Zhenrui Liao

Zuckerman Mind, Brain and Behavior Institute 3227 Broadway New York, NY 10027 USA

Email: zhenrui.liao@columbia.edu

Website: http://www.columbia.edu/~zl2359

Citizenship: USA

2017

2.02.1

Education & Training

2019-	PHD in Neurobiology and Behavior (in progress), Columbia University
	Supervised by Attila Losonczy & Liam Paninski

MD (in progress), Columbia University College of Physicians and Surgeons

2017 MD (in progress), Columbia University College of Physicians and Surgeo 2017 MS in Electrical Engineering (*cum laude*), Columbia University

(concentration in Systems Biology and Neuroengineering)

BS in Electrical Engineering (cum laude), Columbia University

2015-2016 MEng Visiting Student, Imperial College London

Grants, honors & awards

2020-2022 NIH Ruth L. Kirchenstein Fellowship (F31) – Won in first year of graduate school

2017-2020 Columbia University Medical Scientist Training Program

Bachelor of Science with Latin Honors

Tau Beta Pi (Engineering Phi Beta Kappa, top 7% of class)

Publications

B. Dudok*, M. Szoboszlay*, A. Paul*, P. M. Klein*, **Z. Liao***, E. Hwaun, G. G. Szabo, T. Geiller, B. Vancura, B.-S. Wang, S. McKenzie, J. Homidan, L. M. Klaver, D. F. English, Z. J. Huang, G. Buzsáki, A. Losonczy, and I. Soltesz. Recruitment and inhibitory action of hippocampal axoaxonic cells during behavior. *Neuron*, 2021

D. Hadjiabadi, M. Lovett-Barron, I. G. Raikov, F. T. Sparks, **Z. Liao**, S. C. Baraban, J. Leskovec, A. Losonczy, K. Deisseroth, and I. Soltesz. Maximally selective single-cell target for circuit control

in epilepsy models. Neuron, 2021

F. Sparks*, **Z. Liao***, W. Li, A. Grosmark, I. Soltesz, and A. Losonczy. Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy. *Nature*

communications, II(I):I–I3, 2020

G. F. Turi*, W.-K. Li*, S. Chavlis*, I. Pandi, J. O'Hare, J. B. Priestley, A. D. Grosmark, **Z. Liao**, M. Ladow, J. F. Zhang, et al. Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. *Neuron*, 101(6):1150–1165, 2019

J. D. Zaremba, A. Diamantopoulou, N. B. Danielson, A. D. Grosmark, P. W. Kaifosh, J. C. Bowler, **Z. Liao**, F. T. Sparks, J. A. Gogos, and A. Losonczy. Impaired hippocampal place cell dynamics

in a mouse model of the 22qII. 2 deletion. Nature neuroscience, 20(II):1612-1623, 2017

* denotes equal contribution

Talks

- **Z. Liao**. Topic models of neural ensembles and epileptogenic networks. In *American Epilepsy Society*, Chicago, IL, 2021a
- **Z. Liao**. Replay of world structure by ca3. In *Organization for Computational Neurosciences*, virtual, 2021b
- **Z. Liao**. Spectral and machine learning methods for detection of epileptiform electrophysiological events. virtual / Ripple Methods Consortium hosted by NYU, 2021c

Conference presentations

- S. Terada, **Z. Liao**, D. Hadjiabadi, I. Soltesz, and A. Losonczy. A novel mechanism of adaptive stimulus selection for sharp wave ripple-related memory consolidation in the hippocampus. In *7th Annual BRAIN Initiative Meeting*, virtual, 2021
- **Z. Liao**, A. Losonczy, and C. Papadimitriou. The excitability functionality trade-off: Random graph models of epilepsy. In *COSYNE*, virtual, 2021
- F. Sparks*, **Z. Liao***, I. Soltesz, and A. Losonczy. Circuit level cell-type specific population dynamics within the dentate gyrus during interictal events in the kainic acid mouse model of temporal lobe epilepsy. In *Society for Neuroscience*, Chicago, IL, 2019b
- F. Sparks*, **Z. Liao***, I. Soltesz, and A. Losonczy. Interictal events recruit distinct ensembles of adult-born and mature granule cells in the epileptic dentate gyrus. In *Park City Epilepsy Meeting*, Park City, UT, 2019a
- F. Sparks, S. Wiesenberger, **Z. Liao**, W.-K. Li, R. Nyilas, B. Vancura, H. Blockus, A. Vaziri, and A. Losonczy. Large-scale volumetric calcium imaging of hippocampal microcircuits during head-fixed spatial navigation and learning. In *Inhibition in the CNS Gordon Research Conference*, Newry, ME, 2019
- G. Turi, **Z. Liao**, W.-K. Li, J. Zaremba, A. Grosmark, X. Luo, L. Topolnik, and A. Losonczy. Role of hippocampal vip interneurons in reward-oriented spatial learning. In *Society for Neuroscience*, San Diego, CA, 2016
- **Z. Liao**and A. Losonczy. A matched filtering algorithm for sharp-wave ripple detection in hippocampal local field potential recordings. In 38th International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, 2016. IEEE

Teaching

TEACHING ASSISTANTSHIPS

2020, 2021	Computation and the Brain	with Christos Papadimitriou
202I	Mathematics for Theoretical Neuroscience	Danil Tyukmanov and Ken Miller
2019	Unsupervised Learning	Nakul Verma
2018	Information Theory in Theoretical Computer Science	Omri Weinstein

Advanced Machine Learning 2020 Machine Learning Analysis and Optimization 2016-2020

2014

Nakul Verma Daniel Hsu, Its'ik Pe'er, Nakul Verma Davesh Maulik