

WIZISP Communication Protocol Version 1.0

http://www.wiznet.io

1. Memory Map in Boot Mode

2. Command SET

COMMAND	Parameters	Description
ERAS	<param1></param1>	Erase Flash Sector
ERAS	<param1> <param2></param2></param1>	
DOWN	<param1> <param2></param2></param1>	Download Data into SRAM
PROG	<param1> <param2></param2></param1>	Program SRAM data into Data Sector or Code
PROG	<param1><param4></param4></param1>	Area
DUMP	<param1> <param2></param2></param1>	Dump Data from Flash Area
XPRG	<param1> <param2></param2></param1>	Program Data into Flash or SRAM area using
AFIG		XMODEM
LOCK	<param1></param1>	Read Lock Information or
LOCK	<param1><param3></param3></param1>	Program Lock Information
REST	<no param=""></no>	Reset by software

Every command should terminate with <CR>. W7500(P) ISP Code waits <CR> to manipulate a command.

2.1 ERAS

Command Format	Example	Description
ERAS DATO	ERAS DATO	Erase Data Sector 0
ERAS DAT1	ERAS DAT1	Erase Data Sector 1
ERAS SECT <addr></addr>	ERAS SECT 10001000	Erase Code Sector the starting
		address of which is
		0x00001000
ERAS BLCK <addr></addr>	ERAS BLCK 10002000	Erase Code Block the starting
		address of which is
		0×00002000
ERAS CHIP	ERAS CHIP	Erase all Code Blocks
ERAS MASS	ERAS MASS	Erase all Code Blocks and
		Data Sectors

2.2 DOWN

Command Format	Example	Description	
DOWN <addr <sup="">1 > <size> ²</size></addr>	DOWN 20000000 00000100	Download Data into SRAM	
<data<sup>3></data<sup>	abcd	from <addr> for <size> bytes.</size></addr>	
		<addr> should be belonged to</addr>	
		SRAM area and <size> is</size>	
		Hexadecimal format.	

2.3 PROG

Command Format	Example	Description
PROG DATO	PROG DATO 20000000	Program Data in SRAM into
		Data Sector 0
PROG DAT1	PROG DAT1 20000000	Program Data in SRAM into
		Data Sector 1
PROG CODE <addr1> <addr2> <size></size></addr2></addr1>	PROG CODE 10000000 200000000 00000100	Program Data in SRAM from
		<addr2> address by <size></size></addr2>
		bytes into Flash starting
		<addr1>.</addr1>
		Data should be in SRAM via
		'DOWN' command before
		issuing 'PROG' command.

2.4 DUMP

Command Format Example Description

DUMP <Addr> <Size> DUMP 20000000 000001004 Dump Data in Flash/SRAM by
<Size> bytes from <Addr> address.

¹ <Addr> Parameter should be eight Hex format ASCII characters with '0's preceding if needed.

² <Size> Parameter should be eight Hex format ASCII characters with '0's preceding if needed.

 $^{^{3}}$ <Data> should be binary code. For example, 0x11 0x12 0x13

⁴ The format of Reply is **Addr>:<Data>**. *For example, 10000000:B2C06940*

2.5 XPRG

Command Format	Example	Description
XPRG <addr> <size></size></addr>	XPRG 10000000 00000100	Program Data into Flash or
		SRAM by <size> bytes from</size>
		<addr> address and Data</addr>
		should be transferred via
		XModem protocol.

2.6 LOCK

Command Format	Example	Description		
LOCK READ	LOCK READ⁵	Read	current	Lock
		Informa	tion	
LOCK PROG <flockr0<sup>6> <flockr1<sup>7></flockr1<sup></flockr0<sup>	LOCK PROG 80000000 00000000	Program	Lock Informat	ion

2.6.1 Flash Lock Register 1 (FLOCKR0)

31	30	29 ~ 4	3	2	1	0
CRL	CBWLA	Reserved	DRL1	DRL0	DWL1	DWL0

CRL: Code Read Lock, all code blocks are locked for reading with this bit set.

CBWLA: All Code Block Write Lock, all code blocks are locked for writing with this bit set.

DRL1/0: Data Sector 1/0 Read Lock

DWL1/0: Data Sector 1/0 Write Lock

2.6.2 Flash Lock Register 2 (FLOCKR1)

31	30	29 ~ 4	3	2	1	0

⁵ The format of Reply is two eight-length hexadecimal format Lock information strings and Return value.

For example, COOOOOOO FFFFFFFF<CR><LF>0

⁶ Flash Lock Register 0

⁷ Flash Lock Register 1

CWL31 CWL30 CWL3 CWL2 CWL1 CWL0

CWL[31:0]: Write Lock for the corresponding Code Block

2.7 REST

Command Format	Example	Description
REST ⁸	REST	Reset by software

⁸ No Parameter

_

3. Return Value

Return Value (ASCII)	Description
0	Succeeded
1	Invalid Size
2	Invalid Address
3	Invalid Command
4	No Privilege to Flash
5	Invalid Parameter
6	Read Lock Protected
7	Write Lock Protected
8	Reset

Every Response is followed by <CR><LF>

4. Working Flow

