Adversarial attacks

Паркин Александр

Adversarial examples

x
"panda"
57.7% confidence

 $+.007 \times$

 $\begin{aligned} & \operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y)) \\ & \text{``nematode''} \\ & 8.2\% \text{ confidence} \end{aligned}$

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, x, y))$ "gibbon"

99.3 % confidence

Типы атак

- White box
- Black box
- Промежуточный вариант

Мера изменения изображения

- ullet ℓ_0
- ullet ℓ_2
- ullet ℓ_{∞}

White box methods

L-BFGS

$$\min_{\boldsymbol{\rho}} c|\boldsymbol{\rho}| + \mathcal{L}(\mathbf{I}_c + \boldsymbol{\rho}, \ell) \ s.t. \ \mathbf{I}_c + \boldsymbol{\rho} \in [0, 1]^m$$

FSGM (Fast gradient sign method)

$$\boldsymbol{
ho} = \epsilon \operatorname{sign}\left(\nabla \mathcal{J}(\boldsymbol{\theta}, \mathbf{I}_c, \ell)\right)$$

I-FGSM (Iterative FGSM)

$$\mathbf{I}_{\boldsymbol{\rho}}^{i+1} = \operatorname{Clip}_{\epsilon} \left\{ \mathbf{I}_{\boldsymbol{\rho}}^{i} + \alpha \operatorname{sign}(\nabla \mathcal{J}(\boldsymbol{\theta}, \mathbf{I}_{\boldsymbol{\rho}}^{i}, \ell)) \right\}$$

JSMA(Jacobian-based Saliency Map Attack)

Szegedy et al., "Intriguing properties of neural networks", 2014 Goodfellow et al., "Explaining and Harnessing Adversarial Examples", 2015

A. Kurakin et al., "Adversarial examples in the physical world", 2016 Papernot et al., "The Limitations of Deep Learning in Adversarial Settings", 2016

Black box methods

- Метод имитации отжига
- Эволюционные алгоритмы (One pixel attack)
- Дистилляция сети
- UPSET and ANGRI (Генеративные сети)

$$L(\mathbf{x}, \mathbf{\hat{x}}, t) = L_C(\mathbf{\hat{x}}, t) + L_F(\mathbf{x}, \mathbf{\hat{x}}) = -\sum_{i=1}^m log(C_i(\mathbf{\hat{x}})[t]) + w \parallel \mathbf{\hat{x}} - \mathbf{x} \parallel_k^k,$$

(b) Training scheme for ANGRI(A).

True: automobile Pred: truck

True: deer Pred: airplane

True: truck Pred: dog

True: horse Pred: dog

True: bird Pred: deer

True: truck Pred: automobile

True: automobile Pred: bird

True: automobile Pred: frog

True: truck Pred: automobile

Общая таблица атак

Method	Black/White box	Targeted/Non-targeted	Specific/Universal	Perturbation norm	Learning	Strength
L-BFGS [22] White box		Targeted	Image specific	ℓ_{∞}	One shot	* * *
FGSM [23]	White box	Targeted	Image specific	ℓ_{∞}	One shot	* * *
BIM & ILCM [35]	White box	Non targeted Image specific ℓ_{∞}		ℓ_{∞}	Iterative	****
JSMA [60]	White box	Targeted	Image specific	ℓ_0	Iterative	* * *
One-pixel [68]	Black box	Non Targeted	Image specific	ℓ_0	Iterative	**
C&W attacks [36]	White box	Targeted	Image specific	$\ell_0,\ell_2,\ell_\infty$	Iterative	* * * * *
DeepFool [72]	White box	Non targeted	Image specific	ℓ_2,ℓ_∞	Iterative	****
Uni. perturbations [16]	White box	Non targeted	Universal	ℓ_2,ℓ_∞	Iterative	****
UPSET [146]	Black box	Targeted	Universal	ℓ_{∞}	Iterative	****
ANGRI [146]	Black box	Targeted	Image specific	ℓ_{∞}	Iterative	****
Houdini [131]	Black box	Targeted	Image specific	ℓ_2,ℓ_∞	Iterative	****
ATNs [42]	White box	Targeted	Image specific	ℓ_{∞}	Iterative	****

Атаки в реальной жизни

- Распечатанные изображения
- Дорожные знаки
- Очки против модели распознавания лиц
- Adversarial 3D-объекты

Kurakin et al. "Adversarial examples in the physical world", 2016

Etimov et al., "Robust Physical-World Attacks on Deep Learning Models", 2017

Sharif et al., "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition", 2016

Athalye et al. "Synthesizing Robust Adversarial Examples", 2017

Атаки в реальной жизни

- Распечатанные изображения
- Дорожные знаки
- Очки против модели распознавания лиц
- Adversarial 3D-объекты

https://www.youtube.com/watch?v=YXy6oX1iNo
A

Kurakin et al. "Adversarial examples in the physical world", 2016

Etimov et al., "Robust Physical-World Attacks on Deep Learning Models", 2017

Sharif et al., "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition", 2016

Athalye et al. "Synthesizing Robust Adversarial Examples", 2017

Защита

- Защита дистилляцией
- Добавление adversarial примеров в обучение
- Ансамбль классификаторов
- Обучение классификатора как часть GAN
- Детектирование атаки
- Сокрытие градиентов

Papernot et al., "Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples", 2016

Атаки не только в классификации

- Детекция/сегментация изображения
- Распознавание голоса
- Классификация текста
- Deep Reinforcement Learning

Соревнования

NIPS 2017 (1 авг.- 1 окт. 2017)

Задачи:

$$score_{attack} = \sum_{defense \in D} \sum_{k=1}^{N} [defense(attack(Image_k)) \neq TrueLabel_k]$$

$$score_{TargetedAttack} = \sum_{defense \in D} \sum_{k=1}^{N} [defense(TargetedAttack(Image_k)) = TargetLabel_k]$$
 0.402

Топ1

0.782

$$score_{defense} = \sum_{i=1}^{N} [defense(attack(Image_k)) = TrueLabel_k]$$
 0.953

Submit: Docker-контейнер с исходным кодом и данными Предоставляемые мощности:

- 03Y: 24 GB
- Место после разархивации: 16 GB
- Видеокарта: Tesla K40
- Ограничение по времени: 500 сек. на батч из 100 изображений

Соревнования

NIPS 2018 (25 авг - 15 нояб 2018)

https://www.crowdai.org/challenges/adversarial-vision-challenge

Задачи:

- Non-targeted Adversarial Attack.
- Targeted Adversarial Attack.
- Defense Against Adversarial Attack.

Метрика: ℓ_2 расстояние между оригинальным изображением и состязательным примером

MCS 2018. Adversarial Attacks on Black Box Face Recognition

Задача

- 1. Заставить модель распознавать изображение человека А как человека В
- 2. Атакованное изображение не вызывало подозрений и несильно отличалось от оригинального.

Схожесть изображений

SSIM (structure similarity) > 0.95

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Размер окна: 7

from skimage.measure import compare_ssim

Black box

Время исполнения:

CPU: ~1.5 sec

GPU: ~7ms

os	python 2.7	python 3.5	python 3.6	
Ubuntu	CPU GPU(cuda8.0) GPU(cuda9.0) GPU(cuda9.1) GPU(cuda9.2)	CPU GPU(cuda8.0) GPU(cuda9.0) GPU(cuda9.1) GPU(cuda9.2)	CPU GPU(cuda8.0) GPU(cuda9.0) GPU(cuda9.1) GPU(cuda9.2)	
CentOS	CPU GPU (cuda8.0)	CPU GPU(cuda8.0)	CPU GPU(cuda8.0)	
Windows	CPU GPU (cuda 9.0)	CPU GPU (cuda 9.0)	CPU GPU (cuda 9.0)	
MacOS CPU		CPU	CPU	

Данные

1M

Evaluation

Public leaderboard: 25% Private leaderboard: 75%

$$Score = \frac{1}{N} \frac{1}{25} \sum_{k=1..N} \sum_{i=1..5} \sum_{j=6..10} ||D(G(I_s(k,i))) - D(I_t(k,j))||_2$$

Baseline code

Baseline 0 Baseline 1

https://github.com/AlexanderParkin/MCS2018.Baseline

Время проведения

14 мая 12:00 - начало соревнования

5 июня 23:59 - конец основного этапа

6 июня 23:59 - конец соревнования

Призы

1 место - 150 000 + 1080Ті

2 место - 75 000 + 1080Ti

3 место - 36 000 + 1080Ті

4 место - 24 000

5 место - 15 000

Results								
#	User	Entries	Date of Last Entry	Team Name	Score ▲			
1	mortido	1	05/25/18		1.260 (1)			
2	stalkermustang	3	05/24/18		1.362 (2)			
3	alexey.grankov	3	05/25/18		1.403 (3)			

https://competitions.codalab.org/competitions/19090

https://github.com/AlexanderParkin/MCS2018.Baseline

bit.ly/mcs2018_telegram