

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Điện tử cho Công nghệ thông tin IT3420

ONE LOVE. ONE FUTURE.

Điện tử cho CNTT

• Ôn tập mạch tuần tự (mạch dãy)

 Cho trước dạng sóng của các tín hiệu đầu vào ClrN và Clock trong mạch logic gồm 2 D flip flop, hãy vẽ dạng sóng của Q₁ và Q₂.

• Xem xét các thời điểm t₁ ~ t₇

- Trong mạch logic như hình:
 - Chuỗi bit đầu vào của X là 10111 (thứ tự vào từ trái sang phải)
 - Trạng thái ban đầu Q₁ = Q₂ =
 0
 - X thay đổi giá trị tại giữa 1 sườn lên và 1 sườn xuống của tín hiệu Clk (clock)
- Hãy vẽ dạng tín hiệu của đầu ra Z.

- Thiết kế mạch kiểm tra số bit lẻ:
 - Đầu ra = 1 khi chuỗi bit vào có số bit 1 là số lẻ.
 - Đầu ra = 0 với các trường hợp còn lại

Ví dụ: ...01010...111...0110... \rightarrow Hệ thống dựa vào Mealy/Moore FSM \rightarrow Số bit 1 là chẵn/lẻ?

→ Vẽ sơ đồ trạng thái và bảng chuyển trạng thái:

Trạng thái hiện tại	Đầu vào	Trạng thái tiếp theo	Đầu ra		
Chẵn	0	Chẵn	0		
Chẵn	1	Lẻ	1		
Lẻ	0	Lẻ	1		
 Lẻ	1	Chẵn	0		

→ Mã hóa các trạng thái:

Trạng thái hiện tại	Đầu vào	Trạng thái tiếp theo	Đầu ra		
0	0	0	0		
0	1	1	1		
1	0	1	1		
1	1	0	0		

→ Xác định số flip flop cần dùng: cần 1 flip flop, vì chỉ cần 1 bit để thể hiện 2 trạng thái.

→ Lựa chọn flip flop: chọn D flip flop

- Giả thiết:
 - Q = Trạng thái hiện tại
 - Q⁺ = Trạng thái tiếp theo
 - X = Đầu vào

Đáp ứng		Kích thích						
K ý hiệu	$\mathbf{Q} o \mathbf{Q}^{+}$	S	R	J	K	Т	D	
S0	0 → 0	0	X	0	X	0	0	
T1	0 → 1	1	0	1	X	1	1	
ТО	1 → 0	0	1	x	1	1	0	
S1	1 → 1	x	0	X	0	0	1	

Q	X	Q ⁺	Đầu ra	D
0	0	0	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	0	0

$$D = Q +$$

→ Tối thiểu hóa bằng bảng Karnaugh:

$$D = \overline{Q}X + Q\overline{X} = Q \oplus X$$

→ Thực hiện mạch:

→ Lựa chọn flip flop: chọn T flip flop

- Giả thiết:
 - Q = Trạng thái hiện tại
 - Q+ = Trạng thái tiếp theo
 - X = Đầu vào

Q	X	Q^{+}	Đầu ra	Т
0	0	0	0	0
0	1	1	1	1
1	0	1	1	0
1	1	0	0	1

$$T = X$$

→ Thực hiện mạch:

- Thiết kế bộ nhận diện chuỗi bit '10001' trong một chuỗi bit có độ dài n bit (n > 5) theo mô hình Mealy/Moore, có thể tùy ý sử dụng loại flip flop.
 - Đầu ra = 1 khi chuỗi bit đầu vào có chứa chuỗi '10001'.
 - Đầu ra = 0 với các trường hợp khác.

Ví dụ:

...01010001...0110... >

Hệ thống dựa vào Mealy/Moore FSM

→ Có/Không?

- Thiết kế mạch logic để hiển thị lần lượt các số 2-0-2-3-2-0-2-3... trên một LED 7-thanh.
 - Clock là tín hiệu đồng bộ của mạch.
 - Reset là tín hiệu điều khiển để hệ thống hiển thị bắt đầu từ số '2' trên LED 7thanh.
 - LED 7-thanh là loại Common Cathode.

 Cho sơ đồ logic của một bộ đếm như hình dưới, hãy xác định tần số của tín hiệu ở đầu ra B và C biết rằng tần số của tín hiệu clock là 600 kHz.

• Hãy xác định cách đếm của bộ đếm như sơ đồ logic ở hình dưới.

• Thiết kế bộ đếm theo sơ đồ trạng thái như trong hình:

- Vẽ bảng tác nhân kích thích cho bộ đếm, trong đó liệt kê:
 - Các trạng thái hiện tại
 - Các trạng thái tiếp theo tương ứng với các trạng thái hiện tại
 - Đầu vào cho các flip flop theo yêu cầu

Pres	ent State Next State		Present State		Inputs						
С	В	А	С	В	Α	J _C	K _C	J _B	K _B	J _A	K _A
0	0	0	0	1	0	0	Χ	1	Χ	0	Х
0	0	1	1	0	0	1	Χ	0	Χ	Х	1
0	1	0	0	1	1	0	Χ	Х	0	1	Х
0	1	1	0	0	1	0	Χ	Х	1	Х	0
1	0	0	1	1	0	Х	0	1	Χ	0	Х
1	0	1	0	0	0	Х	1	0	Χ	Х	1
1	1	0	0	0	0	Х	1	Х	1	0	Х
1	1	1	0	0	0	Х	1	Х	1	Х	1

- Thiết kế các mạch logic cho các đầu vào J_A, K_A, J_B, K_B, J_C, K_C từ các đầu ra A, B, C...
- Có thể sử dụng bảng Karnaugh cho mỗi đầu vào, tối thiểu hóa và biểu diễn bằng hàm Boolean.

Bài tập 8 – Mô phỏng

 Dựa vào sơ đồ logic của bộ đếm đồng bộ 3-bit (CBA) sử dụng T flip flop như hình dưới đây để thiết kế bộ đếm đồng bộ 4-bit. Có thể dùng thêm flip flop và các cổng logic cần thiết khác.

• Thanh ghi dịch 100-tầng kiểu SISO (100-stage SISO) được áp một xung vuông có tần số 50 kHz. Thời gian để mỗi bit dữ liệu dịch chuyển qua thanh ghi trên là bao nhiêu?

- Thiết kế sơ đồ trạng thái cho một hệ thống khóa cửa có cách thức hoạt động như sau:
 - Khóa cửa được mở nếu người dùng nhập đúng theo thứ tự các phím
 2→0→2→3 từ bàn phím.
 - Nếu không nhập đúng 2 lần liên tiếp thì phát tín hiệu cảnh báo.

Bàn phím minh hoạ:

- Mã hóa 10 phím: ABCD (0000 ~ 1001)
- Sơ đồ khối hệ thống:
 - Đầu vào: A, B, C, D
 - Đầu ra: Y, Z

• Sơ đồ trạng thái (Moore) của hệ thống điều khiển mở khóa:

 Bảng chuyển trạng thái của hệ thống điều khiển mở khóa (g/s dùng D flip flop):

Chú ý: trong trường hợp tổng quát có thể tối giản hiệu quả hơn bằng phương pháp Quine-McCluskey

$$\mathbf{Z}(A,B,C,D,Q_2,Q_1,Q_0) = m_4 + m_{12} + m_{20} + m_{28} + \dots + m_{124} = Q_2Q_1'Q_0'$$

$$\mathbf{D_2}(A,B,C,D,Q_2,Q_1,Q_0) = m_{27} = A'B'CDQ_2'Q_1Q_0$$

$$\mathbf{D_1}(A,B,C,D,Q_2,Q_1,Q_0) = m_1 + m_{18} = A'B'C'D'Q_2'Q_1'Q_0 + A'B'CD'Q_2'Q_1Q_0'$$

$$\mathbf{D_0}(A,B,C,D,Q_2,Q_1,Q_0) = m_{16} + m_{18} = A'B'CD'Q_2'Q_1'Q_0' + A'B'CD'Q_2'Q_1Q_0'$$

$$= A'B'CD'Q_2'Q_0'$$

• Sơ đồ trạng thái của hệ thống cảnh báo:

Y = 1 (cảnh báo) khi $Q_1Q_0 = 10_2 (= 2_{10})$

