COMPLEMENTI DI RICERCA OPERATIVA

Prof. Marco Trubian 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

Magistrale Informatica Università di Milano Italy 19 aprile 2018

Indice

1	1 Togi anninazione non inicare	_
2	Programmazione lineare intera	3

1

Programmazione non lineare

Definizione 1.0.1 (Insieme convesso). Un insieme $X \subset \mathbb{R}^n$ è convesso se comunque presi due punti $\underline{x}, \underline{y} \in X$, allora $\lambda \underline{x} + (1 - \lambda)\underline{y} \in X$, per ogni $\lambda \in [0, 1]$.

La proprietà di convessità è invariante rispetto alle operazioni di moltiplicazione con uno scalare, unione e intersezione con un altro insieme convesso.

Definizione 1.0.2 (Funzione convessa). Una funzione $f : \mathbb{R}^n \to \mathbb{R}$ è convessa se il suo dominio è un insieme convesso $X \subseteq \mathbb{R}^n$ e comunque presi due punti $\underline{x}, y \in X$ vale la relazione:

$$f(\lambda \underline{x} + (1 - \lambda)y) \le \lambda f(\underline{x}) + (1 - \lambda)f(y) \quad \forall \lambda \in [0, 1]$$

La proprietà di convessità è invariante rispetto a moltiplicazione con uno scalare e somma tra funzioni convesse.

Vale inoltre che la funzione max di una o più funzioni convesse e che il luogo dei punti x per i quali vale che $f(x) \le \alpha$ è convesso.

Definizione 1.0.3 (Problema convesso). Un problema di ottimizzazione con funzione obiettivo e regione ammissibile entrambe convesse viene detto problema convesso.

Definizione 1.0.4 (Minimo globale). Un punto $x^* \in X$ è un punto di minimo globale di f(x) se:

$$f(\underline{x}^*) \le f(\underline{x}) \quad \forall \underline{x} \in X$$

Definizione 1.0.5 (Minimo locale). Un punto $\underline{x}^* \in X$ è un punto di minimo locale di $f(\underline{x})$ se esiste un intorno aperto $I(\underline{x}^*, \epsilon)$ di \underline{x}^* avente raggio $\epsilon > 0$ tale che:

$$f(x^*) \le f(x) \quad \forall x \in X \cap I(x^*, \epsilon)$$

Programmazione lineare intera