

5.2 Static 1et properties: (X=r, o) Peinty: $n(x) = \langle \hat{n}(x) \rangle = N \equiv W_{\alpha} \int dx_{z} dx_{y} | \Psi_{\alpha}(x_{z}, x_{z}, x_{y}) |$ - integrate out all other e-positions & spins.

Single slater dederminant $h(x) = \sum |\psi(x)|^2$ -> Devoity needs to be well described in our approximations -> show figure 1 body Dewity Matrix (spin resolved) P(x,x'): Correlation of The AB MF 1 particle correlation in The MB wave function at 2 different points of spin & space (x,x'->r, r->r'o') $P(r,r') = N = N = W_{x} | dx_{z} \cdot dx_{y} | \psi(x,x_{z},x_{y}) \psi(x',x_{z},x_{y})$ f(x,x') = n(x). The eigenfunctions of p(xx') are The "Natural Orbitals" and The eigenvalues h; are The occupation wombers: n, and of are The MD generalization of The KS

orbitals and occupations

Normalized:) p(k) dh = 1 (iT's a probability distribution) $\langle T \rangle = \frac{V}{z} \int d\vec{k} k^z \, d(k)$ In a real system (correlated) 0 \lefter p(k) \lefter 1 rewen at T=0 in The HEG (Non interacting) The eigenstates are PW (4 = 1 e ikr) and fr = 1 K \le h = i fr = e otherwise. -> Interactions open a gap in The distribution (see fig 5.2) Correlations decrease The Total mergy (V but K 7) mixing in higher momentum states) => discontinity at kg decreases = = = size magnitude of the discontinuty = = (w) sil) energy QP strength. Z-> 1 for U-> 0 (at rs=1, weak correlation)
Z decreases with increasing correlation. Conection To experiment: Compton scattering measures spectra of X-ray scattering (high Energy) J(q) = 37 k3 dk k p(k) => invert experiment

V olato and obtain p(h) in The importse approximation (exidence = free) 1.7 for Na

- Two particle correlations (still static) ri(x,x') -> Prob of finding 2 porticles = 12/X 1 at X' (spin & position) M(x,x')= E < S(x-x;) & (x'-x;)>= N(N-1) dx dx | Y(x,x'x x) $g(x,x') = \frac{h(x,x')}{h(x)}$ See fig 5.3

g(x,x') -> + for fr -> s, generally depends

on the spin of e. It's unity for uncorrelated particles g (r)=2 dr'dr' n (r', r', r'), f(r'-r"-r)

orx' x" = Probability =) finding a particle of spin or at distance r of particle of spin T'. $g(\vec{r}) = \sum_{\tau, \sigma} g_{\tau, \sigma}(\tau)$ See lig 5.3 e interaction energy volume $\langle \hat{V}_{ee} \rangle = \frac{N(N-1)}{2-12} \int dr \left(\frac{g(r)-1}{r} \right)$

 the (-1) in the equ. comes from cancelling the & of the c-c- interaction that is cancelled withouther the sof the e-ion interaction (Total system is new tral)
interaction that is caucabled withouther of the e ion interaction
 (To Tal system is new Tral)
Structure factor: connected to the Fourier # Transform of the pair correlation for Measured by x-ray or neutron
scattering Properator: The average value is the F.T. of the spin repolved sensity: Ref. The perator of the properator
 -> STatic structure factor:
Sun has the periodicity & symmetry of the crystal. with translational invariance Sun = 0 for k \ne k' Diagonal part only total Su = Stor' h, k
Diagonal partouly, Total Sh = 50,0'

Non interacting the6:	
$\frac{\sqrt{N/2}}{\sqrt{\frac{N}{4}}} \frac{N_{\pm}}{\sqrt{3}} = 0$ $\frac{N}{\sqrt{2}} \frac{N_{\pm}}{\sqrt{2}} = 0$ $\frac{N}{\sqrt{2}} N_{\pm$	
1 2tr×K	
See lig 5.3 -> Sh for N.I e- should	
(cish) but it is linear	
why? $S_n = \frac{h^2}{z\omega_p} \left(\frac{1}{z}\right)^2 S_n$ is a single of dielectric function.	bounded by The
measures amplitude	ic fu.
of density fluctuations dielectric function.	
-> Why is This? In a charged system The long- interaction suppresses density fluctuations which w in a free termingues.	range Colomb
interaction suppresses density fluctuations much u	sore strongly Than
De termigas.	- 0-
long wave leng The (small h) Iluctuations in p energy => syrotum responds by screening This	los (sa (s)
Thir response is controlled by the dielectric fun	Eh
So dielectric screening forces S(k) To be smalle is predicted by The Pauli trinciple alone.	r Than what
predicked by The Pauli trinciple alone.	
So Sn -> o guadratically (or faster) and not	
- Crystalline solid - long range order in Sk (Bragg peaks) See	lig 5.4

	9 Dynamic correlation Functions
	> NoTaTion (x1, t1) => (x1, t1) -> (1)
	1- Dynamic correlation in Time:
	CAB (1,2) = < ÂH(1)BH(2)> NoTe: (1/4) -> Heisenberg often Tor
	(Wave Iruetion in Stationary). For now. and Time dependence is carried by operators). Then Time dependence only as t-to
· · · · · · · · · · · · · · · · · · ·	$\hat{O}(t) = e^{i\hat{H}(t-t_0)} \hat{O}e^{-i\hat{H}(t-t_0)}$ to reference time, we can set to zero. The correlation function can be expanded in Terms of
	1x> = eigusTaTer of H
	$C_{AB}(X_1, X_2, t_1 - t_2) = \sum_{\alpha} We (X_1, X_2, t_2 - t_2) = \sum$
	insert] = \(\lambda \rangle
	comple set of Heigenstates
	$C_{AB}(X_{1},X_{2},t_{1}-t_{2})= = W_{\alpha}A_{\alpha\lambda}(X_{1})B_{\alpha}(X_{2})C$ $C_{AB}(X_{1},X_{2},t_{1}-t_{2})= = W_{\alpha}A_{\alpha\lambda}(X_{1})B_{\alpha}(X_{2})C$
ť	^

Axx = < x / Â(xi) / X>.

Dynamic Correlation in frequency space:
- Sluctuation spectrum ((X,,X ₂ , w)) - Solt = W _A A _A (X ₁)B _A (x ₂)C -2
= ZFI = W_ A_ (X1) B, (X2) S(EE, + w)
C(X, X2 W) =-27 & Wx Bxx (X2) A (X1) S(E1-Ex+W)

for a finite system The fluctuation spectrum is a sot of J-funcs.
in The Thermodynamic limit -> continum, weighted density of Transitions

Spectral Functions

Let's define The spectral function A:

271 A(X1,X2,W) = C(X1,X2,W) - C(X1,X2,W)

in Thermal equilibrium where C(X1,X2;W) = -e (X1,X2;W)

2η A(X, Xz, ω) = C(X, Xz, ω)[1-e

	if $\hat{L}\hat{A}(x_1)$, $\hat{B}(x_2)$] = $\hat{J}(x_1, x_2)$ -> scalar function, sum cule for The spectral fu:
	sum reule for The spectal fu:
	PA(Xr) dw A(x, xz, w) = f(x, xz)
	The spectral function contains all The information about
, Move To a	The dynamic correlation functions; (Drop X1, K2 hotstill uplex a plane There in The bollowing)
	The spectral function contains all The information about The dynamic correlation functions; (Drops X1, X2 hortstill mplex a plane There in the following) C(\omega) = i lim fdw' \(A(\omega') \) \(\sigma = 0^+ \) \(\sig
	$(-(\omega)) = i \lim_{\gamma \to 0^+} \int d\omega' \frac{A(\omega')}{\omega - \omega' - i\gamma} \rightarrow \text{poles above real}$
	See Tig 5.5 We can analitically continue These expressions into the full
	complex plane: W -> Z
	$(z) = i \int d\omega' \frac{A(\omega')}{z - \omega'}$ - Zehman Representation
	t is analytic everywhere except along the real axis where there are singularities & Bronch cuts
	where there are singularities & Bronch wis

$$C^{R}(\omega) = \lim_{\gamma \to 0^{+}} f(\omega + i\gamma)$$

$$7 \to 0^{+}$$

$$C^{R}(\omega) = \lim_{\gamma \to 0^{+}} f(\omega - i\gamma)$$

$$7 \to 0^{+}$$

$$= 2\pi A(\omega) = \lim_{\gamma \to 0^{+}} f(\omega + i\gamma) = f(\omega - i\gamma) = C^{R}(\omega) - C^{R}(\omega)$$

$$= 2\pi \int_{0}^{\infty} i(C^{R}(\omega))$$
Note (we will see That in Terms of Grews two we have
$$A(\omega) = \frac{1}{\pi} |\text{Im } G(\omega)|$$

$$Correlations at $T = 0$ and N fixed
$$A(\omega) = \frac{1}{\pi} |\text{Im } G(\omega)|$$

$$Correlations at $T = 0$ and N fixed
$$A(\omega) = \frac{1}{\pi} |\text{Im } G(\omega)|$$

$$C_{0} = \frac{1}{\pi} |\text{Im$$$$$$

Response functions -> Describes The response of a system to an external perturbation. What is The change of (An (1) > (expectation value of operator A at XI Time to when a perturbation a time to < to happened in Xz. Time dependent

Perturbation: P(z) a field That couples To operator B(z) acting on the system: H -> H+ Jdx & Q(x2,t)B(x2) p(x,t) = o for t < to
includer effect of perturbation $\langle A(1) \rangle = \langle V(t_1, t_0) \hat{A}(x_1) V(t_1, t_0) \rangle$ U(t,1to)=e=+0 dtz[H+ Jdx2 P(2) B(x2)] Time evolution aperator
This V can be expanded in powers of & Cust Trivial course fi and $\int dx_2 d\hat{\beta}(\hat{x}) d\hat{\rho}$ not necessarily commute! -i)to = 1+i)to

	The coefficients in the expansion of the full expectation value are called response functions.
	value are called response fuctions.
	Most experimento meanre The 1st order (ÂH (1))
	or so called linear response. Second harmonic generation measures. The second order
	Second harmonic generation measures the second order
	boil we fours on linea response.
	Linear Response
	$\int \langle \hat{A}_{H}(1) \rangle = \langle A_{H}(1) \rangle^{\frac{1}{2}} - \langle A_{H}(1) \rangle \cdot \int dt_{z} \int_{AB} \chi_{(1,z)} dz$
	0 1 14 C) > - (1,2) Q
<u> </u>	WITH V (12) = 1 Q(+-+)/[1 (1) B (1)]
	with $\chi(1/2) = -i \theta(t-t_2) \langle [A_{H}(1), B_{H}(2)] \rangle$
	// D
	Linear response junction.
	i.e iTio a correlation function of a comutator of Heisemberg paraters -> Greeponds To our definition of retarded
	operator > Corresponds to our definition of relarded
	correlation lu: _i CR(12) >)
	correlation fur. $-iC^{R}(1,z) \Rightarrow \chi_{AB}(1,z)$
	Using all we derived before we can see That $A(\omega) = -\frac{1}{\pi} \operatorname{Im} X(\omega)$

_	
	Kio non zero for to te and depends only on to-te
	<u></u>
-	because H is Time independent. (consulty).
_	X(z) CanalyTic continuation has poles at Z=E,-£z-in
_	
_	I in The lower half of complex plane (characteristic of
-	a cause perpouse function).
	•
_;	transmers transmers-knowing Relations
	(2, T)
	Re $\chi(\omega) = -\frac{1}{\Pi} P \int d\omega' \frac{\text{Im } \chi(\omega')}{\omega - \omega'}$
	$\omega - \omega'$
	Im X(w) = 1 P S dw' Re X(w)
-	n) dw new)
_	-2 W-W'
	Checised by clasing The Contact in The water Dane Whete
	(derived by closing The contour in The upper plane Where
_	X(2) is analyTic, assuming That X(2) vanishes fast
_	enough as 171 -> 1 so are the integral on the hall
_	enough as 17(-> > , so are the integral on the half circle ranishes.
	circle laushes.

	Fluctuation-dissipation Th
	a Connector Ilucivations in statistical equilibrium to To response of a system to a Time-varying perturbation.
	How? or Why? -> an external (Time dependent) perturbation induces excitations and power is dissipated.
	The spectral for gives The sum of all possible excitations.
	In Thermal eg, and for B=A+ (antoadjunt operator)
	Im $\chi(\omega) = \eta(1-e^{\beta\omega}) = W_{\alpha}[A_{\lambda\alpha}]^{2} \int (\omega + E_{\lambda} - E_{\alpha})$
($=\frac{(-e^{\beta\omega})\int dt \langle \hat{A}^{\dagger}(o) \hat{A}(t) \rangle e^{-i\omega t}}{2}$
-	=> This Jornala relates dissipation To fluctuations in Time
	ex : longitudinal conductivity in x direction is related to The
	ex longitudinal conductivity in x direction is related to the current-current correlation for X, Re Jex (9x, w) = Im Z, Cfr
	Voegel response functions That connect to exp:
1 =	Bensity-Density response
	- Response To an external potential That couples To charge or
	spin

here
$$f(z)$$
 $g(z)$ $g($

with $e^{(r_1,r_2)(r_1-r_2)} = \int (r_1-r_2) \int (t_1-t_2) + \int dr_3 V_c(1r_1-r_3) V(r_3,r_2,t_1-t_2)$ $= \int (r_1,r_2)(r_1-r_2) \int (t_1-t_2) + \int dr_3 V_c(1r_1-r_3) V(r_3,r_2,t_1-t_2)$

in w S V tot (ri/w) = Sdrz & (ri/rz/w) Vext (rz/w) = f(r,-r2)+ fdr3 / (11=13) / (5, r2) w) . For a periodic system $E_{GG'}(q,\omega) = \int_{GG'} + V_{C}(q+G) \chi_{GG'}(q,\omega)$ 6->RLV ;] -> in 45T B3 \(= \frac{47}{|9+6|^2} from rule => $\int_{0}^{\infty} d\omega \, \omega \, \operatorname{Im} \, \frac{e^{-1}}{6e} \left(q, \omega \right) = -2\pi^{2} \, \Omega$ Screened Covlombo interaction: $W_{GG'}(q, \omega) = \frac{V_{c}(q+G')}{E_{GG'}(q, \omega)} V_{c}(q+G) + V_{c}(q+G) \times (q+G') V_{c}(q+G') = \frac{(q+G') \times (q+G') \times (q+G')}{E_{GG'}(q, \omega)} V_{c}(q+G')$ $\equiv V_c(9+6) + W_{66'}(9/\omega)$ WP has some anoly Tical Polarization

Counction	experiments:		
1 Loss June	Tion imaginary	part of X in	connected to
dissipation	- Im E-1 (9,0	v) =- ~ (q + G) In	$=\chi_{G6}(q,\omega)$
	Loss Jn.	-sweamed in g	-resolved
	e- Evergy	Loss (EELS)	vith momentum
	Trousfer Q=	9+6	
Eoff diagons	l elemento E'	(g.w) are no Taco	cered,
put contri	bute To experiment.	el resultains	potially (
resolved e	· [5.		
z Dynamic	structure lactor:		
Inchartic	X-ray or NewTron	scottering gin	es spin resolved.
S (n, w) =	X-ray or NewTron Sor (w)		
	diagonal	part of the dy	ramic structure fact
Q=q+G S($(Q,\omega) = -\frac{1}{\Pi(1-e^{j3}\omega)}$	and the second control of the second control	
	- off diagonal To		

3 Optical absorption spectrum
-> Em (q-w) = Macrosopie dielectric fr
-> incerse of the long-varelength part of E
$ \mathcal{E}_{M}(q,\omega) = \left[\mathcal{E}_{00}^{-1}(q,\omega)\right] \text{for } q \to 0 \text{The imaginary part} $
iro measures in the absorption spectra of light.
$Q = q + G ; C_{M}(Q, \omega) = \frac{1}{1 + V(Q)} = \frac{1}{1 + V(Q)} \times (q, \omega)$ $G = G'$ $G = G'$
G = G' $G = G'$
-> Loss Ju in Terms of Em
$-\overline{L}_{m} \in \overline{(Q, \omega)} = \overline{L}_{m} (Q, \omega)$ $= \frac{\overline{L}_{m} \in \overline{(Q, \omega)}}{\left[Re \in_{m}(Q, \omega)\right]^{2} + \left[\overline{L}_{m} \in_{m}(Q, \omega)\right]^{2}}$
$[Re \in (Q, Q)]^{2} + [I \in (C, Q)]^{2}$
- I - my - m (e, m) -
Here Em is screened and zeros in Re Em give The plasmon
modes.
See fig 5.6 Sweller
For Descring is large - see plasmon! Smeller distances. For Garger Q effect is smaller -> screening decreases with larger Q

 We can rewrite:	
 $ \frac{\mathcal{E}_{M}(Q,\omega)=1-\frac{V_{c}(Q)\chi_{G=G'}(q,\omega)}{1+V_{c}(Q)\chi_{G=G'}(q,\omega)}=1-\frac{V_{c}(Q)\chi_{G=G'}(q,\omega)}{G=G'} $	
with $\chi(g,\omega) = \chi(g,\omega) - \chi(g,\omega) / (6) \chi(g,\omega)$ 6=6' 6=6'	
This is large for Q-> a because V. CQ-> a) in large Congrange (out	2 mb