Введение в компьютерные сети. Лекция 2.

Сетевая модель OSI

Модель							
Уровень (layer)		Тип данных (PDU ^[15])	Функции	Примеры	Оборудование		
Host layers	7. Прикладной (application)	Данные	Доступ к сетевым службам	HTTP, FTP, POP3, WebSocket	Хосты (клиенты сети), Межсетевой экран		
	6. Представления (presentation)		Представление и шифрование данных	ASCII, EBCDIC, JPEG, MIDI			
	5. Сеансовый (session)		Управление сеансом связи	RPC, PAP, L2TP, gRPC			
	4. Транспортный (transport)	Cerмeнты (segment) / Датаграммы (datagram)	Прямая связь между конечными пунктами и надёжность	TCP, UDP, SCTP, Порты			
Media ^[16] layers	3. Сетевой (network)	Пакеты (packet)	Определение маршрута и логическая адресация	IPv4, IPv6, IPsec, AppleTalk, ICMP	Маршрутизатор, Сетевой шлюз, Межсетевой экран		
	2. Канальный (data link)	Биты (bit)/ Кадры (frame)	Физическая адресация	PPP, IEEE 802.22, Ethernet, DSL, ARP, сетевая карта.	Сетевой мост, Коммутатор, точка доступа		
	1. Физический (physical)	Биты (bit)	Работа со средой передачи, сигналами и двоичными данными	USB, RJ («витая пара», коаксиальный, оптоволоконный), радиоканал	Концентратор, Повторитель (сетевое оборудование)		

Среды передачи данных

1) Медный кабель (на примере витой пары UTP cat5e)

Пример обжимки сетевой вилки 8р8с для витой пары на 4 пары.

2) Эфир (на примере wifi или IEEE 802.11)

Сопоставление обозначений протокола и народного (маркетингового) названия:

IEEE 802.11n \rightarrow Wi-Fi 4 IEEE 802.11ac \rightarrow Wi-Fi 5 IEEE 802.11ax \rightarrow Wi-Fi 6 IEEE 802.11be \rightarrow Wi-Fi 7

3) Оптический кабель

Инкапсуляция данных:

Канальный уровень:

Адресация - mac адреса. Пример: 06:45:b3:c4:47:02 (6 байт/octets) Основной протокол изучаемый в курсе Ethernet (IEEE 802.3)

Figure 3–1—Packet format

Подробнее можно почитать в стандарте IEEE 802.3-2012 по адресу: https://moodle.iae.nsk.su/int_networks_23/IEEE-802.3-2012.pdf (стр.53 3.1.1)

Или страница 313 Олифер Компьютерные сети издание 6. https://moodle.iae.nsk.su/int_networks_23/ol6.pdf

Сетевой уровень:

Адресация - ір адреса. Пример: 95.145.45.7 или 10.3.0.5 (4 байта) Основной протокол изучаемый в курсе: IPv4

0 1		2 3					
		0 1 2 3 4 5 6 7 8 9 0 1					
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-							
Identification	on Flags	Fragment Offset					
Time to Live Pr	rotocol	Header Checksum					
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-							
Destination Address							
Op							

Example Internet Datagram Header

Подробнее можно почиать в стандарте по адресу https://moodle.iae.nsk.su/int_networks_23/rfc791.pdf (стр 11 секция 3.1)

Сетевая маска: битовая маска для определения по IP адресу адреса подсети и адреса хостов этой подсети.

Пример Подсеть: 10.0.0.0/8 Сетевая маска: 255.0.0.0 Последние три байта - адреса хостов в подсети, а 10.0.0.0 - адрес подсети или просто подсеть.

0.0.0.0

/8 это 255.0.0.0 или 11111111.00000000.00000000.00000000

/16 это 255.255.0.0

/24 это 255.255.255.0

/32 это 255.255.255.255

На моем ПК например сейчас: lp 192.168.0.114 Mask 255.255.255.0

/24 аналогична 255.255.255.0 Возможные ір адреса 192.168.0.1-192.168.0.255 Возможные ір адреса для клиентов (хостов) 192.168.0.1-192.168.0.254 Адрес подсети 192.168.0.0

Локальные адреса ("серые")

Подсеть: 10.0.0.0/8 Сетевая маска: 255.0.0.0 Последние три байта - адреса хостов в подсети

Подсеть: 192.168.0.0/16 Сетевая маска: 255.255.0.0

Подсеть: 172.16.0.0/12 Сетевая маска: 255.240.0.0

В помощь для определения количества хостов в подсети, широковещательного адреса и перевод сетевых масок в читаемый вид: https://www.wolframalpha.com/

Правила записи сетевой маски: рассмотрим маску в двоичном формате 1111..1110000....0000, где единиц будет п штук, а нулей будет m штук. Тогда:

- 1) n+m = 32
- Начинаться сетевая маска должна с последовательности
 111....111 только если п не равно 0. Тогда она вся состоит из 32 нулей.
- 3) Если n и m не равны нулю, то последовательностей единиц и нулей в маске должно быть по одной: сначала одна последовательность единиц, за ней одна последовательность нулей.

Полезные команды Linux из лекции

1) Вывод сетевых интерфейсов:

ip address show

или

ip a s

или

ifconfig -a

2) Показать кэш ARP

arp

3) Сброс кэша ARP

ip -s neigh flush all