

목 차

- ❖ Part 1. 데이터 처리과정
 - 비즈니스 데이터 분석 사이클
 - 데이터 분석 사이클
 - 타이타닉 데이터 이해
 - 데이터 전처리
- ❖ Part 2. 데이터 정제
 - 행과 열 제거
 - 중복데이터 제거
 - NULL 데이터 처리
- ❖ Part 3. 데이터 가공 과정
 - 데이터 변화
 - 데이터 정규화
 - 이상한 데이터 제거

01 데이터처리 과정

- 비즈니스 데이터 분석 사이클
- 테이터 분석 사이클
- 타이타닉 데이터 이해
- 데이터 전처리

02

데이터 정제

- 행과 열 제거
- 중복데이터 제거
- NULL 데이터 처리

03

데이터 가공 <u>과정</u>

- 데이터 변화
- 데이터 정규화
- 이상한 데이터 제거

학습목표

- 이번 파트에서는 데이터 분석을 위해 다음과 같은 내용을 다룬다.
 - 비즈니스 데이터 분석 사이클
 - 데이터 분석 사이클
 - 타이타닉 데이터 이해
 - 데이터 전처리

비즈니스 데이터 분석 사이클

문제 정의 비즈니스 관점에서 데이터 입출력

문제와 데이터의 차이 이해, 데이터품질

데이터 가치화(데이터크리닝,누락데이터, 특징추출,변환 등)

데이터를 위한 모델 수립 -통계, 머신러닝, 딥러닝 모델,

데이터를 통한 분석 모델의 정확도 평가

분석모델 공개

분석 모델 공개

충북대학교 SW중심대학사업단

데이터 분석 사이클

분석하고자 하는 데이터를 모으는 과정 -크롤링, ETL(Extract, transform, and load) -로그수집, ftp, http, DB

분석에 적합하게 데이터를 전처리하는 과정 -데이터 셋 확인 - 결측값 처리

-이상값 처리 - Feature Engineering

데이터로부터 모델을 사용하여 패턴을 찾는 과정 통계분석:평균,분산,분포,추정 등 머신러닝:회귀분석,분류분석,연관분석,군집분석 등 딥러닝: CNN, RNN, LSTM 등

사용한 데이터 분석 모델의 평가

파이션 패키지

1995	Numeric	
2001	Scipy	
2003	Matplotlib	
2006	Numpy	
2009	Pandas	_

타이타닉 선상 문제 정의

- 아래와 같은 조건에 따른 타이타닉 탑승 인원에 대한 생존율 분석
 - ✓ 생존여부(survived)
 - ✓ 객실등급(Pclass)
 - ✓ 이름, 성별, 나이,
 - ✓ 형제와배우자(SibSp)
 - ✓ 자식과부모(Parch)
 - ✓ EI켓
 - ✓ 요금
 - ✓ Cabin
 - ✓ 탑승한곳(Embarked)

타이타닉 데이터 이해

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('fivethirtyeight')
import warnings
warnings.filterwarnings('ignore')
matplotlib inline
```

1 data=pd.read_excel('titanic.xlsx')
2 data.head()|

*survived : 생존 여부 *pclass : 승객의 클래스

*sex : 성별. male, female로 표기

•sibsp : 형제 혹은 자매의 수 •parch : 부모 혹은 자녀의 수

•fare : 탑승 요금

•embarked : 출발지의 고유 이니셜

•class : 선실의 클래스

•who: male, female을 man, woman으로 표기

•adult_male: 성인 남성 인지 아닌지 여부

•deck : 선실 고유 번호의 가장 앞자리 알파벳(A ~ G)

*embark_town:출발지

•alive : 생존 여부 데이터를 yes 혹은 no로 표기

•alone: 가족이 없는 경우 True

타이타닉 데이터 이해

- 1 data=pd.read_excel('titanic.xlsx')
- 2 data

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
					•••										
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True

891 rows × 15 columns

데이터 전처리

- 데이터의 특징
 - Null 데이터 여부 확인
 - 데이터 품질 점검
- 분석을 위한 의미있는 데이터 만들어야 함
 - 데이터 전처리 수행 시간 비율: 80%~90%
 - 실제로 데이터 분석 알고리즘 자체 수행 시간 비율: 10%~20%
- 데이터전처리: 분석하기 좋게 데이터를 고치는 모든 작업

데이터 전처리

- 데이터의 전체 정보 살펴 보기
- info()

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
     Column
                  Non-Null Count
                                  Dtype
     survived
                  891 non-null
                                   int64
     pclass
                  891 non-null
                                  int64
                  891 non-null
                                  object
     sex
                  714 non-null
                                  float64
     age
     sibsp
                  891 non-null
                                  int64
                  891 non-null
                                  int64
     parch
                  891 non-null
                                  float64
     fare
     embarked
                  889 non-null
                                  object
                  891 non-null
     class
                                  object
     who
                  891 non-null
                                  object
                  891 non-null
                                  bool
     adult_male
     deck
                  203 non-null
                                  object
     embark_town 889 non-null
                                  object
    alive
                  891 non-null
                                  object
     alone
                  891 non-null
                                  bool
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
```


데이터 전처리

- null 데이터가 있는지 확인
- data,.isnull.sum()

1 da	ta.isn	ull().sum()	
survive	ed	0	
pclass		0	
sex		0	
age		177	
sibsp		0	
parch		0	
fare		0	
embarke	ed	2	
class		0	
who		0	
adult_m	ale	0	
deck		688	
embark_	town	2	
alive		0	
alone		0	
dtype:	int64		

문제풀이

충북대학교 SW중심대학사업단

- 비즈니스 데이터 분석 사이클을 설명하시오.
- 데이터 전처리를 위해 확인해야 하는 항목을 설명하시오.

요약

- 비즈니스 데이터 분석과 데이터분석 과정에 대해 공부하였음
- 타이타닉 데이터 예제를 통해 문제 정의하고 데이터를 이해하는 방법을 공부하였음.
- 데이터 전처리의 의미를 공부하였음

01 데이터처리 과정

- 비즈니스 데이터 분석 사이클
- 테이터 분석 사이클
- · 타이타닉 데이터 이해
- 데이터 전처리

02

데이터 정제

- 행과 열 제거
- 중복데이터 제거
- NULL 데이터 처리

03

데이터 가공 과정

- 데이터 변화
- 데이터 정규화
- 이상한 데이터 제거

학습목표

- 이번 파트에서는 데이터 정제를 위해 다음과 같은 내용을 다룬다.
 - 행과 열 제거
 - 중복데이터 제거
 - NULL 데이터 처리

데이터 변환

- columns
 - 데이터셋의 열 이름을 출력
 - titanic_data.columns

데이터 변환

- rename()
 - dict를 통해 특정 또는 모든 열의 이름 바꾸기

- 시도하기
 - 모든 행 이름을 대문자로 바꾸어 보기 바람.

- 행과 열을 제거하는 과정
- drop()
 - data.drop(columns='class', inplace=True)

1	data.drop(columns='class', inplace=True)													
1	data													
	survived	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	man	True	NaN	Southampton	no	True
886	0	2	male	27.0	0	0	13.0000	S	man	True	NaN	Southampton	no	True
887	1	1	female	19.0	0	0	30.0000	S	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	man	True	NaN	Queenstown	no	True

891 rows × 14 columns

data.drop(columns=['Cabin', 'Embarked'], inplace=True)

- Task
 - 'Cabin', 'Embarked'열을 동시에 제거

충북대학교 SW중심대학사업단

• 중복데이터 점검

```
1 ddd=pd.Series(['Dog', 'Cat', 'Dog', 'Cat', 'Bat'])

1 ddd.duplicated()

0 False
1 False
2 True
3 True
4 False
dtype: bool
```

```
data.duplicated()
      False
      False
      False
      False
      False
       . . .
886
       True
887
      False
888
      False
889
      False
890
      False
Length: 891, dtype: bool
```


중복되는 데이터를 알아내기

titanic_data[titanic_data.duplicated()]

titanic_data[titanic_data.duplicated()]

	survived	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone
47	1	3	female	NaN	0	0	7.7500	Q	woman	False	NaN	Queenstown	yes	True
76	0	3	male	NaN	0	0	7.8958	S	man	True	NaN	Southampton	no	True
77	0	3	male	NaN	0	0	8.0500	S	man	True	NaN	Southampton	no	True
87	0	3	male	NaN	0	0	8.0500	S	man	True	NaN	Southampton	no	True
95	0	3	male	NaN	0	0	8.0500	S	man	True	NaN	Southampton	no	True
									•••					
870	0	3	male	26.0	0	0	7.8958	S	man	True	NaN	Southampton	no	True
877	0	3	male	19.0	0	0	7.8958	S	man	True	NaN	Southampton	no	True
878	0	3	male	NaN	0	0	7.8958	S	man	True	NaN	Southampton	no	True
884	0	3	male	25.0	0	0	7.0500	S	man	True	NaN	Southampton	no	True
886	0	2	male	27.0	0	0	13.0000	S	man	True	NaN	Southampton	no	True

- 중복되는 행을 제거하는 명령
 - titanic_data.drop_duplicates(inplace = True)

1	titanic_	data												
	survived	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	man	True	NaN	Southampton	no	True
885	0	3	female	39.0	0	5	29.1250	Q	woman	False	NaN	Queenstown	no	False
887	1	1	female	19.0	0	0	30.0000	S	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	man	True	NaN	Queenstown	no	True

784 rows × 14 columns

충북대학교 SW중심대학사업단

- Null HOIE
 - 누락되거나 null 값
 - 데이터셋의 품질을 가리킴
 - isnull() 함수를 사용해 누락된 값이 있는 위치를 확인
 - Titanic_data.isnull().head(10)

1 titanic_data.isnull()														
	survived	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone
0	False	False	False	False	False	False	False	False	False	False	True	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True	False	False	False
885	False	False	False	False	False	False	False	False	False	False	True	False	False	False
887	False	False	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	True	False	False	False	False	False	False	True	False	False	False
889	False	False	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False	False	False

784 rows × 14 columns

- 누락된 값 다루기
 - 누락된 값의 요약을 확인
 - titanic_data.isnull().sum()
- Null 값 제거
 - dropna() 함수를 사용하여 null 값이 있는 행 제거
 - titanic_data.dropna(inplace=True)
 - titanic_data.isnull().sum()
- Null 값 제거
 - dropna()를 사용해 열을 제거 할 수도 있음
 - titanic_data.dropna(axis=1)
 - 0, or 'index': 누락된 값이 포함된 행 제거
 - 1, or 'columns': 누락된 값이 포함된 열 제거
 - 힌트
 - 누락된 데이터가 적은 경우에만 null 데이터를 제거하는 것이 좋음

- 데이터 대체
 - Null을 채우기 위한 fillng() 함수
 - titanic_data['age'].fillna(titanic_data['age']. mean(), inplace=True)
 - titanic_data.isnull().sum()

문제풀이

• Pandas 데이터프레임에서 NULL 데이터를 찾는 방법을 설명하시오.

요약

충북대학교 SW중심대학사업단

- Pandas 데이터프레임에서 다음과 같은 명령을 수행하는 방법을 공부했음
 - 행과 열을 삭제하는 방법
 - 값을 대체하는 방법
 - NULL 데이터를 처리하는 방법

01 데이터처리 과정

- 비즈니스 데이터 분석 사이클
- 테이터 분석 사이클
- 타이타닉 데이터
- 데이터 전처리

02

데이터 정제

- 행과 열 제거
- 중복데이터 제거
- NULL 데이터 처리

03

데이터 가공 과정

- 데이터 변화
- 데이터 정규화
- 이상한 데이터 제거

학습목표

- 이번 파트에서는 데이터 가공 과정을 위해 다음과 같
 은 내용을 다룬다.
 - 데이터 변화
 - 데이터 정규화
 - 이상한 데이터 제거

데이터 변환

- replace()
 - 행 값을 대치하는 방법

```
1 ddd=pd.Series([4,5,6,7,8,9])

1 ddd.replace(4,10)

0 10
1 5
2 6
3 7
4 8
5 9
dtype: int64
```


데이터 변환

```
dpd = pd.DataFrame(\{'X': [0,1,2,3,4,5],
                    'Y': [6,7,8,9,10,11],
2
                    'Z': ['a','b','c','d','e','f']})
3
1 dpd
  X Y Z
                 dpd.replace(0, 11)
0 0 6 a
1 1 7 b
                X Y Z
                                 dd1=dpd.replace(0, 11)
2 2 8 c
             0 11 6 a
3 3 9 d
             1 1 7 b
                                 dd1.replace(11, 40)
4 4 10 e
             2 2 8 c
5 5 11 f
             3 3 9 d
                                 XYZ
             4 4 10 e
                              0 40 6 a
             5 5 11 f
                              1 1 7 b
                              2 2 8 c
                              3 3 9 d
                              4 4 10 e
                              5 5 40 f
```


데이터 대치

충북대학교 SW중심대학사업단

- replace()
 - titanic_data.replace({'sex': {'male': 0}}, inplace = True)

1	<pre>1 titanic_data.replace({'sex': {'male': 0}}, inplace = True)</pre>													
1	1 titanic_data													
	SURVIVED	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone
0	0	3	0	22.0	1	0	7.2500	S	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	woman	False	С	Southampton	yes	False
4	0	3	0	35.0	0	0	8.0500	S	man	True	NaN	Southampton	no	True
885	0	3	female	39.0	0	5	29.1250	Q	woman	False	NaN	Queenstown	no	False
887	1	1	female	19.0	0	0	30.0000	S	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	woman	False	NaN	Southampton	no	False
889	1	1	0	26.0	0	0	30.0000	С	man	True	С	Cherbourg	yes	True
890	0	3	0	32.0	0	0	7.7500	Q	man	True	NaN	Queenstown	no	True

784 rows × 14 columns

titanic_data.replace({'sex': {'female': 1}}, inplace = True)

데이터변환


```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
titanic_data['who_labeled'] = le.fit_transform(titanic_data.who)

titanic_data
```

	SURVIVED	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	embark_town	alive	alone	who_labeled
0	0	3	0	22.0	1	0	0.014151	S	man	True	NaN	Southampton	no	False	1
1	1	1	1	38.0	1	0	0.139136	С	woman	False	С	Cherbourg	yes	False	2
2	1	3	1	26.0	0	0	0.015469	S	woman	False	NaN	Southampton	yes	True	2
3	1	1	1	35.0	1	0	0.103644	S	woman	False	С	Southampton	yes	False	2
4	0	3	0	35.0	0	0	0.015713	S	man	True	NaN	Southampton	no	True	1
885	0	3	1	39.0	0	5	0.056848	Q	woman	False	NaN	Queenstown	no	False	2
887	1	1	1	19.0	0	0	0.058556	S	woman	False	В	Southampton	yes	True	2
888	0	3	1	NaN	1	2	0.045771	S	woman	False	NaN	Southampton	no	False	2
889	1	1	0	26.0	0	0	0.058556	С	man	True	С	Cherbourg	yes	True	1
890	0	3	0	32.0	0	0	0.015127	Q	man	True	NaN	Queenstown	no	True	1

784 rows × 15 columns

충북대학교 SW중심대학사업단

- 정규화는 왜 필요한가요?
 - A와 B 데이터간에 차이가 너무 많이 남

- 정규화는 왜 필요한가요?
 - titanic_data.describe()

1 titanic_data.describe()

	SURVIVED	pclass	sex	age	sibsp	parch	fare
count	784.000000	784.000000	784.000000	678.000000	784.000000	784.000000	784.000000
mean	0.411990	2.243622	0.373724	29.869351	0.522959	0.415816	34.711740
std	0.492507	0.855056	0.484101	14.759076	0.986231	0.836922	52.160151
min	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	1.000000	0.000000	20.000000	0.000000	0.000000	8.050000
50%	0.000000	3.000000	0.000000	28.250000	0.000000	0.000000	15.900000
75%	1.000000	3.000000	1.000000	39.000000	1.000000	1.000000	34.109350
max	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200

- Min-max 정규화
 - 0과 1 사이의 데이터 정규화

• 다음 공식에 따라 계산

$$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

충북대학교 SW중심대학사업단

- Min-max 정규화
 - sklearn의 MinMaxScaler() 함수 사용

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

titanic_data[['fare']] = scaler.fit_transform(titanic_data[['fare']])

titanic_data.describe()

```
scaler = MinMaxScaler()
titanic_data[['fare']] = scaler.fit_transform(titanic_data[['fare']])
titanic_data.describe()
```

	SURVIVED	pclass	sex	age	sibsp	parch	fare
count	784.000000	784.000000	784.000000	678.000000	784.000000	784.000000	784.000000
mean	0.411990	2.243622	0.373724	29.869351	0.522959	0.415816	0.067753
std	0.492507	0.855056	0.484101	14.759076	0.986231	0.836922	0.101810
min	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	1.000000	0.000000	20.000000	0.000000	0.000000	0.015713
50%	0.000000	3.000000	0.000000	28.250000	0.000000	0.000000	0.031035
75%	1.000000	3.000000	1.000000	39.000000	1.000000	1.000000	0.066577
max	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	1.000000

- 표준 정규화
 - 평균 0 / 분산 1
 - from sklearn.preprocessing import StandardScaler
 - scaler = StandardScaler()
 - scaler.fit_transform(실제데이터)
- 표준 (Z-score) 정규화
 - (X 평균) / 표준편차

• 로버스트 정규화

- 중앙값 = 0 / (1분위-3분위)=1
- from sklearn.preprocessing import RobustScaler
- Scaler = RobustScaler()
- scaler.fit_transform(실제데이터)

• MAXAbs 점규화

- 0을 기준으로 절대값이 가장 큰수가 1 또는 -1로 변환
- from sklearn.preprocessing import MaxAbsScaler
- Scaler = MaxAbsScaler()
- scaler.fit_transform(실제데이터)

이상치 데이터 처리

- 이상 값 처리
 - titanic_data['fare'].plot(kind="box")

이상치 데이터 처리

- 이상 값 처리
 - titanic_data.drop(titanic_data[titanic_data.fare > = 1].index, inplace = True)
 - titanic_data['fare'].plot(kind="box")

```
titanic_data.drop(titanic_data[titanic_data.fare >= 1].index, inplace = True)
titanic_data['fare'].plot(kind="box")
```

<AxesSubplot:>

문제풀이

• 데이터 분석을 위해 왜 데이터 변환이 필요한지 설명하시오.

• 데이터 분석을 위해 왜 데이터 정규화가 필요한지 설명하시오.

• 특히, 데이터 분석시 이상한 데이터를 왜 제거하는게 유리한지 설명하시오.

요약

- 다음과 같은 데이터 전처리 기능에 대해 설명하였음.
 - 데이터 변환
 - 데이터 정규화
 - 이상치 데이터 제거