

"ML for Insurance Claims Fraud Detection"

Course: Data Science for Business

Study Program: Business Consulting Master

WS 24-25

Agenda

1	Problem Statement
2	Available Techniques
3	Data Source and Preprocessing
4	Supervised Model
5	Summary

1. Problem Statement

- ➤ In the past, fraud detection was left to insurance fraud investigators.
- The situation improved when rule-based systems appeared. It operates on a set of "rules", that warn about potential fraud once it's detected.

Drawbacks of rule based systems

Blind spots

False positives

Effective only for simple cases

Advantages with machine learning

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

2. Available Techniques

Supervised

Predicts fraudulent claims using labeled data (eg. claim amount, frequency)

Natural Language Processing

Detects inconsistencies in supporting documents

Unsupervised

Identifies anomalies and unknown fraud patterns (e.g., unusually high repair costs)

Graph based techniques

Identifies connections between seemingly unrelated claims

Combined

Ensemble methods combine anomaly detection and classification for enhanced fraud detection

Explainable AI

Provides reasons for why a claim is fraudulent, thus builds trust

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

3. Data Source and Preprocessing (1/3)

Data Source

https://www.kaggle.com/datasets/buntyshah/auto-insurance-claims-data/data

Data Set Overview:

 months_as_customer age 	: int64 : int64	 incident_severity authorities contacted 	: object : object
3. policy number	: int64	23. incident state	: object
4. policy_bind_date	: object	24. incident_city	: object
5. policy_state	: object	25. incident_location	: object
6. policy_csl	: object	26. incident_hour_of_the_day	: int64
7. policy_deductable	: int64	27. number_of_vehicles_involved	
8. policy_annual_premium	: float64	28. property_damage	: object
9. umbrella limit	: int64	29. bodily_injuries	: int64
10. insured_zip	: int64	30. witnesses	: int64
11. insured_sex	: object	31. police_report_available	: object
12. insured_education_level	: object	32. total_claim_amount	: int64
13. insured occupation	: object	33. injury_claim	: int64
14. insured_hobbies	: object	34. property_claim	: int64
15. insured_relationship	: object	35. vehicle_claim	: int64
16. capital-gains	: int64	36. auto make	: object
17. capital-loss	: int64	37. auto_model	: object
18. incident_date	: object	38. auto year	: int64
19. incident_type	: object	39. fraud_reported	: object
20. collision_type	: object	40c39	: float64

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

3. Data Source and Preprocessing (2/3)

Preprocessing:

- ✓ Replaced all occurences of '?' with NaN
- ✓ Filled null values with most frequent value collision_type, property_damage, police_report_available
- ✓ Dropped unwanted columns policy_number, policy_bind_date, policy_state and so on
- ✓ Encoded categorical columns

 incident_type, property_damage, police_report_available and so on
- ✓ Scaled numerical columns
- ✓ Balanced class distribution with SMOTE

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

3. Data Source and Preprocessing (3/3)

Feature Selection:

Features

Label

'fraud_reported'

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

4. Supervised Model (1/2)

Model:

Random Forest Classifier

Train-test Split (75:25)

GridSearchCV (5-fold CV) to optimize key parameters based on ROC-AUC score

Out of 200 Fraud Cases

176 correctly predicted as fraud, 24 incorrectly predicted as non-fraud

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

4. Supervised Model (2/2)

Model:

Random Forest Classifier

Train-test Split (75:25)

Accuracy: 86%

Classification Report (Default Threshold):

	precision	recall	f1-score	support
0	0.86	0.85	0.85	177
1	0.87	0.88	0.87	200
accuracy			0.86	377
macro avg	0.86	0.86	0.86	377
weighted avg	0.86	0.86	0.86	377

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL

5. Summary

Drawbacks of rule based systems

Blind spots

False positives

Effective only for simple cases

Supervised

Predicts fraudulent claims using labeled data (eg. claim amount, frequency)

Unsupervised

Identifies anomalies and unknown fraud patterns (e.g., unusually high repair costs)

Combined

Ensemble methods combine anomaly detection and classification for enhanced fraud detection

Natural Language Processing

Detects inconsistencies in supporting documents

Graph based techniques

Identifies connections between seemingly unrelated claims

Explainable Al

Provides reasons for why a claim is fraudulent, thus builds trust

Advantages with machine learning

Model:

Random Forest Classifier

Validation Technique:

Test-train Split

Accuracy: 86%

Out of 200 Fraud Cases

176 correctly predicted as fraud, 24 incorrectly predicted as non-fraud

Incorporating additional fraud indicators or exploring other models, could enhance accuracy and minimize errors in fraud detection

1. PROBLEM STATEMENT

2. AVAILABLE TECHNIQUES

3. DATA SOURCE & PREPROCESSING

4. SUPERVISED MODEL