

In the Previous Unit

- Transmission medium
 - Twisted pair
 - Coaxial cable
 - Optical fiber
 - Wireless

Objectives of This Unit

- Describe what is signal
- Time and frequency representations
- Spectrum and Bandwidth

Context

<u>A</u>nyone

Application

<u>T</u>ell

Transport

<u>N</u>o

Network

<u>D</u>o

Data Link

<u>P</u>lease

Physical

Generate signals

Signals

Communication systems

- At transmitter
 - Convert data to signal
 - Signal transmission
- At receiver
 - Signal reception
 - Convert signal to data

Simple Communications Model

- The transmitter produces a signal in time -s(t)
- The link (medium) is the channel that carries the signal to the receiver (sink)
 - Analogy: Air carries audio to ear
- Noise -n(t) is a signal that distorts s(t)

Signals and Their Properties

- Good signals can provide
 - Easy detection by receiver (simply tune in)
 - Immunity from noise (compare FM vs. AM)
 - Efficient use of resources (bandwidth)
 - Ability to multiplex

Advances in the Physical Layer

- Easy reception
 - Easy reception allows cell phone to get smaller in size
 - Old phones need large batteries to transmit detectable signals

Advances in the Physical Layer

- Noise resistance affects the quality of the signal
 - FM (Frequency modulation) has much better noise resistance than AM (Amplitude modulation)
 - High quality music transmission is possible over FM radio

(Modulation will be discussed later)

Advances in the Physical Layer

- Efficient utilization of bandwidth & multiplexing
 - Data compression and improved signaling allow eight hi-definition TV channels to be transmitted using the same bandwidth as one traditional analog TV channel (e.g. 8MHz)

Characteristics of Signals

- Have amplitude and power
- Occupy a range of frequencies (i.e., bandwidth)
- Can be distorted by
 - Cable attenuation
 - Noise & dispersion ...

Transmitting Signals

- Involve creating change at the sending end that can be detected at the receiving end
- Categories of signal
 - Digital signal
 - Analog signal

When we speak into a microphone, the analog audio vibrations are converted into an electrical signal

Analog Signals

- Signal level (amplitude) can take any value
 - Information can be contained in each absolute signal level at each point in time
- Continuous time: Continuous variation in time

Digital signals

- The amplitude has finite set of possible values
 - Two-levels => binary
 - E.g. turn a switch on/off depending upon whether data is '0' or '1'

- Multiple levels
 - M-Ary for M levels
 - Covered later
 - Still carry bits!

Digital vs Analog Signals

Digital signal – signals in which information is represented in discrete steps

Analog signal – signals that have a continuous nature in amplitude

Periodic and Aperiodic Signals

Periodic: pattern repeated over time

· Aperiodic: no repeated pattern to the signal

Sinusoids

- Typical form: $s(t) = A \cos(2\pi f_c t + \varphi)$
 - The maximum amplitude of the signal is A
 - Frequency of the signal is f_c
 - Phase of the signal is φ
- The power of S(t) is $A^2/2$

Sinusoids

- Frequency (f_c)
 - Number of repetitions per second (unit is Hertz)
 - E.g. 5 KHz \rightarrow 5000 times per second
- **Period** (T) amount of *time* it takes for one repetition of the signal

$$T = 1/f$$
 requency = $1/f$, 5 KHz $\rightarrow T = .2$ ms

- **Phase** (ϕ) measure of the relative position in time within a single period of the signal
- Wavelength (λ) distance occupied by a single cycle of the signal
 - For electromagnetic waves in air $\lambda = c/f_c$ where c is the speed of light = 3 x 10⁸ m/sec

Some Sinusoids

Tophat

What is the frequency of signal $x(t) = \cos(200\pi t + \pi/2)$

Α	frequency is 200π Hz
В	Frequency is 100 Hz
С	Frequency is 200 Hz

Frequency and Time

- Signal can be represented in frequency or in time
 - In the frequency domain, we call it the "spectrum" of the signal

Signals can "interfere" in time or in frequency

Frequency Domain

- Different applications are assigned different frequency bands
 - Avoid interfering with other signals

- Impact of medium on signal depend on frequency
 - Attenuation depends on frequency

Frequency Domain Representations

 Both periodic and aperiodic signals can be represented in frequency using Fourier Series or Fourier Transform

- Amplitude
- Phase

Amplitude

A cos($2\pi f_0 t + \varphi$)

Why Sinusoids?

- Any periodic signal can be broken into a sum of weighted sinusoids using Fourier Series
 - Has a "fundamental" frequency f_0
 - Multiples of f_0 are called "harmonics"
 - Each frequency has a weight S_n
 - Think of the weights as "how much energy is there at that frequency"
- Fourier series of a signal y(t) is

$$y(t) = S_0 + \sum_{n=1}^{\infty} S_n \cos(2\pi n f_0 t + \varphi_n)$$

Bandwdith

Here,
$$s(t) = S_0 + 0.5 \cos\left(2\pi t + \frac{\pi}{4}\right) + 0.3\cos(4\pi t + \frac{\pi}{3}) + 0.1 \cos(6\pi t + \frac{\pi}{6})$$

Note that periodic signals have discrete frequency components

Bandwidth: Aperiodic Signals

- They have a continuous range of frequencies in them
- A wide (in time) signal has a smaller range of frequency content
- A thin (short in time) signal has a larger range of frequency content

 Spectrum and Bandwidth
 Electromagnetic Spectrum – a range of frequencies -All types of radiation

- Radio waves: 3kHz –300MHz, Microwaves: up to 300 GHz
- Visible Spectrum: 400 790 THz
- Human audible frequencies: 20-20 kHz

Hear different tones: http://onlinetonegenerator.com/

- Band a small slice of the spectrum
 - USA AM Radio band 530-1710 kHz

- Radio waves: below 300MHz
 - Penetrate buildings well
 - Propagate for long distances with path loss

In the VLF, LF, and MF bands, radio waves follow the curvature of the earth

3–30 kHz Very low frequency VLF 300 kHz – 3 MHz Medium frequency MF

In the HF band, radio waves bounce off the ionosphere.

3–30 MHz High frequency HF 30–300 MHz Very high frequency VHF

Microwave:

- Don't pass well through buildings
- Widely used indoors (WiFi) and outdoors (cellular, satellites)

- Light communications
 - Line-of-sight light, Light is highly directional, has much bandwidth

Connect LAN in two buildings

Higher frequencies Ultraviolet, x-rays and Gamma rays

- Hard to produce and modulate
- Don't propagate well through obstacles
- Not safe

Signal Bandwidth

- Absolute bandwidth width of the spectrum of a signal
- Effective bandwidth Band of frequencies that contains most of the signal's energy
 - Example: human voice absolute bandwidth 0-20 kHz, effective bandwidth 50 3400 Hz
 - Bandwidth of a voice channel is 4000Hz

Filters

- Filters allow certain frequencies to go through and stop other frequencies
 - Useful for separating multiplexed signals

Receivers use filters to receive signals from particular bands

Types of Ideal Filters

Takeaways

- Signals, analog vs digital, periodic vs aperiodic
- Signals can be represented in time or frequency
- The frequency domain representation helps us understand bandwidth more precisely
 - Regulate applications
 - Impact of medium on signal depends on the frequency