

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE CHALCO

ING. SISTEMAS COMPUTACIONALES

PRACTICA CON SENSOR LM35

MATERIA: SISTEMAS PROGRAMABLES

PROFESOR: ALFREDO GALICIA MOYSEN

EQUIPO 3

AGUIRRE VELAZQUEZ LUIS RAYMUNDO

ESPINOZA SANCHEZ DANIEL ANTONIO

MEDINA GARCÍA JOSÉ

OLIVARES VARGAS LUIS ALBERTO

SORIANO LOPEZ ALBERTO

GRUPO:4701

CARRERA	PLAN DE ESTDIO	CLAVE ASIGNATURA	NOMBRE DE LA ASIGNATURA
Ingeniería en Sistemas Computacionales			Sistemas Programables

PRÁCTICA No.	LABORATORIO	SALÓN DE CLASE	DURACIÓN (HORA)
1	NOMBRE DE LA PRÁCTICA	SENSOR LM35	2 HRS

1 INTRODUCCIÓN

Se nos ha solicitado realizar un ensamble de manera virtual de cómo funciona un sensor de temperatura con el dispositivo LM35 ya que nos permitirá conocer como funciona este tipo de componente para la medición de temperatura ya sea en un hospital asi como también en un supermercado etc.

2 OBJETIVO (COMPETENCIA)

 Implementar nuevas herramientas para tener más conocimiento acerca de cómo funcionan la programación de dispositivos en la actualidad.

3 CÓDIGO

```
#include <LiquidCrystal.h>
int analog_pin = A0;
float tempC;
float tempF;
int tempdigital;
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup(){
 Serial.begin(9600);
 lcd.begin(16, 2);
void loop() {
 tempdigital= analogRead(analog pin);
 tempC = (tempdigital * 5.0)*100.0/ 1024.0;
 tempF = tempC * 9.0 / 5.0 + 32.0;
 lcd.clear();
 lcd.setCursor (0, 0);
 lcd.print ("Temp");
 lcd.setCursor(6, 0);
 lcd.print(tempC);
 Serial.println("Temperatura");
 Serial.println(tempC);
 delay(10);
```

4 PROCEDIMIENTO (DESCRIPCIÓN)

EQUIPO NECESARIO

- -Computadora Acer Aspire 5 con 12gb de ram y procesador I7 O I5
- -Software Arduino
- -Software Proteus

MATERIAL DE APOYO

-Internet Explorer u otro navegador de su agrado

Se implemento este código para el desarrollo y funcionamiento de nuestro ensamble del motor y sus velocidades que implementara y todo fue implementado para Arduino 1.

Aquí se muestra el código que desarrollamos para el funcionamiento del sensor LM35 para que funcione sin ningún problema.

C CÁLCULOS Y REPORTE

No fue necesario ingresar cálculos y solo necesitábamos saber los milisegundos equivalentes a segundos para implementar la medición

5 RESULTADOS Y CONCLUSIONES

El ensambla miento del circuito funciona perfectamente sin ningún problema.

El código Arduino funciona perfectamente sin ningún problema alguno

Conclusión.

El objetivo de conocer los sensores ya que nos permitirán implementar nuevas estrategias y nuevas ideas para su uso y con el paso del tiempo poder hacer mejoras para su uso y sus estándares de calidad para que sean más accesibles a su venta al público.

También esto nos permitirá tener más conocimiento para el mundo laboral ya que esto nos da una idea de los productos que nos brindan y nos dan la idea de cómo se desarrolla una empresa para sacar su producto final.