Lossy Trapdoor Functions by Chris Peikert, Brent Waters

Giacomo Fenzi

ETH Zurich

22 April 2021

Motivation

Lossy Trapdoor Functions and Their Applications

Chris Peikert* SRI International Brent Waters† SRI International

- ► Trapdoor Functions are a basic primitive, but hard to instantiate
- ► IND-CCA Security for PKE from factoring and discrete log but not lattices

Paper Results

- Introduce Lossy Trapdoor Functions (LTDFs)
- ▶ Realize LTDFs from factoring, discrete log and lattices
- Show LTDFs imply TDFs
- Black box construction of CCA-secure (witness recovering) cryptosystems, collision-resistant hash functions and oblivious transfer protocols.

Connections

Connections

Trapdoor Functions

Informally, a trapdoor function is family of functions that are hard to invert without access to some additional information called a trapdoor

Definition

A trapdoor function consists of three PPT algorithms $(S, {\cal F}, {\cal F}^{-1})$ such that:

- ► Easy to sample and invert with trapdoor. $S(1^{\lambda}) \to (s,t)$ such that F(s,-) is an injective function on $\{0,1\}^n$ and $F^{-1}(t,-)$ is its inverse
- ▶ Hard to invert without. For any PPT inverter \mathcal{A} we have that $\mathcal{A}(1^{\lambda}, s, F(s, x))$ outputs x with negligible probability.

Example of Trapdoor

RSA Encryption! In trapdoor form:

$$\begin{array}{ll} S(1^{\lambda}) & F(s,x) \\ \hline \text{Select primes } p,q,N\coloneqq pq & \mathbf{return}\ x^e \mod N \\ \text{Select } e \text{ s.t. } \gcd(e,\phi(n))=1 & F^{-1}(t,y) \\ d\coloneqq e^{-1} \mod \phi(n) & \mathbf{return}\ y^c \mod N \\ s\coloneqq (N,e) \\ t\coloneqq (s,d) \\ \mathbf{return}\ (s,t) & \end{array}$$

Correctness follows since $x^{ed}=x^1=x$ and hardness to invert is almost exactly the RSA assumption. Similar scheme from Pailler cryptosystem.

Lossy Trapdoors

Informally, you either get an injective trapdoor or a 'lossy' function, and *cannot tell which is which*

Definition

An (n, k)-lossy trapdoor function consists of three PPT algorithms (S, F, F^{-1}) . We denote $S_{inj}(-) \triangleq S(-, 0)$ and $S_{lossy}(-) \triangleq S(-, 1)$.

- ▶ Outputs of S_{inj} are easy to compute and easy to invert with trapdoor. $S_{inj}(1^{\lambda}) \rightarrow (s,t)$ s.t. that F(s,-), $F^{-1}(t,-)$ are functionally as in the trapdoor case
- ▶ Outputs of S_{lossy} are easy to compute. $S_{lossy}(1^{\lambda}) \to (s, \bot)$ s.t. F(s, -) is a function on $\{0, 1\}^n$ with image size at most 2^{n-k} .
- ▶ The description output of $S_{inj}(1^{\lambda})$ and $S_{lossy}(1^{\lambda})$ are computationally indistinguishable.

Subtleties

- The definition really relates to a collection of lossy trapdoor functions.
- ▶ $k \triangleq k(\lambda) = \text{poly}(\lambda) \le n$ is a parameter that represents how 'lossy' the collection is.
- ▶ We also write $r \triangleq n k = \mathsf{poly}(\lambda)$ as the *residual leakage*.
- ightharpoonup No hardness requirement on inverting outputs of S_{inj}
- Requirements are too strict in lattices, leads to almost-always lossy functions.

All-But-One TDFs

Intuition: You have a family of functions, most of them are trapdoors, one is not. It is very hard to tell them apart.

Definition

An (n,k)-ABO TDF is a triple of PPT algorithms S,F,F^{-1} such that:

- $ightharpoonup S(1^{\lambda},b^*)
 ightarrow (s,t)$ as before
- For any $b \neq b^*$, F(s,b,-), $F^{-1}(t,b,-)$ are as in the previous definition.
- ▶ $F(s, b^*, -)$ is a lossy function as before
- For any b,b' the first outputs of $S(1^{\lambda},b)$, $S(1^{\lambda},b')$ are computationally indistinguishable.

$LTDF \implies TDF$

- lacktriangle Completeness: Use the injective functions generated by S_{inj} .
- ▶ Soundness: We cannot (information theoretically) invert the lossy branch, so if we could invert the injective trapdoors we could distinguish outputs of S_{inj} , S_{lossy} , contradicting LTDF.
- lacktriangle Formally, let ${\mathcal A}$ be an inverter. We build ${\mathcal D}$

$$\frac{\mathcal{D}^{\mathcal{A}}(s)}{x \leftarrow \$ \{0,1\}^n}
y = F(s,x)
x' = \mathcal{A}(s,y)
\mathbf{return} \ x = x'$$

If $s \leftarrow S_{inj}(1^{\lambda})$ then it succeeds nonneglibly, while otherwise it will fail

Realizations

We can realize LTDF from any encryption scheme that is:

- Additively Homomorphic. This allows to encrypt matrices such as \mathbf{I}_n or $\mathbf{0}_n$ indistinguishably and to evaluate matrix vector products with an encrypted matrix.
- Secure to Reuse Randomness, so that we can use the same randomness with different keys securely.
- ▶ Isolated Randomness, so that it is only dependent on the input randomness and not on keys/messages.

We shows next a realization from the DDH assumption, but a similar technique can also be employed with lattices (based on ${\rm LWE})$ with some difficulties.

$DDH \implies LTDF$

Consider the following variant of the ElGamal cryptosystem, for $m \in \{0,1\}$, $r \in \mathbb{Z}_p$ as randomness.

$$\frac{S(1^{\lambda})}{\mathbb{G} \leftarrow \mathcal{G}(1^{\lambda})} \frac{E_h(m;r)}{\mathbf{return} \ (g^r, h^r g^m)}$$

$$z \leftarrow \mathbb{Z}_p \qquad D_h((c_1, c_2); r)$$

$$h \coloneqq g^z \qquad \mathbf{return} \ \log_g \left(\frac{c_2}{c_1^z}\right)$$

$$sk \coloneqq z$$

$$\mathbf{return} \ (pk, sk)$$

This scheme is semantically secure and it is additively homomorphic i.e.

$$E_h(m;r) \odot E_h(m';r') = E_h(m+m',r+r')$$
$$E_h(m;r)^x = E_h(mx;rx)$$

¹All operations done component wise

$DDH \implies LTDF$

We show how to use the previous scheme to encrypt a matrix $\mathbf{M}=(m_{i,j})\in\mathbb{Z}_p^{n\times n}$. Select n pk/sk pairs $h_i=g^{z_i}$ and n pieces of randomness r_i . Then the encryption is the matrix $\mathbf{C}=(c_{i,j})=(E_{h_j}(m_{i,j};r_i))$ with the z_j s as decryption keys. We can represent \mathbf{C} as the following two matrices:

$$\mathbf{C_1} = \begin{bmatrix} g^{r_1} \\ \vdots \\ g^{r_n} \end{bmatrix}, \ \mathbf{C_2} = \begin{bmatrix} h_1^{r_1} g^{m_{1,1}} & \dots & h_n^{r_1} g^{m_{1,n}} \\ \vdots & \ddots & \vdots \\ h_1^{r_n} g^{m_{n,1}} & \dots & h_n^{r_n} g^{m_{n,n}} \end{bmatrix}$$

Via n^2 hybrid games we can show that this encryption produces indistinguishable ciphertext under DDH. We denote this operation as $\mathrm{ME}(\mathbf{z},\mathbf{M})$ for \mathbf{z} the vector of private keys.

$DDH \Longrightarrow LTDF$

We build a LTDF from the previous scheme as it follows. Note that in the injective case we encrypt the identity matrix, while in the lossy case the all zero matrix.

$$\begin{array}{ll} S_{inj}(1^{\lambda}) & S_{lossy}(1^{\lambda}) & F_{ltdf}(\mathbf{C}, \mathbf{x}) \\ \mathbb{G} \leftarrow \mathcal{G}(1^{\lambda}) & \mathbb{G} \leftarrow \mathcal{G}(1^{\lambda}) & \mathbf{return} \ \mathbf{y} = \mathbf{x} \cdot \mathbf{C} \\ \mathbf{z} \leftarrow \$ \, \mathbb{Z}_p^n & \mathbf{z} \leftarrow \$ \, \mathbb{Z}_p^n \\ \mathbf{C} \leftarrow \mathrm{ME}(\mathbf{z}, \mathbf{I}_n) & \mathbf{C} \leftarrow \mathrm{ME}(\mathbf{z}, \mathbf{0}_n) & F_{ltdf}^{-1}(\mathbf{z}, \mathbf{y}) \\ \mathbf{return} \ (\mathbf{C}, \mathbf{z}) & \mathbf{return} \ (\mathbf{C}, \bot) & x_i = D_{z_i}(y_i) \\ & \mathbf{return} \ \mathbf{x} \end{array}$$

- ▶ \mathcal{G} is the group generation algorithms, it returns (G, p, g) where G is a cyclic group of prime order p with generator g. We assume DDH hardness w.r.t. \mathcal{G} .
- $ightharpoonup \mathbf{x}\mathbf{C}$ is computed by the homomorphic property. In fact, if $\mathbf{C} = \mathrm{ME}(\mathbf{z}, \mathbf{M})$ with randomness \mathbf{r} and $h_j = g^{z_j}$

$$y_j = \bigodot_{i=1}^n c_{i,j}^{x_i} = E_{h_j}((\mathbf{xM})_j; R)$$

for R randomness that depends only on ${\bf r}$ and ${\bf x}$.

- Note that if $\mathbf{M} = \mathbf{I}_n$ then $y_j = E_{h_i}(x_j; R)$
- ▶ If instead $\mathbf{M} = \mathbf{0}_n$ then $y_j = E_{h_j}(0; R)$

$\mathsf{DDH} \implies \mathsf{LTDF}$

Final Checks

Now, we just have to check that the LTDF conditions are satisfied. In particular, the above construction is $(n, n - \lg p)$ -lossy.

- ► The three algorithms are clearly PPT
- A quick thought shows that the injective conditions are met
- ▶ Indistinguishability follows from the indistinguishability of ME.
- ▶ Finally, for outputs generated by S_{lossy} we have that $y_i = E_{h_i}(0;R)$ for some $R \in \mathbb{Z}_p$ that depends on x. R can take at most p values, the residual leakage is at most $\lg p$ and so the loss is $k = n r \ge n \lg p$

Requirements

We will require some primitives². We note that our cryptosystem will have message space $\{0,1\}^{\ell}$.

- We have $\Sigma = (\mathrm{Gen}, \mathrm{Sign}, \mathrm{Vfy})$ a strongly unforgeable one-time signature scheme. We require that signatures are in $\{0,1\}^v$.
- ▶ $F = (S_{ltdf}, F_{ltdf}, F_{ltdf}^{-1})$ is an (n, k)-lossy trapdoor function.
- ▶ $G = (S_{abo}, F_{abo}, F_{abo}^{-1})$ is an (n, k')-ABO trapdoor function with branch space $\{0, 1\}^v$.
- ▶ \mathcal{H} is a collection of pairwise independent hash functions $\{0,1\}^n \to \{0,1\}^\ell$.

$\mathsf{LTDF} \implies \mathsf{CCA}$

Encryption Scheme

$\mathcal{G}(1^{\lambda})$	$\mathcal{E}(pk,m)$	$\mathcal{D}(sk,c)$
$(s,t) \leftarrow S_{inj}(1^{\lambda})$	$\overline{(vk, sk_{\sigma}) = \operatorname{Gen}(1^{\lambda})}$	$\mathbf{if} \neg \mathrm{Vfy}(vk, (c_i)_{i=1}^3, \sigma)$
$(s',t') \leftarrow S_{abo}(1^{\lambda},0^{v})$	$x \leftarrow \$ \{0,1\}^n$	$\mathbf{return} \perp$
$h \leftarrow \$ \mathcal{H}$	$c_1 = F_{ltdf}(s, x)$	fi
$pk \coloneqq (s, s', h)$	$c_2 = G_{abo}(s', vk, x)$	$x = F^{-1}(t, c_1)$
$sk \coloneqq (t, t', pk)$	$c_3 = m \oplus h(x)$	if $c_1 \neq F_{ltdf}(s, x) \vee$
return (pk, sk)	$\omega \leftarrow \operatorname{Sign}(sk_{\sigma}, (c_i)_{i=1}^3)$	$c_2 \neq G_{abo}(s', vk, x)$
	return $(vk, c_1, c_2, c_3, \sigma)$	$\mathbf{return} \perp$
		fi
		return $c_3 \oplus h(x)$

$\mathsf{LTDF} \implies \mathsf{CCA}$

Setup is to be called once at the beginning of the game, and the attacker is allowed a single query to EncO and oracle access to DecO . The attacker wins if it outputs b'=b.

$\operatorname{Setup}(\lambda)$	$\operatorname{EncO}(m_0, m_1)$	$DecO(c^*)$
$b \leftarrow \$ \{0,1\}$	$c \leftarrow \mathcal{E}(pk, m_b)$	$\mathbf{if} \ c^* \in \mathcal{T}_{enc}$
$\mathcal{T}_{enc}=\emptyset$	$\mathcal{T}_{enc} \coloneqq \mathcal{T}_{enc} \cup \{c\}$	$\mathbf{return} \perp$
$pk, sk \leftarrow \mathcal{G}(\lambda)$	$\mathbf{return}\ c$	fi
return pk		return $\mathcal{D}(sk, c^*)$

$\mathsf{LTDF} \implies \mathsf{CCA}$

Game Hops

We proceed by a sequence of games. We note that, since a single query is made to EncO we move the signature scheme generation in Setup and denote that verification key as vk^* .

- $G_1(\lambda)$: This is the original CCA Security Game
- $G_2(\lambda)$: In DecO if $vk = vk^*$ return \perp
- $\mathsf{G}_3(\lambda)$: In Setup choose the lossy branch of G to be vk^*
- $G_4(\lambda)$: In DecO find x using G's trapdoor rather than F's
- $G_5(\lambda)$: In Setup replace S_{inj} with S_{lossy}

The hops are as follows:

$$G_1 \approx_{\Sigma} G_2 \approx_{abo} G_3 \equiv G_4 \approx_{ltdf} G_5$$

Finally, an argument as in the TDF case shows that in G_5 even an unbounded attacker has only negligible success probability.

Things which I did not have time to show

- ► ABO ≡ LTDF (see extra)
- More efficient ABO construction from DDH
- LTDFs from LWE
- CPA from LTDFs
- SUF one time signatures from LTDFs
- UOWHFs, CRHFs from LTDFs
- OT from LTDFs

Related Work

- More Constructions of LTDFs
- All-But-N LTDFs
- ► All-But-Many LTDFs
- ► Identity Based LTDFs

Thank You!

Notation and Entropy

- \blacktriangleright λ is the security parameter, and we will abbreviate $n(\lambda) = \operatorname{poly}(\lambda)$ as simply n
- $lackbox{ } f(-)$ denotes the function taking $x\mapsto f(x)$
- ▶ Write $H_{\infty}(X)$ for the min-entropy of X. This corresponds to the optimal probability of guessing X.
- ▶ We let $H_{\infty}(X|Y)$ be the average min-entropy of X conditioned on Y. This corresponds to the optimal probability of guessing X knowing Y.
- We use the following lemma, if Y takes at most 2^r values then:

$$\widetilde{H}_{\infty}(X|Y) \ge H_{\infty}(X) - r$$

$LTDF \implies TDF$

Note that if s is generated by S_{inj} then with some non negligible probability we have that $\mathcal A$ succeeds and $\mathcal D$ succeeds whenever $\mathcal A$ does.

Instead, if s is generated by S_{lossy} even an unbounded adversary would have best possible probability given by $2^{-\widetilde{H}_{\infty}(x|s,F(s,x))}$. But note that F(s,-) takes at most 2^r values and so by the previous lemma $\widetilde{H}_{\infty}(x|s,F(s,x))\geq H_{\infty}(x|s)-r=n-(n-k)=k$. So the probability is bounded by 2^{-k} and as such is negligible. From the above it follows that $\mathcal D$ will win the distinguishing game with non negligible probability.

$ABO \equiv LTDF$

- ABOs and LTDFs are equivalent.
- ▶ ABO \implies LTDF. Take ABO on $\{0,1\}$ and evaluate always on one of the branches, but switch lossy branch on generation.
- ▶ LTDF \implies ABO. Generate an ABO on $\{0,1\}$ by having $s=(s_0,s_1)$ where one of the two is lossy, and evaluation by using s_b
- ▶ Finally, we can extend ABOs on $\{0,1\}$ to ABOs on $\{0,1\}^\ell$ at the cost of having residual leakage ℓr . The idea is, for lossy branch $b^* \in \{0,1\}^\ell$, generate ℓ ABOs each with the i-th having lossy branch b_i^* .

Pailler Cryptosystem

Composite Residuosity

- ▶ $S(1^{\lambda})$ generates N=pq as a product of large primes, select g suitably, s:=(N,g), t:=(p,q)
- ▶ F(s,x) splits $x = m_1 + Nm_2$ and returns $g^{m_1}m_2^N \mod N^2$
- $ightharpoonup F^{-1}(t,c)$ decrypts using the factorization to compute Carmichael function