Conceptos básicos

- > El seudocódigo especifica la forma de entrada que será proporcionada y la forma de la salida que se desea.
- Las sangrías se usan para indicar que los grupos de enunciados deben considerarse como una sola entidad.
- > Las técnicas para formar ciclos son controladas por un contador.
- > Los pasos en los algoritmos siguen las reglas de la construcción estructurada de programas.
- > Ejemplo de seudocódigo
 - 1. Realizar el pseudocódigo de un programa que permita calcular el área de un rectángulo.

Entrada: BASE, ALTURA son número enteros

Salida: ÁREA

Paso 1: Escribir "Introduzca la base y la altura"

Paso 2: Leer BASE, ALTURA

Paso 3: Calcular AREA = BASE * ALTURA

Paso 4: Escribir "El área del rectángulo es" AREA

Ejercicio

2. Establezca el pseudocódigo de un programa para calcular la siguiente sumatoria $x_1 + x_2 + ... + x_N = \sum_{i=1}^{N} x_i$, N=10.

Utilice expansiones de la serie de Taylor con n desde 0 hasta 6 para aproximar $f(x)=\cos x$ en $x_{i+1}=\pi/3$ con base en el valor de f(x) y su derivada en $x_i=\pi/4$. Observe que esto significa que $h=\pi/3-\pi/4=\pi/12$.

Aproximaciones de un polinomio mediante la serie de Taylor

El residuo en la expansión de la serie de Taylor

 Suponga que se trunca la expansión de la serie de Taylor después del término de orden cero para obtener:

$$f(x_{i+1}) \cong f(x_i)$$

 En la figura se muestra una representación gráfica de esta predicción de orden cero. El residuo o error de esta predicción, que se indica también en la figura, consiste de la serie infinita de términos que fueron truncados:

$$R_0 = f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^{(3)}(x_i)}{3!}h^3 + \cdots$$

$$R_0 \cong f'(x_i)h$$

Ejemplo 1:

Use aproximaciones con diferencias finitas hacia adelante y hacia atrás de O(h) y una aproximación de diferencia centrada de $O(h^2)$ par estimar la primera derivada de

Aproximación de derivadas por diferencias finitas divididas

$$f(x) = -0.1x_4 - 0.15x_3 - 0.5x_2 - 0.25x + 1.2$$

en x = 0.5 utilizando un incremento de h = 0.5. Repita el cálculo con h = 0.25. Observe que la derivada se calcula directamente como $f2(x) = -0.4x_3 - 0.45x_2 - 1.0x - 0.25$ y se puede utilizar para calcular el valor verdadero como f2(0.5) = -0.9125.

Solución. Para h = 0.5, la función se emplea para determinar

$$x_{i-1} = 0$$
 $f(x_{i-1}) = 1.2$
 $x_i = 0.5$ $f(x_i) = 0.925$
 $x_{i+1} = 1.0$ $f(x_{i+1}) = 0.2$

Esos valores sirven para calcular:

Diferencias divididas hacia adelante

$$f'(0.5) \cong \frac{0.2 - 0.925}{0.5} = -1.45$$
 $|\varepsilon_t| = 58.9\%$

Diferencias divididas hacia atrás

$$f'(0.5) \cong \frac{0.925 - 1.2}{0.5} = -0.55$$
 $|\varepsilon_t| = 39.7\%$

Diferencia dividida centrada

$$f'(0.5) \cong \frac{0.2 - 1.2}{1.0} = -1.0$$
 $|\varepsilon_t| = 9.6\%$

Para
$$h = 0.25$$
, $x_{i-1} = 0.25$ $f(x_{i-1}) = 1.10351563$ $x_i = 0.5$ $f(x_i) = 0.925$ $x_{i+1} = 0.75$ $f(x_{i+1}) = 0.63632813$

que se utilizan para calcular la diferencia dividida hacia adelante,

$$f'(0.5) \cong \frac{0.63632813 - 0.925}{0.25} = -1.155 \qquad |\varepsilon_t| = 26.5\%$$

la diferencia dividida hacia atrás,

$$f'(0.5) \cong \frac{0.925 - 1.10351563}{0.25} = -0.714 \qquad |\varepsilon_t| = 21.7\%$$

y la diferencia dividida centrada,

$$f'(0.5) \cong \frac{0.63632813 - 1.10351563}{0.5} = -0.934 \qquad |\varepsilon_t| = 2.4\%$$