Konvexität der Exponentialfunktion

Jendrik Stelzner

9. Dezember 2014

Definition 1. Eine Abbildung $f \colon \mathbb{R} \to \mathbb{R}$ heißt konvex, falls für alle $x, y \in \mathbb{R}$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 für alle $\lambda \in [0, 1]$.

Übung 1.

Es sei $f,g\colon \mathbb{R} \to \mathbb{R}$ konvex. Zeigen Sie: Ist g monoton steigend, so ist auch $g\circ f$ konvex.

Wir wollen nun zeigen, dass die Exponentialfunktion exp: $\mathbb{R} \to \mathbb{R}$ konvex ist. Wir erinnern daran, dass

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad \text{für alle } x \in \mathbb{R},$$

und dass

$$\exp(x+y) = \exp(x) \exp(y)$$
 für alle $x, y \in \mathbb{R}$. (1)

Außerdem ist $\exp(x) > 0$ für alle $x \in \mathbb{R}$.

Übung 2.

Zeigen Sie, dass exp auf $[0,\infty)$ konvex ist, d.h. dass für alle $x,y\in[0,\infty)$

$$\exp(\lambda x + (1 - \lambda)y) \le \lambda \exp(x) + (1 - \lambda) \exp(y)$$
 für alle $\lambda \in [0, 1]$.

(*Hinweis*: Nutzen Sie, dass die Abbildungen $x \mapsto x^k$ auf $[0, \infty)$ konvex sind.)

Übung 3.

Folgern Sie, dass exp konvex ist. (*Hinweis*: Nutzen Sie (1) um Translationen von exp in Skalierungen zu transformieren.)

Lösung 1.

Es seien $x,y\in\mathbb{R}$ und $\lambda\in[0,1].$ Da f konvex ist, ist

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Wegen der Monotonie von g ergibt sich damit, dass

$$g(f(\lambda x + (1 - \lambda)y)) \le g(\lambda f(x) + (1 - \lambda)f(y)).$$

Durch die Konvexität von gerhalten wir auch, dass

$$g(\lambda f(x) + (1 - \lambda)f(y)) \le \lambda g(f(x)) + (1 - \lambda)g(f(y)).$$

Insgesamt erhalten wir damit, ass

$$(g \circ f)(\lambda x + (1 - \lambda)y)$$

$$= g(f(\lambda x + (1 - \lambda)y))$$

$$\leq g(\lambda f(x) + (1 - \lambda)f(y))$$

$$\leq \lambda g(f(x)) + (1 - \lambda)g(f(y))$$

$$= \lambda (g \circ f)(x) + (1 - \lambda)(g \circ f)(y).$$