《数据结构》期末考试试题(B卷)

考 一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按 试 照监考教师指定座位就坐。

注 二、书本、参考资料、书包等物品一律放到考场指定位置。

三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考事场违纪或作弊行为者,按相应规定严肃处理。

四、学生必须将答题内容做在试题答卷上,做在试题及草稿纸上一律无效。

五、答卷应字迹清楚、语义确切。

六、算法应说明基本思路,应对主要数据类型、变量给出说明,所写算法应结构清晰、简明易懂,应加上必要的注释。

考试 课程	数据结构				考试时间			2020年 06月 29日				
题号		=	三	四	五.	六	七	八	九	十	总分	
满分	20	10	10	10	10	10	10	10	10		100	
得分												
阅卷 教师												

一、选择题(每题2分,共20分)

1.下列函数的时间复杂度为()。

```
int A( int n ) {  int i=0, sum=0; \\ while (sum < n) \\ return i; }   sum += ++i;   sum +=
```

- $\mathbf{A} \cdot O(\log_2 n)$
- **B** . $O(n^{1/2})$
- **C**. O(n)
- \mathbf{D} . $O(n\log_2 n)$
- 2. 带头结点的双循环链表,删除指针 p 所指结点的正确语序是 ()。
- \mathbf{A} . p->next->prev = p->prev; p->prev->next = p->prev; free(p);

姓名:

班内序号:__

顶

李守: -

班级.

专心:

\mathbf{C} . p ->next->prev = p -	>next; p->prev->next	= p->prev; free(p);	
D . p->next->prev = p->	>prev; p->prev->next	= p->next; free(p);	
3. 设栈 S 和队列 Q 的	可初始状态均为空,方	元素 abcdefg 依次进入村	戋S,若每个元素
出栈后立即进入队列。	Q, 且7个元素的出版	队顺序为 bdcfeag,则栈	S 的容量至少为
()。			
A .1 B	. 2 C.	3 D .4	
4.字符串'pqpqppqpq	'的 nextval 为()。	
A . (0,1,0,1,0,4,1,0,1)		B . (0,1,0,1,0,2,1,0,1))
C . (0,1,0,1,0,0,0,1,1)		D . (0,1,0,1,0,1,0,1,1)
5. 适合于压缩存储稀	疏矩阵的两种存储组	吉构 是 ()。	
A. 三元组表和十字键	捷表	B. 三元组表和邻接知	巨阵
C. 十字链表和二叉锭	捷表	D. 邻接矩阵和十字锁	连表
6.一颗完全二叉树有	768 个结点,则该二	二叉树中叶子的数目是	()。
A . 383	B .384	C. 385	D. 无法确定的
7. 下列选项给出的是	从根到两个叶子结束	点路径上的结点权值序	列,能属于同一
颗哈夫曼树的是()。		
A.24、10、5和24、	10、7	B. 24、10、5和24	1, 12, 7
C.24、10、10和24	、14、11	D. 24、10、5和24	1, 14, 6
8. 在有 n 个顶点的有	向图中,每个顶点的		0
A .n B .	n-1 C. 2n	D . 2n-2	
9. 对有 2500 个记录的	的表进行分块查找,	则理想的块长为())。
A . 50 B .	. 51 C. 5	00 D . 501	
10.下列排序算法中,	对初始状态为递增	序列的表按递增顺序排	序,最省时间的
是 ()。			
A .快速排序]	B. 起泡排序 第2页, 共1	C .归并排序 1.0页	D.简单选择排序

B . p->next->prev = p->next; p->prev->next = p->next; free(p);

二、判断题(每题1分,共10分)

- 1. () 数据的逻辑结构是指数据的各数据项之间的逻辑关系。
- 2.()线性表采用链表存储时,结点和结点内部的存储空间可以是不连续的。
- 3. () 广度优先遍历算法通常借助队列来实现。
- 4. () 串是一种数据对象和操作都特殊的线性表。
- 5. () 若一个广义表的表尾为空表,则此广义表亦为空表。
- 6. () 用一维数组存储二叉树时, 总是以先序遍历顺序存储结点。
- 7. () 无向图的邻接矩阵一定是对称矩阵,有向图的邻接矩阵不一定是非对 称矩阵。
- 8. () m 阶 B-树所有叶子都在同一层上。
- 9. () 快速排序算法不是稳定排序算法, 其空间复杂度也不是 O(1)。
- 10. () 外部排序是把外存文件调入内存,可利用内部排序的方法进行排序,因此排序所花的时间取决于内部排序的时间。

三、已知某二叉树的先序序列和中序序列如下所示,画出这颗二叉树及其对应的森林(树)。 $(10 \, \bigcirc$

先序序列: 53 17 09 45 23 78 94 88 中序序列: 09 17 23 45 53 78 88 94

四、请看下边的有向无环图。(10分)

- (1) 画出它的逆邻接表; (3分)
- (2) 画出它的邻接矩阵; (3分)
- (3) 从 V₁ 出发按照上述邻接矩阵的存储结构, 写出深度优先遍历的次序; (4分)

- 五、已知散列表的地址空间为 A[0..10],散列函数 $H(k) = (3k+5) \mod 11$,采用线性探测再散列法处理冲突。 **(10 分)**
- (1) 请将关键字序列{25, 17, 92, 51, 33, 29, 83, 123, 42, 105}依次插入到下面的散列表中,给出下表中各空的值;
 - (2) 并计算出在等概率情况下查找成功和不成功时的平均查找长度。

关键字	25	17	92	51	33	29	83	123	42	105
H(k)										

散列地址		0	1	2	3	4	5	6	7	8	9	10
关键字												
比较次数	查找成功											
	查找失败											

ASL 成功 =

ASL _{不成功} =

六、给定一组十个关键字的集合: {41H, 94H, 11H, A6H, 23H, 53H, F7H, 28H, 88H, 75H}, 每个关键字是两位的一个十六进制数。对关键字进行快速排序。请回答: **(10 分)**

- (1) 描述快速排序的处理过程(4分)
- (2) 写出快速排序第一趟和第二趟的结果(6分)

七、一棵有n个节点的完全二叉树,采用顺序存储的方式存于数组a[n]中,其中每个节点存储的都是正整数,编写一个算法判断这棵完全二叉树是否是一个大根堆,将判断结果返回,1 代表是,0 代表不是。 **(10 分)**

int IsBigRootHeap (int a[])

// 判断 a[n]存储的是否是大根堆, 函数返回值1代表是, 0代表不是;

```
八、已知二叉排序树的根指针及其中一个结点的值(树中一定存在该结点),请编写算法,判断该结点是否叶子结点,是返回 1,否则返回 0。 (10 分) typedef struct node { char data; node *lc, rc; } bitptr; int Leaf(bitptr &t, char x) // t 为二叉排序树根指针, x 为某结点值
```

九、假设包含n个顶点的有向加权图(顶点编号从1到n)采用邻接矩阵存储, 其邻接矩阵和邻接表的存储结构定义在下面给出。请编制算法将图的存储结构由 邻接矩阵(Adjmatrix)转换为邻接表(Adjlist)。在邻接矩阵中定义一个最大权值 (MAXINT) 表示无弧相连。 (10 分) 邻接矩阵结构体定义: typedef char vtype; typedef double Adjmatrix[vtxnum][vtxnum]; //邻接矩阵, vtxnum 为顶点个数 Adjvexs[vtxnum];//顶点数组, vtxnum 为顶点个数 typedef vtype 邻接表结构体定义: typedef struct { //邻接表边表节点; int adivex: double weight; arcnode *nextarc; } arcnode; typedef struct { //邻接表顶点 vexdata; //顶点相关信息 vtype arcnode *firstarc; } vexnode: typedef vexnode Adjlist[vtxnum]; //邻接表, vtxnum 为顶点个数 下面给出了一个不完整的转换算法,请添加算法描述语句,补充完成算法。 void Change(Adjvexs v, Adjmatrix m, Adjlist &adj, int n) //v 为邻接矩阵顶点数组, m 为邻接矩阵, adj 为邻接表, n 为顶点数 #define MAXINT 32767; arcnode *p,*q; for (int i=1;i<=n; i++) v[i].firstarc = NULL; // 邻接表初始化; for (int i =1; i<=n; i++) { // 按行遍历邻接矩阵 FIRSTARC=TRUE for (int j=1; j<=n; j++) { // 访问某行的各列

p= new arcnode; // 新的结点

是邻接点。

// 请补充完成算法中所缺少的语句,并且语句带有注释说明其

if m[i,j] < MAXINT { // 存在一条弧,添加到邻接表结点 i 的队列中, i

功能。

```
}; // 存在一条弧的处理完成。
} // j 循环
} // i 循环
} 函数结束
```