第六章 进化策略

1. 引言

- ➤ Evolutionary Strategy, 简称ES
- ➤ 最初是由I. Rechenberg和H.-P. Schwefel提出
- > 主要应用于求解数值优化问题
- > 主要特点
 - 快速
 - 相对较多的理论
 - 自适应(变异)参数
 - 强调个体级的行为变化

2. 小例子

- \triangleright 问题: minimize $f: \mathbb{R}^n \to \mathbb{R}$
- - 从**R**ⁿ直接产生一个实数向量作为初始染色体
 - 种群大小为1
 - 每次迭代只利用变异运算产生一个子代染色体
 - 种群更新时采用贪婪策略

2. 小例子

- \triangleright Set t=0
- \triangleright Create initial chromosome $x^t = (x_1^t, ..., x_n^t)$
- > REPEAT UNTIL (TERMIN. COND is satisfied) DO
 - ightharpoonup Draw \mathbf{z}_i from a normal distribution for all $i=1,\ldots,n$
 - $> y_i^t = x_i^t + z_i$
 - ightharpoonup IF $f(x^t) < f(y^t)$ THEN $x^{t+1} = x^t$
 - \triangleright ELSE $x^{t+1} = y^t$
 - \triangleright Set t = t + 1
- > END DO

(1+1)ES算法的伪代码

2. 小例子

- - 均值 ₹ 设为 0
 - 方差 σ 被称为变异步长
- σ 值根据 "1/5 success rule" 进行重置,即根据 如下公式每k次迭代更新一下 σ 的取值
 - $\sigma = \sigma/c$ 如果 ps > 1/5
 - $\sigma = \sigma \cdot c$ 如果 ps < 1/5
 - $\sigma = \sigma$ $\mu R ps = 1/5$

这里 ps 表示成功变异次数的比例, $0.8 \le c \le 1$

1. 编码方法

- > 染色体由三个部分组成
 - 解变量: x₁,...,x_n
 - 策略参数
 - ✓ 变异步长: $\sigma_1, ..., \sigma_n$
 - ✓ 旋转角度: α₁,...,α_{nα}
- 每一个部分并不是总是需要
- > 完整形式: $(x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k)$ 这里 k = n(n-1)/2 (i, j 对的数量)

2. 变异算子

- > 主要机制
 - 根据正态分布产生的随机扰动更新染色体
 - $x_i' = x_i + N(0, \sigma)$
- > 关键思想
 - σ 是染色体编码 $(x_1,...,x_n,\sigma)$ 的一部分
 - σ 也需要变异为 σ' (见后文)
- ➤ 这样变异步长_σ同解变量_x一同进化迭代

2. 变异算子

- ▶ 最终变异效果: $(x,\sigma) \rightarrow (x',\sigma')$
- > 执行顺序很重要
 - 先执行 $\sigma \rightarrow \sigma'$
 - 后执行 $x \rightarrow x' = x + N(0, \sigma')$
- > 改变执行顺序会导致变异运算失效

变异算子示例: 只含一个变异率的非相关变异

- 染色体: (x₁,...,x_n,σ)
- \triangleright 先执行 $\sigma' = \sigma \cdot exp(\tau \cdot N(0,1))$
- \triangleright 后执行 $x_i' = x_i + \sigma' \cdot N(0,1)$
- > 学习率: $\tau \propto 1/n^{1/2}$
- ightharpoonup 变异率边界值: $\sigma' < \varepsilon_0 \Rightarrow \sigma' = \varepsilon_0$

Mutants with Equal Likelihood

Chromosome: (x, y, σ)

Circle: mutants having the same chance to be created

变异算子示例:含有n个变异率的非相关变异

- \triangleright 染色体: $(x_1, ..., x_n, \sigma_1, ..., \sigma_n)$
- \triangleright 后执行 $x_i' = x_i + \sigma_i' \cdot N(0,1)$
- 两个学习率参数
 - τ' : 总体学习率,通常 $\tau' \propto 1/(2n)^{1/2}$
 - τ : 坐标位学习率,通常 $\tau \propto 1/(2 n^{1/2})^{1/2}$
- ightarrow 变异率边界值: $\sigma_i' < \varepsilon_0 \Longrightarrow \sigma_i' = \varepsilon_0$

Mutants with Equal Likelihood

Chromosome: $(x, y, \sigma_x, \sigma_y)$

Ellipse: mutants having the same chance to be created

变异算子示例: 相关性变异

- \triangleright 染色体: $(x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k)$
- ▶ 协方差矩阵 € 定义如下:
 - $c_{ii} = \sigma_i^2$
 - $c_{ij} = 0$ 如果i和j不相关
 - $c_{ij} = \frac{1}{2} \cdot (\sigma_i^2 \sigma_j^2) \cdot tan(2 \alpha_{ij})$ 如果i和j相关

变异算子示例: 相关性变异

- ightharpoonup 先执行 $\sigma'_i = \sigma_i \cdot exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$
- \triangleright 再执行 $\alpha'_i = \alpha_i + \beta \cdot N(0,1)$
- \triangleright 后执行 x' = x + N(0, C')
 - x: 染色体向量 $(x_1,...,x_n)$
 - C': 对 α 执行变异后的协方差矩阵
- ▶ 参数设置:
 - $\tau' \propto 1/(2 n)^{1/2}$, $\tau \propto 1/(2 n^{1/2})^{1/2}$, $\beta \approx 5^{\circ}$
- ▶ 参数边界值:
 - $\sigma_i' < \varepsilon_0 \Longrightarrow \sigma_i' = \varepsilon_0$
 - $|\alpha'_j| > \pi \Rightarrow \alpha'_j = \alpha'_j 2 \cdot \pi \cdot sign(\alpha'_j)$

Mutants with Equal Likelihood

Chromosome: $(x, y, \sigma_x, \sigma_y, \alpha_{x,y})$

Ellipse: mutants having the same chance to be created

3. 重组算子

> 利用两个父代染色体产生一个子代染色体

	Two fixed parents	Two parents selected for each i
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary
z_i is x_i or y_i chosen randomly	Local discrete	Global discrete

4. 选择策略

- > 父代个体总是利用均匀随机分布来选择
- > 这意味着ES中父代染色体选择是无偏的,也就是说每个染色体都有相同的概率被选中
- ➤ 注意,在ES中,"父代个体"通常指整个种群 (在GA中:被选择进行遗传操作的群体成员)

5. 种群更新策略

- μ个父代个体执行变异和重组操作后产生λ个子代,通过种群更新策略产生下一代父代种群
- 两种常用的种群更新策略
 - (μ, λ)更新策略:: 仅从λ 个子代中选择μ个最好个体构成下一代父种群
 - $(\mu + \lambda)$ 更新策略:从当前所有的父代和子代(总计 $\mu + \lambda$ 个个体)中选择 μ 个最好个体构成下一代父种群

- 5. 种群更新策略
 - 通常(μ, λ)更新策略被认为更好
 - 使用(μ+λ) 更新策略可能会导致差的变异率σ 被继 承
 - (μ, λ) -ES中选择压力通常要设得很高 (通常 $\lambda \approx 7 \cdot \mu$)

ES算法实验(选作)

Ackley Function

The Ackley function (here used with n=30)

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 - e$$

- **ES** design
 - Representation:
 - $\sqrt{-30} < x_i < 30$
 - ✓ 30 step size
 - (30, 200) selection
 - Termination: after 200000 fitness evaluations
 - Results: average best solution is $7.48 \cdot 10^{-8}$