NUMBERING SYSTEMS: BINARY, DECIMAL & HEXADECIMAL

BY DAVID NIMRI

NUMBERING SYSTEMS: A BRIEF HISTORY

- **Unary** System (left to right):
- used lines to represent value.
 - 1 was represented by
 - 2 was represented by ||
 - 5 was represented by |||||
 - 7 was represented by ||||| ||

NUMBERING SYSTEMS: A BRIEF HISTORY

- Roman Numeral System (left to right, then left, then right again):
 - used lines and introduced <u>representation</u> for major values (5, 10, 100, etc)
 - 1 was represented by |
 - 3 was represented by | | |
 - However, for the value 5 it was <u>represented</u> by V 10 represented by X and 100 by C
 - Numbers to the left of the representation are the value minus the numbers.
 - 4 is represented by |V| which is the same as $\overline{5-1}=4$
 - Numbers to the right of the representation are the value plus the numbers
 - 7 is represented by $V \mid |$ which is the same as 5+2=7
 - 21 is represented by XX | and 91 is represented by XC | (100-10+1)

QUICK QUIZ

• What year was this super bowl?

• Who won?

NUMBERING SYSTEMS: A BRIEF HISTORY

- **Decimal** System:
 - The system we know and love. Introduced by the Arabs and Hindus
 - Base 10 so only had 10 representations from 0 to 9.
 - Each value had its on representation from 0 to 9 (10 representations) and then repeated
 - Increases from right to left
 - Used the concept of Most Significant Digit (MSD) and Least Significant Digits (LSD) go beyond the value 9.
 - 10 has the left most digit, the number 1, as the MSD and 0 as the LSD.
 - 9,325 has the 9 as the MSD (thousands) and the number 5 as the LSD
 - Base 10 by the powers:
 - $10^3 = 1,000$
 - $10^2 = 100$
 - $10^1 = 10$
 - $10^{\circ} = 1$

BINARY SYSTEM

- Introduced by Gottfried Wilhelm Leibniz
- Increases from right to left
- The MSD is still left most digit and LSD is the right most digit.
- Base 2 thus only has two numbers, 0 and 1. Can be used to represent any number.
 - 1 is repressed by
 - 2 is represent by
 - 3 is represented by 11
 - 4 is resented by 100
 - 5 is represented by 101
 - and so forth

BY THE POWERS OF 2

Power	^	٥	δ,	^	°	2	^	0	> 0	
Base	9/1	"	, ,	"	<i>'</i>	<i>"</i>	<i>'</i>	<i>"</i>	//	
Max Value	320	6 _K	32	1/0	<u>અ</u> ઁ	N.	2	>	<u>o</u> ~	
location	1	0	0	0	0	0	0	0	0	

QUICK QUIZ

- What decimal number power is needed to reach 100?
- What are the following Decimal numbers in Binary:
 - 4
 - 7
 - 10
 - 16
 - 33
- What are the following Binary number in Decimal
 - 10
 - 110
 - 1110
 - 10101

ADDITION & SUBTRACTION RULES

- The basic Rules of addition
 - 0 + 0 = 0
 - 1 + 0 = 1
 - 1 + 1 = 10 (1 is carried to next MSD, value is two)
- The basic rules of subtraction
 - 0-0=0
 - 1-0=1
 - 1-1=0
 - 10-1=1 Key concept to binary subtraction
 - 110-1 = need to borrow from the next closest MSD:
 - 110-1 =
 - 1 + 0 = 10 = 101

- Decimal Analogy
 - 0 + 0 = 0
 - 1 + 0 = 1
 - 1 + 1 = 2
 - 9 + 1 = 10 (the 1 is carried to the next MSD, value is ten)
 - 28-9 = the 8 needs to borrow from next closest MSD
 - 28-9 =
 - 21818-9= 19

BINARY ADDITION

binary additions

Does
$$3 + 6 = 9$$
 in binary as well? Lets see.. $3 \quad 1 \quad 11$

BINARY SUBTRACTION

BIT, NIBBLE, BYTE

- Bit (0 or 1)
 - Largest number of 1
- Nibble (4bits)
- Byte (8 Bits)
 - largest number of 15 (hexadecimal)
- Kilobyte (1024 Bytes)
- Megabyte (1024 kilobytes))
- Gigabyte (1024 megabyte)
- Terabyte (1024 Gig)
- Petabyte (1024 TB)

HEXADECIMAL

- 16 values, from 0-15
- Values from 0-9 are represented the same as decimal
- Values from 10-15 are resented using letters
 - A = 10
 - B = 11
 - C = 12
 - D = 13
 - E = 14
 - F=15
- Benefits:
 - maps to binary (one hex digit is four bits, or, a nibble)
 - Fit more in less space and memory
 - Easier to read than binary
 - In hex: RGB (FF00EE) or Red(FF) Green (00) and Blue (EE)
 - Dec to bin: (255,0,255) => (111111111, 0, 111111111)

CONVERTING FROM/TO HEX

Convert: A3

• Reminder: A in hex = 10

•
$$(16^{\circ}) \times 3 = 1 \times 3 = 3$$

$$(16^1) \times 16 = 10 \times 16 = 160$$

$$\bullet$$
 3 + 160 = 163

LSD MSD

HEXADECIMAL EXAMPLE

• What is 14, 16 and 29 in hex?

DECIMAL VS BINARY VS HEX

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	26
Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	1A
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111	10000	11010
Highest Bin Power	0	20	21	21	2 ²	22	22	22	2 ³	2 ³	23	23	23	23	23	2 ³	24	24
Highest Dec Power	0	10º	100	100	100	100	100	100	100	100	101	101	101	101	101	10 ¹	101	10¹

