LECTURE 27: INTRO TO LARGE LANGUAGE MODELS

Mehmet Can Yavuz, PhD.

Adapted from Julia Hockenmaier, NLP S2023 - course material https://courses.grainger.illinois.edu/cs447/sp2023/

RECAP: SEQ2SEQ, TRANSFORMERS

ENCODER-DECODER (SEQ2SEQ) MODEL

- The decoder is a language model that generates an output sequence conditioned on the input sequence.
 - Vanilla RNN: condition on the last hidden state
 - Attention: condition on all hidden states

TRANSFORMERS USE SELF-ATTENTION

- •Attention so far (in seq2seq architectures):
- In the decoder (which has access to the complete input sequence), compute attention weights over encoder positions that depend on each decoder position

•Self-attention:

- If the encoder has access to the complete input sequence,
- we can also compute attention weights over encoder positions that depend on each encoder position

```
self-attention:
```

encoder

- •For each *decoder* position *t...*,
- ...Compute an attention weight for each *encoder* position *s*
 - ...Renormalize these weights (that depend on t) w/ softmax to get a new weighted avg. of the input sequence vectors

TRANSFORMER ARCHITECTURE

- Non-Recurrent Encoder-Decoder architecture
- No hidden states
- Context information captured via attention and positional encodings
- Consists of stacks of layers with various sublayers
- Vaswani et al, NIPS 2017

ENCODER VASWANI ET AL, NIPS 2017

A stack of N=6 identical layers

All layers and sublayers are 512-dimensional

Each layer consists of two sublayers

- one multi-head self attention layer
- one position-wise feed forward layer

Each sublayer is followed by an "Add & Norm" layer:

- ... a **residual connection** x + Sublayer(x) (the input x is added to the output of the sublayer)
- ... followed by a **normalization step**(using the mean and standard deviation of its activations)

 LayerNorm(x + Sublayer(x))

DECODER VASWANI ET AL, NIPS 2017

A stack of N=6 identical layers
All layers and sublayers are 512-dimensional

Each layer consists of three sublayers

- one masked multi-head self attention layer over decoder output (masked, i.e. ignoring future tokens)
- one multi-headed attention layer over encoder output
- one position-wise feed forward layer

Each sublayer has a residual connection and is normalized: LayerNorm(x + Sublayer(x))

SUBWORD TOKENIZATION

BPE TOKENIZATION (SENNRICH ET AL, ACL 2016)

BytePair Encoding (Gage 1994): a compression algorithm that iteratively replaces the most common pair of adjacent bytes with a single, unused byte

BPE tokenization: introduce new tokens by merging the most common adjacent pairs of tokens

Start with all characters, plus a special end-of-word character
Introduce new token by merging the most common pair of adjacent tokens.

(Assumption: each individual token will still occur in a different context, so we will also keep both tokens in the vocabulary)

Machine translation: train one tokenizer across both languages (better generalization for related languages)

WORDPIECE TOKENIZATION (WU ET AL, 2016)

Part of Google's LSTM-based Neural Machine Translation system (https://arxiv.org/pdf/1609.08144.pdf)

Segment words into **subtokens** (with special word boundary symbols to recover original tokenization)

- Input: Jet makers feud over seat width with big orders at stake
- Output: Jet makers fe ud over seat width with big orders at stake

Training of Wordpiece:

- Specify desired number of tokens, D
- Add word boundary token (at beginning of words)
- Optimization task: greedily merge adjacent characters to improve log-likelihood of data until the vocabulary has size D.

SUBWORD REGULARIZATIO N (KUDO, ACL 2018)

- Observation: Subword tokenization can be ambiguous
 - Can this be harnessed?
- Approach: Train a (translation) model with (multiple) subword segmentations that are sampled from a character-based unigram language model
- Training the unigram model:
 - Start with an overly large seed vocabulary V (all possible singlecharacter tokens and many multi-character tokens)
 - Randomly sample a segmentation from the unigram model
 - Decide which multi-character words to remove from V based on how the likelihood decreases by removing them
 - Stop when the vocabulary is small enough.

GPT

GENERATIVE PRE-TRAINING (RADFORD ET AL, 2018)

Auto-regressive 12-layer transformer decoder

Each token only conditioned on preceding context BPE tokenization (IVI = 40K), 768 hidden size, 12 attention heads

Pre-trained on raw text as a language model (Maximize the probability of predicting the next word)

Fine-tuned on labeled data (and language modeling)
Include new start, delimiter and end tokens,
plus linear layer added to last layer of end token output.

BERT

BERT (DEVLIN ET AL, NAACL 2019)

Fully bidirectional transformer encoder

- BERT_{base}: 12 layers, hidden size=768, 12 att'n heads (110M parameters)
- BERT_{large}: 24 layers, hidden size=1024, 16 attention heads (340M parameters)

Input: sum of token, positional, segment embeddings

• Segment embeddings (A and B): is this token part of sentence A (before SEP) or sentence B (after

[CLS] and [SEP] tokens: added during pre-training

Pre-training tasks:

- - Masked language modeling
- – Next sentence prediction

BERT INPUT

PRE-TRAINING TASKS

BERT is jointly pre-trained on two tasks:

Next-sentence prediction: [based on CLS token]

• Does sentence B follow sentence A in a real document?

Masked language modeling:

- 15% of tokens are randomly chosen as masking tokens
- 10% of the time, a masking token remains unchanged
- 10% of the time, a masking token is replaced by a random token
- 80% of the time, a masking token is replaced by [MASK] and the output layer has to predict the original token

USING BERT FOR CLASSIFICATION

Sentence Pair Classification

Single Sentence Classification

Add a softmax classifier on final layer of [CLS] token

USING BERT FOR QUESTION-ANSWERING

Input: [CLS] question [SEP] answer passage [SEP]

Learn to predict a START and an END token on answer tokens

Represent START and END as H-dimensional vectors S, E

Find the most likely start and end tokens in the answer by computing a softmax over the dot product of all token embeddings T_i and S (or E)

$$P(T_i \text{ is start}) = \frac{\exp(T_i \cdot S)}{\sum_j \exp(T_j \cdot S)}$$

USING BERT FOR SEQUENCE LABELING

Add a softmax classifier to the tokens in the sequence

FINE-TUNING BERT

To use BERT on any task, it needs to be fine-tuned:

- Add any new parts to the model
- (e.g. classifier layers)
 - This will add **new parameters** (initialized randomly)
- Retrain the entire model (update all parameters)

MORE COMPACT BERT MODELS (TURC ET AL., 2019)

Pre-training and fine-tuning works well on much smaller BERT variants

https://arxiv.org/abs/1908.08962

Additional improvements through knowledge distillation:

- **Pre-train** a compact model ('student') in - Train/Fine-tune a large model ('teacher') the standard way

on the target task

- Knowledge distillation step: Train the student on noisy task predictions made by teacher

- Fine-tune student on actual task data

Students can have more layers (but smaller embeddings) than models trained in the standard way

BERT VARIANTS

R_OBERTA (LIU ET AL. 2019)

BART (LEWIS ET AL., ACL 2020)

Combines bidirectional encoder (like BERT) with auto-regressive (unidirectional) decoder (like GPT)

Used for classification, generation, translation

Uses final token of decoder sequence for classification tasks.

Pre-training: corrupts (encoder) input with **masking**, **deletion**, **rotation**, **permutation**, **infilling**.

Decoder needs to recover original input

SENTENCEBERT (REIMERS & GUREVYCH, EMNLP 2019)

- For tasks that require scoring of sentence pairs
 - (e.g. semantic textual similarity, or entailment recognition)
 - Motivation: BERT treats sequence pairs as one (long) sequence, but cross-attention across O(2n) words is very slow.
- SentenceBERT Solution: Siamese network
 - Run BERT over each sentence independently
 - Compute one vector (u and v) for each sentence by (mean or max) pooling over word embeddings or by using CLS token
- Classification tasks:
 - concatenate u, v, and u-v,
 - use as input to softmax
 - Similarity tasks:
 - · use the cosine similarity
 - of **u** and **v** as similarity score
 - Training: start with BERT, fine-tune Siamese model on task-specific data

