THE MICROBIAL INTERACTION DATABASE

Dileep Kishore

INTRODUCTION

- A comprehensive database of microbial interactions from different data sources
- A platform for users to compare, analyze and visualize their data
- Data population has started with associations derived from 16S data and literature

TERMINOLOGY

- Operational Taxonomic Units: Clusters of micro-organisms grouped by DNA sequence similarity in the 16S region
- Co-occurrence Networks: Networks obtained from the associations inferred in 16S rDNA samples from various environments
- Exact Sequence Variants: Amplicon sequence variants (ASVs) that are resolved exactly, down to the level of single-nucleotide differences over the sequenced gene region.

GOALS

GOALS

• Data collection:

- Collect 16S rDNA sequence data
- Human Microbiome Project, American Gut, etc...

<u>User data processing</u>

- Provide access to a pipeline for 16S data analysis
- Data stored in the database is processed using the same standardized pipeline and parameters

Data exploration

- Disease vs. Healthy microbiome
- Identify core or differential microbiota
- Query microbial interactions by taxa level or based on environment or across
- Allow the user to compare his network with networks with matching metadata

Demonstration

Sequencing method

- 454 vs. illumina
- Different sequencing depths
- Different pre-processing
- Different quality filtering

Clustering method

OTU1

GATACAGAGAGGCAA GATACAGAGATGGCAT GATACAGAGATGGCAT

OTU2

TACCAGATTTACATAG TACCAGATTTACATAG TACCAGATTTACATT TACAAGATTTACATT

OTU3

CAGGTAGGGGCCATT CAGGTAGGGGCCAATT CAGGTAGGGGC CAGGTAGGGGAA

- Closed reference
- Open reference
- De novo reference
- Error modeling

Alignment method

- Greengenes
- Silva
- RDP

Processing method

Original Abundance				Rarefied Abundance		
		Α	В		Α	В
ОТ	U1	62	500	OTU1	62	50
ОТ	U2	38	500	OTU2	38	50
Tot	al	100	1000		100	100
Standard Tests for Difference						
	P-valu	ıe	chi-2	Prop	Fisher	
	Origin	al	0.0290	0.0290	0.0272	
	Rarefie	ed	0.1171	0.1171	0.1169	

- Normalization
- Rarefying
 - Mixture models
 - Removing sparse data

Calculating associations

- Compositionality
- Sparsity
- Pairwise associations
 - Pearson
 - Spearman
 - SparCC
- Direct associations
 - SpiecEasi
 - CCLasso
 - \circ mLDM

PIPELINE

- Develop a standard pipeline identify tools and good parameters
- This pipeline would be used to process all the data to be stored in the database
- Create a set of guidelines using a decision tree
- A consensus network created using a weighted voting scheme

HOW DO WE FIND THE BEST METHODS?

- Is there a standard to compare against?
- Can we make synthetic data?
- What metrics can we use for comparisons?
 - Diversity
 - Abundances
 - Degree distributions
 - Motifs or connected components in the network
 - Metabolic models

WHAT CAN WE DO THEN?

- Identify parts of the pipeline that are most crucial
- Show how data/errors propagate through the pipeline
- Identify downstream steps that make choices in upstream steps inconsequential

MAIN FIGURE/IDEA

Total variance across the pipeline

OTHER FIGURES

- Similarity, diversity, rank abundance and pairwise correlations after the denoising/clustering
- Diversity and correlations after assigning taxonomy at various taxonomy levels. Also, correlation between sequence similarity and assigned taxa
- Change is similarities after OTU filtering and normalization
- Edge and node overlaps, similarity and degree distribution after network inference
- A embedding of all the networks in a 2D plane

DISTANCE METRICS

- Between abundances in OTU tables
- Between assigned taxonomies in OTU tables
- Between associations in networks

Demonstration

Comparing various methods in 16S data analysis

Enter the location of the source directory

/home/dileep/Documents/boston_university/mind-analysis/mind_analysis/data/example_source

Enter source

NETWORKS

Stool Network

NETWORK INFERENCE METHODS

DENOSING/CLUSTERING METHODS

DENOSING/CLUSTERING METHODS

DENOSING/CLUSTERING METHODS

DIVERSITY

RANK ABUNDANCE

ABUNDANCE CORRELATION ON COMMON TAXA

NETWORK PROPERTIES

L1 distance

NETWORK PROPERTIES

Degree Distribution

NETWORK PROPERTIES

Edge Overlap

Thank you!