CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Plan

Homework 01

Avoid overlapping q & a

Consider the proposition ~P \(\lambda \(\mathbb{Q} -> P \rangle \). What can you conclude about P and Q if you know the statement is true? For this exercise, the explanation is not needed. Just show your results concisely.

N + falce 12 -1 falce Exercise 5 (points = 20)

A tautology and a contradiction are terms used in logic to describe specific types of propositions.

- . A tautology is a proposition that is always true, regardless of the truth values of its constituent parts. In other words, a proposition is a tautology if it is true in every row of a truth table. For example, p V -p. An example in plain language: "It will either rain today or it won't."
- A contradiction is a proposition that is always false, regardless of the truth values of its constituent parts. In other words, a proposition is a contradiction if it is false in every row of a truth table. For example, p \(\) ~p. An example in plain language: "I will finish the homework today and I will not."

For each statement form below, determine if it is a tautology, contradiction, or neither. For this exercise, the explanation is not needed. Just show your results concisely.

- 1. (~p V q) V (p Λ~q) η eith ex 2. (p Λ~q) Λ (~p V q) (ση tr η λίτετίση 3. (p Λ q) V (~p V (p Λ~q))

Exercise 6 (points = 20)

Verifying Simple Code with Hoare Logic

Exercise 1. (points = 10)

Check if the two statement forms below are logically equivalent. Produce a truth table and make a conclusion.

- p \ q -> r
- $(p \rightarrow r) \land (q \rightarrow r)$

	4	r	PVG	PVQ	→ r
Т	Т	Т	Т	Τ	
1	7	F	T	ŧ	-
Т	F	Т	T	1	
7	F	F	τ	F	=
F	τ	T	T	1	
F	7	F	τ	F	=
F	F	1	F	1	Г
F	F	F	F	-	Т
ρ	ዒ	(q,→r) r	por	q→r	(p→r) 1 (q→r)
Т	Т	Т	Τ .	Т	Т
	7	F	F	F	F
1	F	Т	τ	т	T
Т		F	F	1	F
	F		+	Τ	Τ
т	T	T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
т т		T F	T	F	F
т т	Τ		T T		F

Exercise 2 (points = 10)

Check if the two statement forms below are equivalent. Produce a truth table and make a conclusion.

- $(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$
- p∧q∧r

ρ	q	r	p → q_	q-r	r→ρ	(p→q) (q→r)	(p=q) 1 (q+r) 1 (r+p)
T	T	Т	T	T	Т	7	Т
1	Т	F	T	F	Т	F	F
т	F	Т	F	T	Т	F	F
7	F	F	F	Т	Т	F	F
F	τ	1	Т	1	F	Т	F
F	1	F	Т	F	Τ	F	F
F	F	1	Т	Т	F	1	F
F	F	F	Т	T	T	1 1	1
) p n o	Lvr						
P	q	r	pnq	Pnq	۸۲		
T	T	Ţ	T	1			
T	T	F	1	F			
T	F	Ţ	F	F			
て ド	F	F	F	F			
F	1	F		F			
F	F	Т	F	F			
F	F	F	F	F			

Exercise 3 (points = 30)

Consider six statement forms (a-f):

- (a) p -> q
- (b) q -> p
- (c) ~p ∨ q
- (d) ~q ∨ p
- (e) ~q -> ~p
- (f) ~p -> ~q
- 1. Find all statement forms that are equivalent to (a), except (a) itself.
- 2. Find all statement forms that are equivalent to (b), except (b) itself.

For this exercise, the explanation is not needed. Just show your results concisely.

#2	
(.	(a) p → q
	= ~ρ v q
	= qv~p
	= ~q - ~p
	:. (a) is equivalent to (c), (e)
2.	(b) Q → P
	= ~ q. v p
	= pv~q_
	= ~ p → ~ q.
	:. (b) is equivalent to (d), (f)

Exercise 4 (points = 10)

Consider the proposition \sim P \land (Q -> P). What can you conclude about P and Q if you know the statement is true? For this exercise, the explanation is not needed. Just show your results concisely.

~P/	(Q-	•6)									
P	Q	~ P	Q→P	~P ∧ (Q → P)							
1	1	F	1	F							
7	F	F	T	F							
F	T	1	F	F							
F	F	1	T	Т							
1£	the	Gtateme	nt ~PA	(Q→P) 76 tv	ie, 7t	- Ghows	that	both	Pan	d Q are	false.

Exercise 5 (points = 20)

A tautology and a contradiction are terms used in logic to describe specific types of propositions.

- A tautology is a proposition that is always true, regardless of the truth values of its constituent parts. In
 other words, a proposition is a tautology if it is true in every row of a truth table. For example, p √ ~p. An
 example in plain language: "It will either rain today or it won't."
- A contradiction is a proposition that is always false, regardless of the truth values of its constituent parts.
 In other words, a proposition is a contradiction if it is false in every row of a truth table. For example, p \(\sigma \)
 ~p. An example in plain language: "I will finish the homework today and I will not."

For each statement form below, determine if it is a tautology, contradiction, or neither. For this exercise, the explanation is not needed. Just show your results concisely.

- 1. $(\sim p \lor q) \lor (p \land \sim q)$
- 2. $(p \land \sim q) \land (\sim p \lor q)$
- 3. $(p \land q) \lor (\sim p \lor (p \land \sim q))$

#6	ī							
(.	(~ p	v ዌን	V (P /	(p ~ 1				
	P	q	~ p	~ 9	1 ~ pvq	pnng	(~pvq_)v(p^~q)
	Т	T	F	F	Т	F	1	
	Т	F	F	1	F	Т	Т	
	F	F	F	F	1	F	Т	
	F		I I.	T	Т	F	T	
	Gīn	ice	last	Colun	an conto	itng all	T'4, it is t	autology.
٦.	(pn	~4)	۸(~	pvg)				
	P	q.	~p	~9	prag	~pvq	(pnnq) nc	~ p v q)
	Т	7	F	1	F	T	F	
	Т	F	F	1	T	F	F	
	F	Т	1	F	F	T	F	
	F	F	1	1	F	T	F	
	hīv	ice	(agt	Colum	n contain	ng all F	s, it is con	tradiction.
ን,	(ρ	ላዌ) ነ	/(~p	v(pn^	(G))			
	P	q	~ P	~ q	pnq	pang .	~pv(pn~q)	(pnq)v(~pv(pn~q))
	Т	T	F	F	Т	F	F	Т
	Т	F	F	1	F	Т	Т	Т
	F	Т	1	F	F	F	Т	Т
	F	F	1	T	F	F	Т	Т
	Gin	ce (ast c	olumn	contains	all T's	, it is tout	o(ogy.

Exercise 6 (points = 20)

Verifying Simple Code with Hoare Logic

1. $\{x = 3 \land y = 2\}$ Code $\{x = 2 \land y = 3\}$, where "Code" refers to the following

```
x := x + y
y := x - y
x := x - y
```

2. $\{x > 0\}$ while $\{x <= 10\}$ $\{x = x + 1\}$ $\{x > 10\}$

(.	{1=3 1 y=21 1:= 1+4
	y:= x-y
	オニーオーな イカニンへなニろう
	1=n+v=5
	y= 5-2=3
	ダ= 5-3 = 2
	:. correct
١.	{a707 Whī(e (d<=10) {d=d+1} {d710}
	1=1 ⇒ 1=11
	1=0.1 ⇒ 1=10.1
	no counterexample
	:- Correct