Case Study Rubric – Classifying Snake Species in the **DMV Area**

Goal: The goal of this case study is for you to preprocess a real-world image dataset, train a convolutional neural network (CNN) to classify snake species, and evaluate the model's performance. You will experience the typical workflow of a computer vision classification project — from messy real-world data to building an initial, working model.

Tasks

You will complete the following tasks:

1. Data Preprocessing

- Reorganize image files into species-labeled subfolders using the provided annotations.
- Resize all images to a uniform size (e.g., 224x224 pixels).
- Apply basic data augmentation (e.g., rotation, flipping, brightness adjustment).

2. Model Training

- Build a simple CNN model (or fine-tune a ResNet-34, if you feel confident).
- Use TensorFlow and Keras to implement the model.
- Train your model using the preprocessed dataset.

3. Model Evaluation

- Evaluate the model using:
 - Accuracy
 - Precision
 - Recall
- Generate and visualize a confusion matrix.
- Briefly explain (3–5 sentences) the main sources of model errors you observe.

4. Recommendations

• Write 3–5 sentences suggesting one way you would improve the model if you had more time or resources (e.g., more data, different architectures, advanced augmentations).

Deliverable

Upload a PDF containing:

- A short summary of your preprocessing steps (around 1 paragraph)
- A description of your CNN model architecture (around 1 paragraph)
- Evaluation results (metrics + confusion matrix plot)
- Brief explanation of errors and one improvement suggestion

Your code should be in a clean, commented Jupyter Notebook (.ipynb) and uploaded to the GitHub repository alongside your report.

Submission Checklist

Data reorganized and preprocessed
CNN model built and trained
Evaluation metrics reported
Confusion matrix created and explained
Final reflection and improvement recommendation written
Code and PDF report uploaded to GitHub repository