Smart Systems

Tweede Zit 2EA2 Carl Vancluysen

Analyse

Task list

- 1. Opbouwen breadboard / Connecteren
- 2. Android Applicatie
- 3. Bluetooth
- 4. Afstand Sensoren
- 5. 9DOF stick
- 6. Servo motor
- 7. Volledige functionaliteit
- 8. PCB
- 9. Documentatie / Presentatie
- 10. Kleine aanpassingen / Bug Fixes

Software Analyse

Hardware

Arduino Uno

Microcontroller: ATmega328

Operating Voltage: 5V

• Digitale I/O Pinnen: 14 (6 geven PWM output)

• Analoge Input Pinnen: 6

• Flash Geheugen: 32 KB (0.5kb gebruikt door

bootloader)

SparkFun LSM9DS1

- SparkFunLSM9DS1.h gebruikt als library
- Enkel de Gyro gebruikt van de 9DOF stick
- Tijdens kalibratie wordt de drift bepaald
- 3.3V
- Zelf moeten solderen

HC-06 Bluetooth

- Goede ervaring
- Beschikbaar
- Al geschreven code
- VCC uitschakelen bij uploaden code

Servo Motor

- Gebruikt gemaakt van Servo.h library
- Past zijn eigen constant aan a.d.h.v. van current heading
- Constructie servo motor:
 - Gewicht van twee afstandssensoren
 - Vastmaken op verhoog
 - Bekabeling

Afstand Sensoren HC-SR04

- 2 Sensoren (X, Y)
- Staan altijd naar linkse/bovenste of rechtse/onderste muur
- Gebruik gemaakt van de NewPing library
- Gemonteerd op de servomotor

LEDs

Rode led = Altijd aan tot de guess juist is

Groene led = Aan wanneer guess overeenkomt met de values van de afstandssensoren

2x 330 Ohm weerstanden

Software

Android Applicatie

Gepairde bluetooth devices selecteren in een lijst Connecteren met geselecteerde device Kalibreren van de 9DOF stick Reset van de guess (Opnieuw beginnen) X waarde dat je wilt guessen Y waarde dat je wilt guessen Waardes doorsturen

Arduino

Libraries

Wire.h -> Communicatie I2C devices

Servo.h -> Aansturen servo motor

Sparkfun LM9DS1 Library -> Communicatie 9DOF stick

NewPing.h -> Betere resultaten afstand sensoren

Setup

Serial.begin op 9600 baud Servo attachen Pinmode LEDs Initialiseren van de 9DOF stick door gebruik te maken van de library Kalibreren

- Ultrasone Sensoren:
 - Beide sensoren meten op startpositie.
 - Servo 180 graden draaien
 - Beide sensoren meten
 - Servo terug op startpositie zetten
 - Beide metingen optellen -> Grootte bak

LSM9DS1

Gyroscoop -> Beweging meet over tijd in °/s

Probleem: Als er geen beweging is gaat die nog altijd beweging meten -> Drift Drift is consistent - Blijft rond dezelfde waarde hangen -> meetbaar

Code: Kijken hoeveel de gemiddelde drift is over een bepaalde tijd en dat gebruiken om de correcte beweging te meten.

Servo

Servo kan maar 180° draaien Oplossing: Boven 180° = Heading - 180

Bluetooth

- Bluetooth socket
- String vertalen naar bytes -> Doorsturen via outstream
- Aan elkaar plakken van meerdere bytes tot en met stopletter

```
String getValue (String data, char separator, int index)
default:
  receivedData = receivedData + inbvte;
                                                           int found = 0;
 xval = getValue(receivedData, ',', 0);
                                                           int strIndex[] = { 0, -1 };
 yvaltemp = getValue(receivedData, ',', 1);
                                                           int maxIndex = data.length() - 1;
 yval = yvaltemp.substring(0, yvaltemp.length()-1);
 if (inbyte == 'z') {
                                                           for (int i = 0; i <= maxIndex && found <= index; i++) {
 Serial.println("X:" + xval);
                                                               if (data.charAt(i) == separator || i == maxIndex)
 Serial.println("Y:" + yval);
                                                                   found++;
 x = xval.toInt();
                                                                   strIndex[0] = strIndex[1] + 1;
 y = yval.toInt();
                                                                   strIndex[1] = (i == maxIndex) ? i+1 : i;
 receivedData = "";
  xval = "":
 yval = "";
 vvaltemp = "";
                                                           return found > index ? data.substring(strIndex[0], strIndex[1]) : "";
 inbyte = 'a';
```

public void write (String input)

} catch (IOException e) {

byte[] msgBuffer = input.getBytes();
try {
 mmOutStream.write(msgBuffer);

System.out.println("No paired device");

Guess

```
void calcXY() {
  if(currentHeading < 180) {
    xcoord = sensorX;
    ycoord = sensorY;
    servopos = currentHeading;
  }
  else {
    xcoord = 1 - sensorX;
    ycoord = b - sensorY;
    servopos = currentHeading - 180;
    Serial.println("Xcoord: " + String(xcoord) + "ycoord: " + String(ycoord));
  }
}</pre>
```

- Wrongvalue = Error margin
- 20cm
- Ultrasone sensoren niet accuraat
- If structuur 1x indrukken knop

```
if(xcoord >= x - wrongvalue && ycoord >= y - wrongvalue && xcoord <= x + wrongvalue && ycoord <= y + wrongvalue) {
    digitalWrite(ledWrong, LOW);
    digitalWrite(ledRight, HIGH);
    }
}</pre>
```

PCB

Schema

PCB

Info

- 1. Voeding van 5V aansluiten
- Alle aansluitingen externe componenten aan de kant van de PCB zoals het moet
- 3. Plaats voorzien om ATmega chip gemakkelijk uit voetje te halen
- 4. UART aansluiten = Voeding loskoppelen
- 5. 3.3V naar 9DOF stick door een voltage divider

Mogelijke problemen

- 1. Kristal moet uitgesneden worden op bepaalde PCB printers.
- 2. Diameter van de pads moet groter gemaakt worden om goed te kunnen solderen.

PCB bovenkant

PCB onderkant

Conclusie

Zwaktes / Mogelijke verbeteringen

- Gyroscoop van de 9DOF stick is niet accuraat genoeg.
- Opbouwen van de opstelling kon beter.
- Slecht onderzoek naar PCB design.
- Ultrasone sensoren zouden beter moeten meten.
- Geen gebruik gemaakt van registers
- NewPing library overbodig?

Terugblik

- Goed invidueel project.
- Met wat zwaktes, een werkend project.
- Successolle planning.
- Meer ervaring met Arduino.

Vragen?