Emmanuel Filiot*

Jean-François Raskin*

Nicolas Mazzocchi*

Sriram Sankaranarayanan†

Ashutosh Trivedi†

Université libre de Bruxelles
 † University Colorado Boulder

CONCUR 2020

Weighted
Transducers
for Robustness
Verification

Language inclusion problem

▶ Classical $\forall t \ t \in P \implies t \in S$

Language inclusion problem

- ▶ Classical $\forall t \ t \in P \implies t \in S$
- ▶ ν -Robust $\forall t_1, t_2 \quad (N(t_1, t_2) \leq \nu \land t_1 \in P) \implies t_2 \in S$

Accepting run

Noise model

$$u_{in} = a_0 \dots a_n \stackrel{\textit{noise}}{\leadsto} u_{out} = w_0 \dots w_n$$
 $N(u_{in}, u_{out}) = \text{cost}(x_0, \dots, x_n)$
 $\text{cost: } \mathbb{N}, \dots, \mathbb{N} \to \mathbb{Q}_{>0}$

Noise model

$$u_{in} = a_0 \dots a_n \overset{\text{noise}}{\leadsto} u_{out} = w_0 \dots w_n$$

$$N(u_{in}, u_{out}) = \text{cost}(x_0, \dots, x_n)$$

$$\text{cost} \colon \mathbb{N}, \dots, \mathbb{N} \to \mathbb{Q}_{>0}$$

Non-determinism

Accepting run

Noise model

$$u_{in} = a_0 \dots a_n \overset{\text{noise}}{\leadsto} u_{out} = w_0 \dots w_n$$

$$N(u_{in}, u_{out}) = \text{cost}(x_0, \dots, x_n)$$

$$\text{cost} \colon \mathbb{N}, \dots, \mathbb{N} \to \mathbb{Q}_{>0}$$

$$N(u, u) = 0$$

Non-determinism

-

Neighborhood functions

Edit distance

$$Sum = x_0 + \cdots + x_n$$
Mohri, CIAA'02

Neighborhood functions

Edit distance R E L E □ V A N T least deletes

$$Sum = x_0 + \dots + x_n$$
Mohri, CIAA'02

$$\mathbf{Avg} = \frac{x_0 + \dots + x_n}{n+1}$$

Neighborhood functions

Edit distance

$$Sum = x_0 + \dots + x_n$$
Mohri, CIAA'02

$$\mathbf{Avg} = \frac{x_0 + \dots + x_n}{n+1}$$

Discounted-sum distance

$$\mathsf{Disc} = \lambda^0 x_0 + \dots + \lambda^n x_n$$
$$\lambda \in \mathbb{Q} \cap (0,1)$$

Robust inclusion

 $\begin{array}{l} \textbf{Input:} \ P,S,N,\nu \\ \textbf{Output:} \ \text{Decide whether} \ P\subseteq_{N,\nu} S \end{array}$

Robust inclusion

Input: P, S, N, ν

Output: Decide whether $P \subseteq_{N,\nu} S$

Monotonicity

$$\nu_2 > \nu_1 \implies P \subseteq_{N,\nu_2} S \implies P \subseteq_{N,\nu_1} S$$

Robust inclusion

Input: P, S, N, ν

Output: Decide whether $P \subseteq_{N,\nu} S$

Threshold synthesis

Input: P, S, N

Output: Compute $\hat{\boldsymbol{\nu}}$ such that $P \subseteq_{N,\hat{\boldsymbol{\nu}}} S$

Monotonicity

$$\nu_2 > \nu_1 \implies P \subseteq_{N,\nu_2} S \implies P \subseteq_{N,\nu_1} S$$

Robust inclusion

Input: P, S, N, ν

Output: Decide whether $P \subseteq_{N,\nu} S$

Threshold synthesis

Input: P, S, N

Output: Compute $\hat{\boldsymbol{\nu}}$ such that $P \subseteq_{N,\hat{\boldsymbol{\nu}}} S$

Kernel synthesis

Input: P, S, N, ν

Output: Compute $\hat{K} \subseteq P$ such that $\hat{K} \subseteq_{N,\nu} S$

Robust inclusion

Example $\{a\}^* \{a\}^* \{b\}^*$

→ 2

	$P\subseteq_{N,\nu} S$
Sum	
Avg	
Disc	

$$\longrightarrow$$
 3

	$P\subseteq_{N,\nu} S$
Sum	
Avg	
Disc	

$$\longrightarrow$$
 3

$$\bigcap$$
 \longrightarrow $+\infty$

	$P\subseteq_{N,\nu} S$
Sum	
Avg	
Disc	

$$\longrightarrow$$
 3

$$\bigcap$$
 \longrightarrow $+\infty$

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right)$
Avg	
Disc	

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right)$
Avg	
Disc	

$$\longrightarrow$$
 1.5

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right)$
Avg	
Disc	

$$\bigcap$$
 1.5

$$\bigcap_{n \to +\infty} \frac{1}{n} \lim_{n \to +\infty} \frac{n+1}{n}$$

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right)$
Avg	
Disc	

$$\longrightarrow$$
 1.5

$$\bigcap_{n \to +\infty} \frac{n+1}{n}$$

	$P\subseteq_{N,\nu} S$
Sum	$\nu \in \left[0, 2\right)$
Avg	$ u \in \left[0, 1\right]$
Disc	

	$P\subseteq_{N,\nu} S$
Sum	$ u \in [0, 2) $
Avg	$\nu \in \left[0, 1\right]$
Disc	

$$\bigcap \longrightarrow 1+2\lambda$$

	$P\subseteq_{N,\nu} S$
Sum	$ u \in [0, 2) $
Avg	$ u \in \left[0, 1\right] $
Disc	

Example

$$\bigcap_{n \to +\infty} \bigcap_{n \to +\infty} \frac{1-\lambda^{n+1}}{1-\lambda} + 2\lambda^{n+1}$$

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right) $
Avg	$ u \in \left[0, 1\right] $
Disc	

Example

$$\begin{array}{ccc}
 & \longrightarrow & 2 \\
 & \longrightarrow & 1+2\lambda \\
 & \longrightarrow & \lim_{n \to +\infty} \frac{1-\lambda^{n+1}}{1-\lambda} + 2\lambda^{n+1}
\end{array}$$

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right) $
Avg	$ u \in \left[0, 1\right] $
Disc	$\nu \in \left[0, \frac{1}{1-\lambda}\right]$

- 1. identify the erroneous outputs automata product
- compute its smallest value Dijkstra, Karp, Alur et al. LATA'13
- 3. determine its feasibility

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right) $
Avg	$ u \in \left[0, 1\right] $
Disc	$\nu \in \left[0, \frac{1}{1-\lambda}\right]$

- 1. identify the erroneous outputs automata product
- compute its smallest value Dijkstra, Karp, Alur et al. LATA'13
- 3. determine its feasibility

	$P\subseteq_{N,\nu} S$
Sum	$ u \in \left[0, 2\right)$
Avg	$ u \in \left[0, 1\right] $
Disc	$\nu \in \left[0, \frac{1}{1-\lambda}\right]$

Robust inclusion: PTIME with P, S given as NFA, DFA

Application

Type-1 Diabetes

Hypoglycemia <70 mg/dl glucose levels for >3h **Hyperglycemia** >300 mg/dl glucose levels for >3h

Application

Type-1 Diabetes

 $\begin{array}{ll} \textbf{Hypoglycemia} & <70 \text{ mg/dl glucose levels for } >3\text{h} \\ \textbf{Hyperglycemia} & >300 \text{ mg/dl glucose levels for } >3\text{h} \\ \end{array}$

Noise: Glucose sensor & Symptoms

Application

Type-1 Diabetes

Hypoglycemia <70 mg/dl glucose levels for >3h **Hyperglycemia** >300 mg/dl glucose levels for >3h

Noise: Glucose sensor & Symptoms

Threshold Synthesis

- Patient glucose record
- **▶** Symptoms

Robust kernel

Sum operation

Robust kernel is regular

$$\begin{split} &\hat{K} = \{u_{in} \in P \mid \forall u_{out} \ N(u_{in}, u_{out}) \leq \nu \Rightarrow u_{out} \in S\} \\ &\overline{\hat{K}} = \{u_{in} \in P \mid \exists u_{out} \ N(u_{in}, u_{out}) \leq \nu \land u_{out} \notin S\} \\ &\overline{\hat{K}} = N_{P, S}^{\leq \nu} \end{split}$$

Sum operation

Robust kernel is regular

$$\begin{split} \hat{K} &= \{u_{in} \in P \mid \forall u_{out} \ N(u_{in}, u_{out}) \leq \nu \Rightarrow u_{out} \in S\} \\ \overline{\hat{K}} &= \{u_{in} \in P \mid \exists u_{out} \ N(u_{in}, u_{out}) \leq \nu \land u_{out} \notin S\} \\ \overline{\hat{K}} &= N_{P, \sharp}^{\leq \nu} \end{split}$$

Weights in \mathbb{N} non-decreasing cost

Cost at runtime

Kernel emptiness is PSPACE-C

Avg operation

Robust kernel is not regular

 $\begin{array}{lll} a\mid a, \ 0 & \text{Let } \nu=1 \\ b\mid b, \ 0 & \text{At most half the input swap} \\ a\mid b, \ 2 & \text{One a remain if $\#(a)>\#(b)$} \end{array}$

Avg operation

Robust kernel is not regular

 $\begin{array}{lll} a\mid a, \ 0 & \text{Let } \nu=1 \\ b\mid b, \ 0 & \text{At most half the input swap} \\ a\mid b, \ 2 & \text{One a remain if } \#(a)>\#(b) \end{array}$

Threshold crossed arbitrarily many times

Cost at runtime

Kernel emptiness is undecidable

Discounted-sum operation

Automata open problem

 $\forall u \quad A_{\textit{Disc}}(u) \leq \nu$ Henzinger et al. CSL'08 & LICS'15

Discounted-sum operation

Cost at runtime

Automata open problem

 $\forall u \quad A_{\it Disc}(u) \leq \nu$ Henzinger et al. CSL'08 & LICS'15

ν -Isolation hypothesis

$$\exists \epsilon orall u \quad egin{cases}
u - \epsilon > A_{Disc}(u) \\
u + \epsilon < A_{Disc}(u)
onumber \end{cases}$$

Discounted-sum operation

Automata open problem

 $\forall u \quad A_{\textit{Disc}}(u) \leq \nu$ Henzinger et al. CSL'08 & LICS'15

ν -Isolation hypothesis

$$\exists \epsilon orall u \quad egin{cases}
u - \epsilon > A_{Disc}(u) \\
u + \epsilon < A_{Disc}(u)
onumber \end{cases}$$

Regular ν -isolated Kernel

$$\overline{\hat{K}} = N_{P, \cancel{S}}^{\leq \nu}$$

Kernel emptiness is decidable

Emmanuel Filiot* Jean-Francois Raskin* Nicolas Mazzocchi* Sriram Sankaranarayanan[†] Ashutosh Trivedi[†]

* Université libre de Bruxelles † University Colorado Boulder

CONCUR 2020

Weighted **Transducers** for Robustness Verification