Connected Stocks via Business Groups: Evidence from an Emerging Market

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

July, 2022

Table of Contents

- Motivation
- 2 Literature
 - Related Literature
- 3 Empirical Studies
 - Pair composition
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- 5 Evidence for correlated trading
 - Turnover
 - Institutional Imbalance
- 6 Conclusion

Motivation

- Does common ownership raise stock return co-movement?
 - We use daily records of block-holder ownership for firms (not restricted to mutual funds ownership)
- Would business groups be able to raise the co-movement of stock returns?
- What is the mechanism?

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications.
 - Portfolio selection
 - Hedging
 - Asset pricing
 - Covariance is a significant input in risk measurement models
 - Such as Value-at-Risk
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- LiteratureRelated Literature
- Empirical Studies
 - Pair composition
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- 5 Evidence for correlated trading
 - Turnover
 - Institutional Imbalance
- 6 Conclusion

Related Literature

Our work

- ullet We connect stocks through the common ownership by blockholders (ownership > 1%) for direct common ownership
- We connect stocks through the ultimate owner for indirect common ownership
- Common ownership or business group (indirect common ownership) ?

Table of Contents

- Motivation
- 2 Literature
 - Related Literature
- 3 Empirical Studies
 - Pair composition
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- 5 Evidence for correlated trading
 - Turnover
 - Institutional Imbalance
- 6 Conclusion

Pair composition

• Firms with at least one common owner:

• Pair in the Business Group:

Pair Composition and Business Group

Pair in the Same Business Group

Pair Composition and Business Group

Pair in the Separate Business Group

Data Summary

- Data: 2014/03/25 (1393/01/06) 2020/03/18 (1398/12/28)
 - 72 Months
 - 618 firm including 562 firms with common owners

Year	2015	2016	2017	2018	2019	2020	Average
No. of Firms	337	356	392	479	499	560	437
No. of Blockholders	1563	1656	1893	2510	2701	2991	2219
No. of Groups	37	40	42	43	39	42	40
No. of Firms in Groups	233	254	278	311	323	357	292
Ave. Number of group Members	6	6	7	7	8	8	7
Ave. ownership of each Blockholders (%)	17	18	18	17	18	19	17
Med. ownership of each Blockholders (%)	5	4	4	4	4	5	4
Ave. Number of Owners	7	7	7	7	7	6	6
Med. Number of Owners	5	5	5	6	5	5	5
Ave. Block. Ownership (%)	77	77	76	76	75	72	75

Pair Composition

- Pairs consist of two firms with at least one common owner
 - 17522 unique pairs which is 11% of possible pairs ($\frac{554*553}{2} = 153181$)

	mean	min	Median	max
Number of unique paris	6738	5176	6625	8002

Year	2015	2016	2017	2018	2019	2020	Average
No. of Pairs	9051	8980	9288	11147	11199	12171	10306
No. of Pairs not in Groups	3293	2979	3058	4427	4168	4571	3749
No. of Pairs not in the same Group	4727	4993	5129	5400	5464	5770	5247
No. of Pairs in the same Group	850	857	949	1126	1316	1556	1109
Ave. Number of Common owner	1.18	1.18	1.17	1.17	1.17	1.15	1.17

Number of Pairs

Measuring Common-ownership

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

$$FCAP = \frac{50\% + 50\%}{100\% + 100\%} = 0.5$$

$$\mathsf{MFCAP} = \frac{\sqrt{50\%} + \sqrt{50\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.71$$

SQRT

$$\textit{MFCAP}_{ij,t} = [\frac{\sum_{f=1}^{F} (\sqrt{S_{i,t}^{f} P_{i,t}} + \sqrt{S_{j,t}^{f} P_{j,t}})}{\sqrt{S_{i,t} P_{i,t}} + \sqrt{S_{j,t} P_{j,t}}}]^{2}$$

$$FCAP = \frac{90\% + 10\%}{100\% + 100\%} = 0.5$$

$$\mathsf{MFCAP} = \frac{\sqrt{90\%} + \sqrt{10\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.63$$

More example

Measuring Common-ownership

		MFCAP					FCAP				
	mean	std	min	median	max	mean	std	min	median	max	
All	0.15	0.24	0.00	0.06	4.62	0.12	0.16	0.0	0.05	0.97	
Same Group	0.47	0.41	0.00	0.41	4.04	0.38	0.25	0.0	0.37	0.97	
Different Group	0.10	0.16	0.00	0.04	2.90	0.08	0.11	0.0	0.04	0.97	
Same Industry	0.34	0.41	0.01	0.18	4.04	0.25	0.24	0.0	0.16	0.96	
Different Industry	0.12	0.19	0.00	0.05	4.62	0.10	0.14	0.0	0.05	0.97	

FCA's time series

FCA's time series

MFCAP vs. FCAP Distributions

Correlation Calculation

4 Factor + Industry

- Frist Step:
 - 4 Factor + Industry :

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t}$$
$$+ \beta_{HML,i} HML_t + \beta_{SMB,i} SMB_t + \beta_{UMD,i} UMD_t + \boxed{\varepsilon_{i,t}}$$

 Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

	mean	std	min	median	max
CAPM + Industry	0.019	0.127	-0.925	0.015	0.902
4 Factor	0.032	0.136	-0.877	0.023	0.837
4 Factor + Industry	0.015	0.125	-0.903	0.012	0.755

Controls

- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- **SameSize**: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket :The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- CrossOwnership: The maximum percent of cross-ownership between two firms

Table of Contents

- - Related Literature
- - Pair composition
 - Measuring Common-ownership

 - Controls
- Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- - Turnover
 - Institutional Imbalance

Co-movement and Common Ownership

Estimation model

Estimation Model:

$$\rho_{ij,t+1} = \beta_0 + \beta_1 * \mathsf{MFCAP}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ + \beta_3 * \mathsf{MFCAP}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ + \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1}$$
 (1)

- We use Fama-MacBeth method
- Adjust standard errors by Newey and West adjustment with 4 lags $(4(70/100)^{\frac{2}{9}}=3.69\sim4)$

Methodology

Model Estimation

		Dependent V	ariable: Futu	ıre Pairs's C	omovement	
	(1)	(2)	(3)	(4)	(5)	(6)
MFCAP*	0.00600*** (8.10)	0.00328*** (4.87)			0.00104 (1.68)	0.000929 (1.53)
SameGroup	(0.10)	()	0.0358*** (9.99)	0.0254*** (8.45)	0.0242*** (8.21)	0.0219*** (7.02)
SameIndustry		0.0267*** (7.39)		0.0216*** (6.81)	0.0212*** (6.72)	0.0215*** (6.80)
SameBM		0.0224*** (6.41)		0.0213*** (6.09)	0.0214*** (6.16)	0.0199*** (5.77)
SameSize		0.0123** (3.24)		0.0143*** (3.85)	0.0138*** (3.71)	0.0254*** (5.56)
CrossOwnership		0.0600*** (5.50)		0.0300* (2.36)	0.0316* (2.48)	0.0377** (2.93)
Constant	0.0142*** (12.80)	0.0204*** (8.91)	0.0103*** (9.42)	0.0187*** (7.99)	0.0188*** (8.04)	0.0280*** (9.43)
Size Control Observations	No 389591	No 389591	No 389591	No 389591	No 389591	Yes 389591

Model Estimation

Normalized Rank-Transformed

	Dependent V	/ariable: Futi	ure Pairs's C	omovement
	(1)	(2)	(3)	(4)
MFCAP*	0.00915***	-0.000114	-0.000161	0.000309
	(6.64)	(-0.18)	(-0.26)	(0.63)
SameGroup			0.0100**	0.00749
			(2.97)	(1.99)
$MFCAP^* \times SameGroup$			0.0123***	0.0118***
			(10.04)	(9.69)
Sub-sample	SameGroup	Others	All	All
Business Group FE	No	No	No	Yes
Observations	47076	342515	389591	389591

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Co-movement and Common Ownership

High level of common ownership

Fama-MacBeth Estimation

High level of common ownership

		Depe	ndent Variab	ole: Future Pa	irs's Comove	ment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
SameGroup	0.0254***		0.0249***			0.00477	0.00252
	(8.45)		(8.21)			(1.32)	(0.66)
(MFCAP > 75th Percentile)		0.00660***	0.000777	0.0230***	-0.00258*	-0.00157	-0.000513
		(5.48)	(0.73)	(7.09)	(-2.00)	(-1.29)	(-0.46)
(MFCAP > 75th Percentile) × SameGroup						0.0248***	0.0237***
						(7.24)	(7.34)
Sub-sample	All	All	All	SameGroup	Others	All	All
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Business Group FE	No	No	No	No	No	No	Yes
Observations	389591	389591	389591	47076	342515	389591	389591

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

All pairs

		D	ependent Vari	able: Future Pa	airs' co-move	ment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
SameGroup	0.0184***		0.0185***			0.0154***	0.0138***
	(8.46)		(9.00)			(6.00)	(5.26)
MFCAP*		0.000404	-0.0000630	0.00191	-0.000289	-0.000832**	-0.000314
		(1.56)	(-0.26)	(1.97)	(-1.19)	(-3.36)	(-1.27)
$MFCAP^* \times SameGroup$						0.00281**	0.00261**
						(3.43)	(3.12)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sub-Sample	Total	Total	Total	SameGroups	Others	Total	Total
Business Group FE	No	No	No	No	No	No	Yes
Observations	4566594	4566594	4566594	94035	4472559	4566594	4566594

t statistics in parentheses

 $^{^*}$ p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
 - Related Literature
- 3 Empirical Studies
 - Pair composition
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- 5 Evidence for correlated trading
 - Turnover
 - Institutional Imbalance
- 6 Conclusion

Turnover

Koch et al. (2016)

$$\Delta \mathsf{Turnover} = \mathsf{In}(\frac{\mathsf{Turnover}_{i,t}}{\mathsf{Turnover}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

	Depe	ndent Varia	ıble: ΔTurı	nover _i
	(1)	(2)	(3)	(4)
∆Turnover _{Market}	0.416***	0.326***	0.252***	0.228***
	(12.25)	(5.35)	(6.41)	(4.24)
$\Delta Turnover_{Industry-i}$	0.142***	0.213***	0.0335	0.167**
	(3.79)	(6.29)	(1.34)	(2.87)
Δ Turnover _{Group-i}			0.330***	0.218***
·			(12.74)	(3.80)
Control	No	Yes	No	Yes
Observations	854662	851772	333789	331263
R^2	0.285	0.543	0.433	0.712

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business group and correlation in Turnover

		Depende	nt Variable:	Monthly Corre	lation of Del	ta turnover	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
SameGroup	0.0177*** (5.56)		0.0176*** (5.24)			0.0144*** (4.39)	0.0167*** (5.26)
MFCAP*		0.00168 (1.99)	0.0000714 (0.09)	0.00110 (0.57)	-0.000141 (-0.15)	-0.000201 (-0.21)	-0.00108 (-0.92)
$MFCAP^* \times SameGroup$						0.00347 (1.42)	0.00395 (1.63)
Sub-sample	All	All	All	SameGroup	Others	All	All
Business Group FE	No	No	No	No	No	No	Yes
Observations	327447	327447	327447	40605	286842	327447	327447

Correlation in Turnover and Co-movement

	Depe	ndent Varial	ole: Future Pa	irs's Comove	ement
	(1)	(2)	(3)	(4)	(5)
$\rho(\Delta Turnover)_{t+1}$	0.0516***	0.0486***	0.0849***	0.0423***	0.0492***
	(10.50)	(10.29)	(14.01)	(9.00)	(10.41)
$ ho_{t}$	0.0412***	0.0387***	0.113***	0.0262***	0.0375***
	(11.74)	(11.35)	(16.37)	(7.47)	(11.95)
Control	No	Yes	Yes	Yes	Yes
Sub-sample	Total	Total	SameGroup	Others	Total
Business Group FE	No	No	No	No	Yes
Observations	338895	338895	41955	296940	338895

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Abnormal Monthly Turnover

- Turnover_{i,t} = $\alpha_0 + \alpha_1 \times \text{Turnover}_{i,avg} + \alpha_2 \times \text{Turnover}_{m,t} + \alpha_3 \times \text{Turnover}_{ind,t} + \boxed{\varepsilon_{i,t}}$
 - Turnover_{i,t}: Monthly Turnover (Average of daily turnovers in each month)
 - Turnover_{i,avg}: Annual average of monthly turnover
 - Turnover $_{m,t}$: Market turnover
 - Turnover_{ind,t}: Industry turnover
- Assign Abnormal Turnover to the business groups

	$Firm \times Month$	mean	std	min	25%	50%	75%	max
Ungrouped	8206	-0.004	0.783	-4.702	-0.471	-0.013	0.466	5.061
Grouped	18022	0.002	0.712	-5.997	-0.416	-0.009	0.424	3.392

Abnormal Monthly Turnover

Standard error

	$Group \times Month$	mean	std	min	25%	50%	75%	max
Ungrouped	72	0.776	0.113	0.504	0.685	0.781	0.867	1.030
Grouped	2441	0.601	0.313	0.001	0.403	0.567	0.763	3.274

Low abnormal monthly turnover standard error

	Dependent Variable: Future Pairs's Comovement							
	(1)	(2)	(3)	(4)	(5)	(6)		
SameGroup	0.0229*** (7.20)	0.0241*** (8.00)			0.0141*** (3.60)	0.0114** (2.93)		
LowTurnoverStd		0.00233** (2.65)	0.0296*** (5.72)	-0.000636 (-0.60)	-0.000473 (-0.45)	0.00284 (1.88)		
$LowTurnoverStd \times SameGroup$					0.0279*** (4.78)	0.0260*** (4.77)		
Sub-sample	Total	Total	SameGroup	Others	Total	Total		
Business Group FE	No	No	No	No	No	Yes		
Observations	389591	389591	47076	342515	389591	389591		

Institutional Imbalance

Seasholes and Wu (2007)

$$Imbalance_{ins} = \frac{Buy_{ins} - Sell_{ins}}{Buy_{ins} + Sell_{ins}}$$

	$Group \times Month$	mean	std	min	25%	50%	75%	max
Ungrouped	20896	0.004	0.626	-1.0	-0.478	0.013	0.462	1.0
Grouped	12177	-0.043	0.574	-1.0	-0.453	-0.011	0.330	1.0

Institutional Imbalance std

Standard error

	$Group \times Month$	mean	std	min	25%	50%	75%	max
Ungrouped	72	0.619	0.054	0.481	0.594	0.627	0.655	0.734
Grouped	2062	0.497	0.247	0.000	0.334	0.495	0.636	1.414

Low Institutional Imbalance Group

		Depender	nt Variable: Fu	uture Pairs's C	omovement	
	(1)	(2)	(3)	(4)	(5)	(6)
SameGroup	0.0229***	0.0228***			0.00974**	0.00969*
	(7.20)	(7.14)			(2.70)	(2.53)
LowImbalanceStd		-0.00163	0.0263***	-0.00683***	-0.00577***	-0.00114
		(-1.51)	(4.72)	(-6.17)	(-5.26)	(-0.64)
${\sf LowImbalanceStd} \times {\sf SameGroup}$					0.0330***	0.0290**
					(5.91)	(5.15)
Sub-sample	Total	Total	SameGroup	Others	Total	Total
Business Group FE	No	No	No	No	No	Yes
Observations	389591	389591	47076	342515	389591	389591

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
 - Related Literature
- 3 Empirical Studies
 - Pair composition
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Results
 - Common ownership & Co-movement
 - High level of common ownership
 - All pairs
- 5 Evidence for correlated trading
 - Turnover
 - Institutional Imbalance
- 6 Conclusion

Conclusion

- Direct common ownership affects firms' co-movement.
- Firms in the business groups co-move more than other pairs
- Direct common ownership only matters for firms in the business groups.
- In the Business groups, firms are traded in the same time and also in the same direction.

References I

- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513–1565.
- Barberis, N. and Shleifer, A. (2003). Style investing. Journal of financial Economics, 68(2):161-199.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. Journal of Banking & Finance, 40:80–96.
- David, J. M. and Simonovska, I. (2016). Correlated beliefs, returns, and stock market volatility. Journal of International Economics. 99:S58–S77.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. *Kelley School of Business Research Paper*, (16-84).
- Gilje, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. *Journal of Financial Economics*, 137(1):152–178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Grullon, G., Underwood, S., and Weston, J. P. (2014). Comovement and investment banking networks. Journal of Financial Economics. 113(1):73–89.
- Hameed, A. and Xie, J. (2019). Preference for dividends and return comovement. Journal of Financial Economics, 132(1):103–125.
- Hansen, R. G. and Lott Jr, J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. *Journal of Financial and Quantitative Analysis*, pages 43–68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. *Journal of Financial Economics*, 99(1):27–39.
- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.

References II

- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. Journal of Financial Economics, 134(2):400-418.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. Journal of Financial Economics. 92(2):182-204.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies, 29(8):1943-1974.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. Financial Review, 52(4):563-595.
- Seasholes, M. S. and Wu, G. (2007). Predictable behavior, profits, and attention. Journal of Empirical Finance, 14(5):590-610.
- Shiller, R. J. (1989). Comovements in stock prices and comovements in dividends. The Journal of Finance, 44(3):719-729.

Table of Contents

- Appendix I
- 8 Appendix I
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail
- 9 Appendix II

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

Example

For better observation, assume that

- $\alpha + \beta = 100$
- both firm have equal market cap

Comparison of three methods for calculating common ownership

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
α_1	1/3	20	10	20	10	5	1
β_1	1/3	10	10	20	10	5	1
α_2	1/3	10	80	20	10	5	1
β_2	1/3	20	80	20	10	5	1
α_3	1/3	70	10	20	10	5	1
eta_3	1/3	70	10	20	10	5	1
SQRT	3	2.56	2.33	1.8	0.9	0.45	0.09
SUM	1	1	1	0.6	0.3	0.15	0.03
Quadratic	3	1.85	1.52	8.33	33.33	133.33	3333.33

Comparison

- For better comparison we relax previous assumptions:
 - Two Firms with different market caps.

			(α_1,β_1)	(α_2,β_2)		
	(10,40),(10,40) SQRT SUM		(15,35)	(15,35)	(20,30),(20,30)	
MarketCap _X MarketCap _y			SQRT	SUM	SQRT	SUM
1	0.90	0.50	0.96	0.50	0.99	0.50
2	0.80	0.40	0.89	0.43	0.96	0.47
3	0.75	0.35	0.85	0.40	0.94	0.45
4	0.71	0.32	0.83	0.38	0.92	0.44
5	0.69	0.30	0.81	0.37	0.91	0.43
6	0.67	0.29	0.80	0.36	0.91	0.43
7	0.65	0.28	0.79	0.35	0.90	0.43
8	0.64	0.27	0.78	0.34	0.90	0.42
9	0.63	0.26	0.77	0.34	0.89	0.42
10	0.62	0.25	0.76	0.34	0.89	0.42

Comparison

Comparison of two methods for calculating common ownership

Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

Common Ownership measure

		Dependent Variable: Future Monthly Correlation of 4F+Industry Residuals							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Common Ownership Measure	0.00370***	0.00325***	0.00155*	0.00109	0.000333	-0.000105	0.000550	0.000283	
	(5.58)	(4.97)	(2.61)	(1.84)	(0.54)	(-0.17)	(1.07)	(0.58)	
SameGroup			0.0229***	0.0234***	0.0100**	0.0103**	0.00626	0.00668	
			(7.89)	(7.93)	(3.26)	(3.17)	(1.79)	(1.79)	
Common Ownership Measure × SameGroup					0.0134***	0.0135***	0.0127***	0.0126**	
					(9.47)	(10.65)	(9.23)	(9.71)	
Observations	398818	398818	398818	398818	398818	398818	398818	398818	
Group FE	No	No	No	No	No	No	Yes	Yes	
Measurement	Sum	Sum	Sum	Sum	Sum	SQRT	Sum	SQRT	
R^2	0.00433	0.00427	0.00518	0.00515	0.00554	0.00551	0.0182	0.0182	

t statistics in parentheses

 $^{^*}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Table of Contents

- 7 Appendix
- 8 Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail
- 9 Appendix III

Main Effect

Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

• Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - ② Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity = $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{i,j,\mathbf{t}}, n_{i,j,\mathbf{t}}^{down})}{T_{i,j}}$
- $2 Correlation = \frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$SYNCH_{i,t} = \beta_0 + \beta_1 Excess_{i,t} + \beta_2 UCF_{i,t} + \sum_k \beta_k Control_{i,t}^k$$

$$+ Industry Dummies + Year Dummies + \varepsilon_{i,t}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

Connected Stocks

JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

•
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

q

$$ho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

Commonownership measurements

Model-based measures

•
$$\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$$
 Harford et al. (2011)

- Bi-directional
- Pair-level measure of common ownership
- Its potential impact on managerial incentives
- Measure not necessarily increases when the relative ownership increases
- Accounts only for an investor's relative holdings

$$\bullet \ \ \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} \mathsf{s}_{j} \mathsf{s}_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \ \ \mathsf{Azar} \ \mathsf{et} \ \mathsf{al.} \ \mathsf{(2018)}$$

- Capture a specific type of externality
- Measured at the industry level
- Assumes that investors are fully informed about the externalities
- $\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020)
 - Bi-directional
 - Less information
 - Not sensitive to the scope
 - Measure increases when the relative ownership of firm A increases

Commonownership measurements

Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017),He et al. (2019)
- $Overlap_{Min}(A, B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{AP}(A,B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- $Overlap_{HL}(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)
- Unappealing properties
 - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
 - Both Overlap_{Count} and Overlap_{AP} are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

Table of Contents

- 7 Appendix
- 8 Appendix I
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail
- 9 Appendix III

Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
 - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
 - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

Fama-MacBeth (1973)

- Two Step Regression
 - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
 - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
 - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

