Wildfire Detection Using End-to-End Object Detection with Transformers

Maria Radoslavova

InspiritAl

November 10, 2024

Outline

- Introduction
- 2 Background
- Oata
 - Dataset Overview
 - Data Preprocessing
- Model
 - Training Procedure
 - Hyperparameters
 - Evaluation Strategy
 - Visualization
- Results
 - Model Performance
 - Performance Metrics
 - Visualization of Results
 - Error Analysis
- Conclusion

Introduction

- Climate change is increasing the frequency and severity of wildfires.
- Traditional detection methods are slow and often inaccurate.
- Early detection is crucial for mitigating wildfire damage.
- Objective: Employ state-of-the-art computer vision techniques, specifically the DEtection TRansformer (DETR), to improve wildfire monitoring systems.

Background

- DETR: A transformer-based deep learning model for object detection.
- Utilizes self-attention mechanisms to recognize patterns across larger contexts.
- Underutilized in environmental monitoring applications.
- Our research applies DETR to the task of wildfire detection.

Data Components

- Dataset of 6,249 high-resolution images from RoboFlow.
- Images depict various wildfire scenarios with bounding boxes around fires.
- Landscapes vary in lighting, forest type, fire number, and fire size.
- Aimed to ensure model robustness across different wildfire contexts.

Data Preprocessing

- Dataset Download and Organization
 - Downloaded from RoboFlow and organized into directories.
 - Annotations formatted in COCO JSON standard.
- Oataset Splitting
 - 90% of images for training.
 - 10% of images for testing.
- Image Standardization and Resizing
 - All images resized to 512 x 512 pixels.
- Bounding Box Normalization
 - Coordinates normalized to a range between 0 and 1.
 - Ensures compatibility across varying image sizes.

Example Annotation Entry

```
"images": [
"id": 5631,
"license": 1,
"file_name": "82_869_927_...jpg",
"height": 512,
"width": 512,
"date_captured": "2024-01-06T19:08:39+00:00"
```

Model Architecture

- Utilized the DETR architecture with a ResNet-50 backbone.
- Leveraged pre-trained facebook/detr-resnet-50 weights.
- Employed transfer learning to accelerate training and enhance performance.

Training Procedure

Data Preparation

- Custom data loaders with collate_fn function.
- Handled variable-sized ground truth data.

Model Configuration

• Trained on a CUDA-enabled GPU.

Training Loop

- Forward pass, loss calculation, backpropagation.
- Optimizer: AdamW.
- Loss tracking at regular intervals.

Model Saving

• Checkpoints saved after each epoch.

Hyperparameter Tuning

• Batch Size: 10

• **Epochs**: 15

• Training Size: 90%

 Optimal configuration after experimenting with different combinations.

Evaluation Metrics

- Mean Intersection over Union (mIoU)
 - Measures overlap between predicted and ground truth bounding boxes.
- Precision
 - Proportion of correct wildfire detections.
- Recall
 - Proportion of actual wildfires correctly detected.
- Implemented parallel processing for efficiency.

Visualization

- Used matplotlib for plotting results.
- Displayed mloU, Precision, and Recall versus detection threshold.
- Provided insights into optimal threshold settings.

metrics_vs_threshold.png

Model Performance

- Training Loss
 - Steady decrease from 5.5 to 0.32 over epochs.
- Validation Loss
 - Decreased from 0.98 to 0.42.
 - Minor fluctuations but overall positive trend.
- Indicates successful learning and good generalization.

Performance Metrics

Hyperparameters	Precision	Recall	mloU
Batch size: 7, Epochs: 10	0.85	0.88	0.83
Batch size: 7, Epochs: 15	0.87	0.86	0.84
Batch size: 10, Epochs: 10	0.83	0.85	0.82
Batch size: 10, Epochs: 15	0.86	0.87	0.83

Table: Performance Metrics for Different Hyperparameters

Visualization of Results

metrics_vs_threshold.png

Reasons for Errors

Heavy Smoke

• Obscures key features needed to identify a wildfire.

Similar Colors

• Orange-leafed trees may be mistaken for fire due to color similarity.

Environmental Variability

• Diverse conditions make consistent detection challenging.

Conclusion

- Successfully demonstrated the potential of using DETR for wildfire detection.
- Model accurately identified fires across various environmental conditions.
- Both training and validation losses showed steady decreases.
- DETR could be integrated into real-world wildfire detection systems.
- Future Work:
 - Fine-tuning hyperparameters.
 - Addressing issues like smoke interference.
 - Optimizing the model for real-time deployment.

Acknowledgments

 Special thanks to Andrew Kent for guidance and expanding my knowledge in machine learning.

References

Thank You!