

Implementing the Lambda Architecture with Spring XD

By Carlos Queiroz

Me

Carlos Queiroz

Advanced Field Engineer

Pivotal.

Agenda

- Introduction to the Lambda Architecture
- Applying Lambda architecture to a business case
- Implementation details

What is Lambda Architecture?

Implementation of a set of desired properties on general purpose big data systems.

Generic architecture addressing common requirements in *big data* applications.

Set of design patterns for dealing with historical and operational data.

Approach is new, ideas not so...

The Big Data Ecosystem

Why Lambda Architecture?

To build a data system that can answer questions by running functions that take at the entire dataset as input. A general purpose data system

Desired Properties of such systems

Fault-tolerance

Generic

Scale linearly, horizontally.

Extensible

Be able to achieve low latency updates when necessary.

Be able to "ask" arbitrary questions to the system

How to support those properties?

Decompose the problem into pieces

Batch Layer

The Master dataset

Master dataset requirements

Operation	Requisite	Comments
Writes	Efficient appends of new data	Basically add new pieces of data. Easy to append new data
Writes	Scalable storage	Need to handle possibly, petabytes of data
Reads	Support for parallel processing	Functions usually work on the entire dataset. Need to support handling large amounts of data
Reads	Vertically partition data	Not necessary to look all the data all the time. Some functions may need to look at only relevant data (e.g. 1 week of calls)
Writes/Reads	Costs for processing. Flexible storage	Storage costs money (a lot). Need flexibility on how to store and compress data.

The Master dataset

HDFS - Hadoop Distributed File System

Serving Layer

Makes the batch views "queryable"

Desired properties on the Serving layer

Serving layer database requirements

Fault-tolerant

Batch writable

Random reads

Scalable

Batch and serving layers

Only property missing - low latency updates

Speed layer

Allows arbitrary functions computed on arbitrary data on (near) real-time.

Speed layer

Narrow but more up to date view

Depending of functions complexity incremental computation approach is recommended

Incremental computation

realtime view = function(new data, realtime view)

Eventual Accuracy

Some computations are harder to compute

For such cases approximations are used. Results are approximate to the correct answer

Sophisticated queries such as realtime machine learning are usually done with eventual accuracy. Too complex to be computed exactly.

Approximation & Randomisation

Approximation

find an answer correct within some factor

(answer that is within 10% of correct result)

Randomisation

allow a small probability of failure

(1 in 10,000 give the wrong answer)

Synopses structures

- Sampling
- Sketches
- Histograms
- Wavelets

http://charuaggarwal.net/synopsis.pdf

Library implementations

- algebird (<u>https://github.com/twitter/algebird</u>)
- samoa (<u>https://github.com/yahoo/samoa/wiki</u>)

Stream processing (real-time function)

Data Ingestion ———

Stream Processing (realtime function)

Run the realtime functions to update the realtime views

	one-at-atime	micro-batched
lower latency		X
High throughput	X	•
At-least-once semantics	✓	•
exactly-once semantics	some cases	✓
Simpler programming model	✓	X

One-at-a-time

Divide your processing into worker processes, and put queues between the worker processes

Queues and workers paradigm

Generalised one-at-a-time approach

- Works on a higher level
- Stream computation defined as a graph (usually).
 - Storm, InfoSphere Streams models
- Filters and pipes
 - Spring XD
- At least once in case of failures.

cut -d" " -f1 < access.log | sort | uniq -c | sort -rn | less

Micro-batching

- Small batches of events processed one at a time
- Exactly one processing
- Implementations:
 - Spark Streaming

Lambda Architecture

Principles of Lambda Architecture

Store data in it's rawest form

Immutability and perpetuity

Re-computation

Query = function(all data)

Implementing the Lambda Architecture

The ACM DEBS 2014 Grand Challenge¹

To demonstrate the applicability of event-based systems to provide scalable, real-time analytics over high volume sensor data

ACM DEBS 2014 Challenge Application

Scenario

Analysis of energy consumption measurement

Short-term load forecasting

makes load forecasts based on current load and what was learned over historical data

Load statistics for real-time demand management

finds outliers based on the energy consumption

Data model

PL - House

Data source

Field	Comments
ID	UNIQUE IDENTIFIER
TIMESTAMP	TIMESTAMP OF MEASUREMENT
VALUE	MEASUREMENT
PROPERTY	TYPE: 0 - WORK, 1 - LOAD
PLUG_ID	UNIQUE IDENTIFIER OF A PLUG
HOUSEHOLD_ID	UNIQUE IDENTIFIER OF A HOUSEHOLD
HOUSE_ID	UNIQUE IDENTIFIER OF A HOUSE

Field	Comments
TS	TIMESTAMP OF STARTING TIME PREDICTION
HOUSE_ID	HOUSE ID
PREDICTED_LOAD	PREDICTED LOAD

PL - Plug

Field	Comments
TS	TIMESTAMP OF STARTING TIME PREDICTION
HOUSE_ID	HOUSE ID
HOUSEHOLD_ID	
PLUG_ID	
PREDICTED_LOAD	PREDICTED LOAD

Outliers

Field	Comments
TS_START	TIMESTAMP OF START TIME WINDOW
TS_STOP	TIMESTAMP OF STO PTIME WINDOW
HOUSE_ID	HOUSE ID
PERCENTAGE	% PLUGS LOAD HIGHER THAN NORMAL

Load prediction per house, per plug

It is based on the average load of the current window and the median of the average loads of windows covering the same time of all past days

$$L(s_{i+2}) = (avgLoad(s_i) + median(avgLoad(s_j)))/2$$
$$s_j = s_{(i+2-n*k)}$$

Outliers

For each house calculate the percentage of plugs which have a median load during the last hour greater than the median load of all plugs (in all households of all houses) during the last hour

How others did

Storm-based implementation

How others did

Oracle DB + Oracle Event Processing (OEP)

How others did

SEEP: Real-Time Stateful Big Data Processing

http://lsds.doc.ic.ac.uk/projects/seep/debs14-gc

Implementation details

Fork from https://github.com/pivotalsoftware/gfxd-demo

Thanks to Jens Deppe and William Markito

Our approach - ACM DEBS 2014 system architecture

Data ingestion

Speed layer

not a flow

springone **ZIB**

Stream actions

Spring XD streams

pumpin - sends all data to a master queue

sensoreventenricher - Consumes the data from the queue, filter and transform the data before store on HDFS

findoutliers - Taps from master_ds stream to compute outlier model

Ioadpred{h,p} - Taps from master_ds stream to compute load prediction for house and plug (2 streams)

5 streams

Batch Layer

Hadoop based system

Batch job that starts from Spring XD Uses cron to run every *X* hour/min/day?

Store an immutable and constantly growing master dataset (of all datasets)

Compute arbitrary functions (models) on the existing datasets.

Essentially, runs the MR models.

Spring XD jobs

- A unique job to run the MR model to compute the historical aspect of the models.
- MR job runs every "day/hour/min"
- Job is completely independent from the other streams

1 job

Serving layer (RT and Batch views)

Field

TS_START

TS_STOP

HOUSE_ID

PERCENTAGE

Get updates from MR and SP models
Holds both batch and real-time views

Web UI

Why Gemfire XD?

- Distributed database
- Tightly integrated with Pivotal Hadoop
- SQL support
- Fault-tolerant
- In-memory (fast access)

Why Pivotal HD (PHD)

- Hadoop based
- Tightly integrated with Gemfire XD

Why Spring XD?

- Data Ingestion
- Real-time Analytics
- Workflow Orchestration
- Integration

Full Open source implementation

HBase??

Hadoop

SpringXD

Is Lambda Architecture perfect?

- Suitable for specific use cases
- Doesn't contemplate reference data access.
- Not always possible to use same model for Real-time and Batch
- Other ideas to improve the lambda architecture
 - Multiple batch layers
 - incremental batch layers

Source code

https://bitbucket.org/caxqueiroz/debs2014-challenge

Thank you!!