HY436: Software Defined Networks 2020

Assignment 1 Transparent Load Balancer

08/10/2020

Exercise Setup

Client-Switch communication for ICMP Packets (1/4)

Client-Switch communication for ICMP Packets (1/4)

Switch-Server communication for ICMP Packets (2/4)

Assume h1 sends ICMP request and h5 is chosen as server . . .

Server-Switch communication for ICMP Packets (3/4)

Assume h1 sends ICMP request and h5 is chosen as server . . .

Server-Switch communication for ICMP Packets (3/4)

Assume h1 sends ICMP request and h5 is chosen as server . . .

Switch-Client communication for ICMP Packets (4/4)

Switch-Client communication for ICMP Packets (4/4)

Simple switch

Host h1 sends ARP request asking 'Who has IP192.168.1.2'?

- Host h1 sends ARP request asking 'Who has IP192.168.1.2'?
- Switch receives the ARP request and broadcasts it out of all of its ports.

- Host h1 sends ARP request asking 'Who has IP 192.168.1.2'?
- Switch receives the ARP request and broadcasts it out of all of its ports.
- Host h4 receives ARP req and answers back with ARP reply. Switch receives the ARP reply, sends it to h1 and stores in its table the <port,mac> information of h4 so that it doesn't have to broadcast again.

- Host h1 sends ARP request asking 'Who has IP192.168.1.2'?
- Switch receives the ARP request and broadcasts it out of all of its ports.
- Host h4 receives ARP req and answers back with ARP reply. Switch receives the ARP reply, sends it to h1 and stores in its table the <port,mac> information of h4 so that it doesn't have to broadcast again.
- Host h1 sends an ICMP reg and the switch forwards it towards h4.

- Host h1 sends ARP request asking 'Who has IP 192.168.1.2'?
- Switch receives the ARP request and broadcasts it out of all of its ports.
- Host h4 receives ARP req and answers back with ARP reply. Switch receives the ARP reply, sends it to h1 and stores in its table the <port,mac> information of h4 so that it doesn't have to broadcast again.
- Host h1 sends an ICMP req and the switch forwards it towards h4.
- Host h4 answers with ICMP rep and the switch forwards the reply back to h1

OpenFlow Switch:

Basic steps

- Handle connection up
- Serve the clients
 connecting to the
 service IP
 according to
 the existing
 communication
 policies

1. Handle connection up (1/2)

- C1 generates ARP requests for each server
- ARP request packets are flooded

- 1. Handle connection up (2/2)
- Servers respond with ARP reply
- Switch generates Packet In events
- Stores info <MAC,PORT>

ARP message (1/2)

Host h1 sends ARP request

Packet In event raised

ARP message (2/2)

Host h1 sends ARP request

Controller C1 replies with his fake MAC

 What are the addresses of the ARP reply packet?

ICMP client to switch

 Host h1 learned the MAC and sends an ICMP request

S1 needs to rewrite

- Dst MAC
- Dst IP
- Src MAC

 Controller also sends a flow mod msg. Why?

ARP server to switch

- Host h4 receives the ICMP request
- Host h4 sees an unknown src IP → sends ARP req

 S1 must handle the ARP req and answer with his fake MAC

ICMP server to switch

Host h4 sends ICMP rep

• s1 must rewrite headers again.

Which fields?

 A second flow mod also needs to be installed

Example finished

