МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студентка гр. 0383	Куртова К. А.
Преподаватель	Ефремов М. А

Санкт-Петербург

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант 12:

$$f2 = \begin{cases} -(4i+3), a > b \\ 6i-10, a \le b \end{cases}$$

$$f7 = \begin{cases} -(4i-5), a > b \\ 10-3i, a \le b \end{cases}$$

$$f4 = \begin{cases} \min(|i_1-i_2|, 2), k < 0 \\ \max(-6, -i_2), k \ge 0 \end{cases}$$

Ход работы.

Для программы прописано три сегмента — сегмент стека, сегмент данных, в котором хранится информация о переменных a, b, I, k, i₁, i₂, res, для каждого из которых выделено слово (word) в памяти. Описан сегмент кода, в котором находится головная процедура Main, в которой и производятся основные вычисления.

В ходе выполнения работы были использованы условные (jmp) и безусловные (jle, lge, jl) переходы. Вычисление функций было выполнено без использования отдельных процедур, только с использованием переходов, которые переходят к указанным лейблам. Код программы представлен в приложении A, листинг программы представлен в приложении Б.

Тестирование программы.

В таблице 1 представлен результат тестирования программы.

Таблица 1 — Результат тестирования программы

Входные данные	Результирующие	Проверка	
	данные		
a = 5	i1 = FFF5 = -11	Верно.	
b = 3	i2 = FFFD = -3	i1 = -(8+3) = -11	
i = 2	res = 0002 = 2	i2 = -(8-5) = -3	
k = -1		$ -11 + 3 > 2 \Rightarrow res = 2$	
a = 3	i1 = 000E = 14	Верно.	
b = 5	i2 = i2 = FFFE = -2	i1 = 24 - 10 = 14	
i = 4	res = 0002 = 2	i2 = 10 - 12 = -2	
k = -1		$ 14 + 2 > 2 \Rightarrow res = 2$	
a = 3	i1 = 000E = 14	Верно.	
b = 5	i2 = i2 = FFFE = -2	i1 = 24 - 10 = 14	
i = 4	res = 0002 = 2	i2 = 10 - 12 = -2	
k = 1		$-6 < 2 \Rightarrow res = 2$	
a = 3	i1 = 0005 = 5	Верно.	
b = -5	i2 = 000D = 13	i1 = -(-8 + 3) = 5	
i = -2	res = FFFA = -6	i2 = -(-8 - 5) = 13	
k = 1		-6 > -13 = res = -6	

Выводы.

В ходе лабораторной работы были изучены представление и обработка целых чисел. Также были рассмотрены условные и безусловные переходы, и с их помощью была разработана программа, которая по заданным значениям переменных вычисляет значение нескольких функций.

ПРИЛОЖЕНИЕ А

Текст разработанной программы lab3.txt

```
EOL EQU '$
;-----Стек программы-----
AStack SEGMENT STACK
DW 32 DUP(?)
AStack ENDS
;-----Данные программы-----
DATA SEGMENT
buffer DB 128 DUP(?)
a DW 3
b DW -5
i DW -2
k DW 1
i1 DW?
i2 DW?
res DW?
DATA ENDS
;-----Код программы-----
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
;-----Головная процедура-----
Main PROC FAR
     push ds
     sub ax, ax
     push ax
     mov ax, DATA
     mov ds, ax
     mov ax, i
     mov bx, a
     стр bx, b ; Сравниваем а и b
               ; Если a <= b, перейти к case2
     ile case2
case1:
     ; Вычисление f2
     shl ax, 1
     shl ax, 1
               ; ax = 4i
     neg ax
                     ax = -4i
     sub ax, 3
               ax = f2(i) = -4i - 3
     mov i1, ax ; i1 = -4i-3
```

```
; Вычисление f7
      add ax, 8
                  ; ax = f7(i) = -4i + 5
      mov i2, ax ; i2 = -4i + 5
      jmp f4_
case2:
      ; Вычисление f7
      mov bx, ax; bx = i
               ax = 2i
      shl ax, 1
      add ax, bx ; ax = 3i
      mov bx, 10
      sub bx, ax ; bx = 10 - 3i
      mov i2, bx
      ; Вычисление f2
                  bx = 20 - 6i
      shl bx, 1
      neg bx
                        bx = 6i - 20
      add bx, 10; bx = 6i - 10
      mov i1, bx
f4_:
      mov bx, k
      cmp bx, 0
                        ; Если k \ge 0, перейти к f3 case2
      jge f4_case2
f4 case1:
      mov ax, i1
      sub ax, i2
                  ; i1-i2
      cmp ax, 0
                  ; Если i1 - i2 < 0, найдём модуль выражения
      il abs
                        ; Больше 0, перейти к поиску минимального числа в
      jmp min
паре
abs:
      neg ax
min:
      mov bx, 2
      cmp ax, 2
      jle absmin ; Если |i1 - i2| \le 2, перейти к absmin
twomin:
      mov cx, 2
      jmp f4_end
absmin:
      mov cx, ax
      jmp f4_end
f4_case2:
```

```
mov ax, i2
neg ax
cmp ax, -6
jge i2max ; Если -i2 >= -6, перейти к i2max
neg6max:
mov cx, -6
jmp f4_end
i2max:
mov cx, ax
f4_end:
mov res, cx
ret

Main ENDP
```

CODE ENDS END Main

приложение Б

Файл листинга программы lab3.lst

Microsoft (R) Macro Assembler Version 5.10

11/4/21 16:31:48

Page 1-1

= '\$		EOL EQU '\$
		;PЎС,ек РїСЪРsРiСЪР°РjРjС<
0000 0000 0020[????		AStack SEGMENT STACK DW 32 DUP(?)
]	
0040		AStack ENDS
		;P"P°PSPSC <pμ pïcђpspicђp°pjpjc<<="" td=""></pμ>
0000		DATA SEGMENT
0000 0080[buffer DB 128 DUP(?)
??		
]	
0080 0003		a DW 3
0082 FFFB		b DW -5
0084 FFFE		i DW -2
0086 0001		k DW 1
0088 0000		i1 DW ?
008A 0000		i2 DW ?
008C 0000		res DW ?
008E		DATA ENDS

0000	;PљPsPr PïCЂPsPiCЂP°PjPjC< CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack					
	;P"PsP»PsPIPSP°CĻI PïCЪPsC†PµPrCŕCЪP°-					
0000	Main PROC FAR					
0000 1E	push ds					
0001 2B C0	sub ax, ax					
0003 50	push ax					
0004 B8 R	mov ax, DATA					
0007 8E D8	mov ds, ax					
0009 A1 0084 R	mov ax, i					
000C 8B 1E 0080 R	mov bx, a					
0010 3B 1E 0082 R	cmp bx, b ; РЎСЪавниваем					
	a Pë b					
0014 7E 15	jle case2 ; P•CΓ́P»Pë a <= b, PïPμ					
	CЂPμP№C,Pë Pε case2					
0016	case1:					
	; P'C <c‡pëcγ́p»pμpspëpμ f2<="" td=""></c‡pëcγ́p»pμpspëpμ>					
0016 D1 E0	shl ax, 1					
0018 D1 E0	shl ax, 1 ; $ax = 4i$					
001A F7 D8	neg ax ; ax = -4i					
001C 2D 0003	sub ax, 3 ; $ax = f2(i) = -4i - 3$					
001F A3 0088 R	mov i1, ax ; i1 = $-4i-3$					
; P'C‹C‡PëCΓ́P»PμPSPëPμ f7						
Microsoft (R) Macro Assembler Version 5.10 11/4/21 16:31:48						
	Page 1-2					
0022 05 0008	add ax, 8 ; $ax = f7(i) = -4i + 5$					
0025 A3 008A R	aud ax, $6 - ax = 17(1) = -41 + 3mov i2$, $ax : i2 = -4i + 5$					
0025 115 00011 IX	$1110 \vee 12, ux , 12 - \exists 1 \mid 3$					

```
jmp f4_
      002B
                             case2:
                                    ; P'C<C‡PëCΓP»PμPSPëPμ f7
      002B 8B D8
                                         mov bx, ax; bx = i
      002D D1 E0
                                         shl ax. 1
                                                     ax = 2i
      002F 03 C3
                                         add ax, bx ; ax = 3i
      0031 BB 000A
                                         mov bx, 10
      0034 2B D8
                                         sub bx, ax ; bx = 10 - 3i
                                         mov i2, bx
      0036 89 1E 008A R
                                    ; P'C<C‡PëCΓP»PμPSPëPμ f2
      003A D1 E3
                                         shl bx, 1
                                                     ; bx = 20 - 6i
      003C F7 DB
                                                           bx = 6i - 20
                                         neg bx
      003E 83 C3 0A
                                         add bx, 10; bx = 6i - 10
      0041 89 1E 0088 R
                                         mov i1, bx
      0045
                             f4_:
      0045 8B 1E 0086 R
                                         mov bx, k
      0049 83 FB 00
                                         cmp bx, 0
                                                           ; P \cdot C \Gamma P \rightarrow P \ddot{e} k >= 0,
      004C 7D 24
                                         ige f4_case2
PïPμ
                              CЂPµP№C,Pë Pε f3_case2
      004E
                              f4_case1:
      004E A1 0088 R
                                   mov ax, i1
      0051 2B 06 008A R
                                         sub ax, i2
                                                    ; i1-i2
      0055 3D 0000
                                         cmp ax, 0
                                                     ; P \cdot C \Gamma P \rightarrow P \ddot{e} i1 - i2 < 0,
      0058 7C 03
                                         il abs
                                                                  PjPsPrCŕP»СЊ
                              PSP°PNoPrC'Pi
PIC<CToP°P¶PµPSPëCLI
      005A EB 03 90
                                         jmp min
                                                           ; P'PsP»CHC€Pμ 0,
ΡϊΡμС
                                                                  PïPsPëCΓPєCή
                              ЪейС,Рё
                                                     Pε
PjPëPSPëPjP°P»СЊРSPsP
                             iPs C‡PëCΓ́P»P° PI PïP°CЂPμ
```

0028 EB 1B 90

005D abs: 005D F7 D8 neg ax 005F min: 005F BB 0002 mov bx, 2 0062 3D 0002 cmp ax, 2 jle absmin ; P•CΓP»Pë |i1 - i2| <= 0065 7E 06 2, PïPμCЂPμP№C,Pë Pε absmin 0067 twomin: 0067 B9 0002 mov cx, 2 006A EB 18 90 jmp f4_end 006D absmin: 006D 8B C8 mov cx, ax 006F EB 13 90 jmp f4_end 0072 f4_case2: 0072 A1 008A R mov ax, i2 0075 F7 D8 neg ax 0077 3D FFFA cmp ax, -6 ige i2max ; $P \cdot C \Gamma P \rightarrow P = -i2 > = -6$, P 007A 7D 06 ïPμCЪPμP№C,Pë Pε i2max neg6max: 007C 007C B9 FFFA mov cx, -6 Microsoft (R) Macro Assembler Version 5.10 11/4/21 16:31:48 Page 1-3 007F EB 03 90 jmp f4_end 0082 i2max: 0082 8B C8

mov cx, ax

0084 f4_end:

0084 89 0E 008C R mov res, cx

0088 CB ret

0089 Main ENDP

0089 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10

Symbols-1

11/4/21 16:31:48

Segments and Groups:

N a m e	Length	Alig	nComb	ine Class	
ASTACK	0089	PAR	A	NONE	
Symbols:					
N a m e	Type Val	ue	Attr		
A	L NEAR	005D	CODE	Ξ	
B					Length = 0080
CASE1					
EOL	TEXT '\$				
F4	L N	EAR EAR	004E 0072	CODE CODE	

I	L WORD	0084	DATA	
I1	L WORD	0088	DATA	
I2				
I2MAX	. L NE	EAR	0082 COE	DΕ
К	L WORD	0086	DATA	
MAIN	F PR	OC	0000 COE	DE Length = 0089
MIN				6
NEG6MAX	L NE	EAR	007C COE	D E
RES	L WORD	008C	DATA	
TWOMIN	L NE	EAR	0067 COE	D E
@CPU	. TEX	Т 010	1h	
@FILENAME				
@VERSION				
Microsoft (R) Macro				11/4/21 16:31:48
Whereson (It) Where		CISION	3.10	11/ 1/21 10.31.10
		Symb	ools-2	
101 Source Lines				
101 Total Lines				
30 Symbols				
47942 + 459318 Bytes	symbol spac	e free		
0 Warning Errors				

0 Severe Errors