Proximity Measure for Binary Attributes

A contingency table for binary data

sum

Object j q+s r+t p

ค่า 0 กับ 1

- Distance measure for symmetric binary variables
- $d(i,j) = \frac{r+s}{q+r+s+t}$
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{a+r+s}$
- Jaccard coefficient (similarity measure for

asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

	(ชาย or หญิง)	เป็นใช้	lo				
Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P = positive	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N= negative	N	N	N

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

d(jack, mary) = -	$\frac{0+1}{}=0.33$
	2 T U T I
$d(jack, jim) = \frac{1}{1}$	$\frac{1+1}{1} = 0.67$
$\frac{u(juck,jim)}{1}$	+ 1 + 1
$d(jim, mary) = \frac{1}{1}$	$\frac{1+2}{1} = 0.75$

				Zcol	3		3
			Jim				
			1	0		\sum_{r}	ow
Jack		1	1	1		2	
	Jack	0	1	3		4	
		\sum_{col}	2	4		6	

Mary

				•••
		ary		
		1	0	Σ_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
 - ชื่อ ex. ส์เหลือง หรือ อาซีพ หรืออะไรก็ได้ที่เป็น categorical

 Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - \square m: # of matches, p: total # of variables

$$d(i,j) = rac{p - ilde{m}^{rac{\sigma_2 \eta_!}{2} rac{n}{2}} }{P}$$
จำนวนที่ไม่เหมือน

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - ลำดับที่เท่าใหร่ของแต่ละชื่อหลงจากนำมาเรียงกัน Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_{\text{page}}\}_{\text{page}}$
 - Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by $\sup_{\substack{\text{ag os ans knse verkins distans united} 2 \text{ quarkins distans united} 2}} \frac{r_{if}-1}{M_f-1}$

- Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3หาใต้โดยการใส่ absolute (LI)
- Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal ตามจำนวน attribute ที่มี
- One may use a weighted formula to combine their effects:

$$d(i,j)=rac{\displaystyle\sum_{f=1}^p w_{ij}^{(f)} d_{ij}^{(f)}}{\displaystyle\sum_{f=1}^p w_{ij}^{(f)}}$$
เอา distance ทั้งหมดคำนวน และ ถ่วงน้ำหนัก (weigh) ด้วย colum

- If f is numeric: Use the normalized distance
- If f is binary or nominal: $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$; or $d_{ii}^{(f)} = 1$ otherwise
- If f is ordinal
 - Compute ranks $\mathbf{z}_{\rm if}$ (where $\mathbf{z}_{\it if} = \frac{r_{\it if}-1}{M_f-1}$) Treat $\mathbf{z}_{\it if}$ as interval-scaled

Cosine Similarity of Two Vectors

นับคำศัพท์จากบทความ สเกลจะเท่าๆกัน , ไม่สามารถ normal ได้ถ้ามี document ที่เป็นหนังสือเพิ่มเข้ามา เพราะ จำนวนคำเยอะ , ทำให้สเกลไม่เท่ากันได้ A **document** can be represented by a bag of terms or a long vector, with each

A **document** can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document		coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

- Calculating Cosine Similarity: $d_1 \bullet d_2$ $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$
- $sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$