2014-2015-第一学期 工科数学分析期中试题解答(2014.11)

$$-. 1. \frac{1}{2}, 5$$

$$2. \quad \frac{15}{4\sqrt{\pi}} \text{ cm}^3/\text{sec}$$

3.
$$\frac{1}{1+\sqrt{2}}$$

4.
$$-\frac{3}{2}$$

$$= \lim_{x \to 0} \frac{-2e^{-2x} + 2x + 2}{\frac{x}{2}}$$
 (4 $\%$)

$$=\lim_{x\to 0} \frac{4e^{-2x} + 2}{\frac{1}{2}} \qquad(6\,\%)$$

$$\equiv$$
. $x > 0$ $f'(x) = 2x \cos \frac{1}{x} + \sin \frac{1}{x}$ (3 $\frac{1}{x}$)

$$x < 0$$
 $f'(x) = \frac{1}{1 + \tan^2 x} 2 \tan x \cdot \frac{1}{\cos^2 x} = 2 \tan x$ (6 $\%$)

$$f'_{+}(0) = \lim_{x \to 0^{+}} x \cos \frac{1}{x} = 0 \qquad (7 \ \%)$$

$$f'_{-}(0) = \lim_{x \to 0^{+}} \frac{\ln(1 + \tan^{2} x)}{x} = \lim_{x \to 0^{+}} \frac{\tan^{2} x}{x} = 0$$
 (8 分)

$$f'(0) = 0$$
(9 $\%$)

四.
$$e^{x+y}(1+\frac{dy}{dx}) = \frac{1}{1+(\frac{x}{y})^2} \frac{y-x\frac{dy}{dx}}{y^2} = \frac{y-x\frac{dy}{dx}}{x^2+y^2} \dots (左 3+左 4=7 分)$$

$$\frac{dy}{dx} = \frac{y - (x^2 + y^2)e^{x+y}}{x + (x^2 + y^2)e^{x+y}}$$
(9 $\%$)

 $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$

.....(9 分)

$$x \rightarrow 1$$

$$\lim_{x \to \infty} \frac{y}{x} = -1 \quad \lim_{x \to \infty} (y + x) = -2 \quad \text{有斜渐近线} \quad y = -x - 2 \qquad(3 分)$$
$$y' = \frac{2x - x^2}{(1 - x)^2} \qquad(4 分)$$

$$\Rightarrow y' = 0$$
 得 $x = 0$ $x = 2$ (6分)

$$y'' = \frac{-2}{(x-1)^3}$$
(7 分)

x	$(-\infty,0)$	0	(0,1)	1	(1,2)	2	(2,+∞)
y'	_	0	+		+	0	-
y"	+		+		_		_
у		极小值 -1	<u> </u>	间断		极大值 -5	\

.....(10分)

.....(4分)

十. 不妨设底边及侧壁每单位费用为 1, 矩形的宽度为 t, 建造费用为 y,

$$\frac{1}{2}\pi(\frac{x}{2})^2 + xt = a$$
(1 $\frac{1}{2}$)

$$y = \frac{3}{2} \cdot \pi \frac{x}{2} + x + 2t = \frac{\pi}{2} x + x + \frac{2a}{x}$$
(3 分)

$$y' = \frac{\pi}{2} + 1 - \frac{2a}{x^2}$$
(6 分)

令
$$y' = 0$$
 得 $x = 2\sqrt{\frac{a}{\pi + 2}}$ (8分)

由问题的实际意义,, 故当 $x = 2\sqrt{\frac{a}{\pi+2}}$ m 时建造费用最省(9 分)

十一.
$$\Rightarrow F(x) = f(x)e^{-\frac{x^2}{2}}$$
(1 分)

则 F(x) 在 [0,1] 上可导

由题设
$$f(0) = 0$$
(2分)

$$f(1) = \lim_{x \to 1} f(x) = 0$$
(4 分)

故
$$F(0) = F(1) = 0$$

根据拉格朗日中值定理,存在 $\xi \in (0,1)$,使 $F'(\xi) = 0$ (6分)

即
$$f'(\xi)e^{-\frac{\xi^2}{2}} + f(\xi)e^{-\frac{\xi^2}{2}}(-\xi) = 0$$

$$e^{-\frac{\xi^2}{2}} \neq 0 \qquad \therefore f'(\xi) = \xi f(\xi) \qquad \dots (7 \%)$$