Introdução ao Raciocínio Lógico para ALP

Rogério Eduardo da Silva - rogerio.silva@udesc.br Claudio Cesar de Sá - claudio.sa@udesc.br

> Universidade do Estado de Santa Catarina Departamento de Ciência da Computação

> > 1 de março de 2018

Atenção ...

....

Este texto reflete as dificuldades básicas que alunos tiveram na disciplina de ALP em semestre anterioes.

Todo conteúdo encontra-se sob revisão constante e está distante de um formato final!

Aquecendo no desequilíbrio, ou desigualdades:

As inequações serão úteis:

Seja $x \in \{0, 1...99\}$, avalie a **verdade** das expressões:

- $\mathbf{2}$ x é impar ou x é par
- $\forall x (12x + x^2 \le 12)$
- $\forall x (144 \ge 12x + 7)$
- $\forall x(128 14x \le 12x + 4)$

As inequações serão úteis:

Seja $x \in \{0, 1..99\}$, avalie a **verdade** das expressões:

- **1** x > 100 R: 0
- 2 x é impar ou x é par R: 1
- **3** $\forall x (12x + x^2 \le 12)$ R: 0 ou falsa
- **③** $\forall x (144 \ge 12x + 7)$ R: **0** ou falsa
- ∀x(128 14x ≤ 12x + 4) R: 0 ou falsa

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- 4 hoje é sábado

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- o hoje não, não é domingo
- 4 hoje é sábado

A negação de "hoje é domingo e amanhã não choverá" é:

- 1 hoje não é domingo e amanhã não choverá
- 2 hoje não é domingo ou amanhã choverá
- 3 hoje não é domingo então amanhã choverá
- o hoje não é domingo nem amanhã choverá

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- o hoje é sábado

A negação de "hoje é domingo e amanhã não choverá" é:

- hoje não é domingo e amanhã não choverá
- hoje não é domingo ou amanhã choverá
- hoje não é domingo então amanhã choverá
- hoje não é domingo nem amanhã choverá

Assim ...

precisamos de algo mais forte!

Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- **2** Estas serão **Verdadeiras** ou **Falsas**, como nas inequações, exemplo: 2+3>6
- 3 Construir fórmulas a partir destas proposições, exemplo: x+3>6 e $12+x\leq 6$
- ${\bf 0}\,$ Ao final, calcular o valor desta fórmula composta, indicando se é ${\bf V}$ ou ${\bf F}\,$
- Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- **2** Estas serão **Verdadeiras** ou **Falsas**, como nas inequações, exemplo: 2+3>6
- 6 Construir fórmulas a partir destas proposições, exemplo: x+3>6 e $12+x\leq 6$
- ${\bf 0}\,$ Ao final, calcular o valor desta fórmula composta, indicando se é ${\bf V}$ ou ${\bf F}\,$
- Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

Assim ...

vamos usar uma lógica com circuitos elétricos conhecidos do colegial, para resolver estas fórmulas!

A **negação** em um circuito elétrico:

Onde a tabela valente é dada

A	$\sim {f A}$
V (ou 1)	F (ou 0)
F (ou 0)	V (ou 1)

onde:

V (ou 1: lâmpada acesa F (ou 0): lâmpada apagada

Conserte o circuito acima !!!

equipor:

A conjunção ou conectivo E em um circuito elétrico:

Onde a tabela equivalente é dada por:

A	В	$\mathbf{A} \wedge \mathbf{B}$
V	V	V
V	F	F
F	V	F
F	F	F

V (ou 1: lâmpada acesa F (ou 0): lâmpada apagada

A disjunção ou conectivo OU em um circuito elétrico:

Onde a tabela equivalente é dada por:

A	В	$\mathbf{A} \lor \mathbf{B}$
V	V	V
V	F	V
F	V	V
F	F	F

V (ou 1: lâmpada acesa F (ou 0): lâmpada apagada

Construa a Tabelas Verdades (TVs) das fórmulas abaixo:

A	В	$\sim {f A}$	$\sim \mathbf{A} \vee \mathbf{B}$
V	V	F	
V	F	F	
F	V	V	
F	F	V	

Esta fórmula é conhecida como $\sim A \vee B \equiv A \rightarrow B$, leia-se: se A então

 \mathbf{B}