# Матрицы смежности и инцидентности

# 6. Матрицы смежности и инцидентности

## 6.1. Граф и его представления

Пусть задан простой неориентированный граф G = (V, E), где:

- $V = \{v_1, v_2, \dots, v_n\}$  множество вершин (|V| = n),
- $E = \{e_1, e_2, \dots, e_m\}$  множество рёбер (|E| = m).

Для хранения и анализа структуры графа удобно использовать его представление в виде матриц:

- 1) **Матрица смежности** (adjacency matrix),
- 2) Матрица инцидентности (incidence matrix).

### 6.2. Матрица смежности

Матрица смежности A — это квадратная матрица  $n \times n$ , где:

$$a_{ij} = egin{cases} 1, & \text{если вершины } v_i \text{ и } v_j \text{ соединены ребром,} \\ 0, & \text{иначе.} \end{cases}$$

#### Свойства:

- Для неориентированного графа A симметрична:  $a_{ij} = a_{ji}$ .
- Диагональные элементы  $a_{ii}$  равны 1, если в графе есть петли (в простом графе всегда 0).
- ullet Сумма элементов i-й строки (или столбца) даёт степень вершины  $v_i$ .

**Пример:** граф с 
$$V = \{v_1, v_2, v_3\}$$
 и рёбрами  $E = \{(v_1, v_2), (v_2, v_3)\}$ :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

# 6.3. Матрица инцидентности

Матрица инцидентности B — это матрица  $n \times m$ , где:

$$b_{ij} = \begin{cases} 1, & \text{если вершина } v_i \text{ инцидентна ребру } e_j, \\ 0, & \text{иначе.} \end{cases}$$

#### Особенности:

- Каждое ребро соединяет две вершины, значит в столбце j ровно два значения 1 (если граф простой и без петель).
- В ориентированном графе обычно используют -1 и +1:

$$b_{ij} = \begin{cases} -1, & \text{если } v_i - \text{начало дуги } e_j, \\ +1, & \text{если } v_i - \text{конец дуги } e_j, \\ 0, & \text{иначе.} \end{cases}$$

**Пример:** тот же граф, где  $e_1 = (v_1, v_2), e_2 = (v_2, v_3)$ :

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

## 6.4. Сравнение представлений

- Матрица смежности подходит для быстрого ответа на вопрос: «Есть ли ребро между  $v_i$  и  $v_i$ ?»
- Матрица инцидентности удобна для анализа структуры рёбер, особенно в ориентированных графах.
- Для разреженных графов (мало рёбер) матрица смежности неэффективна по памяти.

## 6.5. Визуальный пример



Рис. 1. Граф с вершинами  $v_1, v_2, v_3$  и рёбрами  $e_1, e_2$ 

## 6.6. Применения

- Алгоритмы поиска в графе (например, обход в глубину, поиск кратчайших путей).
- Сетевые задачи (анализ маршрутов, потоков, связности).
- Работа с графами в программировании, машинном обучении и обработке изображений.

## Источники

- Гросс, Йелл: Теория графов и её приложения.
- Д.Б. Уэст, Введение в теорию графов.
- Википедия: Матрица смежности
- Википедия: Матрица инцидентности