Формальные языки

домашнее задание до 23:59 05.03

Фадеева Екатерина

1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).

Построим примеры, которые показывают, что утверждение неверно:

(а) объединение:

Регулярному выражению a(aa)* соответствует минимальный (т.к. его вершины не эквивалентны) автомат

Регулярному выражению (aa)* соответствует минимальный автомат

Построим автомат-пересечение:

Но два состояния в этом автомате эквивалентны, значит их можно объединить.

- (b) пересечение: тот-же пример, при этом в автомате-пересечении не будет терминальных вершин, а значит его можно было представить в виде одной вершины, а не двух
- (с) разность языков:

Регулярному выражению (aa)* соответствуют минимальные автоматы

их разность:

Опять получилось 2 вершины, но они одной терминальной, т.е. можно было бы построить эквивалентный автомат с одной вершиной.

2. Для регулярного выражения:

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

Построить эквивалентные:

(а) Недетерминированный конечный автомат

(b) Недетерминированный конечный автомат без ε -переходов В любой строке, подходящей под

$$(a\mid b)^+(aa\mid bb\mid abab\mid baba)^*(a\mid b)^+$$

символы, подходящие под часть

$$(aa \mid bb \mid abab \mid baba)^*$$

можно приписать первой части этого регулярного выражения

$$(a \mid b)^+$$

Тогда достаточно строить автомат для регулярного выражения

$$(a | b)^+(a | b)^+$$

.

(c) Минимальный полный детерминированный конечный автомат Детерминизируем автомат из (b):

Далее применяем алгоритм минимизации: вершина q_0 не эквивалентна вершине q_1 , т.к. их различает строка a, а остальные пары вершин не эквивалентны, потому что одна из них обязательно терминальная, а другая нет. Т.о. автомат не изменится, т.е. нарисованный автомат уже минимальный.

3. Построить регулярное выражение, распознающее тот же язык, что и автомат:

Построим регулярное выражение последовательно:

Петля в q_0 :

 $(a \mid b \mid c)^*$

Верхний путь:

 $a(b \mid c)^*a$

Средний путь:

 $b(a \mid c)^*b$

Нижний путь:

$$c(a \mid b)^*c$$

Три пути вместе:

$$(a(b \mid c)^*a \mid b(a \mid c)^*b \mid c(a \mid b)^*c)$$

Три пути вместе с петлей в начале:

$$(a | b | c)^*(a(b | c)^*a | b(a | c)^*b | c(a | b)^*c)$$

4. Определить, является ли автоматным язык $\{\omega\omega^r \mid \omega \in \{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

Пусть этот язык L является автоматным. Тогда по лемме о накачке существует такое n, что $\forall w \in L \colon |w| > n, \exists x,y,z \colon xyz = w, y \neq \epsilon, |xy| \leq n; \forall k \geq 0 \colon xy^kz \in L$

Возьмем строчку $w=1^{n+1}001^{n+1}$ и x,y,z из теоремы. $x=1^{|x|},y=1^{|y|},z=1^{n+1-|x|-|y|}001^{n+1}$ $xyyz=1^{n+1+|y|}001^{n+1}$

 $|y| > \epsilon \Rightarrow xyyz \notin L$, получим противоречие. Т.о., язык не является автоматным.

5. Определить, является ли автоматным язык $\{uaav \mid u,v \in \{a,b\}^*, |u|_b \geq |v|_a\}$. Если является — построить автомат, иначе — доказать.

Пусть этот язык L является автоматным. Тогда по лемме о накачке существует такое n, что $\forall w \in L \colon |w| > n$, $\exists x, y, z \colon xyz = w, y \neq \epsilon, |xy| \leq n$; $\forall k \geq 0 \colon xy^kz \in L$

Возьмем строчку $w=b^{n+1}aa(ba)^{n+1}\in L$ и x,y,z из теоремы. $x=b^{|x|},y=b^{|y|},z=b^{n+1-|x|-|y|}aa(ba)^{n+1}$

Тогда $\forall k \geq 0: b^{n+1+(k-1)|y|}aa(ba)^{n+1} \in L$

Но при k=0 неравенство $|u|_b \ge |v|_a$ не выполняется, т.к. в единственном способе разделить это слово двумя буквами a получаем n+1-|y|< n+1, т.к. $y\ne \epsilon$.

Получим противоречие, значит язык не является автоматным.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A		В
В	_	A
С	ΑВ	_
D	С	С
\mathbf{E}	D	_
\mathbf{F}	$\rm E~F$	DFG
G	G	${ m E}$

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	\mathbf{E}	F	G
A							
В							
С	√	√					
D	✓	\checkmark	✓				
Е	√	√	√	√			
F	✓	\checkmark	✓	\checkmark	✓		
G	√	\checkmark	√	\checkmark	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

