Presentation du Projet Metier

Mise en oeuvre et stabilisation d'un bras de drone quadrirotor

Ahmed Amine NOUABI

Mamane Bello Abdoul Hakim

Encadre par: Mr. TALEB

Jury: Mr. TALEB Mr. SAADI Mr. LAGRIOUI

1st July 2024

Table of Contents

1 Introduction

- **▶** Introduction
- ► Conception du systeme
- Conception Logicie
- Conclusion

Objectifs du projet.

1 Introduction

- Stabiliser un bras rotative.
- Utilisation d'un capteur MPU6050 et un algorithme de calcul d'angle.
- Mise en oeuvre d'un controleur PID pour commander les moteurs.

Presentation du projet.

1 Introduction

Le projet consiste en la conception et la mise en œuvre d'un système de stabilisation pour une barre rotative à un degré de liberté. En utilisant un microcontrôleur Arduino et un capteur IMU MPU6050, nous avons développé un algorithme de contrôle PID pour maintenir la barre stable malgré les perturbations externes.

Fonctionnement du systeme.

1 Introduction

Figure: Fonctionnement du systeme.

Table of Contents

2 Conception du systeme

- ► Introduction
- ➤ Conception du systeme
- Conception Logicie
- Conclusion

Conception mecanique.

2 Conception du systeme

Figure: Modele mecanique 3D.

Calcul d'angle

2 Conception du systeme

- Le MPU6050 est un capteur qui combine un accéléromètre et un gyroscope.
- L'accéléromètre mesure l'accélération linéaire tandis que le gyroscope mesure la vitesse angulaire.

Calcul d'angle par gyroscope

2 Conception du systeme

Modele mathematique du gyroscope

$$\omega = \frac{d\phi}{dt}$$

Calcul d'angle par gyroscope

2 Conception du systeme

Modele mathematique du gyroscope

$$\omega = \frac{d\phi}{dt}$$

Calcul d'angle par gyroscope

$$\hat{\phi}_{gyro}(n) = \sum_{i=0}^{n} \omega(i) * T$$

• T est le temps d'echantillonnage 0.004s. ($f_e=250Hz$)

Limitation du modele

2 Conception du systeme

- Le gyroscope est sujet à des dérives.
- L'angle calculé par le gyroscope diverge avec le temps.

φgyro

Modele proche de la realite

$$\omega = \frac{d\phi}{dt} + b_g(t) + n_g(t)$$

- $b_a(t)$ est l'offset du gyroscope.
- $n_q(t)$ est le bruit du gyroscope.

Calcul d'angle par accéléromètre

2 Conception du systeme

Modele mathematique de l'accéléromètre

$$\vec{a} = -R * \vec{g}$$

Calcul d'angle par accéléromètre

$$a_x = g \sin(\phi)$$

$$a_y = -g \sin(\theta) \cos(\phi)$$

$$a_z = -g \cos(\theta) \cos(\phi)$$

$$\hat{\phi}_{accelo}(n) = \arcsin\left(\frac{a_x(n)}{g}\right)$$

Fusion des resultats

2 Conception du systeme

- Pour pallier les dérives du gyroscope, on combine les résultats de l'accéléromètre et du gyroscope.
- En prenant α tres proche de 1, on donne plus de poids au gyroscope. ($\alpha=0.9996$)

Fusion des resultats

$$\hat{\phi}(n) = \alpha * \hat{\phi}_{gyro}(n) + (1 - \alpha) * \hat{\phi}_{accelo}(n)$$

Commade des moteurs

2 Conception du systeme

- on utilise un ESC (Electronic Speed Controller) pour commander le moteur.
- ESC est commandé par un signal PWM (Pulse Width Modulation).

Plage de commande

$$1000\mu s \le T_{on} \le 2000\mu s$$

Controleur PID

2 Conception du systeme

Equation du controleur PID

$$u(t) = K_p * e(t) + K_i * \int e(t)dt + K_d * \frac{de(t)}{dt}$$

- Pour utiliser une comande symetrique. $\gamma = 1500 \pm u(t)$
- γ valeur de la commande PWM du moteur.
- On limite u(t) entre -400 et 400.

Schema de controle

2 Conception du systeme

Figure: Schema de controle.

Montage Electrique

2 Conception du systeme

Figure: Montage Electrique.

Table of Contents

3 Conception Logiciel

- ► Introduction
- ► Conception du systeme
- ► Conception Logiciel
- Conclusion

Conception Logiciel

3 Conception Logiciel

- Pour faciliter la maintenance et l'evolution du code, on a utilisé une approche orientée objet (OOP).
- On utilise la librairie Wire pour la communication I2C avec le capteur MPU6050.
- On utilise la librairie ESC pour la commande PWM des moteurs.

Composants Logiciel OOP

3 Conception Logiciel

MPUSensor	
+ gx:	uint8 t
+ gy:	uint8 t
+ gz:	uint8_t
+ ax:	uint8_t
+ ay:	uint8 t
+ az:	uint8_t
+ angle:	float
+ setup()	
+ readAn	dUpdate() :

	PID	
+ kp:	float	
+ ki:	float	
+ kd:	float	
	tMin: float (-400) tMax: float (400)	

Figure: UML des Composants Logiciel.

Code Arduino - Setup

3 Conception Logiciel

```
MPUSensor mpu;
MotorsController motors;

double deltaTime_micros = 0.004 / 1000000.0;

void setup() {
         mpu.setup();
         motors.setup();
}
```


Code Arduino - Loop

3 Conception Logiciel

```
void loop() {
        current_micros = micros();

        mpu.readAndUpdate();
        motors.update(mpu.angle, deltaTime);

        // Pour assurer une boucle de controle de 4ms.
        while (micros() - current_micros < deltaTime_micros);
}</pre>
```


Table of Contents

4 Conclusion

- ► Introduction
- ► Conception du systeme
- ► Conception Logicie
- **▶** Conclusion

Conclusion

4 Conclusion

- En partant d'ici on peut envisager l'implementation ou de creer un environement de simulation pour tester le systeme.
- On peut aussi considerer a ajouter differentes strategies de controle et d'acquisition pour un benchmark de resultats.

Merci pour votre attention!