

 ${\color{red} {\sf Home}}$ ${\color{red} {\sf Gameboard}}$ Chemistry Inorganic Bonding & IMFs Shape of ${\color{red} {
m SnCl_2}}$

Shape of SnCl_2

Which of the following structures represents the gaseous ${\rm SnCl_2}$ molecule? The orbital lobe represents a lone (unshared) pair of electrons.

Figure 1: Possible shapes of $SnCl_2$

B

_ C

() E

Adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 5

Home Gameboard Chemistry Inorganic Bonding & IMFs Shapes and Angles

Shapes and Angles

Part A	BCl_3 and PCl_3		
Why is	the molecule of BCl_3 planar, whereas the molecule of PH_3 is pyramidal?		
	The boron atom has no d-orbitals available for bonding.		
	The boron atom in BCl_3 has six electrons in its valency shell, whereas the phosphorus atom in PH_3 has eight.		
	The repulsion between chlorine atoms is greater than that between hydrogen atoms,		
	The covalent radius of phosphorus is greater than that of boron.		
	The covalent radius of chlorine is greater than that of hydrogen.		
Part B	NH_3		
In the ammonia molecule, what is the approximate value of the $\mathrm{H-N-H}$ bond angle?			
	180°		
	120°		
	107°		
	90°		
	60°		

Home Gameboard Chemistry Inorganic Bonding & IMFs Bond Angles

Bond Angles

Part A Methane, ammonia and water

The bond lengths and bond angles in the molecules of methane, ammonia and water may be represented as follows:

Figure 1: Shapes of molecules of methane, ammonia and water.

What causes this trend in the bond angles shown, according to valence shell electron pair repulsion theory?

- 1 increasing repulsion between hydrogen atoms as the bond length decreases
- 2 the number of non-bonding electron pairs in the molecule
- 3 a nonbonding electron pair having a greater repulsive force than a bonding electron pair
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct
 3 only is correct

Part B ${\rm SO_3}^{2-}$

The ${\rm SO_3}^{2-}$ ion may be represented as (geometry not necessarily representative):

Figure 2: SO_3^{2-} ion

What is the O-S-O bond angle?

- 90° exactly
- \bigcirc about 107°
- \bigcirc about 109.5°
- 120° exactly

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 31; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 2

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding & IMFs Dative Bond and Similar Shapes

Dative Bond and Similar Shapes

Part A Me_3N and BF_3

Trimethylamine, Me_3N , reacts with boron trifluoride, BF_3 , to form a compound of formula Me_3NBF_3 .

$$[\mathrm{Me}=\mathrm{CH_3}]$$

How may this reaction be drawn in terms of the shapes of the reactants and products?

- Λ Δ
- **B**
- () **D**

In which of the following pairs do the molecules have similar shapes?			
\bigcirc CO_2 and SO_2			
$igcap AlCl_3$ and PCl_3			
$igcup BF_3$ and NH_3			
$igcap AlCl_3$ and BCl_3			
$ ho$ Be Cl_2 and $\mathrm{H}_2\mathrm{O}$			

Part A adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 3; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 6

Gameboard:

Part B

STEM SMART Chemistry Week 7

Similar shapes

Home Gameboard Chemistry Inorganic Bonding & IMFs Bonding and Shapes

Bonding and Shapes

Part A $BF_3 \cdot CH_3OH$

 $BF_3 \cdot CH_3OH$ is a reagent used to form methyl esters from compounds containing acyl groups. In the diagrams, x, \bullet and \circ represent electrons from B, F and O, respectively.

Which tetrahedral structure illustrates the electron pairs around the boron atom?

Figure 1: Possible distributions of electrons in $BF_3\,\cdot CH_3OH$

	A
	В

_ c

Which of the following molecules is not planar?
Ethene
Phosphorus trichloride
Xenon tetrafluoride
Boron trifluoride

Part A adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 2; Part B adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 6

Gameboard:

Part B

STEM SMART Chemistry Week 7

Not planar

Home Gameboard Chemistry Inorganic Bonding & IMFs Shapes of Fluorides

Shapes of Fluorides

For each of the following, enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear". BF_3 Part A Describe the shape of BF_3 . CF_4 Part B Describe the shape of ${\ensuremath{\mathrm{CF}}}_4.$ Part C NF_3 Describe the shape of NF_3 . SF_6 Part D Describe the shape of SF_6 .

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding & IMFs Shapes of Halide Compounds

Shapes of Halide Compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

Part A BBr_3
Deduce the shape of of BBr_3 .
Part B PF_3
Deduce the shape of of ${ m PF}_3.$
Part C ${ m SF}_4$
Deduce the shape of ${ m SF}_4.$
Part D ${ m IF}_5$
Deduce the shape of ${\rm IF}_5.$

Part E $AlCl_3$ and Cl^-

Predict the shape of the species formed from the reaction of $AlCl_3$ with Cl^- .

Adapted with permission from OCSEB, STEP Chemistry, Jun 1998, Question 4

Gameboard:

STEM SMART Chemistry Week 7

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding & IMFs Shapes of Xenon Compounds

Shapes of Xenon Compounds

Part A $ m XeF_2$		
Describe the shape of $\mathrm{XeF}_2.$		
Part B $ m XeOF_2$		
Describe the shape of XeOF_2 .		
Part C $ m XeO_4$		
Describe the shape of ${ m XeO_4}.$		

Part D XeF_4

Describe the shape of $X\mathrm{e}F_{4}.$

Part E	${ m XeOF_4}$
Describe	the shape of ${ m XeOF_4}.$

Part A adapted with permission from OCR, STEP Chemistry, June 1999, Question 5

Gameboard:

STEM SMART Chemistry Week 7

Home Gameboard Chemistry Inorganic Bonding & IMFs Shapes of Molecules and Ions

Shapes of Molecules and Ions

${\bf Part \, D} \hspace{0.5cm} {\bf SbF_5}^{n-} \\$

Antimony, Sb, is in group 15 of the Periodic Table. It forms a series of salts which contain the SbF_5^{n-} anion, the structure of which is a square-based pyramid:

Figure 1: Structure of the ${\rm SbF_5}^{n-}$ anion

Deduce the total number of electrons around the antimony atom.		
Deduce the value of n .		

Adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 2

Gameboard:

STEM SMART Chemistry Week 7

Home Gameboard Chemistry Inorganic Bonding & IMFs Shapes of Molecules and Ions Extension

Shapes of Molecules and Ions Extension

Antimony, Sb, is in group 15 of the Periodic Table. It forms a series of salts which contain the SbF_5^{n-} anion, the structure of which is a square-based pyramid:

Figure 1: Structure of the ${\rm SbF_5}^{n-}$ anion

Deduce the oxidation number of ${\rm Sb}$ in the ${\rm SbF_5}^{n-}$ anion above.

Adapted with permission from UCLES A-Level Chemistry June 1991, Paper 3, Q2