STM32 course

Getting into RCC internals and touching FLASH

A few words about previous lecture

- Flip-flops, registers
- ALU
- SysTick
- STM32F0 SoC overview
- GPIO

STM32 F0 series
More capabilities, more creativity

Outline

- Pinout
- STM32F0 SoC overview
- PWR
- RCC
- FLASH
- A small experiment with memory

PINOUT

STM32F0 SoC overview

PWR (Power control)

- Independent A/D and D/A converter supply and reference voltage
- Battery backup domain
- Voltage regulator (core, memories and digital peripherals)
 - Run Mode (full power, 1.8V)
 - Stop Mode (only registers and RAM)
 - Standby Mode (only RTC)

PWR. Low-power modes

Mode name	Entry	wakeup	Effect on 1.8V domain clocks	Effect on V _{DD} domain clocks	Voltage regulator
Sleep	WFI	Any interrupt	CPU clock OFF	None	ON
(Sleep now or Sleep-on - exit)	WFE	Wakeup event	no effect on other clocks or analog clock sources		
Stop	PDDS and LPDS bits + SLEEPDEEP bit + WFI or WFE	Any EXTI line (configured in the EXTI registers) Specific communication peripherals on reception events (CEC, USART, I2C)	All 1.8V domain clocks OFF	HSI and HSE oscillators OFF	ON or in low- power mode (depends on Power control register (PWR_CR))
Standby	PDDS bit + SLEEPDEEP bit + WFI or WFE	WKUP pin rising edge, RTC alarm, external reset in NRST pin, IWDG reset			OFF

PWR. Power control registers

- Power control register (PWR_CR)
 - DBP (RTC and BKP registers write-protection)
 - PLS[2:0] (Power voltage detector threshold)
 - PVDE (turn on/off voltage detector)
 - CSBF, CWUF, PDDS, LPDS
- Power control/status register (PWR_CSR)
 - EWUPx and other status bits

RCC (Reset and clock control). Reset

RCC (Reset and clock control). Reset

- Software reset (NVIC_SystemReset())
- Low-power management reset
 - while entering Standby mode
 - while entering Stop mode
- Option byte loader reset (to launch the option byte loading by software)
- RTC domain reset (affects LSE, the RTC, the Backup registers and RCC)
 - Software reset (LL_RCC_ForceBackupDomainReset())
 - VDD power-up if VBAT has been disconnected when it was low

Various main clock sources:

- HSI 8 MHz RC oscillator clock
- HSE oscillator clock
- PLL clock

Additional clock sources:

- 40 kHz low speed internal RC (LSI RC)
- 32.768 kHz low speed external crystal (LSE crystal)
- 14 MHz high speed internal RC (HSI14) dedicated for ADC

Dangerous! Big pic! Switch to Reference Manual, p. 97

Clock Security System (CSS)

- Automatic detection failure with
 - NMI generation
 - Break input to Timers -> critical apps such as motor control put in a safe state
- Backup clock is HSI -> app doesn't stop in case of crystal failure

- Clock control register (RCC_CR)
 - o PLLRDY, PLLON, CSSON, HSEBYP, HSERDY, HSERDY, HSIRDY, HSION, etc.
- Clock configuration register (RCC_CFGR)
 - MCO[3:0] Microcontroller clock output
 - PLLMUL[3:0] PLL multiplication factor
 - PLLSRC[1:0] PLL input clock source
 - PPRE[2:0] PCLK prescaler (APB output freq)
 - HPRE[3:0] HCLK prescaler (AHB output freq)
 - SWS[1:0], SW[1:0] system clock
- Clock interrupt register (RCC_CIR)
- APB peripheral reset register [1,2] (RCC_APB[1,2]RSTR)
- AHB peripheral clock enable register (RCC_AHBENR)
- APB peripheral clock enable register [1,2] (RCC_APB[1,2]ENR)
- Clock configuration register 2 (RCC_CFGR2)
 - o PREDIV[3:0] PREDIV division factor
- Clock control register 2 (RCC_CR2) (HSI14 configuration)

FLASH

- 64 Kbyte of Flash Memory
- Memory organization
 - Main Flash memory block
 - Information block (or System)
 - Up to 2 x 8 byte for the option byte
- Read interface with prefetch buffer (3 items)
 - The Cortex ® -M0 fetches the instruction over the AHB bus
 - Impact on the performance only when the wait state number is 1
- Option byte Loader
- Flash Program / Erase operation
- Read / Write protection

Flash area	lash area Flash memory addresses		Name	Description	
Main Flash memory	0x0800 0000 - 0x0800 03FF	1 Kbyte	Page 0	Sector 0	
	0x0800 0400 - 0x0800 07FF	1 Kbyte	Page 1		
	0x0800 0800 - 0x0800 0BFF	1 Kbyte	Page 2		
	0x0800 0C00 - 0x0800 0FFF	1 Kbyte	Page 3		
				•	
	0x0800 7000 - 0x0800 73FF	1 Kbyte	Page 28		
	0x0800 7400 - 0x0800 77FF	1 Kbyte	Page 29	Sector 7 ⁽¹⁾	
	0x0800 7800 - 0x0800 7BFF	1 Kbyte	Page 30		
	0x0800 7C00 - 0x0800 7FFF	1 Kbyte	Page 31		
		300	7.	,	
	0x0800 F000 - 0x0800 F3FF	1 Kbyte	Page 60		
	0x0800 F400 - 0x0800 F7FF	1 Kbyte	Page 61	Sector 15	
	0x0800 F800 - 0x0800 FBFF	1 Kbyte	Page 62		
	0x0800 FC00 - 0x0800 FFFF	1 Kbyte	Page 63		
Information block	0x1FFF EC00 - 0x1FFF F7FF	3 Kbyte ⁽²⁾	-	System memory	
	0x1FFF C400 -0x1FFF F7FF	13 Kbyte ⁽³⁾	-	System memory	
	0x1FFF F800 - 0x1FFF F80F	2 x 8 byte	-	Option byte	

FLASH. Boot Options

Boot mode configuration					
nBOOT1 bit	BOOT0 pin	BOOT_SEL bit	nBOOT0 bit	Mode	
х	0	1	х	Main Flash memory is selected as boot area ⁽²⁾	
1	1	1	х	System memory is selected as boot area	
0	1	1	х	Embedded SRAM is selected as boot area	
х	х	0	1	Main Flash memory is selected as boot area	
1	х	0	0	System memory is selected as boot area	
0	х	0	0	Embedded SRAM is selected as boot area	

- 1. Grey options are available on STM32F04x and STM32F09x devices only.
- 2. For STM32F04x and STM32F09x devices, see also Empty check description.

Delay = $9,600,000 \times 5 \text{ cycles} = 48,000,000 \text{ cycles} = 1 \text{ sec}$

Delay = $2 \times 9,600,000 \times 5$ cycles = 96,000,000 cycles = 2 sec

Period = 3 sec (4 sec was expected). What's wrong?

Delay = $9,600,000 \times 8 \text{ cycles} = 76,800,000 \text{ cycles} = 1,6 \text{ sec}$

Delay = $6,000,000 \times 8 \text{ cycles} = 48,000,000 \text{ cycles} = 1 \text{ sec}$

