Data Science HealthCare Project Drug Persistance

By : Sourour Cherif

Mail: Sour our. cherif@esprit.tn

Data Science Engineer Student

Esprit Tunisia

Problem description

ABC Pharma is looking for an automated way better than the traditional debilitating methods currently used to assess persistence of drugs as per the physician prescription, in order to have a deeper understanding on the factors impacting the persistence of their drug. The aim is to know if a patient, based on his/her information, will follow the prescription of the physician and continue taking the drug for all the treatment time. We have been provided with a dataset which contains patients' details.

Business understanding

We will create a classification model as a solution that divides patients into categories depending on their information, to determine if a patient was persistent or not.

Our goal is to create a web application that might be used as an automated solution to this process of identification.

Project Lifecycle Along with Deadline

The entire project, including all requirements, must be submitted by the 30th of August 2022. The project has been split into several subtasks.

Figure 1 : Project Lifecycle

Data Intake Report

Name: Persistency of a Drug

Report Date: 09/08/2022

Internship Batch: LISUM10: 30

Data Intake: Sourour Cherif

Data Storage Location: https://github.com/Sururrrr/Drug Persistance.git

Tabular Data Details: Healthcare_dataset.xlsx	
Total number of Observations	3424
Total number of File(s)	1
Total number of Features (Independent Variables or Predictors)	68
Base format of the File	.xlsx
Size of the dataset	899 KB

Data understanding

To fit any predictive model on a dataset, we need to understand the complexity of the dataset before deciding which predictive model to use to get optimal performance.

Type of data

dtypes: int64(2), object(66) memory usage: 1.8+ MB

[] data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 3424 entries, 0 to 3423 Data columns (total 68 columns): # Column Non-Null Count Dtype 3424 non-null 0 Persistency Flag object Gender 3424 non-null object 3424 non-null Race object Ethnicity 3424 non-null object Region 3424 non-null object Age_Bucket 3424 non-null object 3424 non-null Ntm_Speciality object Ntm Specialist Flag 3424 non-null object Ntm_Speciality_Bucket Gluco_Record_Prior_Ntm 3424 non-null object 3424 non-null object 10 Gluco Record During Rx 3424 non-null object 11 Dexa_Freq_During_Rx 3424 non-null int64 Dexa_During_Rx 3424 non-null object 3424 non-null Frag_Frac_Prior_Ntm Frag_Frac_During_Rx 3424 non-null object 14 3424 non-null 15 Risk_Segment_Prior_Ntm object Tscore Bucket Prior Ntm 16 3424 non-null object 17 Risk Segment During Rx 3424 non-null object Tscore_Bucket_During_Rx 3424 non-null object 18 Change_T_Score 3424 non-null object Change_Risk_Segment 3424 non-null Adherent_Flag 3424 non-null object Idn_Indicator 3424 non-null object 23 Injectable_Experience_During_Rx 3424 non-null object 24 Comorb_Encounter_For_Screening_For_Malignant_Neoplasms 25 Comorb_Encounter_For_Immunization 3424 non-null object 3424 non-null obiect 26 Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx 3424 non-null object 27 Comorb Vitamin D Deficiency 3424 non-null object 35 Comorb_Osteoporosis_without_current_pathological_fracture 3424 non-null object 36 Comorb_Personal_history_of_malignant_neoplasm 3424 non-null Comorb_Gastro_esophageal_reflux_disease 3424 non-null object 38 Concom_Cholesterol_And_Triglyceride_Regulating_Preparations 3424 non-null object 39 Concom_Narcotics 3424 non-null object 40 Concom_Systemic_Corticosteroids_Plain 3424 non-null object 41 Concom_Anti_Depressants_And_Mood_Stabilisers 3424 non-null object 42 Concom_Fluoroquinolones 3424 non-null object 43 Concom_Cephalosporins 3424 non-null object 44 Concom_Macrolides_And_Similar_Types 3424 non-null object 45 Concom_Broad_Spectrum_Penicillins 3424 non-null object Concom_Anaesthetics_General 3424 non-null object 47 Concom_Viral_Vaccines 3424 non-null object 48 Risk_Type_1_Insulin_Dependent_Diabetes 3424 non-null object 49 Risk_Osteogenesis_Imperfecta 3424 non-null object 3424 non-null 50 Risk_Rheumatoid_Arthritis object ${\tt Risk_Untreated_Chronic_Hyperthyroidism}$ 51 3424 non-null object Risk_Untreated_Chronic_Hypogonadism 52 3424 non-null object 53 Risk_Untreated_Early_Menopause 3424 non-null object Risk_Patient_Parent_Fractured_Their_Hip 3424 non-null object 55 Risk_Smoking_Tobacco 3424 non-null object ${\tt Risk_Chronic_Malnutrition_Or_Malabsorption}$ 3424 non-null 56 object Risk_Chronic_Liver_Disease 57 3424 non-null object 58 Risk_Family_History_Of_Osteoporosis 3424 non-null object Risk Low Calcium Intake 3424 non-null 59 object Risk_Vitamin_D_Insufficiency 60 3424 non-null object 3424 non-null Risk Poor Health Frailty 61 object Risk_Excessive_Thinness 3424 non-null 62 obiect Risk Hysterectomy Oophorectomy 3424 non-null object 63 Risk_Estrogen_Deficiency 3424 non-null 64 object Risk Immobilization 3424 non-null 65 object 66 Risk Recurring Falls 3424 non-null object 3424 non-null

Unique elements in each Column

```
cbound method Index.unique of Index(['Persistency_Flag', 'Gender', 'Race', 'Ethnicity', 'Region',
    'Age_Bucket', 'Ntm_Speciality', 'Ntm_Specialist_Flag',
    'Ntm_Speciality_Bucket', 'Gluco_Record Prior Ntm',
    'Gluco_Record_During_Rx', 'Dexa_Frea_During_Rx', 'Pexa_During_Rx',
    'Frag_Frac_Prior_Ntm', 'Frag_Frac_During_Rx', 'Risk_Segment_Prior_Ntm',
    'Tscore_Bucket_During_Rx', 'Change_Tscore', (Knange_Tscore), Change_Bisk_Segment',
    'Adherent_Flag', 'Idn_Indicator', 'Injectable_Experience_During_Rx',
    'Comorb_Encounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Encounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Encounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Dincounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Dincounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Dincounter_For_Screening_For_Malignant_Neoplasms',
    'Comorb_Dincounter_For_Semenal_Exam_MO_Complaint,_Susp_Or_Reprtd_Dx',
    'Comorb_Dincounter_For_Semenal_Exam_MO_Complaint,_Susp_Or_Reprtd_Dx',
    'Comorb_Dincounter_For_Semenal_Exam_MO_Complaint_Suspected_Or_Reprtd_Dx',
    'Comorb_Derson_Intr_For_OftSp_Exam_MO_Complaint_Suspected_Or_Reprtd_Dx',
    'Comorb_Derson_Intr_For_OftSp_Exam_MO_Complaint_Suspected_Or_Reprtd_Dx',
    'Comorb_Derson_OftSp_Exam_MO_Complaint_Suspected_Or_Reprtd_Dx',
    'Comorb_Disorders_Of_Bone_Density_And_Structure',
    'Comorb_Disorders_Of_Bone_Density_And_Structure',
    'Comorb_Disorders_Of_Iloporotion_metabolism_and_other_lipidemias',
    'Comorb_Disorders_Of_Iloporotion_metabolism_and_other_lipidemias',
    'Comorb_Dersonal_Inistory_of_malignant_neoplasm',
    'Comorb_Personal_Inistory_of_malignant_neoplasm',
    'Comorb_Dersonal_Inistory_of_malignant_neoplasm',
    'Comorb_Dersonal_Inistory_of_malignant_neoplasm',
    'Comorb_Dersonal_Inistory_of_Malignant_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_Noter_Dense_Ilopor_
```

Data Problems

Data problems such as irrelevant columns, Null values, duplicates, skewed data, outliers and many others may cause bad predictions ...

So we need to check if we have one of them to know then how to overcome it.

- Skewed Data:

```
(497] def measure_skew_kurtosis(cols):
            for col in cols:
                print(col)
                result = data[[col]].agg(['skew', 'kurtosis']).transpose()
                print(result)
        measure_skew_kurtosis(numeric_col)
        Dexa_Freq_During_Rx
                               skew
                                     kurtosis
        Dexa_Freq_During_Rx 6.80873 74.758378
        Count_Of_Risks
                            skew kurtosis
        Count_Of_Risks 0.879791 0.900486

  [498] #skew and kurtosis values
        data.agg(['skew', 'kurtosis']).transpose()
                                       kurtosis
                                 skew
         Dexa_Freq_During_Rx 6.808730 74.758378
           Count Of Risks
                             0.879791
                                        0.900486
```

- Outliers

```
# creating a box plot of numerical columns against persitency flag to identify outliers
def boxplot(data, cols):
    for col in cols:
        sns.set_style('whitegrid')
        sns.boxplot(x='Persistency_Flag', y=col, data=data)
        plt.title('Boxplot of ' + col)
        plt.ylabel(col) #setting text for y axis
        plt.show()
boxplot(data, numeric_col)
```

- Duplicates

- ⇒ There is no duplicates, Having duplicates leads often to overfitting
 - Missing Values

```
[ ] # Total number of missing values
data.isnull().sum().sum()
```

Solutions

- Removing duplicates if they exists
- Dropping unsignificant columns
- Eliminating Skewed data

Example of removing 99% Percentile

```
/ [505] # To remove the 99th percentile
        q = data['Dexa_Freq_During_Rx'].quantile(0.99)
        data_1 = data[data['Dexa_Freq_During_Rx']<q]</pre>
        data_1.describe()
                Dexa_Freq_During_Rx Count_Of_Risks
                                                        log_Dexa log_Count_Risks
                        3389.000000
                                        3389.000000 3389.000000
                                                                       3389.000000
         count
                           2.440248
                                            1.240484
                                                         0.572915
                                                                          0.685941
         mean
                           5.183446
                                            1.095904
                                                         0.997375
                                                                          0.499826
          std
                           0.000000
                                            0.000000
                                                         0.000000
                                                                          0.000000
         min
         25%
                           0.000000
                                            0.000000
                                                         0.000000
                                                                          0.000000
         50%
                           0.000000
                                            1.000000
                                                         0.000000
                                                                          0.693147
         75%
                           3.000000
                                            2.000000
                                                         1.386294
                                                                          1.098612
                           34.000000
                                                         3.555348
                                                                          2.079442
                                            7.000000
         max
```

- Removing outliers

EDA

Does the speciality of the person who prescribed the drug have any effect on the persistent rate?

We see that both pie charts are pretty similar in distribution of frequency for each speciality. Thus, we can rule out the possibly that one of the factors that the drug is persistent or not is the speciality that prescribed the drug in the first place.

Does 'Ntm_Specialist_Flag' and 'Ntm_Speciality_Bucket' Variables have useful information for the classification task?

It seems Rheum flag in Ntm_Speciality_Bucket have some useful information.

What about 'Gluco_Record_Prior_Ntm', 'Gluco_Record_During_Rx'?

0	1
0.627879	0.372121
0.645119	0.354881

Gluco_Record_During_Rx seems to be more useful than Gluco_Record_Prior_Ntm to predict the target

The distribution of Dexa_Freq_During_Rx numbers seems to be higher in the Persistent patients

Variables that are recorded during the treatment have more useful information for the classification than others. It can be checked with the percentages shown by Dexa_During_Rx variable.

Of the total number of patients, 8% of people were affected by the treatment, weakening their bones

 The count of people affected by the treatment is small, and we can speculate that the treatment not affected considerably to the bones of the patients.

There is 10% of people with treatment who had a decrease in the t-score

- Then there is 90% approximately of people who maintained or improved their t-score.
- In conclusion, the treatment is improving the t-score of the patients.

Dexa_Freq_During_Rx by Age_Bucket Count_Of_Risks by Gender Counts_Of_Risks by Age-Bucket

Most of the patients already hold comorbidity factors, while holding risk factors is less common.

Some highlights:

- The main comorbidity factor is related to lipoproteins and metabolism (cholesterol).
- The main risk factor is deficiency in vitamin D.
- More than one third has been found to have taken narcotics.
- 99 % of our sample hold at least one risk, comorbidity and/or concomitant factor.

There are some significant differences between genders:

- Women seem to be more affected by vitamin D deficiencies.
- More than twice as many women as men have passed as screening for malignant neoplasms.
- Four times as many men as women suffer from **Hypogonadism** (untreated).

-

- As expected, patients older than 65 are affected by the mentioned factors in a higher proportion.
- There are some risks and other factors that seem to be significantly higher in South and West regions. It might be interesting to find out about socioeconomic factors aside.
- There seem to be some remarkable differences between Asian and other races. They are
 probably due to cultural factors and other behaviours, like medical reviews on a more
 regular basis (this is just a hypothesis to be found out).

⇒ EDA Summary

The file contained information of 3, 424 patients. For each patient it has demographic information, clinical records, others diseases as risk factor information and also about their physician's speciality.

There are some significant differences between genders (vitamin D deficiencies, screening for malignant neoplasms, Hypogonadism).

Most of the patients already hold comorbidity factors, while holding risk factors is less common.

Patients older than 65 are affected by the mentioned factors in a higher proportion.

There seem to be some remarkable differences between Asian and other races.

Variables that are recorded during the treatment like Dexa_Freq_During_Rx, Dexa_During_Rx and Gluco_Record_During_Rx have more useful information for the classification than others.

Modeling Techniques

Considering the nature of target variable the classification modeling techniques are most suitable for present study. This is a problem of binary classification and models logistic regression, decision tree can be used easily.

We conduct our experiment by implementing the following classification models

Model Development and Evaluation

RandomForestClassifier

```
Confusion Matrix:
[[346 64]
[ 41 377]]
F1 Score: 87.77648428405122
Report :
             precision recall f1-score support
               0.89 0.84 0.87
          0
                                          410
         1
               0.85
                        0.90
                                 0.88
                                            418
                                          828
   accuracy
                                 0.87
  accuracy
macro avg 0.87 0.87 0.87
1-1-1-1 0.87 0.87 0.87
                                             828
weighted avg
                                             828
```

The RandomForest Classifier Model performed well on the dataset.