Math 554 Test 1, answer key

Problem 1. Find the sum of the series
$$\sum_{k=0}^{9} \frac{3(-1)^k x^{2k}}{10^k}$$
.

Solution. This is a geometric series, thus its sum is

$$S = \frac{\frac{\text{first} - \text{next}}{1 - \text{ratio}}}{1 - \text{ratio}}$$

$$= \frac{\frac{3(-1)^0 x^0}{10^0} - \frac{3(-1)^{10} x^{20}}{10^{10}}}{1 - \frac{-x^2}{10}}$$

$$= \frac{10^{10} \left(\frac{3(-1)^0 x^0}{10^0} - \frac{3(-1)^{10} x^{20}}{10^{10}}\right)}{10^{10} \left(1 - \frac{-x^2}{10}\right)}$$

$$= \frac{3 \cdot 10^{10} - 3x^{20}}{10^{10} + 10^9 x^2}.$$

Problem 2. Let $x_0, x_1, \dots x_{100}$ be real numbers such that

$$|x_k - x_{k-1}| < \frac{1}{2^k}$$
 for $k = 1, 2, \dots, 100$.

Show

$$|x_{100} - x_0| < 1.$$

Hint: Note that by the adding and subtracting trick and the triangle inequality we have

$$|x_0 - x_5| = |(x_0 - x_1) + (x_1 - x_2) + (x_2 - x_3) + (x_3 - x_4) + (x_4 - x_5)|$$

$$\leq |x_0 - x_1| + |x_1 - x_2| + |x_2 - x_3| + |x_3 - x_4| + |x_4 - x_5|$$

$$\leq \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}.$$

Something like this works with 5 replaced by 100.

Solution. We use the adding and subtracting and summation notation. First note

$$x_0 - x_{100} = (x_0 - x_1) + (x_1 - x_2) + (x_2 - x_3) + \dots + (x_{98} - x_{99}) + (x_{99} - x_{100})$$
$$= \sum_{k=1}^{100} (x_k - x_{k-1})$$

Therefore

$$|x_0 - x_{100}| = \left| \sum_{k=1}^{100} (x_k - x_{k-1}) \right|$$

$$\leq \sum_{k=1}^{100} |x_k - x_{k-1}| \qquad \text{(triangle inequality)}$$

$$\leq \sum_{k=1}^{100} \frac{1}{2^k} \qquad \text{(given)}$$

$$= \frac{\frac{1}{2} - \frac{1}{2^{101}}}{1 - \frac{1}{2}} \qquad \text{(sum of geomatic series)}$$

$$< \frac{\frac{1}{2} - 0}{1 - \frac{1}{2}}$$

$$= 1$$

as required.

Problem 3. Let b > 1. Show that the subset $B := \{b^k : k \in \mathbb{N}\} = \{b, b^2, b^3, \ldots\}$ is unbounded in \mathbb{R} . *Hint:* Towards a contradiction assume that B has an upper bound. Then by the least upper bound axiom B has a least upper bound $\beta = \sup(B)$. Use this fact to derive a contradiction. \square

Solution. Towards a contradiction assume that the set B is bounded. Then by the Least Upper bound axiom it will have a least upper bound, $\beta = \sup(B)$. For any natural number n the number n+1 is also a natural number, thus $b^{n+1} \in B$ and as β is an upper bound for B this implies

$$b^{n+1} \le \beta$$

and dividing by b implies

$$b^n \le \frac{\beta}{b} < \beta$$

(where $\beta/b < \beta$ because b > 1). This implies b/β is a upper bound for B which is less than the least upper bound, a contradiction.

Problem 4. Let A and B be subsets of \mathbb{R} which are bounded above. Let

$$\alpha = \sup(A), \qquad \beta = \sup(B).$$

and let A + B be the set

$$A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

Prove

$$\sup(A+B) = \alpha + \beta.$$

Solution (brute force). We first show $\alpha + \beta$ is an upper bound for A + B. Let $s \in A + B$, then for some $a \in A$ and $b \in B$ we have s = a + b. Then as α is an upper bound for A and β is an upper bound for B we have $a \le \alpha$ and $b \le \beta$ and thus

$$s = a + b \le \alpha + \beta$$
.

As s was any element of S this shows $\alpha + \beta$ is an upper bound for A + B.

To see that $\alpha + \beta$ is a least upper bound for A + B, let γ be any upper bound and we will show $\alpha + \beta \leq \gamma$. Let $\varepsilon > 0$. Then by the definition of least upper bound there are $a_1 \in A$ and $b_1 \in B$ such that the inequalities

$$\alpha - \varepsilon < a_1 \le \alpha$$
 and $\beta - \varepsilon < b_1 \le \beta$.

Then

$$\alpha + \beta - 2\varepsilon = (\alpha - \varepsilon) + (\beta - \varepsilon) < a_1 + b_2 \le \gamma$$

where $a_1 + b_1 < \gamma$ as $a_1 + b_2 \in A + B$ and γ is an upper bound for A + B. Thus

$$\alpha + \beta - 2\varepsilon < \gamma$$

for all $\varepsilon > 0$, which implies $\alpha + \beta \leq \gamma$. Therefore $\alpha + \beta$ is an upper bound for A + B that is $\leq \gamma$ for any other upper bound of A + B. Whence $\sup(A + B) = \alpha + \beta$.

Solution (less work, but not as transparent). We start the same, let $x \in A + B$. Then x = a + b for some $a \in A$ and $b \in B$. Then $a \le \alpha$ and $b \le \beta$ as α is an upper bound for A and β is an upper bound for B. Thus

$$x = a + b \le \alpha + \beta$$

and so $\alpha + \beta$ is an upper bound for A + B which implies

$$\sup(A+B) \le \alpha + \beta.$$

We still have to show it is the least upper bound. Let $a \in A$ and $b \in B$. Then

$$a+b \leq \sup(A+B)$$
.

Rearrange this as

$$a \le \sup(A + B) - b.$$

This shows that $\sup(A+B)-b$ is an upper bound for A for any $b\in B$ and thus

$$\alpha = \sup(A) \le \sup(A+B) - b.$$

Rearrange this as

$$b \le \sup(A+B) - \alpha$$

and as this works for all $b \in B$ we have that $\sup(A+B) - \alpha$ is an upper bound for B and thus

$$\beta \le \sup(A+B) - \alpha$$
.

This rearranges as

$$\alpha + \beta \leq \sup(A + B)$$
.

But we have already seen that $\sup(A+B) \leq \alpha + \beta$ and therefore we have the required equality $\sup(A+B) = \alpha + \beta$.

Problem 5. Give examples of

- (a) A subset A of \mathbb{R} with $\sup(A) = 42$, $\inf(A) = 17$, but such that A has no maximum but it does have a minimum.
- (b) A set that is bounded below, but not bounded from above.
- (c) Irrational numbers α and β such that sum $\alpha + \beta$ and product $\alpha\beta$ are rational.
- Solution. (a) The easiest example is the half open interval A = [17, 42). Then $\inf(A) = \min(A) = 17$ and $\sup(A) = 42$, but A as no maximum (for if it did it would have to be 42 which is not in the set).
- (b) A natural example is $[0, \infty)$ which is bounded below bu 0, but has no upper bound.
- (c) Let $\alpha = \sqrt{3}$ and $\beta = -\sqrt{3}$. Then $\alpha + \beta = 0$ which is rational and $\alpha\beta = -3$ which is also rational.

If you want a general method to find such α and β note

$$(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

Therefore if you choose any rational numbers r and s such that the roots of

$$x^2 - rx + s$$

are irrational, then the roots α and β have $\alpha + \beta = r$ and $\alpha\beta = s$ and so give examples.

Problem 6. Let \mathbb{Q} be the set of rational numbers and let $S = \mathbb{Q} \cap (1, \sqrt{3})$ be the set of rational numbers between 1 and $\sqrt{3}$. Find $\alpha = \inf(S)$ and $\beta = \sup(S)$ and prove your answers are correct. You can use the fact that there is a rational number between any two real numbers.

Solution. First $\inf(S) = 1$. For any $s \in S = \mathbb{Q} \cap (1, \sqrt{3})$ we have that s is between 1 and $\sqrt{3}$ and thus 1 < s. Therefore 1 is a lower bound for S. Let a be any lower bound for S. Towards a contradiction assume that a > 1. Then there is a rational number, r, between 1 and a. But then $r \in S$ as it is a rational number between 1 and $\sqrt{3}$. But r between 1 and a implies r < a contradicting that a is a lower bound for S. Therefore 1 is the greatest lower bound for S.

The proof that $\sup(S) = \sqrt{3}$ is almost identical. First $\sqrt{3}$ is a upper bound as any element, s, of S has $s \leq \sqrt{3}$. Towards a contradiction assume that $\sqrt{3}$ is not the least upper bound. Then there is an upper bound b of S that is less than $\sqrt{3}$. Then there is a rational number, r, between b and $\sqrt{3}$. This rational number is in S as it is rational $1 < r < \sqrt{3}$. But r > b contradicting that b is an upper bound. So $\sup(S) = \sqrt{3}$.

We have defined a function $f:[a,b]\to\mathbb{R}$ to be $\textbf{\textit{Lipschitz}}$ if and only if there is a number $M\geq 0$ such that

$$|f(x_2) - f(x_1)| \le M|x_2 - x_1|$$

for all $x_1, x_2 \in [a, b]$.

Problem 7. Let $f(x) = \sqrt{x}$ on $[0, \infty)$.

(a) Show $f(x) = \sqrt{x}$ is Lipschitz on the interval [1,100]. *Hint:* One way to start this is to use just the opposite of rationalizing the denominator, which is to rationalize the numerator. A example calculation looks like

$$\sqrt{65} - \sqrt{64} = \frac{(\sqrt{65} - \sqrt{64})(\sqrt{65} + \sqrt{64})}{(\sqrt{65} + \sqrt{64})}$$

$$= \frac{(\sqrt{65})^2 - (\sqrt{64})^2}{\sqrt{65} + \sqrt{64}}$$

$$= \frac{65 - 64}{\sqrt{65} + \sqrt{64}}$$

$$= \frac{1}{\sqrt{65} + \sqrt{64}}$$

$$< \frac{1}{\sqrt{64} + \sqrt{64}}$$

$$= \frac{1}{16}.$$
(as $\sqrt{65} > \sqrt{64}$)

(b) Show that f(x) is not Lipschitz on the interval [0,1]. Hint: Assume that f(x) is Lipschitz on [0,1]. The there is a constant M such that

$$|\sqrt{x_2} - \sqrt{x_1}| \le M|x_2 - x_1|$$

for all $x_1, x_2 \in [0, 1]$. Letting $x_1 = 0$ gives $\sqrt{x_2} \le Mx_2$ for all $x_2 \in [0, 1]$. Show this leads to a contradiction.

Solution. (a) Let $x_1, x_2 \in [1, 100]$. Then $\sqrt{x_1}, \sqrt{x_2} \ge 1$.

$$|f(x_2) - f(x_1)| = |\sqrt{x_2} - \sqrt{x_1}|$$

$$= \left| \frac{(\sqrt{x_2} - \sqrt{x_1})(\sqrt{x_2} + \sqrt{x_1})}{\sqrt{x_2} + \sqrt{x_1}} \right|$$

$$= \left| \frac{(\sqrt{x_2})^2 - (\sqrt{x_1})^2}{\sqrt{x_2} + \sqrt{x_1}} \right|$$

$$= \left| \frac{x_2 - x_1}{\sqrt{x_2} + \sqrt{x_1}} \right|$$

$$= \frac{|x_2 - x_1|}{\sqrt{x_2} + \sqrt{x_1}}$$

$$\leq \frac{|x_2 - x_1|}{1 + 1} \qquad (as \sqrt{x_1}, \sqrt{x_2} \ge 1)$$

$$= \frac{1}{2} |x_2 - x_1|.$$

This show f(x) is Lipschitz on [0, 100].

(b) As per the hint, assume that there is a constant M such that $|f(x_2) - f(x_1)| \le M|x_2 - x_1|$ and let $x_1 = 0$ and $x_2 = x$. Then the Lipschitz inequality implies for any x with $0 < x \le 1$ that

$$\sqrt{x} = |\sqrt{x} - \sqrt{0}| \le M|x - 0| = Mx.$$

Dividing by \sqrt{x} gives

$$1 \leq M\sqrt{x}$$
.

Letting $x = 1/(2M)^2$ in this gives

$$1 \le M\sqrt{x} = M\sqrt{\frac{1}{(2M)^2}} = \frac{M}{2M} = \frac{1}{2}$$

which is the contradiction that completes the proof.

Problem 8. Let f be Lipschitz on an interval [a, b] and assume that for some positive number c that $f(x) \ge c$ on [a, b]. Prove that g(x) defined by

$$g(x) = \frac{1}{f(x)}$$

is Lipschitz on [a, b].

Solution. Since f(x) is Lipschitz on [a,b] there is a constant M such that

$$|f(x_2) - f(x_1)| \le M.$$

Therefore

$$|g(x_2) - g(x_1)| = \left| \frac{1}{f(x_1)} - \frac{1}{f(x_2)} \right|$$

$$= \left| \frac{f(x_1) - f(x_2)}{f(x_1)f(x_2)} \right|$$

$$= \frac{|f(x_1) - f(x_2)|}{f(x_1)f(x_2)}$$

$$\leq \frac{M|x_1 - x_2|}{f(x_1)f(x_2)} \qquad (as |f(x_2) - f(x_1)| \leq M)$$

$$\leq \frac{M|x_1 - x_2|}{c \cdot c} \qquad (as f(x_1), f(x_2) \geq c)$$

$$= \frac{M}{c^2}|x_1 - x_2|$$

$$= M'|x_1 - x_2|$$

$$= M'|x_1 - x_2|$$

where $M' = \frac{M}{c^2}$. This shows that g is Lipschitz.

Problem 9. Let n be an odd positive integer and let h(x) be a function on all of \mathbb{R} that satisfies the two conditions

$$|h(x_2) - h(x_1)| \le A|x_2 - x_1|$$

 $|h(x)| \le B + C|x|^{n-1}$

for some constants A, B, C and all $x_1, x_2, x \in \mathbb{R}$. Let f(x) be defined by

$$f(x) = x^n + h(x).$$

- (a) Explain why for any b > 0 that f(x) is Lipschitz on [-b, b]. Hint: You can use the facts that polynomials are Lipschitz on any finite interval and that the sum of two Lipschitz functions is Lipschitz.
- (b) Show that there is a b > 0 such that

$$f(-b) < 0$$
, and $f(b) > 0$.

- (c) Give the statement of the Lipschitz Intermediate Value Theorem and say how it implies that f(x) = 0 has a solution for some x with -b < x < b.
- Solution. (a) The function x^n is a polynomial thus is Lipschitz on the interval [-b,b]. The function h(x) is Lipschitz (as $|h(x_2)-h(x_1)| \le A|x_2-x_1|$) and therefore $f(x) = x^n + h(x)$ is the sum of Lipschitz functions and therefore f(x) is Lipschitz.
- (b) Assume that $x \ge 1$. Then x is positive so |x| = x and $|x|^{n-1} \ge 1$. Then

$$f(x) = x^{n} + h(x)$$

$$\geq x^{n} - |h(x)|$$

$$\geq x^{n} - (B + C|x|^{n-1}) \qquad (as |h(x)| \leq B + C|x|^{n-1})$$

$$\geq x^{n} - (B|x|^{n-1} + C|x|^{n-1}) \qquad (as |x|^{n-1} \geq 1)$$

$$= x^{n} - (Bx^{n-1} + Cx^{n-1}) \qquad (as x = |x| \text{ for } x \geq 1)$$

$$= x^{n-1} (x - (B + C))$$

Therefore if $x \geq$ and x > (B + C), we have

$$f(x) \ge x^{n-1} (x - (B + C)) = (\text{positive}) \times (\text{positive})$$

and thus f(x) is positive. In particular f(x) > 0 when $x \ge 1 + B + C$.

Now assume that $x \le -1$. Then x is negative so |x| = -x. As n is odd $|x|^n = (-x)^n = (-1)^n x^n = -x^n$ as $(-1)^n = -1$ for odd numbers. Likewise n-1 is even so a similar calculation shows $|x|^{n-1} = (-x)^{n-1} = x^{n-1}$. So for $x \le -1$

$$f(x) = x^{n} + h(x)$$

$$\leq x^{n} + |h(x)|$$

$$\leq x^{n} + B + C|x|^{n-1} \qquad (as |h(x)| \leq B + C|x|^{n-1})$$

$$\leq x^{n} + B|x|^{n-1} + C|x|^{n-1} \qquad (as |x| \geq 1)$$

$$= x^{n} + x^{n-1}(B + C) \qquad (as x^{n-1} = |x|^{n-1})$$

$$= x^{n-1}(x + (B + C)).$$

Now choose our $x \le -1$ so that also x < -(B+C), then x+(B+C) < 0 and so

$$f(x) \le x^{n-1}(x + (B+C)) = (\text{positive}) \times (\text{negative})$$

and therefore f(x) < 0. So if $x \le -(1 + B + C)$, then f(x) < 0.

Therefore if we let b = 1 + B + C we have f(-b) < 0 and f(b) > 0.

(c) The statement is

Lipschitz Intermediate Value Theorem. Let $f: [a,b] \to \mathbb{R}$ be a Lipschitz function such that f(a) < 0 and f(b) > 0. Then there is a point $\xi \in (a,b)$ with $f(\xi) = 0$. That is f(x) = 0 has a solution with for some x between a and b.

In our case we have the Lipschitz function $f: [-b, b] \to \mathbb{R}$ with f(-b) < 0 and f(b) > 0 so there is a $x = \xi$ with $-b < \xi < b$ f(x) = 0.

Problem 10. Let

$$h(x) = ax^3 + bx^2 + cx + d$$

be a cubic polynomial. Show there are constants B and C such that

$$|h(x)| \le B + C|x|^3$$

for all $x \in \mathbb{R}$.

Solution. First assume $|x| \leq 1$. Then

$$|h(x)| = |ax^3 + bx^2 + cx + d|$$

 $\leq |a||x|^3 + |b||x|^2 + |c||x| + |d|$ (triangle inequality)
 $\leq |a| + |b| + |c| + |d|$ (as $|x| \leq 1$)

For $|x| \ge 1$ we have $|x|^3 \ge |x|^2$, $|x|^3 \ge |x|$ and $|x|^3 \ge 1$ and thus

$$\begin{split} |h(x)| &= |ax^3 + bx^2 + cx + d| \\ &\leq |a||x|^3 + |b||x|^2 + |c||x| + |d| \qquad \text{(triangle inequality)} \\ &\leq |a||x|^3 + |b||x|^3 + |c||x|^3 + |d||x|^3 \qquad \text{(as } |x| \geq 1) \\ &= (|a| + |b| + |c| + |d|)|x|^3 \end{split}$$

Therefore the inequality

$$|h(x)| \le (|a| + |b| + |c| + |d|)|x|^3 + (|a| + |b| + |c| + |d|)$$

holds for all x. Thus if we set B + C = |a| + |b| + |c| + |d| we have

$$|h(x)| \le B|x|^3 + C$$

as required. \Box