FAST LOW-RANK SHARED DICTIONARY LEARNING FOR IMAGE CLASSIFICATION Final Project

Institute of Statistics & Department of Applied Mathematics

Huynh Huu Dinh

ID: 8107053003

1.Building dictionary learning framework is characterized by particular dictionaries and a shared dictionary.

Purpose of paper

2. Using the low-rank shared dictionary learning to classify images and computing the accuracy.

Dataset: The Extended Yale B

- ◆ This dataset contains about 2414 frontal face images of 38 individuals. We used the cropped and normalized face images of 192x168 pixels (see [2]).
- We randomly split the dataset into two halves. One half, which contains 32 images for each person, was used for training the dictionary. The other half was used for testing.

The extended Yale B

Vectorization the dataset (see [2])

	1	2	3	4	•••	2413	2414
1	31.75248	28.83727	-29.2841	39.18376		-47.3624	-19.6828
2	-111.236	-82.9543	-39.9927	13.33082		5.692033	-3.7811
3	51.63764	55.73638	21.89475	-51.5378		23.22424	61.22354
4	14.09386	3.271673	1.735423	18.93872		268.1512	162.8671
5	-195.57	-211.417	-236.041	-35.5466		-103.549	-63.2441
504	140.3989	127.1401	105.0745	29.25712		131.8584	111.5676
Label	1	1	1	1		38	38

• The learned dictionary contains 304 atoms, which corresponds to, on average, roughly 8 atoms for each person.

Algorithm

Algorithm 1 LRSDL Sparse Coefficients Update by FISTA [34]

function $(\hat{\mathbf{X}}, \hat{\mathbf{X}}^0) = LRSDL_X(\mathbf{Y}, \mathbf{D}, \mathbf{D}_0, \mathbf{X}, \mathbf{X}^0, \lambda_1, \lambda_2).$

1. Calculate:

$$\mathbf{A} = \mathcal{M}(\mathbf{D}^T \mathbf{D}) + 2\lambda_2 \mathbf{I};$$

$$\mathbf{B} = 2\mathbf{D}_0^T \mathbf{D}_0 + \lambda_2 \mathbf{I}$$

$$L = \lambda_{\text{max}}(\mathbf{A}) + \lambda_{\text{max}}(\mathbf{B}) + 4\lambda_2 + 1^4$$

2. Initialize
$$\mathbf{W}_1 = \mathbf{Z}_0 = \begin{bmatrix} \mathbf{X} \\ \mathbf{X}^0 \end{bmatrix}, t_1 = 1, k = 1$$

while not convergence and $k < k_{\text{max}}$ do

- 3. Extract \mathbf{X}, \mathbf{X}^0 from \mathbf{W}_k .
- 4. Calculate gradient of two parts:

$$\mathbf{M} = \mu(\mathbf{X}), \mathbf{M}_c = \mu(\mathbf{X}_c), \widehat{\mathbf{M}} = [\mathbf{M}_1, \dots, \mathbf{M}_C].$$

$$\mathbf{V} = \mathbf{Y} - \frac{1}{2} \mathbf{D} \mathcal{M}(\mathbf{X})$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{A} \mathbf{X} - \mathcal{M} (\mathbf{D}^T (\mathbf{Y} - \mathbf{D}_0 \mathbf{X}^0)) + \lambda_2 (\mathbf{M} - \widehat{\mathbf{M}}) \\ \mathbf{B} \mathbf{X}^0 - \mathbf{D}_0^T \mathbf{V} - \lambda_2 \mu(\mathbf{X}^0) \end{bmatrix}$$

5. $\mathbf{Z}_k = \mathcal{S}_{\lambda_1/L} \left(\mathbf{W}_k - \mathbf{G}/L \right) \left(\mathcal{S}_{\alpha}() \text{ is the elementwise soft thresholding function. } \mathcal{S}_{\alpha}(x) = \operatorname{sgn}(x)(|x| - \alpha)_+ \right).$

6.
$$t_{k+1} = (1 + \sqrt{1 + 4t_k^2})/2$$

7.
$$\mathbf{W}_{k+1} = \mathbf{Z}_k + \frac{t_k-1}{t_{k+1}} (\mathbf{Z}_k - \mathbf{Z}_{k-1})$$

8.
$$k = k + 1$$

end while

9. OUTPUT: Extract \mathbf{X}, \mathbf{X}^0 from \mathbf{Z}_k .

end function

by Algorithm 2 LRSDL Algorithm

function $(\hat{\mathbf{X}}, \hat{\mathbf{X}}^0) = LRSDL(\mathbf{Y}, \lambda_1, \lambda_2, \eta).$

1. Initialization X = 0, and:

$$(\mathbf{D}_c, \mathbf{X}_c^c) = \arg\min_{\mathbf{D}, \mathbf{X}} \frac{1}{2} \|\mathbf{Y}_c - \mathbf{D}\mathbf{X}\|_F^2 + \lambda_1 \|\mathbf{X}\|_1$$

$$(\mathbf{D}_0, \mathbf{X}^0) = \arg\min_{\mathbf{D}, \mathbf{X}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 + \lambda_1 \|\mathbf{X}\|_1$$

while not converge do

- 2. Update X and X^0 by Algorithm 1.
- 3. Update **D** by ODL [35]:

$$\mathbf{E} = (\mathbf{Y} - \mathbf{D}_0 \mathbf{X}^0) \mathcal{M}(\mathbf{X}^T)$$

$$\mathbf{F} = \mathcal{M}(\mathbf{X}\mathbf{X}^T)$$

$$\mathbf{D} = \arg\min_{\mathbf{D}} \{-2\mathsf{trace}(\mathbf{E}\mathbf{D}^T) + \mathsf{trace}(\mathbf{F}\mathbf{D}^T\mathbf{D})\}$$

4. Update \mathbf{D}_0 by ODL [35] and ADMM [36] (see equations (17) - (20)).

end while

end function

- Input:
 - ◆ Dataset: The Extended Yale B (38 classes and 2414 images).
 - ◆ Training samples: Y_train (380 images).
 - ◆ Testing samples: Y_test (2034 images).
 - ◆ Training labels: label_train ([1 1 1 ... 2 2 ... 38 38]).
 - ◆ Testing labels: label_test ([1 1 1 ... 2 2 ... 38 38]).
 - k: number of bases in class specific-dictionary c (k=10).
 - k0: number of bases in shared dictionary (k0=5).

- Input:
 - ◆ lambda1, lambda2 and eta in the cost function*

Lambda1 = 0.001, lambda2 = 0.01 and eta = 0.02

* Cost function

$$\begin{split} &f\left(D,X,D_{0},X^{0}\right) = \left\|Y-D_{0}X^{0}-DX\right\|_{F}^{2} + \sum_{i=1}^{C} \left(\left\|Y_{i}-D_{0}X_{i}^{0}-D_{i}X_{i}^{i}\right\|_{F}^{2} + \sum_{j\neq i}\left\|D_{j}X_{i}^{j}\right\|_{F}^{2}\right) + \lambda_{1}\left\|X\right\|_{1} \\ &+ \lambda_{2} \left(\sum_{i=1}^{C} \left(\left\|X_{i}-M_{i}\right\|_{F}^{2} - \left\|M_{i}-M\right\|_{F}^{2}\right) + \left\|X\right\|_{F}^{2} + \left\|X^{0}-M^{0}\right\|_{F}^{2}\right) + \lambda_{1}\left\|X^{0}\right\|_{1} + \eta\left\|D_{0}\right\|_{*} \end{split}$$

- Output:
 - D, D_0 , X, X_0 : trained matrices as in the cost function.
 - ◆ acc_Irsdl: accuracy of testing samples.
 - * rt: time (seconds)

```
+-----+
| Method | Accuracy |
|-----+
| LRSDL | 90.86% |
```

k0	Accuracy (%)	Time (s)
5	90.86	54
10	90.07	127
20	90.22	196
40	91.19	264
80	90.95	337

References

- [1] T. H. Vu, V. Monga, Fast Low-Rank Shared Dictionary Learning For Image Classification, IEEE Trans. Image Process., vol. 26, no. 11, pp. 5160-5175, Nov. 2017.
- [2] M. Yang, L. Zhang, X. Feng, and D. Zhang, *Fisher discrimination dictionary learning for sparse representation*, in Proc. IEEE International Conference on Computer Vision, pp. 543–550, Nov. 2011.
- [3] A. Beck and M. Teboulle, *A fast iterative shrinkage-thresholding algorithm for linear invers problems*, SIAM J. Image. Sci, Vol. 2, No. 1, pp. 183–202, Nov. 2009.
- [4] S. Boyd, N. Parith, E. Chu, B. Peleato, J. Eckstein, *Distributed optimization and statistical learning via the alternating direction method of multipliers*, Found. Trends Mach. Learn, Vol. 3, No. 1, pp. 1–122, Nov. 2009.