First, lets recall some basic facts about convex functions and Legendre transforms, which can be found in [?amann]. A function $H: \mathbb{R}^{2n} \to \mathbb{R}$ is convex if for all x, y,

$$H(tx + (1-t)y) \ge tH(x) + (1-t)H(y)$$

and H is strictly convex if this inequality is strict.

Proposition 1. Let $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$. Then H is (strictly) convex if and only if the Hessian $D^2H(x)$ is positive (definite) semi-definite for all $x \in \mathbb{R}^{2n}$.

The Hessian D^2H is uniformly positive definite if there is a constant $\alpha > 0$ such that

$$\langle D^2 H(x)y, y \rangle \ge \alpha |y|^2, \forall x, y \in \mathbb{R}^{2n}$$

Proposition 2. Let $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$. If D^2H is uniformly positive definite then the gradient $\nabla H: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is bijective.

The Legendre transform of a function $H: \mathbb{R}^{2n} \to \mathbb{R}$ is defined as

$$\mathcal{L}H(y) = \sup_{x \in \mathbb{R}^{2n}} \left\{ \langle y, x \rangle - H(x) \right\}.$$

Proposition 3. Let $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$ and assume that D^2H is uniformly positive definite. Then

- (1) $\mathcal{L}H(y) = \langle y, x \rangle H(x)$ for $x = (\nabla H)^{-1}(y)$.
- (2) $\mathcal{L}H \in C^2(\mathbb{R}^{2n}, \mathbb{R}), \ \mathcal{L}H \ is \ strictly \ convex, \ and \ \nabla(\mathcal{L}H) = (\nabla H)^{-1}.$ (3) $H(x) + \mathcal{L}H(y) \geq \langle x, y \rangle, \ for \ all \ x, y \in \mathbb{R}^{2n} \ with \ equality \ if \ and \ only \ if \ x = y.$
- (4) $\mathcal{L}^2H = H$.

Now we follow [?hofer-zhender]. Suppose $K \subset \mathbb{R}^{2n}$ is a compact, convex set whose interior contains the origin. The norm of the convex body K is

$$||x||_K = \inf\left\{r > 0 : \frac{x}{r} \in K\right\}, \, \forall x \neq 0$$

and by definition,

$$K = \{ x \in \mathbb{R}^{2n} : ||x||_K \le 1 \}.$$

Note that $H(x) = ||x||_K^2$ is homogeneous of degree two (i.e. $H(\alpha x) = \alpha^2 H(x)$ for all $\alpha > 0$) and has quadratic growth (i.e. there exist constants $c_1, c_2 > 0$ such that

$$c_1||x||^2 \le H(x) \le c_2||x||^2$$
.

Proposition 4. If K is strictly convex and ∂K is smooth of class C^2 , then the function $H(x) = ||x||_K^2$ satisfies the following properties:

- $(1) \ H \in C^2(\mathbb{R}^{2n} \setminus \{0\}, \mathbb{R}).$
- (2) D^2H is uniformly positive definite (in particular, H is strictly convex).

Proof. (1)

(2)

Given a (strictly) convex set K that contains the origin, its dual is the (strictly) convex set

$$K^{\circ} = \{ y \in \mathbb{R}^{2n} : \langle x, y \rangle \le 1 \, \forall x \in K \}.$$

Observe that $(K^{\circ})^{\circ}$.

Proposition 5. K is C^2 and strictly convex if and only if K° is C^2 and strictly convex.

In this paper, we often consider the supporting function

$$h_K(x) = \sup_{y \in K} \{\langle x, y \rangle\}.$$

Observe that $K^{\circ} = \{x : h_K(x) \leq 1\}$ and so $h_K(x) = ||x||_{K^{\circ}}$. If K + K' is the Minkowski sum of two convex sets then it follows from the definition that

$$h_{K+K'} = h_K + h_{K'}$$

Proposition 6. If K is a convex set then

$$\mathcal{L}h_K^2 = \frac{1}{4}h_{K^\circ}^2$$

0.1. **Smoothed Dual Body Approach.** The following is one approach to running the algorithm with a smoothing of a convex polytope.

Suppose that K is a convex polytope and we want to run the algorithm for the smoothed body $K_{\epsilon} = (K^{\circ} + B(\epsilon))^{\circ}$. Then we need to express the function $h_{K_{\epsilon}}^2$ as well as the gradient $\nabla h_{K_{\epsilon}}^2$ in a computable way.

$$h_{K_{\epsilon}}^{2}=4\mathcal{L}\left(h_{K_{\epsilon}^{\circ}}\right)^{2}=4\mathcal{L}h_{K^{\circ}+B(\epsilon)}^{2}=4\mathcal{L}\left(h_{K^{\circ}}+h_{B(\epsilon)}\right)^{2}.$$

The function $h_{K^{\circ}}$ can be computed combinatorially, and the Legendre transform can be computed using a software package. Since we would not like to evaluate the gradient of this Legendre transform, we note that

$$\nabla h_{K_{\epsilon}}^{2}(u) = v$$
 if and only if $u = \nabla \left(h_{K_{\epsilon}^{\circ}}\right)^{2}(v)$

so to solve for the gradient of $h_{K_s}^2$ at u, we can evaluate the minimization problem

$$v$$
 minimizes $|u - \nabla (h_{K_{\epsilon}^{\circ}})^{2}(v)|$.

Now

$$\nabla \left(h_{K_{\epsilon}^{\circ}} \right)^2 = \nabla \left(h_K + h_{B(\epsilon)} \right)^2 = \nabla h_K^2 + 2\nabla \left(h_K h_{B(\epsilon)} \right) + \nabla h_{B(\epsilon)}^2$$

And every expression in this equation can be evaluated piece-wise analytically.