第十九届全国青少年信息学奥林匹克联赛初赛

提高组 Pascal 语言试题

竞赛时间: 2013年10月13日14:30~16:30

选手注意:

- 试题纸共有12页,答题纸共有2页,满分100分。请在答题纸上作答,写在试题纸上 的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
- 确

	、 [」] 项)		15 題	娅,每题 1.5 分,	共	计 22.5 分;	每题有.	且仅有一个正确
1.	_	一个 32 位整型变量						
	A.	4	B.	8	C.	32	D.	128
		二进制数 11.01 在↑ 3.25			C.	6.25	D.	11.125
3.	里		山里有 个老和	座庙,庙里有个和尚子	老和日			"从前有座山,山 有座庙,庙里有个
	A.	枚举	B.	递归	C.	贪心	D.	分治
	A.	948 年,()将 冯・诺伊曼(Joh 欧拉(Leonhard)	n von	Neumann)	B.	图灵(Alan	Turing)	
5.	E	2.知一棵二叉树有	2013 -	个节点,则其中至	多有	育()个节	点有 2 个	子节点。
	A.	1006	B.	1007	C.	1023	D.	1024

B. 1007 C. 1023 A. 1006

6. 在一个无向图中,如果任意两点之间都存在路径相连,则称其为连通 图。右图是一个有5个顶点、8条边的连通图。若要使它不再是连通 图,至少要删去其中的()条边。

A. 2	B. 3	C. 4	D. 5
算斐波那契约 funtion F(begin if n < F : else	刊的定义如下: $F_1 = 1$, F_2 数列的第 n 项,则其时间 n : longint) : long = 2 then := 1]复杂度为()。 gint;	(n≥3)。如果用下面的函数计
end;	1 (11 - 1) + 1 (11 -	2),	
A. O(1)	B. O(<i>n</i>)	C. $O(n^2)$	D. $O(F_n)$
	具有如下性质:每个节点 点的值。那么,二叉查找		上所有节点的值、小于其右子 百序序列。
A. 先序遍历	B. 中序遍历	C. 后序遍历	D. 宽度优先遍历
	17)分别存储到某个地域不会产生冲突,其中 a ɪ	mod <i>b</i> 表示 <i>a</i> 除以 <i>b</i> 的B. x ² mod 11	表中,如果哈希函数 $h(x) = 1$ f(x) = 1 f(x)
	用 32 位地址,随着其不位地址的 IPv6 协议所取		日趋枯竭。因此,它正逐渐被
A. 40	B. 48	C. 64	D. 128
那么,12个	顶点的二分图至多有(间没有边相连的简单无向图。
A. 18	B. 24	C. 36	D. 66
制编码,以注		工本交换。目前它已经	言设定了统一并且唯一的二进 收录了超过十万个不同字符。 D. BIG5
13. 把 64 位非零 A. 大于原数 C. 等于原数	浮点数强制转换成 32 位	z浮点数后, <u>不可能</u> (B. 小于原数 D. 与原数符号	
C. 1, 1 // 3X		2. J//N/3/X [1]	, IH/A

14. 对一个n个顶点、m条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不 使用堆或其它优先队列进行优化,则其时间复杂度为()。

A.
$$O(mn + n^3)$$

B.
$$O(n^2)$$

C.
$$O((m+n) \log n)$$

D.
$$O((m+n^2)\log n)$$

- **15.** T(n)表示某个算法输入规模为 n 时的运算次数。如果 T(1)为常数,且有递归式 T(n) = 2*T(n/2) + 2n, 那么 T(n) = () 。
 - A. $\Theta(n)$

- B. $\Theta(n \log n)$ C. $\Theta(n^2)$ D. $\Theta(n^2 \log n)$
- 二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确 选项, 多选或少选均不得分)
- 1. 下列程序中, 正确计算 1, 2, 100 这 100 个自然数之和 sum(初始值为 0)的是()。

1.	「 グリ 年 / 1 、 1 、 1 、 2 、 , 100 と 100		然致之作 3mm (
A.	for i := 1 to 100 do	B.	i := 1;
	sum := sum + i;		while i > 100 do
			begin
			sum := sum + i;
			inc(i);
			end;
C.	i := 1;	D.	i := 1;
	repeat		repeat
	sum := sum + i;		sum := sum + i;
	<pre>inc(i);</pre>		<pre>inc(i);</pre>
	until i > 100;		until i <= 100;

- **2.** () 的**平均**时间复杂度为 $O(n \log n)$, 其中 n 是待排序的元素个数。
- A. 快速排序 B. 插入排序 C. 冒泡排序 D. 归并排序
- 3. 以 A_0 作为起点,对下面的无向图进行**深度**优先遍历时(遍历的顺序与顶点字母的下标 无关),最后一个遍历到的顶点可能是()。

A.	A_1	B. A_2	$C. A_3$	D.	A_{4}
	1	_ · · ·			4

- **4.** ()属于 NP 类问题。
 - A. 存在一个 P 类问题
 - B. 任何一个 P 类问题
 - C. 任何一个不属于 P 类的问题
 - D. 任何一个在(输入规模的)指数时间内能够解决的问题
- 5. CCF NOIP 复赛考试结束后,因()提出的申诉将不会被受理。
 - A. 源程序文件名大小写错误
 - B. 源程序保存在指定文件夹以外的位置
 - C. 输出文件的文件名错误
 - D. 只提交了可执行文件,未提交源程序

三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)

1. 某系统自称使用了一种防窃听的方式验证用户密码。密码是 n 个数 $s_1, s_2, ..., s_n$,均为 0 或 1。该系统每次随机生成 n 个数 $a_1, a_2, ..., a_n$,均为 0 或 1,请用户回答($s_1a_1 + s_2a_2 + ... + s_na_n$)除以 2 的余数。如果多次的回答总是正确,即认为掌握密码。该系统认为,即使问答的过程被泄露,也无助于破解密码——因为用户并没有直接发送密码。

然而, 事与愿讳。例如, 当n=4时, 有人窃听了以下 5 次问答:

然而,争与愿意。例如,当 1 - 4 时,有人仍为 1 8 1 3 代刊音:							
/コ <i>/</i> ☆ /心 口		系统生成	常担 家罚 始 田自 始 同 然				
问答编号	a_1	a_2	a_3	a_4	掌握密码的用户的回答		
1	1	1	0	0	1		
2	0	0	1	1	0		
3	0	1	1	0	0		
4	1	1	1	0	0		
5	1	0	0	0	0		

就破解出了密码 s_1 = s_2 = s_3 = s_4 = s_4

2. 现有一只青蛙,初始时在 n 号荷叶上。当它某一时刻在 k 号荷叶上时,下一时刻将等概率地随机跳到 1, 2, ..., k 号荷叶之一上,直至跳到 1 号荷叶为止。当 n=2 时,平均一共跳 2.5 次。则当 n=5 时,平均一共跳 次。

四、阅读程序写结果(共4题,每题8分,共计32分)

```
1. var
       n, i : integer;
       str : string;
       isPlalindrome : boolean;
   begin
       readln(str);
       n := Length(str);
       isPlalindrome := true;
       for i := 1 to (n \text{ div } 2) do
       begin
           if (str[i] \leftrightarrow str[n-i+1]) then
               isPlalindrome := false;
       end;
       if (isPlalindrome) then
           writeln('Yes')
       else
           writeln('No');
    end.
    输入: abceecba
    输出: _____
2. var
       a, b, u, v, i, num : integer;
    begin
       readln(a, b, u, v);
       num := 0;
       for i := a to b do
       begin
           if (i \mod u = 0) or (i \mod v = 0) then
               inc(num);
```

```
end;
       writeln(num);
   end.
   输入: 1 1000 10 15
   输出: _____
3. const SIZE = 100;
   var
       n, ans, i, j : integer;
       height, num : array[1..SIZE] of integer;
   begin
       read(n);
       for i := 1 to n do
       begin
           read(height[i]);
           num[i] := 1;
           for j := 1 to i-1 do
           begin
              if ((height[j] < height[i]) and (num[j] >= num[i])) then
                  num[i] := num[j]+1;
           end;
       end;
       ans := 0;
       for i := 1 to n do
       begin
           if (num[i] > ans) then
              ans := num[i];
       end;
       writeln(ans);
   end.
   输入:
   3 2 5 11 12 7 4 10
   输出: _____
```

```
4. const SIZE = 100;
   var
       n, m, p, count, ans, x, y, i, j : integer;
       a : array[1..SIZE, 1..SIZE] of integer;
   procedure colour(x, y : integer);
   begin
       inc(count);
       a[x][y] := 1;
       if (x > 1) and (a[x-1][y] = 0) then
           colour(x-1, y);
       if (y > 1) and (a[x][y-1] = 0) then
           colour(x, y-1);
       if (x < n) and (a[x+1][y] = 0) then
           colour(x+1, y);
       if (y < m) and (a[x][y+1] = 0) then
           colour(x, y+1);
   end;
   begin
       fillchar(a, sizeof(a), 0);
       readln(n, m, p);
       for i := 1 to p do
       begin
           read(x, y);
           a[x][y] := 1;
       end;
       ans := 0;
       for i := 1 to n do
           for j := 1 to m do
               if a[i][j] = 0 then
               begin
                   count := 0;
                  colour(i, j);
                   if (ans < count) then</pre>
                      ans := count;
```

五、完善程序(第1题15分,第2题13分,共计28分)

1. (**序列重排**) 全局数组变量 a 定义如下:

const int SIZE = 100; int a[SIZE], n;

它记录着一个长度为 n 的序列 a[1], a[2], ..., a[n]。

现在需要一个函数,以整数 $p(1 \le p \le n)$ 为参数,实现如下功能:将序列 a 的前 p 个数与后 n-p 个数对调,且不改变这 p 个数(或 n-p 个数)之间的相对位置。例如,长度为 5 的序列 1, 2, 3, 4, 5,当 p=2 时重排结果为 3, 4, 5, 1, 2。

有一种朴素的算法可以实现这一需求,其时间复杂度为O(n)、空间复杂度为O(n):

```
for i := 1 to n do
      a[i] := b[i];
end;
我们也可以用时间换空间,使用时间复杂度为O(n^2)、空间复杂度为O(1)的算法:
procedure swap2(p : longint);
var
   i, j, temp : longint;
begin
   for i := p + 1 to n do
   begin
      temp := a[i];
      // (2分)
         a[j] := a[j - 1];
      (5) ___ := temp;
                                                     // (2分)
   end;
end;
事实上,还有一种更好的算法,时间复杂度为 O(n)、空间复杂度为 O(1):
procedure swap3(p : longint);
var
   start1, end1, start2, end2, i, j, temp : longint;
begin
   start1 := 1;
   end1 := p;
   start2 := p + 1;
   end2 := n;
   while true do
   begin
      i := start1;
      j := start2;
      while (i <= end1) and (j <= end2) do
      begin
         temp := a[i];
         a[i] := a[j];
```

```
a[j] := temp;
          inc(i);
          inc(j);
       end;
       if i <= end1 then
          start1 := i
       else if ____(4)___ then
                                                           // (3分)
       begin
          start1 := (5) ;
                                                           // (3分)
                                                           // (3分)
          end1 := <u>(6)</u>;
          start2 := j;
       end
       else
          break;
   end;
end;
```

2. (两元序列) 试求一个整数序列中,最长的仅包含两个不同整数的连续子序列。如有多个子序列并列最长,输出任意一个即可。例如,序列"11232323311131"中,有两段满足条件的最长子序列,长度均为7,分别用下划线和上划线标出。

```
program two;

const SIZE = 100;

var

n, i, j, cur1, cur2, count1, count2,
 ans_length, ans_start, ans_end : longint;
 //cur1, cur2 分别表示当前子序列中的两个不同整数
 //count1, count2 分别表示 cur1, cur2 在当前子序列中出现的次数
 a : array[1..SIZE] of longint;

begin
 readln(n);
 for i := 1 to n do
    read(a[i]);
 i := 1;
```

```
j := 1;
//i, j 分别表示当前子序列的首尾, 并保证其中至多有两个不同整数
while (j \le n) and (a[j] = a[i]) do
   inc(j);
cur1 := a[i];
cur2 := a[j];
count1 := <u>(1)</u>;
                                                      // (3分)
count2 := 1;
ans_length := j - i + 1;
while j < n do
begin
   inc(j);
   if a[j] = cur1 then
       inc(count1)
   else if a[j] = cur2 then
       inc(count2)
   else begin
       if a[j - 1] = (2) then
                                                    // (3分)
       begin
          while count2 > 0 do
          begin
              if a[i] = cur1 then
                 dec(count1)
              else
                 dec(count2);
              inc(i);
          end;
          cur2 := a[j];
          count2 := 1;
       end
       else begin
          while count1 > 0 do
          begin
              if a[i] = cur1 then
                 (3)
                                                     // (2分)
              else
                                                     // (2分)
                    (4)
```

```
inc(i);
              end;
              (5);
                                                          // (3分)
              count1 := 1;
          end;
       end;
       if (ans_length < j - i + 1) then
       begin
          ans_length := j - i + 1;
          ans_start := i;
          ans_end := j;
       end;
   end;
   for i := ans_start to ans_end do
      write(a[i], ' ');
end.
```