Homework 1

The pdf you submit must look exactly like this with the answers and all supporting works shown on the the page with the question.

Last Name	First Name	Student ID	
malloy	Sean	99823013	
artner Last Name	Partner First Name	Partner Student ID	

2. (3 points) Prove that A XOR B = $A*\bar{B}+\bar{A}*B$

A -	0	A XOR B	AXB + AXB These two exemations have the
0	0	0	Sanctouth tubles to each o two because
1	0	0	AXOR B = AXE + A XB for 111 cases, theren Her fect industan ne can conclude fait the truen is proved.

3. (3 points) Write the function that represents the following circuit. Do not simplify.

4. Given the following truth table

Α	В	C	Output
0	0	0	1:
0	0	1	1.
0	1	0	1
0	1 ,	`1	0
1	0	0	 0
1	0	1	1
1	1	0	1.
1	1	1	0

1. (3 points) Write a function in SOP form that behaves according to the truth table. Do not simplify.

Mo+M1+M2+M++M6

$$\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}$$

2. (3 points) Write a function in POS form that behaves according to the truth table. Do not simplify.

$$M_3+m_4+M_7$$
 $(A+B+C)(A+B+C)(A+B+C)$

5. (3 points each) For each of the following problems assume that the variables are $x_0 - x_{N-1}$, with x_0 representing the least significant bit and x_{N-1} the most significant. For example if we had an equation of 3 variables, $m_1 = \bar{x_2} * \bar{x_1} * x_0$ and $m_6 = x_2 * x_1 * \bar{x_0}$. For each of the following problems write each function in **both** its most simplified SOP and POS form. There are a total of 5 subquestions

1.
$$m_0 + m_1 + m_2$$

2. $M_0*M_3*M_4*M_7$

A	B	1	Mo M3	3 My M7	2	Sop: AB C)+(AB	T) +(ABC)+(ABFA)
0	0	0	0			Ā (BC+	BC) +,	A(BC+BE)
0	1	0	7 0			= (80)	t Bir]	
1	0 0	0	0		· · · · · · · · · · · · · · · · · · ·			i
1	1	0 [0			; ; ; ;		

Pos: (AtBtc)(AtBtc)(AtBtc)
$$\left[A + (B+Q(B+\overline{c})) \right] \left[A + (B+c)(B+\overline{c}) \right]$$

$$= \left(B+\overline{c} \right) \left(B+\overline{c} \right)$$

3.
$$m_4+m_5+m_7+m_{12}+m_{13}+m_{15}$$

4 doi: γ regular

We k map

4. $m_0 + m_3 + m_4 + m_8 + D_2 + D_5 + D_7 + D_{10} + D_{13} + D_{15}$

AB (D	o j)	0)	11	.16
00	TK.	77	0	
01	D	D A	D	6
11	Ji	D]]	P	0.
10	10	0	0	DA
	•	-		1 1

 $\frac{pos}{(C+D)(A+B)(A+D)}$

5. $m_1 + m_3 + m_7 + m_9 + m_{11} + m_{15} + m_{17} + m_{19} + m_{25} + m_{27} + D_4 + D_6 + D_{12} + D_{14} + D_{16} + D_{18} + D_{20} + D_{22} + D_{24} + D_{26} + D_{28} + D_{30}$

