Inferência Estatística

Julienne Borges

Introdução aos testes de hipóteses

Um teste de hipóteses é um procedimento em que utilizamos resultados experimentais provenientes de uma amostra para verificar se, uma afirmação sobre uma população, mais especificamente sobre um parâmetro dessa população, é contrariada ou não.

Vamos entender alguns conceitos básicos sobre os testes de hipóteses que serão utilizados em todos os testes ao longo dessa unidade.

Hipóteses Estatísticas

Hipótese nula (denotada por H_0) é uma hipótese estatística que contém uma afirmativa de igualdade e deve escrever como =, \leq ou \geq .

Para uma média, temos as três formas possíveis para a hipótese nula:

Onde, μ_0 é algum valor que você deseja testar.

 H_0 : $\mu = \mu_0$

 H_0 : $\mu \geq \mu_0$

 H_0 : $\mu \leq \mu_0$

Para uma proporção, temos as três formas possíveis para a hipótese nula:

Onde, p_0 é algum valor que você deseja testar.

 H_0 : $p = p_0$

 H_0 : $p \ge p_0$

 H_0 : $p \le p_0$

Hipóteses Estatísticas

Hipótese alternativa (denotada por H_a) é o complemento da hipótese nula. É uma afirmativa que deve ser verdadeira se H_0 for falsa e contém uma afirmativa de desigualdade, tal como <, \neq ou >.

Para uma média, a hipótese alternativa comporta apenas uma das três formas:

 H_a : $\mu \neq \mu_0$

 H_a : $\mu < \mu_0$

 H_a : $\mu > \mu_0$

Para uma proporção, a hipótese alternativa comporta apenas uma das três formas:

 H_a : $p \neq p_0$

 H_a : p < p_0

 $H_a: p > p_0$

Tipos de erros

	A verdade real de H ₀					
Decisão	H _o é verdadeira	H _o é falsa				
Aceitar H ₀	Decisão correta $(1 - \alpha)$	Erro do tipo II β				
Rejeitar H ₀	Erro do tipo I α	Decisão correta (1 - β)				

Nível de significância

O **nível de significância (α)** de um teste é a probabilidade de uma hipótese nula ser rejeitada, quando verdadeira.

Estatística de teste

A estatística de teste é uma estatística amostral, ou um valor baseado nos dados amostrais. Utiliza-se uma estatística de teste para tomar uma decisão sobre a rejeição ou não da hipótese nula.

Valor p

O valor p quantifica o erro cometido ao rejeitar a hipótese nula. Um valor p muito pequeno sugere que os resultados amostrais são muito improváveis sob a hipótese nula, ou seja, constitui evidência contra a hipótese nula.

O critério de decisão baseado no valor p é feito da seguinte maneira:

- Rejeitar a hipótese nula (H_0) se o valor p é no máximo igual ao nível de significância (α) .
- Não rejeitar a hipótese nula (H_0) se o valor p é maior do que o nível de significância (α) .

Teste de hipóteses para uma média

Hipóteses estatísticas:

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu \neq \mu_0 \rightarrow Denominada hipótese bilateral.$

$$H_0$$
: $\mu \ge \mu_0$
 H_a : $\mu < \mu_0 \rightarrow Denominada hipótese unilateral à esquerda.$

$$H_0$$
: $\mu \le \mu_0$
 H_a : $\mu > \mu_0 \rightarrow Denominada hipótese unilateral à direita.$

Teste de hipóteses para uma média

Estatísticas de teste:

$$z_{teste} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Utilizada quando σ é conhecido!

$$t_{teste} = \frac{x - \mu_0}{\frac{S}{\sqrt{n}}}$$

Utilizada quando σ NÃO é conhecido!

Teste de hipóteses para uma média

Valor p:

Tipo de teste	Valor p				
Unilateral direito	Área à direita da estatística de teste				
Bilateral	2 x a área à direita do módulo da estatística de teste.				
Unilateral esquerdo	Área à esquerda da estatística de teste				

Teste de hipóteses para uma proporção

Hipóteses estatísticas:

$$H_0$$
: $p = p_0$
 H_a : $p \neq p_0 \rightarrow Denominada hipótese bilateral.$

$$H_0$$
: $p \ge p_0$
 H_a : $p < p_0 \rightarrow Denominada hipótese unilateral à esquerda.$

$$H_0$$
: $p \le p_0$
 H_a : $p > p_0 \rightarrow Denominada hipótese unilateral à direita.$

Teste de hipóteses para uma proporção

• Estatística de teste:

$$Z_{teste} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \longrightarrow e^{n \cdot p_0 \ge 5}$$

$$n \cdot (1 - p_0) \ge 5$$

Teste de hipóteses para uma proporção

Valor p:

Tipo de teste	Valor p				
Unilateral direito	Área à direita da estatística de teste				
Bilateral	2 x a área à direita do módulo da estatística de teste.				
Unilateral esquerdo	Área à esquerda da estatística de teste				

Tabela da distribuição Normal Padrão

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549

Tabela da distribuição t-Student

g.l	0,25	0,125	0,1	0,05	0,025	0,0125	0,01	0,005	0,0025	0,001	0,0005
1	1	2,414	3,078	6,314	12,71	25,45	31,82	63,66	127,3	318,3	636,6
2	0,817	1,604	1,8856	2,92	4,303	6,205	6,965	9,925	14,09	22,33	31,6
3	0,765	1,423	1,6377	2,3534	3,182	4,177	4,541	5,841	7,453	10,21	12,92
4	0,741	1,344	1,5332	2,1319	2,776	3,495	3,747	4,604	5,598	7,173	8,61
5	0,727	1,301	1,4759	2,0151	2,571	3,163	3,365	4,032	4,773	5,893	6,869
6	0,718	1,273	1,4398	1,9432	2,447	2,969	3,143	3,707	4,317	5,208	5,959
7	0,711	1,254	1,4149	1,8946	2,365	2,841	2,998	3,499	4,029	4,785	5,408
8	0,706	1,24	1,3968	1,8596	2,306	2,752	2,896	3,355	3,833	4,501	5,041
9	0,703	1,23	1,383	1,8331	2,262	2,685	2,821	3,25	3,69	4,297	4,781
10	0,7	1,221	1,3722	1,8125	2,228	2,634	2,764	3,169	3,581	4,144	4,587

