ii)
$$N(c_1)$$
 là số nghiệm nguyên không âm của $x_1+x_2+x_3+x_4=25, x_4\geq 3$ sao cho $x_1\geq 4$, bằng $\binom{4+(25-3-4)-1}{25-3-4}=1330$. Tương tự $N(c_2)=\binom{4+(25-3-6)-1}{25-3-6}=969, N(c_3)=\binom{14}{11}=364$. Ta có

$$N_1 = N(c_1) + N(c_2) + N(c_3) = 2663.$$

iii)
$$N_2 = N(c_1c_2) + N(c_1c_3) + N(c_2c_3) = \begin{pmatrix} 15 \\ 12 \end{pmatrix} + \begin{pmatrix} 10 \\ 7 \end{pmatrix} + \begin{pmatrix} 8 \\ 5 \end{pmatrix} = 631.$$

iv)
$$N_3 = N(c_1c_2c_3) = \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4.$$

Như vậy, $N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = 2300 - 2663 + 631 - 4 = 264$.

Định nghĩa 7.1. Cho số nguyên dương n. Hàm Euler phi, ký hiệu Φ (n), là số các số nguyên từ 1 tới n và nguyên tố cùng nhau với n.

Chẳng hạn, $\Phi(2) = 1$, $\Phi(3) = 2$, $\Phi(4) = 2$, $\Phi(5) = 4$, $\Phi(6) = 2$.

```
from sympy import * 2 totient(6) # \rightarrow 2
```

Nếu p nguyên tố, thì $\Phi(p) = p - 1$. Tổng quát

Cho số nguyên dương $n \geq 2$. Theo định lý cơ bản của số học, n có phân tích $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ trong đó p_i là số nguyên tố, $e_i \in \mathbb{Z}^+$, $1 \leq i \leq k$. Khi đó

$$\Phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right).$$

Chứng minh. Với phân tích nguyên tố này của n, một số nguyên dương m nguyên tố cùng nhau với n nếu p_i không là ước m, $1 \le i \le k$.

Trong các số m từ 1 tới n xét điều kiện

 c_i : p_i là ước của m.

và cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_k}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^k N_k$$

trong

i) $N_0 = n$

thinhnd@huce.edu.vn [DRAFTING \Rightarrow DO NOT PRINT]

Nguyễn Đức Thinh

ii)
$$N_1 = \sum_{1 \le i \le k} N(c_i) = \sum_{1 \le i \le k} \lfloor \frac{n}{\rho_i} \rfloor = \sum_{1 \le i \le k} \frac{n}{\rho_i}$$

iii) $N(c_ic_j)$, $1 \le i < j \le k$, là số các số từ 1 tới n là bội của p_i và p_j , tức là bội của $lcm(p_i, p_j)$. Mặt khác, p_i, p_j là các số nguyên tố khác nhau, nên $lcm(p_i, p_j) = p_ip_j$. Suy ra $N(c_ic_j) = \lfloor \frac{n}{p_ip_i} \rfloor = \frac{n}{p_ip_i}$. Ta có

$$N_2 = \sum_{1 \leq i < j \leq k} N(c_i c_j) = \sum_{1 \leq i < j < k} \frac{n}{p_i p_j}$$

iv) Tương tự

$$N_{3} = \sum_{1 \leq i < j < l \leq k} N(c_{i}c_{j}c_{l}) = \sum_{1 \leq i < j < l < k} \frac{n}{p_{i}p_{j}p_{l}}, \dots$$

$$N_{r} = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq k} N(c_{i_{1}}c_{i_{2}} \cdots c_{i_{r}}) = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq k} \frac{n}{p_{i_{1}}p_{i_{2}} \cdots p_{i_{r}}}, \dots$$

$$N_{k} = N(c_{1}c_{2} \cdots c_{k}) = 1 = \frac{n}{p_{1}p_{2} \cdots p_{k}}$$

Các số hạng này có thừa số chung là n, nên

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_k}) = n \Big(1 - \sum_{1 \le i \le k} \frac{1}{\rho_i} + \sum_{1 \le i < j \le k} \frac{1}{\rho_i \rho_j} - \sum_{1 \le i < j < l \le k} \frac{1}{\rho_i \rho_j \rho_l} + \cdots + \\ + (-1)^{r-1} \sum_{1 \le i_1 < i_2 < \dots < i_r \le k} \frac{1}{\rho_{i_1} \rho_{i_2} \cdots \rho_{i_r}} + \cdots + (-1)^k \frac{1}{\rho_1 \rho_2 \cdots \rho_k} \Big)$$

$$= n \sum_{i=1}^k \Big(1 - \frac{1}{\rho_i} \Big)$$

Trong Phần 5.4, ta thừa nhận trước công thức đếm số toàn ánh. Bây giờ ta sẽ chứng minh công thức đó.

Số toàn ánh từ tập A cỡ m vào B cỡ n là

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{n-k} (n-k)^{m} = \sum_{k=0}^{n-1} (-1)^{k} \binom{n}{n-k} (n-k)^{m}$$

$$= \binom{n}{n} n^{m} - \binom{n}{n-1} (n-1)^{m} + \binom{n}{n-2} (n-2)^{m} - \dots + (-1)^{n-2} \binom{n}{2} 2^{m} + \dots + (-1)^{n-1} \binom{n}{1} 1^{m}.$$

Nguyễn Đức Thinh

Chứng minh. Nhắc lại định nghĩa, một toàn ánh từ A vào B là một hàm sao cho mỗi phần tử của B đều có tạo ảnh. Giả sử $B = \{b_1, b_2, \dots, b_n\}$, xét điều kiện

 c_i : b_i không có tạo ảnh

thì ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^n N_n$$

trong đó

- i) N_0 là số hàm từ tập A cỡ m vào tập B cỡ n, bằng n^m .
- ii) $N(c_i)$, $1 \le i \le n$, là số hàm từ A vào B, sao cho b_i không có tạo ảnh. Mỗi hàm như vậy tương ứng với hàm từ A cỡ m vào $B \{b_i\}$ cỡ n 1, nên $N(c_i) = (n 1)^m$. Suy ra $N_1 = \binom{n}{1}(n-1)^m$.

Tương tự
$$N_2 = \binom{n}{2}(n-2)^m, \dots, N_k = \binom{n}{k}(n-k)^m.$$

Thay các kết quả vào công thức của $N(\overline{c_1}\ \overline{c_2}\cdots \overline{c_n})$, ta được biểu thức cần chứng minh.

Ví du về bài toán ghép cặp:

Ví dụ 7.2. Cho n hộp đánh số từ 1 đến n, và n vật cũng đánh số từ 1 đến n. Có bao nhiều cách xếp n vật vào n hộp sao cho mỗi hộp một vật, và không có vật nào vào đúng hộp cùng số với nó.

Giải. Xét điều kiện c_i : vật i xếp vào hộp i, $1 \le i \le n$. Ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^n N_n$$

trong đó

- i) N_0 là số cách xếp n vật vào n hộp mà mỗi hộp một vật. Theo quy tắc nhân, $N_0 = n!$
- ii) $N(c_i)$ là số cách xếp n vào n hộp sao cho mỗi hộp một vật, và hộp i chứa vật i, bằng $1 \times (n-1)! = (n-1)!$. Suy ra

$$N_1 = \binom{n}{1}(n-1)! = \frac{n!}{1!(n-1)!}(n-1)! = \frac{n!}{1!}$$

iii) Tương tư

$$N_2 = \binom{n}{2}(n-2)! = \frac{n!}{2!}$$
 $N_r = \binom{n}{r}(n-r)! = \frac{n!}{r!}, \dots$
 $N_3 = \binom{n}{3}(n-3)! = \frac{n!}{3!}, \dots$ $N_n = 1$

Các số hạng có thừa số chung là n! nên

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = n! \Big[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} \Big]$$

Theo ví dụ trên, xác suất để không có vật nào xếp vào đúng hộp là

$$p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}$$

chính là khai triển Maclaurin tới cấp n của e^x tại x = -1, xem [James-Stewart]. Do đó

$$\lim_{n\to\infty} p_n = e^{-1}.$$

Tương tự phương pháp tìm số Euler phi, xét ví dụ sau

Ví dụ 7.3. Từ 1 đến 100 có bao nhiêu số không chia hết cho số nào trong ba số 4, 6, và 10.

Giải. Trong các số nguyên m từ 1 đến 100, xét điều kiện

- 1) c₁: m là bội của 4
- 2) c_2 : m là bội của 6
- 3) *c*₃: *m* là bội của 10

thì ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = N_0 - N_1 + N_2 - N_3$$

trong đó

- i) $N_0 = 100$
- ii) $N_1 = N(c_1) + N(c_2) + N(c_3) = \lfloor \frac{100}{4} \rfloor + \lfloor \frac{100}{6} \rfloor + \lfloor \frac{100}{10} \rfloor = 51$
- iii) $N(c_1c_2)$ là số các số từ 1 đến 100 chia hết cho cả 4 và 6, tức là chia hết cho lcm(4, 6) = 12. Vì thế

$$N_2 = \left\lfloor \frac{100}{12} \right\rfloor + \left\lfloor \frac{100}{20} \right\rfloor + \left\lfloor \frac{100}{30} \right\rfloor = 16$$

iv)
$$N_3 = N(c_1c_2c_3) = \lfloor \frac{100}{\text{lcm}(4,6,10)} \rfloor = \lfloor \frac{100}{60} \rfloor = 1.$$

Do đó
$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = 100 - 51 + 16 - 1 = 64.$$

Nguyễn Đức Thịnh

Ví dụ 7.4. Có bao nhiều hoán vị của 26 chữ cái, sao cho trong đó không xuất hiện từ HUCE, IT, AM, và PS.

Giải. Ký hiệu c_1 , c_2 , c_3 , c_4 lần lượt là điều kiện cho biết hoán vị chứa từ HUCE, IT, AM, và PS. Ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = N_0 - N_1 + N_2 - N_3 + N_4$$

trong đó

- i) N_0 là số hoán vị của 26 chữ cái, bằng 26!
- ii) $N(c_1)$ là số hoán vị của các 23 vật HUCE, A, B, D, F,..., Z, bằng 23!. Tương tự, $N(c_2) = N(c_3) = N(c_4) = 25!$. Suy ra $N_1 = 23! + 3 \cdot 25!$
- iii) $N(c_1c_2)$ là số hoán vị của các vật HUCE, IT, A, B, D,..., bằng 22!. Tương tự, $N(c_1c_3) = N(c_1c_4) = 22!$, $N(c_2c_3) = N(c_2c_4) = N(c_3c_4) = 24!$. Suy ra $N_2 = 3 \cdot 22! + 3 \cdot 24!$
- iv) $N(c_1c_2c_3) = N(c_1c_2c_4) = N(c_1c_3c_4) = 21!, N(c_2c_3c_4) = 23!.$ Ta được $N_3 = 3 \cdot 21! + 23!$
- v) $N_4 = N(c_1c_2c_3c_4) = 20!$

Do đó

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = 26! - (23! + 3 \cdot 25!) + (3 \cdot 22! + 3 \cdot 24!) - (3 \cdot 21! + 23!) + 20!$$

= 147 383 944 \cdot 20!

Bài tập 7.1

7.1. Có bao nhiêu số nguyên từ 1 đến 2022

- a) không chia hết cho mọi số 2, 3, 5.
- b) không chia hết cho mọi số 2, 3, 5, 7.
- c) không chia hết cho mọi số 2, 3, 5, nhưng chia hết cho 7.

7.2. Có bao nhiều nghiệm nguyên của phương trình $x_1 + x_2 + x_3 + x_4 = 19$ thỏa mãn

a) $x_i \ge 0, 1 \le i \le 4$

- b) $0 \le x_i < 8, 1 \le i \le 4$
- c) $0 \le x_1 \le 5, 0 \le x_2 \le 6, 0 \le x_3 \le 7, 0 \le x_4 \le 8$
- d) $-5 \le x_i \le 10, 1 \le i \le 4$
- **7.3.** Đếm các số nguyên dương $x \le 9$ 999 999 sao cho tổng các chữ số của x bằng 31.

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh