

Tema № 3

Química General

Clasificación Periódica

Ing. Yanina Fernández

Departamento de Biotecnología y Tecnología Alimentaria Facultad de Ingeniería y Ciencias Exactas Universidad Argentina de la Empresa

Química General

Clasificación Periódica

Clasificación de los elementos de la tabla periódica

Figura 8.3 Clasificación de los elementos. Observe que los elementos del grupo 2B muchas veces se clasifican como metales de transición a pesar de no presentar las características de dichos metales.

Química General

Clasificación Periódica

Clasificación de los elementos de la tabla periódica

Elementos	Tienen incompleto el	Desde	1 A – Alcalinos	(Gas noble) nS ¹
representativos	último subnivel s o p del máximo número	grupo 1 A a 7A	2 A - Alcalinotérreos	(Gas noble) nS ²
	cuántico principal.		7 A – Halógenos	(Gas noble) nS ² np ⁵
			4 A -	Varían en su carácter metálico a lo largo del grupo
Gases Nobles	Lleno el subnivel p. Son inertes (Exc. Kr y Xe)	8 A		
Metales de transición	Incompleto el subnivel d	3B a 8B y 1B		
No son elementos representativos ni metales de transición	Zn, Cd, Hg No tienen un nombre en especial	2B		
Lantánidos y actínidos	Incompleto el subnivel f			

Química General

Clasificación Periódica

Configuración Electrónica de los elementos de la tabla periódica

Química General

Yb 6324ft 4

Lu 652454540

Lr 7.05/146db

Er 6s24f12

100

Fm 7x25ft2 Tm 6324ft3

Clasificación Periódica

Electrones de Valencia

59 Pr 6,248

90 Th 60 Nd 63248

U 7₽5₽6₫ Pm 63245

Np 7#5/6d Sm 6524f Eu 6824f

95

Am 7525f

Electrones de Valencia: Son los electrones externos. Son los electrones implicados en un enlace químico

Por lo tanto → Los elementos de un mismo grupo tienen mismo número de electrones de valencia
Por lo tanto → Esos elementos entre sí tienen similar comportamiento químico

300	1 1A	0																18 8A
1	1 H 1s ¹	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 1s ²
2	3 Li 2s ¹	4 Be 2s ²											5 B 2.s ² 2p ¹	6 C 2s ² 2p ²	7 N 2s ² 2p ³	8 O 2x ² 2p ⁴	9 F 2 <i>s</i> ² 2 <i>p</i> ⁵	10 Ne 2s ² 2p ⁶
3	11 Na 3s ¹	12 Mg 3s ²	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶
4	19 K 4s ¹	20 Ca 4s ²	21 Se 4x ² 3d ⁸	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁸	27 Co 4s ² 3d ⁷	28 Ni 4 <i>s</i> ² 3 <i>d</i> ⁸	29 Cu 4s ¹ 3d ¹⁰	30 Zn 4s ² 3d ¹⁰	31 Ga 4 <i>s</i> ² 4 <i>p</i> ¹	32 Ge 4s ² 4p ²	33 As 4s ² 4p ³	34 Se 4s ² 4p ⁴	35 Br 4s ² 4p ⁵	36 Kr 4s ² 4p ⁶
5	37 Rb 5x ¹	38 Sr 5s ²	39 Y 5s ² 4d ⁸	40 Zr 5s ² 4d ²	41 Nb 5s ¹ 4d ⁴	42 Mo 5s ¹ 4d ⁵	43 Te 5s ² 4d ⁵	44 Ru 5s14d7	45 Rh 5s14d8	46 Pd 4d ⁵⁰	47 Ag 5s ^t 4d ^{to}	48 Cd 5s ² 4d ¹⁰	49 In 5.s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶
6	55 Cs 6s1	56 Ba 6s ²	57 La 6x25d	72 Hf 6x25d2	73 Ta 6x25d3	74 W 6.s25d4	75 Re 6s25d5	76 Os 6 <i>s</i> 25 <i>d</i> 6	77 Ir 6s25d7	78 Pt 6x15d9	79 Au 6st5dt0	80 Hg 6s25d10	81 TI 6 <i>s</i> 26 <i>p</i> 1	82 Pb 6s26p2	83 Bi 6s26p3	84 Po 6s26p4	85 At 6s26p5	86 Rn 6s26p6
7	87 Fr 7s1	88 Ra 7.s ²	89 Ac 7s26d	104 Rf 7s26d2	105 Db 7s26d3	106 Sg 7s26d4	107 Bh 7s26d5	108 Hs 7s26db	109 Mt 7s26d7	110 Ds 7s26d8	111 Rg 7x26d3	112 7s26d10	113 7s27p1	114 7s27p2	115 7s27p3	116 7s27p4	(117)	118 7s27p6

64 Gd 684/54

Cm 7*8*25*f*6*d*2 65 Tb 6s24f9

> Cf 7325f00

Es 7,925ft1

Química General

Clasificación Periódica

Configuración electrónica de cationes y aniones

Tienen la configuración electrónica externa de un gas noble \rightarrow ns² np⁶

Se pierden 1 o más electrones del nivel n más alto ocupado

Na	[Ne]3s ¹	Na⁺	[Ne]	Pierde 1 electrón
Ca	[Ar]4s ²	Ca ²⁺	[Ar]	Pierde 2 electrones
Al	[Ne]3s ² 3p ¹	Al ³⁺	[Ne]	Pierde 3 electrones

Se ganan 1 o más electrones del nivel n que está parcialmente lleno

Н	1s ¹	H ⁻	1s ² [He]	Gana 1 electrón
F	1s ² 2s ² 2p ⁵	F-	1s ² 2s ² 2p ⁶ [Ne]	Gana 1 electrón
O	1s ² 2s ² 2p ⁴	O ²⁻	1s ² 2s ² 2p ⁶ [Ne]	Gana 2 electrones

Química General

Clasificación Periódica

Configuración electrónica de cationes y aniones

Cationes derivados de elementos de transición

Los electrones que se pierden primero son los del orbital ns y después los de los orbitales (n - 1) d

En la mayoría de los metales de transición se forma más de un catión y no suelen ser isoeléctricos al gas noble que los precede. Ejemplo:

(Z=25)[Ar] $4s^2 3d^5$

[Ar] 3d⁵

Mn²⁺

(Z=25)

Química General

Clasificación Periódica

Variaciones periódicas de las propiedades físicas

CARGA NUCLEAR EFECTIVA

- •Los electrones "protectores" disminuyen la atracción electrostática entre los protones del núcleo y los electrones externos.
- •Las Fuerzas de repulsión entre los electrones en un orbital polielectrónico compensan la fuerza de atracción que ejerce el núcleo

Influye en las propiedades periódicas

Para 1 mol de electrones 1s² se necesitan 2373 Kj

Para 1 mol de electrones 1s¹ se necesitan 5251 Kj

No existe el efecto pantalla

- •El efecto de protección es de los electrones internos hacia los externos.
- •Los niveles internos protegen mejor al electrón externo que a los del mismo subnivel

Química General

Propiedades Periódicas

Radio Atómico

RADIO ATÓMICO

Se usa para definir el tamaño el átomo

Se determinan mayormente por la fuerza de atracción del núcleo y los electrones externos

- ✓ En un metal, es la mitad de la distancia entre los centros de los átomos adyacentes.
- ✓ Para los elementos tales como el cloro, oxígeno o nitrógeno que existen como **moléculas diatómicas**, es la mitad de la distancia entre los centros de los dos átomos en la molécula.

Química General

Propiedades Periódicas

Radio Atómico

Radios atómicos (en picómetros) de los elementos representativos de acuerdo con su posición en la tabla periódica. Cuantas más capas electrónicas tenga el átomo, mayor será su tamaño.

			Aumen	nto del radio	atómico			
	1A	2A	3A	4A	5A	6A	7A	8A
	H © 37							He 31
	Li	Be	В	C	N	0	F	Ne
	152	112	85	77	75	73	72	70
tómico	Na	Mg	Al	Si	P	S	(CI)	Ar
radio a	186	160	143	118	110	103	99	98
Aumento del radio atómico	К	Ca	Ga	Ge	As	Se	Br	Kr
Am	227	197	135	123	120	117	114	112
	Rb	Sr	In	Sn	Sb	Те		Xe
	248	215	166	140	141	143	133	131
	Cs	Ba	n	Pb	Bi	Po	At	Rn
	265	222	171	175	155	164	142	140

- > Carga nuclear efectiva
- > Atracción del núcleo a los electrones
- < Radio atómico
- Los electrones que se adicionan a los orbitales al aumentar el Z, no ejercen efecto pantalla entre sí porque son de la órbita externa. (Ver período)
- Para los grupos, el radio aumenta al aumentar el Z porque el número cuántico principal (n) aumenta, por lo tanto hay un aumento en el tamaño de los orbitales.

Química General

Propiedades Periódicas

Radio Atómico

Gráfica del radio atómico (en picómetros) de elementos contra sus números atómicos.

1

Química General

Propiedades Periódicas

Radio Iónico

2

Formación de iones

Cambios en el tamaño del Li y F cuando reaccionan para formar LiF.

Química General

Propiedades Periódicas

Radio Iónico

Cuando se compara el radio de dos iones isoeléctricos, el de mayor radio es el de menor número atómico

Ejemplo: Al – Mg - Na

El radio iónico (en picómetros) de algunos elementos comunes, ordenados de acuerdo con su posición en la tabla periódica.

Química General

Propiedades Periódicas

Radios Iónicos VS Radios Atómicos

1.09

1:30

Ro

1.4

Radios Iónicos y Atómicos H 0 0.37 0.77 0.64 0.70 0.56 0.88 1.11 1.04 1:10 1.17 Ca 1.14 121 1.22 1.41 1:37 1.62

2.17

Química General

Propiedades Periódicas

Energía de ionización

Es la energía mínima (en kj/mol) necesaria para desprender un electrón de un átomo en estado gaseoso, a partir de su estado fundamental.

ATRACCIÓN DE UN ÁTOMO POR SUS PROPIOS ELECTRONES

"Medida de qué tan fuertemente unido está el electrón al átomo"

> Energía de ionización (I) > Fuerza de unión (Más cuesta quitarle ese electrón al átomo)

Química General

Propiedades Periódicas

Energía de ionización

$$A_{(g)} + E_i \rightarrow A^+_{(g)} + 1e^- \rightarrow Primera energía de Ionización (I_1)$$
 $A^+_{(g)} + E_i \rightarrow A^{2+}_{(g)} + 1e^- \rightarrow Segunda energía de Ionización (I_2)$
 $A^{2+}_{(g)} + E_i \rightarrow A^{3+}_{(g)} + 1e^- \rightarrow Tercera energía de Ionización (I_3)$

Unidades: kJ/mol – valores positivos

Z	Elemento	Primera	Segunda	Tercera	Cuarta	Quinta	Sexta
1	Н	1 312					
2	He	2 373	5 251				
3	Li	520	7 300	11 815			
4	Be	899	1 757	14 850	21 005		
5	В	801	2 430	3 660	25 000	32 820	
6	C	1 086	2 350	4 620	6 220	38 000	47 261
7	N	1 400	2 860	4 580	7 500	9 400	53 000
8	O	1 314	3 390	5 300	7 470	11 000	13 000
9	F	1 680	3 370	6 050	8 400	11 000	15 200
0	Ne	2 080	3 950	6 120	9 370	12 200	15 000
1	Na	495.9	4 560	6 900	9 540	13 400	16 600
2	Mg	738.1	1 450	7 730	10 500	13 600	18 000
3	Al	577.9	1 820	2 750	11 600	14 800	18 400
4	Si	786.3	1 580	3 230	4 360	16 000	20 000
5	P	1 012	1 904	2 910	4 960	6 240	21 000
6	S	999.5	2 250	3 360	4 660	6 990	8 500
7	CI	1 251	2 297	3 820	5 160	6 540	9 300
8	Ar	1 521	2 666	3 900	5 770	7 240	8 800
9	K	418.7	3 052	4 410	5 900	8 000	9 600
20	Ca	589.5	1 145	4 900	6 500	8 100	11 000

Química General

Propiedades Periódicas

Energía de ionización

Variación de la primera energía de ionización con el número atómico.

Observe que los gases nobles tienen energías de ionización altas, en tanto que los metales alcalinos y los metales alcalinotérreos tienen energías de ionización bajas.

Química General

Propiedades Periódicas

Energía de ionización

TAB	ILA 10.4	Energías	le ionización de los elementos del tercer período (en kJ/mol)												
	Na	Mg	Al	Si	P	S	Cl	Ar							
1	495,8	737,7	577,6	786,5	1012	999,6	1251,1	1520,5							
2	4562	1451	1817	1577	1903	2251	2297	2666							
3		7733	2745	3232	2912	3361	3822	3931							
4			11580	4356	4957	4564	5158	5771							
5				16090	6274	7013	6542	7238							
6					21270	8496	9362	8781							
7						27110	11020	12000							

Metales cationes

No Metales aniones

Química General

Propiedades Periódicas

Afinidad electrónica

Es el cambio de energía que ocurre cuando un átomo en estado gaseoso, acepta un electrón para formar un anión.

ATRACCIÓN DE UN ÁTOMO POR UN ELECTRÓN ADICIONAL

Unidades: kJ/mol – Valores negativos

Cuánto mayor sea el valor absoluto de la afinidad electrónica (kJ/mol), más afinidad por los electrones tiene, es decir, el ión negativo es muy estable, por lo tanto tiene tendencia a aceptar electrones adicionales

Química General

Propiedades Periódicas

Afinidad electrónica

$$X_{(g)} + e^{-}_{(g)} \rightarrow X^{-}_{(g)}$$

$$CI_{(g)} + e^{-}_{(g)} \rightarrow CI^{-}_{(g)}$$

$$E_{ae} = E_{(X)} - E_{(X)}^{-}$$

$$E_{ae} = -349 \text{ kJ.mol}^{-1}$$

1							18
H 72,8	2	13	14	15	16	17	He
Li -59,6	Be	B - 26,7	C -153,9	N -7	O - 141,0	F -328,0	Ne
Na 52,9	Mg	Al -42,5	Si -133,6	P -72	S -200,4	Cl -349,0	Ar
K 48,4	Ca	Ga 28,9	Ge -119,0	As -78	Se -195,0	Br -324,6	Kı
Rb -46,9	Sr	In -28,9	Sn -107,3	Sb -103,2	Te -190,2	1 295,2	Xe
Cs -45,5	Ва	TI -19,2	Pb -35,1	Bi -91,2	Po -186	At -270	Rr

▲ FIGURA 10.10 Afinidades electrónicas de los elementos de los grupos principales Valores para el proceso X(g) + e⁻ → X⁻(g) en kilojulios por mol.

$$F(g) + e^- \longrightarrow F^-(g)$$
 $AE = -328 \text{ kJ/mol}$

$$F(1s^22s^22p^5) + e^- \longrightarrow F^-(1s^22s^22p^6)$$

Li(g) + e⁻
$$\longrightarrow$$
 Li⁻(g) $AE = -59.6 \text{ kJ/mol}$
 $(1s^22s^1)$ $(1s^22s^2)$

Química General

Propiedades Periódicas

Carácter metálico

Las similitudes entre los elementos del mismo grupo se aplican en los grupos 1 A y 2 A (todos metales) y 7 A y 8 A (Todos no metales)

En el resto de los grupos A (3 A a 6 A), los elementos varían de no metales a metales o a metaloides, por lo tanto se esperan más variaciones en sus propiedades químicas.

Química General

Propiedades Periódicas

Electronegatividad

Es la tendencia de un átomo para atraer electrones hacia si DE UN ENLACE QUÍMICO.

Permite predecir el tipo de enlace interatómico, y esta relacionado con la atracción que ejerce la carga nuclear efectiva, por lo tanto con la afinidad electrónica y la energía de ionización

Ejemplo:

Fluor:

Alta afinidad electrónica – Tiende a tomar electrones fácilmente Alta energía de ionización – Cuesta mucho sacarle sus propios electrones

Por lo tanto:

El fluor tiene alta electronegatividad

					_	10000		ie ia eie				_					
1A																	8
H 2.1	2A											3A	4A	5A	6A	7A	
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg 1.2	3B	4B	5B	6B	7B		—8B—		1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	K 3
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	1 2.5	X 2
Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	T1 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
Fr 0.7	Ra 0.9																

Aumento de la electronegatividad

Química General

Propiedades Periódicas

Electronegatividad

ES UN CONCEPTO RELATIVO (a diferencia de la afinidad electrónica y la energía de ionización) PORQUE SE MIDE RESPECTO DE LA DE OTROS ELEMENTOS

Los valores de electronegatividad no tienen unidades.

Química General

Propiedades Periódicas

Resumen de las Propiedades Periódicas

