1

GENES REGULATED IN OVARIAN CANCER AS PROGNOSTIC AND THERAPEUTIC TARGETS

TECHNICAL FIELD

[01] The present invention belongs to the fields of medicine and relates to the use of genomic analysis to evaluate and treat ovarian cancer. In particular, this invention relates to the measurement of patterns of gene expression to determine the presence of ovarian cancer in a patients tissues.

BACKGROUND ART

- [02] Ovarian cancer is one of the most common types of cancer that affects women in the United States, with a lifetime risk of approximately 1/70. See Whittemore, *Gynecol. Oncol.*, Vol. 55, No. 3, Part 2, pp. S15-S19 (1994). It is a rapidly fatal disease usually detected late, with still no good method of prevention. The greatest risk factor for ovarian cancer is a family history of the disease, suggesting the strong influence of genetics. See Schildkraut and Thompson, *Am. J. Epidemiol.*, Vol. 128, No. 3, pp. 456-466 (1988). Other factors such as demographic, lifestyle and reproductive factors have also been shown to contribute to the risk of ovarian cancer.
- [03] Several microarray expression analyses of ovarian biopsies and cell lines have been conducted to identify genes specifically over-expressed in ovarian cancers. See Schummer et al., *Gene*, Vol. 238, No. 2, pp. 375-385 (1999). Other studies have tried to correlate gene expression levels with specific tumor types. See Bayani et al., *Cancer Res.*, Vol. 62, No. 12, pp. 3466-3476 (2002); Welsh et al., *Proc. Natl. Acad. Sci. USA*, Vol. 98, No. 3, pp. 1176-1181 (2001); and Ono et al., *Cancer Res.*, Vol. 60, No. 18, pp. 5007-5011 (2000).
- [04] These kinds of studies, aimed at increasing our understanding of the molecular mechanism of tumor development and in some cases at better classifying tumors, has provided a list of genes with few overlaps between analyses. Some technical differences may explain in part the apparent lack of consistency or low reproducibility between studies: quality of samples, amplification of the messenger ribonucleic acid (mRNA) and different microarray platforms. However, it is likely that the heterogeneity of the tumors is a key factor that contributes to the differences observed between studies, in particular, those where few tumors are analyzed. Furthermore, comparison of gene expression levels on microarray

experiments have historically been done using ratios of signal intensity (fold change), with limited use of statistical methods and a lack of validation with additional samples.

[05] However, genes apparently expressed at high levels, or with the biggest change in expression, may not always be the most relevant; it is conceivable that a small disruption of the very tight regulation of genes may have dramatic consequences, even when the level of expression is low.

[06] Thus there is a need for the identification of genes whose expression rates are consistently and reliably altered in ovarian cancer. Such a list could provide new insight into ovarian tumor development and progression, and suggest potential new drug targets, and biomarkers for diagnosis, monitoring and treatment of the disease.

DISCLOSURE OF INVENTION

[07] In the present invention, the application of a combination of statistical tests and the recently described leave-one-out method [see van't Veer et al., *Nature*, Vol. 415, No. 6871, pp. 530-536 (2002)], allows the analyze of expression profiles of tumors and normal ovarian tissues and for these patterns to also be determined in gene expression products in various body fluids including, but not limited to, blood and serum. See van't Veer et al., *supra*.

[08] The study of two independent sets of samples, a test set and a validation set, confirms the involvement of several known genes with ovarian tumor development, but also identify novel genes. These findings provide new insight into ovarian tumor development and progression, and suggest potential new drug targets, and biomarkers for diagnosis and monitoring of the disease.

[09] In one embodiment, this invention provides a method to determine if a patient is afflicted with ovarian cancer comprising:

- a) obtaining a sample from the said patient;
- b) determining the levels of gene expression of two or more of the genes listed in Table 9 in the sample from the patient;
- c) comparing the levels of gene expression of the two or more genes determined in
- (b) to the levels of the same genes listed in Table 1;
- d) determining the degree of similarity (DOS) between the levels of gene expression of the two or more genes determined in (c); and
- e) determining from the DOS between the level of gene expression of the two or more genes the probability that the sample shows evidence of the presence of ovarian cancer in the patient.

- [10] In a preferred embodiment, this invention provides a method wherein the levels of gene expression are determined for a subset of the genes listed in Table 9 comprising genes Nos. 1-28 in Table 9.
- [11] In another embodiment, the invention employs a sample comprising cells obtained from the patient. These may be cells removed from a solid tumor in the said patient or, in a preferred embodiment, the sample comprises blood cells and serum drawn from the said patient. In a most preferred embodiment, the sample comprises a body fluid drawn from the patient.
- [12] In a preferred embodiment, this invention employs a method of determining the level of gene expression comprising measuring the levels of protein expression product in the sample from the patient. This may be done in a variety of ways including, but not limited to, detecting the presence and level of the protein expression products using a reagent which specifically binds with the proteins, wherein the reagent may be selected from the group consisting of an antibody, an antibody derivative and an antibody fragment.
- [13] In another embodiment, this invention provides a method wherein the levels of expression in the sample are assessed by measuring the levels in the sample of the transcribed polynucleotides of the two or more gene in Table 9. These transcribed polynucleotide may be mRNA or complementary DNA (cDNA).
- [14] In a preferred embodiment, this method would further include the step of amplifying the transcribed polynucleotide.
- [15] In another embodiment, this invention includes a method of treating a subject afflicted with ovarian cancer, the method comprising providing to cells of the subject an antisense oligonuceotide complimentary to one or more of the genes whose expression is up-regulated in ovarian cancer as shown in Table 8.
- [16] In addition, this invention provides a method of inhibiting ovarian cancer in a subject at risk for developing ovarian cancer, the method comprising inhibiting expression of one or more of the genes shown in Table 8 to be up-regulated in ovarian cancer.

- [17] This invention also provides kits for use in determining treatment strategy for a patient with suspected ovarian cancer comprising:
 - a) a number (for example, two or more) of antibodies able to recognize and bind to the polypeptide expression product of the two or more of the genes in Table 9;
 - b) a container suitable for containing the said antibodies and a sample of body fluid from the said individual wherein the antibody can contact the polypeptide expressed by the two or more genes shown in Table 9 if they are present;
 - c) means to detect the combination of the said antibodies with the polypeptides expressed by the two or more genes shown in Table 9; and
 - d) instructions for use and interpretation of the kit results.
- [18] In another embodiment, this invention provides a kit for use in determining the presence or absence of ovarian cancer in a patient comprising:
 - a) a number (for example, two or more) of polynucleotides able to recognize and bind to the mRNA expression product of the two or more genes shown in Table 9;
 - b) a container suitable for containing the said polynucleotides and a sample of body fluid from the said individual wherein the said polynucleotide can contact the mRNA, if it is present;
 - c) means to detect the levels of combination of the said polynucleotide with the mRNA from the two or more genes shown in Table 9; and
 - d) instructions for use and interpretation of the kit results.

BRIEF DESCRIPTION OF DRAWINGS

- [19] FIG. 1(A). Re-Classification of Samples Using Increasing Number of Probe Sets.
- [20] FIG. 1(B). Plot of Errors as a Function of Number of Probe Sets for Determination of Optimum Number of Classification Genes. Calculated values by increasing number of individual probe sets from the top 6 to the top 55 (A) or to all 900 (B). Arrow indicates the minimum number of probe sets (N=28) that minimizes misclassification.
- [21] FIG. 2. Determination of a Threshold CC Value for Classification of Ovarian Status.
- [22] FIG. 3. Correlation of Test and Validation Biopsy Profiles with Mean *Normal* Profile for Different Size Probe Sets. N or T represent *Normal* or *Tumor* status, respectively. "r" is the PCC value of the probe set profile of the corresponding biopsy sample with the mean *Normal* profile (Group 1). Samples are ordered from highest CC to lowest.

[23] FIG. 4. Correlation of Biopsy Profiles with Mean of All *Normal* Profiles for Different Size Probe Sets. N or T represent *Normal* or *Tumor* status, respectively. "r" is the PCC value of the probe set profile of the corresponding biopsy sample with the mean profile of all *Normal* samples. Samples are ordered from highest CC to lowest.

MODES FOR CARRYING OUT THE INVENTION

- [24] The present invention provides methods to determine whether or not a sample from a patient including, but not limited to, biopsy tissue or blood, serum or some other body fluid from a patient, contains evidence of the presence of ovarian cancer in the patient.
- [25] This invention is based, in part, on the discovery of approximately 900 genes which are differentially expressed in tissue from ovarian cancer as compared to normal tissue. This methods of this invention comprise measuring the activities of the approximately 900 or fewer genes that are shown to be differently-expressed in ovarian cancer as compared to normal tissue.
- [26] In a preferred embodiment, only a small fraction of the 900 genes would be measured. These measurements, could, in various embodiments, be in the tissue itself from biopsies, etc., or in preferred embodiments could be performed as more indirect measurement of gene expression including, but not limited to, cRNA or polypeptide expression products in various tissues including blood or other body fluids.
- [27] The measurements, direct or indirect, of the rates of expression of two or more of these 900 genes from an individual whose tissues status was unknown could then be compared to the expression values for the same two or more genes measured in ovarian cancer tissue or normal tissue.
- [28] The "degree of similarity" (DOS) of the unknown two or more gene expression values to the cancer tissue versus normal tissue would then be determined.

١.,

[29] This DOS could be determined by any procedure that produces a result whose value is a known function of the DOS between the two groups of numbers, i.e., the measured gene expression values of the two or more genes in tissue from an individual whose ovarian cancer status is unknown and to be determined and the measured gene expression values for the same two or more genes from individuals whose tissue is known to contain ovarian cancer and from individuals whose tissue is known not to contain ovarian cancer.

- [30] As used herein the term "DOS" shall mean the extent to which the pattern of gene expression values are alike or numerically similar, as measured by a comparison of the values of gene expression determined by direct or indirect methods.
- [31] In a preferred embodiment, the DOS would be determined by a mathematical calculation resulting in a correlation coefficient (CC). In a particularly preferred embodiment, the Pearson Correlation Coefficient (PCC) would be determined but any other mathematical procedure that produces a result whose value is a known function of the DOS between the two groups of numbers could be used.
- [32] The value of the DOS (PCC), so calculated, can then be directly related to the probability that the tissue sample is from a patient who does or does not have ovarian cancer. That is to say, the higher the patients' DOS (CC or PCC) as compared to the gene expression values from a patient who does not have ovarian cancer or the higher the DOS (CC or PCC) as compared to the gene expression values from a patient who does have ovarian cancer then the greater the probability that the patient does not or does have ovarian cancer, respectively.
- [33] Thus, in a given case, the value of the DOS can be used to determine probabilities for the presence of ovarian cancer. Those of skill in the art will understand that the clinical circumstance for each patient will dictate the value of the DOS (PCC) to be used as a cutoff or to help make clinical decisions with regard to a specific patient. For example, in one embodiment, it is desirable to determine with optimal accuracy the number of a group of patients who have ovarian cancer. This means to minimize both false positives (No Ovarian Cancer misclassified as Ovarian Cancer) and at the same time to minimize false negatives (Ovarian Cancer misclassified as No Ovarian Cancer).
- In one preferred embodiment of the present invention, this would work as shown in FIG. 3, using the 28 predictor probe set (as described below) if the gene expression profile correlates with the mean *normal* (No Ovarian Cancer) profile with a $CC \le 0.920$ the tissue sample is 63 times more likely to contain ovarian cancer then if the CC > 0.920 [odds ratio (OR) = 63 with 95% confidence interval (CI): 3.3-1194.7].
- [35] To use this threshold in one embodiment of this invention, a patient whose gene expression profile when compared with the mean No Ovarian Cancer expression profile achieves a PCC of >0.920 would be classified in the No Ovarian Cancer group and would be presumed not to have ovarian cancer, while a patient whose expression profile was had a PCC of ≤0.920 would be classified in the Ovarian Cancer group and would be assumed to have ovarian cancer with a high probability.

- [36] In a further preferred embodiment, the PCC can be set to produce optional sensitivity. That is, to make the smallest possible number of false negatives (Ovarian Cancer misclassified as No Ovarian Cancer). Such an optimal sensitivity setting would be indicated in situations where the occurrence of ovarian cancer must be ruled out with the greatest certainty obtainable. In this embodiment, the threshold is determined by setting the PCC to >0.955. In this case, in the example given, using the 28 predictor probes shown in Table 9 (probe sets 1-28 shown in Table 9), 100% of patients with a CC of >0.955 as compared to the No Ovarian Cancer group did not have ovarian cancer and 100% of the patients whose CC were <0.870, as compared to the No Ovarian Cancer group, did have ovarian cancer.
- [37] As is shown in the example, one of skill in the art can choose a PCC that will either maximize sensitivity or maximize specificity or produce any desired ratio of false positives or false negatives. One of skill in the art can easily adjust their choice of PCC to the clinical situation to provide maximum benefit and safety to the patient.
- [38] Another aspect of the of the invention are methods to treat ovarian cancer. These methods consist of various efforts to suppress the excess gene expression of the genes that have been found to be up-regulated in ovarian cancer. These genes are shown in Table 8. Methods to decrease the excess expression of these gene would include, but not be limited to, use of antisense DNA, siRNA and methods to complex and deactivate the protein expression products of these over-expressed genes.

Methods of Measurement

- [39] In some embodiments of this invention, the gene expression of a selected group of the 900 genes is determined by measuring mRNA levels from tissue samples as described below.
- [40] In some embodiments, the gene expression can be measured more indirectly by measuring polypeptide gene expression products in tissues including, but not limited to, tumor and blood tissue.
- [41] In some embodiments, gene expression is measured by identifying the presence or amount of one or more proteins encoded by one of the genes listed in Table 9.
- [42] The present invention also provides systems for detecting two or more markers of interest, e.g., two or more markers from Table 2. For example, where it is determined that a finite set of particular markers provides relevant information, a detection system is provided that detects the finite set of markers. For example, as opposed to detecting all genes expressed in a tissue with a generic microarray, a defined microarray or other detection

technology is employed to detect the plurality, e.g., 28, 42, etc., of markers that define a biological condition, e.g., the presence or absence of ovarian cancer, etc.

- [43] The present invention is not limited by the method in which gene expression biomarkers are detected or measured. In some embodiments, mRNA, cDNA or protein is detected in tissue samples, e.g., biopsy samples. In other embodiments, mRNA, cDNA or protein is detected in bodily fluids, e.g., serum, plasma, urine or saliva. A preferred embodiment of the invention provides that the method of the invention is performed ex vivo. The present invention further provides kits for the detection of these relevant gene expression biomarkers.
- [44] In some preferred embodiments, protein or the polypeptide expression product is detected. Protein expression may be detected by any suitable method. In some embodiments, proteins are detected by binding of an antibody specific for the protein. For example, in some embodiments, antibody binding is detected using a suitable technique including, but not limited to, radioimmunoassay, enzyme-linked immunosorbant assay (ELISA), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, *in situ* immunoassays, e.g., using colloidal gold, enzyme or radioisotope labels, e.g., Western blots, precipitation reactions, agglutination assays, e.g., gel agglutination assays, hemagglutination assays, etc., complement fixation assays, immunofluorescence assays, protein A assays, immunoelectrophoresis assays and proteomic assays, such as the use of gel electrophoresis coupled to mass spectroscopy to identify multiple proteins in a sample.
- [45] In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- In some embodiments, an automated detection assay is utilized. Methods for the automation of immunoassays include, but are not limited to, those described in U.S. Patent Nos. 5,885,530; 4,981,785; 6,159,750; and 5,358,691, each of which is herein incorporated by reference. In some embodiments, the analysis and presentation of results is also automated. For example, in some embodiments, software that generates a diagnosis and/or prognosis based on the presence or absence of a series of proteins corresponding to markers is utilized.

- [47] In other embodiments, the immunoassay described in U.S. Patent Nos. 5,599,677 and 5,672,480, each of which is herein incorporated by reference, is utilized. In other embodiments, proteins are detected by immunohistochemistry. In still other embodiments, markers are detected at the level of cDNA or RNA.
- [48] As used herein, the term "gene expression biomarkers" shall mean any biologic marker which can indicate the rate or degree of gene expression of a specific gene including, but not limited to, mRNA, cDNA or the polypeptide expression product of the specific gene.
- [49] In some embodiments of the present invention, gene expression biomarkers are detected using a PCR-based assay. In yet other embodiments, reverse-transcriptase PCR (RT-PCR) is used to detect the expression of RNA. In RT-PCR, RNA is enzymatically converted to cDNA using a reverse-transcriptase enzyme. The cDNA is then used as a template for a PCR reaction. PCR products can be detected by any suitable method including, but not limited to, gel electrophoresis and staining with a DNA-specific stain or hybridization to a labeled probe.
- [50] In some embodiments, the quantitative RT-PCR with standardized mixtures of competitive templates method described in U.S. Patent Nos. 5,639,606; 5,643, 765; and 5,876,978, each of which is herein incorporated by reference, is utilized.
- [51] In preferred embodiments of the present invention, gene expression biomarkers are detected using a hybridization assay. In a hybridization assay, the presence or absence of a marker is determined based on the ability of the nucleic acid from the sample to hybridize to a complementary nucleic acid molecule, e.g., an oligonucleotide probe. A variety of hybridization assays are available.
- In some embodiments, hybridization of a probe to the sequence of interest is detected directly by visualizing a bound probe, e.g., a Northern or Southern assay. See, e.g., Ausabel et al., eds., *Current Protocols in Molecular Biology*, John Wiley & Sons, NY (1991). In these assays, DNA (Southern) or RNA (Northern) is isolated. The DNA or RNA is then cleaved with a series of restriction enzymes that cleave infrequently in the genome and not near any of the markers being assayed. The DNA or RNA is then separated, e.g., on an agarose gel, and transferred to a membrane. A labeled probe or probes, e.g., by incorporating a radionucleotide, is allowed to contact the membrane under low-, medium- or high-stringency conditions. Unbound probe is removed and the presence of binding is detected by visualizing the labeled probe.
- [53] In some embodiments, the DNA chip assay is a GeneChip (Affymetrix, Santa Clara, CA). See, e.g., U.S. Patent Nos. 6,045,996; 5,925,525; and 5,858,659, each of which is

herein incorporated by reference. The GeneChip technology uses miniaturized, high-density arrays of oligonucleotide probes affixed to a "chip". Probe arrays are manufactured by Affymetrix's light-directed chemical synthesis process, which combines solid-phase chemical synthesis with photolithographic fabrication techniques employed in the semiconductor industry. Using a series of photolithographic masks to define chip exposure sites, followed by specific chemical synthesis steps, the process constructs high-density arrays of oligonucleotides, with each probe in a predefined position in the array. Multiple probe arrays are synthesized simultaneously on a large glass wafer. The wafers are then diced, and individual probe arrays are packaged in injection-molded plastic cartridges, which protect them from the environment and serve as chambers for hybridization.

[54] The nucleic acid to be analyzed is isolated, amplified by PCR and labeled with a fluorescent reporter group. The labeled DNA is then incubated with the array using a fluidics station. The array is then inserted into the scanner, where patterns of hybridization are detected. The hybridization data are collected as light emitted from the fluorescent reporter groups already incorporated into the target, which is bound to the probe array. Probes that perfectly match the target generally produce stronger signals than those that have mismatches. Since the sequence and position of each probe on the array are known, by complementary, the identity of the target nucleic acid applied to the probe array can be determined.

[55] In other embodiments, a DNA microchip containing electronically captured probes (Nanogen, San Diego, CA) is utilized. See, e.g., U.S. Patent Nos. 6,017,696; 6,068,818; and 6,051,380, each of which are herein incorporated by reference. Through the use of microelectronics, Nanogen's technology enables the active movement and concentration of charged molecules to and from designated test sites on its semiconductor microchip. DNA capture probes unique to a given gene expression biomarkers are electronically placed at, or "addressed" to, specific sites on the microchip. Since nucleic acid molecules have a strong negative charge, they can be electronically moved to an area of positive charge.

[56] In still further embodiments, an array technology based upon the segregation of fluids on a flat surface (chip) by differences in surface tension (ProtoGene, Palo Alto, CA) is utilized. See, e.g., U.S. Patent Nos. 6,001,311; 5,985,551; and 5,474,796, each of which is herein incorporated by reference. Protogene's technology is based on the fact that fluids can be segregated on a flat surface by differences in surface tension that have been imparted by chemical coatings. Once so segregated, oligonucleotide probes are synthesized directly on the chip by ink-jet printing of reagents.

In yet other embodiments, a "bead array" is used for the detection of gene expression biomarkers (Illumina, San Diego, CA). See, e.g., PCT Publications WO 99/67641 and WO 00/39587, each of which is herein incorporated by reference. Illumina uses a BEAD ARRAY technology that combines fiber optic bundles and beads that self-assemble into an array. Each fiber optic bundle contains thousands to millions of individual fibers depending on the diameter of the bundle. The beads are coated with an oligonucleotide specific for the detection of a given marker. Batches of beads are combined to form a pool specific to the array. To perform an assay, the BEAD ARRAY is contacted with a prepared sample. Hybridization is detected using any suitable method.

In some preferred embodiments of the present invention, hybridization is detected [58] by enzymatic cleavage of specific structures, e.g., INVADER™ assay, Third Wave Technologies. See, e.g., U.S. Patent Nos. 5,846,717, 6,090, 543; 6,001,567; 5,985,557; and 5,994,069, each of which is herein incorporated by reference. In some embodiments, hybridization of a bound probe is detected using a TaqMan assay (PE Biosystems, Foster City, CA). See, e.g., U.S. Patent Nos. 5,962,233 and 5,538,848, each of which is herein incorporated by reference. The assay is performed during a PCR reaction. The TaqMan assay exploits the 5'-3' exonuclease activity of DNA polymerases, such as AMPLITAQ DNA polymerase. A probe, specific for a given marker, is included in the PCR reaction. The probe consists of an oligonucleotide with a 5'-reporter dye, e.g., a fluorescent dye and a 3'-quencher dye. During PCR, if the probe is bound to its target, the 5'-3' nucleolytic activity of the AMPLITAQ polymerase cleaves the probe between the reporter and the quencher dye. The separation of the reporter dye from the quencher dye results in an increase of fluorescence. The signal accumulates with each cycle of PCR and can be monitored with a fluorimeter.

[59] Additional detection assays that are produced and utilized using the systems and methods of the present invention include, but are not limited to, enzyme mismatch cleavage methods, e.g., Variagenics (see U.S. Patent Nos. 6,110,684; 5,958,692; and 5,851,770, herein incorporated by reference in their entireties); branched hybridization methods, e.g., Chiron (see U.S. Patent Nos. 5,849,481; 5,710,264; 5,124,246; and 5,624,802, herein incorporated by reference in their entireties); rolling circle replication (see, e.g., U.S. Patent Nos. 6,210,884 and 6,183,960, herein incorporated by reference in their entireties); NASBA (see, e.g., U.S. Patent No. 5,409,818, herein incorporated by reference in its entirety); molecular beacon technology (see, e.g., U.S. Patent No. 6,150,097, herein incorporated by reference in its entirety); E-sensor technology (see Motorola, U.S. Patent Nos. 6,248,229;

6,221,583; 6,013,170; and 6,063,573, herein incorporated by reference in their entireties); cycling probe technology (see, e.g., U.S. Patent Nos. 5,403,711; 5,011,769; and 5,660,988, herein incorporated by reference in their entireties); ligase chain reaction [see Barnay, *Proc. Natl. Acad. Sci. USA*, Vol. 88, pp. 189-93 (1991)]; and sandwich hybridization methods (see, e.g., U.S. Patent No. 5,288,609, herein incorporated by reference in its entirety). [60] In some embodiments, mass spectroscopy is used to detect gene expression biomarkers. For example, in some embodiments, a MASSARRAY™ system (Sequenom, San Diego, CA) is used to detect gene expression biomarkers. See, e.g., U.S. Patent Nos. 6,043,031; 5,777,324; and 5,605,798, each of which is herein incorporated by reference.

[61] In some embodiments, the present invention provides kits for the identification, characterization and quantitation of gene expression biomarkers. In some embodiments, the kits contain antibodies specific for gene expression biomarkers, in addition to detection reagents and buffers. In other embodiments, the kits contain reagents specific for the detection of nucleic acid, e.g., oligonucleotide probes or primers. In preferred embodiments, the kits contain all of the components necessary to perform a detection assay, including all controls, directions for performing assays and any necessary software for analysis and presentation of results. In some embodiments, the kits contain instructions including a statement of intended use as required by the Environmental Protection Agency or U.S. Food and Drug Administration (FDA) for the labeling of *in vitro* diagnostic assays and/or of pharmaceutical or food products.

[62] Comparison of the organism's gene expression pattern, with the result expressed in Table 9, would indicate whether the organism has a gene expression profile which may indicate that the organism does or does not contain ovarian cancer.

[63] In another embodiment, the present invention is a method of screening a test compound for the ability to inhibit, retard, reverse or mimic the gene expression changes characteristic of ovarian cancer. In a typical example of this embodiment, one would first treat a test mammal known to have ovarian cancer with a test compound and then analyze a representative tissue of the mammal for the level of expression of the genes or sequences which change in expression in response to ovarian cancer. Preferably, the tissue is biopsy material from the tumor or, in a preferred embodiment, an easily obtainable tissue, such as blood or serum.

[64] One then compares the analysis of the tissue with a control mammal known to have ovarian cancer but not given the test compound and thereby identifies test compounds that

are capable of modifying the expression of the gene expression biomarkers sequences in the mammalian samples such that the expression is altered toward the No Ovarian Cancer pattern.

[65] In another embodiment of the present invention, one would use the sequences of the genes disclosed in Table 2 for a therapy for mimicking the No Ovarian Cancer state. In general, one would try to amplify gene expression for the genes identified herein as underexpressed in ovarian cancer and decrease the expression of genes identified herein as over-expressed in ovarian cancer. For example, one might try to decrease the expression of genes or sequences identified in Table 2 as increased or increase the expression of genes found to be decreased in ovarian cancer.

[66] Methods of increasing and decreasing expression would be known to one of skill in the art. Examples for supplementation of expression would include supplying the organism with additional copies of the gene. A preferred example for decreasing expression would include RNA antisense technologies or pharmaceutical intervention. The genes disclosed in Table 2 would be appropriate drug development targets. One would use the information presented in the present application for drug development by using currently existing, or by developing, pharmaceutical compounds that either mimic or inhibit the activity of the genes listed in Table 2, or the proteins encoded by these genes. Therefore, the gene expression biomarkers or genes disclosed herein represent targets for pharmaceutical development and gene therapy or RNA antisense therapy with the goal of suppressing the changes characteristic of ovarian cancer at the molecular level. These gene expression alterations may also play a role in understanding the various mechanisms that underlie ovarian cancer. Additionally, these genes represent biomarkers of ovarian cancer that can be used for diagnostic purposes.

[67] The present invention is not limited by the form of the expression profile. In some embodiments, the expression profile is maintained in computer software. In some embodiments, the expression profile is written material. The present invention is not limited by the number of markers provided or displayed in an expression profile. For example, the expression profile may comprise two or more markers found in Table 2, indicating a biological status of a sample.

[68] The present invention further provides databases comprising expression information, e.g., expression profiles comprising one or more markers from Table 2 from one or more samples. In some embodiments, the databases find use in data analysis including, but not limited to, comparison of markers to one or more public or private information

databases, e.g., OMIM, GenBank, BLAST, Molecular Modeling Databases, Medline, genome databases, etc. In some such embodiments, an automated process is carried out to automatically associate information obtained from data obtained using the methods of the present invention to information in one or more of public or private databases. Associations find use, e.g., in making expression correlations to phenotypes, e.g., disease states.

[69] We also understand the present invention to be extended to mammalian homologues of the mouse genes listed in Table 9. One of skill in the art could easily investigate homologues in other mammalian species by identifying particular genes with sufficiently high homology to the genes listed in Table 9. By "high homology" we mean that the homology is at least 50% overall (within the entire gene or protein) either at the nucleotide or amino acid level.

List of Abbreviations

Absent	NCBI	National Center for Biotechnology
Average Difference (overall intensity		Information
of probe set on Affymetrix array)	Neg	Negative
Cooperative Human Tissue Network	nM	Nanometer
Confidence Interval	OMIM	Online Mendelian Inheritance in Man
Federation of Gynecology and	OR	Odds Ratio
	ORF	Open Reading Frame
	P	Present
GNF Genomics Institute of the Novartis Research Foundation mg Milligram	PG	Pharmacogenetics
	Pos	Positive
	QC	Quality Control
	RNA	Ribonucleic Acid
	Average Difference (overall intensity of probe set on Affymetrix array) Cooperative Human Tissue Network Confidence Interval Federation of Gynecology and Obstetrics Glyceraldehyde 3-phosphate dehydrogenase Genomics Institute of the Novartis Research Foundation	Average Difference (overall intensity of probe set on Affymetrix array) Cooperative Human Tissue Network Confidence Interval Federation of Gynecology and Obstetrics Glyceraldehyde 3-phosphate dehydrogenase Genomics Institute of the Novartis Research Foundation Milligram Neg Neg OMIM OR ORF P P P P P P ORF P ORF P ORF P ORF ORF

EXAMPLE 1

Preferred Methods

[70] To identify genes involved in the development and progression of ovarian tumors, we compared the gene expression profiles of a series of *Normal* and *Tumor* ovarian biopsies. Gene expression data for more than 12,000 genes were generated from each sample. Of the 900 probe sets that we observed to be most differentially-expressed between the *Normal* and cancerous ovarian biopsies, 98% were down-regulated in the *Tumor* biopsies. Using 8 *Normal* and 10 *Tumor* samples, we identified a minimum number of probe sets (28) that could be used to classify biopsies as *Normal* or *Tumor*. This finding was validated on a second set of biopsies (4 *Normal* and 14 *Tumor*) previously profiled by another laboratory. A mean *Normal* ovarian profile was established that could be used as a reference to compare

other ovarian biopsies. The identification of the most differentially-expressed genes between *Normal* and *Tumor* ovarian biopsies may provide new insight into the molecular mechanisms of ovarian tumor development and progression. Some of the genes identified in this study are known to be involved in ovarian cancer, but a large proportion represents novel candidates for drug targets and molecular biomarkers to diagnose or monitor disease and treatment.

Materials and Methods

Samples

- [71] Flash-frozen ovarian biopsies were obtained from Asterand (Detroit, MI), and consisted of 10 *Tumor* samples and 10 adjacent *Normal* tissues. Total RNA was also purchased for 4 additional samples from Ambion (Austin, TX) and Stratagene (La Jolla, CA). Gene expression profiles from samples used in the validation step had been previously generated at GNF and reported. See Welsh et al. (2001), *supra*.
- [72] Most of the tumors analyzed were malignant surface epithelial serous tumors, e.g., papillary cystcarcinoma, papillary cystadenocarcinoma or papillary cystcarcinoma; others included a mucinous cyst carcinoma, an endometrioid adenocarcinoma and a mature teratoma.
- [73] A summary of sample information is shown in Table 1 below.

Table 1. Ovarian Samples Used for Gene Expression Analysis

Sample code	Status	Comment/Tumor Type	Tumor Cell (%)	Stage	0
p2437	Normai	Normal margin to cystadenoma	Joen (78)	Stage	Source
p2709	Normal	No pathology data		 	Stratagen
p5720	Normal	, , , , , , , , , , , , , , , , , , , ,			Ambion
p5721 Tumor	Adenocarcinoma			Ambion	
p6166				Not Available	Ambion
	Tumor	Serous cyst carcinoma	70	111	Asterand
p6167	Normal				Asterand
p6168	Tumor	Serous cyst carcinoma	50	<u> </u>	
p6169	Normal		 		Asterand
p6170	Tumor	Serous cyst carcinoma		<u>-</u>	Asterand
p6171	Normal	- Syst Gal. Gillollid	80	IC	Asterand
p6172	Tumor	Endometrioid adenocarcinoma			Asterand
p6173	Normal	and officer loid adel locarcinoma	50	iV	Asterand
p6174	 	B.A			Asterand
p6175	Tumor Normal	Mucinous cyst carcinoma	40		Asterand
porro indimai				Asterand	

Sample code	Status	Comment/Tumor Type	Tumor Cell (%)	Stage	Source
p6176	Tumor	Papillary serous cyst carcinoma	80	III	
p6177	Normal			- "-	Asterand
p6178	Tumor	Serous cyst carcinoma	70	Not Available	Asterand Asterand
p6179	Normal			1 11 4114	Asterand
p6180	Tumor	Serous cyst carcinoma	70	Not Available	Asterand
p6181	Normal		1		Asterand
p6182	Tumor	Serous cyst carcinoma	70	IIIC	Asterand
p6183	Normal				Asterand
p6184	Tumor	Mature teratoma	70	111	Asterand
p6185	Normal				Asterand
OVR1T	Tumor	Adenocarcinoma, serous papillary	40	IIIC	CHTN
OVR2T	Tumor	Adenocarcinoma, serous papillary	60	IIIC	CHTN
OVR5T	Tumor	Adenocarcinoma, serous papillary	80	IIIB	CHTN
OVR8T	Tumor	Adenocarcinoma, serous papillary	80	IVA	CHTN
OVR10T	Tumor	Adenocarcinoma, serous papillary	40	IVA	
OVR11T	Tumor	Adenocarcinoma, serous papillary	40	IIIC	CHTN
OVR12T	Tumor	Adenocarcinoma, serous papillary	50	IIIC	CHTN
OVR13T	Tumor	Adenocarcinoma, serous papillary	90	IIIC	CHTN
OVR16T	Tumor	Adenocarcinoma, serous papillary	40	IIIC	
OVR19T	Tumor	Adenocarcinoma, serous papillary	30	IIIC	CHTN
OVR22T	Tumor	Adenocarcinoma, serous papillary	40	IIIC	CHTN
OVR26T	Tumor	Adenocarcinoma, serous papillary	60	IIIC	CHTN
OVR27T	Tumor	Adenocarcinoma, serous papillary	40	ilic	CHTN
OVR28T	Tumor	Adenocarcinoma, serous papillary	80	IIIC	CHTN
OVR102N	Normal	y consumption of the second paper of the secon	- 00	IIIC	CHTN BioChain
OVR278EN	Normal	Enriched for epithelium			Institute BioChain Institute
OVR278SN	Normal	Enriched for stroma			BioChain Institute
HUOVR	Normal	Normal and Tumor adjacent tissue) obtains			BioChain Institute

Note: Paired samples (Normal and Tumor adjacent tissue) obtained from the same patient are boxed together. Stages of ovarian cancers are indicated using the FIGO staging system.

RNA Expression Profiling

[74] Total RNA was extracted from each biopsy and processed as previously described. RNA extraction techniques are well-known to those of skill in the art. All samples profiled were processed using the Affymetrix GENECHIP™ system as recommended by Affymetrix

(GeneChip Expression Analysis Technical Manual, rev. 1, July 2001). Concentration and total amount of RNA and cRNA were estimated by measuring the samples at 260 nM and 280 nM wavelengths using a Beckman-Coulter DU 650 spectrophotometer after a 1:50 dilution of the samples (see Table 2). The type of array used for this study was the Human Genome U95Av2 (http://www.affymetrix.com/products/arrays/specific/hgu95.affx).

Analytical Strategy

- Analysis of the expression profiles was performed in several steps described below. [75] Selection of microarray data of highest quality
- We used for our analysis only microarrays for which the scaling factor was lower [76] than 6, and where more than 30% of the probe sets were called "Present" by the Affymetrix MAS 4.0 algorithm.

Selection of a subset of probe sets

- Expression data were directly imported into the GENE SPRING® program (Silicon [77] Genetics, Redwood City, CA) from the database. Genes expressed in only a few samples were eliminated; out of the 12,627 probe sets on the microarray, only those with an AvgDiff of at least 100 in 10% of the samples or more were used for further analysis. A clustering experiment was performed to visualize the different gene expression profiles of Normal and Tumor biopsies.
- Further filtering was accomplished by eliminating probe sets of low quality or very [78] low intensity signals in both groups of samples (Group 1: Normal biopsies; Group 2: Tumor biopsies). Probe sets not called "Present" (P) in at least 75% of the samples in one of the two groups were not used for further analysis. In addition, AvgDiff values lower than 20 were all converted to a value of 20.

Focus on the most differentially-expressed genes

- Selection of genes differentially-expressed between the two groups of samples was [79] done in 2 steps:
 - 1. The AvgDiff of each probe set was compared between the 2 groups of samples by a non-parametric one-way ANOVA test, using SAS 8.2.
 - 2. The AvgDiff of each probe sets with p<0.05 was then correlated with the group of samples (Normal or Tumor). Probe sets were ranked from highest absolute PCC to lowest (calculated in Microsoft Excel).

Re-classification of samples

- We used the "leave-one-out" analytical strategy previously described to determine [08] the optimal number of probe sets that distinguished an ovarian tumor from a normal ovarian tissue. See van't Veer et al. (2002), supra.
- For every sample left-out, we determined the average AvgDiff of each probe set in [81] each group of samples (Groups 1 and 2). PCCs between the expression profile of the leftout sample and the average profile of each group were calculated for each probe set. The effectiveness of each probe set in distinguishing a tumor from a normal ovarian tissue was evaluated by re-classifying each sample as Normal or Tumor based on the higher of the two CCs.
- We determined the number of misclassified samples when using increasingly larger [82] sets of genes (starting with 5). As used herein, a "false Neg" is defined as a Tumor incorrectly classified as a Normal ovary tissue, and inversely, a "false Pos" is defined as a Normal tissue incorrectly classified as a Tumor.
- The probe sets that most-effectively distinguished tumor from normal ovarian tissue [83] were then tested in their ability to classify gene expression profiles of a different set of ovarian tissues (Normal and Tumor) generated at GNF (see Table 1).

Statistical determination of OR

Using the desired threshold correlation value, a 2 x 2 table was constructed [84] indicating the number of biopsies correctly and incorrectly identified as Normal or Tumor. ORs, along with 95% Cls, were calculated using SAS version 8.2. Statistical significance was determined using a Fisher's exact test with p-value cut-off of 0.05.

<u>Genes</u>

The link between a probe set name and a GenBank Accession Number was [85] provided by Affymetrix, together with a short gene description. We complemented and updated this description by a search of the NCBI databases, mainly LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink/index.html), OMIM (http://www.ncbi.nlm.nih.gov/Omim/searchomim.html) and PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi).

Results 8 4

RNA Expression Profiling

Eighteen out of the 20 biopsies yielded more than the 5 mg of purified total RNA [86] necessary to process the samples further (see Table 2). Sample p6175, from which less than 1 mg of purified total RNA was obtained, was the smallest sample (38 mg). The quality of the RNA was assessed by electrophoresis on a 1% agarose gel. The absence of both 28S and 18S ribosomal RNA bands was observed for samples p6169 and p6180, indicating some RNA degradation. For microarray hybridization, a maximum of 15 mg of cRNA was used when available, but no less than 12 mg. Enough cRNA was available for 21 samples (see Table 2).

Quality Assessment

[87] The data from the 21 arrays hybridized in PG (this study) and from the 18 hybridized previously at GNF were checked for quality (see Table 3). See Welsh et al. (2001), *supra*. All but 3 (p6169, p6180 and p6185) passed our criteria of a scaling factor lower than 6, with more than 30 % of probe sets called "P" (see Table 3). The 36 remaining expression profiles were separated into 2 sets: a test set of 18 profiles generated in PG consisting of data from 8 *Normal* and 10 *Tumor* biopsies, and a validation set of 18 profiles previously generated at GNF from 4 *Normal* and 14 *Tumor* biopsies. See Welsh et al. (2001), *supra*.

<u>Analysis</u>

Clustering Analysis

[88] Expression data of the 18 samples of the test set were imported into the GENESPRING® software. Out of the 12,627 probe sets on the Affymetrix U95A microarray, 2,174 had an AvgDiff of at least 100 in 2 or more of these 18 samples and were used for clustering analysis. The resulting clustering tree of samples and probe sets is shown in Fig. 1. Interestingly, the dendogram of experiments contains two main branches corresponding to the two groups of samples, *Normal* (top) and *Tumor* (bottom) biopsies. The vast majority (>90%) of genes examined have an overall higher expression in the *Normal* ovarian tissues. The dendogram of probe sets shows only a small cluster of genes with higher expression in the *Tumor* tissues (left part).

Selection of the most differentially-expressed genes

- [89] Out of the 2,174 probe sets, 217 were excluded from further analysis because they provided large number of "A" or "marginal" calls (>75% in both groups).
- [90] Data for the remaining 1,957 probe sets were exported into SAS version 8.2 for non-parametric one-way ANOVA testing between the *Normal* and the *Tumor* groups. A total of 900 probe sets had AvgDiff values significantly different between the two groups (p<0.05). These genes are listed in Table 9.

- [91] The AvgDiff of these 900 probe sets was then correlated with the two groups of samples (Group 1: *Normal*; Group 2: *Tumor*). The absolute PCC (R)-values ranged from 0.042-0.877, with 694 probe sets (77%) with a R-value higher than 0.5. The AvgDiff data of the 900 probe sets ranked from highest absolute PCC to lowest are available in Appendix 1. *Leave-one-out method and re-classification of samples*
- [92] The "leave-one-out" analytical strategy previously described was applied to the 18 ovarian samples for the expression of the 900 selected probe sets. See van't Veer et al. (2002), *supra*.
- [93] The number of misclassified samples when using the first 5 probe sets was 6 (2 false Pos and 4 false Neg). Increasingly large sets of genes were used. The number of misclassifications varied between 2 and 7, with the minimum achieved when using the first 28 probe sets (Fig. 1). These first 28 probe sets displayed only one false Pos and one false Neg. Interestingly, perfect classification of *Normal* biopsies (0 false Pos) was achieved with the first 32 probe sets (which also detected 2 false Neg), while perfect classification of *Tumor* biopsies (0 false Neg) was never seen.

Optimal classification set and correlation threshold values

We determined the mean Normal (No Tumor) biopsy profile for the classification [94] probe sets, to be used as a reference for analysis of biopsies of unknown or questionable status; we expected that tumor heterogeneity may not allow the determination of a reference Tumor profile. We examined the classification value of the first 28 probe sets, by comparing their expression for each of the 18 samples to the mean Normal profile calculated using all 8 Normal biopsy profiles. Samples were then ranked by correlation values from highest to lowest and error rates were determined as a function of where the threshold correlation was drawn. The results are displayed in Fig. 2. The minimum number of incorrectly assigned samples was 2 [1 false Pos (p6177) and 1 false Neg (p6168)]. The corresponding CC value was between 0.920 and 0.921. The OR and Fisher's exact test were performed based on the number of samples correctly and incorrectly predicted to be Normal or Tumor. The difference between the observed and expected biopsy status was significant: OR = 63; 95% CI: 3.3-1194.7, p=0.0029. The OR indicates that an ovarian biopsy of the test set is nearly 63 times more likely to be from an ovarian tumor if its expression profile of the 28 predictor probe sets correlates with the mean Normal profile with a CC ≤0.920 (see Table 4). In our test set, 100% of profiles with a CC >0.955 correspond to Normal biopsies and 100% of profiles with a CC <0.870 correspond to *Tumor* biopsies (see Fig. 3).

Validation of the mean Normal profile

- [95] The 28 probe sets selected by the leave-one-out method allowed us to distinguish *Normal* from *Tumor* ovarian biopsies in our series of 18 ovarian samples. We then tested if independent ovarian biopsies could be correctly classified by comparing their expression profile to the same mean *Normal* profile of the 28 classification probe sets.
- [96] Fig. 3 summarizes the classification of all ovarian biopsies based on the correlation of 28 probe sets. Remarkably, the profiles of the *Normal* and *Tumor* samples of the validation set were clearly separated from each other (see Fig. 3). As in the test set, 100% of profiles with a CC <0.870 correspond to *Tumor* biopsies. Interestingly, *Normal* profiles had lower CCs than in the test set, and the threshold correlation value that best separate *Normal* and *Tumor* biopsies in the validation set lies between 0.762 and 0.876.
- [97] We performed a non-parametric t-test between the average *Normal* profile of the test set and the average *Normal* profile of the validation set. Similarly, we compared the average *Tumor* profiles of both sets. Since no statistical difference was observed (p=0.373 and p=0.110, respectively), we combined both sets to increase the classification value of the 28 probe sets. We compared the expression for all the samples to the mean *Normal* profile calculated using all 12 *Normal* biopsy profiles (8 from the test set and 4 from the validation test). Results confirm that correlation values provide highly-significant separation of the *Normal* biopsy from the *Tumor* biopsy profiles (see Fig. 4 and Table 5). As seen previously, the profile of *Tumor* sample (p6168) had a high correlation with the average *Normal* profile. *Correlation between individual gene expression and biopsy status*
- [98] The selection of probe sets for the classification of ovarian biopsies was originally done based on the profile of the 18 test samples. The good separation of all 36 *Normal* and *Tumor* samples (see Fig. 4) with the same probe sets suggested that the genes selected by our method are differentially-expressed in many other ovarian tumors. However, because of tumor heterogeneity, the difference in individual gene expression is likely to vary with the samples analyzed. We evaluated to what extent the 900 probe sets differentially-expressed in the 18 test samples, were also differentially-expressed when all 36 biopsies were analyzed.
- [99] Probe sets were ranked from highest absolute PCC to lowest, first using the 18 samples from the test set, and then with all 36 samples from both the test set and the validation set. From the 900 probe sets selected, 694 and 473 had an absolute CC higher than 0.5 with the 18 and 36 samples, respectively; 412 probe sets had a coefficient higher than 0.5 in both cases. Interestingly, from the 28 probe sets originally selected for the biopsy

classification, 19 ranked in the top 100; the other 9 probe sets had correlation values ranging from 0.359-0.703.

Genes differentially-expressed between Normal and Tumor ovarian biopsies Genes up-regulated in ovarian tumors

[100] Among the genes differentially expressed between *Normal* and *Tumor* ovarian biopsies, we detected a few genes already known to be up-regulated in ovarian tumors, such as the genes coding for Claudin 4, topoisomerase II alpha, Kallikrein 8, osteopontin, as well as potential new markers of ovarian cancers (see Table 6).

Claudin 4, a component of tight junctions, has been shown to be up-regulated in [101] ovarian tumors together with another member of this family of transmembrane receptors, Claudin 3. See Hough et al., Cancer Res., Vol. 60, No. 22, pp. 6281-6287 (2000). Costa and colleagues have reported that levels of topoisomerase II alpha correlate with poor prognosis of ovarian surface epithelial neoplasms. Kallikrein 8 has been detected by immunohistochemistry in carcinoma but not Normal ovarian tissue and was suggested as a prognostic marker of ovarian cancer. See Underwood et al., Cancer Res., Vol. 59, No. 17, pp. 4435-4439 (1999); and Magkiara et al., Clin. Cancer Res., Vol. 7, No. 4, pp. 806-811 (2001). Osteopontin has also been previously proposed as a diagnostic biomarker for ovarian cancer. See Kim et al., JAMA, Vol. 287, No. 13, pp. 1671-1679 (2002). Another gene, C20ORF1, has been shown to be expressed in lung carcinoma cell lines but not in normal lung tissues. See Manda et al., Genomics, Vol. 61, No. 1, pp. 5-14 (1999). Other genes that may have be over-expressed in only some of the biopsies due to the tumor type, the disease stage or other tumor specificity, were not detected by our analytical method. Genes down-regulated in ovarian tumors

[102] We further examined a large number of genes down-regulated in the ovarian tumor biopsies profiled. For analysis purpose, we classified the 28 probe sets and the top 100 down-regulated genes in 8 categories based on the known or suspected function of their product (see Tables 7 and 8). Interestingly, the function of nearly 30% of these 100 genes is still unknown. Most of the other genes play a role in, or are already suspected to be involved in transcription regulation (16 genes), in cell cycle regulation, growth differentiation, cell death or tumor suppression (12 genes) and signal transduction (6 genes). This list includes several potential tumor suppressors: the gene coding for the transforming growth factor beta receptor-like gene (PDGFRL),

the suppression of tumorigenicity (ST13) gene, a gene coding for a reversion-inducing-cysteine-rich protein with kazal motif (RECK) and the paternally expressed 3 (PEG3) gene.

[103] This observation suggests that the genes with still unidentified function are likely to be involved in cell cycle regulation, growth differentiation, signal transduction or transcription regulation. Some of them may act as tumor suppressors. Down-regulation in ovarian tumor or cell lines had been reported for just one of these genes, IGFBP5 which in our study was detected with 2 separate probe sets (see Table 8). See Welsh et al. (2001), *supra*.

[104] Only 6 genes coding for proteins of the extracellular matrix were noticed including laminin alpha 2 (LAM α 2). Yang and colleagues have reported that transient loss of LAM α 2 in the basement membrane of the pre-malignant epithelium and subsequent inactivation of Dab2 are common early event associated with tumorigenicity of the ovarian surface epithelium. See Yang et al., *Cancer*, Vol. 94, No. 9, pp. 2380-2392 (2002). Interestingly, down-regulation of Dab2 (probe set 479_at) was also observed in our study with a CC value of 0.49.

[105] Taken together, these results indicated that most of the genes with a statistically significant decreased expression in the ovarian biopsies, are indeed involved in the development or progression of the tumors rather than detected because of a change in cell population or tissue organization, e.g., loss of connective tissue and fat cells.

Discussion

[106] The filtering and analytical methods that we used here, provided a list of genes differentially expressed between *Normal* and *Tumor* ovarian samples. We showed that a small subset (28-42 probe sets) is sufficient to accurately classify ovarian biopsies as *Normal* or *Tumor* based on their expression profiles. Validation of this expression signature was done on different biopsies profiled in an independent laboratory, and confirms that the difference in expression observed between the *Normal* or *Tumor* samples reflects a biological process rather than of a laboratory or analytical error.

[107] Several factors not examined here that may affect the detection of differentially expressed genes include the number of samples in the test set, and the heterogeneity of the samples studied. Indeed, it is expected that biopsies and, in particular, *Tumor* biopsies, have a substantial level of heterogeneity: tumor type, grade, percentage of tumor cells, presence of connective and fat tissues, etc. We studied different types of ovarian tumors of various grades (see Table 1) to search for genes involved in common pathways of tumor development and progression, rather than genes involved more specifically in certain types

of tumors as previously reported. See Ono et al. (2000), *supra*; and Welsh et al. (2001), *supra*.

Our clustering analysis of the biopsy expression profiles, revealed that the vast [108] majority of genes that differentiate Normal and Tumor samples were down-regulated in the tumors. Indeed, when the 900 most differentially-expressed probes were ranked based on the CC between their expression in all 36 biopsies and the Normal and Tumor status, the top 220 probes (R from 0.865-0.644) were down-regulated in the tumors. We examined more closely the function of the top 100 genes (R from 0.865-0.72), and the top 10 genes overexpressed in the tumors (R from 0.643-0.443). Among the most differentially-expressed genes, we detected several genes already known to be up-regulated in ovarian tumors, as well as potential new markers of ovarian cancers. However, most of the genes were downregulated, most likely because we studied various types of late stage tumors of different origins, different grades and different tumor cell content. The involvement of many of these genes in transcription regulation, in cell cycle regulation, growth differentiation, signal transduction, cell death or tumor suppression underscores the need to further evaluate their role in ovarian cancer. The list of other genes of still unknown function points to novel potential players in tumor development and progression.

Methods of Modifying RNA Abundances or Activities

<u>Ribozymes</u>

[109] Methods of modifying RNA abundances and activities currently fall within three classes: ribozymes, antisense species and RNA aptamers. See Good et al., *Gene Ther.*, Vol. 4, No. 1, pp. 45-54 (1997). Controllable application or exposure of a cell to these entities permits controllable perturbation of RNA abundances.

[110] Ribozymes are RNAs which are capable of catalyzing RNA cleavage reactions. See Cech, *Science*, Vol. 236, pp. 1532-1539 (1987); PCT International Publication WO 90/11364 (1990); Sarver et al., *Science*, Vol. 247, pp. 1222-1225 (1990). "Hairpin" and "hammerhead" RNA ribozymes can be designed to specifically cleave a particular target mRNA. Rules have been established for the design of short RNA molecules with ribozyme activity, which are capable of cleaving other RNA molecules in a highly sequence specific way and can be targeted to virtually all kinds of RNA. See Haseloff et al., *Nature*, Vol. 334, pp. 585-591 (1988); Koizumi et al., *FEBS Lett.*, Vol. 228, pp. 228-230 (1988); and Koizumi et al., *FEBS Lett.*, Vol. 239, pp. 285-288 (1988). Ribozyme methods involve exposing a cell to, inducing expression in a cell, etc. of such small RNA ribozyme molecules. See Grassi and

Marini, *Annals of Med.*, Vol. 28, No. 6, pp. 499-510 (1996); and Gibson, *Cancer Meta. Rev.*, Vol. 15, pp. 287-299 (1996).

Ribozymes can be routinely expressed in vivo in sufficient number to be catalytically [111] effective in cleaving mRNA, and thereby modifying mRNA abundances in a cell. See Cotton et al., EMBO J., Vol. 8, pp. 3861-3866 (1989). In particular, a ribozyme coding DNA sequence, designed according to the previous rules and synthesized, e.g., by standard phosphoramidite chemistry, can be ligated into a restriction enzyme site in the anticodon stem and loop of a gene encoding a tRNA, which can then be transformed into and expressed in a cell of interest by methods routine in the art. Preferably, an inducible promoter, e.g., a glucocorticoid or a tetracycline esponse element, is also introduced into this construct so that ribozyme expression can be selectively controlled. For saturating use, a highly and constituently active promoter can be used. tDNA genes, i.e., genes encoding tRNAs, are useful in this application because of their small size, high rate of transcription and ubiquitous expression in different kinds of tissues. Therefore, ribozymes can be routinely designed to cleave virtually any mRNA sequence, and a cell can be routinely transformed with DNA coding for such ribozyme sequences such that a controllable and catalytically effective amount of the ribozyme is expressed. Accordingly, the abundance of virtually any RNA species in a cell can be modified or perturbed.

Antisense molecules

- In another embodiment, activity of a target RNA (preferably mRNA) species, specifically its rate of translation, can be controllably inhibited by the controllable application of antisense nucleic acids. Application at high levels results in a saturating inhibition. An "antisense" nucleic acid as used herein refers to a nucleic acid capable of hybridizing to a sequence-specific, e.g., non-poly A, portion of the target RNA, e.g., its translation initiation region, by virtue of some sequence complementary to a coding and/or non-coding region. The antisense nucleic acids of the invention can be oligonucleotides that are double-stranded or single-stranded, RNA or DNA or a modification or derivative thereof, which can be directly administered in a controllable manner to a cell or which can be produced intracellularly by transcription of exogenous, introduced sequences in controllable quantities sufficient to perturb translation of the target RNA.
- [113] Preferably, antisense nucleic acids are of at least six nucleotides and are preferably oligonucleotides, ranging from 6 oligonucleotides to about 200 oligonucleotides. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 15 nucleotides, at least 100 nucleotides or at least 200 nucleotides. The oligonucleotides can be DNA or RNA or

chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety or phosphate backbone. The oligonucleotide may include other appending groups, such as peptides, or agents facilitating transport across the cell membrane [see, e.g., Letsinger et al., *Proc. Natl. Acad. Sci. USA*, Vol. 86, pp. 6553-6556 (1989); Lemaitre et al., *Proc. Natl. Acad. Sci. USA*, Vol. 84, pp. 648-652 (1987); and PCT Publication No. WO 88/09810 (1988)], hybridization-triggered cleavage agents [see, e.g., Krol et al., *BioTechniques*, Vol. 6, pp. 958-976 (1988)] or intercalating agents [see, e.g., Zon, *Pharm. Res.*, Vol. 5, No. 9, pp. 539-549 (1988)].

- [114] In a preferred aspect of the invention, an antisense oligonucleotide is provided, preferably as single-stranded DNA. The oligonucleotide may be modified at any position on its structure with constituents generally known in the art.
- [115] The antisense oligonucleotides may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, β-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylguanine, 3-methyluracil, 5-methoxyaminomethyl-2-thiouracil, β-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-*N*-2-carboxypropyl) uracil, (acp3)w and 2,6-diaminopurine.
- [116] In another embodiment, the oligonucleotide comprises at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose and hexose.
- [117] In yet another embodiment, the oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester and a formacetal or analog thereof.

- [118] In yet another embodiment, the oligonucleotide is a 2-a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual B-units, the strands run parallel to each other. See Gautier et al., *Nucl. Acids Res.*, Vol. 15, pp. 6625-6641 (1987).
- [119] The oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- [120] The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of a target RNA species. However, absolute complementary, although preferred, is not required. A sequence "complementary to at least a portion of an RNA", as referred to herein, means a sequence having sufficient complementary to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementary and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a target RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex. The amount of antisense nucleic acid that will be effective in the inhibiting translation of the target RNA can be determined by standard assay techniques.
- [121] Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer, such as are commercially-available from Biosearch, Applied Biosystems, etc. As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al., *Nucl. Acids Res.*, Vol. 16, p. 3209 (1988), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports, etc. See Sarin et al., *Proc. Natl. Acad. Sci. USA*, Vol. 85, pp. 7448-7451 (1988). In another embodiment, the oligonucleotide is a 2'-0-methylribonucleotide [see Inoue et al., *Nucl. Acids Res.*, Vol. 15, pp. 6131-6148 (1987)] or a chimeric RNA-DNA analog [see Inoue et al., *FEBS Lett.*, Vol. 215, pp. 327-330 (1987)].
- [122] The synthesized antisense oligonucleotides can then be administered to a cell in a controlled or saturating manner. For example, the antisense oligonucleotides can be placed in the growth environment of the cell at controlled levels where they may be taken up by the cell. The uptake of the antisense oligonucleotides can be assisted by use of methods well-known in the art.

Antisense Molecules Expressed Intracellularly

In an alternative embodiment, the antisense nucleic acids of the invention are [123] controllably expressed intracellularly by transcription from an exogenous sequence. If the expression is controlled to be at a high level, a saturating perturbation or modification results. For example, a vector can be introduced in vivo such that it is taken up by a cell, within which cell the vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral or others known in the art, used for replication and expression in mammalian cells. Expression of the sequences encoding the antisense RNAs can be by any promoter known in the art to act in a cell of interest. Such promoters can be inducible or constitutive. Most preferably, promoters are controllable or inducible by the administration of an exogenous moiety in order to achieve controlled expression of the antisense oligonucleotide. Such controllable promoters include the Tet promoter. Other usable promoters for mammalian cells include, but are not limited to, the SV40 early promoter region [see Bernoist and Chambon, Nature, Vol. 290, pp. 304-310 (1981)], the promoter contained in the 3' long terminal repeat of Rous sarcoma virus [see Yamamoto et al., Cell, Vol. 22, pp. 787-797 (1980)], the herpes thymidine kinase promoter [see Wagner et al., Proc. Natl. Acad. Sci. USA, Vol. 78, pp. 1441-1445 (1981)], the regulatory sequences of the metallothionein gene, etc. [see Brinster et al., Nature, Vol. 296, pp. 39-42 (1982)].

[124] Therefore, antisense nucleic acids can be routinely designed to target virtually any mRNA sequence, and a cell can be routinely transformed with or exposed to nucleic acids coding for such antisense sequences such that an effective and controllable or saturating amount of the antisense nucleic acid is expressed. Accordingly the translation of virtually any RNA species in a cell can be modified or perturbed.

RNA Aptamers

[125] Finally, in a further embodiment, RNA aptamers can be introduced into or expressed in a cell. RNA aptamers are specific RNA ligands for proteins, such as for Tat and Rev RNA [see Good et al. (1997), *supra*] that can specifically inhibit their translation.

Methods of Modifying Protein Abundances

[126] Methods of modifying protein abundances include, *inter alia*, those altering protein degradation rates and those using antibodies, which bind to proteins affecting abundances of

activities of native target protein species. Increasing (or decreasing) the degradation rates of a protein species decreases (or increases) the abundance of that species. Methods for increasing the degradation rate of a target protein in response to elevated temperature and/or exposure to a particular drug, which are known in the art, can be employed in this invention. For example, one such method employs a heat-inducible or drug-inducible N-terminal degron, which is an N-terminal protein fragment that exposes a degradation signal promoting rapid protein degradation at a higher temperature, e.g., 37°C, and which is hidden to prevent rapid degradation at a lower temperature, e.g., 23°C. See Dohmen et al., Science, Vol. 263, pp. 1273-1276 (1994). Such an exemplary degron is Arg-DHFR^{ts}, a variant of murine dihydrofolate reductase in which the N-terminal Val is replaced by Arg and the Pro at position 66 is replaced with Leu. According to this method, e.g., a gene for a target protein, P, is replaced by standard gene targeting methods known in the art [see Lodish et al., Molecular Biology of the Cell, W.H. Freeman and Co., NY, especially Chapter 8 (1995)] with a gene coding for the fusion protein Ub-Arg-DHFR^{ts}-P ("Ub" stands for ubiquitin). The N-terminal ubiquitin is rapidly cleaved after translation exposing the N-terminal degron. At lower temperatures, lysines internal to Arg-DHFR^{ts} are not exposed, ubiquitination of the fusion protein does not occur, degradation is slow and active target protein levels are high. At higher temperatures (in the absence of methotrexate), lysines internal to Arg-DHFR^{ts} are exposed, ubiquitination of the fusion protein occurs, degradation is rapid and active target protein levels are low. This technique also permits controllable modification of degradation rates since heat activation of degradation is controllably blocked by exposure methotrexate. This method is adaptable to other N-terminal degrons which are responsive to other inducing factors, such as drugs and temperature changes.

Modifying Protein Activity With Antibodies

[127] Target protein activities can also be decreased by (neutralizing) antibodies. By providing for controlled or saturating exposure to such antibodies, protein abundances/activities can be modified or perturbed in a controlled or saturating manner. For example, antibodies to suitable epitopes on protein surfaces may decrease the abundance, and thereby indirectly decrease the activity, of the wild-type active form of a target protein by aggregating active forms into complexes with less or minimal activity as compared to the wild-type unaggregated wild-type form. Alternately, antibodies may directly decrease protein activity by, e.g., interacting directly with active sites or by blocking access of substrates to active sites. Conversely, in certain cases, (activating) antibodies may also interact with proteins and their active sites to increase resulting activity. In either case, antibodies (of the

various types to be described) can be raised against specific protein species (by the methods to be described) and their effects screened. The effects of the antibodies can be assayed and suitable antibodies selected that raise or lower the target protein species concentration and/or activity. Such assays involve introducing antibodies into a cell (see below) and assaying the concentration of the wild-type amount or activities of the target protein by standard means, such as immunoassays, known in the art. The net activity of the wild-type form can be assayed by assay means appropriate to the known activity of the target protein. Antibodies can be introduced into cells in numerous fashions, including, e.g., [128] microinjection of antibodies into a cell [see Morgan et al., Immunol. Today, Vol. 9, pp. 84-86 (1988)] or transforming hybridoma mRNA encoding a desired antibody into a cell [see Burke et al., Cell, Vol. 36, pp. 847-858 (1984)]. In a further technique, recombinant antibodies can be engineering and ectopically expressed in a wide variety of non-lymphoid cell types to bind to target proteins, as well as to block target protein activities. See Biocca et al., Trends Cell Biol., Vol. 5, pp. 248-252 (1995). Expression of the antibody is preferably under control of a controllable promoter, such as the Tet promoter, or a constitutively active promoter (for production of saturating perturbations). A first step is the selection of a particular monoclonal antibody with appropriate specificity to the target protein (see below). Then sequences encoding the variable regions of the selected antibody can be cloned into various engineered antibody formats, including, e.g., whole antibody, Fab fragments, Fv fragments, single-chain Fv (ScFv) fragments (V_H and V_L regions united by a peptide linker), diabodies (two associated ScFv fragments with different specificities) and so forth. See Hayden et al., Curr. Opin. Immunol., Vol. 9, pp. 210-212 (1997). Intracellularly-expressed antibodies of the various formats can be targeted into cellular compartments, e.g., the cytoplasm, the nucleus, the mitochondria, etc., by expressing them as fusions with the various known intracellular leader sequences. See Bradbury et al., Antibody Engineerinq, Borrebaeck, Editor, Vol. 2, pp. 295-361, IRL Press (1995). In particular, the ScFv format appears to be particularly suitable for cytoplasmic targeting.

[129] Antibody types include, but are not limited to, polyclonal, monoclonal, chimeric, single-chain, Fab fragments and an Fab expression library. Various procedures known in the art may be used for the production of polyclonal antibodies to a target protein. For production of the antibody, various host animals can be immunized by injection with the target protein, such host animals include, but are not limited to, rabbits, mice, rats, etc. Various adjuvants can be used to increase the immunological response, depending on the host species and include, but are not limited to, Freund's (complete and incomplete); mineral

gels, such as aluminum hydroxide; surface active substances, such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol; and potentially useful human adjuvants, such as Bacillus Calmette-Guerin (BCG) and corynebacterium parvum. For preparation of monoclonal antibodies directed towards a target protein, any [130] technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. Such techniques include, but are not restricted to, the hybridoma technique originally developed by Kohler and Milstein, Nature, Vol. 256, pp. 495-497 (1975), the trioma technique, the human B-cell hybridoma technique [see Kozbor et al., Immunol. Today, Vol. 4, p. 72 (1983)] and the EBV hybridoma technique to produce human monoclonal antibodies [see Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 (1985)]. In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals utilizing recent technology. See PCT/US90/02545. According to the invention, human antibodies may be used and can be obtained by using human hybridomas [see Cote et al., Proc. Natl. Acad. Sci. USA, Vol. 80, pp. 2026-2030 (1983)], or by transforming human B cells with EBV virus in vitro [see Cole et al. (1985), supra]. In fact, according to the invention, techniques developed for the production of "chimeric antibodies" [see Morrison et al., Proc. Natl. Acad. Sci. USA, Vol. 81, pp. 6851-6855 (1984); Neuberger et al., Nature, Vol. 312, pp. 604-608 (1984); Takeda et al., Nature, Vol. 314, pp. 452-454 (1985)] by splicing the genes from a mouse antibody molecule specific for the target protein together with genes from a human antibody molecule of appropriate biological activity can be used; such antibodies are within the scope of this invention.

- [131] Additionally, where monoclonal antibodies are advantageous, they can be alternatively selected from large antibody libraries using the techniques of phage display. See Marks et al., *J. Biol. Chem.*, Vol. 267, pp. 16007-16010 (1992). Using this technique, libraries of up to 10¹² different antibodies have been expressed on the surface of fd filamentous phage, creating a "single pot" *in vitro* immune system of antibodies available for the selection of monoclonal antibodies. See Griffiths et al., *EMBO J.*, Vol. 13, pp. 3245-3260 (1994). Selection of antibodies from such libraries can be done by techniques known in the art, including contacting the phage to immobilized target protein, selecting and cloning phage bound to the target and subcloning the sequences encoding the antibody variable regions into an appropriate vector expressing a desired antibody format.
- [132] According to the invention, techniques described for the production of single-chain antibodies (see U.S. Patent No. 4,946,778) can be adapted to produce single-chain

antibodies specific to the target protein. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries [see Huse et al., *Science*, Vol. 246, pp. 1275-1281 (1989)] to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for the target protein.

[133] Antibody fragments that contain the idiotypes of the target protein can be generated by techniques known in the art. For example, such fragments include, but are not limited to, the F(ab')₂ fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments that can be generated by reducing the disulfide bridges of the F(ab')₂ fragment, the Fab fragments that can be generated by treating the antibody molecule with papain and a reducing agent and Fv fragments.

[134] In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art, e.g., ELISA. To select antibodies specific to a target protein, one may assay generated hybridomas or a phage display antibody library for an antibody that binds to the target protein.

Methods of Modifying Protein Activities

[135] Methods of directly modifying protein activities include, *inter alia*, dominant negative mutations, specific drugs or chemical moieties and also the use of antibodies, as previously discussed.

[136] Dominant negative mutations are mutations to endogenous genes or mutant exogenous genes that when expressed in a cell disrupt the activity of a targeted protein species. Depending on the structure and activity of the targeted protein, general rules exist that guide the selection of an appropriate strategy for constructing dominant negative mutations that disrupt activity of that target. See Hershkowitz, *Nature*, Vol. 329, pp. 219-222 (1987). In the case of active monomeric forms, over expression of an inactive form can cause competition for natural substrates or ligands sufficient to significantly reduce net activity of the target protein. Such over expression can be achieved by, e.g., associating a promoter, preferably a controllable or inducible promoter, or also a constitutively expressed promoter, of increased activity with the mutant gene. Alternatively, changes to active site residues can be made so that a virtually irreversible association occurs with the target ligand. Such can be achieved with certain tyrosine kinases by careful replacement of active site serine residues. See Perlmutter et al., *Curr. Opin. Immunol.*, Vol. 8, pp. 285-290 (1996).

[137] In the case of active multimeric forms, several strategies can guide selection of a dominant negative mutant. Multimeric activity can be decreased in a controlled or saturating manner by expression of genes coding exogenous protein fragments that bind to multimeric

association domains and prevent multimer formation. Alternatively, controllable or saturating over-expression of an inactive protein unit of a particular type can tie up wild-type active units in inactive multimers, and thereby decrease multimeric activity. See Nocka et al., *EMBO J.*, Vol. 9, pp. 1805-1813 (1990). For example, in the case of dimeric DNA binding proteins, the DNA binding domain can be deleted from the DNA binding unit, or the activation domain deleted from the activation unit. Also, in this case, the DNA binding domain unit can be expressed without the domain causing association with the activation unit. Thereby, DNA binding sites are tied up without any possible activation of expression. In the case where a particular type of unit normally undergoes a conformational change during activity, expression of a rigid unit can inactivate resultant complexes. For a further example, proteins involved in cellular mechanisms, such as cellular motility, the mitotic process, cellular architecture and so forth, are typically composed of associations of many subunits of a few types. These structures are often highly sensitive to disruption by inclusion of a few monomeric units with structural defects. Such mutant monomers disrupt the relevant protein activities and can be expressed in a cell in a controlled or saturating manner.

- [138] In addition to dominant negative mutations, mutant target proteins that are sensitive to temperature (or other exogenous factors) can be found by mutagenesis and screening procedures that are well-known in the art.
- [139] Also, one of skill in the art will appreciate that expression of antibodies binding and inhibiting a target protein can be employed as another dominant negative strategy.

 Modifying Proteins With Small Molecule Drugs
- [140] Finally, activities of certain target proteins can be modified or perturbed in a controlled or a saturating manner by exposure to exogenous drugs or ligands. Since the methods of this invention are often applied to testing or confirming the usefulness of various drugs to treat cancer, drug exposure is an important method of modifying/perturbing cellular constituents, both mRNAs and expressed proteins. In a preferred embodiment, input cellular constituents are perturbed either by drug exposure or genetic manipulation, such as gene deletion or knockout; and system responses are measured by gene expression technologies, such as hybridization to gene transcript arrays (described in the following).
- [141] In a preferable case, a drug is known that interacts with only one target protein in the cell and alters the activity of only that one target protein, either increasing or decreasing the activity. Graded exposure of a cell to varying amounts of that drug thereby causes graded perturbations of network models having that target protein as an input. Saturating exposure causes saturating modification/perturbation. For example, Cyclosporin A is a very

specific regulator of the calcineurin protein, acting via a complex with cyclophilin. A titration series of Cyclosporin A therefore can be used to generate any desired amount of inhibition of the calcineurin protein. Alternately, saturating exposure to Cyclosporin A will maximally inhibit the calcineurin protein.

Measurement Methods

- [142] The experimental methods of this invention depend on measurements of cellular constituents. The cellular constituents measured can be from any aspect of the biological state of a cell. They can be from the transcriptional state, in which RNA abundances are measured, the translation state, in which protein abundances are measured, the activity state, in which protein activities are measured. The cellular characteristics can also be from mixed aspects, e.g., in which the activities of one or more proteins are measured along with the RNA abundances (gene expressions) of other cellular constituents. This section describes exemplary methods for measuring the cellular constituents in drug or pathway responses. This invention is adaptable to other methods of such measurement.
- [143] Preferably, in this invention the transcriptional state of the other cellular constituents are measured. The transcriptional state can be measured by techniques of hybridization to arrays of nucleic acid or nucleic acid mimic probes, described in the next subsection, or by other gene expression technologies, described in the subsequent subsection. However measured, the result is data including values representing mRNA abundance and/or ratios, which usually reflect DNA expression ratios (in the absence of differences in RNA degradation rates).
- [144] In various alternative embodiments of the present invention, aspects of the biological state other than the transcriptional state, such as the translational state, the activity state or mixed aspects can be measured.
- [145] In all embodiments, measurements of the cellular constituents should be made in a manner that is relatively independent of when the measurement are made.

Transcriptional State Measurement

[146] Preferably, measurement of the transcriptional state is made by hybridization to transcript arrays, which are described in this subsection. Certain other methods of transcriptional state measurement are described later in this subsection.

Transcript Arrays Generally

[147] In a preferred embodiment the present invention makes use of "transcript arrays", also called herein "microarrays". Transcript arrays can be employed for analyzing the

transcriptional state in a cell, and especially for measuring the transcriptional states of cancer cells.

In one embodiment, transcript arrays are produced by hybridizing detectably-labeled [148] polynucleotides representing the mRNA transcripts present in a cell, e.g., fluorescentlylabeled cDNA synthesized from total cell mRNA, to a microarray. A microarray is a surface with an ordered array of binding, e.g., hybridization, sites for products of many of the genes in the genome of a cell or organism, preferably most or almost all of the genes. Microarrays can be made in a number of ways, of which several are described below. However produced, microarrays share certain characteristics. The arrays are reproducible, allowing multiple copies of a given array to be produced and easily compared with each other. Preferably the microarrays are small, usually smaller than 5 cm² and they are made from materials that are stable under binding, e.g. nucleic acid hybridization, conditions. A given binding site or unique set of binding sites in the microarray will specifically bind the product of a single gene in the cell. Although there may be more than one physical binding site (hereinafter "site") per specific mRNA, for the sake of clarity the discussion below will assume that there is a single site. In a specific embodiment, positionally-addressable arrays containing affixed nucleic acids of known sequence at each location are used.

It will be appreciated that when cDNA complementary to the RNA of a cell is made and hybridized to a microarray under suitable hybridization conditions, the level of hybridization to the site in the array corresponding to any particular gene will reflect the prevalence in the cell of mRNA transcribed from that gene. For example, when detectably labeled, e.g., with a fluorophore, cDNA complementary to the total cellular mRNA is hybridized to a microarray, the site on the array corresponding to a gene, i.e., capable of specifically binding the product of the gene, that is not transcribed in the cell will have little or no signal, e.g., fluorescent signal, and a gene for which the encoded mRNA is prevalent will have a relatively strong signal.

Preparation of Microarrays

[150] Microarrays are known in the art and consist of a surface to which probes that correspond in sequence to gene products, e.g., cDNAs, mRNAs, cRNAs, polypeptides and fragments thereof, can be specifically hybridized or bound at a known position. In one embodiment, the microarray is an array, i.e., a matrix, in which each position represents a discrete binding site for a product encoded by a gene, e.g., a protein or RNA, and in which binding sites are present for products of most or almost all of the genes in the organism's genome. In a preferred embodiment, the "binding site", hereinafter "site", is a nucleic acid or

nucleic acid analogue to which a particular cognate cDNA can specifically hybridize. The nucleic acid or analogue of the binding site can be, e.g., a synthetic oligomer, a full-length cDNA, a less than full-length cDNA or a gene fragment.

Although in a preferred embodiment the microarray contains binding sites for products of all or almost all genes in the target organism's genome, such comprehensiveness is not necessarily required. Usually the microarray will have binding sites corresponding to at least about 50% of the genes in the genome, often at least about 75%, more often at least about 85%, even more often more than about 90%, and most often at least about 99%. Preferably, the microarray has binding sites for genes relevant to testing and confirming a biological network model of interest. A "gene" is identified as an open reading frame (ORF) of preferably at least 50, 75 or 99 amino acids from which a mRNA is transcribed in the organism, e.g., if a single cell, or in some cell in a multicellular organism. The number of genes in a genome can be estimated from the number of mRNAs expressed by the organism, or by extrapolation from a well-characterized portion of the genome. When the genome of the organism of interest has been sequenced, the number of ORFs can be determined and mRNA coding regions identified by analysis of the DNA sequence. For example, the Saccharomyces cerevisiae genome has been completely sequenced and is reported to have approximately 6,275 ORFs longer than 99 amino acids. Analysis of these ORFs indicates that there are 5,885 ORFs that are likely to specify protein products. See Goffeau et al., Science, Vol. 274, pp. 546-567 (1996), which is incorporated by reference in its entirety for all purposes. In contrast, the human genome is estimated to contain approximately 10⁵ genes.

Preparing Nucleic Acids for Microarrays

[152] As noted above, the "binding site" to which a particular cognate cDNA specifically hybridizes is usually a nucleic acid or nucleic acid analogue attached at that binding site. In one embodiment, the binding sites of the microarray are DNA polynucleotides corresponding to at least a portion of each gene in an organism's genome. These DNAs can be obtained by, e.g., PCR amplification of gene segments from genomic DNA, cDNA, e.g., by RT-PCR, or cloned sequences. PCR primers are chosen, based on the known sequence of the genes or cDNA, that result in amplification of unique fragments, i.e., fragments that do not share more than 10 bases of contiguous identical sequence with any other fragment on the microarray. Computer programs are useful in the design of primers with the required specificity and optimal amplification properties. See, e.g., Oligo pl version 5.0, National Biosciences. In the case of binding sites corresponding to very long genes, it will sometimes be desirable to

amplify segments near the 3' end of the gene so that when oligo-dT primed cDNA probes are hybridized to the microarray, less-than-full length probes will bind efficiently. Typically each gene fragment on the microarray will be between about 50 bp and about 2000 bp, more typically between about 100 bp and about 1000 bp, and usually between about 300 bp and about 800 bp in length. PCR methods are well-known and are described, e.g., in Innis et al., eds., *PCR Protocols: A Guide to Methods and Applications*, Academic Press Inc., San Diego, CA (1990), which is incorporated by reference in its entirety for all purposes. It will be apparent that computer-controlled robotic systems are useful for isolating and amplifying nucleic acids.

[153] An alternative means for generating the nucleic acid for the microarray is by synthesis of synthetic polynucleotides or oligonucleotides, e.g., using *N*-phosphonate or phosphoramidite chemistries. See Froehler et al., *Nucleic Acid Res.*, Vol. 14, pp. 5399-5407 (1986); and McBride et al., *Tetrahedron Lett.*, Vol. 24, pp. 245-248 (1983). Synthetic sequences are between about 15 bases and about 500 bases in length, more typically between about 20 bases and about 50 bases. In some embodiments, synthetic nucleic acids include non-natural bases, e.g., inosine. As noted above, nucleic acid analogues may be used as binding sites for hybridization. An example of a suitable nucleic acid analogue is peptide nucleic acid. See, e.g., Egholm et al., *Nature*, Vol. 365, pp. 566-568 (1993); and also U.S. Patent No. 5,539,083.

[154] In an alternative embodiment, the binding (hybridization) sites are made from plasmid or phage clones of genes, cDNAs, e.g., expressed sequence tags, or inserts therefrom. See Nguyen et al., *Genomics*, Vol. 29, pp. 207-209 (1995). In yet another embodiment, the polynucleotide of the binding sites is RNA.

Attaching Nucleic Acids to the Solid Surface

[155] The nucleic acid or analogue are attached to a solid support, which may be made from glass, plastic, e.g., polypropylene and nylon, polyacrylamide, nitrocellulose or other materials. A preferred method for attaching the nucleic acids to a surface is by printing on glass plates, as is described generally by Schena et al., *Science*, Vol. 270, pp. 467-470 (1995). This method is especially useful for preparing microarrays of cDNA. See, also, DeRisi et al., *Nat. Genet.*, Vol. 14, pp. 457-460 (1996); Shalon et al., *Genome Res.*, Vol. 6, pp. 639-645 (1996); and Schena et al., *Proc. Natl. Acad. Sci. USA*, Vol. 93, pp. 10539-11286 (1995). Each of the aforementioned articles is incorporated by reference in its entirety for all purposes.

[156] A second preferred method for making microarrays is by making high-density oligonucleotide arrays. Techniques are known for producing arrays containing thousands of oligonucleotides complementary to defined sequences, at defined locations on a surface using photolithographic techniques for synthesis *in situ* [see Fodor et al., *Science*, Vol. 251, pp. 767-773 (1991); Pease et al., *Proc. Natl. Acad. Sci. USA*, Vol. 91, No. 11, pp. 5022-5026 (1994); Lockhart et al., *Nat. Biotechnol.*, Vol. 14, p. 1675 (1996); and U.S. Patent Nos. 5,578,832; 5,556,752; and 5,510,270, each of which is incorporated by reference in its entirety for all purposes] or other methods for rapid synthesis and deposition of defined oligonucleotides [see Blanchard et al., *Biosens. Bioelectron.*, Vol. 11, pp. 687-690 (1996)]. When these methods are used, oligonucleotides, e.g., 20 mers, of known sequence are synthesized directly on a surface such as a derivatized glass slide. Usually, the array produced is redundant, with several oligonucleotide molecules per RNA. Oligonucleotide probes can be chosen to detect alternatively spliced mRNAs.

[157] Other methods for making microarrays, e.g., by masking, may also be used. See Maskos and Southern, *Nucleic Acids Res.*, Vol. 20, pp. 1679-1684 (1992). In principal, any type of array, e.g., dot blots on a nylon hybridization membrane [see Sambrook et al., *Molecular Cloning--A Laboratory Manual*, 2nd Edition, Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989), which is incorporated in its entirety for all purposes], could be used, although, as will be recognized by those of skill in the art, very small arrays will be preferred because hybridization volumes will be smaller.

Generating Labeled Probes

[158] Methods for preparing total and poly(A)* RNA are well-known and are described generally in Sambrook et al. (1989), *supra*. In one embodiment, RNA is extracted from cells of the various types of interest in this invention using guanidinium thiocyanate lysis followed by CsCl centrifugation. See Chirgwin et al., *Biochemistry*, Vol. 18, pp. 5294-5299 (1979). Poly(A)* RNA is selected by selection with oligo-dT cellulose. See Sambrook et al. (1989), *supra*. Cells of interest include wild-type cells, drug-exposed wild-type cells, cells with modified/perturbed cellular constituent(s), and drug-exposed cells with modified/perturbed cellular constituent(s).

[159] Labeled cDNA is prepared from mRNA by oligo dT-primed or random-primed reverse transcription, both of which are well-known in the art. See, e.g., Klug and Berger, *Methods Enzymol.*, Vol. 152, pp. 316-325 (1987). Reverse transcription may be carried out in the presence of a dNTP conjugated to a detectable label, most preferably a fluorescently-labeled dNTP. Alternatively, isolated mRNA can be converted to labeled antisense RNA

synthesized by *in vitro* transcription of double-stranded cDNA in the presence of labeled dNTPs. See Lockhart et al. (1996), *supra*, which is incorporated by reference in its entirety for all purposes. In alternative embodiments, the cDNA or RNA probe can be synthesized in the absence of detectable label and may be labeled subsequently, e.g., by incorporating biotinylated dNTPs or rNTP, or some similar means, e.g., photo-cross-linking a psoralen derivative of biotin to RNAs, followed by addition of labeled streptavidin, e.g., phycoerythrin-conjugated streptavidin or the equivalent.

[160] When fluorescently-labeled probes are used, many suitable fluorophores are known, including fluorescein, lissamine, phycoerythrin, rhodamine (Perkin Elmer Cetus), Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, FluorX (Amersham) and others. See, e.g., Kricka, *Nonisotopic DNA Probe Techniques*, Academic Press, San Diego, CA (1992). It will be appreciated that pairs of fluorophores are chosen that have distinct emission spectra so that they can be easily distinguished.

[161] In another embodiment, a label other than a fluorescent label is used. For example, a radioactive label, or a pair of radioactive labels with distinct emission spectra, can be used. See Zhao et al., *Gene*, Vol. 156, p. 207 (1995); and Pietu et al., *Genome Res.*, Vol. 6, p. 492 (1996). However, because of scattering of radioactive particles, and the consequent requirement for widely-spaced binding sites, use of radioisotopes is a less-preferred embodiment.

[162] In one embodiment, labeled cDNA is synthesized by incubating a mixture containing 0.5 mM dGTP, dATP and dCTP plus 0.1 mM dTTP plus fluorescent deoxyribonucleotides, e.g., 0.1 mM Rhodamine 110 UTP (Perken Elmer Cetus) or 0.1 mM Cy3 dUTP (Amersham), with reverse transcriptase, e.g., SuperScript.TM. II, LTI Inc., at 42°C for 60 minutes. <u>Hybridization to Microarrays</u>

[163] Nucleic acid hybridization and wash conditions are chosen so that the probe "specifically binds" or "specifically hybridizes" to a specific array site, i.e., the probe hybridizes, duplexes or binds to a sequence array site with a complementary nucleic acid sequence but does not hybridize to a site with a non-complementary nucleic acid sequence. As used herein, one polynucleotide sequence is considered complementary to another when, if the shorter of the polynucleotides is ≤25 bases, there are no mismatches using standard base-pairing rules or, if the shorter of the polynucleotides is longer than 25 bases, there is no more than a 5% mismatch. Preferably, the polynucleotides are perfectly complementary (no mismatches). It can easily be demonstrated that specific hybridization conditions result in

specific hybridization by carrying out a hybridization assay including negative controls. See, e.g., Shalon et al. (1996), *supra*; and Chee et al., *supra*.

[164] Optimal hybridization conditions will depend on the length, e.g., oligomer vs. polynucleotide >200 bases; and type, e.g., RNA, DNA and PNA, of labeled probe and immobilized polynucleotide or oligonucleotide. General parameters for specific, i.e., stringent, hybridization conditions for nucleic acids are described in Sambrook et al. (1996), supra; and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, NY (1987), which is incorporated in its entirety for all purposes. When the cDNA microarrays of Schena et al. are used, typical hybridization conditions are hybridization in 5 x SSC plus 0.2% SDS at 65°C for 4 hours followed by washes at 25°C in low-stringency wash buffer (1 x SSC plus 0.2% SDS) followed by 10 minutes at 25°C in high-stringency wash buffer (0.1 x SSC plus 0.2% SDS). See Shena et al., Proc. Natl. Acad. Sci. USA, Vol. 93, p. 10614 (1996). Useful hybridization conditions are also provided. See, e.g., Tijessen, Hybridization With Nucleic Acid Probes, Elsevier Science Publishers B.V. (1993); and Kricka (1992), supra.

Signal Detection and Data Analysis

When fluorescently-labeled probes are used, the fluorescence emissions at each [165] site of a transcript array can be, preferably, detected by scanning confocal laser microscopy. In one embodiment, a separate scan, using the appropriate excitation line, is carried out for each of the two fluorophores used. Alternatively, a laser can be used that allows simultaneous specimen illumination at wavelengths specific to the two fluorophores and emissions from the two fluorophores can be analyzed simultaneously. See Shalon et al. (1996), supra, which is incorporated by reference in its entirety for all purposes. In a preferred embodiment, the arrays are scanned with a laser fluorescent scanner with a computer-controlled X-Y stage and a microscope objective. Sequential excitation of the two fluorophores is achieved with a multi-line, mixed gas laser and the emitted light is split by wavelength and detected with two photomultiplier tubes. Fluorescence laser scanning devices are described in Schena et al. (1996), supra and in other references cited herein. Alternatively, the fiber-optic bundle described by Ferguson et al., Nat. Biotechnol., Vol. 14, pp. 1681-1684 (1996), may be used to monitor mRNA abundance levels at a large number of sites simultaneously.

[166] Signals are recorded and, in a preferred embodiment, analyzed by computer, e.g., using a 12-bit analog to digital board. In one embodiment the scanned image is de-speckled using a graphics program, e.g., Hijaak Graphics Suite, and then analyzed using an image

gridding program that creates a spreadsheet of the average hybridization at each wavelength at each site. If necessary, an experimentally determined correction for "cross talk" (or overlap) between the channels for the two fluorophores may be made. For any particular hybridization site on the transcript array, a ratio of the emission of the two fluorophores is preferably calculated. The ratio is independent of the absolute expression level of the cognate gene, but is useful for genes whose expression is significantly modulated by drug administration, gene deletion or any other tested event.

Preferably, in addition to identifying a perturbation as positive or negative, it is [167] advantageous to determine the magnitude of the perturbation. This can be carried out by methods that will be readily apparent to those of skill in the art.

Other Methods of Transcriptional State Measurement

The transcriptional state of a cell may be measured by other gene expression [168] technologies known in the art. Several such technologies produce pools of restriction fragments of limited complexity for electrophoretic analysis, such as methods combining double restriction enzyme digestion with phasing primers [see, e.g., EP 0 534858 A1 (1992), Zabeau et al.], or methods selecting restriction fragments with sites closest to a defined mRNA end [see, e.g., Prashar et al., Proc. Natl. Acad. Sci. USA, Vol. 93, pp. 659-663 (1996)]. Other methods statistically sample cDNA pools, such as by sequencing sufficient bases, e.g., 20-50 bases, in each of multiple cDNAs to identify each cDNA, or by sequencing short tags, e.g., 9-10 bases, which are generated at known positions relative to a defined mRNA end pathway pattern. See, e.g., Velculescu, Science, Vol. 270, pp. 484-487 (1995).

Measurement of Other Aspects

In various embodiments of the present invention, aspects of the biological state [169] other than the transcriptional state, such as the translational state, the activity state or mixed aspects can be measured in order to obtain drug and pathway responses. Details of these embodiments are described in this section.

Translational State Measurements

Measurement of the translational state may be performed according to several [170] methods. For example, whole genome monitoring of protein, i.e., the "proteome" [see Goffeau et al. (1996), supra], can be carried out by constructing a microarray in which binding sites comprise immobilized, preferably monoclonal, antibodies specific to a plurality of protein species encoded by the cell genome. Preferably, antibodies are present for a substantial fraction of the encoded proteins, or at least for those proteins relevant to testing or confirming a biological network model of interest. Methods for making monoclonal

antibodies are well-known. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor, NY (1988), which is incorporated in its entirety for all purposes. In a preferred embodiment, monoclonal antibodies are raised against synthetic peptide fragments designed based on genomic sequence of the cell. With such an antibody array, proteins from the cell are contacted to the array and their binding is assayed with assays known in the art.

[171] Alternatively, proteins can be separated by two-dimensional gel electrophoresis systems. Two-dimensional gel electrophoresis is well-known in the art and typically involves iso-electric focusing along a first dimension followed by SDS-PAGE electrophoresis along a second dimension. See, e.g., Hames et al., *Gel Electrophoresis of Proteins: A Practical Approach*, IRL Press, NY (1990); Shevchenko et al., *Proc. Natl. Acad. Sci. USA*, Vol. 93, pp. 1440-1445 (1996); Sagliocco et al., *Yeast*, Vol. 12, pp. 1519-1533 (1996); Lander, *Science*, Vol. 274, pp. 536-539 (1996). The resulting electropherograms can be analyzed by numerous techniques, including mass spectrometric techniques, western blotting and immunoblot analysis using polyclonal and monoclonal antibodies, and internal and *N*-terminal micro-sequencing. Using these techniques, it is possible to identify a substantial fraction of all the proteins produced under given physiological conditions, including in cells, e.g., in yeast; exposed to a drug or in cells modified by, e.g., deletion or over-expression of a specific gene.

Embodiments Based on Other Aspects of the Biological State

[172] Although monitoring cellular constituents other than mRNA abundances currently presents certain technical difficulties not encountered in monitoring mRNAs, it will be apparent to those of skill in the art that the use of methods of this invention that the activities of proteins relevant to the characterization of cell function can be measured, embodiments of this invention can be based on such measurements. Activity measurements can be performed by any functional, biochemical or physical means appropriate to the particular activity being characterized. Where the activity involves a chemical transformation, the cellular protein can be contacted with the natural substrates and the rate of transformation measured. Where the activity involves association in multimeric units, e.g., association of an activated DNA-binding complex with DNA, the amount of associated protein or secondary consequences of the association, such as amounts of mRNA transcribed, can be measured. Also, where only a functional activity is known, e.g., as in cell cycle control, performance of the function can be observed. However known and measured, the changes in protein activities form the response data analyzed by the foregoing methods of this invention.

[173] In alternative and non-limiting embodiments, response data may be formed of mixed aspects of the biological state of a cell. Response data can be constructed from, e.g., changes in certain mRNA abundances, changes in certain protein abundances, and changes in certain protein activities.

Computer Implementations

[174] In a preferred embodiment, the computation steps of the previous methods are implemented on a computer system or on one or more networked computer systems in order to provide a powerful and convenient facility for forming and testing models of biological systems. The computer system may be a single hardware platform comprising internal components and being linked to external components. The internal components of this computer system include processor element interconnected with a main memory. For example computer system can be an Intel Pentium based processor of 200 Mhz or greater clock rate and with 32 MB or more of main memory.

[175] The external components include mass data storage. This mass storage can be one or more hard disks, which are typically packaged together with the processor and memory. Typically, such hard disks provide for at least 1 GB of storage. Other external components include user interface device, which can be a monitor and keyboards, together with pointing device, which can be a "mouse" or other graphic input devices. Typically, the computer system is also linked to other local computer systems, remote computer systems, or wide area communication networks, such as the Internet. This network link allows the computer system to share data and processing tasks with other computer systems.

[176] Loaded into memory during operation of this system are several software components, which are both standard in the art and special to the instant invention. These software components collectively cause the computer system to function according to the methods of this invention. These software components are typically stored on mass storage. Alternatively, the software components may be stored on removable media such as floppy disks or CD-ROM (not illustrated). The software component represents the operating system, which is responsible for managing the computer system and its network interconnections. This operating system can be, e.g., of the Microsoft Windows family, such as Windows 95, Windows 98 or Windows NT; or a Unix operating system, such as Sun Solaris. Software include common languages and functions conveniently present on this system to assist programs implementing the methods specific to this invention. Languages that can be used to program the analytic methods of this invention are programmed in

mathematical software packages which allow symbolic entry of equations and high-level specification of processing, including algorithms to be used, thereby freeing a user of the need to procedurally program individual equations or algorithms. Such packages include, e.g., Matlab from Mathworks (Natick, Mass.), Mathematica from Wolfram Research (Champaign, IL) and MathCAD from Mathsoft (Cambridge, MA).

[177] In preferred embodiments, the analytic software component actually comprises separate software components which interact with each other. Analytic software represents a database containing all data necessary for the operation of the system. Such data will generally include, but is not necessarily limited to, results of prior experiments, genome data, experimental procedures and cost and other information which will be apparent to those skilled in the art. Analytic software includes a data reduction and computation component comprising one or more programs which execute the analytic methods of the invention.

[178] Analytic software also includes a user interface which provides a user of the computer system with control and input of test network models, and, optionally, experimental data. The user interface may comprise a drag-and-drop interface for specifying hypotheses to the system. The user interface may also comprise means for loading experimental data from the mass storage component, e.g., the hard drive; from removable media, e.g., floppy disks or CD-ROM; or from a different computer system communicating with the instant system over a network, e.g., a local area network, or a wide area communication network, such as the Internet.

[179] Alternative systems and methods for implementing the analytic methods of this invention will be apparent to one of skill in the art and are intended to be comprehended within the accompanying claims. In particular, the accompanying claims are intended to include the alternative program structures for implementing the methods of this invention that will be readily apparent to one of skill in the art.

Table 2. Quantification of Purified Total RNA and cRNA

Sample code	Weight (mg)	RNA Yield (µg)	cRNA Yield (µg)	cRNA Used (µg)
p2437		_	30.0	15.0
p2709	_	_	36.3	15.0
p5720			29.0	15.0
p5721		_	21.5	15.0
p6166	56.3	45.0	58.8	
p6167	80.0	9.4	47.1	15.0
p6168	30.0	7.8	42.4	15.0
p6169	65.6	7.4	48.4	15.0
p6170	51.9	40.9	13.2	15.0
p6171	90.0	16.1	52.9	13.2
p6172	47.0	9.1	29.6	15.0
p6173	88.0	15.7	31.5	15.0
p6174	86.1	26.6	13.9	15.0
p6175	38.0	0.8	10.9	13.9
p6176	80.2	57.1	14.1	
p6177	71.0	33.2	19.6	14.1
p6178	77.0	16.4	35.4	15.0
p6179	47.4	1.1	35.4	15.0
p6180	60.5	89.9	26.4	
p6181	24.2	8.2	36.4	15.0
p6182	70.0	63.7	19.6	15.0
p6183	58.6	7.1	15.0	15.0
p6184	84.5	38.1	9.8	
p6185	90.0	6.7	12.8	12.8
		0.7	25.2	15.0

Table 3. Summary of Experiment QC

Sample Code	Chip Designation	Back- ground	Scaling Factor	% of Genes Present	GAPDH 3'/5'	B-actin 3'/5'	Laboratory (Where Profiles Were Generated)
p2437	p2437e	893	0.18	52.46	2.04	4.51	PG
p2709	p2709e	776	0.35	46.26	2.09	1.08	PG
p5720	p5720-2ee	74	3.05	48.09	1.63	1.14	PG
p5721	p5721-2ee	55	3.24	47.90	5.09	6.91	PG
p6166	p6166ee	60	1.72	50.27	1.55	1.38	PG
p6167	p6167ee	48	2.71	53.12	2.35	3.03	PG PG
p6168	p6168ee	46	2.71	53.81	2.76	2.54	PG
p6169	p6169ee	59	14.62	22.55	5.36	10.38	
p6170	p6170ee	55	2.14	38.24	1.60	2.06	PG
p6171	p6171ee	47	2.27	55.19	2.47	2.99	PG
p6172	p6172ee	55	3.73	46.84	4.43	4.53	PG
p6173	p6173ee	61	2.43	51.01	7.62		PG
p6174	p6174ee	82	1.19	53.04	1.38	5.99	PG ·
p6176	p6176ee	60	2.28	48.59	1.49	1.80 2.44	PG
p6177	p6177ee	97	2.31	46.64	1.73		PG
p6178	p6178ee	73	2.65	41.76	1.65	2.06	PG
p6180	p6180ee	43	10.59	27.84		1.81	PG
p6181	p6181ee	65	2.60	46.08	4.46	13.90	PG
p6182	p6182ee	43	5.39	37.16	1.93	1.94	PG
p6184	p6184ee	59	3.46	49.31	4.48	10.86	PG
p6185	p6185ee	49	8.18	40.63	2.44	2.36	PG
OVR1T	h9lms01031301	122	1.55	43.62	3.67	4.51	PG
OVR2T	h9lms01030602	119	1.70	43.6 <u>2</u> 43.16	1.62	1.61	GNF
OVR5T	h9lms01030603	86	0.92	52.46	1.69	1.91	GNF
OVR8T	h9lms01030604	76	1.27		1.30	2.33	GNF
OVR10T	h9lms01030714	80	1.12	50.49	1.65	1.93	GNF
OVR11T	h9lms01030605	71	1.40	49.86	1.15	2.41	GNF
OVR12T	h9lms01030606	78	1.69	47.29	1.90	3.34	GNF
OVR13T	h9lms01030607	75	0.75	43.68	1.57	1.68	GNF
OVR16T	h9lms01030501	168	0.75	51.90	1.26	1.80	GNF
OVR19T	h9lms01030502	80		39.03	1.68	2.95	GNF
OVR22T	h9lms01030608	83	1.22	43.54	1.49	2.17	GNF
OVR26T	h9ims01030609	85	1.22	43.54	1.61	2.82	GNF
OVR27T	h9lms01030503	104	1.01	46.21	1.38	2.66	GNF
OVR28T	h9lms01030504	140	0.72	49.99	1.40	2.02	GNF
OVR102N	h9lms00102618	130	1.40	35.17	2.80	6.37	GNF
OVR278EN	h9lms01030505	59	2.02	33.01	3.49	5.60	GNF
OVR278SN	h9lms01030715	57	3.70	32.96	2.20	3.60	GNF
		01	3.12	36.10	1.87	2.53	GNF

Sample Code		Back- ground	Scaling Factor	% of Genes Present	GAPDH 3'/5'		Laboratory (Where Profiles Were Generated)
HUOVR	h9lms00102622	68	1.16	51.60	1.43	2.72	GNF

Table 4. Comparison of Predicted Vs. Observed Status of 18 Ovarian Test Samples With a 28 Probe Sets Expression Profile

Biopsy status Obs. (Exp.)	r≤0.920	r > 0.920	Total
Normal	1 (4.44)	7 (3.56)	Total
Tumor	9 (5.56)		8
Total		1 (4.44)	10
e. The number of above	10	8	18

Note: The number of observations is shown for each group of samples, with the value expected under random association in parentheses.

"r" = the PCC value of the 28 probe set profile of a biopsy sample with the mean Normal profile.

OR = 63 (95% CI: 3.3-1194.7), p=0.0029

Table 5. Comparison of Predicted Vs. Observed Status of 36 Ovarian Samples With a 28, 32 or 42 Probe Sets Expression Profile

Number of Probe Sets	28	20	
Correlation threshold used		32	42
OR	0.914	0.933	0.851
	253	392	216
95% CI	14.4-4432.9	14.8-10339.6	9.6-4882.5
p-value (Fischer's exact test)	2.3 x 10 ⁻⁷	1.0 x 10 ⁻⁸	1.3 x 10 ⁻⁷

Table 6. List of Genes Up-Regulated in Ovarian Tumors

Absolute CC values are shown for expression levels analyzed in the 18 test samples only (R1) or in all 36 samples (R2).

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	Da	
40145_at	TOP2A	Topoisomerase (DNA) II alpha (170kD)	17q21-q22	0.643	0.636
39109_at	C20ORF1	Chromosome 20 ORF 1	20q11.2	0.600	
39829_at	ARL7	ADP-ribosylation factor-like 7		0.623	0.564
37985_at	LMNB1	Lamin B1	2q37.2	0.618	0.656
2092_s_at	SPP1		5q23.3-q31.1	0.565	0.608
2002_5_at	SPPT	Secreted phosphoprotein 1 (osteopontin)	4q21-q25	0.560	0.679
38116_at	KIAA0101	KIAA0101 gene product	15q22.1	0.550	0.707
34259 at	KIAA0664	KIAA0664 protein		0.556	0.595
35276_at	CLDN4		17p13.3	0.544	0.541
		Claudin 4	7q11.23	0.471	0.575
149_at	DDXL	Nuclear RNA helicase	19p13.13		
37131_at	KLK8	Kallikrein 8 (neuropsin/ovasin)		0.457	0.544
		realition o (neuropsin/ovasin)	19q13.3-q13.4	0.443	0.585

Table 7. Functional Categories of the Most Differentially-Expressed Genes in Ovarian Cancer

Categories	Top 28 Probe Sets	Top 100 Probe Sets*
Cell cycle regulation	8	
Growth differentiation and cell death		13*
Tumor suppression		
Transcription regulation	1	474
Signal transduction	3	17*
Metabolic enzymes		9*
Cytoskeletal proteins	5	9
Extracellular matrix	1	5
Others	1	6
	1	14
Unknown	8	27

^{*}For 5 genes (GPRK5, IGFBP5, IRS1, ITPR1 and RBPMS) similar results were obtained with 2 different probe sets.

Table 8 List of Genes Down-Regulated in Ovarian Tumors Functional Category

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	R1	R2	
Cell cycle reg	ulation, grow	th differentiation, cell death	tumor suppress	ion	R2	Rani
38120_at	PKD2	Polycystic kidney disease 2	4q21-q23	0.852	0.768	25
34257_at	AIP1	Atrophin-1 interacting protein 1	7q21	0.846	0.786	13
38650_at	IGFBP5	Insulin-like growth factor binding protein 5	2q33-34	0.840	0.748	
1396_at	IGFBP5	Insulin-like growth factor binding protein 5	2q33-q36	0.821	0.756	
1897_at 	TGF _β R3	Transforming growth factor, beta receptor III	1p33-p32	0.809	0.770	23
36073_at	NDN	Necdin homolog	15q11.2-q12	0.804	0.774	21
36160_s_at	PTPRN2	Protein tyrosine phosphatase, receptor type, N polypeptide 2	7q36	0.788	0.846	3
37643_at	TNFRSF6	Tumor necrosis factor receptor superfamily, member 6	10q24.1	0.779	0.716	
1640_at	ST13	Suppression of tumorigenicity 13	22q13.2	0.769	0.734	
35234_at	RECK	Reversion-inducing- cysteine-rich protein with kazal motifs	9p13-p12	0.741	0.634	
1731_at	PDGFRα	Platelet-derived growth factor receptor, alpha polypeptide	4q11-q13	0.739	0.619	
1761_at	PDGFRL	Platelet-derived growth factor receptor-like	8p22-p21.3	0.736	0.789	10
1327_s_at	MAP3K5	Mitogen-activated protein kinase kinase kinase 5	6q22.33	0.729	0.626	-
39701_at	PEG3	Paternally expressed 3	19q13.4	0.724	0.611	·
36948_at	CRI1	CREBBP/EP300 inhibitory protein 1	15q21.1-q21.2	0.703	0.766	27*
32668_at	SSBP2	Single-stranded DNA binding protein 2	5q14.1	0.503	0.809	6*
ranscriptional	regulation		·	<u> </u>		
1577_at	AR	Androgen receptor	Xq11.2-q12	0.736	0.767	
32664_at	RNASE4	Ribonuclease, RNase A family, 4	14q11.1	0.736	0.767	26
38439_at	NFE2L1	Nuclear factor (erythroid- derived 2)-like 1	17q21.3	0.829	0.736	

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	R1	R2	Rani
38047_at	RBPMS	RNA-binding protein gene with multiple splicing	8p12-p11	0.822	0.756	, tan
40775_at	ITM2A	Integral membrane protein 2A	Xq13.3-Xq21.2	0.818	0.666	ļ <u>.</u>
34163_g_at	RBPMS	RNA-binding protein gene with multiple splicing	8p12-p11	0.776	0.709	
40570_at	FOXO1A	Forkhead box O1A (rhabdomyosarcoma)	13q14.1	0.775	0.668	
35681_r_at	ZFHX1B	Zinc finger homeobox 1b	2q22	0.769	0.644	
40202_at	BTEB1	Basic transcription element binding protein 1	9q13	0.754	0.606	
41505_r_at	MAF	v-maf musculoaponeurotic fibrosarcoma oncogene homolog	16q22-q23	0.738	0.638	
34355_at	MECP2	Methyl CpG binding protein 2 (Rett syndrome)	Xq28	0.728	0.662	
32259_at	EZH1	Enhancer of zeste homolog 1	17q21.1-q21.3	0.728	0.611	
41000_at	CHES1	Checkpoint suppressor 1	14q24.3-q31	0.727	0.677	
34740_at	FOXO3A	Forkhead box O3A	6q21	0.723	0.520	
39243_s_at	PSIP2	PC4 and SFRS1 interacting protein 2	9p22.1	0.721	0.702	
Signal transdu	ction			L	L	
755_at	ITPR1	Inositol 1,4,5-triphosphate receptor, type 1	3p26-p25	0.809	0.822	4
38176_at	GNβ5	Guanine nucleotide binding protein (G protein), beta 5	15q15.3	0.805	0.729	
39397_at	NR2F2	Nuclear receptor subfamily 2, group F, member 2	15q26	0.768	0.700	
872_i_at	IRS1	Insulin receptor substrate 1	2q36	0.756	0.770	24
40994_at	GPRK5	G protein-coupled receptor kinase 5	10q24-qter	0.749	0.627	
37908_at	GNG11	Guanine nucleotide binding protein 11	7q31-q32	0.748	0.557	
41049_at	IRS1	Insulin receptor substrate 1	2q36	0.744	0.694	
32778_at	ITPR1	Inositol 1,4,5-triphosphate receptor, type 1	3p26-p25	0.743	0.689	
1135_at	GPRK5	G protein-coupled receptor kinase 5	10q24-qter	0.732	0.652	
34877_at	JAK1	Janus kinase 1	1p32.3-p31.3	0.720	0.671	

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	R1	R2	Rank
41796_at	PLCL2	Phospholipase C-like 2	3p24.3	0.689		17*
Metabolic en:	tymes			0.003	0.779	17-
32764_at	PHYH	Phytanoyl-CoA hydroxylase (Refsum disease)	10pter-p11.2	0.803	0.691	
37628_at	MAOB	Monoamine oxidase B	Xp11.4-p11.3	0.865	0.808	7
41859_at	UST	Uronyi-2-sulfotransferase	6q24.3-q25.1	0.865	0.877	1
38220_at 	DPYD	Dihydropyrimidine dehydrogenase	1p22	0.844	0.820	5
37015_at	ALDH1A1	Aldehyde dehydrogenase 1 family, member A1	9q21	0.820	0.751	
1290_g_at	GSTM5	Glutathione S-transferase M5	1p13.3	0.814	0.776	19
37599_at	AOX1	Aldehyde oxidase 1	2q33	0.743	0.652	
32805_at	AKR1C1	Aldo-keto reductase family 1, member C1	10p15-p14	0.736	0.586	
34169_s_at	OCRL	Oculocerebrorenal syndrome of Lowe	Xq25-q26.1	0.722	0.661	
32618_at	BLVRA	Biliverdin reductase A	7p14-cen	0.430	0.786	11*
Cytoskeleton				<u></u>		
32145_at	ADD1	Adducin 1 (alpha)	4p16.3	0.817	0.786	12
40488_at	DMD	Dystrophin (muscular dystrophy, Duchenne and Becker types)	Xp21.2	0.778	0.698	
38669_at	SLK	Ste20-related serine / threonine kinase	10q25.1	0.770	0.712	
41738_at	CALD1	Caldesmon 1	7q33	0.755	0.707	
34772_at	CORO2B	Coronin, actin binding protein, 2B	15q22.2-q22.31	0.729	0.748	
Extracellular n	natrix				J.	
39673_i_at	ЕСМЗ	Extracellular matrix protein 3	9q22.3	0.827	0.698	
39674_r_at	ECM2	Extracellular matrix protein 2	9q22.3	0.811	0.699	
36917_at	LAMα2	Laminin, alpha 2	6q22-q23	0.810	0.752	
41449_at	SGCE	Sarcoglycan, epsilon	7q21-q22	0.778	0.762	28
36627_at	SPARCL1	SPARC-like 1 (mast9, hevin)	4q21.3	0.770	0.675	

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	R1	R2	Doz
32535_at	FBN1	Fibrillin 1(Marfan syndrome)	15q21.1	0.729		Rani
Others			l			Ĺ
35717_at	ABCA8	ATP-binding cassette, subfamily A (ABC1), member 8	17q24	0.847	0.783	16
37394_at	C7	Complement component 7	5p13	0.791	0.656	
40767_at	TFPI	Tissue factor pathway inhibitor	2q31-q32.1	0.779	0.640	
41137_at	PPP1R12B	Protein phosphatase 1, regulatory (inhibitor) subunit 12B	1q32.1	0.768	0.631	
38122_at	SLC23A1	Solute carrier family 23 (nucleobase transporters), member 1	20p13	0.761	0.707	
32526_at	JAM3	Junctional adhesion molecule 3	11q25	0.749	0.631	
38119_at	GYPC	Glycophorin C (Gerbich blood group)	2q14-q21	0.747	0.669	
38634_at	RBP1	Retinol binding protein 1, cellular	3q23	0.745	0.677	
32109_at	FXYD1	FXYD domain containing ion transport regulator 1	19q13.1	0.744	0.670	
40496_at	C1S	Complement component 1, s subcomponent	12p13	0.734	0.617	
41138_at	MIC2	Antigen identified by monoclonal antibodies 12E7, F21 and O13	Xp22.32; Yp11.3	0.731	0.565	
40786_at	PPP2R5C	Protein phosphatase 2, regulatory subunit B (B56), gamma isoform	3p21	0.725	0.705	
35354_at	RPL3	Ribosomal protein L3	22q13	0.723	0.667	
36873_at	VLDLR	Very low density lipoprotein receptor	9p24	0.722	0.667	
Inknown						
40423_at	KIAA0903	KIAA0903 protein	2p13.3	0.844	0.705	
35742_at	LKAP	Limkain b1	16p13.2	0.844	0.785	14
39750_at	Unknown	_		0.796	0.708	
35645_at	Unknown	_			0.718	
38717_at	DKFZP586 A0522	DKFZP586A0522 protein	12q11		0.714 0.789	9
36867_at	Unknown	LOC92710	1q31.1	0.785	0.739	

Probe Set Name	Gene Symbol	Description	Cytogenetic Location	R1	R2	Rani
39852_at	TAHCCP1	Transactivated by hepatitis C virus core protein 1	13q13.1	0.783		Kan
40063_at	NDP52	Nuclear domain 10 protein	17q23.2	0.777	0.729	
41685_at	KIAA0752	KIAA0752 protein	5q35.3	0.777		
37446_at	KIAA0443		Xq22.1	0.771	+	2
36894_at	Unknown	_	22q12.3-13.1	0.768	0.613	
41273_at	Unknown	_	22412.0-10.1	0.766		
40861_at	MRGX	MORF-related gene X	Xq22		+	
35164_at	WFS1	Wolfram syndrome 1 (wolframin)	4p16	0.760 0.758	0.689	
39400_at	KIAA1055		15q24.1	0.758	0.604	
38113_at	SYNE-1	Synaptic nuclei expressed gene 1	6q25	0.754	0.634 0.681	
34760_at	KIAA0022	KIAA0022 gene product	2q24.2	0.749	0.699	
33690_at	Unknown			0.747		
41478_at	KIAA1043		22q12.1	0.745	0.565 0.653	
32076_at	DSCR1L1	Down syndrome critical region gene 1-like 1	6p12.3	0.741	0.653	
40853_at	ATP10D	ATPase, Class V, type 10D	4p12	0.740	0.047	
39714_at	SH3BGRL	SH3 domain binding glutamic acid-rich protein like	Xq13.3	0.738	0.647	
36577_at	MIG2	Mitogen Inducible 2	14q22.1	0.720	0.540	
38643_at	Unknown	_	14422.1	0.736	0.549	
38968_at	SH3BP5	SH3-domain binding protein 5 (BTK-associated)	3p24.3	0.735	0.714 0.683	
37743_at	FEZ1	Fasciculation and elongation protein zeta 1 (zygin I)	11q24.2	0.729	0.617	
32251_at	FLJ21174	Hypothetical protein FLJ21174	Xq22.1	0.728	0.615	
39743_at	FLJ20580		1p33	0.702	0.775	00+
36396_at	Unknown	_		0.702	0.775	20*
35173_at	DXS1283E		Xp22.3	0.617	0.785	15*
38394_at	KIAA0089		3p22.2		0.774	22*
40916 at	FLJ10097		Xq22.1-q22.3	0.500	0.790	8*

Note: Gene symbols in bold indicated genes detected with 2 separate probe sets. Absolute CC values are shown for expression levels analyzed in all 36 samples (R1) and in the 18 test samples only (R2). In each functional category, probe sets are listed by descending R1 values.

^{*}Indicates genes from the 28 classification set not ranked within the 100 highest R1 values.

Table 9. Full Set of 900 Genes Differentially Affected in Ovarian Cancer

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
1	41859_at	0.877	UST	6q24.3-q25.1
2	41685_at	0.871	KIAA0752	5q35.3
3	36160_s_at	0.846	PTPRN2	7q36
4	755_at	0.822	ITPR1	3p26-p25
5	38220_at	0.82	DPYD	1p22
6	32668_at	0.809	SSBP2	
7	37628_at	0.808	MAOB	5q14.1
8	38394_at	0.79	KIAA0089	Xp11.4-p11.3
9	38717_at	0.789	DKFZP586A0522	3p22.2
10	1761_at	0.789	PDGFRL	12q11
11	32618_at	0.786	BLVRA	8p22-p21.3
12	32145_at	0.786	ADD1	7p14-cen
13	34257_at	0.786	AIP1	7p16.3
14	40423_at	0.785	KIAA0903	7q21
15	36396_at	0.785	cDNA DKFZp586N	2p13.3
16	35717 at	0.783	ABCA8	4p16.3
17	41796 at	0.779	PLCL2	17q24
18	40916_at	0.777	Gene for hypothetical protein FLJ10097	3p24.3
19	1290 g at	0.776	GSTM5	
20	39743_at	0.775	FLJ20580	1p13.3
21	36073 at	0.774	NDN	1p33
22	35173 at	0.774	DXS1283E	15q11.2-q12
23	1897_at	0.77		Xp22.3
24	872 i at	0.77	TGFBR3	1p33-p32
25	38120 at	0.768	IRS1	2q36
26	1577 at	0.767	PKD2	4q21-q23
27	36948_at	0.766	AR	Xq11.2-q12
28	41449_at	0.762	CRI1	15q21.1-q21.2
29	40480_s_at	0.761	SGCE	7q21-q22
30	34842_at	0.759	FYN	6q21
31	41273_at	0.758	SNRPN	15q12
32	1396_at	0.756	EST	
33	38047_at	0.756	IGFBP5	2q33-q36
34	35738_at		RBPMS	8p12-p11
35	40876_at	0.755 0.754	HMGN4	6p21.3
36	35783_at		GYG	3q24-q25.1
37	37242_at	0.753	VAMP3	1p36.23
38	36917_at	0.753	MGC5149	16q12.2
39	37015_at	0.752	LAMA2	6q22-q23
40	32664_at	0.751	ALDH1A1	9q21.13
<u> </u>	02004_at	0.749	RNASE4	14q11.1

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
41	34772_at	0.748	CORO2B	15q22.2-q22.3°
42	38650_at	0.748	IGFBP5	2q33-q36
43	39025_at	0.746	TOM7	7p21.3
44	40961_at	0.745	SMARCA2	9p22.3
45	32777_at	0.743	WRB	21q22.3
46	39714_at	0.743	SH3BGRL	
47	35316_at	0.743	RAGA	Xq13.3
48	38318_at	0.741	FAM8A1	9p21.2
49	38802_at	0.739	PGRMC1	6p22-p23
50	36867_at	0.739	cDNA FLJ34019 fis	Xq22-q24
51	39852_at	0.738	TAHCCP1	12-10-1
52	35435_s_at	0.736	HADHSC	13q13.1
53	38439_at	0.736	NFE2L1	4q22-q26
54	1909_at	0.736	BCL2	17q21.3
55	33942_s_at	0.735	STXBP1	18q21.3
56	1640_at	0.734	ST13	9q34.1
57	227_g_at	0.733	PRKAR1A	22q13.2
58	2010_at	0.732	SKP1A	17q23-q24
59	40063 at	0.729	NDP52	5q31
60	38176_at	0.729	GNB5	17q23.2
61	39350_at	0.727	GPC3	15q15.3
62	39037 at	0.726	MLLT2	Xq26.1
63	851_s_at	0.725	IRS1	4q21
64	39556_at	0.725	SPTBN1	2q36
65	2039_s_at	0.723		2p21
66	41744_at	0.723	FYN	6q21
67	32695_at	0.722	OPTN	10p12.33
68	36915_at	0.72	HTATSF1 CTSO	Xq26.1-q27.2
69	38982_at	0.719		4q31-q32
70	1348_s_at	0.718	TERF2IP PCCA	16q22.3
71	39750_at	0.718		13q32
72	37643_at	0.716	EST	
73	39376_at	0.715	TNFRSF6	10q24.1
74	38695 at	0.715	Nbak2	1p11.2
75	35645_at	0.714	NDUFS4	5q11.1
76	38643_at	0.714	cDNA DKFZp586G1520	
77	38375_at	0.713	LOC92689	4p15.1
78	32076_at	0.713	ESD	13q14.1-q14.2
79	38669 at	0.712	DSCR1L1	6p12.3
80	37373_at	0.712	SLK	10q25.1
81	37532_at	0.71	UGP2	2p14-p13
82	39165_at	0.71	ACADM	1p31
83	34163_g_at	0.709	NIFU	12q24.1
	g_at	0.708	RBPMS	8p12-p11

0.4	Probe Sets	СС	Gene Symbol	Cytogenetic Location
84	35742_at	0.708	LKAP	16p13.13
85	40607_at	0.708	DPYSL2	8p22-p21
86	41738_at	0.707	CALD1	7q33
87	38122_at	0.707	SLC23A1	20p13
88	32747_at	0.706	ALDH2	12q24.2
89	40786_at	0.705	PPP2R5C	3p21
90	33198_at	0.705	BART1	16q13
91	38745_at	0.702	LIPA	10q23.2-q23.3
92	39243_s_at	0.702	PSIP2	9p22.1
93	33936_at	0.702	GALC	14q31
94	39397_at	0.7	NR2F2	15q26
95	41147_at	0.699	MGC4276	9q22.1
96	34760_at	0.699	KIAA0022	2q24.2
97	39674_r_at	0.699	ECM2	9q22.3
98	39401_at	0.699	IMAGE clone 3460701	1
99	40488_at	0.698	DMD	Xp21.2
100	39673_i_at	0.698	ECM2	9q22.3
101	39864_at	0.698	CIRBP	19p13.3
102	1127_at	0.697	RPS6KA1	3
103	40674_s_at	0.697	HOXC6	12q13.3
104	36975_at	0.696	MGC8721	8p12
105	41049_at	0.694	IRS1	2q36
106	32593_at	0.692	KIAA0084	3p24.3
107	1629_s_at	0.692	PTPN13	4q21.3
108	36620_at	0.692	SOD1	21q22.11
109	32764_at	0.691	PGCP	8q22.2
110	35785_at	0.691	GABARAPL1	12p13.1
111	39681_at	0.69	ZNF145	11q23.1
112	39438_at	0.69	CREBL2	12p13
113	32778_at	0.689	ITPR1	3p26-p25
114	40861_at	0.689	MRGX	Xq22
115	34990_at	0.688	SETBP1	18q21.1
116	1736_at	0.688	IGFBP6	12q13
117	41771_g_at	0.687	MAOA	Xp11.4-p11.3
118	31852_at	0.687	DKFZP564O043	7p21
119	36542_at	0.686	SLC9A6	Xq26.3
120	37379_at	0.684	SF3A3	1p35.2
121	38968_at	0.683	SH3BP5	3p24.3
122	39691_at	0.683	SH3GLB1	1p22
123	38211_at	0.681	ZNF288	3q13.2
124	38113_at	0.681	SYNE-1	6q25
125	40601_at	0.68	BBP	1p32.1
126	2092_s_at	0.679	SPP1	4q21-q25

127 128 129 130 131 132 133	33830_at 34637_f_at 38634_at	0.679	Gene Symbol	Anntin-
129 130 131 132			HSOBRGRP	Location
130 131 132	38634 at	0.678	ADH1A	4=24 = 20
131 132		0.677	RBP1	4q21-q23
132	35643_at	0.677	NUCB2	3q23
	41000_at	0.677	CHES1	11p15.1-p14
133	37828_at	0.677	FLJ11220	14q24.3-q31
	35163_at	0.676	KIAA1041	1p11.2
134	36627_at	0.675	SPARCL1	1pter-q31.3
135	853_at	0.674	NFE2L2	4q21.3
136	34356_at	0.673	SURB7	2q31
137	38013_at	0.672	ATIP1	12p12.3
138	38664_at	0.672	CFDP1	8p22
139	32087_at	0.672	HSF2	16q22.2-q22.3
140	38768_at	0.671	HADHSC	6q22.33
141	34877_at	0.671	JAK1	4q22-q26
142	1090_f_at	0.671	?	1p32.3-p31.3
143	32109_at	0.67	FXYD1	
144	34859_at	0.669	MAGED2	19q13.1
145	38119_at	0.669	GYPC	Xp11.4-p11.1
146	31510_s_at	0.668	H3F3B	2q14-q21
147	1058_at	0.668	WASF3	17q25
148	40570_at	0.668	FOXO1A	13q12
149	39091_at	0.668	JWA	13q14.1
150	32057_at	0.667	P37NB	3p14
151	31993_f_at	0.667	EST	7q11.22
152	35354_at	0.667	SYNGR1	
153	40775_at	0.666	ITM2A	22q13.1
154	40140_at	0.666	ZFP103	Xq13.3-Xq21.2
55	37406_at	0.665	MAPRE2	2p11.2
56	38685_at	0.665	STX12	18q12.1
57	34363_at	0.665		1p35-34.1
58	33351_at	0.664	SEPP1	5q31
59	41655_at	0.664	GC20	3p21.33
60	39072_at	0.662	MID2	Xq22
61	36544_at	0.662	MXI1	10q24-q25
62	32542 at	0.662	clone	IMAGE:3610040
63	35767_at	0.662	FHL1	Xq26
64	34355_at	0.662	GABARAPL2	16q22.3-q24.1
65	1578_g_at	0.661	MECP2	Xq28
66	41656_at	0.661	AR	Xq11.2-q12
67	34169_s_at	0.661	NMT2	10p12.33-p12.32
68	41662_at	0.661	OCRL	Xq25-q26.1
69	40203_at	0.66	DKFZP566B183 SUI1	12p13.32

470	Probe Sets	СС	Gene Symbol	Cytogenetic Location
170	39315_at	0.659	ANGPT1	8q22.3-q23
171	226_at	0.657	PRKAR1A	17q23-q24
172	33878_at	0.657	FLJ13612	2q36.1
173	38408_at	0.656	TM4SF2	Xq11.4
174	35704_at	0.656	HRASLS3	11q13.1
175	37394_at	0.656	C7	5p13
176	39829_at	0.656	ARL7	
177	40770_f_at	0.655	HNRPDL	2q37.2
178	35846_at	0.655	THRA	4q13-q21
179	176_at	0.654	PPP2R5C	17q11.2
180	36690_at	0.654	NR3C1	3p21
181	39351_at	0.653	CD59	5q31
182	41478_at	0.653	KIAA1043	11p13
183	950_at	0.653	TLOC1	22q12.1
184	35359_at	0.653	PUM2	3q26.2-q27
185	1135_at	0.652	GPRK5	2p22-p21
186	36091_at	0.652	SCAP2	10q24-qter
187	2003_s_at	0.652	MSH6	7p21-p15
188	35246_at	0.652		2p16
189	40576 f at	0.652	TYRO3	15q15.1-q21.1
190	37599_at	0.652	HNRPDL	4q13-q21
191	35209_at	0.652	AOX1	2q33
192	38916 at	0.651	KIAA0766	3p22.1
193	33126 at	0.651	CXorf6	Xq28
194	37706 at	0.65	AD-017	3p21.31
195	40077_at	0.65	GLG1	16q22-q23
196	37294_at	0.649	ACO1	9p22-p13
197	32597_at	0.648	BTG1	12q22
198	32768_at	0.648	RBL2	16q12.2
199	36543_at	0.648	FLJ21007	13q21.1
200	37736 at		F3	1p22-p21
201	40853_at	0.647 0.647	PCMT1	6q24-q25
202	41830_at		ATP10D	4p12
203	37197_s at	0.647	KIAA0494	1pter-p22.1
204	37205_at	0.647	DKFZP564A033	2
205	40617_at	0.645	FBXL7	5p15.1
206	35681_r_at	0.645	SAH	16p13.11
207	41594_at	0.644	ZFHX1B	2q22
208	192_at	0.644	JAK1	1p32.3-p31.3
209	654_at	0.643	TAF7	5q31
210		0.643	MXI1	10q24-q25
211	41742_s_at	0.642	OPTN	10p12.33
212	32676_at	0.642	ALDH6A1	14q24.3
- 12	35752_s_at	0.642	PROS1	3p11-q11.2

	Probe Sets	CC	Gene Symbol	Cytogenetic Location
213	34774_at	0.642	PPT1	1p32
214	38892_at	0.642	KIAA0240	6p21.1
215	659_g_at	0.641	THBS2	
216	41288_at	0.641	CALM1	6q27
217	35955_at	0.64	?	14q24-q31
218	924_s_at	0.64	PPP2CB	9n12 n14 0
219	39360_at	0.64	SNX3	8p12-p11.2
220	40767_at	0.64	TFPI	6q22.1
221	237_s_at	0.639	PPP2CA	2q31-q32.1
222	35782_at	0.638	KIAA0657	5q23-q31
223	1678_g_at	0.638	IGFBP5	2q36.3
224	41505_r_at	0.638	MAF	2q33-q36
225	39715_at	0.638	cDNA FLJ31079 fis	16q22-q23
226	34198_at	0.638	PTPN13	4-010
227	34821_at	0.638	DKFZP586D0623	4q21.3
228	33868_at	0.637	dJ222E13.2	6q23.1-q24.1
229	2086_s_at	0.637	TYRO3	22q13.2
230	1147_at	0.637	NR2F1	15q15.1-q21.1
231	40145_at	0.636	TOP2A	5q14
232	40211_at	0.636	HNRPA1	17q21-q22
233	37617_at	0.636	KIAA1128	12q13.1
234	36489_at	0.636	PRPS1	10q23.31
235	36488_at	0.636	EGFL5	Xq21-q27
236	33443 at	0.635	TDE1L	9q32-q33.3
237	39369 at	0.635	KIAA0935	6q22.32
238	36894_at	0.634	CBX7	4p16.1
239	35234_at	0.634	RECK	22q13.1
240	39400_at	0.634		9p13-p12
241	38074_at	0.634	KIAA1055 AP3S1	15q24.1
242	34803_at	0.633		5q22
243	39441_at	0.633	USP12	5q33-q34
244	36873 at	0.633	LANCL1	2q33-q35
245	38985_at	0.633	VLDLR	9p24
246	33911_at	0.633	LEPROTL1	8p21.2-p21.1
247	41638_at	0.633	cDNA DKFZp564P116	
248	41277_at	0.632	KIAA0073	5q12.3
249	38342_at	0.632	SAP18	13q11
250	35754_at	0.632	KIAA0239	5q31.1
251	32526_at	0.631	TMP21	14q24.3
252	41137_at	0.631	JAM3	11q25
253	33857_at	0.63	PPP1R12B	1q32.1
254	871_s_at	0.63	p47	20p13
255	40399_r_at	0.63	HLF	17q22
		0.00	MEOX2	7p22.1-p21.3

050	Probe Sets	cc	Gene Symbol	Cytogenetic Location
256	39428_at	0.63	LNK	12q24
257	31872_at	0.63	SS18	18q11.2
258	41634_at	0.629	KIAA0256	15q15.1
259	39731_at	0.629	RBMX	Xq26
260	33136_at	0.628	?	7,420
261	38353_at	0.628	TUBGCP3	13q34
262	32708_g_at	0.627	KATNA1	6q25.1
263	40994_at	0.627	GPRK5	10q24-qter
264	33222_at	0.626	FZD7	2q33
265	1327_s_at	0.626	MAP3K5	6q22.33
266	40039_g_at	0.625	ST7	
267	35228_at	0.624	CPT1B	7q31.1-q31.3
268	38693_at	0.623	ATP5L	22q13.33
269	39431_at	0.622	NPEPPS	3q27
270	35784_at	0.622	VAMP3	17q21
271	538_at	0.622	CD34	1p36.23
272	36119_at	0.622	CAV1	1q32
273	218_at	0.621	IK	7q31.1
274	35164_at	0.621	WFS1	5q31.3
275	39856_at	0.62	RPL36AL	4p16
276	41529_g_at	0.62	cDNA DKFZp434M162	14q21
277	37715_at	0.619	SNW1	44-04-0
278	33302_at	0.619	SSPN	14q24.3
279	1731_at	0.619	PDGFRA	12p11.2
280	35741_at	0.619	PIP5K2B	4q11-q13
281	35356_at	0.619	MGC9651	17q12
282	39582_at	0.618	cDNA DKFZp586D1122	4p16.1
283	911_s_at	0.618	CALM2	
284	41620_at	0.618	KIAA0716	2p21
285	33249_at	0.618	NR3C2	7q21.13
286	40841_at	0.618	TACC1	4q31.1
287	37595_at	0.618	cDNA DKFZp547E184	8p11
288	37958_at	0.617	BCMP1	V 44 4
289	37748_at	0.617	KIAA0232	Xp11.4
290	40496_at	0.617	C1S	4p16.1
291	37743_at	0.617	FEZ1	12p13
292	35335_at	0.616	ROCK2	11q24.2
293	33862_at	0.615	PPAP2B	2p24
294	32251_at	0.615	FLJ21174	1pter-p22.1
295	37486_f_at	0.615		Xq22.1
296	38101_at	0.615	MEIS3	17p11.2
297	40213 at	0.615	BDG-29	16q24.2
298	32851_at	0.614	SMARCA1	Xq25
		V.V.17	CUGBP2	10p13

200	Probe Sets	СС	Gene Symbol	Cytogenetic Location
299	1211_s_at	0.614	CRADD	12q21.33-q23.1
300	34819_at	0.614	CD164	6q21
301	34808_at	0.614	KIAA0999	11q23.3
302	37446_at	0.613	KIAA0443	Xq22.1
303	32792_at	0.612	P29	1p36.13-p35.1
304	36650_at	0.612	CCND2	12p13
305	38438_at	0.612	NFKB1	4q24
306	39701_at	0.611	PEG3	
307	34215_at	0.611	DXYS155E	19q13.4
308	32259_at	0.611	EZH1	Xp22.32
309	40839_at	0.611	UBL3	17q21.1-q21.3
310	39055_at	0.61	SRI	13q12-q13
311	40508_at	0.61	GSTA4	7q21.1
312	37985_at	0.608	LMNB1	6p12.1
313	33799_at	0.607	SIAH2	5q23.3-q31.1
314	37638_at	0.607	DOCK1	3q25
315	33140_at	0.607	B3GNT6	10q26.13-q26.3
316	40202_at	0.606	BTEB1	11q12.1
317	39033_at	0.606	C1orf8	9q13
318	34789_at	0.606	SERPINB6	1p36-p31
319	33817_at	0.606	HNRPA3	6p25
320	1719_at	0.606	MSH3	10q11.1
321	38923_at	0.605		5q11-q12
322	41338_at	0.605	FRG1 AES	4q35
323	35751 at	0.605		19p13.3
324	1377_at	0.605	SDHB	1p36.1-p35
325	33123 at	0.605	NFKB1	4q24
326	933_f_at	0.604	HRIHFB2206	16q22.1
327	32696 at	0.604	ZNF91	19p13.1-p12
328	1323 at	0.604	PBX3	9q33-q34
329	34349 at	0.603	UBB	17p12-p11.2
330	37731 at	0.602	SEC63L	6q21
331	37315_f_at	0.602	EPS15	1p32
332	36695 at	0.602	C14orf11	14q12
333	31867_at	0.602	cDNA FLJ40364 fis	
334	31944_at	0.601	? ?	3q13.12
335	1070 at	0.601	TULP3	12p13.3
336	38254_at	0.601	GTF2B	1p22-p21
337	37710_at	0.601	KIAA0882	4q31.1
338	33343_at		MEF2C	5q14
339	32779_s_at	0.6	RNF14	5q23.3-q31.1
340	33865_at	0.599	ITPR1	3p26-p25
341	31508_at	0.599	BS69	10p14
	01000_at	0.599	TXNIP	1q12

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
342	40419_at	0.599	STOM	9q34.1
343	33915_at	0.599	FLJ23027	
344	38364_at	0.599	BCE-1	14q32.32
345	38050_at	0.599	BTF	9q21.32
346	38046_at	0.599	IK	6q22-q23
347	38820_at	0.598	15-Sep	5q31.3
348	32713_at	0.598	GOLGA1	1p31
349	32107_at	0.598	C21orf25	9q34.11
350	38727_at	0.597	SDNSF	21q22.3
351	38839_at	0.597	PFN2	2p21
352	38033_at	0.597	DKFZP564M1416	3q25.1-q25.2
353	729_i_at	0.597	MUC3A	8q11.22
354	1507_s_at	0.596	EDNRA	7q22
355	33103_s_at	0.596	ADD3	4q31.21
356	39436_at	0.596	BNIP3L	10q24.2-q24.3
357	39097_at	0.595	SON	8p21
358	39294_at	0.595	NR2F1	21q22.11
359	41333_at	0.595	CENTB2	5q14
360	38116_at	0.595	KIAA0101	3q29
361	32780_at	0.594	BPAG1	15q22.1
362	41385_at	0.594	EPB41L3	6p12-p11
363	38400_at	0.594	DKFZP434D1335	18p11.32
364	32841_at	0.594	ZNF9	19q13.12
365	41420_at	0.593	IGFBP5	3q21
366	34860_g_at	0.593		2q33-q36
367	38415_at	0.593	MAGED2	Xp11.4-p11.1
368	38317_at	0.593	PTP4A2 TCEAL1	1p35
369	39939_at	0.593	COL4A6	Xq22.1
370	41405_at	0.592		Xq22
371	36980_at	0.592	SFRP4	7p14.1
372	39147_g_at	0.592	PROL2	6q16.1
373	32700_at	0.592	ATRX	Xq13.1-q21.1
374	39986_at	0.591	GBP2	1p22.1
375	38690_at	0.591	DKFZP586D0919	12q13.2
376	1848_at	0.591	C3orf4 RAP1A	3p11-q11
377	36636_at	0.59		1p13.3
378	37230_at	0.59	OAT	10q26
79	37107 at	0.59	KIAA0469	1p36.23
80	33870_at	0.589	PPM1D	17q23.1
81	33229_at	0.589	C5orf7	5q31
82	36159_s_at	0.589	RPS6KA3	Xp22.2-p22.1
83	32337_at	0.589	PRNP	20pter-p12
84	508_at	0.589	RPL21 SUPT4H1	10q26.13

	Probe Sets	CC	Gene Symbol	Cytogenetic Location
385	41424_at	0.588	PON3	7q21.3
386	. 32667_at	0.588	COL4A5	Xq22
387	39979_at	0.588	F10	13q34
388	34753_at	0.587	SYBL1	Xq28
389	39082_at	0.587	ANXA6	5q32-q34
390	39989_at	0.587	RAGB	Xp11.21
391	33235_at	0.587	NAV3	AP11,21
392	36825_at	0.587	TRIM22	11=15
393	41747_s_at	0.587	MEF2A	11p15
394	38279_at	0.587	GNAZ	15q26
395	32511_at	0.586	cDNA FLJ37094 fis	22q11.22
396	32805_at	0.586	AKR1C	10m45 m44
397	1529_at	0.586	13CDNA73	10p15-p14
398	34570_at	0.586	RPS27A	13q12.3
399	31932_f_at	0.586	BTF3	2p16
400	35055_at	0.586	BTF3	5q13.1
401	32822_at	0.585	SLC25A4	5q13.3
402	37131_at	0.585	KLK8	4q35
403	35318_at	0.585	KIAA0475	19q13.3-q13.4
404	36526 at	0.584	EXTL2	1p36.13-q41
405	38837_at	0.584	DJ971N18.2	1p21
406	36492_at	0.583	PSMD9	20p12
407	36515_at	0.583	GNE	12q24.31-q24.32
408	35737_at	0.583	HMGN4	9p11.2
409	32535_at	0.582	FBN1	6p21.3
410	39838_at	0.582	CLASP1	15q21.1
411	1307 at	0.582	XPA	2q21.3
412	40971 at	0.581	KIAA0229	9q22.3
413	1319_at	0.58	DDR2	6p21.2
414	33892_at	0.579	PKP2	1q12-q23
415	33800_at	0.579	ADCY9	12p11
416	39790 at	0.579	ATP2A2	16p13.3
417	37725_at	0.578	PPP1CC	12q23-q24.1
418	38711_at	0.578	CLASP2	12q24.1-q24.2
419	32662_at	0.578	KIAA0170	3p22.2-p22.1
120	32582_at	0.578	MYH11	6pter-p21.31
121	41013_at	0.578	cDNA DKFZp586M2022	16p13.13-p13.12
122	32743_at	0.577	KIAA0453	4-20.04 22.11
123	35325_at	0.577	RAB14	1p36.31-p36.11
124	36626_at	0.577	HSD17B4	9q32-q34.11
125	39038_at	0.576	FBLN5	5q21
126	32160_at	0.576	SIAH1	14q32.1
127	1501_at	0.576	IGF1	16q12

	Probe Sets	СС	Gene Symbol	Cytogenetic Location
428	32244_at	0.576	KIAA0737	14q11.1
429	450_g_at	0.576	CGR19	14q22.1
430	39083_at	0.575	UBE2D3	4q22.2
431	36596_r_at	0.575	GATM	15q14
432	35276_at	0.575	CLDN4	7q11.23
433	36578_at	0.575	BIRC2	11q22
434	32153_s_at	0.575	?	7.75
435	33847_s_at	0.574	CDKN1B	12p13.1-p12
436	40432_at	0.573	GNS	12q14
437	39346_at	0.573	KHDRBS1	1p32
438	38581_at	0.573	GNAQ	9q21
439	37604_at	0.573	HNMT	2q21.3
440	41691_at	0.572	KIAA0794	3q29
441	201_s_at	0.571	B2M	15q21-q22.2
442	41600_at	0.571	PA2G4	12q13
443	39762_at	0.571	ZNF262	1p32-p34
444	32099_at	0.57	KIAA0138	19p13.3
445	41701_at	0.57	C6	5p13
446	39150_at	0.569	RNF11	1pter-p22.1
447	36474_at	0.569	KIAA0776	6q16.3
448	39685_at	0.568	E46L	22q13.31
449	37391_at	0.567	CTSL	9q21-q22
450	35843_at	0.567	NEK9	14q24.2
451	41136_s_at	0.567	APP	21q21.3
452	35203_at	0.566	MORF	10q22.2
453	34162_at	0.566	RBPMS	8p12-p11
454	35811_at	0.566	RNF13	3q25.1
455	39110_at	0.566	EIF4B	12q13.13
456	35331_at	0.565	CTNNAL1	9q31.2
457	39663_at	0.565	MAN2A1	5q21-q22
458	41138_at	0.565	MIC2	Xp22.32
459	31936_s_at	0.565	LKAP	16p13.2
460	38470_i_at	0.565	APPBP2	17q21-q23
461	33690_at	0.565	cDNA DKFZp434A202	17421-420
462	39846_at	0.564	CTSF	11q13
463	39109_at	0.564	C20orf1	20q11.2
464	34372_at	0.564	UREB1	Xp11.2
465	32521_at	0.563	SFRP1	8p12-p11.1
466	35936_g_at	0.563	CPT1B	22q13.33
467	40698_at	0.563	CLECSF2	12p13-p12
468	324_f_at	0.562	BTF3	
469	333_s_at	0.562	RBMS1	5q13.3
470	41606_at	0.562	DRG1	2q24.2 22q12.2

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
471	40281_at	0.562	NEDD5	2q37
472	32240_at	0.562	PSMD5	9g33.3
473	33441_at	0.561	TCTA	3p21
474	39170_at	0.561	cDNA DKFZp564J0323	
475	35366_at	0.56	NID	1q43
476	41271_at	0.56	SLC7A8	14q11.2
477	1530 <u>_g</u> at	0.56	13CDNA73	13q12.3
478	33278_at	0.56	SAH	16p13.11
479	38754_at	0.56	P8	16p11.2
480	37891_at	0.559	cDNA DKFZp586F1822	10011.2
481	36727_at	0.558	?	
482	32506_at	0.558	TBC1D1	4p14
483	37908_at	0.557	GNG11	7q31-q32
484	39117_at	0.557	PHF2	9q22.31
485	34320_at	0.557	PTRF	17q21.2
486	36791_g_at	0.556	TPM1	15q22.1
487	539_at	0.556	RYK	3q22
488	40825_at	. 0.556	MAPRE3	2p23.3-p23.1
489	32169_at	0.556	FBXO21	12q24.21
490	38782_at	0.555	GTF2H1	11p15.1-p14
491	1677_at	0.555	IGFBP5	2q33-q36
492	33899_at	0.555	ALDH9A1	1q23.1
493	40843_at	0.555	ICAP-1A	2p25.2
494	32172_at	0.554	SHARP	1p36.33-p36.11
495	35303_at	0.554	INSIG1	7q36
496	34235_at	0.554	GPR116	6p12.3
497	818_s_at	0.554	ATRX	Xq13.1-q21.1
498	33113_at	0.554	CITED2	6q23.3
499	34287_at	0.553	C21orf80	21q22.3
500	33418_at	0.553	cDNA DKFZp434A012	21422.3
501	36790_at	0.552	TPM1	15q22.1
502	40811_at	0.552	COASTER	6p11.1
503	41739_s_at	0.552	CALD1	
504	509_at	0.551	MADH4	7q33
505	37598_at	0.551	RASSF2	18q21.1 20pter-p12.1
506	36629_at	0.55	DSIPI	Xq22.3
507	41462_at	0.55	SNX2	
508	36032_at	0.55	?	5q23
509	39045_at	0.549	FLJ21432	12012 24
510	36577_at	0.549	MIG2	12p13.31
511	39557_at	0.549	cDNA FLJ31246 fis	14q22.1
512	33819_at	0.549	LDHB	10m10 0 = 10 1
513	38610_s_at	0.549	KRT10	12p12.2-p12.1 17q21-q23

	Probe Sets	CC	Gene Symbol	Cytogenetic Location
514	890_at	0.548	UBE2A	Xq24-q25
515	32730_at	0.548	KIAA1750	8q22.1
516	1252_at	0.548	DP1	5q22-q23
517	32239_at	0.548	MATN2	8q22
518	33405_at	0.548	CAP2	6p22.2
519	37266_at	0.548	ZNF32	10q22-q25
520	39686_g_at	0.548	E46L	22q13.31
521	40155_at	0.547	ABLIM1	10q25
522	35988_i_at	0.547	MYST1	16p11.1
523	34314_at	0.547	RRM1	11p15.5
524	35213_at	0.546	WBP4	13q13.3
525	37676_at	0.546	PDE8A	15q25.1
526	39545_at	0.546	CDKN1C	11p15.5
527	37708_r_at	0.545	ADH5	4q21-q25
528	41686_s_at	0.545	KIAA0752	5q35.3
529	202_at	0.545	HSF2	6q22.33
530	33399_at	0.544	?	0422.33
531	39380_at	0.544	GTAR	4q13.3
532	35166_at	0.544	DSCR3	
533	39693_at	0.544	MGC5508	21q22.2
534	149_at	0.544	DDX39	11q13.1
535	40522_at	0.544	GLUL	19p13.13
536	40831_at	0.544	DKFZP586B0923	1q31
537	32253_at	0.544	RERE	10q22.2
538	1836_at	0.543	CCNI	1p36.1-p36.2
539	36991_at	0.543	SFRS4	4q13.3
540	171_at	0.543	VBP1	1p35.2
541	38508_s_at	0.542	CREBL1	Xq28
542	33856_at	0.542	CXX1	6p21.3
543	36118_at	0.542	NCOA1	Xq26
544	32038_s_at	0.542	SRP46	2p23
545	36964_at	0.542	MBTPS1	11q22
546	37005_at	0.541	NBL1	16q24
547	34259_at	0.541	KIAA0664	1p36.3-p36.2
548	1725_s_at	0.541	Oncogene E6-Ap, Papillomavirus	17p13.3
549	34344_at	0.541	IKBKAP	0=24
550	33303_at	0.54	SSPN	9q34 12m14 2
551	32215_i_at	0.54	RHOBTB3	12p11.2
552	34675_at	0.54	cDNA FLJ13555 fis	5q21.2
553	718_at	0.54	PRSS11	40-00-5
554	35168_f_at	0.54	COL16A1	10q26.3
555	33875 at	0.539	ATP6V0E	1p35-p34 5q35.2

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
556	32548_at	0.539	TEBP	12
557	38980_at	0.539	MAP3K7IP2	6q25.1-q25.3
558	40998_at	0.539	TNRC11	
559	31907_at	0.539	RPL14	Xq13
560	41770_at	0.539	MAOA	3p22-p21.2
561	31605_at	0.539	LOC171220	Xp11.4-p11.3
562	34684_at	0.538	RECQL	12p13
563	41872_at	0.538	DFNA5	12p12
564	34853_at	0.538	FLRT2	7p15
565	40467_at	0.537	SDHD	14q24-q32
566	39405_at	0.537	KIAA0266	11q23
567	36925_at	0.537	HSPA2	13q12.2-q13.3
568	32564_at	0.537	SEC61B	14q24.1
569	33431_at	0.536	FMOD	9q22.32-q31.3
570	37248_at	0.536	CPZ	1q32
571	39931_at	0.535	DYRK3	4p16.1
572	35753_at	0.535	PRPF8	1q32
573	41713_at	0.535	ZNF36	17p13.3
574	32171_at	0.535	EIF5	7q21.3-q22.1
575	1675_at	0.535	RASA1	14q32.33
576	35644_at	0.535	HEPH	5q13.3
577	32569_at	0.534		Xq11-q12
578	34370_at	0.533	PAFAH1B1 ARCN1	17p13.3
579	38011 at	0.533		11q23.3
580	41194_at	0.533	C19orf2 SRP14	19q12
581	39509 at	0.533		15q22
582	32143_at	0.532	PDCD4	10q24
583	40634 at	0.532	OSR2	8q22.1
584	34255_at	0.531	NAP1L1	12q14.1
585	1101_at	0.531	DGAT1	8qter
586	35999_r_at	0.531	APBB1	11p15
587	40083 at	0.531	KIAA0781	11q23.2
588	663_at	0.531	KIAA0625	9q34.3
589	39884_g_at	0.531	EIF1A	X
590	1467_at	0.531	HSA9761	5q11-q14
591	31866 at	0.529	EPS8	12q23-q24
92	1512_at	0.529	PD2	19q13.1
93	39897_at	0.529	DYRK1A	21q22.13
94	38385_at	0.529	KIAA1966	4q13.1
95	32170_g_at	0.529	DSTN	20p11.23
96	1850_at	0.529	FBXO21	12q24.21
97	39366_at	0.529	MLH1	3p21.3
98	2062_at	0.529	PPP1R3C	10q23-q24
		0.020	IGFBP7	4q12

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
599	32765_f_at	0.528	PGCP	8q22.2
600	38035_at	0.528	MTMR6	13q12
601	37352_at	0.528	SP100	2q36.1
602	36169_at	0.528	NDUFA1	Xq24
603	37707_i_at	0.528	ADH5	4q21-q25
604	41743_i_at	0.528	OPTN	10p12.33
605	34890_at	0.527	ATP6V1A1	3q13.31
606	38351_at	0.527	cDNA DKFZp586L0120	0910.01
607	38990_at	0.526	ICK	6p12.3-p11.2
608	37389_at	0.526	SMAP	11p15.1
609	34445_at	0.526	KIAA0471	1q24-q25
610	40859_at	0.526	FLJ11806	14q31.3
611	37029_at	0.526	ATP5O	21q22.11
612	41490_at	0.525	PRPS2	Xp22.3-p22.2
613	39687_at	0.525	E46L	22q13.31
614	35247_at	0.525	SNAPC5	22410.51
615	34417_at	0.525	cDNA DKFZp586E1120	
616	40105_at	0.524	MUT	6p21
617	41379_at	0.524	SMC5	9q21.12
618	38059_g_at	0.524	DPT	1q12-q23
619	39517_at	0.524	HTGN29	5q31.1
620	38743_f_at	0.524	RAF1	3p25
621	41746_at	0.523	NHP2L1	22q13.2-q13.31
622	507_s_at	0.523	ELF2	
623	36423_at	0.523	P8	4q28 16p11.2
624	40988_at	0.522	YME1L1	
625	34680_s_at	0.521	KIAA0107	10p14 3p14.3
626	40962_s_at	0.521	SMARCA2	9p22.3
627	36792_at	0.521	TPM1	15q22.1
628	40191_s_at	0.52	KIAA0582	2p14
629	37367_at	0.52	ATP6V1E1	
630	35221_at	0.52	PURA	22q11.1 5q31
631	38649_at	0.52	KIAA0970	13q14.11
632	34740_at	0.52	FOXO3A	6q21
633	41300_s_at	0.519	ITM2B	13q14.3
634	40239_g_at	0.519	MGC35048	16p13.13
635	36829_at	0.518	PER1	17p13.1-17p12
636	869_at	0.518	GTF2A2	15q21.2
637	32611_at	0.518	PBP	12q24.22
638	37672_at	0.518	USP7	16p13.3
639	36533_at	0.517	PTGIS	20q13.11-q13.13
640	40438_at	0.517	PPP1R12A	12q15-q21
641	39118_at	0.517	DNAJA1	9p13-p12

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
642	39555_at	0.517	ING1L	4q35.1
643	38518_at	0.517	SCML2	Xp22
644	37027_at	0.516	AHNAK	11q12-q13
645	40260_g_at	0.516	RBM9	22q13.1
646	147_at	0.516	TSG101	11p15
647	37616_at	0.516	AUH	9q22.33
648	39809_at	0.516	HBP1	7q31.1
649	32119_at	0.515	cDNA DKFZp586B211	7457.1
650	35730_at	0.515	ADH1B	4q21-q23
651	36095_at	0.513	CLIPR-59	19q13.13
652	38654_at	0.513	HNRPU	
653	41768_at	0.513	PRKAR1A	1q43 17q23-q24
654	38627_at	0.512	HLF	
655	487_g_at	0.512	CASP9	17q22
656	33244_at	0.512	CHN2	1p36.3-p36.1
657	38724_at	0.512	KIAA0515	7p15.3
658	39740_g_at	0.512	NACA	9q34.2
659	33850 at	0.512	MAP4	12q23-q24.1
660	35304_at	0.511	RAB6A	3p21
661	36330_at	0.511	CCBL1	11q13.3
662	33240 at	0.511	SEMACAP3	9q34.13
663	32745_at	0.511	MRPL40	3p13
664	274 at	0.51	ZNF148	22q11.21
665	34792_at	0.51	AHCYL1	3q21
666	34781 at	0.509	DCTN6	1p12
667	38626_at	0.509	KIAA0399	8p12-p11
668	38812_at	0.509	LAMB2	17p13.3
669	35736_at	0.508	GRINL1A	3p21
670	37359 at	0.507	KIAA0102	15q22.1
671	1873_at	0.507	XPC	11q13.3
672	35258 f at	0.507	SFRS2IP	3p25
673	40854_at	0.506	UQCRC2	12p11.21
674	40064_at	0.506	ALS2CR3	16p12
675	37407_s_at	0.506	MYH11	2q33
676	33444_at	0.505	M17S2	16p13.13-p13.12
677	38826_at	0.505	6-Sep	17q21.1
678	40832_s_at	0.505	LAP1B	Xq24
679	1195_s_at	0.505	ICAP-1A	1q24.2
680	35142_at	0.504	DKFZP564D172	2p25.2
681	38479_at	0.504	ANP32B	5q14.3
682	37025_at	0.504		9q22.32
		U.UU-T	PIG7	16p13.3-p12

	Probe Sets	CC	Gene Symbol	Cytogenetic Location
683	969_s_at	0.503	USP9X	Xp11.4
684	39739_at	0.502	NACA	12q23-q24.1
685	41195_at	0.502	LPP	3q27-q28
686	32576_at	0.502	EIF3S5	11
687	41242_at	0.502	UAP1	1q23.1
688	35301_at	0.502	cDNA DKFZp564E2222	1920.1
689	33380_at	0.501	POLS	5p15
690	37221_at	0.501	PRKAR2B	7q22-q31.1
691	33916_at	0.501	NISCH	3p21.1
692	37895_at	0.5	SLC35A1	6q16.1
693	1120_at	0.5	GSTM3	1p13.3
694	31463_s_at	0.5	?	1013.3
695	36899_at	0.499	SATB1	3p23
696	897_at	0.497	PKD1	16p13.3
697	41174_at	0.497	RANBP2L1	2q12.3
398	38106_at	0.497	YR-29	
599	38673_s_at	0.497	CDKN1C	5q13.3-q14.1
700	41400_at	0.497	TK1	11p15.5
701	41283_at	0.496	HNRPH3	17q23.2-q25.3
702	33835_at	0.496	KIAA0721	10q22
703	34359_at	0.496	CGI-130	6q22.31
704	38875_r_at	0.495	GREB1	6q13-q24.3
705	40096_at	0.495	ATP5A1	2p25.1
706	37529_at	0.494	CACNA1H	18q12-q21
707	39418_at	0.493	DKFZP564M182	16p13.3
708	31897_at	0.493	DOC1	16p13.3
709	37381_g_at	0.493	GTF2B	3q12.3
10	40280_at	0.492	B7	1p22-p21
11	40136_at	0.492	KIAA0676	12p13
12	506_s_at	0.492	STAT5A	5q35.3
13	35812_at	0.492	TRN-SR	17q11.2
14	41853_at	0.491	PRPSAP2	7q31.1
15	37022_at	0.491	PRELP	17p11.2-p12 1q32
16	38079_at	0.49	GNG12	1p31.2
17	36149_at	0.489	DPYSL3	5q32
18	31880_at	0.489	D8S2298E	8p12-p11.2
19	37199_at	0.488	CGI-60	
20	37671_at	0.488	LAMA4	2p25.1-p24.1
21	31573_at	0.488	RPS25	6q21
22	39696_at	0.488	PEG10	11q23.3
23	39723_at	0.487	CUL1	7q21
24	1074_at	0.486	RAB1A	7q34-q35
25	32175_at	0.486	CDC10	2p14 7p14.3-p14.1

	Probe Sets	СС	Gene Symbol	Cytogenetic Location
726	35364_at	0.486	APPBP1	16q22
727	39019_at	0.486	LAPTM4A	2p24.3
728	41772_at	0.485	MAOA	Xp11.4-p11.3
729	31670_s_at	0.485	CAMK2G	
730	33426_at	0.484	CHGB	10q22
731	34393_r_at	0.483	RAB1A	20pter-p12
732	40903_at	0.483	ATP6IP2	2p14
733	41251_at	0.483	TRIP3	Xq21
734	39054_at	0.482	GSTM1	17q21.1
735	33912_at	0.482	ZMPSTE24	1p13.3
736	40709_at	0.482	ZNF271	1p34
737	38662_at	0.482	BCRP1	18q12
738	32755_at	0.481	ACTA2	14q24.1
739	39741_at	0.481	HADHB	10q23.3
740	35169_at	0.481	COL16A1	2p23
741	40555_at	0.48	TC10	1p35-p34
742	315_at	0.48	PRDM2	2p21
743	39180_at	0.48	FUS	1p36
744	35253_at	0.479		16p11.2
745	31536_at	0.479	GAB2	11q13.4
746	767_at	0.478	RTN4	2p14-p13
747	39797_at	0.477	MYH11	16p13.13-p13.12
748	32854_at	0.477	KIAA0349	6p21.1
749	41191 at	0.477	FBXW1B	5q35.1
750	1151_at	0.476	KIAA0992	4q32.3
751	35294_at	0.476	RPL22	1p36.3-p36.2
752	1708_at	0.475	SSA2	1q31
753	39031_at	0.475	MAPK10	4q22.1-q23
754	37747_at	0.475	COX7A1	19q13.1
755	38433_at		ANXA5	4q28-q32
756	38049_g_at	0.475 0.473	AXL	19q13.1
757	36595_s_at		RBPMS	8p12-p11
758	39124_r_at	0.473 0.473	GATM	15q14
759	706_at	0.473	TRPC1	3q22-q24
760	37399_at	0.473	NR3C1	5q31
761	38265_at		AKR1C3	10p15-p14
762	32563_at	0.47	RBBP6	16p12-p11.2
763	37734_at	0.469	ATP1B3	3q22-q23
764	39245_at	0.469	DIP2	21q22.3
765		0.469	?	
766	40618_at	0.468	H41	3q22.2
767	31886_at	0.467	NT5E	6q14-q21
768	41807_at	0.467	cDNA FLJ31959 fis	
,00	1447_at	0.467	PSMB1	6q27

	Probe Sets	СС	Gene Symbol	Cytogenetic Location
769	41227_at	0.466	OCRL	Xq25-q26.1
770	774_g_at	0.465	MYH11	16p13.13-p13.12
771	35794_at	0.465	EFA6R	8pter-p23.3
772	32254_at	0.464	FSTL3	19p13
773	38694_at	0.464	KIAA0738	7q33
774	34391_at	0.464	IGBP1	Xq13.1-q13.3
775	39183_at	0.463	PCTK1	Xp11.3-p11.23
776	31894_at	0.463	CENPC1	4q12-q13.3
777	39260_at	0.462	SLC16A4	1p13.1
778	232_at	0.462	LAMC1	1g31
779	1380_at	0.461	FGF7	15q15-q21.1
780	41737_at	0.46	SRRM1	1p36.11
781	36851_g_at	0.46	N33	8p22
782	41488_at	0.459	LOC57149	16p11.2
783	39623_at	0.457	NDP	Xp11.4
784	36970_at	0.456	KIAA0182	16q24.1
785	40086_at	0.456	KIAA0261	
786	33421_s_at	0.455	SC5DL	10q23.31-q23.32
787	40047_at	0.454	SBB103	11q23.3
788	39420_at	0.452	DDIT3	12q12
789	37951_at	0.451	DLC1	12q13.1-q13.2
790	855_at	0.45	PDCD2	8p22-p21.3
791	35739_at	0.45	MTMR3	6q27
792	33451_s_at	0.449	RPL22	22q12.2
793	1278_at	0.448	AXL	1p36.3-p36.2
794	38542_at	0.445	?	19q13.1
795	31896_at	0.44	NAG	2024
796	33341_at	0.439	GNB1	2p24 1p36.33
797	1846_at	0.439	LGALS8	
798	288_s_at	0.438	LBR	1q42-q43
799	31672_g_at	0.438	RBMS1P	1q42.1
800	36120_at	0.437	FVT1	19-24-2
801	38371_at	0.437	PSMA1	18q21.3
802	31812_at	0.436	GMPR	11p15.1
803	35311_at	0.436	CREG	6p23
804	41837_at	0.436	DKFZp761F2014	1q24
805	39775_at	0.436	SERPING1	14q32.2
806	37765_at	0.433	LMOD1	11q12-q13.1
807	39733_at	0.431	HERPUD1	1q32
808	38075_at	0.43	SYPL	16q12.2-q13
809	41289_at	0.43	NCAM1	7q11.23
810	38459_g_at	0.429	CYB5	11q23.1
811	40461_at	0.427	TIX1	18q23

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
812	33220_at	0.427	ZNF187	6p21.31
813	32769_at	0.426	ALFY	4q21.23
814	1394_at	0.425	ARHA	3p21.3
815	35720_at	0.422	KIAA0893	1p13.2
816	34366_g_at	0.42	PPIE	1p32
817	38737_at	0.418	IGF1	12q22-q23
818	38326_at	0.417	G0S2	
819	34378_at	0.417	ADFP	1q32.2-q41
820	38458_at	0.417	CYB5	9p21.2
821	35286_r_at	0.415	RY1	18q23
822	37309_at	0.413	ARHA	2p13.1
823	36634_at	0.412	BTG2	3p21.3
824	753_at	0.412	NID2	1q32
825	37195_at	0.411	CYP11A	14q21-q22
826	37536_at	0.409	CD83	15q23-q24
827	32066_g_at	0.407	CREM	6p23
828	41759_at	0.403	SKP1A	10p12.1-p11.1
829	36968_s_at	0.403	OIP2	5q31
830	40471 at	0.402	PXF	13q13.1
831	35740 at	0.397	EMILIN	1q22
832	32242_at	0.394		2p23.3-p23.2
833	1596_g_at	0.393	DKFZp566K192	
834	34785_at	0.392	TEK	9p21
835	37718_at	0.391	KIAA1025	12q24.21
836	37701_at	0.391	SNRK	3p21.31
837	33756_at	0.39	RGS2	1q31
838	40621_at	0.389	AOC3	17q21
839	583_s_at	0.387	PAWR	12q21
840	34793_s_at	0.387	VCAM1	1p32-p31
841	39163_at	0.385	PLS3	Xq24
842	36681_at	0.384	KIDINS220	2p24
843	37623_at	0.384	APOD	3q26.2-qter
844	38054_at		NR4A2	2q22-q23
845	33848_r at	0.382	HBXIP	1p13.1
846	280_g at	0.38	CDKN1B	12p13.1-p12
847	1787_at	0.377	NR4A1	12q13
848	37694_at	0.374	CDKN1C	11p15.5
849	36458_at	0.373	PHF3	
850	32849_at	0.372	KIAA1018	15q12
851	39046_at	0.371	SMC1L1	Xp11.22-p11.21
852		0.371	H2AV	7p13
853	36974_at	0.37	PSMF1	20p12.2-p13
854	547_s_at	0.37	NR4A2	2q22-q23
	479_at	0.37	DAB2	5p13

	Probe Sets	СС	Gene Symbol	Cytogenetic Location
855	1737_s_at	0.366	IGFBP4	17q12-q21.1
856	32847_at	0.363	MYLK	3q21
857	37732_at	0.363	RYBP	3p13
858	32184_at	0.358	LMO2	11p13
859	41046_s_at	0.357	ZNF261	Xq13.1
860	40487_at	0.356	MC7	11p11.2
861	32067_at	0.353	CREM	10p12.1-p11.1
862	39561_at	0.352	DNAL4	22q13.1
863	36569_at	0.347	TNA	3p22-p21.3
864	39373_at	0.345	FADS1	11q12.2-q13.1
865	38466_at	0.344	CTSK	1q21
866	34784_at	0.336	DJ37E16.5	22cen-q12.3
867	37842_at	0.336	HIC	7q21.11
868	33255_at	0.334	NASP	8q11.23
869	1005_at	0.329	DUSP1	5q34
870	41864_at	0.329	?	<u> </u>
871	1241_at	0.327	PTP4A2	1p35
872	38228_g_at	0.323	MITF	3p14.1-p12.3
873	32340_s_at	0.322	NSEP1	1p34
874	38312_at	0.316	cDNA DKFZp564O222	1904
875	32313_at	0.305	TPM2	9p13.2-p13.1
876	773_at	0.302	MYH11	16p13.13-p13.12
877	36065_at	0.301	LDB2	4p16
878	39066_at	0.29	MFAP4	17p11.2
879	34826_at	0.288	SDHA	5p15
880	38430_at	0.286	FABP4	8q21
881	31855_at	0.274	SRPX	Xp21.1
882	33440_at	0.273	TCF8	10p11.2
883	40856_at	0.258	SERPINF1	17p13.1
884	40282_s_at	0.251	DF	19p13.3
885	36165_at	0.234	COX6C	8q22-q23
886	36201_at	0.234	GLO1	6p21.3-p21.1
887	36521_at	0.233	DZIP1	13q32.1
888	36931_at	0.225	TAGLN	11q23.2
889	32314 <u>g</u> at	0.222	TPM2	9p13.2-p13.1
890	40824_at	0.206	RANBP16	8p21
891	33790_at	0.203	CCL14	17q11.2
892	38734_at	0.198	PLN	6q22.1
893	39690_at	0.182	ALP	4q35
894	31830_s_at	0.176	SMTN	22q12.2
895	31831_at	0.157	SMTN	22q12.2
896	34203_at	0.15	CNN1	19p13.2-p13.1
897	1197_at	0.134	ACTG2	2p13.1

75

	Probe Sets	cc	Gene Symbol	Cytogenetic Location
898	38995_at	0.114	CLDN5	22g11.21
899	38994_at	0.114	SOCS2	12g
900	36892_at	0.042	ITGA7	12q13

•

Table 10. Ranking of the Top 100 Probe Sets Based on PCC Values

Probe Set	54			Probe set	1	T	Τ	Probe set	 	
Name	R1	R2	L	name	R1	R2		name	R1	R2
37628_at	<u>0.865</u>		ļ	37529_at	<u>0.669</u>	0.494	Γ	201_s_at	0.577	
41859_at	<u>0.865</u>	0.877		32175_at	<u>0.669</u>	0.486	1	774_g at	0.576	+==
38120_at	0.852			35753_at	<u>0.667</u>	0.535	1	40998_at	0.576	+
32664_at	<u>0.848</u>	<u>0.749</u>		_38875_r_at	0.667	0.495	1	41772_at	0.573	+
35717_at	0.847	<u>0.783</u>		32779_s_at	0.665	0.599	1	40522_at	0.572	0.544
34257_at	<u>0.846</u>	<u>0.786</u>		41385_at	0.665	0.594	1	41768_at	0.571	0.513
38220_at	0.844	<u>0.820</u>		1319_at	0.664	0.580	1	37828_at	0.569	0.677
40423_at	<u>0.844</u>	<u>0.785</u>		32593_at	0.664	0.692	1	280_g_at	0.569	
38650_at	<u>0.840</u>	<u>0.748</u>		38101_at	0.663	0.615	1	33431 at	0.568	0.536
38439_at	<u>0.829</u>	<u>0.736</u>		39864_at	0.663	0.698		1278_at	0.566	
39673_i_at	0.827	<u>0.698</u>		39037_at	0.663	0.726	1	35736 at	0.566	
38047_at	<u>0.822</u>	<u>0.756</u>		32057_at	0.663	0.667		37985 at	0.565	0.608
1396_at	<u>0.821</u>	<u>0.756</u>		38518_at	0.663	0.517		38326_at	0.565	
37015_at	<u>0.820</u>	<u>0.751</u>		39556_at	0.662	0.725	ĺ	37197_s_at	0.562	
40775_at	<u>0.818</u>	<u>0.666</u>		40841_at	0.661	0.618		41529_g_at	0.560	0.647
32145_at	<u>0.817</u>	<u>0.786</u>		39117_at	0.660	0.557		39838_at	0.560	<u>0.620</u> <u>0.582</u>
35742_at	<u>0.815</u>	<u>0.708</u>		36695_at	0.659	0.602		2092_s_at	0.560	
1290_g_at	<u>0.814</u>	<u>0.776</u>		39681_at	0.659	0.690		31672_g_at	<u>0.559</u>	0.679 0.438
_39674_r_at	<u>0.811</u>	<u>0.699</u>		1850_at	0.659	0.529		37701_at	<u>0.559</u>	0.436
36917_at	<u>0.810</u>	<u>0.752</u>		38013_at	0.657	0.672		40260_g_at	0.558	
1897_at	<u>0.809</u>	<u>0.770</u>		1377_at	<u>0.656</u>	0.605		33249_at	<u>0.558</u>	0.516
755_at	<u>0.809</u>	<u>0.822</u>	Ī	41739_s_at	0.655	0.552		33198_at	<u>0.557</u>	<u>0.618</u>
38176_at	<u>0.805</u>	<u>0.729</u>	Ī	36095_at	0.654	0.513		1708_at	<u>0.557</u>	<u>0.705</u>
36073_at	<u>0.804</u>	0.774		35169_at	0.653	0.481		38116_at	<u>0.556</u>	0.475
32764_at	<u>0.803</u>	<u>0.691</u>		36533_at	0.653	0.517	ŀ	40832_s_at	<u>0.555</u>	0.595
_39750_at	<u>0.796</u>	<u>0.718</u>		40698_at	0.651	0.563	ł	37958_at	<u>0.555</u>	0.505
35645_at	<u>0.795</u>	<u>0.714</u>	ſ	33936_at	0.651	0.702	ŀ	1787_at	<u>0.555</u>	<u>0.617</u>
38717_at	<u>0.793</u>	<u>0.789</u>	ſ	1507_s_at	0.648	0.596	l	333_s_at	<u>0.555</u>	0.374
37394_at	<u>0.791</u>	<u>0.656</u>	ſ	38211_at	0.648	0.681	f	36690_at	<u>0.554</u>	0.562
36160_s_at	<u>0.788</u>	<u>0.846</u>	ſ	38351_at	0.648	0.527	t	40839_at	<u>0.554</u>	0.654
36867_at	<u>0.785</u>	<u>0.739</u>		32239_at	0.647	<u>0.548</u>	ŀ	32569_at		0.611
39852_at	<u>0.783</u>	<u>0.738</u>	Ī	32582_at	0.646	<u>0.578</u>	ŀ	33302_at	0.553	0.534
37643_at	<u>0.779</u>	<u>0.716</u>		31880_at	0.646	0.489	ŀ	1058_at	0.553	0.619
40767_at	<u>0.779</u>	<u>0.640</u>	T	38342_at	0.646	0.632	ŀ	38990_at	0.552	<u>0.668</u>
41449_at	<u>0.778</u>	<u>0.762</u>	Γ	33240_at	0.645	0.511	ŀ	506_s_at	0.552	0.526
40488_at	<u>0.778</u>	0.698	Ţ	33136_at	0.645	0.628	ŀ	871_s_at	<u>0.551</u> <u>0.550</u>	0.492 0.630

Probe Set Name	R1	R2	Τ	Probe set	7		T	Probe set	T	T
40063_at	0.777		╁	name	R1	R2	\downarrow	name	R1	R2
41685 at	0.777	0.871	┨	39438_at	0.645		-1	33113_at	0.549	0.554
34163_g_at	0.776		┨	38035_at	0.644	+===	-	507_s_at	<u>0.548</u>	0.523
40570_at	0.775		┨	33278_at	0.644			40876_at	<u>0.548</u>	0.754
37446 at	0.771		┨	33140_at	0.644			35754_at	0.548	0.632
38669_at	0.770	<u>0.613</u> <u>0.712</u>	ł	40145_at	0.643			34287_at	0.546	<u>0.553</u>
36627 at	0.770	0.675	ł	34215_at	0.642		1	39775_at	0.545	0.436
1640 at	0.769	 	ł	538_at	0.642			41174_at	0.545	0.497
35681_r_at	0.769	0.734	ł	35846_at	<u>0.641</u>		1	34417_at	<u>0.545</u>	0.525
36894_at	<u>0.768</u>	0.644	ł	39545_at	<u>0.641</u>			34259_at	0.544	0.541
41137_at	<u>0.768</u>	0.634	ł	32521_at	0.641			38724_at	0.544	0.512
39397_at	<u>0.768</u>	0.631	ŀ	34320_at	0.640	+===		32769_at	0.543	0.426
41273_at	<u>0.768</u>	0.700		39939_at	0.640			33916_at	0.541	0.501
38122_at	<u>0.760</u>	<u>0.758</u>		40419_at	<u>0.639</u>			38470_i_at	0.541	0.565
40861_at	<u>0.767</u>	<u>0.707</u>		36791_g_at	0.638	+		38438_at	0.540	0.612
35164_at		<u>0.689</u>		40674_s_at	<u>0.638</u>	<u>0.697</u>		31573_at	0.540	0.488
39400_at	<u>0.758</u>	0.621		32143_at	<u>0.638</u>	0.532		31536_at	0.539	0.479
872_i_at	0.758	0.634		41770_at	<u>0.636</u>	<u>0.539</u>		39376_at	0.539	0.715
41738 at	0.756	<u>0.770</u>		1909_at	<u>0.636</u>	<u>0.736</u>		34859_at	0.538	0.669
38113_at	0.755	<u>0.707</u>		38581_at	<u>0.636</u>	<u>0.573</u>	i	39733_at	0.538	0.431
40202_at	0.754	<u>0.681</u>		41227_at	<u>0.636</u>	0.466		1211_s_at	0.538	0.614
34760_at	0.754	<u>0.606</u>		39790_at	<u>0.635</u>	<u>0.579</u>		38059_g_at	0.537	0.524
32526_at	0.749	<u>0.699</u>		36091_at	<u>0.635</u>	<u>0.652</u>		31510_s_at	0.537	0.668
40994_at	0.749	0.631	-	41191_at	<u>0.633</u>	0.477		1596_g_at	0.537	0.393
37908_at	0.749	0.627	ŀ	33817_at	<u>0.631</u>	<u>0.606</u>		38711_at	0.537	<u>0.578</u>
38119_at	0.748	<u>0.557</u>	-	36790_at	<u>0.631</u>	<u>0.552</u>		32676_at	0.536	0.642
	0.747	<u>0.669</u>	-	34162_at	<u>0.631</u>	<u>0.566</u>		38768_at	0.536	0.671
44.470	0.747	<u>0.565</u>	ŀ	39691_at	<u>0.630</u>	<u>0.683</u>	- [34819_at	0.535	0.614
	0.745	0.653	ŀ	38049_g_at	<u>0.630</u>	0.473		36629_at	0.535	0.550
	0.745	<u>0.677</u>	-	38754_at	<u>0.628</u>	<u>0.560</u>	Ĺ	36578_at	<u>0.535</u>	0.575
		<u>0.670</u>	-	31605_at	<u>0.628</u>	<u>0.539</u>		35335_at	0.534	0.616
		0.694	-	37230_at	<u>0.628</u>	<u>0.590</u>		39687_at	0.534	0.525
		0.689	ŀ	41300_s_at	<u>0.628</u>	<u>0.519</u>		37532_at	0.534	0.710
		0.652	ŀ	31897_at	<u>0.627</u>	0.493		41634_at	0.534	0.629
		<u>0.713</u>	ŀ	34789_at	<u>0.627</u>	<u>0.606</u>		34821_at	0.534	0.638
		0.634	Ļ	40508_at	<u>0.626</u>	<u>0.610</u>		38627_at	0.533	0.512
		0.647	-	33303_at	<u>0.626</u>	<u>0.540</u>		34445_at		0.526
		<u>0.619</u>	-	35221_at	<u>0.626</u>	<u>0.520</u>		32755_at		0.481
4 4		<u>0.743</u>	L	37638_at	<u>0.626</u>	<u>0.607</u>		1578_g_at		0.661
		0.638	-	41744_at	<u>0.625</u>	<u>0.723</u>		34349_at		0.603
1761_at <u>(</u>	0.736	<u>0.789</u>		41405_at	<u>0.625</u>	<u>0.592</u>	\int	33426_at		0.484

Name	Probe Set		T	Τ	Probe set		1	Т	Probe set		
32805 at 0.736 0.586 0.586 37721 at 0.625 0.638 3782 at 0.625 0.638 38318 at 0.526 0.290 383643 at 0.735 0.714 40496 at 0.735 0.714 40496 at 0.735 0.627 36441 at 0.622 0.691 38141 at 0.528 0.290 383643 at 0.735 0.624 41138 at 0.735 0.652 41138 at 0.737 0.655 38727 at 0.624 0.697 38968 at 0.729 0.663 39436 at 0.623 0.639 380727 at 0.622 0.600 34772 at 0.729 0.628 37710 at 0.622 0.600 33553 at 0.729 0.617 36534 at 0.621 0.633 38093 at 0.527 0.597 33557 at 0.728 0.616 33244 at 0.620 0.542 339055 at 0.727 0.677 39557 at 0.619 0.652 339055 at 0.517 0.610 38829 at 0.619 0.651 338068 at 0.517 0.610 38829 at 0.611 0.586 34703 at 0.517 0.610 38829 at 0.611 0.586 34703 at 0.517 0.610 38829 at 0.611 0.586 34703 at 0.517 0.610 38829 at 0.611 0.568 34703 at 0.517 0.610 38829 at 0.617 0.568 34703 at 0.500 0.516 0.627 33854 at 0.721 0.706 33857 at 0.721 0.706 33857 at 0.721 0.606 33648 at 0.627 0.636 33695 at 0.517 0.606 33648 at 0.617 0.606 33648 at 0.617 0.606 33648 at 0.617 0	Name	R1	R2	1_		R1	R2		1	R1	R2
35782 at 0.625 0.638 39066 at 0.522 0.280 3818 at 0.527 0.517 0.524 0.624 0.597 380643 at 0.732 0.665 38147 g at 0.624 0.597 38168 at 0.732 0.665 38198 at 0.729 0.683 38436 at 0.623 0.596 38772 at 0.622 0.690 38710 at 0.622 0.600 38581 at 0.522 0.671 38198 at 0.623 0.596 38773 at 0.622 0.600 3635 at 0.729 0.582 38118 at 0.622 0.600 3635 at 0.729 0.616 38053 at 0.622 0.600 38581 at 0.522 0.660 38733 at 0.729 0.617 38634 at 0.621 0.612 0.662 0.602 38680 at 0.520 0.591 38251 at 0.729 0.617 38089 at 0.622 0.600 38680 at 0.520 0.591 38251 at 0.729 0.617 38089 at 0.620 0.542 38088 at 0.517 0.614 38251 at 0.722 0.615 33244 at 0.620 0.542 33986 at 0.517 0.614 38251 at 0.722 0.677 40962 s at 0.619 0.565 33380 at 0.517 0.614 38293 at 0.722 0.667 38689 at 0.619 0.591 38898 at 0.517 0.614 38898 at 0.517 0.614 38898 at 0.517 0.614 38898 at 0.619 0.521 33380 at 0.515 0.505 0.614 38898 at 0.617 0.666 34793 s at 0.512 0.387 38898 at 0.722 0.667 34877 at 0.722 0.661 37407 s at 0.617 0.566 38279 at 0.510 0.568 38884 at 0.719 0.598 40607 at 0.616 0.497 32597 at 0.500 0.383 390245 s at 0.716 0.682 38898 at 0.511 0.5687 33443 at 0.716 0.682 33689 at 0.617 0.566 33689 at 0.510 0.568 33689 at 0.510 0.568 33689 at 0.510 0.568 33689 at 0.510 0.568 33689 at 0.510 0.569 33687 at 0.716 0.682 33687 at 0.617 0.606 33687 at 0.716 0.682 33689 at 0.510 0.568 33688 at 0.511 0.5687 33689 at 0.512 0.660 0.638 0				4	41594_at	0.625	0.644		39441_at		
38643 at 0.736 0.767 37221 at 0.625 0.507 38318 at 0.527 0.741 38409 at 0.732 0.652 40399 r. at 0.624 0.597 39109 at 0.623 0.564 40077 at 0.525 0.567 40399 r. at 0.623 0.564 40077 at 0.525 0.562 40399 r. at 0.623 0.564 40077 at 0.525 0.562 40399 r. at 0.623 0.564 40077 at 0.525 0.562 37710 at 0.622 0.656 33611 at 0.622 0.656 33690 at 0.522 0.566 37710 at 0.622 0.656 33690 at 0.522 0.566 33711 at 0.622 0.658 33690 at 0.522 0.569 33611 at 0.622 0.658 33690 at 0.522 0.569 33611 at 0.622 0.658 33690 at 0.522 0.569 33611 at 0.622 0.642 336118 at 0.622 0.658 33690 at 0.523 0.566 40077 at 0.524 0.669 33690 at 0.522 0.566 40077 at 0.522 0.566 40077 at 0.524 0.650 33690 at 0.522 0.566 40077 at 0.524 0.650 33690 at 0.522 0.566 40077 at 0.522 0.566 40077 at 0.522 0.566 40077 at 0.524 0.650 33690 at 0.522 0.566 40077				4	35782_at	<u>0.625</u>	<u>0.638</u>	7			
39147 g at 0.624 0.592 39243 at 0.729 0.652 39253 at 0.729 0.662 39253 at 0.729 0.662 39253 at 0.729 0.662 39253 at 0.729 0.661 39253 at 0.621 0.621 0.652 39253 at 0.729 0.661 39253 at 0.729 0.661 39253 at 0.729 0.661 39253 at 0.621 0.621 0.631 39253 at 0.729 0.661 39253 at 0.729 0.661 39253 at 0.729 0.661 39253 at 0.621 0.621 0.631 39253 at 0.729 0.661 39253 at 0.621 0.621 0.631 39253 at 0.729 0.661 39253 at 0.622 0.690 39253 at 0.611 at 0.621 0.621 0.631 39253 at 0.622 0.690 39253 at 0.611 at 0.621 0.621 0.631 39253 at 0.622 0.690 39253 at 0.611 0.621 0.621 0.632 39253 at 0.622 0.690 39253 at 0.611 0.621 0.621 0.622 0.690 39253 at 0.611 0.621 0.622 0.690 39253 at 0.611 0.621 0.622 0.690 39253 at 0.611 0.621 0.622 0.690 39253 at 0.612 0.691 0.691 39253 at 0.622 0.690 39253 at 0.612 0.691 0.692 39253 at 0.693 0.693 39253 at 0.693 0.693 0.69			+===	1	37221_at	<u>0.625</u>	0.501	7	38318_at		
135 at 0.732 0.657 39109 at 0.624 0.597 40077 at 0.525 0.657 40077 at 0.524 0.650 38968 at 0.729 0.662 37710 at 0.622 0.660 35811 at 0.522 0.566 37710 at 0.622 0.660 35811 at 0.522 0.566 37713 at 0.729 0.626 37710 at 0.627 0.658 33911 at 0.627 0.658 33903 at 0.5517 0.658 33911 at 0.627 0.658 33905 at 0.517 0.610 33911 at 0.627 0.658 33925 at 0.672 0.658 33925 at 0.6517 0.668 33928 at 0.668 0.658 33928 at 0.6517 0.658 339				4	39147_g_at	0.624	<u>0.592</u>	7	40438_at		+===
39109 at 0.623 0.564 40077 at 0.524 0.650				4	38727_at	0.624	0.597	7	1090_f at		
38968 at 0.729 0.626				1	39109_at	<u>0.623</u>	0.564	7			
39486 at 0.729 0.683			_	4	_40399_r_at	0.623	0.630	7			
34772 at 0.729 0.626 34772 at 0.729 0.626 34773 at 0.729 0.652 37743 at 0.729 0.662 33911 at 0.621 0.653 33913 at 0.621 0.633 33913 at 0.621 0.623 32634 at 0.621 0.412 36118 at 0.620 0.542 33903 at 0.517 0.644 41000 at 0.727 0.677 40786 at 0.728 0.615 33911 at 0.620 0.648 33911 at 0.620 0.648 33911 at 0.620 0.648 33911 at 0.620 0.648 33224 at 0.620 0.612 39019 at 0.620 0.648 339019 at 0.620 0.649 40062 s. at 0.619 0.649 39055 at 0.517 0.614 39829 at 0.618 0.652 34169 s. at 0.723 0.667 34169 s. at 0.723 0.667 34169 s. at 0.723 0.667 34169 s. at 0.721 0.702 38873 at 0.722 0.6671 38913 at 0.617 0.698 39045 at 0.618 0.699 39045 at 0.618 0.697 39846 at 0.617 0.698 39045 at 0.618 0.697 39846 at 0.617 0.698 39045 at 0.618 0.698 39045 at 0.619 39865 at 0.619 39865 at 0.619 39866 at 0.619 39865 at 0.619 39865 at 0.618 0.619 3986			+===	1	39436_at	0.623	<u>0.596</u>]			
32535 at 0.729 0.627 32535 at 0.729 0.667 34355 at 0.728 0.662 32259 at 0.728 0.611 32251 at 0.728 0.615 41000 at 0.727 0.677 40786 at 0.723 0.601 339701 at 0.723 0.667 34169 s at 0.722 0.661 36873 at 0.722 0.661 36873 at 0.722 0.667 38873 at 0.722 0.667 38883 at 0.721 0.702 38974 at 0.610 0.502 38975 at 0.710 0.630 38975 at 0.710 0.630 38975 at 0.710 0.630 38073 at 0.710 0.630 38075 at 0.710 0.636 38075 at 0.710 0.630			0.626	1	37710_at	0.622	0.600]			+===
33911_at					36727_at	0.621	<u>0.558</u>	1		+	+
34355 at 0.728 0.617 34355 at 0.728 0.6617 32259 at 0.728 0.6115 32251 at 0.728 0.615 41000 at 0.727 0.677 40786 at 0.725 0.705 39701 at 0.724 0.611 34740 at 0.723 0.520 35354 at 0.722 0.6637 3469 s at 0.722 0.6667 3469 s at 0.722 0.6667 3469 s at 0.722 0.6613 36873 at 0.722 0.6631 36873 at 0.722 0.6631 36873 at 0.722 0.6631 36873 at 0.720 0.677 36873 at 0.720 0.677 36873 at 0.720 0.667 36873 at 0.720 0.667 36873 at 0.720 0.667 36874 at 0.616 0.656 36875 at 0.719 0.599 38905 at 0.517 0.614 39829 at 0.618 0.656 37407 s at 0.617 0.554 39829 at 0.618 0.656 37407 s at 0.617 0.506 38829 at 0.618 0.656 37407 s at 0.617 0.506 38829 at 0.617 0.506 38829 at 0.618 0.656 37407 s at 0.617 0.506 38829 at 0.618 0.656 37407 s at 0.617 0.506 38829 at 0.617 0.506 38829 at 0.618 0.656 37407 s at 0.617 0.506 38829 at 0.618 0.656 38829 at 0.617 0.506 38829 at 0.618 0.656 38829 at 0.617 0.506 38829 at 0.618 0.656 38829 at 0.617 0.506 38829 at 0.618 0.656 38829 at 0.617 0.506 38829 at 0.618 0.656 38829 at 0.618 0.656 3829 at 0.618 0					33911_at	0.621	<u>0.633</u>	1			
3255 at 0.728 0.662 3018 at 0.620 0.542 3147 at 0.517 0.637 3250 at 0.722 0.667 3747 at 0.722 0.662 318364 at 0.722 0.662 38364 at 0.722 0.662 38364 at 0.721 0.720 0.622 31855 at 0.617 0.616 0.497 32505 at 0.710 0.636 3257 at 0.618 0.626 3257 at 0.617 0.687 36873 at 0.722 0.661 36829 at 0.617 0.687 36873 at 0.721 0.720 3.667 36873 at 0.721 0.720 3.667 36873 at 0.721 0.720 3.667 36829 at 0.721 0.720 0.622 31850 at 0.617 0.616 0.497 32505 at 0.721 0.720 3.668 326829 at 0.617 0.616 0.497 32505 0.622 31850 at 0.721 0.720 3.668 326829 at 0.616 0.497 32505 0.622 32542 at 0.716 0.652 32542 at 0.716 0.652 35359 at 0.612 0.653 32565 at 0.715 0.657 33259 at 0.612 0.656 33256 at 0.715 0.657 33259 at 0.612 0.653 33235 at 0.612 0.653 33256 at 0.713 0.753 33255 at 0.600 0.524 33257 at 0.506 0.538 33235 at 0.612 0.652 33558 at 0.711 0.669 33235 at 0.711 0.669 33235 at 0.711 0.669 33235 at 0.612 0.652 33559 at 0.612 0.653 33256 at 0.711 0.640 33257 at 0.606 0.636 33235 at 0.606 0.636 332557 at 0.500 0.500 0.500 33050 335704 at 0.711 0.640 33257 at 0.606 0.636 0.636 33235 at 0.600 0.556 332557 at 0.500 0.5516 332557 at 0.710 0.630 33235 at 0.600 0.556 332557 at 0.500 0.5516 332					36634_at	0.621	0.412	1			+
32251_at					36118_at	0.620	0.542	1			
32251 at 0.728 0.615 41000 at 0.727 0.677 40786 at 0.725 0.705 39701 at 0.724 0.611 34740 at 0.723 0.520 35354 at 0.723 0.667 34169 s at 0.722 0.661 36873 at 0.722 0.633 39243 s at 0.721 0.702 34877 at 0.720 0.671 39846 at 0.617 0.506 38975 at 0.618 0.656 38029 at 0.617 0.506 38029 at 0.617 0.606 38029 at 0.617 0.506 38029					39019_at	0.620	0.486				
40786 at					33244_at	0.620	0.512				
40766_at 0.725 0.705 39701_at 0.724 0.611 34740_at 0.723 0.520 35354_at 0.723 0.667 34169_s_at 0.722 0.661 36873_at 0.722 0.633 39243_s_at 0.721 0.702 34877_at 0.720 0.671 38364_at 0.719 0.599 380975_at 0.716 0.635 32747_at 0.716 0.635 32765_fat 0.716 0.662 35785_at 0.715 0.528 41013_at 0.715 0.528 35785_at 0.715 0.528 35785_at 0.715 0.691 35783_at					39557_at	<u>0.619</u>	0.549	1			
39701_at			<u>0.705</u>		40962_s_at	<u>0.619</u>	0.521				
31852 at 0.723 0.667 34169 s at 0.722 0.661 36873 at 0.722 0.633 39243 s at 0.721 0.702 34877 at 0.720 0.671 36119 at 0.720 0.622 38364 at 0.719 0.599 38364 at 0.719 0.599 39025 at 0.718 0.746 32747 at 0.777 0.696 332747 at 0.777 0.696 33443 at 0.716 0.635 32747 at 0.771 0.696 33443 at 0.716 0.635 32765 f at 0.716 0.635 37707 i at 0.715 0.528 37707 i at 0.715 0.528 35783 at 0.711 0.640 33857 at 0.710 0.630 35704 at 0.709 0.656					39829_at	<u>0.618</u>	0.656	1			
State Stat			<u>0.520</u>		31852_at	0.617	0.687				
34169 s at 0.722					818_s_at	<u>0.617</u>	<u>0.554</u>				
30873 at 0.722 0.633 36829 at 0.617 0.518 41420 at 0.510 0.593 34877 at 0.720 0.671 39846 at 0.617 0.774 547 s at 0.506 0.370 38364 at 0.719 0.599 40607 at 0.616 0.497 32597 at 0.506 0.548 39025 at 0.718 0.746 32087 at 0.616 0.672 32847 at 0.506 0.648 32747 at 0.717 0.706 36488 at 0.615 0.636 35999 r at 0.504 0.638 33443 at 0.716 0.635 487 g at 0.615 0.615 0.636 35999 r at 0.504 0.532 41013 at 0.716 0.662 853 at 0.614 0.674 3668 at 0.504 0.575 35783 at 0.715 0.528 1101 at 0.612 0.653 38394 at 0.500 0.490 35783 at 0.715 0.528 32851 at 0.612 <td< td=""><td></td><td></td><td></td><td> </td><td>37407_s_at</td><td><u>0.617</u></td><td><u>0.506</u></td><td></td><td></td><td></td><td></td></td<>					37407_s_at	<u>0.617</u>	<u>0.506</u>				
39243_s_at 0.721 0.702 35173_at 0.617 0.774 547_s_at 0.506 0.370 34877_at 0.720 0.622 39846_at 0.617 0.564 1252_at 0.506 0.548 38364_at 0.719 0.599 40607_at 0.616 0.497 32847_at 0.506 0.648 39025_at 0.718 0.746 32087_at 0.616 0.672 32847_at 0.506 0.648 32747_at 0.717 0.706 36488_at 0.615 0.636 35999_rat 0.504 0.638 33443_at 0.716_0.662 487_g_at 0.615_0.615 0.645 36964_at 0.504_0.531 32765_f_at 0.716_0.662 853_at 0.614_0.674 32153_s_at 0.504_0.575 337707_i_at 0.715_0.528 32851_at 0.612_0.653 38394_at 0.500_0.500 0.403 35783_at 0.715_0.691 41195_at 0.612_0.653 38394_at 0.500_0.403 37617_at 0.606_0.564 37027_at <				Ĺ	36829_at	<u>0.617</u>	<u>0.518</u>				
34677_at 0.720 0.671 39846_at 0.617 0.564 1252_at 0.506_0.648 36119_at 0.720 0.622 897_at 0.616_0.497 32597_at 0.506_0.648 38364_at 0.719_0.599 40607_at 0.616_0.672 32847_at 0.506_0.648 32747_at 0.717_0.706 36488_at 0.615_0.636 3599_r_at 0.504_0.538 36975_at 0.716_0.635 487_g at 0.615_0.636 35999_r_at 0.504_0.531 32742_at 0.716_0.635 487_g at 0.615_0.645 36964_at 0.504_0.531 32765_f at 0.716_0.662 853_at 0.614_0.674 32153_s at 0.504_0.575 37707_i at 0.715_0.528 35359_at 0.612_0.653 32851_at 0.612_0.653 35783_at 0.715_0.583 32851_at 0.610_0.502 41759_at 0.500_0.384 41195_at 0.606_0.636 33235_at 0.606_0.636 0.506_0.547 33857_at 0.710_0.630 37617_at 0.606_0.636 0.636_0.636				Ļ	35173_at	<u>0.617</u>	0.774				
36119_at 0.720 0.622 897_at 0.616 0.497 32597_at 0.506 0.648 38364_at 0.719 0.599 40607_at 0.616 0.708 32847_at 0.505 0.363 32747_at 0.717 0.706 36488_at 0.615 0.636 35999_rat 0.504 0.638 33443_at 0.716 0.635 487_gat 0.615 0.645 36964_at 0.504 0.531 32765_fat 0.716 0.628 41013_at 0.715 0.528 1101_at 0.612 0.635 32668_at 0.504 0.575 37707_i at 0.715 0.528 32851_at 0.612 0.633 38394_at 0.500 0.790 35783_at 0.715 0.691 32851_at 0.612 0.614 3668_at 0.500 0.790 33857_at 0.711 0.640 3293 32851_at 0.608 0.556 37027_at 0.500 0.390 33857_at 0.710 0				Ĺ	39846_at	0.617	<u>0.564</u>				
36354 at 0.719 0.599 40607_at 0.616 0.708 32847_at 0.505 0.363 39025_at 0.718 0.717 0.706 36488_at 0.615 0.636 1678_g at 0.504 0.638 36975_at 0.717 0.696 487_g at 0.615 0.636 35999_r at 0.504 0.531 32542_at 0.716 0.662 853_at 0.614 0.674 32153_s at 0.504 0.512 32765_f at 0.716 0.528 1101_at 0.612 0.631 32668_at 0.504 0.575 37707_i at 0.715 0.528 32851_at 0.612 0.633 38394_at 0.500 0.790 35783_at 0.715 0.691 41195_at 0.612 0.612 0.614 37623_at 0.500 0.384 35783_at 0.711 0.640 40825_at 0.608 0.556 37027_at 0.500 0.390 34_s 0.711 0.640 40155_at <				Ļ	897_at	<u>0.616</u>	0.497				
39025_at 0.718 0.746 32747_at 0.717 0.706 36975_at 0.717 0.696 33443_at 0.716 0.635 32542_at 0.716 0.662 32765_f_at 0.716 0.528 41013_at 0.715 0.528 35785_at 0.715 0.528 35783_at 0.712 0.583 36515_at 0.712 0.583 32857_at 0.712 0.662 35359_at 0.612 0.612 0.612 0.531 36964_at 0.504 0.542 753_at 0.504 0.412 32851_at 0.612 0.633 32851_at 0.612 0.653 32851_at 0.612 0.613 35783_at 0.712 0.583 32851_at 0.606 0.556 33235_at 0.606 0.557 33857_at 0.710 0.640 336515_at 0.710 <				Ļ		<u>0.616</u>	<u>0.708</u>				
32747_at 0.717 0.706 36488_at 0.615 0.636 35999_r_at 0.504 0.531 33443_at 0.716 0.635 487_g_at 0.615 0.512 36964_at 0.504 0.542 32542_at 0.716 0.662 853_at 0.615 0.645 753_at 0.504 0.412 32765_f_at 0.716 0.528 1101_at 0.612 0.531 32153_s_at 0.504 0.575 37707_i_at 0.715 0.578 35359_at 0.612 0.633 38394_at 0.500 0.790 35783_at 0.715 0.528 41195_at 0.612 0.614 37623_at 0.500 0.384 4195_at 0.712 0.583 33235_at 0.606 0.587 37027_at 0.500 0.403 33857_at 0.710 0.630 37617_at 0.606 0.547 33756_at 0.498 0.500 35704_at 0.709 0.656 40213_at 0.606 0.636 <				L	32087_at	<u>0.616</u>	<u>0.672</u>				
30975_at 0.717 0.696 487_g_at 0.615 0.512 36964_at 0.504 0.542 33443_at 0.716 0.635 40617_at 0.615 0.645 753_at 0.504 0.412 32765_f_at 0.716 0.528 1101_at 0.612 0.531 32668_at 0.503 0.809 41013_at 0.715 0.528 35359_at 0.612 0.653 38394_at 0.500 0.790 35785_at 0.715 0.691 41195_at 0.610 0.502 41759_at 0.500 0.403 35783_at 0.712 0.583 33235_at 0.606 0.587 33756_at 0.500 0.516 33857_at 0.710 0.630 37617_at 0.606 0.636 0.636 0.696 0.636 35704_at 0.709 0.656 40213_at 0.606 0.645 0.645				L	36488_at	<u>0.615</u>	<u>0.636</u>				
32542_at 0.716 0.635 40617_at 0.615 0.645 753_at 0.504 0.412 32765_f_at 0.716 0.528 1101_at 0.612 0.531 32668_at 0.504 0.575 41013_at 0.715 0.578 35359_at 0.612 0.653 38394_at 0.500 0.790 35785_at 0.715 0.691 41195_at 0.610 0.502 41759_at 0.500 0.403 35783_at 0.712 0.583 33235_at 0.607 0.587 33756_at 0.500 0.390 924_s_at 0.711 0.640 40155_at 0.606 0.547 33756_at 0.498 0.500 33857_at 0.709 0.636 40213_at 0.606 0.636 40971_at 0.497 0.581				L		<u>0.615</u>	<u>0.512</u>	1			
32342_at 0.716 0.662 853_at 0.614 0.674 32153_s_at 0.504 0.575 32765_f_at 0.715 0.528 1101_at 0.612 0.531 32668_at 0.503 0.809 37707_i_at 0.715 0.528 32851_at 0.612 0.612 0.633 38394_at 0.500 0.790 35783_at 0.713 0.753 40825_at 0.608 0.556 37027_at 0.500 0.403 33857_at 0.711 0.640 40155_at 0.606 0.547 33756_at 0.498 0.500 35704_at 0.709 0.656 40213_at 0.606 0.615 0.615 0.615 0.615				L	40617_at	<u>0.615</u>	<u>0.645</u>				
32763_tat 0.716 0.528 1101_at 0.612 0.531 32668_at 0.503 0.809 37707_i_at 0.715 0.528 35359_at 0.612 0.653 38394_at 0.500 0.790 35785_at 0.715 0.691 41195_at 0.610 0.502 41759_at 0.500 0.403 35783_at 0.712 0.583 40825_at 0.608 0.556 37027_at 0.500 0.403 33857_at 0.710 0.630 37617_at 0.606 0.636 40971_at 0.497 0.581 35704_at 0.709 0.656 40213_at 0.606 0.615 0.615 0.616				L		<u>0.614</u>	<u>0.674</u>	Ì			
37707_i_at 0.715 0.578 35359_at 0.612 0.653 38394_at 0.500 0.790 35785_at 0.715 0.691 41195_at 0.610 0.502 41759_at 0.500 0.403 35783_at 0.712 0.583 40825_at 0.608 0.556 37027_at 0.500 0.506 924_s_at 0.711 0.640 40155_at 0.606 0.547 33756_at 0.498 0.500 35704_at 0.709 0.656 40213_at 0.606 0.615 0.616 0.616				L		<u>0.612</u>	<u>0.531</u>				
35767_tal 0.715 0.528 32851_at 0.612 0.614 37623_at 0.500 0.384 35783_at 0.713 0.753 41195_at 0.610 0.502 41759_at 0.500 0.403 36515_at 0.712 0.583 33235_at 0.607 0.587 33756_at 0.500 0.390 924_s_at 0.710 0.630 37617_at 0.606 0.547 1120_at 0.498 0.500 35704_at 0.709 0.656 40213_at 0.606 0.615 40615				L	35359_at	<u>0.612</u>	<u>0.653</u>	Ī			
35785_at 0.715 0.691 41195_at 0.610 0.502 41759_at 0.500 0.403 35783_at 0.713 0.753 40825_at 0.608 0.556 37027_at 0.500 0.516 924_s_at 0.711 0.640 40155_at 0.606 0.547 33756_at 0.498 0.500 33857_at 0.709 0.656 40213_at 0.606 0.645 40971_at 0.497 0.581				_		<u>0.612</u>	<u>0.614</u>	Ī			
36515_at 0.712 0.583 924_s_at 0.711 0.640 33857_at 0.710 0.630 35704_at 0.709 0.656 40825_at 0.608 0.556 33235_at 0.607 0.587 40825_at 0.607 0.587 33756_at 0.500 0.390 37617_at 0.606 0.636 40213_at 0.606 0.615				L	41195_at	<u>0.610</u>	<u>0.502</u>				
924_s_at 0.711 0.640 33235_at 0.607 0.587 40155_at 0.606 0.547 33756_at 0.498 0.500 35704_at 0.709 0.656 40213_at 0.606 0.615 40213_at 0.606 0.615				L	40825_at	<u>0.608</u>	<u>0.556</u>	ſ			
33857_at 0.710 0.630 35704_at 0.709 0.656 40155_at 0.606 0.547 3606 0.636 35704_at 0.606 0.636 40213_at 0.606 0.615				L		<u>0.607</u>	<u>0.587</u>	ſ	33756 at		
35704_at				L	40155_at	<u>0.606</u>	<u>0.547</u>				
35704 at 0.709 0.656 40213 at 0.606 0.615				L		0.606		Ī			
	35/U4_at	<u>0.709</u>	<u>0.656</u>	\perp	40213_at	<u>0.606</u>	<u>0.615</u>	ľ	1307_at		<u>0.582</u>

Probe Set Name	R1	R2		Probe set name	R1	R2	T	Probe set		<u> </u>
41747_s_at	0.709	0.587	1	39260_at	0.606		+	name	R1	R2
35316_at	0.709		1	39294_at		-		35955_at	0.49	6 <u>0.64</u>
38508_s_at		+===	1	2062_at	0.606		≒	38459_g_at	0.49	4 0.42
35644_at	0.707			31886_at	0.605		⊣ .	38466_at	0.49	
35366_at	0.707		l	38695_at	0.605		_	32708_g_at	0.49	3 <u>0.62</u>
37005_at	0.706		1	767_at	0.605	+==	_	36521_at	0.493	0.23
40961_at	0.705			33878_at	0.604		→	37315_f_at	0.492	0.60
36948_at	0.703			32119 at	0.604		-4	33440_at	0.492	0.27
39743_at	0.702			38228_g_at	0.603			35843_at	0.491	0.56
39369_at	0.702			39979_at		+		34235_at	0.491	0.554
36596_r_at	0.701	0.575		35740 at	0.602	+	4	479_at	0.490	0.370
39038_at	0.700			32768_at	0.601		4	40140_at	0.490	0.666
851_s_at	0.699	0.725		34637 f at	0.601		4	41379_at	0.490	0.524
41655_at	0.699	0.664	ŀ	35794_at	0.600	+	4	39623_at	0.489	0.457
35246_at	0.697	0.652	ŀ		0.600		4	41277_at	0.489	0.632
38317_at	0.696	<u>0.593</u>	ł	36792_at	0.599		4	36458_at	0.488	0.372
37294_at	0.696	0.649	ŀ	39366_at	0.599	0.529	4	35166_at	0.488	0.544
35168_f_at	0.696	0.540	-	40770_f_at	0.599	<u>0.655</u>		654_at	0.488	0.643
36159_s_at	0.696	<u>0.540</u>	ŀ	38673_s_at	<u>0.598</u>	0.497		38826_at	0.488	0.505
35752_s_at	0.695	0.642	}	1675_at	0.598	<u>0.535</u>		33915_at	0.487	0.599
35325 at	0.694	<u>0.577</u>	ŀ	33399_at	0.598	0.544	1 1	38626_at	0.487	0.509
718_at	0.693	<u>0.540</u>	ŀ	32700_at	0.598	<u>0.592</u>		38074_at	0.486	0.634
37708 r at	0.692	<u>0.545</u>	-	32337_at	<u>0.597</u>	<u>0.589</u>		35730_at	0.486	0.515
34363 at	0.691	<u>0.665</u>	ŀ	41872_at	<u>0.597</u>	<u>0.538</u>		31932_f_at	0.485	0.586
2086_s_at	0.691	<u>0.637</u>	F	1836_at	<u>0.597</u>	<u>0.543</u>		34803_at	0.485	0.633
37406_at	0.690	<u>0.665</u>	ŀ	176_at	<u>0.596</u>	<u>0.654</u>		32066_g_at	0.484	0.407
41796_at	<u>0.689</u>	<u>0.779</u>	-	37598_at	<u>0.595</u>	<u>0.551</u>		37199_at	0.484	0.488
35331_at	<u>0.689</u>	<u>0.775</u> <u>0.565</u>	-	41490_at	<u>0.593</u>	<u>0.525</u>		33123_at	0.483	0.605
1736_at	0.688	<u>0.688</u>	-	37266_at	<u>0.593</u>	<u>0.548</u>	L	36120_at	0.483	0.437
32107_at	<u>0.688</u>	<u>0.598</u>	\vdash	39054_at	<u>0.592</u>	0.482	L	35294_at	0.483	0.476
34853_at	<u>0.688</u>	<u>0.538</u>	\vdash	31936_s_at	<u>0.591</u>	<u>0.565</u>	L	39856_at	0.482	0.620
36396_at	<u>0.688</u>		\vdash	1629_s_at	<u>0.591</u>	<u>0.692</u>	L	1323_at	0.482	0.604
32780_at	<u>0.687</u>	0.785	-	40461_at	<u>0.588</u>	0.427		33830_at	0.481	0.679
32254_at		0.594	-	39031_at	<u>0.588</u>	0.475	L	38743_f_at	0.481	0.524
37248_at		0.464	+	1529_at	<u>0.588</u>	<u>0.586</u>		41656_at	0.480	0.661
33800_at		0.536	\vdash	39555_at	<u>0.588</u>	<u>0.517</u>		38106_at	0.479	0.497
38837_at		0.579	1	1005_at		0.329		39420_at	0.479	0.452
39360_at		0.584	-	38745_at		0.702		39110_at	0.478	0.566
41638_at		0.640	H	35784_at		0.622		0.4.400	0.478	0.500
		0.633	\vdash	706_at	<u>0.587</u>	0.473		44000	0.476	<u>0.545</u>
-7100_at	<u>0.683</u>	<u>0.638</u>	丄	41620_at	<u>0.587</u>	<u>0.618</u>	Γ	44000		0.430

Probe Set Name	R1	R2	T	Probe set name	R1	Do	Τ	Probe set		T
38033_at	0.683		, -	226_at	0.587	R2	-	name	R1	R2
1467_at	0.682		Η.	35739_at	0.586	+	-	34860_g_at	0.476	0.593
40203 at	0.682		₩.	37205_at	0.586	+		38980_at	0.475	<u>0.539</u>
38685 at	0.680		Н .	2010_at		+====	-1	36636_at	0.475	<u>0.590</u>
35741 at	0.680	+===	` ⊢	37391_at	0.585		⊣ .	36423_at	0.474	<u>0.523</u>
39150 at	0.680		`	38433_at	0.585		⊣ .	36065_at	0.473	0.301
37604 at	0.679		-	39165_at	0.585	+	-1	1873_at	0.473	<u>0.507</u>
38812_at	0.679	+	┥ .		0.584	0.710	-1	35055_at	0.472	<u>0.586</u>
32696 at	0.678	+		1677_at	0.584	<u>0.555</u>	4	38694_at	0.471	0.464
38375_at	0.678	0.713	┥	1380_at	0.583	0.461	4	35276_at	0.471	<u>0.575</u>
38254 at	0.678	0.601	┨	34842_at	0.583	<u>0.759</u>	4	33799_at	0.469	0.607
39082_at	0.677	0.587	-	35767_at	<u>0.583</u>	<u>0.662</u>	-	773_at	0.469	0.302
32215_i_at	0.677	0.540	┨	36825_at	0.583	<u>0.587</u>	4	40211_at	0.467	<u>0.636</u>
39582_at	0.677	0.618	1	38385_at	<u>0.583</u>	<u>0.529</u>	1	35303_at	0.465	<u>0.554</u>
36915 at	0.676	0.720	-	34675_at	<u>0.582</u>	<u>0.540</u>	1	41283_at	0.464	0.496
40576 f at	0.676	0.652	┨	1737_s_at	<u>0.581</u>	0.366	↓ ⊦	37195_at	0.463	0.411
539 at	0.675	0.556	1	38982_at	<u>0.580</u>	<u>0.719</u>		40811_at	0.463	<u>0.552</u>
37595 at	0.674	0.618	┨	41271_at	<u>0.580</u>	<u>0.560</u>	1	1348_s_at	0.463	<u>0.718</u>
33868_at	<u>0.673</u>	0.637	┨	36595_s_at	<u>0.579</u>	0.473		32038_s_at	0.462	<u>0.542</u>
37676_at	<u>0.673</u>		1	38923_at	<u>0.578</u>	<u>0.605</u>		33856_at	0.462	0.542
39124_r_at	<u>0.673</u>	0.546	1	37765_at	<u>0.578</u>	0.433		36543_at	0.461	<u>0.648</u>
38649_at	<u>0.673</u>	0.473	i i	37373_at	<u>0.578</u>	<u>0.710</u>		37022_at	0.461	0.491
41771_g_at	<u>0.673</u>	0.520		37389_at	<u>0.578</u>	<u>0.526</u>		38610_s_at	0.459	0.549
227_g_at	<u>0.673</u>	0.687		38916_at	<u>0.578</u>	<u>0.651</u>		33444_at	0.459	<u>0.505</u>
	<u>U.U/Z</u>	<u>0.733</u>	Ш	33899_at	<u>0.578</u>	<u>0.555</u>		32713_at	0.459	0.598
Probe Set Name	R1	R2		Probe Set Name	R1	R2				
37486_f_at	0.459	0.615		1848 at	0.288	0.501				

Probe Set Name	R1	R2		Probe Set Name	R1	R2
37486_f_at	0.459	0.615		1848_at	0.288	0.591
38802_at	0.458	0.739		34203_at	0.288	0.150
32695_at	0.458	0.722	一	40280_at	0.286	
35142_at	0.457	0.504	\vdash	37359_at	0.286	0.492
149_at	0.457	0.544	\vdash	33790_at		<u>0.507</u>
39561_at	0.457	0.352		38542_at	0.285	0.203
33835_at	0.457	0.496	-	33870_at	0.283	0.445
32244_at	0.455	0.576		869_at	0.281	<u>0.589</u>
32313_at	0.453	0.305	Н		0.281	<u>0.518</u>
37242_at	0.452	<u>0.753</u>		315_at	0.277	0.480
38353_at	0.451	0.628		36970_at	0.275	0.456
32743_at	0.451			38782_at	0.275	<u>0.555</u>
36149_at	0.449	0.577	\dashv	39739_at	0.275	<u>0.502</u>
38050_at		0.489		41662_at	0.275	<u>0.661</u>
39072_at	0.449	0.599		37748_at	0.274	<u>0.617</u>
at	0.448	<u>0.662</u>		33441_at	0.272	0.561

Name R1 R2 Name R1 R2 32777_at 0.447 0.743 35228_at 0.272_06 266 38458_at 0.447_0417 32160_at 0.269_05 0.5 37731_at 0.446_0602 41853_at 0.268_04 0.44 38265_at 0.446_040 0.470 41746_at 0.268_05 0.4 41194_at 0.445_0253 32854_at 0.268_05 0.4 40856_at 0.445_0258 1070_at 0.267_06 0.60 36650_at 0.444_0612 35737_at 0.266_056 0.56 39431_at 0.443_0622 232_at 0.266_046 0.46 39380_at 0.443_0585 34785_at 0.259_051 0.35 37131_at 0.443_0585 34792_at 0.259_051 0.51 32576_at 0.442_0502 36542_at 0.257_066 0.66 36991_at 0.441_0543 192_at 0.255_056 0.66 34183_at 0.440_0436 35364_at <td< th=""><th>524 576 91 523 777 601 62 92 10 86 43 11</th></td<>	524 576 91 523 777 601 62 92 10 86 43 11
38458_at 0.447 0.417 32160_at 0.269 0.5 37731_at 0.446 0.602 41853_at 0.268 0.44 38265_at 0.446 0.470 41746_at 0.268 0.5 41194_at 0.445 0.533 32854_at 0.268 0.4 40856_at 0.445 0.258 1070_at 0.267 0.6 36650_at 0.444 0.612 35737_at 0.266 0.5 39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.3 37131_at 0.443 0.585 34792_at 0.259 0.5 32576_at 0.442 0.502 36542_at 0.257 0.68 324_f_at 0.441 0.543 192_at 0.255 0.64 34753_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at	576 91 523 77 601 83 62 92 10 86 43
37731_at 0.446 0.602 41853_at 0.268 0.44 38265_at 0.446 0.470 41746_at 0.268 0.52 41194_at 0.445 0.533 32854_at 0.268 0.47 40856_at 0.445 0.258 1070_at 0.267 0.66 36650_at 0.444 0.612 35737_at 0.266 0.56 39380_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.33 37131_at 0.443 0.585 34792_at 0.259 0.51 32576_at 0.442 0.502 36542_at 0.257 0.66 36991_at 0.441 0.543 192_at 0.255 0.64 34753_at 0.440 0.436 35364_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.252 0.43 34753_at 0.439 0.587 1846_at	91 77 601 83 62 92 10 86 43 11
38265_at 0.446 0.470 41746_at 0.268 0.55 41194_at 0.445 0.533 32854_at 0.268 0.47 40856_at 0.445 0.258 1070_at 0.267 0.66 36650_at 0.444 0.612 35737_at 0.266 0.56 39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.33 37131_at 0.443 0.585 34792_at 0.259 0.57 32576_at 0.442 0.502 36542_at 0.257 0.68 324_fat 0.441 0.543 192_at 0.255 0.64 324_fat 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at	62 62 92 10 86 43 11
41194_at 0.445 0.533 32854_at 0.268 0.45 40856_at 0.445 0.258 1070_at 0.267 0.60 36650_at 0.444 0.612 35737_at 0.266 0.56 39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.33 37131_at 0.443 0.585 34792_at 0.259 0.51 32576_at 0.442 0.502 36542_at 0.257 0.66 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.64 34753_at 0.440 0.436 35364_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.252 0.43 34753_at 0.430 0.587 1846_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at <td>77 01 83 62 92 10 86 43</td>	77 01 83 62 92 10 86 43
40856_at 0.445 0.258 1070_at 0.267 0.66 36650_at 0.444 0.612 35737_at 0.266 0.56 39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.38 37131_at 0.443 0.585 34792_at 0.259 0.57 32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.64 34753_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 39045_at 0.432 0.549 40105_at <td>92 10 86 43 11</td>	92 10 86 43 11
36650_at 0.444 0.612 35737_at 0.266 0.58 39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.39 37131_at 0.443 0.585 34792_at 0.259 0.51 32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 4083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at	83 62 92 10 86 43 11
39431_at 0.443 0.622 232_at 0.266 0.46 39380_at 0.443 0.544 34785_at 0.259 0.39 37131_at 0.443 0.585 34792_at 0.259 0.51 32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.659 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at </td <td>62 92 10 86 43 11</td>	62 92 10 86 43 11
39380_at 0.443 0.544 34785_at 0.259 0.38 37131_at 0.443 0.585 34792_at 0.259 0.51 32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.68 324_f_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.506 36169_at </td <td>92 10 86 43 11</td>	92 10 86 43 11
37131_at 0.443 0.585 34792_at 0.259 0.565 32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at<	10 86 43 11
32576_at 0.442 0.502 36542_at 0.257 0.68 36991_at 0.441 0.543 192_at 0.255 0.64 324_f_at 0.441 0.562 36330_at 0.255 0.51 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at </td <td>86 43 11</td>	86 43 11
36991_at 0.441 0.543 192_at 0.257 0.68 324_f_at 0.441 0.562 36330_at 0.255 0.64 34837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.426 0.577 40709_at </td <td>43 11</td>	43 11
324_f_at 0.441 0.562 36330_at 0.255 0.54 41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.426 0.577 40709_at 0.240 0.48	<u>11</u>
41837_at 0.440 0.436 35364_at 0.254 0.48 34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.426 0.577 0.492 40709_at 0.240 0.48	=
34753_at 0.439 0.587 1846_at 0.252 0.436 40083_at 0.438 0.531 32172_at 0.252 0.552 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48	=
34753_at 0.439 0.587 1846_at 0.252 0.43 40083_at 0.438 0.531 32172_at 0.252 0.55 35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 39315_at 0.430 0.659 34890_at 0.243 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626 at 0.436 0.577 0.0000 0.240 0.48	86
35936_g_at 0.437 0.563 37616_at 0.249 0.51 32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.0000 0.240 0.48	
35936 g at 0.437 0.563 37616 at 0.249 0.51 32067 at 0.434 0.353 32822 at 0.247 0.58 39045 at 0.432 0.549 40105 at 0.246 0.52 36489 at 0.432 0.636 509 at 0.245 0.55 41242 at 0.431 0.502 37352 at 0.244 0.52 1501 at 0.431 0.576 36169 at 0.243 0.52 39315 at 0.430 0.659 34890 at 0.242 0.52 32618 at 0.430 0.786 34370 at 0.242 0.53 40136 at 0.427 0.492 40709 at 0.240 0.48 36626 at 0.436 0.577 0.057 0.0000 0.0000 0.0000	54
32067_at 0.434 0.353 32822_at 0.247 0.58 39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.0000 0.0000 0.0000 0.0000	
39045_at 0.432 0.549 40105_at 0.246 0.52 36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.0000 0.0000 0.0000	
36489_at 0.432 0.636 509_at 0.245 0.55 41242_at 0.431 0.502 37352_at 0.244 0.52 1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.0000 0.0000 0.0000	
41242_at 0.431 0.502 37352_at 0.244 0.52 1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.577 0.0007 0.240 0.48	
1501_at 0.431 0.576 36169_at 0.243 0.52 39315_at 0.430 0.659 34890_at 0.242 0.52 32618_at 0.430 0.786 34370_at 0.242 0.53 40136_at 0.427 0.492 40709_at 0.240 0.48 36626_at 0.436 0.577 0.0000 0.0000 0.0000	=
39315_at 0.430 <u>0.659</u> 34890_at 0.242 <u>0.52</u> 32618_at 0.430 <u>0.786</u> 34370_at 0.242 <u>0.53</u> 40136_at 0.427 0.492 40709_at 0.240 0.483	_
32618_at	_
40136_at 0.427 0.492 40709_at 0.240 0.48	_
36626 at 10.426 10.577 20007	_
	_
32667_at 0.426 0.588 38820_at 0.235 0.59	
37951_at 0.426 0.451 35213 at 0.235 0.549	==1
36569_at 0.426 0.347 36492 at 0.235 0.585	_
32611_at 0.425 <u>0.518</u> 35356 at 0.233 0.619	=-
34990_at 0.424 0.688 35643_at 0.230 0.673	
32164_at 0.424 0.358 33847_s_at 0.229 0.574	_
38693_at 0.424 0.623 34359 at 0.229 0.496	_
38737_at 0.423 0.418 39346 at 0.228 0.573	_
34372_at 0.423 0.564 39517_at 0.227 0.524	_
32792_at 0.423 <u>0.612</u> 202_at 0.225 0.545	
36681_at 0.423 0.384 35720_at 0.225 0.422	=-1
39091_at 0.422 <u>0.668</u> 40859 at 0.225 0.526	_
33126_at 0.422 0.651 33343 at 0.221 0.600	=-
41333_at 0.421 <u>0.595</u> 950 at 0.221 0.653	_
41338_at 0.420 <u>0.605</u> 32548 at 0.219 0.539	-
38664_at 0.419 0.672 35163 at 0.219 0.676	-
37718_at 0.419 0.391 38662_at 0.218 0.482	ฐา

Probe Set Name	D4	- FG	Γ	Probe Set		Τ
	R1	R2	⊢	Name	R1	R2
38892_at	0.418	0.642	_	39083_at	0.213	<u>0.575</u>
39741_at	0.417	0.481	<u> </u>	41864_at	0.211	0.329
40601_at	0.417	<u>0.680</u>	L	39723_at	0.210	0.487
39170_at	0.417	<u>0.561</u>	L	36968_s_at	0.207	0.403
32314_g_at	0.417	0.222	L	32564_at	0.206	0.537
34784_at	0.416	0.336		35209_at	0.205	0.652
35988_i_at	0.416	<u>0.547</u>	_	41600_at	0.204	<u>0.571</u>
39809_at	0.416	<u>0.516</u>	<u> </u>	39428_at	0.203	0.630
31872_at	0.415	<u>0.630</u>		40480_s_at	0.198	0.761
33942_s_at	0.412	<u>0.735</u>		39180_at	0.198	0.480
37399_at	0.411	0.470	L	41830_at	0.197	0.647
37379_at	0.410	0.684		37309_at	0.196	0.413
37895_at	0.407	0.500		1241_at	0.195	0.327
32099_at	0.407	0.570		38415_at	0.189	0.593
32253_at	0.405	0.544		288_s_at	0.187	0.438
39989_at	0.403	0.587		37891_at	0.186	0.559
36980_at	0.403	0.592		32745_at	0.183	0.511
508_at	0.402	<u>0.589</u>		38479_at	0.182	0.504
38312_at	0.402	0.316		39401_at	0.181	0.699
39350_at	0.401	<u>0.727</u>		36851_g_at	0.181	0.460
37725_at	0.401	<u>0.578</u>		39418_at	0.180	0.493
39663_at	0.400	<u>0.565</u>		31894_at	0.177	0.463
39509_at	0.398	<u>0.533</u>		31896_at	0.175	0.440
34344_at	0.398	<u>0.541</u>		32730_at	0.173	0.548
33862_at	0.398	<u>0.615</u>		40239 g at	0.169	0.519
39897_at	0.397	<u>0.529</u>		2003 s at	0.169	0.652
39690_at	0.396	0.182		32169 at	0.165	0.556
729_i_at	0.396	<u>0.597</u>		39696 at	0.165	0.488
41400_at	0.395	0.497	コ	32240 at	0.163	0.562
32841_at	0.395	0.594	\neg	34684 at	0.161	0.538
41807_at	0.395	0.467		35301 at	0.161	0.502
659_g_at	0.391	0.641		38054_at	0.160	0.382
33351_at	0.389	0.664		41606_at	0.159	0.562
1127_at	0.386	<u>0.697</u>		40634_at	0.158	0.532
33875_at	0.384	0.539		37747_at	0.157	0.475
39046_at	0.383	0.371	7	40096_at	0.156	0.495
36931_at	0.382	0.225	7	36032_at	0.155	<u>0.550</u>
41288_at	0.381	0.641	7	41046_s_at	0.153	0.357
31670_s_at	0.380	0.485	7	35738_at	0.140	<u>0.755</u>
40281_at	0.380	0.562	\dashv	35812_at	0.140	0.492
911_s_at	0.379	0.618	7	40064_at	0.138	0.506
34570_at	0.374	0.586	7	40047_at	0.137	0.454
1725_s_at	0.373	0.541	\dashv	32340_s_at	0.137	0.322
	 L			at	0.100	0.022

Probe Set	T		T	Probe Set		
Name	R1	R2	╀	Name	R1	R2
40282_s_at			\downarrow	31944_at	0.133	<u>0.601</u>
32662_at	0.371		+	32242_at	0.133	0.394
38985_at	0.370	+===	╄-	32170_g_at	0.132	0.529
583_s_at	0.370		_	38408_at	0.132	<u>0.656</u>
38430_at	0.369		╀	36892_at	0.115	0.042
35203_at	0.367	<u>0.566</u>	<u> </u>	171_at	0.115	0.543
38734_at	0.367	+	Ļ.	31866_at	0.115	0.529
40432_at	0.367	-	<u> </u>	36925_at	0.114	0.537
1151_at	0.365	0.476	L	36620_at	0.113	<u>0.692</u>
37671_at	0.365	0.488	_	34774_at	0.109	0.642
39797_at	0.364	0.477		40039_g_at	0.107	0.625
40618_at	0.363	0.468	L	40824_at	0.106	0.206
39740_g_at	0.362	<u>0.512</u>	<u> </u>	34314_at	0.105	0.547
39097_at	0.362	<u>0.595</u>	L	40621_at	0.103	0.389
41251_at	0.359	0.483		34393_r_at	0.102	0.483
40916_at	0.359	<u>0.777</u>		33103_s_at	0.098	0.596
34255_at	0.358	<u>0.531</u>		35311_at	0.098	0.436
41701_at	0.358	<u>0.570</u>		147_at	0.093	0.516
36474_at	0.358	<u>0.569</u>		33220_at	0.091	0.427
31831_at	0.358	0.157		969_s_at	0.091	0.503
41713_at	0.358	<u>0.535</u>		39884_g_at	0.090	0.531
38994_at	0.355	0.114		32849_at	0.090	0.371
39686_g_at	0.351	<u>0.548</u>		237_s_at	0.089	0.639
33222_at	0.350	<u>0.626</u>		41742_s_at	0.087	0.642
36526_at	0.350	<u>0.584</u>		31867_at	0.084	0.602
40843_at	0.347	<u>0.555</u>	_	39245_at	0.083	0.469
31812_at	0.346	0.436		41488_at	0.082	0.459
450_g_at	0.346	<u>0.576</u>		36974_at	0.080	0.370
39931_at	0.346	<u>0.535</u>		33912_at	0.076	0.482
40831_at	0.345	0.544		35286_r_at	0.074	0.415
1719_at	0.345	<u>0.606</u>	\perp	37734_at	0.073	0.469
40471_at	0.345	0.402	\bot	38011_at	0.073	<u>0.533</u>
39118_at	0.344	<u>0.517</u>		39715_at	0.071	0.638
37107_at	0.343	<u>0.590</u>		41136_s_at	0.071	0.567
41462_at	0.342	<u>0.550</u>	\perp	40467_at	0.071	0.537
38075_at	0.341	0.430		36899_at	0.069	0.499
39163_at	0.339	0.385	floor	32171_at	0.068	0.535
39405_at	0.339	<u>0.537</u>	\int	1195_s_at	0.067	0.505
31830_s_at	0.338	0.176	\int	35318_at	0.067	0.585
37367_at	0.338	<u>0.520</u>	\int	38839_at	0.065	0.597
39731_at	0.337	<u>0.629</u>	floor	34356_at	0.065	<u>0.673</u>
41691_at	0.335	<u>0.572</u>	J	39033_at	0.065	<u>0.606</u>
37381_g_at	0.334	0.493	m I	40854_at	0.062	0.506

Probe Set Name	L		T	Probe Set		
	R1	R2		Name	R1	R2
37706_at	0.333		2	38654_at	0.060	0.51
37694_at	0.330			41743_i_a		
33341_at	0.329			35247_at	0.052	
37715_at	0.328		!	40086_at	0.051	
35435_s_at	0.325	<u>0.736</u>		33405 at	0.048	
32511_at	0.324			36165 at	0.044	
33229_at	0.323	<u>0.589</u>		33819 at	0.041	
1512_at	0.322	<u>0.529</u>	Γ	34378 at	0.039	
1197_at	0.320	0.134		31993 f at		+
_40191_s_at	0.319	<u>0.520</u>		663_at	0.037	
34781_at	0.318	0.509		34680_s_at		
855_at	0.315	0.450		33421_s_at		0.455
39351_at	0.315	<u>0.653</u>		33892 at	0.036	0.579
38400_at	0.314	<u>0.594</u>	\prod	34826 at	0.035	0.288
1074_at	0.313	0.486	\Box	37029 at	0.033	0.526
37732_at	0.312	0.363		35253 at	0.031	0.479
41737_at	0.312	0.460	П	38371 at	0.026	0.437
36544_at	0.311	0.662		33850 at	0.026	0.512
31508_at	0.309	<u>0.599</u>		40487 at	0.025	0.356
37536_at	0.309	0.409		34366 g at	0.025	0.420
38046_at	0.307	<u>0.599</u>		35751_at	0.025	0.605
37025_at	0.305	<u>0.504</u>		33848 r at	0.024	0.380
33451_s_at	0.304	0.449		274 at	0.023	<u>0.510</u>
2039_s_at	0.304	<u>0.723</u>		36201 at	0.021	0.234
34391_at	0.304	0.464		40555 at	0.021	0.480
37736_at	0.303	<u>0.647</u>		39373_at	0.019	0.345
31855_at	0.303	0.274		35304 at	0.017	0.511
218_at	0.301	0.621	T	39762 at	0.017	<u>0.571</u>
32506_at	0.300	<u>0.558</u>	\top	33255 at	0.015	0.334
1394_at	0.300	0.425	7	35258 f at	0.013	0.507
31907_at	0.299	<u>0.539</u>	1	40988_at	0.013	0.522
32563_at	0.299	0.469	\top	933_f_at	0.011	<u>0.522</u> <u>0.604</u>
41424_at	0.299	0.588	\top	1447_at	0.010	0.467
33418_at		0.553	\top	37672_at	0.009	
39183_at		0.463	1	38995 at	0.009	0.518
40903_at	0.293	0.483		890_at	0.006	0.114 0.548

Note: Absolute CC values are shown for expression levels analyzed in all 36 samples (R1) and in the 18 test samples only (R2).

CCs ≥0.5 are <u>italicized and underlined</u>.

References Cited

[180] All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. The discussion of references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.

[181] In addition, all GenBank accession numbers, Unigene Cluster numbers and protein accession numbers cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each such number was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

[182] The present invention is not to be limited in terms of the particular embodiments described in this application, which are intended as single illustrations of individual aspects of the invention. Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatus within the scope of the invention, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications and variations are intended to fall within the scope of the appended claims. The present invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.