Introduction to Computational Chemistry

Part 6: Spectroscopy

Eno Paenurk & Patrick Finkelstein & Felix Pultar

31.05.2023

Webinar overview

- Part 1: Takeoff
- Part 2: Reaction pathways from scratch
- Part 3: Preparing structures
- Part 4: Density Functional Theory
- Part 5: Organometallics
- Part 6: Spectroscopy
- Part 7: Chemical concepts

What you should know from previous sessions

- Run simple DFT jobs with ORCA
 - Geometry optimization
 - Frequency analysis
- Visualize the results
- Read relevant data from the output

Goals today

- Calculate and visualize spectra
 - IR
 - \bullet UV/Vis
 - NMR

ORCA und spectroscopy

From the foreword in the ORCA 2.9 manual (2012):

"However, with all developments in improved wavefunctions, speed *und* user friendliness, a major focus of the program will remain theoretical spectroscopy."

Explosive development (also of non-spectroscopy methods) from there on.

Year	Version	Pages (manual)
2012	2.9	534
2014	3.0.3	595
2017	4.0.1	827
2019	4.2.1	1048
2023	5.0.3	1329

Energy scales in spectroscopy

ORCA can be used to calculate all of these.

Energy scales in spectroscopy

	γ-ray	X-ray	UV/Vis	i IR	Microwave	Radiowave
Energy (eV) Wavelength (nm)	>10 ⁵ <10 ⁻²	$10^{5}-10^{2}$ $10^{-1}-10^{1}$	10 ⁰	10 ⁰ -10 ⁻³ 10 ² -10 ⁶	10 ⁻³ –10 ⁻⁶ 10 ⁶ –10 ⁹	$10^{-6}-10^{-9}$ $10^{9}-10^{12}$
Methods	Mössbauer	XAS	Abs., CD	Abs., Raman	EPR	NMR

ORCA can be used to calculate all of these. We will introduce three of them

IR spectroscopy

Common approximation: uncoupled harmonic oscillators (normal modes)

- No overtones, combination bands, or resonances
- Usually blue-shifted frequencies
 - Scaling factors are often used to "correct for anharmonicity"
 - BP86 often has good error cancellation
- J. Chem. Phys. 2003, 118, 7215.

IR spectroscopy – technical details

Invoked by the already familiar Freq (or NumFreq) keyword:

- ! Keywords Freq
 - Should only be used on an optimized geometry
 - Use exactly the same method as was used for the optimization
 - Freq is more costly than Opt consider splitting up the calculations
 - !PrintThermoChem for isotope effects on the spectra
 - See Part 4 for details

UV/Vis spectroscopy

Common approach: apply a time-dependent potential (an oscillating electric field)

Several options of different cost/accuracy:

- Time-dependent DFT (TD-DFT) workhorse
- STEOM-DLPNO-CCSD similar usage to TD-DFT, good accuracy
- (CASSCF/NEVPT2 a whole different thing for special cases when you're desperate)

TD-DFT – technical details

Invoked by adding the respective module block to the input:

```
%tddft
  nroots 5 # number of states
end
```

The states "are made of" orbital excitations (printed in the output).
 For example, formaldehyde:

```
STATE 1: E= 0.149939 au 4.080 eV 32907.7 cm**-1 7a -> 8a : 0.996757 (c= 0.99837704)
```


• Not all excitations have significant intensity (e.g., $n-\pi^*$)

TD-DFT - Caveats

- No vibronic structure
- Missing double excitations
- Missing spin-flip excitations
 - But there are ways (e.g., ORCA 5.0.3 manual Section 9.26.5)
- Gives vertical transitions
- Most transition energies are too high
- Charge-transfer excitation energies are too low (up to several eV)

NMR spectroscopy

Common approach: the magnetic field is incorporated into the basis functions (so-called GIAO or London orbitals).

You can calculate:

- Chemical shift tensors and absolute isotropic shieldings (default)
 - Need to correct the shifts with respect to a standard (see the Exercises)
- *J*-coupling constants
- Hyperfine coupling
- Quadrupole coupling

NMR - technical details

Invoked by adding the keyword !NMR:

- ! Keywords NMR
 - Sensitive to basis set:
 - Use at least def2-TZVP basis set
 - Special basis sets are available for higher accuracy (e.g., pcSseg)
 - Extra options can be controlled via the module block:

```
%eprnmr
```

Extra options; see the Exercises end

This block has to appear after the xyz coordinates.

See ORCA 5.0.3 manual Sections 8.9.7 and 9.42.3 for more info.

Final remarks

- The calculations give "stick"-spectra peak positions and intensities. For broadened spectra:
 - External software: Chemcraft, Avogadro, ...
 - orca_mapspc tool
- Input coordinates:
 - IR/Raman optimized with exactly the same method
 - Other spectroscopy any structure is fine
- A non-exhaustive list of additional methods:

Method	Manual section		
Raman	8.9.3.3		
Fluorescence	8.9.2		
X-Ray spectroscopy	9.29.2 / 9.36.2.8		
EPR	9.42.3		
Mössbauer	8.9.10		

Live-Demo

16 / 17

Exercises

