In this assignment, the loss function was chosen as Vapnik loss function. The satimage data set has been analyzed with FSA algorithm, with step size adjusted to be 0.001/N to get the best performance. The training loss vs iteration number has been plotted as below when k=9:

B) The misclassification error vs the number of selected features has been plotted below:

We can see that when more features selected, the overfitting becomes more significant $% \left(1\right) =\left(1\right) \left(1\right) \left($

The detailed result has been shown in the table below (together with the result of madelon and arcene dataset):

Parameter	Train	error	Test	error	Train	error	Test	error
number	(satimage)		(satimage)		(covtype)		(covtype)	
5	0.4514		0.473		0.3302		0.339	
9	0.4494		0.466		0.324		0.329	
18	0.3468		0.3645		0.3086		0.323	
27	0.3459		0.363		0.298		0.321	
36	0.3351		0.352		0.3054		0.325	

C)

The algorithm has been used on covtype data set.

The training loss vs iteration number has been plotted as below when k=9:

The misclassification error vs the number of selected features has been plotted below:

The code is as below:

```
import numpy as np
import heapq
import pandas as pd
import math
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from scipy import stats
# reading data from the file
train_data=pd.read_csv('X.dat', sep=' ', header=None).dropna(1).as_matrix()
train_labels=pd.read_csv('Y.dat', sep=' ', header=None).as_matrix()
test_data=pd.read_csv('Ytest.dat', sep=' ', header=None).as_matrix()
```

```
#normalize the data to mean 0 and std 1
def normalize(train, test):
   mean=np.mean(train, axis=0)
   std= np.std(train, axis=0)
   train=(train-mean) / (std+1e-7)
   test=(test-mean) / (std+1e-7)
   return train, test
train_data_norm, test_data_norm =normalize(train_data, test_data)
#take out the data size
N = train_data_norm.shape[0] #row size
NN = train data norm.shape[1] #column size
TN = test data norm.shape[0]
#add one extra column 1s at the beginning of the data
train data = np.hstack((np.ones((N, 1)), train_data_norm))
test data = np.hstack((np.ones((TN, 1)), test data norm))
# train labels pro = stats.threshold(train labels, threshmin = 1)
# test labels pro = stats.threshold(test labels, threshmin = 1)
# train labels = train labels pro
# test labels = test labels pro
def penalty theta(x,mu, k, i, n):
   temp = np.zeros(x.shape)
   dn=x.shape[1]
   x=x.flatten()
   M=len(x)
   m=k+(M-k)*max(0,(n-2*i)/(2*i*mu+n))
   index=heapq.nlargest(int(m), range(M), np.absolute(x).take)
   for i in index:
       temp[int((i-i%dn)/dn)][i%dn]=x[i]
   return temp
def dl(x):
   if x>1:
      return 0
   else:
      t=x-1
      return 2*t/(1+t*t)
def derivative(w,x,y):
   temp=np.zeros(w.shape)
   l=w.shape[1]
   n=y.shape[0]
   for s in range(l):
       for i in range(n):
          if s==y[i][0]:
              for k in range(1):
                 if k!=s:
\texttt{temp}[:,s] = \texttt{temp}[:,s] + \texttt{dl}(x[i].\texttt{dot}(w[:,s]-w[:,k])) * \texttt{np.transpose}(x[i])
          else:
              temp[:, s] = temp[:, s]
-dl(x[i].dot(w[:,y[i][0]]-w[:,s]))*np.transpose(x[i])
   return temp
def lo(x):
   if x>1:
      return 0
   else:
      return np.log(1+(x-1)*(x-1))
def trainloss(x,y,w):
   l=w.shape[1]
```

```
n=y.shape[0]
   for i in range(n):
       for k in range(l):
          if k!=y[i][0]:
              rt=rt+lo(x[i].dot(w[:,y[i][0]]-w[:,k]))
   return rt+0.001*np.linalg.norm(x)**2
def iteration_steps(train_data_, train_label_, w, steps, mu, k ,step_size):
   N = train_data_.shape[0]
   steplist=[]
   lostlist=[]
   for i in range(steps):
       w \text{ temp} = w - \text{derivative}(w, \text{ train data},
train_label_) *step_size/N-2*0.001*step_size/N*w
       w temp = penalty theta(w temp, mu, k, i, steps)
       w = w temp
       steplist.append(i+1)
       lostlist.append(trainloss(train data , train label ,w))
   if(k==9):
       plt.plot(steplist, lostlist)
       plt.xlabel('Iterations')
       plt.ylabel('Regression loss')
       plt.legend(loc=1)
       plt.show()
   return w
def linear_regression_predit(w, test_data_):
   p = np.argmax(test_data_.dot(w), axis=1)
   return np.expand dims(p, axis=1)
# 1, 0.2
step size=0.001
xlabel=[]
train_err_list = []
test_err_list=[]
iteration=500
k list=[5, 9, 18, 27, 36]
mu=100
L=6
for i in k list:
   w = np.zeros((NN + 1,L))
   w = iteration steps(train data, train labels, w, iteration, mu, i, step size)
   xlabel.append(i)
   #predicting
   train pred=np.asarray(linear regression predit(w, train data))
   test pred=np.asarray(linear regression predit(w, test data))
   train error=1-accuracy score(train labels, train pred)
   test error=1-accuracy score(test labels, test pred)
   print('parameter number: ',i, 'train error: ', train_error, 'test error: ',
test error)
   #recording
   train err list.append(train error)
   test err list.append(test error)
plt.plot(xlabel, train err list, label='training error')
plt.plot(xlabel, test err list, label='test error')
plt.xlabel('feature number')
plt.ylabel('Error rate')
plt.legend(loc=1)
plt.show()
```