1. State-based Specification Method

Features

- **#** The description of the system behavior is centered around the notion of state transition.
- # The operations (functions) of the system are specified by description how their execution change the state of the system.

State-based Specification Method

Steps

- **#** Define the variables that give states of the target system and any invariant properties relating those variables.
- # Define an initial operation to set the values of the variables to some suitable initial state that satisfies the invariant requirement.
- **#** Define operations on a state that change that state while maintaining the invariant properties.
- # Define enquiries that obtain information about the system without changing its state.

Typed set theory

- # All possible members of a typed set are considered to have something in common, and are said to have the same type.
- # The notion of type helps in two ways: it avoids certain mathematical paradoxes; it allows checks to be made that statements about sets make sense.
- **z** is based on typed set theory.

The built-in type Integer

- # The built-in type Integer can be used in Z without the need to introduce it explicitly.
- $\sharp Z(ZZ)$: Pronounced 'integer' of 'zed-zed' or 'fat Z'.
- \blacksquare Operation on Z:+,-,*, div, mod
- **#** The range of values m .. n stands for the set of integers m to n inclusive. $m .. n = \emptyset$ if m > n.

The standard type Natural

- # The set Natural is a standard subset of the type Integer that adds the constraint that the value must always be nonnegative.
- # N(NN):Pronounced 'natural' or 'en-en' or 'fat N'.
- mathrightarrow N1: the set of nature numbers excluding zero.

Numerical relations

$$n = 1, <, \leq, >, \geq$$

Basic (Given) types

- # The basics (given) types of a specification are declared without concern for how their actual elements are to be represented.
- **#** A basic type is declared by writing its name in square brackets, with a comment to indicate its intended meaning.
- **Ex:** [PERSON] the set of all persons

Free types

- **A** type introduced by listing the identifiers of its elements.
- \sharp freeType ::= element₁ | element₂ | ... element_n

Variables in Z

Declarations of variables

- **#** Each variable name designing a value must be declared.
- # That means it must be introduced and the type of value it refers to must be stated.
- # v:TYPE, pronounced 'v is one of the set of values TYPE' or 'v is drawn from the set TYPE' or 'v is a TPYE'.

Ex.

chauffeur: PERSON

Sets in Z

Values of sets

The value of a set can be written by listing its values within braces ('curly brackets').

***** Validity of membership test

The value to be tested for membership must be an element of the underlying type of the set, otherwise, the test is neither true nor false but illegal.

Size (cardinality) of a set

The number of elements in a set is called its size (cardinality), and is signified by hash sign.

$$\mathbf{n} \# \emptyset = \mathbf{0}$$

Sets in Z

Powersets

- **The powerset of a set S is written as** *P***S.**
- n # PS = 2 #S

Difference

- **#** The difference of two sets is the set containing all those elements of the first set that are not in the second set.
- **s** S \ T

Sets in Z

Distributed union and intersection

- # The distributed union of a set of sets is the set containing just those elements that occur in at least one of the component sets.
- # The distributed intersection of a set of sets is the set containing just those elements that occur in all of the component sets.

Partition

A set of sets is said to partition a set S if the sets are disjoint and their distributed union is the set S.

Example: Using Sets to Describe a System

Scenario

The passengers aboard an aircraft.

Constraints

No seat numbers, first-come-first-served, fixed capacity.

Assumptions

People are identified uniquely.

Basic type

[PERSON] the set of all possible uniquely identified persons

***** Variables

- # capacity: N the seating capacity of the aircraft
- # onboard: PPERSON the state of the aircraft system

Example: Using Sets to Describe a System

Invariant property

onboard ≤ capacity

Initialization operation

The value of a variable after an operation is denoted by its name 'decorated' with a prime sign.

 \mathbf{m} onboard' = $\mathbf{\emptyset}$

Boarding operation

```
p: PERSON

p ∉ onboard
# onboard < capacity
onboard' = onboard ∪ {p}</pre>
```

Example: Using Sets to Describe a System

Disembark operation

```
p: PERSON
p ∈ onboard
onboard' = onboard \ {p}
```

Enquiries

numOnboard: N
numOnboard = # onboard

onboard' = onboard

```
# Person on board
    RESPONSE ::= yes | no
    p: PERSON
```

reply: RESPONSE $((p \in onboard \ and \ reply = yes) \ or \ (p \not\in onboard \ and \ reply = no) \)$ onboard' = onboard

Example: Using Sets and Logic Operators to Describe a System

RESPONSE ::= OK | twoErrors | onBoard | full | notOnBoard

Onboard operation

```
p: PERSON
reply: RESPONSE
(p \notin onboard \land \# onboard < capacity \land
onboard' = onboard \{j\} \{p\} \{p\} reply = OK)
 V
(p \in onboard \land \# onboard = capacity \land
onboard' = onboard \land reply = twoErrors)
 \bigvee
(p \in onboard \land \# onboard < capacity \land
onboard' = onboard \land reply = onBoard)
(p \not\in onboard \land \# onboard = capacity \land
onboard' = onboard \land reply = full)
```

Example: Using Sets and Logic Operators to Describe a System

Disembark operation