This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(11)Publication number:

58-214281

(43)Date of publication of application: 13.12.1983

(51)Int.CI.

H01M 10/40

(21)Application number: 57-096921

(71)Applicant:

NIPPON TELEGR & TELEPH CORP <NTT>

(22)Date of filing:

08.06.1982

(72)Inventor:

TOBISHIMA SHINICHI

YAMAJI AKIHIKO

(54) NONAQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY

(57)Abstract:

PURPOSE: To provide a nonaqueous electrolyte for a lithium secondary battery in which charge-discharge performance of a lithium electrode is good by using a <u>nitrobenzene deri</u>vative as an additive of an nonaqueous electrolyte. CONSTITUTION: In a nonaqueous electrolyte prepared by dissolving a lithium salt in an organic solvent, a nitrobenzene derivative is used as an additive of the electrolyte. By adding the derivative, charge-discharge performance of a lithium electrode is increased. Although the reason is not always clear, it presumes that when an aromatic nitrocompound is added, a Li+ ion conductive film is formed on the lithium surface and this film effectively acts in charge-discharge performance of a Li electrode. As effective nitrocompounds, 2,4,7-trinitro-9-fluorenone, nitramine, or 5-nitrobenzotriazole is used. 10-1mol/l or less of a nitrobenzene is preferably added. Addition of more than 10-1mol/l decreases charge-discharge performance of the Li electrode.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

ゆ 日本国特許庁 (JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭58-214281

⑤Int. Cl.³H 01 M 10/40

識別記号

庁内整理番号 6821—5H

❸公開 昭和58年(1983)12月13日

発明の数 I 審査請求 未請求

(全 5 頁)

匈リチウム二次電池用非水電解液

2)特

頭 昭57—96921

後出

願 昭57(1982)6月8日

@発 明 者

薦島其一

茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 **茨城電気通信研究所内**

伊発明者 山路昭彦

茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茶城電景源は1500円で

茨城電気通信研究所内

⑪出 願 人 日本電信電話公社

個代 理 人 弁理士 雨宮正季

明 細 書

発明の名称

リチウム二次電他用非水電弱液

特許請求の範囲

ーリテウム塩を有機溶媒化溶媒させた非水電解液 において、前配非水電解液の添加剤として、ニト ロベンゼン誘導体を用いた事を答談とするリチウ ム二次電池用非水電解液。

発明の辞細な説明

本発明は、リチウム二次電磁に用いる電解液に 関するものである。

リチウムを負極活物質として用いる電池は、小型・高エネルギ密度を有する電池として研究されているが、その二次化が大きな問題点となつている。

三次化が可能な正應活物質として、V2Os. LiOz等の金属酸化物、TiS2.WSz等の層状化 合物が、Li との間でトポケミカルな反応をする 化合物として知られており現在までチタン、ジルコニウム、ハフニウム、ニオピウム、タンタル、バナジウムの硫化物、セレン化物、テルル化物を用いた電池(米国将許蘇4089052号明細書参照)及びセレン化ニオピウム等を用いた電池 (J. Electrochem aoc. vol. 124、成7部968 頁及び第325員(1977年)参照)等が第示されている。

しかしながら、このような二次電池用正複活物質の研究に比して、Li 極の充放電時性に関する研究は充分とはいえず、Li 二次電池実現のためには、充放電効率及びサイクル粉砂等の充放電号性の良好な電景板の探査が重大な問題となつている。Li 極の形放電効率を同上させる試みとしてはLiC20。/プロピレンカーボネイトにニトロメタン、SO2、等の添加剤を加える試み[Electrochimica. Acra. Vol. 22、第75頁~83頁(1977)〕やLiC20。/メテルアセテートを用いる試み[Electrochimica. Acra. Vol. 22、第85頁~91

百(1977)〕等が行な。 ているが、必ずし も充分とはいえず、さらに特性の優れたリチウム 二次電心用電解液が求められている。

本発明は、とのようを現状に強みてなされたものであり、その目的はしi 域の充放電特性の優れたリテウム二次電池用非水電解液を提供する事にある。

したがつて、本発明によるリチウム二次電池用 非水電料液は、リチウム塩を有機解媒に容解させ た非水電解液において、前記非水電解板の転加剤 として、ニトロペンゼン誘導体を用いた事を特徴 とするものである。

本発明によれば、リチウム塩を有機格盛に密螺 した電郵廠に、ニトロベンゼン防導体を参加する ことにより、LI 値の充放電幹性が良好なリチウ ム二次電池を実現しえる。

本発明を更に詳しく説明する。

本発明によるリチウム二次運他の非水電解液に 用いられる有機熔鉄は従来、との種の電解液に用 いられるものであればいかなるものでもよい。た

導体を添加すると、なぜ充放電特性が向上するのか、その思由は必ずしも明確ではない。

リテクム負種として、リチウム金属板等のリチウムをそのまま用いた場合、放電あるいは完電電流が増大すると局部的な反応促進により、リチウム負極に穴があいたり、充電器にデンドライト状のリチウムが折出し負種から脱落する等の現象が生じる。これがLI 様の充放電効率を低下させる原因となつている。

ニトロペンゼン誘導体を添加剤として用いると、リチウム硬の充放電特性は向上する。この理由は前述のように必ずしも明確ではないが、芳香族ニトロ化合物を添加すると、リチウム金嶌表面にしi⁺ イオン伝導性の膜を形成し、しi 極の充放電特性に効果的に作用している事も考えられる。この様な効果を示すニトロペンゼン誘導体としては、たとえば下記の一般式(1)であらわされるものをあげることができる。

(以下余白)

特開昭58-214281(2) とえば、プロピレン ポナイト、テトラヒドロフラン、ジメチルスルホキンド、エープチロラクトン、ジオキシラン、1,2-ジトキシエタン、2-メチルテトラハイドロフランから選択された1種以上の有機遊離を用いることができる。

さらに、格質であるリナウム塩は前述の有機溶 薬と同様限定されない。たとえば、LiCLO4. LiBF4. LiAsFe. LiPFe. LiALCA. CF, SOa Li. CF; CO2 Liから選択された1種 以上のような、一般に非水電解液の溶質として用 いられるリナウム塩を有効に用いることができる。

有機溶媒化解解させる密質の量は好ましくは 0.5 ~ 2.5 Nである。 0.5 N未満であると、充放電特性が著しく低下し、また 2.5 Nを超えると、溶解が困难となつたり、粘淀が上昇し充放電存性が悪化すると言う欠点を生ずるからである。特に好ましくは、たとえば Li C C O Q の場合、 1.25 N前後、 Li BF 4 の場合、 0.75 N前後である。

本発明において用いられる添加剤はニトロペン セン誘導体である。とのようなニトロペンゼン誘

ここに及は、水素、ハロダン、アルギル基、フェニル基、アルコキシ基、N-アルキル虚操アミノ基、 塩化カルボニル基、ニトロ基、ヘテロ原子を含む環 状の量換基、ビリジル、ペンジル、フェニルケトン、 キノン等の置換基を表わし、xはこれらの置換基の 数を示す。

具体的に上記ニトロペンセン誘導体の一例を述べると以下のような化合物を含む。すなわち、ニトロペンセン、ニトロアセナフテン、ニトロアセタニリド、ニトロアセトフエノン、ニトロアミノアニソール、ニトロアミノアニソールがアンニウム塩、ニトロアミノベングトリフルオロライド、ニトロアミノテアンール、ニトロアミノトルエン、ニトロアニリン、ニトロアニシジン、ニトロアニソール、ニトロアニシック、ニトロアニソール、ニトロアニシック、ニトロアニソール、ニトロアニシックン、ニトロアニソール、ニトロアニシックン、ニトロアニソール、ニトロアニシックス

アントラキノン、ニトロペンス レデヒド、ニトロ ペンズアミド、ニトロペンゼンスルフエニルクロラ イド、ニトロベンゼンスルホニックアシッド、ニト ロベンゼンチオール、ニトロベンゾイックアシッド、 ニトロペンゾニトリル、ニトロペンゾフエノン、ニ トロペンゾトリアゾール、ニトロ塩化ペンゾイル、 ニトロペンジルアセテイト、ニトロペンジルアルコ ール、ニトロペンジルプロマイド、ニトロペンジル クロライド、ァー (P-ニトロペンジル) ピリジン ニトロクロルベンゼン、ニトロトルエン、トリニト ロトルエン、ジニトロペンゼン、トリニトロペンゼ ン、ニトトフルオレン、トリニトロフルオレン、テト ラニトロフルオレノン、ニトロフタリツタアシッド、 ニトロキノリン等である。これらのニトロペンゼン 誘導体のうちでとくに、2、4、7-トリニトロー 9 - フルオレノン、ニトラミン、P - ニトロ塩化ペ ンゾイル、m-ニトロ塩化ペンゾイル、0-ニトロ ベンゾニトリル、m‐ニトロベンゾニトリル、P‐ ニトロペンゾニトリル、P-ニトロペンゾフエノン、 ァー(P-ニトロペンジル)ピリジン、5~ニトロ

特別昭58-214281(3) ペンソトリアゾール ましい。ニトロペンゼン 誘導体は好ましくは10⁻¹ moL/L以下添加される。 10⁻¹ moL/Lを超えるとLi 極の充放電効率が悪 化するからである。

以下、本発明の実施例を説明する。 実施例1

Pt 概を作用版、対極にLi (線状 Li を厚さ 約3 mm のペレットにしたもの、電気面積 1 cd) を参照電板としてLi を用いた電池を組み、Pt 極上にLi を析出させることにより、Li 極の充 放電等性を創定した。

測定は、まず5 Am/cdの定電流で1分間、Pt 極上にLi を折出させ充電した後、5mA/cd の定電 飛でPt 極上に折出したLi をLi + イオンとして放電するサイクル試験を行なつた。充放電効率は、Pt 極の電位変化より求め、Pt 極上に析出したLi をLi +イオンとして放電させるのに努した電気量とPt 極上にLi を析出させるために受した電気量とPt 極上にLi を析出させるために受した電気量をの比から算出した。

を用いた場合であり、図1(b)は参考例として、電 解液として1NLiCLO。/PC を用いた場合の、 Li帳の充放電特性を示した。

第1図から刊るように、単独系向に比べて、混合系向は明らかに充放電特性は向上している。 実施例2

Pt 極を作用版、対極にLi 薄片(厚さ 0.5 mm、電幅面積 1 cm)を移照越版としてLi を用いた電池を組み、Pt 低上にLi を析出させるととにより、Li 極の充放電報性を測定した。

柳定は、まず1mA/mの定電飛で1分割、Pt 恒上にLiを析出させ充電した後、1mA/mの 定電流でPt 極上に析出したLiをLi+ イオンとして放電するサイクル試験を行なつた。充放電 効率は、Pt 極の電位変化より求め、Pt 便上に析出したLiをLi+ イオンとして放電させるの、に使した電気量とPt 極上にLi・を析出させるために要した電気量との比から算出した。

第2図は、充放電効率とサ管クル数の関係を示す因であり、図中の回は電解液として、2NLiC4O4

/PC KIX10 mol/L のニトラミンを添加 したものを用いた場合であり、図中の向は参考例 の1NLiCLO4/PCを電解液として用いた場合の Li 極の充放電符性を示した。

第2図から刊るように、単独系向に比べて、協 合系向は明らかに、充放電券連は向上している。 実施例3

電解液として、2NLiCLO、/PCに1×10⁻¹ mol/Lのm - ニトロペンソニトリルを添加したものを用いた以外は実施例2と同様にして、Li 値の充放電特性を測定した。

第3図は、充放電効率とサイクル数の関係を示す図であり、図中の a は上記電解液を用いた場合であり、図中の(b)は、1NLiC20。/ ブロビレンカーポネイト単独系の電解液を用いた場合の充放電特性を参考例として示した。第3図から判るように、単独系(b)に比べて、混合系(a)は明らかに、充放電特性は向上している。

以上の説明から明らかな様に、本発明によれば、

リチウム塩を有機器様に溶解させた非水電解液に おいて、前記非水銀解液の添加剤としてニトロペンゼン誘導体を用いる事により、リチウム極の充 放電特性の良好なリチウム二次電位用非水電解液 を実現できる。

図面の簡単な説明

第1図~第3図は、本発明の実施例におけるリ チウム域の充放電効率とサイクル数の関係を示す 図である。

出顧人 代理人 南 宫 正 季

第 | 図

第 2 図

第3図

