- 1. Banque CCINP 2024: 62
- 2. Banque CCINP 2024: 80
- 3. Banque CCINP 2024: 88
- 4. Banque CCINP 2024: 93
- **5.** [CCP] On considère l'application $f: M \mapsto M + \text{Tr}(M)I_n$.
 - (a) Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$. Déterminer la dimension de $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$.
 - (b) Déterminer un polynôme annulateur de f de degré 2.
 - (c) f est-elle diagonalisable? f est-elle bijective? Si oui, calculer f^{-1} .
- 6. [CCP]

Soit
$$n \in \mathbb{N}^*$$
 et $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall i \in [[1,n]], \ a_{i,j} > 0$ et $\sum_{j=1}^n a_{i,j} = 1$.

- (a) Montrer que 1 est valeur propre de A. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $X^T = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$ est un vecteur propre associé à l. Soit $k \in [1, n]$ l'un des indices tel que $|x_k| = \max_{1 \le i \le n} |x_i|$.
- **(b)** Montrer que $|\lambda| \leqslant 1$ et que $|a_{k,k} \lambda| \leqslant \sum_{\substack{j=1 \ j \neq k}}^n |a_{k,j}|$.
- (c) (facultatif) On suppose que $|\lambda| = 1$. Montrer que l = 1.
- 7. [Centrale] On pose E l'ensemble des fonctions polynomiales de degré inférieur ou égal à n.
 - (a) Montrer que $\forall P \in E, \ \forall x \in \mathbb{R}, \ \int_{-\infty}^{x} P(t)e^{t}dt$ converge.
 - (b) On définit L l'application sur E telle que $\forall x \in \mathbb{R}, \ L(P)(x) = e^{-x} \int_{-\infty}^{x} P(t)e^{t}dt$. Montrer que L est un endomorphisme de E. Est-il diagonalisable?
- 8. [tout concours]

On donne $M = \begin{pmatrix} A & B \\ 0_n & A \end{pmatrix}$ où A et B sont deux matrices complexes, carrées de taille n, qui commutent.

- (a) Montrer que si U est semblable à V, pour tout polynôme R, R(U) est semblable à R(V).
- (b) Pour $P \in \mathbb{C}[X]$, exprimer P(M) en fonction de P(A), P'(A) et B.
- (c) Montrer que si A est diagonalisable et B nulle, alors M est diagonalisable.
- (d) Démontrer la réciproque.
- 9. [Mines-Ponts] diagonalisabilité d'une matrice par blocs

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} I_n & 0 \\ A & A \end{pmatrix}$. On suppose que B est diagonalisable. Montrer que A est diagonalisable et que $I_n - A$ est inversible.

10. [Centrale] Supplèmentaires orthogonaux?

On munit $\mathbb{R}[X]$ du produit scalaire qui à $P=a_0+a_1X+\cdots+a_nX^n$, $Q=b_0+b_1X+\cdots+b_mX^m$ associe $\langle P,Q\rangle=\sum_{k\geqslant 0}a_kb_k$.

- (a) Soit F le sous-espace engendré par 1+X. Trouver une base de F^{\perp} . A-t-on $F \oplus F^{\perp} = \mathbb{R}[X]$?
- (b) Soit $G = \{ P \in \mathbb{R}[X], \ P(1) = 0 \}$. Déterminer G^{\perp} .
- 11. [CCP]
 - (a) Soit $M \in GL_k(\mathbb{C})$, on suppose M^2 diagonalisable, montrer que M est diagonalisable.
 - (b) Soit $(A, B) \in GL_n(\mathbb{C})^2$ et $N = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$, montrer que N est inversible et calculer N^{-1} . Calculer N^2 . Soit $P \in \mathbb{C}[X]$, calculer $P(N^2)$. Si N est diagonalisable, montrer que AB est diagonalisable. Réciproque?