IN THE CLAIMS:

- 1. (currently amended) A method for producing a blank for a component of laser active quartz glass, said method comprising:
 - a) providing a dispersion with a solids content of at least 40% by wt. which contains SiO₂ nanopowder and dopants, including a cation of one or more rare earth metals or transition metals in a liquid,
 - b) granulation by moving the dispersion with withdrawal of moisture until a doped SiO₂ granulate of spherical porous granulate grains having a moisture content of less than 35% by wt. and a density of at least 0.95 g/cm³ is formed,
 - c) drying and purifying the SiO₂ granulate by heating said SiO₂ granulate to a temperature of at least 1000°C so as to form doped porous SiO₂ granules having an OH content of less than 10 ppm, and
 - d) sintering **or melting** the doped SiO₂ granules in a reducing atmosphere so as to form the blank of doped quartz glass, wherein said sintering includes a gas pressure sintering, which comprises the following steps:
 - aa) heating the SiO₂ granules to a melting temperature of at least 1600°C while applying and maintaining a negative pressure;
 - bb) holding the SiO₂ granules at the melting temperature at an overpressure ranging from 5 bar to 15 bar for a melting period of at least 30 min so as to form the quartz glass blank;

	cooming the quartz glass blank while maintaining said overpressure.
2.	(previously presented) The method according to claim 1, wherein an initial solids content of at least 50% by wt. is set in the dispersion.
3.	(previously presented) The method according to claim 1, wherein the SiO ₂ granulate
	obtained according to step b) has a BET surface area ranging from 40 m ² /g to 70 m ² /g.
4	
4.	(previously presented) The method according to claim 3, wherein the SiO ₂ granulate
	obtained according to step b) has a BET surface area of at least 50 m ² /g.
5.	(previously presented) The method according to claim 1, wherein the spherical porous
	granulate grains have a grain size of less than 500 μm .
6.	(previously presented) The method according to claim 1, wherein the SiO ₂ granulate is
	dried and purified in a chlorine-containing atmosphere.
7.	(previously presented) The method according to claim 1, wherein the SiO ₂ granulate is
	dried and purified at a temperature of at least 1050°C.

- 8. (previously presented) The method according to claim 1, wherein the drying and purifying of the porous granulate is performed in an oxygen-containing atmosphere.
- 9. (previously presented) The method according to claim 1, wherein the porous SiO₂ granules obtained according to step c) have an OH content of less than one ppm.
- 10. (previously presented) The method according to claim 1, wherein the porous SiO₂ granules obtained according to step c) have a BET surface area of less than 20 m²/g.
- 11. (previously presented) The method according to claim 1, wherein the SiO₂ granules are thermally densified prior to step d).
- 12. (previously presented) The method according to claim 1, wherein the quartz glass blank is annealed at a temperature of at least 1120°C for a retention period of at least 40 hours.
- 13. (previously presented) The method according to claim 1, wherein the SiO₂ granules according to step d) are molten in a mold.
- 14. (previously presented) The method according to claim 1, wherein the SiO₂ blank according to step d) is three-dimensionally homogenized.

- 15. (previously presented) The method according to claim 1, wherein a bulk body with a radially inhomogeneous refractive index distribution is formed from SiO₂ granules of different refractive index, and the bulk body is sintered or molten to obtain the SiO₂ blank.
- 16. (currently amended) A method of transmitting laser light, said method comprising: producing a blank for a component of laser active quartz glass, said producing comprising:
 - a) providing a dispersion with a solids content of at least 40% by wt. which contains SiO₂ nanopowder and dopants, including a cation of one or more rare earth metals or transition metals in a liquid,
 - b) granulation by moving the dispersion with withdrawal of moisture until a doped SiO₂ granulate of spherical porous granulate grains having a moisture content of less than 35% by wt. and a density of at least 0.95 g/cm³ is formed,
 - c) drying and purifying the SiO₂ granulate by heating said SiO₂ granulate to a temperature of at least 1000°C so as to form doped porous SiO₂ granules having an OH content of less than 10 ppm, and
 - d) sintering **or melting** the doped SiO₂ granules in a reducing atmosphere so as to form the blank of doped quartz glass, wherein said sintering includes a gas pressure sintering, which comprises the following steps:

- aa) heating the SiO₂ granules to a melting temperature of at least 1600°C while applying and maintaining a negative pressure;
- bb) holding the SiO₂ granules at the melting temperature at an overpressure ranging from 5 bar to 15 bar for a melting period of at least 30 min so as to form the quartz glass blank;
- cc) cooling the quartz glass blank while maintaining said overpressure; and incorporating said SiO₂ blank into a core material for a fiber and transmitting said laser light through said fiber.
- 17. (currently amended) A method of transmitting laser light, said method comprising: producing a blank for a component of laser active quartz glass, said producing comprising:
 - a) providing a dispersion with a solids content of at least 40% by wt. which contains SiO₂ nanopowder and dopants, including a cation of one or more rare earth metals or transition metals in a liquid,
 - b) granulation by moving the dispersion with withdrawal of moisture until a doped SiO₂ granulate of spherical porous granulate grains having a moisture content of less than 35% by wt. and a density of at least 0.95 g/cm³ is formed,
 - c) drying and purifying the SiO₂ granulate by heating said SiO₂ granulate to a temperature of at least 1000°C so as to form doped porous SiO₂ granules having an OH content of less than 10 ppm, and

- d) sintering **or melting** the doped SiO₂ granules in a reducing atmosphere so as to form the blank of doped quartz glass, wherein said sintering includes a gas pressure sintering, which comprises the following steps:
 - aa) heating the SiO₂ granules to a melting temperature of at least 1600°C while applying and maintaining a negative pressure;
 - bb) holding the SiO₂ granules at the melting temperature at an overpressure ranging from 5 bar to 15 bar for a melting period of at least 30 min so as to form the quartz glass blank;
- cc) cooling the quartz glass blank while maintaining said overpressure; and incorporating said SiO₂ blank into an optical filter; and transmitting said laser light through said optical filter.
- 18. (currently amended) A method of transmitting laser light, said method comprising: producing a blank for a component of laser active quartz glass, said producing comprising:
 - a) providing a dispersion with a solids content of at least 40% by wt. which contains SiO₂ nanopowder and dopants, including a cation of one or more rare earth metals or transition metals in a liquid,
 - b) granulation by moving the dispersion with withdrawal of moisture until a doped SiO₂ granulate of spherical porous granulate grains having a moisture content of less than 35% by wt. and a density of at least 0.95 g/cm³ is formed,

- c) drying and purifying the SiO₂ granulate by heating said SiO₂ granulate to a temperature of at least 1000°C so as to form doped porous SiO₂ granules having an OH content of less than 10 ppm, and
- d) sintering **or melting** the doped SiO₂ granules in a reducing atmosphere so as to form the blank of doped quartz glass, wherein said sintering includes a gas pressure sintering, which comprises the following steps:
 - aa) heating the SiO₂ granules to a melting temperature of at least 1600°C while applying and maintaining a negative pressure;
 - bb) holding the SiO₂ granules at the melting temperature at an overpressure ranging from 5 bar to 15 bar for a melting period of at least 30 min so as to form the quartz glass blank;
- cc) cooling the quartz glass blank while maintaining said overpressure; and incorporating said SiO₂ blank into a cladding tube for a fiber; and transmitting said laser light through said fiber.