毌

2. (a) $Min \times^T Q \times + 2b^T \times$
$\nabla f(x) = Qx + b$. Takes time $O(n^2)$.
いる(1-大) シャン水(gを
In total, the time complexity is O(n2klog/2).
(b) If we ignove the term logs
The time complexity becomes O(n2k)
Then, if k >> n, direct method is faster.
if K << n, GD method is factor
(c) When $N = 10$ $K = \frac{\lambda max(ATA)}{\lambda min(ATA)} = 265.651$
N = 20, $k = 3/11$
$N = 50$, $k = 1.42 x 0^5$
N=100, K=4.89×104
It can be seen that K-is much larger than N.
(d). Direct method will be faster than GD method
for the problems generated in (c)
(e) GD will go through multiple stages and klog(=) only
coptures the speed of last stage. Each speed has speed
and ends at roughly XK. If law-accuracy is wanted,
klog({= }) is not an issue since convergence behavior
of GD roughly depends on eigenvalues above or
around the accuracy. It is bad, however, if
high accuracy is wanted.

3. (a) coordinate descent and gradient descent can solve the least square problem with some convergence quarantee. (b). Min Ilan-bll s.t. wzo, well , AFIR xd = Min Elldiw-bill = zficw) = Min = ||Aizi-bill2 sit; Zi=W., W7,0 Vi Lagraigion = Efi(Zi)+(\lambda, Zi) - ME(\lambda; X). F(Zi) G(X) = 112-X112 $|X^{r+1} = \operatorname{argmin} L_{p}(X, Z^{r}, \lambda^{r})|$ $|Z^{r+1} = \operatorname{argmin} L_{p}(X, Z^{r}, \lambda^{r})|$ $|X^{r+1} = \lambda^{r} + f(Z^{r} - X^{r})|$

(a) f(x)= \(\frac{1}{2}(x_1^2 - \chi_2^2) - 3\chi_2 4 s.t. X2=0. L(X, X) = = (X12-X22)-3X2 + X(X2-0) $\nabla_{X} L(X^{*}, \lambda^{*}) = 0 \Rightarrow \langle X_{1} = 0 \Rightarrow X_{1} = 0 \rangle$ $-\chi_2 - 3 + \lambda = 0 \Rightarrow \lambda = 3.$ 1 L(X*, X*) = 0 => X2 = 0... Hence. X*=(0,0). /=3 (b). Lo(X, X) = \frac{1}{2}(X, 2-X22) - 3X2 + \lambda(X2-0) + \frac{1}{2}(X2-0)^2 $\chi_1(\lambda, c) = 0$ $\chi_2(\lambda, c) = -\chi_2 - 3 + \lambda + c\chi_2 = 0$ = $\frac{3-\lambda}{c-1}$ When k=0, 1, 2, Ck= 10, 102, 103 For quadratic peralty with $\lambda^k = 0$:

when k = 0, $\chi_2 = \frac{3-\lambda^k}{C-1} = \frac{3-0}{10-1} = \frac{3}{9}$ k=1, $\chi_2 = \frac{3}{100-1} = \frac{3}{99}$ k=2, $\chi_2 = \frac{3}{999}$ For Multipliers with $\lambda^{\circ} = 0$, $\lambda^{k} \rightarrow 3 = \lambda^{*}$ When k=0, $\chi_{2}=\frac{3-\lambda^{k}}{C-1}=\frac{3}{C-1}$ k = 1, $\chi_2 = \frac{3 - \lambda'}{C - 1} = 0$ k=2, $\chi_2 = \frac{3-\lambda^2}{C-1} = 0$. when k > 00 the quadratic penalty method will have X2 -> 0 = X2 x And the result from the two methods will be