NAME (First then Last):	
Email address:	@mail.utoronto.ca
UTORid:	

University of Toronto Faculty of Arts and Sciences

Fall 2024/2025

MAT244H1F Homework 2

Special Instructions:

- See the submission instructions on Quercus for details about submitting this assignment.
- Include all pages when submitting your assignment.
- Write legibly and darkly (if scanned) or digitally on a tabled.
- For questions with a boxed area, ensure your answer is completely within the box.
- Fill in your bubbles completely.

1.	exploating the f	form $A(x)$	e product $y' + B(x)$	rule as followy $= C(x)$, ye	an be solved ws. Since $[r(x)]$ ou may be ab- ion looks like	[x]y]' = r(x)y le to multiply	y' + r'(x)y, y both side	if you are	given an eq	uation of
					ero functions			$(x)\cdot(2y'+4)$	4y) = [r(x)y]	·]'.
		p(x) =				r(x) =				
	(b)	Consider	$y' + \cos(x)$	y) y . Find no	n-zero functio	ons $p(x)$ and	r(x) so that	at $p(x) \cdot (y' + y')$	$-\cos(x)y) =$	[r(x)y]'.
		p(x) =				r(x) =				
	(c)	Solve th already.)		al equation	$[e^{2x}y]' = \frac{x^2}{2}$	for y . (Hint:	most of	the work ha	s been done	e for you
	(d)	Use the	method of	integrating	factors to so	lve the differ	ential equa	ation $2y' + 4$	$4y = \frac{x^2 e^{-2x}}{2}.$	Explain
	` /	your ste					-			

2.	To a	nswer this question, you may need to review	linear comb	pinations and change of basis from M	AT223
		sider the differential equation $y'' = 0$ which by others).	nas solution	ns $s_1(x) = x + 1$ and $s_2(x) = x - 1$	(amon
	(a)	Express the solution $s_3(x) = 2x + 4$ as a line	ar combina	ation of s_1 and s_2 .	
		$s_3(x) = $			$s_2(x)$
	(b)	The complete solution to $y'' = 0$ is $r(x) = Ax$ of s_1 and s_2 . (Hint: your solution will involve			pination
		r(x) =	$s_1(x) +$		$\int s_2(x)$
	(c)	Give two different bases for the solution set	to $y'' = 0$.		
		Basis 1: {		}	
		Basis 2: {		}	
	(d)	The differential equation $y''(x) = J_1(x)$ has and J_0 are Bessel Functions of the First Kind the complete solution to $y'' = J_1(x)$. Explain Hint: You do not need to know what Bessel	d ¹ . Use you 1 your reasc	er knowledge from the previous parts oning.	here J to find

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Bessel_function|$

3.	Read the appendix on	complex numbers in	vour textbook (vou may seek	additional	resources if needed)

(a) Let x = 3 + 2i and y = -2 + 5i. Compute xy and $\frac{x}{y}$. Express your answer in a + bi form.

- (b) The absolute value or modulus of a complex number a+bi is $|a+bi|=\sqrt{a^2+b^2}$, and when a vector $\vec{v}=(z_1,z_2,\ldots,z_n)$ has complex entries, its norm is computed by the formula $\|\vec{v}\|=\sqrt{|z_1|^2+|z_2|^2+\cdots+|z_n|^2}$
 - i. Let x = a + bi. Find a complex number y so that $|x|^2 = xy$. (Such a number is called the *complex conjugate* of x.)

y =

ii. Let $\vec{v} = (1 + 2i, c)$. Find a real number c so that $||\vec{v}|| = 4$.

c =

(c) A complex number a+bi is equal to zero if and only if a=0 and b=0. Let x=a+bi and y=c+di and suppose $a,b,c,d\neq 0$. Show that $xy\neq 0$.

4.		each of the following, sketch a phase portrait satisfying the criteria or explain why no such phase rait exists. (Assume all differential equations/systems are continuous.)
		A phase portrait for a system of two differential equations with exactly one attracting and one repelling equilibrium solution and no other equilibrium solutions.
	(b)	A phase portrait for a single differential equation with exactly one attracting and one repelling equilibrium solution and no other equilibrium solutions.
	(c)	A phase portrait for a system of two differential equations with exactly two attracting equilibrium solutions and no other equilibrium solutions.

portrait for a other equilibri	um solutions	•				
portrait for a and no othe			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	rith infinitely	many repell	ing equilibriur
			al equations w	vith infinitely	many repell	ing equilibriur

5.	Report Preparation. At the end of the term, you will hand in a final report. This problem is intended to help you develop the skills needed for your final report.
	Consider the model of how a bee travels in a particular field of flowers
	$S'(t) = \sin(D(t))$ $D'(t) = S(t) - D(t)$
	where
	$S(t)=$ intensity of the smell of flowers at time t (on a logarithmic scale from $-\infty$ to $+\infty$) $D(t)=$ (positive) distance between the bee and its hive at time t
	Additionally, near a flower and the hive, the smell intensity is measured to be constant.
	In this problem, you will be analyzing what this model claims about a bee's behaviour. Your analyses should be a mix of analytic arguments (those coming from mathematical formulas), numeric arguments (computer-based simulations), and qualitative arguments (e.g., analyzing pictures and phase portraits).
	(a) At what distance(s) is smell intensity constant? Justify your answer.
	(b) In the field being modeled, a bee will only stay still in its hive or on a flower. At what distance(s) from the hive are the flowers? Justify your answer.

, , 8	ohs of results	 	··· <i>)</i>		

(d)	Which flowers	s can attract bees	s? Justify with	simulations and	with qualitative	techniques.	

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on	this	page	scored,	then	clearly	indicate	to	which	${\it question}$	the	work	belongs	and
indica	te on	the pa	age co	ntai	ning	the c	riginal	questi	on that	there is	woi	rk on t	his page t	o sc	ore.		

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on	this	page	scored,	then	clearly	indicate	to	which	${\it question}$	the	work	belongs	and
indica	te on	the pa	age co	ntai	ning	the c	riginal	questi	on that	there is	woi	rk on t	his page t	o sc	ore.		