

Help smitha_kannur ▼

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 3 Neural networks (2.5 weeks) / Homework 3

Homework due Oct 28, 2020 05:29 IST Completed

The diagram below shows a single LSTM unit that consists of Input, Output, and Forget gates.

The behavior of such a unit as a recurrent neural network is specified by a set of update equations. These equations define how the gates, "memory cell" c_t and the "visible state" h_t are updated in response to input x_t and previous states c_{t-1} , h_{t-1} . For the LSTM unit,

$$egin{array}{ll} f_t &= \operatorname{sigmoid} \left(W^{f,h} h_{t-1} + W^{f,x} x_t + b_f
ight) \ &i_t &= \operatorname{sigmoid} \left(W^{i,h} h_{t-1} + W^{i,x} x_t + b_i
ight) \ &o_t &= \operatorname{sigmoid} \left(W^{o,h} h_{t-1} + W^{o,x} x_t + b_o
ight) \ &c_t &= f_t \odot c_{t-1} + i_t \odot anh \left(W^{c,h} h_{t-1} + W^{c,x} x_t + b_c
ight) \ &h_t &= o_t \odot anh \left(c_t
ight) \end{array}$$

where symbol \odot stands for element-wise multiplication. The adjustable parameters in this unit are matrices $W^{f,h}$, $W^{f,x}$, $W^{i,h}$, $W^{i,x}$, $W^{o,h}$, $W^{o,x}$, $W^{c,h}$, $W^{c,x}$, as well as the offset parameter vectors b_f , b_i , b_o , and b_c . By changing these parameters, we change how the unit evolves as a function of inputs x_t .

To keep things simple, in this problem we assume that x_t , c_t , and h_t are all scalars. Concretely, suppose that the parameters are given by

$$W^{f,h} = 0$$
 $W^{f,x} = 0$ $b_f = -100$ $W^{c,h} = -100$ $W^{i,h} = 0$ $W^{i,x} = 100$ $b_i = 100$ $W^{c,x} = 50$ $W^{o,h} = 0$ $W^{o,x} = 100$ $b_o = 0$, $b_c = 0$

We run this unit with initial conditions $h_{-1}=0$ and $c_{-1}=0$, and in response to the following input sequence: [0, 0, 1, 1, 1, 0] (For example, $x_0=0$, $x_1=0$, $x_2=1$, and so on).

LSTM states

1.0/1 point (graded)

Calculate the values h_t at each time-step and enter them below as an array $[h_0, h_1, h_2, h_3, h_4, h_5]$.

(Please round h_t to the closest integer in every time-step. If $h_t=\pm 0.5$, then round it to 0. For ease of calculation, assume that $\mathrm{sigmoid}\,(x)\approx 1$ and $\mathrm{tanh}\,(x)\approx 1$ for $x\geq 1$, and $\mathrm{sigmoid}\,(x)\approx 0$ and $\mathrm{tanh}\,(x)\approx -1$ for $x\leq -1$.)

[0,0,1,-1,1,0]

Answer: [0, 0, 1, -1, 1, 0]

Solution:

Approximating the functions to the nearest integer and assuming that x_t is only 0 or 1 simplifies the equation to the following.

$$egin{aligned} f_t &= \operatorname{sigmoid} \left(-100
ight) = 0 \ i_t &= \operatorname{sigmoid} \left(100 x_t + 100
ight) = 1 \ o_t &= \operatorname{sigmoid} \left(100 x_t
ight) \ c_t &= 0 \odot c_{t-1} + 1 \odot anh \left(-100 h_{t-1} + 50 x_t
ight) = anh \left(-100 h_{t-1} + 50 x_t
ight) \ h_t &= o_t \odot anh \left(c_t
ight) \end{aligned}$$

Notice that for c_t , the h_{t-1} term overpowers the x_t one, unless h_{t-1} is 0.

Based on our simplifications above, we can find the values for each h_t .

Input 1:

$$egin{array}{lll} f_0 &= 0 & i_0 &= 1 & o_0 &= 0.5 & c_0 &= anh \left(-100 \left(0
ight) + 50 \left(0
ight)
ight) = 0 & h_0 &= 0 \odot anh \left(0
ight) = 0 \ f_1 &= 0 & i_1 &= 1 & o_1 &= 0.5 & c_1 &= anh \left(-100 \left(0
ight) + 50 \left(0
ight)
ight) = 0 & h_1 &= 0 \ f_2 &= 0 & i_2 &= 1 & c_2 &= anh \left(0 + 50
ight) = 1 & h_2 &= 1 anh \left(1
ight) = .76 ext{ rounded to } 1 \ \end{array}$$

Continue in this manner.

Submit

You have used 2 of 5 attempts

• Answers are displayed within the problem

LSTM states 2

1.0/1 point (graded)

Now, we run the same model again with the same parameters and same initial conditions as in the previous question. The only difference is that our input sequence in now: [1, 1, 0, 1, 1].

Calculate the values h_t at each time-step and enter them below as an array $[h_0, h_1, h_2, h_3, h_4]$.

(Please round h_t to the closest integer in every time-step. If $h_t=\pm 0.5$, then round it to 0. For ease of calculation, assume that $\operatorname{sigmoid}(x)\approx 1$ and $\tanh(x)\approx 1$ for $x\geq 1$, and $\operatorname{sigmoid}(x)\approx 0$ and $\tanh(x)\approx -1$ for $x\leq -1$.)

✓ Answer: [1, -1, 0, 1, -1]

Solution:

The computation is similar to the previous question.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

LSTM info

What information is carried in the state h_t ?		
Whether the total number of zeros is odd.		
Whether the number of consecutive zeros is odd.		
Whether the total number of ones is odd.		
) Whether the number of consecutive ones is odd.	
~		
Solu	tion:	
	can observe that the network counts the number of consecutive 1's. If it is currently seeing a 0 it outputs rwise it outputs a 1 if it has seen an odd number of 1's so far, and a -1 if it is even.	0,
Su	ubmit You have used 1 of 1 attempt	
6	Answers are displayed within the problem	
	CUSSION Hide Dis Unit 3 Neural networks (2.5 weeks):Homework 3 / 2. LSTM	cussion
ropic.		ıdd a Post
Sho	Show all posts 🗸 by recent activity	
?	LSTM States. All values rights except one! On LSTM States 1 and 2 I'm. getting all values right in my array except for one! On LSTM 1 I'm. getting [0. 0. 11. 11.] and on LSTM 2 I'	2
€	What are we supposed to learn from "LSTM Info"? Except for the fact that LSTMs can be very expressive?	3
Q	Be careful with LSTM state update	9
Q	Risky questions Lgot right in the above questions, but it was a **extremely** handwork exercise. Even using a software aid it was extremely painful and	10
2	Hint, for last question 'LSTM info' Run the update with the following sequence, [1, 0, 1, 1, 1, 1, 0] Why? Total number of 0/1 and number of consecutive 0/1 whether it is od	4
?	(staff) The meaning of LSTM info Lam the only one who cannot understand the meaning. Consecutive means f, j, o, c, h at the same order? And there are three kinds of h.	. 4
2	Could not format HTML for problem. It says: "Could not format HTML for problem. Contact course staff in the discussion forum for assistance." What am I to do? Ljust tried to	2
∀	Interpretation of choices in "LSTM Info" "Whether the number of consecutive ones is odd": Does occurrence of a single appearance of 1 meet this criteria or do we need a mini.	2
Q	Sigmoid function Hi, What is sigmoid function exactly?? I thought that it is 1/(e^-x +1), but I think it is not the function, please any one can help me?? thank	4
Q	LSTM States with Python (general steps)	4
	▲ Community TA	4
2	Another approach Highly recommend pulling values and calculation through a Google sheet / Excel. Implement tanh and sigmoid with a couple of IF(), I did	3

▲ Community TA

< Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>