EGOR ZAITSEV - 07 452 541

XIAOXU YAO - 07 498 897

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import statsmodels.api as sm
```

Exercise 1: Univariate Problems

Code the bisection algorithm for any function f(x)

```
In [65]: def bisection(function, low, high, epsilon = 1e-4, sigma = 1e-4, numIter = 100
         0):
              Finds a root of function in an interval [low, high] such that function(lo
         w) < 0 and function(high) > 0
             Arguments:
              function - continuous input function
              low - lower bound of domain
              high - upper bound of domain
              epsilon - distance betwee refined low and high
              sigma - function value at mid point
              numIter - maximum number of iterations
              Returns:
              mid - root of function such that f(mid) \sim 0 in interval [low, high]
              if function(low) * function(high) < 0:</pre>
                  for i in range(numIter):
                      # check whether function(low) and function(high) have different si
         gns
                      mid = (low + high) / 2
                      # shorten search domain by moving to mid point either from below o
         r above
                      if function(low) * function(mid) > 0:
                          low = mid
                      else:
                          high = mid
                      # check epsilon convergence or sigma convergence
                      if high - low <= epsilon * (1 + abs(low) + abs(high)) or abs(funct</pre>
         ion(mid)) <= sigma:</pre>
                          return mid
                  print('function(low) * function(high) > 0 => Define a better interval'
         )
```

Use bisection to compute the zeros of the functions

```
1. f(x) = x^3 + 4 - \frac{1}{x}

2. f(x) = -\exp(-x) + \exp(-x^2)

In [24]: def function1(x):
	return x**3 + 4 - 1/x
	def function2(x):
	return -np.exp(-x) + np.exp(-x**2)
```

```
In [50]: mid1 = bisection(function1, -2, -1)
    mid2 = bisection(function2, 1/2, 2)

    print('ROOT: {} <=> Bisection on function1 in an interval [-2, -1]'.format(mid 1))
    print('ROOT: {} <=> Bisection on function2 in an interval [1/2, 2]'.format(mid 2))
```

ROOT: -1.663330078125 <=> Bisection on function1 in an interval [-2, -1] ROOT: 1.000244140625 <=> Bisection on function2 in an interval [1/2, 2]

```
In [64]: x = np.linspace(-2, 2, 100)
         y1 = function1(x)
         y2 = function2(x)
         fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
         fig.tight_layout()
         ax1.plot(x, y1, color = 'dodgerblue', marker = 'o', markersize = 2, linewidth
         = 1)
         ax1.axhline(y = 0, color = 'gray', linewidth = 0.5)
         ax1.axvline(x = 0, color = 'gray', linewidth = 0.5)
         ax1.title.set_text('FUNCTION 1')
         ax1.set_xlabel('x')
         ax1.set_ylabel('f(x)')
         ax1.set_ylim(-5, 5)
         ax2.plot(x, y2, color = 'lightcoral', marker='o', markersize = 2, linewidth =
         1)
         ax2.axhline(y = 0, color = 'gray', linewidth = 0.5)
         ax2.axvline(x = 0, color = 'gray', linewidth = 0.5)
         ax2.title.set text('FUNCTION 2')
         ax2.set xlabel('x')
         ax2.set_ylabel('f(x)')
         ax2.set ylim(-1, 1)
```

Out[64]: (-1.0, 1.0)

Code the secant method for any function f(x)

```
In [73]: def secant(function, x1, x2, tol = 1e-4, numIter = 1000):
             Finds a root of function given two points x1 and x2
             Arguments:
             function - continuous input function
             x1 - initial point 1
             x2 - initial point 2
             tol - breakpoint tolerance
             numIter - maximum number of iterations
             Returns:
             z - root of function
             fx1 = function(x1)
             fx2 = function(x2)
             for i in range(numIter):
                  z = (x1 * fx2 - x2 * fx1) / (fx2 - fx1)
                  if abs(function(z)) <= tol * (1 + function(z)):</pre>
                      return z
                 x1, x2 = x2, z
                  fx1, fx2 = fx2, function(z)
             else:
                  print('numIter exceeded. Current z is {}'.format(z))
```

Use secant to compute the zeros of the functions

1. $f(x) = x^2 + 10 - \frac{1}{x^2}$

```
2. f(x) = \exp(-x^2)
In [68]: def function3(x):
```

```
In [68]: def function3(x):
    return x**2 + 10 - 1/x

def function4(x):
    return np.exp(-x**2)
```

```
In [75]: z3 = secant(function3, 0.1, 1)
z4 = secant(function4, 1/2, 2)

print('ROOT: {} <=> Secant on function3 given x1 = 0.1 and x2 = 1'.format(z3))
print('ROOT: {} <=> Secant on function4 in an interval [1/2, 2]'.format(z4))
```

ROOT: $0.09990030050935535 \iff$ Secant on function3 given x1 = 0.1 and x2 = 1 ROOT: $3.063995107434631 \iff$ Secant on function4 in an interval [1/2, 2]

```
In [98]: x3 = np.linspace(-10, 10, 1000)
         x4 = np.linspace(-10, 10, 1000)
         y3 = function3(x)
         y4 = function4(x)
         fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
         fig.tight layout()
         ax1.plot(x3, y3, color = 'dodgerblue', marker = 'o', markersize = 2, linewidth
         = 1)
         ax1.axhline(y = 0, color = 'gray', linewidth = 0.5)
         ax1.axvline(x = 0, color = 'gray', linewidth = 0.5)
         ax1.title.set_text('FUNCTION 1')
         ax1.set_xlabel('x')
         ax1.set_ylabel('f(x)')
         ax1.set ylim(-50, 150)
         ax2.plot(x4, y4, color = 'lightcoral', marker='o', markersize = 2, linewidth =
         1)
         ax2.axhline(y = 0, color = 'gray', linewidth = 0.5)
         ax2.axvline(x = 0, color = 'gray', linewidth = 0.5)
         ax2.title.set_text('FUNCTION 2')
         ax2.set_xlabel('x')
         ax2.set ylabel('f(x)')
         ax2.set_ylim(-0.1, 1.1)
```

Out[98]: (-0.1, 1.1)

Revisit the demand-supply example of problem set 1

$$egin{aligned} \mathbf{D} \colon & p = q - bq \ \mathbf{S} \colon & p = c + dq^{\phi} \end{aligned}$$

where p is the price, q is the quantity, ab, c, d, ϕ are some parameters.

1. Write it as a univariate problem

$$bq + dq^{\phi} - (a - c) = 0$$

```
In [100]: def supplyDemand(q, a = 3, b = 1/2, c = 1, d = 1, phi = 1/2):
    return b * q + d * q**phi - (a - c)
```

1. Parametrize the model with $a=3, b=0.5, c=d=1, \phi=1/2$. Compute the solution analytically.

Let
$$ilde{q}=q^{rac{1}{2}}$$
 hence

$$rac{1}{2} ilde{q}^2+ ilde{q}-2=0$$

Solutions to this quadratic equations are

$${ ilde q}_1=\sqrt{5}-1 \quad { ilde q}_2=-\sqrt{5}-1$$

Hence, the only solution q_1 is given by

$$q_1=(\sqrt{5}-1)^2=6-2\sqrt{5}$$

1. Compute the solutions with your bisection algorithm

Exercise 2: A Contribution to the Empirics of Economic Growth

1. Load the data set and delete countries with missing values

```
In [2]: df = pd.read_excel('../Helpers/MRW92QJE-data.xls', header = 0)
    df = df.dropna()
    df.head(10)
```

Out[2]:

	country number	country name	Non- oil	intermediate	oecd	gdp/adult 1960	gdp/adult 1985	growth gdp	growth working age pop	l/y	S(
0	1	Algeria	1	1	0	2485.0	4371.0	4.8	2.6	24.1	
1	2	Angola	1	0	0	1588.0	1171.0	0.8	2.1	5.8	
2	3	Benin	1	0	0	1116.0	1071.0	2.2	2.4	10.8	
3	4	Botswana	1	1	0	959.0	3671.0	8.6	3.2	28.3	
4	5	Burkina Faso	1	0	0	529.0	857.0	2.9	0.9	12.7	
5	6	Burundi	1	0	0	755.0	663.0	1.2	1.7	5.1	
6	7	Cameroon	1	1	0	889.0	2190.0	5.7	2.1	12.8	
7	8	Central African Republic	1	0	0	838.0	789.0	1.5	1.7	10.5	
8	9	Chad	1	0	0	908.0	462.0	-0.9	1.9	6.9	
9	10	Congo, Peoples Republic	1	0	0	1009.0	2624.0	6.2	2.4	28.8	
4											•

1. Generate sub-samples for non-oil countries, intermediate countries and OECD countries

```
In [3]: nonOil = df[df['Non-oil'] == 1]
  intermediate = df[df['intermediate'] == 1]
  oecd = df[df['oecd'] == 1]
```

1. For each sub-sample compute the regression coefficients and respective standard error for the following regression model

$$egin{aligned} \log(\mathrm{gdp1985}_j) - \log(\mathrm{gdp1960}_j) &= eta_0 + eta_1 \log(\mathrm{gdp1960}_j) \\ &+ eta_2 \logigg(rac{\mathrm{investment}}{\mathrm{gdp}_j}igg) \\ &+ eta_3 \log(\mathrm{popgrowth}_j + g + \delta) \\ &+ eta_4 \log(\mathrm{schoolenrol}_j) + \epsilon_j \end{aligned}$$

where $q+\delta=0.05$.

```
In [12]: print('RESULTS FOR NON-OIL')
    results[0].summary()
```

RESULTS FOR NON-OIL

Out[12]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.485
Model:	OLS	Adj. R-squared:	0.463
Method:	Least Squares	F-statistic:	21.94
Date:	Mon, 01 Feb 2021	Prob (F-statistic):	8.99e - 13
Time:	20:33:42	Log-Likelihood:	-26.952
No. Observations:	98	AIC:	63.90
Df Residuals:	93	BIC:	76.83
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.6935	0.760	2.228	0.028	0.184	3.203
x 1	-0.2884	0.062	-4.683	0.000	-0.411	-0.166
x2	0.5237	0.087	6.029	0.000	0.351	0.696
x 3	-0.5057	0.289	-1.752	0.083	-1.079	0.067
x 4	0.2311	0.059	3.887	0.000	0.113	0.349

 Omnibus:
 2.061
 Durbin-Watson:
 2.135

 Prob(Omnibus):
 0.357
 Jarque-Bera (JB):
 1.518

 Skew:
 -0.153
 Prob(JB):
 0.468

Kurtosis: 3.528 **Cond. No.** 135.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [13]: print('RESULTS FOR INTERMEDIATE')
    results[1].summary()
```

RESULTS FOR INTERMEDIATE

Out[13]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.465
Model:	OLS	Adj. R-squared:	0.435
Method:	Least Squares	F-statistic:	15.23
Date:	Mon, 01 Feb 2021	Prob (F-statistic):	5.26e - 09
Time:	20:33:43	Log-Likelihood:	-14.635
No. Observations:	75	AIC:	39.27
Df Residuals:	70	BIC:	50.86
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	2.0235	0.808	2.505	0.015	0.412	3.635
x 1	-0.3660	0.067	-5.427	0.000	-0.500	-0.231
x2	0.5376	0.102	5.255	0.000	0.334	0.742
х3	-0.5450	0.288	-1.890	0.063	-1.120	0.030
x 4	0.2705	0.080	3.365	0.001	0.110	0.431

 Omnibus:
 6.278
 Durbin-Watson:
 2.452

 Prob(Omnibus):
 0.043
 Jarque-Bera (JB):
 9.147

 Skew:
 -0.208
 Prob(JB):
 0.0103

 Kurtosis:
 4.659
 Cond. No.
 132.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [14]: print('RESULTS FOR OECD')
    results[2].summary()
```

RESULTS FOR OECD

Out[14]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.718
Model:	OLS	Adj. R-squared:	0.651
Method:	Least Squares	F-statistic:	10.80
Date:	Mon, 01 Feb 2021	Prob (F-statistic):	0.000152
Time:	20:33:45	Log-Likelihood:	13.798
No. Observations:	22	AIC:	-17.60
Df Residuals:	17	BIC:	-12.14
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.9239	1.051	0.879	0.392	-1.293	3.141
x 1	-0.3977	0.070	-5.668	0.000	-0.546	-0.250
x2	0.3318	0.173	1.914	0.073	-0.034	0.698
х3	-0.8634	0.338	-2.557	0.020	-1.576	-0.151
x 4	0.2277	0.145	1.570	0.135	-0.078	0.534

 Omnibus:
 1.879
 Durbin-Watson:
 1.695

 Prob(Omnibus):
 0.391
 Jarque-Bera (JB):
 1.098

 Skew:
 0.547
 Prob(JB):
 0.578

 Kurtosis:
 3.009
 Cond. No.
 202.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: