A. THE FIVE KINGDOMS (1969)

- Comparison of rRNA base sequences have shown that prokaryotes diverged into two groups early in the evolution of life
- So, it is not appropriate to put them all together in one kingdom

B. TYPES OF CLASSIFICATION

NATURAL

Place individuals into the same group if they've evolved from the same recent common ancestor.

Advantages of this:

- Easier identification of species
- Can help identify common ancestors/evolutionary paths
- It is a **universal system** (of naming organisms)
- Allows research of larger taxa groups

ARTIFICIAL

Place individuals into the same group if they **share a feature**. **Can be misleading**.

- We could put all animals with wings into the same group.
- However, some could have completely different wing structures (analogous)
- They could also differ in many other features.

C. THE THREE DOMAINS (1999) – GENERAL OVERVIEW

- The domains are: Eubacteria, Archaea and Eukaryota
- Individuals within these domains are known as: bacteria, archaeans and eukaryotes

NO NUCLEUS AND NO MEMBRANE-BOUND ORGANELLES

Common and pathogenic bacteria e.g. *E.coli*

Extremophiles

"bacteria"

"archaeans"

"eukaryotes"

HAS NUCLEUS AND HAS MEMBRANE-BOUND ORGANELLES

D. THE THREE DOMAINS (1999) - SPECIFIC DETAILS

Feature	DOMAIN			
	Eubacteria	Archaea	Eukaryota	
Cell walls	Made of peptidoglycan	Not made of peptidoglycan	Not made of peptidoglycan (if present)	
Cell membrane contains	Glycerol- ester lipids	Glycerol-ether lipids	Glycerol-ester lipids	
Proteins associated with DNA	Absent	Present	Histones	

E. WHY NOT HAVE A SIXTH KINGDOM: "VIRUSES"?

- Viruses are not cells as they lack organelles.
- Virus are not classed as living as they do not carry out the seven processes of life.
- Viruses have **no metabolism** of their own they hijack organelles in host cells and use these as "factories" for reproducing.

F. THE BINOMIAL CLASSIFICATON SYSTEM

• Made up of EIGHT TAXONS = classification groups (DKPCOFGS)

Every organism has a binomial name that is decided by its Genus and species.

				98
Category	Human	Tiger	Mayfly nymph	Cabbage white butterfly
kingdom	Animalia	Animalia	Animalia	Animalia
phylum	Chordata	Chordata	Arthropoda	Arthropoda
class	Mammalia	Mammalia	Insecta	Insecta
order	Primata	Carnivora	Ephemeroptera	Lepidoptera
family	Hominidae	Felidae	Ephemeridae	Pieridae
genus	Homo	Panthera	Ecdyonurus	Pieris
species	sapiens	tigris	venosus	brassicae

- The **binomial name** of the tiger is *Panthera tigris*.
- The tiger's **genus** is *Panthera*.
- The tiger's **species** is *Panthera tigris*.
- The tiger's **domain** is Eukaryota
- The tiger's kingdom is Animalia
- The **binomial name** of each organism is an **internationally agreed system** in which the scientific name of an organism is made up of **two** parts showing the **Genus** and **species**.

Two organisms belong to the same species if they can breed together to produce <u>fertile</u> offspring

G. CLADOGRAMS

Vocabulary

A clade is a group of organisms that evolved from a common ancestor

A cladogram is a tree diagram that shows the most probable sequence of divergence in clades

A node is a branching point on a cladogram

What cladograms are based on

- Can compare the following in different organisms:
 - > DNA base sequence of a gene

OR:

> Amino acid sequence of a protein

Comparing DNA bases sequences of a gene is more accurate as
the genetic code is degenerate:
different codons can code for the same amino acid

What a cladogram looks like

What this cladogram shows

- Organisms A and B are the most closely related in evolution
- (As) they share the shortest distance from a branch point/node
- (So) they spilt from each other more recently
- (So) they share a more recent common ancestor
- (So) they have the most similar DNA base sequences

('F' is least closely related to all other organisms for the converse reasons)

How And Why Cladograms Can Be Used To Investigate Evolutionary Relationships

- They show evolutionary relationships through a common ancestor
- They use **DNA base sequences**, amino acid sequences or shared anatomical features
- If the latter, then **homologous features** are used to place an organism in a **clade**.
- Time of divergence (splitting off) is related to the number of differences in DNA base sequences (there is a positive correlation)
- More shared features / more similar DNA base sequences = share a more recent common ancestor

Another way of drawing a cladogram

H. RECLASSIFICATION OF FIGWORTS

- Until recently, figworts were the 8th largest family of flowering plants (angiosperms), containing 275 different genera
- Their previous classification was based on the appearance of features such as leaves/flowers/seeds.
- This was problematic as many of the figworts were too dissimilar overall in structure to be in the same group
- Modern classification compares DNA bases sequences and has led to some figworts being
 reclassified into a new family as similarities in flower shape are thought to be a product of
 convergent evolution.
- This is when two different species show similar adaptations due to having the same selective pressure.
- The fewer the differences in DNA base sequence, the closer the evolutionary relationship.
- DNA mutation occurs at a relatively constant rate allowing estimation of when the species diverged.
- Scientists also examined the chloroplast gene in figworts and decided to split the figwort family into five different clades
- Now less than half of the species remain in the figwort family which is now the 36th largest among flowering plants

You are **not** expected to know the **specific names** of these groups.

I. CLASSIFICATION OF A SPECIFIC ANIMAL AND A SPECIFIC PLANT

• You are expected to know the full classification of one animal and one plant.

Taxon	Dog	French Rose	
Domain	Eukaryota	Eukaryota	
Kingdom	Animalia	Plantae	
Phylum	Chordata	Angiospermae	
Class	Mammalia	Dicotyledonae	
Order	Carnivora	Rosales	
Family	Canidae	Rosaceae	
Genus	Canus	Rosa	
Species	Canus familiaris	Rosa gallica	