Stanford ONLINE

DeepLearning.Al

Linear Regression with One Variable

Cost Function

Training set

features size in feet $^2(x)$	targets price \$1000's (y)
2104	460
1416 1534	232
852	315 178

Model:
$$f_{w,b}(x) = wx + b$$

What do w, b do?

$$f_{\underline{w,b}}(x) = wx + b$$

$$\rightarrow w = 0$$

$$\rightarrow b = 1.5$$
 $y - intercept$

$$\rightarrow w = 0.5$$

$$\rightarrow$$
 b = 0

$$-> w = 0.5$$

$$\rightarrow b = 1$$

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)}) \leftarrow$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Cost function: Squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
error

m = number of training examples

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2}$$
intuition (next!)

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.