Atividade de Aprofundamento IV - Integração RESPOSTAS

Prof^a Dr.^a Jussara Maria Marins

Resolver a integral::

$$\int_1^3 \sqrt[3]{e^x - 2\cos(x^2)} dx$$

- (a) Regra dos Trapézios com n=4
 - (1) Cálculo do h: espaçamento dos pontos da função, conforme página 6 da apostila:

$$h = \frac{b-a}{4} = \frac{3-1}{4} = 0.5$$

(2) Cálculo dos valores da função, em radianos, unidade padrão.

$$x_0 = a = 1$$
 $x_{i+1} = x_i + h$

i	x_i	$f(x_i)$	valor arredondado
0	1	1,178716698	1,1787
1	1, 5	1,790280567	1,7903
2	2	2,056421927	2,0564
3	2, 5	2,167539604	2,1675
4	3	2,798119377	2,7981

(3) Cálculo da Integral

$$\int_{1}^{3} \sqrt[3]{e^{x} - 2\cos(x^{2})} dx \simeq \frac{h}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + 2f(x_{4}) + 2f(x_{1}) + f(x_{5}) \right]$$
$$\int_{1}^{3} \sqrt[3]{e^{x} - 2\cos(x^{2})} dx \simeq 0.25 \cdot [16.0052] = \mathbf{4.0013}$$

(b) Regra de Simpson com me

Também chamada de regra simples, sem subdivisão do intervalo [a, b].

(1) Cálculo do h: espaçamento dos pontos da função, conforme página 7 da apostila:

$$h = \frac{b-a}{2} = \frac{3-1}{2} = 1.0$$

$$me = \frac{b+a}{2} = \frac{4}{2} = 2.0$$

(2) Cálculo dos valores da função: usar os pontos já calculados da tabela anterior.

1

(3) Cálculo da Integral

$$\int_{1}^{3} \sqrt[3]{e^{x} - 2\cos(x^{2})} dx \simeq \frac{h}{3} [f(a) + 4f(me) + f(b)]$$

$$\int_{1}^{3} \sqrt[3]{e^{x} - 2\cos(x^{2})} dx \simeq \frac{1}{3} [f(1) + 4f(2) + f(3)] = \frac{1}{3} [12.2024] = 4.0674666666 \simeq \mathbf{4.0675}$$

(c) Regra de Simpson Composta com n=4.

Aplicar a regra simples em 4 subintervalos, ou seja, pela página 8 da apostila:

$$\int_{1}^{3} \sqrt[3]{e^{x} - 2\cos(x^{2})} dx \simeq \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + 4f(x_{5}) + 2f(x_{6}) + 4f(x_{7}) + f(x_{8})]$$

(1) Cálculo do h

$$h = \frac{b-a}{2n} = \frac{2}{8} = 0.25$$

(2) Cálculo dos valores da função:

$\mid i \mid$	x_i	$f(x_1)$	valor arredondado
0	1	1,178716698	1,1787
$\parallel 1$	1,25	1,514489292	1,5145
$\parallel 2$	1,5	1,790280567	1,7903
$\parallel 3$	1,75	1,978805378	1,9788
$\parallel 4$	2	2,056421927	2,0564
5	2,25	2,064695642	2,0647
6	2,5	2,167539604	2,1675
$\parallel 7$	2,75	2,469927087	2,4699
8	3	2,798119377	2,7981

(3) Cálculo da integral

$$\int_{1}^{3} \sqrt[3]{e^x - 2\cos(x^2)} dx \simeq \frac{0.25}{3} [48.1169899] = 4.00974915833 \simeq \mathbf{4.0097}$$

Quem acertou, mesmo com pequenos erros de arredondamento como 4.0012 ou 4.0014 para o tem (a) e, analogamente, nos demais, e enviou um só arquivo num dos formatos solicitado, ficou **1.0**; caso contrário se enviou mais de uma arquivos (recebi até 7 arquivos por 1 envio) ficou com 0.8

Outros erros, nos valores finais foram descontados. Quem usou graus em vez de radianos e com os valores certos para estes casos, ficou com 0.7.Outros erros diminuem ainda mais a nota.

Logo, enviar um **só arquivo** nos formatos: .doc, docx, xls, xlsx, pdf(melhor), txt, com nome em primeiro lugar.

Não lerei em outro formato.

Muito atenção ao copiar valores. Eu corrigirei com carinho a atenção, portanto façam a tarefa com carinho, capricho, legível, com contrate e tamanho adequado e pricipalmente com correção.