Lecture 13

Model Diagnostics

STAT 8020 Statistical Methods II September 18, 2019

> Whitney Huang Clemson University

Model Diagnostics CLEMS IN TY
13.1

Notes			

Agenda

- Leverage
- 2 Studentized & Jackknife Residuals
- **3** DFFITS
- Non-Constant Variance & Transformation

Notes

Leverage

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

 \bullet The leverage score for the $i_{\rm th}$ observation is defined as:

$$h_i = H_{ii}$$

- Can show that $\mathrm{Var}(e_i) = \sigma^2(1-h_i)$, where $e_i = Y_i \hat{Y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h}_i = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

Notes

Studentized & Jackknife Residuals DFFITS Non-Constant Variance &

Leverage Scores of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Studentized Residuals

As we have seen ${
m Var}(e_i)=\sigma^2(1-h_i),$ this suggests the use of $r_i=rac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- r_i's are called studentized residuals. r_i's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then ${\sf Var}(r_i)=1$ and ${\sf Corr}(e_i,e_j)$ tends to be small

Notes

Notes

13.5

Studentized Residuals of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Model Diagnostics CLEMS NIVERSITY
Studentized & Jackknife Residuals

Notes				

Jackknife Residuals

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- \bullet The observation i is an outlier if $\hat{Y}_{i(i)}-Y_i$ is "large"
- \bullet Can show $\mathrm{Var}(\hat{Y}_{i(i)}-Y_i)=\sigma^2\left(1+x_i^T(X_{(i)}^TX_i)^{-1}x_i\right)$
- Define the jackknife residuals as

$$t_{i} = \frac{\hat{Y}_{i(i)} - Y_{i}}{\sqrt{\hat{\sigma}^{2} \left(1 + x_{i}^{T} (X_{(i)}^{T} X_{i})^{-1} x_{i}\right)}}$$

which are distributed as a t_{n-p} if the model is correct and $\varepsilon \sim \mathrm{N}(0,\sigma^2 I)$

Model Diagnostics	
Studentized & Jackknife Residuals	

Notes

Jackknife Residuals of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

CLEMS N
Studentized & Jackknife Residuals

Notes			

Influential Observations

DFFITS

- \bullet Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$
- DFFITS $_i = \frac{\hat{Y}_i \hat{Y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$
- Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

Model Diagnostics
CLEMS#N
DFFITS

Notes			

DFFITS of Species \sim Elev + Adj

Notes

Residual Plot of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Notes

Residual Plot After Square Root Transformation

Notes				