Theory of Computation

Lecture 2 More about Regular Expressions

Syllabus and Terminologies

- Regular Languages .. Regular Sets
 - □ REs (Regular Expressions)
 - □ FSMs (or FSA/FA) ... Finite State Machines/Automata
 - DFA vs. NFA ... Deterministic vs. Non-deterministic FSA
 - Comparison and conversion
 - Examples & Closure Operations
 - Pumping Lemma
- Context Free Languages
 - □ CFGs ... Context Free Grammars
 - □ PDA ... Push Down Automata
 - Parsing: CFG generating strings vs. PDA recognizing strings
- Turing Machine

Hierarchy of Machines

Example

Regular expression: $(a+b)\cdot a*$

$$L((a + b) \cdot a^*) = L((a + b)) L(a^*)$$

$$= L(a + b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a, b\} \{\lambda, a, aa, aaa, ...\}$$

$$= \{a, aa, aaa, ..., b, ba, baa, ...\}$$

Example

Regular expression r = (aa)*(bb)*b

What is the regular languages that r describes?

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are **equivalent** if

$$L(r_1) = L(r_2)$$

Example

 $L = \{all strings with no two consecutive 0's \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 and r_2 are equivalent regular expr.

Example

Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings with at least two consecutive 0's }

More RE Examples

$$\sum \text{Example 1} \\ \sum = \{a, b\}^{\bigstar}$$

Formally describe all words with a followed by any number of b's

$$L = ab^* = ab^*$$

Give examples for words in L

Example

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by one or more <u>b</u>'s

$$L = a b^+ = abb^*$$

- Give examples for words in L

```
{ab abb abbb .....}
```

Example

$$\sum = \{a, b, c\}$$

- Formally describe all words that start with an <u>a</u> followed by any number of <u>b</u>'s and then end with <u>c</u>.

$$L = a b^*c$$

- Give examples for words in L

```
{ac abc abbc abbbc .....}
```


Example

$$\sum = \{a, b\}$$

- Formally describe the language that contains nothing and contains words where any <u>a</u> must be followed by one or more <u>b</u>'s

$$L = b^*(abb^*)^* OR (b+ab)^*$$

- Lowe examples for words in L

{\Lambda ab ab ab ab ab ab ab ab bb b bb bb...}

Example $\Sigma = \{a, b\}$

$$\sum = \{a, b\}$$
Formally describe all years

- Formally describe all words where <u>a</u>'s if any come before <u>b</u>'s if any.

$$L = a^* b^*$$

Give examples for words in L

 $\{\Lambda \text{ a b aa ab bb aaa abb abbb bbb.....}\}$

NOTE:
$$a^*b^* \neq (ab)^*$$

because first language does not contain abab but second language has. Once single b is detected then no a's can be added

Example

$$\sum = \{a\}$$

- Formally describe all words where count of <u>a</u> is odd.

```
L = a(aa)^* OR (aa)^* a
```

- Give examples for words in L

```
{a aaa aaaaa .....}
```

RE-7.1

$$\triangleright$$
 Example $\sum = \{a, b, c\}$

- Formally describe all words where single a or c comes in the start then odd number of b's.

$$L = (a+c)b(bb)^* \qquad \alpha \ l(bb)^{*} + (bb)^{*}$$

- Give examples for words in L

{ab cb abbb cbbb}

RE-7.2

Example

$$\sum = \{a, b, c\}$$

- Formally describe all words where single <u>a</u> or <u>c</u> comes in the start then odd number of <u>b</u>'s in case of <u>a</u> and zero or even number of <u>b</u>'s in case of <u>c</u>.

```
L = ab(bb)^* + c(bb)^*
```

- Give examples for words in L

{ab c abbb cbb abbbbb}

Example

$$\sum = \{a, b, c\}$$

Formally describe all words where one or more \underline{a} or one or more \underline{c} comes in the start then one or more \underline{b} 's.

$$L = \frac{(a^+ + c^+) b^+}{(aa^* + cc^*) bb^*}$$

- Give examples for words in L

{ab cb aabb cbbb}

RE-9.1

 \triangleright Example $\sum = \{a, b\}$

$$\sum = \{a, b\}$$

Formally describe all words with length three.

$$L = \frac{(a+b)^{-3}}{(a+b)} = (a+b)(a+b)(a+b)$$

- List all words in L {aaa aab aba abb baa bab bba bbb}
- What is the count of words of length 4? $16 = 2^4$
- What is the count of words of length 44?

RE-9.2

> Example
$$\sum = \{a, b, c, d\}$$

Formally describe all words with length three.

$$L = \frac{(a+b+c+d)^{-3}}{(a+b+c+d)} = (a+b+c+d) (a+b+c+d) (a+b+c+d)$$

First and last words in L:

What is the count of words?

$$4^3 = 64$$

RE-10.1

Example

 $\sum = \{a, b\}$, What does L describe?

- $L = (a+b)^* a(a+b)^*$

Any string of a's and b's

Single a

Any string of a's and b's

- Give examples for words in L

{a ab aab bab abb}

RE-10.2

Ambiguity: abbaab can be parsed in 3 ways

-
$$L = (a+b)^* a(a+b)^*$$

Example

$$\sum = \{a, b\}$$

- Formally describe all words with *at least* two <u>a</u>'s.
- 1) L = b*ab*a(a + b)*
- Start with a jungle of **b**'s (or no **b**'s) until we find the first **a**, then more **b**'s (or no **b**'s), then the second **a**, then we finish up with anything.
- Give examples for words in L

{abbbabb aaaaa bbbabbbabab.....}

 \triangleright Example $\sum = \{a, b\}$

$$\sum = \{a, b\}$$

Formally describe all words with *exactly two a's*.

$$L = b*\underline{a}b*\underline{a}b*$$

aaaa X

Give examples for words in L

```
{aa, aab, baba, and bbbabbab .....}
```

 \triangleright To make the word *aab*, we let the first and second b^* become A and the last becomes b

RE-13.1

ab a babbabba

Example

$$\sum = \{a, b\}$$

- Formally describe all words with at least one <u>a</u> and at least one b.

1)
$$L = (a + b)*\underline{a}(a + b)*\underline{b}(a + b)*$$

= (anything) a (anything) b (anything)

But (a+b)*a(a+b)*b(a+b)* expresses all words except words of the form some b's (at least one) followed by some a's (at least one).

bb*aa*

RE-13.2

```
2) L =(a+b)*a(a+b)*b(a+b)* + bb*aa*
Thus: (a+b)*a(a+b)*b(a+b)* + (a+b)*b(a+b)*a(a+b)*
= (a+b)*a(a+b)*b(a+b)* + bb*aa*
```

Notice that it is necessary to write bb*aa* because b*a* will admit words we do not want, such as aaa.

Does this imply that

Left side includes the word aba, which the expression on the right side does not.

RE-13.3

What about this RE? Does it Formally describe all words with at least one a and at least one b?

$$RE = (a+b)*(ab+ba)(a+b)*$$