Plan du cours d'algèbre

Fondamentaux d'algèbre linéaire

Matrices

Définition, lien matrice-application linéair Produits - inverse - transposition

Semaine 1

- Espaces vectoriels réels
- Applications linéaires
- Matrices

Semaine 2

- Produit scalaire, projections, interprétations géométriques
- Réductions de matrices

Matrices et applications linéaires

Fondamentaux d'algèbre linéaire

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transposition

Changement de base

Objectifs

- ▶ Lien entre matrices et applications linéaires
- transposée
- inverse
- changement de base

Mines-Télécom

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transpositio

Changement de base

Matrice associée à une application linéaire dans des bases de départ et d'arrivée

- ▶ Soit $f: \mathbb{R}^p \to \mathbb{R}^n$ et \mathcal{U} , \mathcal{V} bases resp. de E et F.
- ▶ **Rappel**: f est déterminée par les $f(\mathbf{u}_j)$. Chaque $f(\mathbf{u}_j)$ s'écrit $f(\mathbf{u}_i) = \sum_{i=1}^n m_{i,j} \mathbf{v}_i$.
- \blacktriangleright La matrice M de f dans les bases \mathcal{U} et \mathcal{V} est :

$$M = egin{pmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,p} \ m_{2,1} & m_{2,2} & \dots & m_{2,p} \ dots & dots & dots & dots \ m_{n,1} & m_{n,2} & \dots & m_{n,p} \end{pmatrix}$$
 , notée : $(m_{i,j})_{i \leq m, \ j \leq p}$

retenir:

Colonne n° j de M = coordonnées de $f(u_j)$ dans V

▶ Donc $m_{i,i} = \text{coordonn\'ee de } f(u_i)$ sur le vecteur v_i

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transposition

Changement de base

Multiplication Matrice × colonne

▶ Soit $M = (m_{i,j})_{i < m, j < p} \in \mathbb{R}^{n \times p}$, X une matrice colonne

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^{p \times 1}$$

▶ Le produit « MX » de X par M est la matrice colonne Y, de coordonnées $y_i = \sum_{i=1}^p m_{i,j} x_j$. $(i \le n)$.

$$(MX)_{[i]} =$$
ligne n^o i de $M \times$ colonne X

$$\begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ m_{i,1} & m_{i,2} & \dots & m_{i,p} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ x'_i \\ \vdots \\ x_{p-1} \end{pmatrix}$$

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transposition

Changement de base

Calcul de f(x) par un produit matrice-colonne

Soit $f: \mathbb{R}^p \to \mathbb{R}^n$, et \mathcal{U} , \mathcal{V} des bases de \mathbb{R}^p et \mathbb{R}^n . Comment calculer f(x)? (pour $x \in E$)

- ▶ Soit $M = (m_{i,j}) \in \mathbb{R}^{n \times p}$ la matrice de f dans les bases \mathcal{U} et \mathcal{V} , i.e. telle que $f(\mathbf{u}_i) = \sum_{i=1}^n m_{i,i} \mathbf{v}_i$.
- ▶ Si $\mathbf{x} = \sum_{j=1}^{p} x_j \mathbf{u}_j$, on appelle $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ la matrice colonne associée à x dans la base \mathcal{U} .
- ▶ de même, si $\mathbf{y} = \sum_{i=1}^{n} y_i \mathbf{v}_i \in F$, quelconque, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$: est la **matrice colonne** associée à \mathbf{y} dans la base \mathcal{V} .

Par un calcul simple : $f(x) = y \Leftrightarrow MX = Y$

linéaire

Fondamentaux d'algèbre

Matrices

Définition, lien matrice-application linéaire

Base canonique

ightharpoonup On appelle **Base canonique** de \mathbb{R}^p la famille

$$(\mathbf{e})=(e_1,\ldots,e_p)$$
 où e_i est le vecteur $(0,\ldots,0,\underbrace{1}_{j^{\mathrm{ème}}\mathit{rang}},0,\ldots).$

- Pour $\mathbf{x} = (x_1, \dots, x_p) \in \mathbb{R}^p$, on a $\mathbf{x} = \sum_{i=1}^p x_i e_i$.
- ▶ attention : si $\mathcal{U} \neq (\mathbf{e})$, $\mathbf{x} \neq \sum_{i=1}^{p} x_i \mathbf{u}_i$.
- ► Convention : Si on ne précise pas les bases choisies, \ll la matrice de $f \gg =$ « la matrice M associée à f dans les bases canoniques de départ et d'arrivée »
- Dans les bases canoniques, on identifie « le vecteur $\mathbf{x} = (x_1, \dots, x_p)$ » avec

$$\ll$$
 la matrice colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \gg$.

Produit de matrices

▶ Si $P \in \mathbb{R}^{q \times n}$, $M \in \mathbb{R}^{n \times p}$, le produit $Q = PM \in \mathbb{R}^{q \times p}$ est

$$(Q)_{[i,j]} = \sum_{k=1}^{n} p_{i,k} m_{k,j}$$
 (pour $i \le q, j \le p$)

 $(PM)_{[i,j]} = i^{eme}$ ligne de $P \times j^{eme}$ colonne de M

Fondamentaux d'algèbre linéaire

Matrices

Définition, lien matrice-application linéair

Produits - inverse - transposition

Changement de bases

$$i o egin{pmatrix} \vdots & & & & & & & & \\ i & & & \vdots & & & & \\ p_{i,1} & \dots & p_{i,n} & & & & \\ \vdots & & & \vdots & & & \\ \end{bmatrix} \cdot egin{pmatrix} \dots & m_{1,j} & \dots \\ \vdots & & & \vdots \\ \dots & m_{n,j} & \dots \end{pmatrix} = egin{pmatrix} \vdots & & & & \\ \vdots & & & \vdots \\ \dots & q_{i,j} & \dots \\ \vdots & & & \vdots \end{pmatrix}$$

Anne Sabourin

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transposition

Changement de base

produit de matrices - composition d'applications linéaires

- Soient $f: E = \mathbb{R}^p \to = F = \mathbb{R}^n$ et $g: \mathbb{R}^n \to G = \mathbb{R}^q$. Alors $g \circ f: x \mapsto g[f(x)]$, de \mathbb{R}^p dans \mathbb{R}^p .
- V, V, W bases respectives de E, F, G et M: matrice de f dans (U, V), P: matrice de g dans (V, W),

Quelle est la matrice associée à $g \circ f$?

 on montre (comme pour l'action d'une matrice sur une matrice colonne) que

matrice de $g \circ f$:

PM est la matrice de $g \circ f$ dans les bases \mathcal{U} et \mathcal{W} .

Matrices

Définition, lien matrice-application linéaire

Produits - inverse - transposition

Changement de base

Matrice inverse

- ▶ Soit $M \in \mathbb{R}^{n \times n}$ et $f : \mathbb{R}^n \to \mathbb{R}^n$ linéaire associée dans la base canonique.
- ► *M* est dite **inversible** si *f* est inversible.
- ▶ f est inversible \Leftrightarrow Colonnes de M : base de \mathbb{R}^n (Rappel : $f(e_i)$: $j^{\text{ème}}$ colonne de M.)
 - \Leftrightarrow (th. du rang) Colonnes de M linéairement indépendantes (libres) dans \mathbb{R}^n
 - \Leftrightarrow (th. du rang) Colonnes de M engendrent \mathbb{R}^n
- ▶ Inverse de M : la matrice M^{-1} telle que

$$M M^{-1} = M^{-1} M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} := \mathbf{I}$$

propriété: $(MP)^{-1} = P^{-1}M^{-1}$ (si inversibles)

Matrices

Définition, lien matrice-application linéair Produits - inverse - transposition

61

Matrice transposée

- ▶ M une matrice $n \times p$, $M = (m_{i,j})_{i \le n, j \le p}$.
- ▶ « Matrice transposée de $M \gg : M^{\top}$: obtenue en 'transformant les lignes en colonnes' : $M_{[i,j]}^{\top} = m_{j,i}$ et

pour un produit :

$$(MP)^{\top} = P^{\top}M^{\top}$$

Matrices

Définition, lien matrice-application linéair

Changement de bases

Changement de base et matrice colonne d'un vecteur

- ▶ \mathcal{U} et \mathcal{U}' deux bases de \mathbb{R}^n , $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{X} = (x_1, \dots, x_n)^T$: matrice de \mathbf{x} dans \mathcal{U} .
- Matrice X' de \mathbf{x} dans \mathcal{U}' ? c'est à dire : coefficients x_i' , tels que $\mathbf{x} = \sum x_i' \mathbf{u}_i'$?)
- ▶ Soit P la matrice de passage de \mathcal{U} à \mathcal{U}' : ses colonnes sont les vecteurs de \mathcal{U}' dans \mathcal{U} ,

$$P = \left(\begin{array}{c|c} [\mathbf{u}_1']_u & \dots & [\mathbf{u}_n']_u \end{array} \right) \quad \text{ie } \mathbf{u}_j' = \sum_i p_{i,j} \mathbf{u}_i$$

► *P* est inversible (vérifiez pourquoi)

Matrices

Changement de bases

Changement de base et matrice colonne d'un

vecteur
$$\nabla y'y'$$

$$\mathbf{x} = \sum_{j} x'_{j} \mathbf{u}'_{j} \quad (\text{ définition des } x'_{i})$$

$$= \sum_{j} x'_{j} (\sum_{i} p_{i,j} \mathbf{u}_{i}) \quad (u'_{j} \text{ est la } j^{eme} \text{ colonne de } P)$$

$$= \sum_{i} (\sum_{i} p_{i,j} x'_{j}) \mathbf{u}_{i}$$

Or on sait que
$$\mathbf{x} = \sum_{i} \mathbf{x}_{i} \mathbf{u}_{i}$$
. Donc

$$X_{[i]} = x_i = \sum_i p_{i,j} x'_j = (PX')_{[i]}$$

c'est à dire
$$X = PX'$$
. Conclusion :

Changement de bases et matrice d'une application linéaire

Fondamentaux d'algèbre linéaire

Matrices

Définition, lien matrice-application linéair

Changement de bases

- ▶ Soit $f : \mathbb{R}^p \to \mathbb{R}^n$, \mathcal{U}, \mathcal{V} des bases de \mathbb{R}^p et \mathbb{R}^n (anciennes bases),
- \blacktriangleright M la matrice de f dans \mathcal{U}, \mathcal{V} .
- ▶ Soient $\mathcal{U}', \mathcal{V}'$ de **nouvelles bases**, P et Q les matrices de passages de \mathcal{U} à \mathcal{U}' et de \mathcal{V} à \mathcal{V}' .
- ▶ Matrice M' de f dans U', V'?

Matrices

Desiration, tien matrice-application linear

Changement de bases

Changement de bases et matrice d'une application linéaire

- \triangleright X, X' les matrices colonnes de x dans \mathcal{U} et \mathcal{U}' .
- ightharpoonup Y, Y' les matrices colonnes de $\mathbf{y} = f(\mathbf{x})$ dans \mathcal{V} et \mathcal{V}' .
- ightharpoonup P, Q: matrices de passages $\mathcal{U} \to \mathcal{U}'$ et $\mathcal{V} \to \mathcal{V}'$.
- ► On cherche M' telle que :

$$Y = MX (\Leftrightarrow \mathbf{y} = f(\mathbf{x})) \Leftrightarrow Y' = M'X', \quad \forall X, X', Y, Y'.$$

Or Y = Q Y' et X = P X' (chgt de base colonne). Donc

$$Y = MX \Leftrightarrow QY' = MPX'$$

 $\Leftrightarrow Y' = Q^{-1}MPX'.$

Conclusion:

$$M' = Q^{-1}MP$$

Conclusion de la semaine 1 d'algèbre

Fondamentaux d'algèbre linéaire

Matrices

Définition, lien matrice-application linéair

Produits - inverse - transpositior

Changement de bases

- Vocabulaire de base donné cette semaine
- ▶ à venir : géométrie, projections, réduction.

Mines-Télécom

