

Case 21101YP

In the Claims

1(Currently Amended)

A compound of the structural formula I:

Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof:
wherein,

R represents hydrogen, or C₁-6 alkyl;

R₁ represents hydrogen or C₁-6 alkyl, CF₃, C₁-6 alkoxy, COR^c, CO₂R₈, CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents -(CHR₇)_p-;

Y is not present, -CO(CH₂)_n-, or -CH(OR)-;

Q represents N, CR_Y, or O, wherein R₂ is absent and R₃ is not C₁-4 alkyl when Q is O;

RY represents H, or C₁-6 alkyl;

R_w represents H, C₁-6 alkyl, -C(O)C₁-6 alkyl, -C(O)OC₁-6 alkyl, -SO₂N(R)₂, -SO₂C₁-6 alkyl, -SO₂C₆-10 aryl, NO₂, CN or -C(O)N(R)₂;

R₂ represents hydrogen, C₁-10 alkyl, C₁-6 alkylSR, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁-6 alkoxy, -(CH₂)_nC₃-8 cycloalkyl, -(CH₂)_nC₃-10 heterocyclyl, -(CH₂)_nC₅-10 heteroaryl, -N(R)₂, -COOR, or -(CH₂)_nC₆-10 aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;

R₃ represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nCOOR, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nNHR₈, -(CH₂)_nN(R)₂, -(CH₂)_nNHCOOR, -(CH₂)_nN(R₈)CO₂R, -(CH₂)_nN(R₈)COR, -(CH₂)_nNHCOR, -(CH₂)_nCONH(R₈), aryl, -(CH₂)_nC₁₋₆ alkoxy, CF₃, -(CH₂)_nSO₂R, -(CH₂)_nSO₂N(R)₂, -(CH₂)_nCON(R)₂, -(CH₂)_nCONHC(R)₃, -(CH₂)_nCOR₈, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of R^a;

or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;

R₄ and R₅ independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO₃H, O(CH₂)_nN(R)₂, O(CH₂)_nCO₂R, C₁₋₆ alkylcarbonyl, S(O)qRY, OPO(OH)₂, CF₃, N(R)₂, nitro, cyano or halogen;

R₆ represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nC₅₋₁₀ heteroaryl, (C₆₋₁₀ aryl)O-, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₃₋₈ cycloalkyl, -COOR, -C(O)CO₂R, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a, with the proviso that when Y is absent, X is absent, when p=0, R₁ is hydrogen, and Q is CRy then R₆ is not hydrogen with the proviso that when Y is absent, X is absent, p=0, R₁ is hydrogen, and Q is CRy then R₆ is not hydrogen;

R₇ represents hydrogen, C₁₋₆ alkyl, -(CH₂)_nCOOR or -(CH₂)_nN(R)₂,

R₈ represents -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, C₁₋₆ alkoxy or -(CH₂)_nC₅₋₁₀ heteroaryl, said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;

R^a represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -COR₈, -CONHR₈, -CON(R₈)₂, -O(CH₂)_nCOOR, -NH(CH₂)_nOR, -COOR, -OCF₃, -NHCOR, -SO₂R, -SO₂NR₂, -SR, (C_{1-C₆} alkyl)O-, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, (aryl)O-, -OH, (C_{1-C₆} alkyl)S(O)_m-, H₂N-C(NH)-, (C_{1-C₆} alkyl)C(O)-, (C_{1-C₆} alkyl)OC(O)NH-, -(C_{1-C₆}

Case 21101YP

alkyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C_{1-C₆} alkyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C_{1-C₆} alkyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C_{1-C₆} alkyl)-C₃₋₁₀ heterocyclyl-R_w, -(CH₂)_n-Z¹-C(=Z²)N(R)₂, -(C₂₋₆ alkenyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)-C₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)-Z¹-C(=Z²)N(R)₂, -(CH₂)_nSO₂R, -(CH₂)_nSO₃H, -(CH₂)_nPO(OR)₂, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C₂₋₆ alkenyl, and C_{1-C₁₀} alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 groups selected from C_{1-C₆} alkyl, CN, (CH₂)_ntetrazolyl, COOR, SO₃H, OH, F, Cl, Br, I, -O(CH₂)_nCH(OH)CH₂SO₃H, and

Z¹ and Z² independently represents NR_w, O, CH₂, or S;

R^b represents C₁₋₆ alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl;

R^c represents hydrogen, C₁₋₆ alkyl, or -(CH₂)_nC₆₋₁₀ aryl;

m is 0-3;

n is 0-3;

q is 0-2; and

p is 0-1.

2(Once Amended). A compound according to claim 1 of structural formula I wherein X represents CHR₇.

3(Original). A compound according to claim 1 wherein Y is -CO(CH₂)_n.

4(Original). A compound according to claim 1 wherein Y is CH(OR).

5(Original). A compound according to claim 1 wherein Q is N.

6(Once amended). A compound according to claim 1 wherein Q is CRy, and Ry is hydrogen.

Case 21101YP

7(Original). A compound according to claim 2 wherein R₆ is (CH₂)_nC₆-10 aryl, (CH₂)_nC₅-10 heteroaryl, (CH₂)_nC₃-10 heterocyclyl, or (CH₂)_nC₃-8 cycloalkyl, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1 to 3 groups of Ra.

8(Original). A compound according to claim 6 wherein R₇ is hydrogen or C₁-6 alkyl.

9(Original). A compound according to claim 6 wherein Q is N and n is 0.

10(Original). A compound according to claim 1 wherein Y is -CO(CH₂)_n, Q is N, n is 0, R₂ is C₁-10 alkyl or C₁-6 alkylOH and R₃ is (CH₂)_nC₃-10 heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of Ra.

11(Original). A compound ~~selected from Tables 1 through 14~~ which is:

Table 1

Wherein R represents:

and R* represents:

Table 2

Wherein R represents:

R* represents:

and R^ represents hydrogen or methyl

Table 3

Wherein R represents:

R* represents:

and R^A represents hydrogen or methyl;

Table 4

R represents methyl or methoxy and R* represents methyl, H or COOH;

R' represents methyl or methoxy; R[^] represents hydrogen or COOEt; R^{'''} represents COOH or COOtBu; and R'' represents: COOMe, H, COOH, or

Table 5

R^* represents hydrogen or methyl;

R^y represents methyl or CF_3 ; , ,

R represents methyl, $(CH_2)_2SCH_3$,

R^\wedge represents:

R^+ represents:

Table 6

Wherein n represents 1-2;

R[^] represents hydrogen or methyl

R represents:

and R' represents:

Case 21101YP

Table 7

Case 21101YP

Table 8

$\text{Y}=\text{OCH}_3$, Cl, Br, CH_2CH_3 , or CN

Ris:

Case 21101YP

Table 9

 $Y = \text{CH}_3 \text{ or } \text{CH}_2\text{CH}_3$

R is:

Table 10

Y=OCH₃, CN, or Cl; X=H, or F; Z=Ph, CH(CH₃)₂, CH₂CH(CH₃)₂

R is:

Table 11

Wherein R represents:

R₁ represents:

R2 represents: hydrogen or methyl

Table 12

Wherein R represents:

R_1 represents:

R₂ represents: hydrogen or methyl

Table 13

Case 21101YP

Case 21101YP

Table 14

Case 21101YP

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

12. Cancel.

13. Cancel.

14. Cancel.

15. Cancel..

16. Cancel.

17. Cancel.

18. Cancel.

19. Cancel.

20. Cancel.

21. Cancel.