Basic Probability

Robert Platt Northeastern University

Some images and slides are used from:

- 1. CS188 UC Berkeley
- 2. RN, AIMA

Definition

 Probability theory is nothing but common sense reduced to calculation. ~Pierre Laplace

 What is probability? What does it mean when we say "the probability that a coin will land head is 0.5"

Random variables

What is a random variable?

Suppose that the variable *a* denotes the outcome of a role of a single six-sided die:

a is a random variable

this is the domain of a

Another example:

Suppose *b* denotes whether it is raining or clear outside:

$$b \in \{rain, clear\} = B$$

Probability distribution

A probability distribution associates each with a probability of occurrence.

A probability table is one way to encode the distribution:

$$a \in \{1, 2, 3, 4, 5, 6\} = A$$
 $b \in \{rain, clear\} = B$

$$b \in \{rain, clear\} = B$$

a	P(a)
1	1/6
$\boxed{2}$	1/6
3	1/6
$\boxed{4}$	1/6
5	1/6
6	1/6

b	P(b)
rain	1/4
clear	3/4

All probability distributions must satisfy the following:

1.
$$\forall a \in A, a \geq 0$$

$$2. \quad \sum_{a \in A}, a = 1$$

Writing probabilities

a	P(a)
1	1/6
$\boxed{2}$	1/6
3	1/6
4	1/6
5	1/6
6	1/6

b	P(b)
rain	1/4
clear	3/4

For example:
$$p(a=2)=1/6$$

$$p(b=clear)=3/4$$

But, sometimes we will abbreviate this as: $\ p(2)=1/6$

$$p(clear) = 3/4$$

Joint probability distributions

Given random variables: X_1, X_2, \ldots, X_n

The *joint distribution* is a probability

assignment to all combinations:
$$P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n)$$

or: $P(x_1, x_2, \ldots, x_n)$

As with single-variate distributions, joint distributions must satisfy:

1.
$$P(x_1, x_2, \dots, x_n) \ge 0$$

2.
$$\sum_{x_1,...,x_n} P(x_1,x_2,...,x_n) = 1$$

Joint probability distributions

Joint distributions are typically written in table form:

\Box	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginalization

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Γ	P(T)
hot	0.5
cold	0.5

W	P(W)
sun	0.5
rain	0.4

Conditional Probabilities

 $P(sun|hot) \equiv$ Probability that it is sunny *given* that it is hot.

T	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Probabilities

Calculate the conditional probability using the product rule:

Product rule
$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W|t) = \frac{P(W,t)}{P(t)}$$

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W	$ P(W \mid t = hot) $
sun	0.8
rain	0.2

$$P(W|t) = \frac{P(W,t)}{P(t)}$$

$$P(sun|hot) = \frac{P(sun,hot)}{P(hot)} = \frac{P(sun,hot)}{P(sun,hot) + P(rain,hot)}$$
$$= \frac{0.4}{0.4 + 0.1}$$

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W	$P(W \mid t = hot)$
sun	0.8
rain	0.2

W	$P(W \mid t = cold)$
sun	0.4
rain	0.6

Τ	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W	$P(W \mid t = hot)$
sun	0.8
rain	0.2
rain	0.2

W
$$P(W \mid t = cold)$$
sun 0.4 rain 0.6

$$P(sun|cold) = \frac{P(sun, cold)}{P(cold)} = \frac{P(sun, cold)}{P(sun, cold) + P(rain, cold)}$$
$$= \frac{0.2}{0.2 + 0.3}$$

Normalization

Normalization

T	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W	$P(W \mid t = hot)$
sun	0.8
rain	0.2

Select corresponding elts from the joint distribution

Scale the numbers so that they sum to 1.

$$P(sun|cold) = \frac{P(sun,cold)}{P(cold)} = \frac{P(sun,cold)}{P(sun,cold) + P(rain,cold)}$$

Normalization

Т	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W	$P(W \mid t = hot)$
sun	0.8
rain	0.2

Select corresponding elts from the joint distribution

Scale the numbers so that they sum to 1.

$$P(sun|cold) = \frac{P(sun,cold)}{P(cold)} = \underbrace{\frac{P(sun,cold)}{P(sun,cold) + P(rain,cold)}}_{P(sun,cold)}$$

The only purpose of this denominator is to make the distribution sum to one.

- we achieve the same thing by scaling.

Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

It's easy to derive from the product rule:

$$P(a,b) = P(b|a)P(a) = P(a|b)P(b)$$
 Solve for this

Using Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Using Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

But harder to estimate this

It's often easier to estimate this

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

We need a little more information...

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

$$P(s|m) = 0.7$$

$$P(s) = 0.01$$

Prior probability of stiff neck

$$P(m) = \frac{1}{50000}$$

Prior probability of meningitis

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

$$P(s|m) = 0.7$$

$$P(s) = 0.01$$

Prior probability of stiff neck

$$P(m) = \frac{1}{50000}$$

Prior probability of meningitis

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$