Math 3012 Updated Spring 2025

Note 9. Principle of Inclusion and Exclusion

Take Attendance Today!

1 PIE

Theorem 1.1 (The Principle of Inclusion and Exclusion). Let S be a set with |S| = N and suppose we have n conditions c_i , satisfied (respectively) by some of the elements of S.

The number of elements in S satisfying **none** of the conditions c_i is:

$$N(\bar{c}_1\bar{c}_2...\bar{c}_n) = N - \sum_{1 \le i \le n} N(c_i) + \sum_{1 \le i < j \le n} N(c_i, c_j) - \dots + (-1)^n N(c_1, c_2, \dots, c_n)$$
(1)

or PIE on sets:

Theorem 1.2 (The Principle of Inclusion and Exclusion). Let S be a set with |S| = N and suppose we have n conditions subsets $A_i \subseteq S$. Then

$$|\overline{A_1 \cup A_2 \cup \cdots \cup A_n}| = N - \sum_{1 \le i \le n} |A_i| + \sum_{1 \le i < j \le n} |A_i \cap A_j| - \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \cdots + (-1)^n |A_i \cap A_k \cap \cdots \cap A_n|$$
(2)

Recall:

$$\left|\overline{A_1 \cup A_2 \cup A_3}\right| = N - \left(|A_1| + |A_2| + |A_3|\right) + \left(|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|\right) - |A_1 \cap A_2 \cap A_3|.$$

Proof. Although this result can be established by induction on t, we give a combinatorial argument here.

For each $x \in S$ we show that x contributes the same count, either 0 or 1, to each side of Eq (2).

If x satisfies none of the conditions, then x is counted once in $\overline{A_1 \cup A_2 \cup \cdots \cup A_n}$ and once in N, but not in any of the other terms in Eq (2). Consequently, x contributes a count of 1 to each side of the equation.

The other possibility is that x satisfies exactly r of the n sets. (For example A_1, A_2, \dots, A_r). In this case, x contributes nothing to \overline{N} . But on the right-hand side of Eq. (2), x is counted

- One time in N.
- r times in $\sum_{1 \le i \le r} |A_i|$. (Once for each of the A_1, A_2, \dots, A_r .)
- $\binom{r}{2}$ times in $\sum_{0 \le i < j \le n} |A_i \cap A_j|$. (Once for each pair of A_1, A_2, \dots, A_r .)
- $\binom{r}{3}$ times in $\sum_{0 \le i \le k \le n} |A_i \cap A_j \cap A_k|$. (Once for each triple of A_1, A_2, \dots, A_r .)
- :
- $\binom{r}{r}$ times in $\sum |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_r}|$, where the summation is taken over all selections of size r from the n subsets.

Consequently, on the right-hand side of Eq. (2), x is counted

$$1-r+\binom{r}{2}-\binom{r}{3}+\cdots+(-1)^r\binom{r}{r}=[1+(-1)]^r=0^r=0$$

times, by the binomial theorem. Therefore, the two sides of Eq. (2) count the same elements of S, and the equality is verified.

Math 3012 Updated Spring 2025

Problem 1. Find the number of integer solutions to the equation $x_1 + x_2 + x_3 + x_4 = 18$, where $0 \le x_i \le 7$, for all $1 \le i \le 4$.

Idea:

- Step 1: Statement Use sets or conditions
- Step 2: Calculation PIE

Solution 1. Let S be the set of solutions of $x_1 + x_2 + x_3 + x_4 = 18$, with $0 \le x_i$ for all $1 \le i \le 4$. So |S| = N = 1

 $\binom{4+18-1}{18}=\binom{21}{18}$. We say that a solution x_1,x_2,x_3,x_4 satisfies condition c_i , where $1 \le i \le 4$, if $x_i > 7$. The answer to the problem is

Here by symmetry $N(c_1) = N(c_2) = N(c_3) = N(c_4)$. To compute $N(c_1)$, we consider the integer solutions for $x_1 + x_2 + x_3 + x_4 = 10$, with each $x_i \ge 0$ for all $1 \le i \le 4$. Then we add 8 to the value of x_1 and get the solutions of $x_1 + x_2 + x_3 + x_4 = 18$ that satisfy condition c_1 . Hence $N(c_i) = \binom{4+10-1}{10} = \binom{13}{10}$, for each $1 \le i \le 4$. Likewise, $N(c_1c_2)$ is the number of integer solutions of $x_1 + x_2 + x_3 + x_4 = 2$, where $x_i \ge 0$ for all $1 \le i \le 4$. So

 $N(c_1c_2) = {4+2-1 \choose 2} = {5 \choose 2}.$

Since $N(c_ic_ic_k) = 0$ for any selection of three conditions, and $N(c_1c_2c_3c_4) = 0$, we have

$$N(\overline{c}_{1}\overline{c}_{2}\overline{c}_{3}\overline{c}_{4}) = N - \sum_{1 \leq i \leq 4} N(c_{i}) + \sum_{1 \leq i < j \leq 4} N(c_{i}, c_{j}) - \dots + N(c_{1}, c_{2}, c_{3}, c_{4}) = {21 \choose 18} - {4 \choose 1} {13 \choose 10} + {4 \choose 2} {5 \choose 2} - 0 + 0 = 246.$$

or we can use sets:

Solution 2. Let S be the set of solutions of $x_1 + x_2 + x_3 + x_4 = 18$, with $0 \le x_i$ for all $1 \le i \le 4$. So |S| = N = 1 $\binom{4+18-1}{18}=\binom{21}{18}$. Let $A_i\subseteq S$ be the set of solutions such that $x_i>7$. The answer to the problem is $|\overline{A_1\cup A_2\cup A_3\cup A_4}|$. Here by symmetry $|A_1| = |A_2| = |A_3| = |A_4|$. (Similarly to the above, we omit the details). Note that $|A_i| = \binom{13}{10}$ for 0 < i < 4.

Note that $|A_i \cap A_j| = \binom{13}{10}$ for $0 \le i < j \le 4$. And the intersecting of any three sets is empty. Thus we have

$$|\overline{A_1 \cup A_2 \cup A_3 \cup A_4}| = N - \sum_{1 \le i \le 4} |A_i| + \sum_{1 \le i < j \le 4} |A_i \cap A_j| - \sum_{1 \le i < j < k \le 4} |A_i \cap A_j \cap A_k| + \dots + |A_1 \cap A_2 \cap A_3 \cap A_4| = 246.$$

Problem 2. Determine the number of positive integers n where 1 < n < 100 and n is not divisible by 2, 3, or 5.

Idea:

- Step 1: Statement Use sets or conditions
- Step 2: Calculation PIE

Solution. Here $S = \{1, 2, 3, ..., 100\}$ and N = 100.

- Let $A_1 \subseteq S$ be the set of integers divisible by 2, or condition c_1
- Let $A_2 \subseteq S$ be the set of integers divisible by 3, or condition c_2
- Let $A_3 \subseteq S$ be the set of integers divisible by 5, or condition c_3

Math 3012 Updated Spring 2025

Then the answer to this problem is $|\overline{A_1 \cup A_2 \cup A_3}|$.

$$|A_1| = \left\lfloor \frac{100}{2} \right\rfloor = 50$$
 [since the 50 positive integers 2, 4, 6, . . . , 100 are divisible by 2];

$$|A_2| = \left\lfloor \frac{100}{3} \right\rfloor = 33$$
 [since the 33 positive integers 3, 6, 9, . . . , 99 are divisible by 3];

$$|A_3| = \left| \frac{100}{5} \right| = 20;$$

 $|A_1 \cap A_2| = \left| \frac{100}{6} \right| = 16$ [since there are 16 elements in S divisible by lcm(2,3) = 6];

$$|A_1 \cap A_3| = \left| \frac{100}{10} \right| = 10;$$

$$|A_2 \cap A_3| = \left| \frac{100}{15} \right| = 6;$$

and,

$$|A_1 \cap A_2 \cap A_3| = \left\lfloor \frac{100}{30} \right\rfloor = 3.$$

Applying the inclusion-exclusion principle, we find that

$$\begin{aligned} \left| \overline{A_1 \cup A_2 \cup A_3} \right| &= N - (|A_1| + |A_2| + |A_3|) + (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) - |A_1 \cap A_2 \cap A_3|. \\ &= 100 - (50 + 33 + 20) + (16 + 10 + 6) - 3 = 26. \end{aligned}$$

2 Generalizations of the Principle

What if we want the integers n where $1 \le n \le 100$ and n is divisible by exactly one of 2, 3, 5? The answer is

$$N(c_1, \overline{c_2}, \overline{c_3}) + N(\overline{c_1}, c_2, \overline{c_3}) + N(\overline{c_1}, \overline{c_2}, c_3).$$
 (3)

Theorem 2.1. For each $1 \le m \le n$, the number of elements in S that satisfy exactly m of the conditions c_1, c_2, \ldots, c_n is given by

$$E_m = S_m - {m+1 \choose 1} S_{m+1} + {m+2 \choose 2} S_{m+2} - \dots + (-1)^{n-m} {n \choose n-m} S_n,$$

where

$$S_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} N(c_{i_1} c_{i_2} \dots c_{i_k}).$$

So (3) is

$$E_1 = S_1 - 2S_2 + 3S_3 = \cdots$$

Problem 3. Let $X = \{x_1, x_2, \dots, x_{10}\}$ and $Y = \{y_1, y_2, \dots, y_7\}$. How many functions $f: X \to Y$ have exactly 4 elements in their range?

Math 3012 Updated Spring 2025

Solution. Let S be the set of all functions $f: X \to Y$. Define conditions

 $c_i : y_i$ is **not** in the range of f (for $f \in S$).

Then any function with exactly 4 elements in its range satisfies exactly 3 conditions. (why?) Thus our answer is E_3 .

$$E_3 = S_3 - {4 \choose 1} S_4 + {5 \choose 2} S_5 - {6 \choose 3} S_6 + {7 \choose 4} S_7$$

Note that for any $i, j, k \le 7$, $N(c_i, c_j, c_k)$ is the number of functions $f: X \to Y \setminus \{y_i, y_j, y_k\}$. Then $N(c_i, c_j, c_k) = 4^{10}$. So

$$S_3 = {7 \choose 3} N(c_i, c_j, c_k) = {7 \choose 3} 4^{10}$$

Here, $\binom{7}{3}$: ways to choose i, j, k.

Similarly,

$$S_4 = {7 \choose 4} 3^{10}$$

$$S_5 = {7 \choose 5} 2^{10}$$

$$S_6 = {7 \choose 6} 1^{10} = 7$$

$$S_7 = {7 \choose 7} (7 - 7)^{10} = 0$$

Plugging these values in,

$$E_{3} = \begin{bmatrix} \binom{7}{3} 4^{10} \end{bmatrix} - \begin{bmatrix} \binom{4}{1} \binom{7}{4} 3^{10} \end{bmatrix} + \begin{bmatrix} \binom{5}{2} \binom{7}{5} 2^{10} \end{bmatrix} - \begin{bmatrix} \binom{6}{3} \binom{7}{6} 7 \end{bmatrix} + \begin{bmatrix} \binom{7}{4} 0 \end{bmatrix}$$