# MA211 **Lecture 12: Class Test**

Wed 16 October 2008



**Q1.** Use  $\cosh(x) = \frac{1}{2} \left( e^x + e^{-x} \right)$  and  $\sinh(x) = \frac{1}{2} \left( e^x - e^{-x} \right)$  to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

.....

**Q2.** Write down the general solution to the following differential equations:

(i) 
$$25y'' - 20y' + 4y = 0$$
.

(ii) 
$$y'' + y' - 12y = 0$$

**Q3.** Find values of b and c such that  $y(x) = \cosh(2x)$  is a solution to the differential equation:

$$y'' + by' + cy = 0.$$

#### Q1

Use  $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$  and  $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$  to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

$$\cos h^{2}(x) = \frac{1}{4} (e^{x} + e^{-x})(e^{x} + e^{-x}) = \frac{1}{4} (e^{2x} + 2 + e^{-2x})$$
  
 $\sinh^{2}(x) = \frac{1}{4} (e^{x} - e^{-x})(e^{x} - e^{-x}) = \frac{1}{4} (e^{2x} - 2 + e^{-2x})$ 

$$\int_{0}^{50} \cosh^{2}(x) - \sinh^{2}(x) = 1$$

$$\int_{0}^{4} \left[ e^{2x} + 2 + e^{-2x} - e^{-2x} + 2 - e^{-2x} \right] = 1$$



# Q2 (i)

Write down the general solution to the following differential equation: 25y'' - 20y' + 4y = 0.

The auxilling equation is 
$$25R^2 - 20R + 4 = 0$$
It's solutions are  $R = \frac{20 \pm \sqrt{400 - 400}}{50} = \frac{2}{50}$ 
Since there is only one Root,
$$y(x) = A e^{2x/5} + Bx e^{2x/5}$$



# Q2 (ii)

Write down the general solution to the following differential equation: y'' + y' - 12y = 0

The aux equation is 
$$R^2 + R - 12 = 0$$
  
The discriminant  $0 = b^2 - 4ac = 1 + 48 = 49 > 0$ .  
So there are 2 distinct real roots
$$R_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-1 + 7}{2} = 3, \quad R_2 = \frac{-1 - 7}{2} = -4$$

So 
$$y(x) = A e^{3x} + B e^{-4x}$$
  
(Note, the left hand side of the auxillary Equation is easily factorised, so  $(R-3)(R+4)=0$ )

## Q3

Find values of b and c such that  $y(x) = \cosh(2x)$  is a solution to the differential equation:

$$y'' + by' + cy = 0.$$

$$y = \cosh(2x)$$
 so  $y'(x) = 2\sinh(2x)$   
and  $y''(x) = 4\cosh(2x)$ .  
Substitute into the DE to get  
 $4\cosh(2x) + 5\sinh(2x) + \cosh(2x) = 0$   
This gives  $b = 0$  and  $c = -4$ .