In the Week 4 Exercise, you will build a linear regression model to predict fuel efficiency (miles per gallon) of automobiles.

1. Download the auto-mpg.csv dataset from: Auto-mpg dataset. Load the data as a Pandas data frame and ensure that it imported correctly.

```
In [1]: import pandas as pd
import numpy as np

In [23]: auto_mpg_df = pd.read_csv('auto-mpg.csv')
auto_mpg_df.head(5)
```

Out[23]:

,		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
	0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
	1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
	2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
	3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
	4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

2. Begin by prepping the data for modeling:

i. Remove the car name column.

```
In [24]: auto_mpg_df_v2 = auto_mpg_df.drop( columns='car name')
   auto_mpg_df_v2.head(5)
```

Out[24]:

r	npg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
0	18.0	8	307.0	130	3504	12.0	70	1
1	15.0	8	350.0	165	3693	11.5	70	1
2	18.0	8	318.0	150	3436	11.0	70	1
3	16.0	8	304.0	150	3433	12.0	70	1
4	17.0	8	302.0	140	3449	10.5	70	1

ii. The horsepower column values likely imported as a string data type. Figure out why and replace any strings with the column mean.

```
In [25]: auto_mpg_df_v2.dtypes # Identifying datatypes. horsepower is in an object.
```

```
Out[25]: mpg float64
cylinders int64
displacement float64
horsepower object
weight int64
acceleration float64
model year int64
```

```
int64
         origin
         dtype: object
         auto mpg df v2.horsepower.unique() # Getting unique values to find incorrect values
In [26]:
         array(['130', '165', '150', '140', '198', '220', '215', '225', '190',
Out[26]:
                '170', '160', '95', '97', '85', '88', '46', '87', '90', '113',
                '200', '210', '193', '?', '100', '105', '175', '153', '180', '110',
                '72', '86', '70', '76', '65', '69', '60', '80', '54', '208', '155',
                      '92', '145', '137', '158', '167', '94', '107', '230', '49',
                '75', '91', '122', '67', '83', '78', '52', '61', '93', '148',
                '129', '96', '71', '98', '115', '53', '81', '79', '120', '152',
                '102', '108', '68', '58', '149', '89', '63', '48', '66', '139',
                '103', '125', '133', '138', '135', '142', '77', '62', '132', '84',
                '64', '74', '116', '82'], dtype=object)
         Horsepower has a '?' which is not an int/float. Replacing '?' with the mean of horsepower
In [27]:
         auto mpg df v2['horsepower'] = auto mpg df v2['horsepower'].replace('?', np.mean(pd.to n
         auto mpg df v2['horsepower'].unique()
```

```
Out[27]: array(['130', '165', '150', '140', '198', '220', '215', '225', '190', '170', '160', '95', '97', '85', '88', '46', '87', '90', '113', '200', '210', '193', 104.46938775510205, '100', '105', '175', '153', '180', '110', '72', '86', '70', '76', '65', '69', '60', '80', '54', '208', '155', '112', '92', '145', '137', '158', '167', '94', '107', '230', '49', '75', '91', '122', '67', '83', '78', '52', '61', '93', '148', '129', '96', '71', '98', '115', '53', '81', '79', '120', '152', '102', '108', '68', '58', '149', '89', '63', '48', '66', '139', '103', '125', '133', '138', '135', '142', '77', '62', '132', '84', '64', '74', '116', '82'], dtype=object)
```

iii. Create dummy variables for the origin column.

```
In [28]: auto_mpg_dummy_df = pd.get_dummies(auto_mpg_df, columns=['origin'])
   auto_mpg_dummy_df.head(5)
```

Out[28]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	car name	origin_1	origin_2	origin_:
	0	18.0	8	307.0	130	3504	12.0	70	chevrolet chevelle malibu	1	0	(
	1	15.0	8	350.0	165	3693	11.5	70	buick skylark 320	1	0	(
	2	18.0	8	318.0	150	3436	11.0	70	plymouth satellite	1	0	(
	3	16.0	8	304.0	150	3433	12.0	70	amc rebel sst	1	0	(
	4	17.0	8	302.0	140	3449	10.5	70	ford torino	1	0	(

3. Create a correlation coefficient matrix and/or visualization. Are there features highly correlated with mpg?

```
In [35]: auto_mpg_df_v2.corr(numeric_only=True)
Out[35]: mpg cylinders displacement weight acceleration model year origin
```

	mpg	1.000000	-0.775396	-0.804203	-0.831741	0.420289	0.579267	0.563450
cyli	nders	-0.775396	1.000000	0.950721	0.896017	-0.505419	-0.348746	-0.562543
displace	ment	-0.804203	0.950721	1.000000	0.932824	-0.543684	-0.370164	-0.609409
w	eight	-0.831741	0.896017	0.932824	1.000000	-0.417457	-0.306564	-0.581024
acceler	ation	0.420289	-0.505419	-0.543684	-0.417457	1.000000	0.288137	0.205873
mode	l year	0.579267	-0.348746	-0.370164	-0.306564	0.288137	1.000000	0.180662
c	rigin	0.563450	-0.562543	-0.609409	-0.581024	0.205873	0.180662	1.000000

weight and displacement have a high negative correlation with mpg.

```
import seaborn as sns
import matplotlib.pyplot as plt

corrmat = auto_mpg_df_v2.corr(numeric_only=True)
f, ax = plt.subplots(figsize=(5, 5))
sns.heatmap(corrmat, vmax=.8, square=True, annot=True, cmap='YlGnBu');
plt.show()

#sn.heatmap(corrMatrix, annot=True)
#plt.show(
```


4. Plot mpg versus weight. Analyze this graph and explain how it relates to the corresponding correlation coefficient.

```
In [37]: plt.bar(auto_mpg_df_v2.mpg,auto_mpg_df_v2.weight)
   plt.xlabel("mpg")
   plt.ylabel("weight")
   plt.title("mpg vs weight")
```

Out[37]: Text(0.5, 1.0, 'mpg vs weight')

From the chart, it is evident that as mpg and weight are negatively correlated. As the weight goes up, mpg decreases.

5. Randomly split the data into 80% training data and 20% test data, where your target is mpg.

```
In [71]:
         # Import library
         from sklearn.model selection import train test split
         # Create training and test sets
        y = auto mpg df v2.mpg
        x = auto mpg df v2.drop('mpg',axis=1)
        x train,x test,y train,y test=train test split(x,y,test size=0.2)
In [72]:
        print("Original dataset :", auto mpg df v2.shape)
In [59]:
        print("X train : ", x_train.shape[0])
        print("Y train : ", y train.shape[0])
        print("X test : ", x_test.shape[0])
        print("Y test : ", y test.shape[0])
        Original dataset: (398, 8)
        X train: 318
        Y train: 318
        X test: 80
        Y test: 80
```

6. Train an ordinary linear regression on the training data.

```
In [77]: #Load required libraries
from sklearn.linear_model import LinearRegression
```

```
lr = LinearRegression()
         lr.fit(x train, y train)
         print('Coeff : ',lr.coef)
        Coeff: [-0.34300193 0.01942318 -0.01686394 -0.00696096 0.12717167 0.78037201
          1.308456631
        predictions = lr.predict(x test)
In [62]:
         predictions
         array([17.15833798, 20.55112867, 29.83362348, 28.94129021, 18.74043654,
Out[62]:
                15.57920859, 10.88233212, 15.30416649, 20.7530766 , 12.19459822,
               19.49923107, 22.51873759, 33.58659401, 29.59154482, 29.98612272,
                19.70675915, 22.05631313, 17.86127535, 13.11055628, 17.33392201,
                22.42987447, 18.39197478, 23.23707597, 30.5670774 , 28.59845855,
                27.2199283 , 24.25178387, 10.36009619, 35.49597197, 28.19560173,
                12.67887322, 8.57524212, 17.9821634, 20.82756098, 23.15208288,
                7.10140425, 20.90089021, 26.14035753, 32.36000068, 34.47336209,
                21.19254092, 18.64901556, 16.8295314 , 25.38675495, 22.65235264,
                25.91905774, 31.31343344, 10.63355014, 32.15549888, 12.85086135,
                34.20895786, 34.90985895, 31.18652408, 25.31742936, 28.74482854,
                11.49104236, 17.4591845 , 26.06361162, 9.8824107 , 24.69678519,
                23.31753656, 17.29446946, 12.08384313, 30.30844803, 28.48333672,
                31.08796216, 30.78212042, 10.29973106, 15.42631592, 27.59700881,
                25.87441623, 16.31211456, 25.77739861, 34.40673038, 32.63806354,
                13.05622161, 16.53776077, 26.74894996, 23.1858301 , 26.50730341])
        plt.scatter(y test, predictions)
In [63]:
         plt.show()
         35
         30
         25
         20
         15
         10
```

7. Calculate R2, RMSE, and MAE on both the training and test sets and interpret your results.

30

35

40

45

15

10

20

25

```
In [78]: import sklearn.metrics as metrics

print('Score : ',lr.score(x_train,y_train))
# R^2
print('R^2 : ', metrics.r2_score(y_test, predictions))
```

```
#RMSE
print('RMSE : ',np.sqrt(metrics.mean_squared_error(y_test, predictions)))

#MAE
print('MAE : ',metrics.mean_absolute_error(y_test, predictions))
```

Score : 0.8150399002132145
R^2 : -0.8420564032429856
RMSE : 10.393328150906763
MAE : 8.36415376259967

8. Pick another regression model and repeat the previous two steps. Note: Do NOT choose logistic regression as it is more like a classification model.

```
In [68]: from sklearn.linear_model import Lasso

# Creating Lasso Regression model

lasso_reg = Lasso(alpha=0.3)
lasso_reg.fit(x_train,y_train)
predict = lasso_reg.predict(x_test)
plt.scatter(y_test, predict)
plt.show()
```



```
In [76]: #Regression Score
print('Score : ',lasso_reg.score(x_test,y_test))

# Lasso Regression R2, RMSE, and MAE on training and test sets
# R^2
print('R^2 : ', metrics.r2_score(y_test, predict))
#RMSE
print('RMSE : ',np.sqrt(metrics.mean_squared_error(y_test, predict)))

#MAE
print('MAE : ',metrics.mean_absolute_error(y_test, predict))
```

Score: 0.8382292477165283 R^2: -0.8021888931770234 RMSE: 10.280241852523538 MAE: 8.301966884872297