学院	专业/大类	刊年	在 级	学是	姓 夕	共 4 页	第1页(A券)
ナル	マエ/人大	<i></i>	十双	チヮ		一 	为 1 火 (A で)

一、填空题(共15分,每小题3分)

- 1. 函数 $y = \sin x$ 的二阶微分 $d^2y =$ ______.
- 2. 函数 $y = xe^{2x}$ 的下凸区间为______.
- 4. 不定积分 $\int \frac{x^4}{1+x^2} dx = _____.$
- 5. 若 f(x) 在R 上有定义, f(1) = 0,且 f'(1) = 2,则

$$\lim_{x\to 0} \frac{f(\sin^2 x + \cos x)}{\tan x \cdot \ln(1+x)} = \underline{\hspace{1cm}}.$$

二、选择题(共15分,每小题3分)

- 1. 已知函数 $f(x) = |x-2| + \frac{\sin x}{x} \cdot \ln |x-1|$, 则 f(x) 在 R 上().
- (A) x=0是可去间断点,x=1是无穷间断点 (B) x=0和x=2是可去间断点
- (C) x=0是可去间断点, x=2是跳跃间断点 (D) x=0和 x=1 无穷间断点
- 2. 区间 $(1, +\infty)$ 上,下列函数中非一致连续的是().
- (A) $y = \sqrt{x}$ (B) $y = x^2$ (C) $y = \frac{1}{x}$ (D) y = x

- 3. 设函数 f(u) 可导,函数 $y = f(x^3)$ 当自变量 x在 x = 1 处取增量 $\Delta x = -0.1$ 时,相应的 函数增量 Δy 的线性主部为 0.3,则 f'(1) = ().
- (A) -1
- (B) 0.1
- (C) 1
- (D) 0.5
- 4. 若当 $x \rightarrow 0$ 时,函数 $f(x) = \sin x x \cdot e^{-\frac{x^2}{6}}$ 是 x 的 n 阶无穷小,则 n 的值为().
 - (A) 1
- (B) 2
- (C) 3
- (D) 5

- 5. 已知函数 f(x) 对一切实数 x 满足 $(1-x)f''(x) + 3x(f'(x))^2 = 1 e^x$, f'(0) = 0,) . 则(
- (A) f(0) 是 f(x) 的极大值
- (B) f(0) 是 f(x) 的极小值
- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点 (D) 以上都不对

三、计算题(共24分,每小题8分)

1. 已知函数 y = y(x) 由方程组 $\begin{cases} x + t(t+1) = 0, \\ te^{y} + y + 1 = 0 \end{cases}$ 确定,求曲线 y = y(x) 在 t = 0对应点处的切线方程和法线方程

学院_	求是学部	专业/大类
-----	------	-------

____班 年级_____学号____

姓名_____

共 4 页 第 2 页

2. 求极限 $\lim_{n\to\infty} n^2(\sqrt[n]{a} - \sqrt[n+1]{a}) (a > 0)$.

四、证明和计算题(共46分,第1小题14分,第2-5每小题8分)

1.设f(x) 在闭区间[0,2]上连续,在开区间(0,2)内可导,且满足

$$f(0) = f(2) = 0$$
, $\lim_{x \to 1} \frac{f(x) - 2}{(x - 1)^2} = 5$.

证明: (1) f(x) 在[0,2]上的最大值大于 2;

- (2) 存在 $\eta \in (1,2)$, 使得 $f(\eta) = \eta$;
- (3) 存在 $\xi \in (0,2)$,使得 $f'(\xi) = \frac{2\xi f(\xi)}{\xi}$.

3. 求不定积分 $\int \sqrt{x} e^{\sqrt{x}} dx$.

天津大学试卷专用纸

学院 <u>求是学部</u>	专业/大类		学号	姓名	共 4 页 第 3 页
2. 若函数 <i>f</i> (<i>x</i>) 在区证明 <i>f</i> (<i>x</i>) 在区间[0	区间 $[0,+\infty)$ 上连续,且 $\lim_{x\to+\infty}f(x)$ $0,+\infty)$ 上一致连续.	= A (A 为有限数),		司[-1,1]上三阶导函数连续,县 , 1) ,使得 ƒ‴(ξ)=3.	f(1) = 1, f(-1) = 0, f'(0) = 0,

天津大学试卷专用纸

学院 <u>求是学部</u>	专业/大类	班 年级	学号	姓名	共 4 页 第 4 页	
4. 利用闭区间套定理	理证明实数集 R 是不可列集.		5. 已知函数 $f(x)$ 在 $(-\infty, +\infty)$ 内二阶可导,且 $f''(x) \neq 0$.			
			(1) 证明: 对任何	可非零实数 x ,存在 唯一 的 $\theta(x)$)($0 < \theta(x) < 1$),使得	
				f(x) = f(0) + f'(0)	$(x \cdot \theta(x))x$;	
			(2) 计算 $\lim_{x\to 0}\theta(x)$).		