COMP 5-4 (RC)

T.E. (Computer) (Sem. – V) (RC) Examination, May/June 2013 COMPUTER HARDWARE DESIGN

Duration: 3 Hours

Instructions: i) Answer five full questions, at least one full question from each Module.

ii) Make necessary assumptions and state clearly assumptions made.

MODULE – I

a) Explain the difference between structure and behaviour in the digital system context. Illustrate your answer by giving i) a purely structural description ii) a purely behavioural description. b) Construct the logic block diagram of hardware associated with the register AR providing for the accomplishment of either of the transfers AR ← AR AR ← BR given the proper control signal. Both AR and BR are 4 bit registers.

b) Decode the following for the RIC machine:
i) 0101 01 0000 10 0001 where 0101 stands for ADD
ii) 0010 01 0000 00 1111 where 0010 stands for MVT.

c) Construct a detailed logic block diagram of the hardware realization of both

c) Explain any two approaches to inter-system bus wiring.

2. a) Explain the single address instruction format for RIC.

c) Construct a detailed logic block diagram of the hardware realization of both the control and data units specified by the following AHPL description, where a and b are flip flops, x is an input, and z a single output line.

ma(1) a ← x ∨b; a linea philaoil workelstyle metowork

2) b ← x:

 \rightarrow (a, \overline{a}) | (1, 3)

3) z = 1; $b \leftarrow x \oplus b$;

 \rightarrow (1)

9

6

5

MODULE - II

-2-

3.	a)	Write a combinational logic unit description for a decrementer. When used in	
		a module description, the decrementer will be declared DEC [I].	6
	b)	Let M be a memory consisting of 1024 eighteen bit words with a 10 bit memory address register AR. Write an AHPL control sequence that will compute	
		$V \mid \wedge \mid M$ in an economical sequential manner.	8
	c)	Draw the flowchart to implement the fetch sequence of 16 bit instructions.	(2)
4.	a)	With the help of a neat diagram explain the control signals and interconnections involved in the AND transfer. Also explain memory read and write operations for the RIC system.	6
	b)	Write the sequence of AHPL steps to implement the fetch and address cycles of RIC.	8
	11	With the help of a neat flowchart explain the steps involved in the compilation of data network.	6
		MODULE - III	1
5.	a)	With a neat block diagram explain the organization of a microprogrammable RIC.	6
	b)	Explain the Carry Look Ahead principle and describe how the full adder unit can be used to build the carry look ahead unit.	6
	c)	With the help of a flowchart explain how floating point addition and subtraction is carried out.	8

6.	a)	Write an AHPL description of the RIC microsequencer and explain.	6
	b)	Write the sequence of AHPL steps to implement signed multiplication.	8
	c)	Write the combinational logic unit description for the propagate and generate section of the full adder circuit.	6
		MODULE-IV	
7.	a)	Explain the structure and operation of the MOS transistor. Derive the	
		expression for the drain current.	8
	b)	Explain the working of a pass transistor.	6
	c)	Differentiate between enhancement and depletion type MOSFET.	6
8.	a)	Explain NMOS fabrication process with neat diagrams.	8
	b)	Explain the working of a MOS inverter with NMOS depletion type transistor	
		as load. Draw the transfer characteristics.	8
	c)	Draw the stick diagram and mask layout for CMOS nor gate	Δ

-3-