Solutions And Mixtures

1. Mind Map on Mixtures and Solutions

Mixtures

- Definition
- Types
 - o Homogeneous Mixture
 - Single phase
 - Examples: salt and water, sugar and water
 - Heterogeneous Mixture
 - Multiple phases
 - Examples: sand and water, salt and sand

Solutions

- Definition
- Components
 - o Solute
 - Solvent
- Types
 - Based on physical state (Gas-Gas, Gas-Liquid, Liquid-Liquid, etc.)
- Concentration Expressions
 - Molarity (M)
 - Molality (m)
 - Normality (N)
 - Mole fraction
 - Percent by weight or volume

Factors Affecting Solubility

- Nature of Components
- Temperature
- Pressure
- Henry's Law

Here are additional descriptive and multiple-choice questions for each major topic from the document.

1. Mixtures and Solutions

Descriptive Questions

- 1. What are the main differences between a solution and a mixture? Provide examples.
- 2. Describe the process of forming a homogeneous solution using salt and water.
- 3. Explain how the physical state of a solute and solvent affects the type of solution formed, with examples.
- 4. Define and explain the concept of concentration in a solution. Why is it important to understand concentration?
- 5. Discuss the concept of solute and solvent with examples. How does the amount of solute and solvent affect the classification of a solution?

Multiple Choice Questions (MCQs)

- 1. Which one of the following is not a component of a solution?
 - o A) Solute
 - o B) Solvent
 - o C) Solid
 - o D) None of the above
 - Answer: C
- 2. Which of the following is a heterogeneous mixture?
 - o A) Sugar in water
 - o B) Oil and water
 - o C) Alcohol in water
 - o D) Vinegar
 - o **Answer:** B
- 3. In a solution of carbon dioxide in water (carbonated drink), which is the solute?
 - o A) Carbon dioxide
 - o B) Water
 - o C) Oxygen
 - o D) Sugar
 - o **Answer**: A

- 4. Which of the following represents a liquid-solid solution?
 - o A) Alcohol in water
 - o B) Mercury in silver
 - o C) Air
 - o D) Salt in water
 - o **Answer:** B

2. Types of Concentrations

Descriptive Questions

- 1. Explain molarity and derive the formula used to calculate it. Include an example calculation.
- 2. What is the difference between molarity and molality? When is each one used?
- 3. How is normality different from molarity? Give an example where normality is more useful.
- 4. Describe how the mole fraction is calculated and why it is a unitless quantity.
- 5. Calculate the percent by weight of NaCl in a solution if 10g of NaCl is dissolved in 90g of water.

Multiple Choice Questions (MCQs)

- 1. What is the unit of molarity?
 - o A) mol/kg
 - o B) mol/L
 - C) g/L
 - o D) % (w/w)
 - o Answer: B
- 2. Which concentration term does not depend on temperature?
 - A) Molarity
 - o B) Normality
 - o C) Molality
 - o D) Percent by volume
 - o Answer: C
- 3. The molality of a solution is defined as the number of moles of solute per...
 - o A) Gram of solvent
 - o B) Kilogram of solvent
 - o C) Litre of solution
 - o D) Mole of solvent
 - Answer: B
- 4. If 36g of HCl is dissolved in 100g of solution, the percent concentration by weight (w/w) is...
 - o A) 25%

- o B) 36%
- o C) 36g
- o D) 64%
- o Answer: B
- 5. For a solution prepared by dissolving 75g of KOH in 500 ml of water, what is the molarity if the molecular weight of KOH is 56 g/mol?
 - o A) 2.68 M
 - o B) 1.34 M
 - o C) 5.36 M
 - o D) 3.78 M
 - o Answer: A

3. Factors Affecting Solubility

Descriptive Questions

- 1. Explain how the nature of solute and solvent affects solubility. Use NaCl and benzene as examples.
- 2. Describe the effect of temperature on the solubility of gases in liquids, using Henry's Law as a reference.
- 3. What role does pressure play in the solubility of gases in liquids? Illustrate your answer with an example from daily life.
- 4. Describe how polar and nonpolar solvents interact differently with solutes.
- 5. Provide a brief explanation of why increasing temperature generally increases solubility for solid solutes in liquids.

Multiple Choice Questions (MCQs)

- 1. The solubility of NaCl in water is primarily due to...
 - A) The nonpolar nature of NaCl
 - o B) The polar nature of water
 - o C) The nonpolar nature of water
 - o D) The effect of temperature only
 - o Answer: B
- According to Henry's Law, which of the following is true about gas solubility?
 - A) It decreases with an increase in pressure.
 - o B) It increases with an increase in pressure.
 - o C) It decreases with an increase in molarity.
 - D) It remains unchanged with pressure changes.
 - Answer: B
- 3. If the temperature increases, the solubility of a gas in water generally...
 - A) Increases
 - B) Decreases

- o C) Remains unchanged
- o D) Depends on pressure only
- o **Answer:** B

4. Why does NaCl dissolve well in water but not in benzene?

- o A) Benzene is too volatile
- o B) NaCl is polar and water is polar
- o C) NaCl is nonpolar
- o D) NaCl is not soluble in any solvent
- o Answer: B

5. Which of the following statements is true about solid-liquid systems?

- A) Solubility always decreases with temperature.
- B) Solubility usually increases with temperature.
- C) Solubility is unaffected by temperature.
- o D) Solubility depends only on pressure.
- o Answer: B

4. Distribution Law

Descriptive Questions

- 1. Explain Nernst's Distribution Law and provide a mathematical expression for it.
- 2. How can the distribution law be applied in solvent extraction techniques? Give an example.
- 3. Describe the significance of the distribution coefficient.
- 4. What are the limitations of Nernst's Distribution Law?
- 5. Using the distribution law, explain how the equilibrium constant of a reaction can be determined.

Multiple Choice Questions (MCQs)

- 1. Nernst's Distribution Law applies to...
 - A) Solutes that react chemically in one of the solvents
 - o B) Non-miscible solvents
 - o C) Solutions with high concentrations
 - o D) Solutes that change molecular state in solvents
 - o Answer: B

2. Which of the following is true according to the distribution law?

- o A) The solute concentration is the same in both solvents.
- o B) The ratio of solute concentration in two solvents is constant.
- C) The solute dissolves equally in both solvents.
- o D) The solute remains in the solvent where it was initially added.
- o Answer: B
- 3. The distribution coefficient is defined as the ratio of the solute concentration in...

- o A) A gas-liquid system
- o B) Two immiscible solvents
- o C) A single-phase solution
- o D) A solid-liquid system
- o Answer: B

4. Which solvent pair is commonly used to study the distribution of iodine?

- o A) Water and carbon disulfide
- o B) Water and benzene
- o C) Water and ammonia
- o D) Water and alcohol
- o Answer: A

5. According to the distribution law, which condition is essential?

- o A) Constant pressure
- o B) Non-dilute solutions
- o C) Constant temperature
- o D) Variable solute concentration
- o Answer: C

1. What is the difference between a mixture and a solution? Provide examples.

Answer:

A **mixture** is a combination of two or more substances where they retain their individual chemical properties and are not chemically bonded.

• Example: Salt and sand, oil and water.

A **solution** is a homogeneous mixture where the solute is uniformly dispersed at the molecular level in the solvent.

• Example: Salt dissolved in water, sugar dissolved in water.

The key difference lies in the uniformity and phase composition:

- Mixtures can be homogeneous (single phase) or heterogeneous (multiple phases).
- Solutions are always homogeneous.

2. Explain the factors that affect the solubility of a solute in a solvent.

Answer:

The solubility of a solute depends on:

1. Nature of Components:

- Polar solutes dissolve in polar solvents (e.g., NaCl in water).
- Nonpolar solutes dissolve in nonpolar solvents (e.g., benzene dissolves CCl4).

2. Temperature:

- For solids in liquids: Solubility generally increases with temperature (e.g., NaCl in water).
- For gases in liquids: Solubility decreases with increasing temperature due to higher gas molecule mobility.

3. Pressure (Henry's Law):

 For gases in liquids: Solubility increases with pressure (e.g., CO2 in carbonated drinks).

3. Define molarity and derive its formula. Provide an example.

Answer:

Molarity (M) is the number of moles of solute per liter of solution.

Formula:

s = number of moles / volum of solution in liter

 $s=(w \times 1000)/(v \times M)$

Where:

- w = Weight of solute (g)
- M = Molecular weight of solute
- V = Volume of solution in ml

4. Why does the solubility of gases in liquids decrease with increasing temperature? Explain with an example.

Answer:

The dissolution of gases in liquids is an **exothermic process**:

 $Gas + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ text{Gas + Liquid} \land left right arrow \\ text{Gas in solution} + \\ text{Heat}. \\ Gas + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Gas in solution} + \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Gas in solution} + \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \ in \ solution + Heat. \\ left right arrow \\ text{Heat} + Liquid \leftrightarrow Gas \$

As temperature increases, the equilibrium shifts to favor gas escaping from the solution (Le Chatelier's principle).

Example:

In carbonated drinks, CO2 escapes faster when the drink is warm because the solubility of CO2 decreases with temperature.

5. What is Henry's Law? State its applications.

Answer:

Henry's Law states that the concentration of a gas dissolved in a liquid is directly proportional to the gas's pressure on the liquid's surface at a constant temperature.

Mathematical Expression:

C=k×P

Where:

- C = Concentration of gas in solution
- P = Pressure of the gas
- k = Henry's law constant

Applications:

- 1. Used in carbonated drinks to maintain CO2 concentration.
- 2. Predicting oxygen levels in water bodies under different pressures.
- 3. In designing underwater breathing apparatus for divers.

6. Explain molality and how it differs from molarity.

Answer:

Molality (m) is the number of moles of solute per kilogram of solvent.

Formula:

m=number of moles of solute /mass of solvent in kg

$$\mathbf{m} = w \times 100 \div M \times W$$

Where:

- w = Weight of solute (g)
- M = Molecular weight of solute
- W = Weight of solvent (g)

Difference:

- 1. **Molarity** depends on the **volume** of the solution and varies with temperature.
- 2. **Molality** depends on the **mass** of the solvent and does not vary with temperature.

7. What is the distribution law? Write its formula and significance.

Answer:

The **Distribution Law** states that if a solute is distributed between two immiscible solvents, at equilibrium, the ratio of the solute concentrations in the two solvents is constant.

Mathematical Expression:

$$c1 \div c2 = k$$

Where:

- C1 = Concentration of solute in solvent A
- C2 = Concentration of solute in solvent B
- K= Distribution coefficient

Significance:

- 1. Helps in solvent extraction techniques.
- 2. Used in liquid-liquid chromatography.
- 3. Determines solubility and reaction constants.

8. How does the nature of solute and solvent affect solubility? Provide examples.

Answer:

The nature of solubility follows the principle: "Like dissolves like."

- 1. **Polar Solutes:** Dissolve well in polar solvents due to dipole interactions.
 - o Example: NaCl dissolves in water but not in benzene.
- 2. Nonpolar Solutes: Dissolve in nonpolar solvents due to van der Waals forces.
 - o Example: lodine dissolves in carbon tetrachloride but not in water.

This behavior is attributed to the strength of interaction between solute and solvent molecules.

9. Discuss the limitations of Henry's Law.

Answer:

Henry's Law is applicable under specific conditions:

- 1. Low solubility: Applicable when the gas solubility in the liquid is low.
- 2. **No reaction with solvent:** The gas must not react chemically with the solvent (e.g., HCl and NH3 do not obey Henry's law in water).
- 3. **Moderate temperature and pressure:** The law fails at very high or very low temperatures and pressures.
- 4. **Ideal behavior:** The gas should exhibit nearly ideal behavior.
- 5. **No dissociation or association:** The gas must retain its molecular form in the solution.

10. Why is the solubility of NaCl in water higher than in benzene?

Answer:

NaCl is an ionic compound that dissociates into Na+ and Cl- ions in water. Water, being polar, stabilizes these ions via strong ion-dipole interactions.

Benzene is nonpolar and cannot interact with the ions effectively, leading to negligible solubility of NaCl.