

NOT 2,50

Keyboard Encoder Circuits

For additional application information, see AN-128 and AN-139 at the end of this section.

not in 1/8

MM5740 90 key keyboard encoder

general description

The MM5740 MOS/LSI keyboard encoder is a complete keyboard interface system capable of encoding 90 single pole single throw switch closures into a usable 9-bit code. It is organized as a bit paired system and is capable of N key or two key rollover. The MM5740 is fabricated with silicon gate technology and provides for direct TTL/DTL compatibility on Data and Strobe outputs without the use of any special interface components.

features

- TRI-STATE® data outputs directly compatible with TTL/DTL or MOS logic
- Function inputs directly compatible with TTL/ DTL logic

- Only one TTL level clock required.....
- N key/two key rollover (mask programmable)
- 90 key-quad mode capability
- One character data storage
- Repeat function (selectable)
- Shift lock with indicator capability
- Key bounce masking by single external capacitor
- Level or pulse data strobe output
- Data strobe pulse width control

block and connection diagrams

www.DataSheet4U.com

www.DataSheet4U.com

TRI-STATE is a registered trademark of National Semiconductor Corp.

Voltages with Respect to VSS

+0.3V to -20V Power Dissipation 600 mW at T_A = +25°C 25°C to +70°C ambient Operating Temperature

Storage Temperature Lead Temperature (Soldering, 10 seconds) 65 C to +160 C 300°C

electrical characteristics (Note 1,5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Repetition Rate		10		200	kHz
Clock Pulse Width	Rep. Rate = 200 kHz Rep. Rate = 10 kHz	2.4 20		2.6 80	μs μs
Clock Amplitude Logic Level "0" Logic Level "1"		+0.4		3.25	V V
Clock Transition Times Risetime Falltime	Rep. Rate = 200 kHz Rep. Rate = 200 kHz			100 100	ns ns
Clock Input Capacitance			5.0		pF
Data Input Levels, Y1 thru Y10 Logic Level "1" Logic Level "1" Logic Level "0" Logic Level "1"		4.5 +0.4		V _{SS} 1.5	V V V
Data Strobe Control Logic Level "0" Logic Level "1"		+0.4		÷3.5	V V
Data Output Levels, X1 thru X9 Logic Level "0" Logic Level "1"	When Connected to Y1 thru Y10 via Switch Matrix, (C _L ~ 75 pF)	4.5		V _{SS} = 0.75	V V
B1 thru B9 and Data Strobe Logic Level "0" Logic Level "1"	I = 100µA (Note 2) I = 1.6 mA (Note 2)	r+0.4		V _{SS} + 1.0	V
Shift Lock Voltage Open	Before Closure		V _{GG} - 2.0		V
Shift Lock Voltage Closed	Switch Closed		V _{SS}		\ v
Shift Lock Voltage Locked	After Release, (I = 1.0 mA) (Figure 2)		V _{SS} - 5.0	V _{SS} - 8.0	V
Transition Times Data Strobe (T _{DS1}) Data Strobe (T _{DS0})	C _L = 100 pF, I = 1.6 mA C _L = 100 pF, I = 100µA			2.5 1.0	μs μs
Data Output Levels (T _{DO1}) (T _{DO0})	C _L - 100 pF, I = 1.6 mA C _L = 100 pF, I = 100µA			2.5 1.0	μs μs
Output Enable Setup Time (TOES)		2.5			μs
Output Enable Release Time (TOER)		2.5			μs
Repeat Input Pulse Width (T _{RPW})	(Note 3) f _{CLOCK} : 10 kHz f _{CLOCK} = 200 kHz	10 0.5			mis ms
Power Supply Current	I _{GG} , I _{SS}		20	35	mA

Note 1: These specifications apply for $V_{SS} = +5.0 \text{ VDC} \pm 5\%$, $V_{GG} = -12.0 \text{ VDC} \pm 5\%$, $V_{LL} = \text{GND}$ and $T_A = 0\%\text{C}$ to $\pm 70\%\text{C}$. Note 2: When outputs B1 thru B9 and Data Strobe are driving TTL/DTL $V_{SS} - V_{LL} \le 5.25V$. When driving MOS, $V_{SS} - V_{LL} \le 5.25V$. $V_{LL} \le 10.0 V.$

Note 3: Trpw min. = 100 x fclock

Note 4: If shift and control inputs are derived from a single pole, single throw switch closure to VSS, a 100 OHM resistor WWW.DataSheet4U.com returned to V_{LL} (GND) is required on these inputs.

Note 5: The following inputs have internal pull-up resistors to VSS: clock, output enable, repeat, shift, control.

description	of	pin	functions
-------------	----	-----	-----------

uesi	cription or pin	Tunctions		
	NAME	PIN NO.	FUNCTION	
	X1·X9	4-12	These pins are chip outputs which are used drive the key switch matrix. When activated the appropriate scan time) they are driven hi	(at
	Y1-Y10	22-31	Pins 22-31 are the Y sense inputs which are c nected to the X drive lines via the key swi matrix. They are internally precharged to a l state and are pulled high upon switch closu	tch ow
	B1-89	1, 33-40	These are the data outputs which represent code for each keyswitch. They are TRI-STA outputs with direct TTL compatibility. When output enable input (Pin 15) is high, these outpare in the third state.	TE the
	Data Strobe Output	13	The function of this pin is to indicate that vertical data has been entered by the keyboard and ready for acceptance. An active data strobe indicated by a high level. The data strobe may operated in the pulse or level mode as indicated the timing diagram.	lis is be
	Data Strobe Control	14	The basic purpose of this input is to providate strobe output pulse width control. When conceted to the data strobe output (Pin 13), data strobe will exhibit a one bit wide pulse width may be varied by interposing RC network between the data strobe output the strobe control input. For level mode of option the data strobe control input may be tied VSS or to the data strobe output.	on- the lth. an an and era-
	Output Enable	15	This input serves to TRI-STATE the data out (B1-B9) lines. In addition, it controls the ret of the data strobe to the idle condition (low stawhich is needed in the level strobe mode operation.	urn ate)
	Repeat	16	The repeat input is designed to accept a repsignal via the repeat key. One data strobe will issued for each positive interval of the repsignal. Thus, if a 10 Hz signal is applied to repeat input via the repeat switch, a 10 character per second data strobe will be issued when a ckey and the repeat key are held depressed.	be leat the cter
	Key-Bounce Mask	17	This pin is intended as a timing node to m switch key-bounce. The mask time interva generated by connecting a capacitor to this (l is
	Shift	21	When this input is brought to a logic "0" (\lambda level, the encoder will assume the shifted clacter mode.	
	Control	19	A logic "0" places the encoder in the concharacter mode.	trol
	Shift Lock I/O	20	This pin is intended to serve as an input when shift lock key is depressed. It places the encoin the shift mode. Upon release of the key, shift mode will be maintained and this pin serve as an output to drive an indicator. This fution is reset by depressing the shift key.	oder the will
	Clock	3	A TTL compatible clock signal is applied to pin. A bit time is defined as the time from negative going transition to the succeeding n tive going transition of the clock.	one
	V_{SS}	32	+5.0V supply	www.DataSheet4U.com
	V _{LL} .	2	Ground	
	V _{GG}	www.Data	Shee12V supplyOM	

application

FIGURE 2. Shift Logic I/O Interface

repeat switch function

Repeat Switch Connections

Note: Both Repeat Switch and a Data Key must be depressed to enable repeat function. For N-Key Rollover, the data outputs will represent the current valid data key (N Key Roll during Repeat).

Repeat Function

typical applications

CODE ASSIGNMENT CHART

Customer:	_
Date:	

MAT ADD	RIX RESS		CC	MMC	ON			UNS	HIFT			SH	IFT			CONT	ROL			SHI	FT ROL			CHAR	ACTER	
х	Υ	В	B ₂	В3	B ₄	89	B ₅	В ₆	В7	B ₈	85	В ₆	В ₇	В8	B ₅	В6	B ₇	В8	B ₅			B ₈	US	s	С	sc
Note 3)	1																									
	2																									
	3																							· · ·	1	
	4																									
	5																							,		
	6																									
	7																									
	8																									
	9																									
	10											L														
	1									<u>L</u>																
	2																									
	3																									
	4																									
	5																									
	6																									
	7																					L				
	8																								l	
	. 9																									
	10																					<u> </u>				
	- 1						ļ					<u> </u>	L.,		L								ļ			
	2	Ĺ					L					L			_							L				
-	3					L_				LЦ									ļ			<u> </u>	ļ			L
	4					_			L	Ш								L								
	5	٠.												ļ												<u> </u>
	6									Ш																
	7																									1
	8				L			ļ	<u></u>			<u> </u>														
	9													i												

Page of 3 (Note 1)

Note: Use 88 if parity bit is desired

Note 1: 3 code assignment charts are required for each keyboard encoder pattern. Fill in a "1" or "0" in each output box (B1 thru B9). Indicate page number.

Note 2: The matrix is 9 "X" locations by 10 "Y" locations.

Note 3: Write in 10 one's, 10 two's, etc. in successive X address locations up to 9. This will fill 3 charts. The first page will have address matrix location 1,1; 1,2: 1,3... 1,10; 2,1; 2,2... 2,10; 3,1, etc. up to 3,10. Page 2 has 4,1 to 6,10. Page 3 has 7,1 to 9,10.

Note 4: A contact closure at the address matrix location will cause the appropriate bit pattern to appear at the output in negative true logic. $V_{OH} = "0"$; $V_{OL} = "1."$

Note 5: See application note AN-80 for coding example.

www.DataSheet4U.com

² Key Rollover

MM5740AAE, MM5740AAF CODE ASSIGNMENT CHARTS

MAT			cc	OMMO	ON.			UNSI	HET			SH	IFT			CONT	ROL			SHI	FT		CHARACTER				
x	Υ	81	В2	В3	84	В9	85	В ₆	В,	Вв	В ₅	В6	В,	В	B ₅	86	В7	Вв	B ₅	86	В,	B ₈	us	s	С	SC	
1	1	0	0	0	1	0	1	1	0	3	1	1	0	1	1	1	Ü	1	1	1	()	1	8	8	8	8	
1	2	0	0	1	0	0	1	1	0	ì	1	1	0	1	1	1	0	1	1	1	0	1	- 4	4	4	-4	
1	3	1	0	1	0	0	1	1	0	0	1	i	0	0	1	1	0	0	,	1	0	0	5	5	5	5	
1	4	1	0	0	٥	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	;	1	
. 1	5	0	1	0	0	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	2	2	2	2	
1	6	1	1	0-	0	0	1	1	0	0)	1	. 0	0	1	1	0	0	1	1	0	0	3	3	3	3	
1	7	0	0	0	0	1	1	1	0	0	١.	1	0	0	1	1	0	0	1	;	0	υ	- 2		1		
1	8	0)	1	0	0	1	1	-0	0	1)	0	0	1	1	0	0	1.	1	0	0	6	- 6	6	- 6	
1	9	1	0	0	1	0	1	1	0	0	1	1	, u	0	1	1	0	0	1	1	o	ن	9	. 9	9	9	
1	10	1	1	1	0	0	1	. 1	D	1	1		- 0	1	1	1	0	1	7	1	0	1	7	- 7	7	7	
2	1	0	0.	١,	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	FF	FF	FF	e r	
2	2	;	0	1	1	1	0	0	0	1	0	0	0	1	0	0	. 0	1	υ	0	0	:	CR	CB	CB	CB	
2	3	0	0	1	1	0	1	0	0	1	1	. 0	0	1	1.,	. 0	0	1	1	0	n	1	FS	rs	FS	FS	
2	4	1	0	1	- 1	0	1	0	0	Ü	1	0	· U	0	1	0	0	0	-1	0	0	0	GS	GS	GS	GS	
2	5	- 1	1	0	1	0	0	0	0	1	0	0	0	1	0	0	D	1	0	U	0	1	VΥ	٧ſ	VT	VT	
2	-6	0	1	. 1	1	0	С	0	0	1	0	С	0	,	0	0	0	1	0	ə	U	1	SO	so	50	50	
2	7	0	0	0	0	1	0	1	0	1	0	1	0		0	1	0	1	0)	0	1	SP	SP	SP	50	
2	8	- 1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	HT	НТ	HT	HT	
2	9	0	0	0	1	1	0	0	0	1	0	0	0	1	. 0	0	Ó	1	0	0	0	1.	BS	BS	BS	88	
2	10	1	0	1	1	1	0	1	0	0	1_	1	0	1	0	1	0	0	1	1	0	1	L	Ĺ			
3	1	9	0	0	0	0	1	1	0	0	1	1	0	U	1	1	Ü	0	1	1	O.	0	- >				
3	2	0	1_	0	1	-1	0	0	0	. 0	0	0	0	n	0	0	0	0	0	n	0	0	1.6	Į F	Lf	LF	
3	3	0	0	0	0	0	1	0		0	0	0	1	1	1	0	0	1	0	0	0	0	P	100	DLF	NUL	
3	4	1	1	1	1	1	1	1 -	1	1	1	1	1	1	1.	11.	1	1	1	1_	1	1	DEL	DEL	DEL	DEL	
3	5	1	1	0	1	0	1	1_1_	0	!	0	1	0	0	- 1	,	0	1	0	1	0	0	L	1	<u> </u>		
3	6	0	1	1	3	1	0	1	0	0	0	1	0	0	U	1	0	0	0	1	0	0	L	· .	· .	<u> </u>	
3	7	1	1	1	1	0	0	1	0	ì	1	1	0	ő	0	1	0	1	1	1	0	0		,		>	
3	8	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	0	1	1	0	U	1	ρ	Р	DLE	DLE	
3	9	-1	1	-	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	SI	SI	
3	10	0	1	0	1	1	1	1	0	0	0	1	0	1	1	1	0	0	0	1	0	;					

MATI		,	c	MMC	ON			UNS	HIFT			SH	FT			CON	reot.			SHI CON	FT FROL		CHARACTER					
×	Y	В	B ₂	83	В4	69	B ₅	В ₆	В,	B ₈	B ₅	В ₆	В,	Вв	₿5	В ₆	8,	В8	В ₅	В ₆	В,	Вв	US	s	С	sc		
4	1	1	0	0	7	0	1	1	0	0	0	1	0	1	1	1	a	0	0	1	0	1	9		9	1 .		
4	2	1	0	0	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1	HT	141		
4	3	1	1	1	1	1	0	0	1	1	-	0	1	0	0	0	0	0	1	0	0	1	0		SI	US		
4	4	1	1	0	1	0	0	0	1	0	1	0	,		0	0	0	1	1	0	0	0	K		VT	ESC		
4	5	0	0	1	-1	0	0	0	1	1	1	0	1	0	0	0	0	0	3	0	9		L.		FF	FS		
4	ô	0	0	1	-1	0	0	1	0	1	1	1	0	0	n	1	0	:	1	1	9	a						
-4	7	0	1	1	1	1	0	-1	0	0	ī	1	0	1	0	1	0	0	1	1	0	1		ļ	·			
4	8	0	0	1	1	0	0	0	1	1	-0	0	1	1	0	0	0	υ	0	0	0	0	L		+ F	EF		
4	9	1	- 1	0	1	0	0	0	1	0 -	е	0	1	0	0	0	0	11	0	0	0		K	К	VI	VI		
4	10	0	0	0	1	0	1	1	0	:	0	1	0	0	1	1	0	: 1	D	1	0	0	8		3			
5	1	0	1	1	0	0	1	: 1	0	Ų	ŋ	1	0	1	1	. 1	0	0	0	1	0	i	6	8:	-ii	R		
5	2	1	0	1	0	0	1	Ü	1	0	1	0	1	0	1	0	0	,	1	0	U	1	U	U	NAK	NAK		
5	3	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	0	1	1	0	0	1	Y	Y	EM	EM		
5	4	0	1	-0	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	J	J	LF	LF		
5	5	0	0	0	1	0	0	0	1	0	Ω.	0	1	0	0	n	C	1	0	0	0	1	н	н	, BS	85		
5	6	1	0	1	1	0	0	0	1	0	1	0	1	1	0	0	0	1	t	0	0	0	M	J	CR	GS		
5	7	0	1	1	1	1	0	0	1	0	1	С	1	1	0	0	0	1	3	0	0	0	Ŋ	·	SO	RS		
5	8	1	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	M	M1	CR	∂R.		
5	9	0	1	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	U	0	0	1	N	N	SO	SO		
5	10	1	1	1	0	0	1	1	0	1	0	1	0	0	1	1	0	1	()	1	0	0	7		1	<u></u>		
6	1	1	0	1	0	0	1	1	0	0	O	1	Ü	1	1	1	0	0	0	1	0	1	5	1,0	5			
6	2	0	1	0	0	0	1	L o	1	1	1	0	1	1	.1	0	0	0	1	0	0	0_	R	R	DC2	DC2		
6	3	0	0	1	0	0	1.	0	1	1	1	0	1	1	1_1_	0	0	0	1	0	0	0	f	Т	DC4	004		
6	4	0	1	1	0	0	0	0	1	1	. 0	0	1	1	0	0	0	0	0	0	0	0	F	F	ACK	ACK		
6	5	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	Ü	1	0	0	0	1	G	G	BEL	BEL		
6	6	0	1	1	0	0	3	0	1	0	1	0	1	0	1	0	Ú	0	1	0	0	0	٧	V.	SYN	SYN		
6	7	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	υ	1	0	0	0	1	8	В	STX	STX		
6	8	0	0	0	1	0	1	Q.	0	0	1	0	0	0	1	0	0	0	1	0	0	0	CAN	CAN	CAN	CAN		
6	9	1	0	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	EM	EM	EM	EM		
6	10	0	0	1	0	0	1	1	0	1	0	1	0	0	1	1	0	1	0	1	0	0	4	S	-4	S		

Negative True Logic

 $\begin{array}{lll} B_1 = B_7 = ASCII \ Code \\ B_8 = Even parity \ (on \ B_1, \ B_2, \ B_3, \ B_4, \ B_5, \ B_6, \ B_7, \ B_8) \\ B_9 = Selective \ Repeat \ Bit \end{array}$

Note: Use B₈ if parity bit is desired.

www.DataSheet4U.com