# Deep Learning

Chapter 5 순환 신경망 (Recurrent Neural Network)



**START** 



- 순환 신경망에 대해 알 수 있다.
- RNN의 활용분야를 알 수 있다.
- Keras를 활용해 순환 신경망을 구성 할 수 있다.



# 다음 문장을 완성하시오.

- 나는 오늘 짝꿍과 밥을 \_\_\_\_.
- 공부하려고 책을 \_\_\_\_.
- 친구가 나를 못생겼다고 \_\_\_\_.
- 그래서 나는 \_\_\_\_.

다음 단어를 쓰기위해서는 이전 단어를 기억하고 있어야한다.



# 대화형 인공지능









# 대화형 인공지능

- 문장을 듣고 무엇을 의미하는지 알아야 서비스 제공이 가능하다.
- 문장을 듣고 이해한다는 것은 많은 문장을 이미 학습해 놓았다는 것이다.



- 문장의 의미를 전달하려면 각 단어가 정해진 순서대로 입력되어야 한다.
- 과거에 입력된 데이터와 나중에 입력된 데이터 사이의 관계를 고려해야 하는 문제가 생긴다.
- 이를 해결하기 위해 순환신경망(RNN)이 고안되었다.



Recurrent : 순환하는

Neural Networks : 신경망



# 일반신경망과 순환신경망의 차이

- RNN은 여러 개의 데이터가 순서대로 입력되었을 때 앞서 입력 받은 데이터의 연산 결과를 잠시 기억해 놓는 방법이다.
- 기억된 데이터를 가지고 다음 데이터로 넘어가면서 함께 연산한다.





## 일반신경망과 순환신경망의 차이

- 앞에서 나온 입력에 대한 결과가 뒤에서 나오는 입력 값에 영향을 주는 것을 알 수 있다.
- 예를 들어 비슷한 두 문장이 입력되어도 앞에서 나온 입력 값을 구별하 여 출력 값에 반영할 수 있다.





# 일반신경망과 순환신경망의 차이



- 모든 입력 값에 이 작업을 순서대로 실행하므로 다음 층(layer)으로 넘어가기 전에 같은 층을 맴도는 것처럼 보인다.
- 같은 층안에서 맴도는 성질때문에 순환 신경망이라고 부른다.



# Sequential Data (순차기반데이터)



Time series



Music



Sentence



**Translation** 

분석에 사용되는 feature들이 시간적,순차적 특성을 지닌 데이터



# RNN 수식 살펴보기



# (Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector **h**:



$$h_t = f_W(h_{t-1}, x_t)$$
  $\downarrow$   $h_t = anh(\overline{W_{hh}}h_{t-1} + \overline{W_{xh}}x_t)$   $y_t = W_{hy}h_t$ 

# RNN 수식 살펴보기

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$



# RNN 수식 살펴보기

$$y_t = W_{hy} h_t$$



# SimpleRNN 신경망 실습

hello를 SimpleRNN 신경망으로 학습하기



# SimpleRNN 신경망 실습 - keras 속성

- units : 퍼셉트론(뉴런의 개수)
- input\_shape: (time steps, features) 형태의 튜플로 들어간다.



# SimpleRNN 신경망 실습

# RNN 데이터 구조

#### Feed Forward Network Data (2D)



#### **Recurrent Network Data (3D)**



# SimpleRNN 신경망 실습

# hello를 one-hot-encoding하기





#### ① 다수 입력 단일 출력

예: 문장을 읽고 뜻을 따악할 때 활용





#### ② 단일 입력 다수 출력

예: 사진의 캡션을 만들 때 활용





model = Sequential()

model.add(RepeatVector(number\_of\_times, input\_shape=input\_shape))

model.add(SimpleRNN(units = output\_size, return\_sequences=True))





# Video에서 Frame단위 Classfication





#### ③ 다수 입력 다수 출력





#### RNN의 오차역전파

# BPTT(Back Propagation Through Time)



RNN 에서 사용되는 BPTT 알고리즘은

- 계산 그래프에서 화살표 역방향으로
- 출력의 오차 정보를 가진 미분값(gradient)을 이전 상태에 전달하여
- 순차적으로 신경망의 중간에 있는 매개변수를 갱신하는 절차입니다.

RNN에서 사용되는 오차역전파(BPTT)



# 기본 RNN의 문제점

번째이는 보석@마는 언론때는 보석길였었다른다운 별들이 있었다.



# 기본 RNN의 문제점

# 소실 문제 (Vanishing Gradient)



시간이 지나면 이전의 입력값을 잊어버리게 된다!



# LSTM(Long Short Term Memory)





# LSTM 신경망 실습

LSTM 로이터 뉴스 분류

+ word Embedding



# 워드 임베딩 (Word Embedding)

- 자연어를 컴퓨터가 이해하고, 효율적으로 처리하기 위해서는 컴퓨터가 이해할 수 있도록 변환 할 필요가 있다.
- 단어의 의미를 벡터화 하는 것을 워드 임베딩 이라 한다.

■ 주로 희소 표현(one-hot-encoding)에서 밀집 표현으로 변환하는 것 을 의미



# 워드 임베딩 (Word Embedding)

- 단어를 밀집 벡터의 형태로 표현하는 방법을 워드 임베딩(word embedding)이라고 한다.
- 임베딩 과정을 통해 나온 결과를 임베딩 벡터(embedding vector)라 고 한다.
- 워드 임베딩 방법론으로는 Word2Vec, FastText, Glove 등이 있다.
- 케라스에도 제공하는 도구인 Embedding()은 위에서 사용하는 방법과 다르게 랜덤한 값을 가지는 밀집 벡터로 변환한 뒤에, 인공 신경망의가중치를 학습한다.



# 워드 임베딩 (Word Embedding)

| -     | 원-핫 벡터         | 임베딩 벡터        |
|-------|----------------|---------------|
| 차원    | 고차원(단어 집합의 크기) | 저차원           |
| 다른 표현 | 희소 벡터의 일종      | 밀집 벡터의 일종     |
| 표현 방법 | 수동             | 훈련 데이터로부터 학습함 |
| 값의 타입 | 1과 0           | 실수            |



# LSTM 신경망 실습

# CNN + LSTM IMDB 분류



# 워드 임베딩 - word2vec

'비슷한 위치에서 등장하는 단어들은 비슷한 의미를 가진다'



# 워드 임베딩 - word2vec



# 워드 임베딩 - word2vec





# GRU 시계열 데이터 실습

# 에너지 사용량 예측 모델링

