# Succinct Representation of Labeled Graphs

Matthias Dürksen
Seminar on Algorithms for Compressed Graphs

Presentation-Date

#### Note for the Slide Discussion

- graphics will be replaced in a later version by own graphics and some will be animated.
- Key points are not fixed, they just represent what should be explained on the slides.

#### Motivation

• Large Graphs

• ...

Goal/Advantage from this topic

#### Outline

- Triangulated Graphs
  - Creation of the Spanning Trees
  - Generate the parenthesized representation
  - Extension for labels using the example of edge (or vertices) labels
- Extended for planar graphs
- (Rough explanation for k-page Graph)

## Planar Graphs



## Triangulated Graphs







## First Tree – Canonical Spanning Tree



## Second Tree













#### Parenthesized representation

- Some writen infos:
- Eg. Each type of parenthesis alone always forms a correct parenthesis

- Explain memory requirements
- Supported functions







#### Parenthesized representation

Why to use the parentheses

Explain Results and supported functions

#### Extension

 Labeled Graphs: As always with a mapping from node id to Label

 [Some more words to it, depending on how much time remains]

#### Summary

Recap shortly

- Embed results
  - Compression of the space to the information-theretic minimum. Runtimes like uncompressed

## End

Thank you for your attention!