# Problem 1

A pair of fair dice is thrown. Let the random variable X denote the sum of the outcomes.

| Table 1: | Problem | 1 ( | Jalcula | ations | tor | parts | (a), | (b), | and | (d). |  |
|----------|---------|-----|---------|--------|-----|-------|------|------|-----|------|--|
|          |         |     |         |        |     |       |      |      |     |      |  |

| Calculations              |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| X                         | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| pmf p(x)                  | 1/36  | 2/36  | 3/36  | 4/36  | 5/36  | 6/36  | 5/36  | 4/36  | 3/36  | 2/36  | 1/36  |
| $\operatorname{cdf} F(x)$ | 0.028 | 0.083 | 0.167 | 0.278 | 0.417 | 0.583 | 0.722 | 0.833 | 0.917 | 0.972 | 1.000 |
| xp(x)                     | 0.056 | 0.167 | 0.333 | 0.556 | 0.833 | 1.167 | 1.111 | 1.000 | 0.833 | 0.611 | 0.333 |

(a) Graph the probability mass function p(x).



Figure 1: The probability mass function graph

#### R Code:

```
# Assign variable for all the possible outcomes from 2 to 12
outcomes <- 2:12
# pmf values based on the possible outcomes
pmf_x <- c(1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36)
# Compute cdf
cumm_sum <- cumsum(pmf_x)

require(graphics)
plot(outcomes, pmf_x, type="h", col=2, main="Graph of the PMF p(x)",
xlab="x", ylab="p(x)")
points(outcomes, pmf_x, col=2); abline(h=0,col=3)</pre>
```

(b) Graph the cumulative distribution function F(x).



Figure 2: The cumulative distribution function graph

### R Code:

plot(c(1, outcomes), c(0, cumm\_sum), type="s", ylab="
$$F(x)$$
", col=3, xlab="x", main="CDF  $F(x)$ "); abline(h = 0:1, col = 4)

(c) Generate four variates corresponding to the following U(0,1)'s (use the inverse-cdf technique):

Table 2: Generating variates using inverse-cdf technique.

| $\mathbf{u}$ | 0.495 | 0.762 | 0.927 | 0.002 |  |
|--------------|-------|-------|-------|-------|--|
| $\mathbf{X}$ | 7     | 9     | 11    | 2     |  |



Figure 3: The cdf graph with horisontal lines for values of u

#### R Code:

plot(c(1, outcomes), c(0, cumm\_sum), type="s", ylab="F(x)", col=3, xlab="x", main="CDF F(x)"); abline(h = 0:1, col = 4); abline(h=c(0.002, 0.927, 0.762, 0.495), col=2)

(d) Find the population mean  $\mu = E[X]$ . Using the calculations from the Table 1:

$$\mu = E[X] = \sum_{gllx} xp(x) = 7.$$

## Problem 2

Write an algorithm for generating a variate from a distribution with probability density function

$$f(x) = \begin{cases} x^3, & \text{for } 0 \le x < 1\\ 3/4, & \text{for } 1 \le x \le 2. \end{cases}$$

When  $0 \le x < 1$ ,  $F(x) = \int_0^x m^3 dm = \frac{1}{4}x^4$ . Then, to find  $F^{-1}(x)$  we need to solve for x:

$$Y = \frac{1}{4}x^4$$

$$X = (4Y)^{1/4}, \qquad 0 \le y < \frac{1}{4}.$$

When  $1 \le x \le 2$ ,

$$F(x) = F(1) + \int_{1}^{x} \frac{3}{4} dm = \frac{1}{4} + \frac{3}{4} m \bigg|_{1}^{x} = \frac{1}{4} + \frac{3}{4} x - \frac{3}{4} = \frac{3}{4} x - \frac{1}{2} = \frac{3x - 2}{4}.$$

Then, to find  $F^{-1}(x)$  we need to solve for x:

$$Y = \frac{3x - 2}{4}$$
  
 $X = \frac{4Y - 2}{3}, \qquad \frac{1}{4} \le y \le 1.$ 

Once we have the equations for X we can develop and algorithm for generating a variate from the given distribution.

- 1. Generate random number (y) from U(0,1)
- 2. Check which range this number falls into: if the random number is in  $[0, \frac{1}{4})$  range, then use  $X = (4Y)^{1/4}$ ; else the random number is in the  $[\frac{1}{4}, 1]$  range and need to use  $X = \frac{4Y-2}{3}$ .

# Problem 3

The Pareto distribution is often used to model the distribution of incomes. Its probability density function is

$$f(x) = \frac{\alpha^{\beta}\beta}{r^{\beta+1}}$$
  $x \ge \alpha$ ,

where  $\alpha$  and  $\beta$  are two positive parameters.

(a) Graph the probability density function f(x) when  $\alpha = 5$  and  $\beta = 1.1$ .

$$f(x) = \frac{5^{1}.1 * 1.1}{x^{1.1+1}} = 6.46/x^{2.1}$$



Figure 4: The Pareto pdf when  $\alpha = 5$  and  $\beta = 1.1$ 

#### R Code:

x <-5:100 p <- rep(1, 96)for (i in 2:96)  $p[i] = 6.46/i^2.1$ plot(x, p, ylab="f(x)", col=3, xlab="x", main="Pareto distribution PDF f(x) when alpha = 5 and beta = 1.1");

(b) Graph the cumulative distribution function F(x) when  $\alpha = 5$  and  $\beta = 1.1$ .

$$F(x) = \int_{\alpha}^{x} \frac{6.46}{m^{2.1}} dm = \left. \frac{-6.46}{1.1} m^{-1.1} \right|_{\alpha}^{x} = -\frac{6.46}{1.1} \left( x^{-1.1} - \alpha^{-1.1} \right) = -5.873 \left( x^{-1.1} - \alpha^{-1.1} \right)$$

$$F(x) = -5.873 \left( x^{-1.1} - \alpha^{-1.1} \right).$$





- (a) CDF graph using the cumsum(p) from part (a)
- (b) CDF graph using the F(x) formula

Figure 5: CDF graph of Pareto distribution using two different approaches.

## R Code using the cumsum function in R and p(x) from Problem 3 part (a):

$$F_x = c(0, cumsum(p))$$
  
plot(stepfun(x,  $F_x$ ), ylab=" $F(x)$ ", col=3, xlab="x", main="CDF  $F(x)$ ")

### R Code using the F(x) formula derived in Problem 3 part (b):

$$cdf_x < -5.873*(x^{-1.1}) - 5^{-1.1})$$
  
 $plot(x, cdf_x, ylab="F(x)", col=3, xlab="x", main="CDF F(x)")$ 

(c) Show that this is a valid probability density function for any  $\alpha > 0$  and  $\beta > 0$ . Need to show:  $\int f(x)dx = 1 => \int_{\alpha}^{\infty} \frac{\alpha^{\beta}\beta}{x^{\beta+1}}dx = 1$ .

$$\int_{\alpha}^{\infty} \frac{\alpha^{\beta} \beta}{x^{\beta+1}} dx = \frac{\alpha^{\beta} \beta}{-\beta} x^{-\beta} \Big|_{\alpha}^{\infty} =$$

$$= -\alpha^{\beta} \left( 0 - \frac{1}{\alpha^{\beta}} \right) =$$

$$= 1.$$

 $\therefore$  This is a valid pdf for any  $\alpha > 0$  and  $\beta > 0$ .

(d) Find the cumulative distribution function F(x).

$$F(x) = \int_{\alpha}^{x} \frac{\alpha^{\beta} \beta}{t^{\beta+1}} dt =$$

$$= \alpha^{\beta} \beta \left( -\frac{1}{\beta} \right) \left( t^{-\beta-1+1} \Big|_{\alpha}^{x} \right) =$$

$$= -\alpha^{\beta} \left( x^{-\beta} - \alpha^{-1} \right) =$$

$$= 1 - \frac{\alpha^{\beta}}{x^{\beta}}, \qquad x \ge \alpha$$

Then,

$$F(x) = 1 - \frac{\alpha^{\beta}}{x^{\beta}}, \qquad x \ge \alpha$$

**CSCI 698** 

(e) Find  $\mu = E[X]$  for any  $\alpha$  and  $\beta$ .

$$\mu = E[X] = \int_{\alpha}^{\infty} x p(x) dx = \int_{\alpha}^{\infty} x \frac{\alpha^{\beta} \beta}{x^{\beta+1}} dx =$$

$$= \alpha^{\beta} \beta \int_{\alpha}^{\infty} x^{-\beta} dx =$$

$$= \frac{\alpha^{\beta} \beta}{1 - \beta} \left( x^{1-\beta} \Big|_{\alpha}^{\infty} \right)$$

From here we can have two outcomes based on the values of  $\beta$ :

- 1. For  $\beta < 1$  and  $\alpha > 0$ ,  $\mu = E[X] \to \infty$ ;
- 2. For  $\beta \geq 1$  and  $\alpha > 0$ ,

$$\mu = E[X] = \frac{\alpha^{\beta} \beta}{1 - \beta} \left( x^{1 - \beta} \Big|_{\alpha}^{\infty} \right)$$
$$= \frac{\alpha^{\beta} \beta}{1 - \beta} \left( -\alpha^{1 - \beta} \right) =$$
$$= \frac{\alpha^{\beta} \beta \alpha}{(\beta - 1)\alpha^{\beta}} =$$
$$= \frac{\alpha \beta}{\beta - 1}.$$

Then,

$$\mu = E[X] = \frac{\alpha\beta}{\beta - 1}.$$

(f) Find  $\sigma^2 = V[X]$  for any  $\alpha$  and  $\beta$ .

$$\sigma^2 = V[X] = E(Y^2) - (E(Y))^2 = E(Y^2) - \left(\frac{\alpha\beta}{\beta - 1}\right)^2$$

Step 1. Find  $E(Y^2)$ :

$$\begin{split} E(X^2) &= \int_{\alpha}^{\infty} x^2 p(x) dx = \int_{\alpha}^{\infty} x^2 \frac{\alpha^{\beta} \beta}{x^{\beta+1}} dx = \\ &= \alpha^{\beta} \beta \int_{\alpha}^{\infty} \frac{x^2}{x^{\beta} x} dx = \\ &= \alpha^{\beta} \beta \int_{\alpha}^{\infty} x^{1-\beta} dx = \\ &= \frac{\alpha^{\beta} \beta}{2-\beta} \left( x^{2-\beta} \Big|_{\alpha}^{\infty} \right) \end{split}$$

From here we can have two outcomes based on the values of  $\beta$ :

1. For  $\beta < 2$  and  $\alpha > 0$ ,  $E[X^2] \to \infty$ ;

2. For  $\beta \geq 2$  and  $\alpha > 0$ ,

$$E[X^{2}] = \frac{\alpha^{\beta}\beta}{2-\beta} \left(x^{2-\beta}\big|_{\alpha}^{\infty}\right) =$$

$$= \frac{\alpha^{\beta}\beta}{2-\beta} \left(0-\alpha^{2-\beta}\right) =$$

$$= \frac{\alpha^{\beta}\beta\alpha^{2}}{(\beta-2)\alpha^{\beta}} =$$

$$= \frac{\alpha^{2}\beta}{\beta-2}.$$

Step 2. Find  $\sigma^2 = V[X]$  for  $\beta \ge 2$  and  $\alpha > 0$ :

$$V(X) = \frac{\alpha^2 \beta}{\beta - 2} - \left(\frac{\alpha \beta}{\beta - 1}\right)^2 =$$

$$= \frac{\alpha^2 \beta (\beta - 1)^2 - \alpha^2 \beta^2 (\beta - 2)}{(\beta - 2)(\beta - 1)^2} =$$

$$= \frac{\alpha^2 \beta (\beta^2 - 2\beta + 1) - \alpha^2 \beta^2 (\beta - 2)}{(\beta - 2)(\beta - 1)^2} =$$

$$= \frac{\alpha^2 \beta^3 - 2\alpha^2 \beta^2 + \alpha^2 \beta - \alpha^2 \beta^3 + 2\alpha^2 \beta^2}{(\beta - 2)(\beta - 1)^2} =$$

$$= \frac{\alpha^2 \beta}{(\beta - 2)(\beta - 1)^2}.$$

Then,

$$\sigma^2 = V[X] = \frac{\alpha^2 \beta}{(\beta - 2)(\beta - 1)^2}.$$

(g) Find the median of the distribution for any  $\alpha$  and  $\beta$ . We need to solve  $\int_{\alpha}^{m} f(x)dx = \frac{1}{2}$  for m. Step 1. Calculate the integral:

$$\int_{\alpha}^{m} f(x)dx = \int_{\alpha}^{m} \frac{\alpha^{\beta} \beta}{x^{\beta+1}} dx =$$

$$= \frac{\alpha^{\beta} \beta}{-\beta} \left( x^{-\beta} \Big|_{\alpha}^{m} \right) =$$

$$= -\alpha^{\beta} (m^{-\beta} - \alpha^{-\beta}) =$$

$$= 1 - \frac{\alpha^{\beta}}{m^{\beta}}$$

Step 2. Solve for m:

$$1 - \frac{\alpha^{\beta}}{m^{\beta}} = \frac{1}{2}$$
$$\frac{\alpha^{\beta}}{m^{\beta}} = \frac{1}{2}$$
$$m = 2^{1/\beta}\alpha$$

Then,

$$m = \alpha 2^{1/\beta}$$

(h) Generate four incomes corresponding to the following U(0,1)'s (use the inverse-cdf technique): 0.558 0.775 0.936 0.008 assuming that  $\alpha=8500$  and  $\beta=1.1$ .

We will use the cdf function from Problem 3 part (d) to find its inverse  $F^{-1}(x)$  and solve for x and then plug in the random variables in the inverse function:

$$F(x) = 1 - \frac{\alpha^{\beta}}{x^{\beta}}, \qquad x \ge \alpha$$

$$Y = 1 - \frac{\alpha^{\beta}}{x^{\beta}}$$

$$\frac{\alpha^{\beta}}{x^{\beta}} = 1 - Y$$

$$x^{\beta} = \frac{\alpha^{\beta}}{1 - y}$$

$$x = \frac{\alpha}{(1 - y)^{1/\beta}}$$

#### R Code to calculate the x values:

```
alpha = 8500
beta = 1.1
y = c(0.558, 0.775, 0.936, 0.008)

# use the inverse-cdf formula from h)
for (i in y){
    x = alpha / (1- y)^(1/beta)
}

print(x)
# 17855.101 32987.083 103445.084 8562.294
```

Table 3: Generating incomes using inverse-cdf technique.

| $\mathbf{u}$ | 0.558     | 0.775     | 0.936      | 0.008    |
|--------------|-----------|-----------|------------|----------|
| $\mathbf{X}$ | 17855.101 | 32987.083 | 103445.084 | 8562.294 |

(i) Write an R program to generate 1001 Pareto random variates using the inverse-cdf technique, and estimate the median of the distribution. Compare your estimate with the theoretical value. Assume that  $\alpha=8500$  and  $\beta=1.1$ .

#### R-code:

```
alpha = 8500
beta = 1.1
y = runif(1001)

# use the inverse-cdf formula from h)
x = alpha / (1- y)^(1/beta)
med = median(x)

# median formula from (g)
m = alpha * 2^(1/beta)
m # 15961.83
med # 15926.95
```

Based on the output the two approaches give approximately same results. The median, obtained by generating random numbers and using the inverse-cdf formula obtained in Problem 3 part (h), will vary every time we re-generate new set of Pareto random variables. On the other hand, the median formula obtained in Problem 3 part (g) will not be affected by variations in variates.