Merging precomputation and scalar multiplication

Nicolas Méloni

February 25th, 2010

1 / 18

- Introduction
- Classic Algorithms
- The art of recycling
- Finding better sets of digits

- Introduction
- Classic Algorithms
- The art of recycling
- 4 Finding better sets of digits

If you please ... draw me an elliptic curve (over \mathbb{R})

group law of an elliptic curve over ${\mathbb R}$

Elliptic curve defined over a finite field

Definition

- \mathbb{K} a characteristic p field (with p > 3)
- $P = (x, y) \in \mathbb{K}^2$ a point satisfaying $y^2 = x^3 + ax + b$, with $a, b \in \mathbb{K}$

Addition formulae

$$P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = P_1 + P_2$$

•
$$x_3 = (\frac{y_2 - y_1}{x_2 - x_1})^2 - x_1 - x_2$$

•
$$y_3 = (\frac{y_2 - y_1}{x_2 - x_1})(x_1 - x_3) - y_1$$

Point scalar multiplication

Point multiplication

- $k \in \mathbb{N}, P \in E(K)$
- $[k]P = \underbrace{P + \cdots + P}_{k \text{ fois}}$

Main issue

Performing this operation as fast as possible

Three levels of arithmetic

- Finite field
- Point addition
- Scalar point multiplication

- Introduction
- Classic Algorithms
- The art of recycling
- 4) Finding better sets of digits

Fast scalar multiplication

Double-and-add

- $k = \sum_{i=0}^{n-1} k_i 2^i$
- n-1 doublings and n/2 additions (on average)

Computation of 21P

•
$$k = 21 = 2^4 + 2^2 + 2^0 = 10101_2 = k_4 k_3 k_2 k_1 k_0$$

Double-and-add

- Initialization: $Q \leftarrow P$
- $b_3 = 0 : Q \leftarrow 2Q$
- $b_2 = 1 : Q \leftarrow 2Q + P$ (Q = 5P)
- $b_1 = 0 : Q \leftarrow 2Q$ (Q = 10P)
- $b_0 = 1 : Q \leftarrow 2Q + P$ (Q = 21P)

(Q = 2P)

Non Adjacent Form (NAF)

- $k_i \in \{-1,0,1\}$
- $k = 31 = 11111_2 = 10000\overline{1}_{NAF}$
- at most n doublings and $\frac{n}{3}$ additions (on average)

Windows method: wNAF

- $|k_i| < 2^{w-1}$
- k = 267 = 100001011
- 2-NAF: 1 0 0 0 1 0 $\overline{1}$ 0 $\overline{1}$
- 3-NAF: 1 0 0 0 0 1 0 0 3
- 4-NAF: 1 0 0 0 1 0 0 0 5
- 5-NAF: 1 0 0 0 0 0 0 0 11

9 / 18

Method

- Compute and store $P, 3P, \ldots, 2^{w-1}P$
- Perform a Double-and-Add like scheme
- # of additions: n/(w+1)
- # of doublings: n w + 1

Going from wNAF to (w + 1)NAF

- Twice as much precomputed points
- # of additions decreased by a factor w/(w+1)
- # of doublings decreased by 1!

- Introduction
- Classic Algorithms
- 3 The art of recycling
- 4 Finding better sets of digits

Simple example: $k = 10011k_{n-5} \dots k_0$

Using dictionary $\{1,3,5\}$

- recoding $k = 1003k_{n-5}...k_0$
- compute 2P, 3P, 5P
- $(100)_2P = 8P, (1000)_2P = 16P, (1003)_2P = 19P$
- finish with double-and-add

Recycling approach

- compute 2P, 4P, 8P, 9P, 18P and 19P using double-and-add
- store *P*, 9*P*, 19*P*
- use dicionary $\{1, 9, 19\}$ during the recoding of k
- finish with double-and-add

Comparisons

Using dictionary $\{1,3,5\}$

- three point doublings and three point additions
- average density 2/9

Using dictionary $\{1, 9, 19\}$

- four point doublings and two point additions
- average density 2/9

We have traded a point addition for a doubling!

- Introduction
- Classic Algorithms
- The art of recycling
- Finding better sets of digits

Finding better sets of digits

Using Double-and-Add

- $\{1, 2, 4, 8, 9, 18, 19\}$ does not provide a *good* set because of too many doublings
- $2=(10)_2, 4=(100)_2$ and $8=(1000)_2$ are not useful

Idea

- Use chains with more additions
- Choice: euclidean addition chains
- $\{1, 2, 3, 5, 7, 12, 19\}$ lead to the dictionary $\{1, 3, 5, 7, 19\}$
- average density $4/21(\simeq 0.19) < 2/9(\simeq 0.22)$

New Scalar Multiplication Scheme

$$k=(k_{t-1}\ldots k_0)_2$$

- $k_H = |k/2^{t-1}|$ for some I
- $k_I = k k_H * 2^{t-1}$
- find short Euclidean chain $S = (s_1, \dots s_m)$ computing k_H
- use S as a dictionary for the recoding of
- compute $n_H P$ using chain S and store the values $P, s_1 P, s_2 P, \dots, s_m P$
- compute $(k_H * 2^{t-l} + k_L)P$ using the double-and-add alg. starting from k_HP .

Example

$$k = 1626832774 = 193 \times 2^{23} + 7831430$$

- $k_H = 193$
- $k_L = 7831430$
- S = 1, 2, 3, 5, 7, 12, 19, 31, 50, 81, 112, 193
- $k_L = (5\ 0\ 0\ 0\ 0\ 0\ -81\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ -1\ 0\ 0\ 0\ 0\ 0\ 3\ 0)_2$
- compute 193P using chain S and store P, 3P, 5P and 81P
- compute $193 \times 2^{23}P + 7831430P$ using the double-and-add alg. starting from 193P.

The end

Any questions?

