## ANÁLISIS MATEMÁTICO II (LC) - CÁLCULO II (LMA) Examen Final 25 de febrero de 2022

- En cada ejercicio JUSTIFIQUE CLARAMENTE sus respuestas.
- No está permitido el uso de calculadoras ni computadoras.
- Enumere todas las hojas y escriba su nombre y apellido en cada una.

### Ejercicio 1 (20 pts.)

- (a) Determine todos los valores de c para los cuales la integral impropia  $\int_{-\infty}^{+\infty} e^{-c|x|} dx$  converge. Ayuda: analice por separado los casos c < 0, c = 0 y c > 0.
- (b) Sea  $f(x,y) = 2x^4 + y^2 x^2 2y$ . Encuentre el o los vectores unitarios **u** tales que la derivada direccional de f en el punto (0,2) en la dirección de **u** tiene el valor 1.

#### Ejercicio 2 (20 pts.)

- (a) Considere la función  $f(x) = \sqrt{x}$  y sea  $T_{2,4}(x)$  su polinomio de Taylor de grado 2 y centrado en a = 4. Estimar el error que se comete si se aproxima el número  $\sqrt{3}$  por el valor de  $T_{2,4}(x)$  en x = 3.
- (b) Considere la curva  $\gamma(t) = (2\cos(t), \sin(t))$ . Dibuje aproximadamente la imagen de  $\gamma$  para  $t \geq 0$ , calcule el vector tangente a la curva en  $t_0 = \pi/4$  y obtenga la ecuación de la recta tangente a la imagen de  $\gamma$  en el punto  $\gamma(t_0)$ .

#### Ejercicio 3 (20 pts.)

- (a) Represente la función  $f(x) = \frac{1}{x}$  como una serie de potencias centrada en a = 2. Determine el intervalo de convergencia de la serie obtenida.
- (b) Halle el intervalo/dominio de definición de la función  $g(x) = \sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n}} (x-10)^n$  y calcule su derivada g'. ¿Tienen g y g' el mismo dominio? Justifique su respuesta.

#### Ejercicio 4 (20 pts.)

- (a) Encuentre la ecuación del plano P que pasa por los puntos (0,0,10),(1,0,8) y (0,2,9).
- (b) Calcule el volumen del prisma sólido cuya base es el rectángulo  $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2\}$  y cuya tapa está contenida en el plano P del inciso anterior.

# **Ejercicio 5** (20 pts.) Sea $f: D \to \mathbb{R}$ , con $D \subseteq \mathbb{R}^2$ .

- (a) Dé la definición de máximo local y de máximo absoluto para un punto  $(x_0, y_0) \in D$ .
- (b) Sea  $(x_0, y_0) \in D$  un punto crítico de f. Enuncie de manera clara y precisa el *Test de las segundas derivadas* que ayuda a determinar qu clase de punto crítico es  $(x_0, y_0)$ .

La resolución de cada ejercicio debe ser subida por separada. En total debe subir 6 archivos en formato pdf (1 por cada ejercicio y 1 correspondiente a la Declaración Jurada).

Ejercicio 6 solo para alumna/os libres. (20 pts.)

Elija la o las opciones correctas.

- $\sum_{n=1}^{\infty} a_n$  converge  $\Rightarrow \lim_{n\to\infty} a_n = 0$ .
- $\lim_{n\to\infty} a_n = 0 \Rightarrow \sum_{n=1}^{\infty} a_n$  converge.
- $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converge si p > 1.
- Si  $\sum_{n=1}^{\infty} a_n$  converge  $\Rightarrow \sum_{n=1}^{\infty} |a_n|$  converge.
- Si  $r > 0 \Rightarrow \sum_{n=0}^{\infty} r^n$  converge.

Este cuestionario debe ser resuelto en el Aula Virtual (no es necesario subir archivos de la resolución).