2022 METŲ PAGRINDINĖS SESIJOS MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	В	C	В	A	A	В	C	C	A	D

II dalis

11.	3
12.	$[-2;5)$ (arba $y \in [-2;5)$, arba $E_f \in [-2;5)$)
13.	BC = 6 (arba 6)
14.1	$x = \pm 5 \text{ (arba } \pm 5\text{)}$
14.2	$x = \pm 120^{\circ} + 360^{\circ}k, k \in \mathbb{Z} \left(x = \pm \frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z} \right)$
15.	$-0.6\left(\text{arba}-\frac{3}{5}\right)$
16.	2 °C (arba 2)
17.1.	$m = \frac{1}{3} \left(\text{arba} \frac{1}{3} \right)$
17.2.	m = -1 (arba -1)
18.	135° $\left(\operatorname{arba}\frac{3\pi}{4}\right)$
19.1.	$x \in (-3; 1) \text{ (arba } (-3; 1))$
19.2.	f(5) = 1 (arba 1)

 $^{^{\}circledR}$ Nacionalinė švietimo agentūra, 2022 m.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		4	
20.1		1	
	$b_7 = b_6 \cdot 0.8 = 1024 \cdot 0.8 = 819.2$		
	Ats.: 819,2	1	Už gautą teisingą atsakymą.
20.2		2	
	$b_1 \cdot 0.8^5 = 1024,$		
	$b_1 = 3125,$	1	Už gautą teisingą pirmąjį sekos narį.
	$S = \frac{3125}{1 - 0.8} = 15625.$	1	Už gautą teisingą atsakymą.
	Ats.: 15625		
20.3		1	
20.5	Nauja seka: $b_1, b_3, b_5,$ $q = \frac{b_3}{b_1} = 0.8^2 = 0.64,$ $S_{nelyginiai} = \frac{3125}{1 - 0.64} = 8680\frac{5}{9}$ Ats.: $8680\frac{5}{9}$ (arba $8680,(5)$)	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		4	
	$\log_3(4-x) + \log_3(22-x) = 5,$ $\log_3((4-x)(22-x)) = 5,$	1	Už teisingai pritaikytą logaritmų savybę
	(4-x)(22-x) = 35,(4-x)(22-x) = 243	1	Už gautą teisingą kvadratinę lygtį
	$x^{2} - 26x - 155 = 0$ $x_{1} = -5, x_{2} = 31.$	1	Už gautus teisingus kvadratinės lygties sprendinius
	$\begin{cases} 4 - x > 0, \\ 22 - x > 0. \end{cases}$	1	Už gautą teisingą atsakymą.
	Skaičius 31 nėra šios sistemos sprendinys.		
	Ats.: -5.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		5	
22.1		1	
	$\angle ABD = \angle ACB$ (duota) $\angle BAD = \angle BAC$ (bendras) Trikampiai ABC ir ADB yra panašieji, pagal 2 kampus.	1	Už teisingą įrodymą.
22.2		2	
22.2	$\frac{AC}{AB} = \frac{AB}{AD},$	1	Už teisingą atitinkamų kraštinių ilgių santykių lygybę.
	$\frac{AC}{AB} = \frac{AB}{\frac{1}{4}AC},$ $\frac{1}{4}AC^2 = AB^2 = 100,$ $AC = 20.$ $Ats.: AC = 20 \text{ (arba 20)}$	1	Už gautą teisingą atsakymą.
22.2		1	
22.3	I hadaa	2	TTV
	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{a} + \overrightarrow{b},$	1	Už teisingai išreikštą vektorių \overrightarrow{AC} .
	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \vec{a} + \vec{b},$ $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BC} - \frac{3}{4}\overrightarrow{AC} =$ $= \vec{b} - \frac{3}{4}(\vec{a} + \vec{b}) = \frac{1}{4}\vec{b} - \frac{3}{4}\vec{a}.$ $\longrightarrow 1 - 3$	1	Už gautą teisingą atsakymą.
	Ats.: $\overrightarrow{BD} = \frac{1}{4}\overrightarrow{b} - \frac{3}{4}\overrightarrow{a}$.		
	$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD},$ $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD},$	1	Už teisingai pritaikytas vektorių sudėties taisykles.
	$\overrightarrow{AD} = \overrightarrow{BD} - \overrightarrow{BA},$ $\overrightarrow{CD} = -3\overrightarrow{AD},$ $\overrightarrow{BD} = \overrightarrow{BC} - 3(\overrightarrow{BD} - \overrightarrow{BA}),$ $4\overrightarrow{BD} = \overrightarrow{BC} - 3\overrightarrow{AB},$ $\overrightarrow{BD} = \frac{1}{4}\overrightarrow{b} - \frac{3}{4}\overrightarrow{a}.$ $Ats.: \overrightarrow{BD} = \frac{1}{4}\overrightarrow{b} - \frac{3}{4}\overrightarrow{a}.$	1	Už gautą teisingą atsakymą.

LYJ	Carron diagon in otrologues	Tažlasi	Vantining of
Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		8	
23.1		1	
	I būdas		
	$f(x) = a(x-3)^2 + 9,$	1	Už teisingą parodymą.
	$0 = a(0-3)^2 + 9,$		
	a=-1,		
	$f(x) = -(x-3)^2 + 9 = 6x - x^2.$		
	II būdas		
	f(x) = a(x-0)(x-6),	1	Už teisingą parodymą.
	9 = a(3-0)(3-6),		
	a=-1,		
	$f(x) = -(x-0)(x-6) = 6x - x^{2}.$		
	III būdas		
	$f(x) = ax^2 + bx + c,$	1	Už teisingą parodymą.
	f(0) = 0, todėl $c = 0$,		
	$\int 36a + 6b = 0,$		
	$\begin{cases} 36a + 6b = 0, \\ 9a + 3b = 9 \end{cases}$		
	a = -1, b = 6.		
	$f(x) = 6x - x^2.$		

Pastaba. Jeigu kandidatas patikrina, kad visi trys duotieji taškai priklauso funkcijos $f(x) = 6x - x^2$ grafikui, taškas jam nėra skiriamas.

23.2		2	
	$S = AB \cdot AD,$	1	Už teisingą AD išraišką per a.
	AD = 6 - 2a,		
	$AB = 6a - a^2,$	1	Už teisingą pagrindimą.
	$S(a) = (6a - a^2)(6 - 2a) = 2a^3 - 18a^2 + 36a.$		
23.3		3	
	$S'(a) = 6a^2 - 36a + 36$	1	Už teisingą išvestinę.
	$6a^2 - 36a + 36 = 0,$	1	Už gautus teisingus kritinius
	$a^2 - 6a + 6 = 0,$		taškus.
	$a_1 = 3 - \sqrt{3}, a_2 = 3 + \sqrt{3}.$		
	$S'(a) \xrightarrow{+} \xrightarrow{-} 3$ $S(a) 0 \xrightarrow{3-\sqrt{3}} 3 \qquad a$	1	Už teisingą pagrindimą, kad funkcija įgyja didžiausią reikšmę, kai $a = 3 - \sqrt{3}$.
	Ats.: $a = 3 - \sqrt{3} \text{ (arba } 3 - \sqrt{3}\text{)}$		
23.4		2	

v	
2022 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA	Pagrindinė sesija
2022 III. MATEMATIKOO TAEGITDIMO DRAMDOG EGZAMINO UZDUOTIEG TERTIMIO INGTRUKCIJA	i agi inumi sesija

$\int_{2}^{5} \left(6x - x^2\right) dx =$	1	Už sudarytą teisingą apibrėžtinį integralą plotui apskaičiuoti.
$= \left(3x^2 - \frac{x^3}{3}\right)\Big _2^5 = 24.$ Ats.: 24.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		4	
24.1		2	
	Kubo briaunos ilgis 6, piramidės aukštinės ilgis H $6^{3} = \frac{1}{3} \cdot 6^{2} \cdot H,$	1	Už teisingą lygtį piramidės aukštinės ilgiui apskaičiuoti.
	H = 18, $SO_1 = 18 + 6 = 24$ Ats.: 24.	1	Už gautą teisingą atsakymą.
24.2		2	
	Tiesės SO ir AA_1 yra lygiagrečios. Atstumas nuo taško S iki tiesės AA_1 yra SM , nes $SM \perp AA_1$ (žr. pav.). $SM = OA$.	1	Už teisingo sprendimo būdo pasirinkimą.
	$OA = \frac{1}{2}AC = \frac{1}{2} \cdot \sqrt{6^2 + 6^2} = 3\sqrt{2}.$ $Ats.: 3\sqrt{2} \left(\text{arba } \frac{\sqrt{72}}{2}, \text{ arba } \sqrt{18} \right).$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		3	
	$f'(x) = e^x + e^{-x},$	1	Už teisingą funkcijos $f(x)$ išvestinę.
	$e^{x} + e^{-x} = e^{x} - e^{-x} + 4,$ $e^{-x} = 2,$	1	Už gautą teisingą rodiklinę lygtį, kurios pavidalas $a^{-x} = b$ arba $a^{x} = b$.
	$-x = \ln 2,$ $x = -\ln 2,$ $Ats.: -\ln 2 \left(\text{arba } \ln \frac{1}{2} \right).$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		6	
26.1.		2	
	Du gretimi šviestuvai gali būti: 1 ir 2, 2 ir 3, 3 ir 4, 4 ir 5, 5 ir 6. Iš viso yra 5 variantai. Taigi $m = 5$. Iš viso parinkti 2 šviestuvus iš 6 turime $\frac{6 \cdot 5}{2} = 15 \text{ variantų. Taigi } n = 15.$	1	Už teisingai nustatytą <i>m</i> arba <i>n</i> reikšmę.
	P(du šviestuvai gretimi) = $\frac{5}{15} = \frac{1}{3}$. Ats.: $\frac{1}{3}$.	1	Už gautą teisingą atsakymą.
26.2.		4	
	Kad išjungti šviestuvai nebūtų gretimi, vienoje pusėje turi būti išjungti trys šviestuvai, kitoje – du.	1	Už supratimą, kaip reikia išjungti penkis negretimus šviestuvus.
	Tris poromis negretimus šviestuvus galime išjungti 4 būdais (arba 1, 3, 5, arba 2, 4, 6, arba 1, 3, 6, arba 1, 4, 6).	1	Už nustatytą teisingą būdų skaičių, kai vienoje pusėje išjungti trys negretimi šviestuvai.
	Du negretimus šviestuvus, nesančius šalia, galime išjungti $C_6^2 - 5 = 10$ būdų.	1	Už nustatytą teisingą būdų skaičių, kai vienoje pusėje išjungti du negretimi šviestuvai.
	Kairėje pusėje galima išjungti tris šviestuvus ir du dešinėje arba du šviestuvus kairėje ir tris dešinėje. Todėl iš viso galimybių yra: $2 \cdot 10 \cdot 4 = 80$. <i>Ats.:</i> 80.	1	Už gautą teisingą atsakymą.

Užd. 27	Sprendimas ir atsakymas	Taškai 4	Vertinimas
	I būdas x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą, t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriu. $xt = 3(x-4)(t-2)$,	1	Už teisingo sprendimo būdo pasirinkimą (nežinomųjų įvedimą ir sudarytą teisingą lygtį arba lygčių sistemą).
	$2xt - 12t - 6x + 24 = 0,$ $t(x - 6) = 3x - 12,$ $t = \frac{3x - 12}{x - 6}$	1	Už vieno nežinomojo išreiškimą kitu.
	$t = \frac{3x - 12}{x - 6} = 3 + \frac{6}{x - 6}$ $x - 6 = 1 \Rightarrow x = 7 \text{ (net.)},$ $x - 6 = 2 \Rightarrow x = 8 \text{ (net.)},$ $x - 6 = 3 \Rightarrow x = 9, t = 5 \Rightarrow xt = 45,$ $x - 6 = 6 \Rightarrow x = 12, t = 4 \Rightarrow xt = 48.$	1	Už bent vieną lygties sprendinių porą.
	Ats.: 48.	1	Už gautą teisingą atsakymą.
	II būdas x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą, t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriu. $xt = 3(x-4)(t-2)$,	1	Už teisingo sprendimo būdo pasirinkimą (nežinomųjų įvedimą ir sudarytą teisingą lygtį arba lygčių sistemą).
	$2xt - 12t - 6x + 24 = 0,$ $t(x - 6) = 3x - 12,$ $x = \frac{6t - 12}{t - 3},$	1	Už vieno nežinomojo išreiškimą kitu.
	$x = \frac{6t - 12}{t - 3} = 6 + \frac{6}{t - 3},$ $t - 3 = 1 \Rightarrow x = 12, t = 4 \Rightarrow xt = 48,$ $t - 3 = 2 \Rightarrow x = 9, t = 5 \Rightarrow xt = 45,$ $t - 3 = 3 \Rightarrow x = 8 \text{ (net.)},$ $t - 3 = 6 \Rightarrow x = 7 \text{ (net.)}.$	1	Už bent vieną lygties sprendinių porą.
	Ats.: 48.	1	Už gautą teisingą atsakymą.
	III būdas x – kiek detalių išpjauna naujos kartos lazeris per 1 valandą, t – per kiek valandų įvykdomas užsakymas naujos kartos lazeriu. $xt = 3(x-4)(t-2)$,	1	Už teisingo sprendimo būdo pasirinkimą (nežinomųjų įvedimą ir sudarytą teisingą lygtį arba lygčių sistemą).
	2xt - 12t - 6x + 24 = 0, (x - 6)(t - 3) = 6,	1	Už teisingai pertvarkytą lygtį (sandauga lygi natūraliajam skaičiui).

2022 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

$x-6=1, t-3=6 \Rightarrow x=7$ (net.), 1 Už bent vier	ą lygties sprendinių
$x-6=2, t-3=3 \Rightarrow x=8 \text{ (net.)},$ porą.	
$x-6=3, t-3=2 \Rightarrow x=9, t=5 \Rightarrow xt=45,$	
$x-6=6, t-3=1 \Rightarrow x=12, t=4 \Rightarrow xt=48.$	
Ats.: 48.	ingą atsakymą.
