Results

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the two sample t test assuming equal population variances or the two sample t test not assuming equal population variances seems to be a good option for you! Both tests are tests for the difference between two population means. In order to run these tests in jamovi, go to: T-Tests > Independent Samples T-Test

- Drop your dependent (numeric) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Student's if you want to assume equal population variances, and Welch's if you don't want to assume equal population variances
- Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric <u>Mann-Whitney U test</u>. Click on the links to learn more about these tests!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Independent Samples T-Test

Independent Samples T-Test

								95% Confidence Interval			
		Statistic	±%	df	р	Mean difference	SE difference	Lower	Upper	-	Effect Size
Mischief	Student's t	-1.71		22.0	0.101	-1.25	0.730	-2.76	0.263	Cohen's d	-0.700
	Bayes factor ₁₀	1.05	3.55e- 5								
	Welch's t	-1.71		21.5	0.101	-1.25	0.730	-2.76	0.265	Cohen's d	-0.700
	Mann- Whitney U	47.0			0.149	-1.00		-3.00	2.55e- 5	Rank biserial correlation	0.347

Note. H_a µ_{No Cloak} ≠ µ_{Cloak}

Assumptions

Normality Test (Shapiro-Wilk)

	W	р	
Mischief	0.965	0.546	

Note. A low p-value suggests a violation of the assumption of normality

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
Mischief	0.545	1	22	0.468

Note. A low p-value suggests a violation of the assumption of equal variances **[6]**

Group Descriptives

	Group	N	Mean	Median	SD	SE
Mischief	No Cloak	12	3.75	4.00	1.91	0.552
	Cloak	12	5.00	5.00	1.65	0.477

Plots

Mischief

Bayesian Independent Samples T-Test

Bayesian Independent Samples T-Test

	BF ₁₀	error %		
Mischief	1.05	0.00355		

[7] [3] [4]

Descriptives

Group Descriptives

						95% Credible Interval		
	Group	N	Mean	SD	SE	Lower	Upper	
Mischief	No Cloak Cloak		3.75 5.00		0.552 0.477	2.53 3.95	4.97 6.05	

Descriptives Plot

Mischief

Inferential Plots

Mischief

Bayes Factor Robustness Check

max BF₁₀: 1.183 at r = 0.2824

• user prior: $BF_{10} = 1.051$

• wide prior: $BF_{01} = 1.086$

o ultrawide prior: $BF_{01} = 1.313$

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing.* (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Morey, R. D., & Rouder, J. N. (2018). *BayesFactor: Computation of Bayes Factors for Common Designs*. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.

[4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

[5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. *Comprehensive Psychology*, *3*, 2165–2228.

[6] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.

[7] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.