EE5801 Tutorial 1 Solutions

Q1

$$3\delta_{\rm s} = 1.2 \text{ km} = 1200 \text{ m}$$

 $\delta_{\rm s} = 400 \text{ m}.$

Hence,

$$\alpha = \frac{1}{\delta_s} = \frac{1}{400} = 2.5 \times 10^{-3}$$
 (Np/m).

Since $\varepsilon''/\varepsilon' \ll 1$, we can use low-loss approximation:

$$\alpha = \frac{\omega \varepsilon''}{2} \sqrt{\frac{\mu}{\varepsilon'}} = \frac{2\pi f \varepsilon_{\rm r}'' \varepsilon_0}{2\sqrt{\varepsilon_{\rm r}'}\sqrt{\varepsilon_0}} \sqrt{\mu_0} = \frac{\pi f \varepsilon_{\rm r}''}{c\sqrt{\varepsilon_{\rm r}'}} = \frac{\pi f \times 10^{-2}}{3\times 10^8 \sqrt{3}} = 6f \times 10^{-11} {\rm Np/m}.$$

For $\alpha = 2.5 \times 10^{-3} = 6f \times 10^{-11}$,

$$f = 41.6 \text{ MHz}.$$

Since α increases with increasing frequency, the useable frequency range is

$$f \leq 41.6$$
 MHz.

Q2

(i) The conduction and displacement current densities are given by $J_c = \sigma E$ and

$$J_{\mathbf{p}} = j\omega \varepsilon' \mathbf{E}$$
.

Thus

$$\frac{\left|\mathbf{J}_{\mathbf{c}}\right|}{\left|\mathbf{J}_{\mathbf{D}}\right|} = \frac{\sigma}{\omega \varepsilon'} = \frac{\sigma}{\omega \varepsilon'_{r} \varepsilon_{0}} = 108 >> 1$$

Since $\frac{\sigma}{\omega \epsilon} >> 1$ this is a good conductor.

(ii)
$$\alpha \approx \sqrt{\frac{\omega\mu\sigma}{2}} = 0.435 \text{ Np/m}$$

The skin depth is $\delta = \frac{1}{\alpha} = 2.3 \text{ m}$.

(i) Since $f = 5 \times 10^6$ Hz, we obtain $\omega = 10^7 \pi$ rad/s.

Here $\frac{\sigma}{\omega\epsilon'} \approx 200 >> 1$. We may therefore approximate seawater as a good conductor at this frequency.

$$\alpha = \beta = \sqrt{\pi f \mu_r \mu_0 \sigma} = 8.89 \text{ Np/m or rad/m}$$

$$\eta = (1+j)\sqrt{\frac{\pi f \mu_r \mu_0}{\sigma}} = \frac{\pi}{\sqrt{2}}(1+j) = \pi e^{j\pi/4} \quad \Omega$$

$$u_p = \frac{\omega}{B} = 3.53 \times 10^6 \text{ m/s}$$

$$\lambda = \frac{2\pi}{\beta} = 0.707 \text{ m}$$

$$\delta = 1/\alpha = 0.112 \text{ m}$$

(ii)
$$\exp(-2\alpha z_1) = \frac{10^{-4}}{1}$$
 $z_1 = \frac{1}{2\alpha} \ln 10^4 = 0.518 \text{ m}$

Q4

Medium 1 ϵ_{r} = 100, μ_{r} = 1 and σ = 0.4 S/m;

 $\sigma/(\omega\epsilon) = 0.4/(2\pi x 100 x 10^6 x (1/(36\pi)) x 10^{-9} x 100) = 0.72$

$$\eta_c = V(\mu/\epsilon) = 120\pi/V(100) = 12\pi$$

Medium 2 ε_r = 2, μ_r = 1 and σ = 100 S/m.

 $\sigma/(\omega \varepsilon) = 100/(2\pi x 100 x 10^6 x (1/(36\pi)) x 10^{-9} x 2) = 9000$

 $\alpha = V(\pi f \mu \sigma) = V(\pi x 100 x 10^6 x 4 \pi x 10^{-7} x 100) = 198.7$

$$\eta_c = (v2)(\alpha/\sigma)e^{j\pi/4} = 2.81 e^{j\pi/4}$$

reflection coefficient Γ = (2.81 $e^{j\pi/4}$ - $12\pi)/(2.81~e^{j\pi/4}$ + $12\pi)$ = $0.9/\underline{174^{\circ}}$

transmission coefficient τ = 2 x 2.81 $e^{j\pi/4}/(2.81 e^{j\pi/4} + 12\pi) = 0.14/42.1^{\circ}$

check that $1 + \Gamma = \tau$ (within numerical rounding off errors)

$$|H_{inc}| = 1/12\pi = 0.027 \text{ A/m}$$

$$P_{inc} = \frac{1}{2} \times 1 \times 0.027 = 14 \text{ mW/m}^2$$

$$|E_{rfl}| = 0.9 \text{ V/m}$$

$$|H_{rfl}| = 0.9/12\pi = 0.024 \text{ A/m}$$

$$P_{rfl} = \frac{1}{2} \times 0.9 \times 0.024 = 11 \text{ mW/m}^2$$

$$|E_{tran}| = 0.14 \text{ V/m}$$

$$|H_{tran}| = 0.14/2.81 = 0.05 \text{ A/m}$$

$$P_{tran} = \frac{1}{2} \times 0.14 \times 0.05 = 4 \text{ mW/m}^2$$

Thus $P_{inc} = P_{rfl} + P_{tran}$ within rounding off error

Another way to check is $|\Gamma|^2 + |\tau|^2 \eta_1/\eta_2 = 1$ (why? You may like to derive this equation)