Cryptocurrency Trading Model

Group 6

Members

Boluwarin Oluwapelumi Adaramaja

Devarya Raman

Swetha Eragamreddy

Yaswant Reddy Kadiyam

Model Context and Output

Purpose:

- Predict the trading decision to buy/sell/hold any cryptocurrency in the next 4 hours
- 'ATOM-USD', 'BTC-USD', 'DOGE-USD', 'DOT-USD', 'ETH-USD', 'ETC-USD',
 'POLY-USD', 'SHIB-USD' pairs were considered for the model
- Train model based on stock indicators as independent variables

Output:

- 0: Stop Loss Reached first
- 1: Take Profit Reached first
- 2: Closed without reaching SL or TP

Model Strategy

 At time t, buy if prediction is 1 and check next 48 records for prediction 0 to sell at that time. Sell after holding period expires

- At time t, sell if prediction is 0 and we have volume of that crypto

Do nothing if prediction is 2

Summary Statistics of Raw Data

Train data from 2021-06-01 00:00:00 to 2022-02-01 05:05:00

Test data from 2022-02-01 05:05:00 to 2022-04-06 00:00:00

		low	high	close	volume	0
	count	489994.000000	489994.000000	489994.000000	4.899940e+05	
	mean	6892.275263	6912.178023	6902.246884	3.098728e+09	
	std	16294.198471	16339.319864	16316.802931	2.377685e+10	
	min	0.000007	0.000007	0.000007	1.701243e-01	
	25%	0.492500	0.494300	0.493400	3.526577e+02	
	50%	31.367000	31.530000	31.450000	2.863190e+03	
	75%	2368.382500	2379.277500	2373.555000	3.876681e+04	
	max	68566.000000	69000.000000	68733.070000	1.629530e+12	
41]	sample_d	df.coinpair.va	lue_counts()/sa	ample_df.shape[0]*100	
	ATOM-USC BTC-USD ETH-USD ETC-USD DOGE-USC DOT-USD POLY-USC SHIB-USC	13.795883 13.795883 13.795475 0 13.650983 12.884443 0 10.393393				

Output Variable

Stop Loss

- 1 ATR below entry price

Take Profit

- 1.5 ATR above entry price

Holding Period

- 48 periods (4 hours)

Y Variable:

0: Stop Loss Reached first

1: Take Profit Reached first

2: Closed without reaching SL or TP

Summary Stats of Output

```
print(sample test df['y 4'].value counts()/sample test df.shape[0]*100)
2.0 63.249852
0.0 29.423703
1.0 7.326445
Name: y 4, dtype: float64
print(sample df['y 4'].value counts()/sample df.shape[0]*100)
2.0
      67.830831
0.0 23.483757
1.0 8.685412
Name: y 4, dtype: float64
```

Pre-Processing

values introduced by feature engineering

```
-One hot encoding: Coin-pair value with values 'ATOM-USD', 'BTC-USD', 'DOGE-USD', 'DOT-USD',
'ETH-USD', 'ETC-USD', 'POLY-USD', 'SHIB-USD'
     transformer = make_column_transformer(
         (OneHotEncoder(), ['coinpair']),
         remainder='passthrough')
     transformed = transformer.fit_transform(train_X)
- Normalization: Normalization done on all data in neural network sequence
     normalizer = tf.keras.layers.Normalization(axis=-1)
     normalizer.adapt(train_X)
-Outlier treatment: Outliers can be indicators of crypto movement. So, are important for
prediction
```

-Missing value Imputation: There are no missing values in the raw data, but we removed missing

Final Data Summary Statistics

	x_rsi	x_ATR	obv
ount	489994.000000	4.899940e+05	4.899940e+05
ean	49.968011	1.992899e+01	5.413829e+11
std	5.952184	4.980956e+01	2.250205e+12
min	10.001939	1.791667e-08	-7.200264e+11
25%	46.290494	2.269271e-03	-1.087676e+07
0%	49.884614	1.388542e-01	-4.884800e+05
5%	53.545492	7.876615e+00	-2.340940e+04
nax	88.488519	7.994090e+02	2.275325e+13

```
sample test df[['x rsi','x ATR', 'obv']].describe()
               x rsi
                            x ATR
count 124658.000000 1.246580e+05
                                  1.246580e+05
           50.030907 1.533782e+01 -6.647833e+10
 mean
            6.214252 3.991874e+01 3.242473e+11
  std
           23.928380 3.895833e-08 -1.646573e+12
 25%
           46.229433 7.854167e-04 -1.419723e+06
 50%
           50.067299 8.270833e-02 -2.184421e+05
 75%
           53.795820 4.641823e+00 -8.369863e+03
           82.597462 3.059490e+02 1.257596e+12
 max
```

```
for each in ['MA 1 3', 'MA 3 24', 'MA 24 216', 'x bollinger',
             'MA 3 8', 'MA 8 24', 'MA 24 48', 'coinpair']:
  print(sample df[each].value counts()/sample df.shape[0]*100)
      71.510467
       28.489533
Name: MA 1 3, dtype: float64
       73.905395
0.0
       26.094605
Name: MA 3 24, dtype: float64
      75.315004
      24.684996
Name: MA 24 216, dtype: float64
      86.050237
2.0
1.0
       7.156822
        6.792940
0.0
Name: x bollinger, dtype: float64
0.0
      71.808226
       28.191774
Name: MA 3 8, dtype: float64
0.0
       71.8619
       28,1381
1.0
Name: MA 8 24, dtype: float64
      70.982094
1.0
      29.017906
Name: MA 24 48, dtype: float64
ATOM-USD
          13.795883
BTC-USD
            13.795883
ETH-USD
            13.795883
ETC-USD
            13.795475
DOGE-USD
            13.650983
DOT-USD
            12.884443
POLY-USD
            10.393393
SHIB-USD
            7.888056
Name: coinpair, dtype: float64
                                                                 Name: coinpair, dtvpe: float64
```

```
for each in ['MA 1 3', 'MA 3 24', 'MA 24 216', 'x bollinger',
             'MA 3 8', 'MA 8 24', 'MA 24 48', 'coinpair']:
  print(sample test df[each].value counts()/sample test df.shape[0]*100)
      71.020713
0.0
      28.979287
Name: MA 1 3, dtype: float64
      73.239584
      26.760416
Name: MA 3 24, dtype: float64
      72.637937
      27.362063
Name: MA 24 216, dtype: float64
2.0
      83.986587
0.0
        8.285068
1.0
       7.728345
Name: x bollinger, dtype: float64
0.0
      70.559451
      29.440549
Name: MA 3 8, dtype: float64
0.0
      71.0159
      28.9841
Name: MA 8 24, dtype: float64
      71.266184
      28.733816
Name: MA 24 48, dtype: float64
ATOM-USD
         12.673074
BTC-USD
            12.673074
DOGE-USD
           12.673074
DOT-USD
            12.673074
           12.673074
FTH-USD
SHTB-USD
           12.673074
FTC-USD
            12.655425
POLY-USD
           11.306134
```

Feature Engineering + Selection

```
Relative Strength Index - 48 observations (4 hours)
rs = up ma/down ma, rsi = 100 - (100 / (1 + rs))
Moving averages differences
       - Close price between 1hr - 3hr, 3hr - 8hr, 8hr - 24hr, 3hr - 24hr, 24hr - 48hr(2 days), 24hr -
           214hr(9 days)
Average True Range
     48 true ranges from past 48 records (4 hours)
Bollinger Bands
   upper_band = sma + 2 * rstd
   lower_band = sma - 2 * rstd
  - 48 records (4 hours)
```

Neural Network

params	split0_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
{'units': 5, 'hidden_layers': 3, 'activation': 'relu'}	0.993234634	0.82319206	0.347238243	0.998551011	0.434314996	0.719306189	0.276933665	1
{'units': 10, 'hidden_layers': 3, 'activation': 'relu'}	0.34656477	0.82319206	0.384912103	0.998551011	0.161584929	0.542960975	0.314671367	7
{'units': 5, 'hidden_layers': 5, 'activation': 'relu'}	0.315656275	0.82319206	0.375503838	0.998551011	0.097216271	0.522023891	0.335349846	8
{'units': 10, 'hidden_layers': 5, 'activation': 'relu'}	0.457035273	0.82319206	0.347238243	0.998520374	0.088940591	0.542985308	0.327990533	6
{'units': 5, 'hidden_layers': 3, 'activation': 'sigmoid'}	0.315656275	0.82319206	0.347238243	0.998551011	0.75601542	0.648130602	0.270612454	3
{'units': 10, 'hidden_layers': 3, 'activation': 'sigmoid'}	0.315656275	0.82319206	0.347238243	0.998551011	0.75601542	0.648130602	0.270612454	3
{'units': 5, 'hidden_layers': 5, 'activation': 'sigmoid'}	0.315656275	0.82319206	0.347238243	0.998551011	0.75601542	0.648130602	0.270612454	3
$\{'units': 10, 'hidden_layers': 5, 'activation': 'sigmoid'\}$	0.448014766	0.82319206	0.347238243	0.998551011	0.75601542	0.6746023	0.241726671	2

Neural Network

```
[26] y preb probs = loaded model.predict proba(test X)
     roc auc score(test y, y preb probs, average="weighted", multi class="ovr")
    0.9845597975367406
[27] y preb probs train = loaded model.predict proba(train X)
     roc_auc_score(train_y, y_preb_probs_train, average="weighted", multi class="ovr")
     0.981405747089793
[28] y pred test = loaded model.predict(test X)
     accuracy score(test y, y pred test)
     0.925740826902405
[29] y_pred_train = loaded_model.predict(train_X)
     accuracy score(train y, y pred train)
    0.9110621762715462
```

XGB Model

mean_fit_time	std_fit_time	mean_score_time st	d_score_time	params	rank_test_score
36.45749454	0.80301692	0.006001234	9.17E-07	{'n_estimators': 150, 'max_depth': 6, 'learning_rate': 0.001}	1
6.785929155	0.150901172	0.004600048	0.000801866	{'n_estimators': 50, 'max_depth': 4, 'learning_rate': 0.001}	2
19.83760018	0.343146875	0.004201174	0.000399947	{'n_estimators': 150, 'max_depth': 4, 'learning_rate': 0.01}	3
27.21397004	0.9752698	0.004399729	0.000799084	{'n_estimators': 200, 'max_depth': 4, 'learning_rate': 0.01}	4
52.23815255	2.649097523	0.004200506	0.000747551	{'n_estimators': 200, 'max_depth': 6, 'learning_rate': 0.001}	5
21.88410387	0.839022729	0.004002905	0.000633731	{'n_estimators': 150, 'max_depth': 4, 'learning_rate': 0.1}	6
8.587910414	0.201189417	0.00460043	0.002245881	{'n_estimators': 50, 'max_depth': 4, 'learning_rate': 0.1}	7
16.91393595	0.350118859	0.004001188	0.000632862	{'n_estimators': 100, 'max_depth': 4, 'learning_rate': 0.1}	8
34.40803094	0.900780048	0.004404116	0.000488317	{'n_estimators': 200, 'max_depth': 4, 'learning_rate': 0.001}	9
15.69593687	1.969237498	0.004209232	0.000395727	{'n_estimators': 100, 'max_depth': 4, 'learning_rate': 0.001}	10

XGB Model

```
y preb probs = random search.predict proba(test X)
   roc auc score(test y, y preb probs, average="weighted", multi class="ovr")
0.9844792416663627
   y preb probs train = random search.predict proba(train X)
   roc auc score(train y, y preb probs train, average="weighted", multi class="ovr")
0.982827265220068
   y_pred_test = random_search.predict(test_X)
   accuracy score(test y, y pred test)
0.9132346098926664
   y pred train = random search.predict(train X)
   accuracy_score(train_y, y_pred_train)
0.9112417703073915
```

SHAP Analysis

Strategy Results

ATOM-USD
2.09999999999999 0.70006
BTC-USD
0
0
DOGE-USD
0
DOT-USD
-0.089000000000000041
0.2487700000000000002
ETC-USD
0.7600000000000016
0.497
ETH USB
ETH-USD 0
0
POLY-USD
17.28260000000001
1.41001599999999
SHIB-USD
0
0

ATOM-USD
0
0
BTC-USD
0
0
DOGE - USD
-0.06990000000000107
1.0928450000000025
DOT-USD
0
0
ETC-USD
-16.480000000000018
34.65460000000002
ETH-USD
0
0
POLY-USD
3.5757000000000656
62.900228999999285
SHIB-USD
0
0

```
ATOM-USD
BTC-USD
DOGE-USD
DOT-USD
ETC-USD
ETH-USD
POLY-USD
SHIB-USD
```

```
ATOM-USD
BTC-USD
DOGE-USD
DOT-USD
ETC-USD
ETH-USD
POLY-USD
SHIB-USD
```

Learnings

- Large datasets take a lot of time to process and model
- Use parallel computing if possible
- Perform EDA on raw data, engineered features and target variable
- Follow all preprocessing steps, overlooking some step may result in inaccurate model
- Handling data imbalance is important
- Do not take metrics to face value. Consider your strategy and see if the model works for your strategy