|                                  | Inco Type 210 INCO® Type | Incofoam INCOFOAM®      |
|----------------------------------|--------------------------|-------------------------|
|                                  | 210 nickel powder        | porous nickel substrate |
| Br <sub>2</sub> holding capacity | 27g/50ml                 |                         |

At page 38, replace the Abstract of the Disclosure with the following new Abstract of the Disclosure, as also set out in identical form on a separate page attached to this Amendment:

## ABSTRACT OF THE DISCLOSURE

The invention relates to a A fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIIIB metal therein. In one aspect of the invention, such embodiment, the porous metal matrix forms a solid-phase metal adsorbent medium, characterized by with an average pore diameter of from about 0.5nm to about 2nm and a porosity of from about 10% to about 30%, Such solid-phase metal adsorbent medium which is particularly useful for sorptively storing and desoprotively desorptively dispensing a low vapor pressure fluid, e.g., ClF<sub>3</sub>, HF, GeF<sub>4</sub>, Br<sub>2</sub>, etc. In another aspect, of the invention, such the porous metal matrix forms a solid-phase metal sorbent, characterized by with an average pore diameter of from about 0.25µm to about 500µm and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas and prevent the same from entering the fluid regulator as described in U.S. Patent No. 6,089,027.

## ABSTRACT OF THE DISCLOSURE

The invention relates to a A fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIIIB metal therein. In one aspect of the invention, such embodiment, the porous metal matrix forms a solid-phase metal adsorbent medium, characterized by with an average pore diameter of from about 0.5nm to about 2nm and a porosity of from about 10% to about 30%. Such solid-phase metal adsorbent medium which is particularly useful for sorptively storing and desopretively desorptively dispensing a low vapor pressure fluid, e.g., CIF3, HF, GeF4, Br2, etc. In another aspect, of the invention, such the porous metal matrix forms a solid-phase metal sorbent; characterized by with an average pore diameter of from about 0.25µm to about 500µm and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas and prevent the same from entering the fluid regulator as described in U.S. Patent No. 6,089,027.