Contextually Supervised Source Separation with Application to Energy Disaggregation

Matt Wytock, Zico Kolter Machine Learning Department Carnegie Mellon University

July 29, 2014

Energy disaggregation

Goal: separate whole-home power signal into different energy uses

Energy disaggregation

Goal: separate whole-home power signal into different energy uses

Motivation

- Consumer perspective: Studies have shown that itemized electricity bills lead to increased efficiency by giving actionable information
- Utility perspective: Understanding appliance level usage allows for targeting consumer incentives, improved demand response programs, etc.

Energy disaggregation

Energy disaggregation

Existing approaches

• Large amount of work going back more than 20 years

Existing approaches

- Large amount of work going back more than 20 years
- Now, utilities collecting data from millions of homes

Existing approaches

- Large amount of work going back more than 20 years
- Now, utilities collecting data from millions of homes
- But...
 - Readings are very low resolution (hourly)
 - No labeled appliance data
- Existing approaches not very practical
- What can we do?

Contextual supervision

- We propose a framework of contextual supervision: use easily observable context to disambiguate energy usage
- Examples
 - A/C correlates with hot weather
 - Heating correlates with cold weather
 - Lights correlate with darkness
 - etc.

Mathematical formulation

- Consider the energy disaggregation task for a single home
- Let $y_i \in \mathbb{R}^T$ denote the amount of energy used by appliance i over the entire time series
- We actually observe $\bar{y} = \sum_{i=1}^{k} y_i$, total energy usage
- However, suppose for each appliance we can provide features believed to be correlated with that usage $X_i \in \mathbb{R}^{T \times n_i}$

$$y_i \approx X_i \theta_i$$

Optimization problem

• Given \bar{y} and X_i for each appliance (which we design), we solve the optimization problem

minimize
$$\sum_{y_1,\dots,y_k,\theta_1,\dots,\theta_k}^{k} \sum_{i=1}^{k} \ell_i(y_i, X_i \theta_i) + g_i(y_i)$$
 subject to
$$\sum_{i=1}^{k} y_i = \bar{y}$$

- ℓ_i and g_i are functions that we choose to encode the likely nature of energy usage for appliance i
- y_i (disaggregated energy use) and θ_i are outputs of optimization

Optimization problem

• Given \bar{y} and X_i for each appliance (which we design), we solve the optimization problem

minimize
$$y_1, \dots, y_k, \theta_1, \dots, \theta_k$$

$$\sum_{i=1}^k \ell_i(y_i, X_i \theta_i) + g_i(y_i)$$
subject to
$$\sum_{i=1}^k y_i = \bar{y}$$

- ullet ℓ_i and g_i are functions that we choose to encode the likely nature of energy usage for appliance i
- y_i (disaggregated energy use) and θ_i are outputs of optimization

Optimization problem

• Given \bar{y} and X_i for each appliance (which we design), we solve the optimization problem

minimize
$$y_1, \dots, y_k, \theta_1, \dots, \theta_k$$
 $\sum_{i=1}^k \ell_i(y_i, X_i \theta_i) + g_i(y_i)$
subject to
 $\sum_{i=1}^k y_i = \bar{y}$

- ℓ_i and g_i are functions that we choose to encode the likely nature of energy usage for appliance i
- y_i (disaggregated energy use) and θ_i are outputs of optimization

Synthetic problem

Simple example containing two signals with different noise models

Synthetic problem

Synthetic problem

Model for energy disaggregation

Recall optimization objective

$$\underset{y_1,\dots,y_k,\theta_1,\dots,\theta_k}{\text{minimize}} \sum_{i=1}^k \ell_i(y_i, X_i \theta_i) + g_i(y_i)$$

• Simple model with four sources

Category	Features	ℓ_i	g_i
Base	Hour of day	$ \alpha_1 y_1 - X_1\theta_1 _1$	$\beta_1 \ Dy_1\ _2^2$
A/C	$RBFs > 70^{\circ}F$	$\alpha_2 \ S_2(y_2 - X_2\theta_2)\ _1$	$\beta_2 \ Dy_2\ _1$
Heating	$RBFs < 50^{\circ}F$	$\alpha_3 \ S_2(y_3 - X_3\theta_3)\ _1$	$\beta_3 \ Dy_3\ _1$
Appliance	None	$\alpha_4 \ y_4\ _1$	$\beta_4 \ Dy_4\ _1$

- Validate model with small amount of labeled data from Pecan Street project (84 homes)
- Apply to large-scale dataset with 10,000+ homes (PG&E)

Energy disaggregation results

One week of energy usage from a single home

Energy disaggregation results

Performance comparison

Category	Mean	NNSC	Contextual
Base	0.2534	0.2793	0.1849
A/C	0.2849	0.2894	0.1919
Appliance	0.2262	0.2416	0.1900
Average	0.2548	0.2701	0.1889

Contextual supervision improves 26% over baselines in mean absolute error (MAE)

Summary and conclusions

- Propose contextual supervision which lies between the fully supervised and unsupervised setting
- Motivating application is energy disaggregation of hourly smart meter data
- Can provide itemized energy usage for millions of homes