Fejlesztői dokumentáció

Vidics Márk

T1YAAB

Mérnökinformatikus BSc

Tartalomjegyzék

1.	A p	rojekt áttekintése	2
	1.1.	Funkcionális követelmények	2
	1.2.	Nem funkcionális követelmények	2
2.	Ter	vezési fázis	3
	2.1.	Hardveres tervek	3
	2.2.	Szoftveres tervek	3
3.	Har	dver specifikáció	4
	3.1.	Próbapanel	4
	3.2.	Raspberry Pi	5
	3.3.	RFID olvasó	6
	3.4.	LCD kijelző	8
4.	Szoi	ftver specifikáció	9
	4.1.	Raspberry Pi OS	9
		4.1.1. Docker	10
5.	A fe	ejlesztett kód részletezése	L O
	5.1.	Adatbázis szerkezet	10
	5.2.	Verziókövető rendszer	12
	5.3.	Konfiguráció	12
	5.4.	Indító szkript	13
	5.5.	SPI kommunikáció	13
	5.6.	I^2C kommunikáció	13
	5.7.	Email küldés	13
	5.8.	HTTP hívások	13
\mathbf{T}_{i}	áblá	zatok jegyzéke	
	1.	Az RFID olvasó bekötési terve	8
	2.	Az LCD kijelző felhasznált lábai	9
	3.	Az LCD kijelző bekötési terve	9

4.	Az felhasználókkal kapcsolatos alapinformációk tárolása	11
5.	Az RFID kulccsal kapcsolatos alapinformációk tárolása	11
6.	Egy felhasználó összekapcsolása több RFID kulccsal (egy-a-többhöz)	11
7.	Egy felhasználóhoz tartozó RFID kulcs belépési idejének tárolása	12

1. A projekt áttekintése

1.1. Funkcionális követelmények

- A projekt célja egy olyan bemutató berendezés elkészítse, amely segítségével képesek vagyunk belépési eseményeket megjeleníteni, illetve karbantartani RFID kulcsok segítségével.
- Szükségünk van egy kártyaolvasó eszközre, amely a felhasználóknak kiosztott kártyák/kulcsok értékét beolvasni.
- Képesnek kell lennünk ezeket a kártyákat felhasználókhoz társítanunk.
- A rendszernek meg kell tudnia jeleníteni egy felhasználó belépése során a belépés állapotát,
 amik a következőek lehetnek: engedélyezett, tiltott és nem ismert kártya.
- A rendszernek rendelkeznie kell egy szolgáltatással, aminek segítségével valamilyen hálózati
 csatornán keresztül (pl.: HTTP kérések által) lekérdezhetőek és karbantarthatóak az RFID
 kulcsok, a felhasználók és a belépések.
- Gondoskodnunk kell arról, hogy ha egy felhasználó több alkalommal tiltott kártyával lép be, akkor üzenetet küldjünk a szolgáltatást üzemeltető rendszergazdának.

1.2. Nem funkcionális követelmények

- Egy Raspberry Pi 4 Model B eszköz még a projekt tervezése előtt beszerzésre került,
 ezért ez nem jelent külön kiadást, így a projekt ezzel kell megvalósítanunk, mert elégséges
 funkciókkal rendelkezik mind hardveres, mint szoftveres szinten.
- Egy bemutató eszköz elkészüléséhez az elektronikai elemeket tekintve maximum 10.000 forint összegű keretet szabunk meg. Ez egyben azt is meghatározza, hogy milyen hardverek jöhetnek szóba.

2. Tervezési fázis

2.1. Hardveres tervek

- A hardver elemek kiválasztása során figyelembe kell vennem, hogy a nem funkcionális követelményként meghatározott Raspberry Pi-hoz alkalmas eszközöket válasszak. Így ez esetben a GPIO lábkiosztása fogja nekünk megszabni azt, hogy pontosan milyen kommunikációs csatornán tudunk kommunikálni.
- Szükség esetén adott integrált áramköri panelek (pl.: RFID olvasó) lábait a csatlakozási pontokhoz kell forrasztani, ezért a forrasztóállomás beszerzéséről és egyéb kellékekről is gondoskodni kell.
- A bemutató eszközt próba panelen célszerű elkészíteni, mert az adott bekötés könnyen módosítható, illetve nem kell forrasztási műveleteket sem végezni ehhez.

2.2. Szoftveres tervek

- A Raspberry Pi 4 Model B eszköz (lényegében egy ARM architektúrájú kis számítógépről
 van szó) rendelkezik a gyártó által fejlesztett operációs rendszerrel, ezért ennek használata
 tűnt a legcélszerűbbnek, mert könnyen kezelhető és széleskörű csomagtámogatással rendelkezik.
- Követelményként szükségünk van egy adatokat szolgáltató alkalmazást fejleszteni, és mivel egy bemutató alkalmazásról van szó, ezért az egyszerűség kedvéért Python nyelven készül el, különböző pip csomagok használatával.

3. Hardver specifikáció

3.1. Próbapanel

A felhasznált próbapanel modellje: BB-102 (630/200)

1. ábra. A hardveres terv próbapanelen

2. ábra. A projekt tényleges megvalósítása üzemkész állapotban

3.2. Raspberry Pi

Az eszköz rendelkezik egy 40 csatlakozási pontos GPIO interfésszel. Ennek van egy belső számozása, amit a Raspberry Pi rendszere tud kezelni, illetve egy 1-40-ig tartozó számsorozat, ami a teljes lábkiosztásra vonatkozik. A következő ábrán a GPIO# jelölés a belső számozást, a csatlakozási pontok melletti számok pedig a teljes lábkiosztást adják meg. Az LCD kijelző és az RFID olvasó a teljes lábkiosztás szerint van bekötve.

3. ábra. Raspberry Pi 4 Model B lábkiosztása

3.3. RFID olvasó

A felhasznált RFID olvasó modellje: RC522-MFRC. A kommunikáció az olvasóval SPI interfészen keresztül történik, melynek értékét ütemezett intervallumokban lekérdezzük.

4. ábra. Az RFID olvasó kapcsolási rajza

Pin Number	Pin Name	De <mark>script</mark> ion
1	VCC	Used to Power the module, typically 3.3V is used
2	RST	Reset pin – used to reset or power down the module
3	Ground	Connected to Ground of system
4	IRQ	Interrupt pin – used to wake up the module when a device comes into range
5	MISO/SCL/Tx	MISO pin when used for SPI communication, acts as SCL for I2c and Tx for UART.
6	MOSI	Master out slave in pin for SPI communication
7	SCK	Serial Clock pin – used to provide clock source
8	MOSI	Acts as Serial input (SS) for SPI communication, SDA for IIC and Rx during UART

5. ábra. Az RFID olvasó lábkiosztása

RC522-MFRC olvas	só bekötési terv
Raspberry	
GPIO pin	RFID pin
száma	neve
17	VCC
22	RST
20	GND
21	MISO
19	MOSI
23	SCK
24	SDA (MOSI)

1. táblázat. Az RFID olvasó bekötési terve

3.4. LCD kijelző

A felhasznált LCD kijelző modellje: KC-1602-BB-I2C. A kommunikáció ${\rm I^2C}$ csomagkapcsolt soros buszon keresztül történik.

6. ábra. Az LCD olvasó kapcsolási rajza

7. ábra. Az LCD kijelző kivezetési pontjai

KC-1602-BB-I2C lábkiosztás			
Pin	Funkció		
GND	Földelési pont		
VCC	5V tápellátás		
SDA	Soros adatvonal		
SCL	Soros órajel		

2. táblázat. A	Az LCD I	kijelző	felhasznált	lábai
----------------	----------	---------	-------------	-------

KC-1602-BB-I2C bekötési terv				
Raspberry				
GPIO pin	RFID pin neve			
száma				
9	GND			
2	VCC			
3	SDA			
5	SCL			

3. táblázat. Az LCD kijelző bekötési terve

4. Szoftver specifikáció

4.1. Raspberry Pi OS

A Raspberry Pi OS egy Debian alapú operációs rendszer, ami kifejezetten a Raspberry Pi hardverekhez lett létrehozva. A következő operáció rendszer van telepítve:

• Kiadási dátum: 2023 október 10.

• Rendszer: 64-bit

• Kernel verzió: 6.1

• Debian verzió: 12 (bookworm)

4.1.1. Docker

A Docker egy konténeres virtualizációs platform, lehetővé teszi a felhasználóknak, hogy szoftveralkalmazásokat izolált környezetben futtassák. A konténereket könnyedén és gyorsan el lehet indítani, amik általában egy Dockerfile alapján vannak definiálva. A konténerben futott szoftver alapját az úgy nevezett base image adja meg. Ebben az esetben a MySQL adatbázis kezelő szoftverhez van használva, mert így el lehet kerülni a telepítési nehézségeket, valamint a konténert bármikor le tudjuk állítani vagy el tudjuk indítani. A konténer indítását a jelenlegi projekt esetén a szolgáltatáshoz tartozó indító szkript rendszerindításkor megteszi.

5. A fejlesztett kód részletezése

5.1. Adatbázis szerkezet

A szolgáltatás mögött egy MySQL adatbázis fut a korábban említett Docker konténerben, ami a belépési idők rögzítését, illetve az adott felhasználóhoz tartozó idők lekérdezését hívatott megvalósítani. Az adatbázis szerkezete a következő ábrán és táblázatokon van részletezve:

8. ábra. Egyed-kapcsolat modell

Felhasznalok				
Oszlop név	Típus	Tulajdonságok	Funkció	
CLIL	INT	UNIQUE NOT NULL	1.63	
fhId		AUTO_INCREMENT	A felhasználó azonosítója	
fhNev	VARCHAR(255)	NOT NULL	A felhasználó neve	

4. táblázat. Az felhasználókkal kapcsolatos alapinformációk tárolása

Rfid				
Oszlop név	Típus	Tulajdonságok	Funkció	
	DIE	UNIQUE NOT NULL	4 DDID ((()	
rId	INT	AUTO_INCREMENT	Az RFID azonosítója	
rErtek	CHAR(12)	UNIQUE NOT NULL	Az RFID kulcs értéke	

5. táblázat. Az RFID kulccsal kapcsolatos alapinformációk tárolása

Felhasznalo Azonosito					
Oszlop név	Típus	Tulajdonságok	Funkció		
(a, 4, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	T.Y.C.	UNIQUE NOT NULL			
fhAzonId	INT	AUTO_INCREMENT	Egy rekord azonosítója		
CLI	INT	NOT NIII I	A felhasznalok tábla fhId		
fhId		NOT NULL	oszlopa		
rId	CHAR(12)	UNIQUE NOT NULL	Az RFID tábla rId oszlopa		
	NOT		A felhasználóhoz rendelt		
letiltva	BIT	NOT NULL	RFID azonosító tiltásának		
		DEFAULT 0	állapota		

 $6.\ táblázat.$ Egy felhasználó összekapcsolása több RFID kulccsal (egy-a-többhöz)

Belepes						
Oszlop név	Típus	Tulajdonságok	Funkció			
fhAzonId	INT	NOT NULL	A felhasznaloAzonosito			
111111111111111111111111111111111111111	11/1	1.011.022	fhAzonId oszlopa			
		NOT NULL				
belepIdo	TIMESTAMP	DEFAULT	A belépés ideje			
		$CURRENT_TIMESTAMP()$				
rId	CHAR(12)	UNIQUE NOT NULL	Az RFID tábla rId oszlopa			
			A felhasználóhoz rendelt			
letiltva	ВІТ	NOT NULL DEFAULT 0	RFID azonosító tiltásának			
			állapota			

7. táblázat. Egy felhasználóhoz tartozó RFID kulcs belépési idejének tárolása

5.2. Verziókövető rendszer

A projekt követelményeknek megfelelően a kód GitHubon van tárolva, ami a következő linken elérhető: https://github.com/mark182182/GKLB_INTM020_mikroelektromechanikai_rendszerek

5.3. Konfiguráció

Az alkalmazásban használt beállításokat egy config.ini fájlból olvassuk ki. A Pythonban képesek vagyunk a configparser csomag segítségével egy előre megadott struktúrában definiálni kulcs-érték párokat.

A felhasználásuk a következő módon történik:

• [mysql] alatt:

Host: A MySQL adatbázis IP címe

– User: A MySQL adatbázishoz tartozó felhasználó

- Password: A MySQL adatbázishoz tartozó jelszó

- Database: A MySQL adatbázishoz neve

• [smtp] alatt:

- Host: A SMTP szerver címe
- Port: A SMTP szerverhez tartozó port
- User: A SMTP szerverhez szükséges felhasználó
- Password: A SMTP szerverhez szükséges jelszó
- FromAddress: Az emailt küldő címe
- ToAddress: Az emailt fogadó címe
- DebugLevel: Logikai változó, amely segítségével extra információt kapunk az SMTP szerverrel való kommunikációról

Dokumentáció a configparser csomagról ezen a linken elérhető.

5.4. Indító szkript

Az implementáció a következő fájlban található: start.sh

5.5. SPI kommunikáció

Az implementáció a következő fájlban található: rfid_spi.py

5.6. I²C kommunikáció

Az implementáció a következő fájlban található: lcd_2c.py

5.7. Email küldés

Az implementáció a következő fájlban található: smtp_client.py

5.8. HTTP hívások

Baz