Logistic Regression

Nipun Batra

IIT Gandhinagar

September 22, 2025

Table of Contents

- 1. Problem Setup
- 2. Logistic/Sigmoid function
- 3. Deriving Cost Function via Maximum Likelihood Estimation
- 4. Cross Entropy Cost Function
- 5. Class Imbalance Handling
- 6. Practice and Review

Problem Setup

Classification Technique

Classification Technique

Aim: Probability(Tomatoes | Radius) ? or

More generally, P(y = 1|X = x)?

$$P(X = Orange|Radius) = \theta_0 + \theta_1 \times Radius$$

Generally,

$$P(y=1|\mathbf{x}) = \mathbf{X}\boldsymbol{\theta}$$

```
Prediction: If \theta_0 + \theta_1 \times Radius > 0.5 \rightarrow \text{Orange}
Else \rightarrow \text{Tomato}
```

Problem:

Range of $\mathbf{X}\boldsymbol{\theta}$ is $(-\infty,\infty)$

But $P(y=1|\ldots) \in [0,1]$

Linear regression for classification gives a poor prediction!

Ideal boundary

- Have a decision function similar to the above (but not so sharp and discontinuous)
- Aim: use linear regression still!

Question. Can we still use Linear Regression? Answer. Yes! Transform $\hat{y} \rightarrow [0,1]$

$$\begin{split} \hat{y} \in (-\infty, \infty) \\ \phi &= \mathsf{Sigmoid} \ / \ \mathsf{Logistic} \ \mathsf{Function} \ (\sigma) \\ \phi(\hat{y}) \in [0, 1] \\ \\ \sigma(z) &= \frac{1}{1 + e^{-z}} \end{split}$$

$$\begin{aligned} z &\to \infty \\ \sigma(z) &\to 1 \\ z &\to -\infty \\ \sigma(z) &\to 0 \\ z &= 0 \\ \sigma(z) &= 0.5 \end{aligned}$$

Question. Could you use some other transformation (ϕ) of \hat{y} s.t.

$$\phi(\hat{\mathbf{y}}) \in [0, 1]$$

Yes! But Logistic Regression works.

$$P(y = 1|\mathbf{X}) = \sigma(\mathbf{X}\boldsymbol{\theta}) = \frac{1}{1 + e^{-\mathbf{X}\boldsymbol{\theta}}}$$

Q. Write $\mathbf{X}\boldsymbol{\theta}$ in a more convenient form (as P(y=1|X), P(y=0|X))

$$P(y = 1|\mathbf{X}) = \sigma(\mathbf{X}\boldsymbol{\theta}) = \frac{1}{1 + e^{-\mathbf{X}\boldsymbol{\theta}}}$$

Q. Write $X\theta$ in a more convenient form (as P(y=1|X), P(y=0|X))

$$P(y=0|X) = 1 - P(y=1|X) = 1 - \frac{1}{1 + e^{-X\theta}} = \frac{e^{-X\theta}}{1 + e^{-X\theta}}$$

$$\therefore \frac{P(y=1|X)}{1-P(y=1|X)} = e^{\mathbf{X}\boldsymbol{\theta}} \implies \mathbf{X}\boldsymbol{\theta} = \log \frac{P(y=1|X)}{1-P(y=1|X)}$$

Odds (Used in betting)

$$\frac{P(win)}{P(loss)}$$

Here,

$$Odds = \frac{P(y=1)}{P(y=0)}$$

$$log ext{-odds} = log rac{P(y=1)}{P(y=0)} = \mathbf{X}oldsymbol{ heta}$$

Logistic Regression

Q. What is decision boundary for Logistic Regression?

Logistic Regression

Q. What is decision boundary for Logistic Regression? Decision Boundary: P(y=1|X)=P(y=0|X) or $\frac{1}{1+e^{-X\theta}}=\frac{e^{-X\theta}}{1+e^{-X\theta}}$ or $e^{X\theta}=1$ or $X\theta=0$

Could we use cost function as:

$$J(\theta) = \sum (y_i - \hat{y}_i)^2$$
$$\hat{y}_i = \sigma(\mathbf{X}\boldsymbol{\theta})$$

Answer: No (Non-Convex)

Why? Squared loss + sigmoid creates non-convex surface:

- Sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$ is non-linear
- Composition $(\sigma(\mathbf{X}\boldsymbol{\theta}) \mathbf{y})^2$ has multiple local minima
- No guarantee gradient descent finds global optimum
- This is why we need cross-entropy loss instead!

Deriving Cost Function via Maximum Likelihood Estimation

Cost function convexity

Likelihood =
$$P(D|\theta)$$

 $P(y|X,\theta) = \prod_{i=1}^{n} P(y_i|x_i,\theta)$
where y = 0 or 1

 $\mathsf{Likelihood} = P(D|\theta)$

$$P(y|X,\theta) = \prod_{i=1}^{n} P(y_i|x_i,\theta) = \prod_{i=1}^{n} \left\{ \frac{1}{1 + e^{-x_i^T \theta}} \right\}^{y_i} \left\{ 1 - \frac{1}{1 + e^{-x_i^T \theta}} \right\}^{1 - y_i}$$

[Above: Similar to $P(D|\theta)$ for Linear Regression;

Difference Bernoulli instead of Gaussian]

 $-\log P(y|\mathbf{X}, oldsymbol{ heta}) = \mathsf{Negative\ Log\ Likelihood} = \mathsf{Cost\ function\ will\ be\ minimum}$

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H, T, T, T, H, H, T, T, T).
- What is p(H)?
- We might think it to be: 4/10 = 0.4. But why?
- Answer 1: Probability defined as a measure of long running frequencies
- Answer 2: What is likelihood of seeing the above sequence when the p(Head)=θ?
- Idea find MLE estimate for θ

Aside on Bernoulli Likelihood

- $p(H) = \theta$ and $p(T) = 1 \theta$
- What is the PMF for first observation $P(D_1 = x | \theta)$, where x = 0 for Tails and x = 1 for Heads?
- $P(D_1 = x | \theta) = \theta^x (1 \theta)^{(1-x)}$
- Verify the above: if x=0 (Tails), $P(D_1=x|\theta)=1-\theta$ and if x=1 (Heads), $P(D_1=x|\theta)=\theta$
- What is $P(D_1, D_2, ..., D_n | \theta)$?
- $P(D_1, D_2, ..., D_n | \theta) = P(D_1 | \theta) P(D_2 | \theta) ... P(D_n | \theta)$
- $P(D_1, D_2, ..., D_n | \theta) = \theta^{n_h} (1 \theta)^{n_t}$
- Log-likelihood = $\mathcal{LL}(\theta) = n_h \log(\theta) + n_t \log(1 \theta)$
- $\frac{\partial \mathcal{LL}(\theta)}{\partial \theta} = 0 \implies \frac{n_h}{\theta} + \frac{n_t}{1-\theta} = 0 \implies \theta_{MLE} = \frac{n_h}{n_h + n_t}$

Cross Entropy Cost Function

$$J(\theta) = -\log \left\{ \prod_{i=1}^{n} \left\{ \frac{1}{1 + e^{-x_{i}^{T}\theta}} \right\}^{y_{i}} \left\{ 1 - \frac{1}{1 + e^{-x_{i}^{T}\theta}} \right\}^{1 - y_{i}} \right\}$$

$$J(\theta) = -\left\{ \sum_{i=1}^{N} y_i \log(\sigma_{\theta}(x_i)) + (1 - y_i) \log(1 - \sigma_{\theta}(x_i)) \right\}$$

This cost function is called cross-entropy. Why?

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function? Let us try to write the cost function for a single example:

$$J(\theta) = -y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)$$

First, assume y_i is 0, then if \hat{y}_i is 0, the loss is 0; but, if \hat{y}_i is 1, the loss tends towards infinity!

Notebook: logits-usage

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

$$J(\theta) = -y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)$$

Now, assume y_i is 1, then if \hat{y}_i is 0, the loss is huge; but, if \hat{y}_i is 1, the loss is zero!

Cost function convexity

$$\begin{split} \frac{\partial J(\theta)}{\partial \theta_j} &= -\frac{\partial}{\partial \theta_j} \bigg\{ \sum_{i=1}^N y_i log(\sigma_{\theta}(x_i)) + (1 - y_i) log(1 - \sigma_{\theta}(x_i)) \bigg\} \\ &= -\sum_{i=1}^N \left[y_i \frac{\partial}{\partial \theta_j} \log(\sigma_{\theta}(x_i)) + (1 - y_i) \frac{\partial}{\partial \theta_j} log(1 - \sigma_{\theta}(x_i)) \right] \end{split}$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = -\sum_{i=1}^{N} \left[y_i \frac{\partial}{\partial \theta_j} \log(\sigma_{\theta}(x_i)) + (1 - y_i) \frac{\partial}{\partial \theta_j} log(1 - \sigma_{\theta}(x_i)) \right]$$
$$= -\sum_{i=1}^{N} \left[\frac{y_i}{\sigma_{\theta}(x_i)} \frac{\partial}{\partial \theta_i} \sigma_{\theta}(x_i) + \frac{1 - y_i}{1 - \sigma_{\theta}(x_i)} \frac{\partial}{\partial \theta_i} (1 - \sigma_{\theta}(x_i)) \right]$$

Aside:

$$\begin{split} \frac{\partial}{\partial z} \sigma(z) &= \frac{\partial}{\partial z} \frac{1}{1 + e^{-z}} = -(1 + e^{-z})^{-2} \frac{\partial}{\partial z} (1 + e^{-z}) \\ &= \frac{e^{-z}}{(1 + e^{-z})^2} = \left(\frac{1}{1 + e^{-z}}\right) \left(\frac{e^{-z}}{1 + e^{-z}}\right) = \sigma(z) \left\{\frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}}\right\} \\ &= \sigma(z) (1 - \sigma(z)) \end{split}$$

Resuming from (1)

$$\frac{\partial J(\theta)}{\partial \theta_{j}} = -\sum_{i=1}^{N} \left[\frac{y_{i}}{\sigma_{\theta}(x_{i})} \frac{\partial}{\partial \theta_{j}} \sigma_{\theta}(x_{i}) + \frac{1 - y_{i}}{1 - \sigma_{\theta}(x_{i})} \frac{\partial}{\partial \theta_{j}} (1 - \sigma_{\theta}(x_{i})) \right]
= -\sum_{i=1}^{N} \left[\frac{y_{i}\sigma_{\theta}(x_{i})}{\sigma_{\theta}(x_{i})} (1 - \sigma_{\theta}(x_{i})) \frac{\partial}{\partial \theta_{j}} (x_{i}\theta) + \frac{1 - y_{i}}{1 - \sigma_{\theta}(x_{i})} (1 - \sigma_{\theta}(x_{i})) \frac{\partial}{\partial \theta_{j}} (1 - \sigma_{\theta}(x_{i})) \right]
= -\sum_{i=1}^{N} \left[y_{i} (1 - \sigma_{\theta}(x_{i})) x_{i}^{j} - (1 - y_{i}) \sigma_{\theta}(x_{i}) x_{i}^{j} \right]
= -\sum_{i=1}^{N} \left[(y_{i} - y_{i}\sigma_{\theta}(x_{i}) - \sigma_{\theta}(x_{i}) + y_{i}\sigma_{\theta}(x_{i})) x_{i}^{j} \right]
= \sum_{i=1}^{N} \left[\sigma_{\theta}(x_{i}) - y_{i} \right] x_{i}^{j}$$

Learning Parameters

$$\frac{\partial J(\theta)}{\theta_j} = \sum_{i=1}^{N} \left[\sigma_{\theta}(x_i) - y_i \right] x_i^j$$

Now, just use Gradient Descent!

$$\frac{\partial J(B)}{\partial \Theta_j} = \sum_{i=1}^{N} (\hat{y_i} - \hat{y_i}) z_i^j$$

$$\frac{\partial J(\theta)}{\partial \Theta_j} = \sum_{i=1}^{N} (\hat{y_i} - \hat{y_i}) z_i^j$$

$$\frac{\partial J(\theta)}{\partial \Theta_j} = \sum_{i=1}^{N} (\hat{y_i} - y_i) z_i^j$$

$$\frac{\partial J(\theta)}{\partial \theta j} = \sum_{i=1}^{N} (\hat{y_i} - \hat{y_i}) z_i^j$$
MATRIX X

$$\frac{\partial J(\theta)}{\partial \Theta_{i}} = \sum_{i=1}^{N} (\hat{y_{i}} - y_{i}) z_{i}^{j}$$

$$\frac{\partial J(\theta)}{\partial \theta_i} = \sum_{i=1}^{N} (\hat{y_i} - y_i) z_i^j$$

$$\frac{\partial J(\theta)}{\partial x_i} = \sum_{i=1}^{N} (\hat{y_i} - \hat{y_i}) z_i^j = \sum_{i=1}^{N} (\hat{y_i} - \hat{y_i})$$

$$\frac{\partial J(\theta)}{\partial \Theta_{j}} = \sum_{i=1}^{N} (\hat{y_{i}} - \hat{y_{i}})^{2_{i}} = x^{jT} (\hat{y_{i}} - \hat{y_{j}})$$

$$\begin{bmatrix} \frac{\partial J(\theta)}{\partial \Theta_{j}} \\ \frac{\partial J(\theta)}{\partial \Theta_{j}} \end{bmatrix} = \begin{bmatrix} x^{jT} (\hat{y_{i}} - \hat{y_{j}}) \\ x^{jT} (\hat{y_{i}} - \hat{y_{j}}) \\ \vdots \\ \frac{\partial J(\theta)}{\partial \Theta_{j}} \end{bmatrix} = \begin{bmatrix} x^{jT} (\hat{y_{i}} - \hat{y_{j}}) \\ \frac{\partial J(\theta)}{\partial \Theta_{j}} \end{bmatrix} = \begin{bmatrix} x^{jT} (\hat{y_{i}} - \hat{y_{j}}) \\ \vdots \\ \frac{\partial J(\theta)}{\partial \Theta_{j}} \end{bmatrix}$$

$$\frac{\partial J(\theta)}{\partial \Theta_{j}} = \sum_{i=1}^{N} (\hat{y_{i}} - y_{i}) z_{i}^{j} = x_{1\times N}^{j} (\hat{y} - y_{j})$$

$$\begin{bmatrix}
\frac{\partial J(0)}{\partial B_{1}} \\
\frac{\partial J(0)}{\partial B_{2}} \\
\vdots \\
\frac{\partial J(0)}{\partial B_{D}}
\end{bmatrix} = \begin{bmatrix}
x^{1} (\hat{y} - \hat{y}) \\
x^{2} (\hat{y} - \hat{y})
\end{bmatrix} = x^{1}(\hat{y} - \hat{y})$$

$$\begin{bmatrix}
\frac{\partial J(0)}{\partial B_{D}} \\
\frac{\partial J(0)}{\partial B_{D}}
\end{bmatrix} = x^{1}(\hat{y} - \hat{y})$$

What happens if you apply logistic regression on the above data?

Linear boundary will not be accurate here. What is the technical name of the problem? Bias!

$$\phi(x) = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \\ x^{K-1} \end{bmatrix} \in \mathbb{R}^K$$

Using x_1^2, x_2^2 as additional features, we are able to learn a more accurate classifier.

How would you expect the probability contours look like?

How would you learn a classifier? Or, how would you expect the classifier to learn decision boundaries?

- 1. Use one-vs.-all on Binary Logistic Regression
- 2. Use one-vs.-one on Binary Logistic Regression
- 3. Extend <u>Binary</u> Logistic Regression to <u>Multi-Class</u> Logistic Regression

- 1. Learn P(setosa (class 1)) = $\mathcal{F}(\mathbf{X}\boldsymbol{\theta}_1)$
- 2. P(versicolor (class 2)) = $\mathcal{F}(\mathbf{X}\boldsymbol{\theta}_2)$
- 3. $P(\text{virginica (class 3)}) = \mathcal{F}(\mathbf{X}\boldsymbol{\theta}_3)$
- 4. Goal: Learn $\theta_i \forall i \in \{1, 2, 3\}$
- 5. Question: What could be an \mathcal{F} ?

- 1. Question: What could be an \mathcal{F} ?
- 2. Property: $\sum_{i=1}^{3} \mathcal{F}(\mathbf{X}\boldsymbol{\theta}_i) = 1$
- 3. Also $\mathcal{F}(z) \in [0,1]$
- 4. Also, $\mathcal{F}(\mathbf{z})$ has squashing proprties: $R \mapsto [0,1]$

Softmax

$$Z \in \mathbb{R}^d$$

$$\mathcal{F}(z_i) = \frac{e^{z_i}}{\sum_{i=1}^d e^{z_i}}$$

$$\therefore \sum \mathcal{F}(z_i) = 1$$

 $\mathcal{F}(z_i)$ refers to probability of class \underline{i}

Softmax for Multi-Class Logistic Regression

$$k = \{1, \dots, k\} \text{classes}$$

$$\theta = \begin{bmatrix} \vdots \vdots \vdots \\ \theta_1 \theta_2 \cdots \theta_k \\ \vdots \vdots \vdots \\ \vdots \vdots \vdots \end{bmatrix}$$

 $P(y = k|X, \theta) = \frac{e^{X\theta_k}}{\sum_{k=1}^{K} e^{X\theta_k}}$

Softmax for Multi-Class Logistic Regression

For K = 2 classes,

$$P(y = k|X, \theta) = \frac{e^{X\theta_k}}{\sum_{k=1}^{K} e^{X\theta_k}}$$

$$P(y = 0|X, \theta) = \frac{e^{X\theta_0}}{e^{X\theta_0} + e^{X\theta_1}}$$

$$P(y = 1|X, \theta) = \frac{e^{X\theta_1}}{e^{X\theta_0} + e^{X\theta_1}} = \frac{e^{X\theta_1}}{e^{X\theta_1}\{1 + e^{X(\theta_0 - \theta_1)}\}}$$

$$= \frac{1}{1 + e^{-X\theta'}}$$
= Sigmoid!

Assume our prediction and ground truth for the three classes for i^{th} point is:

$$\hat{y}_i = \begin{bmatrix} 0.1\\0.8\\0.1 \end{bmatrix} = \begin{bmatrix} \hat{y}_i^1\\ \hat{y}_i^2\\ \hat{y}_i^3 \end{bmatrix}$$

$$y_i = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} y_i^1 \\ y_i^2 \\ y_i^3 \end{bmatrix}$$

meaning the true class is Class #2 Let us calculate $-\sum_{k=1}^3 y_i^k \log \hat{y}_i^k = -(0 \times \log(0.1) + 1 \times \log(0.8) + 0 \times \log(0.1))$ Tends to zero

Assume our prediction and ground truth for the three classes for i^{th} point is:

$$\hat{y}_i = \begin{bmatrix} 0.3 \\ 0.4 \\ 0.3 \end{bmatrix} = \begin{bmatrix} \hat{y}_i^2 \\ \hat{y}_i^2 \\ \hat{y}_i^3 \end{bmatrix}$$

$$y_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} y_i^1 \\ y_i^2 \end{bmatrix}$$

$$y_i = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} y_i^1 \\ y_i^2 \\ y_i^3 \end{bmatrix}$$

meaning the true class is Class #2 Let us calculate $-\sum_{k=1}^3 y_i^k \log \hat{y}_i^k = -(0 \times \log(0.1) + 1 \times \log(0.4) + 0 \times \log(0.1))$ High number! Huge penalty for misclassification!

For 2 class we had:

$$J(\theta) = -\left\{ \sum_{i=1}^{N} y_i \log(\sigma_{\theta}(x_i)) + (1 - y_i) \log(1 - \sigma_{\theta}(x_i)) \right\}$$

More generally,

$$J(\theta) = -\left\{ \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right\}$$

$$J(\theta) = -\left\{ \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right\}$$

Extend to K-class:

$$J(\theta) = -\left\{ \sum_{i=1}^{N} \sum_{k=1}^{K} y_i^k \log(\hat{y}_i^k) \right\}$$

Now:

$$\frac{\partial J(\theta)}{\partial \theta_k} = \sum_{i=1}^{N} \left[x_i \left\{ I(y_i = k) - P(y_i = k | x_i, \theta) \right\} \right]$$

Hessian Matrix

The Hessian matrix of f(.) with respect to θ , written $\nabla^2_{\theta} f(\theta)$ or simply as \mathbb{H} , is the $d \times d$ matrix of partial derivatives,

$$\nabla_{\theta}^{2} f(\theta) = \begin{bmatrix} \frac{\partial^{2} f(\theta)}{\partial \theta_{1}^{2}} \frac{\partial^{2} f(\theta)}{\partial \theta_{1} \partial \theta_{2}} \cdots \frac{\partial^{2} f(\theta)}{\partial \theta_{1} \partial \theta_{n}} \\ \frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{1}} \frac{\partial^{2} f(\theta)}{\partial \theta_{2}^{2}} \cdots \frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{1}} \frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{2}} \cdots \frac{\partial^{2} f(\theta)}{\partial \theta_{n}^{2}} \end{bmatrix}$$

Newton's Algorithm

The most basic second-order optimization algorithm is Newton's algorithm, which consists of updates of the form,

$$\theta_{k+1} = \theta_k - \mathbb{H}_k^{-1} g_k$$

where g_k is the gradient at step k. This algorithm is derived by making a second-order Taylor series approximation of $f(\theta)$ around θ_k :

$$f_{quad}(\theta) = f(\theta_k) + g_k^{\mathsf{T}}(\theta - \theta_k) + \frac{1}{2}(\theta - \theta_k)^{\mathsf{T}} \mathbb{H}_k(\theta - \theta_k)$$

differentiating and equating to zero to solve for θ_{k+1} .

Learning Parameters

Now assume:

$$g(\theta) = \sum_{i=1}^{N} \left[\sigma_{\theta}(x_i) - y_i \right] x_i^j = \mathbf{X}^{\top} (\sigma_{\theta}(X) - y)$$
$$\pi_i = \sigma_{\theta}(x_i)$$

Let \mathbb{H} represent the Hessian of $J(\theta)$

$$\mathbb{H} = \frac{\partial}{\partial \theta} g(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{N} \left[\sigma_{\theta}(x_i) - y_i \right] x_i^j$$

$$= \sum_{i=1}^{N} \left[\frac{\partial}{\partial \theta} \sigma_{\theta}(x_i) x_i^j - \frac{\partial}{\partial \theta} y_i x_i^j \right] = \sum_{i=1}^{N} \sigma_{\theta}(x_i) (1 - \sigma_{\theta}(x_i)) x_i x_i^T$$

$$= \mathbf{X}^{\top} \operatorname{diag}(\sigma_{\theta}(x_i) (1 - \sigma_{\theta}(x_i))) \mathbf{X}$$

Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian of the negative log-likelihood are given by:

$$g(\theta)_k = \mathbf{X}^{\top}(\pi_k - y)$$

$$\mathbf{H}_k = \mathbf{X}^{\top} S_k \mathbf{X}$$

$$\mathbf{S}_k = diag(\pi_{1k}(1 - \pi_{1k}), \dots, \pi_{nk}(1 - \pi_{nk}))$$

$$\pi_{ik} = sigm(\mathbf{x}_i \theta_k)$$

The Newton update at iteraion k + 1 for this model is as follows:

$$\theta_{k+1} = \theta_k - \mathbb{H}^{-1} g_k = \theta_k + (X^T S_k X)^{-1} X^T (y - \pi_k)$$
$$= (X^T S_k X)^{-1} [(X^T S_k X) \theta_k + X^T (y - \pi_k)] = (X^T S_k X)^{-1} X^T [S_k X \theta_k + y - \pi_k]$$

Regularized Logistic Regression

Unregularised:

$$J_1(\theta) = -\left\{ \sum_{i=1}^{N} y_i \log(\sigma_{\theta}(x_i)) + (1 - y_i) \log(1 - \sigma_{\theta}(x_i)) \right\}$$

L2 Regularization:

$$J(\theta) = J_1(\theta) + \lambda \theta^T \theta$$

L1 Regularization:

$$J(\theta) = J_1(\theta) + \lambda |\theta|$$

Class Imbalance Handling

The Problem: Imbalanced Data

- Class Imbalance: When one class has significantly more samples than others
- Examples:
 - Medical diagnosis: 99% healthy, 1% disease
 - Fraud detection: 99.9% legitimate, 0.1% fraud
 - Email spam: 90% legitimate, 10% spam
- Problem: Standard logistic regression biased toward majority class
- Naive approach fails: Predicting all samples as majority class

Impact on Model Performance

With 99% class 0, 1% class 1:

- Naive classifier: Always predict class 0 → 99% accuracy!
- But: 0% recall for class 1 (complete failure)
- · Standard metrics misleading:
 - Accuracy = 99% (looks great, but useless)
 - Precision for class 1 = undefined (no predictions)
 - Recall for class 1 = 0% (misses all positive cases)
- Need: Better evaluation metrics and techniques

Solution 1: Weighted Loss Function

Modify the cost function to penalize minority class errors more:

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{N} w_i \left[y_i \log(\sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_i)) + (1 - y_i) \log(1 - \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_i)) \right]$$

- Class weights: $w_i = w_0$ if $y_i = 0$, $w_i = w_1$ if $y_i = 1$
- Common choice: $w_1 = \frac{N_0}{N_1}$ (inverse frequency)
- Effect: Forces model to pay attention to minority class
- Implementation: Available in most ML libraries (sklearn: class_weight='balanced')

Solution 2: Threshold Adjustment

- **Standard**: Predict class 1 if $P(y = 1|\mathbf{x}) > 0.5$
- **Imbalanced**: Predict class 1 if $P(y=1|\mathbf{x}) > \tau$ where $\tau < 0.5$
- Threshold selection:
 - Plot precision-recall curve or ROC curve
 - \circ Choose au that optimizes F1-score or business metric
 - Cross-validation to avoid overfitting
- **Trade-off**: Lower threshold \rightarrow higher recall, lower precision

Solution 3: Resampling Techniques

Modify the training data distribution:

- Undersampling: Remove samples from majority class
 - Pro: Faster training, balanced classes
 - Con: Loss of information, smaller dataset
- Oversampling: Duplicate samples from minority class
 - Pro: No information loss
 - Con: Risk of overfitting, larger dataset
- **SMOTE**: Generate synthetic minority examples
 - Creates new samples between existing minority samples
 - More sophisticated than simple duplication

Evaluation Metrics for Imbalanced Data

- Don't use accuracy alone!
- **Precision**: $\frac{TP}{TP+FP}$ (of predicted positives, how many correct?)
- **Recall/Sensitivity**: $\frac{TP}{TP+FN}$ (of actual positives, how many found?)
- **F1-Score**: $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$ (harmonic mean)
- ROC-AUC: Area under ROC curve (threshold-independent)
- PR-AUC: Area under precision-recall curve (better for imbalanced data)

Practice and Review

Pop Quiz: Logistic Regression

- 1. Why can't we use linear regression for classification problems?
- 2. What is the key difference between sigmoid and softmax functions?
- 3. Why do we use cross-entropy loss instead of squared error?
- 4. How does regularization help in logistic regression?

Key Takeaways

- Probabilistic Model: Outputs probabilities via sigmoid function
- Linear Decision Boundary: Creates linear separation in feature space
- Maximum Likelihood: Optimized using gradient-based methods
- Cross-Entropy Loss: Appropriate for classification problems
- No Closed Form: Requires iterative optimization (gradient descent)
- Regularization: L1/L2 help prevent overfitting