Algoritmos para conexidade em grafos dinâmicos

Arthur Henrique Dias Rodrigues sob orientação de Cristina Gomes Fernandes

> Instituto de Matemática e Estatística USP

22 de novembro de 2024

Conexidade em florestas dinâmicas

Sumário

Conexidade em florestas dinâmicas

- 1 Conexidade em florestas dinâmicas
 - Definição
 - Euler Tour Trees
- 2 Conexidade em grafos dinâmicos
 - Definição
- 3 Floresta maximal de peso mínimo em grafos planos ponderados dinâmicos
 - Definição do problema
 - Resolvendo MSF com ADPs
- 4 O limitante inferior de $\Omega(\lg n)$
- Bibliografia

2/54

Conexidade em florestas dinâmicas

•000000000

Conexidade em florestas dinâmicas

Problema de conexidade em florestas dinâmicas

- NOVAFD(n): retorna uma floresta dinâmica com n vértices isolados;
- LIGUEFD(F,u,v): adiciona uv a F;
- REMOVAFD(F,u,v): remove uv de F; e
- CONECTADOFD(F,u,v): retorna verdadeiro se u e v estão na mesma componente conexa de F e falso, caso contrário.

Para solucionar esse problema, vamos apresentar a estrutura de dados proposta por Henzinger e King.

Sequência Euleriana

Conexidade em florestas dinâmicas

000000000 **Euler Tour Trees**

30 00 04 41 12 22 21 11 14 44 45 55 54 40 03 33

Arthur Rodrigues

IME-USP

Algorit. em conexidade dinâmica

Euler Tour Trees

Conexidade em florestas dinâmicas 000000000 **Euler Tour Trees**

arco	30	00	04	41	12	22	21	11	14	44	45	55	54	40	03	33
índice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Arthur Rodrigues

IME-USP

Chaves implícitas

Conexidade em florestas dinâmicas

arco	30	00	04	41	12	22	21	11	14	44	45	55	54	40	03	33
índice	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Arthur Rodrigues

IME-USP

Biblioteca de Euler Tour Trees

Biblioteca de Euler Tour Trees

- NOVONÓ(u, v): retorna uma ABB com um único nó com valor uv;
- \blacksquare JUNTA(T, R): junta as ABBs $T \in R$ concatenando as sequências Eulerianas armazenada nelas e retorna a raiz da árvore resultante.
- CORTA(nó): corta a ABB que contém um nó nó em três ABBs. A primeira ABB contém todos os nós com chave estritamente menor do que a chave de nó, a segunda contém somente nó e a última contém todos os nós com chave estritamente maior do que a chave de nó. Essa rotina retorna as raízes dessas três ABBs: e
- RAIZ(nó): retorna a raiz da ABB que contém nó;

NOVONÓ: O(1). As demais operações : $O(\lg n)$.

Tabela de símbolos

Conexidade em florestas dinâmicas

Associa
$$(u, v) \rightarrow uv$$
.

Biblioteca de tabela de símbolos

- $F \leftarrow \text{NOVODICIO}(n)$: cria e retorna um dicionário F para uma floresta dinâmica com n vértices:
- $F[u,v] \leftarrow uv$: insere o nó que contém uv, com chave (u,v) e valor associado uvna tabela F. Se o par (u, v) já estiver presente no dicionário, então seu valor associado é substituído por uv;
- \blacksquare $F[u,v] \leftarrow \text{NIL}$: remove o nó associado a (u,v) e seu valor associado do dicionário F:
- $var \leftarrow F[u, v]$: atribui o valor associado à chave (u, v) à variável var; Caso a chave (u, v) não esteja presente em F, atribui NIL a var.

Consumo esperado O(1) por rotina.

Implementação da interface de floresta dinâmica

Algorithm NOVAFD(n)

```
1: F \leftarrow \text{NOVoDicio}(n)
```

2: para
$$v \leftarrow 1$$
 até n faça

3:
$$F[v, v] \leftarrow \text{NOVONO}(v, v)$$

4: retorne F

Conexidade em florestas dinâmicas

000000000 **Euler Tour Trees**

Algorithm CONECTADOFD(F, u, v)

1:
$$uu \leftarrow F[u, u]$$

2:
$$vv \leftarrow F[v, v]$$

3: **retorne**
$$RAIZ(uu) = RAIZ(vv)$$

NOVAFD: O(n)CONECTADOFD: $O(\lg n)$

Implementação da interface de floresta dinâmica

Algorithm MOVAINÍCIO(F, u)

1: $uu \leftarrow F[u, u]$

Conexidade em florestas dinâmicas

000000000 **Euler Tour Trees**

- 2: A, uu, $B \leftarrow CORTA(uu)$
- 3: retorne JUNTA(uu, B, A)

Algorithm LIGUEFD(F, u, v)

- 1: $U \leftarrow \text{MOVAINÍCIO}(F, u)$
- 2: $V \leftarrow \text{MOVAINÍCIO}(F, v)$
- 3: $uv \leftarrow \text{NOVON}\acute{o}(u, v)$
- 4: $vu \leftarrow \text{NOVONO}(v, u)$
- 5: $F[u, v] \leftarrow uv$
- 6: $F[v, u] \leftarrow vu$
- 7: JUNTA(U, uv, V, vu)

LIGUEFD : $O(\lg n)$ MOVAÍNÍCIO: O(Ig n)

Implementação da interface de floresta dinâmica

Algorithm REMOVAFD(F, u, v)

- 1: $uv \leftarrow F[u, v]$
- 2: $vu \leftarrow F[v, u]$
- 3: A, uv, $B \leftarrow CORTA(uv)$
- 4: JUNTA(B, A)
- 5: CORTA(vu)
- 6: $F[u, v] \leftarrow NIL$
- 7: $F[v, u] \leftarrow NIL$

REMOVAFD: $O(\lg n)$

Conexidade em grafos dinâmicos

Conexidade em grafos dinâmicos

Conexidade em florestas dinâmicas

Definição

Conexidade em grafos dinâmicos

- NOVOGD(n): cria um grafo dinâmico com n vértices isolados:
- LIGUEGD(G, u, v): adiciona a aresta uv ao grafo dinâmico G;
- REMOVAGD(G, u, v): remove a aresta uv de G; e
- CONECTADOGD(G, u, v): retorna verdadeiro se u e v estão na mesma componente conexa de G e falso, caso contrário.

Para solucionar esse problema, vamos apresentar a estrutura de dados proposta por Holm, de Lichtenberg e Thorup.

Ideia inicial

Definição

Manteremos

Conexidade em florestas dinâmicas

- floresta maximal dinâmica F de G; e
- \blacksquare um grafo R = G F

Lista de adjacências

- NOVOGRAFO(n): devolve a representação por listas de adjacências de um grafo com n vértices isolados.
- LIGUEGLA(G, u, v): adiciona u na lista de adjacências de v em G e vice-versa.
- \blacksquare REMOVAGLA(G, u, v): remove u da lista de adjacências de v em G e vice-versa.

NOVOGRAFO: O(n) LIGUEGLA: O(1) REMOVAGLA: O(1)

Ideia inicial

Definição

Conexidade em florestas dinâmicas

Algorithm CONECTADOGD(G, u, v)

1: **retorne** CONECTADOFD(G.F, u, v)

Algorithm LIGUEGD(G, u, v)

- se CONECTADOFD(G.F, u, v) então
- LIGUEGLA(G.R, u, v)
- 3: senão
- LIGUEFD(G.F, u, v)4:

CONECTADOGD : O(lg n) LIGUEGD : O(Ig2 n) amortizado!!

Remoção de arestas

Busca por substituição de uma aresta

- Cada aresta possui um **nível**, que é um inteiro entre 1 e $\lceil \log n \rceil$;
- Arestas serão inseridas no nível [log n];
- O nível de uma aresta pode diminuir, mas nunca aumentar.

Estrutura

 $G_{\leq i}$: grafo com arestas de nível $\leq i$. Para cada camada i, manteremos:

- \blacksquare $F_{\leq i}$: floresta maximal de $G_{\leq i}$; e
- \blacksquare R_i : arestas de nível $i \notin F_{\leq i}$.

Invariantes

- $F_{\leq i} \subseteq F_{\leq i+1}$, para cada $1 \leq i \leq \lceil \log n \rceil 1$;
- \blacksquare $F_{\leq i}$ é uma floresta maximal de $G_{\leq i}$; e
- Cada componente de $F_{\leq i}$ possui menos do que 2^i arestas.

Implementações

Conexidade em florestas dinâmicas

Definição

Adaptações

$$G.F o G.F_{\leqslant \lceil \log n \rceil}$$

 $G.R o G.R_{\lceil \log n \rceil}$

Algorithm REMOVAGD(G, u, v)

1: $i \leftarrow \text{NÍVEL}[u, v]$

- 2: $NÍVEL[u, v] \leftarrow NIL$ 3: se $uv \in G.F_{\leqslant \lceil \lg n \rceil}$ então
- para $j \leftarrow \hat{i}$ até $\lceil \lg n \rceil$ faça
- REMOVAFD $(G.F_{\leq i}, u, v)$ 5.
- SUBSTITUAGD(G, u, v, i)
- 7: senão
- REMOVAGLA($G.R_i$, u, v) 8:

REMOVAGD : $O(\lg^2 n)$ amortizado.

Estrutura de níveis

Definição

A rotina SUBSTITUAGD

Conexidade em florestas dinâmicas

Definição

Algorithm SUBSTITUAGD(G,u,v,niv)

```
1: para i ← niv até [lg n] faca
        T_V \leftarrow \text{RAIZ}(F_{\leq i}[v, v])
        T_u \leftarrow \text{RAIZ}(F_{\leq i}[u, u])
         se TAMANHO(T_{\nu}) < TAMANHO(T_{\mu}) então
                                                                                \triangleright Garantimos que |T_{\nu}| \geqslant |T_{\mu}|
 4.
              u \leftrightarrow v
 5:
              T_{\prime\prime}\leftrightarrow T_{\prime\prime}
 6:
         para xy em T_u com NÍVEL[x, y] = i faça
                                                                                 \triangleright Move T_{ii} para o nível i-1
 7:
              NIVEL[x, y] \leftarrow i - 1
 8.
              LIGUEFD(G.F_{\leq i-1}, x, y)
 9:
         para xy em G.R_i com x em T_{ij} faca
10:
                                                                                 ⊳ Procura substituta para uv
              REMOVAGLA(G.R_i, x, y)
11:
              se não CONECTADOFD(F_{\leq i}, x, y \text{ então})
12:
                   para i \leftarrow i até \lceil \lg n \rceil faca
13:
14:
                       LIGUEFD(G.F_{\leq i}, x, y)
                   retorne
15:
              senão
16.
                   NIVEL[x, y] \leftarrow i - 1
17:
                   LIGUEGLA(G.R_{i-1}, x, y)
18:
```

Implementação

Definição

Conexidade em florestas dinâmicas

- Implementamos HDT em Python3;
- O código dessa implementação está livremente disponível;
- O código LATEXdo dissertão também está disponível.

Floresta maximal de peso mínimo em grafos planos ponderados dinâmicos

MSF

Conexidade em florestas dinâmicas

Grafo plano

Grafo plano

Um **grafo plano** é um grafo G = (V, E) com as seguintes propriedades:

- $V \subset \mathbb{R}^2$;
- Toda aresta é um arco entre dois vértices:
- O interior de uma aresta não contém vértices nem intersecta outras arestas.

MSF

aresta	peso
а	2
b	7
С	3
d	1
f	2
g	4

Grafo dual

Grafo dual

Dado um grafo plano G, o grafo **dual** de G é o grafo $G^* = (F, E^*)$, onde

MSF

- F é o conjunto de faces de G;
- E* é o conjunto de arestas duais de G.

Definição do problema

MSF

Floresta maximal de peso mínimo

Conexidade em florestas dinâmicas

Definição do problema

O problema de floresta maximal de peso mínimo em grafos planos

- NOVOGDP(n): Cria e devolve um grafo plano ponderado G com n vértices isolados.
- \blacksquare LIGUEGDP(G, e, u, e_u , v, e_v , w): Insere em G uma nova aresta e com peso wligando os vértices u e v. A nova aresta e é sucessora das arestas e_{ij} e e_{ij} nas ordens cíclicas de *u* e *v*, respectivamente.
- REMOVAGDP(G, e): Remove a aresta e de G.
- MUDAPESOGDP(G, e, w): Altera o peso da aresta e de G para o valor w.
- PESOGDP(G): Devolve o peso de uma MSF de G.

Árvores dinâmicas planas

Apresentaremos a solução proposta por Eppstein, Italiano, Tamassia, Tarjan, Westbrook e Yung para esse problema. O nome da estrutura de dados introduzida por esses autores é edge-ordered dynamic tree que traduzimos para árvores dinâmicas planas.

Arthur Rodrigues

IME-USP

Árvore maximal e sua dual

Teorema

Seja T uma árvore geradora de um grafo plano conexo G. O conjunto

$$T^{\star} = \{e^{\star} : e \notin T\}$$

MSF

é uma árvore geradora de G*. Além disso, se G for ponderado e adotarmos $w(e^*) = w(e)$, então T será de peso mínimo em G se e somente se T^* for de peso máximo em G*

MSF

Árvores modificadas

Definição do problema

vértices	pesos
â, â ₁ , â ₃	2
$\hat{b}, \hat{b}_0, \hat{b}_2$	7
$\hat{c},\hat{c}_0,\hat{c}_2$	3
$\hat{d}, \hat{d}_0, \hat{d}_2$	2
$\hat{f}, \hat{f}_1, \hat{f}_3$	1
$\hat{g},\hat{g}_1,\hat{g}_3$	4
$\hat{u}, \hat{v}, \hat{y}, \hat{z}$	$-\infty$
$\hat{F}_0, \hat{F}_1, \hat{F}_2, \hat{F}_3$	∞

Exemplo de ADP

Definição do problema

MSF

Exemplo de ADP

Conexidade em florestas dinâmicas

Óctupla de e

Há 8 nós de link cut tree para cada aresta e de G. Chamaremos esses 8 vértices de óctupla de e.

MSF

Criação de grafo plano ponderado dinâmico e obtenção de peso

Algorithm NOVOGDP(n)

- 1: $G.H \leftarrow \text{NOVoDicio}(n)$
- 2: *G.p* ← 0
- 3: retorne G

Algorithm PESOGDP(G)

1: retorne G.p

NOVOGDP: O(n). PESOGDP: O(1). LIGUEGDP: O(lg m) REMOVAGDP: $O(\lg m)$. MUDAPESOGDP: $O(\lg m)$. Conexidade em florestas dinâmicas 0000000000 Resolvendo MSF com ADPs

Execução de Mudança de peso MUDAPESOGDP(G, a, 5)

aresta	peso
a _i	2
b _i	7
Ci	3
di	1
f _i	2
gi	4

Execução de Mudança de peso MUDAPESOGDP(G, a, 5)

MSF

Execução de Mudança de peso MUDAPESOGDP(G, a, 5)

Conexidade em florestas dinâmicas

Resolvendo MSF com ADPs

Execução de Mudança de peso MUDAPESOGDP(G, a, 5)

MSF

Dois casos de remoção de aresta

Arthur Rodrigues

IME-USP

Algorit. em conexidade dinâmica

Remoção de ponte

Remoção de ponte - REMOVAGDP(G, g)

Remoção de não ponte

Remoção de não ponte - REMOVAGDP(G, b)

Resolvendo MSF com ADPs

IME-USP

Remoção de não ponte - REMOVAGDP(G, b)

MSF

Conexidade em florestas dinâmicas

Remoção de não ponte - REMOVAGDP(G, b)

MSF

Arthur Rodrigues

Conexidade em florestas dinâmicas

Resolvendo MSF com ADPs

IME-USP

Dois casos de adição de aresta

MSF

MSF

Conexidade em florestas dinâmicas

O limitante inferior de $\Omega(\lg n)$

O limitante inferior de $\Omega(\lg n)$

Mihai Patrascu e Erik D. Demaine provaram o seguinte limitante inferior:

Teorema

Conexidade em florestas dinâmicas

Seja t_m o consumo de tempo de LIGUEGD ou REMOVAGD e t_c o consumo de tempo de CONECTADOGD. então

$$\min\{t_m, t_c\} \lg \left(\frac{\max\{t_m, t_c\}}{\min\{t_m, t_c\}}\right) = \Omega(\lg n).$$

Esse limitante é válido mesmo para implementações aleatorizadas e/ou amortizadas de LIGUEGD, REMOVAGD e CONECTADOGD e mesmo restringindo a classe de grafos do problema para caminhos.

Bibliografia

Bibliografia I

Conexidade em florestas dinâmicas

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.

The MIT Press, 2 edition, 2001.

Reinhard Diestel.

Graph Theory.

Graduate Texts in Mathematics. Springer, 6 edition, 2024.

David Eppstein, Giuseppe F Italiano, Roberto Tamassia, Robert E Tarjan, Jeffery Westbrook, and Moti Yung.

Maintenance of a minimum spanning forest in a dynamic plane graph.

Journal of Algorithms, 13(1):33-54, 1992.

Monika R. Henzinger and Valerie King.

Randomized fully dynamic graph algorithms with polylogarithmic time per operation.

Journal of ACM, 46(4):502-516, 1999.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.

Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.

Journal of the ACM, 48(4):723-760, 2001.

Bibliografia II

Conexidade em florestas dinâmicas

Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM Journal on Computing, 35(4):932-963, 2006.