Sums, products, ratios of limits (Section 9)

Theorem (Theorems 9.3, 9.4, 9.6 from textbook)

Suppose $\lim s_n = s$ and $\lim t_n = t$. Then:

- $\lim(s_n + t_n) = s + t$
- $\lim(as_n) = as$, for any $a \in \mathbb{R}$.
- $\lim(s_nt_n)=st.$
- If, in addition, $t \neq 0$, then $\lim \frac{s_n}{t_n} = \frac{s}{t}$.

If $t \neq 0$, then $t_n \neq 0$ for n sufficiently large.

Indeed, find $N \in \mathbb{R}$ s.t. $|t_n - t| < |t|$ for n > N.

By Triangle Inequality, for such n, $|t_n| \ge |t| - |t - t_n| > |t| - |t| = 0$.

Proof of $\lim(s_n + t_n) = s + t$, where $s = \lim s_n$, $t = \lim t_n$

We need to show that, $\forall \varepsilon > 0$, $\exists N \in \mathbb{R}$ s.t. $|(s_n + t_n) - (s + t)| < \varepsilon$ whenever n > N.

Know: $|s_n - s|$, $|t_n - t|$ are small for n large. Need to find an upper estimate for $|(s_n + t_n) - (s + t)|$ in terms of $|s_n - s|$, $|t_n - t|$.

By Triangle Inequality, $|(s_n + t_n) - (s + t)| \le |s_n - s| + |t_n - t|$.

Find $N_1 \in \mathbb{R}$ s.t., for any $n > N_1$, $|s_n - s| < \frac{\varepsilon}{2}$.

Find $N_2 \in \mathbb{R}$ s.t., for any $n > N_2$, $|t_n - t| < \frac{\varepsilon}{2}$.

For
$$n > N = \max\{N_1, N_2\}$$
, $\left| (s_n + t_n) - (s + t) \right| \leq |s_n - s| + |t_n - t| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Proof of $\lim(s_n t_n) = st$, where $s = \lim s_n$, $t = \lim t_n$

Need to show: $\forall \varepsilon > 0 \; \exists \; N \in \mathbb{R} \; \text{s.t.} \; |s_n t_n - st| < \varepsilon \; \text{for} \; n > N.$ Find an upper estimate for $|s_n t_n - st|$ in terms of $|s_n - s|$, $|t_n - t|$. Write $s_n t_n - st = s_n t_n - st_n + st_n - st = (s_n - s)t_n + s(t_n - t)$, hence $|s_n t_n - st| \leq |s_n - s| |t_n| + |s| |t_n - t|$.

 (t_n) is bounded; find A > 0 s.t. $|t_n| \leqslant A$ for any n.

Find
$$N_1 \in \mathbb{R}$$
 s.t., for any $n > N_1$, $|s_n - s| < \frac{\varepsilon}{2A}$.
Find $N_2 \in \mathbb{R}$ s.t., for any $n > N_2$, $|t_n - t| < \frac{\varepsilon}{2|s|+1}$.

For
$$n > N = \max\{N_1, N_2\}$$
, $|s_n t_n - st| \leq |s_n - s| |t_n| + |s| |t_n - t| < \frac{\varepsilon}{2A} \cdot A + \frac{\varepsilon}{2|s|+1} \cdot |s| < \varepsilon$.

Squeeze Theorem

Theorem

If $a_n \leqslant s_n \leqslant b_n$ for any n, and $\lim a_n = s = \lim b_n$, then $\lim s_n = s$.

Corollary

If $0 \leqslant |s_n| \leqslant t_n$ for any n, and $\lim t_n = 0$, then $\lim s_n = 0$.

Proof of Theorem and Corollary: Exercise 8.5 (Homework).

Corollary

 $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.

Sketch of a proof: $\lim s_n = 0$ iff $\forall \varepsilon > 0 \ \exists N \in \mathbb{R}$ s.t. $|s_n| < \varepsilon$ for n > N. This is equivalent to $\lim |s_n| = 0$.

Basic examples (Theorem 9.7)

- $\lim \frac{1}{n^p} = 0 \text{ for } p > 0.$
- **b** $\lim a^n = 0 \text{ if } |a| < 1.$
- 1 $\lim a^{1/n} = 1$ if a > 0.

Theorem (Binomial expansion)

For
$$a, b \in \mathbb{R}$$
 and $n \in \mathbb{N}$, $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$
 is the numbers of ways to select k objects out of n (order not important). Convention: $0! = 1$.

Examples:
$$\binom{n}{0} = \frac{n!}{0! \cdot n!} = 1$$
, $\binom{n}{1} = \frac{n!}{1! \cdot (n-1)!} = n$, $\binom{n}{2} = \frac{n!}{2! \cdot (n-2)!} = \frac{n(n-1)}{2}$, ...

Basic examples: some proofs.

Proof of $\lim a^n = 0$ **if** |a| < 1.

Case of a = 0 is easy, so assume 0 < |a| < 1.

Recall: $\lim s_n = 0$ iff $\lim |s_n| = 0$. It suffices to show that $\lim |a|^n = 0$.

Let
$$b=|a|^{-1}-1$$
, then $b>0$. $|a|=\frac{1}{1+b}$. $|a|^n=\frac{1}{(1+b)^n}$.

$$(1+b)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} b^k > \binom{n}{1} b = nb$$

$$\frac{1}{(1+b)^n} \leqslant \frac{1}{n} \cdot \frac{1}{b} \xrightarrow{n} 0$$
, hence, by Squeeze Theorem, $\frac{1}{(1+b)^n} = |a|^n \xrightarrow{n} 0$.

Proof of $\lim n^{1/n} = 1$.

Let $s_n = n^{1/n} - 1$ (so $s_n > 0$); we need to prove $\lim s_n = 0$.

We have $n=\left(1+s_n\right)^n=\sum_{k=0}^n\binom{n}{k}1^{n-k}s_n^k\geqslant 1+\frac{n(n-1)}{2}s_n^2$ (here we are accounting for the terms with k=0 and k=2).

$$n-1\geqslant rac{n(n-1)}{2}s_n^2$$
, so $s_n\leqslant rac{\sqrt{2}}{\sqrt{n}}$.

By (a), $\lim \frac{1}{\sqrt{n}} = 0$. By Squeeze Theorem, $\lim s_n = 0$.

Example

Compute $\lim \frac{n^3 - 4n}{2n^3 + 1}$.

$$\frac{n^3 - 4n}{2n^3 + 1} = \frac{n^3(1 - 4/n^2)}{n^3(2 + 1/n^3)} = \frac{1 - 4/n^2}{2 + 1/n^3}.$$

$$\lim \left(1 - \frac{4}{n^2}\right) = 1 - 4 \lim \frac{1}{n^2} = 1,$$

$$\lim \left(2 + \frac{1}{n^3}\right) = 2 + \lim \frac{1}{n^3} = 2.$$

By the quotient rule of limits,
$$\frac{n^3 - 4n}{2n^3 + 1} = \frac{\lim(1 - 4/n^2)}{\lim(2 + 1/n^3)} = \frac{1}{2}$$
.

Sequences diverging to $\pm \infty$

Definition (Definition 9.8)

We say that $\lim s_n = +\infty$ (the sequence (s_n) diverges to $+\infty$) if $\forall A$ $\exists N \in \mathbb{R} \text{ s.t. } s_n > A \text{ for } n > N. \text{ lim } s_n = -\infty \text{ (divergence to } -\infty) \text{ is}$ defined similarly.

Example:
$$\lim \frac{n^2 - n + 2}{n + 1} = +\infty$$
.

Need to show:
$$\forall A > 0 \exists N \in \mathbb{R} \text{ s.t. } \frac{n^2 - n + 2}{n + 1} > A \forall n > N.$$

Note that, for
$$n \ge 2$$
, $\frac{n^2 - n + 2}{n + 1} > \frac{n^2 - n^2/2}{2n} = \frac{n}{4}$.
Let $N = \max\{2, 4A\}$. If $n > N$, then $\frac{n^2 - n + 2}{n + 1} > \frac{n}{4} > A$.

Let
$$N = \max\{2, 4A\}$$
. If $n > N$, then $\frac{n^2 - n + 2}{n + 1} > \frac{n}{4} > A$.

When is \lim equal to $+\infty$?

Theorem (Theorem 9.9 – product rule for divergence to $+\infty$)

If $\lim s_n = +\infty$, and $\lim t_n > 0$ (positive real number or $+\infty$), then $\lim s_n t_n = +\infty$.

Question. Suppose $\lim s_n = +\infty$, $t_n > 0 \ \forall n$, and $\lim t_n = 0$. What can we say about $\lim s_n t_n$?

 $\lim s_n t_n$ need not exist; if $\lim s_n t_n$ exists, it can be $0, +\infty$, or any positive real number (try to come up with examples!).

Theorem (Theorem 9.10)

If (s_n) are positive numbers, then $\lim s_n = +\infty$ iff $\lim \frac{1}{s_n} = 0$.

Monotone sequences (Section 10)

This material will be repeated next time.

Definition (Increasing, decreasing, monotone sequences)

A sequence (s_n) is called increasing (decreasing) if $s_n \leqslant s_{n+1}$ (resp. $s_n \geqslant s_{n+1}$) for any n.

A sequence is monotone if it is either increasing or decreasing.

Our "increasing" sequences are sometimes called "nondecreasing." We do not require $s_n < s_{n+1}$. Similarly, our "decreasing" sequences are also referred to as "nonincreasing."

Examples. 1. $x_n = \sum_{k=1}^n \frac{1}{k^2}$. This sequence is increasing: $x_{n+1} = x_n + \frac{1}{(n+1)^2} > x_n$ for any n.

2. $y_n = \frac{(-1)^n}{n^2}$. This sequence is not monotone: $y_{n+1} > y_n$ if n is odd, $y_{n+1} < y_n$ if n is even.