ANSWERS

1. Mathematical Logic

Exercise 1.1

- 1) (i) Statement, F
 - (iv) Statement, T
- (vii) Not statement
- (x) Statement, T
- (xiii) Statement, T
- 2) (i) $p \wedge q$
 - (iv) $\sim p \wedge \sim q$
- (vii) $\sim p \wedge q$
- - (iv) T
- (vii) T
- - (iv) T

- (ii) Not statement
- (v) Not statement
- (viii) Statement, T
- (xi) Statement, F
- (xiv) Statement, T
 - (ii) $p \vee q$
 - (v) $p \rightarrow q$

- (iii) Not statement
- (vi) Statement, T
- (ix) Not statement
- (xii) Not statement
- (xv) Not statement
- (iii) $p \leftrightarrow q$
- (vi) $p \leftrightarrow q$

- **3)** (i) F
- **4)** (i) T
- (vii) T

- (ii) F
- (v) T
- (iii) F
 - (vi) T

- (ii) T (v) F
- (viii) T

(iii) F (vi) F

- 5) (i) Tirupati is not in Andhra Pradesh.
 - (ii) 3 is a root of the equation $x^2 + 3x 18 = 0$.
 - (iii) $\sqrt{2}$ is not a rational number.
 - (iv) Polygon ABCDE is not a pentagon.
 - (v) $7 + 3 \le 5$

Exercise 1.2

- **1)** (i) TTFT
 - (iv) FTTTTTTT
- (vii) TTTT
 - (x) TFTFTTFF
- 3) (i) Tautology
 - (iv) Contingency
 - (vii) Contingency
 - (x) Contradiction

- (ii) FFFF
- (v) FFFF
- (viii) TTTTTTTT

 - (ii) Tautology
 - (v) Tautology
- (viii) Contingency

- (iii) TTFT FFFT
- (vi) TFFT
- (ix) FTTTTTTT
- (iii) Contingency
- (vi) Contingency
- (ix) Contingency

- Exercise 1.3
- 1) (i) T
 - (iv) F

- (ii) T
- (v) T

- (iii) F
- (vi) T

2) (i) $p \wedge (q \vee r)$

- (ii) $p \lor (q \lor r)$
- (iii) $(p \wedge q) \vee (r \wedge s)$

(iv) $p \lor \sim q$

- (v) $(\sim p \land q) \lor (\sim r \lor s)$
- (vi) $\sim p \vee (\sim q \vee (p \wedge q) \vee \sim r)$
- (vii) $[\sim (p \land q) \lor [p \land \sim (q \lor \sim s)]$
- (viii) $t \vee \{ p \vee (q \wedge r) \}$
 - (ix) $\sim p \wedge (q \vee r) \vee c$
 - (x) $(p \land q) \land t$
- 3) (i) $x + 8 \le 11$ and $y 3 \ne 6$
 - (ii) $11 \ge 15$ and $25 \le 20$
 - (iii) Quadrilateral is a square but not rhombus or quadrilateral is a rhombus but not a square.
 - (iv) It is not cold or not raining.
 - (v) It is raining and we will not go or not play football.
 - (vi) $\sqrt{2}$ is not a rational number.
- (vii) Some natural numbers are not whole numbers.
- (viii) $\exists n \in \mathbb{N}, n^2 + n + 2$ is not divisible by 4.
- (ix) $\forall x \in \mathbb{N}, x 17 \ge 20.$
- :If $x^2 < y^2$ then x < y4) (i) Converse

:If $x \ge y$ then $x^2 \ge y^2$. Inverse

:If $x^2 \ge y^2$ then $x \ge y$. Contrapositive

:If a family becomes literate then the woman in it is literate. (ii) Converse

Inverse :If the woman in the family is not literate then the family does not

become literate.

:If a family does not become literate then the woman in the family Contrapositive

is not literate.

(iii) Converse :If pressure increases then surface area decreases.

Inverse :If surface area does not decrease then pressure does not increase. :If pressure does not increase then surface area does not decrease. Contrapositive

(iv) Converse :If current decreases then voltage increases.

Inverse :If voltage does not increase then current does not decrease. Contrapositive :If current does not decrease then voltage does not increase.

Exercise 1.4

1) (i) $\sim q \wedge \sim p$

(ii) $\sim p \vee q$

(iii) $\sim p \wedge q$

(iv) $(\sim p \land q) \lor \sim r$

(vii) $(p \lor \sim q) \land (\sim p \lor q)$

 $(v)p \wedge (\sim p \wedge q)$

 $(viii)(p \land q) \land (\sim p \lor q)$

(vi) $(p \land q) \land (\sim p \land q)$

- 2) (i) A man is not a judge or he is honest.
 - (ii) 2 is not rational number or $\sqrt{2}$ is irrational number.
 - (iii) $f(2) \neq 0$ or f(x) is divisible by (x 2).

Exercise 1.5

- 1) i) $p \lor (q \land r)$ 11111000
 - ii) $(\sim p \land q) \lor (p \land \sim q)$ 0110
 - iii) $[(p \land (\sim q \lor r)] \lor [\sim q \land \sim r]$ 10110001
 - iv) $(p \lor q) \land \sim r \land (\sim p \lor r)$ 01000100
 - v) $[p \lor (\sim p \land \sim q) \lor (p \land q)]$ 1101
 - vi) $(p \lor q) \land (q \lor r) \land (r \lor p)$ 11101000

4) (i) $(p \lor \sim q) \lor (\sim p \land q)$ 1111

The lamp will glow irrespective of the status of the switches.

(ii) $[p \lor (\sim p \land \sim q)] \lor (p \land q)$ 1101

The lamp will not glow when switch S_1 is OFF and S_2 is ON otherwise it will glow.

(ii)

(iii) $[p \lor \sim q \lor \sim r)] \land [(p \lor (q \land \sim r)]$ 11110000 The lamp will glow if S_1 is ON and any status of S_2 .

- **5)** (i) P
 - (ii) ~p∨~q
 - (iii) P
 - (iv) $(q \wedge r) \vee p$

Miscelleanous Exercise - 1

1)

i	ii	iii	iv	V	vi	vii
В	A	C	В	A	D	C

- 2) (i) Statement, T (ii) Statement, T (iii) Statement, F (iv) Not a statement
 - (v) Statement, T (vi) Statement, T
- **3)** (i) T(ii) F
- (iii) T
- (iv) T(v) T (vi) F

- **4)** (i) T(ii) F
- (iii) T
- (iv) F
- 5) (i) $\exists n \in \mathbb{N} \text{ such that } n+7 \leq 6$
 - (ii) $\forall x \in A, x + 9 > 15 \text{ on } x A, \forall x + 9 > 15.$
 - (iii) No triangle is an equilateral triangle.
- **6)** (i)

p	q	$q \rightarrow p$	$p \to (q \to p)$
T	T	Т	T
T	F	T	T
F	Т	F	T
F	F	T	T

(ii)

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
p	q	~p	~q	$p \wedge q$	$\sim (p \wedge q)$	~p ∨ ~ q	$(vi) \leftrightarrow (vii)$
Т	T	F	F	T	F	F	T
T	T	F	T	F	T	T	T
F	T	T	F	F	Т	T	T
F	T	T	T	F	T	T	T

(iii)

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)
p	q	~p	~q	~ p ^ ~ q	$\sim (\sim p \land \sim q)$	$\sim (\sim p \land \sim q) \land q$
T	T	F	F	F	Т	T
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	Т	T	Т	Т	Т

(iv)

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(IX)
p	q	r	$p \wedge q$	$(p \land q) \lor q$	~ r	~ r \(\text{iv} \)	(v) ∧ (vii)
T	T	Т	T	T	F	T	T
T	T	F	T	T	T	T	T
T	F	Т	F	T	F	F	F
T	F	F	F	F	T	T	F
F	T	Т	F	T	F	F	F
F	T	F	F	F	T	T	F
F	F	Т	F	T	F	F	F
F	F	F	F	F	T	T	F

(v)

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)
p	q	r	~ p	~p ∧ q	$q \rightarrow r$	$p \rightarrow r)$	(i) ∧ (vi)	(viii → vii)
T	T	T	F	T	Т	T	Т	T
T	T	F	F	T	F	F	F	T
T	F	T	F	F	Т	Т	F	T
T	F	F	F	F	Т	F	F	T
F	T	Т	Т	Т	Т	Т	Т	T
F	Т	F	Т	T	F	T	F	T
F	F	Т	Т	Т	Т	T	Т	T
F	F	F	T	T	Т	T	Т	T

- **7**) (i) Tautology
- (ii) Contradiction
- (iii) Contradiction
- (iv) Tautology

- Tautology (v)
- (vi) Tautology
- (vii) Contingency
- (viii) Tautology

- **8**) (i) T, T
- (ii) T, F
- (iii) T, F or F, T or F, F

- **11)**(i) $\sim q \wedge (\sim p \vee r)$
- $(ii) \sim p \vee (\sim q \wedge \sim r) \quad (iii) \ (p \wedge \sim q) \vee r \qquad (iv) \ (p \vee \sim q) \wedge (\sim p \vee q)$
- $(p \land q) \lor \sim p \lor (p \land \sim q)$ 1111 **12)** (i)
- (ii) $(p \lor q) \land (p \lor r)$ 11111000

(i) Logically equivalent **14**)

(ii) Logically equivalent

15)

- Current always flows **16**)
- 17) $(p \lor \sim q \lor \sim r) \land [p \lor (q \land r)]$ 1 1 1 1 0 0 0 which is same as p.

Hence we can conclude that the given switching circuit is equivalent to a simple circuit with only one switch S₁.

2. Matrices

Exercise 2.1

- 3) $A \sim \begin{bmatrix} 4 & 5 \\ 3 & 1 \end{bmatrix}$ $B \sim \begin{bmatrix} 4 & 5 \\ 3 & 1 \end{bmatrix}$ The new matrices are equal.

 $\begin{bmatrix}
1 & -1 & 1 \\
2 & 1 & 2 \\
9 & 9 & 21
\end{bmatrix}$

- $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 9 & 9 & 21 \end{bmatrix}$: The transformations are commutative.

Exercise 2.2

(ii)
$$-3$$
, -12 , 6 , -1 , 3 , 2 , -11 , -9 , 1 .

$$2) \qquad (i) \quad \begin{bmatrix} -1 & -4 \\ -3 & 1 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} -11 & -10 & -6 \\ 6 & -5 & 3 \\ -2 & -7 & 1 \end{bmatrix}$$

$$3) \qquad (i) \quad \begin{bmatrix} 5 & 3 \\ -3 & 2 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} -3 & -1 & -11 \\ -12 & 3 & -9 \\ 6 & 2 & 1 \end{bmatrix}$$

5) (i)
$$\frac{1}{13}\begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$
 (ii) $\frac{1}{14}\begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$

(ii)
$$\frac{1}{14} \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$

(iii)
$$-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

(iii)
$$-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$
 (iv) $-\frac{1}{10} \begin{bmatrix} 10 & -10 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$

6) (i)
$$-\frac{1}{5} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 4 & 3 & 1 \\ \frac{5}{3} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

Miscelleanous Exercise - 2(A)

- Using C_1 $2C_2$, C_1 + $3C_3$ and C_2 $3C_3$, We get the required result. 1)
- 2) Using $R_1 - R_2$, $R_3 - R_2$, $-R_2$, $R_1 - R_2$, $R_3 - R_2$, $-R_3$, $R_1 - R_3$, $R_2 - R_3$, we get the required result. (There can be another sequence of the transformations.)
- 3) The invertible matrices are (i), (iii), (v), (vi), (vii) and not invertible matrices are (ii), (iv)(viii) and (ix).
- $AB = \begin{bmatrix} 6 & -3 \\ -4 & 1 \end{bmatrix}$ and it is invertible.

5)
$$A^{-1} = \begin{bmatrix} \frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{y} & 0 \\ 0 & 0 & \frac{1}{z} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

6) (i)
$$X = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

7) (i)
$$\frac{1}{5} \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$

(ii)
$$-\frac{1}{3}\begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}$$

(iv)
$$\frac{1}{29} \begin{bmatrix} 7 & 3 \\ -5 & 2 \end{bmatrix}$$

$$(v) \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$$

$$(vi) \qquad \begin{bmatrix} 7 & -10 \\ 2 & -3 \end{bmatrix}$$

(vii)
$$-\frac{1}{25}\begin{bmatrix} 10 & 0 & -15 \\ -5 & -5 & 0 \\ -10 & 5 & 10 \end{bmatrix}$$
 (viii) $\frac{1}{25}\begin{bmatrix} 25 & -10 & -15 \\ -10 & 4 & 11 \\ -15 & 1 & 9 \end{bmatrix}$

(viii)
$$\frac{1}{25}\begin{vmatrix} 25 & -10 & -15 \\ -10 & 4 & 11 \\ -15 & 1 & 9 \end{vmatrix}$$

(ix)
$$\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

$$(x) \begin{bmatrix} 3 & 6 & 2 \\ 1 & 2 & 1 \\ 2 & 5 & 2 \end{bmatrix}$$

8)
$$A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

9)
$$AB = \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix}, (AB)^{-1} = \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix}$$

$$A^{\scriptscriptstyle -1}\!=\!\begin{bmatrix}2 & -3\\ -1 & 2\end{bmatrix}\;B^{\scriptscriptstyle -1}\!=\!\begin{bmatrix}1 & 0\\ -3 & 1\end{bmatrix}$$

11)
$$X = \begin{bmatrix} \frac{4}{5} & 1 \\ \frac{2}{5} & 1 \end{bmatrix}$$

$$12) \qquad X = -\frac{1}{3} \begin{bmatrix} 1 \\ 7 \\ -6 \end{bmatrix}$$

$$\mathbf{13)} \qquad \mathbf{X} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
13 & 2 & -7 \\
-3 & -1 & 2 \\
-2 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
13 & 2 & -7 \\
-3 & -1 & 2 \\
-2 & 0 & 1
\end{bmatrix}$$

- **19**) Hint: Use the definition of the co-factors and the value of the determinant by considering. $A = [a_{ij}]_{3 \times 3}$
- $X = \frac{1}{6} \begin{bmatrix} 4 & 4 & 2 \\ 11 & 8 & -5 \\ 10 & 10 & 2 \end{bmatrix}$

Exercise 2.3

- 1) (i) 0, 1
- (ii) 3, 1
- (iii) Not solvable

- (i) 4, -32)
- (ii) $\frac{1}{2}$, $\frac{1}{2}$
- (iii) 1, 2
- (iv) 2,-3
- 3) Rs. 5 for a pencil Rs. 8 for a pen and Rs.8 for an eraser.
- **4**) The numbers are 1, -2, 3.
- **5**) The cost price of one T.V. set is Rs.3000 and of one V.C.R. is Rs. 13,000. The selling price of one T.V.Set is Rs. 4000 and that of V.C.R. is Rs. 13,500.

Miscellaneous exercise - 2 (B)

I)

<u> </u>											
1	2	3	4	5	6	7	8	9	10	11	12
A	В	D	В	В	В	В	A	В	В	В	D

II) 1) (i)
$$-\frac{5}{11}, \frac{12}{11}$$

(ii)
$$2-\frac{4}{a}$$
, 0, $-1+\frac{4}{a}$

(iii)
$$x = 3$$
, $y = 2$, $z = -2$ (iv) $x = 2$, $y = -3$

(iv)
$$x = 2$$
, $y = -3$

(v)
$$x = \frac{5}{2}$$
, $y = \frac{3}{2}$, $z = -2$,

(ii)
$$\frac{1}{3}$$
, $\frac{2}{3}$, 1

(iii) 1, 2, 1

(iv) 1, 2, 3

(v) 3, 2, 1

(vi) -1, 1, 2

- 3) The numbers are 1, 2, 3
- Cost of a pencil, a pen and a book is respectively Rs.10, Rs.20 and Rs.25. 4)
- The costs are $3, \frac{5}{3}, \frac{4}{3}$ 5)
- **6**) The numbers are 1, -1, 2
- 7) 1750, 1500, 1750
- Maths Rs.150, Phy. Rs.30, Chem. Rs. 30 8)

3. Trigonometric Functions

Exercise 3.1

1) (i) $\frac{\pi}{3}, \frac{5\pi}{3}$

- (ii) $\frac{\pi}{6}$, $\frac{11\pi}{6}$
- (iii) $\frac{\pi}{6}$, $\frac{7\pi}{6}$ (iv) $0, \pi$

- 2) (i) $\frac{7\pi}{6}, \frac{11}{6}$ (ii) $\frac{3\pi}{4}, \frac{7\pi}{4}$ (iii) $\frac{4\pi}{3}, \frac{5\pi}{3}$ 3) (i) $n\pi + (-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$ (ii) $2n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$ (iii) $n\pi + \frac{\pi}{6}, n \in \mathbb{Z}$ (iv) $n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$ 4) (i) $2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}$ (ii) $n\pi + (-1)^n \frac{5\pi}{4}, n \in \mathbb{Z}$ (iii) $n\pi + \frac{3\pi}{4}, n \in \mathbb{Z}$ 5) (i) $\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}, n \in \mathbb{Z}$ (ii) $\frac{3n\pi}{2} + \frac{\pi}{2}, n \in \mathbb{Z}$ (iii) $\frac{n\pi}{4} + \frac{3\pi}{16}, n \in \mathbb{Z}$ 6) (i) $n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$ (ii) $n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$ (iii) $\frac{n\pi}{3}, n \in \mathbb{Z}$ 7) (i) $n\pi, n \in \mathbb{Z}$ (ii) $n\pi \text{ or } n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$

- (iii) $2n\pi$ or $2n\pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$
- 8) (i) and iv) have solutions
- (ii) and
- (iii) do not have solutions

Exercise 3.2

- (1,1)**1**) (i)
- (ii) $\left(0,4\right)$ (iii) $\left(-\frac{3}{4\sqrt{2}},\frac{3}{4\sqrt{2}}\right)$ (iv) $\left(\frac{1}{4},\frac{\sqrt{3}}{4}\right)$

- 2) (i) $\left(2, \frac{\pi}{4}\right)$ (ii) $\left(2, \frac{\pi}{3}\right)$ (iv) $\left(3, \frac{\pi}{3}\right)$

- 3) (i) $2:\sqrt{6}:1+\sqrt{3}$
- **10)** (i) $\frac{4}{5}$ (ii) $\frac{1}{\sqrt{10}}$ (iii) $\frac{3}{\sqrt{10}}$ (iv) $\frac{1}{3}$ (v) 216 (vi) $\frac{3}{5}$

Exercise 3.3

- 1) (i) $\frac{\pi}{6}$ (ii) $\frac{\pi}{6}$ (iii) $-\frac{\pi}{4}$ (iv) $-\frac{\pi}{3}$ (v) $\frac{\pi}{4}$ (vi) $\frac{2\pi}{3}$
- 2) (i) $\frac{3\pi}{4}$ (ii) $\frac{2\pi}{3}$ (iii) $-\frac{\pi}{3}$ (iv) $-\frac{\pi}{12}$

Miscellaneous exercise - 3

I)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
В	Α	Α	Α	D	С	Α	В	A	С	В	D	Α	В	D	A	В	A	В	В

II) i)
$$\left\{ \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12} \right\}$$

II) i)
$$\left\{ \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12} \right\}$$
 ii) $\left\{ \frac{3\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{15\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12} \right\}$

2) (i)
$$\left\{ \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8} \right\}$$

(ii)
$$\left\{ \frac{3\pi}{20}, \frac{7\pi}{20}, \frac{11\pi}{20}, \frac{15\pi}{20}, \frac{19\pi}{20}, \frac{23\pi}{20}, \frac{27\pi}{20}, \frac{31\pi}{20}, \frac{35\pi}{20}, \frac{39\pi}{20} \right\}$$

(iii)
$$\left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

- 3) (i) and (ii) have solution, (iii) and iv) do not have solutions

- **4)** (i) $n\pi + \frac{2\pi}{3}, n \in \mathbb{Z}$ (ii) $n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ (iii) $(2n+1)\pi$ or $2n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$
 - iv) $2n\pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$
- 10) $c = \sqrt{6}, A = 105^{\circ}, B = 15^{\circ}$
- **19**) (i) $\frac{3\pi}{5}$ (ii) $\frac{\pi}{6}$

$$\frac{\pi}{4}$$

27)
$$\frac{1}{\sqrt{3}}$$

29)
$$\frac{1}{6}$$

4. Pair of Straight Lines

Exercise 4.1

1) (i)
$$6x^2 + xy - y^2 = 0$$

(ii)
$$x^2 - xy - 6y^2 + x + 7y - 2 = 0$$

(iii)
$$xy - 3x - 2y + 6 = 0$$

(iv)
$$6x^2 - 7xy - 3y^2 - 3x + 32y - 45 = 0$$

(v)
$$3x^2 + 11xy + 6y^2 - 16x - 13y + 5 = 0$$

2) (i)
$$y = 0, 7x + 3y = 0$$

(ii)
$$\sqrt{5}x - 3y = 0$$
, $\sqrt{5}x + 3y = 0$,

(iii)
$$x = 0, x - 4y = 0$$

(iv)
$$3x + 2y = 0, x - 4y = 0$$

(v)
$$3x + \sqrt{3}y = 0, x = \sqrt{3}y = 0$$

(vi)
$$(\csc \alpha - \cot \alpha)x + y - 0$$
, $(\csc \alpha + \cot \alpha)x - y = 0$

(vii)
$$(\sec \alpha - \tan \alpha)x + y = 0$$
, $(\sec \alpha + \tan \alpha)x - y = 0$

3) (i)
$$3x^2 + 8xy + 5y^2 = 0$$

(ii)
$$x^2 + 2xy - 5y^2 = 0$$

(iii)
$$x^2 - xy = 0$$

(iv)
$$4xy + 3y^2 = 0$$

$$(ii) \pm 2$$

5) (i)
$$25a + 16b = 40h$$

(ii)
$$9a + 6h + b = 0$$

$$6) ap^2 + 2hpq + bq^2 = 0$$

7)
$$3x^2 - y^2 = 0$$

Exercise 4.2

3)
$$k = 4$$

ii)
$$\tan^{-1}\left(\frac{3}{5}\right)$$
 iii) 45°

$$5) \ \ 23x^2 + 48xy + 3y^2 = 0$$

7)
$$x^2 - 3y^2 = 0$$

Exercise 4.3

1) (i)
$$2x^2 + 3xy - 9y^2 - 5x - 24y - 7 = 0$$
 (ii) $x^2 + xy - y^2 - x - 8y - 11 = 0$

2)
$$h^2 - ab = -1 < 0$$

3)
$$2x - 3y + 4 = 0$$
 and $x + y - 5 = 0$ are separate equations of lines.

4)
$$2x - y + 3 = 0$$
 and $x + y - 1 = 0$ are separate equations. $\theta = \tan^{-1}(3)$.

5) (i)
$$x-y-3=0, x-2y-4=0$$

(ii)
$$2x - y + 4 = 0$$
, $5x + 3y - 1 = 0$

7)
$$p = -3, q = -8$$

8)
$$p = 8, q = 1$$

9)
$$36x^2 - 25xy - 252x + 350y - 784 = 0$$

10)
$$7x - 8y = 0$$

Miscellaneous exercise - 4

I.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
В	В	В	A	D	D	A	В	В	В	С	С	D	D

II. 1) (i)
$$x^2 - y^2 = 0$$

$$(ii)2x^2 + 3xy + y^2 - 7x - 4y + 3 = 0$$

(iii)
$$6x^2 - 5xy + y^2 = 0$$

(iv)
$$3x^2 - y^2 = 0$$

$$(v)xy - 2x - y + 2 = 0$$

(vi)
$$xy - 2x - 3y + 6 = 0$$

(vii)
$$8x^2 + 2xy - 3y^2 + 12x + 14y - 8 = 0$$
 (viii)

viii)
$$2x^2 + 2xy - y^2 = 0$$

(ix)
$$x^2 - 81 = 0$$

$$(x)x^2 - 2xy - 2x + 6y - 3 = 0$$

(xi)
$$2x^2 - 7xy + 3y^2 = 0$$

3) (i)
$$2x - 3y = 0$$
, $3x + 2y = 0$

(ii)
$$x - 2y = 0, x + 2y = 0$$

(iii)
$$\sqrt{3} x + y = 0$$
, $\sqrt{3} x - y = 0$

(iv)
$$(\sqrt{3}-1)x + y = 0, (\sqrt{3}+1)x - y = 0$$

4) (i)
$$5x^2 + 4xy - y^2 = 0$$

(ii)
$$9x^2 - 3xy - 2y^2 = 0$$

(iii)
$$x^2 + xy - y^2 = 0$$

$$3x^2 + 2xy - 3y^2 = 0$$

7)
$$x^2 - 3y^2 = 0$$

8)
$$\frac{50}{\sqrt{3}}$$

$$10) x^2 - 2xy - y^2 = 0$$

(i)
$$0^{\circ}$$

(i)
$$0^{\circ}$$

(ii)
$$tan^{-1}(3)$$

(iii)
$$tan^{-1}(3)$$

$$14) x^2 - 3y^2 = 0$$

18) Area =
$$\sqrt{3}$$
 sq. unit, Perimeter = 6 unit

22)
$$e = 0$$
 or $bd = ae$

26)
$$a = 1, c = 0.$$

5. Vectors

Exercise 5.1

- 1) 25
- **2)** (i) $2\bar{a} 2\bar{b}$

- (ii) $2\overline{a} 2\overline{b}$ (iii) $\overline{a} + \overline{b}$ (iii) $\overline{b} \overline{a}$ $\overrightarrow{OC} = 2\overline{a} + 2\overline{b}$, $\overrightarrow{OD} = -3\overline{a} + 2\overline{b}$, $\overrightarrow{OE} = -2\overline{a} + \overline{b}$
- Vectors do not form a triangle.
- $\overline{c} = \frac{1}{2} \, \overline{a} + \frac{1}{2} \, \overline{b} \, . \, \, \, \overline{d} = \frac{1}{2} \, \, \, \overline{b} \frac{1}{2} \, \overline{a} \, .$
- $\frac{7}{\sqrt{5}}\hat{i} \frac{14}{\sqrt{5}}\hat{j}$

- (c) 2 (d) $2\sqrt{10}$ (e) $2\sqrt{13}$ (f) $2\sqrt{5}$

- 8) (a) 6 (b) 4 (c) 9) (a) x = -3, y = 4, z = 5
- (b) (0, 1, 6)
- $\frac{\sqrt{3}}{2}$ sq. units
- Terminal Point is (3, 1, 7)**11**)
- 13) $q = \frac{5}{2}$
- **14**) Non coplanar

15) $\overline{r} = 2\overline{a} + 2\overline{b} - 3\overline{c}$

Exercise 5.2

- (i) $\frac{1}{5}$ (-11, 4, -9) (ii) (-19, 8, -21) 1)
- 2) M(6, -1, 5)
- (i) C divides externally in the ration 3:1. (ii) p = 9, q = 2. **3**)

- **6**) 15: 4 and 10: 9 respectively
- $C \equiv (-2, 0, 2)$ 9)
- OP : PD = 3 : 2**10**)
- $\sqrt{107}$ **11**)
- $G \equiv (4, -3, 2)$ **12**)

Exercise 5.3

- $\pm \left(\frac{2}{\sqrt{17}} \hat{i} + \frac{2}{\sqrt{17}} \hat{j} + \frac{3}{\sqrt{17}} \hat{k} \right)$
- **6)** (i) Parallel
- (ii) Orthogonal
- (iii) Orthogonal (iv) Neither parallel nor orthogonal

7) $\angle P = 45^{\circ}$

- 8) (i) $\frac{1}{2}$ (ii) $\frac{1}{2}$

10)

11) 0, $\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

 $\frac{2}{11}, \frac{-6}{11}, \frac{9}{11}$ **12**)

13) (0, 5, 7) or (8, -3, 3)

-1, 1, 2 or 1, 2, 3. **14**)

Exercise 5.4

1)
$$-4\hat{i} + 10\hat{j} + 22\hat{k}$$

2)
$$\pm \left(\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}\right)$$

3) 60°

$$\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

5) (i)
$$\pm$$
 6

7)
$$6i + 12j + 6k$$

8)
$$\sqrt{146}$$
 sq. units

10)
$$\sqrt{42}$$
 sq. units

12)
$$\overline{b} = \frac{1}{3} (5\hat{i} + 2\hat{j} + 2\hat{k})$$

13)
$$2\hat{j} + \hat{k}$$

14)
$$\frac{3\pi}{4}$$

14)
$$\frac{3\pi}{4}$$
16) i) -3, 5, 11

17)
$$\left(\frac{-8}{5}, \frac{16}{5}, \frac{24}{5}\right)$$

Exercise 5.5

- 1) 110
- 2) 23 cubic units
- p = 2
- **6)** (i) -12
- ii) 16
- 7) $\frac{16}{3}$ cubic units

9) (i) $6\hat{i} + 3\hat{j} - 6\hat{k}$ (ii) $-2\hat{i} + 4\hat{j}$

Not same; as $\overline{a} \times (\overline{b} \times \overline{c})$ lies in the plane of \overline{b} and \overline{c} whereas $(\overline{a} \times \overline{b}) \times \overline{c}$ lies in the plane of \overline{a} and \overline{b} .

Miscellaneous exercise - 5

I.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
C	В	В	В	A	D	C	A	В	В	A	В	A	A	A	В	С	В	A	Α

II. 1) (i) $\bar{b} - \frac{1}{2} \ \bar{a}$

(ii) $\overline{b} - 3\overline{a}$

(iii) $\frac{3}{2} \overline{a} - \overline{b}$ (iv) $2\overline{a} - \overline{b}$

 $-\frac{1}{2}\overline{a}-\frac{1}{2}\overline{b}+\overline{c}$

4) $\overrightarrow{AB} = -2\hat{i} + 5\hat{j} + \hat{k}$ and $\overrightarrow{AD} = 4\hat{i} - 2\hat{j} + 3\hat{k}$

5)

6) $\sqrt{2}$

7) (i) Right angled triangle ii) Isosceles triangle

8) (i) $2j \pm 2\sqrt{3} \hat{k}$

ii) $\pm 5\sqrt{2} \hat{i} + 5\sqrt{2} \hat{k}$

9) $\frac{1}{\sqrt{17}} (3i + 2j + 2k)$ and $\frac{1}{\sqrt{21}} (-i - 2j + 4k)$

11) $\pm \frac{1}{\sqrt{17}} (i+4j)$

 $\hat{i} + 4\hat{j} - 4\hat{k} = 1(2\hat{i} - \hat{j} + 3\hat{k}) + 2(\hat{i} - 2\hat{j} + 4\hat{k}) + 3(-\hat{i} + 3\hat{j} - 5\hat{k})$

 $14) \qquad 7(\hat{i}+\hat{j}+\hat{k})$

15) (-4, 9, 6)

20) OP : PD = 3 : 2

21) $3\hat{i} + 2\hat{k}$

 $\overline{a}_1 = 6\hat{i} + 2\hat{k}$ and $\overline{a}_2 = -\hat{i} - 2\hat{j} + 3\hat{k}$ 24)

25) $\pm \left(\frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right)$

26) $\cos \theta = \frac{7}{5\sqrt{2}}$

27) $\cos \alpha = \frac{2}{3}, \cos \beta = \frac{1}{3}$ and $\cos \gamma = \frac{2}{3}$ $\cos \alpha = \frac{1}{3}, \cos \beta = \cos \gamma = \frac{2}{3}$

 $2\hat{i} - \hat{j}$ 28)

$$30) \quad \cos^{-1}\left(\frac{1}{6}\right)$$

31)
$$\left(\frac{19}{9}, \frac{28}{9}, \frac{41}{9}\right)$$

33)
$$\frac{bc\hat{i} + ac\hat{j} + ab\hat{k}}{\sqrt{b^2c^2 + a^2c^2 + a^2b^2}} \quad \text{and} \quad \text{area} = \frac{1}{2}\sqrt{b^2c^2 + a^2c^2 + a^2b^2}$$

- 34) a) meaningful, scalar
- b) meaningless
- c) meaningful, vector

- d) meaningless
- e) meaningless
- f) meaningful, scalar

- g) meaningless
- h) meaningful, vector
- i) meaningful, scalar

- j) meaningful scalar
- k) meaningless
- 1) meaningless

36) (i) No

ii) No iii)

Yes

- $\sqrt{286}$ sq. units.
- **40**) $a = \pm \frac{1}{\sqrt{3}}$
- **41**) $2a^3$ cu. units.
- 44) 2 cubic units, $\frac{1}{3}$ cubic units

* * * * *

6. Line and Plane

Exercise 6.1

1)
$$\overline{r} = \left(-2\hat{i} + \hat{j} + \hat{k}\right) + \lambda \left(4\hat{i} - \hat{j} + 2\hat{k}\right)$$

$$\overline{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda (3\hat{i} - 5\hat{j} + 8\hat{k})$$

3)
$$\overline{r} = \left(3\hat{i} + 4\hat{j} + 3\hat{k}\right) + \lambda\left(-3\hat{i} + 4\hat{j} + 2\hat{k}\right)$$

$$\mathbf{4)} \qquad \overline{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda \left(2\hat{i} + \hat{j} - 3\hat{k}\right)$$

5)
$$\overline{r} = \left(-\hat{i} - \hat{j} + 2\hat{k}\right) + \lambda \left(3\hat{i} + 2\hat{j} + \hat{k}\right)$$

$$6) \qquad \frac{x+1}{2} = \frac{y-2}{3} = \frac{z-1}{1}$$

7)
$$\frac{x-2}{-1} = \frac{y-2}{1} = \frac{z-1}{-1}$$

8)
$$\frac{x+2}{3} = \frac{y-3}{-2} = \frac{z-4}{-2}$$

10)
$$\overline{r} = (3\hat{i} - \hat{j} + 2\hat{k}) + \lambda(-2\hat{i} - 3\hat{j} - 2\hat{k})$$

Exercise 6.2

1)
$$\sqrt{35}$$

2)
$$(1, 2, 3), \sqrt{14}$$

3)
$$\frac{1}{\sqrt{3}}$$

4)
$$2\sqrt{29}$$

5)
$$2\sqrt{6}$$
, $(3, -4, -2)$

$$\mathbf{6)} \qquad \left(\frac{99}{53}, \frac{-187}{53}, \frac{95}{53}\right)$$

8)
$$\frac{9}{2}$$

Miscellaneous exercise - 6A

1)
$$\overline{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda (6\hat{i} - \hat{j} + \hat{k})$$

$$\overline{r} = (3\hat{i} + 2\hat{j} + \hat{k}) + \lambda (2\hat{i} + 2\hat{j} - 3\hat{k})$$

3)
$$\overline{r} = \left(-2\hat{i} + 4\hat{j} - 5\hat{k}\right) + \lambda\left(3\hat{i} + 5\hat{j} + 6\hat{k}\right)$$

4)
$$\overline{r} = \left(-5\hat{i} - 4\hat{j} - 5\hat{k}\right) + \lambda \left(3\hat{i} + 5\hat{j} + 6\hat{k}\right)$$

$$\overline{r} = \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k} \right)$$

6)
$$x = 3$$
 , $y = -2$

7)
$$\frac{x-3}{-2} = \frac{y-2}{1}; z = 1$$

8)
$$x-1=y-1=z-2$$

9)
$$\frac{x-2}{2} = \frac{y-1}{-7} = \frac{z-3}{4}$$

10) $\overline{r} = \lambda \left(-\hat{i} + \hat{k}\right)$

$$\mathbf{10)} \qquad \overline{r} = \lambda \left(-\hat{i} + \hat{k} \right)$$

11)
$$-\frac{10}{11}$$

18)
$$\frac{x+1}{3} = \frac{y+1}{2} = \frac{z-2}{1}, \ \overline{r} = (-\hat{i} - \hat{j} + 2\hat{k}) + \lambda(3\hat{i} + 2\hat{j} + \hat{k})$$

19)
$$\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}, 0$$

$$\frac{x}{7} = \frac{y}{-12} = \frac{z}{5}$$

21)
$$\overline{r} = \left(2\hat{j} + \frac{5}{3}\hat{k}\right) + \lambda\left(3\hat{i} + 4\hat{k}\right)$$

Exercise 6.3

$$\mathbf{1)} \qquad \overline{r} \cdot \left(2\hat{i} + \hat{j} - 2\hat{k}\right) = 126$$

3)
$$\left(\frac{18}{7}, \frac{54}{7}, \frac{-27}{7}\right)$$

4)
$$\overline{r} \cdot \left(\frac{3}{13} \hat{i} + \frac{4}{13} \hat{j} + \frac{12}{13} \hat{k} \right) = 6$$
, (i) 6 (ii) $\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13} \right)$

$$\overline{r} \cdot \left(4\hat{i} + 5\hat{j} + 6\hat{k} \right) = 15$$

6)
$$2y + 5z = 19$$

7)
$$z = 6$$

$$8) \qquad \overline{r} \cdot (\hat{i}) = 1$$

9)
$$\overline{r} \cdot \left(-4\hat{i} - \hat{j} + 5\hat{k}\right) = 26$$

10)
$$5x - 2y - 3z = 38$$

$$11) \qquad \overline{r} \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = 1$$

Exercise 6.4

$$2) \qquad \sin^{-1}\left(\frac{5}{7\sqrt{6}}\right)$$

3)
$$\overline{r} \cdot (-\hat{i} + 2\hat{j} - \hat{k}) = 7$$

4) 4

Miscellaneous exercise - 6B

I.

1	2	3	4	5	6	7	8	9	10
В	A	A	C	D	В	В	C	D	В
11	12	13	14	15	16	17	18	19	20
A	D	D	D	A	A	В	В	A	В

II. 1)
$$\overline{r} \cdot (2\hat{i} + \hat{j} + 2\hat{k}) = 15$$

- **2**) 1
- **3**) (2, 3, 6)
- 4) i) $\frac{1}{2}$

ii) $\frac{3}{13}, \frac{4}{13}, \frac{12}{13}$

$$\overline{r} \cdot \left(16\hat{i} + 4\hat{k} \right) = 20$$

- 6) y + 2 = 0
- 6x + 8y + 7z = 148
- $8) \qquad \overline{r} \cdot (\hat{i} + 2\hat{j}) = 5$

9)
$$\overline{r} \cdot \left(bc\hat{i} + ca\hat{j} + ab\hat{k}\right) = abc$$

10)
$$\overline{r} \cdot \left(-3\hat{i} + 3\hat{j} + 4\hat{k} \right) = 35$$

11)
$$\overline{r} \cdot (5\hat{i} - 4\hat{j} + \hat{k}) = 0$$

12)
$$x + y + z = 6, x - 2y + z = 0$$

13)
$$x + y + z = 3$$

$$15) \quad \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$

$$\mathbf{16}) \qquad \overline{r} \cdot \left(-\hat{i} + 2\hat{j} - \hat{k} \right) = 7$$

- **17**) 0 unit
- **18**) 19 units

$$\mathbf{19}) \qquad \overline{r} \cdot \left(\hat{i} - \hat{k}\right) = 0$$

$$\mathbf{20}) \qquad \overline{r} \cdot \left(\hat{i} - 4\hat{k}\right) = -5$$

$$\mathbf{21}) \qquad \overline{r} \cdot (\hat{k}) = 0$$

* * * * *

7. Linear Programming

Exercise 7.3

- 1) maximize z = 30x + 20y subject to $10x + 6y \le 60$, $5x + 4y \le 35$, $x \ge 0$, $y \ge 0$
- 2) maximize z = 3x + 2y subject to $2x + y \ge 14$, $2x + 3y \ge 22$, $x + y \ge 1$, $x \ge 0$, $y \ge 0$
- maximize p = 350x + 400y subject to $3x + 2y \le 120$, $2x + 5y \le 160$, $x \ge 0$, $y \ge 0$ 3)
- 4) maximize z = 10x + 15y subject to $2x + 3y \le 36$, $5x + 2y \le 50$, $2x + 6y \le 60$, $x \ge 0$, $y \ge 0$
- maximize p = 13.5x + 55y subject to $x + 2y \le 10$, $3x + 4y \le 12$, $x \ge 0$, $y \ge 0$ **5**)
- maximize z = 500x + 750y subject to $2x + 3y \le 40$, $x + 4y \le 70$, $x \ge 0$, $y \ge 0$ **6**)
- minimize z = 4.5x + 3.5y subject to $4x + 6y \ge 18$, $14x + 12y \ge 28$, $7x + 8y \ge 14$, $x \ge 0$, $y \ge 0$ **7**)
- maximize $z = x_1 + x_2$ subject to $\frac{x_1}{60} + \frac{x_2}{90} \le 1$, $5x_1 + 8x_2 \le 600$, $x \ge 0$, $x_2 \ge 0$ **8**)
- minimize C = $20 x_1 + 6x_2 s$. $t x_1 > 4$, $x_2 < 2$, $x_1 + x_2 \ge 5$, $x \ge 0$, $x_2 \ge 0$. 9)

Exercise 7.4

- 1) Maximum at (4, 2), 60
- 2) Maximum at (0, 6), maximum value = 36
- 3) Maximum at (4.5, 2.5), 59
- **4**) Maximum at (2, 3), maximum value = 95
- Maximum at (4, 5), maximum z = 375)
- **6**) minimum at (0, 5), 5
- **7**) minimum at (1.5, 4), 52
- **8**) minimum at (2, 0.5), 22.5

Miscellaneous exercise - 7

I.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	С	В	С	A	D	С	В	A	В	В	В	A	С	С

- (i) $x_1 = 4.5, x_2 = 3$ (ii) x = 3, y = 18**5**) max z = 40.5.
 - $\min z = 48$.
 - (iii) infinite number of optimum solutions on the line 3x + 5y = 10 between $A\left(\frac{45}{16}, \frac{5}{16}\right)$ and B(0, 2).

- 6) (i) x = 4, y = 3 maximize z = 25.
 - (ii) x = 10, y = 15maximize z = 1350.
 - (iii) x = 3, y = 18 maximize z = 48.
- 7) maximize z = 140x + 210y s.t. $3x + 3y \le 36$, $5x + 2y \le 50$, $2x + 6y \le 60$ $x, y \ge 0$ where x = no. of tables = 3 y = no. of chairs = 9
 - maximize z = maximum profit = 2310
- 8) Maximize z = 180x + 220y s.t. $6x + 4y \le 120$, $3x + 10y \le 180$, $x \ge 0$, $y \ge 0$. Ans. x = 10, y = 15.
- 9) Minimize z = 4x + 6y s.t. $x + 2y \ge 80$, $3x + y \ge 75$, $x \ge 0$, $y \ge 0$. Ans. x = 14, y = 33.
- 10) Maximize z = 2000x + 3000y s.t. $3x + 3y \le 36$, $5x + 2y \le 50$, $2x + 6y \le 60$, $x \ge 0$, $y \ge 0$. Ans. x = 3, y = 9.
- 11) Minimize z = 800x + 640y s.t. $4x + 2y \ge 16$, $12x + 2y \ge 24$, $2x + 6y \ge 18$, $x \ge 0$, $y \ge 0$. Ans. Minimum cost ₹3680 when x = 3, y = 2.
- 12) Maximize z = 75x + 125y s.t. $4x + 2y \le 208$, $2x + 4y \le 152$, $x \ge 0$, $y \ge 0$. Ans. x = 44, y = 16.
- 13) Maximize z = -3x + 4y s.t. $x + y \le 450$, $2x+y \le 600$, $x \ge 0$, $y \ge 0$ maximum profit = Rs. 1800 at (0, 450)
- 14) Maximize z = 20x + 30y s.t. $2x + 2y \le 210$, $3x + 4y \le 300$, $x \ge 0$, $y \ge 0$ maximum profit = Rs. 2400 at (30, 60)

