Introduction

Receiver Operating Characteristics (**ROC**) Curve

- First developed and used during WWII for detecting enemy objects in battlefields
- Later used in psychology, medicine, forecasting of natural hazards, ...
- ... and finally model performance assessment

Source: https://commons.wikimedia.org/wiki/File: Chain_Home_radar_installation_at_Poling,_Sussex,_1945._CH15173.jpg

From Confusion Matrix to ROC Curve

Actuals	PredNeg	PredPos
ActNeg	3117	1842
ActPos	84	1469

From Confusion Matrix to ROC Curve

Actuals	PredNeg	PredPos
ActNeg	4948	11
ActPos	1305	248

From Confusion Matrix to ROC Curve

		Predicte		
		Yes	No	
Class	Yes	True Pos (Hit)	False Neg (Type I Error)	$TPR = \frac{TP}{TP + FN}$ \(\rightarrow \text{Y Axis on ROC Curve}\)
Actual Class	No	False Pos (Type II Error)	True Neg (Correct Rejection)	

From Confusion Matrix to ROC Curve

		Predicte		
		Yes	No	
Class	Yes	True Pos (Hit)	False Neg (Type I Error)	
Actual Class	No	False Pos (Type II Error)	True Neg (Correct Rejection)	$FPR = \frac{FR}{FP + }$ $\Rightarrow X \text{ Axis on RO}$

+TNOC Curve

From Confusion Matrix to ROC Curve

Example

Threshold	TN	FP	FN	ТР	FPR	TPR
0.01	1318	3641	3	1550	0.73	1
0.02	1776	3183	10	1543	0.64	0.99
•••						
0.98	4958	1	1431	122	0	0.08
0.99	4958	1	1448	105	0	0.07

ROC Curve

Purpose

Different methods can be compared

Source: own graph

Model Evaluation: Area Under Curve

Area under curve

- Maps ROC to one measure
- Purpose: compare different models

Calculates as:

- Sum of green squares
- Half of blue squares

Source: http://blog.revolutionanalytics.com/2016/11/calculating-auc.html

Model Evaluation: Loss Curve

- Model A: AUC = 0.6
- Model B: AUC = 0.58
- Which model should you choose? → That depends ©
- FN and FP might not value identical
- Example: WWII detection of enemy submarine attacks
- → False Negatives (actual attack, predicted no) more critical than False Positive.
- For this you can add different costs, e.g. FN-Cost = 10, FP-Cost = 1

Model Evaluation: Loss Curve

The images show the same model, colored with different cost-penalties.

