1 2	Gender and Age Prediction using Supervisioned Learning
3 4	Afonso Rodrigues, Alice Mangara, Núria Silva
5 6 7 8	Dezembro 2021
10	1. Introdução
11 12	Na última década, o reconhecimento de atributos faciais tais como a idade e o género tem
13	sido um ponto de interesse na área da visão computacional. Uma das principais razões
14	são as inúmeras aplicações deste problema, como na identificação de pessoas, no controle
15	de segurança, e na interação homem-computador.
16	as segurança, e na misração nomem companador.
17	Diversos trabalhos têm sido publicados para o reconhecimento facial no âmbito da
18	Inteligência Artificial, usando <i>Deep Learning</i> (DL). Esta recente área surgiu nos anos
19	20000 e na última década atingiu um enorme sucesso em várias áreas, nomeadamente no
20	processamento de imagens e vídeos. DL usa um conjunto de métodos que aprende com
21	os dados e faz previsões inspiradas no comportamento do cérebro humano através de
22	redes neuronais profundas.
23	
24	Uma rede neuronal é um conjunto de perceptrões. Um perceptrão calcula a soma
25	ponderada de vários Inputs (com pesos), aplica uma função de ativação e calcula o seu
26	Output. Um neurónio é constituído pela soma ponderada e a função de ativação. Um
27	conjunto de perceptrões em paralelo recebe um conjunto de Inputs e calcula um conjunto
28	de Outputs. Se estes Outputs forem Inputs de outros perceptrões tem-se uma segunda
29	camada de perceptrões, podendo assim a rede neuronal ter várias camadas ocultas.
30	
31	Dentro da área de DL, as redes neuronais Convolutional Neural Networks (CNN) ocupam
32	um papel de grande importância no processamento de imagens. A vantagem em utilizar
33	uma rede CNN é a capacidade desta extrair características relevantes e depender de um
34	menor número de parâmetros em relação às redes totalmente conectadas com o mesmo
35	número de camadas ocultas. Cada camada oculta não é conectada com todas as unidades
36	da camada seguinte, havendo assim um menor número de pesos a serem calculados. A

arquitetura CNN é composta por um empilhamento de vários tipos de camadas, cada uma desempenhando uma função específica.

A camada de convolução consiste numa combinação de operações lineares (convolução) e não lineares (ativação). A convolução é constituída por um conjunto de neurónios, sendo cada neurónio um filtro (tipicamente uma matriz de números) aplicado à imagem que entra. Os filtros são denominados de *kernels*. Existem 3 parâmetros que definem o tamanho dos dados resultantes de uma camada: profundidade, passo e zero-*padding*. A profundidade dos dados resultantes depende do número de filtros utilizados. Cada um destes filtros irá extrair características diferentes nos dados de entrada. O passo indica qual o tamanho do salto na operação de convolução. Quanto maior o valor do passo, menor será a altura e o comprimento dos dados resultantes, mas deste modo existem características importantes que poderão ser perdidas. O zero-*padding* consiste em preencher com zeros a borda dos dados de entrada. A vantagem em utilizar esta operação é poder controlar a altura e largura dos dados de saída. Deste modo é possível fazer com que fiquem com os mesmos valores dos dados de entrada. A função de ativação permite passar a saída de um neurónio de uma camada para a outra.

A camada de *pooling* é utilizada para reduzir as dimensões dos dados de entrada (dados de saída de uma outra camada), diminuindo o custo computacional. Usualmente, depois de uma camada de convolução existe uma camada de *pooling*. A operação de *pooling* consiste em agrupar os valores pertencentes a uma determinada região dos dados gerados pela camada de convulsão e substituí-los por alguma métrica que exista nessa região. Usualmente a substituição é feita pelo valor máximo encontrado nessa região, técnica denominada de max-*pooling*.

A camada ReLU (Unidade de Retificação Linear) de um modo simples recebe um determinado dado de entrada e no caso deste ser positivo não o altera, caso seja negativo, altera-o para zero.

A camada *Full Connected* (FC) utiliza as características da imagem de *Input* da rede. para classificar a imagem numa das categorias para qual a rede foi treinada. A camada FC devido às suas características é normalmente uma camada usada no fim da rede. É

/ 1	denominada de Full connectea pois conecta os neuromos da camada anterior com os
72	neurónios da camada seguinte.
73	
74	Após as operações nas camadas totalmente conectadas tem-se a camada de saída. O
75	tamanho da camada de saída, ou seja, o número de neurônios, é igual ao número de classes
76	no problema.
77	
78	A rede VGG proposta por Karen Simonyan e Andrew Zisserman [4] foi a primeira rede
79	a utilizar filtros de pequenas dimensões em cada camada de convulsão. Usualmente eram
80	utilizados filtros de grandes dimensões (9x9 e 11x11) para capturar características nas
81	imagens. A grande contribuição da rede VGG foi a ideia de que múltiplas convoluções
82	3x3 em sequência podiam substituir efeitos de filtros de maiores, resultando num menor
83	custo computacional.
84	
85	Caffe (Convolutional Architecture for Fast Feature Embedding) Deep Learning [6] é uma
86	framework proposta em 2014 para implementar redes neuronais profundas de forma
87	eficiente. Caffe providencia um conjunto completo de diferentes tipos de camadas
88	incluindo convolução, pooling e ReLU.
89	
90	Este trabalho tem como objetivo usar Deep Learning para identificar a idade e o género
91	de uma pessoa através da imagem da sua face. Trata-se de um problema de classificação
92	supervisionado uma vez que é conhecido o output. Este tipo de identificação pode ser
93	incorporado no comportamento de um sistema autónomo em diferentes situações do dia-
94	a-dia.
95	
96	As restantes secções estão estruturadas da seguinte forma. Na secção 2 são referidos
97	alguns artigos relacionados com a deteção de atributos faciais como o género, idade e
98	estado emocional. Na secção 3 é apresentada a base de dados utilizada neste trabalho. Na
99	secção 4 é descrito o método implementado. A secção 5 apresenta os resultados e a sua
100	discussão. A conclusão é apresentada na secção 6.
101	
102	
103	

2. Estado da arte

105	
106	Esta secção refere alguns trabalhos realizados para o reconhecimento de atributos faciais,
107	com uso de Deep learning.
108	
109 110	Em [2] foi desenvolvida uma rede VGG capaz de identificar o género de uma pessoa através da imagem da cara. A rede utiliza 4 tipos de camadas: convulsão, <i>pooling</i> (Max-
111	pooling) e LRN (<i>Local Response Normalization</i>) que, usadas de maneira sequencial,
112	permitem identificar um objeto na imagem e conhecendo algumas características do
113	mesmo, categorizá-lo.
114	
115 116 117	A abordagem em [3] usa uma rede CNN com arquitetura VGG de 16 camadas para categorizar a idade para valores inteiros entre 0 e 100. É usada uma última camada denominada <i>Euclidean loss function</i> que junta os valores de saída da camada anterior e
118	calcula apenas um valor de saída que é a idade final.
119	
120	O trabalho desenvolvido em [1] tem como objetivo encontrar as várias caras que existem
121	numa imagem e, para cada cara, calcular a idade, o género e o estado emocional. A
122	abordagem foi criar e treinar quatro redes diferentes, uma para a cara, uma para a idade,
123	uma para o género e uma para a emoção, ao invés de criar só uma rede que calculasse os
124	quatro parâmetros em simultâneo.
125	
126	
127	3. Materiais
128	
129 130 131 132 133	Inicialmente, a base de dados a ser usada era a da IMDB-WIKI introduzida em [3], no entanto esta apresentava alguns erros que não nos permitiu usá-la. Optámos por usar a base de dados da UTKFace com cerca de 23 000 amostras, que contém informações sobre a idade, género e etnia.
134	
135	
136	
137	
138	
139	

4. Métodos

Os dados de entrada são as imagens obtidas da base de dados. Os dados de saída são a categoria de idade e o género. As categorias definidas são as seguintes: 0-2, 4-6, 8-12, 15-20, 25-32, 38-43, 48-53, 60-100.

Foi usada a framework Caffe para a construção da rede neuronal profunda. O modelo é constituído por dois tipos de ficheiros: extensão .prototxt – ficheiro de texto que descreve os parâmetros do modelo; extensão .caffemodel – modelo da rede neuronal.

5. Resultados e discussão

Obtivemos os seguintes resultados:

Primeiramente experienciámos o dataset da WIKI e IMDB, sem usar CNN, e observámos que o mesmo possuía diversos problemas, não eram imagens "clean" o que fez com que o programa/detetor/classificador não nos apresentasse qualquer resultado.

Decidimos então experimentar um novo programa com um data set diferente (UTKFace), alterando os intervalos de idade e utilizando o CNN.

Figure 1-Distribuição de idades do data set UTKFace

Figure 2-Accuracy

183

184 Aqui estão alguns exemplos:

Actual Gender: Male Age: 27
Values: [array([[0.5528965]], dtype=float32), array([[0.12574987]], dtype=float32)]
Predicted Gender: Male Predicted Age: 19-30

193

Actual Gender: Male Age: 47

 $Values: \ [array([[0.7136303]], \ dtype=float32), \ array([[0.01998827]], \ dtype=float32)]$

Predicted Gender: Male Predicted Age: 31-80

205 6. Conclusões 206 207 Este projeto abordou técnicas de *Deep learning* para identificar a idade e o género de uma 208 pessoa através da imagem da face de uma pessoa. 209 Concluímos que o tamanho, o ângulo, e em geral a qualidade da captação de imagem são 210 bastante importantes, diríamos até cruciais para o bom funcionamento de um detetor e 211 classificador de caras. Este programa que desenvolvemos e os métodos aplicados, não são 212 suficientemente robustos para uma aplicação que envolva o mundo real, pois só funciona 213 com imagens com parâmetros bem específicos. 214 215 Referências 216 217 [1] Afshin Dehghan, Enrique G. Ortiz, Guang Shu, and Syed Zain Masood. DAGER: Deep Age, Gender and Emotion Recognition using convolutional neural network. 218 219 CoRR, abs/1702.04280, 2017. 220 221 [2] Amit Dhomne, Ranjit Kumar, and Vijay Bhan. Gender recognition through face using deep learning. Procedia Computer Science, 132:2 – 10, 2018. International Conference 222 223 on Computational Intelligence and Data Science. 224 225 [3] Rasmus Rothe, Radu Timofte, and Luc Van Gool. DEX: Deep EXpectation of apparent age from a single image, Proceedings of the IEEE International Conference 226 227 on Computer Vision Workshops (ICCVW), 2015. 228 229 [4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-230 scale image recognition. CoRR, abs/1409.1556, 2014. 1, 2. 231 232 [5] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-233 networks-the-eli5-way-3bd2b1164a53 (Acedido em 29/12/2021). 234 235 [6] Yangqing Jia Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature 236

embedding. arXiv:1408.5093, 2014.

237