PAKET 1

PELATIHAN ONLINE

po.alcindonesia.co.id

2019 SMA FISIKA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

DERET

Dalam matematika, deret merupakan penjumlahan secara terus menerus. Pada materi ini, kita akan belajar deret yang sangat membantu pada bidang fisika, seperti deret trigonometri, logaritma, dan seterusnya.

i. Deret $\sin x$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

ii. Deret $\cos x$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

iii. Deret $e^{\beta x}$

$$e^{\beta x} = 1 + \beta x + \frac{[\beta x]^2}{2!} + \frac{[\beta x]^3}{3!} + \frac{[\beta x]^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{[\beta x]^n}{n!}$$

iv. Deret ln(1+x)

$$\ln[1+x] = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots = \sum_{n=0}^{\infty} \frac{[-1]^{n+1} x^n}{n}$$

v. Deret ln(1-x)

$$\ln[1-x] = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \dots = \sum_{n=0}^{\infty} -\frac{x^n}{n}$$

APROKSIMASI

Ilmu aproksimasi merupakan ilmu pendekatan, bahasa mudahnya ilmu kira-kira. Sesuatu yang terpenting dari aproksimasi adalah "mendekati" (*similar, but not exactly equal*). Isaac Newton, Bapak Fisika kita, mengembangkan ilmu aproksimasinya, mungkin bisa dibilang aproksimasi dari deret, yaitu Binomial Newton.

$$[1+ax]^n = 1 + nax + \frac{n[n-1]}{2!}(ax)^2 + \frac{n[n-1][n-2]}{3!}(ax)^3 + \cdots$$

Dengan ini, semua dapat disederhanakan dengan syarat x haruslah bernilai kecil dan hasil aproksimasi harus menjadi pembilang (jika dalam bentu pecahan).

Contoh:

i. Tentukan aproksimasi sampai orde x

$$\frac{1}{\sqrt{2+3x}}$$

$$\frac{1}{\sqrt{2+3x}} = (2+3x)^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} \left(1 + \frac{3}{2}x\right)^{-\frac{1}{2}}$$

Kita mengetahui $a = \frac{3}{2} \operatorname{dan} n = -\frac{1}{2}$

Maka,

$$\frac{1}{\sqrt{2}} \left(1 + \frac{3}{2}x \right)^{-\frac{1}{2}} \approx \frac{1}{\sqrt{2}} \left(1 - \frac{3}{4}x \right)$$
$$\frac{1}{\sqrt{2+3x}} \approx \frac{1}{\sqrt{2}} \left(1 - \frac{3}{4}x \right)$$

ii. Tentukan aproksimasi sampai orde x^2

Asumsikan
$$\gamma \equiv 2x + 7x^2$$

$$\frac{1}{1 + 2x + 7x^2} \approx \frac{1}{1 + 2x + 7x^2} \approx \frac{1}{1 + 2x + 7x^2}$$

$$\frac{1}{4+\gamma} = \frac{1}{4} \left(1 + \frac{1}{4} \gamma \right)^{-1} \approx \frac{1}{4} \left(1 - \frac{1}{4} \gamma + \frac{2}{2!} \left(\frac{1}{4} \gamma \right)^2 \right)$$

$$= \frac{1}{4} \left(1 - \frac{1}{4} (2x + 7x^2) + \frac{1}{16} (2x + 7x^2)^2 \right)$$

$$\approx \frac{1}{4} \left(1 - \frac{1}{4} (2x + 7x^2) + \frac{1}{16} (4x^2 + 28x^3 + 49x^4) \right) = \frac{1}{4} \left(1 - \frac{1}{4} (2x + 7x^2) + \frac{1}{16} (4x^2) \right)$$

 x^3 , $x^4 \approx 0$ karena diminta hanya sampai orde x^2

Maka,

$$\frac{1}{4+2x+7x^2} \approx \frac{1}{4} - \frac{1}{8}x + \frac{9}{16}x^2$$

Aproksimasi pada Deret Tertentu

Jika x sangatlah kecil, maka

i.
$$\sin x \approx x$$

ii.
$$\cos x \approx 1$$

iii.
$$\tan x \approx x$$

iv.
$$e^{\beta x} \approx 1 + \beta x$$

v.
$$ln(1+x) \approx x$$

vi.
$$ln(1+x) \approx -x$$

Asumsikan, orde x^2 dan diatasnya bernilai 0

LIMIT

Limit mempunyai tujuan untuk mengetahui apa yang terjadi pada fungsi f(x) ketika x semakin mendekati suatu konstanta c. Secara notasi, limit ditulis sebagai berikut.

$$\lim_{x \to c} f(x) = L$$

Persamaan diatas memberi makna persamaan f(x) saat x mendekati suatu konstanta c dan memiliki hasil L. Perlu diingat dan dipahami dari limit, medekati bukan berarti sama (*similar*,

but not exactly equal). Sehingga, kita tidak bisa mengatakan bahwa $f(c) = f(x \to c)$ karena x sekedar mendekati suatu konstanta, bukan sama.

Sifat-Sifat Limit

- 1. Jawaban akhir harus terdefinisi (tidak boleh $\frac{0}{0}$ atau $\frac{\infty}{\infty}$)
- 2. $\lim_{x\to c} kf(x) = k \lim_{x\to c} f(x)$, dimana k merupaka suatu konstanta
- 3. $\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$ 4. $\lim_{x \to c} (f(x) \times g(x)) = \lim_{x \to c} f(x) \times \lim_{x \to c} g(x)$
- 5. $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{\substack{x \to c \\ x \to c}} \frac{f(x)}{g(x)}, \text{ dimana } \lim_{x \to c} g(x) \neq 0$
- 6. $\lim_{x \to c} (f(x))^n = \left(\lim_{x \to c} f(x)\right)^n$
- 7. $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$, dimana $\lim_{x \to c} f(x) > 0$ ketika n genap

Metode Penyelesaian Limit

Subtitusi

Metode ini hanya sekedar subtitusi nilai konstanta pada suatu fungsi. Berikut merupakan contoh metode subtitusi.

$$\lim_{x \to 2} 2x + 5 = 2(2) + 5 = 9$$

Pemfaktoran

Metode ini mungkin digunakan jika subtitusi tidak berhasil atau menghasilkan jawaban yang tidak terdefinisi. Berikut merupakan contoh metode pemfaktoran.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 2$$

Perkalian Akar Sekawan

Perkalian akar sekawan dapat dibilang merasionalkan penyebut digunakan saat fungsi berupa pecahan dan belum rasional. Berikut merupakan contoh merasionalkan fungsi.

$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2} = \lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2} \times \frac{\sqrt{x} + 2}{\sqrt{x} + 2} = \lim_{x \to 4} \sqrt{x} + 2 = 4$$

L'Hopital's Theorem

Nanti akan dijelaskan pada submateri differensial.

Sifat Istimewa Limit Trigonometri

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \ dan \ \lim_{x \to 0} \frac{\tan x}{x} = 1$$

DIFFERENSIAL

Differensial terhadap x dari fungsi y(x) merupakan gradient dari kurva y(x) tersebut. Berikut merupakan sifat-sifat dari differensial.

$$1. \ \frac{d}{dx}(x^n) = nx^{n-1}$$

2.
$$\frac{d}{dx}(k) = 0$$
, dimana k merupakan suatu konstanta

3.
$$\frac{d}{dx}(kx^n) = knx^{n-1}$$
, dimana *k* adalah konstanta

4.
$$\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$$

5.
$$\frac{\frac{d}{dx}}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$$

$$\frac{\frac{d}{dx}g(x)}{\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$$

$$6. \frac{\frac{d}{dx}(uvw) = uv\frac{d}{dx}w + uw\frac{d}{dx}v + wv\frac{d}{dx}u$$

7.
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{1}{v^2} \left(v \frac{d}{dx} u - u \frac{d}{dx} v \right)$$

8.
$$\frac{d}{dx} f(g(x)) = \frac{d}{dx} g(x) \times \frac{d}{dx} f(x) \Big|_{x=g(x)}$$

$$9. \ \frac{d}{dx} \ln x = \frac{1}{x}$$

10.
$$\frac{dx}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

$$11. \frac{\frac{d}{dx}}{dx} \sin x = \cos x$$

$$12. \frac{\frac{d}{dx}}{\cos x} = -\sin x$$

$$13. \frac{d}{dx} \tan x = \sec^2 x$$

$$14. \frac{d}{dx} \cot x = -\cos ec^2 x$$

$$15. \frac{d}{dx} \sec x = \tan x \sec x$$

$$16. \frac{d}{dx} \csc x = -\csc x \cot x$$

Note: u, v, w merupakan suatu fungsi x.

Selanjutnya, kalian bisa mencoba lebih banyak untuk menurunkan rumus-rumus tersebut.

Aturan Rantai

Aturan Rantai atau Chain Rule merupakan aturan untuk memanipulasi persamaan differensial. Misalkan y = f(u) dan u = g(x). Maka,

$$\frac{d}{dx}y = \frac{d}{dx}f(u) = \frac{df(u)}{dx} \times \frac{du}{du} = \frac{df(u)}{du} \times \frac{du}{dx}$$

Contoh:

Carilah $\frac{d}{dx}\sin 2x$. u = 2x

$$\frac{d}{dx}\sin 2x = \frac{d(\sin u)}{dx} \times \frac{du}{du} = \frac{d(\sin u)}{du} \times \frac{du}{dx} = 2\cos 2x$$

Turunan Implisit

Turunan Implisit merupakan persamaan differensial pada suatu fungsi yang tidak hanya terikat pada satu variabel.

Contoh:

Carilah gradien dari fungsi tersebut. $y^3 + 7y = 4xy$

$$\frac{d}{dx}(y^3 + 7y) = \frac{d}{dx}(4xy)$$
$$\frac{d}{dx}y^3 \times \frac{dy}{dy} + 7\frac{dy}{dx} = 4\left(y + x\frac{dy}{dx}\right)$$
$$\frac{dy}{dx} = \frac{4y}{3y^2 + 7 - 4x}$$

Teorema L'Hopital

Aturan ini hanya dapat digunakan untuk menyelesaikan kasus limit yang mempunyai hasi tidak tentu/tidak terdefinisi, yaitu $\frac{0}{0}$ dan $\frac{\infty}{\infty}$. Pada limit, ketika kita menghitung persamaan limit dengan metode subtitusi dan menghasilkan jawaban seperti diatas, kita bisa menggunakan teorema ini.

$$\lim_{x \to c} \frac{f(x)}{g(x)}$$

 $\frac{d}{dx}f(x) \equiv f'(x); \frac{d}{dx}f'(x) = f''(x)$ dan seterusnya.

$$\frac{f(c)}{g(c)} = \frac{0}{0}$$

Maka, kita bisa gunakan teorema diatas yang sangat berhubungan sekali dengan differensial

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = \frac{f'(c)}{g'(c)}$$

Jika ternyata, g'(x) masih bernilai 0, maka turunkan lagi persamaan terhadap x sampai jawaban terdefinisi. Sehingga, teorema ini sangat fleksibel dan dapat terus diulang jika jawaban masih tidak terdefinisi.

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f''(x)}{g''(x)} = \cdots dan \ seterusnya \ sampai \ terdefinsi$$

INTEGRAL

Integral secara general bermakan luasan dibawah kurva. Berikut merupakan sifat-sifatnya.

1.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + c \text{ dimana } n \neq -1$$

2.
$$\int \frac{1}{x} dx = \ln x + c$$

3.
$$\int e^x dx = e^x + c$$

$$3. \int e^x dx = e^x + c$$

$$4. \int \sin x \, dx = -\cos x + c$$

$$5. \int \cos x \ dx = \sin x + c$$

6.
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$

7.
$$\int_{\alpha}^{\beta} f'(x) dx = f(\beta) - f(\alpha)$$

Pada integral tak tentu, harus ada konstanta c, dimana c merupakan kondisi awal kurva/kondisi batas. Sedangkan integral tentu, tidak dibutuhkan konstanta c.

Jika terdapat sebuah fungsi $y(x) = x^2 + 4x + 5$. Turunan pertama terhadap x dari fungsi tersebut adalah y'(x) = 2x + 4. Jika kalian integralkan fungsi y'(x) terhadap x, kalian tidak akan dapat konstanta 5.

$$\int 2x + 4 = x^2 + 4x$$

Maka dari itu, dibutuhkan konstanta *c* dengan kondisi awal kurva. Berikut contoh soal yang sesuai dengan kondisi diatas.

Tentukan
$$y(x)$$
 jika $y'(x) = 2x + 4$ dan $y(0) = 5$

$$y(x) = \int 2x + 4 = x^2 + 4x + c$$

$$y(0) = 5 = 0^2 + 4(0) + c$$

$$c = 5$$

Maka, didapatkan $y(x) = x^2 + 4x + 5$

Metode Penyelesaian Integral

✓ SUBTITUSI

Metode subtitusi digunakan untuk memanipulasi persamaan. Biasanya, lambang subtitusi yang digunakan *u*. Lebih baik, langsung saya contohkan saja.

Contoh:

1. Tentukan $\int \sin x \cos x \, dx$

$$u = \sin x$$

$$\frac{du}{dx} = \cos x$$

$$\int \sin x \cos x \, dx = \int u \cos x \, \frac{du}{\cos x} = \int u \, du = \frac{u^2}{2} + c = \frac{\sin^2 x}{2} + c$$

✓ Parsial

Metode parsial merupakan perkembangan ilmu integral, dimana metode ini berkerja secara efektif dengan membagi persamaan.

$$\int u \ dv = uv - \int v \ du$$

Contoh:

1. Tentukan $\int x \sin x \ dx$

$$u = x$$

$$du = dx$$

$$dv = \sin x \, dx$$

$$v = -\cos x$$

$$\int x \sin x \, dx = -x \cos x - \int (-\cos x) \, dx$$

$$= -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c$$

Metode parsial dapat dilakukan berkali-kali sesuai kebutuhan.

✓ Subtitusi Trigonometri

Teknik ini digunakan dengan menggunakan identitas trigonometri sebagai variabel subtitusi. Mungkin, bisa dikatakan analog dengan metode subtitusi biasa. Identitas yang mungkin perlu diingat adalah

$$1 + tan^2x = sec^2x$$
$$1 + cot^2x = cosec^2x$$
$$sin^2x + cos^2x = 1$$

Contoh:

1. Tentukan $\int \frac{x}{\sqrt{1-x^2}} dx$

$$x = \sin \theta$$

$$dx = \cos \theta \ d\theta$$

$$\int \frac{x}{\sqrt{1 - x^2}} dx = \int \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} \cos \theta \ d\theta = \int \sin \theta \ d\theta = -\cos \theta + c$$

$$\cos \theta = \sqrt{1 - x^2}$$

Maka, sesuai persamaan diatas

$$\int \frac{x}{\sqrt{1-x^2}} dx = -\sqrt{1-x^2} + c$$

✓ Pecahan Rasional

Teknik ini digunakan hanya untuk memanipulasi persamaan pecahan menjadi persamaan yang lebih mudah untuk dikerjakan.

1.
$$\frac{px+q}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} \text{ dimana } a \neq b$$
2.
$$\frac{px+q}{(x-a)^2} = \frac{A}{x-a} + \frac{b}{(x-a)^2}$$
3.
$$\frac{px^2+qx+r}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
4.
$$\frac{px^2+qx+r}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$$
5.
$$\frac{px^2+qx+r}{(x-a)(x^2+bx+c)} = \frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$$

2.
$$\frac{px+q}{(x-a)^2} = \frac{A}{x-a} + \frac{b}{(x-a)^2}$$

3.
$$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$

4.
$$\frac{px^2+qx+r}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$$

5.
$$\frac{px^2 + qx + r}{(x - a)(x^2 + bx + c)} = \frac{A}{x - a} + \frac{Bx + C}{x^2 + bx + c}$$

Sebenarnya, masih banyak lagi yang bisa dicari. Namun, hal inipun juga digunakan saat dibutuhkan.

Contoh:

1. Tentukan $\int \frac{3x+11}{x^2+8x+15} dx$

$$\frac{3x+11}{x^2+8x+15} = \frac{3x+11}{(x+3)(x+5)} = \frac{A}{(x+3)} + \frac{B}{(x+5)} = \frac{x(A+B)+5A+3B}{(x+3)(x+5)}$$

Eliminasi....

$$A + B = 3$$
$$5A + 3B = 11$$

Maka, didapatkan A = 1 dan B = 2

$$\int \frac{3x+11}{x^2+8x+15} \, dx = \int \frac{dx}{x+3} + \int \frac{2 \, dx}{x+5} = \ln(x+3) + 2\ln(x+5) + c$$

SOAL

1. Tentukan sampai orde θ^2

$$\sqrt{\frac{\theta}{\sin \theta}} - 1$$

- a. $\frac{\theta^2}{18}$ b. $\frac{\theta^2}{6}$ c. $\frac{\theta^2}{12}$ d. $\frac{\theta^2}{3}$

2. Jika $\ln(1+x) \approx x(1+ax)^b$, tentukan a+b.

- a. $\frac{41}{30}$ b. $\frac{43}{30}$ c. $\frac{7}{30}$ d. $\frac{13}{30}$ e. $\frac{24}{30}$

3. Tentukan aproksimasi deret ini sampai orde x^2

$$\frac{1}{\sqrt{1+dx^2+2\beta x}}$$

- a. $1 \beta x \frac{1}{2}x^2$
- b. $1 \beta x x^2$ c. $1 \beta x \frac{3}{2}(d + \beta)x^2$ d. $1 (\beta + d)x \frac{1}{2}x^2$ e. $1 \beta x + \frac{1}{2}(3d \beta)x^2$

4. Tentukan nilai $\lim_{x\to 0} \left(\frac{\sin x + \sin 5x}{6x} \right)$

- b. 1
- c. $\frac{1}{2}$ d. $\frac{1}{3}$
- e. -1

- 5. Tentukan nilai $\lim_{x\to 5} \frac{\sqrt{x+4}-\sqrt{14-x}}{x^2-2x-15}$
 - a. $\frac{1}{24}$ b. $\frac{1}{6}$ c. $\frac{5}{24}$ d. $\frac{1}{4}$ e. $\frac{1}{3}$
- 6. Jika garis y = bx + 1 memotong parabola $y = x^2 + x + a$ di titik (1,0). Tentukan nilai limit

$$\lim_{x \to 1} \frac{x^2 + x + a}{bx + 1}$$

- a. 3
- b. 1
- c. 0
- d. -1
- e. -3
- 7. Tentukan nilai $\lim_{x \to \infty} \frac{\ln x}{x}$
 - a. ∞
 - b. 1
 - c. 0
 - d. -1
 - e. −∞
- 8. Tentukan nilai $\lim_{x \to 1} \frac{\cos(\frac{1}{2}\pi x^k)}{\ln x}$
 - a. πk^2
 - b. $-\frac{1}{2}\pi k$
 - c. 0
 - d. $\sqrt{\pi k}$
 - e. $-\sqrt{2\pi k}$
- 9. Tentukan turunan kedua terhadap x pada fungsi $y(x) = x^5 3x^4 + 13x^2 9$
 - a. $5x^4 12x^3 + 26x$
 - b. $5x^3 12x^2 + 26$
 - c. $20x^3 36x^2 + 26$
 - d. $x^4 12x^3 + 26x$
 - e. $5x^4 12x^3 20x$

- 10. Tentukan turunan pertama terhadap x pada fungsi $y(x) = (\sin x + \sec x)^3$
 - a. $3(\sin x + \sec x)^2$
 - b. $\cos x + \sec x \tan x$
 - c. $3(\sec x \tan x \cos x)^2$
 - d. $3(\sin x + \sec x)^2(\cos x + \sec x \tan x)$
 - e. $3(\sin x + \sec x)^2(\cos x \sin x \tan x)$
- 11. Tentukan turunan pertama terhadap x pada fungsi $y(x) = 2^{x^2+8}$
 - a. 2^{x^2+*}
 - b. $(2x)2^{x^2+9}$
 - c. $2^{x^2+8} \ln 2$
 - d. $x2^{x^2+9} \ln 2$
 - e. $e^x 2^{x^2+8} \ln 2$
- 12. Diketahui terdapat sebuah fungsi non-linear $y^3 + 4x^2y = \frac{2x}{y} + y^2x$. Tentukan $\frac{dy}{dx}$
- 13. Tentukan turunan pertama terhadap x pada fungsi $y(x) = \log_4 f(x)$
 - a. $\frac{1}{\ln 4} f'(x) \times \frac{1}{f(x)}$
 - b. $\frac{1}{\ln 4} \frac{1}{f(x)}$
 - c. $\frac{1}{\ln 4} f'(x)$ d. $\frac{1}{\ln 4}$

 - e. $\frac{1}{\ln 4} f(x) \times \frac{1}{f(x)}$
- 14. Untuk $-\frac{\pi}{8} < \delta < \frac{\pi}{8}$. Tentukan hasil $\int \sqrt{1 tan^2 2\delta + tan^4 2\delta tan^6 2\delta + \cdots} \ d\delta$
 - a. $\frac{1}{2} \tan 2\delta + c$
 - b. $\frac{1}{2}\cos 2\delta + c$
 - c. $-\frac{1}{2}\cos 2\delta + c$

d.
$$\frac{1}{2}\sin 2\delta + c$$

e.
$$-\frac{1}{2}\sin 2\delta + c$$

15. Tentukan hasil $\int 4^x dx$

a.
$$4^{x} + c$$

b.
$$4^x \ln 4 + c$$

c.
$$\frac{4^x}{\ln 4} + c$$

$$d. \frac{\ln 4}{\ln 4} + c$$

e.
$$x \ln 4 + c$$

16. Tentukan hasil $\int x^2 \ln x \ dx$

a.
$$\ln x^3 + c$$

b.
$$x^2 \ln x + 2x + c$$

c.
$$\frac{1}{3}x^3 \left(\ln x - \frac{1}{3} \right) + c$$

d.
$$3x^3(3 - \ln x) + c$$

e.
$$3x^2 \ln x^3 + c$$

17. Tentukan hasil $\int \cos^7 \varphi \ d\varphi$

a.
$$x + 2 \sin^3 x + \frac{1}{5} \sin^5 x - 3 \sin^7 x + c$$

b.
$$\frac{5}{3}x + \frac{4}{3}\sin^3 x - \frac{1}{5}\sin^5 x + 3\sin^7 x + c$$

c.
$$x - 5\sin^3 x + \sin^5 x - \sin^7 x + c$$

d.
$$7x + \sin^3 x - \frac{3}{5}\sin^5 x - \frac{3}{7}\sin^7 x + c$$

e.
$$x - \sin^3 x + \frac{3}{5}\sin^5 x - \frac{1}{7}\sin^7 x + c$$

18. Tentukan hasil $\int \csc x \ dx$

a.
$$\ln(\sec x + \tan x) + c$$

b.
$$-\ln(\csc x + \cot x) + c$$

c.
$$\ln(\sec x - \tan x) + c$$

d.
$$-\ln(\sin x + \cot x) + c$$

e.
$$\ln(\sin x + \cos x) + c$$

19. Tentukan hasil $\int \arcsin x \ dx$

a.
$$x\sqrt{1-x^2} + \arccos x + c$$

b.
$$\sqrt{1-x^2} \arcsin x + x + c$$

c.
$$x \arcsin x + \sqrt{1 - x^2} + c$$

$$d. \quad x \sin x + \sqrt{1 + x^2} + c$$

e.
$$\cos x \sqrt{1+x^2} + x \sin x + c$$

e.
$$\cos x \sqrt{1 + x^2} + x \sin x + c$$

20. Tentukan hasil $\int \frac{9x+8}{4x^2+11x+6} dx$

a.
$$2\ln(4x+3) - \ln(x+2) + c$$

b.
$$\frac{1}{4}\ln(4x+3) + 2\ln(x+2) + c$$

c.
$$4\ln(4x+3) + \frac{3}{4}\ln(x+2) + c$$

d.
$$\ln(x+2) - \ln(4x+3) + c$$

e.
$$3\ln(x+2) - 4\ln(4x+3) + c$$