# In [1]:

# import pandas as pd

housing = pd.read\_csv("/content/drive/MyDrive/housing.csv")
housing.head()

# Out[1]:

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_ho |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|-----------|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        |           |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        |           |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        |           |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        |           |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        |           |
| 4 |           |          |                    |             |                |            |            |               | <u> </u>  |

# In [2]:

housing.describe()

# Out[2]:

|       | longitude    | latitude     | housing_median_age | total_rooms  | total_bedrooms | population   | households   | median_i |
|-------|--------------|--------------|--------------------|--------------|----------------|--------------|--------------|----------|
| count | 20640.000000 | 20640.000000 | 20640.000000       | 20640.000000 | 20433.000000   | 20640.000000 | 20640.000000 | 20640    |
| mean  | -119.569704  | 35.631861    | 28.639486          | 2635.763081  | 537.870553     | 1425.476744  | 499.539680   | 3.       |
| std   | 2.003532     | 2.135952     | 12.585558          | 2181.615252  | 421.385070     | 1132.462122  | 382.329753   | 1.       |
| min   | -124.350000  | 32.540000    | 1.000000           | 2.000000     | 1.000000       | 3.000000     | 1.000000     | 0.       |
| 25%   | -121.800000  | 33.930000    | 18.000000          | 1447.750000  | 296.000000     | 787.000000   | 280.000000   | 2.       |
| 50%   | -118.490000  | 34.260000    | 29.000000          | 2127.000000  | 435.000000     | 1166.000000  | 409.000000   | 3.       |
| 75%   | -118.010000  | 37.710000    | 37.000000          | 3148.000000  | 647.000000     | 1725.000000  | 605.000000   | 4.       |
| max   | -114.310000  | 41.950000    | 52.000000          | 39320.000000 | 6445.000000    | 35682.000000 | 6082.000000  | 15.      |
| 4     |              |              |                    |              |                |              |              |          |

# In [3]:

housing['median\_income'].hist(bins=50)

# Out[3]:

 ${\tt <matplotlib.axes.\_subplots.AxesSubplot}$  at  ${\tt 0x7f59259a2390>}$ 



```
import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
plt.scatter(x=housing['latitude'], y=housing['longitude'], alpha=0.1, s=housing['population
']/100, c=housing['median_house_value'], cmap='inferno')
plt.colorbar()
```

#### Out[4]:

<matplotlib.colorbar.Colorbar at 0x7f5924120fd0>



## In [5]:

```
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
```

## Out[5]:

```
median house value
                    1.000000
median_income
                     0.688075
total rooms
                     0.134153
                    0.105623
housing_median_age
                    0.065843
households
total bedrooms
                    0.049686
population
                    -0.024650
longitude
                    -0.045967
latitude
                    -0.144160
Name: median_house_value, dtype: float64
```

#### In [6]:

```
from pandas.plotting import scatter_matrix

attributes = ['median_house_value', 'median_income', 'housing_median_age', 'total_rooms']
scatter_matrix(housing[attributes], figsize=(20,20))
```

#### Out[6]:

```
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f59240c77f0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f59228374a8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f5922869710>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f592281c978>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x7f59227cdbe0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f5922783e48>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f59227430f0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f59226f8320>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x7f59226f8390>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f59226dd828>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f5922693a90>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f5922646cf8>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x7f59225fdf60>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f59225ba208>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f5922570470>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f59225a26d8>]],
      dtype=object)
```



In [7]:
housing.plot(kind='scatter',x='median income',y='median house value',alpha=0.1)

# Out[7]:

## In [8]:

housing.columns

#### Out[8]:

## In [9]:

```
housing['population_per_household'] = housing['population'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
```

#### In [10]:

```
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
```

# Out[10]:

| median_house_value        | 1.000000       |
|---------------------------|----------------|
| median_income             | 0.688075       |
| rooms_per_household       | 0.151948       |
| total_rooms               | 0.134153       |
| housing_median_age        | 0.105623       |
| households                | 0.065843       |
| total_bedrooms            | 0.049686       |
| population_per_household  | -0.023737      |
| population                | -0.024650      |
| longitude                 | -0.045967      |
| latitude                  | -0.144160      |
| bedrooms_per_room         | -0.255880      |
| Name: median_house_value, | dtype: float64 |
|                           |                |

#### In [11]:

housing.head()

# Out[11]:

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_ho |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|-----------|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        |           |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        |           |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        |           |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        |           |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        |           |
|   |           |          |                    |             | 1000000000     |            |            |               |           |

```
In [12]:
```

```
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
```

## In [13]:

```
print(len(train_set))
print(len(test_set))
```

16512 4128

#### In [14]:

```
import numpy as np
housing['income_cat'] = np.ceil(housing['median_income']/1.5)
housing['income_cat'].where(housing['income_cat']<5,5.0,inplace=True)</pre>
```

## In [15]:

housing.head()

#### Out[15]:

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_ho |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|-----------|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        |           |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        |           |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        |           |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        |           |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        |           |
| 4 |           |          |                    |             |                |            |            |               | )         |

## In [16]:

```
housing['income_cat'].plot(kind='hist',)
```

#### Out[16]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f59127a6358>



#### In [17]:

```
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1,test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing,housing['income_cat']):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]
```

### In [18]:

housing (lincome cat') value counts() / len(housing (lincome cat'))

```
Out[18]:
3.0
        0.350581
        0.318847
2.0
4.0
        0.176308
5.0
        0.114438
        0.039826
1.0
Name: income_cat, dtype: float64
In [19]:
for set in (strat train set, strat test set):
  set .drop("income cat", axis=1, inplace=True)
In [20]:
housing = strat train set.copy()
In [21]:
housing.describe()
Out[21]:
          longitude
                       latitude housing_median_age
                                                  total_rooms total_bedrooms
                                                                              population
                                                                                         households median i
count 16512.000000 16512.000000
                                     16512.000000
                                                 16512.000000
                                                               16354.000000
                                                                           16512.000000 16512.000000
                                                                                                      16512.
 mean
        -119.575834
                     35.639577
                                        28.653101
                                                  2622.728319
                                                                 534.973890
                                                                            1419.790819
                                                                                         497.060380
  std
          2.001860
                      2.138058
                                        12.574726
                                                  2138.458419
                                                                 412.699041
                                                                            1115.686241
                                                                                         375.720845
                                                                                                         1.
        -124.350000
                     32.540000
                                                                               3.000000
                                                                                           2.000000
  min
                                         1.000000
                                                     6.000000
                                                                   2.000000
                                                                                                         0.
                                                                                         279.000000
        -121.800000
                     33.940000
                                                  1443.000000
                                                                 295.000000
                                                                             784.000000
                                                                                                         2.
 25%
                                        18.000000
 50%
        -118.510000
                     34.260000
                                        29.000000
                                                  2119.500000
                                                                 433.000000
                                                                            1164.000000
                                                                                         408.000000
 75%
        -118.010000
                     37.720000
                                        37.000000
                                                  3141.000000
                                                                 644.000000
                                                                            1719.250000
                                                                                         602.000000
                                                                                                         4.
        -114.310000
                     41.950000
                                        52.000000 39320.000000
                                                                6210.000000 35682.000000
                                                                                         5358.000000
                                                                                                         15.
 max
                                                                                                         |\bullet|
In [22]:
housing = strat train set.drop(["median house value", 'population per household', 'bedrooms
 per room','rooms per household'], axis=1)
housing labels = strat train set["median house value"].copy()
In [23]:
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy='median')
housing num = housing.drop('ocean proximity',axis=1)
imputer.fit(housing num)
Out[23]:
SimpleImputer(add indicator=False, copy=True, fill_value=None,
                missing values=nan, strategy='median', verbose=0)
In [24]:
imputer.statistics
Out[24]:
array([-118.51],
                                    29.
                                             , 2119.5
                                                             433.
                       34.26
                                                                       , 1164.
         408.
                         3.5409])
```

In [25]:

```
X = imputer.transform(housing_num)
```

## In [26]:

```
housing_tr = pd.DataFrame(data=X,columns=housing_num.columns)
housing_tr.head()
```

#### Out[26]:

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 0 | -121.89   | 37.29    | 38.0               | 1568.0      | 351.0          | 710.0      | 339.0      | 2.7042        |
| 1 | -121.93   | 37.05    | 14.0               | 679.0       | 108.0          | 306.0      | 113.0      | 6.4214        |
| 2 | -117.20   | 32.77    | 31.0               | 1952.0      | 471.0          | 936.0      | 462.0      | 2.8621        |
| 3 | -119.61   | 36.31    | 25.0               | 1847.0      | 371.0          | 1460.0     | 353.0      | 1.8839        |
| 4 | -118.59   | 34.23    | 17.0               | 6592.0      | 1525.0         | 4459.0     | 1463.0     | 3.0347        |

# **Label Encoding**

```
In [27]:
```

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing['ocean_proximity']
housing_cat_encoded = encoder.fit_transform(housing_cat)
print(housing_cat_encoded.shape)
print(encoder.classes_)

(16512,)
['<1H OCEAN' 'INLAND' 'ISLAND' 'NEAR BAY' 'NEAR OCEAN']</pre>
```

# **Now applying One Hot Encoding**

```
In [28]:
```

```
from sklearn.preprocessing import OneHotEncoder
onehotenco = OneHotEncoder()
housing_cat_1hot = onehotenco.fit_transform(housing_cat_encoded.reshape(-1,1))
housing_cat_1hot
```

## Out[28]:

```
<16512x5 sparse matrix of type '<class 'numpy.float64'>' with 16512 stored elements in Compressed Sparse Row format>
```

# In [29]:

```
housing_tr['ocean_proximity'] = housing_cat_encoded
```

#### In [30]:

```
housing_tr.head()
```

## Out[30]:

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | ocean_prox |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|------------|
| 0 | -121.89   | 37.29    | 38.0               | 1568.0      | 351.0          | 710.0      | 339.0      | 2.7042        |            |
| 1 | -121.93   | 37.05    | 14.0               | 679.0       | 108.0          | 306.0      | 113.0      | 6.4214        |            |
| 2 | -117.20   | 32.77    | 31.0               | 1952.0      | 471.0          | 936.0      | 462.0      | 2.8621        |            |
| 3 | -119.61   | 36.31    | 25.0               | 1847.0      | 371.0          | 1460.0     | 353.0      | 1.8839        |            |
| 4 | -118.59   | 34.23    | 17.0               | 6592.0      | 1525.0         | 4459.0     | 1463.0     | 3.0347        |            |
| 4 |           |          |                    |             |                |            |            |               |            |

**SELECT AND TRAIN A MODEL** 

```
In [31]:
from sklearn.linear model import LinearRegression
lin reg = LinearRegression()
lin reg.fit(housing tr,housing labels)
Out[31]:
LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
In [32]:
some data = housing tr.iloc[:5]
some label = housing labels[:5]
print("prediction", lin reg.predict(some data))
print("label's", list(some label))
prediction [207901.47824371 323216.63913327 205102.81901373 75423.92526847
188676.687806421
label's [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
In [33]:
from sklearn.metrics import mean squared error
# housing labels = housing labels.reshape(-1,1)
housing predictions = lin reg.predict(housing tr)
lin mse = mean squared error(housing predictions, housing labels)
lin mse = np.sqrt(lin mse)
print(lin mse)
69957.9936286799
In [34]:
from sklearn.tree import DecisionTreeRegressor
tree reg = DecisionTreeRegressor()
tree_reg.fit(housing_tr, housing_labels)
housing_predictions = tree_reg.predict(housing_tr)
tree mse = mean squared error(housing labels, housing predictions)
tree_rmse = np.sqrt(tree_mse)
tree rmse
Out[34]:
0.0
In [35]:
from sklearn.model selection import cross val score
scores = cross val score(tree reg, housing tr, housing labels, scoring='neg mean squared err
or', cv=10)
tree rmse score = np.sqrt(-scores)
def display score(scores):
 print('Scores:', scores)
  print('Mean:', scores.mean())
  print('Standard Deviation', scores.std())
display_score(tree_rmse_score)
Scores: [65589.79204859 71283.27542878 70717.66887942 72235.16386952
```

66418.63883654 74438.29528469 68702.62576639 70137.14813444

72324.04794659 69890.161794961

.....

```
Mean: 70173.68179899339
Standard Deviation 2567.994316412716
In [36]:
lin score = cross val score(lin reg, housing tr, housing labels, scoring='neg mean squared
error', cv=10)
lin rmse score = np.sqrt(-lin score)
display score(lin rmse score)
Scores: [68230.55806124 68520.93622918 69600.91124405 74990.90394949
 68974.73419338 72198.27981692 66607.90832448 69745.60718443
 73514.29993282 68943.8776868 1
Mean: 70132.8016622785
Standard Deviation 2472.4661735125324
In [37]:
from sklearn.ensemble import RandomForestRegressor
forest reg = RandomForestRegressor()
forest reg.fit(housing tr, housing labels)
Out[37]:
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                      max depth=None, max features='auto', max leaf nodes=None,
                      max_samples=None, min_impurity_decrease=0.0,
                      min impurity split=None, min samples leaf=1,
                      min samples split=2, min weight fraction leaf=0.0,
                      n estimators=100, n jobs=None, oob score=False,
                      random state=None, verbose=0, warm start=False)
In [38]:
forest_score = cross_val_score(forest_reg,housing_tr,housing_labels, scoring='neg_mean_s
quared error', cv=10)
forest rmse score = np.sqrt(-forest score)
display score(forest rmse score)
Scores: [47822.23905053 46766.25819041 50142.31518706 51395.03252716
 49990.2402097 53559.27403843 48386.59358769 50832.50422872
 52584.05782371 50592.12823831]
Mean: 50207.06430817236
Standard Deviation 1993.23814669634
In [39]:
housing predictions = forest reg.predict(housing tr)
forest mse = mean squared error(housing labels, housing predictions)
forest_rmse = np.sqrt(forest mse)
forest rmse
Out[39]:
18628.591256239313
In [40]:
from sklearn.model selection import GridSearchCV
param grid = [
{'n estimators': [3, 10, 30], 'max features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n estimators': [3, 10], 'max features': [2, 3, 4]},
forest reg = RandomForestRegressor()
grid search = GridSearchCV(forest reg,param grid,cv=5,scoring='neg mean squared error')
grid search.fit(housing tr,housing labels)
Out[40]:
GridSearchCV(cv=5, error score=nan,
```

```
estimator=RandomForestRegressor(bootstrap=True, ccp alpha=0.0,
                                             criterion='mse', max_depth=None,
                                             max features='auto',
                                             max_leaf_nodes=None,
                                             max samples=None,
                                             min impurity decrease=0.0,
                                             min impurity split=None,
                                             min samples leaf=1,
                                             min samples split=2,
                                             min weight fraction leaf=0.0,
                                             n estimators=100, n jobs=None,
                                             oob_score=False, random_state=None,
                                             verbose=0, warm start=False),
             iid='deprecated', n_jobs=None,
             param_grid=[{'max_features': [2, 4, 6, 8],
                          'n estimators': [3, 10, 30]},
                         {'bootstrap': [False], 'max features': [2, 3, 4],
                          'n estimators': [3, 10]}],
             pre dispatch='2*n jobs', refit=True, return train score=False,
             scoring='neg mean squared error', verbose=0)
grid search.best params
{'max_features': 4, 'n_estimators': 30}
grid search.best estimator
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                      max depth=None, max features=4, max leaf nodes=None,
                      max samples=None, min impurity decrease=0.0,
                      min impurity split=None, min samples leaf=1,
                      min samples split=2, min weight fraction leaf=0.0,
                      n estimators=30, n jobs=None, oob score=False,
                      random state=None, verbose=0, warm start=False)
cvres = grid search.cv results
cvres df = pd.DataFrame(cvres)
cvres_df = cvres_df[["mean_test_score","params"]]
cvres df['mean test score'] = -cvres_df["mean_test_score"]
```

# In [44]:

In [43]:

In [41]:

Out[41]:

In [42]:

Out[42]:

cvres df

## Out[44]:

| m | nean_test_score | params                                  |
|---|-----------------|-----------------------------------------|
| 0 | 3.855828e+09    | {'max_features': 2, 'n_estimators': 3}  |
| 1 | 2.957060e+09    | {'max_features': 2, 'n_estimators': 10} |
| 2 | 2.708003e+09    | {'max_features': 2, 'n_estimators': 30} |
| 3 | 3.446072e+09    | {'max_features': 4, 'n_estimators': 3}  |
| 4 | 2.752787e+09    | {'max_features': 4, 'n_estimators': 10} |
| 5 | 2.537503e+09    | {'max_features': 4, 'n_estimators': 30} |
| 6 | 3.436985e+09    | {'max_features': 6, 'n_estimators': 3}  |
| 7 | 2.738078e+09    | {'max_features': 6, 'n_estimators': 10} |
| 8 | 2.539674e+09    | {'max_features': 6, 'n_estimators': 30} |
|   |                 |                                         |

| 9  | mean3t451736009 | {'max_features': 8, 'n_estima <b>pasins</b> }  |
|----|-----------------|------------------------------------------------|
| 10 | 2.783666e+09    | {'max_features': 8, 'n_estimators': 10}        |
| 11 | 2.601937e+09    | {'max_features': 8, 'n_estimators': 30}        |
| 12 | 3.715371e+09    | {'bootstrap': False, 'max_features': 2, 'n_est |
| 13 | 2.811944e+09    | {'bootstrap': False, 'max_features': 2, 'n_est |
| 14 | 3.406680e+09    | {'bootstrap': False, 'max_features': 3, 'n_est |
| 15 | 2.700748e+09    | {'bootstrap': False, 'max_features': 3, 'n_est |
| 16 | 3.229060e+09    | {'bootstrap': False, 'max_features': 4, 'n_est |
| 17 | 2.658038e+09    | {'bootstrap': False, 'max_features': 4, 'n_est |

## In [45]:

```
final model = grid_search.best_estimator_
X test = strat test set.drop('median house value',axis=1)
y test = strat test set['median house value'].copy()
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
X_test_cat = X_test['ocean_proximity']
X test cat encoded = encoder.fit transform(X test cat)
X_test['ocean_proximity'] = X_test_cat_encoded
for i in X test.columns:
  X test[i].fillna(X test[i].median(),inplace=True)
X test.drop(columns=['population per household','bedrooms per room','rooms per household'
],inplace=True)
final_predictions = final_model.predict(X_test)
final mse = mean squared error(y test, final predictions)
final rmse = np.sqrt(final mse)
print(final rmse)
```

47862.778264449844

#### In [46]:

```
## 47269 is the final rmse value
```

## In [46]: