Chapter 25. All Pairs Shortest Paths

We are given a directed, connected, edge-weighted graph G = (V, E) with a length w(u, v) for each edge (u, v).

The **all-pairs shortest-paths problem** (APSP) is to find a shortest path from u to v for **every pair of vertices** u **and** v **in** V.

Approaches to solving APSP:

- ightharpoonup Run a single-source shortest paths algorithm starting at each vertex $v \in V$.
- Use the Floyd-Warshall algorithm or other algorithms (matrix-based methods), which will be introduced in this lecture.

Chapter 25. Approaches to Solving All Pairs Shortest Paths

The single source shortest paths method:

- ➤ For a graph contains only non-negative edge lengths, use Dijkstra's algorithm starting at each vertex. The running time of the algorithm depends on which data structure used.
 - Linear array implementation: $O(|V|^3 + |V||E|) = O(|V|^3)$.
 - MIN-HEAP (the priority queue) implementation: $O(|V|^2 \log |V| + |V||E| \log |V|) = O(|V||E| \log |V|).$
- If G contain negative edge lengths, use the Bellman-Ford algorithm starting at each vertex $v \in V$. The running time of the algorithm is $O(|V|^2|E|)$.

Chapter 25. Approaches to Solving All Pairs Shortest Paths (I. Matrix Method)

This is an example of dynamic programming.

Let G = (V, E) be a directed graph with edge lengths. The lengths can be negative, but negative-length cycles are not allowed (WHY?).

Let n = |V|. Let w(i, j) be the length of edge (v_i, v_j) if any. For vertices $v_i, v_j \in V$ and integer $m' \ge 1$, define

 $\ell(i,j)^{(m')}$ = the length of the shortest path from v_i to v_j that uses at most m' edges.

Since no shortest path in G uses more than n-1 edges, we have

 $\ell(i,j)^{(n-1)}$ = the length of the shortest path from v_i to v_j , if $m' \ge n-1$.

II. The "Repeated Squaring" method (continued)

Initial value:

$$\ell(i,j)^{(1)} = \begin{cases} 0, & \text{if } i = j; \\ \infty, & \text{if } i \neq j \text{ and there is no edge } (v_i, v_j); \\ w(i,j), & \text{if } i \neq j \text{ and there is an edge } (v_i, v_j) \end{cases}$$

where w(i, j) is the weight (length) of the edge (v_i, v_j) from v_i to v_j Iteration:

Any path of at most 2m' edges from v_i to v_j consists of a path of at most m' edges from v_i to v_k (for some k), followed by a path of at most m' edges from v_k to v_j .

Therefore, for any $m' \ge 1$:

$$\ell(i,j)^{(2m')} = \min_{k=1}^{n} \{\ell(i,k)^{(m')} + \ell(k,j)^{(m')}\}, \text{ for all } i,j.$$

The "Repeated Squaring" method (continued)

Computation: Starting with the initial value, apply the recurrence repeatedly until $m \ge n - 1$.

That is, compute

$$\ell^{(1)}, \ell^{(2)}, \ell^{(4)}, \ell^{(8)}, \dots$$

until the superscript is no less than n-1.

Each iteration takes $O(n^3)$ time (loops over i, j, k), and $O(\log n)$ iterations (WHY?) are needed, so, the total running time of the repeated squaring method is $O(n^3 \log n)$.

25.2 The Floyd-Warshall algorithm

This uses dynamic programming in a different manner.

Let G = (V, E) be a directed graph with edge lengths. The lengths can be negative, but negative-length cycles are not allowed. Let n = |V|. Let w(i, j) be the length of the edge (v_i, v_j) , if any. For vertices $v_i, v_j \in V$, and integer $0 \le k \le n$, define

 $d_{ij}^{(k)}$ = the length of the shortest path from v_i to v_j in which the intermediate vertices are in $\{v_1, v_2, \dots, v_k\}$.

Obviously, we have

 $d_{ij}^{(n)}$ = the length of the shortest path from v_i to v_j .

The Floyd-Warshall algorithm (continued)

Initial value (no intermediate vertices allowed):

$$d_{ij}^{(0)} = \begin{cases} 0, & \text{if } i = j; \\ \infty, & \text{if } i \neq j \text{ and there is no edge } (v_i, v_j); \\ w(i, j), & \text{if } i \neq j \text{ and there is an edge } (v_i, v_j) \end{cases}$$

Iteration (allowing v_k as an intermediate vertex):

Any path from v_i to v_j that has intermediate vertices from $\{v_1, v_2, \dots, v_k\}$ either actually has v_k as an intermediate vertex or it doesn't.

Therefore, for any $k \ge 1$:

$$d_{ij}^{(k)} = \min_{1 \le k \le n} \{ d_{ij}^{(k-1)}, \quad d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \}, \text{ for all } i, j.$$

The Floyd-Warshall algorithm (continued)

Computation: Starting with the initial value k = 0, apply the recurrence repeatedly until k = n. That is, compute $d^{(0)}, d^{(1)}, d^{(2)}, \dots, d^{(n)}$. The total running time is $O(|V|^3)$.

```
 \begin{array}{lll} \textbf{Floyd-Warshall}(W) \\ 1 & n \leftarrow W.rows; \\ 2 & D^{(0)} \leftarrow W; \\ 3 & \textbf{for } k \leftarrow 1 \textbf{ to } n \textbf{ do} \\ 4 & \det D^{(k)} \leftarrow \left(d_{ij}^{(k)}\right) \textbf{ be a new } n \times n \textbf{ matrix} \\ 5 & \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ 6 & \textbf{for } j \leftarrow 1 \textbf{ to } n \textbf{ do} \\ 7 & d_{ij}^{(k)} \leftarrow \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}; \\ 8 & \text{return } D^{(n)}. \end{array}
```

The Floyd-Warshall algorithm (continued)

The input of the above procedure is a matrix with an entry $d_{ij}^{(0)}$, and the output is $D^{(n)} = \left(d_{ij}^{(n)}\right)$, a matrix with an entry $d_{ij}^{(n)}$, the distance of vertex v_j from vertex v_i .

Note that we don't need to use a different matrix $D^{(k)}$ for each k as when constructing $D^{(k)}$, we only use values from $D^{(k-1)}$. So, two matrices are enough.

How to save even more space?

```
1 d_{ij} \leftarrow d_{ij}^{(0)} for all i, j

2 for k \leftarrow 1 to n do

4 for i \leftarrow 1 to n do

4 for j \leftarrow 1 to n do

5 d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + d_{kj}\};

6 return D.
```

25.2 Transitive closure of a directed graph

Given a directed graph G = (V, E), the **transitive closure** of G is defined as the directed graph $G^* = (V, E^*)$ where

$$E^* = \{(v_i, v_j) \mid \text{there is a path in } G \text{ from } v_i \text{ to } v_j\}.$$

This is similar to the shortest path problem except that we are interested only in the existence of a path and not how long it is.

We can use any APSP algorithm to solve it. We can also avoid integer arithmetic, by using boolean operations.

25.2 Transitive closure (continued)

We use a matrix $T = (t_{ij})$ containing 'true' for a path existing and 'false' for a path not existing.

Transitive_Closure(G)

```
n \leftarrow |V|;
   for i \leftarrow 1 to n do
3
                for j \leftarrow 1 to n do
4
                       if (i = j \text{ or } (v_i, v_j) \in E)
                              then t_{ij} \leftarrow' true'
5
                              else t_{ij} \leftarrow' false';
6
         for k \leftarrow 1 to n do
                for i \leftarrow 1 to n do
8
9
                       for j \leftarrow 1 to n do
                              t_{ij} \leftarrow t_{ij} \vee (t_{ik} \wedge t_{kj});
10
11
         return T.
```

Exercise questions related to the Floyd-Warshall algorithm

Exercise A: Based on the Floyd-Warshall algorithm, write a procedure that constructs, for each pair of vertices v_i and v_j , a shortest path from v_i to v_j .

Exercise B: How can we use the output of the Floyd-Warshall algorithm to detect the presence of a negative-weight cycle?