

STIX challenges

Università di Genova
DIMA | Dipartimento di Matematica

Anna Volpara

Dolomites Research Week on Approximation and Applications

September, 2023

Outline

- 1. Calibration
- 2. New imaging method
- 3. Electron visibilities

DRWA² Some details about STIX

STIX - Spectrometer/Telescope for Imaging X-rays

Figure: STIX before being assembled on Solar Orbiter (Krucker et al., 2020).

STIX - Spectrometer/Telescope for Imaging X-rays

Figure: front and the rear grids before being assembled on the spacecraft (*left panel*), schematic of a grid window (*right panel*).

DRWA² Some details about STIX

STIX - Spectrometer/Telescope for Imaging X-rays

Figure: STIX before being assembled on Solar Orbiter (Krucker et al., 2020).

Figure: front and the rear grids before being assembled on the spacecraft (*left panel*), schematic of a grid window (*right panel*).

Figure: STIX detector (*left panel*) schematic of a detector (*right panel*).

Massa P., et al. STIX imaging I--Concept. arXiv preprint arXiv, 2023.

DRWA² Some details about STIX

STIX - Spectrometer/Telescope for Imaging X-rays

Figure: STIX before being assembled on Solar Orbiter (Krucker et al., 2020).

Figure: front and the rear grids before being assembled on the spacecraft (*left panel*), schematic of a grid window (*right panel*).

Figure: STIX detector (*left panel*) schematic of a detector (*right panel*).

Massa P., et al. STIX imaging I--Concept. arXiv preprint arXiv, 2023.

STIX - Spectrometer/Telescope for Imaging X-rays

Figure: STIX before being assembled on Solar Orbiter (Krucker et al., 2020).

Figure: front and the rear grids before being assembled on the spacecraft (*left panel*), schematic of a grid window (*right panel*).

Figure: STIX detector (*left* panel) schematic of a detector (*right panel*).

Front grid
+
Rear grid
+
detector

Sub-collimator

H
Massa P., et al.

Image reconstruction problem for STIX:

$$\mathcal{F}\phi = V$$

(1)

Image reconstruction problem for STIX:

Intensity of the X-ray photon flux emitted from (x, y) on the Sun

(1)

Image reconstruction problem for STIX:

Figure: STIX detector (*left panel*) schematic of a detector (*right panel*).

Array containing the N_V complex values of the visibilities measured by STIX

$$|V| \propto \sqrt{(C-A)^2 + (D-B)^2}$$

$$\psi = \operatorname{atan}\left(\frac{D-B}{C-A}\right) + 45^{\circ} + \psi_{\text{calib}}$$

Image reconstruction problem for STIX:

The Fourier Transform defined by:

$$(\mathcal{F}\phi)_k = \iint \phi(x,y) \exp\left(2\pi i(xu_k + yv_k)\right) dx dy \quad k = 1,\ldots,N_v$$

(1)

Massa P., et al. STIX imaging I--Concept. arXiv preprint arXiv, 2023

Outline

- 1. Calibration
- 2. New imaging method
- 3. Electron visibilities

Two layers grid parameters

GOAL:

Derive the parameters of the double (and triple) layers grids in order to treat them as single-layer grids.

Test imaging – August 26, 2021

Time Interval: 23:18:00 - 23:20:00 UT

Energy Range: 15 - 25 keV

Test imaging – January 6, 2023

Time_range = 00:55:00 - 00:57:00 UT Energy Range = 22 - 28 keV

Total flux – Measured slit

Figure: ratio between the total flux recorded by detectors from 3 to 10 and the flux recorded by CFL, for 700 events.

Total flux – Measured slit

Figure: average of the ratio between the total flux recorded by detectors from 3 to 10 and the flux recorded by CFL, for 700 events.

Total flux – Measured slit

Figure: average of the ratio between the total flux recorded by detectors from 3 to 10 and the flux recorded by CFL, for 700 events.

Total flux – Effective slit

Figure: ratio between the total flux recorded by detectors from 3 to 10 and the flux recorded by CFL.

Outline

- 1. Calibration
- 2. New imaging method
- 3. Electron visibilities

MULTISCALE CLEAN

Figure: March 31, 2022 event; energy range: 25 – 50 keV. From left to right, reconstruction provided by CLEAN, U-CLEAN, MULTISCALE CLEAN and MEM_GE, respectively.

	CLEAN	U-CLEAN	MULTISCALE CLEAN	MEM-GE
Time elapsed (s)	44.066	14.904	10.482	27.454
χ^2	23.73	7.24	6.14	4.21

MULTISCALE CLEAN

Figure: November 11, 2022 event; energy range: 6 – 10 keV. From left to right, reconstruction provided by CLEAN, U-CLEAN, MULTISCALE CLEAN and MEM_GE, respectively.

	CLEAN	U-CLEAN	MULTISCALE CLEAN	MEM-GE
Time elapsed (s)	38.440	4.799	18.672	6.342
χ^2	6.94	2.14	5.45	1.39

Outline

- 1. Calibration
- 2. New imaging method
- 3. Electron visibilities

From photon to electron visibilities

Bremsstralhung equation for visibilities:

$$V(u, v; \epsilon) = \int_{\epsilon}^{\infty} W(u, v; E) Q(\epsilon, E) dE$$
 (2)

From photon to electron visibilities

Bremsstralhung equation for visibilities:

$$V(u, v; \epsilon) = \int_{\epsilon}^{\infty} W(u, v; E) Q(\epsilon, E) dE$$
 (2)

Photon visibilities

(2)

From photon to electron visibilities

Bremsstralhung equation for visibilities:

(2)

From photon to electron visibilities

Bremsstralhung equation for visibilities:

Anna Volpara | MIDA Group

Products

Electron flux images

Figure: September 29, 2022 event. Photon images (top left panels) compared with the regularized photon maps (bottom left panels) in the same energy intervals, and electron flux images corresponding to the regularized electron visibilities (right panels) for the energy intervals shown. The maps are produced using the MEM-GE algorithm.

Products

Figure: Pixel-wise spectrum obtained from photon maps and regularized photon maps. *Top left panel*: selected pixels are indicated with colored crosses. The other panels show the pixel-wise spectrum obtained from photon maps (*solid line*) and regularized photon maps (*dotted line*). The pixels selected in the top left panel and their respective spectra are indicated with the same colour. Plots are logarithmic scaled on the y-axis.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	$\gamma = 5.27$	$\gamma = 5.57$
January 20, 2022	$\gamma = 6.35$	$\delta = 4.91$	$\gamma = 6.25$	$\gamma = 6.36$
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	$\gamma = 6.88$	$\gamma = 6.81$
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	$\gamma = 4.24$	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	$\gamma = 5.27$	$\gamma = 5.57$
January 20, 2022	$\gamma = 6.35$	$\delta = 4.91$	$\gamma = 6.25$	$\gamma = 6.36$
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	$\gamma = 6.88$	$\gamma = 6.81$
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	$\gamma = 4.24$	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	y = 5.27	y = 5.57
January 20, 2022	$\gamma = 6.35$	$\delta = 4.91$	y = 6.25	y = 6.36
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	y = 6.88	y = 6.81
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	$\gamma = 4.24$	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

STIX vs RHESSI

	STIX	RHESSI			
Distance from the Sun	Variable	Fixed			
Energy sampling	Non-uniform	Uniform			
Gaps	provides its set of visibility values at all count energies \rightarrow no (u,v) point gaps	gaps due to insufficient signal-to-noise as the visibility value in question → different energy bins have different number of samples			

Table: Differences between STIX and RHESSI inversion software.

STIX vs RHESSI

Figure: Ratio between the maximum of the residual map and the maximum of the Clean map at different energies. Red: STIX; blue: RHESSI. *Top row*: Comparison between January 11, 2023 event (STIX) and December 02, 2003 event (RHESSI). *Bottom row*: Comparison between November 11, 2022 event (STIX) and February 20, 2002 event (RHESSI)

Future works

☐ Effective slit as a function of the energy; Calibration \square Apply the same strategy also for grids 1 and 2. ☐ Test multiscale-Clean; □Compare different methods; Imaging methods ■Error maps. ☐ Analize the electron transport effects to obtain: • the average density along the line of sight; **Electron maps** • number spectrum of accelerated electrons.

THANK YOU FOR THE ATTENTION!

volpara@dima.unige.it

Università di Genova
DIMA | Dipartimento di Matematica
MIDA group

