Name:

7.2 Do Now: Linear graphs, isosceles triangles, dilations

1. (a) Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = -\frac{3}{2}x - 7 2x - 3y = -18 (4 \text{ pts})$$

(b) Find the slopes of the two lines.

(2 points)

$$m_1 =$$

(c) Are the lines parallel, perpendicular, or neither? Justify your answer with an equation or inequality using the slopes. (2 points)

 $m_2 =$

2. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given the sides of the preimage, $AC=6,\ BC=4,\ AB=8,$ and of DE=14 find the scale factor k and the lengths AD and AE. Then find CE and BD.

(c)
$$AE =$$

(d)
$$CE =$$

(e)
$$BD =$$

3. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=5.7,\ AP=7.4,\ BP=3.6,$ and KP=9.0. Find JK.

Unit 7: Similarity 3 January 2020

4. A(-1,-1) is one endpoint of \overline{AB} . The segment's midpoint is M(3,1), as shown below.

- (a) What translation maps
- $A(-1,-1) \to M(3,1)$?

5. In the diagram below, \overline{AD} has endpoints with coordinates A(-3,1) and D(6,-2). What points B and C trisect \overline{AD} into three congruent segments? Mark and label them on the graph. State their coordinates.

- 6. Given $\triangle ABC$ is isosceles but not equilateral with $\angle A \cong \angle C$. (not draw to scale)
 - (a) Mark the congruent sides & angles of $\triangle ABC$. Circle True or False:
 - (b) True False $\overline{AB} \cong \overline{BC}$
 - (c) True False $\overline{AB} \cong \overline{AC}$
 - (d) True False $\overline{BC} \cong \overline{AC}$

7. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{AC}$.

(the diagram is not to scale)

- (a) Mark the congruent sides & angles of $\triangle ABC$. Circle True or False:
- (b) True False $\angle A \cong \angle B$
- (c) True False $\angle A \cong \angle C$
- (d) True False $\angle B \cong \angle C$
- (e) T F $m \angle A + m \angle B + m \angle C = 180$

8. Given isosceles $\triangle RSU$ with $\overline{RS} \cong \overline{SU}$.

(the diagram is not to scale)

(a) Mark the congruent sides & angles of $\triangle RSU$.

Circle True or False:

- (b) True False $\angle R \cong \angle RSU$
- (c) True False $\angle R \cong \angle U$
- (d) True False $\angle RSU \cong \angle U$
- (e) True False $\angle R \cong \angle TSU$

- (f) True False $\angle RSU \cong \angle TSU$
- (g) True False $m \angle RSU + m \angle TSU = 180$
- (h) True False $m\angle R + m\angle RSU + m\angle U = 180$

3 January 2020

7.2 Spicy: Similar triangles, dilations

9. The diagram below shows $\triangle ABC \sim \triangle ADE$, with \overline{AEB} , \overline{ADC} , and $\angle ACB \cong \angle AED$. $AB=8,\ AD=4,\ \text{and}\ DE=2.$

- (b) $\overline{AD} \rightarrow \underline{\hspace{1cm}}$
- (c) What is the scale factor?

$$k = \underline{\hspace{1cm}}$$

- (d) What is the length of \overline{BC} ?
- 10. Given $\triangle ABC \sim \triangle ADE$ with sides AC = 9, BC = 6, AB = 12, and of DE = 10 find the scale factor k and the lengths AD and AE. Then find CD.

(a)
$$k =$$

(b)
$$AD =$$

(c)
$$AE =$$

(d)
$$CD =$$

