

Laboratorio de Comunicaciones ELO-241

Informe Final 2

Modulación y Demodulación en Frecuencia

Andrés Farías Bórquez 201121021-2 Felipe Fernández Pino 201121011-5 Felipe Padilla Oyanader 201121037-9 ELO-241 2 OBJETIVOS

1. Resumen

2. Objetivos

- Objetivo
- Objetivo

3. Descripción del Problema

1. Problema 1

El primer problema consiste en comprobar el comportamiento estático del VCO verificando su rango de linealidad, la constante de desviación de frecuencia K_f y el correcto funcionamiento según el diseño de las componentes.

- 2. Problema 2 holi 8====D
- 3. Problema 3
- 4. Problema 4
- 5. Problema 5

ELO-241 4 METODOLOGÍA

4. Metodología

1. Problema 1

a) Para lograr observar el rango de linealidad del VCO se conecta una fuente a la entrada del VCO pero sin considerar el condensador de entrada con el objetivo de realizar un análisis estático (voltaje m'(t)). Según el diseño propuesto se saben tanto la amplitud de la señal de entrada esperada (A_m) y el voltaje del pin 4 (V_{T4}) en el circuito integrado lo cual nos permite saber entre qué valores de voltaje se debe ajustar la señal continua a la entrada para así observar a la salida una señal con frecuencia dentro del rango $[f_c - \Delta_f, f_c + \Delta_f]$.

- b) Se divide el rango de voltajes de entrada estáticos en 10 valores distintos para luego medir mediante un osciloscopio la frecuencia de salida del VCO en cada uno de estos valores. Luego los valores se registran en una tabla y se grafica la curva Δ_f vs V_c .
- c) Finalmente se comparan los valores de K_f y Δ_f obtenidos experimentalmente con los calculados teóricamente y se explican las posibles discrepancias de los valores observando los respectivos errores experimentales.

2. Problema 2

- a) asd
- b) asd
- c) asd

3. Problema 3

- a) asd
- b) asd
- c) asd
- d) asd

4. Problema 4

- a) asd
- b) asd
- c) asd
- d) asd
- e) asd
- f) asd

5. Problema 5

- a) asd
- b) asd
- c) asd
- d) asd
- e) asd

5. Resultados y Contrastaciones

1. Problema 1

Los valores obtenidos en las mediciones estáticas se muestran en la tabla 1.

N^{o}	Frecuencia [KHz]	Voltaje V_c [V]	$\Delta_f [\mathrm{Hz}]$
1	62.500	-3.0	23.13
2	57.803	-1.2	18.43
3	53.191	0.6	13.82
4	48.544	2.4	9.17
5	44.053	4.2	4.68
6	39.370	6.0	0.00
7	34.364	7.8	-5.01
8	29.940	9.6	-9.43
9	24.750	11.4	-14.62
10	20.240	13.2	-19.13
11	15.432	15.0	-23.94

Tabla 1: Voltaje vs Frecuencia (estático).

La gráfica Δ_f vs V_c se ilustra en la Figura 1

Figura 1: Gráfica Δ_f vs V_c .

Se puede notar de la grafica que el comportamiento del VCO es muy cercano a ser lineal con pendiente negativa dentro del rango considerado. El valor de la frecuencia central es aquel cuando $V_c = V_{T4} \approx$ 6 [V]. El valor de Δ_f corresponde a la máxima diferencia de frecuencia con respecto a la frecuencia

central cuando se modula con una señal de amplitud fija A_m , esto se cumple cuando la señal de entrada tiene máxima amplitud (en un instante determinado, por ejemplo t_0), es decir $m(t_0) = A_m$, lo cual implica $V_c = m'(t_0) = V_{T4} + A_m \approx 6 + 9 [V]$. El valor de f_D corresponde a la pendiente de la gráfica medida en [KHz/V]. Finalmente K_f se calcula como:

$$K_f = 2\pi \cdot f_D \equiv 2\pi \frac{\Delta_{f_2} - \Delta_{f_1}}{V_{c_2} - V_{c_1}} \tag{1}$$

La tabla 2 muestra los valores obtenidos de manera experimental y de manera teórica.

Variable	Valor Teórico	Valor Experimental	Error experimental %
f_c [KHz]	40	39.37	1.58
$\Delta_f [\mathrm{KHz}]$	25	23.94	4.24
$f_D [KHz/V]$	-2.77	-2.62	5.42
$K_f [rad/Vs]$	-17.45	-16.46	5.67

Tabla 2: Comparación de valores de VCO.

- 2. Problema 2
- 3. Problema 3
- 4. Problema 4
- 5. Problema 5

ELO-241 6 CONCLUSIONES

6. Conclusiones

- \blacksquare Conclusión
- \blacksquare Conclusión