Genetic Algorithms

A class of probabilistic algorithms that are likely to find the global optimum of a multi-modal surface (no assumptions of differentiability-continuity)

They differ from purely <u>random search</u> technique in their <u>exploitability</u> of the information accumulated during the period of <u>adaptation</u>.

They find solutions to problems by an <u>evolutionary process</u>. Software design based on natural solution: a population of solutions is maintained. This population undergoes evolution in a form of natural selection: "good" solutions reproduce and "bad" solutions die, to be replaced by offspring of the good. An evaluation function (objective function) plays the role of the environment)

A Simple Genetic Algorithm

```
Procedure Genetic; begin  \begin{array}{l} t := 0; \\ \text{Initialize P(t); } & \{ \text{Population of solutions} \\ & x_{1}{}^{t}, \dots, x_{N}{}^{t} \text{ N=population size} \} \\ \text{Evaluate P(t); } & \{ \text{Compute fitness of each solution} \} \\ \text{While not (termination-condition) do} \\ \text{begin} \\ & t := t+1; \\ & \text{select P(t) from P(t-1);} \\ & \text{Recombine P(t);} \\ & \text{Evaluate P(t);} \\ \text{end;} \{ \text{while} \} \\ \text{end} \{ \text{Genetic} \} \\ \end{array}
```

Example

Maximize $f(x) = x^2$ $x \in [0,31]$

- 1. Choose a genetic representation of solutions to the problem; code the parameter *x* as a finite length binary string.
- 2. Start (Search) from a population of solutions, not a single solution <u>chosen at random</u> (ex. tossing of a coin)

$$x_1^0$$
 01101 (13)₁₀
 x_2^0 11000 (24)₁₀
 x_3^0 01000 (8)₁₀
 x_4^0 10011 (19)₁₀

3. Evaluate/Rate solutions in terms of their fitness

	f(x)	$\% \text{fitness} = \frac{f(x_i^t)}{\sum f(x_i^t)}$
x_{1}^{0}	169	14.4
x_2^0	576	49.2
x_{3}^{0}	64	5.5
x_4^0	361	30.9
Total	1170	100%
Avg	293	
Max	576	

4. {Natural selection} Select reproduction candidates using a biased roulette wheel (with slots sized according to fitness) i.e. higher fitness strings have more chance to be selected.

Above-average strings will have more offspring in the next generation

Apply genetic operations to form a new population (probabilistic transition rules).

Crossover

								f(x)
0	1	1	0	1	x_1	01100	$(12)_{10}$	144
1	1	0	0	0	x_2	01100	$(25)_{10}$	625
1	1	0	0	0	x_3	11011 10000	$(27)_{10}$	729
1	0	0	1	1	x_4	10000	$(16)_{10}$	256
		ı			ı	!	Total	1754
							Avg	439
							Max	729

crossover = information exchange = testing of new parts of target regions

Analysis

A single string belongs to all the regions in which any of its bits appear

- \therefore It belongs to 2^i schemata
- \therefore A population of size N contains $2^{\ell} \rightarrow N \times 2^{\ell}$ schemata ex

A schema is a template describing a subset of strings # of schemata = 3^{t}

 \therefore A genetic algorithm that manipulates a population of strings <u>samples</u> a large number of regions. (Implicit parallelism)

In the given examples consider three particular schemata

on
$$\frac{f(H)}{f_{avg}}$$
 copies = $2 \times \frac{468.5}{293}$
= 3.2

$$\delta(H_1) = 0$$

∴ corssover has no effect

$$\frac{m \times Pr_m}{f_{avg}} \approx 3 \times 0.001 \approx 0.003$$

Properties of Schemata

The order of schema H : O(H) = # of fixed positions in the template O(H), H=*10*0**=3

Defining length of schema = $\delta(H)$ =distance between first and last fixed string positions.

$$\delta(H)$$
, H = 011*1** = 4
= 0***** = 0

Highly fit short defining lengths schemata are called building blocks.

Effect of reproduction on the # of schemata

Suppose that within P(t) there are m examples of a schema H. (m=m(H, t) During reproduction, a string x_2 is copied according to its fitness

$$Pr(x_1) = \frac{f_i}{\sum_{i=1}^{N} f_i}$$
 (population of size N – picking with replacement)

$$m(H, t+1) = m(H, t) \cdot \frac{f(H)}{\sum \frac{f_i}{N}} \rightarrow \text{average fitness of strings matching schema H}$$

 \therefore A particular schema grows as the ratio of the average fitness of the schema to the average fitness of the population.

Above-average schemata grow and below-average schemata die off.

Suppose H remains above average by a constant amount $c f_{avg}$

$$\therefore m(H,t+1) = m(H,t) \times \frac{f_{avg} + c f_{avg}}{f_{avg}} = m(H,t) \times (1+c)$$

$$\therefore m(H,t) = m(H,0) \times (1+c)^t$$

: Reproduction allocates exponentially increasing (decreasing) number of trials, above (below) average schemata.

Effect of crossover

A schema survives when the cross site falls outside its defining length

Pr_s = 1 -
$$\frac{\delta(H)}{\ell - 1}$$

 $\delta = 5$
 $\delta = 1$

* 1 * * * * 0
* * * | 1 0 * *
 $\ell - 1 = 6 = possible sites for a cross$

: Combined effect of reproduction & crossover

$$m(H,t+1) = \underbrace{m(H,t) \times \frac{f(H)}{f_{avg}}}_{\text{expected #of schemata}} \times \underbrace{\left[1 - \frac{\delta(H)}{\ell - 1}\right]}_{\text{survival probability under crossover}}$$

whether the schema is above or below the population average

Whether the schema has relatively short or long defining length

Mutation

Is the random alternation of a single position with probability $Pr_m \approx 0.001$

Survival probability of schema = $(1 - Pr_m)^{O(H)}$

$$\approx 1 - O(H) \times Pr_m$$

$$\therefore m(H,t+1) = m(H,t) \times \frac{f(H)}{f_{avg}} \left[1 - \frac{\delta(H)}{\ell-1} - O(H) \times \Pr_{m} \right]$$

: Low order short length above-average schemata receive exponentially increasing trials in subsequent generations. (schemata Theorem)