Python: révisions - Corrigé

Exercice 1 (Suites explicites)

```
1.
import numpy as np
def vecteur(n):
    A = np.arange(n) # A = [0,1, ..., n-1]
    V = A / (1 + A**2)
    return V
```

ou alors:

```
import numpy as np
def vecteur(n) :
  return np.array([ k / (1+k**2) for k in range(n) ])
```

```
import numpy as np
def vecteur(n):
    A = np.arange(1,n+1) # A = [1,2, ..., n]
    V = np.log(A)/A
    return V
```

ou alors:

```
import numpy as np
def vecteur(n):
   return np.array([ np.log(k) / k for k in range(1,n+1) ])
```

Exercice 2 (Suite à récurrence double)

```
import numpy as np
def vecteur(n):
    V = np.zeros(n); V[0] = 0; V[1] = 1
    for k in range(n-2): # k = 0, 1, ..., n-3
        V[k+2] = (k+1)/(V[k] + V[k+1])
```

Exercice 3 (Paradoxe des anniversaires)

1. On considère que chacune des n dates d'anniversaire est uniformément distribuée sur les 365 jours de l'année. On peut décrire l'univers associé à cette expérience aléatoire :

$$\Omega = [1, 365]^n = \{(x_1, x_2, \dots, x_n), \forall i \in [1, n], x_i \in [1, 365]\}$$

 $(x_i \text{ est la date d'anniversaire de la personne } n^{\circ}i)$

On est alors en situation d'équiprobabilité!

En notant A = "Au moins deux personnes ont la même date d'anniversaire", on a donc :

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{\text{Nb de résultats où toutes les dates sont différentes}}{\text{Nb total de résultats}}$$

c'est à dire, avec un peu de dénombrement :

$$P(A) = 1 - \frac{365 \times 364 \times ... \times (365 - n + 1)}{365^n} = 1 - \frac{365!}{(365 - n)! \times 365^n}.$$

2. Soit $n \in [1, 364]$. On a :

$$1 - (1 - p_n) \left(1 - \frac{n}{365} \right) = 1 - \frac{365!}{(365 - n)! \times 365^n} \times \frac{365 - n}{365} = 1 - \frac{365!}{(365 - n - 1)! \times 365^{n+1}} = p_{n+1}$$

3. Notons que P [0] = $p_1 = 0$. De plus P [k] = p_{k+1} donc la relation $p_{k+1} = 1 - (1 - p_k)(1 - \frac{k}{365})$ s'écrit : P [k] = $1 - (1 - P [k-1])(1 - \frac{k}{365})$

```
import numpy as np
P = np.zeros(365); # On peut ajouter P[0] = 0, mais ce n'est pas utile
for k in range(1,365) : # k = 1,2, ..., 364
P[k] = 1 - (1-P[k-1]) * (1 - k/365)
print(P)
```

Exercice 4 (Somme basique)

1. Avec une boucle:

```
def somme(n) :
   S = 0
   for k in range(1,n+1) :
      S = S + (-1)**k / k # ou bien S += (-1)**k / k
   return S
```

Sans boucle, avec np.sum:

```
import numpy as np
def somme(n) :
  return np.sum( [ (-1)**k / k for k in range(1,n+1) ] )
```

ou, si on préfère construire un vecteur :

```
import numpy as np
def somme(n):
    A = np.arange(1,n+1)
    V = (-1)**A / A
    return np.sum(V)
```

2. On a pour tout $k \in [0, n-1]$, $V[k] = S_{k+1}$. Bien-sûr, on pourrait poser simplement:

```
import numpy as np
def vecsomme(n) :
    V = np.zeros(n);
    for k in range(n) : # k = 0, 2, ..., n-1
        V[k] = somme(k+1)
    return V
```

Mais ceci est très lourd en calcul, puisque pour remplir chacune des cases du vecteur V on recalcule la somme depuis le début! Il vaut mieux mettre à profit la relation de récurrence :

$$V[k] = S_{k+1} = S_k + \frac{(-1)^{k+1}}{k+1} = V[k-1] + \frac{(-1)^{k+1}}{k+1}.$$

Notons de plus que $V[0] = S_1 = -1$. Cela conduit au programme suivant :

```
import numpy as np
def vecsomme(n):
    V = np.zeros(n); V[0] = -1
    for k in range(1,n) : # k = 1, 2, ..., n-1
        V[k] = V[k-1] + (-1)**(k+1) / (k+1)
    return V
```

Exercice 5 (Coefficients binomiaux)

```
1. (a) \binom{n}{p} = \frac{n!}{p!(n-p)!}. (b)
```

```
import numpy as np
def binome(p,n):
  fact1 = np.prod( range(1, n+1) ) # calcule n!
  fact2 = np.prod( range(1, p+1) ) # calcule p!
  fact3 = np.prod( range(1, n-p+1 ) # calcule (n-p)!
  return fact1 / (fact2 * fact3)
```

Ce programme est très couteux en calculs car, pour calculer $\binom{100}{3}$, il demande d'effectuer 3+100+97=200 multiplications. On peut faire bien-mieux!

- 2. (a) On peut aussi écrire : $\binom{n}{p} = \frac{n \times (n-1) \times \ldots \times (n-p+1)}{p \times (p-1) \times \ldots \times 1} = \prod_{k=0}^{p-1} \frac{n-k}{p-k}.$
 - (b) Il suffit de calculer ce produit de p termes en Python, par exemple avec $\mathtt{np.prod}$:

```
def binome(p,n) :
  b = np.prod([ (n-k)/(p-k) for k in range(p) ] )
  return b
```

Dans ce cas, le calcul de $\binom{100}{3}$ requiert seulement 3 produits!

Exercice 6 (Sommes exploitant une relation de récurrence)

1. L'idée est de remarquer que l'on veut calculer la somme $\sum_{k=0}^{n} a_k$

avec $a_0 = 1$ et la relation de récurrence $a_k = \frac{x}{k} \times a_{k-1}$. Ainsi :

```
def somme(x,n):
    a = 1; S = a
    for k in range(1, n+1): # k = 1, ..., n
        a = (x / k) * a
        S = S + a
    return S
```

Il est important de s'assurer du bon fonctionnement de ce programme en constatant les valeurs contenues dans les variables après chaque passage de la boucle :

```
Avant la boucle : a = 1, S = 1

Après 1 passage : k = 1, a = x, S = 1 + x

Après 2 passages : k = 2, a = \frac{x^2}{2}, S = 1 + x + \frac{x^2}{2}

Après 3 passages : k = 3, a = \frac{x^3}{6}, S = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}

:

Après n passages : k = n, a = \frac{x^n}{n!}, S = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots + \frac{x^n}{n!}
```

2. Même chose pour la somme $\sum_{k=0}^{n} a_k$ avec $a_0 = 1$ et la relation de récurrence $a_k = \frac{-x^2}{(2k)(2k-1)} \times a_{k-1}$.

```
def somme(x,n):
    a = 1; S = a
    for k in range(1, n+1): # k = 1, ..., n
        a = (-x / ((2*k)*(2*k-1))) * a
        S = S + a
    return S
```

Exercice 7 (Matrice en forme de N)

```
import numpy as np
N = np.array([[1,0,1], [1,1,1], [1,0,1]])

def matriceN(n):
    A = np.eye(n) # matrice identite de taille n : des 1 sur la diagonale
    A[:,0] = 1 # on ajoute des 1 sur la premiere colonne
    A[:,n-1] = 1 # on ajoute des 1 sur la derniere colonne
    return A
```

Exercice 8 (Matrice en forme de Z)

```
def matriceZ(n) :
    A = np.zeros( (n,n) ) # matrice nulle de taille n x n

A[0,:] = 1 # on ajoute des 1 sur la premiere ligne
    A[n-1,:] = 1 # on ajoute des 1 sur la derniere ligne

# On remplit ensuite "l'anti-diagonale" avec des 1 :
    for k in range(n) : # k = 0, 1, ..., n-1
        A[k,n-1-k] = 1
return A
```

Exercice 9 (Approximation de π)

Notons que la fonction $f: x \mapsto \cos(\frac{x}{2})$ est continue, strictement décroissante sur [0,4],

avec $f(0) = \cos(0) = 1$ et $f(4) = \cos(2) < 0$. On peut lui appliquer la méthode de dichotomie pour déterminer une valeur approchée du point où f s'annule (a.k.a π).

Attention, comme on est dans le cas d'une fonction d'abord positive, ensuite négative, il faut "décaler" la bonne variable lorsque f(c) > 0... Un dessin peut aider à s'y retrouver.

On veut une valeur approchée à 10^{-5} près : c'est ce qui jouera le rôle du ε .

Enfin, on veut afficher une seule valeur et non pas un encadrement. On peut donc afficher a ou b, au choix!

```
import numpy as np
a = 0; b = 4 # initialisations de a et b
while b-a > 10**(-5) : # tant que a et b sont distants d'au moins 10**(-5)

c = (a+b)/2 # calcul du point milieu

if np.cos(c/2) > 0 : # si la fonction est positive au point c
    a = c # on decale le a
else :
    b = c # on decale le b

print(a) # a la fin de ces operations, on renvoie a (ou b)
```

On peut aussi, si on préfère, définir au préalable la fonction $f: x \mapsto \cos(x/2)$ en Python, puis l'utiliser dans le script précédent.

Exercice 10 (Approximation de $\sqrt{2}$)

Première façon : méthode de Dichotomie

On exploite le fait que $\sqrt{2}$ est l'unique solution de l'équation $x^2 = 2$ sur le segment [0,2] par exemple.

On applique l'algorithme de dichotomie! Cette fois la fonction $x \mapsto x^2$ est croissante : d'abord en dessous de 2, puis au dessus de 2. Un dessin peut aider à savoir quelle variable il faut "décaler" dans chacun des cas.

On veut une valeur approchée à 10^{-5} près : c'est ce qui jouera le rôle du ε .

Enfin, on veut afficher une seule valeur et non pas un encadrement. On peut donc afficher a ou b, au choix!

```
a = 0; b = 2 # initialisations de a et b
while b-a > 10**(-5) : # tant que a et b sont distants d'au moins 10**(-5)

c = (a+b)/2 # calcul du point milieu

if c**2 < 2 : # si la fonction est en dessous de 2 au point c
    a = c # on decale le a
else :
    b = c # on decale le b

print(a) # a la fin de ces operations, on renvoie a (ou b)</pre>
```

Deuxième façon : méthode du point fixe

On définit la fonction $g: x \mapsto \frac{2}{3}\left(x + \frac{1}{x}\right)$ ainsi qu'une suite $u: u_0 > \sqrt{2}$, et $\forall n \in \mathbb{N}, u_{n+1} = g(u_n)$.

1. (a) Pour tout x > 0, on a les équivalences :

$$g(x) = x \Longleftrightarrow \frac{2}{3}(x + \frac{1}{x}) = x \Longleftrightarrow \frac{2}{3}(x^2 + 1) = x^2 \Longleftrightarrow \frac{1}{3}x^2 - \frac{2}{3} = 0 \Longleftrightarrow x^2 = 2 \Longleftrightarrow x = \sqrt{2}.$$

L'unique point fixe de g sur \mathbb{R}_+^* est donc $\sqrt{2}$.

(b) Etude rapide de la fonction g, dérivable sur \mathbb{R}_+^* comme somme de fonctions usuelles :

$$\forall x > 0, \ g'(x) = \frac{2}{3} \left(1 - \frac{1}{x^2} \right)$$

donc $g'(x) > 0 \iff x > 1$. On obtient donc le tableau de variations :

Puisque $\sqrt{2} > 1$, on a en particulier : $g(]\sqrt{2}, +\infty[) =]g(\sqrt{2}), +\infty[=]\sqrt{2}, +\infty[$.

Ainsi, l'intervalle $]\sqrt{2}, +\infty[$ est stable par g, c'est à dire que : $\forall x > \sqrt{2}, g(x) > \sqrt{2}.$

Puisqu'on a choisi justement $u_0 > \sqrt{2}$, par récurrence immédiate il en résulte que : $\forall n \in \mathbb{N}, u_n > \sqrt{2}$.

(c) Soit $n \in \mathbb{N}$. Etudions le signe de $u_{n+1} - u_n$:

$$u_{n+1} - u_n = \frac{2}{3} \left(u_n + \frac{1}{u_n} \right) - u_n = -\frac{1}{3} u_n + \frac{2}{3} \frac{1}{u_n} = \frac{2 - u_n^2}{3u_n} < 0$$

car $u_n > \sqrt{2}$. Il en résulte bien que la suite u est strictement décroissante.

Conclusion: La suite u est décroissante et minorée par $\sqrt{2}$, donc d'après le théorème de la limite monotone, elle converge vers un réel $\ell \geqslant \sqrt{2}$. En passant à la limite dans l'égalité $u_{n+1} = g(u_n)$, on obtient $\ell = g(\ell)$. Ainsi, ℓ doit être un point fixe de g, c'est à dire forcément $\ell = \sqrt{2}$.

2. (a) Pour tout $n \in \mathbb{N}$, on sait déjà que $u_n - \sqrt{2} > 0$. De plus, on a

$$u_n^2 - 2 = \underbrace{(u_n - \sqrt{2})}_{>0} \underbrace{(u_n + \sqrt{2})}_{>\sqrt{2}} (u_n - \sqrt{2}) (\sqrt{2} + \sqrt{2}) \geqslant (u_n - \sqrt{2}) \times 2$$

donc effectivement, $u_n - \sqrt{2} \leqslant \frac{1}{2} (u_n^2 - 2)$.

(b) Pour approcher $\sqrt{2}$ à 10^{-5} près, l'idée est de calculer la valeur de u_n jusqu'à ce que :

$$\frac{1}{2}(u_n^2 - 2) \leqslant 10^{-5}.$$

L'encadrement précédent garantit alors que $0 < u_n - \sqrt{2} \leqslant 10^{-5}$, c'est à dire que $\sqrt{2} < u_n < \sqrt{2} + 10^{-5}$: u_n sera proche de $\sqrt{2}$ à 10^{-5} près!

On peut choisir la valeur que l'on souhaite pour u_0 , du moment que $u_0 > \sqrt{2}$. Bien-sûr, on gagne à prendre une valeur déjà "proche" de $\sqrt{2}$, par exemple 2.

3. (a) Pour tout x > 1, on a

$$|g'(x)| = \left|\frac{2}{3}\left(1 - \frac{1}{x^2}\right)\right| = \frac{2}{3}\left(1 - \frac{1}{x^2}\right) \leqslant \frac{2}{3};$$

On peut donc choisir $M = \frac{2}{3} \in]0,1[.$

(b) On note que pour tout $n \in \mathbb{N}$, on a : $u_{n+1} - \sqrt{2} = g(u_n) - g(\sqrt{2})$ Or, puisque $\forall t \in]\sqrt{2}, u_n[, |g'(t)| \leq M$, l'IAF nous apprend que

$$|g(u_n) - g(\sqrt{2})| \le M|u_n - \sqrt{2}|$$
 i.e $|u_{n+1} - \sqrt{2}| \le M|u_n - \sqrt{2}|$.

Puisque $u_n - \sqrt{2} > 0$, les valeurs absolues sont inutiles : on obtient $u_{n+1} - \sqrt{2} \leqslant M(u_n - \sqrt{2})$ De là, une récurrence immédiate conduit à : $\forall n \in \mathbb{N}, \ u_n - \sqrt{2} \leqslant M^n(u_0 - \sqrt{2})$.

(c) On pose $u_0 = 2$, donc on a $u_0 - \sqrt{2} = 2 - \sqrt{2} \leqslant 1$ de sorte que : $\forall n \in \mathbb{N}, \ 0 < u_n - \sqrt{2} \leqslant M^n$. Pour que u_n soit une approximation de $\sqrt{2}$ à 10^{-5} près, il suffit donc qu'on ait $M^n \leqslant 10^{-5}$, i.e.:

$$\left(\frac{2}{3}\right)^n \leqslant 10^{-5} \Longleftrightarrow n \ln(2/3) \leqslant -5 \Longleftrightarrow n \geqslant \frac{-5}{\ln(2/3)} = \Longleftrightarrow n \geqslant \frac{5}{\ln(3) - \ln(2)} \simeq 12, 3.$$

En choisissant n = 13, on est donc certain que $u_n = u_{13}$ est une approximation de $\sqrt{2}$ à 10^{-5} près! On peut alors se contenter du script suivant; où l'on fait 13 passages de boucle :

```
u = 2 # initialisation
for k in range(13) : # 13 passages
u = (2/3) * (u + 1/u) # on applique la relation de recurrence
print(u)
```