

planetmath.org

Math for the people, by the people.

Shioda-Tate formula

Canonical name ShiodaTateFormula Date of creation 2013-03-22 15:34:22 Last modified on 2013-03-22 15:34:22

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 4

Author alozano (2414) Entry type Theorem Classification msc 14J27 The main references for this part are the works of Shioda and Tate [?], [?], [?].

Let k be a field and let \overline{k} be a fixed algebraic closure of k. Let \mathcal{E} be an elliptic surface over a curve C/k and let K = k(C) be the function field of C. Let $\overline{\mathcal{E}} = \mathcal{E}(\overline{k})$ (or more precisely $\overline{\mathcal{E}} = \mathcal{E} \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k}$). The Néron-Severi group of $\overline{\mathcal{E}}$, denoted by $\operatorname{NS}(\overline{\mathcal{E}})$, is by definition the group of divisors on $\overline{\mathcal{E}}$ modulo algebraic equivalence. Under the previous assumptions, $\operatorname{NS}(\overline{\mathcal{E}})$ is a finitely generated abelian group (this is a consequence of the so-called 'theorem of the base' which can be found in [?]). The Néron-Severi group of \mathcal{E} , denoted by $\operatorname{NS}(\mathcal{E})$, is simply the image of the group of divisors on \mathcal{E} in $\operatorname{NS}(\overline{\mathcal{E}})$. Let $T \subset \operatorname{NS}(\mathcal{E})$ be the subgroup generated by the image of the zero-section σ_0 and all the irreducible components of the fibers of π . T is sometimes called the "trivial part" of $\operatorname{NS}(\mathcal{E})$.

Theorem (Shioda-Tate formula). For each $t \in C$ let n_t be the number of irreducible components on the fiber at t, i.e. $\pi^{-1}(t)$. Then:

$$\operatorname{rank}_{\mathbb{Z}}(\mathcal{E}/K) = \operatorname{rank}_{\mathbb{Z}}(\operatorname{NS}(\mathcal{E})) - \operatorname{rank}_{\mathbb{Z}}(T) \\
= \operatorname{rank}_{\mathbb{Z}}(\operatorname{NS}(\mathcal{E})) - 2 - \sum_{t \in C} (n_t - 1).$$

References

- [1] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag (1983).
- [2] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59.
- [3] T. Shioda, An Explicit Algorithm for Computing the Picard Number of Certain Algebraic Surfaces, Amer. J. Math. 108 (1986), 415-432.
- [4] T. Shioda, On the Mordell-Weil Lattices, Commentarii Mathematici Universitatis Sancti Pauli, Vol 39, No. 2, 1990, pp. 211-239.
- [5] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, 9, Soc. Math. France, Paris, 1966, Exp. No. 306, 415-440, 1995.