Wholesale Banking Panics and Monetary Policy

Fengfan Xiang

University of Western Ontario

May 15, 2024

Financial Instability & Wholesale Banking Panics

Concern with financial instability has been around for a long time, and there have been various regulatory and policy responses to it

(Handbook chapters: Gertler and Kiyotaki, 2011; Gertler, Kiyotaki and Prestipino, 2016)

- 1. Regulation and supervision of financial institutions Basel III
- 2. Fiscal policy loans, subsidies, transfers
- 3. Monetary policy central bank's balance sheet policies (Greenwood, Hanson and Stein, 2016; Woodford, 2016)
- ▶ I focus on the instability in the form of wholesale banking panics (Bernanke, 2010, 2018)
 - Prime funds: money market funds that invest in high-quality and short-term securities
 - \$400B withdrawal in September 2008 (2% of U.S. GDP)
 - \$100B withdrawal in March 2020

Wholesale Banks

Financial intermediaries operate outside of the regulated banking system (BIS)

Example: institutional money market funds, hedge funds

Unlike regulated retail banks, wholesale banks:

- Highly leveraged
- ▶ No safeguard such as deposit insurance & no access to central bank reserves
- Serve for large institutional investors rather than individual businesses and consumers

This paper: How can monetary policy impact

- the severity of wholesale banking panics?
- ▶ the efficient use of financial assets and economic welfare?

Two-sector Banking Model

- ► Retail banks: leverage constraint, reserves, no risk
- ▶ Wholesale banks: no leverage constraint, no reserves, risk of banking failure
- ▶ Retail and wholesale banks hold collateral (e.g., central bank reserves) to intermediate

Exogenous random failure of wholesale banks can generate a panic

- Wholesale bank depositors execute large-scale withdrawals (flee to safe government bonds)
 - Make withdrawal decision before they know which banks will fail
- ▶ Due to this endogenous withdrawal response, policies could have different implications
 - Affecting the effective supply of assets, which depends on the amount of economic agents use them

Main Results

Expanding central bank balance sheet mitigates wholesale banking panics (fewer withdrawals)

- ightharpoonup Crowding-out effect: scarcity of bonds \implies increases price \implies lowers return on bonds
- lacktriangledown Collateral supply channel: an increase in collateral supply \implies more attractive bank deposits

A large central bank balance sheet, despite mitigates banking panics, is inefficient

- Crowding-out effect: bond holders earn a lower return
- ► As withdrawal falls, collateral per depositor decreases ⇒ depositors get a lower return

Alternative policy: overnight reverse repurchase agreement

► Improves efficiency: collateral supply channel + NO crowding-out effect

Environment

Exchange Economy with Banking

- ▶ Three periods t = 1, 2, 3 no time discount between periods
 - Centralized exchange in period 1
 - Random matching and bilateral exchange in period 2
 - Centralized meeting with payoffs on debts in period 3
- ► Three sets of private agents: consume (c) goods and supply labor (h)
 - 1. Measure one of depositors: $-h_1 + u(c_2) h_3$, where $-c \frac{u''(c)}{u'(c)} < 1$
 - 2. Measure one of risk-neutral producers: $-h_2 + c_3$
 - 3. Infinite measure of risk-neutral banks self-select to be retail or wholesale bank: $c_1 h_1 + c_3 h_3$
 - Linear production technology: all agents can covert labor to goods one-for-one

Trading Friction & Banking Technology

- lacktriangle Limited commitment \Longrightarrow no unsecured credit \Longrightarrow period 2 exchanges supported by assets
- ▶ Banks have access to collateral technology to secure their tradeable deposit claims

Underlying assets

- ► Central bank reserves: restricted to retail banks only (segmented market)
 - Later: overnight reverse repurchase agreement (retail & wholesale banks)
- ► Government bonds: everyone, including depositors, can hold them (provide greater liquidity)

Timing

▶ retail and wholesale deposits ▶ wholesale banking panic

Fiscal Authority & Central Bank

- No government debt outstanding at the beginning of period 1
 - Fiscal authority issues government bonds (\hat{b}) and transfer revenue (τ_1) to depositors: $\hat{b} = \tau_1$
 - Central bank purchases $\hat{b} \bar{b}$ with reserves \bar{m} : $\bar{m} = \hat{b} \bar{b}$
- Government liabilities are redeemed in period 3
 - Fiscal authority taxes depositors τ_3 , pays off debt, transfers τ^{cb} to central bank: $r^b\hat{b} + \tau^{cb} = \tau_3$
 - Central bank pays off its debt: $r^m \bar{m} = r^b (\hat{b} \bar{b}) + \tau^{cb}$

Fiscal policy: fix the total government bonds supply $\hat{b} = \bar{m} + \bar{b}$

Monetary policy: determine the size of the central bank's balance sheet, described by \bar{m}

Retail Bank

Maximize profits, choosing

- 1. Deposit contract: required deposits (k'), tradeable deposit claims (d')
- 2. Financial portfolio: reserves (m), government bonds (b^r) , interbank borrowing (ℓ^r)

Balance sheet

Asset	Liability & Equity	
т	d^r	
b^r	ℓ^r	
	e sweat equity	

- ► Competitive retail banks maximize depositors' utility, subject to retail bank's problem
 - Nonnegative profit constraint
 - Leverage constraint $(0 < \theta < 1)$: $\theta(r^m m + r^b b^r) \ge d^r + r^\ell \ell^r$
 - Nonnegative constraints

Wholesale Bank

Maximize profits, choosing

- 1. Deposit contract: k^w , quantity of bonds if withdrawal (b'), and d^w
- 2. Financial portfolio: government bonds (b^w), interbank lending (ℓ^w)

Balance sheet

Asset	Liability
b^w	$[ho + (1- ho)\eta]b'$
ℓ^w	$(1-\rho)(1-\eta)d^w$

- Adjusted by endogenous withdrawal response η
 - η is a choice of depositors the probability of withdrawal (mixed strategy)
- ▶ No leverage requirement ⇒ no bank capital

Wholesale Bank's Problem

Perfectly competitive banking (infinite mass of potential entrants & free entry)

Maximize their depositors' expected utility, considering potential banking panic η

$$\underbrace{-k^w}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right] u(r^bb') + (1-\rho)\left(1-\eta\right)\delta u\left(d^w\right)}_{\text{expected return on deposit contract}}$$

- Subject to
 - Nonnegative profits:

$$\underbrace{k^{w}-\left(1-\rho\right)\left(1-\eta\right)\delta d^{w}}_{\text{profits from deposit contract}}\underbrace{-b^{w}-\ell^{w}+r^{b}\left[b^{w}-\left[\rho+\left(1-\rho\right)\eta\right]b'\right]+r^{\ell}\ell^{w}}_{\text{profits from portfolio decision}}\geq0$$

Collateral constraint:

$$\underbrace{r^{b} \left[b^{w} - \left[\rho + (1 - \rho) \, \eta \right] b' \right] + r^{\ell} \ell^{w}}_{\text{returns on assets}} \ge \underbrace{\left(1 - \rho \right) \left(1 - \eta \right) d^{w}}_{\text{payments on liabilities}}$$

- Nonnegative constraints: k^w , b', d^w , b^w , b^w , $b^w [\rho + (1 \rho) \eta] b' \ge 0$
- lacktriangleq Probability $1-\delta$, banks experience a collapse in collateral technology \implies insolvency

Will wholesale bank depositors withdraw their funds?

Withdrawal: get b' units of government bonds with gross interest rate of r^b

No withdrawal: get a tradeable claim to d^r units of consumption good with probability δ

No banking panic $(\eta = 0)$ if $u(r^bb') \le \delta u(d^w)$

▶ Partial banking panic (0 < η < 1) if $u(r^bb') = \delta u(d^w)$

- ► Full Banking panic ($\eta = 1$) if $u(r^bb') \ge \delta u(d^w)$
- ▶ definition of equilbrium

No Bank Holds Government Bonds as Collateral

Assumption 1

Assume the total supply of government bonds is scarce such that $\theta \hat{b} < \alpha c^{\star}$, where $u'(c^{\star}) = 1$.

- ▶ Retail bank's leverage and wholesale bank's collateral constraints bind
 - Otherwise, depositors consume a satiated level c^* and monetary policy becomes neutral
 - Low return on safe assets, particularly, government bonds

Lemma 1

Retail banks never invest in government bonds.

▶ Wholesale banks value bonds more because they are not subject to leverage requirement

▶ intuition

Lemma 2

Wholesale banks only purchase government bonds for their depositors' withdrawal requests.

▶ Wholesale bank depositors directly use government bonds in exchange to avoid risk

How Monetary Policy Determines the Type of Equilibrium

Size of the Central Bank's Balance Sheet

- ▶ Two thresholds \bar{m}_1 and \bar{m}_2 characterize three types of equilibrium
- Expanding the size of the central bank's balance sheet mitigates banking panic
- lacktriangle These thresholds increase with the risk of wholesale banking failure $1-\delta$

Aggregate Collateral Constraint ON-RRP

effective collateral supply (i.e., reserves)
$$= \frac{\alpha c_s^r \left[1 - \theta + \theta u'(c_s^r)\right]}{\text{retail banks' demand for collateral}}$$

$$+\underbrace{(1-\alpha)(1-\rho)(1-\eta)c_s^{w}\left[1-\theta\delta+\theta\delta u'(c_s^{w})\right]}_{\text{wholesale banks' demand for collateral}}$$

- Marginal utilities of trading assets determine interest rates (consumption-based asset pricing)
 - e.g. $\frac{1}{r^m} = 1 \theta + \theta u'(c_s^r)$, marginal utility of trading with deposit claims, which backed by reserves
- ightharpoonup Expanding central bank balance sheet (\bar{m}) increases the effective collateral supply
 - Reserves back retail (directly) and wholesale (indirectly, through interbank market) banks' liabilities
- **Demand** for collateral adjusted by endogenous withdrawal response η.

Bond Market Clearing Condition

$$\hat{\underline{b}} - \underline{\bar{n}}$$
 =
$$(1 - \alpha)[\rho + (1 - \rho)\eta]c_s^b u'(c_s^b)$$

bonds circulating in private sector, \bar{b} wholesale bank depositors' demand for bonds to settle transactions

- Expanding size of central bank's balance sheet crowds out government debt
 - As they become scarce, return on government bonds decreases
- **Demand** for government bonds adjusted by endogenous withdrawal response η .
- ▶ No-arbitrage Condition

Partial Panic Equilibrium (0 $< \eta <$ 1): Effects of Monetary Policy

Condition supports a partial panic equilibrium with $0 < \eta < 1$: $u(c_s^b) = \delta u(c_s^w)$

▶ Panicky depositors are indifferent between withdrawing and holding on

Expanding the size of the central bank's balance sheet has three effects

- ▶ Increases effective collateral supply \implies lower η (withdrawal probability)
- ightharpoonup Crowds out government bonds \implies lower η
- ⇒ Large-scale withdrawal response: wholesale bank depositors switch to deposit claims

Partial Panic Equilibrium: Comparative Statics

	∂c_s^r	∂c_s^w	∂c_s^b	дη	∂r^m	∂r^ℓ	∂r^b
$\partial \bar{m}$	_	_	_	_	_	_	_

- ightharpoonup Crowding-out effect: reduce the trading volume for depositors trade with bond (lower c_s^b)
- ▶ Withdrawal response > collateral supply channel: reduce the trading volume for depositors who trade with deposit claims (lower $c_s^r \& c_s^w$)
 - Too many depositors switch to deposit claims
 - Collateral per depositor decreases despite an increase in the aggregate collateral supply
 - Example: $\frac{1 \text{ reserves}}{1 \text{ depositors}} \rightarrow \frac{2 \text{ reserves}}{3 \text{ depositors}}$

No Banking Panic ($\eta = 0$) & Full Banking Panic ($\eta = 1$)

	∂c_s^r	∂c_s^w	∂c_s^b	∂r^m	∂r^ℓ	∂r^b
∂т	+	+	_	+	+	_

No change in withdrawal response given η constant (endogenously determined)

- Different effects compared to the case studied before
- ► Similar results can be obtained in a model with NO endogenous withdrawal response

Expanding the size of the central bank's balance sheet has two effects

- ► Crowding-out effect: reduce transactions settled with government bonds
- ► Effective collateral supply: increase transactions settled with deposit claims

Giving Wholesale Banks Access to Central Bank Liabilities

Overnight Reverse Repo Facility

Expanding the central bank's balance sheet can be harmful

► Too many withdrawals because of the crowding-out and collateral supply effects

Add a new central bank liability: overnight reverse repo (ON-RRP) facility (0)

- Both retail and wholesale banks can hold this interest-bearing central bank liability
- ► Monetary policy has two dimensions central bank balance sheet
 - Size of its balance sheet $s = \bar{m} + \bar{o}$
 - Composition of its liabilities (relative supply of reserves and ON-RRPs)

Increasing the supply of ON-RRPs mitigates wholesale banking panic and improves welfare

- ► Increase the effective collateral supply by avoiding retail bank's regulatory costs
- ▶ No crowding-out effect ⇒ not that many withdrawals

Substitute Reserves with ON-RRPs Delance sheet

Effective collateral supply (determined by \bar{o} for any s):

$$heta imes ilde{m} op = heta imes ext{s} op + (1- heta) ilde{o}$$
 reserve supply ON-RRP supply size of central bank balance sheet

- ► An increase in ō increases effective collateral supply → aggregate collateral constraint
 - By avoiding "balance sheet costs" from the retail bank's leverage constraint

No crowding-out effect:

$$\hat{\underline{b}} - \underline{s} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_s^b u'(c_s^b)}_{\text{bonds circulating in private sector}} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_s^b u'(c_s^b)}_{\text{wholesale bank depositors' demand for bonds to settle transactions}}$$

▶ Only depend on the size of the central bank's balance sheet (s)

ON-RRP: Comparative Statics

	∂c_s^r	∂c_s^w	∂c_s^b	дη	∂r^m	∂r^ℓ	∂r^b
$\partial \bar{o}$	+	+	+	_	+	+	+

- Collateral supply channel > withdrawal response (in the absence of crowding-out effect): increase transactions settled with deposit claims
 - Not that many depositors switch to deposit claims
 - Collateral per depositor increases
- ▶ Withdrawal response: increase transactions settled with government bonds
 - Each depositor obtains more bonds for transaction with fewer withdrawals $(\eta \downarrow)$

Conclusions

- ▶ Expanding the central bank balance sheet mitigates wholesale banking panics
 - However, it can be harmful in the presence of the endogenous withdrawal response

- Giving wholesale banks direct access to central bank liabilities improves welfare

 - Does not crowd out government bonds ⇒ improves the efficient asset allocation

Appendix

Retail & Wholesale Deposits

Retail bank depositors (fraction α , exogenous)

▶ Retail bank's deposit claims are safe and always a valid means of payment

Wholesale bank depositors (fraction $1 - \alpha$) (Large institutional investors use government bonds in transactions)

- Wholesale bank's deposit claims are less liquid
 - Wholesale depositors can use bank claims for transactions with probability $1-\rho$
 - \bullet Must withdraw and use government bonds for transactions with probability ρ
- Wholesale bank's deposit claims are less safe

▶ back

Wholesale Banking Panic

- An exogenous fraction 1δ of wholesale banks will become insolvent in period 2
 - Insolvent banks default on their liabilities (Gertler and Kiyotaki, 2015; Williamson, 2022)
 - Producers will not accept deposit claims issued by an insolvent bank
- Depositors make their withdrawal decision with imperfect information in period 1
 - Don't know which banks will fail
 - Panicky depositors can trade with bank claims but choose to withdraw bonds
- ightharpoonup Panicky depositors choose to withdraw bonds with an endogenous probability η

Wholesale banking panic: a fraction $\eta > 0$ of panicky depositors withdraw bonds

Central Bank's Balance Sheet

Baseline case

Asset	Liability
$\hat{b} - \bar{b}$	\bar{m}

▶ Central bank purchases $\hat{b} - \bar{b}$ to back its reserves \bar{m}

Add ON-RRPs

Asset	Liability & Equity
$\hat{b}-ar{b}$	\bar{m}
	\bar{o}

ightharpoonup Central bank purchases $\hat{b} - \bar{b}$ to back reserves \bar{m} and ON-RRPs \bar{o}

▶ back ON-RRPs

Consolidated Government Budget Constraints

Period 1:
$$\underline{\bar{m}} + \underline{\bar{b}} = \underline{\tau_1}$$
reserve supply government bond supply lump-sum transfer to depositors

Period 3:
$$r^{m}\bar{m} + r^{b}\bar{b} = \tau_{3}$$
 repayment for debt from period 1 lump-sum tax to depositors

Fiscal policy: fix the supply of the consolidated government liabilities $\hat{b} = \bar{m} + \bar{b}$

 $ightharpoonup \overline{m}$ and \overline{b} are reserves and bonds circulating in the private sector

Monetary policy: determine determines the size of the central bank's balance sheet (\bar{m})

▶ hold $\hat{b} - \bar{b}$ to back its liabilities

▶ back

"Sweat Equity"

Retail banks finance part of their assets by supplying their own capital (e)

- \blacktriangleright A result of the leverage requirement: liability-to-asset ratio cannot exceed $\theta < 1$
 - capital = (1θ) asset when the leverage constraint binds, i.e., $\frac{\text{liability}}{\text{asset}} = \theta$
- ▶ "Sweat equity": costly (as a source of internal funding, requires banks to work)

▶ back

Retail Bank's Problem

Perfectly competitive banking (infinite mass of potential entrants & free entry)

► Retail banks maximize depositors' utility:

$$-k^r + u(d^r)$$

- Subject to
 - Nonnegative profit:

$$\underbrace{k^r-d^r}_{\text{profits from deposit contract}}\underbrace{-m-b^r+\ell^r+r^mm+r^bb^r-r^\ell\ell^r}_{\text{profits from portfolio decision}}\geq 0$$

- Leverage constraint: $\theta \underbrace{(r^m m + r^b b^r)}_{\text{returns on assets}} \ge \underbrace{d^r + r^\ell \ell^r}_{\text{payments on liabilities}}$
- Nonnegative constraints: k^r , d^r , m, $b^r \ge 0$

Equilibrium

- ► Solve banks' problems
 - ullet Satisfying conditions for banking panic to determine η

- Market clearing conditions
 - Reserve market: $\alpha m = \bar{m}$
 - Government bond market: $\alpha b^r + (1 \alpha) b^w = \bar{b}$
 - Interbank market: $\alpha \ell^r = (1 \alpha) \ell^w$

Retail Banks Never Invest in Government Bonds: Intuition

Retail	l Bank	Wholesa	Wholesale Bank		
Asset	Liability & Equity	Asset	Liability		
т	d^r	b^w	$[ho + (1- ho)\eta]b'$		
X	ℓ^r	ℓ^w	$(1- ho)(1-\eta)d^w$		
	e				

- lacktriangle Retail banks invest in a positive stock of government bonds only if $r^b > r^\ell$
 - The strict inequality comes from their costs of holding assets because of the leverage requirement
- ▶ Wholesale banks ask a higher return on loans than bonds, i.e., $r^{\ell} \ge r^b$
 - Government bonds provide a greater liquidity, which are always available to them
- ► Contradiction ⇒ retail banks never invest in bonds

No-arbitrage Condition

No-arbitrage condition:

$$\underline{u'\left(c_{s}^{r}\right)}$$
 = $\underline{1-\delta+\delta u'\left(c_{s}^{w}\right)}$ return on retail bank's deposit claims return on wholesale bank's deposit claims

► Equating returns from exchanging with retail and wholesale banks' deposit claims ► into

▶ back

No-arbitrage Condition: Inituition

Retail Bank

Asset	Liability & Equity	Asset	Liability
т	d^r	b^w	$[ho + (1- ho)\eta]b'$
	ℓ^r	ℓ^w	$(1-\rho)(1-\eta)d^w$

Wholesale Bank

▶ On the liability side of the retail bank

return rate on retail deposits = return rate on interbank borrowing

▶ Wholesale banks use claims on interbank lending back deposit claims

return rate on interbank lending = return rate on wholesale deposits adjusted by risk

Private Banks' Balance Sheets with ON-RRP

Retail	Bank	Wholesa	Wholesale Bank		
Asset	Liability	Asset	Liability		
т	d^r	b^w	$[ho + (1- ho)\eta]b'$		
	ℓ^r	ℓ^w	$(1- ho)(1-\eta)d^w$		
	е	0			

