PH133 Logic Lecture 6

Lecturer: s.butterfill@warwick.ac.uk

Rule of proof: ∀Elim

DeMorgan and other equivalences

$$\neg (A \land B) \Rightarrow \models (\neg A \lor \neg B)$$

$$\neg (A \lor B) \Rightarrow \models (\neg A \land \neg B)$$

$$A \rightarrow B = \neg A \lor B$$

 $\neg(A \rightarrow B) = \neg(\neg A \lor B) = A \land \neg B$

Scope

In P \land (QVR), the scope of \land is P \land (QVR) In P \land (QVR), the scope of V is (QVR)

In $(P \wedge Q) \vee R$, the scope of \wedge is $(P \wedge Q)$

In $(P \land Q) \lor R$, the scope of \lor is $(P \land Q) \lor R$

The scope of a connective is the smallest constituent expression which contains that connective.

Subproofs are tricky

Step 7 of this proof is wrong. Why?

T 1. R
$$\vee$$
 S $\frac{R S R \vee S R \wedge S}{T F T}$ F

2. R
3. S \vee R \vee Intro: 2

4. S
5. S \vee R \vee Intro: 4

6. S \vee R \vee Elim: 1,2-3,4-5

F 7. R \wedge S \wedge Intro: 2.4

Which step of this proof is wrong? Why?

What not to confuse

 $\neg (P \rightarrow Q) \text{ vs. } P \rightarrow \neg Q$

 $\exists x \ (\text{Square}(x) \land \text{Blue}(x)) \text{ vs.}$ $\exists x \text{Square}(x) \land \exists x \text{ Blue}(x)$ $\neg (P \lor Q) \text{ vs. } \neg P \lor \neg Q$ $\neg (P \land Q) \text{ vs. } \neg P \land \neg Q$

Proof example with \rightarrow

6. ¬Р

¬Intro proof example

