Object Recognition & Computer Vision

Topic D - Self-Supervised Learning for Visual Representations

Figure from Bardes et al, ICLR 2022

Théo Di Piazza (theo.dipiazza@gmail.com)
January 2023

1. Introduction, context

Figure 1.1 : CIFAR-10 datasets with labels

<u>Labelling data :</u>

- Costly
- Time consuming
- Biased towards the responsible

⇒ How to learn visual representations without labels?

Plan

- 1. Introduction, context
- 2. Theory: Contrastive learning & VICReg
- 3. Handling the method
- 4. Pretrain backbone
- 5. Linear evaluation
- 6. Qualitative results
- 7. Conclusion

2. Theory: Contrastive Learning & VICReg

Contrastive Learning of Visual Representations

2. Theory: Contrastive Learning & VICReg

Contrastive Learning of Visual Representations

Figure 2.2 : Scheme of SimCLR Source: Chen et al, ICML 2020

- → Data Augmentation plays a critical role for effective predictive tasks.
- \rightarrow Adding learnable non-linear transformation between the representation and the loss improve quality of representations.
- → Benefits from larger batch sizes and more training steps.
- → Collapse: Encoders produce constant or non-informative vectors.

2. Theory: Contrastive Learning & VICReg

Figure 2.3 : Scheme of VICReg

Source: Bardes et al, ICLR 2022

Details about loss function

$$l(Z,Z') = \lambda s(Z,Z') + \mu[\nu(Z) + \nu(Z')] + \nu[c(Z) + c(Z')]$$
 Variance Covariance

$$c(z) = \sum_{i \neq j} [C(Z)]_{i,j}^{2} \; ; \; s(Z,Z') = \frac{1}{n} ||z_{i} - z'_{i}||_{2}^{2}$$

$$C(Z) = \frac{1}{n-1} \sum_{i=1}^{n} (z_{i} - \hat{z})(z_{i} - \hat{z})^{T}$$

$$v(Z) = \frac{1}{d} \sum_{j=1}^{d} \max(0, \gamma - \sqrt{Var(z_{j}) + \varepsilon})$$

3. Handling the method

VICReg forward propagation

4. Pretrain backbone, linear evaluation

Figure 4.1 : Proposed architecture

3 samples from CIFAR-10

4. Pretrain blackbone

transformations - Details

from the paper	Horizontal flip	RandomResizedCrop	Brightness 0.4	Contrast 0.4	Saturation 0.2	hue 0.1
for CIFAR10	Horizontal flip	RandomResizedCrop Scale to 0.4 to 1	Brightness 0.2	Contrast 0.2	Saturation 0.1	hue 0.025
	+ Normalize images : Mean: (0.4914, 0.4822, 0.4465) - Std: (0.247, 0.243, 0.261)					

4. Pretrain backbone, linear evaluation

Training details

4. Pretrain blackbone

Training details - Loss function

It is not because the <u>loss decreases</u> that the model learns "good" visual representations.

epochs: 50

batch size : 128

Adam optimizer :

Ir : 1e-4

1e-5 after 30 epochs

train set: 40k samples

5. Linear evaluation

Figure 5.1 : Architecture for linear evaluation

5. Linear evaluation - CIFAR-10

Train 15k samples Test 5k samples

Train/Test split

3 samples from CIFAR-10

epochs: 20

batch size : 64 SVM optimizer :

Ir: 0.3

weight decay : 1e-6

momentum: 0.9

train: 15k samples

 $test: 5k\ samples$

5. Linear evaluation on CIFAR-10

Training details

Results on test

Metrics on CIFAR-10			
Model	Top-1 accuracy	Top-5 accuracy	
ResNet-18 Ø	29.3%	79.8%	
ResNet-18 - IN	59.9% ↑ +30.6%	$93.9\% \uparrow +14.1\%$	
ResNet-18 - C10	80.2% ↑ +52.0%	$99.1\% \uparrow +23.0\%$	
ResNet-50	82.2 % ↑ +52.9%	98.8% ↑ +19.0%	

5. Linear evaluation - CIFAR-100

Train 45k samples

Test 15k samples

Train/Test split

3 samples from CIFAR-100

epochs: 20

batch size : 64 SVM optimizer :

Ir: 0.3

weight decay : 1e-6

momentum: 0.9

train: 45k samples

test : 15k samples

5. Linear evaluation on CIFAR-100

Training details

Results on test

1	Metrics on CIFAR-100			
	Model	Top-1 accuracy	Top-5 accuracy	
	ResNet-180	11.7%	25.4%	
	ResNet-18 - IN	$28.2\% \uparrow +16.5\%$	54.8% ↑ +29.4%	
	ResNet-18 - C10	45.2% ↑ +33.5%	$74.9\% \uparrow +42.9\%$	
	ResNet-50	54.6% ↑ +49.5%	81.9 % ↑ +56.5%	

6. Qualitative results

		1/221/2110	เหยงเลยเวบ	
banana		0.172	0.246	
animal		0.004	0.001	
fox		0.091	0.120	
guacamole		0.039	0.039	

VICReg

ResNet18

VICReg

ResNet50

4 examples of representative loss obtained with my ResNet18 and ResNet50 from the paper

6. Qualitative results

		ResNet 18	ResNet 50
banana		0.297	0.201
animal		0.715	1.956
fox	-1	0.714	0.519
guacamole		0.412	0.317

VIC Reg

VIC Reg

4 examples of representative loss obtained with my ResNet18 and ResNet50 from the paper

6. Conclusion

Handling the VICReg method and code
Application of data augmentation methods
Pretrain backbone ResNet-18 on Cifar-10
Linear evaluation of backbones on Cifar-10/100
Comparison of the results obtained

Improving the backbone pretrain

- **⇒** Hyper-parameters
- \Rightarrow Data augmentation

Fine-grain classification

Code base : VICReg Github

https://github.com/facebookresearch/vicreg

Implementation/Experimentation for :

Data Loader

Data Augmentation

Training pipeline

Qualitative results

Main references

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, ICML 2020.

VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes et al. ICLR 2022