Mikroişlemci Sistemleri

Dr. Öğr. Üyesi Erkan Uslu 7 YTÜ-CE

Ders-7 Konular

- 8254 Programmable Interval Timer (PIT)
- 8254 İç Yapısı Uç Tanımları
- 8254 Control Word
- 8254 Modlar
- Mod0
- Mod1
- Mod2

- Mod3
- Mod4
- Mod5
- 8254 Counter Latch Command
- 8254 Read Back Command
- 8254 Status Byte

8254 Programmable Interval Timer (PIT)

- Temelde : yazılım kontrollü, kesin ve doğru zaman gecikmeleri oluşturmak için,
- Ayrıca : Olay Sayıcı, Gerçek Zamanlı Saat (Real Dalga Üreteci, Digital One Shot işlemleri için Time Clock), Kare Dalga Üreteci, Karmaşık kullanılır

8254 Programmable Interval Timer (PIT)

- 3 bağımsız, 16 bitlik programlanabilir sayıcısı mevcuttur
- Herbir sayıcı 6 farklı moddan birinde programlanabilir
- 8MHz frekansına kadar saat girişinde çalışabilir

8254 Programmable Interval Timer (PIT)

Sayıcı saat frekansını bölüyor

8254'ün PC'de Kullanımı

- Sistem saati (time of day) için saniyede 18.2 frekanslı işaret üretmek
- 15µs'de bir dinamik RAM yenileme işareti üretmek
- Farklı frekanslarda PC hoparlörü ile uyarı sesleri üretmek

8254 Uç Tanımları

Selection	Counter 0	Counter 1	Counter 2	Control Register
A0	0	\vdash	0	\leftarrow
A1	0	0	\vdash	\vdash

_
S
.—
<u>-</u>
girişi
saat
()
(0
için
· 三
<u></u>
- —
lar
<u> </u>
\subseteq
Sayı
$\widetilde{\mathcal{L}}$
O ,
• •
\checkmark
CLK
$\overline{()}$

- GATE : Sayıcılar için dış kontol ucu
- OUT: Sayma işlemi bittiğinde 1 olur, INTR için kullanılabilir

Control Word Format

$$A_1, A_0 = 11 \overline{CS} = 0 \overline{RD} = 1 \overline{WR} = 0$$

8254

SC — Select Counter:

8

8

Select Counter 0

0

0

Select Counter 1

Control

Word

(See Read Operations)

Read-Back Command

Select Counter 2

RW — Read/Write RW1 RW0

0	0	Counter Latch Command (see Read Operations)
0	1	Read/Write least significant byte only.
-	0	Read/Write most significant byte only.
-	-	Read/Write least significant byte first,
		then most significant byte.

M — MODE:

	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
MO	0	1	0	-	0	1
M1	0	0	1	1	0	0
M2	0	0	×	×	1	1

BCD

Binary Counter 16-bits	Binary Coded Decimal (BCD) Counter (4 Decades)
0	ŀ

98H adresinden itibaren ardışık çift adreslere yerleştirilmiş 8254 için aşağıdaki komutlar çalıştırılırsa:

MOV AL, 00110110B

OUT 9EH, AL

CNTRO, Binary sayma, LSb-MSb, Mod 3

- 98H adresinden itibaren ardışık çift adreslere yerleştirilmiş 8254 için
- CNTR0 : binary sayma, mod 3, CLK0'ı 4282(BCD)'ye bölecek şekilde ayarlayın
- CNTR2: binary sayma, mod 3, CLK2'yi C26A hex'e bölecek şekilde ayarlayın
- CLK0 = 1.2MHz, CLK2=1.8MHz ise OUT1 ve OUT2 frekansı nedir

a) MOV AL, 37H

OUT 9EH, AL

MOV AX, 4282H

OUT 98H, AL

MOV AL, AH

OUT 98H, AL

b) MOV AL, 0B6H

OUT 9EH, AL

MOV AX, 0C26AH

OUT 9CH, AL

MOV AL, AH

OUT 9CH, AL

```
f_{OUT2} = 1.8MHz/49770 = 36 Hz
c) f_{OUTO} = 1.2MHz/4282 = 280 Hz
                                                                     C26AH = 49770
```

Binary modda yazılabilecek en büyük değer? BCD modda yazılabilecek en büyük değer?

8254 Modları

- Mode 0: Interrupt on Terminal count
- Mode 1: Hardware Retriggerable One Shot
- Mode 2: Rate Generator
- Mode 3: Square wave generator
- Mode 4: Software Triggered Strobe
- Mode 5: Hardware Triggered Strobe

- Kontrol yazıldıktan sonra OUT 1→0
- Her CLK düşen kenarında sayma değerini azaltır
- GATE=1 ise geri sayar, GATE=0 ise sayma durur
- Sayma değeri 0 olduğunda OUT 0→1, kalır
- Yeni Kontrol veya sayma değeri yazılırsa tekrar sayar

- Ayar ve sayma değeri yazılır
- OUT başta 1
- GATE $0 \rightarrow 1$ geçişinde OUT $1 \rightarrow 0$
- Sayma bittiğinde OUT 0 → 1
- Sayma bittikten sonra GATE 0 → 1 işlemi tekrarlar
- Sayma bitmeden GATE $0 \rightarrow 1$ olursa OUT $0 \rightarrow 1$ olmadan sayma uzar

- Tekrarlı olarak belirli aralıkla pulse üretir
- OUT başta 1
- Sayma değeri 1 olduğunda OUT 1 → 0
- 1 CLK sonra OUT $0 \rightarrow 1$
- Periyodik tekrarlanır
- GATE=0 olursa sayma duraklar
- Yeni sayma değeri devam eden cycle bitince etki eder

Mod 2 Örnek

- CNTRO'ı 50µs'de bir pulse üretecek şekilde ayarlayın. CLK0 = 2 MHz
 - Control word: $00\ 01\ 010\ 0\ B = 14\ H$
- CNTRO seç, sadece LSb, binary sayma
- $_{\rm }$ = 100 = 64H 2×10^{6} Sayma değeri : ______

 50×10^{-6}

Mod 2 Örnek

OUT CONTROL_ADDRESS, AL OUT CNTRO ADDRESS, AL MOV AL, 64H MOV AL, 14H

- Kare dalga üreteci
- OUT sayma değerinin yarısında 1, diğer yarısında 0 olur
- Periyodik olarak tekrarlar
- Mod 2'den duty değerinin %50 olması ile ayrılır
- GATE=0 ise sayma duraklar

Mod 3 Örnek

CNTR1'i 1kHz frekansında kare dalga üretecek şekilde ayarlayın. CLK1 = 2MHz

• Sayma değeri : $\frac{2 \times 10^6}{1 \times 10^3} = 2000$

Control word: $01\ 11\ 011\ 1\ B = 77\ H$

CNTR1 seç, önce LSb sonar MSb, BCD sayma

Mod 3 Örnek

OUT CONTROL_ADDRESS, AL OUT CNTR1_ADDRESS, AL OUT CNTR1 ADDRESS, AL MOV AL, 20H MOV AL, 00H MOV AL, 77H

- OUT başta 1
- Sayma değeri 1 olunca OUT 1 → 0
- 1 CLK sonra OUT $0 \rightarrow 1$ olur ve kalır
- Yeni sayma değeri yazılmadıkça tekrarlamaz
- GATE=0 ise sayma duraklar

- OUT başta 1
- GATE 0 → 1 geçişinde sayma başla
- Sayma değeri 1 olunca OUT 1 o 0
- 1 CLK sonra OUT $0 \rightarrow 1$ olur ve kalır
- GATE′te yeni 0 → 1 geçişi olmadıkça tekrarlamaz

Sayıcı İç Yapısı

Counter Latch Command

- değerini geçici bir iç yazmaca (OL) kopyalar Sayıcının (Counter Element, CE) o anki
- Latch'lemeden, sayma devam ederken CE okumaya çalışmak hatalı
- OL'ye kopyalana değer CPU tarafından okunana kadar saklanır

Counter Latch Command

A ₁ ,	\mathbf{A}_0	=	\ <u>``</u>	$\overline{\mathbf{S}}=0;$	<u> </u>	$A_1,A_0\!=\!11;\overline{ ext{CS}}\!=\!0;\overline{ ext{RD}}\!=\!1;\overline{ ext{WR}}\!=\!0$	$\overline{\mathbf{R}}=0$			
	D ₇	D_6		D_5	D ₄	D ₃	D_2	D ₁	D	
SC1	5	SC0	0	0	0	×	×	×	×	3 3
SC.	1, S	- 00	sbe	ecify (counte	SC1, SC0 - specify counter to be latched	oe latc	peq		1
•	Š	SC1	S	sc0		Col	Counter		8	
		0		0			0			
		0		_			_			
		_		0			2			
		_		_	Rea	Read-Back Command	k Corr	ımand		
•									1	

D5,D4 - 00 designates Counter Latch Command

Read Back Command

- durumunu (STATUS) okumak için kullanılır Latch'lenmiş sayma değerini veya sayıcı
- Birden fazla sayıcı için sayma değeri/durumunu bir seferde okumak için kullanılabilir
- Bir sayıcıya ilişkin hem sayma hem de durum okunmak için komut verilse
- Sayıcı adresinden ilk okuma durum
- İkinci (ve üçüncü) okuma latch'lenmiş sayma değeri
- Sonraki okumalar latch'lenmemiş sayıcı değerleri verir

Read Back Command

A0, A1 = 11
$$\overline{\text{CS}} = 0$$
 $\overline{\text{RD}} = 1$ $\overline{\text{WR}} = 0$

 D_5 : 0 = Latch count of selected counter(s)

Latch status of selected counter(s) $D_4: 0 =$

 D_3 : 1 = Select counter 2

D₂: 1 = Select counter 1

 D_1 : 1 = Select counter 0

 D_0 : Reserved for future expansion; must be 0

Read Back Command

işlemler sırası ile yapılsa

	_	er 1	er	er 2	er 1,	Is ter 1
Results	Count and status latched for Counter 0	Status latched for Counter 1	Status latched for Counter 2, but not Counter 1	Count latched for Counter 2	Count latched for Counter 1 but not status	Command ignored, status already latched for Counter 1
	05	S	SS	O	ΩÃ	D B
Description	Read back count and status of Counter 0	Read back status of Counter 1	Read back status of Counters 2, 1	Read back count of Counter 2	Read back count and status of Counter 1	Read back status of Counter 1
ů	0	0	0	0	0	0
5	-	0	0	0	0	-
nand D ₃ D ₂ D ₁	0	-	-	0	-	0
	0	0	1	-	0	0
Comn D ₅ D ₄	0	0	0	-	0	0
ے ج	0	-	-	0	0	-
å	-	-	1	-	1	-
0	-	-	-	-	-	-

Status Byte

D7	D_6	D_5	D ₄ D ₃ D ₂ D ₁ D ₀	D_3	D_2	D ₁	D ₀
OUTPUT	NULL	RW1	RW1 RW0 M2 M1 M0 BCD	M2	M1	MO	BCD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Out Pin is 1 Out Pin is 0 Null count Count available for reading Counter Programmed Mode (See Figure 7)	l able fo	or read med M	ing ode	es)	Figu	rre 7)