

Sina Weibo @zhoushuoji

Overview of Disaster Recovery Options

- Q Replication
- InfoSphere Change Data Capture (CDC)
- Storage Replication
- Geographically Dispersed pureScale Cluster (GDPC)
- Log Shipping
- HADR
- Comparison of DR Options

Q Replication

High-throughput, low latency logical data replication

Distance between sites can be up to thousands of km

Asynchronous replication

No "zero data loss" guarantee

Includes support for:

- Delayed apply
- Multiple targets
- Replicating a subset of data
- Data transformation

DR site can be active

Bi-directional replication is supported for updates on both primary and DR sites

Q Replication

- Components include Q Capture, Q Apply, and WebSphere MQ
- Changes are captured from logs of source database and placed into queues
- Highly parallel apply processing applies changes from queues to the target database
 - Multi-vendor targets supported (e.g. DB2, pureScale, Oracle, etc.)

Q Replication (cont.)

- Some database applications, certain database constructs, and some types of SQL statements can require special treatment
 - See the Information Center for details

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.
iis.repl.grepl.doc/topics/iiyrgplnconstructs.html

 DB2 to DB2 replication included as part of Advanced Enterprise Server Edition

Q Replication: Active/Active DR Example

InfoSphere Change Data Capture (CDC)

- Similar to Q Replication in that it supports high-throughput, low-latency logical data replication
 - Does not use MQ queues for data transport
- Supports bi-directional replication and active/active DR
- DB2 can be both source and target of replication
 - Mix of multi-vendor sources and targets supported

Storage Replication

- Uses remote disk mirroring technology
 - Maximum distance between sites is typically 100s of kms (for synchronous, 1000s of kms for asynchronous)
 - E.g. IBM Metro Mirror, EMC SRDF

- Transactions run against primary site only,
 DR site is passive
 - If primary site fails, database at DR site can be brought online
 - DR site must be an identical DB2 with matching topology
- All data and logs must be mirrored to the DR site
 - Synchronous replication guarantees no data loss
 - Writes are synchronous and therefore ordered, but "consistency groups" are still needed
 - If failure to update one volume, don't want other volumes to get updated (leaving data and logs out of sync)

Storage Replication (cont.)

See developerWorks article on using DS8700 MetroMirror

- http://www.ibm.com/developerworks/data/library/techarticle/dm-1005purescalemetromirror
- Example configuration using DS8700 Metro Mirror

Geographically Dispersed pureScale Clusters (GDPC)

- A "stretch" or geographically-dispersed pureScale cluster (GDPC) spans two sites A and B at distances of tens of kilometers
 - Provides active/active access to one or more shared databases across the cluster
 - Enables a level of DR support suitable for many types of disasters

GDPC (cont.)

- Both sites A and B are active and available for transactions during normal operation
- On failures, client connections are automatically redirected to surviving members
 - Applies to both individual members within sites and total site failure

GDPC Site Failure

- Handled just like simultaneous failures of member(s) and a CF in a single site pureScale cluster
 - All client connections go to remaining site
 - One remaining CF is active

Open Systems Extended InfiniBand

- Typical InfiniBand connectivity reaches at most 10-20 meters
 - Specialized cables allow up to a few hundred meters
- IBTA compliant range extenders are compatible with pureScale InfiniBand
 - We have validated GDPC with Obsidian Research "Longbow" extenders http://www.obsidianresearch.com/products/e-series.html
 - Used in pairs, they appear in the network as a 2-port IB switch
 - Convert duplex IB traffic to dark fiber or 10 GbE WAN traffic

Longbow C-103

Longbow E-100

Characteristics of a Typical GDPC

- Increased message latency of 5 µs / km in glass fiber
 - For instance, 30 μs CF round-trip @ 3km, 100 μs round-trip at 10km, etc.
 - Greater if repeaters or "slow" WAN are used
 - Can have a negative impact on cluster performance
- Workloads with a greater portion of read activity (SELECTs) versus writes tend to see lower impact due to distance
 - GDPC best suited for higher read content workloads (i.e. 80% or more read activity)
 - Impact of read/write ratio grows with distance between sites
- Workload balancing (WLB) and automatic client reroute (ACR) used to reroute client connections in the event of an outage
- Utilizes GPFS synchronous replication to maintain single file system image across the distributed cluster
- No SCSI-3 P/R support
 - No functional impact but adds an estimated one minute of recovery time in the event of a member hardware failure

Typical GDPC Configuration

Typical Single-Site Configuration

Performance Sensitivity to Distance: Sample Data

Suitability of GDPC

Log Shipping

- "Home grown" (i.e. user managed) active/passive DR solution
- Database on standby system is kept in a perpetual "rollforward in progress" state
 - Roll forward command is executed repeatedly as log files become available
 - Can choose to incorporate a time delay between the primary and standby
 - STOP option is used to bring it out of roll forward state if primary fails
- Use log files from the archive location and/or use scripts to manage the transfer of log files to the standby site
 - Recommended that archive location should be geographically separate from the primary site
 - Consider using the ARCHIVE LOG command if logs are being filled too slowly
- Two ways to initialize a standby
 - Restore of a backup image taken on the primary
 - Using the db2inidb command with the STANDBY option against a split mirror copy of the primary
- Operations that are not logged will not be replayed on the standby database

HADR Main Goals of the Design

- Ultra-fast failover
- Easy administration
- Handling of site failures
- Negligible impact on performance
- Configurable degree of consistency
- Protection against errant transactions
- Software upgrades without interruption
- Very easy integration with HA-software
- Eventually, no need for HA-software at all
- Transparent failover and failback for applications (combined with "client re-route")

Basic Principles of HADR

- Two active machines
 - Primary
 - Processes transactions
 - Ships log entries to the other machine
 - Standby
 - Cloned from the primary
 - Receives and stores log entries from the primary
 - Re-applies the transactions

- The standby becomes the new primary
- If the failed machine becomes available again, it can be resynchronized
 - The old primary becomes the new standby

HADR synchronization mode

Comparison of DR Options

	Synchronous Storage Replication	GDPC	Q Replication / CDC	Log Shipping	HADR
Active/active DR	No	Yes	Yes	No	No
"No transaction loss" guarantee	Yes	Yes	No	No	Yes
Delayed apply	No	No	Yes	Yes	Yes
Multiple targets	No	No	Yes	Yes	Yes*
Maximum distance between sites	100s km	10s km	1000s km (global)	1000s km (global)	N/A

Summary of Disaster Recovery Options in DB2

- Q Replication
- InfoSphere Change Data Capture (CDC)
- Storage Replication
- Geographically Dispersed pureScale Cluster (GDPC)
- Log Shipping
- HADR

