שיעור 9 מימד ובסיס

בסיס של מרחב וקטורי

9.1 הגדרה: (בסיס)

ימת: מקיימת אם איס של בסיס נקראת עקיימת: $\mathbf{v}_1,\dots,\mathbf{v}_n\in V$ היא מקיימת:

- בלתי תלוים לינארית. $\mathbf{v}_1, \dots, \mathbf{v}_n$ (1
 - $.sp(v_1,\ldots,v_n)=V$ (2

דוגמא.

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

בסיס של \mathbb{F}^n (בסיס הסטנדרטי).

הוכחה.

ל. בת"ל. e_1, \ldots, e_n בת"ל.

$$k_1 e_1 + k_2 e_2 + \dots + k_n e_n = \overline{0}$$

$$k_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + k_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $\downarrow \downarrow$

$$\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad k_1 = 0, k_2 = 0, \quad k_n = 0 \ .$$

לכן e_1, \ldots, e_n בת"ל.

$$.\mathsf{sp}(e_1,\ldots,e_n)=\mathbb{F}^n$$
 צ"ל כי (2

$$\mathbf{v} = \mathrm{sp}(e_1, \dots, e_n)$$
 צ"ל י $\mathbf{v} = egin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{F}^n$ נקח וקטור שרירותי

$$k_1e_1 + \dots k_ne_n = \mathbf{v}$$

ירמיהו מילר חדו"א 1 למדמ"ח תשפ"ג סמסטר א'

$$\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \Rightarrow \quad k_1 = x_1, k_2 = x_2, \dots, \quad k_n = x_n .$$

דוגמא.

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, ..., $E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, .

.(הבסיס הסטנדרטי) $M_{2 imes 3}(\mathbb{F})$ בסיס של

הוכחה.

 \Downarrow

נוכיח כי E_1, \dots, E_6 בת"ל.

$$k_1 E_1 + k_2 E_2 + \dots + k_6 E_6 = \bar{0}$$

$$k_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \dots + k_6 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\begin{pmatrix} k_1 & k_2 & k_3 \\ k_4 & k_5 & k_6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \Rightarrow \qquad k_1 = 0, k_2 = 0, \quad k_6 = 0 \ .$

לכן E_1, \dots, E_6 בת"ל.

 $\operatorname{.sp}(E_1,\ldots,E_6)=M_{2 imes 3}(\mathbb{F})$ נוכיח כי (2

,v
$$=egin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in M_{2 imes 3}(\mathbb{F})$$
 לכל וקטור

 $v = aE_1 + bE_2 + cE_3 + dE_4 + eE_5 + fE_6.$

 $\mathbf{v} \in \operatorname{sp}(E_1, \dots, E_6)$

דוגמא.

וקטורים

$$e_1 = 1$$
, $e_2 = x$, ..., $e_n = x^n$

 $\mathbb{F}_n[x]$ מהווים בסיס (הבסיס הסטנדרטי) של מהווים בסיס

ל. בת"ל. $1, x, \dots, x^n$ בת"ל.

$$k_1 \cdot 1 + k_2 x + \ldots + k_n x^n = \bar{0} = 0 \cdot 1 + 0 \cdot x + \ldots + 0 \cdot x^n$$

לכל x כאשר

$$k_1 = 0, k_2 = 0, \ldots, k_n = 0.$$

לכן $1, x, \ldots, x^n$ לכן

$$\operatorname{sp}(1,x,\ldots,x^n)=\mathbb{F}_n[x]$$
 נוכיח כי

מתקיים
$$p(x)=a_1+a_2x+\ldots+a_nx^n\in\mathbb{F}_n[x]$$
 לכל

$$p(x) = a_1 e_1 + a_2 e_2 + \ldots + a_n e_n$$

$$p(x) = \operatorname{sp}(e_1, \dots, e_n)$$
 ম"ং

דוגמא.

בדקו כי הוקטורים

$$\begin{pmatrix} -1\\0\\5 \end{pmatrix} , \qquad \begin{pmatrix} 1\\1\\1 \end{pmatrix} , \qquad \begin{pmatrix} 2\\1\\4 \end{pmatrix} .$$

 \mathbb{R}^3 מהווה בסיס של

פיתרון.

בת"ל. u_1, u_2, u_3 צ"ל (1

$$k_1u_1 + k_2u_2 + k_3u_3 = \bar{0}$$

זאת מערכת משוואות הומוגניות:

$$\begin{pmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 5 & 1 & 4 & 0 \end{pmatrix} \xrightarrow{R_3 \to R_3 + 5R_1} \begin{pmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 6 & 14 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 6R_2} \left(\begin{array}{ccc|c} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 8 & 0 \end{array} \right)$$

 $k_1=0, k_2=0, k_3=0$ 'למערכת יש פתרון יחיד:

לכן u_1, u_2, u_3 בת"ל.

 $.{
m sp}(u_1,u_2,u_3)={\mathbb R}^3$ צ"ל (2

$$\mathbf{v} = \mathrm{sp}(u_1, u_2, u_3)$$
 צ"ל $\mathbf{v} = egin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ נקח

:1 דרך

 $v \in sp(u_1, u_2, u_3)$ למערכת יש פתרון, לכן

:2 דרך

9.2 משפט. ()

אם במרחב וקטורי V יש בסיס סופי, אז לכל בסיס של V יש את אותו מספר הוקטורים.

() :הגדרה: 9.3

V מרחב וקטורי. למספר הוקטורים בבסיס של V קוראים לניח נניח על מרחב עניח המימד המימד וקטורי יסומן

 $\dim(V)$.

דוגמא.

$$\dim(\mathbb{F}^n) = n$$

$$\dim(\mathbb{F}^n[x]) = n+1$$

$$\dim(M_{m \times n}(\mathbb{F})) = m \cdot n$$

9.4 משפט. (מימד ובסיס של קבוצת וקטורים)

 $\dim(V)=n$ נניח כי V מרחב וקטורי,

- . כל n+1 וקטורים של V הם תלוים לינארית n+1
- ${\it .}V$ פל קבוצה של היא לינארית, חלויה בלתי בלתי וקטורים של מלויה לינארית, היא בסיב של
- V כל קבוצה של וקטורים שהיא בלתי תלויה לינארית, ניתן להשלים לבסיס של V

דוגמא.

הוכיחו שהוקטורים

$$u_1 = 1 + x + x^2$$
, $u_2 = 2x + 3x^2$, $u_3 = -3x - 4x^2$

 $\mathbb{R}_2[x]$ מהווים בסיס של מרחב

פיתרון.

נוכיח כי u_1, u_2, u_3 בת"ל.

$$k_1 u_1 + k_2 u_2 + k_3 u_3 = \bar{0}$$

$$k_1 (1 + x + x^2) + k_2 (2x + 3x^2) + k_3 - 3x - 4x^2 = 0 + 0x + 0x^2$$

$$k_1 (k_1 + 2k_2 - 3k_3)x + (k_1 + 3k_2 - 4k_3)x^2 = 0 + 0x + 0x^2$$

$$k_1 = 0$$

$$k_1 + 2k_2 - 3k_3 = 0$$

$$k_1 + 2k_2 - 3k_3 = 0$$

$$k_1 + 3k_2 - 4k_3 = 0$$

$$\Rightarrow k_1 = 0, k_2 = 0, k_3 = 0$$

לכן u_1, u_2, u_3 בת"ל.

 $\dim(\mathbb{R}_2[x])$ לכן שלושה וקטורים בת"ל מהווים בסיס של, $\dim(\mathbb{R}_2[x])=3$

מציאת בסיס ומימד של תת מרחב

.9.1 דוגמא.

כאשר sp (v_1, v_2, v_3) מצאו בסיס ומימד של

(1

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

(2

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} , \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} , \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} .$$

פיתרון.

 v_1, v_2, v_3 בת"ל: (1

$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & 3 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

כל העמודות מובילות, לכן v_1, v_2, v_3 בת"ל.

 $sp(v_1, v_2, v_3)$ בסיס של v_1, v_2, v_3 לכן

 $.\dim(sp(v_1, v_2, v_3)) = 3$

:לי v_1, v_2, v_3 בת"ל:

$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

ע"ל, אבל v_1, v_2 בת"ל. v_1, v_2, v_3 $sp(v_1, v_2, v_3)$ בסיס של v_1, v_2

$$.dim(sp(v_1,v_2,v_3))=2$$

דוגמא.

מצאו בסיס ואת המימד של תת מרחב הנפרש ע"י הוקטורים

$$v_1 = \begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix} \ , \quad v_2 = \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix} \ , \quad v_3 = \begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix} \ , \quad v_4 = \begin{pmatrix} 1 & -7 \\ -5 & 1 \end{pmatrix} \ .$$

בטאו את וקטור $u = \begin{pmatrix} 4 & -14 \\ -13 & 11 \end{pmatrix}$ כצירוף לינארי של הבסיס שמצאתם.

פיתרון.

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 + k_4\mathbf{v}_4 = \bar{0}$$

 $\downarrow \downarrow$

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ -5 & 1 & -4 & -7 \\ -4 & -1 & -5 & -5 \\ 2 & 5 & 7 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 5R_1 \atop R_3 \to R_3 + 4R_1 \atop R_4 \to R_4 - 2R_1} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 6 & 6 & -2 \\ 0 & 3 & 3 & -1 \\ 0 & 3 & 3 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 3 & 3 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $.\mathrm{sp}(\mathrm{v}_1,\mathrm{v}_2,\mathrm{v}_3,\mathrm{v}_4)$ של בסיס של v_2 , v_1 לכן לכן בת"ל. לכן המתאימים לעמודות המובילות הם בת"ל. $\dim(\operatorname{sp}(v_1, v_2, v_3, v_4)) = 2$

$$\begin{pmatrix} 1 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 4 \\
-5 & 1 & 14 \\
-4 & -1 & -13 \\
2 & 5 & 11
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + 5R_1 \atop R_3 \to R_3 + 4R_1 \atop R_4 \to R_4 - 2R_1}
\begin{pmatrix}
1 & 1 & 4 \\
0 & 6 & 6 \\
0 & 3 & 3 \\
0 & 3 & 3
\end{pmatrix}
\to
\begin{pmatrix}
1 & 1 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\to
\begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\Leftarrow k_1 = 3, k_2 = 1$$

 $u = 3\mathbf{v}_1 + \mathbf{v}_2 .$

דוגמא.

כאשר $\mathrm{Nul}(A)$ מצאו בסיס ומימד של

$$A = \begin{pmatrix} 1 & 2 & -1 & 3 \\ -2 & -4 & 1 & -2 \\ -1 & -2 & 0 & 1 \end{pmatrix} .$$

פיתרון.

מרחב הפתרונות של המערכת ההומוגנית $A\cdot X=0$. נפתןר את המערכת:

$$\begin{pmatrix} 1 & 2 & -1 & 3 \\ -2 & -4 & 1 & -2 \\ -1 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & -1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

:Nul(A) פתרון בצורת וקטור השייך את נרשום $x_2,x_4\in\mathbb{R} \Leftarrow \left\{ egin{array}{ll} x_1 &=-2x_2+x_4 \\ x_3 &=4x_4 \end{array}
ight.$

$$\begin{pmatrix} -2x_2 + x_4 \\ x_2 \\ 4x_4 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ 4 \\ 1 \end{pmatrix} \in \operatorname{sp} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 4 \\ 1 \end{pmatrix} \right\}$$

.
$$\mathrm{Nul}(A)$$
 מהווים בסיס של
$$\begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\4\\1 \end{pmatrix}$$
 הוקטורים
$$\dim(\mathrm{Nul}(A))=2$$

דוגמא.

במרחב $M_{2 imes2}(\mathbb{R})$ נתונים וקטורים

$$u_1 = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$, $v = \begin{pmatrix} a+2 & 1 \\ -5 & a \end{pmatrix}$

- u_1, u_2, u_3 שייך לפרישה לינארית של v וקטור אילו ערכי עבור אילו ערכי
- בשתי דרכים עבור כל ערך של u_1,u_2,u_3 שמצאתם כסעיף א', בטאו את וקטור עבור כל ערך של שמצאתם בסעיף א', בטאו את שוווח
 - $\operatorname{sp}(u_1,u_2,u_3,\mathrm{v})$ לכל ערך של a מצאו את המימד ובסיס אל לכל ערך אל
 - עבורם a עבורם קיימים ערכי

$$sp(u_1, u_2, u_3, v) = M_{2\times 2}(\mathbb{R})$$
.

פיתרון.

(X

$$k_1u_1 + k_2u_2 + k_3u_3 = v$$

$$\begin{pmatrix}
1 & 1 & 1 & a+2 \\
3 & 1 & 5 & 1 \\
3 & 1 & 5 & 1 \\
3 & 3 & 3 & a
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1 \atop R_3 \to R_3 - R_1 \atop R_4 \to R_4 - 3R_1}
\begin{pmatrix}
1 & 1 & 1 & a+2 \\
0 & -2 & 2 & -3a-5 \\
0 & 2 & -2 & -a-7 \\
0 & 0 & 0 & -2a-6
\end{pmatrix}
\xrightarrow{R_3 \to R_3 + R_2}
\begin{pmatrix}
1 & 1 & 1 & a+2 \\
0 & -2 & 2 & -3a-5 \\
0 & 0 & 0 & -4a-12 \\
0 & 0 & 0 & -2a-6
\end{pmatrix}$$

$$\mathbf{x} \in \mathrm{sp}(u_1,u_2,u_3)$$
 עבור $a=-3$ למערכת יש פתרון, לכן $=0$ עבור $=0$ עבור $=0$ ב $=-3$

$$\begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 0 & -2 & 2 & | & 4 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{2}R_2} \begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$k_1 = 1 - 2k_3$$
, $k_2 = -2 + k_3$, $k_3 \in \mathbb{R}$.

$$\Leftarrow k_3 = 1$$
 נציב

$$k_1 = -1$$
, $k_2 = -1$, $k_3 = 1$

ונקבל

 $-u_1 - u_2 + u_3 = \mathbf{v}$.

$$\Leftarrow k_3 = 0$$
 נציב

$$k_1 = 1$$
 , $k_2 = -2$, $k_3 = 0$

ונקבל

$$u_1 - 2u_2 + 0 \cdot u_3 = \mathbf{v}$$
.

a = -3 עבור (ג

$$\dim (sp(u_1, u_2, u_3, v)) = 2$$

מספר העמודות המובילות

 $.u_1,u_2$ בסיס:

 $:a \neq -3$ עבור

$$\dim\left(\operatorname{sp}(u_1,u_2,u_3,\operatorname{v})\right)=3$$

 $.u_1, u_2, v:$ בסיס:

 $\operatorname{sp}(u_1,u_2,u_3,\mathrm{v})=M_{2 imes 2}(\mathbb{R})$ עבורם a עבור לכל ערכי a לכן לא קיימים ערכי u_1,u_2,u_3,v הוקטורים u_1,u_2,u_3,v

דוגמא.

מצאו את המימד ובסיס של תת המרחב הנפרש ע"י הוקטורים

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix} , \qquad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix} , \qquad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 2 \end{pmatrix} .$$

דוגמא.

$$A=egin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 נתונה המטריצה $A=egin{pmatrix} a & 1 & 1 \\ 1 & 1 & a \end{pmatrix}$ נתונה המטריצה

פיתרון.

$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 0 & -a^2 - a + 2 \end{pmatrix}$$

$$a = 1, -2 \Leftarrow -a^2 - a + 2 = 0$$

עבור a=1 מקבלים

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

מספר מובילות הלא מובילות - $\dim(\operatorname{Nul}(A))=2$

$$x = -y - z , y \in \mathbb{R}$$

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

עבור a=-2 מקבלים

$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

מספר מובילות - dim $(\mathrm{Nul}(A))=1$

$$x = z , y = z , y \in \mathbb{R}$$

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

דוגמא.

במרחב $\mathbb{R}_2[x]$ נתונים וקטורים

$$p_1(x) = 2 - x + x^2$$
, $p_2(x) = 2x - 3x^2 + x^3$, $p_3(x) = 1 - x^2$, $p_4(x) = 3x - 6x^2 + x^3$.

- אט טריוויאלי אירים פן, רשמו אירוף לינארי תלוים לינארית. אוים לינארית אוים $p_1(x), p_2(x), p_3(x), p_4(x)$ לינארי אם בדקו אם בדקו אם הוקטורים שפווה לוקטור האפס.
 - $p_1(x), p_2(x), p_3(x), p_4(x)$ מצאו בסיס ואת המימד של תת מרחב הנפרש ע"י הוקטורים
 - .'ב בטאו כל וקטור מתןך $p_1(x), p_2(x), p_3(x), p_4(x)$ כצירוף לינרי של הבסיס המצאתם בסעיף ב'.

$$k_1p_1(t) + k_2p_2(t) + k_3p_3(t) + k_4p_4(t) = \bar{0}$$

$$\begin{pmatrix} 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 3 \\ 1 & -3 & -1 & -6 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 4 & 1 & 6 \\ 0 & 6 & 3 & 12 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 4 \\ 0 & 4 & 1 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{cccc} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 2 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

לא כל העמודות מובילות, לכן לכן $p_1(x), p_2(x), p_3(x), p_4(x)$ ת"ל.

$$k_1 = k_4$$
, $k_2 = -k_4$, $k_3 = -2k_4$, $k_4 \in \mathbb{R}$.

 $\Leftarrow k_4 = 1$ נציב

$$k_1 = 1$$
, $k_2 = -1$, $k_3 = -2$.
 $p_1 - p_2 - 2p_3 + p_4 = \bar{0}$

. מספר העמודות המובילות - $\dim(\mathrm{sp}(p_1,p_2,p_3,p_4))=3$

בסיס:

 p_1, p_2, p_3

$$p_1(x) = 1 \cdot p_1(x) + 0 \cdot p_2(x) + 0 \cdot p_3(x)$$

$$p_2(x) = 0 \cdot p_1(x) + 1 \cdot p_2(x) + 0 \cdot p_3(x)$$

$$p_3(x) = 0 \cdot p_1(x) + 0 \cdot p_2(x) + 1 \cdot p_3(x)$$

$$p_4(x) = -p_1(x) + p_2(x) + 2 \cdot p_3(x)$$
.

דוגמא.

מצאו את המימד ובסיס של מרחב הפתרונות של המערכת ההומוגנית

$$\left. \begin{array}{rrr}
 x + 2y + 3z & = 0 \\
 2x + 4y + 5z & = 0 \\
 3x + 6y + 9z & = 0 \\
 4x + 8y + 12z & = 0
 \end{array} \right\}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - 3R_1 \atop R_4 \to R_4 - 4R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$