```
1 from sklearn.datasets import load boston
In [2]:
          2 import pandas as pd
          3 import numpy as np
          4 from sklearn.linear model import LinearRegression
         C:\Users\yashm\anaconda3\lib\importlib\ bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary
         incompatibility. Expected 192 from C header, got 216 from PyObject
          return f(*args, **kwds)
In [3]:
          1 boston = load boston()
          1 boston
In [4]:
Out[4]: {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+001,
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+001,
                 [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+001,
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+001,
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+001,
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+0011),
          'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
                1 data = pd.DataFrame(boston.data,columns = boston.feature_names)
In [10]:
```

In [11]:

1 data

Out[11]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

506 rows × 13 columns

1 data['Target'] = boston.target

```
1 data.head()
In [13]:
Out[13]:
                CRIM
                       ZN INDUS CHAS
                                          NOX
                                                  RM AGE
                                                              DIS RAD
                                                                         TAX PTRATIO
                                                                                            B LSTAT Target
                             2.31
                                     0.0 0.538
                                                      65.2 4.0900
                                                                                   15.3 396.90
                                                                                                 4.98
           0 0.00632 18.0
                                                6.575
                                                                    1.0
                                                                         296.0
                                                                                                        24.0
           1 0.02731
                       0.0
                             7.07
                                               6.421 78.9 4.9671
                                                                    2.0 242.0
                                                                                   17.8 396.90
                                                                                                 9.14
                                                                                                        21.6
                                     0.0 0.469
           2 0.02729
                       0.0
                              7.07
                                         0.469
                                               7.185
                                                      61.1 4.9671
                                                                    2.0 242.0
                                                                                   17.8
                                                                                        392.83
                                                                                                 4.03
                                                                                                        34.7
           3 0.03237
                       0.0
                              2.18
                                     0.0 0.458
                                               6.998
                                                      45.8 6.0622
                                                                    3.0 222.0
                                                                                   18.7 394.63
                                                                                                 2.94
                                                                                                        33.4
           4 0.06905
                       0.0
                                                      54.2 6.0622
                                                                    3.0 222.0
                                                                                                        36.2
                              2.18
                                     0.0 0.458 7.147
                                                                                   18.7 396.90
                                                                                                 5.33
In [14]:
            1 data.shape
Out[14]: (506, 14)
In [15]:
            1 data.isna().sum()
Out[15]: CRIM
                       0
          \mathsf{ZN}
                       0
          INDUS
                       0
          CHAS
                       0
          NOX
                       0
          RM
                       0
          AGE
          DIS
                       0
          RAD
                       0
          TAX
                       0
          PTRATIO
                       0
                       0
          LSTAT
                       0
          Target
          dtype: int64
```

In [16]:

1 data.describe()

Out[16]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.67
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.29
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.32
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.37 ⁻
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.44
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.22
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.90

4

In [23]:

1 import seaborn as sns

2 import matplotlib.pyplot as plt

In [24]:

1 data.corr()

Out[24]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTA1
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505	0.582764	0.289946	-0.385064	0.455621
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.05392§
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.60233§
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.49699€
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000
Target	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663

```
In [27]: 1 fig, ax = plt.subplots(figsize = (8,8))
2 sns.heatmap(data.corr(),annot = True)
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1a952763a08>


```
In [28]:
           1 from statsmodels.stats.outliers_influence import variance_inflation_factor
In [31]:
           1 X = data.drop('Target',1)
           2 vif df = pd.DataFrame()
In [32]:
           1 vif_df['features'] = X.columns
           1 vif_df["vif"] = [variance_inflation_factor(X.values,i) for i in range(len(X.columns))]
In [33]:
In [37]:
           1 vif_df[vif_df['vif']<5]</pre>
Out[37]:
             features
                          vif
               CRIM 2.100373
                 ZN 2.844013
              CHAS 1.152952
```

In [38]: 1 vif_df

Out[38]:

	features	vif
0	CRIM	2.100373
1	ZN	2.844013
2	INDUS	14.485758
3	CHAS	1.152952
4	NOX	73.894947
5	RM	77.948283
6	AGE	21.386850
7	DIS	14.699652
8	RAD	15.167725
9	TAX	61.227274
10	PTRATIO	85.029547
11	В	20.104943
12	LSTAT	11.102025

In [39]:

1 data.head()

Out[39]:

_		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Target
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

```
1 from sklearn.model selection import train test split as tts
In [40]:
           1 X,y = data.drop('Target',axis =1),data['Target']
In [41]:
In [48]:
           1 | X train, x test, y train, y test = tts(X, y, random state = 0)
In [49]:
           1 lm = LinearRegression()
           1 lm.fit(X train,y train)
In [50]:
Out[50]: LinearRegression()
In [51]:
           1 lm.coef
Out[51]: array([-1.17735289e-01, 4.40174969e-02, -5.76814314e-03, 2.39341594e+00,
                -1.55894211e+01, 3.76896770e+00, -7.03517828e-03, -1.43495641e+00,
                 2.40081086e-01, -1.12972810e-02, -9.85546732e-01, 8.44443453e-03,
                -4.99116797e-01])
           1 lm.intercept
In [52]:
Out[52]: 36.93325545711977
           1 data['Target'].mean()
In [53]:
Out[53]: 22.532806324110698
```

Evaluation for regression

```
In [55]: 1 from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error
In [56]: 1 y_pred = lm.predict(x_test)
```

```
1 r2_score(y_pred,y_test)
In [58]:
Out[58]: 0.4967900069591097
In [59]:
          1 mean squared error(y pred,y test) # (1/n)*sum((y-ypred)^2)
Out[59]: 29.7822450923024
In [60]:
          1 mean absolute error(y pred,y test) # (1/n)*sum(|(y-ypred)|)
Out[60]: 3.668330148135725
In [62]:
          1 100*mean absolute error(y pred,y test)/data['Target'].mean()
Out[62]: 16.27995241857875
In [73]:
           1 y_pred_tr = lm.predict(X_train)
           2 r2 score(y pred tr,y train)
Out[73]: 0.7009105753444579
         Polynomial Regression
         f(x) => o(3)
```

```
polynomial of x with order 3:
    f(x) = m1x + m2x^2 + m3x^3 + c

In [64]:    1    from sklearn.preprocessing import PolynomialFeatures

In [67]:    1    poly = PolynomialFeatures(degree = 4)
    2    X_poly = poly.fit_transform(X)
```