Передача времени и ансамбли на движущихся платформах

Исследовательский проект по синхронизации времени в динамических системах

Основы точного времени и частоты

Частота — фундаментальная основа

Часы генерируют частоту, реализуя принципы физики плюс шум. Частота является первичным параметром, который определяет точность хода часов.

Время — искусственный артефакт

Сигнал времени создается из частоты путем подсчета циклов. Все показания часов со временем расходятся друг с другом без ограничений из-за накопления шума.

Две фундаментальные проблемы

- 1. **Проблема стабильности:** Даже самые лучшие часы демонстрируют только белый шум по частоте, что приводит к случайному блужданию по фазе и неограниченному расхождению со временем.
- 2. **Проблема стандартизации:** Стандарт времени является искусственным, поэтому время ДОЛЖНО передаваться от соответствующего эталона, что требует сигнала точного времени и данных о дате.

Расхождение часов со временем

Расхождение различных типов часов со временем

Принципы передачи времени

Основные методы передачи времени

Односторонняя передача времени

Требует определения и устранения задержки. Пример: GPS, где сигнал спутника привязан к бортовым атомным часам. Точность ограничена неопределенностью задержки распространения.

Двусторонняя передача времени

Зависит от взаимности пути (d12 = d21). Использует четыре временные метки для точного определения задержки. Позволяет достичь более высокой точности за счет компенсации асимметрии задержек.

Требования для точной синхронизации

Для точной синхронизации (наносекундные ошибки) между движущимися платформами требуются:

Разница во времени между часами Трехмерное расстояние между платформами

Сравнение методов передачи времени

Односторонняя передача Двусторонняя передача

Сравнение односторонней и двусторонней передачи времени

Протокол PNTP: разработка SHIWA NETWORK

Что такое PNTP?

PNTP (Positioning, Navigation and Time Protocol) — это

новый сетевой протокол для двусторонней передачи местоположения, навигации и времени, специально разработанный компанией SHIWA NETWORK для движущихся платформ.

Ключевые особенности PNTP:

Расширение NTP/PTP для включения положения, скорости, ускорения (PVA)

Явная обработка распределения времени и положения для движущихся эталонов и объектов

Поддержка сферического (TOA) и гиперболического (TDOA) позиционирования

Компенсация эффектов специальной и общей теории относительности

Иерархическая структура с несколькими уровнями (Stratum) эталонов

Оптимальная точность при частоте пакетов ≥ 10/с

Иерархическая структура PNTP с тремя уровнями (Stratum) эталонов и объектов

Исследовательские аспекты PNTP

Уязвимости GNSS и решения SHIWA NETWORK

Основные уязвимости GNSS

Глушение (Jamming)

Мощность глушения, необходимая на антенне GPS, составляет порядка пиковатта (10^-12 ватт). Существуют глушилки от ватт до мегаватт, доступные как военным, так и гражданским лицам.

Спуфинг (Spoofing)

Поддельный сигнал GNSS, имитирующий настоящий. Код C/A короткий и хорошо известен, широко доступны генераторы сигналов, позволяющие создавать правдоподобные подделки.

Миконинг (Meaconing)

Ретрансляция с задержкой настоящего сигнала GNSS. Позволяет создавать ложное представление о местоположении без необходимости генерировать сложные сигналы.

Схема атаки спуфинга на GNSS: злоумышленник передает поддельные сигналы, заставляя приемник вычислять неверное положение и время

Ансамбли шкал времени

Что такое ансамбль шкал времени?

Ансамбль шкал времени — это метод объединения нескольких независимых часов для создания единой шкалы времени, которая более стабильна и надежна, чем любые отдельные часы в ансамбле.

Принцип работы ансамбля:

Сбор данных о состоянии всех часов в ансамбле Оценка статистических характеристик каждых часов Вычисление весовых коэффициентов для каждых часов Формирование общей шкалы времени с учетом весов Распространение коррекций на все часы ансамбля

Преимущества ансамблей

Повышенная стабильность:

Ансамбль может быть стабильнее любых отдельных часов

Отказоустойчивость:

Система продолжает работать при отказе отдельных

часов

Сравнение стабильности часов и ансамбля

Интервал измерения (с)

Сравнение стабильности отдельных часов и ансамбля часов

Синхронизация времени в рое беспилотников

Принципы синхронизации в рое

Рой беспилотников представляет собой идеальный пример динамической сети, требующей точной синхронизации времени для координированных действий и предотвращения столкновений.

Процесс синхронизации в ансамбле часов

- 1 Инициализация: Один из дронов (или наземная станция) назначается мастер-часами, остальные дроны синхронизируются с ним.
- 2 Измерение задержек: Каждый дрон измеряет задержку связи с соседними дронами через двусторонний обмен временными метками.
- **Коррекция движения:** Учитываются релятивистские эффекты и изменения в задержках из-за движения дронов.
- Формирование ансамбля: Каждый дрон вычисляет общее ансамблевое время на основе измерений от всех соседей, взвешивая их по надежности.

Различные архитектуры синхронизации в рое дронов: централизованная, полуавтономная и полностью автономная

Синхронизация времени в спутниковых группировках

Особенности синхронизации в космосе

Уникальные вызовы для спутниковых группировок:

Значительные релятивистские эффекты из-за высоких скоростей и разницы гравитационных потенциалов

Большие и переменные задержки распространения сигнала между спутниками

Ограниченная пропускная способность межспутниковых каналов связи

Изменяющаяся топология сети из-за орбитального движения

Экстремальные условия окружающей среды, влияющие на стабильность часов

Методы синхронизации SHIWA NETWORK:

Межспутниковые линии (ISL):

Двусторонний обмен временными метками через прямые каналы связи между спутниками

Иерархическая структура:

• Организация спутников в слои с разными ролями в синхронизации

Адаптивная коррекция:

Учет орбитальных параметров и релятивистских эффектов в

Схема синхронизации времени в спутниковой группировке с использованием межспутниковых линий связи по технологии SHIWA NETWORK

Исследовательские вопросы SHIWA NETWORK

Ключевые направления исследований

- Оценка задержек: Как оптимально оценить задержки между случайно движущимися сетями часов и оптимизировать структуру PNTP?
- 2 Стабильность ансамбля: Как генерировать стабильное ансамблевое время при сильно различающихся характеристиках часов?
- Оптимизация производительности: Как оптимизировать производительность распределенного ансамбля с часами на движущихся платформах?
- 4 Ансамбли ансамблей: Как создать и оптимизировать ансамбли ансамблей для повышения отказоустойчивости?
- **Динамика ансамбля:** Как оптимально обрабатывать часы, входящие и выходящие из ансамблей?
- **Синхронизация в рое:** Как обеспечить надежную синхронизацию в рое беспилотников с учетом их динамического перемещения?

Приоритеты исследовательских вопросов и их взаимосвязь в проектах SHIWA NETWORK

Заключение и контакты SHIWA NETWORK

Ключевые достижения проекта

Разработка протокола PNTP для синхронизации времени на движущихся платформах

Создание алгоритмов формирования ансамблей часов для повышения стабильности и надежности

Решение проблемы синхронизации в условиях отсутствия GNSS сигналов

Разработка методов компенсации релятивистских эффектов в динамических системах

Перспективы дальнейших исследований

Разработка алгоритмов для ансамблей ансамблей (мета-ансамблей)

Оптимизация энергопотребления при синхронизации в автономных системах

Интеграция квантовых технологий для повышения точности синхронизации

Применение машинного обучения для адаптивной настройки параметров

Дорожная карта проекта SHIWA NETWORK

