REAL-TIMEVisualization & Analysis

Lorentz Workshop | November 10, 2023

OUTLINE Annotation Scenarios Conclusion Tool Hardware Visualization Introduction considerations demo

- Compiled a list of available software
- Defined "real-time" as:
 - Live interaction (order of seconds)
 - Fast batch processing (order of minutes)
- Operational model is yet to be defined, e.g.,
 - Analysis on beamline computers (interactive)
 - Analysis on HPC with different nodes, SLURM, etc

- Identified two key scenarios:
 - Post-processing and interactive inspect/analyze/decide/visualize
 - High-throughput (dynamic) experiment utilizing real-time pipeline

SCENARIO #1: Interactive analysis & visualization

- Jupyter notebooks and examples
 - User can be provided w/ tutorials (videos) and Jupyter notebooks for post-processing of scientific data analysis of the experiment
 - What should a user know about their data before full rendering?
 - Go beyond Fiji: data reading, writing, and key python libraries
 - *example (see QR code or github.com/dani-lbnl/aitomo)

PROS

- whole data available
- multiresolution representations
- optimization of visualization

CONS

- GPU/CPU-intensive tasks in shared computational systems
- ideally have to submit tasks through SLURM scheduler

SCENARIO #2:

Real-time streaming & visualization strategy

- PoC consists of:
 - sender
 - pipeline (code from paper 10.1107/S1600577522003095)
 - client request
- *We do not have full reconstruction at this point

SCENARIO #2:

Real-time streaming & visualization strategy

PROS

- dynamic interaction with users
- partial data

CONS

- partial data
- complex to design
- costly infrastructure required for large volume data

SCENARIO #2: Real-time streaming & visualization strategy

Visualization demo (NVIDIA-Index)

- Reconstructed dataset can be directly "plugged" into Index
- Example from Sirius: real-time rendering of a 5k x 5k x 5k cube
- Requires specialized HW solutions

Visualization demo (NVIDIA-Index)

Annotation Tool

- Fast connection between GPU & RAM (NVIDIA DGX)
- Network
- RAM / CPU
- File-server speed
- RDMA/Infiniband/Omnipass/RoCE capabilities

- When considering user diversity, multiple solutions should be available
 - On-the fly
 - Post-processing
- Future work: incorporating Al for enhancement, pattern recognition for reconstruction, etc

Thank you!

Lorentz Workshop | November 10, 2023

Credit: Triceratops STL