensional Neural layer  $\rightarrow$  1-dimensional

Goal: Finding a lower-dimension map of the data that preserves neighborhood relationships as far as possible.



Uniform 2-d data is mapped to a space-filling 1-d curve



## **Example 3: Feature Mapping**

From: S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, 1999

#### **Given:** 16 animals with 13 attributes

Each animal is represented by:

- a 13-bit attribute  $\operatorname{code}^{x_a^k} \in [0,1]^{13}$
- a 1-of-16 symbol code  $x_s^k \in [0, c]^{16}$  c = constant

$$x_s^k = [0 \ 0 \ . \ . \ 0 \ c \ 0 \ . \ . \ 0]^T$$
  
 $k = 1, 2, ..., 16$ 

Total representation for animal k

$$x^{k} = \begin{bmatrix} x_{s}^{k^{T}} & x_{a}^{k^{T}} \end{bmatrix}^{T}$$

| TABLE  | 9.3 Anima  | al Na | mes | and  | Thei  | r Att | ribu | tes   |     |     |      |     |       |      |       |       | _   |
|--------|------------|-------|-----|------|-------|-------|------|-------|-----|-----|------|-----|-------|------|-------|-------|-----|
| Animal |            | Dove  | Hen | Duck | Goose | Owl   | Hawk | Eagle | Fox | Dog | Wolf | Cat | Tiger | Lion | Horse | Zebra | Com |
| is     | small      | 1     | 1   | 1    | 1     | 1     | 1    | 0     | 0   | 0   | 0    | 1   | 0     | 0    | 0     | 0     | 0   |
|        | medium     | 0     | 0   | 0    | 0     | 0     | 0    | 1     | 1   | 1   | 1    | 0   | 0     | 0    | 0     | 0     | 0   |
|        | big        | 0     | 0   | 0    | 0     | 0     | 0    | 0     | 0   | 0   | 0    | 0   | 1     | 1    | 1     | 1     | 1   |
|        | 2 legs     | 1     | 1   | 1    | 1     | 1     | 1    | 1     | 0   | 0   | 0    | 0   | 0     | ()   | 0     | ()    | 0   |
|        | 4 legs     | 0     | 0   | 0    | 0     | 0     | 0    | 0     | 1   | 1   | 1    | 1   | 1     | 1    | 1     | 1     | 1   |
| has    | hair       | 0     | 0   | 0    | 0     | 0     | 0    | 0     | 1   | 1   | 1    | 1   | 1     | 1    | 1     | 1     | 1   |
| nas    | hooves     | 0     | 0   | 0    | 0     | . 0   | 0    | 0     | 0   | 0   | 0    | 0   | 0     | 0    | î     | 1     | 1   |
|        | mane       | 0     | 0   | 0    | 0     | 0     | 0    | 0     | 0   | 0   | 1    | 0   | 0     | 1    | 1     | 1     | 0   |
|        | ' feathers | 1     | 1   | 1    | 1     | 1     | 1    | 1     | 0   | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |
|        | hunt       | 0     | 0   | 0    | 0     | 1     | 1    | 1     | 1   | 0   | 1    | 1   | 1     | 1    | 0     | 0     | 0   |
| likes  | run        | 0     | 0   | 0    | 0     | 0     | 0    | 0     | 0   | 1   | 1    | 0   | 1     | 1    | 1     | 1     | 0   |
| to     | fly        | 1     | 0   | 0    | 1     | 1     | 1    | 1     | 0   | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |
|        | swim       | 0     | 0   | 1    | 1     | 0     | 0    | 0     | 0   | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |

e.g. Hen = $[0c000000000000100100001]^T$ 



Train on  $x^k$  for 2000 iterations with a 10 x 10 network

Test with 
$$\hat{x} = |x_s| 0$$

where  $x_s$  is the symbol code for any animal e.g.

#### Neurons with maximal response to each animal

| dog  |  | fox  |     | cat   |      |   | eagle |
|------|--|------|-----|-------|------|---|-------|
|      |  |      |     |       |      |   |       |
|      |  |      |     |       | . ,  |   | owl   |
|      |  |      |     | tiger |      |   |       |
| wolf |  |      |     |       |      | × | hawk  |
|      |  | lion |     |       |      | 4 |       |
|      |  |      |     |       |      |   | dove  |
| orse |  |      |     |       | hen  |   |       |
|      |  |      | cow |       |      |   | goose |
| ebra |  |      |     |       | duck | 7 |       |

#### **Observations:**

- Animals are mapped according to their similarities in attribute space.
- Animals of each class are mapped to a compact cluster of units

#### <u>Preferred response for each neuron</u>

| dog   | dog   | fox   | fox  | fox  | cat     | cat   | cat   | eagle | eagle |
|-------|-------|-------|------|------|---------|-------|-------|-------|-------|
| dog   | dog   | fox   | fox  | fox  | cat     | cat   | cat   | eagle | eagle |
| wolf  | wolf  | wolf  | fox  | cat  | tiger . | tiger | tiger | owl   | owl   |
| wolf  | wolf  | lion  | lion | lion | tiger   | tiger | tiger | hawk  | hawk  |
| wolf  | wolf  | lion  | lion | lion | tiger   | tiger | tiger | hawk  | hawk  |
| wolf  | wolf  | lion  | lion | lion | owl     | dove  | hawk  | dove  | dove  |
| horse | horse | lion  | lion | lion | dove    | hen   | hen   | dove  | dove  |
| horse | horse | zebra | cow  | cow  | cow     | hen   | hen   | dove  | dove  |
| zebra | zebra | zebra | cow  | cow  | cow     | hen   | hen   | duck  | goose |
| zebra | zebra | zebra | cow  | cow  | cow     | duck  | duck  | duck  | goose |

Note that classes were <u>not</u> given. The system <u>discovered</u> them.

Train on  $x^k$  for 2000 iterations with a 10 x 10 network

Test with 
$$\hat{x} = |x_s| 0$$

where  $x_s$  is the symbol code for any animal e.g.

#### Neurons with maximal response to each animal

| dog  |  | fox  |     | cat   |      | eagle |
|------|--|------|-----|-------|------|-------|
|      |  |      |     |       |      |       |
|      |  |      |     |       | ٠ ٠, | owl   |
|      |  |      |     | tiger |      |       |
| wolf |  |      |     |       |      | hawk  |
|      |  | lion | *   |       |      |       |
|      |  |      |     |       |      | dove  |
| orse |  |      |     |       | hen  |       |
|      |  |      | cow |       |      | goose |
| ebra |  |      |     |       | duck |       |

#### **Observations:**

- Animals are mapped according to their similarities in attribute space.
- Animals of each class are mapped to a compact cluster of units

#### Preferred response for each neuron



Note that classes were <u>not</u> given. The system <u>discovered</u> them.



**Department of Electrical Engineering and Computer Science** 

## Why is a Feature Map Useful?

Feature maps organize information in ways that are:

- Meaningful.
- Reflect the structure of information.
- Generalize over the information space.
- Act as pointers for high-dimensional representational spaces.

Thus, they can be used to improve decision-making, inference and control.





## **Inferring Structure in Data**

T. Honkela (2013) Multimodally Grounded Translation, Tralogy II.

- 3,224 applications submitted to the Academy of Finland were analyzed.
- Each application was represented in terms of extracted keywords.
- The applications were grouped by an SOFM in keyword space.
- Colors are assigned based on actual research area classes.



**Department of** 

**Engineering and** 

**Computer Science** 

**Electrical** 

## **Application to Supervised Learning**

Given a data set with known class labels:

#### Stage 1: Self-organized clustering

Determine a relatively large number of clusters using competitive learning or SOFM

#### Stage 2: Supervised aggregation

Combine clusters that belong to the same class using LMS, perceptrons, backprop, etc.









The cluster centers can also be adjusted further through supervised learning to improve the classification → <u>Learning Vector Quantization</u>

## **Learning Vector Quantization**

T. Kohonen (1989) Self-Organization and Associative Memory. Berlin: Springer-Verlag

Given a set of labeled data:  $\{x^k, c^k\}$ 

- Train a self-organized feature map on the data.
- Label each neuron in the SOFM with a class based on its response to data (e.g., majority)
- For *N* steps
  - Pick a random data point,  $x^q$
  - Find the winning neuron  $i^*$  and get its class label  $c(i^*)$
  - Find the runner-up neuron i' and get its label c(i')
  - If  $c(i^*) \neq c^q$  (mismatch) and  $c(i') = c^q$ :

and  $x^q$  lies close to the bisector of  $w_{i^*}$  and  $w_{i'}$ 

$$\Delta w_{i^*j} = -\eta (x_j^q - w_{i^*j}) \blacktriangleleft$$

$$\Delta w_{ij} = \eta (x_j^q - w_{ij})$$

Else: do nothing

Anti-Hebbian learning: weight moves  $\underline{away}$  from  $x^q$ 

Does not require SOFM.

Can be done with competitive learning

Hebbian learning: weight moves *towards*  $x^q$