METODE NUMERIK BRACKET METHOD ROOT FINDER (BISECTION, REGULA-FALSI, BRENT)

KELOMPOK:

Betranz Leenando – 2201020079

M. Aditya Egi Dwinata – 2201020141

Safitri Wulandari - 2201020085

Seffi Rozahana – 2201020080

Sapar Hidayat. S – 2201020003

TEKNIK INFORMATIKA FAKULTAS TEKNIK DAN TEKNOLOGI KEMARITIMAN UNIVERSITAS MARITIM RAJA ALI HAJI 2024-2025

1. Struktur Folder Project

```
1 BRF/
2 app.py
3 templates/
4 index.html
5 static/
6 js/
7 main.js
8 css/
9 style1.css
10
```

2. Tampilan Aplikasi Web:

a. Bisection Method

unction:			
sin(x) - 0.5			
nterval XL :			
0			
nterval XU :			
2			
olerance:			
0.00001			
Max Iterations:			
30			
Method:			
isection Method 🗸			

Iteration 1

Formula:
$$x_r = \frac{xl+xu}{2} = \frac{0.8+2.0}{2} = 1.000000$$

Update: $f(xl) \times f(x_r) = -0.500000 \times 0.341471$

Iteration 2

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.9+1.0}{2} = 0.500000$

Update: $f(xl) \times f(x_r) = -0.500000 \times -0.020574$

Iteration 3

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+1.0}{2} = 0.750000$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.181639$

Iteration 4

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+0.025}{2} = 0.625000$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.181639$

Iteration 5

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+0.025}{2} = 0.525000$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.085997$

Iteration 5

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+0.025}{2} = 0.502500$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.033303$

Iteration 6

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+0.0259}{2} = 0.531250$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.006611$

Iteration 7

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.5+0.0312}{2} = 0.515625$

Update: $f(xl) \times f(x_r) = -0.020574 \times 0.006921$

Iteration 8

Formula: $x_r = \frac{xl+xu}{2} = \frac{0.516050+0.0312}{2} = 0.523438$

Update: $f(xl) \times f(x_r) = -0.006921 \times -0.006921$

Iteration 9

Formula:
$$x_r = rac{xl + xu}{2} = rac{0.5234375 + 0.53125}{2} = 0.527344$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes 0.003240$$

Iteration 10

Formula:
$$x_r = rac{zl + xu}{2} = rac{0.5234375 + 0.52734375}{2} = 0.525391$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes 0.001551$$

Iteration 11

Formula:
$$x_r = rac{xl + xu}{2} = rac{0.5234375 + 0.525390625}{2} = 0.524414$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes 0.000706$$

Iteration 12

Formula:
$$x_r = \frac{xl + xu}{2} = \frac{0.5234375 + 0.5244140625}{2} = 0.523926$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes 0.000283$$

Iteration 13

Formula:
$$x_r = \frac{xl + xu}{2} = \frac{0.5234375 + 0.52392578125}{2} = 0.523682$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes 0.000072$$

Iteration 14

Formula:
$$x_r = \frac{xl + xu}{2} = \frac{0.5234375 + 0.523681640625}{2} = 0.523560$$

Update:
$$f(xl) imes f(x_r) = -0.000140 imes -0.000034$$

Iteration 15

Formula:
$$x_r = \frac{xl + xu}{2} = \frac{0.5235595703125 + 0.523681640625}{2} = 0.523621$$

Update:
$$f(xl) imes f(x_r) = -0.000034 imes 0.000019$$

Iteration 16

Formula:
$$x_r = \frac{xl + xu}{2} = \frac{0.5235595703125 + 0.52362060546875}{2} = 0.523590$$

Update:
$$f(xl) imes f(x_r) = -0.000034 imes -0.000008$$

Hasil Iterasi									
ITERATION	XL	χυ	XR	F(XL)	F(XU)	F(XR)	F(XL) * F(XR)		
1	0.000000	2.000000	1.000000	-0.500000	0.409297	0.341471	-0.170735		
2	0.000000	1.000000	0.500000	-0.500000	0.341471	-0.020574	0.010287		
3	0.500000	1.000000	0.750000	-0.020574	0.341471	0.181639	-0.003737		
4	0.500000	0.750000	0.625000	-0.020574	0.181639	0.085097	-0.001751		
5	0.500000	0.625000	0.562500	-0.020574	0.085097	0.033303	-0.000685		
6	0.500000	0.562500	0.531250	-0.020574	0.033303	0.006611	-0.000136		
7	0.500000	0.531250	0.515625	-0.020574	0.006611	-0.006921	0.000142		
8	0.515625	0.531250	0.523438	-0.006921	0.006611	-0.000140	0.000001		
9	0.523438	0.531250	0.527344	-0.000140	0.006611	0.003240	-0.000000		
10	0.523438	0.527344	0.525391	-0.000140	0.003240	0.001551	-0.000000		
11	0.523438	0.525391	0.524414	-0.000140	0.001551	0.000706	-0.000000		
12	0.523438	0.524414	0.523926	-0.000140	0.000706	0.000283	-0.000000		
13	0.523438	0.523926	0.523682	-0.000140	0.000283	0.000072	-0.000000		
14	0.523438	0.523682	0.523560	-0.000140	0.000072	-0.000034	0.000000		
15	0.523560	0.523682	0.523621	-0.000034	0.000072	0.000019	-0.000000		
16	0.523560	0.523621	0.523590	-0.000034	0.000019	-0.000008	0.000000		

Group : Numerical Methods						
NAMA	NIM					
Betranz Leenando	2201020079					
M. Aditya Egi Dwinata	2201020141					
Safitri Wulandari	2201020085					
Seffi Rozahana	2201020080					
SAPAR HIDAYAT. S	2201020003					

b. Regula-Falsi Method

Formula:
$$x_r = xu - rac{f(xu)(xu-xl)}{f(xu)-f(xl)} = 1.099750$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.391094$$

Iteration 2

Formula:
$$x_r=xu-rac{f(xu)(xu-xl)}{f(xu)-f(xl)}=0.617079$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.078655$$

Iteration 3

Formula:
$$x_{ au}=xu-rac{f(xu)(xu-xl)}{f(xu)-f(xl)}=0.533201$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.008292$$

Iteration 4

Formula:
$$x_r = xu - rac{f(xu)(xu-xl)}{f(xu)-f(xl)} = 0.524502$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.000782$$

Iteration 5

Formula:
$$x_{r}=xu-rac{f(xu)(xu-xl)}{f(xu)-f(xl)}=0.523683$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.000073$$

Iteration 6

Formula:
$$x_r = xu - rac{f(xu)(xu-xl)}{f(xu)-f(xl)} = 0.523607$$

Update:
$$f(xl) imes f(x_r) = -0.500000 imes 0.000007$$

Hasil Iterasi									
ITERATI	ON	XL	хu	XR	F(XL)	F(XU)	F(XR)	F(XL) * F(XR)	
1		0.000000	2.000000	1.099750	-0.500000	0.409297	0.391094	-0.195547	
2		0.000000	1.099750	0.617079	-0.500000	0.391094	0.078655	-0.039328	
3		0.000000	0.617079	0.533201	-0.500000	0.078655	0.008292	-0.004146	
4		0.000000	0.533201	0.524502	-0.500000	0.008292	0.000782	-0.000391	
5		0.000000	0.524502	0.523683	-0.500000	0.000782	0.000073	-0.000036	
6		0.000000	0.523683	0.523607	-0.500000	0.000073	0.000007	-0.000003	

c. Brent's Method

Iteration 1

Formula:
$$x_r = \operatorname{brentq}(f(x), 0.0, 2.0) = 0.523599$$

Update:
$$f(xl) imes f(xr) = -0.500000 imes 0.000000$$

Hasil	Iterasi

ITERATION	XL	χU	XR	F(XL)	F(XU)	F(XR)	F(XL) * F(XR)
1	0.000000	2.000000	0.523599	-0.500000	0.409297	0.000000	-0.000000