PCC104 - Projeto e Análise de Algoritmos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

Busca em Texto

2 Algoritmo Ingênuo

Rabin-Karp

Projeto e Análise de Algoritmos

Fonte

Este material é baseado nos livros

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. The MIT Press, 3rd edition, 2009.
- S. Halim. Competitive Programming. 3rd Edition, 2013.
- ▶ Ian Parberry and William Gasarch. *Problems on Algorithms*. Second Edition, 2002.
- ▶ Ian Parberry Lecture Notes on Algorithm Analysis and Complexity Theory. Fourth Edition, 2001.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Introdução

Programas de edição de texto frequentemente precisam encontrar todas as ocorrências de um padrão em um dado texto;

Tipicamente, o texto é o documento sendo editado (maior), e o padrão procurado é uma palavra específica (menor) fornecida pelo usuário;

Este problema é chamado de Busca de Padrões, Busca em Texto, Casamento de Padrões ou Casamento de Cadeias de Caracteres (String Matching);

Entre diversas aplicações, algoritmos para este problema são aplicados à busca de padrões em sequências de DNA e na busca por páginas da Internet.

Definições

Seja o texto um arranjo T[1..n] de tamanho n e um padrão P[1..m] de comprimento $m \leq n$;

Os elementos de T e P são caracteres oriundos de um alfabeto finito Σ ;

Por exemplo, podemos ter $\Sigma = \{0,1\}$ ou $\Sigma = \{a,b,c,\ldots,z\}$;

Os arranjos de caracteres T e P são chamados comumente de **cadeias de caracteres** ou *strings*.

Definições

Dizemos que um padrão P ocorre com um **deslocamento** (ou *shift*) s em um texto T se $0 \le s \le n-m$ e T[s+1..s+m]=P[1..m], ou seja T[s+j]=P[j] para $1 \le j \le m$;

Em outras palavras, podemos dizer que o padrão P ocorre com início na posição s+1 no texto T;

Se o padrão P ocorre no texto T com deslocamento s, então dizemos que s é um deslocamento **válido**:

Caso contrário, s é um deslocamento inválido;

O Problema de Busca de Padrões nos pede que determinemos todos os deslocamentos válidos nos quais um dado padrão P ocorre em um dado texto T.

Instância do Problema de Busca de Padrões, em que o padrão ocorre apenas uma vez no texto, com deslocamento $s=3.\,$

Algoritmos

Veremos três algoritmos para o Problema de Busca de Padrões:

- Um algoritmo ingênuo;
- O algoritmo de Karp-Rabin;
- O algoritmo de Knuth-Morris-Pratt (KMP).

Os dois últimos algoritmos realizam operações de **pré-processamento** baseadas no padrão e então determinam todos os deslocamentos válidos (etapa denominada *matching*);

Desta forma, a complexidade destes algoritmos é analisada somando-se a complexidade das operações de pré-processamento e matching;

A seguir, é apresentada a notação e terminologia utilizada pelos algoritmos.

Notação e Terminologia

O conjunto de todas as cadeias de caracteres de comprimento finito formadas sobre o alfabeto Σ é denotado por Σ^* ;

A cadeia de caracteres vazia, de comprimento zero, denotada por ϵ , também pertence a Σ^* ;

O comprimento de uma cadeia de caracteres x é denotada por |x|;

A concatenação de duas cadeias de caracteres x e y é denotada por xy e possui comprimento |x|+|y|, consistindo dos caracteres de x seguidos pelos caracteres de y.

Notação e Terminologia

Dizemos que uma cadeia de caracteres w é um **prefixo** da cadeia de caracteres x, denotado por $w \sqsubset x$, se x = wy para alguma cadeia de caracteres $y \in \Sigma^*$;

Analogamente, dizemos que uma cadeia de caracteres w é um **sufixo** da cadeia de caracteres x, denotado por $w \sqsupset x$, se x = yw para alguma cadeia de caracteres $y \in \Sigma^*$;

Por exemplo, temos que ab \square abcca e que cca \square abcca;

Para quaisquer cadeias de caracteres x e y e um caractere a, temos que $x \supset y$ se e somente se $xa \supset ya$;

Note que ϵ é sufixo e prefixo de todas cadeias de caracteres e que \Box e \Box são relações transitivas.

Princípio

O algoritmo ingênuo mostrado a seguir determina todos os deslocamentos válidos usando um laço de repetição que verifica se a condição $P[1..m] = T[s+1..s+m] \ {\rm para} \ {\rm cada} \ {\rm um} \ {\rm dos} \ n-m+1 \ {\rm possíveis} \ {\rm valores} \ {\rm de} \ s.$

```
\begin{split} & \textbf{NaiveStringMatching}(T, P) \\ & \textbf{Entrada: } \textbf{Cadeias de caracteres } T \textbf{ e } P \\ & n \leftarrow |T|; \\ & m \leftarrow |P|; \\ & \textbf{para } s \leftarrow 0 \textbf{ até } n - m \textbf{ faça} \\ & & | \textbf{ se } P[1..m] = T[s+1..s+m] \textbf{ então} \\ & & | \textbf{ Imprima "O padrão ocorre com deslocamento } s"; \\ & \textbf{ fim } \end{split}
```

Análise

Neste algoritmo, o padrão é "deslizado" ao longo do texto, verificando-se para quais deslocamentos há uma correspondência total entre os caracteres do padrão e do texto;

O teste da instrução "se" verifica implicitamente todos os caracteres para determinar uma correspondência total ou para no primeiro caractere não correspondente ao padrão;

A figura a seguir retrata o algoritmo apresentado.

Exemplo de execução do algoritmo, em que $P={\tt aab}$ e $T={\tt acaabc}$.

Análise

O teste da instrução "se" verifica implicitamente todos os caracteres para determinar uma correspondência total ou para no primeiro caractere não correspondente ao padrão;

Este algoritmo possui complexidade O((n-m+1)m), sendo este um limite restrito no pior caso;

Por exemplo, consideremos como texto a cadeia de caracteres a^n (ou seja, uma cadeia composta por n a's) e o padrão a^m ;

Para cada um dos n-m+1 possíveis deslocamentos, a verificação implícita seria executada m vezes para validar o deslocamento;

Desta forma, nos casos em que $m=\lfloor n/2 \rfloor$, temos que a complexidade é $\Theta(n^2).$

Análise

Claramente, o algoritmo ingênuo apresentado não é eficiente para o problema tratado;

A ineficiência deste algoritmo é devida ao mesmo não aproveitar a informação obtida ao computar um valor de s anterior nas computações futuras:

Por exemplo, se $P={\rm aaab}$ e determinamos que s=0 é um deslocamento válido, então nenhum dos deslocamentos de valor 1, 2 ou 3, serão válidos, uma vez que $T[4]={\rm b};$

Em seguida, veremos um algoritmo com melhor complexidade no pior caso.

Richard M. Karp (*1935)

- Cientista da Computação americano;
- Prêmio Turing em 1985;
- John von Neumann Theory Prize 1990;
- National Medal of Science 1990;
- Kyoto Prize 2008;
- Famoso por:
 - Lista de 21 problemas NP-Completos;
 - Algoritmo de Edmonds-Karp;
 - Busca em texto;
 - etc...

Michael O. Rabin (*1931)

- Cientista da Computação israelita;
- Prêmio Turing em 1976;
 - Prêmio Dijkstra de 2015;
- Famoso por:
 - Teste de primalidade;
 - Criptografia;
 - Autômatos finitos não determinísticos;
 - Algoritmos aleatorizados;
 - Busca em texto;
 - etc...

Introdução

O algoritmo de Rabin-Karp foi proposto em 1987 por Richard M. Karp e Michael O. Rabin;

Este algoritmo possui um bom desempenho na prática, embora sua complexidade no pior caso seja igual ao do algoritmo ingênuo;

É possível generalizar o algoritmo para outros problemas, como busca de padrões bidimensional;

Utiliza noções elementares de teoria dos números, tais como a equivalência de dois números módulo um terceiro número.

Princípio

Suponhamos $\Sigma = \{0, 1, 2, \dots, 9\}$, de maneira que cada caractere é um dígito (podemos generalizar, supondo que cada caractere é um dígito em notação de base d, em que $d = |\Sigma|$);

Podemos, desta forma, interpretar uma cadeia de k caracteres como um número decimal de k dígitos;

Por exemplo, a cadeia de caracteres 3 1 4 1 5 corresponde ao número decimal 31415;

Dado um padrão P[1..m], seja p o seu valor decimal correspondente;

De maneira semelhante, dado um texto T[1..n], seja t_s o valor decimal associado à subcadeia T[s+1..s+m] (para $s=0,1,\ldots,n-m$), cujo comprimento é m;

Certamente, $t_s=p$ se e somente se T[s+1..s+m]=P[1..m], ou seja, s é um deslocamento válido se e somente se $t_s=p$.

Princípio

Se pudermos computar p em tempo $\Theta(m)$ e todos os t_s em tempo $\Theta(n-m+1)$, então poderíamos determinar todos os deslocamentos válidos em tempo $\Theta(m)+\Theta(n-m+1)=\Theta(n)$, comparando p com cada um dos valores t_s ;

É possível calcularmos p em tempo $\Theta(m)$ usando a regra de Horner, um algoritmo para computação eficiente de polinômios e mais estável numericamente:

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + \ldots + 10(P[2] + 10P[1]) \ldots))$$

Princípio

De maneira similar, podemos calcular t_0 a partir de T[1..m] em tempo $\Theta(m)$;

Para calcularmos os valores restantes $t_1, t_2, \ldots, t_{n-m}$ em tempo $\Theta(n-m)$, basta observar que t_{s+1} pode ser calculado a partir de t_s em tempo constante, pois:

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$
(1)

- A subtração de $10^{m-1}T[s+1]$ remove o dígito mais significativo de t_s ;
- A multiplicação do resultado por 10 desloca o número um dígito à esquerda;
- A adição de T[s+m+1] introduz o próximo dígito menos significativo.

Princípio

Por exemplo, se m=5 e $t_s=31415$, então desejamos remover o dígito mais significativo T[s+1]=3 e introduzir o próximo dígito menos significativo (suponhamos T[s+5+1]=2):

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1]$$

$$t_{s+1} = 10(31415 - 10000 \times 3) + 2$$

$$= 14152$$

Complexidade

Se pudermos pré-computar a constante 10^{m-1} (é possível fazê-lo em tempo $O(lg\ m)$), então a equação 1 requer um número constante de operações aritméticas;

Desta maneira, podemos computar p em tempo $\Theta(m)$ e podemos computar todos $t_0, t_1, \ldots, t_{n-m}$ em tempo $\Theta(n-m+1)$;

Em suma, podemos determinar todas as ocorrências do padrão P[1..m] no texto T[1..n] com tempo de pré-processamento $\Theta(m)$ e tempo de matching $\Theta(n-m+1)$ no pior caso.

Particularidade 1

Há uma particularidade no princípio do algoritmo Rabin-Karp: p e t_s podem ser excessivamente grandes para serem manipulados apropriadamente;

Se p possui m caracteres, então não é razoável supor que cada operação aritmética em p leva um tempo "constante";

A solução é computar os valores de p e t_s módulo q, sendo q um valor adequado;

É possível computar $p \mod q$ em tempo $\Theta(m)$, e todos os valores $t_s \mod q$ em tempo $\Theta(n-m+1)$.

Particularidade 1

Se escolhermos q um número primo tal que 10q pode ser armazenado em uma única palavra da arquitetura utilizada, então é possível realizar todas as computações com aritmética de precisão simples;

Em geral, com um alfabeto d-ário $\{0,1,\ldots,d-1\}$, escolhemos q tal que dq pode ser armazenado em uma palavra e ajustamos a equação 1 para considerar o módulo q:

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \bmod q$$
 (2)

Na equação, $h\equiv d^{m-1}\pmod q$ é o valor do primeiro dígito (posição mais significativa) de uma "janela" de texto de m dígitos.

Particularidade 2

A utilização da operação módulo q não é uma situação perfeita:

 $t_s \equiv p \pmod{q}$ não implica em $t_s = p$;

Por outro lado, se $t_s \not\equiv p \pmod{q}$ definitivamente implica em $t_s \not\equiv p$, de maneira que o deslocamento s é inválido;

Podemos usar esta propriedade com um regra de teste heurística para deslocamentos inválidos, desde que, para evitarmos falsos positivos, verifiquemos mais profundamente os casos em que $t_s \equiv p \pmod{q}$;

Esta verificação adicional explicitamente testa se

$$P[1..m] = T[s+1..s+m];$$

Se q é grande o suficiente, então espera-se que os falsos positivos sejam infrequentes, tal que o custo da verificação adicional seja baixo.

Exemplo de texto em que uma "janela" de comprimento 5 é destacada e cujo valor módulo 13 resulta no valor 7.

O mesmo texto anterior com valores módulo 13 calculados para cada possível posição da janela de comprimento 5.

Considerando o padrão P=31415, estamos em busca de janelas de texto cujo valor módulo 13 é 7, uma vez que $31415\equiv 7\pmod{13}$. O segundo caso é um falso positivo.

Exemplo de cálculo o valor de uma janela de texto em tempo constante, dado o valor da janela anterior.

```
\mathsf{Karp}	ext{-}\mathsf{Rabin}(T,P,d,q)
Entrada: Cadeias de caracteres T e P, base d, número primo q
n \leftarrow |T|; m \leftarrow |P|; h \leftarrow d^{m-1} \mod q; p \leftarrow 0; t_0 \leftarrow 0:
Pré-processamento
para i \leftarrow 0 até m faça
    p \leftarrow (dp + P[i]) \mod q:
    t_0 \leftarrow (dt_0 + T[i]) \mod a:
fim
Matching
para s \leftarrow 0 até n-m faça
    se p=t_s então
         se P[1..m] = T[s + 1..s + m] então
             Imprima "O padrão ocorre com deslocamento s";
         fim
    fim
    se s < n - m - 1 então
         t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1] \mod q
    fim
fim
```

Observação 1

Novamente, temos que o *matching* do algoritmo Rabin-Karp é $(\Theta(n-m+1)m)$, dado que todos os possíveis deslocamentos válidos são verificados explicitamente, como no caso $T=a^n$ e $P=a^m$;

Porém, na maioria das aplicações práticas, esperamos que as ocorrências do padrão sejam poucas — uma constante c, logo:

$$O((n-m+1)+cm) = O(n+m)$$

Observação 2

É necessário também considerar a verificação dos falsos positivos, que podemos esperar ocorrerem em número O(n/q);

Tendo em vista que há O(n) posições nas quais o teste $p=t_s$ falha e que para verificar cada deslocamento possivelmente válido é exigido tempo O(m), o tempo esperado do $\mathit{matching}$ é

$$O(n) + O(m(v + n/q))$$

em que v é o número de deslocamentos válidos e, novamente, n/q é o número de falsos positivos.

Observação 3

Se v=O(1), ou seja, o número de deslocamentos válidos é pequeno, e se escolhermos q como um número primo maior do que o comprimento do padrão, podemos esperar que o $\mathit{matching}$ do algoritmo Rabin-Karp exija tempo O(n+m);

Uma vez que $m \leq n$, o tempo de execução esperado é O(n).

Exercício

Considerando q=11, quantos falsos positivos seriam encontrados pelo algoritmo de Rabin-Karp no texto T=3141592653589793 quando buscamos o padrão P=26?

Dúvidas?

