

MINISTÉRIO DA DEFESA DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA

Seção de Engenharia Elérica e de Engenharia da Comunicação (SE/3)

PROJETO DE SISTEMAS EMBARCADOS

Motor AC trifásico em esquema estrela-triângulo

Cap Renan Gelatti Chalegre 1° Ten Djalma Teixeira dos Santos Junior

Rio de Janeiro, RJ Março de 2025

1 Problema

Mostrar cálculo das correntes de partida nas configurações estrela e triângulo, e apresentar considerações sobre as vantagens e/ou desvantagens de se realizar a partida com o esquema de comutação estrela-triângulo. Considerar o seguinte modelo de motor: SEW-EURODRIVE DZ71K4

Figura 1: SEW-EURODRIVE DZ71K4.

2 Introdução

A partida estrela-triângulo é um método utilizado para reduzir a corrente de partida em motores trifásicos, minimizando o estresse mecânico e elétrico. Neste trabalho, apresentamos os cálculos completos e as considerações sobre as correntes de partida nas configurações estrela e triângulo, utilizando os dados de um motor específico.

3 Dados do Motor

Os dados do motor utilizado são:

- Tensão de linha (V_L) : 220/380 V
- \bullet Corrente nominal (I_n): 1,06 A (para 220 V, triângulo) e 0,61 A (para 380 V, estrela)
- Relação $\frac{I_p}{I_n} \colon 3{,}5$
- Potência (P): 0,15 kW
- Frequência (f): 50 Hz

4 Cálculos das Correntes de Partida

4.1 Corrente de Partida Direta (I_p)

A corrente de partida direta é calculada multiplicando a corrente nominal pela relação $\frac{I_p}{I_n}$.

• Para 220 V (triângulo):

$$I_p = 3, 5 \cdot I_n = 3, 5 \cdot 1,06 \approx 3,71 \,\mathrm{A}$$

• Para 380 V (estrela):

$$I_p = 3, 5 \cdot I_n = 3, 5 \cdot 0, 61 \approx 2, 14 \,\mathrm{A}$$

4.2 Corrente em Triângulo

Na configuração **estrela** (Y), a tensão aplicada a cada enrolamento do motor é reduzida. A relação entre a tensão de linha (V_L) e a tensão de fase (V_f) em estrela é dada por:

$$V_f = \frac{V_L}{\sqrt{3}}$$

Para um motor projetado para operar em 380 V em estrela, a tensão de fase é:

$$V_f = \frac{380}{\sqrt{3}} \approx 220 \,\mathrm{V}$$

A corrente de partida é proporcional à tensão aplicada. Como a tensão em estrela é $\frac{1}{\sqrt{3}}$ da tensão de linha, a corrente de partida em estrela também é reduzida. A relação entre as correntes de partida em estrela (I_{py}) e triângulo $(I_{p\Delta})$ é:

$$I_{py} = \frac{I_{p\Delta}}{3}$$

Isso ocorre porque a potência e a impedância do motor são mantidas constantes, e a corrente é diretamente proporcional à tensão.

4.3 Corrente de Partida em Estrela (I_{py})

Aplicando a relação acima:

• Para **380** V (estrela):

$$I_{py} = \frac{I_p}{3} = \frac{2,14}{3} \approx 0,71 \,\mathrm{A}$$

4.4 Corrente de Partida em Triângulo $(I_{p\Delta})$

Na configuração triângulo, a tensão aplicada a cada enrolamento é a tensão de linha completa. Portanto, a corrente de partida em triângulo é a mesma que a corrente de partida direta.

• Para 220 V (triângulo):

$$I_{p\Delta} = I_p \approx 3,71 \,\mathrm{A}$$

Configuração	Tensão (V)	Corrente de Partida (A)
Estrela (Y)	380	0,71
Triângulo (Δ)	220	3,71

Tabela 1: Correntes de partida nas configurações estrela e triângulo.

Figura 2: Diagrama unifilar

5 Vantagens e Desvantagens

5.1 Vantagens

- Redução da corrente de partida: Na configuração estrela, a corrente de partida é reduzida para aproximadamente $\frac{1}{3}$ da corrente de partida direta, protegendo a rede elétrica e os componentes do motor.
- Menor estresse mecânico: A partida é mais suave, reduzindo o desgaste no motor e na carga conectada.
- Simplicidade e baixo custo: É um método econômico em comparação com outros sistemas de partida suave, como inversores de frequência.

5.2 Desvantagens

• Torque de partida reduzido: Na configuração estrela, o torque de partida é baixo, o que torna o método inadequado para cargas que exigem alto torque no arranque.

• Transição abrupta: Embora a partida seja suave, a transição de estrela para triângulo pode gerar um pico de corrente momentâneo com risco de arco voltaico.

6 Conclusão

Para o motor em questão, a corrente de partida em estrela é de aproximadamente **0,71 A**, enquanto em triângulo é de **3,71 A**. A partida estrela-triângulo é uma técnica eficaz para reduzir a corrente de partida, mas é importante avaliar se o torque reduzido na partida é adequado para a carga em questão.