Class 8: Breast Cancer Mini-Project

Bernice Lozada (A16297973)

About

Today's lab uses unsupervised learning to analyze data from the Wisconsin Breast Cancer Diagnostic Data Set, obtained by the University of Wisconsin Medical Center. The data set presents characteristics of the cell nuclei from images obtained via fine needle biopsy of breast masses.

Data Import

```
# Save your input data file into your Project directory
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)

# Store diagnosis as separate vector
diagnosis <- as.factor(wisc.df$diagnosis)

# Get rid of first column
wisc.data <- wisc.df[,-1]
head(wisc.df)</pre>
```

	diagnosis radius	s_mean text	ture_mean	<pre>perimeter_mean</pre>	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mean	compactnes	ss_mean co	oncavity_mean co	oncave.poin	ts_mean
842302	0.11840	(0.27760	0.3001		0.14710
842517	0.08474	(0.07864	0.0869		0.07017
84300903	0.10960	(0.15990	0.1974		0.12790

84348301	0.1425	0 (0.28390	0.2414		0.10520
84358402	0.1003		0.13280	0.1980		0.10430
843786	0.1278		0.17000	0.1578		0.08089
	symmetry_mean				exture se p	
842302	0.2419		0.07871		0.9053	8.589
842517	0.1812		0.05667		0.7339	3.398
84300903	0.2069		0.05999		0.7869	4.585
84348301	0.2597		0.09744		1.1560	3.445
84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smooth	ness_se com	pactness_se	concavity_s	e concave.p	oints_se
842302		.006399	0.04904	•	_	0.01587
842517	74.08 0	.005225	0.01308	0.0186	0	0.01340
84300903	94.03 0	.006150	0.04006	0.0383	2	0.02058
84348301	27.23 0	.009110	0.07458	0.0566	1	0.01867
84358402	94.44 0	.011490	0.02461	0.0568	8	0.01885
843786	27.19 0	.007510	0.03345	0.0367	2	0.01137
	symmetry_se fr	actal_dimens	sion_se rad:	ius_worst te	xture_worst	
842302	0.03003	0	.006193	25.38	17.33	
842517	0.01389	0	.003532	24.99	23.41	
84300903	0.02250	0	.004571	23.57	25.53	
84348301	0.05963	0	.009208	14.91	26.50	
84358402	0.01756	0	.005115	22.54	16.67	
843786	0.02165	0	.005082	15.47	23.75	
	perimeter_wors	t area_wors	t smoothnes:	s_worst comp	actness_wor	st
842302	184.6			0.1622	0.66	56
842517	158.8	0 1956.0	0	0.1238	0.18	66
84300903	152.5			0.1444	0.42	
84348301	98.8			0.2098	0.86	
84358402	152.2			0.1374	0.20	
843786	103.4			0.1791	0.52	49
	concavity_wors	-		•		
842302	0.711		0.2654			
842517	0.241		0.1860		750	
84300903	0.450		0.2430		613	
84348301	0.686		0.2575		638	
84358402	0.400		0.1625		364	
843786	0.535		0.1741	0.3	985	
	fractal_dimens	_				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				

```
84358402 0.07678
843786 0.12440
```

Initial Analysis

Q1. How many patients/individuals/samples are in this dataset?

569 patients

```
nrow(wisc.df)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

212 observations

```
sum(wisc.df$diagnosis == "M")
```

[1] 212

Q3. How many variables/features in the data are suffixed with _mean?

10

```
length(grep("_mean", colnames(wisc.df)))
```

[1] 10

Clustering

We can try a kmeans() first.

1 130

```
km <- kmeans(wisc.data, centers = 2)
table(km$cluster, diagnosis)

diagnosis
    B     M
1 356 82</pre>
```

Let's try hclust(). The key input for hclust() is a distance matrix produced by the dist() function.

```
#use scale to account for different units - but that's why it looks sad :(
hc <- hclust(dist(wisc.data))
plot(hc)</pre>
```

Cluster Dendrogram

dist(wisc.data)
hclust (*, "complete")

PCA

We can look at the sd of each column (original variables) to determine if we need to scale the data.

```
apply(wisc.data, 2, sd)
```

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>

5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	compactness_worst	smoothness_worst
2.086243e-01	1.573365e-01	2.283243e-02
<pre>fractal_dimension_worst</pre>	symmetry_worst	<pre>concave.points_worst</pre>
1.806127e-02	6.186747e-02	6.573234e-02

Since the sd for each column has a large range (area_worst), the largest component will dominate. This means we have to scale the data. We will run prcomp() with scale = TRUE.

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
Cumulative Proportion
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 \ 0.99830 \ 0.9989 \ 0.99942 \ 0.99969 \ 0.99992 \ 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- 44% of the original variance is captured by PC1.
 - Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs are required to describe at leaset 70% of the original variance.
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- $7~\mathrm{PCs}$ are required to describe at least 90% of the original variance.

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)

ggplot(res) + aes(x= PC1, y = PC2, col=diagnosis) + geom_point()</pre>
```


Combining Methods

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

As determined before, this is 7 PCs.

Clustering on PCA Results

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method = "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Looking at this plot, cutting the plot around 80 would give two distinct groups. To get my clustering result/membership vector, I need to "cut" the tree with the cutree() function.

```
# h = 80 means cut at height 80, k = 2 is cut into two groups
cutree(hc,k = 2)

842302 842517 84300903 84348301 84358402 843786 844359 84458202
```

1	1	1	1	1	1	1	1
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	1	2	1	1	2	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1		2			1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	1		1			_
85382601	854002	854039	854253				
1	1	1		1		_	1
855167			856106				85715
2	1	1		2		2	
	857156		857373				
2	2	-		2			
857637			858477				
1	1	2	2				
85922302			859465				
1	1		2				1
859717		8610175		8610629			
1	2						
861103		8611555		8612080			
2	1		1			_	
			861799				
2	1	2		2	2		
86211			862548				862980
2	2		1				2
862989	863030			86355			86408 2
2	1	2		1		_	
86409		804490 2	864685 2				
1 865137	2 96517	_	865432		_		
2	1	000423		2			
866458		_	8670				_
1							2
_							869224
2	2		2				2
			86973701				
2			2				1
							871149
1	2			1			2
			8712064				
2	1		2				2
			87163				
1	2			1			2
_	2	2	2	_	2	2	2

872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2		1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	-		1			1
877501	877989	878796	87880	87930	879523		
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
1	2	1	2	1	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818		8812877
2	2	1	1	2	2	2	1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
2	2			2			2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2	1	2	1	2	2	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	1	2	1	1	1	1
88649001	886776	887181	88725602	887549	888264	888570	889403
1	1	1	1	1	2	1	2
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
1	1	2	2	2	2	2	2
8910988	8910996	8911163			8911670	8911800	
1	2	2	2	2	2	2	2
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
1	2	1	1	2	2	2	2
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	2	1	2	2	2	2	2
891936	892189	892214	892399	892438	892604	89263202	892657
2	2	2	2	1	2	1	2
89296	893061	89344	89346	893526	893548	893783	89382601
2	2	2	2	2	2	2	2
89382602	893988	894047	894089	894090	894326	894329	894335
2	2	2	2	2	1	1	2
894604	894618	894855	895100	89511501	89511502	89524	895299
2	1	2	1	2	2	2	2
8953902	895633	896839	896864	897132	897137	897374	89742801
1	1	1	2	2	2	2	1
897604	897630	897880	89812	89813	898143	89827	898431
2	1	2	1	1	2	2	1
89864002	898677	898678	89869	898690	899147	899187	899667

2	2	2	2	2	2	2	1
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
1	1	2	2	2	2	2	2
901034302	901041	9010598	9010872	9010877	901088	9011494	9011495
2	2	2	2	2	1	1	2
9011971	9012000	9012315	9012568	9012795	901288	9013005	901303
1	1	1				2	2
901315	9013579	9013594	9013838	901549	901836	90250	90251
1	_	2		2			
902727					90312		903483
2		2	2			2	
903507	903516		903811	90401601	90401602	904302	
1	_	2	2				
90439701					904971		
1	_	2	2			2	
90524101		905502		905539		905680	
1	_	2		2		2	_
	90602302				906564		
2		2	2			2	
907145	907367				90769602		
2		2	2				
908194					909220		
1		2	1			2	
909411					9110720		
2	_				2	1	
					911201		
2	_	2	1				
9112366		9112594			911296202		
2	_	2		1			2
911320502		9113455	9113514		911366 2		
2 911384	_	911391				011605	2 911916
					911073		
					913063		
912193		912519					913503
					914101		
					2		
					91504		
1					1		
					915460		
1					1		
					916838		
1			2				

```
917092 91762702
                       91789
                                917896
                                           917897
                                                      91805 91813701 91813702
       2
                           2
                                      2
                                                2
                                                          2
                                                                     2
                                                                               2
                1
  918192
            918465
                       91858
                              91903901
                                         91903902
                                                   91930402
                                                                919537
                                                                          919555
                 2
                           2
                                      2
                                                                               1
91979701
            919812
                      921092
                                921362
                                           921385
                                                     921386
                                                                          922296
                                                               921644
  922297
                      922577
                                 922840
                                                                          923780
            922576
                                           923169
                                                     923465
                                                                923748
                 2
                                      2
                                                          2
                                                                     2
                      924632
  924084
            924342
                                 924934
                                           924964
                                                     925236
                                                                925277
                                                                          925291
  925292
            925311
                      925622
                                 926125
                                           926424
                                                     926682
                                                                926954
                                                                          927241
       2
                 2
                           1
                                      1
                                                1
                                                          1
                                                                     2
                                                                               1
  92751
       2
```

Q. How many patients in each group?

Prediction

We can use our PCA result (model) to do predictions, or taking new unseen data and project it onto our new PC variables.

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
     2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                      0.8193031
            PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                          PC19
                                                                     PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                      PC22
                                                        PC25
                                 PC23
                                            PC24
                                                                      PC26
```


Q18. Which of these new patients should we prioritize for follow up based on your results?

I would prioritize Patient 2 for followup based on my results.

Summary

Principal Component Analysis (PCA) is a super sueful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.