Simulaciones de Monte Carlo

Alan Ledesma Arista.¹

¹alan.ledesma@bcrp.gob.pe

- Integración
 - Idea básica
 - Calcular momentos
 - Calidad de integración
- Simulación
 - ullet Cuando F_X es analítico e invertible
 - Gibbs-sampling
- Metropolis-Hastings
 - Aceptación y rechazo
 - Metropolis-Hastings

Idea básica

Integración

- Texto principal: Huynh et al. 2011 (cap. 5)
- Monte Carlo (MC): algoritmo utilizado para cálculo numérico de momentos sobre transformaciones de variables aleatorias
- Método: ejecutar una secuencia de experimentos y tomar el valor promedio
- Para calcular $y=\int_\Omega f(\mu)\mathrm{d}\mu$ la metodología requiere de una secuencia $\{x_i\}_{i=0}^n$ —con $x_i\in\Omega$ para todo i— tal que

$$\hat{y} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

- Intuición: Integral de Riemann
- ullet Si x_i es variable aleatoria, la ley de los grandes números justifica la metodología
 - x_i debe recorrer 'la mayor parte de' Ω
 - n debe ser 'lo suficientemente grande'
- Ver ejemplo: 01_MCMC01_intro.ipynb

Calcular momentos

Integración

• En general, si la variable aleatoria $x:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{R}^k$ tiene una Función de Distribución Acumulada (CDF) F(x), entonces

$$h = \mathrm{E}[g(x)] = \int_{\mathbb{R}^k} g(\mu) \mathrm{d}F(\mu) \to \widehat{h} = \frac{1}{n} \sum_{i=1}^n g(x_i)$$

para realizaciones x_i de x

Por la ley de los grandes números

$$\operatorname{Prob}\left(|\hat{h} - h| < \epsilon \sigma_h\right) = \operatorname{Prob}\left(|z| < \epsilon \sqrt{n}\right) \ge 1 - \frac{1}{n\epsilon^2} > 1 - \alpha$$

$$\operatorname{con} z = \sqrt{n}(\hat{h} - h)/\sigma_h.$$

- Note que $\operatorname{Prob}\left(|z| < \epsilon \sqrt{n}\right) = \operatorname{erf}\left(\epsilon \sqrt{\frac{n}{2}}\right)$ entonces $n > 2\left(\operatorname{erf}^{-1}[1-\alpha]/\epsilon\right)^2$
 - Si $\alpha = 0.05$ v $\epsilon = 0.01$ cuantas simulaciones como mínimo se requieren?
 - Que ocurre con n si se requiere de una mayor precisión (i.e., $\epsilon \to 0$)?
- Ver ejemplo: uso de erfinv(·) en 01_MCMC02_ImportanceSampling

Mejorar la calidad de integración

- La calidad de la simulación se puede mejorar en 2 aspectos: aumentar la precisión o reducir el tiempo de cómputo
- Revisaremos las dos metodologías más utilizadas:
 - Antithetic variables (reducción de varianza)
 - Importance sampling

Antithetic variables

Integración

00000

- Reduce el número de simulaciones requeridas al encontrar una transformación de la variable aleatoria simulada que preserva la distribución y propiedades
- Sea $X \sim F_X$, entonces $X^a = T(X)$ es una variable perfectamente antitética de X si $X^a \sim F_X$ y $corr(X, X^a) = -1$
- Eiemplos:
 - Si $X \sim U(a, b)$: $X^a = b + a X$ es Perf. antitética de X pues $X^a \sim U(a, b)$
 - Si $X \sim \mathcal{N}(\mu, \sigma^2)$: $X^a = 2\mu X$ es Perf. antitética de X pues $X^a \sim \mathcal{N}(\mu, \sigma^2)$
 - $X \sim \exp(\lambda)$ no tiene paralelo Perf. antitético
- Si el perfecto antitético no existe, se puede diseñar un X^a tal que $corr(X,X^a) \to -1$
- Con un perfecto antitético, el número de simulaciones se reduce a la mitad, pues si se obtiene X_i de F_X entonces $X_i^a = T(X_i)$ también se puede considerar como simulación válida
- Ver ejemplo: ver sección 4.1. de 01_MCMC02_ImportanceSampling.ipvnb

• Transformación sobre la variable de interés tal que se reduzca la varianza de la variable a simular

ullet Suponga que $X \sim F_X$ con densidad f_X y considere la transformación Y = h(X) entonces

$$\mathrm{E}[Y] = \int h(\mu) \mathrm{d}F_X(\mu) = \int h(\mu) f_X(\mu) \mathrm{d}\mu \to \widehat{m}_Y = \frac{1}{n} \sum_{i=1}^n h(X_i)$$

ullet Si consideramos $Y \sim F_Y$ con densidad f_Y . Entonce la integral de arriba se puede escribir como

$$\mathrm{E}[Y] = \int h(\mu) \frac{f_X(\mu)}{f_Y(\mu)} f_Y(\mu) \mathrm{d}\mu = \int Z(\mu) \mathrm{d}F_Y(\mu)$$

con
$$Z(Y) = h(Y) \frac{f_X(Y)}{f_Y(Y)}$$
.

ullet Note que $\mathrm{E}[Z]=\mathrm{E}[Y]$: la aproximación MC sobre $\mathrm{E}[Z]$ sirve para calcular $\mathrm{E}[Y]$

$$\widehat{m}_{Z} = \widehat{m}_{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} \frac{f_{X}(Y_{i})}{f_{Y}(Y_{i})}$$

- ullet El 'ejercicio' consiste en encontrar $f_Y(\cdot)$ tal que la var(Z) es reducida
- Ver ejemplo: ver sección 4.2. de 01_MCMC02_ImportanceSampling.ipynb

Simulación

Integración

- Para la integración de MC, se requiere simular realizaciones X_i de F_X
- Nos concentraremos en simulación de variables aleatorias continuas
- En algunos casos, F_X es analítico e invertible
- ullet En la mayoría de aplicaciones F_X o no es invertible o no tiene expresión analítica

Cuando F_X es analítico e invertible

- Suponga que $X \sim F_X$, por definición $\mathbb{P}(X \leq x) = F_X(x)$. Como la probabilidad $\mathbb{P}(X \leq x) \in [0,1]$, ésta puede ser simulada por U(0,1)
- Si $\mathbb{P}(X \leq X) \equiv U \sim U(0,1)$ entonces de $U = F_X(X)$ se tiene que $X = F_X^{-1}(U)$
- Por lo tanto, si U_i es una simulación de U(0,1), entonces $X_i = F_X^{-1}(U_i)$ es una simulación de F_X
- Ver ejemplo: sección 1.1. de 01_MCMC03_GS_MH.ipynb

Normal multivariada

- ullet Suponga que $old X \sim \mathcal{N}(\mu, old \Sigma)$
- La simulación requiere de obtener una matriz triangular inferior C tal que $CC^T = \Sigma$
- ullet Cómo Σ es definida positiva y simétrica, entonces C existe y es regular
- La propuesta más común es $C = \text{Cholesky}(\Sigma)$
- La secuencia de simulación es
 - Simular k normal estándar realizaciones y apilarlos en el vector $\mathbf{Z}_i = [Z_1 \ Z_2 \ ... \ Z_k]^T$ donde k es el rango de μ
 - La simulación \mathbf{X}_i es $\mathbf{X}_i = C\mathbf{Z}_i + \mu$
- Ver ejemplo: sección 1.3. de 01_MCMC03_GS_MH.ipynb

Integración

ibbs-sampling

- Texto principal: Kim y Nelson 1999 (cap. 7)
- Texto secundario: Gelfand 2000
- Gibbs-sampling es una simulación de Monte Carlo Cadena de Markov (MCMC) útil para aproximar distribuciones conjuntas a partir de las distribuciones condicionales
- Suponga que se requiere simular $\mathbf{z}=(z_1 \dots z_k)$ cuya distribución conjunta es $f(z_1,z_2,...,x_k)$. Sin embargo, no contamos con la expresión analítica de $f(\cdot)$ pero sí del set completo de distribuciones condicionales: $f_{i|-i}(z_i|\mathbf{z}_{-i})$ para todo i (donde $\mathbf{z}_{-i}\equiv\{z_1, ..., z_{i-1}, z_{i+1}, ..., z_k\}$). Entonces, la simulación se implementa según
 - 1. Proponer un punto inicial $\mathbf{z}^{(0)} = (z_1^{(0)} \dots z_k^{(0)})$
 - 2. Generar la simulación j de en la secuencia de abajo desde j=1 hasta j=n+b
 - 2.1. Simular $z_1^{(j)}$ de $f_{1|-1}(z_1|z_2^{(j-1)}, z_3^{(j-1)}, z_4^{(j-1)}, ..., z_{k-1}^{(j-1)}, z_k^{(j-1)})$
 - 2.2. Simular $z_2^{(j)}$ de $f_{2|-2}(z_2|z_1^{(j)},z_3^{(j-1)},z_4^{(j-1)},\ldots,z_{k-1}^{(j-1)},z_k^{(j-1)})$
 - 2.3. Simular $z_3^{(j)}$ de $f_{3|-3}(z_3|z_1^{(j)},z_2^{(j)},z_4^{(j-1)},\ldots,z_{k-1}^{(j-1)},z_k^{(j-1)})$
 - 2.k 1. Simular $z_{k-1}^{(j)}$ de $f_{k|-k}(z_k|z_1^{(j)}, z_2^{(j)}, z_3^{(j)}, ..., z_{k-2}^{(j)}, z_k^{(j-1)})$
 - 2.k. Simular $z_k^{(j)}$ de $f_{k|-k}(z_k|z_1^{(j)},z_2^{(j)},z_3^{(j)},\ldots,z_{k-2}^{(j)},z_{k-1}^{(j)})$
 - 3 Eliminar las primeras b simulaciones (burning sample)
- Geman y Geman 1984 demuestran que la secuencia anterior converge exponencialmente a simulaciones de la distribución conjunta

Gibbs-sampling: ejemplo

• La estimación Bayesiana en el modelo lineal general: $Y = \beta X + u$ con distribuciones prior $\beta | \sigma_u^2 \sim \mathcal{N}(\beta_*, \Sigma_*)$ y $\sigma_u^2 | \beta \sim \Gamma^{-1}\left(\frac{\nu_*}{2}, \frac{\delta_*}{2}\right)$ conduce a las siguientes distribuciones posteriors

$$\begin{split} \beta | \sigma_u^2, Y &\sim \mathcal{N}(\beta^*, \Sigma^*) \text{ y } \sigma_u^2 | \beta \sim \Gamma^{-1} \left(\frac{\nu^*}{2}, \frac{\delta^*}{2} \right) \text{ con } \\ \beta^* &= (\Sigma_*^{-1} + \sigma_u^{-2} X^T X)^{-1} (\Sigma_*^{-1} \beta_* + \sigma_u^{-2} X^T Y) \\ \Sigma^* &= (\Sigma_*^{-1} + \sigma^{-2} X^T X)^{-1} \\ \nu^* &= \nu_* + T \text{ and } \delta^* = \delta_* + (Y - X\beta)^T (Y - X\beta) \end{split}$$

- Utilice el log-crecimiento del PBI para estimar un proceso AR(4)
- Genere 10^6 simulaciones de β y σ_u^2
- Ver ejemplo: sección 1.4. de 01_MCMC03_GS_MH.ipynb

Entendiendo el algoritmo de Metropolis-Hastings

- En este segmento seguimos a Chib y Greenberg 1995
- Algoritmo de Acceptance-Rejection
- Algoritmo de Metropolis-Hasting
- La metodología se hace pública en Metropolis et al. 1953

Acceptance-Rejection

- Queremos simular g(x) = f(x)/k
 - f(x): Densidad no normalizada
 - k: constante normalizadora (potencialmente desconocida)
- Suponga: i) que se puede simular fácilmente h(x) y ii) se conoce una constante c tal que f(x) < ch(x)
- El algoritmo es:
 - 1. Generar una simulación candidata z a partir de una simulación de h(x)
 - 2. Simular u a partir de U(0,1)
 - 3. Si u < f(z)/ch(z) aceptar z como una simulación de g(x)
 - 4. De lo contrario, rechazar z y regresar al paso 1
- El algoritmo es optimizado si $c = \sup_{x} \frac{f(x)}{h(x)}$
- Por lo general, el algoritmo resulta en un número grande e indeseable de rechazos
- Ver ejemplo: sección 1.2. de 01_MCMC03_GS_MH.ipynb

Random-Walk Metropolis-Hastings

- En el algoritmo anterior, los candidatos se simulaban con distribuciones i.i.d. Ahora, la simulación de los candidatos dependerá de los estados corrientes (Markov-Chain Monte Carlo)
- El candidato $x^{(i)}$ para g(x) se obtienen de $x^{(i)} = x^{(i-1)} + z$ con $z \sim \mathcal{N}(0, \Omega)$ donde $x^{(i-1)}$ es una simulación previamente aceptada (de aquí el nombre Random-Walk)
- Según la cadena de Markov, la probabilidad de transición es $q(x^{(i-1)}, x^{(i)})$ que para el caso descrito (Random-Walk + Normal) es reversible (i.e., $q(x^{(i-1)}, x^{(i)}) = q(x^{(i)}, x^{(i-1)})$)
- La probabilidad de tomar el candidato $x^{(i)}$ es $g(x^{(i-1)})q(x^{(i-1)},x^{(i)})$ mientras que la probabilidad de mantener la simulación previa es $g(x^{(i)})q(x^{(i)},x^{(i-1)})$

Random-Walk Metropolis-Hastings

• En general $g(x^{(i-1)})q(x^{(i-1)},x^{(i)}) \stackrel{>}{\geq} (x^{(i)})q(x^{(i)},x^{(i-1)})$; sin embargo, para evitar el problema de 'muchos' rechazos (o aceptaciones) deberíamos buscar la igualdad. Para lo cual creamos la probabilidad $\alpha(x^{(i-1)},x^{(i)})$ tal que $p_{MH}(x^{(i-1)},x^{(i)})=q(x^{(i-1)},x^{(i)})\alpha(x^{(i-1)},x^{(i)})$ y

$$g(x^{(i-1)})p_{MH}(x^{(i-1)},x^{(i)}) = g(x^{(i)})p_{MH}(x^{(i)},x^{(i-1)})$$

• De la igualdad anterior y fijando $\alpha(x^{(i)}, x^{(i-1)}) = 1$

$$g(x^{(i-1)})q(x^{(i-1)},x^{(i)})\alpha(x^{(i-1)},x^{(i)}) = g(x^{(i)})q(x^{(i)},x^{(i-1)})$$

por lo tanto

$$\alpha(x^{(i-1)}, x^{(i)}) = \min \left[\frac{g(x^{(i)})q(x^{(i)}, x^{(i-1)})}{g(x^{(i-1)})q(x^{(i-1)}, x^{(i)})}, 1 \right]$$

• En el caso descrito acá (Random-Walk + Normal) ocurre que $q(x^{(i)},x^{(i-1)})=q(x^{(i-1)},x^{(i)})$ y ademas g(x)=f(x)/k por lo tanto

$$\alpha(x^{(i-1)}, x^{(i)}) = \min \left[\frac{f(x^{(i)})}{f(x^{(i-1)})}, 1 \right]$$

Random-Walk Metropolis-Hastings

El algoritmo es

Integración

- 1. Proponer un valor inicial $x^{(0)}$ de $g(\cdot)$
- 2. Para j > 0, simular x^* de $q(x^{(j-1)}, x^*)$ y u de U(0, 1)
- 3. Calcular la probabilidad $\alpha(x^{(j-1)}, x^*)$
- 4. Si $u \le \alpha(x^{(j-1)}, x^*)$ fijar $x^{(j)} = x^*$
- 5. De lo contrario fijar $x^{(j)} = x^{(j-1)}$ 6. Repetir [1-5] hasta alcanzar j = J
- Ver ilustración: MCMC-demo
- Ver ejemplo: sección 1.5. de 01_MCMC03_GS_MH.ipynb

References I

- Kim, Chang-Jin y Charles R. Nelson (1999). State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. The MIT press.
- Gelfand, Alan E (2000). "Gibbs sampling". En: Journal of the American statistical Association 95.452, págs. 1300-1304.
- Geman, Stuart y Donald Geman (1984). "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images". En: *IEEE Transactions on pattern analysis and machine intelligence* 6, págs. 721-741.
- Chib, Siddhartha y Edward Greenberg (1995). "Understanding the Metropolis-Hastings Algorithm". En: *The American Statistician* 49.4, págs. 327-335. DOI: 10.1080/00031305. 1995.10476177.
- Metropolis, Nicholas et al. (1953). "Equation of state calculations by fast computing machines". En: The journal of chemical physics 21.6, págs. 1087-1092.