Econometrics 710 Midterm Exam March 10, 2011 Sample Answers

1. The coefficient γ_2 is the best linear predictor for e_i^2 given x_i . The coefficient γ_1 is the best linear approximation to $\sigma^2(x_i)$. They are the same. To see this explicitly, the FOC for γ_1 is

$$\mathbf{0} = -2E\left(\mathbf{x}_i \sigma^2(\mathbf{x}_i)\right) + E\left(\mathbf{x}_i \mathbf{x}_i'\right) \boldsymbol{\gamma}_1$$

so that

$$\gamma_1 = E(x_i x_i')^{-1} E(x_i \sigma^2(x_i)).$$

The FOC for γ_2 is

$$\mathbf{0} = -2E\left(\mathbf{x}_{i}e_{i}^{2}\right) + E\left(\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right)\boldsymbol{\gamma}_{2}$$

so that

$$\gamma_2 = E(\boldsymbol{x}_i \boldsymbol{x}_i')^{-1} E(\boldsymbol{x}_i e_i^2)$$

By conditioning and the LIE

$$E(\mathbf{x}_i e_i^2) = E(E(\mathbf{x}_i e_i^2 \mid \mathbf{x}_i))$$

$$= E(\mathbf{x}_i E(e_i^2 \mid \mathbf{x}_i))$$

$$= E(\mathbf{x}_i \sigma^2(\mathbf{x}_i))$$

and thus

$$\gamma_2 = E(\mathbf{x}_i \mathbf{x}_i')^{-1} E(\mathbf{x}_i e_i^2)$$

$$= E(\mathbf{x}_i \mathbf{x}_i')^{-1} E(\mathbf{x}_i \sigma^2(\mathbf{x}_i))$$

$$= \gamma_1$$

2.

- (a) From the analysis of omitted variable bias, we know that $\gamma_1 = \beta_1$ under one of two conditions:
 - i. $\beta_2=0$ in the long regression
 - ii. $E(x_i x_i^2) = 0$ or equivalently $E(x_i^3) = 0$ If $E(x_i) = 0$, this is equivalent to x_i having zero skewness
- (b) From the same argument, $\gamma_1 = \theta_1$ under one of two conditions:
 - i. $\theta_2 = 0$ in the long regression
 - ii. $E\left(x_ix_i^3\right)=0$ or equivalently $E\left(x_i^4\right)=0$. This is impossible. Thus the conditions for $\gamma_1=\theta_1$ and $\gamma_1=\beta_1$ are not similar.
- 3. Substituing $y_i = x_i \beta + e_i$,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_{i}^{3} y_{i}}{\sum_{i=1}^{n} x_{i}^{4}}$$

$$= \frac{\sum_{i=1}^{n} x_{i}^{3} (x_{i} \beta + e_{i})}{\sum_{i=1}^{n} x_{i}^{4}}$$

$$= \beta + \frac{\sum_{i=1}^{n} x_{i}^{3} e_{i}}{\sum_{i=1}^{n} x_{i}^{4}}$$

Thus

$$\sqrt{n}\left(\hat{\beta} - \beta\right) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i^3 e_i}{\frac{1}{n} \sum_{i=1}^{n} x_i^4}$$

By the WLLN, if $Ex_i^4 < \infty$, then as $n \to \infty$

$$\frac{1}{n} \sum_{i=1}^{n} x_i^4 \to_p Ex_i^4.$$

By the LIE and $E(e_i \mid x_i) = 0$ then

$$E(x_i^3 e_i) = E(E(x_i^3 e_i \mid x_i)) = E(x_i^3 E(e_i \mid x_i)) = 0.$$

Then by the CLT, if $E\left(x_i^6e_i^2\right)<\infty$, as $n\to\infty$,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i^3 e_i \to_d N(0, E(x_i^6 e_i^2)).$$

Together

$$\sqrt{n}\left(\hat{\beta} - \beta\right) \rightarrow_d \frac{N(0, E\left(x_i^6 e_i^2\right))}{Ex_i^4} = N(0, \frac{E\left(x_i^6 e_i^2\right)}{\left(Ex_i^4\right)^2})$$

4.

- (a) The restricted model is $y_i = \alpha + e_i$. The CLS estimator is $\tilde{\alpha} = n^{-1} \sum_{i=1}^{n} y_i$.
- (b) Let $(\hat{\alpha}, \widehat{\boldsymbol{\beta}})$ be the unrestricted OLS estimator of $(\hat{\alpha}, \widehat{\boldsymbol{\beta}})$. Let $\widehat{\boldsymbol{V}} = \widehat{\boldsymbol{Q}}^{-1} \widehat{\boldsymbol{\Omega}} \widehat{\boldsymbol{Q}}^{-1}$ be estimator of the asymptotic covariance matrix for $(\hat{\alpha}, \widehat{\boldsymbol{\beta}})$. Letting $\widetilde{\boldsymbol{x}}_i = \begin{pmatrix} 1 \\ \boldsymbol{x}_i \end{pmatrix}$, this is

$$\widehat{\mathbf{Q}} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}'$$

$$\widehat{\mathbf{\Omega}} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}' \hat{e}_{i}^{2}$$

where $\hat{e}_i = y_i - \hat{\alpha} - \boldsymbol{x}_i' \widehat{\boldsymbol{\beta}}$. Partition $\widehat{\boldsymbol{V}}$ as

$$\widehat{m{V}} = \left[egin{array}{cc} \widehat{m{V}}_{11} & \widehat{m{V}}_{12} \ \widehat{m{V}}_{21} & \widehat{m{V}}_{22} \end{array}
ight].$$

Using equation (7.22) from the notes,

$$\tilde{\alpha}_{MD} = \hat{\alpha} - \hat{\mathbf{V}}_{12} \hat{\mathbf{V}}_{22}^{-1} \hat{\boldsymbol{\beta}}.$$

Since

$$\hat{\alpha} = \overline{y} - \overline{x}' \widehat{\beta}$$

we can also write this as

$$\tilde{\alpha}_{MD} = \overline{y} - \left(\overline{x} + \widehat{\mathbf{V}}_{22}^{-1} \widehat{\mathbf{V}}_{21}\right)' \widehat{\boldsymbol{\beta}}$$