Theia Primer

Optics Group, Virgo

Wednesday, May 10th 2017

Modeling Gaussian beams

• General astigmatic Gaussian beam in an orthogonal basis (k, e_1, e_2) :

$$E(\vec{r},t) = \exp[i\eta(z) - i\frac{k}{2}{}^t(x,y)Q(z)(x,y)]e^{i(\omega t - kz)}$$

• (x, y) is the transversal coordinate in the (e_1, e_2) basis, Q is a symmetrical tensor:

$$\begin{pmatrix} \frac{\cos^2\theta}{q_x(z)} + \frac{\sin^2\theta}{q_y(z)} & \frac{1}{2}\sin 2\theta \left(\frac{1}{q_x(z)} - \frac{1}{q_y(z)}\right) \\ \frac{1}{2}\sin 2\theta \left(\frac{1}{q_x(z)} - \frac{1}{q_y(z)}\right) & \frac{\sin^2\theta}{q_x(z)} + \frac{\cos^2\theta}{q_y(z)} \end{pmatrix}$$

- Specification parameters: $\theta, q_{x,y} \in \mathbb{C}$, (e_1, e_2) basis.
- Approximations: ROC(beam) ≫ ROC(surface) (+ paraxial)
- Geometric optics: no approximation

What can it do?

Yes	No	Not yet
Non-sequential propa-	Higher order modes	Cavities
gation		
Sequential propaga-	Beam saving	Interferences
tion		
General astigmatic	Surface action specifi-	Export to CAD soft-
beams	cation	ware
	Grating surfaces	
	(Polarization)	

Data structures/algorithm/approximations

Demonstration

- Comparison with OptoCAD for 2D tracing (telescope.py)
- An example in 3D with spherical mirrors (sphere.py)

Benchmarking: time (i7/8GB)

• CPU = 0.47ms \times (# beams) ($R^2 = 99.95\%$)

Benchmarking: space (i7/8GB)

• Mem. = $9.3MB + 3.4kB/beam (R^2 = 99.76\%)$

Next steps

References

Arnaud, Kogelnik: Gaussian Light Beams with General Astigmatism, Applied Optics 8 (1969)