AGARDograph 134

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT

7 RUF ANCELLE 92 NEUILLY SUR SEINE FRANCE

A Portfolio of Stability Characteristics of Incompressible Boundary Layers

MARCH 1969

NORTH ATLANTIC TREATY ORGANIZATION

INITIAL DISTRIBUTION IS LIMITED FOR ADDITIONAL COPIES SEE BACK COVER

138

NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS

by

H.J.Obremski*, M.V.Morkovin† and M.Landahl**
with contributions from

A.R. Wazzan^{††}, T.T. Okamura^{***} and A.M.O. Smith^{***}

- * Research Institute for Advanced Study, Martin Marietta Corporation, Baltimore, Maryland
- † Illinois Institute of Technology, Chicago, Illinois
- ** Royal Institute of Technology, Stockholm, Sweden
- †† University of California, Los Angeles, California
- *** McDonnell-Douglas Aircraft Corporation, Long Beach, California

MARCH 1969

SUMMARY

A collection of linear amplification and propagation rates (temporal and spatial) for two similar and non-similar families of boundary layers is presented in graphical and tabular form. Their usage is illustrated for tracing the growth of disturbances in a flat-plate boundary layer which develops in x and varies periodically with t. If a user of the Portfolio can match the U"(y) distribution of his profile with that of a Portfolio profile over the central 80% of the boundary layer, the stability characteristics of the matched profile seem to provide him with satisfactory approximations for those of his own profile.

Reynolds numbers is discussed. Much improvement of the theoretical and experimental knowledge concerning free-stream disturbances and the specific manner in which they bring about the growth of Tollmien-Schlichting waves will be needed before further progress can be made. Analysis of the numerical variations of stability characteristics with various features of the related profiles clarifies the role of V''(y) and of the location of the inflection point. The usual shape factor H emerges as the only simple parameter capable of correlating satisfactorily the minimum critical Reynolds number for non-similar profiles.

Throughout, emphasis is placed on relating the idealizations of the stability theory to physical processes in the boundary layer.

533.6.013.417:532.526

SOMMATRE

Un recueil de vitesses linéaires d'amplification et de propagation (temporelles et spatiales) pour deux familles de couches limites similaire et non similaire est présenté sous forme de graphiques et de tableaux. Leur application est montrée à titre d'exemple pour suivre la croissance de perturbations de la couche limite sur une plaque plane, qui évolue en x et varie périodiquement avec t. Si l'utilisateur du présent "Portfolio" peut adapter la répartition U"(y) de son profil à celle d'un profil figurant dans le "Portfolio" sur les 80% centraux de la conche limite, les caractéristiques de stabilité du profil ainsi adapté semblent lui fournir des approximations satisfaisantes pour les caractéristiques de son propre profil.

L'utilisation des données du "Portfolio" en vue de l'estimation des nombres de Reynolds de transition est examinée. Il faudra une augmentation importante des connaissances théoriques et experimentales concernant les perturbations du courant libre et la façon particulière dont elles font naître des ondes Tollmien-Schlichting avant de pouvoir réaliser de nouveaux progrès. L'analyse des variations numériques des caractéristiques de stabilité avec différents aspects des profils correspondants permet d'éclaircir le rôle joué par U"(y) et la position du point d'inflection. Le facteur habituel de forme H se dégage comme étant le seul paramètre simple qui soit capable d'assurer la corrélation, de manière satisfaisante, des nombres de Reynolds critiques minima pour les profils non similaires.

Dans tous les exposés on souligne l'importance de relier l'idealisation de la théorie de la stabilité aux processus physiques de la couche limite.

CONTENTS

			Page
SU	MMARY		ii
SO	MMAIR	E .	iii
LI	ST OF	FIGURES	v
LI	ST OF	TABLES	vii
NO'	OITAT	N .	viii
1.		DDUCTION Comments on the Role and Validity of Linear	1
	1.1	Stability Theory	1
	1.2	Guide to the Portfolio	3
2.	SELE	CTED ASPECTS OF STABILITY THEORY	4
		Temporal and Spatial Instability and Disturbance Input	4
	2.2	Free-Stream Disturbances and Boundary-Layer Receptivity	6
	2.3	Non-Linear Effects	8
		Wave Packets and Their Development in a Given Boundary Layer	10
	2.5	Assessment of Transition Location	11
3.	STAB	ILITY CHARACTERISTICS OF THE PROFILES	14
	3.1	Role of the Profile "Curvature", U"(y)	14
		Boundary-Layer Profiles in the Portfolio	15
		Stability Criteria and Location of Inflection Point	16
	3.4	Correlations of Minimum Critical Reynolds Number of	
		Non-Similar Profiles	17
4.	CHARA	CTERISTICS OF THE FALKNER-SKAN PROFILES	18
	(Cont	tributed by Wazzan, Okamura and Smith)	18
5.		E APPLICATION OF PORTFOLIO INFORMATION TO THE HISTORY OF	
	GROW	ING WAVE PACKETS IN OSCILLATING BOUNDARY LAYERS	20
REF	EREN	CES	23
APE	ENDIX	A - Detailed Information on the O Family of	
		Velocity Profiles	29
APP	ENDIX	B - Detailed Instability Characteristics for the O Profiles	31
ACK	NOWLE	CDGMENTS	31
FIG	URES		32
TAD	IFC		62

LIST OF FIGURES

		Page
Fig. 1a	Instantaneous velocity profiles during an oscillation cycle; ${\rm N_A}=~0.15$, ${\rm X_{\omega}}=~2.5$	32
Fig. 1b	Instantaneous velocity profiles along the plate at the same instant; N _A = 0.15 , Ω = $5\pi/4$	32
Fig. 1c	A comparison of three velocity distributions	32
Fig. 1d	Instantaneous profiles having equal curvature at the wall, $U''(0) = 13.6$	32
Figs. 2a and b	Mosaic of instantaneous vorticity distributions, $N_A = 0.075$ and 0.15	33
Fig. 2c	Vorticity distribution; Falkner-Skan family	34
Fig. 3a	Mosaic of instantaneous curvature distributions, $N_A = 0.075$	34
Fig. 3b	Mosaic of instantaneous curvature distributions, $N_A = 0.15$	35
Fig. 3c	Curvature distribution, Falkner-Skan family	35
Fig. 4	Three-dimensional representation of typical stability characteristics	36
Fig.5	Critical Reynolds number as a function of frequency parameter; $N_A = 0.075$	36
Fig. 6	Curvature distribution for profiles having curvature at the wall, $U''(0) = 13.6$	37
Fig.7	Critical Reynolds number as a function of velocity at the inflection point	37
Fig.8	A comparison of three vorticity distributions	38
Figs. 9a and b	Critical Reynolds number as a function of shape parameter; $N_A = 0.075$ and 0.15	39
Figs. 10a and b	Curves of constant spatial amplification rates (β = 1.0 and 0.8)	40
Figs. 10c and d	Curves of constant spatial amplification rates (β = 0.6 and 0.5)	41
rigs. 10e and f	Curves of constant spatial amplification rates (β = 0.4 and 0.3)	42
Figs. 10g and h	Curves of constant spatial amplification rates (β = 0.2 and 0.1)	43
Figs. 10i and j	Curves of constant spatial amplification rates (β = 0.05 and 0)	44
igs. 10k and l	Curves of constant spatial amplification rates (β = -0.05 and -0.10)	45
Figs. 10m and n	Curves of constant spatial amplification rates (β = -0.14 and -0.1988)	46

		Page
Fig. 11	Effect of pressure gradient on the critical Reynolds number	47
Fig. 12	Effect of pressure gradient on the maximum spatial amplification rate and frequency of unstable disturbances	47
Figs. 13a and b	Curves of constant temporal amplification rates (β = 1.0 and 0.8)	48
Figs. 13c and d	Curves of constant temporal amplification rates (β = 0.6 and 0.5)	49
Figs. 13e and f	Curves of constant temporal amplification rates (β = 0.4 and 0.3)	50
Figs. 13g and h	Curves of constant temporal amplification rates (β = 0.2 and 0.1)	51
Figs. 13i and j	Curves of constant temporal amplification rates (β = 0.05 and 0)	52
Figs. 13k and 1	Curves of constant temporal amplification rates (β = -0.05 and -0.10)	53
Figs. 13m and n	Curves of constant temporal amplification rates ($\beta = -0.14$ and -0.1988)	54
Fig. 14	Curves of neutral stability for the eta boundary-layer profiles	55
Fig. 15	Effect of rressure gradient on the maximum temporal amplification rate and wave number of unstable disturbances	55
Fig. 16	The effect of adverse pressure gradient on the amplified wave number spectrum in the inviscid region	56
Figs. 17a and b	Stability diagram, $R_{ns} = 35,000$, $N_A = 0.15$, $\Omega = 0$ and $\pi/2$	57
Figs. 17c and d	Stability diagram, $R_{ns}=35,000$, $N_A=0.15$, $\Omega=\pi$ and $5\pi/4$	57
Figs. 17e and f	Stability diagram, $R_{\rm nS}=35,000$, $N_{\rm A}=0.15$, $\Omega=3\pi/2$ and $7\pi/4$	58
Fig. 18	Disturbance trajectory of a single disturbance frequency, $\beta_{\rm r} \psi_{\star}/U_{0\star}^2 = 90 \times 10^{-6}$, $R_{\rm ns} = 35,000$, $N_{\rm A} = 0.15$	59
Fig. 19	Schematic of wave packet development	59
Fig. 20	Disturbance trajectory for a single disturbance frequency, $\beta_{\Gamma \pm} \nu_{\pm} / U_{0 \pm}^2 = 50 \times 10^{-6}$, $R_{ns} = 21,600$, $N_A = 0.075$	60
Fig. 21	Variation of amplitude across a periodic boundary-layer	61
Fig. 22	Variation of velocity phase shift across a periodic	61

LIST OF TABLES

		Page
TABLE I	Temporally and Spatially Varying Physical Disturbances	62
TABLE II	Characteristics of Three Constant U"(0) Profiles	62
TABLE III	Boundary-Layer Parameters for Various Values of eta	63
TABLE IV	Results of Sample Amplification Calculation	63
TABLE V	Instantaneous Velocity Profile Characteristics	64
TABLE VI	Stability Characteristics of the O Family Profiles	65-12
	Data Table Nomenclature	
	$(0.042, 9.0, \pi)$	66
	(0.075, 0.8, 0)	67
	(0.075, 1.4, 0)	73
	(0.075, 2.5, 0)	80
	(0.075, 5.06, 0)	85
	(0.075, 9.0, 0)	94
	(0.15, 0.4, 0)	102
	(0.15, 0.8, 0)	108
	(0.15, 1.4, 0)	113
	(0.15, 2.5, 0)	119
	$(0.15, 5.06, \pi)$	127

NOTATION

A _n	velocity profile coefficients, see Equation (A3) and Appendix B
A_2/A_1	amplification ratio of a disturbance between two points of its trajectory
c	complex wave velocity, see Table I
c _g	group velocity, see Table II
F	dimensionless stream function of the mean flow, FS family
н	shape factor, δ/θ
N _A	amplitude parameter of free-stream unsteadiness, $\Delta {\rm U_0/U_0}$
(N_A, X_ω, Ω)	triplet used to specify profiles of 0 family
$R, R_{\delta}, R_{\delta +}, R_{x}$	Reynolds number, based on boundary-layer thickness, displacement thickness, streamwise coordinate
R _t	transition Reynolds number, i.e. appearance of a turbulent spot
R _L	Reynolds number per unit length, $U_{e^{\frac{1}{n}}}/\nu_{\frac{1}{n}}$
R _{ns}	non-steady Reynolds number, see Equation (13) and sequel
R _c	critical Reynolds number, see Figure 4
$s(\omega_p)$	wave packet spectral distribution
(U, y)	pair of numbers used to specify velocity at and location of inflection point, see Figures 3
u'	rms value of longitudinal component of disturbance velocity
U	longitudinal velocity component of mean flow
U _e	longitudinal velocity component at edge of boundary layer
v_{o}	mean longitudinal velocity component in free stream
U'(y)	vorticity distribution of mean flow
U" (y)	although the usage is not exact, the dimensionless second derivative of U with respect to y is often referred to as the "curvature" of the velocity profile
V	normal component of the disturbance velocity
x	coordinate along surface
X_{ω}	$= \mathbf{x}_{\bullet} \omega_{\bullet} / \mathbf{U}_{0 \bullet} = \mathbf{x} \omega / \mathbf{U}_{0}$
y	coordinate normal to surface
α	disturbance wave number, $\alpha_r + i\alpha_i$

```
(b) disturbance frequency \beta_r + i\beta_i
δ
                    boundary-layer thickness
δ*
                    displacement thickness
                    kinematic viscosity
                    dimensionless coordinate normal to surface
η
                    \eta value at edge of boundary layer, see Table III
ηδ
                    (a) oscillation frequency
                    (b) disturbance frequency \omega_r + i\omega_i
                    dimensionless form of disturbance frequency, \omega_{r} \nu_{r} / U_{0}^{2}
(4)<sub>r</sub>
                    (Wazzan-Okamura Smith technique)
\theta
                    momentum thickness
                    velocity phase shift
                    amplitude of oscillation in free stream
\Delta U_0
Λ
                    amplitude parameter \Delta U/\Delta U_{max} in Reference 27
Ω
                    phase of free-stream oscillations, \Omega = \omega_{\bullet} t_{\bullet}
Subscripts
                    critical
                    imaginary part of a complex quantity
                    real part of a complex quantity
                   the nth mode
                    where there may be doubt, dimensional quantities are indicated by ().
```

(a) Hartree $\,eta\,$, dimensionless velocity gradient

β

A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS

H.J.Obremski, M.V.Morkovin and M.Landahl with contributions from A.R.Wazzan, T.T.Okamura and A.M.O.Smith

1. INTRODUCTION

1.1 Comments on the Role and Validity of Linear Stability Theory

Ever since the classical experiments of Schubauer and Skramstad and Liepmann it was clear that the Prandtl-Tollmien-Schlichting linear mechanism can play a dominant role in the change of a flat-plate laminar boundary layer into a turbulent layer when free-stream disturbances are low. Recent experiments in the Blasius layer, e.g. Wells³ and Spangler and Wells", demonstrate that fluctuations occurring at the critical Reynolds number, Rc., may amplify over 10,000 times before transition sets in and that much experimental research will be required to clarify how various free-stream disturbances get "internalized" in the boundary layer as amplifying Tollmien-Schlichting waves (henceforth called TS waves). To cope with the problem of the difference between $R_{\rm c}$ and $R_{\rm t}$ (the Reynolds number of the transition zone) the predictor of transition needs information on the amplification characteristics of his particular boundary layer rather than on $R_{\rm c}$ alone. The present report provides him with a wealth of such characteristics for several families of boundary layers which should help to bracket those of his layer of interest. As to the problem of the feeding of TS waves by free-stream disturbances, the discussion (Sections 2.1 to 2.3) of the relationship between stability theory and experiment should clarify some of the issues.

A comprehensive review of transition of attached boundary layers and its intricate relations to stability theory, including effects of compressibility, cooling, mass transfer, three-dimensionality, etc., was recently completed by Mcrkovin⁵. Here we focus on two-dimensional incompressible boundary layers.

Anyone who has tried to compute the development of velocity profiles U(x,y) of a steady two-dimensional boundary layer over a prescribed wall shape appreciates how varied these profiles can be. In fact, since the stability characteristics depend very sensitively on U''(y), ideally the predictor should have at his disposal a computer program, such as described by Smith and Clutter⁶, for generating his non-similar boundary-layer profiles step by step. However, even approximate techniques such as that employed by Quick and Schröder⁷ for boundary-layer development over a wavy wall, illustrate the variety of practically important profiles and, in particular, the frequent occurrence of non-similar inflected profiles for which U'' vanishes at some distance from the wall.

Inflected profiles are most often, but not always, more unstable than profiles with purely negative U". Already Betchov and Criminale noted the strongly stabilizing effect of the proximity of the inflection point to the wall (see pp. 36 and 82 of Reference 8). However, even locally occurring adverse pressure gradients, causing inflected profiles, are known to promote transition, by acting as powerful local amplifiers. They may be aptly described as preamplifiers for downstream uninflected profiles (see Chapter V of Reference 5). The inflected profiles form, so to speak, the weakest link in the chain of profiles which

"receive the traveling disturbances from their antecedents, amplify or damp them locally, and then pass them onto their downstream neighbors" (see fluctuation traces of Figure 17.1 and related discussion in Schlichting 9a).

As will be seen, stability theory neglects the x-variation of mean profiles as being of secondary importance and treats x as a dormant parameter. This "local-constant-base" or "quasi-parallel flow" approximation can be generalized to time-dependent boundary layers, where both x and t are treated as dormant parameters, e.g. Obremski and Morkovin¹⁰, Kármán and Lin³⁰. It is believed that for many practical unsteady flows the characteristic times of the TS waves are sufficiently short in comparison with those of the base flow for the approximation to be valid. The assumption of "local constant base" thus provides a useful extension for the existing stability theory and, in particular, for the results in this Portfolio. In view of the mathematical difficulties of stability theory of the x- and t-dependent flows^{27,34,59}, the limitations on the applicability of the assumption of local constant base may well be gleaned first from comparison with suitably designed experiments.

An unexpected application of linear stability theory arose in the case of the last stages of development of non-linear, overgrown TS waves which lead to instantaneous, highly inflected velocity profiles, e.g. Klebanoff and Tidstrom¹¹, Kovasznay et al. ¹², Klebanoff et al. ¹³, and Hama and Nutant¹⁴. Greenspan and Benney ¹⁵ showed that unsteady linear stability theory applied to a strongly idealized family of changing profiles yielded secondary instability characteristics consistent with the experimental observations in References 11-14. However, Klebanoff (see p. 29 of Reference 13) demonstrated that a quasi-steady model of an inflected profile due to a three-dimensional single-roughness element matches the characteristics of the observed secondary instability at least as well as the Greenspan-Benney truly unsteady mode. The tentative lessons we can draw from this research support the probability of usefulness of quasi-steady modeling and suggest that linear theory of highly unstable profiles can perhaps be usefully grafted onto non-linear phenomena. Such en extended role of the powerful linear amplifying mechanism vis-a-vis non-linear processes (including possibly contributions to the self-regeneration of turbulent boundary layers themselves) was considered recently by Morkovin ¹⁶.

Another application of linear stability techniques, in fact to turbulent flow itself, has been demonstrated by Landahl⁶⁰. In his waveguide model for turbulent shear flow he treats the fluctuations as linear Orr-Sommerfeld modes which are being driven by the non-linear fluctuating turbulent stress terms. The model requires all linear terms to be damped and shows that the most lightly damped ones dominate the statistical averages. (See also Section 2.3.)

For more complete mathematical background and existing correlations between stability theory and experiment the reader is referred to Lin¹⁷, Schlichting⁹, Stuart¹⁸, and Shen¹⁹. Lighthill 20 and Tani 21 supply additional physical insights into the instability mechanisms. The existing theoretical correlations for even the simplest parameter, $R_{\rm c}$, of inflected decelerating profiles exhibit a great deal of scatter, e.g. Figure IX.14 of Reference 18. he experience leading to the present report indicates that most of this scatter is probably a e to inaccuracies in the representations of the profiles and in the approximations of e asymptotic theory*. In other words, while Pretsch²² valiantly carried out computations of detailed stability characteristics for approximations to the Falkner-Skan family of similarity profiles in 1941-42, it is only the recent application of sophisticated computer techniques, e.g. Kaplan²³, Landahl²⁴, Wazzan, Okamura and Smith (WOS)²⁵, Radbill et al.²⁶, Grosch and Salwen²⁷, etc., that guarantees adequate computational accuracy. Indeed the cross-checks between these substantially different computer techniques is most gratifying. With the recognition of wider applicability of linear stability theory and the emergence of reliable computer techniques for both low and high Reynolds numbers, the present effort of compilation of stability characteristics for a large number of velocity profiles thus appears warranted. For industrial groups faced with repeated design problems involving

See, for example, WOS⁷⁰ for a discussion of these effects in the case of separated laminar boundary layers.

stability and transition at low speeds, it would seem logical to couple the step-by-step computer programs for the local velocity profiles, e.g. Reference 6, with elements of stability programs, such as given in References 23-27, on a routine basis. Such a program is currently under development at the McDonnell-Douglas Aircraft Company²⁸.

1.2 Guide to the Portfolio

Selected members of a three-parameter non-similar family of profiles, dubbed the O family, plus a number of profiles designed to bring out special effects of U'' variation with y, were processed by the Landahl program²⁴, slightly modified for greater accuracy in U''. The similar Falkner-Skan family of profiles, FS for short, has been processed by the Wazzan-Okamura-Smith technique (WOS) and provides a contrast to the non-similar O family.

The results are presented and their usage illustrated in Figures 1-22, and in Tables I-VI. The FS stability characteristics are displayed in the traditional form of amplification and propagation speed diagrams, Figures 12 and 13 being directly comparable with Pretsch's results²². Most of the detailed stability data for the non-similar O families are presented in tabular form, Tables VI, which allow the user to perform his own interpolations more accurately than for any other type of presentation.

The user's main problem is to determine those profiles in the Portfolio which are closest to his profile of interest so that he may perform his numerical or graphical interpolations or bracketing. An efficient neighbor-identification relies on visual pattern recognition, at least in the first approximation. However, important differences between U(y) distributions are often subtle and tend to escape the eye except on prohibitively large scales see, for instance, Figures 1a-1d, where the differences are actually large and systematic. In conjunction with the free-stream and no-slip boundary conditions, distributions of U''(y) determine fully both the U'(y) and U(y) profiles. Mosaics of readily overseen small-scale U'(y) and U''(y) distributions for all the velocity profiles in the Portfolio are displayed in Figures 2 and 3 respectively. From our (limited) experience, good matching of U''(y) for $0.1 \le y \le 0.9$ seems to be the most reliable way of reproducing nearly identical detailed stability characteristics (see discussion in Section 3.1), no matter by what physical process the U''(y) distribution was obtained. This behavior apparently reflects the role of the instantaneous vorticity distribution (see Lighthill²⁰ and Gill²⁹) and of the inhibition of the disturbance velocity component v near the wall. In the identification process, the U'(y) distributions of Figure 2 primarily add feel for the type of the profile and a secondary check. The corresponding U profiles, if desired, can then be obtained from Equation (A3) and the profile coefficients listed for the O families, and from References 68, 9, 70 and Section 4 for the FS family.

The main contents of the tables of stability characteristics for any identified profile are illustrated in Figure 4. In addition, phase and group velocities, c_r and c_g , of the propagating disturbances are given in Table VI for the 0 families, while c_r appears in Figure 13 for the FS family. These velocities are needed for relating the concepts of spatial and temporal instability. The basic definitions and inter-relationships of these two formulations are summarized in Table I, while the various levels of idealizations of amplifying disturbance fields are discussed in Sections 2.1 and 2.2. In particular, in Table I the reader can find a concise comparison between the features of the spatial and temporal stability, including the Gaster transformation which is useful in the tracing of the disturbance travel. There is a slight difference in the definition of c_r in the results of the 0 and FS families, occasioned by the different computer programs (see Note 2 in Table I).

Section 3 discusses the nature of the stability characteristics of profiles and presents some new insights, especially for profiles with inflection points. The usual correlation of critical Reynolds number with respect to a non-dimensional pressure gradient appears to

Only two values of the dimensionless amplitude parameter N_A were investigated extensively, 0.075 and 0.15 (see Table V).

be restricted to severely constrained families of profiles. However, the correlation in terms of the shape factor H seems to be applicable even to non-similar boundary-layer developments (Section 3.4).

In Section 4, the contribution of WOS appears as a condensation of their earlier report²⁵. The brief text guides the user through the similarity characteristics of the FS family presented in Figures 10-16.

Finally, in Section 5 the application of the local-constant-base formulation of the stability theory is illustrated for the especially difficult case of a boundary layer varying in x and (periodically) in t. Although the limitations of the basic assumptions are not yet clear, the theory apparently clarifies the hitherto puzzling experimental dichotomy of transition behavior in oscillating boundary layers⁷². The application of the same formulation to steady non-similar or similar layers reduces to a simplified subcase of the illustration in Section 5 (see also Reference 28).

2. SELECTED ASPECTS OF STABILITY THEORY

2.1 Temporal and Spatial Instability and Disturbance Input

The reader can readily find thoughtful derivations of the linearized stability equations, e.g. References 8, 9, 17-20, 23, and especially 22, in terms of either the disturbance stream function or the velocity component normal to the boundary, e.g.:

$$\left(U(y) - \frac{\omega}{\alpha}\right) \left(\frac{d^2}{dy^2} - \alpha^2\right) v_n - v_n U''(y) + \frac{i}{\alpha R} \left(\frac{d^2}{dy^2} - \alpha^2\right)^2 v_n = 0.$$
 (1)

The other velocity components and pressure can be derived from either the stream-function solutions or from the eigensolutions $v_n(y)$, $(n=1,2,3,\ldots)$. We are concerned here primarily with various assumptions which influence the relationship between theory and experiment.

Strictly speaking Equation (1) for the infinity of eigenmodes $v_n(y)$ holds only for truly steady and parallel mean flows U(y) of infinite extent, such as the plane Poiseuille flow. Then, two formulations of "initial" value problems for the disturbance velocity field — temporal and spatial — can be carried out, at least in principle (see Dunn³¹ and Betchov and Criminale, Reference 8, p.123). Assuming Fourier-expandable stationary random functions in x or t, general solutions for the disturbance velocity fields, in particular for the normal velocity v, can be expressed in the two cases as linear superpositions of combinations of the eigensolutions (see Table I):

$$\mathbf{v}(\mathbf{x}, \mathbf{y}, \mathbf{t}; \mathbf{R}) = \int_{-\infty}^{\infty} d\alpha_{\mathbf{r}} \sum_{\mathbf{n}} \mathbf{v}_{\mathbf{n}}(\mathbf{y}; \alpha_{\mathbf{r}}, \mathbf{R}) e^{\mathbf{i} (\alpha_{\mathbf{r}} \mathbf{x} - \omega_{\mathbf{r}} \mathbf{n} \mathbf{t})} e^{\omega_{\mathbf{i}} \mathbf{n}^{\mathbf{t}}} ; \qquad \alpha_{\mathbf{i}} = 0$$
 (2t)

$$\mathbf{v}(\mathbf{x},\mathbf{y},\mathbf{t};\mathbf{R}) = \int_{-\infty}^{\infty} d\omega_{\mathbf{r}} \sum_{\mathbf{n}} \mathbf{v}_{\mathbf{n}}(\mathbf{y};\omega_{\mathbf{r}},\mathbf{R}) e^{\mathbf{i}(\alpha_{\mathbf{r},\mathbf{n}}\mathbf{x}-\omega_{\mathbf{r}}\mathbf{t})} e^{-\alpha_{\mathbf{i},\mathbf{n}}\mathbf{x}} ; \qquad \omega_{\mathbf{i}} = 0 .$$
 (28)

These representations are possible because Equation (1) is linear and its coefficients U and U" are independent of x and t. The Fourier-eigenfunction coefficients within $\mathbf{v_n}(\mathbf{y})$ in representations (2) can be determined in principle by linking these solutions to the corresponding essentially arbitrary "initial" distributions of disturbances at suitably chosen origins of t or x:

$$v(x,y,0;R) = \int_{-\infty}^{\infty} d\alpha_r \sum_n v_n(y;\alpha_r,R) e^{i\alpha_r x}; \qquad \alpha_i = 0 \qquad (3t)$$

$$v(0,y,t;R) = \int_{-m}^{\infty} d\omega_r \sum_{n} v_n(y;\omega_r,R) e^{-i\omega_r t} ; \qquad \omega_i = 0 . \qquad (3s)$$

A rigorous proof of the completeness of the set of eigenfunctions for the plane Poiseuille flow which justifies the expansion of an arbitrary initial distribution in the temporal case, Equation (3t), was carried out by Schensted³³. For most flows, the possibility of eigenfunction expansions of Equations (2) and (3) is simply assumed as plausible. However, the spatial initial value formulation (3s) should be regarded as an approximation, since the flow admits upstream influence, and a downstream initial condition is thus required to make the boundary value problem uniquely specified. However, since computations generally indicate no wave mode with upstream propagation, the upstream influence would generally be small and can be neglected, except within a small distance upstream of the downstream boundary.

Our concern with the preceding expansions stems, of course, from their relations to the effect of free-stream disturbances. If the Schubauer-Skramstad vibrating ribbon, of width 2l, were placed at $y = y_0(x,t)$, -l < x < l, in a Poiseuille flow as a disturber, detailed disturbance information within the shear layer would be available for some fixed $x_i > l$ and any t > 0. Therefore the spatial stability formulation, Equations (3s) and (2s) would be particularly suitable. Actually, hot-wire measurements at x_i stations immediately downstream from a vibrating ribbon indicate rather complicated y and x variations at the basic driving frequency ω_d . In other words, the up-and-down motion of the ribbon generates not only the fundamental TS eigenfunction v_1 but many higher eigenfunctions as well. Fortunately, for steady mean flows, the higher eigenfunctions appear to be very stable whenever computed (see Reference 27 and references therein). Thus the traces of v_n for n > 1 vanish rapidly in the streamwise direction and only the fundamental TS mode – the main object of stability research – remains.

While the spatial stability formulation and the growth $e^{-\alpha_{11}x}$ for $R>R_c$ fit well the special cases of active internal disturbances like the vibrating ribbon, it is not easy to identify the actual disturbance input into the TS modes on the normally idealized Poiseuille flow of infinite extent. Neither of the formulations appeals to our physical intuition, which is conditioned by boundary layers and channel flows with definite leading edges. Before Lin proved that plane Poiseuille flow could be unstable for R > 5300, the observed turbulence was "explained" by many as originating in the entrance length before the parabolic profile is developed. Similar explanations are still proposed for the origin of turbulence in axisymmetric Poiseuille flow (but see Reference 29 for an alternate view and recent results in References 55 and 56). However, as soon as we admit a mean viscous layer which develops in the x-direction, the coefficients in Equation (1) become weak functions of x and the simple Fourier decomposition in x is lost. Pretsch²² and Benney and Rosenblatt 34 advance arguments for the validity of the local-constant-base formulation of Equation (1) as a first approximation, but the handling of the corresponding initial value problems apparently remains unsettled. The presence of a leading edge favors intuitive preference for spatial piecewise local-constant-base formulation of the stability problem but spoils clear connection between the mathematical theory of Equation (1) and the disturbance input.

Most disturbances are three-dimensional so that Fourier decomposition over the x-z plane, involving skew waves $e^{i(\alpha x + \beta z)}$ in Equations (2), would be generally called for. When Criminale and Kovasznay³⁵ and Benjamin³⁶ traced in this manner the downstream propagation and growth of such localized disturbances (neglecting the damped higher modes in Equation (2t)), a deeper insight into the relation between incompressible stability theory

and experiment was achieved. The generalized Squire transformation, e.g. Reference 18, p.514, relating the relative temporal amplifications and motions of the two-dimensional waves of Equations (2) and of the skew waves, makes two-dimensional results, such as those in this Portfolio, useful in the three-dimensional case.

Gaster $^{32,37-39}$ extended these concepts to the spatial formulation where the Squire transformation becomes truly complex. Using analytic continuation in the complex ω - and α -planes in a generalization of Equations (2), Gaster was ultimately able to derive intriguing asymptotic representations of downstream wave-packet development from a point-source disturbance, $v(x,0,z,t) = \delta(x)\delta(z)\delta(t)$ (Dirac delta functions), at the wall of a Blasius layer 38 . Insofar as one can interpret this perturbation of the boundary conditions or arbitrary superpositions of such perturbations as realistic physical disturbances, Gaster's results represent the special instances where the "internalization" of disturbances in the boundary layer as TS wave packets has been demonstrated (see Section 1.1).

Gaster 40 also proved that, for small rates of amplification, the frequencies of the temporal and spatial formulations are equal to a high order of approximation, and that the spatial growth is related to the time growth by the group velocity $c_g = (\partial \omega_r / \partial \alpha_r)_R$ (see also Table I). Consequently, both the phase and group velocities of the first TS mode are made svailable to the user of the Portfolic in Tables VI. In the preparations for the present report, Gaster's transformations 40 and related estimates were verified for a number of mean profiles, including some inflected ones, through separate computations of the temporal and spatial growth rates. The agreement was excellent for all cases, including one of the second eigenmode*. The departure from the Gaster rule for highly unstable profiles such as the separating FS profile, $\beta = -0.1988$, away from the neutral curve was not checked. It is known that, for free layers, the amplifications may exceed the small values postulated by Gaster and that temporal and spatial solutions may not be simply related 57.

2.2 Free-Stream Disturbances and Boundary-Layer Receptivity

Kovasznay's concepts ⁸¹ of three independent modes of free-stream fluctuations, the temperature-density-entropy mode, the vorticity mode, and the sound mode, are discussed in a more expository manner in References 41 and 42. For the present purposes we wish to focus on their manner of propagation and contrast these with the propagation of TS waves which they presumably excite or feed. The scaler temperature-density mode is not expected to be truly important at low speeds (except in the case of large amplitudes), but it illustrates disturbances which travel along streamlines with essentially local flow velocity, while slowly diffusing away from these streamlines. These modal disturbances would thus be ingested into the boundary layer (say, of an aircraft flying through inhomogeneous temperature-density fields) primarily because the layer grows in x (a feature idealized away in the stability theory).

The vorticity-turbulence mode in the lowest approximation propagates in a similar manner, but because it is a vectorial entity, it should respond differently when it enters the shear layer and becomes distorted and stretched. The effectiveness of this form of turbulence input in generating TS waves is unknown. However, Hall's experiments indicate that the turbulent wake from a passive disturbance element held above the layer (his region III) can penetrate without much effect through the upper half of the boundary layer and then suddenly trigger the formation of a turbulent spot. For such large disturbances, the TS process may be completely bypassed.

^{*} The interested reader is invited to compare the spatial amplification rates obtained directly and those obtained through the Gaster transformation of temporal rates for profiles such as $(0.15, 2.5, \pi)$. An example of the transformation of higher mode eigenvalues can be obtained from profiles $(0.075, 5.06, \pi/2)$. In this example the reader will note that a crossing of first and second mode amplification rates occurs in the spatial formulation but not in the temporal formulation.

According to Klebanoff's recent measurements 44, another turbulent agent, namely the pressure fluctuations associated with external vorticity traveling at escentially freestream velocity above the layer, can probably disturb the boundary layer across streamlines significantly enough even at free-stream turbulence levels as low as u'/U of 0.2%. A mathematical treatment of such disturbances would require the solution of the Orr-Sommerfeld equation with non-homogeneous boundary conditions specified at the edge of the boundary layer. Insofar as the Fourier transform of the boundary condition would involve only wave trains with phase velocities equal to the free-stream velocity, no TS wave can become excited through the linear process in the parallel flow formulation, since the unstable waves have phase velocities of one third to one half of the free-stream velocity. This reasoning breaks down when non-parallel flow effects are included, and in particular near the leading edge of the boundary layer, since then the transient effect will generate and feed into the boundary layer all wave numbers and wave speeds, including those within the unstable range. Apparently, only a portion of the disturbance field is assimilated in the layer as growing TS wave packets even when the disturbance frequency spectrum falls in the amplified range. Another significant portion apparently travels within the boundary layer without interaction with the TS mechanism. We must therefore carefully qualify statements to the effect that a given disturbance excites or feeds TS waves: the boundary layer seems to exhibit variable receptivity with respect to external disturbances.

The distinction can perhaps be made most easily in the case of the irrotational mode of disturbances: sound. In low-speed aerodynamic facilities sound disturbances travel at speeds an order or two of magnitude faster than the TS waves and tend to remain correlated over long distances 45 . At any given time chosen as t = 0, the distorted acoustic field within the boundary layer could be considered as the initial distribution for the TS system, as in Equation (3t). However, in the next instant most of this field would not develop according to Equation (2t), corresponding to the slow TS propagation speeds, but would be displaced with the speed of sound. In other words, sound tends to run through the TS field as a series of short-lived superposed plus-minus deviations. And yet, sound of a frequency $\omega_{
m d}$ is known to generate regular, coherent TS waves of the same frequency (but vastly different wavelength) rather efficiently (e.g. References 1 and 4), i.e. the boundary layer has a non-zero receptivity with respect to acoustic disturbances of $\omega_{\mathbf{d}}$ in the amplified TS range. In the case of a low-speed two-dimensional jet, G.R.Brown 46 showed that the receptive region of the shear layer was localized at the lip of the opening slit by demonstrating the absence of any response to sound irradiation except when the sound was allowed to penetrate directly into this region. This is in accordance with the explanation already alluded to, in which the excitation is due to transient effects near the leadingedge region because of non-parallel flow effects. No corresponding result is available for attached boundary layers.

Instead of visualizing the effect of disturbances in terms of the initial value problem, it is possible to view their action as due to disturbance forcing functions driving a TS response. This approach was abandoned in the 1950's and is currently being reconsidered (Refs. 47 and 48). Criminale 4 , after obtaining the linearized equivalent of Equation (1), adds a "known function of space and time". V(x,y,z,t), to the right-hand side, making the equation non-homogeneous. Presumably this known function should depend only on the forcing modal disturbances and the mean flow, but such specifications were postponed for later research. The difficult enough mathematical problem of the response to a non-moving delta function at x_0 , y_0 , z_0 , i.e. the determination of the Green's function for this non-self-adjoint system, was first tackled in Reference 47. Thus far, there is no indication how the problem of cohesive disturbance fields, such as free-stream turbulence or sound, which travel at characteristic speeds different from that of the responding TS waves, will be resolved.

A concrete illustration of the associated conceptual difficulties and of some complicated responses is provided by Grosch and Salwen 27 for the case of a two-dimensional incompressible Poiseuille flow, perturbed by an oscillating pressure gradient of arbitrary dimensionless amplitude Λ and driving circular frequency $\omega_{\rm d}$. Because of the linearity of the

Navier-Stokes equations for parallel flows, the cohesive disturbance field is exactly and explicitly determined in this case and consists of an irrotational oscillating plug flow independent of x and y and of the oscillating shear waves diffusing away from the walls where they are generated by cancellation of the plug-flow velocities according to the noslip conditions. (This disturbance can be interpreted as an incompressible limit of a sound wave disturbance, i.e. the aforementioned very large ratios of the sound speed to TS velocities and of the respective wavelengths can be idealized as approaching infinity.) The linearized forcing-function approach fails in this case: linearization of the Navier-Stokes equations for the combined mean flow, forcing disturbance flow and TS disturbance response, yields zero for the right-hand side of the equivalent of Equation (1) just as if there were no forcing disturbance, i.e. the function V of Criminale vanishes. However, if the product of the forcing disturbance and the TS response is kept, a more general homogeneous Equation (1) (with a modified time operator), still linear in the TS-type disturbances, arises. It incorporates a more general "mean flow" U(y,t) (made up of the Poiseuille flow and the forcing harmonic disturbance of frequency $\omega_{
m d}$) and its derivative U''(y,t) in place of the terms U(y) and U''(y) in Equation (1). Grosch and Salwen²⁷ seek the temporal stability characteristics of this generalized, linear, time-dependent homogeneous TS problem. They assume that there exists a complete set of solutions $v_n(y,t)e^{\sigma_n t}$ (where eigenmodes $v_n=-i\alpha\phi_n$ are now periodic in t and $\sigma_n=+i\alpha\,c_n$, a change of sign from the present notation) and proceed to find the eigenvalues by matrix methods for a few wave numbers α and Reynolds numbers R as dependent on the driving frequency $\omega_{\mathbf{d}}$ and amplitude Λ .

In contrast to a linearized forcing-function approach, which, if successful, would lead to a linear response in the amplitude of the forcing disturbance Λ , the Grosch-Salwen formulation yields a non-linear Λ dependence. In fact, for specific instances of disturbance frequency, $\omega_{\rm d}$, chosen to fall in the unstable TS range for $\Lambda=0$, the first mode of the TS response field stops growing and damps out as Λ increases from 0 (Figures 11 and 12 of Reference 27). (For Λ values corresponding to velocity amplitudes $\Delta U/U_{\rm NAX}$ on the order of 0.1, a rather puzzling destabilization takes place, attributed somewhat vaguely to a rapid change in the third or a higher eigenvalue with Λ .) Furthermore, for the same α -R neighborhood, the TS response at constant disturbance velocity amplitude $\Delta U/U_{\rm max}$ also becomes more stable as the frequency $\omega_{\rm d}$ varies from $0.38\omega_1$ (ω_1 referring to the most unstable first TS mode for $\Lambda=0$) and reaches maximum stability at $\omega_{\rm d}\simeq 1.2\omega_1$ (Figure 10 of Reference 27). Grosch and Salwen interpret these stabilization effects in terms of "interference" between the driven shear waves and the TS shear waves.

Viewed in terms of the limit of sound disturbance already mentioned, these results are not incompatible with the cited experiment of G.B. Brown 46, where positive shear-layer receptivity was confined to a small region of an x-dependent mean flow. Here, the base flow is x-independent, and the idealized sound waves travel at infinite speed with respect to the TS waves even when they have comparable frequencies. The physical situation differs from any we may visualize for resonant response conditions. According to the computations (which should be checked in view of the higher mode anomaly for high Λ), the Poiseuille shear layer apparently possesses negative receptivity with respect to idealized acoustic disturbances. We recall that, experimentally, the x-dependent Blasius layer has a positive receptivity (Refs.1 and 4), which is maximal when $\omega_{\rm d}$ falls in the range of most amplified TS wave frequencies!

2.3 Non-Linear Effects

The foregoing discussion was based on ideas adapted from the linear theory. However, this approach clearly fails to explain adequately the observed excitation of the unstable TS modes in many situations, even if the effects of non-parallel flow are accounted for. Inclusion of non-linearity greatly increases the complexity of the analysis, as is clear from a glance at the literature on the non-linear stability theory. However, a fairly simple qualitative discussion bringing forth the most essential points is nevertheless possible. A suitable starting point is the formulation of the unsteady perturbation

problem presented by Landahl 60 for the purpose of studying turbulent pressure fluctuations. Within the parallel flow assumption the equations of motion may be combined to give

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \nabla^2 v - U'' \frac{\partial v}{\partial x} - \frac{1}{R} \nabla^4 v = q(x, y, z, t) , \qquad (4)$$

where

$$d = \frac{9x_1^2}{9x_5^2} - \frac{9x^2}{9} \left(\frac{9x^1}{9x^1} \right), \qquad x^5 = \lambda$$

and

$$T_i = \frac{\partial}{\partial x_j} (\overline{u_j u_i} - u_j u_i)$$
.

Thus, the linear OS mode is, in this formulation, considered to be driven by the "fluctuating Reynolds stresses". The driving function q is precisely the "known function of space and time" V(x,y,z,t) introduced by Criminale 47 . Strictly speaking, this function can never be completely specified since its definition involves the unknown quantity v itself. However, for a qualitative discussion of non-linear effects it may be instructive to treat q as specified independently of v.

Consider now an initially quiet parallel flow in which a disturbance of amplitude ϵ (assumed small) and wave number α is somehow introduced at a particular instant, say t=0. Through Equation (4) one is lead to a non-homogeneous initial value problem with the right-hand side being of order ϵ^2 and containing components of wave number 2α . A response will therefore be excited which will in the beginning contain wave numbers α and 2α . In addition, the Reynolds stresses created by the disturbance will cause a change in the mean flow of order ϵ^2 . The perturbation components of wave numbers α and 2α will in turn through the non-homogeneous term α produce further responses of wave numbers α and 3α and of amplitude of order α . For each wave number component one will then, upon Fourier transformation in time, obtain a non-homogeneous Orr-Sommerfeld (OS) equation which may be treated formally through expansion in terms of eigenfunctions of the adjoint problem. The solution for the Fourier transform thus obtained will have poles at the frequencies for the Orr-Sommerfeld eigenvalues yielding upon inverse transformation OS wave modes of amplitude of order α .

The disturbance velocity development in a flow with small unsteadiness may be discussed in a similar manner. Assume that the initial unsteadiness is of amplitude δ and wave number α_0 . Upon this, a disturbance of amplitude ϵ and wave number α is imposed such that $\epsilon \leqslant \delta$. Because of q, the response will contain wave numbers of $\alpha+\alpha_0$ and $\alpha-\alpha_0$ with amplitudes of order $\epsilon\delta$. This in turn will, after interaction with the initial unsteadiness, lead to perturbations of wave numbers α and $\alpha+2\alpha_0$ and amplitude of order $\epsilon\delta^2$. Hence the third-order interaction will produce corrections of the same wave number as the imposed one. The corrections will be linear in the imposed amplitude, ϵ , but the proportionality factor will be of order δ^2 . The non-linear effects will thus produce a boundary-layer receptivity which, although small, may be important if the linear part is small or zero.

By moving some of the non-linear terms to the left-hand side of Equation (4), one could write it alternatively as

$$\left(\frac{\partial}{\partial t} + U_1 \frac{\partial}{\partial x}\right) \nabla^2 v - U_1'' \frac{\partial v}{\partial x} - \frac{1}{R} \nabla^4 v = q_1(x, y, z, t) , \qquad (5)$$

where
$$U_1 = U + u$$
, $U_1'' = \frac{\partial^2 U_1}{\partial y^2}$

and
$$q = q + u \frac{\partial}{\partial x} (\nabla^2 v) - v \frac{\partial^2 u}{\partial y^2}.$$

In the quasi-steady approximation this equation is treated under the assumption that U_1 is independent of t and x. This is valid when the initial unsteadiness is of a frequency and wave number much smaller than for the imposed disturbance, the stability of which is studied. Specifically, the stability of small two-dimensional perturbations of an oscillatory flow may be studied with the aid of Equation (5). Let the initial unsteadiness be given by u_0 , v_0 and superimpose perturbations u_1 , v_1 , such that u_1 , $v_1 \le u_0$, v_0 . From Equation (5) one then obtains, upon neglecting terms of higher order in u_1 , v_1 ,

$$\left[\frac{\partial}{\partial t} + (U + u_0) \frac{\partial}{\partial x}\right] \nabla^2 v_1 - \left(U'' + \frac{\partial^2 u_0}{\partial y^2}\right) \frac{\partial v_1}{\partial x} - \frac{1}{R} \nabla^4 v_1 = \frac{\partial}{\partial x} \left[v_1 \frac{\partial^2 u_0}{\partial x^2} + v_0 \nabla^2 u_1 - u_1 \nabla^2 v_0\right].$$

When u_0 is independent of x, as in the case treated by Grosch and Salwen²⁷, the right-hand side is identically zero. When the wave number α_0 of the initial oscillation is much smaller than the wave number α of u_1 , v_1 , the right-hand side is small and can be neglected, thus justifying a constant-base-flow approach in the spatial case.

2.4 Wave Packets and Their Development in a Given Boundary Layer

Originally, we planned to recommend to the user of the Portfolio to (a) define his probable disturbance environment, i.e. the relative composition in terms of temperature, vorticity, and sound modes, wall vibrations, etc., including their respective spectral distributions, and (b), assuming that the receptivity corresponds to some simple transfer functions for the different types of disturbances, match the environmental spectra against the TS amplification spectra obtainable from the Portfolio. The recommendations still have merit, but the reader can perhaps appreciate, on the basis of the discussion of the previous Sections, that the present state of theoretical and experimental information on the effect of disturbance input precludes any definite statements concerning the receptivity of any previously uncalibrated shear layers. For practical boundary layers, developing in x, the presence of vortical or acoustic spectral energy in the range of amplified TS frequencies is still expected to be a danger signal, e.g. References 1, 4, 50 and 51.

We should remark that the recommended determination of the disturbance environment, modally and spectrally, represents a substantial undertaking. In fact, no complete decomposition can be found in the literature, which explains why we know so little of the effects of disturbances. Since the TS process often amplifies the disturbances by factors of thousands, the original amplitudes may be extremely small, almost subliminal with respect to our instruments.

With input amplitudes uncertain, we resort to characterization of monochromatic traveling disturbances in terms of the ratio of their amplitudes, A_2/A_1 , at two locations \mathbf{x}_2 and \mathbf{x}_1 , which are related through the group velocity of the times of observation $\mathbf{x}_2-\mathbf{x}_1=\mathbf{c}_g(\mathbf{t}_2-\mathbf{t}_1)$. (If the boundary layer changes rapidly, the stations 1 and 2 must be near enough to each other so that \mathbf{c}_g remains nearly constant between them.) For the user's convenience, we recapitulate the basic definitions and properties of monochromatic spatial and temporal disturbances corresponding to the formulations of Equations (2) in Table I. The subscripts n, which denoted the order of the TS eigenmodes, are now dropped because generally only the first mode may be unstable and is therefore of interest.

Actually, most disturbances occurring in confined flows or in free flight possess enough randomness to be transformed by the TS selective amplifier not into steady monochromatic wave trains but rather into nearly monochromatic wave packets with occasionally as few as three or four wavelengths e.g. References 1, 2, 11, 50, 51, etc. Most often, the successive wave packets appear to be uncorrelated so that they can be treated independently. As a wave packet travels downstream, its spectral distribution $S(\omega_p)$ slowly changes and, in particular, the frequency ω_q corresponding to the maximum of $S(\omega_p)$ shifts slowly with x. For a Blasius layer, the favored frequencies correspond roughly to wavelengths from seven to ten times the local boundary-layer thickness. A wave packet may thus extend from twenty to seventy or more layer thicknesses, forming a sizable disturbed spot. Since such TS disturbance spots must be distinguished from the other spots in transition literature – the growing turbulent spots of Emmons - we occasionally refer to the former as disturbance wounds.

According to the local-constant-base hypothesis (Sec.1.1), the formulae of Table I apply locally to wave packets traveling through even non-similar mean profiles which develop in x or t slowly in relation to the growth of the disturbances. If, for a steady layer, we had available stability characteristics for profiles located Δx_k apart, we could piece together successive increments in amplitude $A(\omega_p)$ of any frequency, ω_p , in the wave packet

$$\frac{\Delta A_{kl}}{A_k} = \left(\frac{\alpha_k c_i}{c_k}\right)_k \Delta x_{kl} = -(\alpha_i)_k \Delta x_{kl}, \qquad (6)$$

and trace the growth of $A(\omega_p)$ along the length of the layer, such as that along a wavy wall. As the wave packet passes from one mean profile to another, the traced changing amplitude in Equation (6) remains associated with the same frequency ω_p , while the wavelength changes as the layer thickness varies. However, as the ω_p - and R-dependent amplification progresses along the wave packet trajectory, the frequency ω_p of the maximum of the spectrum of the packet shifts with increases in x and with shape changes in the mean profile. Thus the most amplified frequency in a wave packet may well shift 20%-30% along its trajectory and some locally highly amplified frequencies may decay and become "quenched" at downstream stations. (See also Jaffe et al. 28.)

For unsteady boundary layers Equation (6) may be applied, but the stability characteristics at the successive locations must be those of the local profiles which occur at the instant when the disturbance arrives at each x. In other words, the x- and t-dependent profiles must match the x-t trajectory of the wave packet. The procedure may be computationally involved but is nevertheless conceptually straightforward. It is illustrated in detail for the user in Section 5, using a specific example of a flat plate in an oscillating stream, for which there is some experimental information. The reader should experience no difficulty in simplifying the graphical procedures of Section 5 to steady boundary layers. To find total amplification, integration of Equation (6) is required, and except for strictly parallel flows, graphical integration offers both simplicity and feel for the growth characteristics.

2.5 Assessment of Transition Location

As we trace the growth of wave packets, sooner or later we must reach stages (a) where the linear theory ceases to be valid, (b) where the boundary layer becomes locally turbulent (i.e. experiences a local breakdown and nourishes a growing turbulent spot), and (c) where the growing turbulent spots increase in number and spread into the vighboring laminar flow until the flow is fully turbulent. We refer the reader to overal descriptions of the non-linear phenomena and final breakdown to turbulence in References 21, 52 and 13, and confine our comments to approximate criter. a of transition which could be grafted onto the linear information in the Portfolio.

According to Klebanoff et al. 13, stage (a) occurs for a monochromatic artificial excitation when the maximum root mean square atreamwise velocity fluctuation u' within the flat-plate layer reaches 1 to 1.5% of $U_{\rm e}$. Since contributions from other frequencies are added in the square (non-correlated signals), the cessation of linear TS behavior for non-monochromatic disturbances could take place for slightly higher, but not much higher, u' values. To fix ideas, consider spectrally integrated free-stream disturbance levels u'/U, in modern wind tunnels on the order of 0.001. As much of the disturbance energy is damped out or becomes irrelevant in the filtering TS mechanism, we should not be surprised if the internalized narrow-band fundamental TS mode had a maximum of u'/U, at least a hundred times smaller, i.e. on the order of 0.00001 or less at the x station corresponding to its R. . Even contributions at the ultimately dominant TS frequency must be diminished by the receptivity factor and by the "waste" through damped higher eigenmodes. Then, according to Klebanoff's results the total amplification ratio on the order of 1000 or more between R, and the onset of non-linearity would be expected. For higher levels of freestream disturbances or for input spectra favoring the dangerous frequencies, the amplification ratio would be correspondingly less. (For Bennett's 51 high free-stream disturbance level of 0.0042, an amplification ratio of about 500 was estimated from the measurements⁵⁴ to accrue between R and the beginning of transition.)

In stage (b) the first appearance of turbulent spots, i.e. the beginning of the true transition region, is expected at $u'/U_{0\max}$ levels on the order of 0.12 to 0.20. Thus an additional amplification factor of 10-15 beyond the onset of non-linearity must be incurred by the three-dimensional non-linear mechanisms and by the secondary inflectional instability over flat plates 1.13. If this flat-plate information were sufficiently typical, the x-range of linear amplification would tend to "control" the distance to the beginning of transition. Errors in estimates of the extent of the non-linear pre-breakdown regimes would cause small percentage errors in estimates of the total length to the beginning of transition. We note, however, that nothing is known about the influence of pressure gradients on these two non-linear mechanisms.

In stage (c) the ultimate conquest of the disturbed laminar regions by turbulence depends upon the density of seeding of the turbulent spots. Since the angles of their spanwise growth are nearly constant, the length of the transition region itself is partially predictable 50,61. Empirical information from wind tunnels 62 provides further means for estimates of the extent of the transition region, although its generality is yet to be established. In particular, some knowledge of variations in the space-time density of local breakdowns with changes in calibrated disturbances (turbulence and sound) in non-vanishing pressure gradients and their influence on the length of the transition region is desirable before reliance can be placed on such semi-empirical estimates.

The growth ratio leading to stage (a) should follow linear TS theory, which does account for effects of pressure gradients and also predicts reliably the dependence on Reynolds number. The processes associated with stages (b) and (c) are apparently inertially controlled (not unlike turbulence itself) and should be essentially R-independent. Both the linear and non-linear processes seem to be affected b, even mild three-dimensionality of the mean boundary layer.

Satisfactory assessment of the beginning of the transition region for approximately two-dimensional boundary layers would require at least three elements: (A) adequate knowledge of the disturbances in the given environment and of the corresponding boundary-layer receptivity; (B) knowledge of the development of the mean profiles, access to their stability characteristics, and computation of the maximum amplification ratios as function of ω and x; (C) empirical information on the length of the non-linear processes and secondary instability as dependent on pressure gradients and other parameters. This Portfolio deals with element (B) which often governs 75%-85% of the distance to the beginning of transition. For design purposes we could make bracketing estimates of elements (A) and (C) and arrive at reasonable lower and upper bounds for R_t (beginning). Elucidation of the degradation of design performance corresponding to the lower bound should provide a better basis for subsequent design decisions than the customary deterministic correlation estimates of R_t .

Simultaneous appreciation for the factors governing the spread between the upper and lower bound (entering mainly through elements (A) and (C)), and for the desiderata and risks of the design would appear as necessary for a rational design approach.

In his review, Tani²¹ devotes a section to "Prediction of Transition", and refers in particular to Van Ingen⁶³, whose report was not available to the present authors, and to Smith 53, who, together with Jaffe and Okamura, has just come out with a computerized prediction technique²⁸. Smith⁵³ started with an analysis of factors involved in the transition process and adopted Liepmann's hypothesis 2b for the breakdown to turbulence, namely that the Reynolds stress due to the amplified fluctuations become comparable in magnitude to the maximum mean laminar shear stress in the boundary layer. Smith reduced the criterion to a rather explicit dependence on the local laminar skin friction coefficient, the disturbance input at the neutral point, R_c , and the total amplification ratio from the neutral point on. His study of available information on transition of attached boundary layers disclosed an empirical variation of the ratio of the amplitude at transition to that at the neutral point A_t/A_c from $e^{4\cdot 2}$ to $e^{20\cdot 9}$, which, however, appeared primarily modulated by the level of initial disturbances. By confining himself to wind tunnels with low turbulence and to flight tests (for which the disturbances are usually low) and by replacing our element (C) of non-linear processes with continued "equivalent" linear amplification, Smith and Gamberoni arrived at an empirical correlation of e (28100) for A_t/A_c in Reference 53, while the more sophisticated computations in Reference 28, although making use of a smaller number of test cases, suggest a factor of $e^{10}~(\simeq 22000)$. Our earlier estimate for the non-linear, pre-breakdown amplification was a factor of 10 to 15, i.e., $e^{2\cdot 3}$ to $e^{2\cdot 7}$, indicating that, for the low-disturbance transition, the prolonged TS amplification by factors on the order of e7 (2 1100) indeed appears to control the major part of the development to the beginning of transition. Since in most of the cases available for comparison in References 53 and 28 the beginning and the end of transition are not well defined, we should reserve judgement with respect to the specific numbers cited.

An attempt to apply any predictive techniques to the results in Figure 1 of Reference 4, where artificial mixtures of vorticity and sound disturbances lead to currently uncorrelatable transition locations, should convince us that knowledge of the receptivity of the boundary layers to rotational and irrotational disturbances is indispensible for further progress and that both the modal and spectral characteristics of input disturbances play an important role. Most low-disturbance wind tunnels, such as that of Schubauer and Schramstad¹, actually harbor an unknown mixture of turbulence and sound, which is improperly characterized by a single u^{\prime}/U_{e} number. Conversely, flights are not free of sound disturbances either – the propulsive systems tend to generate substantial acoustic disturbances, e.g. Reference 64. However, not until the spectral input is known can we truly judge its overlap with the part of the spectrum which is dangerous for any given cruising conditions, a judgement well within the scope of the linear theory and the Portfolio. The case for increased attention to the element (A) seems to be strong.

Throughout this discussion of estimates of transition location it was tacitly assumed that there were no competing non-TS mechanisms of transition present. When transition is caused by three-dimensional roughness, entirely different criteria must apply (see Tani²¹ for guidance). Similarly, if the mean boundary layer is sufficiently three-dimensional, such as on most wings swept back more than 20°, a different instability, faster than the normal TS mechanism, arises leading to formation of streamwise vortices in the boundary layer (see References 18, 19 and 16). Two-dimensional roughness can apparently be treated within the TS framework¹⁶, but good correlations are probably more practical²¹. On the other hand, wall waviness, which is suspected of strong destabilizing effects, can now be analyzed by the local-constant-base treatment of Jaffe et al.²⁸. Judging by the results of Reference 7, the probable local inflected profiles act as strong amplifiers and thus contribute to the observed earlier transition.

We end this Section with a demonstration of a so-called unit-Reynolds-number effect (which is frustrating the students of supersonic transition^{5,67}) in terms of linear stability theory for a low-speed wind tunner. For a given member of the FS family, such as the Blasius layer, the corresponding Figure 10j provides the "amplification ridge" in terms of the ordinate $\omega_{r}\nu/U_{e}^{2}$ and the abscissa $U_{e}\delta^{*}\nu$, or $\omega_{r}/\nu R_{L}^{2}$ and $\delta^{*}R_{L}\simeq R_{L}^{2}x^{2}$, where R_{L} stands for the unit Reynolds number U_{e}/ν . If at the same R_{δ} or R_{x} we compare two Blasius boundary layers, B_{1} and B_{2} , such that $U_{e2}=\sqrt{10}(U_{e1})$ and $\nu_{1}=\nu_{2}$ (as appropriate at low speeds), we find that the neutral curve of the thinner boundary layer B2 corresponds to dimensional frequencies ten times as high as those along the neutral curve of B_1 . The spectrum of dangerous TS frequencies shifts by a decade and, unless the input spectrum and energy of the free-stream disturbances match the shift exactly, we must expect a unit-Reynolds-number effect. Sound frequency in wind tunnels almost surely does not scale with $R_{\rm L}^{\,2}$. The energetic lower-frequency part of free-stream turbulence, which is controlled by non-streamlined "bodies" such as screens, would be expected to follow the inviscid Strouhal number scaling rather than the present viscous scaling of the TS waves. Actually, the amplitudes of measured free-stream disturbances in wind tunnels. u'/U, also vary with U_e and hence R_L — some rise steadily^{1,66} and some pass through a maximum (resonance?), e.g. in Brinich's low-speed settling chamber 67. Thus we can suspect that many of the text-book correlations of lowspeed transition Reynolds numbers hide a unit-Reynolds-number effect, since basic variables U_{e} and R_{I} are essentially proportional.

3. STABILITY CHARACTERISTICS OF THE PROFILES

3.1 Role of the Profile "Curvature", U"(y)

The only features of the boundary layer which enter the Orr-Sommerfeld equation, Equation (1), are the mean velocity variation U(y) and its second derivative U''(y). We recall that, with the boundary condition U(0) = 0 and $U(y) \rightarrow U_e$ as $y \rightarrow 1$, the profile "curvature", U''(y), fully specifies the velocity distribution U(y). Specification of any profile through its U''(y) distribution is more than a mathematical convenience—it emphasizes the physical role of U''(y), i.e. the rate of change of the mean vorticity (see References 20, 29 and 69). In the inviscid limit of the stability theory, a change of sign of U''(y) within the layer constitutes both a necessary and sufficient condition of instability. When viscosity is considered, the effect of zero curvature is less definite, but, in general, the inflected profile has a higher amplification rate for the same frequency and Reynolds number than does an uninflected profile (e.g., compare Figures 131-131).

This fundamental role of U'' can be traced to the fact that, in the linearized vorticity equation, the term vU'' is directly related to the mechanism through which the fluctuating disturbance vorticity feeds on the reservoir of mean flow vorticity. Since the y-component of the disturbance velocity v(y) in this product is small near the wall and near the edge of the layer, we could expect a lesser sensitivity of the stability characteristics to U''(y) in these regions. In fact, this consideration together with somewhat limited numerical experience led to the earlier suggestion in Section 1.2 that good matching of the user's U''(y) with that of a Portfolio profile over the more limited range $0.1 \lesssim y \lesssim 0.9$ allows him to use the detailed local stability characteristics of the Portfolio profiles as satisfactory approximations for his boundary layer. We recall that the readily overseen mosaic of small-scale U''(y) distributions of all the Portfolio profiles available for such comparisons is displayed in Figure 3.

The preconditioning experience with similarity profiles has made most aerodynamicists associate the local U''(y) distributions rather rigidly with the equilibrium pressure gradients, which act throughout the spatial development of the given boundary layer. For non-similar profiles, such as those along wavy walls or those of unsteady boundary layers, the cumulative history of vorticity diffusion often leads to U''(y) distributions and stability characteristics not in conformity with our preconceived ideas. It must therefore

be emphasized that, while in any given family of profiles the dimensionless U''(0) value can be related to the instantaneous or local pressure gradient, the stability theory itself is indifferent to how a given distribution of vorticity, and hence of U''(y), arose. Under the hypothesis of local constant base (Section 1.1), which must be invoked for all shear layers developing in x and/or t (whether similar or not), the instantaneous local U''(y) distribution (and the boundary conditions) determine the local growth and propagation characteristics of the disturbance waves.

3.2 Boundary-Layer Profiles in the Portfolio

In this Section we shall view the data as a collection of stability characteristics generated from families of systematically varying profiles. We shall discuss primarily the characteristics of two families of profiles: (i) the Falkner-Skan or TS family, a one-parameter self-similar set of profiles, the details of which are presented in many references, e.g. References 68, 9 and 70, and (ii) the Obremski or O family, a non-similar three-parameter set of profiles. Details of their construction are provided in Appendix A. We shall try to associate stability trends with changes in certain geometric properties of the profiles as well as with the physical parameters of the flow.

Since the profiles of the Falkner-Skan family are self-similar for each β , the dimensionless profile curvatures are obtainable directly from the basic differential equation (see Equations (11)). The y-distributions of U" for the FS family are displayed in Figure 3c. For adverse pressure gradients, $\beta < 0$, the profiles exhibit an inflection point which moves away from the wall as β becomes more negative and is located where

$$\mathbf{F}'''(\eta) = \mathbf{0} . \tag{7}$$

At the wall, the similarity properties relate U''(0) to the measure β of the pressure gradient, $U_{e\pm}(dU_{e\pm}/dx_{\pm})$, as follows:

$$U''(0) = -(\eta_{\delta})^2 \beta$$
. (8)

The preceding features of the FS family are sufficient for the discussion in this Section. Full information on the relevant properties of the mean FS profiles and on their stability characteristics, including computing procedures, is presented by Wazzan. Okamura, and Smith²⁵. Section 4 of the Portfolio presents a condensed account of this information.

For the non-similar O families of profiles, the mosaics of Figures 3a and 3b portray the trends of the cross-layer distributions of profile curvature with the family parameters \mathbf{X}_{ω} and Ω for the cases $\mathbf{N}_{\mathbf{A}} = 0.075$ and 0.15 respectively. Particular profiles of the O family will often be called out by their unsteady characteristics: $(\mathbf{N}_{\mathbf{A}}, \mathbf{X}_{\omega}, \Omega)$. At the wall the second derivative can be interpreted as the instantaneous pressure gradient of an oscillating flow over a flat plate:

$$U''(0) = -36N_A X_{\omega} \cos \Omega (1 + N_A \sin \Omega)^{-1}$$
 (9)

Values greater than zero indicate that the instantaneous pressure gradient is adverse while negative values correspond to a favorable gradient. The velocity at the inflection point and its position has been marked on the sketches of Figures 3 as the paired values (U,y).

Additional features of the O family, beyond the immediate interest of this Section, including all the computed stability characteristics, can be found in Appendices A and B and in Tables V and VI. An additional profile $(0.042, 9.0, \pi)$ was analyzed for purposes of a comparison made in Section 3.3.

At the time of the writing of this report, no additional systematic information on amplification characteristics of families of profiles obtained numerically from the Orr-Sommerfeld Equations were known to the authors. Neutral curves (alone) for a series of divergent channel flows were published by Eagles⁷⁹, and for fiat-plate layers in presence of foreign gas injection, applied magnetic fields, etc., by Powers and Heiche⁸⁰.

3.3 Stability Criteria and Location of Inflection Point

For a complete description of the two-dimensional stability characteristics of a given profile we should specify two functions, the spatial or temporal amplification rate and the corresponding propagation speed of the disturbances, as varying with Fourier parameters β_{Γ} or α_{Γ} and Reynolds number. This detailed information is contained in Tables VI and Figures 10 and 13. Clearly, this complete information is unwieldy and recourse to a simpler measure of stability is indicated for many purposes. The three-dimensional representation of the amplification information for a typical viscous-controlled instability, Figure 4, brings out some of these possible criteria: the minimum critical Reynolds number, the neutral curve and the maximum amplification rate (Refs. 18, 19). For inflected profiles, the inviscid asymptotic non-zero values α_{Γ} or β_{Γ} and the maximum amplification rates for $R \to \infty$ often provide additional useful characteristics. The preceding "discrete" instability criteria emphasize different aspects of the overall information (Fig. 4) and at times lead to contradictory judgements on relative instability profiles. Nevertheless, if applied cautiously, with understanding of their limitations, such criteria are very useful for specific objectives.

In view of the fundamental role of the U" distribution, we inquire into its possible relationship to the simplest stability criteria of critical Reynolds number. In Figure 5, the log $(R_{\delta*})_c$ has been plotted against X_ω with Ω as parameter for $N_A=0.075$. The profiles corresponding to $\Omega=\pi$, $5\pi/4$, $3\pi/2$ and $7\pi/4$ achieve their minimum critical Reynolds numbers at the identical values of X_ω where their inflection points are farthest from the wall (see Figure 3a). These profiles include those for which the curvature at the wall is positive (destabilizing) $(\pi, 5\pi/4)$, zero $(3\pi/2)$ and negative (stabilizing) $(7\pi/4)$. On the other hand, the $\Omega=0$ profile, not only has no inflection points but exhibits a large "stabilizing" curvature at the wall, and yet a large decrease in critical Reynolds number occurs for $X_\omega > 5$.

This destabilization is probably associated with the development of the near zero curvature condition away from the constraining effects of the wall. A similar development takes place for $\Omega = 7\pi/4$, $X_{\omega} > 2.5$, and can be expected for the $\pi/2$ profile for $X_{\omega} > 9$ (see Figure 3a).

From this discussion we see emerging a qualitative correlation between the distance of the inflection point from the wall and the critical Reynolds number, quite apart from the sign of the wall curvature U''(0). This trend is consistent with the variation of critical Reynolds number for the FS family (Fig. 11). There, however, the inflection-point location is rigidly tied to U''(0) through the similarity relations so that the trends are usually interpreted in terms of the pressure gradient. As an experiment, stability characteristics of three profiles of the O families with the identical value of U''(0), namely 13.6, were computed and are displayed in Table II. We see from the corresponding U''(y) distributions in Figure 6 that the "high" profile, H, exhibits the highest negative curvature which might be superficially considered as stabilizing. However, on the basis of minimum critical Reynolds number, H is the most unstable of the three profiles. It could perhaps be described as the most inviscid in behavior in that its inflection-point location is closest to its critical layer, columns 3 and 4 of Table II. Actually, at the minimum Reynolds number and up to the peak in the amplified wave number, Figure 13n, the destabilization mechanism appears to remain viscous in nature. Furthermore, the "low" profile, L, has its inflection much closer to the critical layer than does the Blasius profile and yet L is the stabler of the two! Such counter-trends underscore the observation that, although correlations with acceptable scatter may be achieved, deeper explanations are lacking.

 $^{^{\}circ}$ An important example occurs when compressibility effects are included. As Mach number increases from zero, both R and maximum amplification rate decrease, i.e. the ridge in Figure 4 shifts somewhat to the left as its slopes become less steep. The "discrete" criteria of R_{c} and α_{i} max have opposite trends and only consideration of the integrated amplification history can settle whether the net effect is stabilizing or not.

In order to bring out more clearly the roles of U''(y) and of the location of the inflection point. $\log (R_{\delta \#})_c$ has been plotted, in Figure 7, against the velocity at which the inflection occurs. For the 0 families, data has been included from both values of the amplitude parameter N_A . Point B corresponds to the critical Reynolds number for a Blasius flow, $\beta=0$, and four other FS members are indicated by their β values. No data are presently available with inflection points lying between velocity ratios of 0.0 and 0.23.

The correlation appears meaningful when the inflection point is sufficiently removed from the wall, i.e. $U|_{U''=0}>0.23$. However, the spread of data when the inflection point is at the wall suggests that its influence when in proximity of the constraining wall may be overriden by other characteristics of the U''(y) distribution. From Equation (9) and Figure 3a we note that the inflection point remains at the wall for all members of the 0 families when $\Omega=\pi/2$, and from Figure 7 we see that all of these profiles are more stable than the Blasius profile. The reader may compare the U''(y) distributions of Figures 3 to acquire first-hand feeling for the rather subtle variations which influence the relative stability of profiles. In fact, comparison of U''(y) distribution of the $\Omega=\pi$, $X_\omega=9.0$ inflected profile in Figure 3a with the less stable (!) Blasius distributions ($\beta=0$) of Figure 3c teaches us the caution mentioned previously concerning oversimplified stability characterizations.

To deepen our appreciation of the intrinsic factors, the slope (mean vorticity) distributions U'(y) for the preceding two profiles as well as for the O profile for $\Omega=0$. $X_{\omega}=9.0$, $N_{A}=0.075$ are portrayed in Figure 8 (see Figure 16 for U(y)). This latter profile, the only one in Figure 8 without an inflection point, is the most unstable of the three. From Table VI we can ascertain that the (0.075, 9.0, 0) profile displays a greater vulnerability to high frequency disturbances $\beta_{r \star} \nu_{\star} / U_{0 \star}^2 = (\simeq 380 \times 10^{-6})_{\rm C}$ than does the (0.075, 9.0, π) profile ($\simeq 180 \times 10^{-6})_{\rm C}$. Spatial growth rates at intermediate Reynolds numbers are generally lower for the (0.075, 9.0, 0) profile and their decline with frequency is less precipitous resulting in a less "spiney" topography for the stability ridge in Figure 4. The differences between the velocity profiles themselves are small and could well be missed experimentally without special precautions. If Quick and Schröder's mean profile computations over a wavy wall can be used as an approximate guide, profiles similar to the three above must be expected over walls with mild wall undulations. The empirical destabilizing effect of wall waviness noted by Smith and co-workers 28,53 may thus be predictable, at least qualitatively.

A glance at the curvature mosaic in Figure 3a discloses that come members of the O family exhibit two inflection points. The presence of the inner inflection point seems to have very little influence on the stability characteristics of these profiles. This behavior is consistent with the remarks corcerning the insensitivity of U''(y) distribution below y of approximately 0.1 in Section 3.1.

3.4 Correlations of Minimum Critical Reynolds Number of Non-Similar Profiles

The minimum critical Reynolds number has traditionally been a simple measure of stability and many attempts have been made to correlate it with some physical or geometric parameter combination. Two popular correlating factors, which attempt to introduce weighting of the U(y) profile are the "improved" Pohlhausen parameter of Holstein and Bohlen⁴⁹:

$$\lambda_2 = \frac{\theta^2}{\nu} \frac{dU_e}{dx} = -\left(\frac{\theta}{\delta}\right)^2 U''(0) \tag{10}$$

and the shape parameter δ^{*}/θ = H . Examples of these pre-computer correlations are found in Stuart's review¹⁸ and other sources, References 19, 9, etc. Both of these parameters provide a reasonably good correlation of critical Reynolds number for steady favorable pressure gradients, but appear less satisfactory when the pressure gradient is adverse.

The attempted extension of the λ_2 correlation to the non-similar profiles of the 0 families yielded such poor results that it is not even shown. The reason for this failure undoubtedly stems from inadequate weighting of the profile through the insensitive factor θ/δ in the dimensionless expression for λ_2 in Equation (10). We have already seen that $U^{I'}(0)$ alone does not characterize the instability tendencies of non-similar profiles.

It is gratifying that the simple shape parameter δ^{*}/θ apparently does represent satisfactory weighting of the properties of even non-similar profiles (see Figures 9a and 9b). By identifying the individual profiles for $N_A=0.075$ between Figures 3a, 5, and 9a, the curious reader can recognize some reasons for the remaining scatter. The solid curves in Figures 9a and 9b correspond to Lin's approximate formula for $(R_{\delta \pm})_c$ (e.g. Reference 18), which is based on asymptotic methods for high αR and the assumption of small α . Both of these assumptions become less valid for profiles with inflection points so that the departure of the curves from the data above δ^{\pm}/θ of about 2.6 is understandable. The dotted curves OM are proposed as an empirical correction to Lin's curves. Based on accurate computer calculations of the Orr-Sommerfeld equations, they provide as good an estimate as can be expected in view of the probably irreducible scatter. Alternately, we could draw a curve through the results of the self-similar FS family in Figures 9 — which in fact does not differ appreciably from the proposed dotted curve.

The scatter in Figures 9a and 9b is not due to errors but rather to the sensitivity of the eigenvalue problem to variations in U''(y) distribution which are hardly detectable from the integrated velocity profiles U(y) themselves. Since the physical validity of the linear Orr-Sommerfeld equations for r.m.s. velocity fluctuations below 1% of U is beyond doubt (Klebanoff et al. 13), this sensitivity should be expected to lead to "experimental" scatter as well. The experimental determination of a velocity profile in a given physical realization relies on discrete measurements with finite temporal and spatial resolution so that existent U''(y) variations tend to be reduced by local averaging. Furthermore, evaluation of the required second derivative from discrete data introduces significant errors, especially near y = 0 and 1. Thus if we consider the highly desirable attempts to compare theoretically and experimentally determined stability characteristics of non-similar boundary layers we must recognize that the measured U(y) and U''(y)distributions, which are fed into the theory, may not correspond to the actual profiles for which amplification, R, etc. may have been obtained. Inaccuracies in U(y) and U"(y) determinations may cause significant discrepancies, especially near changes in the sign of U'''(y). For instance, finite resolution of instruments could well change the U'' distribution of the profile (0.075, 9.0, 0) into that of (0.075, 5.06, 0) in Figure 3a, thus inducing a change in $\log (R_{\delta +})_c$ from 2.68 to 3.3 (see Figure 5) - a sizable error.

4. CHARACTERISTICS OF THE FALKNER-SKAN PROFILES

In Section 3.2, a few properties of the FS family, needed for the discussion of the stability characteristics in Sections 3.3 and 3.4 were mentioned. This chapter broadens the mean-flow information and reports on the spatial stability of the FS similarity profiles for which the characteristic equation is solved in terms of real values of ω and complex values of α . This then restricts the values of c to be proportional to the complex conjugate of c. In this case the following relations hold between c, c and c:

$$\alpha_{\mathbf{r}} \mathbf{c}_{\mathbf{r}} - \alpha_{\mathbf{i}} \mathbf{c}_{\mathbf{i}} = \omega_{\mathbf{r}},$$

$$\alpha_{\mathbf{i}} \mathbf{c}_{\mathbf{r}} + \alpha_{\mathbf{r}} \mathbf{c}_{\mathbf{i}} = 0.$$

$$(113)$$

In the present investigation the linear independence of solutions to the Orr-Sommerfeld equation is maintained during the course of the integration by the Gram-Schmidt orthogonalization procedure 25,28 rather than the purification scheme of Landahl and Kaplan 23 . This innovation has been successfully applied for values of Reynolds numbers, $R_{\delta \pm}$ up to 10^5 .

The velocity profiles analyzed are obtained from a direct numerical integration of the Falkner-Skan boundary-layer equation:

$$F'''(\eta) = -FF'' + \beta(F'^2 - 1)$$
, (11b)

with the appropriate value of β and the boundary conditions:

$$F(0) = F'(0) = \lim_{\eta \to \infty} (F' - 1) = 0$$
. (11c)

The normalized velocity and its second derivative, which appear in the OS equation, are related to the function F as follows:

$$U(y) = F'(\eta)$$
 (12a)

and

$$U''(y) = (\eta_{\delta})^2 F'''(\eta)$$
, (12b)

noting that

$$\eta = \eta_{\delta} \mathbf{y}$$
 (12c)

where η_{δ} is taken to correspond to the point at which the normalized velocity has the value 0.9990. The velocity profiles thus obtained are analyzed through the Orr-Sommerfeld equation.

For easy reference, certain profile characteristics such as the momentum thickness θ , shape factor H , boundary-layer thickness η_{δ} , a displacement thickness Δ^{\bigstar} and the minimum critical Reynolds number, $(R_{\delta \bigstar})_{\mathbf{C}}$ are given in Table III. The characteristic length used in normalizing the stability parameters is $\delta^{\bigstar} = \Delta^{\bigstar} \sqrt{[(2-\beta)\nu_{\mathbf{X}}/U_{\mathbf{e}}]}$, see Table III.

The results of the study are presented in the form of curves of constant $\alpha_1 \delta^{*}/R_{\delta \pm}$ on the diagrams of dimensionless frequency versus Reynolds number $(\omega_r, R_{\delta \pm})$ in Figures 10a-10n. The critical Reynolds numbers $(R_{\delta \pm})_c$ determined by cross-plotting the computed data are presented as a function of the Hartree values of β in Table III and are shown in Figure 11. The maximum frequency ω_{\max} for which disturbances are unstable, as well as the maximum spatial amplification rate $(-\alpha_1 \delta^{*}/R_{\delta \pm})_{\max}$ is shown in Figure 12.

For a given value of ω , α_r and α_i , the corresponding values of c_i and c_r are determined from Equation (11a) and are presented on the diagram of dimensionless wave number versus Reynolds number $(\alpha_r \delta^*, R_{\delta *})$ (Figs.13a-13n). The neutral curves are summarized in Figure 14. The maximum temporal amplification rate, $(c_i)_{max}$, is presented against the Hartree β in Figure 15.

In the case of negative Hartree β 's, it has been theoretically established that at large Reynolds numbers the upper branch of the neutral curve does not approach the $R_{\delta_{\frac{1}{4}}}$ -axis, as it does with positive values of β , but approaches a certain asymptote, $\alpha_{r}\delta_{\frac{1}{4}}$ = constant. This result was discussed by Tollmien⁷⁸, who showed that the constant is a function of β . The asymptotes for $\alpha_{r}\delta^{*}$ for these cases provide a check on the validity of the present results, because the limiting inviscid solution must emerge as the exact solution of the complete Orr-Sommerfeld equation as $R\to\infty$ for non-zero values of the wave number. In this region the asymptotic method used by Pretsch²² should be valid. The comparison in Figure 16 for β = -0.10 shows good agreement with the asymptotic value obtained by Pretsch. It may be noted from Figure 13k, β = -0.05, that the upper branch asymptote had not been achieved even at $R_{\delta_{\frac{1}{4}}}=10^{5}$. For this reason, the calculations were extended to a Reynolds number of 200,000 for this case. Similar calculations were made for the cases β = -0.01 and β = -0.025. In none of those cases was an asymptote firmly established, although the gradient present was found to be small. The values for $R_{\delta_{\frac{1}{4}}}=2\times10^{5}$ are plotted in the figure. Additional features of interest and further comparisons are found in the original reference²⁵.

5. SAMPLE APPLICATION OF PORTFOLIO INFORMATION TO THE HISTORY OF GROWING WAVE PACKETS IN OSCILLATING BOUNDARY LAYERS

In Section 2.1 it was observed that, except for the rectilinear Couette and Poiseuille flows, the stability theory relies on the quasi-parallel hypothesis or more generally on the hypotheses of local constant base. The limits of applicability of these hypotheses may well be delineated experimentally before a convincing theoretical treatment of x-and t-dependent shear layers will be found. In this section we recapitulate the local-constant-base formulation and illustrate the usage of the Portfolio information in the complex case of a flat-plate boundary layer growing in x and oscillating periodically with t. The reader can readily apply the procedure to steady similar and non-similar profiles for which the absence of the time variable brings about great simplification (see also Reference 23). However, there are no published stability experiments, other than those on the Blasius layer, with which the steady quasi-parallel formulation could be compared. The unsteady experiments of Obremski and Fejer 12, on the other hand, present a number of conceptual challenges for any theory.

The idealized model combines the concepts of: (a) disturbance patches ("wounds") rrogressing downstream with the group velocity and developing into Tollmien-Schlichting wave packets as described by Kovasznay and illustrated in Figure 4 of Brooke Benjamin , and (b) generalization of the local approximation of the effects of steady streamwise pressure gradients to the case of unsteady pressure gradients. For mechanically generated periodic variations in mean speed, U_0 , the dangerous disturbances may well amplify fast enough to reflect primarily the characteristics of the instantaneous vorticity distribution through the boundary layer. As the packet moves downstream, it would respond to the local instantaneous amplification or quenching governed by the local vorticity distribution. By knowing the stability characteristics of the various instantaneous velocity profiles that a disturbance might encounter during its passage along the boundary layer, the integrated amplification ratio between any two points on the trajectory can be determined. A comparison of the integrated amplification ratios along a trajectory of the wave packets of different frequencies would decide which disturbance wins the "prize" — its rapid reorganization into turbulence, governed by historically elusive criteria (see Section 2.5).

In Appendix A the construction of the instantaneous O-family velocity profiles is described. The specification of the amplitude parameter N_A , the frequency parameter X_{ω} and the phase, Ω , together with the unsteady solutions $\Delta U_{\star}/\Delta U_{0\star}$ (Fig. 21) and ϕ (Fig. 22) allow the instantaneous profile:

$$U(y) = \frac{1}{1 + N_A \sin \Omega} \left\{ U_{Blasius} + N_A \frac{\Delta U_{\star}}{\Delta U_{0 \star}} \sin (\Omega + \phi) \right\}$$
(13)

to be specified as a function of dimensionless y. Even at the same instant, however, the profiles are non-similar in space and therefore, for each flow specification, Reynolds numbers must be associated with the values of X_{ω} for which profiles have been constructed. The experiments of Obremski and Fejer (Ref. 72)* indicated that the amplitude parameter, $N_{\mathbf{A}}$, and the non-steady Reynolds number, $U_{0\pm}\Delta U_{0\pm}/\omega_{\pm}\nu_{\pm}$, were significant parameters of transition. By specifying these and using the relationship

$$R_{\delta}^2 = \frac{36}{N_{\Lambda}} R_{ns} X_{\omega} , \qquad (14)$$

one obtains the Reynolds number appropriate to a value of X_{ω} . One can then construct, for specific instants, a series of stability maps for the paired values $(X_{\omega}; R_{\delta})$.

^{*} In that paper the ratio $N_A/(\omega_{\mathbb{A}}\nu_{\mathbb{A}}/U_{0\mathbb{A}}^2)$ was defined a "non-steady Reynolds number". It can be written in the form $(U_{0\mathbb{A}}/\omega_{\mathbb{A}})$ ($\Delta U_{0\mathbb{A}}/\nu_{\mathbb{A}}$). When greater than a critical value, the transition Reynolds number was a function of the amplitude parameter. When less than some critical value, the transition Reynolds number did not vary with the unsteady flow parameters, i.e. it was constant.

Examples of these maps which were used for determining the spatial amplification rates for particular frequencies are shown in Figures 17 for $N_A=0.15$ and $R_{ns}=35,000$. Each figure represents the stability conditions along the plate at the instant, $\Omega=\omega_{\star}t_{\star}$, for the flow specified. The coordinates are the disturbance frequency $\beta_{r,\star}/U_{0\star}^2$ and the spatial amplification rate, $\alpha_{\star i}\nu_{\star}/U_{0\star}$. As stated above, the parameters X_{ω} and R_{δ} satisfy the relationship (14).

To determine the integrated amplification ratio between two points for a particular frequency, a map for that frequency is constructed from a crossplot of Figures 17. Such a map is shown in Figure 18 for a frequency of $\beta_{r \pm} \nu_{\pm} / U_{0 \pm}^2 = 90 \times 10^{-6}$. The coordinates of the map are the spatial amplification rate, $\alpha_{i \pm} \nu_{\pm} / U_{0 \pm}$, and the square of the Reynolds number, $(R_{\delta})^2 \simeq R_{\chi}$. A linear variation with x is assumed between the amplification rates read from the parametric curves of Figures 17. Conditions above the neutral axis, $\alpha_{i \pm} \nu_{\pm} / U_{0 \pm} = 0$, are unstable and those below, stable.

To determine the trajectory in the $\alpha_{i*}\nu_{\star}/U_{0*}-R_{\delta}^2$ space, one starts at the point $T(R_{\delta}=4050$, $\Omega=7\pi/4)$ and, using the local group velocity $c_{\mathbf{g}}$ (available from Tables VI) for the frequency considered, projects back in space and time to the $\Omega=3\pi/2$ curve, i.e.:

or, in general, between the curves of constant $\,\Omega$,

$$R_{\delta 2}^2 = R_{\delta 1}^2 + \frac{36}{N_A} R_{ns} c_g \Delta \Omega . \qquad (16)$$

An iteration may be considered if a significant difference exists between the group velocities at the end points of the trajectory segment. In this way the local amplification contour is constructed back to the point I where it crosses the neutral axis. Should the disturbance remain stable upstream of this point, I is considered the initial point of the disturbance trajectory. The area between this contour and the neutral axis is proportional to the natural log of the amplification ratio between T and I, i.e.:

$$\log_{e}\left(\frac{A_{T}}{A_{I}}\right) = -\frac{1}{36} \int_{R_{\delta I}^{2}}^{R_{\delta T}^{2}} \frac{\alpha_{1\star}\nu_{\star}}{U_{0\star}} dR_{\delta}^{2} . \qquad (17)$$

For the example shown in Figure 18,

$$\log_{e} \left(\frac{A_{T}}{A_{I}} \right) = 5.94 .$$

By repeating the procedure for neighboring frequencies in the band of interest, the dominant disturbance frequency present at the terminal position can be determined. In general each disturbance frequency will begin amplifying at different place and time, experience a different amplification history and hence undergo a different amplification ratio. A similar series of calculations made at adjacent instants of time at the same R_{δ} will permit the construction of a wave packet, having both an amplitude and frequency variation during the phase interval considered.

The results of such calculations for two Reynolds numbers and several instants are listed in Table IV with the frequencies observed experimentally 2 at those instants and locations. Disturbances were first detected at the lower Reynolds number and transition began it the higher value.

Figure 19 is a schematic of the development of the disturbance packet based on the data of Table IV.

At a particular Reynolds number, the variation with Ω of the dominant frequency is slight while the amplification differs by a factor of 3. Hence, a construction shows a wave packet of limited duration composed of a relatively monochromatic disturbance frequency with a considerable variation in amplitude. At the lower Reynolds number the amplification ratio was greatest for $\Omega=3\pi/2$, hence the wave packet appears centered in the trough of the trace. At the downstream Reynolds number, the amplification ratio of the dominant frequency has increased by a factor of 10 and the greatest amplification occurs at $7\pi/4$. (The amplification ratio at $\Omega=0$ is considerably smaller.) Thus the wave packet, initially detected in the trough at $R_\delta=3200$, appears to move along the waveform and amplify while decreasing in frequency. It should be understood that one is not observing the same wave packet, but rather a succession of disturbance frequencies which rise to prominence at succeeding instants and locations.

This description of wave packet development is consistent with experimental observations ⁷² and, together with the agreement between the observed and calculated dominant disturbance frequencies, reinforces the plausibility of the quasi-steady model as being appropriate to the study of the stability of at least some types of time-dependent boundary layers. Further examples of the consistency between experiment ⁷² and the application of this quasi-steady stability analysis are to be found in a recent note ¹⁰.

In the example cited, the dominant disturbance frequency, after experiencing the destabilizing portion of only one oscillation cycle, arrived at T with an intensity sufficient to make breakdown likely. Under certain conditions, however, the most amplified disturbance appears unable to achieve sufficiently high intensity during the unstable portion of a single oscillation cycle. It would then continue downstream, and suffer an attenuation during the stabilizing portion before experiencing further growth by a second destabilizing phase. Such a sequence is shown in Figure 20 for a frequency $\beta_{\Gamma\pm}\nu_{\pm}/U_{0\pm}^2 = 50\times 10^{-6} \text{ , and flow conditions N}_A = 0.075 \text{ , R}_{ns} = 21,600 \text{ . At the end of the first growth phase the amplification ratio is e}^{1.8} \text{ , an attenuation then occurs and at the end of the second growth phase, the total amplification ratio is e}^{6.8} \text{ . The frequency shown is consistent with the experimental observation of the dominant frequency at this position and time, although transition occurred farther downstream. For flow conditions where <math display="inline">R_{ns} < 25,000$, Reference 72 showed that the transition was surprisingly delayed and that the transition Reynolds number became independent of the oscillation parameters. The local-constant-base formulation of the stability theory suggests that the inability of the most amplified disturbance to achieve sufficient intensity after a single destabilizing phase may be the key effect associated with this delayed transition phenomenon.

The examples outlined above illustrate the most general usage of the Portfolio information. In the treatment of non-similar steady flows, e.g. flow over a wavy wall, the main problem is the selection of matching profiles, in x only, for a good estimate of stability characteristics. Once accomplished, the tracing procedure is considerably less involved because the parameter Ω vanishes, and with it the necessity of considering the propagation velocity, $\mathbf{c_g}$. For steady, similar flows the problem is reduced to matching the user's single profile to one of those contained in the Portfolio. The subsequent amplification calculation is then easily accomplished as only the stability characteristics for a single profile are required.

REFERENCES

 Schubauer, G.B. Skramstad, H.K. Laminar Boundary Layer Oscillations and Transition on a Flat Plate. NACA Report 909, 1948.

2. Liepmann, H.W.

- (a) Investigations of Laminar Boundary-Layer Stability and Transition on Curved Boundaries. NACA Adv. Conf. Report No. 3H30, 1943 (later W-107).
- (b) Investigation of Boundary Layer Transition on Concave Walls. NACA W-87 Report, 1945.

Note: These include flat-plate results despite the title.

3. Wells, C.S., Jr

- (a) Initial Transition Experiments in the LTV Boundary-Layer Facility. Ling-Temco-Vaught Report No. 0-71000/3R-21, September 1963.
- (b) Effects of Free-Stream Turbulence on Boundary Layer Transitio AIAA Journal, Vol.5, 1967, p. 172. (Shortened, less informative version.)
- 4. Spangler, J.G. Wells, C.S., Jr

Lifect of Free-Stream Disturbances on Boundary-Layer Transition. AIAA Journal, Vol.6, 1968, p.503.

5. Morkovin, M.V.

Critical Evaluation of Transition from Laminar J Turbulent Shear Layers with Emphasis on Hypersonically 'raveling Bodies. USAF AFFDL TR-68-149, December 1968.

6. Smith, A.M.O. Clutter, D.W.

Solution of the Incompressible Laminar Boundary-Layer Equations. AIAA Journal, Vol.1, 1963, p. 2062.

Quick, A.W.
 Schröder, K.

Behavior of the Laminar Boundary Layer for Periodically Oscillating Pressure Variation. NACA TM 1228, 1949. (Translation of Verhalten der Laminaren Grenzschicht bei Periodisch Schwankendem Druckverlanf, pp. 247-255 of "Ludwig Prandtl zum 70 Geburtstage", Schriften der Akademie der Luftfahrtforschung, Berlin, 1945.)

8. Betchov, R. Criminale, Wm O., Jr

Stability of Parallel Flows. Academic Press, New York, 1967.

9. Schlichting, H.

- (a) Boundary Layer Theory, fourth edition. McGraw Hill, New York, 1960.
- (b) Enstehung der Turbulenz in Handbuch der Physik, Vol.III/1 (edited by S.Flügge). Springer, Berlin, 1959.
- 10. Obremski, H.J. Morkovin, M.V.

Application of a Quasi-Steady Stability Model to Periodic Boundary-Layer Flows. Research Institute for Advanced Study, Martin Marietta Corporation, Baltimore, RIAS Report, 1968. (To be published in the AIAA Journal.)

11. Klebanoff, P. Tidstrom, K.D.

Evolution of Amplified Waves Leading to Transition in a Boundary Layer with Zero Pressure Gradient. NASA TN D-195, 1959.

12. Kovasznay, L.S.G. et al.

Detailed Flow Field in Transition. Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 1962.

13. Klebanoff, P.S. et al.

The Three-Dimensional Nature of Boundary-Layer Instability. Journal of Fluid Mechanics, Vol. 12, 1962, p. 1.

14. Hama, F. Nutant, J.

Detailed Flow-Field Observation: in the Transition Process in a Thick Boundary Layer. Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 1963.

15. Greenspan, H.P. Benney, D.J.

On Shear-Layer Instability, Breakdown, and Transition. Journal of Fluid Mechanics, Vol. 15, 1963, p. 133.

16. Morkovin, M.V.

On the Many Faces of Transition. Published in the "Proceeding of the Symposium on Viscous Drag Reductions" (edited by J.G. Spangler and C. S. Wells Jr). Plenum Press, New York, 1969.

17. Lin. C.C.

The Theory of Hydrodynamic Stability. Cambridge University Press, 1955.

18. Stuart, J.T.

Hydrodynamic Stability, Chapter 9 of "Laminar Boundary Layers" (edited by L. Rosenhead). Oxford University Press, 1963.

19. Shen, S.F.

Stability of Laminar Flows, Section G of "Theory of Laminar Flows" (edited by F.K.Moore). (High-Speed Aerodynamics and Jet Propulsion Series, Vol.4). Princeton University Press, 1964.

20. Lighthill, M.J.

Aerodynamic Background, Chapter 2 (especially pp. 47-59, 67-72, and 86-102) of "Laminar Boundary Layers" (edited by L. Rosenhead). Oxford University Press, 1963.

21. Tani, I.

Boundary Lay: Transition, Vol. 1 of "Annual Reviews of Fluid Mechanics". Annual Reviews, Palo Alto, California, 1969.

22. Pretsch, J.

- (a) Die Stabilität einer Ebenen Laminarströmung bei Druckgefalle und Druckanstieg. Jahrbuch der Deutschen Luftfahrtforschung, 1941, p. 58.
- (b) Die Anfachung Instabiler Störungen in einer Laminaren Reibungsschicht. Jehrbuch der Deutschen Luftfahrtforschung, 1942, p. 154; translation: The Excitation of Unstable Perturbations in a Laminar Friction Layer. NACA TM 1343, 1952.

23. Kaplan, R.E.

The Stability of Laminar Incompressible, Boundary Layers in the Presence of Compliant Boundaries. Massachusetts Institute of Technology, ASRL TR 116-1, 1964 (also PhD Thesis).

24. Landahl, M.

A Time-Shared Program for the Stability Problem for Parallel Flows Over Rigid or Flexible Surfaces. Massachusetts Institute of Technology, ASRL 116-4, 1966.

25. Wazzan, A.R. et al.

Spatial and Temporal Stability Charts for the Falkner-Skan Boundary Layer Profiles. Douglas Aircraft Company, Report No. DAC-67086, 1968.

26. Radbill, J.R. Van Driest, E.R.27. Grosch, Ch.E. Salwen, H.

A New Method for the Prediction of Stability of Laminar Boundary Layers. North American Aviation Report AD 633 978, 1966.

28. Jaffe, N.

29. Gill. A.E.

The Stability of Steady and Time-Dependent Plane Poiseuille Flow. Journal of Fluid Mechanics, Vol.34, 1968, p.177.

The Determination of Spatial Amplification Factors and Their Application of Predicting Transition. AIAA Paper 69-10, 1969.

A Mechanism for Instability of Plane Couette Flow and of Poiseuille Flow in a Pipe. Journal of Fluid Mechanics, Vol. 21, 1965, p. 503.

30. Kármán, Th. von Lin, C.C. Theoretical Comments on the Paper of E.N. Fales. Journal of the Franklin Institute, Vol. 259, 1955, p. 517; see also Reference 18, p. 557.

31. Dunn, D. W.

On the Stability of the Laminar Boundary Layer in a Compressible Fluid. PhD Thesis, Math Department, Massachusetts Institute of Technology, June 1953.

32. Gaster, M.

The Role of Spatially Growing Waves in the Theory of Hydrodynamic Stability. Progress in Aeronautical Sciences, Vol.6, p. 251. Pergamon Press, 1965.

33. Schensted, I.V.

Contributions to the Theory of Hydrodynamic Stability. PhD Thesis, University of Michigan, 1960.

34. Benney, D.J. Rosenblatt, S.

Stability of Spatially Varying and Time-Dependent Flows. Physics of Fluids, Vol.7, August 1964.

35. Criminale, Wm O., Jr Kovasznay, L.S.G.

The Growth of Localized Disturbances in a Laminar Boundary Layer. Journal of Fluid Mechanics, Vol. 14, 1962, p. 59.

36. Brooke Benjamin, T.

The Development of Three Dimensional Disturbances in an Unstable Film of Liquid Flowing Down an Inclined Plane. Journal of Fluid Mechanics, Vol. 10, 1961, p. 401.

37. Gaster, M.

On the Generation of Spatially Growing Waves in a Boundary Layer. Journal of Fluid Mechanics, Vol. 22, 1965, p.433.

38. Gaster, M.

The Development of Three-Dimensional Wave Packets in a Boundary Layer. Journal of Fluid Mechanics, Vol.32, 1968, p. 173.

39. Gaster, M.

Growth of Disturbances in Both Space and Time. Physics of Fluids, Vol. 11, 1968, p.723.

40. Gaster, M.

A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability. Journal of Fluid Mechanics, Vol.14, 1962, p.222.

41. Morkovin, M.V.

Fluctuations and Hot-Wire Anemometry in Compressible Flows. AGARDograph 24, NATO, Paris, 1956.

42. Morkovin, M.V.

On Supersonic Wind Tunnels with Low Free Stream Disturbances. Journal of Applied Mechanics, September 1959, p.319. Transactions of the American Society of Mechanical Engineers, Vol.81, Series E; Discussion, June 1960, p.362.

The state of the s

43. Hall, G.R.

Interaction of the Wake from Bluff Bodies with an Initially
Laminar Boundary Layer. AIAA Journal, Vol. 5, 1967, p. 1386.

44. Klebanoff, P. Private communication on work under NASA sponsorship, 1968.

45. Batchelor, G.K. Sound in Wind Tunnels. Australian Council of Aeronautics Report ACA-18, 1945.

46. Brown, G.B.

On Vortex Motion in Gaseous Jets and the Origin of Their

Sensitivity to Sound. Proceedings of the Physical Society,
Vol. 47, 1935, p.703.

47. Criminale, Wm O., Jr

Interaction of the Laminar Boundary Layer with Free-Stream
Disturbances. Physics of Fluids Supplement, September 1967,
p.S101.

48. Vasiliev. O.F.

Pushkareva, I.V.

Laminar Boundary Layer on a Flat Plate in the Flow with Disturbances. Presented at the 6th Aerospace Sciences Meeting in New York, January 1968.

49. Holstein, H. Ein Einfaches Verfahren zur Berechnung Laminarer
Bohlen, T. Reibungsschichten, die dem Näherungsansatz von K.Pohlhausen
genügen. Berichte Lilienthal Gesellschaft für
Luftfahrtforchung. S10, 5-16, 1940.

50. Knapp, C.F.

Roache, P.J.

A Combined Visual and Hot-Wire Anemometer Investigation of Boundary-Layer Transition. AIAA Journal, Vol.6, January 1968, p.29.

51. Bennett, H.W.

An Experimental Study of Boundary Layer Transition.

Kimberley-Clark Corp. Report, Neenah, Wisconsin, September 1953.

52. Stuart, J.T. Hydrodynamic Stability. Survey Article, Applied Mechanics Review, Vol. 18, July 1965, p. 523.

53. Smith, A.M.O. Transition, Pressure Gradient, and Stability Theory. Douglas Gamberoni, N. Aircraft Company (El Segundo) Report No. ES 26388, 1956.

54. Morkovin, M.V.

Notes on Instability and Transition to Turbulence. Von
Kármán Institute for Fluid Dynamics, Brussels, Belgium, 1968.

55. Bhat, W.V. PhD Thesis on experimental investigation of stability of axisymmetric Poiseuille flow, University of Rochester, 1966.

56. Lessen, M. Stability of Pipe Poiseuille Flow. Physics of Fluids, Vol. 11, et al. 1968, p. 1404.

57. Freymuth, P. On Transition in a Separated Laminar Boundary Layer. Journal of Fluid Mechanics, Vol.23, 1965, p. 683.

58. Emmons, H.W.

The Laminar-Turbulent Transition in a Boundary Layer. Part I.

Journal of the Aeronautical Sciences, Vol. 18, July 1951, p. 490.

59. Rosenblatt, S. Centrifugal Instability of Time-Dependent Flows. Part I: Inviscid Periodic Flows. Journal of Fluid Mechanics, Vol.33, 1968, p.321.

60. Landahl, M.

A Wave-Guide Model for Turbulent Shear Flow. Journal of Fluid Mechanics, Vol. 29, 1967, p. 441.

61. Emmons, H.W. Bryson, A.E.

The Laminar-Turbulent Transition in a Boundary Layer.

Published in the "Proceedings of the First US National
Congress of Theoretical and Applied Mechanics", June 11-16,
1951. American Society of Mechanical Engineers, New York,
1952.

62. Dhawan, S. Narasimha, R. Some Properties of Boundary Layer Flow During the Transition from Laminar to Turbulent Motion. Journal of Fluid Mechanics, Vol. 3, 1958, p. 418.

63. Ingen, J.L. Van

A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region. Report VTH-74, Delft, 1956.

64. Pfenninger, W. Reed, V.D.

Laminar-Flow Research and Experiments. Aeronautics and Astronautics, AIAA, July 1966, p.44.

65. Clauser, F.H.

Private communication, 1953.

66. Kuethe, A.M. et al.

Turbulence Near the Stagnation Point of Blunt Bodies of Revolution. Published in the "Proceedings of the Heat Transfer and Fluid Mechanics Institute", 1961, p.10.

67. Brinich, P.F.

Boundary-Layer Transition at Mach 3.12 with and without Single Roughness Elements. NACA TN 3267, December 1954.

68. Jones, C.W. Watson, E.J.

Two-Dimensional Boundary Layers. P. 250, Chapter 5 of "Laminar Boundary Layers" (edited by L. Rosenhead). Oxford University Press, 1963.

69. Lin, C.C.

On the Stability of Two-Dimensional Parallel Flows. Part II, Section 9. Quarterly of Applied Mathematics, Vol.III, October 1945, p. 225.

7J. Wazzan, A.R. et al.

The Stability of Laminar Boundary Layers at Separation. Physics of Fluids, Vol. 10, 1967, p. 2540.

71. Kovasznay, L.S.G.

A New Look at Transition in "Aeronautics and Astronautics". Pergamon, Oxford, 1960.

72. Obremski, H.J. Fejer, A.A.

Transition in Oscillating Boundary Layer Flows. Journal of Fluid Mechanics, Vol. 29, 1967, p. 93.

73. Lighthill, M.J.

Response of Laminar Friction and Heat Transfer to Fluctuations in Stream Velocity. Proceedings of the Royal Society. Vol. A 224 1954.

74. Lin, C.C.

Motion in the Boundary Layer with a Rapidly Oscillating External Flow. Published in the "Proceedings of the 9th International Congress on Applied Mechanics", IV, 1956.

75. Nickerson, R.J.

The Effect of Free Stream Oscillations on the Laminar Boundary Layer on a Flat Plate. ScD Thesis, Massachusetts Institute of Technology, 1957. 76. Hill, P.G.

Laminar Boundary Layers in Oscillating Flow. ScD Thesis, Massachusetts Institute of Technology, 1958.

77. Farn. C.L. Arpaci, V.S.

On the Numerical Solution of Unsteady Laminar Boundary Layers. AIAA Journal, Vol.4, No.4, 1966.

78. Tollmien, W.

A General Criterion for the Instability of Laminar Velocity Distributions. Nachtrichtung der Deutsche Gesellschaft für Flugwissenschaften, Göttingen, Mathematik und Physik, Klasse, 1935, p.79.

79. Eagles, P.M.

The Stability of a Family of Jeffery-Hamel Solutions for Divergent Channel Flow. Journal of Fluid Mechanics, Vol.24, 1966, p.191.

80. Powers, J.O. Heiche, G.

The Stability of Selected Boundary Layer Profiles. US Naval Ordnance Laboratory, NOL TR 62-143, White Oak, Maryland, April 1963.

81. Kovasznay, L.S. G.

Turbulence in Supersonic Flow. Journal of Aerospace Sciences, Vol. 20, 1953, p. 657.

APPENDIX A

DETAILED INFORMATION ON THE O FAMILY OF VELOCITY PROFILES

The profiles were constructed from solutions of an incompressible, two-dimensional, unsteady boundary layer on a flat plate where the external stream has the form

$$U_{0\pm} = U_{0\pm}(1 + N_A \sin \omega_{\pm} t_{\pm}) . \tag{A1}$$

This problem is equivalent to that of a steady stream over a flat plate oscillating in its own plane 73.

The instantaneous profiles were composed of a time-dependent component superposed on a mean Blasius profile. When the oscillations have small amplitudes and low frequencies, their effect on the mean profile is $O[N_A^2]$ (Ref. 73). At high frequencies, Lin^{74} has shown that regardless of the amplitude, the unsteady and mean flow (Blasius) equations are decoupled and hence such a superposition should be valid.

The unsteady component was derived from the analytical solutions of Nickerson 75 and Hill 76 and the numerical solutions of Farn and Arpaci 77 . These non-similar solutions are presented in terms of an amplitude variation, $\Delta U_{\rm m}/\Delta U_{0,\rm m}$, and a velocity phase shift, ϕ , across the boundary layer and are functions of the two variables: $y_{\rm m}(\omega_{\rm m}/2\nu_{\rm m})^{\frac{1}{2}}$ and X_{ω} . The first of these is the similarity variable of periodic flows and the second is proportional to the ratio of the squares of the viscous to the unsteady Rayleigh boundary-layer thickness.

If distances normal to the plate are non-dimensionalized by the nominal mean boundary-layer thickness,

$$\delta = 6.0(x_{+}\nu_{+}/U_{0+})^{\frac{1}{2}}$$
,

and the velocity normalized by its value at the edge of the layer (Eq.(A1)), the solutions $\triangle U_{\star}/\triangle U_{0\star}$ and ϕ may be expressed as functions of y and X_{ω} (Figs. 21 and 22). Finally, by assuming that the generation of higher harmonics in the boundary layer may be neglected 77, we can construct an instantaneous velocity profile of the form:

$$U(y) = \frac{1}{1 + N_A \sin \Omega} \left\{ U_{Blasius} + N_A \frac{\Delta U_{\pm}}{\Delta U_{0\pm}} \sin (\Omega + \phi) \right\}. \tag{A2}$$

The computer program²⁴ used for the stability analysis required the velocity profile be cast in the form:

$$U = 1 - \exp \left[-2y(y+1)\right] + \sum_{n=1}^{m} A_n y^n, \qquad (A3)$$

where the values of A_n are determined by a least squares fit to the profile. The computer available for generating the A_n 's was limited by its precision to a sixth degree polynomial fit which was not sufficient for all profiles and, in some, resulted in rather bizarre distributions of the second derivative. This limitation was circumvented by fitting an appropriate sixth degree polynomial expression to the second differences of the velocity profile data. The value of profile curvature at the wall was specified from the instantaneous pressure gradient

$$U''(0) = -36N_A X_{\omega} \frac{\cos \Omega}{1 + N_A \sin \Omega}$$
 (A4)

and the curvature at the edge of the boundary layer, U''(1), set equal to zero. Integrating twice and applying boundary conditions,

$$U(0) = 0 (A5a)$$

$$U(1) = [U(1)_{Blasius} + N_A \sin \Omega]/(1 + N_A \sin \Omega) , \qquad (A5b)$$

results in Equation (A3) with m=8. Through this approach one controls the very important second derivative and has a higher degree polynomial for describing higher frequency instantaneous velocity distributions.

Because of the non-similarity of the profiles, the data of Obremski and Fejer 72 served as a guide in selecting ranges of parameters which would yield profiles significant to the stability study. Several of the run conditions 72 of special interest had values of the amplitude parameter, N_A, close to 0.15 and 0.075, so they formed the two main categories of profiles. For N_A = 0.15 value, the lower frequency parameter range was of importance during the instability development. Hence profiles were analyzed at $X_{\omega}=0.4$, 0.8, 1.4, and 2.5, while, for N_A = 0.075, the higher frequency range was of greater significance and values of $X_{\omega}=0.8$, 1.4, 2.5, 5.06 and 9.0 were selected. For most values of X_{ω} , Ω was set to: 0.0, $\pi/2$, π , $5\pi/4$, $3\pi/2$, and $7\pi/4$. In addition, other profiles of interest were analyzed.

Several Reynolds numbers were investigated for each profile, the first priority being to satisfy the requirements of the quasi-steady stability analysis and, second, the requirements for a reasonable representation of the profiles in the Portfolio. As stated in the Introduction, profiles with inflection points received greater emphasis.

APPENDIX B

DETAILED INSTABILITY CHARACTERISTICS FOR THE O PROFILES

With a specification of N_A , X_ω , and Ω the velocity profile is described. Stability characteristics of these profiles were obtained on the MIT Compatible Time Sharing System using the computer program of Landahl²⁴. This program integrates the linearized, two-dimensional disturbance equation and computes the eigenvalues appropriate to the input velocity profile, Reynolds number and real frequency or real wave number depending on whether the spatial or temporal mode of stability is desired. For this study the spatial mode was slightly more convenient and was generally used.

The temporal stability of a few profiles was analyzed and compared with the results achieved through a Gaster transformation of spatial characteristics. As mentioned in Section 2.1, the agreement was good for all cases tested. These temporal results appear under the title "Temporal Mode Solutions".

For two of the profiles, $(0.075, 5.06, \pi/2)$ and $(0.075, 9.0, \pi/2)$, higher mode eigenvalues were found in the spatial formulation. For one of these a temporal analysis was also done. These data appear under the titles "Higher Mode Solutions" and "Temporal Data, Higher Mode Solutions" respectively.

The profiles are arranged in Tables VI according to their unsteady flow designations (NA, XW/U, WT). Certain of their profile characteristics are listed in Table V. The profile coefficients of Equation (A3, are listed at the beginning of each profile data set. Within each profile set are sub-sets of increasing Reynolds number and in each of these sub-sets a sequence of frequencies or wave numbers appears.

The table formats differ for the spatial and temporal modes. In the spatial mode, "BETAR*DELTA/U" is the independent variable and appears in the first column, while for the temporal mode the wave number ALFAR*DELTA assumes this role. The intermediate columns list other properties of the disturbance wave, in particular the spatial (ALFAI*NU/U) or temporal (CIMAG) amplification rates and the group velocity. The spatial eigenvalues (ALFAR*DELTA and ALFAI*DELTA) were computed to tolerances of 0.005 and 0.001 respectively. Tolerances for the temporal eigenvalues (WAVE VEL. and CIMAG) were 0.001 and 0.0005 respectively. The GROUP VEL. for a disturbance frequency was calculated as the average of $[(\triangle BETAR*DELTA/U)/(\triangle ALFAR*DELTA)]_{R_{\delta}}$ for the adjacent frequencies. Using the group velocity, the Gaster transformation (Table I) yields the growth rate in the alternate mode which is listed in the last column (CITMP for the temporal and ALFAI*NU/U for the spatial mode).

ACKNOWLEDGMENTS

This work was accomplished under an internal research program by the Research Institute for Advanced Study, Martin Marietta Corporation, with additional support by AGARD (Contract No. FDP 114-68). The numerical computations appearing in Appendix B were funded by the Gasdynamics Branch, Flight Mechanics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio and were done at the MIT Computation Center with the help of M. Landahl. Segments dealing with the relationship between free-stream disturbances and Tollmien-Schlichting waves were based on M. V. Morkovin's work under Themis Project (USAF Contract F44620-69-0022). The contribution of Wazzan, Okamura and Smith was performed at the Aircraft Division under sponsorship of the Independent Research and Development Program of Douglas Aircraft Company.

Fig. 1a Instantaneous velocity profiles during an oscillation cycle; $N_{A} = 0.15 \text{ , } X_{\omega} = 2.5$

Fig. 1b Instantaneous velocity profiles along the plate at the same instant; $N_{\rm A} = 0.15 \ , \ \Omega = 5\pi/4$

Fig.1c A comparison of three velocity distributions

Fig. 1d Instantaneous profiles having equal curvature at the wall, U''(0) = 13.6

Fig. 2a Mosaic of instantaneous vorticity distributions, $N_A = 0.075$

Fig. 2b Mosaic of instantaneous vorticity distributions, $N_A = 0.15$

Fig. 2c Vorticity distribution; Falkner-Skan family

Fig. 3a Mosaic of instantaneous curvature distributions, $N_A = 0.075$

Fig. 3b Mosaic of instantaneous curvature distributions, $N_A = 0.15$

Fig. 3c Curvature distribution, Falkner-Skan family

Fig. 4 Three-dimensional representation of typical stability characteristics

Fig. 5 Critical Reynolds number as a function of frequency parameter; $N_A = 0.075$

Fig. 7 Critical Reynolds number as a function of velocity at the inflection point

Fig. 6 Curvature distribution for profiles having curvature at the wall, U''(0) = 13.6

建作品。全有各种企业和企

Pig. 8 A comparison of three vorticity distributions

Fig. 9b Critical Reynolds number as a function of shape parameter; $N_A=0.15$

Fig. 9a Critical Reymolds number as a function of shape parameter; $N_A=0.075$

Fig. 10b Curves of constant spatial amplification rates $(\beta = 0.8)$

Pig.10a Curves of constant spatial amplification rates $(\beta=1,0)$

Fig. 10d Curves of constant spatial amplification rates $(\beta=0.5)$

Curves of constant spatial amplification rates $(\beta=0.6)$ Pig. 10c

Fig. 10h Curves of constant spatial amplification rates $(\beta=0.1)$

Pig. 10g Curves of constant spatial amplification rates $(\beta = 0.2)$

Fig. 10j Curves of constant spatial amplification rates $(\beta=0)$

Fig. 10: Curves of constant spatial amplification rates $(\beta = 0.05)$

Curves of constant spatial amplification rates $(\beta = -0.10)$ P1g. 101 Curves of constant spatial amplification rates $(\beta = -0.05)$

Fig. 10m Curves of constant spatial amplification rates $(\beta=-0.1988)$

Pig. 10m Curves of constant spatial amplification rates $(\beta = -0.14)$

Fig. 12 Effect of pressure gradient on the maxisum spatial amplification rate and frequency of unstable disturbances

THE REPORT OF THE PARTY OF THE

Pig. 11 Effect of pressure gradient on the critical Reynolds number

Fig. 13a Curves of constant temporal amplification rates $(\beta = 1.0)$

Fig. 13b Curves of constant temporal amplification rates ($\beta = 0.8$)

Fig. 13c Curves of constant temporal amplification rates ($\beta = 0.6$)

Fig. 13d Curves of constant temporal amplification rates ($\beta = 0.5$)

Fig. 13e Curves of constant temporal amplification rates ($\beta = 0.4$)

Fig. 13f Curves of constant temporal amplification rates ($\beta = 0.3$)

Fig. 13g Curves of constant temporal amplification rates ($\beta = 0.2$)

Fig. 13h Curves of constant temporal amplification rates ($\beta = 0.1$)

Fig. 13i Curves of constant temporal amplification rates ($\beta = 0.05$)

Fig. 13j Curves of constant temporal amplification rates ($\beta = 0$)

Fig. 13k Curves of constant temporal amplification rates ($\beta = -0.05$)

Fig. 131 Curves of constant temporal amplification rates ($\beta = -0.10$)

Fig. 13m Curves of constant temporal amplification rates ($\beta = -0.14$)

Fig. 13n Curves of constant temporal amplification rates ($\beta = -0.1988$)

temporal amplification rate and wave number

of unstable disturbances

Fig. 14 Curves of neutral stability for the β boundary-layer profiles

Fig. 16 The effect of adverse pressure gradient on the amplified wave number spectrum in the inviscid region

Fig. 17e and f Stability diagram, $R_{\rm ns}=35,000$, $N_{\rm A}=0.15$, $\Omega=3\pi/2$ and $7\pi/4$

Fig. 18 Disturbance trajectory of a single disturbance frequency, $\beta_{r \#} \nu_{\#} / U_{0 \#}^2 = 90 \times 10^{-6}$, $R_{ns} = 35,000$, $N_A = 0.15$

$$N_A = 0.15$$
 $R_{ns} = 35,000$

Fig. 19 Schematic of wave packet development

Fig. 20 Disturbance trajectory for a single disturbance frequency, $\beta_{r \neq \nu_{\pm}}/U_{0 \neq}^2 = 50 \times 10^{-6}$, $R_{ns} = 21,600$, $N_A = 0.075$

Fig. 21 Variation of amplitude across a periodic boundary layer

Fig. 22 Variation of velocity phase shift across a periodic boundary layer

TABLE I
Temporally and Spatially Varying Physical Disturbances

Spatial Wave		
Re $\left\{ v_1(y)e^{i(\alpha_r x - \omega_r t)} e^{-\alpha_i x} \right\}$		
$\omega_{\mathbf{r}}$		
$= \alpha_r + i\alpha_i$		
$\omega_{\mathbf{r}}/lpha_{\mathbf{r}}$, Note 2		
$(\partial \omega_{\mathbf{r}}/\partial \alpha_{\mathbf{r}})_{\mathbf{R}}$, Note 3		
) for instability		
$A_2/A_1) = - \int_{x_1}^{x_2} \alpha_1 dx$		
l data given along t-ax's		
$\frac{L(T)}{L(S)} = -\left(\frac{\partial \omega_r}{\partial \alpha_r}\right)_R$. These		

- Note 1. These relations are valid for all eigenmodes v_n of Equations (2t).
- Note 2. $c_r = \omega_r/\alpha_r$ is the real physical phase velocity and is that used in the 0 family data. Betchov and Criminale and WOS define a complex phase velocity by ω/α , i.e. by $\omega(\alpha_r i\alpha_1)/|\alpha|^2$.
- Note 3. Cases with $c_{\rm g} < 0$, occasionally computed, require physical clarification. Some examples appear in Tables VI.

Profile	δ*/θ	у _{U"=0}	У _с	U U "= 0	(c _r) _c	$(R_{\delta *})_c$
(0.042, 9.0, π) "L"	2.66	0.14	0.19	0.23	0.36	650
(0.075, 5.06, 77) "M"	2. 69	0.16	0.20	0. 28	0.38	440
(0.15, 2.5, π) "H"	2.86	0.20	0.225	0.33	0.42	250

TABLE III Boundary-Layer Parameters for Various Values of $\,eta\,$

β	η_{δ}	$\Delta^{\star} = \int_0^{\infty} (1 - F') d\eta$	$\theta = \int_0^\infty F'(1-F') d\eta$	н	(R _{8★}) _C
1.0	3.143	0. 6479	0. 2923	2.216	13490
0.8	3.280	0. 6987	0. 3119	2.240	10920
0.6	3.440	0.7640	0.3359	2.274	8890
0.5	3.533	0.8046	0. 3503	2.297	7680
0.4	3.636	0.8526	0.3667	2.325	6230
0.3	3.752	0.9110	0. 3857	2.362	4550
0.2	3.887	0.9842	0.4082	2,411	2830
0. 10	4.048	1.0803	0.4355	2.481	1380
0.05	4.145	1.1417	0.4515	2.529	865
0.0	4. 257	1.2168	0.4696	2. 591	520
-0.05	4.390	1.3124	0.4905	2.676	318
-0.10	4.561	1.4427	0.5150	2.801	199
-0.14	4.744	1.5459	0.5386	2.963	138
-0.1988	5.562	2.359	0. 5854	4.029	67

TABLE IV

Results of Sample Amplification Calculation

Characteristics: N_A = 0.15 ; R_{ns} = 35000 ; ω = 14.7 Hz

R ₈	Ω	log _e (A _T /A _I)	$\beta_{r\star}\nu_{\star}/U_{0}^{2}$	× 10 ⁶
			Calculated	Observed
3200	571/4	3.1	140	
	3π/2	4.2	140	150
	7 π/ 4	2.4	120	
4050	5π/ 4	3.4	110	
	3π/2	5.8	110	
	7 π/4	6.8	120	110

TABLE V

Instantaneous Velocity Profile Characteristics

 $N_A = 0.075$

;							
	(R _{S#}) _c	480	> 2700	630	330	250	240
9.0	θ/ ∗ 8	2.472	2.422 >	2.707	2.842	2.805	2.634
	8/*8	0.278	0.271	0.299	0.311	0.309	0.295
	(R8*)c	2000	> 2700	400	270	230	260
5.06	8/*8	2. 502	2.451	2.689	2.805	2.787	2.653
	8/*8	0.280	0.270	0.295	0.307	0.308	0.296
	(R5*)c	2200	1400	330	250	260	480
2.5	84.18	2.476	2.492	2.710	2.768	2.713	2.581
	84/8	0. 286	0.273	0.290	0.302	0.306	0.300
	(Rs*)c	≥ 1600	1040	380	≈ 300	≥ 310	∞ €000
1.4	θ/ * 3	2.502	2.517	2.667	2.726	2.684	2,584
	8/*8	0.286	0.273	0.291	0.302	0.306	0.299
	(R _S *) _C	≥ 850	2 770	410	≈ 360	≥ 430	590
0.8	θ/*8	2.521	2.531	2.655	2.669	2.630	2.564
	8/*8	0.283	0.276	0.294	0.304	0.305	0.296
׳	/ G	0	11/2	Ħ	511/4	3π/2	7π/4

 $N_A = 0.15$

Γ	1	Т					-
	8*/8 (R8*)c				$\simeq 214$		
5.06	84/8				3.112		
	84/8				0.329		
	8*/5 8*/8 (R8*)c 8*/8	≥ 2900	2000	250	180	≥ 160	≃ 250
2.5	θ/*8	2.374	2.424	2.858	3.013	2.894	2.609
II.	3/*8	0.285	0.260	0.291	0.317	0.327	0.312
	8*/8 8*/θ (R _{8*}) _ο	≥ 1700	1500	280	190	≥ 160	340
1.4	84/9	2.420	2,469	2.781	2.902	2.825	2.589
	8/*8	0.284	0.259	0.292	0.318	0.328	0.312
	(R _{S*}) _c	≥ 1400	1100	280	230	290	160
8.0	0/*3	2.460	2.544	2, 729	2.779	2.704	2.548
	8/*8	0.278	0.262	0.299	0.321	0.324	0.304
	(R _S *) _C	860	640	370	380	380	006
0.4	9/*8	2.514	2.579	2.665	2.684	2.638	2.551
	84/8	0.279	0.267	0.298	0.315	0.317	0.300
×3/	/ 0	0	11/2	#	5π/4	3π/2	711/4

10 to 10 414 to 10 10 to

TABLE VI

Stability Characteristics of the O Family Profiles

DATA TABLES NOMENCLATURE

NA amplitude parameter, $\Delta U_{0} - U_{0}$

XW/U frequency parameter, $x_{\pm}\omega_{\pm}/U_{0\pm}$ or X_{ω}

WT phase of free-stream oscillation, $\omega_{\star}t_{\star}$ or Ω

PROFILE

COEFFICIENTS coefficients in the series of Equation (A3) A_1 , A_2 , ..., A_n ,

n = 6 or 8

RE(DELTA) Reynolds number based on δ , $6(x_{\pm}\nu_{\pm}/U_{0\pm})^{\frac{1}{2}}$

BETAR*DELTA/U disturbance frequency, $\beta_{r*}\delta_{*}/U_{0*}$

ALFAR*DELTA disturbance wave number, $\alpha_{-}\delta_{-}$

BETAR*NU/U*** disturbance frequency, $\beta_{r+}\nu_{+}/U_{0+}^{2}$

ALFAI*NU/U spatial amplification rate, $\alpha_{i+}\nu_{+}/\nu_{o+}$

GROUP VEL. group velocity, c,

WAVE VEL. wave velocity, cr

CITMP temporal amplification rate derived through the Gaster transformation

of the spatial amplification rate, $-\alpha_i c_g/\alpha_r$

TEMPORAL DATA data under the designated values of the unsteady parameters were

derived from a temporal analysis of OS equation

BETAI*NU/U**2 temporal amplification rate, $\beta_{i+}\nu_{+}/U_{0+}^{2}$

CIMAG imaginary part of the temporal complex wave speed, $\beta_{i*}/\alpha_{r*}U_{o*}$

ALFAI*NU/U spatial amplification rate derived through the Gaster transformation

of the temporal amplification rate, $-\beta_{1\pm}\nu_{\pm}/U_{0\pm}^2c_{g}$

HIGHER MODE

SOLUTIONS spatially derived eigenvalues of a higher mode solution

TEMPORAL DATA, HIGHER MODE

SOLUTIONS temporally derived eigenvalues of a higher mode solution

NA = 0.0420	XW/U = 9.0000	WT = 3-1416				
PROFILE COEFFIC	IENTS -0.63660	6.81090 -29.6	8100 80.15501-	135.02001 133.	50003 -70.33	601 15.22800
RE(DELTA) = 22	.00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.500	1.3324	0.2272E-03	0.7590E-05	0-4212	0.3752	-0.527E-02
0.450	1.2136	0.2045E-03	0.2000E-05	0.4201	0.3707	-0.152E-02
0.400	1.0944	0.1818E-03	-0.1045E-05	0.4191	0.3654	0.880E-03
0.350	0.9752	0.1590E-03	-0.1136E-05	0.4189	0.3589	0.107E-02
0.300	0.8557	0.1363E-03	0.1409E-05	0.4180	0.3505	-0.151E-02
C.250	0.7360	0.1136E-03	0.6363E-05	0.4171	0.3396	-0.793E-02
RE(DELTA) = 45						
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.400	1.7248	0.1333E-03	0.4517E-04	0.4067	0.3478	-0.479E-01
0.450	1.3492	0.1000E-03	0.5733E-05	0.3799	0.3335	-0.726E-02
0.400	1.2153	0.8888E-04	-0.3933E-05	0.3709	0.3291	0.540E-02
0.350	1.0796	0.77772-04	-0.7777E-05	0.3659	0.3241	0.118E-01
0.300	0.9420	0.6666E-04	-0.9222E-05	0.3635	0.3184	0.160E-01
0.250	0.8045	0.5555E-04	-0.8333E-05	0.3629	0.3107	0.169E-01
0.200	0.6665	0 . 4 444E-04	-0.5311E-05	0.3597	0.3000	0-129E-01
0.100	0.3845	0.2222E-04	0.5733E-05	0.3532	0.2600	-0.237E-01
REIDELTA) = 60	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.400	1.2638	0.6666E-04	-0.5666E-06	0.3615	0.3165	0.972E-03
0.350	1.1244	0.5833E-04	-0.5683E-05	0.3542	0.3112	0.107E-01
0.300	0.9815	0.4999E-04	-0.8233E-05	0.3470	0.3056	0.174E-01
0.250	0.8362	0.4166E-04	-0.8683E-05	0.3438	0.2989	0.214E-01
0.200	0.6907	0.33335-04	-0.6999E-05	0.3424	0.2895	0.208E-01
0.150	0.5442	0.2499E-04	-0.3483E-05	0.3382	0.2756	0.129E-01
0.100	0.3950	0.1666E-04	0.1500E-06	0.3339	0.2531	-0.760E-03

NA = 0.0420	XW/U = 9.0000	WT = 3.1416	(TEMPORA	L DATAL		
MA - 010420	AW/U = 910000	MI - 207410	(IEMPORA	L DATA		
PROFILE COEF	FICIENTS -0.63660	6.81090 -29.66	100 80.155	01-135.02001	133.50003 -70.	33601 15.22800
RE(DELTA) =	1500.					
ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.4000	0.3743E-03	-0.1343E-04	-0.0144	0.4421	0.4011	0.3037E-04
1.3000	0.3448E-03	-0.1022E-04	-0.0118	0.4447	0.3979	0.2299E-04
1.2000	0.3150E-03	-0.8193E-05	-0.0102	0.4472	0.3938	0.1831E-04
1.1000	0.2852E-03	-0.7313E-05	-0.0099	0.4487	0.3889	0.1629E-04
1.0000	0.2552E-03	-0.7599E-05	-0.0114	0.4485	0.3829	0.1694E-04
0.9000	0.2254E-03	-0.8820E-05	-0.0147	0.4460	0.5757	0.1977E-04
0.8000	0.1957E-03	-0.1087E-04	-0.0204	0.4413	0.3671	0.2464E-04
0.7000	0.1665E-03	-0.1334E-04	-0.0290	0.4367	0.3569	0.3101E-04
REIDELTA) -	3000.					
ALFAR+DELTA	BETAR+NU/U++2	BETA I+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.4000	0.1663E-03	-0.2826E-05	-0.0060	0.3784	0.3565	0.7469E-05
1.3000	0.1536E-03	-0.3600E-06	-0.0008	0.3847	0.3546	0.9355E-06
1.2000	0.1407E-03	0.1403E-05	0.0035	0.3911	0.3518	-0.3587E-05
1.1000	0.1276E-03	0.2509E-05	0.0068	0.3960	0.3480	-0.6338E-05
1.0000	0.1143E-03	0.28692-05	0.0086	0.3974	0.3429	-0.7221E-05
0.9000	0.1011E-03	0.2663E-05	0.0088	0.3960	0.3370	-0.6724E-05
0.8000	0.8792E-04	0.1756E-05	0.0065	0.3928	0.3297	-0.4471E-05
0.7000	0.7492E-04	0.3999E-06	0.0017	0.3857	0.3211	-0.1036E-05
0.6000	0.6220E-04	-0.1336E-05	-0.0066	0.3786	0.3110	0.3530E-05

PROFILE COFFFIC	ENTS 0-23943	-1.07040 2.0	6.07830	-34.85000	54.47600 -36.775	00 9.3112
RE(DELTA) = 16	20.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.4836	0.4012E-03	0.4956E-04	0.5111	0.4381	-0.276E-01
0.600	1:3855	0.3703E-03	0.3783E-04	0.5033	0.4330	-0.222E-01
0.550	1.2849	0.3395E-03	0.2870E-04	0.4955	0.4280	-0.179E-01
0.500	1.1837	J.3046E-03	0.2265E-04	0.4911	0.4224	-0.152E-01
0.450	1.0813	0.2777E-03	0.1932E-04	0.4873	0.4161	-0.141E-01
0.400	0.9785	0.2469E-03	0.1858E-04	0.4835	0.4087	-0.148E-01
0.350	0.8745	0.2160E-03	0.2012E-04	0.4791	0.4002	-0.178E-01
0.300	0.7698	0.1851E-03	0.2376E-04	0.4735	0.3897	-0.236E-01
0.250	0.6633	0.1543E-03	0.2919E-04	0.4636	0.3769	-0.330E-01
0.200	0.5541	0.1234E-03	0.3574E-04	0.4538	0.3609	-0.474E-01
RE(DELTA) = 20	90.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5282	0.3110E-03	0.4942E-04	0.5088	0.4253	-0.343E-01
0.600	1.4295	0.2870E-03	0.3550E-04	0.4948	0.4197	-0.256E-01
0.550	1.3260	0.2631E-03	0.2435E-04	0.4807	0.4147	-0.184E-01
0.500	1.2215	0.2392E-03	0.1650E-04	0.4739	0.4093	-0.133E-01
0.450	1.1150	0.2153E-03	0.1143E-04	0.4686	0.4035	-0.100E-01
0.400	1.0081	0.1913E-03	0.9043E-05	0.4644	0.3967	-0.870E-02
0.350	0.8997	0.1674E-03	0.8995E-05	0.4599	0.3890	-0.961E-02
0.300	0.7907	0.1435E-03	0.1110E-04	0.4551	0.3794	-0.133E-01
0.250	0.6800	0.1196E-03	0.1511E-04	0.4480	0.3676	-0.208E-01
0.200	0.5675	0.9569E-04	0.2057E-04	0.4409	0.3524	-0.334E-01
RE(DELTA) = 29	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5764	0.2241E-03	0.5693E-04	0.5400	0.4123	-0.565E-01
0.600	1,4819	0.2068E-03	0.3955E-04	0.5094	0.4048	-0.394E-01
0.550	1.3798	0.1896E-03	0.2613E-04	0.4787	0.3985	-0.262E-01
0.500	1.2729	0.1724E-03	0.1593E-04	0.4605	0.3928	-0.167E-01
0.450	1.1626	0.1551E-03	0.8827E-05	0.4490	0.3870	-0.988E-02
0.400	1.0502	0.1379E-03	0.4310E-05	0.4417	0.3808	-0.525E-02
0.350	0.9362	0.1206E-03	0.2344E-05	0.4361	0.3738	-0.316E-02
0.300	0.8209	0.1034E-03	0.2517E-05	0.4314	0.3654	-0.383E-02
0.250	0.7044	0.8620E-04	0.4793E-05	0.4260	0.3549	-0.840E-02
0.200	0.5862	0.6896E-04	0.8689E-05	0.4207	0.3411	-0.180E-01
RE(DELTA) = 47	40.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.4297	0.1160E-03	0.3881E-04	0.5920	0.3846	-0.761E-01
0.500	1.3426	0.1054E-03	0.2402E-04	0.5208	0.3724	-0.441E-01
0.450	1.2357	0.9493E-04	0.1333E-04	0.4497	0.3641	-0.230E-01
0.400	1.1199	0.8438E-04	0.5949E-05	0.4209	0.3571	-0.106E-01
0.350	0.9980	0.7383E-04	0.1265E-05	0.4070	0.3507	-0.244E-02
0.300	0.8742	0.6329E-04	-0.1012E-05	0.3987	0.3431	0.218E-02
0.250	0.7472	0.5274E-04	-0-1202E-05	0.3924	0.3345	0.299E-02
0.200	0.6194	0.4219E-04	0.4430E-06	0.3861	0.3228	-0.130E-02

NA = 0.0750	XW/U = 0.8000	WT = 1.570	•			
PROFILE COEFFIC	IENTS 0.14258	-0.00861 1	09290 1.45390	-16.69000	29.54900 -20.7420	0 5.26270
REIDELTAL - 16	20.					
BETAR-DELTA/U	ALFAR-DELTA	BETARONU/U++	ALFAI MU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5129	0.4012E-03	0.3746E-04	0.4955	0.4296	-0.198E-01
0.600	1.4118	0.3703E-03	0.2794E-04	0.4904	0.4249	-0.157E-01
0.950	1.3090	0.3395E-03	0.2104E-04	0.4854	0.4201	-0.126E-01
0.500	1.2058	0.3086E-03	0-1691E-04	0.4826	0.4146	-0.109E-01
0.490	1.1010	0.2777E-03	0.1530E-04	0.4800	0.4084	-0.108E-01
0.400	0.9975	0.2469E-03	0.1611E-04	0.4771	0.4010	-0.124E-01
0.350	0.8922	0.2160E-03	0.1901E-04	0.4730	0.3922	-0.163E-01
0.300	0.7861	0.1851E-03	0.2382E-04	0.4671	0.3816	-0.229E-01
0.250	0.6781	0.1543E-03	0.3030E-04	0.4567		-0.330E-01
0.200	0.5671	0 · 1234E-03	0.3777E-04	0.4463	0.3526	-0.481E-01
REIDELTA) - 20	90.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++	A FAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5621	0.3110E-03	0.3464E-04	0.4832	0.4161	-0-223E-01
0.400	1.4584	0.2870E-03	0.2349E-04	0.4756	0.4114	-0.160E-01
0.550	1.3518	0.2631E-03	0.1483E-04	0.4679	0.4068	-0.107E-01
0.500	1.2447	0.2392E-03	0.9090E-05	0.4638	0.4017	-0.708E-02
0.450	1.1362	0.2153E-03	0.5789E-05	0.4601		-0.490E-02
0.400	1.0274	0.1913E-03	0.4976E-05	0.4572		-0.462E-02
0.350	0.9175	0.1674E-03	0.6315E-05	0.4537		-0.652E-02
0.300	0.8070	0.1435E-03	0.9665E-05	0.4494	0.3717	-0.112E-01
0.250	0.6950	0.1196E-03	0.1468E-04	0.4421	0.3597	-0.195E-01
0.200	0.5808	0.9569E-04	0.2105E-04	0.4347	0.3443	-0.329E-01
RE(DELTA) = 29	00.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U++	2 ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.6219	0.2241E-03	0.3899E-04	0.4847	0.4007	-0.338E-01
0.600	1.5175	0.2068E-03	0.2537E-04	0.4700	0.3953	-0.227E-01
0.550	1.4091	0.1896E-03	0.14825-04	0.4554		-0.138E-01
0.500	1.2979	0.1724E-03	0.7968E-05	0.4454		-0.703E-02
0.450	1.1846	0.1551E-03	0.1862E-05	0.4384	0.3798	-0.199E-02
0.400	1.0698	0.1379E-03	-0.9310E-06	0.4332	0.3739	0.109E-02
0.350	0.9538	0.1206E-03	-0.1551E-05	0.4295	0.3669	0.202E-02
0.300	0.8370	0.1034E-03	-0.1034E-06	0.4259	0.3564	0.152E-03
0.250	0.7190	0.8620E-04	0.3172E-05	0.4207		-0.538E-02
0.200	0.5993	0.6895E-04	0.8000E-05	0.4155	0.3337	-0.160E-01
RE(DELTA) = 41	740.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U++		GROUP VEL		CITMP
0.550	1.4822	0.1160E-03		0.4601		-0.365E-01
0.500	1.3760	0.1054E-03	0.1305E-04	0.4520		-0.203E-01
0.450	1.2606	0.9493E-04	0.52326-05	0.4239		-0.834E-02
0.400	1.1400	0.8438E-04	-0.2109E-06	0.4062	0.3508	0.358E-03
0.350	1.0156	0.7383E-04	-0.3291E-05	0.3987	0.3446	0.612E-02
0.300 0.250	0.8892 0.7609	0.6329E-04 0.5274E-04	-0.4388E-05	0.3926	0.3373 0.3285	0.918E-02
0.200	0.6314	0.42198-04	-0.1033E-05	0.3021	0.3267	0.846E-02 0.296E-02
0.200	0.4992	0.31648-04	0.28908-05	0.3764		-0.103E-01
41120	VI4776	A-11045-04	0110 FOE 03	V 1 3 1 0 7	0.3004	

NA - 0.0750	XW/U = 0.4000	WT - 3-1416				
PROFILE COEFFIC	IENTS -0.25717	1.06950 1.6	6520 -6.07790	5.47710	4.11940 -4.07	050 1.89570
REIDELTA) - 14	•00•					
BETAR+DELTA/U	ALFAR+DELTA	BETARONU/U+02	ALFAI+NU/U	GROUP YEL	. MAYE YEL.	CITHP
0.550	1.3205	0.39206-03	0.1971E-05	0.4024	0.4165	-0.0036-03
0.500	1.2170	0.3571E-03	-0.1714E-05	0.4807	0.4108	0.7486-03
0.450	1.1125	0.32148-03	-0.2214E-05	3.4791	0.4044	0-1336-02
0.400	1.0003	0.26576-03	0.71426-07	0.4775	0.3947	-0.4732-04
RE(DELTA) - 16	20.					
BETAR+DELTA/U	ALFAP+DELTA	BETAR -NU/U2	ALFAI-NU/U	GROUP YEL	HAVE VEL.	CSTMP
0.450	1.5514	0.40125-03	0.1629E-04	0.4867	0.4189	-0.8316-02
0.400	1.4462	0.37036-03	0.5740E-05	0.4814	0.4. 1	-0.3096-02
0.550	1.3437	0.3395E-03	-0.2037E-05	0.4741	0.4093	0.1152-63
0.500	1.2373	0.3086E-03	-0.4543E-05	0.4497	0.4041	. 0.402E-02
0.450	1.1300	0.2777E-03	-0.0209E-05	0.4677	0.3979	0.5506-02
0.400	1.0235	0.2449E-03	-0.7037E-05	0.4453	0.3906	0-9106-02
0.350	0.9159	0.2160E-03	-0.33336-05	0.4625	0.3621	0.2726-02
0.300	0.8073	0.10518-03	0.27776-05	0.4383	0.3716	-0.2556-02
0.250	0.6977	0.15432-03	0.10985-04	0.4913	0.3943	-0.119E-01
0.200	0.5047	0.12346-03	0.20928-04	0.4443	0.3414	-0.297E-01
0.200	V. 17	0112346-03	0.20426-04	0,444,	0.3717	-012316-01
RE(DELTA) - 20	••••					
BETAR-DELTA/U	ALFAR-DELTA	BETARONU/UO+2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITHP
0.450	1.5951	0.31106-03	0.1885E-04	0.4828	0.4074	-0.119E-01
0.400	1.4909	0.20726-03	0.68426-05	0.4722	0.4024	-0.4525-02
	• • • • •	0.26315-03		0.4616		
0.550	1.3033		-0.26796-05		0.3979	0.1866-02
0.500	1.2743	0.23926-03	-0.8947E-05	0.4996	0.3923	0.4466-05
0.450	1.1636	0.21536-03	-0.125 X -04	0.4506	0.3866	0.1016-01
0.400	1.0924	0.19136-03	-0-1330E-04	0.4470	0.3000	0-119E-01
0.350	0.9401	0.16746-03	-0.1162E-04	0.4440	0.3723	0.1146-01
0.300	0.8272	0.14398-03	-C . 7464E-03	0.4407	0.3626	0.8316-05
0.250	0.7132	0.1196E-03	-0.1196E-09	0.4353	0.3909	0.1956-05
0,200	0.5975	0.93698-04	0.6937E-05	0.4300	0.3347	-0.10+2-01
REIDELTAL - 29	00.					
BETAR-DELTA/U	ALFAR+DEL TA	BETAR-NU/U++2	ALFAI-NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.450	1.6363	0.22416-03	0.2724E-04	0.9110	0.3947	-0.2466-01
0.000	1.5307	0.2040E-03	0.14176-04	0.4476	0.3099	-0.1306-01
0.550	1.4320	0.10965-03	0-28426-05	0.4623	0.3636	-0.2676-02
0.900	1.3823	0.17245-03	-0.53448-05	0.4459	0.1781	0.5226-02
0.450	1.2005	0.19916-09	-0.1109E-04	0.4348	0.3723	0.1157-01
0.400	1.0923	0.13796-03	-0-13996-04	0.4273	0.3661	0-1505-01
0.350 .	0.9745	0.1206E-03	-0.1490E-04	0.4223	0.2591	0.1036-01
0.300	0.0555	0.10345-03	-0.1279E-04	0.4184	6.3504	0-161E-01
0.250	0.7355	0.84205-04	-0.88426-05	0.4140	0.3399	0.144E-01
0.200	- 0.6140	0.48948-04	-0.2931E-09	0.4097	0.3257	0.5676-02
	40.					
BETAR-DELTA/U	ALFAR+DELTA	BETARONU/U002	ALFAI-NU/U	GROUP VEL.	MAVE VEL.	CITHP
	1.9934	0.12458-03	0.23500-04	0.4997	6.3862	-0.470E-01
0.600						
0.550	1.4734	0.1140E-03	0.14326-04	0.5745	0.3732	-0.2646-01
0.500	1.3780	0.1094E-03	0.53146-05	0.4933	0.3620	-0.9026-05
0.450	1.2699	0.9493E-04	-0.21726-09	0.4451	6.3543	0.3616-05
0.400	1.1930	0.04306-04	-0.7016E-03	0.4176	0.3469	0.130E-01
0.350	1.0303	0.7383E-04	-0.100 AE - 74	0.4009	0.3397	0-300E-07
0.300	0.9035	0.43296-04	-0.1196E-04	0.3906	0.3320	0.2496-01
0.290	0.7744	0.9274E-04	-0.1097E-04	0.3041	0.3220	0.2576-01
0.200	0.4432	0.4219E-04	-J. POS 9E-05	0.3779	0.3109	0-2247-01
0.150	0.5098	0.3164E-04	-0.343BE-05	0.3717	0.7942	0-1106-01
					•	·

NA = 0.0750	XW/U = 0.8000	WT = 3.9270				
PROFILE COEFFIC	IENTS -0.31553	0.80424 2.	93320 -8.30030	2.10170 1	0.12500 -10.41	100 3.08010
RE(DELTA) - 16	20.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.650	1.5473	0.4012E-03	0.1641E-04	0.4922	0.4200	-0.846E-02
0.600	1.4453	0.3703E-03	0.4506E-05	0.4843	0.4151	-0.244E-02
0.550	1.3408	0.3395E-03	-0.444E-05	0.4764	0.4102	0.255E-02
0.500	1.2354	0.3086E-03	-0.1012E-04	0.4717	0.4047	0.626E-02
0.450	1.1288	0.2777E-03	-0.1265E-04	0.4679	0.3986	0.849E-02
0.400	1.0217	0.2469E-03	-0.1222E-04	0.4651	0.3915	0.901E-02
0.350	0.9138	0.2160E-03	-0.9012E-05	0.4621	0.3830	0.738E-02
0.300	0.8053	0.1851E-03	-0.3148E-05	0.4585	0.3725	0.290E-02
0.250	0.6957	0.1543E-03	0.4999E-05	0.4521	0.3593	-0.526E-02
0.200	0.5841	0.1234E-03	0.1506E-04	0.4457	0.3424	-0.186E-01
REIDELTA) - 20	90.					
RETAR*DELTA/U	ALFAR*DELTA	BETAR*NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.450	1.5859	0.3110E-03	0.2114E-04	0.4986	0.4098	-0.138E-01
G. 600	1.4847	0.2870E-03	0.7894E-05	0.4833	0.4041	-0.537E-02
2.550	1.3789	0.2631E-03	-0.2918E-05	0.4679	0.3988	0.207E-02
0.500	1.2710	0.2392E-03	-0.1028E-04	0.4591	0.3933	0.776E-02
0.450	1.1611	0.2153E-03	-0.1483E-04	0.4527	0.3875	0.120E-01
0.400	1-0501		-0.1436E-04	0.4480	0.3809	0.145E-01
		0.1913E-03				
0.350	0.9379	0.1674E-03	-0.1526E-04	0.4440	3.3731	0.151E-01
0.300	0.8249	0.1435E-03	-0.1153E-04	0.4405	0.3636	0-128E-01
0.250	0.7109	0.1196E-03	-0.5454E-05	0.4359	0.3516	0.699E-02
0.200	0.5955	0.9569E-04	0.27275-05	0.4313	0.3358	-C.412E-02
REIDELTA) = 29	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.450	1.6160	0.2241E-03	0.3062E-04	0.5581	0.4022	-0.306E-01
0.400	1.5241	0.2068E-03	0.1658E-04	0.5190	0.3936	-0.163E-01
0.550	1.4229	0.1896E-03	0.4448E-U5	0.4800	0.3865	-0.435E-02
0.500	1.3156	0.1724E-03	-0.4724E-05	0.4564	0.3000	0.475E-02
0.450	1.2037	0.1551E-03	-0.1127E-04	0.4408	0.3738	0.119E-01
0.400	1.0887	0.1379E-03	-0.1506E-04	0.4308	0.3674	0.172E-01
0.350	0.9716	0.1206E-03	-0.1634E-04	0.4241	0.3602	0.206E-01
0.300	0.8529	0.1034E-03	-0.1503E-04	0.4189	0.3517	0.214E-01
0.250	0.7329	0.0620E-04	-0.1148E-04	0.4144	0.3411	0.188E-01
0.200	0.4114	0.6896E-04	-0.5689E-05	0.4069	0.3270	0.109E-01
0.150	0.4671	0.5172E-04	0.2103E-05	0.3993	0.3079	-0.500E-02
REIDELTA) - 47	40.					
BETAR+DELTA/U	ALFAR+DELTA	AFTARAMI /IIAA	AL EATAMILES	GROUP VEL.	WAVE 451	e1748
0.550	1.4448	0.1160E-03	ALFAI+NU/U	0.5985		CITMP
0.500			0.1499E-04		0.3806	-0.294E-01
	1.3578	0.1054E-03	0.6877E-05	0.5343	0.3682	-0.128E-01
0.450	1.2566	0.9493E-04	-0.9704E-06	0.4702	0.3581	0.172E-02
0.400	1.1446	0.8438E-04	-0.6740E-05	0.4318	0.3494	0.124E-01
0.350	1.0248	0.7383E-04	-0.1006E-04	0.4083	0.3415	0.205E-01
0.300	0.0796	0.63292-04	-0.1246E-04	0.3945	0.3334	0.2596-01
0.250	0.7713	0.5274E-04	-0.1196E-04	0.3858	0.3241	0.283E-01
0.200	0.6404	0.4219E-04	-0.9324E-05	0.3789	0.5125	0.261E-01
0.150	0-5074	0.3164E-04	-0.4810E-05	0.3697	0.2956	0.166E-01
0.100	0.3699	0.2109E-04	0.1223E-05	0.3606	0.2703	-0.565E-02

NA - 0.0750	XW/U = 0.8000	WT = 4.7124				
PROFILE COEFFI	CIENTS -0.18394	0.00842 3.	55720 -3.38980	-13.50000	30.43600 -23.1330	00 6.22150
RE(DELTA) = 1	400.					
BETAR*DELTA/U	ALFAR+DELTA	BETAR NU/U++2		GROUP VEL		CITHP
0.500	1.1963	0.3571E-03	0.7142E-07	0.5985	0.4179	-0.500E-04
0.450	1.0937	0.3214E-03	-0.2214E-05	0.4840	0.4114	0-137E-02
0.400	0.9897	0.2857E-03	-0.9285E-06	0.3695	0.4041	0.485E-03
RE(DELTA) = 1	620.					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U**2		GROUP VEL		CITHP
0.650	1.5210	0.4012E-03	0.2611E-04	0.5070	0.4273	-0.141E-01
0.600	1.4216	0.3703E-03	0.1345E-04	0.4966	0.4220	-0.761E-02
0.550	1.3196	0.3395E-03	0.3703E-05	0.4051	0.4167	-0.221E-02
0.500	1.2159	0.3086E-03	-0.2962E-05	0.4800	0.4112	0-1895-02
0.450	1.1113	0.2777E-03	-0.6358E-05	0.4757	0.4049	0-440E-02
0.400	1.0057	0.2469E-03	-0.6790E-05	0.4719	0.3977	0.516E-02
0.350	0.8994	0.2160E-03	-0.4320E-05	0.4686	0.3891	0.364E-02
0.300	0.7923	0.1851E-03	0.6172E-06	0.4642	0.3786	-0.5856-03
0.250	0.6840	0.1543E-03	0.7962E-05	0.4572	0.3654	-0.862E-02
0.200	0.5736	0.1234E-03	0.1716E-04	0.4503	0.3486	-0.218E-01
RE(DELTA) = 2	090.					
BETAR+DELT4/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5566	0.3110E-03	0.3095E-04	0.5169	0.4175	-0.214E-01
0.600	1.4587	0.2870E-03	0.1688E-04	0.4987	0.4113	-0.120E-01
0.550	1.3560	0.2631E-03	0.5071E-05	0.4806	0.4056	-0.375E-02
0.500	1.2506	0.2392E-03	-0.3205E-05	0.4695	0.3998	0.251E-02
0.450	1.1430	0.2153E-03	-0.8612E-05	0.4612	0.3937	0.726E-02
0.400	1.0338	0.1913E-03	-0.1086E-04	0.4551	0.3869	0.999E-02
0.350	0.9233	0.1415E-03	-0.1057E-04	0.4506	0.3790	0.107E-01
0.300	0.8119	0.1435E-03	-0.7559E-05			0.868E-02
0.250	0.6993	0.1196E-03	-0.2344E-05	0.4464	0.3695 0.3575	0.309E-02
0.200	0.5852	0.9569E-04	0.5071E-05	0.4358	0.3417	-0.789E-02
RE(DELTA) = 2	900.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U##2	ALFAI+NU/U	GROU? VEL	. WAVE VEL.	CITMP
0.600	1.4928	0.2068E-03	0.2513E-04	0.5330	0.4019	-0.260E-01
0.550	1.3970	0.1896E-03	0.1220E-04	0.5020	0.3937	-0.127E-01
0.500	1.2933	0.1724E-03	0.2103E-05	0.4710	0.3866	-0.222E-02
0.450	1.1846	0.1551E-03	-0.5275E-05	0.4518	0.3798	0.583E-02
0.400	1.0719	U. 1379E-03	-0.9896E-05	0.4392	0.3731	0.117E-01
0.350	0.9569	0.1206E-03	-0.1186E-04	0.4310	0.3657	0.154E-01
0.300	0.8399	0.1034E-03	-0.1131E-04	0.4250	0.3571	0.165E-01
0.250	0.7216	0.8620E-04	-0.8379E-05	0.4196	0.3464	0.141E-01
0.200	0.6016	0.6896E-04	-0.3275E-05	0.4143	0.3324	0-654E-02
RE(DELTA) = 4	740.					
SETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI=NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.4045	0.1160E-03	0.2101E-04	0.6828	0.3915	-0.484E-01
0.500	1.3274	0.1054E-03	0.1301E-04	0.5916	0.3766	-0.275E-01
0.450	1.2339	0.9493E-04	0.4472E-05	0.5003	0.3646	-0.859E-02
0.400	1.1266	0.8438E-04	-0.2278E-05	0.4475	0.3550	0.429E-02
0.350	1.0101	0.7383E-04	-0.6983E-05	0.4176	0.3465	0.136E-01
0.300	0.8870	0.63298-04	-0.9240E-05	0.4008	0.3382	0.197E-01
0.250	0.7606	0.5274E-04	-0.9303E-05	0.3908	0.3286	0.226E-01
0.200	0.6311	0.4219E-04	-0.7194E-05	0.3831	0.3169	0.207E-01
0.150	0.4996	0.3164E-04	-0.3206E-05	0.3733	0.3002	0.113E-01
0.100		0.2109E-04	0.2320E-05			
0.100	0.3632	0441075-04	0.23205-03	0.3636	0.2753	-0.110E-01

48	A to the state of						
100							
Bar							
9	72						
90							
1.							
\$65.							
	NA - 0.0750	XW/U - 0.8000	WT - 5.4978				
	PROFILE COEFFIC	1ENTS 0.05326	-0.79164 3.5	6690 1.81000	-26.90500 4	4.39400 -32.537	00 8.42630
***	RE(DELTA) - 16	20.					
80	BETAR-DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
	0.650	1.4938	0.40126-03	0.4092E-04	0.5171	0.4351	-0.229E-01
400	0.600	1.3962	0.3703E-33	0.2002E-04	0.5056	0.4297	-0.164E-01
部	0.550 0.500	1.2960 1.1938	0.3395E-03 0.3086E-03	0.1814E-04 0.1179E-04	0.4941 0.4878	0.4243 0.4188	-0.112E-01 -0.747E-02
87	0.450	1.0910	0.27778-03	0.7592E-05	0.4838	0.4124	-0.545E-02
10	0.400	0.9871	0.24695-03	0.6666E-05	0.4798	0.4052	-0.525E-02
2	0.350 0.300	0.8826 0.7769	0.216CE-03 0.1851E-03	0.8333E-05 0.1240E-04	0.4757 0.4706	0.3965 0.3861	-0.727E-02 -0.121E-01
1	0.250	0.6701	0.1543E-03	0.18516-04	0.4626	0.3730	-0.207E-01
	0.200	0.5607	0.12346-03	0.2623E-04	0.4546	0.3566	-0.344E-01
9.2	RE(DELTA) = 20	90.					
,	BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.		CITMP
	0.650 0.600	1.5324 1.4350	0.3110E-03 0.2870E-03	0.4354E-04 0.2861E-04	0.5195 0.5032	0.4241 0.4161	-0.308E-01 -0.209E-01
age of	0.550	1.3336	0.2631E-03	0.1698E-04	0.4869	0.4124	-0.129E-01
	0.500	1.2296	0.2392E-03	0.8468E-05	0.4757	0.4066	-0.684E-02
	0.450 0.400	1.1234 1.0158	0.2153E-03 0.1913E-03	0.2918E-05 0.9569E-07	0.4677 0.4619	0.4005 0.3937	-0.253E-02 -0.909E-04
	0.350	0.9069	0.1674E-03	-0.4784E-07	0.4572	0.3859	0.504E-04
	0.300	0.7971	0.1435E-03	0.2200E-05	0.4527	0.3763	-0.261E-02
1	0.250 0.200	0.6860 0.5731	0.1196E-03 0.9569E-04	0.6650E-05 0.1287E-04	0.4464 0.4402	0.3644 0.3489	-0.904E-02 -0.206E-01
- 6	RE(DELTA) = 29		***************************************	***************************************			
	BETAR+DELTA/U	ALFAR#DELTA 1.5598	BETAR+NU/U++2 0-2241E-03	ALFAI+NU/U 0.5262E-04	GROUP VEL.	WAVE VEL- 0-4167	CITMP -0.596E-01
	0.650 0.600	1.4753	0.2068E-03	0.3582E-04	0.5557	0.4066	-0.391E-01
7	0.550	1.3791	0.1896E-03	0.2203E-04	0.5016	0.3988	-0.232E-01
	0.500 0.450	1.2757 1.1671	0.1724E-03 0.1551E-03	0.1124E-04 0.3482E-05	0.4719 0.4546	0.3919 0.3855	-0.120E-01 -0.393E-02
	0.400	1.0557	0.1379E-03	-0.1448E-05	0.4437	0.3788	0.176E-02
	0.350	0.9417	0.1206E-03	-0.3793E-05	0.4357	0.3716	0.508E-02
*	0.300 0.250	0.8262 0.7092	0.1034E-03 0.8620E-04	-0:3689E-05 -0:1344E-05	0.4301	0.3631 0.3525	0.557E-02 0.233E-02
	0.200	0.5907	0.6896E-04	0.2965E-05	0.4191	0.3385	-0.610E-02
	RE(DELTA) = 47	40.					
	BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.		CITHP
1	0.550	1.3879	0.1160E-03	0.3234E-04	0.7568	0.3962 0.3793	-0.835E-01 -C.487E-01
	0.500 0.450	1.3187 1.2255	0.1054E-03 0.9493E-04	0.2156E-04 0.1130E-04	0 • 6283 0 • 4998	0.3671	-0.218E-01
2	0.400	1.1169	0.8438E-04	0.3502E-05	0.4426	0.3581	-0.657E-02
8	0.350	0.9992	0.7383E-04	-0.1708E-05	0.4156 0.4018	0.3502	0.336E-02 0.930E-02
of of	0.300 0.250	0.8762 0.7503	0.6329E-04 0.5274E-04	-0.4282E-05	0.3932	0.3332	0.750E-02 0.116E-01
3	0.200	0.6219	0.4219E-04	-0.2953E-05	0.3861	0.3215	0.869E-02
	0.150	0.4913	0.3164E-04	0.4430E-06 0.5147E-05	0. 756 0.3651	0.3053 0.2812	-0.160E-02 -0.250E-01
, K	0.100	0.3556	0.2109E-04	U = 2 1 = 15 = U 2	V+3071	A15015	

NA = 0.0750	XW/U = 1.4000	WT - 0.0000				
PROFILE COEFFIC	IERTS 0.30180	-1.88970 6.3	9270 -4.42310	-16.31700	34.88700 -25.65	300 6.71900
REIDELTA) = 21	40.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI-NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5209	0.3037E-33	0.5453E-04	0.5122	0.4273	-0.393E-01
0.600	1.4233	0.2803E-03	0.3971E-04	0.4969	0.4215	-0.294E-01
0.550	1.3195	0.2570E-03	0.2757E-04	0.4816	0.4168	-0.215E-01
0.500	1.2157	0.2336E-03	0.1906E-04	0.4747	0.4112	-0.159E-01
0.450	1.1088	0.2102E-03	0-1317E-04	0.4679	0.4050	-0.119E-01
0.400	1.0020	0.1869E-03	0.1018E-04	0.4628	0.3992	-0.100E-01
0.350	0.8927	0.1635E-03	0.9439E-05	0.4578	0.3920	-0.103E-01
0.300	0.7836	0.1401E-03	0.10982-04	0.4529	0.3626	-0.135E-01
0.250	0.6719	0.11682-03	0.14485-04	0.4456	0.3720	-0.205E-01
0.200	0.5592	0.9345E-04	0.1939E-04	0.4383	0.3576	-0.325E-01
RE(DELTA) = 27	60.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5562	0.2355E-03	0.6054E-04	0.5431	0.4176	-0.583E-01
0.600	1.4622	0.21736-03	0.4282E-04	0.5129	0.4103	-0.414E-01
0.550	1.3610	0.1992E-03	0.2916E-04	0.4828	0.4041	-0.269E-01
0.500	1.2550	0.1811E-03	0.1858E-04	0.4645	0.3984	-0.1092-01
0.450	1.1457	0.1630E-03	0.1126E-04	0.4531	0.3927	-0.123E-01
0.400	1.0343	0.1449E-03	0.6485E-05	0.4456	0.3867	-0.771E-02
0.350	0.9213	0.1268E-03	0.4347E-05	0.4397	0.3798	-0.572E-02
0.300	0.8069	0.1066E-03	0.4347E-05	0.4346	0.3717	-0.646E-02
0.250	0.6912	0.9057E-04	0.6485E-05	0.4286	0.3616	-0.111E-01
0.200	0.5736	0.7246E-04	0.1018E-04	0.4227	0.3486	-0.207E-01
RE(DELTA) = 38	20.					
BETAR DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.600	1.4873	0.1570E-03	0.5353E-04	0.6219	0.4034	-0.835E-01
0.550	1.4043	0.1439E-03	0.3591E-04	0.5492	0.3916	-0.536E-01
C.500	1.3035	0.1308E-03	0.2267E-04	0.4765	0.3835	-0.316E-01
0.450	1.1941	0.1178E-03	0.1301E-04	0.4451	0.3768	-0.185E-01
0.400	1.0787	0.1047E-03	0.6361E-05	0.4290	0.3700	-0.966E-02
0.350	0.9610	0.9162E-04	0.2356E-05	0.4197	0.3642 0.3569	-0.393E-02 -0.132E-02
0.300	0.8404 0.7185	0.7853E-04 0.6544E-04	0.7068E-06 0.1125E-05	0.4125	0.3478	-0.132E-02
0.250 0.200	0.5944	0.5235E-04	0.3403E-05	0.4005	0.3364	-0.875E-02
RE(DELTA) = 61	50.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.550	1.3163	0.8785E-04	0.3611E-04	3.0512	0.4178	-0.524E 00
0.500	1.2983	0.7987E-04	0.3535E-04	1.9043	0.3851	-0.324E 00
0.450	1.2498	0.7188E-04	0.2186E-04	0.7574	0.3600	-0.829E-01
0.400	1.1465	0.6389E-04	0.1140E-04	0.4500	0.3488	-0.280E-01
0.350	1.0263	0.5591E-04	0.4760E-05	0.4040	0.3410	-0.117E-01
0.300	0.8988	0.4792F-04	0.7507E-06	0.3851	0.3337	-0.201E-02
0.250	0.7666	0.3993E-04	-0.9105E-06	0.3752	0.3261	0.279E-02
0.200	0.6323	0.3194E-04	-0.7827E-06	0.3653	0.3163	0.283E-02

NA - 0.0750	XW/U = 1.4000	WT = 1.5708				
PROFILE COEFFIC	ENTS 0.20868	0.01208 -0.0	456 3.24110	-16.31500	26.78400 -18.670	00 4.80090
REIDELTA) - 21	٠٠.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5783	0.3037E-03	0.4373E-04	0.4694	0.4118	-0.278E-01
0.400	1.4717	0.2803E-03	0.3205E-04	0.4634	0.4076	-0.216E-01
0.550	1.3625	0.2570E-03	0.2303E-04	0.4574	0.4036	-0.165E-01
0.500	1.2531	0.23365-03	0.1677E-04	0.4551	0.3990	-0.130E-01
0.450	1.1428	0.2102E-03	0.1303E-04	0.4528	0.3937	-0.110E-01
0.400	1.0323	0.18698-03	0.1163E-04	0.4508	0.3874	-0.108E-01
0.350	0.9210	0.1635E-03	0 - 1242E-04	0.4482	0.3800	-0.129E-01
0.300	0.0092	0.1401E-03	0.1509E-04	0.4444	0.3707	-0.177E-01
0.250	0.6960	0.1168E-03	0 - 1943E-04	0.4374	0.3 91	-0.261E-01
0.200	0.5806	0.9345E-04	0.2500E-04	0.4305	0.3444	-0.396E-01
REIDELTAL = 27	60.					
BETAR+DELTA/U	ALFAR+DEL"A	BETARENU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.6333	0.2355E-03	0.4413E-04	0.4609	0.3979	-0.343E-01
0.600	1.5246	0.2173E-03	0.3112E-04	0.4510	0.3935	-0.254E-01
0.550	1.4115	0.1992E-03	0.2047E-04	0.4411	0.3896	-0.176E-01
0.500	1.2979	0.1811E-03	0 - 1278E-04	0.4370	0.3852	-0.118E-01
0.450	1.1827	0.1630E-03	0.7644E-05	0.4336	0.3804	-0.773E-02
0.400	1.0673	0.1449E-03	0.4963E-05	0.4310	0.3747	-0.553E-02
0.350	0.9507	0.1268E-03	0.4347E-05	0.4284	0.3681	-0.540E-02
0.300	0.0339	0.1086E-03	0.5760E-05	0.4257	0.3597	-0.811E-02
0.250	0.7158	0.9057E-04	0.8913E-05	0.4208	0.3492	-0.144E-01
0.200	0.5963	0.7246E-04	0.1347E-04	0.4160	.0.3354	-0.259E-01
REIDELTA) - 38	20.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.400	1.5879	0.1570E-03	0.3541E-04	0.4474	0.3778	-0.381E-01
0.550	1.4749	0.1439E-03	0.2269E-04	0.4345	0.3729	-0.255E-01
0.500	1.3577	0.1308E-03	0.1324E-04	0.4216	0.3682	-0.157E-01
0.450	1.2377	0.1178E-03	0.6361E-05	0.4134	0.3635	-0.811E-02
0.400	1.1158	0.1047E-03	0.2041E-05	0.4081	0.3584	-0.285E-02
0.350	0.9927	0.9162E-04	-0.1570E-06	0.4046	0.3525	0.244E-03
0.300	0.8687	0.78536-04	-0.2617E-06	0.4019	0.3453	0.462E-03
0.250	0.7439	0-6544E-04	0.1361E-05	0.3985	0.3360	-0.278E-02
0.200	0.6178	0.5235E-04	0.4607E-05	0.3952	0.3237	-0.112E-01
RE(DELTA) = 62	60.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.5359	0.8785E-04	0.3455E-04	0.5305	0.3560	-0.747E-01
0.500	1.4393	0.7987E-04	0.2065E-04	0.4703	0.3473	-0-422E-01
0.450	1.3211	0.7188E-04	0 - 1099E-04	0.4100	0.3406	-0.213E-01
0.400	1.1952	0.6389E-04	0.4232E-05	0.3875	0.3346	-0.859E-02
0.350	1.0629	0.5591E-04	-0.3194E-07	0.3760	0.3292	0.707E-04
0.300	0.9293	0.4792E-04	-0.2268E-05	0.3698	0.3228	0.565E-02
0.250	0.7925	0.3993E-04	-0.2603E-05	0.3652	0.3194	0.751E-02
0.200	0.6555	0.31945-04	-0.1357E-05	0.3605	0.3051	0.467E-02

NA = 0.0750	XW/U = 1.4000	WT = 3.1416				
PROFILE COEFFIC	IENTS -0.32038	1.88970 -1.6	3430 1.83850	-11-48900	21.64800 -15.8800	0 4.1597
RE(DELTA) = 13	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.550	1.3168	0.4230E-03	0.1769E-05	0.5305	0.4176	-0.926E-03
0.500	1.2150	0.3846E-03	-0.4615E-06	0.4880	0.4115	0.241E-03
0.450	1.1119	0.3461E-03	0.2307E-06	0.4455	0.4047	-0.120E-03
RE(DELTA) - 17	00•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*10/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5684	0.3823E-03	0.1211E-04	0.4828	0.4144	-0.634E-02
0.600	1,4646	0.3529E-03	0.1023E-05	0.4769		-0.100E-02
0.550 0.500	1.3587	0.3235E-03 0.2941E-03	-0.5588E-05	0.4710	0.4047	0.329E-02
0.450	1.1449	0.26478-03	-0.1152E-04	0.4646	0.3930	0.795E-02
0.400	1.0371	0.2352E-03	-0.1029E-04	0.4625	0.3856	0.780E-02
0.350	0.9287	0.2058E-03	-0.6529E-05	0.4601	0.3768	0.550E-02
0.300	0.8198	0.1764E-03	-0.3529E-06	0.4564	0.3659	0.334E-03
0.250	0.7096	0.1470E-03	0.7882E-05	0.4496	0.3523	-0.849E-02
0.200	0.5974	0.1176E-03	0.1776E-04	0.4363		-0.220E-01
0.150	0.4803	0.8823E-04	0.2882E-04	0.4229	0.3123	-0.431E-01
RE(DELTA) - 21	40.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	_	CITMP
0.650	1.6083	0.3037E-03	0 • 1523E-04	0.4805		-0.973E-02
0.600	1.5036	0.2803E-03	0.3644E-05	0.4700		-0.243E-02
0.550	1.3955	0.2570E-03	-0.5514E-05	0.4595	0.3941	0.388E-02
0.500	1-2860	0.2336E-03 0.2102E-03	-0-1149E-04	0.4537	0.3688	0.867E-02
0.450 0.400	1.1751	0.1869E-03	-0.1476E-04 -0.1523E-04	0.4492	0.3829 0.3761	0.120E-01 0.136E-01
0.350	0.9508	0.1635E-03	-0.1331E-04	0.4428	0.3681	0.132E-01
0.300	0.8376	0.1401E-03	-0.8925E-05	0.4399	0.3581	0.100E-01
0.250	0.7235	0.1168E-03	-0.2476E-05	0.4353	0.3455	0.318E-02
0.200	0.6079	0.9345E-04	0.5887E-05	0.4307	0.3290	-0.892E-02
REIDELTA) = 27	.0.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0 - 650	1.6447	0.2355E-03	0.2217E-04	0.4975	0.3952	-0.185E-01
0.600	1.5428	0.2173E-03	0.9347E-05	0.4772		-0.798E-02
0.550	1.4350	0.1992E-03	-0.1268E-05	0.4569	0.3832	0.111E-02
0.500	1.3239	0.1811E-03	-0.8804E-05	0.4445	0.3776	0.815E-02
0.450 0.400	1.2100 1.0943	0.1630E-03 0.1449E-03	-0.1373E-04 -0.1597E-04	0.4297	0.3719 0.3655	0.136E-01 0.173E-01
0.350	0.9773	0.1268E-03	-0.1586E-04	0.4255	0.3581	0.190E-01
0.300	0.8593	0.1086E-03	-0.1336E-04	0.4223	0.3491	0.161E-01
0.250	0.7405	0.9057E-04	-0.8731E-05	0.4185	0.3376	0.136E-01
0.200	0.6204	0.7246E-04	-0.2137E-05	0.4148	0.3223	0.394E-02
RE(DELTA) = 38	20.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.600	1.5745	0.1570E-03	0.1790E-04	0.5216		-0.226E-01
0.550	1.4762	0.1439E-03	0.7120E-05	0.4862		-0.895E-02
0.500	1.3684	0.1308E-03	-0.2015E-05	0.4508	0.3653	0.253E-02
0.450	1.2542 1.1354	0.1178E-03	-0.8560E-05	0.4293	0.3587	0.111E-01
0.350	1.0137	0.1047E-03 0.9162E-04	-0.1277E-04 -0.1458E-04	0.4158 0.4073	0.3522 0.3452	0.178E-01 0.223E-01
0.300	0.8899	0.7853E-04	-0.1421F-04	0.4016	0.3371	0.245E-01
0.250	0.7647	0.6544E-04	-0.1167E-04	0.3973	0.3269	0.231E-01
0.200	0.6382	0.5235E-04	-0.7351E-05	0.3929	0.3133	0.170E-01
RE(DELTA) = 620	50.					
BETAR*DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.600	1.5481	0.9584E-04	0.1849E-04	0.7553		-0.565E-01
0.550	1.4772	0.8785E-04	0.1389E-04	0.6651		-0.391E-01
0.500	1.3972	0.7987E-04	0.7811E-05	0.5748		-0.201E-01
	1.3019	0.7188E-04	0.1246E-05	0.4865		-0.292E-02
0.450	1 101	A 444AF 4.	^ _ ^ ^ ^ ^ ~ _ ^ =			
0.400	1.1914	0.6389E-04	-0.4392E-05	0.4314	0.3357	0.995E-02
0.400 0.350	1.0696	0.5591E-04	-0.8354E-05	0.3990	0.3272	0.195E-01
0.400						

NA = 0.0750	XW/U = 1.4000	WT = 3.92	70				
PROFILE COEFFIC	JENTS -0.41623	1.40110	1.02120	-2.18560	-11.34300	26.14900 -19.8820	0 5.2730
REIDELTA) = 12	00.						
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U+	+2 AL	AI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5040	0.5416E-0		166E-06	0.5055	0.4321	-0.369E-03
0.600	1.4049	0.4999E-0		7499E-05	0.5015	0.4270	0.321E-02
0.550 0.500	1.3046	0-4583E-01		1283E-04	0.4975	0.4215 0.4153	0.587E-02 0.723E-02
0.450	1.1025	0.3750E-0		341E-04	0.4923	0.4081	0.719E-02
0.400	1.0008	0.3333E-0		083E-05	0.4899	0.3996	0.533E-02
0.350	0.8984	0.2916E-0	3 -0.1	916E-05	0.4863	0.3895	0.124E-02
0.300	0.7952	0.2499E-01	-	833E-05	0.4810		-0.568E-02
0.250 0.200	0.6905	0.2083E-03		1975E-04 3350E-04	0.4715	0.3620	-0.161E-01 -0.312E-01
0.150	0.5831 0.4699	0.1249E-0		858E-04	0.4536		-0.540E-01
REIDELTA) - 16	00.						
BETAR+DELTA/U	ALFAR*DELTA	BETAR NU/U	*2 ALF	U\UN#1A	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5497	0.4062E-0		062E-05	0.5009	0.4194	-0.549E-03
0.600	1.4485	0.3749E-0		437E-05	0.4907	0.4142	0.511E-02
0.550	1.3459	0.3437E-03		1737E-04	0.4804	0.4086	0.992E-02
0.500	1.2403 1.1348	0.3125E-03 0.2812E-03		293E-04	0.4737	0.4031 0.3965	0.131E-01 0.152E-01
0.400	1.0281	0.2500E-0		131E-04	0.4683	0.3890	0.155E-01
0.350	0.9213	0.2187E-0		706E-04	0.4655	0.3798	0.137E-01
0.300	0.8133	0.1874E-0		006E-04	0.4614	0.3688	0.913E-02
0.250	0.7046	0.1562E-0		124E-06	0.4554	0.3548	0.840E-03
0.200	0.5937	0.1250E-0		1049E-04	0.4426	2 2 2 1 1 2	-0.125E-01
0.150	0.4786	0.9374E-0	4 0.2	2306E-04	0.4298	0.3134	-0.331E-01
RE(DELTA) = 21	40.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR NU/U+	#2 ALF	AI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.650	1.5903	0.3037E-0		691E-05	0.5067		-0.592E-02
0.600	1.4903	0+2803E-0		1084E-05	0.4896	0.4026	0.216E-05
0.550 0.500	1.3860 1.2787	0.2570E-0: 0.2336E-0:		1271E-U4 1939E-04	0.4726	0.3968 0.3910	0.927E-02 0.149E-01
0.450	1.1695	0.2102E-0		313E-04	0.4547	0.3847	0.192E-01
0.400	1.0588	0.1869E-0		401E-04	0.4494	0.3777	0.218E-01
0.350	0.9470	0.1635E-0	-	228E-04	0.4452	0.3695	0.224E-01
0.300	0.8342	0.1401E-0	3 -0.1	794E-04	0.4415	0.3596	0.203E-01
0.250	0.7205	0.1168E-0		121E-04	0.4368	0.3469	0.145E-01
0.200	0.6053	0.9345E-0		429E-05	0.4281	0.3304	0.367E-02
0.150	0.4869	0.7009E-04	4 0.7	1943E-05	0.4194	0.3080	-0+146E-01
	60.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR +NU/U+4		AINU/U	GROUP VEL		CITMP
0.650 0.600	1•6132 1c5191	0 • 2355E-03 0 • 2173E-03		724E-04 999E-05	0.5434 0.5124		-0.160E-01
0.550	1.4178	0.1992E-03		652E-05	0.4815	0.3879	0.529E-02
0.500	1.3113	0.1811E-0		358E-04	0.4607	0.3813	0.131E-01
0.450	1.2007	0.1630E-03		902E-04	0.4461	0.3747	0.195E-01
0.400	1.0871	0.1449E-03		173E-04	0.4365	0.3679	0.240E-01
0.350 0.300	0.9716 0.8545	0.1268E-03		195E-04	0.4299	0.3602 0.3510	0.268E-01 0.270E-01
0.250	0.7363	0.9057E-04		967E-04	0.4205	0.3395	0.238E-01
0.200	0.6167	0.7246E-04		297E-05	0.4137	0.3243	0.153E-01
0.150	0.4946	0.5434E-04		173E-06	0.4070	0.3032	-0.493E-03
RE(DELTA) = 38	20.		•				
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U+		AI#NU/U	GROUP VEL		CITMP
0.600	1.5317	0.1570E-03		301E-04	0.5871		-0.190E-01
0.550	1.4435	0.1439E-03		979E-05	0.5362		-0.564E-02
0.500 0.450	1.3446 1.2371	0.1308E-03 0.1178E-03		581E-05 120E-04	0.4853	0.3718 0.3637	0.631E-02 0.156E-01
0.400	1.1233	0.1178E-03		578E-04	0.4304	0.3560	0.231E-01
0.350	1.0047	0.9162E-04		801E-04	0.4162	0.3483	0.285E-01
0.300	0.8830	0.7853E-04	4 -0 -1	798E-04	0.4070	0.3397	0.316E-01
0.250	0.7590	0.6544E-04		570E-04	0.4006	0.3293	0.316E-01
0.200	0.6334	0.5235E-04		128E-04	0.3945	0.3157	0.268E-01
0.150	0.5055	0.3926E-04	-0.4	947E-05	0.3883	0.2967	0.145E-01

NA = 0.0750	XW/U = 1.4000	WT = 3.9270				
REIDELTAL - 50	000•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.5951	0.1300E-03	0.1822E-04	0.7001	0.4074	-0.399E-01
0.600	1.5204	0.1199E-03	0-1354E-04	0.6551	0.3946	-0.2916-01
0.550	1.4424	0.1099E-03	0.79398-03	0.6101	0.3813	-0.167E-01
0.500	1.7561	0.1000E-03	0.1519E-05	0.5453	0.3687	-0.305E-02
0.450	1.2283	0.9000E-04	-0.4780E-05	0.4847	0.3576	0.920E-02
0.400	1.1492	0.7999E-04	-0.9979E-05	0.4417	0.3480	0.191E-01
0.350	1.0316	0.6999E-04	-0.1341E-04	0.4145	0.3392	0.269E-01
0.300	0.9078	0.5999E-04	-0.1483E-04	0.3974	0.3304	0.324E-01
0-250	0.7799	0.5000E-04	-0.1415E-04	0.3867	0.3205	0.351E-01
0.200	0.6492	0.3999E-04	-0.1142E-04	0.3789	0.3080	0.3336-01
0.150	0.5160	0.2999E-04	-0.6779E-05	0.3699	0.2906	0.243E-01
0.100	0.3788	0.1999E-04	-0.5599E-06	0.3608	0.2639	0.266E-02
REIDELTAI - 6	260.					
BETAR*DELTA/U	ALFAR#DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.5905	0.1038E-03	0.1397E-04	0.6443	0.4086	-0.354E-01
0.600	1.5119	0.9584E-04	0.1092E-04	0.6349	0.3968	-0.287E-C1
0.550	1-4330	0.8785E-04	0.7667E-05	0.6254	0.3838	-0.209E-01
0.500	1.3520	0.7987E-04	0.3801E-05	0.5927	0.3698	-0.104E-01
0.450	1.2640	0.7188E-04	-0.8146E-06	0.5338	0.3560	0.215E-02
0.400	1.1639	0.6389E-04	-0.5575E-05	0.4711	0.3436	0.141E-01
0.350	1.0510	0.5591E-04	-0.9440E-05	0.4246	0.3330	0.238E-01
0.300	0.9280	0.4792E-04	-0.1172E-04	0.3957	0.3232	0.312E-01
0.250	0.7981	0.3993E-04	-0.1214E-04	0.3783	0.3132	0.360E-01
0.200	0.6636	0.3194E-04	-0.1062E-04	0.3674	0.3013	0.368E-01
0.150	0.5259	0.2396E-04	-0.7204E-05	0.3582	0.2852	0.307E-01
0.100	0.3844	0.1597E-04	-0.2140E-05	0.3490	0.2601	0.121E-01

NA - 0.0750	XW/U = 1.4000	WT = 4.7124				
PROFILE COEFFIC	IENTS -0.26322	-0.01375 4.9	7600 -6.43120	-11.62500 3	0.85700 -23.83	900 6.35710
RE(DELTA) = 12	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.		CITMP
0.650	1.4763 1.3794	0.5416E-03 0.4999E-03	0.5666E-05 -0.3416E-05	0.5180 0.5120	0.4402 0.4349	-0.238E-02 0.152E-02
0.550	1.2810	0.4583E-03	-0.9499E-05	0.5060	0.4293	0.450E-02
0.500	1.1818	0.4166E-03	-0.1216E-04	0.5022	0.4230	0.620E-02
0.450	1.0819	0.3750E-03	-0.1166E-04	0.4990	0.4159	0.645E-02
0.400	0.9814	0.33338-03	-0.8093E-05	0.4955	0.4075	0.489E-02
0.350	0.8801	0.2915E-03	-0.1749E-05	0.4914	0.3976	0.117E-02
0.300	0.7779	0.2499E-03	0.7166E-05	0.4856	0.3856	-0.536E-02
0.250 0.200	0.6742 0.5678	0.2083E-03 0.1666E-03	0.1833E-04 0.3133E-04	0.4760 0.4583	0.3708 0.3522	-0.155E-01 -0.303E-01
0.150	0.4559	0.1249E-03	0.4566E-04	0.4407	0.3290	-0.529E-01
RE(DELTA) = 16	00•					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.5180	0.4062E-03	0.7249E-05	0.5170	0.4281	-0.395E-02
0.000	1.4196	0.3749E-03	-0.3749E-05	0.5045	0.4226	0.213E-02
0.550	1.3198	0.3437E-03	-0.1250E-04	0.4920	0.4167 0.4110	0.745E-02
0.500 0.450	1.2163 1.1128	0.3125E-03 0.2812E-03	-0.1737E-04 -0.1962E-04	0.4791	0.4043	0.110E-01 0.135E-01
0.400	1.0076	0.2500E-03	-0.1875E-04	0.4750	0.3969	0.141E-01
0.350	0.9023	0.2187E-03	-0.1525E-04	0.4714	0.3878	0.127E-01
0.300	0.7955	0.1874E-03	-0.9062E-05	0.4666	0.3771	0.850E-02
0.250	0.6880	0.1562E-03	-0.5625E-06	0.4598	0.3633	0.601E-03
0.200	0.5780	0 • 1250E-03	0.9999E-05	0.4469	0.3460	-0.123E-01
0.150	0.4642	0.9374E-04	0.2181E-04	0.4340	0.3231	-0.326E-01
RE(DELTA) . 21	40•					
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.		CITMP
0.650	1.5514	0 • 3037E-03	0.1551E-04	0.5367 0.5133	0.4189 0.4120	-0.114E-01
0.600 0.550	1.4563 1.3565	0 • 2803E-03 0 • 2570E-03	0.3271E-05 -0.7056E-05	0.4899	0.4054	-0.246E-02 0.545E-02
0.500	1.2521	0.2376E-03	-0.1439E-04	0.4746	0.3993	0.116E-01
0.450	1.1458	0.2102E-03	-0.1887E-04	0.4651	0.3927	0.164E-01
0.400	1.0371	0.1869E-03	-0.2056E-04	0.4576	0.3856	0.194E-01
0.350	0.9273	0.1635E-03	-0.1953E-04	0.4523	0.3774	0.203E-01
0.300	0.8160	0.1401E-03	-0.1598E-04	0.4472	0.3676	0.187E-01
0.250	0.7037	0.1168E-03	-0.9999E-05	0.4417 0.4362	0.3552 0.3392	0.134E-01 0.303E-02
0.200 RE(DELTA) = 27	0.5896	0.9345E-04	-0·1915E-05	0.4362	0.3372	0.3036-05
BCT40+0C1 T4 ///	ALFAR*DELTA	DETADAMII/IIAAS	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
BETAR+DELTA/U 0.650	1.5643	BETAR*NU/U**2 0.2355E-03	0.2282E-04	0.5979	0.4155	-0.240E-01
0.600	1.4781	0.2173E-03	0.1097E-04	0.5534	0.4059	-0-113E-01
0.550	1.3832	0.1992E-03	0.1086E-06	0.5090	0.3976	-0.110E-03
0.500	1.2814	0.1811E-03	-0.8333E-05	0.4798	0.3901	0.861E-02
0.450	1.1747	0.1630E-03	-0.1442E-04	0.4603	0.3830	0.155E-01
0.400 0.350	1.0641 0.9511	0.1449E-03 0.1268E-03	-0.1786E-04 -0.1880E-04	0.4472	0.3759 0.3679	0.207E-01 0.239E-01
0.300	0.8359	0.1086E-03	-0.1724E-04	0.4314	0.3588	0.245E-01
0.25C	0.7193	0.9057E-04	-0.1336E-04	0.4257	0.3475	0.218E-01
0.200	0.6010	0.7246E-04	-0.7246E-05	0.4181	0.3327	0.139E-01
0.150	0.4801	0.5434E-04	0.6159E-06	0.4104	0.3124	-0.145E-02
REIDELTA) = 38	20•					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI*NU/U	GROUP VEL.		CITMP
0.600	1.4795	0.1570E-03	0.1672E-04	0.6472	0.4055	-0.279E-01
0.550 0.500	1.3988 1.3078	0.1439E-03 0.1308E-03	0.8717E-05 0.3403E-06	0.5845 0.5217	0.3931 0.3823	-0.139E-01 -0.518E-03
0.450	1.2066	0.1178E-03	-0.6623E-05	0.4766	0.372	0.999E-02
0.400	1.0977	0.1047E-03	-0.1178E-04	0.4467	0.3643	0.183E-01
0.350	0.9826	0.9162E-04	-0.1465E-04	0.4276	0.3561	0.243E-01
0.300	0.8638	0.7853E-04	-0.1531E-04	0.4153	0.3473	0.281E-01
0.250	0.7418	0.6544E-04	-0.1366E-04	0.4065	0.3370	0.286E-01
0.200	0.6178 0.4912	0.5235E-04 0.3926E-04	-0.9895E-05 -0.4162E-05	0.3990 0.3874	0.3237 0.3053	0.244E-01 0.125E-J1
0.150 0.100	0.3596	0.3928E-04	0.2905E-05	0.3556	0.2780	-0.109E-01
0.050	0.2087	0.1308E-04	0.1018E-04	0.3238	0.2395	-0.603E-01
	60 •					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.450	1.2213	0.7188E-04	0.2252E-05	0.5696	0.3684	-0.657E-02
0.400	1.1296	0.6389E-04	-0.2156E-05	0.5095	0.3541	0.609E-02
0.350	1.0241	U.5591E-04	-0.6309E-05	0.4495	0.3417	0.173E-01
03,300	0.9065	0+4792E-04	-0.9073E-05	0.4108	0.3309	0.257E-01 0.313E-01
0+250 0+200	0.7804 0.6482	0 • 3993E-04 0 • 3194E-04	-0.1009E-04 -0.9105E-05	0.3873 0.3730	0.3203 0.3085	0.328E-01
0.150	0.5123	0.2396E-04	-0.6214E-05	0.3617	0.2927	0.274E-01
0.100	0.3717	0.1597E-04	-0.1629E-05	0.3403	0.2690	0.933E-02
0.050	0.2179	0.7987E-05	0.3642E-05	0.3189	0.2294	-0.333E-01

NA = 0.0750	XW/U = 1.4000	WT = 5.4978				
PROFILE COEFFIC	IENTS 0.04787	-1.42000 7.1	7780 -6.98060	-14.60200	35.54600 -26.65	7.09990
RE(DELTA) = 21	140.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5187	0.3037E-03	0.3542E-04	0.5358	0.4279	-0.267E-01
0.600	1.4238	0.2803E-03	0.2144E-04	0.5169	0.4214	-0.166E-01
0.550	1.3252	0.2570E-03	0.1046E-04	0.4981	0.4150	-0.842E-02
0.500	1.2230	0.2336E-03	0.2196E-05	0.4829	0.4088	-0.185E-02
0.450	1.1181	0.2102E-03	-0.3130E-05	0.4724	0.4024	0.283E-02
0.400	1.0113	0.1869E-03	-0.5841E-05	0.4647	0.3955	0.574E-02
0.350	0,9029	0.1635E-03	-0.5887E-05	0.4585	0.3876	0.639E-02
0.300	0.7932	0.1401E-03	-0.3551E-05	0.4531	0.3782	0.434E-02
0.250	0.5822	0.11685-03	0.1028E-05	0.4462	0.3664	-0.143E-02
0.200	0.5691	0.9343E-04	0.7476E-05	0.4394	0.3514	-0.123E-01
RE(DELTA) = 27	60.					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.650	1.5310	0.2355E-03	0.4188E-04	0.6213	0.4245	-0.469E-01
0.600	1.4480	0.2173E-03	0.2775E-04	0.5694	0.4143	-0.301E-01
0.550	1.3548	0.1992E-03	0.1554E-04	0.5174	0.4059	-0.163E-01
0.500	1.2545	0.1811E-03	0.5833E-05	0.4857	0.3985	-0.623E-02
0.450	1.1488	0.1630E-03	-0.1231E-05	0.4658	0.3917	0.137E-02
0.400	1.0398	0.14495-03	-0.5615E-05	0.4529	0.3846	0.675E-02
0.350	0.9260	0.1268E-03	-0.746:05	0.4436	0.3771	0.984E-02
0.300	0.8144	0.1086E-03	-0.6854E-05	0.4367	0.3683	0.101E-01
0.250	0.6990	0.9057E-04	-0.4094E-05	0.4299	0.3576	0.695E-02
0.200	0.5818	0.7246E-04	0.7246E-06	0.4209	0.3437	-0.144E-02
0.150	0.4614	0.5434E-04	0.7028E-05	0.4119	0.3250	-0.173E-01
RE(DELTA) = 38	20.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.650	1.5021	0.1701E-03	0.4023E-04	0.8945	0.4327	-0.915E-01
0.600	1.4416	0.1570F-03	0.3324E-04	0.7683	0.4162	-0.676E-01
0.550	1.3712	0.1439E-	0.2306E-04	0.6421	0.4011	-0.412E-01
0.500	1.2841	0.1308E-	0.1293E-04	0.5390	0.3893	-0.207E-01
0.450	1.1849	0.11785	0.4319E-05	0.4822	0.3797	-0.671E-02
0.400	1.0763	0.1047E	-0.1963E-03	0.4495	0.3716	0.313E-02
0.350	0.9623	0.91626 .	-0.5759E-05	0.4306	0.3637	0.984E-02
0.300	0.8440	0.7853F 4	-0.7198E-05	0.4186	0.3554	0.136E-01
0.250	0.7234	0.65441 4	-0.6387E-05	0.4102	0.3455	0.138E-01
0.200	0.6002	0.5235E- 4	-0.3560E-05	0.4018	0.3332	0.910E-02
0.150	0.4745	0.3926E-	0.1047E-05	0.3885	0.3161	-0.327E-02
0.100	0.3427	0.2617E-04	0.6649E-05	0.3753	0.2918	-0.278E-01
RE(DELTA) = 62	60.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	WAVE VEL	CITMP
0.550	1.3313	0.8785E-04	0.1857E-04	0.8064	0.4131	-0.704E-01
0.500	1.2621	0.7987E-04	0.1659E-04	0.7452	0.3961	-0.613E-01
0.450	1.1970	0.7188E-04	0.1228E-04	0.6841	0.3759	-0.439E-01
0.400	1.1137	0.6389E-04	0.5958E-05	0.5437	0.3591	-0.182E-01
0.350	1.0111	C.5591E-04	0.2875E-06	0.4546	0.3461	-0.809E-03
0.300	C.8926	0.4792E-04	-0.3482E-05	0.4082	0.3360	0.997E-02
0.250	0.7659	0.3993E-04	-0.5175E-05	0.3859	0.3264	0.163E-01
0.200	0.6334	0.3194E-04	-0.4824E-05	0.3735	0.3157	0.178E-01
0.150	0.4982	0.2396E-04	-0.2603E-05	0.3624	0.3010	0-118E-01
0.100	0.3574	C.1597E-04	0.1102E-05	0.3513	0.2797	-0.678E-02

NA - 0.0750	XW/U = 2.5000	WT = 0.0000				
PROFILE COEFFI	CIENTS 0.47385	-3.37890 11.6	9900 -16.79400	4.92620	11.00000 -10.93	200 3.02440
RE(DELTA) - 3	700.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.550	1.3601	0.1486E-03	0.4621E-04	0.5423	0.4043	-0.681E-01
0.500	1.2657	0.1351E-03	0.3062E-04	0.5029	0.3950	-0.450E-01
0.450	1.1607	0.1216E-03	0.1943E-04	0.4635	0.3876	-0.287E-01
0.400	1.0498	0.1081E-03	0.1167E-04	0.4422	0.3510	-0.181E-01
0.350	0.9345	0.94595-04	0.6864E-05	0.4299	0.3745	-0.116E-01
0.300	0.8172	0.8108E-04	0.4378E-05	0.4219	0.3671	-0.836E-02
0.250	0.6975	0.6756E-04	0.4243E-05	0.4147	0.3584	-0.933E-02
0.200	0.5761	0.5405E-04	0.5783E-05	0.4065	0.3471	-0.151E-01
0.150	0.4515	0.4054E-04	0.8945E-05	0.3983	0.3322	-0.292E-01
RE(DELTA) = 5	110.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.2642	0.1076E-03	0.5029E-04	-2.4537	0.4350	0.498E 00
0.500	1.2840	0.9784E-04	0.4189E-04	-0.9570	0.3894	0.159E 00
0.450	1.2022	0.8806E-04	0.2510E-04	0.5397	0.3743	-0.575E-01
0.400	1.0954	0.7827E-04	0.1459E-04	0.4454	0.3651	-0.303E-01
0.350	0.9771	0.6849E-04	0.7612E-05	0.4150	0.3582	-0.165E-01
0.300	0.8544	0.5870E-04	0.3776E-05	0.4015	0.3511	-0.907E-02
0.250	0.7280	0.48925-04	0.1859E-05	0.3940	0.3434	-0.514E-02
0.200	0.6006	0.3913E-04	0.2309E-05	0.3851	0.3330	-0.756E-02
0.150	0.4683	0.2935E-04	0.4090E-05	0.3738	0.3203	-0.166E-01
0.100	0.3331	0.1956E-04	0.7103E-05	0.3625	0.3002	-0.395E-01
RE(DELTA) = 70	000•					
BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.300	0.8941	0.4285E-04	0.4557E-05	0.3900	0.3355	-0.139E-01
0.250	0.7633	0.3571E-04	0 - 1671E-05	0.3768	0.3275	-0.577E-02
0.200	0.6287	0.2857E-04	0.8714E-06	0.3636	0.3181	-0.352E-02
0.150	0.4882	0.2142E-04	0.1657E-05	0.3534	0.3072	-0.839E-02
	0.3458	0.1428E-04	0.3857E-05	0.3433	0.2891	-0.268E-01
0.300 0.250 0.270	0.8941 0.7633 0.6287 0.4882	0.4285E-04 0.3571E-04 0.2857E-04 0.2142E-04	0.4557E-05 0.1671E-05 0.6714E-06 0.1657E-05	0.3900 0.3768 0.3636 0.3534	0.3355 0.3275 0.3181 0.3072	-0.139E- -0.577E- -0.352E- -0.839E-

78700 -18.69600 4.39910
WAVE VEL. CITMP
0.3725 -0.310E-01
0.3685 -0.218E-01
0.3649 -0.144E-01
0.3602 -0.940E-02
0.3549 -0.6546-02
0.3479 -0.6516-02
0.3392 -0.101E-01
0.3272 -0.186E-01
0.3111 -0.351E-01
WAVE VEL. CITMP
0.3556 -0.4675-01
0.3514 -0.3136-01
0.3473 -0.1956-01
0.3430 -0.106E-01
0.3382 -0.462E-02
0.3323 -0.1296-02
0.3247 -0.165E-02
0.3143 -0.689E-02
0.2995 -0.199E-01

CITMP 0.143E-01 0.120E-01 0.101E-01 0.905E-02 0.112E-01 0.142E-01 0.142E-01 0.142E-01 0.142E-01	0.4428 -0	VEL.	-33.21300	14.38400	-7.13720	3.37670	-0.49097	PROFILE COEFFICIENT RE(DELTA) = 900.
0.143E-01 0.120E-01 0.101E-01 0.93E-02 0.943E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01	0.4474 -0		GROUP VI					REIDELTA) - 900.
0.143E-01 0.120E-01 0.101E-01 0.93E-02 0.943E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01	0.4474 -0		GROUP VE					
0.120E-01 0.101E-01 0.93E-02 0.945E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01	0.4428 -0	1235		FAI-NU/U		BETAR-NU/	AR-DELTA	
0.101E-01 0.73E-02 0.965E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01			0.523	3088E-04		0.8333E	1.6761	0.750
0.9)6E-02 0.963E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01 0.357E-01		7	0.519	4055E-04		0.77776	1.5805	0.700
0.965E-02 0.112E-01 0.142E-01 0.190E-01 0.260E-01 0.357E-01		-	0.5151	3255E-04		0.7222E	1.4837	0.650
0-112E-01 0-142E-01 0-190E-01 0-260E-01 0-357E-01		1.00	0.513	2811E-04 2688E-04		0.61115	1.3867	0.550
0.142E-01 0.190E-01 0.260E-01 0.357E-01			0.5120	20998-04		0.5555	1.1919	0.500
0.190E-01 0.260E-01 0.357E-01			0.5096	1380E-04		0.5000E	1.0940	0.450
0.260E-01 0.357E-01			0.504	4155E-04		0.4444E	0.9957	0.400
0.357E-01			0.500	9177E-04		0.3000E	0.0965	0.350
0.491E-01		917	0.491	6422E-04		0.33336	0.7960	0.300
	0.3606 -0		0.482	7844E-04		0.2777E	0.6931	0.250
								RE(DELTA) - 1100.
CITHP	MAVE VEL.	VEL.	GROUP VI	FAIONU/U	U2 A	BETAR-NU/	AR-DELTA	BETAR+DELTA/U AL
SO-3464.0			0.5036	1245E-04		0.59095	1.5182	0.650
0-2576-02	0.4230 -0	997	0.4991	66362-05	-03 0	0.5454E	1.4182	0.600
0-135E-02	0.4172 -0	958	0.4950	3272E-05		0.4999E	1.3181	0.550
0-182E-02	0.4110 -0	933	0.4931	4090E-05	-03 0	0.4545E	1.2165	0.500
0.3476-02	0.4034 -0	900	0.490	7181E-05	-03 0	3.4090€	1.1154	0.450
								REIDELTA) - 1400.
CITHP	MAVE VEL.	VEL.	GROUP VE	FAI+NU/U	U2 A	BETAR-NU/	AR-DELTA	BETAR+DELTA/U AL
0.6346-03	7.1		0.4026	1920E-05		0.4642E	1.5619	3.650
20-3695-02		796	0.479	585 7E-05		0.42852	1.4502	0.600
0-320E-02	0.4063 0	766	0.4760	1071E-04		0.39296	1.3534	0.550
10-3899·C	0.4005 0	750	0.4750	1242E-04	-03 -0	0.35716	1.2484	0.500
30-3464.0	0.3937 0	734	0.4734	11285-04		0.3214E	1.1429	0.450
20-3864.0			0.472	7357E-05		0.2857	1.0372	0.400
. 655E-03			0.469	92856-06		0.2499E	0.9311	0.390
0.050E-05			0.445	7057E-05		0.21426	0.0243	0.300
0-166E-01			0.456	10445-04		0.1705E	0.7162	0.250
0.319E-01 0.339E-01			0.4390	3100E-04		0.14208	0.6054	0.200
1.3376-01	0.3069 -0	.220	0.4220	4450E-04	-05 0	3.1071E	0.4867	0.150
								RE(DELTA) - 2000.
CITHP	MAVE VEL.		GROUP VE	PATONUZU		BETAR-NU/	AR-DELTA	
3-14-E-05			0.468	2599E-05		0.3250E	1.6268	0.650
-4956-05			0.4611	7499E-05		0.29996	1.5197	0.600
-9696-02			0.4931	19056-04		0.27496	1.4100	0.550
0.135E-01			0.4500	1954E-04 2130E-04		0.2500E	1.2994	0.500 0.450
0.168E-01			0.4446	20348-04		0.200CE	1.0757	0.400
0.199E-01			0.4428	1694E-04		0.17498	0.9630	0.350
0-115E-01		_	0.440	1114E-04		0.14996	C.8499	0.300
1905-02			0.4351	13006-05		0.1250E	0.7360	0.250
10-3600°C			0.4311	4399E-05		0.1000€	0-6205	0.200
								RE(DELTA) - 3700.
CITHP	MAVE VEL.	VEL .	GROUP VE	PAI ONU/U	J++2 AI	BETAR -NU/	AR+DELTA	METARODELTA/U AL
0.924E-02			0.4845	24 %-05		0.16215	1.6060	0.400
1798-02		•••	0614	1540E-05		0.1484E	1.5014	0.550
0-111E-01			0.4351	9547E-05		0.13516	1.3890	0.500
0.104E-01			0.4204	1508E-04		0.1214E	1.2719	0.450
10-31-5.0	0.3474 0	100	0.4100	10326-04	-03 -0	0.1081E	1.1911	0.400
10-3412-01	0.3404 0	034	0.4034	1921E-04	-04 -0	0.9459E	1.0280	0.350
10-3642.0	0.3321 0	990	0.3990	1797E-04	-04 -0	0.8109E	0.9032	0.300
10-3475.0	0.3215 0	957	0.3957	1456E-04		0.6796E	0.7774	0.290
10-3005-01	0.3974 0	1924	0.3924	92708-05	-04 -0	0.5405E	0.5505	0.200
								RE(DELTA) . 5110.
CITHP	HAVE VEL.		GROUP VE	FAI •NU/U	N5 V	BETAR PNU/	ARODELTA	SETAR-DELTA/U AL
0.106E-01			0.5136	6163E-05		0.1076E	1.5231	0.550
20-3462.0				14095-05		0.97842	1.4227	0.500
0-1356-01			0.4314	7886E-05	-	0.000E	1.3109	0.490
0.2:76-01			0.404	1240E-04	-	0.7827E	1.1906	0.400
10-3698				1306E-04		0.68492	1.0648	0.350
10-3525								
10-3306-01								
0.305E-01								
0.1998-01	C.7907 0	***	C.3661	7074E-03	-04 -0.	0.29356	0.5343	0.150
	0.3404 0.3321 0.3219 0.3219 0.3974 0.3914 0.3514 0.3432 0.3339 0.3287 0.3287 0.3207 0.3112 0.3112	034 1990 1997 1924 1338 1726 1314 106! 1916 1976 1777	0.4034 0.3990 0.3951 0.3924 GROUP VE 0.9134 0.4726 0.4314	1921E-04 1797E-04 1456E-04 9270E-05 PAI-NU/U 6183E-05 1409E-05 1806E-05	-04 -0 -04 -0 -04 -0 -04 -0 -05 -0 -04 -0 -04 -0 -04 -0 -04 -0 -04 -0 -04 -0 -04 -0	0.9459E 0.8109E 0.6756E 0.5409E BETAR-NU/ 0.1076E 0.9784E 0.8806E 0.7827E	1.0280 0.9032 0.7774 0.9909 AR-DELTA 1.5231 1.4227 1.3109 1.1906	0.390 0.300 0.290 0.200 REIDELTA) = 5110+ BETAR*DELTA/U AL 0.590 0.590 0.490 0.400

MA - 0.0750	XW/U = 2.5000	WT - 3.1	270				
PROFILE COEFFIC	IENTS -0.58911	2.51920	-1.45740	1.98070	-20.58100	40.54400 -30.7270	0 8.32760
REIDELTA) - 0	00.						
DETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/L	1002 AL	FAI -NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.5674	0.8750E-	-03 0.	1625E-04	0.5312		-0.440E-02
0.450	1.4726	0.8125E-		9000E-05	0.5268		-0.257E-02
0.600	1.9776	0.7499E-		5625E-05	0.5224		-0.170E-02
0.550	1.2012	0.68746-		6624E-05	0.5200		-0.215E-02
0.450	1.1053	0.6250E- 0.5625E-		1049E-04 1787E-04	0.5194	*	-0.368E-02 -0.681E-02
REIDELTAL - 9	00.						
BETAR-DELTA/U	ALFAR DELTA	BETAR-NU/L	J2 AL	FAI -NU/U	COUP VEL	. WAVE VEL.	CITHP
0.700	1.5063	0.7777E-		29996-05	.5248	0.4412	-0.893E-03
0.650	1.4906	0.7222E-	-03 -0.	4111E-05	0.5189	0.4360	0.128E-02
0.600	1.3936	0.6666E-	-03 -0.	6272E-05	0.5130	0.4305	0.272E-02
0.550	1.2957	0.6111E-	-03 -0.	0000E-03	0.5107	0.4244	Q. 315E-02
0.500	1.1978	0.5555		5999E-05	0.5096	0.4174	0.229E-02
9.450	1.0995	0.5000E-		00 30000	0.5081	0.4092	0.000E 00
0.400	1.0010	0.444E-	-03 0.	9111E-05	0.5065	0.3996	-0.414E-02
REIDELTA) - 14							
RETAR+DELTA/U	ALFAR+DELTA	BETARONUZ		FAI -NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.700	1.6624	0.4999E-	-03 -0.	8337E-05	0.4947	0.4210	0.348E-02
0.450	1.5609	0.4642E-	-03 -0.	1949E-04	0.4892	0.4164	0.855E-02
0.400	1.4580	0.42856-	-03 -0.	2742E-04	0.4838	0.4115	0.127E-01
0.350	1.3942	0.39286-	-03 -0.	3200E-04	0.4793	0.4061	0.158E-01
0.500	1.2494	0.35716-		3364E-04	0.4761	0.4001	0.179E-01
0.490	1.1442	0.35146-		3221E-04	0.4739	0.3932	0.186E-01
0.400	1.0304	0.20578-		2785E-04	0.4719	0.3652	0.177E-01
0.350	0.9323	0.24996-		2064E-04	0.4697	0.3754	0.145E-01
0.300	0.8255	0.2142E-		10696-04	0.4659	0.3634	0.858E-02
0.290	0.7177	0.17096-	_	1142E-05	0.4591		-0.102E-02
0.200	0.4077	0,1420E-		1507E-04	0.4446		-0-154E-01
0.190	0.4927	0.10716-	-03 0.	30495-04	0.4301	0.3044	-0.372E-01
REIDELTAI - 20	00.						
BETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/U	1002 AL	FAI ONU/U	GROUP YEL		CITHP
0.750	1.4125	0.3750E-	03 0.	1780E-04	0.3244	0.4137	-0.103E-01
3.700	1.7150	0.3499E-	03 0.	2250E-05	0.5045	0.4079	-0.132E-02
0.650	1.6150	0.32506-		1075E-04	0.4886	0.4024	0-650E-02
0.600	1.9111	0.2999E-		2094E-04	0.4744	0.3970	0.131E-01
0.990	1.4042	0.2749E-		2814E-04	0.4632	0.3916	0.185E-01
0.900	1.2952	0.5300E-		40-30626	0.4558	0.3860	0.531E-01
0.450	1.1040	0.2349E-		346 SE-04	0.4500	0.3798	0.263E-01
0.400	1.0734	0-2000E-		3370E-04	0.4472	0.3726	0.2806-01
0.350	0.9612	0.1749E-		29998-04	0.4444	0.3641	0.277E-01
0.300	0.8484	0.1499E- 0.1250E-		2379E-04 1524E-04	0.4374	0.3536 0.3402	0.247E-01 0.181E-01
0.200	0.4198	0.10005-		4649E-05	0.4288	0.3226	0.6436-02
0.190	0.5016	3.7499E-		7990E-05	0.4203		-0.126E-01
		J 6 7 4 4 4 C -	• •	13306-03	0.4207	0.2770	-011105-01
REIDELTA) - 37							
BETAR-DELTA/U	ALFAR+DELTA	BETAR-NU/U	_	PAI-NU/U	GROUP VEL		CITMP
0.600	1.5492	0-14516-		2702E-07	0.5309		-0.338E-04
0.950	1.4725	0.1406E-		001E-05	0.4966	0.3735	0.100E-01
0.900	1.3675	0.13516-		1932E-04	0.4623	0.3656	0-191E-01
0.450	1.2560	0-12160-		2059E-04	0.4389	0.3582	0.266E-01
0.400	1.1396	0.1001E-		230 35-04	0.4227	0.3510	0.327E-01
0.350	1.0194	0.94596-		240 3E-04	0.4115	0.3433	0.371E-31
0.300	0.0966	0.8108E-		23646-04	0.4043	0.3345	0.394E-01
0.250	0.7721	0.67968-		20246-04	0.3992	0.3237	0.387E-01
0.200 ^ 150	0.6461	0.5405E-		1475E-04 7351E-05	0.3937	0.30 95 0.28 95	0.332E-01 0.203E-01
REIDSLTAT - 51	19.						
BETAR-DELTA/U	ALFARODEL TA	BETARONU/U	++2 ALI	FAI-NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.550	1.4798	0.1076E-		1076E-01	0.5529	0.3716	0.2058-02
0.500	1.3061	0.97845-		45 7E-05	0.5085	0.3607	0.1216-01
0.450	1.2027	0.58045-		181E-04	0.4441	0.3500	0-2185-01
0.400	1.1703	0.78275-		1990E-04	0.4309	0.3417	0.299E-01
9.390	1.0504	0.48495-		843E-04	0.4075	0.3332	0.365E-01
0.300	0.9246	0.58706-		904E-04	0.3923	0.3243	0.412E-01
0.250	0.7955	0.4092E-		771E-04	0.3627	0.3142	0.4398-01
0.200	0.6635	0.39136-		430E-04	0.3756	0.3014	0.416E-01
0.190	0.5293	0.2935E-		150E-05	0.3674	0.2033	0. 324E-01
0.100	0.3913	0.1956E-		340E-05	0.3592	0.2555	0.110E-01
				-			

NA = 0.0750	XW/U = 2.5000	WT = 4.7124				
PROFILE COEFFIC	IENTS -0.32731	-0.00438 7.	09600 -13.69400	-2.02140	25.63400 -23.36	000 6.69400
RE(DELTA) = 8						
BETAR+DELTA/U	ALFAR+DELTA	HETAR-NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.650	1.4353	0.8125E-03	0.1062E-04	0.5389	0.4528	-0.319E-02
0.600	1.3419	0.7499E-03	0.6875E-05	0.5347	0.4471	-0.219E-02
0.550	1.2483	0.6874E-03	0.6250E-05	0.5305	0.4405	-0.212E-02
0.500 0.450	1.1534 1.0586	0.6250E-03	0.9375E-05 0.1550E-04	0.5271	0.4335 0.4250	-0.342E-02 -0.613E-02
	1.0300	0476255-03	0113302-04	0.5251	0.4250	-010196-02
				40010 1151		4154B
BETAR+DELTA/U 0.650	ALFAR+DELTA 1.4520	BETAR*NU/U**2	ALFAI4NU/U -0.4444E-06	GROUP VEL 0.5301		CITMP
0.600	1.3570	0.7222E-03 0.6666E-03	-0.5333E-05	0.5257	0.4476 0.4421	0.146E-03 0.185E-02
0.550	1.2618	0.6111E-03	-0.6888E-05	0.5214	0.4358	0.256E-02
0.500	1.1652	0.5555E-03	-0.5222E-05	0.5161	0.4291	0.208E-02
0.450	1.0688	0.5000E-03	-0.2222E-06	0.5148	0.4210	0.963E-04
RE(DELTA) = 10	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
3.650	1.4659	0.650CE-03	-0. 200E-05	0.5300	0.4434	0.260E-02
0.600	1.3709	0.5999E-03	-0.1259E-04	0.5219	0.4376	0.479E-02
0.550	1.2743	0.54998-03	-0.1530E-04	0.5139	0.4316	0.617E-02
0.500	1.1763	0.5000E-03	-0-1460E-04	0.5102	0.4250	0.633E-02
0.450	1.0783	0.4499E-03	-0.1079E-04	0.5083	0.4173	0.509E-02
0.400 0.350	0.9796 0.8805	0.4000E-03 0.3499E-03	-0.3900E-05 0.5699E-05	0.5055	0.4083 0.3975	0.201E-02 -0.325E-02
RE(DELTA) = 14						
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5159	0.4642E-03	-0.1092E-04	0.5057	0.4287	0.510E-02
0.600	1.4166	0.4285E-03	-0.1964E-04	0.4992	0.4235	0.969E-02
0.550	1.3156	0.3928E-03	-0.2549E-04	0.4928	0.4180	0.133E-01
0.500	1.2137	0.3571E-03	-0.2807E-04	0.4885	0.4119	0.158E-01
0.450	1.1109	0.3214E-03	-0.2764E-04	0.4847	0.4050	0.168E-01
0.400	1.0074	0.2857E-03	-0.2435E-04	0.4814	0.3970	0.162E-01
0.350	0.9032	0.2499E-03	-0.1828E-04	0.4780	0.3875	0.135E-01
0.300	0.7982	0.2142E-03	-0.9642E-05	0.4735	0.3758	0.800E-02
0.250	0.6920	0.1785E-03	0.1285E-05	0.4658	0.3612	-0.121E-02
0.200 0.150	0.5835 0.4702	0.1428E-03 0.1071E-03	0.1414E-04 0.2828E-04	0.4510	0.3427 0.3190	-0.153E-01 -0.367E-01
	000.		3.25,00		0.50.0	
		22.29	7. 2			
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2		GROUP VEL		CITMP
0.650	1.5613	0.3250E-03	-0.1650E-05	0.5131	0.4163	0.108E-02
0.600 0.550	1.4626 1.3606	0.2999E-03 0.2749E-03	-0.1230E-04 -0.2029E-04	0.4983	0.4102 0.4042	0.838E-02 0.144E-01
0.500	1.2558	0.2500E-03	-0.2580E-04	0.4726	0.3981	0.194E-01
0.450	1.1490	0.2249E-03	-0.2849E-Q4	0.4647	0.3916	0.230E-01
0.400	1.0406	0.2000E-03	-0.2854E-04	0.4589	0.3843	0.251E-0)
0.350	0.5511	0.1749E-03	-0.2585E-04	0.4543	0.3758	0.252E-01
0.300	C+9205	0.1499E-03	-0.2074E-04	0.4498	0.3656	0.227E-01
0.250	J.7088	0.125CE-03	-0.1324E-04	0.4446	0.3527	0.166E-01
0.200	3.5956	0.1000E-03	-0.3699E-05	0.4350	0.3357	0.540E-02
0.150	0.4789	0.7499E-04	0.7499E-05	0.4254	0.3132	-0.133E-01
RE(DELTA) = 37	700.					
BETAR+DELTA/U	ALFAR+DELTA	BETARENU/U=#2		GROUP VEL		CITMP
0.600	1.5006	0.1621E-03	0.5891E-05	0.5877	0.3998	-0.853E-02
0.550	1.4125	0.1486E-03	-0.1459E-05	0.5436	0.3893	0.207E-02
0.500	1.3163	0.1351E-03	-0.8621E-05	0.4995	0.3798	0.121E-01
0.450	1.2120	0.1216E-03	-0.1429E-04	0.4661	0.3712 0.3631	0.203E-01
0.400	1.1016 0.9861	0.1081E-03 0.9459E-04	-0.1821E-04 -0.2002E-04	0.4428	0.3549	0.270E-01 0.320E-01
0.300	0.8672	0.8108E-04	-0.1967E-04	0.4160	0.3459	0.349E-01
0.250	0.7457	0.6756E-04	-0.1716E-04	0.4080	0.3352	0.347E-01
0.200	0.6221	0.5405E-04	-0.1254E-04	0.4006	0.3214	0.298E-01
0.150	0.4961	0.4054E-04	-0.6027E-05	0.3933	0.3023	0-176E-01
REIDELTA) = 51	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.4105	0.10786-03	0.2901E-05	0.6065	0.3899	-0.636E-02
0.500	1.3243	0.9803E-04	-0.1490E-05	0.5571	0.3775	0.3196-02
0.450	1.2307	0.8823E-04	-0.6509E-05	0.5077	0.3656	0.136E-01
0.400	1.1268	0.7843E-04	-0.1080E-04	0.4624	0.3549	0.226E-01
0.350	1.0141	0.6862E-04	-0.1390E-04	0.4296	0.3451	0.300E-01
0.300	0.8938	0.5882E-04	-0.1523E-04	0.4076	0.3356	0.354E-01
0.250	0.7687	0.4901E-04	-0 - 1466E - 04	0.3936	0.3252	0.383E-01
0.200	0.6397	0.39216-04	-0.1209E-04	0.3833	0.3126	0.369E-01
0.150	0.5078	0.2941E-04	-0.7647E-05	0.3728	0.2953	0.286E-01
0.100	0.3714	0.1960F-04	-0.1588E-05	0.3623	0.2692	0.790E-02

NA = 0.0750	XW/U = 2.5000	WT = 5.49	78			
PROFILE COEFF	ICIENTS 0.13095	-2.52570 1	2.66000 -21.51900	8.52470	13.38600 -15.12	100 4.48040
RE(DELTA) -	1000•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U+	2 ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.2179	0.5499E-0	3 0.2090E-04	0.5312	0.4515	-0.911E-02
0.500	1.1228	0.5000E-0	0 . 1970E-04	0.5274	0.4453	-0.925E-02
0.450	1.0283	0.4499E-0	3 0.2069E-04	0.5236	0.4376	-0.105E-01
0.400	0.9318	0.4000E-0	3 0.2500E-04	0.5184	0.4292	-0.139E-01
0.350	0.8354	0.3499E-0	3 0.3129E-04	0.5134	0.4189	-0.192E-01
0.300	0.7370	0 • 2999E-0	3 0.4020E-04	0.5083	0.4070	-0.277E-01
RE(DELTA) =	1700.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U+	+2 ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550	1.2830	0.3235E-0	3 0.4705E-05	0.5046	0.4286	-0.314E-02
0.500	1.1835	0.2941E-0	3 -0.1058E-05	0.4968	0.4224	0.755E-03
0.450	1.0817	0.2647E-0	3 -0.4470E-05	0.4890	0.4160	0.343E-02
0.400	0.9790	0.2352E-0	3 -0.5176E-05	0.4833	0.4085	0.434E-02
0.350	0.8748	0.2058E-0	3 -0.3294E-05	0.4776	0.4000	0.305E-02
REIDELTA) =	3700.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U+	2 ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.4234	0.1621E-0	0 . 2786E-04	0.7128	0.4215	-0.516E-01
0.550	1.3486	0.1486E-0	3 0.1916E-04	0.6304	0.4078	-0.331E-01
0.500	1.2642	0.1351E-0	0.1008E-04	0.5479	0.3955	-0.161E-01
0.450	1.1649	0.1216E-0	0.2351E-05	0.4885	0.3862	-0.364E-02
0.400	1.0593	0.1081E-0	-0.3324E-05	0.4589	0.3776	0.532E-02
0.350	0.9468	0.9459E-0	-0.6837E-05	0.4394	0.3696	0.117E-01
0.300	0.8317	0.8108E-0	-0.7891E-05	0.4267	0.3607	0-149E-01
0.250	0.7124	0.6756E-0	-0.6972E-05	0.4168	0.3509	0.150E-01
0.200	0.5918	0.5405E-0	-0.3864E-05	0.4074	0.3379	0.984E-02
0.150	0.4669	0.4054E-0	0.7837E-06	0.3980	0.3212	-0.247E-02
RE(DELTA) =	5110.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++	2 ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.600	1.3973	0.1174E-01		0.7769	0.4293	-0.622E-01
0.550	1.3282	0.1076E-03		0.7299	0.4140	-0.538E-01
0.500	1.2603	0.9784E-04		0.6830	0.3967	-0.403E-01
0.450	1.1609	0.8806E-04		0.5791	0.3810	-0.205E-01
0.400	1.0863	0.7827E-04		0.4951	0.3682	-0.469E-02
0.350	0.9780	0.6849E-04		0.4445	0.3578	0.654E-02
0.300	0.8610	0.5870E-04		0.4170	0.3484	0.139E-01
0.250	0.7381	0.4892E-04		0.4008	0.3387	0.177E-01
0.200	0.6115	0.3913E-04		0.3893	0.3270	0.164E-01
0.150	0.4812	0.2935E-04		0.3777	0.3117	0.808E-02

NA = 0.0750	XW/U = 5.0600	WT = 0.0000				
PROFILE COEFFIC	CIENTS 0.74534	-6.83360 28.1	1500 -54.10000	49.51600 -16.	70300 -3.27	400 2.55490
REIDELTA) - 30	000•					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.400	0.9887	0.1333E-03	0.1766E-05	0.4864	0.4045	-0.260E-02
0.350	0.8851	0.1166E-03	-0.1666E-06	0.4738	0.3954	0.267E-03
0.300	0.7776	0.9999E-04	0.0000E 00	0.4612	0.3858	0.000E 00
0.250	0.6683	0.8333E-04	0.1699E-05	0.4513	0.3740	-0.344E-02
0.200	0.5560	0.6666E-04	0.5366E-05	0.4392	0.3597	-0.127E-01
0.150	0.4406	0.4999E-04	0.9699E-05	0.4271	0.3404	-0.282E-01
RE(DELTA) = 52	250•					
BETAR*DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.4615	0.1333E-03	0.2401E-04	0.6777	0-4789	-0.584E-01
0.650	1.3896	0.1238E-03	0.2285E-04	0.7048	0.4677	-0.608E-01
0.600	1.3196	0.1142E-03	0.2198E-04	0.7319	0.4546	-0.640E-01
0.550	1.2529	0.1047E-03	0.2074E-04	0.7630	0.4389	-0.663E-01
0.500	1.1885	0.9523E-04	0.1834E-04	0.7494	0.4206	-0.607E-01
0.450	1.1193	0.8571E-04	0.1337E-04	0.6553	0.4020	-0.411E-01
0.400	1.0343	0.7619E-04	0.7619E-05	0.5431	0.3867	-0.210E-01
0.350	0.9339	0.6666E-04	0.2971E-05	0.4785	0.3747	-0.799E-02
0.300	0.8250	0.5714E-04	0.3238E-06	0.4426	0.3636	-0.912E-03
0.250	0.7077	0.4761E-04	-0.8380E-06	0.4212	0.3532	0.261E-02
0.200	0.5876	0.3809E-04	0.0000E 00	0.4057	0.3402	0.000E 00
0.150	0.4611	0.2857E-04	0.2152E-05	0.3932	0.3253	-0.963E-02
0.100	C.3333	0.1904E-04	0.5390E-05	0.3638	0.3000	-0.308E-01
0.050	0.1847	0.9523E-05	0.7980E-05	0.3344	0.2707	-0.758E-01
RE(DELTA) = 72	250.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.900	1.7512	0.1241E-03	0.2295E-04	0.7243	0.5139	-0.688E-01
0.800	1.6104	0.1103E-03	0.1940E-04	0.6964	0.4967	-0.608E-01
0.700	1.4639	0.9655E-04	0.1637E-04	0.6684	0.4781	-0.542E-01
0.650	1.3883	0.8965E-04	0.1522E-04	0.6600	0.4681	-0.524E-01
0.600	1.3124	C.8275E-04	0.1427E-04	0.6561	0.4571	-0.517E-01
0.550	1.2359	0.7586E-04	0.1382E-04	0.6683	0.4450	-0.541E-01
C.500	1.1627	0.6896E-04	0.1343E-04	0.7043	0.4300	-0.590E-01
0.450	1.0938	0.6206E-04	0.1303E-04	0.7445	0.4114	-0.643E-01
0.400	1.0263	0.5517E-04	0.1086E-04	0.7106	0.3889	-0.544E-01
0.350	0.9523	0.4827E-04	0.6524E-05	0.5714	0.3675	-0.283E-01
0.300	0.8492	0.4137E-04	0.2317E-05	0.4587	0.3532	-0.907E-02
0.250	0.7336	J. 3448E-04	0.8275E-07	0.4162	0.3407	-0.340E-03
0.200	0.6086	0.2758E-04	-3.4827E-06	0.3929	0.3286	0.225E-02
0.150	0.4790	0.2068E-04	0.5931E-06	0.3744	0.3131	-0.336E-02
0.100	0.3413	0.1379E-04	0.2896E-05	0.3491	0.2929	-0.214E-01
0.050	0.1921	0.6896E-05	0.5089E-05	0.3237	0.2602	-0.621E-01

NA = 0.0750	XW/U = 5.0500	WT = 1.5708				
PROFILE COEFFIC	IENTS 0.43696	0.00022 -11.393	54.90800-	119.13000 133.	75003 -75.72	700 17.15800
RE(DELTA) = 52	50.					
BETAR*DELTA/U 0.750 0.750 0.760 0.650 0.650 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 RE(DELTA) = 1000	ALFAR*DELTA 2.3872 2.1772 1.9744 1.7831 1.6081 1.4485 1.3029 1.1626 1.0242 0.8906 0.7567 0.6224 0.4871 0.3465 0.1832	BETAR*NU/U**2 0.1428E-03 0.1333E-03 0.1238E-03 0.1142E-03 0.10472-03 0.9523E-04 0.8571E-04 0.6666E-04 0.5714E-04 0.4761E-04 0.4761E-04 0.2857E-04 0.2857E-04 0.9523E-05	ALFA1+NI,/U 0-1293E-03 0-1099E-03 0-9150E-04 0-7312E-04 0-4026E-04 0-2773E-04 0-1240E-04 0-8895E-05 0-7371E-05 0-7523E-05 0-9142E-05 0-1230E-04	GROUP VEL. 0.2306 0.2423 0.2539 0.2735 0.2994 0.3283 0.3498 0.3588 0.3677 0.3738 0.3778 0.3728 0.3728 0.3709 0.3625 0.3309	WAVE VEL. 0.3141 0.3215 0.3292 0.3364 0.3451 0.3453 0.3440 0.3417 0.3368 0.3303 0.3213 0.3079 0.2886 0.2729	CITMP -0.656E-01 -0.642E-01 -0.617E-01 -0.588E-01 -0.543E-01 -0.479E-01 -0.391E-01 -0.233E-01 -0.196E-01 -0.190E-01 -0.235E-01 -0.567E-01 -0.105E 20
BETAR+DELTA/U	ALFAR#DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.300 0.250 0.200 0.150 0.100 0.050	1.0095 0.8503 0.6924 0.5384 0.3816 0.2081	0.2999E-04 0.2500E-04 0.1999E-04 0.1499E-04 0.9999E-05 0.4999E-05	0.6150E-05 0.3120E-05 0.1920E-05 0.2279E-05 0.3770E-05 0.5470E-05	0.3100 0.3153 0.3206 0.3217 0.3035 0.2852	0.2971 0.2940 0.2988 0.2785 0.2020 0.2402	-0.188E-01 -0.115E-01 -0.889E-02 -0.136E-01 -0.299E-01 -0.749E-01
NA = 0.0750	XW/U = 5.0600	WT = 1.5708	(HIGHER MODE	E SOLUTIONS)		
PROFILE COEFFICE	ENTS 0.45696	0.00022 -11.393	00 54.90800-1	119.13000 133.7	75003 -75.727	0) 17.15800
RE(DELTA) = 525	30 ·					
BETAR*DELTA/U 0.950 0.900 0.850 0.800 0.750 0.650 0.650 0.550 0.550 0.550 0.250 0.45	ALF AR*DELTA 1.6482 1.5925 1.5925 1.5941 1.4703 1.4022 1.3279 1.2467 1.1596 1.0583 0.9449 0.8242 0.7026 0.5835 0.4646 0.3554 0.3115 0.2765 0.2552 0.2428 0.2066 0.2180 0.2321 0.1295	BETAR*NU/U**2 0.1809E-03 0.1714E-03 0.1619E-03 0.1523E-03 0.1238E-03 0.1238E-03 0.1047E-03 0.9523E-04 0.8571E-04 0.7619E-04 0.4761E-04 0.4761E-04 0.3809E-04 0.3899E-04 0.3298E-04 0.2857E-04 0.2857E-04	ALFAI+NU/U 0.7318E-04 0.7120E-04 0.6902E-04 0.6502E-04 0.6373E-04 0.6361E-04 0.6506E-04 0.6554E-04 0.6554E-04 0.6554E-04 0.6554E-04 0.4919E-04 0.4142E-04 0.3780E-04 0.3780E-04 0.3137E-04 0.322E-04 0.3137E-04 0.3022E-04 0.416E-04 0.3137E-04	GROUP VEL. 0.9338 0.8769 0.8199 0.7589 0.7035 0.6443 0.5949 0.5338 0.4672 0.4275 0.4127 0.4154 0.4201 0.4391 0.4562 0.5135 0.5758 0.5938 0.5906 -0.6009 -1.5864 -0.7341 0.5443	WAVE VEL® 0.5763 0.5651 0.5540 0.5441 0.5348 0.5271 0.5213 0.5174 0.5197 0.5291 0.5459 0.5693 0.6457 0.7034 0.7383 0.77594 0.7716 0.7825 0.8228 0.6680 0.5601 0.7722	CITMP -0.217E 00 -0.205E 00 -0.193E 0C -0.180E 00 -0.171E 00 -0.154E 00 -0.155E 00 -0.155E 00 -0.155E 00 -0.168E 00 -0.168E 00 -0.209E 00 -0.244E 00 -0.279E 00 -0.327E 00 -0.327E 00 -0.389E 00 -0.389E 00 -0.461E 00 0.461E 00 0.461E 01 0.609E 00 -0.459E 00
16 - 18 -	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
BETAR*DELT4/U 0.700 0.650 0.600 0.550 0.500 0.450 0.450 0.350 0.250 0.250 0.250 0.150 0.100 0.050	1.3580 1.2880 1.2102 1.1218 1.0211 0.9050 0.7786 0.6499 0.5249 0.4033 0.2918 0.1935 0.1146	0.9655E-04 0.8965E-04 0.0275E-04 0.7585E-04 0.6896E-04 0.6206E-04 0.5517E-04 0.4827E-04 0.4137E-04 0.2758E-04 0.2758E-04 0.1379E-04 0.6896E-05	0.4801E-04 0.4608E-04 0.4502E-04 0.4455E-04 0.4458E-04 0.44353E-04 0.4353E-04 0.3635E-04 0.3103E-04 0.2470E-04 0.1750E-04 0.9558E-05 0.7958E-05	0.7528 0.6784 0.6041 0.5310 0.4635 0.4131 0.3920 0.3942 0.4055 0.4298 0.4785 0.5711 0.0251 -0.5208	0.5154 0.5046 0.4957 0.4992 0.4896 0.4972 0.5137 0.5385 0.5715 0.6198 0.6854 0.7751 0.8726 0.2496	-0.192E 00 -0.175E 00 -0.162E 00 -0.152E 00 -0.152E 00 -0.158E 00 -0.158E 00 -0.178E 00 -0.203E 00 -0.203E 00 -0.293E 00 -0.374E 00 -0.152E-01 0.150E 00

ALFAR+DELTA	BETAR*NU/U**2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
3.2600	0.1634E-03	-0.3711E-04	-0.0597	0.1672	0.2632	0.2219E-03
3.0600	0.1570E-03	-0.3410E-04	-0.0585	0.1787	0.2693	0.1907E-03
2.8600	0.1498E-03	-0.3161E-04	-0.0584	0.1902	0.2750	0.1671E-03
2.6600	0.1425E-03	-0.2930E-04	-0.0578	0.1954	0.2812	0.1499E-03
2.4600	0.1349E-03	-0.2661E-04	-0.0567	0.2015	0.2879	0.1320E-03
2.2600	0.1271E-03	-0.2379E-04	-0.0552	0.2100	0.2954	0.1132E-03
2.0600	0.11592-03	-0.2091E-04	-0.0533	0.2215	0.3031	0.9441E-04
1.9600	0.1146E-03	-0.1953E-04	-0.0523	0.2233	0.3071	0.8747E-04
1.8600	G.1104E-03	-0.1779E-04	-0.0502	0.2274	0.3117	0.7826E-04
1.7600	0.1060E-03	-0.1623E-04	-0.0484	0.2396	0.3162	0.6776E-04
1.6600	0.1013E-03	-0.1463E-04	-0.0462	0.2500	0.3203	0.5851E-04
1.5600	0.9647E-04	-0.1289E-04	-0.0434	0.2579	0.3246	0.5000E-04
1.4600	0.9147E-04	-0.1113E-04	-0.0400	0.2721	0.3289	0.4092E-04
1.3600	0.8611E-04	-0.9409E-05	-0.0363	0.2894	0.3324	0.3250E-04
1.2600	0.80456-04	-0.7716E-05	-0.0321	0.2996	0.3352	0.2575E-04
1.1600	0.7469E-04	-0.6146E-05	-0.0278	0.3211	0.3360	0.1913E-04
1.0600	0.6821E-04	-0.4775E-05	-0.0236	0.3479	0.3378	0.1372E-04
0.9600	0.6144E-04	-0.3748E-05	-0.0205	0.3544	0.3360	0 - 1057E-04
0.8600	0.5471E-04	-0.3053E-05	-0.0186	0.3566	0.3340	0.85596-05
0.7600	0.4785E-04	-0.2699E-05	-0.0186	0.3647	0.3305	0.7399E-05
0.6600	0.4081E-04	-0.2697E-05	-0.0214	0.3676	0.3246	0.7336E-05
0.5600	0.3384E-04	-0.2979E-05	-0.0279	0.3637	0.3173	0.8190E-05
0.4600	0.2696E-04	-0.3445E-05	-0.0393	0.3591	0.3077	0.9594E-05
0.3600	0.2016E-04	-0.3857E-05	-0.0562	0.3486	0.2940	0.1106E-04
0.2600	0-1367E-04	-0.3838E-05	-0.0775	0.3197	0.2762	0.1200E-04
0.1600	0.7982E-05	-0.3144E-05	-0.1031	0.2908	0.2619	0.1081E-04

NA = 0.0750 XW/U = 5.0600 WT = 1.5708 (TEMPORAL DATA: HIGHER MODE SOLUTIONS)

PROFILE COEFFICIENTS 0.45696 0.00022 -11.39300 54.90800-119.13000 133.75003 -75.72700 17.15800

RE(DELTA) = 5250:

ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.7500	0.1638E-03	-0.5100E-04	-0.1530	0.3787	0.4916	0.1346E-03
1.6500	0.1563E-03	-0.4677E-04	-0.1488	0.4216	0.4975	0.1109E-03
1.5500	0.1478E-03	-0.4272E-04	-0.1447	0.4645	0.5007	0.9196E-04
1.4500	0.1386E-03	-0.3913E-04	-0.1417	0.4817	0.5020	0.8123E-04
1.3500	0.1294E-03	-0.3638E-04	-0.1415	0.4934	0.5035	0.7373E-04
1.2500	0.1198E-03	-0.3414E-04	-0.1434	0.4955	0.5034	0.6890E-04
1.1500	0.1106E-03	-0.3246E-04	-0.1462	0.4810	0.5049	0.6748E-04
1.0500	0.1015E-03	-0.3098E-04	-0.1549	0.4715	0.5077	0.6570E-04
0.9500	0.9263E-04	-0.2959E-04	-0.1635	0.4633	0.5119	0.6387E-04
0.8500	0.83R9E-04	-0.2819E-04	-0.1741	0.4565	0.5181	0.6176E-04
0.7500	0.7524E-04	-0.2669E-04	-0.1868	0.4534	0.5267	0.5887E-04
0.6500	0.6662E-04	-0.2498E-04	-0.2018	0.4535	0.5380	0.5509E-04
0.5500	0.5797E-04	-0.2299E-04	-0.2195	0.4561	0.5533	0.5041E-04
0.4500	0.4924E-04	-0.2067E-04	-0.2412	0.4588	0.5745	0.4506E-04

NA = 0.0750	XW/U = 5.0600	WT = 3.1416				
PROFILE COEF	FICIENTS -0.76094	6.83340 -23.59	9700 51.7970	0 -78.09001	74.26200 -38.9	1500 8.48810
RE(DELTA) -	2000.					
		0222-020	. 54	United the		
BETAR+DELTA/	U ALFAR+DELTA 1.5773	BETAR*NU/U**2 0.2999E-03	ALFAI+NU/U 0.8000E-05	GROUP VEL-	0.3803	CITMP -0.428E-02
0.500	1.3404	0.2500E-03	-0.7750E-05	0.4231	0.3730	0.489E-02
0.450	1.2224	0.2249E-03	-0.1065E-04	0.4233	0.3681	0.737E-02
0.400	1.1042	0.2000E-03	-0.1094E-04	0.4222	0.3622	0.837E-02
0.350 0.300	0.9856 0.8669	0.1749E-03 0.1499E-03	-0.8499E-05	0.4214 0.4201	0.3551 0.3460	0.726E-02 0.348E-02
0.250	0.7476	0.1250E-03	0.3650E-05	0.4168	0.3344	-0.407E-02
0.200	0.6270	0.1000E-03	0.1275E-04	0.4077	0.3189	-0.165E-01
0.150	0.5023	0.7499E-04	0.2330E-04	0.3987	0.2986	-0.369E-01
REIDELTAL .	4070.					
BETAR+DELTA/		BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.600	1.7191	0.1474E-03	0.1975E-04	0.4258	0.3490	-0.199E-01
0.550 0.500	1.6002 1.4739	0.1351E-03 0.1228E-03	0.7051E-05 -0.2825E-05	0.4082	0.3437 0.3392	-0.732E-02 0.304E-02
0.450	1.3441	0.1105E-03	-0.9926E-05	0.3809	0.3347	0.114E-01
0.400	1.2114	0.9828E-04	-0.1434E-04	0.3748	0.3301	0.180E-01
0.350	1.0773	0.8599E-04	-0.1626E-04	0.3716	0.3248	0.228E-01
0.300 0.250	0.9423 0.8070	0.7371E-04	-0.1587E-04	0.3699	0.3183	0.253E-01
0.200	0.6711	0.6142E-04 0.4914E-04	-0.8673E-05	0.3687 0.3663	0.3097 0.2980	0.247E-01 0.192E-01
0.150	0.5340	0.3685E-04	-0.2285E-05	0.3638	0.2808	0.633E-02
REIDELTA) =	6000.					
BETAR+DELTA/L	J ALFAR+DELTA	BETAR+NU/U++2	A1 FA T#AII 211	GROUP VEL	WAVE VE	CITUD
0.550	1.6363	0.9166E-04	ALFAI+NU/U 0.1551E-04	0.4741	WAVE VEL. 0.3361	CITMP -0.269E-01
0.500	1.5261	0.8333E-04	0.5483E-05	0.4312	0.3272	-0.928E-02
0.450	1.4032	0.7500E-04	-0.2616E-05	0.3882	0.3206	0-434E-02
0.400	1.2703	0.6666E-04	-0.8483E-05	0.3679	0.3148	0.147E-01
0.350 0.300	1.1313 0.9890	0.5833E-04 0.4999E-04	-0.1213E-04 -0.1359E-04	0.3555 0.3489	0.3093 0.3033	0.228E-01 0.287E-01
0.250	0.8447	0.4166E-04	-0.1303E-04	0.3454	0.2959	0.319E-01
0.200	0.6995	0.3333E-04	-0.1049E-04	0.3429	0.2859	0.308E-01
0.150	0.5531	0.2499E-04	-0.6216E-05	0.3382	0.2711	0-228E-01
0.100	0.4038	0.1666E-04	-0.4333E-06	0.3334	0.2476	0.214E-02
RE(DELTA) =	7250.					
BETAR+DELTA/		BETAR+NU/U++2	ALFAT+NU/U	GROUP VEL		CITMP
0.450	1.4213 1.2949	0.6206E-04 0.5517E-04	0.8275E-06 -0.5200E-05	0.4017 0.3777	0.3166 0.3089	-0.169E-02 0.109E-01
0.350	1.1560	0.4827E-04	-0.9462E-05	0.3538	0.3027	0.209E-01
0.300	1.0122	0.4137E-04	-0.1165E-04	0.3427	0.2963	0.286E-01
0.250	0.8642	0.3448E-04	-0.1191E-04	0.3360	0.2592	0.335E-01
0.200 0.150	0.7146 0.5633	0.2758E-04 0.2068E-04	-0.1024E-04	0.3323	0.2798	0.345E-01 0.290E-01
0.100	0.4098	0.1379E-04	-0.1944E-05	0.3123	0.2440	0.107E-01
0.050	0.2426	0.6896E-05	0.3779E-05	0.2966	0.2061	-0.335E-01
NA = 0.0750	XW/U = 5.0600	WT = 3.1416	{TEMPORAL	DATA)		
PROFILE COEFF	FICIENTS -0.76094	6.83340 -23.59	700 51.79700	78.09001 7	4.26200 -38.9	1500 8.48810
R. (DELTA) =	1500.					
ALFAR+DELTA	BETAR*NU/U**2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.4000	0.3657E-03	-0.3099E-05	-0.0033	0.4439	0.3919	0.6981E-05
1.3000	0.3362E-03	-0.1319E-05	-0.0015	0.4439	0.3860	0.2972E-05
1.2000 1.1000	0.3065E-03 0.2770E-03	-0.6999E-06 -0.1053E-05	-0.0008 -0.0014	0.4439 0.4440	0 • 3832 0 • 3778	0.1576E-05 0.2372E-05
1.0000	0.2473E-03	-0.2499E-05	-0.0037	0.4422	0.3710	0.5653E-05
0.9000	0.21815-03	-0.4659E-05	-0.0077	0.4375	0.3635	C.1065E-04
0.8000	0.1890E-03	-0.7646E-05	-0.0143	0.4328	0.3544	0.1766E-04
0.7000	0.1603E-03	-0.1116E-04	-0.0239	0.4281	0.3436	0.2606E-04
RE(DELTA) =	3000.					
ALFAR+DELTA	BETAR*NU/U**2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI#NU/U
1.6000	0.1904E-03 0.1777E-03	-0.2053E-05 0.1036E-05	-0.0038 0.0020	0.3756 0.3839	0.3571 0.3555	0.5466E-05 -0.2700E-05
1.4000	0.1648E-03	0.3503E-05	0.0075	0.3922	0.3533	-0.8931E-05
1.3000	0.1516E-03	0.5249E-05	0.0121	0.3977	0.3499	-0.1319E-04
1.2000	0.1383E-03	0.6263E-05	0.0156	0.3992	0.3458	-0.1568E-04
1.1000	0.1250E-03 0.1117E-03	0.6643E-05 0.6393E-05	0.0181 0.0191	0.3998 0.3979	0.3409 0.3351	-0.1661E-04 -0.1606E-04
1.0000 0.9000	0.1117E-03	0.55838-05	0.0191	0.3979	0.3283	-0.1416E-04
0.8000	0.8542E-04	0.4173E-05	0.0156	0.3885	0.3203	-0.1074E-04
0.7000	0.7259E-04	0.2326E-05	0.0099	0.3781	0.3111	-0.6152E-05
0.6000 0.5000	0.6021E-04 0.4791E-04	0.1299E-06 -0.2143E-05	0.0006 -0.0128	0.3702 0.3622	0.3010 0.2875	-0.3511E+06 0.5916E-05
0.3000	0441785-04	-0124736-03	0.0150	0.7022	V-10.5	3.2.7.402 07

NA = 0.0750	XW/U = 5.0600	WT = 3.9270				
PROFILE COEFFIC	IENTS -0.94197	5.11000 -6.5	6710 -3.56620	14.38400 -11	42100 3.03	ee0 0.00000
RE(DELTA) = 9	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.6533	0.7777E-03	0.1299E-04	0.4868	0.4233	-0.3442-02
0.650	1.5506	0.7222E-03	0.4333E-05	0.4861	0.4191	-0.122E-02
0.600	1.4476	0.6666E-03	+0.5555E-06	0.4354	0.4144	0.167E-03
0.550 0.500	1.3446	0.6111E-03 0.5555E-03	-C.1666E-05	0.4852	0.4090 0.4027	0.541E-03 -0.312E-03
0.450	1.1384	0.5000E-03	0.6777E-05	0.4844	0.3952	-0.259E-02
0.400	1.0351	0.4444E-03	0.1600E-04	0.4840	0.3864	-0.673E-02
RE(DELTA) = 10	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750	1.7792	0.7500E-03	0.1589E-04	0.4800	0.4215	-0.429E-02
0.700	1.6751	0.6999E-03	0.25 -05	0.4784	0.4178	-0.714E-03
0.650	1.5702	0.6500E-03	-0.70° -05	0.4768	0.4139	0.215E-02
0.600	1.4654	0.59998-03	-0.17 .=-04	0.4766	0.4094	0.416E-02
0.550	1.3604	0.5499E-03 0.5000E-03	-0 7E-04	0.4759	0.4042	0.517E-02 0.500E-02
0.500 0.450	1-2553 1-1503	0.4499E-03	-C .JE-04 -0.u200E-05	0.4759 0.4757	0+39 83 0+3912	0.339E-02
0.400	1.0451	0.4000E-03	0.0000E 00	0.4746	0.3827	0.000E 00
0.350	0.9396	0.3499E-03	0.1119E-04	0.4723	0.3724	-0.563E-02
0.300	0.8334	0.2999E-03	0.2509E-04	0.4671	0.3599	-0.140E-01
0.250	0.7255	0.2500E-03	0.4149E-04	0.4567	0.3445	-0.261E-01
0.200	0.6144	0.2000E-03	0.5999E-04	0.4463	0.3255	-0.435E-01
REIDELTA) = 13	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U++2	ALFAI#NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.7293	0.5384E-03	-0.9615E-05	0.4622	0.4047	0-334E-02
0.650	1.6207	0.5000E-03	-0.2092E-04	0.4591	0.4010	0.770E-02
0.600	1.5115	0.4615E-03	-0.2884E-04	0.4560	0.3969	0.113E-01
0.550	1.4014	0.4230E-03	-0.3292E-04	0.4543	0.3924	0.138E-01
0.500	1.2914	0.3846E-03	-0.3376E-04	0.4543	0.3871	0.154E-01
0.450	1.1813	0.3461E-03	-0.3130E-04	0.4543	0.3809	0.156E-01
0.400 0.350	1.0713 0.9610	0.3076E-03	-0.2569E-04	0.4539 0.4528	0.3733 0.3642	0.141E-01 0.105E-01
0.300	0.8505	0.2692E-03 0.2307E-03	-0.1715E-04 -0.5846E-05	0.4502	0.3527	0.4025-02
0.250	0.7369	0.19235-03	0.7923E-05	0.4436	0.3383	-0.618E-02
0.200	0.6251	0.1538E-03	0.2376E-04	0.4297	0.3199	-0.212E-01
0.150	0.5061	0.1153E-03	0.4138E-04	0.4158	0.2963	-0.442E-01
RE(DELTA) = 20	00•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.8139	0.3499E-03	-0.3350E-05	0.4521	0.3859	0.167E-02
0.650	1.7024	0.3250E-03	-0.1694E-04	0.4431	0.3818	0.882E-02
0.600	1.5882	0.2999E-03	-0.2759E-04	0.4340	0.3777	0.150E-01
0.550	1.4720	0.2749E-03	-0.3509E-04	0.4286	0.3736	0.204E-01
0.500	1.3549 1.2369	0.2500E-03 0.2249E-03	-0.3945E-04 -0.4330E-04	0.4253 0.4231	0.3690 0.3638	0.247E-01 0.296E-01
0.450 0.400	1.1186	0.2000E-03	-0.3925E-04	0.4221	0.3575	0.296E-01
0.350	1.0000	0.1749E-03	-0.3489E-04	0.4214	0.3500	0.294E-01
0.300	0.8813	0.1499E-03	-0.2790E-04	0.4203	0.3404	0.266E-01
0.250	0.7621	0.1250E-03	-0.1840E-04	0.4178	0.3280	0.201E-01
0.200	0.6420	0.1000E-03	-0.6700E-05	0.4110	0.3115	0.858E-02
0.150	0.5188	0.7499E-04	0.6799E-05	0.3924	0.2891	-0.102E-01
0.100	0.3869	0.5000E-04	0.2165E-04	0.3738	0.2584	-0.419E-01
RE(DELTA) = 30	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.7618	0.2166E-03	-0.2433E-05	0.4596	0.3689	0.190E-02
0.600	1.6509	0.1999E-03	-0.1369E-04	0.44-6	0.3634	0.109E-01
0.550	1.5353	0.1833E-03	-0.2306E-04	0.4237	0.3582	0.190E-01
0.500	1.4148	0.1666E-03	-0.2963E-04	0.4113	0.3534	0.258E-01
0.450 0.400	1.2922	0.1500E-03	-0.3376E-04	0.4040	0.3482	0.316E-01
0.400	1.1673	0.1333E-03 0.1166E-03	-0.3529E-04 -0.3430E-04	0.3987 0.3957	0.3426 0.3360	0.361E-01 0.391E-01
0.300	0.9146	0.9999E-04	-0.3086E-04	0.3937	0.3280	0.398E-01
0.250	0.7874	0.8333E-04	-0.2503E-04	0.3920	0.3175	0.3736-01
0.200	0.6595	0.6666E-04	-0.1696E-04	0.3885	0.3032	0.299E-01
0.150	0.5300	0.4999E-04	-0.6933E-05	0.3850	0.2830	0.151E-01

NA = 0.0750 XW/U = 5.0600

RE(DELTA) = 52	50•					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.7729	0.1238E-03	0.7352E-05	0.5591	0.3666	-0.121E-01
0.600	1.6802	0.1142E-03	0.7428E-06	0.5209	0.3571	-0.120E-02
0.550	1.5807	0 · 1047E-03	-0.5923E-05	0.4827		
0.500					0.3479	0.949E-02
	1.4727	0.9523E-04	-0.1220E-04	0.4455	0.3395	0.193E-01
0.450	1.3559	0.8571E-04	-0.1752E-04	0.4148	0.3318	0.281E-01
0.400	1.2314	0.7619E-04	-0.2139E-04	0.1929	0.3248	0.358E-01
0.350	1.1013	0.6666E-04	-0.2339E-04	0.3772	0.3178	0.4202-01
0.300	0.9662	0.5714E-04	-0.2361E-04	0.3668	0.3104	0.470E-01
0.250	0.8287	0.4761E-04	-0.2173E-04	0.3610	0.3016	0.497E-01
0.200	0.6892	0.3809E-04	-0.1790E-04	0.3566	0.2901	0.486E-01
0.150	0.5483	0 . 2857E-04	-0.1201E-04	0.3510	0.2735	0.403E-01
0.100	0.4043	0.1904E-04	-0.4514E-05	0.3316	0.2473	0.194E-01
0.050	0.2461	0.9523E-05	0.4114E-05	0.3122	0.2031	-0.274E-01
RE(DELTA) = 72	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.7701	0.8965E-04	0.5379E-05	0.5631	0.3672	-0.124E-01
0.550	1.5805	0.7586E-04	-0.2441E-05	0.5091	0.3479	0.570E-32
0.500	1.4805	0.6896E-04	-0.6262F-05	0.4821	0.3377	0.147E-01
0.450	1.3728	0.6206E-04	-0.1031E-04	0.4461	0.3277	0.243E-01
0.400	1.2560	0.5517E-04	-0.1384E-04	0.4121	0.3184	0.329E-01
0.350	1.1298	0.4827E-04	-0.1652E-04	0.3838	0.3097	0.407E-01
0.300	0.9952			0.3632		
		0.4137E-04	-0.1783E-04		0.3014	0.472E-01
0.250	0.8544	0.3448E-04	-0.1753E-04	0.3498	0.2926	0.520E-01
0.200	0.7093	0.2758E-04	-0.1546E-04	0.3415	0.2819	0.539E-01
0.150	0.5616	0.2068E-04	-0.1155F-04	0.3349	0.2670	0.499E-01
0.100	0.4107	0.1379E-04	-0.5944E-05	0.3206	0.2434	C.336E-01
0.050	0.2494	0.6896E-05	0.8827E-06	0.3063	0.2004	-0.786E-02
NA = 0.0750	XW/U = 5.0600	WT = 4.7124				
	200		4100 -66.40400	107.82000 -93.	52801 42.58	300 -8.04470
PROFILE COEFFIC	200		4100 -66.40400	107.82000 -93.	52801 42.58	300 -8.04470
	IENTS -0.55041	-0.00106 18.1			_	21
PROFILE COEFFIC RE(DELTA) = 7 BETAR+DELTA/U	IENTS -0.55041 00. ALFAR+DELTA	-0.00106 18.1	ALFAI+NU/U	GROUP VEL.	WAVE VEL-	CITMP
PROFILE COEFFIC RE(DELTA) = 7 BETAR+DELTA/U 0.750	IENTS -0.55041 00. ALFAR+DELTA 1.6644	=0.00106 18.1 BETAR+NU/U++2 0.1071E-02	ALFAI+NU/U 0-2614E-04	GROUP VEL.	WAVE VEL- 0-4506	CITMP -0.576E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700	IENTS -0.55041 00. ALFAR+DELTA 1.6644 1.5690	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04	GROUP VEL. 0.5243 0.523?	WAVE VEL. 0.4506 0.4461	CITMP -0.576E-02 -0.413E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03	ALFAI+NU/U 0-2614E-04 0-1771E-04 0-1300E-04	GROUP VEL. 0.5243 0.523? 0.5221	WAVE VEL. 0.4506 0.4461 0.4411	CITMP -0.576E-02 -0.413E-02 -0.322E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700	IENTS -0.55041 00. ALFAR+DELTA 1.6644 1.5690	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04	GROUP VEL. 0.5243 0.523?	WAVE VEL. 0.4506 0.4461	CITMP -0.576E-02 -0.413E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03	ALFAI+NU/U 0-2614E-04 0-1771E-04 0-1300E-04	GROUP VEL. 0.5243 0.523? 0.5221	WAVE VEL. 0.4506 0.4461 0.4411	CITMP -0.576E-02 -0.413E-02 -0.322E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.600	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775	=0.00106 18.1 BETAR*NU/U**2 0.1071E=02 0.9999E=03 0.9285E=03 0.8571E=03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.13U0E-04 0.1228E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213	WAVE VEL. 0.4506 0.4461 0.4411 0.4355	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR+DELTA/U 0.750 0.700 0.650 0.600 0.550	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854	-0.00106 18.1 BETAR+NU/U++2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1214E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194	WAVE VEL. 0.4506 0.4461 0.4411 0.4355	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.650 0.550 0.500 0.450	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9289E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03	ALFAI*NU/U 0*2614E-04 0*1771E-04 0*1340E-04 0*1228E-04 0*2171E-04 0*3142E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173	WAVE VEL. 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR+DELTA/U 0.750 0.700 0.650 0.600 0.650 0.550 0.500 0.450 0.400	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921	-0.00106 18.1 BETAR+NU/U++2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1340E-04 0.1228E-04 0.1514E-04 0.2171E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194	WAVE VEL. 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.650 0.550 0.500 0.450 0.450 0.400 RE(DELTA) = 8	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1340E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151	WAVE VEL. 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.690 0.690 0.690 0.550 0.500 0.450 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7152E-03 0.7142E-03 0.5714E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.13U0E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04	GROUP VEL. 0.5243 0.5243 0.5227 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151	WAVE VEL. 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR+DELTA/U 0.750 0.700 0.650 0.650 0.650 0.550 0.500 0.450 0.400 RE(DELTA) = 8 BETAR+DELTA/U 0.750	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5590 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1340E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151	WAVE VEL. 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4412	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.690 0.690 0.690 0.550 0.500 0.450 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA	-0.00106 18.1 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7152E-03 0.7142E-03 0.5714E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.13U0E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04	GROUP VEL. 0.5243 0.5243 0.5227 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151	WAVE VEL. 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015	-0.00106 18.1 BETAR+NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03	ALFAI*NU/U 0*2614E-04 0*1771E-04 0*1340E-04 0*1228E-04 0*1514E-04 0*3142E-04 0*4442E-04 ALFAI*NU/U -0*1176E-05 -0*1082E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089	WAVE VEL- 0.4506 0.4461 0.4451 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4412 0.44370	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.550 0.550 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031	-0.00106 18.10 BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 BETAR*NU/U**2 0.8823E-03 0.8235E-03 0.7647E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1340E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063	WAVE VEL. 0.4506 0.4461 0.4451 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4412 0.4370 0.4324	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.600 0.550 0.450 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040	## ## ## ## ## ## ## ## ## ## ## ## ##	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04	GROUP VEL. 0.5243 0.5237 0.5221 0.5213 0.5205 0.5173 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047	WAVE VEL. 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4412 0.4370 0.4324 0.4273	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.495E-02 0.593E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.650 0.650 0.650 0.450 0.450 0.450 0.450 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.650 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6664 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050	## ## ## ## ## ## ## ## ## ## ## ## ##	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1941E-04 -0.1945E-04	GROUP VEL. 0.5243 0.5237 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047	WAVE VEL- 0.4506 0.4461 0.4417 0.4217 0.4132 0.4031 WAVE VEL- 0.4412 0.4370 0.4324 0.4273 0.4214	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.650 0.550 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.650 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057	BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.5571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 BETAR*NU/U**2 0.8823E-03 0.7647E-03 0.7098E-03 0.6470E-03 0.66470E-03 0.5882E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04	GROUP VEL. 0.5243 0.5237 0.5221 0.5213 0.5205 0.5173 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4412 0.4370 0.4324 0.4273 0.4214	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.692E-02 0.492E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.650 0.650 0.550 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.700 0.650 0.650 0.650 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6664 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050	## ## ## ## ## ## ## ## ## ## ## ## ##	ALFAI*NU/U 0*2614E-04 0*1771E-04 0*1340E-04 0*1228E-04 0*1514E-04 0*3142E-04 0*4442E-04 ALFAI*NU/U -0*1176E-05 -0*1082E-04 -0*1694E-04 -0*1385E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035	WAVE VEL- 0.4506 0.4461 0.4417 0.4217 0.4132 0.4031 WAVE VEL- 0.4412 0.4370 0.4324 0.4273 0.4214	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.430E-02 -0.430E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.500 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.650 0.	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064	BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.5571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 BETAR*NU/U**2 0.8823E-03 0.7647E-03 0.7098E-03 0.6470E-03 0.66470E-03 0.5882E-03	ALFAI*NU/U 0*2614E-04 0*1771E-04 0*1340E-04 0*1228E-04 0*1514E-04 0*3142E-04 0*4442E-04 ALFAI*NU/U -0*1176E-05 -0*1082E-04 -0*1694E-04 -0*1385E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4412 0.4370 0.4324 0.4273 0.4214	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.692E-02 0.492E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.500 0.550 0.500 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.600 0.550 0.600 0.550 0.600 0.550 0.600 0.550 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.600 0.650 0.650 0.	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064	## TAR #NU/U##2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 8ETAR #NU/U##2 0.8823E-03 0.7647E-03 0.647E-03 0.647E-03 0.5582E-03 0.5294E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1340E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1835E-04 -0.1835E-04 -0.1835E-04 -0.1835E-04	GROUP VEL. 0.5243 0.5232 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5047 0.5047 0.5042 0.5035 0.5027	WAVE VEL. 0.4506 0.4461 0.4461 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4470 0.4370 0.4324 0.4273 0.4273 0.4216 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02 0.492E-02 0.231E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.600 0.500 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.700 0.650 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.650 0.600 0.600 0.650 0.600 0.650 0.600 0.650 0.600	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 DO. ALFAR*DELTA 1.8896	## TAR # NU / U # 2 0 1071E - 02 0 9999E - 03 0 9285E - 03 0 8571E - 03 0 7857E - 03 0 6428E - 03 0 5714E - 03 BETAR * NU / U * 2 0 8823E - 03 0 7647E - 03 0 7058E - 03 0 7058E - 03 0 50582E - 03 0 5294E - 03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1941E-04 -0.1941E-04 -0.1941E-04 -0.1988E-04 -0.1988E-04 -0.1981E-05	GROUP VEL. 0.5243 0.523? 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5027	WAVE VEL. 0.4506 0.4461 0.4451 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4470 0.4370 0.4324 0.4273 0.4214 0.4146 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.492E-02 0.492E-02 0.492E-02 0.492E-02 0.231E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.650 0.550 0.450 0.450 0.750	IENTS -0.55041 OO. ALFAR+DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR+DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 OO. ALFAR+DELTA 1.8896 1.7885	## Control	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1941E-04 -0.1945E-04 -0.1985E-04 -0.1985E-04 -0.1985E-04 -0.1985E-04 -0.1985E-04	GROUP VEL. 0.5243 0.5243 0.5237 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5027 GROUP VEL. 0.4975 0.4902	WAVE VEL- 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4214 0.4160 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02 0.492E-02 0.231E-02
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.650 0.650 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 DO. ALFAR*DELTA 1.8896 1.7885 1.6856	## TAR #NU/U##2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 ## TAR #NU/U##2 0.8823E-03 0.7647E-03 0.6476E-03 0.6476E-03 0.5882E-03 0.5294E-03 ## TAR #NU/U##2 0.5714E-03 0.6470E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1218E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1941E-04 -0.1835E-04 -0.1938E-04 -0.1935E-04 -0.1945E-04 -0.1945E-04 -0.1945E-04	GROUP VEL. 0.5243 0.5232 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5047 0.5042 0.4975 0.4975 0.4902 0.4828	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4214 0.4166 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.492E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.500 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.600 0.550 0.600 0.750 0.750 0.750 0.750 0.600 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 00. ALFAR*DELTA 1.8896 1.7885 1.6856 1.7885	## TAR #NU/U##2 0.1071E-02 0.9999E-03 0.9265E-03 0.8571E-03 0.7657E-03 0.5714E-03 BETAR #NU/U##2 0.8623E-03 0.6476E-03 0.6470E-03 0.6470E-03 0.5294E-03 0.5294E-03 0.5499E-03 0.4499E-03 0.4499E-03 0.4642E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1836E-04 -0.1836E-04 -0.1836E-04 -0.1836E-04 -0.1846E-04 -0.1846E-04 -0.1846E-04	GROUP VEL. 0.5243 0.5232 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5047 0.5042 0.5035 0.5047 0.5042 0.4975 0.4975 0.4902 0.4828 0.4764	WAVE VEL- 0.4506 0.4461 0.4451 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4273 0.4274 0.4273	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.492E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01 0.156E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.650 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.600 0.750 0.650 0.6600	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 00. ALFAR*DELTA 1.8896 1.7885 1.6856 1.5814 1.4757	## TAR # NU / U # 2 0	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1895E-04	GROUP VEL. 0.5243 0.5243 0.5223 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5063 0.5047 0.5042 0.5035 0.5027 GROUP VEL. 0.4975 0.4902 0.4928 0.4764 0.4719	WAVE VEL. 0.4506 0.4461 0.4451 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4470 0.4370 0.4273 0.4214 0.4146 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.492E-02 0.593E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.10E-01 0.156E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.690 0.690 0.590 0.490 0.490 0.490 0.490 0.750 0.700 0.690 0.750 0.750 0.750 0.750 0.750 0.750 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR+DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR+DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 OO. ALFAR+DELTA 1.8896 1.7885 1.6856 1.5814 1.4757 1.3695	BETAR+NU/U++2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 0.6428E-03 0.7647E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1218E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1941E-04 -0.1835E-04 -0.1835E-04 -0.1849E-04 -0.1870E-05	GROUP VEL. 0.5243 0.5243 0.5237 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5047 0.5042 0.4902 0.4975 0.4902 0.4828 0.4764 0.4719 0.4690	WAVE VEL- 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4370 0.4214 0.4146 0.4067 WAVE VEL- 0.4185 0.4193 0.4193 0.4193 0.4165	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01 0.156E-01 0.156E-01 0.226E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.650 0.650 0.550 0.500 0.450 0.700 0.700 0.650 0.700 0.650	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 DO. ALFAR*DELTA 1.8896 1.7885 1.6856 1.5814 1.4757 1.3695 1.2625	BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 BETAR*NU/U**2 0.8823E-03 0.7647E-03 0.7058E-03 0.7058E-03 0.5294E-03 0.5357E-03 0.5357E-03 0.4499E-03 0.4495E-03 0.4392E-03 0.3928E-03 0.3971E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1228E-04 0.1218E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1835E-04 -0.1835E-04 -0.1835E-04 -0.1849E-04 -0.1871E-05 -0.1449E-04 -0.2742E-04 -0.471E-04 -0.471E-04	GROUP VEL. 0.5243 0.5232 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5045 0.5047 0.5042 0.4902 0.4902 0.4902 0.4666	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4214 0.4146 0.4067 WAVE VEL- 0.4193 0.4152 0.4193 0.4152 0.4110 0.4065 0.4016	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01 0.156E-01 0.226E-01 0.246E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.690 0.690 0.590 0.490 0.490 0.490 0.490 0.750 0.700 0.690 0.750 0.750 0.750 0.750 0.750 0.750 0.650 0.650 0.650	IENTS -0.55041 OO. ALFAR+DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR+DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 OO. ALFAR+DELTA 1.8896 1.7885 1.6856 1.5814 1.4757 1.3695	BETAR+NU/U++2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 0.6428E-03 0.7647E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1218E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1941E-04 -0.1835E-04 -0.1835E-04 -0.1849E-04 -0.1870E-05	GROUP VEL. 0.5243 0.5243 0.5237 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5035 0.5047 0.5042 0.4902 0.4975 0.4902 0.4828 0.4764 0.4719 0.4690	WAVE VEL- 0.4506 0.4461 0.4455 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4214 0.4273 0.4214 0.4160 0.4067	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01 0.156E-01 0.156E-01 0.226E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.690 0.690 0.590 0.490 0.490 0.490 0.750 0.700 0.690 0.700 0.690 0.690 0.990 0.690 0.990 0.690 0.990 0.690 0.990 0.690 0.990 0.690 0.990	IENTS -0.55041 OO. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 SO. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 DO. ALFAR*DELTA 1.8896 1.7885 1.6856 1.5814 1.4757 1.3695 1.2625	BETAR*NU/U**2 0.1071E-02 0.9999E-03 0.9285E-03 0.8571E-03 0.7857E-03 0.7142E-03 0.6428E-03 0.5714E-03 BETAR*NU/U**2 0.8823E-03 0.7647E-03 0.7058E-03 0.7058E-03 0.5294E-03 0.5357E-03 0.5357E-03 0.4499E-03 0.4495E-03 0.4392E-03 0.3928E-03 0.3971E-03	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1228E-04 0.1218E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1835E-04 -0.1835E-04 -0.1835E-04 -0.1849E-04 -0.1871E-05 -0.1449E-04 -0.2742E-04 -0.471E-04 -0.471E-04	GROUP VEL. 0.5243 0.5232 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5045 0.5047 0.5042 0.4902 0.4902 0.4902 0.4666	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4214 0.4146 0.4067 WAVE VEL- 0.4193 0.4152 0.4193 0.4152 0.4110 0.4065 0.4016	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.492E-02 0.231E-02 CITMP -0.576E-03 0.556E-02 0.10E-01 0.156E-01 0.226E-01 0.226E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.550 0.500 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.700 0.650 0.600 0.550 0.600 0.550 0.600 0.750 0.700 0.650 0.650 0.650 0.650 0.750 0.700 0.650	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 00. ALFAR*DELTA 1.8896 1.7885 1.6856 1.7885 1.6856 1.7814 1.4757 1.3695 1.2625 1.1552	## TAR # NU / U # 2 0	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1941E-04 -0.1388E-04 -0.1388E-04 -0.1449E-04 -0.2742E-04 -0.4764E-04 -0.4754E-04 -0.4754E-04	GROUP VEL. 0.5243 0.523? 0.5221 0.5221 0.5223 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5042 0.5047 0.5042 0.5035 0.5047 0.4975 0.4975 0.4975 0.4966 0.4666 0.4653	WAVE VEL- 0.4506 0.4461 0.4411 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL- 0.4370 0.4324 0.4273 0.4214 0.4214 0.4214 0.4214 0.4214 0.4214 0.4152 0.4152 0.410 0.4065 0.4065 0.4065 0.4065 0.4065 0.4065 0.4065	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.492E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.10E-01 0.156E-01 0.256E-01 0.256E-01 0.256E-01 0.256E-01
PROFILE COEFFIC RE(DELTA) = 7 BETAR*DELTA/U 0.750 0.600 0.500 0.450 0.400 RE(DELTA) = 8 BETAR*DELTA/U 0.750 0.600 0.690 0.690 0.690 0.690 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.650	IENTS -0.55041 00. ALFAR*DELTA 1.6644 1.5690 1.4733 1.3775 1.2815 1.1854 1.0890 0.9921 50. ALFAR*DELTA 1.6996 1.6015 1.5031 1.4040 1.3050 1.2057 1.1064 00. ALFAR*DELTA 1.8896 1.7885 1.6856 1.5814 1.4757 1.3695 1.2625 1.1552 1.0476	## TAR # NU / U # 2	ALFAI*NU/U 0.2614E-04 0.1771E-04 0.1300E-04 0.1228E-04 0.1514E-04 0.2171E-04 0.3142E-04 0.4442E-04 ALFAI*NU/U -0.1176E-05 -0.1082E-04 -0.1694E-04 -0.1835E-04 -0.1835E-04 -0.1835E-04 -0.1849E-04 -0.1871E-05 -0.1449E-04 -0.3710E-04 -0.3710E-04 -0.4721E-04 -0.4754E-04 -0.4754E-04 -0.4754E-04	GROUP VEL. 0.5243 0.5243 0.5223 0.5221 0.5213 0.5205 0.5194 0.5173 0.5151 GROUP VEL. 0.5114 0.5089 0.5063 0.5047 0.5063 0.5047 0.5042 0.5035 0.5027 GROUP VEL. 0.4975 0.4902 0.4928 0.4764 0.4719 0.4666 0.4653 0.4638	WAVE VEL. 0.4506 0.4461 0.4451 0.4355 0.4291 0.4217 0.4132 0.4031 WAVE VEL. 0.4412 0.4370 0.4273 0.4214 0.4146 0.4067 WAVE VEL. 0.4233 0.4193 0.4193 0.4152 0.4160 0.3960 0.3895 0.3818	CITMP -0.576E-02 -0.413E-02 -0.322E-02 -0.325E-02 -0.430E-02 -0.666E-02 -0.104E-01 -0.161E-01 CITMP 0.300E-03 0.292E-02 0.485E-02 0.593E-02 0.602E-02 0.492E-02 0.231E-02 CITMP -0.579E-03 0.556E-02 0.110E-01 0.156E-01 0.195E-01 0.246E-01 0.246E-01 0.245E-01

WT - 3.9270

NA = 0.0750	XW/U = 5.0600	WT = 4.7124				
Selection and the second						
REIDELTA) = 14	00.					
BETAR#DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.200	0.6104	0.1428E-03	0.8000E-05	0.4399	0.3276	-0.807E-02
0.150	0.4944	0.1071E-03	0.2485E-04	0.4269	0.3033	-0.300E-01

RE(DELTA) = 20	00.					
		Dest -		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
BETAR*DELTA/U	ALFAR+DELTA	BETAR +NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750 0.700	1.6386	0.3750E-03	-0.2350E-05 -0.1580E-04	0.5047 0.4888	0.4079	0.129E-02 0.868E-02
0.650	1.7378 1.6340	0.3499E-03 0.3250E-03	-0.2719E-04	0.4729	0.3977	0.157E-01
0.600	1.5263	0.2999E-03	-0.3574E-04	0.4610	0.3931	0.215E-01
0.550	1.4171	0.2749E-03	-0.4175E-04	0.4537	0.3881	0.267E-01
0.500	1.3059	0.2500E-03	-0.4505E-04	0.4478	0.9828	0.308E-01
0.450	1.1938	0.2249E-03	-0.4564E-04	0.4438	0.3769	0.339E-01
0.400	1.0806	0.2000E-03	-0.4364E-04	0.4407	0.3701	0.356E-01
0.350	0.9669	0.1749E-03	-0.3904E-04	0.4384	0.3619	0.354E-01
0.300	0.8525	0.1499E-03	-0.3200E-04	0.4359	0.3519	0.327E-01
0.250	0.7375	0.1250E-03	-0.2250E-04	0.4321	0.3389	0.263E-01
0.200	0.6211	0.1000E-03	-0.1094E-04	0.4243	0.3220	0.149E-01
0.150	0.5018	0.74998-04	0.2350E-05	0.4164	0.2989	-0.390E-02
REIDELTA) = 30	00.					
WEIDCEINI - 30						
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GRCUP VEL.	WAVE VEL.	CITMP
0.700	1.7687	0.2333E-03	-0.1333E-05	0.5346	0.3957	0.120E-02
0.650	1.6728	0.2166E-03	-0.1100E-04	0.5069	0.3885	0.100E-01
0.600	1.5713	0.1999E-03	-0.1983E-04	0.4792	0.3818	0.181E-01
0.550	1.4640	0.1833E-03	-0.2693E-04	0.4578	0.3756	0.252E-01
0.500	1.3528	0.1666E-03	-0.3223E-04	0.4425	0.3696	0.316E-01
0.450	1.2380	0.1500E-03	-0.3546E-04	0.4308	0.3634	0.370E-01
0.400	1.1207	0.1333E-03	-0.3650E-04	0.4225	0.3569	0.412E-01
0.350 0.300	1.0013 0.8805	0.1166E-03 0.5399E-04	-0.3529E-04 -0.3183E-04	0.4163 0.4120	0.3495 0.3407	0.440E-01 0.446E-01
0.250	0.7586	0.8333E-04	-0.2613E-04	0.4081	0.3295	0.421E-01
0.200	0.6355	0.6666E-04	-0.1833E-04	0.4027	0.3147	0.348E-01
0.150	0.5103	0.4999E-04	-0.8666E-05	0.3909	0.2939	0.199E-01
0.100	0.3796	0.3333E-04	0.2366E-05	0.3791	0.2634	-0.709E-02
40°						
RE(DELTA) = 52	50.					
	41 040 4051 54		A	**********		- 1 - 4 - 5
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	MAVE VEL.	CITMP
0.750 0.650	1.8529 1.6773	0.1428E-03	0.6552E-05	0.5962	0.4047	-0.110E-01
0.600	1.5959	0.1238E-03 0.1142E-03	-0.2000E-05 -0.6247E-05	0.5545 0.5336	0.3875 0.3783	0.347E-02 0.110E-01
0.400	1.1693	0.7619E-04	-0.2120E-04	0.4285	0.3420	0.407E-01
0.350	1.0490	0.6666E-04	-0.2264E-04	0.4065	0.3336	0.460E-01
0.300	0.9232	0.5714E-04	-0.2274E-04	0.3914	0.3249	0.506E-01
0.250	0.7935	0.4761E-04	-0.2095E-04	0.3814	0.3150	0.528E-01
0.200	0.6610	0.3809E-04	-0.1739E-04	0.3734	0.3025	0.515E-01
0.150	0.5257	0.2857E-04	-0.1186E-04	0.3650	0.2853	0.432E-01
0.100	0.3870	0.1904E-04	-0.4838E-05	0.3432	0.2583	0.225E-01
0.050	0.2336	0.9523E-05	0.3257E-05	0.3214	0.2140	-0.235E-01
RE(DELTA) = 72	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETARENU/U+#2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750	1.8586	0.1034E-03	0.4275E-05	0.5675	0.4035	-0.946E-02
0.700	1.7691	0.9655E-04	0.1144E-05	0.5552	0.3956	-0.260E-02
0.650	1.6785	0.8965E-04	-0.1862E-05	0.5430	0.3872	0.436E-02
0.600	1.5849	0.8275E-04	-0.4413E-05	0.5305	0.3785	0.107E-01
0.550	1.4900	0.7586E-04	-0.6910E-05	0.5222	0.3691	0.175E-01
0.500	1.3934	0.6896E-04	-0.9227E-05	0.5051	0.3586	0.242E-01
0.450	1.2919	0.6206E-04	-0.1164E-04	0.4792	0.3483	0.313E-01
0.400	1.1846	0.5517E-04	-0.1397E-04	0.4494	0.3376	0.384E-01
0.350	1.0691	0.4827E-04	-0.1580E-04	0.4190	0.3273	0.449E-01
0.300	0.9457	0.4137E-04	-0.1673E-04	0.3935	0.3172	0.504E-01
0.250 0.200	0.8148 0.6783	0.3448E-04 0.2758E-04	-0.1640E-04 -0.1451E-04	0.3741 0.3605	0.3068 0.2948	0.545E-01
0.150	0.5374	0.2068E-04	-0.1097E-04	0.3609	0.2791	0.559E-01 0.518E-01
0.100	0.3925	0.1379E-04	-0.5765E-05	0.3324	0.2547	0.354E-01
0.050	0.2362	0.6896E-05	0.5379E-06	0.3149	0.2116	-0.520E-02
			-			

NA = 0.0750	XW/U = 5.0600	WT = 5.4978				
PROFILE COEFFIC	IENTS 0.18028	-5.10600 32.4	8000 -85.42401	116.68000 -88.	64801 35.57	20) -5.91220
REIDELTA) = 8	00•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.4941	0.8750E-03	0.1587E-04	0.5741	0.4685	-0.488E-02
0.450	1.4074	0.8125E-03	0.1474E-04	0.5551	0.4618	-0.465E-02
0.600	1.3137	0.7499E-03	0.9875E-05	0.5362	0.4567	-0.322E-02
0.550	1.2209	0.6874E-03	0.1212E-04	0.5387	0.4504	-0.428E-02
0.500	1.1281	0.6250E-03	0.1512E-04	0.5396	0.4432	-0.578E-02
0.450	1.0356	0.5625E-03	0.2337E-04	0.5367	0.4345	-0.969E-02
0.400	0.9418	0.5000E-03	0.3212E-04	0.5339	0.4247	-0.145E-01
REIDELTA) - 9	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.5418	0.7777E-03	0.6444E-05	0.4099	0.4540	-0.154E-02
0.450	1.4194	0.7222E-03	0.666E-06	0.4730	0.4579	-0.199E-03
0.400	1.3264	0.6666E-03	-0.2222E-05	0.5361	0.4523	0.808E-03
0.550	1.2329	0.6111E-03	-0.2222E-05	0.5336	0.4461	0.865E-03
0.500	1.1390	0.5555E-03	0.7777E-06	0.5310	0.4389	-0.326E-03
0.450	1.0446	0.5000E-03	0.6555E-05	0.5285	0.4307	-0.298E-02
RE(DELTA) = 10	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.450	1.4322	0.6500E-03	-0.6499E-05	0.5397	0.4538	0.244E-02
0.600	1.3389	0.5999E-03	-0.1039E-04	0.5330	0.4481	0.414E-02
0.550	1.2446	0.5499E-03	-0.1130E-04	0.5263	0.4419	0.477E-02
0.500	1.1489	0.5000E-03	-0.9400E-05	0.5224	0.4351	0.427E-02
0.450	1.0532	0.4499F-03	-0.4600E-05	0.5203	0.4272	0.227E-02
0.400	0.9567	0.4000E-03	0.2699E-05	0.5170	0.4181	-0.145E-02
0.350	0.8598	0.3499E-03	0.1239E-04	0.5120	0.4070	-0.738E-02
0.300	0.7614	0.2999E-03	0.2429E-04	0.5038	0.3940	-0.160E-01
0.250	0.6613	0.2500E-03	0.3789E-04	0.4903	0.3780	-0.281E-01
0.200	0.5574	0.2000E-03	0.5310E-04	0.4672	0.3588	-0.445E-01
0.150	0.4471	0.1499E-03	0.6940E-04	0.4441	0.3354	-0.689E-01
RE(DELTA) = 14	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.5720	0.4999E-03	-0.5142E-05	0.5270	0.4452	0.241E-02
0.650	1.4767	0.4642E-03	-0.1378E-04	0.5195	0.4401	0.679E-02
0.600	1.3795	0.4285E-03	-0.2028E-04	0.5120	0.4349	0.105E-01
0.550	1.2814	0.3928E-03	-0.2392E-04	0.5068	0.4292	0.132E-01
0.500	1.1822	0.3571E-03	-0.2499E-04	0.5022	0.4229	0.148E-01
0.450	1.0823	0.3214E-03	-0.2335E-04	0.4985	0.4157	0.150E-01
0.400	0.9816	0.2857E-03	-0.1935E-04	0.4945	0.4074	0.136E-01
0.350	0.8801	0.24998-03	-0.1292E-04	0.4904	0.3976	0.100E-01
0.300	0.7777	0-2142E-03	-0.4357E-05	0.4847	0.3857	0.380E-02
0.250	0.6738	0.1785E-03	0.5214E-05	0.4755	0.3710	-0.614E-02
0.200	0.5674	0.1428E-03	0.1828E-04	0.4589	0.3524	-0.207E-01
0.150	0.4558	0.1071E-03	0.3135E-04	0.4423	0.3290	-0.426E-01
RE(DELTA) = 20	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.6114	0.3499E-03	0.3050E-05	0.5413	0.4344	-0.204E-02
0.650	1.5177	0.3250E-03	-0.7050E-05	0.5253	0.4232	0.488E-02
0.600	1.4210	0.2999E-03	-0+1495E-04	0.5092	0.4222	0.107E-01
0.550	1.3213	0.2749E-03	-0.2099E-04	0.4960	0.4162	0.157E-01
0.500	1.2194	0.2500E-03	-0.2460E-04	0.4868	0.4100	0.196E-01
0.450	1.1159	0.2249E-03	-0.2604E-04	0.4796	0.4032	0.223E-01
0.400	1.0109	0.2000E-03	-0.2505E-04	0.4735	0.3956	0.234E-01
0.350	0.9047	0.1749E-03	-0.2184E-04	0.4681	0.3868	0.226E-01
0.300	0.7973	0.1499E-03	-0.1650E-04	0.4629	0.3762	0.191E-01
0.250	0.6887	0.1250E-03	-0.9149E-05	0.4564	0.3630	0.121E-01
0.200	0.5782	0.1000E-03	-0.4999E-07	0.4449	0.3459	0.769E-04
0.150	0.4639	0.7499E-04	0.1024E-04	0.4334	0.3233	-0.191E-01
RE(DELTA) = 52	50•					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.6119	0.1333E-03	0.8590E-05	0.6294	0.4342	-0.176E-01
0.450	1.5318	0.1238E-03	0+5904E-05	0.6203	0.4243	-0.125E-01
0.600	1.4507	0.1142E-03	0.3142E-05	0.6112	0.4135	-0.6 2-03
0.550	1.3682	0.1047E-03	0.1333E-06	0.5917	0.4019	-0.30 :-03
					~~~~,	

NA = 0.0750	XW/U - 5.0600	WT - 5.4978				
REIDELTA) - 5	250.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U-2	ALFAI MU/U	GROUP VEL.	WAVE VEL.	CITHP
0.500	1.2616	0-9523E-04	-0.3276E-05	0.5622	0.3901	0-7546-02
0.450	1.1902	0.8571E-04	-0.664 7E-05	0.5174	0.3780	0.1516-01
0.400	1.0877	3-7619E-04	-0.99J4E-05	0.4732	0.3477	0-2266-01
0.350	0.9787	0.6666E-04	-0.1111E-04	0.4463	0.3576	0.290E-01
0.300	0.8635	0.5714E-04	-0.1293E-04	0.4250	0.3474	0.3346-01
0.250	0.7433	0.4761E-04	-0.1205E-04	0.4083	0.3363	0.347E-01
0.200	0.6185	0 - 3809E-04	0. /752E-05	0. 47	0.3233	0.327E-01
0.150	0.4906	0.2857E-04	-0.5657f 05	0. '	0.3057	0.231E-01
0.100	0.3571	0.1904E-04	-0.47.1E-06	0.3006	0.2800	0.248E-02
0.050	0.2086	0.9523E-05	0.52958-05	0.3285	0.2396	-0.437E-01
REIDELTAL - 7	250.					
BETAR+DELTA/U	ALFAR+DELTA	BETARENU/U##2	ALFAI+NU/U	GROUP VEL.	WAVE VEL	CITHP
0.700	1.6132	0.9455E-04	0.5558E-05	0.4020	0.4339	-0.150E-01
0.650	1.5300	0.8965E-04	0.3724E-05	0.5273	0.4248	-0.105E-01
C.600	1.4458	0.8275E-04	0.1952E-05	0.5927	0.4149	-0.582E-02
0.550	1.3613	0.7586E-04	0.4551E-06	0.5879	0.4040	-0.142E-02
0.500	1.2757	0.6896E-04	-0.1117E-05	0.5780	0.3919	0.367E-02
0.450	1.1883	0.6206E-04	-0.2868E-05	0.5571	0.3786	0.975E-02
0.400	1.0961	0.5517E-04	-0.4937E-05	0.5189	0.2649	0.169E-01
0.350	0.9952	0.4827E-04	-0.7062E-05	0.4729	C.3514	0.243E-01
0.300	0.8842	0.4137E-04	-J.8662E-05	0.4328	0.3392	0.307E-01
0.250	0.7638	0.3448E-04	-0.9158E-05	0.4035	0.3273	0.350E-01
0.200	0.6362	0.2758E-04	-0.8248E-05	0.3036	0.3143	0.360E-01
0.150	0.5030	0.2058E-04	-0.5806E-05	0.3661	0.2982	0.308E-01
0.100	0.3645	0 - 1379E-04	-0.1944E-05	0.3446	0.2743	0.1336-01
0.050	0.2122	0.6896E-05	0.2510E-05	0.3211	0.2356	-0.275E-01

MA - 0.0750	XW/U = 9.0000	WT - 0.0000				
PROFILE COEFFIC	TENTS 1.11190	-12.16400 59.3	3500-146.50003	201.53002-158.	33001 66.82	301 -11.79200
REIDELTA) - 10	00.					
BETAR-DELTA/U	ALFAR-DELTA	BETARONU/UPP2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.650	1.3502	0.6500E-03	0.1730E-04	0.5691	0.4614	-0.729E-02
0.600	1.2621	0.5999E-03	0.1499E-04	0.5643	0.4753	-0.670E-02
0.550	1.1730	0.5499E-03	0.1499E-04	0.5596	0.4686	-0.715E-02
0.500	1.0834	0.5000E-03	0.1720E-04 0.2150E-04	0.5555	0.4615 0.4531	-0.882E-02 -0.119E-01
2.400	0.9019	0.40006-03	0.2754E-04	0.5452	0.4435	-0.166E-01
0.350	0.9096	0.34998-03	0.3550E-04	0.5373	0.4323	-0.235E-01
0.900	0.7158	0.29996-03	0.4479E-04	0.5256	0.4191	-0.329E-01
0.250	0.6194	0.2500E-03	0.55298-04	0.5083	0.4036	-0.453E-01
0.200	C.5190	0.2000E+03	0.6649E-04	0.4908	0.3853	-0.6262-01
REIDELTAL - 201	00.					
BETAR-DELTA/U	ALFAR+DELTA	BETAR .NU/U.Z	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.750	1.5903	0.3750E-03	0.2170E-04	0.6019	0.4716	-0.164E-01
0.700	1.5059	0.34996-03	0.1334E-04	0.5032	0.4648	-0.103E-01
0.650	1.4108	0.3250E-03	0.5349E-05	0.5644	0.4581	-0.425E-02
0.400	1.3247	0.2999E-03	-3.6000E-06	0.5483	U-4315	0.495E-03
0.550	1.2364	0.2749E-03	-0.5150E-05	0.5342 0.5230	0.4448	0.445E-02
0.900	1.1415	J. 2249E-03	-0.7650E-05	0.5141	0.4380	0.701E-02 0.851E-02
0.400	0.9470	0.20006-03	-0.7599E-05	0.5065	0.4223	0.813E-02
0.390	0.6478	0.1749E-03	-0.5099E-05	0,4992	0.4128	0.600E-02
0.300	0.7467	0.1499E-03	-0.69998-06	0.4919	0.4017	0.9226-03
REIDELTA) - 30	00.					
BETAR-DELTA/U	ALFAR-DELTA	BETARONU/UPP2	ALFAI+NU/U	CROUP VEL.	WAVE VEL.	CITMP
0.600	1.3542	0.19996-03	0.6000E-05	0.5784	0.4430	-0.768E-02
2.550	1.2661	0.19336-03	3.7666E-06	0.5537	0.4344	-0.100E-02
0.500	1.1735	J. 1666E-03	-0.3466E-05	0.5290	0.4260	0.468E-02
0.450	1.0770	0.1500E-03	-0.6366E-05	0.5093	0.4178	0.903E-02
0.400	0.9771	0.1333E-03	-0.7666E-05	0.4936	0.4093	0.1196-01
0.350	0.8744	0.11666-03	-0.7733E-05	9.4812	0.4002	0.127E-01
0.300	0.7693	0.9999E-04	-0.61338-05	0.4708	0.3899	0.1126-01
0.250	0.6620	0-1333E-04	-0.2933E-05	0.4606	0.3776	0.612E-0.
0.200 0.150	0.5923	0.666E-04 0.4999E-04	0.1500E-05 0.6899E-05	0.4483	0.3621 0.3417	-0.365E-02 -0.201E-01
0.100	0.3174	0.33336-04	0.12236-04	0.4040	0.3150	-0.467[-01
REIDELTA) + 34	50.					
		<b>25 2 2 2 2 2 2 2 2 2 2</b>	A1 5 A \$ A M 1 (1)	60010 VE	HAVE VEL	61748
BETAR-DELTA/U	ALFAR•DELTA	BETARONU/UPP2	0.9321E-05	GROUP VEL.	WAVE VEL-	CITHP
0.650	1.3410	0.1192E-03 0.1100E-03	0.7944E+05	0.6502	0.4471	-0.234E-01 -0.209E-01
0.550	1.2657	0.10098-03	0.6403E-05	0.6449	0.4345	-0.177E-01
0.500	1.1067	0.9174E-04	0.4256E-05	0.6162	0.4213	-0.120E-01
0.450	1.1033	0.8256E-04	0.1779E-05	0.5747	0.4076	-0.505E-02
0.400	1.0124	0.7339E-04	-C.9908E-06	0.5270	0.3951	0.201E-02
0.390	0.9132	0.6422E-04	-0.3027E-05	0.4871	0.3632	0.880E-02
0.300	0.9369	0.55048-04	-0.4256E-05	0.4572	0.3717	0.131E-01
0.290	0.6943	0.4507E-04	-0.40188-05	0.4362	0.3600	0.137E-01
0.200	0.5776	0.3669E-04 0.2752E-04	-0.2642E-05	0.4203 0.4027	0.3462 0.3287	0.104E-01
0.190	C.3292	0.18345-04	0.2385E-06 0.3467E-05	0.3709	0.3037	-0.114E-02 -0.212E-01
0.050	0.1057	0.91748-05	0.4495E-05	0.3390	0.2692	-0.646E-01
REIDELTAL - 705						
BETAR-DELTA/U	ALFAR+DELTA	BETARONU/UOO2	ALFAI-NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.450	1.4151	0.9285E-04	0.65426-05	0.6273	0.4593	-0.203E-01
0.600	1.3354	0.05716-04	0.5714E-05	0.6297	0.4493	-0.188E-01
0.550	1.2563	0.7857E-04	0.4985E-05	0.4321	0.4377	-0.175E-01
0.500	1.1772	0.71425-04	0.4228E-05	0.6301	0.4247	-0.158E-01
0.450	1.0976	0.6428E-04	0-3142E-05	0.6149	0.4099	-0.123E-01
0.400	1.0149	0.5714E-04	0.1457E-05	0.5731	0.3942	-0.576E-02
0.350	0.9227	0.49998-04	-0.5142E-06	0.5174	0.3793	0.201E-02
0.300	0.0207	0.4285E-04	-0.2228E-05	0.4689	0.3655	0.891E-02
0.250	0.7090	0.3571E-04	-0.2957E-05	0.4344	0.3526	0:126E-01
0.200	0.5903	0.2057E-04 0.2142E-04	-0.2428E-05	0.4107 0.3918	0.3388	0.118E-01 0.437E-02
0.190 0.100	0.3350	0.1428E-04	0.1985E-05	0.2437	0.3223	-0.101E-01
****		44PAF - 44		*****	*****	

NA = 0.0750	XW/U = 9.0000	WT = 1.9708				
PROFILE COEFFIC	CIENTS 0.59405	-0.04224 -21.45	800 110.47000-	-248.35000 286	44000-166.16	000 38.50400
RE(DELTA) - 54	150.				,	
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI=NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.600	1.8866	0.1100E-03	0.8829E-04	0.2369	0.3180	-0.604E-01
0.550	1.6839	0.1009E-03	0.7445E-04	0.2511	0.3266	-0.605E-01
0.500	1.4863	0.9174E-04	0.6042E-04	0.2653	0.3359	-0.587E-01
0.450	1.3065	0.8256E-04	0.4656E-04	0.2905	0.3444	-0.564E-01
0.400	1.1431	0.7339E-04	0.3319E-04	0.3269	0.3499	-0.517E-01
0.350	0.9994	0.64225-04	0.2269E-04	0.3594	0.3502	-0.444E-01
0.300	0.8646	0.5504E-04	0.1552E-04	0.3762	0.3469	-0.368E-01
0.250	0.7336	0.4587E-04	0.1194E-04	0.3838	0.3407	-0.340E-01
C • 200	0.6041	0.3669E-04	0.1029E-04	0.3834	0.3310	-0.356E-01
0.150	0.4728	0.27525-04	0.1091E-04	0.3830	0.3172	-0.482E-01
RE(DELTA) = 70	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.600	2.0696	0.8571E-04	0.7474E-04	0.2195	0.2899	-0.555E-01
0.550	1.8480	0.7857E-04	0.6321E-04	0.2297	0.2976	-0.550E-01
0.500	1.6342	0.7142E-04	0.5207E-04	0.2399	0.3059	-0.535E-01
0.450	1.4309	0.6428E-04	0.4112E-04	0.2553	0.3144	-0.513E-01
0.400	1.2420	0.5714E-04	0.3057E-04	0.2792	0.3220	-0.481E-01
0.350	1.0718	0-4999E-04	0.2115E-04	0.3096	0.3265	-0.42/E-01
0. 00	0.9182	0.4285E-04	0.1399E-04	0.3366	0.3267	-0.359E-01
0.250	0.7744	0.3571E-04	0.9671E-05	0.3515	0.3228	-0.307E-01
0.200	0.6337	0 • 2857E-04	0.7671E-05	0.3559	0.3156	-0.301E-01
0.150	0.4935	0.2142E-04	0.7657E-05	0.3536	0.3039	-0.384E-01
0.100	0.3509	0.1428E-04	0 • 96 14E-05	0.3512	0.2849	-0.603E-01
RE(DELTA) = 100	000.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.300	1.0103	0.2999E-04	0.1194E-04	0.2924	0.2969	-0.345E-01
0.250	0.8399	0.2500E-04	0.7499E-05	0.3056	0.2976	-0.272E-01
0.200	0.6826	0.1999E-04	0.4999E-05	0.3188	0.2929	-0.233E-01
0.150	0.5263	0.1499E-04	0.4540E-05	0.3227	0.2550	-0.278E-01
0.100	0.3727	0.9999E-05	0.5249E-05	0.3122	0.2683	-0.439E-01
0.050	0.2055	0.4999E-05	0.5970E-05	0.3018	0.2433	-0.876E-01

No constitution of the con

11A = 0.0750	XW/U = 9.0000	WT = 1.5708	(HIGHER MO	E SOLUTIONS)		
PROFILE COEFFIC	IENTS 0.59405	-0.04224 -21.43	<b>80</b> 0 110.47000-	-248.35000 286.	44000-166.16	000 38.50400
RE(DELTA) - 54	50.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.2165	0.1192E-03	0.3447E-04	0.6866	0.5343	-0.196E 00
0.600	1.1421	0.1100E-03	0.3478E-04	0.6532	0.5253	-0.108E 00
0.550	1.0633	0.1009E-03	0.3599E-04	0.6199	0.5172	-0.114E 00
0.500	0.9807	0.9174E-04	0.3787E-04	0.5779	0.5098	-0.121E 00
0.450	0.8899	0.8256E-04	0.4080E-04	0.5131	0.5056	-0.128E 00
0.400	0.7848	0.7339E-04	0.44C7E-04	0.4470	0.5096	-0.136E 00
0.350	0.6653	0.6422E-04	0.4555E-04	0.4117	0.5260	-0.153E 00
0.300	0.54 9	0.5504E-04	0.4447E-04	0.4098	0.5536	-0.183E 00
0.250	0.4213	0.4587E-04	0.4165E-04	0.4420	0.5934	-0.238E 00
0.200	0.3148	0-3669E-04	7.4078E-04	0.6827	0.6353	-0.482E 00
0.150	0.2590	0.27526-04	3.4682E-04	2.4321	0.5791	-0.239E 01
0.100	0.2464	0.1834E-04	0.3438E-04	4.3448	0.4058	-0.178E 01
0.050	0.1771	0.9174=-05	0.1143E-04	2.2576	0.2823	-0.794E 00
REIDELTAL = 70	00.					
BETAR+DELTA/U	ALF, R+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.2904	0.99998-04	0.2674E-04	0.7300	0.5424	-0.105E 00
0.650	1.2209	0.9255E -04	2.26445-04	0.6975	0,5323	-0.105E 00
0.400	1.1465	0.8571E-04	0.2644E-04	0.6650	0.5231	-0.107E 00
0.550	1.0705	0.7857E-04	0.2655E-04	0.6347	0.5137	-0.110E 00
0.500	0.9892	0.7142E-04	0.2/18E-04	0.5948	0.5054	-0.114E 00
0.450	0.9022	0.6428E-04	0.2829E-04	0.5466	0.4987	-0.120E 00
0.400	0.805	3.5714E-04	0.2994E-04	0.4857	0.4964	-0.126E 00
0.350	0.695+	0.4999E-04	0.3140E-04	0.4335	0.5033	-0.137E 00
0.300	0.5747	0.4265E-04	0.3140E-04	0.4108	0.5220	-0.157E 00
0.250	0.4520	0.35715-04	0.2958E-04	0.4131	0.5530	-0.189E 00
0.200	0.3326	0.2857E-04	0.2658E-04	0.4921	0.6013	-0.275E 00
0.150	0.2442	0.2142E-04	0.2540E-04	0.0491	0.6142	-0.357E-01
0.100	0.3512	0.1428E-04	0.8642E-05	-0.0800	0.2847	0.137E-01
0.050	0.1884	0.7142E-05	0.8885E-05	-6.2093	0.2653	0.691E-01
RE(DELT 1) - 100	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.2186	0.6500E-04	0.1885E-04	0.7302	0.5333	-0.113E 00
0.600	1.1491	0.599>E-U4	0 - 1876E-04	0.7017	0.5221	-0.114E 00
0.550	1.0760	0.5499E-04	0.1867E-04	0.6731	0.5111	-0.116E 00
0.500	1.0005	0.5000E-04	0 . 1867E-04	0.6337	3.4997	-0.118E 00
0.450	0.9179	0.4500E-04	0.1876E-04	0.5823	0.4902	-0.119E 00
0.400	0.8285	0.3999E-04	0 • 1912E-04	0.5266	0.4828	-0.121E 00
0.350	0.7273	0.3499E-04	0 - 1966E - 04	0.4649	0.4812	-0.125E 00
0.300	0.6126	0.2999E-04	0.1986E-04	0.4225	0.4897	-0.136E 00
0.250	0.4904	0.2500E-04	0-1904E-04	0.4098	0.5097	-0.159E 00
0.200	0.3686	0.1999E-04	0 - 1698E - 04	0.4123	0.5425 0.6050	-0.189E 00
0.150	0.2479	0.1499E-04 0.9999E-05	0.1413E-04 0.1290E-05	0.0246 -0.0431	0.4050	-0.140E-01 0.144E-02
0.100	0.3849	0.4999E-05	0.1290E-05	-0.1109	0.2433	0.322E-01
0.050	0.2055	0.47776-03	0.57/05-05	-0.1103	002-33	0.3255-01

NA = 0.0750 XW/U = 9.0000 WT = 3.1416 PROFILE COEFFICIENTS -1.12980 12.16300 -54.74400 143.82000-229.30001 215.01001-108.53001 22.73000 RE(DELTA) = 1500. WAVE VEL-0.3808 0.3761 0.3702 0.3631 BETAR+DELTA/U ALFAR+DELTA BETAR*NU/U**2 ALFAI+NU/U GROUP VEL. CITMP 0.3333E-03 0.3000E-03 0.2746E-04 0.2266E-04 -0.135E-01 0.4306 0.500 1.3127 0.4304 -0.122E-01 0.450 1.1962 0.2666E-03 0.2333E-03 0.4302 -0.126F-01 1.0804 0.2113E-04 0.400 -0.154E-01 -0.210E-01 0.2306E-04 0.350 0.9638 0.3538 0.300 0.1999E-03 0.2766E-04 0.4295 0.3499E-04 0.3419 -0.304E-01 0.1666E-03 0.250 0.7310 0.4239 0.6120 0.4406E-04 0.5479E-04 0.4105 0.3267 -0.443E-01 -0.643E-01 -0.918E-01 0.9999E-04 0.150 0.3492 0.6626E-04 0.3226 0.2863 0.3333E-04 -0.177E 00 0.1727 0.7733E-04 0.2638 0.2895 0.050 RE(DELTA) . 2100. BETAR+DELTA/U ALFAR*DELTA BETAR+NU/U++2 ALFAI*NU/U GROUP VEL. WAVE VEL. CITMP 0.3949 0.3595 -0.647E-02 -0.263E-02 1.3908 0.2380E-03 0.1095E-04 0.500 1.2641 0.450 0.2142E-03 0.3999E-05 -0.523E-03 -0.670E-03 0.3513 0.1904E-03 0.7142E-06 0.397 0.400 1.0125 0.3456 0.3378 0.3276 0.350 0.1666E-03 0.8095E-06 0.3992 -0.347E-02 0.3666E-05 0.4009 0.14232 -03 0.300 0.3996 0.250 0.7631 0-1190F-03 0.9190E-05 -0-101F-01 0.3984 0.3136 -0.219E-01 0.9523E-04 0.1676E-04 0.200 0.6377 REIDELTA) = 3000. GROUP VEL WAVE VEL. CITMP RFTAR*DELTA/U ALFAR*DELTA BETAR*NU/U**2 ALFAI*NU/U 0.3397 -0.112E-01 -0.390E-02 1.6188 0.1833E-03 0.1683E-04 0.3598 0.550 1.4806 0.3615 0.500 0.1666E-03 0.5333E-05 0.221E-02 0.689E-02 0.1500E-03 -0.2733E-05 0.3632 0.3352 0.450 -0.7566E-05 0.3318 0.400 1.2053 0.1333E-03 0.3663 0.3273 -0.9400E-05 0.972E-02 0.3688 1.0692 0.1166E-03 0.350 0.9342 0.9999E-04 -0.8466E-05 0.3711 0.3211 0.100E-01 0.300 0.8333E-04 -0.4999E-05 0.698E-02 0.250 0.3724 0.3125 0.6666E-04 0.4999E-04 0.7666E-06 0.8400E-05 0.3705 0.3004 -0.128E-02 -0.170E-01 0.6657 0.150 0.5299 0.3333E-04 0 - 1720E-04 0.3480 0.2582 -0.463E-01 0.100 0.3872 RE(DELTA) = 5450. WAVE VEL-0.3216 0.3164 0.3125 0.3093 BETAR+DELTA/U ALFAR+DELTA BETAR*NU/U+#2 ALFAI+NU/U GROUP VEL. CITMP 0.4201 -0.107E 00 -0.711E-01 -0.448E-01 0.1284E-03 0.1192E-03 0.700 0.1023E-03 2.1760 1.0541 0.6855E-04 0.3623 0.600 1.9198 0.1100E-03 0.4365E-04 0.550 0.2543E-04 0.1009E-03 0.3456 -0.269E-01 1.6304 0.9174E-04 0.8256E-04 0.1144E-04 0.1100E-05 0.3351 0.3066 -0.128E-01 -0.133E-02 0.500 0.450 0.3264 0.3264 0.3275 0.3292 0.3014 0.400 1.3269 0.7339E-04 -0.6091E-05 0.817E-02 0.6422E-04 0.5504E-04 -0.1047E-04 0.158E-01 0.215E-01 0.350 1.1736 -0.1231E-04 -0.1177E-04 0.2939 0.300 1.0206 0.4587E-04 0.250 0.8683 0.243E-01 0.3306 0.200 0.7169 -0.9100E-05 0.2789 -0.4440E-05 0.1798E-05 0.2650 0.2752E-04 0.5659 0.140E-01 0.150 0.100 0.4125 0.1834E-04 0.3096 U.9174E-05 0.8825E-05 0.2906 0.050 0.2420 0.2066 -0.577E-01 RE(DELTA) = 7000. CITMP 0.190E 01 0.709E 00 -0.223E 00 BETAR*DELTA/U ALFAR*DELTA BETAR*NU/U**2 GROUP VEL. ALFAI#NU/U WAVE VEL. 0.7887E-04 0.7188E-04 -6.7038 -2.7431 1.2174 0.9999E-04 1.9381 0.3611 0.3342 1.9448 0.9285E-04 0.650 0.8571E-04 0.7857E-04 0.600 1.8105 0.4173 0.550 0.3092E-04 0.3037 -0.499E-01 1.6775 -0.240E-01 -0.772E-02 0.473E-02 0.500 0.3575 0.2980 0.1612E-04 1.5301 1.3762 0.5085E-05 0.2940 C.450 0.6428E-04 0.3320 0.400 0.5714E-04 0.3208 0.3153 0.2872 0.147E-01 0.225E-01 0.277E-01 0.350 1.2184 0.4999F-DA -0.8114E-05 1.0591 -0.1085E-04 0.4285E-04 0.300 0.3571E-04 0.2857E-04 -0.1135E-04 -0.9757E-05 0.3138 0.250 0.8995 0.2779 0.7405 0.200 0.2700 0.290F-01 -0.6257E-05 0.3143 0.150 0.5820 0.2142E-04 0.1428E-04 0.7142E-05 0.2367 0.100 0.422 -0.549F-02 0.2498 0.5014E-05 -0.405E-01

NA - 0.0750	XW/U = 9.0000	WT = 3.9270				
PROFILE COEFFIC	CIENTS -1.33680	9.12540 -21.2	8500 17.46700	13.19800 -39	23500 36.23	600 -8.15150
RE(DELTA) = 10	ooc.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.7430	0.6999E-03	0.3669E-04	0.4464	0.4016	-0.939E-02
0.650	1.6312	0.650CE-03	0.2379E-04	0.4472	0.3984	-0.652E-02
0.600	1.5194	0.5999E-03	0.1519E-04	0.4480	0.3948	-0.448E-02
0.550 0.500	1.4080 1.2969	0.5499E-03 0.5000E-03	0.1059E-04 0.1000E-04	0.4494 0.4508	0.3906 0.3855	-0.338E-02
0.450	1.1862	0.4499E-03	0.1299E-04	0.4520	0.3793	-0.495E-02
0.400	1.0757	0.4000E-03	0.1970E-04	0.4533	0.3718	-0.830E-02
REIDELTAL = 1	100.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.7682	0.6363E-03	0.2527E-04	0.4365	0.3558	-0.689E-02
0.650	1.6542	0.5909E-( )	0.1209E-04	0.4387	0.3929	-0.352E-02
0.600	1.5403	1 14E- 3	0.2818E-05	0.4389	0.3895	-0.883E-03
0.550	1.4264	0.4999E-03	-0.2181E-05	0.4403	0.3855	0.740E-03
0.500	1.3132	0.4545E-03	-0.3454E-05	0.4420	0.3807	0.127E-02
0.450	1.2002	0.4090E-03	-0.1000E-05	0.4432	0.3749	0.406E-03
0.400	1.0876	0.3636E-03	0.4909E-05	0.4444	0.3677	-0.220E-02
RE(DELTA) = 14	.00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.8329	0.4999E-03	0.9071E-05	0.4185	0.3819	-0.290E-02
0.650	1.7136	0.4642E-03	-0.5357E-05	0.4184	0.3793	0.183E-02
0.600	1.5939	0.4285E-03	-0.1578E-04	0.4182	0.3764	0.579E-02
0.550	1.4745	0.3928E-03	-0.2242E-04	0.4104	0.3730	0.893E-02
0.500	1.3555	0.3571E-03	-0.2535E-04	0.4208	0.3688	0.110E-01
0.450	1.2369	0.3214E-03	-0.2471E-04	0.4224	0.3638	0.118E-01
0.400	1.1188	0.2857E-03	-0.2071E-04	0.4240	0.3575	0.109E-01
0.350	1.0011	0.2499E-03	-0.1350E-04	0.4248	0.3496	0.802E-02
0.300	0.8834	0.2142E-03	-0.3357E-05	0.4240	0.3395	0.225E-02
0.250	0.7653	0.1785E-03	0.9500E-05	0.4201	0.3266	-0.730E-02
0.200	0.6454	0.1428E-03	0.2478E-04	0.4088	0.3098	-0.219E-01
0.150	0.5206	0.1071E-03	0.4207E-04	0.3974	0.2881	-0.449E-01
RE(DELTA) = 11	700.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.8847	0.4117E-03	0.5294E-05	0.4066	0.3714	-0.194E-02
0.650	1.7618	0.3823E-03	-0.9882E-05	0.4053	0.3689	0.386E-02
0.600	1.6380	0.3529E-03	-0.2135E-04	0.4040	0.3663	0.895E-02
0.550	1.5143	0.32356-03	-0.2917E-04	0.4043	0.3632	0.132E-01
0.500	1.3907	0.29410-03	-0.3347E-04	0.4053	0.3595	0.165E-01
0.450	1.2670	0.2647E-03	-0.3429E-04	0.4066	0.3550	0.187E-01
0.400	1.1448	0.2352E-03	-0.3188E-04	0.4081	0.3494	0.193E-01
0.350	1.0226	0.2058E-03	-0.2635E-04	0.4095	0.3422	0.179E-01
0.300	0.9006	0.17648-03	-0.1788E-04	0.4100	0.3331	0.138E-01
0.250	0.7787	0.1470E-03	-0.6764E-05	0.4081	0.3210	0.602E-02
0.200	0.6556	0.1176E-03	0.6764E-05	0.4004	0.3050	-0.702E-02
0.150	0.5289	0.8823E-04	0.2223E=04	0.3926	0.2836	-0.280E-01
RE(DELTA) = 25	900.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI*NU/U	GROUP VEL.	WAVE VEL+	CITHP
0.650	1.8520	0.26005-03	-0.4359E-05	0.3922	0.3509	0.230E-02
0.600	1.7242	0.2399E-03	-0 - 175 2E - 04	0.3873	0.3479	0.983E-02
0.550	1.5938	0.2199E-03	-0.2744E-04	0.3824	0.3450	0.164E-01
0.500	1.4627	0.2000E-03	-0.3412E-04	0.3805	0.3418	0.221E-01
0.450	1.3310	0.1800E-03	-0.3764E-04	0.3796	0.3380	0.268E-01
0.400	1.1993	0.1599E-03	-0.3819E-04	0.3800	0.3335	0.302E-01
0.350	1.0679	0.1399E-03	-0.3583E-04	0.3810	0.3277	0.319E-01
0.300	0.9369	0.1199E-03	-0.3075E-04	0.3822	0.3202	0.313E-01
0.250	0.5063	0.1000E-03	-0.2304E-04	0.3827	0.3100	0.273E-01
0.200	0.6756	0.7999E-04	-0.1291E-04	0.3800	0.2960	0.181E-01
0.150	0.5432	0.5999E-04	-C.7599E-06	0.3774	0.2761	0.132E-02
RE(DELTA) = 35	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.9105	0.1857E-03	0.64285-05	0.4094	0.3402	-0.482E-02
0.600	1.7869	0.1714E-03	-0.7085E-05	0.3942	0.3357	0.547E-02
0.550	1.6567	0.1571E-03	-0.1768E-04	0.3791	0.3319	0.143E-01
0.500	1.5231	0 • 1428E-03	-0.2597E-04	0.3704	0.3282	0.221E-01
0.450	1.3867	0.1285E-03	-0.3134E-04	0.3645	0.3245	0.288E-01

NA = 0.0'50	XW/U = 9.0000	WT = 3.9270				
REIDELTA) = 3	500.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL .	WAVE VEL.	CITMP
0.400	1.2488	0.1142E-03	-0.3399E-04	0.3615	0.3203	0.344E-01
0.350	1.1101	0.9999E-04	-0.3405E-04	0.3603	0.3152	0.386E-01
0.300	0.9713	0.8571E-04	-0.3154E-04	0.3603	0.3088	0-409E-01
0.250	0.8326	0.7142E-04	-0.2657E-04	0.3608	0.3002	0.403E-C1
0.200	0.6942	0.5714E-04	-0.1925E-04	0.3603	0.2881	0.349E-01
0.150	0.5551	0.4285E-04	-0.9857E-05	0.3598	0.2702	0.223E-01
REIDELTA) = 54	450.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.9288	0.1192E-03	0.1304E-04	0.4895	0.3369	-0.180E-01
0.600	1.8237	0.1100E-03	0.3871E-05	0.4522	0.3290	-0.523E-02
0.550	1.7071	0.1009E-03	-0.5027E-05	0.4150	0.3221	0.666E-02
0.500	1.5825	0.9174E-04	-0.1282E-04	0.3884	0.3159	0.171E-01
0.450	1.4494	0.8236E-04	-0.1906E-04	0.3671	0.3104	0.263E-01
0.400	1.3100	0.7339E-04	-0.2339E-04	0.3528	0.3053	0.343E-01
0.350	1.1659	0.6422E-04	-0.2566E-04	0.3436	0.3001	0.412E-01
0.300	1.0190	0.5504E-04	-0.2581E-04	0.3386	0.2944	0.467E-01
0.250	0.3706	0.4587E-04	-0.2379E-04	0.3361	0.2871	0.500E-01
0.200	0.7215	0.3669E-04	-0.1966E-04	0.3348	0.2772	0.497E-01
0.150	0.5720	0.2752E-04	-0.1350E-04	0.3322	0.2622	0.427E-01
0.100	0.4205	7.1834E-04	-0.5504E-05	0.3295	0.2378	0.2358-01
RE(DELTA) = 70	000•					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U##2	ALFAI+NU/U	GROUP VEL+	WAVE VEL.	CITMP
0.650	1.9248	0.9285E-04	0.1100E-04	0.5020	0.3376	-0.200E-01
0.600	1.8224	0.8571E-04	0.4885E-05	0.4730	0.3292	-0.887E-02
0.550	1.7132	0.7857E-04	-0.1500E-05	0.4440	0.3210	0.272E-02
0.500	1.5970	0.7142E-04	-0.7499E-05	0.4145	0.3130	0.136E-01
0.450	1.4716	0.6428E-04	-0.1294E-04	0.3849	0.3057	0.237E-01
0.400	1.336	0.5714E-04	-0.1730E-04	0.3606	0.2991	0-326E-01
0.350	1.1941	0.4999E-04	-0.2018E-04	0.3433	0.2931	0.406E-01
0.300	1.045	0.4285E-04	-0.2132E-04	0.3322	0.2869	0.474E-01
0.250	0.8931	0.35718-04	-0.2058E-04	0.3258	0.2799	0.525E-01
0.200	0.7386	0.2857E-04	-0.1791E-04	0.3224	0.2707	0.547E-01
0.150	0.5830	0.2142E-04	-0.1331E-04	0.3191	0.2572	0.510E-01

100						
NA = 0.0750	XW/U = 9.0000	WT - 4.7124				
PROFILE COEFFICE	ENTS -0.71103	0.05213 29.7	7300-130 • 77001	257-52002-270-	41003 147.32	000 -32.76200
RE(DELTA) = 8	30.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750 0.700	1.7632	0.8823E-03 0.8235E-03	0.8000E-05 -0.9411E-06	0.4819 0.4812	0.4253 0.4217	-0.185E-02 0.231E-03
0.650	1.5554	0.7647E-03	-0.6588E-05	0.4805	0.4178	0.173E-02
0.600	1.4515	0.7058E-03	-0.8588E-05	0.4814	0.4133	0.242E-02
0.550	1.3477	0.6470E-03	-0.7058E-05	0.4819	0.4081	0.214E-02
0.500	1.2440	0.5882E-03	-0.1882E-05	0.4821	0.4019	0.620E-03
0.450 0.400	1.1403	0.5294E-03 0.4705E-03	0.6470E-05 0.1799E-04	0.4821 0.4821	0.3946 0.3858	-0.232E-02 -0.711E-02
	00.	0.47032-03	0117912-04	0.4621	0.3076	-0.7112-02
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.800	1.9463	0.666E-03	-0.6749E-05	0.4574	0.4110	0.190E-02
0.700	1.7277	0.5833E-03	-0.3258E-04	0.4561	0.4051	0.103E-01
0.600	1.5078	0.4999E-03	-0.4466E-04	0.4547	0.3979	0.161E-01
0.500	1.2879	0.4166E-03	-0.4366E-04	0.4550	0.3882	0.185E-01
0.400	1.0683	0.3333E-03	-0.3033E-04	0.4549	0.3744	0.155E-01
0.300	0.8483	0.2499E-03	-0.5666E-05	0.4492	0.3536	0.360E-02
0.200 0.100	0.6231 0.3720	0.1666E-03 0.8333E-04	0.2849E-04 0.7191E-04	0.4211 0.3929	0.3209 0.2688	-0.231E-01 -0.911E-01
	00,	0103332-04	0112712 01	***************************************	,	•
BETAR+DELTA/U		BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.800	ALFAR+DELTA 2.0438	0.4000E-03	-0.5500E-06	0.4553	0.3914	0.245E-03
0.700	1.8220	0.3499E-03	-0.2870E-04	0.4422	0.3841	0.139E-01
0.600	1.5914	0.29998-03	-0.4629E-04	0.4291	0.3770	0.249E-01
0.500	1.3559	0.2500E-03	-0.5305E-04	0.4229	0.3687	0.330E-01
0.400	1,1105	0.2000E-03	-0.4915E-04	0.4205	0.3576	0.369E-01
0.300	0.8803	0.1499E-03	-0.3509E-04	0.4183	0.3407	0.333E-01
0.200	0.6404	0.1000E-03	-0.1169E-04	0.4037	0.3123	0-147E-01
0.100	0.3844	0.5000E-04	0.1880E-04	0.3891	0.2601	-0.360E-01
	00.					
BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750	1.9775	0.2500E-03	-0.2100E-05	C.4827	0.3792	0.153E-02
0.700 0.650	1.8723 1.7617	0.2333E-03 0.2166E-03	-0.1323E-04 -0.2310E-04	0.4636 0.4445	0.3738	0.983E-02 0.174E-01
0.600	1.6473	0.1999E-03	-0.2310E-04	0.4303	0.3642	0.245E-01
0.550	1.5293	0.1833E-03	-0.3753E-04	0.4188	0.3596	0.308E-01
0.500	1.4085	0.1666E-03	-0.4173E-04	0.4102	0.3549	0.364E-01
0.450	1.2855	0.1500E-03	-0.4379E-04	0.4040	0.3500	0.413E-01
0.400	1.1610	0.1333E-03	-0.4363E-04	0.3998	0.3445	0.450E-01
0.950	1.0354	0.1166E-03	-0.4126E-04	0.3968	0.3380	0.474E-01
0.300	0.9090	0.9999E-04	-0.3666E-04	0.3949	0.3300	0.477E-01
0.250 0.200	0.7822 0.6547	0.8333E-04 0.6666E-04	-0.2990E-04 -0.2103E-04	0.3932 0.3894	0.3196 0.3054	0.450E-01 0.375E-01
0.150	0.5254	0.4999E-04	-0.1030E-04	0.3789	0.2854	0.222E-01
0.100	0.3907	0.3333E-04	0.1866E-05	0.3684	0.2559	-0.528E-02
RE(DELTA) = 545	30.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750	1.9844	0.1376E-03	0.1761E-05	0.5181	0.3779	-0.250E-02
0.700	1.8866	0.1284E-03	-0.3339E-05	0.5033	0.3710	0.485E-02
0.650	1.7057	0.1192E-03	-0.8366E-05	0.4886	0.3640	0.124E-01
0.600	1.6819	0.1100E-03	-0.1310E-04	0.4723	0.3567	0.200E-01
0.550	1.5739	0.1009E-03	-0.1755E-04 -0.2152E-04	0.4525	0.3494	0.275E-01
0.500	1.4608	0.9174E-04 0.8256E-04	-0.2152E-04	0.4314 0.4114	0.3353	0.346E-01 0.413E-01
0.450	1.5420 1.2176	0.0238E-04	-0.2686E-04	0.3943	0.3285	0.474E-01
0.350	1.0883	0.6422E-04	-0.2765E-04	0.3811	0.3216	0.527E-01
0.300	0.9552	0.5504E-04	-0.2682E-04	0.3713	0.3140	0.568E-01
0.250	0.8190	0.4587E-04	-0.2438E-04	0.3644	0.3052	0.591E-01
0.200	0.6808	0.3669F-04	-0.2012E-04	0.3592	0.2937	0.578E-01
0.150	0.5406	0 • 2752E-04	-0.1411E-04	0.3525	0.2774	0.501E-01
0.100 0.050	0.3971 0.2406	0.1834E-04 0.9174E-05	-0.6458E-05 0.2275E-05	0.3339 0.3153	0.2518	0.296E-01 -0.162E-01
REIDELTA) = 700	0.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.750	1.9889	0.1071E-03	0.8000E-06	0.5065	0.3770	-0.142E-02
0.700	1.8893	0.9999E-04	-0.2985E-05	0.4968	0.3705	0.549E-02
0.650	1.7876	0.9285E-04	-0.6585E-05	0.4871	0.3636	0.125E-01
0.600	1.6840	0.8571E-04	-0.9900E-05	0.4769	0.3562	0.196E-01
0.550	1.5779	0.7857E-04	-0.1298E-04	0.4637	0.3485	0.267E-01
0.500	1.4683	0./142E-04 0.6428E-04	-0.1585E-04 -0.1841E-04	0.4464 0.4258	0.3405 0.3323	0.337E-01 0.405E-01
0.450 0.400	1.3538 1.2333	0.5714E-04	-0.2045E-04	0.4043	0.3243	0.469E-01
0.350	1.1063	0.4999E-04	-0.2168E-04	0.3849	0.3163	0.5286-01
0.300	0.9734	0.4285E-04	-0.2179E-04	0.3692	0.3081	0.578E-01
0.250	0.8354	0.3571E-04	-0.2052E-C4	0.3573	0.2992	0.614E-01
0.200	0.6935	0.2857E-04	-0.1771E-04	0.3488	0.2883	0.623E-01
0.150	0.5487	0.2142E-04	-0.1325E-04	0.3414	0.2733	0.577E-01
0.100	0.4005 0.2417	0.1428E-04 0.7142E-05	-0.7185E-05 0.8571E-07	0.3261 0.3108	0.2496	0.409E-01 -0.771E-03
0.050	U.271 /	V# 1442E-U3	0107,15-01	413100	012000	001116-03

Con statement and an an alka with the state that the

NA = 0.0750 XW/U = 9.0000 WT = 5.4978 PROFILE COEFFICIENTS 0.34090 -9.04540 63.93200-199.52001 335.41003-318.65002 161.57000 -34.02700 BETAR*DELTA/U ALFAR+DELTA BETAR*NU/U**2 ALFAI+NU/U GROUP VEL. WAVE VEL. 0.1349E-04 0.8125E-05 0.5750E-05 0.6124E-05 1.6214 0.9375E-03 0.8750E-03 0.5347 0.4625 -0.356E-02 -0.226E-02 0.750 0.8125E-03 0.7499E-03 1.4338 0.4533 -0.170E-02 0.5305 0.4478 0.194E-02 0.600 1.3397 0.550 1.2453 0.6874E-03 0.6250E-03 0.9499E-05 0.1562E-04 0.5291 0.4416 -0.322E-02 -0.572E-02 0.4345 0.5274 0.2437E-04 0.3562E-04 1.0557 0.5625E-03 0.5249 0.4262 -0.969E-02 C.5000E-03 -0.154E-01 0.400 0.9602 0.5211 0.4165 0.4912E-04 0.4051 -0.235E-01 RE(DELTA) = 860. WAVE VEL-0.4593 0.4550 ALFAR*DELTA ALFAI*NU/U 0.4069E-05 -0.1627E-05 BETAR*DELTA/U BETAR*NU/U**2 GROUP VEL. CITMP 1.6329 0.8720E-03 0.8139E-03 0.7558E-03 0.5360 -0.114E-02 0.750 0.700 0.483E-03 0.5261 -0.6162E-05 -0.4534E-05 -0.1976E-05 0.650 1.4446 0.4499 0.193E-02 1.3483 0.6976E-03 C.6395E-03 0.4450 0.710E-03 0.550 0.5235 0.4388 0.5813E-03 0.3953E-05 0.5243 0.4320 -0-154E-02 1.1573 RE(DELTA) = 1200. BETAR*DELTA/U ALFAR+DELTA BETAR+NU/U++2 GROUP VEL. WAVE VEL. CITMP ALFAI+NU/U 0.800 1.7824 0.6666E-03 0.5833E-03 -0.6666E-05 0.5149 0.4488 0.231E-02 0.949E-02 1.3897 0.4999E-03 0.4166E-03 -0.3208E-04 -0.2941E-04 0.4317 0.600 0.5036 0.139E-01 0.148E-01 0.500 0.4996 0.101E-01 -0.325E-02 0.400 0.9894 C,3333E-03 -0.1691E-04 0.4947 0.4042 0.300 0.7860 0.2499E-03 0.4416E-05 0.4830 0.3816 0.1666E-03 0.3275E-04 RE(DELTA) = 2000. CITMP ALFAR*DELTA GROUP VEL. BETAR*DELTA/U BETAR #NU/U##2 ALFAI#NU/U WAVE VEL. 0.4000E-03 0.3499E-03 0.2599E-03 0.9999E-07 -0.1984E-04 0.800 1.8473 0.5243 0.4330 -0.567E-04 0.4231 0.121E-01 1.6538 0.5049 -0.3250E-04 0.4855 0.600 1.4510 0.2500E-03 0.2000E-03 -0.3709E-04 -0.3334E-04 0.4730 0.4026 0.500 1.2418 0.282E-01 0.400 1.0282 0.301E-01 0.1499E-03 0.1000E-03 -0.2159E-04 -0.2549E-05 0.3698 0.3393 0.2877 0.242E-01 0.374E-02 0.300 0.8111 0.4557 0.5893 0.4322 0.2094F-04 0.100 0.5000F-04 0.4086 -0.492E-01 RE(DELTA) = 3000. GROUP VEL. WAVE VEL. 0.4294 ALFAR#DELTA RETARADELTA/U BETAR #NU/U##2 ALFAI#NU/U CITMP 0.7433E-05 -0.7766E-05 -0.2035E-04 1.8627 0.2666E-03 0.2333E-03 0.1999E-03 0.5753 0.800 -0.688E-02 0.5363 0.4158 0.742E-02 0.204E-01 0.600 1.4893 0.4676 0.3904 0.3768 0.3595 0.3325 0.500 0.1666E-03 0.1033E-03 0.9999E-04 -0.2803E-04 -0.2949E-04 0.307E-01 0.373E-01 1.2805 1.0614 -0.2400E-04 -0.1156E-04 0.300 0.4349 0.375E-01 0.240E-01 0.3333E-04 0.100 0.3546 0.6099E-05 0.3996 0.2820 -0.206E-01 RE(DELTA) = 5450. ALFAR+DELTA BETAR*NU/U**2 GROUP VEL. BETAR+DELTA/U ALFAI+NU/U WAVE VEL. CITMP 1.7711 1.6834 1.5947 0.1009E-05 -0.1871E-05 0.5769 0.5669 0.5568 0.4234 0.4158 0.4076 0.750 0.1376E-03 0.1284E-03 -0.179E-02 0.343E-02 0.907E-02 -0.1871E-05 -0.4770E-05 -0.7486E-05 -0.1022E-04 -0.1284E-04 0.650 0.1192E-03 0.3989 0.147E-01 0.207E-01 0.600 1.5038 0.1100E-03 0.5426 0.1009E-03 0.5246 1.4104 C+55 0.9174E-04 0.8256E-04 0.5010 0.3807 0.267E-01 0.325E-01 1.3131 0.500 0.4521 0.3627 0.7339E-04 0.400 1.1028 -0.1688E-04 0.377E-01 0.6422E-04 0.5504E-04 0.9894 0.8712 0.7490 0.350 -0.1766E-04 0.4319 0.3537 0.420E-01 -0.1729E-04 -0.1555E-04 0.4160 0.3443 0.300 0.449E-01 0.4587E-04 0.456E-01 C.250 0.200 0.6234 0.3669E-04 -0.1238E-04 0.3929 0.3208 0.425E-01 0.2752E-04 0.1834E-04 -0.7798E-05 0.3807 0.3542 0.3277 0.150 0.4945 0.3033 0.327E-01 0.3607 0.2772 0.109E-01 0.050 0.2114 0.9174E-05 0.4036E-05 0.2365 -0.341E-01 RE(DELTA) = 7000. GROUP VEL. RETAR#DELTA/U ALFAR+DELTA BETAR+NU/U++2 ALFAI#NU/U WAVE VEL. CITMP -0.3828E-05 -0.5714E-05 -0.7457E-05 0.5547 0.4076 1.5945 0.9285E-04 0.650 0.932E-02 0.144E-01 0.600 1.5022 0.8571E-04 0.3994 0.7857E-04 0.3899 0.3804 0.3700 0.550 0.197E-01 0.248E-01 1.4106 0.5328 0.7142E-04 0.6428E-04 0.500 1.3144 -0.9085E-05 0.5144 0.450 -0.1075E-04 0.4958 1.2162 0.307E-01 0.5714E-04 0.4999E-04 0.400 -0.1224E-04 0.3595 0.360E-01 0.409E-01 0.350 -0.1330E-04 1.0026 0.4413 0.3490 0.8658 0.4285E-04 0.3571E-04 -0.1362E-04 -0.1290E-04 0.300 0.3386 0.449E-01 0.250 0.3985 0.471F-01 0.6348 0.5023 0.3646 -0.1094E-04 -0.7628E-05 -0.3099E-05 0.200 0.3838 0.3150 0.463E-01 0.2142E-04 0.1428E-04 0.3702 0.2986 0.150 0.393E-01 0.100 0.206E-01

0.050

0.2136

0.7142E-05

0.2000E-05

0.3240

0.2340

PROFILE COEFFICIENTS 0.26425 -1.07910 3.76720 -1.39350 -16.81900 32.97800 -24.06300 6.32240  REIDELTA) = 1200.  BETAR-DELTA/U ALFAR-DELTA BETAR-NU/U++2 ALFAI+NU/U GROUP VEL. WAVE VEL. CITMP 0.650 1.3429 0.499E-03 0.5558E-04 0.5105 0.4615 -0.286E-01 0.590 1.2457 0.4518E-03 0.5558E-04 0.5105 0.4615 -0.286E-01 0.590 1.2457 0.4518E-03 0.4608E-04 0.5113 0.4615 -0.286E-01 0.4500 0.4500 1.0500 0.37508E-03 0.4608E-04 0.5113 0.4615 -0.286E-01 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.450	NA = 0.1900	XW/U = 0.4000	WT = 0.0000				
BETAR+DELTA/U ALFAR+DELTA BETAR+NU/U++2 ALFAI+NU/U GROUP VEL. WAVE VEL. CITMP 0.650 1.4393 0.5416E-03 0.6558E-04 0.5197 0.4516 -0.284E-01 0.650 1.2457 0.4538E-03 0.4997E-04 0.5165 0.4465 -0.259E-01 0.550 1.2457 0.4538E-03 0.4978E-04 0.5163 0.44615 -0.246E-01 0.450 1.0300 0.3750E-03 0.4908E-04 0.5109 0.4355 -0.266E-01 0.450 1.0300 0.3750E-03 0.4008E-04 0.5109 0.4355 -0.266E-01 0.400 0.9512 0.3333E-03 0.4633E-04 0.5040 0.4205 -0.294E-01 0.3300 0.8516 0.2916E-03 0.4908E-04 0.4983 0.4109 -0.350E-01 0.2300 0.7506 0.2409E-03 0.5508E-04 0.4983 0.4109 -0.350E-01 0.2200 0.5403 0.1666E-03 0.6925E-04 0.4983 0.4109 -0.350E-01 0.200 0.5503 0.1666E-03 0.6925E-04 0.4613 0.3701 -0.709E-01  RE(DELTA) = 1835.  BETAR+DELTA/U ALFAR+DFLTA BETAR+NU/U++2 ALFAI+NU/U GROUP VEL. WAVE VEL. CITMP 0.600 1.3168 0.3269E-03 0.516E-04 0.4887 0.4234 -0.228E-01 0.550 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4186 -0.181E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4734 0.4076 -0.132E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4744 0.4014 -0.1148E-01 0.450 0.1040 0.2452E-03 0.1689E-04 0.4744 0.4076 -0.132E-01 0.450 0.1040 0.2452E-03 0.1689E-04 0.4744 0.4076 -0.132E-01 0.450 0.3900 0.2179E-03 0.2702E-04 0.4668 0.3926 -0.159E-01 0.450 0.4914 0.1907E-03 0.1662E-04 0.4744 0.4076 -0.132E-01 0.450 0.4914 0.1907E-03 0.1662E-04 0.4744 0.4076 -0.132E-01 0.450 0.4914 0.1907E-03 0.1662E-04 0.4744 0.4076 -0.132E-01 0.450 0.6014 0.1907E-03 0.1662E-04 0.4619 0.3827 -0.219E-01 0.450 0.6014 0.1907E-03 0.1662E-04 0.4619 0.3926 -0.159E-01 0.450 1.5063 0.1998E-03 0.1948E-04 0.4749 0.3983 -0.355E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4619 0.3926 -0.159E-01 0.250 0.6749 0.1362E-03 0.194E-04 0.4618 0.3928 -0.245E-01 0.590 1.3999 0.1627E-03 0.274EE-04 0.4618 0.3928 -0.245E-01 0.590 1.3999 0.4627E-03 0.374EE-04 0.4618 0.3928 -0.245E-01 0.590 1.1770 0.1495E-03 0.474E-04 0.4618 0.3928 -0.245E-01 0.590 1.2997 0.461E-03 0.4595E-03 0.4648 0.3928 -0.245E-01 0.450 1.1770 0.1495E-03 0.4671E-05 0.4399 0.3623 -0.955E-02 0.400 1.0240 0.3966E-04 0.4257 0.4257 0.4399 0.3623 -0.955E-02 0.450	PROFILE COEFFIC	CIENTS 0.26425	-1.07910 3.	76720 -1.35350	-16.81900	32.97800 -24.063	00 6.32240
0.650	RE(DELTA) = 12	200•					
0.600 1.3429 0.4999E-03 0.5624E-04 0.5165 0.46.57 -0.259E-01 0.590 1.2437 0.4583E-03 0.4978E-04 0.5109 0.4355 -0.246E-01 0.500 1.1481 0.4166E-05 0.4608E-04 0.5109 0.4355 -0.246E-01 0.450 1.0500 0.3750E-03 0.4908E-04 0.5078 0.4285 -0.261E-01 0.450 0.490 0.9912 0.3393E-03 0.4633E-04 0.5040 0.4285 -0.261E-01 0.590 0.8916 0.2916E-03 0.4983E-04 0.4985 0.4109 -0.350E-01 0.500 0.7506 0.2499E-03 0.4983E-04 0.4985 0.4109 -0.350E-01 0.200 0.5500 0.4674 0.2085E-03 0.6174E-04 0.4756 0.3861 -0.546E-01 0.200 0.5403 0.1666E-03 0.5508E-04 0.4615 0.3701 -0.709E-01 0.200 0.5403 0.1666E-03 0.6925E-04 0.4615 0.3701 -0.709E-01 0.500 1.3139 0.2997E-03 0.2702E-04 0.4870 0.4284 -0.228E-01 0.5500 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4186 -0.181E-01 0.500 1.2092 0.2724E-03 0.2059E-04 0.4617 0.4186 -0.181E-01 0.4500 1.2092 0.2724E-03 0.2059E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.2702E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4734 0.4076 -0.132E-01 0.3500 0.3501 0.3513 0.1662E-03 0.1662E-04 0.4619 0.3926 -0.132E-01 0.3500 0.36914 0.1907E-03 0.1564E-04 0.4703 0.4008 -0.132E-01 0.3500 0.6749 0.1362E-03 0.1662E-04 0.4619 0.3926 -0.153E-01 0.200 0.5633 0.1089E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.5633 0.1089E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.5550 1.3999 0.1632E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.3633 0.1089E-03 0.2446E-04 0.4459 0.3926 -0.153E-01 0.2500 0.6749 0.1362E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.2500 1.2897 0.1661E-03 0.2471E-03 0.446E-04 0.4459 0.3926 -0.153E-01 0.2500 1.2897 0.1661E-03 0.2471E-03 0.446E-04 0.4459 0.3926 -0.255E-01 0.2500 0.2500 1.2897 0.1661E-03 0.2471E-03 0.446E-04 0.4459 0.3928 -0.255E-01 0.2500 0.2500 0.26769 0.182E-03 0.2471E-03 0.4495 0.36676 -0.451E-02 0.2500 0.2500 0.26769 0.182E-03 0.2471E-03 0.4495 0.4495 0.35676 -0.5	BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.550 1.2457 0.4583E-03 0.4678E-04 0.5133 0.4415 -0.246E-01 0.500 1.4881 0.4166E-03 0.4608E-04 0.5078 0.4285 -0.246E-01 0.400 0.9512 0.3333E-03 0.4603E-04 0.5078 0.4285 -0.261E-01 0.400 0.9512 0.3333E-03 0.4633E-04 0.5040 0.4205 -0.294E-01 0.350 0.8516 0.2916E-03 0.4933E-04 0.4985 0.4109 -0.350E-01 0.250 0.4674 0.2085E-03 0.4508E-04 0.4897 0.3996 -0.431E-01 0.250 0.4674 0.2085E-03 0.6174E-04 0.4756 0.3661 -0.544E-01 0.200 0.5403 0.1666E-03 0.6925E-04 0.4615 0.3701 -0.709E-01 0.250 0.4674 0.2085E-03 0.6174E-04 0.4615 0.3701 -0.709E-01 0.500 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4234 -0.228E-01 0.550 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4186 -0.181E-01 0.500 1.2092 0.2724E-03 0.2059E-04 0.4617 0.4186 -0.181E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4703 0.4006 -0.182E-01 0.400 0.9980 0.2179E-03 0.2059E-04 0.4703 0.4006 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4703 0.4006 -0.132E-01 0.350 0.6749 0.1362E-03 0.1562E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1362E-03 0.162E-04 0.4668 0.3926 -0.159E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4668 0.3926 -0.159E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4668 0.3926 -0.159E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4668 0.3926 -0.159E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4749 0.3983 -0.355E-01 0.250 0.6749 0.1362E-03 0.246E-04 0.4749 0.3983 -0.355E-01 0.250 0.5633 0.1089E-03 0.3744E-04 0.4618 0.3928 -0.255E-01 0.350 1.3999 0.1827E-03 0.2446E-04 0.4749 0.3983 -0.355E-01 0.350 1.3999 0.1827E-03 0.2446E-04 0.4749 0.3983 -0.355E-01 0.350 1.3999 0.1827E-03 0.2446E-04 0.4749 0.3983 -0.355E-01 0.350 1.3999 0.1827E-03 0.2471E-04 0.4618 0.3928 -0.255E-01 0.350 1.3999 0.1827E-03 0.2471E-04 0.4499 0.3983 -0.355E-01 0.4900 1.1770 0.1499E-03 0.471E-05 0.4939 0.3623 -0.255E-01 0.4996E-02 0.4999 0.3623 -0.955E-02 0.4996E-02 0.4999 0.3623 -0.4995E-02 0.4	0.650	1.4393	0.5416E-03	0.6558E-04	0.5197	0.4516	-0.284E-01
0.500		1.3429	0.4999E-03	0.5624E-04	0.5165	0.445?	-0.259E-01
0.450	0.550	1.2457	0.4583E-03	0.4975E-04	0.5133	0.4415	-0.246E-01
0.400		1.1481	0.4166E-03	0.4608E-04			-0.246E-01
0.350				0.4500E-04			
0.300							
0.290				0.4983E-04			
0.200							
RE(DELTA) = 1835.  BETAR*DELTA/U ALFAR*DFLTA BETAR*NU/U*2 ALFAI*NU/U GROUP VEL.* WAVE VEL.* CITMP  0.600 1.4168 0.3269E-03 0.3618E-04 0.4870 0.4234 -0.228E-01 0.550 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4186 -0.181E-01 0.500 1.2092 0.2724E-03 0.2059E-04 0.4764 0.4134 -0.148E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4733 0.4008 -0.135E-01 0.350 0.8914 0.1907E-03 0.1662E-04 0.4703 0.4008 -0.135E-01 0.300 0.7838 0.1634E-03 0.1972E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1562E-03 0.2446E-04 0.4619 0.3827 -0.213E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4535 0.3704 -0.301E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01  RE(DELTA) = 3010.  BETAR*DELTA/U ALFAR*DELTA BETAR*NU/U*2 ALFAI*NU/U GROUP VEL.* WAVE VEL.* CITMP 0.609 1.5063 0.1993E-03 0.3744E-04 0.4618 0.3928 -0.355E-01 0.550 1.3999 0.1627E-03 0.2471E-04 0.4618 0.3928 -0.355E-01 0.550 1.3999 0.1627E-03 0.2471E-04 0.4618 0.3928 -0.245E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.39876 -0.158E-01 0.490 1.1770 0.1495E-03 0.8471E-05 0.4399 0.3823 -0.953E-02 0.400 1.0624 0.1328E-03 0.4552E-05 0.4338 0.3765 -0.534E-02 0.350 0.9465 0.1162E-03 0.2558E-05 0.4257 0.3616 -0.451E-02 0.350 0.9826 0.9966E-04 0.2923E-05 0.4257 0.36616 -0.451E-02							
BETAR*DELTA/U ALFAR*DFLTA BETAR*NU/U**2 ALFAI*NU/U GROUP VEL. WAVE VEL. CITMP  0.600 1.4168 0.3269E-03 0.3618E-04 0.4870 0.4234 -0.228E-01 0.550 1.3139 0.2997E-03 0.2702E-04 0.4817 0.4186 -0.181E-01 0.500 1.2092 0.2724E-03 0.2059E-04 0.4764 0.4134 -0.148E-01 0.450 1.1040 0.2452E-03 0.1669E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4734 0.4076 -0.132E-01 0.350 0.8914 0.1907E-03 0.1662E-04 0.4668 0.3926 -0.159E-01 0.300 0.7838 0.1634E-03 0.1972E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1362E-03 0.2446E-04 0.4619 0.3827 -0.231E-01 0.250 0.6749 0.1362E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01  RE(DELTA) = 3010.  BETAR*DELTA/U ALFAR*DELTA BETAR*NU/U**2 ALFAI*NU/U GROUP VEL. WAVE VEL. CITMP 0.600 1.5063 0.1993E-03 0.3744E-04 0.4618 0.3928 -0.245E-01 0.550 1.3999 0.1627E-03 0.2471E-04 0.4618 0.3928 -0.245E-01 0.550 1.2897 0.1661E-03 0.1518E-04 0.4686 0.3876 -0.158E-01 0.450 1.1770 0.1495E-03 0.4871E-05 0.4338 0.3765 -0.255E-02 0.400 1.0624 0.1328E-03 0.435E-05 0.4338 0.3765 -0.534E-02 0.550 0.99465 0.1162E-03 0.2558E-05 0.4295 0.36697 -0.349E-02 0.550 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	0.200	0.5403	0.1666E-03	0.6925E-04	0.4615	0.3701	-0.709E-01
0.600	RE(DELTA) = 1	835.					
0.550 1.3159 0.2997E-03 0.270E-04 0.4817 0.4186 -0.181E-01 0.500 1.2092 0.2724E-03 0.2059E-04 0.4764 0.4134 -0.148E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4703 0.4008 0.135E-01 0.350 0.8914 0.1907E-03 0.1662E-04 0.4668 0.3926 -0.159E-01 0.300 0.7898 0.1634E-03 0.1972E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1362E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01 0.500 1.5963 0.1993E-03 0.3744E-04 0.4749 0.3983 -0.955E-01 0.550 1.3999 0.1827E-03 0.2471E-04 0.4618 0.3928 -0.245E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4618 0.3928 -0.245E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.3876 -0.158E-01 0.490 1.1770 0.1495E-03 0.4371E-05 0.4399 0.3823 -0.955E-02 0.490 1.0624 0.1328E-03 0.4352E-05 0.4338 0.3765 -0.953E-02 0.400 1.0624 0.1328E-03 0.4352E-05 0.4338 0.3765 -0.953E-02 0.350 0.9465 0.1662E-03 0.2558E-05 0.4295 0.3616 -0.451E-02 0.390 0.8896 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	BETAR+DELTA/U	ALFAR+DFLTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.500 1.2092 0.2724E-03 0.2059E-04 0.4764 0.4134 -0.148E-01 0.450 1.1040 0.2452E-03 0.1689E-04 0.4734 0.4076 -0.132E-01 0.400 0.9980 0.2179E-03 0.1564E-04 0.4703 0.4008 0.135E-01 0.350 0.8914 0.1907E-03 0.1662E-04 0.4668 0.3926 -0.159E-01 0.300 0.7838 0.1634E-03 0.1972E-04 0.4619 0.3827 -0.213E-01 0.250 0.6749 0.1362E-03 0.2446E-04 0.4535 0.3704 -0.301E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01 0.200 0.5633 0.1089E-03 0.3046E-04 0.4452 0.3550 -0.441E-01 0.500 1.5963 0.1993E-03 0.3744E-04 0.4749 0.3983 -0.355E-01 0.550 1.3999 0.1827E-03 0.2471E-04 0.4618 0.3928 -0.255E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4466 0.3876 -0.255E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.3876 -0.255E-01 0.490 1.1770 0.1495E-03 0.4371E-05 0.4399 0.3823 -0.955E-02 0.400 1.0624 0.1328E-03 0.4352E-05 0.4338 0.3765 -0.595E-02 0.350 0.9465 0.1162E-03 0.2558E-05 0.4297 0.3616 -0.451E-02 0.390 0.8826 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	0.600	1.4168	0.3269E-03	0.3618E-04	0.4870	0.4234	-0.228E-01
0.490	0.550	1.3139	0.2997E-03	0.2702E-04	0.4817	0.4186	-0.181E-01
0.400	0.500	1.2092	0.2724E-03	0.2059E-04	0.4764	0.4134	-0.148E-01
0.390	0.450	1.1040	0.2452E-03	0.1689E-04	0.4734	0.4076	-0.132E-01
0.300							
0.250							
0.200							
RE(DELTA) = 3010.  BETAR*DELTA/U ALFAR*DELTA BETAR*NU/U*+2 ALFAI*NU/U GROUP VEL. WAVE VEL. CITMP  0.6C0 1.5063 0.1999E-03 0.3744E-04 0.4749 0.3983 -0.555E-01  0.550 1.3999 0.1827E-03 0.2471E-04 0.4618 0.3928 -0.245E-01  0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.3876 -0.158E-01  0.450 1.1770 0.1495E-03 0.8471E-05 0.4399 0.3823 -0.953E-02  0.400 1.0624 0.1328E-03 0.4352E-05 0.4338 0.3765 -0.593E-02  0.350 0.9465 0.162E-03 0.2555E-05 0.4295 0.3697 -0.549E-02  0.300 0.8296 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02							
BETAR*DELTA/U         ALFAR*DELTA         BETAR*NU/U**2         ALFAI*NU/U         GROUP VEL.         WAVE VEL.         CITMP           0.6C9         1.5063         0.1993E-03         0.3744E-04         0.4749         0.3983         -0.355E-01           0.5590         1.3999         0.1827E-03         0.2471E-04         0.4618         0.3928         -0.245E-01           0.500         1.2897         0.1661E-03         0.1518E-04         0.4486         0.3876         -0.158E-01           0.450         1.1770         0.1495E-03         0.8471E-05         0.4399         0.3823         -0.993E-02           0.400         1.0624         0.1328E-03         0.4352E-05         0.4338         0.3765         -0.534E-02           0.350         0.9465         0.1162E-03         0.2558E-05         0.4295         0.3697         -0.349E-02           0.300         0.8296         0.9966E-04         0.2923E-05         0.4257         0.3616         -0.451E-02	0.200	0.5633	0.1089E-03	0.3046E-04	0.4452	0.3550	-0.441E-01
0.6C9       1.5063       0.199E-03       0.3744E-04       0.4749       0.3983       -0.355E-01         0.550       1.3999       0.1827E-03       0.2471E-04       0.4618       0.3928       -0.245E-01         0.500       1.2897       0.1661E-03       0.1518E-04       0.4486       0.3876       -0.158E-01         0.490       1.1770       0.1495E-03       0.8471E-05       0.4399       0.3023       -0.953E-02         0.400       1.0624       0.1328E-03       0.4352E-05       0.4338       0.3765       -0.534E-02         0.350       0.9465       0.1162E-03       0.2558E-05       0.4295       0.3697       -0.349E-02         0.300       0.8296       0.9966E-04       0.2923E-05       0.4257       0.3616       -0.451E-02	RE(DELTA) = 30	010.					
0.550 1.3999 0.1827E-03 0.2471E-04 0.4618 0.3928 -0.245E-01 0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.3876 -0.158E-01 0.450 1.1770 0.1495E-03 0.8471E-05 0.4399 0.3823 -0.953E-02 0.400 1.0624 0.1328E-03 0.435E-05 0.4338 0.3765 -0.534E-02 0.350 0.9465 0.162E-03 0.2558E-05 0.4295 0.3697 -0.349E-02 0.300 0.8296 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI*NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.500 1.2897 0.1661E-03 0.1518E-04 0.4486 0.3876 -0.158E-01 0.450 1.1770 0.1495E-03 0.8471E-05 0.4399 0.3823 -0.953E-02 0.400 1.0624 0.1328E-03 0.435E-05 0.4338 0.3765 -0.534E-02 0.350 0.9465 0.1162E-03 0.2558E-05 0.4295 0.3667 -0.349E-02 0.300 0.8296 0.966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	0.600	1.5063	0.1993E-03	0.3744E-04	0.4749	0.3983	-0.355E-01
0.450	0.550	1.3999	0.1827E-03	0.2471E-04	0.4618	0.3928	-0.245E-01
0.400 1.0624 0.1328E-03 0.435E-05 0.4338 0.3765 -0.534E-02 0.350 0.9465 0.1162E-03 0.2558E-05 0.4295 0.3697 -0.349E-02 0.300 0.8296 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	0.500	1.2897	0.1661E-03	0.1518E-04	0.4486	0.3876	-0.158E-01
0.350	0.450	1-1770	0.1495E-03	0 .8471E-05	0.4399	0.3823	-0.953E-02
0.300 0.8296 0.9966E-04 0.2923E-05 0.4257 0.3616 -0.451E-02	0.400	1.0624	0.13285-03	0.4352E-05	0.4338	0.3765	-0.534E-02
	0.350	0.9465	0.1162E-03	0.2558E-05	0.4295	0.3697	
0.250 0.7116 0.8305E-04 0.5149E-05 0.4218 0.3513 -0.918E-02	0.300	0.8296	0.9966E-04	0.2923E-05	0.4257	0.3616	-0.451E-02
	0.250	0.7116	0.8305E-04	0.5149E-05	0.4218	0.3513	-0.918E-02

PRG. LE COEFFIC	IENTS 0.14699	-0.00747	3.51130 -11.18200	9.77550	1.05790 -5.03	190 1.74680
RE(DELTA) = 12	100•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U	+2 ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.650	1.4689	0.5416E-0		0.5135	0.4425	-0.186E-01
0.600	1.3714	0.4999E-0	0.3875E-04	0.5107	0.4375	-0.173E-01
0.550	1.2731	0.4583E-0		0.5078	0.4320	-0.170E-01
0.500	1.1745	C-4166E-0		0.5058	0.4257	-0.180E-01
0.450	1.0754	0.3750E-0		0.5030	0.4184	-0.206E-01
0.400	0.9757	0.3333E-0		0.4990	0.4099	-0.249E-01
0.350	0.8750	0.2916E-0		0.4928	0.3999	-0.313E-01 -0.403E-01
0.300 0.250	0.7728 0.6681	0.2499E=0		0.4677	0.3881 0.3741	-0.524E-01
0.200	0.5589	0.1666E-0		0.4520	0.3578	-0.697E-01
RE(DELTA) = 18	35.					
SETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U	+2 ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.5480	0.3542E-0	0 . 2474E-04	0.4871	0.4198	-0.142E-01
0.600	1.4445	0.3269E-0	0.1645E-04	0.4807	0.4153	-0.100E-01
0.550	1.3400	0.2997E-0	0.1040E-04	0.4744	0.4104	-0.676E-02
0.500	1.2337	0.2724E-0	3 0.7138E-05	0.4705	0.4052	-0.499E-02
0.450	1.1275	0.2452E-0		0.4638	0.3991	-0.457E-02
0.400	1.0204	0.2179E-0		0.4662	0.3920	-0.603E-02
0.350	0.9130	0.1907E-0		0.4631	0.3833	-0.950E-02
0.300	0.8045	0.1634E-0		0.4576	0.3729	-0.160E-01
0.250	0.6945	0.1362E-0		0.4483	0.3599	-0.258E-01
0.200	0.5814	0.1089E-0		0.4311	0.3439	-0.400E-01
0.150 0.100	0.3300	0.8174E-0		0.3989 0.3410	0.3243 0.3030	-0.861E-01
0.050	0.1658	0.2724E-0		0.2832	0.3015	-0.161E 00
	000.					
		B574B#NU ///		500UB VE	WALE VEL	CITA
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U		GROUP VEL		CITMP
0.600	1.4597	0.2999E~0		0.4722	0.4110	-0.957E-02
0.500 0.400	1.2466	0.2500E=0		0.4658	0.4010	-0.343E-02 -0.316E-02
0.300	1.0304 0.8114	0.2000E-0		0.4595 0.4498	0.3881 0.3697	-0.117E-01
0.200	0.5857	0.1000E-0		0.4401	0.3414	-0.358E-01
RE(DELTA) = 30	10.					
BETAR#DELTA/U	ALFAR+DELTA	BETAR*NU/U*	+2 ALFAI+NU/U	GROUP VEL .	WAVE VEL.	CITMP
0.650	1.6401	0.2159E-0		0.4766	0.3963	-0.242E-01
0.600	1.5344	0.1993E-0		0.4627	0.3910	-0-150E-01
0.550	1.4239	0,1027E-0		0.4488	0.3862	-0.706E-02
0.500	1.3116	0.1661E-0	3 0.1162E-05	0.4409	0.3812	-0.117E-02
0.450	1.1971	0.1495E-0	3 -0.2923E-05	0.4347	0.3759	0.319E-02
0.400	1.0816	0.1328E-0		0.4306	0.3698	0.561E-02
0.350	0.9649	0.1162E-0	<del>-</del> -	0.4268	0.3627	0.605E-02
0.300	0.8473	0.9966E-0		0.4231	0.3540	0.369E-02
0.250 0.200	0.7286 0.6082	0.5305E-0		0.4182 0.4133	0.3431 0.3288	-0.223E-02 -0.133E-01
RE(DELTA) = 50	00.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR*NU/U*	+2 ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.600	1.5935	0.1199E-0		0.5040	0.3765	-0.432E-01
0.500	1.3905	0.1000E-0		0.4559	0.3595	-0.121E-01
0.400	1.1520	0.7999E-0		0.4078	0.3472	0.619E-02
0.300	0.8997	0.5999E-0		0.3897	0.3334	0.136E-01
0.200	0.6387	0.3999E-0	4 -0.2320E-05	0.3716	0.3131	0.675E-02
RE(DELTA) = 100	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U+	#2 ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.400	1.2293	0.3999E-0		0.4110	0.3253	-0.159E-01
0.300	0.9806	0.2999E-0	4 -0.2910E-05	0.3756	0.3059	0.111E-01
0.200	0.6943	0.1999E-0	4 -0.4099E-05	0.3403	0.2880 0.2547	0.200E-01 -0.139E-02

NA = 0.1500	XW/U = 0.4000	WT = 3.1416				
PROFILE COEFFIC	IENTS -0.28435		3636 -0.84368	-12.05800	25.03800 -18.43	500 4.80220
RE(DELTA) = 12	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/L	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.3930	0.4999E-03	0.9833E-05	0.5027	0.4307	-0.425E-02
0.550	1.2932	0.4583E-03	0.4166E-05	0.4982	0.4253	-0.192E-u2
0.500	1.1923	0.4166E-03	0.1666E-05	0.4938	0.4193	-0.828E-03
0.450	1.0907	0.3750E-03	0.2750E-05	0.4911	0.4125	-0.148E-02
C.400	0.9887	0.3333E-03	0.5416E-05	0.4884	0.4045	-0.321E-02
RE(DELTA) = 14	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.4176	0.4285E-03	0.5142E-05	0.4976	0.4232	-0.252E-02
0.550	1.3157	0.3928E-03	-0.1785E-05	0.4904	0.4180	0.931E-03
0.500	1.2137	0.3571E-03	-0.5785E-05	0.4831	0.4119	0.322E-02
0.450	1.1087	0.321.E-03	-0.6357E-05	0.4789	0.4058	0.34.2-02
0.400	1.0049	0.2857E-03	-0.4357E-05	0.4775	0.3980	0.289E-02
0.350	0.8993	0.2499E-03	0.5714E-06	0.4752	0.3891	-0.422E-03
0.300	0.7945	0.2142E-03	0.7642E-05	0.4729	0.3775	-0.637E-02
RE(DELTA) = 18	35.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.4609	0.3269E-03	3.4632E-05	0.4787	0.4107	-0.278E-02
0.550	1.3551	0.2997E-03	-C.4523E-05	0.4730	0.4058	0.289E-02
0.500	1.2495	0.2724E-03	-0.1024E-04	0.4673	0.4001	0.703E-02
0.450	1.1411	0.2452E-03	-0.1346E-04	0.4625	0.3943	0.100E-01
0.400	1.0333	0.2179E-03	-0.1346E-04	0.4610	0.3871	0.110E-01
0.350	0.9242	0.1907E-03	-0.1100E-04	0.4553	0.3787	0.995F-02
0.300	0.8137	0.1634E-03			0.3686	0.607E-02
0.250	0.7018	0.1362E-03	-0.5994E-05 0.1198E-05	0.4496	0.3562	-0.139E-02
RE(DELTA) = 30	10.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.450	1.2066	0.1495E-03	-0.1043E-04	0.4374	0.3729	0.113E-01
0.400	1.0917	0.13282-03	-0.1408E-04	0.4303	0.3664	0.167E-01
0.350	0.9742	0.1162E-03	-0.1524E-04	0.4232	0.3592	0.199E-01
0.300	0.8554	0.9966E-04	-0.1401E-04	0.4175	0.3507	0.205E-01
				0.4130	0.3402	
0.250	0.7347	0.8305E-04	-0.1056E-04			0.178E-01
0.200 0.150	0.6133 0.4881	0.6644E-04 0.4983E-04	-0.5016E-05 0.2392E-05	0.4056	0.3261 0.3073	0.998E-02 -0.587E-02
	000.					
	A1 FAD # 0 F1 TA	BET48401/1444	AL SATANILISI	COOLID VEL	. WAVE VEL.	CITMP
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL		-0.141E-01
0.500	1.3619	0.1000E-03	0 • 7439E - 05	0.5173	0.3671	
0.450	1.2619	0.9000E-04	-0.9999E-07	C.4746	0.3566	0.188E-03
0.400	1.1506	0.7999E-04	-0.5840E-05	0.4319	0.3476	0.109E-01
0.350	1.0300	0.6999E-04	-0.9859E-05	0.4063	0.3398	0.194E-01
0.300	0.9044	0.5999E-04	-0.1150E-04	0.3925	0.3317	0.249E-01
0.250	0.7752	0.5000E-04	-0.1119E-04	0.3837	0.3224	0.277E-01
0.200	0.6438	0.3999E-04	-0.8620E-05	0.3768	0.3106	0.252E-01
0.150	0.5098	0.2999E-04	-0.4479E-05	0.3674	0.2942	0.161E-01
0.100	0.3716	0.1999E-04	0.1399E-05	0.3581	0.2691	-0.674E-02
RE(DELTA) = 100	000•					
BETAR*DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL		CITMP
0.400	1.1697	0.3999E-04	0.2740E-05	0.5085	0.3419	-0.119E-01
0.300	0.9657	0.2999E-04	-0.3690E-05	0.4294	0.3106	0.164E-01
0.200	0.6945	0.1999E-04	-0.6359E-05	0.3503	0.2879	0.320E-01
0.100	0.3933	0.9999E-05	-0.2400E-05	0.2712	0.2542	0.165E-01

NA - 0.1500	XW/U = 0.4000	WT = 3.9270				
PROFILE COEFFIC	TENTS -0.38595	0.82582 2.5	3630 -7.81600	6.02860 -	1.97160 0.00	000 0.00000
RE(DELTA) = 12	200.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI-NU/J	GROUP VEL.	WAVE VEL.	CITMP
0.550	1.2862	0.4583E-03	0.6916E-05	0.5014	0.4276	-0.323E-02
0.500	1.1853	0.41665-03	0.9999E-06	0.4933	0.4218	-0.499E-03
0.450	1.0835	0.3750E-03	-0.12496-05	0.4852	0.4153	0.6716-03
0.400	0.9792	0.3333E-03	0.4999E-06	0.4862	0.4084	-0.297E-03
0.350	0.8778	0.2916E-03	0.43336-05	0.4872	0.3987	-0.288E-02
RE(DELTA) = 18	135.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR-NU/U++2	ALFAI+NU/J	GROUP VEL.	WAVE VEL.	CITHP
0.550	1.3499	0.2997E-G3	0.3705E-05	0.4757	0.4074	-0.239E-02
0.500	1.2441	0.2724E-03	-0.5504E-05	0.4686	0.4018	0.380E-02
0.450	1.1365	0.2452E-03	-0.1128E-04	0.4614	0.3959	0.8406-02
0.400	1.0274	0.21798-33	-0.1378E-04	0.4533	0.3893	0.111E-01
0.350	0.9159	0.1907E-03	-0.1329E-04	0.4514	0.3821	0.120E-01
0.300	0.8059	0.1634E-03	-0.9754E-05	0.4498	0.3722	0-9995-02
0.250	0.6936	0.1362E-03	-0.3487E-05	0.4415	0.3604	0.407E-02
0.200	0.5794	0.1089E-03	0.5286E-05	0.4331	0.3451	-0.725E-02
RE(DELTA) = 30	10.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U++2	ALFAI eNU/U	GROUP VEL.	WAVE VEL.	CITHP
0.500	1.3088	0.1661E-03	0.3554E-05	0.4648	0.3620	-0.380E-02
0.450	1.2000	0.1495E-03	-0.5481E-05	0.4492	0.3750	0.617E-02
0.400	1.0861	0.1328E-03	-0.1126E-04	0.4337	0.3682	0.135E-01
0.350	0.9694	0.1162E-03	-0.1425E-04	0.4230	0.3610	0.187E-01
0.300	0.8497	0.9966E-04	-0.1455E-04	0.4152	0.3530	0.214E-01
0.250	0.7286	0.8305E-04	-0.1222E-04	0.4111	0.3431	0.207E-01
0.200	0.6065	0.6644E-04	-0.7375E-05	0.4030	0.3297	0.147E-01
0.150	0.4804	0.4983E-04	-0 1654E-06	0.3948	0.3122	0.904E-03
RE(DELTA) = 50	000.					
BETAR*DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.450	1.2424	0.9000E-04	0.5679E-05	0.4964	0.3622	-0.113E-01
0.400	1.1390	0.7999E-04	-0.1760E-05	0.4572	0.3511	0.353E-02
0.350	1.0230	0.6999E-04	-0.7200E-05	0.4181	0.3421	0.147E-01
0.300	0.8996	0.5999E-04	-0.1028E-04	0.3959	0.3334	0.226E-01
0.250	0.7703	0.5000E-04	-0.1106E-04	0.3627	0.3245	0.274E-01
0.200	0.6383	0.3999E-04	-0.9419E-05	0.3741	0.3133	0.276E-01
0.150	0.5030	0.2999E-04	-0.5740E-05	0.3654	0.2982	0.208E-01
0.100	0.3646	0.1999E-04	-0.1599E-06	0.3566	0.2742	0.782E-03
RE(DELTA) = 100	000•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.400	1.1360	0.3999E-04	0.3950E-05	0.5644	0.3521	-0.196E-01
0.300	0.9502	0.2999E-C4	-0.1879E-05	0.4608	0.3157	0.911E-02
0.200	0.6895	0.1999E-04	-0.6010E-05	0.3572	0.2900	0.311E-01
0.100	0.3674	0.99998-05	-0.2970E-05	0.2537	0.2581	0.194E-01

MA - 0.1900	XW/U - 0.4000	WT - 4.71	24				
PROFILE COEFFIC	TENTS -0.22189	0.01119	0.65466	11.84700	<b>→5.3520</b> 0	64.35-00 -41.59500	10.3190
REIDELTA) - 12	100.						
BETAR-DELTA/U	ALFAR-DELTA	BETARENU/UP	•2 AL	FAI-NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.3540	3.4999E-0		19336-04	0.5189	0.4431 -	0.889E-02
0.900	1.1598	0.4166E-0	3 0.	3666E-05	0.5090	0.4311 -	0.193E-02
0.450	1.0610	3.3750E-0		8333E-06	0.5040		0.475E-03
0.400	C.9614	0.3333E-0	-	1500E-05	0.5002		0.936E-03
0.350	0.8611	0.2916E-0		93336-05	0.4964	7,167	-0.368E-02
REIDELTAL - 16	35.						
BETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/U-	*2 AL	FAI-NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.990	1.3124	0.2997E-0		9427E-05	0.5027	0.4190 -	0.662E-02
0.900	1.2123	0.27248-0		2724E-06	0.4915	0.4124	0.202E-03
0.450	1.1009	0.24525-0		6648E-05	0.4803	0.4058	0.528E-02
0.400	1.0041	0.21796-0		99726-05	0.4715	0.3983	0.659E-02
0.390	0.0966	0.19075-0		1002E-04	0.4649	0.3902	0.953E-02
0.300	0.7690	0.1634E-0		6920E-05	0.4608	0.3802	0.741E-02
0.250	0.4798	0.13626-0		1634E-05	0.4519	0.3677	0.199E-02
	0.5677	3.1089E-0		4374E-05	0.4430		0.913E-02
0.200	0.3877	2.10845-0	,	63 / BE -U7	0.4430	013722	.014136-05
REIDELTAL - 30	10.						
BETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/U-	•2 AL	FAI-NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.500	1.2649	0.1661E-0	3 0.	1013E-04	0.5040	0.3952 -	0.121E-01
0.450	1.1635	0.1495E-0	3 0.	7973E-06	0.4817	0.3867 -	·0.993E-03
0.400	1.0572	0.1328E-0	9 -0.	3946E-05	0.4593	0.3783	0.777E-02
0.350	0.9457	0-11426-0	3 -0.	966 7E-05	0.4410	0.3700	0-135E-01
0.300	0.8304	0.9966E-0		1086E-04	0.4295	0.3612	0.169E-01
0.250	0.7129	0.83058-0		9202E-05	0.4209	0.5504	0.163E-01
0.200	0.5928	0.4446-0		5249E-05	0.4149	0.3373	0.110E-01
0.190	0.4719	0.49838-0		1029€-05	0.4089		-0.268E-02
REIDELTAL - "	000.						
SETAR-DELTA/U	ALFAR-DELTA	BETARONU/UP	•2 AL	FAI+NU/U	GROUP VE	L. WAVE VEL.	CITHP
0.450	1.1879	0.9000E-0		1101E-04	0.5884		-0.272E-01
0.400	1.0997	0.79995-0		34 5 9E-05	0.5199	***	-0.8656-02
0.350	0.9940	0.49998-0		24806-05	0.4514	0.3521	0.563E-02
0.300	0.0777	0.59998-0		6379E-05	0.4160	0.3418	0.151E-01
0.250	0.7534	0.500^E-0		8000E-05	0.3944	0.3318	0.210E-01
0.200	0.6254			4939E-05	0.3642	0.3197	0.2135-01
		0.3999E-0		4020E-09	0.3742	0.3041	
0.190	0.4931						0.192E-01
0.100	0.3502	0.1999E-0	• 0•	1079E-05	0.3642	0.2791 -	-0.549E-02
REIDELTAT - 10	000.						
BETAR+DELTA/U	ALFAR-DELTA	BETAR -NU/U-	*2 AL	FAI MU/U	GROUP VE		CITHP
0.400	1.0762	0.39796-0	4 J.	5699E-05	0.6674	0.3716	-0.353E-01
0.300	0.9172	0.29998-0	. 0.	15696-05	0.9224		0.894E-02
	0.4748	0.19998-0			0.3774	0.2955	0.220E-01
0.200	V	0.14446-0	-0.	3950E-05	0.3174	V14777	0 1 1 4 A C O I

NA = 0.1500	XW/U = 0.4000	WT = 5-4978				
PROFILE COEFFIC	1ENTS 0.06558	-9.84832 2.3	0200 7.38390	-37.09300	55.94400 -37.19	500 9.37650
RE(DELTA) = 12	200•					
BETAR+DELTA/U	ALFAR DELTA	SETAR-NU/U2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.4335	0.5416E-03	0.5649E-04	0.5197	0.4534	-0.245E-01
0.600	1.3369	0.4999E-03	0.4449E-04	0.5200	0.4487	-0.207E-01
0.590	1.2412	0.4583E-03	0.3524E-04	0.5202	0.4431	-0.177E-01
0.500	1.1447	0.4166E-03	0.2908E-04	0.5136	0.4367	-0.156E-01
0.450	1.0465	0.3750E-03	0.2641E-04	0.5086	0.4300	-0.154E-01
0.400	0.9481	0.3333E-03	0.2683E-04	0.5045	0.4218	-0.171E-01
0.350	0.8483	0.2916E-03	0.2974E-04	0.4970	0.4125	-0.209E-01
0.300	3.7469	0.2499E-03	0.3550E-04	0.4930	0.4016	-0.281E-01
0.250	0.6455	0.2083E-03	0.4241E-04	0.4837	0.3872	-0.381E-01
0.200	0.5401	0.1666E-03	0.5108E-04	0.4743	0.3703	-0.5386-01
RE(DELTA) = 18	135.					
BETAR+DELTA/U	ALFAR-DELTA	BETARONU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.5001	0.3542E-03	0.5231E-04	0.5257	0.4333	-0.336E-01
0.600	1.4037	0.3269E-03	0.3634E-04	0.5100	0.4274	-0.242E-01
0.550	1.3040	0.2997E-03	0.23976-04	0.4944	0.4217	-0.166E-01
0.500	1.2014	0.2724F-03	0.1504E-04	0.4852	0.4161	-0.111E-01
0.450	1.0979	0.2452E-03	0.91558-05	0.4782	0.4098	-0.731E-02
0.400	0.9923	0.2179E-03	0.6212E-05	0.4701	0.4031	-0.540E-02
0.350	0.0052	0.1907E-03	0.5776E-05	0.4697	0.3953	-0.5626-02
0.30	0.7794	0.16345-03	0.8501E-05	0.4650	0.3849	-0.930E-02
0.250	0.6701	0.1362F-03	0.1297E-04	0.4603	0.3730	-0.1635-01
REIDELTAL - 30	10.					
BETAR-DELTA/U	ALFAR+DELTA	BETAR-NU/U2	ALFA I ONU/U	GROUP VEL	. WAVE VEL.	CITHP
0.500	1.2710	0.16616-03	0-18236-04	0.4693	0.3933	-0.202E-01
0.450	1.1649	0.14998-03	0.8837E-05	0.4563	0.3064	-0.104E-01
0.400	1.0517	0.1328E-03	0.2425E-05	0.4432	0.3003	-0.307E-02
0.350	0.9387	0.1162E-03	-0.7641E-06	0.4388	0.3728	0.107E-02
0.300	0.0230	0.9966E-04	-0.1926E-05	0.4305	0.3641	0.303E-02
0.250	0.7064	0.8305E-04	-0.4318E-06	0.4237	0.3539	0.779E-03
0.200	0.5878	0.66446-04	0.30546-05	0.4169	0.3402	-0-652E-02

NA = 0.1500	xw/U = r.8000	WT - 0.0	2000					
PROFILE COLFFIC		WT = 0.0		-11 65000		-2 40720		0.0000
	00.	1 -2.19800	7.03	3310 -11.65000	8.86860	-2.49720	0.00000	0.00000
BETAR-DELTA/U								
0.600	ALFAR*DELTA 1.381%	BETAR=NU/.	-	ALFAI+NU/U 0.6147E-04	GROUP VE	-	VEL.	CITMP 0.373E=01
0.550	1.2793	0.32358-		0.5052E-04	0.4880			0.327E-01
0.500	1.1765	J.2941E-		0.4229E-04	0.4817			0.294E-01
0.450	1.0717	0.2647E-		0.3735E-04	0.4782	0.4		-283E-01
0.400	0.9674	0.2352E-	-	0.3458E-04	0.4768	0.4	134 -	-289E-01
0.350	0.8620	0.20585-		0.3435E-04	0.4732	0.4		-320E-01
0.300	0.7561	0.1764E-		0.3576E-04	0.4679	0.3	13 12 mm	376E-01
0.250 0.200	0.6483	0.1470E- 0.1176E-		0.3911E-04 0.4311E-04	0.4577			0.469E-01 0.610E-01
REIDELTA) - 26	00.							
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/L	J=+2	AL FAI+NU/U	GROUP VE	L. WAVE	VEL.	CITHE
0.550	1.3621	0.21156-		0.4019E-04	0.4537	0.4		.348E-01
0.500	1.2519	0.1923E-	-03	0.2984E-04	0.4482	0.3	993 -0	-277E-01
0.450	1.1390	0.1730E-		0.2242E-04	0.4428			-226E-01
0.400	1.0261	0.1538E-	_	0.1761F-04	0.4409	0.3		-196E-01
0.350	0.9122	0.13465-		0.1526E-04	0.4384	0.3		1906-01
0.300	0.7980	0.1153E-		0.1499E-04 0.1669E-04	0.4353			0.212E-01
0.250	0.6025	0.7692E-		0.19736-04	0.4299	0.3	1972	0.273E-01
RE(DELTA) - 42	60.							
BETAR+DELTA/U	ALFAR+DELTA	BETARONUZ	J••2	ALFAI+NU/U	GROUP VE	L. WAVE	VEL.	CITMP
0.550	1.4699	C-1291E-		0 -4431E -04	0.4219	0.3		0.541E-01
0.900	1.3504	0.1173E-		0.2978E-04	0.4153	0.3		.390E-01
0.490	1.2291	0.1056E-	-03	0.1950E-04	0.4086	0.3	601 -0	-276E-01
0.400	1.1057	0.93895-	-04	0.1220E-04	0.4035			0.109E-01
0.350	0.9813	0.8215E-		3.7746E-05	0.3998	0.3		0.134E-01
0.300	0.8554	0.7342E-		0.53996-05	0.3968	0.3		-106E-01
0.250 0.200	0.7293	0.5868E-		0.5164E-05 0.6572E-05	0.3935			0.118E-01 0.181E-01
NA = 0.1500	XW/U - 0.8000	WT = 1.5	70.0					
PROFILE COEFFIC			0.09	439 2.96560	-16.96600	28.01300 -	-19-0690)	4.71530
REIDELTA: - 17	00.							
BETAR-DELTA/U	ALFAR DELTA	BETAR-NU/U		ALFAI+NU/U	GROUP VEL	. WAVE	VEL.	CITHP
0.400	1.4199	0.35296-		0.3064E-04	0.4854	0. 1		.170E-01
0.550	1.9122	0.32356-		0.25358-04	0.4842	0.4		.159E-01
0.500	1.2090	0.2941E-		0.2152E-04	0.4830	0.41		.146E-01
0.450	1.1052	3.2647E-	03	0 - 2017E-04	0.4796	0 • • 0		.140E-01
0.400	1.0004	0.2352F-		0.21116-04	0.4755	0.39		.170E-01
0.350	0.0949	0.20986-		0.2-056-04	0.4717	0.31		.215E-01
0.300	0.7986	0.1764F-		0.20116-04	0.4653	0.36		. 585E-07
0.250	0.6800	0.1470E- 0.1176E-		0.3447E-04 0.4117E-04	0.4532	0.36		.390E-01
RE(DELTA) - 26	00.							
BETAR-DELTA/U	ALFAR-DELTA	BETAR - NU/U	••2	ALFAI+NU/U	GROUP VEL	. WAVE	VEL.	CITMP
0.000	1.4980	0.2307E-	-	0.232 16-04	0.4537	0.40	_	.182E-01
0.550	1.3004	0.2115E-		0-15-26-04	0.4523	0.31	-0	.130E-01
0.900	1.2769	0.19236-		0.9307E-05	0.4500	0.31		. 854E-02
0.450	1.14.0	0.1790E-		0.55386-05	0.4479	0.30		. 552E-02
0.400	1.0536	0.1530E-		0.4115E-05	0.4415	0.37		. 448E-03
0.350	0.9403	0.1346E- 0.1153E-		0.4615E-05	0.4384	0.37		.999E-02
REIDELTAL - 42								
BETAR+DELTA/U	ALFAR-DELTA	BETARONU/U	••2	AL FAI HNU/U	GROUP VEL	. WAVE	VEL.	CITMP
0.550	1.4803	0.12916-		0.18756-04	0.4321	0.31		.2336-01
0.490	1.2469	0.1056E-		0.3873E-05	0.4150	0.34		. 550E-02
0.400	1.1249	0.93698-		0.7042E-07	0.4076	0.35	96 -0	.108E-03
0.350	1.0016	0.02156-		-0.1971E-05	0.4043	0.34		. 339E-02
0.300	0.0775	0.70426-		-0.1995E-05	0.3998	0.34	10 0	. 367E-02
0.250	0.7515	C.5868E-		-0.3755E-06	0.3940	0.33		. 838E-03
0.200	0.6237	0.46946-	04	0.27238-05	0.3081	0.32	-0	.721E-02

NA - 0.1500	XW/U = 0.8000	WT = 3.141e				
PROFILE COEFFIC		2.14610 0.	89275 -11.53700	16.46300	-9.41120 1.96	410 0.00000
RE(DELTA) - 10	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETARONU/UPP2		GROUP VEL		CITHP
0.600 0.550	1.3981	0.59998-03	0.5899E-05 0.2999E-05	0.4321	0.4291	-0.182E-02 -0.115E-02
0.500	1.2984 1.1984	0.5499E-03 0.5070E-03	0.33008-05	0.5693	0-4235 0-4172	-0.196E-02
RE(DELTA) = 11						
		257422001412			WALLE 1/21	a1945
BETAR+DELTA/U 0.600	ALFAR+DELTA 1.4133	0.5454E-03	-0.1272E-05	0.4321	WAVE VEL	CITMP 0.428E-03
0.500	1.2106	0.4545E-03	-0.5636E-25	0.4902	0.4130	0.251E-02
0.450	1.1083	0.40905-03	-0.3000E-05	0.5193	6.4060	0.1946-02
REIDELTAL - 15	000.					
BETAR-DELTA/U	ALFAR+DELTA	BETAR-NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.6454	0.5384E-03	0.1176E-04	0.4991	0.4254	-0.464E-02
0.650	1.5438	0.5000E-03	-0.1538E-06	0.4906	0.4210	0.635E-04
0.600 0.550	1.4416	0.4615E-03 0.4230E-03	-0.9153E-05 -0.1392E-0+	0.4822	0.4162 0.4119	0.398E-02 0.647E-02
0.500	1.2324	0.38468-03	-0.1600E-04	0.4778	0.4057	0.804E-02
0.450	1.1271	0.3461E-03	-0.1476E-04	0.4764	0.3992	0.811E-02
0.400	1.0225	0.30768-03	-0-10928-0+	0.4790	0.3911	0.659E-05
REIDELTAL - 17	00.					
BETAR+DELTA/U	ALPAR-DEL TA	BETARONU/UOPZ	ALFAI-NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.5902	0.3023E-03	-0.705 0E-06	0.4760	0.4087	0.3596-03
0.600	1.4846	0.39296-03	-0.1117E-04	0.4699	0.4041	0.601E-02
0.550	1.3774	0.3235E-03	-0.1852E-04	0.4631	0.3993	0.106E-01
0.500	1.2690 1.1598	0.29416-03	-0.22586-04	0.4595	0.3940	0.139E-01 0.159E-01
0.490 0.400	1.0900	0.2647E-03 0.2352E-03	-0.2382E-04 -0.2217E-04	0.4541	0.3879	0.1636-01
0.350	0.9396	0.20508-03	-0.1788E-04	0.4528	0.3724	0-146E-01
0.300	0.0292	0.17648-03	-0.1094E-04	0.4500	0.3617	0.100E-01
0.250 0.200	0.7174	0.14706-03	-0.1744E-05	0.4415	0.3484	0.184E-02
		0.11766-03	0.94116-09	0,4330	0.3310	-0.1146-01
RETAR*DELTA/U	ALFAR DELTA	BETARONU/UPP2		GROUP VEL		CITMP
0.600	1.5499	0.2307E-03 0.2115E-03	-0.1807E-05	0.4536	0.3071	0.141E-02 0.944E-02
0.300	1.3295	0.19236-03	-0.1849E-04	0.4419	0.1760	0.1596-01
0.490	1.2150	0.17306-03	-0.2274E-04	0.4334	0.3703	0.211E-01
0.400	1.0900	0.19386-03	-0.2465E-04	0.4245	0.3640	0.247E-01
0.390	0.9794	0.1346E-03 0.1153E-03	-0.2380E-04 -0.2026E-04	0.4226	0.3573	0.267E-01 J.298E-01
0.250	0.7428	0.9615E-04	-0.14698-04	0.4149	0.3365	0.2136-01
0.200	0.4212	0.7692E-04	-0.69618-05	0.4091	0.3219	0.119E-01
0.190	0.4984	0.57648-04	0.22696-05	0.4033	0.3009	-0.477E-02
REIDELTA) = 42	<b>60</b> .					
BETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/U2	ALFAIONU/U	GROUP YEL	. WAVE VEL.	CITHP
0.550	1.4911	0.12916-03	0.24178-05	0.4936	0.3600	-0.3416-02
0.500	1.3077	0.1173E-03	-0.96338-09	0.4630	0.3603	0.800E-05
0.450	1.2747	0.1056E-03 0.9389E-04	-0.1215E-04 -0.1440E-04	0.4322	0.3530	0.179E-01 0.249E-01
0.350	1.0325	0.02158-04	-0.1663E-04	0.4011	0.3389	0.3085-01
0.300	0.9049	0.704ZE-04	-0.18946-04	0.3931	0.3307	0.3426-01
0.250	0.7781	0.58686-04	-0.1631E-04	0.3659	0.3212	0-3446-01
0.200	0.647	0.46946-04	-0.12255-04	0.3700	0.3007	0.309E-01
0.190 0.100	0.5141	0.35218-04	-0.6173E-05	0.3717	0.2917	0.190E-01 -0.471E-02
RE(DELTA) - 100		0117416-04	0411906-09	V.,,	V. 2 = 3 +	-014118-08
SETARODELTA/U	ALFARODELTA 1.3897	0.5000E-04	ALFAI+NU/U 0.2109E-03	GROUP VEL	. WAVE VEL.	CITMP -0.879E-02
0.400	1.2034	0.39995-04	-0.2310E-03	0.4925	0.3323	0.9456-02
0.300	0.9004	0.29998-04	-0.7370E-05	0.4057	0.3059	0.304E-01
0.200	0.7049	C.1999E-04	-0.8700E-05	0.3461	0.2837	0.427E-01
0.100	0.4013	0.99796-05	-0.3789E-03	0.2866	0.2491	0.2705-01

NA - 0.1500	XW/U - 0.8000	WT - 3.9270				
PROFILE COEFFIC	TENTS -0.65802	1.70530 3.	<b>-16.05400</b>	19.86480 -10.	04500 1.10	790 0.43604
REIDELTA) - 100	00.					
BETAR-DELTA/U	ALFAR+DELTA	BETAR-NU/U2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.600	1.4043	0.59998-03	-0.1130E-04	0.4979	0.4272	0.400E-CZ
0.550	1.3038	0.5499E-03	-0.1680E-04	0.4955	0.4218	0.638E-05
0.500	1.2025	0.5000E-03	-0.1870E-04	0.4930	0.4150	0.766E-01
0.450	1.1010	0.4499E-03	-0.1669E-04	0.4916	0.4087	0.745E-02
0.400	0.9991	0.4000E-03	-0.1119E-04	0.4899	0.4003	0.549E-02
0.350	0.8949	0.3499E-03	-0.2300E-05	0.4873	0.3902	0.124E-02
0.300	0.7939	J. 2999E-03	0.9600E-05	0.4847	0.3778	-0.586E-02
REIDELTAL = 170	00.					
BETAR+DELTA/U	ALFAR-DELTA	BETAR-NU/U-2	ALFAI NU.'U	GROUP VEL.	WAVE VEL.	CITHP
0.450	1.5899	0.3823E-03	- 0.705 BE-06	0.4892	0.4088	0.3698-03
C.600	1.4863	0.3529E-03	-0.1394E-04	0.4753	0.4036	0.758E-02
0.550	1.3795	0.3235E-03	-0.2405E-04	0.4615	0.3986	0.136E-01
0.500	1.2696	0.2941E-03	-0.3047E-04	0.4611	0.3936	0.188E-01
0.450	1.1626	0.2647E-03	-0.3347E-04	0.4610	0.3870	0.229E-01
0.350	0.9396	0.2058E-03	-0.3023E-04	0.4503	0.3724	0.246E-01
0.300	0.0200	0.1764E-03	-0.2370E-04	0.4480	0.3619	0.217E-01
0.250	0.7164	0.1470E-03	-0.1470E-04	0.4421	0.3489	0.154E-01
C.500	0.6026	0.1176E-03	-0.3176E-05	0.4324	0.3318	0.307E-02
0.190	0.4851	0.8823E-04	0.1035E-04	0.4227	0.3092	-0.153E-01
REIDELTA) - 260	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETARONU/UOD2	ALFAI ONU/U	GROUP VEL.	WAVE VEL.	CITHP
0.600	1.5366	0.2307E-03	0.7692E-07	0.4847	0.3904	-0.630E-04
0.990	1.4334	0.21198-03	-0.1111E-04	0.4693	0.3837	0.946E-02
0.500	1.3233	0.19236-03	-0.2007E-04	0.4539	0.3776	0.179E-01
0.450	1.2131	0.173003	-0.2600E-04	0.4438	0.3709	0.247E-01
0.400	1.0979	0.15386-03	-0.2930E-04	0.4295	0.3643	0.2986-01
0.350	C . 9803	0.1346F-03	-0.2957E-04	0.4224	0.3570	0.3316-01
0.300	0.0613	0.11936-03	-0.27118-04	0.4184	0.3483	0.342E-01
0.290	0.7413	0.9615E-04	-0.2219E-04	0.4144	0.3372	0.355E-01
0.200	0.6200	0.76926-04	-0 - 149 3E - 04	0.4067	0.3225	0.247E-01
0.190	0.4954	0.57698-04	-0.4961E-05	0.3965	0.3027	0.1036-01
0.100	0.3678	0.3846E-04	0.63072-05	0.3063	0.2718	-0.172E-01
REIDELTAI - 42	<b>60.</b>					
BETAR-DELTA/U	ALFAR-DELTA	BETARENU/UPPZ	ALFAI-NU/U	GROUP VEL.	WAVE VEL.	CITHP
C.550	1.4588	0.1291E-03	0.23476-05	0.5485	0.3770	-0.376E-02
0.900	1.3643	0.11736-03	-0.5140E-05	0.5056	0.3664	0.8116-02
3.450	1.2604	0.10566-03	-0.1163E-04	0.4627	0.3569	0.184E-01
0.400	1.1476	0.73896-04	-0.14 POE-04	0.4311	0.3484	0.270E-01
0.350	1.0265	0.8215E-04	-0.2028E-04	0.4105	0.3403	0.344E-01
0.300	0.9041	0.7042E-04	-0.2119E-04	0.3940	0.3318	0.3925-01
0.250	0.7746	0.5868E-04	-0.1983E-04	0.3047	0.3227	0.419E-01
0.200	0.6443	0.4694E-04	-0.16296-04	0.3015	0.3104	0.4106-01
0.190	0.5125	0.35216-04	-0.1011E-04	0.3743	0.2926	0.314E-01
0.100	0.3771	0-23478-04	-0.24885-05	0.3670	0.2651	0.1036-01
REIDELTAL - 100	00.					
BETAR-DELTA/U	ALFAR-DELTA	BETARENU/UPPZ	ALFAI . NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.900	1.3610	0.5000E-34	-0-19996-06	0.5701	0.3673	0-8378-03
0.400	1.1704	0.39998-04	-0.37496-05	0.4994	0.3417	0.160E-01
0.300	0.9595	0.29998-04	-0.7950E-05	0.4286	0.3126	0.337E-01
0.200	0.6985	0.19996-04	-0.9419E-09	0.3581	0.2863	0.4835-01
0.100	0.3984	0.9998-09	-0.50708-05	0.2077	0+2510	0-344E-01

NA = 0.1500	XW/U = 0.8000	WT = 4.71	24				
PROFILE COEFFI	CIENTS -0.39091	0.01923	5.28010	-7.25980	-9.36030	28.22400 -22.8730	0 6.37790
REIDELTAL -	900.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR PNU/U*	*2 AL	FA1+NU/U	GROUP VEL		CITHP
0.550	1.2471	0.6111E-0	3 0.	3777E-05	0.5701	0.4410	-0.155E-02
0.500	1.1526	0.5555E-0		1000E-05	0.5222		-0.407E-03
0.450	1.0556	0.5000E-0	3 0.	2222E-05	0.4743	0.4262	-0.898E-03
RE(DELTA) = 1	200.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U+	+2 AL	FAI+NU/U	GROUP VEL		CITMP
0.600	1.3853	0.4999E-0		7500E-06	0.5052	0.4331	0.3286-03
0.500	1.1061	0.4166E-0		1491E-04	0.4976	0.4215	0.7516-02
0.400	0.9634	0.3333E-0		1474E-04	0.4900	0.4067	0.882E-02
0.300	0.7780	0.2499E-0		1500E-05	0.4805	0.3856	0.111E-02
0.200	0.5671	0.1666E-0		2250E-04	0.4909		-0.214E-01
0.100	0.3333	0.8333E-0	• 0.	5350E-04	0.4213	0.3000 -	-0.811E-01
REIDELTA) - 1	700.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U-	-2 AL	FAI-NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.5292	0.3023E-0	3 0.	1764E-04	0.9222	0.4250 -	-0.102E-01
0.400	1.4522	0.3529E-0	3 0.	2941E-05	0.5067	0.4189 -	-0.176E-02
0.550	1.3316	0.3235E-0	3 -0.	84 70E-05	0.4912	0.4129	0.531E-02
0.900	1.2206	0.2941E-0	3 -0.	16.7E-04	0.4805	0.4069	0.109E-01
0.450	1.1297	0.2647E-0	3 -0.	2179E-04	0.4726	0.4004	0.1526-01
0.400	1.0170	0.2352E-0	<b>3</b> -0.	2264E-04	0.4668	0.3933	0.176E-01
0.357	0.9095	0.20506-0	3 -0.	2111E-04	0.4625	0.3848	0.182E-01
0.300	0.8008	0.1764E-0	3 -0.	1623E-04	0.4583	0.3746	0.157E-01
0.250	0.6913	0.1470E-0	3 -0.	8999E-05	0.4533	0.3616	0.100E-01
0.200	0.5802	0.1176E-0	5 0.	8623E-06	0.4483	0.3447 -	0.1156-02
RE(DELTA) - 20	•00•						
BETAR-DELTA/U	ALFAR+DELTA	BETAR-NU/U-	•2 AL	FAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.5527	0-2500E-0	3 0.	2880E-04	0.6169	0.4186 -	0.297E-01
0.400	1.4689	0 - 230 7E - 0	3 0.	1553E-04	0.5686	0.4084 -	0.156E-01
0.550	1.3764	0.2115E-0		3384E-05	0.5202		0.3326-02
0.500	1.2764	0-19236-0		665 3E-05	0.4867	0.3917	0.6596-02
0.450	1.1708	0.17308-0	-	1411E-04	0.4442	0.3043	0.1498-01
0.400	1.0609	0.1538E-0		1880E-04	0.4493	0.3770	0.207E-01
0.350	0.9482	0.13465-0		2065E-04	0.4392	0.3691	0.248E-01
0.300	0.8332	0.11536-0		1969E-04	0.4317	0.3600	0.2656-01
0.250	0.7166	0.96158-0		1607E-04	0.4240	0.3488	0.2486-01
0.200	0.5985	0.76925-0		9884E-05	0.4194	0.3341	0.180E-01
0.190	0.4782	0.5769E-0		1976E-29	0.4062	0.3136	0.3485-02
0.100	0.3922	0.38466-0		8115E-05	0.3929		0.2398-01
REIDELTAL - 42	r60 •						
BETAR-DELTA/U	ALFARODELTA	RETARONU/UO	•2 AL	FAI-NU/U	SROUP VEL	. WAVE VEL.	CITHP
0.400	1.4550	0.1400E-0		1794E-04	0.6936		0.392E-01
0.990	1.3001	0.12016-0		1180E-04	0.6361		0.2326-01
0.900	1.2909	0.1173E-0		5250E-C5	0.5824		0-100E-01
3.490	1.2079	0.10965-0		1784E-09	0.5100		0.3266-02
0.400	1.1094	0.93898-0		7007E-05	0.4673		0.1426-01
0.390	0.9935	0.82156-0		1251E-04	0.4343		0.2336-01
0.300	0.8750	0.7042E-0		14486-04	0.4120		0.290E-01
0.250	0.7507	0.58486-0		1455E-04	0.4008	0.3330	0.331E-01
0.200	0.6255	0.46948-0		11736-04	0.3922	0.3197	(.313E-01
0.150	0.0257	0.39216-0		7018E-05	0.3002		0.2296-01
0.100	0.3625	0.23478-0		3990E-04	0.3970	0.2758	0.1676-02
0.050	0.2149	0.11736-0		4854E-05	0.3330	- ·	0.4536-01
REIDELTA) - 100	000.						
BETAR-DELTA/U	ALFAR-DELTA	BETARONU/UP	• 2 AI	FAI - NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.400	1.1074	0.39995-0		4699E-06	0.9744		0.2436-02
0 300	0.9217	0.29992-0		3019E-05	0.4798		0.1998-01
0.200	0.6797	0.19995-0		63998-09	0.3773	0.2942	0.3556-01
0.100	0.3868	0.99998-0	_	3499E-05	0.2787	0.2505	0.292E-01
0.100	0.3000	0	-0.	3- 14E-03	0.2787	U.2383	0.4346-01

NA - 0.1500	XW/U - 0.8000	WT = 5.4978				
PROFILE COEFFIC	TENTS 0.12642	-1.67910 4.6	66320 6.07238	-43.30500	68.89100 -47.04	100 12.08900
REIDELTA) = 11	700.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR -NU/U-+2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.3734	0.3529E-03	0.3274E-04	0.5245	0.4348	-0.213E-01
0.550	1.2779	0.3235E-03	0.2135E-04	0.5125	0.4303	-0.145E-01
0.500	1.1782	0.2941E-03	0.1294E-04	0.4985	0.4243	-0.930E-02
0.450	1.0773	0.2647E-03	0.7411E-05	0.4909	0.4177	-3.574E-02
0.400	0.9745	0.2352E-03	0.5058E-05	0.4856	0.4104	-0.428E-02
0.350	0.8714	0.20586-03	0.5235E-05	0.4808	0.4016	-0.491E-02
0.300	0.7665	0.1764E-03	0.8294E-05	0.4750	0.3913	-0.873E-02
0.250	0.6609	0.1470E-03	0.13236-04	0.4671	0.3782	-0.159E-01
0.200	0.5524	0.1176E-03	0.2041E-04	0.4532	0.3620	-0.284E-01
0.150	0.4402	0.8823E-04	0.2794E-04	0.4393	0.3407	-0.474E-01
REIDELTA) . 26	.00.					
BETAR-DELTA/U	ALFAR DELTA	BETAR-NU/U2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.400	1.4161	0.23078-03	0.4096E-04	0.5791	0.4236	-0.435E-01
0.550	1.3277	0.2115E-03	C.2669E-04	0.5400	0.4142	-0.282E-01
0.500	1.2309	0.19236-03	0.15268-04	0.5008	0.4763	-0.161E-01
0.490	1.1279	0.1730E-03	0.6807E-05	0.4779	0.3989	-0.750E-02
0.400	1.0212	0.15386-03	0.1269E-09	0.4632	0.3916	-0.149E-02
0.350	0.9120	0.13466-03	-0.1500E-05	0.4537	0.3037	0.194E-02
0.300	0.8000	0.1153E-03	-0.1653E-05	0.4462	0.3746	0.239E-02
0.250	0.6879	0.9615E-04	0.5769E-06	0.4393	0.3634	-0.958E-03
0.200	0.5732	0.76928-04	0.4646E-05	0.4303	0.3489	-0.946E-05
0.150	0.4555	0.57698-04	0.10696-04	0.4213	0.3293	-0.257E-01
REIDELTAL - 42	40.					
BETAR DELTA/U	ALFAR-DELTA	BETAR-NU/U2	ALFAI-NU/U	GROUP VEL	WAVE VEL.	CITMP
0.550	1.3170	0.12916-03	0.3483E-04	0.9032	0.4173	-0.101E 00
0.500	1.2590	0.11736-03	0.2570E-04	0.7278	0.3971	-0.633E-01
0.450	1.1764	0.1056E-03	0.1510E-04	0.5524	0.3025	-0.3036-01
0.400	1.0763	0.73898-04	0.46908-05	0.4749	0.3716	-0.125E-01
0.350	0.9453	0.0215E-04	0.6338E-06	0.4374	0.3625	-0.122E-02
0.300	0.8475	0.7042E-04	-0.23946-05	0.4191	0.3539	0.504E-02
0.250	0.7267	0.58686-04	-0.3239E-05	0.4085	0.3440	0.7756-02
0.200	0.6027	0.46946-04	-0.1572E-05	0.3997	0.3318	0.444E-05
0.190	0.4765	0.35218-04	0.1619E-05	0.3908	0.3147	-0.569E-02
REIDELTAL - 100	000.					
BETAR-DELTA/U	ALFAR DEL TA	BETAR . NU/U++2	ALFAI ONU/U	GROUP VEL	WAVE VEL.	CITMP
0.300	0.9207	0.2999E-04	0.5249E-05	0.4460	0.3256	-0.254E-01
0.290	0.8359	0.2500E-04	0.60006-06	0.40:9	0.3102	-0.299E-02
0.200	0.6792	0.1999E-04	-0.10096-05	0.3579	0.2984	0.9598-02
0.190	0.9263	0.1499E-04	-0.16706-05	0.3306	0.2890	0.107E-01
0.100	0.3747	0.99998-05	0.19998-07	0.3193	0.2668	-0.170E-03

The state of the s

NA = 0.1500	XW/U = 1.4000	WT = 0.0000				
PROFILE COEFFIC			2400 -7.56770	-18.92100 4	1.97600 -30.95	200 8.124
RE(DELTA) = 22						
SETAR-DELTA/U	ALFAR>DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.550	1.2869	0.2444E-03	0.4466E-04	0.5005	0.4273	-0.390E-0
0.500	1.1857	0.2222E-03	0.3413E-04	0.4874	0.4216	-0.315E-0
0.450	1.0817	0.2000E-03	0.2631E-04	0.4742	0.4160	-0.259E-0
0.400	0.9748	0.1777E-03	0.2146E-04	0.4670	0.4103	-0.231E-0
0.350	0.8676	0.1555E-03	0.1888E-04	0.4625	0.4034	-0.226E-0
0.300	0.7586	0.1333E-03	0.1875E-04	0.4568	0.3954	-0.2548-0
0.250	0.6487	0.11116-03	0.2013E-04	0.4495	0.3853	-0.3136-0
0.200	0.5361	0.888E-04	0.2324E-04	0.4421	0.3730	-0.431E-0
E(DELTA) = 34	40.					
ETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL.	CITMP
0.550	1.3543	0.1598E-03	0.5093E-04	0.5016	0.4061	-0.648E-0
0.500	1.2527	0 - 1453E-03	0.3534E-04	0.4786	0.3991	-0.464E-0
0.450	1.1452	0.1308E-03	0.2436E-04	0.4555	0.3929	-0.333E-
0.400	1.0331	0.1162E-03	0.1656E-04	0.4413	0.3871	-0.243E-
0.350	0.9184	0.1017E-03	0.1186E-04	0.4321	0.3810	-0.191E-
0.300	0.8017	0.8720E-04	0.9331E-05	0.4259	0.3742	-0.170E-
0.250		0.07267E-04		0.4193		-0.191E-
	0.6838		0.9098E-05		0.3656	
0.200	0.5632	0.5813E-04	0.1043E-04	0.4127	0.3551	-0.263E-
E(DELTA) - 56	40.					
ETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U2	ALFAI+NU/U	GROUP VEL	WAVE VEL+	CITMP
0.400	1.1113	0.7092E-04	0.19555-04	0.4128	0.3599	-0.409E-
0.350	0.9891	0.6205E-04	0.1152E-04	0.4022	0.3538	-0.264E-
0.300	0.8626	0.5319E-04	0.6719E-05	0.3915	0.3477	-0.172E-0
0.250	0.7337	0.44326-04	0.4290E-05	0.3642	0.3407	-0.126E-
0.200	0.6023	0.3546E-04	0.4024E-05	0.3768	0.3320	-0.142E-0
A - 0.1900	XW/U = 1.4000	wT = 1.5708				
A - 0.1900 ROFILE COEFFIC			390 7.05560	-17.05200 2	4.54600 -16.138	100 4.047
OFILE COEFFIC	IENTS 0.39757		390 7.05560	-17.65200 24	4.54600 -16.136	00 4.047
ROFILE COEFFIC	IENTS 0.39757		390 7.05560 ALFAI®NU/U	-17.05200 24	4.54600 -16.136 WAVE VEL:	000 4.047 CITMP
ROFILE COEFFIC EIDELTA) = 229	IENTS 0.39757 50.	0.02366 -2.06				CITMP
ROFILE COEFFIC EIDELTA) = 229 ETAR+DELTA/U 0.600	1ENTS 0.39757 50. ALFAR+DELTA 1.4868	0.02365 -2.06 BETARONU/U**2 0.2666E-03	ALFAI+NU/U 0+3759E-04	GROUP VEL:	WAVE VEL. 0.4035	CITMP -0.258E-0
ROFILE COEFFIC EIDELTA) = 229 ETAR+DELTA/U 0.600 0.550	ENTS 0.39757 50. ALFAR+DELTA 1.4868 1.3757	0.02366 -2.06 BETAR-NU/U**2 0.2666E-03 0.2646E-03	ALFA[+NU/U 0-3759E-04 0-2999E-04	GROUP VEL. 0.4538 0.4500	WAVE VEL- 0-4035 0-3997	CITMP -0.258E-0 -0.220E-0
ROFILE COEFFIC E(DELTA) = 225 ETAR+DELTA/U 0.600 0.550 0.550	ENTS 0.39757 50. ALFAR*DELTA 1.4868 1.3757 1.2646	BETARONU/U**2 0.2666E-03 0.2646E-03 0.2222E-03	ALFAI+NU/U 0-3759E-04 0-2999E-04 0-2457E-04	GROUP VEL. 0.4538 0.4500 0.4462	WAVE VEL- 0.4035 0.3997 0.3953	CITMP -0.258E-0 -0.220E-0 -0.195E-0
TOFILE COEFFIC E(DELTA) = 225 ETAR*DELTA/U 0.600 0.590 0.500 0.450	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1916	BETARONU/U++2 0.2666E-03 0.2666E-03 0.222E-03 0.2000E-03	ALFA[=NU/U 0.3759E-04 0.2999E-04 0.2457E-04 0.2155E-04	GROUP VEL. 0.4538 0.4500 0.4462 0.4446	WAVE VEL. 0.4035 0.3997 0.3953 0.3907	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.187E-0
ROFILE COEFFIC E(DELTA) = 229 ETAR+DELTA/U 0.400 0.990 0.990 0.400	ALFAR+DELTA 1.4868 1.3757 1.2646 1.1516 1.0397	BETAR NU/U**2 0.2666E-03 0.2666E-03 0.222E-03 0.222E-03 0.1777E-03	ALFAI+NU/U 0.3759E-04 0.2999E-04 0.2457E-04 0.2159E-04 0.2039E-04	GROUP VEL. 0.4538 0.4500 0.4462 0.4448	WAVE VEL. 0.4035 0.3997 0.3993 0.3907 0.3847	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.187E-0
TOPILE COEFFIC EIDELTA = 225 ETAR*DELTA/U 0.600 0.950 0.900 0.450 0.400 0.350	ALFAR+DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268	BETAR-NU/U2 0.2666E-03 0.2646E-03 0.2222E-03 0.200E-03 0.1777E-03 0.1555E-03	ALFAI*NU/U 0.3759E-04 0.2999E-04 0.2457E-04 0.2159E-04 0.2029E-04	GROUP VEL. 0.4538 0.4500 0.4462 0.4446 0.4428	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847	CITMP -0.238E-0 -0.220E-0 -0.195E-0 -0.187E-0 -0.227E-0
TOPILE COEFFIC EIDELTA = 225 ETAR*DELTA/U 0.600 0.530 0.500 0.600 0.600 0.600 0.600 0.600 0.600 0.600	ALFAR®DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139	BETARONU/U**2 0.2666E-03 0.2646E-03 0.2222E-03 0.20707E-03 0.1555E-03 0.1355E-03	ALFAI NU/U 0.3799E-04 0.2999E-04 0.2457E-04 0.2159E-04 0.2039E-04 0.2120E-04 0.2346E-04	GROUP VEL. 0.4538 0.4500 0.4462 0.4446 0.4428 0.4428	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3665	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.196E-0 -0.227E-0 -0.285E-0
TOPILE COEFFIC (IDELTA) = 229 (TAR*DELTA/U 0.600 0.550 0.500 0.450 0.450 0.350	ALFAR+DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268	BETAR-NU/U2 0.2666E-03 0.2646E-03 0.2222E-03 0.200E-03 0.1777E-03 0.1555E-03	ALFAI*NU/U 0.3759E-04 0.2999E-04 0.2457E-04 0.2159E-04 0.2029E-04	GROUP VEL. 0.4538 0.4500 0.4462 0.4446 0.4428	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.186E-0 -0.227E-0 -0.378E-0
TOPILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.550 0.500 0.400 0.400 0.350 0.300 0.250 0.200	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821	BETARONU/UPO2 0.2666E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03	ALFAI+NU/U 0.3799E-04 0.2999E-04 0.2457E-04 0.2159E-04 0.2120E-04 0.2120E-04 0.2724E-04	GROUP VEL: 0.4538 0.4500 0.4462 0.4448 0.4448 0.4428 0.4393	WAVE VEL- 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3665 0.3575	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.186E-0 -0.227E-0 -0.378E-0
ROFILE COEFFIC E(DELTA) = 225 ETAR*DELTA/U 0.600 0.990 0.990 0.490 0.490 0.490 0.390 0.390 0.290 0.290	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1916 1.0397 0.9268 0.8139 0.6992 0.5821	BETARONU/UPOZ 0.2666E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111E-03 0.0000E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2120E-04 0.2724E-04 0.3173E-04	GROUP VEL: 0.4538 0.4500 0.4462 0.4468 0.4468 0.4428 0.4314 0.4335	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.197E-0 -0.277E-0 -0.285E-0 -0.378E-0
ROFILE COEFFIC E(DELTA) = 225 ETAR*DELTA/U 0.600 0.990 0.490 0.490 0.490 0.390 0.390 0.290 E(DELTA) = 344	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821	BETAR-NU/U2 0.2666E-03 0.266E-03 0.266E-03 0.222E-03 0.1777E-03 0.1777E-03 0.1555E-05 0.1111F-05 0.8888E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2724E-04 0.3173E-04	GROUP VEL- 0.4538 0.4500 0.4462 0.4468 0.4428 0.4313 0.4313 0.4313 0.4239	WAVE VEL. 0.4035 0.3997 0.3993 0.3907 0.3847 0.3776 0.3655 0.3975 0.9435	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.197E-0 -0.227E-0 -0.285E-0 -0.519E-0
TAR-DELTA/U 0.600 0.500 0.400 0.400 0.500 0.400 0.400 0.250 0.200 0.200 0.210 0.200	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2222E-03 0.1777E-03 0.1555E-03 0.1353E-03 0.1111F-03 0.6888E-04	ALFAI*NU/U 0.3759E-04 0.2999E-04 0.2257E-04 0.2159E-04 0.2120E-04 0.2120E-04 0.2120E-04 0.2120E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4428  0.4393  0.4393  0.4395	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3766 0.3665 0.3575 0.3635	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.187E-0 -0.227E-0 -0.265E-0 -0.378E-0 -0.519E-0
ROFILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.590 0.590 0.400 0.400 0.350 0.350 0.200 EIDELTAI = 344 ETAR*DELTA/U 0.600 0.550	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921	BETARONU/U**2 0.2666E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1939E-03 0.1111*-03 0.0000E-04	ALFAI NU/U 0.9799E-04 0.2999E-04 0.2257E-04 0.2159E-04 0.2120E-04 0.2136E-04 0.2136E-04 0.3173E-04  ALFAI NU/U 0.9171E-04 0.2241E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4428  0.4393  0.4314  0.4239	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3766 0.3685 0.3575 0.3435	CITMP -0.238E-0 -0.220E-0 -0.195E-0 -0.196E-0 -0.227E-0 -0.235E-0 -0.378E-0 -0.919E-0
TAR DELTA/U 0.600 0.990 0.990 0.900 0.990 0.900 0.290 0.290 0.200 E(TAR DELTA/U 0.600 0.990 0.990 0.990	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821	BETAR-NU/U-2 0.2666E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.177E-03 0.1555E-03 0.1111*-03 0.4886E-04  BETAR-NU/U-2 0.1744E-03 0.198E-03 0.198E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04  ALFAI NU/U 0.3171E-04 0.2221E-04 0.1520E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4468  0.4393  0.4393  0.4393  0.4395	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3665 0.3575 0.39435	CITMP -0.258E-0 -0.250E-0 -0.195E-0 -0.197E-0 -0.277E-0 -0.287E-0 -0.378E-0 -0.919E-0  CITMP -0.289E-0 -0.199E-0
TAR DELTA/U 0.600 0.990 0.990 0.490 0.490 0.390 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821	BETAR-NU/U2 0.2666E-03 0.266E-03 0.266E-03 0.266E-03 0.2722E-03 0.1777E-03 0.1555E-03 0.1111F-03 0.4886E-04  BETAR-NU/U2 0.1746E-03 0.1598E-03 0.1598E-03 0.1598E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2724E-04 0.3173E-04 ALFAI NU/U 0.5171E-04 0.2241E-04 0.1520E-04 0.1520E-04	GROUP VEL- 0.4538 0.4500 0.4462 0.4468 0.4428 0.4313 0.4314 0.4239 GROUP VEL- 0.4209 0.4162 0.4110	WAVE VEL. 0.4035 0.3997 0.3993 0.3907 0.3847 0.3655 0.3655 0.3655 0.3675 0.3760 0.3760 0.3779 0.3772	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.197E-0 -0.277E-0 -0.287E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.199E-0
TAR-DELTA/U 0.600 0.500 0.400 0.350 0.300 0.250 0.200 E(DELTA) = 344  ETAR-DELTA/U 0.600 0.550 0.500 0.500 0.500 0.500 0.500 0.500 0.500	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921 60.  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.2222E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.6888E-04 BETARONU/UPPZ 0.174E-03 0.1598E-03 0.1598E-03 0.1598E-03 0.1508E-03 0.1508E-03	ALFAI NU/U 0 * 3759E - 0 4 0 * 2999E - 0 4 0 * 2457E - 0 4 0 * 2159E - 0 4 0 * 2120E - 0 4 0 * 2146E - 0 4 0 * 2724E - 0 4 0 * 3173E - 0 4  ALFAI NU/U 0 * 3171E - 0 4 0 * 2241E - 0 4 0 * 1029E - 0 4 0 * 1029E - 0 6 0 * 7383E - 0 9	GROUP VEL.  0.4538 0.4500 0.4462 0.4468 0.4428 0.4393 0.4314 0.4239  GROUP VEL.  0.4209 0.4162 0.4110 0.4101	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3655 0.3975 0.3975 0.3975 0.3975 0.3975 0.3975 0.3975	CITMP -0.258E-0 -0.220E-0 -0.195E-0 -0.187E-0 -0.227E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.19E-0 -0.19E-0 -0.19E-0
TAR-DELTA/U 0.600 0.550 0.500 0.400 0.350 0.300 0.250 0.200  TAR-DELTA/U 0.600 0.550 0.500 0.500 0.500 0.500 0.500 0.500	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034 0.9916	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1333E-03 0.1111F-03 0.6886E-04	ALFAI NU/U 0 * 3759E - 04 0 * 2999E - 04 0 * 2257E - 04 0 * 2159E - 04 0 * 2120E - 05 0 * 240E - 05	GROUP VEL.  0.4538 0.4500 0.4462 0.4468 0.4428 0.4393 0.4314 0.4239  GROUP VEL.  0.4209 0.4162 0.4115 0.4110 0.4093	WAVE VEL. 0.4035 0.3997 0.3993 0.3907 0.3847 0.3776 0.3685 0.3975 0.3435  WAVE VEL. 0.3780 0.3745 0.3712 0.3672 0.3625 0.3953	CITMP -0.258E-0 -0.195E-0 -0.187E-0 -0.187E-0 -0.27E-0 -0.378E-0 -0.378E-0 -0.319E-0  CITMP -0.289E-0 -0.19E-0 -0.19E-0
OFILE COEFFIC  (IDELTA) = 225  (IDELTA) = 225  (IDELTA) = 225  (IDELTA) = 325  (IDELTA) = 346	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034 0.9916	BETAR-NU/U-2 0.2666E-03 0.2646E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.177F-03 0.1555E-03 0.1111F-09 0.8888E-04  BETAR-NU/U-2 0.1746E-03 0.1998E-03 0.1908E-03 0.1908E-03 0.1037E-03 0.1037E-03 0.1037E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04  ALFAI NU/U 0.3171E-04 0.1224E-04 0.1229E-04 0.1029E-04 0.1029E-04 0.1029E-04 0.7131E-05	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4468  0.4428  0.4393  0.4335  GROUP VEL.  0.4209  0.4162  0.4101  0.4101  0.4093  0.4093	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575 0.3675 0.3780 0.3780 0.3780 0.3782 0.3672 0.3672 0.3685	CITMP -0.258E-0 -0.258E-0 -0.195E-0 -0.187E-0 -0.187E-0 -0.287E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.118E-0 -0.118E-0 -0.944E-0 -0.941E-0 -0.941E-0
OFILE COEFFIC  (IDELTA) = 225  (TAR-DELTA/U 0.600 0.950 0.900 0.950 0.900 0.950 0.250 0.250 0.900 0.950 0.900 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR*DELTA 1.5870 1.6684 1.3467 1.2254 1.1034 0.9918 0.8591 0.7752	BETAR-NU/U-2 0.2666E-03 0.266E-03 0.266E-03 0.266E-03 0.2722E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.6886E-04  BETAR-NU/U-2 0.1764E-03 0.1968E-03 0.1698E-03 0.1698E-03 0.1107E-03 0.107E-03 0.107E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2724E-04 0.3173E-04 0.3171E-04 0.2241E-04 0.1520E-04 0.1520E-04 0.1520E-05 0.45360E-05	GROUP VEL- 0.4538 0.4500 0.4462 0.4468 0.4428 0.4314 0.4239 GROUP VEL- 0.4209 0.4162 0.4110 0.4101 0.4003	WAVE VEL • 0.4035 0.3997 0.3993 0.3907 0.3847 0.3655 0.3655 0.3675 0.3675 0.3760 0.3769 0.3775 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.195E-0 -0.27E-0 -0.285E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.189E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.176E-0
COPILE COEFFIC  CIDELTA) = 225  CIDELTA = 225  CIDELTA = 225  CIDELTA = 225  CIDELTA = 346  CIDE	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5821  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034 0.9916	BETAR-NU/U-2 0.2666E-03 0.2646E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.177F-03 0.1555E-03 0.1111F-09 0.8888E-04  BETAR-NU/U-2 0.1746E-03 0.1998E-03 0.1908E-03 0.1908E-03 0.1037E-03 0.1037E-03 0.1037E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04  ALFAI NU/U 0.3171E-04 0.1224E-04 0.1229E-04 0.1029E-04 0.1029E-04 0.1029E-04 0.7131E-05	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4468  0.4428  0.4393  0.4335  GROUP VEL.  0.4209  0.4162  0.4101  0.4101  0.4093  0.4093	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575 0.3675 0.3780 0.3780 0.3780 0.3782 0.3672 0.3672 0.3685	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.195E-0 -0.27E-0 -0.285E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.189E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.176E-0
ROFILE COEFFIC EIDELTA = 225 ETAR*DELTA/U 0.600 0.590 0.490 0.490 0.390 0.290 EIDELTA = 344 ETAR*DELTA/U 0.600 0.550 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR*DELTA 1.5870 1.4684 1.3667 1.2254 1.1034 0.9916 0.6991 0.77562 0.6115	BETAR-NU/U-2 0.2666E-03 0.266E-03 0.266E-03 0.266E-03 0.2722E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.6886E-04  BETAR-NU/U-2 0.1764E-03 0.1968E-03 0.1698E-03 0.1698E-03 0.1107E-03 0.107E-03 0.107E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2724E-04 0.3173E-04 0.3171E-04 0.2241E-04 0.1520E-04 0.1520E-04 0.1520E-05 0.45360E-05	GROUP VEL- 0.4538 0.4500 0.4462 0.4468 0.4428 0.4314 0.4239 GROUP VEL- 0.4209 0.4162 0.4110 0.4101 0.4003	WAVE VEL • 0.4035 0.3997 0.3993 0.3907 0.3847 0.3655 0.3655 0.3675 0.3675 0.3760 0.3769 0.3775 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.195E-0 -0.27E-0 -0.285E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.189E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.18E-0 -0.176E-0
ROFILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.590 0.490 0.490 0.390 0.390 0.290 0.290 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR*DELTA 1.5870 1.4684 1.3407 1.2254 1.1034 0.9816 0.6991 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.27222E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111'-03 0.6888E-04  BETARONU/UPPZ 0.1746E-03 0.1598E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04 0.3171E-04 0.2241E-04 0.1529E-04 0.1029E-04 0.17383E-05 0.1029E-04 0.1281E-04	GROUP VEL.  0.4538 0.4500 0.4462 0.4468 0.4428 0.4393 0.4393 0.4395  GROUP VEL.  0.4209 0.4162 0.4110 0.4101 0.4093 0.4093 0.4093	WAVE VEL.  0.4035 0.3997 0.3997 0.3907 0.3847 0.3776 0.3685 0.3975 0.3975 0.3975 0.3975 0.3975 0.3975 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775 0.3775	CITMP -0.238E-0 -0.195E-0 -0.187E-0 -0.187E-0 -0.237E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.196E-0
ROFILE COEFFIC  EIDELTA) = 225  ETAR*DELTA/U 0.600 0.990 0.990 0.900 0.900 0.950 0.290 EIDELTAI = 344  ETAR*DELTA/U 0.600 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR-DELTA 1.5870 1.4684 1.3667 1.2254 1.1034 0.9916 0.8991 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.2722E-03 0.1777E-03 0.1555E-03 0.1353E-03 0.1111F-03 0.6886E-04  BETARONU/UPPZ 0.1746E-03 0.1598E-03	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04 0.3171E-04 0.1520E-04	GROUP VEL.  0.4538 0.4530 0.4462 0.4468 0.4468 0.4428 0.4393 0.4314 0.4239 0.4115 0.4110 0.4101 0.4093 0.4093 0.4093 0.4002	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575 0.3435  WAVE VEL. 0.3780 0.3780 0.3782 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.195E-0 -0.195E-0 -0.196E-0 -0.276E-0 -0.378E-0 -0.319E-0 -0.196E-0 -0.398E-0
ROFILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.990 0.490 0.490 0.390 0.290 0.290 EIDELTA  = 344 ETAR*DELTA/U 0.600 0.990 0.990 0.900 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6092 0.5821  ALFAR-DELTA 1.5870 1.4664 1.3467 1.2254 1.1034 0.9916 0.0991 0.7752 0.6115	BETAR-NU/U-2 0.2666E-03 0.266E-03 0.266E-03 0.266E-03 0.2720E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.8888E-04  BETAR-NU/U-2 0.1764E-03 0.1598E-03 0.1598E-03 0.1598E-03 0.1598E-03 0.1765E-03 0.1765E-03 0.1765E-03 0.1767E-04 0.8720E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04  ALFAI NU/U 0.3171E-04 0.1520E-04 0.1029E-04 0.1520E-04 0.1531E-05 0.1531E-05 0.1281E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4468  0.4428  0.4314  0.4239  GROUP VEL.  0.4209  0.4165  0.4110  0.4101  0.4074  0.4093  0.4093  0.4093  0.4093  0.4093  0.4093  0.4093	WAVE VEL.  0.4035 0.3997 0.3997 0.3907 0.3847 0.3776 0.3655 0.3575 0.3575 0.3712 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.196E-0 -0.237E-0 -0.378E-0 -0.319E-0 -0.519E-0 -0.159E-0 -0.16E-0 -0.16E-0 -0.16E-0 -0.16E-0 -0.28E-0 -0.28E-0
ROFILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.550 0.400 0.350 0.250 0.250 0.550 0.500 0.450 0.450 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	ALFAR*DELTA 1.3757 1.2646 1.3757 1.2646 1.1916 1.0397 0.9268 0.8139 0.6992 0.5821  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034 0.9918 0.8991 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1353E-03 0.1111F-03 0.8889E-04  BETARONU/UPPZ 0.1744E-03 0.1598E-03 0.1653E-03 0.162E-03 0.1017E-03 0.1017E-03 0.8720E-04  BETARONU/UPPZ 0.7267E-04 0.5885E-04 0.778E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04 0.3171E-04 0.1520E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4428  0.4314  0.4239  GROUP VEL.  0.4209  0.4162  0.4110  0.4101  0.4074  0.4098  0.4002	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575 0.3435  WAVE VEL. 0.3780 0.3780 0.3782 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.298E-0 -0.195E-0 -0.195E-0 -0.27E-0 -0.285E-0 -0.378E-0 -0.519E-0 -0.185E-0 -0.185E-0 -0.185E-0 -0.185E-0 -0.185E-0 -0.185E-0 -0.185E-0 -0.288E-0 -0.288E-0
ROFILE COEFFIC  E(DELTA) = 225  E(TAR*DELTA/U 0.600 0.990 0.490 0.490 0.390 0.290 0.290 E(DELTA) = 344  E(TAR*DELTA/U 0.600 0.990 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6092 0.5821  ALFAR-DELTA 1.5870 1.4664 1.3467 1.2254 1.1034 0.9916 0.0991 0.7752 0.6115	BETAR-NU/U-2 0.2666E-03 0.266E-03 0.266E-03 0.266E-03 0.2720E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.8888E-04  BETAR-NU/U-2 0.1764E-03 0.1598E-03 0.1598E-03 0.1598E-03 0.1598E-03 0.1765E-03 0.1765E-03 0.1765E-03 0.1767E-04 0.8720E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04  ALFAI NU/U 0.3171E-04 0.1520E-04 0.1029E-04 0.1520E-04 0.1531E-05 0.1531E-05 0.1281E-04	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4468  0.4428  0.4314  0.4239  GROUP VEL.  0.4209  0.4165  0.4110  0.4101  0.4074  0.4093  0.4093  0.4093  0.4093  0.4093  0.4093  0.4093	WAVE VEL.  0.4035 0.3997 0.3997 0.3907 0.3847 0.3776 0.3655 0.3575 0.3575 0.3712 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.195E-0 -0.27E-0 -0.27E-0 -0.37E-0 -0.519E-0  CITMP -0.289E-0 -0.118E-0 -0.118E-0 -0.116E-0 -0.176E-0 -0.288E-0  CITMP -0.288E-0
ROFILE COEFFIC EIDELTA) = 225 ETAR*DELTA/U 0.600 0.550 0.400 0.350 0.250 0.250 0.550 0.500 0.450 0.450 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	ALFAR*DELTA 1.3757 1.2646 1.3757 1.2646 1.1916 1.0397 0.9268 0.8139 0.6992 0.5821  ALFAR*DELTA 1.5870 1.4684 1.3467 1.2254 1.1034 0.9918 0.8991 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.2222E-03 0.2000E-03 0.1777E-03 0.1555E-03 0.1353E-03 0.1111F-03 0.8889E-04  BETARONU/UPPZ 0.1744E-03 0.1598E-03 0.1653E-03 0.162E-03 0.1017E-03 0.1017E-03 0.8720E-04  BETARONU/UPPZ 0.7267E-04 0.5885E-04 0.778E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2159E-04 0.2159E-04 0.2159E-04 0.2159E-04 0.2159E-04 0.1516-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1520E-04 0.1531E-05 0.454E-05 0.454E-05 0.454E-05 0.454E-05	GROUP VEL.  0.4538  0.4500  0.4462  0.4468  0.4428  0.4314  0.4239  GROUP VEL.  0.4209  0.4162  0.4110  0.4101  0.4074  0.4098  0.4002	WAVE VEL. 0.4035 0.3997 0.3997 0.3967 0.3647 0.3655 0.3675 0.3675 0.3675 0.3675 0.3760 0.3779 0.3779 0.3772 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.238E-0 -0.195E-0 -0.195E-0 -0.195E-0 -0.237E-0 -0.378E-0 -0.378E-0 -0.318E-0 -0.196E-0
ROFILE COEFFIC E(DELTA) = 225 ETAR*DELTA/U 0.600 0.990 0.900 0.990 0.900 0.290 0.290 0.290 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390	ALFAR*DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921 AU.  ALFAR*DELTA 1.5870 1.4684 1.3407 1.2254 1.1034 0.9816 0.9911 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.27222E-03 0.1777E-03 0.1555E-03 0.1555E-03 0.1111F-03 0.6888E-04  BETARONU/UPPZ 0.1746E-03 0.1598E-03 0.17267E-04 0.77267E-04 0.8865E-04 0.779E-04 0.779E-04 0.779E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2120E-04 0.2172E-04 0.3173E-04 0.3171E-04 0.2241E-04 0.1529E-04 0.1529E-04 0.1529E-04 0.1529E-04 0.1529E-04 0.1529E-04 0.1529E-04 0.1529E-05 0.4546E-05	GROUP VEL.  0.4538 0.4500 0.4462 0.4468 0.4428 0.4393 0.4393 0.4395  GROUP VEL.  0.4209 0.4162 0.4110 0.4101 0.4093 0.4093 0.4093 0.4098 0.4098 0.4098	WAVE VEL.  0.4035 0.3997 0.3997 0.3963 0.376 0.3655 0.3655 0.3675 0.3675 0.3675 0.3776 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672	CITMP -0.258E-0 -0.195E-0 -0.195E-0 -0.195E-0 -0.275E-0 -0.378E-0 -0.519E-0 -0.218E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.196E-0 -0.116E-0 -0.116E-0 -0.126E-0 -0.126E-0 -0.126E-0 -0.126E-0 -0.126E-0 -0.256E-0
ROFILE COEFFIC  EIDELTA) = 225  ETAR*DELTA/U 0.600 0.990 0.900 0.900 0.900 0.290 0.200  EIDELTAI = 344  ETAR*DELTA/U 0.600 0.990 0.900 0.990 0.900 0.990 0.900 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990	ALFAR-DELTA 1.4868 1.3757 1.2646 1.1516 1.0397 0.9268 0.8139 0.6992 0.5921  ALFAR-DELTA 1.5870 1.4684 1.3667 1.2254 1.1034 0.9916 0.9591 0.7752 0.6115	BETARONU/UPPZ 0.2666E-03 0.2646E-03 0.2646E-03 0.2722E-03 0.1777E-03 0.1555E-03 0.1353E-03 0.1111F-03 0.6888E-04  BETARONU/UPPZ 0.1744E-03 0.1598E-03 0.7267E-04 0.9751E-04 0.9751E-04 0.7078E-04 0.7078E-04 0.7078E-04	ALFAI NU/U 0.3759E-04 0.2999E-04 0.2159E-04 0.2159E-04 0.2120E-04 0.2124E-04 0.3173E-04 0.3173E-04 0.1029E-04 0.1029E-05 0.1020E-05	GROUP VEL- 0.4538 0.4530 0.4500 0.4462 0.4468 0.4428 0.4393 0.4314 0.4239 0.4315 0.4115 0.4110 0.4101 0.4093 0.4093 0.4093 0.4093 0.4002	WAVE VEL. 0.4035 0.3997 0.3953 0.3907 0.3847 0.3776 0.3685 0.3575 0.3435  WAVE VEL. 0.3780 0.3782 0.3625 0.3712 0.3672 0.3625 0.3722 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.3672 0.370	CITMP -0.258E-0 -0.20E-0 -0.195E-0 -0.187E-0 -0.287E-0 -0.378E-0 -0.519E-0  CITMP -0.289E-0 -0.118E-0 -0.118E-0 -0.118E-0 -0.116E-0 -0.176E-0 -0.176E-0

NA = 0.1500	XW/U = 1.4000	WT = 3-141	Ç.			
PROFILE COEFFICE	IENTS -0.62960	3.77740 -6	02780 5.38900	-9.95640	15.96300 -11.4760	0 2.97760
RE(DELTA) = 100	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++		GROUP VEL		CITMP
0.700 0.600	1.6105	0.6999E-03 0.5999E-03	0.1519E-04 0.1299E-05	0.5045	0.4345	-0.476E-02
0.550	1.3139	0.5499E-03	-0.1200E-05	0.5050	0.4186	0.461E-03
0.500	1.2151	0.5000E-03	0.9999E-07	0.5030	0.4114	-0.414E-04
0.400	1.0139	0.4000E-03	0.1210E-04	0.4990	0.3945	-0.595E-02
RE(DELTA) = 120	00.					
BETAR+DELTA/U	ALFAR-DELTA	BETAR+NU/U++ 0.5416E-03	2 ALFAI+NU/U -0.4916E-05	GROUP VEL	WAVE VEL.	CITMP 0.187E-02
0.600	1.4429	0.49998-03	-0.115 BE-04	0.4885	0.4158	0.470E-02
0.550	1.3402	0.4583E-03	-0.1516E-04	0.4863	0.4103	0.660E-02
0.500	1.2373	0.4166E-03	-0.1550E-04	0.4854	0.4041	0.729E-02
0.450	1.1342	0.3750E-03	-0.1266E-04	0.4842	0.3967	0.648E-02
0.400 0.350	1.0308	0.3333E-03 0.2916E-03	-0.6999E-05 0.1416E-05	0.4826	0.3860 0.3775	0.393E-02 -0.882E-03
RE(DELTA) = 150			000.002	******		
BETAR-DELTA/U	ALFAR-DELTA	BETAR-NU/U-+	2 ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.450	1.5847	0.43336-03	-0.9066E-05	0.4759	0.4101	0.408E-02
0.550	1.3740	0.3666E-03	-0.22798-04	0.4711	0.4002	0.117E-01
0.450	1.1602	0.3000E-03	-0.2426E-04	0.4664	0.3878	0.146E-01
0.350	0.9452	0.2333E-03	-0.1433E-04	0.4608	0.3702	0.104E-01
0.300	0.4362	0.1999E-03	-0.5933E-05	0.4580	0.3587	0.487E-02
REIDELTAI - 22	50.					
BETAR+DELTA/U	ALFAR-DELTA	BETAR-NU/U	ALFAI+NU/U	GROUP VEL		CITHP
0.650	1.6556	0.2000E-03	-0.1200E-05	0.4708	0.3926	0.824E-03
0.400	1.5483	0.2666E-03	-0.1235E-04	0.4600	0.3075	0.826E-02
0.550	1.4382	0.2444E-03 0.2222E-03	-0.2035E-04 -0.2560E-04	0.4420	0.3024 0.3771	0.143E-01 0.192E-01
0.450	1.2120	0.2000E-03	-0.2844E-04	0.4380	0.3712	0.231E-01
3,400	1.0974	0.17776-03	-0.2822E-04	0.4351	0.3644	0.251E-01
0.350	0.9222	0.1555E-03	-0.2555E-04	0.4329	0.3563	0.253E-01
0.300	0.8664	0.13336-03	-0.2031E-04	0.4310	0.3462	0.227E-01
0.250	0.7902	0.11116-03	-0.1288E-04	0.4279	0.3332	0.165E-01
0.200	0.6327 0.5122	0.8888E-04 0.6666E-04	-0.3377E-05 0.7555E-05	0.4202	0.3161	C.504E-02
REIDELTAL - 34	٠٠.					
BETAR-DELTA/U	ALFAR*DELTA	BETARONU/UPP	ALFAI-NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.7032	0.1889E-03	0.1267E-04	0.9242		-0.134E-01
0.600	1.4047	0.1"44E-03	0.1308E-05	0.4905	0.3739	-0.137E-02
0.550	1.4991	0.1598E-03	-0.8691E-05	0.4560	0.3660	0.911E-02
0.900	1.3855	0.1453E-03 0.1308E-03	-0.13956-04	0.4341	0.3608	0.172E-01
0.400	1.1484	0.11626-03	-0.2107E-04 -0.2377E-04	0.4218	0.3546	0.241E-01 0.293E-01
0.390	1.0264	0.1017E-03	-0.24155-04	0.4068	0.3409	0.3298-01
0.300	0.9026	0.87208-04	-0.2223E-04	0.4027	0.3323	0.341E-01
0.250	0.7701	0.7267E-04	-0.1811E-04	0.3996	0.3212	0.320E-01
0.200	0.6524	0.5813E-04 0.4360E-04	-0.1191E-04 -0.3982E-05	0.3954	0.3065	0.248E-01 0.102E-01
REIDELTA) - 564		N	2.77		2.202	
BETAR+DELTA/U	ALFAR-DELTA	BETAR ONU/UOD	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.6099	0.10636-03	0.93088-05	0.6110	0.3726	-0.199E-01
0.550	1.9242	0.97918-04	0.3191E-05	0.5529		-0.653E-02
0.900	1.4205	0.8865E-04	-0.9173E-05	0.4948	0.3900	0.620E-02
0.490	1.9219	0.79782-04	-0.09935-09	0.4473	0.3405	0.170E-01
0.400	1.2049	0.7092E-04	-0.1343E-04	0.4141	0.3320	0.260E-01
0.390	1.0798	0.62055-04	-0.1620E-04 -0.1707E-04	0.3927	0.3241	0.332E-01 0.384E-01
0.250	0.0164	0.44328-04	-0.1999E-04	0.3717	0.3062	0.410E-01
0.200	0.600	0.3546E-04	-0.12998-04	0.3661	0.2937	0.394E-01
0.150	0.5433	0.2659E-04	-0.8173E-05	0.3601	0.2760	0.305E-01
0.100	0.4031	0.1773E-04	-0.1914E-05	0.3540	0.2480	0.9485-02
REIDELTA: - 1000		BE 7 A B a M 1 d 1 C T T	A	CACHE UP	. MAUE UEL	C1148
DETAR-DELTA/U 0.500	ALFAR+DELTA 1.4227	0.5000E-04	0.7599E-06	0.5400		CITMP -0.299E-02
0.500	1.2310	0.39995-04	-0.41495-05	0.4770	0.3247	0.1608-01
0.300	0.9994	0.2999E-04	-0.9040E-05	0.3940	0.3001	0.356E-01
0.200	0.7199	0.1999E-04	-0.9659E-05	0.3440	0.2778	0.461E-01
0.100	0.4171	0.999E-05	-0.40208-05	0.2939	0.2397	0.203E-01

NA = 0.1500	XW/U = 1.4000	WT = 3.92	70				
PROFILE COEFF	ICIENTS -0.87187	2.96910 -	0.35397	-3.47230	-7.60510	22.53100 -18.0480	0 4.86860
RE(DELTA) =	600.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR NU/U	+2 AL	AI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.5416	0.1166E-0	2 0.6	333E-05	0.5600	0.4540	-0.181E-02
0.630	1.4500	0.1083E-0		666E-05	0.5437	0.4482	-0.025E-03
0.600	1.3577	0.99998-0	0.2	833E-05	0.5274	0.4419	-0.660E-03
RE(DELTA) =	700.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U+		AI+NU/U	GROUP VEL		CITMP
0.850	1.8452	0.1214E-0		042E-04	0.5494	0.4606	-0.634E-02
0.800	1.7532	0.1142E-0		128E-04	0.5417	0.4563	-0.244E-02
0.750	1.6606	0.1071E-0		142E-05	0.5339	0.4516	0.115E-02
0.700	1.5659	0.9999E-0		971E-04	0.5296	0.4470	0.372E-02
0.650	1.4718	0.9285E-0		285E-04	0.5291	0.4416	0.575E-02
0.600	1.3769	0.8571E-0		499E-04	0.5277	0.4357	0.670E-02
0.550	1.2023	0.7857E-0		357E-04	0.5268	0.4289	0.677E-02
0.500	1.1871	0.71426-0	-	771E-04	0.5252	0.4211	0.548E-02
0.450	1.0919	0.6428E-0	-0.1	1426-05	0.5235	0.4121	0.273E-02
RE(DELTA) =	800.						
BE ROBLTA/U	ALFAR+DELTA	BETAR-NU/U-	+2 ALF	U\UN#IA	GROUP VEL	. WAVE VEL.	CITMP
2.800	1.7770	0.1000E-0	2 0.1	000E-05	0.5386	0.4501	-0.242E-03
0.750	1.6829	0.9375E-0	3 -0.1	562E-04	0.5299	0.4456	0.393E-02
0.700	1.5883	0.8750E-0	9 -0.2	924E-04	0.5212	0.4407	0.767E-02
0.650	1.4910	0.8125E-0	3 -0.1	637E-04	0.5165	0.4359	0.100E-01
0.400	1.3947	0.7499E-0		050E-04	0.5162	0.4302	0.119E-01
0.550	1.2973	0.6874E-0	-0.4	012E-04	0.5149	0.4239	0.127E-01
0.500	1.2005	0.6250E-0	3 -0.1	624E-04	0.5144	0.4164	0.124E-01
0.450	1.1029	0.5625E-0	-0.2	825E-04	0.5125	0.4080	0.105E-01
0.400	1.0054	0.5000E-0	-0.1	687E-04	0.5107	0.3978	0.685E-02
RE(DELTA) = 1	1000.						
BETAR+DELTA/U	ALFAR+DELTA	BETAR NU/UP	+2 AL	AI=Nu/U	GROUP VEL	. WAVE VEL.	CITHP
0.700	1.6231	0.6999E-0		569E-04	0.5085	0.4312	0.111E-01
0.650	1.5247	0.6500E-0		590E-04	0.5051	9.4263	0.152E-01
0.950	1.3244	0.5499E-0	3 -0.5	490E-04	0.4984	0.4152	0.206E-01
0.500	1.2240	0.5000E-0	3 -0.5	339E-04	0.4965	0.4084	0.216E-01
0.450	1.1230	0.4499E-0	3 -0.4	840E-04	0.4943	0.4007	0.213E-01
0.400	1.0217	0.4000E-0	3 -0.3	989E-04	0.4930	0.3915	0.192E-01
0.350	0.9202	0.3499E-0	-0.2	790E-04	0.4903	0.3803	0.148E-01
0.250	0.7144	0.2500E-0	0.5	000E-05	0.4849	0.3499	-0.3396-02
RE(DELTA) . 1	1400.						
BETAR-DELTA/U	ALFAR DELTA	BETAR-NU/U+	02 ALF	AI = NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.800	1.8677	0.5714E-0		2148-05	0.5261		-0.323E-02
0.700	1.6750	0.4999E-0		764E-04	0.9055	0.4179	0.116E-01
0.600	1.4718	0.4285E-0		978E-04	0.4849	0.4076	0.229E-01
0.500	1.2625	0.35715-0	3 -0.5	7995-04	0.4737	0.3960	0.304E-01
0.400	1.0496	0.2857E-0	3 -0.5	257E-04	0.4678	0.3010	0.320E-01
0.300	0.8350	0.21426-0	3 -0.3	428E-04	0.4623	0.3592	0.265E-01
0.200	0.6170	0.14285-0		999E-05	0.4397	0.3241	0.498E-02
0.100	0.3794	0.71426-0	4 0.3	250E-04	0.4172	0.2635	-0.500E-01
REIDELTAI . 2	250.						
BETAR-DELTA/U	ALFAR*DELTA	BETAR-NU/U-	+Z ALF	AI-NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.700	1.7241	0.3111E-0		466E-05	0.5441	0.4060	0.3316-02
0.650	1.6301	0-2888E-0		75 5E-04	0.5174	0.3987	0.125E-01
0.600	1.5307	0.26665-0		839E-04	0.4907	0.3919	0.204E-01
0.550	1.4262	0.2444E-0		7286-04	0.4707	0.3856	0.276E-01
0.500	1.3182	0.1222E-0		333E-04	0.4971	0.3793	0.330E-G1
0.450	1.2074	0.2000E-0		40-3446	0.4468	0.3727	0.388E-01
0.400	1.0944	0.1777E-0		706E-04	0.4397	0.3454	0.425E-01
0.390	0.9800	0.1555E-0		466E-04	4.4349	0.3971	0.4466-01
0.300	0.8645	0.13336-0		937E-04	0.4314	0.3470	C.442E-01
0.250	0.7482	0.1111E-0		142E-04	0.4202	0.3141	0.404E-01
0.200	0.6310	0-85ARE-0		000E-04	0.4228	0.3169	0.314E-01
0.150	0.5117	0.6666-0	-0.8	222E-03	0.4174	0.2931	0.1506-01

A - 0.1500	XW/U = 1.4000	WT = 3.9270				
	4.0					
E(DELTA) - 34	40.					
			1	1 01 2 12 1 1 1 1		
ETAR+DELTA/U	ALFAR+DELTA	BETAR +NU/U++2	ALFAI-NU/U	GROUP VEL.	MAVE VEL.	CITMP
0.650	1.6436	0.1889E-03	-0.3483E-05	0.5010	0.3954	0.424E-02
0.600	1.5550	0.1744E-03	-0.1110E-04	0.5439	0.3058	0.133E-01
0.550	1.4595	0.1598E-03	-0.1884E-04	0.5068	0.3768	0.225E-01
0.500	1.3575	C.1453E-03	-0.2543E-04	0.4755	0.3683	0.306E-01
0.450 0.400	1.2490 1.1351	0.1308E-03 0.1162E-03	-0.3052E-04 -0.3360E-04	0.4499	0.3602 0.3523	0.378E-01 0.439E-01
0.350	1.0170	0.1017E-03	-0.3444E-04	0.4311 0.4179	0.3441	0.486E-01
0.300	0.8958	0.8720E-04	-0.3293E-04	0.4090	0.3348	0.517E-01
0.250	0.7725	0.7267E-04	-0.2895E-04	0.4029	0.3236	0.519E-01
0.200	0.6476	0.5813E-04	-0.2255E-04	0.3976	0.3088	0.476E-01
0.150	0.5210	0.4360E-04	-0.1389E-04	0.3923	0.2879	0.359E-01
	40.					
			A1 - A - A - A1 - A1			
ETAR+DELTA/U	ALFAR+DELTA	BETARONU/UODZ	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.600	1.7247 1.5529	0.1241E-03	0 • 2482E-05	0.6033	0.4058	-0.489E-02
0.550		0.1063E-03 0.9751E-04	-0.4804E-05	0.5685	0.3863	0.992E-02 0.176E-01
0.507	1.4639	0.8865E-04	-C-1180E-04	0.5511 0.5258	0.3757	0.255E-01
0.450	1.2796	0.7978E-04	-0.1531E-04	0.4932	0.3533	0.334E-01
0.400	1.1604	0.7092E-04	-0 -1852E-04	0.4575	0.3423	0.409E-01
0.350	1.0547	0.62058-04	-0.2092E-04	0.4253	0.3318	0.475E-01
0.300	0.9330	0.53192-04	-0.2196E-04	0.4005	0.3215	0.5316-01
0.250	0.8049	0.4432E-04	-0.2122E-04	0.3836	0.3105	0.570E-01
0.200	0.6723	0.3546E-04	-0.1849E-04	0.3668	0.2974	0.569E-01
E(DELTA) = 100						
ETARODELTA/U	ALFAR+DELTA	BETARENU/U++2	ALFAI+NU/U	GROUP VEL.	MAVE VEL.	CITMP
0.700	1.7337	0.4999E-04	0.12998-05	0.5860	0.4037	-0.439E-02
0.600	1.5587	0.5999E-04	-0.2979E-05	0.5546	0.3849	0.106E-01
0.500	1.3724	0.5000E-04	-0.6439E-05	0.5232	0.3642	0.245E-01
0.400	1.1762	0.3999E-04	-0.9119E-05	0.4862	0.3400	0.377E-01
0.300	0.9606	0.2999E-04	-0.1146E-04	0.4266	0.3123	0.509E-01
0.200 0.100	0.7039 0.4093	0.1999E-04 0.9999E-05	-0.1187E-04	0.3645	0.2041	0.614E-01 0.480E-01
	••••	***************************************	-0.6510E-05	***************************************	0.2443	
	••••	*******	-0.63102-03	***************************************	0.244)	
A = 0.1500	XW/U = 1.4000	WT + 4.7124	-0.63102-03	******	0.244)	
A = 0.1500		WT = 4+7124	2240 -11.78100			
A = 0.1500 ROFILE COEFFIC	XW/U = 1.4000	WT = 4+7124				
A = 0.1900 ROFILE COEFFIC	XW/U = 1.4000 [ENTS -0.95976	WT = 4+7124				
A = 0.1500 ROFILE COEFFIC EIDELTA} = 6	XW/U = 1.4000  ENTS: -0.99976	WT = 4.7124 -0.03039 8.0	2240 -11.78100	-10.97900 35.	.84900 -28.61	700 7.71320
A = 0.1900 ROFILE COEFFIC EIDELTA) = 6 ETAR+DELTA/U	XW/U = 1.4000 IENTS -0.55976 00. ALFAR+DELTA	WT = 4.7124 -0.03039 8.0 BETAR-NU/U-02	2240 -11.78100 ALFAIPNU/U	-10.57900 35.	.84900 -28.61 Wave Vel.	700 7.71520 CITMP
A = 0.1500  ROFILE COEFFIC  E(DELTA) = 6  ETAR=DELTA/U 0.750	XW/U = 1.4000 IENTS -0.95976 00. ALFAR-DELTA 1.5897	WT = 4.7124 -0.03039 8.0 BETARONU/UPO2 0.1290E-02	ALFAIONU/U 0.4166E-05 -0.1166E-04 -0.1300E-04	-10.97900 35.  GROUP VEL. 0.5625 0.5952 0.9915	WAVE VEL- 0.4717 0.4610 0.4346	700 7.71320 CITMF -0.884E-03 0.275E-02 0.324E-02
A = 0.1900  ROFILE COEFFIC  EIDELTA) = 6  ETAR-DELTA/U 0.750 0.650 0.600 0.950	XW/U = 1.4000 IENTS: -0.55976 00. ALFAR*DELTA 1.5897 1.4098 1.3197 1.2285	WT = 4.7124 -0.03039 8.0 BETAR-NU/U-2 0.1250E-02 0.1085E-02 0.9999E-03 0.9166E-03	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05	-10.57900 35.  GROUP VEL.  0.5625  0.5922  0.5915  0.5485	WAVE VEL. 0.4717 0.4610 0.4546 0.4477	700 7.71320 CITMP -0.884E-03 0.275E-02 0.326E-02 0.267E-02
A = 0.1500  ROFILE COEFFIC  E(DELTA) = 6  ETAR=DELTA/U 0.750 0.650 0.600 0.550 0.500	XW/U = 1.4000 IENTS -0.55976 00. ALFAR®DELTA 1.5897 1.4098 1.9197 1.2285 1.1374	WT = 4.7124 -0.03039 8.0 BETAR-NU/U-2 0.1250E-02 0.1089E-02 0.999E-03 0.9166E-03 0.8333E-03	ALFAIONU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.999E-05 -0.3499E-05	-10.57900 35.  GROUP VEL.  0.5625  0.5552  0.5953  0.5455  0.5458	WAVE VEL. 0.4717 0.4610 0.4346 0.4477 0.4399	CITMF -0.884E-03 0.279E-02 0.326E-02 0.267E-02 0.100E-02
A = 0.1900  ROFILE COEFFIC  E(DELTA) = 6  ETAR-DELTA/U 0.790 0.690 0.690 0.990 0.990	XW/U = 1.4000 JENTS -0.95976 00. ALFAR-DELTA 1.5097 1.4098 1.3197 1.7285 1.1376 1.0453	WT = 4.7124 -0.03039	ALFAIONU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.3499E-05 0.7666E-05	-10.97900 35.  GROUP VEL.  0.5625  0.5952  0.5955  0.5458  0.5458	WAVE VEL- 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304	CITMP -0.884E-03 0.279E-02 0.326E-02 0.100E-02 -0.238E-02
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.790 0.650 0.600 0.350 0.300 0.400	XW/U = 1.4000 IENTS = -0.55976 00. ALFAR*DELTA 1.5897 1.4098 1.3197 1.7285 1.1374 1.0453 0.9952	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1300E-04 -0.999E-05 -0.3499E-05 0.7644E-05 0.2189E-04	-10.57900 35.  GROUP VEL. 0.5625 0.5952 0.5915 0.5455 0.5456 0.5428 0.5372	WAVE VEL- 0.4717 0.4610 0.4946 0.4477 0.4399 0.4304 0.4196	7.71320 CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.238E-02 -0.741E-02
A = 0.1900  ROFILE COEFFIC  EIDELTA) = 6  ETAR-DELTA/U 0.750 0.650 0.690 0.950 0.950 0.400 0.430 0.430	XW/U = 1.4000 IENTS: -0.55976 00. ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1376 1.0453 0.9932 0.8999	WT = 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1085E-02 0.9999E-03 0.9166E-03 0.8331E-03 0.7500F-03 0.6666E-03 0.9833E-03	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.349E-05 0.766E-05 0.2183E-04	-10.57900 35.  GROUP VEL. 0.5625 0.5932 0.5915 0.5465 0.5458 0.5428 0.5373 0.5373	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304 0.4196 0.4070	CITMF -0.884E-03 0.279E-02 0.304E-02 0.100E-02 -0.298E-02 -0.741E-02
A = 0.1500  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.600 0.550 0.500 0.450 0.450 0.400 0.350 0.300	XW/U = 1.4000 IENTS = -0.95976 00. ALFAR*DELTA 1.5897 1.4098 1.9197 1.2285 1.1974 1.0453 0.9992 0.8999 0.7656	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1300E-04 -0.999E-05 -0.3499E-05 0.7644E-05 0.2189E-04	-10.57900 35.  GROUP VEL. 0.5625 0.5952 0.5915 0.5455 0.5456 0.5428 0.5372	WAVE VEL- 0-4717 0-4610 0-4946 0-4477 0-4399 0-4304 0-4196	700 7.71320  CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.238E-02 -0.741E-02
A = 0.1500  ROFILE COEFFIC  EIDELTA) = 6  ETAR-DELTA/U 0.750 0.650 0.650 0.950 0.950 0.400 0.450 0.350 0.300 EIDELTA) = 10	XW/U = 1.4000 IENTS -0.55976 00. ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1376 1.0453 0.9932 0.9932 0.7656	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.349E-05 0.766E-05 0.2183E-04 0.6083E-04	-10.57900 35.  GROUP VEL. 0.5625 0.5915 0.5485 0.5488 0.5428 0.5928 0.59393 0.5930	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918	CITMF -0.884E-03 0.275E-02 0.304E-02 0.204E-02 0.100E-02 -0.238E-02 -0.741E-02 -0.251E-01
A = 0.1900  ROFILE COEFFICE  EIDELTA = 6  ETAR-DELTA/U 0.790 0.650 0.650 0.900 0.950 0.900 0.450 0.400 0.390 0.300 0.400 0.390 0.300 EIDELTA = 10	XW/U = 1.4000  IENTS -0.55976  00.  ALFAR*DELTA 1.5897 1.4098 1.5197 1.2285 1.1374 1.0453 0.9952 0.9959 0.7656	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.9999E-05 0.7664E-05 0.2199E-04 0.6089E-04	GROUP VEL- 0.5625 0.5952 0.5953 0.5485 0.5485 0.5488 0.5428 0.597 0.5267	WAVE VEL. 0.4717 0.4610 0.4346 0.4477 0.4393 0.4304 0.4196 0.4070 0.3918	CITMP -0.884E-03 0.275E-02 0.267E-02 0.100E-02 -0.238E-02 -0.741E-02 -0.251E-01
A = 0.1500  ROFILE COEFFIC  E(DELTA) = 6  ETAR**DELTA/U 0.750 0.600 0.550 0.500 0.400 0.350 0.400 0.350 0.300 E(DELTA) = 10  ETAR**DELTA/U 0.750	XW/U = 1.4000 IENTS = -0.95976 00. ALFARODELTA 1.5897 1.4098 1.9197 1.2285 1.1974 1.0453 0.9992 0.0999 0.7656	WT = 4.7124 -0.03039 8.0  BETARONU/UPO2 0.1250E-02 0.1085E-02 0.9999E-03 0.9166E-03 0.7500F-03 0.666E-03 0.9833E-03 0.4999E-03  RETARONU/UPO2 0.7500E-03	ALFAIONU/U 0.4166E-09 -0.1166E-04 -0.1300E-04 -0.999E-09 0.7666E-03 0.2189E-04 0.6089E-04	GROUP VEL- 0.5925 0.5925 0.5915 0.5985 0.5985 0.5928 0.5928 0.5957	WAVE VEL- 0.4717 0.4610 0.4346 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918	700 7.71320  CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.238E-02 -0.741E-02 -0.148E-01 -0.251E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.790 0.650 0.600 0.950 0.900 0.450 0.400 0.350 0.300  EIDELTA = 10  ETAR-DELTA/U 0.750 0.700	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR*DELTA 1.5097 1.4098 1.3197 1.7285 1.1374 1.0453 0.9932 0.9932 0.7656  00.  ALFAR*DELTA 1.6619 1.5690	WT = 4.7124 -0.03039 8.0  BETAR-NU/U=2 0.1250E-02 0.1083E-03 0.9164E-03 0.833E-03 0.7500F-03 0.6666E-03 0.9833E-03 0.4999E-03	ALFAIONU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 0.7666E-05 0.2189E-04 0.6089E-04	-10.57900 35.  GROUP VEL. 0.5625 0.5952 0.5915 0.5455 0.5458 0.5379 0.5330 0.5267  GROUP VEL. 0.5404 0.5317	WAVE VEL- 0.4717 0.4610 0.4546 0.4477 0.4393 0.4394 0.4070 0.3918 WAVE VEL- 0.4512 0.4461	700 7.71320  CITMP -0.884E-03 0.279E-02 0.326E-02 0.100E-02 -0.238E-02 -0.741E-02 -0.148E-01 -0.251E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA) = 6  ETAR-DELTA/U 0.750 0.690 0.990 0.990 0.490 0.490 0.390 0.300  EIDELTA) = 10  ETAR-DELTA/U 0.790 0.790 0.790 0.490	XW/U = 1.4000 IENTS: -0.55976  00.  ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1374 1.0453 0.9532 0.9599 0.7656  00.  ALFAR*DELTA 1.6619 1.5690 1.4738	WT = 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1089E-02 0.9999E-03 0.9166E-03 0.8331E-03 0.7500E-03 0.4999E-03 0.6999E-03 0.6999E-03 0.6999E-03	ALFAIONU/U 0.4164E-04 -0.1166E-04 -0.1300E-04 -0.9999E-05 0.7666E-05 0.2189E-04 0.6089E-04 0.6089E-04	GROUP VEL- 0.5625 0.5932 0.5915 0.5465 0.5468 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428	WAVE VEL- 0-4717 0-4610 0-4546 0-477 0-4395 0-4304 0-4070 0-3918 WAVE VEL- 0-4512 0-461	CITMF -0.884E-03 0.275E-02 0.306E-02 0.206E-02 -0.298E-01 -0.251E-01  CITMP 0.656E-02 0.106E-01 0.106E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.650 0.900 0.450 0.350 0.300 0.350 0.300  EIDELTA = 10  ETAR-DELTA/U 0.750 0.700 0.650 0.600	XW/U = 1.4000  IENTS -0.55976  00.  ALFAR-DELTA 1.5807 1.4008 1.5107 1.2285 1.1374 1.0453 0.9932 0.9932 0.9999 0.7656  00.  ALFAR-DELTA 1.6619 1.5690 1.4738 1.9778	WT - 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1085E-03 0.999E-03 0.7500E-03 0.656E-03 0.4999E-03 0.4999E-03 0.6500E-03 0.6500E-03 0.6500E-03 0.6500E-03	ALFAIONU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.999E-05 0.7664E-05 0.2199E-04 0.6089E-04 0.6089E-04 -0.9490E-04 -0.9490E-04	GROUP VEL- 0.5625 0.5952 0.5953 0.5485 0.5485 0.5485 0.5428 0.597 0.5267	WAVE VEL. 0.4717 0.4610 0.4346 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918 WAVE VEL. 0.4512 0.4461 0.4410	CITMP -0.884E-03 0.275E-02 0.267E-02 0.100E-02 -0.238E-02 -0.741E-01 -0.251E-01  CITMP 0.654E-02 0.116E-01 0.195E-01
A = 0.1500  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.600 0.350 0.400 0.350 0.400 0.350 0.400 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	XW/U = 1.4000 IENTS -0.95976  00.  ALFARODELTA 1.9897 1.4098 1.9197 1.2285 1.1374 1.0453 0.9992 0.9999 0.7656  00.  ALFARODELTA 1.6619 1.5690 1.4738 1.9778 1.2806	WT - 4.7124 -0.03039 8.0  BETARONU/UP-2 0.1250E-02 0.9999E-03 0.9166E-03 0.8339E-03 0.7500F-03 0.6666E-03 0.9839E-03 0.4999E-03 0.6998E-03 0.6998E-03 0.6999E-03 0.5999E-03	ALFAIPHU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.999E-05 0.7666E-05 0.2189E-04 0.6089E-04 ALFAIPHU/U -0.2020E-04 -0.3490E-04 -0.5209E-04	GROUP VEL- 0.5925 0.5952 0.5955 0.5955 0.59485 0.59428 0.5999 0.5330 0.5267  GROUP VEL- 0.5404 0.5317 0.5230 0.5230	WAVE VEL- 0.4717 0.4610 0.4946 0.4477 0.4395 0.4304 0.4070 0.3918 WAVE VEL- 0.4512 0.4461 0.4410 0.4354	CITMP -0.884=-03 0.275E-02 0.326E-02 0.207E-02 0.100E-02 -0.238E-02 -0.741E-02 -0.148E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.160E-01 0.222E-01
A = 0.1500  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.650 0.350 0.300 0.450 0.350 0.300  EIDELTA = 10  ETAR-DELTA/U 0.750 0.700 0.650 0.650 0.550 0.500	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR*DELTA 1.5097 1.4098 1.3197 1.7285 1.1374 1.0453 0.9932 0.8599 0.7656  00.  ALFAR*DELTA 1.5019 1.5090 1.4738 1.9778 1.2806 1.1828	WT = 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1083E-03 0.9164E-03 0.833E-03 0.7500F-03 0.4999E-03 0.4999E-03 0.6999E-03 0.6909E-03 0.5909E-03 0.5909E-03	ALFAI NU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 0.7666E-05 0.2183E-04 0.3999E-04 0.6083E-04 -0.3430E-04 -0.3430E-04 -0.3430E-04 -0.5549E-04 -0.5549E-04 -0.5549E-04	GROUP VEL- 0.5625 0.5952 0.5915 0.5455 0.5458 0.5379 0.5357  GROUP VEL- 0.5404 0.5317 0.5230 0.5126 0.5128	WAVE VEL- 0-4717 0-4610 0-4546 0-4477 0-4393 0-4394 0-4070 0-3918 WAVE VEL- 0-4512 0-4461 0-4410 0-4284 0-4227	CITMF -0.884E-03 0.279E-02 0.326E-02 0.207E-02 0.100E-02 -0.238E-02 -0.741E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.199E-01 0.222E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA) = 6  ETAR-DELTA/U 0.750 0.650 0.950 0.950 0.400 0.950 0.400 0.390 0.300  EIDELTA) = 10  EYAR-DELTA/U 0.790 0.700 0.600 0.950 0.950 0.950	XW/U = 1.4000 IENTS -0.55976  OO.  ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1376 1.0453 0.9532 0.9599 0.7656  OO.  ALFAR*DELTA 1.6619 1.5690 1.4738 1.3778 1.2806 1.1828 1.0842	WT = 4.7124 -0.03039	ALFAIPNU/U 0.4164E-04 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.3490E-05 0.2183E-04 0.6083E-04 0.6083E-04 -0.9430E-04 -0.9430E-04 -0.9520E-04 -0.9520E-04 -0.95109E-04	GROUP VEL. 0.5625 0.5952 0.5955 0.5465 0.5465 0.5468 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428 0.5428	WAVE VEL- 0-4717 0-4610 0-4546 0-477 0-4395 0-4304 0-4070 0-3918 WAVE VEL- 0-4512 0-461 0-461 0-427 0-427	CITMP -0.884E-03 0.275E-02 0.326E-02 0.207E-02 0.100E-02 -0.258E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.199E-01 0.222E-01 0.236E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.690 0.950 0.950 0.900 0.450 0.300 EIDELTA = 10  ETAR-DELTA/U 0.750 0.700 0.600 0.600 0.950 0.900 0.450 0.400	XW/U = 1.4000  IENTS -0.55976  00.  ALFAR-DELTA 1.5897 1.4098 1.3197 1.2285 1.1374 1.0453 0.9932 0.9932 0.7656  00.  ALFAR-DELTA 1.6619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0842 0.9892	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.3499E-05 0.766E-05 0.2189E-04 0.4089E-04 -0.3490E-04 -0.3490E-04 -0.3490E-04 -0.3490E-04 -0.3590E-04 -0.5590E-04 -0.5109E-04 -0.5109E-04	GROUP VEL- 0.5625 0.5922 0.5932 0.5935 0.5485 0.5485 0.5428 0.5939 0.5267  GROUP VEL- 0.5404 0.5917 0.5230 0.5176 0.9128 0.5001 0.5002	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918 WAVE VEL. 0.4512 0.4661 0.4610 0.4294 0.4227 0.4150 0.4060	CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.238E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.199E-01 0.232E-01 0.236E-01 0.236E-01 0.236E-01 0.236E-01
A = 0.1500  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.600 0.350 0.400 0.350 0.700 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	XW/U = 1.4000 IENTS -0.95976  00.  ALFAR-DELTA 1.9897 1.4098 1.9197 1.2285 1.1374 1.0453 0.9992 0.9999 0.7656  00.  ALFAR-DELTA 1.6619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0842 0.9892 0.8895	WT = 4.7124 -0.03039 8.0  BETAR-NU/UP-2 0.1250E-02 0.9999E-03 0.9166E-03 0.8335E-03 0.7500F-03 0.6666E-03 0.9835E-03 0.4999E-03 0.6999E-03 0.6909E-03 0.5909E-03 0.5909E-03 0.4999E-03	ALFAIPHU/U 0.4166E-05 -0.1166E-04 -0.1300E-04 -0.999E-05 0.7666E-05 0.2189E-04 0.3999E-04 0.4089E-04 -0.3490E-04 -0.3490E-04 -0.5209E-04 -0.5209E-04 -0.5209E-04 -0.5209E-04 -0.5209E-04	GROUP VEL- 0.5025 0.5952 0.5953 0.5485 0.5485 0.5428 0.5393 0.5267  GROUP VEL- 0.9404 0.5317 0.5230 0.9176 0.9128 0.9091 0.9060 0.5032 0.4997	WAVE VEL- 0.4717 0.4610 0.4946 0.4477 0.4394 0.4070 0.3918  WAVE VEL- 0.4512 0.4461 0.4410 0.4354 0.4227 0.4190 0.4060 0.9952	CITMP -0.884E-03 0.275E-02 0.326E-02 0.286E-02 -0.741E-02 -0.186E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.199E-01 0.238E-01 0.238E-01 0.238E-01 0.238E-01 0.238E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.690 0.950 0.950 0.900 0.450 0.300 EIDELTA = 10  ETAR-DELTA/U 0.750 0.700 0.600 0.600 0.950 0.900 0.450 0.400	XW/U = 1.4000  IENTS -0.55976  00.  ALFAR-DELTA 1.5897 1.4098 1.3197 1.2285 1.1374 1.0453 0.9932 0.9932 0.7656  00.  ALFAR-DELTA 1.6619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0842 0.9892	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.3499E-05 0.766E-05 0.2189E-04 0.4089E-04 -0.3490E-04 -0.3490E-04 -0.3490E-04 -0.3490E-04 -0.3590E-04 -0.5590E-04 -0.5109E-04 -0.5109E-04	GROUP VEL- 0.5625 0.5922 0.5932 0.5935 0.5485 0.5485 0.5428 0.5939 0.5267  GROUP VEL- 0.5404 0.5917 0.5230 0.5176 0.9128 0.5001 0.5002	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918 WAVE VEL. 0.4512 0.4661 0.4610 0.4294 0.4227 0.4150 0.4060	CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.741E-02 -0.741E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.199E-01 0.222E-01 0.236E-01 0.236E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.650 0.900 0.450 0.350 0.300  EIDELTA = 10  ETAR-DELTA/U 0.750 0.700 0.650 0.600 0.650 0.600 0.650 0.900 0.450 0.400 0.350 0.300 0.450 0.400 0.350 0.300 0.300 0.350 0.300 0.350 0.300 0.350	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1374 1.0453 0.9952 0.8599 0.7656  00.  ALFAR*DELTA 1.5019 1.5000 1.4738 1.9778 1.2806 1.1828 1.0642 0.9855 0.7851	WT = 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1089E-02 0.9999E-03 0.9166E-03 0.8339E-03 0.7500E-03 0.6999E-03 0.6999E-03 0.6999E-03 0.5909E-03	ALFAINNU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.9999E-05 0.7664E-05 0.2189E-04 0.3999E-04 0.6089E-04 -0.3490E-04 -0.3490E-04 -0.5549E-04 -0.5549E-04 -0.5549E-04 -0.3590E-04 -0.3590E-04 -0.3590E-04 -0.3590E-04	GROUP VEL- 0.5625 0.5952 0.5915 0.5455 0.5458 0.5379 0.5330 0.5267  GROUP VEL- 0.5004 0.517 0.5230 0.5128 0.5010 0.5060 0.5050 0.4077 0.4050	WAVE VEL- 0.4717 0.4610 0.4546 0.4477 0.4395 0.4394 0.4070 0.3918 WAVE VEL- 0.461 0.461 0.461 0.4512 0.4461 0.4227 0.4190 0.4227 0.4190 0.4227 0.4060 0.3952 0.3952	CITMP -0.884E-02 0.278E-02 0.326E-02 0.326E-02 0.100E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.199E-01 0.232E-01 0.236E-01 0.236E-01 0.236E-01 0.199E-01 0.199E-01
A = 0.1500  ROFILE COEFFIC  EIDELTA  = 6  ETAR-DELTA/U 0.750 0.600 0.950 0.400 0.350 0.300 EIDELTA  = 10  ETAR-DELTA/U 0.750 0.700 0.600 0.950 0.400 0.500 0.450 0.400 0.350 0.400 0.350 0.500 0.450 0.400 0.350 0.400 0.350 0.400 0.350 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0	XW/U = 1.4000 IENTS -0.99976  OO.  ALFAR-DELTA 1.9097 1.4098 1.3197 1.7285 1.1374 1.0453 0.9992 0.8599 0.7658  OO.  ALFAR-DELTA 1.6619 1.5690 1.4798 1.9778 1.2806 1.1828 1.0842 0.9852 0.9859 0.7851 0.6835	WT = 4.7124 -0.03039	ALFAINNU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.9999E-05 0.7664E-05 0.2189E-04 0.6089E-04 -0.3999E-04 -0.3990E-04 -0.3990E-04 -0.3290E-04 -0.3290E-04	GROUP VEL- 0.5625 0.5952 0.5952 0.5955 0.5456 0.5458 0.5428 0.5399 0.5330 0.5267  GROUP VEL- 0.5404 0.5317 0.5230 0.5176 0.5128 0.5091 0.5060 0.5032 0.4950 0.4950 0.4950	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4396 0.4070 0.3918  WAVE VEL. 0.4512 0.4461 0.4410 0.4394 0.4227 0.4150 0.4284 0.4227 0.4150 0.4060 0.3952 0.3821 0.3657	CITMP -0.884E-03 0.279E-02 0.326E-02 0.326E-02 0.100E-02 -0.298E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.236E-01
A = 0.1900  ROFILE COEFFIC  EIDELTA  = 6  ETAR-DELTA/U 0.750 0.650 0.950 0.950 0.400 0.390 0.300  EIDELTA  = 10  EYAR-DELTA/U 0.750 0.700 0.600 0.950 0.600 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400 0.950 0.400	XW/U = 1.4000 IENTS -0.99976  OO.  ALFAR*DELTA 1.5097 1.4098 1.3197 1.7285 1.1374 1.0453 0.9932 0.9999 0.7656  OO.  ALFAR*DELTA 1.6619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0842 0.9892 0.9893 0.7891 0.6835	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-04 -0.1166E-04 -0.1300E-04 -0.9999E-05 -0.3409E-05 0.2183E-04 0.3999E-04 0.6083E-04 -0.3430E-04 -0.3430E-04 -0.5208E-04 -0.5208E-04 -0.5300E-04 -0.5300E-04 -0.3500E-04 -0.3500E-04 -0.3500E-04	GROUP VEL. 0.5625 0.5952 0.5952 0.5958 0.5465 0.5465 0.5466 0.5307 0.5267  GROUP VEL. 0.5000 0.5128 0.9011 0.9060 0.9022 0.4967 0.4950 0.4903	WAVE VEL- 0-4717 0-4610 0-4546 0-4477 0-4395 0-4304 0-4196 0-4070 0-3918 WAVE VEL- 0-4512 0-461 0-461 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427 0-427	CITMP -0.884E-03 0.275E-02 0.304E-02 0.204E-02 0.100E-02 -0.298E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.222E-01 0.236E-01
A = 0.1900  ROFILE COEFFIC  E1DELTA) = 6  ETAR-DELTA/U 0.790 0.690 0.990 0.990 0.390 0.390 0.390 0.300  EIDELTA) = 10  ETAR-DELTA/U 0.790 0.690 0.690 0.690 0.690 0.990 0.490 0.390 0.490 0.390 0.490 0.490 0.390 0.490 0.390 0.490 0.490 0.390 0.490 0.490 0.390 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490	XW/U = 1.4000 IENTS -0.99976  OO.  ALFAR-DELTA 1.9097 1.4098 1.3197 1.7285 1.1374 1.0453 0.9992 0.8599 0.7658  OO.  ALFAR-DELTA 1.6619 1.5690 1.4798 1.9778 1.2806 1.1828 1.0842 0.9852 0.9859 0.7851 0.6835	WT = 4.7124 -0.03039	ALFAINNU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.9999E-05 0.7664E-05 0.2189E-04 0.6089E-04 -0.3999E-04 -0.3990E-04 -0.3990E-04 -0.3290E-04 -0.3290E-04	GROUP VEL- 0.5625 0.5952 0.5952 0.5955 0.5456 0.5458 0.5428 0.5399 0.5330 0.5267  GROUP VEL- 0.5404 0.5317 0.5230 0.5176 0.5128 0.5091 0.5060 0.5032 0.4950 0.4950 0.4950	WAVE VEL. 0.4717 0.4610 0.4546 0.4477 0.4395 0.4396 0.4070 0.3918  WAVE VEL. 0.4512 0.4461 0.4410 0.4394 0.4227 0.4150 0.4284 0.4227 0.4150 0.4060 0.3952 0.3821 0.3657	CITMP -0.884E-03 0.279E-02 0.326E-02 0.326E-02 0.100E-02 -0.298E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.236E-01
A = 0.1900  ROFILE COEFFIC  E1DELTA  = 6  ETAR-DELTA/U 0.750 0.650 0.950 0.950 0.400 0.390 0.300  ETAR-DELTA/U 0.750 0.700 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.9	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR-DELTA 1.5097 1.4098 1.3197 1.2205 1.1374 1.0453 0.9932 0.9932 0.9939 0.7656  00.  ALFAR-DELTA 1.6619 1.5000 1.4738 1.9778 1.2806 1.1028 1.0842 0.9055 0.7051 0.6835  50.  ALFAR-DELTA 1.6347	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-05 -0.1166E-04 -0.1300E-04 -0.9999E-05 0.7666E-05 0.2189E-04 0.4089E-04 -0.4920E-04 -0.4920E-04 -0.5900E-04 -0.5900E-04 -0.3199E-04 -0.3290E-04 -0.3290E-04 -0.3290E-04 -0.3290E-04 -0.3290E-04 -0.3290E-04	GROUP VEL- 0.5625 0.5925 0.5932 0.5938 0.5428 0.5939 0.5930 0.5267  GROUP VEL- 0.5404 0.5917 0.5230 0.5176 0.5128 0.5060 0.5032 0.4097 0.4050 0.4003	WAVE VEL- 0-4717 0-4610 0-4546 0-4677 0-4395 0-4304 0-4196 0-4070 0-3918 WAVE VEL- 0-4512 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4610 0-4	CITMP -0.884E-03 0.275E-02 0.326E-02 0.326E-02 0.100E-02 -0.238E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.199E-01 0.222E-01 0.236E-01 0.236E-01 0.236E-01 0.236E-01 0.199E-01 0.236E-01 0.236E-01 0.236E-01 0.236E-02
A = 0.1500  ROFILE COEFFIC  EIDELTA  = 6  ETAR-DELTA/U 0.750 0.400 0.350 0.400 0.350 0.700 0.600 0.750 0.700 0.600 0.550 0.500 0.600 0.550 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	XW/U = 1.4000 IENTS = -0.95976  00.  ALFAR*DELTA 1.9897 1.4098 1.9197 1.2285 1.1374 1.0453 0.9992 0.9999 0.7656  00.  ALFAR*DELTA 1.5619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0842 0.9855 0.7851 0.6835  50.  ALFAR*DELTA 1.6347 1.5479	WT = 4.7124 -0.03039 8.0  BETAR-NU/UP-2 0.1250E-02 0.1083E-03 0.9166E-03 0.8333E-03 0.7500F-03 0.6666E-03 0.5833E-03 0.4999E-03 0.6999E-03 0.5909E-03 0.5909E-03 0.5909E-03 0.2999E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03	ALFAIONU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.999E-05 0.7664E-05 0.2199E-04 0.3999E-04 0.6099E-04 -0.9200E-04 -0.9209E-04 -0.9509E-04	GROUP VEL- 0.5025 0.5952 0.5953 0.5958 0.5958 0.5958 0.5958 0.5958 0.597 0.537  GROUP VEL- 0.5004 0.5317 0.5230 0.5176 0.5128 0.5017 0.5020 0.9071 0.9060 0.5032 0.4977 0.4950 0.4903	WAVE VEL- 0.4717 0.4610 0.4946 0.4477 0.4394 0.4070 0.3918  WAVE VEL- 0.4512 0.4461 0.4410 0.4394 0.427 0.4190 0.4070 0.3952 0.4060 0.3953 0.3621 0.3657	CITMP -0.884E-02 0.275E-02 0.326E-02 0.286E-02 0.741E-02 -0.186E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.222E-01 0.236E-01 0.236E-01 0.236E-01 0.236E-01 0.165E-02  CITMP 0.165E-02
A = 0.1500  ROFILE COEFFIC  EIDELTA = 6  ETAR-DELTA/U 0.750 0.690 0.390 0.390 0.390 0.390 0.300 EIDELTA = 10  EYAR-DELTA/U 0.750 0.700 0.650 0.600 0.350 0.500 0.450 0.400 0.350 0.400 0.350 0.500 0.500 0.500 0.500 0.500 0.500 0.600	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR*DELTA 1.5097 1.4098 1.5197 1.7285 1.1374 1.0453 0.9952 0.8599 0.7656  00.  ALFAR*DELTA 1.5619 1.5690 1.4738 1.9778 1.2806 1.1828 1.0642 0.9852 0.9855 0.7851 0.6835  50.  ALFAR*DELTA 1.6547 1.5479 1.4580	WT = 4.7124 -0.03039 8.0  BETAR-NU/U-2 0.1250E-02 0.1089E-02 0.9999E-03 0.9166E-03 0.8339E-03 0.7500E-03 0.6666E-03 0.9833E-03 0.4999E-03 0.6999E-03 0.5909E-03 0.5909E-03 0.5909E-03 0.5909E-03 0.5909E-03 0.5909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03 0.2909E-03	ALFAINNU/U 0.4164E-05 -0.1164E-04 -0.1300E-04 -0.9999E-05 0.7664E-05 0.2189E-04 0.3999E-04 0.6089E-04 -0.3430E-04 -0.3520E-04 -0.3520E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3539E-04 -0.3290E-05 -0.1899E-04 -0.2202E-04	GROUP VEL. 0.5625 0.5952 0.5952 0.5953 0.5458 0.5458 0.5379 0.5330 0.5267  GROUP VEL. 0.5000 0.50317 0.5230 0.9176 0.9128 0.9091 0.9060 0.5032 0.4977 0.4950 0.4903	WAVE VEL- 0.4717 0.4610 0.4546 0.4477 0.4393 0.4394 0.4070 0.3918  WAVE VEL- 0.4512 0.4461 0.4410 0.4314 0.427 0.4150 0.4060 0.3952 0.3021 0.4067	CITMP -0.884E-03 0.275E-02 0.326E-02 0.100E-02 -0.148E-01 -0.251E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.222E-01 0.236E-01 0.236E-01 0.236E-01 0.165E-02  CITMP 0.165E-02  CITMP 0.165E-01 0.165E-01 0.165E-01 0.165E-01
A = 0.1500  ROFILE COEFFIC  EIDELTA  = 6  ETAR-DELTA/U 0.750 0.650 0.450 0.450 0.450 0.390 0.390 0.750 0.750 0.750 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 0.600 0.950 EIDELTA  = 22  ETAR-DELTA/U 0.700 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.990	XW/U = 1.4000 IENTS -0.55976  00.  ALFAR-DELTA 1.5097 1.4098 1.3197 1.7285 1.1376 1.0453 0.9532 0.9599 0.7656  00.  ALFAR-DELTA 1.6019 1.5090 1.4738 1.9778 1.2806 1.1828 1.0842 0.9852 0.9853 0.7851 0.6835	WT = 4.7124 -0.03039	ALFAIONU/U 0.4164E-04 -0.1166E-04 -0.1300E-04 -0.9999E-05 0.7666E-05 0.2183E-04 0.4083E-04 0.4083E-04 -0.4520E-04 -0.4530E-04 -0.4530E-04	GROUP VEL. 0.5625 0.5952 0.5952 0.5953 0.5485 0.5485 0.5486 0.5392 0.5300 0.5267  GROUP VEL. 0.5000 0.5032 0.901 0.5060 0.5032 0.907 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050	WAVE VEL- 0.4717 0.4610 0.4546 0.4477 0.4395 0.4304 0.4196 0.4070 0.3918  WAVE VEL- 0.4512 0.461 0.4610 0.4527 0.4190 0.4287 0.4287 0.4282 0.4190 0.4282 0.4191 0.4282 0.4191 0.4283	CITMP -0.884E-03 0.275E-02 0.206E-02 0.206E-02 -0.298E-01  CITMP 0.656E-02 0.116E-01 0.160E-01 0.222E-01 0.236E-01

NA - 0.1500	XW/U = 1.4000	WT = 4.7124				
RE(DELTA) = 22	50.					
BETAR+DELTA/U	ALFAR-DELTA	BETAR-NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.350	0.9396	0.1555E-03	-0.4048E-04	0.4519	0.3724	0.4306-01
0.300	0.8277	0.1333E-03	-0.3648E-04	0.4446	0.3624	0.441E-01
0.250	0.7147	0.1111E-03	-0.2968E-04	0.4388	0.3497	0.410E-01
0.200	0.5998	0.8888E-04	-0.2044E-04	0.4312	0.3334	0.530E-01
0.150	0.4828	0.666E-04	-0.8844E-05	0.4164	0.3106	0.171E-01
0.100	0.3595	0.4444E-04	0.4133E-05	0.4016	0.2781	-0.103E-01
RE(DELTA) = 34	40.					
BETAR+DELTA/U	ALFAR+DEL TA	BETAR-NU/U-+2	ALFAI-NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.650	1.5493	0.1889F-C3	-0.3546E-05	0.6183	0.4195	0.4866-02
0.600	1.4651	0.17445-03	-0.8779E-05	0.5075	0.4092	0.1212-01
0.55C	1.3790	0.1598E-03	-0.1450E-04	0.5567	0.3988	0.201E-01
0.500	1.2863	0.1453E-03	-0.1985E-04	0.9224	0.3007	0.277E-01
0.450	1.1074	0.13085-03	-0.2450E-04	0.4899	0.3789	0.347E-01
0.400	1.0820	0.11626-03	-0.2779E-04	0.4628	0.3696	0.400E-01
0.350	0.9712	0.1017E-05	-0.2933E-04	0.4426	0.3603	0.459E-01
0.300	0.8560	0.8720E-34	-0.2872E-04	0.4278	0.3504	0.493E-01
0.250	0.7374	0.7267E-04	-0.2578E-04	0.4168	0.3390	0.901E-01
0.200	0.6161	0.5813E-04	-3.2052E-04	0.4080	0.3246	0.467E-01
0.150	0,4923	3.4360E-04	-0.1273E-04	0.3967	0.3044	0.3586-01
C.100	0.3640	0.2906E-04	-0.1517E-05	0.3655	0.2747	0.1206-01
REIDELTA) . 56	40.					
BETAR+DELTA/U	ALFAR-DEL TA	BETAR-NU/U-+2	ALFAI ONU/U	GROUP VEL.	WAVE VEL.	CITHP
0.650	1.5469	0.11526-03	-0.25536-05	0.5972	0.4201	0.955E-02
0.600		C. 1063E-03	-0.4946E-05	0.5661	0.4103	
0.550	1.4622	0.97518-04	-0.7393E-05	0.5751	0.3996	0.111E-01 0.174E-01
0.500	1.2083	0.88658-04	-0.9645E-03	0.5597	0.3681	0.2366-01
		0.79785-04		0.5345		
0.450	1.1976		-0.11965-04	0.5032	0.3757 0.3630	0.3026-01
0.400		0.70925-04	-0.1430E-04			0.3666-01
0.350	3.9986	0.6205E-04	-0.1645E-04	0.4654	0.3504	0.4326-01
0.300	0.0066	0.5319E-04	-0.1700E-04	0.4313	0.3363	0.488E-01
0.250	0.7665	0.4432E-04	-0.1774E-04	0.4054	0.3261	0.929E-01
0.200	0.6399	0.35468-04	-0.1589E-04	0.3969	0.3125	0.9416-01
0.150 0.100	0.5000 0.3715	0.2659E-04 0.1773E-04	-0.1190E-04 -0.6081E-05	0.3728	0.2952	0.496E-01 0.331E-01
	00.					
BETAR+DELTA/U	ALFAR-DEL TA	8FT486W1/11663	AL EATONIZE	GROUP VEL.	MAVE VEL.	CITMP
0.700		BETAR - NU/U 2 0.9999E-04	0-2657E-07	0.6116	0.4288	
0.650	1.6323	J.9285E-04	-0.22148-05	0.9952	0.4199	-0.749E-04
0.600	1.4643	0.83718-04	-0.43716-09	0.9789	0.4097	0.1206-01
	1.3763	0.78578-04	-0.41298-05	0.5656	0.3996	0.1766-01
0.550	1.2075	0.7147E-04	-0.775 7E-05	0.9599	0.3063	
0.450	1.1964	0.64285-04	-0.92426-05	0.9419	0.3761	0.234E-01 0.292E-01
0.400			-0.1077E-04	0.9188	0.3627	
	1.1020	0.5714E-04 0.4999E-04	-0.12326-04	0.4843	0.3467	0.3546-01
0.390	0.0035	0.42895-04	-0.13605-04	0.444	0.3340	0.4166-01
0.250		0.35716-04				
	0.4509		-0.1424E-04 -0.1338E-04	0.4083	0.3213	0.3536-01
0.200		0 - 28 5 75 - 24				0.55:4-01
0.150	0.5164	0.2142E-04 0.1428E-04	-0.1074E-04 -0.6142E-05	0.3640	0.2904	0.3306-01
REIDELTAL . 100						
		8574860 . / 100 C	AL CA Labor as	CADUR MEL	MANG NO.	e tomb
BETAR-DELTA/U	ALFAR-DEL TA	BETARONU/UO-2	ALFAI-NU/U	GROUP VEL.	MAVE VEL.	CITAP
0.700	1.6361	0.69996-04	0.0000€ 00	0.6052	0.4276	0.000€ 00
0.400	1.4671	0.59998-04	-0-31296-05	0.5765	0.4369	0-1236-01
	1.2000	0.50006-04	-0.35996-05	0.9479	0.3676	0.2306-01
0.900						
0.400	1.1019	0-39998-04	-0.73095-05	0.5105	0 - 3430	0-3436-01
0.400	0.9027	0.29996-04	-0.47006-05	0.4440	0.3323	0.4476-01
0.400						

*						
NA = 0.1500	XW/U = 1.4000	WT = 5.4978				
PROFILE COEFFIC	IENTS 0.11121	-3.00910 12.7	3400 -13.75000	-14.50900	42.76300 -33.186	8.86480
RE(DELTA) = 100	00.					
BETAR-DELTA/U	ALFAR+DELTA	BETAR+NU/U+#2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.4802	0.6999E-03	0.3219E-04	0.5607	0.4729	-0.121E-01
0.650	1.3908	0.6500E-03	0.20498-04	0.5516	0.4673	-0.813E-02
0.600	1.2989	0.5999E-03	0.1179E-04	0.5425	0.4619	-0.492E-02
0.550	1.2065	0.5497E-03	0.6499E-05	0.5370	0.4558	-0.289E-02
0.500	1.1127	0.5000E-03	0.4200E-05	0.5324	7.4493	-0.200E-02
0.450	1.0167	0.4499E-03	0.5199E-05	0.5277	0.4417	-0.269E-02
0.400 0.350	0.9232 0.8274	0.4000E-03 0.3499E-03	0.9000E-05 0.1560E-04	0.5227 0.5177	0.4332	-0.509E-02
	00.	0.34992-03	0112005-04	0.5177	0.4230	-0.976E-02
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.4133	0.5416E-03	0.1716E-04	0.5538	0.4599	-0.807E-02
0.600	1.3207	0.4999E-03	0.6916E-05	0.5402	0.4543	-0.339E-02
0.550	1.2282	0.4583E-03	-0.4999E-06	0.5266	0.4478	0.257E-03
0.500	1.1307	0.4166E-03	-0.3916E-05	0.5181	0.4422	0.215E-02
0.450	1.0352	0.3750E-03	-0.4916E-05	0.5143	0.4346	0.293E-02
0.400	0.9362	0.3750E-03	-0.2583E-05		0.4272	0.169E-02
				0.5107 0.5072		
0.350	0.8394	0.2916E-03	0.1833E-05	0.5072	0.4169	-0.132E-02
RE(DELTA) = 22	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.4623	0.2888E-03	0.2751E-04	0.6269	0.4445	-0.265E-01
0.600	1.3785	0.2666E-03	0.1640E-04	0.5850	0.4352	-0.156E-01
0.550	1.2913	0 · 2444E-03	0.5688E-05	0.5431	0.4259	-0.538E-02
0.500	1.1936	0.2222E-03	-0.2266E-05	0.5086	0.4188	0.217E-02
0.450	1,0947	0.2000E-03	-0.8044E-05	0.4924	0.4110	0.814E-02
0.400	0.9906	0.1777E-03	-0.1146E-04	0.4796	0.4037	0.124E-01
0.350	0.8862	0.15556-03	-0.1222E-04	0.4496	0.3949	0.145E-01
0.300	0.7776	0.1333E-03	-0.1071E-04	0.4601	0.3858	0.142E-01
0.250	0.6689	0.1111E-03	-0.6622E-05	0.4518	0.3737	0.100E-01
0.200	0.5562	0.8888E-04	-0.6222E-06	0.4434	0.3595	0.111E-02
RE(DELTA) - 34	٠٠.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.650	1.4439	0.1889E-03	0.2601E-04	0.7493	0.4501	-0.464E-01
0.600	1.3738	0.1744E-03	0.2113E-U4	0.6990	0.4367	-0.369E-01
0.550	1.3008	0.1598E-03	0.1470E-04	0.6488	0.4228	-0.252E-01
0.500	1.2192	0.1453E-03	0.7412E-05	0.5814	0.4101	-0.121E-01
0.450	1.1283	0.1306E-03	0.5523E-06	0.5250	0.3988	-0.884E-03
0.400	1.0283	0.1162E-03	-0.4999E-05	0.4845	0.3889	0.810E-02
0.350	0.9217	0.1017E-03	-0.8488E-05	0.4585	0.3797	0.145E-01
0.300	0.8101	0-8720E-04	-0.9796E-05	0.4410	0.3703	0-183E-01
0.250	0.6949	0.7267E-04	-0.8808E-05	0.4285	0.3597	0.186E-01
0.200	0.5767	0.5813E-04	-0.57846-05	0.4181	0.3468	0.144E-01
0.150	0.4557	0.4360E-04	-0.8720E-06	0.4077	0.3291	0.268E-02
RE(DELTA) = 564						
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.450	1.4310	0.1152E-03	0-1430E-04	0.6450	0.4542	-0.363E-01
0.600	1.3536	0.1152E-03	0.1262E-04	0.6523	0.4431	-0.343E-01
		0.1003E-03			0.4304	
0.550	1.2777		0.1102E-04	0.6596	0.4304	-0.321E-01
0.500	1.2022	0.8865E-04	0.9361E-05	0.6644		-0.291E-01
0.490	1.1272	0.7978E-04	0.70216-05	0.6458	0.3992	-0.226E-01
0.400	1.0472	0.7092E-04	0.3351E-05	0.5816	0.3819	-0.104E-01
0.350	0.9543	0.6205E-04	-0.8687E-06	0.5036	0.3667	0.258E-02
0.300	0.8477	0.5319E-04	-0.4326E-05	0.4472	0.3538	0.128E-01
0.250	0.7302	0.44328-04	-0.6046E-05	0.4134	0.3423	0.193E-01
0.200	0.6056	0.3546E-04	-0.5780E-05	0.3930	0.3302	0.211E-01
0.150	0.4757	0.2659E-04	-0.3546E-05	0.3727	0.3153	0.156E-01
RE(DELTA) = 700						
BETAR+DELTA/U	ALFAR+DELTA	BETAR-NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.350	0.9576	0.4959E-04	0.1728E-05	0.5300	0.3654	-0.669E-02
0.300	0.8598	0.4285E-04	-0.1742E-05	0.4739	0.3489	0.672E-02
0.250	0.7453	0.3571E-04	-0.4185E-05	0.4178	0.3354	0.164E-01
0.200	0.6200	0.2857E-04	-0.4771E-05	0.3867	0.3225	0.208E-01
0.150	0.4865	0.2142E-04	-0.3585E-05	0.3669	0.3083	0.189E-01
0.100	0.3474	0.1428E-04	-0.6428E-06	0.3471	0.2878	0.4495-02

NA - 0.1500	XW/U = 2.5000	WT = 0.0000				
PROFILE COEFFIC	TENTS 0.96014	-6.72510 20.43	400 -29.83400	20.60900 -	5.42650 0.00	000 0.00000
RE(DELTA) = 46						
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U##2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.350	0.8026	0.7608E-04	0.2560E-04	0.5147	0.3965	-0.686E-01
0.300	0.7844	0.6521E-04	0.1547E-04	0.4657	0.3824	-0.422E-01
0.250	0.6660	0.5434E-04	0.1156E-04	0.4167	0.3753	-0.332E-01
0.200	0.5444	0.4347E-04	0.9913E-05	0.4065	0.3673	-0.340E-01
0.150	0.4200	0.3260E-04	0.9934E-05	0.3944	0.3571	-0.429E-01
0.100	0.2908	0.2173E-04	0.1082E-04	0.3823	0.3438	-0.654E-01
RE(DELTA) = 75	50.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITHP
0.200	0.5926	0.2649E-04	0.67545-05	0.3733	0.3374	-0.321E-01
0.150	0.4533	0.1986E-04	0.5576E-05	0.3574	0.3309	-0.331E-01
0.100	0.3126	0.1324E-04	0.5774E-35	0.3414	0.3196	-0.475E-01
0.050	0.1599	0.6622E-05	0.5655E-05	0.3043	0.3126	-0.812E-01
0.025	0.0746	0.3311E-05	0.4079E-05	0.2966	0.3351	-0.122E 00
0.010	0.3244	0.1324E-05	0.1933E-05	0.2920	0.4098	-0.174E 00

NA = 0.1500	XW/U = 2.5000	WT = 0.0000	{TEMPORAL	DATA			
PROFILE COEF	FICIENTS 0.96014	-6.72510 20.43	400 -29.83400	20.60900	-5.42650	0.00000	0.0000
RE(DELTA) =	1500.						
ALFAR#DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFA	I+NU/U
1.6000	0.49836-03	-0.8787E-04	-0.0823	0.4087	0.4671	0.2	149E-03
1.4000	0.4427E-03	-0.5946E-04	-0.0637	0.4515	0.4744	3.15	317E-03
1.2000	0.3779E-03	-0.3870E-04	-0.0483	0.4943	0.4724	0.78	330E-04
1.1000	0.3446E-03	-0.3125E-04	-0.0426	0.5103	0.4700	0.6	123E-04
1.0000	C-3098E-03	-0.2635E-04	-0.0395	0.5163	0.4648	0.50	085E-04
0.9000	0.2755E-03	-0.2295E-04	-0.0382	0.5124	0.4593	0.44	479E-04
0.7000	0.20778-03	-0.2017E-04	-0.0432	0.5017	0.4451	0.40	021E-04
0.5000	0.1417E-03	-0.2063E-04	-0.0618	0.4910	0.4253	0.42	201E-04
RE(DELTA) =	3000.						
ALFAR+DELTA	BETAR*NU/U##2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFA	I+NU/U
1.6000	0.2008E-03	-0.4261E-04	-0.0799	0.2534	0.3766	0.16	81E-03
1.5000	0.1921E-03	-0.3879E-04	-0.0776	0.2672	0.3843	0.14	51E-03
1.4000	0.1830E-03	-0.3454E-04	-0.0740	0.2010	0.3922	0.12	228E-03
1.3000	0.1734E-03	-0 . 2977E-04	-0.0687	0.3063	0.4001	0.97	713E-04
1.0000	0.1374E-03	-0.1508E-04	-0.0452	0.4079	0.4123	0.36	96E-04
0.9000	0.12336-03	-0.1164E-04	-0.0388	0.4295	0.4110	0.27	710E-04
0.8000	0.1088E-03	-0.9296E-05	-0.0348	0.4358	0.4080	0.21	132E-04
0.7000	0.9426E-04	-0.7763E-05	-0.0332	0.4429	0.4039	0.17	752E-04
0.5000	0.7928E-04	-0.7270E-05	-0.0363	0.4410	0.3964	0.16	48E-04
0.5000	0.6485E-04	-0.7093E-05	-0.0425	0.4391	0.3891	0.16	15E-04

NA - 0.1500	XW/U = 2.5000	WT = 1.5708				
PROFILE COEFFIC	IENTS 0.47905	-0.08403 -2.48	370 4.25520	-2.91840	0.76919 0.00	000 0.0000
RE(DELTA) = 46	.00.					
BETAR+DELTA/U	ALFAR+DELTA	BETARENU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.550	1.5671	0.1195E-03	0.2600E-04	0.3742	0.3509	-0.285E-01
0.500	1.4342	0.1086E-03	0.1799E-04	0.3739	0.3486	-0.215E-01
0.450	1.2997	0.9782E-04	0.1223E-04	0.3737	0.3462	. 0.161E-01
0.400	1.1666	0.8695E-04	0.8239E-05	0.3759	0.3428	0.122E-01
0.350	1.0337	0.7608E-04	0.6173E-05	0.3773	0.3385	-C.103E-01
0.300	0.9016	0.6521E-04	0.5608E-05	0.3782	0.3327	-C-108E-01
0.250	0.7693	0.5434E-04	0.6608E-05	0.3773	0.3249	-0.149E-01
0.200	0.6366	0.4347E-04	0.8760E-05	0.3765	0.3141	-0.238E-01
RE(DELTA) = 75	50.					
BETAR+DELTA/U	ALFAR#DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.450	1.4130	0.5960E-04	0.1172E-04	0.3410	0.3184	-0.213E-01
0.400	1.2656	0.5298E-04	0.6370E-05	0.3417	0.3160	-0.129E-01
0.350	1.1204	0.4635E-04	0.2860E-05	0.3424	0.3123	-0.660E-02
0.300	0.9736	0.3973E-04	0.1033E-05	0.3408	0.3081	-0.273E-02
0.250	0.8270	0.3311E-04	0.5827E-06	0.3415	0.3022	-0.181E-02
0.200	0.6808	0.2649E-04	0.1536E-05	0.3422	0.2937	-0.583E-02

NA - 0.1500	XW/U = 2.5000	WT = 1.5708	(TEMPORAL	DATA			
PROFILE COEF	FICIENTS 0.47905	-0.08403 -2.48	370 4.25520	-2.91840	0.76919	0.00000	0.0000
REIDELTA) =	1500.						
ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL	ALFA	L+NU/U
1.8000	0.51028-03	-0.5596E-04	-0.0466	0.4246	0.4252	0.13	17E-03
1.6000	0.4530E-03	-0.4533E-04	-0.0425	0.4378	0.4247		35E-03
1.4000	U.3935E-03	-0.3752E-04	-0.0402	0.4510	C-4216	0.83	18E-04
1.2000	0.3327E-03	-0.3286E-04	-0.0410	0.4593	0.4159	0.7	154E-04
1.1000	0.3019E-03	=C.3152E-04	-0.0429	0.4614	0.4118	0.60	30E-04
0.9000	0.2403E-03	-0.3121E-04	-0.0520	0.4620	0.4005	0.67	757E-04
0.8000	0.2095E-03	-0.3172E-04	-0.0594	0.4563	0.3929	0.69	16E-04
0.7000	0.1791E-03	-0.3217E-04	-0.0689	0.4553	0.3839	0.70	64E-04
RE(DELTA) =	3000.						
ALFAR#DELTA	BETAR*NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL	ALFA	*NU/U
1.8000	0.2229E-03	-0.2200E-04	-0.0366	0.3480	0.3715	0.63	23E-04
1.6000	0.1991E-03	-0.1574E-04	-0.0295	0.3673	0.3734	0.42	285E-04
1.4000	0.1739E-03	-0.1096E-04	-0.0235	0.3866	0.3727	0.26	37E-04
1.3000	0.1609E-03	-0.9233E-05	-0.0213	0.3935	0.3713	0.23	46E-04
1.2000	0.1476E-03	-0.7986E-05	-0.0199	0.3990	0.3692	0.20	01E-04
1.1000	0.1343E-03	-0.7176E-05	-0.0195	0.4031	0.3662	0.17	180E-04
1.0000	0.1208E-03	-0.6809E-05	-0.0204	0.4049	0.3624	0.16	81E-04
0.9000	0.1073E-03	-0.6879E-05	-0.0229	0.4050	0.3577	0.16	98E-04
0.8000	0.9381E-04	-0.7356E-05	-0.0275	0.4041	0.3518	0.16	20E-04
0.7000	0.6036E-04	-0.8106E-05	-0.0347	0.4002	0.3444	0.20	255-04
0.6000	0-6713F-04	-0-8963F-05	-0-0448	0.3964	0.3356	0.22	60F-04

NA = 0.1500	XW/U = 2.5000	WT = 3.1416				
PROFILE COEFFIC	IENTS -0.97295	6.75440 -16.59	30.04300	-52.62500	64.38000 -41.5290	0 10.56100
RE(DELTA) = 7	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITHP
0.800	1.8059	0.1066E-02	0.4559E-04	0.5194	0.4429	-0.983E-02
0.750	1.7098	0 . 1000E-02	0.3319E-04	0.5181	0.4386	-0.754E-02
0.700	1.6129	0.9333E-03	0.2600E-04	0.5167	0.4340	-0.624E-02
0.650	1.5163	0.8666E-03	0.2186E~04	0.5170	0.4286	-0.559E-02
0.600	1.4195	0.7999E-03	0.2173E-04	0.5165	0.4226	-0.593E-02
0.550	1.3227	0.7333E-03	0.2479E-04	0.5159	0.4158	-0.725E-02
0.500	1.2257	0.6666E-03	0.3133E-04	0.5154	0.4079	-0.988E-02
RE(DELTA) = 9	000•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.700	1.6466	0.7777E-03	-0.2111E-05	0.4982	0.4251	0.574E-03
0.650	1.5464	0.7222E-03	-0.7555E-05	0.5002	0.4203	0.219E-02
0.600	1.4467	0.6666E-03	-0.9555E-05	0.5022	0.4147	0.298E-02
0.550	1.3473	0.6111E-03	-0.8888E-05	0.4992	0.4082	0.296E-02 0.115E-02
0.500	1.2464	0.5555E-03	-0.3222E-05	0.4962	0.4011	0.1135-02
RE(DELTA) = 10	000					
BETAR*DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.750	1.7674	0.7500E-03	-0.2200E-05	0.4972	0.4243	0.618E-03
0.700	1.6668	0.6999E-03	-0.1199E-04	0.4940	0.4199	0.355E-02
0.650	1.5650	0.6500E-03	-0.1849E-04	0.4909	0.4153	0.580E-02
0.600	1.4631	0.5999E-03	-0.2150E-04	0.4901	0.4100	0.720E-02
0.550	1.3610	0.5499E-03	-0.2099E-04	0.4899	0.4041	0.755E-02
0.500	1.2590	L.5000E-03	-0.1720E-04	0.4899	0.3971	0.669E-02
0.450	1.1569	0.4499E-03	-0.1030E-04	0.4894	0.3889	0.435E-02
0.400	1.0547	0.4000E-03	-0.6000E-06	0.4880	0.3792	0.277F-03
0.350	0.9520	0.3499E-03	0.1189E-04	0.4849	0.3676	-0.606E-02
0.300	0.8485	0.2999E-03	0.2680E-04	0.4789	0.3535	-0.151E-01
0.250	0.7432	0.2500E-03	0.4379E-04	0.4729	0.3363	-0.278E-01
RE(DELTA) = 30	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.8568	0.2333E-03	0.1500E-05	0.4961	0.3769	-0.120E-02
0.650	1.7541	0.2166E-03	-0.1059E-04	0.4704	0.3705	0.852E-02
0.600	1.6440	0.1999E-03	-0.2080E-04	0.4448	0.3649	0.168E-01
0.550	1.5292	0.1833E-03	-0.2853E-04	0.4296	0.3596	0.240E-01
0.500	1.4112	0.1666E-03	-0.3386E-04	0.4195	0.3543	0.302E-01
0.450	1.2908	0.1500E-03	-0.3673E-04	0.4123	0.3486	0.352E-01
0.400	1.1687	0.1333E-03	-0.3713E-04	0.4080	0.3422	0.388E-01
0.350	1.0457	0.1166E-03	-0.3513E-04	0.4055	0.3347	0-408E-01
0.300	0.9221	0.9999E-04	-0.3083E-04	0.4038	0.3253	0.405E-01
0.250	0.7981	0.8333E-04	-0.2429E-04	0.4025	0.3132	0.367E-01
0.200	0.6737	0.6666E-04	-0.1569E-04	0.4012	0.2966	0.280E-01
RE(DELTA) = 46	.00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.7767	0.1413E-73	0.2086E-05	0.5417		-0.292E-02
0.600	1.5817	0.1304E-03	-0.5717E-05	0.5005	0.3567	0.782E-C2
0.550	1.5764	0.1195E-03	-0.1330E-04	0.4594	0.3488	0.178E-01
0.500	1.4638	0.1086E-03	-0.1954E-04	0.4310	0.3415	0.264E-01
0.450	1.3442	0.9782E-04	-0.2419E-04	0.4093	0.3347	0.338E-01
0.400	1.2194	0.8695E-04	-0.2695E-04	0.3948	0.3280	0.401E-01
0.350	1.0909	0.7608E-04	-0.2771E-04	0.3852	0.3208	0.450E-01
0.300	0.9598	0.6521E-04	-0.2645E-04	0.3793	0.3125	0.481E-01
0.250	0.8273	0.5434E-04	-0.2315E-04	0.3760	0.3021	0.484E-01
0.200	0.6939	0.4347E-04	-0.1784E-04	0.3727	0.2882	0.441E-01
RE(DELTA) = 75	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.700	1.8590	0.9271E-04	0.6503E-05	0.5914	0.3765	-0.156F-01
0.600	1.6793	0.7947E-04	-0.6754E-06	0.5378	0.3572	0.163E-02
0.500	1.4867	0.6622E-04	-0.7947E-05	0.4842	0.3363	0.195E-01
0.400	1.2641	0.5298E-04	-0.1479E-04	0.4180	0.3164	0.369E-01
0.300	1.0056	0.3973E-04	-0.1799E-04	0.3702	0.2983	0.500E-01
0.200	0.7229	0.2649E-04	-0.1505E-04	0.3475	0.2766	0.546E-01
0.100	0.4299	0.1324E-04	-0.5324E-05	0.3247	0.2326	0.303E-01

NA = 0.1500	XW/U = 2.5000	WT = 3.1416	(TEMPORA	L DATA)		
PROFILE COEF	FICIENTS -0.97295	6.75440 -16.59	400 30.043	00 -52.62500	64.38000 -41.	52900 10.56100
RE(DELTA) =	1500.					
ALFAR*DELTA	BETAR*NU/U**2	BETAI NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.9000	0.5151E-03	0.1306E-05	0.0010	0.4541	0.4067	-0.2877E-05
1.8000	0.4847E-03	0.7666E-05	0.0063	0.4587	0.4039	-0.1671E-04
1.7000	0.4540E-03	0.1268E-04	0.0111	0.4633	0.4006	-0.2737E-04
1.6000	0.4229E-03	0.1635E-04	0.0153	0.4669	0.3965	-0.3502E-04
1.5000	U.3917E-03	0.1867E-04	0.0186	0.4685	0.3917	-0.3987E-04
1.4000	0.3605E-03	0.1971E-04	0.0211	0.4681	0.3862	-0.4211E-04
1.3000	0.3293E-03	0.1960E-04	0.0226	0.4663	0.3800	-0.4204E-04
1.2000	0.2983E-03	0.1828E-04	0.0228	0.4630	0.3729	-0.3948E-04
1.1000	0.2675E-03	0.1576E-04	0.0214	0.4577	0.3648	-0.3442E-04
1.0000	0.2373E-03	0.1243E-04	0.0186	0.4529	0.3559	-0.2746E-04
0.9000	0.2071E-03	0.8026E-05	0.0133	0.4468	0.3453	-C.1796E-04
0.6000	0.1777E-03	0.3026E-05	0.0056	0.4369	0.3332	-0.6926E-05
0.7000	0.1489E-03	-0.2433E-05	-0.0052	0.4271	0.3191	0.5696E-05
RE(DELTA) =	3000.					
ALFAR+DELTA	RETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
1.9000	0.2391E-03	-0.3093E-05	-0.0048	0.4296	0.3776	0.7200E-05
1.8000	J.2247E-03	0.2373E-05	0.0039	0.4324	0.3746	-0.5487E-05
1.6000	0.1957E-03	0.1033E-04	0.0193	0.4382	0.3669	-0.2358E-04
1.5000	0.18106-03	0.1286E-04	0.0257	0.4391	0.3621	-0.2929E-04
1.4000	0.1664E-03	0.1456E-04	0.0312	0.4377	0.3566	-0.3326E-04
1.3000	0.1518E-03	0.1549E-04	0.0357	0.4351	0.3505	-0.3559E-04
1.2000	0.1374E-03	0.1565E-04	0.0391	0.4316	0.3435	-0.3627E-04
1.1000	0-1231E-03	0.1506E-04	0.0410	0.4258	0.3357	-0.3537E-04
1.0000	0-1090E-03	0.1383E-04	0.0415	0.4183	0.3271	-0.3306E-04
0.9000	0.9522E-04	0-1200E-04	0.0400	0.4096	0.3174	-0.2930E-04
0.8000	0.8173E-04	0.9623E-05	0.0360	0.3990	0.3065	-0.2411E-04
0.7000	0.6862E-04	0.6799E-05	0.0291	0.3869	0.2940	-0.1757E-04
0.6000	0.5593E-04	0.3676E-05	0.0183	0.3734	0.2797	-0.9845E-05
0.5000	0.4372E-04	0.4366E-06	0.0026	0.3559	0.2623	-0.1226E-05
0.4000	0.3221E-04	-0.2546E-05	-0.0190	0.3384	0.2415	0.7524E-05

NA = 0.1500	XW/U = 2.5000	WT = 3.9270				
PROFILE COEFFIC	CIENTS -1-24170	5.34190 -5.5	0590 4.79850	-25.85900	51.44600 -40.07	300 11-11000
REIDELTA) =	500.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI#NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.850	1.8610	0.1699E-02	0.4459E-04	0.5414	0.4567	-0.648E-02
0.800	1.7690	0-1600E-02	0.3080E-04	0.5414	0.4522	-0.471E-02
0.750	1.6763	0.1500E-02	0.2220E-04	0.5414	0.4474	-0.358E-02
0.700	1.5843	0.1399E-02	0.1899E-04	0.5431	0.4418	-0.325E-02
0.650	1.4922	0.1300E-02	0.1980E-04	0.5423	0.4355	-0.359E-02
0.600	1.3999	0.1199E-02	0.2460E-04	0.5428	0.4286	-0.477E-02
0.550	1.3080	0.1099E-02	0.3339E-04	0.5402	0.4204	-0.689E-02
0.500	1.2148	0.1000E-02	0.4880E-04	0.5373	0.4115	-0.107E-01
0.450	1.1219	0.8999E-03	0.6659E-04	0.5359	0.4011	-0.159E-01
0.400	1.0282	0.6000E-03	0.8680E-04	0.5344	0.3590	-0.230E-01
REIDELTA) = 0	500.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.800	1.8024	0.1333E-02	-0.1966E-04	0.5290	0.4438	0.346E-02
0.750	1.7075	0.1250E-02	-0.2999E-04	0.5265	0.4392	0.555E-02
0.700	1.6125	0.1166E-G2	-0.3533E-04	0.5241	0.4341	0.689E-02
0.650	1.5167	0.1083E-02	-0.3633E-04	0.5230	0.4285	0.751E-02
0.600	1.4213	0.9999E-03	-0.3300E-04	0.5243	0.4221	0.730E-02
0.550	1.3260	0.9166E-03	-0.2516E-04	0.5235	0.4147	0.596E-02
0.500	1.2303	0.8333E-03	-0.1266E-04	0.5227	0.4064	0.322E-02
RE(DELTA) = 10	000•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
1.000	2.2866	0-1000E-02	0.4300E-04	0.5385	0.4373	-0.101E-01
0.950	2.1928	0.9500E-03	0.1220E-04	0.5258	0.4332	-0.292E-02
0.5.0	2.0964	0.8999E-03	-0.1470E-04	0.5131	0.4293	0.359E-02
0.850	1.9979	0.8499E-03	-0.3709E-04	0.5038	0.4254	0.935E-02
0.800	1.8979	0.8000E-03	-0.5640E-04	0.4963	0.4215	0.147E-01
0.750	1.7964	0.7500E-03	-0.7110E-04	0.4909	0.4175	0.194E-01
0.700	1.6942	0.6999E-03	-0.8170E-04	0.4866	0.4131	0.234E-01
0.650	1.5709	0.6500E-03	-0.8850E-04	0.4933	0.4085	0.268E-01
0.600	1,4873	0.5999E-03	-0.9119E-04	0.4819	0.4034	0.295E-01
0.550	1.4824	0.5400F-03	-0-9010F-04	0.4811	0.3975	0-313F-01

and the commencer when are a single property of the contract o

NA = 0.1500	XW/U = 2.5000	WT = 3.9270				
RE(DELTA) .	1000.					
REIDEEIRI						-
BETAR+DELTA/U		BETAR+NU/U++2	ALFAI#NU/U			- III
0.400	1.0714	J.4000E-03	-0.6429E-04		0.3733	0.286E-01
0.350	0.9674	0.3499E-03	-0.4889E-04		0.3617	0.242E-01
0.300	0.8630	0.2999E-03	-0.3030E-04	0.4768	0.3476	0.167E-01
0.250	0.7577	0.2500E-03	-0.9100E-05	0.4697	0.3299	0.564E-02
0.200	0.6501	0.2000E-03	0.1470E-04	0.4626	0.3076	-0.104E-01
RE(DELTA) =	4600.					
BETAR+DELTA/U		BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL		
0.850	2.0895	0.1847E-03	0.2000E-05	0.5848	0.4067	-0.257E-02
0.800	2.0030	0.1739E-03	-0.3695E-05	0.5715	0.3994	0.485E-02
0.750 0.700	1.9145	0.1630E-03	-0.9065E-05	0.5581	0.3917	0.121E-01 0.194E-01
0.650	1.8238 1.7307	0.15216-03	-0.1417E-04	0.5441 0.5292	0.3538 0.3755	0.268E-01
0.600	1.6348	0.1413E-03 0.1304E-03	-0.1908E-04	0.5089	0.3670	0.337E-01
0.550	1.5341	0.1195E-03	-0.2815E-04	0.4852	0.3585	0.409E-01
0.500	1.4266	0.1086E-03	-0.3208E-04	0.4617	0.3499	0.477E-01
0.450	1.3174	0.9782E-04	-0.3528E-04	0.4383	0.3415	0.539E-01
0.400	1.2003	0.86955-04	-0.3728E-04	0.4175	0.3332	0.596E-01
0.350	1,0778	0.7608E-04	-0.3778E-04	0.4010	0.3247	0.646E-01
0.300	0.9509	0.6521E-04	-0.3643E-04	0.3891	0.3154	0.685E-01
0.250	0.8208	0.5434E-04	-0.3304E-04	0.3804	0.3045	0.704E-01
0.200	0.6880	0.4347E-04	-0.2747E-04	0.3760	0.2906	0.690E-01
0.150	0.5549	0.3260E-04	-0.1969E-04	0.3715	0.2703	0.606E-01
0 • 100	0.4188	0 • 2173E-04	-0.9913E-05	0.3527	0.2387	0.384E-01
0.050	0.2709	0.1086E-04	0.1065E-05	0.3339	0.1845	-0.604E-02
RE(DELTA) -	7550•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	. WAVE VEL	CITMP
0.700	1.8314	0.9271E-04	-0.9165E-05	0.5375	0.3822	0.203E-01
0.600	1.6396	0.79475-04	-0.1451E-04	0.5083	0.3659	0.339E-01
0.500	1.4377	0.6622E-04	-0.1871E-04	0.4791	0.3477	0.470E-01
0.400	1.2217	0.5298E-04	-0.2189E-04	0.4393	0.3274	0.594E-01
0.300	0.9812	0.3973E-04	-0.2321E-04		0.3057	0.703E-01
0.200	0.7118	0.2649E-04	-0.2005E-04	0.3589	0.2809	0.763E-01
0.100	0.4234	0.1324E-04	-0.9801E-05	0,3244	0.2361	0.567E-01
NA = 0.1500	XW/U = 2.5000	WT = 3.9270	(TEMPORAL	DATA)		
PROFILE COEFFI	CIENTS -1-24170	5.34190 -5.50	590 4.79850	-25.85900 5	1.44600 -40.0	7300 11-11000
RE(DELTA) - 1	500.					
ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
2.1000	0.5814E-03	0.3759E-05	0.0026	0.4304	0.4153	-0.7826E-05
1.9000	0.5173E-03	0.2216E-04	0.0175	0.4820	0.4084	-D.4598E-04
1.7000	0.4529E-03	0.3385E-04	0.0298	0.4836	0.3996	-0.6999E-04
1.5000	0.3884E-03	0.3951E-04	0.0395	0.4814	0.3884	-0.8208E-04
1.3000	0.3245E-03	0.3953E-04	0.0456	0.4751	0.3744	-0.8320E-04
1.2000	0.2929E-03	0.3752E-04	0.0469	0.4678	0.3662	-0.7986E-04
1.1000	0.26185-03	0.3431E-04	0.0467	0.4626	0.3571	-0.7416E-04
1.0000	0.2313E-03	0.3006E-04	0.0450	0.4541	0.3469	-0.6618E-04
0.8000 0.6000	0.1719E-03	0.1837E-04 0.4166E-05	0.0344 0.0104	0.4328	0.3224	-0.4244E-04 -0.1027E-04
0.5000	0.1158E-03 0.8936E-04	-0 - 2726E-05	-0.0081	0.4053 0.3915	0.2681	0.6963E-05
	000.		***************************************	003723	•••••	0.07002
ALFAR+DELTA	BETARENU/U++2	BETAINNU/UNNZ	CIMAG	GROUP VEL+	WAVE VEL.	ALFAI+NU/U
2.1000	0.2849E-03	-0.3090E-05	-0.0044	0.5329	0.4071	0.5797E-05
2.0000	0.2673E-03	0 • 2683E - 05	0.0040	0.5208	0.4010	-0.5151E-05
1.9000	0.2502E-03	0.8136E-05	0.0128	0.5008	0.3951	-0.1597E-04
1.7000	0.2170E-03	0.16515-04	0.0291	0.4950	0.3830	-0.3336E-04
1.5000	0.1842E-03 0.1529E-03	0.2206E-04 0.2411E-04	0.0441 0.0556	0.4810	0.3684	-0.4586E-04
1.1000	0.1329E-03	0.2310E-04	0.0536	0.4396	0.3347	-0.5253E-04
1.0000	0.1082E-03	0.2160E-04	0.0648	0.4317	0.3248	-0.5005E-04
0.9000	0.9394E-04	0.1923E-04	0.0641	0.4215	0.3131	-0.4561E-04
0.8000	0.8018E-04	0.1638E-04	0.0614	0.4053	0.3006	-0.4041E-04
0.7000	0.6691E-04	0.1301E-04	0.0557	0.3894	0.2867	-0.3341E-04
0.6000	0.5421E-04	0.9249E-05	2-0462	0.3726	0.2710	-0.2482E-U4
0.5000	0.4207E-04	0 - 5249E-05	0.0314	0.3534	0 - 2524	-0 -1485E-04
0.4000	0.30665-04	0.1396E-05	0.0104	0.3299	0.2299	-0.4232E-05
0.3000	0.2007E-04	-0.1813E-05	-0.0181	0.3064	0.2008	0.5916E-05

NA = 0.1500	XW/U = 2.5000	WT = 4.7124				
PROFILE COEFFIC	IENTS -0.70349	-0.00728 12.8	9800 -28.71700	12.97800	21.30800 -25.674	7.99420
RE(DELTA) = 5	00•					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.750	1.6101	0.15005-02	0.6000E-06	0.5580	0.4658	-0.103E-03
0.700	1.5202	0.1399E-02	-0.4200E-05	0.5549	0.4604	0.766E-03
0.650	1.4299	0.1300E-02	-0.4200E-05	0.5518	0.4545	0.810E-03
0.600	1.3390	0.1199E-02	0.0000E 00	0.5488	0.4480	0.000E 00
RE(DELTA) = 6	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.850	1.8191	0.1416E-02	-0.1233E-04	0.5497	0.4672	0.223E-02
0.800	1.7280	0.1333E-02	-0.2766E C4	0.5464	0.4629	0.524E-02
0.750	1.6361	0.1250E-02	-0.3863E-04	0.5431	0.4584	0.773E-02
0.700	1.5439	0.1166E-02	-0.4533E-04	0.5414	0.4533	0.953E-02
0.650	1.4514	0.1083E-02	-0.4749E-04	0.5399	0.4478	0.106E-01
0.600	1.3587	0.9999E-03	-0.4533E-04	0.5387	0.4415	0.107E-01
7.550	1.2653	0.9166E-03	-0.3899E-04	0.5373	0.4345	0.993E-02
0.500	1.1726	0.8333E-03	-0.2866E-04	0.5349	0.4264	0.784E-02
0.400	0.9846	0.6666E-03	0.3833E-05	0.5301	0.4062	-0.123E-02
REIDELTA) = 46	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI#NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.800	1.8631	0.1739E-03	-0.5086E-05	0.5994	0.4293	0.752E-02
0.750	1.7790	0.1630E-03	-0.8782E-05	0.5856	0.4215	C-132E-01
C.700	1.6923	0.1521E-03	-0.1250E-04	0.5717	0.4136	0.194E-01
0.650	1.6041	0.14136-03	-0.1586E-04	0.5609	0.4052	0.255E-01
0.600	1.5140	0.1304E-03	-0.1904E-04	0.5477	0.3963	0.316E-01
0.550	1.4215	0.1195E-03	-0.2200E-04	0.5309	0.3869	0.378E-01
0.500	1.3256	0.1086E-03	-0.2480E-04	0.5099	0.3771	0.438E-01
0.450	1.2253	0.9782E-04	-3.2728E-04	0.4855	0.3672	0.497E-01
0.400	1.1195	0.8695E-04	-0.2917E-04	0.4599	0.3573	0.551E-01
0.350	1.0077	0.7608E-04	-0.3006E-04	0.4365	0.3473	0.599E-01
0.300	0.8903	0+6521E-04	-0.2954E-04	0.4173	0.3369	0.637E-01
0.250	0.7680	0.54345-04	-0.2728E-04	0.4026	0.3255	0.658E-01
0.200	0.6419	0.4347E-04	-0.2304E-04	0.3917	0.3115	0.646E-01
0.150	0.5127	0.3260E-04	-0.1669E-04	0.3813	0.2925	0.571E-01
0.100	0.3796	0.2173E-04	-0.8369E-05	0.3596	0.2634	0.364E-01
0.050	0.2341	0.1086E-04	0.1152E-05	0.3379	0.2135	-0.765E-02
RE(DELTA) = 75	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.800	1.8715	0.1059E-03	-0.3417E-05	0.5885	0.4274	0.811E-02
0.700	1.6982	0.9271E-04	-0.8198E-05	0.5646	0.4122	0.205E-01
0.600	1.5171	0.7947E-04	-0.1202E-04	0.5406	0.3954	0.323E-01
0.500	1.3281	0.6622E-04	-0.1483E-04	0.5164	0.3764	0.435E-01
0.400	1.1296	0.5298E-04	-0.1680E-04	0.4819	0.3541	0.541E-01
0.300	0.9123	0.3973E-04	-0.1792E-04	0.4311	0.3288	0.639E-01
0.200	0.6636	0.2649E-04	-0.1607E-04	0.3816	0.3013	0.698E-01
0.100	0.3848	0.1324E-04	-0.8039E-05	0.3322	0.2585	0.521E-01

NA - 0-1500	XW/U = 2.5000	WT = 4.7124	(TEMPORAL	DATAI		
PROFILE COEF	FICIENTS -0.70349	-0.00728 12.83	800 -28.71700	12.97800	21.30800 -25	.67400 7.99420
RE(DELTA) =	1500.					
ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
2.0000	0.58995-03	-0.2066E-05	-0.0015	0.5327	0.4424	0.3879E-05
1.9000	0.5546E-03	0.8560E-05	0.0067	0.5282	0.4378	-0.1620E-04
1.8000	0.5195E-03	0.1735E-04	0.0144	0.5237	0.4329	-0.3313E-04
1.7000	0.4847E-03	0.2443E-04	0.0215	0.5200	0.4277	-0.4699E-04
1.6000	0.4502E-03	0.2982E-04	0.0279	0.5164	0.4220	-0.5775E-04
1.5000	0.4159E~03	0.3365E-04	0.0336	0.512	0.4159	-0.6567E-04
1.4000	0.3818E-03	0.3591E-04	0.0384	0.5075	0.4091	-0.7076E-04
1.3000	0.3482E-03	0.3673E-04	0.0423	0.5018	0.4018	-0.7320E-04
1.2000	0.3149E-03	0.3608E-04	0.0451	0.4955	0.3937	-0.7282E-04
1.1000	0.2821E-03	0.3409E-04	0.0465	0.4870	0.3848	-0.7001E-04
1.0000	0.2500E-03	0.3091E-04	0.0463	0.4773	0.3750	-0.6476E-04
0.8000	0.1876E-03	0.2101E-04	0.0394	0.4549	0.3518	-0.4618E-04
0.6000	0.1287E-03	0.7979E-05	0.0199	0.4236	0.3218	-0.1874E-04
0.5000	0.1008E-03	0.1073E-05	0.0032	0.4068	0.3026	-0.2638E-05
0.4000	0.7449E-04	-0.5186E-05	-0.0194	0.3879	0.2793	0.1337E-04
RE(DELTA) =	3000.					
ALFAR+DELTA	BETAR+NU/U++2	BETAI+NU/U++2	CIMAG	GROUP VEL.	WAVE VEL.	ALFAI+NU/U
2.0000	0.2941E-03	-0.3356E-05	-0.0050	0.5843	0.4412	0.5743E-05
1.9000	0.2748E-03	0.1566E-05	0.0024	0.5754	0.4339	-0.2722E-05
1.8000	0.2557E-03	0.5990E-05	0.0099	0.5666	0.4263	-0.1057E-04
1.6000	0.2187E-03	0.1374E-04	0.0257	0.5421	0.4101	-0.2535E-04
1,4000	0.1835E-03	0.1887E-04	0.0404	0.5159	0.3932	-0.3658E-04
1.2000	0.14998-03	0.2095E-04	0.0523	0.4903	0.3748	-0.4273E-04
1.1000	0.1338E-03	0.2083E-04	0.0568	0.4766	0.3649	-0.4370E-04
1.0000	0.1181E-03	0.19995-04	0.0599	0.4628	0.3544	-0.4320E-04
0.9000	0.1029E-03	0.1841E-04	0.0613	0.4477	0.3431	-0.4111E-04
0.8000	0.8830E-04	0.1619E-04	0.0607	0.4316	0.3311	-0.3751E-04
0.6000	0.6056E-04	0.1006E-04	0.0503	0.3962	0.3028	-0.2541E-04
0.4000	0.3547E-04	0.2719E-05	0.0204	0.3534	0.2460	-0.7695E-05
0.3000	0.2407E-04	-0.6133E-06	-0.0061	0.3320	0.2406	0.1846E-05

NA - 0.1500	XW/U = 2.5000	WT = 5.4978				
PROFILE COEFFIC	TENTS 0.20612	-5.34800 24.2	6700 -44.20100	33.69000	-3.72330 -8.47	200 3.31910
RE(DELTA) - 9	00.					
SETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.600	1.2731	0.6666E-03	0.0000E 00	0.5530	0.4712	0.000E 00
0.550	1.1813	0.6111E-03	-0.333E-05	0.5501	0.4655	0.139E-02
0.500	1.0913-	0.5555E-03	-0.2666E-05	0.5471	0.4581	0.120E-02
0.450	0.9985	0.5000E-03	0.3333E-06	0.5442	0.4506	-0.163E-03
RE(DELTA) = 10	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.650	1.3741	0.6500E-03	0.2400E-05	0.5585	0.4730	-0.975E-03
0.600	1.2842	0.5999E-03	-0.4300E-U5	0.5513	0.4672	0.184E-02
0.550	1.1927	0.5499E-03	-0.8299E-05	0.5440	0.4611	0.378E-02
0.500	1.1004	0.5000E-03	-0.9200E-05	0.5388	0.4543	0.450E-02
0.450	1.0071	0.4499E-03	-0.7300E-05	0.5336	0.4468	0.386E-02
0.400	0.9130	0.4000E-03	-0.2400E-05	0.5284	0.4381	0.1385-02
RE(DELTA) - 19	900•					
BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.4146	0.4333E-03	0.3999E-05	0.5676	0.4594	-0.240E-02
0.600	1.3245	0.3999E-03	-0.4933E-05	0.5500	0.4530	0.307E-02
0.550	1.2328	0.3666E-03	-0 - 1226E-04	0.5325	0.4461	0.794E-02
0.500	1.1366	0.3333E-03	-0.1659E-04	0.5192	0.4399	0.113E-01
0.450	1.C-02	0.3000E-03	-0.1846E-04	0.5118	0.1326	0.136E-01
0.400	0.9412	0.2666E-03	-0.1766E-04	0.5047	0.4249	0.142E-01
0.350	0.8421	0.2333E-03	-0.1439E-04	0.4983	0.4156	0.127E-01
0.300	0.7405	0.1999E-03	-0.86665-05	0.4909	0.4051	0.861E-02
0.250	0.6384	0.1666E-03	-0.7999E-06	0.4816	0.3916	0.905E-03
0.200	0.5328	0.1333E-03	0.9000E-05	0.4722	0.3753	-0.119E-01
RE(DELTA) = 30	000•					
BETAR*DELTA/U	ALFAR*DELTA	BETAR NU/U+#2	ALFAI+NU/U	GROUP VEL	. WAVE VEL.	CITMP
0.650	1.4288	0.2163E-03	0.1573E-04	0.6871	0.4549	-0.226E-01
0.600	1.3530	0.1999 -03	0.9933E-05	0.6446	0.4434	-0.141E-01
0.550	1.2736	0.1833E -03	0.3833E-05	0.6022	0.4318	-0.543E-02
0.500	1.1866	0.1666E-(3	-0.2433E-05	0.5564	0.4213	0.342E-02
0.450	1.0937	0.1500E 3	-0.7599E-05	0.5211	0.4114	0+108E-01
0.400	0.9945	0.1333E-0.	-0.1153E-04	0.4926	0.4022	0.171E-01
0.350	0.8906	0.1166E-03	-0.1336E-04	0.4723	0.3929	0.212E-01
0.300	0.7827	0.9999E-04	-0.1339E-04	0.4569	0.3832	0.234E-01
0.250	0.6717	0.5333E-04	-0.1113E-04	0.4447	0.3721	0.221E-01
0.200	0.5578	0.66665-04	-C • 7100E -05	0.4314	0.3585	0.164E-01
0.100	0.3177	0.3333E-04	0.5833E-05	0.4050	0.3147	-0.223E-01
RE(DELTA) = 46	600.					
BETAR+DELTA/U	ALFAR+DELTA	BFTAR +NU/U++2	ALFAI+NU/U	GROUP VEL		CITMP
0.650	1.4160	0.1413E-03	0.1006E-04	0.6565	0.4590	-0.214E-01
0.600	1.3392	0.1304E-03	0-8130E-05	0.6523	0.4480	-0.182E-01
0.550	1.2627	0.1195E-03	0.6000E-05	0.6481	0.4355	-0.141E-01
0.500	1.1949	0.1086E-03	0.3499E-05	0.6288	0.4219	-0.854E-02
0.450	1.1036	0.9782E-04	0.3260E-06	0.5896	0.4077	-0.801E-03
0.400	1.0150	0.8695E-04	-0.3260E-05	0.5377	0.3940	0.794E-02
0.350	0.9172	0.7608E-04	-0.6456E-05	0.4903	0.3915	0.158E-01
0.300	0.8107	0.65215-04	-0.8500E-05	0.4548	0.3700	0.219E-01
0.250	0.6971	0.5434E-04	-0 -8869E-05	0.4303	0.3586	0.251E-01
0.200	0.5782 0.4547	0.4347E-04 0.3260E-04	-0.7369E-05	0.4126 0.3962	0.3459 0.3298	0.241E-01 0.162E-01
0.150 0.100	0.3257	0.2173F-04	0.6521E-06	0.3797	0.3070	-0.349E-02
RE(DELTA) = 75	50.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL	WAVE VEL	CITMP
0.500	1.1734	0.6622E-04	0.2185E-05	0.6670	0.4261	-0.937E-02
0.400	1.0080	0.5298E-04	0.7152E-06	0.5855	0.3968	-0.313E-02
0.300	0.8315	0.3973E-04	-0.2437E-05	0.5041	0.3607	0.111E-01
0.200	0.6051	0.2649E-04	-0.4900E-05	0.4084	0.3305	0.2498-01
0.100	0.3386	0.1324E-04	-0.1364E-05	0.3127	0.2953	0.951E-02

	XW/U = 5.0600	WT = 3.9270				
PROFILE COETFICE	ENTS -1.99960	10.82100 -15.44	200 -12.58300	62.60700 -77	04901 43.08	600 -9.42560
REIDELTA) = 50	00.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U##2	ALFAT+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.6973	0.1399E-02	0.9439E-04	0.4917	0.4124	-0.136E-01
0.600	1.4934	0.11995-02	0.9180E-04	0.4924	0.4017	-0.151E-01
C.500	1.2912	0.1000E-02	0.1101E-33	3.4932	0.3872	-0.210E-01
0.400	1.0879	0.8000E-03	0.1479E-03	0.4876	0.3676	-0.331E-01
0.300	0.8810	0.5999E-03	0.2040E-03	0.4695	0.3405	-0-5436-01
٦•200	0.6616	0.4000E-03	0.2821E-03	0.4515	0.3022	-0.962E-01
RE(DELTA) = 60	00.					*** **
BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.700	1.7372	0.1166E-02	0.1183E-04	0.4724	0.4029	-0.193E-02
0.600	1.5255	0.9994E-03	0.7666E-05	0.4745	0.3933	-0.143E-02
0.500	1.3157	0.8333E-03	0.2316E-04	0.4765	0.3800	-0.503E-02
0.400	1.1058	0.6666E-03	0.5749E-04	0.4785	0.3617	-0.149E-01
RE(DELTA) = 70	0.					
BETAR*DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
9.500	1.9923	C.1142E-02	-0.5857E-05	0.4522	0.4015	0.930E-03
0.700	1.7722	0.9999E-03	-0.3399E-04	0.4355	0.3949	0.611E-02
0.600	1.5533	0.8571E-03	-0.4085E-04	0.4589	0.3862	0.845E-02
0.500	1.3364	0.7142E-03	-0.2785E-04	0.4620	0.3741	0.674E-02
0.400	1.1204	0.57145-03	0.3285E-05	0.4626	0.3570	-0.949E-03
0.300	0.9041	0.4285E-03	0.5071E-04	0.4632	0.3318	-0.181E-01
RE(DELTA) = 100	00.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR+NU/U++2	ALFA: +NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.900	2.3237	0.8999E-03	0.4400E-05	0.4289	0.3973	-0.812E-03
0.800	2.0905	0.8000E-03	-0.4929E-04	0.4267	0.3826	0.100E-01
0.700	1.8550	0.6999E-03	-0.8220E-04	0.4245	0.3773	0.188E-01
0.600	1.6194	0.5999E-03	-0.9539E-04	0.4260	0.3705	0.251E-01
0.500	1.3856	0.5000E-03	-0.9010E-04	0.4299	0.3608	0.279E-01
0.400	1.1542	0.4000E-03	-0.6770E-04	0.4340	0.3465	0.254E-01
0.300	0.9248	0.2999E-03	-0.2990E-04	0.4333	0.3243	0.140E-01
0.200 0.100	0.6927 0.4381	0.2000E-03 0.1000E-03	0.2139E-04 0.5880E-04	0.4118 0.3902	0 • 2887 0 • 2282	-0.127E-01 -0.790E-01
RE(DELTA) = 150		0010002-03	0000002-04	003701	002202	-001702 01
BETAR*DELTA/U	ALFAR+DELTA	BETARHNU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL-	CITMP
0.900	2.4311	0.6000E-03	0.1159E-04	0.4290	0.3702	-0.307E-02
0.800	2.1948	0.5333E-03	-0.4266E-04	0.4159	0.3644	0.121E-01
0.700	1.9501	0.4666E-03	-0.7973E-04	0.4028	0.3589	0.247E-01
0.600	1.6982	0.3999E-03	-0.9973E-04	0.3965	0.3533	0.349E-C1
0.500	1.4458	0.3333E-03	-0.1034E-03	0.3978	0.3458	0.426E-01
0.400	1.1955	0.2666E-03	-0.9139E-04	0.4021	0.3345	0.461E-01
0.300	0.9465	0.1999E-03	-0.6500E-04	0.4060 0.3965	0.3162	0.417E-01
0.200 0.100	0.7029 0.4438	0.1333E-03 0.6666E-04	-0.258CE-04 0.2479E-04	0.3871	0.2845 0.2253	0.218E-01 -0.324E-01
RE(DELTA) = 285	50 <b>.</b>					
BETAR+DELTA/U	ALFAR*DELTA	BETAR*NU/U**2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.850	2.3926	0.2982F-03	0.8280E-05	0.4816	0.3552	-0.475E-02
0.800	2.2863	0.2807E-03	-0.9771E-05	0.4593	0.3499	0.502E-02
0.750	2.1748	0.2631E-03	-0.2470E-04	0.4371	0.3448	
0.700	2.0574	0.2456E-03	-0.3912E-04	0.4168	0.3402	0.141E-01 0.225E-01
0.650	1.9348	0.2280E-03	-0.5157E-04	0.4003	0.3359	0.304E-01
0.600	1.8075	0.2105E-03	-0.6178E-04	0.3869	0.3319	0.376E-01
0.550	1.6763	0.1929E-03	-0.6940E-04	0.3769	0.3281	0.444E-01
0.500	1.5422	0.1754E-03	-0.7431E-04	0.3699	0.3242	0.508E-01
0.450	1.4060	0.1578E-03	-0.7635E-04	0.3656	0.3200	0.565E-01
0.400	1.2687	0.1403E-03	-0.7543E-04	0.3633	0.3200	0.565E-01
0.350	1.1308	0.1228E-03	-0.7154E-04	0.3629	0.3095	0.654E-01
	0.9932	0.1052E-03	-0.6480E-04	0.3640	0.3020	0.676E-01
0.300		U U A U J & L - U J	0 - 0 - 0 0 0 - 0 -	4.70.40	0.00	O = O   DE TUL
0.300			-0-551 SF-04	0.3657	0.2920	0-6715-01
0.250	0.8561	0.8771E-04	-0.5515E-04	0.3657 0.3671	0.2920	0.671E-01
			-0.5515E-04 -0.4273F-04 -0.2768E-04	0.3657 0.3671 0.3636	0.2920 0.2778 0.2569	0.671E-01 0.621E-01 0.491E-01

NA = 0.1500	XW/U = 5.0600	WT = 3.9270				
REIDELTA) = 40	00.					
BETAR+DELTA/U	ALFAR*DELTA	BETAR+NU/U++2	ALFAI+NU/U	GROUP VEL.	WAVE VEL.	CITMP
0.800	2.2967	0.2000E-03	-0.4149E-05	0.4736	0.3483	0.342E-02
0.700	2.0778	0.1749E-03	-0.2469E-04	0.4388	0.3368	0.208E-01
0.600	1.8402	0.1499E-03	-0.4212E-04	0.4040	0.3260	0.369E-01
0.500	1.5819	0.1250E-03	-0.5437E-04	0.3749	0.3160	0.515E-01
0.400	1.3062	0.1000E-03	-0.5899E-04	0.3562	0.3062	0.643E-01
0.300	1.0203	0.7499E-04	-0.5437E-04	0.3483	0.2940	0.742E-01
0.200	0.7321	0.5000E-04	-0.3964E-04	0.3458	0.2731	0.751E-01
0.100	0.4437	0.2500E-04	-0.1505E-04	0.3453	0.2253	0.468E-01
RE(DELTA) = 50	000.					
BETAR+DELTA/U	ALFAR+DELTA	BETAR*NU/U**2	ALFAI*NU/U	GROUP VEL+	WAVE VEL.	CITMP
0.800	2.3035	0.1599E-03	-0.3840E-05	0.4720	0.3472	0.393E-02
0.700	2.0844	0.1399E-03	-0.1960E-04	0.4424	0.3358	0.208E-01
0.600	1.6510	0.1199E-03	-0.3300E-04	0.4127	0.3241	0.367E-01
0.500	1.5992	0.1000E-03	-0.4321E-04	0.3822	0.3126	0.516E-01
0.400	1.3270	0.7999E-04	-0.4849E-04	0.3568	0.3014	0.652E-01
0.300	1.0382	0.5999E-04	-0.4659E-04	0.3417	0.2889	0.766E-01
0.200	0.7416	0.3999E-04	-0.3588E-04	0.3362	0.2696	0.813E-01
0.100	0.4434	0.1999E-04	-0.1584E-04	0.3307	0.2255	0.590E-01

533. 6. 013. 417. 532. 526		533. 6. 013. 417. 532. 526	
AGARDograph 134  North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development  A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS  H.J.Obremski, M.V.Morkovin and M.Lanichil 1969  128 pp., incl. 81 refs., Appendices, 6 tables and 22 figs.  A collection of linear amplification and propagation rates (temporal and spatial) for two similar and non-similar families of boundary layers is presented in graphical and tabular form.	ine utilization of the Portfolio information for estimating transition Reynolds numbers is discussed.	AGARDograph 134 North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS H.J.Obremski, M.V.Morkovin and M.Landahl 1969 128 pp., incl. 81 refs., Appendices, 6 tables and 22 figs. A collection of linear amplification and propagation rates (temporal and spatial) for two similar and non-similar families of boundary layers is presented in graphical and tabular form. The utilization of the Portfolio information for estimating transition Revnolds numbers is discussed.	P. T. O.
533. 6. 013. 417: 532. 526		533. 6. 013. 417: 532. 526	
AGARDograph 134  North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development  A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS  H.J.Obremski, M.V.Morkovin and M.Landahl 1969  128 pp., incl. 81 refs., Appendices, 6 tables and 22 figs.  A collection of linear amplification and propagation rates (temporal and spatial) for two similar and non-similar families of boundary layers is presented in graphical and tabular form.  The utilization of the Portfolio information for	estimating transition Reynolds numbers is discussed.	AGARDograph 134 North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development A PORTFOLIO OF STABILITY CHARACTERISTICS OF INCOMPRESSIBLE BOUNDARY LAYERS H.J.Obremski, M.V.Morkovin, and M.Landahl 1969 128 pp., incl. 81 refs., Appendices, 6 tables and 22 figs. A collection of linear amplification and propagation rates (temporal and spatial) for two similar and non-similar families of boundary layers is presented in graphical and tabular form. The utilization of the Portfolio information for estimating transition Reynolds numbers is discussed.	P. T. O.

Much improvement of the theoretical and experimental knowledge concerning free-	e concerning free-	Much in
stream disturbances and the specific manner in which they bring about the	y bring about the	stream
growth of Tollmien-Schlichting waves will be needed before further progress	further progress	growth
can be made. Analysis of the numerical variations of stability characteristics	ty characteristics	can be
with various features of the related profiles clarifies the role of U"(y) and	ole of U"(y) and	with va
of the location of the inflection point. The usual shape factor H emerges	factor H emerges	of the
as the only simple parameter capable of correlating satisfact. ly the minimum	to ly the minimum	as the
critical Reynolds number for non-similar profiles.		critica

disturbances and the specific manner in which they bring about the of Tollmien-Schlichting waves will be needed before further progress made. Analysis of the numerical variations of stability characteristics arious features of the related profiles clarifies the role of U"(y) and

aprovement of the theoretical and experimental knowledge concerning free-

only simple parameter capable of correlating satisfactorily the minimum

al Reynolds number for non-similar profiles.

location of the inflection point. The usual shape factor

Throughout, emphasis is placed on relating the idealization of the stability theory to physical processes in the boundary layer.

This publication is one of a series sponsored by the Fluid Dynamics. Panel of

AGARD-NATO

Throughout, emphasis is placed on relating the idealization of the stability theory to physical processes in the boundary layer. This publication is one of a series sponsored by the Fluid Dynamics Panel of AGARD-NATO

stream disturbances and the specific manner in which they bring about the growth of Tollmien-Schlichting waves will be needed before further progress can be made. Analysis of the numerical variations of stability characteristics with various features of the related profiles clarifies the role of U"(y) and as the only simple parameter capable of correlating satisfactorily the minimum Nuch improvement of the theoretical and experimental knowledge concerning freeof the location of the inflection point. The usual shape factor critical Reynolds number for non-similar profiles. stream disturbances and the specific manner in which they bring about the growth of Tollmien-Schlichting waves will be needed before further progress H emerges Much improvement of the theoretical and experimental knowledge concerning freeThroughout, emphasis is placed on relating the idealization of the stability theory to physical processes in the boundary layer. This publication is one of a series sponsored by the Fluid Dynamics Panel of AGARD-NATO

can be made. Analysis of the numerical variations of stability characteristics with various features of the related profiles clarifies the role of  $\, U''(y) \,$  and as the only simple parameter capable of correlating satisfactorily the minimum of the location of the inflection point. The usual shape factor critical Reynolds number for non-similar profiles.

Throughout, emphasis is placed on relating the idealization of the stability theory to physical processes in the boundary layer. This publication is one of a series sponsored by the Fluid Dynamics Panel of

## A PORTFOLIO OF STABILITY CHARACTERISTICS OF

## INCOMPRESSIBLE BOUNDARY LAYERS

by

H.J. Obremski, M.V. Morkovin and M. Landahl

with contributions from

A.R. Wazzan, T.T. Okamura and A.M.O. Smith

Will appear in 1969 as AGARDograph No. 134, AD-693660

## SUMMARY

A collection of linear amplification and propagation rates (temporal and spatial) for two similar and nonsimilar femilies of boundary layers is presented in graphical and tabular form. Their usage is illustrated for tracing the growth of disturbances in a flat-plate boundary layer which develops in x and varies periodically with t. If a user of the Portfolio can match the U"(y) distribution of his profile with that of a Portfolio profile over the central 80% of the boundary layer, the stability characteristics of the matched profile seem to provide him with satisfactory approximations for those of his own profile.

The utilization of the Portfolio information for estimating transition Reynolds numbers is discussed. Much improvement of our theoretical and experimental knowledge concerning freestream disturbances and the specific manner in which they bring about the growth of Tollmien-Schlichting waves will be needed before further progress can be made. Analysis of the numerical variations of stability characteristics with various features of the related profiles clarifies the role of U"(y) and of the location of the inflection point. The usual shape factor H emerges as the only simple parameter capable of correlating satisfactorily the minimum critical Reynolds number for nonsimilar profiles.

Throughout, emphasis is placed on relating the idealizations of the stability theory to physical processes in the boundary layer.

Segments dealing with the relationship between freestream disturbances and Tollmien-Schlichting waves were based on M.V. Morkovin's under Themis Project (USAF Contract F44620-69-C-0022) at the Illinois Institute of Technology.

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Vs. 22151