ALGEBRAIC TOPOLOGY

JACK CERONI

Contents

1.	Introduction	1
2.	Lecture 1: November 4th	2

1. Introduction

Notes taken while studying algebraic topology in MAT327, in Fall 2021

Date: November 2021.

2. Lecture 1: November 4th

Remark 1. Two spaces are equivalent if they have the same shape.

Definition 1 (Homotopy Equivalence). Let f and f' be continuous maps from X to Y. Then f is said to be **homotopic** to f' if there is a continuous map $F: X \times I \to Y$ such that F(x,0) = f(x), and F(x,1) = f'(x) for all $x \in X$. F is called a **homotopy**.

Remark 2. This can be visualized as a continuous deformation from one map to another.

Definition 2. If f' is constant, then f is called **nullhomotopic**

We are interested in situations in which f and f' are **paths**. More specifically, situations where f and f' have the same starting point, and the same endpoint. If there is a homotopy that preserves the endpoints, then f and f' are said to be path-homotopic: $f \cong f'$.

Lemma 1. Path-homotopy and homotopy are equivalence relations. The equivalence classes are called homotopy classes and path-homotopy classes.

Proof. Clearly, reflexivity and symmetry hold (we simply "run time in reverse").

Suppose $f \simeq f'$, and $f' \simeq f''$. Let F and G be corresponding homotopies. Then define H(x,t) = F(x,2t) for $t \in \left[0,\frac{1}{2}\right]$ and H(x,t) = G(x,2t-1) for $t \in \left[\frac{1}{2},1\right]$. The continuity of this map follows from the pasting lemma. Thus, H is a homotopy for f and f''.

Example 1. Consider continuous maps $f, g: X \to \mathbb{R}^2$, with $X \subset \mathbb{R}$. f is homotopic to g, as we can define the homotopy F(x,t) = (1-t)f(x) + tg(x). This is true for any convex subset of \mathbb{R}^n .

Example 2. Consider the punctured plane $\mathbb{R}^2 - \{0\}$. Consider the paths $f(s) = (\cos \pi s, \sin \pi s)$, as well as $g(s) = (\cos \pi s, 2 \sin \pi 2)$ and $h(s) = (\cos \pi s, -\sin \pi s)$.

Definition 3. Let f be a path from x_0 to x_1 , and g be a path from x_1 to x_2 . Then:

$$(f * g)(x) = \begin{cases} f(2s) & s \in [0, \frac{1}{2}] \\ g(2s-1) & s \in [\frac{1}{2}, 1] \end{cases}$$

We want to be able to define an operation * between path-homotopy/homotopy classes such that [f]*[g] = [f*g]. We need to show that given f' such that [f'] = [f], and g' such that [g'] = [g], that [f'*g'] = [f*g]. In other words, if f' and f are path-homotopic, and g' and g are path-homotopic, then we need to show that f'*g' and f*g are path-homotopic.

Theorem 1. The operation * acting on homotopy classes has the following properties:

- (1) It is associative.
- (2) There exist right and left identities. In other words, we can find $[e_{x_1}]$ and $[e_{x_2}]$ such that $[f] * [e_{x_1}] = [f]$, and $[e_{x_2}] * [f] = [f]$.
- (3) There exist inverses. In other words, given [f], there is $[\overline{f}]$ such that $[\overline{f}] * [f] = [e_{x_1}]$, and $[f] * [\overline{f}] = [e_{x_2}]$.

Proof. If k is a continuous map between topological spaces X and Y, F is a path-homotopy in X between f and f', then $K \circ F$ is a path-homotopy in Y between $k \circ f$ and $k \circ f'$.