cHI:

Analyse Syntaxique

But: Analyser Syntaxiquent in texto (n co de . - - .)

Communt: Constrine un analyseur syntoxique prédictif

à l'avoure

Si alra .--.

si joi ce symble alse japplique cette nègle

(prédicals)

Farouk JELIDI

esprit

Farouk JELIDI

esprit

$$S \rightarrow ABC \mid B$$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

Proin $(A) = \{a\}$

Proin $(B) = \{b\}$

Proin $(C) = \{c\}$

Proin $(S) = Proinc(A) \cup Proinc(B)$

Proin $(S) = \{a\} \cup \{b\} = \{a,b\}$

Farouk JELIDI

Ex2

S
$$\rightarrow$$
 ABC

A \rightarrow a

B \rightarrow b

C \rightarrow c

Prove (A) = {a}

Prove (B) = {b}

Prove (C) = {c}

Prove (C) = {

S—→ XBC

esprit*

Exy

S => ABC

A => a/2

B => b/2

C => c

$$P(A) = \{a, \epsilon\}$$
 $P(B) = \{b, \epsilon\}$
 $P(C) = \{c\}$
 $P(C) = \{c\}$
 $P(C) = \{a, b, c\}$

Farouk JELIDI

EAS

$$S \rightarrow ABC$$

 $A \rightarrow a \mid E$
 $B \rightarrow b \mid E$
 $C \rightarrow c \mid E$
 $P(A) = \{a, E\}$
 $P(B) = \{b, E\}$
 $P(c) = \{c, E\}$
 $P(s) = P(A) \setminus \{E\} \cup P(b) \setminus \{E\} \cup P(c) \setminus \{E\}$
 $P(s) = \{a, b, c, E\}$
 $P(a) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(s) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(c) = \{E\}$
 $P(B) = \{E\} \cup P(c) \mid E\} \cup P(c) = \{E\}$

Gramaire ETF (Calculatrice basique):

$$E \longrightarrow TE'$$

$$E' \longrightarrow TE' | TE' | E'$$

$$T \longrightarrow FT' | FT' | E$$

$$T' \longrightarrow * FT' | Nb$$

$$P(E) = P(T) = \{(, nb)\}$$
 $P(E') = \{+, -, \epsilon\}$
 $P(T) = P(F) = \{(, nb)\}$
 $P(T') = \{*, \land, \epsilon\}$
 $P(F) = \{(, nb)\}$

$$S(c) = S(s) = \{ \sharp \}$$

Pr(A)={=}

br (B) = (P' & {

Pr (c) = {c}

$$S(A) = P(B) / \{ \epsilon \} \cup P(c) / \{ \epsilon \} \cup S(s)$$

$$S(A) = \{b,c,\$\}$$

$$S(B) = P(c) \setminus \{ \epsilon \} \cup S(S) = \{ c, \# \}$$

$$S(c) = S(S) = \{\$\}$$

$$P(S) = P(A) = \{a\}$$

 $P(A) = \{a\}$
 $P(B) = \{b, \in \}$

P(c) = {c, e}

$$A \longrightarrow a \setminus \epsilon$$

$$S(c) = S(s) = \{ \$ \}$$

$$S(s) = \{ \sharp \}$$

$$P(E) = P(T) = \{(, nb\}) \}$$
 $P(E) = \{+, -, e\}$
 $P(E) = \{+, -, e\}$
 $P(T) = P(E) = \{(, nb\}) \}$
 $P(T) = \{+, -, e\}$
 $P(T) = \{+, -, e\}$
 $P(T) = \{+, -, e\}$
 $P(E) = \{+, -, e\}$
 $P(E) = \{+, -, e\}$

$$S(E) = \{ \#, \} \}$$
 $S(E') = S(E) = \{ \#, \} \}$
 $S(T') = P(E') \setminus \{ E \} \cup S(E) \setminus Shind$
 $S(T') = S(T) = \{ +, -, \#, \} \}$
 $S(T') = S(T) = \{ +, -, \#, \} \}$
 $S(F) = P(T') \setminus \{ E \} \cup S(T) \}$
 $= \{ \#, +, -, \#, \} \}$

Ě →τ€′)

E -> TE

T FT'

T'->FT'

