

Midterm Election Simulation Project

Group 2

Erica Nam, Xiao Xu, Xinyu Zhang, Yitao Li

UT DALLAS

Data Simulation

For each of *nrep* replications:

- We first generate N_contam the size of the contaminating group using a bin(N, q). q is our assumption for the percentage of the contaminating group out of the entire sample which has a sample size N. N N_contam is the size of the sample that is not contaminated. Note that when q = 0, there is no contamination in the sample.
- Second, we generate the number of people in the contaminating group who prefer candidate 1 (N_{true_1}), candidate 2 (N_{true_2}) and candidate 3 (N_{true_3}) respectively using a multinomial (N_{true_2}) and candidate 3 (N_{true_3}) respectively using a multinomial (N_{true_3}) since the proportion of people in this group favors candidate 1, candidate 2 and candidate 3 is p_1 , p_2 , p_3 .
- We also generate the number of people in the not contaminated group who prefer candidate 1
 (N_contam₁), candidate 2 (N_contam₂) and candidate 3 (N_contam₃) respectively using a multinomial (N N_contam, r₁, r₂, r₃) since the proportion of people in this group favors candidate 1, candidate 2 and candidate 3 is r₁, r₂, r₃.
- Then we have the simulated number of people who prefer candidate $1 N_1 = N_t rue_1 + N_c contam_1$. People who prefer candidate $2 N_2 = N_t rue_2 + N_c contam_2$. People who prefer candidate $3 N_3 = N_t rue_3 + N_c contam_3$.

Confidence Interval

Continue for the same replication *t*:

- We first calculate p_1 _hat = $\frac{N_1}{N}$. p_2 _hat = $\frac{N_2}{N}$. p_3 _hat = $\frac{N_3}{N}$.
- Then we calculate $Cl_m 1_{i,j}$ the 1- α confidence interval for p_i p_j using the following formula from method 1:

$$p_{\perp}hat - p_{j_{\perp}}hat \pm \sqrt{\frac{Ad_{i,j}}{N}}$$
 where $A = \chi_{M-1}^2 \left(\frac{\alpha}{M}\right)$, $M = m\frac{(m-1)}{2}$, $m = 3$, $d_{i,j} = p_{\perp}hat + p_{j_{\perp}}hat - (p_{\perp}hat - p_{j_{\perp}}hat)^2$

Calculate $Cl_m 2_{i,j}$ the confidence interval for $p_i - p_j$ using the following formula from method 2:

$$p_{i}hat - p_{j}hat \pm \frac{a}{\sqrt{N}}$$
 where $1 - 2[1 - z_{a}] - 4[m - 2][1 - z_{a\sqrt{2}}] = 1 - \alpha$, $m = 3$

Note that if $p_1 - p_2 \in CI_m11,2$ and $p_1 - p_3 \in CI_m11,3$ and $p_2 - p_3 \in CI_m12,3$, then we say the simultaneous confidence interval consist of $CI_m1_{1,2}$, $CI_m1_{1,3}$ and $CI_m1_{2,3}$ covers the true value $p_1 - p_2$, $p_1 - p_3$ and $p_2 - p_3$ simultaneously for this replication. Same goes for method 2.

- The average confidence interval width is $avg_width_m1_t = \frac{2\sqrt{\frac{Ad_{12}}{N}} + 2\sqrt{\frac{Ad_{13}}{N}} + 2\sqrt{\frac{Ad_{23}}{N}}}{3}$ for method 1 and $avg_width_m2_t = 2\frac{a}{\sqrt{N}}$ for method 2.
- The maximum confidence interval width is $\max_{width_{m1_t}} = \max[2\sqrt{\frac{Ad_{12}}{N}}, 2\sqrt{\frac{Ad_{13}}{N}}, 2\sqrt{\frac{Ad_{23}}{N}}]$ for method 1 and $\max_{width_{m2_t}} = 2\frac{a}{\sqrt{N}}$ for method 2.

Simultaneous IC coverage probability and width

- The CI and its width is calculated nrep times for nrep replications.
- The estimated coverage probability is $\frac{nrep_cov_m1}{nrep}$ if among nrep replications $nrep_cov_m1$ of them cover the true value simultaneously with the CI constructed with method 1. Same foes for method 2.
- The estimated average simultaneous CI width is $\frac{\sum_t avg_width_m1_t}{nrep}$ for method 1. Same goes for method 2.
- The estimated maximum simultaneous CI width is $\frac{\sum_t max_width_m1_t}{nrep}$ for method 1. Same goes for method 2.

Shiny app:

https://zxynj.shinyapps.io/Midterm_election_simulation_project_Stat_6341/

- When there is no contamination, method 1 is better than method 2 but with wider CI.
- CI width decreases as N increase.

• The variance of the coverage probability decreases as *nrep* increase.

- The coverage probability decreases as α increase.
- The coverage probability for Method 2 drops faster than Method 1. This could be explained by Method 2's narrower CI width and faster deacreasing CI width.

- When one candidate dominates the race, the CI width for Method 1 → 0 which cause its
 coverage probability to perform poorly comparing to Method 1 which has a fixed CI
 width.
- $d_{i,j} = p_i hat + p_j hat (p_i hat p_j hat)^2$

• When all three candidates are very close.

• When there is contamination, the CI width was wide enough at the beginning to achieve 90%+ coverage probability.

• When there is contamination, the coverage probability drops as contamination proportion increases.

- When single domination is contaminated with close preference, the CI width for method 1 is smaller than Method 2 as expected.
- As the sample gets more contaminated, the CI center shifts towards the contaminating group's preference probability (close preference) which has a larger CI.

- When close preference is contaminated with single domination, as the sample gets more contaminated the CI center shifts towards the contaminating group's preference probability (single domination) which has a smaller CI.
- Even the overall trend of maximum CI with is decreasing, it actually goes up a little bit as the mixed p_1 , p_2 , p_3 becomes a little bit different.

- Compare p_1 , p_2 , p_3 mixed with r_1 , r_2 , r_3 and p_1 , p_2 , p_3 mixed with r_1 , r_3 , r_2 .
- Coverage probability becomes 0 at q = 0.25 and average CI width has a small ascent right after mixing.

- Compare p_1 , p_2 , p_3 mixed with r_1 , r_2 , r_3 and p_1 , p_2 , p_3 mixed with r_1 , r_3 , r_2 .
- Coverage probability becomes 0 at q =0.35.

