AD 744 082

UNCLASSIFIED Security Classification				
	NTROL DATA - R			
(Security classification of title, body of abstract and index	Int annotation must be	& U Intered when the	o overell record to classified:	
Philo-Ford Corporation		24. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		
Communications & Technical Services Divi Willow Grove, PA 19090	sion	Zb. GROUP N/Å		
3. REPORT TITLE				
ALGORITHMS FOR TRANSCEIVER MODULATION AN	D DEMODULATION			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report February 1970 to August 197	71			
5. AUTHOR(5) (First name, middle initial, last name)				
Kenneth Abend, David L. Fletcher, Constan	ntine Gamacos,	W. Andrew	Wright	
S. REPORT DATE	76. TOTAL NO. O	FPAGES	75, NO. OF REFS	
January 1972	230	• • • • • • • • • • • • • • • • • • • •	27	
F30602-70-C-0052	Se, ORIGINATOR		_	
Job Order No. 45190000	Phileo-Ford	Philco-Ford Number 2580		
	95. OTHER REPO	95. OTHER REPORT NO(6) (Any other numbers that may be easigned this report)		
	RADC-TR-71-	-305		
IU. DISTRIBUTION STATEMENT				
Approved for public release; distribution	unlimited.	MILITARY ACT	IVITY	
None		-	Center (CORS) ase, New York 13440	
IR. ABSTRACT	~~-{		**************************************	
This report is devoted to the invest complexity of a real-time digital process functions of modulation, demodulation, fr filtering. A minimum complexity design f Transceiver was established through analy simulations, and a breadboard was develop	sor for perform requency synthe for a Multimode rtical investig	ing tacti sis, hete Digital sations an	cal transceiver rodyning, and Processing d computer	
			, x	
√1				
DD FORM1473		UNCL	Assified	

UNCLASSIFIED
Security Classification

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, formished, or in any way supplied the said drawings, specifications, or other data is not to be regarded, by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or persission to manufacture, use, or sell any patented invention that may in any way be related thereto.

UNCLASSIFIED

UNCLASSIFIED Security Classification							
14	LINK	LINK A LINK B			LIN	LINK C	
KEY WORDS	ROLE			₩ T			
Digital Transceivers Communication Systems Bandpass Sampling Modulation and Demodulation							

UNCLASUIFIED
Security Classification

ALGORITHMS FOR TRANSCEIVER MODULATION AND DEMODULATION

Kenneth Abend David L. Fletcher Constantine Gamacos W. Andrew Wright

Philco-Ford Corporation

Approved for public release; distribution unlimited.

FOREWORD

This Final Report was prepared by Kenneth Abend, Constantine Gumacos, and W. Andrew Wright of the Advance Technology Department, Communications and Technical Services Division, Philoo-Ford Corporation, Willow Grove, Pennsylvania. The computer simulations were performed and documented by David L. Fletcher. The breadboard (hardware and software) was designed, programmed, and tested by Mr. Wright.

The report was submitted under Contract F30602-70-C-0052, Job Order No. 45190000, for Rome Air Development Center, Griffiss Air Force Base, New York. Philoo-Ford number is 2580. Period covered is 20 February 1970 to 6 August 1971. Edward E. Cossette (CORS) was the RADC Froject Engineer in charge.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

Approved:

Etward & Cosselle EDWARD E. COSSETTE

Effort Engineer

Approved:

ALVIN TWITCHELL, Colonel, USAF

Chief, Communications & Navigation Division

FOR THE COMMANDER Jel amind

FRED I DIAMOND

Acting Chief, Plans Office

ABSTRACT

This report is devoted to the investigation of algorithms which reduce the complexity of a real-time digital processor for performing tactical transceiver functions of modulation, demodulation, frequency synthesis, heterodyning, and filtering. A minimum complexity design for a Multimode Digital Processing Transceiver was established through analytical investigations and computer simulations, and a breadboard was developed for experimental evaluation.

EVALUATION

This study was concerned with further development of the multimode digital transceiver concept which was specified in a previous study. This concept allows replacement of major portions of the analog circuits in a transceiver with logic circuitry in the form of a special purpose digital processor. This concept would allow acceptance of analog data such as voice or digital data to be converted through appropriate sampling and quantizing to a numerical representation of these inputs for subsequent modulation in nearly any known form (i.e. analog AM, AM-SSB, FM, etc. or digital dara PSK, FSK or combinations, etc.). Subsequently the outputs would be processed through digital translation, digital to analog conversion, further analog frequency translation as necessary, final filtering and amplification prior to transmitting. At the receiver the same digital processor reconfigured would perform the receiving functions after initial amplification, heterodyning and IF filtering. Conceptually all transmitter functions in the HF and VHF frequency bands could be accomplished numerically with the exception of final filtering and amplification. However this is not considered to be a cost effective approach at this time since the digital to analog converter would be expensive and further the digital processor could not be fully utilized for performing the receiver functions. In fact the contractor demonstrated ingenuity in developing a minimum complexity digital processor design which makes use of the same common elements for transmitting functions such as modulation frequency synthesis, and frequency translation as for receiving functions such as demodulation and filtering. Another important aspect developed was, use in time sharing arithmetic functions in the filter design, which makes up a major part of the digital processor, and as a result reduces the complexity and in turn the cost of the digital processor substantially.

Based on the design work developed in this study and the breadboard demonstration of transmitting and receiving many modulation types with a single digital processor, it appears that the next logical step is to develop an experimental model for evaluation with many existing Air Force HF/VHF transceivers in field use today as well as demonstrating additional digital data transmission capabilities peculiar to this concept. This new signal processing concept offers the potential for an equipment transition period making use of this equipment as well as existing field equipments simultaneously. Since this single unified processor approach offers the capability of interfacing with many existing field radios, because it can be programmed to handle characteristics of these existing transceivers, a transition period for use of both the existing equipment and the new development is possible. This circumvents the problem of total replacement with new equipment but still offers additional operational characteristics not presently incorporated in the present transceivers in use today.

Chward Coselle EDWARD E. COSSETTE Effort Engineer

TABLE OF CONTENTS

Section		Page
Ι.	INTRODUCTION	1 ,
	l. Digital Transceivers	1
	2. Summary	1
		4
II.	SYSTEM DESCRIPTION	
	1. Double Sideband AM	4
	2. Single Sideband AM	11
	3. Angle Modulation (Phase and Frequency)	17
	4. Interpolation and Resampling	19
III.	FINITE RESPONSE FILTER DESIGN	29
	1. Window Carpentry	30
	2. Frequency Sample Specification	31
	3. Zero Placement	32
	4. Equal Ripple Specification	.32
	5. Quantization Effects	, 35
	6. Interactive Design and the Raised-Cosine Roll-Off	351
IV.	BANDPASS SAMPLING	39
	1. In-Phase and Quadrature Sampling	! 3 9
	2. Filtering $I(t)$ and $Q(t-\tau)$	44
	3. The Multiple Sample Approach	45
	4. Comparison Between Filtering and Multiple	49
	Sampling	- 7;
V.	MODULATION AND DEMODULATION	50
	1. Modulation and Frequency Translation	5 0 '
	2. Single Sideband and the Hilbert Transform	52
	3. Zero-Quadrature Sampling for Double Side- band	55
	4. Angle Modulation and Preemphasis	56
	5. Phase and Frequency Demodulation	58

TABLE OF CONTENTS (Continued)

Section		Page
VI.	TRANSCEIVER DESIGN AND IMPLEMENTATION	61
i ':	 Recursive Filtering Non-Recursive Filtering Digital Differentiation 	61 65 85
,VII.	COMPUTER SIMULATIONS	94
1	 Subroutine Description SSB Simulation DSB Simulation FM Simulation 	103 108 120 131
VIII.	TRANSCEIVER BREADBOARD	143
IX.	CONCLUSIONS AND RECOMMENDATIONS	151
REFEREN	CES	154
APPENDIC	ES	
A. Subrou	itines for Transceiver Breadboard	157
B Main I	Program for Transceiver Breadboard	218

LIST OF ILLUSTRATIONS

Figure		Page
Front- piece	Multimode Digital Processing Transceiver Bread- board Model	
1	Double Sideband AM Transceiver Configuration	5
2	The Convolutional Filter	6
3	DSB-AM Transmitter Spectra (without resampling filter)	7
4	Simple Interpolation Schemes for Increasing the Sampling Rate	9
5	DSB-AM Receiver Spectra (without resampling filter)	10
6	DSB-AM Transmitter Spectra	12
7	DSB-AM Receiver Spectra	13
8	Single Sideband AM Transceiver Configuration	14
9	SSB-AM Transmitter Spectra	16
10	SSB-AM Receiver Spectra	18
11	Phase and Frequency Modulation Transceiver Configuration	20
12	Store and Repeat Interpolation	22
13	Linear Interpolation	24
14	Amplitude and Phase Spectra for Two-to-One Interpolation	26 •
1.5	The Hofstetter Finite-Response Design Algorithm for an 11-tap Low-Pass Filter with $n_p = n_s = 2$	34
16	The Raised-Cosine Filter Characteristic	37

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
17	Waveform Spectra for In-Phase and Quadrature Sampling	40
18	Filtering of the In-Phase and Quadrature Sampled Waveforms	46
19	Basic AM Transceiver Configuration	54
20	Angle Modulation and Preemphasis	57
21	Derivative-Measurement Techniques for Angle Demodulation	59
22	Cauer Parameter Recursive Filter	62
23	Digital Recursive Filter Frequency Response	63
24	Recursive Filter Computer Printout	64
25	Simplified Flowchart of Convolutional Filter Design Program (CONFIDE)	66
26	Convolutional Filter Design (CONFIDE) Fortran Program (3 pages)	67
27	Single Sideband Filter, r = 15KHz (2 pages)	71
28	Double Sideband Filter, r = 15KHz (2 pages)	73
29	Eight-to-One Resampling Filter, r = 120KHz	75
30	Differentiating Filter, r = 15KHz (2 pages)	76
31	Frequency Response of 89 Stage SSB Non-Recursive Filter, r = 15KHZ	78
32	Frequency Response of 47 Stage SSB Non-Recursive Filter, r = 8KHz	79
33	Single Sideband Filter, r = 8KHz (3 pages)	80

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
34	Two-to-One Resamplin, Filter, r = 16KHz (2 pages)	83
35	Double Sideband Filter, r = 16 KHz (3 pages)	86
36	Frequency Response of an Ideal Wideband Differentiator	90
37	Unit Response of Two Wideband Differentiators	92
38	Single Sideband System Simulation (3 pages)	95
39	Double Sideband System Simulation	98
40	FM and PM System Simulation (3 pages)	100
41	Single Sideband Simulation Results	104
42	Double Sideband Simulation Results	105
43	FM Simulation Results	106
44	Measured Response of Breadboard Digital Filters	146
45	Overall FM Frequency Response (Transmitter and Receiver)	147
46	FM Signal-to-Noise Characteristic	149
47	Error Rates for 80 bps FSK	150

SECTION I

INTRODUCTION

This report is the latest in a series of investigations related to the use of a real-time digital processor to perform tactical transceiver functions of modulation, demodulation, frequency synthesis, heterodyning and filtering. The objective of the present program was to investigate algorithms which reduce the complexity of the processor. A minimum-complexity design for a Multimode Digital Processing Transceiver was established and a breadboard was developed for experimental evaluation.

In the Digital Equivalent Transceivers Study (Reference 1) the idea of using a numerical processor to perform transceiver functions was introduced and alternative approaches to performing these functions were investigated. In the present effort, these investigations were continued, design decisions were made, and specific computational algorithms were developed and tested. Use was made of results from some of our previous investigations (1, 20, 27), while duplication of material therein, was avoided. The transceiver specifications in Section V. 2 of Reference 1 were used as guides and goals through the present work.

1. DIGITAL TRANSCEIVERS

A Digital Processing Transceiver interfaces with the analog world through analog-to-digital (A/D) and digital-to-analog (D/A) converters at voiceband and at an intermediate frequency (IF). Someday, perhaps, the latter interface may be at RF.' Between the interfaces, all filtering, spectral shaping modulation, demodulation, heterodyning coding, and decoding for voice and for digital data is performed by time sharing a special purpose, high speed, digital processor.

The signals to be processed are quantized in time and amplitude and the processor operates as a real-time digital computer on a sequence of numbers. By switching between several "hardwired" programs the processor becomes: either a receiver or a transmitter; for either voice or digital data; via amplitude, phase, or frequency modulation; either single- or double-sideband; either coherent, non-coherent, or differentially coherent; with or without partial-response spectral shaping, encryption, scrambling, or any other type of signal processing we may wish to program.

2. SUMMARY

The overall system design that evolved from this work is presented

in Sections II. 1 through II. 3. The basic system involves filtering, resampling, angle modulation, and frequency translation, for transmitter operation; and bandpass sampling, frequency or phase demodulation, resampling, and filtering, for receiver operation. The interpolation resampling process (for transmitter operation) is discussed in detail in Section II. 4. The discussion builds on, and extends the corresponding discussion in Section III. 1 of Reference 1.

Zero differential delay (absolutely linear phase) is essential to avoid pulse distortion and resulting intersymbol interference for digital data transmission (18). While this ideal is impossible to attain with analog filters, it is easily attained with finite response digital filters. All known methods for designing such filters (including some that have not yet been published) are discussed in Section III.

The problem of accurately extracting the complex modulated low-pass signal by sampling the received I. F. signal at a rate determined by the bandpass sampling theorem is treated in Section IV. Complex sampling by two A/D convertors, operating a quarter of a carrier-cycle apart in time, is only an approximation to true complex sampling. A method for improving the approximation, without using more than two A/D convertors or a higher sampling rate, is presented and compared with the multiple sample method of Reference 19.

Modulation and demodulation is discussed in Section V. Linear (amplitude) modulation and demodulation, whether double-sideband or single-sideband, is seen to be simply a problem in filtering and frequency translation. Frequency modulation is obtained by merely inserting the modulator of figure 20a before the frequency translator in figure 19a. Two alternative schemes for frequency (or phase) demodulation are shown in figures 21 and 11.

Recursive and nonrecursive filters are compared in Section VI and specific filter designs are given. The unit response of a half-sample delayed digital differentiator (25) is analytically derived in Section VI. 3.

The entire transceiver system was simulated in the SSB, DSB, and FM mode. Spectral examinations were made via the FFT at various points in the system. Noise was introduced and signal-to-noise ratios were measured. The simulations presented in Section VII resulted in some design changes that were incorporated into the breadboard and into the system description of Section II.

The entire system, appropriately revised, was then breadboarded as a 100:1 scaled down (in frequency) version. The scaling was done so that an off-the-shelf general purpose processor could be utilized. The bread-

board included all necessary A/D and D/A converters and performed all necessary digital frequency translations. It was tested in the DSB, SSE, PM, and FM modes with both analog and digital data. Error rate measurements were made in FSK operation.

Conclusions and Recommendations are in Section IX.

THE PARTY OF THE P

SECTION II

SYSTEM DESCRIPTION

This section presents the system configuration of the multimode transceiver processor in its simplest form. The double sideband, single sideband, and angle modulation system are discussed separately for the sake of clarity. In reading the double sideband AM discussion, which is presented first because it is the simplest, the reader may feel that the system is unduely complicated for the simple task being performed. He must bear in mind that the configuration was chosen so that the same system can be utilized for all forms of modulation.

1. DOUBLE SIDEBAND AM

The double sideband amplitude modulated (DSB-AM) transceiver configuration is given in figure 1. The filters and resamplers are convolutional filters as shown in figure 2. In practice, a single shift register and correlator would be time shared for all transceiver filtering and resampling functions through appropriate timing and control circuitry. For ease of exposition, however, we will treat them as if they were separate filters.

The first unit in figure la is an analog to digital-sampled-data (A/D) converter. The input is a baseband analog signal and the output is a sequence of binary numbers representing the sampled values of the input taken at the rate of r samples per second. Figure 3a shows a representative baseband signal spectrum where, because of RF spectral crowding, we desire to transmit only B hertz of the signal. Typically, B will be in the order of 3 kilohertz. Figure 3b shows the spectrum at the output of the A/D converter. Since the spectrum repeats at the sampling rate, * that rate must be chosen greater than twice the total signal bandwidth (r>2B') in order to prevent aliasing. However; aliasing is permissable as long as it does not encroach on the desired portion of the spectrum (figure 6b). Thus the sampling rate need only satisfy r>B+B'.

The spectra depicted in figure 3 assumes a sampling rate of $r_1 = r_2 = r = 16$ kilohertz, corresponding to figure 1a with the resampling filter (the third unit in the figure) removed. The filter (the second unit) is non-

^{*}Since periodic time signals give rise to discrete spectral components, by the symmetry of time-frequency relations, discrete time signals give rise to periodic spectra.

Transmitter

ų,

Figure 1: DSB-AM Transceiver Configuration

a. Schematic of Convolutional Filter

b. Hardware for Convolutional Filter

c. Schematic of Correlator

Figure 2: The Convolutional Filter

Figure 3: DSB-AM Transmitter Spectra (without resampling filter; Symmetric about zero frequency)

recursive (convolutional) because of the straight forward implementation and because it can have zero differential delay (perfectly linear phase) resulting in undistorted pulses when the system is used for digital data communications, instead of for voice.

The convolutional filter hardware (figure 2b) operates at N times the sampling rate, where N is the number of stages in the filter. The N filter tap weights are stored in an MOS read-only-memory (ROM). After every N shifts of the recirculating register, a new sample is shifted in, the oldest sample is shifted out, a result is read out of the correlator, and the accumulator in the correlator is reset.

In this simple version (no resampling filter) the output of the filter is the input to the interpolator (figure 1a) and has a spectrum as shown in figure 3c. The interpolator serves to raise the sampling rate to twice the I. F. carrier frequency ($r_3 = 2f_0$). Linear interpolation is utilized because it combines implementation simplicity with adequate suppression of unwanted spectral repeats. Filling in with zero samples as in figure 4a would not change the spectrum from that of figure 3c. The store and repeat interpolation of figure 4b would attenuate the first spectral repeat by the first zero crossing of a ($\sin x$)/x curve. While linear interpolation (figure 4c) attenuates it more effectively; it is still imperative that the input sampling rate, r_2 , be high enough for the interpolator to adequately attenuate the first spectral repeat.

After interpolation (figure 3d), the samples are multiplied by $\cos(2\pi f_n/r_n) = \cos(\pi n) = (-1)^n$ resulting in the spectrum of figure 3e. This negation of every other sample is the digital equivalent of frequency translation to the intermediate carrier frequency, $f = 2r_3$. Digital frequency synthesis and translation to RF are discussed elsewhere $\binom{1}{2}$.

The corresponding DSB-AM receiver is as shown in figure 1b, but again with the resampling filter removed. The bandpass sampler operates on a relatively wide-band IF signal as represented by figure 5a. Note that if the signal whose spectrum is illustrated in 5a is sampled at the carrier frequency (r = f) or half the carrier frequency $(r = f_0/2)$, or any integer fraction of the carrier frequency $(r = f_0/k)$, the resulting spectrum has a component at zero frequency as illustrated in figure 5b. The sampling rate must satisfy the inequality r > B + B" to prevent distortion of the desired portion of the spectrum by aliasing. Phasing of the sampler can be aided (especially in the suppressed carrier case) by an error control loop that drives the quadrature samples to zero. The quadrature (or imaginary) samples are taken one quarter of a carrier cycle after the corresponding in phase (or real) samples. The convolutional filter produces a signal with the spectrum of figure 5c which goes into a digital to analog converter producing an analog signal with spectrum given by figure 5d. Note that the filter in

Zero Insertion

Linear Interpolation c,

Simple Interpolation Schemes for Increasing the Sampling Rate Figure 4:

Figure 5: DSB-AM Receiver Spectra (without resampling filter; Symmetric about zero frequency)

the receiver is identical to the filter in the transmitter, with even the same tap weights.

Figure 6 applies to figure la with the resampling filter in place. The initial sampling rate $r_1=8$ kilohertz, allows for some aliasing (figure 6b), but not enough to interfere with the desired signal $(r_1 \ge B + B')$. The resampling filter is a convolutional filter operating at $r_2=Kr_1$ kilohertz on a filtered signal whose spectrum is shown in figure 6c. The resampling filter is designed to operate at a rate r_2 , to attentuate the r_1 spectral repeats (figure 6d). However, since the input can be thought of as being zero filled, as in figure 4a, the actual resample multiplication rate is reduced by a factor of K.

By using a reduced sampling rate, $r_1 = r_2/K$ for the initial filter, the number of tap weights, as well as the processing rate of the filter is reduced by a factor of K; thus reducing the multiplication rate required for the filter by a factor of K^2 . The resampling filter does not have cut-off requirements as sharp as the previous filter; it is necessary only because linear interpolation would be inadequate to properly attenuate the r_1 spectral repeats. The r_2 spectral repeats are attenuated by the linear interpolator (figure 4c) which can be thought of as a simplified second resampling filter operating at a high output sampling rate, $r_3 = 2f_0$ (figure 6e). Hardware considerations might make it more economical to increas: r_2 (and hence the complexity of the resampling filter) so that the interpolator can be reduced to a simple sample and hold arrangement (figure 4b). Translation to f_0 (figure 6f) is again performed by negating every other sample.

An alternative frequency translation scheme would be to convert to analog at r_2 (assuming f_0 is an integer multiple of r_2) and use an analog bandpass filter to obtain the spectrum of figure 6f directly from the spectrum of figure 6d. This alternative procedure is not used because our purpose is to replace analog processing with digital processing wherever possible.

Referring to figure 1b; figures 7b, 7c, 7d, and 7e represent the spectra at the output of the sampler, the resampling filter, the filter, and the digital to analog converter, respectively. The resampling filter, as well as the regular filter, is identical in both transmitter and receiver. In receiver operation, if $r_2 = Kr_1$, the signal is loaded into the resampling filter K samples at a time so that the actual multiplication rate is again determined by the lower sampling rate.

2. SINGLE SIDEBAND AM

The single sideband amplitude modulated (SSB-AM) transceiver configuration is given in figure 8. The spectra at the input and output of the

Figure 6: DSB-AM Transmitter Spectra (Symmetric about zero frequency)

Figure 7: DSB-AM Receiver Spectra (Symmetric about zero frequency)

Figure 8: SSB-AM Transceiver Configuration

initial analog to digital converter are illustrated in figures 9a and 9b, assuming a sampling rate of about 8 kilohertz. As shown in figures 9c and 9d, the unwanted sideband can be filtered out by a real lowpass filter provided the spectrum is first appropriately shifted in frequency. A shift to the left (or right) by B/2 hertz, for upper (or lower) sideband modulation, is accomplished by multiplying the n^{th} sample by $e^{\mp j\pi Bn/r}l = \cos{(\pi Bn/r_1)}$ $\pm j\sin{(\pi Bn/r_1)}$. The resulting complex signal (figure 9c) is then filtered (figure 9d), resampled, and interpolated to produce the spectrum of figure 9e at a sampling rate of $r_3 = 4f_0$, where $f_0 = f_c \pm B/2$, and f_c is the nominal IF carrier frequency. The spectra in figures 9c, 9d, and 9e are not symmetric about zero frequency and hence the corresponding time signals are complex. The upper branch in figure 8a corresponds to the real part of the signal and the lower branch, the imaginary part.

The frequency translator operates at $r_3 = 4f_0$ samples per second on a complex input signal

$$Z_{\mathbf{n}} = \mathbf{X}_{\mathbf{n}}^{1} + \mathbf{j} \mathbf{Y}_{\mathbf{n}}$$
 (1)

to produce the output

$$W_n = \operatorname{Re}\left[Z_n e^{j2\pi f_0 n/r_3}\right] = \operatorname{Re}\left[Z_n e^{j\pi n/2}\right] = \operatorname{Re}\left[j^n Z_n\right]$$
 (2)

whose spectrum is illustrated in figure 31. Since W_n is real, its amplitude spectrum is symmetric about zero frequency.

Since

$$\int X(\tau)e^{j\pi B\tau}h(t-\tau)d\tau = \int X(t-\tau)e^{-j\pi B\tau}h(\tau)d\tau e^{j\pi Bt}, \qquad (3)$$

an alternative to figure 8a would be to omit the read-only-memory sine and cosine generator, and instead, use different tap weights on the two filters. If h_n represents the n^{th} filter tap weight in figure 8a, the alternate system would not have the ROM or the multipliers, but instead, will have filters in the real and imaginary channels whose n^{th} tap is $h_n \cdot \cos(\pi B n/r_1)$ and $h_n \cdot \sin(\pi B n/r_1)$, respectively. The corresponding set of spectra would be similar to figure 9, but without the shift to the left by B/2 hertz. The IF carrier in this case would be equal to $f_0 = r_3/4$.

Figure 9: SSB-AM Transmitter Spectra

An advantage of this alternative scheme is that the tap weights for the real channel filter can also be used in the double sideband configuration. Since the single-sideband filter passband will be from 300 to 3,000 hertz (instead of 0 to 3,000 as illustrated), the resulting double-sideband filter will not pass d.c. This is desirable for filtering out the carrier (when operating in a non suppressed carrier mode), and is in fact, precisely how the actual double sideband filter is designed. Disadvantages of the alternative scheme are the two sets of filter tap weights are needed and, if the resampling filter remains real, its complexity is increased due to the doubling of the desired passband.

The single side sideband receiver configuration of figure 8b employs complex sampling of the real IF signal whose spectrum (symmetrical about zero frequency) is shown in figure 10a. The sampling rate, r2, must be an integer fraction of fo, fo = Kr2, and must be high enough to prevent aliasing from interfering with the desired signal. The digital complex signal at the output of the bandpass sampler has a spectrum such as shown in figure 10b, with spectral repeats at the sampling rate, but without The imaginary samples may be obtained by sampling $1/(4f_0)$ seconds after the corresponding real sample, provided f >>> B. If the IF carrier is not sufficiently high, more sophisticated techniques must be employed to obtain the proper complex samples. The resampling filter brings the sampling rate down to $r_1 = 8$ kilohertz while cutting out the portion of the unwanted spectrum that might cause harmful aliasing at this lower rate (figure 10c). The sharp-cutoff filter can then operate at this lower sampling rate producing the output spectrum of figure 10d. read-only-memory, multipliers and adder in figure 8b perform the functions of (1) multiplying by $e^{\pm j\pi Bn/r}$ 1 to shift the spectrum B/2 hertz to the right (or left) and (2) taking the real part to make the resulting spectrum symmetrical about zero frequency (figure 10e):

$$W_{n} = \left[\operatorname{Re} Z_{n} e^{+j\pi B n/r} \right] = X_{n} \cos(\pi B n/r_{1}) + Y_{n} \sin(\pi B n/r_{1}). \tag{4}$$

After digital-to-analog conversion, the spectrum appears as in figure 10f.

3. ANGLE MODULATION (PHASE AND FREQUENCY)

The first four units of the phase or frequency modulated transmitter in figure 11a are identical to the corresponding units in the double-sideband AM transmitter. Consequently, the spectra at the five points from the input to the A/D convertor to the output of the interpolator are the same as in figures 6a through 6e, but with $r_3 = 4f_0$. After phase modulation,

Figure 10: SSB-AM Receiver Spectra

$$Z_{n} = e^{jX_{n}} = \cos X_{n} + j\sin X_{n}, \qquad (5)$$

the spectrum in figure 6e broadens and becomes nonsymmetrical. Frequency translation of this complex signal is accomplished by

$$W_{n} = Re \left[j^{n} Z_{n} \right]$$
 (6)

as in the case of single-sideband.

The receiver in figure 11b uses a read-only-memory at the rate r_2 to perform arc-tangent demodulation of the digital low-pass complex output of the bandpass sampler. The demodulated signal is resampled in order to reduce the complexity of the base band filter.

Preemphasis and deemphasis are easily added to the FM configuration as illustrated in Section V.4.

4. INTERPOLATION AND PESAMPLING

All of Section III and part of Section VI will be devoted to the design of convolutional filters. In this subsection we shall consider the design and performance of the interpolation filter.

The problem, as illustrated in figure 4, is to take a signal with sampling rate r and produce a signal with sampling rate Kr (K = 5 in figure 4). Let T = 1/(Kr) respresent the time between samples after interpolation. This output sampling rate, Kr, will be the basic clock rate for the interpolator.

The unit pulse is defined as

$$\delta_{n} = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$
 (7)

and the unit step is

$$U_{n} = \begin{cases} 0, n < 0 \\ 1, n \ge 0. \end{cases}$$
 (8)

Figure 11: PM/FM Transceiver Configuration

Any function sampled at T-second intervals can be described as a superposition of unit pulses

$$x_{n} = \sum_{i} x_{i} \delta_{n-i}$$
 (9)

The unit response of a time-invarient, linear, discrete-time system, H, is defined as its response to a unit pulse

$$h_{n} = H\left[\delta_{n}\right] \tag{10}$$

so that the output, y_n , due to an imput x_n , is given by a digital convolution:

$$y_{n} = H[x_{n}] = \sum_{i} x_{i} h_{n-i}$$
 (11)

For a store and repeat interpolation filter (figure 4b) we have

$$y_{n} = \sum_{i=n-K+1}^{n} x_{i}$$
 (12)

so that its unit response is given by

$$h_n = U_n - U_{n-K} \tag{13}$$

as illustrated in figure 12a. Taking the Z transform, its transfer function is

$$H(z) = \frac{1-z^{-K}}{1-z^{-1}}$$
 (14)

This interpolator may be implemented as a K-1 stage convolutional filter with all unity weights as shown in figure 12b or by any of the equivalent recursive implementations shown in figures 12c, d, and e.

Figure 12: Store and Repeat Interpolation

To obtain the linear interpolation of figure 4c, but with a delay of KT seconds we require an interpolation filter with the unit response shown in figure 13a. This can be implemented as a 2K+1 stage convolutional filter as shown in figure 2a; with the tap weights given by figure 13a.

Since figure 13a can be obtained by convolving figure 12a with itself and introducing an additional delay of T seconds, the linear interpolator is implemented in figure 13b by cascading two store and repeat structures from figure 12c. Other realizations, are given in figures 13c and d. The last is obtained by noting that

$$H(z) = z^{-1} \left(\frac{1 - z^{-K}}{1 - z^{-1}} \right)^{2} = \frac{z^{2K} - 2z^{K+1}}{z^{2K+1} - 2z^{2K} + z^{2K-1}}$$
(15)

The structures in figures 13b, c, and d should include an attenuation factor, 1/K to be strictly consistent with figure 13a.

Now that we can realize interpolation filters, let us consider their frequency response. Since their unit response is symmetric about some value of time, their phase will vary linearly with frequency, resulting in zero differential delay in spite of the nonrecursive realizations. The frequency response of the store and repeat interpolator is obtained by taking the Fourier transform of

$$h(t) = \sum_{n=0}^{K-1} \delta(t-nT).$$
 (16)

Thus

$$\mathbf{F}[h(t)] = \sum_{n=0}^{K-1} e^{-jn\omega T} = \sum_{n=0}^{K-1} (cosn\omega T - jsinn\omega T)$$

$$= \cos(K-1)\omega T/2 \frac{\sin K\omega T/2}{\sin \omega T/2} - j\sin(K-1)\omega T/2 \frac{\sin K\omega T/2}{\sin \omega T/2}$$
(17)

$$= \frac{\sin K\omega T/2}{\sin \omega T/2} e^{-j(K-1)\omega T/2}$$

Figure 13: Linear Interpolation

where use has been made of series (465) and (466) on page 86 of reference 3. In terms of the frequency variable, $f = \omega/2\pi$,

$$H(f) = \frac{\sin K \pi f t}{\sin \pi f T} e^{-j(K-1)\pi f T}$$

$$= \frac{\sin \pi f / r}{\sin \pi f / K r} e^{-j\frac{K-1}{K}\pi f / r}$$
(18)

where r was the sampling rate before interpolation. It is evident from the first line of the derivation that H(f) repeats with a period of Kr = 1/T:

$$H(f) = H(f+iKr). (19)$$

It has zeroes at all multiples of r other than the iK^{th} (i.e., $H_i(ir) = 0$ for i = 1, 2, ..., K-1 and H(Kr) = H(0) = K). Furthermore,

$$\frac{1}{K}H(f) \longrightarrow \frac{\sin \pi f/r}{\pi f/r}$$
 (20)

as $K \longrightarrow \infty$. For the case K = 2 we have

$$H(f) = \frac{\sin 2\pi i T}{\sin \pi f T} e^{-j\pi f T}$$

$$= 2\cos \pi f T e^{-j\pi f T}$$

$$= 1 + e^{-j2\pi f T}$$
(21)

whose amplitude and phase spectra is plotted in figure 14a.

The frequency response of the linear interpolator is given by

a. Store and Repeat

b. Linear Interpolation

Figure 14: Amplitude and Phase Spectra for Two-to-One Interpolation

$$H_{\mathcal{Z}}(f) = \frac{1}{K} \left[H(f) \right]^{2} e^{-j2\pi fT} = \frac{1}{K} \left(\frac{\sin K\pi fT}{\sin \pi fT} \right)^{2} e^{-j2K\pi fT}$$

$$= \frac{1}{K} \left(\frac{\sin \pi f/r}{\sin \pi f/Kr} \right)^{2} e^{-j2\pi f/r}.$$
(22)

This has period Kr, zeros at multiples of r other than the iKth, and

$$\frac{1}{K}H_{\ell}(f) \longrightarrow \left(\frac{\sin \pi f}{\pi f}\right)^{2} \tag{23}$$

as $K \longrightarrow \infty$. For the case K = 2,

$$H_{\mathcal{L}}(f) = 2\cos^2 \pi f T e^{-j4\pi f T}$$

$$= (1 + \cos 2\pi f T) e^{-j4\pi f T},$$
(24)

as shown in figure 14b. Before interpolation the signal spectrum repeated every r hertz. Both interpolators in figure 14 serve to attenuate every other spectral repeat, with the linear interpolator doing a better job.

The analysis in Section III. 1. b of Reference 1 is valid only for large sampling ratios, K, since a $\frac{\sin \pi f/r}{\pi f/r}$ response is used, instead of $\frac{\sin \pi f/r}{\sin \pi f/K}$. Assuming K large and letting 2B represent the total signal bandwidth into the interpolator (B \approx 1.5KHz for SSB modulation and B = 3KHz for DSB and angle modulation) the ratio of the total energy contained in the unwanted spectral repeats to the desired energy was bounded in reference 1 for store-and-repeat interpolation:

ERH <
$$2(\frac{B}{r})^2 \sum_{m=1}^{\infty} \frac{1}{(m-\frac{B}{r})^2} = \frac{\pi^2}{3} (\frac{B}{r})^2$$
 (25)

or

ERH < 5-20
$$\log \frac{r}{B}$$
 db. (26)

Similary, for linear interpolation, we find:

ERH <
$$2(\frac{B}{r})^4 \sum_{m=1}^{\infty} \frac{1}{(m-\frac{B}{r})^4} \approx \frac{\pi^4}{45} (\frac{B}{r})^4$$
 (27)

or

ERH < 3 - 40
$$\log \frac{r}{B}$$
 db. (28)

Thus, if the sampling rate before interpolation is r = 16B (e.b., B = 3KHz and r = 48KHz), then linear interpolation can produce more than 45 db attenuation of the unwanted energy. Since we chose the original sampling rate to be $r_1 = 8KHz$ we shall use the resampling filter to bring the rate up by a factor of 6, to $r_2 = 48KHz$.

Note that the sharp cut-off filter operates at the lowest possible rate, $r_1 = 8 \text{KHz}$. The number of taps, N_1 , which must be large because of stringent filter requirements, is minimized by using a low sampling rate. The multiplication rate for that filter is $N_1 r_1$ multiplications per second.

The resampling filter can have a relatively wide transition region between passband and stopband. It can thus operate at a higher sampling rate, $r_2 = 48 \text{KHz}$, without an excessive number of taps, $N_2 \leq N_1$. Since its input is "zero filled" in transmitter operation and since only every 6th output sample need be computed in receiver operation, the multiplication rate for this filter is only $N_2 r_1 (= N_2 r_2/6)$.

Finally since the interpolation filter will operate at an extremely high rate ($r_3 \approx l \, \text{MHz}$), an implementation was found that requires no multiplications at all. This was possible because an extremely wide transition region is allowed. If the interpolation filter had required N_3 tap weights, its multiplication rate would have been $N_3 r_2$. Fortunately, an implementation was found for which $N_3 = 0$.

SECTION III

FINITE RESPONSE FILTER DESIGN

For a digital filter to have a perfectly linear phase versus frequency characteristic, its unit response must be symmetrical about some point:

$$h_{n} = \begin{cases} C_{0}, & n = M \\ \frac{1}{2}C_{|n-M|}, & |n-M| = 1, 2, ..., M \\ 0, & |n-M| > M. \end{cases}$$
 (1)

The combined requirements of symmetry $(h_{M-n} = h_{M+n})$ and physical realizability $(h_n = 0 \text{ for } n<0)$ imply a unit response of finite duration:

$$h_n = 0$$
 for n<0 and n>2M.

Such a finite response can be readily implemented in a non-recursive (or convolutional) structure. The filter tap weights are simply the values of the unit response.

The frequency response corresponding to equation (1) is

$$H(f) = \sum_{n=0}^{2M} h_n e^{-j2\pi nf/r} = e^{-j2\pi Mf/r} \sum_{K=0}^{M} C_K \cos(2\pi Kf/r)$$

$$= e^{-j2\pi Mf/r} H_0(f).$$
(2)

The problem is to choose the M values of C_K so that $H_0(f)$ adequately approximates a desired frequency response while the order of the filter, 2M+1, is kept small. There has been much recent activity and progress in the design of such finite response filters. This section will serve to summarize this progress and to introduce our design approach.

Finite response filters are commonly referred to as non-recursive (or transversal) filters. As we have seen with the interpolation filters discussed in section II.4, finite response filters can be implemented recursively as well as non-recursively. A discussion of the relative merits of these two implementation approaches is deferred to Section VI. 1. Until then, we shall assume a non-recursive implementation for the filters discussed in this section.

1. WINDOW CARPENTRY

The classical design approach (4,5,6) has been to find the unit sample response corresponding to the desired frequency response and truncate it by an appropriate window function.

Consider the problem of approximating an ideal low-pass filter with zero phase, unity gain from -B to Bhz, and zero gain elsewhere:

$$H_{O}(f) = \begin{cases} 1, -B < f < B \\ 0, \text{ elsewhere.} \end{cases}$$
 (3)

The corresponding impulse response is

$$h(t) = 2B \frac{\sin 2\pi Bt}{2\pi Bt}$$

The sampled data version of this filter has a unit response

$$h_{n} = \frac{1}{r} \int_{-r/2}^{r/2} H_{o}(f) e^{j2\pi nf/r} df$$

$$= 2\frac{B}{r} \frac{\sin 2\pi nB/r}{2\pi nB/r}, \quad n=0, \pm 1, \pm 2, \dots$$
(4)

and an ideal filter spectrum that repeats at the sampling rate, r (r>2B). This ideal filter, however, requires a unit response of infinite duration. Simple truncation to 2M+1 terms by merely setting $h_n = 0$ for |n| > M (the so called rectangular window) results in a 9 percent frequency response overshoot at the band edges (the so called Gibbs phenomenon (7)).

Multiplying h_n by a finite duration window function w_{r_i} ($w_n = 0$ fon |n| > M) results in a finite duration unit response whose spectrum is the convolution of $H_0(f)$ with W(f) the Fourier transform of the window function. The window function is chosen so that W(f) has a narrow main lobe with small sidelobes. The rectangular window

$$w_n = \begin{cases} 1, & n=0, \pm 1, \pm 2, \dots, \pm M \\ 0, & \text{elsewhere} \end{cases}$$
 (5)

is inadequate because of the sidelobes in its Fourier transform. Triangular and truncated gaussian windows offer some improvement, though decreased sidelobes come at the expense of a widened main lobe (for fixed M). Windows of the form

$$w_n = C + (1 - C)\cos(\pi n/M), n = 0, \pm 1, \pm 2, \dots, \pm M$$
 (6)

have historically $^{(4)}$ been found useful, in that they serve to cancel the first $(\sin x)/x$ sidelobe of the rectangular window without appreciably widening the main lobe. For C = 0.54 we have a Hamming window, for C = 0.5 we have a Hanning window, and for C = 0.56 we have Stockham's $^{(8)}$ modified Hamming window. A variety of other more complex, windows (including the Kaiser and Dolph-Chebyschev windows) have been found even more effective. $^{(5,9)}$

The major advantage of the time-domain window approach is the extreme simplicity of the filter design procedure.

2. FREQUENCY SAMPLE SPECIFICATION

This approach, introduced by Gold and Jordan⁽¹⁰⁾ and developed by Rabiner, Gold and McGonegal, ^(11, 12) specifies the filter response at discrete frequencies.

Consider the ideal low-pass filter, $H_0(f)$, which is an even function of frequency. The frequency range, 0 to $\frac{r}{2}$, is divided into M segments and

$$H_i = H(\frac{ir}{2M}), i=0, 1, 2, ..., M$$
 (7)

is specified to be unity for $\frac{ir}{2M}$ <B and zero for $\frac{ir}{2M}$ >B, with H_{-i} = H_i . These values can be viewed as the Fourier Series coefficients of a periodic version of h(t). Instead of being truncated, h(t) is aliased by its periodicity. The sampled version of this h(t) furnishes a possible set of filter tap weights, h_n . The weights h_n can be obtained from $H(\frac{ir}{2M})$ by the Discrete Fourier Transform (utilizing an FFT algorithm). Unfortunately, the corresponding spectrum, while agreeing with the ideal at the specified points, is far from ideal elsewhere. To overcome this problem, a few frequency samples in the neighborhood of the transition frequency (+B hertz) are allowed to vary in amplitude. The overall frequency response is thus improved (as in the window approach) by reducing the ripple near the band edges at the expense of broadening the transition band.

This procedure usually outperforms the window approach, but at the expense of a linear search for the optimum values of the frequency samples being varied.

3. ZERO PLACEMENT

The previous approach specifies a uniform placement of real frequency zeros in the stopband. A variant due to Requicha and Voelcker (13) specifies the non-uniform placement of all real and complex zeros, resulting in filter stopbands that are specified in terms of attenuation rates measured in decibles per octave.

If N_v real frequency zeros are uniformly spaced over the entire r hertz frequency range and M of these are replaced by N_p complex passband zeros (leaving $N_s = N_v$ - M stopband zeros) an approximate asymptotic attenuation rate of

$$A = -6(M-N_p) = -6\left[N_v - (N_s + N_p)\right] \quad db/octave$$
 (8)

is achieved. Thus, high attenuation rates are achievable by closely packing the stopband zeros.

4. EQUAL RIPPLE SPECIFICATION

The most sophisticated approach to nonrecursive filter design is to specify the order of the filter and the maximum allowable ripple in both the passband and stopband. A non-linear optimization technique is then used to specify the filter meeting these contraints with a minimum transition band(14) Herrmann has available the tap weights of 400 filters designed in this manner. An efficient algorithm (due to Hofstetter (15)) for the design of

optimum non-recursive digital filters having prescribed equal stopband and equal passband ripples, is outlined below.

The filter specification is given in terms of the maximum allowable deviation from unity in the passband, δ_p , the maximum allowable deviation from zero in the stop band, δ_s , the maximum number of extrema in the passband, n_p , and the maximum number of extrema in the stopband, n_s . The filter of minimum order, 2M+1, will have $M=n_p+n_s+1$. The passband edge, f_p , and the stopband edge, f_s , are defined as the frequencies at which the response first leaves and finally enters the corresponding tolerance region, $|H(f)-1| \leq \delta_p$ and $|H(f)| \leq \delta_s$. The narrowest transition band, $|f_s-f_p|$, occurs when the filter is equiripple in both the passband and the stopband. Since

$$H_{o}(f) = \sum_{K=0}^{M} C_{k} \cos 2\pi K f/r$$
(9)

can be written as

$$H_{o}(f) = \sum_{K=0}^{M} d_{K}x^{K}, \qquad (10)$$

where $x = \cos 2\pi f/r$, a trigonometric polynomial approximation to the desired frequency characteristic is being sought.

The design algorithm begins with an initial set of M+1 frequencies $(0 = f_0 < f_1 < f_2 < \ldots < f_m = r/2)$ and a Lagrange interpolation polynomial that goes through the values $1 + \delta_p$ and $+ \delta_s$ at these frequencies (the black dots in figure 15). The second iteration utilizes the frequencies at which the extrema of the first polynomial occur (the open dots in figure 15). The procedure, utilizing a varient of the barycentric form of the Lagrange interpolaration formula, is continued until all the extremum frequencies are equal to their counterparts from the previous iteration. The filter tap weights, h_0 , are obtained from this final H(f) as a discrete fourier transform of $H(\frac{1r}{2M})$.

Slight variations of this procedure can be used to design bandpass filters, low pass differentiators, etc. For example, a bandpass differentiator having an ideal frequency response

Figure 15: The Hofstetter Finite-Response Design Algorithm for an 11-tap Low-Pass Filter with n = n = 2

$$H(f) = \begin{cases} 0, & |f| < b \\ j2\pi f, & b < |f| < B \\ 0, & |f| > B \end{cases}$$
 (11)

would be specified to be purely imaginary and to remain within $\pm \delta_1$ and $\pm \delta_2$ in the two stopbands and within $2\pi f(1\pm \delta_p)$ in the passband (i.e., the percentage error in the passband is specified). The fact that the procedure converges rapidly and yields an optimum design makes it extremely attractive.

5. QUANTIZATION EFFECTS

Errors are introduced in convolutional filters through limited wordlengths for the state variables (the signal values stored in the shift registers) and for the filter tap weights (the constants stored in read-only-memories). Errors of the first type, including the rounding of the result of the convolution, can be described as additive noise with variance $E^2/12$, where E is the quantization level difference. Errors of the second kind, however, can alter the frequency response of the filter.

A filter designed according to one of the preceeding methods to satisfy certain ripple specifications, will no longer meet those specifications when the tap weights are rounded. However there may exist a set of weights, within the word length limitation, but different than the rounded version of the ideal weights, that does satisfy the filter requirements. Avenhaus and Schussler (16, 17) have proposed a modified Gauss-Seidel procedure for searching the discrete parameter space in the neighborhood of the ideal, for an optimum set of quantized tap weights.

6. INTERACTIVE DESIGN AND THE RAISED-COSINE ROLL-OFF

As pointed out in the last section, most algorithms for optimum filter design are relatively meaningless if the filter tap weights are rounded to accommodate a word-length limitation. Our approach for an expedient (rather than optimum) design has been a human search on a computer terminal. A computer program was written, based on the simple window approach and designed for man-machine interaction. The program rounds the tap weights and performs a fast Fourier transform on these rounded weights to furnish the actual frequency response. The number of bits precision (word-length), L, the window parameter, C, the 6 db cutoff point, B, and M (where 2M+1 is the nominal number of filter taps) are parameters at the disposal of the designer. Because the magnitude of

the tap weights decrease as n increases, the weights eventually fall below E/2 where E is the quantization level difference. These weights are rounded to zero, so that the actual order of the filter, N, is less than 2M+1.

Specifications were set on the allowable passband and stopband ripples and on the maximum allowable transition width. A search for the filter of minimum order for a given precision revealed that the minimum number of taps occurred at the values of the parameters C and M for which the natural truncation phenomenon was most pronounced, i.e., when (2M+1)-N was a maximum.

This led to consideration of the raised-cosine filter characteristic. (18)
The ideal filter characteristic

$$H_{O}(f) = 1, \quad 0 \le f \le B$$
 (12)

shown in figure 16a corresponds to an impulse response:

$$h(t) = 2B \frac{\sin(2\pi Bt)}{2\pi Bt}$$
 (13)

which decays asymptotically as 1/t and has a corresponding unit response:

$$h_{n} = \frac{\sin(2\pi nB/r)}{\pi n} \tag{14}$$

The raised-cosine filter characteristic with roll-off

✓

$$H_{1}(f) = \begin{cases} 1, & 0 \leq f \leq (1 - \alpha t)B \\ 1/2 \left[1 - \sin \frac{\pi (f - B)}{2 \alpha tB} \right], & (1 - \alpha t)B \leq f \leq (1 + \alpha t)B \end{cases}$$

$$(15)$$

shown in figure 16b corresponds to an impulse response

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

Figure 16: The Raised-Cosine Filter Characteristic

$$h(t) = 2B \frac{\sin(2\pi Bt)}{2\pi Bt} \frac{\cos(2\pi \alpha Bt)}{1-4(2\alpha Bt)^2}$$
 (16)

which decays as 1/t3 for large t. The corresponding unit response,

$$h_{n} = \frac{\sin(2\pi nB/r)}{\pi n} \frac{\cos(2\pi \alpha nB/r)}{1 - 4(2\alpha nB/r)^{2}}$$
(17)

with the second factor $\cos(\pi x)/(1-4x^2)$ set equal to $\pi/4$ when x = 1/2, will enhance the natural truncation phenomenon because of the $1/n^3$ decay. By utilizing a small value for \ll , a filter of low order N is obtained without too great a sacrifice in transition width $(f_s - f_p \approx 2 \ll)$. Unfortunately, this natural truncation gives rise to ripples in much the same way as does rectangular truncation. However, when this technique is used in conjunction with a window,

$$h_{n} = \frac{\sin(2\pi nB/r)}{\pi n} \cdot \frac{\cos(2\pi\alpha nB/r)}{1-4(2\alpha nB/r)^{2}} \cdot \left[C+(1-C)\cos(\pi n/M)\right], \quad (18)$$

, excellent results are achieved.

The details of the interactive filter design program are given in Section VI. 2.

SECTION IV

BANDPASS SAMPLING

1. IN-PHASE AND QUADRATURE SAMPLING

In this section we will derive some of the basic mathematical relations pertaining to the in-phase and quadratrue sampling technique used for translating a bandpass signal to lowpass. In general we will be concerned with a real signal s(t) whose Fourier transform $S(\omega)$ is band limited and centered approximately at $\pm f_c$. More specifically let

$$F\left[s(t)\right] = S(\omega), \text{ where } S(\omega) = 0 \text{ for } f_c - \frac{W}{2} \ge \left|f\right| \ge f_c + \frac{W}{2}$$
 (1)

as shown in figure 17a.

The analytic signal Z(t) of s(t) is defined as

$$Z(t) = s(t) + j\hat{s}(t)$$
 (2)

where $\hat{s}(t)$ is the Hilbert Transform of s(t). The Fourier Transforms of Z(t) and $\hat{s}(t)$ are respectively given by

$$F\left[Z(t)\right] = \begin{cases} 2S(\omega) & \text{for } \omega \ge 0\\ 0 & \text{for } \omega < 0 \end{cases}$$
 (3)

$$F\left[\hat{S}(t)\right] = \begin{cases} -jS(\omega) & \text{for } \omega \ge 0 \\ jS(\omega) & \text{for } \omega \le 0 \end{cases}$$
 (4)

In words, the spectrum of the analytic signal Z(t) is the one sided spectrum of s(t) and the spectrum of the Hilbert Transform $\hat{s}(t)$ is the spectrum of s(t) with the negative frequencies shifted $\pi/2$ and the positive frequencies shifted $-\pi/2$.

Waveform Spectra for In-Phase and Quadrature Sampling Figure 17:

Let us now define R(t) the complex envelope of s(t) at frequency f_{C} by the equation

$$R(t) = Z(t) \exp \left[-j\omega_{c}t\right] = I(t) + jQ(t)$$
 (5)

where I(t) and Q(t) can be seen from definition (5) to be given by

$$I(t) = s(t)\cos\omega_{c}t + \hat{s}(t)\sin\omega_{c}t$$

$$Q(t) = \hat{s}(t)\cos\omega_{c}t - s(t)\sin\omega_{c}t$$
(6)

Also from equations (6) we can solve for s(t) and $\hat{s}(t)$ to obtain

$$s(t) = I(t)\cos\omega_{c}t - Q(t)\sin\omega_{c}t$$

$$\hat{s}(t) = I(t)\sin\omega_{c}t + Q(t)\cos\omega_{c}t$$
(7)

The Fourier Transform of R(t) denoted by R(ω) is the transform of the analytic signal Z(t) translated down in frequency by f_c . Similarly the spectrum R*(ω) of the complex conjugate R*(t) of R(t) is the spectrum the conjugate Z*(t) of the analytic signal translated up in frequency by f_c , i.e. the negative frequency part of S(ω) translated up by f_c . Both R(ω) and R*(ω) are shown in figures 17b and 17c respectively. Note that R*(ω) is not the complex conjugate of R(ω). If we denote the complex conjugate of R(ω) by R(ω) then R*(ω) is given by

$$R^*(\omega) = \overline{R(-\omega)} = A_r(-\omega) - jB_r(-\omega)$$
where
$$R(\omega) = A_r(\omega) + jB_r(\omega)$$
(8)

and $A_r(\omega)$ and $B_r(\omega)$ are the real and imaginary components of the spectrum $R(\omega)$.

Now let $I(\omega)$ and $Q(\omega)$ respectively represent the Fourier Transform of I(t) and Q(t). From the definitions of $R(\omega)$ and $R*(\omega)$ we thus leave

$$A_{\mathbf{r}}(\omega) + jB_{\mathbf{r}}(\omega) = I(\omega) + jQ(\omega)$$

$$A_{\mathbf{r}}(-\omega) - jB_{\mathbf{r}}(-\omega) = I(\omega) - jQ(\omega)$$
(9)

from which we obtain

and

 $I(\omega) = 1/2 \left[A_{\mathbf{r}}(\omega) + A_{\mathbf{r}}(-\omega) \right] + j1/2 \left[B_{\mathbf{r}}(\omega) - B_{\mathbf{r}}(-\omega) \right]$ and $Q(\omega) = 1/2 \left[B_{\mathbf{r}}(\omega) + B_{\mathbf{r}}(-\omega) \right] - j1/2 \left[A_{\mathbf{r}}(\omega) - A_{\mathbf{r}}(-\omega) \right]$ (10)

Consider now the case where we sample the real bandpass signal s(t) at times

$$t_{mi} = mT$$
 and
$$t_{mq} = mT - \tau$$
 where
$$T = nT_c \le 1/W \text{ and } T_c = 1/f_c$$
 and
$$\tau = kT_c + T_c/4.$$

and where m, n and k are integers.

In words, we sample s(t) at times t_{mi} to obtain the in-phase samples and at times t_{mq} to obtain the quadrature samples. The period T as noted from equations (11) contains an integral number of cycles at frequency f_c . Thus the mth in-phase sample is given by

$$s(t_{mi}) = I(mT) \tag{12}$$

which is obtained from equation (7) after replacing t with tmi.

Similarly the quadrature samples are obtained at times t_{mq} which differ from the in-phase sampling times by one quarter cycle of frequency t_c . Thus the mth quadrature sample is similarly obtained by substituting

t_{mq} in equation (7) i. e.

We will now show that the in-phase and quadrature sampling technique can recover to a good approximation the spectrum $R(\omega)$ of the complex envelope. Inasmuch as $R(\omega)$ contains all of the information in s(t). Recovery of $R(\omega)$ would therefore be adequate. Since the signal is sampled at a rate f_s we will in fact not recover $R(\omega)$ but rather $R_s(\omega)$ which is $R(\omega)$ repeated periodically with period f_s . If $f_s \ge W$ there will be no spectral overlaps and therefore $R_s(\omega)$ as shown in figure 17d will also contain all of the information in the original $R(\omega)$.

Consider now the two functions I(t) and $Q(t-\tau)$ the sampled values of these two continuous functions being our in-phase and quadrature samples given by equations (12) and (13). The Fourier Transform of these functions are obviously given by

and

$$F[I(t)] = I(\omega)$$

$$F[Q(t-\tau)] = Q(\omega)e^{-j\omega\tau}$$
(14)

and therefore the recovered spectrum $R'(\omega)$ for the continuous case can be written as

$$R'(\omega) = I(\omega) + jQ(\omega)e^{-j\omega\tau}$$

which after some algebraic manipulations and using equations (8), (9) and (10) becomes

$$R'(\omega) = \left[R(\omega)\cos\omega\tau/2 + jR*(\omega)\sin\omega\tau/2\right] e^{-j\omega\tau/2}$$
 (15)

The recovered spectrum $R'_{S}(\omega)$ of the sampled waveform will be the same as in equation (15) repeated periodically with period equal to the sampling rate f_{S} . The recovered spectrum after in-phase and quadrature sampling will thus consist of the desired spectrum $R(\omega)$ filtered by a $\cos \omega \tau/2$ term and an undesired term $R*(\omega)$, (the negative frequencies term of the original

spectrum $S(\omega)$), filtered by $j\sin\omega\tau/2$ as shown in figure 17e. The $\exp(\pm j\omega\tau/2)$ term of course represents a time delay of $\tau/2$ and is of no significant consequence. : Clearly from equation (15) one would want to make T as small as possible in order to minimize the effects of the interfering term $R^*(\omega)$. From equation (11) it can be seen that the smallest τ can be made in T_c/4 which would result in filter characteristics of $\cos\omega T_c/8$ and $\sin\omega T_c/8$ respectively for the desired and undesired terms. The extent to which the recovered signal thus described will differ from the desired signal is thus seen clearly to depend on the ratio W/f.. Thus if W/fc<<1, i.e. if the narrowband approximation holds, then the interfering term would be negligible otherwise it will not. , If the narrowband approximation does not hold or if the requirements are such that the interfering term cannot be tolerated then one must find ways of eliminating or reducing this interference. We will describe two approaches which will enable us to reduce the interfering component $R*(\omega)$ sin $\omega \tau/2$. In the first approach the sampled values of I(t) and $Q(t-\tau)$ are filtered digitally while in the second approach instead of sampling twice per period T we sample more often to obtain sampled values of I(t), $I(t+2\tau)$, $I(t+4\tau)$. and $Q(t+\tau)$, $\dot{Q}(t+3\tau)...$

2. FILTERING I(t) and $Q(t-\tau)$

Consider a pair of conjugate filters F and f* given by

and

$$F = |F(\omega)| \exp[j\phi(\omega)]$$

$$F^* = |F(\omega)| \exp[-j\phi(\omega)],$$
(16)

and let us filter the I(t) and $Q(t-\tau)$ recovered components of the signal respectively with the above two filters. Our recovered signal spectrum $R'(\omega)$ will thus be given by

$$R^{T}(\omega) = I(\omega) \left| F(\omega) \right| \exp \left[j \phi(\omega) \right] + jQ(\omega) \left| F(\omega) \right| \exp \left[-j \phi(\omega) - \omega \tau \right].$$
(17)

Again after some algebraic manipulations and using equations (8), (9) and (10) equation (17) becomes

$$R'(\omega) = \left\{ R(\omega) \left| F(\omega) \right| \cos \left[\phi(\omega) + \omega \tau / 2 \right] + jR*(\omega) \left| F(\omega) \right| \sin \left[\phi(\omega) + \omega \tau / 2 \right] \right\} \exp(-j\omega \tau / 2).$$
(18)

As in equation (15) the $\exp(-j\omega\tau/2)$ term represents only a time delay and is of no significant consequence.

If the recovered signed $R'(\omega)$ is not to contain any interference terms then the magnitude $|F(\omega)|$ of the filters F and F* must equal to unity and the phase $\phi(\omega)$ must equal $-\omega\tau/2$, i. e. the phase must be linear. The impulse response of the F and F* filters will thus be a $(\sin x)/x$ delayed (or advanced) by $\tau/2$ with zero crossings at intervals T. Figure 18 shows a convolutional digital filter implementation of these filters where each filter has 2n+1 tap weights and the tap weights a_k are given by

$$a_k = (-1)^k (\sin \omega_s \tau / 4) / (k \pi + \omega_s \tau / 4).$$
 (19)

$$k = 0, \pm 1, \ldots \pm n$$

If the narrowband approximation is relatively good i.e. if $W/f_C << 1$ then a very small number of filter taps will be required to give a very good approximation of $\phi(\omega)$ to $-\omega\tau/2$. For ten to twenty percent bandwidths five to seven tap filters would be all that would be required for any reasonable amount of undesired signal rejection.

THE MULTIPLE SAMPLE APPROACH

Let the bandpass signal s(t) be sampled more than twice (as for inphase and quadrature sampling) during each sampling period T = 1/W and let the intervals between multiple samples be multiples of $\tau = T_c/4$, i.e. let us sample s(t) and times

$$mT$$
, $mT-\tau$, $mT+\tau$, $mT-2\tau$, $mT+2\tau$,... (20)

where as before

$$\tau = T_c/4 \text{ and } T = nT_c \le 1/W$$
 (21)

and m and n are integers.

Filtering of the In-Phase and Quadrature Sampled Waveforms Figure 18:

From equation (7) it is clear that for the sample times above we would obtain sampled values of I(t) and Q(t) given by

$$I(t), Q(t-\tau), -Q(t+\tau), -I(t-2\tau), -I(t+2\tau), \dots$$
 (22)

where mT is replaced by t.

We have shown (equation (15)) that if the first two samples from (22) are used the recovered signal spectrum $R'(\omega)$ consists of the desired spectrum $R(\omega)$ multiplied by $\cos\omega\tau/2$ and the undesired spectrum $R^*(\omega)$ multiplied by $\sin\omega\tau/2$. It has been shown⁽¹⁹⁾ that in general if n+1 samples are used as given by (22) then the recovered signal spectrum $R'(\omega)$ will consist of the desired spectrum $R(\omega)$ multiplied by $(\cos\omega\tau/2)^n$ and the undesired spectrum $R^*(\omega)$ multiplied by $(\sin\omega\tau/2)^n$, provided the samples are combined appropriately, namely weighted by the binomial coefficients.

To show that this is as we will derive the expressions for $R'(\omega)$ for n = 2, 3, and 4. From equations (8) and (9) we see that

$$I(\omega) = R(\omega) + R*(\omega)$$

and

$$jQ(\omega) = R(\omega) - R*(\omega)$$
.

If we weigh the first three terms of expression (22) by 1, j/2 and -j/2 and add we obtain

$$R'(\omega) = R(\omega) + R*(\omega) + \left[R(\omega) - R*(\omega)\right] \exp(-j\omega\tau)/2$$

$$+ \left[R(\omega) - R*(\omega)\right] \exp(j\omega\tau)/2$$

$$= R(\omega)(1 + \cos\omega\tau) + R*(\omega)(1 - \cos\omega\tau) \tag{23}$$

$$= 2R(\omega)(\cos\omega\tau/2)^2 + 2R*(\omega)(\sin\omega\tau/2)^2.$$

For the case n=3 we weigh the samples with the weights 3, j3, -j, -l and add. Thus we obtain

$$R'(\omega) \exp(j\omega\tau/2) = 3 \left[R(\omega) + R*(\omega) \right] \exp(j\omega\tau/2)$$

$$+3 \left[R(\omega) - R*(\omega) \right] \exp(-j\omega\tau/2) + \left[R(\omega) - R*(\omega) \right] \exp(j3\omega\tau/2)$$

$$+ \left[R(\omega) + R^{\gamma}(\omega) \right] \exp(-j3\omega\tau/2)$$

$$= 8R(\omega) (\cos\omega\tau/2)^{3} + j8R*(\omega) (\sin\omega\tau/2)^{3}$$
(24)

Similarly for n=4 the weights would be 6, +j4, -j4, -1, and -1. Thus we have

$$R'(\omega) = 6 \left[R(\omega) + R^*(\omega) \right] + 4 \left[R(\omega) - R^*(\omega) \right] \exp(-j\omega\tau)$$

$$+ 4 \left[R(\omega) - R^*(\omega) \right] \exp(j\omega\tau) + \left[R(\omega) + R^*(\omega) \right] \exp(-j2\omega\tau)$$

$$+ \left[R(\omega) + R^*(\omega) \right] \exp(j2\omega\tau)$$

$$= 16R(\omega) (\cos\omega\tau/2)^{\frac{1}{2}} + 16R^*(\omega) (\sin\omega\tau/2)^{\frac{4}{2}}.$$
(25)

We thus see that by appropriately combining the various samples the filter functions $(\cos\omega\tau/2)^n$ and $(\sin\omega\tau/2)^n$ can be synthesized to filter $R(\omega)$ and $R^*(\omega)$ respectively. By a lecting other than the binomial coefficients to weigh the various samples other filter functions can be synthesized. For example for N=2 if the weights are 1, jk/2 and -jk/2 we can obtain

$$R'(\omega) = R(\omega) \left[1 + k\cos\omega\tau \right] + R*(\omega) \left[1 - k\cos\omega\tau \right]. \tag{26}$$

For n=3 and weights 3, j3, -jk, and -k we obtain

$$R'(\omega) = R(\omega) \left[8k(\cos\omega\tau/2)^{3} + 6(1-k)\cos\omega\tau/2 \right] + jR*(\omega) \left[8k(\sin\omega\tau/2)^{3} + 6(1-k)\sin\omega\tau/2 \right]$$
(27)

Thus we see that instead of obtaining an nth order zero at the origin as would be the case for $(\sin\omega\tau/2)^n$ one can obtain n evenly spaced zeros by proper choice of the coefficient k as in the case above or by proper choice of additional coefficients for higher order n.

4. COMPARISON BETWEEN FILTERING AND MULTIPLE SAMPLING

As was shown by the description of the two techniques one can achieve very effective rejection of the unwanted interfering signal $R*(\omega)$ by either filtering the sampled I and Q waveforms, or by a suitable combination of a multiplicity of n+l samples. In any specific application the choice which if any of these techniques is preferable will depend on the complexity of implementation. In general one will perform the analog to digital conversion either by a single device capable of operating at a rate of 4f or a multiplicity of devices each capable of operating at a rate f_s=W. The cost of analog to digital converters increases quite rapidly with increasing sampling rate. Therefore if the bandpass signal is a relatively wideband signal where the rates $4f_c$ and f_s not significantly different then a single analog to digital converter would be preferred and as many samples as possible would be obtained to achieve maximum interference rejection. If on the other hand the ratio of 4fc to fs is large then it would be advantageous to leave two analog to digital converters operating at a rate f, with the sampled in-phase and quadrature signals then being filtered to achieve the required filtering. For the purposes of the transceiver presently under consideration the receiver IF will be in the neighborhood of 100 to 200 kHz and the IF signal bandwidths will be from 4 to 25 kHz. In view of these considerations the in-phase and quadrature sampling followed by a relatively minor pair of filters is clearly indicated as the optimum approach.

SECTION V

MODULATION AND DEMODULATION

1. MODULATION AND FREQUENCY TRANSLATION

As mentioned in Section II and in Reference 1 the process of frequency translation can be defined mathematically by

$$S(t) = Re \left[w(t)e^{j2\pi f_C t} \right]$$
 (1)

where S(t) is the real I. F. signal, Re denotes "the real part of", w(t) is the modulated low pass signal (generally complex), and f_c is the I. F. carrier frequency. If we write w = u+jv and utilize a sampling rate, $r_3 = 4f_c$, then

$$S_n = Re\left[w_n e^{j\pi n/2}\right] = Re\left[j^n w_n\right]$$
 (2)

so that the transmitted sequence, So, S1, S2, ..., becomes

$$u_0, -v_1, -u_2, v_3, u_4, -v_5, -u_6, v_7, u_8, -v_9, \dots$$

By sampling u_0 , u_{4k} , u_{8k} , u_{16k} , ... in the real receiver channel and v_1 , v_{4k+1} , v_{8k+1} , v_{16k+1} , in the imaginary receiver channel, we obtain samples of u_{4ik} +j v_{4ik+1} , which is an approximation to w_{4ik} as discussed in Section IV. By properly combining a number of such samples, better approximations can be attained.

For double sideband amplitude modulation,

$$w(t) = A + m(t)$$
 DSB-AM

where m(t) is the real modulating waveform and A=0 in the suppressed carrier case. Thus

$$S(t) = \left[A + m(t)\right] \cos 2\pi f_{c} t \qquad DSB-AM$$

For single sideband amplitude modulation (upper sideband),

$$w(t) = A+m(t)+j\hat{m}(t)$$
 SSB-AM (USB)

where, for the case of true SSB (rather than vestigial sideband), $\widehat{\mathbf{m}}(t)$ is the Hilbert transform of $\mathbf{m}(t)$. The analytic signal $\mathbf{f}_{+}(t) = \mathbf{f}(t) + \mathbf{j} \mathbf{\hat{f}}(t)$, corresponding to any real signal, $\mathbf{f}(t)$, is more easily visualized in the frequency domain as

$$F_{+}(f) = \begin{cases} 2F(f), & f > 0 \\ 0, & f < 0 \end{cases}$$
 (3)

For angle modulation

$$w(t) = Ae^{j\theta(t)}$$
 PM and FM

so that

$$S(t) = A\cos \left[2\pi f_c t + \theta(t)\right]$$
 PM and FM

For phase modulation:

$$\theta(t) = \beta m(t)$$
 PM

where B is called the modulation index, and for frequency modulation

$$\theta(t) = \beta \int_{-\infty}^{t} m(t)dt \qquad FM$$

Single sideband phase and frequency modulation can be obtained by setting

$$w(t) = Ae^{j\theta+(t)}$$
 SSB-PM and FM

where $\theta+(t) = \theta(t)+j\hat{\theta}(t)$, so that

$$S(t) = Ae^{-\hat{\theta}(t)}\cos[\omega_c t + \theta(t)]$$
 SSB-PM and FM.

It can be shown that the spectrum of w(t) is zero for negative frequencies in this case, and hence the spectrum of S(t) is zero for frequencies below the carrier. The modulating signal can be recovered from the receiver's estimate of w(t y

$$A+m(t) = u(t) = Re\left[w(t)\right]$$
 (4)

for amplitude modulation (DSB and SSB) and by

$$\theta(t) = \tan^{-1} \frac{v(t)}{u(t)}.$$
 (5)

for angle modulation. Equation (5) applies to single sideband, as well as to conventional double sideband, phase and frequency modulation.

If the modulating signal, m(t), is m ary (digital data) AM becomes amplitude shift keying (ASK), FM becomes frequency shift keying (FSK), and PM becomes phase shift keying (PSK). For optimum performance, the (sinx)/x spectra of these digital signals would be digitally filtered to produce a spectrum better matched to the channel (e.g., a raised cosine characteristic).

2. SINGLE SIDEBAND AND THE HILBERT TRANSFORM

A ideal double-sideband low-pass filter

$$H_2(f) = \begin{cases} 1, -B < f < B \\ 0, \text{ elsewhere} \end{cases}$$
 (6)

has a real impulse response:

$$h_2(t) = 2B \frac{\sin 2\pi Bt}{2\pi Bt} \tag{7}$$

An ideal single-sideband low-pass filter

$$H_1(f) = \begin{cases} 2, & 0 < f < B \\ 0, & \text{elsewhere} \end{cases}$$
 (8)

can be thought of as a B/2 hertz real low-pass filter translated to the right by B/2 hertz. Its impulse response is therefore

$$h_1(t) = 2(B\frac{\sin \pi Bt}{\pi Bt})e^{j\pi Bt}.$$
 (9)

Expanding the complex exponential as cos+jsin, and carrying out the multiplication, we obtain

$$h_1(t) = 2B \left(\frac{\sin 2\pi Bt}{2\pi Bt} + j \frac{1 - \cos 2\pi Bt}{2\pi Bt} \right) = h_2(t) + j \hat{h}_2(t).$$
 (10)

As $B - \infty$, $h_2(t) - \delta(t)$ and $h_2(t) - 1/(\pi t)$. Thus, in the case of an infinite bandwidth signal, the real channel passes the signal without filtering and the imaginary channel performs a Hilbert transform (since convolution with $1/(\pi t)$ is, by definition, the Hilbert transform). However, since we are dealing with bandlimited signals, the Hilbert transform is not required. What is required is two digital filters designed as a B/2 hertz low-pass filter multiplied by $\cos(\pi B n/r_1)$ and by $\sin(\pi B n/r_1)$ respectively, as indicated by equation (9). A single sideband signal must have a spectrum confined to $f_c < f < f_c + B$ for the upper sideband case. Use of the Hilbert transform instead of equation (9) would filter out only the frequencies below the carrier; thus doing only half the job.

If the desired baseband signal is confirmed to the band b< f <B (e.g., 300 to 3,000 hertz), the corresponding complex single sideband filter is

$$h_{n} = 2B_{\frac{1}{r_{1}}} \frac{\sin(\pi B_{1}n/r_{1})}{\pi B_{1}n/r_{1}} \cos(\pi B_{2}n/r_{1}) + j2B_{\frac{1}{r_{1}}} \frac{\sin(\pi B_{1}n/r_{1})}{\pi B_{1}n/r_{1}} \sin(\pi B_{2}n/r_{1}) \quad (11)$$

where $B_1 = (B-b)/2 = 1,350$ hertz, $B_2 = (B+b)/2 = 1,650$ hertz. Both the real and the imaginary parts of this filter must be further multiplied by an appropriate window function as indicated in Sections III. 1 and III. 6. The real part of this impulse response can be used for double sideband; it will serve to filter out the carrier in receiver operation. For lower sideband operation it is only necessary to use the negative of the imaginary channel.

This scheme is illustrated in figure 19. In the transmitter the modulating signal is convolved with $h(t) = h_R(t) + jh_I(t)$ to produce w(t). If $r(t) = r_R(t) + jr_I(t)$ represents the low-pass complex output of the bandpass sampler, the modulating signal is recovered as

$$Re\left[r(t)*h(t)\right] = r_{R}(t)*h_{R}(t)-r_{I}(t)*h_{I}(t),$$
 (12)

where * denotes convolution.

a. Transmitter

b. Receiver

Figure 19: Basic AM Transceiver Configuration

The alternative method of using a single filter response for single sideband and multiplying the signal by cosine and sine, as illustrated in figure 8 of Section I. 2, is equivalent if and only if the delay through the actual filter corresponds to an interger number of cocles of the multiplying sinousoids. Otherwise the phase would not be strictly linear, suffering a discontinuity of $2\pi B_2 M/r_1$ at zero frequency. If the method of Section I. 2 is used M would be a multiple of 5 and B_2 would be 1.6KHz if r_1 = 8KHz. (Or B_2 = 1.65 and r_1 = 8.25).

3. ZERO-QUADRATURE SAMPLING FOR DOUBLE SIDEBAND

The double-sideband receiver configurations in figure 1b and 19b show a phase adjustment feedback loop which attempts to drive the imaginary (or quadrature) samples to zero. For coherent reception (carrier phase know at the receiver) there is no need for such a loop. For non-coherent reception alternative schemes would be (1) to process both the real and the imaginary channels through the double sideband filter (no B/2 frequency shift) and use a read only memory to take the square root of the sum of the squares and (2) to employ stationary point sampling (20, 21).

Suppose the received signal (real channel) is

$$z(t) = A\sin(2\pi f t + \theta) + n(t)$$
 (13)

where A is to be estimated and n(t) is a stationary, zero-mean, Gaussian process with variance σ^2 . If the frequency and phase (f and θ) were known exactly, coherent sampling would produce samples of

$$a = A + n(t) \tag{14}$$

with probability density

$$p(a) = \phi(a-A) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a-A)^2}{2\sigma^2}}$$
 (15)

If f is known, but not θ , a quadrature zeroing phase adjustment loop can come very close to attaining the same result.

If z(t) were sampled with random phase the probability density becomes

$$p(z) = \int_{-A}^{A} \frac{\phi(z-x)}{\pi \sqrt{A^2-x^2}} dx = \frac{1}{\pi} \int_{0}^{\pi} \phi(z-A\cos\theta) d\theta.$$
 (16)

The measurement is random even in the complete absence of noise (σ =0). The square root of the sum of the squares procedure is equivalent to envelope detection and produces the modified Rayliegh (or Rice) density⁽²²⁾. Stationary point sampling leads to the modified-Normal (or Harley-Abend) density^(20,21). For large signal to noise ratios (S/N = $A^2/2\sigma^2$) both of these approaches the choerent result of equation (15).

4. ANGLE MODULATION AND PREEMPHASIS

For angle modulation the switch in figure 19a would be in the DSB position and the modulator of figure 20 would be inserted between the real channel interpolator and the frequency translator. The modulation index, ß, is set equal to unity for narrowband FM. This produces a complex signal with a non-symmetrical spectrum occupying a 14 KHz band from -7 KHz to +7KHz. The modulator operates at the r₃ sampling rate.

In the computer simulations angle modulation was performed at the r₂ sampling rate and the interpolation to r₃ was performed after the cosine-sine read-only-memory. This had two drawbacks. At the lower sampling rate the z-plane integrator was a poor approximation to true integration and the interpolation filters were required to operate on 2B = 14 KHz signals. This was corrected for the breadboard as shown in figure 11a of Section II. 3.

- F. M. preemphasis and deemphasis circuits are shown in figures 20b and c. To prevent distortion of the demodulated signal, preemphasis must be performed before angle modulation, deemphasis must be performed after angle demodulation, and both must be performed at the same sampling rate. A value of 7/8 for the preemphasis parameter would closely approximate current analog receiver practice.
- F. M. preemphasis will be performed at the r₂ sampling rate, between the resampling filter and the interpolator. If performed at the low sampling rate, r₁, its frequency response would not be sufficiently linear at the high frequencies. If performed at the high sampling rate, r₃, we would have difficulty in undoing its effect at the receiver. With it at r₂, the deemphasis circuit (also at r₂) will exactly cancel its effect on the demodulated signal, assuming that demodulation is performed before deemphasis. This last requirement is no problem because angle demodulation must be

a. Phase and Frequency Modulator

b. FM Preemphasis

c. FM Deemphasis

Figure 20: Angle Modulation and Preemphasis

performed at r_2 . An $r_1 = 8$ KHz sampling rate could not handle a 14KHz signal. Furthermore, the differentiation required for F. M. demodulation is more easily performed at a higher rate (in fact, it can be performed by figure 20b with $\alpha = 1$ if the sampling rate were high enough).

5. PHASE AND FREQUENCY DEMODULATION

If the received low-pass complex signal is

$$w(t) = u(t)+jv(t) = A(t)e^{j\theta(t)}$$
(17)

then to demodulate phase modulation we must recover

$$\theta(t) = Im \left[lnw(t)\right] = tan^{-1} \frac{v(t)}{u(t)}$$
 (PM).

To demodulate frequency modulation we must recover

$$\frac{d\theta(t)}{dt} = \operatorname{Im}\left[\frac{\dot{\mathbf{w}}(t)}{\mathbf{w}(t)}\right] = \frac{\mathbf{u}(t)\dot{\mathbf{v}}(t) - \mathbf{v}(t)\dot{\mathbf{u}}(t)}{\mathbf{u}^2(t) + \mathbf{v}^2(t)} \qquad (\text{FM})$$

One approach to angle demodulation is to frequency demodulate as shown in figure 21 and digitally integrate the result when operating with phase modulation. A second alternative is to perform are tangent phase demodulation as shown in figure 11b of Section II. 3, and to differentiate the result when operating with frequency modulation. With this second alternative deemphasis can be performed at the result at the input to the differentiator.

The first alternative was used in the computer simulation and the second alternative was used in the breadboard. Figure 21 does not show the resampling. In the simulations, resampling filters preceded the differentiators and all computations in figure 21 were performed at the low \mathbf{r}_1 sampling rate. This forced us to use a higher basis sampling rate (\mathbf{r}_1 = 15KHz) in the simulations which increased the complexity of all filters and degraded the performance of FM. Since differentiation and integration are more easily approximated at a high sampling rate, and since preemphasis in the transmitter was performed at \mathbf{r}_2 , a better procedure would have been to operate at \mathbf{r}_2 and resample after deemphasis.

Deriative-Measurement Technique for Angle Demodulation Figure 21:

In the FM mode, figure 11b utilizes a non-recursive low-pass differentiator, approximating

$$H(f) = \begin{cases} j2\pi f, & |f| < B \\ 0, & |f| > B, \end{cases}$$

to filter out any energy that might interfere with the r_1 spectral repeats. An alternative (utilized in the breadboard) is to use a simple z-plane differentiator followed by our standard resampling filter.

SECTION VI

TRANSCEIVER DESIGN AND IMPLEMENTATION

This section contains various details revelent to the overall system design (Section II), the computer simulations (Section VII), and the transceiver breadboard (Section VIII), that were not covered elsewhere.

1. RECURSIVE FILTERING

The applicability of recursive filters was investigated in the form of an eighth order (eight poles and eight zeros) Cauer Parameter type C filter. The poles and zeros of this filter were chosen to produce approximately 60 db (57.82db) attenuation in the stopband and 10 percent ripple in the passband with a 20 percent transaction band. The pole-zero locations were obtained from standard filter design handbooks (23) and their actual values in the s-plane are given in figure 22. In transforming from the s-plane to the z-plane the bilinear transformation was used where

$$z = \frac{1+s}{1-s} .$$

and where the values of s were normalized by multiplying by $\tan \pi f_{\mathbf{C}}$ where $f_{\mathbf{C}}=0.1$ i.e., a cut-off frequency of 1/10th the sampling rate was used. A digital implementation of the filter shown in figure 22 was simulated on the computer. It was found that the filter constants $(A_{\mathbf{i}}, B_{\mathbf{i}}, C_{\mathbf{i}})$ could be reduced to 8-bit accuracy without significantly altering the filter characteristics. In the passband the ripple was less than 0.5db and in the stopband the attenuation was in excess of 42db. All shift register contents were maintained to 20-bit accuracy and all shift register contents were rounded-off to 12-bits before entering the multipliers. The frequency characteristics of the recursive filter were obtained by performing a Fast Fourier Transform (FFT) of the impulse response. Figure 23 is a plot of the frequency response of this filter and figure 24 is a brief computer printout of the magnitude and phase response (the first and second data columns). The third and fourth columns show the magnitude in db and the normalized frequency (normalized to unity at the cutoff frequency).

From the example presented it is clearly seen that extremely stringent filter characteristics can be realized with digital recursive filters employing a relatively small number of shift registers (storage) and arithmetic operations (especially multiplications) per unit sampling time. The main

S-PLANE POLES (Sp) & ZEROS (So)

 $S_{P4,2} = -0.0396068350 \pm j 1.0306888432$ $S_{P2,4} = -0.1475747947 \pm j 0.9550996330$ $S_{P5,6} = -0.3321414712 \pm j 0.7360558243$ $S_{P7,8} = -0.5498131652 \pm j 0.2837282021$

 $\delta_{0,a} = \pm j 1.2309850902$ $\delta_{0,4} = \pm j 1.3723325582$ $\delta_{0,6} = \pm j 1.9314481827$

2028==1300

QUANTIZED RECURSIVE FILTER CONSTANTS (x64) $A_1 = 100 \quad B_1 = 61 \quad C_1 = 93$ $A_2 = 97 \quad B_2 = 54 \quad C_2 = 86$ $A_3 = 93 \quad B_3 = 42 \quad C_3 = 56$ $A_4 = 87 \quad B_4 = 31 \quad C_4 = -128$

Figure 22: Caver Parameter Recursive Filter

Figure 23: Digital Recursive Filter Frequency Response

	MAGNITUDE PHASE	MAG.(D8)	REL. FREQ.
1	31.0978 0.000	0.000	0.000
2	30 • 5559 - 7 • 998	-0.153	0.039
3	31 • 2301 - 17 • 515	0.037	0.078
4	30 • 9331 - 27 • 790	-0.046	0-117
5	31 • 40 30 - 36 • 861	0.085	0 • 156
6	31 • 3263 - 46 • 008	0.064	0.195
7	31 • 1741 - 54 • 850	0.021	0.234
8	31 • 31 41 - 64 • 839	0.060	0.273
9	31 • 5860 - 74 • 952	0.135	0.313
10	32•6866 - 85•283	0.433	0 • 352
11	31 • 7208 - 96 • 638	0.172	0.391
12	31.9420 -106.024	0.233	0 • 430
13	31.9560 -118.300	0.236	0 • 469
14	32.3525 -129.491	0.344	0 • 508
15	32 • 4445 - 141 • 664	0.368	0.547
16	32.5667 -154.171	0.401	0.586
17	32 • 1814 - 168 • 468	0.298	0.625
18	32.2536 177.597	0.317	0.664
19	31.9402 163.219	0.232	0.703
20	32 • 1787 146 • 765	0.297	0.742
21	31.5674 129.395	0 • 1 30	0.781
55	31.6212 110.289	0 • 1 4 5	0.820
23	31 • 7581 89 • 268	0.182	0.859
24	31 • 2529 63 • 873	0.043	0.898
25	31 • 4117 33 • 713	0.087	0.938
26	31 • 2508 - 6 • 890	0.043	0.977
27	28 • 5363 - 68 • 259	-0.747	1.016
28	10.9751 -133.115	-9.046	1.055
29	2.8668 -172.871	-20.707	1.094
30	0.7253 146.830	-32.644	1.133
31	0.1121 176.226	-48.860	1.172
32	0.0298 5.036	-60.381	1.211
33	0.2289 -13.497	-42.661	1.250
34	0.0697 17.711	-52•985	1 • 289
35	0.0586 -28.111	-54.490	1.328
36	0.0793 -59.611	-51 •872	1.367
37	0.1102 91.122	-49.008	1 • 406
38	0.0694 107.007	-53.034	1 • 445
39	0.1062 70.319	-49.334	1 • 484
40	0 • 1225 53 • 984	-48.092	1.523

END RCRFLT 15.5 SEC.

L

Figure 24: Recursive Filter Computer Printous

disadvantages of recursive filters, however, are (a) somewhat higher bit accuracy is required in the arithmetic operations as compared to non-recursive filters, (b) significantly higher bit accuracy is required in the storage shift registers, (c) the phase characteristic is extremely non-linear near the cutoff region unlike the zero differential phase delay characteristics of non-recursive filters, and (d) the sequence of arithmetic operations to be performed is such that implementation of recursive digital filters does not readily lend itself to the pipeline processing technique. Because of these disadvantages it was concluded that recursive digital filters would not be appropriate for the multimode transceiver design.

Rabiner, et, al (11, 12, 24) have presented an interesting recursive implementation for finite response filters that have been designed by the frequency sample specification approach. These filters require more storage than, and approximately as many multiplications as, the convolutional (non-recursive) implementation. They have all the disadvantages of standard recursive filters except (c).

To clarify the accuracy problem, consider a simple recursive filter such as in figure 20c of Section V.4. If the input and the stored constant, A, are each 10 bits, the result of multiplying the two requires 20 bits of storage. If no truncation or rounding is used, a 30 bit number is required for the next time around the loop. And this would continue indefinitely. If we assume we use a 10 bit by 10 bit multiplier, we must round to ten bits each time around the loop. A convolutional filter (such as shown in figure 2 of Section II.1), however, need never round as long as the accumulator can hold a 20 bit number.

Recursive implementation was used for the interpolation filters because they could be realized without multiplications.

2. NON-RECURSIVE FILTERING

The interactive computer program discussed in Section III.6 was used to compute the quantized values of the tap weights for all convolutional filters used in the simulations and the breadboard. CONFIDE is a time-shared Fortran program for the design and frequency analysis of finite response filters with zero differential delay (absolutely linear phase). A simplified flow chart is given in figure 25 and the program itself is given in figure 26. The operator first enters C, L, and A, where C is the window parameter, L is the number of bits precision for the tap weights, and $A = \alpha$ is the raised cosine roll-off parameter (A=0 for no roll-off). The tap weights are normalized to a maximum value of $c_0 = 2^{L-1} - 1$ and rounded to the nearest integer. Thus, L=10 represents tap weight, ranging from -511 to +511 (or $+\frac{511}{512}$ in steps of $E = \frac{1}{512}$). While the Hamming window (C = .54)

Figure 25: Simplified Flowchart of Convolutional Filter Design Program (CONFIDE)
(Oval blocks represent Teletype inputs)

```
100 C-
        (2**NØ)PT. FFT OF A (2M+1)STAGE L BIT CONVOLUTIONAL FILTER
200 C-
300 C-
           WINDOWS -
400 C-
             HAMMING: C=.54
500 C-
             HANNING: C=.5
600 C-
             G&R HAM: C=.56
700 C-
           A = RAISED COSINE ROLL-OFF
750 C-
           FC=0 FOR DIFFERENTIATION
800 C-
900
    DIMENSION G(512)
1000
      INTEGER H(512), S, SUM
1100 COMPLEX X(2,2048),W
1200 PI=3.14159265
1300
     75 PRINT 15
1400
     15 FORMAT ("C,L,A")
1500 READ / C.L.A
1600
     IF (C=0) GO TO 44
1700 S=2**(L-1)-1
1800
      PRINT 12 (5)
1900
      12 FORMAT ("
                        MAXIMUM TAP =",17)
2000 60 PRINT 16
2100
     16 FORMAT ("FS,FC,M")
2200 READ / FS.FC.M
2300
     IF (FS=0) GO TO 75
2400 G0=2*FC/FS
2450
     IF (FC=0) G0=FS/(2*PI)
2500 R=S/G0
2520
     SUM = S
2530
     P=G0*G0
2560
     IF(FC=0) P=0
2600 DO 30 I=1.M
2650 PII = PI*I
2700 Q=C+(1.-C)*COS(PII/M)
2710
     IF(FC=0) GO TO 28
2720 E = A*GØ*I
     IF (E \cdot NE \cdot 0 \cdot 5) V = COS(PI*E)/(1 \cdot -4*E**2)
2730
2735 IF (E=0.5) V=PI/4.
2740 Q = Q*V
2800
     G(I)=Q*SIN(GØ*PII)/(PII)
2820 GO TO 29
2840 28 G0=-G0
2860 G(I)=Q*G0/I
2880 29 CONTINUE
2900 IF (3(1)-GE+0)H(1)=R+G(1)++5
     IF (G(I).LT.0) H(I)=R*G(I)-.5
3000
3100
     G(1)=H(1)/R
3120
     SUM = SUM + 2*H(I)
3140 PmP+2.*G(I)*G(I)
```

Figure 26: Convolutional Filter Design (CONFIDE) Fortran Program

```
3200
      30 CONTINUE
3300
      PRINT 70 (H(I), I=1,M)
3310
      SS0=P/(G0*G0)
3320
      SRS=SQRT(SSQ)
3330
      IF(FC=0) SUM=0
      PRINT 36 (SUM, SSQ, SRS)
3340
      36 FORMAT ("SUM=",17," SSQ=",F8.3,"
3360
                                                   SRS=",F8.3)
3400
      85 PRINT 84
      84 FORMAT ("NO")
3500
3600
      READ //NØ
3700
      IF (NØ=Ø) GO TO 60
3800
      N=2**NØ
3900
      M1 = 2 * M + 1
4000
      PRINT 40 (N.MI.L)
4030
      AA=1
4060
      IF(FC=0) AA=-1
4100
      X(1,1)=CMPLX(G0,0.)
4150
      IF (FC=0) X(1,1)=CMPLX(0.0.)
      DO 17 I=1.M
4260
      X(1,I+1)=CMPLX(G(I),\emptyset.)
4300
      17 X(1,N-I+1)=AA+CMPLX(G(I),0.)
4400
4500
      NM=N-M-2
4600 DO 2 I=M,NM
4700
      2 \times (1, 1+2) = (0.00.)
      N2=N/2
4800
      P2=2.*PI/N
4900
5000 DO 5 J=1.N0
5!00 N2J=N/(2**J)
5200 NK=N2J
5300 NI=(2**J)/2
5400 DO 4 I=1.NI
5500 \text{ IN2J} = (I-1)*N2J
5600 T=IN2J*P2*(-1.)
5700 W=CMPLX(COS(T),SIN(T))
5800 DO 4 K=1.NK
5900 \text{ ISUB} = \text{K+IN2J}
6000 ISUB1 = K+IN2J*2
6100 \text{ ISUB2} = \text{ISUB1+N2J}
6200 \text{ ISUB3} = \text{ISUB} + \text{N2}
6300 X(2, ISUB)=X(1, ISUB1)+W*X(1, ISUB2)
6400 X(2, ISUB3)=X(1, ISUB1)-W*X(1, ISUB2)
6500 4CONTINUE
6600 DO 5 K=1.N
6700 5X(1,K)=X(2,K)
       80 PRINT 35
6800
       35 FORMAT ("FMIN, FMAX")
6900
7000
       READ / FMIN FMAX
7100
       IF (FMAX=0) GO TO 85
```

Figure 26 (Continued)

```
7200
     KMIN =N*FMIN/FS+1
7300
     KMAX =N*FMAX/FS+2
7350
     SS=Ø
7400 DO 6 K = KMIN, KMAX
7500
     Y=CABS(X(1,K))
7600
     Z=REAL(X(1,K))
7700
     D = 20 \cdot *ALOG10(Y)
7800
     F=FS*(K-1)/N
7850
     IF (FC=0) GO TO 92
       PRINT 20 (K.Z.D.F)
7900
7920
      GO TO 6
      92 U=AIMAG(X(1,K))
7940
7945
     B=0
7950
      IF(F.GT.0) B=(U-F)/F
7960
      SS=SS+(U-F)*(U-F)
7970
     AMS=SS/(K-KMIN+1)
7980
      PRINT 22 (K,F,U,B,AMS)
8000
      6 CONTINUE
3100
      GO TO 80
8200
      40 FORMAT (14," POINT TRANSFORM OF ",13," STAGE ",13," BITN
          \\ FILTER"/)
8300
      20 FORMAT (13.F12.4.F13.3.F10.3)
      22 FORMAT (13,3F12.3,F15.6)
8350
      70 FORMAT (1017)
8400
8500
      44 STOP
8600
      END
```

Figure 26 (Concluded)

is superior for high precision applications, for L<10 the Hanning window (C = .5) was found to aid in the natural truncation phenomenon discussed in Section III. 6. While a filter with 8 bit precision was able to meet the specs of at least 40db attenuation in the stopband with a transition band of only 300 hertz, 10 bit precision was chosen for the tap weights to provide a safety margin for the additional transceiver processing that must be performed.

The next inputs are FS, FC, and M, where FS=r is the sampling rate and FC is the 6db cut-off frequency for the version of the filter symmtrical about zero frequency, (i.e., FC \approx 1.5KHz for 3KHz single sideband). If FC=0, the tap weights for a differentiating filter are calculated. The M filter tap weights (C_1 , C_2 ,..., C_M in Section III) are computed and printed ten per line. The number of nonzero taps will generally be less than 2M+1. The next input, N_0 = n_0 , determines that a 2^{n_0} point Fast Fourier Transform of the filter's unit response will be taken. The inputs FMIN and FMAX specify the range of frequencies to be printed out. From figure 25 we see that the operator can examine any portion of the frequency response in any detail desired (up to a 2048 point transform) before modifying the filter.

The computer simulations (Section VII) employed a basic sampling rate of r_1 =15KHz because at the time they were performed we believed it would be more efficient to do frequency modulation at the low rate. The resampled rate for the simulations, r_2 =120KHz, was also unnecessarily high. The earlier version of CONFIDE used to design the simulation filters did not have provision for the raised cosine roll-off. These deficiencies combined to make the filters have at least twice the number of taps that they would have required at a more reasonable sampling rate. Sample printouts are given in figures 27 through 30. The specs on the SSB filter required a drop from -3db to -40db in 300 hertz. The frequency response in figure 31 shows that these specifications are met. The differentiating filter in figure 30 is highly inefficient in that it fails to take advantage of a recent "breakthrough" discussed in Section VI. 3.

Since ripple tends to accumulate from the cascade of all transmitter and receiver filters, the specs on the SSB filter were revised for the breadboard to call for a drop from 1db to 50db in 450 hertz. The corresponding frequency response and CONFIDE printouts, for a 8KHz sampling rate, is given in figures 32 and 33. A two-to-one resampling filter used for the breadboard demonstration is shown in figure 34.

To produce a double sideband filter characteristic with a passband from 300 to 3,000 hertz as mentioned in Section V. 2, the CONFIDE program of figure 26 was modified by adding two instructions:

```
C.L
7.5,10
      MAXIMUM TAP =
                           511
FS,FC,M
?15,1.42,50
     481
             397
                      277
                              146
                                        28
                                                -57
                                                       -100
                                                               -101
                                                                         -71
                       55
      18
              47
                                45
                                        88
                                                        -24
                                                                 -33
                                                                                  -17
                                                                         -29
                                                                -10
      -2
                       19
              12
                               -19
                                        13
                                                  Zţ
                                                         <del>-</del> 5
                                                                         -11
                                                                                  · -8
                                                         , 0
                                                  S
      -3
                ı.
                        5
                                 6
                                         5
                                                                  -5
                0
                        0
                                 1
                                         0
                                                  0
                                                          0
      -1
                                                                   0
                                                                            0
                         1.740
S SQ=
        3.027
               SRS=
NO
?8
                                          10 PIT FILTER
 256 POINT TRANSFORM OF LOT STAGE
```

FMIN.	FMAX	Gain	Frequency
20,3		(db)	(KHz)
1	1.0008	0.007	0.000
2	1.0005	0.004	0.059
3	0.9998.	-0.008	0 • 1:1 7
4	0.9988	-0.011	0.176
5	0•9978	-0.019	0.234
6	0.9974	-0.022	0.293
7	0.9981	-0.017	0.352
8	0.9994	-0.005	0.410
9	1.0008	0.007	0 • 469
10	1.0013	0.012	0.527
11	1.0008	0.007	0.586
12	1.0001	0.001	0.645
13	1.0001	0.001	0 • 703
14	1.0010	0.008	0.762
15	1.0015	0.013	0.880
16	1.0005	.0•004	0•87 9
17	0.9985	-0.013	0.938
18	0.9982	-0.015	0.996
19	1.0021	0.018	1.055
20	1.0067	0.058	1.113
21	0.9996	-0.004	1.172
88	0.9611	-0.345	1.230
23	0.8730	-1.180	1.289
24	0.7300	-2.733	1 • 348
25	0.5468	-5.243	1 - 40 6
26	0.3544	-9.009	1 • 465
27	0.1882	-14.508	1.523
28	0.0724	-22.807	1.582
29	0.0115	-38.754	1.641
30	-0.0076	-42 • 356	1 • 699

Figure 27: Single Sideband Filter, r = 15KHz

```
31
          -0.0060
                         -44.496
  32
          -0.0005
                         -65-690
                                       1.816
  33
           0.0018
                         -58 • 40.6
                                       1.875
  3.4
          -0.0008
                         -74.088
                                       1.934
  35
          -0.0014
                         -57.089
                                       1.992
  36
          3000.00
                         -62.396
                                       2.051
  37
           0.0008
                         -61.476
                                       2.109
  38
           0.0018
                         -54.870
                                       2.168
  39
           0.0016
                         -55.919
                                       2.007
  40
           0.0009
                         -60.457
                                      2.25
  4,1
           0.0007
                         -62 • 738
                                      2.344
  42
           0.0011
                       -59.421
                                       2.402
  43
           0.0014
                         -56.784
                                      2.461
  44
           0.0014
                         -56.949
                                      2.520
  45
           0.0010
                         -59.694
                                      2.578
  46
           0.0006
                         -64.832
                                      2.637
  47
           0.0003
                         -69.797
                                      2.695
  48
           0.0001
                         ·79 · 347
                                      2.754
  49
          -0.0000
                         -92.508
                                      8.818
  50
           0.0008
                         -75.481
                                      2.871
  51
           0.0009
                       -61.088
                                      8.930
  52
           0.0019
                         -54.608
                                      2.988
  53
           0.0024
                         -52.445
                                      3.047
FMIN, FMAX
20.0
NO
?10
1 + 35 + 1 + 35
1024 POINT TRANSFORM OF 101 STAGE
                                        10 BIT FILTER
FMIN, FMAX
. 93
          0.• 7300
                         -2.733
                                      1.348
 94
          0.6870
                         -3.261
                                      :1 - 362
FMIN, FMAX
?1.65,1.65
11,3
          0.0115
                        -38.754
                                      1.641
114
          0.0036
                        -48.812
                                      1.655
FMIN, FMAX
0.05
NO ,
,3 0
FS.FC.M
70,000
C.L
20.0
```

Figure 27 (Continued)

```
FS,FC,M
715,3.2,48
                                       30
                                                         2
                                                               -43
                                                                        -19
                                                                                 25
     371
              84
                     -97
                              -75
                                                60
                                                               -12
                               -2
                                       19
                                                 9
                                                       -12
                                                                                 12
      25
             -10
                      -24
                                                                          4
       1
              -9
                       <del>-</del>5
                                5
                                         6
                                                -8
                                                        -6
                                                                 -1
                                                                          4
                                                                                   S
                                                                                   0
      -8
              -3
                        1
                                S
                                         0
                                                - 1
                                                        -1
                                                                  1
                                                                          1
                                0
                                         0
                                                                  0
                        0
                                                 0
                                                         0
       0
               0
NO
30
FS,FC,M
?15,3.2,49
                      -97
                              -75
                                        30
                                                60
                                                         2
                                                               -43
                                                                        -19
                                                                                 26
     371
              84
                               -8
                                        19
                                                9
                                                               -13
                                                                                  12
      25
             -10
                      -24
                                                       -12
                                                                          4
              -9
                                                -2
                                                        -6
                                                                 -1
                                                                          4
                                                                                   2
       1
                       -5
                                6
                                         6
                                                                                   0
                                                        -1
                                2
                                                -2
                                                                  1
                                                                          1
      -2
              -3
                        1
                                         0
                                                                          0
      -1
               0
                        0
                                0
                                         0
                                                 0
                                                         0
                                                                  0
NO
3 0
FS.FC.M
?15,3.2,48
     371
              84
                              79
27
 128 POINT TRANSFORM OF 97 STAGE 10 BIT FILTER
```

FMIN.	FMAX				
3623°	20,3.81.94				
1	0.9944	-0.048	0.006		
8	0.9951	-0.043	0.117		
3	0.9993	-0.006	0.234		
4	1.0029	0.025	0 • 352		
5	0•9993	-0.006	0 • 469		
6	0.9967	-0.029	0 • 586		
7	1.0012	0.010	0.703		
8.	1.0030	0.026	0.880		
9	1.0002	0.002	0.938		
10	1.0009	0.008	1.055		
11	1.0020	0.017	1.172		
12	0.9998	-0.001	1.289		
13	1 • 0009	0.007	1 • 406		
14	1.0022	0.019	1.523		
15	0.9985	-0.013	1.641		
16	0.9978	-0.019	1.758		
17	1.0015	0.013	1.875		
18	1.0009	0.008	1.992		
19	0.9999	-0.001	2.109		
20	1.0029	0.025	8.227		

Figure 23: Double Sideband Filter, r = 15KHz

```
21
           1.0023
                           0.020
                                      2.344
  22
           1.0006
                           0.005
                                      2.461
  23
           1.0024
                           0.021
                                      2.578
  24
           0.9995
                          -0.005
                                      2.695
 25
           1.0018
                          Ö•015
                                      2.812
 26
           1.0026
                           0.023
                                      2.930
 27
           0.9011
                         -0.905
                                      3.047
 28
           0.6131
                         -4.250
                                      3.164
 29
           0.2563
                        -11.826
                                      3.281
          0.0380
 30
                        -28-408
                                      3.398
 31
         -0.0076
                        -42 - 358
                                      3.516
 32
          0.0014
                        -56.851
                                      3.633
 33
         8000.00
                        -61.567
                                      3.750
 34
         -0.0012
                        -58.063
                                      3.867
 35
          0.0032
                        -49.914
                                      3.984
 36
          0.0027
                        -51 • 346
                                      4.102
FMIN, FMAX
20.0
NO
30
```

Figure 28 (Continued)

```
FS, FC, M
7120,7.55,46
     497
             457
                     395
                             317
                                      231
                                              144
                                                       64
                                                                -3
     -95
             -91
                     -74
                             - 50
                                      -23
                                                2
                                                       23
                                                                35
      32
              21
                       9
                              -2
                                      -10
                                              -15
                                                      -17
                                                              -15
      -3
               1
                       3
                                5
                                        5
                                                4
                                                         3
                                                                 2
                                                0
       0
                                0
                                        0
SSQ=
                SRS=
        4.193
                         2.048
NO
29
 512 POINT TRANSFORM OF
                             93 STAGE
                                         10 BIT FILTER
7,7
FMIN, FMAX
 30
          0.7589
                          -5.585
                                       6.797
 31
          0.6916
                          -3.204
                                       7.031
FMIN, FMAX
79.6,15
 41
          0.0197
                         ~34.117
                                       9.375
 42
          0.0038
                         -48.481
                                       9.609
 43
         -0.0046
                         -46.720
                                       9.844
 44
         -0.0075
                         -42.460
                                      10.078
 45
         -0.0070
                         -43.117
                                      10.312
 46
         -0.0047
                         -46.609
                                      10.547
 47
         -0.0019
                         -54.398
                                      10.781
 48
          0.0005
                         -66.836
                                      11.016
 49
          0.0020
                         -54.086
                                      11.250
 50
          0.0026
                         -51.798
                                      11.484
 51
          0.0024
                         -52 - 394
                                      11.719
 52
          0.0018
                         -55.127
                                      11.953
 53
          0.0009
                         -60.538
                                      12.187
 54
          0.0008
                         -73.113
                                      12.422
         -0.0008
 55
                         -72.201
                                      12.656
 56
         -0.0004
                         -67.719
                                      12.891
 57
         -0.0003
                         -69.830
                                      13-125
 58
         -0.0001
                         -81 - 361
                                      13.359
 59
          0.0008
                         -75 - 159
                                      13.594
 60
          0.0004
                         -69 - 107
                                      13.828
 61
          0.0004
                         -68-454
                                      14.062
 68
          0.0008
                         -78.198
                                      14.297
 63
         -0.0000
                       -101-346
                                      14.531
 64
         -0.0003
                         -70.024
                                     14.766
 65
         -0.0006
                         -64.517
                                     15.000
 66
         -0.0008
                        -62.194
                                                       Use FC=7.6
                                     15.234
```

-53

-12

41

i

-83

39

-8

Figure 29: 8 to 1 Resampling Filter, r = 120 KHz

```
C.L
7.5:10
                          511
      MAXIMUM TAP =
FS.FC.M
715,0,51
   -511
             255
                    -169
                              126
                                     -100
                                               82
                                                       -70
                                                                60
     -41
              37
                     ~33
                               30
                                      -27
                                               25
                                                       -23
                                                                21
     -15
              14
                     -13
                               12
                                      -11
                                               10
                                                        -9
                                                                 8
      -6
               5
                      -4
                                4
                                       -3
                                                3
                                                        -2
                                                                 2
                      -1
               1
      -1
                                1
                                        0
                                                0
                                                         0
                                                                 0
       0
SSQ=
        1.570
                SRS=
                         1.253
NO
                             89
27
 128 POINT TRANSFORM OF 103 STAGE
                                         10 BIT FILTER
                                                         Méan
                                        <u>H(f)</u> -1
FMIN, FMAX
                                                        Squared
20,7.5
              f
                          H(f)/j
                                                         Error
                                        o.000
            0.000
                                                       0.000000
  1
  2
            0.117
                                       -0,059
                          0.110
                                                       0.000410
  3
            0.234
                          0.241
                                        0.029
                                                       0.000403
   4
            0.352
                          0.361
                                        0.026
                                                       0.000499
   5
            0.469
                          0.475
                                        0.013
                                                       0.000453
   6
            0.586
                          0.600
                                        0.024
                                                       0.000712
   7
            0.703
                          0.720
                                        0.025
                                                       0 001023
  8
            0.820
                          0.832
                                        0.014
                                                       0.001041
  9
            0.938
                          0.933
                                       -0.005
                                                       0.000931
 10
            1.055
                          1.045
                                       -0.009
                                                       0.000921
 11
            1.172
                          1.179
                                        0.006
                                                       0.000870
 12
            1.289
                          1.281
                                       ~0.006
                                                       0.000843
 13
            1.406
                          1.370
                                       -0.026
                                                       0.001694
 14
            1.523
                          1.515
                                       -0.005
                                                       0.001607
 15
            1.641
                          1 - 649
                                        0.005
                                                       0.001537
 16
            1.758
                          1.739
                                       -0.010
                                                       0.001629
 17
            1.875
                          1.869
                                       -0.003
                                                       0.001545
                                        0.011
 18
            1.992
                          2.013
                                                       0.001676
 19
            2.109
                          2.115
                                        0.003
                                                       0.001599
 50
            2.227
                          5.888
                                       -0.008
                                                       0.001525
 21
            2.344
                          2.343
                                       -0.000
                                                       0.001449
 88
            2.461
                          2.460
                                       -0.001
                                                       0.001381
 23
            2.578
                          2.584
                                        0.008
                                                       0.001334
 24
            2.695
                          2.701
                                        0.002
                                                       0.001287
 25
            2.812
                          2.808
                                       -0.002
                                                       0.001848
 26
            2.930
                          2.927
                                       -0.001
                                                       0.001195
 27
            3.047
                           3.050
                                        0.001
                                                       0.001152
 28
            3.164
                           3.170
                                        0.002
                                                       0.001119
 29
            3.281
                           3.283
                                        0.001
                                                       0.001080
  30
            3.398
                           3.401
                                        0.001
                                                       0.001045
```

-53

-19

-7

-2

Ű

46

17

6

1

Figure 30: Differentiating Filter, r = 15KHz

31	3.516	3.540	0.007	0.001180
32	3.633	3 • 651	0 : 005	0.001232
33	3.750	3.737	-0.003	0.001235
34	3.867	3.873	0.001	0.001206
35	3.984	4.006	0.005	0.001283
36	4.102	4.094	-0.002	0.001259
37	4.219	4.212	-0.002	0.001235
38	4.336	4.335	-0.000	0.001201
39	4.453	4.437	-0.004	0.001231
40	4.570	4.574	0.001	0.001202
41	4.688	4.705	0.004	0.001236
42	4.805	4.808	0.001	0.001207
43	4.922	4.942	0.004	0.001264
44	5.039	5.056	0.003	0.001294
45	5.156	5.140	-0.003	0.001314
46	5.273	5.27	-0.000	0.001582
47	5.391	5 • 407	0.003	0.001310
48	5.508	5 • 530°	0.004	0.001372
49	5.625	5.563	0.007	0.001597
50	5.742	5.751	0.002	0.001578
51	3 • 8,59	5.834	-0.004	0.001654
52	5•977	5.967	-0.002	0.001637
53	6•094	6•089	-0.001	0.001609
54	6.211	6.880	0.001	0.001591
55	6•328	6 • 3 6 0	0.005	0.001722
56	6 • 445	6 • 455	0.001	0.001705
57	6 • 563	6 • 568	0.001	0.001678
58	6•680	6.701	0.003	0.001717
59	6•797	6.815	0.003	0.001734
60	6.914	6.932	0.003	0.001750
51	7.031	6•988	-0.006	0.001988
63	7.148	7.176	0.004	0.002058
63	7.266	7.221	-0.006	0.002295
64	7.383	5.136	-0.304	0 • 685850
65	7 • 500	0.000	-1.000	8-175133
66	7.617	-5.136	-1.674	29 • 402576
FMIN, F	XAM			

Figure 30 (Continued)

Figure 31: Frequency Response of 89 Stage S.S.B. Non-Recursive Filter, r = 15KHz

Figure 32: Frequency Response of 47 Stage S.S.B. Non-Recursive Filter, r = 8KHz

```
CaLaA
? . 5 . 10 . . 1
      MAXIMUM TAP =
                          511
FS.FC.M
78,1.5,29
     399
             151
                     -53
                             -101
                                      -30
                                                44
                                                        46
                                                                 Ø
                                                                        -31
       9
              19
                        6
                               -9
                                       -9
                                                 Ø
                                                         6
                                                                 3
                                                                         -1
      -1
               1
                        1
                                        0
                                                 Ø
                                                         0
                                                                 Ø
                                                                          Ø
SUM=
        1365
               SSQ×
                       2.547
                                SRS=
                                        1.596
NØ
77
 128 POINT TRANSFORM OF
                             59 STAGE
                                         10 BIT FILTER
                            Gain
                                     Frequency
FMIN.FMAX
                            (db)
70.4
                                       (KHz)
  1
          1.0017
                           0.015
                                       0.000
  2
          1.0013
                           0.011
                                       0.063
  3
          1.0006
                           0.005
                                       0.125
  4
          1.0003
                           0.002
                                       0 - 1 68
  5
          1.0005
                           0.005
                                       0.250
  6
          1.0007
                           0.006
                                       0.313
  7
          1.0003
                           0.003
                                       0.375
  8
          0.9999
                          -0.001
                                       0.438
  9
          1.0002
                           0.002
                                       0.500
 10
          1.0012
                           0.011
                                       0.563
 11
          1.0018
                           0.015
                                       0.625
 12
          1.0008
                           0.007
                                       0.688
 13
          0.9991
                          -0.008
                                       0.750
 14
          0.9983
                          -0.015
                                       0.813
15
          0.9991
                          -0.007
                                       0.875
 16
          1.0003
                           0.002
                                       0.938
 17
          1.0000
                         -0.000
                                       1.000
 18
          0.9989
                         -0.010
                                       1.062
 19
          0.9991
                         -0.008
                                       1.125
20
          0.9989
                         -0.009
                                      1.187
```

. #:

Kin

21

Ù

21

55

23

24

0.9868

0.9419

0.8443

0.6901

-20

-3

Figure 33: Single Sideband Filter, Y = 8KHz

1.250

1.312

1.375

1 • 437

-0.115

-0.529

-1 -470

-3.222

25	0 • 4992	-6.035	1 • 500
26	0.3087	-10.210	1.562
27	0 • 1552	-16+181	1 • 625
28	0.0577	-24.773	1 • 687
29	0.0119	-38-472	1 • 750
3Ø	-0.0011	~58.951	1.812
31	-0.0012	-58+315	1 • 875
32	0.0003	-70.338	1.937
3 3	0.0007	-62 • 688	2 • 600
34	0.0009	-60 • 793	2.062
35	0.0010	-59 • 874	2 • 125
36	0.0003	-71 •657	2 • 187
37	-0.0013	-57.549	2.250
38	-0.0024	-52 • 419	2.312
39	-9-0917	-55.248	2.375
48	9 • 99 92	-72 • 661	2 • 437
41	0.0018	-55.036	2.500
42	0.0017	-55.353	2.562
43	0.0006	-64.761	2 • 625
44	-0.0001	-80 • 855	2.687
45	0.0005	-65.747	2.750
46	0.0017	- 55•364	2.812
47	0.0021	-53 • 457	2 • 875
48	0.0012	-58•575	2 • 937
49	-0.0005	-66 • 417	3 • 000
5¢	-0.0017	-55.349	3 • Ø 6 2
51	-0.0019	-54.278	3 • 125
52	-0.0014	-57.032	3 • 1 87
53	-0.0007	-62.616	3 • 250
54 55	-0.0004	-69 • 043	3.312
55 54	-0.00C4	-68-614	3 • 375
56	-0.0007	-62 • 793	3.437
57 5.6	-0.0011	-58-919	3 • 500
58	-0.0011	-59 • 489	3 • 562
5 9	-0.0000	-87 • 264	3.625
66	0.0017	-55.282	3.687
61	0.0032	-49.974	3.750
62	0.0031	-50 -212	3.812
63	0.0012	-58-124	3.875
64 65	-0.0011	-58.965	3.937
65 66	-0.0022	-53 • 145	4-000
66 FMIN.	-0.0011	-58•965	4.062
30.0	LEMY		
1010			

Figure 33 (Continued)

```
NØ
?9
 512 POINT TRANSFORM OF 59 STAGE
                                      10 BIT FILTER
FMIN, FMAX
71.32,1.37
 85
          0.9419
                         -0.520
                                     1.312
 86
          0.9230
                         -0.696
                                     1.328
 87
          8 - 9004
                         -0.911
                                     1.344
 88
          0.8742
                         -1 - 168
                                     1.359
 89
          0.8443
                         -1 -470
                                     1.375
FMIN, FMAX
71.76,1.8
113
          0.0119
                       -38-472
                                     1.750
114
          0.9065
                       -43 - 807
                                     1.766
115
          0.0027
                       -51 • 460
                                     1.781
116
          0.0003
                       -72-009
                                     1.797
117
         -0.0011
                       -58 951
                                     1.812
FMIN, FMAX
70.0
NØ
70
```

ı ه 🛊

o.c

Figure 33 (Concluded)

```
C.L.A
? . 5 , 10 , . 45
      MAXIMUM TAP =
                          511
FS.FC.M
?16.4.10
     303
                                                                Ø
SUM=
        1021
               SSQ=
                       1.727
                               'SRS=
                                        1.314
NØ
77
 128 POINT TRANSFORM OF
                             21 STAGE
                                         10 BIT FILTER
FMIN, FMAX
21.7
  9
          1.0014
                          0.012
                                      1.000
 10
          1.0017
                          0.015
                                      1.125
 11
          1.0018
                          0.016
                                    1.250
 12
          1.0015
                          0.013
                                      1.375
 13
          1.0006
                          0.005
                                     1 - 500
 14
          0.9988
                         -0.010
                                      1.625
 15
          0.9960
                         -0.035
                                      1 . 750
 16
          0.9917
                         -0.072
                                      1.875
 17
          0.9857
                         -0.125
                                      2.000
18
          0.9776
                         -0.197
                                      2.125
19
          0.9671
                         -0.290
                                      2.250
20
          P.9539
                         -0.410
                                      2.375
21
          0.9377
                         -0.559
                                      2.500
55
          0.9182
                         -0.741
                                      2.625
23
          0.8953
                         -0.960
                                      2.750
24
          0.8689
                         -1 -220
                                      2.875
25
          0.8390
                         -1 • 525
                                      3.000
26
         0.8056
                         -1 .877
                                      3.125
27
         0.7690
                         -5 .585
                                      3.250
28
         0.7293
                         -2.742
                                      3.375
89
         0.6869
                         -3.263
                                      3.500
30
         0.6422
                         -3 . 846
                                      3.625
```

Figure 34: 2 to 1 Resampling Filter, r = 16KHz

31	A: FOF A		
	0.5958	-4•498	3 • 750
32	0.5482	-5.221	3 • 875
33	0.5000	-6.021	4.000
34	0.4518	-6.901	4-125
35	0 • 40,42	-7.869	4.250
36	0.3578	-8.928	4.375
37	0.3131	-19.085	4.500
38	0.2707	-11.349	4.625
39	0.2310	-12.726	4 • 750
40	0 • 1 9 4 4	-14.227	4 • 875
41	0.1610	-15 • 864	5 • 000
48	0.1311	-17-650	5.125
43	0.1047	-19.603	5.250
44	0.0818	-21.745	5.375
45	9.0623	-24 - 105	5 • 500
46	0.0461	-26.724	5 • 625
47	Ø • Ø 3 2 9	-29.660	5 • 750
48	0 • 0224	-33.000	5 • 875
49	0.0143	-36 • 895	6.000
50	Ø • # 0 83	-41 -637	6.125
51	0.0040	-47.935	6.250
52	0.0012	-58 - 740	6.375
53	-0 •0006	-64-633	6 • 500
54	-0.0015	-56 • 523	6.625
55	-0.0018	-54.891	6.750
56	-0.0017	-55.329	6 • 875
57	-0.0014	-57 • 154	7.000
58	-0.0009	-60 • 452	7 • 125
			14123

Figure 34 (Continued)

The corresponding printout (at a 16KHz sampling rate) is shown in figure 35.

3. DIGITAL DIFFERENTIATION

In Reference 1, the digital Hilbert transform was derived from the sampling theorem,

$$x(t) = \sum_{k=-\infty}^{\infty} x_k \frac{\sin(\pi rt - k\pi)}{(\pi rt - k\pi)}$$

$$\sum_{k=-\infty}^{\infty} (-1)^k x_k \frac{\sin \pi rt}{\pi (rt - k)},$$
(1)

by taking the Hilbert transform of (1) and sampling the result at the rate r; $\hat{x}_n = \hat{x}(n/r)$. The result was

$$\hat{\mathbf{x}}_{n} = \frac{2}{\pi} \sum_{k=-\infty}^{\infty} \frac{\mathbf{x}_{n-k}}{k}, \text{ k odd.}$$
 (2)

Similarly, we can differentiate (1),

$$\dot{x}(t) = \sum_{k=-\infty}^{\infty} (-1)^k x_k r \left[\frac{\cos \pi r t}{r t - k} - \frac{\sin \pi r t}{\pi (r t - k)^2} \right], \qquad (3)$$

and, by sampling this result at the rate r, we obtain the digital derivative

$$\dot{x}_{n} = \dot{x}(n/r) = r \sum_{\substack{k = -\infty \\ k \neq n}}^{\infty} (-1)^{n-k} \frac{x_{k}}{n-k} . \tag{4}$$

The preceding results could also have been obtained by deriving the appropriate filter frequency response, H(f), and finding the corresponding unit response

```
C.L.A
7.5,10,0
      MAXIMUH TAP =
                          511
FS.FC.M
716,1.45,60
     386
             110
                    -107
                             -144
                                      -51
                                                29
                                                        16
                                                               -48
                                                                        6 ?
                                                                                -46
      -1
                3
                      -30
                              -52
                                      -38
                                                -9
                                                         Ø
                                                                -18
                                                                         . . 5
                                                                                -29
      -9
               0
                       -9
                              -22
                                      -20
                                                -7
                                                         1
                                                                 -3
                                                                         12
                                                                                -12
      -4
               2
                        1
                               -5
                                       -6
                                                -2
                                                         2
                                                                 2
                                                                         ·• 1
                                                                                 -3
      -1
               8
                        $
                                Ø
                                       -1
                                                         ĺ
                                                                          1
                                                 Ø
                                                                  1
                                                                                  Ø
       Ø
               Ø
                                Ø
                        1
                                        Ø
                                                 Ø
                                                         Ø
                                                                  0
                                                                          0
                                                                                  Ø
SUM=
               SSQ=
          25
                        2.658
                                SRS=
                                         1.630
NØ
?7
 128 POINT TRANSFORM OF 121 STAGE
                                          10 BIT FILTER
FMIN, FMAX
70.4
  1
          0.0039
                         -35-023
                                       3.000
  8
          0.1169
                         -12-619
                                       0.125
  3
          Ø • 3417
                          -3.306
                                       0.250
  4
          0.4844
                          -0.276
                                       0.375
  5
          0.5040
                           0.069
                                       0 - 500
  6
          0.4996
                          -0.003
                                       0 . 25
  7
          0.4997
                          -0.005
                                       0.750
  8
          0.5009
                           0.015
                                       0.875
  9
          0.5018
                           0.031
                                       1.000
 10
          Ø • 4994
                          -0.010
                                       1.125
 11
          0.5001
                           0.002
                                       1.250
 12
          0.5007
                           0.013
                                       1.375
 13
          0.5008
                           0.015
                                       1.500
 14
          Ø . 5002
                           0.004
                                       1.625
 15
          Ø • 4993
                          -0.012
                                       1.750
 16
          0.4999
                          -0.001
                                       1.875
 17
          0.5002
                           0.003
                                       2.000
 18
          0.4995
                          -0.009
                                       2-125
 19
          0.5003
                           0.006
                                       2.250
 20
          0.5003
                           0.006
                                       2.375
 21
          0.4998
                          -0.003
                                       2.500
```

A PARTY OF THE PROPERTY OF THE PARTY OF THE

The state of the state of

Ĥ

Figure 35: Double Sideband Filter, r = 16KHz

22	ؕ50 0 2	0.004	2.625
23	ؕ5008	0.014	2.750
24	0.5017	0.030	2.875
25	0 • 41 58	-1.602	3.000
26	0.2020	-7 • 873	3-125
27	0.0326	-23.728	3.250
28	-0.0042	-41 • 566	3.375
29	0.0007	-57 - 526	3.500
3Ø	0.0012	~52 • 740	3.625
31	0.0010	-54 • 099	3.750
32	8.0002	-66 • 546	3.875
33	-0.0011	-53∙44 Ø	4.000
34	0-0011	-52 • 831	4.125
FMIN.	FMAX		
74,8			
33	-0.0011	-53 • 440	4.000
34	0.0011	-52 • 831	4.125
35	0.0012	~52 • 469	4.250
36	-0.0013	-51 • 912	4.375
37	0.0020	-47.759	4.500
38	0.0000	-83.942	4.625
39	-0.0012	-52 • 186	4.750
40	(i) •0009	-55•039	4•875
41	-0.0014	-51 •233	5.000
42	-0.0007	-56 • 666	5•125
43	-0.0000	-80.310	5 • 250
44	0.0008	-55.991	5.375
45	0 • 0009	-54.975	5.500
46	0.0007	-56.778	5 • 625
47	0.0021	-47.717	5.75Ø
48	-0.0001	-73.318	5.875
49	-0.0015	-50.712	6.000
50	-0.0009	-54 • 846	6.125

Figure 35 (Continued)

```
51
          9.9011
                        -52 -871
                                      6.250
 52
          0.0006
                        -58.322
                                      6.375
 53
         -0.0014
                        -51 -080
                                      6.500
                        -58-319
 54
         -0.0006
                                      6.625
 55
         -0.0006
                        -58.677
                                      6.750
 56
                        -53 -219
                                      6.875
          0.0011
 57
         -0.0011
                        -53-119
                                      7-000
 58
                        -46 -345
                                      7-125
         -0.0024
 59
                        -62.737
                                      7.250
         -0.0004
 60
         -0.0018
                        -48 - 808
                                      7.375
 61
         -0.0001
                        -72 - 573
                                      7.500
 62
         -0.0006
                        -57.964
                                      7.625
 63
         -0.0004
                        -62 • 600
                                      7.750
 64
          0.0002
                        -68 - 440
                                      7.875
 55
         -0.0025
                        -46.080
                                      8.000
 56
          0.0002
                        -68-440
                                      8 - 125
FMIN. FMAX
70.0
NØ
29
 512 POINT TRANSFORM OF 121 STAGE
                                       10 BIT FILTER
FMIN, FMAX
7.25.37
  9
          0.3417
                         -3.306
                                      0.250
 10
          0.3911
                                      0.281
                         -2 - 134
          0.4319
 11
                         -1.272
                                      0.313
 12
          0.4630
                         -0.668
                                      0.344
 13
          0.4844
                         -0.276
                                      0.375
FMIN, FMAX
70.0
NØ
20
```

0

9 (

Figure 35 (Concluded)

$$h_n = \int_{r/2}^{-r/2} H(f) \epsilon^{j2\pi nf/r} df.$$
 (5)

If

$$H(f) = i \operatorname{sgn} f \tag{6}$$

we obtain

$$h_{n} = \begin{cases} \frac{2}{\pi} \frac{1}{n}, & n \text{ odd} \\ 0, & n \text{ even} \end{cases}$$
 (7)

for the Hilbert transforming filter. If

$$H(f) = j2\pi f \tag{8}$$

we obtain

The state of the s

$$h_{n} = \begin{cases} r \frac{(-1)^{n}}{n}, & n \neq 0 \\ 0, & n = 0 \end{cases}$$
 (9)

for the differentiating filter. Equation (9) was used with a Hanning window for differentiation in the CONFIDE program. Note that equation (4) can also be written

$$\dot{\mathbf{x}}_{\mathbf{n}} = \mathbf{r} \sum_{k=-\infty}^{\infty} (-1)^k \frac{\mathbf{x}_{\mathbf{n}-k}}{k} \tag{10}$$

Rabiner and Steiglitz (25) have pointed out that the above is <u>not</u> the thing to uo. They note that the magnitude and phase response corresponding to equation (8) is hard to realize digitally because of the phase discontinuity shown in figure 36c. By introducing a half-sample delay,

$$H_1(f) = j2\pi f e^{-j\pi f/4}, \quad | \frac{r}{2}$$
 (11)

Considerations of the second o

Figure 36: Frequency Response of an Ideal Wideband Differentiator

the phase response of figure 36d is obtained, whereby the phase discontinuities occur only at frequencies at which |H(f)| = 0.

From equation (3) using t = (n-1/2)/r instead of t = n/r, we obtain

$$\dot{x}_{n} = \dot{x}(\frac{n-1/2}{r}) = \frac{r}{\pi} \sum_{k=-\infty}^{\infty} (-1)^{n-k} - \frac{x_{k}}{(n-k-\frac{1}{2})^{2}}$$
 (12)

or

$$\dot{x}_{n} = \frac{r}{\pi} \sum_{k = -\infty}^{\infty} (-1)^{k} \frac{x_{n-k}}{(k-\frac{1}{2})^{2}} = \frac{4r}{\pi} \sum_{k = -\infty}^{\infty} (-1)^{k} \frac{x_{n-k}}{(2k-1)^{2}}.$$
 (13)

Alternatively we could obtain

$$h_{n} = \frac{4r}{\pi} - \frac{(-1)^{n}}{(2n-1)^{2}}$$
 (14)

from equations (5) and (11). Equations (9) and (14) are compared in figure 37, for r = 1. Equation (14) is seen to decay quadradically and to more closely approximate a simple $(x_i - x_{i-1}) \cdot r$ "differentiator". The unit response has to be truncated to finite duration. Rabiner and Steightz (25) present excellent results for the frequency sample specification method. However, any of the methods of Section III may be used.

Another way of viewing these results is as follows. A filter with impulse response

$$\frac{\sin \pi rt}{\pi rt} \tag{15}$$

would pass a signal bandlimited to -r/2 < f < r/2, undistorted. The impulse response of the corresponding differentiator is given by the derivative of (15):

$$h(t) = \frac{1}{t} \left[\cos \pi rt - \frac{\sin \pi rt}{\pi rt} \right] . \tag{16}$$

Figure 37: Unit Response of Two Wideband Differentiators

Equation (15) can be thought of as a bandlimited inpulse $\delta(t)$, and (16) as a bandlimited doublet, $\dot{\delta}(t)$. The unit response of a digital differentiator is obtained by sampling (16) at the rate r. The usual wideband differentiator (5,0,11,20,27), such as the one used in our simulations, samples (16) at the zeros of the sine term. Obviously, a shorter response is obtained by sampling at the zeros of the cosine. In fact, the latter approach indicates that the simple-minded two-term differentiator, such as the one used in our breadboard, is a reasonable first approximation.

The second secon

SECTION VII

COMPUTER SIMULATION

Simulations were made for three modulation schemes. Single sideband (SSB), double sideband (DSB), and frequency modulation (FM). The simulations were initially programed on the Burroughs 5500 time share system. The working programs were then transferred to the Philoo 212 computer system located at Willow Grove. Signal to noise runs were made on the Philoo 212.

The calculations of the tap weights for the convolutional filters were performed on the Burroughs 5500 time share system. The program CONFIDE calculated the tap weights to the desired bit accuracy and then performed a Fourier Transform on the weights. The results of the Fourier Transform were printed out in order that the frequency selective properties of the filter could be checked.

TO THE THE PROPERTY OF THE PRO

The various modulation system simulations were carried out on a low pass equivalent basis for the DSB, SSB, and FM systems. All filtering was done with convolutional digital filters with complex signals where appropriate. The basic sampling rate for input and output of all simulations was 15kHz. This sampling rate was thought to be a compromise between the sampling rate needed for DSB and SSB and the rate needed for FM. Based on the results of these initial simulations an effective sampling rate for input and output of 8kHz was chosen for the breadboard.

The SSB and DSB systems were tested by passing a pulse derived from a 4KHz 50 o/o raised cosine spectrum through the system. The spectrum of the test pulse is shown in figure 16b of Section III. 6 (B = 4KHz). This pulse had eleven (11) non-zero terms in it after rounding to 7 bit precision. The reason for using the above mentioned pulse was to simulate the inherent filtering a real input to the systems would experience. Throughout the simulations the real channel data stream is designated as XR and the imaginary channel data stream as X1. Whenever possible the output of both real and imaginary channels were saved as an aid to checking the output of the filters as the signal progressed through the system. The simulations can best be understood 1, relating the programs for the various simulations to their block diagrams (figures 38, 59 and 40). All of the programs are documented with comment cards and should be reasonably easy to understand by anyone with a good working knowledge of Fortran and some background in digital communication system design.

The noise added to the input to the receiver was derived from a

Control of the second of the s

Figure 38: S.S.B. System Simulation

See the second of the second o

, 0

Figure 38 (Continued)

21/X X1/13

0

-7.5

Figure 38 (Concluded)

Figure 39: DSB System Simulation

THE PROPERTY OF THE PROPERTY O

٥

ô

Figure 39 (Continued)

Figure 40: FM and PM System Simulation

0,

Figure 40 (Continued)

ξ. Qr

Figure 40 (Concluded)

gaussian random number generator and the specific noise power at that point was calculated. The noise was added at a level to compensate for the bandwidth of the receiver. Signal-to-noise curves were run for the DSB and SSB cases and plotted in figures 41 and 42. The method used to calculate the signal-to-noise ratio out of the receiver was that the spectrum of the output wave form with no poise (-100dB) added to the input to the receiver was calculated. The difference between this spectrum and the output spectrum with noise added to the receiver was calculated using the no noise spectrum as a reference. Also the distortion of the spectrum of the signal from the input of the systems to the output were calculated to obtain a feel for the amount of distortion the systems are adding due to the number of bits of precision that were carried. These figures are:

DSB 23.8 DB SSB 21.2 DB

These signal to distortion ratios are not particularly good indicates that the signals should be carried through the system at greater than 8 bit precision. And the filter should be implemented with more than 10 bit precision. Good precision for the signal would be 10-12 bits and 12-14 bits for the filters. Actually, 10-12 bits could be used for the filters provided the number of taps is kept low by lowering the sampling rate.

The FM system was checked using a longer pulse train, about 20 pulses. This pulse train was passed through the system. The pulse train was FM modulated filtered and translated to 3.34MHz resampled and demodulated and printed out. As can be seen in figure 43 the pulse was faithfully reproduced at both a height of 1.0 and 0.5. These two illustrations show that the digital FM system simulated is feasible. As before the signal was carried to 8 bit precision and the filtering was implemented to 10 bit precision. Provision was made in the simulation for preemphasis. The parameter & in figure 40 may vary from 0 (no preemphasis; to 1 (phase modulation). This parameter was not investigated.

1. SUBROUTINE DESCRIPTION

(\

GAUSS (S, SQH, SGH)

This subroutine returns a gaussian random variable X (in volts) with zero mean and standard deviation $SQH(10)^{-SGN/20}$. SQH is the RMS value of the signal where noise is added and SGN is the signal to noise ratio.

RND (X, XMAX, L)

This subroutine rounds X to L bit precision. XMAX is the maximum magnitude of the variable X.

The manufaction and the second of the second

SIGNAL-TO-DISTORTION RATIO

THROUGH SYSTEM = 21.2 DB.

Figure 41: SSB Simulation Results

Figure 42. DSB Simulation Results

Figure 43: FM Simulation Results

CS (X, L)

Computes cosine X to L bit precision.

SN (X, L)

Computes sine X to L bit precesion.

FFT (X, NSTAGE, SIGN)

Subroutine to take Fourier Transform. For details see comments in listing of the subroutine.

ERR(XR, XI, IL, M, FM, FT)

This subroutine computes the normalized magnitude of the spectrum of a complex signal. XR is the real part of the signal, XI is the imaginary part of the signal, 2^{IL} is the size of the transform used, M is the number of complex samples of input data, FM is the output magnitude of the spectrum and FT is a complex working matrix.

FIND (XR, XI, IL, M, REP, FT)

This subroutine calculates and prints out the normalized spectrum of a complex wave form with XR the real part and XI the imaginary part. All parameters are the same as in ERR except that REP is the rate at which the time wave form is sampled. This subroutine calls FFT.

```
C SINGLE SICHEAND SIMULATION D.L.FLETCHER
                 SSE SIMULATION
      DIMENSION &SSE(100), &REP(100), ANLCG(100), X(100), XR(300),
     *XI(30C),XR2(400),XT2(400),XR3(850),XI3(850),XR4(150),XI4(150),
     + XR5(1650), XIF(1650), XR6(350), XI6(350), XR7(900), XI7(900),
     +XRE(300),XTE(300),XR9(300),XI9(300),XCUT(300),FTM(512)
      DIMENSION F1(512), FM(1024), F2(512)
      CGMF(EX FT(2,1024),C
      DATA A1, A3, A4, A8, A9, A0, 1.74, 3.56, 3.56, 20, 03, 34, 86, 34, 86,
      DATA LF, L/10,8/
      DATA MSIG, MS, MR, MA/5, 45, 40, 20/
      DATA AS, ASF, AFF, AA/11, 91, 81, 41/
C NS=NO. OF TERMS I: INPUT STGNAL = 2+MSIG+1
C NSB=NC. OF TERMS IN SSR FILTER = 2+MS+1
C NRF=NC. OF TERMS IN REP FILTER = 2*MR+1
C NATIO. OF TERMS IN ANALOG FILTER = 2*MA+1
      DATA F75.F78.FZA/.1893..1258..0312/
      DATA SON /15./
      PI=3.14159265
CCALCULATE TAP WFIGHTS
      DC .50 f=4,MS
      FI:I
      WIN= 154+ 46+CCS (PI+FT/50.)
      IMS=MS+1+I
      WSSE(IMS)=WIN+SIN(FZS+PI+FT)/(PI+FI+F7S)
      CALL FAC(ASSE(IMS), 1.0, LF)
      JMS=MS+1-I
      WSSE (LMS) = kSSE (IMS)
      WSSE (MS+1)=1.0
      CALL FAC(WSS4(WS+1),1,0,LF)
      FME=MR
      DC -60 T=1, MR
      FIzI
      ATSFI+FI/FMR
      WIN= 154+ 46+ CCS (AT)
      IMH=MR+I+1
      WREF (IMR)=WIN &SIN (FZR*PI*FT)/(PI*FI*F7R)
      CALL FAC( WREF ( IMR), 1.0, LF)
      JMR=MR+1-I
   60 WREF (LWR) = LRFF(IVR)
      WREF 'MR+1)=1.C
      CALL RAC(AREF(MR+1),1.0,LF)
      FMA=MA
      DC 70 T=1.MA
      FI=I
      AT=FI+FI/FKA
      WIN= .54+.46+CCS(AT)
      IMA=MA+1+I
      ANLCG(TMA)=WIN+SIV(FZA+PI+FI)/(PI+FI+FZA)
      I-1+AMSAML
      ANLCG(LMA) = ANLCG(IMA)
70
      CONTINUE
      ANL'CG(MA+1)=1.0
C LOAD SO REPCEAT RC PULSE
      A=8.0+PI/15.r
      DC 80 T=4.MSIG
      FI:I
```

```
IMSIG=MSIG+1+T
      X(\Pi MSIG) = SIN(A + FI) * CCS(.5 * A + FI)/(A + FI * (1. = (8. * FI/10.) * * * 2))
      CALL FRE(X(IMSIG),1.0.7)
       JMSIG=MSIC+1-I
  80
      X(JMSIG)=X(IMSIG)
       X(MSIG+1)=1.0
       CALL RAD(X(PSIG+1),1.0.7)
       PRINT R1,(X(I),I=1,N5)
       FCRMAT(1H1,17HINPUT WAVE FORM /(10F10.5))
CSHIFT SFECTRLM BY 1.65 KC
       W=1.65/15.N
       DC 116 I=1, NS
       FI=I-MSIG-1
       Xhm2.C+FI+h+FI
       XR(I)=X(I)+CS(XW_sLF)
       CALL RNC(XR(J),1.0,L)
                                       Reproduced from
       XI(I)=x(I)+SN(XW,LF)
110
       CALL FNE(xI(I),1,0,L)
C CONVOLVE WITH FIRST FILTER
       DC 112 I=1, NS
C SHIFT ALL TERMS BY NSB
       IN=N8E+NS-J
       ISANS+1-I
      -XR(IN)=XR(TS)
 112
      XI(IN)=XI(IS)
       NS1=NSP-1
       DC 113 I=1.NS1
       XR(I)=n.0
       XI(I)=n.0
C NF=NO. OF TERMS OUT OF FIRST FILTER
       NF = N SE + N S = 1
       DC 145 I=1, NF
       DC 114 U=1,NSE
       IJ=IHJ=1
       XR2(I)=XR2(I)+kSSB(J)*XR(IJ)
      | XI2(I)=XT2(I)+kS5d(J)+XI(IJ)
       CALL RNE(X22(I), A1,L)
115
       CALL FNE(XIZ(I), A1, L)
       CALL ERR(XR2, XI2, 9, NF, FM, FT)
       PRINT 40
       FORMAT(1HC,3FWSB )
      CALL FTAD(XE2, XI2.9, AF, 15000, FT)
CEFFECTIVELY FILL WITH ZERCS AND CONVOLVE WITH 7 KC LOW-PASS
C REPETITION FILTER, OUTPUT OF FILTER IS AT 120 KC
       DO 150 I=1.NF
C SHIFT ALL TERMS BY NRF
       IRMNRF+NF-I
      IEANFA4-I
       XI2(IF)=XI2(IF)
-150
       XR2(IF)=XF2(IF)
       NRF1=NRF-1
      -DC 160 I#1,NFF1
       XR2(I)=0.0
-160 -- XI2(I)=0.0 -
C CALCULATE 120 KC CLTPUT
       DC 170 L1=1, NF
```

THE PROPERTY OF THE PROPERTY O

```
DC 170 K=1.8
       436+4
      DO 170 I=1,11
      LT=L1+T+92
      LK=8+(7-1)+K
       170
      XR3(J)=XR3(L)>hREP(LK)+XR2(LT)
C J IS THE NIMPER OF OLIPUT SAMPLES FROM REP FILTER
      K2⊐_
       DC 180 I=1,K2
      CALL FAC(XI3(T):43.L)
180
      GALL FAC(XR3(I), 43,L)
      PRINT 11
11
      FORMAT (1HC, 4HAREP )
       CALL FTND(XR3, XI3, 10, K2, 120000., FT)
C PLT SIGNAL THROUGH INTERPOLATION FILTER AND SIMULATED
C ANALOG FILTER
      DC 196 I=1, K2
      DELI = (xI3(I+1) = XT3(I))/32.n
      DELF=(xR3(I+1)=XR3(I))/32.0
      DC 190 0=1,32
      FJEL
      K=K+1
      K1=MOE(K.100)+1
C K IS XF4 INCEX
C K1 IS XR4 CYLIC INCEX
      XI4(K1)=XI3(T)+(FJ-1.)+DELT
      XR4(K1) = XR3(J) + (FJ-1.) + DELR
      CALL RNE(XR4(K1), A4,L)
      CALL FAR (XI4(K1 ,A4,L)
      IF GMOD (K.16) EG (O) GC TO 200
190
      CCNTINLE
      GC 10 220
      CONTINUE
C CALCULATE PLIFLE OF ANALOG FILTER
C M IS X&5 IACEX
      M= M+1
      DO '216 L1=1,NA
      N=MCD (74+(M=1)+16+L1,100)+1
      XI5(M)=XI5(F)+ANLOG(L1)+XI4(N)
210
      XR5(M)=XR5(M)+ANLOG(L1)+XR4(N)
 - -- -GG--10-49A
220
      CONTINLE
      M141/2+1
      M24M /5+1
      DO '23C Im1, F1
      XI7(I) # X T5(2+I=1)
    ---<del>-XR7(I)=</del>#<del>R5(2+</del>I=1)
230
      CONTINUE
      PRINT 42
12
      FORMAT(1HC, 15+RECEIVER INPUT )
      GALL FTMD(XR7, XI7, 10, M1, 120000, FT)
      DO '240 I=1.M2
      XI<del>6(I)</del> = XI<del>5(S</del>+I=4)
240
      XR6(I)=XR5(5+1=4)
      EP TAERS
13
      FORMATIONO, 23 HOUTPUT OF ANALOG FILTER
```

THE VALUE OF STREET AS A SECRETARY CONTROL TO A STREET OF THE PROPERTY OF THE

В

```
CALL FTND(XR6, XI6, 9, M2, 48000., FT)
C XR6 IS INFLIT TO FFT TO LOOK AT CUTPLE SPECTRUM OF TRAMSMITTER
C XR7 IS INFIT TO RECEIVER
C ADD NOISE AND SHIFT BY NRF-8
      FM1=2+M1
      DC '249 I=1.M1
249
      XS=xS+xR7(I)+xR7(I)+xI7(I)+xI7(I)
      SCH=SCRT(xS/FN1)
      DC 250 1=1, M1
      MT = MI + NAF = R = I
      MIEN1+1-I
      CALL GALSE (Z, SGH, SGN)
      ZT=ZT+7+2
      XR7(MT)=XF7(MT)+Z
      CALL GALSE(Z, SGH, SGN)
      21=21+1+2
      XI7(MI)=XI7(MI)+7
250
      CONTINUE
      IF (27, FG, C.) GC TO 251
      SG=10.0+ALCG1C(XS/7T)
251
      CONTINUE
      PRINT 14
14
      FCRHAT(1HC, 12HAFTER NOISE )
      CALL FTND(XR7, XI7, 10, M1, 120,000, FT) '
C SIGNAL GOES INTO REPETITION FILTER IN STEPS OF 8 INPUT SAMPLES
C OUTPUT IS AT 15 KC
      NE #NRF #9
      DC '260 I=1.N8
      XR7(I)=0.0
      X-17(1)=0+0
C CALCULATE OUTFUT OF RECEIVER REPETITION FILTER
      M3=14/8+1
      DC '280 K=1, M3
      DC '276 L1=1.NAF
      L7=L1+8+(K-1)
      XI&(K)=XIE(K)+WREP(L1)+XI7(LT)
      XRE(K) = XRE(K) + h REP(L1) + XR7(LT)
      CALL FNE(XRE(K), 48,L)
280
      CALL FNE(XIE(K), A8, L)
      PRINT 23
23
      FCRMAT(1HO,4HAREP )
      CALL FIND(XR8, XI8.0, M3.15000., FT)
C SSB 1.35KC LP FILTER
      DC '281 I=1, N3
      IS=N 9E+M3+I
      IM 44 3+4-I
      (MI)SAX=(SI)3RX
 281
      X16 (IE)=X10(I+)
      DO '282 I=1. NS1
       XRE(I)=0.0
282
       XI8(T)=0.C
       M4443+N58-1
       DC 283 I=1.M4
      -DC 1284 -- #4 ,ASE
       IJ#I#L-1
       XRG(I)=XRG(I)+hSSB(J)+XRB(IJ)
 284
       XIG(T) #XTG(I)+&SSB(J) #XI8(IJ)
```

```
CALL FRE(XRS(I),A9,L)
283
       CALL FAC(XJS(T), A9, L)
       FORMAT(1HC, 7HSSB FIL )
16
       CALL FTNP(XGG, XI9, 9, M4, 15000, FT)
       CALL ERR(XRS, XI9, Y, M4, F1, FT)
C SHIFT BY 1.65 KC AND ADD TO GET OUTPUT
       DC '290 I=1.M4
       F I = I = 1
       XW=2.C+PI+W+FI
       XRS(I) = XRS(I) + CS(XW, LF)
      'XI9(I)=xI9(I)+SN(XW,LF)
       CALL FNE(xRS(I), A9, L)
       CALL FRE(XIS(I),A9,L)
290
       XCLT(I)=XH9(I)+XI9(I)
       PRIMT 20
20
       FCRMATITHE, 17 HCUTPUT WAVE FCRM
       PRINT 91. (XCLT(I), T=1, M4)
21
       FCHNAT(1H ,10F10,3)
C
       DO 342 I=1,300
342
       XI(I)=0.0
C RECEIVER CLIPLT
       DC 360 I=1,512
       FT(2:1)=CMPLX(0,,U.)
       FT(1,I)=CMPLX(0:,0.)
360
       DC 370 I=1.84
370
       FT(1.I)=CMPLX(XOLT(I).0.)
       CALL FFT(FT, 9, -1.)
       DC 380 I=1,512
       F2(1)=CARS(FT(2.1))
       IF (F2(T).LE.C.00001) F2(I)=0.00001
380
       FTM(T)=20.0+ALCG10(F2(I))
       B=FIM(90)
       DC 3H1 I=1,512
381
       FTM(I)sFTM(I)sE.
       SMEC=15000.7512.
       PRINT 385
385
       FCRMAT(1H1,22+RECEIVER OUTPUT IN DB
       PRINT 390, SMPC
 390 FORMAT(1H ,16+SAMPLE SPACING = ,F10.4)
       DC 400 I=1,52
      .... 4 ----
       FJ#L
       CI=FJ+5.0+SMFC
       K1=540+1
       K2=K++4
400
       PRTAT 350,CI,(FTM(K3),K3#K1,K2)
-350- - FORMAT+1H y 6F12+2) -
       ER#0:0
       REAL 435.(FM(I), I#1,512)
       00 -440 I=1,542
       LR2=ER2+FM(I)+FM(I)
410 ER#ER+(F1(I)+FM(I))++2
       PRINT 420,ER
- -420 -FORMAT (4H0,54HINTEGRAL SGUARED NOISE = ,F8-3)
       PRINT 425,5G
```

```
425 FCHMAT(1H0,44+SIGNAL TO NOTSE RATIO AT INPUT TO RECEIVER = ,F9.2,

1 4H 'IP )

SGA=1C.0*ALCG10(EH2/ER)

PRINT 430,SGA

430 FCHMAT(1HC,27+SIGNAL TO NOTSE POWER OUT = ,F10.3,3H B8 )

PUNCH 435,(F1(I),I=1,512)

435 FCHMAT(10F8.5)

999 CONTINIE

STOF
ENT
```

```
SLERGLTINE GALSS(X, Sch, SGN)
C THIS SLENCITINE RETURNS A GAUSSIAN RANDOM VARIABLE X
C WITH ZERO MEAN AND ST. DEV. - SCH/(10, ** (SGN/20.))
C SGH = SGLARE ROOT OF THE SHM OF THE SGLARES OF THE HIS
C SGN = VCITAGE SIGNAL TO NOISE RATIO IN DE
      DIMENSION INTG(12), IND(12), IR(12), IMX(12)
      K=K+1
      IF (K.GT.1) GC TO 2n
      SD#5@F/(10.++(SGN/20.))
      INTE(1)=91548128
      PC 10 T=1,11
      INTO (T+1)=INTO (I)+101+331
      INC(T)=INTG(I+1)/100000000
      INE(T)=INE(I)+100000000
10
      INTE (I+1)=INTE (I+1)=INT(I)
      DC 15 T=1,12
      IP(I)=(I+9)++20(I+9)+41
  15
20
      CONTINUE
      SLM=0.0
      DC 30 T=1,12
      IN TG (I) = IN TG (I) + 101+IP (I)
      INE(1)=INTG(1)/100000000
      1 N C ( I ) = I N C ( I ) + 1 9 0 0 0 0 0 0 0
     -IA TE (I) = IA TE (I) = IND (I)
      IMX(I) = INTG(I)/1000000
30
      SUM=SUM+FLCAT(IMX(I))
      FN=(9LM-994.0)/99.995
C FA IS A GALSSIAN RV WITH ZERO MEAN AND VARIANCE = 1.0
      X=FIN *ST
44JF38----
      ENT
```

¢

SLEROLTINE RNC(X, \max, L)

C THIS SUERCLTINE RCLNCS X TO L RIT PRECISION

C \max is the maximum magnitude of the variable X

S=2++(1-1)+1

IF(x, CF, 0,) Ix=X+(S/XMAX)+.5

IF(x, L1, 0,) Ix=X+(S/XMAX)=.5

FIX=IX

X=FIX+(XMAX/S)

RETURN
END

FUNCTION CS(X,L)
CS=CCS(X)
CALL RAE(CS,1.0,L)
RETURA
ENE

HE STATE OF THE ST

FLACTION SA(X,L)
SA=SIA(X)
CALL FAE(SA,1.0,L)
RETURA
ENE

```
SLEBULTINE FFT (X, NSTAGE, SIGN)
C FAST FOURIER TRANSFORM SUBROUTINE
C CCMMON VARTABLES
                     CCMPLEX. INPLT IN CCLUMN 1, OUTPUT FOR
C X(2,1024) @ CATA.
C INVERSE TRANSFORM IN COLUMN 1. NORMALIZED OUT PUT FOR
C FORWARD TRANSFORM IN COLLMN 2. UNNORMALIZED FORWARD TRANSFORM
C OLTPLY IN COULMN 1. NSTAGER NUMBER OF STAGES AND POWER
C OF TWC WHICH N IS; N=2++NSTAGE
C SIGNE DEENTIFIES EIRECTION OF TRANSFORM
C SIGN==1.; FCRKARE TRANSFCRM.
C SIGN=+1.: THVEPSF TRANSFORM.
      COMFLEX X(2,1024).W
      INTEGER 9
      N=2++NSTAGE
      V5 =V \5
      FL TN=N
      PHI2N=6.2831853/FLTN
      DC 3 LF1 NSTAGE
      N2L=N/(2**L)
      AR HA AL
      NI=(2**J)/2
      DC '2 I=1.NI
      IN2.=(T-1)+N2.
      FLINAL BIN2U.
      TEMP=FI IN2J+FHI2N+SIGN
      W=OMPLX(CCS(TEMP),SIN(TEMP))
      DC 2 R=1.NR
      ISUE = R + INZU
      ISLE1=R+IN2.+2
      ISUE2=TSUE1+N2J
      ISLES=TSUE+NA
      X(2,TS(E)=X(1,IS(B1)+W+X(1,IS(B2))
      X(2, IS(E3) = X(1, ISUR1) = W + X(1, ISUE2)
2
      CONTINIE
      DC -3 R=1.N
3
      X(1,H)=X(2,H)
      IF (SIGN.GT.O.) RETURN
      DC 4 R=1.N
4
      X(2,R)=X(1,R)/FLTN
      RETURN
      ENE
```

STATES OF STATES

```
SLERGLTINE ERR(XR, XI, IL, M, FN, FT)
       DIMENSION FM (512), xR (512), XI (512)
COMPLEX FT (2,512)
       DC 10 T=1,512
       FY(I)=0.0
       FT(1.1)=OMPLX(0:,0,)
10
       FT(2.1)=CMPLX(0,0.)
       N=2++11
       DC '20 T=1, M
20
       FT(1,1)=CMPLX(XR(I),XI(I))
       CALL FFT(FT.TL,=1.)
       DC -30 T=1, N
3 n
       FM(I)=CARS(FT(2,1))
       A=FM(1)
      DC 40 T=1,N
      FM(])=FM(])/A
       RETILAN
       ENE
```

THE REPORT OF THE PARTY OF THE

Ç.

TAPLT WAVE FORM -0.01587 0.01587 0.01587	370,05924	-0.64762	n,55556	1.00060	0,55556 -0,	04762 - 0.09524 A	.91587
w\$8						Co. So. Co. Co. Co. Co. Co. Co. Co. Co. Co. C	
SAMPLE SPACING =	29.2969	Spec	ctrum in DB			(
A. PREQ.	9.	0-00	0.00	0.02	0.03	183	
146.48	0.05	0.15	0.05	0.04	0,02	Li odice	
292.97	0.00	-0-01	-0.02	-0.02	-0.00	12.6	
439,45	0.01	0.03	0.05	0.05	1,05		
585,94	9.03	0.01	an.02	-0.04	-0.05	Self To I	
732.42	. 0.05	·C · C 4	=0.02	0.01	0,03	16 3	
878, 01	-0.04	0+64	0.04	0,03	0.03		
1025.39	0.04	0.07	0.11	0.16	0.19	130	
1171.87	0.18	0.10	a4.09	•0,41	-0.90	1. 000	
1318,36	•1,59	•2.51	a3,69	•5.18 -19.60	-7,01	\@**	a
1464.84	-9.22 -29.80	-11,69	-15.11	•18,99 -43 44	-23.77 -61.49		3
1611.33 1757-81	-45,64	-27,55 64-33	-51.36 -65.64	e62,11 •54,51	47,54	4	•
1904.30	•44.04	-107700 -42,53	-47.61	044,32	49,23		
2650.78	-57.09	-63.55	-55.22	a56,61	-65,64		
2197.27	•51.12	-44,48	-40.83	638,75	+37,76		
2343,75	-27,66	-38.35	-39.79	041,97	+44,83		
2490.23	•48,15	-51.22	-52.78	052,19	-50,41		
2636_72	-44,43 -	4226	-46,86	e47,06	47,99		
2783.20	-49.68	-52.19	-55.64	960,37	-65,64		
5858.88	e65,64	-65.64	-65.64	B64,84	~62,31		
3076.17	-60.04	-57,94	-55.96	954.00	-52.00		
3555.66	649,94	-47,87	-45.90	044,15	-42,73		
3369.14	e41,74	-41.30	-41.54	042.71	-45,36 -39,73		
- 35;5,62 3662,11	•38.17	- 	-37,45	=42,53 e30,00	-39,03		
3808-59	=40.45	-42.11	-43.82	a45,40	-46,78		
3955,08	-48,19	-50.23	-54.42	065,64	-53,82		
4101.56	+16,56	-42.45	-30.98	038,32	437,57		
4248.05	-37,58	-38,39	-40,14	043,21	-48,79		
4394-53	65-64	50.28	46-68	-044,31	~43,32		
4541.02	o43,15	443,51	-44,23	ə45 , 19	-46,34		
4687,50	647,76	-40,47	-52.59	257,95	-65,64		
4833.98	e59.05	-53,30	-50.00	050,06	-50,83		
4980,47	53,49	-60.01	-65,64	657.20	-53,36		
5126.95 	•52,44 • 55,50	-53,72 54,24 - ·	-58,64 56,04 -	#65;64 ####################################	-60,92 62,79		
5419.92	-53,20	-49,29	-47.63	#47,61	-49,32		
5566,41	-93,76	-65-64	-57.09	- 51,20	-49,27		
5712.89	49,67	-52.77	-63.87	057,13	-49,27		
5859,87	-045.76	-44,04	-43,49	-043,86	-45.02		
6005.86	·46,83	-49.07	-51.15	e52,16	-51,53		
6152,84	40,77		46+10		44747	-	
6298:83	-44,6 0	-45.37	-46.83	049,12	•52,62		
6445,31	1088,74	-65,64	-58-40	-52,19	-448+32		
6591,80	045,42	-43.12	-41,32	a39,99	-39,15 -44,59		
4738-28 ·	-38,83	43F-08-	.=39+9¢	■41,72 ■52,40	-50.53		
6884,77 	-49,46 - -81,05	-60.46 -53.64	-59.57 		-54.89	-	
/177,73	-53,68	-53.28	-55,42	#62,84	-64,28		
		.48,74	46,08	644-37	443,41		
7470.70	443,01	-43.11	43.70	44,85	-46,72		
		-54-79	65164	61,52	-55 ₊ 48		
7763,67	±\$4.04			197,93	-49,06		

THE STATE OF THE PROPERTY OF T

7919.16	=44.43	-41.54	***		•
805K.K4	=38.65	# 2 G . K 2	-39.67 -41.25	=38.65	-38,32
82n3.12 8349.61	-50.75	-54.74	-56.90	₽43,68	-46,85
8496.09	-49.20	-46.67	-44.8c	=55.58 -47 5.	-52.37
8642.58	-42.04	-41.66	-41.39	=43.50	-42,62
8789.06	•41.20	-41.54	-42.29	=41,21	-41,12
8935.55	49.36	-55.76	-65.64	#43,63	-45.81
9082.03	- 57.67	-65.64	-58.84	=59,35	-56,12
9228.52	e44.52	-43.47	-43.36	≥50,75 ≥44,06	-46.74
9375.00	⇒47.47 □47.54	- 49.63	-51.13	=51.10	-45,48
9521.48	#48.45	-45.77	-44,69	a44.53	-49.59
9667.97	•42.12	-56.06	-59.44	=48.47	-45,56
9814.45	•47.72	-41.28	-41.43	942.5 ₀	+44,23
9960.94	e65.64	-52.43	-59.57	a65.64	*44.54
10107.42	≈47.76	-59.02	- 54.06	≈ 50,97	-65,64
10253.91	43.79	-46.92	-46.23	045,52	-49.01
10400.39	•42.44	-42.93	-42.25	041,88	-44.69
10546.87	•52.94	-43.52	-45.20	947,49	+41.92
10693.36	49.14	=£4,50	-54.08	e5c.31	-50.24 -50.41
19839.84	-58.13	-48.87	-49.99	053.44	-64,65
10986.33	■47.26	-50.27	047.02	045,63	45,7 0
11132.81	- 50.59	+50,85 -50.00	-60.07	e 61.73	-53,03
11279.30	₽50.00	-5n.90	~54.23	æ65,64	758.05
11425.78	49.65	=46.87	~45.57	c45,59	-46,86
11572.27	•51.57	*55.11	-65.64	959,01	*53,62
11718.75	-50.03	*50.90	-50.90	=51.03	-50.83
11865.23	•43.58	-48,7 <u>1</u> -43.09	-47.16	045,68	-44,46
12011.72	= 45.33	-47.31	-42.99	# 43,31	-44.06
12158.20	-55.35	-49.91	-50.49	ə5i,49	-65,64
12304.69	46.80	-49.82	-47.15	•45,83	-45,67
12451.17	46.10	-44.38	-57.68	• 60,59	-50.04
12597,66	-=55,55	65.64	-44.18	845,41	-48,53
12744.14	-53,59	463.72	-53,5č	·50,45	-50,53
12890.62	-55,09	-65.64	-60.99	■53,79	-52.40
13037.11	45. 07	-47.21	-54.48 -54.67	•48,05	-45,41
13183.59	-43,64	-43.36	-46.13	-57.09	-46.89
1333n.n8 1 3 476.56	a49.83	m61.65	-37.38	•56,30	-54,10
13623.05	·•\$-7,60	4 7 - 58		28,40	~22,30
13769.53	4.97	-3.70	-11.00 -2.71	8 ₇ 56	-=6-57
13916.02	-1,07	· • 0 • 8 5	- 0.73	-1,96	-1.43
14062.50	-0.64	-0.62	±0.5e	-0.68	-0.66
14208.98	0.37	0.30	0.24	•0,52	-0.44
14355,47.	•0.17	-0.16	₩N.15	•0,20 •0,13	-0,18
14501.95	008 -	Ar05 .	-0.02	0,13	-0,11
14648.44	0.03	0.02	0,02	0,01	- 0.02
14794.92	0,03 0.15	6.05	0.08	0,11	0.02
• •	0.15	0.15	0.13	0,11	0,13
MBEb				-1-1	0,08
0.111010					
SAMPLE SPACING =	117.1875	-			
5.5	0.	0.02	0 07		
585,94 1171,87	•0.03	-0,12	50,0 50.0∈	0,01	0,02
1171.87 1757.81	0,08	-1,04	e5.29	0,03	0.04
1/7/.81 2343,75	046.61	-30.37	-39.83	415,00	-37,05
2929.69	35,00	27 -84	~43,15	946,89	•52,94
3515,62	-46.22	-47,53	-53.69	-47,08	
4101.56	-40,69	-40,53	-36.05	345,22 -40 45	-37,21
1101120	946.32	=34,98	-39.36	040,15 044,85	-44,89
				47169	-41.36
		_112		•	

The state of the s

RECEIVER OUTPUT I	N FR				
SAMPLE SPACING =	29.2969			1	
0.	-59.18	-5P.9F	-52.51	-42,49	-33,70
146.48	-26.39	- ≥0.36	-15.42	-11.40	-8.16
262.97	-5.62	-3.66	62.22	-1.22	-n.58
439.45	-0.22	-0.06	=0.02	-0.05	-0.08
585.94	-0.09	- r · G E	=0.05	-0.00	0.05
732.42	ი.08	0.10	0.11	0.11	0.10
878.91	0.08	0.06	70.03	-0.01	-0.06
1025.39	-0.11	-0.15	±0.16	-0,14	-0.09
1171.87	-0.01	9.0	0.16	0.21	0.22
1318.36	0.20	0.15	n.09	0.04	ŋ.
1464.84	-0.01	0.05	0.07	0.12	0.18 0.33
1611.33	0.23	0.27	n.3(0.32	0.16
1757.81	n.33	0.31	96.0 ≟0.03	0.23 -0.03	0.13
1904.30	0.08	0.01	0.28	0.32	0.29
2050.78	0.10	0.50	=0.10	-0.25	-0.35
2197.27	0.21	0.06 -0.32	=0.55	-0,10	-0.00
2343.75	-0.37 0.04	0.01	=0.09	-0.25	-0.42
. 2490-23 6474-70	-0.58	- 11 . 6 5	₽0.73	-0,72	-0.68
2636.72 2783.20	-0.67	-6.75	=n.96	-1.37	-2.03
2763.20	-2.99	-4.30	=6.04	-8,27	-11.09
3076.17	-14.60	-18.96	-24.37	-31.18	-40.01
3272.66	-52.08	-62.1C	-62.55	-62,12	-62.61
3369,14	-63.73	-63.17	·63.38	-66.41	-71.90
3515.62	-70.59	-65.88	-62.43	-60,85	-60.97
3662.11	-61.95	-62.83	-62.34	-59.57	-57.28
3808.59	-57.11	-59.59	-65.28	-68,60	-68.48
3955.08	-64.47	-61.44	-59.93	-60.67	-62.93
4101.56	-64.37	·64.93	-66.54	-67,95	-67.8/
4248.05	-68,94	- 79.77	-67.32	-63.53	-62.06
4394.53	-62.81	-65.58	-69.36	-73.16	-69.13
4541.02	-62.44	-59.16	-58.49	-59,97	-63.1/
4687.50	-67.85	-71.72	-64.67	-60.17	-58.69
4833.98	-59.37	-61.F3	-63.7 <i>6</i>	-64.04	-62.71
4981.47	-62.04	-63.64	-68.98	-69.01	-63.89
5126 ₇ 95	~62.36	-62.69	-63.32	-63.96	-65.41
5273.44	-67.10	+67.47	-67.92	-70.05	-73.12
5419.92	-74.71	-76.25	-78.72	-78,66	-76.34
5566.41	-72.68	-69.99	-70.01	-72.65	-68.78
5712.89	-63.51	-61.10	-61.99	-62,94	-66.81 -62.38
5859.37	-70.40	-68.50	-65.46	-63,52 -65,40	-74.35
	-61.52	-61.09	·-61.99	-92.16	-76.20
6152.34	-76.47	-72·01	-75.83 -78.45	•76,59	-74.29
6298.83	-76.38	- 83.07 ∽67.17	-67.33	-66.98	-64.80
6445.31	-69.38	-65.34	-69.97	-75.46	-73.97
6591,80 6779,28	-63.82 -73.80	~ 2 · 0 C	-69.23	-68.36	-67.80
6738.28 6884.77	-/3.00 65.55	~ { Z + U (-63-45	-64.87	-67.19
7031.25	-70.01	-76.9°C	-78.45	-68,50	-66.02
7001.25	-67.71	- 76.77	+75.96	-69.71	-71.83
7324.22	-90.89	-60.70	-64.47	-64,22	-66.94
7470,70	-72.43	-77.24	-72.43	-66,94	-64,22

INTECRAL SCUARED NOISE = --- C+C7'2 -

SIGNAL TO NOISE RATIO AT INFIT TO RECEIVER # 14.96 DB

SIGNAL TO NOISE POWER OLT # 30.807 ED -119-

```
nse simulation
CIDOUDLE SIDERAND SIMULATION DILIFLETCHER
      DIMENSTON USSB(100), WREP(100), AVLOG(100), X(100), XR(300),
     .*XI(300).XR5(400).XT2(400).YR3(850).XT3(350).XR4(150).XI4(150).
     #XQE('650), VIS(4650), XR6(350); XT6(350), XQ7(901), XI7(900),
     *X4a(300),X73(300),X40(300);X79(300),¥0J[(300),F7M(1030)
      DIMENSTOM EM/912), F1(512)
      COMPLEX FT/2 (1024), C
      DATA A1, A3'A4, A8, A9/1, 284, 2, A3, 2, 63, 14, 32, 19, 02/
      PATA LE.L/10:8/
      DATA MSIG, MS. MR, MA/5,45,40,20/
      .DATA NG, NSA, NRF, NA/11, 91, 84, 41/
C NS=NO. OF TERMS IN INPUT STGNAL = 2*MSTG+1
C NS9=NO. OF TERMS IN DSR FILTER = 2445+1
" NRF=NO! OF TERMS IN REP FILTER = 2+MR+4
" NA=NO! OF TERMS IN AMALOS FILTER = 2*44+4
     . DATA F79,F29,F74/.4246,.1289:.0312/
      DATA SCHITZ I
       PI=3:14159565
                                              Reproduced from best available copy.
SCALCULATE TAP WEIGHTS
       PO 50 Tat, 45
       PI =T
       WIN=:54+,44+COR(PI+F7/48;)
       TMC=MS+1+I
       WSCR(INS)=JIN#CIN(FZC*PI*FT)/(PI*FT*FZC)
       CALL RUD(WESR(IME), ( P, LF)
       JMC=MS+1 RI
       45c3(JMS)=15c4(IMS)
50
       wSeR(Me+1) = 1.0
       CAIL RND (WSSR (MS+1), 1.0.LF)
       FMOSAK
       PN. PET US OU
       FIzI
       WINE : 54+ 44+CUS(DI+FT/FMR)
       WREPITAR)=JIN#SIN(FZR+PI+FT)/(PI+FT+FZR)
       CALL RNP (WPEP(TYP) . 1:0, LF)
       JMP#MP+1PT
       KHEDIAMB)=MHED(IMG)
       WREP (MR+1) =1.0
       CALL RND(WaEP(MR+1),1.0,LF)
       FMARMA
       TO 70 TEL.VA
       FIET
       WINE 54+ 44+COS(PI*FT/FMA)
       ANI NG (TMA) = WIN+STN (F7A+PI+PZ) (PI+FI+F7A)
       ANLINGTIMATEANLINGTIMAT
       CONTINHE
 70 .
       ANI 09 (1 . +1 ) 84 . 0
 CLOAD FOR RC PULCES RW=4KC
       ARR NOTITE
       DO AT TE1.4STG
       IMCIOBNCIO. I.
       X(TMSIC)#STN(A+FT)+COS( 504+FI\2(4+FI+(1,-(8,+FI/15,)++2))
       CALL RADIX/IMSIGS, 1.0.93
```

```
JWZIG=MZIG+4#I.
        Y( IMSIG) = X( IMSTG)
 8 ŋ
        X(MSIG+1)=1:0
        CALL RND (X/MSIG+1),1[0,7)
        ካስ 110 ፒ#1.ህና
  110
        (I)Y=(J)FX
  C CONVOLVE WITH FIRST FILTER
        D3 112 T#1 'V.
        IN=NSR+NS-T
        IS=NS+1 • I
  C SHIFT ALL TERMS BY NSB
        XX(IN)=XP(+S)
  117
        VITTI=5:0
        NS1=NSP+1
        DO 413 I=1: VS1
        XR(T)=n.U
        VI, I)=nig
 113
 " MF=NO. OF TERMS OUT OF FTRST FYLTER
        NF=NSB+NS-T-
NO 115 I=1 VF
        DO 114 J#1 NEB
        IJ= I+J-1
        (i.I)FX*(L)B22W*(I)SAX=(I)CAX
 114
        XI2(I)=0.0
        CALL-RUNCX#271), ATTEN ... -----
 115
        FORMAT(140.30HWAVE FORM OUT OF FIRST FILTER
 10
 PRINT 11. (VR2(T); I=1, NF)

11 FORMAT(1H !10F12:3)

CEFFECTIVELY FIL! WITH ZEROS AND CONVOLVE JITH 7 KC LOW-PASS
 C..KEPE-IIITON FILTER, OHITONI OF FFLIER IS-17-1-124-46---
        DO 450 I=1 NF
        IN=NAF+NF+T
        IF = VF + 1 = I
 C SHIFT ALL TERMS BY
        XR2(TN)=XR5(TF)
       -NHET BNREWT---
        no 140 I=1 NRF1
        XR2(T)=0.0
 160 XI2(I)=0.0 C GUTPUT
        J=n
        DO 170 L187.NF
        JeJe4
        DO 170 I=1:11
        LT=L1=T+<sup>9</sup>2
        LK=R+(T=1)+K
C J IS THE NUMBER OF OUTPUT SAMPLES FROM REP FELTER
DO 180 I*1 K9
        CALL RND(X93(I), A3,L)
 C INTERPOLATION AND ANALOG FILTER
       DE R ( X R 3 ( T 0 4 ) 4 X R 3 ( I ) ' / 32 , K
~~~~ <del>00</del>~19n~J#1?<del>3</del>∮
```

```
スニンチャ
      K1=400/K.1503+1
 K IS XR4 INDEX
C KI IS VR4 CYLIC TYNEY
      FJ=J
      Y4x(K1)=X4x(T)+(FJ-1.)+DELA
      CAIL RUD(X24: <1 ) 44,1)
      JF (MOD(k, 14), ED. n) GO TO 200
190
      CONTINUE
      CO TO 221)
200
      CONTINUE
P CALCULATE OUTPIT OF ANALOG FILTER
C M TS XP5 INDEX
      M= V+1
      DO 210 L1=1.NA
      N= WOD (74+ ( 494 ) +14+61.100)+4
210
      XRE(M)=XR5,M)+ANI OG(1,1)+XR4(N)
      60 TO 190
220
      CONTENUE
                                  Reproduced from available copy.
      M1 = M/2+1
      M2-M15+4
      no 230 T=1 M4
      xI7(T)=0.0
      XR7(T)=YR5,2+I-1;
230
      CONTINUE
      PRTMT 13
      FORWAT(1H) 3HXR7 )
13
      PRTUT 41.(xR7(T);I=1,M1)
      00 24n T#1 49
      YIA(I)=0.0
240
      YRK(T)=YR5(5+1-4)
      PRINT 95
25
      FORMATION STHOUTPUT OF AMALOG FILTER )
      CALL FIND(YR6, XIA, 9, M2, 4P3 101, FT)
249
      CONTINUE
" XR6 IS IMPUT TO FFT TO LOOK AT OUTPUT SPECTRUM OF TRAMSMITTER
C XR7 IS TAPHT TO RECEIVER
C ADD MOTSE AND SHIFT BY VRF-8
      F M4 = M1
      DO 249 I=1 141
      XS=XS+YR7(T)+XR7(I)
249
      40na40b1(X4/141)
      DO 281 T#1 144
      CALL GAUSSIZISOH, SON)
      77=77+7+7
      IN=M4+NRF-0+T
      TM: 41 +1 . I
      XR7(IN) = XR7(TM)+7
250
      CONTINUE
      PRTNT 11, (xR7(T); I=1, M1)
      TF (7T, FQ. 0!) Gr th 251
      SG=10.0+ALM310(X5/77)
251
      CONTINUE
C SIGNAL GOES INTO REPETITION FILTER IN STEPS OF 8 INPUT SAMPLES
C CUTPUT IS AT IN WC
      NB=NQF-9
      DO 240 T#1 NA
```

```
YR7(T)=0.0
260
      YI7(T)=0.9
C CALCULATE OUTP'IT OF RECEIVER REPETITION FILTER
      43=44/9+4
      ng 989 4=1.43
      00 279 11=7, NRF
      LT=L1+9+(K-1)
      YHA(K)=XHB(K)+WRFP(L1)+XR7(LT)
270
280
      CALL RMD(XRB(K), AB, L)
o nSp 3Ko LP FILTER
      Pn 291 T=1 '47
       ISDANSD+M3II
       T4=43+1 -I
       XRA(TSR) = X78(IM)
281
      YI9(I)=0.0
      DO 282 T=1: VS1
      C, n=(I) RFX
242
      XIO(I)=1.0
      M4=M3+NSH-1
      nn 293 T=1:44
      YRO(T)=0.0
       Do 294 j=1:453
       IJ=T+J-1
       (L*) APX+(L) BPSW¢(I) PHX=(T)OFX
284
      yIo(T)=0:0
       CALL RND (X29/I) A9/L)
       CONTINUE
283
       DO 290 T=1,44
       X JUT (T) = XRa(T)
291
O RECEIVER OUTPUT
      FOR HAT (1H 16F12 17)
351
       DO 340 T#1:300
       YIO(T)=0.0
360
       PRTNT 385
385
       FORMAT(1H0:27HREGETVFR OUTPUT IN DA
       CALL FTND(x)HT.XT9,9,M4,15a00,,TT)
       CALL FRACKAJT, Q, M4, FM)
C
       FR=gin
       PEAT 435, (F1/1), T=1,512)
       DO 410 TF1.542
       EROSFRO+F1/I)+F1(I)
       F98E9+7F1(T7=FM(T))++2
410
       PRINT 420, FR
FORMATITHO 24HTNTEGRAL SQUARED NOISE # .F10:3)
420
       PRTNT 425.0G
       FORMATTING 28HSIGNAL TO NOTSE RATIO . FIN. 2, 3H D3 )
425
       SGA = 10.0 A COG 10 (ER2/FR)
       PRINT 230, 834
FORMAT(1H0:27HSIGNAL TO NOTSF POWER OUT # ,F10.3,3H DB )
430
       FORMAT(10Fq.B)
435
999
       CONTTNUE
       STOP
       ENn
```

WILL STREET STRE

```
SUPROUTINE FIND(XR, XT, IL, M, RFP, FT)
C XH, XI FLEMENTS OF COMPLEX DATA SERJENCE
C TL + STZF OF TRANSFORM IS 2++II
C M - NUMBER OF FLEMENTS IN INPUT DATA SECUENCE
C REP - REPETITION RANGE OF TRANSFORM
       DIMENSTON FM/1030), XR(1024), XI(1024)
       COMPLEY FT(2:1024)
DO 10 TEL, 1024
       FM(T)=0.0
       FT(1,I)=CMOLX(0,10.)
       FT(2:T)=CM=LY(n,n,n.n)
10
       17 * * ¢ ≈ 4
       FN= 1
       SMPC=RFP/F4
       Do 20 T=1,4
       FT,4, I)=CMoLY(YR(I), YI(I))
20
       CALL FFT(FT.TL.=1.)
       10 30 Te1, 4
       REMARS (FT ( 5 ) T)
       JF (A: LF: 0. nono1) B=0.00001
       FM(T)=20.0+ALOG10(8)
       A=FM(1)
       no 35 Ta1, v
35
       FM/T)=FM(I) 4A
       PRTNT An, Sype
40
       FORMAT(1H0:1A4SAMPLE SPACING = ,F10:4)
       NT= V/5+1
       PO 5" TE1, NT
       J= T=4
       FJ=J
       CI=FJ*F. "SWPC
       K1=5*J +1
       K5=K4+4
50
       PRINT ANDCTO (FM(K3) + K3=K1+K2)
       FORMAT(1H .6F12,2)
40
       PETURN
       ENn
```

THE WAR THE STATE OF THE PARTY OF THE PARTY

ø

SUBROUTINE ERR(XR,TL,M,FM)
DIMENSION EM(1030), XR(1024) COMPLEY FT(2,512) PO 10 Tp1,512 FM/I)=n.n FT(1;I) = CMpL X (n; 0.)
FT(2;I) = CMpL X (n; 0.) 10 N=2**II א, לבד חכ פק FT(1,I)=CMBLX(XR(I),).)
CALL FFT(FT,TL,=1,) 20 חָחָ מַח דבּן, עֹּ FM(T)=CABS(FT(P,T)) **4**0 A=FM(1) DO 40 Tal . N FM(I)=FM(I)/A 40 RETURN END

SAMPLE SPACING =	: 93.7500		1		
9.	. 0	ñ • n 2	0.06	ŋ : n5	0,.02
468.75	ກ ໍ ກສ	ក្តីកំន	0,07	-u;u3	-0.10
937,50	0.00	0.22	1.31	0.16	-U.13
1416, 25	-0.26	- 6, 12	ด ก็กลี้	0,108	-0.09
1875.00	-0.18	-ñ • n 3	u • 50	n . 24	0.08
2343.75	-0.00	-0.09	0.00	n . n 4	0.06
2812,50	0.19	6, 31	- ∩ , , 9	-1.70	->.26
3291.25	-11.87	+2= 14	-34.81	#37 R2	48.18
3750:0r	-45,59	-4a 46	#49,96	. 44 45	40.39
4218,75	⇒3n.74	**5,21	-45.92	•31.47	•37.0n
4687,50	+35,19	#3ñ 43	45. 07	934 06	29.68
5156.25	044,72	+34 82	-35,84	+31 06 -4g 30	32.12
562 ⁵ ,00	-37,64	-47.15	-34,05	47.91	40.54
4093 ‡ 75	~ 41.18	40.35	~39,48	*38 99	*39.65
6562 :50	-38.27	#3 0 €n7	-43,45	+53.40	42.58
7031:25	-41 n3	m30,97	-36.48	#37 199 °	-58,13
7590+00	₹35 . 23 '	₹35.76	#3 ⁸ .16	-46.32	37.00
7948 75	-3 ⁷ , 21	-30,47	41 ,54	≈ 51 1 2 7	40.82
9437,5n	-34,65	-34,25	49 55	± 49/ ₹7	42.54
9916.29	=32,02	°37,55	#54.19	+53 ¹ 19	=33,3 ₆
9375.nn	- 5∩•∩5	-45.41	-47.69	-32:78	.32.86
9843.75	-54,55	, π31° n8	≓3ņ.n1 ,	*36.41	•5 ⁷ .2 ₁
10312.50	47,31	#34 A5	#37,n5	+57.75	*44.19
10781,25	-67 ,31	-30,28	" 38,24	449 85	.54.82
11250.00	-44.44	*3× • 96	-39.52	-39.48	#31.6 ₀
11718.75	#34.7n	#47 TR4	-3n,92	43f \$8 =	44.37
12187,50	-41,12	-45,73	47,53	-39155	.42.14
12656,25	-53,73	-61,42	- 58.02	+61,13	-51,01
13125,00	#74,0<	43 107	42,62	41,70	42.61
13593.75	-55\39	947.04	#36 · 20	~34 · 	44.95
14042,50	46.56	-47.46	-49.59	-44,22	-38.14
14531,25	#30,36	+5ñ,50	-47,25	#45 A5	⊕54;38
15000:00	-41,53	-30.74	£44.80	-6n 16	46.73
15468:75	-47.71	*54.42	~65,30	#51 98	=45.07
15937.50	942,43	-42.45	-57.89	+53,51	*63,23
16406,25 16875.00	-48,00	+45;01	43,78	•# <u>₽</u> ,19	.53.02
17343175	-57.47	*55.75	42.88	437, 45	*32.15
17812.50	734;40 735 24	P34 78	- 435,47	*49 50	44 5 8 4 -
18291.25	*35,24 *34,86	734 N7	*39.86	747.70	*35,74
18750.00	646 119 ·	*3p 13 *50,04	47,25	■91,85 ■39.26	44.47
19218.75	-5 7,57	#55°57	#53.88	#54.96	. 42.22
19697 50	a56,71	25 D3	38 19	•36!ng	*52,99 •38,35
20156 [29]	46.87	*56.53 .45.79 *40.49	48-27-	430112	- 3° 35
29625.00	=45.92	P41147	#40 . 71 ·	+53,38 +44.46	#50.47 #49.26
21093.75	-45.31	#49,82	-44.41	#43.29	
2156215n	55,00	-44:75	35,68	*43.29 •35!87	451,65 139,05
22031,25	948,33	830 Tt	4 0.40	· _ * #	39 05 59 34
22500,00	-56,35	-55 22	£51,47	*51 n4 *60 27	39,15
~~~~??\$68₹7 <del>5</del> ~	<b>#34142</b>	#3x 1#2	#59118	=37:45	+39.45
23437.50	47.89	* 37 , 43	-39,79	#56 n3	59.80
23916129	45.78	₩4ñ.97	49,78	~### An	456.03
24375 <b>.</b> 00	<b>-39,79</b>	-37,45	47,89	979.92	•37.55
24843,75	-55,18	-34 A2	.34,42	39 15	.60,27
			•	■ -	- •

_		•							
25312 50 25701 25 26250 00	-61 47	-56,32	156.35	·59:34	181 44		•		
53,01,53-	940.40	*44.55	- <del>156,35</del>	- CO. A. B.	- <del>151</del> . 84				
26250;00	-35,68		-55.00	91.65	43.20	$\wedge$			
26716 75 27187 50	.44,41	46(48.	49,31	649.28	44,66	best availa			
27187,50	<b>40.71</b>	-4i já7	<b>i45</b> ,02	450.47	: K % TA	best odus			
27656 25	448.27		46,87	438.35	53.06	est odice			
28125,00 28793,79	-38,19	-4g 99	56,71	,5è 90	53.94	Jar.ce			
29062,50	53,68	*55/53 *55/54	******	- 642.22	39.20 51,85		ble rom		
	-41,69	-52,24	-46,19	112 22	51.85	10	0/. 'O. \		
29531 25	947.79	#3# ₹3	<b>634;88</b>	639.7×	ù45.9n		16 C. 1		
30000 00 30446 75 30937 50	+39,86	*34.07 •34.30 •55,75	35.24	-45.84	641.40		(	m)	
30400 77	42.88	434,36	434,40	#39 15 #53 02	37.49		~ · · ·		
-514n6 v29-		-54,95	34,40 57,47		37.45 48.10				
31875 00	<del></del>		00sum	93.53					
	-57,89	*49,45	42,43	45 07 46 73 454 38	-51,98				
32343;75 32812:50	-65,30 -44,80	•54,42 •39,74	47,71	946,73	.60.16				
38241 25	47,25	-Båimo	• • • • • • • • • • • • • • • • • • • •	454 38	43.65				
33750 00	-40.59	#5ñ 90	.30,36	438 14	44 22				
<del> </del>	436120	W41.04	*46.96	-44.05	436,68				
34687,50	-42,42	-43 ñ7		642,41	441.70	<del></del>			
35156.25	#58.n2	#61,42	44,62	-51 n1	61,13				
35625, ng	-47,53	-45,73	41,12	44 37	39.55				
37473.75	~30.92	.41,84	34.70	31.60	31,48				
36562,50	-39,52	-35,06.	344,44	-54.92	49.86				
-3 <u>7031</u> +25 -					<del></del>				
37500.00	37, no	-34 A5	47.31	97.31	36,41				
37968,75	-30,01	*37.08	954,56	*32.86	732.78				
38437.50	-47,69	-34 A5 -37 A6 -45 41	-50,05	-37, 36	.33,05				
38906.25	.54,19	•3 <b>1,</b> 15	-32,92	-42 94	49.37				
39375.00	-49,55	=34,95	234.45	40.42	-51.27				
<del>-398</del> 45,75 49312.50	441,54	*30;47	37,21	#37 ng	-146 72-	-			
40791 25	-38,16	35.76	•35,23	#5A.13	+37,89				
	#3A, 4B	-34,07	.44, n3	+42158	<b>.53</b> .60				
41250 00 41718,75	#43:45	*3*.07	•3A,27	-39,45	.38,99				
42197.50	±39,49 ⇔36,05	40,35	•41,18	+40;54	<b>447,9</b> 1				
42656-25	- w85,84	-41 (5	-37.61	-32 12	-40.30				
43125.00	945:07	\$4;75= Eai35	-44,72	* <del>20</del>	431,9 ₀	• =	-	· ·	
43593:75	-45,92	*35.21	-35 - 19	-37 no	•31 • 67				
44062150	a40.96	#48,46	-30,74 -45,59	•4n 39	441.45				
44531.25	-34,81	P25.14	44.97	•45,18 •5.26	37,82				
44531.25 45000,00	⊸n ng	6	11.A7 0,19	0.06	0.70				
マクタカリンプグ	nine	~ 4 Lu &-	0.09	- 1118	0.54				
45937.50	0.20	-6.03	-0.18	•n: n9	0.08				
444-4'-6	0.08	• 5. 4 2	-0.26	-0.13	9.14				
46875:00	0.31	ñ , 22 ñ , n8	0.0	•0.10	-0.03				
47343,75	0,07	ñ, nB	กุ๊กรั	1,12	0.05				
47812.50	r, n6	ñ, ^2	۸,	n.	ů.				
'n,	ŗ,	າ;	7.	σ:	0.	0:	Ο,	0 -	•
0.	0;	0,	0.	ŏ,	0.	Ŏ,	ő.	0; 0,	0;
1. 1.	<i>u.</i>	7.	n.	0.	0.	o:	o.	0.	0,
1.	0:	Ť,	?•	0,	0•	o.	ŏ.	0.	ŏ;
0.	0; n:		0.	θ.	0.	0	ď.	ů.	ŏ:
ή,	": •	6.	<u>0</u> •	٠.	0 •	0.	ō.	0.	ŏ.
n,	č.	0.047	n,	n i	0.	n	ŏ,	Ď.	n'
1,634	0,405	9.067	•0.059 •1.340	0.532	+0+443	•0.552	.0.143	-0.776	-0,067
0.200	=1.087	-0'429	•1.3nu	+1,141	0,407	1,227	.0.645	.0,414	0,924
9.229	0.007	3'495	-0.74g	0.001	+0+562	1,227	·0.5n3	-0.355	1,390
• • • •		, , , , ,	-0.779	1:303	9.946	-0.335	0.939	0.015	*0.310

ACTIVE CONTROL OF A SECOND CONTROL OF A SECOND

	-1.33a	1:057	-0:059	0.510	×0.549	0.155	•0:244	6		
_	-n+257	0 - 429	7.695	t - 920	<del>*0.900</del>	₩0 : 329 ·-	#0:747	0.015	0.665	*0;473 01739
	-0.303	0.569	0,240	-0.044	0.148	-0.259	0.547	1,656	0.111	
	-1.020 0.447	1.323	-1 478	0.495	n 429	0.495	0.946	-1.654	-0.549	0,643
	°n.488	1,072	1 (1 73	0.059	ր 495	0.251	1 655	0.096	-0.059 0,630	0,370
	0.458	• 1 • . •	0,525	-n,214	0 999	0.355	1,190	-0.791	0.118	•0;03 ⁷
	0.200	-0.103	-0.049	0.074	0.022	0.458	0.655	0.044	1.013	0,200
	+0.673	2,365	n   \$44-	- <del> </del>	n; n 3	***************************************	0,007		<del>0.393</del>	0,953
	1,345	-0.443 0.148	*0.6A7	0.543	40.237	-0.067	-n'624	0.325	0.615	-1/004
	1,049	0.140	0 177	0.153	•n:498	1,227	0.995	J0.5n3	10.732	-1,094
PECEI	VER OUTPUT	T JN DP							•	
<del></del>	E-SPACING	29.79A9			·					
	145 48	-0,0a	-0.00	-0.01	-0.05	-0.04				
	292.97	-0.11	-ñ,13 -ñ,n4	-0,18	-0,17	-0.15				
	439,45	*0.08	*6.20	0.01	n:n3	0.00				
	585,94	-0,50	70.20	-7.34	•n:46	-0.52				
	732-42	- 0.31		-^.34 <del>5A</del>	+0!27	-0.25				
	A78,91	-ñ.7î	2 3	-1.58	49.45	<del></del>				
	1025.39	0.35	-ñ.43 ñ.40	0.38	0.30	0.51				
	1171:87	0.20	6.23	0.30	0.38	0.53				
	318,36	0.40	7,29	0,10	0.35	0.43				
	1909.04	-0.60	-5.49	•n.65	•0.52	-0.40				
	1411733	<del></del>		<del></del>		-0.35				
	1757, A1	-0.05	1.00	0.09	0.21	0.06 0.31				
	1994;30	~,39	ñ:40	0.34		0.08				
7	2050.78	-0.07		-0.55	-0.20 n.23	-0.13			-	
	219/,27	n 03	ñ n6	0,11	0112	0.08				
	2343.75	~0.00		-0.24	n 12 -n 17	-0.47				
	5400 52 -		<del> </del>	-0,95	<del></del>	0 <del>-35</del>				
	2636 72	-0,19	-0,03	0.10	0,18	0.19				
3	2783.20	0.15	4.48	97. n4	40.14	•0.22				
	2929 69	•0,30	-6,44	0,71	ni 120	1.97				
	3076,17	73,10	-4.46	*6.68	9,22	<b>712.3</b> 0		-		_
	3222.66	-15:94	<u> </u>	-24.89	-30,22	30.30				
3	336 <del>9.14</del> 3515!62	443.71	<del>199, 90</del>	#56.76	499:18	<del> 671.63</del>				
;	11 594	-63,11	+50,43	61,83	479 45	.66,82				
	3616 59	●62.77 ●71.74	P64.49	67.70	*65,82	70.98				
	995108	=70.84	•67,04	161,11	461,62	65,19				
	101 56	-69.18	#60.98 #64.49	•66 i 25	484.05	e65 i 95		***		
		÷50.53	*04,49	-61.62	99.51	.59.89				
i	394 53	-56,23	#62   94 #57   97 #69   46	603,49	961 13 647 46 794 70	- 107.70				
	541.00	-61 43	44	-61,20	197)40	*00.36				
4	1687,50	-65.56	64.65	470,81	102:13	60.09			·····	
******	1843 194	500 : 1 X	462188	•63.79 ⊊69,96	107173	85.03				
4	980.47	-70.58	*64 50 *70 54	***	978728	175 - 97	*****			*
	<del>1_26 +5</del>	*70.58 *70.58		70,80	77	42.42				
	1273 44	43,02	-65 R6	62.71	67.53	63.14				<del></del>
	#19192··	084.71	**************************************	101,72		73,47				
5	566 41	•72.39	#65 77	-63,51	144141	281.59		** **********		
	712189	70.00	V8X 44	***********						
5	1859 37	70 06	-64 SE	63,46	10 10	60.71				
-	005 86	**179	*61.10	88,64	- 110	900,9 <u>1</u>				
•	192 34	73.24	*65 P	64,77	1/1/11	43, 1	<del></del>			
	295162	*73 94 *73 94 *89 79 *77 64 *89 79	965 69	363,96		244-40				
4	145 31	577:44	-4111	100.50	777173	100,77				**** ******
•	991fer									



6738,28	•67 <b>i</b> 07	-70,40	-67.57	#61.35	-60.46
6884:77			-61,71	#59 to 2	
6884;77 7031:25	-62,97	464,11	#C1 / 1		<b>#60,04</b>
731.53	-05.14	-83.60	<b>₹</b> 55.69	-62 72	m63,62
7577,73	e67,68	m73,96	<del>-</del> 73,26	=67,27	.64.19
7324.22	<b>≈63 (1 f)</b>	#62 · 93	#ሉላ ∗9በ	<b>~72.43</b>	<b>-77.48</b>
7470.70	•75,99	-73.01	<b>*</b> 75,99	+77:48	<b>=72.43</b>
7617,19		-67.03	-63,10	-64 19	
	-66,9n	#63,03		904,19	-67.27
7763167	<del>-</del> 73.25	+75.96	+57.58	+63 ¹ 52	<b>462.72</b>
791u.16	-65,69	<b>⊲ጸ</b> ኛ¦ሉŋ	<b>"</b> 55 _° 14	<b>-</b> 6n in 4	<b>"</b> 59 22
8056.64	<b>●61.71</b>	M64.11	m62.97	-6n 46	-61.55
8203.12	-67,57	<b>-</b> 75 40	-67.N7	-65 93	•69.na
9349,61		⇔70,40 ⇔69.33		#62.37	
	072.14	-09.33	<b>-65.9</b> 0		-60.27
8496 n9	<b>"</b> 6n"56	#64 41	,77,64	≈66 [‡] 73	-62.9 ₁
8642 58	₽65 "56	*64.05	<b>46</b> 6,79	464.34.	<b>₹63,28</b>
9789.06	-64.77	-68.01	-73.24	-R4.34	-76,12
8935.55	-68.64	-64.28	-61.75	•6n 91	.61.70
9082,03	-63,46	-64,75	-64,75	-67, 33	-72.46
9728 52	<b>-</b> 68,83	#64 A4	<b>≂</b> 7n,n6	#84 <u>1</u> 99	466.76
9375.00	<b>~63,51</b>	64 77	<b>472.39</b>	-73,47	<b>~66.01</b>
-9521:48	#64.72	#6 <del>4</del> 37	-64.71	53 144	#68.53
9657.97					
	-62.71	762 A6	<b>*63</b> ,02	=63.49	#64.77
9814,45	•65.,53	#68,45	<b>-65</b> , n4	465142	<b>-67.5</b> 0
9960 94	<b>-70,80</b>	e7ñ.84	≟7n,58	#7 <b>₹</b> .97	-70.62
10107,42	<b>465,56</b>	-64,58	-68,14	÷85 ¹ 13	<b>a67.73</b>
1 9 2 5 3 . 9 1	63.79	#67.63	-65.56	#60.n7	.79.72
71410:39	— •₹ŋ •8 <u>Ţ</u> ···	763.46	-61.43	- <del> </del>	767.46
10546;87	•61,20	<b>≖</b> 57;₹7	<b>5</b> 6,23	-57,70	<b>461,13</b>
10693:36	<b>*63.49</b>	-67.94	60.23	+59,29	•59.5 ₁
10839 84	-61,62	#64,39	-69.18	-65 05	<b>"</b> 65.02
10986:33	<del>-</del> 66 i 25	=60.28	±71.84	#68·19	#61.62
11132 81	<b>~61.11</b>	#63,94	<b>-</b> 71. <u>74</u>	#7n 98	-68.22
11279:30	- <del>м67.7</del> <u>п</u> -	· - <u>•64149</u>	62.77	#6 <del>4.1</del> 92	75.65
11425.78	<b>-</b> 61,83	"5o;43	<b>.</b> 63,11	₆ 74 (43	<b>"</b> 59.08
11572,27	*56.76	<b>"</b> 55,00	943.71	**36. 30	430.22
11718.75	-24,89	-20.14	-15.94	-12.30	-9.22
				717.00	
11865.23	<b>46,68</b>	-a .66	<b>-3</b> ,10	-1.97	-1.20
12011 72	<b>~∩.</b> 71	- ñ : 44	•n.3 <u>0</u>	<b>-</b> 1.22	-0.14
12158 21	<del></del>	<del></del>	11 + 2	<del>n:49</del>	0; <del>18</del>
12304.69	0 1 1 0	-0.03	-1,19	•n.35	-0.48
12451.17	<b>-0.56</b>	¥ñ.48	<b>⊷</b> 1,55	wn 47	-0.37
40507 44		7 7	47425		0.40
12597.66	<b>-0.24</b>	-5,12	<b>-</b> 0.00	ก ก 8	0.12
12744.14	0.11	ñ ∙ n6 ~ ñ • i 7	•n.↑3	<b>≈</b> 0,13	-0.20
12890.62	<b>-</b> u•55	+5;17	<b>-0.07</b>	ŋ <b>.</b> ŋ8	0.23
<del>43037!4</del> 4	0,54	<del></del>		<del></del>	<del>0,21</del> -
13183 59	0.09	ñino	-n.05	-0.06	-0.95
48930 48		# 1 22		-1.00	
13330,08	•0.06	• <u>ñ</u> ₹g	÷0.50	-0:35	~0.92
13476,56	+0,65	-ñ,49	<b>-</b> ∩.60	•n	-0,15
13423:05	0.10	7 29	n.4ŋ	0.43	0.38
13769,53	0,30	ñ : 23	0.50	ήįąξ	0.20
13916/02	0138	_ '		,	<del>-0.02</del>
10.10.102				r · 21	~ V V U Z
14062.50	*n.28	-6-53	-0.71	#n:76	-0.71
14208,98	•n, <del>5</del> 8	ะกั , 43	-0,31	±n † 29	-0,27
14355,47	<b>~0.34</b>	-ñ,43	<b>-</b> 0.50	-0.52	-0,46
14501 (95	*n134 *	TR 120	0108	ក ស្វា	0103
14648,44	0.01	-ñ,n4		-0:15	-0.17
			•0,11		70.17
14794 92	<u>=0,16</u>	• লু গুড়	<u> </u>	चित्रं प्रेक	-0.05
14941.41	-0.01	≖กัไก้0	n .	n:	0.

A THE PROPERTY OF THE PROPERTY

STGNAL TO NOISE RATIO = 11.88 DB

SIGNAL TO NOISE POWER OUT = 29.489 DB

```
4 FM AND PM SIMULATION
      LIFE VSION WSS8(100), WHEP (100), A VLOG (100), X (100), X (300), DIF (100),
     * XI(30n), X22(400), X12(400), XR3(900), X13(900), XR4(120), X14(120).
      + XP5(2000) XT5(2000) XH5(400) XT6(400) XR7(1000) XX/(1000)
      + xx8(350), yI8(350), x89(400), x19(400), x31f(200), FTM(212), xr(512)
      DIMENSION XT(50), E4(220), F1(512), F2(512)
      COMPLEX FT/2,512), U
      DATA LF, L/10,8/
      DATA MSIG. MS. MR. MA/D, 45, 40, 20/
      DATA NS, NS3, MRF, VA/30, 91, 81, 41/
C NS=NO. OF TERMS IN INPUT SIGNAL = 2+MSIG+1
      DATA A1, A3, A4, AB, AY, A0/1, 284, 2, 525, 1, 0, 5, 64, 7, 07, 9, 0//
C NSSENU. OF TENNS IN DSB FILTER # 2+MS+1
C WARENU. OF TERMS IN REP FILTER = 2+4K+1
C NAENO. OF TERMS IN ANALOG FILTER = 2 * MA+1
       DATA FZS, FZR, FZA/ 4266, 1258, 1312/
       DATA SGN/10,65/
       DATA CF/0.4/
       DATA At PHA. JETA, H/U. U, 0. 517, 5.92/
C ALPHA - PREDISTORITON DOEFICHENT
C RETA - MODULATION INDEX
                                              Reproduced from sopy.
       FI=3.14159265
CUALCULATE TAP WEIGHTS
       nu 50 T=1.45
       Fiel
       WIN = .54+144 *COS(PI*FI/48+)
       Im5=MS+1+1
       WSSH(IMS)=JINTSIN(+ZSTPITFI)/(PITFITFZS)
       CALL RND (WASR (IMS), 1, 0, LF)
       JMS=MS+1"I
      #358(-JWS)=4558(IM5)
       WSSB(MS+1)=1.0
       CALL HND(WSS8(MS+1),1.0,LF)
      下されりょえ
       DU 60 Is1 48
       FIsī
     TMR#MR+1+T
   - - WKER(IMR)=JIN+SIN(+ZR+PI+FI)/(PI+FI+FZ+)
      CALL KND(WREP(IMR), 1.0, LF)
    - -JMK#MK+1-I
      WKEP(JMR)=JREP(IMR)
    CALL RND(WREP(MR+1),1.0,LF)
       FMA=MA
       DO 70 I=1, MA
       WIN=.54+.45+COS(PI+FI/FMA)
       ANLOG(IMA) = WIN+SIN( > ZA+PI+FI)/(PI+FI+FZA)
       I = 1 + AM = AML
       ANLOG(JMA) = ANLOG(IMA)
7 J
       CONTINUE
       ANLOG(MA+1)=1.0
     ________
       DO 75 I=1,4S
       FIEI
```

```
IMS#MS+1+1 ·
         WIN=,54+,44+COS(P1*FI/51.)
         DIF (IMS) = WIN+A/FI
        CALL WND (DTF (IMS), 1.0, LF)
         JMS=MS+1 "I
  DIF(MS+1)=n.n
   C LOAD SU PERCENT RC PULSE
        A=8,0*PI/15,1
        DO 80 I=1,4510
        IMSIG=MSIG+1+I
        X(1MSIG)=STN(A+FI)+COS(,5+A+FI)/(A*FI+(1,7(8,+F1/12,)++2))
       CALL RND(X(IMSIO).1.0.7)
        JMSIG=MSIG+1-1
 - (DICHI)X<del>=(DICHU)X</del>
        X(MSIG+1)=1,0
        -CALL-KND(X74SIG+1),1,0;+)------------------
      DU 90 I=1,11
   ~~~~~ ĨJ#T#J≈q···----
 (LI)Tx+(I)X=(LI)IX
 TF(XT(IJ); T; KMAX) XMAX=XT(IJ) ----
 DO 95 I=1,50
 X(I) FCF *XT(I) 7 (XMAX + 895)
 PHINT 96. (X(I), I=1,42)
 --- FURMAT(1H1-, 16HINPUI WAVE FURM /(10F10,3)) -----
 DO 110 le1, ys
 110 XX(1)=X(1) ----
 C CUNVOLVE WITH FIRST FILTER
 C SHIFT ALL TERMS BY NSB
 Reproducad from available copy.
NSTENS+1-T
 NSBI=NSB+NS#I
 XK(NSBI)=XR(NSI)---
 112
 XI(NSBI)=XI(NSI)
 DO 113 I=1, VSd1
 -0.0=0.0-
 113
 XI(I)=0.0
 C NF=NO. OF TERMS OUT OF FIRST-FILTER----
 NF=NSB+NS-1
 DO 115 181, NF
 DO 114 J#1, NS3
 Total+Jati
 XR2(I) = XR2(I) + WSSB(J) + XR(IJ)
 XI3(I)=0.0
 CALL RND(XQ2(I),A1,L)
-115 CALL HND(XI27I); A1; L1
 PRINT 116
 116 FORMAT (1HO, 30HWAVE FORM OUT OF FERST FILTER)
 PRINT 13, (xR2(I), I=1, NF)
-- CEFFECTIVELY FILL WITH ZEROS AND CONVOLVE WITH 7 KO LOW-PASS
 C REPETITION FILTER, OUTPUT OF FILTER IS AT 120 KG
 DO 190 141, NF
```

```
- C-SHIFT ALL TERMS BY NRF
 NFI=NF+1=I
 NKFI=NPF+N==I
 X12(NRFI)=yI>(NFI)
 150
 XR2(NRFI)=XR2(NFI)
 NKF1 = NRF =1
 -- DU-150 I=1,NRF1
 XR2(I)=0.0
 160
 XI2(I)=0.0
 C CALCULATE 120 KC OUTPU!
 J=n
 DO 170 L1=1, NF
 DU 170 K=1.8
 J=J+1
 DO 170 121,11
 LT=L1=T+92
 KI=8*(T+1)+K
 XI3(J)=XI3(J)+MSEP(KI)*X12(LT)
-170 XK3(J)=XK3(J)+WREP(KI)+XR2(LT)
 C J IS NUMBER OF OUTPUT SAMPLES FROM REP FILTER
 - k2=J
 DO 180 1=1,K2
 180 -CALL RND (XQ3(1), A3,L)
 C FM MODULATOR
 DO 185 1"1, K?
 XI3(I)=0.0
 XRF=XR3(I)+BE+A/H··+XRF··
 XF(I)=XHF
 185 --- CONTINUE -
 DO 186 T=1, K2
 --FI=I--
 XR3(I)=CS(xF(I),LF)+(.54+.46+COS(PI+(FI+480.)/480.))
 186 -- XI3(I)=SN(XP(I):LF)+(.54+.46+COS(PI+(FI+480:)/480:)/
 C PUT SIGNAL THROUGH INTERPOLATION FILTER AND SIMULATED
C ANALOG FILTER
 K=0
 DO 198 7-1, K2
 DELI=(XI3(T+1)-XI3(I))/32.0
 ----DELH=(xk3(++1)-xk3(1)+/32-0- ------
 DÚ 190 J=1.32
 - --K=K+1.- -- ---
 K1=MOD(K,100)+1
C K IS XR4 INDEX
 C K1 IS XR4 CYLIC INDEX
 -- F-J&-J-1---- -- -- --
 XI4(K1)=XI3(I)+(FJ-1.)+DELI
 CALL RND(XR4(K1), A4,L)
 CALL RND(XT4(K1),A4,L)---
 IF (MOD(K.15), EQ. G) GO TO 200
-190 --- CONTINUE -- .
 GO TO 220
- 2.0.0
 CONTINUE
 C CALCULATE OUTPUT OF ANALOG FILTER
C M IS XR5 INDEX
 M=M+1
 DO 210 L1=1,NA
```

```
NSMOD(74+(444)+16+L1,100)+1
 XI5(M)=XI5(M)+A VLUG(L1)+XI4(N)
 XH5(H)=XH5,M)+ANLUG(L1)*XH4(N)
210
 GO TO 190
 220
 · CUNTINUE
 M1=M/2+1
 M2=4/5+1 -
 DU 230 I=1, 44
 XI6(I)=XI5(2*I-1)
 XK6(I)=XK5(2*I*1)
 230.
 CONTINUE
 DU 240 I=1, M2
 - XI7(I) = XI5(5+I-4)
 XK7(I)=XK5(5+1-4)
 GO TO 291
 241
 CONTINUE
 C XK7 IS IMPUT TO FFT TO LOOK AT DUTPUT SPECTRUM OF TRANSMITTER-
 C XH6 IS INPUT TO RECEIVER
-- C-AUD NOISE-AND CHIFT BY NAF-6.
 FM1=2+M1
 DU 249- I=1. M1
 249
 XS=XS+YR6(T)*XR6(I)*XI6(I)*XI6(I)
 SUH=SURT (XE/FA1)
 Du 250 Isl. M1
 CALL GAUSSIZ, SOMISEN)
 Z [=ZT+7+2
 JM=M1+NHF -A-T
 IM= M1+1 - I
 XHACUM)=XRA(IH)+7
 CALL GAUSS(Z, SOH, SUN)
 -21=21+7+2---
 XI6(UM) PXI4(TM)+Z
-- 25ti + EDNITANTE
 IF(ZT.FQ.0.) GO TO 251
 SG=10+0+AL7G10(XS/4T)
251
 COMTINUE
C SIGNAL GUES INTO REPETITION FILTER IN STEPS OF B INPUT SAMPLES
 C CUTPUT IS AT 15 KC
----N8=NRF=9---
 DO 260 I=1, NA
 0.0=(T)+6x
 260
 XI6(I)=0.0
-- C- CALCULATE OUTPUT OF RECEIVER HEPETIFION FILTIR-
 M3=M1/8+1
 DU 280 K=1, 43
 DU 270 L1=1, NAF
 LK0L1+8+(K-1)
 NL=NHF+1=L1
 ╶╳ፗҏ┧₭♪ᡖ╳┰窝┧₭⋺┿₩₦₽₽┤₦Ĺ╕┿╳Ӏ┱╏┟₭╞
 2/0
 XR8(K)=XR8(K)+WREP(NL)+XR6(LK)
 CALL RND(X987K), 48, L)
 280
 CALL HND(XTS(K),AB,L)
 PRINT 13, (VR8(I), IP1, M3)
 PRINT 13, (x18(I), I=1, M3)
 DU 281 1=1 M3
 NI=NSB+M3-T
 - MI *M3+1 wI
```

```
XKS(NI)=XRR(MI)
 281
 (IA)aIx=(IA)&Ix
 NX=NSB-1
 DU 282 1=1. NX
 XH8(I)=0.0
 282
 X18(I)=0.0
 M4=M3+NSB=1
 DU 263 321.44
 DU 284 JES NSB
 NU=NSD-1 +1
 IJ=I+J+!
 (LT)^{8}NX*(LN) = (LT)^{9}NX^{8}(L)
 X19(1)=X19(1)+D1F(NJ)+X18(1J)
 284
 LALL RADIXAGIL)
 283
 CALL KNU(XT9(I), A9,L)
 C FM DEMODULATOR
 DU 296 1=1.M4
 IMS2MS+I
 A=XIH(IMS)+XR9(I)
 CALL RND (A.AO, LF)
 H=XRA(TMS)+XTY(I)
 CALL KND(B. A9, LF)
 F=XHR(IM5) + +2
 CALL RND (F, A9, LF)
 C++(8MI)91X=G-
 CALL KNDID. A9, LF)
 E#F+D
 £1(I)=F
 IF(E.LT.0.5) E=1.0
 290
 XX9(I)=(B=4)/E
 PHINT 13, (£1(I), I=1, M4)
 FM4=M4
 DU 293 Im1.M4
 ET=ET+E1(I)
 293
 FARFT/FM4
 CO 294 I=1.MA
_ 204___
 -SM=SM+(E1(T)=EA)++2
 SM=SM/FM4
 PRINT 12
 FORMAT(1HO, 2AHWAVE FORM OUT OF FM DEMOD
 12
 PRINT 13, (x99(I), I=1, M4)
 13
 FURMAT(1H , 10F12,3)
MI=M4+1 = I
 NI=NSB+M4-T
 296
 XKG(NI)=XKG(MI)
 -DO 297 I=1.NX
 297
 XK9(I)=0.0
 M5=M4+N5B-4.
 Y^{R}INT 13, (x^{R}9(I), I=1, M5)
 PHINT 13, WESP
 DO 299 I=1, M5
 XQUT(I)=0.6
 DO 298 J#1. VSB
 IJEIsJ-1 ...
 298
 XOUT(I)=XOJT(I)+WS>d(J)+XR9(JJ)
 299
 CONTINUE
```

```
GO TC 341
 C THIS SECTION CALCULATES AND PHINTS OUT SPECTRUM OF
-- C-TKANSMITTER-AND OUTPUT
 C THANSMITTER CUTPUT
- 291 - CUNTINUE
 DU 300 I=1.42
-300---F-(1, I)=CM=Ly(XR9(1), XI7(1))
 CALL FFT(FT,9,-1.)
 ----D0 310 I=1,512
 G=CABS(FT(2:I))
 IF(G.LF-0-n0001) G=0-00001
 FTM(I)=20.n+ALOG10(G)
-- B=FTM(1.)
 DO 315 I=1.512
--315- - F-TM(-I-)=FTM(-I-)=B-
 PRINT 320
-320 - FORMAT(1H1.34HSPEC! HUM-IN DH AFTER-ANALDS FELTER-)-
 SMPC= 4800n,n/512.0
330 FORMAT(1H , 16 HSAMPLE SPACING - ,F10.4)
 -FJ=J---
 CI=FJ+5.0+SMPC
 ----K1=540+1 -----
 K2=K1+4
 ----- PHINT 350; - CI, (FTM(K3), K39K1, K2)
 350 FORMAT(1H .(6F12,2))
-340 CUNTINUE
 GO TO 241
 CONTINUE
 341
-C-RECEIVER-OUTPUT- --
 DO 360 I=1,512
 FT(g,I)=CMPL×(0,,0,) ---
 DO 370 I=1,MB
CALL FFT(FT, 9, -1,)
F1(I)=CABS(FT(2,I))
 FTM(I)=20.n+ALOG10(F1(I))
---- BaffM(1)----
 B1=F1(1)
 F1(I) =F1(I)/B1
 <u>ዋ ተቸለረደን≢₽ ቸለረደን ተዋ</u>
 SMPC=15000./512.
---- - PHINT 385 -
 385
 FORMAT(1H1,30HRECELVER OUTRUT SPECTRUM IN OB)
 PRINT 390,5MPC
 FORMAT(1H ,18HSAMPLE SPACING = &F10.4)
 DO 400 T#1,52
 JsIe1
 ーチジャン
```

Charles and the second of the

```
CImFJ+5,U+cMPC
 K1=5*J+1
 K2=K1+4
400
 PRINT 350, 71, (F[M(K3), K3=K1, K2)
 PRINT 900, (XOUT(I), La1, Mb)
 FORMAT(1HO.23HTIME RESPONSE OF OUTPUT /(10F12.3))
900
 -PHINT 425 . SG -
 FORMAT(1H0,44HSIGNAL TO NOISE RATIO AT INPUT TO HEDELVER - F10.2
425
 * ,3H DR)
C
 READ 435, (F2(I), I=1, M5)
 DU 426 I=178,159
-----EK2#EH2+F2(I) +F2(I)
 EK=ER+(XOUT(I)-ES(1))**2
426
 SGA = 10.0+A DG10(ER2/ER)
 PRINT 427, SGA
 FORMAT(1H0, 27HSIGNAL TO NOISE POWER DUT # . 110,5,5H DB)
427
435
 FORMAT(10F4.5)
-999----------
 SIDP
 END - -
```

THE PROPERTY OF THE PROPERTY O

NPUT WAVE FO	0.008	-0.017	-0.029	0,118	0,308	0,529	U.517	0.491.	0,496	
0.500 0,496	0.491	0,500	0,529	0,388	0,110	-0.059	-0.017	0.008	0,904	
g, 0,	0.	0;		0;	- 0;	0;		07	01	
VE FORM OUT	OF FIRS	T FILTER							- ****	
0.	<del>0,</del>		0.	0,	0.	0,	0,		0.	
0.010		010	-0:010 0.	-0.010	0.	0.01			0.010	···-β:
0.020			0.030 1.274	1,203	0-040- 1,122	1.12	i	30	0.101 1.213	1,184
1.142		183	1.213	1,103	0.091	0,04	2	05	0.030	
0.010			0.010	0.010	-0.010-			10	o:	01010
0 + 0 +	0,		0.	0.010	0.	<del>0</del>	0;-		0.010 0	0,010 0t-
Ö.	0.		0.	0.	0.	0,	0		0.	0.



The second secon

_					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ECTRUM IN DA A	FTEH ANALOG	FILTER			.9.55 -5.22
	<del>0</del> ,	x,78	5,43	-1741	*9.55
468.75	-25,68	•1n,55	-6,45	-6,00	-5.22 :
- 937.50	-6.02	*1n:10	-14:90	-23.24	•10·20
1406.25	-5,56	-2143	-0.73	0,46	099
1875,00	1,20	n,87	. 0,12	•0,89	-2,79
2343,75	-4,95	-7,90	-13,04	•20,22	-32,30
<del>2012,50</del>	<del></del>	<del></del>	<del></del>	··· ·· <b>#17</b> 7 <b>97</b> ···	v19.32
3281.25	=26,59	-32.90	•41,11	+29,51	•27.38
3750.00	•25,72	-24,6 <u>1</u>	ě26,55	•28,78	+32.08
4218,75	-42,55	-4n,77	-40,27	•30.44	-30.24
- 4687,50	-31,64	-24,94	-30,64	•33,65	-34,72
5156.25	•36,70	*54,95	-47,74	*54,05	*42.24
5025.00	48195		**2764	#49-,03-	#44162
6093,75	-63,81	·51 ; 46	47,42	=48,75	-55.96
6562.50	-44,31	*57.12	•46,71	<b>⊕51</b> ,75	-47.18 -52.91
7031.25	-47,43	-52,27	-48,58	47,00	
- 7509.00 -	-55,72	6n .52	•50,00	-52,79	•62.33
7968,75	•59,13	*55124	#48,48 <del></del>	•53,84	-57.46 <del>-46.94</del>
<del></del>	<del></del>	-46198	E2 07	495.95	-47.97
8406.25	₩47,53 	-53,18	•52,97	•46,45	€59.18
9375,00	•51,92	*43,79	-649,72 -56,81	- 491;41	-61.36
9843,75 - 10312:50	<del>051:187</del> -	+54+89 * <del>453197</del> ↔		- 45,40 - 462,27 -	#52+7±
10781.25	•51.87	-55,36	-52,16	•51,55	•51.82
<del>-11250.00</del>		<del></del>			101,24
11718.75	-58,78	-5n,18	>6,05	-58,81	-59.27
12107.50	57-29	56,30		462,88	*>3-28
12656,25	-54,74	-5A,68	•54,66	+53,47	e53.43
13125:00		757127		-95/16	+65.63
13593.75	-59,10	-54,64	-58.07	-57,20	.60.83
14062,50-		5 <del>51</del> 95			58,84
14531,25	*51,78	*72.00	-57,07	*51,21	•51.93
15000.00	65-693		53,43		65-04
15468,75	-56,29	-51127	.57,64	-60.17	-55.73
15937,50		-01:09	57,19	69,03	•55r63
16406,25	-55,92	-64,51	-52,50	-57,85	•54,62
16875,00	<del>-01-76</del>		<del> +55,25</del>	<del></del>	<del></del>
17343,75	*52,45	-55,63	-60,12	•48,22	-52,01
·17812r58	- 456 187	e74184	#55:97	<del></del>	65+96-
18281.25	-62.76	•59,83	•57.02°	•55,15	•>5.54
1 <del>8</del> 750 r00	<del>-</del> 74 <del>-5</del> 4	-59189	58181	e61/45	-62-13
19218,75	•56,97	-55,64	.57,39	•55,99	-53,56
<del> 19487+50</del>	<del></del>	<del></del>	<del>- +60+91</del>	<del></del>	
20156.25	-61,13	•57:11	-57,93	455,67	•72.83
50452100	<del></del>			<del></del>	
21093,75	•64,16	-55;33	-58,91	,-59,09	•56.36
21562-50	58-16		62-47	<b></b>	
22031 . 25	•61+62	#6à176	-61+35	461.02	•59.10
<del></del>			-55181···		
22968,75	-55,03	-03,12	-64,50	467,94	1058,44
23437-50		<del></del>		<b></b>	
23706,25	*54,25	•6ñ 37	•51,62	*55,25	•\$6,96 •40-83
24875+80	~~ <del>~~4\$</del> 1 <del>8</del> 2~~		<b>+5</b> 5,81		++60+87: " _47
24843,75	•61,54	-55,37	-53,72	496,48	.57,35 
<del>25312,50</del> 25781,25	<del></del>		-85,45		.57.47
29/01.25	<b>-71,3</b> 6	774;78	-58,10	+50,27	4-1
	64 ##	A = i + A			<b></b> -
26850y88 86718,75	F6 ₇ #3	<del></del>	63;16	<del></del>	57y34 -54.81

	,		•			1		1	
27656,25	-62.58	-54/81	-50.86	-An. Sn		·			
-20125.00-		-54181	-50,86 -73,30	-60,5g -55,63				1	
28593,75 <del>20062,50</del>	*60,89 <del></del>	-59,53	•58,31	497,13	+55.33				
29531,25	#58,53	<del>v64 41-</del> -	<del>60-,42</del> -		- <del>79.11</del>				
30000100	· <del>+59</del> 715·-	<del>-54 97</del> -	+- <del></del>	#65,12 <del>980,79</del>	<del></del>				
30468,75	*53.78	*62.16	-56.62	758,27	*57.95		,		
30937130	+64152		<del></del>	-98,43					
31406,25 <del>31875.00</del> -	-62,30	*55158	-54,67	961,90	+67,45	1			
32343,75	•50,55	<del>51,69</del> •65,77	•55,39	+53, *5	<del></del>	·			
32612-50	· <del>-56</del> - <del>90</del>	<del></del>	<del>5</del> 7- <del>-66</del> -	<del></del>	<del></del>				
33281,25	-59,46	-81.80	-54:09	•\$9.33	.68.55		_		
33750100	-52,67	#55181 <u>-</u>	#59 ₁₈₄	¥\$4,42	<del></del>				
34218,75 34687358	-53,19 <del> 54,59</del>	-62,23	-52,58	-48,72	.56.06				
35156,25	-57,80	<del>-54,04-</del> -61,63	<del>-51,72</del> - -59,21		<del>58,5</del> 3- -58,57			••••••••••••••••••••••••••••••••••••••	
35625-00		<del>-5(185-</del> -	<del></del>	<del></del> 56+65	<del></del>				
36093,75	<b>48,36</b>	-66,93	+49,03	•49.49	-52.44				
-3v562;50	<del></del>	-51171	450,54	¥61,73	<del>- +56,00</del> -				
37031,25 -37508-00	•53.34 047-29	•52,96 <del>-55,40</del>	59,92 <del>-58,57</del>	•59,70 •••55,70	•55.16	1	•		
37968.75	•53.31	-50,63	•50.65	•47,66	*54,92				
-38437-50		マラガンフオー-		<del></del>					
38906,25	•48,45	-5n,35	-62,76	-95,36	-50.00				
39375.00	-9 <del>5,17</del>	- 40n,13	64,99	<b>490,59</b>	~v51,42-	7			<del></del>
39843,75 -40312750	*62,13 ************************************	765,70	•55,76 •46,49	47,29	•>2.04				
40781.25	•48.90	-47.56	53,44	1¥95;145 ±51,64	<del></del>				
-41250-00					- 449,99				
41718,75	-59,06	+75,50	•47,55	.49,41	•48.82				1
42187,50 42656,25	*94,15 *44,27	-44134	•46,52	447,37	-45.73				
-43125:00		•44,48 •52129	-53,14 	#49,26 #8191	•44,97 				
43593,75	•66.93	-55,27	±46,01	•47,26	-47.52				
44062,50		443,77	37,97 33,90	68.90	*44,93		÷ .		
44531,25	-48,90	-31,34	.33,90	<b>-39,49</b>	-36,27				
45468,75	• 45 196 • 57 167	-33110-	#29+20	433120	- 430+80				
-15937-50		38,84	-35,99 34,08	•28,11 •40,40	•28,45 •30,⁻69				
46406.25	027,12	-20,77	-22,12	-23,85	+21.38			;	
46675-00		<del>w24"55</del> -	<del>v20-,42</del>	¥15,18	¥11.82			•	
47343,75 <del>478</del> (2.50	*10,57	-1n,92	•10.91	-16,86	*11.68		· · · · · ·		
0.044	-0.044	0.255	.0.489	3,553	9,948	14,746	12 442	47.400	4444
21-872	10-032	19:940-	22-604	18.608 -	- 22.693	25,091	12,612 33,218	13,190 32,419	14,54 85,21/
29.754	41,523	42,855	44,898	49,739	51,959	53,957	58,976	64.083	62,637
75-098	75.763	80,914	82,513	62.024	90.640	921985	92:327	100.410	104.62,
103.474	110,491 138,113-	115,1n9 <del></del>	112,622 	119,906	126,523	127,544	130,386	114.080	48,05.
-101.076	16.032	124,391	157,767	93,260	- 148,727 -86,238	- 110,002 -135,804	-152 442	- 195 r 3 3 4 ···	
123 <del>503</del>	121,415	-120.483	-110,573	w116,131	-114,621	-114,354	•152,102 •112,55÷	-125,279 -111,867	-107,005
-105.206	-102,630	-99,344	-99,166	•92,327	-92,949	-89,307	-57.309	+A3.579	780 64c
-75.008	-73,586	-69,678	468.302	¥68,435	•63,905	-58,497	•53, 325	-55,467	48,54
-44,409 	-45,d75 	#41,834 ************************************	•37,704 <del>#20,562</del>	•38,103	•38,681	-30,953	-29,888	-25,713	25,40
-10.703	- 60,020	-17,542	#20.505. a	- w18,563	417,14 <del>2</del>	-15, <del>67</del> 7		111102	-11,95
0:044-	0.089	F0.311	0.566	<b>45.1</b> 07	<b>#14,344</b>	-17:854	~11.191	-15:987	-6,57
-11.014	-8,171	2,443	-0.933	3,686	-2,709	-0,533	0,868	0.400	1,06c
	0,178 ·	-1.998"	** •3,420	•0.222	2.753	2.842	0.923	0.577	



RECEIVER OUTPUT SAMPLE SPACING	SPECTRUM IN 29,2969	DÜ							
υ.	0.	-n.19	-0,74	*1.51	-2.27				
146,48	-2,70	-2,66	-2,32	-2,01	-1,97				
292.97	-2:31	-3105	-4:18	-5.60	-7:06				
439,45	-8.09	** 40	-8.40	-8,66	-9.45 -32.50				
585,94 732,42	<b>410,83</b> <b>-28.02</b>	-12,43	•15,73 •21,22	•20,56 •22,76	•24.00				
<del>878,91</del> -		+2> ₁ 16 - +1+ <del>153</del> -	-16,54	-15,11					
1025.39	*13.41	-13:30	•13.59	*14:10	-14.71				
1171.87	#15.46	-14.33	-17.15	-17.89	-18,86				
1318,36	+20.15	-20.91	-20.55	20.37	-21.61				
1464,84	-24.88	-27.87	-24,95	-22,19	-20.85				
1611.33	-20.13	-19.72	-19.99	-21.50	•25.17				
- 1757.81	*84 ·85·	-24,63	w17,60	#15,14 =	-13. <del>80</del>	-		• -	
1904.30	-13,41	-17,99	-15,70	-19,01	-22,44				
2050.78	-32.15	-27.69	-20.27	119,30	+19.45				
2197,27	-20.85	-2n,91	-20,45	720,91	-22.48				
2343,75	-22.50	<b>-2</b> 1,03	-18,45	*18,82	•21.45				
2490.23	•25.73	-25.06	•22,74	•22.73	•23.52				
- <del>- 2636,72</del>	22.01		19,21 -		<del></del>	-			-
2783,20 2929,69	-22,60 -24,73	•24,n3	-28,73 -25,21	-35,67	*23.11				
3076.17	•21.69	*21,92 *23,20	•27,24	*26,92 *30,08	*29.78				
3222.66	•32.19	#4n.71	.42.96	-38,21	.39.82				
3369,14	-45.87	-58.40	78.50	-76,50	-67,96				
3515-62	69.48	74.50	78.50	78,50-	13,75				
3662.11	*74,68	*74.50	•78.50	*78.50	478.90				
3808.59	-78.50	-7e130	•78 D	-78.50	-/6.59				
3955.08	-74.01	-72,29	.74.03	.77,27	4/5.21				
4101.56	•73.51	-74.03	<b>≈74</b> 15	-71.81	-/0.09				
4248,05	-71,04	-77,14	78,50	77, 39	-78,50				
- <del>-4894+53</del>	- +78150	<del></del>	76150	731-38					
4541,02	•76,07	-74,50	.76,54	-76,15	./8.50				
4687,50	-78.50	-74:50	-78,90	•78,30	*/8:30 */6:50				
4833,98	-78,50	e74,87	•/3,46	-78,50	•76.50				
4986:47 5126.95	-70:18 -78:50	-69,26	-73,82 -78,03	+78,50 =78,50	•76.30				
	<del>-76+01 -</del>	*75,77	<del></del>						
5419.92	-68,59	-74,01	-78,50	•78.50	-/4.69				
5566,41	-70,14	-71,57	.78,50	<b>-78,50</b>	-78,50				
5712.89	-78.50	-74.50	-78,50	-78,50	-/8.50				
- 5859,37	473,64	-68,92	-68.93	-67.54	-62,40				
6005.86	-68.71	-61.53	+64.29	-66.41	-69.04				
4152,34	<del></del>	79 ₇ 54							
6298.83	•61.25	-65,72	-66.01	•70.BC	- /7 . 30				
6445-31	78,50	7A+41	74+71	•75,-23	-/7-64		-		
6591.80	•78.50	-74.29	-76.82	475,57	-75.69				
-4738+28	76+30	74+81	-74,51	+76,41	•78-58 •78.50		-		
6884,77	478,50	-73,07	-70,30	472,22	-78,50				
7031,28 7177,73	<del></del>	-79,00 -	-75,06 -78,50	•78,50 •78,50	•78.50				
-7324+22 -	-478+50	47441 <b>8</b>	•73:19	474.00	=78.50				
7470,70	•78.37	-74,35	•78.37	478,50	-74.00	=			
7770170	-,013,	=/4132	4,010,	4,0120					
TIME RESPONSE O	F OUTPUT								
						0	. <del>0+</del>		
0.	·o•	0.	0 •	Ö,	0.	0.	0.	٥,	Ů.
· · · · • • • • · · · · · · · · · · · ·		Or	- Ör -		Dr	0 e -	ėμ	₽ ¥	0.
0.	0.	ō;	0.	ġ.	0.	0.	0 ,	0+	0.
	0	0		0		0_000			_ 0.40

AND THE PROPERTY OF THE PROPER

0.001	-0.000	•0 « ចម្អ	0.000	0.001	0.002	-0.000	•0.000	0.001	0.8
-0.000-	-0.002	0.000	0.011	0.003		0:003	0.009	0,015	
-0.022		O-n#f -				0r011		01911	011
0.925	0.333	0.704	0,849	0.620	0.198	-0.071	0,011	0.340	0.4
-0.685	<del>01463</del>	<del>0.108</del>	0,133	0,127	<del>0.179</del> 0.053	-0.007	0;1+ <del>0</del>	*0,029	
-9-044			0.000	0,080	*0.058			01010	
0.001	0.029	0.078	0.059	-0.071	•0.156	0.041	0.607	1.349	449
- <del>2.092</del>	47 <del>976</del>	<del></del>	<del>1,019</del>	· · · · · · · · · · · · · · · · · · ·	2.11	1.909	<u>+</u>	<u>1</u> 1845	±∓( },0=
2.001 -0:1 <del>37</del>	1,942 <del>-0</del> , <del>012</del>	1,421 <del>0,684</del>	1,816 0:0 <b>91</b>	1,984 <del>-0,024</del>		0r008	6,270 	0+0±0	
0.023	0.049	0.126	•0.019	.0,029	-0.006	0.005	-0,013	-0,013	0,
0.002	-0.045 -0.045	-0.048 -0.093	*0.0 <b>85</b>	0.089	0.124	0.003	*0,126	-0.013 -0.071	<del></del>
-0-151	01 <del>055</del>	05-700	<u>0, 59</u> t				0,063	01108	
0.223	0.170	#0,n14	-0,106	.0,035	0.061	0.052	-0,024	-0.051	<u>.</u> 0,
-0-040	0-01 <del>9</del>	<del></del>	-0:025 -0:001	0,009	<del></del>	<del>-0-002</del> -	<del></del>	0.002	0,
0.014 	-0.005 0.004	#0.013		0.00 <del>5</del>		-0.002	<del></del>	<del>0,001</del>	
-0.000	-0.001	0.000	0.001	0,000	0.	0.	0.	۵.	ġ,
0	- 01		0,			br		·9 t	Đτ
0. <b></b>	0.	0.	0.	. 0	<del>0</del>	O•	O+	0.	8r
0.	0.	0.	0.	ŏ:	ö:	0.	ŏ:	0.	ŏ:

A CONTRACTOR OF THE CONTRACTOR



#### SECTION VIII

#### TRANSCEIVER BREADBOARD

The algorithms mod/demod breadboard is a scale model of a full-duplex digital transceiver. The design philosophy of the breadboard was to scale down the speed of operation of the transceiver and not to curtail the modes of operation or flexibility of the breadboard. This facilitates the testing of any possible transceiver configuration, which might be chosen for the full-scale brassboard.

The speed of operation of the breadboard was chosen to be one one-hundredth of the full scale transceiver. This allows an off-the-shelf commercial mini-processor, the Data General Supernova, to implement the full-duplex transceiver and several testing routines simultaneously. This represents a considerable reduction in cost over designing a special purpose pipeline processor which would be required to implement a full-scale transceiver. In addition, the serial processing, stored program organization of the Supernova and a special signal processing macro-language developed by Philco-Ford facilitates easy modification of the implemented transceiver.

The hundred to one reduction in operating speed implies that all of the signal frequencies associated with the implemented transceiver are reduced by a factor of one hundred. I. e., instead of a 300 to 3000 hertz audio modulation passband, the breadboard has a 3 to 30 hertz modulation passband. Likewise, the breadboard's 80 bit per second digital signal transmission rate represents an 8000 bit per second rate on the full-scale transceiver.

Secretary of the secret

The radio frequency signal generated by the breadboard transmitter and received by the breadboard receiver is centered about a fixed 2000 hertz frequency. This was chosen for several reasons. First, since the digital frequency synthesis techniques, necessary for variable frequency operation, are well known by now, it was not felt that this feature need be demonstrated to prove the feasibility of the digital transceiver. Second, the scaled radio frequency signal was centered in the upper audio frequency region so that conventional narrowband audio channel test and simulation equipment could be used to simulate the radio frequency channel between the transmitter and receiver.

Most of the controls and terminals on the transceiver control panel are self explanatory. The power switch on this panel controls power for all of the equipment associated with the breadboard, and should be the only switch used to shutdown the equipment. The analog modulation and radio

frequency inputs and outputs have 100K ohm and 600 ohm input and output impedances respectively. Their peak unload output and input signal handling capacity is  $\pm$  10 volts. The sampled data output is the same signal as the receiver modulation signal output before it has passed through the final analog low pass filter. This signal has the repetitive spectrum of an unfiltered sampled signal, but does not have any delay or amplitude distortions which are introduced by the analog low pass filter. The digital input, output, and clock ports meet standard 188B specifications, with the exception that the input circuit has no hysteresis. It tends to interrupt an open input circuit as a random sequence of marks and spaces. The rise and fall times of the digital outputs are 25 micro-seconds. The function of the mode control switches will be discussed later.

During normal transceiver operation, the teletype unit is not needed (it may be disconnected from the system) and the controls of the Supernova processor are not used. The Supernova processor should be left in the locked mode, that is the control key removed. However, these facilities may be used to reload or modify the transceiver program.

THE STATE OF THE PARTY OF THE P

To reload the transceiver program, the memory dump tape should be placed in the teletype tape reader, the 'spe reader control switch thrown to "start", and the teletype control switch thrown to "line". The Supernova control key should be inserted and thrown to the "on" position; this activates the processor control panel switches. All data input switches should be thrown down, and the bit 12 switch thrown up. The "reset" and "program load" switches should be pressed in that order to start reading in the program. After reading in the binary loader the paper tape reader will stop. The "continue" switch should be pressed to read in the transceiver program. After the tape is finished reading the transceiver program will automatically restart.

To modify the program, the facilities of the Data General Debug III program are best used. To enter this program, the data switches are set to octal 200, the "stop" and "start" switches are pressed in that order. To restart the transceiver program, location 2 is executed. After modification or reloading the transceiver program, the processor should be relocked.

During switching the transceiver mode of operation between frequency modulation and amplitude modulation or single-sideband modulation, switching transients sometimes give the Supernova processor a larger task than it can perform in real time. Under this condition the transceiver system halts operation. (If the teletype unit is runing it will type out "****ERROR HALT: REALTIME PROGRAM TIMEOUT".) Operation can be most easily restarted by switching the transceiver mode control switches to an easier task, and cycling the power switch "off" and "on". (If the teletype unit is

running it will type out "SYSTEM RESTARTING".)

A STATE OF THE STA

be

1

The possible modes of operation of the breadboard are as follows: In mode Al no digital signal processing takes place. This mode is used for testing the analog to digital interface and is to be used as a reference when making tests on the digital signal processing. Modes A2 through A4 test the various digital filters used in the transceiver by placing them between the transmitter modulation input and receiver output ports.

Modes B1 through B4 implement frequency modulation operation. Mode B4 implements the complete frequency modulation transceiver. Mode B3 is the same except the 3 to 30 Hz modulation signal bandpass filters are removed. Mode B1 and B2 have the interpolation filters removed also. In mode B1, a phase modulation receiver is implemented in place of the frequency modulation receiver in the other modes. The transmitter still implements frequency modulation.

Modes C1 through C4 implement various amplitude modulations. In modes C1 and C2 amplitude modulation is implemented in the transmitter. In mode C3 upper-sideband and in mode C4 lower-sideband single-sideband modulation is implemented. Upper-sideband reception is implemented in modes C1 and C3, and lower-sideband reception is implemented in modes C2 and C4.

Frequency shift keying digital modulation is implementeed in modes D3 and D4. In mode D3 the digital input is replaced with a pseudo-random sequence generator, and a decoder is placed on the output of the receiver. The signal is so decoded that a continual space output represents error free transmission, and a mark bit represent an error.

The frequency response of various digital filters used in the transceiver were measured and found to have the response shown in figure 44. The 13.5 Hz low pass filter (mode A2) is the filter used to obtain the selectivity in single-sideband reception, and its response represents the selectivity of the digital single-sideband receiver. The bandpass filter (mode A3) and resampling filter (mode A4) responses were measured with them operating at one-half their normal sampling rate. The frequency scale must be doubled to obtain their normal response curve.

Figure 45 shows the response of the frequency modulation transceiver (mode B4) back-to-back. Note that non-complementary pre- and de-emphasis causes a 4db drop in the high frequency response.

Signal-to-noise performance tests were made in all modes of operation. For linear modulation the signal-to-noise performance can be characterize by the apparent noise bandwidth of the receiver. This was found to be



The state of the s

of a management as

Figure 44: Measured Response of Breadboard Digital Filters



or consistence of the second o

Figure 45: Overall FM Response (Transmitter and Receiver)

approximately 32 Hertz (measured in mode C4). The frequency modulation (mode B4) noise quieting curve is shown in figure 46. The digital transmission error rate versus noise power density curve is shown in figure 47. Note that this measurement was made in mode D3 where the pseudorandom sequence decoder produces a 3 to 1 increase in measured errors above actual errors at low error rates.





いた。サルドルはのは大角を大変を大きな大きなできない。 Andrewsian to the Control of the Con

#### SECTION IX

#### CONCLUSIONS AND RECOMMENDATIONS

# 1. CONCLUSIONS

A COLOR OF THE PROPERTY OF THE

The Digital Transceiver system configuration that took shape as a result of this effort is presented with a minimum of technical detail in the first three subsections of Section II. The system philosophy can be understood with reference to figure 19, in Section V. Filtering of the transmitted signal is performed at baseband. Since the filter requirements can be severe, complexity is minimized by performing this filtering at the lowest possible sampling rate. The resampling filter has less stringent requirements and can operate at a higher output sampling rate. The interpolation filter is extremely simple and can be used to bring the sampling rate up to a value required for translation to I. F. The actual sampling rates required for adequate suppression of spectral repeats are derived in Section II. 4. Section II thus provides a feasible, minimum complexity, overall transceiver system design.

It is readily seen that digital filtering accounts for the major portion of the transceiver. Consequently, a major effort of the program was directed toward efficient filtering algorithms. Section III is a comprehensive survey of all available methods for the design of realizable linear phase digital filters. The method described in Section III. 6 was developed as a rapid technique for designing the many filters required for the breadboard. For the final design of a production item, we would recommend the more cumbersome Hofstetter algorithm described in Section III. 4, since it results in an optimum (minimum complexity) filter design.

A more detailed discussion of digital filtering specifically applied to the digital transceiver, is given in Section VI. The requirements of accuracy, complexity, and linear phase (zero differential delay) lead to the choice of a non-recursive (convolutional) implementation for the sideband filters and a recursive implementation for the interpolation filter. The design of the latter appears in Section II.4, the design of all the others are given in Section VI. 2 along with frequency responses. Section VI. 2 also contains the interactive filter design computer program.

Since digital differentiation is required for F. M. receiver operation, this topic is discussed in Section VI. 3. A brilliantly efficient method was recently developed by Rabiner and Steiglitz⁽²⁵⁾ on the basis of a frequency-domain analysis. The time-domain analysis given in Section VI. 3 gives a more penetrating insight into the efficiency of their method. In addition, this analysis provides the required impulse response directly.

The receiver bandpass sampler in figure 19 is meant to extract the complex low-pass equivalent signal by proper sampling of the bandpass received signal. If the narrowband approximation holds; this can be achieved by a pair of analog to digital converters operating a quarter of a carrier cycle apart at a rate consistent with the signal bandwidth. Dickey (19) has recently considered a method for improving the sampler performance for the case when the narrowband approximation is not valid. His method, however, requires the use of three or more A/D convertors. This problem is analyzed in Section IV, and a new method that does not require additional A/D converters, is derived.

Section V may be considered a mathematical appendix for Section II. Extensive computer simulations were performed and are documented in Section VII. These simulations were instrumental in revising the system design to the version discussed in the rest of the report. They proved the feasibility of the digital transceiver, while pointing out that more than eight bit precision need be carried through the various transceiver algorithms.

The transceiver breadboard, described in Section VIII, represents the culmination of our efforts in digital equivalence. By turning switches on the front panel, any of several modes of analog or digital modulation can be implemented. Furthermore, additional modes of modulation and demodulation (analog or digital) can be added to the program as they are invented. A full scale digital transceiver would utilize a special purpose processor to perform (at one hundred times the speed) the same computations that the general purpose processor performs in the breadboard.

Thus, the feasibility of the digital transceiver has been proved and efficient system configurations and processing algorithms have been developed. Advantages of digital processing include stability (nothing can age on drift), size (through LSI), programmability (characteristics may be changed by plugging in a new read-only-memory), commonality (the same processor is an AM transmitter or an FM receiver) and the ability to achieve filter characteristics that are impossible with analog devices.

# 2. RECOMMENDATIONS

Ir view of the foregoing conclusions, and of continuing advances in digital integraded circuit technology, it is now feasible to build a real time digital processor for communication signals. It is therefore recommended that a full-scale experimental model Multimode Digital Processing Transceiver be designed, fabricated, and field tested in conjunction with available HF-SSB, VHF-FM, and VHF-AM tactical transceivers.

Two experimental models should be built to be tested in conjunction with existing analog transceivers for voice and CW, and with each other for

digital data transmission via HF and VHF. Digital modulations should include phase shift keying (including differentially coherent PSK), frequency shift keying, and digital data transmission via single sideband (including partial response SSB and carrier injection.

In addition, an L.S.I. investigation should be undertaken so that the potential weight, size, and power advantages of Large Scale Integration may be subsequently realized. This investigation should include:

Selecting an LSI fabrication technology (MOS, bir olar, etc.) with characteristics capable of implementing system requirements.

Formulating a packaging scheme compatible with the fabrication technology.

Structuring the system such that it is compatible with the fabrication and packaging technology.

Partitioning the logic into LSI blocks to maximize the ratio between the number of logic gates per chip and the number of input/output leads required.

Evaluating the resulting system in terms of cost, size, weight, power, reilability, and maintainability.

It is further recommended that a study be initiated to investigate the possibility of a Universal Signal Processor that would perform vocoding, estimation, channel equalization, synchronization, error detection and correction, and encryption in addition to the Digital Transceiver functions.

#### REFERENCES

- 1. B. Fritchman, et. al., "Digital Equivalent Transceiver Study", Philoo-Ford report on Contract F30602-68-C-0105, November 1968. RADC-TR-68-539, March 1969, AD 851-364.
- 2. "Interim Data, Service and Circuit Diagrams, Radio Set AN/PRC-72." Prepared under Contract AF34(601)-23246, Jctober 1967.
- 3. L. B. W. Jolley, "Summation of Series", 2nd ed., Dover, New York, 1961.
- 4. R. B. Blackman and J. W. Tukey, "The Measurement of Power Spectra", Dover, New York, 1958.

- 5. J. F. Kaiser, "Digital Filters", in "System Analysis by Digital Computer" edited by F. F. Kuo and J. F. Kaiser, Wiley, New York, 1966.
- 6. T. G. Stockham, Jr., "High-Speed Convolution and Correlation with Applications to Digital Filtering", chapter 7 of "Digital Processing of Signals" by B. Gold and C. M. Rader, McGraw-Hill, New York, 1969.
- 7. H. S. Carslaw, "Introduction to the Theory of Fourier Series and Integrals", 3rd. rev. ed., Dover, New York, 1930.
- 8. B. Cold and C. M. Rader, "Digital Processing of Signals", McGraw-Hill, New York, 1969, p. 228.
- 9. H. D. Helms, "Nonrecursive Digital Filters: Design Methods for Achieving Specifications on Frequency Response", IEEE Trans. on Audio and Electroacustics, Vol. AU-16, No. 3, pp. 336-342, September 1968.
- 10. B. Gold and K. Jordan, "A Direct Search Procedure for Designing Finite Duration Impulse Response Filters", IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, No. 1, pp. 33-36, March 1969.
- 11. L. R. Rabiner, B. Gold, and C. A. McGonegal, "An Approach to the Approximation Problem for Nonrecursive Digital Filters", <u>IEEE</u>

  <u>Trans. on Audio and Electroacoustics</u>, Vol. AU-18, No. 2, pp. 83106, June 1970.
- 12. L. R. Rabiner, "Techniques for Designing Finite Duration Impulse Response Digital Filters IEEE Trans. on Communication Technology,

# REFERENCES (Continued)

12. (Continued)
Vol. Com-19, No. 2, pp. 188-195, April 1971.

The first the first the state of the state o

- 13. A. A. G. Requicha and H. B. Voelcker, "Design of Nonrecursive Filters by Specification of Frequency-Domain Zeros", IEEE Trans. on Audio and Electroacoustics, Vol. AU-18, No. 4, pp. 464-470, December 1970.
- 14. O. Herrman, "Design of Nonrecursive Digital Filters with Linear Phase", Electronics Letters, Vol. 6, No. 11, pp. 328-329, May 28, 1970.
- 15. E. Hofstetter, A. Oppenheim, and J. Siegel, "A New Technique for the Design of Non-Recursive Digital Filters", to be published. Presented at the Princeton Conference on Information Sciences and Systems, March 1971.
- 16. E. Averhaus and W. Schüssler, "On the Approximation Problem in the Design of Digital Filters with Limited Wordlength", Archiv der Eleckrischen Übertragung, Band 24, pp. 571-572, 1971.
- 17. W. Schussler, "On the Approximation Problem in the Design of Digital Filters". Presented at the Princeton Conference on Information Sciences and Systems, March 1971.
- 18. R. W. Lucky, J. Salz, and E. J. Weldon, Jr. . "Principles of Data Communication", McGraw-Hill, New York, 1968, pp. 50-51.
- 19. F. R. Dickey, Jr., "Simple Algorithms for Approximating the Complex Envelope in Terms of Real Samples", Proc. IEEE, Vol. 59, No. 7, pp. 1119-1121, July 1971.
- 20. K. Abend, et. al., "Advanced Digital Receiver Techniques", Philco-Ford report on Contract F30602-67-C-0178, April 1968. RADC-TR-68-169, September 1968, AD 841-083.
- 21. T. J. Harley, Jr. and K. Abend, "Digital Noncoherent Amplitude Demodulation and the Modified-Normal Density", Proc. IEEE, Vol. 56, No. 8, pp. 1360-1361, August 1968.
- 22. S. O. Rice, "Mathematical Analysis of Random Noise", <u>Bell Sys.</u>

  <u>Tech. J.</u>, Vol. 23, pp. 282-332, July 1944, and Vol. 24, pp. 46-156,

## REFERENCES (Continued)

22. (Continued) January 1945. Also in Selected Papers on Noise and Stochastic Processes, N. Wax, Ed., Dover, New York, 1954.

The transfer of the single or the second of the second of

¢

- 23. E. Christain and E. Eisenmann. "Filter Design Tables and Graphs", John Wiley and Sons, Inc., New York, , p. 243.
- 24. L. R. Rabiner and R. W. Schafer, "Recursive and Nonrecursive Realizations of Digital Filters Designed by Frequency Sampling Techniques", <u>IEEE Trans. on Audio and Electroacustics</u>, Vol. Au-19, No. 3, pp. 200-207, September 1971.
- 25. L. R. Rabiner and K. Steiglitz, "The Design of Wide-Band Recursive and Non-Recursive Digital Differentiators", IEEE Trans. on Audio and Electroacoustics, Vol. AU-18, No. 2, pp. 204-209, June 1970.
- 26. R. Van Blerkom, D. G. Freeman, and R. E. Keeler, IBM report on Contract AF30(602)-3897. RADC-TR-66-602, November 1966, AD 805-009.
- 27. F. D. Natali and David T. Magill, "Digital Processing Receiver Study", Philco-Ford report on Contract F30602-67-C-0251. RADC-TR-68-163, May 1968, AD 835-767.

# APPENDIX A

# SUBROUTINES FOR TRANSCEIVER BREADBOARD

Reproduced from best available copy.

My said Colorable British paris salgeration by a second some some some son in

· TITL CONVO CONVO IS A SUPROUTIVE TO COVVOLVE A 15 PIT 2'S COMPLEMENT VECTOR FUNCTION WITH A STATIONARY BOUNDED IMPULSE RESPONSE STORED IN EXCESS 2:15 ; FORMAT. THE CALLING SECUENCE IS: **ecovo** ; JSR ; GWI9 ; DSTORE ; WHERE GIMP IS THE STATTIVE LOCATION OF THE FILTER ; IMPULSE RESPONSE STURACE PLUCK, AND ESTURE IS THE STARTING LOCATION OF THE DATA STUDAGE BLOCK ASSOCIATED ; VITH THIS CONVOLUTION. GI P AND DSTORE'S FORMAT IS ; AS FOLLOWS: :CIMP: **GLEVCTH** ; LEVGTH OF THE FILTER ; JIMPULSE FESPONSE ; •BLK ; OFFSET CONSTANT =- 0.5* ; ;SIGMA(FILTER SAMPLES) • BLK CLEVEIH ; IMPULSE PESPONSE STORED ; I V EXCESS 2:15 FORMAT ; JISTORE: .+1 3 C ()* JT SOYFL. ~ T #F • PLk CLEVC19 JUATA VECTOR STOPACE PLA THE VEW DATA VECTOR FUNCTION SAMPLE IS TRANSFERDE \$TO THE SUPROUTIVE IN ACC. THE NEW FILTERED DATA VECTOR SAMPLE IS RETURNED IN ACO. AC1, AC2, AC3, AND ;LOCATIONS 20 AND 30 ARE DESTROYED. CONVO MAY FR SINTERUPTED IF LOCATIONS 20 AND 30 ARE NOT DESTROYEL. CONVO DOES NOT REQUIRE INITIALIZATION. THE ROUTINE 31S OPTIMIZED FOR SPEED. SUPERVOVA HARDRAFF MULTIPIV JEXECUTION TIPE=26.7+17.0*GLENGTH USEC.S :TOTAL LENGTH=45. LUCATIONS; 68. FOR THE TOTAL PACKAGE

		• ENT • ZKEL	COANCO COANLY	CONVE
00000-000000	COVVO:		ENT1	CONVIENTRY LOCATION
00001-000050	COMVI:		EVT3	CONVI ENTRY LOCATION
00002-000064*	COAME:	• VREL	EVT4	CONVE ENTRY LOCATION
00000 054500	EVT1:	STA	3. RETUEN	SAVE RETURN ADDRESS
00001 103240		ADDOR	0.0	3CONVERT DATA SAMPLE
				JT ) EXCESS 2:15 CODE
00008,101680		I ACSE	0.0	ROUND & DIVIDE PY 2
00003 031400		LDA	2, 0, 3	STARTING LOCATION-1
00004 050020		STA	2. INCRE	;INITIALIZE AUTOINCRE- ;MENTIN( IMPULSE
				RESPONSE SAMPLE POINTER
00005 025000		LDA	1, 0, 2	FILTER IMPULSE RESPONSE
00006'044473		STA	1. GLENGTH	SAVE IN GLENGTH
00007 044473		STA	1, GCOUNT	; INITIALIZE IMPULSE ; SAMPLE COUNTER

The second secon

The state of

Contract of the contract of contract

00010 035401		LDA	3, 1, 3	;STARTING LOCATION-1 ;OF DATA PLOCK
00011'031400		LDA	2, 0, 3	JDATA PLOCK POINTER
00012'041000		SIA	0, 0, 2	JINSERT VEW SAMPLE
00012 041000		INC	2, 2	JINGERI VEW SEMPLE
00013 151400		STA	2. DECRE	SAVE IN AUTODECREMENT-
00014 030030		SIH	2) DECRE	JING DATA BLOCK POINTER
00015*141000		VCM	2, 0	JIVITIALIZE DATA SAMPLE
00015 141000		SUB	3, 0	
00017 040464		STA	O, DCOUVT	COUNTER
				ATABLEMENT WARING
00020'106512		SUBL#	0, 1, SZC	;IMPLEMENT MODULO
00021 132400		SUB	1, 2	GLENCTH
00022 051400		STA	2, 0, 3	SAVE NEW DATA PLOCK
				; P ) I V T E R
00023*102620	ENT2:	SUBZR	0.0	; INITIALIZE ACCUMULATOR
00024 036020		LDA	3. @INCRE	TO -IMPULSE RESPONSE
			0, 1, 101.5	OFFSET
				701.00.
00025 014456	LOOP:	DSZ	DCOUNT	DECREMENT DATA COUNTER
00026 000406		JMP	COVT.	
00027'024452		LDA	1. GLEVGTH	; IF AT DATA PLOCK EDGE -
00030 044453		STA	1. DCOUNT	;IMPLEMENT MODULO
00031 030030		LDA	2. DECRE	;GLENGTH OPERATION
00032 133000		ADD	1, 2	
00033 050030		STA	2. DECRE	
00034 026030	CONT.:	L.DA	1. ODECRE	;DATA SAMPLE
00035'032020		LDA	2, GINCRE	; IMPULSE RESPONSE SAMPLE
00036*136400		SUB	1, 3	COMPENSATE FOR IMPULSE
000371127000		ADD	1, 1	RESPONSE SAMPLE OFFSET
00040 073301		MUL		;MULTIPLY
00041 117000		ADD	0, 3	; ACCUMULATE
00042 121000		VOM	1, 0	
00043 014437		DSZ	GCOUNT	;INCREMENT IMPULSE
				;SAMPLE COUNTER
00044'000761		JMP	LOOP	; IF NOT FIVISHED LOOP
00045 161120		MOUZL	3, 0	;MOVE 2*RESULT TO ACO
00046 034432		LDA	3, RETURV	; RETURV
00047 001402		JMP	2, 3	

;CONVI IS A SUBROUTIVE TO INSERT A NEW SAMPLE IN THE ;DATA STORAGE VECTOR WITHOUT IMPLEMENTING A CONVOLUTION.

;IT IS USED WHEN THE FILTER OUTPUT SAMPLING RATE IS LESS ;THAN THE INPUT SAMPLING RATE. THE CALLING SEQUENCE IS ;THE SAME AS THAT OF CONVOLXCEPT THE PARTY POINT IS ;OCONVI. CONVI REQUIRES NO INITIALIZATION, DESTROYS ALL ;ACCUMULATORS, AND MAY BE INTERUPTED. SUPERNOVA CORE ;EXECUTION TIME=16.0 USEC.S ;TOTAL LENGTH=13. LOCATIONS

00050 103240 ENT3: ADDOR 0, 0 ;CONVERT DATA SAMPLE ;TO EXCESS 2:15 CODE 00051 101620 INCZR 0, 0 ;DIVIDE RY 2 & ROUND

AND CONTROL OF THE PROPERTY OF

00052 033401	LLA	2, 01, 3	;DATA BLOCK POINTER
00053'041000	STA	0, 0, 2	; INSERT NEW SAMPLE
00054 151400	INC	2, 2	;INCREMENT POINTER
00055 023400	LDA	0, 00, 3	; FILTER IMPULSE RESPONSE
			;LEVETH
00056 025401	LDA	1, 1, 3	STARTIVE LOCATION-1
			; OF DATA BLOCK
00057'107000	ADD	0, 1	; IMPLEMENT MODULO
00060 146512	SUBL#	2, 1, SZC	; GLENGTH
00061 112400	SUB	0, 2	
00062 053401	STA	2, 01, 3	;SAVE NEW DATA PLOCK
			; POINTER
00063'001402	JMP	2, 3	; RETURN

;CONVE IS A SUBROUTINE TO IMPLEMENT A CONVOLUTION
;WITHOUT INSERTING A NEW DATA SAMPLE. IT IS USED WHEN
;THE FILTER OUTPUT SAMPLING RATE IS GREATER THAN THE
;INPUT SAMPLING RATE. THE CALLING SEQUENCE IS THE SAME
;AS THAT OF CONVO EXCEPT THE ENTRY POINT IS @CONVE.
;CONVE USES SUBROUTINE CONVO, AND EXCEPT FOR NO DATA
;INPUT IS IDENTICAL TO THAT TOUTINE. SUPERNOVA HARDWARE
;MULT/DIV EXECUTION TIME=18.7+17.0*GLENGTH USEC.S
;TOTAL LENGTH=9. LOCATIONS

000641054414	m)*m 4			
		_	B. RETURN	SAVE RETURN ADDRESS
00065'031400	L	LDA 2	3 و 0 و	STARTING LOCATION-1
				OF IMPULSE RESPONSE
00066'050020	S	STA 2	. INCRE	; INITIALIZE AUTOINCRE-
				MENTING IMPULSE
				RESPONSE SAMPLE POINTER
00067 025000	L	LDA 1	2 د0 و	FILTER IMPULSE RESPONSE
				; LENGTH
00070 044411	S	STA 1	• GLENGTH	SAVE IN GLENGTH
00071 044411	S	STA 1	• GCOUNT	; INITIALIZE IMPULSE
				SAMPLE POINTER
00072 035401	I.	LDA 3	3 و 1 و 3	STARTING LOCATION-1
				JOF DATA BLOCK
00073'031400	L	.DA 2	3 00 0	DATA BLOCK POINTER
00074 050030	S	STA 2	DECRE	SET AUTODECRE DATA PTR
00075 172400	S	SUB 3	2	;INITIALIZE DATA SAMPLE
00076 050405	S	STA 2	DCOUNT	COUNTER
00077'000724	J	JMP E	STV	JUMP TO & FINISH CONVO
				7 2 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
000001	RETURN: .	BLK 1		FRETURN ADDRESS
000001	GLENGTH: .	BLK 1		JIMPULSE RESPONSE LENGTH
000001	GCOUNT: .	BLK 1		JIMPULSE SAMPLE COUNTER
000001	DCOUNT: .	BLK 1		DATA SAMPLE COUNTER
000020	6	roc 5	0	
000001	INCRE: .	BLK 1		;AUTOINCREMENTING IMP
		-		RESPONSE SAMPLE POINTER
000030	•	LOC 3	0	THE PROPERTY OF THE PARTY OF TH
000001		BLK 1		;AUTODECREMENTING DATA
				SAMPLE POINTER
		END		;END OF CONVO, 'VI,& 'VE
	·			72.2 01 0011100 1200 12

COVT.	000034
CONVE	000002-
CONVI	000001-
COALO	000000-
DCOUV	000103
DECRE	000030
ENT1	000000
ENT2	000023
ENT3	000050
ENT4	000064
GCOUN	000102
GLEVG	000101
INCRE	000020
LOOP	000025
RETUR	000100

;COSIN IS A SUBROUTINE TO CALCULATE A 16 BIT 2'S
;COMPLEMENT SINE AND COSINE FUNCTION FROM A 16 PIT
;2*PI'S COMPLEMENT RADIAN ANGLE. THE ANGLE IS PLACED
;IN ACO, RANGE (-PI, PI). COSINE IS RETURNED IN ACO,
;SINE IN ACI, RANGE (-1, 1). ACZ AND AC3 APE
;DESTROYED. THE GLOBAL ENTRY POINT IS @COSIN. THE
;ROUTINE IS OPTIMIZED FOR SPEED, MAY PE INTERUPTED,
;AND REQUIRES NO INITIALIZATION. AVERAGE CORE
;SUPERNOVA HARDWARE MULT/DIV EXECUTION TIME=64.6 USEC.S
;TOTAL LENGTH=125. LOCATIONS

;	•	• EVT • ZREL	COS	SIN	
00000-000000	COSIN:	•NREL	ĖN'	<b>I</b> RY	; ENTRY LOCATION
00000 054464	ENTRY:	STA	3,	RETURN	SAVE RETURN ADDRESS
00001 040464		STA	0,	AVGLE	;SAVE ANGLE
00002 101300		MOVS	0,	0 ·	SHIFT MOST SICNIFICANT PRITS TO RIGHT BYTE
00003 1024465		LDA	1,	M77	;SINE TABLE ADDRESS MASK
00004'030465		LDA	2,	LSINT	SINE TAPLE STARTING LOC
00005'115000	, I	MOV	0,	3	GENERATE SIN ADDRESS
00006'137400		AND	1,	3	; EXTRAT ADDRESS
00007157000		ADD	2,	3	;ADD OFFSET
00010'054456		STA	3,	LSIN	;SAVEIN LSIN
00011 114000		COM	0,		GENERATE COS ADDRESS
00012'137400		AND	1,	3	; EXTRACT ADDRESS
. 00013 157000		ADD	2,	3	;ADD OFFSET
00014 054453		STA	3,	LCOS	SAVE IN LCOS
00015 101300	•	MOVS	0,	0	RESTORE LOWER AVELE BITS TO RICHT PYTE
00016'024454		LDA	1,	M377	JDELTA AVCLE MASK
00017'030454		LDA	2,	PIB2	;2:16*PI/4
00020 107400		AND	0,	1	; EXTRACT DELTA ANGLE
00021 102620		SUBZR	0,	0	CONVERT TO RADIANS
00022'127120		ADDZL	1,	1	;TIMES 4
00023'073301		MUL			;TIMES PI/4
00024 030450		LDA	2,	PIB8	;0.5-SIN TABLE OFFSET
00025'113120		ADDZL	0,	2	;AC2=2*(0.5+SIN(DELTA))
00026'026440		LDA		<b>e</b> LSIN	; COURSE SINE
00027'135220		MOVZR		3	; FIND -COS(COURSE+DELTA)
00030 102620 00031 073301		SUBZR MUL	0,	0	

00032*116400		SUB	0, 3	;AC3=-SIN(DELTA)*SIN(
00033'026434 00034'137000 00035'175112 00036'176220 00037'054430		LDA ADD MOVL# ADCZR STA	1, @LCOS 1, 3 3, 3, SZC 3, 3 3, LCOS	;COURSE) ;COURSE COSINE ;AC3=COS(COURSE+DELTA) ;TEST FOR UNITY RESULT ;IF SO ROUND DON ;SAVE IN LCOS
00040 135220 00041 102620 00042 073301		MOVZR SUBZR MUL	1, 3 0, 0	; FIND SIN(COURSE+DELTA)
00043'162400 00044'026422 00045'107000 00046'125112		LDA ADD MOVL#	3, 0 1, @LSIN 0, 1 1, 1, SZC	;ACO=SIN(DELTA)*COS( ;COURSE) ;COURSE SINE ;AC1=SIN(COURSE+DELTA) ;TEST FOR UNITY RESULT
00047°126220 00050°020417		ADCZR LDA	1, 1 0, LCOS	; IF SO ROUND DWN ; RELOAD COS(COURSE+ ; DELTA)
00051 *030414 00052 *151103 00053 *000403 00054 *100400		LDA MOVL JMP NEG	2, ANGLE 2, 2, SNC .+3 0, 0	;RELOAD ANGLE ;TEST FOR QUADRANTS 3, 4 ;IF SO INVERT
00055'124400 00056'151103 00057'000404 00060'131000		NEG MOVL JMP MOV	1, 1 2, 2, SNC .+4 1, 2	;COS; SIN ;TEST FOR EVEN QUADRANTS ;IF SO -
00061 105000 00062 140400 00063 002401		MOV NEG JMP	0, 1 2, 0 @RETURN	;SIN= COS ;COS=-SIN ;RETURN
000001 000001 000001 000001 00070 000077 00071 000075 00072 000377 00073 144420 00074 037156	RETURN: ANGLE: LSIN: LCOS: M77: LSINT: M377: PIB2: PIB8:	•BLK •BLK •BLK	1 1 1 77 SINTAB 377 51472• 1B1-402•	;RETURN ADDRES ;INPUT ANGLE ;S'N ADDRESS ;COS ADDRESS ;SIN TABLE ADDRESS MASK ;SINE TAPLE LOCATION ;DELTA ANGLE MASK ;2:16*PI/4 ;-128*PI IN 0.5'S COMPL
00075'000622 00076'002266 00077'003731 00100'005373 00101'007034 00102'010472 00103'012125	SINT 1B:		402. 1206. 2009. 2811. 3612. 4410.	;SINTAB IS A TAPLE OF ;SINES FROM O TO PI/2 ;RADIANS. THE FIRST ;SAMPLE ANGLE=PI/256. ;SAMPLES ARE SPACED ;PI/128. RADIANS APART.

00110 '021647	0107	
00111'023250	9127 <b>.</b> 9896 <b>.</b>	SINTAB CONTINUED
00:12 024644	10660•	
00115 1026231	11417.	
00114	12167.	
00115 03, 156	12910.	
00116'032516	13646.	
00117*034045	14373.	
00120 035363	15091.	
00121 036670	15800•	
00122 *040164	16500•	
00123 041446	17190.	
00124 042715	17869.	
00125 044152	18538•	
00126 045373	19195.	
00127 046601	19841.	
00130 047773	20475•	
C0131 051151	21097•	
00132'052312	21706.	
00133 053436	22302.	
00134 054544	22884•	
00135 055635	23453.	
00136'056710	24008•	
00137'057744	24548.	
00140 '060761	25073.	
00141 061757	25583.	
00142'062736	26078.	
00143'063675	26557.	
00144 064614	27020.	
00145'065513	27467.	
00146'066371 00147'067227	27897.	
00150 070043	28311.	
00151 070636	28707.	
00152 070636	29086.	
00153 072140	29448.	
00154'072646	29792.	
00155'073331	30118.	
00156'073773	30425•	
00157'074412	30715.	
00160 075006	30986.	
00161'075357	31238.	
00162 075706	31471.	
00163'076211	31686.	
00164'076472	31881.	
00165'076726	32058.	
00166'077140	32214.	
00167 077326	32352.	
00170'077470	32470•	
00171 077607	32568•	
00172'077702	32647 <b>.</b>	
00173'077752	32706• 32746	
00174 1077776	32746 <b>.</b> 32766 <b>.</b>	
	EALD	END OF SINTAB
		ENT OF COSIN

ANGLE	000065
COSIN	000000-
ENTRY	000000
LCOS	000067
LSIN	CJ0066'
LSINI	000071
M377	000072
M77	000070
BIBS	000073
PIB8	000074
RET'JR	000064 •
SINTA	000075

OF CO. 10 O C. S. C. S. L. S. L. S. C. S. L. S. C. S.

### • TITL ARCTV

;ARCTN IS A SUPEOUTINE TO CALCULATE A 16 TIT
;2*PI'S COMPLEMENT RADIAN ANGLE FROM A 16 RIT
;2'S COMPLEMENT COMPLEX VECTOR. THE REAL PART
;0F THE VECTOR IS PLACED IN ACO, THE IMAGINARY
;PART IN ACI, RANGLE (-1, 1). THE ANGLE IS RETUPNED
;IN ACO, RANGE (-PI, PI). ACC AND ACC ARE DESTROYED.
;THE GLOBAL ENTRY POINT IS GARCTN. THE ROUTINE IS
;OPTIMIZED FOR SPEED, MAY BE INTERUPTED, AND REQUIRES
;NO INITIALIZATION. AVERAGE CORE SUPERNOVA
;HARDWAKE MULIZDIN EXECUTION TIME=51.0 USEC.S
;TOTAL LENGTH=112. LOCATIONS.

	• ENT • ZREL	ARCTV	
00000-000000 ARCTN	·NREL	ENTRY	SENTRY LOCATION
00000 054454 ENTRY		3, KETURV	; SAVE RETURN ADDRESS
00001 176440	SUB0	3, 3	CLEAR ACS, CARRY
00002*125112	MOVL#	1, 1, SZC	FIF IMAG NEGITIVE
00003 124460	NEGC	1, 1	;NEG, COMPL CRRY
00004 177002	ADD	3, 3, SZC	;SL1 AC3, TEST CARRY
00005 1 75400	1.7/C	3, 3	JIF CRRY INC AC3
00005101112	FOVL#	0, 0, S7C	; IF REAL VECITIVE
00007100460	NEGC	0, 0	;NEG, COMPI. CRRY
00010 177002	l UD	3, 3, SZC	;SL1 AC3, TEST CARRY
000111175400	INC	3 <b>,</b> 3	JIF CERY INC ACS
00012*106512	SUBL#	0, 1, SZC	; IF IMAG • GE • REAL
00013*111001	MOV	0, 2, SKP	
00014 131061	MOVC	1, 2, SXP	;SWITCH REAL AVD
			; IMAG, CMPL CRRY
00015'121000	VOM	1, 0	
00016 175100	MOVL	3 <b>,</b> 3	;SHIFT CARRY INTO AC3
00017*054436	STA	3. ANGLE	;SAVE UPPER BITS OF ANGL
00020 145220	MOVZR	2, 1	; I MAG/REAL
00021 073101	DIV	_	
00022 125002	MOV	1, 1, SZC	CHECK FOR OVERFLOW
00023 126060	ADCC	1, 1	; IF SO ROUND DUN
00024 121000	MOV	1, 0	;ACO=AC1=CUOTIENT
00025 030431	LDA	2, M37B4	;UPPER 5 PIT MASK
00026*034431	LDA	3, LTAB	; ARCTAN TABLE STARTING ; LOCATION
00027 147400	AND	2, 1	; MASK ADDRESS PITS
00030*125300	MOVS	1, 1	SHIFT RIGHT 10.
00031 125220	MOVZR	1, 1	- <del></del>
00032 125220	MOVZR	1, 1	
00033 137000	ADD	1, 3	;ADD ARCTAN TAPLE ;STARTING LOCATION

00034 025401 00035 035400 00036 150000 00037 113400 00040 102620		LDA LDA COM AJD SURZE	1, 1, 3 3, 0, 3 2, 2 0, 2	SINTERPOLATING SLOPE SCOURSE ANGLE SLOVER 11. FIT MASK SMASK DELTA ANGLE SMULTIPLY BY INTERPOL- SATION SLOPE
00041 *073301 00042 *117000		MUL ADD	0, 3	SADE TO COURSE ANGLE
00043'020412 00044'101222 00045'174001 00046'101221 00047'101620		LDA MOVZB COM MOVZR INCZH	O, AVELE O, O, SZC 3, 3, SKP O, O, SKP O, O	;RELOAD UPPER ANGLE DITS ;SUBTRACT LOVER ANGLE? ;IF SO NEG LOVER ;AVELE, BORROU
00050'101200 00051'101200		MOVR MOVR	0.0	; FRM UPPER ANGLE ; UPPER ANGLE BITS ; LEFT JUSTIFIED
00052'163000 00053'002401		ADD JMP	3, 0 ereturn	;ADD UPPER & LOWER PITS ;RETURN
			1 1 37B4 ARCTAN	RETURN ADDRESS UPPER ANGLE BITS UPPER 5 BITS MASK ARCIAN TABLE LOCATION
00060'000000 A 00061'024273 00062'000506 00063'024247 00064'001213 00065'024176 00066'001717 00067'024102 00070'002421 00071'023763 00072'003121 00073'023622 00074'003615 00075'023440 00076'004306 00077'023237 00100'004773 00101'023016 00102'005454 00103'022561 00104'006127 00105'022310 00106'006575 00107'022025 00111'021531 00112'007671	ARCTAN:		0. 10427. 326. 10407. 651. 10366. 975. 10306. 1297. 10130. 1933. 10016. 2246. 9887. 2555. 9742. 2860. 9585. 3159. 9416. 3453. 9237. 3742. 9049. 4025.	; ARCTAN IS A TABLE OF ; ARCTANGIENTS AND ; INTERPOLATING SLOPES ; BETWEEN THESE POINTS. ; THESE NUMPERS ARE ; LISTED IN PAIRS, THE ; ANGLE COMING FIRST. ; THE FIRST PAIR IS FOR ; TANGIENT=O, THE REMAIN- ; ING PAIRS REPRESENT ; TANGIENTS WITH SPACINGS ; OF 1/32. UP TO AND ; INCLUDING TANGIENT= ; 31./32. THE TABLE IS ; 32. PAIRS LONG. THE ; ANGLE IS GIVEN IN ; 2*PI'S COMPLEMENT ; RADIANS. THE SLOPE IN ; PI'S COMPLEMENT ; RADIANS.

The first of the f

ng t

·* {3

		,		COMMINITED
00113'021226	8854•	3 A.	RCTAN	CONTINUED
00114 010316	4302•			
00115'020715	8653•			
00116'010734	4572•			
00117'020400	8448•	•		
00120 011344	4836•			
00121 020060	8240•	,		
C0122'011746	5094•			
00123 017535	8029•			
00124'012340	5344•	'		
00125'017212	7818•			
00126'012725	5589 •			
00127'016666	7606•			
00130 013302	5826•			1
00131 016343	7395•			
00132'013652	6058•			
00133'016022	7186			
00134 014212	6282•		1	
00135 015504	6980•			
00136 014544	6500•			
00137 015170	6776•			
00140 015070	6712•			
00141 014660	3576•			
00142 015405	6917•			•
00143 014354	6380•	1		
00144 015715	7117•			
00145 014053	6187•			
00146 016216	7310•			F
00147 013560	6060•			
00150 016512	7498•		,	
00151 013271	5817.			
00152'016777	7679•			
00153 013007	5639•		1	
00154 017260	7856•			
00155 012532	5466•			
00156*017532	8026•			
00157'012263	5298•			ARCTAN
•	END	; E	ND OF	ARCTN

ANGLE	000055
ARCTA	000060
ARCTN	000000-
ENTRY	000000
LTAB	000057
M37B4	000056
SHITTE	000054

CONTRACTOR OF THE PROPERTY OF

to profession of the second se

•TITL TODRV STODRY IS A TELETYPE OUTPUT DRIVER SUPROUTINE FOR USE WITH HALL WARE INTERUPT AND BUFFERED MESSAGE TRANSFERAL. ; THE ROUTINE ASSUMES THAT IT HAS BEEN CALLED BY A TTO JINITIATED INTERUPT. IT PRINTS THE MESSAGE GIVEN IN THE BUFFER WHOSE STARTING ADDRESS IS LISTED AT TOPUF, SASSUMING THE BUFFER IS OPEN. AFTER FINISHING PRINTING ; THE BUFFER CONTENSE, THE BUFFER IS CLOSED, TTO IDLED, ;AND TTI STARTED. THE BUFFER STORAGE BLOCK FORMAT IS ;AS FOLLOWS: ;BUFFER: BYTEPOINTER • TXTE *MESSAGE* ; IF BYTEPOINTER=O, THE BUFFER IS CLOSED, IF BYTEPOINTER ;=1, THE BUFFER IS OPEN AND READY TO PRINT. THE GLOBAL ; ENTRY POINT IS @TODRV. TTO INTERUPT MUST PE ENABLED ;TO INITIATE PRINTING, BUT THIS IS THE ONLY INITIALIZA-;TION REQUIRED BY TODRV. AVERAGE SUPERNOVA CORE

	• ENT	TODRY, TOBUF	
	• ZREL	wh. • m. • •	
00000-000000° T		ENTRY	; ENTRY LOCATION
00001-000017° T		NULLBUF	; ADDRESS OF PRINT BUFFER
	• NREL		
00000'030001- E	_	2. TOBUF	BUFFER STARTING LOC
00001 025000	LDA	1, 0, 2	BYTE POINTER
00002 125620	INCZR	1, 1	;INCREMENT ONE
			SEXTRACT WORD ADDRESS
000031133000	ADD	1, 2	;ADD OFFSET
00004'021000	LDA	0,0,2	;EXTRACT WORD
00005125002	MOV	1, 1, SZC	FIEST FOR UPPER BYTE
00006°101300	MOVS	0 و 0	; IFSO SWAP BYTES
00007*030411	LDA	2, M377	:LOWER BYTE MASK
00010 143405	AND	2, 0, SNR	; MASK CHARACTER
00010 1 10 10 1			TEST FOR NULL CHARACTER
00011'126441	SUB0	1, 1, SKF	; IF SO CLOSE BUF
00012'061111	DOAS	O, TTO	; ELSE PRINT CHAR
00012 001111			
00013'125105	MOVL	1, 1, SNR	REASSEMBLE BYTE POINTER
00010 120100			TEST FOR CLOSED BUFFER
00014'060211	NIOC	TTO	; IF SU IDLE TTO
00015'046001-	STA	1, etobut	STORE UPDATED POINTER
00015 040001	JMP	0, 3	; RTTURN
00010-001400	•		
00017'000000	NULLBUF:	0	CLOSED BUFFER
	M377:	377	LOWER BYT' MOLO
00020 000377	• END		TAR OF TODAY

; EXECUTION TIME=19.3 USEC.S ; TOTAL LENGTH=17. LOCATIONS

ENTRY	000000
r · 77	000020
NULLB	000017
TOBUF	000001-
TODRV	000000-

...' !ø

## .TITL TIDRV

ITIDRV IS A TELETYPE INPUT DRIVER SUBROUTINE FOR USE ; WITH HARDWARE INTERUPT AND PUFFERED MESSAGE TRANSFERAL. THE ROUTINE ASSUMES THAT IT HAS BEEN CALLED BY A TTI SINITIATED INTERUPT. IT ECHOS AND READS IN THE MESSAGE ITYPED ON THE TELETYPE INTO THE BUFFER WHOSE STARTING LOCATION IS LISTED AT TIBUF, ASSUMING THE PUFFER IS JOPEN AND TODRY IS NOT PRINTING SOME OTHER MESSAGE AT THE TIME. A CANCL (CONTRL X) CHARACTER IS ECHOED AS ;A CR, LF, AND CAUSES THE BUFFER TO PF REINITIALIZED, JF. BYTEPOINTER= 1. A CR CHARACTER IS ECHOED AS A CR. LF. AND RECORDED IN THE BUFFER AS AN EOF MARKER. (A NULL (CHARACTER) AFTER RECORDING A NULL CHARACTER, THE FILE ; IS CLOSED, AND TTI IDLED. THE FILE IS AUTOMATICALLY CLOSED AFTER 80 CHARACTERS. THE BUFFER FORMAT IS THE ; SAME AS USED IN TOBUF. THE GLOBAL ENTRY POINT IS \$8TIDRV. TTI INTERUPT MUST BE ENABLED TO INITIATE THE ROUTINE, BUT NO OTHER INITIATION IS REQUIRED. JAVERAGE SUPERNOVA CORE EXECUTION TIME=36.8 USEC.S STOTAL LENGTH=46. LOCATIONS

		• ENT • EXTD • ZREL	TIDRV, TIBUF MASK, TOBUF	
00000-000000° 00001-000055°		. WREL	ENTRY NULLBUF	SENTRY LOCATION SADDRESS OF READ BUFFER
00000 '026002\$ 00001 '125004 00002 '000443	ENTRY:	LDA MOV JMP	1. 9TOBUF 1. 1. SZR STOP	PRINT BUF PYTE POINTER  IS THE PRINT BUF OPEN  IF SO STOP READ
00003 *026001 - 00004 *125625 00005 *000440 00006 *012001 -		I,DA INCZP JMP ISZ	1, eTIBUF 1, 1, SNR STOP eTIBUF	READ BUF BYTE POINTER  IS THE READ BUF CLOSED  IF SO STOP READ  INCREMENT BYTE POINTER
00007 060610		DIAC	O, TTI	READ CHAR, CLEAR TTI
00010 '030437 00011 '142414 00012 '000403 00013 '102520		LDA SUB# JMP SUBZL	2, CCANCL 2, O, SZR CRTEST 0, O	CANCL (CONTRL X) CHAR SIS CHARACTER A CANCL SIFSO IVITIALIZE SBYTEPOINTER
00014'000421		JMP	CRECHO	; AND ECHO CR, LF
00015'030433 00016'142415 00017'102460	CRTEST:	LDA SUB# SUBC	2, CCR 2, 0, SNR 0, 0	CR CHARACTER  IS CHARACTER A CR  IFSO SETTO NULL
00020 '030431 00021 '146513 00022 '102460		LDA SUBL# SUBC	2, C37. 2, 1, SNC 0, 0	337. 315 THIS BITH CHARACTER 31FSO SETTO NULL

THE STATE OF THE S

00023 030001-		LDA	2, TIBUF	READ PUF STARTING LOC
00024'133000		ADD	1, 2	;ADD OFFSET
00025'025000		LDA	1, 0, 2	; EXTRACT WORD _
00026 125303		MOVS	1, 1, SNC	FIEST FOR NEW WORD
00027126460		SUBC	1, 1	FIF SO CLEAR
00030'107002		ADD	0, 1, SZC	; INCERT NEW CHARACTER
				FOR UPPER RYTE
00031 125300		MOVS	1 - 1	; IFSO SWAP PYTES
00032 045000		STA	1, 0, 2	STORE WORD
00033*101004		MOV	0, 0, SZR	JTEST FOR WULL CHARACTER
00034 000407		JMP	ECHO ECHO	TABLE OF THEOTEM
00035'042001-	CRECHO:		O, OTTBUF	FIF SO CLOSE
00036'102520		SUBZL	0, 0	TIPUF AND ECHO
00037'040414		STA	O, ECHOLF	CR, LF
		<b></b>	0, 2011021	OPEN ECHO PRINT BUFFER
00040 020412		LDA	O, LECHO	JECHO PRINT PUF LOCATION
00041'040002\$		STA	יו דיניד פּ	SAVE AT TORUF
00042 020406		LDA	O. CCR	CR CHARACTER
000.0			0, 00.	
00043'061111	ECHO:	DOAS	O. TTO	START TTO & ECHO CHAR
00044 001400		JMP	0, 3	FRETURN
00045'060210	STOP:	MIOC	TTI	; IDLE TTI
00046'001400		JMP	0.3	; RETURN
00047*000030	CCANCL:		30	; CANCL (CONTRL X) CHAR
00050'000215	CCR:		215	CR CHARACTER
00050 000215	C37•:		37.	<b>3</b> 37•
00052'000043'			ECHOLF	ECHO PRINT BUF LOCATION
00052 000053	ECHOLF:		1	ECHO LF PRINT BUFFER
00055 000001	LONGER 1		12	LF, NUL CHARACTERS
00055 000012	NULLBUF	•	0	30 - A CLOSED BUFFER
00033 000000	.TOLLEUF	• END	V	; END OF TIDRV
		- 11/47		

C37.	000051
CCAVC	000047'
CCh	000050
CRECH	000035
CRTES	000015
ECHO	000043 *
ECHOL	000053 '
E JTRY	000000
LECHO	000052 *
MASK	0000015X
NULLE	000055
STOP	000045
TIBUF	000001-
TIDRV	000000-
TJPUF	000002\$X

06,

```
.TITL CHCOM
CHCOM IS A SUBROUTIVE PACKAGE FOR EUFFERING THE ANALOG
;INTERFACE UNIT CHANNEL SIGNAL COMMUNICATIONS. IN
; ADDITION TO CHCOM THE PACKAGE HAS 3 OTHER SUBROUTINES,
; CRDRV, CIDRV, & CODRV, WHICH ARE CALLED DIRECTLY BY AIU
; INITIATED INTERUPTS. THESE SUBROUTINES IMPLEMENT THE
; CHANNEL COMMUNICATIONS BETWEEN THE AIU AND BUFFER IOBUF
; WHICH HAS THE FOLLOWING FORMAT FOR LINEAR OPERATION:
; IOBUF: .BLK
 1
 ;FIRST REAL SAMPLE
 • BLK
 FIRST IMAGINARY SAMPLE
 1
 • BLK
 1
 SECOND REAL SAMPLE
 • BLK
 1
 ;SECOND IMAGINARY SAMLE
OR FOR ANGLE OPERATION TOBUF HAS THE FOLLOWING FORMAT:
;IOBUF: •BLK 1
 ; FIRST ANGLE SAMPLE
 1
 • BLK
 ;SECOND ANGLE SAMPLE
SAT THE BEGINING OF A AIU FRAME (DATA SAMPLE PERIOD),
:THE BUFFER CONTAINS TWO SAMPLES OF THE CHANNEL SIGNAL.
;10 SAMPLES WILL BE INTERPOLATED BETWEEN THESE, AND
;TRANSMITTED TO THE CHANNEL. AT THE SAME TIME 2 SAMPLES
; WILL BE RECEIVED FROM THE CHANNEL, AND WILL BE RECORDED
IN IOBUF ASSUMING CHANNEL COMMUNICATION IS ENABLED.
; IF CHANNEL COMMUNICATIONS ARE NOT ENABLED, THE BUFFER
; IS NOT DISTURBED. AT THE BEGINING OF EACH FRAME, CHCOM
MUST BE CALLED (JSR @CHCOM) TO TRANSFER THROUGH ACO A
INEW 10BUF ADDRESS TO THE CHANNEL COMMUNICATION PACKAGE.
; IF ACO=O, CHANNEL COMMUNICATIONS IS DISABLED; IF ACO<>O
THEN COMM IS ENABLED, AND ACO=2*ADDRESS OF IOBUF+(0 IF
;LINEAR TRANSMISSION, 1 IF ANGLE TRANSMISSION DESIRED).
JTHE PACKAGE REQUIRES NO OTHER INITIALIZATION.
;SUPERNOVA CORE EXECUTION TIME=23.3 USEC.S
;TOTAL LENGTH=33. LOCATIONS; 93. FOR THE TOTAL PACKAGE
```

000042	• DUSR • ENT • FXTD • ZREL	AIU=42 CHCOM, CRDRV, ARCTN, COSIN,	
00000-000000 CHCOM	:	enti Ents	; INITIALIZATION ENTRY ; CH RE INP INTRPT ENTRY
00002-0000451 CIDRV 00003-0000751 CODRV	:	ENT3 ENT4	CH IM INP INTRPT ENTRY CH OUTPUT INTRPT ENTRY
	• NREL		
00000 0240035 ENT1:	LDA LDA	1. MASK 2. MSKMSK	;INTERUPT MASK ;AIU. TTI& TTO MASK MASK
00002*147400 CSW:	AND	2, 1	;DISABLE CHANNEL COMM ;SW=ANGLE INSTRUCTION
00003'101225	MOVZR	0, 0, SNR	SEXTRACT IOBUF ADDRESS STST FOR CH COMM REQUEST
00004'000415	JMP	STOP	; IF NOT DISABLE

00005'040521		STA	0,	IOBUF	SAVE IOBUF ADDRESS
000061020774	1	LDA	0,	CSW	3 SW=ANGLE INSTRUCTION
00007101013		MOV#	0,	O, SNC	TEST FOR LINEAR OP REQ
00010*101400		INC	0,	0	; IF SO MODIFY
					SW INSTRUCTION
00011 040471		STA	0,	SW1	SET SWITCH 1
00012 040436		STA		SW2	SET SWITCH 2
000121020511		LDA		TTMASK	; AIU CH SIGNAL ENABLE, &
					;TTI & TTO DISABLE MASK
00014 040513		STA	0.	SAMPLE	SYNC SAMPLE COUNTER
	FIN:	ADD	0.	1	GENERATE NEW MASK
000161066077		MSKO	1		TRANSMIT NEW MASK
00017'0440035		STA	1,	MASK	SAVE NEW MASK
00020 001400		JMP	,	3	RETURN
1				•	
00021 1062042	STOF:	DOB	0,	AIU	CLEAR CHANNEL OUTPUT
00022 063042		DOC	0.	AIU	REGISTERS
00023 020502		LDA	0.	TTMASK+1	CH SIG DISABLE MASK &
7,000	i .				TTI & TTO ENABLE MASK
00024 000771		JMP	FIN	J	;INITIATE NEW MASK
				•	

CRDRV IS AN ANALOG INTERFACE UNIT REAL CHANNEL SIGNAL INPUT DRIVER SUBROUTINE WHICH IS AN INTIGRAL PART OF THE CHCOM PACKAGE. THE ROUTINE ALSO HANDLES REAL DATA TRANSFER TO AND FROM IOBUF AND COMPUTS THE REAL INCREMENT FOR CODRV. THE ROUTINE ASSUMES THAT IT HAS BEEN CALLED BY A CRI (CHANNEL REAL INPUT, 44) INTERUPT. THE GLOBAL ENTRY POINT IS OCRDRV. SUPERNOVA HARDWARE MULT/DIV EXECUTION TIME=26.1 USEC.S

00025 032501 00026 060542 00027 024473 00030 123400 00031 042475	ENT2:	LDA DIAS LDA AND STA	0,	elobur Alu M17P O elobur	; NEW REAL OUTPUT SAMPLE ; INPUT REAL SAMPLE ; ANALOG SIGNAL MASK ; MASK OUT CONTROL STATE ; SAVE REAL INPUT SAMPLE
00032 020476 00033 112400 00034 102620 00035 151112 00036 150460		LDA SUB SUBZR MOVL# NEGC	0,	RFSUM 2 0 2, SZC 2	;OLD REAL OUTPUT SAMPLE ;FIND NEW-OLD SAMPLE DIF ;DO SIGNED MULTIPLY ;TST MULTIPLICAN ;IF NEG, COMPLE ;AND SET CARRY
00037'024462 00040'073301 00041'101002 00042'100400 00043'040466 00044'001400		LDA MUL MOV NEG STA JMP	1. 0. 0. 0.	C.1 O, SZC O REINC 3	JTIMES 0.1  JMULTIPLY  JIF CARRY-1  JCOMPLE RESULT  JSAVE REAL INCREMENT  JRETURN

The subject of the su

CIDRV IS AN ANALOG INTERFACE UNIT IMAGINARY CHANNEL
SIGNAL INPUT DRIVER SUBROUTINE WHICH IS AN INTIGAL PART
OF THE CHCOM PACKAGE. THE ROUTINE ALSO HANDLES
IMAGINARY DATA TRANSFER TO AND FROM IOBUF AND COMPUTS
THE IMAGINARY INCREMENT FOR CODRV. THE ROUTINE ASSUMES
THAT IT HAS BEEN CALLED BY A CII CCHANNEL IMAGINARY
INPUT, 45) INTERUPT. SUBROUTINE ARCTN IS USED FOR
POLAR TO LINEAR CONVERSION. THE GLOBAL ENTRY POINT IS
OCIDRV. SUPERNOVA HARDWARE MULT/DIV EXECUTION TIME=
31.1 (LINEAR), 18.1+TIME(ARCTN) (ANGLE) USEC.S
TOTAL LENGTH=24. LOCATIONS

00045 054467 00046 064542 00047 030453 00050 147400	ENT3:	STA DI AS LDA AND	3, RETURN 1, AIU 2, M17B 2, 1	SAVE RETURN ADDRESS SINPUT IMAGINARY SAMPLE ANALOG SIGNAL MASK MASK OUT CONTROL STATE
00051 *000417		JMP	PHASE	;LINEAR/ANGLE SWITCH ;IF ANGLE GO TO ;LIN CONVERSION
00052 010454		ISZ	IOBUF	ADVANCE IOBUF POINTER
00053 032453		LDA	2, 010BUF	NEW IMAG OUTPUT SAMPLE
00054 046452		STA	1, @IOBUF	SAVE IMAG INPUT SAMPLE
00055 020455		LDA	O, IMSUM	;OLD IMAG OUTPUT SAMPLE
00056*112400		SUB	0, 2	FIND NEW-OLD SAMPLE DIF
00057*102620		SUBZR	0, 0	;DO SIGNED MULTIPLY
00060151112		MOVL#	2, 2, SZC	; IF NEG, COMPLE
00061 150460		NEGC	2, 2	; AND SET CARRY
00062 024437		LDA	1. C.1	JTIMES 0.1
00063*073301		MUL		; MULTIPLY
00064 101002		MOV	0, 0, SZC	; IF CARRY=1
00065*100400		NEG	0, 0	COMPLE RESULT
00066 040445		STA	O, IMINC	SAVE IMAG INCREMENT
00067*000404		JMP	END	; TERMINATE
00070 022436	PHASE:	LDA	O, GIOBUF	FREAL INPUT SAMPLE
00071 006001\$		JSR	0ARCTN	CONVERT TO LINEAR
000701040404		CMA	0 010000	NOTATION
00072 042434		STA	O, @IOBUF	SAVE INPUT ANGLE SAMPLE
00073 010433	END:	ISZ	IOBUF	JADVANCE IOBUF POINTER
00074 002440		JMP	ORETURN	FRETURN

The control of the co

ć

;CODRV IS AN ANALOG INTERFACE UNIT CHANNEL SIGNAL OUTPUT;DRIVER SUBROUTINE WHICH IS AN INTIGRAL PART OF THE
;CHCOM PACKAGE. THE ROUTINE ASSUMES THAT IT HAS BEEN
;CALLED BY A CSO (CHANNEL SIGNAL OUTPUT, 46) INTERUPT.
;CODRV RETURNS TO AC3+1 ON ODD SAMPLES TO FACILITATE LOW
;SPEED I/O SERVICE LITHOUT INTERFERING WITH AIU SERVICE.
;SUBROUTINE COSIN IS USED FOR LIN TO POLAR CONVERSION.
;THE GLOBAL ENTRY POINT IS QCODRV. SUPERNOVA CORE
;EXECUTION TIME=28.3 (LINEAR), 24.1+TIME(COSIN) (ANGLE)
;USEC.S. TOTAL LENGTH=20. LOCATIONS

00075'054437 00076'020432 00077'030432 00100'143000 00101'040427	ENT4:	STA LDA LDA ADD STA	3. RETURN 0. RESUM 2. REINC 2. 0 0. RESUM	SAVE RETURN ADDRESS CURRENT REAL SAMPLE PEAL SAMPLE INCREMENT REAL INCREMENT SAVE NEW SAMPLE
00102 ¹ 147400 00103 ¹ 000406	SW1:	and Jmp	2. 1 ANGLE	;LINEAR/ANGLE SWITCH ;IF ANGLE SKIP ;IMAG INCREMENT
00104'024426 00105'030426 00106'147000 00107'044423 00110'000402		LDA LDA ADD STA JMP	1. IMSUM 2. IMINC 2. 1 1. IMSUM .+2	CURRENT IMAG SAMPLE JIMAG SAMPLE INCREMENT JIMAG INCREMENT SAVE NEW SAMPLE JSKIP ANGLE CONVERSION
00111'006002\$  00112'062042 00113'067142 00114'020413 00115'010412 00116'101212 00117'010415  00120'002414	ANGLE:	JSR DOB DOCS LDA ISZ MOVR# ISZ	OCOSIN  O. AIU  1. AIU  O. SAMPLE  SAMPLE  O. O. SZC  RETURN  ORETURN	;CONVERT TO POLAR ;NOTATION ;OUTPUT REAL SAMPLE ;OUTPUT IMAG SAMPLE ;SAMPLE COUNTER ;INCREMENT SAMPLE COUNT ;TEST FOR ODD SAMPLE ;IF SO JMP TO ;RETURN >1 ;RETURN
00121'006315 00122'177760 00123'175774 00124'000003 00125'002000 00126'000130' 000001 000001 000001 000001 000001	C.1: M17B: MSKMSK: TTMASK: TOBUF: SAMPLE: RESUM: REINC: IMSUM: IMINC: RETURN:	•BLK •BLK •BLK	3277. 177760 177777-1B5-3 3 1B5 RESUM 1 1	;2116/10 ;ANALOG SIGNAL MASK ;AIU, TTIS TTO MASK MASK ;AIU CH SIGNAL ENABLE, & ;TTI & TTO DISABLE MASK ;CH SIGNAL DISABLE MASK ;CH SIGNAL DISABLE, & ;TTI & TTO ENABLE MASK ;I/O BUFFER FOINTER ;SAMPLE COUNTER ;CURRENT REAL SAMPLE ;REAL SAMPLE INCREMENT ;CURRENI IMAG SAMPLE ;IMAG SAMPLE INCRE. ENT ;RETURN ADDRESS ;END OF CHCOM PACKAGE

ANGLE	000111'
ARCTN	000001\$X
CHCOM	000000-
CIDRV	-200000
CODRV	000003-
COSIN	000002\$X
CRDRV	000001-
CSW	000002 *
C • 1	000121
END	000073
ENT 1	000000
ENTS	000025
ENT3	000045
ENT4	000075
FIN	000015
IMINC	000133
imsum	000132
IOPUF	000126
M17B	000122
Mask	000003\$X
MSKMS	000123'
PHASE	000070*
REINC	000131
RESUM	000130
RETUR	006134
SAMPL	000127
STOP	000021
SWI	000102
SW2	000050*
TTMAS	000124

```
• TITL
 AI DRV
JAIDRV IS A MASTER SUBROUTINE FOR BUFFERING COMMUNICA-
JTIONS WITH THE ANALOG INTERFACE UNIT. THE ROUTINE
JMAKES USE OF DIDRY TO BUFFER DIGITAL SIGNAL COMMUNICA-
;TION WITH THE AIU, AND THE CHCOM PACKAGE TO BUFFER
; CHANNEL SIGNAL COMMUNICATION. AIDRV BUFFERS THE LOW
SPEED (MODULATION) ANALOG SIGNAL COMMUNICATIONS ITSELF.
THE ROUTINE ASSUMES THAT IT HAS BEEN CALLED BY A ASI
; (ANALOG SIGNAL INPUT, 43) INTERUPT. THE GLOBAL ENTRY
JPOINT IS GAIDRV. THE ROUTINE NEEDS NO INITIALIZATION.
;ALL COMMUNICATIONS WITH THE REALTIME SIMULATION PROGRAM
; IS THROUGH A BUFFER WHOSE STARTING LOCATOIN IS LISTED
;AT AIBUF. THE BUFFER FORMAT IS AS FOLLOWS:
;AIBUF: BUF
 JBUF STARTING LOCATION
;BUF: •BLK 1
 ; DATA SIGNAL AND CONTROL
 ; BUFFER, BIT O=DATA BIT
 BIT 1=0 LINEAR XMISSION
 =1 ANGLE XMISSION
 JOVER THE CHANNEL
 JBIT 2=1; IT IS CLEARED
 JBEFORE XMISSION OF THE
 JBUFFERED SIGNALS.
 JBITS 12-15=CONTRL STATE
 JANALOG SIGNAL SAMPLE
 •BLK
 BLK 2 OR 4
 JCHANNEL SIGNAL SAMPLES
 JIN THE FORMAT LISTED IN
 JTHE CHCOM WRITE-UP
3AT THE BEGINING OF A AIU FRAME AIBUF CONTAINS THE
;SIGNAL SAMPLES TO BE OUTPUTED THROUGH THE AIU; AT THE
; END OF THE FRAME, THE BUFFER CONTAINES THE SIGNAL
SAMPLES INPUTED THROUGH THE AIU.
JSUPERNOVA CORE EXECUTION TIME=33.2 USEC.S
JTOTAL LENGTH=26. LOCATIONS; 33. FOR THE TOTAL PACKAGE
```

000042		• DUSR • ENT • EXTD • ZREL	AIU=42 AIDRV, AIBUF, CHCOM	JAIU DEVICE CODE DIDRV, CLOCK
00000-000000	AI DRV:		ENT1 -2	JANALOG INP INTRPT ENTRY
00001-177776	AIBUF:		-2	BUFFER LOCATION
00002-000027	DIDRV:		ENTS	DATA INPUT INTRPT ENTRY
00003-000000	CLOCK:		OD	JAIU FRAME COUNTER
00004-000000				
		• NREL		
00000'024440	ENT1:	LDA	1, DATA	INEW DATA INPUT SAMPLE
000011054437		STA	3, DATA	SAVE RETURN ADDRESS
00002 074442		DIA	3, AIU	JINPUT NEW ANALOG SIGNAL JA CONTROL STATE SAMPLES
000031020434		LDA	0, M17B	JANALOG SIGNAL MASK
000041117400		AND	0, 3	JMASK JDATA, CONTRL STATE MASK
00005*020431		LDA	O, DMASK	7 601010
00006 107400		AND	0, 1	JMASK

00007'030001- 00010'021000 00011'045000 00012'025001 00013'055001 00014'125200 00015'101100 00016'125100	LDA LDA STA LDA STA MOVR MOVL MOVL	2. AIBUF 0. 0. 2 1. 0. 2 1. 1. 2 3. 1. 2 1. 1 0. 0 1. 1	;AIU COMM BUF LOCATION ;NEW DATA, CONTROL WORD ;SAVE NEW DATA SAMPLE ;NEW ANALOG SIG SAMPLE ;SAVE NEW ANALOG SAMPLE ;APPEND DATA BIT
00017*065142	DOAS	1. AIU	OUTPUT ANALOG SIGNAL &
00020*151400 00021*101100	ing Mo <b>v</b> l	2, 2	JINCRE BUFFER LOCATION TEST FOR ACTIVE BUFFER
00022*101113	MOVL#	O, O, SNC	; COMMUNICATIONS
00023 152040	· ADCO	2, 2	; IF NOT DISABLE ; CHANNEL COMM
00024141500	INCL	2, 0	GENERATE CH COMM LOBUF ADDR & ADD CONTROL BIT
00025*006001\$ 00026*002412	JSR JMP	eCHCOM edata	; INITIALIZE CHANNEL COMM
314300 03000	OMP	GDAIH	; RETURN

DIDRY IS AN ANALOG INTERFACE UNIT DATA SIGNAL INPUT DRIVER, WHICH IS AN INTIGRAL PART OF THE AIDRY PACKAGE. THE ROUTINE HANDLES THE DATA AND CONTROL STATE INPUT TRANSFERS FROM THE AIU. IT ASSUMES THAT IT HAS BEEN CALLED BY A DSI (DATA SIGNAL INPUT, 42) INTERUPT. THE ROUTINE ALSO INCREMENTS AN AIU FRAME COUNTER AND RETURNS TO AC3+2 TO SIGNAL THE START OF A NEW AIU SAMPLE FRAME. THE REALTIME SIMULATION PROGRAM NOW HAS UNTIL THE ANALOG SIGNAL INTERUPT TO STORE THE NEW AIU BUFFER ADDRESS IN AIBUF. THE GLOBAL ENTRY POINT IS ODIDRY. THE ROUTINE NEEDS NO INITIALIZATION.

00027'060542 00030'040410	ENT2:	DIAS STA	O, AIU O, DATA	; INPUT NEW DATA SAMPLE ; SAVE IN DATA
00031*01000/-	·	187	CLOCK+1	; INCREMENT AIU FRAME ; COUNTER
00032'001402		JMP	2, 3	FRETURN
00033*010003-		ISZ	CLOCK	; IF CARRY, INCREMENT ; UPPER COUNTER WORD
00054 001402		JMP	2, 3	RETURN
00035*001402	1	JMP	2, 3	7.1.2.2 O.S.V
00036'100017 00037'177760 C00001	DMASK: M17B: DATA:	• Blk • End	100017 177760 1	DATA, CONTRL STATE MASK ANALOG SIGNAL MASK DATA INPUT STORAGE END OF AIDRU

AIBUF	000001-
AIDRV	000000-
CHCOM	000001\$X
CLOCK	000003-
DATA	0000403
DIDRV	000002-
DMASK	000036
ENT 1	000000
ENT2	0000271
M17B	000037

```
•TITL INTRP
; INTRP IS A MASTER INTERUPT PROGRAM FOR ANSWERING
; HARDWARE INTERUPTS AND PASSING CONTROL OF THE COMPUTER
ON TO THE APPROPRIATE SOFTWARE DRIVER ROUTINES. THIS
PROGRAM ALSO CONTROLS TRANSFER BETWEEN BACKGROUND AND
; REALTIME PROCESSING LEVELS. INTRP USES THE FOLLOWING
;SUBROUTINES:
 ABEND (ADNORMAL TERMIN)
START (SYSTEM INITIALIZATION) RPROG (REALTIME PROGRAM)
;TIDRV (TTI DRIVER)
;CODRV (CH OUT DRIVER)
;AIDRV (ANALOG IN DRIVER)
;CIDRU (CH IM IN DRIVER)
;CIDRU (CH IM IN DRIVER)
CIDRU (CH IM IN DRIVER)
; INTRP ASSUMES THAT IT HAS BEEN ENTERED THROUGH AN
; HARDWARE INTERUPT. THE ENTRY POINT IS INTRP. INTRP
; REQUIRES NO INITIALIZATION. INTRP USES BIT O OF MASK
; AS A REALTIME PROGRAM MASK. IT ASSUMES THE ONLY
PERIFERAL DEVICES ARE THE TELETYPE & THE ANALOG INTER-
FACE UNIT. SUPERNOVA CORE EXECUTION TIMES ARE:
 NORMAL INTERUPT EXECUTION TIME =55.8 USEC.S
 MULTI-INTERUPT INCREMENTAL TIME =26.7 USEC.S
 MAXIMUM LATENCY TIME =50.2 USEC.S
 INTERUP' TO DRIVER ENTRY DELAY =28.3 USEC.S
;TOTAL LENGTH=119. LOCATIONS
```

	• ENT	INTRP, CMASK,	MASK
	• EXTD	ABEND, START,	RPROG, TIDRV, TODRV
	• EXTD	DIDRV, AIDRV,	CRDRV, CIDRV, CODRV
000000	•LOC	0	
200000 002002\$	JMP	<b>OSTART</b>	; MANUAL START, POWER
			; DGWN RESTART, OR HARD-
			; WARE INTERUPT RETURN
			; ADDRESS
00001 000000		INTEP	MASTER INTERUPT ROUTINE
			3 ADDRESS
00008 0080025	JMP	<b>OSTART</b>	MANUAL START POINT
00003 000003	JMP	•	
00004 000000	CMASK:	0	CURRENT PERIFERALS MASK
	• ZREL		
00000~000000	Mask:	0	JCURRENT MASK

1000 Sec. 00

Of I

G

φ,

00000 *000401	INTRP:	•NREL JMP	•+1	;INTRP ENTRY POINT
			•	PROGRAM LEVEL SWITCH
00001 040554		STA	C. BCS+0	SAVE BACKGROUND PROGRAM LEVEL CPU STATE SAVE ACO
00002 044554		STA	BCS+1	SAVE ACT
00003*050554		STA	2, BCS+2	SAVE AC2
00004 054554		STA	3, BCS+3	SAVE AC3
00005 020000		L.DA	0, 0	SAVE CARRY, RETURN ADDR
00006*101100		MOVL	0, 0	JUNE CHIMI REIGHT AUDH
00007'040552		STA	0, BCS+4	
00010*000411		JMP	PTEST	
00011'100002\$	RTN:		<b>OSTART</b>	SPARE LOCATION - RETURN ADDRESS
000121040550		STA	0, RCS+0	SAVE REALTIME PROGRAM SLEVEL CPU STATE SAVE ACO
00013'044550		STA	1, RCS+1	SAVE ACI
000141050550		STA	2, RCS+2	SAVE AC2
00015'054550		STA	3, RCS+3	SAVE AC3
000161020000		LDA	0, 0	SAVE CARRY, RETURN ADDR
00017*101100		MOVL	0, 0	POSSES CHARLES HELOHINA HODE
00020 040546		STA	0, RCS+4	
00021 020473	PTEST:	LDA	O, JSTART	RESTORE RESTART INSTR
00022 040000		STA	0, 0	JTO LOCATION O
000231063777		SKPDZ	CPU	JTEST FOR POWER FAILURE
00024 063077		HALT		JIF SO HALT
00025'061477	RTEST:	INTA	0	SERVICE PEIFERAL INTRPT
00026 101015		MOV#	O, O, SNR	ITEST FOR INTERUPT
00027'000442		JMP	EXIT	JIF NONE RETURN
00030°024463		LDA	1, C7	JDEV CODE TRUNCATION MSK
00031 030464		LDA	2. LINTR	JDRV ROUTINE TABLE ADDR
00032*107400		AND	0, 1	MASK DEVICE CODE
000331133000		ADD	1, 2	GEN DRV ROUNTINE POINTR
00034*007000		JSR	<b>60</b> , 5	JEXECUTE DRIVER ROUTINE
00035*000411		JMP	RETURN	NORMAL RETURN
000361000436		JMP	TTEST	ITELETYPE I/O ENABLED

\$ 0 ...

The same of the sa

The state of the s

00037 004444		JSR	SWITCH	;NEW AIU FRAME STARTED
				RESTART REALTIME PROG
				SW CPU STATE STOR AREAS
00040'101113		10VL#	O, O, SNC	TEST FOR REALTIME MODE
00041 000440		JMP	TOERR	JIF SO ERR HALT
00042 060177		INTEN	IOEMI	· · · · · · · · · · · · · · · · · · ·
00042 000177			00000	; ENABLE INTERUPT
		JSR	ORPROG	CALL REALTIME PROGRAM
00044 060277		INTDS		; DISABLE INTERUPT
00045 004436		JSR	SWITCH	SW CPU STATE STOR AREAS
00046'000412	RETURN:	JMP	•+12	RESTORE CPU STATE
				PROGRAM LEVEL SWITCH
00047 020517		LDA	0, RCS+4	RESTORE REALTIME PROG
00011 000011		<i>wo</i> n	0, 11013.4	JLEVEL CPU STATE
000501101000				FRESTORE CARPY, RTN ADDR
00050'101220		MOVZR	0, 0	
00051 040740		STA	O, RTN	SAVE RETURN ADDR IN RTN
00052 034513		LDA	3, RCS+3	RESTORE AC3
00053 030511		LDA	2, RCS+2	FRESTORE AC2
00054 024507		LDA	1. RCS+1	FRESTORE AC1
00055*020505		LDA	0. RCS+0	RESTORE ACO
00056*040476		STA	O. ACO	SAVE TEMPORARILY IN ACO
00057 000746		JMP	RTEST	TEST FOR MORE INTERUPTS
00037 000740		Orar	111111	JIBI FOR HOME INTEROFIE
00060'020501		LDA	0. BCS+4	RESTORE BACKGROUND PROG
				;LEVEL CPU STATE
				RESTORE CARRY, RTN ADDR
00061 101220		MOVZR	0, 0	
			O, RTN	;SAVE RETURN ADDR IN RTN
00062 040727		STA		
00063 034475		LDA	3, BCS+3	RESTORE AC3
00064 030473		LDA	2. BCS+2	FRESTORE AC2
00065 024 471		LDA	1, BCS+1	RESTORE AC1
000661020467		LDA	0, BCS+0	RESTORE ACO
00067*040465		STA	0, ACO	; SAVE TEMPORARILY IN ACO
000701000735		JMP	RTEST	JTEST FOR MORE INTERUFTS
000 Pt 1000 100	Tmr # 00 -	. 54	0 400	;RELOAD ACO
00071 020463	EXIT:	LDA	0, ACO	
00072 060177		INTEN		; ENABLE INTERUPT
00073'002716		JMP	GRTN	RETURN FOR THE INTERUPT
00074'063710	TTEST:	SKPDZ	TTI	STEST TTI
00075*006004\$		<b>JS</b> R	<b>eti</b> DRV	; IF DONE SERVICE
000761063711		SKPDZ	TTO	JTEST TTO
00077*006005\$		JSR	OTODRV	JIF DONE SERVICE
00100 000746		JMP	RETURN	; RETURN
50100 000740		<del>~~~</del>		
00101'006001\$	TOERR:	<b>JS</b> R	<b>OABEND</b>	REALTIME PROGRAM TIME-
0.0102 0.00013		~~**	TOMESS	OUT - ERROR TERMINATE
ANTON 000180			~ ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Φ.

(A)

00103 '020675 00104 'C24742 00105 '040741 00106 '044672 00107 '020000- 00110 '103240 00111 '040000- 00112 '001400		LDA LDA STA STA LDA ADDOR STA JMP	O, INTRP 1, RETURN O, RETURN 1, INTRP O, MASK O, O O, MASK O, 3	;SWITCH CPU STATE ;STORAGE AREAS  ;COMPLEMENT REALTIME ;PROGRAM MASI. BIT ;SAVE NEW MASK ;RETURN
00113'000007	C7:		7	DEVICE CODE TRUNCATION
00114'002002\$	JSTART:	JMP	eSTART	MANUAL START OR POWER DWN RESTART INSTRUCTION
00115'000116' 00116'100004\$			INTRL etidrv	DRV ROUTINE TABLE ADDR PERIFERAL DRIVER ROUTINE LOOKUP TABLE TTI (10) DRIVER
00117'100005\$			<b>eTODRV</b>	;TTO (11) DRIVER
00120'100006\$			eDI DRV	JDSI (42) DRIVER
00121'100007\$ 00122'100010\$			eaidrv ccrdrv	JASI (43) DRIVER JCRI (44) DRIVER
00123 100011\$			OCIDRV	CII (45) DRIVER
00124 1000125			@CCDRV	CSO (46) DRIVER
00125*100001\$			PABEND	NO KNOWN DEVICE CODE
00126'000000	TOMESS:		0	REALTIME PROGRAM TIME- OUT ERR MESSAGE
00127'005215 00130'125012	<12>*	• TXTE	\$<215><12>	
00130 1250 (2	**			
00132 142652	*E			
00133 151322	RR			
00134 151317	OR			
00135'044240 00136'146101	H			
00136*146101	AL T:			
00140 151240	R			
00141 040705	EA			
00142 152314	LT			
00143 046711	IM			
00144 120305 00145 151120	E PR			
00146 043717	OG			
00147 152240	T			
00150 046711	IM			
00151 147705	EO			
00152*152125 00153*000000	<b>UТ</b> \$			
000001	ACO:	• BLK	1	TEMPORARY ACO STORAGE
000005 000005	BCS:	•BLK	5	BACKGRD CPU STATE STORE
000005	RCS:	• BLK	5	FRELTIME CPU STATE STORE SEND OF INTRP

ABEND	000001\$X
ACO	000154
AIDRV	000007\$X
Ras	000155
C 7	000113*
CIDRV	000011\$X
CMASK	000004
CODRV	000012\$X
CRDRV	000010\$X
DIDRV	000006\$X
EXIT	000071 '
INTRL	000116
INTRP	000000
<b>JSTAR</b>	000114
LINTR	000115
MASK	000000-
PTEST	000021
RCS	000162
RETUR	000046
RPROG	000003\$X
RTEST	000025
RTN	000011
START	000002\$X
SWITC	000103'
TIDRV	000004\$X
TODRV	000005 <b>%X</b>
TOERR	000101
TOMES	000126
TTEST	0000741

The second of th

•TITL START

;START IS AN INITIALIZATION AND DACKGROUND PROGRAM
;INITIATION PROGRAM• THE GLOBAL ENTRY POINT IS @START•
;START USED SUBROUTINES PRINT AND BPROG•
;TOTAL LENGTH=39• LOCATIONS

000042		• DUSR • ENT • EXTD • ZREL	AIU=42 START CMASK, MASK, F	PRINT, BPROG
00000-000000	START:	· arei	ENTRY	START ENTRY LOCATION
00000 *062677 00001 *020001\$	ENTRY:	•NREL IORST LDA	O, CMASK	; INITIALIZE PERIFERALS ; DISABLE INTERUPTS ; CURRENT PERIFERALS MASK
00002*040002\$	'	STA	O. MASK	SAVE IN CURRENT MASK
00003'101212 00004°000413	1 .	MOVR# JMP	O. O. SZC SAIU	TEST FOR TTY ONLINE SIF NOT SKIP
00005*126400 00006*060011 00007*060011 00010*060011 00011*060011 00012*060011 00013*060011 00014*125404 00015*000771 00016*065111 00017*060142 00020*024411 00021*071477 00022*132414	WAIT:	SUB NIO NIO NIO NIO NIO NIO INC JMP DOAS NIOS LDA INTA	1. i TTO TTO TTO TTO TTO 1. i. SZR WAI. 1. TTO AIU 1. C42 2	START TTO  START ALU SDSI DEVICE CODE SWAIT FOR BEGINING OF SAN ALU SINPLE FRAME
00023 000776		Jup	**Z	THE SEC OF HER OF PRESENT
00024*062177		DOBS	O, CPU	STRANSMYT CURRENT MASK SENABLE INTERUPTS
00025*006003\$ 00026*000932*		JSR	OPRINT SMESS	JPRINT STAPTUP MESSAGE JSTARTUP MESSAGE ADITILIS
00027*006004\$ 00030*000400		JSR Jnp	erreog •	JCALL BACKEROUND JPROGRAM PACKAGE

6

٠

00031*000042 00032*000000 00003*005215 00034*051412	C42: SMESS: •TXTE <12>S	42 0 \$<215><12>	JDSI INTRUPT DEVICE CODE STARTUP MESSAGE
00035 051531	YŚ		
00036*142724	TE		
00037*120115	M		
00040 142722	RE		
00041 152123	ST		
00042*151101	AR		
00043 144724	TI		
00044 043516	NG		
00045 005215	<215><12>		
00046*000012	<12>\$		

TID

; END OF START

BPROG	000004\$X
C42	000031
CMASK	0006718X
ENTRY	000000
MASK	000002\$%
PRINT	0000035X
SAIU	000017
SMESS	000032
START	000000-
WAIT	000006

---

The same of the sa

* 0.

Who was the second of the seco

;ABEND PAGE 1 OF 2

Copy of the same of the

Ś

.

· ĉ

(A_i

€

.TITL AREND JABEND IS AN ADNORMAL END OF JOB TERMINATION ROUTINE. ;IT IS CALLED AS FOLLOWS: ; JSR **OABEND** JERROR TERMINATION MESSAGE ; ERBOR PRINTOUT ADDRESS ; WHERE THE MESSAGE FORMAT IS AS FOLLOWS: ; MESSAGE: 0 BYTE POINTER STEXT TO BE PRINTED UPON TERMINATIONS • TXTE JTHE ERROR MESSAGE NEED NOT BE INCLUDED IT MOST CASES. ;AFTER PRINTING THE ERROR MESSAGE, THE LOCATION FROM ; WHICH ABEND WAS CALLED+1 IS PRINTED IN OCTAL, AND THE ; COMPUTER HALTED. DURING THIS PERIOD ALL OTHER ; INTERUPTS ARE DISABLED. ;TOTAL LENGTH=32. LOCATIONS

	• ENT • EXTD	ABEND START, PRINT,	OCTPR
00000-000000 ABEND:	• ZREL	ENTRY	SABEND ENTHY LOCATION
00000 020420 ENTRY: 00001 062177	•NREL LDA DOBS	O; ERRMSK O; CPU	; ABEND INTERUPT MASK ; TRANSMIT MASK ; ENABLE INTERUPTS
00002 054436	STA	3, CALL	SAVE CALLING LOCATION+1
00003*035400 00004*021400 00005*101014 00006*034413	LDA LDA MOV# LDA	3, 0, 3 0, 0, 3 0, 0, SZR 3, LERRM	FRR MESSAGE BYTEPOINTER  FIRST FOR CLOSED FILE  FIF FILE OPEN  FASSUME ILLEGIT  FREPACE WITH  FERRMES
00007'054402 00010'006002\$ 00011'000022'	STA JSR	3, ·+2 0PRINT ERRMES	PRINT ERROR MESSAGE
00012*020426 00013*006003\$	LDA JSR	O, CALL GOCTPR	PRINT CALLING LOC+1
00015 0000035 00015 0000000	JSR	ePRINT 0	CR - LF
00016 063077 00017 002001\$	Halt JMP	0START	;HALT PROCESSOR

00020'177776 00021'000022'	ERRMSK: LERRM:		177776 ERRMES	JABEND INTERUPT MASK JEFAULT PRINTOUT LOC
03022 000000 00023 005215 00024 125012 00025 125252 00026 040652 00027 142502 00030 042116 00031 040640 00032 120324 00032 147714 00034 040703 00035 144724 00036 047317 00037 000000	ERRMES: <12>* ** *A BE ND A T LO CA TI ON \$	•TXTE	0 \$<215><12>	DEFAULT ERROR PRINTOUT
000001	CALL:	•BLK • EN D	1	CALLING LOC STORAGE SEND OF ABEND

ABEND	000000-
CALL	000040 *
ENTRY	000000
ERRME	000022 9
ERRMS	000020
LERRM	000021
OCTPR	000003\$X
PRINT	0000025X
CTADT	00000188

```
*TITL DECPR

DECPR AND OCTPR ARE NUMERBICAL PRINTOUT SUPROUTIVES.
DECPR FERFORMS SIGNED DECIMAL CONVERSIONS, AND OCTPR
JUNSIGNED OCTAL CONVERSIONS. EACH GENERATES AN EIGHT
PRINTABLE CHARACTER ASCII FIELD WHICH IS PRINTED

BY SUBROUTINE PRINT. IT HAS THE FOLDWING FORMAT:

DECIMAL: $ -DDDDD.$

COTAL: $ DDDDDD $

INEITHER PROGRAM NEEDS INITIALIZATION, AND BOTH MAY BE
INTERUPTED. TOTAL LENGTH= 20% LOCATIONS
```

1	• ENT • EXTD • ZREL	DECPR, OCTPY PRINT	
00000-000006 * DECPR		EVTS	DECPR ENTRY LOCATION
00001-000000' OCTPR:		EVT1	OCTPR ENTRY LOCATION
00011 000000 1111111			
l	NREL		
00000'054473 ENT1:	STA	3, RETURV	SAVE RETURN ADDRESS
1		,	'
00001 *034456	LDA	3, CODEL	;O, DEL CHARACTERS
00002 030451	LDA	2, C10	J10 OCTAL
00003105020	MOVZ	0, 1	CLEAR CARRY
00004 1020452	LDA	O, CSPVUL :	;SP, NULL CHARACTERS
00005 1000410	JMP	FILL	; INITIALIZE PRINT BUFFER
4			1
00006'054465 EVT2:	STA	3, RETURV	;SAVE RETURN ADDRESS
)			1
00007*034454	LDA	3, CDELSP	; DEL., SP CHARACTERS
00010 030444	LDA	2, C1 ₀ .	:10 DECIMAL
00011'105020	MUVZ	0, 1	CLEAR CARRY
00012'125112	MOVL#	1, 1, SZC	TEST FOR VEGITIVE NUM
00013*124460	NEGC	. 1. 1	; IFSO NEG, CRRY=1
00014'020441	LDA	O, C.VUL	; NULL CHARACTERS
	1	,	
00015'010445 FILL:	I SZ	виғ	; INITIALIZATION ROUTINE
20016 <b>'</b> 014444	DSZ	BÚF	; WAIT FOR FREE BUFFER
` 0c ' 7 <b>'</b> 000776 '	JMP	•-8	
1			
00020 040452	'STA'	0, BUF+10	; INITIALIZE PRINT PUFFER
00021 054447	STA	3, BUF+6	
00022 054445	STA	3, BUF+5	•
00023 1054443	STA	3, BUF+4	
00024'054441	STA	3. BUF+3	
0,0025'054437	STA	3, BUF+2	
00026'034431	LDA	3. CODEL	;O, DEL CHARACTERS
00027 054442	STA	3, BUF+7	

, 11

ø

£:

;DECPR, OCTPR

00030'020431		LDA	O, INSTR	; VARIABLE STORE INSTR
00031 040410		STA	O, STORE	;INITIALIZE CHAR STORACE
00032*125015	LOOP:	MUV#	1, 1, SVR	;NUM TO ASCII COVV LOOP ;MOVE QUOTIENT TO NUMER ;TEST FOR END CONVERSION
00033 000411		JMP	SIGN	YES JMP SGN TST
00034 1 75200		MOVR	3, 3	SAVE CARRY RIT
00035 102400		SUB	0, 0	CLEAR UPPER HALF NUMER
00036'073101		DIV		DIVIDE BY NOTATION BASE
00037175120		MOVZL	3, 3	RESTORE CARRY, AC3
00040 163000		ADD	3, 0	ADD REMAINDER TO O CHAR
00041 040430	STORE:	STA	0, BUF+7	STORE NEW CHAR IN BUF
00042 014777		DSZ	•-1	DECREMENT STORAGE LOC
00043 000767		JMP	LOOP	;L00P
00044 101062	SIGN:	MOVC	0, 0, SZC	TEST FOR NEGITIVE NUM
00044 101002	31 G.V •	11000	0, 0, 510	COMPL NEG NUMBER FLAG
00045 000403		JMP	OUTPUT	; IF NOT PRINT
00046 020412		LDA	O, CDELMI	;DEL, - CHARACTERS
00047'000772		JMP	STORE	; INCERT MINUS SIGN
	_			ADDING DUEDED CONTENCE
00050 0006001\$	OUTPUT:	JSR	@PRINT	PRINT BUFFER CONTENSE
00051'000062'		DAD.	BUF ORETURN	; RETURN
00052 002421		JMP	GUE I OUM	217 F 1 O17/A
000501000010	C104		10	;10 OCTAL
00053'000010 00054'000012	C10: C10::		10•	;10 DECIMAL
00055 000012	C.NUL:		56	NULL CHARACTERS
00055 000050	CSPNUL:		40	SP, NULL CHARACTERS
00057 177460	CODEL:		377B7+60	;O, DEL CHARACTERS
00060 026777	CDELMI:		55B7+377	; DEL, - CHARACTERS
00061 '040430	INSTR:	STA	0, BUF+7+STOR	E; VARAIABLE STORE INSTR
				BASE VALUE
00062 *000000	BUF:		0	PRINT BUFFER BYTEPTR
00063 020377	CDELSP:		40B7+377	DEL, SP CHARACTERS
000007		• BLK	7	BUFFFR VARIABLE STORAGE
		==		
000001	RETURN:		1	RETURN ADDRESS STORAGE
		• END		; END OF DECPR, OCTPR

BUF	000062
CODEL	0000571
C10	000053 *
C10.	000054 *
CDELM	000060
CDELS	000063 *
CSPNU	000056
C.NUL	000055
DECPR	000000-
ENT1	000000
ENT2	000006
FILL	000015
INSTR	000061 *
LOOP	000032 *
OCTPR	000001-
OUTPU	000050
PRINT	000001\$X
RETUR	000073*
SIGN	000044*
STORE	000041*

0 8 8

arrest arriva

```
•TITL PRINT
PRINT IS A PRINT SUBROUTINE USED IN CONJUNCTION WITH
;THE HARDWARE INTERUPT TTO DRIVER ROUTINE. THE CALLING
;SEQUENCE IS AS FOLLOWS:
 PRINT MESSAGE
 @PRINT
 JSR
 MESSAGE
 *MESSAGE FILE ADDRESS
; WHERE THE MESSAGE FORMAT IS AS FOLLOWS:
; MESSAGE:
 ; BYTEPOINTER
 0
 • TXTE
 STEXT TO BE PRINTEDS
; IF MESSAGE=O, PRINT EXECUTES A CARRIAGE RETURN AND LINE
;FEED. PRINT NEEDS NO INITIALIZATION, AND MAY BE
;INTERUPTED. TOTAL LENGTH=20. LOCATIONS
 • ENT
 PRINT
```

	• ENT • EXTD • ZREL	CMASK, TOBUF	
00000-000000 PRIM		ENTRY	PRINT ENTRY LOCATION
00000'020001\$ ENTF 00001'101212 00002'001401	•NREL Y: LDA MOVR# JMP	O, CMASK O, O, SZC 1, 3	TEST FOR TELETYPE  SIF NONE RETURN
00003	LDA MOV JMP	1, 0TOBUF 1, 1, SZR 2	; WAIT FOR TTG IDLE
00006'031400 00007'151004 00010'000403	LDA MOV JMP	2, 0, 3 2, 2, SZR TYPE	; MESSAGE FILE LOCATION ; TEST FOR ZERO ; IF NOT, PRINT
00011 024407	LDA	1, CCR	;EXECUTE CR - LF ;SET FIRST CHARACTER=CR
00012*030407	LDA	2. LLFF	SET MESSAGE=LF, NULL
00013'102520 TYPE 00014'041000 00015'0500025 00016'065111	SUBZL STA STA DOAS	0, 0 0, 0, 2 2, TOBUF	;1 ;OPEN MESSAGE FILE ;SET TTO BUFFER=MESSAGE ;FILE ;TRANSMIT FIRST CHAR
00017'001401	JMP	1, 3	COMINALLY A NULL) CONTROL OF THE CON
00020'000215 CCR: 00021'000022' LLFF 00022'000000 LFF: 00023'000012	• END	215 LFT 0 12	CR CHARACTER LOC OF LF, NULL FILE LF, NULL FILE BYTEPTR LF, NULL END OF PRINT

CCR	000020
CMASK	0000015X
ENTRY	000000
LFF	000022
LLFF	1120000
PRINT	000000-
TOBUF	000002\$X
TYPE	0000121

\$ 50 mm

<u>e</u>

100

SZA.

*j* 

o,,,

MULT PAGE 1 OF 1

.TITL MULT

;MULT IS A SUBROUTINE TO PERFORM 2'S COMPLEMENT 16 BIT
;MULTIPLICATION. THE CALLING SEQUENCE IS:
; JSR 9MULT
;ACO=AC1*AC2; AC1, AC2,& AC3 ARE DESTROYED.
;THE ROUTINE MAY BE INTERUPTED. SUPERNOVA CORE HARDLARE
;MULT/DIV EXECUTION TIME, INCLUDING AN INDIRECT SUP;ROUTINE JUMP=13.1 USEC.S
;TOTAL LENGTH=10. LOCATIONS

		• ENT • ZREL	MULT	
00000-000000*	MULT:		ENTRY	; ENTRY LOCATION
		•NREL		
00000'102620	ENTRY:	SUBZR	0 • 0	GENERATE ROUNDING
00001 101200		MOVR	0. 0	; CONSTANT
00002 125142		MOVOL	1, 1, SZC	;SCALE AC1, STORE SIGN,&
				TEST FOR NEGITIVE SIGN
00003 124400		NEG	1, 1	; IF SO NEGATE
00004151112		MOVL#	2, 2, SZC	; IS AC2 NEGITIVE?
00005 150460		NEGC	2, 2	; IF SO NEGATE, &
				; COMPL RESLT SGN
00006 073301		MUL		;MULTIPLY
00007*101012		MOV#	0, 0, SZC	; IS RESULT NEGITIVE?
00010*100400		NEG	0 و 0	; IF SO NEGATE
00011*001400		JMP	0, 3	FRETURN
		• END		; END OF MULT

É

. 6

ENTRY 000000° MULT 000000-

Ó

1

0 m

0,

g(C)

.TITL MODSW

;MDSET IS A SUBROUTINE WHICH ENCODES A 4 BIT CONTROL;STATE, PASSED TO IT IN BITS 12 THRU 15 OF ACO, INTO A ;16 BIT CONTROL STATE WORD. THE CONTROL WORD HAS 15;ZERO BITS AND 1 ONE BIT IN THE BIT POSITION GIVEN BY :THE BINARY CONTROL STATE INPUT. THE ENTRY POINT IS; @MDSET.

; MODSW IS A SWITCH TESTING SUBROUTINE. IT IS CALLED AS ; FOLLOWS:

JSR 0MODSW MASK

RETURN LOCATION FOR NO MATCH

RETURN LOCATION FOR MATCH

; A MATCH IS DEFINED AS A ONE BIT IN THE MASK WORD IN ; THE SAME LOCATION AS THE ONE BIT IN THE LAST CONTROL ; STATE WORD GENERATED BY MDSET. MODSW DOES NOT DESTROY ; ANY ACCUMULATOR OR CARRY BIT. SUPERNOVA CORE EXECUTION ; TIME, INCLUDING AN INDIRECT SUBROUTINE JUMP, FOR NO ; MATCH=14.0 USEC.S

;TOTAL PACKAGE LENGTH=18. LOCATIONS

	• ENT	MODSW, MDSET	
	• ZREL		
00000-000000 MODSW:		ENT 1	MODSW ENTRY LOCATION
00001-000011 MDSET:		ents	MDSET ENTRY LOCATION
	•NREL		1
00000'040424 ENT1:	STA	O. ACO	SAVE ACO
00001 *021400	LDA	n, 0, 3	MASK WORD
00002*175400	INC	3, 3	GEN NO MATCH RTN ADDR
00003*054422	STA	3, RETURN	SAVE AT RETURN
00004*034417	LDA	3, mask	CONTROL WORD
00005*117414	AND#	0, 3, SZR	STEST FOR MATCH
00006*010417	ISZ	RETURN	; IF SO INCRE RTN
00007°020415	LDA	O, ACO	RESTORE ACO
00010*002415	JMP	ORETURN	; return
00011'024411 ENT2:	LDA	1, M17	CONTROL STATE MASK
00012*123400	AND	1. 0	; mask
00013*100000	COM	0, 0	SET COUNTER
00014*126420	SUBZ	1. 1	GENERATE ONE BIT
00015 ³ 125200	MOVR	1. j	JADVANCE ONE BIT
00016*101404	INC	O, Ö, SZR	STEST FOR COPLETE COUNT
00017*000776	JMP	•-2	SIF NOT ADVANCE
00020*044403	STA	1. MASK	SAVE CONTROL WORD
99921 *001400	JMP	0, 3	3 RETURN
09022 000017 M17:		17	CONTROL STATE MASK
000001 MASK:	• Blk	1	CONTROL WORD STORAGE
990001 ACO:	• BLK	1	JACO STORAGE
000001 RETURN	BLI	1	RETURN ADDRESS STORAGE
	• END		SEND OF MODSW & MDSET

AC0	000024
ENT 1	000000
ENTS	000011*
M17	000022
Mask	000023
MDSET.	000001-
MODSW	000000-
PRTIE	0000051

## • TITL LPF1K

;LPF1K IS A FILE OF IMPULSE RESPONSE SAMPLES OF A LIVEAR ; PHASE 1.350 KHZ LOW PASS FILTER. THE FREQUENCY RESPONSE IS 1.01 DB DOWN AT 1.350 KHZ, AND GREATER THAN 350.0 DB DOWN ABOVE 1.778 KHZ. THE SAMPLING RATE IS ;8.000 KHZ. THE SAMPLE VALUES ARE QUANTIZED TO 10 BIT :2'S COMPLEMENT PRECISION. THE IMPULSE RESPONSE IS 47 ; SAMPLES LONG. DC GAIN=0.6665, THE FORMAT OF THE FILE ; IS COMPATABLE WITH THE CONVO SUBBOUTINE REQUIREMENTS.

;LPFD1 THRU LPFD4 ARE DATA STORAGE FILES FOR USE WITH ;LPF1K AND THE CONVO SUBROUTINE. EACH 1.350 KHZ LOW ; PASS FILTER IMPLEMENTED MUST USE A DIFFERENT DATA STORAGE FILE, BUT MAY SHARE LPFIK AND CONVO FILES. ;LPF1K TOTAL LENGTH=49. LOCATIONS. ;TOTAL PACKAGE LENGTH=241. LOCATIONS.

## LPFIK, LPFD1, LPFD2, LPFD3, LPFD4 • ENT • NREL

10

È

A STATE OF THE PROPERTY OF THE

TOO TO THE TOTAL OF THE TOTAL O

يخو

1,1

年十二年

o

が、ハハン

00032*114360 00033*104560 00034*076260 00035*074660 00036*077040 00037*101300 00040*101340 00041*100000 00042*077020 00043*077300 00045*100460 00046*100140 00046*100140 00047*077560 00050*077560 00052*100140 00052*100140 00053*100060 00055*077760 00055*077760 00056*077760 00056*077760 00056*077760 00056*077760		1B0+399.B11 1B0+151.B11 1B0-53.B11 1B0-101.B11 1B0-30.B11 1B0-44.B11 1B0+46.B11 1B0+0.B11 1B0-31.B11 1B0-20.B11 1B0+9.B11 1B0+9.B11 1B0+9.B11 1B0+6.B11 1B0-9.B11 1B0+6.B11 1B0+0.B11 1B0+0.B11 1B0+0.B11 1B0+0.B11 1B0+0.B11 1B0+1.B11 1B0-1.B11 1B0-1.B11 1B0-1.B11 1B0+1.B11	JEND OF LPFIK
00061 *000062 * LPFD1: 000057	•BLK	•+1 47•	3DATA STORAGE FILE 1
00141'000142' LPFD2: 000057	•BLK	• ÷ i 47•	JDATA STORAGE FILE 2
00221 '000222 ' LPFD3: 000057	•BLK	•+1 47•	JUATA STORAGE FILE 3
00301 '000302 ' LPFD48 000057	•BLK	•+1 47•	JDATA STORAGE FILE 4
	• END		JEND OF LPF'IK, & 'D1-'D4

LPFIK	000006*
LPFD1	000061
LPFD2	000141
LPFD3	000221
LPFD4	000301

in die monthe in the season of the season of

Same and the state of the state

where the beautiful control of

• NREL

Control of the contro

8

é

•TITL LHRFE

; LHRFE AND LHRFO ARE FILES OF THE ODD AND EVEN SAMPLES ; RESPECTIVELY OF A 1:2 RESAMPLING FILTER. THE INPUT ; SAMPLING RATE IS 8.000 KHZ, AND THE OUTPUT SAMPLING ; RATE IS 16.000 KHZ. THE FILTER IS LESS THAN 0.01 DB ; DOWN AT 1.250 KHZ, AND GREATER THAN 54.9 DE DOWN PAST ; 8.000-1.350 KHZ. THE SAMPLES ARE QUANTIZED TO 10 RIT ; 2'S COMPLEMENT PRECISION. THE INPULSE RESPONSE IS ; 6 SAMPLES (AT THE 8.00 KHZ SAMPLING RATE) LONG. ; PASSBAND CAIN=0.9971, LHRFE AND LHRFO FILE FORMAT IS ; COMPATABLE WITH CONVE AND CONVO SUBR REQUIREMENTS.

;LHFD1 AND LHFD2 ARE DATA STORACE FILES FOR USE WITH ;LHRFE, LHRFO, AND THE CONVE AND CONVO SUBROUTINES. ;EACH RESAMPLING FILTER IMPLEMENTED MUST USE A DIFFERENT ;DATA STORAGE FILE, BUT LHRFE, LHRFO, CONVE, AND CONVO;MAY BE SHARED. ;LHRFE+LHRFO LENGTH=12. LOCATIONS

;TOTAL PACKAGE LENGTH=24. LOCATIONS

.ENT LHRFE, LHRFO, LHFD1, LHFD2

00000 000006	LHRFE:		6•	:IMPULSE RESPONSE LENGTH
00001 140100			-510.B10	JOFFSET CONSTANT
00001 140100			0.000	7011BB1 00NB11
00002*100700			1B0+7.B9	;ODD IMPULSE RESPONSE
00002 100100			1B0-55.B9	SAMPLES
00003 011100			1B0+303•B9	Junit min
000051145700			1B0+303•B9	
00006'071100			1B0-55.B9	
00007*100700			1E0+7•B9	; END OF LHRFE
000101000006	LHRFO:		6.	• TMDIM CE DECDAMEE TEMETH
	LHRFUT		•	; IMPULSE RESPONSE LENGTH
00011*140040			-511.B10	OFFSET CONSTANT
000012*100000			1B0+0•B9	;EVEN IMPULSE RESPONSE
00013 100000			1B0+0•B9	SAMPLES
00014 177700			1B0+511•B9	
			1B0+0•B9	
00015 100000				
00016 100000			1B0+0•B9	4 PM D
00017'100000			1B0+0•B9	; END OF LHRFO
00020'000021'	LHFD1:		•+1	;DATA STORAGE FILE 1
000006		• BLK	6.	
000000		• 22	•	
00027*000030*	LHFD2:		•+1	; DATA STORAGE FILE 2
000006		• BLK	6•	
000000			-	
				AMID OF THERE DAGUAGE
		• END		:END OF LKRFE PACKAGE

LHFD1	000020
LHFD2	0000271
LHRFE	000000
T TAID TOO	0000101

0

## •TITL 'HLRFI

;HLRFI IS A FILE OF IMPULSE RESPONSE SAMPLES OF ALINEAR
;PHASE 2:1 RESAMPLING FILTER. THE INPUT SAMPLING RATE
;IS 16.000 KHZ, AND THE OUTPUT SAMPLING RATE IS 8.000
;KHZ. THE FILTER IS LESS THAN 0.01 DB DOWN AT 1.350 KHZ;
AND GREATER THAN 54.9 DB DOWN PAST 8.000-1.350 KHZ.
;THE SAMPLES ARE QUANTIZED TO 10 BIT 2'S COMPLEMENT
;PRECISION. THE IMPULSE RESPONSE IS 11 SAMPLES (AT
;THE 16.000 KHZ SAMPLING RATE) LONG. PASSBAND GAIN=
;0.9971, THE FORMAT OF THE FILE IS COMPATABLE WITH THE
;CONVO SUBROUTINE REQUIREMENTS.

\$\fmathcal{HLFD1} AND HLFD2 ARE DATA STORAGE FILES FOR USE WITH \$\fmathcal{HLRF1} AND THE CONVO AND CONVI SUBROUTINES. EACH \$\fmathcal{FRESAMPLING} FILTER IMPLEMENTED MUST USE A DIFFERENT DATA \$\fmathcal{FILE}\$, BUT MAY SHARE THE HLRFI, CONVO, AND CONVI FILES. \$\fmathcal{FILE}\$HLRFI LENGTH=11. LOCATIONS. \$\fmathcal{FILE}\$ \$\fmathcal{FILE}\$ LOCATIONS.

• ENT HLRFI, HLFD1, HLFD2 •NREL

		1	
00000 000013 1	HLRFI:	11.	IMPULSE RESPONSE LENGTH
00001*140060		-1021.B11	OFFSET CONSTANT
00002*100340		1B0+7•B13	JIMPULSE RESPONSE
00003*100000		180+0.B10	SAMPLES
00004 7074440		1B0-55•B10	) SHUB-LEG
00005*100000		1B0+0:B10	
00006*122740			
00007 137740		1B0+303.B10	
00010 122740		1B0+511.B10	
00010 122740	•	1B0+303-B10	
		1B0+0.B10	•
00012*074440	,	180-55.B10	•
00013*100000		1B0+0•B10	
00014*100340	1	1B0+7•B10	SEND OF HLRFI
,			
00015'000016' F	ILFD1:	•+1	JDATA STORAGE FILE 1
000013	• BLK	11.	File 1
00031 '000032' H	ILFD2:	•+1	IDATA ETODACE DILE A
000013	• BLK	11.	JDATA STORAGE FILE 2
1 1	• 2211	• <i>5</i> 7	
1	• END		ATTION OF AN AREA AREA
	- E4D	T.	FND OF HLRFI, FD1, & FD2

The Mark of the second of the

17

(¢)

いたとうなっているというできます。

C. Jorge

٠.

Æ.

: 1

, e ų

## •TITL BPF3K

;BPF3K IS A FILE OF IMPULSE RESPONSE SAMPLES OF A LINEAR ;PHASE 0.300 TO 3.000 KHZ BAND PASS FILTER. THE ;FREQUENCY RESPONSE IS 35.0 DB DOWN AT DC, 1.60 DB DOWN ;AT 0.300 AND 3.000 KHZ; AND GREATER THAN 50.0 DB DOWN ;ABOVE 3.441 KHZ. THE SAMPLING RATE IS 16.000 KHZ. THE ;SAMPLE VALUES ARE QUANTIZED TO 10 BIT 2'S COMPLEMENT ;PRECISION. THE IMPULSE RESPONSE IS 107 SAMPLES LONG. ;PASSBAND GAIN IS 0.6883, THE FORMAT OF THE FILE IS ;COMPATABLE WITH THE CONVO SUBROUTINE REQUIREMENTS.

; BPFD1 AND BPFD2 ARE DATA STORAGE FILES FOR USE WITH ; BPF3K AND THE CONVO SUBROUTINE. EACH 3.0 KHZ BAND PASS ; FILTER IMPLEMENTED MUST USE A DIFFERENT DATA STORAGE ; FILE, BUT MAY SHARE BPF3K AND CONVO FILES. ; BPF3K TOTAL LENGTH=109. LOCATIONS. ; TOTAL PACKAGE LENGTH=325. LOCATIONS.

## •ENT BPF3K, BPFD1, BPFD2 •NREL

00000 *000153 00001 *177470	BPF3K:	107• -25•B12	; IMPULSE RESPONSE LEVETH ; OFFSET CONSTANT
00001*177470 00002*100020 00003*100000 00004*100000 00006*100020 00007*100020 00010*100020 00011*100000 00012*077760 00013*100000 00014*100040 00015*100040 00016*077760 00017*077720 00020*077760 00021*100040 00022*100040 00023*077740 00024*077660		-25.B12  1B0+1.B11 1B0+0.B11 1B0+0.B11 1B0+0.B11 1B0+1.B11 1B0+1.B11 1B0+1.B11 1B0+0.B11 1B0-1.B11 1B0-2.B11 1B0-3.B11 1B0-1.B11 1B0-1.B11 1B0-2.B11 1B0-2.B11 1B0-2.B11 1B0-2.B11 1B0-2.B11	;OFFSET CONSTANT ;IMPULSE RESPONSE ;SAMPLES
00026'100020 00027'100040		1B0+1•B11 1B0+2•B11	
00030 077700		1B0-4•B11	

00031 077500	180-12-B11	;LPB3K CONTINUED
00032*077500	1B0-12-B11	
00033*077720	1B0-3.B11	
00034 100020	1B0+1.B11	•
00035 077620	1B0-7.B11	,
00036*077300	1B0-20.B11	
00037 077240	1B0-22.B11	
00040 °077560	1B0-9.B11	
00041 100000	1B0+0•B11	
00042 077560	1B0-9.B11	
00043 077060	1B0-29.B11	
00044 076720	1B0-35.B11	
00045 077340	1B0-18.B11	
00046*100000	1B0+0.B11	
00047 077560	1B0-9.B11	
00050 076640	1B0-38 • B11	
00051 076300	1B0-52-B11	
00052 077040	1B0-30.B11	
00053 100060	1B0+3•B11	
00054 077760	1B0-1.B11	
00055 076440	1B0-46.B11	
00056*075440	1B0-78.B11	
000571076400	1B0-48 • B1 1	
00060 100400	1B0+16•B11	
00061 100720	1B0+29 • B11	
00062 076320	1B0-51 • B1 1	
00063*073400	1B0-144.B11	
00064 074520	1B0-107-B11	
00065 103340	1B0+110 • B11	
00066 114040	1B0+386•B11	
00067*117760	1B0+511•B11	
00070*114040	1B0+386•B11	
00071*103340	1B0+110+B11	
00072°074520 00073°073400	180-107-B11	
	1B0-144.B11	
00074°076320 00075°100720	1B0-51-B11	
	1B0+29 • B11	
00076*100400 00077*076400	1B0+16•B11	
00177-076400	1B0-48-B11	
00101*076440	180-78 • B11	
00101 076440	1B0-46.B11	
00102*077760	1B0-1.B11	
00103 100000 00104 077040	1B0+3•B11	
00105*076300	1B0-30-B11	
00105*076500	1B0-52.B11 1B0-38.B11	
00103*076640		
0010*100000	1B0-9•B11 1B0+0•B11	
00111*077340	1B0+0+B11 1B0-18+B11	
00112*076780	1B0-35-B11	
00113*077060	1B0-33-511 1B0-29-B11	
WOARD OFFICE	100-53 • DII	

Þ

ç

**O** . . . .

The state of the s

; | **o**`

9

S Jos as

ø.

4)

00114*077560 00115*100000		1B0-9.B1;	BPF3K CONTINUED
00116 077560		1B0+0.B11	PETTON COMITMORD
00117 077240		1B0-9.B11	
00120 077300		1B0-22.B11	
00121 077620		1B0-20-B11	
00122 100020		1B0-7.B11	
00123 077720		1B0+1.B11	
00124 077500		1B0-3.B11	
00125 077500		1B0-12.B11	
00126 077700		1B0-12.B11	
00127'100040		1B0-4.B11	
00130 100020		1B0+2.B11	
00131 077660		1B0+1.B11	
00132 077640		1B0-5-B11	
00133 077740		1B0-6-B11	
00134*100040		1B0-2-B11	
00135 100040		1B0+2.B11	
00136'077760		1B0+2.B11	
00137'077720		1B0-1.B11	
00140'077760		1B0-3.B11	
00141*100040		1B0-1.B11	
00142 100040		1B0+2.B11	
00143*100000		1B0+2.B11	
00144 077760		1B0+0.B11	
00145 100000		1B0-1.B11	
00146 100020		1B0+0.B11	
00147*100020		1B0+1.B11	
00150*100020		1B0+1.B11	
00151*100000		1B0+1.B11	
00152 100000		1B0+0.B11	
00153100000		1B0+0.B11	
00154100020		1B0+0.B11	
.00020		1B0+1.B11	; END OF BPF3K
00155*000156* BPFD1	1	•+1	
000153	- BLK	107.	JDATA STORAGE FILE 1
002211000000			
00331'000332' BPFD2		•+1	JDATA STORAGE FILE 2
000153	• BLK	107.	Promage LIFE S
	• END		JEND OF BPF3K, 'D1,& 'D2

BPF3K 000000° BPFD1 000155° BPFD2 000331°

The state of the s

8

۲.

Ģ

, 00,

L

```
• TITL
 SUBPK
 • ENT
 CONVO, CONVI, CONVE, COSIN, ARCTN
 • ENT
 TODAY, TOBUF, TIDAY, TIBUF, CHCOM
 • ENT
 CRDRV, CIDRV, CODRV, AIDRV, AIBUF
 • ENT DIDRY, CLOCK, CMASK, DEAD, MASK
• EVT START, ABEND, DECPR, OCTPR, PRINT
 • EVT
 • ENT
 MULT, MODSW, MDSET, RPROG, PPROG
 000004
 • LOC
 4
00004 000000 CMASK:
 0
 CURRENT PERIFERALS MASK
00005 001400 DEAD:
 JMP
 0,3
 JDEAD SUBROUTINE
 000045
 • LOC
 45
 5200
5200+50
5200+64
5305
00045 005200 CONVO:
 CONVOLUTION SUPROUTINE
00046 005250 COVVI:
 JADV INPUT VECTOR ONLY
00047 005264 CONVE:
 ;ADV OUTPUT VECTOR ONLY
00050 005305 COSIN:
 COSIN SUPROUTINE ADDR
 5503
5664
5664+17
5706
5706+55
00051 005503 ARCTN:
 JARCTAN SUBROUTIVE ADDR
00052 005664 TODRV:
 ;TTO DRIVER ADDRESS
00053 005703 TOBUF:
 PRINT BUFFER ADDRESS
00054 005706 TIDRV:
 JTTI DRIVER ADDRESS
 READ BUFFER ADDRESS
00055 005763 TIBUF:
 CRI DRIVER ADDRESS
00056 005765 CHCOM:
 CH COMM SUBROUTINE ADDR
 5765+25
5765+45
00057 006012 CRDRV:
00060 006032 CIDRV:
 CII DRIVER ADDRESS
 5765+75 CSO DRIVER ADDRESS
6124 GASI DRIVER ADDRESS
-2 GAIU COMM BUFFER ADDRESS
00061 006062 CODRV:
00062 006124 AIDRV:
00063 177776 AIBUF:
 ; AIU COMM BUFFER ADDRESS
 6124+27
OD
00064 006153 DIDRV:
 ;DSI DRIVER ADDRESS
00065 000000 CLOCK:
 OD
 JAIU FRAME COUNTER
00066 000000
 0
6355
6424
00067 000000 MASK:
 CURRENT INTERUPT MASK
START-UP ROUTINE ADDR
ABEND ROUTINE ADDRESS
DECPR SUBROUTINE ADDR
 CURRENT INTERUPT MASK
00070 006355 START:
00071 006424 ABEND:
 6465+6
00072 006473 DECPR:
00073 006465 OCTPR:
 6465
 COCTPR SUBROUTINE ADDR
 6562 SPRINT SUBROUTINE ADDR
6607 S2'S COMPL 16 BIT MULT
6607+12 SMODSW SUBROUTINE ADDR
6607+12+11 SMDSET SUBROUTINE ADDR
DEAD SREAL TIME PROGRAM ADDR
DEAD SBACKGROUND PROGRAM ADDR
00074 006562 PRINT:
00075 006607 MULT:
00076 006621 MODSW:
00077 006632 MDSET:
00100 000005 RPROG:
00101 000005 BPROG:
```

• END

大学の大学の大学

Ò

ABEND	000071
ALSUF	000063
AIDRV	000062
ARCTN	000051
BPROG	000101
CHCOM	000056
CIDRV	000060
CLOCK	000065
CMASK	000004
CODRV	000061
CONVE	000047
CONVI	000046
CONVO	000045
COSIN	000050
CRDRV	000057
DEAD	000005
DECPR	000072
DI DRV	000064
MASK	000067
MDSET	000077
Modsw	000076
MULT	000075
OCTPR	000073
PRINT	000074
RPROG	000100
START	000070
TIBUF	000055
TIDRV	000054
TOBUF	000053
TODRV	000052

1				·
1		•TITL	IMPAC	
		• ENT	1	LPFD1, LPFD2, LPFD3, LPFD4
	Į t	• ENT	LHRFE	LHRFO, LHFD1, LHFD2, HLRFI
		• ENT	HLFD1,	HLFD2, BPF3K, BPFD1, BPFD2
004000		•LOC	4000	
000061	LPF1K:	• BLK	49.	:1.35 KHZ LPF IMP RESP
000060	LPFD1:	-BLK	48.	; LPF DATA STORAGE FILE 1
000060	LPFD2:	BLK	48•	;LPF DATA STORAGE FILE 2
000060	LPFD3:	• BLK	48•	JLPF DATA STORAGE FILE 3
000060	LPFD4:	• BLK	48.	JLPF DATA STORAGE FILE 4
004363	•	•LOC	4363	1
000010	LHRFE;	• BLK	8• ,	;1:2 RESAMPL FLT IMP RES
000010	LHRF0:	•BLK	8•	ODD TERMS OF ABOVE
000007	LLFD1;	• BLK	7.	;LHRF DATA STORE FILE 1
000007	LHFD2:	• BLK	7.	; LHRF DATA STORE FILE 2
000015	HLRFI:	• BLK	13.	;2:1 RESAMPL FLT IMP RES
000014	HLFD1:	• BLK	12.	HLRF DATA STORE FILE 1
000014	HLFD2:	• BLK	12.	HLRF DATA STORE FILE 2
004470	1	•LOC	4470	
000155	BPF3K:	• BLK	109 •	30.3-3.0 KHZ BPF IMP RES
000154	BPFD1:	•BLK	108•	BPF DATA STORAGE FILE 1
000154	BPFD2:	BLK	108.	BPF DATA STORAGE FILE 2

The state of the s

, ,

BPF3K	004470
BPFD1	004645
BPFD2	005021
HLFD1	004436
HLFD2	004452
HLRFI	004421
LHFD1	004403
LHFD2	004412
LHRFE	004363
LHRFO	004373
LPF1K	004000
LPFD1	004061
LPFD2	004141
LPFD3	004221
I.PFD4	004301

W. W. W.

このからいかのできることはないというないのできることのできることのことのできることを

47

## APPENDIX B

MAIN PROGRAM FOR TRANSCEIVER BREADBOARD

```
SAFE =
*3
*1
*1
*1
*6
 NMAX 003761
 ZMAX 000050
 ABEND 000071
 AIBUF 000063
 AIDRV 000062
 ARCTN 000051
 BPF3K 004470
 BPFD1 004645
 BPFD2 005021
 BPR0G 000101
 CHCOM 000056
 CIDRV 000060
 CLOCK 000065
 CMASK 000004
 CODRV 000061
 CONVE 000047
 CONVI 000046
 CONVO 000045
 COSIN 000050
 CRDRV 000057
 DEAD 000005
 DEBUG 000200
 DECPR 000072
 DIDRV 000064
 HLFD1 004436
 HLFD2 004452
 HLRFI 004421
 LHFD1 004403
 LHFD2 004412
 LHRFE 004363
 LHRF0 004373
 LPF1K 004000
 LPFD1 004061
 LPFD2 004141
 LPFD3 004221
 LPFD4 004301
 MASK 000067
 MDSET 000077
 MODSW 000076
 MULT 000075
 OCTPR 000073
 PRINT 000074
 RPROG 000100
 START 000070
 TIBUF 000055
 TIDRV 000054
 TOBUF 000053
 TODRV 000052
*8
5 =
44/007552 /000050
7553
 007551
```

7555

7556

007337

003761

6650	NIOC CPU
6651	LDA 0 +63
6652	LDA 1 120
6653	STA 1 +63
6654	STA 0 120
6655	NIOS CPU
6656	STA 3 121
6657	LDA 0 0120
6660	MOVL 0 1
6661	SUBR 1 1
6662	STA 1 122
6663	JSR 0+77
6664	JSR 0+76
<b>55</b> 65	070000
6666	JMP 6730
6667 6670 6671 6672 6673 6674 6675 6676 6677 6700 6701	LDA 2 120 LDA 1 123 LDA 0 122 ADD 1 0 STA 0 +0 2 LDA 0 +4 2 NEG 0 0 STA 0 +4 2 LDA 0 +5 2 NEG 0 0 STA 0 +5 2 LDA 0 +1 2
6703	JSR 0+76
<b>59</b> 04	040000
6705	JMP 6712
6706	JSR 0+45
<b>59</b> 07	004000
6710	004061
6711	JMP 6724
6712	JSR 0+76
8913	020000
6714	JMP 6721
6715	JSR 0+45
8916	004470
6717	004645
6720	JMP 6724
6721	JSR 0+45
<b>59</b> 22	004421
6723	004436
6724	NEG 0 0
6725	LDA 2 120
6726	STA 0 +1 2
6727	JMP 0121

The second secon

```
6730
 JSR 0+76
6031
 107400
6732
 JMP 0121
6733
 LDA 2 120
6734
 LDA 1 124
 LDA 0 122
6735
6736
 ADD 1 0
6737
 STA 0 +0 2
6740
 LDA 1 +3 2
6741
 ADDOR 1 1
6742
 STA 1 +3 2
6743
 LDA 0 +1 2
6744
 JSR 8+76
B945
 077777
6746
 JMP 6724
6747
 LDA 0 +2 2
6750
 JSR 0+76
8#51
 004000
6752
 JMP 6755
6753
 JMP 7010
8 5 54
 000000
6755
 LDA 3 126
6756
 STA 1 126
6757
 SUBZL 0 1
6760
 STA 1 127
6761
 SUBZL 3 0
6762
 JSR 0+76
5#63
 001000
6764
 JMP 6775
6765
 JSR 0+46
5766
 004421
6767
 004436
6770
 LDA 0 127
6771
 JSR 9+45
5#72
 004421
6773
 004436
6774
 JMP 7010
6775
 JSR 0+76
5776
 000400
6777
 JMP 7010
7000
 JSR 9+46 1
5001
 004470
7002
 004645
7003
 LDA 0 127
7004
 JSR @+45
3005
 004470
7006
 004645
```

ADD 0 0

٠Ç

STA 3 +3 2

JMP 0121

されていることがありてないとればないというできないことのないというとうないのできないのできないのではないというないというないというというというというというというというというというというというというと

\$= 63/007532 100/006650 120/007540 123/020000 124/060000

THE STATE OF THE S

**&** 

6732	JMP	7070
------	-----	------

7070 JSR 0+76 3071 000360 7072 JMP 0121 7073 LDA 2 120 7074 LDA 1 123 7075 LDA 0 122 7076 ADD 1 0 7077 STA 0 +0 2

7100 LDA 0 126
7101 LDA 1 125
7102 JSR 9+76
\$\$03 000240
7104 NEG 1 1
7105 ADD 1 0
7106 STA 0 126

¢

1

11

C

7107 JSR @+76 \$\$10 000300 7111 JMP 7207 7112 JSR @+50 7113 STA 0 127 7114 STA 1 130

LDA 2 120

STA 0 +3 2

7143

```
LDA 1 125
7145
7146
 MOVZR 1 1
 JSR 0+76
7147
 000240
$350
7151
 NEG 1 1
 LDA 0 126
7152
7153
 ADD 1 0
 JSR 0+50
7154
7155
 STA 0 127
7156
 STA 1 130
7157
 LDA 2 120
7160
 LDA 2 +5 2
7161
 STA 2 132
 JSR 0+75
7162
 STA 0 131
7163
7164
 LDA 1 127
 LDA 2 132
7165
7166
 JSR 0+75
7167
 STA 0 132
7170
 LDA 1 127
7171
 LDA 2 120
7172
 LDA 2 +4 2
7173
 JSR 0+75
7174
 LDA 1 131
7175
 SUB 1 0
7176
 LDA 3 120
7177
 LDA 2 +4 3
7200
 LDA 1 130
7201
 STA 0 +4 3
7202
 JSR 0+75
7203
 LDA 1 132
7204
 ADD 1 0
7205
 LDA 2 120
7206
 STA 0 +5 2
7207
 LDA 0 +2 2
7210
 JSR 0+46
3211
 004421
7212
 004436
7213
 LDA 2 120
7214
 LDA 0 +4 2
7215
 NEG O O
7216
 JSR 0+45
5917
 004421
7220
 004436
7221
 JSR 0+45
5022
 004000
7223
 004061
7224
 STA 0 131
```

CONTROL OF THE PROPERTY OF THE

-

|;

ķ

Ģ

O

6731	107403
6763	001003
7012 7013	JMP 07013 007450
7023	001003
7046	001003
7067	007410
7072	JMP 07067
7361 7362 7363 7367 7365 7366	LDA 1 131 INCR 1 2 ADDZR 0 1 STA 1 131 MOVR 2 2 NEG 0 0 SUBR 0 0 JMP +0 3
7371 7372 7373 7374 7375 7376	LDA 1 132 MOV 1 1 SNR INC 1 1 INCR 1 0 MOVR 0 0 SUBCR 0 0 ADDZR 0 1 STA 1 132 JMP +0 3
	JSR 7370 LDA 1 123 ADD 1 0 JSR 9+76 000004 JMP 7424 JSR 9+45 004363 004403 JSR 9+45 004421 004436 LDA 2 120 STA 0 +1 2

7476

040000

Control of the state of the sta

•

8,

;

;

ń

1

0

1

Į.

*