Векторные представления слов: word2vec

Скачков Николай Андреевич ВМК МГУ

2017/14/02

Мотивация

Как мы умеем представлять слова из словаря Ω в виде объектов?

Мотивация

Как мы умеем представлять слова из словаря Ω в виде объектов?

One-hot-encoding:

$$w \longrightarrow v_w : \quad v_w^i = [\#w = i]$$

У этого способа кодирования очень много недостатков!

Мотивация

Как мы умеем представлять слова из словаря Ω в виде объектов?

One-hot-encoding:

$$w \longrightarrow v_w : \quad v_w^i = [\#w = i]$$

У этого способа кодирования очень много недостатков! Хотим получить:

- представление слов в пространстве H невысокой размерности
- в данном пространстве H близкие по смыслу слова находятся рядом
- пространство H линейное:
 vec(Madrid) vec(Spain) + vec(France) = vec(Paris)

Использование контекста

- Идея: Близкие слова имеют схожие контексты.
- Построим модель, которая будет хорошо предсказывать слова по контексту.

Skip-gram

Параметры W, W':

$$v_w = W_w$$
 – input vector.
 $v_w' = {W_w'}^T$ – output vector.

T. Mikolov Distributed Representations of Words and Phrases and their Compositionality, 2013

Skip-gram

Параметры W, W':

$$v_w = W_w$$
 – input vector.
 $v'_{\cdot \cdot \cdot} = {W'_{\cdot \cdot \cdot}}^T$ – output vector.

• Подсчет условной вероятности (softmax):

$$p(w_{O}|w_{I}) = \frac{\exp(v'_{w_{O}}^{T}v_{w_{I}})}{\sum_{w \in \Omega} \exp(v'_{w}^{T}v_{w_{I}})}$$

• Функция потерь:

$$L(w_t) = -\sum_{|j|=1}^{k} \log p(w_{t+j}|w_t)$$

T. Mikolov Distributed Representations of Words and Phrases and their Compositionality, 2013

Continuous bag-of-words

Параметры W, W':

$$v_w = W_w$$
 – input vector.
 $v'_w = W'_w^T$ – output vector.

Подсчет условной вероятности (softmax):

$$h = \frac{1}{2k-2} \sum_{|j|=1}^{k} v_{w_j}$$

$$p(w_O|h) = \frac{\exp(v_{w_O}'^T h)}{\sum_{w \in \Omega} \exp(v_w'^T h)}$$

• Функция потерь:

$$L(w_t) = -\sum_{|j|=1}^k \log p(w_t|h)$$

T. Mikolov Efficient Estimation of Word Representations in Vector Space, 2013

Skip-gram vs CBOW

Skip-gram:

- + Хорошо предсказывает контексты по редким словам, так как модель предсказывает по ним их соседей.
- Обучается в разы дольше, чем CBOW.

CBOW:

- + Быстрое обучение
- Редкие слова почти не влияют на обучение модели и выучиваются значительно хуже.

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3

Оптимизация обучения

• Количество параметров:

$$|\Omega| = 10000, \quad |h| = 300 \quad \longrightarrow \quad |W| = 3 \cdot 10^9$$

ullet Вычисление градиента softmax происходит за $O(|\Omega|)$

Оптимизация обучения

• Количество параметров:

$$|\Omega| = 10000, \quad |h| = 300 \quad \longrightarrow \quad |W| = 3 \cdot 10^9$$

ullet Вычисление градиента softmax происходит за $O(|\Omega|)$

Необходимо оптимизировать вычисление функции потерь! Для этого изменим ее:

- Иерархический softmax
- O Negative Sampling

Иерархческий Softmax

Над словами строится бинарное дерево. Вероятность i-го определяется как вероятность попасть в i-ый лист дерева из корня:

Иерархческий Softmax

Над словами строится бинарное дерево. Вероятность i-го определяется как вероятность попасть в i-ый лист дерева из корня:

$$p(w|w_l) = \prod_{j=1}^{L(w)-1} \sigma(\left[n(w,j+1) = ch(n(w,j))\right] \cdot v'_{n(w,j)}^{T} v_l),$$

где $v_{n(w,i)}'$ – дополнительные параметры модели.

Теперь функция потерь вычисляется за $O(\log |\Omega|)$

Negative Sampling

- Наша функция потерь поощряет одно значение быть 1, а все остальные – 0.
- Изменим функцию потерь так, чтобы градиент считался только по тому значению, которое ожидается быть близким к 1 и $q \in [5,20]$ другим значениям.

$$\log p(w_O|w_I) \longleftarrow \log \sigma(v_{w_O}^{\prime T} v_{w_I}) + \sum_{i=1}^q \mathbb{E}_{w_i \sim P(w)} \left[\sigma(-v_{w_i}^{\prime T} v_{w_I}) \right]$$

P(w) – считаем, используя счётчики в степени 3/4

Subsampling. Результаты

- Частотные слова не несут в себе большой смысловой нагрузки, но при этом значительно увеличивают размер выборки.
- ullet Будем удалять слова из обучающей выборки с вероятностью: $p(w)=1-\sqrt{rac{t}{\mathsf{freq}(w)}},\ t=10^{-5}$

Subsampling. Результаты

- Частотные слова не несут в себе большой смысловой нагрузки, но при этом значительно увеличивают размер выборки.
- ullet Будем удалять слова из обучающей выборки с вероятностью: $p(w)=1-\sqrt{rac{t}{\mathsf{freq}(w)}},\ t=10^{-5}$

Method	Dimensionality	No subsampling [%]	10 ⁻⁵ subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

- Negative Sampling работает быстрее, чем Hierarchical Softmax, но хуже работает с менее частотными словами.
- Стандартный выбор: skip-gram + negative sampling + окно (5-10) + Subsampling + (|h| = 300)

