Evaluate testing data (regression) - xgboost $_{\it EVE~W.}$

2019-04-08

Contents

0. Load Data	1
1. Scores	2
correlation	2
2. Important Features	4
3. Hyper-parameters	7
all grid search results	
over best parameter combo per cv	10
more about the best parameter combination selection	12
## user input	
<pre>project_home <- "~/EVE/examples"</pre>	
<pre>project_name <- "xgboostR_regression_1"</pre>	

0. Load Data

```
## 300 of samples were used
## 101 of full features
## 4 runs, each run contains 3 CVs.
## os_time :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 182.8 480.0 889.4 1221.2 7125.0
run with XGBoost.r with evaluation metric: default.
```

1. Scores

Prevalidation scores during RFE

metrics	size.max	median.max	size.min	median.min
MAE	41	725.942	61	712.645
RMSE	61	1123.314	101	1114.231
Rsquared	81	0.042	41	0.037

correlation

##
##
Table: Averaged pearson correlation across seeds
##
cor.avg cor.sdt
-----## 0.1980039 0.0505366

Correlation at seed = 1001 using 101 feature set input

2. Important Features

with 101 features based on Frequency

Top 20 features at 101 feature set based on Frequency

with 101 features based on Gain

Top 20 features at 101 feature set based on Gain

Top 20 features at 101 feature set

3. Hyper-parameters

parameter optimization file (72 records) includes 4 seeds. Each seed generates 3 cv splits. Within each cv split, there is a 2 step RFE (at 41, 101). So 72 / 4 / 3 / 2 = 3 parameter combinations tried in each cv split.

all grid search results

over best parameter combo per c
v $\,$

Note the 2nd /3rd best parameter combinations might not be too bad either.

optimal max_depth across seed and cv

optimal n_estimator within seed and cv

more about the best parameter combination selection

```
select_ft_step <- 101</pre>
df1 <- subset(grid_best, size==select_ft_step & max_depth==5 & max_delta_step == 0)
print( paste('summary of n estimator at',select_ft_step, 'feature step'))
## [1] "summary of n estimator at 101 feature step"
print(summary(df1$n_estimators))
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      95.0 109.5
                    124.0
                             126.0
                                    141.5
                                             159.0
df2 <- subset(df.grid, size==select_ft_step & max_depth==5 & max_delta_step == 0 )</pre>
with(df2, plot(x = n_estimators, y=score, ylab=score_label))
```

