

Obesity Risk Analysis and Prediction

TEAM:

Ricardo Gomez

Ricardo Luna

Elena Zamudio

CONTENTS

INTRO

STUDY CASE DATA SET

RESULTS

INTERPRETATION VISUALIZATION

PROJECT DEVELOPMENT

DATA PREPROCESSING
MODELING
MODEL EVALUATION
OPTIMIZATION

CONCLUSION

SUMMARY KEY TAKE AWAYS

INTRODUCTION

STUDY CASE

There are 1 in 8 people in the world were living with obesity.

5 billion deaths linked to:

- Cardiovascular diseases
- Diabetes
- Cancers
- Neurological disorders
- Chronic respiratory diseases
- Digestive disorders.

A COMPLEX DISEASE...

Overweight and obesity result from an imbalance of energy intake (diet) and energy expenditure (physical activity).

Multifactorial condition: There are Over 200 factors can influence being overweight or obese some of them are:

- Body Characteristics (age, genetics, height, hormonal)
- Eating Habits
- Physical condition (exercise, sleep)
- Psychological and social factors
- Environment
- Etiological factors (diseases, immobilization, medications)

INTRODUCTION

STUDY CASE

APPLYING ML FOR OBESITY STUDY

- Analyzes Complexity: Captures interactions between genetics, diet, activity, and environment.
- Reveals Patterns: Identifies hidden predictors and correlations.
- Personalizes Interventions: Tailors treatments to individual profiles.
- Improves Predictions: Enhances accuracy for risk and outcomes.
- Informs Decisions: Supports effective policy and clinical strategies.

RANDOM FOREST CLASSIFIER & OBESITY

- Handles Various Data: Works with both categorical and continuous variables.
- Manages Missing Data: Reliable even with incomplete datasets.
- Captures Complexity: Identifies interactions between diet, activity, and genetics.
- High Accuracy: Provides reliable classification of obesity risk.
- Identifies Key Features: Ranks important predictors of obesity.
- Prevents Overfitting: Ensures generalizable, robust predictions.

INTRODUCTION

DATA SET

Description

- 2019
- 2,111 records
- 16 feature variables:
- 1 response: Obesity Level
 Deducted
 - Underweight
 - Normal weight
 - Overweight I
 - Overweight Type II
 - Obesity Type I
 - Obesity Type II
 - Obesity Type III

Dataset for estimation
of obesity levels based
on eating habits and
physical condition in
individuals from
Colombia, Peru and
Mexico

MEXICO

COLOMBIA

kaggle

PERU

*Data collected by online survey

Demographics

- 1. Gender
- 2.**Age**
- 3. **Height**
- 4. Weight
- 5. Family History with Overweight Eating Habits
 - 1. FAVC: Frequent Consumption of High Caloric Food
- 2. FCVC: Frequency of Consumption of Vegetables (per week)
- 3. NCP: Number of meals
- 4. CAEC: Consumption of food between meals
- 5. Smoke or not

11. CH2O: Consumption of water daily

12. SCC: Calories consumption monitoring

13. CALC: Consumption of alcohol

Physical Condition

13. FAF: Physical activity frequency (times/week)

14. TUE: Time using technology devices (hr/day)

16. MTRANS: Transportation used

DATA PREPROCESSING

Transportation

Gender distribution

CHECK AND CLEAN DATA

No missing values

Gender 50/50.

Height around 1.6 and 1.8 m.

Most use public transportation.

Most non smoking.

Most with family history of overweight.

Most don't monitor calories.

Similar quantity of subject by BMI Classification

Caloric Consumption Monitoring

DATA PREPROCESSING

Loading and Preprocessing Loans Encoded Data

```
import findspark
findspark.init()
from pyspark.sql import SparkSession
import os
import pandas as pd

# Set environment variables
os.environ["JAVA_HOME"] = "C:/Program Files/Java/jdk-1.8"
os.environ["SPARK_HOME"] = "C:/Spark/spark-3.5.3-bin-hadoop3"

# Initialize Spark session
spark = SparkSession.builder.appName("ObesityData").getOrCreate()

# Load the new dataset
df_obesity = spark.read.csv("ObesityDataSet.csv", header=True, inferSchema=True)

# Show the first few rows of the PySpark DataFrame
df_obesity.show()
```

```
# Show the first few rows of the PySpark DataFrame

df_obesity.show()

# Collect the data from the PySpark DataFrame into a list of rows

data = df_obesity.collect()

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

data_dict = [row.asDict() for row in data]

# Convert the list of dictionaries into a Pandas DataFrame

df_obesity_pandas = pd.DataFrame(data_dict)

df_obesity_pandas.head()

# Gender| Age|Height|Weight|family_history_with_overweight|FAVC|FCVC|NCP| CAEC|SMOKE|CH20|SCC|FAF|TUE| CALC|

MTRANS| NObeyesdad|

# Your data few rows of the PySpark DataFrame into a list of rows data from some into a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionaries (each dictionary corresponds to a row)

# Convert the data into a list of dictionary corres
```


Register the DatoFrame as a temporary view
of_obesity.createOrReplaceTempView("obesity_data")

Count total number of rows in the DatoFrame with Spark SQ
query = """

SELECT COUNT(") AS total_rows

#ROOI obesity_data
"""

Execute the query and show the result

Execute the query and show the result spark.sql(query).show()

|total_rows|

DATA PREPROCESSING

SCALING NUMERICAL DATA

Scale the numerical features obesity_data_scaled = StandardScaler().fit_transform(X[["Age","Height","Weight","FCVC","NCP","CH20","FAF","TUE"]])
<pre># Create a DataFrame with the scaled data df_obesity_transformed = pd.DataFrame(obesity_data_scaled, columns=["Age","Height","Weight","FCVC","NCP","CH20","FAF","TUE"])</pre>
Show the scaled data df_obesity_transformed.head()

	Age	Height	Weight	FCVC	NCP	CH2O	FAF	TUE
0	-0.522124	-0.875589	-0.862558	-0.785019	0.404153	-0.013073	-1.188039	0.561997
1	-0.522124	-1.947599	-1.168077	1.088342	0.404153	1.618759	2.339750	-1.080625
2	-0.206889	1.054029	-0.366090	-0.785019	0.404153	-0.013073	1.163820	0.561997
3	0.423582	1.054029	0.015808	1.088342	0.404153	-0.013073	1.163820	-1.080625
4	-0.364507	0.839627	0.122740	-0.785019	-2 167023	-0.013073	-1 188030	-1.080625

+ CONCATENATE

GOT DUMMIES

CATEGORICAL AND BOOLEAN

FOR

#One-hot encode categorical data X = pd.get dummies(X)

	Age	Height	Weight	FCVC	NCP	CH2O	FAF	TUE	Gender_Female	Gender_Male	 SCC_yes	CALC_Always	${\sf CALC_Frequently}$	CAL
0	21.0	1.62	64.0	2.0	3.0	2.0	0.0	1.0	True	False	 False	False	False	
1	21.0	1.52	56.0	3.0	3.0	3.0	3.0	0.0	True	False	 True	False	False	
2	23.0	1.80	77.0	2.0	3.0	2.0	2.0	1.0	False	True	 False	False	True	
3	27.0	1.80	87.0	3.0	3.0	2.0	2.0	0.0	False	True	 False	False	True	
4	22.0	1.78	89.8	2.0	1.0	2.0	0.0	0.0	False	True	 False	False	False	

5 rows × 31 columns

PROCESSED DATAFRAME

MODELING

SPLIT DATAFRAME INTO TRAINING AND TESTING SETS

GENERATE PREDICTIONS
TO TEST MODEL

```
# Splitting into Train and Test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=78)
```

Fitting the Random Forest Model

```
# Create a random forest classifier
rf_model = RandomForestClassifier(n_estimators=500, random_state=78)
```

```
# Fitting the model
rf_model = rf_model.fit(X_train, y_train)
```

Making Predictions Using the Random Forest Model

```
# Making predictions using the testing data
predictions = rf_model.predict(X_test)
```

RESULTS

MODEL EVALUATION

Random Forest model

• Performance Metrics:

Accuracy: 93.56%

• Strongest Class:

Obesity Type III (100% accuracy)

Average F1-Score: 94%

• Confusion Matrix:

Correct predictions dominate diagonal.

Misclassifications are minimal, showing high reliability.

	Predicted 0	Predicted 1	Predicted 2	Predicted	3 Predict	ted 4	Predicted 5	Predicted 6
Actual 0	67	3	0		0	0	0	0
Actual 1	3	64	0		0	0	1	1
Actual 2	0	2	92		0	0	0	4
Actual 3	0	0	0	(59	0	0	0
Actual 4	0	0	0		0	72	0	0
Actual 5	0	7	1		0	0	61	4
Actual 6	0	2	1		1	0	4	69
		935606060606	60606					
Classific	ation Repo	precision	recall	f1-score	support			
Insuffici	ent_Weight	0.96	0.96	0.96	70			
Nor	mal_Weight	0.82	0.93	0.87	69			
0bes	ity_Type_I	0.98	0.94	0.96	98			
Obesi	ty_Type_II	0.99	1.00	0.99	69			
Obesit	y_Type_III	1.00	1.00	1.00	72			
Overweig	ht_Level_I	0.92	0.84	0.88	73			
Overweigh	t_Level_II	0.88	0.90	0.89	77			
	accuracy			0.94	528			
	macro avg	0.94	0.94	0.94	528			
we	ighted avg	0.94	0.94	0.94	528			

RESULTS

INTERPRETATION

Random Forest model

Number of meals is relevant

Liters of water per day is relevant

Time spent with electronic devices is relevant

Physical Activity Frequency is relevant

Height is relevant

Weight is relevant

Age is relevant

Most use public transportation.

= not relevant

Most non smoking.

= not relevant

Most with family history of overweight.

= relevant

= not relevant

= partialy not relevant

OPTIMIZATION

Random Forest model

- 2 Iterations for optimization:
- Different quantity of estimators
 - 1,000 first optimization
 - 500 second optimization
- Non relevant variables removed:
 - First optimization SCC, FAVC
 - Second optimization SMOKE
- Accuracy Results:
 - 94.12% (+0.5% increase)
 - 93.76% (-0.3% decrease)

First Optimization

Accuracy Score : 0.94128787878788 Classification Report recall f1-score precision support 0.96 0.96 Insufficient Weight 0.97 Normal Weight 0.84 0.88 0.86 0.98 0.96 0.97 Obesity_Type_I 0.99 Obesity Type II 0.99 1.00 Obesity Type III 1.00 1.00 1.00 Overweight Level I 0.88 0.88 0.88 Overweight_Level_II 0.93 0.91 0.92 0.94 528 accuracy 0.94 528 0.94 0.94 macro avg 0.94 528 weighted avg

Second Optimization

Accuracy Score : 0.9375 Classification Report										
	precision	recall	f1-score	support						
Insufficient_Weight	0.93	0.97	0.95	70						
Normal_Weight	0.86	0.86	0.86	69						
Obesity_Type_I	0.98	0.94	0.96	98						
Obesity_Type_II	0.97	1.00	0.99	69						
Obesity_Type_III	1.00	1.00	1.00	72						
Overweight_Level_I	0.90	0.86	0.88	73						
Overweight_Level_II	0.91	0.94	0.92	77						
accuracy			0.94	528						
macro avg	0.94	0.94	0.94	528						
weighted avg	0.94	0.94	0.94	528						

RESULTS SUMARY

Key Components

• Data Preprocessing:

- 1. Handled missing values.
- 2. Converted categorical data into numerical formats for compatibility with machine learning algorithms.

• Exploratory Data Analysis (EDA):

- 1. Understand the dataset, identify patterns, and uncover relationships between features influencing obesity risk.
- 2. Conducted statistical analysis and visualizations using Python libraries like matplotlib and seaborn.

• Machine Learning:

- 1. Implemented a Random Forest classifier to predict obesity levels.
- 2. Achieved 93.56% accuracy, with strong precision (~92%), recall (~91%), and F1-score (~91.5%).
- 3. Precision, Recall, and F1-Score: All above 91%, indicating robust and reliable classification.

* Accuracy: ~93%

* Precision: ~92%

* Recall: ~91%

* F1-Score: ~91.5

CONCLUSION

This project demonstrated the effective use of machine learning to predict obesity levels, **achieving a high accuracy of 94.12%** through a Random Forest classifier. The analysis identified weight, physical activity, meal frequency, and dietary habits as the most significant factors influencing obesity risk.

Exploratory Data Analysis revealed actionable insights, such as the importance of increased vegetable intake and regular exercise in reducing obesity risk. Visualizations created with Tableau enhanced understanding and presented key findings in an accessible format.

Overall, this project highlights the critical role of data analysis in addressing health challenges and provides valuable insights for promoting healthier lifestyles.

CONCLUSION CONCLUSION

Random Forest model

- Surprised about the high accuracy of the model.
- Data set could be a little skewed in certain variables like most non-smoking, most public transportation, most with relatives with history of overweight.
- Optimization process is complex.
- Surprised about how certain actions do not affect overweight like counting calories, alcohol consumption.
- Time spent with techonological devices do affect in being overweight!