HT 2020

Elements of Deductive Logic

Jiaming (George) Yu
jiaming.yu@jesus.ox.ac.uk

September 24, 2023

Contents

- 1 Mathematical Induction 2
- 2 Metatheory of

4

- 2.1 Expressive Adequacy 5
- 2.2 Duality 5
- 3 The Syntax of

5

1 Mathematical Induction

There are numerous formulations of mathematical induction.

Axiom 1.1 (Weak Principle of Induction, WPI)

If (i) some P is true for the first member of a sequence S (ordered by the natural numbers), and (ii) if P is true for any n^{th} member of S, then P is true for the $(n+1)^{\text{th}}$ member of S; then for every $x \in S$, P is true for x.

We call condition (i) the <u>base case</u> and condition (ii) the <u>induction case</u>. Notation-wise, we can write P(x) for the statement 'P is true for x'. This way, we can rewrite WPI symbolically as:

$$P(s_0) \land \forall n(P(s_n) \models P(s_{n+1})) \models (\forall x \in S)P(x)$$

Axiom 1.2 (Strong Principle of Induction, SPI)

If, for every n, if P is true for all of s_m whenever m < n, then $P(s_n)$; then for every $x \in S$, P(x).

¹ The base case is implied when n = 0

$$\forall n (\forall m (m < n \models P(s_m)) \models P(s_n)) \models (\forall x \in S) P(x)$$

Axiom 1.3 (The Least Number Principle, LNP)

For any non-empty subset M of \mathbb{N} , M has a least member.

We now claim that all of WPI, SPI, and LNP are logically equivalent.

Theorem 1.4

The SPI follows from the WPI.

Proof. Let P be a proposition defined on \mathbb{N} .² Assume the WPI and that $\forall n (\forall m (m < n \models P(m)) \models P(n))$. Define Q(n) as the proposition $\forall m (m < n \models P(m))$. Q(0) is vacuously true. Now assume Q(n); combining Q(n) and the assumption, we have that P(n), hence by definition Q(n+1) is true. Therefore, applying the WPI, we have that $(\forall n \in \mathbb{N})Q(n)$, and therefore $(\forall n \in \mathbb{N})P(n)$.³

Theorem 1.5

The WPI follows from the LNP.

Proof. Let *P* be a proposition defined on \mathbb{N} . Assume P(0) and $P(n) \models P(n+1)$. Also let $M \subseteq \mathbb{N}$ be the set containing those m where $\neg P(m)$.⁴ Assume M has a least member m (with m > 0), then by definition, $\neg P(m)$ and P(m-1). But by assumption, P(m-1) entails P(m). Hence by contradiction, M has no least member. Hence by the contrapositive of LNP, it follows that M is empty. So we conclude $(\forall n \in \mathbb{N})P(n)$. □

 $^{^2}$ We can always transform those ordered by $\mathbb N$ to ones defined on $\mathbb N$

³ Some extra reasoning could be used here but I will leave as is

⁴ Observe that we are assuming we can construct a set with all and only those elements satisfying a property, it turns out that this isn't a trivial result, but it is outside the scope of this course.

Theorem 1.6

The LNP follows from the SPI.

Proof. Let $M \subseteq \mathbb{N}$ be a set without a least member. Let P(n) be the proposition $n \notin M$. Now assume, for a given n, all the m's strictly less than n satisfy P(m). Since n is the least number larger than all the possible m's, this entails that $n \notin M$, because otherwise it would mean that M does have a least member — n; therefore P(n). Applying SPI, we conclude that $(\forall n \in \mathbb{N})P(n)$, and thus M is an empty set. This proves the contrapositive of the LNP and hence the LNP. □

These principles of induction can be very helpful when proving results about formulas. To do this, we usually want to perform induction on the complexity of formulas.

Definition 1.1

Let ϕ be an -formula. Denote the set of all connectives and sentence letters in ϕ by $Conn(\phi)$ and $SenLett(\phi)$ respectively. The <u>complexity</u> of ϕ , denoted by $Comp(\phi)$, is the total number of connectives in ϕ , that is, $Comp(\phi) = |Conn(\phi)|$.

2 Metatheory of

Definition 2.1

A <u>literal</u> is any sentence letter or negated sentence letter.

Definition 2.2

Let $^+$ be an extension of with two extra atomic sentences \top and \bot where $|\top|_{\mathcal{A}}=1$ and $|\bot|_{\mathcal{A}}=0$ for all structures \mathcal{A} . Importantly, \top and \bot are both atoms but not sentence letters.⁵

⁵ In , atoms and sentence letters can be used interchangeably, but it is no longer the case in ⁺.

Lemma 2.1 (Relevance Lemma)

Let ϕ be a sentence and \mathcal{A}, \mathcal{B} structures. If for all $\alpha \in \text{SenLett}(\phi)$ there is $|\alpha|_{\mathcal{A}} = |\alpha|_{\mathcal{B}}$, then $|\phi|_{\mathcal{A}} = |\phi|_{\mathcal{B}}$.

Proof. We prove by induction on the complexity of ϕ .

When $\operatorname{Comp}(\phi) = 0$, ϕ is either a sentence letter α or one of \top and \bot (in the case of $^+$). In either case, it follows immediately that $|\phi|_{\mathcal{A}} = |\phi|_{\mathcal{B}}$. For the inductive step, let $\operatorname{Comp}(\phi) = n$ and assume that the desired result holds for all sentences with complexity strictly less than n. Next, we consider all possible forms of ϕ in terms of ψ and χ (both with complexity strictly less than n):

Case 1.
$$\phi = \neg \psi$$
. Then $|\phi|_{\mathcal{A}} = 1 - |\psi|_{\mathcal{A}} = 1 - |\psi|_{\mathcal{B}} = |\phi|_{\mathcal{B}}$.

Case 2.
$$\phi = \psi \wedge \chi$$
.

Case 3.
$$\phi = \psi \lor \chi$$
.

Case 4.
$$\phi = \psi \models \chi$$
.

Case 5.
$$\phi = \psi \leftrightarrow \chi$$
.

For cases 2–5, we know that the value of each compound formula is determined exactly by the value of ψ and χ ; but we also know by induction hypothesis that $|\psi|_A = |\psi|_B$ and $|\chi|_A = |\chi|_B$, hence $|\phi|_A = |\phi|_B$.

The above proof serves as an example of a typical proof by induction, and in particularly, by induction on the complexity of sentences. Next, we move on to defining substitutions — a rather complicated one in order to capture our intuitions.

Definition 2.3

Definition 2.4

An sentence ϕ is in <u>disjunctive normal form</u> (DNF) if there exist natural numbers n, m_1, \ldots, m_n such that

$$\phi = \bigvee_{i=1}^{n} \left[\bigwedge_{i=1}^{m_i} s_{i,j} \right]$$

where all $s_{i,j}$ are literals.⁶

⁶ Conjunctive normal forms (CNF) are defined in a parallel way

Theorem 2.2

Every truth function can be expressed by an sentence in DNF.

2.1 Expressive Adequacy

Definition 2.5

A set of connectives is <u>expressively adequate</u> if for any truth function f, there exists a sentence containing only those connectives which expresses f.

2.2 Duality

Duality is a semantic concept from the theory of truth functions.

Definition 2.6

A <u>truth function</u> is an *n*-ary function from the set of *n*-tuples of T's and F's to the set $\{T, F\}$.

Definition 2.7

For a connective c, we say it <u>expresses</u> a truth function f if for any sentences ϕ and ψ and any structure A,

$$f_c(|\phi_1|_{\mathcal{A}},\ldots,|\phi_n|_{\mathcal{A}})=|c(\phi_1,\ldots,\phi_n)|_{\mathcal{A}}$$

3 The Syntax of

Definition 3.1

The <u>alphabet</u> of the language consists of the following types of characters:

- 1. Sentence letters: $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, ...$
- 2. Logical connectives: \neg , \land , \lor , \models , \leftrightarrow
- 3. Parentheses: (,)

Definition 3.2

A <u>string</u> in a language \mathcal{L} is any finite, ordered sequence of characters from the alphabet of \mathcal{L} .

Definition 3.3

The $\underline{\textit{sentences}}$ of are defined in the following manner:

- 1. All sentence letters are sentences of .
- 2. If ϕ and ψ are sentences of , then so are:
 - ¬φ
 - $\phi \wedge \psi$
 - φ ∨ ψ
 - $\phi \models \psi$
 - $\phi \leftrightarrow \psi$
- 3. Nothing else is a sentence of .