Devoir surveillé n° 10 - Remarques

Barème.

Problèmes : exercice vu en TD sur 4 points, et les autres questions sur 4 points (v1 sur 124 points, v2 sur 132 points), ramené sur 15 points.

Statistiques descriptives.

	Sujet 1 (sur 124)	Sujet 2 (sur 132)	Note finale
Note maximale	55	77	20
Note minimale	19	10	5
Moyenne	35,3	31, 4	$\approx 10,34$
Écart-type	$\approx 9,44$	$\approx 20,21$	$\approx 3,32$

Version 1

Exercice vu en TD.

En dimension 3, beaucoup calculent det A en écrivant $A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$ et y vont gaiement avec brutalité

... Ce n'est pas très fin mais ça marche.

Pour ce qui est de la dimension 2, je déprime, et je répète une millième fois : vous pouvez écrire toutes les considérations théoriques que vous voulez, cela ne vous rapportera pas de point. Il faut donner un EXEMPLE CONCRET, point à la ligne.

Une famille de polynômes orthogonaux.

- **1.a)** De manière classique dans ce genre de question, personne n'oublie de montrer que φ est linéaire, mais le fait que φ prenne ses valeurs dans $\mathbb{R}_n[X]$ est bien souvent passé à la trappe.
- **2.a)** Si vous savez que $\varphi \lambda \text{Id}$ n'est pas injective, vous pouvez directement dire que son déterminant est nul. Pourquoi voulez-vous passer absolument par la matrice de cet endomorphisme? C'est totalement inutile (revoir le cours).
- **2.b)** De manière quasiment systématique, vous affirmez que $k \neq l$ donc $(k+1)(l+2) \neq (l+1)(l+2)$. C'est bizarre car si k=-1 et l=-2, il me semble bien que l'on a $k \neq l$ et pourtant (k+1)(l+2) = (l+1)(l+2).
- 2.c) Une famille n'a pas de dimension, elle a un rang ou un cardinal.
 Une famille échelonnée n'est pas forcément libre : elle peut très bien contenir le vecteur nul.
- **4.a)** Vous avez dans la grande majorité pensé à utiliser la continuité de f pour montrer que $\langle f, f \rangle = 0 \Rightarrow f = 0$: bravo (mais cette même continuité ne sert à rien pour montrer que $\langle f, f \rangle \geqslant 0$)! Par contre il y a quand même eu une arnaque fréquente : on montre d'abord que $t \mapsto (1-t^2)f(t)$ s'annule sur [-1,1], et donc f s'annule sur [-1,1] seulement! Et ensuite il faut réutiliser la continuité de f

pour conclure.

N'oubliez pas non plus que la **bi**linéraité, c'est la linéarité par rapport aux deux variables. Soit vous montrez les deux, soit (plus rapide) vous utilisez la symétrie.

L'exponentielle comme somme de série.

- **1.a)** t est rarement quantifié. Conclure par « $R_n(t)$ est solution » vous a valu zéro directement.
- **1.b)** Vos ensembles de solutions sont souvent affreux. L'un des pires (rencontré plus d'une dizaine de fois, c'est anormal) : $\{Ke^t, K \in \mathbb{R}\}$. Ça vaut zéro directement.
- **1.c) et d)** HORRIBLE en général. Déjà vous confondez intégrale et primitive. Dans une intégrale, il y a des bornes au symbole \int . La fonction $t\mapsto \int f(u)\,\mathrm{d} u$ n'a pas de sens car $\int f(u)\,\mathrm{d} u$ est déjà une fonction, pas un réel.

Ensuite, la variable d'intégration ne peut pas être la même que la variable de la fonction construite à partir de l'intégrale (revoir le théorème fondamental) : $t \mapsto \int f(t) dt$ et $\int_0^t f(t) dt$ n'ont aucun sens (et la première est doublement affreuse).

J'ai lu à plusieurs reprises (sans blague!) « l'ensemble des solutions est $\left\{Ke^t + \int \frac{t^n e^t}{n!}, K \in \mathbb{R}\right\}$. Ça vaut presque 0 à tout le devoir. En plus des 3 remarques précédentes, il manque dt dans l'intégrale (qui n'en est en fait pas une si vous avez suivi), et devant l'intégrale il manque un e t (cf. corrigé). Sur la partie résolution, pour résoudre l'équation avec second membre, il faut et il suffit de donner une solution particulière. Écrire « soit y une solution particulière donc .. donc .. donc y est de telle forme » s'appelle une analyse, et ici on s'en fout (si vous me passez cette expression). On veut uniquement la synthèse : si y est de telle forme, alors y est solution.

2.b) Revoir la définition de suites adjacentes. Il ne faut pas montrer que (u_n) et (v_n) ont une limite et que c'est la même pour conclure qu'elles sont adjacentes : au contraire, c'est une conséquence de leur adjacence.

Version 2.

Il convenait de ne jamais utiliser une propriété découlant du théorème de d'Alembert-Gauss.

- II.A.1.a La factorisation d'un polynôme réel en produit de facteurs irréductibles découle du théorème de d'Alembert-Gauss.
- II.A.2.a Vous pouviez faire le travail pour v, il suffisait ensuite d'indiquer que u commute avec u.
- II.A.2.b Le caractère strict des sev à trouver était primordial.
- **II.B.3.a** Il convenait de ne pas oublier la linéarité (au sens réel : F n'était bas un C-ev).
- II.B.3.b Là encore, vous ne pouviez pas exploiter de linéarité complexe.
- **II.B.3.c** $\mathcal{M}_n(\mathbb{K})$ n'est pas intègre : $(A (\lambda + i\mu)I_n)M_0 = 0$ et $M_0 \neq 0$ n'implique pas que $A (\lambda + i\mu)I_n = 0$.