



#### Data Structure

OP T

Tree Chapter- 5 Lec- 01



By- Pankaj Sharma sir



Non Linear data structure

1 Organization structure

3 Folder structure





STL3

- 4) Binary Search trees
- 3 Binary Heap
- (6) B-Trees, B+-Trees
- (7) Parse tree/Expression

L Root

30

10

20

- 1) Node : Each element is rep. by node
- 3) child: 20,30 are childs of 10.

40,5 are childs of 20.

- 3) Parent: Ro is the farent of 40,5
  30 is the farent of 16,17,2
- (9) Root: Distinguishable from other mode (No Barent)



ie. 10,20,30,17

degree of a mode: No. of childs.

degree of a leaf mode = 0. degree of mode with 1 child = 1



degree of mode with 20 key





Ancestor

$$40 \Rightarrow 20,10$$
 $5 \Rightarrow 20,10$ 
 $50 \Rightarrow 17,30,10$ 
 $7 \Rightarrow 17,30,10$ 
 $2 \Rightarrow 30,10$ 
descendant

 $20 \Rightarrow 40,5$  $30 \Rightarrow 16,17,2,50,7$ 





Sibling: Nodes having some Barent



Trees Generation: Nodes at a level 20,30 40,5,16,17,2 50,7



L Root 0 size of a node: No. of descendants of the node 20 30 (including the node itself)

Binary tree



A node can have almost 2 child.

$$\frac{7}{2}$$
  $\frac{7}{2}$   $\frac{7}{20}$   $\frac{7}{20}$ 

To Root





# Full binary tree

Max no of nodes in a binary tree of Reight h?

2 4 level 1

2 4 level a



# nodes = 1+2+2=7

#nodes level

1 0

$$\frac{1}{2}$$

Total:  $\frac{1}{2} + \frac{1}{2}$ 
 $\frac{1}{2} + \frac{1}{2}$ 
 $\frac{2}{1 - \frac{1}{2}} + \frac{1}{2}$ 
 $\frac{2}{1 - \frac{1$ 

Min. no. of nodes in a binary-leer of height h?



 $\omega = 3$ 

level # Node 0 max = 2 min Total = 1+1+1+1+. (R+1) times





