SELECTIVE SEARCH TECHNIQUE

Sumedh Datar

Akhil Ghosh

Selective Search For Object Detection

Paper was presented in International Journal of Computer Vision (IJCV) - 2013

What is selective search technique?

Selective Search is a region proposal algorithm used in object detection. It is designed to be fast with a very high recall.

Segmentation techniques

Idea: Exhaustive search for objects.

Problem: Extremely slow, must process tens of thousands of candidate objects.

Segmentation Techniques

Idea: Need a generic segmentation algorithm.

Problem: We may have to use separate segmentation algorithms for each object.

Advantages Selective Search Technique?

- 1. Can build a generic segmentation technique using region proposals.
- 2. Object localization.
- 3. Performance of selective search is fast compared to other region proposal algorithms.
- 4. Support object recognition.

Algorithm Pseudocode

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions $R = \{r_1, \dots, r_n\}$ using [13]

Initialise similarity set $S = \emptyset$

foreach Neighbouring region pair (r_i, r_j) do

Calculate similarity $s(r_i, r_j)$ $S = S \cup s(r_i, r_j)$

while $S \neq \emptyset$ do

Get highest similarity $s(r_i, r_j) = \max(S)$

Merge corresponding regions $r_i = r_i \cup r_j$

Remove similarities regarding $r_i: S = S \setminus s(r_i, r_*)$

Remove similarities regarding $r_j: S = S \setminus s(r_*, r_j)$

Calculate similarity set S_t between r_t and its neighbours

$$S = S \cup S_t$$

$$R = R \cup r_t$$

Extract object location boxes L from all regions in R

Algorithm Working

Step 1: Generate initial sub-segmentation Segmenting the image based on intensity of the pixels using a graph based segmentation method.

Algorithm Working

Step 2: Recursively combine similar regions into larger ones.

GREEDY ALGORITHM:

- 1. From set of regions, choose two that are most similar.
- 2. Combine them into single larger regions.
- 3. Repeat until only one region remains.

Algorithm Working

Step 3: Use the generated regions to produce candidate object locations.

TIME COMPLEXITY

O(n)

References

1. https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013
..pdf

- 2. https://www.learnopencv.com/selective-search-for-object-detection-cpp-pytho
 n/
- 3. https://www.koen.me/research/pub/vandesande-iccv2011-poster.pdf

THANK YOU