1. W populacji A natężenie zgonów dane jest wzorem

$$\mu_x^A = \frac{1}{100 - x}$$
 dla $x < 100$,

a w popolacji B wzorem
$$\mu_x^B = \frac{n}{100 - x}$$
 dla $x < 100$,

gdzie *n* jest parametrem. Wiadomo ponadto, że osobniki z populacji A mają przed sobą przeciętnie o 10% więcej życia, niż osobniki z B w tym samym wieku. Wówczas:

- (A) n = 1.1
- (B) n = 1.15
- (C) n = 1.2
- (D) n = 1.21

(E) żadna z powyższych

2. Niech Z_1 , Z_2 , Z_3 oznaczają odpowiednio wartości obecne wypłat z następujących polis wystawionych dla 40-latka: terminowej 20-letniej na życie, 20-letniej na dożycie oraz 20-letniej na życie i dożycie.

Oblicz $E(Z_1)$ oraz $E(Z_2)$, jeśli wiadomo, że:

(i)
$$Var(Z_1) = 0.0081$$
; $Var(Z_2) = 0.0625$; $Var(Z_3) = 0.0106$

(ii)
$$A_{40:\overline{20}|} = 0.4$$
 .

(A)
$$E(Z_1) = 0.1$$
 , $E(Z_2) = 0.3$

(B)
$$E(Z_1) = 0.15$$
, $E(Z_2) = 0.3$

(C)
$$E(Z_1) = 0.15$$
, $E(Z_2) = 0.25$

(D)
$$E(Z_1) = 0.1$$
 , $E(Z_2) = 0.35$

(E)
$$E(Z_1) = 0.12$$
, $E(Z_2) = 0.28$

- 3. W związku z koniecznością obniżenia technicznego natężenia oprocentowania o jeden punkt procentowy, wyznacz nowy poziom składki \overline{A}_x , jeśli dotychczasowe $\overline{A}_x=0.15$, a dotychczasowe $\left(\overline{I}\,\overline{A}\right)_x=2.2$.
- (A) 0.161
- (B) 0.172
- (C) 0.183
- (D) 0.194

(E) żadna z powyższych

- **4.** Dla zabezpieczenia 10-letniego kredytu zawarto 10-letnie ubezpieczenie na życie. Wyznacz jednorazową składkę netto, jeśli:
 - (i) świadczenie płatne jest na moment śmierci,
 - (ii) suma ubezpieczenia maleje jednostajnie wraz z upływem czasu od 1000 do zera,
 - (iii) natężenie oprocentowania $\delta = 0.04$,
 - (iv) natężenie zgonów opisuje funkcja $\mu_{x+t} = \frac{1}{50}$ dla $0 < t \le 10$.

(A)
$$\frac{2500}{3} \left(e^{-\frac{3}{5}} - \frac{1}{5} \right)$$
 (B) $\frac{2500}{3} \left(e^{-\frac{3}{5}} - \frac{4}{9} \right)$

(C)
$$\frac{5000}{9} \left(e^{-\frac{3}{5}} - \frac{1}{5} \right)$$
 (D) $\frac{5000}{9} \left(e^{-\frac{3}{5}} - \frac{2}{5} \right)$

(E)
$$\frac{5000}{9} \left(e^{-\frac{3}{5}} - \frac{4}{9} \right)$$

5. Niech *Y* będzie wartością obecną renty dożywotniej dla 70-latka, dającej mu wypłatę 100 na początek każdego roku.

Oblicz Var(Y), jeśli dane są $A_{69}=0.55211$, $^2A_{69}=0.34022$, $p_{69}=0.97$ oraz v=0.95 (podaj najbliższą wartość).

- (A) 119 151
- (B) 129 252
- (C) 139 353

- (D) 149 454
- (E) 159 555

6. Osoba w wieku 40 lat zakupiła rentę dożywotnią w wysokości 100, płatną raz w roku, na początku roku, od 65 roku życia. Wyznacz (podaj najbliższą wartość) roczną składkę płatną z góry na kolejny rok ubezpieczenia, aż do wypłaty pierwszej renty (ostatnia składka w 64 roku życia), jeśli wiadomo że:

- (i) i = 0.05,
- (ii) $\ddot{a}_{40.\overline{25}|} = 13.51$,
- (iii) $\ddot{a}_{65} = 9.15$,
- (iv) $M_{40} M_{65} = 2100$,
- (v) $D_{40} = 13215$.
- (A) 13.20
- (B) 13.40
- (C) 13.60

- (D) 13.80
- (E) 14.00

- 7. W ubezpieczeniu na całe życie pięćdziesięciolatka ze świadczeniem w wysokości 1 wypłacanym w momencie śmierci, stała roczna składka opłacana jest w formie renty ciągłej. Wyznacz poziom rezerwy składek netto po 25 latach ubezpieczenia, jeśli dane są:
 - (i) natężenie oprocentowania $\delta = 0.1$,

(ii)
$$_{t}p_{50} = 1 - \frac{t}{50}$$
 dla $0 < t \le 50$,

(iii)
$$_{t} p_{75} = 1 - \frac{t}{25}$$
 dla $0 < t \le 25$

(A)
$$\frac{e^{-5} - 2e^{-\frac{5}{2}} + 1}{e^{-5} + 5}$$
 (B) $\frac{e^{-5} - 2e^{-\frac{5}{2}} + 1}{e^{-5} + 4}$

(C)
$$\frac{e^{-5} - 2e^{-\frac{5}{2}} + 1}{e^{-5} + 3}$$
 (D) $\frac{e^{-5} - 2e^{-\frac{5}{2}} + 2}{e^{-5} + 5}$

(E)
$$\frac{e^{-5} - 2e^{-\frac{5}{2}} + 2}{e^{-5} + 4}$$

8. Natężenia zgonów dla żony (30) i męża (40) są stałe i wynoszą odpowiednio:

$$\mu_x^{(z)} = \frac{1}{40}$$

$$\mu_x^{(m)} = \frac{1}{30}$$

Oblicz wartość oczekiwaną długości życia (całego życia) tej osoby, która umrze wcześniej (podaj najbliższą wartość).

- (A) 47.143
- (B) 48.571
- (C) 50

- (D) 51.429
- (E) 52.857

9. W terminowym, 25-letnim, ubezpieczeniu na życie i dożycie dla czterdziestolatka z sumą ubezpieczenia 1000, świadczenie śmiertelne płatne jest na koniec roku. Roczna składka płatna jest na początku pierwszych 15 lat ubezpieczenia. Jednorazowe koszty wystawienia polisy wynoszą α = 5% sumy ubezpieczenia i są rezerwowane metodą Zillmera. Koszty administracyjne, również uwzględniane w rezerwie brutto, wynoszą γ = 1% sumy ubezpieczenia i są ponoszone na początku każdego roku ważności polisy.

Wyznacz (podaj najbliższą wartość) rezerwę brutto po 10 latach ubezpieczenia, jeśli rezerwa netto po 10 latach wynosi 600, a ponadto znane są:

$$\ddot{a}_{40:\overline{10|}} = 6.60 \qquad \qquad \ddot{a}_{50:\overline{5|}} = 4.05$$

$$\ddot{a}_{40:\overline{15}|} = 8.05$$
 $\ddot{a}_{50:\overline{15}|} = 7.70$

$$\ddot{a}_{40:\overline{25}|} = 9.35$$
.

- (A) 604.80 (B) 610.90 (C) 621.30 (D) 634.60
- (E) 640.20

10. Dany jest plan emerytalny, w którym przejście na emeryturę następuje nie później niż w wieku 65 lat $(l_{65}^{(r)} = 0)$. Kohorta 55-latków, wszyscy urodzeni 1 stycznia, liczy $l_{55}^{(r)} = 1000$ osób, wszyscy z 20 letnim stażem w planie emerytalnym. Wiadomo, że co roku, 31 grudnia, przechodzi na emeryturę 80 osób $(d_{55+k}^{(r)} = 80 \text{ dla } k = 0,1,\ldots,9)$.

Wyznacz obecną wartość świadczenia emerytalnego 55-latka (na moment 55 urodzin), jeśli :

- (i) plan wypłaca 1 stycznia roczną emeryturę w wysokości 50 za każdy skończony rok stażu,
- (ii) $\overline{a}_{55+k}^{(r)} = 10 \frac{k}{4}$.

(A)
$$400 \cdot \ddot{a}_{\overline{10}|} + 20 \cdot I \, \ddot{a}_{\overline{10}|} - \sum_{k=0}^{9} (k+1)^2 \cdot v^{k+1}$$

(B)
$$400 \cdot a_{\overline{10}|} + 20 \cdot I \ a_{\overline{10}|} - \sum_{k=0}^{9} (k+1)^2 \cdot v^{k+1}$$

(C)
$$800 \cdot \ddot{a}_{\overline{10}|} + 20 \cdot I \, \ddot{a}_{\overline{10}|} - \sum_{k=0}^{9} (k+1)^2 \cdot v^{k+1}$$

(D)
$$800 \cdot a_{\overline{10}|} + 20 \cdot I \, a_{\overline{10}|} - \sum_{k=0}^{9} (k+1)^2 \cdot v^{k+1}$$

(E) żadna z powyższych.

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

Matematyka ubezpieczeń życiowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	.Klucz odpowiedzi	
Pesel		

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	A	
3	В	
4	D	
5	С	
6	В	
7	В	
8	Е	
9	A	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.