Aufgabe	1		2	3		4	
Punkte							
Bewertung	Pu	ınkte gesamt:	/ 45	das wäre:			
BEACHTEN S	SIE DIE R	ÜCKSEITE D	DIESER ANGAE	BE! BEARBEITU	JNGSZEIT: 45	Minuten.	
Berechnung de	es Mittelw	ertes, der St	tichprobenstar	ndardabweichu	ng und des Sta	andardfehle	
n Praktikum besti	mmen Sie	im Versuch	Messuna der 2	7ähiakeit nach .	Stokes den Du	rchmesser (
er genutzten Glas	skugeln dı	ırch wiederho		•			
werden für eine	Kugel erh	alten:					
<i>i</i> -Messung		1	2	3	4	5	
<i>I</i> -iviessurig			4 0 4 0	1,261	1,251	1,249	
Durchmesser d _i . Bestimmen Sie	(in hinreic	•		SI-Einheiten) m	·	<u> </u>	
Durchmesser din Bestimmen Sie den Mittelwert den Bestimmen Sie den Stichprober	(in hinreich des Durch	nend großer messers der	Stellenzahl und Kugel! (3 Punki	SI-Einheiten) m	it Angabe des I	Rechenwege	
Bestimmen Sie den Mittelwert den Bestimmen Sie	(in hinreich des Durch	nend großer messers der	Stellenzahl und Kugel! (3 Punki	SI-Einheiten) m	it Angabe des I	Rechenwege	
Durchmesser d _i and Bestimmen Sie den Mittelwert den Bestimmen Sie	(in hinreich des Durch	nend großer messers der	Stellenzahl und Kugel! (3 Punki	SI-Einheiten) m	it Angabe des I	Rechenwege	

e.) Begründen Sie in **kurzer Form**, weshalb Sie für die Bestimmung Ihres Ergebnisses die Stichprobenstandardabweichung statt der Standardabweichung nutzen müssen! (2 Punkte)

2. Graphische Darstellungen

Im Praktikum ermitteln Sie die Richtkraft D (Federkonstante) einer Schraubenfeder nach der statischen Methode. Dazu belasten Sie die Feder mit kalibrierten Gewichten der Masse m_i und ermitteln die jeweils resultierende Auslenkung x_i . Im elastischen Bereich ist die Richtkraft durch folgenden Zusammenhang gegeben:

$$D = \frac{mg}{x}$$

Sie erhalten folgende Werte:

m/g	50	100	150	200	250
x/cm	4,1	8,2	12,3	16,4	20,4

- **a.)** Fertigen Sie eine vollständige graphische Darstellung Ihrer Messung an. Tragen Sie dazu die Messergebnisse in das Millimeterpapier ein, zeichnen Sie eine sinnvolle ausgleichende Kurve durch die Messpunkte und achten Sie auf die Einhaltung formaler Kriterien bei der Erstellung graphischer Darstellungen! (11 Punkte)
- **b.)** Begründen Sie anhand Ihrer graphischen Darstellung **kurz**, ob der angegebene theoretische Zusammenhang **qualitativ** richtig ist! (3 Punkte)

3. Verteilungsfunktionen

a.) Berechnen Sie folgende Binomialkoeffizienten: (2 Punkte)

$$\binom{4}{3}$$
=

$$\binom{10}{6}$$
=

b.) Was beschreibt eine **Binomialverteilung**, wodurch ist Sie eindeutig festgelegt und welche Eigenschaften hat diese Verteilung? (6 Punkte)

c.) Die Mechanikwerkstatt des Physikalischen Instituts bestellt eine große Stückzahl von Vakuumdichtringen. Laut Herstellerangaben darf der Anteil an fehlerhaften Dichtungen dabei nicht größer als 1% sein. Unsere Mechaniker möchten nun eine Stichprobe auswerten, anhand derer Sie entscheiden, ob die Herstellerangaben eingehalten wurden. Ihren Überlegungen legen Sie eine Binomialverteilung zu Grunde. **Begründen Sie kurz** ob diese Wahl sinnvoll ist! (3 Punkte)

- 4. Fehlerrechnung nach Gauß
- a.) Welche Annahmen macht man in der Gauß'schen Fehlerrechnung? (2 Punkte)

b.) Im Praktikum bestimmen Sie den elektrischen Widerstand von Widerstandsnetzwerken. Der Ersatzwiderstand R_E für zwei parallel geschaltete Widerstände R_1 und R_2 ist gegeben durch:

$$\frac{1}{R_E} = \frac{1}{R_1} + \frac{1}{R_2} \ .$$

Stellen Sie mit Hilfe der Gauß'schen Fehlerrechnung die mathematische Beziehung für den **Fehler** σ_E von R_E auf, wenn σ_1 bzw. σ_2 die Fehler von R_1 bzw. R_2 sind. Vereinfachen Sie den gefundenen Ausdruck so weit wie möglich! (6 Punkte)