1.2 Exercici previ

a) Valor H i valor L

N: hi ha 5 divisions entre un mexim i un minim

L: hi he 5 divisions entre dos mexims

9 Déterminen

b1) tensió pic a pic Vpp

Upp = 10V

b2) l'amplitud Vo i el valor eficar Vef

$$V_0 = \frac{V_0 p}{2} = 5V$$
 $V_{ef} = \frac{V_0}{\sqrt{12}} = \frac{5}{\sqrt{2}} = 3,535V$

63) pariode T de la sonyal

64) freguenoia f

$$f = \frac{\Lambda}{T} = \frac{1}{10^{-3}} = \Lambda000 \, \text{Hz}$$

c) Déterminen l'enor absolut i relativ

a) la tensio pica pic Upp

$$(40 \pm 3\%)V \Rightarrow (40 \pm 0.3)V$$

C 2) l'amplitud Vo i el volor eficaç Ves

Vo: (5 ± 3%)V => (5 ± 0,15)V

Vef: (3,535 ± 3%) V => (3,535 ± 0,106) V

(3) període T de 6 senyal

(1000 ± 3%) Hz → (1000 ± 30) Hz

I 345 = I 12 =
$$\frac{V}{R}$$
 = $\frac{10}{150}$ = $66.7 \, \text{mA}$ \longrightarrow I, = I₂ = $66.7 \, \text{mA}$

Donat que les resistencies R4 i Rs son
ignals i estan col·locades en paral·lel \longrightarrow I 4 = I₅ = $33.3 \, \text{mA}$
le seux intensitet sonà la meitat de
la del tram de circuit en què es tubon (I₃₄₅)

$$V_1 = I_1 \cdot R_1 = 0.0667 \cdot 50 = 3.33V$$
 $V_2 = 0.0667 \cdot 100 = 6.67V$
 $V_3 = 0.0667 \cdot 50 = 3.33V$
 $V_4 = V_5 = 0.0333 \cdot 200 = 6.67V$

Funcionament de Loscil Joscopi

Grup: 43 Cognoms: Trya Minals

Nom: Miguel

Data: 01/10/2020

Qualificació:

Funcionament de l'oscil·loscopi

Lunch	Juanic	me ac	1 GOCII	10500								
$f \setminus$	V(t)	A	is Haiv	V_{pp} \bigvee	V_0 \bigvee	V_{ef} $m{V}$	V_{pol}	B M	, L div	TMS	f=1/T	2
50.11-	sin	2 Váiv	6	12	6	4,24	4,29	2 ms	10	20,00	50Hz	
50 Hz	trian	2	6	12	6	315	3,50	2	10	20	50Hz	
1 kHz	sin	2	6	12	6	4,24	4,29	0,1	10	1	NOOOH	2
3 kHz	sin	2	45	(0)	\$ 5	3,53	3,57	50 Ms div	6.5	9325	3,07	H2

f és el valor nominal de la frequència V_{ef} és la tensió eficaç teòrica V_{pol} és la tensió que dóna el polímetre

f	V(t)	В	L	ЕL	f	E f∫
1 2 2	sin	0.2 ms/div		0.1 div		
3kHz		0.1 ms/div		0.1 div		
		50 μs/div		0.1 div		

L'error relatiu del coeficient de deflexió és e_B =0.01

L'error absolut de la frequència és $\varepsilon_f = (e_B^2 + e_L^2)^{1/2} f$

i l'error relatiu de L és $e_L = \varepsilon_L / L$

Funcionament del polímetre

$$R_{leo} = 75 \Omega$$

$$R_{ohm} = 76.98\Omega$$

	Experimental	Teòric
V_{I}	3,31 V	3,33V
V_2	6,531	6,690
V_3	3, 22 V	3,33V
V_4	6,571	6,67V
V_5	6,59V	6,670
I_1	62,65 mA	66,67 mA
I_2	64,29 mA	6,67 mA
I_3	62,60 mA	6,67 m A
I_4	31,62mA	33,33 m A
I_5	<u>,</u>	33,33 mA
I	125, 77 m/A	133,33 mA