MATHEMATICAL QUANTUM THEORY WINTER TERM 2023/2024

EXERCISE SET 2

All exercises are worth 5 points. Due on Thursday, November 2, at 12:00 noon via URM.

- Exercise 1 introduces an equivalent formalism for time evolution in quantum mechanics: the Heisenberg time evolution of operators. It allows to study time evolution of observables in a state-independent way, which can be helpful for interpretation, as in this example of the two-level Hamiltonian from the last exercise sheet.
- Exercise 2 establishes a general version of the uncertainty principle in quantum mechanics for non-commuting observables.
- Exercise 3 applies the general uncertainty principle from exercise 3 to the observables position and momentum on \mathbb{R}^d , in which case it becomes the famous Heisenberg uncertainty principle. As the last part shows, this has a special connection to Gaussian quantum states.
- Exercise 4 studies solutions to the free Schrödinger equation when the initial data is a Gaussian bump (a prototyptical Schwartz function!). The result provides a useful explicit example for the behavior of the free Schrödinger evolution.

Exercise 1. Consider the two-level system of the previous exercise sheet. Let $\sigma_x, \sigma_y, \sigma_z$ the Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Let \hat{S} be the *spin operator*:

$$\hat{S} := (\hat{S}_x, \hat{S}_y, \hat{S}_z) , \qquad \hat{S}_i = \frac{1}{2} \sigma_i , \qquad i = x, y, z .$$

Given an observable O, its Heisenberg evolution is defined as:

$$O(t) := e^{iHt}Oe^{-iHt} .$$

We can understand the time evolution of expectation values either by the Schrödinger evolution on states or by the Heisenberg evolution on observables:

$$\langle \psi, O(t)\psi \rangle = \langle \psi_t, O\psi_t \rangle$$
.

(a) Compute the Heisenberg evolution of the spin operator:

$$\hat{S}(t) = e^{iHt} \hat{S}e^{-iHt}$$
, $H = -B\sigma_x$, $B \in \mathbb{R}$.

(b) Suppose now that H has the following general form:

$$H = -\vec{B} \cdot \hat{S}$$
, $B \in \mathbb{R}^3$.

Let $\hat{S}(t)$ be the Heisenberg evolution of the spin operator with the Hamiltonian H. Prove that $\hat{S}(t)$ satisfies the following evolution equation:

$$\frac{d}{dt}\hat{S}(t) = \hat{S}(t) \times \vec{B} ,$$

with \times the usual vector product. We say that the spin operator performs a "precession" at the frequency $|\vec{B}|$.

Hint. The Pauli matrices satisfy the following commutation relations (check them):

$$[\sigma_a, \sigma_b] = 2i \sum_{c \in \{x, y, z\}} \epsilon_{abc} \sigma_c.$$

Here $\epsilon_{xyz} = 1$ and $\epsilon_{abc} = sign(\pi\{a,b,c\})\epsilon_{xyz}$ where $sign(\pi\{a,b,c\})$ is the sign of the permutation needed in order to turn the ordered triple a,b,c into x,y,z. The symbol ϵ_{abc} is called the Levi-Civita antisymmetric tensor.

Exercise 2. This is an application of inequality (1) with A = x and $B = -i\hbar\nabla$.

- (a) Let $\psi \in \mathcal{S}(\mathbb{R}^d)$ with $\|\psi\|_2 = 1$. Prove that the conditions in exercise 3 are verified and so inequality (1) applies. (For $\langle \cdot, \cdot \rangle$, use the L^2 -inner product.)
- (b) Calculate [A, B].(With this result, (1) reduces to the Heisenberg uncertainty principle.)
- (c) Let $\alpha > 0$ and set $\psi_0(x) = e^{-\alpha x^2/2}$. Using exercise 1, compute the left side of (1) for $\psi_t(x)$. What do you find? (Hint: Integration by parts is useful.)

Exercise 3. Let \mathcal{H} be a Hilbert space and let $A, B : \mathcal{H} \to \mathcal{H}$ be quantum observables (self-adjoint operators). Let $\psi \in \mathcal{H}$ be a quantum state so that the following expressions are all well-defined: $A\psi$, $B\psi$, $A^2\psi$, $B^2\psi$, $AB\psi$, and $BA\psi$.

Recall the definition of the expectation value of a measurement of quantum observable C in the state ψ ,

$$\langle C \rangle_{\psi} = \langle \psi, C \psi \rangle.$$

Similarly, the variance of the quantum measurement is

$$(\operatorname{Var}C)_{\psi} = \langle \psi, (C - \langle C \rangle_{\psi})^2 \psi \rangle$$

Prove that

(1)
$$(\operatorname{Var} A)_{\psi}(\operatorname{Var} B)_{\psi} \ge \frac{1}{4} |\langle [A, B] \rangle_{\psi}|^{2}$$

where [A, B] = AB - BA is the so-called commutator of the two operators. (Hint: It is helpful to reduce to the case $\langle A \rangle_{\psi} = \langle B \rangle_{\psi} = 0$ first.)

Exercise 4. Consider the free Schrödinger equation on \mathbb{R}^d ,

$$i\partial_t \psi_t = -\frac{1}{2} \Delta \psi_t \; ,$$

with initial data given by

$$\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{d/4} e^{-\frac{\alpha x^2}{2}}.$$

Find an explicit formula for the solution $\psi_t(x)$ that does not involve any integrals.