

Общероссийский математический портал

Л. Б. Смолякова, О представлениях голономии многообразий моделируемых модулями над алгеброй Вейля, Tp. геом. сем., 2003, том 24, 129–138

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:20:23

Л.Б. Смолякова

О ПРЕДСТАВЛЕНИЯХ ГОЛОНОМИИ МНОГООБРАЗИЙ МОДЕЛИРУЕМЫХ МОДУЛЯМИ НАД АЛГЕБРОЙ ВЕЙЛЯ

Аннотация

В работах [5], [6] В.В.Шурыгиным были введены и исследованы представления голономии слоев канонических слоений, определяемых идеалами на гладком многообразии $M_n^{\mathbf{A}}$ над локальной алгеброй \mathbf{A} , моделируемом n-мерным \mathbf{A} -модулем \mathbf{A}^n . В настоящей работе аналогичные представления определяются для слоев канонических слоений на слоеном \mathbf{A} -гладком многообразии $M^{\mathbf{L}}$, моделируемом \mathbf{A} -модулем $\mathbf{L} = \mathbf{A}^n \oplus \mathbf{B}^m$, где \mathbf{B} — некоторая факторалгебра алгебры \mathbf{A} . Установлены соотношения между введенными представлениями голономии и представлениями голономии в смысле теории слоений [3], [4] и в смысле теории (X,G)-многообразий [1].

Abstract

$L.B.\,Smolyakova$ On holonomy representations of manifolds modelled on modules over Weil algebra $^{'}$

In [5], [6], for the canonical foliations of manifolds over local algebra \mathbf{A} determined by ideals of \mathbf{A} , V.V. Shurygin defined and studied holonomy leaf representations. In the present paper we define holonomy representations for manifolds modelled on an \mathbf{A} -module $\mathbf{L} = \mathbf{A}^n \oplus \mathbf{B}^m$, where \mathbf{B} is a quotient algebra of \mathbf{A} , and find interrelation of these representations with the holonomy representations defined in the foliation theory [3], [4] and in the theory of (X, G)-manifolds [1].

Введение

Пусть $\mathbf{R}(N,q)$ — алгебра срезанных многочленов степени $\leq q$ от N переменных и $\mathbf{A} = \mathbf{R}(N,q)/\mathbf{I_A}$ — локальная алгебра Вейля высоты q и ширины N [2], [6]. Алгебру \mathbf{A} можно представить в виде полупрямой суммы $\mathbf{A} = \mathbf{R} \oplus \mathring{\mathbf{A}}$, где $\mathring{\mathbf{A}} \subset \mathbf{A}$ — максимальный идеал, состоящий из всех нильпотентных элементов алгебры \mathbf{A} . Символом \mathbf{A}^n будем обозначать модуль строк длины n над \mathbf{A} . Пусть $\mathbf{I} \subset \mathbf{A}$ — некоторый идеал, $\mathbf{B} = \mathbf{A}/\mathbf{I}$ — факторалгебра и $\mu: \mathbf{A} \to \mathbf{B}$ — канонический эпиморфизм. \mathbf{B} -модуль \mathbf{B}^m может рассматриваться и как \mathbf{A} -модуль, где $\alpha X = 0$ для любых $\alpha \in \mathbf{I}$ и $X \in \mathbf{B}^m$, поэтому естественная структура \mathbf{A} -модуля имеется и на векторном пространстве $\mathbf{L} = \mathbf{A}^n \oplus \mathbf{B}^m$. Символом $\mathring{\mathbf{L}}$ будем обозначать подмодуль $\mathring{\mathbf{A}}^n \oplus \mathring{\mathbf{B}}^m \subset \mathbf{L}$. Элемент \mathbf{A} -модуля \mathbf{L} определяется координатами $X^i = x^i + \mathring{X}^i \in \mathbf{A}$, $Y^\alpha = y^\alpha + \mathring{Y}^\alpha \in \mathbf{B}$, где $x^i, y^\alpha \in \mathbf{R}$, $\mathring{X}^i \in \mathring{\mathbf{A}}$, $\mathring{Y}^\alpha \in \mathring{\mathbf{B}}$, $i=1,\ldots,n$, $\alpha=1,\ldots,m$. Будем предполагать, что в алгебре \mathbf{A} выбран некоторый базис

$$\{e_a\} = \{e_0 = 1, e_{a^*}, e_{\check{a}}\} \tag{1}$$

такой, что $\{e_{a^*}, e_{\check{a}}\}$ — базис максимального идеала ${\bf A}$ алгебры ${\bf A}$, а $\{e_{\check{a}}\}$ — базис идеала ${\bf I}$. При таком выборе базиса в ${\bf A}$ набор классов вычетов элементов $\{e_{\overline{a}}\}=\{e_0=1,e_{a^*}\}$ является базисом в факторалгебре ${\bf B}$.

А-гладкое отображение $\Phi: U \subset \mathbf{A}^n \oplus \mathbf{B}^m \to \mathbf{A}^n \oplus \mathbf{B}^m$ будем называть слоеным [7], если оно расслоено по отношению к слоению на \mathbf{L} , определяемому канонической проекцией $\mathbf{L} \to \mathbf{A}^n$. А-гладкое многообразие $M^{\mathbf{L}}$, моделируемое модулем \mathbf{L} (\mathbf{L} -многообразие), называется слоеным [7], если оно снабжено максимальным атласом $\{h_\alpha: U_\alpha \subset M^{\mathbf{L}} \to U_\alpha' \subset \mathbf{L}\}_{\alpha \in A}$, карты которого принимают значения \mathbf{L} , а преобразования координат $h_\alpha \circ h_\beta^{-1}$ принадлежат псевдогруппе $\Gamma(\mathbf{L})$ локальных слоеных \mathbf{A} -диффеоморфизмов модуля \mathbf{L} . В дальнейшем карты на многообразиях со значениями в \mathbf{L} будем называть \mathbf{L} -картами, а $\Gamma(\mathbf{L})$ -атлас будем называть просто \mathbf{L} -атласом.

Пусть $U = U_1 \oplus U_2 \subset \mathbf{L}$ и $V = V_1 \oplus V_2 \subset \mathbf{L}$ — открытые координатные параллелепипеды по отношению к вещественным координатам в $\mathbf{A}^n \oplus \mathbf{B}^m$, определяемым вышеуказанным базисом $\{e_a\}$. Всякий слое-

ный **A**-диффеоморфизм $(\Phi: U \to V) \in \Gamma(\mathbf{L})$ задается уравнениями:

$$X^{i'} = \varphi^{i'}(x^i) + \sum_{|p|=1}^{q} \frac{1}{p!} \frac{D^p \varphi^{i'}}{Dx^p} \stackrel{\circ}{X}^p, \tag{2}$$

$$Y^{\alpha'} = \varphi^{\alpha'}(x^i, y^\alpha) + \sum_{|u|+|v|=1}^q \frac{1}{u!v!} \frac{D^{u+v} \varphi^{\alpha'}}{Dx^u Dy^v} \overset{\circ}{X}^u \overset{\circ}{Y}^v, \tag{3}$$

где u, v и p — мультииндексы, q — высота алгебры \mathbf{A} , а функции $\varphi^{i'}(x^i)$ и $\varphi^{\alpha'}(x^i,y^\alpha)$ принимают значения, соответственно, в \mathbf{A} и в \mathbf{B} (см. [7]).

1. Канонические соприкасающиеся расслоения и гомотопические группоиды многообразия $M^{\mathbf{L}}$.

Множество касательных отображений к росткам **A**-диффеоморфизмов (\mathbf{L} , 0) \rightarrow (\mathbf{L} , 0) вида (2), (3) есть группа Ли $GL'_{\mathbf{A}}(\mathbf{L})$ расслоенных автоморфизмов модуля \mathbf{L} [7], то есть автоморфизмов, имеющих вид

$$\begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} \xi_1 & 0 \\ \xi_3 & \xi_4 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}, \tag{4}$$

где $X,X'\in \mathbf{A}^n,\ Y,Y'\in \mathbf{B}^m,\ \xi_1$ — матрица с элементами из \mathbf{A} , а ξ_3 и ξ_4 — матрицы с элементами из \mathbf{B} .

Из (4), (2) и (3) следует, что всякому подмодулю $\mathbf{K} \subset \mathbf{L}$, инвариантному относительно действия группы $GL_{\mathbf{A}}'(\mathbf{L})$, соответствует каноническое слоение $\mathcal{F}^{\mathbf{K}}$ (будем называть его \mathbf{K} -слоением) на многообразии $M^{\mathbf{L}}$, определяемое гладким вполне интегрируемым распределением подмодулей касательных \mathbf{A} -модулей к $M^{\mathbf{L}}$, которые отображаются всякой \mathbf{L} -картой на $M^{\mathbf{L}}$ изоморфно на подмодуль $\mathbf{K} \subset \mathbf{L}$ (касательное пространство $T_X\mathbf{L}$ к модулю \mathbf{L} при каждом $X \in \mathbf{L}$ отождествляется с самим модулем \mathbf{L}). Примерами таких инвариантных подмодулей в \mathbf{L} могут служить подмодули $\mathbf{B}^m = \mathbf{0} \oplus \mathbf{B}^m$ и $\overset{\circ}{\mathbf{L}} = \overset{\circ}{\mathbf{A}}^n \oplus \overset{\circ}{\mathbf{B}}^m$.

В дальнейшем нас будут интересовать в основном инвариантные подмодули, являющиеся подмодулями в $\hat{\mathbf{L}}$. Пусть $\mathbf{K} \subset \hat{\mathbf{L}}$ — один из таких подмодулей. Построим \mathbf{A} -модуль $\hat{\mathbf{L}}_{\mathbf{K}}$, получающийся из \mathbf{L} с помощью процедуры удвоения подмодуля \mathbf{K} аналогичной процедуре

удвоения идеала ${\bf I}$ в локальной алгебре ${\bf A}$ из [6]. Пусть $\overline{\bf L}={\bf L}/{\bf K}$ — фактормодуль. Обозначим через $p:{\bf L}\to \overline{\bf L}$ — канонический эпиморфизм, пусть $p\oplus p$ — прямая сумма двух копий эпиморфизма p и $\Delta:\overline{\bf L}\ni \overline{Z}\mapsto (\overline{Z},\overline{Z})\in \overline{\bf L}\oplus \overline{\bf L}$ — диагональное вложение. Определим ${\bf A}$ -модуль ${\bf \hat L}_{\bf K}$ как полный прообраз диагонали $\Delta(\overline{\bf L})\subset \overline{\bf L}\oplus \overline{\bf L}$ относительно эпиморфизма $p\oplus p$. При этом образ $\Delta({\bf L})$ при диагональном вложении $\Delta:{\bf L}\to {\bf L}\oplus {\bf L}$ содержится в ${\bf \hat L}_{\bf K}$. Соответствующее вложение ${\bf L}$ в ${\bf \hat L}_{\bf K}$ обозначим символом $\Delta:{\bf L}\to {\bf \hat L}_{\bf K}$. Имеет место следующая коммутативная диаграмма с точными строками

где знаки i означают включения, а p — проекции.

Пусть p_k (k=1,2) — проекция модуля $\mathbf{L}\oplus\mathbf{L}$ на k-тое прямое слагаемое, а i_k — вложение \mathbf{K} в $\mathbf{K}\oplus\mathbf{K}$ как k-того прямого слагаемого. Для простоты композицию $p_k\circ i: \widehat{\mathbf{L}}_{\mathbf{K}}\to\mathbf{L}$ отображения p_k и вложения i из среднего столбца диаграммы (5) будем обозначать тем же символом p_k . Аналогичным образом, композицию $i\circ i_k:\mathbf{K}\to\widehat{\mathbf{L}}_{\mathbf{K}}$, где i — вложение из средней строки диаграммы (5), будем обозначать символом i_k . Пусть $\overline{k}=1$, если k=2 и $\overline{k}=2$, если k=1. Имеют место точные последовательности

$$0 \longrightarrow \mathbf{K} \xrightarrow{i_k} \widehat{\mathbf{L}}_{\mathbf{K}} \xrightarrow{p_{\overline{k}}} \mathbf{L} \longrightarrow 0$$
.

Произвольное слоеное **A**-гладкое отображение $F:U\subset \mathbf{L}\to \mathbf{L}$ имеет уравнения вида (2), (3). Вложение $\widehat{\Delta}:\mathbf{L}\to \widehat{\mathbf{L}}_{\mathbf{K}}$ позволяет рассматривать модуль \mathbf{L} как подмодуль в $\widehat{\mathbf{L}}_{\mathbf{K}}$. В этом случае **A**-глакое отображение F может быть однозначно продолжено до слоеного **A**-гладкого отображения $\widehat{F}:p_1^{-1}(U)\subset \widehat{\mathbf{L}}_{\mathbf{K}}\to \widehat{\mathbf{L}}_{\mathbf{K}}$ такого, что $\widehat{F}\circ\widehat{\Delta}|U=F$. Это отображение \widehat{F} задается формулами

$$X^{i'} = \widehat{\varphi}^{i'} + \sum_{|p|=1}^{q} \frac{1}{p!} \frac{D^p \widehat{\varphi}^{i'}}{Dx^p} \stackrel{\circ}{\widehat{X}}{}^p,$$

$$Y^{\alpha'} = \widehat{\varphi}^{\alpha'} + \sum_{|u|+|v|=1}^{q} \frac{1}{u!v!} \frac{D^{u+v} \widehat{\varphi}^{\alpha'}}{Dx^{u}Dy^{v}} \stackrel{\circ}{\widehat{X}}^{u} \stackrel{\circ}{\widehat{Y}}^{v},$$

где $\widehat{\varphi}^{i'} = \widehat{\Delta} \circ \varphi^{i'} \circ \operatorname{pr}_1 \circ p_1 : p_1^{-1}(U) \to \widehat{\mathbf{L}}_{\mathbf{K}}, \quad \widehat{\varphi}^{\alpha'} = \widehat{\Delta} \circ \varphi^{\alpha'} \circ p_1 : p_1^{-1}(U) \to \widehat{\mathbf{L}}_{\mathbf{K}}, \quad \{\widehat{\widehat{X}}^p\} \in p_1^{-1}(U \cap \overset{\circ}{\mathbf{A}}^n), \quad \{\widehat{\widehat{Y}}^v\} \in p_1^{-1}(U \cap \overset{\circ}{\mathbf{B}}^m). \text{ Через } \operatorname{pr}_1 \text{ здесь обозначена каноническая проекция } \operatorname{pr}_1 : \mathbf{L} \to \mathbf{A}^n.$

В сложных выражениях продолжение \widehat{F} функции F будем обозначать также следующим образом: \widehat{F} .

Пусть теперь $M^{\mathbf{L}}$ — слоеное **L**-многообразие и $\{h_{\alpha}: U_{\alpha} \subset M^{\mathbf{L}} \to U'_{\alpha} \subset \mathbf{L}\}_{\alpha \in A}$ — **L**-атлас на $M^{\mathbf{L}}$. Координатные преобразования $h_{\alpha} \circ h_{\beta}^{-1}$ имеют вид (2),(3). С каноническим **K**-слоением на $M^{\mathbf{L}}$ ассоциируется локально тривиальное расслоение $\pi_{\mathbf{K}}: O^{V}_{\mathbf{K}}(M^{\mathbf{L}}) \to M^{\mathbf{L}}$ со стандартным слоем **K**, определяемое атласом

$$\{H_{\alpha}: \pi_{\mathbf{K}}^{-1}(U_{\alpha}) \to U_{\alpha}' \times \mathbf{K}\}_{\alpha \in A}$$
 (6)

с функциями перехода $H_{\alpha} \circ H_{\beta}^{-1} = (h_{\alpha} \circ h_{\beta}^{-1})$. По построению расслоение $\pi_{\mathbf{K}} : O_{\mathbf{K}}^{V}(M^{\mathbf{L}}) \to M^{\mathbf{L}}$ является расслоением со структурной группой Ли $D(\mathbf{K})$, действие которой на стандартном слое \mathbf{K} задается ограничением на этот слой \mathbf{A} -гладких диффеоморфизмов вида (2), (3). В случае \mathbf{A} -модуля $\mathbf{L} = \mathbf{A}^n$ и подмодуля $\mathbf{K} = \mathbf{I}^n$ получается группа Ли $D_n(\mathbf{I})$ (см. [6]). Непосредственно из определения атласа (6) следует, что многообразие $O_{\mathbf{K}}^{V}(M^{\mathbf{L}})$ несет на себе структуру \mathbf{A} -гладкого многообразия, моделируемого модулем $\widehat{\mathbf{L}}_{\mathbf{K}}$. Расслоение $\pi_{\mathbf{K}} : O_{\mathbf{K}}^{V}(M^{\mathbf{L}}) \to M^{\mathbf{L}}$ будем называть каноническим соприкасающимся \mathbf{K} -расслоением многообразия $M^{\mathbf{L}}$. Каноническое соприкасающееся $\widehat{\mathbf{L}}$ -расслоение многообразия $M^{\mathbf{L}}$ будем обозначать следующим образом $\pi : O^{V}(M^{\mathbf{L}}) \to M^{\mathbf{L}}$.

Отметим, что по определению группы $D(\mathbf{K})$ каждый слой канонического \mathbf{K} -слоения на $M^{\mathbf{L}}$ несет на себе структуру (X,G)-многообразия в смысле У.Терстона [1] для $X = \mathbf{K}$, $G = D(\mathbf{K})$.

Относя точке $Z\in M^{\mathbf{L}}$ с координатами $\{X^i,Y^{\alpha}\}$ в некоторой **L**-карте (U,h) точку $\widehat{Z}\in O^V_{\mathbf{K}}(M^{\mathbf{L}})$ с координатами $\{\widehat{X}^i=\widehat{\Delta}(X^i),\widehat{Y}^{\alpha}=\widehat{\Delta}(Y^{\alpha})\}$ в соответствующей $\widehat{\mathbf{L}}_{\mathbf{K}}$ -карте $(\pi_{\mathbf{K}}^{-1}(U),H)$ атласа (6), получим корректно определенное сечение $\sigma:M^{\mathbf{L}}\to O^V_{\mathbf{K}}(M^{\mathbf{L}})$. Сечение σ будем называть *каноническим сечением расслоения* $O^V_{\mathbf{K}}(M^{\mathbf{L}})$.

Фундаментальный группоид $\Pi(W)$ топологического пространства W определяется как множество гомотопических классов путей в W с фиксированными концами. Имеются естественные проекции π_0 : $\Pi(W) \to W$ и π_1 : $\Pi(W) \to W$, относящие классу $[\gamma]$ пути γ : $[0,1] \to W$ соответственно его начало $\gamma(0)$ и конец $\gamma(1)$. Гомотопический группоид $\Pi(\mathcal{F})$ слоения \mathcal{F} на гладком многообразии W определяется как фундаментальный группоид W, рассматриваемого как топологическое пространство со слоевой топологией (то есть, $\Pi(\mathcal{F})$ является множеством гомотопических классов слоевых путей) [4]. Гомотопический группоид $\Pi(\mathcal{F})$ снабжается фактортопологией, определяемой топологиями на [0,1] и W и компактно-открытой топологией на пространстве путей в W. На $\Pi(\mathcal{F})$ индуцируется также структура гладкого многообразия. Для обозначения гомотопического группоида канонического \mathbf{K} -слоения $\mathcal{F}^{\mathbf{K}}$ на многообразии $M^{\mathbf{L}}$ будем использовать обозначение $\Pi_{\mathbf{K}}(M^{\mathbf{L}})$.

Предложение 1. Гомотопический группоид $\Pi_{\mathbf{K}}(M^{\mathbf{L}})$ канонического \mathbf{K} -слоения $\mathcal{F}^{\mathbf{K}}$ на $M^{\mathbf{L}}$ несет на себе структуру \mathbf{A} -гладкого $\widehat{\mathbf{L}}_{\mathbf{K}}$ -многообразия.

Доказательство. Рассмотрим слой $C_{Z_0}^{\mathbf{K}}$ слоения $\mathcal{F}^{\mathbf{K}}$, проходящий через точку $Z_0 \in M^{\mathbf{L}}$, \mathbf{L} -карту $(U,h:U \to U' \subset \mathbf{L})$ на $M^{\mathbf{L}}$ такую, что $U \ni Z_0$, а U' — открытый координатный параллелепипед в \mathbf{L} (и, следовательно, простое открытое множество для канонических слоений на \mathbf{L}), и непрерывный путь $\gamma:[0,1] \to C_{Z_0}^{\mathbf{K}}$, соединяющий Z_0 с $Z_1 \in C_{Z_0}^{\mathbf{K}}$. Пусть $(\pi_{\mathbf{K}}^{-1}(U),H) - \widehat{\mathbf{L}}_{\mathbf{K}}$ -карта, индуцированная картой (U,h) на расслоении $O_{\mathbf{K}}^{\mathbf{K}}(M^{\mathbf{L}})$, и $H_{Z_0} = \mathrm{pr}_2 \circ H | \pi_{\mathbf{K}}^{-1}(Z_0) : \pi_{\mathbf{K}}^{-1}(Z_0) \to \mathbf{K}$, где pr_2 — проекция $U' \times \mathbf{K}$ на \mathbf{K} . Карта (U,h) индуцирует также $(\mathbf{K},D(\mathbf{K}))$ -карту $(U \cap C_{Z_0}^{\mathbf{K}},h_{Z_0}^{\mathbf{K}})$ на слое $C_{Z_0}^{\mathbf{K}}$, являющемся $(\mathbf{K},D(\mathbf{K}))$ -многообразием [1]. Поскольку преобразования координат на слое $C_{Z_0}^{\mathbf{K}}$ являются полиномиальными, отображение $h_{Z_0}^{\mathbf{K}}$ может быть распространено вдоль пути γ (см., например, [1]). Отнесем классу $[\gamma] \in \Pi_{\mathbf{K}}(M^{\mathbf{L}})$ точку $D_{\mathbf{K}}([\gamma]) = H_{Z_0}^{-1}(h_{Z_0}^{\mathbf{K}}(Z_1)) \in O_{\mathbf{K}}^{\mathbf{V}}(M^{\mathbf{L}})$. Тем самым определится отображение

$$D_{\mathbf{K}}: \Pi_{\mathbf{K}}(M^{\mathbf{L}}) \to O_{\mathbf{K}}^{V}(M^{\mathbf{L}}).$$
 (7)

Отображение $D_{\mathbf{K}}$ является локальным гомеоморфизмом, что позволяет ввести на $\Pi_{\mathbf{K}}(M^{\mathbf{L}})$ структуру **A**-гладкого многообразия, моде-

лируемого **A**-модулем $\widehat{\mathbf{L}}_{\mathbf{K}}$, относительно которой отображение $D_{\mathbf{K}}$ является локальным **A**-диффеоморфизмом. \square

Обозначим символом $\widetilde{C}_{Z_0}^{\mathbf{K}} = \pi_0^{-1}(Z_0) \subset \Pi_{\mathbf{K}}(M^{\mathbf{L}})$ множество классов слоевых путей на многообразии $M^{\mathbf{L}}$ с началом в точке Z_0 . $\widetilde{C}_{Z_0}^{\mathbf{K}}$ является универсальным накрывающим пространством слоя $C_{Z_0}^{\mathbf{K}}$, а отображение $H \circ D_{\mathbf{K}}$, ограниченное на $\widetilde{C}_{Z_0}^{\mathbf{K}}$, совпадает с развертывающим отображением \mathbf{K} -многообразия $C_{Z_0}^{\mathbf{K}}$, поэтому будем называть отображение $D_{\mathbf{K}}$ развертывающим отображением для канонического \mathbf{K} -слоения $\mathcal{F}^{\mathbf{K}}$ на $M^{\mathbf{L}}$. Отображение $D_{\mathbf{K}}$ будем называть развертывающим отображением многообразия $M^{\mathbf{L}}$.

2. Представления голономии многообразия M^{L}

Пусть, как и прежде, $\mathbf{K} \subset \mathbf{\widetilde{L}}$ — подмодуль, инвариантный относительно действия группы Ли $GL'_{\mathbf{A}}(\mathbf{L})$. Рассмотрим слой $C^{\mathbf{K}}_{Z_0}$ канонического **K**-слоения $\mathcal{F}^{\mathbf{K}}$ на $M^{\mathbf{L}}$, проходящий через точку Z_0 , и **L**-карту $(U,h:U\to U'\subset \mathbf{L})$ такую, что $U\ni Z_0$, а $U'=U_1'\oplus U_2'$ — открытый координатный параллелепипед в ${f L}$ по отношению к вещественным координатам, определяемым базисом (1). Пусть $\gamma:[0,1]\to C_{Z_0}^{\mathbf{K}}$ путь, соединяющий, Z_0 с $Z_1 \in C_{Z_0}^{\mathbf{K}}$. Отображение h может быть распространено вдоль пути γ следующим образом. Возьмем набор $\{(U_k, h_k : U_k \to U_k')\}, k = 1, ..., s, L$ -карт на M^L , удовлетворяющих условиям: U'_k — открытый координатный параллелепипед в **L**, $(U_1,h_1)=(U,h)$ и имеется разбиение, $t_0=0 < t_1 < \ldots < t_m=1$ интервала [0,1] такое, что $\gamma([t_k,t_{k+1}])\subset U_{k+1}$. Слоеное **А**-гладкое преобразование $\Phi_k = h_k \circ h_{k+1}^{-1}$, ограниченное на некоторую простую окрестность V_k точки $\gamma(t_k)$, может быть продолжено до слоеного **А**-диффеоморфизма $\widetilde{\Phi}_k$, определенного на области $p_0^{-1}(p_0(V_k))$, где $p_0: \mathbf{L} o \mathbf{R}^n \oplus \mathbf{R}^m$ — канонический эпиморфизм. Поэтому на некоторой области вида $p_0^{-1}(V),$ где $V\subset {\mathbf R}^n\oplus {\mathbf R}^m$ — открытая окрестность точки $p_0(h_1(Z_1)) \in \mathbf{R}^n \oplus \mathbf{R}^m$, можно взять композицию $\Phi_1 \circ \ldots \circ \Phi_{s-1}$. Тогда на некоторой окрестности W точки Z_1 определена \mathbf{L} -карта $(W,h(\gamma))$, где $h(\gamma)=\Phi_1\circ\ldots\circ\Phi_{s-1}\circ h_s$. Эту **L**-карту будем называть npoдолжением L-карты (U,h) вдоль nymu γ . Росток этой карты в точке Z_1 зависит только от гомотопического класса пути γ в слое $C_{Z_0}^{\mathbf{K}}$.

С каждым слоем C_X слоения ${\mathcal F}$ на многообразии W ассоцииру-

ется представление голономии — гомоморфизм из фундаментальной группы $\Pi_1(L)$ слоя C_X в группу ростков диффеоморфизмов локальной трансверсали [3], определяемый скольжением локальной трансверсали вдоль слоевых путей. В частности, представление такого вида ассоциируется с каждым слоем $C_Z^{\mathbf{K}}$ всякого канонического \mathbf{K} -слоения $\mathcal{F}^{\mathbf{K}}$ на $M^{\mathbf{L}}$, порожденного подмодулем $\mathbf{K} \subset \mathbf{L}$, инвариантным относительно действия группы $GL_{\mathbf{A}}'(\mathbf{L})$. Слой $C_Z^{\mathbf{K}}$ канонического \mathbf{K} -слоения на многообразии $M^{\mathbf{L}}$, определенного инвариантным подмодулем $\mathbf{K} \subset \hat{\mathbf{L}}$, является $(\mathbf{K}, D(\mathbf{K}))$ -многообразием и поэтому с $C_Z^{\mathbf{K}}$ в этом случае ассоциируется представление голономии в смысле теории (X,G)-многообразий [1]. В настоящем параграфе мы построим представление голономии слоя канонического \mathbf{K} -слоения на $M^{\mathbf{L}}$, соответствующего инвариантному подмодулю $\mathbf{K} \subset \hat{\mathbf{L}}$, которые порождается \mathbf{A} -гладкой структурой многообразия $M^{\mathbf{L}}$ и определяет оба вышеуказанных представления.

Итак, пусть $\mathbf{K} \subset \mathbf{L}$ подмодуль, инвариантный относительно действия $GL_{\mathbf{A}}'(\mathbf{L})$ на \mathbf{L} , и $C_{Z_0}^{\mathbf{K}}$ — слой канонического \mathbf{K} -слоения $\mathcal{F}^{\mathbf{K}}$ на $M^{\mathbf{L}}$, проходящий через $Z_0 \in M^{\mathbf{L}}$. Рассмотрим \mathbf{L} -карту $(U,h:U \to U' \subset \mathbf{L})$ на $M^{\mathbf{L}}$ такую, что $U \ni Z_0$, U' — открытый координатный параллелепипед в \mathbf{L} , содержащий 0, и $h(Z_0) = 0$. Пусть $\gamma:[0,1] \to C_{Z_0}^{\mathbf{K}}$ — замкнутый путь, лежащий в слое $C_{Z_0}^{\mathbf{K}}$ и проходящий через точку Z_0 . Отображение h может быть распространено вдоль пути γ , в результате чего возникает \mathbf{L} -карта (W,h_γ) , где $W \ni Z_0$. Обозначим символом $\alpha_{Z_0}^{\mathbf{K}}(\gamma) = \alpha_{Z_0}^{\mathbf{K}}(\gamma)$ росток композиции $h_\gamma \circ h^{-1}$ в $0 \in \mathbf{L}$. Этот росток определен вдоль всего подмодуля $\mathbf{L} \subset \mathbf{L}$ и зависит только от гомотопического класса пути γ . Пусть теперь γ_1 и γ_2 — два пути в слое $C_{Z_0}^{\mathbf{K}}$, начинающиеся и заканчивающиеся в точке Z_0 , а $\gamma_3 = \gamma_2 * \gamma_1$, тогда $\alpha_{Z_0}^{\mathbf{K}}(\gamma_3) = \alpha_{Z_0}^{\mathbf{K}}(\gamma_2) \circ \alpha_{Z_0}^{\mathbf{K}}(\gamma_1)$. В результате получаем гомоморфизм

$$\alpha_{Z_0}^{\mathbf{K}} : \Pi_1(C_{Z_0}^{\mathbf{K}}, Z_0) \ni [\gamma] \mapsto \alpha_{Z_0}^{\mathbf{K}}(\gamma) \in \mathrm{Diff}_{\mathbf{A}}(\mathbf{L}, \mathbf{K}),$$
 (8)

где символом $\mathrm{Diff}_{\mathbf{A}}(\mathbf{L},\mathbf{K})$ обозначена группа ростков слоеных \mathbf{A} -диффеоморфизмов вида $p^{-1}(V)\subset \mathbf{L} \to p^{-1}(V')\subset \mathbf{L},\ p:\mathbf{L}\to \overline{\mathbf{L}},$ V и V' — окрестности нуля в $\overline{\mathbf{L}}$, то есть слоеных \mathbf{A} -диффеоморфизмов, переводящих в себя подмодуль \mathbf{K} .

Гомоморфизм $\alpha_{Z_0}^{\mathbf{K}}$ будем называть $npedcmas_nehuem\ \mathbf{K}$ -голономии многообразия $M^{\mathbf{L}}$ в Z_0 , а его образ $\alpha_{Z_0}^{\mathbf{K}}(\Pi_1(C_{Z_0}^{\mathbf{K}},Z_0))\subset \mathrm{Diff}_{\mathbf{A}}(\mathbf{L},\mathbf{K})$ — группой \mathbf{K} -голономии многообразия $M^{\mathbf{L}}$ в Z_0 . Группа голономии определяется с точностью до замены на сопряженную подгруппу в группе $\mathrm{Diff}_{\mathbf{A}}(\mathbf{L},\mathbf{K})$ относительно некоторого внутреннего автоморфизма (соответствующего замене начальной \mathbf{L} -карты (U,h) на $M^{\mathbf{L}}$).

Гомоморфизм $\mathring{\alpha}_{Z_0} = \alpha_{Z_0}^{\mathring{\mathbf{L}}}$ будем называть npedcmasnehuem голономии многообразия $M^{\mathbf{L}}$ в Z_0 .

Из уравнений (2),(3) слоеного **A**-гладкого отображения следует, что росток **A**-диффеоморфизма $\Phi \in \mathrm{Diff}_{\mathbf{A}}(\mathbf{L},\mathbf{K})$ порождает росток $\overline{\Phi} \in \mathrm{Diff}_{\mathbf{A}}(\overline{\mathbf{L}},0)$, получающийся факторизацией φ^i и φ^α в соответствующих уравнениях по подмодулю **K**. Рассмотрим гомоморфизм

$$p^{\mathbf{K}}: \mathrm{Diff}_{\mathbf{A}}(\mathbf{L}, \mathbf{K}) \to \mathrm{Diff}_{\mathbf{A}}(\overline{\mathbf{L}}, 0),$$

относящий ростку Φ росток $\overline{\Phi}$, и гомоморфизм

$$r^{\mathbf{K}}: \mathrm{Diff}_{\mathbf{A}}(\mathbf{L}, \mathbf{K}) \to D(\mathbf{K}),$$

относящий ростку Φ его ограничение $\Phi|\mathbf{K}$. Сравнивая определение \mathbf{K} -голономии многообразия $M^{\mathbf{L}}$ соответственно с определениями голономии (X,G)-многообразия [1] и голономии слоения [3], [4], приходим к следующему предложению.

Предложение 2. 1) Композиция $\alpha_{1Z_0}^{\mathbf{K}} = r^{\mathbf{K}} \circ \alpha_{Z_0}^{\mathbf{K}}$ задает представление голономии слоя $C_{Z_0}^{\mathbf{K}}$ как $(\mathbf{K}, D(\mathbf{K}))$ -многообразия.

2) Композиция $\alpha_{\operatorname{tr} Z_0}^{\mathbf{K}} = p^{\mathbf{K}} \circ \alpha_{Z_0}^{\mathbf{K}}$ задает представление голономии слоения $\mathcal{F}^{\mathbf{K}}$ в точке Z_0 .

Определение. Группоидом **K**-голономии многообразия $M^{\mathbf{L}}$ называется факторпространство $\Gamma_{\mathbf{K}}(M^{\mathbf{L}})$ гомотопического группоида $\Pi_{\mathbf{K}}(M^{\mathbf{L}})$ по следующему отношению эквивалентности: $[\gamma_1] \sim [\gamma_2]$, если $\gamma_1(0) = \gamma_2(0)$, $\gamma_1(1) = \gamma_2(1)$ и $\alpha^{\mathbf{K}}_{\gamma(0)}(\gamma_2^{-1} * \gamma_1) = \mathrm{id} \in \mathrm{Diff}_{\mathbf{A}}(\mathbf{L},\mathbf{K})$ или, другими словами, совпадают ростки продолжений $h(\gamma_1)$ и $h(\gamma_2)$ **L**-карты (U,h), $U \ni \gamma_1(0)$, в точке $\gamma_1(1)$.

Естественная проекция $p_{\mathbf{K}}:\Pi_{\mathbf{K}}(M^{\mathbf{L}})\to\Gamma_{\mathbf{K}}(M^{\mathbf{L}})$ является локальным гомеоморфизмом и развертывающее отображение (7) определяет отображение $\widehat{D}_{\mathbf{K}}:\Gamma_{\mathbf{K}}(M^{\mathbf{L}})\to O^V_{\mathbf{K}}(M^{\mathbf{L}})$ такое, что имеет место

коммутативная диаграмма локальных гомеоморфизмов

$$\Pi_{\mathbf{K}}(M^{\mathbf{L}}) \xrightarrow{p_{\mathbf{K}}} \Gamma_{\mathbf{K}}(M^{\mathbf{L}})
D_{\mathbf{K}} \swarrow \widehat{D}_{\mathbf{K}}$$

$$O_{\mathbf{K}}^{V}(M^{\mathbf{L}})$$
(9)

Отображения диаграммы (9) являются локальными **А**-диффеоморфизмами. Отсюда вытекает следующее

Предложение 3. Группоид K-голономии $\Gamma_K(M^L)$ несет на себе структуру A-гладкого \widehat{L}_K -многообразия.

Литература

- [1] Апанасов Б.Н. Геометрия дискретных групп и многообразий. М., Наука, 1991, 432 с.
- [2] Широков А.П. Геометрия касательных расслоений и пространства над алгебрами. Проблемы геометрии (Итоги науки и техники ВИНИТИ), т. 12. М., 1981, с. 61–95.
- [3] Molino P. Riemannian foliations. Birkhäuser, 1988, 339 pp.
- [4] Reinhart B.L. Differential Geometry of Foliations. Springer, 1983.
- [5] Shurygin V.V. Smooth connections and horizontal distributions on manifolds over local algebras. Proceedings of the Conference on Differential Geometry and Applications. Aug. 28 – Sept. 1, 1995. Brno. Czech Republic., Brno, 1996, 309-319.
- [6] Shurygin V.V., The structure of smooth mappings over Weil algebras and the category of manifolds over algebras. Lobachevskii J. of Math., vol. 5, 1999, 29–55.
- [7] Shurygin V.V. and Smolyakova L.B., An analog of the Vaisman-Molino cohomology for manifolds modelled on some types of modules over Weil algebras and its application. Lobachevskii J. of Math., vol. 9, 2001, pp. 55–75.

Адрес: Казанский государственный университет, каф. геометрии, 420008, г. Казань, ул. Кремлевская, 18

Address: Kazan State University, Mathematical Department, Chair of Geometry, ul. Kremlevskaya, 18, Kazan: 420008, RUSSIA

E-mail: Larisa.Smolyakova@ksu.ru