The Listing of Claims will replace all prior versions, and Listings, of claims in the application.

LISTING OF CLAIMS

Claims 1-34 (Cancelled).

Claims 35. (Currently Amended) A method for treating a patient suffering from a physiological disorder condition of the arterial or venous vasculature capable of being modulated by inhibiting an activity of Factor Xa comprising administering to the patient a therapeutically effective amount of a <u>Factor Xa-inhibiting</u> pyrrolopyridine compound having the formula:

$$X_4$$
 N
 R_1
 X_4
 N
 R_2
 X_1
 X_{1a}
 X_{1a}

wherein Z is bonded to one of any carbon atom in a pyrrolopyridine ring carbon atom positions 2-7, and one of X_5 , X_{5a} and X_{5b} is an H, hydroxy, or amino substituent on the ring proximal to Z and attached at a carbon position that is adjacent to the carbon atom to which Z is attached and another of X_5 , X_{5a} and X_{5b} is a substituent on the ring distal to the carbon atom to which Z is attached at a position alpha to the nitrogen on the distal ring and is selected from the group consisting of H, hydroxy, H_2N -[[,]] and (lower alkyl)HN-, wherein the lower alkyl is optionally substituted with an alkyl group substituent, (hydroxy)HN-, (alkoxy)HN- or and (amino)HN-, the remaining one of X_5 , X_{5a} and X_{5b} is a substituent, as defined below, bonded to any one of the remaining carbon atoms appearing at positions 2-7 of the pyrrolopyridine ring moiety;

one of A_1 , A_2 and A_3 is N and the other two are CH;

 A_4 is NR_{11} and R_{11} is H, alkyl, aralkyl, heteroalkyl or $R_8(O)CCH_2$ -;

Z is alkenyl, $-(CH_2)_r$ -C(O)NR"(CH₂)_s-, $-(CH_2)_r$ -R"NC(O)(CH₂)_s- or -(CH₂)_r-NR"(CH₂)_s-, wherein R' and R" is selected from the group consisting of are independently: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) aryl, optionally substituted with one or more ring system substituents; (d) heteroaryl, optionally substituted with one or more ring system substituents; (e) aralkenyl, optionally substituted in the aryl position with one or more ring system substituents and optionally substituted in the alkenyl proportion with one or more substituents selected from halogen and cycloalkyl; (f) heteroaralkenyl, optionally substituted in the heteroaryl proportion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (g) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; and (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, wherein "r" is selected independently for each occurrence from 1 and 2 and "s" is selected independently for each occurrence from 0, 1, and 2;

R₁ is selected from (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl groups substituents; (c) alkenyl, optionally substituted with one or more substituents selected from halogen and cycloalkyl; (d) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (e) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; and (f) a member of the group consisting of R'O(CH₂)_x-, R'O₂C(CH₂)_x-, R'C(O)(CH₂)_x-, Y¹Y²NC(O)(CH₂)_x, and Y¹Y²N(CH₂)_x-, wherein Y¹ and Y² are independently: (a) hydrogen; (b) alkyl, optionally substituted with one or more ring systems substituents; (d) heteroaryl, optionally substituted with one or more ring systems; (e) aralkyl, optionally substituted in the aryl portion with one or more ring systems

substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; and (f) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, or, optionally, Y¹ and Y² taken together with the N through which Y¹ and Y² are linked form a 4 to 7 member heterocyclyl, R'is as defined above (a) hydrogen; (b) alkyl optionally substituted with one or more alkyl group substituents; (c) aryl optionally substituted with one or more ring system substituents; (d) heteroaryl, optionally substituted with one or more ring system substituents; (e) aralkenyl, optionally substituted in the aryl portion with one or more ring systems substitutents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (f) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally syubstituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (g) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; and (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, and x=1,2,3,4 or 5;

 R_2 is selected from: (a) hydrogen; (b) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (c) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (d) aralkenyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkenyl portion with one or more substituents selective from halogen and cycloalkyl; (e) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; and (f) a member of the group consisting of $R_3R_4NC(O)(CH_2)_x$ -, $R_3S(O)p$ -, and $R_3R_4NS(O)p$ -, wherein: x is selected from 1, 2, 3, 4 and 5, and p is selected independently for each occurrence from 1 and 2;

R₃ is selected from the group consisting of; (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl groups substituents; (c) cycloalkyl, optionally substituted

with one or more substituents selected from halogen, methylene, alkyl, fused aryl and fused heteroarayl; (d) heterocyclyl, optionally substituted with one or more substituents selected from alkyl, halogen, aryl, heteroaryl, fused aryl and fused heteroaryl; (e) aryl, optionally substituted with a ring system substituent; (f) heteroaryl, optionally substituted with a ring system substituent; (g) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more rings system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (i) aralkenyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; and (j) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl, or, optionally, R₁ and R₃ taken together with the -NS(O)p-moiety, or the -S(O)p- moiety or the -NR₄- moiety through which R_1 and R_3 are linked form a 5 to 7 member heterocyclyl optionally substituted with one or more members selected from the group consisting of alkyl, halogen, aryl, heteroaryl, fused aryl, and fused heteroaryl substituents; and

R₄ is selected from the group consisting of: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) cycloalkyl, optionally substituted with one or more substituents selected from halogen, methylene, alkyl, fused aryl and fused heteroaryl; (d) aryl, optionally substituted with a ring system substituent; (e) heteroaryl, optionally substituted with a ring system substituent; (f) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted alkyl portion with one or more alkyl group substituents, or, optionally R₃ and R₄ taken together with the nitrogen to which R₃ and R₄ are attached form a 4-7 member heterocyclyl, optionally substituted with one or more substituents selected from halogen, aryl, heteroaryl, fused aryl, and fused heteroaryl;

 X_1 and X_{1a} are independently selected from: (a) H; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) aryl, optionally substituted with one or more ring systems substituents; (d) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (e) heteroaryl, optionally substituted with one or more ring system substituents; (f) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, or, optionally, X_1 and X_{1a} taken together from oxo;

 X_3 is selected from: H; (b) hydroxyl; (c) alkyl, optionally substituted with one or more ring system substituents; (e) heteroaryl, optionally substituted with one or more ring system substituents, (f) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted the alkyl portion with one or more alkyl group substituents; (g) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted alkyl portion with one or more alkyl groups substituents, or, optionally, X_3 and one of X_1 and X_{1a} taken together from a 4-7 member cycloalkyl;

X₄ is selected from (a) H; (b) alkyl, optionally substituted with one or more alkyl groups substituents; and (c) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents;

one of X_5 and X_{5a} and X_{5b} which has not been otherwise selected is selected from H, R_5R_6N -, (hydroxy)HN-, (alkoxy)HN-, or (amino)HN-, R_7O -, R_5R_6NCO -, R_5R_6NSO2 -, R_7CO -, halo, cyano, nitro and $R_8(O)CCH2$ -;

 R_5 and R_6 are independently selected from (a) H and (b) lower alkyl, optionally substituted with one or more alkyl group substituents; or one of R_5 and R_6 is H and the other is $R_8(O)CCH2$ - or lower acyl;

 R_7 is H, lower alkyl optionally substituted with one or more alkyl group substituents or $R_8(O)CCH2$ -;

R₈ is selected from H, lower alkyl substituted with one or more alkyl group substituents, alkoxy and hydroxyl; <u>or</u>

a pharmaceutically acceptable salt thereof, an N-oxide thereof, a hydrate thereof or a solvate thereof;

wherein said compound is administered in combination with at least one other agent selected from diagnostic agents, cardioprotective agents, direct thrombin inhibiting agents, anticoagulant agents, antiplatelet agents and fibrinoloytic agents.

Claim 36. (Original) The method of claim 35 wherein said other agent is selected from standard heparin, low molecular weight heparin, direct thrombin inhibitors, aspirin, fibrinogen receptor antagonists, streptokinase, urokinase and tissue plasminogen activator.

Claim 37. (Currently Amended) The method of claim 36 wherein said other agent is selected from direct thrombin inhibitors and pharamaceutically acceptable salts and prodrugs thereof, and fibrinogen receptor antagonists.

Claim 38. (Currently Amended) The method of claim 37 wherein said thrombin inhibitor is selected from boroarginine derivatives, boropeptides, hirudin <u>derivatives and analogs thereof</u>, and argatroban and the pharmaceutically acceptable salts, prodrugs, derivatives and analogs thereof.

Claim 39. (Currently Amended) A pharmaceutically composition for treating a condition of the arterial or venous vasculature capable of being modulated by inhibiting an activity of Factor Xa comprising a therapeutically effective amount of a Factor Xa-inhibiting pyrrolopyridine compound having the formula:

$$X_4$$
 N
 R_1
 X_4
 N
 R_2
 X_3
 X_{1a}
 X_{1a}

wherein Z is bonded to one of any earbon atom in a pyrrolopyridine ring carbon atom positions 2–7, and one of X_5 , X_{5a} and X_{5b} is an H, hydroxy, or amino substituent on the ring proximal to Z and attached at a carbon position that is adjacent to the carbon atom to which Z is attached and another of X_5 , X_{5a} and X_{5b} is a substituent on the ring distal to the carbon atom to which Z is attached at a position alpha to the nitrogen on the distal ring and is selected from the group consisting of H, hydroxy, H_2N - [[,]] and (lower alkyl)HN-, wherein the lower alkyl is optionally substituted with an alkyl group substituent, (hydroxy)HN-, (alkoxy)HN- or and (amino)HN-, the remaining one of X_5 , X_{5a} and X_{5b} is a substituent, as defined below, bonded to any one of the remaining carbon atoms appearing at positions 2–7 of the pyrrolopyridine ring moiety;

one of A_1 , A_2 and A_3 is N and the other two are CH;

 A_4 is NR_{11} and R_{11} is H, alkyl, aralkyl, heteroalkyl or $R_8(O)CCH_2$ -;

Z is alkenyl, $-(CH_2)_r$ -C(O)NR"(CH₂)_s-, $-(CH_2)_r$ -R"NC(O)(CH₂)_s- or -(CH₂)_r-NR"(CH₂)_s-, wherein R' and R" is selected from the group consisting of are independently: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) aryl, optionally substituted with one or more ring system substituents; (d) heteroaryl, optionally substituted with one or more ring system substituents; (e) aralkenyl, optionally substituted in the aryl position with one or more ring system substituents and optionally substituted in the alkenyl proportion with one or more substituents selected from halogen and cycloalkyl; (f) heteroaralkenyl, optionally substituted in the heteroaryl proportion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (g) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; and (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, wherein "r" is selected independently for each occurrence from 1 and 2 and "s" is selected independently for each occurrence from 0, 1, and 2;

R₁ is selected from (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl groups substituents; (c) alkenyl, optionally substituted with one or more substituents selected from halogen and cycloalkyl; (d) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (e) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; and (f) a member of the group consisting of $R'O(CH_2)_{x^-},\,R'O_2C(CH_2)_{x^-},\,R'C(O)(CH_2)_{x^-},\,Y^1Y^2NC(O)(CH_2)_{x},$ and Y¹Y²N(CH₂)_x-, wherein Y¹ and Y² are independently: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) aryl, optionally substituted with one or more ring systems substituents; (d) heteroaryl, optionally substituted with one or more ring system; (e) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; and (f) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, or, optionally, Y1 and Y2 taken together with the N through which Y¹ and Y² are linked form a 4 to 7 member heterocyclyl, R'is as defined above (a) hydrogen; (b) alkyl optionally substituted with one or more alkyl group substituents; (c) aryl optionally substituted with one or more ring system substituents; (d) heteroaryl, optionally substituted with one or more ring system substituents; (e) aralkenyl, optionally substituted in the aryl portion with one or more ring systems substitutents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (f) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally syubstituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; (g) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; and (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, and x=1,2,3,4 or 5;

R₂ is selected from: (a) hydrogen; (b) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (c) heteroaralkyl, optionally substituted in the

heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (d) aralkenyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkenyl portion with one or more substituents selective from halogen and cycloalkyl; (e) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; and (f) a member of the group consisting of $R_3R_4NC(O)(CH_2)_x$ -, $R_3S(O)p$ -, and $R_3R_4NS(O)p$ -, wherein: x is selected from 1, 2, 3, 4 and 5, and p is selected independently for each occurrence from 1 and 2;

R₃ is selected from the group consisting of: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl groups substituents; (c) cycloalkyl, optionally substituted with one or more substituents selected from halogen, methylene, alkyl, fused aryl and fused heteroarayl; (d) heterocyclyl, optionally substituted with one or more substituents selected from alkyl, halogen, aryl, heteroaryl, fused aryl and fused heteroaryl; (e) aryl, optionally substituted with a ring system substituent; (f) heteroaryl, optionally substituted with a ring system substituent; (g) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (h) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more rings system substituents and optionally substituted in the alkyl portion with one or more alkyl groups substituents; (i) aralkenyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl; and (j) heteroaralkenyl, optionally substituted in the heteroaryl portion with one or more ring system substituents and optionally substituted in the alkenyl portion with one or more substituents selected from halogen and cycloalkyl, or, optionally, R₁ and R₃ taken together with the -NS(O)p-moiety, or the -S(O)p- moiety or the -NR₄- moiety through which R₁ and R₃ are linked form a 5 to 7 member heterocyclyl optionally substituted with one or more members selected from the group consisting of alkyl, halogen, aryl, heteroaryl, fused aryl, and fused heteroaryl substituents; and

R₄ is selected from the group consisting of: (a) hydrogen; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) cycloalkyl, optionally substituted

with one or more substituents selected from halogen, methylene, alkyl, fused aryl and fused heteroaryl; (d) aryl, optionally substituted with a ring system substituent; (e) heteroaryl, optionally substituted with a ring system substituent; (f) aralkyl, optionally substituted in the aryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (g) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted alkyl portion with one or more alkyl group substituents, or, optionally R₃ and R₄ taken together with the nitrogen to which R₃ and R₄ are attached form a 4-7 member heterocyclyl, optionally substituted with one or more substituents selected from halogen, aryl, heteroaryl, fused aryl, and fused heteroaryl;

 X_1 and X_{1a} are independently selected from: (a) H; (b) alkyl, optionally substituted with one or more alkyl group substituents; (c) aryl, optionally substituted with one or more ring systems substituents; (d) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents; (e) heteroaryl, optionally substituted with one or more ring system substituents; (f) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents, or, optionally, X_1 and X_{1a} taken together from oxo;

X₃ is selected from: H; (b) hydroxyl; (c) alkyl, optionally substituted with one or more ring system substituents; (e) heteroaryl, optionally substituted with one or more ring system substituents, (f) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted the alkyl portion with one or more alkyl group substituents; (g) heteroaralkyl, optionally substituted in the heteroaryl portion with one or more ring systems substituents and optionally substituted alkyl portion with one or more alkyl groups substituents, or, optionally, X₃ and one of X₁ and X_{1a} taken together from a 4-7 member cycloalkyl;

X₄ is selected from (a) H; (b) alkyl, optionally substituted with one or more alkyl groups substituents; and (c) aralkyl, optionally substituted in the aryl portion with one or more ring system substituents and optionally substituted in the alkyl portion with one or more alkyl group substituents;

In re Application of: Young Mi Choi-Sledeski, et al.

one of X_5 and X_{5a} and X_{5b} which has not been otherwise selected is selected from H, R_5R_6N -, (hydroxy)HN-, (alkoxy)HN-, or (amino)HN-, R_7O -, R_5R_6NCO -, R_5R_6NSO2 -, R_7CO -, halo, cyano, nitro and $R_8(O)CCH2$ -;

 R_5 and R_6 are independently selected from (a) H and (b) lower alkyl, optionally substituted with one or more alkyl group substituents; or one of R_5 and R_6 is H and the other is $R_8(O)CCH2$ - or lower acyl;

R₇ is H, lower alkyl optionally substituted with one or more alkyl group substituents or R₈(O)CCH₂-;

R₈ is selected from H, lower alkyl substituted with one or more alkyl group substituents, alkoxy and hydroxyl; or

a pharmaceutically acceptable salt thereof, an N-oxide thereof, a hydrate thereof or a solvate thereof;

wherein said compound is administered in combination with at least one other agent selected from diagnostic agents, cardioprotective agents, direct thrombin inhibiting agents, anticoagulant agents, antiplatelet agents and fibrinoloytic agents;

and further comprising in a separate or combined formulation at least one other agents selected from diagnostic agents, cardioprotective agents, direct thrombin inhibiting agents, anticoagelent agents, antiplatnet agents and fibrolinitic agents.

Claim 40. (Original) The pharmaceutical composition of claim 39 wherein said other agent is selected from standard heparin, low molecular weight heparin direct, thrombin inhibitors, aspirin, fibrinogen receptor antagonists, streptokinase, urokinase and tissue plasminogen activator.

Claim 41. (Currently Amended) The pharmaceutical composition of claim 40 wherein said other agent is selected from direct thrombin inhibitors and pharamaceutically acceptable salts and prodrugs thereof, and fibrinogen receptor antagonists.

Claim 42. (Cancelled)