

The Project for Urban Mobility Improvement in Kigali

The 6th Working Group 2 (5. Lecture 2: Case Study of Intersection Improvement (DBL Route)) 22nd February 2023

JET Member

Traffic Flow Management

1. Mr. NISHINO: Traffic Flow Management/Traffic Control (1)

Traffic Management System

- 2. Mr. OKUDA: Smart Traffic/ICT
- 3. Mr. NODA: Traffic Flow Management/Traffic Control (2)
- 4. Mr. OTSUKA: System Design/Communication

Intersection Improvement

- 5. Mr. IWAMOTO: Road Planning & Design (1)
- 6. Mr. SUGANUMA: Road Planning & Design (2)
- 7. Mr. SHINYA: Road Planning & Design (3)

AGENDA

Session 1: Working Group

9:00-10:00	1h	Evaluation of Intersections and Prioritization of Improvement Projects
10:00-11:00	1h	Basic Design of Intersections (Civil Works)
11:00-12:00	1h	Basic Design of Intersections (Signal System)

12:00-13:00

Lunch Break

Session 2: Lectures

13:00-14:00	1h	Lecture 1: Roundabout Planning
14:00-15:30	1.5h	Lecture 2: Case Study of Intersection Improvement (DBL Route)
15:30-16:00	0.5h	Lecture 3: Signal Phase Planning

1. Existing Geometric Conditions

Current situation (Aerial survey photograph by drone)

2. Current Traffic Situation

Directional Traffic Movement (2022)

Name of Intersection		S03-10							-
Approach		(1)		2)		3			2, 000 0, 5 <mark>003, 50</mark>
Lane		RT Free	TH	TH	LT	RT Free	LT		0 <u>.0003.30</u>
No. of Lanes		1	1	1	1	1	2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Base Saturation Flow S ₀ (pcu/hr/lane		1,800	2,000	2,000	1,800	1,800	1,800		4
Lane width adjustment factor, f _w		1.000	1.000	1.000	1.000	1.000	1.000		
Lane Width (m)		(3.50)	(3.50)	(3.50)	(3.50)	(3.50)	(3.50)		
Vertical grade adjustment factor, f _q		1.000	1.000	1.000	1.000	1.000	1.000		
Vertical Grade (%)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		
Heavy vehicle adjustment factor, f _{HV}		0.985	0.990	0.988	0.990	0.988	0.989		
Heavy Vehicle Rate (%)			(1.39)	(1.70)	(1.50)	(1.70)	(1.64)		
Right-turn adjustment factor, f _R	Т								
Percentage of RT (%)							0.050		
Possibility of RT Passage F _R							0.850		
Effective Green Time (s)							25		
\ \ /	Pedestrian Green Time (s)						25		
Left-turn adjustment facotr, f _{LT}									
Percentage of LT (%)									
Possibility of LT Passage F _L									
Effective Green Time (s)									
	Cycle Time (s)		4.000	4.070	4 700	*4 770	*0.40		
Saturation Flow S (pcu/hr)		*1,773	1,980	1,976	1,782	*1,778	*946		
Traffic Volume q		281	1,227	1,647	134	118	244		
Flow Ratio		-	0.620	0.834	0.075	-	-	λ_{i}	λ
	1φ		0.620	0.834				0.834	0.834
Phase Ratio	2φ			****	0.075			****	0.004
	3φ						-	0.000	≦0.850
Effective Green Time (s) $\frac{1\phi}{2\phi}$			35.0	36.0				Cycle	Time (s)
				11.0	11.0			80	
	3φ						25.0	00	
Capacity C _i		1,773	866	1,136	245	1,778	946		
Volume-to-Capacity Ratio q/C _i		0.158	1.417	1.450	0.547	0.066	0.258		
Judgement		OK	NG	NG	OK	OK	OK		
Queue Length L _s (m)					36.3		34.1		

2. Current Traffic Situation

Directional Traffic Movement (2030)

11 000

3.500

3.500

3.500

14 500

3.500

3.500

5. Setting Centerline Alignment

Design of the road centerline: Restoration of existing road centerline

6. Basic Layout of Intersection

Overall view, without Aerial survey photograph

6. Basic Layout of Intersection

Overall view, with Aerial survey photograph

Stop Lines and Pedestrian Crossings

[Design Concept]

- Installation angle of Pedestrian Crossing = Perpendicular to road CL
 - → Length of Pedestrian Crossing should be minimized.
- Space between Stop Lines and Pedestrian Crossing = 2m
- Width of Pedestrian Crossing = 4m

Median

[Design Concept]

- Installing Median when there are two or more lanes on one side
 - → To separate opposing directions of the travelled way to ensure traffic safety
- Following the current width of the existing road (W=2.0m)

Right-Turn Channel

Left Turn Lane: for minor road

