Zadanie: PAR Park Bitowy

Laboratorium z ASD, lab 10. Dostępna pamięć: 240 MB.

12.01.2025, 23:59:59

W Parku Bitowym znajduje się n polanek ponumerowanych od 1 do n. Niektóre pary polanek są połączone (dwukierunkowymi) ścieżkami. Jak to przystało na park bitowy, układ ścieżek tworzy drzewo binarne, którego korzeniem jest polanka numer 1.

Bajtek i Bajtyna przyszli po szkole pobawić się w parku. Dzieci postanowiły zagrać w następującą grę. Naprzemiennie jedno z dzieci wskazuje numer polanki a oraz liczbą całkowitą nieujemną d, a zadaniem drugiego z nich jest odnalezienie w parku jakiejś polanki, której odległość od polanki a wynosi d. Jeśli takiej polanki nie ma, dziecko musi to określić.

Bajtek chciałby sobie ułatwić grę. Poprosił Cię, żebyś napisał program, który będzie odnajdował polanki określone przez Bajtynę.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($2 \le n \le 500\,000$), oznaczająca liczbę polanek w Parku Bitowym. Każdy z kolejnych n wierszy zawiera dwie liczby całkowite a_i oraz b_i ($a_i, b_i \in \{-1, 1, 2, \ldots, n\}$), oznaczające, że z polanki numer i prowadzą ścieżki na polanki numer a_i oraz b_i . Wartość -1 oznacza, że dana ścieżka nie istnieje. Dane wejściowe zawierają wszystkie krawędzie konieczne do jednoznacznego zbudowania drzewa ukorzenionego w polance numer 1.

W kolejnym wierszu wejścia znajduje się jedna liczba całkowita m ($1 \le m \le 500\,000$), oznaczająca liczbę poleceń, które Bajtek otrzymał od Bajtyny. Każdy z następnych m wierszy zawiera dwie liczby całkowite a oraz d ($1 \le a \le n, 0 \le d < n$).

Wyjście

Twój program powinien wypisać numery polanek stanowiące odpowiedzi na pytania Bajtyny. Jeśli odpowiedzią na dane pytanie jest więcej niż jedna polanka, Twój program powinien wypisać jakąkolwiek z nich. Jeśli polanka wskazana przez Bajtynę nie istnieje, w odpowiednim wierszu należy wypisać liczbę -1.

Przykład

Dla danyah waiáajawyah	nonvarioum vernilaism isste
Dla danych wejściowych:	poprawnym wynikiem jest:
8	6
3 4	8
-1 6	-1
2 5	2
-1 -1	4
7 -1	8
-1 -1	
8 -1	
-1 -1	
6	
1 3	
1 4	
1 5	
6 1	
6 4	
6 5	

Wskazówki

- Pokaż, jak dla każdego wierzchołka u i dla każdego całkowitego $0 \le i \le \log n$ wyznaczyć wierzchołek położony 2^i krawędzi ponad wierzchołkiem u.
- Sprowadź całe zadanie do następującego: dla danych dwóch wierzchołków u i v, znajdź wierzchołek położony na ścieżce między tymi wierzchołkami, którego odległość od u wynosi d_v . W sprowadzeniu może Ci być potrzebne proste programowanie dynamiczne na drzewie.
- Rozwiązanie wzorcowe ma złożoność czasową i pamięciową $O(n\log n).$

Rysunek drzewa z przykładu

