1 Allgemeines

arithmetisches Mittel: $\overline{a} = \frac{1}{T} \int_{t=0}^{T} a(t) dt$ **Gleichrichtwert:** $a_{GL} = |a(t)| = \frac{1}{T} \int_{t=0}^{T} |a(t)| dt$ Wechselgröße: $\overline{a} = 0$

R-Dreieck: $Z^2 = R^2 + X^2$

Zweipole

Suszeptanz: $B = \frac{\hat{i}_{\perp}}{\hat{u}} = -Y * \sin \phi_{ui};$ Y-Dreieck: $Y^2 = G^2 + B^2$

uLiCu:

iCuLi:

 $\mathbf{2}$

Effektiv/RMS-wert: $A = a_{eff} = \sqrt{\frac{1}{T} \int_{t=0}^{T} a(t)^2 dt}$ Scheitel/Crestfaktor: $k_s = \frac{\hat{a}}{a_{eff}}$ Kreisfrequenz: $\omega=2\pi f=rac{2\pi}{T}$

Induktiver $\phi = 90^{\circ} (\mathbf{UvI})$: $Z_L = \frac{1}{Y_L} = \frac{\hat{u}}{\hat{i}} = \omega L$; $R_L = \frac{1}{G_L} = 0$; $X_L = -\frac{1}{B_L} = \omega L$ Kapazitiver $\phi = -90^{\circ} (\mathbf{IvU})$: $Z_c = \frac{1}{Y_c} = \frac{1}{\omega C}$; $R_c = \frac{1}{G_c} = 0$; $X_c = -\frac{1}{B_c} = -\frac{1}{\omega C}$

3 Schwingkreise

Reihen Widerstand: $\underline{Z} = R + i(\omega L - \frac{1}{\omega C}); Z_0 = R; X_0 = \sqrt{\frac{L}{C}};$ Resonanzfrequenz: $\omega_0 = \frac{1}{\sqrt{L*C}};$

3.1

max Strom: $I_{max} = I_0 = \frac{U}{R}$; Güte: $Q = \frac{\omega_0 * L}{R} = \frac{1}{\omega_0 * R * C} = \frac{X_0}{R} = \frac{f_0}{B_f} = \frac{1}{R} * \sqrt{\frac{L}{C}} = \frac{f_0}{f_{go} - f_{gu}}$ Spannungserhöhung: $U_{L0} = U_{C_0} = Q * U_{R0} = Q * U_q$

 $\frac{I(f_g)}{I_{max}} = \frac{U(f_g)}{U_{Max} = \frac{1}{\sqrt{2}}}$

Betragsgang: $Z(\omega) = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$; Phasengang: $\psi_Z(\omega) = \arctan \frac{\omega L * \frac{1}{\omega C}}{R}$

Parallel 3.2Leitwert: $\underline{Y} = G + i(\omega C - \frac{1}{\omega L}); Y_0 = G; B_0 = \sqrt{\frac{C}{L}};$ Resonanzfrequenz: $\omega_0 = \frac{1}{\sqrt{L*C}};$

max SPG: $U_{max} = I_0 = \frac{I}{G}$; Güte: $Q = \frac{\omega_0 * C}{G} = \frac{1}{\omega_0 * G * L} = \frac{B_0}{G} = \frac{f_0}{B_f} = \frac{1}{G} * \sqrt{\frac{C}{L}} = \frac{f_0}{f_{go} - f_{gu}}$ Stormerhöhung: $I_{C0} = I_{L_0} = Q * I_{G0} = Q * I_q$

3.3 Gemeinsamem Kenngrößen

Betragsgang: $Y(\omega) = \sqrt{G^2 + (\omega C - \frac{1}{\omega L})^2}$; Phasengang: $\psi_Y(\omega) = \arctan \frac{\omega C * \frac{1}{\omega L}}{G}$

Dämpfung: $d = \frac{1}{Q}$; Leistung: $P_{f_{go/gu}} = \frac{1}{2}P_{fo}$; Güte: $Q = \frac{|Blindleistung(\omega_0)|}{Wirkleistung(\omega_o)}$

Grenzfrequenzen: $f_{go/gu} = f_0 * (\sqrt{1 + (\frac{1}{2Q}) \pm \frac{1}{2Q}}); Q \gg 1 \Rightarrow f_{go/gu} = f_0(1 \pm \frac{1}{2Q}) = f_0 \pm \frac{B_f}{2}$

Impendanz: $\overline{Z} = \frac{\hat{u}}{\hat{i}}$; Resistanz: $R = \frac{\hat{u}_{//}}{\hat{i}} = Z * cos\phi_{ui}$; Reaktanz: $X = \frac{\hat{u}_{\perp}}{\hat{i}} = Z * sin\phi_{ui}$;

Ohmscher $\phi = 0^{\circ}$: $Z_R = \frac{1}{Y_R} = \frac{\hat{u}}{\hat{i}} = R$; $R_R = \frac{1}{G_R} = \frac{\hat{u}_{//}}{\hat{i}} = R$; $X_R = \frac{1}{B_R} = \frac{\hat{u}_{\perp}}{\hat{i}} = 0$

Admintanz: $Y = \frac{\hat{i}}{\hat{u}} = \frac{1}{Z}$; Konduktanz: $G = \frac{i//}{\hat{u}} = Y * \cos \phi_{ui}$;

Komplexe Rechnung $i^2 = -1$ 4

Darstellung

R-Form: $\underline{A} = a_r + \imath * a_\imath = \Re(\underline{A}) + \imath * \Im(\underline{A});$ **P-Form:** $A = A * e^{i*\alpha}$;

Euler: $e^{i\alpha} = \cos \alpha + i \sin \alpha$ **P** in **R**: $a_r = A * \cos \alpha$, $a_i = A * \sin \alpha$; **R** in **P**: $A = \sqrt{a_r^2 + a_i^2}$, $\alpha = \arctan \frac{a_i}{a_i}$

Rechnen

konjugiert Komplex: $\underline{A}^* = A * e^{-i\alpha} = a_r - i * a_i$; Addition: $\underline{C} = a_r + b_r + \imath * (a_\imath + b_\imath);$

Subtraktion: $\underline{C} = a_r - b_r + \imath * (a_i - b_i);$

Multiplikation: $\underline{C} = A * B * e^{\imath * (\alpha + \beta)};$

Division: $\underline{C} = \frac{A}{B} * e^{\imath * (\alpha - \beta)}$ Inversion: $\underline{A}^{-1} = \frac{1}{A} = \frac{1}{a_r + \imath * a_\imath} = \frac{a_r - \imath * a_\imath}{a_r^2 - a_\imath^2} = \frac{1}{A} * e^{-\imath \alpha}$

 $egin{aligned} \textit{Komplexe Teiler} & ; \ \textit{Stromteiler:} & rac{\underline{I_a}}{\underline{I_e}} = rac{\underline{Y_2}}{\underline{Y_1} + \underline{Y_2}} = rac{\underline{Z_1}}{\underline{Z_1} + \underline{Z_2}} \ \textit{Spannungsteiler:} & rac{\underline{U_a}}{\underline{U_e}} = rac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}} = rac{\underline{Y_1}}{\underline{Y_1} + \underline{Y_2}} \end{aligned}$

 $\begin{array}{l} \textbf{\textit{Dreick Stern Umformung}} \\ \Delta \rightarrow \bot \textbf{: } \underline{Z}_A = \frac{\underline{Z}_{AB} * \underline{Z}_{AC}}{\underline{Z}_{AC} + \underline{Z}_{AB} + \underline{Z}_{BC}} = ; \\ \bot \rightarrow \Delta \textbf{: } \underline{Z}_{AB} = \underline{Z}_A + \underline{Z}_B + \frac{\underline{Z}_A * \underline{Z}_B}{\underline{Z}_C} \end{array}$

5 Leistung

Wirkleistung: $P = U * I * \cos(\phi_{U-I}) = S * \cos \phi_{U-I}$

Scheinleistung: S = U * I; Blindleistung: $Q = U * I * \sin \phi_{U-I}$;

Leistungsfaktor: $\lambda = \frac{P}{S}$; P-Dreieck: $S^2 = P^2 + Q^2$;

Leistungsfaktor: $\cos \phi = \frac{P}{S}$; $\tan \phi = \frac{Q}{P}$

5.1Leistungsanpassung optimaler Anschlusswiderstand: $Z_{aopt} = R_a + \imath X_i = R_i - \imath X_i = \underline{Z}_i^*, \ \underline{Z}_v' = \underline{Z}_i^*$ maximale Wirkleisung: $P_{max} = \frac{U_q^2}{4*R_i} = \frac{U_q^2}{4*R_v} = \frac{|U_q^2|}{4*\Re\{\underline{Z}_i\}} = \frac{(Z*I)^2}{4*R_i}$

Leistungsmomentanwert: p = u * i, bei sinus-förmig $p = P - S * cos(2\omega t + \phi_U + \phi_I)$;

Wirkungsgrad: $\eta = rac{I^2*R_{opt}}{I^2*(R_i+R_{opt})}$

5.2Betragsanpassung

Widerstand: $R_a = \sqrt{R_i^2 + X_i^2} = |\underline{Z}_i| = Z_i$ Wirkleisung: $P_a = \frac{U_q^2}{2*(Z_i + R_i)} = \frac{U_q^2}{2*(R_a + R_i)}$

Belasteter Spannungsteiler

$$\frac{U_a}{U_e} = \frac{Z_{2L}}{Z_1 + Z_{2L}} = \frac{Z_L * Z_2}{Z_1 * (Z_L + Z_2) + Z_L * Z_2} = \frac{Y_1}{Y_1 + Y_2 + Y_L}$$

$$U_e = Z_1 + Z_{2L} = Z_1 * (Z_L + Z_L)$$

$$\frac{I_a}{I_e} = \frac{Y_{2L}}{Y_1 + Y_{2L}} = \frac{Y_L * Y_2}{Y_1 * (Y_L + Y_2) + Y_L * Y_2} = \frac{Z_1}{Z_1 + Z_2 + Z_L}$$

$$\mathbf{B} \quad \mathbf{Reihe} \Leftrightarrow \mathbf{Parallel}$$

Komplexer Teiler

Stromteiler

Spezialfälle

6.1

6.4

6.4.2

$$Z_{1\parallel 2} = \frac{Z_1 * Z_2}{Z_1 + Z_2}$$

 $2(Z_1 + Z_2) = Z_{par}$

 $Z_{reihe1} = \Re\{Z_{1\parallel 2}\}; Z_{reihe2} = \Im\{Z_{1\parallel 2}\}$

 $Z_1 = \frac{U_e * Z_2}{U_a} - Z_2$

 $Y_1 = \frac{I_e * Y_2}{I_1} - Y_2$

 $Z_1 = \frac{-I_a * Z_2}{I_a - I_a}$

 $Y_1 = \frac{-U_a * Y_2}{U_2 - U_2}$

(1)

(2)

(3)

(5)

(9)