Συστήματα Αρχείων: Διεπαφή και Υλοποίηση

Λειτουργικά Συστήματα 6ο εξάμηνο ΣΗΜΜΥ ακ. έτος 2022-2023

http://www.cslab.ece.ntua.gr/courses/os

Εργαστήριο Υπολογιστικών Συστημάτων ΕΜΠ

Μάιος 2023

Συστήματα Αρχείων (Σ.Α.)

- Διεπαφή
 - Αρχεία
 - Κατάλογοι
 - Μονοπάτια
 - Προσάρτηση ΣΑ
 - Απομακρυσμένα ΣΑ
- Ζητήματα Υλοποίησης
 - ► File Control Block (inode)
 - Μέθοδοι ανάθεσης
 - VFS
 - Άλλα ζητήματα (page cache, journaling, ...)

Απαιτήσεις χρήστη

- Διατήρηση δεδομένων μετά την εκτέλεση ενός προγράμματος και μετά το κλείσιμο του υπολογιστή (διεπαφή αρχείου)
- Οργάνωση αρχείων σε ομάδες για ευκολότερη επισκόπηση (διεπαφή καταλόγου ή φακέλου)
- Έλεγχος πρόσβασης στα αρχεία και τους καταλόγους (δικαιώματα πρόσβασης)
- Δυνατότητα χειρισμού αρχείων και καταλόγων μέσα από τα προγράμματα (κλήσεις συστήματος)

Αρχεία

Αρχείο: Μόνιμος, συνεχής, λογικός χώρος διευθύνσεων.

- Μόνιμος: Παραμένει προσβάσιμο και μετά τον τερματισμό του προγράμματος (ή το κλείσιμο του υπολογιστή)
- Λογικός: Ξεχωριστό από την φυσική απεικόνισή στην συσκευή αποθήκευσης
- Χώρος Διευθύνσεων: Διευθυνσιοδήτηση δεδομένων σε επίπεδο byte
- Συνεχής: Χωρίς κενά

"Everything is a file" – ρητό του Unix

Τύποι Αρχείων

Γενικά το τι δεδομένα περιέχει το αρχείο είναι θέμα του χρήστη (ή της εφαρμογής)

- Πρόγραμμα (executable)
- Κείμενο (text)
- Δυαδικά δεδομένα (binary)
- Απλές Δομές:
 - Γραμμές (πχ πρόγραμμα .c)
 - Πεδία σταθερού μεγέθους (πχ ακέραιοι)
 - Πεδία μεταβλητού μεγέθους (πχ συμβολοσειρές)
- Σύνθετες δομές (πχ αρχείο pdf)

Ιδιότητες Αρχείων

- Όνομα
- Αναγνωριστικό (εσωτερικό)
- Τύπος
- Θέση
- Μέγεθος
- Δικαιώματα (προστασία)
- Ώρα / Ημερομήνια πρόσβασης
- **.**..

Λειτουργίες Αρχείων

- Δημιουργία (create)
- Ανάγνωση (read)
- Εγγραφή (write)
- Επανατοποθέτηση (seek)
- Διαγραφή (delete)
- Μηδενισμός (truncate)
- Εκτέλεση (execute)
- Απεικόνιση στη μνήμη (mmap)

Κατάλογοι (φάκελοι)

- Κατάλογος ενός επιπέδου
- Κατάλογος δύο επιπέδων
- Κατάλογοι δενδρικής δομής

Κόμβοι Ιεραρχίας – Σύνολα κόμβων που μπορούν να είναι:

- Αρχεία
- Κατάλογοι

Παράδειγμα Δενδρικής Δομής

Λειτουργίες Καταλόγων

- Αναζήτηση αρχείου (με βάση το όνομα)
- Δημιουργία αρχείου
- Διαγραφή αρχείου
- Μετονομασία αρχείου
- Διάσχιση ιεραρχίας

Μονοπάτια (Σε Σ.Α. τύπου Unix)

Μονοπάτι (path):

Συμβολοσειρα από αναγνωριστικά χωρισμένα από τον χαρακτήρα / πχ: /this/is/a/path/name
Κανόνες:

- Το μονοπάτι είναι
 - 1. *απόλυτο* αν ξεκινάει με / αφετηρία είναι η αρχή της ιεραρχίας
 - 2. *σχετικό* (αν όχι) αφετηρία είναι ο τρέχων κατάλογος (ΤΚ)
- Το αναγνωριστικό:
 - . σηματοδοτεί τον ΤΚ
 - .. σηματοδοτεί τον πατέρα του ΤΚ

Προστασία

- Κατηγορίες:
 - Χρήστης
 - Ομάδες
 - Άλλοι
- Δικαιώματα:
 - Ανάγνωση
 - Εγγραφή
 - Εκτέλεση
 - Προσθήκη
 - Διαγραφή
 - Λίστα (για καταλόγους)
- Λίστα Ελέγχου πρόσβασης (ACL)

Σύστημα αρχείων από την οπτική του χρήστη σύνοψη

- Δυνατότητα πρόσβασης σε αρχεία
- Οργάνωση των αρχείων σε καταλόγους
- Δικαιώματα πρόσβασης
- Κλήσεις συστήματος για το χειρισμό αρχείων και καταλόγων

Προσάρτηση ΣΑ

(mount)

Χρειάζονται:

- Σημείο προσάρτησης (mountpoint)
- Συσκευή αποθήκευσης (σκληρός δίσκος, flash)

Απομακρυσμένα ΣΑ

remote

- FTP / WWW
- Δικτυακά ΣΑ (Network FS) (πχ NFS, CIFS, AFS)
 - Οι πόροι βρίσκονται σε απομακρυσμένο υπολογιστή
 - Πρόσβαση σε αυτούς μέσω δικτύου (πχ TCP/IP)
 - Πελάτης-Εξυπηρετητής (client-server)
- Κατανεμημένα ΣΑ (Distributed FS) (πχ Lustre)
 - Οι πόροι βρίσκονται σε πολλαπλούς υπολογιστές
 - Στόχοι:
 - Προστασία πλεονασμός πληροφορίας (data redundancy)
 - Επίδοση παράλληλη πρόσβαση
 - Χειρισμός σφαλμάτων (πχ δικτυακό πρόβλημα)

Υλοποίηση ΣΑ (από τη μεριά του πυρήνα)

Τι χρειάζεται για να υλοποιήσουμε ένα σύστημα αρχείων

- Σχεδιασμός και υλοποίηση αποθήκευσης δεδομένων (αρχείων και καταλόγων) σε μία συσκευή αποθήκευσης (π.χ. σκληρός δίσκος)
 - Πραγματικά δεδομένα αρχείων/καταλόγων
 - Μεταδεδομένα αρχείων
 - Ευρετήριο αρχείων και καταλόγων
 - ...
- Δομές δεδομένων και κώδικας (κλήσεις συστήματος) για το χειρισμό των αρχείων και καταλόγων
 - Ανοιχτά αρχεία
 - Αρχεία ανά διεργασία και τρέχουσα θέση ανά αρχείο
 - Τρέχων κατάλογος διεργασίας
 - ...

Συστήματα Αρχείων

Πολλές υλοποιήσεις:

- ▶ UFS
- ► FAT16, FAT32
- NTFS
- ► EXT2, EXT3, EXT4
- ZFS
- ▶ BTRFS
- XFS, ReiserFS
- ► NFS, AFS
- **•** . . .

Συσκευές αποθήκευσης

- Μόνιμα δεδομένα (persistent) (σε αντίθεση με μνήμη)
- · Σκληροί Δίσκοι
 - Αργή πρόσβαση
 - Χρόνος αναζήτησης (seek time)
 - Solid State Disks (SSDs)
- · Γραμμικός χώρος
 - Προσπέλαση βάσει τμημάτων (blocks)
 - ightarrow Όχι ιδανικός για χρήστη/εφαρμογές
 - Συστήματα Αρχείων (Ιεραρχική Δομή)
 - Βάσεις Δεδομένων (SQL)

Πληροφορίες ΣΑ στη συσκευή αποθήκευσης

- Τμήμα ελέγχου εκκίνησης (boot control block)
- Τμήμα ελέγχου τόμου (volume control block)
- Δομή ευρετηρίου ιεραρχική δομή
- Τμήμα ελέγχου αρχείου (File Control Block FCB) ένα ανά αρχείο
- Πληροφορίες ελεύθερου χώρου

Αρχεία

Δεδομένα περιεχόμενα των αρχείων

Μέτα-δεδομένα
 δομή αρχείων, περιεχόμενα καταλόγων, ιδιότητες, κλπ ...
 (ο,τι δεν είναι Δεδομένα)

File Control Block (FCB)

Πληροφορία ανά αρχείο

- Δικαιώματα
- Ημερομηνίες
- Χρήστης, Ομάδα, Λίστες πρόσβασης
- Μέγεθος
- Δεδομένα ή Τοποθεσία δεδομένων

Ανοιχτά αρχεία

Πρόσβαση από εφαρμογή χώρου χρήστη:

- Άνοιγμα (open)
- Εγγραφή / Ανάγνωση / Επανατοποθέτηση (επηρεάζουν την τρέχουσα θέση)
- Κλείσιμο (close)

Πληροφορίες που χρειάζεται να διατηρεί το ΛΣ:

- Πίνακας ανοιχτών αρχείων
 (δομή περιγραφής αρχείου → File Control Block (FCB))
- Ανοιχτά αρχεία ανά διεργασία και δικαιώματα πρόσβασης
- Τρέχουσα θέση ανά αρχείο

Κατάλογοι Παράδειγμα: UNIX

- Οργανώνουν την παρουσίαση των αρχείων στο χρήστη (όχι την πραγματική θέση των αρχείων)
- Είναι κανονικά αρχεία
- Περιλαμβάνουν το όνομα του αρχείου και το αναγνωριστικό του
 - Για κάθε αρχείο και κατάλογο που βρίσκεται στον κατάλογο
 - Για τον τρέχοντα κατάλογο
 - Για τον γονεϊκό κατάλογο
- Το ΛΣ τηρεί για κάθε διεργασία τον τρέχοντα κατάλογό της

Μέθοδοι Ανάθεσης – allocation methods

πώς τοποθετούνται τα δεδομένα ενός αρχείου στο δίσκο;

Επιθυμητά χαρακτηριστικά λύσης:

- Ευέλικτη χρήση του χώρου αποθήκευσης
- Υποστήριξη σειριακής (serial) και τυχαίας (random) προσπέλασης
- Αποφυγή σπατάλης του αποθηκευτικού χώρου για μεταδεδομένα

Μέθοδοι:

- Συνεχόμενη ανάθεση (contiguous allocation)
- Συνδεδεμένη ανάθεση (linked allocation)
- Δεικτοδοτημένη ανάθεση (indexed allocation)

Συνεχόμενη ανάθεση

(contiguous allocation)

- Τα δεδομένα των αρχείων τοποθετούνται συνεχόμενα
- Αρχικό τμήμα και μέγεθος
- Σειριακή και τυχαία προσπέλαση
- Δύσκολη η ανάθεση χώρου
- Δύσκολη η επέκταση των αρχείων
- Εξωτερικός κατακερματισμός
- Γενικά δεν χρησιμοποιείται
- Επεκτάσεις (extents) NTFS, XFS, ext4, btrfs

Συνεχόμενη ανάθεση

παράδειγμα

Αρχείο	αρχή	μέγεθος		
count	0	2		
tr	14	3		
mail	19	6		
list	28	4		
f	6	2		

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Συνδεδεμένη ανάθεση

linked allocation

- Κάθε αρχείο είναι μια λίστα απο τμήματα (blocks).
- Το κάθε τμήμα περιλαμβάνει δείκτη στο επόμενο.
- Απλό, όχι σπατάλη χώρου
- Όχι άμεση πρόσβαση (random access)
- Αναζήτηση δίσκου (seek)
- χώρος για κάθε δείκτη
- Πίνακας ανάθεσης αρχείου (File Allocation Table – FAT)

pointer

Συνδεδεμένη ανάθεση

παράδειγμα

Αρχείο	αρχή	τέλος
pizza	9	25

block	pointer
9	16
16	1
1	10
10	25
25	-1

Δεικτοδοτημένη ανάθεση

Όλοι οι δείκτες του αρχείου σε μια θέση (index block).

Σχήματα:

- Συνδεδεμένο σχήμα
- Πολυεπίπεδο ευρετήριο
- UFS: Συνδυασμένο σχήμα
 - 12 άμεσα τμήματα
 - 3 έμμεσα τμήματα:
 - απλό (single indirect block)
 - διπλό (double indirect block)
 - τριπλό (triple indirect block)

Δεικτοδοτημένη ανάθεση

Παράδειγμα

		index block
		9
Λονείο	Aρχείο index block pizza 19	16
		1
		10
		25
		-1

Έμμεσα τμήματα

indirect blocks

To FCB του UNIX (inode)

Υλοποίηση ευρετηρίου

στη δευτερεύουσα συσκευή αποθήκευσης

- Το ευρετήριο αντιστοιχίζει αρχείο με FCB.
- Δομή αναζήτησης με κλειδί (key) το αναγνωστικό του αρχείου και τιμή (value) τη θέση στο δίσκο που βρίσκεται το FCB του αρχείου

Κατάλληλες δομές για ευρετήριο:

- Γραμμική λίστα
 - Γραμμική αναζήτηση
- Πίνακας κατακερματισμού
 - Χώρος
 - Συγκρούσεις
- ► B-trees ή παραλλαγές (πχ Btrfs, ReiserFS)
- Οι πληροφορίες αυτές αντιγράφονται στη μνήμη από το ΛΣ για καλύτερη επίδοση

πρόσβαση σε αρχείο από διαφορετικά σημεία του ΣΑ

- στο αρχείο (hard links)
 - Ίδιο αρχείο (inode) με πολλαπλά ονόματα
 - Τηρείται reference count για κάθε αρχείο
 - Διαγραφή hard link: μείωση του reference count
 - Av reference count = 0 διαγραφή δεδομένων αρχείου
 - Αν αλλάξει όνομα ή θέση το αρχείο, ακόμα προσβάσιμο
 - Δεν μπορεί να συνδέσει αρχείο εκτός του συγκεκριμένου ΣΑ
- στο όνομα (soft ή symbolic links)
 - Επίλυση συνδέσμου με βάση το όνομα (το link δείχνει σε όνομα όχι σε inode)
 - Αν σβήσουμε το soft link το αρχείο δεν επηρεάζεται
 - Αν σβηστεί ή αλλάξει το αρχείο, το link δείχνει "στο πουθενά"
 - Μπορεί να συνδέσει αρχείο εκτός του συγκεκριμένου ΣΑ

man In

Οδηγούν σε δομή γράφου:

- Ακυκλικός γράφος
- Γενικός γράφος (με κύκλους):
 - Κύκλοι οδηγούν σε προβλήματα
 - Πολλά ΛΣ αποτρέπουν τη δημιουργία συνδέσμων αρχείων (hard links) σε καταλόγους
 - Γενικά τα ΛΣ περιορίζουν τον αριθμό διάσχισης συμβολικών συνδέσμων (ELOOP).

Ιεραρχία

- Ιεραρχία
- ► FCBs (inodes)

- Ιεραρχία
- ► FCBs (inodes)
- hard links

- Ιεραρχία
- ► FCBs (inodes)
- hard links
- soft links

Λειτουργίες ΣΑ

open

- Αντιστοίχιση ονόματος με αναγνωριστικό αρχείου από κατάλογο
- 2. Έυρεση FCB (inode) με τη βοήθεια του ευρετηρίου (directory structure στο παρακάτω σχήμα)
- 3. Έλεγχος δικαιωμάτων πρόσβασης
- 4. Ενημέρωση δομών του ΛΣ (ανοιχτά αρχεία, αρχεία ανά διεργασία)
- 5. Επιστροφή δείκτη στις παραπάνω δομές (file descriptor)

Λειτουργίες ΣΑ

read

- 1. Ανάγνωση δομών ΛΣ για τα ανοιχτά αρχεία και εύρεση FCB
- 2. Ανάγνωση δεδομένων
- 3. Ενημέρωση του δείκτη αρχείου για τη διεργασία

Λειτουργίες ΣΑ ερωτήσεις

- Πώς διασχίζεται ένα σχετικό και ένα απόλυτο μονοπάτι;
- Τί συμβαίνει όταν μεταφέρουμε ένα αρχείο σε άλλο καταλογο;
- Τί περιλαμβάνει η δημιουργία ενός νέου αρχείου;

Διαχείριση ελεύθερου χώρου

- Διάνυσμα δυαδικών ψηφίων (bitvector / bitmap)
 - 0 Το τμήμα χρησιμοποιείται
 - 1 Το τμήμα είναι ελέυθερο
- Συνδεδεμένη λίστα
 - Ομαδοποίηση (πολλαπλοί δείκτες)
 - Καταγραφή πλήθους (αρχή, μέγεθος)

Εικονικό Σύστημα Αρχείων

Virtual Filesystem – VFS

Δομές Linux VFS

- ▶ struct inode: Δομή που περιγράφει ένα αρχείο (FCB).
- struct file: Δομή που περιγράφει ένα ανοιχτό αρχείο.
- struct super_block: Δομή που περιγράφει ένα ΣΑ.
- struct dentry: Δομή που περιγράφει μια θέση στην ιεραρχία των ΣΑ.
- struct file_operations: Διαδικασίες για υλοποίηση λειτουργιών σε αρχεία (πχ read, write). Χρησιμοποιούνται για την υλοποίηση διαφορετικών ΣΑ.

ΛΣ και Συσκευές Αποθήκευσης

Συστήματα Αρχείων

- Ιεραρχική δομή πάνω από γραμμικό χώρο (συσκευή)
- Κρυφή Μνήμη
 - Η πρόσβαση στο δίσκο είναι αργή
 - Περιοχές αρχείων στη μνήμη
- Χρονοδρομολόγηση Ε/Ε
 - Μεγάλος χρόνος αναζήτησης (seek)
 - Βελτιστοποίηση Ε/Ε αιτήσεων
- · Οδηγός συσκευής
 - Επικοινωνία με συσκευή
 - Εγγραφή τμημάτων (blocks)

Σύστημα Αρχείων (Filesystem)

> Κρυφή Μνήμη (Page Cache)

Χρον/γηση Ε/Ε (I/O Scheduling)

Οδηγός Συσκευής (Device Driver)

Κρυφή μνήμη

Λειτουργίες:

- Τυπική Ε/Ε (πχ read()/write())
- Ε/Ε που αντιστοιχίζεται στη μήμη (πχ mmap())

Κρυφές μνήμες

- buffer cache → Τυπική Ε/Ε
- page cache → E/E μνήμης
 - Χρησιμοποιεί buffer cache
- Ενοποιημένη κρυφή μνήμη (page cache) (Linux)

ΣΑ με αρχεία καταγραφής journaled FS

- Ασύγχρονη λειτουργία, κρυφές μνήμες
- Προβλήματα από αναπάντεχο τερματισμό λειτουργίας
- Ανάνηψη, συνέπεια δεδομένων στον δίσκο
- Ημερολόγιο αλλαγών (journal)
- Πραγματοποιήση Αλλαγών
 - Καταγραφή αλλαγών στο journal
 - Πραγματοποίηση αλλαγών στις δομές του δίσκου
- ext3, ...