

Computational statistics, lecture 5

Frank Miller, Department of Computer and Information Science, Linköping University

Today

(Literature: Givens and Hoeting, 9.1-9.3, 9.8; Gentle, 12, 13)

- Bootstrap
 - Nonparametric bootstrap
 - Jackknife
 - Parametric bootstrap
- Hypothesis tests
- Permutation test

Why bootstrap?

- Assume you have independent samples of some population
- In statistics, we have methods to construct confidence intervals (CIs) for a parameter θ of interest (e.g., mean) based on distributional assumptions; e.g., explicit formulas exist in case of normal distribution
- Sometimes not reasonable to make distributional assumptions
- Aim here: obtain CIs without these distributional assumption
- We take the **available sample as assumption for distribution of population** and **resample** from it
- We pull ourselves up by our own capabilities like "pulling us up from the mud by our own **bootstraps**"

Bootstrap method

- Observed data: $D = (X_1, ..., X_n)$
- Of interest: An estimator $T(D) = \hat{\theta}$ for some parameter θ and its uncertainty (e.g., CI for θ)
- Draw *B* resamples $D_i^* = (X_1^*, ..., X_n^*)$ of size *n* from original data *D* with replacement
 - B = 500 or 1000 has been used historically; B = 10000 is nowadays often no problem
 - Usually, there are repetitions in a resample
- Calculate the property of interest for each resample: $\hat{\theta}_i = T(D_i^*)$, i = 1, ..., B
- The distribution of these B values ("bootstrap distribution") gives information about distribution of T(D)
 - E.g., a CI for θ can be computed

Example: precipitation data

- Rainfall data from July in 233 years in Stockholm
- What is the mean and a 95%-CI for the mean?
- A standard formulae for the CI assumes that data is normally distributed and uses therefore the t-distribution:

$$\bar{x} = 62.6mm, s = 35.0, n = 233,$$
 $s_{\bar{x}} = s/\sqrt{n} = 2.29,$
 $t_{0.025,233} = 1.970$

- 95%-CI-bounds: $\bar{x} \pm s_{\bar{x}} \cdot t_{0.025,233}$; here: (58.1, 67.1)
- But data here is not normally distributed
- Now, we construct a CI using the bootstrap method

Precipitation in Stockholm, July, 1786-2018

Data source: SMHI

Example: precipitation data

• We illustrate the bootstrap using only the last 6 years:

• First resample:

• Second resample:

• Third resample:

• ...

• *B*-th resample:

• The mean of each resample: 47.6, 46.3, 42.5, ..., 53.7

Example: precipitation data

- From the complete data, we made B = 1000 resamples; the 1000 means of those are in the histogram
- The mean of the means: 62.6 mm (bootstrap estimate is here the same as the usual estimate of the mean \bar{x})
- The middle 95% of the means are from 58.2 to 66.7
 this is our 95%-bootstrap-CI for the mean
 This is: limits are the 2.5% and 97.5% percentiles
- This way to define the CI is called **percentile method**

Bootstrap in R

• R code using a loop for bootstrap replicates:

```
bo <- 1000  # bootstrap replicates
bs <- c()  # to save the results for the means
for (l in 1:bo) {
    x <- sample(mrain, size=length(mrain), replace=TRUE)
    bs <- c(bs, mean(x))
}
hist(bs)
bss <- sort(bs)
ci95 <- c(bss[round(bo*0.025)], bss[round(bo*0.975)])
ci95</pre>
```

- Running this code gave the 95% bootstrap confidence interval (58.2, 66.7)
- Alternatively, the package boot with functions boot and boot.ci can be used (see R-code on homepage)

Bootstrap for regression models

- We can use the bootstrap method very flexibly, e.g. in linear regression if we want a CI for the slope or the residual standarddeviation 8
- Example: Experiment about the (toxic) influence of a fertilizer on the growth of garden cress (yield vs. amount of fertilizer, n = 81)
- Estimated linear regression: $yield = 203.3 71.3 \cdot fertilizer$ with residual standarddeviation $\hat{\sigma} = 26.7$
- CI for slope? CI for $\hat{\sigma}$?

Bootstrap for regression models

- The dataset has n = 81 pairs of fertilizer-yield-values
- The bootstrap resamples n pairs with replacement, computes regression-slope and $\hat{\sigma}$
- This is done *B* times; R-code:

```
cressdat <- data.frame(fertilizer, yield)
cmslope <- function(dat, i) {
   cm <- lm(yield~fertilizer, subset=i, data=dat)
   coef(cm)[2]
}
cb <- boot(cressdat, cmslope, R=10000)
boot.ci(cb, type="perc")</pre>
```

• Result for CI-limits: -83.8, -59.1

Bootstrap for regression models

• A function for analysis of the residual $\hat{\sigma}$ is:

```
cmressd <- function(dat, i) {
  cm <- lm(yield~fertilizer, subset=i, data=dat)
  summary(cm)$sigma
}</pre>
```

- Result for CI-limits: 22.62, 29.89 (percentile method)
- Median (50% percentile) of bootstrap distribution: 26.32
- Residual $\hat{\sigma}$ of data: 26.72
- Percentile CI is constructed around 26.32 while it should be constructed around 26.72 → the CI is biased

Histogram of cb\$t

Percentile method for CIs and alternatives

- The percentile method can have drawbacks
 - Bias: Estimate $\hat{\theta}$ might be very different from median of bootstrap distribution, median($\hat{\theta}_i$), but we would like a CI constructed around $\hat{\theta}$
 - The bootstrap distribution might be skewed implying that the $se(\hat{\theta})$ changes with the true θ
- The BC_a method (bias correction accelerated) improves the percentile method by
 - correcting for bias and
 - adjusting the boundary alpha-levels to handle dependence of $se(\hat{\theta})$ on θ
- If bootstrap distribution has not these issues, BC_a = percentile
- For other methods (and BC_a) see Givens and Hoeting (2013), Chapter 9.3.

Jackknife

- Observed data: $D = (X_1, ..., X_n)$
- Of interest: An estimator T(D) for some parameter
- *n* resamples defined as $D_i^* = (X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$ (leave-one-out sample)
- $T(D_1^*), ..., T(D_n^*)$ give information about distribution of T(D)
- Jackknife variance estimation for T(D):

$$\frac{1}{n(n-1)}\sum_{i=1}^{n}(T(D_i^*)-J)^2$$
, where $J=\frac{1}{n}\sum_{i=1}^{n}T(D_i^*)$

- Important application both for Jackknife and bootstrap is variance estimation
- Jackknife is resampling method like bootstrap, but it is deterministic

Parametric bootstrap

- When a parametric model for the data is known or believed to represent the reality well, we can do parametric bootstrap and sample according to the assumed model
- Example: We assume that monthly precipitation in July follows a Gamma(3, 20)-distribution
- We sample 233 datapoints from Gamma(3, 20) and calculate parameter of interest
- Do this *B* times and derive e.g. a confidence interval

Recap: Hypothesis testing

- Given *n* observations $X_1, ..., X_n$ with mean μ
- Test H_0 : $\mu = \mu_0$ versus H_1 : $\mu < \mu_0$
- (Here: one sample problem)

	H _o is false	H _o is true
Reject H _o	\checkmark	Type I error
Accept H _o	Type II error	\checkmark

Power = 1 - type II error Type I error should be limited, $\leq \alpha$

• Example: bakery is baking breads supposed to have 750 g, each; n breads measured $(X_1, ..., X_n)$; assumption $X_i \sim N(\mu, \sigma^2)$; question H_0 : $\mu = 750$ or H_1 : $\mu < 750$?

- Test statistic, e.g., $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Reject H_0 if $T(X) < c_{\alpha}$ (i.e., if T(X) unlikely under H_0)

Ex.: properties of test assuming data distribution

• Given n independent and identically distributed observations $X_1, ..., X_n$ with mean μ , one can test H_0 : $\mu = 0$ versus H_1 : $\mu > 0$ with the one-sample t-test

reject
$$H_0$$
 if and only if $\frac{\sqrt{n}\bar{x}}{s_x} > t_{n-1;1-\alpha}$

- Assumption for test: normal distribution of observations with unknown variance
- How sensitive is t-test if observations not normal?
- We focus on H_0 first: Can type I error be larger than α (such that it matters) for certain distributions?
- Idea:
 - Choose some distributions with mean=0, simulate *n* repetitions, perform t-test, and record if rejected
 - Repeat this s times and check rejection rate

Uniform Unif(-1, 1)

Ex.: properties of test assuming data distribution

• For n = 10, simulate rejection rate for Unif[-1,1]

```
s <- 100000
n <- 10
count <- 0
for (sim in 1:s) {
    x <- runif(n, min = -1, max = 1)
    reject <- (t.test(x, alternative = "greater") $p.value < 0.05)
    count <- count + reject
}
#Rejection rate estimate:
rre <- count/s</pre>
This is 1 if the condition in (...)
is true, otherwise it is 0
```

- Note that there are possibilities to make simulation more efficient, e.g., avoiding the loop
- Precision of result?

Ex.: properties of test assuming data distribution

Precision of result?

p = true rejection rate; reject~Bin(1, p), count~Bin(s = 100000, p)

$$Var(count) = p(1-p)s, Var\left(\frac{count}{s}\right) = \frac{p(1-p)}{s}, sd(rre) = \sqrt{\frac{p(1-p)}{s}}$$

 $\approx 0.0007 \text{ for } p = 0.05.$

Ex.: properties of test assuming data distribution

- Simulated rejection rate for Unif[-1,1] for n = 4, 5, ..., 20 with 95%-simulation-error-CIs based on 100 000 simulations for each n
- One more loop for *n* used
- Took ~1 min to simulate

t-test for uniformly distributed observations

Permutation tests

- · Want to test if there is association between two variables
- Example: Is there an association between amount of fertilizer and cress yield?
 - Is the *slope* in the regression model significantly different from o?
- We could perform t-test from linear regression, but we want to avoid the assumptions (here avoid normality assumption, in other examples independence)

Permutation tests

- Idea: If we permute yield-results (assign them randomly to fertilizer-values), we have no association, but we compute a slope (=chance-slope)
- We do this repeated times (e.g. 10000) and obtain a distribution for chance-slopes; three of the chance-slopes:

Permutation tests

- If observed slope different from chance-slopes, conclude that association is real
- Here: Evident that real slope (-71.3) not by chance
- In general: We calculate proportion of resample more extreme slope than the real one
- Proportion is the p-value: conclude that there is an association if p < 0.05

Histogram of slope

