ASSIGNMENT – 3 Python Programming

Assignment Date	06-10-2022
Student Name	Ms.Harinee.K
Student Roll Number	923819104013
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package

Solution:

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

Question-2:

2. Loading the Dataset

Solution:

df = pd.read_csv("abalone.csv")

df

Output:

a cp a c.									
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	м	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12
4177 ro	ws ×	9 columns							

3. Visualizations

Question-3:

3.1 Univariate Analysis

Solution:

sns.displot(df.Sex)

Output:

3.2 Bi-Variate Analysis

Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis

Solution:

sns.lmplot("Diameter","Length",df,hue="Length", fit_reg=False);

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
```

Output:

```
False
1
      False
      False
      False
      False
     False
4172
4173
      False
4174
      False
4175
      False
4176 False
Name: Sex, Length: 4177, dtype: bool
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Rings"] = np.where(df["Rings"] >10, np.median,df["Rings"])
df["Rings"]
```


Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]).head()

Output:

Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables.

Solution:


```
X = df.iloc[:, :-2].values
print(X)
```

```
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
...
['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
['F' 0.625 0.485 ... 1.0945 0.531 0.261]
['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
```

Output:

```
[<function median at 0x7f6c9fd64cb0> 7 9 ... 9 10
  <function median at 0x7f6c9fd64cb0>]
```

Question-9:

9. Scale the independent variables

Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]])
print(df)
```

Output:


```
Length Diameter Height Whole weight Shucked weight \
           M 0.513514 0.365 0.095 0.5140 0.2245
M 0.371622 0.265 0.090 0.2255 0.0995
0

    1
    M
    0.371622
    0.265
    0.090
    0.2255

    2
    F
    0.614865
    0.420
    0.135
    0.6770

    3
    M
    0.493243
    0.365
    0.125
    0.5160

    4
    I
    0.344595
    0.255
    0.080
    0.2050

    ...
    ...
    ...
    ...
    ...

    4172
    F
    0.662162
    0.450
    0.165
    0.8870

    4173
    M
    0.695946
    0.440
    0.135
    0.9660

    4174
    M
    0.709459
    0.475
    0.205
    1.1760

    4175
    F
    0.743243
    0.485
    0.150
    1.0945

    4176
    M
    0.858108
    0.555
    0.195
    1.9485

1
                                                                                                                           0.2565
                                                                                                                           0.2155
                                                                                                                            0.0895
                                                                                                                          0.3700
                                                                                                                            0.4390
                                                                                                                           0.5255
                                                                                                                           0.5310
                                                                                                                           0.9455
             Viscera weight Shell weight
                  0
1
                          0.1415
                                                       0.2100
                         0.1140 0.1550
0.0395 0.0550
4
                        0.0395 0.0550 /
... 0.2390 0.2490 <function median at 0x7f6c9fd64cb0>
0.2145 0.2605 10
0.2875 0.3080 9
0.2610 0.2960 10
0.3765 0.4950 <function median at 0x7f6c9fd64cb0>
 4172
4173
4174
4175
4176
[4177 rows x 9 columns]
```

Question-10:

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Sex']).copy()
y = df['Sex']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

Output:

```
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
(None, None)
```


11.Build the Model

test_size = 0.33 seed = 7

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed)

12. Train the model

X_train

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

1.

2798 rows × 8 columns

y_train

Output:

```
4131 I
3204 F
2622 F
2114 I
1422 M
...
1372 F
919 I
2550 I
537 M
1220 I
Name: Sex, Length: 2798, dtype: object
```

13.Test the model:

X_test

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f6c9fd64cb0="" at="" median=""></function>

1379 rows × 8 columns

y_test

Output:

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

14. Measure the performance using Metrics

from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error X_train = [5, -1, 2, 10]


```
y_test = [3.5, -0.9, 2, 9.9]
print ('R Squared =',r2_score(X_train, y_test))
print ('MAE =',mean_absolute_error(X_train, y_test))
print ('MSE =',mean_squared_error(X_train, y_test))
```

R Squared = 0.9656060606060606 MAE = 0.424999999999999 MSE = 0.56749999999999