

Global United Technology Services Co., Ltd.

Report No.: GTSE15030026503

FCC Report

SISTEMAS APLICADOS USA, LLC Applicant:

2005 E Griffin Pkwy Suite 150 Mission, TX 78572 **Address of Applicant:**

Equipment Under Test (EUT)

Mobile Phone Product Name:

Model No.: Q-XY

Trade Mark: Starphone FCC ID: 2ACMQQ-38

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2013

March 19, 2015 Date of sample receipt:

March 19-23, 2015 **Date of Test:**

March 24, 2015 Date of report issue:

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	March 24, 2015	Original

Prepared By:	Edward.Pan	Date:	March 24, 2015
	Project Engineer		
Check By:	hank. yan	Date:	March 24, 2015
	Reviewer	_	

3 Contents

		F	Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	8
	7.1	CONDUCTED EMISSIONS	8
	7.2	RADIATED EMISSION	
8	TES	T SETUP PHOTO	17
9	EUT	CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	PASS	
Radiated Emissions	Part15.109	PASS	

PASS: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SISTEMAS APLICADOS USA, LLC
Address of Applicant:	2005 E Griffin Pkwy Suite 150 Mission, TX 78572
Manufacturer:	AG-TEL MEX ELECTRONIC (SZ) CO., LTD
Address of Manufacturer:	Address:2/Flr, 8 Block, Hongye Industrial Park, Lezhujiao Resident Group, Huangmabu Community, Xixiang Street, Baoan, Shenzhen

5.2 General Description of EUT

Product Name:	Mobile Phone
Model No.:	Q-XY
	Where X is a digit from 1 to 9, and specifies level of features
	Where Y is a digit form 0 to 9, used for a time frame sequence of models.
Power supply:	AC/DC Adapter:
	Model No.: SAW06-050-1000U
	Input: AC 100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 1A
	Or
	DC 3.7V Li-ion Battery

5.3 Test mode

Test mode:				
Playing mode	Keep the EUT in Playing mode			
Video Record mode	Keep the EUT in Video Recording mode			
PC mode	Keep the EUT in exchanging data mode.			

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Apple	PC	A1278	C1MN99ERDTY3	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	Mar. 28 2014	Mar. 27 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	July 01 2014	June 30 2015	
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	July 01 2014	June 30 2015	
5	Double -ridged waveguide horn	SCHWARZBECK	9120D	GTS208	June 27 2014	June 26 2015	
6	RF Amplifier	HP	8347A	GTS204	July 01 2014	June 30 2015	
7	Preamplifier	HP	8349B	GTS206	July 01 2014	June 30 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015	
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

7 Test Results and Measurement Data

7.1 Conducted Emissions

Test Requirement:	FCC Part15 B Section 15.107				
Test Method:	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	[[[]] [] [] [] [] [] [] [] [Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	* Decreases with the logarithm	60	50		
Test setup:	•	i or the frequency.			
rest setup.	Reference Plane		_		
Today	AUX Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test L/SN Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.				
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test Instruments:	Refer to section 6 for details				
Test mode:	Pre-scan all modes in section 5.3, and found the PC mode which is the worst mode, so only the data of worst mode was show on the test report.				
Test results:	Pass				

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0265RF Test mode : PC mode Test Engineer: Frank

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	dB	dBu₹	dBu₹	dB	
1 2		53. 75 53. 11	0.15 0.14					
2	0.348	40.31	0.11	0.10	40.52	59.00	-18.48	QP
4 5	0. 705 3. 881		0.14 0.20					
6	6.592	33.59	0.23	0.16	33.98	60.00	-26.02	QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0265RF Test mode : PC mode Test Engineer: Frank

001	Freq	Read	LISN Factor				Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	-dBuV	dB	
1 2 3 4 5	0. 192 0. 277	53. 23 52. 54 42. 92	0. 07 0. 07 0. 07 0. 06 0. 06	0.12 0.13 0.10	53. 42 52. 74 43. 08	64. 86 63. 93 60. 90	-11.44 -11.19 -17.82	QP QP QP
6	3.840	34.95	0.14	0.15	35.24	56.00	-20.76	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Page 10 of 18

7.2 Radiated Emission

 Naulateu Lillission								
Test Requirement:	FCC Part15 B Section 15.109							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	30MHz to 6GHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:	Double Do							
	Frequency	Detector	RBW k 120kHz	VBW 300kHz	Remark Quasi-peak Value			
	30MHz- Quasi-peak		N 120NIIZ	300KI 12	Quasi-peak value			
	Above 1GHz Peak		1MHz	3MHz	Peak Value			
	Peak Peak		1MHz	10Hz	Average Value			
Limit:					T			
	Freque	<u> </u>	Limit (dBuV/		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-2		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	-1GHz	54.0		Quasi-peak Value			
	Above 1	IGHz	54.0		Average Value			
			74.0	0	Peak Value			
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.							
	2. The EUT wa antenna, whi tower.				nce-receiving ble-height antenna			
	ground to de	termine the raid vertical pol	naximum value	e of the field	r meters above the d strength. Both are set to make the			
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.							
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test setup:	Below 1GHz							

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Measurement Data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL : 0265RF Condition

Job No. : 0265RF Test Mode : PC mode Test Engineer: Chen

58 C	rugineer:	Chen							
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	B	dBuV/m	dBuV/m	B	
1	119.856	42.89	12.48	1.36	29.57	27.16	43.50	-16.34	QP
2	143.830	47.50	10.22	1.53	29.44	29.81	43.50	-13.69	QP
3	207.850	42.36	12.80	1.89	29.28	27.77	43.50	-15.73	QP
4	216.024	43.98	13.07	1.93	29.36	29.62	46.00	-16.38	QΡ
5	336.035	38.45	15.99		29.80				-
6	815.968				29.18				-

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL Condition

0265RF Job No. Test Mode Test Enginee : PC mode

Digitioer.	CHOIL							
	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m	dВ	dВ	dBuV/m	dBuV/m	dB	
31.399	41.48	14.32	0.57	30.09	26.28	40.00	-13.72	QP
96.099	34.88	14.90	1.16	29.72	21.22	43.50	-22.28	QP
119.856	38.20	12.48	1.36	29.57	22.47	43.50	-21.03	QP
143.830	41.41	10.22	1.53	29.44	23.72	43.50	-19.78	QP
383.932	36.06	16.68	2.78	29.57	25.95	46.00	-20.05	QP
912.862	29.34	23.18	4.90	29.10	28.32	46.00	-17.68	QP
	Freq MHz 31.399 96.099 119.856 143.830 383.932	Freq Level MHz dBuV 31.399 41.48 96.099 34.88 119.856 38.20 143.830 41.41 383.932 36.06	ReadAntenna Freq Level Factor MHz dBuV dB/m 31.399 41.48 14.32 96.099 34.88 14.90 119.856 38.20 12.48 143.830 41.41 10.22 383.932 36.06 16.68	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 31.399 41.48 14.32 0.57 96.099 34.88 14.90 1.16 119.856 38.20 12.48 1.36 143.830 41.41 10.22 1.53 383.932 36.06 16.68 2.78	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 31.399 41.48 14.32 0.57 30.09 96.099 34.88 14.90 1.16 29.72 119.856 38.20 12.48 1.36 29.57 143.830 41.41 10.22 1.53 29.44 383.932 36.06 16.68 2.78 29.57	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 31.399 41.48 14.32 0.57 30.09 26.28 96.099 34.88 14.90 1.16 29.72 21.22 119.856 38.20 12.48 1.36 29.57 22.47 143.830 41.41 10.22 1.53 29.44 23.72 383.932 36.06 16.68 2.78 29.57 25.95	ReadAntenna Cable Preamp Limit Level Factor Level Line Level Factor Level Factor Level Line Level Factor Leve	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL Condition

Job No. : 0265RF Test Mode Test Engin : PC mode

est	Engineer:	Chen							
		ReadAnt enna		Cable	Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	āB		dBuV/m	dBuV/m	<u>dB</u>	
1	2295.000	39, 15	27. 97	5. 28	34.13	38, 27	74.00	-35, 73	Peak
2	3120.000				33.18				
3	3585.000	38.97	29.12	7.13	32.66	42.56	74.00	-31.44	Peak
4	4560.000	34.56	31.44	8.39	31.96	42.43	74.00	-31.57	Peak
5	5065.000	33.99	32.01	8.85	32.21	42.64	74.00	-31.36	Peak
6	5780.000	31.54	32.61	9.90	32, 26	41.79	74.00	-32.21	Peak

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL Condition

: 0265RF Job No. Test Mode : PC mode Test Engineer: Chen

	Freq		Antenna Factor					Over Limit	
	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4 5	1255.000 2570.000 3595.000 4360.000 5075.000	40.48 39.96 38.38 35.72 33.69	29.13 30.97	7.15 8.21	33.82 32.64	42.02 43.03	74.00 74.00 74.00	-34.59 -31.98 -30.97	Peak Peak Peak
6	5805.000		32.66		32.24				

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15030026501

----- end-----