Analyse III

David Wiedemann

Table des matières

1	Rappels														
2	Non	ombres Complexes													
3	Non	ombres Complexes													
	3.1	Topologie sur \mathbb{C}	3												
	3.2	Echange de sommes	3												
4	Ana	llyse Complexe	3												
	4.1	Fonctions analytiques complexes	3												
	4.2	Rayon de Convergence	4												
	4.3	Analyticite et recentrage	5												
	4.4	Zeros isoles	6												
\mathbf{L}	ist (of Theorems													
	1	Theorème (de la fonction inverse)	2												
	2	Theorème (de la fonction implicite)	2												
	4	Theorème (fondamental de l'algebre)	3												
	5	Corollaire	3												
	1	Definition (Serie entiere)	4												
	2	Definition (Convergence de series entieres)	4												
	3	Definition (Convergence uniforme)	4												
	4	Definition (Convergence d'une suite de fonctions)	4												
	6	Lemme	4												
	5	Definition (Rayon de convergence)	4												
	7	Lemme	4												
	8	Lemme	4												
	9	Lemme	4												
	10	Lemme	5												
	6	Definition	5												
	11	Lemme (Lemme de recentrage)	5												

10	D																c
12	Proposition																b

1 Rappels

Theorème 1 (de la fonction inverse)

Soit $f: U \to \mathbb{R}^n$, $U \subset \mathbb{R}^n$ de classe C^1 tel que $Df|_x$ est inversible. Alors il existe un voisinage V de x, un voisinage W de f(x) tel que f est une bijection de V a W et dont l'inverse est aussi derivable. De plus $Df^{-1}|_{f(x)} = (Df|_x)^{-1}$

Theorème 2 (de la fonction implicite)

Soit $U \subset \mathbb{R}^n$, $W \subset \mathbb{R}^p$ et $f: U \times W \to \mathbb{R}^n$ une fonction C^1 et $(x, z) \in U \times W$ tel que

$$Df|_{(x,z)} = \left[Dxf|_{(x,z)} |D_z f_{(x,z)} \right]$$

est telle que $D_x f|_{(x,z)}$ est inversible.

Alors si f(x,z)=0, il existe un voisinage Z de z et une fonction $g:Z\to V$ tel que $f(g(\tilde{z},\tilde{z}))=0$ et

$$Dg|_z = -(D_x f|_{(x,z)})^{-1} D_z f|_{(x,z)}$$

2 Nombres Complexes

De meme que $\mathbb R$ est obtenu a partir de $\mathbb Q$ en faisant une operation de completion (topologique).

 \mathbb{C} est obtenu a partir de \mathbb{R} en faisant une operation de completion algebrique; on requiert simplement qu'il existe une solution a $x^2 + 1 = 0$.

Lecture 2: Intro Complexes

Mon 27 Sep

3 Nombres Complexes

Si on veut etendre \mathbb{R} en un corps qui contienne i, on obtient \mathbb{C} .

On perd la relation d'ordre sur les complexes.

Geometriquement, on represente les nombres complexes dans le plan.

Remarque

L'argument d'un nombre complexe n'est defini que modulo $2\pi.$

La representation polaire est particulierement pertinente pour la multiplication

$$|zw| = |z||w|$$
 et $arg(zw) = arg(z) + arg(w)$

Ce sera prouve de maniere elegante plus tard, mais on pourrait le verifier avec les formules trigonometriques.

C'est consistant avec la notation $z=re^{i\theta}$. Un choix frequent pour θ est de definir arg sur $\mathbb{C}\setminus\mathbb{R}^-$ en le prenant dans $(-\pi,\pi)$.

Solutions de $z^n = w$

pour $n \in \mathbb{N}^*, w \in \mathbb{C}^*$, il existe n solutions

$$\left\{ |\omega|^{\frac{1}{n}} e^{i(arg(w) + 2k\pi)/n} | k \in \mathbb{Z} \right\}$$

3.1 Topologie sur \mathbb{C}

Comme en analyse reelle, l'outil principal est $|\cdot|$ complexe.

Les objets de choix pour parler de convergence sont (x-r,x+r) et [x-r,x+r] sur $\mathbb R$ et sur $\mathbb C$ leurs analogues sont $D(z,r)=\{\omega\in\mathbb C||z-w|< r\}$.

On a $D(z,r) = \overline{D}(z,r) \setminus D(z,r)$ est le cercle de rayon r centre en z.

Un ensemble $U \subset \mathbb{C}$ est dit ouvert si $\forall z \in U \exists \delta > 0$ tel que $D(z, \delta) \subset U$.

Un domaine est un ouvert connexe.

3.2 Echange de sommes

— Sur \mathbb{R} , si $a_{n,m} \geq 0$ on peut toujours dire

$$\sum_{n} \sum_{m} a_{n,m} = \sum_{m} \sum_{n} a_{n,m}$$

— Idem si la somme converge absolument.

Theorème 4 (fondamental de l'algebre)

Si P est un polynome de degre ≥ 1 , alors $\exists z \in \mathbb{C}$ tel que P(z) = 0

Corollaire 5

Tous les polynomes peuvent etre factorise.

4 Analyse Complexe

4.1 Fonctions analytiques complexes

But: aller plus loin que les polynomes.

On considere des series entieres

$$\sum_{n=0}^{\infty} a_n (z - z_*)^n$$

Les fonctions analytiques sont les fonctions definies par des series entieres convergentes.

Definition 1 (Serie entiere)

 $\sum_{n=0}^{\infty} a_n(z-z_*^n)$ une serie entiere centree en z_*

Definition 2 (Convergence de series entieres)

 $\sum_{n=0}^{\infty} a_n (z - z_*)^n \ si \lim_{n \to +\infty} \sum_{k=0}^n a_k (z - z_*)^k \ existe.$

Definition 3 (Convergence uniforme)

 $\sum_{n=0}^{\infty} a_n (z-z_*)^n$ converge uniformement sur $K \subset \mathbb{C}$ si elle converge sur K et si

$$\lim_{n \to +\infty} \sum_{k=0}^{n} a_k (z - z_*)^k - \sum_{k=0}^{\infty} a_k (z - z_*)^k = 0$$

Definition 4 (Convergence d'une suite de fonctions)

Si $f_k: K \to \mathbb{C}$ est une suite de fonctions tel que $\sum_{k=0}^{\infty} f_{k\infty,K} < +\infty$, on dit que $\sum f_k$ converge normalement.

Lemme 6

La convergence normale implique la convergence uniforme.

Lecture 3: fonctions complexes

Thu 30 Sep

4.2 Rayon de Convergence

Definition 5 (Rayon de convergence)

Le rayon de convergence de $\sum_n a_n(z-z_*)^n$ est

$$\rho = \sup \left\{ r \ge 0 : \sum a_n (z - z_*)^n \text{ converge sur } D(z^*, r) \right\}$$

On $a \rho \in [0, \infty]$.

Ou de maniere equivalent

$$\sup \left\{ r \ge 0 : \sum |a_n| |r|^n \ converge \ \right\}$$

Lemme 7

 $Si \sum a_n z^n$ a rayon de convergence ρ , alors la serie converge normalement sur $D(0,\rho)$

Lemme 8

Si $\limsup |a_k| \rho^k < \infty$, alors le rayon de convergence est $\geq \rho$.

Lemme 9

Si

$$\left|\frac{a_{k+1}}{a_k}\right|$$

converge quand $k \to \infty$ alors $\left| \frac{a_{K+1}}{a_k} \to \rho^{-1} \right|$

$$\rho^{-1} = \lim \sup(|a_n|)^{\frac{1}{n}}$$

Lemme 10

 $\sum a_k z^k$, $\sum b_n z^n$ convergent, alors

$$\sum (a_k + b_k) z^k$$

converge et vaut $\sum a_k z^k + \sum b_k z^k$.

Et si on pose $c_n = \sum_{i+j=n} a_i b_j$, alors

$$\sum_{n=0}^{\infty} c_n z^n$$

converge et vaut le produit.

4.3 Analyticite et recentrage

Definition 6

Si f est donnee par une serie entiere $\sum a_n z^n$.

On definit les series entieres "derivees" par

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

ou les series derivees ont le meme rayon de convergence que la serie de base car

$$\limsup |a_n|^{\frac{1}{n}} = \limsup (n^k |a_n|)^{\frac{1}{n}}$$

Lemme 11 (Lemme de recentrage)

Soit $f: D(0,r) \to \mathbb{C}$ donnee par $\sum a_n z^n$ avec rauon de convergence r. Soit $z_* \in D(0,r)$. On a que la serie

$$\sum \frac{1}{n!} f^{(n)}(z_*) (z - z_*)^n$$

converge avec rayon de convergence $\geq r-|z_*|$ ou f^n est la derivee formelle de f definie ci-dessus.

Preuve

$$f(z) = \sum a_n z^n$$

=
$$\sum a_n (z - z_* + z_*)^n$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} (z - z_*)^k z_*^{n-k}$$

$$= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \binom{n}{k} z_*^{n-k} (z - z_*)^k$$

$$= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{1}{k!} n(n-1) \dots (n-k+1) z_*^{n-k} (z - z_*) k$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(z_*)}{k!} (z - z_*)^k$$

Si on a

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} 1_{k \le n} |a_n| \binom{n}{k} |z_*^{n-k}| |z - z_*|^k < \infty$$

or ceci converge car $z_* \in D(0,r)$ en effet $\epsilon > 0$ tel que $|z_*| + \epsilon < r$

4.4 Zeros isoles

Proposition 12

Soit $f: U \to \mathbb{C}$ analytique, non nulle, alors l'ensemble

$$\{z \in U : f(z) = 0\}$$

ne contient pas de points d'accumulation dans U.

Preuve

Supposons $z_* \in U$ un point d'accumulation.

Par le lemme de recentrage $\exists \epsilon > 0$ tel que $f(z) = \sum a_n (z - z_*)^n$.

Par hypothese $\exists m \ tel \ que \ a_m \neq 0$.

Soit n le plus petit tel entier

$$f(z) = (z - z^*)^m \sum_{n=0}^{\infty} a_{m+n} (z - z_*)^n$$

Donc il existe un voisinage de z^* ou f est continue (parce que la serie converge uniformement sur les compacts).