VARIATIONS D'UNE FONCTION - FONCTIONS ASSOCIÉES

I - RAPPELS

DÉFINITIONS

On dit qu'une fonction f définie sur un intervalle I est :

- **croissante** sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 \le x_2$ on a $f(x_1) \le f(x_2)$.
- **décroissante** sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 \le x_2$ on a $f(x_1) \ge f(x_2)$.
- **strictement croissante** sur l'intervalle I: si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 < x_2$ on a $f(x_1) < f(x_2)$.
- **strictement décroissante** sur l'intervalle I: si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 < x_2$ on a $f(x_1) > f(x_2)$.

REMARQUES

- Une fonction qui dont le sens de variations ne change pas sur *I* (c'est à dire qui est soit croissante sur *I* soit décroissante sur *I*) est dite **monotone** sur *I*.
- Une fonction constante ($x \mapsto k$ où k est un réel fixé) est à la fois croissante et décroissante mais n'est ni strictement croissante, ni strictement décroissante.

PROPRIÉTÉ

Une fonction affine $f: x \mapsto ax + b$ est croissante si son coefficient directeur a est **positif ou nul**, et **décroissante** si son coefficient directeur est **négatif ou nul**.

REMARQUE

Si le coefficient directeur d'une fonction affine est nul la fonction est **constante**.

II - FONCTION ASSOCIÉES

FONCTIONS U + K

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} et $k \in \mathbb{R}$

On note u + k la fonction définie sur \mathcal{D} par :

$$u + k : x \mapsto u(x) + k$$

PROPRIÉTÉ

Quel que soit $k \in \mathbb{R}$, u + k a le même sens de variation que u sur \mathcal{D} .

EXEMPLE

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 1$.

Si on note u la fonction carr'ee définie sur $\mathbb R$ par $u:x\mapsto x^2$

on a
$$f = u - 1$$

Le sens de variation de f est donc identique à celui de u d'après la propriété précédente.

Donc

- f est **décroissante** sur l'intervalle $]-\infty;0]$
- f est **croissante** sur l'intervalle $[0; +\infty[$

FONCTIONS $K \times U$

Soit u une fonction définie sur une partie \mathscr{D} de \mathbb{R} et $k \in \mathbb{R}$

On note ku la fonction définie sur \mathcal{D} par :

$$ku: x \mapsto k \times u(x)$$

PROPRIÉTÉ

- si k > 0, ku a le même sens de variation que u sur \mathcal{D} .
- si k < 0, le sens de variation de ku est le contraire de celui de u sur \mathcal{D} .

EXEMPLE

Soit f définie sur $]-\infty; 0[\cup]0; +\infty[$ par $f(x) = -\frac{1}{x}$.

Si on note *u* la fonction *inverse* définie sur $]-\infty;0[\cup]0;+\infty[$ par $u:x\mapsto \frac{1}{x}$

on a
$$f = -1 \times u$$

Comme -1 est négatif, le sens de variation de f est inverse de celui de u sur chacun des intervalles $]-\infty;0[$ et $]0;+\infty[$

Donc f est **croissante** sur l'intervalle $]-\infty;0]$ et sur l'intervalle $]0;+\infty[$

FONCTIONS \sqrt{U}

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} .

On note \sqrt{u} la fonction définie, pour tout x de \mathcal{D} tel que $u(x) \ge 0$, par :

$$\sqrt{u}: x \mapsto \sqrt{u(x)}$$

PROPRIÉTÉ

 \sqrt{u} a le **même sens de variation** que *u* sur tout intervalle où *u* est positive.

EXEMPLE

Soit
$$f: x \mapsto \sqrt{x-2}$$

f est définie si et seulement si $x-2\geqslant 0$, c'est à dire sur $\mathcal{D}=[2;+\infty[$

Sur l'intervalle \mathcal{D} la fonction f est croissante car la fonction $x \mapsto x - 2$ l'est (fonction affine dont le coefficient directeur est positif).

FONCTIONS $\frac{1}{U}$

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} .

On note $\frac{1}{u}$ la fonction définie pour tout x de \mathscr{D} **tel que** $u(x) \neq 0$ par :

$$\frac{1}{u}: x \mapsto \frac{1}{u(x)}$$

PROPRIÉTÉ

 $\frac{1}{u}$ a le **sens de variation contraire** de u sur tout intervalle où u ne s'annule pas et garde un **signe constant**.

EXEMPLE

Soit
$$f: x \mapsto \frac{1}{x+1}$$

f est définie si et seulement si $x+1\neq 0$, c'est à dire sur $\mathcal{D}=]-\infty;-1[\cup]-1;+\infty[$

La fonction $x \mapsto x + 1$ est croissante sur \mathbb{R}

Sur l'intervalle $]-\infty;-1[$ la fonction $x\mapsto x+1$ est strictement négative (donc a un signe constant).

Sur l'intervalle $]-1;+\infty[$ la fonction $x\mapsto x+1$ est strictement positive (donc a un signe constant).

Donc f est strictement décroissante sur chacun des intervalles $]-\infty;-1[$ et $]-1;+\infty[$

