

Global United Technology Services Co., Ltd.

Report No.: GTS201904000075F02

Spectrum REPORT

Applicant: SHENZHEN CYX TECHNOLOGY CO.,LTD

Address of Applicant: 5/F, one buildings, xiazao industrial zone, zaohe road, Longhua

District, Shenzhen, China

Manufacturer: SHENZHEN CYX TECHNOLOGY CO.,LTD

Address of 5/F, one buildings, xiazao industrial zone, zaohe road, Longhua

Manufacturer: District, Shenzhen, China

Factory: Shenzhen Chuang Ying Xin Technology Co., Ltd.

Address of Factory: 5/F, one buildings, xiazao industrial zone, zaohe road, Longhua

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: TV BOX

Model No.: A95X MAX, A95X F1, A95X F2, A95X F1 Pro,

A95X F2 Pro, A95X Plus, A95X F3, A95X F5, A95X F6,

A95X F3 Pro, A95X F5 Pro, A95X F6 Pro, X95 Plus

Trade Mark CYX

FCC ID: 2AHTK-A95XMAX

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: April 10, 2019

Date of Test: April 11-23, 2019

Date of report issue: April 24, 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above. Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	April 24, 2019	Original

Prepared By:	Date:	April 24, 2019
	Project Engineer	
Check By:	Date:	April 24, 2019
	Reviewer	

3 Contents

			Page
1	CO	OVER PAGE	1
2	VE	RSION	2
3	CO	ONTENTS	3
4	TE	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1 5.2	GENERAL DESCRIPTION OF EUTTEST MODE	6
	5.3 5.4	TEST FACILITYTEST LOCATION	
	5.5 5.6	DESCRIPTION OF SUPPORT UNITS	6
	5.7	Additional Instructions	
6	TE	ST INSTRUMENTS LIST	7
7	TE	ST RESULTS AND MEASUREMENT DATA	9
	7.1 7.2	ANTENNA REQUIREMENT:	10
	7.3 7.4	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH PEAK TRANSMIT POWER	18
	7.5 7.6	POWER SPECTRAL DENSITYBAND EDGE	25
	7.7 7.8	RADIATED EMISSIONFREQUENCY STABILITY	
8	TE	ST SETUP PHOTO	45
۵	FII	IT CONSTRUCTIONAL DETAILS	45

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Peak Transmit Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

5 General Information

5.1 General Description of EUT

Product Name:	TV BOX					
Model No.:	A95X MAX, A95X F1, A95X F2, A95X F1 Pro, A95X F2 Pro, A95X Plus, A95X F3, A95X F5, A95X F6, A95X F3 Pro, A95X F5 Pro, A95X F6 Pro, X95 Plus					
Test Model No:	A95X MAX					
	dentical in the same PCB layout, indel name for commercial purpos		and electrical ci	ircuits.		
Serial No.:	681DEF10EAC1					
Hardware Version:	95XMAXV_V81					
Software Version:	A95X_MAX-8.1.0					
Test sample(s) ID:	GTS201904000075-1					
Sample(s) Status:	Engineer sample					
Operation Frequency:	Mode	Frequency Range(MHz)	Number of channels			
	IEEE 802.11a	5180-5240	4			
	IEEE 802.11n/ac 20MHz	5180-5240	4			
	IEEE 802.11n/ac 40MHz	5190-5230	2			
	IEEE 802.11ac 80MHz	5210	1			
Modulation technology:	OFDM					
Antenna Type:	Integral Antenna					
Antenna gain:	1.0dBi					
Power supply:	Power Supply					
	Model: R122-0502500ED					
	Input: AC 100-240V, 50/60Hz, 0).4A				
	Output: DC 5V/2.5A					

Channel list for 802.11a/n/ac(HT20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequer						Frequency	
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

Channel list for 802.11n(HT40)/ac(HT40)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency						Frequency	
38	5190MHz	46	5230MHz				

Channel list	Channel list for 802.11ac(HT80)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210MHz						

5.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation..

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11a/n/ac(HT20)	6/6.5 Mbps		
802.11n/ac(HT40)	13.5 Mbps		
802.11ac(HT80)	29.3 Mbps		

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

6 Test Instruments list

Radi	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020				
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A				
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019				
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019				
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019				
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019				
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019				
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019				
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019				
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019				
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019				
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019				
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019				
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019				
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019				
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019				
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019				
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019				
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019				
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019				
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019				
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019				
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019				

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

RF C	RF Conducted:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

7 Test results and Measurement Data

7.1 Antenna requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna, the best case gain of the antennas are 2.0dBi, reference to the appendix II for details

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz			
Limit:		Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.			
Test setup:	Refer	ence Plane		
	AUX Equipment Test table/Insulation pl Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiver	Iter — AC power	
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar	
Test voltage:	AC 120V, 60Hz			
Test results:	Pass			

Measurement data:

Line:

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0. 19 0. 19 0. 24 0. 24 0. 31 0. 31 0. 37 4. 03 4. 03 13. 48 13. 48	47. 49 30. 66 45. 65 26. 31 41. 48 23. 19 41. 25 22. 17 39. 05 22. 92 39. 51 31. 73	0.40 0.40 0.40 0.40 0.40 0.37 0.37 0.20 0.20	0. 11 0. 11 0. 11 0. 11 0. 10 0. 10 0. 10 0. 10 0. 18 0. 18 0. 21 0. 21	48.00 31.17 46.16 26.82 41.98 23.69 41.72 22.64 39.43 23.30 39.92 32.14	63.89 53.89 61.95 51.95 60.06 50.06 58.61 48.61 56.00 46.00 60.00	-15.89 -22.72 -15.79 -25.13 -18.08 -26.37 -16.89 -25.97 -16.57 -22.70 -20.08 -17.86	QP Average QP Average QP Average QP Average QP Average QP Average
							•

Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement :	FCC Part15 E Section 15.407				
Test Method :	KDB 789033 D02 v02r01				
Limit:	N/A				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data:

	_	99% Occ	upied Bandwi	dth (MHz)	26dB Occ	upied Bandwi	dth (MHz)
CH. No.	Frequency (MHz)	902.446	802.11n	2.11n 802.11ac 802.11a		802.11n	802.11ac
140.	(1411 12)	802.11a	(HT20)	(HT20)	002.11a	(HT20)	(HT20)
36	5180	16.5606	17.6787	17.6538	20.552	21.011	21.138
40	5200	16.5079	17.6672	17.6738	20.453	21.225	21.255
48	5240	16.5356	17.6485	17.6817	20.375	21.327	20.962

CH. Frequency		99% Occupied E	99% Occupied Bandwidth (MHz)		26dB Occupied Bandwidth (MHz)	
No.	(MHz)	802.11n(HT40)	802.11ac(HT40)	802.11n(HT40)	802.11ac(HT40)	
38	5190	36.5928	36.3137	45.807	42.997	
46	5230	36.8288	36.3685	56.334	43.351	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)
No. (MHz)		802.11ac(HT80)	802.11ac(HT80)
42	5210	75.1196	80.526

Test plots as followed:

7.4 Peak Transmit Power

Test Requirement	FCC Part15 E Section 15.407				
Test Method :	KDB 789033 D02 v02	r01			
Limit:	Frequency band (MHz)	Limit			
	5150-5250	≤1W(30dBm) for master device			
	- 0100 0200	≤250mW(23.98dBm) for client device			
	5250-5350	≤250mW(23.98dBm) for client device or 11dBm+10logB*			
	5470-5725	≤250mW(23.98dBm) for client device or 11dBm+10logB*			
		s the 26dB emission bandwidth in MHz.			
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in				
	terms of an rms-equivalent voltage.				
Test setup:	Power Meter E.U.T Non-Conducted Table				
	Ground Refere	ence Plane			
Test procedure:	Measurement using	an RF average power meter			
	meter with a t	s may be performed using a wideband RF power hermocouple detector or equivalent if all of the ed below are satisfied			
	a) The EUT is with a constai	s configured to transmit continuously or to transmit nt duty cycle.			
		s when the EUT is transmitting, it must be tits maximum power control level.			
		ation period of the power meter exceeds the od of the transmitted signal by at least a factor of			
		ter does not transmit continuously, measure the of the transmitter output signal as described in			
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.				
	. ,	easurement in dBm by adding 10 log(1/x) where x is (e.g., 10log(1/0.25) if the duty cycle is 25 percent).			
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.2 fo	or details			
Test results:	Pass				

Measurement Data

Modulation	Duty cycle	Duty Factor
802.11a	98.8%	0.05
802.11n(HT20)	98.8%	0.05
802.11n(HT40)	97.5%	0.11
802.11ac(HT20)	98.9%	0.05
802.11ac(HT40)	97.4%	0.11
802.11ac(HT80)	95.2%	0.21

CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.37 0.05 11.42 23.98 Pass 40 5200 11.82 0.05 11.87 23.98 Pass 802.11n(HT20) mode CH Frequency (MHz) Measured Power (dBm) Output Power (dBm) Limit (dBm) Result 36 5180 11.80 0.05 11.85 23.98 Pass 40 5200 11.66 0.05 11.71 23.98 Pass 48 5240 11.79 0.05 11.84 23.98 Pass 802.11ac(HT20) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.65 0.05 11.70 23.98 Pass 40 5200 11.33 0.05 11.74 23.98 Pass </th <th></th> <th></th> <th></th> <th>802.11a m</th> <th>ode</th> <th></th> <th></th>				802.11a m	ode							
March Marc				Duty Factor		Limit (dBm)	Result					
Measured Power (dBm) Duty Factor Output Power (dBm) Result	36	5180	11.37	0.05	11.42	23.98	Pass					
CH	40	5200	11.82	0.05	11.87	23.98	Pass					
CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.80 0.05 11.85 23.98 Pass 40 5200 11.66 0.05 11.71 23.98 Pass 48 5240 11.79 0.05 11.84 23.98 Pass 802.11ac(HT20) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.65 0.05 11.70 23.98 Pass 40 5200 11.33 0.05 11.74 23.98 Pass 48 5240 11.69 0.05 11.74 23.98 Pass 802.11n(HT40) mode CH Frequency (MHz) Measured Power (dBm) Output Fower (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98	48	5240	11.97	0.05	12.02	23.98	Pass					
No. (MHz) Power (dBm) Duty Factor (dBm) Limit (dBm) Result 36 5180 11.80 0.05 11.85 23.98 Pass 40 5200 11.66 0.05 11.71 23.98 Pass 48 5240 11.79 0.05 11.84 23.98 Pass 802.11ac(HT20) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.65 0.05 11.70 23.98 Pass 40 5200 11.33 0.05 11.74 23.98 Pass 48 5240 11.69 0.05 11.74 23.98 Pass 50 Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.75 0.11 11.98 23.98 Pass CH MHz) Measured Power (dBm)				802.11n(HT20) mode							
Measured No. Frequency No. Measured Power (dBm) Duty Factor No. Measured No. Measured No. Measured No. Measured No. Measured No. Measured No. Trequency No. Measured No. Measured No. Measured Power (dBm) Duty Factor Measured No.	_	Result										
No. Frequency No. South Sout	36	5180	11.80	0.05	11.85	23.98	Pass					
CH	40	5200	11.66	0.05	11.71	23.98	Pass					
CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 36 5180 11.65 0.05 11.70 23.98 Pass 40 5200 11.33 0.05 11.38 23.98 Pass 48 5240 11.69 0.05 11.74 23.98 Pass 802.11n(HT40) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.87 0.11 11.98 23.98 Pass 46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 <t< td=""><td>48</td><td>5240</td><td>11.79</td><td>0.05</td><td>11.84</td><td>23.98</td><td>Pass</td></t<>	48	5240	11.79	0.05	11.84	23.98	Pass					
No. (MHz) Power (dBm) Duty Factor (dBm) Limit (dBm) Result 36 5180 11.65 0.05 11.70 23.98 Pass 40 5200 11.33 0.05 11.38 23.98 Pass 48 5240 11.69 0.05 11.74 23.98 Pass 802.11n(HT40) mode CH Frequency (MHz) Measured Power (dBm) Output Power (dBm) Limit (dBm) Result 38 5190 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH Frequency (MHz) Measured Power (dBm) Duty Factor (dBm) Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80)		802.11ac(HT20) mode										
40 5200 11.33 0.05 11.38 23.98 Pass 48 5240 11.69 0.05 11.74 23.98 Pass 802.11n(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.75 0.11 11.98 23.98 Pass 46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass CH Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result				Duty Factor		Limit (dBm)	Result					
48 5240 11.69 0.05 11.74 23.98 Pass 802.11n(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.75 0.11 11.86 23.98 Pass 46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result	36	5180	11.65	0.05	11.70	23.98	Pass					
CH	40	5200	11.33	0.05	11.38	23.98	Pass					
CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.75 0.11 11.86 23.98 Pass 46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result	48	5240	11.69	0.05	11.74	23.98	Pass					
No. (MHz) Power (dBm) Duty Factor (dBm) Limit (dBm) Result 38 5190 11.75 0.11 11.86 23.98 Pass 46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH Frequency (MHz) Measured Power (dBm) Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass CH Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result				802.11n(HT40) mode							
46 5230 11.87 0.11 11.98 23.98 Pass 802.11 ac(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result				Duty Factor	•	Limit (dBm)	Result					
802.11 ac(HT40) mode CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result	38	5190	11.75	0.11	11.86	23.98	Pass					
CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result	46	5230	11.87	0.11	11.98	23.98	Pass					
No. (MHz) Power (dBm) Duty Factor (dBm) Limit (dBm) Result 38 5190 11.08 0.11 11.19 23.98 Pass 46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm) Result				802.11 ac(HT4	0) mode							
46 5230 11.03 0.11 11.14 23.98 Pass 802.11 ac(HT80) CH No. Frequency (MHz) Measured Power (dBm) Duty Factor (dBm) Output Power (dBm) Limit (dBm) Result	_			Duty Factor	•	Limit (dBm)	Result					
CH No. (MHz) Measured Power (dBm) Duty Factor (dBm) Cutput Power (dBm) Cutput Power (dBm) Result	38	5190	11.08	0.11	11.19	23.98	Pass					
CH Frequency (MHz) Measured Power (dBm) Duty Factor (dBm) Cutput Power (dBm) Limit (dBm) Result	46	5230	11.03	0.11	11.14	23.98	Pass					
No. (MHz) Power (dBm) Duty Factor (dBm) Limit (dBm) Result				802.11 ac(F	IT80)							
42 5210 9.34 0.21 9.55 23.98 Pass				Duty Factor	•	Limit (dBm)	Result					
	42	5210	9.34	0.21	9.55	23.98	Pass					

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07
Test Method :	KDB 789033 D02 v02r01	
Limit:	Frequency band (MHz)	Limit
	5150-5250	≤17dBm in 1MHz for master device
		≤11dBm in 1MHz for client device
	5250-5350	≤11dBm in 1MHz for client device
	5470-5725	≤11dBm in 1MHz for client device
		ewer spectral density is measured as a ect connection of a calibrated test instrument et.
Test setup:	Spectrum Analyzer Non-Conducte Ground Referen	
Test procedure:	being tested by following measuring maximum con analyzer or EMI receive SA-2, SA-3, or alternative including, the step label 2) Use the peak search furthe spectrum.	er spectrum for the EUT operating mode g the instructions in section E)2) for inducted output power using a spectrum r: select the appropriate test method (SA-1, wes to each) and apply it up to, but not ed, "Compute power". inction on the instrument to find the peak of stments to the peak value of the spectrum, if
	applicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alterr used in step E)2)g)(viii)	a-2 Alternative was used, add 10 log(1/x), e, to the peak of the spectrum. native was used and the linear mode was add 1 dB to the final result to compensate en linear averaging and power averaging.
Test Instruments:	Refer to section 5.10 for det	rails
Test mode:	Refer to section 5.2 for deta	ils
Test results:	Pass	

Measurement Data

Modulation	Duty cycle	Duty Factor
802.11a	98.8%	0.05
802.11n(HT20)	98.8%	0.05
802.11n(HT40)	97.5%	0.11
802.11ac(HT20)	98.9%	0.05
802.11ac(HT40)	97.4%	0.11
802.11ac(HT80)	95.2%	0.21

			802.11a	mode						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180	4.09	0.05	4.14	11	Pass				
40	5200	3.29	0.05	3.34	11	Pass				
48	5240	4.84	0.05	4.89	11	Pass				
802.11n(HT20) mode										
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180	2.32	0.05	2.37	11	Pass				
40	5200	2.61	0.05	2.66	11	Pass				
48	5240	3.38	0.05	3.43	11	Pass				
	<u>, </u>		802.11ac(HT	20) mode						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180	0.81	0.05	0.86	11	Pass				
40	5200	1.66	0.05	1.71	11	Pass				
48	5240	2.21	0.05	2.26	11	Pass				
			802.11n(HT	40) mode						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
38	5190	2.55	0.11	2.66	11	Pass				
46	5230	3.33	0.11	3.44	11	Pass				
			802.11 ac(HT	40) mode						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
38	5190	0.30	0.11	0.41	11	Pass				
46	5230	0.60	0.11	0.71	11	Pass				
			802.11 ac	(HT80)						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result				
42	5210	-0.94	0.21	-0.73	11	Pass				

Test plots as followed:

7.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:201	13							
Test site:	Measurement Dis	stance: 3m (S	emi-Anecho	ic Chambe	r)				
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 100KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value				
Limit:	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value Above 1GHz 68.2 Peak Value Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27								
Test Procedure:	 a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not 								

	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.						
Test setup:	For radiated emissions above 1GHz Company Company						
Test Instruments:	Refer to section 5.10 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

802.11a(HT2	20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	43.40	32.07	8.99	37.49	46.97	68.2	-21.23	Horizontal
5350.00	45.72	31.75	9.29	37.2	49.56	68.2	-18.64	Horizontal
5150.00	46.44	32.07	8.99	37.49	50.01	68.2	-18.19	Vertical
5350.00	43.59	31.75	9.29	37.2	47.43	68.2	-20.77	Vertical

802.11a(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	37.16	32.07	8.99	37.49	40.73	54.00	-13.27	Horizontal
5350.00	32.41	31.75	9.29	37.2	36.25	54.00	-17.75	Horizontal
5150.00	35.44	32.07	8.99	37.49	39.01	54.00	-14.99	Vertical
5350.00	31.85	31.75	9.29	37.2	35.69	54.00	-18.31	Vertical

802.11n(HT2	20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	46.68	32.07	8.99	37.49	50.25	68.2	-17.95	Horizontal
5350.00	47.03	31.75	9.29	37.2	50.87	68.2	-17.33	Horizontal
5150.00	42.41	32.07	8.99	37.49	45.98	68.2	-22.22	Vertical
5350.00	44.86	31.75	9.29	37.2	48.7	68.2	-19.5	Vertical

802.11n(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	33.56	32.07	8.99	37.49	37.13	54.00	-16.87	Horizontal
5350.00	34.46	31.75	9.29	37.2	38.3	54.00	-15.7	Horizontal
5150.00	34.33	32.07	8.99	37.49	37.9	54.00	-16.1	Vertical
5350.00	31.52	31.75	9.29	37.2	35.36	54.00	-18.64	Vertical

802.11ac(HT	Γ20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	44.75	32.07	8.99	37.49	48.32	68.2	-19.88	Horizontal
5350.00	43.20	31.75	9.29	37.2	47.04	68.2	-21.16	Horizontal
5150.00	41.80	32.07	8.99	37.49	45.37	68.2	-22.83	Vertical
5350.00	43.72	31.75	9.29	37.2	47.56	68.2	-20.64	Vertical

802.11ac(HT	Γ20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	31.79	32.07	8.99	37.49	35.36	54.00	-18.64	Horizontal
5350.00	37.74	31.75	9.29	37.2	41.58	54.00	-12.42	Horizontal
5150.00	31.41	32.07	8.99	37.49	34.98	54.00	-19.02	Vertical
5350.00	35.53	31.75	9.29	37.2	39.37	54.00	-14.63	Vertical

802.11n(HT4	40)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	46.12	32.07	8.99	37.49	49.69	68.2	-18.51	Horizontal
5350.00	42.46	31.75	9.29	37.2	46.3	68.2	-21.9	Horizontal
5150.00	44.87	32.07	8.99	37.49	48.44	68.2	-19.76	Vertical
5350.00	43.70	31.75	9.29	37.2	47.54	68.2	-20.66	Vertical

802.11n(HT4	40)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	33.48	32.07	8.99	37.49	37.05	54.00	-16.95	Horizontal
5350.00	33.43	31.75	9.29	37.2	37.27	54.00	-16.73	Horizontal
5150.00	31.31	32.07	8.99	37.49	34.88	54.00	-19.12	Vertical
5350.00	37.07	31.75	9.29	37.2	40.91	54.00	-13.09	Vertical

802.11ac(HT	Γ40)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	42.09	32.07	8.99	37.49	45.66	68.2	-22.54	Horizontal
5350.00	41.24	31.75	9.29	37.2	45.08	68.2	-23.12	Horizontal
5150.00	43.77	32.07	8.99	37.49	47.34	68.2	-20.86	Vertical
5350.00	44.88	31.75	9.29	37.2	48.72	68.2	-19.48	Vertical

802.11ac(HT	Γ40)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	31.49	32.07	8.99	37.49	35.06	54.00	-18.94	Horizontal
5350.00	35.73	31.75	9.29	37.2	39.57	54.00	-14.43	Horizontal
5150.00	35.45	32.07	8.99	37.49	39.02	54.00	-14.98	Vertical
5350.00	35.03	31.75	9.29	37.2	38.87	54.00	-15.13	Vertical

802.11ac(HT	Г80)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	42.04	32.07	8.99	37.49	45.61	68.2	-22.59	Horizontal
5350.00	46.64	31.75	9.29	37.2	50.48	68.2	-17.72	Horizontal
5150.00	42.18	32.07	8.99	37.49	45.75	68.2	-22.45	Vertical
5350.00	44.09	31.75	9.29	37.2	47.93	68.2	-20.27	Vertical

802.11ac(HT	Г80)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	36.55	32.07	8.99	37.49	40.12	54.00	-13.88	Horizontal
5350.00	35.60	31.75	9.29	37.2	39.44	54.00	-14.56	Horizontal
5150.00	34.53	32.07	8.99	37.49	38.1	54.00	-15.9	Vertical
5350.00	34.14	31.75	9.29	37.2	37.98	54.00	-16.02	Vertical

7.7 Radiated Emission

SolkHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Validad Above 1GHz Peak 100kHz 30kHz Quasi-peak Validad Above 1GHz Peak 10kHz 30kHz Peak Value Av 1 MHz 3kHz Peak Value Av 1 MHz 3kHz Peak Value Average Value Av 1 MHz 3kHz Average Value Av		T								
Test Frequency Range:	Test Requirement :	FCC Part15 C Sec	ction 15	.209 ar	nd 15.205					
Test site: Measurement Distance: 3m (Semi-Anechoic Chamber) Prequency Detector RBW VBW Value 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi-peak Valt 150kHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Valt 30MHz-1GHz Quasi-peak 100kHz 30kHz Quasi-peak Valt Above 1GHz Peak 1MHz 3MHz Peak Valte Above 1GHz Peak 1MHz 3MHz Average Value Above 1GHz QP 300m 0.490MHz-0.490MHz 2400/F(KHz) QP 300m 0.490MHz-1.705MHz 24000/F(KHz) QP 300m 1.705MHz-30MHz 30 QP 30m 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP Above 1GHz 5000 Average Above 1GHz 5000 Average Above 1GHz 5000 Peak Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground at order and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be	Test Method :	ANSI C63.10: 201	3							
Receiver setup: Frequency Detector RBW VBW Value SHZE-150KHz Quasi-peak 200Hz 1KHz Quasi-peak VBW 30kHz Quasi-peak VBW Abowe 1GHz Quasi-peak VBW Abowe 1GHz Peak 1MHz 3MHz Peak VBW Abowe 1GHz Peak 1MHz 3MHz Peak VBW Abowe 1GHz AV 1MHz 3MHz Average Value AV 1MHz 3MHz Average Value AV 1MHz 3MHz Average Value AV 1MHz QP 300m QP QP QP QP QP QP QP Q	Test Frequency Range:	9kHz to 40GHz								
SkHz-150KHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz Peak 1MHz 3MHz Peak Value AV 1MHz 3MHz Average Value AV 1MHz AV AV AV AV AV AV AV A	Test site:	Measurement Dist	tance: 3	3m (Ser	ni-Anechoi	Chamber)	1			
Solkhz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value	Receiver setup:									
Substitution method was performed to determine the actual ERP emission levels of the EUT. The EUT was placed on the top of a variable-height antenna tweer. The EUT was placed emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the rotable table was tuned to heights from 1 meter to 4 meters and the full meters and the peak values of the EUT media. The EUT was placed emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was truned form 0 degrees to 360 degrees to determine the position of the measurement.				•			Quasi-peak Value			
Limit: Frequency							Quasi-peak Value			
Limit: Frequency		30MHz-1GHz		•						
Limit: Frequency		Above 1GHz								
Frequency Limit (uV/m) Value Measurement Distance 0.009MHz-0.490MHz 2400/F(KHz) QP 300m 1.705MHz-30MHz 24000/F(KHz) QP 300m 1.705MHz-30MHz 30 QP 30m 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP Above 1GHz 500 Average Above 1GHz 500 Average Femission levels of the EUT. The following test procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The Full was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that	L imit:		, ,		1101112	OWITIZ	Tiverage value			
0.490MHz-1.705MHz 24000/F(KHz) QP 300m 1.705MHz-30MHz 30 QP 30m 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 5000 Peak Substitution method was performed to determine the actual ERP emission level of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that	Littie	Frequency		Limit	(uV/m)	Value	Measurement Distance			
0.490MHz-1.705MHz 24000/F(KHz) QP 300m 1.705MHz-30MHz 30 QP 30m 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		0.009MHz-0.490)MHz	2400	/F(KHz)	QP	300m			
1.705MHz-30MHz 30 QP 30m 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 500 Average 500 Peak Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		0.490MHz-1.705	MHz			QP	300m			
Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1		1.705MHz-30N	ИHz		` '	QP	30m			
216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak		30MHz-88MH	Ηz	1	100	QP				
216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak		88MHz-216MHz 150 QP								
Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>Below 1GHz test procedure as below: 1>Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		216MHz-960MHz 200 QP								
Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		3m								
Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		500 Average								
Test Procedure: Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that		II Above 1GHz								
did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.		The following test 1>.Below 1GHz test 1. The EUT was 1GHz and 1.5 meter cambel position of the 2. The EUT was antenna, whi antenna towe 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and the degrees to fin 5. The test-rece Specified Bas 6. If the emission the limit specified have values of the did not have peak, quasi-p	proced st proced st proced placed in meters. The take highest set 3 ch was er. height o determinated and the reliver syndwidth on level sified, the EUT was 10dB models or	ure as te dure: I on the second for able was tradiate meters mounted is varied in the control of the Emaximulate maximulate ment. I with Monor the Emaximulate meters was a with Monor the Emargin was a margin was a	top of a rotove 1GHz) s rotated 3 ion. away from ed on the to d from one e maximum polarizatio on, the EUT was turned e was turned as set to Pelaximum HoEUT in pealing could be reported.	above the composition of the interference of a varial meter to for value of the ansign of the ansign of the ansign of the ansign of the interference of the interferen	ground at a 3 to determine the ence-receiving ble-height ar meters above a field strength. Interna are set to ged to its worst from 1 meter to 4 agrees to 360 Function and a 10dB lower than and the peak the emissions that by one using			
		2>.Above 1GHz te	est proc	edure:						

- 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~1GHz

Horizontal:

Vertical:

Report No.: GTS201904000075F02

Above 1GHz:

802.11a(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	32.64	39.67	14.62	32.65	54.28	74.00	-19.72	Vertical
15540.00	32.65	38.6	17.66	34.46	54.45	74.00	-19.55	Vertical
10360.00	32.02	39.67	14.62	32.65	53.66	74.00	-20.34	Horizontal
15540.00	31.96	38.6	17.66	34.46	53.76	74.00	-20.24	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	22.38	39.67	14.62	32.65	44.02	54.00	-9.98	Vertical
15540.00	22.83	38.6	17.66	34.46	44.63	54.00	-9.37	Vertical
10360.00	19.55	39.67	14.62	32.65	41.19	54.00	-12.81	Horizontal
15540.00	21.81	38.6	17.66	34.46	43.61	54.00	-10.39	Horizontal

802.11a(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	33.93	39.75	14.63	32.71	55.6	74.00	-18.4	Vertical
15600.00	36.41	38.33	17.67	34.17	58.24	74.00	-15.76	Vertical
10400.00	32.88	39.75	14.63	32.71	54.55	74.00	-19.45	Horizontal
15600.00	36.21	38.33	17.67	34.17	58.04	74.00	-15.96	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	19.61	39.75	14.63	32.71	41.28	54.00	-12.72	Vertical
15600.00	21.27	38.33	17.67	34.17	43.10	54.00	-10.90	Vertical
10400.00	20.07	39.75	14.63	32.71	41.74	54.00	-12.26	Horizontal
15600.00	22.84	38.33	17.67	34.17	44.67	54.00	-9.33	Horizontal

802.11a(HT20) 5240MHz

0021114(1112	.0, 02 10	-						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	32.62	39.82	14.68	32.86	54.26	74.00	-19.74	Vertical
15720.00	35.35	38.09	17.73	33.66	57.51	74.00	-16.49	Vertical
10480.00	37.51	39.82	14.68	32.86	59.15	74.00	-14.85	Horizontal
15720.00	37.47	38.09	17.73	33.66	59.63	74.00	-14.37	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	19.30	39.82	14.68	32.86	40.94	54.00	-13.06	Vertical
15720.00	20.27	38.09	17.73	33.66	42.43	54.00	-11.57	Vertical
10480.00	20.98	39.82	14.68	32.86	42.62	54.00	-11.38	Horizontal
15720.00	22.20	38.09	17.73	33.66	44.36	54.00	-9.64	Horizontal

802.11n(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	34.67	39.67	14.62	32.65	56.31	74.00	-17.69	Vertical
15540.00	31.42	38.6	17.66	34.46	53.22	74.00	-20.78	Vertical
10360.00	34.90	39.67	14.62	32.65	56.54	74.00	-17.46	Horizontal
15540.00	31.53	38.6	17.66	34.46	53.33	74.00	-20.67	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	22.13	39.67	14.62	32.65	43.77	54.00	-10.23	Vertical
15540.00	21.56	38.6	17.66	34.46	43.36	54.00	-10.64	Vertical
10360.00	20.20	39.67	14.62	32.65	41.84	54.00	-12.16	Horizontal
15540.00	19.29	38.6	17.66	34.46	41.09	54.00	-12.91	Horizontal

802.11n(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	37.18	39.75	14.63	32.71	58.85	74.00	-15.15	Vertical
15600.00	35.36	38.33	17.67	34.17	57.19	74.00	-16.81	Vertical
10400.00	34.32	39.75	14.63	32.71	55.99	74.00	-18.01	Horizontal
15600.00	32.22	38.33	17.67	34.17	54.05	74.00	-19.95	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	19.83	39.75	14.63	32.71	41.50	54.00	-12.50	Vertical
15600.00	20.44	38.33	17.67	34.17	42.27	54.00	-11.73	Vertical
10400.00	22.75	39.75	14.63	32.71	44.42	54.00	-9.58	Horizontal
15600.00	20.37	38.33	17.67	34.17	42.20	54.00	-11.80	Horizontal

802.11n(HT20) 5240MHz

002.1111(1112	20) 3240IVII	14						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	35.07	39.82	14.68	32.86	56.71	74.00	-17.29	Vertical
15720.00	36.85	38.09	17.73	33.66	59.01	74.00	-14.99	Vertical
10480.00	35.40	39.82	14.68	32.86	57.04	74.00	-16.96	Horizontal
15720.00	33.29	38.09	17.73	33.66	55.45	74.00	-18.55	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	22.12	39.82	14.68	32.86	43.76	54.00	-10.24	Vertical
15720.00	19.05	38.09	17.73	33.66	41.21	54.00	-12.79	Vertical
10480.00	19.42	39.82	14.68	32.86	41.06	54.00	-12.94	Horizontal
15720.00	21.12	38.09	17.73	33.66	43.28	54.00	-10.72	Horizontal

802.11ac(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	37.04	39.67	14.62	32.65	58.68	74.00	-15.32	Vertical
15540.00	35.63	38.6	17.66	34.46	57.43	74.00	-16.57	Vertical
10360.00	33.76	39.67	14.62	32.65	55.4	74.00	-18.6	Horizontal
15540.00	36.29	38.6	17.66	34.46	58.09	74.00	-15.91	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	19.92	39.67	14.62	32.65	41.56	54.00	-12.44	Vertical
15540.00	21.81	38.6	17.66	34.46	43.61	54.00	-10.39	Vertical
10360.00	21.55	39.67	14.62	32.65	43.19	54.00	-10.81	Horizontal
15540.00	19.22	38.6	17.66	34.46	41.02	54.00	-12.98	Horizontal

802.11ac(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	32.99	39.75	14.63	32.71	54.66	74.00	-19.34	Vertical
15600.00	31.53	38.33	17.67	34.17	53.36	74.00	-20.64	Vertical
10400.00	37.03	39.75	14.63	32.71	58.7	74.00	-15.3	Horizontal
15600.00	35.91	38.33	17.67	34.17	57.74	74.00	-16.26	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	20.38	39.75	14.63	32.71	42.05	54.00	-11.95	Vertical
15600.00	21.64	38.33	17.67	34.17	43.47	54.00	-10.53	Vertical
10400.00	20.65	39.75	14.63	32.71	42.32	54.00	-11.68	Horizontal
15600.00	21.03	38.33	17.67	34.17	42.86	54.00	-11.14	Horizontal

802.11ac(HT20) 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	33.78	39.82	14.68	32.86	55.42	74.00	-18.58	Vertical
15720.00	36.07	38.09	17.73	33.66	58.23	74.00	-15.77	Vertical
10480.00	31.48	39.82	14.68	32.86	53.12	74.00	-20.88	Horizontal
15720.00	34.77	38.09	17.73	33.66	56.93	74.00	-17.07	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	21.48	39.82	14.68	32.86	43.12	54.00	-10.88	Vertical
15720.00	20.71	38.09	17.73	33.66	42.87	54.00	-11.13	Vertical
10480.00	21.37	39.82	14.68	32.86	43.01	54.00	-10.99	Horizontal
15720.00	22.13	38.09	17.73	33.66	44.29	54.00	-9.71	Horizontal

802.11nHT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	31.66	39.71	14.63	32.68	53.32	74.00	-20.68	Vertical
15570.00	34.78	38.46	17.67	34.32	56.59	74.00	-17.41	Vertical
10380.00	34.12	39.71	14.63	32.68	55.78	74.00	-18.22	Horizontal
15570.00	31.87	38.46	17.67	34.32	53.68	74.00	-20.32	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	22.73	39.71	14.63	32.68	44.39	54.00	-9.61	Vertical
15570.00	20.64	38.46	17.67	34.32	42.45	54.00	-11.55	Vertical
10380.00	22.81	39.71	14.63	32.68	44.47	54.00	-9.53	Horizontal
15570.00	21.65	38.46	17.67	34.32	43.46	54.00	-10.54	Horizontal

802.11n(HT40) 5230MHz

	-,							
Fraguency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
(1011 12)	(dBuV)	(dB/m)	(dB)	(dB)	(dbdv/iii)	(ubu v/III)	(dB)	
10460.00	31.39	39.75	14.65	32.74	53.05	74.00	-20.95	Vertical
15690.00	31.41	38.33	17.69	34.03	53.4	74.00	-20.6	Vertical
10460.00	37.28	39.75	14.65	32.74	58.94	74.00	-15.06	Horizontal
15690.00	31.78	38.33	17.69	34.03	53.77	74.00	-20.23	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	22.18	39.75	14.65	32.74	43.84	54.00	-10.16	Vertical
15690.00	21.30	38.33	17.69	34.03	43.29	54.00	-10.71	Vertical
10460.00	20.73	39.75	14.65	32.74	42.39	54.00	-11.61	Horizontal
15690.00	19.32	38.33	17.69	34.03	41.31	54.00	-12.69	Horizontal

802.11acHT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	32.10	39.71	14.63	32.68	53.76	74.00	-20.24	Vertical
15570.00	35.10	38.46	17.67	34.32	56.91	74.00	-17.09	Vertical
10380.00	32.05	39.71	14.63	32.68	53.71	74.00	-20.29	Horizontal
15570.00	37.64	38.46	17.67	34.32	59.45	74.00	-14.55	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	21.26	39.71	14.63	32.68	42.92	54.00	-11.08	Vertical
15570.00	20.29	38.46	17.67	34.32	42.10	54.00	-11.90	Vertical
10380.00	19.42	39.71	14.63	32.68	41.08	54.00	-12.92	Horizontal
15570.00	19.85	38.46	17.67	34.32	41.66	54.00	-12.34	Horizontal

802.11ac(HT40) 5230MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	35.60	39.75	14.65	32.74	57.26	74.00	-16.74	Vertical
15690.00	34.58	38.33	17.69	34.03	56.57	74.00	-17.43	Vertical
10460.00	34.01	39.75	14.65	32.74	55.67	74.00	-18.33	Horizontal
15690.00	31.58	38.33	17.69	34.03	53.57	74.00	-20.43	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	19.87	39.75	14.65	32.74	41.53	54.00	-12.47	Vertical
15690.00	20.32	38.33	17.69	34.03	42.31	54.00	-11.69	Vertical
10460.00	20.37	39.75	14.65	32.74	42.03	54.00	-11.97	Horizontal
15690.00	22.41	38.33	17.69	34.03	44.40	54.00	-9.60	Horizontal

802.11ac(HT80) 5210MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	32.72	39.82	14.66	32.8	54.4	74.00	-19.6	Vertical
15630.00	31.09	38.09	17.71	33.81	53.08	74.00	-20.92	Vertical
10420.00	31.78	39.82	14.66	32.8	53.46	74.00	-20.54	Horizontal
15630.00	32.80	38.09	17.71	33.81	54.79	74.00	-19.21	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	19.59	39.82	14.66	32.80	41.27	54.00	-12.73	Vertical
15630.00	22.90	38.09	17.71	33.81	44.89	54.00	-9.11	Vertical
10420.00	19.33	39.82	14.66	32.80	41.01	54.00	-12.99	Horizontal
15630.00	22.46	38.09	17.71	33.81	44.45	54.00	-9.55	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)						
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,						
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.						
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 5.10 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Measurement data.										
Frequency stability versus Temp.										
Worse Case Operating Frequency: 5180MHz										
	Power	0 minute		2 minut	e 5 minute)	10 minute		
Temp. (°C)	Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	
-30	120	5180.3395	Pass	5180.1668	Pass	5180.8190	Pass	5180.1022	Pass	
-20	120	5180.3697	Pass	5180.5536	Pass	5180.6288	Pass	5180.1404	Pass	
-10	120	5180.9589	Pass	5180.2400	Pass	5180.9847	Pass	5180.4731	Pass	
0	120	5180.7284	Pass	5180.5794	Pass	5180.5866	Pass	5180.6074	Pass	
10	120	5180.1204	Pass	5180.7446	Pass	5180.9445	Pass	5180.2781	Pass	
20	120	5180.4574	Pass	5180.3048	Pass	5180.1482	Pass	5180.6072	Pass	
30	120	5180.7036	Pass	5180.8427	Pass	5180.0686	Pass	5180.3678	Pass	
40	120	5180.4417	Pass	5180.9214	Pass	5180.9732	Pass	5180.9719	Pass	
50	120	5180.7291	Pass	5180.3598	Pass	5180.2240	Pass	5180.0174	Pass	
	Frequency stability versus Temp.									
	Worse Case Operating Frequency: 5180MHz									
	Dower	0 minute		2 minut	е	5 minute		10 minute		
Temp. (°C)	Power Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	
25	108	5180.3366	Pass	5180.8495	Pass	5180.3246	Pass	5180.9641	Pass	
25	120	5180.2464	Pass	5180.9527	Pass	5180.8710	Pass	5180.6521	Pass	
25	132	5180.9793	Pass	5180.1002	Pass	5180.1811	Pass	5180.1177	Pass	

Frequency stability versus Temp.									
Worse Case Operating Frequency: 5190MHz									
	Dower	0 minute		2 minut)	10 minute	
Temp. (°C)	Power Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail
-30	120	5190.9113	Pass	5190.3360	Pass	5190.9613	Pass	5190.5151	Pass
-20	120	5190.8694	Pass	5190.5770	Pass	5190.3259	Pass	5190.6624	Pass
-10	120	5190.3042	Pass	5190.6648	Pass	5190.3489	Pass	5190.0821	Pass
0	120	5190.5990	Pass	5190.5906	Pass	5190.3529	Pass	5190.5323	Pass
10	120	5190.8571	Pass	5190.9929	Pass	5190.6061	Pass	5190.0378	Pass
20	120	5190.7987	Pass	5190.3494	Pass	5190.2478	Pass	5190.3924	Pass
30	120	5190.0233	Pass	5190.6778	Pass	5190.7851	Pass	5190.5586	Pass
40	120	5190.4471	Pass	5190.5953	Pass	5190.8063	Pass	5190.9433	Pass
50	120	5190.5328	Pass	5190.1122	Pass	5190.5755	Pass	5190.8891	Pass
Frequency stability versus Temp.									
Worse Case Operating Frequency: 5190MHz									
	Dower	0 minute		2 minut	te 5 minute		e 10 min		ıte
Temp. (°C)	Power Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail
25	108	5190.7925	Pass	5190.6707	Pass	5190.8717	Pass	5190.2245	Pass
25	120	5190.9334	Pass	5190.1786	Pass	5190.2787	Pass	5190.8561	Pass
25	132	5190.4124	Pass	5190.6865	Pass	5190.9074	Pass	5190.1008	Pass

Frequency stability versus Temp.										
Worse Case Operating Frequency: 5210MHz										
	Power	0 minute		2 minut	te 5 minute)	10 minute		
Temp. (°C)	Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	
-30	120	5210.6354	Pass	5210.2231	Pass	5210.3693	Pass	5210.0530	Pass	
-20	120	5210.2182	Pass	5210.0745	Pass	5210.8485	Pass	5210.1833	Pass	
-10	120	5210.3502	Pass	5210.2000	Pass	5210.7567	Pass	5210.5888	Pass	
0	120	5210.2467	Pass	5210.2682	Pass	5210.6437	Pass	5210.2662	Pass	
10	120	5210.1967	Pass	5210.4890	Pass	5210.0749	Pass	5210.4697	Pass	
20	120	5210.5873	Pass	5210.2314	Pass	5210.2019	Pass	5210.7777	Pass	
30	120	5210.4892	Pass	5210.1883	Pass	5210.3029	Pass	5210.5354	Pass	
40	120	5210.2618	Pass	5210.1441	Pass	5210.2896	Pass	5210.8349	Pass	
50	120	5210.6382	Pass	5210.0057	Pass	5210.3979	Pass	5210.8841	Pass	
	Frequency stability versus Temp.									
		1	Norse C	ase Operating	Frequer	ncy: 5210MHz				
	Dower	0 minute		2 minute		5 minute		10 minute		
Temp. (°C)	Power Supply (VAC)	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	Measured Frequency (MHz)	Pass /Fail	
25	108	5210.4957	Pass	5210.6433	Pass	5210.3390	Pass	5210.8626	Pass	
25	120	5210.3052	Pass	5210.1274	Pass	5210.8628	Pass	5210.5506	Pass	
25	132	5210.5824	Pass	5210.5268	Pass	5210.5215	Pass	5180.2494	Pass	

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---