CMPS 130: HW 3

Kevin Wang

 $March\ 2,\ 2019$

Definition 1.1 (Kleene Closure). Σ^* is the set of all finite strings over Σ as defined by $\bigcup_{k>0} \Sigma^k$.

Definition 1.2 (Recursively Enumerable Languages). A language \mathcal{L} is Recursively Enumerable (RE) if there exists some Turing Machine M, such that $L(M) = \mathcal{L}^2$.

Theorem 1. Recursively Enumerable (RE) languages are closed under Kleene Closure.

Proof. Let \mathcal{L} be some RE language and let M be some Turing Machine (TM) such that $L(M) = \mathcal{L}$ (Definition 1.2). Let \mathcal{L}^* be the Kleene Closure of \mathcal{L} .

We define a TM M^* that receives input x. M^* then non-deterministically splits x into s_1, s_2, \dots, s_k where $k \leq |x|$. Note that the number of ways to split x is finite due to the length of input x. Input x is then accepted if for all $i \leq k$, s_i is accepted. The trivial case, $x = \epsilon$, is also accepted.

Observe that M^* simulates the Kleene Closure (Definition 1.1) and therefore accepts \mathcal{L}^* , such that $L(M^*) = \mathcal{L}^*$. Thus, \mathcal{L}^* is Recursively Enumerable (Definition 1.2) – proving that RE languages are closed under Kleene Closure.

 $^{^{1}}$ lec2.pdf

²lec12.pdf

Theorem 2.

Theorem 3.

Theorem 4.

Theorem 5.

Theorem 6.