ALGEBRAIC GEOMETRY: HOMEWORK 6

- (1) Show that $\mathbb{P}^1 \times \mathbb{A}^1$ is neither affine nor projective. What is the ring of regular functions on this variety?
- (2) Let $Z \subset \mathbb{P}^n$ be a projective variety, and $X \subset \mathbb{P}^n \times \mathbb{A}^m$ a closed set. For $t \in \mathbb{A}^m$, let $X_t \subset \mathbb{P}^n$ denote the fiber of X over t under the second projection $X \to \mathbb{A}^m$. Show that the set of $t \in \mathbb{A}^m$ such that $Z \subset X_t$ is Zariski closed.
- (3) As usual, let us identify the set of $n \times n$ matrices with \mathbb{A}^{n^2} . Let $S \subset \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$ be the set of pairs of matrices (A, B) such that A and B have a common eigenvector. Prove that S is a Zariski closed subset of $\mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$.

 Translation: There exist polynomial equations involving the entries of two matrices that are satisfied if and only if the two matrices share an eigenvector!

Remark. Properties of dimension imply that for n = 2, *one* polynomial equation suffices. What is it? (Food for thought, not to be turned in!)