

# 자동차/반도체 임베디드 SW개발 실무

직무 부트캠프 1차 업무 보고

연구개발 팀 윤 도 경 인턴

comento

### 목 차

- 1. 시리얼 통신 개요 및 비교
- 2. Duplex 방식 개념 및 예시
- 3. Polling / Interrupt / DMA 동작 방식 비교
- 4. IRQ / ISR / Callback 개념 및 I2C 흐름도
- 5. UDS, OBD2, DTC, AUTOSAR 정리
- 6. OS 관련 핵심 개념 정리



## 시리얼 통신 개요 및 비교

| 구 분       | UART   | SPI                        | I2C          | CAN              |
|-----------|--------|----------------------------|--------------|------------------|
| 통신 유형     | 비동기    | 동기                         | 동기           | 동기               |
| 라인 수      | TX/RX  | SCK, MOSI, MISO,<br>CS(SS) | SDA/SCL      | CANH, CANL       |
| 속도        | ~1Mbps | 수십 Mbps                    | ~400kbps(표준) | ~1Mbps           |
| Full/Half | Half   | Full                       | Half         | Half             |
| 마스터/슬레이브  | 없음     | 명확함                        | 명확함          | 없음(멀티마스터 가<br>능) |



## Duplex 방식 개념 및 예시

| 구 분     | Full Duplex  | Half Duplex                    |
|---------|--------------|--------------------------------|
| 정 의     | 양방향 동시 통신 가능 | 한 방향씩 교대로 통신                   |
| 예시 통신   | SPI          | UART, I2C, CAN                 |
| 라인 구성   | 별도의 송수신 라인   | 라인 공유                          |
| 속도 및 효율 | 빠름, 낮은 지연    | 교대 방식이라 효율 감소                  |
| 하드웨어 예시 | MOSI, MISO   | Rx, Tx / SDA, SCL / CANH, CANL |





## Polling / Interrupt / DMA 동작 방식 비교

| 구 분       | CPU 관여 | 속도 | 특징                                    | 함수 예시                                                |
|-----------|--------|----|---------------------------------------|------------------------------------------------------|
| Polling   | Ο      | 느림 | 구조가 단순하나<br>CPU가 끝날 때까지 대기            | HAL_SPI_Transmit() HAL_I2C_Master_Transmit()         |
| Interrupt | Δ      | 보통 | 효율적이며<br>인터럽트 발생 후 ISR에서 처리           | HAL_SPI_Transmit_IT() HAL_I2C_Master_Transmit_IT()   |
| DMA       | X      | 빠름 | CPU 개입 없이 DMA 컨트롤러가 자동 전송<br>설정이 복잡하다 | HAL_SPI_Transmit_DMA() HAL_I2C_Master_Transmit_DMA() |





### IRQ / ISR / Callback 개념 및 I2C 흐름도

■ IRQ (Interrupt Request) : HW 이벤트 발생 시 CPU에 알림

■ ISR (Interrupt Service Routine) : 인터럽트 핸들러 함수

■ Callback : ISR 안에서 호출되는 사용자 정의 함수

#### I2C Interrupt 통신 흐름도

Start

↓

HAL\_I2C\_Master\_Transmit\_IT()

↓

슬레이브 주소 전송

↓

Callback 함수 실행

↓

전송 완료

#### I2C DMA 통신 흐름도



### UDS, OBD2, DTC, AUTOSAR 정리

| 항 목                                           | 설 명                                                          |
|-----------------------------------------------|--------------------------------------------------------------|
| UDS (Unified Diagnostic Services)             | ECU와 통신하여 차량 진단, 프로그래밍, 설정 등을 수행하<br>는 통합 진단 프로토콜            |
| OBD-II (On-Board Diagnostics II)              | 표준화된 진단 인터페이스. 배출가스 관련 DTC 코드, RPM,<br>속도 등 실시간 차량 상태 정보 제공. |
| DTC (Diagnostic Trouble Code)                 | 차량의 고장 정보를 나타내는 표준 오류 코드                                     |
| AUTOSAR (AUTomotive Open System ARchitecture) | OEM 및 공급업체 간 소프트웨어 모듈의 표준화를 위한 구<br>조                        |
|                                               | LIDC DTC                                                     |





### OS 관련 핵심 개념 정리

#### ■ OS 핵심 개념 요약

| 개념         | 설 명                     |
|------------|-------------------------|
| Thread     | 프로세스 내 실행 단위, 메모리 공유    |
| Process    | 독립된 실행 단위 (독자적 메모리 공간)  |
| Paging     | 가상 메모리 관리 기법            |
| Page Table | 가상 주소 ↔ 물리 주소 매핑 테이블    |
| 커널         | 하드웨어 ↔ 소프트웨어 연결 핵심      |
| 가비지 컬렉션    | 메모리 자동 회수 메커니즘          |
| RTOS       | 실시간 응답 보장, 우선순위 기반 스케줄링 |

#### ■ 동기화 객체 간 비교 표

| 동기화 도구    | 특 징                  |
|-----------|----------------------|
| Mutex     | 상호 배제, 단일 소유권        |
| Semaphore | 리소스 개수 관리, P/V 연산    |
| Spinlock  | 바쁜 대기, 빠른 처리 필요 시 사용 |

