Lab session 5: exercises

1 Perceptron algorithm

1.1 Perceptron for binary classification (with integrated bias)

Suppose we have a set X of T training examples, and the perceptron runs for E epochs. Let us note:

- i an iteration id, corresponding to handling a certain example, at a certain epoch
- L the total number of iterations ($L \le E*T$ if the algo may stop when no updates were done for the current epoch, otherwise L = E*T)
- and w⁽ⁱ⁾ the weight vector learnt after i iterations

Let's consider a toy example, with

- T=3, E=2 and L=E*T=6
- and $X = \{ (x^{(1)}, +1), (x^{(2)}, +1), (x^{(3)}, -1) \}$, with: $x^{(1)} = (1, -1, -1, 1)$ $x^{(2)} = (1, 1, 0, 10)$ $x^{(3)} = (1, -2, 1, 0)$ (first component is for the bias)

Manually run the perceptron algo, and **express** the values of the weights after initialization $(w^{(0)})$ and after each iteration $(w^{(1)}, \dots w^{(6)})$.

1.2 Multiclass perceptron (with integrated bias)

Suppose the problem has C classes, numbered 1, 2, ..., C.

Let W⁽ⁱ⁾ be the weight matrix after i iterations of the perceptron algorithm.

```
We take again a toy example with T = 3, E = 2 et L = ET = 6 and a training set X = \{ (x^{(1)}, c1), (x^{(2)}, c1), (x^{(3)}, c3) \}
```

NB: contrary to question 1.1, we don't provide here the precise values for the $x^{(t)}$ vectors.

Suppose that when running the algo, updates are made at iterations 1, 3 and 4 (and predicted classes for these iterations were c2, c1 and c2 respectively).

• run the algorithm and express $W^{(6)}$ as a function of the $x^{(t)}$