Mosquito Surveillance Report

Joe Brew and Ben Brew

June 26, 2014

Contents

Executive Summary	2
Visual Overview	3
Time	
Space	
Normality	
Disease Vectors	3
Forecast	4
Vectors of Disease by Location	5
Mosquito Types	6
Details of Predictive Model	8

Executive Summary

Most Recent Collection

As predicted, the most recent trap collection (June 17, 2014) saw medium-low levels of mosquitoes for this time of year, with geographic dispersal throughout the county.

Forecast

We forecast that mosquito levels will remain low through the weekend, before beginning a steady climb from an equivalent weekly rate of 75 per trap (July 2nd) up to approximately 145 by July 7th (70% range 0-302).

Predictive Model Validation

At 111.7 specimens per trap, the most recent collection was very similar to our prediction of 121 specimens per trap (and well within our 70% confidence interval of 0-277).

Visual Overview

Time

As with previous years, the current mosquito population is at medium-low levels.

Space

Mosquitoes were largely scattered throughout the county.

Normality

The most recent collection was at levels equivalent to approximately the 65th percentile of historical (2008-13) levels.

Disease Vectors

Of recently trapped mosquitoes, those species capable of carrying St. Louis Encephalitis saw a rise last week.

Forecast

We use recursive, quadratic linear regression modelling to forecast the average number of mosquitoes per trap up to 15 days in advance.¹

 $^{^{1}}$ We are actively experimenting with non-parametric approaches to improve modelling accuracy, and expect to have a modified KNN model with better results by late July.

Vectors of Disease by Location

Mosquito Types

Details of Predictive Model

Historically, the model has performed well, correctly predicting the late summer spikes in 2012 and 2013. Given the preference for accuracy at high numbers, the model intentionally includes outlying high observations, thereby weighting them.

Having simulated more than 65,000 unique models, our best fit equation (using the sum of least squares approach) was:

$$\hat{Y} = \beta_0 + \beta_1^2 (5.6508) + \beta_2 (0.5938)$$

where \hat{Y} is the estimated mean number of mosquitoes per trap, β_0 is set to 0, β_1 is the cumulative rainfall in the period 15 to 29 days prior to the date of prediction and β_2 is the mean number of mosquitoes per trap in the most recent prior trap collection.

Though an original model relied only on rainfall, incorporating the most recent trap prediction saw our R-squared improve from 0.52 to 0.82. This means that we can now explain over 80% of the variance in mosquito populations up to 15 days ahead of time.