Learning and Testing Submodular Functions

Grigory Yaroslavtsev

With Sofya Raskhodnikova (SODA'13)

Weizmann Institute

December 30, 2012

Submodularity

- Discrete analog of convexity/concavity, "law of diminishing returns"
- Applications: combintorial optimization, AGT, etc.

Let $f: 2^X \to [0, R]$:

• Discrete derivative:

$$\partial_{x} f(S) = f(S \cup \{x\}) - f(S), \quad for S \subseteq X, x \notin S$$

Submodular function:

$$\partial_{x} f(S) \geq \partial_{x} f(T), \quad \forall S \subseteq T \subseteq X, x \notin T$$

Coverage function:

Given
$$A_1, \ldots, A_n \subset U$$
,

$$f(S) = \big| \bigcup_{j \in S} A_j \big|.$$

Cut function:

$$\delta(T) = |e(T, \overline{T})|$$

Approximating everywhere

- Q1: Approximate a submodular
 f: 2^X → [0, R] for all arguments with only poly(|X|) queries?
- A1: Only $\widetilde{\Theta}\left(\sqrt{|X|}\right)$ -approximation (multiplicative) possible [Goemans, Harvey, Iwata, Mirrokni, SODA'09]

• Q2: Only for $(1 - \epsilon)$ -fraction of arguments (PAC-style learning with membership queries under uniform distribution)?

$$\Pr_{randomness\ of\ A} \left[\Pr_{S \sim U(2^X)} [A(S) = f(S)] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

• A2: Almost as hard [Balcan, Harvey, STOC'11].

Approximate learning

PMAC-learning (Multiplicative), with poly(|X|) queries:

$$\Pr_{rand. \ of \ A} \left[\Pr_{S \sim U(2^X)} [f(S) \le A(S) \le \alpha f(S)] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

$$\Omega(|X|^{\frac{1}{3}}) \le \alpha \le O\left(\sqrt{|X|}\right) \text{ [Balcan, Harvey '11]}$$

PAAC-learning (Additive)

$$\Pr_{rand. of A} \left[\Pr_{S \sim U(2^X)} [|f(S) - A(S)| \le \beta] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

- Running time: $|X|^{O(\frac{R}{\beta})^2 \log(\frac{1}{\epsilon})}$ [Gupta, Hardt, Roth, Ullman, STOC'11]
- Running time: poly $(|X|^{\left(\frac{R}{\beta}\right)^2}, \log \frac{1}{\epsilon})$ [Cheraghchi, Klivans, Kothari, Lee, SODA'12]

Learning $f: 2^X \to [0, R]$

• For all algorithms $\epsilon = const.$

	Goemans, Harvey, Iwata, Mirrokni	Balcan, Harvey	Gupta, Hardt, Roth, Ullman	Cheraghchi, Klivans, Kothari, Lee	Raskhodnikova, Y.
Learning	$\tilde{O}\left(\sqrt{ X }\right)$ - approximation Everywhere	PMAC Multiplicative α $\alpha = O\left(\sqrt{ X }\right)$	P A AC A dditive β		PAC $f: 2^X \to \{0,, R\}$ (bounded integral range $R \le X $)
Time	Poly(X)	Poly(X)	$ X ^{O\left(\frac{R}{\beta}\right)^2}$		$ X ^3 R^{O(R \cdot \log R)}$ Polylog(X) $R^{O(R \cdot \log R)}$ queries
Extra features		Under arbitrary distribution	Tolerant queries	SQ- queries, Agnostic	

Learning: Bigger picture

Subadditive

Ul

XOS = Fractionally subadditive

Ul

[Badanidiyuru, Dobzinski, Fu, Kleinberg, Nisan, Roughgarden, SODA'12]

Submodular

UI

Gross substitutes

U

OXS

Additive (linear)

Coverage (valuations)

Other positive results:

- Learning valuation functions [Balcan, Constantin, Iwata, Wang, COLT'12]
- $(1 + \epsilon)$ PMAC-learning (sketching) coverage functions [BDFKNR'12]
- $(1 + \epsilon)$ PMAC learning Lipschitz submodular functions [BH'10] (concentration around average via Talagrand)

Discrete convexity

• Monotone convex $f: \{1, ..., n\} \rightarrow \{0, ..., R\}$

• Convex $f: \{1, ..., n\} \to \{0, ..., R\}$

Discrete submodularity $f: 2^X \to \{0, ..., R\}$

- Case study: R = 1 (Boolean submodular functions $f: \{0,1\}^n \to \{0,1\}$) Monotone submodular = $x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_a}$ (monomial) Submodular = $(x_{i_1} \lor \cdots \lor x_{i_a}) \land (\overline{x_{j_1}} \lor \cdots \lor \overline{x_{j_b}})$ (2-term CNF)
- Monotone submodular

Submodular

Discrete monotone submodularity

• Monotone submodular $f: 2^X \to \{0, ..., R\}$

Discrete monotone submodularity

• Theorem: for monotone submodular $f: 2^X \to \{0, ..., R\}$ for all $T: f(T) = \max_{S \subseteq T, |S| \le R} f(S)$

• $f(T) \ge \max_{S \subseteq T, |S| \le R} f(S)$ (by monotonicity)

Discrete monotone submodularity

- $f(T) \le \max_{S \subseteq T, |S| \le R} f(S)$
- S' = smallest subset of T such that f(T) = f(S')
- $\forall x \in S'$ we have $\partial_x f(S' \setminus \{x\}) > 0 \Rightarrow$

Restriction of f on $2^{S'}$ is monotone increasing $=>|S'| \le R$

Representation by a formula

• **Theorem**: for **monotone** submodular $f: 2^X \to \{0, ..., R\}$ for all T:

$$f(T) = \max_{S \subseteq T, |S| \le R} f(S)$$

- Alternative notation: $|X| \to n$, $2^X \to (x_1, ..., x_n)$
- Boolean k-DNF = $\bigvee (x_{i_1} \land \overline{x_{i_2}} \land \cdots \land x_{i_k})$
- Pseudo-Boolean k-DNF ($\lor \to max$, $A_i = 1 \to A_i \in \mathbb{R}$): $max_i \left[A_i \cdot \left(x_{i_1} \wedge \overline{x_{i_2}} \wedge \cdots \wedge x_{i_k} \right) \right]$ (Monotone, if no negations)
- Theorem (restated):

Monotone submodular $f(x_1, ..., x_n) \rightarrow \{0, ..., R\}$ can be represented as a **monotone** pseudo-Boolean R-DNF with constants $A_i \in \{0, ..., R\}$.

Discrete submodularity

• Submodular $f(x_1, ..., x_n) \rightarrow \{0, ..., R\}$ can be represented as a pseudo-Boolean **2R**-DNF with constants $A_i \in \{0, ..., R\}$.

• Hint [Lovasz] (Submodular monotonization):

Given submodular f, define

$$f^{mon}(S) = min_{S \subseteq T} f(T)$$

Then f^{mon} is monotone and submodular.

Proof

- We're done if we have a coverage $C \subseteq 2^X$:
 - 1. All $T \in C$ have large size: $|T| \ge |X| R$
 - 2. For all $S \in 2^X$ there exists $T \in C : S \subseteq T$
 - 3. For every $T \in C$ restriction f_T of f on 2^T is monotone

- Every f_T is a monotone pB **R**-DNF (3)
- Add at most **R** negated variables to every clause to restrict to 2^{T} (1)
- $f(S) = \max_{T \in C} f_T(S)$ (2)

Proof

- There is no such coverage => relaxation [GHRU'11]
 - All $T \in C$ have large size: $|T| \ge |X| R$
 - For all S ∈ 2^X there exists a pair $T' \subseteq T \in C$:

$$T' \subseteq S \subseteq T$$

- Restriction of f on all r(T', T): $\{S \mid T' \subseteq S \subseteq T\}$ is monotone

Coverage by monotone lower bounds

- Let f_T^{mon} be defined as $f_T^{mon}(S) = \min_{S \subseteq S' \subseteq T} f(S')$
 - $-f_T^{mon}$ is monotone submodular [Lovasz]
 - For all $S \subseteq T$ we have $f_T^{mon}(S) \leq f(S)$
 - For all $\mathbf{T}' \subseteq \mathbf{S} \subseteq \mathbf{T}$ we have $f_T^{mon}(\mathbf{S}) = f(\mathbf{S})$
- $f(S) = \max_{T \in C} f_T^{mon}(S)$ (where f_T^{mon} is a monotone pB R-DNF)

Learning pB-formulas and k-DNF

- $DNF^{k,R}$ = class of pB k-DNF with $A_i \in \{0, ..., R\}$
- i-slice $f_i(x_1,...,x_n) \rightarrow \{0,1\}$ defined as

$$f_i(x_1, ..., x_n) = 1$$
 iff $f(x_1, ..., x_n) \ge i$

• If $f \in DNF^{k,R}$ its i-slices f_i are k-DNF and:

$$f(x_1, \dots, x_n) = \max_{1 \le i \le R} \left(i \cdot f_i(x_1, \dots, x_n) \right)$$

PAC-learning:

$$\Pr_{rand(A)} \left[\Pr_{S \sim U(\{0,1\}^n)} [A(S) = f(S)] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

• Learn every i-slice f_i on $(1 - \epsilon / R)$ fraction of arguments => union bound

Learning Fourier coefficients

- Learn f_i (k-DNF) on $1 \epsilon' = (1 \epsilon / R)$ fraction of arguments
- Fourier sparsity $S_{\mathcal{C}}(\epsilon) = \#$ of largest Fourier coefficients sufficient to PAC-learn every $f \in \mathcal{C}$
- $S_{k-\mathsf{DNF}}(\epsilon) = k^{O(k \log(\frac{1}{\epsilon}))}$ [Mansour]: doesn't depend on **n**!
 - Kushilevitz-Mansour (Goldreich-Levin): $poly(n, S_F)$ queries/time.
 - "Attribute efficient learning": $polylog(n) \cdot poly(S_F)$ queries
 - Lower bound: $\Omega(2^k)$ queries to learn a random k-junta ($\in k$ -DNF) up to constant precision.
- $S_{DNF^{k,R}}(\epsilon) = k^{O(k \log(\frac{R}{\epsilon}))}$
 - Optimizations: Do all R iterations of KM/GL in parallel by reusing queries

Property testing

- Let C be the class of submodular $f: \{0,1\}^n \to \{0,\dots,R\}$
- How to (approximately) test, whether a given f is in C?
- Property tester: (randomized) algorithm for distinguishing:

- Key idea: **k**-DNFs have small representations:
 - [Gopalan, Meka,Reingold CCC'12] (using quasi-sunflowers [Rossman'10]) $\forall \epsilon > 0$, $\forall k$ -DNF formula F there exists:

k-DNF formula F' of size
$$\leq \left(k \log \frac{1}{\epsilon}\right)^{O(k)}$$
 such that $|F - F'|_H \leq \epsilon 2^n$

Testing by implicit learning

- Good approximation by juntas => efficient property testing [Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, Wan]
 - ε-approximation by J(ε)-junta
 - Good dependence on $\epsilon: J_{k-\mathsf{DNF}}(\epsilon) = \left(k \log \frac{1}{\epsilon}\right)^{O(k)}$
- For submodular functions $f: \{0,1\}^n \to \{0, ..., R\}$
 - Query complexity $\left(R \log \frac{R}{\epsilon}\right)^{\tilde{O}(R)}$, independent of **n**!
 - Running time exponential in $J(\epsilon)$
 - $\Omega(k)$ lower bound for testing k-DNF (reduction from Gap Set Intersection)
- [Blais, Onak, Servedio, Y.] exact characterization of submodular functions

$$J(\epsilon) = \left[O\left(\frac{R \log R + \log \frac{1}{\epsilon}}{\epsilon}\right)\right]^{(R+1)}$$

Previous work on testing submodularity

```
f: \{0,1\}^n \to [0,R] [Parnas, Ron, Rubinfeld '03, Seshadhri, Vondrak,
ICS'11]:
```

- Upper bound $(1/\epsilon)^{O(\sqrt{n})}$. Lower bound: $\Omega(n)$ } Gap in query complexity

Special case: coverage functions [Chakrabarty, Huang, ICALP'12].

Directions

- Close gaps between upper and lower bounds, extend to more general learning/testing settings
- Connections to optimization?
- What if we use L_1 —distance between functions instead of Hamming distance in property testing? [Berman, Raskhodnikova, Y.]