TP2

Frottement Solide, Frottement Fluide

Groupe: IMA5

NOM, Prénom: HAJMOHAMMADKASHI Shaghayegh

Frottement Solide:

Objectif de l'expérience :

Calculer les coefficients de frottements statique et dynamique (ks et kd) en utilisant un support en bois avec une surface rugueuse et un mobile en bois.

Descriptif et Protocole:

Pour faire cette expérience, on a mis un palet (sans surcharge) sur la table qui est recouverte d'une feuille de papier rugueuse pour avoir le frottement et cette poulie était connectée à une nacelle avec un fil passé à travers une poulie. {Figure 1}

Figure 1

Remarque 1 : On doit vérifier que le fil est dans le prolongement de notre poulie, pour ça on a tracé une ligne droite dans le prolongement de la poulie et on a mis notre fil en parallèle de cette ligne.

Remarque 2 : Pour avoir une expérience plus précise, on ne doit pas toucher la nacelle pendant qu'on ajoute les masselottes et si on veut changer une masselotte avec une d'autre masselotte qui a un d'autre poids, d'abord on prend celui qu'on a mis avant et après on ajoute la nouvelle masselotte.

Remarque 3 : Vérification qu'on a bien placé notre fil sur la poulie et le palet est bien placé en point de départ du mouvement.

On a remarqué que quand on a ajouté les masselottes et c'étais assez lourd, d'abord m(la nacelle et les masselottes) tombe verticalement vers le bas et parce que le m et M(le palet) se sont liés avec le fil, il a tiré le palet aussi. {Figure 2}

Figure 2

Calcule de k_s:

En essayant différentes masses, on a pu rapprocher de la valeur exacte m_c qui met en mouvement le mobile afin de calculer le coefficient de frottement statique « k_s ».

Et comme on a vu en travail préparatoire, le mobile se met en mouvement dès que m>k_sM

Où M est la masse de mobile ce qui est égal à 161.9 g et m est ® ce qui est le poids mettant en mouvement la masse M est égal à 307,3 g. Donc, on peut estimer k₅ par :

$$k_s=m_c/M$$

Remarque : m_c est la somme des poids de la nacelle et les masselottes.

Poids de nacelle est 21.9g

 $k_{s1}=(190+21.9)/307.3=0.689\pm0.022$, avec $m_c=190+21.9=211.9g$

 k_{s2} =(185+21.9)/307.3=0.673±0.022 ,avec m_c =185+21.9=206.9g

 k_{s3} =(186.6+21.9)/307.3=0.678±0.022 ,avec m_c =186.6+21.9=208.5g

 $k_{s4} = (202.2 + 21.9)/307.3 = 0.729 \pm 0.022$, avec $m_c = 202.2 + 21.9 = 224.1g$

 k_{s5} =(190+21.9)/307.3=0.689±0.022 ,avec m_c =211.9g

Pour trouver incertitude, on a utilisé cette formule :

$$(\Delta m)^2 = \sum_{i=1}^5 \frac{(m_i - \overline{m})^2}{N - 1}$$
$$\Delta k_s = \frac{\Delta m}{M}$$

$$\overline{m} = (190 + 21.9) + (185 + 21.9) + (186.6 + 21.9) + (202.2 + 21.9) + \frac{(190 + 21.9)}{5} = 212.66g$$

$$\Delta m = 6.754$$

$\Delta k_s = 0.022$

Donc $\overline{k_s}$ =0.691±0.022

Calcule de k_d:

Et maintenant pour calculer k_d , à l'aide d'une règle gradué on a pu mesurer la hauteur entre le bas de la nacelle et le sol(où la nacelle avec les masselottes tombent dedans) (h= 36.6cm)et grâce au mouvement de l'objet on a mesuré la distance (d) parcourue par le mobile après d'être tiré par la masse m.

En nous aidant de 5 m_c différentes on a calculé plusieurs valeurs de k_d avec plusieurs distance d.

$$\mathbf{f} = k_d = \frac{m \times h}{m \times d + M(h+d)}$$

Avec M fixée = 307.3g et h = 36.6cm

 K_{d1} = ((221.9)×36.6)/(((221.9)×7.1) + (307.3×43.7))=0.541 ± 0.014 ,avec m_c =200+21.9=221.9g et d_1 =43,7-36.6=7.1cm

 K_{d2} = ((231.9)×36.6)/(((231.9)×7.8) + (307.3×44.4))=0.549 ± 0.014 ,avec m_c =210+21.9=231.9g et d_1 =44.4-36.6=7.8cm

 K_{d3} = ((211.9)×36.6)/(((211.9)×6.1) + (307.3×42.7))=0.538 ± 0.014 ,avec m_c =190+21.9=211.9g et d_1 =42.7-36.6=6.1cm

 K_{d4} = ((208.5)×36.6) /(((208.5)×5.85) + (307.3×42.45))=0.535 ± 0.014 ,avec m_c =186.6+21.9=208.5g et d_1 =42.45-36.6=5.85cm

 $K_{d5} = ((197.9) \times 36.6) / (((197.9) \times 5.2) + (307.3 \times 41.8)) = 0.522 \pm 0.014$,avec $m_c = 176 + 21.9 = 197.9g$ et $d_1 = 41.8 - 36.6 = 5.2cm$

Pour trouver incertitude, on a utilisé cette formule :

$$(\Delta k_d)^2 = \left| \frac{d\mathbf{f}}{dm} \right|^2 \Delta m^2 + \left| \frac{d\mathbf{f}}{dM} \right|^2 \Delta M^2 + \left| \frac{d\mathbf{f}}{dh} \right|^2 \Delta h^2 + \left| \frac{d\mathbf{f}}{d(d)} \right|^2 \Delta d^2$$
$$\Delta k_d = 0.014$$

Donc $\overline{k_d}$ =0.537±0.014

Frottement Fluide:

Objectif de l'expérience :

Pendant les Cours magistraux, on a appris qu'il existe deux méthodes pour décrire les forces de frottements fluide; le modèle laminaire et le modèle turbulent. Pour ce TP, notre objectif est de trouver le modèle qui s'applique pour la chute libre d'une balle.

Descriptif et Protocole:

Pour étudier le mouvement de la chute libre d'une balle en polystyrène, nous avons filmer la chute libre d'une balle en polystyrène. Afin d'avoir moins d'erreurs lors du lancer de la balle nous l'avons lâché avec l'aide d'une aiguille car si nous l'avons lâché avec nos doigts qui sont humides et qui colle, la balle ne serait pas partie droit ou pourrait être lâcher avec une vitesse initiale mais à l'aide d'une aiguille, on peut avoir un mouvement sans vitesse initial et strictement vertical. Dans le plan sur lequel on a lâché la balle, nous avons disposé une corde un poids à son bout pour que l'on puisse avoir la perpendiculaire au sol sur lequel il y avait un étalon de 1m. Avant la prise vidéo nous avons pris soin de régler la netteté de l'appareil nous avons essayé de le mettre le plus perpendiculaire au sol (grâce à la corde), puis nous avons aussi réglé le zoom pour avoir une assez bonne plage de

donnée à analyser. Et enfin pour que le logiciel trackers n'ai aucun mal à détecter la balle blanche, nous avons utilisé un fond noir.

Exploitation des résultats :

Comme on a vu dans le travail préparatoire de ce TP, les deux systèmes de laminaire et de turbulent dépendent de la vitesse(v) et on peut voir que le système laminaire dépend v et le système turbulent dépend v^2 .

On peut proposer deux modélisations de la force de frottements, selon le type d'écoulement :

- pour un écoulement laminaire, une force linéaire (proportionnelle à la vitesse) : $\frac{F_l}{I} = 3\pi D\eta v$ où η désigne le coefficient de viscosité dynamique du fluide. Pour l'air, $\eta = 18.5\ 10-6\ Pl$.
- pour un écoulement turbulent, une force quadratique (proportionnelle au carré de la vitesse) : $F_t = \frac{1}{8} \rho_f \pi D 2 C_x v^2$, où C_x désigne le coefficient de traînée. Dans les conditions d'écoulement, on attend ici $0.38 < C_x < 0.5$.

Donc on a utilisé LibreOffice Calc pour tracer la courbe de vitesse avec les données obtenues avec le logiciel Tracker.

1	mass A		
	t	x	yx
_23	0.00E+00	-9.45E-04	5 0
	2.00E-02	6.69E-03	0.47140428
_45	4.00E-02	1.79E-02	0.65040373
6	6.00E-02	3.27E-02	0.81872207
7	8.00E-02	5.07E-02	1.00106773
-/8	1.00E-01	7.27E-02	1.176462
9	1.00E-01	9.77E-02	1.33823851
	1.40E-01	1.26E-01	1.49500635
10	1.40E-01 1.60E-01	1.58E-01	1.63884489
11	1.80E-01	1.92E-01	1.78902988
12	2.00E-01	2.29E-01	1.9241634
13			2.0536522
14	2.20E-01 2.40E-01	2.69E-01 3.11E-01	2.0536522
15	2.40E-01 2.60E-01	3.11E-01 3.56E-01	2.18909929
16	2.60E-01 2.80E-01	4.04E-01	2.43390005
17			
18	3.00E-01	4.54E-01	2.55567241
19	3.20E-01	5.06E-01	2.6631977
20	3.40E-01	5.60E-01	2.76891419
21	3.60E-01	6.17E-01	2.89271039
22	3.80E-01	6.76E-01	2.99446065
23	4.00E-01	7.37E-01	3.07466496
24	4.20E-01	7.99E-01	3.16852582
25	4.40E-01	8.63E-01	3.25587792
26	4.60E-01	9.29E-01	3.34258582
27	4.80E-01	9.97E-01	3.40874706
28	5.00E-01	1.07E+00	3.4637089
29	5.20E-01	1.14E+00	3.54858253
30	5.40E-01	1.21E+00	3.62706603
31	5.60E-01	1.28E+00	3.67554045
32	5.80E-01	1.35E+00	3.72516615
33	6.00E-01	1.43E+00	3.77676155
34	6.20E-01	1.51E+00	3.81340363
_35	6.40E-01	1.58E+00	3.84517723
36	6.60E-01	1.66E+00	3.87386655
37	6.80E-01	1.74E+00	3.92274635
38	7.00E-01	1.82E+00	3.964138
39	7.20E-01	1.90E+00	3.98353018
40	7.40E-01	1.98E+00	4.0163436
41	7.60E-01	2.06E+00	4.04912135
42	7.80E-01	2.14E+00	4.0859982
43	8.00E-01	2.22E+00	4.1328863
44	8.20E-01	2.30E+00	
15	l		

Sur le schéma si dessus il est possible de lire deux valeurs comme indiqué qui sont vitesse limite (V_{lim}) et du temps caractéristique (τ) , vitesse limite indique quelle est la vitesse limite que la balle tant à obtenir sur un temps infini et taux et la tangente au moment initial (à l'origine), cela nous indique un temps. Après manipulation des formules ci-dessus, des modèles laminiaire et turbulent nous pouvons décrire chacun des modèles en fonction de V_{lim} et τ .

En supposant la chute sans vitesse initiale $v_x(t = 0) = 0$,

$$v_x(t) = v_{lim}^l \left(1 - e^{-rac{t}{ au_l}}
ight)$$
 Dans le cas luminaire

$$v_x(t) = v_{lim}^t anh\left(rac{t}{ au_t}
ight)$$
 Dans le cas turbulent

Maintenant avec ces deux formules on va modifier la valeur de V_{lim} et τ pour voir laquelle des deux peut définir notre expérience correspond le mieux à la courbe que nous avons obtenue expérimentalement :

- 1	mass A				
2	t -	x	vx	f lineaire	f turbulant
3	0.00E+00	-9.45E-04	~		
4	2.00E-02	6.69E-03	0.47140428	0.18352466	0.187598091
5	4.00E-02	1.79E-02	0.650403734	0.358894042	0.374423643
6	6.00E-02	3.27E-02	0.818722073	0.52647054	0.559716792
7	8.00E-02	5.07E-02	1.001067732	0.686600448	0.742742581
8	1.00E-01	7.27E-02	1.176461997	0.839614669	0.922802338
9	1.20E-01	9.77E-02	1.338238513	0.985829403	1.09924385
10	1.40E-01	1.26E-01	1.495006351	1.125546798	1.271470008
11	1.60E-01	1.58E-01	1.638844888	1.259055576	1.438945742
12	1.80E-01	1.92E-01	1.78902988	1.386631629	1.601203101
13	2.00E-01	2.29E-01	1.9241634		1.757844455
14	2.20E-01	2.69E-01	2.053652198	1.625028375	1.908543859
15	2.40E-01		2.189099288		
_16	2.60E-01		2.314307265		
17	2.80E-01	4.04E-01	2.43390005		2.322788443
18	3.00E-01		2.555672413		
_19	3.20E-01		2.663197695		
_20	3.40E-01		2.768914185		
21	3.60E-01		2.892710393		
22	3.80E-01		2.994460645		
23	4.00E-01		3.074664963		
24	4.20E-01		3.168525815		
25	4.40E-01	8.63E-01		2.610657908	
26	4.60E-01	9.29E-01		2.678172857	3.22153584
27	4.80E-01		3.408747058		
28	5.00E-01		3.463708903		
29	5.20E-01 5.40E-01		3.548582525		
30			3.627066025	2.919534883	
31	5.60E-01 5.80E-01	1.28E+00 1.35E+00		3.024723435	
32	6.00E-01	1.43E+00		3.024723435	
	6.00E-01		3.813403625		
34	6.40E-01		3.845177225		
36	6.60E-01	1.66E+00		3.208472439	
36 37	6.80E-01	1.74E+00		3.249422325	
	7.00E-01	1.82E+00		3.288552524	
<u>38</u> 39	7.00E-01 7.20E-01		3.983530175		
40	7.40E-01	1.98E+00		3.361673707	
40	7.40E-01 7.60E-01	2.06E+00		3.395815794	
41	7.80E-01	2.14E+00		3.428440711	
42	8.00E-01	2.22E+00		3.459615876	
43	8.20E-01	2.30E+00	4.1320003	3.433013070	3.311332031
44	0.201-01	2.30L100			1

graphique avec comparaison au modèle laminaire

graphique avec comparaison au modèle turbulent

Valeurs approximative trouvé :

Modèles Laminaire : v_{lim}^{l} = 3,49 m/s , au_{l} = 0,41s

Modèles Turbulent : v_{lim}^{t} = 3,95m/s , au_{t} = 0,44s

Comparaison théorie-expérience :

Quel type de frottements est le plus approprié pour l'étude du mouvement de chute de la balle ?

Selon les graphs si dessus, on peut voir qu'on penche plutôt pour un modèle de frottements quadratiques pour la chute d'une balle.

Pendant la préparation de TP, nous avons montré que T pouvez être trouvé en fonction de paramètre connue nous allons donc utiliser cela pour conclure quel système correspond à notre expérience.

Modèles Laminaire:

$$au_l=rac{
ho_b imes D^2}{18 imes n}$$
 avec $ho_b=25.8~kg.\,m^{-3}$ et D≅0.03 m et au_l = 0,41s

Donc pour trouver le coefficient de viscosité dynamique de l'air :

$$\eta = \frac{\rho_b \times D^2}{18 \times \tau_I} = 0.003 \ kg/(m.s)$$

Qui est très loin de la valeur de $\eta=18.5\times 10^{-6} Pl$

Modèles Laminaire:

$$\tau_t = \frac{\rho_b \times 4 \times D}{3 \times C_x \times \rho_f \times v_{lim}^t}$$

avec
$$\rho_b=25.8~kg.\,m^{-3}$$
 et $\rho_f=1.2~kg.\,m^{-3}$ et D≅0.03 m et v^t_{lim} = 3,95m/s et τ_t = 0,44s

Donc pour trouver le coefficient de traînée :

$$C_x = \frac{\rho_b \times 4 \times D}{3 \times \tau_t \times \rho_f \times v_{lim}^t} = 0.494$$

La valeur que j'ai obtenue pour C_x est 0.494 qui est bien dans l'intervalle de 0,38< C_x <0,5, cela est quand même très proche de la borne de l'intervalle mais avec la marge d'erreur nous pouvons dire que C_x correspond à ce que nous nous attendions.

Du coup, selon les valeurs que nous avons obtenues pour les coefficients par rapport à ce que nous aurions dû obtenir, l'expérience de la chute libre d'une balle correspond au modèle turbulent.

Étude énergétique:

Nous allons maintenant décrire l'évolution des énergies lors de l'expérience ci-dessus, Nous avons réalisé études énergétique massique de l'énergie ce qui signifie que la masse de la balle n'est pas pris en compte pour le calcul des énergies. L'énergies cinétique est décrit par la formule : $0.5 \times v^2$

L'énergie potentiel est décrit par la formule : $g \times h$ avec g=9,81 et h corresponds à la distance entre la position actuel et position au sol

L'énergie mécanique correspond à la somme des deux.

Nous obtenons donc le graphique ci-dessous :

Graphique de l'évolution des énergies massiques

	A	В	C	D	E	F	G	Н	1
1	mass A					•			•
2	_	x	vx	frottement lin	frottement turb	ulant	cinetique	potentiel	mecanique
3	0.00E+00	-9.45E-04	×	DOMESTICAL DIV		20000		21.78543349	
	2.00E-02		0.47140428	0.18352466	0.187598091			21.71053835	
<u>4</u> 5	4.00E-02			0.358894042				21.60045445	
6	6.00E-02			0.52647054				21.45531993	
7	8.00E-02			0.686600448				21.27918791	
8	1.00E-01			0.839614669				21.06250095	
9	1.20E-01			0.985829403				20.81754422	
10	1.40E-01			1.125546798				20.53737616	
11	1.60E-01	1.58E-01	1.638844888	1.259055576	1.438945742			20.23090373	
12	1.80E-01			1.386631629				19.89429342	
13	2.00E-01	2.29E-01	1.9241634	1.50853859	1.757844455		1.851202395	19.52888841	21.3800908
14	2.20E-01	2.69E-01	2.053652198	1.625028375	1.908543859		2.108743674	19.13925171	21.24799538
15	2.40E-01	3.11E-01	2.189099288	1.736341709	2.053046712		2.396077845	18.72303528	21.11911313
16	2.60E-01	3.56E-01	2.314307265	1.842708615	2.191167867			18.28024914	
17	2.80E-01	4.04E-01	2.43390005	1.9443489	2.322788443		2.961934727	17.81490111	20.77683584
18	3.00E-01	4.54E-01	2.555672413	2.041472598	2.447851549		3.26573074	17.32518677	20.59091751
19	3.20E-01	5.06E-01	2.663197695	2.134280415	2.566357206		3.546310981	16.81205526	20.35836624
20	3.40E-01	5.60E-01	2.768914185	2.222964134	2.678356684		3.833442882	16.28014799	20.11359087
21	3.60E-01	6.17E-01	2.892710393	2.307707017	2.783946512		4.183886707	15.72553333	19.90942004
22	3.80E-01	6.76E-01	2.994460645	2.388684184	2.883262359		4.483397277	15.14504843	19.62844571
22 23	4.00E-01	7.37E-01	3.074664963	2.466062972	2.976472965		4.726782316	14.55050697	19.27728929
24	4.20E-01	7.99E-01	3.168525815	2.540003281	3.063774269		5.01977792	13.9385499	18.95832782
25	4.40E-01	8.63E-01	3.25587792	2.610657908	3.145383864		5.300370515	13.30717744	18.60754796
25 26	4.60E-01	9.29E-01	3.34258582	2.678172857	3.22153584		5.586439982	12.6609434	18.24738339
27	4.80E-01	9.97E-01	3.408747058	2.742687647	3.292476097		5.809778251	11.99554677	17.80532502
28	5.00E-01			2.804335596				11.32335106	
29	5.20E-01	1.14E+00	3.548582525	2.863244097	3.419739389		6.296218968	10.6363874	16.93260636
30	5.40E-01			2.919534883				9.930887276	
31	5.60E-01			2.973324278				9.213126687	
32	5.80E-01			3.024723435				8.488605204	
_33	6.00E-01			3.07383857				7.75137149	
_34	6.20E-01			3.120771177				7.006603971	
35	6.40E-01			3.165618241				6.254991908	
36	6.60E-01			3.208472439				5.497756428	
_37	6.80E-01	1.74E+00		3.249422325				4.734886674	
37 38	7.00E-01	1.82E+00		3.288552524				3.958470761	
_39	7.20E-01			3.325943895				3.179358922	
40	7.40E-01	1.98E+00		3.361673707				2.39533352	
41_	7.60E-01	2.06E+00		3.395815794				1.603345694	
42	7.80E-01	2.14E+00		3.428440711				0.806458302	
43	8.00E-01	2.22E+00		3.459615876	3.917952697		8.540374584	; 0	8.540374584
44	8.20E-01	2.30E+00						I .	

Sur ce graphique nous pouvons bien observer une perte de l'énergie potentiel car la balle perd de la hauteur, l'énergies cinétique augmente grâce à la gravité et à la perte d'énergie potentiel.

Cependant la perte d'énergie mécanique montre qu'il y a une perte d'énergie durant cette expérience cela est dû aux faites qu'il y a de l'air autour de nous et donc un parti de l'énergie est transmis à l'air. Il s'agit des forces de frottement, cependant vu que nous sommes dans un fluide il d y a aussi la poussée d'Archimède qui entre en compte.

On peut donc conclure que l'énergie perdu est due aux forces de frottement et à la poussée d'Archimède.

Donc, à la fin du TP on a pu mesurer le coefficient statique et son incertitude grâce aux masses utilisées. On a aussi mesuré k_d plusieurs fois avec des masses critiques différentes. Pour le frottement fluide, une courbe v(t) a été tracée et on a trouvé le type d'écoulement. Finalement, on a tracé 3 courbes qui présentent l'énergie mécanique, cinétique et potentielle.