Sujet 1.

- * Exercice 1.
 - 1. (Cours) Démontrer que $\forall a \in R$, $\cos(2a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$.
 - 2. En déduire les valeurs exactes de

$$\cos\left(\frac{\pi}{8}\right)$$
, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{8}\right)$

- **Exercice 2.** Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x 1}{e^x + 1}$.
 - 1. Démontrer que f est une bijection de \mathbb{R} sur un intervalle que l'on précisera.
 - 2. Déterminer la réciproque f^{-1} de f.
- * Exercice 3. Résoudre dans \mathbb{R}_+^* l'équation (E) : $x^{\sqrt{x}} = \sqrt{x}^x$.

Sujet 2.

★ Exercice 1.

- 1. (Cours) Énoncer proprement le théorème de la bijection.
- 2. On considère la fonction f définie par $f(x) = -1 + e^{x-1} + \ln x$.
 - i) Donner le domaine de définition D_f de f.
 - ii) Démontrer que f est bijective de D_f sur un intervalle que l'on précisera.
 - iii) Calculer $f^{-1}(0)$.
- * Exercice 2. Résoudre dans \mathbb{R} l'inéquation (I) : $\cos\left(4x \frac{\pi}{3}\right) > -\frac{\sqrt{3}}{2}$
- * Exercice 3. Calculer les valeurs exactes de :

$$\cos\left(\frac{538\pi}{3}\right)$$
, $\sin\left(\frac{123\pi}{6}\right)$, $\tan\left(-\frac{77}{4}\right)$

Sujet 3.

* Exercice 1

- 1. (Cours) Donner la définition de la fonction arctan, préciser sa parité, dérivée, ses variations et limites.
- 2. Résoudre dans \mathbb{R} l'équation (E) : $\arctan(x^2 2x) = \frac{3\pi}{4}$.
- * Exercice 2. Soit f la fonction définie par $f(x) = \ln(|\sin(\frac{\pi}{2}x)|)$.
 - 1. Donner le domaine de définition de f puis étudier sa parité.
 - 2. Montrer que f est 2-périodique.
- **Exercice 3.** Résoudre dans \mathbb{R} l'équation (E): $2\cos^2(x) + 9\cos(x) + 4 = 0$.