Avaliação da Qualidade do Produto Profa. Anna Beatriz Marques

• Definição dos critérios da qualidade do produto

Critério	Pergunta chave
Usabilidade	É fácil de usar?
Funcionalidade	Satisfaz as necessidades?
Confiabilidade	É imune as falhas?
Eficiência	É rápido e enxuto?
Manutenibilidade	É fácil de modificar?
Portabilidade	É fácil utilizar em outro ambiente?
Segurança	Protege informações e dados?
Compatibilidade	É possível integrar com sistemas existentes?

- Objetivo da Engenharia de Software:
 - Melhorar a Qualidade do Software

- Objetivo da Engenharia de Software:
 - Melhorar a Qualidade do Software

Uma vez que a qualidade de um produto de software está diretamente relacionada à sua **quantidade de defeitos**, os defeitos de um produto de software devem ser **detectados o mais cedo possível** evitando o retrabalho [PUTNAM e MYERS, 2003].

- Motivos para uma prévia detecção de defeitos [SOFTEX, 2011]:
 - Há algumas evidências de que 40% a 50% do esforço de um projeto é gasto com retrabalho que poderia ser evitado
 - O custo para detectar e corrigir defeitos cresce bastante à medida que eles são propagados para fases posteriores do processo de desenvolvimento
 - corrigir um defeito de projeto/codificação na própria fase é entre 10 a 100 vezes menor do que o custo de corrigi-lo na fase de testes [ANDERSSON, 2003].

Motivos para uma prévia detecção de defeitos

Como garantir a prevenção de problemas nos produtos de trabalho de software?

esforço de poderia ser

medida que eles são propagad processo de desenvolvimento

 corrigir um defeito de projeto/codific fase é entre 10 a 100 vezes menor do corrigi-lo na fase de testes [ANDERSSON,

scresce bastante à fascresce do

oria de

Através de técnicas de **verificação de software**

 É vista como a garantia de que produtos de trabalho de uma fase particular do processo estão consistentes com os requisitos desta fase e da fase anterior [Softex, 2011]

Verificação de software

- Suas atividades são executadas ao longo do processo de desenvolvimento (1/2)
 - Essas avaliações de qualidade possuem os seguintes objetivos [PRESSMAN, 2005]:
 - 1. Garantir que os requisitos estabelecidos podem ser alcançados;
 - Identificar os requisitos que não podem ser alcançados
 - Garantir que o software é desenvolvido de forma uniforme;

Verificação de software

- Suas atividades são executadas ao longo do processo de desenvolvimento (2/2)
 - Essas avaliações de qualidade possuem os seguintes objetivos [PRESSMAN, 2005]:
 - 4. Identificar erros para tomar medidas corretivas o mais cedo possível;
 - 5. Tornar o projeto mais gerenciável.

Verificação de Software

 Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]

Revisões x Testes

 Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]

Revisões x Testes

 Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]

Revisões Formais x Revisões Informais

- Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]
 - Revisões Formais
 - Inspeções
 - Reviões Técnicas
 - Revisão de Apresentação
 - Revisão Gerencial
 - Revisões Informais
 - Programação (Revisão) em Pares
 - Revisão Preliminar
 - Revisão Individual

Revisões Formais y Davisões Informais

Sua condução obedece a um conjunto padronizado de regras

do deserve do produto [Padua, 2009]

- Revisões Formais
 - Inspeções
 - Reviões Técnicas
 - Revisão de Apresentação
 - Revisão Gerencial
- Revisões Informais
 - Programação (Revisão) em Pares
 - Revisão Preliminar
 - Revisão Individual

Revisões Formais x Revisões Informais

- Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]
 - Revisões Formais

Não segue um conjunto definido de regras Podem e devem ser usadas antes das revisões formais

- Revisac serencial
- Revisões Informais
 - Programação (Revisão) em Pares
 - Revisão Preliminar
 - Revisão Individual

Revisões Formais - Inspeções

- Segundo o Glossário do IEEE:
 - Exame Visual de produtos de trabalho para detectar e identificar anomalias

Mais detalhadamente pela Norma IEEE-1028: "Exame Visual de produtos de trabalho para detectar e identificar anomalias, inclusive erros e desvios em relação a padrões e especificações. Conduzidas por profissionais treinados. As anomalias devem ser obrigatoriamente corrigidas ou investigadas, mas não durante a inspeção.

- Outra definição:
 - "Método de análise estática para verificar as propriedades de qualidade de produtos de software"
 - Dimensões:
 - Estruturada, processo bem definido
 - Pessoal técnico
 - Papéis bem definidos
 - Técnicas de leitura para identificação de defeitos
 - Resultados documentados

Segundo Pádua (2009), as inspeções devem garantir, geralmente:

Eficácia

Eficiência

Com o objetivo de manter os artefatos corretos

Revisões Formais - Inspeções

- Identificação e Remoção de defeitos
- Obrigatória a geração de uma lista de anomalias
 - Seguindo alguma classificação (preferencialmente)
- Verificam os seguintes aspectos:
 - Se estão de acordo com os artefatos dos quais se originaram
 - Se são condizentes com os respectivos padrões
 - Se têm atributos satisfatórios de atributos internos de qualidade
 - Completeza, correção, precisão, consistência...
 - Se são adequados para os seus consumidores

Benefícios e Custo das Inspeções

- Inspeções vêm sendo utilizadas há mais de duas décadas;
- Existe evidência experimental de sua usabilidade e Adequabilidade;
- Provêm um bom meio para o gerente do projeto;
- Monitorar a qualidade e progresso do projeto;

Benefícios e Custo das Inspeções

- Podem amenizar atividades de manutenção, evitando que erros se propaguem pelo ciclo de vida;
- Apresentam baixo custo devido ao fato do revisor não precisar investir muito tempo ou mesmo não demandar
- ferramentas sofisticadas para realizá-las.
 - entretanto uma alta taxa de atividades de inspeção ao longo do processo pode acrescer de 5% a 10% o custo final

- Devem garantir (1/2):
 - Maior eficácia: fração dos defeitos existentes que são detectados

Um dos indicadores medidos neste estudo, o indicador eficácia, está diretamente relacionado ao apoio da técnica em encontrar os defeitos. Para analisar a eficácia, é necessário conhecer o número de defeitos únicos encontrados (sem a contabilização das duplicatas). Considerando-se ambas as técnicas, foi encontrado um total de 73 defeitos únicos. A eficácia então é definida como a razão entre o número de defeitos únicos detectados pela técnica e o número total de defeitos únicos que nós conhecemos. A Tabela 3 compara a eficácia das técnicas.

Tabela 3: Comparativo de eficácia

	Defeitos únicos	Total de defeitos únicos	Eficácia
WDP	46	73	63,01%
WDP-RT	66		90,41%

Exemplo retirado de: "GOMES, M., SANTOS, D. V., CONTE, T., et al. 2009. "WDP-RT: Uma técnica de leitura para inspeção de usabilidade de aplicações Web". In: VI *Experimental Software Engineering Latin American Workshop* (ESELAW 2009), v. 1, pp. 124-133, São Carlos, São Paulo."

- Devem garantir (2/2):
 - Maior eficiência: razão entre a quantidade de defeitos detectados e o esforço total de detecção

Para responder a segunda pergunta referente a este estudo ("o tempo é bem empregado?"), precisamos analisar a eficiência da técnica. Para esta análise, é necessário considerar todos os defeitos (únicos e duplicatas) encontrados. A eficiência então é definida como a razão entre o número total de defeitos e o tempo gasto na inspeção. A Tabela 4 mostra o comparativo de eficiência para ambas as técnicas.

Tabela 4: Comparativo de eficiência

	Total de Defeito	Defeitos por Inspetor	Média de tempo (hora)	Média de Defeitos /hora	Desvio Padrão (Defeitos por Inspetor)	% Desvio Padrão (Defeitos por Inspetor)
WDP	55	9,16	1,23	7,44	2,31	25,27%
WDP- RT	127	21,16	2,86	7,39	7,83	37%

Exemplo retirado de: "GOMES, M., SANTOS, D. V.,CONTE, T., et al. 2009. "WDP-RT: Uma técnica de leitura para inspeção de usabilidade de aplicações Web". In: VI *Experimental Software Engineering Latin American Workshop* (ESELAW 2009), v. 1, pp. 124-133, São Carlos, São Paulo."

- Equipe de Inspeção:
 - Líder, relator, autores, inspetores
 - Dependendo do material a ser inspecionado, pode-se considerar a participação de usuários ou especialistas externos
 - Ex.: Inspeções em requisitos, em desenhos de interfaces de usuário e da documentação do usuário

鄉

- Perfil da Equipe de Inspeção
 - Líder da Inspeção:
 - Compreender o propósito das inspeções em geral e entender seu funcionamento
 - Compreender o propósito de cada inspeção em particular
 - Ter conhecimentos técnicos de alto nível sobre o material a ser inspecionado
 - Ter participado de outras inpeções (inspetor/autor)
 - Não ter problemas pessoas com os inspetores/autores

柳

- Perfil da Equipe de Inspeção
 - Relator da Inspeção:
 - Compreender o propósito das inspeções em geral e entender seu funcionamento
 - Compreender o propósito de cada inspeção em particular
 - Ter participado de outras inpeções (inspetor/autor)
 - Compreender o jargão e os formatos utilizados no material
 - Ser capaz de comunicar-se com as pessoas que estarão presentes na inspeção

- Perfil da Equipe de Inspeção
 - Inspetores da Inspeção:
 - Estar preparados (ler cuidadosamente o material)
 - Ter conhecimento técnico sobre a parte do material de inspeção
 - Ser cooperativo
 - Ser francos em relação ao material da inspeção, mas polidos em relação aos autores
 - Procurar equilibrar comentários positivos e negativos
 - Apontar defeitos, mas não discutir como resolvê-los (durante a inspeção)
 - Evitar discussões não-pertinentes

Como fazer um balanço final da inspeção?

- Se a inspeção foi bem-sucedida
- Se ela contribuiu para a melhoria do produto efetivamente
- Se algum participante foi responsável por um eventual fracasso da inspeção
- Se todos os participantes estão satisfeitos com o resultado alcançado
- Se o projeto sob inspeção recebeu tratamento justo e adequado

Retirado de: Travassos, G. H. "Revisão e Inspeção de Software". Notas de Aula.

- Planejamento
 - O autor comunica a conclusão de um artefato
 - O gerente designa um líder, que escolhe os inspetores e estima o número de encontros necessários e agenda as reuniões
 - O moderador fornece o material para revisão: artefato, listas de conferência, objetivos e material de suporte

- Reunião de visão geral (opcional)
 - Apresentação informal do artefato, pelo autor, sem entrar em detalhes

Detecção

- Os inspetores avaliam o material e coletam uma lista de problemas, defeitos, sugestões
- Utilização de listas de conferência e tabelas de classificação dos defeitos

- Coleção/Discriminação
 - Após a apresentação de cada parte, os inspetores apontam os problemas, defeitos, inconformidades e sugestões, que são registrados pelo Relator
 - O grupo deve dar um laudo para a inspeção
 - O líder deve produzir um relatório sumarizando os dados quantitativos

- Correção/Retrabalho
 - Correção dos defeitos
 - Resolução dos problemas

 Alguns autores propoem ainda uma etapa de verificação das correções

Tipos de defeitos encontrados (Falbo, 2008)

Tipo	Descrição
Omissão	Omissão: informações relevantes sobre o sistema foram omitidas do artefato de software. Ex.: requisito não incluído, seções de documentos faltando, diagramas faltando, falta de descrições etc.
Fato Incorreto	Fato incorreto: informações no artefato contradizem informações presentes na especificação de requisitos (quando a mesma está correta) ou o conhecimento geral do domínio. Ex.: requisito incorreto, um diagrama de análise contendo uma representação incorreta de um conceito.
Inconsistência	informações de uma parte do artefato estão inconsistentes com outras partes do mesmo artefato ou de outro artefato correlacionado. Ex.: requisitos conflitantes, diagramas inconsistentes.

Tipos de defeitos encontrados (Falbo, 2008)

Tipo	Descrição
Ambigüidade	Informações em um artefato podem ser interpretadas de diferentes maneiras. Ex.: Descrição ambígua de requisitos, representação pouco expressiva em um diagrama.
Informação Estranha	informações desnecessárias e não utilizadas. Ex.: informações constantes em uma especificação de requisitos mas nunca usadas.

Classificação dos defeitos encontrados Natureza dos defeitos (Pádua, 2009)

Tipo	Descrição
Usabilidade	Defeitos do desenho nas interfaces e funções do produto
Documentação	Comentários, mensagens, padronização
Sintaxe	Grafia, pontuação, digitação, formatos de instruções
Construção	Gestão de configurações, ligação, geração de código, engenharia reversa
Atribuição	Declarações, nomes, escopo, limites
Interface	Chamadas de métodos e procedimentos, entrada e saída

Classificação dos defeitos encontrados Natureza dos defeitos (Pádua, 2009)

Tipo	Descrição
Verificação	Mensagem de erro, falhas de verificação
Dados	Estrutura, Conteúdo
Função	Lógica, apontadores, malhas, recursão, cálculos
Sistema	Configuração, temporizações, memória
Ambiente	Falhas nas ferramentas ou no ambiente de desenvolvimento

Revisões Formais x Revisões Informais

- Aplica-se métodos e técnicas específicos ao longo do desenvolvimento do produto [Pádua, 2009]
 - Revisões Formais
 - Inspeções
 - Reviões Técnicas
 - Revisão de Apresentação
 - Revisão Gerencial
 - Revisões Informais
 - Programação (Revisão) em Pares
 - Revisão Preliminar
 - Revisão Individual

Vamos conhecer algumas técnicas de inspeção

Técnicas de Inspeção de Usabilidade de Artefatos de Software

Técnica	Descrição	Autor
WDP (Web Design Perspectives-based Usability Evaluation)	Inspeção de usabilidade específica para avaliação de aplicações Web.	Conte et al. (2007); Conte et al. (2009a); Conte et al. (2009b).
WDP-RT	Uma técnica de leitura para inspeção de usabilidade de aplicações Web.	Gomes et al. (2009); Gomes et al. (2010).
UBICUA	Técnica de Inspeção de Usabilidade de Aplicações Web para Dispositivos Móveis.	Bonifácio et al. (2011); Bonifácio et al. (2012).
WE-QT	Técnica de inspeção de usabilidade de aplicações de Web para Inspetores Novatos.	Fernandes et al. (2012); Fernandes et al. (2014).
SPLIT	Um Conjunto de Técnicas de Inspeção em Modelos de Linha de Produto de Software.	Cunha et al. (2012).

Técnicas de Inspeção desenvolvidas pelo UsES

Técnica	Descrição	Autor
MIT	Um Conjunto de Técnicas de Leitura para Inspeção de Usabilidade em Modelos de Projeto.	Valentim et al. (2012); Valentim et al. (2014); Valentim et al. (2015).
WEB-Due	Permite inspecionar Mockups de Aplicações Web nas primeiras etapas do processo de desenvolvimento. Direciona os inspetores a encontrar problemas ao dividir os mockups em zonas de páginas Web com conteúdos específicos.	Rivero e Conte (2014).
MoLVERIC	Técnica de inspeção para diagramas MoLIC, que emprega gamificação para motivar os inspetores durante a inspeção	Lopes et al (2015 a); Lopes et al (2015 b).
USERBILIT Y	Uma técnica que auxilia a avaliar tanto a usabilidade quanto a experiência do usuário de aplicativos móveis;	Nascimento et al (2016)

Métodos de Inspeção de Usabilidade

MIT

Model Inspection
Technique for
Usability Evaluation

A Técnica MIT

São técnicas de leitura proposta para inspeção de usabilidade em modelos de projeto. São baseadas nas heurísticas de Nielsen.

MIT 1

Objetivo:

 Verificar a usabilidade através de especificações de Casos de Uso.

• Como inspecionar?

 Observe e anote em qual Fluxo Principal (FP), Fluxo Alternativo (FA), Fluxo de Exceção (FE) ou Regra de Negócio (RN) você identifica um problema de usabilidade seguindo as heurísticas.

Heurísticas da MIT 1

	1AA. Visibilidade do Status do Sistema			
1AA1	1 Verifique se há algum texto no FP, FA e FE que informa em que parte do sistema o			
	usuário se encontra;			
1AA2	Verifique se há algum texto no FP, FA e FE que informa ao usuário o que foi realizado			
	após uma persistência de dados. Por exemplo: quando há alteração ou exclusão de algo,			
	uma mensagem de texto é apresentada.			

	1AC. Controle e liberdade ao usuário
1AC1	Verifique se o usuário, através do FA e FE, pode desfazer ou refazer algo que envolva persistência de dados no sistema. Por exemplo: pode excluir ou alterar
	dados inseridos.

	1AF. Reconhecer ao invés de lembrar
1AF1	Verifique se os nomes das opções, campos, telas e links são informados de forma que o
	usuário não tenha que se lembrar quais são eles no FP, FA, FE e RN.

Aplicação da MIT 1

Atores: Atendente ou Gerente

Gatilho: Click na opção Efetuar Pagamento

Pré-condição: O Atendente ou Gerente deve estar logado no sistema e acessando a conta do cliente.

Fluxo Principal:

[FP1] O Sistema solicita a forma de pagamento [RN1].

[FP2] O Atendente ou Gerente clica na opção da forma de pagamento "Opção 1" e clica no botão "Continuar" [FA1][FA2][RN3].

[FP3] O Sistema solicita confirmação do pagamento.

[FP4] O Atendente ou Gerente confirma o pagamento.

[FP5] O Sistema volta para o passo [FP13] do Caso de Uso Alugar Produto (UC – Alugar Produto).

Fluxo Alternativo:

[FA1] Caso o Atendente ou Gerente clique na opção da forma de pagamento "Opção 2" e clica no botão "Continuar", o sistema exibe a tela de Colocar na Conta de Empréstimo do Cliente (UC – Colocar na Conta de Empréstimo do Cliente) [RN3].

[FA2] Caso o Atendente ou Gerente clique na opção da forma de pagamento "Opção 3" e clica no botão "Continuar", o sistema informa o Valor da Conta de Empréstimo do Cliente e vai para o passo [FP3][RN2][RN3].

Pós-condições:

O produto é registrado como pago no banco de dados ou colocado na "Conta de Empréstimo do Cliente".

Regras de Negócios:

[RN1] A forma de pagamento pode ser "Opção 1 - À Vista" ou "Opção 2 - Colocar na Conta de Empréstimo do Cliente" ou "Opção 3 - Pagar Conta de Empréstimo".

[RN2] O Valor da Conta de Empréstimo = Valor Total da Conta de Empréstimo do Cliente.

[RN3] Após clicar na forma de pagamento é obrigatório o Atendente ou Gerente apertar no botão "Continuar" para dar prosseguimento ao pagamento.

1AF1. Verifique se os nomes das opções, campos, telas e links são informados de forma que o usuário não tenha que se lembrar quais são eles no FP, FA, FE e RN.

Aplicação da MIT 1

Atores: Atendente ou Gerente

Gatilho: Click na opção Efetuar Pagamento

Pré-condição: O Atendente ou Gerente deve estar logado no sistema e acessando a conta do cliente

Fluxo Principal:

[FP1] O Sistema solicita a forma de pagamento [RN1].

[FP2] O Atendente ou Gerente clica na opção da forma de pagamento "Opção 1" e clica no b "Continuar" [FA1][FA2][RN3].

[FP3] O Sistema solicita confirmação do pagamento.

O usuário desse possível sistema terá que se lembrar toda vez o que significam estas opções.

> [FA2] Caso o Atendente ou Gerente clique "Continuar", o sistema informa o Valor da Cont

Pós-condições:

O produto é registrado como pago no banco de

Regras de Negócios:

lo na "Conta de Empréstimo do Cliente".

[RN1] A forma de pagamento pode ser "Opção 1 - À Vista" ou "Opção 2 - Colocar na Conta de Empréstimo do Cliente" ou "Opção 3 - Pagar Conta de Empréstimo".

[RN2] O Valor da Conta de Empréstimo = Valor Total da Conta de Empréstimo do Cliente.

[RN3] Após clicar na forma de pagamento é obrigatório o Atendente ou Gerente apertar no botão "Continuar" para dar prosseguimento ao pagamento.

1AF1. Verifique se os nomes das opções, campos, telas e links são informados de forma que o usuário não tenha que se lembrar quais são eles no FP, FA, FE e RN.

ugar Produto (UC – Alugar 🏲

forma de pagamento "Opção 2" lica no botão Empréstimo do Cliente (UC car na Conta de

orma de pagamento "Opção 3" e clica no botão do Cliente e vai para o passo [FP3][RN2][RN3].

Técnica MIT 1 - Aplicação

Mão na massa: Vamos inspecionar um Caso de Uso

Fluxo Básico:

- 1. O ator decide se autenticar no sistema.
- 2. O sistema solicita as informações obrigatórias para a autenticação: email e senha.
- 3. O ator informa os dados de autenticação e clica no botão "Ir".
- 4. O sistema valida os dados de autenticação.
- 5. O sistema registra em histórico (log) a autenticação realizada pelo ator. Os seguintes dados são armazenados: usuário, grupo de usuário e data.
- 6. O sistema habilita as ações relacionadas ao grupo de usuário ao qual pertence o ator.
- 7. O sistema informa: "AUTENTICAÇÃO FOI REALIZADA COM SUCESSO!!!"
- O caso de uso se encerra.

Fluxo Alternativo A:

- 1. No passo 4 do Fluxo Básico, caso haja algum erro na autenticação relacionado aos dados informados:
- 2. O sistema informa: "ERRO!"
- 3. O fluxo retorna ao passo 2 do fluxo básico.

Fluxo Alternativo B:

- 1. No passo 4 do Fluxo Básico, caso o sistema identifique que ator está bloqueado:
- 2. O sistema informa: "ERRO!"
- 3. O fluxo retorna ao passo 2 do fluxo básico.

Fluxo Alternativo C:

- 1. No passo 1 do Fluxo Alternativo A, caso aconteça o erro de autenticação após um número configurável de tentativas:
- 2. O sistema bloqueia o ator.
- 3. O sistema registra em histórico (log) o bloqueio do ator.
- 4. O sistema informa: "USUÁRIO BLOQUEADO!!!"
- 5. O fluxo retorna ao passo 2 do fluxo básico

Técnica MIT – Solução

Fluxo Básico:

- 1. O ator decide se autenticar no sistema.
- 2. O sistema solicita as informações obrigatórias para a autentiça o:
- 3. O ator informa os dados de autenticação e clica no botão "Ir".
- 4. O sistema valida os dados de autenticação.
- 5. O sistema registra em histórico (log) a autenticação realizada pelo ator. Os seguintes dados são armazenados: usuário, grupo de usuário e data.
- 6. O sistema habilita as ações relacionadas ao grupo de usuário ao qual pertence o ator.
- 7. O sistema informa: "AUTENTICAÇÃO FOI REALIZADA COM SUCESSO!!!"
- O caso de uso se encerra.

Fluxo Alternativo A:

1. No passo 4 do Fluxo Básico, caso informados:

2. O sistema informa: "ERRO!"

3. O fluxo retorna ao passo 2 do flux

Fluxo Alternativo B:

- 1. No passo 4 do Fluxo Básico
- 2. O sistema informa: "ERRO!

3. O fluxo retorna ao passo 2 do fluxo básico.

Fluxo Alternativo C:

1. No passo 1 do Fluxo Alternativo A, caso aconteça o erro de autenticação após um número configurável de tentativas:

- 2. O sistema bloqueia o ator.
- 3. O sistema registra em histórico (log) o bloquei
- 4. O sistema informa: "USUÁRIO BLOQUEADO!!"
- 5. O fluxo retorna ao passo 2 do fluxo básico

1AB1. Nome do botão não segue as convenções do mundo real

1AH2. Mensagem intimida o usuário

ação relacionado aos dados

1AH3. Mensagem não ajuda a corrigir o problema

or está bloqueado:

1AH2. Mensagem intimida o usuário

MIT 2

Objetivo:

Verificar a usabilidade através Mockups.

• Como inspecionar?

 Para cada Mockups a ser inspecionado observe e anote qual problema de usabilidade você encontrou seguindo as heurísticas.

Heurísticas da MIT 2

	2AA. Visibilidade do Status do Sistema				
2AA1	1 Verifique se há informações textuais ou nome nos Mockups que informa em que parte				
	do sistema o usuário se encontra.				
2AA2	Verifique se há algum texto informativo ou mensagem que informa ao usuário o que foi realizado após uma persistência de dados (alteração, exclusão, etc).				

2AC. Controle e liberdade ao usuário				
2AC1	Verifique se o usuário tem as opções de desfazer ou refazer algo que ele tenha			
	escolhido;			
2AC2	Verifique se o usuário tem a opção de cancelar o que está realizando, ou se há opções			
	similares que permitam ao usuário utilizar saídas em caso de escolhas erradas ou para			
	sair de um estado ou local não esperado.			

Aplicação da MIT 2

%								• X
Data Codi	i: go do cliente :	23/11/2010	Hora: Nome:	17:25 João da Silva	Movimento:	000000000	3	
Γ	odigo:	Inserio				Categoria	Valor	·
								I I I
Tota	al:	, , .						T T
					Confir locaçã			

2AA1. Verifique se há informações textuais ou nome nos Mockups que informa em que parte do sistema o usuário se encontra.

2AA1. Verifique se há informações textuais ou nome nos Mockups que informa em que parte do sistema o usuário se encontra.

Técnica MIT 2 - Aplicação

Mão na massa: Vamos inspecionar um Mockup

CLIENTE	
CPF / CNPJ	*
Nome:	*
E-mail:	*
Confirme o E-mail:	*
Senha:	*
Confirme a senha:	*
ENDEREÇO CADASTI	RADO
Endereço: (Street address)	R. BELA CINTRA
Número: (Number)	* Complemento: (Complement)
Bairro: (Quarter)	CONSOLAÇÃO
Cidade: (City)	SAO PAULO
Estado: (State)	SP
CEP: (Zip/Postal code)	01415-000
País: (Country)	Brasil
DADOS	
Telefones: * (um telef	fone deve ser informado)
Residencial	(Ramal:
Comercial	(Ramal:
Celular	() Tel:
Identidade ou Inscr.Est.:	*
Profissão:	
Sexo:	*
Seu Aniversário:	▼ / *

2AA1. O usuário não sabe em que parte do sistema ele está

Técnica MIT – Solução

MIT₃

Objetivo:

Verificar a usabilidade através de Diagramas de Atividades.

• Como inspecionar?

 Para cada Diagrama de Atividades a ser inspecionado observe e anote qual problema de usabilidade você encontrou seguindo as heurísticas

Heurísticas da MIT 3

	3B. Concordância entre o sistema e o mundo real				
3B1	Verifique se as atividades estão apresentadas em uma ordem natural e lógica segundo os				
	conceitos do domínio do problema;				
3B2	Verifique se os nomes das atividades utilizam termos (palavras) que seguem as				
	convenções do mundo real, ou seja, que englobam tanto as convenções do domínio do				
	problema quanto às convenções de terminologia de aplicações semelhantes.				

	MIT-3H. Reconhecimento, diagnóstico e recuperação de erros			
3H1	Verifique através das atividades se o sistema ajuda o usuário a sair de uma situação de			
	erro;			
3Н2	Verifique através das atividades se o sistema ajuda a corrigir o erro. Por exemplo: atividades que indicam a recuperação do erro.			

Aplicação da MIT 3

3H1. Verifique através das atividades se o sistema ajuda o usuário a sair de uma situação de erro;

Aplicação da MIT 3

3H1. Verifique através das atividades se o sistema ajuda o usuário a sair de uma situação de erro;

Técnica MIT 3 - Aplicação

Mão na massa: Vamos inspecionar um Diagrama de Atividades

Técnica MIT – Solução **Atendente** Sistema Abre a Janela 3G1. O usuário não "Locação do produto" tem opção de acesso a uma atividade principal Digita o nome para verificar a existência [caso não exista] do cadastro Informa: "Locação rejeitada" 3H2. O sistema não ajuda o usuário a [caso exista] sair de uma situação Verifica se existe de erro uma locação pendente Registra os itens locados [se sim] [se não] Informa: "OK"