TPC INICIAL CDI-I/LMAC/MEFT 2019-20

Exercício 1. A Joana diz ao António e à Maria que faz anos numa das sequintes datas:

- 15, 16 ou 19 de maio, ou
- 17 ou 18 de junho, ou
- 14 ou 16 de julho, ou
- 14, 15 ou 17 de agosto.

A Joana diz depois o mês em que faz anos apenas ao António e o dia em que faz anos apenas à Maria. Imediatamente a seguir,

- O António declara que nem ele nem a Maria sabem quando a Joana faz anos,
- A Maria declara que, então, ela já o sabe,
- O António declara que, então, ele também já o sabe.

E o leitor, também já sabe em que dia faz anos a Joana? E se a Maria tivesse dito que continuava a não saber, o que diria o António?

Exercício 2. Diga se as seguintes afirmações são verdadeiras ou falsas. Justifique as suas respostas. (1)

$$a) \qquad \forall \, n \in \mathbb{N} \qquad \frac{n+5}{3} \ge 3$$

a)
$$\forall n \in \mathbb{N}$$
 $\frac{n+5}{3} \ge 3$
b) $\forall n \in \mathbb{N}$ $2/3 < \frac{2n+1}{3n} \le 1$

c)
$$\exists n \in \mathbb{N}$$
 $\frac{n+5}{3} \ge 3$
d) $\forall n \in \mathbb{N}$ $n \notin par \iff n^2 \notin par$

$$d) \qquad \forall n \in \mathbb{N} \qquad n \ \'e \ par \iff n^2 \ \'e \ par$$

$$e$$
) $\forall x \in \mathbb{R}$ $\exists y \in \mathbb{R}$ $y > x$

$$f$$
) $\exists y \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad y > x$

Exercício 3. Escreva utilizando apenas símbolos matemáticos:

a) Qualquer potência par de qualquer real x é um número não negativo

 $^{{}^{1}\}mathbb{N}$ é o conjunto dos naturais, ou seja, $\mathbb{N}=\{1,2,3,\cdots\}$ e \mathbb{R} é o conjunto dos reais.

2

b) a distância entre o real x e - 1 é menor do que $\sqrt{3}$

Exercício 4. Neste exercício, suponha sempre subentendido o quantificador $\forall x \in \mathbb{R}$. Determine se cada uma das proposições sequintes é verdadeira ou falsa. Justifique.

$$a)$$
 $x^2 > 9 \Rightarrow x > 3$

b)
$$|2x+3| < 1 \Leftrightarrow -2 < x < -1$$

c)
$$|x^2 - 3x + 2| > 1 \Leftrightarrow x < \frac{3 - \sqrt{5}}{2}$$
 ou $x > \frac{3 + \sqrt{5}}{2}$

d)
$$|x^2 - 3x + 2| > 1 \Rightarrow x < 1$$
 ou $x > 2$

$$e) \qquad |2x+1| > 3 \implies |x| > 1$$

$$f) \qquad x^2 < -1 \Rightarrow 1 > 0$$

g)
$$x^6 + \sqrt{x^2 + 3} + 10 \ge 10 \Rightarrow x^2 + 1 \ge 1/2$$

Exercício 5. Escreva a negação de cada uma das seguintes proposições:

a)
$$\exists x \in \mathbb{R}$$
 $x^2 + 3 \le 7$ e $|x + 1| < 1$

b)
$$\forall x \in]-1, +\infty[$$
 $\log(x+1) > 0 \Rightarrow x > -1/2$

c)
$$\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \qquad x+y>1$$

Exercício 6. Determine se as seguintes afirmações são verdadeiras ou falsas. Justifique as suas respostas.

a)
$$\forall x \in \mathbb{R} |1 + \sin(2x + 5)| + 3 > 2$$

$$b) \qquad \forall \, x > 0 \quad |\log x + 1| > -x$$

$$c) \qquad \forall \, x \in \mathbb{R} \quad x = \sqrt{x^2}$$

d) a recta
$$y = 2x - 1$$
 é tangente à parábola $y = x^2$

Exercício 7. Escreva a negação de cada uma das seguintes proposições:

a)
$$\forall x \in \mathbb{R}$$
 $x > 1 \Rightarrow |2x + 1| > 3$
b) $\forall x \in \mathbb{R}$ $\log(x^2 + 1) > 0$

$$b) \qquad \forall \, x \in \mathbb{R} \qquad \log(x^2 + 1) > 0$$

$$c) \qquad \exists \ x \in \mathbb{R} \quad \forall \ y \in \mathbb{R} \qquad xy = x$$

Exercício 8. Suponha que $f, g, h : \mathbb{R} \to \mathbb{R}$ são funções. Escreva utilizando apenas símbolos matemáticos:

a)
$$f \in crescente \ em \ [0, +\infty[$$
.

b) q é par.

- c) h é periódica, com período 2π .
- d) f é injectiva.
- e) g é sobrejectiva.
- f) h é a inversa de f.

Exercício 9. Determine se as seguintes proposições são verdadeiras ou falsas, e justifique as suas respostas. Interprete as suas conclusões geometricamente.

a)
$$\forall x \in \mathbb{R} \setminus \{0\}$$
 $x > 1 \Leftrightarrow \frac{1}{x} < 1$

- $b) \quad \forall \, x \in \mathbb{R} \qquad x^2 > x$
- c) $\{(x,y) \in \mathbb{R}^2 : x^2 + (y+2)^2 < 1\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \neq \emptyset$

Exercício 10. Determine se a seguinte afirmação é verdadeira ou falsa:

$$\forall x \in \mathbb{R} \qquad \forall y \in \mathbb{R} \qquad x^2 + y^2 < 1 \Longrightarrow (x - 2)^2 + y^2 \le 4$$

Interprete geometricamente a sua resposta

Exercício 11. Mostre que:

- a) $\{x \in \mathbb{R} : |x^2 2x + 1| > 1\} =]-\infty, 0[\cup]2, +\infty[$
- b) $(x+1)|(x-3)(x+1/2)| > 0 \Leftrightarrow (x > -1 \quad e \quad x \neq 3 \quad e \quad x \neq -\frac{1}{2})$
- c) $\frac{\log x (|2x+1|-3)}{x^2+1} > 0 \Leftrightarrow x \in]0,+\infty[\setminus \{1\}]$

Exercício 12. Diga se a seguinte observação é verdadeira: Sabendo que a recta tangente ao gráfico de $y = \ln x$ no ponto x = 1, y = 0 tem declive 1, podemos concluir que

$$\left(1 + \frac{1}{n}\right)^n \to e$$

Sugestão: Este limite também pode ser escrito como

$$n\ln\left(1+\frac{1}{n}\right)\to 1.$$

Exercício 13. Determine todas as funções y que satisfazem a equação diferencial y' = xy, com y(0) = 1. Sugestão: Calcule a derivada da função $u = ye^{-\frac{x^2}{2}}$.

Exercício 14. Mostre com um argumento inteiramente geométrico que, quando $0 < |x| < \pi/2$,

$$\cos x > 1 - \frac{x^2}{2}$$

Sugestão: Considere o triângulo rectângulo com vértices em $(\cos x, \sin x)$, (1,0) e $(\cos x,0)$. Recorde que o comprimento de um arco da circunferência unitária é o respectivo ângulo ao centro em radianos.