4. Espaços Vetoriais Reais

UA, 18/11/2018

ALGA - Agrup. IV 18/19

Resumo dos Conteúdos

- Espaço Vetorial: definições e propriedades básicas
- Subespaços vetoriais
- Espaço Gerado
- Independência Linear
- 5 Base e dimensão de um espaço vetorial
- Espaços das linhas, das colunas e nulo de uma matriz
- Coordenadas de um vetor numa base
- $oldsymbol{8}$ Bases ortonormadas e Projeções ortogonais em \mathbb{R}^n

Definição de Espaço Vetorial Real

O conjunto \mathcal{V} , munido das operações \oplus (adição) e \odot (multiplicação por escalar real), é um espaço vetorial real se, $\forall X, Y, Z \in \mathcal{V}$ e $\forall \alpha, \beta \in \mathbb{R}$,

$$\bigcirc$$
 \mathcal{V} é fechado relativamente a \oplus

$$X \oplus Y \in \mathcal{V}$$

 $X \oplus Y = Y \oplus X$

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$$

para
$$\oplus$$
 $0_{\mathcal{V}} \oplus X = X$

$$\bullet$$
 existe (único) o elemento neutro $\bullet_{\mathcal{V}} \in \mathcal{V}$ para \oplus

3 existe (único) o simétrico
$$\ominus X \in V$$
 de X em relação a $\ominus X \oplus X = 0_V$

$$\alpha \odot X \in \mathcal{V}$$
$$\alpha \odot (X \oplus Y) = \alpha \odot X \oplus \alpha \odot Y$$

$$\bullet$$
 \circ é "distributiva" em relação a + $(\alpha+\beta) \circ X = \alpha \circ X \oplus \beta \circ X$

9 os produtos (o de
$$\mathbb{R}$$
 e \odot) são "associativos" $(\alpha\beta) \odot X = \alpha \odot (\beta \odot X)$

$$(\alpha\beta)\odot X = \alpha\odot(\beta\odot X)$$

$$1 \odot X = X$$

A $0_{\mathcal{V}}$, elemento neutro de \oplus , chama-se zero de \mathcal{V} .

Exemplos de espaços vetoriais reais

- 1. \mathbb{R}^n munido das operações adição e multiplicação por escalar usuais.
- 2. ℝ⁺ munido das operações:

$$x \oplus y = xy$$
 e $\alpha \odot x = x^{\alpha}$, $\forall x, y \in \mathbb{R}^+$, $\forall \alpha \in \mathbb{R}$.

- 3. O conjunto $\mathbb{R}^{m \times n}$ das matrizes $m \times n$ munido das operações adição de matrizes e multiplicação de uma matriz por um escalar real.
- 4. O conjunto de todas as funções reais de domínio ℝ munido da adição de funções e multiplicação de uma função por um escalar real.
- 5. O conjunto $\mathcal P$ de todos os polinómios (de qualquer grau) munido das operações usuais.
- 6. \mathcal{P}_n dos polinómios de grau menor ou igual a n, juntamente com o polinómio nulo, com as operações usuais.

Nota: \underline{N} é espaço vetorial (e.v.) o conjunto dos polinómios de grau n com as operações usuais.

Propriedades básicas de um espaço vetorial real

Proposição:

Seja ${\mathcal V}$ um e.v. real. Então

- **③** (-1) ⊙ $X = \ominus X$ é o simétrico de X em relação a \oplus , $\forall X \in \mathcal{V}$.

Observação:

Daqui em diante, escreve-se:

- i. X + Y em vez de $X \oplus Y$, para $X, Y \in \mathcal{V}$;
- ii. αX em vez de $\alpha \odot X$, para $\alpha \in \mathbb{R}$ e $X \in \mathcal{V}$;
- iii. -X em vez de $\ominus X$, para $X \in \mathcal{V}$.

Definição:

O subconjunto $\mathcal{S}\subseteq\mathcal{V}$ é um subespaço (vetorial) do e.v. real \mathcal{V} se, munido das mesmas operações de \mathcal{V} , for ele próprio um e.v. real.

Teorema:

 $\mathcal{S} \subseteq \mathcal{V}$ é um subespaço (vetorial) do e.v. real \mathcal{V} se e só se

- 1. $S \neq \emptyset$;
- 2. \mathcal{S} é fechado em relação à adição de \mathcal{V} ;
- 3. $\mathcal S$ é fechado em relação à multiplicação por escalar de $\mathcal V$.

Proposição:

Se \mathcal{S} é um subespaço de \mathcal{V} , então $0_{\mathcal{V}} \in \mathcal{S}$.

Consequência imediata:

Se $0_{\mathcal{V}} \notin \mathcal{S}$, então \mathcal{S} <u>não</u> é um subespaço de \mathcal{V} .

Exemplos:

- \mathcal{V} e $\{0_{\mathcal{V}}\}$ são os subespaços triviais de \mathcal{V} ;
- $\{(1,y): y \in \mathbb{R}\}$ não é subespaço de \mathbb{R}^2 ;
- **4** $\mathcal{N}(A)$, o espaço nulo da matriz $A m \times n$, é subespaço de \mathbb{R}^n .

Espaço Gerado

Definição:

Seja $K = \{X_1, \dots, X_k\} \subset \mathcal{V}$. Chama-se espaço gerado por K ao conjunto formado por todas as combinações lineares de X_1, \dots, X_k , *i.e*, ao conjunto

$$S = \{\alpha_1 X_1 + \dots + \alpha_k X_k : \alpha_1, \dots, \alpha_k \in \mathbb{R}\}\$$

Diz-se também que K gera S ou é um conjunto gerador de S.

Notação:
$$S = \langle K \rangle = \langle X_1, \dots, X_k \rangle$$

Exercício:

Confirme que $S = \langle K \rangle$ é um subespaço vetorial de V.

Exemplos de espaços gerados (já estudados anteriormente):

- Sendo $X_1 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, $\langle X_1 \rangle$ é a reta que passa pela origem e tem vetor diretor X_1 ;
- ② Sendo $X_1, X_2 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$ vetores não colineares, $\langle X_1, X_2 \rangle$ é o plano que passa pela origem e que contém X_1 e X_2 .
- ③ Seja A uma matriz $m \times n$ com linhas encaradas como vetores $L_1, \ldots, L_m \in \mathbb{R}^n$ e colunas encaradas como vetores $C_1, \ldots, C_n \in \mathbb{R}^m$. O espaço das linhas de A é o subespaço de \mathbb{R}^n gerado por $\{L_1, \ldots, L_m\}$, *i.e.*,

$$\mathcal{L}(A) = \langle L_1, \ldots, L_m \rangle.$$

O espaço das colunas de A é o subespaço de \mathbb{R}^m gerado por $\{C_1, \ldots, C_n\}$, *i.e.*

$$C(A) = \langle C_1, \ldots, C_n \rangle$$
.

Proposição: (propriedades básicas dos conjuntos geradores)

Dados $X_1, \ldots, X_k \in \mathcal{V}$ e $i, j \in \{1, \ldots, k\}$, com $i \neq j$,

i.
$$\langle X_1, \ldots, X_i, \ldots, X_j, \ldots, X_k \rangle = \langle X_1, \ldots, X_j, \ldots, X_i, \ldots, X_k \rangle$$
;

ii.
$$\langle X_1,\ldots,X_i,\ldots,X_k\rangle=\langle X_1,\ldots,\alpha X_i,\ldots,X_k\rangle$$
, $\alpha\in\mathbb{R}\setminus\{0\}$;

iii.
$$\langle X_1, \ldots, X_i, \ldots, X_k \rangle = \langle X_1, \ldots, X_i + \beta X_j, \ldots, X_j, \ldots, X_k \rangle$$
, $\beta \in \mathbb{R}$.

Exemplo:

$$\left\langle \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\-1\\5 \end{bmatrix}, \begin{bmatrix} -2\\2\\0 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} 0\\-1\\5 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -2\\2\\0 \end{bmatrix} \right\rangle \\
= \left\langle \begin{bmatrix} 0\\-1\\5 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\6\\6 \end{bmatrix} \right\rangle \\
= \left\langle \begin{bmatrix} 0\\-1\\5 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\rangle$$

Vetores Linearmente Independentes

Definição:

 $\mathcal{K} \!=\! \{X_1,\ldots,X_k\} \!\subseteq\! \mathcal{V}$ é linearmente independente (l.i.) no e.v. real \mathcal{V} se

$$\alpha_1 X_1 + \dots + \alpha_k X_k = 0_{\mathcal{V}} \implies \alpha_1 = \dots = \alpha_k = 0.$$

Caso contrário, K é linearmente dependente (l.d.) em V, ou seja,

existem $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ não todos nulos tais que $\alpha_1 X_1 + \cdots + \alpha_k X_k = 0_{\mathcal{V}}$.

Observações:

- Por outras palavras, \mathcal{K} é l.i. se a única forma de escrever $O_{\mathcal{V}}$, como combinação linear de vetores de \mathcal{K} , é usando os coeficientes todos nulos.
- Se $0_{\mathcal{V}} \in \mathcal{K}$, então \mathcal{K} é linearmente dependente.

Conjuntos Geradores/Independência Linear

Lema:

Sejam $\mathcal V$ um e.v. real, $\mathcal K = \{X_1, \dots, X_k\} \subset \mathcal V$. X é combinação linear dos vetores de $\mathcal K \setminus \{X\}$ se e só se $\langle \mathcal K \setminus \{X\} \rangle = \langle \mathcal K \rangle$.

Teorema:

Sejam \mathcal{V} um e.v. real, $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

- \mathcal{K} é linearmente dependente se e só se existe $X \in \mathcal{K}$ tal que $\langle \mathcal{K} \setminus \{X\} \rangle = \langle \mathcal{K} \rangle$
- \mathcal{K} é linearmente independente se e só se $\mathcal{K} \cup \{Z\}$ é linearmente independente, para cada $Z \in \mathcal{V} \setminus \langle \mathcal{K} \rangle$.

Corolário:

Sejam \mathcal{V} um e.v. real, $\mathcal{K} = \{X_1, \ldots, X_k\} \subset \mathcal{V}$.

- ① Se \mathcal{K} gera \mathcal{V} e não é linearmente independente, é possível retirar de \mathcal{K} um elemento (pelo menos) por forma a que o conjunto obtido ainda gere \mathcal{V} .
- ② Se \mathcal{K} é linearmente independente e não gera \mathcal{V} , é possível acrescentar a \mathcal{K} um elemento de \mathcal{V} (devidamente escolhido) por forma a que o conjunto obtido ainda seja linearmente independente.

Corolário:

Se $\mathcal V$ é gerado por um número finito de vetores (dizemos que $\mathcal V$ é finitamente gerado), então $\mathcal V$ possui um conjunto lineamente independente de geradores.

Base de um espaço vetorial

Definição:

Uma base de um e.v. $\mathcal{V} \neq \{0_{\mathcal{V}}\}$ é um conjunto linearmente independente e gerador de \mathcal{V} .

Convenção: Se $V = \{0_V\}$, a base de V é o conjunto vazio.

Exemplos:

- $\{(1,0,0),(0,1,0),(0,0,1)\}\$ é uma base de \mathbb{R}^3 ;
- ② $\{x^3 + x, x^2, x + 2, x 1\}$ é uma base de \mathcal{P}_3 .

Base: escrita de um qualquer vetor de forma única

Proposição:

Sejam $\mathcal V$ um e.v. real e $\mathcal K=\{X_1,\ldots,X_k\}\subset \mathcal V$.

- Se $\mathcal K$ gera $\mathcal V$, então qualquer elemento de $\mathcal V$ pode escrever-se, pelo menos de uma maneira, como combinação linear dos elementos de $\mathcal K$.
- ② Se \mathcal{K} é l.i., então qualquer elemento de \mathcal{V} pode eventualmente escrever-se, no máximo de uma maneira, como combinação linear dos elementos de \mathcal{K} .

Teorema:

Se \mathcal{B} é uma base de um e.v. \mathcal{V} , então cada vetor de \mathcal{V} escreve-se de forma única como combinação linear dos elementos de \mathcal{B} .

Dimensão de um espaço vetorial

Teorema:

Seja V um e.v. com uma base de n vetores e $K \subset V$ com r vetores.

- i. Se $\mathcal K$ l.i., então $r \leq n$. Neste caso, existe uma base de $\mathcal V$ que contém $\mathcal K$.
- ii. Se \mathcal{K} gera \mathcal{V} , então $r \geq n$. Neste caso, existe um subconjunto de \mathcal{K} que é uma base de \mathcal{V} .

Corolário:

Duas bases de ${\cal V}$ possuem o mesmo número de elementos.

Definição:

A dimensão de $\mathcal V$ é o número de elementos de qualquer das suas bases. Notação: dim $\mathcal V$.

Alguns exemplos importantes

- Por convenção, a base de $\{0_{\mathcal{V}}\}$ é \emptyset . Então, dim $\{0_{\mathcal{V}}\}=0$.
- ② Sejam $e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0), ..., e_n = (0, ..., 0, 1).$ $\mathcal{C} = \{e_1, e_2, ..., e_n\}$ é a base canónica de \mathbb{R}^n . Então dim $\mathbb{R}^n = n$
- ③ Seja E_{ij} a matriz $m \times n$. que tem a entrada (i,j) igual a 1 e todas as outras iguais a 0. $\mathcal{C}_{m \times n} = \{E_{ij} : i = 1, \dots, m, j = 1, \dots, n\}$ é a base canónica de $\mathbb{R}^{m \times n}$. Então dim $\mathbb{R}^{m \times n} = mn$.
- **4** A base canónica do e.v. \mathcal{P}_n , dos polinómios na variável x de grau menor ou igual a n, é $\{1, x, \dots, x^n\}$. Então dim $\mathcal{P}_n = n + 1$.
- **3** O e.v. \mathcal{P} de todos os polinómios não admite uma base com um número finito de elementos, *i.e.*, \mathcal{P} não é finitamente gerado.

Independência linear/Conjuntos geradores num espaço vetorial de dimensão conhecida

O seguinte resultado é consequência imediata do Teorema do slide 16.

Teorema:

Seja $\mathcal V$ um e.v. de dimensão n e $\mathcal K \subset \mathcal V$ com r vetores.

- Se r > n, então \mathcal{K} não é l.i.
- Se r < n, então \mathcal{K} não gera \mathcal{V} .
- Se r = n, \mathcal{K} é uma base de \mathcal{V} se e só se \mathcal{K} é l.i se e só se \mathcal{K} gera \mathcal{V} .

Bases e dimensão do espaço das linhas de uma matriz

Proposição:

Seja A uma matriz $m \times n$ e E uma matriz escalonada por linhas equivalente a A, então as linhas não nulas de E formam uma base de $\mathcal{L}(A)$ e dim $\mathcal{L}(A) = \operatorname{car}(A)$.

Exemplo:

Seja
$$A = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 2 & -4 & -7 & 5 \\ 1 & -2 & -3 & 2 \end{bmatrix} \sim E = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim R = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, sendo E e R as formas escalonada e, respetivamente, reduzida de A .

Duas bases do espaço das linhas de A:

$$\mathcal{B} = \{(1,-2,-4,3), (0,0,1,-1)\}$$
 e $\mathcal{K} = \{(1,-2,0,-1), (0,0,1,-1)\}$.

Assim, dim $\mathcal{L}(A) = 2 = \operatorname{car}(A)$.

Bases e dimensão do espaço nulo de uma matriz

Proposição:

Sendo A uma matriz $m \times n$, $\dim \mathcal{N}(A) = \operatorname{nul}(A)$.

Sobre a determinação de uma base para $\mathcal{N}(A)$:

Basta encontrar o conjunto das soluções do sistema AX = 0 e determinar uma das suas bases.

Recorde que $nul(A) = n - car(A) = n.^{\circ}$ de incógnitas livres de AX = 0.

Exemplo:

Sejam A a matriz do exemplo do slide anterior e R a matriz escalonada reduzida equivalente a A. Seja $X = (x_1, x_2, x_3, x_4)$.

$$X \in \mathcal{N}(A) \iff AX = 0 \Leftrightarrow EX = 0 \Leftrightarrow \begin{cases} x_1 = 2x_2 + x_4 \\ x_3 = x_4 \end{cases}$$

 $\Leftrightarrow X = (2x_2 + x_4, x_2, x_4, x_4) = x_2(2, 1, 0, 0) + x_4(1, 0, 1, 1), x_2, x_4 \in \mathbb{R}.$

Base de $\mathcal{N}(A)$: $\{(2,1,0,0),(1,0,1,1)\}$ dim $\mathcal{N}(A) = 2$.

Bases e dimensão do espaço das colunas de uma matriz Proposição:

Seja A uma matriz $m \times n$ e E uma matriz escalonada por linhas equivalente a A, então as colunas da matriz A que correspondem às colunas com pivot na matriz E formam uma base de C(A) e dim C(A) = car(A).

Exemplo:

$$A = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 2 & -4 & -7 & 5 \\ 1 & -2 & -3 & 2 \end{bmatrix} \sim E = \begin{bmatrix} 1 & -2 & -4 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Base do espaço das colunas de A: $\mathcal{B} = \{(1,2,1), (-4,-7,-3)\}$. Assim, dim $\mathcal{C}(A) = 2 = \text{car}(A)$.

Reveja outra forma de determinar C(A):

 $B \in \mathcal{C}(A)$ se e só se AX = B é possível.

Exercício: Considere A do exemplo anterior e determine (desta forma) uma base para C(A).

Outra forma de encarar a característica de uma matriz

Corolários:

- O espaço das linhas e o espaço das colunas de uma matriz têm a mesma dimensão, que é a característica da matriz.
- ② A caraterística de uma matriz é o máximo número de linhas (ou colunas) linearmente independentes.
- Uma matriz quadrada é invertível se e só se o conjunto das suas linhas (colunas) é linearmente independente.

Coordenadas de um vetor numa base ordenada

Seja $\mathcal{B} = (X_1, \dots, X_n)$ uma base ordenada de \mathcal{V} , e.v. real.

Para cada vetor $X \in \mathcal{V}$ existem escalares únicos $a_1, \ldots, a_n \in \mathbb{R}$, tais que

$$X = a_1 X_1 + \cdots + a_n X_n.$$

 a_1, \ldots, a_n dizem-se as coordenadas de X na base \mathcal{B} .

O vetor das coordenadas de X na base \mathcal{B} é $[X]_{\mathcal{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$.

Exemplo:

Verifique que, relativamente à base $\mathcal{B}=\left((1,1),(1,2)\right)$, $[(0,1)]_{\mathcal{B}}=\begin{bmatrix}-1\\1\end{bmatrix}\qquad \text{e}\qquad [(1,-1)]_{\mathcal{B}}=\begin{bmatrix}3\\-2\end{bmatrix}.$

Notas sobre o vetor das coordenadas numa base:

- Os vetores X_1, \ldots, X_n da uma base ordenada \mathcal{B} têm vetores das coordenadas: $[X_1]_{\mathcal{B}} = e_1, [X_2]_{\mathcal{B}} = e_2, \ldots, [X_n]_{\mathcal{B}} = e_n$.
- Para $Y_1, \ldots, Y_r \in \mathcal{V}$, \mathcal{B} base ordenada de \mathcal{V} e $c_1, \ldots, c_r \in \mathbb{R}$, $[c_1Y_1 + \cdots + c_rY_r]_{\mathcal{B}} = c_1[Y_1]_{\mathcal{B}} + \cdots + c_r[Y_r]_{\mathcal{B}}$.

Exemplo:

Relativamente à base $\mathcal{B} = ((1,1),(1,2))$, (ver exemplo do slide anterior),

$$[(0,1)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \text{e} \quad [(1,-1)]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

Assim, como (-1,3) = 2(0,1)-(1,-1),

$$[(-1,3)]_{\mathcal{B}} = 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -5 \\ 4 \end{bmatrix}.$$

Note que, de facto, (-1,3) = -5(1,1) + 4(1,2).

Mudança de base

Sejam \mathcal{B} , $\mathcal{T} = (Y_1, \dots, Y_n)$ duas bases ordenadas de \mathcal{V} e $X \in \mathcal{V}$. Qual a relação entre $[X]_{\mathcal{B}}$ e $[X]_{\mathcal{T}}$?

$$[X]_{\mathcal{T}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \implies X = a_1 Y_1 + \dots + a_n Y_n$$

$$\implies [X]_{\mathcal{B}} = a_1 [Y_1]_{\mathcal{B}} + \dots + a_n [Y_n]_{\mathcal{B}}$$

$$= [[Y_1]_{\mathcal{B}} \quad \dots \quad [Y_n]_{\mathcal{B}}] \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

Concluindo-se que,

$$[X]_{\mathcal{B}} = \underbrace{\left[[Y_1]_{\mathcal{B}} \cdots [Y_n]_{\mathcal{B}} \right]}_{M_{\mathcal{B}\leftarrow \mathcal{T}}} [X]_{\mathcal{T}}$$

Matriz de mudança de base

Resumindo o conteúdo do slide anterior:

Sendo \mathcal{B} e $\mathcal{T} = (Y_1, \dots, Y_n)$ duas bases ordenadas de \mathcal{V} , à matriz cujas colunas são os vetores das coordenadas na base \mathcal{B} dos elementos da base \mathcal{T} :

$$M_{\mathcal{B}\leftarrow\mathcal{T}} = [[Y_1]_{\mathcal{B}} \cdots [Y_n]_{\mathcal{B}}]$$

chamamos a matriz de mudança de base de \mathcal{T} para \mathcal{B} .

Para cada $X \in \mathcal{V}$,

$$[X]_{\mathcal{B}} = M_{\mathcal{B} \leftarrow \mathcal{T}}[X]_{\mathcal{T}}$$

Exemplo (mudança de base)

Sejam $\mathcal{B}=\big((1,1),(1,2)\big)$ e $\mathcal{T}=\big((0,1),(1,-1)\big)$ bases ordenadas de \mathbb{R}^2 . Dado $X\in\mathbb{R}^2$ tal que $[X]_{\mathcal{T}}=\begin{bmatrix}4\\-1\end{bmatrix}$, tem-se que

$$X = 4(0,1) + -1(1,-1).$$

Logo, $[X]_{\mathcal{B}} = \mathbf{4}[(0,1)]_{\mathcal{B}} + -\mathbf{1}[(1,-1)]_{\mathcal{B}}$. Pelo exemplo anterior,

$$[(0,1)]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 e $[(1,-1)]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

então

$$[X]_{\mathcal{B}} = 4 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + -1 \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \underbrace{\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}}_{M_{\mathcal{B} \leftarrow \mathcal{T}}} \underbrace{\begin{bmatrix} 4 \\ -1 \end{bmatrix}}_{[X]_{\mathcal{T}}} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}.$$

As matrizes de mudança de base são invertíveis

Teorema:

Sejam \mathcal{B} e \mathcal{T} duas bases ordenadas de \mathcal{V} . Então $M_{\mathcal{B}\leftarrow\mathcal{T}}$ é invertível e

$$M_{\mathcal{B}\leftarrow\mathcal{T}}^{-1}=M_{\mathcal{T}\leftarrow\mathcal{B}}.$$

Demonstração:

Sejam $M=M_{\mathcal{B}\leftarrow\mathcal{T}}$, dim $\mathcal{V}=n$ e $Y\in\mathbb{R}^n$ tal que MY=0. Existe $X\in\mathcal{V}$ tal que $Y=[X]_{\mathcal{T}}$. Então

$$[X]_{\mathcal{B}} = M[X]_{\mathcal{T}} = M Y = 0.$$

Logo, $X=0_{\mathcal{V}}$ e portanto, Y=0. Assim, o sistema homogéneo M Y=0 possui apenas a solução trivial, e portanto, M é invertível.

Para cada $X \in \mathcal{V}$, tem-se $[X]_{\mathcal{B}} = M[X]_{\mathcal{T}}$, pelo que $[X]_{\mathcal{T}} = M^{-1}[X]_{\mathcal{B}}$. Concluindo-se que $M^{-1} = M_{\mathcal{T} \leftarrow \mathcal{B}}$.

Mudança de base em \mathbb{R}^n

Diagrama da mudança de base usando a base canónica:

 \mathcal{B} , \mathcal{T} : bases (ordenadas) de \mathbb{R}^n

C: base canónica de \mathbb{R}^n

 $M_{\mathcal{C} \leftarrow \mathcal{B}}$: matriz cujas colunas são os vetores da base \mathcal{B}

 $M_{\mathcal{C}\leftarrow\mathcal{T}}$: matriz cujas colunas são os vetores da base \mathcal{T}

$$M_{\mathcal{B}\leftarrow\mathcal{T}} = M_{\mathcal{B}\leftarrow\mathcal{C}} M_{\mathcal{C}\leftarrow\mathcal{T}} = M_{\mathcal{C}\leftarrow\mathcal{B}}^{-1} M_{\mathcal{C}\leftarrow\mathcal{T}}$$

Método de cálculo de uma matriz de mudança de base em \mathbb{R}^n :

$$\mathcal{B} = (X_1, \dots, X_n), \mathcal{T} = (Y_1, \dots, Y_n)$$
 bases de \mathbb{R}^n e \mathcal{C} a base canónica,

$$\begin{bmatrix} M_{\mathcal{C} \leftarrow \mathcal{B}} \mid M_{\mathcal{C} \leftarrow \mathcal{T}} \end{bmatrix} = \begin{bmatrix} X_1 & \cdots & X_n \mid Y_1 & \cdots & Y_n \end{bmatrix} \underset{\frown}{\sim} \begin{bmatrix} I_n \mid M_{\mathcal{B} \leftarrow \mathcal{T}} \end{bmatrix}$$

método de eliminação de Gauss-Jordan

Exemplo de aplicação/explicação do método do slide anterior

Para obtermos a matriz $M_{\mathcal{B}\leftarrow\mathcal{T}}$ de mudança da base $\mathcal{T}=\left((0,1),(1,-1)\right)$ para a base $\mathcal{B}=\left((1,1),(1,2)\right)$, temos de calcular

$$[(0,1)]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \qquad \Rightarrow \qquad (0,1) = \alpha_1 (1,1) + \alpha_2 (1,2),$$

$$[(1,-1)]_{\mathcal{B}} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \qquad \Rightarrow \qquad (1,-1) = \beta_1 (1,1) + \beta_2 (1,2).$$

Tal conduz a dois sistemas

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad e \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

com a mesma matriz dos coeficientes (cujas colunas são os vetores de \mathcal{B}).

Exemplo (continuação)

Os sistemas anteriores podem-se resolver em simultâneo, formando a matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & -2 \end{bmatrix},$$

$$M_{\mathcal{B}\leftarrow\mathcal{T}} = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}.$$

Note que esta matriz já foi calculada no side 27, por outro método.

Conjunto ortogonal e conjunto ortonormado

Definições:

Um conjunto $\{X_1,\ldots,X_k\}$ de vetores de \mathbb{R}^n diz-se ortogonal se

$$X_i \cdot X_j = 0, \qquad i \neq j, \qquad i, j = 1, \dots, k,$$

e diz-se ortonormado (o.n.) se é ortogonal e também se verifica

$$X_i \cdot X_i = 1, \qquad i = 1, \ldots, k.$$

Exemplos:

- $\{(1,1,0),(2,-2,1)\}$ é ortogonal;

Base ortogonal e base ortonormada

Teorema:

Todo o conjunto ortogonal de vetores não nulos é linearmente independente.

Corolário:

Todo o conjunto ortonormado de vetores é linearmente independente.

Corolário:

Todo o conjunto ortonormado (ou ortogonal de vetores não nulos) de n vetores em \mathbb{R}^n é uma base de \mathbb{R}^n .

Definição:

Uma base ortogonal/o.n. é uma base que é um conjunto ortogonal/o.n.

Coordenadas de um vetor de \mathbb{R}^n numa base o.n.

Teorema:

Seja $X \in \mathbb{R}^n$ e $\mathcal{B} = (X_1, \dots, X_n)$ uma base o.n. de \mathbb{R}^n . Então

$$[X]_{\mathcal{B}} = \begin{bmatrix} X \cdot X_1 \\ \vdots \\ X \cdot X_n \end{bmatrix},$$

isto é, $X = a_1 X_1 + \cdots + a_n X_n$, sendo $a_i = X \cdot X_i$, $i = 1, \dots, n$.

Exercício:

Determine as coordenadas do vetor (1,5) na base o.n. de \mathbb{R}^2

$$\left(\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\right).$$

Decomposição ortogonal em \mathbb{R}^n

Definição:

 $Y \in \mathbb{R}^n$ é ortogonal ao subespaço \mathcal{W} de \mathbb{R}^n se $Y \cdot Z = 0$ para cada $Z \in \mathcal{W}$.

Teorema 1:

Seja $Y \in \mathbb{R}^n$ e \mathcal{B} uma base de um subespaço \mathcal{W} de \mathbb{R}^n . Então, Y é ortogonal a \mathcal{W} se e só se Y é ortogonal a cada vetor de \mathcal{B} .

Teorema 2:

Seja $X \in \mathbb{R}^n$ e \mathcal{W} um subespaço de \mathbb{R}^n . Então, existem Y ortogonal a \mathcal{W} e $Z \in \mathcal{W}$, únicos, tais que^a

$$X = Y + Z$$
.

^aQuerendo adquirir maior compreensão sobre a prova deste teorema, resolva o exercício do último slide.

Projeção ortogonal em \mathbb{R}^n

Definição (projeção ortogonal de um vetor sobre um subespaço):

A projeção ortogonal de $X \in \mathbb{R}^n$ sobre o subespaço \mathcal{W} de \mathbb{R}^n é o vetor

$$Z \in \mathcal{W}$$
 tal que $X = Y + Z$, com Y ortogonal a \mathcal{W} .

Notação: $Z = \operatorname{proj}_{\mathcal{W}} X$

Teorema:

Seja $\{X_1,\ldots,X_k\}$ uma base o.n. do subespaço $\mathcal W$ de $\mathbb R^n$. A projeção ortogonal de $X\in\mathbb R^n$ sobre o subespaço $\mathcal W$ de $\mathbb R^n$ é

$$\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1)X_1 + \cdots + (X \cdot X_k)X_k \in \mathcal{W}.$$

Projeção ortogonal sobre uma reta que passa na origem ¹

Sejam $\mathcal{W} = \langle X_1 \rangle$ uma reta, $\{X_1\}$ base o.n. de \mathcal{W} e $X \in \mathbb{R}^3$ (ou \mathbb{R}^2).Logo,

$$X = Y + Z$$

onde

$$Z = \alpha X_1 \text{ e } Y \cdot X_1 = 0.$$

Então,

$$X \cdot X_1 = Y \cdot X_1 + \alpha X_1 \cdot X_1 = \alpha.$$

Portanto,

$$Z = \operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1) X_1$$

Note que, se
$$X = \overrightarrow{OP}$$
,

$$d(P, W) = ||X - \operatorname{proj}_{W} X||.$$

¹ilustração do teorema do slide anterior

Projeção ortogonal sobre um plano que passa na origem²

Seja \mathcal{W} um plano gerado pela base o.n. $\{X_1, X_2\}$ e $X \in \mathbb{R}^3$.

$$X = Z + Y$$
,

com

$$Z = \alpha_1 \mathbf{X_1} + \alpha_2 \mathbf{X_2} \text{ e } \mathbf{Y} \cdot \mathbf{X_1} = \mathbf{Y} \cdot \mathbf{X_2} = \mathbf{0}.$$

Como

$$X = Y + Z = Y + \alpha_1 X_1 + \alpha_2 X_2,$$

$$X \cdot X_1 = \alpha_1 e X \cdot X_2 = \alpha_2.$$

Logo,

$$\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1) X_1 + (X \cdot X_2) X_2.$$

Note que, se
$$X = \overrightarrow{OP}$$
,

$$d(P, \mathcal{W}) = ||X - \mathsf{proj}_{\mathcal{W}} X||.$$

²ilustração do teorema do ▶ slide 37

Método de ortogonalização de Gram-Schmidt ³

Teorema:

Todo o subespaço $\mathcal{W} \neq \{0\}$ de \mathbb{R}^n possui uma base o.n.

Demonstração - o método (opcional):

Dada $\{X_1, \ldots, X_m\}$ uma base de \mathcal{W} , sejam

$$rac{m{Y_1}}{\|m{X_1}\|}=rac{m{X_1}}{\|m{X_1}\|}$$
 e $m{\mathcal{Z}_1}=raket{m{Y_1}}$

$$X_k' = X_k - \operatorname{proj}_{\mathcal{Z}_{k-1}} X_k, \quad \underline{Y_k} = \frac{X_k'}{\|X_k'\|} \quad \text{e } \mathcal{Z}_k = \langle \underline{Y_1}, \dots, \underline{Y_k} \rangle,$$

$$\operatorname{para} \ k = 2, \dots, m.$$

Então $\mathcal{B} = \{Y_1, \dots, Y_m\}$ é um conjunto o.n., logo l.i. em \mathcal{W} . Como dim $\mathcal{W} = m$, conclui-se que \mathcal{B} é uma base o.n. de \mathcal{W} .

³opcional

Exercício suplementar

(Delineação de uma prova do Teorema 2 do slide 36)

Seja \mathcal{W} um subespaço de \mathbb{R}^n e $\mathcal{B} = \{X_1, \dots, X_p\}$ uma base de \mathcal{W} .

 $\begin{tabular}{ll} \bullet & \begin{tabular}{ll} Mostre que o conjunto de todos os vetores ortogonais a \mathcal{W}, designado por subespaço ortogonal de \mathcal{W}, \\ \end{tabular}$

$$\mathcal{W}^{\perp} = \{ Y \in \mathbb{R}^n \colon \ Y \cdot Z = 0, \text{ para todo o } Z \in \mathcal{W} \}$$

é um subespaço de \mathbb{R}^n .

- ② Mostre que $\mathcal{W}^{\perp} = \mathcal{N}(A)$, onde A é a matriz cujas linhas, encaradas como vetores, são X_1, X_2, \ldots, X_p .
- **3** Justifique que dim $W^{\perp} = n p$.
- Mostre que se P = {Y₁,..., Y_{n-p}} é uma base de W[⊥], então T = B∪P é l.i. e, portanto, uma base de ℝⁿ.
- **3** A partir da alínea anterior, conclua que, para cada $X \in \mathbb{R}^n$, existem $Z \in \mathcal{W}$ e $Y \in \mathcal{W}^{\perp}$, únicos, tais que X = Z + Y.