1 Oscilations	EnergPow Wave String	$f' = \frac{\nu \pm \nu_D}{\nu \pm \nu_S}$	Cylindrical Line	Potential due to GroupOfPoint-
Simple Harmonic Motion	$> dK = \frac{1}{2}dm u^2$	SupersonicSpeedShockWave	λ : linear charge density $E = \frac{\lambda}{2\pi\varepsilon_0 r}$	Charges Superposition principle,
$T = \frac{1}{f}$	$P_{avg} = \frac{1}{2}\mu v\omega^2 y_m^2$	$sin\theta = \frac{vt}{v_S t} = \frac{v}{v_S}$		the sum of the values, un- like electric fields that
$x(t) = x_m \cos(\omega t + \phi)$	Wave Equation	Electric Charge	Planar Non-conducting Sheet $E = \frac{\sigma}{2\varepsilon_0}$	was a sum of vectors
$\omega = \frac{2\pi}{T} = 2\pi f$	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$	Coulomb's Law	0	$V = \sum_{i=1}^{n} (V_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \left(\frac{q_i}{r_i}\right)$
$v(t) = -\omega x_m \sin(\omega t + \phi)$	Interference of Waves	$> i = \frac{dq}{dt}$	Planar Two Conducting Plates $E = \frac{\sigma}{\varepsilon_0}$	Potential due to Electric Dipole
$a(t) = -\omega^2 x_m \cos(\omega t + \phi)$ > $F = ma = m(-\omega^2 x)$	$v'(x,t) = v_1(x,t) + v_2(x,t)$	$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$	-0	$\vec{p} = qd$ if $r >> d$
\ /		$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 N \cdot m^2/C^2$	Spherical Shell	$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$
$F = -kx = -(m\omega^2)x$	$\left[2y_{m}cos\left(\frac{1}{2}\phi\right)\right]sin\left(kx-\omega t+\frac{1}{2}\phi\right)$	$\varepsilon_0 = 8.85 \times 10^{-12} \ C^2 / N \cdot m^2$	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} : r \ge raioShell$	$4\pi\epsilon_0 r^2$ Potential due to ContinousDis-
$\omega = \sqrt{\frac{k}{m}}$	StandingWavesResonance	Charge is Quantized	E = 0 : r < raioShell	tribution
$T = 2\pi \sqrt{\frac{m}{k}}$	$y'(x,t) = [2y_m sin(kx)] cos(\omega t)$	$q = ne, n = \pm 1, \pm 2, \pm 3$	Sphere $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^3} r$	$> V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda dx}{r}$
k: constante da mola	$f = \frac{v}{\lambda} = n \frac{v}{2L} \text{ n=1,2,3}$	$e = 1.602 \times 10^{-19} C$	V 10	Calculating field from potential
Energy in SHM	3 Waves 2	Electric Fields	Electric Potential $V = -\frac{W}{a}$	$>E_{s}=-\frac{\partial V}{\partial s}$
$U(t) = \frac{1}{2}kx^2$	Speed of Sound	$\vec{E} = \frac{\vec{F}}{q_0} (N/C)$	9	$> E_x = -\frac{\partial V}{\partial x}$; $E_y = -\frac{\partial V}{\partial y}$; $E_z =$
$K(t) = \frac{1}{2}mv^2$	$v = \sqrt{\frac{B}{\rho}}$	due to a Point	$V = \frac{-W_{\infty}}{q_0} = \frac{U}{q_0}$ (volt=joule per	$-\frac{\partial V}{\partial z}$
$E = U + K = \frac{1}{2}kx_m^2$	v: som no ar a 20 o C é 343 m/s	$\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{ q }{r^2} \hat{r}$	coulomb)	$\frac{\partial z}{\partial E} = -\frac{\Delta V}{\Delta s}$
2	Traveling Sound Waves	$\vec{E} = \frac{\vec{F_0}}{q_0} = \frac{\vec{F_{01}}}{q_0} + \frac{\vec{F_{02}}}{q_0} + \dots =$	Units	<u> </u>
Damped SHM	$s(x,t) = s_m \cos(kx - \omega t)$	$\vec{E}_1 + \vec{E}_2 + \dots$	$1N/C = \left(1\frac{N}{C}\right)\left(\frac{1V \cdot C}{1J}\right)\left(\frac{1J}{1N \cdot m}\right) = 1V/m$	ElectricPotentialEnergy Sy- stemPointCharges
b: damping constante $F_d = -bv$	$\Delta p(x,t) = \Delta p_m sin(kx - \omega t)$ $\Delta p = (v\rho\omega)s_m$		$1e\dot{V} = e(1V) =$	$U = W = q_2 V = \frac{1}{4\pi \epsilon_0} \frac{q_1 q_2}{r}$
$x(t) = x_m e^{-\frac{bt}{2m}} \cos(\omega' t + \phi)$	Intensity and Sound Level	due to Electric Dipole	$(1.60 \times 10^{-19} C)(1J/C) =$	Capacitance
$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$	$> I = \frac{P}{A}$	$\vec{p} = qd$ if $z >> d$	$1.60 \times 10^{-19} J$	q = CV 1 farad (1 F) = 1 cou-
if b small $\omega' \approx \omega$	$I = \frac{1}{2}\rho\nu\omega^2 s_m^2$	$ if z >> d E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3} $	Work done by Applied Force	lomb per volt (1 C/V)
$E(t) \approx \frac{1}{2} k x_m^2 e^{-\frac{Ut}{m}}$	$distance I = \frac{P_s}{4\pi r^2}$	Dipole in eletric field	$\Delta K = K_f - K_i = W_{appF} + W_{efF}$	Calculating Capacitance
	decibel $\beta = (10dB)\log\left(\frac{I}{I_0}\right)$	$\vec{\tau} = \vec{p} \times \vec{E}$	$W_{appF} = -W_{efF}$ if stationary before and after move $K_f = K_i = 0$	$C = \frac{\varepsilon_0 A}{d}$: placas paralelas
2 Waves	$I_0 = 10^{-12} W/m^2$	$U = -\vec{p} \cdot \vec{E}$	$\Delta U = U_f - U_i = W_{appF}$	$C = 2\pi\varepsilon_0 \frac{L}{ln(\frac{b}{a})}$: cilindros
Transverse Waves		Gauss's Law	$\Delta U = U_f^f - U_i = W_{appF}$	$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$: esferas
Luz vacuo: <i>c</i> = 299792458m/s k: numero de onda	SourcesMusic	Eletric FLux	Equipotential Surfaces	$C = 4\pi\varepsilon_0 \frac{1}{b-a}$. esfera isolada
λ : comprimento de onda	dois lados $f = \frac{v}{\lambda} = \frac{nv}{2L}$ um lado $f = \frac{v}{\lambda} = \frac{nv}{4L}$	$\Phi = \oint \vec{E} \cdot d\vec{A}$	$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$	Capacitors
$y(x,t) = y_m \sin(kx - \omega t)$ $k = \frac{2\pi}{\lambda}$	X IE	Gauss's Law	31	$C_{eq} = \sum_{j=1}^{n} (C_j)$: in paralel,
$\kappa = \frac{2\pi}{\lambda}$ $> \omega = \frac{2\pi}{T}$	Beats $f_{heat} = f_1 - f_2$	$\varepsilon_0 \Phi = q_{enc}$	$v = -J_i L \cdot us$ se $v_i = 0$ ex:infinity	$C_{eq} = \sum_{j=1}^{n} (C_j)$. In paralel, mesmo V separa q
$\Rightarrow \omega = \frac{T}{T}$ $\Rightarrow f = \frac{1}{T} = \frac{\omega}{2\pi}$		ChargedIsolConducExternEF	·	* / \
$ \begin{array}{ll} 7 - \overline{T} - \overline{2\pi} \\ v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f \end{array} $	Doppler Effect Detector: aprox + , afast -	σ : charge per unit area $E = \frac{\sigma}{\varepsilon_0}$	Potential due to Point Charge $V = rac{1}{4\pi\varepsilon_0} rac{q}{r}$	$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \left(\frac{1}{C_j}\right)$: in series, mesmo q separa V
$v - \overline{k} - \overline{T} - \lambda J$	Source: aprox - , afast +	$L = \frac{\epsilon_0}{\epsilon_0}$	$v = \frac{1}{4\pi\varepsilon_0} \frac{1}{r}$	mesmo q separa v

$U = \frac{q^2}{2C} = \frac{1}{2}CV^2$ $u = \frac{1}{2} \varepsilon_0 E^2$: energy density

Energy Stored Electric Field

Capacitor with a Dieletric If dieletric replace ε with $k\varepsilon$, k

dieletric constant $\varepsilon_0 \oint k \vec{E} \cdot d\vec{A} = q$: GaussLaw w/

Current And Resistance

Electric Current

 $i = \frac{dq}{dt}$ 1ampere(1A)=1 coulomb per second(1C/s)

Current Density

Dialetric

 $i = \int \vec{J} \cdot d\vec{A}$

 $\vec{J} = (ne) \vec{v_e} : \vec{v_e} \text{ drift speed}$

Resistance and Resistivity

 $R = \frac{V}{i}$: 1 ohm $(1\Omega) = 1$ volt per ampere = 1 V/A

 $\rho = \frac{1}{\sigma} = \frac{\vec{E}}{\vec{I}} : \rho \text{ Resistivity, } \sigma$ conductivity $R = \rho \frac{L}{A}$ $p - p_0 = p_0 \alpha (T - T_0)$

Power Potencia

P = iV: rate eletrical energy transfer $P = i^2R = \frac{V^2}{R}$: resistive dissipa-

tion 1 volt-ampere $1V \cdot A =$ $\left(1\frac{J}{C}\right)\left(1\frac{C}{s}\right) = 1\frac{J}{s} = 1W \text{ 1 watt}$