## 1 Probability Theory

## 1.1 Elemantary Probability

**Definition 1.1.1** (Cardano's Principle). A be a random outcome of an experiment that may proceed in various ways. Assume each of these ways is **equally** likely, then, probability P[A] of outcome A is

$$P[A] = \frac{number\ of\ ways\ leading\ to\ outcome\ A}{number\ of\ ways\ the\ experiment\ can\ be\ proceeded} \tag{1}$$

## 1.1.1 Basic principles of Counting

• Permutation:

$$A_n^k = \frac{n!}{(n-k)!} \tag{2}$$

• Combination:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} \tag{3}$$

• Permutation of k Indisguishable Objects:

$$\frac{n!}{n_1! n_2! n_3! \cdots n_k!} = \binom{n}{n_1} \cdot \binom{n - n_1}{n_2} \cdots \binom{n - (n_1 + n_2 + \dots + n_{k-1})}{n_k}$$
(4)

Remark:

In permutation of k indistinguishable objects, the elements has noorder within a group but are different from each other; the groups either has order or are different from each other.

Example:

Consider 10 balls, 5 red, 3 green and 2 blue. How many ways can they be arranged on a line?

$$\frac{10!}{5! \cdot 3! \cdot 2!} = 2520 \tag{5}$$

## 1.1.2 Sample Points, Sample Space and $\sigma$ -Field

**Definition 1.1.2** (Sample Points). Mathematical objects are called sample points.

**Definition 1.1.3** (Sample Space). The sample space S is large enough to accommodate all the sample points.

**Definition 1.1.4** (Event). An outcome in the sense of Cardano's principle is interpreted as a subset A of a sample space S abd called an event.

**Definition 1.1.5** (Mutually exclusive). Two events  $A_1$ ,  $A_2$  are called mutual exclusive if  $A_1 \cap A_2 = \emptyset$