Définition: Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que

- (\vec{i},\vec{j}) estdu plan;
- (O ; \vec{i},\vec{j}) estdu plan.

Définition : Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que

- (\vec{i},\vec{j}) estdu plan;
- (O ; \vec{i}, \vec{j}) estdu plan.

\vec{j}'		
0	\vec{i}	,

Définition: Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que

- (\vec{i},\vec{j}) estdu plan;
- (O ; \vec{i}, \vec{j}) estdu plan.

Définition: Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que

- (\vec{i},\vec{j}) estdu plan;
- (O ; \vec{i},\vec{j}) estdu plan.

Définition: Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que

- (\vec{i},\vec{j}) estdu plan;
- (O ; \vec{i},\vec{j}) estdu plan.

