Profs. Luciana Buriol, Marcus Ritt

Nome: Cartão:

# Prova 2

Dicas gerais:

- Leia todas as questões antes de começar e pergunte em caso de dúvidas.
- Responda a cada questão, ainda que a resposta não esteja completa.
- Em questões de formulação: explique o significado de todas variáveis e restrições.

## Questão 1 (Formulação, 3pt)

Dado um grafo (não-direcionado) G=(V,A) queremos encontrar uma função bijetiva  $f:V\to \{1,2,\ldots,|V|\}$  tal que a distância total  $\sum_{\{u,v\}\in A}|f(u)-f(v)|$  entre os vértices incidentes a cada aresta seja minimizado. Formule um programa inteiro que determina a menor distância total. *Exemplo:* Na instância



o mapeamento  $\{a\mapsto 1, b\mapsto 3, c\mapsto 2, d\mapsto 4\}$  possui distância total 8, enquanto o mapeamento ótimo  $\{a\mapsto 1, b\mapsto 2, c\mapsto 3, d\mapsto 4\}$  possui distância total 6.

## Questão 2 (Dualidade, 2pt)

Considere o problema de cobertura de vértices: dado um grafo não-direcionado pesado G=(V,A,p) com pesos  $p_v$  para  $v\in V$ , queremos encontrar um subconjunto  $I\subseteq V$  com a menor soma dos pesos dos vértices deste subconjunto de forma que toda aresta do grafo contenha pelo menos um vértice de I. O problema pode ser formulado como

$$\begin{aligned} & \mathbf{min.} & & \sum_{v \in V} x_v p_v, \\ & \mathbf{s. \ a} & & x_u + x_v \geq 1, \\ & & & x_v \in \{0, 1\}. \end{aligned} \qquad \forall \{u, v\} \in A,$$

Exemplo: Considere a instância



com valores  $p_a=1, p_b=3, p_c=3, p_d=5$  e  $p_e=2$ . A solução ótima  $I=\{a,c,e\}$  tem custo 6.

- a) Identifique claramente a matriz A, e vetores b e c do sistema relativo à instância fornecida.
- b) Apresente o sistema dual do sistema apresentado no item a) aplicado à instância fornecida.

# Questão 3 (Resolução, 2.5pt)

Considere a formulação

$$\begin{array}{ll} \mathbf{max.} & -x_1 - 3x_2 - x_3 \\ \mathbf{s. \ a} & 2x_1 - 5x_2 - x_3 \leq -5 \\ & 2x_1 - x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- a) O sistema é dualmente viável? Justifique a sua resposta.
- b) Execute um pivô do método dual simplex no dicionário correspondente a este sistema. O dicionário resultante é ótimo?

#### Questão 4 (Analise de sensibilidade, 2.5pt)

Considere o sistema

$$\begin{array}{ll} \mathbf{max} & x_1 - 2x_2 - 3x_3 \\ \mathbf{s.a} & 2x_1 + 3x_2 - 2x_3 \leq -1 \\ & -x_1 - 2x_2 - 2x_3 \leq -2 \\ & 3x_1 + x_2 \leq 0 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

e seu dicionário ótimo

- a) Qual faixa de valores que  $c_1$  (o coeficiente da variável  $x_1$  na função objetivo) pode variar, de forma que os valores das variáveis  $x_1$ ,  $x_2$  e  $x_3$  da solução ótima não mudem, ou seja, o dicionário atualizado continue ótimo?
- b) Qual seria a solução ótima (valor de função objetivo e de variáveis) caso  $c_1$  mudar para -1 e  $c_2$  mudar para 1?
- c) Qual seria a solução ótima (valor de função objetivo e de variáveis) caso  $b_2$  mudar para 1?

### Dica:

Após a solução de um sistema linear, temos o dicionário ótimo

$$z = z^* - (y_N^*)^t x_N$$
$$x_B = x_B^* - B^{-1} N x_N$$

com

$$x_B^* = B^{-1}b$$
  

$$y_N^* = (B^{-1}N)^t c_B - c_N$$
  

$$z^* = c_B^t B^{-1}b$$