PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-175404

(43) Date of publication of application: 02.07.1999

G06F 12/14

1

(21)Application number : 09-340165

(71)Applicant: NEC CORP

(22)Date of filing:

10.12.1997

(72)Inventor: TANUMA HIROSHI

(54) ADDRESS CONTROLLER

(57)Abstract:

(51)Int.CI.

PROBLEM TO BE SOLVED: To provide an address controller as a converting device of an address access signal for the security of an outside memory. SOLUTION: This device is provided with an address switch part 5 in which switching capable of arbitrarily changing the connection setting is performed in the stage of connecting an address access signal from a host system 1 with the address access signal of an outside memory 3. Also, security is maintained by making the memory mapping of the outside memory 3 different from mapping viewed from the host system and the host system secures the substantial connection setting by ID management.

LEGAL STATUS

[Date of request for examination]

10.12.1997

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3255227

[Date of registration]

30.11.2001

[Number of appeal against examiner's decision

of rejection]

Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-175404

(43)公開日 平成11年(1999)7月2日

(51) Int.Cl.6 G06F 12/14 酸別記号 320

FΙ G06F 12/14

320B

請求項の数6 OL (全8頁) 審査請求 有

(21)出願番号

特願平9-340165

(22)出願日

平成9年(1997)12月10日

(71)出願人 000004237

日本質気株式会社

東京都港区芝五丁目7番1号

(72)発明者 田沼 博志

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 若林 忠 (外4名)

(54) 【発明の名称】 アドレスコントローラ

(57) 【要約】

【課題】 外部メモリのセキュリティーのための、アド レスアクセス信号の変換装置としてのアドレスコントロ ーラを提案する。

【解決手段】 ホストシステム1からのアドレスアクセ ス信号を、外部メモリ3のアドレスアクセス信号に接続 する段階で、その接続設定を任意に変更可能なスイッチ ングが行われるアドレススイッチ部5を有し、かつ、外 部メモリ3のメモリマッピングをホストシステムから見 たマッピングとを相違させて、セキュリティーを保持 し、ホストシステムは I D管理により実質的な接続設定 を確保している。

1

【特許請求の範囲】

【請求項1】 ホストシステムから外部メモリのアクセスに際し、メモリのセキュリティのために外部けメモリ内のアドレスにアクセスする信号の変換手段であるアドレスコントローラにおいて、

ホストシステムからの外部メモリに対するアドレス信号 を外部メモリ内の固有のアドレスアクセス信号に任意に 随時変換接続設定可能な変換接続設定手段を有するを有 することを特徴とするアドレスコントローラ。

【請求項2】 前記変換接続設定手段が、ホストシステ 10 ムからの複数のアドレス信号を入力とし、外部メモリの 固有アドレスへの個別のアドレス信号を出力とする、個 別のアドレス信号別に設けられた複数のスイッチからな る請求項1記載のアドレスコントローラ。

【請求項3】 前記スイッチが、電子スイッチである請求項2記載のアドレスコントローラ。

【請求項4】 前記スイッチが、EEPROMである請求項2記載のアドレスコントローラ。

【請求項5】 ホストシステムから前記変換接続設定手段の設定をデータバスを介してバイナリコードによりア 20ドレススイッチに指示する手段を有する請求項1記載のアドレスコントローラ。

【請求項6】 前記アドレス信号の変換接続設定手段の設定結果を示すID管理エリアとアドレススイッチ設定情報エリアとを備え、常時アドレス接続情報と対応して接続を管理する外部メモリのアクセス管理手段を有する請求項1記載のアドレスコントローラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メモリのアクセス 30 回路に関し、特にメモリに書き込まれたデータのセキュリティのためにアドレス信号変換を行うアドレスコントローラに関する。

[0002]

【従来の技術】図9はアドレス信号変換のための従来例の構成図である。

【0003】この例によれば、CPU20のアドレスバス、およびデータバスが変換部21と接続されている。 また、変換部21と外部メモリ22もアドレスバスおよびデータバスが接続されている。

【0004】外部メモリ22には、ホストシステムからのアドレス信号のアドレスの変換テーブルが書き込まれている。

【0005】CPU20は、外部メモリ22をアクセスする前に、変換部21で規定される特定のアドレスから外部メモリ22に書き込まれているアドレス変換テーブルのアドレスデータを読み出す。読み出されたアドレスデータは自動的に変換部21にあるメモリに書き込まれ、CPU20がアクセス可能なアドレスに、一対一に対応した変換アドレスのデータが書き込まれる。

2

【0006】CPU20が外部メモリ22にアクセスする場合は、変換部21の変換アドレスのテーブルを介しアドレスの設定を外部メモリ22に対して行う。

[0007]

【発明が解決しようとする課題】第1の問題点は、メモリのデータが容易に読み出し可能である。その理由は、メモリのアドレスマッピングとホストシステムのアドレスマッピングが一意的に決定されているからである。

【0008】本発明の目的は、メモリに書き込まれているデータのマッピングを、ホストシステムからみたマッピングと相異させる手段を用い、メモリのデータに対するセキュリティを向上させるアドレスコントローラの提供である。

[0009]

【課題を解決するための手段】本発明のアドレスコントローラは、ホストシステムからの外部メモリに対する複数のアドレスアクセス信号を受信し、該アドレスアクセス信号の全信号を入力し、出力をそれぞれ、個別に外部メモリのアドレスアクセス信号毎とする複数のアドレススイッチを有し、ホストシステムの設定信号により各アドレススイッチを設定接続するスイッチ部を有し、随時、任意に該複数のアドレススイッチの設定接続を変更可能に構成されている。

【0010】すなわち、ホストシステム1からアドレスの接続変更が可能なアドレススイッチ部6乃至7を有し、アドレススイッチ6乃至アドレススイッチ7は、ホストシステム1からアクセス可能で、ホストシステム1側で任意に決定したアドレスの接続が可能となる。

【0011】また、ホストシステム1は、ID管理エリアとアドレススイッチ設定情報エリアを備え、アドレス接続設定内容を管理する手段を有する。

[0012]

【実施の形態】図1は、本発明のアドレスコントローラ2を使用した場合第1の実施の形態ののシステム構成図である。

【0013】図2は、図1に示すアドレスコントローラ2の詳細ブロック図である。

【0014】図3は、図2に示すアドレススイッチ部5の内部構成とデコーダ部4の接続図である。

【0015】図4は、図3に示すアドレススイッチ6およびアドレススイッチ7の内部の信号の接続概念図である。

【0016】図5は、本発明のアドレスコントローラ2を使用した際のホストシステムにおける外部メモリ3を見たアドレスマッピングの例である。

【0017】図1、図2、図3、図4の詳細説明は、以下の通りである。

【0018】図1はシステムの構成例を示す図であり、 アドレスコントローラ2はホストシステム1から出力さ れる複数本のアドレス信号である $AD_0 \sim AD_n$ (以下A

D*の様に*を使用して表示する) 信号を受信し、アド レスの割り振りを変更し、対応するCAD0~CAD n (以下CAD*と表示する) 信号としてメモリ部3に

【0019】図2はアドレスコントローラの内部ブロッ ク図であるが、デコーダ部4はアドレススイッチ部5に 対し、データアクセスを可能とする制御信号ADCSO ~ADCSn(以下ADCS*と表示する) 信号を生成 する。

【0020】アドレススイッチ部5はホストシステム1 10 からの書き込みデータにより、ホストシステム1から入 力されたアドレス信号であるAD*信号に対し、メモリ 部3のアドレス信号となるCAD*信号の接続を設定す

【0021】図3は、アドレススイッチ部5の内部構成 図である。図3に示すアドレススイッチ部5では、アド レス信号の本数を20本としている。

【0022】アドレススイッチ部5は、アドレススイッ チ60乃至アドレススイッチ619迄の20個から構成さ れる。また、各アドレススイッチ60~619の内部回路 構成は同一の構成である。

【0023】図4はアドレススイッチ60~619内部で 実施されるアドレスの接続概念図である。各アドレスス イッチ例えばアドレススイッチ60内には20個のスイ ッチ80~819を有し、スイッチ80はホストシステム1 からのアドレス入力信号であるADU信号、ADI信号、 AD2信号、・・・、AD19信号の中からホストシステ ムからの指示でAD0信号をメモリ部3へのアドレス入 力信号であるAo信号に接続し、また、スイッチ8jgは ホストシステムから指示されたAD19信号をA0信号へ 接続する。

【0024】図4では、スイッチ82がオン状態となっ ており、AD2信号とAO信号が接続されている。即ち、 ホストシステム1からのAD2信号は、メモリ部3のA0 信号として、アドレスコントローラ2により変換され出 力される。

【0025】図4に示す概念図のスイッチ80、スイッ チ81、スイッチ82、・・・、スイッチ819は、それぞ れ、ADo, AD1, AD2, ・・・AD19を入力とし、 メカニカルなスイッチではなく、電気的なスイッチであ 40 る。例えば、電子スイッチ、あるいは書き換え可能なE EPROMのセルを採用して実現してもよい。

【0026】次に、本発明の動作について説明する。

【0027】まず初めに、図4で示したアドレスの接続 概念図で示した各アドレスの接続手順について説明す る.

【0028】図10に示すように、ホストシステム1 は、特定のアドレス空間に接続を設定されたアドレスス イッチ60乃至アドレススイッチ619に対し、アドレス

2信号をA0信号に変換したいのであれば、データバス信 号であるDB0~7信号を介しアドレススイッチ60に 対し"02h"を設定すれば良い。

【0029】各アドレススイッチ60% 619には、バイ ナリー/ビット変換部50と、スイッチ20個を有し、 各スイッチ80~819には、AD0~AD19が、それぞれ 対応して個別に接続され、またバイナリー/ビット変換 部で50でピット変換されたBIT0~BIT19も順に 個別に接続されており、指定接続が行われる。

【0030】したがって、ADo信号をA19信号に接続 したいのであれば、図14に示すデータバス信号表によ り、アドレススイッチ619に対し、"00h"を設定す れば良い。

【0031】すなわち、"1"を所望の位置とすると、 AD2は3番目の位置なので、バイナリー/ビット変換 部50に対し"02h"をセットし、バイナリー/ビッ ト変換部50の出力として、"BITO BITI BI $T_2 \cdots BIT_{18} BIT_{19}$ " の対応として、" 0 0 1 0 0"が 出力される。

【0032】ADoは 1番目の位置なので、バイナリ 一/ビット変換部50に対し、"00h"をセットし、 バイナリー/ビット変換部50の出力として、"BIT 0 BIT1 BIT3 ··· BIT18 BIT19" 対応として、" 1 0 0 0 " が出力される。

【0033】以上のようにしてADo信号、ADi信号、 ・・・、AD19信号とA0信号、A1信号、・・・、A19 信号を1対1に接続変換する。このことにより、ホスト システム1ではアドレススイッチの接続状態をアドレス スイッチ設定情報エッアにプロットして認識し、このメ モリ部3でアクセスされるメモリ空間の構成は、全く異 なることとすることができる。

【0034】各アドレスのデータの対応は1対1となる が、アドレススイッチ部5のアドレス接続の各接続設定 により、メモリ部3は各々異なったアドレスの対応を実 現できる。

【0035】以上のように、アドレススイッチ部5の内 部スイッチの接続変更により各々のアドレス接続が可能 となる訳であるが、接続変更の管理方法について説明す る。

【0036】図5は外部メモリ3に設定されているメモ リマップの例で、ID管理エリア4バイトとユーザメモ リエリアとからなり、メモリ部3に対し、ID管理エリ アおよびアドレススイッチ5設定情報エリアを設ける。 ID管理エリアを4バイトとし、アドレスのFFFFC ~FFFFF番地にマッピングしている。

【0037】ID管理エリアが具体的にどの様な構成に なるかというと、図5の例では(詳細は図6)3バイト の接続を実施する。例えば、図11に示すように、AD 50 のIDデータと1バイトのチェックビットから構成され

10

る。

【0038】また、図13はホストシステム側で有する管理用のマップで、ID管理エリアは、図5に示すID管理エリアと同様の内容であり、さらに、アドレススイッチ5設定情報エリアを設け、各アドレススイッチの接続設定情報をマッピングしている。

【0039】ホストシステム1では、上記の管理用マップにより、アドレススイッチ部5のアドレス信号接続情報を管理しており、ID管理エリアのIDバイトは、1対1で、ホストシステム1の内部で管理されている。

【0040】次に、実際のメモリアクセスのフローを説明する。

【0041】ホストシステム1は、まず特定のアドレス空間に設定されているアドレススイッチ部5のアドレススイッチ60~619に対し、アドレスの設定を実行する。前述したように、図4で示されるスイッチ80~819に対しビット指定で設定を行う。例えば、AD0信号をA10信号に接続したい場合は、データバス信号であるDB0~7信号を介し、該当のビットを"1"にした設定を行う。この場合、ホストシステム1はアドレススイッチ10ッチ部10のアドレススイッチ110にに対し"110 A110、とデータ設定を実施する。

【0042】ホストシステム1は同様な手順により、AD0信号からAD19信号について、アドレススイッチ60からアドレススイッチ619まで、アドレスの接続設定を行う。

【0043】ホストシステム1はアドレスの接続設定内容に対し、3バイトのIDを決定する。3バイトのIDに対し、チェックビットを生成する。ホストシステム1は、ホストシステム1からみる外部メモリ3のユーザメ30モリマップの"FFFFFh"番地乃至"FFFFch"番地に3バイトのIDと1バイトのチェックビットを書き込む。アドレスの接続設定内容とIDは1対1の対応がとられている。アドレスの接続内容とそれに対応するIDはホストシステム1側で管理保管する。

【0044】図1のシステム接続例ではメモリ部3は固定的に記載されているが、メモリ部3はホストシステム1から分離可能なメモリでもよい。この場合、ホストシステム1は複数のメモリ部3に対するアドレス接続設定内容とIDの管理保管を実施する。

【0045】次に、ホストシステム1が、メモリ部3からデータの読み出しを実施する場合のフローを示す。

【0046】ホストシステム1は管理保管しているIDに基づき、アドレススイッチ部5のアドレス接続を実施する。

【0047】ホストシステム1は"FFFFFFh"番地 クセス回路の第20から"FFFFch"番地のID管理エリアを読み出 【図8】本発明のプレ、図12に示すID管理マップにより、3バイトのI クセス回路の第30Dと1バイトのチェックビットが、ホストシステム1で 【図9】従来の外部保管していたデータと一致するか否かをチェックする。 50 テム概念図である。

6

一致していた場合、以降のメモリ部3に対するアクセス が保証される。

【0048】メモリ部3が複数存在する場合は、同様な手順で、ホストシステム1で保管するIDとメモリ部3から読み出したIDとが一致するまで実行する。

【0049】図7は、ホストシステム1の内部にメモリ部3が組み込まれている例である。この場合、メモリ部3がホストシステム1から取り除かれ、メモリ部3のみのデータをメモリ部3のアドレス配置から順番に読み出しても本来のデータ列となっていないため、データに対するセキュリティ効果がある。

【0050】図8は、メモリ部3がメモリ部13、メモリ部14と複数存在する場合の例である。ホストシステム1は、図13に示すように、メモリ部13およびメモリ部14に対しそれぞれのIDとアドレス接続設定内容を管理している。メモリ部13、メモリ部14はホストシステム1に対しコネクタ等を介し接続可能である。ホストシステム1は接続されたメモリ部13、メモリ部14に対しIDが一致するかをチェックし、各々に対しアクセス可能となる。

【0051】図8で示した例では、メモリ部13、メモリ部14は可搬型のメモリカードを想定している。メモリ部13、およびメモリ部14をホストシステム1で管理保管されているIDとアドレス接続設定内容と同一の情報をもつホストシステム以外では本来のデータ列の復現は不可能となる為、メモリ部13、メモリ部14のデータに対しセキュリティ効果がある。

[0052]

【発明の効果】第1の効果は、アドレスの接続を随時任意に変更することにより、メモリ内部のデータに対しセキュリティ効果がある。その理由は、アドレスの接続情報とID管理をホストで実行し、アドレスの接続切換をホストから随時任意に実施しているためである。

【図面の簡単な説明】

【図1】本発明のアドレスコントローラを使用したメモリのアクセス回路の概念を示すブロック図である。

【図2】本発明のアドレスコントローラの一第1の実施 例のブロック図である。

【図3】図2に示すアドレススイッチ部5の詳細ブロック図である。

【図4】図3に示すアドレススイッチの詳細図である。

【図5】本発明のアドレスコントローラを使用した際のシステムから見たアドレスマッピングの例である。

【図6】図5に示すID管理エリアの概念図である。

【図7】本発明のアドレスコントロールを含むメモリアクセス回路の第2の実施例のブロック図である。

【図8】本発明のアドレスコントローラを含むメモリアクセス回路の第3の実施例のブロック図である。

【図9】従来の外部メモリアドレスアクセス装置のシステム概念図である。

7

【図10】図3に示すアドレススイッチ60の構成図で ある。

【図11】図10に示すアドレススイッチ60における スイッチ82の動作状態を示す図である。

【図12】ホストシステム1のID管理マップの構成を 示す図である。

【図13】ホストシステムの外部メモリ13、14の管 理のためのID管理マップの構成を示すずである。

【図14】データバス信号のBIT変換を示す図表であ る。

【符号の説明】

- 1 ホストシステム
- 2 アドレスコントローラ

* 3 メモリ部

- デコーダ 4
- 5 アドレススイッチ部
- 6 アドレススイッチ
- 7 アドレススイッチ
- 8 スイッチ
- 9 スイッチ
- 1 0 スイッチ
- 1 1 スイッチ
- 1 2 ホストシステム
 - 1 3 メモリ部
 - 14 メモリ部

AD 19 O

【図1】

80 AD a O-AD, O AD2 O -O A o

【図2】

【図9】

【図4】

8

【図6】

【図13】

ホストシステム側のID 管理

【図10】

【図11】

【図14】

	1	BIT																		
DB0~-DB7	0	1	2	3	4	5	6	7	-8	9	10	11	12	13	14	15	16	17	18	19
00h	1	0	0	0	0	0	╗	0	0	0	0	0	0	ō	0	ö	0	0	0	ō
01h	0	ı	0	O	0	0	0	0	٥	0	0	0	0	0	0	0	٥	0	0	ō
02h	0	0	1	0	0	O	0	0	0	0	0	0	0	0	0	0	0	٥	0	0
03h	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0
04h	0	0	0	0	1	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0
05h	0	0	٥	0	0	ı	0	0	0	0	0	0	0	0	O	0	0	0	0	Ó
06h	0	0	0	٥	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
07h	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
08h	0	0	0	0	0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0
09h	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0.	0	ō
OAh	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
OBh	0	0	0	0	0	0	0	0	٥	0	٥	1	0	0	0	0	0	0	0	0.
OCh	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ODh	0	0	0	0	0	0	0	0	0	0	0	0	0	L	0	0	Ç	0	0	0
OEh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
OFh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	C	0	0	0
10h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	0	1	0	0	0
llh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
12h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
13h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı