

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (ODD)

B.Tech-Computer Science & Engineering

Test: CLA-T1 Date: 14.09.2022

Course Code & Title: 18CSC301T & Formal Languages and Automata Theory

Duration: 1 period

Year & Sem: III Year /V Sem Max. Marks: 25

SET-B

Course articulation matrix:

PLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO 1	M	H	-	M	L	-	-	-	L	L	-	H	-	-	-
CO2	M	H	L	M	L	-	-	-	M	L	-	H	-	-	-
CO3	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO4	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO5	H	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO6	L	H	-	H	L	-	-	-	L	L	-	H	-	-	-

	Part - A					
Insti	ructions: Answer all		,			
Q.	Question	Ma	BL	\mathbf{C}	P	PI
No		rks		O	O	Code
1	All prime numbers are odd. But integer 2 is both prime and even. This can be proved by	1	1	1	1	1.6.1
	a) Proof by counter example					
	b) Proof by contradiction					
	c) Proof by mathematical induction					
	d) Proof by deduction					
2	I: $\Sigma = \{ *, ^, \#, a, 0 \}$ II: $w = \{101, abccc, *yr7. Which of the following \}$	1	2	1	1.	
	holds true?				6.	
					1	
	a) I denotes symbols while w denotes alphabets					
	b) I denote alphabets and II denotes strings					
	c) I denotes alphabets but II is not words					
	d) I does not denote symbols but II denote words					
3	Let B={0,1}. What can be inferred about the operation that generated	1	3	2	2	2.6.2
	the following strings as output? Strings={ 0,1,00, 11, 01,10,111, 1010,					
	1010101,}					
	a) Negative closure b) Positive closure					
	c) Closure d) Klenn's closure					
4	What type of language does the RE, R=(a+b)* aaa (a+b)* represent?	1	2	2	2	2.6.2
	a) Language that accepts strings that contains ab as substring					
	b) Language that accepts strings that starts with a					
	c) Language that accepts strings that starts with b					

	d) Language that accepts strings has aaa as substring					
5	What can be told about the computing complexity of NFA, DFA and	1	2	2	1	1.6.1
	ε-NFA?	_	_	_	•	11011
	a) DFA is more computationally expensive than NFA					
	b) NFA is more expensive than DFA					
	c) NFA is more expensive than ε-NFA					
	d) The complexity is same for all					
6	Which of the following is false?	1	2	2	1	1.5.1
	a) Both ε and φ indicates no transition between two states	1	_	_		1.0.1
	b) Only ε indicates no transition between two states					
	 c) Only φ indicates no transition between two states 					
	 d) Both ε and φ indicates presence of transition between two states 					
	a) Bom o and a maneures presence of transform settless two states					
7	Let S and T be language over $=\{a,b\}$ represented by the regular	1	3	2	2	2.7.1
	expressions $(a+b^*)^*$ and $(a+b)^*$, respectively. Which of the following	_		_		
	is true?					
	a) S is a subset of T					
	b) T is a subset of S					
	c) S=T					
	d) S and T don't have anything in common					
8	What is the complement of the language accepted by the FSM?	1	4	2	2	2.6.3
	→ ()					
	3					
	a) φ b) a c) ε d) a and ε					
9	Which of the following is the transition function of NFA?	1	2	2	2	2.6.2
	a) $Q \times (\Sigma \cup \varepsilon) \rightarrow 2^{Q}$					
	b) $Q \times (\Sigma \cup \varepsilon) \rightarrow Q$					
	c) $Q \times \Sigma \rightarrow 2^{\circ}Q$					
	d) $Q \times \Sigma \rightarrow Q$					
10	I: For every ε-NFA we can construct an equivalent DFA	1	2	2	2	2.6.3
	II: A language recognized by a FSA may or may not be accepted by					
	regular expression					
	a) Only II is true b) Only I is true					
	c)Both are false d) Both are true					
4 -	Part-B (1 x 5=5 marks)	Ι -		_		
11	Mithra and Kanira are playing a game. They are asked to recite strings	5	6	2	6	6.3.1
	in such a way that the words start and end with same letter on the					
	inputs {a, b, c}. Create a DFA for the same with a special mention to 5					
	tuple structure.					
10	Part-C (1 x 10=10 marks)	10				412
12	Give the equivalent regular expression for the given DFA:	10	5	2	4	4.1.3
	\rightarrow A \xrightarrow{a} \xrightarrow{a} (B)					
	h b					
	D /a					
	\bowtie					
	a, b					
L			·	l		

Register number _____

Approved by Audit Professor/ Course Coordinator

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (ODD)

B.Tech-Computer Science & Engineering

Test: CLA-T1 Date: 14.09.2022

Course Code & Title: 18CSC301T & Formal Languages and Automata Theory

Duration: 1 period

Year & Sem: III Year /V Sem Max. Marks: 25

SET-B

Course articulation matrix:

PLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO 1	M	H	-	M	L	-	-	-	L	L	-	H	-	-	-
CO2	M	H	L	M	L	-	-	-	M	L	-	H	-	-	-
CO3	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO4	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO5	H	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO6	L	H	-	H	L	-	-	-	L	L	-	H	-	-	-

	Part - A					
Insti	ructions: Answer all					
Q.	Question	Ma	BL	C	P	PI
No		rks		0	O	Code
1	All prime numbers are odd. But integer 2 is both prime and even. This can be proved by a) Proof by counter example b) Proof by contradiction	1	1	1	1	1.6.1
	c) Proof by mathematical inductiond) Proof by deductionAns: a)					
2	 I: Σ={*,^,#, a, 0} II: w= {101, abccc, *yr7. Which of the following holds true? a) I denotes symbols while w denotes alphabets b) I denote alphabets and II denotes strings c) I denotes alphabets but II is not words d) I does not denote symbols but II denote words Ans: b) 	1	2	1	1. 6. 1	
3	Let B={0,1}. What can be inferred about the operation that generated the following strings as output? Strings={0,1,00, 11, 01,10,111, 1010, 1010101,} a) Negative closure b) Positive closure c) Closure d) Klenn's closure	1	3	2	2	2.6.2

	Ans: b)					
4	What type of language does the RE, $R=(a+b)^*$ aaa $(a+b)^*$ represent?	1	2	2	2	2.6.2
	a) Language that accepts strings that contains ab as substring	_	_	_	_	
	b) Language that accepts strings that starts with a					
	c) Language that accepts strings that starts with b					
	d) Language that accepts strings has aaa as substring					
	Ans: d)					
5	What can be told about the computing complexity of NFA, DFA and	1	2	2	1	1.6.1
	ε-NFA?					
	a) DFA is more computationally expensive than NFA					
	b) NFA is more expensive than DFA					
	c) NFA is more expensive than ε-NFA					
	d) The complexity is same for all					
	Ans: b)					
6	Which of the following is true?	1	2	2	1	1.5.1
	a) Both ε and φ indicates no transition between two states					
	b) Only ε indicates no transition between two states					
	c) Only φ indicates no transition between two states					
	d) Both ϵ and ϕ indicates presence of transition between two states					
	Ans: c)					
7	Let S and T be language over $= \{a,b\}$ represented by the regular	1	3	2	2	2.7.1
	expressions (a+b*)* and (a+b)*, respectively. Which of the following					
	is true?					
	a) S is a subset of T					
	b) T is a subset of S					
	c) S=T					
	d) S and T don't have anything in common					
	Ans: c)					
8	What is the complement of the language accepted by the FSM?	1	4	2	2	2.6.3
	$a \qquad \epsilon$					
	a) φ b) a c) ε d) a and ε					
	Ans: d)					
9	Which of the following is the transition function of NFA?	1	2	2	2	2.6.2
	a) $Q \times (\Sigma \cup \varepsilon) \rightarrow 2^{\circ}Q$	1	_	_		#•U•#
	b) $Q \times (\Sigma \cup \varepsilon) \rightarrow Q$					
	c) $Q \times \Sigma \rightarrow 2^{\circ}Q$					
	d) $Q \times \Sigma \rightarrow Q$					
	Ans: c)					
10	I: For every ε-NFA we can construct an equivalent DFA	1	2	2	2	2.6.3
	II: A language recognized by a FSA may or may not be accepted by	_	_		-	
	regular expression					
	a) Only II is true b) Only I is true					
	c)Both are false d) Both are true					
	Ans: b)					
	Part-B (1 x 5=5 marks)				•	
11	Mithra and Kanira are playing a game. They are asked to recite strings	5	6	2	6	6.3.1
	in such a way that the words start and end with same letter on the					

	inputs {a, b, c}. Create a DFA for the same with a special mention to 5					
	tuple structure.					
	b ₁					
	of a sola					
	a for					
	1 DIC					
	+90 b G b					
	aic (GF)					
	(Th) 20					
	GIB CO					
	$\mathbf{p}_{\text{out}} \in \mathcal{C}(1 + 10 + 10 + 10 + 10)$					
	Part-C (1 x 10=10 marks)	1				
12	Give the equivalent regular expression for the given DFA:	10	5	2	4	4.1.3
12		10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA:	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B b a	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B b a B b a B b a	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C C A B C A B C A B C A B C A B C A A B C A B C A B C A B C A B C A B C A B B B B B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C B C C B C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A A B C A A C A A C A A C C A A	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A B C A B C A B C A B C A B C C A B C C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A B C A B C A B C A B C A B C C A B C C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B C C a, b Eliminate B C C A B C C A B C C A A B C C A A B C C A A B C C A A A B C C A A A B C C A A A A A A A A A A A	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A B B C A B C C A B C C A B C C A B C C A B C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A B B C A B C C A B C C A B C C A B C C A B C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B C A B B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C C A B C C A B C C C A B C C C A B C C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3
12	Give the equivalent regular expression for the given DFA: A B B B C A B B C A B C C A B C C A B C C A B C C A B C C A B C C C C C C C C C C C C	10	5	2	4	4.1.3

Register number _____

Approved by Audit Professor/ Course Coordinator