Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Informationstechnik (Schwerpunkt Kommunikationselektronik)

Masterarbeit mit dem Thema:

Modellfehler in optimierungsbasierter kombinierter Planung und Regelung für Rennwagen

Bearbeiter Weller Sebastian

Matrikelnr. 21777345

Studiengang Informations und Kommunikationstechnik

Betreuer Prof. Dr.-Ing. Jörn Thielecke

Henrik Bey, M. Sc.

Beginn 08. Januar 2018

Ende 08. Juli 2018

B	es	tät	tig	un	g
			0		0

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und, dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den (hier Datum eintragen)_____

Danksagung

Ich möchte mich bei meinen Betreuern und meiner Familie bedanken.....

Thema und Aufgabenstellung

Thema:

Modellfehler in optimierungsbasierter kombinierter Planung und Regelung für Rennwagen

Aufgabenstellung:

Am Lehrstuhl für Informationstechnik mit dem Schwerpunkt Kommuniktaionselektronik (LIKE)

Die Automatisierung des Fahrens schließt sowohl die Planung als auch die Regelung des Fahrzeugs mit ein. Häufig werden beide Bestandteile hierarchisch voneinander getrennt. Dies ist sinnvoll, solange das kontrollierte Fahrzeug sicher innerhalb der Aktuatorlimitierungen betrieben werden soll, oder wenn die Trennung bereits durch die Problemstellung gegeben ist (Zieltrajektorie bereits vorgegeben) [williams2016aggressive].

In anderen Fällen, z.B. wenn die gewünschte Dynamik wie in einer Rennsituation im Grenzbereich liegt, bietet sich eine kombinierte Planung und Regelung an. In diesem Beispiel würde die Kostenfunktion eine Minimierung der Rundenzeit beinhalten, während gleichzeitig die Beschränkungen des Fahrzeugs berücksichtigt werden.

Für derartige Probleme ist die modellprädiktive Regelung (MPC) bzw. eines ihrer Derivate besonders geeignet. Dabei kommt es immer zu einem sogenannten Modellfehler, der von der Komplexität und Genauigkeit des verwendeten Modells abhängt.

Das Ziel dieser Arbeit ist es, den Abfall bei der Leistung des Regelungsansatzes durch den Modellfehler zu untersuchen. Dafür soll eine Simulation verwendet werden.

- Auswahl einer passenden Simulationsumgebung und deren Inbetriebnahme
- Implementierung verschiedener (gegebener) Modelle für die Simulation
- Implementierung des MPC-Ansatzes

- Entwicklung einer einfachen Evaluationsmethode um die Leistungsfähigkeit des Reglers zu untersuchen
- Vergleich verschiedener Kombinationen aus Regler- und Simulationsmodellen

Kurzzusammenfassung

Abstract

......the Abstract is here..... Bitte nicht löschen oder auskommentieren - ist obligatorisch!

Inhaltsverzeichnis

1					
	1.1 Motivation	1			
2	Grundlagen	2			
3	Implementierung von xy	3			
	3.1 Gliederung	3			
	3.2 Text formatieren	3			
	3.3 Umbrüche	4			
	3.4 Schriftart formatieren	5			
	3.4.1 Default Fonts	6			
4	Konzept	7			
5	Ergebnisse	8			
6	Diskussion	9			
7	Zusammenfassung	10			
A	Anhang	11			
Al	bkürzungsverzeichnis	12			
Li	iteraturverzeichnis	13			

1 Einleitung

1.1 Motivation

Die Motivation für die hier vorgestellte Masterarbeit basiert auf der Entwicklung eines Autonomen Rennautos für die Formula Stundent. Die Formula Student ist ein Ingenieurswettbewerb für Studenten. Er hat seine Wurzeln in den USA im Jahre 1981 und wurde ab 1998 auch in Europa ausgetragen. Dass der Wettbewerb sehr Erfolgreich ist, machen nicht nur die inzwischen fast 700 Teams Weltweit [FsW] deutlich, sondern auch die Anzahl der verschiedenen Events die überall auf der Welt im Sommer stattfinden. Seit dem Jahr 2017 gibt es neben der ursprünglichen Combustion-Klasse und der vor 10 Jahren eingeführten Electric-Klasse auch noch die Driverless-Klasse. In dieser wird von den Teams ein Altfahrzeug um ein Sensorsystem sowie Aktoren so erweitert, dass das Rennauto die Kurse autonom bestreiten kann. Die dynamischen Disziplinen, in denen das Fahrzeug selbstständig fährt, sind hierbei: Acceleration, Skidpad (liegende 8) und Trackdrive. Letzterer ist ein bis zu 800m langer Kurs welcher von den Teams ohne Vorwissen möglichst schnell und fehlerfrei absolviert werden muss. Gerade nach der ersten Runde, nachdem eine detaillierte Karte des Kurses erstellt wurde, gilt es die Algorithmen für die Fahrzeuge so auszulegen dass möglichst kurze Rundenzeiten gefahren werden. An diesem Punkt soll die hier ausgeführte Arbeit anknüpfen.

2 Grundlagen

- 2.1 Fahrzeugmodelle
- 2.2 Model Predictive Control
- 2.3 Simulation

3 Implementierung von xy

3.1 Gliederung

Befehle zum Gliedern von Texten:

Nummeriert und im InhV.:

```
\chapter{Kapitel - Ebene 1 (1 Einleitung)}
\section{Abschnitt - Ebene 2 (1.1 Gliederung}
\subsection{Unterabschnitt - Ebene3 1.1.1...}
\subsubsection{Unterunterabschnitt - Ebene 4 (nicht sinnvoll)}
```

nicht nummerierte Überschrift

Alles, was nicht ins Inhaltsverzeichnis soll ist mit einem * versehen: -> steht für Kapitel, die nicht nummeriert sind und somit auch nicht im Inhvz. stehen

Befehle:

```
\chapter*{Thema und Aufgabenstellung}
\section* {Sektion/Abschnitt} unnummiert
\subsection*{Unterabschnitt - Ebene3 }
\subsubsection*{Unterunterabschnitt - Ebene 4}
```

3.2 Text formatieren

Folgende Befehlen erzeugen einen Zeilenumbruch: (1ex entspricht der Höhe des Buchstaben "x" in der aktuellen Schriftart)

```
\\
\newline
\\[1ex]
```

Folgende Befehle erzeugen einen neuen Absatz:

```
\par
\par\smallskip
\par\medskip
\par\bigskip
```

Folgende Befehle erzeugen einen zusätzlichen horizontalen Abstand:

```
\, % kleiner Abstand
\; % mittlerer Abstand
\quad % großer Abstand
\qquad % sehr großer Abstand
\! % kleiner negativer Abstand
```

Folgende Befehle zum Seitenumbruch:

3.3 Umbrüche

Der Text wird normalerweise automatisc umbrochen. Zum expliziten Beenden einer Zeile benutzen Sie

```
\[abstand] % bzw. \\ [2pt]
```

Beispiel

Wenn mann zum Beispiel eine Überschrift

```
\\in zwei Zeilen umbrechen möchten,
```

bitte ein

```
\protect
```

benutzen. Zusätzlich kann an einer so beendeten Zeile noch gleichzeitig ein Seitenumbruch verhindert werden, indem man

```
\\*[abstand]
```

eingibt. Wenn man Latex einen Spielraum lassen will: Dafür dient der Befehl

```
\linebreak[zwang]
```

Für die Dringlichkeit des-Befehls können Sie die Zahlen von 0 bis 4 eintragen, wobei 0 eine milde Wunschäußerung darstellt und 4 das Zeilenende erzwingt. Gleichzeitig werden beim Beenden einer Zeile die Wörter gestreckt und dabei gleichmäßig überdie Zeile verteilt.

```
Der Zwerg nahm seine Axt und hieb mehrere Äste ab.\\
Der Zwerg nahm seine Axt und hieb mehrere Äste ab.\linebreak[4]
Der Zwerg nahm seine Axt und hieb mehrere Äste ab.\linebreak[2]
Der Zwerg nahm seine Axt und hieb mehrere Äste ab.\linebreak[3]
Sie banden sie mit Bogensehnen zusammen
```

Der Zwerg nahm seine Axt und hieb mehrere Äste ab.

Der Zwerg nahm seine Axt und hieb mehrere Äste ab. Der Zwerg nahm seine Axt und hieb mehrere Äste ab. Der Zwerg nahm seine Axt und hieb mehrere Äste ab. Sie banden sie mit Bogensehnen zusammen

oder:

\nolinebreak[zwanq]

3.4 Schriftart formatieren

Folgende Befehle für die Schriftgröße:

```
\tiny
\scriptsize
                                  scriptsize
                                          footnotesize
                                                      small
\footnotesize
\small
                               normalsize
\normalsize
\large
                               large Large LARGE
\Large
\LARGE
                               huge Huge
\huge
\Huge
```

Folgende Befehle für die Schriftart:

<pre></pre>	Textbeispiel
<pre></pre>	Textbeispiel
<pre></pre>	Textbeispiel
<pre></pre>	Textbeispiel
<pre></pre>	TEXTBEISPIEL
<pre></pre>	Textbeispiel

Folgende Befehle zum Hervorheben (Argument):

```
\emph{} Textbeispiel \underline{}
```

3.4.1 Default Fonts

Für das gesamte Dokument wurde eine Schriftart im cls.-File generiert

mittes des Befehls-> \addtokomafont{disposition} {\rmfamily}
und dem Paket Times-> \RequirePackage{times}

4 Konzept

5 Ergebnisse

6 Diskussion

7 Zusammenfassung und Ausblick

A Anhang

Elektronischer Anhang

Inhalt:

- 1. Beispiel: Entwickeltes MATLAB-Programm
- 2.

Hier können weiterführende Grafiken, Codefragmente oder Ähnliches eingefügt werden.....

Einbindung Grafik im Anhang

Abbildung A1: Unterschrift Bild x Die auf die Rotationsfrequenz des Innenzylinders normierten Eigenfrequenzen der gefun-denen Grundmoden der Taylor-Strömung für h(Die azimutale Wellenzahl ist mit m bezeichnet.)

Abkürzungsverzeichnis

Literaturverzeichnis

[FsW] Formula student - world ranking lists. https://mazur-events.de/fs-world/. Accessed on 2018-05-14.

Sebastian Weller

Persönliche Daten

Adresse An der Kühruh 13

96123 Litzendorf

Mobil 0170 - 9732890

Email sebastian.weller01@gmail.com

Geburtsdatum 01.04.1992 Staatsangehörigkeit deutsch

Studium und Schulbildung

01/2013 - 07/2018 Friedrich-Alexander-Universität Erlangen-Nürnberg

Studium: Informations und Kommunikationstechnik

01/2011 - 01/2013 Ohm-Fachhochschule Nürnberg

Studium: Elektrotechnik

Berufliche Erfahrungen / Praktika

01/2016 - 07/2016 Wissenschaftlicher Hilfsmitarbeiter am Fraunhofer IIS

01/2016 - 07/2016 Praktikum bei Siemens Erlangen

Zusatzqualifikationen

Sprachen Deutsch (Muttersprache)

Englisch (fließend in Wort und Schrift)

Programmiersprachen Java C++ C

Julia Python

Erlangen, den (Datum eintragen)		

Sebastian Weller

SEBASTIAN WELLER