Image Classification

Recap

Image Classification

План

CNN Architectures

Transfer Learning

Recap: Over/Under fitting

Underfitting = large bias & small variance

Overfitting = small bias & large variance

What is bias and variance?

$$y = f(x) + \varepsilon; \ \varepsilon \sim q(0, \sigma^2)$$
 $\hat{f}(x) \to f(x)$

$$\operatorname{Bias}\left[\hat{f}\left(x
ight)
ight]=\operatorname{E}\left[\hat{f}\left(x
ight)
ight]-f(x)$$

$$\operatorname{Var}\left[\hat{f}\left(x
ight)
ight] = \operatorname{E}[\hat{f}\left(x
ight)^{2}] - \operatorname{E}[\hat{f}\left(x
ight)]^{2}$$

Expectation taken over all possible samples from data-generating distribution

Total Error Decomposition

$$L(y, \hat{y}) \le approximation error + estimation error + optimization error$$

Bayes-optimal classifier/predictor over all predictors

$$f_o = \underset{f \in \widetilde{f}f_o}{\operatorname{argmin}} \int_{(x,y) \sim P(x,y)} l(x,y,f)$$

Approximation Error

$$f_o = \underset{f \in \widetilde{f}f_o}{\operatorname{argmin}} \int_{(x,y) \sim P(x,y)} l(x,y,f)$$

The class of predictors is usually restricted (e.g. to some parametric family)

$$\tilde{f} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}} \int_{(x,y) \sim P(x,y)} l(x,y,f)$$

$$||f_o - \tilde{f}||$$
 - approximation error

Estimation Error

$$\widetilde{f} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}} \int_{(x,y) \sim P(x,y)} l(x,y,f)$$

Cannot integrate, have a finite sample of data

$$\hat{f} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (l(x, y, f)) + \lambda R(f)$$

$$||\tilde{f} - \hat{f}||$$
 - estimation error

Estimation Error

$$\hat{f} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (l(x, y, f)) + \lambda R(f)$$

Have a limited amount of time to optimize

$$\hat{f}^{(t)} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}}^{(t)} \frac{1}{N} \sum_{i=1}^{N} (l(x, y, f)) + \lambda R(f)$$

$$||\hat{f} - \hat{f}^{(t)}||$$
 - optimization error

Total Error Decomposition

$$L(y, \hat{y}) \leq approximation error + estimation error + optimization error$$

$$\hat{f}^{(t)} = \underset{f \in \widetilde{ff}}{\operatorname{argmin}}^{(t)} \frac{1}{N} \sum_{i=1}^{N} (l(x, y, f)) + \lambda R(f)$$

Recap: Regularization

Regularization Types

- 1. Model regularization
 - Dropout, Stochastic Depth etc.
 - L1, L2 (weight decay)
 - BatchNorm
- 2. Data regularization (augmentation)
- 3. Optimization regularization
 - SGD instead of Adam
 - Learning rate/batch size tradeoff
- 4. Ensembling

Data Augmentation

Data augmentation

Data Augmentation

Label = Jeff Bezos

Label = Geoffrey Hinton

Data Augmentation

Label = 0.5 * Jeff Bezos & 0.5 * Geoffrey Hinton

Optimization Regularization

SGD instead of Adam

Learning Rate/Batch Size Tradeoff

Gradient Descent

Stochastic Gradient Descent

Ensembling

Ensembling: Stochastic Weight Averaging

Ensembling: Stochastic Weight Averaging

Ensembling: Stochastic Weight Averaging

Image Classification

Computer View

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 50 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 45 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 50 68 30 03 49 13 36 65 32 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 62 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 35 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 16 39 05 42 96 33 14 75 58 88 24 00 17 54 24 36 29 85 78 86 56 00 48 35 71 89 07 05 44 48 37 44 60 21 88 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 50 48 37 75 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 35 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 61 29 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 64 29 32 40 62 76 36 20 73 35 29 78 31 90 01 74 31 49 71 48 64 21 6 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 25 57 05 54 00 17 05 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 2

Human View

Bag of Visual Words

Bag of Visual Words

Recap CNN

Stacked Convolutions

True labels

Simple patterns

Complex patterns

Classification features

Classification result

From Simple to Complex Patterns

From Simple to Complex Patterns

From Simple to Complex Patterns

Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Global Pooling

CNN Problems

Invariance

$$f\big(T(x)\big) = f(x)$$

Equivariance

$$f(T(x)) = T(f(x))$$

Why Invariance/Equivariance?

To classify you need invariance

To detect you need equivariance

Convolution is equivariant to shifts

Convolution is neither equivariant nor invariant to rotation

Convolution is neither equivariant nor invariant to scale

Convolutional Neural Network

CNN is:

- invariant to shifts
- neither equivariant nor invariant to rotation
- neither equivariant nor invariant to scale

How to make CNN invariant to scale and rotation?

Use data augmentation

Convolutional Neural Network: Bonus Problem

Changes in relative positions of object parts

CNN Architectures

ImageNet Large Scale Visual Recognition

VGG

Small filters (3x3)

Why not take 7x7?

7x7 #params = 7² * C² 3 * 3x3 #params = 3 * (3² * C²)

3 filters with 3x3 kernel have same receptive field as 7x7 kernel, but deeper with more nonlinearities

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv., 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

VGG19

VGG

Most of parameters come from last 3 layers

FC 1: 7*7*512*4096 = 103M

FC 2: 4096*4096 = 17M

FC 3: 4096*1000 = 4M

Total #params: 138M

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

VGG19

GoogleNet

- 22 layers
- Efficient "Inception" module

- No FC layers
- Only 5 million parameters

GoogleNet: Inception Module

GoogleNet: Many Classifiers

152-layer model for ImageNet

Overfitting or hard optimization?

No skip-connections

With skip-connections

NasNet

Also

- NiN (Network in Network)
- Wide ResNet
- ResNeXT
- Stochastic Depth
- Squeeze-and-Excitation Network

- DenseNet
- FractalNet
- SqueezeNet

Architecture Comparison

Transfer Learning

Transfer Learning

Transfer Learning

Freeze

Transfer Learning Tips & Tricks

- The more similar are 2 datasets the less layers you need to train
- The less data you have the less layers you need to train
- Unfreeze layers one by one during training

Materials

cs231n Lecture 2: https://www.youtube.com/watch?v=OoUX-nOEjG0&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=2

Cs231n Lecture 9: https://www.youtube.com/watch?v=DAOcjicFr1Y&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=9

Transfer Learning: https://towardsdatascience.com/transfer-learning-946518f95666

Stochastic Weight Averaging—a New Way to Get State of the Art Results in Deep Learning: https://towardsdatascience.com/stochastic-weight-averaging-a-new-way-to-get-state-of-the-art-results-in-deep-learning-c639ccf36a