Methoden voor het omgaan met ontbrekende gegevens bij de beoordeling van gezondheidstechnologie

(Thanks/blame to Google Translate)

Andrea Gabrio

Maastricht University
Faculty of Health Medicine and Life Sciences
Department of Methodology and Statistics

email: a.gabrio@maastrichtuniversity.nl
website: https://agabrioblog.onrender.com
GitHub page: https://github.com/AnGabrio

HTA research seminar series, VU, Amsterdam

Friday 17 June 2022

Outline

- 1 Introduction to modelling in HTA
- Missing data
- 3 A longitudinal missingness model in HTA
- Application to the PBS study
- Conclusions

Part 1

Introduction to modelling in HTA

Back to Table of content

Before I begin:

Before I begin:

• Statistics is an all-encompassing discipline:

Statisticians are unified not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields.

Before I begin:

- Statistics is an all-encompassing discipline:

 Statisticians are unified not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields.
- The thought process of statistics is unique and it is difficult for others to understand its contribution to the fields:

The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution.

Before I begin:

- Statistics is an all-encompassing discipline:
 - Statisticians are unified not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields.
- The thought process of statistics is unique and it is difficult for others to understand its contribution to the fields:

The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution.

- My personal view of the world:
 - Statisticians should be in charge of everything.

Before I begin:

- Statistics is an all-encompassing discipline:
 - Statisticians are unified not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields.
- The thought process of statistics is unique and it is difficult for others to understand its contribution to the fields:

The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution.

- My personal view of the world:
 - Statisticians should be in charge of everything.
- So I probably will be very annoying throughout the presentation ¹

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Statistical model

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

approach!)

data & statistical model used

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

approach!)

Varies with the type of available

data & statistical model used

Standardised process

actions, given current evidence

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used

- Summarises the economic model by computing suitable measures of "cost-effectiveness"
- Dictates the best course of actions, given current evidence
- Standardised process

		Den	ograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ...

 $u_{ij}=$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, \dots)

 $c_{ij} = \mathsf{Use}$ of resources (drugs, hospital, GP appointments, ...)

		Demographics			HRQL data				Re	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1	 c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241	 80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808	 877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12	 22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$

c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

		Den	nograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

 c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

 (Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i & = & \alpha_{e0} + \alpha_{e1} u_{0i} + \alpha_{e2} \mathrm{Trt}_i + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathrm{Normal}(0, \sigma_e) \\ c_i & = & \alpha_{c0} + \alpha_{c1} c_{0i} + \alpha_{c2} \mathrm{Trt}_i + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathrm{Normal}(0, \sigma_c) \end{array}$$

		Den	nograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$

 c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

 (Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_i + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_e) \\ c_i & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_i + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_c) \end{array}$$

 Estimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

"Standard" approach to HTA — "Two-stage"

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used
- Summarises the economic model by computing suitable measures of "cost-effectiveness"
- Dictates the best course of actions, given current evidence
- Standardised process

"Standard" approach to HTA — "Two-stage"

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used
- Summarises the economic model by computing suitable measures of "cost-effectiveness"
- Dictates the best course of actions, given current evidence
 - Standardised process

[&]quot;Two-stage approach" (Spiegelhalter, Abrams & Myles, 2004)

The Sherlock conundrum...

Bayesian approach to HTA

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used
- Summarises the economic model by computing suitable measures of "cost-effectiveness"
- Dictates the best course of actions, given current evidence
- Standardised process

"Integrated approach" Spiegelhalter, Abrams & Myles (2004) Baio, Berardi & Heath (2017)

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation — MCMC does a better job!

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation — MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0; 1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research ⇒ are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation — MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0; 1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework
- ... and of course Partially Observed data
 - Can have item and/or unit non-response
 - Missingness may occur in either or both benefits/costs
 - The missingness mechanisms may also be correlated
 - Focus in decision-making, not inference Bayesian approach particularly suited for this!

Part 2

Missing data

Back to Table of content

Background

The problems with missing data...

- ullet We plan to observe $n_{
 m planned}$ data points, but end up with a (much) lower number of observations $n_{
 m observed}$
 - What is the proportion of missing data? Does it matter?...
- We typically don't know why the unobserved points are missing and what their value might have been
 - Missingness can be differential in treatment/exposure groups

Background

The problems with missing data...

- ullet We plan to observe $n_{
 m planned}$ data points, but end up with a (much) lower number of observations $n_{
 m observed}$
 - What is the proportion of missing data? Does it matter?...
- We typically don't know why the unobserved points are missing and what their value might have been
 - Missingness can be differential in treatment/exposure groups
- ... Basically, not very very much we can do about it!
 - Any modelling based on at least some untestable assumptions
 - Cannot check model fit to unobserved data
 - Have to accept inherent uncertainty in our analysis!

- Partially observed data
- Unobservable parameters
 Deterministic function of random quantities
- Fully observed, unmodelled data
 Fully observed, modelled data
- y_i = Outcome subject to missingness
- $m_i = 1$ if y_i missing or 0 if y_i observed ("missingness indicator")
- $oldsymbol{ heta} = (oldsymbol{ heta}^{\mathrm{MoA}}, oldsymbol{ heta}^{\mathrm{MoM}}) = \mathsf{model}$ parameters
 - $\dot{\boldsymbol{\theta}}^{\text{MoA}} = (\beta, \sigma)$ $\boldsymbol{\theta}^{\text{MoM}} = \delta$

- Partially observed data
- Unobservable parameters
 Deterministic function of random quantities
- Fully observed, unmodelled data
 Fully observed, modelled data
- y_i = Outcome subject to missingness
- $m_i = 1$ if y_i missing or 0 if y_i observed ("missingness indicator")
- $oldsymbol{ heta} = (oldsymbol{ heta}^{\mathrm{MoA}}, oldsymbol{ heta}^{\mathrm{MoM}}) = \mathsf{model}$ parameters
 - $-\stackrel{\bullet}{\boldsymbol{\theta}}^{\text{MoA}} = (\beta, \sigma)$ $-\stackrel{\bullet}{\boldsymbol{\theta}}^{\text{MoM}} = \delta$

- Partially observed data
- Unobservable parameters
 Deterministic function of random quantities
- Fully observed, unmodelled data
 Fully observed, modelled data
- y_i = Outcome subject to missingness
- $m_i = 1$ if y_i missing or 0 if y_i observed ("missingness indicator")
- $oldsymbol{ heta} = (oldsymbol{ heta}^{\mathrm{MoA}}, oldsymbol{ heta}^{\mathrm{MoM}}) = \mathsf{model}$ parameters
 - $-\stackrel{\bullet}{\boldsymbol{\theta}}^{\text{MoA}} = (\beta, \sigma)$ $-\stackrel{\bullet}{\boldsymbol{\theta}}^{\text{MoM}} = \delta$

(Bayesian) Modelling for missing data

ullet Effectively, need to model a bivariate outcome (y,m), depending on the model parameters

$$\begin{array}{lcl} p(y,m\mid \pmb{\theta}) & = & p\left(y\mid m,\pmb{\theta}^{\mathrm{MoA}}\right)p\left(m\mid \pmb{\theta}^{\mathrm{MoM}}\right) & & \text{(Pattern mixture model)} \\ & = & p\left(m\mid y,\pmb{\theta}^{\mathrm{MoM}}\right)p\left(y\mid \pmb{\theta}^{\mathrm{MoA}}\right) & & \text{(Selection model)} \end{array}$$

 Common assumption: the two blocks of model parameters are independent (at least a priori)

(Bayesian) Modelling for missing data

ullet Effectively, need to model a bivariate outcome (y,m), depending on the model parameters

$$\begin{array}{lcl} p(y,m\mid \pmb{\theta}) & = & p\left(y\mid m,\pmb{\theta}^{\mathrm{MoA}}\right)p\left(m\mid \pmb{\theta}^{\mathrm{MoM}}\right) & & \text{(Pattern mixture model)} \\ & = & p\left(m\mid y,\pmb{\theta}^{\mathrm{MoM}}\right)p\left(y\mid \pmb{\theta}^{\mathrm{MoA}}\right) & & \text{(Selection model)} \end{array}$$

Common assumption: the two blocks of model parameters are independent (at least a priori)

Pattern mixture models

- Needs to model the full possible missingness "patterns" m using a marginal distribution
- Models for data more natural

Selection models

- Models directly the marginal distribution of the observable data
- Needs to figure out how the missingness model may be affected by it

Decisions in HTA are often informed by within-trial CEA

- Decisions in HTA are often informed by within-trial CEA
- Missing data occur frequently in RCTs in both effectiveness and cost outcomes

- Decisions in HTA are often informed by within-trial CEA
- Missing data occur frequently in RCTs in both effectiveness and cost outcomes
- CCA has historically represented the standard approach in health economics

- Decisions in HTA are often informed by within-trial CEA
- Missing data occur frequently in RCTs in both effectiveness and cost outcomes
- CCA has historically represented the standard approach in health economics
 - Easy to implement but inefficient and generally inadequate for handling missingness
 - May yield biased inferences and lead to incorrect cost-effectiveness conclusions
 - Alternative approaches (e.g. MI) have become more popular among practitioners

- Decisions in HTA are often informed by within-trial CEA
- Missing data occur frequently in RCTs in both effectiveness and cost outcomes
- CCA has historically represented the standard approach in health economics
 - Easy to implement but inefficient and generally inadequate for handling missingness
 - May yield biased inferences and lead to incorrect cost-effectiveness conclusions
 - Alternative approaches (e.g. MI) have become more popular among practitioners
- Guidelines on missing data handling in CEA have started to appear in the literature
 - The analysis should be based on plausible assumption for the missing data mechanism
 - The choice of the method should fit with the assumed mechanism
 - Sensitivity analysis should be conducted to assess the robustness of the conclusions to alternative assumptions

Current solutions to deal with HTA data

Alternative strategies have been proposed to deal with the typical complexities of HTA data:

Current solutions to deal with HTA data

Alternative strategies have been proposed to deal with the typical complexities of HTA data:

- Seemingly unrelated regression or proper joint modelling allow to capture the correlation between the outcomes (Willan et al. (2004). Health economics, 13(5), 461-475)
- Alternative parametric distributions (e.g. Beta or Gamma) improve the model fit to skewed data (Basu et al. (2012). Medical Decision Making, 32(1), 56-69)
- Two-part regression/hurdle models deal with spikes in the observed data (Gabrio et al. (2019). Statistics in medicine, 38(8), 1399-1420)

Current solutions to deal with HTA data

Alternative strategies have been proposed to deal with the typical complexities of HTA data:

- Seemingly unrelated regression or proper joint modelling allow to capture the correlation between the outcomes (Willan et al. (2004). Health economics, 13(5), 461-475)
- Alternative parametric distributions (e.g. Beta or Gamma) improve the model fit to skewed data (Basu et al. (2012). Medical Decision Making, 32(1), 56-69)
- Two-part regression/hurdle models deal with spikes in the observed data (Gabrio et al. (2019). Statistics in medicine, 38(8), 1399-1420)

These methods are almost exclusively implemented at the level of QALYs/total costs to simplify the model specification. However, this strategy:

- Is inefficient as information from incomplete cases is lost
- Is potentially biased, unless the observed cases are representative of the study population (MAR)

Part 3

A longitudinal missingness model in HTA

Back to Table of content

Motivation

- ILD are subject to some complexities that are typically ignored by the "standard" approach, which could lead to biased results
- A Bayesian approach allows to increase model complexity to jointly account for these with relatively little expansion to the basic model
- MAR can be used as reference assumption but plausible MNAR departures should be explored in sensitivity analysis
- Possible to expand the modelling framework to a longitudinal setting to handle missingness more efficiently

- Let $Y_{ij} = (U_{ij}, C_{ij})$ be the vector of utility and cost variables available for the *i*-th person at the *j*-th time in the study
- Let $R_{ij} = (R_{ij}^u, R_{ij}^c)$ be the corresponding vector of missingness indicators, e.g. $R_{ij}^u = \mathbb{I}(U_{ij} \text{is obs})$, and let
 - $Y_r = (Y_{ij} : R_{ij} = 1)$ denote the observed responses
 - ${m Y}_{m{ar{r}}}=(Y_{ij}:R_{ij}=0)$ denote the missing responses

- Let $Y_{ij} = (U_{ij}, C_{ij})$ be the vector of utility and cost variables available for the *i*-th person at the *j*-th time in the study
- Let $R_{ij}=(R^u_{ij},R^c_{ij})$ be the corresponding vector of missingness indicators, e.g. $R^u_{ij}=\mathbb{I}(U_{ij}\text{is obs})$, and let
 - $\mathbf{Y_r} = (Y_{ij}: R_{ij} = 1)$ denote the observed responses
 - $Y_{\bar{r}} = (Y_{ij} : R_{ij} = 0)$ denote the missing responses
- Define a joint probability model $p({m y},{m r}\mid {m \omega})$ under a benchmark missing data assumption:
 - Often this is MAR, i.e. when $p(r \mid y, \psi) = p(r \mid y_r, \psi)$

- Let $Y_{ij} = (U_{ij}, C_{ij})$ be the vector of utility and cost variables available for the *i*-th person at the *j*-th time in the study
- Let $R_{ij}=(R^u_{ij},R^c_{ij})$ be the corresponding vector of missingness indicators, e.g. $R^u_{ij}=\mathbb{I}(U_{ij}\text{is obs})$, and let
 - $\mathbf{Y_r} = (Y_{ij} : R_{ij} = 1)$ denote the observed responses
 - $Y_{\bar{r}} = (Y_{ij} : R_{ij} = 0)$ denote the missing responses
- Define a joint probability model $p(\boldsymbol{y}, \boldsymbol{r} \mid \boldsymbol{\omega})$ under a benchmark missing data assumption:
 - Often this is MAR, i.e. when $p(r \mid y, \psi) = p(r \mid y_r, \psi)$
 - If we use an individual summary function of r, e.g. d(r), such that $p(r \mid y, d(r), \kappa) = p(r \mid y_r, d(r), \kappa)$, then this defines a Partial MAR assumption, with $\kappa \in \psi$

- Let $Y_{ij} = (U_{ij}, C_{ij})$ be the vector of utility and cost variables available for the *i*-th person at the *j*-th time in the study
- Let $R_{ij}=(R^u_{ij},R^c_{ij})$ be the corresponding vector of missingness indicators, e.g. $R^u_{ij}=\mathbb{I}(U_{ij}\text{is obs})$, and let
 - $\mathbf{Y_r} = (Y_{ij} : R_{ij} = 1)$ denote the observed responses
 - $Y_{\bar{r}} = (Y_{ij} : R_{ij} = 0)$ denote the missing responses
- Define a joint probability model $p(\boldsymbol{y}, \boldsymbol{r} \mid \boldsymbol{\omega})$ under a benchmark missing data assumption:
 - Often this is MAR, i.e. when $p(r \mid y, \psi) = p(r \mid y_r, \psi)$
 - If we use an individual summary function of r, e.g. d(r), such that $p(r \mid y, d(r), \kappa) = p(r \mid y_r, d(r), \kappa)$, then this defines a Partial MAR assumption, with $\kappa \in \psi$
 - An intuitive choice for $d({m r})$ is the ${f dropout\ time}$, i.e. time of the last observed response for each individual

- Let $Y_{ij} = (U_{ij}, C_{ij})$ be the vector of utility and cost variables available for the *i*-th person at the *j*-th time in the study
- Let $R_{ij}=(R^u_{ij},R^c_{ij})$ be the corresponding vector of missingness indicators, e.g. $R^u_{ij}=\mathbb{I}(U_{ij}$ is obs), and let
 - $Y_r = (Y_{ij} : R_{ij} = 1)$ denote the observed responses
 - $Y_{\bar{r}} = (Y_{ij} : R_{ij} = 0)$ denote the missing responses
- Define a joint probability model $p(\boldsymbol{y}, \boldsymbol{r} \mid \boldsymbol{\omega})$ under a benchmark missing data assumption:
 - Often this is MAR, i.e. when $p(r \mid y, \psi) = p(r \mid y_r, \psi)$
 - If we use an individual summary function of r, e.g. d(r), such that $p(r \mid y, d(r), \kappa) = p(r \mid y_r, d(r), \kappa)$, then this defines a Partial MAR assumption, with $\kappa \in \psi$
 - An intuitive choice for $d({m r})$ is the **dropout time**, i.e. time of the last observed response for each individual
 - If intermittent missingness is not informative, then inferences only require a model for p(y,d(r))

• To allow a MNAR analysis we use a PMM specification and rely on a PMAR assumption, conditional on dropout time d(r), to express the joint model as

$$p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}) = p(\boldsymbol{y}_{\bar{\boldsymbol{r}}} \mid \boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}), \boldsymbol{\omega}_E) p(\boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}_O)$$

- $p(y_{\bar{r}} \mid y_r, d(r), \omega_E)$ is the extrapolation distribution (not identified)
- $p(m{y_r}, d(m{r}) \mid m{\omega}_O)$ is the observed data distribution (identified)

• To allow a MNAR analysis we use a PMM specification and rely on a PMAR assumption, conditional on dropout time $d(\mathbf{r})$, to express the joint model as

$$p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}) = p(\boldsymbol{y}_{\bar{\boldsymbol{r}}} \mid \boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}), \boldsymbol{\omega}_E) p(\boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}_O)$$

- $p(m{y_{ar{r}}} \mid m{y_r}, d(m{r}), m{\omega}_E)$ is the extrapolation distribution (not identified)
- $p(m{y_r}, d(m{r}) \mid m{\omega}_O)$ is the observed data distribution (identified)
- Problem: Since we have a bivariate outcome y=(u,c), then dropout time may differ between the types of responses, i.e. we have $d(r^u)$ and $d(r^c)$

ullet To allow a MNAR analysis we use a PMM specification and rely on a PMAR assumption, conditional on dropout time $d(m{r})$, to express the joint model as

$$p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}) = p(\boldsymbol{y}_{\bar{\boldsymbol{r}}} \mid \boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}), \boldsymbol{\omega}_E) p(\boldsymbol{y}_{\boldsymbol{r}}, d(\boldsymbol{r}) \mid \boldsymbol{\omega}_O)$$

- $p(m{y_{ar{r}}} \mid m{y_r}, d(m{r}), m{\omega}_E)$ is the extrapolation distribution (not identified)
- $p(m{y_r}, d(m{r}) \mid m{\omega}_O)$ is the observed data distribution (identified)
- Problem: Since we have a bivariate outcome y=(u,c), then dropout time may differ between the types of responses, i.e. we have $d(\mathbf{r}^u)$ and $d(\mathbf{r}^c)$
- Solution: Define two new dropout indicators for each individual
 - $d^{min} = \min(d({m r}^u), d({m r}^c))$ minimum of the two indicators
 - $d^{max} = \max(d(m{r}^u), d(m{r}^c))$ maximum of the two indicators
- Use these in the model to specify PMAR conditional on two aggregated patterns: 1) $d^{min}=d^{max}$; 2) $d^{min}\neq d^{max}$

- The joint model $p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega})$ can be split into five components:
- 1 The model for the patterns and for the completers:

$$p(d(\boldsymbol{r}) \mid \boldsymbol{\pi}) \left[p(\boldsymbol{y} \mid \boldsymbol{r} = \boldsymbol{1}, \boldsymbol{\lambda}) \right]^{\mathbb{I}(d^{min} = d^{max} = J)}$$

- The joint model $p(\boldsymbol{y},d(\boldsymbol{r})\mid \boldsymbol{\omega})$ can be split into five components:
- 1 The model for the patterns and for the completers:

$$p(d(r) \mid \boldsymbol{\pi}) \left[p(\boldsymbol{y} \mid \boldsymbol{r} = \boldsymbol{1}, \boldsymbol{\lambda}) \right]^{\mathbb{I}(d^{min} = d^{max} = J)}$$

2 The model for y_r when $d^{min} = d^{max}$:

$$\left[\prod_{d^{min}=d^{max}}p(\boldsymbol{y_r}\mid\boldsymbol{r}\neq\boldsymbol{1},\boldsymbol{d},\boldsymbol{\eta})\right]^{\mathbb{I}(d^{min}=d^{max}<\boldsymbol{J})}$$

- The joint model $p(\boldsymbol{y},d(\boldsymbol{r})\mid \boldsymbol{\omega})$ can be split into five components:
- 1 The model for the patterns and for the completers:

$$p(d(\boldsymbol{r}) \mid \boldsymbol{\pi}) \left[p(\boldsymbol{y} \mid \boldsymbol{r} = \boldsymbol{1}, \boldsymbol{\lambda}) \right]^{\mathbb{I}(d^{min} = d^{max} = J)}$$

2 The model for y_r when $d^{min} = d^{max}$:

$$\left[\prod_{d^{min}=d^{max}} p(\boldsymbol{y_r} \mid \boldsymbol{r} \neq \boldsymbol{1}, \boldsymbol{d}, \boldsymbol{\eta})\right]^{\mathbb{I}(d^{min}=d^{max} < J)}$$

3 The model for y_r when $d^{min} \neq d^{max}$:

$$\left[\prod_{d^{min} \neq d^{max}} p(\boldsymbol{y_r} \mid \boldsymbol{r} \neq \boldsymbol{1}, \boldsymbol{d}, \boldsymbol{v})\right]^{\mathbb{I}(d^{min} \neq d^{max} < J)}$$

- The joint model $p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega})$ can be split into five components:
- 4 The model for $y_{\bar{r}}$ when $d^{min} = d^{max}$:

$$\left[\prod_{d^{min}=d^{max}} p(\boldsymbol{y_{\bar{r}}} \mid \boldsymbol{y_r}, r \neq 1, d, \boldsymbol{\xi})\right]^{\mathbb{I}(d^{min}=d^{max} < J)}$$

- The joint model $p(\boldsymbol{y},d(\boldsymbol{r})\mid \boldsymbol{\omega})$ can be split into five components:
- 4 The model for $y_{\bar{r}}$ when $d^{min} = d^{max}$:

$$\left[\prod_{d^{min}=d^{max}} p(\boldsymbol{y_{\bar{r}}} \mid \boldsymbol{y_r}, r \neq 1, d, \boldsymbol{\xi})\right]^{\mathbb{I}(d^{min}=d^{max} < J)}$$

5 The model for $y_{\bar{r}}$ when $d^{min} \neq d^{max}$:

$$\left[\prod_{d^{min} \neq d^{max}} p(\boldsymbol{y_{\bar{r}}} \mid \boldsymbol{y_{r}}, r \neq 1, d, \boldsymbol{\xi})\right]^{\mathbb{I}(d^{min} \neq d^{max} < J)}$$

- The joint model $p(\boldsymbol{y}, d(\boldsymbol{r}) \mid \boldsymbol{\omega})$ can be split into five components:
- 4 The model for $y_{\bar{r}}$ when $d^{min} = d^{max}$:

$$\left[\prod_{d^{min}=d^{max}}p(\boldsymbol{y_{\bar{r}}}\mid\boldsymbol{y_{r}},\boldsymbol{r}\neq\boldsymbol{1},\boldsymbol{d},\boldsymbol{\xi})\right]^{\mathbb{I}(d^{min}=d^{max}<\boldsymbol{J})}$$

5 The model for $y_{\bar{r}}$ when $d^{min} \neq d^{max}$:

$$\left[\prod_{d^{min} \neq d^{max}} p(\boldsymbol{y_{\bar{r}}} \mid \boldsymbol{y_{r}}, r \neq 1, d, \boldsymbol{\xi})\right]^{\mathbb{I}(d^{min} \neq d^{max} < J)}$$

• This representation is used to define the identification strategy of $p(y_{\bar{r}} \mid y_r, d(r))$ through identifying restrictions and sensitivity parameters

• Model $D_i = (D_i^{min}, D_i^{max})$ using a multinomial distribution with dropout probabilities π_{t_i} defined on $\{1, \ldots, J^2\}$, where $J^2 =$ number of dropout patterns

- Model $D_i = (D_i^{min}, D_i^{max})$ using a multinomial distribution with dropout probabilities π_{t_i} defined on $\{1, \dots, J^2\}$, where $J^2 =$ number of dropout patterns
- The prior on π_{t_i} incorporates prior knowledge about the expected dropout probabilities for CEA studies:

$$\pi_{t_i} \sim \operatorname{Dirichlet}\left(1-x, \frac{x/2}{J-1}, \dots, \frac{x/2}{J-1}, \frac{x/2}{(J^2-J)}, \dots, \frac{x/2}{(J^2-J)}\right),$$

- Model $D_i = (D_i^{min}, D_i^{max})$ using a multinomial distribution with dropout probabilities π_{t_i} defined on $\{1,\ldots,J^2\}$, where $J^2 =$ number of dropout patterns
- The prior on π_{t_i} incorporates prior knowledge about the expected dropout probabilities for CEA studies:

$$\pi_{t_i} \sim \operatorname{Dirichlet}\left(1-x, \frac{x/2}{J-1}, \dots, \frac{x/2}{J-1}, \frac{x/2}{(J^2-J)}, \dots, \frac{x/2}{(J^2-J)}\right),$$

- 1-x is the prior probability for completing the study (given an expected dropout rate of x%)
- $\frac{x/2}{J-1}$ is the prior dropout probability for each of the J-1 patterns where $D_i^{min}=D_i^{max}$
- $\frac{x/2}{(J^2-J)}$ is the prior dropout probability for each of the J^2-J patterns where $D_i^{min}\neq D_i^{max}$

- Model $D_i = (D_i^{min}, D_i^{max})$ using a multinomial distribution with dropout probabilities π_{t_i} defined on $\{1,\ldots,J^2\}$, where $J^2 =$ number of dropout patterns
- The prior on π_{t_i} incorporates prior knowledge about the expected dropout probabilities for CEA studies:

$$\pi_{t_i} \sim \operatorname{Dirichlet}\left(1-x, \frac{x/2}{J-1}, \dots, \frac{x/2}{J-1}, \frac{x/2}{(J^2-J)}, \dots, \frac{x/2}{(J^2-J)}\right),$$

- 1-x is the prior probability for completing the study (given an expected dropout rate of x%)
- $-\frac{x/2}{J-1}$ is the prior dropout probability for each of the J-1 patterns where $D_i^{min}=D_i^{max}$
- $\frac{x/2}{(J^2-J)}$ is the prior dropout probability for each of the J^2-J patterns where $D_i^{min}\neq D_i^{max}$
- Alternative: a noninformative Dirichlet(1, ..., 1)

- We choose a nonparametric approach as it allows to:
 - weaken distributional assumptions
 - account for more complex functional forms (e.g. non-linearity)

- We choose a nonparametric approach as it allows to:
 - weaken distributional assumptions
 - account for more complex functional forms (e.g. non-linearity)
- We model the observed responses $y_{ij} = (u_{ij}, c_{ij})$ through a **Dirichlet process** mixture of normals (Escobar et al., 1995)

$$\begin{split} \boldsymbol{y}_i &\sim \mathsf{Normal}\left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\right), \\ (\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) &\sim G, \\ G &\sim DP(\alpha, G_0). \end{split}$$

– G is an uncountable set of Dirichlet processes, indexed by the baseline distribution G_0 and the concentration parameter α

• Dependence is introduced using the **stick-breaking representation** of each element in this set (Rasmussen, 2000), which allows to re-write and approximate the model as a finite mixture of $k=1,\ldots,K$ normals

$$oldsymbol{y}_i \sim \sum_{k=1}^K
u^{(k)} \mathsf{Normal}\left(oldsymbol{\mu}^{(k)}, oldsymbol{\Sigma}^{(k)}
ight),$$

Where
$$\nu^{(k)} = V^{(k)} \prod_{j < k} \left(1 - V^{(j)}\right)$$
 and $V^{(k)} \sim \mathrm{Beta}(1,\alpha)$

- When K=1, the model corresponds to a multivariate normal
- When K large, the approximation to G is improved.

• Dependence is introduced using the **stick-breaking representation** of each element in this set (Rasmussen, 2000), which allows to re-write and approximate the model as a finite mixture of $k=1,\ldots,K$ normals

$$oldsymbol{y}_i \sim \sum_{k=1}^K
u^{(k)} \mathsf{Normal}\left(oldsymbol{\mu}^{(k)}, oldsymbol{\Sigma}^{(k)}
ight),$$

Where
$$\nu^{(k)} = V^{(k)} \prod_{j < k} \left(1 - V^{(j)}\right)$$
 and $V^{(k)} \sim \mathrm{Beta}(1,\alpha)$

- When K=1, the model corresponds to a multivariate normal
- When K large, the approximation to G is improved.
- Can be reparameterised using the **generalised autoregressive coefficients** (GARP) and **innovation variances** (IV) decomposition of MVN within each mixture component k (Taddy, 2008)

ullet Express the joint normal distribution of y_i as the product of a sequence of normal distributions

- ullet Express the joint normal distribution of $oldsymbol{y}_i$ as the product of a sequence of normal distributions
- Assuming a first-order Markov dependence structure

$$p(y_i) = f^{(k)}(y_i) = f_1^{(k)}(y_{i1}) \prod_{j=2}^J f_j^{(k)}(y_{ij} \mid y_{ij-1}),$$

- $-\ f_1^{(k)}(m{y}_{i1})$ is the density of the bivariate distribution at j=1 (baseline)
- $-f_j^{(k)}(y_{ij} \mid y_{ij-1})$ is the density of the bivariate response y_{ij} at time j for subjects who have their responses observed at time j-1 conditional on y_{ij-1}

Identification strategy - benchmark scenario

- We identify $p(y_{\bar{r}} \mid y_{r}, d(r))$ under a benchmark assumption using identifying restrictions, from which deviations are explored via sensitivity parameters (Daniels et al., 2008)
- We impose different restrictions for each component of $p(y_{\bar{r}} \mid y_r, d(r))$ conditional on the dropout patterns $d = (d^{min}, d^{max})$

Identification strategy - benchmark scenario

- We identify $p(y_{\bar{r}} \mid y_{r}, d(r))$ under a benchmark assumption using identifying restrictions, from which deviations are explored via sensitivity parameters (Daniels et al., 2008)
- We impose different restrictions for each component of $p(y_{\bar{r}} \mid y_{r}, d(r))$ conditional on the dropout patterns $d = (d^{min}, d^{max})$
 - For $d^{min}=d^{max}$, we impose the MAR restrictions (Molenberghs et al., 2007)
 - For $d^{min} \neq d^{max}$, the unidentified distributions at $d^{min} < j \leq d^{max}$ are identified using all the observed distributions at j up to d^{max}
 - For $d^{min}\neq d^{max},$ the unidentified distributions at time $j>d^{max}$ are identified using the MAR restrictions for j,\ldots,J
- The unidentified distributions at $j>d^{max}$ for the patterns $d^{min}=d^{max}$ and $d^{min}\neq d^{max}$, and those at $d^{min}< j< d^{max}$ for the patterns $d^{min}\neq d^{max}$ are identified using a mixture over the distributions at the same time for all the identified patterns $s=j,\ldots,J$ and $s=j,\ldots,d^{max}$, respectively.

 The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements
- Explore MNAR departures from the benchmark using time-specific location shifts $\Delta_j = (\Delta^u_j, \Delta^c_j)$ sensitivity parameters

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements
- Explore MNAR departures from the benchmark using time-specific location shifts $\Delta_j = (\Delta^u_i, \Delta^c_j)$ sensitivity parameters
- Objective: assess the robustness of results to plausible deviations from the benchmark scenario under partial ignorability conditional on $d = (d^{min}, d^{max})$

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements
- Explore MNAR departures from the benchmark using time-specific location shifts $\Delta_j = (\Delta^u_i, \Delta^c_j)$ sensitivity parameters
- Objective: assess the robustness of results to plausible deviations from the benchmark scenario under partial ignorability conditional on $d = (d^{min}, d^{max})$
- Strategy: incorporate Δ_j within the conditional means of the extrapolation distributions identified under the bechmark scenario

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements
- Explore MNAR departures from the benchmark using time-specific location shifts $\Delta_j = (\Delta^u_i, \Delta^c_j)$ sensitivity parameters
- Objective: assess the robustness of results to *plausible* deviations from the benchmark scenario under partial ignorability conditional on $d = (d^{min}, d^{max})$
- ullet Strategy: incorporate $oldsymbol{\Delta}_j$ within the conditional means of the extrapolation distributions identified under the bechmark scenario
- ullet Elicitation: use available knowledge/information from available data/experts to elicit informative priors on $oldsymbol{\Delta}_j$

- The benchmark assumption is a reasonable starting point but observed data may not fully explain missingness:
 - Patients who leave the study may have worse health states (i.e. lower utilities) than those that continue on, even after conditioning on their past measurements
- Explore MNAR departures from the benchmark using time-specific location shifts $\Delta_j = (\Delta_j^u, \Delta_j^c)$ sensitivity parameters
- Objective: assess the robustness of results to *plausible* deviations from the benchmark scenario under partial ignorability conditional on $d = (d^{min}, d^{max})$
- Strategy: incorporate Δ_j within the conditional means of the extrapolation distributions identified under the bechmark scenario
- ullet Elicitation: use available knowledge/information from available data/experts to elicit informative priors on $oldsymbol{\Delta}_j$
 - Δ_j represent expected deviations of mean y=(u,c) values at time $j=2,3,\ldots$ after dropout compared to estimates obtained from observed data
 - Thanks to identification strategy, it is possible to elicit different values of Δ_j for each dropout pattern $d = (d^{min}, d^{max})$

Sensitivity analysis

• For $d^{min} = d^{max}$ at $j > d^{max}$:

$$f_{d,j}(\boldsymbol{y}_{ij} \mid \boldsymbol{y}_{ij-1}, d^{min}, d^{max}) \equiv \tilde{f}_{d,j}(\boldsymbol{y}_{ij} + \boldsymbol{\Delta}_j \mid \boldsymbol{y}_{ij-1}, d^{min}, d^{max}),$$

• $\Delta_j = (\Delta_j^u, \Delta_j^c)$

Sensitivity analysis

• For $d^{min} \neq d^{max}$ at $d^{min} < j \le d^{max}$ and $j > d^{max}$:

$$f_{d,j}(\boldsymbol{y}_{ij} \mid \boldsymbol{y}_{ij-1}, d^{min}, d^{max}) \equiv \tilde{f}_{d,j}(\boldsymbol{y}_{ij} + \boldsymbol{\Delta}_j \mid \boldsymbol{y}_{ij-1}, d^{min}, d^{max}),$$

•
$$\Delta_j=(\Delta_j^u,0)$$
 if $(d^{min}=d^u,d^{max}=d^c)$; $\Delta_j=(0,\Delta_j^c)$ if $(d^{min}=d^c,d^{max}=d^u)$

Posterior computation

- Posterior computation is carried out at each iteration of the posterior distribution
 - 1 We draw samples (π, θ) from the posterior given the observed data $(y_r, d(r))$ and augmenting the missing data $y_{\bar{r}}$
 - 2 We calculate the distributions of desired functionals of $p(\boldsymbol{y} \mid \boldsymbol{\omega})$

Posterior computation

- Posterior computation is carried out at each iteration of the posterior distribution
 - 1 We draw samples (π, θ) from the posterior given the observed data $(y_r, d(r))$ and augmenting the missing data $y_{\bar{r}}$
 - 2 We calculate the distributions of desired functionals of $p(\boldsymbol{y} \mid \boldsymbol{\omega})$
- Specifically, we are interested in the computation of:

$$\mathsf{E}\left[\mathcal{T}(\boldsymbol{Y})\mid \boldsymbol{\omega}\right] = \int \mathcal{T}(\boldsymbol{y})p(\boldsymbol{y}\mid \boldsymbol{\omega})d\boldsymbol{y},$$

where $\mathcal{T}(Y)$ is some transformation such that $\mathcal{T}_j(Y_j) = \mathcal{T}_j(Y_j \mid \overline{Y}_{j-1}, \Delta_j)$ at the j-th time in the study. For example,

Posterior computation

- Posterior computation is carried out at each iteration of the posterior distribution
 - 1 We draw samples (π, θ) from the posterior given the observed data $(y_r, d(r))$ and augmenting the missing data $y_{\bar{r}}$
 - 2 We calculate the distributions of desired functionals of $p(\boldsymbol{y} \mid \boldsymbol{\omega})$
- Specifically, we are interested in the computation of:

$$\mathsf{E}\left[\mathcal{T}(\boldsymbol{Y})\mid\boldsymbol{\omega}\right] = \int \mathcal{T}(\boldsymbol{y})p(\boldsymbol{y}\mid\boldsymbol{\omega})d\boldsymbol{y},$$

where $\mathcal{T}(Y)$ is some transformation such that $\mathcal{T}_j(Y_j) = \mathcal{T}_j(Y_j \mid \overline{Y}_{j-1}, \Delta_j)$ at the j-th time in the study. For example,

- If $T_j(Y_j \mid \overline{Y}_{j-1}, \mathbf{0}) = Y_j$, then deviations of Δ_j from $\mathbf{0}$ represent deviations of the assumed model from MAR
- Although E $[\mathcal{T}(Y) \mid \omega]$ are not directly available, we can derive them by Monte Carlo integration

• Priors on $\Delta_j=(\Delta_j^u,\Delta_j^c)$ are calibrated using information on the scale of the data as an intuitive starting point (Linero et al., 2015) – e.g. residual standard deviations for u and c pulled across time

- Priors on $\Delta_j = (\Delta_j^u, \Delta_j^c)$ are calibrated using information on the scale of the data as an intuitive starting point (Linero et al., 2015) e.g. residual standard deviations for u and c pulled across time
 - Assumption: It is thought unlikely that deviations from the benchmark would exceed a standard deviation for both outcomes

- Priors on $\Delta_j = (\Delta_j^u, \Delta_j^c)$ are calibrated using information on the scale of the data as an intuitive starting point (Linero et al., 2015) e.g. residual standard deviations for u and c pulled across time
 - Assumption: It is thought unlikely that deviations from the benchmark would exceed a standard deviation for both outcomes
- We marginally specify the prior distributions of each sensitivity parameter Δ_j using normal distributions based on a linear AR(1) or first order mean autocorrelation structure:

$$oldsymbol{\Delta}_{j} \sim \mathsf{Normal}\left(oldsymbol{\Delta}_{0} + oldsymbol{
ho}oldsymbol{\Delta}_{j-1}, oldsymbol{\sigma}_{\Delta_{j}}
ight),$$

- $-\rho = (\rho^u, \rho^c)$ is the two-vector of autoregressive coefficients capturing the temporal dependence between the shifts after dropout
- $\pmb{\sigma}_{\Delta_j}=(\sigma^u_{\Delta_j},\sigma^c_{\Delta_j})$ is set to ${\sf sd}(\pmb{y})$, obtained from the observed \pmb{u} and \pmb{c}
- Set $\mid oldsymbol{
 ho} \mid < \mathbf{1}$ and start the process at $oldsymbol{\Delta}_j = \mathbf{0}$ (dropout time)

• We specify the multivariate dependence in terms of a correlation matrix parametrised by ρ_{time} , which determines the correlation between Δ_j

- We specify the multivariate dependence in terms of a correlation matrix parametrised by ρ_{time} , which determines the correlation between Δ_j
- We elicit a first-order autoregressive structure:

$$oldsymbol{\Omega} = egin{pmatrix} 1 & oldsymbol{
ho}_1 & \cdots & oldsymbol{
ho}_{|j-s|} \ oldsymbol{
ho}_1 & 1 & \cdots & dots \ dots & \cdots & 1 & dots \ oldsymbol{
ho}_{|j-s|} & \cdots & \cdots & 1 \end{pmatrix}$$

- We specify the multivariate dependence in terms of a correlation matrix parametrised by ρ_{time} , which determines the correlation between Δ_j
- We elicit a first-order autoregressive structure:

$$oldsymbol{\Omega} = egin{pmatrix} 1 & oldsymbol{
ho}_1 & \cdots & oldsymbol{
ho}_{|j-s|} \ oldsymbol{
ho}_1 & 1 & \cdots & dots \ dots & \cdots & 1 & dots \ oldsymbol{
ho}_{|j-s|} & \cdots & \cdots & 1 \end{pmatrix}$$

• We explore alternative assumptions about the autocorrelation structure by giving ho point-mass priors and varying the priors over the grid $\{0.1, 0.5, 0.9\}$

- We specify the multivariate dependence in terms of a correlation matrix parametrised by ρ_{time} , which determines the correlation between Δ_j
- We elicit a first-order autoregressive structure:

$$\mathbf{\Omega} = \begin{pmatrix} 1 & \boldsymbol{\rho}_1 & \cdots & \boldsymbol{\rho}_{|j-s|} \\ \boldsymbol{\rho}_1 & 1 & \cdots & \vdots \\ \vdots & \cdots & 1 & \vdots \\ \boldsymbol{\rho}_{|j-s|} & \cdots & \cdots & 1 \end{pmatrix}$$

- We explore alternative assumptions about the autocorrelation structure by giving ho point-mass priors and varying the priors over the grid $\{0.1,0.5,0.9\}$
 - Assumption: individuals are associated with a progressive increase in their mean utility decrement/cost increment

Part 4

Application to the PBS study

Back to Table of content

 Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to TAU for individuals suffering from intellectual disability and challenging behaviour

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to TAU for individuals suffering from intellectual disability and challenging behaviour
- Utilities (EQ-5D) and costs (clinic records) are collected at baseline, 6 and 12 months follow-up

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to TAU for individuals suffering from intellectual disability and challenging behaviour
- Utilities (EQ-5D) and costs (clinic records) are collected at baseline, 6 and 12 months follow-up

Time	Control	(n ₁ =136)	Intervention (n_2 =108)		
	observ	ved (%)	observed (%)		
	utilities	itilities costs		costs	
Baseline	127 (93%)	136 (100%)	103 (95%)	108 (100%)	
6 months	119 (86%)	128 (94%)	102 (94%)	103 (95%)	
12 months	125 (92%)	130 (96%)	103 (95%)	104 (96%)	
complete cases	108	(79%)	96 (89%)		

The PBS study - Implementation

- We implement our nonparametric framework to the PBS data and:
 - we compare the fit of the proposed model to alternative parametric choices from the literature via information criteria
 - we assess the fit of the proposed model to the observed data under the benchmark scenario via posterior predictive checks
- We compare the results and CEA conclusions obtained across 6 alternative missingness assumptions
- MAR: fit model without PMM (ignorable MAR)
- IR MAR: fit model with PMM using $d = d^{min}$ (MAR restrictions)
- IR PMAR: benchmark scenario (partial MAR restrictions)
- MNAR: benchmark + $\Delta_i \neq 0$ under 3 scenarios
 - low temporal correlation: $\rho = 0.1$ (MNAR L)
 - medium temporal correlation: $\rho = 0.5$ (MNAR M)
 - high temporal correlation: $\rho = 0.9$ (MNAR H)

The PBS study – model assessment (PIC)

 We compute three relative measures of predictive accuracy to compare the fit of the model to alternative specifications: WAIC(Watanabe et al., 2010); LOOIC(Vehtari et al., 2017); LPML(Geisser et al, 1979)

The PBS study – model assessment (PIC)

- We compute three relative measures of predictive accuracy to compare the fit of the model to alternative specifications: WAIC(Watanabe et al., 2010); LOOIC(Vehtari et al., 2017); LPML(Geisser et al, 1979)
- We compare the DPM (under MAR) with three parametric specifications:
 - 1 A multivariate Normal fitted jointly to all variables (MVN)
 - 2 A multivariate parametric model proposed by Gabrio et al. (2019), using Betas for the utility and Gammas for the cost variables (BG)
 - 3 A similar model to 2 but replacing Gammas with LogNormals for the costs (BLN)

The PBS study – model assessment (PIC)

- We compute three relative measures of predictive accuracy to compare the fit of the model to alternative specifications: WAIC(Watanabe et al., 2010); LOOIC(Vehtari et al., 2017); LPML(Geisser et al, 1979)
- We compare the DPM (under MAR) with three parametric specifications:
 - 1 A multivariate Normal fitted jointly to all variables (MVN)
 - 2 A multivariate parametric model proposed by Gabrio et al. (2019), using Betas for the utility and Gammas for the cost variables (BG)
 - 3 A similar model to 2 but replacing Gammas with LogNormals for the costs (BLN)

Model	WAIC (lpd; $p_{ m waic}$)	LOOIC (lpd; $p_{ m loo}$)	LPML
MVN	13513 (-6757; 150)	13327 (-6664; 138)	-6663
BG	12696 (-6348, 198)	12518 (-6259; 156)	-6260
BLN	11850 (-5925, 346)	10918 (-5459; 258)	-5460
DPM	8154 (-4077, 361)	8155 (-4077; 361)	-4077

The PBS study – model assessment (PPC – control)

• We also assess the absolute fit of the model using posterior predictive checks based on data replications from the posterior predictive $p(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{r}} \mid \boldsymbol{y_r}, \boldsymbol{r}, \boldsymbol{\omega})$.

The PBS study – model assessment (PPC - intervention)

• We also assess the absolute fit of the model using posterior predictive checks based on data replications from the posterior predictive $p(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{r}} \mid \boldsymbol{y_r}, \boldsymbol{r}, \boldsymbol{\omega})$.

The PBS study – posterior means and 95% HPD (control)

The PBS study – posterior means and 95% HPD (intervention)

The PBS study – posterior aggregated means and 95% HPD

• Using the posterior of μ^u_{jt} and μ^c_{jt} , we can then calculate the aggregated QALY and total cost means μ_{et} and μ_{ct} over the study period through the formulae:

$$\mu_{et} = \sum_{j=1}^J (\mu_{jt}^u + \mu_{j-1t}^u) \frac{\delta_j}{2} \quad \text{and} \quad \mu_{ct} = \sum_{j=1}^J \mu_{cjt}$$

The PBS study – posterior aggregated means and 95% HPD

• Using the posterior of μ^u_{jt} and μ^c_{jt} , we can then calculate the aggregated QALY and total cost means μ_{et} and μ_{ct} over the study period through the formulae:

$$\mu_{et} = \sum_{j=1}^J (\mu_{jt}^u + \mu_{j-1t}^u) rac{\delta_j}{2}$$
 and $\mu_{ct} = \sum_{j=1}^J \mu_{cjt}$

ullet We then summarise μ_{et} and μ_{ct} under each missingess scenario

The PBS study – posterior aggregated means and 95% HPD

• Using the posterior of μ^u_{jt} and μ^c_{jt} , we can then calculate the aggregated QALY and total cost means μ_{et} and μ_{ct} over the study period through the formulae:

$$\mu_{et} = \sum_{j=1}^J (\mu_{jt}^u + \mu_{j-1t}^u) \frac{\delta_j}{2} \quad \text{and} \quad \mu_{ct} = \sum_{j=1}^J \mu_{cjt}$$

ullet We then summarise μ_{et} and μ_{ct} under each missingess scenario

Scenario	μ_{e1}		μ_{e2}		μ_{c1}		μ_{c2}	
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI
MAR	0.50	(0.49;0.50)	0.58	(0.56;0.60)	3894	(3685;4254)	5575	(5351;5742)
IR MAR	0.50	(0.49; 0.52)	0.57	(0.55;0.60)	4223	(3972;4591)	5627	(5288;5944)
IR PMAR	0.50	(0.48; 0.52)	0.57	(0.55;0.60)	4222	(3973;4592)	5627	(5288;5944)
MNAR L	0.49	(0.47;0.52)	0.56	(0.53;0.58)	4313	(3850;4722)	5689	(5225;6135)
MNAR M	0.49	(0.47;0.52)	0.56	(0.53;0.59)	4311	(3863;4692)	5675	(5188;6143)
MNAR H	0.49	(0.47;0.52)	0.56	(0.53;0.59)	4309	(3875;4695)	5672	(5183;6156)

The PBS study – economic evaluation (CEAC)

Part 5

Conclusions

Back to Table of content

Discussion

- Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses a nonparametric approach to account for complexities that otherwise may bias inferences and mislead the economic assessment
 - Can be used to specify complex models in a "relatively easy way"

Discussion

- Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses a nonparametric approach to account for complexities that otherwise may bias inferences and mislead the economic assessment
 - Can be used to specify complex models in a "relatively easy way"
- Extension of standard "imputation methods"
 - Performs the estimation and imputation tasks simultaneously
 - Fits joint models for missing data in a relatively easy way
 - Uses probabilistic appraoches that can be implemented in standard software (e.g. OpenBUGS, JAGS or STAN)

Discussion

- Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses a nonparametric approach to account for complexities that otherwise may bias inferences and mislead the economic assessment
 - Can be used to specify complex models in a "relatively easy way"
- Extension of standard "imputation methods"
 - Performs the estimation and imputation tasks simultaneously
 - Fits joint models for missing data in a relatively easy way
 - Uses probabilistic appraoches that can be implemented in standard software (e.g. OpenBUGS, JAGS or STAN)
- Principled incorporation of external evidence through priors
 - Crucial for conducting sensitivity analysis to MNAR
 - Useful in small/pilot trials where there is limited evidence

Heel erg bedankt!