Projet 3 : Concevez une application au service de la santé publique

Présenté par :

Bourama FANE

Etudiant Data Scientist

Dirigé par :

Babou M'BAYE

Mentor chez OpenClassrooms

24 février 2023

Sommaire

- Problématique
- 2 Nettoyage des données
- 3 Analyse des données
- 4 Idée d'Application & Conclusion

Plan de la présentation

- Problématique
- 2 Nettoyage des données
- 3 Analyse des données
- 4 Idée d'Application & Conclusion

Problématique

L'agence **Santé publique France** a lancé un appel à projets pour trouver des idées innovantes d'applications en lien avec l'alimentation.

Vous souhaitez y participer et proposer une idée d'application.

Sources de données

Il s'agit du jeu de données Open Food Fact.

Mission

Nettoyer et analyser le jeu de données **Open Food Fact**, tout en reflechissant à une idée d'application.

Plan de la présentation

- Problématique
- 2 Nettoyage des données
- 3 Analyse des données
- 4 Idée d'Application & Conclusion

Description de la base

Les données sont organisées en 5 sections listées ci dessous :

- 1- informations générales sur le produit
- 2- ensemble de tags sur le produit et sa provenance
- □ 3- ingrédients et allergènes
- 4- informations diverses
- □ 5- informations nutritionnelles.

Bourama FANE Soutenance P3 24 février 2023 6 / 3

Description de la base

Variable nombre 0 lignes 320772 1 colonnes 162

Types de variables

- La base de données contient 320 772 lignes, contre 162 variables;
- Nous distinguons deux types de variables (object et float).

Bourama FANE Soutenance P3 24 février 2023 7 /

Description de la base

Les données présentent beaucoup de valeurs manguantes.

- Taux de missings de 76%.
- Certaines variables sont pratiquement vides.

Taux de completion

Bourama FANE Soutenance P3 24 février 2023 8 / 33

Filtre sur le pays

- countries, le nom du pays est traduit dans différentes langues, souvent il affiche les initiales du nom du pays (ou région);
- countries_tags: il contient aussi souvent de la traduction anglaise du nom du pays ou région
- Nous allons donc utiliser **countries_fr** et supprimer les deux autres.

Bourama FANE Soutenance P3 24 février 2023 9 /:

Filtre sur la catégorie

- categories_tags est une traduction de la catégorie dans plusieurs langues.
- categories, elle fournit la meme information que catégories_fr ou fournit le sous groupe (preciser la catégorie)
- difference entre categories_fr et categories : il y a des tirets (-) dans les modalités de catégories_fr.

```
NonAlimentaires=['Non alimentaire','Open Beauty Facts','Nourriture pour animaux','Dentifrices']
dfNonAlimentaires=filterColumns(dfood, 'categories fr', NonAlimentaires)
```


Bourama FANE Soutenance P3 24 février 2023 10 / 33

Filtre sur le nom du produit

```
dfood.dropna(subset=['product_name'], inplace=True)
dfood.product_name.isna().sum()
```

Nous avons supprimé les doublons au niveau du nom du produit.

Bourama FANE Soutenance P3 24 février 2023 11 / 33

Colonnes redondantes

Certaines colonnes du jeu de données semblent **dupliquées**.

Les noms des variables se ressemblent à la différence qu'une préfixe qui s'ajoute (_fr, _tags).

Après examen de toutes ces variables, nous avons identifié une liste de **variables à** supprimer.

Bourama FANE Soutenance P3 24 février 2023 12 / 33

Catégories de produits

Nous avons cinq variables relatives à la catégorie du produit.

'categories', 'pnns_groups_1', 'pnns_groups_2', 'main_category', 'main_category_fr'.

```
def ImputeModalite(data,col1, col2,modaliteToImpute="unknown",Varlist=''):
    if Varlist=='':
        Varlist=[col1,col2]
    listModalite=data[(data[col1]==modaliteToImpute)][col2].unique().tolist()
    for modalite in ListModalite:
        df=data[(data[col2]==modalite)][Varlist]
        df=df[col1].value_counts(ascending=False).reset_index().rename(columns={'index':col1,col1:'nombre'})

    if df.iloc[0,0]!=modaliteToImpute:
        data.loc[(data[col1]==modaliteToImpute)&(data[col2]==modalite),col1]=df.iloc[0,0]
    elif df.shape[0]>1:
        data.loc[(data[col1]==modaliteToImpute)&(data[col2]==modalite),col1]=df.iloc[1,0]
    else:
        pass
    return data
```

```
ImputeModalite(dfood, 'pnns_groups_1', 'main_category_fr', modaliteToImpute="unknown", Varlist=varCategory)
ImputeModalite(dfood, 'pnns_groups_2', 'main_category_fr', modaliteToImpute="unknown", Varlist=varCategory)
```

Nous avons supprimé les produits non identifiables à travers la catégorie.

Bourama FANE Soutenance P3 24 février 2023 13 / 33

Variables nutritionnelles & Autres

- Variables nutritionnelles (**en g**), les valeurs devront être comprises entre 0 et 100.
- Excepté la variable **energy_100g** (3700 kJ pour 100g ou 900 kcal pour 100g);
- Suppression des lignes pour lesquelles toutes les variables nutriments sont vides (NaN);
- Suppression des colonnes ayant un taux de completion <60%.

Bourama FANE Soutenance P3 24 février 2023 14 / 33

Imputation du nutriscore

- la méthode KNN Imputer est utilisée pour imputer le nutriscore ;
- Ensuite, le nutriscore est utilisé pour imputer les nutrigrades

POINTS BEVERAGES
Water
≤ 1
2 to 5
6 to 9
10 to 40

15 / 33

Bourama FANE Soutenance P3 24 février 2023

Outliers

la méthode IQR est utilisée pour la detection des outliers;

```
# Creer un dataframe avec les outliers
def findOutliers(df, col):
    q1=df[col].quantile(0.25)
    q3=df[col].quantile(0.75)
    IOR=a3-a1
    outliers = df[((df[col]<(q1-1.5*IQR))) | (df[col]>(q3+1.5*IQR)))]
    return outliers
# Creer un dataframe en supprimant les Outliers
def deleteOutliers(df, col):
    q1=df[col].quantile(0.25)
    q3=df[col].quantile(0.75)
    IOR=a3-a1
    dfWithOut = df.loc[\sim((df[col]<(q1-1.5*IQR))) | (df[col]>(q3+1.5*IQR))),:]
    return dfWithOut
```


Bourama FANE 24 février 2023 16 / 33 Soutenance P3

Plan de la présentation

- Problématique
- 2 Nettoyage des données
- 3 Analyse des données
- 4 Idée d'Application & Conclusion

Ajout et modification des produits

Evolution des créations et modifications de produits par année

Nous constatons une *intensification* des modifications à a partir de 2015.

Les créations connaissent une croissance sur la meme période. Cependant, elles *chutent* en 2017.

Bourama FANE Soutenance P3 24 février 2023 18 / 33

Repartition du nutrigrade

Répartition des Nutrigrades

Bourama FANE Soutenance P3 24 février 2023 19 / 33

Distribution du nutriscore

Distribution empirique : nutriscore_score

Test de normalité

```
varList=['energy 100g', 'fat 100g', 'saturated-fat 100g', 'carbohydrates 100g'.
         'sugars 100g', 'fiber 100g', 'proteins 100g', 'salt 100g', 'sodium 100g']
for var in varList:
    test AndersonDarling(dfood, var)
Distribution normale energy 100g : False
Distribution normale fat 100g : False
Distribution normale saturated-fat 100g : False
Distribution normale carbohydrates 100g : False
Distribution normale sugars 100g : False
Distribution normale fiber 100g : False
Distribution normale proteins 100g : False
Distribution normale salt 100g : False
Distribution normale sodium 100g : False
```


Bourama FANE Soutenance P3 24 février 2023 21 / 33

Produits

Bourama FANE 24 février 2023 22 / 33 Soutenance P3

les groupes de produits : pnns_groups_1

Bourama FANE Soutenance P3 24 février 2023 23 / 33

les groupes de produits : pnns_groups_2

Bourama FANE Soutenance P3 24 février 2023 24 / 33

Matrice de corrélation Spearman

Coefficients de corrélation de Spearman

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0

Bourama FANE Soutenance P3 24 février 2023 25 / 33

Analyse de la variance

	beverages	cereals and potatoes	composite foods	fat and sauces	fish meat eggs	fruits and vegetables	milk and dairy products	salty snacks	sugary snacks
beverages	1.000000		0.000000	0.111397					0.000000
cereals and potatoes	0.000000	1.000000							0.000000
composite foods	0.000000	0.000000	1.000000						0.000000
fat and sauces	0.111397		0.000000	1.000000					0.000000
fish meat eggs				0.000000	1.000000				0.000000
fruits and vegetables	0.000000				0.000000	1.000000			0.000000
milk and dairy products	0.000000				0.000000	0.000000	1.000000		0.000000
salty snacks	0.000000					0.000000	0.000000	1.000000	0.000000
sugary snacks	0.000000						0.000000	0.000000	1.000000

Le test **Post Hoc (bonferroni)** permet de dire que les groupes **fat and sauces** et **beverages** sont presques identiques et diffèrent, cependant, des autres groupes.

Bourama FANE Soutenance P3 24 février 2023 26 / 33

Eboulis des valeurs propres

Avec les proportions de variance expliquée, nous notons que les huits(8) premiers facteurs restituent 97% de la variabilité.

Bourama FANE Soutenance P3 24 février 2023

Graphique des variables

Bourama FANE Soutenance P3 24 février 2023

28 / 33

K-Means : Nombre de k?

Bourama FANE Soutenance P3 24 février 2023 29 / 33

clusters et les nutrigrades?

Heatmap avec les variables nutrigrade et cluster

- Le cluster 3 est associé au nutrigrade A
- Le cluster 4 est associé au nutrigrade B
- Le cluster 1 est associé au nutrigrade C
- Les cluster 2 & 5 sont associés aux nutrigrade D & E

4 D > 4 B > 4 B > 4 B > 3

30 / 33

Bourama FANE Soutenance P3 24 février 2023

Plan de la présentation

- Problématique
- 2 Nettoyage des données
- 3 Analyse des données
- 4 Idée d'Application & Conclusion

Idée d'Application & Conclusion

- Nutrigrade
- Variables d'entrées : description des produits, nutriments ;
- Algorithme K-means (clustering, algorihme non supervisé) fournira le nutrigrade du produit.

Bourama FANE Soutenance P3 24 février 2023 32 / 33

MERCI POUR VOTRE AIMABLE ATTENTION

