PCT

D INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICA PUBLISHED UNDER THE PATENT COOPE

(51) International Patent Classification 7:

C05G

A2

(11) International Publication Number:

WO 00/46169

(43) International Publication Date:

10 August 2000 (10.08.00)

ION TREATY (PCT)

(21) International Application Number:

PCT/GB00/00367

(22) International Filing Date:

7 February 2000 (07.02.00)

(30) Priority Data:

9902665.0

5 February 1999 (05.02.99)

GB

(71) Applicant (for all designated States except US): MANDOPS (UK) LIMITED [GB/GB]; 36 Leigh Road, Eastleigh, Hampshire SO50 9DT (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Richard, Henry [GB/GB]; 15 Chaffinch Gardens, Colchester, Essex CO4 3FH (GB). HARDING, Peter [GB/GB]; 6 Cutbush Lane, Bitterne, Southampton, Hampshire SO18 5QR (GB).

(74) Agent: MALLALIEU, Catherine, Louise; D. Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB). (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: FERTILISER

(57) Abstract

The present invention provides a liquid fertiliser comprising a mixture of a salt of phosphorous acid together with either a thiosulphate such as ammonium or potassium thiosulphate and/or a salt of salicylic acid or salicyle amide. The use of this combination as a foliar spray, soil drench or irrigation component produces a greater fertiliser effect (on plant vigour and growth) and greater resistance to or control of parasitic fungal diseases, than each of the components applied individually or any combination of just two components.

10

15

20

25

30

l Fertiliser

The present invention relates to novel compositions having fertilising and anti-fungal effects, to processes for their preparation, and to methods of fertilising plants and controlling fungi using them.

Phosphorus is one of the essential major elements required by plants and it is usually supplied to plants in the form of phosphate and/or polyphosphate. Phosphates are the salts of phosphoric acid (having the formula H₃PO₄ and molecular weight of 98). In recent years, it has been shown that plants can obtain phosphorus from phosphonates (sometimes also referred to as phosphites) which are the salts (organic or inorganic) of phosphonic acid (also referred to as phosphorous acid) (having the formula H₃PO₃ and molecular weight of 82). See, for example, US Patent Nos. 5,514,200 & 5,830,255 to Lovatt; US Patent No. 5,707,418 to Hsu; US Patent No. 5,800,837 to Taylor. These describe formulations containing phosphorous acid or phosphonates suitable as fertilisers for plants. It has also been shown that phosphonate compounds are useful as fungicides, especially where the fungal organisms are phycomycetes or oomycetes. See, for example, US Patent Nos. 4,075,324 & 4,119,724 to Thizy: US Patent No. 4,139,616 to Lacroix et al; US Patent Nos. 4,698,334, 4,806,445 & 5,169,646 to Horriere et al; US Patent Nos 4,935,410 & 5,070,083 to Bartlet; US Patent No. 5,736,164 to Taylor. These describe formulations, containing phosphorous acid or phosphonates, suitable as fungicides for plants.

Ammonium thiosulphate and potassium thiosulphate, either alone or mixed with other liquid fertiliser components, have been used for many years as fertilisers. See literature on "Thio-sul"® and KTS® sulphur fertilisers produced by Tessenderlo Kerley. See also UK Patent No. GB 2,259,912 to Sampson, which describes the use of ammonium thiosulphate in a plant growth stimulator.

WPI Abstract Accession No. 91-249421 discloses a cut flower preserving agent comprising a water-soluble silver salt (100 pts. wt.) and thiosulphate (300-2500 pts. wt.) to which a phosphite (30-300 pts. wt.) is added as a stabilising agent.

10

15

20

25

30

Some of the problems with the prior art are that the fertilising effect of phosphonate is less than might be expected from the amount of phosphorus applied, and the fungicidal effect is fairly limited in terms of the types of pathogen controlled. This is due to a complex mode of action involving a combination of some fungistatic action and natural plant defences coming into play (See Guest D I & Grant B R (1991) - The Complex action of phosphonates in plants - Biological Reviews 66, 159-187). The use of phosphonate, whilst improving the resistance of plants to infections of downy mildew (eg Plasmopora) and Phytophthora diseases, does tend to increase the risk of ascomycete (eg Erysiphe) infections. The present invention seeks to provide a solution to these problems.

According to one aspect of the present invention there is provided a fertiliser composition comprising at least one phosphonate and at least one thiosulphate.

According to another aspect of the present invention there is provided a fertiliser composition comprising at least one phosphonate and at least one salicylic acid, homologue, derivative, or salt thereof.

According to yet another aspect of the present invention there is provided a fertiliser composition comprising at least one thiosulphate and at least one salicylic acid, homologue, derivative, or salt thereof.

According to a further aspect of the present invention there is provided a fertiliser composition comprising at least one thiosulphate, at least one phosphonate and at least one salicylic acid, homologue, derivative, or salt thereof.

The present invention comprises using a mixture of a phosphonate together with either a thiosulphate, or at least one salicylic acid, homologue, derivative, or salt thereof. The use of this combination shows a synergistic effect, in that the combination of phosphonate with thiosulphate or salicylic acid, homologues, salts or derivatives thereof produces a greater fertiliser effect and fungicidal effect than the individual components used separately. There may be

10

15

20

25

30

3

an even greater effect if all three components (ie phosphonate, thiosulphate and salicylic acid, homologue, salt or derivative thereof) were used together. The combination of thiosulphate with a salicylic acid, homologue, salt or derivative thereof, in the absence of phosphonate, also produces a fertiliser effect and fungicidal effect.

Fertilisers based on the present invention provide a greater growth effective response than phosphonates or thiosulphates alone and the degree of fungicidal protection or resistance is broader than that achieved with phosphonates or thiosulphates alone. Plants treated with the present invention suffer less from phycomycete diseases (for example *phytophthoras* and downy mildews) than those treated with for example phosphonate alone and are also less prone to other parasitic fungi such as powdery mildews. Thus the present invention provides a means for applying a single product to plants which is an effective fungicide as well as an effective fertiliser.

Another advantage of the present invention is that the formulation is very storage stable, for example tests on mixtures of potassium phosphonate and ammonium thiosulphate stored for over one year have shown that there is no oxidation of the phosphonate to phosphate and the stored material shows no signs of cloudiness or precipitation. The use of further organic acids as buffers (as in required in US Patent Nos. 5,514,200 & 5,830,255) is also not required to achieve stable solutions.

By "phosphonate" we mean a salt of phosphonic acid (H₃PO₃). Phosphonates contain the trivalent ≡PO₃ radical. For the avoidance of doubt, phosphonic acid is sometimes referred to as phosphorous acid and its salts as phosphites. Mixtures of phosphonates may be employed.

The phosphonate may be any metal ion or other cation which forms such a salt. As phosphonic acid has a P-H bond it forms a mono and di series of salts. Both mono and di salts and mixtures thereof may be used in the present invention. Preferably the phosphonate is an ammonium phosphonate or alkali phosphonate. Amongst the alkali phosphonates, sodium or potassium

10

15

20

25

phosphonate are preferred. Potassium phosphonate is particularly preferred, in the form of mono- and/or di-potassium phosphonate (KH₃PO₃, K₂HPO₃ respectively).

Phosphonates may be produced by the neutralisation of phosphonic acid by an alkali. The present invention also encompasses the use of phosphonic acid which is subsequently converted to its phosphonate; this conversion may take place in situ or ex situ. When using, for example, potassium hydroxide for the neutralisation, depending on the molar ratio of potassium hydroxide to phosphorous acid, the phosphonate solution will contain varied amounts of dipotassium phosphonate, mono-potassium phosphonate and un-reacted phosphorous acid. We have found that an approximately 42% w/w solution, having a pH of between 6.7 and 7.3 and containing approximately equal amounts of mono- and di-potassium phosphonate is a clear, colourless and very stable starting material for our present invention.

The thiosulphate may be any suitable salt of a metal or other cation. Preferably the thiosulphate is ammonium, sodium or potassium thiosulphate or a mixture thereof. More preferably the thiosulphate is in the form of either ammonium or potassium thiosulphate $((NH_4)_2S_2O_3 \text{ or } K_2S_2O_3)$.

The most common form of thiosulphate is ammonium thiosulphate, and this is readily available commercially as a 60% w/w solution, with a pH of about 7.5 and a specific gravity of about 1.32. If a higher proportion of potassium is required in the final foliar fertiliser, the ammonium thiosulphate can be substituted, either partly or wholly, with potassium thiosulphate.

The present invention includes functional homologues and derivatives of salicylic acid and its salts. By this we mean that the functional homologue or derivative should be capable of providing a fertiliser effect and/or antifungal effect. Examples of such derivatives of salicylic acid include salicylamide or a salt thereof, and esters.

10

15

20

25

30

Examples of homologues of salicylic acid include benzoic acid or a salt or derivative thereof, such as an ester. Examples of benzoic acid compounds which may be used in the present invention may be found in WO99/25191.

The salicylic acid is preferably in the form of its potassium salicylate salt or salicylamide - C₇H₅KO₃ or C₇H₇NO₂.

Salicylic acid itself has low solubility, but inorganic salts of salicylic acid, such as sodium or potassium salicylate are readily soluble. When salicylamide is used, rather than salicylic acid or a salicylate, the addition of a few drops of alkali assists in its solution, by forming for example sodium or potassium salicylamide. Salicylamide also dissolves more readily in the thiosulphate solution, the presence of small amounts of alkali or ammonia in the thiosulphate solution assisting in the solubilisation.

The preparation of the compounds used in the present invention is well known in the art. The compounds may be prepared in situ or ex situ.

In one embodiment, the composition of the present invention does not include a water-soluble silver salt. In another embodiment, if the composition contains a solution of 100 parts by weight water-soluble silver salt, and 300-2500 parts by weight thiosulphate, then the amount of phosphonate is other than 30 to 300 parts by weight

The compositions of the present invention are useful as fertiliser, particularly foliar fertilisers. More particularly the compositions of the present invention increase plant growth compared to the individual components alone, stimulate growth in plants, plant vigour and/or effect crop yield, for example by reducing tuber blight.

The compositions of the present invention also have an antifungal effect. This may be a fungicidal or fungistatic effect. The compositions of the present invention may have activity against parasitic fungi. The compositions may have activity against phycomycete diseases such as *phytophthoras* and downy mildews, for example, *Plasmopora*; and/or ascomycetes such as, for example, *Erysiphe*.

10

15

25

30

8

6

In one particularly preferred embodiment the composition further comprises further a plant growth regulator. Preferably the plant growth regulator is chlormequat.

In order to apply the composition to the plant or environs of the plant, the composition may be used as a concentrate or more usually is formulated into a composition which includes an effective amount of the composition of the present invention together with a suitable inert diluent, carrier material and/or surface active agent. Preferably the composition is in the form of an aqueous solution which may be prepared from the concentrate. By effective amount we mean that the composition (and/or its individual components) provides a fertilising and/or antifungal effect. Preferably an effective amount of the components is a concentration of up to about 4M phosphonate, up to about 5M thiosulphate and/or up to about 0.8M salicylate. Thus, in one embodiment the concentrate may comprise up to about 10M of the components. The concentrate formulation may for example be diluted at ratios of concentrate to water of about 1:40 to 1:600, and generally is formulated to have pH of about 6.5 to 8.5. At a 1:40 dilution, a concentrate of about 10M would give rise to an application concentrate of up to about 0.25M.

The rate and timing of application will depend on a number of factors 20 known to those skilled in the art, such as the type of species etc.

The composition is generally applied in an amount of from 0.01 to 10kg per heactare, preferably 0.1 to 6kg per hectare. Preferably the phosphonate is applied at 150 g/ha to 2 kg/ha. Preferably the thiosulphate is applied at 250 g/ha to 6 kg/ha. Preferably the salicylic acid, a homologue, derivative, or salt thereof is applied at 1 g/ha to 100 g/ha.

In one preferred embodiment, a fertiliser composition according to the present invention comprises about 150 g/l phosphonate, about 275 g/l thiosulphate and/or about 10 g/l salicylamide. Preferably the phosphonate comprises about 75 g/l mono-potassium phosphonate and about 75 g/l dipotassium phosphonate.

10

15

20

25

30

7

As well as varying amounts of each compound to be blended together, as is common with many foliar fertilisers, it is also possible to combine other fertilising elements, such as but not limited to, iron, copper, boron and molybdenum (often known as micronutrients) in the final solution. These may be added as soluble inorganic compounds (eg sodium borate or sodium molybdate) or as chelates (eg copper EDTA) or other metal complexes.

The compositions of the present invention can be applied to the soil, plant, seed, or other area to be protected. Preferably the present invention is applied to the foliage of plants. The composition may be applied in the form of dusting powders, wettable powders, granules (slow or fast release), emulsion or suspension concentrates, liquid solutions, emulsions, seed dressings, or controlled release formulations such as microencapsulated granules or suspensions, soil drench, irrigation component, or preferably a foliar spray.

Dusting powders are formulated by mixing the active ingredient with one or more finely divided solid carriers and/or diluents, for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, daiatomaceous earths, calcium phospates, calcium and magnesium carbonates, sulfur, lime, flours, talc and other organic and inorganic solid carriers.

Granules are formed either by absorbing the active ingredient in a porous granular material for example pumice, attapulgite clays, fuller's earth, kieselguhr, diatomaceous earths, ground corn cobs, and the like, or on to hard core materials such as sands, silicates, mineral carbonates, sulfates, phosphates, or the like. Agents which are commonly used to aid in impregnation, binding or coating the solid carriers include aliphatic and aromatic petroleum solvents, alcohols, polyvinyl acetates, polyvinyl alcohols, ethers, ketones, esters, dextrins, sugars and vegetable oils, with the active ingredient. Other additives may also be included, such as emulsifying agents, wetting agents or dispersing agents.

Microencapsulated formulations (microcapsule suspensions CS) or other controlled release formulations may also be used, particularly for slow release over a period of time, and for seed treatment.

15

20

25

Alternatively the compositions may be in the form of liquid preparations to be used as dips, irrigation additives or sprays, which are generally aqueous dispersions or emulsions of the active ingredient in the presence of one or more known wetting agents, dispersing agents or emulsifying agents (surface active agents). The compositions which are to be used in the form of aqueous dispersions or emulsions are generally supplied in the form of an emulsifiable concentrate (EC) or a suspension concentrate (SC) containing a high proportion of the active ingredient or ingredients. An EC is an homogeneous liquid composition, usually containing the active ingredient dissolved in a substantially non-volatile organic solvent. An SC is a fine particle size dispersion of solid active ingredient in water. To apply the concentrates they are diluted in water and are usually applied by means of a spray to the area to be treated.

Suitable liquid solvents for ECs include methyl ketone, methyl isobutyl ketone, cyclohexanone, xylenes, toluene, chlorobenzene, paraffins, kerosene, white oil, alcohols (for example, butanol), methylnaphthalene, trimethylbenzene, trichloroethylene, N-methyl-2-pyrrolidone and tetrahydrofurfuryl alcohol (THFA).

These concentrates are often required to withstand storage for prolonged periods and after such storage, to be capable of dilution with water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. The concentrates may contain 1-85% by weight of the active ingredient or ingredients. When diluted to form aqueous preparations such preparations may contain varying amounts of the active ingredient depending upon the purpose for which they are to be used.

The composition may also be formulated as powders (dry seed treatment DS or water dispersible powder WS) or liquids (flowable concentrate FS, liquid seed treatment LS), or microcapsule suspensions CS for use in seed treatments. The formulations can be applied to the seed by standard techniques and through conventional seed treaters. In use the compositions are applied to the plants, to

10

15

20

25

the locus of the plants, by any of the known means of applying fertiliser compositions, for example, by dusting, spraying, or incorporation of granules.

When the final solution is to be applied to plants which, because of their hairy or waxy surface, may be difficult to wet, it may also be advantageous to include other additives, commonly known in the agrochemical industry, such as surfactants, wetting agents, spreaders and stickers. (Examples of wetting agents include silicone surfactants, nonionic surfactants such as alkyl ethoxylates, anionic surfactants such as phosphate ester salts and amphoteric or cationic surfactants such as fatty acid amido alkyl betaines).

As indicated above, the compounds of the invention may be the sole active ingredient of the composition or they may be admixed with one or more additional active ingredients such as nematicides, insecticides, synergists, herbicides, additional fungicides, additional fertilisers or plant growth regulators where appropriate.

As indicated above, the fertilisers produced according to this present invention are usually applied to the foliage of plants but may also be applied to the soil or added to the irrigation water. The fertilisers may be used advantageously on many types of agricultural and horticultural crops, including but not limited to, cereals, legumes, brassicas, cucurbits, root vegetables, sugar beet, grapes, citrus & other fruit trees and soft fruits. More particularly, crops that will benefit from the fertiliser include, but are not limited to, peas, oil seed rape, carrots, spring barley, avocado, citrus, mango, coffee, deciduous tree crops, grapes, strawberries and other berry crops, soybean, broad beans and other commercial beans, corn, tomato, cucurbitis and other cucumis species, lettuce, potato, sugar beets, peppers, sugar cane, hops, tobacco, pineapple, coconut palm and other commercial and ornamental palms, rubber and other ornamental plants.

Various further preferred features and embodiments of the invention will now be described by reference to the following non-limited Examples.

Example 1

Solution 1

An aqueous solution containing a total of 30% by weight of mono and dipotassium phosphonate in roughly equal proportions.

Solution 2

An aqueous solution containing 55% by weight of ammonium thiosulphate ("ATS").

Solution 3

An aqueous solution containing 20 grams per litre of potassium salicylamide.

Solution 4

15

20

An aqueous solution containing 75 g/L mono potassium phosphonate, 75 g/L di-potassium phosphonate, 275 g/L ammonium thiosulphate and 10 g/L potassium salicylamide.

These solutions were applied to lettuce plants, both alone and in combination, and the applications were repeated after a 10 day interval. There were five replicates of each treatment and the results are presented as means of the five replicates. Five plants were also left unsprayed as an untreated control to the other treatments. After eight, twelve, sixteen and twenty-one days, the plants were examined for disease.

Table 1. Powdery Mildew Score (0 - 9, where higher number equals greater degree of disease)

Treatment	D	ays after first spray	
(Applied initially and repeated 10			
days later)	·		
	8 days	12 days	16 days
Untreated	4.0	6.6	7.2
Solution 1 (1L/ha)	0.8	2.2	3.6
Solution 2 (1L/ha	1.0	1.2	2.4
Solution 3 (1L/ha)	1.6	3.2	4.2
Solution 1 (1L/ha) +	0.0	0.4	1.0
Solution 2 (1L/ha)			
Solution 1 (1L/ha) +	0.4	0.6	1.0
Solution 3 (1L/ha)			}
Solution 1 (1L/ha) +	0.8	0.6	0.6
Solution 2 (1L/ha) +			
Solution 3 (1L/ha)			

Table 1 shows the synergistic effect on disease levels achieved by adding Solutions 1 & 2 (phosphonate + ATS) and between Solutions 1 & 3 (phosphonate + salicylamide) and the further effect of using all three solutions together. Disease levels were reduced from a mean of 7.2 to a mean of 0.6

As well as assessing disease levels, the growth of the plants was assessed by measuring the mean plant diameters after 35 days growth and by measuring the mean above ground fresh and dry weights.

Table 2. Plant Growth after treatment with the example solutions

12

Treatment	Amount of	Plant	Above-Ground	Above-Ground
(Applied initially and	Rooting	Diameter	Fresh Weight	Dry Weight
repeated 10 days later)	(0-9, 0= least	(mm) -mean	(g) – mean	(g) – mean
	rooting) - mean			
Untreated	5.3	124	102.3	8.3
Solution 1 (1L/ha)	6.0	148	116.3	9.3
Solution 2 (1L/ha	5.3	160	109.0	8.7
Solution 3 (1L/ha)	4.7	150	104.7	8.5
Solution 1 (1L/ha) +	6.7	144	119.0	9.5
Solution 2 (1L/ha)				
Solution 1 (1L/ha) +	6.7	170	120.7	9.7
Solution 3 (1L/ha)				
Solution 1 (1L/ha) +	6.7	168	131.7	10.6
Solution 2 (1L/ha) +				
Solution 3 (1L/ha)				

Table 2 shows the synergistic effect on plant growth caused by adding Solutions 1 & 2 (phosphonate + ATS), Solutions 1 & 3 (phosphonate + salicylamide) and the further effect of using all three solutions together.

The abbreviations used in the following Examples A-E are:

A = phosphonate + thiosulphate

B = phosphonate + salicylate/salicylamide

5 C = thiosulphate + salicylate/salicylamide

D = thiosulphate + salicylate/salicylamide + phosphite

E = thiosulphate + salicylate + chlormequat

KP40 = 40% potassium phosphonate

10 KT47 = 47% potassium thiosulphate (w/v)

KS20 = 20% potassium salicylate (w/v)

CS8 = salicylamide (20g/l)

AT60 = 60% ammonium thiosulphate

PF723 = 55% ammonium thiosulphate

15

Examples A

Solution 1 = KP40 at 0.75 l/ha every 10 days

Solution 2 = PF723 at 1.0 l/ha every 10 days

20

Table A1

Percent Powdery Mildew - Lettuce

Treatment (Applied initially and repeated		Days After First Spray	
after a 10 day interval)	8 Days	12 Days	16 Days
Untreated	40	66	72
Solution 1 (1UHa)	8	22	36
Solution 2 (1L/Ha)	10	12	24
Solution 1 (1L/Ha) + Solution 2 (1L/Ha)	0	4	10

Table A2

Percent Powdery Mildew and Fertiliser Attributes – Sugar Beet

Treatment (Applied initially and repeated	Days After	First Spray	Above Ground Fresh Weight
after a 10 day interval)	+ 28 Days (x 1 Rate	+ 35 Days (x 1 Rate)	(g) - Mean (x 1 Rate)
Untreated	22	31	144.7
Solution 1	6	4	152.3
Solution 2	2	2	153.3
Solution 1 + Solution 2	0	0	154.3

Table A3

Fertiliser Attributes – Spring Barley

Treatment (Applied initially and repeated after a 10 day interval)	Plant Health 'Greenness' Score (0-9) + 35 Days (x 1 Rate)	Above Ground Fresh Weight (g) - Mean (x 1 Rate)	Above Ground Dry Weight (g) - Mean (x 1 Rate)	Amount of Above Ground Tissue (0-9) at Harvest (x 1 Rate)
Untreated	5.6	68.8	7.7	5.0
Solution1	5.6	67.0	7.4	5.3
Solution 2	5.4	68.3	7.2	5.3
Solution 1 + Solution 2	6.6	72.7	7.9	6.0

15

GRAPE TRIAL

Percent Powdery Mildew

Table A4

Treatment (Apolied initially			Days Aller First Spray	irst Spray		·
and repeated at 10 day intervals)	+ 16 Days	+ 20 Days	+ 24 Days	+ 28 Days	+ 32 Days	+ 36 Days
Untreated	7.3	9.3	11.3	14.0	14.0	14.7
KP40 @ 0.75 tha	5.3	2.9	8.0	11.3	10.7	10.7
PF723 @ 1.0 1/ha	2.7	7.3	7.3	8.0	6.7	6.7
KP40 @ 0.75 l/ha + PF723 @ 1.0 l/ha	1.3	5.3	6.0	6.0	5.3	5.3

LETTUCE TRIAL

Percent Powdery Mildew

Treatment (Applied initially and		Days After First Spray	
repeated at 10 day intervals)	+ 16 Days	+ 20 Days	+ 24 Days
Untreated	10.0	16.7	24.7
KP40 @ 0.75 l/ha	7.3	12.0	16.0
PF723 @ 1.0 l/ha	8.0	12.0	15.3
KP40 @ 0.75 l/ha + PF723 @ 1.0 l/ha	5.3	8.7	14.0

SUBSTITUTE SHEET (RULE 26)

Table A5

Table A6

Broad Bean - Fertiliser Attributes

(KP40 = 40% Potassium Phosphite; PF723 = 55% Ammonium Thiosulphate)

Treatment (2 Applications in total - every 15 days)	Above Ground Fresh Weight (g) - Mean	Above Ground Dry Weight (g) - Mean
Untreated	143.8	14.6
KP40 (5.0 l/ha) + PF723 (0.5 l/ha)	150.7	15.5
KP40 (3.0 l/ha) + PF723 (0.5 l/ha)	160.3	16.1
KP40 (5.0 l/ha) + PF723 (1.0 l/ha)	168.0	17.3
KP40 (3.0 l/ha) + PF723 (1.0 l/ha)	161.3	16.8

Table A7

Sugar Beet

Percent Powdery Mildew and Fertiliser Attributes

(KP40 = 40% Potassium Phosphite; AT60 = 60% Ammonium Thiosulphate)

Treatment (2 Applications in total -	Days After First Spray	First Spray	Root Fresh	Root Dry	Above Ground	Above Ground
every 15 days)	+ 24 Days	+ 28 Days	weignt (g) - Mean	Weight (g) - Mean	Fresh Weight (g) - Mean	Dry Weight (g) - Mean
Untreated	14	24	83.0	12.2	137.8	15.3
KP40 (0.375 l/ha) + AT60 (10.0 l/ha)	0	4	90.3	12.9	142.3	15.3
KP40 (0.75 l/ha) + AT60 (10.0 l/ha)	0	2	91.7	13.9	145.0	16.4
KP40 (0.375 I/ha) + AT60 (6.0 I/ha)	0	0	82.7	12.4	144.0	16.5
KP40 (0.75 l/ha) + AT60 (6.0 l/ha)	0	0	97.7	13.6	145.3	15.5
KP40 (3.75 l/ha) + AT60 (10.0 l/ha)	0	9	89.7	13.2	144.0	15.8
KP40 (2.5 I/ha) + AT60 (10.0 I/ha)	2	æ	89.7	14.0	143.3	15.4
KP40 (2.5 I/ha) + AT60 (6.0 I/ha)	0	4	98.0	13.9	146.7	16.1

Table A8

Sugar Beet

Percent Powdery Mildew and Fertiliser Attributes

(KP40 = 40% Potassium Phosphite; AT60 = 60% Ammonium Thiosulphate)

Treatment	Days After First Spray	First Spray	Root Fresh	Root Dry	Above Ground	Above Ground
every 15 days)	+ 24 Days	+ 28 Days	Weight (g) - Mean	Weight (g) - Mean	Fresh Weight (g) - Mean	Dry Weight (g) - Mean
Untreated	22.	28	109.7	13.3	144.7	14.7
KP40 (0.375 I/ha) + AT60 (10.0 I/ha)	0	2	110.3	13.2	149.7	15.5
KP40 (0.75 l/ha) + AT60 (10.0 l/ha)	0	2	118.7	13.8	147.7	15.1
KP40 (0.375 l/ha) + AT60 (6.0 l/ha)	0	9	117.7	13.6	151.3	15.0
KP40 (0.75 l/ha) + AT60 (6.0 l/ha)	2	2	113.7	13.7	150.7	15.2
KP40 (3.75 l/ha) + AT60 (10.0 l/ha)	0	0	119.0	14.2	150.7	15.0
KP40 (2.5 l/ha) + AT60 (10.0 l/ha)	2	0	117.3	14.7	148.7	15.0
KP40 (2.5 l/ha) + AT60 (6.0 l/ha)	2	2	119.7	14.0	154.3	15.6

Examples B

Solution 1 = KP40 at 0.75 l/ha

Solution 3 = CS8 at 1.0 l/ha

5

Table B1

Fertiliser Attributes – Strawberry

Treatment (Applied initially and repeated after a 10 day interval)	Plant Health 'Greenness' Score (0-9) + 28 Days (x 1 Rate)	Above Ground Fresh Weight (g) - Mean (x 1 Rate)	Above Ground Dry Weight (g) - Mean (x 1 Rate)
Untreated	4.8	50.8	5.0
Solution1	5.6	53.7	5.1
Solution 3	6.0	56.0	5.6
Solution 1 + Solution 3	6.4	63.0	6.2

Table B2

Fertiliser Attributes - Spring Barley

Treatment (Applied initially and repeated after a 10 day interval)	Above Ground Fresh Weight (g) - Mean (x 1 Rate)	Above Ground Dry Weight (g) - Mean (x 1 Rate)	Amount of Above Ground Tissue (0-9) (x 1 Rate)
Untreated	77.3	8.6	5.0
Solution 1	78.3	8.7	5.3
Solution 3	75.0	8.4	5.3
Solution 1 + Solution 3	81.7	9.7	5.7

Table B3

Percent Powdery Mildew - Sugar Beet

Treatment (Applied initially and repeated after a 10 day	Days After First Spray		
interval)	+ 28 Days (x 1 Rate	+ 32 Days (x 1 Rate)	
Untreated	23	35	
Solution 1 .	6	18	
Solution 3	12	20	
Solution 1 + Solution 3	0	12	

Table B4

Fertiliser Attributes - Spring Barley

Treatment (Applied initially and repeated after a 10 day interval	Amount of Rooting (0-9) (x 1 Rate)	Amount of Above Ground Tissue (0-9) (x 1 Rate)
Untreated	5.2	5.0
Solution 1	5.3	5.7
Solution 3	6.0	5.7
Solution 1 + Solution 3	6.3	6.0

Powdery Mildew - Grape

Treatment (Applied initially			Days After First Spray	First Spray		
intervals)	+ 16 Days	+ 20 Days	+ 24 Days	+ 28 Days	+ 32 Days	+ 36 Days
Untreated	7.3	9.3	11.3	14.0	14.0	14.7
KP40 @ 0.75 l/ha	5.3	6.7	8.0	11.3	10.7	10.7
KS20 @ 1.0 l/ha	5.3	6.7	8.0	11.3	9.3	11.3
KP40 @ 0.75 l/ha + KS20 @ 1.0 l/ha	1.3	2.7	4.0	5.3	4.7	4.7

% Tuber Blight and Yield Attributes

Table B6

Treatment (Applied Initially and repeated at 10 day intervals)	Percent Tuber Blight (%)	Final Tuber Yield (g)	Final Tuber 'Quality' (Premium Potatoes) (0-9)	Mean Final 'First Grade' Tuber Yield (g)	Relative Final 'First Grade' Tuber Yield (%)
Untreated	6.0	241.7	4.73	114.3	100
KP40 @ 0.75 l/ha	2.7	259.8	4.67	121.3	106
KS20 @ 1.0 l/ha	3.3	255.6	5.07	129.6	113
KP40 @ 0.75 I/ha + KS20 @ 1.0 I/ha	0.7	267,4	5.67	151.6	133

Percent Foliar Blight - Potato

Treatment (Applied initially &			Days after	Days after First Spray		
repeated at 10 day intervals)	+ 16 Days	+ 20 Days	+ 24 Days	+ 28 Days	+32 Days	+ 36 Days
Untreated	5.3	8.7	12.7	12.7	18.7	28.0
KP40 @ 0.75 l/ha	2.7	3.3	6.7	8.7	9.3	13.3
KS20 @ 1.0 l/ha	2.0	4.0	5.3	8.0	10.0	11.3
KP40 @ 0.75 l/ha + KS20 @ 1.0 l/ha	.00	1.3	1,3	2.0	2.7	4.7

ր, երև ը

Examples C

Solution 2 = PF723 at 1.0 l/ha every 10 days Solution 3 = CS8 at 1.0 l/ha every 10 days Table C1

Percent Powdery Mildew - Grape

Treatment (Applied			Days After First Spray	First Spray		
10 day intervals)	+ 16 Days	+ 20 Days	+ 24 Days	+ 28 Days	+ 32 Days	+ 36 Days
Unfreated	7.3	9.3	11.3	14.0	. 14.0	14.7
KT47 @ 1.5 l/ha	4.7	6.7	8.0	9.3	6.9	6.6
KS20 @ 1.0 l/ha	5.3	6.7	8.0	11.3	6.3	11.3
KT47 @ 1.5 l/ha + KS20 @ 1.0 l/ha	2.7	5.3	6.7	8.7	7.3	6.7

Fertiliser Attributes - Broad Bean

Treatment (Applied initially and repeated after a 10 day interval)	Amount of Rooting (0-9) (x 1 Rate)	Above Ground Fresh Weight (g) - Mean (x 1 Rale)	Above Ground Dry Weight (g) - Mean (x 1 Rate)
Untrealed	5.3	143.8	14.6
Solution 2	5.3	155.7	16.1
Solution 3	5.3	155.0	15.7
Solution 2 + Solution 3	5.7	163.3	16.6

Table C2

Table C3

Fertiliser Attributes – Peas

Treatment (Applied initially and repeated after a 10 day interval)	Plant Health 'Greenness' Score (0-9) + 28 Days (x 1 Rate)	Root Fresh Weight (g) - Mean (x 1 Rate)	Root Dry Weight (g) - Mean (x 1 Rate)	Amount of Above Ground Tissue (0-9) at Harvest (x 1 Rate)
Untreated *	6.1	124.2	14.1	5.5
Solution 2	6.2	126.3	15.1	5.3
Solution 3	6.2	125.7	15.1	5.7
Solution 2 + Solution 3	6.4	130.7	15.6	6.0

Table C4

15

Fertiliser Attributes - Carrot

Treatment (Applied initially and repeated after a 10 day interval)	Root Dry Weight (g) - Mean (x 1 Rate	Amount of Rooting (0-9) (x 1 Rate)	Amount of Above Ground Tissue (0-9) at Harvest (x 1 Rate)
Untreated	5.5	5.2	5.0
Solution 2	6.1	5.3	5.0
Solution 3	6.2	5.0	5.0
Solution 2 + Solution 3	6.4	5.7	5.7

Table C5

Percent Powdery Mildew - Oilseed Rape

25

Treatment (Applied initially	Days After First Spray	
and repeated after a 10 day interval)	+ 35 Days (x 1 Rate)	
Untreated	14	
Solution 2	14	
Solution 3	14	
Solution 2 + Solution 3	8	

15 Table C6

Fertiliser Attributes – Sugar Beet

Treatment (Applied initially and repeated after a 10 day interval)	Root Fresh Weight (g) - Mean (x 1 Rate)	Root Dry Weight (g) - Mean (x 1 Rate)
Untreated	109.7	13.3
Solution 2	111.7	13.3
Solution 3	113.7	13.4
Solution 2 + Solution 3	114.7	14.1

Table C7

Fertiliser Attributes - Strawberry

Treatment (Applied initially and repeated after a 10 day interval)	Plant Health 'Greenness' Score (0-9) + 35 Days (x 1 Rate)	Amount of Rooting (0-9) (x 1 Rate)
Untreated	5.0	5.2
Solution 2	6.0	5.7
Solution 3	6.6	5.3
Solution 2 + Solution 3	7.0	6.0

Examples D

Table D1

POTATO TRIAL

% Tuber Blight, Final Yield and Quality

Treatment (Applied initially and repeated at 10 day intervals	Percent Tuber Blight (%)	Final Tuber Yield (g)	Relative Final Tuber Yield (%)	Final Tuber. 'Quality' (Premium Potatoes) (0-9)	Mean Final 'First Grade' Tuber Yield (g)	Retative Final 'First Grade' Tuber Yield (%)
Untreated	6.0	241.7	100	4.73	114.3	100
KP40 @ 0.75 l/ha	2.7	259.8	107	4.67	121.3d	106d
KT47 @ 1.5 l/ha	2.7'	261.7	108	5.27	137.9	121
KS20@ 1.0 //ha	3.3.	255.6	106	5.07	129.6	113
KP40 @ 0.75 I/ha + KT47 @ 1.5 I/ha	0.7	271.4	112	5.60	152.0.	133!
KP40 @ 0.75 l/ha + KS20 @ 1.0 l/ha	0.7	267.4	111	5.67	151.6	133
KT47 @ 1.5 l/ha + KS20 @ 1.0 l/ha	0.7	272.2	113	5.60	152.4	133.
KP40 @ 0,75 1/ha + KT47 @ 1.5 I/ha + KS20 @ 1.0 I/ha	.0.7'	277.0	115	5.80	160.7.	141:

POTATO TRIAL

% Tuber Blight, Yield and Quality Benefits

Relative Final 'First Grade' Tuber Yield (%)	100p	15;	Ö	6	6	2	5	4
Relati 'First Tuber	2	105;	109:	113	109.	112	115	114
Mean Final 'First Grade' Tuber Yield (g)	148.5b	155.5.	161.9.	167.3	162.6	. 166.1	170.2	168.7
Final Tuber 'Quality' (Premium Potatoes) (0-9)	5.80	5.73	5.80	5.73	5.80	5.80	5.87	6.07
Final Tuber Yield (g)	256.1	271.4	279.2	292.0	280.4	286.3	290.0	278.0
Percent Tuber Blight (%)	14.0:	10.0	9.3	9.3	4.0	4.7	3.3	1.3
Treatment (Applied initially and repeated at 10 day intervals	Untreated	KP40 @ 0.75 1/ha	KT47 @ 1.5 l/ha	KS20 @ 1.0 l/ha	KP40 @ 0.75 l/ha + KT47 @ 1.5 l/ha	KP40 @ 0.75 l/ha + KS20 @ 1.0 l/ha	KT47 @ 1.5 l/ha + KS20 @ 1.0 l/ha	KP40 @ 0.75 I/lia + KT47 @ 1.5 I/lia + KS20 @ 1.0 I/lia

Table D2

Table D3

Spring Barley 1999

Percent Powdery Mildew and Fertiliser Attributes

(KP40 = 40% Potassium Phosphite; CS100 = 10g/litre Salicylamide; CS8 = 20g/l Salicylamide; AT60 = 60% Ammonium Thiosulphate)

Treatment (2 Applications in total - every 15 Days	Days After First Spray	Plant Hearth 'Greenness'	Plant Health 'Greenness'	Amount of Rooting	Above Ground Fresh	Above Ground Dry	Amount of Above
	+ 20 Days	Score (0-9) + 28 Days	Score (0-9) + 35 Days	(0-9) - Mean	Weight (g) - Mean	Weight (g) - Mean	Ground Tissue (0-9) - Mean
Untreated	7	5.4	5.6	5.3	68.8	7.7	5.0
KP40 (0.375 Vha) + CS100 (1.0 Vha)	2	5.8	6.0	6.0	72.7	8.4	5.3
KP40 (0.75 Vha) + CS100 (1.0 Vha)	2	6.0	6.2	5.3	72.0	8.2	5.0
KP40 (0.375 Vha) + CS100 (0.5 Vha)	2	5.8	5.4	6.0	75.3	8.5	5.7
KP40 (0.75 l/ha) + CS100 (0.5 l/ha)	4	5.6	5.8	6.3	68.7	7.5	5.3
KP40 (0.375 Vha) + CS100 (1.0 Vha) + AT60 (10.0 Vha)	2 .	5.4	6.0	6.7	69.7	8.0	6.0
KP40 (0.375 l/ha) + CS100 (0.5 l/ha) + AT60 (10.0 l/ha)	2	5.6	6.2	6.0	68. <i>7</i>	7.9	5.7
KP40 (0.375 Vha) + CS100 (0.5 Vha) + AT60 (6.0 Vha)	4	5.8	5.6	6.0	62.0	7.4	5.0
KP40 (0.375 l/ha) + CS8 (0.05 l/ha) + AT50 (10.0 l/ha)	0	5.2	5.4	6.0	69.0	7.8	5. 3
KP40 (0.375 Vha) + CS8 (0.05 Vha) + AT60 (6.0 Vha)	2	6.0	5.6	6.7	67.7	7.5	5.0
KP40 (0.375 Vha) + CS8 (0.25 Vha) + AT60 (10.0 Vha)	o	5.4	5.0	5.7	69.7	7.4	_ 5.0
KP40 (0.375 Vha) + CS8 (0.25 Vha) + AT60 (6.0 Vha)	0	6.0	5.3	6.0	69.3	7.5	5.0

Table D4

Spring Barley

Percent Powdery Mildew and Fertiliser Attributes

(KP40 = 40% Potassium Phosphite; CS100 = 10g/itre Salicylamide; CS8 = 20g/l Salicylamide; AT60 = 60% Ammonium Thiosulphate)

Treatment (2 Applications in total - every 15 Days	Amount of Rooting ' (0-9) - Mean	Above Ground Fresh Weight (g) - Mean	Above Ground Dry Weight (g) - Mean	Amount of Above Ground Tissue (0-9) - Mean
Untreated	5.2	73.0	9.1	5.0
KP40 (0.375 l/ha) + CS100 (1.0 l/ha)	6.0	83.0	9.3	5.3
KP40 (0.75 Vha) + CS100 (1.0 Vha)	5.7	82.0	9.7	5.3
KP40 (0.375 l/ha) + CS100 (0.5 l/ha)	5.0	77.7	8.6	6.0
KP40 (0.75 Vha) + CS100 (0.5 Vha)	6.0	76.7	8.7	5.0
KP40 (0.375 l/ha) + CS100 (1.0 l/ha) + AT60 (10.0 l/ha)	6.0	67.3	7.8	5.0
KP40 (0.375 l/ha) + CS100 (0.5 l/ha) + AT60 (10.0 l/ha)	6.0	68.3	8.1	5.0
KP40 (0.375 Vha) + CS100 (0.5 Vha) + AT60 (6.0 Vha)	6.0	78.3	9.1	5.7
KP40 (0.375 l/ha) + CS8 (0.05 l/ha) + AT60 (10.0 l/ha)	5.7	76.0	8.8	5.7
KP40 (0.375 Vha) + CS8 (0.05 Vha) + AT60 (6.0 Vha)	6.0	78.3	9.0	5.7
KP40 (0.375 Vha) + CS8 (0.25 Vha) + AT50 (10.0 Vha)	5.0	71.7	8.5	5.3
KP40 (0.375 Vha) + CS8 (0.25 Vha) + AT60 (6.0 Vha)	5.7	72.0	8.1	5.0

LETTUCE TRIAL

Table D5

Fresh Weight Yield and Quality Benefits

(KP40 = 40% Potassium Phosphite; PF723 = 55% Ammonium Thiosulphale; KS20 = 20 gms/litre Potassium Salicylate)

Height Valid Heig										
81.3 5.33 43.4c ₁ 100c 80.6 5.27 42.5 million 100 85.0 5.40 45.7 million 105 87.2 million 6.36 46.7 million 110 83.6 5.61 47.4 million 109 million 86.6 million 5.64 million 111 million 89.8 5.63 117 million 89.8 million 5.64 million 110 million 86.5 5.67 million 49.0 million 113 million 86.4 million 113 million 87.9 5.67 million 49.8 million 115 million 66.4 million 113 million	rebineni (Applied initially and repealed at 10 day inlewals)	Final Fresh Weight Yield (9)		Final Fresh Weight 'Quality' Yield (9)	Relative Fresh Weight 'Quality' Yield (%)	Median Finat Fresh Weight Yield (g)	Median Quality of Final Fresh Weight Yield	Medlan Final Fresh Weight 'Quality' Yield	Relative Median Fresh Weight 'Quality' Yield	
85.0 5.40 45.7 105 67.2 5.36 46.7 100 87.7 5.40 47.4 109 86.6 5.46 47.3 111 83.6 5.67 47.4 109 86.6 5.64 46.6 111 89.8 5.63 50.6 117 89.8 5.64 50.6 116 80.9 5.53 50.3 116 90.6 5.64 50.6 113 86.5 5.67 49.0 113 85.4 5.64 51.1 120 87.9 5.67 49.8 115 88.4 5.64 48.9 117	Untreated	81.3	5.33	43.46.	1000	808	(0-0)	(6)	(%)	
67.7 5.40 47.4 109 88.6 5.64 45.7 110 89.8 5.67 47.4 109 89.6 5.64 46.6 111 89.8 5.63 50.6 117 89.8 5.64 46.6 116. 80.9 5.53 50.3 116 90.6 5.64 51.1 120. 86.5 5.67 49.0 113 85.4 5.64 51.1 120. 87.9 5.67 49.0 115 86.4 5.64 48.2 113	KP40 @ 0.75 Uha	85.0	5.40	45.7.	105	97.0	5.56	42.5	100	
83.6 5.67 47.4! 109, 82.6 5.64 46.6 111. 89.8 5.63 50.6. 117 89.8 5.64 46.6 110. 80.9 5.53 50.3 116 80.6 5.64 51.1; 120. 86.5 5.67 49.0 113 85.4 5.64 48.2 113 87.9 5.67 40.8 115: 68.4 5.64 48.9 117	PF723 @ 1.0 Ma	67.7	5.40	47.4.	109	07.50	0.30	46.7	110	
89.8 5.63 50.6. 117 89.8 5.64 50.6. 80.9 5.53 50.3 116 90.6 5.64 50.6 86.5 5.67 49.0 113 85.4 5.64 48.2 87.9 5.67 49.8 115 88.4 5.64 49.9	KS20 @ 1.0 Vha	83.6	5.67	47.4	6	90.00 80.61	5.46	47.3	151.	31
90.9 5.53 50.3 116 90.6 5.64 51.1; 86.5 5.67 49.0 113 85.4 5.64 48.2 87.9 5.67 49.8 115 88.4 5.64 49.9	KP40 @ 0.75 Uha + PF723 @ 1.0 Uha	89.8	5.63	50.6.	117	89.8·	5.64	50.6	118	
86.5 5.67 49.0 113 85.4 5.64. 48.2 87.9 5.67 49.8 115. 88.4 5.64. 49.9	KP40 @ 0.75 Uha +	90.9	5.53	. 50.3	116	90.6	5.64:	1.12	. 00+	-
87.9 5.67 49.8 115 68.4 5.64, 49.9	PF723 @ 1.0 Vha +	86.5	5.67	49.0	133	7 30			·	
of.8 5.64 49.8 115 68.4 5.64, 49.9	KS20 @ 1.0 J/ha KP40 @ 0 75 J/ha	07.0	20 1		2	65.4	5.64,	48.2	113	
	PF723 @ 1.0 l/ha + KS20 @ 1.0 l/ha	ņ.	9.6/	48.8	<u>ਦ</u>	68.4	5.64.	49.9	117	

Examples E

Table E1

Benefits of Ammonium Thiosulphate (ATS) and Potassium Salicylate (KS) with Chlormequat (CCC) on Spring Barley

Treatment (Treatments applied at 3 leaves stage)	Powdery Mildew (%) at + 15 days	Amount of Rooting (0-9) Mean of 10 plants	Above Ground Fresh Weight (g) Total of 10 plants	Above Ground Dry Weight (g) Total of 10 plants
Untreated	25	5.8	30.5	3.4
CCC (1.25 l/ha)	15	5.5	34.0	3.7
CCC (1.25 l/ha) + ATS (1.25 l/ha)	13	6.0	31.5	3.6
CCC (1.25 l/ha) + KS (20 g/ha)	18	6.0	31.3	3.5
CCC (1.25 l/ha) + ATS (1.25 l/ha) + KS (20 g/ha)	8	6.5	36.0	4.0

Table E2

Benefits of Ammonium Thiosulphate (ATS) and Potassium Salicylate (KS) with Chlormequat (CCC) on Spring Barley

Treatment (Treatments applied at 3 leaves stage (T1) and prior to start of stem extension (T2))	Powdery Mildew (%) at + 12 days	Powdery Mildew (%) at + 15 days	Powdery Mildew (%) at + 18 days	Number of Tillers Initiated per Plant (mean of 10 plants)
Untreated	20	25	38	3.0
CCC (0.8 l/ha at T1 & T2)	8	8	10	3.5
CCC (0.8 l/ha at T1 & T2) + ATS (0.8 l/ha at T1 & T2)	5	5	8	3.5
CCC (0.8 l/ha at T1 & T2) + KS (20 g/ha at T1 & T2)	8	8	13	3.3
CCC (0.8 I/ha at T1 & T2) + ATS (0.8 I/ha at T1 & T2) + KS (20 g/ha at T1 & T2)	0	3	5	4.3

The following sho

_	
ē	
-	
Ξ	
မွ	
نة	
ď	
6)	
Ē	
=	
#	
. <u>Z</u>	
_	
ຮ	
Š	
멾	
Ħ	
ខ	
ರ	
<u> </u>	
Ξ.	
Ø	
Ë	
.≌	
: <u>;</u>	
ő	
₫.	
Ξ	
Ö	
_	
<u>~</u>	
Ę	
ılate	
nulate	
rmulate	
ormulate	
i Formulate	
of formulate	
s of formulate	
les of formulate	
iples of formulated	
mples of formulate	
camples of formulated	
examples of formulate	
g examples of formulate	
ng examples of formulate	
iting examples of formulated	
niting examples of formulated	
limiting examples of formulated	
1-limiting examples of formulated	
on-limiting examples of formulated	
non-limiting examples of formulated	
w non-limiting examples of formulated	
ow non-limiting examples of formulated	
snow non-limiting examples of formulated	
snow non-limiting examples of formulated	
ng snow non-limiting examples of formulated	
owing	
owing	

. FOLIAR FERTILISER ONE

INGREDIENTS	Specific Gravity	-			Volume gram/litre per batch of ingredient	gram/litre of active
de (20% w/w) ale (14.3 % Cu w/w; (13.2 %Fe w/w) 2%w/w) phate (60% w/w)	1.000 1.000 1.000 1.200 1.200 1.320	150.0000 10.0000 130.0000 30.0000 31.0000 1,000.0000 640.0000	7.50000 0.50000 0.50000 6.50000 1.50000 50.00000	150.0000 10.0000 10.0000 108.3333 25.0000 25.0000 745.1565 484.8485	96.2564 6.4171 6.4171 83.4222 19.2513 19.2513 641.7092 410.6939	96.2564 6.4171 6.4171 83.4222 19.2513 19.2513 269.5179
Totals		2,000.0000 N N P as P ₂ O ₅ K as K ₂ O S S as SO ₃ Theoretically	100.00000 3.84 4.68 10.64 9.91 11.93 8.32 20.80	1,558.3383 **********************************	1,283.4184 49 60 137 125 150 107	746.9495 ===================================

O	
5	
5	
-	
~	
<u></u>	
ш	
ଊ	
_	
=	
፰	
~	
FER	
	
-	
~	
ď	
_	
O	
ŭ.	
_	

INGREDIENTS	Specific Gravity	Specific Kilogram Gravity per batch	Kilogram percentage ser batch w/w	Volume per batch	Volume gram/litre per batch of ingredient	gram/litre of active
le (1 elat e (1 42% ulph	1.000 1.000 1.000 1.000 1.320	150.0000 10.0000 30.0000 30.0000 750.0000 1,000.0000	7.50000 0.50000 1.50000 1.50000 37.50000 50.00000	150.0000 10.0000 30.0000 30.0000 30.0000 558.8674 757.5758	150.0000 96.2564 10.0000 96.2564 30.0000 19.2513 30.0000 19.2513 30.0000 19.2513 558.8674 481.2819 757.5758 641.7092	96.2564 6.4171 19.2513 19.2513 19.2513 202.1384 385.0255
Totals	.,	2,000.0000	100.00000	2,000.0000 100.00000 1,566.4431 1,283.4184 747.5912	1,283.4184	747.5912
	<u>አ</u> ዋ ፓ ⊼ ⊼ ለ ለ ነ	N P as P ₂ O ₆ K as K ₂ O S S as SO ₃	6.00 % w/w 3.51 % w/w 7.98 % w/w 6.96 % w/w 8.39 % w/w 13.00 % w/w 32.50 % w/w	6.00 % w/w 3.51 % w/w 7.98 % w/w 6.96 % w/w 8.39 % w/w 3.00 % w/w 2.50 % w/w	77 9 45 9 102 9 88 9 105 9 167 9	77 g/litre w/v 45 g/litre w/v 102 g/litre w/v 88 g/litre w/v 105 g/litre w/v 167 g/litre w/v

The above Examples show that the compositions of the present invention show the desired fertilisation and antifungal effects.

CLAIMS

- 1. A fertiliser composition comprising at least one phosphonate and at least one thiosulphate.
 - 2. A fertiliser composition comprising at least one phosphonate and at least one salicylic acid, homologue, derivative, or salt thereof.
- 10 3. A fertiliser composition according to claim 2 further comprising at least one thiosulphate.
 - 4. A fertiliser composition comprising at least one thiosulphate and at least one salicylic acid, homologue, derivative, or salt thereof.
 - 5. A fertiliser composition according to any one of claims 1-3 wherein the phosphonate is ammonium, sodium or potassium phosphonate or a mixture thereof.
- 20 6. A fertiliser composition according to any one of claims 1 and 3-5 wherein the thiosulphate is ammonium, sodium or potassium thiosulphate or a mixture thereof.
- 7. A fertiliser composition according to any one of claims 2-6 wherein the derivative of salicylic acid is salicylamide or a salt thereof.
 - 8. A fertiliser composition according to any one of claims 2-6 wherein the homologue of salicylic acid is benzoic acid or a salt or derivative thereof.

25

37

- 9. A fertiliser composition according to any of claims 2-7 wherein the salt of salicylic acid, its homologue or derivative is an organic or inorganic salt.
- 10. A fertiliser composition according to claim 9 wherein the salt is a sodium
 5 or potassium salt or mixtures thereof.
 - 11. A fertiliser composition according to any preceding claim in the form of a concentrate.
- 10 12. A fertiliser composition according to any one of claims 1-10 in the form of an aqueous solution.
 - 13. A fertiliser composition according to claim 12 comprising 150 g/l phosphonate, 275 g/l thiosulphate and/or 10 g/l salicylamide.

14. A fertiliser composition according to claim 13 wherein the phosphonate comprises 75 g/l mono-potassium phosphonate and 75 g/l di-potassium phosphonate.

- 20 15. A fertiliser composition according to any preceding claim further comprising a plant growth regulator.
 - 16. A fertiliser composition according to claim 15 wherein the plant growth regulator is chlormequat.

17. A method for fertilising a plant comprising applying a fertiliser composition according to any preceding claim to the plant or its environs.

18. A method according to claim 17 wherein the phosphonate is applied at 30 150 g/ha to 2 kg/ha.

- 19. A method according to claim 17 or claim 18 wherein the thiosulphate is applied at 250 g/ha to 6 kg/ha.
- 5 20. A method according to any one of claims 17 to 19 wherein at least one salicylic acid, a homologue, derivative, or salt thereof is applied at 1 g/ha to 100 g/ha.
- 21. Use of a fertiliser composition according to any one of claims 1-16 to stimulate plant growth.
 - 22. Use of a fertiliser composition according to any one of claims 1-16 to control parasitic fungi.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 August 2000 (10.08.2000)

PCT

(10) International Publication Number WO 00/46169 A3

- (51) International Patent Classification⁷: C05D 9/00, 9/02, C05G 3/02
- C05B 17/00,
- (21) International Application Number: PCT/GB00/00367
- (22) International Filing Date: 7 February 2000 (07.02.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 9902665.0

5 February 1999 (05.02.1999) GI

- (71) Applicant (for all designated States except US): MAN-DOPS (UK) LIMITED [GB/GB]; 36 Leigh Road, Eastleigh, Hampshire SO50 9DT (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WILLIAMS, Richard, Henry [GB/GB]; 15 Chaffinch Gardens, Colchester, Essex CO4 3FH (GB). HARDING, Peter [GB/GB]; 6 Cutbush Lane, Bitterne, Southampton, Hampshire SO18 5QR (GB).
- (74) Agent: MALLALIEU, Catherine, Louise; D. Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report: 7 December 2000

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHOSPHONATE OR THIOSULFATE BASED FERTILISERS

(57) Abstract: The present invention provides a liquid fertiliser comprising a mixture of a salt of phosphorous acid together with either a thiosulphate such as ammonium or potassium thiosulphate and/or a salt of salicylic acid or salicyle amide. The use of this combination as a foliar spray, soil drench or irrigation component produces a greater fertiliser effect (on plant vigour and growth) and greater resistance to or control of parasitic fungal diseases, than each of the components applied individually or any combination of just two components.

INTERNATIONAL SEARCH REPORT

PCT/GB 00 367

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C05B17/00 C05D9/00

09700 C05D9/02

C05G3/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

3

Minimum documentation searched (classification system followed by classification symbols) IPC~7~C05B~C05D~C05G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data

Category *	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 795 847 A (NIELSEN ERIK ET AL) 18 August 1998 (1998-08-18) column 9, line 1 - line 66	1,5,6, 11,12,17
A	US 5 865 870 A (HSU HSINHUNG JOHN) 2 February 1999 (1999-02-02) column 1, line 59 -column 2, line 29 claims	1,5-22
A	US 5 707 418 A (HSU HSINHUNG JOHN) 13 January 1998 (1998-01-13) cited in the application the whole document/	1,5-22
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.				
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed 	T later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family				
Date of the actual completion of the international search	Date of malling of the international search report				
30 August 2000	1 5. 09. 2000				
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer RODRIGUEZ FONTAO, M				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter pnal Actication No PCT/GB C 9367

O (Continue	ation) DOCUMENTS CONSIDERE BE RELEVANT	
C.(Continuation)	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
A	US 5 514 200 A (LOVATT CAROL J) 7 May 1996 (1996-05-07) cited in the application column 2, line 58 -column 6, line 20 claims	1,5-22
Α	BIOLOGICAL ABSTRACTS, vol. 1, 1996 Philadelphia, PA, US; abstract no. 193987, SEVENIER, ROBERT ET AL: "Ethylene production and involvement during the first steps of durum wheat (Triticum durum) anther culture." XP002133847 abstract & PHYSIOLOGIA PLANTARUM, (1996) VOL. 96, NO. 1, PP. 146-151.,	
X	US 5 047 078 A (GILL JASBIR S) 10 September 1991 (1991-09-10) claims column 2, line 47 -column 3, line 29	2,5, 8-11,17, 21
X	EP 0 878 129 A (ISKRA INDUSTRY CO LTD) 18 November 1998 (1998-11-18)	2,5,7,9, 11,12, 15,17, 21,22
	claims page 1, line 27 -page 3, line 2 page 5, line 22 - line 25	
X	DD 226 755 A (ADL FORSCHUNGSZENTRUM FUER BOD) 4 September 1985 (1985-09-04)	2,5, 8-11,17, 21
X	DATABASE WPI Section Ch, Week 199431 Derwent Publications Ltd., London, GB; Class E19, AN 1994-252656 XP002146194 & JP 06 183903 A (HYPONEX JAPAN KK), 5 July 1994 (1994-07-05) abstract	4
	·	

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of Illist Sheet)
This Inter	mational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	emational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. 🗌	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. 🗍	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1 (totally), 5-22 (partially)

Fertiliser composition comprising at least one phosphonate and at least one thiosulphate, a method for fertilising a plant by applying this composition and its use to stimulate plant growth and to control parasitic fungi.

2. Claims: 2 (totally), 3 (totally), 5-22 (partially)

Fertiliser composition comprising at least one phosphonate and at least one salicilyc acid, homologue, etc, a method for fertilising a plant by applying this composition and its use to stimulate plant growth and to control parasitic fungi.

3. Claims: 4 (totally), 6-22 (partially)

Fertiliser composition comprising at least one thiosulphate and at least one salicylic acid, homologue, etc., a method for fertilising a plant by applying this composition and its use to stimulate plant growth and to control parasitic fungi.

	atent document		ublication	Patent memb			Publication date
	·		<u></u>				
US	5795847	A	18-08-1998	AT AU 6. CA 2 DE 69 DE 69	685437 256894 157526 411156 411156	T B A A	10-09-1994 15-07-1998 22-01-1998 26-09-1994 15-09-1998 12-11-1998 15-09-1994
				EP 0	688165 120017	Α	27-12-199! 16-10-1998
US	5865870	A	02-02-1999	AU 5 EP 0	707418 718565 159098 897378 832714	B A A	13-01-1998 13-04-2000 18-08-1998 24-02-1999 30-07-1998
US	5707418	Α	13-01-1998	AU 5: EP 08 WO 98	718565 159098 897378 832714 865870	A A A	13-04-2000 18-08-1998 24-02-1999 30-07-1998 02-02-1999
US	5514200	Α	07-05-1996	BR 9! CA 2: EP 07 WO 9!	739795 506959 182300 743931 521142 830255	A A A	21-08-1995 16-09-1997 10-08-1995 27-11-1996 10-08-1995 03-11-1998
US	5047078	Α	10-09-1991	AU 57 CA 12 DE 36 EP 02 JP 20 JP 50 JP 612 NZ 2	45563 589959 708786 287744 565057 203734 083664 075720 256991 215916 603220	B A A D A C B A A	15-09-1989 26-10-1989 06-11-1986 20-08-1991 21-09-1989 03-12-1986 23-08-1996 21-10-1993 14-11-1986 26-04-1989 30-12-1986
EP 	0878129	Α	18-11-1998	NONE			
DD	226755	Α	04-09-1985	NONE			
JP 	6183903	A	05-07-1994	NONE		r in 120, 40 a	

Form PCT/ISA/210 (patent family annex) (July 1992)