

Distributed Random Servers with Timed Labels for Synchronization over Named Data Network

Hebi Li 01/18/2014

Table of Contents

- 1. Problem
- 2. Background
- 3. Design
- 4. Evaluation
- 5. Future Work

1. Problem 中国神学技术大学 University of Science and Technology of China

Let all participants share the same up-to-date data. For example:

- 1. group chat
- 2. video conference

- Why this matters?
 - Traditional IP based Network
- Downsides:
 - Link Burden
 - overhead
 - Robust
 - Non Local

- What NDN brings to us?
 - Traditional IP based Network
 - Named Data Network
 - Cache
 - Interest Aggregate

中国神学技术大学 University of Science and Technology of China

3. Design

- 3.1 Overview
- 3.2 Server Generation
 - Anything New Interest
- 3.3 Data Structure
 - True Message(for distributed Fetching)
 - Record(Timed Label)
 - Record Container(Index of Record)
- 3.4 Synchronization
 - Anything New Interest
 - Something New Interest
 - Data Fetching Interest

University of Science and Technology of China

3.2 Server Generation William Participation 3.2 Server Generation

3.3 Data Structore and Technology of China Timed Labels Timed Labels

3.3 Data Struction of Science and Technology of China

STEP1: Publisher to Server: Something New

STEP2: Server to Client: Satisfy Pending Interest

STEP3: Client to Publisher: Distributed Data Fetching

4. Evaluatio 中国神学技术大学 University of Science and Technology of China

Topology && Server Generation

TOPOLOGY:

- 5x5 grid topology.
- Every node contains a participant.

Function Correctness:

- Server Generated as expect.
- All participant received all Data.

4. Evaluation 中国神学技术大学 University of Science and Technology of China

Zhu, Z., & Afanasyev, A. (2013). Lets ChronoSync: Decentralized Dataset State Synchronization in Named Data Networking. In Proceedings of the 21st IEEE International Conference on Network Protocols(ICNP 2013)

2/f (frequency)

4. Evaluation 中国科学技术大学

of China

Total Delay (Control Message + Data Fetching) 20

15 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Delay(s)

Data Fetching Delay

ChronoSync's Fatal Downside University of Science and Technology of China Downside

When Simultaneous Happens:

- Only one will get to the receiver!
- They are divided to different groups
- Recovery Interest has to be sent

It is a fully distributed protocol. Lack of Control Ability

;. 6: An example of simultaneous data generation

4. Evaluation 中国神学技术大学 University of Science and Technology of China

Portion In Interests

4. Evaluation 中国神学技术大学 University of Science and Technology of China

Cumulative Incoming Interest Count For All Nodes In 5 Seconds

--- Inter-Level Delay

Why delay increases when frequency increases

Desired Solution:

* A Novel Flow-based Contin Time: 6ms/
Time: 5ms/

Data Replying Mechanism in IC

Server 10ms

A Novel Flow-based Continuous Data Replying Mechanism in ICN

- i the mst mierest
- the consumer is ready for receiving many data
- The Provider is will continuously put data
- Routers will hold on the record, and forward every data back

5. Future Work 中国神学技术大学 University of Science and Technology of China

Server Generation Algorithm

- Best fit for every given topology
- Robust
- Infrastructure
 - A controler who holds information of the whole topology. Like SDN.