

# H-TIII

# Web Mining Lecture 5: LSI and EM

Manish Gupta 14<sup>th</sup> Aug 2013

Slides borrowed (and modified) from nlp.stanford.edu/IR-book/ppt/18lsi.pptx www.ics.uci.edu/~lopes/teaching/cs221W12/slides/LSI.pptx www.csc.villanova.edu/~matuszek/fall2003/DocBased.ppt

# Recap of Lecture 4: Link Analysis Algorithms

- PageRank
- Topic-Specific PageRank
- HITS (Hypertext-Induced Topic Selection)
- Spam Detection Algorithms: TrustRank

#### **Announcements**

- Assignment 1 will be up by 11:59pm and the submission date is Aug 21 9pm
- Rescheduling of lectures
  - Makeup class for Aug 24 lecture will be on Aug 22
     6-7:30pm
  - Makeup class for Aug 28 lecture will be on Sep 2
     6-7:30pm

# Today's Agenda

- Singular Value Decomposition (SVD)
- Latent Semantic Indexing (LSI)
- K-Means
- Expectation Maximization (EM)

# Today's Agenda

- Singular Value Decomposition (SVD)
- Latent Semantic Indexing (LSI)
- K-Means
- Expectation Maximization (EM)

#### Datasets in the form of Matrices

- We are given n objects and d features describing the objects.
- Each object has d numeric values describing it.

#### Dataset

- An n-by-d matrix A, A<sub>ij</sub> shows the "importance" of feature j for object i.
- Every row of A represents an object.

#### Goal

- Understand the structure of the data, e.g., the underlying process generating the data.
- Reduce the number of features representing the data

#### **Market Basket Matrices**



Find a subset of the products that characterize customer behavior

#### **Social Network Matrices**



Find a subset of the groups that accurately clusters social-network users

#### **Document Matrices**



Find a subset of the terms that accurately clusters the documents

#### **Recommendation Systems**



Find a subset of the products that accurately describe the behavior or the customers

# The Singular Value Decomposition (SVD)

- Data matrices have n rows (one for each object) and d columns (one for each feature).
- Rows: vectors in a Euclidean space
- Two objects are "close" if the angle between their corresponding vectors is small.



#### **Singular Vectors and Values**



- **Input**: 2-d dimensional points
- Output:
- 1st (right) singular vector
  - direction of maximal variance
- 2nd (right) singular vector
  - direction of maximal variance, after removing the projection of the data along the first singular vector.
- σ<sub>1</sub>: measures how much of the data variance is explained by the first singular vector
- σ<sub>2</sub>: measures how much of the data variance is explained by the second singular vector

#### **SVD** Decomposition

$$\begin{pmatrix} A & \\ & A & \\ & & \end{pmatrix} = \begin{pmatrix} U & \\ & & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix}^{T}$$

$$\mathbf{n} \times \mathbf{d} \qquad \mathbf{n} \times \mathbf{r} \qquad \mathbf{r} \times \mathbf{r} \qquad \mathbf{r} \times \mathbf{d}$$

**U (V)**: orthogonal matrix containing the left (right) singular vectors of **A**.

 $\Sigma$ : diagonal matrix containing the **singular values** of **A**:  $(\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_e)$ 

Exact computation of the SVD takes  $O(min\{dn^2, d^2n\})$  time. The top k left/right singular vectors/values can be **computed faster** using Lanczos/Arnoldi methods.

#### **SVD** Decomposition

- $A = U\Sigma V^T$  such that
  - $UU^T=I$  and columns **U** are orthogonal eigenvectors of  $AA^T$
  - $VV^T=I$  and columns of **V** are orthogonal eigenvectors of  $A^TA$ .
  - Σ = all zeros except diagonal (singular values); singular values decrease along diagonal. They are the square root of the eigenvalues of  $A^TA$  or  $AA^T$ .



#### **Truncated SVD**

- SVD is a means to the end goal.
- The end goal is dimension reduction, i.e. get another version of A computed from a reduced space in  $U\Sigma V^{T}$ 
  - Simply zero  $\Sigma$  after a certain row/column k



# Rank-k approximations $(A_k)$

$$\begin{pmatrix} & & \\ & A_k & \\ & & \end{pmatrix} = \begin{pmatrix} & U_k & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & \Sigma_k & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & V_k^T & \\ & & \end{pmatrix}$$

- $U_k(V_k)$ : orthogonal matrix containing the top k left (right) singular vectors of A.  $\Sigma_k$ : diagonal matrix containing the top k singular values of A
- A<sub>k</sub> is the best approximation of A
- Eckart-Young theorem: Keeping the *k* largest singular values and setting all others to zero gives you the optimal approximation of the original matrix *C* wrt all rank-k matrices and Frobenius norm.

• 
$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d |a_{ij}|^2}$$

# Today's Agenda

- Singular Value Decomposition (SVD)
- Latent Semantic Indexing (LSI)
- K-Means
- Expectation Maximization (EM)

#### **Deficiencies with Conventional Automatic Indexing**

- Synonymy: Various words and phrases refer to the same concept (lowers recall)
- **Polysemy:** Individual words have more than one meaning (lowers precision)
- **Independence:** No significance is given to two terms that frequently appear together
- Latent semantic indexing addresses the first of these (synonymy), and the third (dependence)



### **Latent Semantic Analysis**

- Bag of Words methods: A document is only "about" the words in it
- But people interpret documents in a richer context
  - a document is about some domain and concepts in it
  - reflected in the vocabulary but not limited to it
- LSI: developed at Bellcore (now Telcordia) in the late 1980s (1988). It was patented in 1989.
  - Aim: Replace indexes that use sets of words by indexes that use concepts
  - Latent: Not visible on the surface
  - Semantic: Word meanings
- LSI Demos at <a href="http://LSA.colorado.edu">http://LSA.colorado.edu</a>

#### **Word Co-Occurrences**

- Bag of words approaches assume meaning is carried by vocabulary
- Next step is to look at vocabulary groups; what words tend to occur together?
- Still a statistical approach, but richer representation than single terms
- E.g., Looking for articles about Tiger Woods in an API newswire database could bring up stories about the golfer, followed by articles about golf tournaments that don't mention his name.
  - So we are need to recognize that Tiger Woods is about golf.

# **Problem: Very High Dimensionality**

- A vector of TF\*IDF representing a document is high dimensional.
- Need some way to trim words looked at
  - First, throw away anything "not useful" (stop words)
  - Second, identify clusters and pick representative terms
    - Use SVD

#### **Recall: Term-document matrix**

|           | Anthony and Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |
|-----------|-----------------------|------------------|----------------|--------|---------|---------|
| anthony   | 5.25                  | 3.18             | 0.0            | 0.0    | 0.0     | 0.35    |
| brutus    | 1.21                  | 6.10             | 0.0            | 1.0    | 0.0     | 0.0     |
| caesar    | 8.59                  | 2.54             | 0.0            | 1.51   | 0.25    | 0.0     |
| calpurnia | 0.0                   | 1.54             | 0.0            | 0.0    | 0.0     | 0.0     |
| cleopatra | 2.85                  | 0.0              | 0.0            | 0.0    | 0.0     | 0.0     |
| mercy     | 1.51                  | 0.0              | 1.90           | 0.12   | 5.25    | 0.88    |
| worser    | 1.37                  | 0.0              | 0.11           | 4.15   | 0.25    | 1.95    |
|           |                       |                  |                |        |         |         |

. . .

Can we transform this matrix, so that we get a better measure of similarity between documents and queries?

#### SVD: C=UΣV<sup>T</sup>

#### • [J

- One row per term
- One column per min(M,N) where M is the number of terms and N is the number of documents. Each column represents a semantic concept
- Orthonormal matrix: (i) Row vectors have unit length. (ii) Any two distinct row vectors are orthogonal to each other.
- How strongly word i is related to the topic/concept represented by semantic dimension j

#### $\bullet$ $\sum$

- Square, diagonal matrix of dimensionality  $min(M,N) \times min(M,N)$
- Diagonal consists of the singular values of C
- Magnitude of the singular value measures the importance of the corresponding semantic dimension

#### • V

- One column per document
- One row per min(M,N) where M is the number of terms and N is the number of documents.
   Each row represents a semantic concept
- Orthonormal matrix: (i) Column vectors have unit length. (ii) Any two distinct column vectors are orthogonal to each other.
- How strongly document i is related to the topic/concept represented by semantic dimension j

•

# Example of $C = U\Sigma V^T$ : All Four Matrices

| С     |    | $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $d_6$ |        |    |       |       |
|-------|----|-------|-------|-------|-------|-------|-------|--------|----|-------|-------|
| ship  |    | 1     | 0     | 1     | 0     | 0     | 0     |        |    |       |       |
| boat  |    | 0     | 1     | 0     | 0     | 0     | 0     |        |    |       |       |
| ocea  | n  | 1     | 1     | 0     | 0     | 0     | 0     | =      |    |       |       |
| wood  | ł  | 1     | 0     | 0     | 1     | 1     | 0     |        |    |       |       |
| tree  |    | 0     | 0     | 0     | 1     | 0     | 1     |        |    |       |       |
| U     |    |       | 1     |       | 2     | 3     | 3     |        | 4  | 5     |       |
| ship  |    | -0    | .44   | -0.3  | 0     | 0.57  | ,     | 0.     | 58 | 0.25  |       |
| boat  |    | -0    | .13   | -0.3  | 3     | -0.59 | )     | 0.     | 00 | 0.73  |       |
| ocea  | n  | -0    | .48   | -0.5  | 1     | -0.37 | ,     | 0.     | 00 | -0.61 | ×     |
| wood  | ł  | -0    | .70   | 0.3   | 5     | 0.15  | , .   | -0.    | 58 | 0.16  | i     |
| tree  |    | -0    | .26   | 0.6   | 5     | -0.41 |       | 0.     | 58 | -0.09 |       |
| Σ     | 1  |       | 2     | 3     |       | 4     | 5     |        |    |       |       |
| 1     | 2  | .16   | 0.00  | 0.0   | 00    | 0.00  | 0.    | 00     | -  |       |       |
| 2     | 0. | .00   | 1.59  | 0.0   | 00    | 0.00  | 0.    | 00     | U  |       |       |
| 2     | 0. | .00   | 0.00  | 1.2   | 28    | 0.00  | 0.    | 00     | ×  |       |       |
| 4     | 0. | .00   | 0.00  | 0.0   | 00    | 1.00  | 0.    | 00     |    |       |       |
| 5     | 0. | .00   | 0.00  | 0.0   | 00    | 0.00  | 0.    | 39     |    |       |       |
| $V^T$ |    | d     | 1     | $d_2$ |       | $d_3$ |       | d      | ļ  | $d_5$ | $d_6$ |
| 1     | -  | -0.75 | 5 —   | 0.28  | _     | 0.20  | -0    | .45    | 5  | -0.33 | -0.12 |
| 2     | -  | -0.29 | 9 —   | 0.53  | _     | 0.19  | 0     | .63    | 3  | 0.22  | 0.41  |
| 3     |    | 0.28  | 3 —   | 0.75  |       | 0.45  | -0    | .20    | )  | 0.12  | -0.33 |
| 4     |    | 0.00  | ) (   | 0.00  |       | 0.58  | 0     | 0.00   | )  | -0.58 | 0.58  |
| 5     | -  | -0.53 | 3 (   | 0.29  |       | 0.63  | 0     | .19    | )  | 0.41  | -0.22 |
| 5     |    | -0.5  | , ,   | 0.29  |       | 0.03  |       | ,. I S | ,  | 0.41  | -0.22 |

## **Dimensionality Reduction**

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
  - be noise in that case, reduced LSI is a better representation because it is less noisy
  - make things dissimilar that should be similar again reduced LSI is a better representation because it represents similarity better.
- Fewer details is better

# Reducing the Dimensionality to 2

| U          |       | 1           | 2     | 3     | 4     | 5     |       |
|------------|-------|-------------|-------|-------|-------|-------|-------|
| ship       | -0.4  | 14 –        | -0.30 | 0.00  | 0.00  | 0.00  |       |
| boat       | -0.2  | 13 –        | -0.33 | 0.00  | 0.00  | 0.00  |       |
| ocear      | n     | 48 –        | -0.51 | 0.00  | 0.00  | 0.00  |       |
| wood       | l     | 70          | 0.35  | 0.00  | 0.00  | 0.00  |       |
| tree       | -0.2  | 26          | 0.65  | 0.00  | 0.00  | 0.00  |       |
| $\Sigma_2$ | 1     | 2           | 3     | 4     | 5     |       |       |
| 1          | 2.16  | 0.00        | 0.00  | 0.00  | 0.00  | _     |       |
| 2          | 0.00  | 1.59        | 0.00  | 0.00  | 0.00  |       |       |
| 3          | 0.00  | 0.00        | 0.00  | 0.00  | 0.00  |       |       |
| 4          | 0.00  | 0.00        | 0.00  | 0.00  | 0.00  |       |       |
| 5          | 0.00  | 0.00        | 0.00  | 0.00  | 0.00  |       |       |
| $V^T$      | $d_1$ |             | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $d_6$ |
| 1          | -0.75 | <b>−</b> 0. | 28 –  | 0.20  | -0.45 | -0.33 | -0.12 |
| 2          | -0.29 | -0.         | 53 –  | 0.19  | 0.63  | 0.22  | 0.41  |
| 3          | 0.00  | 0.          | 00    | 0.00  | 0.00  | 0.00  | 0.00  |
| 4          | 0.00  | 0.          | 00    | 0.00  | 0.00  | 0.00  | 0.00  |
| 5          | 0.00  | 0.          | .00   | 0.00  | 0.00  | 0.00  | 0.00  |
|            |       |             |       |       |       |       |       |

- Actually, we only zero out singular values in  $\Sigma$ . This has the effect of setting the corresponding dimensions in U and  $V^T$  to zero when computing the product  $C = U\Sigma V^T$
- Compute  $C_2 = U\Sigma_2 V^T$

# Original Matrix C vs. Reduced $C_2 = U\Sigma_2V^T$

| С     | $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $d_6$ |                  |       |
|-------|-------|-------|-------|-------|-------|-------|------------------|-------|
| ship  | 1     | 0     | 1     | 0     | 0     | 0     |                  |       |
| boat  | 0     | 1     | 0     | 0     | 0     | 0     |                  |       |
| ocean | 1     | 1     | 0     | 0     | 0     | 0     |                  |       |
| wood  | 1     | 0     | 0     | 1     | 1     | 0     |                  |       |
| tree  | 0     | 0     | 0     | 1     | 0     | 1     |                  |       |
| $C_2$ | $d_1$ | L     | $d_2$ |       | $d_3$ | d     | 4 d <sub>5</sub> | $d_6$ |
| ship  | 0.85  | 5     | 0.52  |       | 0.28  | 0.13  | 3 0.21           | -0.08 |
| boat  | 0.36  | j     | 0.36  |       | 0.16  | -0.20 | -0.02            | -0.18 |
| ocean | 1.01  | L     | 0.72  |       | 0.36  | -0.04 | 4 0.16           | -0.21 |
| wood  | 0.97  | 7     | 0.12  |       | 0.20  | 1.03  | 3 0.62           | 0.41  |
| tree  | 0.12  | 2 -   | -0.39 | -     | -0.08 | 0.90  | 0.41             | 0.49  |

We can view  $C_2$  as a two-dimensional representation of the matrix. We have performed a dimensionality reduction to two dimensions.

# Why is the LSI-Reduced Matrix "Better"?

| С     | $d_1$          | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $d_6$ |       |       |
|-------|----------------|-------|-------|-------|-------|-------|-------|-------|
| ship  | 1              | 0     | 1     | 0     | 0     | 0     |       |       |
| boat  | 0              | 1     | 0     | 0     | 0     | 0     |       |       |
| ocean | 1              | 1     | 0     | 0     | 0     | 0     |       |       |
| wood  | 1              | 0     | 0     | 1     | 1     | 0     |       |       |
| tree  | 0              | 0     | 0     | 1     | 0     | 1     |       |       |
| $C_2$ | d <sub>:</sub> | 1     | $d_2$ |       | $d_3$ | $d_4$ | $d_5$ | $d_6$ |
| ship  | 0.85           | 5     | 0.52  |       | 0.28  | 0.13  | 0.21  | -0.08 |
| boat  | 0.36           | 5     | 0.36  |       | 0.16  | -0.20 | -0.02 | -0.18 |
| ocean | 1.01           | 1     | 0.72  |       | 0.36  | -0.04 | 0.16  | -0.21 |
| wood  | 0.97           | 7     | 0.12  |       | 0.20  | 1.03  | 0.62  | 0.41  |
| tree  | 0.12           | 2 -   | -0.39 | _     | 0.08  | 0.90  | 0.41  | 0.49  |
|       | •              |       |       |       |       |       |       |       |

- Similarity of d2 and d3 in the original space: 0.
- Similarity of d2 und d3 in the reduced space:
  0.52 \* 0.28 + 0.36 \* 0.16 + 0.72 \* 0.36 + 0.12 \*
  0.20 + 0.39 \* 0.08 ≈
  0.52
- "boat" and "ship" are semantically similar. The "reduced" similarity measure reflects this.
- What property of the SVD reduction is responsible for improved similarity?

#### **Properties of LSI**

- Handling Synonymy and Semantic Relatedness
  - The dimensionality reduction forces us to omit a lot of "detail".
  - We have to map different words (= different dimensions of the full space) to the same dimension in the reduced space.
  - The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words. SVD selects the "least costly" mapping.
  - Thus, it will map synonyms to the same dimension. But it will avoid doing that for unrelated words.

#### Limitations

- It cannot capture polysemy i.e words with multiple meanings.
- The resulting matrix dimension may be difficult to interpret.
- Finding optimal dimension for semantic space
- The computational cost of SVD is significant.  $O(n^2k^3)$ 
  - n = number of terms
  - k = number of dimensions in semantic space (typically small ~50 to 350)
- SVD assumes normally distributed data
  - term occurrence is not normally distributed
- LSI works best in applications where there is little overlap between queries and documents

#### LSI: Comparison to Other Approaches

- Relevance feedback and query expansion are used to increase recall in information retrieval if query and documents have (in the extreme case) no terms in common
- LSI increases recall and hurts precision.
- Thus, it addresses the same problems as (pseudo) relevance feedback and query expansion . . .
- . . . and it has the same problems

# **LSI Implementation**

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space

$$-q_2^T = \Sigma_2^{-1} U_2^T q^T$$

- This follows from  $C_2 = U\Sigma_2V^T \Rightarrow \Sigma_2^{-1}U^TC_2 = V_2^T$
- Compute similarity of  $q_2$  with all reduced documents in  $V_2$ .
- Output ranked list of documents as usual

# Today's Agenda

- Singular Value Decomposition (SVD)
- Latent Semantic Indexing (LSI)
- K-Means
- Expectation Maximization (EM)

### What is Clustering?

- Cluster: A collection of data objects
  - Similar to one another within the same cluster
  - Dissimilar to the objects in other clusters
- Cluster analysis
  - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
  - As a stand-alone tool to get insight into data distribution
  - As a preprocessing step for other algorithms

### What is a Good Clustering?

- A good clustering method will produce clusters with
  - High <u>intra-class</u> similarity
  - Low <u>inter-class</u> similarity
- Precise definition of clustering quality is difficult
  - Application-dependent
  - Ultimately subjective

### **K-Means Clustering**

$$\min_{C} D = \sum_{k=1}^{K} \sum_{x_{i} \in C_{k}} ||x_{i} - m_{k}||^{2}$$

- D= total distance
- K = # of clusters
- x are points
- $C_k$  is the set of points in cluster k
- $m_k$  is the center of cluster k
- ||.|| is a distance

 Goal: Given #clusters=K, assign each point to one of the clusters such that the total distance from each point to the center of its cluster is minimized.

#### **K-Means Clustering**

- Iterative process to group into k clusters.
- Initialize K cluster means
- Repeat until convergence:
  - For each point, find the closest mean and assign it to that cluster
  - Re-compute the mean of all points assigned to the cluster
- Label each point with its current cluster

#### **K-Means Clustering**

#### Pros:

- Easy to implement
- Finds local optimum

#### Cons:

- The number of clusters, K, must be known in advance
- Some clusters might have 0 points
- Local optimum is not guaranteed to be global optimum
- The algorithm can only be applied when the mean of a cluster is defined
- This method is not suitable for clusters with non-convex shapes
- Sensitive to noise and outliers

#### Ideas:

- Can re-run with several initializations
- Can choose K based on observation or statistical means

#### K-Means Clustering as an Iterative 2-Step Method

- We are trying to find out where the clusters are and which points are assigned to each cluster. We iteratively solve half the problem. Notice the overall structure.
- Repeat until convergence
  - Assume you know where the cluster centers are. For each point, find the closest mean and assign it to that cluster
  - Assume you know which points belong to each cluster.
     Re-compute the mean of all points assigned to the cluster
- Label each point with its current cluster

### Today's Agenda

- Singular Value Decomposition (SVD)
- Latent Semantic Indexing (LSI)
- K-Means
- Expectation Maximization (EM)

#### The Gaussian Distribution

- Gaussian or normal distribution is the most popular continuous probability distribution.
- For example, the distribution of income, distribution of grades in a class.
- Central Limit Theorem
  - Sum of a large number of random variables approaches a Gaussian distribution

• 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- $-\mu$  is the mean or expectation
- $-\sigma$  is the standard deviation

• If a random variable X is distributed normally with mean  $\mu$  and variance  $\sigma^2$ , it is written as  $X \sim N(\mu, \sigma^2)$ 

## **Clustering using Gaussians**



#### **Gaussian Mixture Models (GMMs)**

- Mixture distribution: It is the probability distribution of a random variable that can be derived from other random variables via simple manipulations.
  - Ex: A Gaussian mixture distribution in 1 dimension as a linear combination of three Gaussians
- Why mixture models?
  - A single Gaussian distribution has limitations when modeling several data sets.
  - If the data has two or more distinct modes as below



Here, a mixture of Gaussians becomes useful.

Each Gaussian can then be considered as a cluster

### **Gaussian Mixture Models (GMMs)**

- GMM density:  $p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$
- We have a superposition of K Gaussian distributions leading to a mixture of Gaussians,  $p(\mathbf{x})$ .
- Each Gaussian distribution is called a *component* of the mixture and has a mean of  $\mu_k$  and covariance of  $\Sigma_k$ , and mixing coefficient of  $\pi_k$ .
- **Problem:** Given data points (e.g., marks of all students), how do you estimate  $\pi_k$ ,  $\mu_k$ ,  $\Sigma_k$ ?

#### K-Means $\rightarrow$ EM

- Given N data points  $(x_1, x_2, ..., x_N)$
- Boot Step:
  - Initialize K clusters:  $C_1$ , ...,  $C_K$ 
    - $(\mu_{j}, \Sigma_{j})$  and  $\pi_{j} = P(C_{j})$  for each cluster j.
- Iteration Step:
  - Estimate the cluster for each data point  $p(C_i|x_i)$
- Assignment (Kmeans)

- Re-estimate the cluster parameters
- Maximization (EM)
  Update (Kmeans)
- $(\mu_j, \Sigma_j), p(C_j)$  for each cluster j

#### **EM Algorithm - Idea**

- Initially guess the parameters of the model
- Repeat until convergence
  - E step: Calculate the expectation of the log likelihood function with the current values of the parameters.
  - M step: Re-evaluate the parameters of the model by maximizing the expected log likelihood found in the E step.

## **EM Input/Output**



#### **Expectation (E) Step of EM**

$$p(C_{j} | x_{i}) = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{p(x_{i})} = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{\sum_{j} p(x_{i} | C_{j}) \cdot p(C_{j})}$$
$$p(x_{i} | C_{j}) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma_{j}|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu_{j})^{T} \Sigma_{j}^{-1}(x - \mu_{j})}$$

### Maximization (M) Step of EM

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

### **EM Algorithm**

- Given N data points  $(x_1, x_2, ..., x_N)$
- Boot Step:
  - Initialize K clusters:  $C_1, ..., C_K$ 
    - $(\mu_{j}, \Sigma_{j})$  and  $\pi_{j} = P(C_{j})$  for each cluster j.
- Iteration Step:
  - Estimate the cluster for each data point



$$p(C_{j} | x_{i}) = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{p(x_{i})} = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{\sum p(x_{i} | C_{j}) \cdot p(C_{j})}$$

- Re-estimate the cluster parameters
  - $(\mu_j, \Sigma_j), p(C_j)$  for each cluster j



$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

## **EM Algorithm Demo**

#### Waiting time vs Eruption time Old Faithful geyser



#### **EM and K-Means**

- There is a close similarity.
- K-means algorithm performs a hard assignment of data points to clusters.
- EM algorithm makes a soft assignment.



• We can derive *K*-means algorithm as a limiting case of EM for Gaussian mixtures.

### **Image Segmentation using EM**

- Step 1: Feature Extraction
- Step 2: Image Segmentation using EM: Break up the image into meaningful or perceptually similar regions





### **Symbols**

- The feature vector for pixel i is called  $x_i$ .
- There are going to be K segments; K is given.
- Gaussian Mixture Model
  - The *j*-th segment has a Gaussian distribution with parameters  $\theta_j = (\mu_j, \Sigma_j)$ .
  - $-\pi_j$ 's are the weights (which sum to 1) of Gaussians.  $\Theta$  is the collection of parameters
    - $\Theta = (\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_k)$

#### Initialization

- The covariance matrices are initialized to be the identity matrix.
- The means can be initialized by finding the average feature vectors in each of K windows in the image; this is data-driven initialization.

## **Sample Results**

















## **More Segmentation Results**









## **More Segmentation Results**









http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

#### **Evaluation Metric for GMMs and EM**

- Likelihood = p(X, clusters  $| \mu_1, \sigma_1^2, \pi_1, ..., \mu_K, \sigma_K^2, \pi_K$ )
- Marginal likelihood =  $p(X|\mu_1, \sigma_1^2, \pi_1, ..., \mu_K, \sigma_K^2, \pi_K)$
- EM aims at finding the MLE of the marginal likelihood
  - Indirectly using the iterative formulation
- EM (locally) maximizes the "Marginal" Likelihood
  - EM(X<sub>1</sub>, ..., X<sub>M</sub>) = argmax[ $\mu_1$ ,  $\sigma_1^2$ ,  $\pi_1$ , ...,  $\mu_K$ ,  $\sigma_K^2$ ,  $\pi_K$ ] p(X<sub>1</sub>,...X<sub>M</sub> |  $\mu_1$ ,  $\sigma_1^2$ ,  $\pi_1$ , ...,  $\mu_K$ ,  $\sigma_K^2$ ,  $\pi_K$ )

#### **Analysis of EM Performance**

EM is guaranteed to find a local optimum of the Likelihood function.

**Theorem:** After one iteration of EM, the Likelihood of the new GMM >= the Likelihood of the previous GMM.

(Dempster, A.P.; Laird, N.M.; Rubin, D.B. 1977. "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society. Series B (Methodological) 39 (1): 1–38.JSTOR 2984875.)

### **Applications of EM**

- NIP
  - Forward-backward algorithm related to Hidden Markov Models (HMM)
  - Inside-outside algorithm with Probabilistic Context Free Grammars (PCFG)
  - Parameter estimation for machine translation
- IR
  - Estimation of weights in interpolation for language modeling
  - Collection clustering
  - Cluster-based retrieval
- Cracking 250 year old codes (http://www.wired.com/dangerroo m/2012/11/ff-the-manuscript/all/)

- Computational Biology
  - Gene expression clustering
  - Motif finding
  - Haplotype inference problem
  - Learning profiles of protein domains and RNA families
  - Discovery of transcriptional modules
  - Tests of linkage disequilibrium
  - Protein identification
  - Medical imaging
- Image Processing
  - Image segmentation
  - Object class recognition
  - Object detection
  - Analyzing articulated motion
- Many more ...

#### **Take-away Messages**

- We studied two main techniques today
  - SVD
  - FM
- SVD is used for latent semantic indexing, while EM has a number of applications
- Latent semantic indexing handles the problem of synonymy and word co-occurrences thereby helping us to move from word-based doc representation to concept-based one.
- With respect to EM
  - We saw how EM can be used to estimate GMMs
  - Next lecture we will see another application of EM

#### **Further Reading**

- Dumais, S. T., Furnas, G. W., Landauer, T. K. and Deerwester, S. (1988), "Using latent semantic analysis to improve information retrieval." In Proceedings of CHI'88: Conference on Human Factors in Computing, New York: ACM, 281-285.
- Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R.A. (1990) "Indexing by latent semantic analysis." Journal of the Society for Information Science, 41(6), 391-407.
- Foltz, P. W. (1990) "Using Latent Semantic Indexing for Information Filtering". In R. B. Allen (Ed.) Proceedings of the Conference on Office Information Systems, Cambridge, MA, 40-47.
- Chapter 16 and 18 of <u>Manning-Raghavan-Schuetze book</u>
  - http://nlp.stanford.edu/IR-book/
- http://en.wikipedia.org/wiki/Singular value decomposition
- http://en.wikipedia.org/wiki/Latent semantic indexing
- http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization\_algorithm
- EM for NLP: <a href="http://www.cs.jhu.edu/~jason/465/PowerPoint/lect26-em.ppt">http://www.cs.jhu.edu/~jason/465/PowerPoint/lect26-em.ppt</a>
- EM for Computational Biology: http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

### **Preview of Lecture 5:Topic Models**

- Probabilistic Latent Semantic Analysis (PLSA)
- Latent Dirichlet Allocation (LDA)
- Dirichlet Process
- Pachinko Allocation

#### **Disclaimers**

- This course will represent opinions of the instructor. It does not reflect views of Microsoft or any other entity.
- Algorithms, techniques, features, etc mentioned here might or might not be in use by Microsoft or any other company.
- Lot of material covered in this course is borrowed from slides across many universities and conference tutorials. These are gratefully acknowledged.

### Thanks!

### LSI Example (1)

# Apply the LSA method to the following technical memo titles

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of *user* perceived *response time* to error measurement
- m1: The generation of random, binary, ordered trees
- m2: The intersection *graph* of paths in *trees*
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

### LSI Example (2)

First we construct the term-document matrix

|            | c1 | <b>c2</b> | c3 | c4 | <b>c5</b> | <b>m1</b> | <b>m2</b> | <b>m3</b> | <b>m4</b> |
|------------|----|-----------|----|----|-----------|-----------|-----------|-----------|-----------|
| human      | 1  | 0         | 0  | 1  | 0         | 0         | 0         | 0         | 0         |
| interface  | 1  | 0         | 1  | 0  | 0         | 0         | 0         | 0         | 0         |
| computer   | 1  | 1         | 0  | 0  | 0         | 0         | 0         | 0         | 0         |
| user       | 0  | 1         | 1  | 0  | 1         | 0         | 0         | 0         | 0         |
| system     | 0  | 1         | 1  | 2  | 0         | 0         | 0         | 0         | 0         |
| response   | 0  | 1         | 0  | 0  | 1         | 0         | 0         | 0         | 0         |
| time       | 0  | 1         | 0  | 0  | 1         | 0         | 0         | 0         | 0         |
| <b>EPS</b> | 0  | 0         | 1  | 1  | 0         | 0         | 0         | 0         | 0         |
| survey     | 0  | 1         | 0  | 0  | 0         | 0         | 0         | 0         | 1         |
| trees      | 0  | 0         | 0  | 0  | 0         | 1         | 1         | 1         | 0         |
| graph      | 0  | 0         | 0  | 0  | 0         | 0         | 1         | 1         | 1         |
| minors     | 0  | 0         | 0  | 0  | 0         | 0         | 0         | 1         | 1         |

Compute U,  $\Sigma$ , V and then perform rank-2 approximation and reconstruct the term-document matrix

## LSI Example (3)

|           | c1    | c2   | c3    | c4    | <b>c</b> 5 | m1    | m2    | m3    | m4    |
|-----------|-------|------|-------|-------|------------|-------|-------|-------|-------|
| human     | 0.16  | 0.40 | 0.38  | 0.47  | 0.18       | -0.05 | -0.12 | -0.16 | -0.09 |
| interface | 0.14  | 0.37 | 0.33  | 0.40  | 0.16       | -0.03 | -0.07 | -0.10 | -0.04 |
| computer  | 0.15  | 0.51 | 0.36  | 0.41  | 0.24       | 0.02  | 0.06  | 0.09  | 0.12  |
| user      | 0.26  | 0.84 | 0.61  | 0.70  | 0.39       | 0.03  | 0.08  | 0.12  | 0.19  |
| system    | 0.45  | 1.23 | 1.05  | 1.27  | 0.56       | -0.07 | -0.15 | -0.21 | -0.05 |
| response  | 0.16  | 0.58 | 0.38  | 0.42  | 0.28       | 0.06  | 0.13  | 0.19  | 0.22  |
| time      | 0.16  | 0.58 | 0.38  | 0.42  | 0.28       | 0.06  | 0.13  | 0.19  | 0.22  |
| EPS       | 0.22  | 0.55 | 0.51  | 0.63  | 0.24       | -0.07 | -0.14 | -0.20 | -0.11 |
| survey    | 0.10  | 0.53 | 0.23  | 0.21  | 0.27       | 0.14  | 0.31  | 0.44  | 0.42  |
| trees     | -0.06 | 0.23 | -0.14 | -0.27 | 0.14       | 0.24  | 0.55  | 0.77  | 0.66  |
| graph     | -0.06 | 0.34 | -0.15 | -0.30 | 0.20       | 0.31  | 0.69  | 0.98  | 0.85  |
| minors    | -0.04 | 0.25 | -0.10 | -0.21 | 0.15       | 0.22  | 0.50  | 0.71  | 0.62  |

The word

\*user seems
to have
presence in
the
documents
where the
word human
appears

#### **Special Case of Jensen's Inequality**

**Lemma:** If p(x) and q(x) are two discrete probability distributions, then:

$$\sum_{x} p(x) \log p(x) \ge \sum_{x} p(x) \log q(x)$$

with equality if and only if p(x) = q(x) for all x.

#### **Proof:**

$$\sum_{x} p(x) \log p(x) - \sum_{x} p(x) \log q(x) \ge 0$$

$$\sum_{x} p(x) \log \left( p(x) - q(x) \right) \ge 0$$

$$\sum_{x} p(x) \log \left( \frac{p(x)}{q(x)} \right) \ge 0$$

$$\sum_{x} p(x) \log \frac{q(x)}{p(x)} \le 0$$

$$\sum_{x} p(x) \log \frac{q(x)}{p(x)} \le \sum_{x} p(x) (\frac{q(x)}{p(x)} - 1)$$

The last step follows using a bound for the natural logarithm:

$$\ln(x) \le x - 1$$

#### **Special Case of Jensen's Inequality**

#### Continuing in efforts to simplify:

$$\sum_{x} p(x) \log \frac{q(x)}{p(x)} \le \sum_{x} p(x) (\frac{q(x)}{p(x)} - 1) = \sum_{x} p(x) \left( \frac{q(x)}{p(x)} \right) - \sum_{x} p(x) = \sum_{x} q(x) - \sum_{x} p(x) = 0$$

We note that since both of these functions are probability distributions, they must sum to 1.0. Therefore, the inequality holds.

The general form of Jensen's inequality relates a convex function of an integral to the integral of the convex function and is used extensively in information theory.

#### The EM Theorem

Theorem: If 
$$\sum_{t} P_{\theta'}(t|y) \log(P_{\theta}(t,y)) > \sum_{t} P_{\theta'}(t|y) \log(P_{\theta'}(t,y))$$
 then  $P_{\theta}(y) > P_{\theta'}(y)$ .

Proof: Let y denote observable data. Let  $P_{\theta'}(y)$  be the probability distribution of y under some model whose parameters are denoted by  $\theta'$ .

Let  $P_{\theta}(y)$  be the corresponding distribution under a different setting  $\theta$ .

Our goal is to prove that y is more likely under  $\theta$  than  $\theta'$ .

Let t denote some hidden, or latent, parameters that are governed by the values of  $\theta$ . Because  $P_{\theta'}(t|y)$  is a probability distribution that sums to 1, we can write:

$$\log P_{\theta}(y) - \log P_{\theta'}(y) = \sum_{t} P_{\theta'}(t|y) \log P_{\theta}(y) - \sum_{t} P_{\theta'}(t|y) \log P_{\theta'}(y)$$

Because we can exploit the dependence of y on t and using well-known properties of a conditional probability distribution.

#### **Proof Of The EM Theorem**

We can multiply each term by "1":

$$\log P_{\theta}(y) - \log P_{\theta'}(y) = \sum_{t} P_{\theta'}(t|y) \log \left(P_{\theta}(y) \frac{P_{\theta}(t,y)}{P_{\theta}(t,y)}\right) - \sum_{t} P_{\theta'}(t|y) \log \left(P_{\theta'}(y) \frac{P_{\theta'}(t,y)}{P_{\theta'}(t,y)}\right)$$

$$= \sum_{t} P_{\theta'}(t|y) \log \left(\frac{P_{\theta}(t,y)}{P_{\theta}(t|y)}\right) - \sum_{t} P_{\theta'}(t|y) \log \left(\frac{P_{\theta'}(t,y)}{P_{\theta'}(t|y)}\right)$$

$$= \sum_{t} P_{\theta'}(t|y) \log(P_{\theta}(t,y)) - \sum_{t} P_{\theta'}(t|y) \log(P_{\theta'}(t,y))$$

$$+ \sum_{t} P_{\theta'}(t|y) \log(P_{\theta}(t,y)) - \sum_{t} P_{\theta'}(t|y) \log(P_{\theta}(t|y))$$

$$\geq \sum_{t} P_{\theta'}(t|y) \log(P_{\theta}(t,y)) - \sum_{t} P_{\theta'}(t|y) \log(P_{\theta'}(t,y))$$

where the inequality follows from our lemma.

Explanation: What exactly have we shown? If the last quantity is greater than zero, then the new model will be better than the old model. This suggests a strategy for finding the new parameters,  $\theta$  – choose them to make the last quantity positive!

#### **Discussion**

- If we start with the parameter setting  $\theta'$ , and find a parameter setting  $\theta$  for which our inequality holds, then the observed data, y, will be more probable under  $\theta$  than  $\theta'$ .
- The name Expectation Maximization comes about because we take the expectation of  $P_{\theta}(t,y)$  with respect to the old distribution  $P_{\theta'}(t,y)$  and then maximize the expectation as a function of the argument  $\theta$ .
- We can find a  $\theta$  that maximizes  $\sum_t P_{\theta'}(t|y)\log P_{\theta}(t,y)$  by taking the partial derivatives wrt parameters in  $\theta$
- Critical to the success of the algorithm is the choice of the proper intermediate variable, t, that will allow finding the maximum of the expectation of  $\sum\limits_t P_{\theta'}(t|y) \log(P_{\theta}(t|y))$ .

## EM Theorem: why?

- Why optimizing  $\sum_t P_{\theta'}(t|y) \log P_{\theta}(t,y)$  is easier than optimizing  $\log P_{\theta}(y)$
- $P_{\theta}(t, y)$  involves the complete data and is usually a product of a set of parameters.  $P_{\theta}(y)$  usually involves summation over all hidden variables.