

Semester: Jan 2024-April 2024

Maximum Marks: 30 Examination: In-Semester Examination Duration: 1hr. 15 min.

Programme code: 01
Programme: B. Tech Computer Engineering Class: SY

Name of the Constituent College:
K. J. Somaiya College of Engineering COMP

Course Code: 116U01C401 Name of the Course:
Probability, Statistics and Optimization Techniques

Question No.						Max. Marks
Q.1	Attempt any THRE	E of the following				
a)	The joint probability distribution of <i>X</i> and <i>Y</i> is given by					06
	$P(X = x, Y = y) = \frac{2x+3y}{72}$; $x = 0,1,2$, $y = 1,2,3$					
	(i) Find the joint p.m.f s of X and Y					
	(ii) Find the Marginal Probability distributions of X and Y.					
	(iii) Find $P(X + Y \le 2)$					
	Solution: The joint pmf of X and Y is as follows					
	X/Y	1	2	3	Total	
b)	0	1/24	1/12	1/8	1/4	
	1	5/72	1/9	11/72	1/3	
	2	7/72	5/36	13/72	5/12	
	Total	5/24	1/3	11/24	1	
	The Marginal Proba	0	1	2	Total	
	P(X=x) ½ 1/3 5/12 1 The Marginal Probability Distribution of Y is					
	Y	1	2	3	Total	
	P(Y=y)	5/24	1/3	11/24	1	
	defective items, whereas the other two operator's B and C produce 5% and 7% defective items respectively. A is on the job for 50% of the time, B is on the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, (i) What is the probability that it was produced by A? (ii) What is the probability that it was produced by B?					
	Solution: Let E_1 , E_2 , E_3 be the respective events of the time consumed by machines A, B, and C for the job.					

	$P(E_1) = 50\% = 0.50$, $P(E_2) = 30\% = 0.30$, $P(E_3) = 20\% = 0.20$		
	Let X be the event of producing defective items.		
	$P(X E_1) = 1\% = 0.01, P(X E_2) = 5\% = 0.05, P(X E_3) = 7\% = 0.07$		
	The probability that the defective item was produced by A is given by $P(E_1 X)$.		
	By using Bayes' theorem, we obtain		
	$P(E_1/X) = \frac{P(E_1) \cdot P(X/E_1)}{P(E_1) \cdot P(X/E_1) + P(E_2) \cdot P(X/E_2) + P(E_3) \cdot P(X/E_3)} = \frac{5}{34}$		
	The probability that the defective item was produced by B is given by P $(E_2 A)$.		
	By using Bayes' theorem, we obtain		
	$P(E_2/X) = \frac{P(E_2) \cdot P(X/E_2)}{P(E_1) \cdot P(X/E_1) + P(E_2) \cdot P(X/E_2) + P(E_3) \cdot P(X/E_3)} = \frac{15}{34}$		
c)	If the heights of 500 students is normally distributed with mean 68 inches and standard deviation 4 inches, estimate the number of students having heights	06	
	(i) greater than 72 inches (ii) between 65 and 71 inches		
	Solution: Let X be the random variable of height		
	_		
	Given $m = 68$, $\sigma = 4$: $Z = \frac{X - 68}{4}$		
	(i) Probability of a student height being greater than $72 = P(X > 72) = P\left(Z > \frac{72 - 68}{4}\right)$		
	= P(Z > 1) = 0.5 - area from Z = 0 to Z = 1		
	= 0.5 - 0.3413 = 0.1587		
	∴ number of students having height greater than 72 inches = $500 \times 0.1587 = 79.35 \sim 79$		
	(i) Probability of a student height being between 65 and 71 inches		
	$= P(65 < X < 71) = P\left(\frac{65 - 68}{4} < Z < \frac{71 - 68}{4}\right)$		
	$= P(-0.75 < Z < 0.75) = 2 \times P(0 < Z < 0.75)$		
	$= 2 \times area \ from \ Z = 0 \ to \ Z = 0.75 = 2 \times 0.2734 = 0.5468$		
	\therefore number of students having height between 65 and 71 inches = $500 \times 0.5468 =$		
	273.4~273		
d)		06	
d)	273.4 \sim 273 A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1	06	
d)	273.4 \sim 273 A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$ $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$	06	
d)	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$	06	
d)	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$ $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X = 1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution	06	
d)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$ $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X = 1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution $m = np = 10 \times 0.01 = 0.1$ $P(X = x) = \frac{e^{-m}m^{x}}{x!} = \frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X = 1) = \frac{e^{-0.1}(0.1)^{1}}{1!} = 0.0904$	06	
d)	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$ $P(X=x) = \frac{e^{-m}m^{x}}{x!} = \frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X=1) = \frac{e^{-0.1}(0.1)^{1}}{1!} = 0.0904$ the probability of 1 error in 10 received digits using	06	
d) e)	273.4 ~273 A transmission channel has a per digit error probability $p = 0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n = 10, p = 0.01, q = 0.99$ $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X = 1) = {}^{10}C_{1}(0.01)^{1}(0.99)^{9} = 0.0913$ (ii) Using Poisson Distribution $m = np = 10 \times 0.01 = 0.1$ $P(X = x) = \frac{e^{-m}m^{x}}{x!} = \frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X = 1) = \frac{e^{-0.1}(0.1)^{1}}{1!} = 0.0904$	06	
	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x)={}^{n}C_{x}p^{x}q^{n-x}={}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1)={}^{10}C_{1}(0.01)^{1}(0.99)^{9}=0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$ $P(X=x)=\frac{e^{-m}m^{x}}{x!}=\frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X=1)=\frac{e^{-0.1}(0.1)^{1}}{1!}=0.0904$ the probability of 1 error in 10 received digits using (i) Binomial distribution = 0.0913 (ii) Poisson Distribution = 0.0904 A continuous random variable X has the probability density function given by		
	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x)={}^{n}C_{x}p^{x}q^{n-x}={}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1)={}^{10}C_{1}(0.01)^{1}(0.99)^{9}=0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$ $P(X=x)=\frac{e^{-m}m^{x}}{x!}=\frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X=1)=\frac{e^{-0.1}(0.1)^{1}}{1!}=0.0904$ the probability of 1 error in 10 received digits using (i) Binomial distribution = 0.0913 (ii) Poisson Distribution = 0.0904 A continuous random variable X has the probability density function given by $f(x)=\begin{cases} 2ax+b & 0 \leq x \leq 2 \\ 0 & otherwise \end{cases}$		
	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, \ p=0.01, \ q=0.99$ $P(X=x)={}^{n}C_{x}p^{x}q^{n-x}={}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1)={}^{10}C_{1}(0.01)^{1}(0.99)^{9}=0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$ $P(X=x)=\frac{e^{-m}m^{x}}{x!}=\frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X=1)=\frac{e^{-0.1}(0.1)^{1}}{1!}=0.0904$ the probability of 1 error in 10 received digits using (i) Binomial distribution = 0.0913 (ii) Poisson Distribution = 0.0904 A continuous random variable X has the probability density function given by $f(x)=\begin{cases} 2ax+b & 0 \le x \le 2\\ 0 & otherwise \end{cases}$ If the mean of the distribution is 3, find the constants a and b .		
	A transmission channel has a per digit error probability $p=0.01$. calculate the probability of 1 error in 10 received digits using (i) Binomial distribution (ii) Poisson Distribution Solution: (i) Using Binomial Distribution $n=10, p=0.01, q=0.99$ $P(X=x)={}^{n}C_{x}p^{x}q^{n-x}={}^{10}C_{x}(0.01)^{x}(0.99)^{10-x}$ $P(X=1)={}^{10}C_{1}(0.01)^{1}(0.99)^{9}=0.0913$ (ii) Using Poisson Distribution $m=np=10\times0.01=0.1$ $P(X=x)=\frac{e^{-m}m^{x}}{x!}=\frac{e^{-0.1}(0.1)^{x}}{x!}$ $P(X=1)=\frac{e^{-0.1}(0.1)^{1}}{1!}=0.0904$ the probability of 1 error in 10 received digits using (i) Binomial distribution = 0.0913 (ii) Poisson Distribution = 0.0904 A continuous random variable X has the probability density function given by $f(x)=\begin{cases} 2ax+b & 0 \leq x \leq 2 \\ 0 & otherwise \end{cases}$		

$\int_0^2 (2ax + b)dx = 1$
$\therefore 4a + 2b = 1 \dots \dots \dots (1)$
$Mean = \int_0^2 x f(x) dx = 3$

$$\therefore \int_0^2 (2ax^2 + bx) dx = 3$$

$$\therefore 16a + 6b = 9 \dots (2)$$

Solving (1) and (2), we get $a = \frac{3}{2}$, $b = \frac{-5}{2}$

Q.2 Attempt any **TWO** of the following

(a) Calculate the value of rank correlation coefficient from the following data regarding marks of 6 students in statistics and accountancy in a test:

Marks in Statistics: 40, 42, 45, 35, 36, 39

Marks in Accountancy: 46, 43, 44, 39, 40, 43

Solution:

Marks in Statistics	Marks in Accountancy	R ₁	R ₂	$d=R_1-R_2$	d^2
40	46	4	6	-2	4
42	43	5	3.5	1.5	2.25
45	44	6	5	1	1
35	39	1	1	0	0
36	40	2	2	0	0
39	43	3	3.5	-0.5	0.25
Total				0	$\Sigma d_i^2 = 7.5$

$$\therefore R = 1 - \frac{6\left[\Sigma d_i^2 + \frac{1}{12}(m_1^3 - m_1)\right]}{n^3 - n}$$

Since, $\Sigma d_i^2 = 7.50$, $m_1 = 2$, n = 6

$$\therefore R = 1 - \frac{6\left[7.5 + \frac{1}{12}(2^3 - 2)\right]}{6^3 - 6} = 1 - \frac{6[7.5 + 0.5]}{210} = 0.771$$

(b) Find equation of both the regression lines from the following data where x, y denote the actual values. Also Estimate x when y = 15 and estimate y when x = 8.

$$N = 12, \Sigma x = 120, \Sigma y = 432, \Sigma xy = 4992, \Sigma x^2 = 1392, \Sigma y^2 = 18252$$

Solution

The coefficients of regression are given by

$$b_{yx} = \frac{\sum xy - \frac{\sum x \cdot \sum y}{N}}{\sum x^2 - \frac{(\sum x)^2}{N}} = \frac{4992 - \frac{120 \times 432}{12}}{1392 - \frac{(120)^2}{12}} = \frac{672}{192} = 3.5$$

$$b_{xy} = \frac{\sum xy - \frac{\sum x \cdot \sum y}{N}}{\sum y^2 - \frac{(\sum y)^2}{N}} = \frac{4992 - \frac{120 \times 432}{12}}{18252 - \frac{(432)^2}{12}} = \frac{672}{2700} = 0.249$$

The equation of the line of regression of y on x is $y - \bar{y} = b_{yx}(x - \bar{x})$

$$y - 36 = 3.5(x - 10) \Rightarrow y = 3.5x + 1$$

When x = 8 we get $y = 3.5 \times 8 + 1 = 29$

The equation of the line of regression of x on y is $x - \bar{x} = b_{xy}(y - \bar{y})$

$$x - 10 = 0.249(y - 36) \Rightarrow x = 0.249y + 1.036$$

When y = 15 we get $x = 0.249 \times 15 + 1.036 = 4.771$

Page **3** of **4**

0

06

Price: 2, 3, 4, 7, 4 Demand: 8, 7, 3, 1, 1

Solution:

x	у	x^2	y^2	xy
2	8	4	64	16
3	7	9	49	21
4	3	16	9	12
7	1	49	1	7
4	1	16	1	4
$\sum x = 20$	$\sum y = 20$	$\sum x^2 = 94$	$\sum y^2 = 124$	$\sum xy = 60$

$$\bar{x} = \frac{\sum x}{N} = \frac{20}{5} = 4 \quad \bar{y} = \frac{\sum y}{N} = \frac{20}{5} = 4$$

$$r = \frac{\sum xy - N\bar{x}\bar{y}}{\sqrt{\sum x^2 - N\bar{x}^2}\sqrt{\sum y^2 - N\bar{y}^2}} = \frac{60 - 5 \times 4 \times 4}{\sqrt{94 - 5 \times 16}\sqrt{124 - 5 \times 16}} = \frac{-20}{\sqrt{14}\sqrt{44}} = -0.8058$$