Sprawozdanie 10

Minimalizacja wartości funkcji metodą złotego podziału

1. Wstęp teoretyczny

1.1 Optymalizacja

Zadaniem optymalizacji jest poszukiwanie minimum lub maksimum funkcji. W naszym przypadku zajmowaliśmy się minimalizacją.

W praktyce problem sprowadza się do poszukiwania minimum czyli takiego punktu dla którego zachodzi:

$$f: R^n \to R$$
 $min \ f(\boldsymbol{x}) = f(\boldsymbol{x^*}) \Leftrightarrow \bigwedge_{\boldsymbol{x} \in R^n} f(\boldsymbol{x^*}) < f(\boldsymbol{x})$
 $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^T$

z następnymi warunkami:

$$g_j(\mathbf{x}) \le 0, \quad j = 1, 2, \dots, m$$

 $h_j(\mathbf{x}) = 0, \quad j = 1, 2, \dots, r$

gdzie: funkcje f(x), g(x), h(x) są funkcjami skalarnymi takimi, że

- f(x) funkcja celu, celem jest znalezienie jej minimum (optymalizacja)
- g(x) i h(x) funkcje określające warunki jakie musi spełniać rozwiązanie (więzy) ograniczają przestrzeń dopuszczalnych rozwiązań

1.2 Metoda złotego podziału

To jest numeryczna metoda bezgradientowa służąca do optymalizacji jednowymiarowej funkcji celu. Algorytm ten może być używany przy minimalizacji kierunkowej razem z innymi metodami optymalizacji funkcji wielowymiarowych, takich jak metody gradientowe lub bezgradientowe.

Schemat działania jest następujący:

- 1) Wstępnie wyznaczamy przedział [a, b] w którym spodziewamy się minimum wartości funkcji.
- 2) W przedziale [a,b] wyznaczamy dwa punkty λ_1 i λ_2 .
- 3) Jeżeli $F(\lambda_2) > F(\lambda_1)$ to zmieniamy granice przedziału na [a, λ_2].
- 4) Jeżeli $F(\lambda_2) < F(\lambda_1)$ to zmieniamy granice przedziału na $[\lambda_1, b]$.
- 5) Proces podziału prowadzimy iteracyjnie aż do spełnienia warunku: $|a^i-b^i|<arepsilon$ a jako przybliżenie minimum możemy przyjąć: $\lambda^*=rac{b^i-a^i}{2}$

Pozostaje tylko kwestia jak wyznaczyć punkty tak aby wybór był optymalny tzn. chcemy wykonać jak najmniejszą ilość podziałów.

Punktem wyjścia jest złota proporcja, czyli złoty podział.

$$\frac{(\lambda_1 - a) + (b - \lambda_1)}{b - \lambda_1} = \frac{b - \lambda_1}{\lambda_1 - a} = \varphi$$

Uzależniamy b od a:

$$b - a = L \quad \Rightarrow \quad b = L + a$$

Po wstawieniu do równania otrzymujemy:

$$\frac{L}{L+a-\lambda_1} = \frac{L+a-\lambda_1}{\lambda_1-a}$$

$$L(\lambda_1-a) = (L-(\lambda_1-a))^2$$

$$(\lambda_1-a) = L\left(1-\frac{(\lambda_1-a)}{L}\right)^2 = Lr^2$$

Otrzymaliśmy dwie zależności:

$$(\lambda_1 - a) = Lr^2 \qquad (b - \lambda_1) = Lr$$

Po wstawieniu ich do równania wyjściowego dostajemy równanie kwadratowe na "r":

$$\frac{Lr^2 + Lr}{Lr} = \frac{Lr}{Lr^2} = \frac{1}{r} \qquad \Rightarrow \qquad r^2 + r - 1 = 0$$

Znajdujemy jego pierwiastki i zachowujemy tylko ten, który wyszedł dodatni:

$$r = \frac{\sqrt{5} - 1}{2} = 0.618034 > 0$$

Dalej możemy określić wartości λ_1 i λ_2 zakładając ponadto, że oba punkty powinny być symetryczne względem krańców przedziału:

$$\lambda_1 = a + r^2 L$$
 $\lambda_2 = a + rL$

2. Problem

W pierwszym etapie jako zadanie mieliśmy znaleźć minimum wartości funkcji

$$f(x) = \ln\left(x^5 + 3x^2 + x + 9\right)$$

metodą złotego podziału. Przyjęłem $x_1 = x_a + \lambda_1(x_b - x_a)$ i $x_2 = x_a + \lambda_2(x_b - x_a)$, gdzie: $\lambda_1 = r^2$, $\lambda_2 = r$, $r = (\sqrt{5} - 1)/2$ i odpowiednio zawężyłem przedział. Jako krańce przedziału startowego przyjęłem: $x_a = -0.5$, $x_b = 1.0$. Do warunku stopu przyjęłem wartość parametru $\varepsilon = 10^{-6}$. Jako warunek STOP-u przyjęłem $|x_1 - x_2| < \varepsilon$. Oraz przyjęłem że minimum znajduje się w punkcie $x_{min} = (x_1 + x_2)/2$.

Do pliku zapisałem numer iteracji, położenie aktualnego przybliżenia minimum oraz moduł różnicy rozwiązania dokładnego ($x_{dok} = -0.1673198$) i aktualnego przybliżenia.

W kolejnym kroku powtórzyłem całą procedurę poszukiwania minimum f(x) stosując podział na 3 równe odcinki tzn. przyjęłem $\lambda_1 = 1/3$ i $\lambda_2 = 2/3$.

Na jednym rysunku narysowałem moduł różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla obu powyższych przypadków tj. dla $(\lambda_1, \lambda_2) = (r^2, r)$ i $(\lambda_1, \lambda_2) = (1/3, 2/3)$. Skala osi OY ma być logarytmiczna (w gnuplocie ustawiłem ją komedą "set logscale y").

W drugim etapie zadaniem było przeprowadzenie minimalizacji złotego podziału i z podziałem na trzy równe części do znalezienia minimum funkcji

$$g(x) = x^6$$

Jako punkty startowe przyjęłem: $x_a=-4.0$, $x_b=1.0$, do warunku STOP-u przyjęłem $\epsilon=10^{-6}$ oraz jako minimum dokładne przyjęto $x_{min}=0$.

Jak w poprzednim etapie wyprowadziłem dane do pliku i sporządziłem rysunek modułu różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla złotego podziału i podziału na trzy równe części. Skala osi OY ma być logarytmiczna.

3. Wyniki

Wykres 1: moduł różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla f(x)

Wykres 2: moduł różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla g(x)

4. Wnioski

Analizując wyniki, metoda złotego podziału pozwoliła na znalezienie minimum funkcji z zadaną dokładnością.

Jak widać na wykresach 1-2 metoda złotego podziału jest szybsza od metody podziału na trzy części i dochodzi do przybliżonego rozwiązania z wykorzystaniem mniejszej ilości iteracji.