	<pre>import sympy as sp import math as m from sympy import collect, simplify, expand, fraction, latex, diff, cancel, nsimplify from IPython.display import display, Markdown, Math from scipy.integrate import odeint import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [20, 10]</pre> class numden_coeff: definit(self, expr, symb):
	<pre>self.num, self.denum = fraction(expr) self.symb = symb self.common_factor = None self.lst_denum_coeff = self.build_lst(self.denum) self.lst_num_coeff = self.build_lst(self.num) def build_lst(self, poly): order = sp.Poly(poly, self.symb).degree() lst = [expand(poly).coeff(self.symb**i) for i in range((order), 0, -1)] lst.append(poly.subs(self.symb,0)) if (self.common_factor == None): self.common_factor = lst[0] lst = [simplify(lst[i]/self.common_factor) for i in range(order + 1)] return lst</pre>
	<pre>def disp(self): display(Markdown(r"Numerator coefficients (\beta)"), self.lst_num_coeff) display(Markdown(r"Denominator coefficients (alpha)"), self.lst_denum_coeff) Problem 1 Part 1</pre>
n [73]:	a, b, p, e = sp.symbols("a b p e") zeta, omega, gamma_prime, gamma, theta1, theta2 = sp.symbols("zeta omega \\gamma^{\}"} gamma theta_1 theta_y, u, uc, ym = sp.symbols("y(t) u(t) u_{c}(t) y_m") $ y_{eq} = \text{sp.solve}(\text{sp.Eq}(y*p**2, (-a*p*y + b*u)), y)[0] $ $ u_{eq} = \text{sp.solve}(\text{sp.Eq}(u, (\text{thetal*}(y - uc) - \text{theta2*p*y})), u)[0] $ $ y_{eq} = \text{sp.solve}(\text{sp.Eq}(y, y_{eq.subs}(u, u_{eq})), y)[0] $ $ display(\text{Math}("y = "+latex(y_{eq}))) $ $ y = -\frac{b\theta_1 u_c(t)}{ap + bp\theta_2 - b\theta_1 + p^2} $
T	he above equation is y in which $-p\theta_2y(t)-\theta_1u_c(t)+\theta_1y(t)$ has been subbed in for u bm0, am1, am0 = sp.symbols("b_{m0} a_{m1} a_{m0}") b_m0 = omega**2 a_m1 = 2*zeta*omega a_m0 = b_m0 # Bm = bm0 # Am = $(p**2 + am1*p + bm0)$ Bm = omega**2
N n [75]:	$\begin{array}{l} {\rm Am} = ({\rm p**2} + 2*{\rm zeta*omega*p} + {\rm omega**2}) \\ {\rm Gm} = {\rm Bm/Am} \\ {\rm Gm} \\ {\rm display} ({\rm Math}("{\rm G}_{\rm fm}) = "+{\rm latex}({\rm Gm}))) \\ \\ G_m = \frac{\omega^2}{\omega^2 + 2\omega p\zeta + p^2} \\ {\rm lext, the assumption that the plant } y \ {\rm will follow \ exactly \ the \ reference \ model} \ y_m \ {\rm is \ made \ to \ derive} \ \theta_1 \ {\rm and} \ \theta_2. \ {\rm This \ yeilds} \\ \\ {\rm num, \ den = fraction} \ ({\rm y_eq}) \\ \\ \end{array}$
	num_m, den_m = fraction(Gm*uc) theta_1 = sp.solve(sp.Eq(num, num_m), theta1)[0] theta_2 = sp.solve(sp.Eq(den.subs(theta1, theta_1), den_m), theta2)[0] display(Math("\\theta_1 = \;"+latex(theta_1))) display(Math("\\theta_2 = \;"+latex(theta_2))) $\theta_1 = -\frac{\omega^2}{b} $ $\theta_2 = \frac{-a + 2\omega\zeta}{b}$
N	Jext, the sensistivity of the error to θ_1 and θ_2 was derived. This will be used to derive equations for $\dot{\theta}_1$ and $\dot{\theta}_2$. The sensitivities $\frac{\partial e}{\partial \theta_1}$ and an be seen below $ \frac{\partial e_1}{\partial \theta_1} = \frac{\partial e_2}{\partial \theta_1} = \frac{\partial e_2}{\partial \theta_2} = \frac$
te	$\frac{\partial e}{\partial \theta_1} = -\frac{bpu_c(t)\left(a+b\theta_2+p\right)}{\left(-b\theta_1+p^2+p\left(a+b\theta_2\right)\right)^2}$ $\frac{\partial e}{\partial \theta_2} = \frac{b^2p\theta_1u_c(t)}{\left(-b\theta_1+p^2+p\left(a+b\theta_2\right)\right)^2}$ hese equations can be further simplified by deriving an equation for u_c in terms of y_m . This way, the sensistivitives can be expressed in terms of y_m , a variable in which we have an equation. The equation for u_c and the new equations for $\frac{\partial e}{\partial \theta_1}$ and $\frac{\partial e}{\partial \theta_2}$ in terms of y_m can be een below $u_c = \sup_{x \in \mathbb{R}} \sup_{x \in \mathbb$
	$ \begin{aligned} &\text{del_e_theta1_subd} = \text{del_e_theta1.subs}([(uc,u_c),(theta1,\ theta_1),\ (theta2,\ theta_2)])} \\ &\text{del_e_theta2_subd} = \text{del_e_theta2.subs}([(uc,u_c),(theta1,\ theta_1),\ (theta2,\ theta_2)])} \\ &\text{display}(\text{Math}("u_c = \;"+\text{latex}(u_c))) \\ &\text{display}(\text{Math}("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$
N [78]:	$\frac{\partial e}{\partial \theta_1} = -\frac{bpy_m \left(2\omega\zeta + p\right)}{\omega^2 \left(\omega^2 + 2\omega p\zeta + p^2\right)}$ $\frac{\partial e}{\partial \theta_2} = -\frac{bpy_m}{\omega^2 + 2\omega p\zeta + p^2}$ Rext, equations for $theta_1$ and $theta_2$ were derived using the equation $\dot{\theta} = -\gamma' e \frac{\partial e}{\partial \theta}$, the results of which can be seen below $\frac{\partial e}{\partial \theta_2} = -\frac{bpy_m}{\omega^2 + 2\omega p\zeta + p^2}$ Rext, equations for $theta_1$ and $theta_2$ were derived using the equation $\dot{\theta} = -\gamma' e \frac{\partial e}{\partial \theta}$, the results of which can be seen below $\frac{\partial e}{\partial \theta} = -\frac{\partial e}{\partial \theta}$ the tall dot = -gamma_prime*e*del_e_thetal_subd thetal_dot = -gamma_prime*e*del_e_thetal_subd display (Math ("\\dot{\theta}_1 =\;"+latex(thetal_dot))) display (Math ("\\dot{\theta}_1 =\;"+latex(thetal_dot)))
	$\dot{\theta}_1 = \frac{\gamma' bepy_m \left(2\omega\zeta + p\right)}{\omega^2 \left(\omega^2 + 2\omega p\zeta + p^2\right)}$ $\dot{\theta}_2 = \frac{\gamma' bepy_m}{\omega^2 + 2\omega p\zeta + p^2}$ etting $\gamma = \gamma' b$ gives $\begin{array}{c} \text{thetal_dot_subd} = \text{thetal_dot*gamma/(gamma_prime*b)} \\ \text{theta2_dot_subd} = \text{theta2_dot*gamma/(gamma_prime*b)} \end{array}$
	display (Math ("\\dot{\\theta}_1 =\;"+latex (theta1_dot_subd))) display (Math ("\\dot{\\theta}_2 =\;"+latex (theta2_dot_subd))) $ \dot{\theta}_1 = \frac{e\gamma py_m \left(2\omega\zeta + p\right)}{\omega^2 \left(\omega^2 + 2\omega p\zeta + p^2\right)} \\ \dot{\theta}_2 = \frac{e\gamma py_m}{\omega^2 + 2\omega p\zeta + p^2} $ hese equations were developed into ODEs in which the ODE solver could digest
[80]:	<pre>obj_thetal_dot = numden_coeff(thetal_dot_subd/ym, p) obj_theta2_dot = numden_coeff(theta2_dot_subd/ym, p) athetal = obj_thetal_dot.lst_denum_coeff[::-1] bthetal = obj_thetal_dot.lst_num_coeff[::-1] atheta2 = obj_theta2_dot.lst_denum_coeff[::-1] btheta2 = obj_theta2_dot.lst_num_coeff[::-1] display(Math("\\alpha\\dot{\\theta}_1 =\;"+latex(athetal))) display(Math("\\alpha\\dot{\\theta}_1 =\;"+latex(bthetal)))</pre>
n [81]:	display (Math ("\\beta\\dot{\\theta}_2 =\;"+latex (btheta2))) $ \alpha \dot{\theta}_1 = \left[\omega^2, 2\omega\zeta, 1 \right] $ $ \beta \dot{\theta}_1 = \left[0, \frac{2e\gamma\zeta}{\omega}, \frac{e\gamma}{\omega^2} \right] $ $ \alpha \dot{\theta}_2 = \left[\omega^2, 2\omega\zeta, 1 \right] $ $ \beta \dot{\theta}_2 = \left[0, e\gamma \right] $
	<pre>gamma_val = 7.5 omega_val = 1.5 zeta_val = 0.6 ym_d, ym_dd = sp.symbols("\\dot{y}_{m} \\dot{\theta}_{1} \\dot{\theta}_{1}") thetald, thetaldd = sp.symbols("\\dot{\\theta}_{2} \\dot{\theta}_{2}") theta2d, theta2dd = sp.symbols("\\dot{\\theta}_{2} \\dot{\theta}_{2}") theta1_ddd = -atheta1[0]*theta1d - atheta1[1]*theta1dd + btheta1[1]*ym_d + btheta1[2]*ym_dd theta2_ddd = -atheta2[0]*theta2d - atheta2[1]*theta2dd + btheta2[1]*ym_d theta1_ddd_subd = theta1_ddd.subs([(gamma, gamma_val), (omega, omega_val), (zeta, zeta_val)]) theta2_ddd_subd = theta2_ddd.subs([(gamma, gamma_val), (omega, omega_val), (zeta, zeta_val)])</pre>
	theta1_ddd_func = sp.lambdify([theta1d, theta1dd, ym_d, ym_dd, e], theta1_ddd_subd) theta2_ddd_func = sp.lambdify([theta2d, theta2dd, ym_d, e], theta2_ddd_subd) display(Math("\\dddot{\\theta}_1 =\;"+latex(theta1_ddd)+"\;=\;"+latex(theta1_ddd_subd))) display(Math("\\dddot{\\theta}_1 =\;"+latex(theta2_ddd)+"\;=\;"+latex(theta2_ddd_subd))) $ \ddot{\theta}_1 = -2\ddot{\theta}_1\omega\zeta + \frac{\ddot{y}_me\gamma}{\omega^2} - \dot{\theta}_1\omega^2 + \frac{2\dot{y}_me\gamma\zeta}{\omega} = -1.8\ddot{\theta}_1 + 3.3333333333333333333333333333333333$
[82]:	<pre>Part 2.1 (MIT) def ode_solver(y0, t, a, b, omega, zeta, gamma): ym, ym_dot = y0[0], y0[1] y, y_dot = y0[2], y0[3] theta1, theta1_dot, theta1_dotdot = y0[4], y0[5], y0[6] theta2, theta2_dot, theta2_dotdot = y0[7], y0[8], y0[9] u = y0[10] u_c_ode = m.sin(m.pi*t/15) >= 0 ym_dotdot = -2*omega*zeta*ym_dot - omega**2*ym + omega**2*u_c_ode</pre>
	<pre>y_dotdot = -(a + b*theta2)*y_dot + b*theta1*(y - u_c_ode) e = y_dot - ym_dot theta1_dotdotdot = theta1_ddd_func(theta1_dot, theta1_dotdot, ym_dot, ym_dotdot, e) theta2_dotdotdot = theta2_ddd_func(theta2_dot, theta2_dotdot, ym_dot, e) u = theta1*(y - u_c_ode) - theta2*y_dot return [ym_dot, ym_dotdot,</pre>
[83]:	<pre>T_val = 0.1 sample_depth = int(10/T_val) # 1000 samples totalling 100 seconds (since sample time T is 0.1 secons) sample_range = range(sample_depth) starting_samples = 3 gamma_val = 5 omega_val = 1.5 zeta_val = 0.6 a_val = 3 b_val = 1</pre>
	<pre># calculation of input signal t = [i for i in sample_range] u_c = np.ones(sample_depth) u_c[np.where([m.sin(t[i]*m.pi*T_val/15)<=0 for i in sample_range])] = 0 y0 = [0]*11 ode_res = odeint(ode_solver, y0, t, args=(a_val, b_val,</pre>
	<pre>plt.grid() plt.show() plt.title("Control Signal u", fontsize=20) plt.plot(t, ode_res[:,10]) plt.grid() plt.show()</pre> Error
	-0.2
	-0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
F	Part 2.2 (Normalized MIT)
F m b	or the noramlized MIT rule, the equation for theta needed to be updated. The equations derived for $\dot{\theta}_i$ are the sensistivity equations nultiplied by γe therfore, the same procedure for building hte $\dot{\theta}_i$ equations can be reused by simply divinding everything by γe at the eggining. These new equations will keep the same names as before in the code as to not make many updates to the existing code. the nly difference will be setting the actual $\dot{\theta}_i$ equal to $\frac{\gamma \psi \frac{\partial e}{\partial \theta}}{\alpha + \psi^2}$. Additionally, the fact that $\psi = -\frac{\partial e}{\partial \theta}$ will have to be taken into account. $\begin{array}{c} \text{obj_thetal_dot} = \text{numden_coeff} \text{ (thetal_dot_subd/ (ym*e*gamma), p)} \\ \text{obj_thetal_dot} = \text{numden_coeff} \text{ (thetal_dot_subd/ (ym*e*gamma), p)} \\ \text{athetal} = \text{obj_thetal_dot.lst_denum_coeff} \text{ (::-1]} \end{array}$
	$ \begin{aligned} &\text{btheta1} = \text{obj_theta1_dot.lst_num_coeff[::-1]} \\ &\text{atheta2} = \text{obj_theta2_dot.lst_denum_coeff[::-1]} \\ &\text{btheta2} = \text{obj_theta2_dot.lst_num_coeff[::-1]} \\ &\text{display(Math("\alpha \frac{\partial e}{\partial \theta_1} = ;"+latex(atheta1))} \\ &\text{display(Math("\alpha\frac{\partial e}{\partial \theta_2} = ;"+latex(btheta1))} \\ &\text{display(Math("\alpha\frac{\partial e}{\partial \theta_2} = ;"+latex(atheta2)))} \\ &\alpha \frac{\partial e}{\partial \theta_1} = \left[\omega^2, 2\omega\zeta, 1\right] \end{aligned} $
Т	$\beta \frac{\partial e}{\partial \theta_1} = \left[0, \frac{2\zeta}{\omega}, \frac{1}{\omega^2}\right]$ $\alpha \frac{\partial e}{\partial \theta_2} = \left[\omega^2, 2\omega\zeta, 1\right]$ $\beta \frac{\partial e}{\partial \theta_2} = \left[0, 1\right]$ he below equations are named θ_i simply becasue the code template derived above was reused to minimise the updates needed to the ode. These equations are actually for $\frac{\partial e}{\partial \theta_i}$
[85]:	gamma_val = 7.5 omega_val = 1.5 zeta_val = 0.6 $ym_d, \ ym_dd = sp.symbols("\dot{y}_{m} \dot{v}_{m}") thetald, thetaldd = sp.symbols("\dot{\theta}_{1} \dot{\theta}_{1}") theta2d, theta2dd = sp.symbols("\dot{\theta}_{2} \dot{\theta}_{2}") theta1_ddd = atheta1[0]*theta1d + atheta1[1]*theta1dd + btheta1[1]*ym_d + btheta1[2]*ym_dd theta2_ddd = atheta2[0]*theta2d + atheta2[1]*theta2dd + btheta2[1]*ym_d$
[86]:	<pre>theta1_ddd_subd = theta1_ddd.subs([(gamma, gamma_val), (omega,omega_val), (zeta, zeta_val)]) theta2_ddd_subd = theta2_ddd.subs([(gamma, gamma_val), (omega,omega_val), (zeta, zeta_val)]) theta1_ddd_func = sp.lambdify([theta1d, theta1dd, ym_d, ym_dd], theta1_ddd_subd) theta2_ddd_func = sp.lambdify([theta2d, theta2dd, ym_d], theta2_ddd_subd) def ode_solver(y0, t, a, b, omega, zeta, gamma, alpha): ym, ym_dot = y0[0], y0[1] y, y_dot = y0[2], y0[3] theta1, theta1_dot, theta1_dotdot = y0[4], y0[5], y0[6] theta2, theta2 dot, theta2 dotdot = y0[7], y0[8], y0[9]</pre>
	<pre>theta1_norm = y0[10] theta2_norm = y0[11] u = y0[12] u_c_ode = m.sin(m.pi*t/15) >= 0 ym_dotdot = -2*omega*zeta*ym_dot - omega**2*ym + omega**2*u_c_ode y_dotdot = -(a + b*theta2_norm)*y_dot + b*theta1_norm*(y - u_c_ode) e = y_dot - ym_dot theta1_dotdotdot = theta1_ddd_func(theta1_dot, theta1_dotdot, ym_dot, ym_dotdot) theta2_dotdotdot = theta2_ddd_func(theta2_dot, theta2_dotdot, ym_dot) theta1_n = theta1*e*gamma/(alpha + (theta1)**2)</pre>
	<pre>theta2_n = theta2*e*gamma/(alpha + (theta2)**2) u = theta1_norm*(y - u_c_ode) - theta2_norm*y_dot return [ym_dot, ym_dotdot,</pre>
[87]:	<pre>T_val = 0.1 sample_depth = int(10/T_val) # 1000 samples totalling 100 seconds (since sample time T is 0.1 secons) sample_range = range(sample_depth) starting_samples = 3 alpha_val = 1 gamma_val = 5 omega_val = 1.5 zeta_val = 0.6 a_val = 3 b_val = 1</pre> # calculation of input signal
	<pre># calculation of input signal t = [i for i in sample_range] u_c = np.ones(sample_depth) u_c[np.where([m.sin(t[i]*m.pi*T_val/15)<=0 for i in sample_range])] = 0 y0 = [0]*13 ode_res = odeint(ode_solver, y0, t, args=(a_val, b_val, omega_val, zeta_val, gamma_val, alpha_val))</pre>
	<pre>plt.title("Error", fontsize=20) plt.plot(t, ode_res[:,2] - ode_res[:,0]) plt.grid() plt.show() plt.title("Control Signal u", fontsize=20) plt.plot(t, ode_res[:,12]) plt.grid() plt.show()</pre> <pre> Error</pre>
	0.2
	-0.4 -0.6 -0.8 -0.8 Control Signal u
	25
	0.0
F	Problem 2 Part 1 irst, an equation for y was derived in terms of u_c . This was done by subbing $u = \theta_1 u_c - \theta_2 y$ into $y = \frac{bu}{p}$. This yeilds y ,
	V1 = 0.5*e**2 V2 = 1/(b*gamma*2)*(alpha - b*theta2)**2 V3 = 1/(b*gamma*2)*(beta - b*theta1)**2 V = V1 + V2 + V3 $y_{eq} = b*u/p$ $u_{eq} = theta1*uc - theta2*y$ $y_{eq} = sp.solve(sp.Eq(y,y_{eq}.subs(u, u_{eq})),y)[0]$ $display(Math("y = "+latex(y_{eq})))$
N [89]:	Jext, an equation for y_m was derived from G_m . This giave
N	$y_m = \frac{\beta u_c(t)}{\alpha + p}$ Much like in question 1, the true values in terms of process/model parameters were derived for θ_1 and θ_2 . This was done by equating the umerators and denominators of y and y_m . This gave $\begin{aligned} &\text{num, den = fraction}(y_\text{eq}) \\ &\text{num_m, den_m = fraction}(y_\text{eq}) \\ &\text{theta_1 = sp.solve}(\text{sp.Eq}(\text{num, num_m}), \text{ theta1})[0] \\ &\text{theta_2 = sp.solve}(\text{sp.Eq}(\text{den, den_m}), \text{ theta2})[0] \end{aligned}$
А	$\begin{array}{l} {\rm display(Math("\backslash theta_1 \ =\ ;"+latex(theta_1)))} \\ {\rm display(Math("\backslash theta_2 \ =\ ;"+latex(theta_2)))} \\ \\ {\rm \theta_1 = \ } \frac{\beta}{b} \\ {\rm \theta_2 = \ } \frac{\alpha}{b} \\ {\rm a sensitivity equations was derived for } \dot{e}. {\rm This was done with the equation } \dot{e} = \dot{y} - \dot{y}_m . {\rm The resulting equation was further manipluated y adding and subtracting } \alpha y {\rm to have an error term } (e) {\rm in the equation } \end{array}$
[91]:	<pre>y, u, uc, ym = sp.symbols("y(t) u(t) u_{c}(t) y_m") alpha, beta, b, theta1, theta2, p = sp.symbols("alpha beta b theta_1 theta_2 p") y_dot = b*u_eq ym_dot = -alpha*ym + beta*uc e_dot = collect(expand(y_dot - ym_dot), y) e_dot_poly = sp.Poly(e_dot, [y,uc]) e_dot_poly_subd = e_dot_poly.as_expr().subs([(theta1, theta_1), (theta2, theta_2)]) e_dot_alt = uc*(b*theta1 - beta) - b*theta2*y - alpha*e + alpha*y e_dot_alt_poly = sp.Poly(e_dot_alt, [e, theta1, theta2])</pre>
	$ \begin{aligned} & \text{V_subd} = \text{V.subs}([(e,0), (\text{theta1}, \text{theta}_1), (\text{theta2}, \text{theta}_2)])} \\ & \text{display}(\text{Math}("\dot{y} = \;"+\text{latex}(y_\text{dot}))) \\ & \text{display}(\text{Math}("\dot{y}_m = \;"+\text{latex}(y_\text{dot}))) \\ & \text{display}(\text{Math}("\dot{e}] = \;"+\text{latex}(e_\text{dot}_\text{poly.as}_\text{expr}())+"\;"+\\ & \text{latex}(e_\text{dot}_\text{alt}_\text{poly.as}_\text{expr}()))) \\ & \# display(e_\text{dot}_\text{alt}_\text{poly.coeffs}()[3]) \end{aligned} \\ & \dot{y} = b\left(\theta_1 u_c(t) - \theta_2 y(t)\right) \\ & \dot{y}_m = -\alpha y_m + \beta u_c(t) \end{aligned} $
y S V	$\dot{g}_m = -\alpha g_m + \beta u_c(t)$ $\dot{e} = \alpha y_m - b \theta_2 y(t) + u_c(t) \left(b \theta_1 - \beta \right) = -\alpha e + \alpha y(t) + b \theta_1 u_c(t) - b \theta_2 y(t) - \beta u_c(t)$ ubing in θ_1 and θ_2 into \dot{e} gives $\dot{e} = -\alpha y(t) + \alpha y_m$. Therefore, if the error is to go to 0, and θ_1 and θ_2 converge to their true values, the must converge to y_m ubing these results into the equation provided in the assingment document gives $T(e) = 0.5e^2 + \frac{(\alpha - b \theta_2)^2}{2b\gamma} + \frac{(-b \theta_1 + \beta)^2}{2b\gamma} = 0$ herefore, the first condition for the lyapunov function is satisfied (i.e. V = 0 at the equilibrium point)
[92]:	<pre>eDot, theta1Dot, theta2Dot = sp.symbols("\\dot{e} \\dot{\\theta}_1 \\dot{\\theta}_2")</pre>
	$ \begin{array}{l} \textbf{V_dot} = \texttt{nsimplify}(\texttt{diff}(\texttt{V1}, \ e)) * \texttt{eDot} + \ \texttt{diff}(\texttt{V2}, \texttt{theta2}) * \texttt{theta2Dot} + \ \texttt{diff}(\texttt{V3}, \texttt{theta1}) * \texttt{theta1Dot} \\ \textbf{V_dot_subd} = \textbf{V_dot.subs}([(\texttt{eDot}, \ e_dot_alt)]) \\ \textbf{V_dot_subd_alt} = \textbf{V_dot.subs}([(\texttt{eDot}, \ e_dot_alt), \ (\texttt{theta1}, \ \texttt{theta}_1), \ (\texttt{theta2}, \ \texttt{theta}_2)]) \\ \textbf{V_dot_subd_poly} = \texttt{sp.Poly}(\textbf{V_dot_subd}, \ [\texttt{theta1Dot}, \ \texttt{theta2Dot}, \ y, \ uc]) \\ \\ \textbf{display}(\texttt{Math}("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$
s V	<pre>V_dot_subd = V_dot.subs([(eDot, e_dot_alt)]) V_dot_subd_alt = V_dot.subs([(eDot, e_dot_alt), (theta1, theta_1), (theta2, theta_2)]) V_dot_subd_poly = sp.Poly(V_dot_subd, [theta1Dot, theta2Dot, y, uc]) display(Math("\\dot{V}(e) =\;"+latex(V_dot)))</pre>
S V V [[93]:	$\begin{split} & \text{V_dot_subd} = \text{V_dot.subs}([(\text{eDot}, \text{e_dot_alt})])} \\ & \text{V_dot_subd_alt} = \text{V_dot.subs}([(\text{eDot}, \text{e_dot_alt}), (\text{theta1}, \text{theta_1}), (\text{theta2}, \text{theta_2})])} \\ & \text{V_dot_subd_poly} = \text{sp.Poly}(\text{V_dot_subd}, [\text{theta1Dot}, \text{theta2Dot}, \text{y, uc}])} \\ & \text{display}(\text{Math}("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\})) \\ & \text{display}(\text{Math}("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$
S V V V V V V V V V V V V V V V V V V V	$\begin{array}{l} \sqrt{\det subd} = \sqrt{\det subd} = ([ebc_1 + ebc_2] + [bc_1 + ebc_2]) \\ \sqrt{\det subd} = \sqrt{\det subd} ([ebc_1 + ebc_2] + [bc_1 + ebc_2]) \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} = \sqrt{\det subd} \\ \sqrt{\det subd} = \sqrt{\det subd} \\$
S V V V V [93]:	$\begin{array}{l} \sqrt{\text{dot}} \text{ subd} = \mathbb{V}_{-} \text{ dot}. \text{ subs} \{ (\text{elpot}, e, \text{ dot}_{-} \text{ alt}) \} \\ \sqrt{\text{dot}} \text{ subd}_{-} \text{ alt} = \mathbb{V}_{-} \text{ dot}. \text{ subs} \{ (\text{elbot}, e, \text{ dot}_{-} \text{ alt}), \text{ (thetal}, \text{ thetal}_{-}), \text{ (thetal}_{-}, \text{ thetal}_{-}) \} \\ \sqrt{\text{dot}} \text{ subd}_{-} \text{ poly} = \text{ sp. Poly}(\mathbb{V}_{-} \text{ dot}_{-} \text{ subd}_{-}, \text{ (thetal}_{-}), \text{ thetal}_{-}) \} \\ \sqrt{\text{dot}} \text{ subd}_{-} \text{ poly} = \text{ sp. Poly}(\mathbb{V}_{-} \text{ dot}_{-} \text{ subd}_{-}, \text{ poly}_{-}, \text{ sexpr}(\mathbb{V}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(`V') (e) = \(\cdot \), ``*+iatex(V_{-} \text{ dot}_{-}))) \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-}))) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-})) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-})) \} \\ \text{display} (\text{Math}(```\\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}_{-})) \} \\ \text{display} (\text{Math}(```\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}(V') (e) + iatex(V_{-} \text{ dot}_{-})) \} \\ \text{display} (\text{Math}(```\ \text{dot}(V') (e) = \(\cdot \cdot), ``*+iatex(V_{-} \text{ dot}(V') (e) + iatex(V_{-} \text{ dot}(V') (e) + iatex(V_$
S V V V F F F F F	$ \begin{array}{l} \mathbb{V} \ \ \text{dot} \ \ \text{subd} = \mathbb{V} \ \ \text{dot} \ \ \text{subb} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
S V V V F F F F F	$\begin{array}{l} \forall \text{ dot } \text{ subd} = V \text{ obt, about } (\text{lefot, } \bullet \text{ obt, abit}) \\ \forall \text{ dot, midd, abit} = V \text{ dot, midd, febt, eds.} \text{ dot, abit}), (\text{theral}, \text{ theral}), (\text{theral}), (t$
S V V V F F F F F	$\begin{array}{ll} \mathbb{V}_{2}^{2}(a) & \mathrm{side}(a) & sid$
S V V V V V V V V V V V V V V V V V V V	$\begin{aligned} & \sqrt{\frac{1}{2}} \lim_{t \to \infty} \frac{1}{\sqrt{t}} \int_{\mathbb{R}^{N}} 1$
S V V V V V V V V V V V V V V V V V V V	$\begin{array}{ll} \log \log$
S (V) (V) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	$\begin{aligned} & \sqrt{\text{const.}} & = \sqrt{\text{const.}} & \text{const.} & co$
S (V) (V) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	$\begin{aligned} & \sqrt{\text{constrained}} & = \sqrt{\text{constrained}} + \sqrt{\text{constrained}} & = \sqrt{\text{constrained}} + \sqrt{\text{constrained}} + \sqrt{\text{constrained}} \\ & \sqrt{\text{constrained}} & = \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} \\ & \sqrt{\text{constrained}} & = \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} \\ & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} & \sqrt{\text{constrained}} \\ & \sqrt{\text{constrained}} & \text{$
S V V I I I I I I I I I I I I I I I I I	The control of the c
S V V I I I I I I I I I I I I I I I I I	Considerable and the control of the
S V V I I I I I I I I I I I I I I I I I	Significant and Committee and
S V V I I I I I I I I I I I I I I I I I	Section of the control of the contro

