

PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL

U.S. ARMY MATERIEL COMMAND

COMMITTED TO PROTECTION OF THE ENVIRONMENT

94-01549

Harding Lawson Associates

Environmental Science And Engineering, Inc.

REQUESTS FOR COPIES OF THIS DOCUMENT SHOULD BE REFERRED TO THE PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL AMXRM-PM, COMMERCE CITY, COLORADO 80022

This document complies with the National Environmental Policy Act of 1969.

94 1 13 044

ROCKY MOUNTAIN ARSENAL • COMMERCE CITY, COLORADO • 80022-2180

Best Available Copy

TECHNICAL SUPPORT FOR ROCKY MOUNTAIN ARSENAL

DIGI COLLETT INSPECTED \$

Offpost Operable Unit Remedial Investigation

Final Addendum

Volume II of II

March 30, 1992 Contract Number DAAA15-88-0021

Accesion For			
NTIS CRA&I	Z		
DTIC TAB Unannounced			
Justification			
By Rec A274 641 Distribution (
	1641		
Distribution	y vies		

PREPARED BY

Harding Lawson Associates
Environmental Science and Engineering

PREPARED FOR

Rocky Mountain Arsenal Rocky Mountain Arsenal Information Center Commerce City, Colorado

THIS DOCUMENT IS INTENDED TO COMPLY WITH THE NATIONAL ENVIRONMENTAL POLICY ACT OF 1969.

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATION RECORD FOR THIS CERCLA OPERABLE UNIT.

Appendix A

LITHOLOGIC LOGS, CONSTRUCTION SUMMARIES, COMPLETION REPORTS AND SURVEY DATA

LIST OF FIGURES

Figure No.	
A1	Well Completion Diagram and Log of Boring for Well 37429
A2	Well Completion Diagram and Log of Boring for Well 37430
A3	Well Completion Diagram and Log of Boring for Well 37433
A4	Well Completion Diagram and Log of Boring for Well 37434
A5	Well Completion Diagram and Log of Boring for Well 37435
A6	Well Completion Diagram and Log of Boring for Well 37436
A7	Well Completion Diagram and Log of Boring for Well 37437
A8	Well Completion Diagram and Log of Boring for Well 37438
A9	Well Completion Diagram and Log of Boring for Well 37439
A10	Well Completion Diagram and Log of Boring for Well 37440
A11	Well Completion Diagram and Log of Boring for Well 37442
A12	Well Completion Diagram and Log of Boring for Well 37443
A13	Well Completion Diagram and Log of Boring for Well 37444
A14	Log of Boring RI-15
A15	Well Completion Diagram and Log of Boring for Well 37441
A16 .	Well Completion Diagram and Log of Boring for Well 37431
A17	Well Completion Diagram and Log of Boring for Well 37445
A18	Well Completion Diagram and Log of Boring for Well 37446
A19	Monitoring Well Surface Completion Details
A20	Unified Soil Classification System and Symbols

Notes: See Detail A for surface completion.

All PID readings equal to background.

Munsell color chart used

Notes: See Detail A for surface completion.
All PID readings equal to background.
Munsell color chart used.

Notes: See Detail B for surface completion. All PID readings equal to background Munsell color chart used

Notes: See Detail B for surface completion. All PID readings equal to background Munsell color chart used.

Notes: See Detail B for surface completion. All PID readings equal to background

Notes: See Detail B for surface completion. .*Il PID readings equal to background Munsell color chart used.

Notes: See Detail A for surface completion.
All PID readings equal to background.
Mimsell color chart used

Notes: See Detail B for surface completion. All PID readings equal to background

Munsell color chart used

TOP OF CASING	£	EQUIPMENT Air Rotary
ELEVATION 5124.26 H	# F 6	AN HOUSEY
3124.20 II.]/ Depth(Semple	ELEVATION 5121.9 h. DATE 9/7/89
GROUND SURFACE		
7	e o Tillian	SM, silty sand, brown, loose, moist, alluvium
level		
15-InDia. Borehole 0 to 54 ft. 12-InDia. Black Steel Conductor Casing 0 to 54 ft. 11-7/8-InDia. Borehole 54 to 130 ft. 8-InDia. Black Steel Conductor Casing 0 to 130 ft. 7-7/8-InDia. Borehole 130 to 323 ft. 4-InDia. Black Steel Blank Casing 0 to 210 ft. Bentonite-Cement Seal 0 to 160 ft.	30- 60- 120-	Increasing clay fraction
		Lenses of gravels and coarse sands in a silty matrix -
15-InDia, Borehole 0 to	E 30-	brown, alluvium
12-InDia, Black Steel		Lenses of gravels and sands in a silty matrix - brown,
Conductor Casing 0 to 54 ft.		alluvium
Conductor Casing 0 to 54 ft.		SP, coarse grained sub-sounded sand and gravel, alluvium
11-7/8-InDia. Borehole 54		
to 130 ft.		CLAYSTONE, silty, dark yellow-brown, bedrock
8-InDia. Black Steel	60	SHALE, blue, occasional lignite fragments and subangular
Conductor Casing 0 to 130 ft.		sand -
3		Shale and sands interbedded
7-7/8-InDia. Borehole 130		Dark gray shale with some subangular coarse grained
to 323 ft.		quartzitic sand
	90-	Decreasing sand fraction
동		Cuttings show dark gray shales and yellow-brown clays and
4-InDia. Black Steel Blank		claystone to siltstone
Casing 0 to 210 ft.		Shale fraction decreasing - medium gray clay
<u> </u>		Clay with occasional shale lenses
<u> </u>	120-	
周		Clay, blue-gray
Restacite Comments and Co.		₩ Water level reading at 134.0 feet - 9/12/89
Bentonite-Cement Seal 0 to		
- 100 K.		SHALE, very sandy shale, dark gray, fissile
	150	Very sandy shale
[[]		——————————————————————————————————————
		SANDSTONE, sand, very fine grained, light brown, water
Bentonite-Pellet Seal 160 to		bearing
1/1 (1.		SHALE, dark-gray-black, some clay lenses
<u> </u>	180-	manual, and a grade, some city remove
CSSI 10-20 Sandpack 171 to		Dark-gray, fissile, abundant fossil material
323 ft.		Dark-gray, issue, abundant fossit material
4-InDia. Black Steel Blank		
Casing 0 to 210 ft.		Some sandy lenses
M1		
	210	
4-InDia. Stainless Steel Slotted Screen (0.020 Inch)		Abundant plant fossils with some minor sands
4-InDia. Stainless Steel		CANDOMONE C
()		SANDSTONE, fine grained, uncemented, quartzitic, water
210 to 230 ft.		bearing
图1	240	SHALE

Notes: See Detail A for surface completion. All PID readings equal to background. Munsell color chart used.

Notes: See Detait A for surface completion.
All PID readings equal to background.
Munsell color chart used.

Notes: See Detail A for surface completion.
All PID readings equal to

background. Munsell color chart used.

DETAIL A: ABOVEGROUND COMPLETION

DETAIL B: SUBSURFACE COMPLETION

Prepared for:	Figure A19	
Program Manager for	MONITORING WELL SURFACE	
Rocky Mountain Arsenal	COMPLETION DETAILS	
Commerce City, Colorado		

MAJOR DIVISIONS				TYPICAL NAMES	
SE-GRAINED SOILS THAITHALF IS COANSEN	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO 4 SIEVE SIZE	CLEAN GRAVELS WITH LITTLE OR NO FINES	GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
			GP		POORLY GRAPED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
		GRAVELS WITH OVER 12% FINES	GM	1,1	SILTY GRAVELS. SILTY GRAVELS WITH SAND
			GC	Allens	CLAYEY GRAVELS CLAYEY GRAVELS WITH SAND
	SANDS CLEAN SANDS WITH LITTLE OR NO FINES MORE THAN HALF COARSE FRACTION IS SMALLER THAN NO 4 SIEVE SIZE SANDS WITH OVER 12% FINES	CLEAN SANDS WITH	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
ARSE VIII		SP		POORLY GRADED SAN IS WITH UR WITHOUT GRAVEL, LITTLE OP NO FINES	
0 M / 00			SM		SILTY SANDS WITH OR WITHOUT GRAVEL
			sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SOILS 51 HH II EVE	SILTS AND CLAYS UQUID LIMIT 50% OR LESS		ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUP, SILTS WITH JANDS AND GRAVELS
			C-		INORGANIC CLAYSOF LOW TO MEDIUM PLASTICITY, CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED NI I	·	OL		ORGANIC SILTS OF CLAYS OF LOW PLASTICITY	
GRA	ALIANT IS ALIANT IS ALIANT IS	мн		INORGANIC SILTS, MICACEOUS OF DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS	
E SIL		S AND CLAYS T GREATER THAN 50%	CH		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				ORGANIC SILTS OF CLAYS OF MEDIUM TO HIS- FLASTICITY	
HIGHLY ORGANIC SOILS		Pt	344 344	PEAT AND OTHER HIGHLY ORGANIC SOILS	

Prepared for: Program Manager for Rocky Mountain Arsenal Commerce City, Colorado Figure A20
UNIFIED SOIL CLASSIFICATION SYSTEM
AND SYMBOLS

Appendix B GROUNDWATER ANALYTICAL DATA

LIST OF TABLES

<u> Table No</u> .	
Bl	Groundwater Investigative Analytical Data
B2	Groundwater GC/MS Analytical Data
В3	Groundwater QA/QC Analytical Data
B4	Groundwater Duplicate Analytical Data
B5	Investigative Analytical Data for Domestic Well Samples
В6	GC/MS Analytical Data for Domestic Well Samples
В7	QA/QC Analytical Data for Domestic Well Samples
B8	Duplicate Analytical Data for Domestic Well Samples
В9	Vinyl Chloride Analytical Results for Groundwater Samples

Table B1 Groundwater Investigative Analytical Data

Sample 10	37402	37402	37403	37403
Date	09/27/89	05/25/20	09/25/89	02/21/90
Analytes				
Hetels/Anions/General Chem				
Arsenic	4	< 2.50	MA	< 2.50
Cachius	¥.	< 5.00	MA	< 5.00
Calcium	¥	130000	V#	150000
Chloride	¥ X	190000	¥¥	240000
Chromium	4 %	< 22.0	4	< 22.0
Copper	¥	< 10.0	¥	< 10.0
Cyanide	¥	< 8.90	¥	× 8.90
Fluoride	KN	× 1000	¥	× .1000
Iron	YN	188	¥	39.9
Peal	4	< 52.0	≨	< 52.0
Megnesium	×	43000	4	51000
Hanganese	KX	2630	*	< 20.0
Mercury	¥#	< 0.500	K	< 0.500
Mitrite, Mitrate Non-Specific	KA	220	¥	2200
Potassium	4	NA A	4	*
Sodium	¥	180000	≨	230000
Sulfate	V2	380000	Y.	510000
Total Organic Carbon	Y 2	7.00	M	5.00

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample ID Date	37402 09/27/89	37402 02/22/90	37403 09/25/89	37403 02/21/90
Analytes				
Metals/Anions/General Chem				
Total Suspended Solids	¥N	9.00	Y.	0.88
Zinc	Y	23.3	¥	< 20.0
Phenol s				
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	< 1.70	< 1.70
2,4,5-Irichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Irichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	6.40	× 8.40	× 8.40	o 7.8 >
2,4-Dimethylphenol (GCMS)	07.7 >	07"7 >	07.7 >	07"7 >
2,4-Dinitrophenol (GCMS)	× 176	× 176	¥ 176	471 >
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 6. 50	< 8.50	< 8.50	< 8.50
4-Wethylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Nitrophenol (GCMS)	0.96 >	< 96.0	· %.0	· %.0
Phonoi (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-Oxathiane	< 2.38	4	< 2.38	¥
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophenyi)-1,1,1-Trichloroethane (DDI)	YN.	< 0.0590	W	< 0.0590

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of his ald d vd fi A/QC edur

Table B1 Groundwater Investigative Analytical Data

Sample 10	37402	37402	37403	37403
Date	09/27/89	05/22/90	09/25/89	02/21/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	YN	0.0460	NA NA	0.0460
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophemylmethyl Sulfide	< 5.69	NA NA	< 5.69	¥
4-Chlorophemylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	× 7.46	YN	< 7.46	¥
4-Chlorophenyimethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	YN.	< 11.5	¥.
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	Y.	œ	M	œ
Aldrin (GOIS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	¥¥	< 4.03	¥
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiezole	< 5.00	¥	< 5.00	¥
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	VN	< 5.90	¥
Bis (2-Ethylhexyl) Phthelate (GCMS)	K	< 7.70	¥	< 7.70
Caprolactem (GCHS)	¥	< 7.70	NA.	< 7.70
Chlordane	N	< 0.152	KA	< 0.152

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit. MA -- Not Analyzed. R -- Data did not meet quality control criteria and were
- rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Semple 10	37402	37402	37403	37403	
Date	09/27/89	05/55/90	09/25/89	02/21/90	
nalytes					
emivolatiles					
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	
Dicyclopentadiene	< 5.00	¥	< 5.00	AN.	
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50	
Dietdrin	Y.	< 0.0539	≨	< 0.0539	
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0	
Diisopropyl Methylphosphonate	27.4	KA	21.4	42	
Diisopropyl Methylphosphonate (GCMS)	19.8	21.7	< 21.0	< 21.0	
Dimethylmethyl Phosphonate	< 0.188	¥	< 0.188	¥X	
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130	
Dithiane	< 1.34	¥	< 1.34	¥H	
Dithiane (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30	
Endrin	¥	00900 >	¥	< 0.0600	
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	
Nexach! or ocycl opentadiene	< 0.0480	œ	< 0.0480	œ	
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0	
Isodrin	¥ X	< 0.0560	¥	09500 >	
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80	
Malathion	< 0.373	¥.	< 0.373	N	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical deta and field 04/90 nonequires

Table B1 Groundwater Investigative Analytical Data

Semple 10	37402	37402	37403	37403	
Date	09/21/89	05/25/60	09/52/80	02/21/90	
alytes					
Bivolatiles					
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0	
Perathion	< 0.647	NA NA	× 0.647	¥ X	
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10	
Support	< 0.787	KN	< 0.787	4	
Sypone (GCHS)	< 19.0	< 19.0	< 19.0	< 19.0	
Vapona	< 0.384	*	< 0.384	M	
Vapona (GCHS)	< 8.50	< 8.50	< 8.50	< 8.50	
latiles					
1,1,1-Trichloroethane	¥	< 1.09	Y#	< 1.09	
1,1,1-Trichloroethane (GCMS)	¥	< 1.00	¥	• 1.00	
1,1,2-Irichloroethane	¥	< 1.63	W	< 1.63	
1,1,2-Trichloroethane (GCMS)	¥	< 1.00	YN.	< 1.00	
1,1-Dichloroethane	¥X	< 1.93	ş	< 1.93	
1,1-Dichloroethane (GCMS)	¥	< 1.00	¥	< 1.00	
1,1-Dichloroethere	¥	< 1.85	M	< 1.85	
1,1-Dichloroethene (GCMS)	¥	< 1.00	W.	× 1.00	
1,2-Dichloroethane	¥	< 2.07	YN Y	< 2.07	
1,2-Dichloroethane (GCMS)	Y	× 1.00	¥	1.00	

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- rejected.

R -- Data did not meet quality control criteria and were

A -- Data considered anomalous based on evaluation of historical data and field 9A/9C procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 10	37402	37402	37403	37403	
Date	09/21/89	05/55/90	09/25/89	02/21/90	
Volatiles					
1,2-Dichloroethenes (cis & trans)	¥	< 1.75	¥8	× 1.75	
1,2-Dichloroethenes (cis & trans) (GCMS)	*	< 5.00	¥	< 5.00	
Benzene	¥	2.77 A	¥	8.0¢	_
Benzene (GCHS)	¥	1.40 A	¥	3.72 A	_
Carbon Tetrachloride	YN	< 1.69	¥	2.35 A	_
Carbon Tetrachloride (GCMS)	YN	< 1.00	42	1.47 A	_
Chlorobenzene	*	32.9 A	¥	63.1 A	_
Chlorobenzene (GCMS)	*	28.8 A	¥	53.8 A	
Chloroform	¥	32.2 A	¥	100	_
Chloroform (GCMS)	YN	31.0 A	K	120 A	
Dibramochloroproperie	967.0	YN	0.344	¥	
Dibramochloroprapane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	
Dimethyl Disulfide	< 0.550	¥	< 0.550	M	
Ethyl Benzene	*	< 0.620	≨	< 0.620	
Ethyl Benzene (GCMS)	¥	< 1.00	Y.	× 1.00	
M-Xylene	¥	× 1.0%	¥	× 1.8	
M-Xylene (GCMS)	¥¥	< 1.00	¥	. 1.00	
Methylene Chloride	YH.	< 2.48	4	< 2.48	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist I de 1 fir 1/90 dure

Table B1 Groundwater Investigative Analytical Data

Sample 10	37402	37402	37403	374(∑
Date	09/27/89	05/55/90	09/25/89	02/21/90	9
nalytes					
olatiles					
Nethylene Chloride (GCMS)	¥	• 1.00	¥	. 1.00	
Methylisobutyl Ketone	o.4 ×	NA NA	06.4 >	¥	
Methylisobutyl Ketone (GCMS)	¥	< 1.40	¥	< 1.40	
O,P-Xylene	¥	< 1.34	₹	< 1.34	
O,P-Xylene (GCMS)	¥	< 2.00	YN .	. < 2.00	
Tetrachloroethene	¥	< 2.76	¥	< 2.76	
Tetrachioroethene (GCMS)	¥	< 1.00	¥	. 1.00	
Toluene	¥	< 2.10	4	< 2.10	
Toluene (GCMS)	*	• 1.00	¥	1.10	<
Trichloroethene	YN	< 1.31	YN	2.04	<
Trichloroethene (GCHS)	¥	< 1.00	¥	1.20	<
Vinyl Chloride	¥	¥	¥	¥	
Vinyl Chloride (GCMS)	¥	< 12.0	¥	< 12.0	

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Serol • 10	37404	37404	37405	37405
Date	09/26/89	02/22/90	09/56/89	05/21/90
Aralytes				
Metals/Anions/Gameral Chem				
Arsenic	W	< 2.50	¥	.2.73
Cedalum	VN	< 5.00	4	5.00
Calcium	M	160000	≨	100000
Chloride	K	230000	≨	120000
Chromica	¥¥	< 22.0	\$	< 22.0
	¥	< 10.0	¥	< 10.0
Cymide	K	× 8.90	4	< 8.90
Fluoride	KA	< 1000	¥	• 1000
	VN	48.6	≨	43.1
Peel	4	< 52.0	≦	< 52.0
Negnesium	¥	43000	¥	16000
Narganase	*	< 20.0	¥	< 20.0
Mercury	M	< 0.500	¥	< 0.500
Witrite, Mitrate Non-Specific	K	4300	¥	2400
Potassium	Y.	4	4	4
3	ş	210000	ş	95000
Sulfate	¥	240000	YN	160000
Total Organic Carbon	4	5.00	M	3.00

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist I do: 1 fig. 1/00 dure

Sample 10	37404	37404	37405	37405
Date	09/26/89	05/22/50	68/92/60	02/21/90
Analytes				
Metals/Anions/General Chem				
Total Suspended Solids	¥	23.0	¥	10.0
Zinc	¥	< 20.0	VN	< 20.0
Phenols				
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	× 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2,80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCHS)	× 8.40	07.8 >	× 8.40	× 8.40
2,4-Dimethylphenol (GCHS)	07.7 >	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	> 176	× 176	< 176	> 176
2-Chlorophenol (GCHS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	× 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
6-Witrophenol (GCMS)	· %.0	· 96.0	× %.0	· 0.96 ·
Phenol (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles .				
1,4-Oxathiane	< 2.38	4	< 2.38	¥
1,4-0xathiane (GCHS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	¥	< 0.0590	¥X	< 0.0590

- -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
- above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

=	37404	37404	37405	37405
Dete	68/92/60	02/22/90	09/56/89	02/21/90
Analytes				
2 2-min/marachiprochamy ()-1.1.1-Trichloroethame (DDI) (GCHS)	× 18.0	< 18.0	< 18.0	< 18.0
2 2-sis/parachi prophery()-1, 1-0 ich (proethere (DDE)	¥	09%00 >	¥	0970.0 >
2 2-Bis/parachlorophenyl)-1 1-Dichloroethere (DDE) (GCHS)	< 14.0	< 14.0	< 14.0	< 14.0
A. Chi annother anthri Sulfide	< 5.69	¥N	< 5.69	¥
4-Chlorophenylmethyl Sulfide (GCHS)	< 10.0	< 10.0	< 10.0	< 10.0
A-chicambandami suffere	× 7.46	4	< 7.46	YN
A. Chlorophonylmethyl Sulfane (SCHS)	< 5.30	< 5.30	< 5.30	< 5.30
4-thi content methy! Sulfatide	< 11.5	¥¥	< 11.5	MA
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
	¥.	œ	W	œ
Aldein (6008)	< 13.0	< 13.0	< 13.0	< 13.0
Actach	< 4.03	MA	< 4.03	¥#
Attache (GCRS)	< 5.90	< 5.90	× 5.90	× 5.90
Persothiezole.	5.00	¥	< 5.00	±
Bicycle [2,2,1] hepte-2,5-diene	< 5.90	4	< 5.90	¥.
. ata (2-Erbylhary) Phthalate (80%)	¥	× 7.70	¥	6.7 >
Corolecter (GDB)	\$	67.7	\$	67.7
Chlordene	¥	< 0.152	¥	< 0.152

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures. < -- Indicates that the target analyte was not detected at

- or above the Certified Reporting Limit.
- above the Maximum Reporting Limit. MA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of hist ' 1 da' 4 fir' 'VOC dure'

Table B1 Groundwater Investigative Analytical Data

8 to 10 to 1	37404	37404	37405	37405	
Date	09/56/89	05/25/50	09/56/89	02/21/90	
alytes					
nivolatiles					
Chlordane (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0	
Dicyclopentadiene	< 5.00	¥	< 5.00	¥#	
Dicyclopentadiene (GCHS)	< 5.50	< 5.50	< 5.50	< 5.50	
Dieldrin	¥	< 0.0539	*	< 0.0539	
Dieldrin (GCHS)	< 26.0	< 26.0	< 26.0	< 26.0	
Discopropyl Methylphosphonate	29.3	\$	< 0.392	\$	
Disopropyi Methylphosphonate (GCMS)	< 21.0	21.7	< 21.0	< 21.0	
Dimethylmethyl Phosphorate	< 0.188	¥	< 0.188	\$	
Dimethylmethyl Phosphorate (GCHS)	× 130	× 130	× 130	× 130	
Dithiane	× 1.34	4	× 1.34	\$	
Dithiane (GCMS)	< 3.30	< 3.30	< 3.30	× 3.30	
Endrin	\$	< 0.0600	*	× 0.0600	
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	
Mexach lorocycl opentadiene	< 0.0480	~	0.07%	~	
Mexachlorocyclopentediene (GCMS)	< 54.0	< 54.0	× 54.0	. × 54.0	
Isodrin	4	0.0560	¥	0.0560	
Leodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80	
Helethion	< 0.373	YH.	< 0.373	¥	

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.
A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample ID Date	37404	37404 02/22/90	37405	37405
Analytes				
Semivolatites				
Melethion (GDMS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	× 0.647	¥	< 0.647	¥#
Parathion (GOIS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
Suppose	< 0.787	4	< 0.787	¥
Serone (GOHS)	× 19.0	× 19.0	< 19.0	< 19.0
Vapona	< 0.364	¥	< 0.384	\$
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8. 50
Volatiles				
1,1,1-Trichloroethane	¥n	< 1.09	4	.1.09
1,1,1-Trichloroethane (GCMS)	42	< 10.0	¥	· 1.00
1,1,2-Trichloroethane	42	< 1.63	¥	< 1.63
1,1,2-Trichloroethane (GCMS)	4	< 10.0	\$	· 1.00
1,1-Dichloroethane	\$	< 1.93	¥	< 1.93
1,1-Dichloroethane (GCMS)	*	< 10.0	¥	. 1.00
1,1-Dichloroethene	4	< 1.85	≨	× 1.85
1,1-Dichloroethene (GCMS)	\$	< 10.0	¥	. 1.00
1,2-Dichloroethane	¥	< 2.07	¥	< 2.07
1,2-Dichloroethane (GCMS)	42	< 10.0	4	· 1.00

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detacted at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomatous based on evaluation of historial data and field a //OC promodurer

Table 81 Groundwater Investigative Analytical Data

	37404	37404	37405	37405	
Date	69/52/60	05/25/80	09/26/89	02/21/90	
Analytes					
Volatiles					
1.2-Dichloroetheres (cis & trans)	*	· 1.75	¥	ć.1.73	
1.2-Dichloroethenes (cis & trans) (GCMS)	YN	< 50.0	VN VN	< 5.00	
	¥	27.0 A	¥	09.6 >	
Benzene (GCMS)	¥	12.4 A	¥¥	v %.,	
Carbon Tetrachloride	A	2.71 A	W	٠ 1.69	
Carbon Tetrachloride (GCMS)	\$	< 10.0	¥	• 1.00	
Chlorobenzene	¥¥	120 A	¥	92.0 A	
Chlorobenzene (GOIS)	¥	91.3 A	**	65.4 A	
Chloroform	Y.	V 077	≨	150 A	
Chloroform (GCHS)	¥	¥ 097	¥	140 A	
Dibromochloropropene	0.415	¥	0.227	¥	
Dibromochioropropere (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	
Dimethyl Disulfide	< 0.550	¥	< 0.550	4	
Ethyl Benzene	¥	< 0.620	≨	< 0.620	
Ethyl Benzene (GOMS)	*	< 10.0	¥	٠ 1.00	
	\$	· 1.04	×	4 1.04	
M-Xylene (GCHS)	Y.	< 10.0	¥	. 1.00	
Methylene Chloride	NA .	< 2.48	¥	< 2.48	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical deta and field QA/QC procedures.

Sample 10	37404	37404	37405	37405
Date	09/56/89	05/25/90	09/56/89	05/21/90
Analytes				
Volatiles	* * * * * * * * * * * * * * * * * * *			
Methylene Chloride (GCMS)	¥ X	< 10.0	¥	. 1.00
Methylisobutyl Ketone	o6.4 ×	¥	6.7	*
Methylisobutyl Ketone (GCMS)	¥a	< 14.0	*	< 1.40
O.P-Kylene	YN .	× 1.34	· ≰	< 1.34
O,P-Kylene (GCMS)	4	< 20.0	YH.	< 2.00
Tetrachloroethene	¥	< 2.76	¥	< 2.76
Tetrachloroethene (GCHS)	**	< 10.0	¥	. 1.00
Toluene	Y#	3.37 A	\$	< 2.10
Toluene (GCMS)	¥	< 10.0	¥	1.50 A
Trichloroethene	¥	4.36 A	YN	3.13 A
Trichloroethere (GCMS)	¥	< 10.0	¥	1.80 A
Vinyl Chloride	KN	NA NA	¥	*
Vinyl Chloride (GCHS)	YH.	< 120	4	< 12.0

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- above the Maximum Reporting Limit. NA -- Not Analyzed. > -- indicates that the target analyte was detected at or
- R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered enomelous based on evaluation of histriful dating field myoc promount

Sample 10 ·	37406	37406	37407	37407
Date	09/56/89	05/21/90	09/56/89	02/21/90
Analytes	٠			
Metals/Anions/General Chem				
Arsenic	¥	< 2.50	*	< 2.50
Cadalum ·	¥	< 5.00	¥.	< 5.00
Calcium	¥	190000	¥ N	250000
Chloride	YN	220000	Y X	370000
Chromium	Y X	< 22.0	4	< 22.0
Conner	غ	< 10.0	\$	< 10.0
Cyanida	¥	× 8.90	YN	· 8.90
fluoride	¥	928	Y.	1160
Iron	¥	34.7	¥	703
peel	*	< 52.0	¥	< 52.0
Magnesium	¥	25000	¥	28000
Manganese	H.	< 20.0	¥2	1250
Mercury	¥	< 0.500	KX	< 0.500
Mitrite, Mitrate Non-Specific	¥	3800	YN	1300000
Potessium	¥	4	, KI	YN
Sodium	¥	290000	ş	360000
Sulfate	¥	650000	YN.	700000
Total Organic Carbon	≨	3.00	¥	7.00

- -- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of historical data and field QA/OC procedures.

Notes: Values are reported in micrograms per liter.

Table 81 Groundwater Investigative Analytical Data

or elemen	37406	37406	37407	37407
Date	09/56/89	05/21/90	09/56/89	05/21/90
alytes				
tals/anima/Constal Cham	•			
Total Suggested Solids	YN .	98.0	W	· 4.00
Zinc	¥	< 20.0	¥	< 20.0
enols				į
2,3,6-Trichlorophenol (GCMS)	6.1.70	× 1.8	< 1.70	× 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2.4.6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2.4-Dichloraphenol (GCNS)	× 8.40	< 8.40	07.9 >	< 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	05.4 >	07.7 >	07.7 >
2.4-Dinitrophenol (GCHS)	< 176	× 176	< 176 _.	< 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	8.20
3-Methyl-4-Chlorophenol (GCNS)	< 8.50	< 6. 50	< 8.50	< 8.50
4-Hethylohenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witnessenol (GCMS)	· %.0	· %·0	· %·0	· 96.0
Phenol (GCHS)	< 2.20	° 2.3	< 2.20	< 2.20
mivolatiles	•	;	e •	\$
1,4-Ouathiane	6 2.7	A 20 V	27.0	27 C
1,4-Oxathiane (GCHS)	n./2 >	0.72	0.72	0.13 ×
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	4	0.0390	<u> </u>	0.00 v

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered enomalous based on evaluation of instead of the fiel 'OC F when

09/56/89	02/21/90	09/26/89	05/17/00	
< 18.0	< 18.0	< 18.0	< 18.0	
¥8	0970.0 >	¥N	< 0.0460	
< 14.0	< 14.0	< 14.0	< 14.0	
< 5.69	¥	< 5.69	¥	
< 10.0	< 10.0	< 10.0	< 10.0	
× 7.46	¥	> 7.46	*	
< 5.30	< 5.30	< 5.30	< 5.30	
49.7	¥N	< 11.5	YN	
71.6	101	< 15.0	< 15.0	
¥	œ	¥	œ	
< 13.0	< 13.0	< 13.0	< 13.0	
72.9	¥	< 4.03	¥	
< 5.90	< 5.90	< 5.90	< 5.90	
< 5.00	KN	< 5.00	¥	
< 5.90	¥	< 5.90	4	
¥	< 7.70	¥	< 7.70	
4	< 7.70	¥	< 7.70	
¥	< 0.152	¥	< 0.152	
0.01	- 1	2		C 18.0 C 18.0 C 18.0 C 18.0 C 14.0 C 14.0 C 14.0 C 14.0 C 14.0 C 14.0 C 10.0 10.0 C 10.0 C 10.0 C 10.0 C 10.0 C 10.0 C

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Date considered enomelous based on evaluation of historical data and field GA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

01 930000	37406	37406	37407	37407
Date	09/56/89	05/21/90	09/56/89	02/21/90
nalytes				
emivolatiles .				
Chlordene (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	¥	< 5.00	≨
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	¥ I	< 0.0539	4	< 0.0539
Dieldrin (GCNS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	450	YH.	24.3	VN
Diisopropyl Methylphosphonate (GCMS)	> 500	> 200	< 21.0	<u>\$</u>
	< 0.188	¥	< 0.188	¥
Dimethylmethyl Phosphonate (GCHS)	< 130	< 130	< 130	< 130
Dithiane	× 1.34	¥	< 1.34	YN
Dithiane (GCHS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	VN VN	0090.0 >	¥	0.000 >
Endrin (GCNS)	< 18.0	< 18.0	< 18.0	< 18.0
Nexach lorocyclopentadiene	< 0.0480	~	< 0.0480	œ
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0
Isodrin	*	< 0.0560	¥ X	< 0.0560
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80
Malathion	< 0.373	Y.	< 0.373	YN N

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- v -- indicates that the target analyte was detected at or
 - above the Maximum Reporting Limit. MA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table B1 Groundwater Investigative Analytical Data

Sample 1D Date	37406 09/26/89	37406 02/21/90	37407	37407 02/21/90
Analytes				
Semivolatiles				
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	¥	< 0.647	¥
Parathion (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachiorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
Support	< 0.787	¥.	< 0.787	4
Supone (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	*	< 0.384	¥
Vapona (GCHS)	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles	•			
1,1,1-Trichloroethane	VN	< 1.09	4	· 1.09
1,1,1-Trichloroethane (GCHS)	¥ N	< 10.0	¥	< 10.0
1,1,2-Trichloroethane	¥	< 1.63	4	< 1.63
1,1,2-Trichloroethame (GCMS)	YN	< 10.0	¥.	< 10.0
1,1-Dichloroethane	YH.	< 1.93	VX	< 1.93
1,1-Dichloroethane (GCMS)	¥	< 10.0	¥#	< 10.0
1,1-Dichloroethere	¥	< 1.85	¥	< 1.85
1,1-Dichloroethere (GCMS)	¥	< 10.0	4	< 10.0
1,2-Dichloroethane	¥	< 2.07	4	< 2.07
1,2-Dichloroethane (GCMS)	¥	< 10.0	4	< 10.0

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Of e longs	37406	37406	37407	37407	
Date	09/56/89	05/21/90	09/56/89	02/21/90	
nalytes					
olatiles					
1,2-Dichloroethenes (cis & trans)	¥#	< 1.75	MA	< 1.75	
1,2-Dichloroethenes (cis & trans) (GCMS)	¥.	< 50.0	≨	< 50.0	
Benzene	4	7.74 A	¥	59.0 A	
Benzene (GCMS)	\$	< 10.0	Y	30.2 A	
Carbon Tetrachloride		2.20 A	¥.	V 96.9	
Carbon Tetrachloride (GCMS)	\$	< 10.0	¥	< 10.0	
Chlorobenzene	\$	64.6 A	\$	Z60 A	
Chlorobenzene (GCMS)	\$	47.1 A	M	192 A	
Chloroform	¥#	Z30 A	WA	1300 A	
Chloroform (GCHS)	\$	170 A	Y X	120 A	
Dibromochloroprupane	2.12	¥	0.377	*	
Dibromochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	
Dimethyl Disulfide	< 0.550	¥	< 0.550	¥	
Ethyl Benzene	¥	< 0.620	¥	0.933 A	
Ethyl Benzene (GCMS)	¥	< 10.0	¥	< 10.0	
H-Xylene	¥	× 1.04	Z Z	۸.1.	
M-Xylene (GCMS)	4	< 10.0	YN	< 10.0	
Nethylene Chloride	YH.	< 2.48	M	< 2.48	

- .- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist ' i da' 1 fie' --/oc stre-

Table B1 Groundwater Investigative Analytical Data

Sample 10	37406	37406	37407	37407	
Date	09/56/89	05/21/90	09/56/89	05/21/90	
Analytes					
Volatiles					
Methylene Chloride (GCMS)	MA	< 10.0	¥¥	< 10.0	
Methylischutyl Ketone	o., ,	N	6.7 ×	¥	
Methylisakutyl Ketone (GCMS)	¥.	< 14.0	KX	< 14.0	
O,P-Xylene	NA NA	× 1.34	Y _N	2.11 A	
O,P-Xylene (GCMS)	¥	< 20.0	¥	< 20.0	
Tetrachloroethene	¥	23.5 A	¥ X	< 2.76	
Tetrachloroethene (GCMS)	¥N	12.0 A	¥#	< 10.0	
Toluene	¥.	< 2.10	¥	8.22 A	
Toluene (GCMS)	NA NA	< 10.0	¥N	< 10.0	
Trichloroethene	¥	4.13 A	¥	11.3 A	
Trichloroethene (GCMS)	¥	< 10.0	¥	< 10.0	
Vinyl Chloride	¥R.	Y8	YN	\$	
Vinyl Chloride (GCNS)	¥	< 120	¥	< 120	

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

01 • 10000	37408	37479	37410	37418	
Date	12/01/89	11/29/89	12/04/89	12/18/89	
knalytes					
Seals/Anions/General Chem					
Aremic	7.50	5.23	< 2.35	3.6	
Cadaius	< 6.78	6.78	< 6.78	6.78	
Calcium	187000	199000	160000	220000	
Chloride	180000	370000	180000	1700000	
Chromium	< 16.8	< 16.8	< 16.8	< 16.8	
	· 18.8	× 18.8	< 18.8	< 18.8	
Cyanida	< 5.00	< 5.00	< 5.00	< 5.00	
Fluoride	2320	2510	2360	3310	
I'm	217	86.5	204	227	
Peel	< 43.4	< 43.4	< 43.4	< 43.4	
Megnesium	28000	27600	23900	196000	
Menganese	45.4	14.7	11.4	187	
Mercury	< 0.100	< 0.100	< 0.100	< 0.100	
Mitrite, Mitrate Mon-Specific	2200	4200	1300	930	
Potassium	3850	0067	4150	0756	
Sodium	330000	370000	310000	940000	
Sulfate	780000	000099	710000	1500000	
Total Organic Carbon	1900	3000	2500	12000	

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist ' I da 3 fir' 7/90 dure

Table B1 Groundwater Investigative Analytical Data

Sample 1D Date	37408 12/01/89	37409	37510 12/04/89	37418 12/18/89
Analytes				
Metals/Anions/General Chem Total Suspended Solids	\$	ş	×	\
21nc	70.7	%. 5	41.6	90.9
Phenole				
2,3,6-Trichlorophenol (GCMS)	× 1.70	× 1.70	· 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	6,3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	0 7.8 ×	07.8 >	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	× 176	× 176	< 176	× 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Nethylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Hitrophenol (GCHS)	o.96 ×	· %·0	< 96.0	° %° °
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-Ouathiane	< 2.38	< 2.38	< 2.38	7.12
1,4-0xathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.0490	0.155	0.0490	0.148

- 4 -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
 - above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
- rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 10	37408	37409	37410	37418
Date	12/01/89	11/29/89	12/04/89	12/18/89
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	0.0540	0.0540	0,0540	0.341
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Bulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophamylmethyl Sulfone	× 7.46	× 7.46	× 7.46	8.09
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
6-Chlorophenylmethyl Sulfoxide	26.8	74.5	12.6	< 11.5
6-Chlorophenylmethyl Sulfoxide (GCHS)	24.9	380	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	0.0500	0.181
Aldrin (GCHS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	78.7	< 4.03	08.7
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	. 2.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthelate (GCMS)	6.7.	× 7.70	6.7 >	6.7.2
Caprolactem (GCHS)	67.7	× 7.70	6.7.	< 10.0
Chlordene	× 1.80	1.05	< 0.0950	0.935

- Reported values are accurate to three significant figures.
- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - A -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of hist I do 3 fit , /OC dure

Table B1 Groundwater Investigative Analytical Data

Sample 10	37408	37409	37410	37418
Date	12/01/89	11/29/89	12/04/89	12/18/89
ual ytee				
mivolatiles				
Chlordene (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	~	œ	097
Dicyclopentadiene (GCMS)	< 5.50	11.3	< 5.50	227
Dieldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GDKs)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonste	160	630	140	2600
Diisopropyl Methylphosphonate (GCMS)	24.3	^ 200	67.9	, 200
Dimethylmethyl Phosphorate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	× 130	< 130	< 130	< 130
Dithiene	< 1.34	× 1.34	× 1.34	27.3
Dithiene (GCMS)	× 3.30	< 3.30	< 3.30	8.45
Endrin	< 0.0500	< 0.0500	< 0.0500	0.100
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
Mexach lorocyclopent adiene	0870.0 >	< 0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	× 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80
Melathion	< 0.373	< 0.373	< 0.373	< 0.373

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.

A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample ID Date	3740 6 12/01/89	37409	37410 12/04/89	37418 12/18/89
Analytes				
•				
Melethion (GCHS)	< 21.0	< 21.0	< 21.0	< 21.0
Perathion	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GOMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentechlorophenol (GCHS)	< 9.10	< 9.10	< 9.10	< 9.10
evoding	< 0.787	< 0.787	< 0.787	< 0.787
Suppore (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCHS)	< 8.50	< 8.50	< 6. 50	< 8.50
Voletiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	K	¥	¥	ž
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	¥	¥	¥	¥
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	¥	4	\$	\$
1,1-Dichloroethene	× 1.70	· 1.70	· 1.70	٠ د
1,1-Dichloroethene (GCMS)	K	¥	ž	¥
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	21.5
1,2-Dichloroethane (GCMS)	YN	¥	MA	M

Notes: Values are reported in micrograms per liter.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

⁻⁻ indicates that the target analyte was detected at or

above the Maximum Reporting Limit. MA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

A -- Data considered anomalous based on evaluation of isto date fiel 00 p ures

Table 81 Groundwater Investigative Analytical Data

Semple 10	37408	37409	37410	37418
Date	12/01/89	11/29/89	12/04/89	12/18/89
Volatiles				
1,2-Dichloroetheres (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	YN NA	KA	¥ N	¥
	< 1.05	< 1.05	< 1.05	< 1.05
Benzene (GCMS)	¥	¥¥	YX	NA NA
Carbon Tetrachloride	° 0.990	2.44	× 0.990	< 0.990
Carbon Tetrachloride (GCMS)	¥	\$	ž	4
Chiorobenzene	< 0.820	< 0.820	< 0.820	₹ 0.820
Chlorobenzene (GCMS)	YH .	¥¥	¥#	*
Chloroform	14.7	420	8.85	< 0.500
Chloroform (GCMS)	¥ X	¥	¥ N	4
Dibromochloroprop	< 0.195	5.85	< 0.195	< 0.195
Dibromochloropropene (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GOMS)	K	¥	K	¥
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32
N-Xylene (GCHS)	MA	¥	4	¥
Methylene Chloride	< 7.40	٧ ٢.40	< 7.40	٠ 7.40

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of PASTE-ical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

	37408	37409	37410	37418	
Date	12/01/89	11/29/89	12/04/89	12/18/89	
Analytes					
Volatiles				:	
Methylene Chloride (GCMS)	≨	¥	ş	*	
Mathyl jachutyl Ketone	06.4 >	06.4 >	6.4 ×	06.7 >	
Methyl fachutyl Ketone (GDIS)	*	¥¥	¥	¥	
	× 1.36	× 1.36	< 1.36	· 1.36	
O D-Y-lene (ROBS)	¥N.	MA	¥	¥	
Tetrachioroethene	4.45	110	3.53	10.2	
Tetrachicoethere (GDMS)	¥¥	¥	¥X	XX	
Toluene	< 1.47	< 1.47	< 1.47	< 1.47	
Tolliene (GCMS)	¥	YH	*	\$	
Trichloroethene	0.816	3.33	< 0.560	6.52	
(SELT) anadeaved de la late	VN	≨	¥	¥	
Virvi Chloride	¥	¥	. NA	Y #	
Vinyl Chloride (GCMS)	YN	¥	¥	¥ 2	

Motes: Values are reported in microgramm per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 A -- Data considered anomalous based on evaluation of

1 30/

hist . . det

Table B1 Groundwater Investigative Analytical Data

Sample 10 Date	37418 06/22/90	37419 12/15/89	37420 12/13/89	37420 06/21/90
Analytes				
Metals/Anions/General Chem	,			
Arsenic	œ	< 2.35	3.48	~
Cachium	< 6.78	< 6.78	< 6.78	× 6.78
Calcium	20000	250000	000097	470000
Chloride	1800000	280000	1100000	1200000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8
Copper	× 18.8	< 18.8	< 18.8	< 18.8
Cyanida	œ	< 5.00	< 5.00	œ
Fluoride	6300	3390	3180	0077
·	1430	216	127	2110
read	< 43.4	< 43.6	< 43.4	< 43.4
Magnesium	194000	91500	141000	132000
Narganese	243	33.8	155	23
Mercury	< 0.100	< 0.100	< 0.100	< 0.100
Mitrite, Mitrate Mon-Specific	240	1200	360	260
Potassium	0699	5230	2860	5220
Sodium	1100000	260000	700000	790000
Sul fate	1800000	1100000	1200000	1400000
Total Organic Carbon	14000	0099	9100	12000

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Notes: Values are reported in micrograms per liter.

Table B1 Groundwater Investigative Analytical Data

Semple 10	37418	37419	37420	37420
Analytes				•
Metals/Anions/General Chem	. 400	á	â	V 4000
Zinc	36.3	6.74	71.0	< 18.0
Phenois				
2,3,6-Trichlorophenol (GCMS)	· 1.70	× 1.70	× 1.70	× 1.70
2,4,5-Trichlorophenol (7CMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	× 8.40	07.8 >	07.8 >	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	07"7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	× 176	× 176	× 176	< 176
2-Chlorophenol (GCHS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Wethylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Wethyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 6. 50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	o.96 ×	× %.0	° %° °	0.96 >
Phenol (GDIS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-0xathiene	87.9	< 2.38	< 2.38	5.35
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (001)	~	0.161	0.184	× 0.0490

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based en evaluation of

Sample 10	37418	37419	37420	37420
Date	06/25/90	12/15/89	12/13/89	06/21/90
Analytes				
Senívolatiles				
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	7270	1.70	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-0(chloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenyimethyl Sulfone	9 7.7 ×	7.75	21.0	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	9.18	90.6
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	0.354	0.311	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	0.95	< 4.03	4.80	13.8
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	< 7.70	13.3	83.6
Coprolectem (GCMS)	< 10.0	< 7.70	< 9.10	< 10.0
Chlordene	< 0.0950	1.60	1.70	< 0.0950

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 10	37418	37419	37420	37420	
Date	06/22/90	78/s1/21	12/13/89	06/21/90	
Analytes					
Semivolatiles					
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	
Dicyclopentadiene	370	1 81	999	570	
Dicyclopentadiene (GCMS)	277	93.2	> 300	302	
Dieldrin	< 0.0500	< 0.0500	0.0891	< 0.0500	
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0	
Diisopropyl Hethylphosphonate	2800	800	2100	2900	
Dilsopropyl Methylphosphonate (GCMS)	> 200	> 200	> 200	132	
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	< 0.188	
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130	
Dithiane	28.0	2.88	< 1.34	26.0	
Dithiame (GCMS)	< 3.30	< 3.30	7.36	< 3.30	
Endrin	< 0.0500	0.136	< 0.0500	< 0.0500	
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	
Nexachlorocyclopentadiene	× 0.0480	< 0.0480	~	< 0.0480	
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0	
Isodrin	0.113	0.137	0.113	< 0.0510	
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80	
Malathion	1.76	< 0.373	< 0.373	< 0.373	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist I de 1 fie /00 dure

Table B1 Groundwater Investigative Analytical Data

. OI = Comps	37418	37419	37420	37420
Date	06/25/90	12/15/89	12/13/89	06/21/90
9				
Sesivolatiles				
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	1.22	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
euochs	< 0.787	< 0.787	< 0.787	< 0.787
Supone (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
Voletiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	< 1.00	4	V.	< 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	< 1.00	¥ R	¥	.1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	< 1.00	*	¥2	× 1.00
1,1-Dichloroethene	× 1.70	61.13	.1.70	6.1.3
1,1-Dichloroethere (GCMS)	× 1.00	¥#	¥	.1.00
1,2-Dichloroethane	21.2	< 1.10	22.7	20.6
1,2-Dichloroethane (GCMS)	. 1.00	Y.	¥	· 1.00

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

R -- Data did not meet quality control criteria and were

Table B1 Groundwater Investigative Analytical Data

	37418	37419	37420	37420
Date	06/22/90	12/15/89	12/13/89	06/21/90
Analytes				
Volatiles				
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	¥	¥8	< 5.00
Benzene	2.39	< 1.05	< 1.05	< 1.05
Benzene (GCMS)	1.94	M	YN	· 1.00
Carbon Tetrachloride	× 0.990	0.990	066.0 >	0.690
Carbon Tetrachloride (GCMS)	× 1.00	¥	ž	. 1.00
Chlorobenzene	13.0	< 0.820	< 0.820	9.35
Chlorobenzene (GCMS)	22.1	4	¥N	· 1.00
Chloroform	30.0	< 0.500	< 0.500	10.6
Chloroform (GCMS)	0.6%	¥	¥1	• 1.00
Dibromochloropropene	0.326	< 0.195	< 0.195	< 0.195
Dibromochloropropene (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	× 1.00	W	4	4 1.00
M-Xyl ene	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	× 1.00	¥	Y.	· 1.00
Methylene Chloride	< 7.40	< 7.40	< 7.40	07.7 >

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of isto date fiel 0C p ares

Table 81 Groundwater Investigative Analytical Data

Sample 10	37418	37419	37420	37420
Date	06/25/90	12/15/89	12/13/89	06/11/90
Analytes				
Volatiles				
Methylene Chloride (GCHS)	· 1.00	¥	¥	. 1.00
Methylisobutyl Ketone	o.4 ×	6.4	%. 7 ×	6.4 ×
Methylisobutyl Ketone (GCMS)	< 1.40	MA	4	< 1.40
O,P-Xylene	< 1.36	< 1.36	< 1.36	· 1.36
O,P-Xylene (GCMS)	< 2.00	K	K	< 2.00
Tetrachloroethene	9.73	12.3	12.1	13.1
Tetrachloroethene (GCMS)	9.17	YN	¥	.1.00
Toluene	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	< 1.00	¥	¥	. 1.00
Trichloroethene	6.3	2.68	4.14	5.13
Trichloroethene (GCMS)	6.00	¥ N	YN Y	4 1.00
Vinyl Chloride	¥ N	¥	¥	W
Vinyl Chloride (GCHS)	< 12.0	Y.	¥	< 12.0

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 1D Date	37428 12/27/89	37429 12/29/89	37429	37430 12/28/89
Analytes				
Metals/Anions/General Chem				
Arsenic	3.23	< 2.35	< 2.35	< 2.35
Cachrium	< 6.78	< 6.78	× 6.78	6.78
Calcius	117000	97300	91200	114000
Chloride	140000	55000	93000	150000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8
Copper	< 18.8	< 18.8	× 18.8	< 18.8
Cyanide	< 5.00	< 5.00	< 5.00	< 5.00
fluoride	1610	1480	1700	2370
Iron	¥	YN YN	< 77.5	¥
Peel	< 43.4	< 43.4	< 43.4	< 43.4
Magnesium	34200	21900	21300	33200
Manganese	¥	₹	< 9.67	¥
Kercury	< 0.100	< 0.100	< 0.100	< 0.100
Nitrite, Mitrate Non-Specific	65.1	7000	3700	2400
Potassium	2020	7200	3650	3330
Sodium	170000	83000	80000	170000
Sul fate	290000	160000	160000	230000
Total Organic Carbon	2100	1300	• 1000	1000

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

A -- Data considered anomalous based on evaluation of 'istc' dat 'fiel'''9C F bures

Table B1 Groundwater Investigative Analytical Data

Sample 10	37428	37429	37429	37430
Date	12/27/89	12/29/89	05/56/90	12/28/89
Analytes				
	\$	\$	\$	\$
Zinc	× 18.0	23.7	× 18.0	× 18.0
Phenole				
2,3,6-Trichlorophenol (GCMS)	× 1.78	< 1.70	< 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	07.8 >	× 8.40	× 8.40
2,4-Dimethylphenol (GCHS)	05.4 >	07.7 >	05.4 >	05.5 >
2,4-Dinitrophenol (GCMS)	× 176	4 176	> 176	4 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Nitrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Wethylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	° %°0	· %.0	o.96 >	< 96.0
Phenol (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-Oxathiane	< 2.38	< 2.38	< 2.38	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	œ	0.0490	0670.0 >	0.0490

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater investigative Analytical Data

graphe 10	37428	37429	37429	37430
Date	12/27/89	12/29/89	05/56/90	12/28/89
Semivolatiles				
2,2-8is(perachlorophemyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DOE)	0750.0 >	< 0.0540	0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	× 7.46	> 7.46	< 7.46	× 7.46
4-Chlorophenylmethyl Sulfone (GCHS)	< 5.30	< 5.30	< 5.30	< 5.30
6-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
6-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	æ	< 0.0500	< 0.0500	< 0.0500
Aldrin (GCNS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrasine (GCHS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiezole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	0.7.	< 7.70	o. 7. v	67.7
Caprolactem (GCHS).	< 7.70	< 7.70	< 7.70	۶.7 ۰
Chlordene	< 0.0950	< 0.0950	< 0.0950	< 0.0950

Reported Values are accurate to three significant figures.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.
A -- Data considered anomalous based on evaluation of hist I ds 1 fit 1/00 dure

Table 81 Groundwater Investigative Analytical Data

Sample 10	37428	37429	37429	37430
Dete	12/27/89	12/29/89	05/56/90	12/28/89
Analytes				
Semivolatiles				
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCNS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	140	18.6	10.1	5.74
Diisopropyl Methylphosphonate (GCMS)	7.88	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphorate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130
Dithiene	< 1.34	< 1.34	< 1.34	× 1.34
Dithiare (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Endrin (GCNS)	< 18.0	< 18.0	< 18.0	< 18.0
Mexach lorocycl opentadiene	< 0.0480	0.0769	< 0.0480	× 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0
Isodrín	< 0.0510	< 0.0510	< 0.0510	< 0.0510
isodrin (GCMS)	< 7.80	< 7.30	< 7.80	< 7.80
Malathion	< 0.373	< 0.373	< 0.373	< 0.373

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10 Date	37428 12/27/89	37429 12/29/89	37429	37430 12/2 8/8 9
Analytes				
Semivolatiles				
Maiathion (GCHS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	× 0.647	< 0.647	× 0.647
Parathion (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
enodns	< 0.787	< 0.787	< 0.787	< 0.787
Student (GCHS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	× 0.760
1,1,1-Trichloroethane (GCMS)	¥	KA KA	. 1.00	¥
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	YN.	NA NA	. 1.00	¥.
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethare (GCMS)	¥	¥	4 1.00	¥
1,1-Dichloroethene	6.1.2	٠1.7	٠1.7	۰1.7
1,1-Dichloroethene (GCMS)	MA	¥	. 1.00	*
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	M	¥	· 1.00	¥.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of visto dat fiel '90 p bres

Table 81 Groundwater Investigative Analytical Data

Sample 10	37428	37429	37429	37430
Date	12/27/89	12/29/89	05/56/90	12/28/89
•				
Volatiles	•			
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	*	¥H .	< 5.00	¥ R
Benzene	< 1.05	< 1.05	3.60 A	< 1.05
Denzene (GCMS)	¥	¥	17.1 A	¥
Carbon Tetrachloride	× 0.990	0.990	× 0.990	× 0.990
Carbon Tetrachloride (GCMS)	¥	ž	· 1.00	YN
Chlorobenzene	< 0.820	< 0.820	24.2 A	< 0.820
Chlorobenzene (GCMS)	YN.	¥	28.8 A	¥ H
Chloroform	< 0.500	< 0.500	41.9 A	1.35
Chloroform (GCHS)	\$	¥	₹ 0.07	4
Dibromochloropropane	< 0.195	< 0.195	0.261 A	< 0.195
Dibramochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	¥	¥	• 1.00	₹
H-Xylene	< 1.32	< 1.32	3.30 A	< 1.32
M-Xylene (GCMS)	¥	*	· 1.00	¥N
Methylene Chloride	o 7.40	07.7 >	o5.7 >	< 7.40

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

R -- Data did not meet quality control criteria and were

Table B1 Groundwater Investigative Analytical Data

Sample 10	37428	37429	37429	37430
Date	12/27/89	12/29/89	05/56/90	12/28/89
Analytes				
Volatiles	•			
Nethylene Chloride (GCMS)	¥#	¥#	.1.00	¥
Nethylisobutyl Ketone	0.°, ×	06.4 >	6.4 ×	6.4 ×
Methylisobutyl Ketone (GCMS)	YZ	K	< 1.40	*
O,P-Xylene	< 1.36	< 1.36	2.40 A	< 1.36
O,P-Xylene (GCNS)	VN	¥	< 2.00	\frac{1}{2}
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	VN.	¥#	. 1.00	¥#
Toluene	< 1.47	< 1.67	2.62 A	< 1.47
Toluene (GCMS)	YN	¥#	. 1.00	**
Trichloroethene	< 0.560	< 0.560	< 0.560	< 0.560
Trichloroethene (GCMS)	¥	4	< 1.00	¥
Vinyl Chloride	¥	¥¥	¥	KA
Vinyl Chloride (GCMS)	YH.	¥#	< 12.0	¥

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
- A -- Date considered enomalous based on evaluation of histo data (fie /90) Aurer

Table B1 Groundwater investigative Analytical Data

Sample 10	37430	37433	37433	37434
· Date	05/56/90	01/03/90	05/56/90	01/03/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35
. Cadaium	< 6.78	< 6.78	< 6.78	< 6.78
Calcium	120000	81200	113000	29900
Chloride	170000	75000	140000	22000
Chromium	< 16.8	< 16.8	< 16.8	× 16.8
Copper	× 18.8	× 18.8	< 18.8	< 18.8
Cyanide	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	2790	1260	1570	1530
l'ren	< 77.5	¥	¢ 77.5	4
	< 43.4	< 43.4	× 43.4	< 43.4
Magnesium	37400	15200	22300	17600
Nanganese	× 9.67	¥X	< 9.67	¥
Mercury	< 0.100	< 0.100	< 0.100	< 0.100
Witrite, Witrate Non-Specific	6100	3300	510	5300
Potassium	2680	6030	4450	0757
Sodius	130000	77000	00066	91000
Sulfate	250000	190000	200000	190000
Total Organic Carbon	2000	< 1000	2000	× 1000

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10 Date	37430	37433 01/03/90	37433 02/26/90	37434 01/03/90
Analytes				
Metals/Anions/General Chem	•			,
Total Suspended Solids	A 18.0	AM F 0.2	× 18.0	NA 18.0
2,3,6-Trichlorophenol (GCMS)	× 1.70	< 1.70	< 1.70	٠1.8
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	07.8 >	07.8 >	8.4 0
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >	07.4 >
2,4-Dinitrophenol (GCMS)	× 176	× 176	× 176	s 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenoi (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	· %.0	· %·0	< 96.0	< 96.0
Phenol (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-Oxathiane	< 2.38	< 2.38	< 2.38	< 2.38
1,4-0xathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.0490	× 0.0490	× 0.0490	× 0.0490

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Date considered enomatous based on evaluation of visto dat fie 'QC p lures

Table 81 Groundwater Investigative Analytical Data

Sample 10	37430	37433	37433	37434
	04/92/20	01/03/90	04/92/20	04/50/10
Analytes				
Semivolatiles				
Melathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
Support	< 0.787	< 0.787	< 0.787	< 0.787
Supone (GCHS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	.1.00	ž	< 1.00	¥
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	0.780
1,1,2-Trichloroethame (GCMS)	.1.00	KA	.1.00	¥
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	< 1.00	¥	• 1.00	¥
1,1-Dichloroethene	× 1.70	6.1.70	< 1.70	٠1.8 د
1,1-Dichloroethene (GCHS)	× 1.00	M	• 1.00	¥
1,2-Dichloroethane	· 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	· 1.00	¥	· 1.00	K

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 1D	37430	37433	37433	37434
Date	05/56/90	01/03/90	05/56/90	01/03/90
Analytes				
Volatiles				
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	¥N	< 5.00	¥
Benzene	17.3 A	< 1.05	5.48 A	< 1.05
Benzene (GCMS)	10.9 A	MA	3.10 A	¥
Carbon Tetrachloride	066.0 >	066.0 >	0.600	< 0.990
Carbon Tetrachloride (GCMS)	1.38 A	¥	< 1.00	¥¥
Chlorobenzene	51.2 A	< 0.820	28.0 A	< 0.820
Chlorobenzene (GCMS)	82.7 A	Y2	46.2 A	¥
Chloroform	300 ▶	< 0.500	72.7 A	< 0.500
Chloroform (GCMS)	> 150 A	**	73.0 A	MA
Dibromochloropropane	0.926 A	< 0.195	0.275 A	< 0.195
Dibramochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	< 1.00	4	< 1.00	KA
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	· 1.00	¥	· 1.00	¥
Methylene Chloride	07.7 >	< 7.40	< 7.40	< 7.40

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of isto dat, fiel QC p ures

Sample 10	37430	37433	37433	37434
Date	05/56/90	01/03/90	05/56/90	01/03/90
mlytes				
mivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	< 7.46	> 7.46	> 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	< 7.70	< 7.70	× 7.70
Caprolactam (GCMS)	< 7.70	< 7.70	< 7.70	< 7.70
Chlordane	< 0.0950	< 0.0950	< 0.0950	< 0.0950

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.

A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Semple 10	37430	37433	37433	37434
Date	05/56/90	01/03/90	05/56/90	01/03/90
Analytes				
Senivolatiles				
Chlordone (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	6.07	0.828	3.31	4.52
Dilsopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130
Dithiane	× 1.%	< 1.34	< 1.34	< 1.34
Dithiane (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Endrin (GCNS)	× 18.0	< 18.0	< 18.0	< 18.0
Mexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80
Helethion	< 0.373	< 0.373	< 0.373	< 0.373

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist | dat | fie /QC | Aurer

Table B1 Groundwater Investigative Analytical Data

Sample 10	37430	37433	37433	37434
Date	05/56/90	01/03/90	05/56/90	01/03/90
Volatiles				
Methylene Chloride (GCMS)	· 1.00	Y.	. 1.00	¥
Methylisobutyl Ketone	06.7 >	o., v	06.7 >	06.4 >
Methylisobutyl Ketone (GCMS)	< 1.40	¥#	< 1.40	¥
O,P-Xylene	< 1.36	< 1.36	< 1.36	< 1.36
O,P-Xylene (GCMS)	< 2.00	**************************************	< 2.00	Y
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	. 1.00	M	< 1.00	¥
Toluene	3.17 A	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	2.70 A	MA	1.30 A	¥#
Trichloroethene	1.65 A	< 0.560	0.803 A	< 0.560
Trichloroethene (GCMS)	• 1.00	¥ X	1.10 A	4
Viryl Chloride	MA	¥	Y.	¥
Vinyl Chloride (GCHS)	< 12.0	¥	< 12.0	YN.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomatous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10	37434	37435	37435	37436
Date	05/21/90	12/29/89	05/21/90	12/29/89
Analytes				
Metals/Anjons/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	MA
Cachrium	6.78	< 6.78	< 6.78	¥
Calcium	85500	134000	123000	¥
Chloride	97000	120000	00086	¥
Chromium	< 16.8	< 16.8	< 16.8	4
Copper	× 18.8	× 18.8	× 18.8	¥
Cyanide	< 5.00	< 5.00	< 5.00	¥¥
Fluoride	1740	1730	1890	¥#
Iron	< 77.5	¥ Z	< 77.5	¥ R
Peal	< 43.4	< 43.4	< 43.4	Y
Magnesium	19600	37000	37000	¥
Manganese	10.5	KA	< 9.67	KA
Mercury	< 0.100	< 0.100	< 0.100	KA
Mitrite, Mitrate Non-Specific	3700	3300	1700	5800
Potessium	4130	0159	7580	¥2
Sodium	100000	190000	130000	«
Sulfate	200000	390000	290000	¥#
Total Organic Carbon	2000	3000	3000	¥ X

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of Niste '- dat --- fie' ' /OC p ' lures

Table B1 Groundwater Investigative Analytical Data

Sample 1D Date	37434 02/27/90	37435 12/29/89	37435 02/27/90	37436 12/29/89
Analytes				
Metals/Anions/General Chem Total Suspended Solids	\$	ž	ş	¥
Zinc	< 18.0	< 18.0	< 18.0	4
Phenols				
2,3,6-Trichlorophenol (GCMS)	· 1.7	< 1.70	< 1.70	NA NA
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥R
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	× 3.60	¥.
2,4-Dichlorophenol (GCMS)	07.8 >	× 8.40	07.8 >	¥.
2,4-Dimethylphenol (GCMS)	07.4 >	07.4 >	07.7 >	Y.
2,4-Dinitrophenol (GCMS)	× 176	× 176	× 176	¥.
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥.
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	¥.
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	¥ N
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	8
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	4
6-Witrophenol (GCMS)	· %·0	· %·0	· 96.0	¥.
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	¥.
Semivolatiles				
1,4-Oxathiane	< 2.38	< 2.38	< 2.38	¥ Z
1,4-Oxathiane (GCNS)	< 27.0	< 27.0	< 27.0	4
2,2-Bis(perachlorophemyl)-1,1,1-Trichloroethane (DDI)	0.0490 >	0670.0 >	< 0.0490	¥8

į

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Serpte 10	37434	37435	37435	37436
Date	05/21/90	12/29/89	05/27/90	12/29/89
Analytes				
10 0				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCHS)	< 18.0	< 18.0	< 18.0	¥.
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	Y.
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	¥ N
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	MA
4-Chlorophenylmethyl Sulfide (GCMS)	· 10.0	< 10.0	< 10.0	¥
4-Chlorophenylmethyl Sulfone	< 7.46	> 7.46	< 7.46	V V
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	¥.
4-Chlorophemylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	¥2
4-Chlorophemylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	VN V
Aldrin	< 0.0500	< 0.0500	< 0.0500	¥
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	4
Atrazine	< 4.03	< 4.03	< 4.03	¥8
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	¥N
Benzothiazole	< 5.00	< 5.00	< 5.00	MA
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90	¥2
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	< 7.70	< 7.70	VN
Caprolectem (GCMS)	< 7.70	< 7.70	× 7.70	¥
Chlordene	< 0.0950	< 0.0950	< 0.0950	MA.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of hist ' il de diff' 1/00 dure

Table B1 Groundwater Investigative Analytical Data

See S	37434	37435	37435	37436
Date	05/27/90	12/29/89	05/21/90	12/29/89
Analytes				
Senivolaties) 0 0 0 0 0		٠	
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	¥
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	¥
Dicyclopentadiene (GCHS)	< 5.50	< 5.50	< 5.50	¥
Dieldrin	< 0.0500	< 0.0500	< 0.0500	¥N
Dieldrin (GCNS)	< 26.0	< 26.0	< 26.0	¥
Diisopropyl Methylphosphonate	3.63	15.5	10.8	¥
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	¥
Dimethylmethyl Phosphonate	< 0.188	< 0.188	1.01	¥
Dimethylmethyl Phosphonate (GCHS)	< 130	< 130	< 130	×
Dithiane	· 1.34	< 1.34	× 1.34	¥
Dithiame (GCMS)	< 3.30	< 3.30	< 3.30	¥
Endrin	< 0.0500	< 0.0500	< 0.0500	¥
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	₹
Hexach lorocyclopentadiene	< 0.0480	0.0914	< 0.0480	K N
Mexachlorocyclopentadiene (GDNS)	< 54.0	< 54.0	< 54.0	¥
Isodrin	< 0.0510	< 0.0510	< 0.0510	¥
Isodrin (GCHS)	< 7.80	< 7.80	< 7.80	4
Helathion	< 0.373	< 0.373	< 0.373	K

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

 ⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 1D Date	37434	37435 12/29/89	37435	37436 12/29/89
Analytes				
Semivolatiles				
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	≨
Parathion	· 0.647	< 0.647	< 0.647	¥
Parathion (GCHS)	< 37.0	< 37.0	< 37.0	¥
Pentechlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	¥
§ rbours	< 0.787	< 0.787	< 0.787	\$
Supone (GCMS)	< 19.0	< 19.0	< 19.0	\$
Vapone	< 0.384	< 0.384	< 0.384	¥
Vapona (GCMS)	< 8.50	< 8. 50	< 8.50	¥
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	¥
1,1,1-Trichloroethane (GCMS)	. 1.00	¥	• 1.00	¥
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	¥¥
1,1,2-Trichloroethane (GCMS)	. 1.00	¥	.1.00	¥
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	¥
1,1-Dichloroethane (GCMS)	.1.00	¥	1.00	¥
1,1-Dichloroethene	× 1.70	s.1.8	· 1.70	¥
1,1-Dichloroethene (GCMS)	. 1.00	¥	· 1.00	¥
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	¥
1,2-Dichloroethane (GCMS)	× 1.00	¥	* 1.00	¥

Reported values are accurate to three significant figures.

- c -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or
- above the Maximum Reporting Limit. MA -- Mot Analyzed. R -- Data did not most quality control criteria and were
- A -- Data considered anomalous based on evaluation of hist I do 1 fis /90 dure

rejected.

Table 81 Groundwater Investigative Analytical Data

Sample 10	37434	37435	37435	37436
Date	02/27/90	12/29/89	05/27/90	12/29/89
Analytes	ı			
Volatiles	•			
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	¥
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	*	< 5.00	K
Benzene	4.61 A	< 1.05	10.7 A	¥
Benzene (GCMS)	2.71 A	¥	9.30 A	¥
Carbon Tetrachloride	< 0.990	0.66.0	0.990	4
Carbon Tetrachloride (GCMS)	× 1.00	¥	1.10 A	VN
Chiorobenzene	39.2 A	< 0.820	58.1 A	X
Chiorobenzene (GCMS)	4 7.07	X	70.2 A	¥¥
Chloroform	V 0.79	< 0.500	214 A	¥
Chloroform (GCHS)	A 0.83	¥	> 150 A	W
Dibromochloropropene	0.428 A	< 0.195	1.26 A	42
Dibromochi oropropane (GCMS)	< 12.0	< 12.0	< 12.0	4
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	¥.
Ethyl Benzene	< 1.37	< 1.37	< 1.37	4
Ethyl Benzene (GCMS)	· 1.00	¥	< 1.00	Y.
M-Xylene	< 1.32	< 1.32	< 1.32	YN
M-Xylene (GCMS)	4 1.00	¥N	< 1.00	NA A
Methylene Chloride	< 7.40	o 7.40	× 7.40	¥#

- Indicates that the target analyte was not detected at
- or above the Certified Reporting Limit.
 > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

OI e Comes	37434	37435	37435	37436
Date	05/21/90	12/29/89	02/27/90	12/29/89
Analytes				
Volatiles				
Methylene Chioride (GCMS)	< 1.00	∀ R	.1.00	Y _N
Methyl isobutyl Ketone	06.4 >	06.4 >	6.7 ×	¥
Methylisobutyl Ketone (GCMS)	< 1.40	KH	< 1.40	*
O,P-Xylene	< 1.36	< 1.36	× 1.36	¥
O,P-Xylene (GCMS)	< 2.00	Y.	< 2.00	YN.
Tetrachloroethene	< 0.750	< 0.750	< 0.750	¥
Tetrachloroethene (GCMS)	· 1.00	¥X	. 1.00	¥
Toluene	< 1.67	< 1.47	2.12 A	4
Toluene (GCNS)	1.10 A	¥8	2.30 A	Y.
Trichioroethene	0.971 A	< 0.560	1.78 A	¥
Trichloroethene (GCMS)	1.20 A	¥	2.30 A	¥.
Vinyi Chloride	NA NA	K	K	NA NA
Vinyl Chloride (GCHS)	< 12.0	4	< 12.0	YN.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximus Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of 'ifste' dat 'fiel' '90 F 'ures

Table 81 Groundwater Investigative Analytical Data

Sample 10	37436	37436	37437	37437
	01/05/10	07/03/30	26/25/10	26/27/20
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35
Cadaium	< 6.78	< 6.78	< 6.78	< 6.78
Calcium	124000	109000	00692	76100
Chloride	73000	26000	82000	84000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8
Copper	< 18.8	< 18.8	< 18.8	< 18.8
Cyanide	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	1220	1350	1170	1310
Iran	Y2	< 77.5	4	< 77.5
Peel	< 43.4	< 43.4	< 43.4	< 43.4
Megnesium	24700	23200	16700	17400
Manganese	¥ N	12.4	¥	< 9.67
Mercury	< 0.100	< 0.100	< 0.100	< 0.100
Witrite, Witrate Non-Specific	¥x	2000	5400	1500
Potessium	7380	3930	3870	3240
Sodium	73000	81000	78000	75000
Sulfate	220000	220000	110000	110000
Total Organic Carbon	2000	2000	1000	1000

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10 Date	37436 01/02/90	37436	37437 01/02/90	37437 02/28/90
Analytes				
Wetals/Anions/General Chem Total Suscended Solids	¥	¥	¥	¥
Zinc	< 18.0	< 18.0	< 18.0	< 18.0
Phenols	•			
2,3,6-Trichlorophenol (GCMS)	٠ 1.70	× 1.70	< 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	× 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	07.8 >	× 8.40	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.4 >	07.4 >	07.4 >
2,4-Dinitrophenol (GCMS)	× 176	s 176	× 176	4 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
6-Witrophenol (GCMS)	< 96.0	< 96.0	< 96.0	× 96.0
Phenol (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-0xathiane	< 2.38	< 2.38	< 2.38	< 2.38
1,4-0xathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(perachlorophemyl)-1,1,1-Trichloroethane (DDI)	0.0490	0.0%00 >	0.0490	0670.0 >

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of Visto ' det ' fie' ' '90 p lures

Sample 10	37436	37436	37437	37437
Date	01/02/90	02/28/90	01/02/90	02/28/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophemyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	> 7.46	> 7.46	> 7.46	< 7.46
4-Chlorophenylamethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90	· 8.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	× 7.70	< 7.70	< 7.70	< 7.70
Caprolactam (GCMS)	٧.7 >	< 7.70	< 7.70	< 7.70
Chlordane	0560.0 >	< 0.0950	0.0950	< 0.0950

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Semple 10	37436	37436	37437	37437
Date	01/02/90	05/58/90	01/05/90	02/28/90
Analytes	;			
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	0.0468	< 0.0500	0.0744	0.0893
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	< 0.392	2.15	< 0.392	< 0.392
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphorate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130
Dithiane	< 1.34	< 1.34	< 1.34	< 1.34
Dithiame (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
Hexach lorocycl opentadiene	< 0.0480	< 0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	< 7.80
Melathion	< 0.373	< 0.373	< 0.373	< 0.373

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of hist I day I file /QC | ture:

Table 81 Groundwater Investigative Analytical Data

Semple 10	37436	37436	37437	37437
Dete	01/05/90	05/58/90	01/05/90	05/58/90
Analytes				
Sanivolatiles				
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophanol (GCHS)	< 9.10	< 9.10	< 9.10	< 9.10
Supprise	< 0.787	< 0.787	< 0.787	< 0.787
Supone (GCHS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles				
1,1,1-Trichloroethene	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	¥	.1.00	¥.	× 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	¥	.1.00	¥	· 1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	K	< 1.00	¥	× 1.00
1, 1-Dichloroethene	< 1.70	< 1.70	< 1.70	× 1.8
1,1-Dichloroethene (GCMS)	Y	< 1.00	¥	× 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	¥N	• 1.00	¥	. 1.00

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Date considered enomalous based on evaluation of historical data and field GA/GC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 10	37436	37436	37437	37437	
Date	01/02/90	05/58/90	01/02/90	05/58/90	_
Analytes		-			
Volatiles					
1,2-Dichloroethenes (sis & trans)	< 0.760	< 0.760	< 0.760	< 0.760	
1,2-Dichloroethenes (cis & trans) (GCMS)	≨	< 5.00	4	< 5.00	
Benzene	< 1.05	< 1.05	< 1.05	2.16	<
Benzene (GCMS)	¥	. 1.00	4	. 1.00	
Carbon Tetrachloride	06.0 >	06.0 >	066.0 >	× 0.990	
Carbon Tetrachioride (GCMS)	42	< 1.00	K	4 1.00	
Chlorobenzene	< 0.820	11.0 A	< 0.820	42.8	<
Chlorobenzene (GCMS)	¥	9.62 A	¥	17.3	<
Chloroform	< 0.500	15.1 A	< 0.500	6.04	<
Chloroform (GCMS)	¥ X	12.0 A	43	27.0	<
D ibramochl orapropene	< 0.195	< 0.195	< 0.195	0.302	<
Dibromochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550	
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	
Ethyl Benzene (GCHS)	¥Z	٠ 1.00	¥.	· 1.00	
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	
M-Xylene (GCMS)	¥	.1.00	¥N	. 1.00	
Methylene Chloride	< 7.40	< 7.40	07.7 >	× 7.40	

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

A -- Date considered enomatous based on evaluation of isto dat: fiel QC p ures

Table 81 Groundwater Investigative Analytical Data

Sample 10	37436	37436	37437	37437
Date	01/02/90	05/58/90	01/05/90	05/58/90
Analytes				
Volatiles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Methylene Chloride (GCMS)	YN.	· 1.00	KN	4 1.00
Methylisobutyl Ketone	° 4.90	o.4 ×	06.7 >	06.4 >
Methylisobutyl Ketone (GCMS)	YN.	< 1.40	K	< 1.40
O.P-Xylene	< 1.36	< 1.36	< 1.36	· 1.36
O,P-Xylene (GCHS)	YZ	< 2.00	¥.	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachioroethere (GCMS)	42	× 1.00	YN	× 1.00
Toluene	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	YN.	· 1.00	Z Z	< 1.00
Trichloroethene	× 0.560	< 0.560	< 0.560	0.729 A
Trichloroethene (GCMS)	¥	4 1.00	¥	٠ 1.00
Viryl Chloride	KN	MA	¥¥	¥
Vinyl Chloride (GCHS)	M	< 12.0	¥¥	< 12.0

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
- rejected.
 A -- Data considered anomalous based on evaluation of

historical data and field QA/QC procedures.

R -- Data did not meet quality control criteria and were.

Table 81 Groundwater Investigative Analytical Data

	37438	37438	37439	37439
Date	01/25/90	02/28/90	01/25/90	03/01/90
Inalytes				
tetals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35
Cadalua	s 6.78	< 6.78	< 6.78	s 6.78
Calcium	00299	00899	83600	104000
Chloride	œ	280000	œ	200000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8
Coccer	< 18.8	× 18.8	< 18.8	× 13.8
Cyanide	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	œ	0207	~	2340
Ira	¥	< 77.5	¥	< 77.5
pean	< 43.4	< 43.4	< 43.4	< 43.4
Megnesium	19300	21200	20400	28200
Hanganese	¥N	× 9.67	¥	28.8
Mercury	< 0.100	< 0.100	< 0.100	< 0.100
Mitrite, Mitrate Non-Specific	5300	0067	3000	1800
Potessium	2600	2600	3290	3810
5,08	30000	260000	180000	150000
Sul fate	œ	170000	œ	180000
Total Organic Carbon	< 1000 ×	2000	× 1000	2000

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of hist I da 3 fic /qc dure

Table B1 Groundwater Investigative Analytical Data

Semple 10	37438	37438	37439	37439
Date	01/25/90	02/28/90	01/25/90	03/01/90
Analytes				
Metals/Anions/General Chem	•			
Total Suspended Solids	YN	¥	¥3	M
2 inc	< 18.0	< 18.0	< 18.0	< 18.0
Phenols				
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	× 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	8.4 0	07.8 >	07.8 >	8.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >	07.4 >
2,4-Dinitrophenol (GCMS)	× 176	< 176	× 176	4 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	× 3.60	× 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	6.20	< 8.20
3-Wethyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8 .50	< 6.5 0
4-Wethylphenol (GCHS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	< 96.0	6.0%	· %·0	· %·0
Phenol (GCHS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles	, , ,	Š	Š	\$. \$
1.4-0xathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	< 0.0490	< 0.0490	0.0490 >

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field 0A/9C procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10	37438	37438	37439	37439
Date	01/25/90	05/58/90	01/25/90	03/01/90
Analytes				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chiorophenyimethyi Sulfide (GCHS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfane	< 7.46	> 7.46	< 7.46	< 7.46
4-Chlorophenylmethyl Sulfane (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	0.0711	< 0.0500	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiezole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	10.4	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	× 7.70	× 7.70	¢ 7.70
Caprolectem (GCMS)	< 10.0	< 7.70	< 10.0	٠ 7.7
Chiordene	< 0.0950	< 0.0950	< 0.0950	< 0.0950

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Date considered anomalous based on evaluation of hist dar ifie /QC; ture:

	37438	37438	37439	37439
Date	01/25/90	05/58/90	01/25/90	03/01/90
Ansivies				
Semivolatives	6 17 0	< 37.0	< 37.0	< 37.0
	< 5.00 < 5.00	< 5.00	< 5.00	< 5.00
Diegetopantenense	< 5.50	< 5.50	< 5.50	< 5.50
	0.150	0.127	0.0541	< 0.0500
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0
n (exercise) Methyl thornborate	3.57	3.47	2.07	2.54
Dispersed Methylphorate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
	< 0.188	< 0.188	< 0.188	< 0.188
Districted matched Phoenhorate (COMS)	× 130	< 130	< 130	< 130
Dithiere	< 1.34	< 1.34	< 1.34	× 1.34
	< 3.30	< 3.30	< 3.30	< 3.30
	< 0.0500	< 0.0500	< 0.0500	< 0.0500
	< 18.0	< 18.0	< 18.0	< 18.0
	< 0.0480	< 0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0
	< 0.0510	< 0.0510	< 0.0510	< 0.0510
	< 7.80	< 7.80	< 7.80	< 7.80
Malathion	< 0.373	< 0.373	< 9.373	< 0.373

Reported values are accurate to three significant figures. $\dot{\varsigma}$ -- indicates that the target analyte was not detected at

- or above the Certified Reporting Limit.
 > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 A -- Data considered anomalous based on evaluation of

historical data and field QA/QC procedures.

Table Bi Groundwater Investigative Analytical Data

Sample :1D Date	37438 01/25/90	37438 02/28/90	37439	37439 03/01/90
Analytes				
Semivolatiles				
Nelathion (GCNS)	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCHS)	< 9.10	< 9.10	< 9.10	< 9.10
Supone	< 0.787	< 0.787	< 0.787	< 0.787
Supone (GCNS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vepone (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethene (GCMS)	· 1.00	• 1.00	. 1.00	· 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	< 1.00	. 1.00	4 1.00	. 1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	4 1.00	4 1.00	< 1.00	< 1.00
1,1-Dichloroethene	< 1.70	× 1.70	< 1.70	× 1.70
1,1-Dichioroethere (GCMS)	< 1.00	· 1.00	. 1.00	. 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	× 1.00	. 1.00	· 1.00	· 1.00

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
- rejected.
 A -- Data considered anomalous based on evaluation of
 - hist if de d ffi 1/90 chure

Table B1 Groundwater Investigative Analytical Data

Semple 10	37438	37438	6 0	37439	•	37439	<u>o</u>	
Date	01/25/90	02/28/9		01/25/9	0	03/01/9	2	
Analytes	,							
Volatiles	ı							
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760		< 0.760		< 0.760		
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00		< 5.00		< 5.00		
Benzene	< 1.05	8.46	<	25.8	<	5.99	<	
Benzene (GCMS)	¥8.8 ¥	6.59	<	12.4	<	1.16	<	
Carbon Tetrachloride	12.7 A	× 0.990		38.1	<	× 0.990		
Carbon Tetrachloride (GCMS)	5.23 A	.1.00		1.38	<	.1.00		
Chlorobenzene	19.0 A	103	<	180	<	7.22	<	
Chlorobenzene (GCNS)	> 150 A	94.6	<	125	<	23.1	<	
Chloroform	1200 A	160	<	750	<	7.K	<	
Chloroform (GCMS)	> 150 A	× 150	<	× 150	<	30.0	<	
Dibromochtoropropane	3.03 A	1.18	<	0.842	<	0.539	<	
Dibromochloropropane (GCMS)	< 12.0	< 12.0		< 12.0		< 12.0		
Dimethyl Disulfide	< 0.550	< 0.550		< 0.550		< 0.550		
Ethyl Benzene	< 1.37	< 1.37		< 1.37		< 1.37		
Ethyl Benzene (GCMS)	1.20 A	× 1.00		.1.8		.1.8		
H-Xylene	< 1.32	< 1.32		< 1.32		< 1.32		
M-Xylere (GCMS)	< 1.00	< 1.00		× 1.00		· 1.00		
Nethylene Chloride	o 7.40	< 7.40		< 7.40		o 7. 40		

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10	37438	_	37438	90	37439	2	37439	
Date	01/25/90	_	05/58/90	9	01/25/10	8	03/01/90	
Analytes								
Volatiles								
Methylene Chioride (GCHS)	. 1.00		٠ 1.00		< 1.00		· 1.00	
Methylisobutyl Ketone	o6.4 ×		× 4.90		6.4 ×		06.4 >	
Methylisobutyl Ketone (GCMS)	< 1.40		< 1.40		< 1.40		. 1.40	
O, P-Xylene	< 1.36		< 1.36		× 1.36		< 1.36	
O,P-Xylene (GCMS)	1.98	<	< 2.00		< 2.00		< 2.00	
Tetrachloroethene	1.66	<	< 0.750		< 0.750		< 0.750	
Tetrachloroethene (GCMS)	. 1.00		۰ 1.00		< 1.00		.1.00	
Toluene	< 1.47		2.22	⋖	3.45	⋖	< 1.47	
Toluene (GCMS)	7.50	<	2.80	<	3.00	<	· 1.00	
Trichloroethene	19.1	<	2.36	<	87.5	<	0.619 A	
Trichloroethene (GCMS)	12.0	<	2.30	⋖	4.20	<	· 1.00	
Vinyl Chloride	¥		¥		¥		NA NA	
Vinyl Chloride (GONS)	< 12.0		< 12.0		< 12.0		< 12.0	

Notes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of hist I day if fit //QC dure

Semple 10	37440	37440	37441	37441
Date	01/25/90	03/01/90	01/29/90	03/01/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35
Cachrium	< 6.78	s 6.78	< 6.78	× 6.78
Calcium	27400	81200	114000	102000
Chioride	~	90009	œ	23000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8
Copper	< 18.8	< 18.8	* 18.8	× 18.8
Cyanide	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	~	1360	œ	1230
Iron	¥	< 77.5	YN	< 77.5
Peel	< 43.4	< 43.4	< 43.4	< 43.4
Magnesium	14900	17100	20800	19900
	M	< 9.67	¥	< 9.67
	< 0.100	< 0.100	< 0.100	< 0.100
Nitrite, Mitrate Non-Specific	1700	2000	8 500	810
Potassium	4030	2920	0507	0757
an indicate and a second	83000	80000	92000	78000
Sulfate	œ	120000	œ	160000
Total Organic Carbon	< 1000	2000	1000	2000

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Sample 10 Date	37440 01/25/90	37440 03/01/90	37441 01/29/90	37441 03/01/90
Analytes				
Metals/Anions/General Chem				:
Total Suspended Solids	¥	X	¥	¥
Zinc	< 18.0	< 18.0	< 18.0	< 18.0
Phenols				
2,3,6-Trichtorophenol (GCMS)	c 1.70	< 1.70	< 1.70	× 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	3.60
2,4-Dichlorophenol (GCMS)	07.8 >	07.8 >	× 8.40	07.8 >
2,4-Dimethylphenol (GCMS)	05.7 >	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	< 176	4176	× 176	< 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	6.20
3-Wethyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Nethylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	< 96.0	0.96 >	0.96 >	< 96.0
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles				
1,4-0xathiane	< 2.38	< 2.38	< 2.38	< 2.38
1,4-0xathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	× 0.0490	< 0.0490	0.0490	0.0700

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of 'historin' date nod field na 400 ponnodures

Table 81 Groundwater Investigative Analytical Data

Semple 10	37440	37440	37441	37441
Date	01/25/90	03/01/90	01/29/90	03/01/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	× 10.0	< 10.0	< 10.0	< 10.0
4-Chloropherylmethyl Sulfone	< 7.46	< 7.46	> 7.46	> 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCHS)	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclò (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	< 7.70	× 7.70	< 7.70
Caprolactem (GCMS)	< 10.0	< 7.70	< 10.0	c 7.70
Chlordene	< 0.0950	< 0.0950	< 0.0950	< 0.0950

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/uc procedures.

Table B1 Groundwater Investigative Analytical Data

Semple 10	37440	37440	37441	37441
Date	01/25/90	03/01/90	01/29/90	03/01/90
nalytes				
emivolatiles				
Chlordane (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCHS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	< 0.392	< 0.392	< 0.392	< 0.392
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	× 130	· 130
Dithiane	< 1.3¢	< 1.34	< 1.34	× 1.34
Dithiame (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500 ×	< 0.0500	< 0.0500	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
Nexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	· 54.0	< 54.0	< 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrín (GCHS)	< 7.80	< 7.80	< 7.80	< 7.80
Melathion	< 0.373	< 0.373	< 0.373	< 0.373

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
- rejected.
 A -- Data considered anomalous based on evaluation of bistc-1 data field -- '00 p -- knes

Table B1 Groundwater Investigative Analytical Data

Sample 10	37440	37440	37441	37441
. Date	01/25/90	03/01/90	01/29/90	03/01/90
Analytes				
Semivolatiles				
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Perethion	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
ewodns	< 0.787	< 0.787	< 0.787	< 0.787
8upone (60%)	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCKS)	< 8. 50	< 8.50	< 8.50	< 8.50
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	. 1.00	.1.00	. 1.00	* 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	.00	· 1.00	. 1.00	.1.00
1,1-Dichloroethene	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethare (GCMS)	• 1.00	× 1.00	< 1.00	< 1.00
1,1-Dichloroethene	· 1.70	× 1.70	۰1.8 د	< 1.70
1,1-Dichloroethene (GCMS)	• 1.00	• 1.00	* 1.00	. 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	4 1.00	.1.00	. 1.00	× 1.00

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed. R -- Data did not meet quality control criteria and were
- rejected.
 A -- Data considered enomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater investigative Analytical Data

:	07725	37440	37441	37441
Sample 10 Date	01/25/90	03/01/90	01/59/90	03/01/90
Analytes	•			
Volatiles		0 7 0 7	0 760	< 0.760
1,2-Dichloroethenes (cis & trans)	00/.0 >	00.5	· 5.00	× 5.00
1,2-Dichloroethenes (cis & trans) (GCMS)	00.C > 02.	4 1.05	41.3 A	< 1.05
Benzene	12.6 A	0.930 A	9.30 A	· 1.00
Benzene (GCMS) Carbon Tetrachloride	2.57 A	× 0.990	3.09 A	× 0.990
	A 56.	4 1.00	2.20 A	4 1.00
Carbon Tetrachloride (GLMS)	102	14.9 A	130 A	< 0.820
Chlorobenzene	115 A	22.1 A	115 A	4 1.00
Chlorobenzene (GLMS)	220 A	18.4 A	A 088	< 0.500
Chinoform (GCMS)	× 150 A	24.0 A	> 150 A	• 1.00
	4 407	\$ 0°.195	1.27 A	< 0.195
D (bromoch l oropropene		< 12.0	< 12.0	< 12.0
Dibromochloropropene (GCRS)		< 0.550	< 0.550	< 0.550
Dimethy! Disultide	25.1.3	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCHS)	× 1.00	1.00	.1.00	٠ 1.00
	6 R	\$	4 1.30	< 1.32
M-Xylene	35.5	8.1.	.1.9	× 1.00
M-Xylene (GCMS)	07.7 ×	× 7.40	o7.7 >	o 7.40

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
 - above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomatous based on evaluation of his at dr A fi A/OC wdur.

Table B1 Groundwater Investigative Analytical Data

Smole 10	37440	37440	37441	37441
Date	01/25/90	03/01/90	01/29/90	03/01/90
Volatiles				
Methylene Chloride (GCMS)	. 1.00	.1.00	. 1.00	• 1.00
Methylisobutyl Ketone	06.7 >	o6.4 ×	06.4 >	06.7 >
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40
0,P-Xylene	< 1.36	< 1.36	< 1.36	< 1.36
O,P-Xylene (GDMS)	< 2.00	< 2.00	< 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	< 1.00	· 1.00	1.02 A	. 1.00
Toluene	₹.09	< 1.47	4.72 A	< 1.47
Toluer (CONS)	2.80 A	· 1.00	3.00 A	. 1.00
Trichic oethers	5.51 A	< 0.560	7.76 A	< 0.560
Trichloroesheme (GCHS)	3.80 A	1.00	4 06.4	< 1.00
Vinyi Chleride	Y.	MA	¥	MA
Vinyl Chloride (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered nomelous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

	37441	37442	37442	37443	
Pate D	06/12/90	03/05/90	06/12/90	03/01/90	
Analytes					
Matala/Aniona/General Chem					
	< 2.35	< 2.35	< 2.35	< 2.35	
	s 6.78	< 6.78	× 6.78	< 6.78	
	113000	119000	118000	93500	
	24000	140000	91000	130000	
Chronium	< 16.8	< 16.8	< 16.8	< 16.8	
	A	18.8	< 18.8	< 18.8	
Copper)) (< 5.00	~	< 5.00	
Cyanide	1020	2020	1850	2430	
	XX	¢ 77.5	YN	< 77.5	
peal	< 43.4	< 43.4	< 43.4	< 43.4	
	20100	29400	56400	26800	
	W.	391	Y.	15.3	
	1.64	0.100	0.210	< 0.100	
Heroury Literature Missace of Mon-Space(6):	8100	2700	1300	7100	
Potestica	3410	3770	2770	4010	
	23000	00066	95000	26100	
TO DOS	160000	150000	150000	210000	
suitate Total Organic Carbon	2000	2000	3000	2000	

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- above the Maximum Reporting Limit. MA -- Not Analyzed. > -- indicates that the target analyte was detected at or R -- Data did not meet quality control criteria and were
 - A -- Data considered anomalous based on evaluation of 1 11e /0C | **.** rejected.

hier.

Table 81 Groundwater Investigative Analytical Data

Sample ID Date	37441 06/12/90	37442	37442	37443
Analytes	•			
Metals/Anions/General Chem Total Suspended Solids	. ≦	≨	¥	¥
Zinc	< 18.0	< 18.0	< 18.0	< 18.0
Phenols				
2,3,6-Trichlorophenol (GCMS)	6.1.8	· 1.70	< 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichloraphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	9.4 0	07.8 >	× 8.40
2,4-Dimethylphenol (GCHS)	07.7 >	07.4 >	07.7 >	04.4 >
2,4-Dinitrophenol (GCMS)	× 176	4 176	× 176	s 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	× 3.60
2-Hitrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Mathyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Nethylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
6-Witrophenol (GCMS)	· %.0	· %·0	· %·0	0.96.0
Phenol (GCHE)	< 2.20	< 2.20	< 2.20	< 2.20
Samivolatiles				
1,4-Oxathiane	< 2.38	< 2.38	< 2.38	< 2.38
1,4-Oxathiane (GCHS)	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.0490	< 0.0490	< 0.0490	0.0400

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B1 Groundwater Investigative Analytical Data

Ol signal	37441	37442	37442	37443
Date	06/12/90	03/05/90	06/15/90	03/01/90
Analytes		,		
Semivolatiles				
2,2-Bis(perachlorophemyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyi)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 16.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenyimethyi Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	4 7.46	< 7.46	< 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500 <	0.0500	< 0.0500	< 0.0500
Aldrin (GCHS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	· 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	· 5.00
Bicyclo [2,2,1] hepta-2,5-diene	· 5.90	< 5.90	< 5.90	6 5.80
Bis (2-Ethylhexyl) Phthalate (GCMS)	4 7.70	< 7.70	× 7.70	< 7.70
Caprolactam (GCHS)	< 10.0	6.7.70	< 10.0	6.7.7
Chlordene	< 0.0950	< 0.0950	< 0.0950	0.0950

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- indicates that the target enalyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historial dar --- 1 fig. -- /QC ---- thre-

Table B1 Groundwater Investigative Analytical Data

Sample 10	37441	37442	37442 06/12/90	37443
Analytes .				
Semivolatiles				
Chlordene (GCHS)	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentediene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCHS)	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.0500	< 0.0500	< 0.0500	0.0590
Dieldrin (GDKS)	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	< 0.392	0.476	< 0.392	7.28
Diisoprapyl Methylphosphanate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylamethyl Phosphonate (GCHS)	< 130	< 130	× 130	× 130
Dithiene	× 1.34	× 1.34	< 1.34	× 1.34
Dithimme (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Endrin (GCHS)	< 18.0	< 18.0	< 18.0	< 18.0
Mexach lorocyclopentadiene.	< 0.0480	< 0.0480	< 0.0480	< 0.0480 <
Wexachlorocyclopentadiane (GCHS)	< 54.0	< 54.0	< 54.0	< 54.0
Isodrin	< 0.0510	0.236	< 0.0510	< 0.0510
Isodrin (GDMS)	< 7.80	< 7.80	< 7.80	< 7.80
Melathion	< 0.373	< 0.373	< 0.373	< 0.373

Reported values are accurate to three significant figures.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.
A -- Data considered anomatous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

	37441	37442	37442	37443
Date of the control o	06/15/90	03/05/90	06/12/90	03/01/90
Analytes				
Semivolatiles		< 21.0	< 21.0	< 21.0
Halathion (GONS)	279.0 >	× 0.647	× 0.647	< 0.647
Parethion	< 37.0	< 37.0	< 37.0	< 37.0
	< 9.10	< 9.10	< 9.10	× 9.10
	< 0.787	< 0.787	< 0.787	< 0.787
	< 19.0	< 19.0	< 19.0	< 19.0
	< 0.384	< 0.384	< 0.384	< 0.384
Vapone (GDIS)	< 8.50	< 8.50	< 8.50	< 8.50

	0.760	< 0.760	< 0.760	< 0.760
	· 1.00	• 1.00	· 1.00	.00
1,1,1-Irichion of the compa	¢ 0.780	< 0.780	< 0.780	< 0.780
1,1,2-irical of caracters (COMS)	4 1.00	× 1.00	< 1.00	• 1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
	· 1.00	× 1.00	× 1.00	4 1.00
	4 1.70	61.7	4 1.70	5.1.5
	× 1.00	× 1.00	× 1.00	. 1.00
1,1-Dichlorethere (u.ms.)	× 1.10	< 1.10	< 1.10	× 1.10
1,2-01chloroethere (28Ch)	× 1.00	× 1.00	× 1.00	. 1.00

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.
< -- indicates that the target analyte was not detected at

- or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit. NA -- Not Analyzed.
 R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomatous based on evaluation of his: It da d fi 1/90 shre

	37441	37442	37442	37443	
Dete	06/15/90	03/05/90	06/12/90	03/01/90	
Analytes	,				
Volatiles				,	
1.2-Dichloroethenes (cis & trans)	< 0.760	• 0.760	< 0.760	× 0.760	
1.2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	< 5.00	< 5.00	
Benzene	< 1.05	< 1.05	< 1.05	· 1.05	
Benzene (GOMS)	4 1.00	· 1.00	< 1.00	* 1.00	
Carbon Tetrachloride	066.0 >	× 0.990	06.0 >	0.990	
Carbon Tetrachloride (GDMS)	4 1.00	× 1.00	< 1.00	• 1.00	
Chlocobanzene	< 0.8 20	10.7 A	< 0.820	11.7 A	
Chlorobenzene (GCHS)	× 1.80	11.5 A	٠1.00	11.5 A	
Chiorofora	< 0.500	25.9 A	< 0.500	15.2 A	
Chloroform (GCMS)	· 1.00	12.0 A	· 1.00	9.30 A	
Dibranchioroprope	< 0.195	0.206 A	< 0.195	< 0.195	
Dibromochloropropane (GCHS)	< 12.0	< 12.0	< 12.0	< 12.0	
Disethyl Dissifide	< 0.550	< 0.550	< 0.550	< 0.550	
Ethyl Benzene	< 1.37	< 1.17	< 1.37	< 1.37	
Ethyl Benzene (GCMS)	× 1.00	. 1.90	· 1.00	× 1.00	
	< 1.32	< 1.32	< 1.32	< 1.32	
M-XVI ene (GCMS)	× 1.00	< 1.00	.1.00	. 1.00	
Methylene Chloride	< 7.40	< 7.40	07.7 >	< 7.40	

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

37443	03/01/90
37442	06/12/90
37442	03/05/90
37441	06/15/90
Sample 10	Date

			•	
Analytes				
Volatiles				
Methylene Chloride (GCMS)	× 1.00	< 1.00	٠ 1.00	< 1.00
Methylisabutyl Ketone	× 4.90	06.7 >	o.4.90	06.4 >
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40
O,P-Kylene	< 1.36	< 1.36	< 1.36	< 1.36
D,P-Xylene (GCHS)	< 2.00	< 2.00	< 2.00	< 2.00
Tetrachi oroethene	· 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	× 1.00	< 1.00	< 1.00	. 1.00
Toluene	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	× 1.00	< 1.00	< 1.00	< 1.00
Trichloroethene	× 0.560	< 0.560	< 0.560	< 0.560
Trichloroethene (GCMS)	9.9	4 1.00	9.60	< 1.00
Vinyl Chloride	¥R	MA	YN	≨
Vinyi Chloride (GCHS)	< 12.0	< 12.0	< 12.0	< 12.0

Values are reported in micrograms per liter. Notes:

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- above the Maximum Reporting Limit. NA -- Not Analyzed. > -- indicates that the target analyte was detected at or
 - R -- Data did not meet quality control criteria and were A -- Data considered anomalous based on evaluation of rejected.

9 ff. . . . Voc

공 구 .

Table 81 Groundwater Investigative Analytical Data

Sample 10	37443	37444	37444
Date	06/13/90	03/05/90	06/13/90
Analytes			
Wetals/Anions/General Chem	0 0 1 0 0 0 0 0 0 0		
Arsenic	2.65	< 2.35	2.65
Cachius	< 6.78	< 6.78	< 6.78
Catcium	101000	82300	109000
Chloride	130000	110000	140000
Chromium	< 16.8	< 16.8	< 16.8
Copper	× 18.8	× 18.8	× 18.8
Cyanide	æ	< 5.00	œ
Fluoride	2200	1540	1330
Iron .	42	< 77.5	YN
Pee1	< 43.4	< 43.4	< 43.4
Magnesium	27500	19400	23900
Manganese	¥ Z	46.5	¥
Mercury	1.19	< 0.100	1.01
Witrite, Witrate Non-Specific	7000	3700	4200
Potassium	2920	3630	2610
Sodium	140000	110000	100000
Sul fate	180000	130000	130000
Total Organic Carbon	2000	2000	1000

- - Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
 - A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 81 Groundwater Investigative Analytical Data

Sample 10	37443	37444	37444
Date	06/13/90	03/05/90	06/13/90
Analytes			
Metals/Anjons/General Chem			
Total Suspended Solids	M	¥	M
Zinc	< 18.0	< 18.0	< 18.0
Phenol s			
2,3,6-Trichlurophenol (GCMS)	< 1.70	< 1.70	٠1.7
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCHS)	× 8.40	07.8 >	9.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	× 176	> 176	× 176
2-chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCHS)	< 3.60	× 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCHS)	< 8.50	< 8.50	< 8.50
4-Methytphenol (GCMS)	< 2.80	< 2.80	< 2.80
6-Witrophenol (GCMS)	< 96.0	· 96.0	× 96.0
Phenol (GCMS)	< 2.20	< 2.20	< 2.20
Semivolatiles			
1,4-Oxathiane	< 2.38	< 2.38	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (001)	< 0.0490	× 0.0490	< 0.0490

Reported values are accurate to three significant figures.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.

A -- Data considered anomalous based on evaluation of historical data of field of the burst

Table B1 Groundwater Investigative Analytical Data

	37443	37444	37444
Date	06/13/90	03/05/90	06/13/90
Amelytes			
			;
2 2-Bis/Darachiprochem()-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	× 18.0	× 18.0
2 2-stetoerachiocorpent)-1.1-Dichloroethene (DDE)	< 0.0540	0.0540	< 0.0540
2 2-at-charachloromemin-1 1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	× 14.6
4-thiocohemilethy Suffide	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCHS)	< 10.0	< 10.0	< 10.0
4-Chipeochenylmethyl Sulfone	× 7.46	> 7.46	< 7.46
A-thlecoheminethyl Sulfone (GCHS)	< 5.30	< 5.30	< 5.30
4-th content lethy Sulfoxide	< 11.5	< 11.5	< 11.5
4-thlococheminethyl Sulfoxide (GDRS)	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500
Adria (CONS)	< 13.0	< 13.0	< 13.0
Attached	< 4.03	< 4.03	< 4.03
Attacks (SCRS)	< 5.90	< 5.90	< 5.90
	< 5.00	< 5.00	< 5.00
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	< 5.90
ais (2-Frhv hexv) Phthatate (GCMS)	< 7.70	× 7.70	< 7.70
Carrolactam (GCBS)	< 10.0	< 7.70	< 10.0
Chlordene	< 0.0950	< 0.0950	< 0.0950

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.
A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Sample 10	37443	37444	37444
Date	06/13/90	03/02/90	06/13/90
Analytes			
Semivolatiles			
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCHS)	< 5.50	< 5.50	< 5.50
Dieldrin	0.0619	< 0.0500	< 0.0500
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0
Disopropyl Methylphosphonate	5.54	0.475	0.814
Dilappropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCHS)	< 130	< 130	< 130
Dithiane	< 1.34	< 1.34	< 1.34
Dithimme (GCMS)	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 18.0
Nexach lorocyclopentadiene	0.0480	< 0.0480	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	0.45 >	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80
Malathion	< 0.373	< 0.373	< 0.373

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of Nistrainal data and final av/oc -----duren

Sample 10	37443	37444	37444
Date	06/13/90	03/05/90	06/13/90
Analytes			
Semivolatiles			
Netathion (GCMS)	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	< 0.647	< 0.647
Perathion (GCMS)	< 37.0	< 37.0	< 37.0
Pentechlorophenol (GCHS)	< 9.10	< 9.10	< 9.10
erochs	< 0.787	< 0.787	< 0.787
Support (GCHS)	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 6. 50	< 8.50	< 8.50
Volatiles			
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	. 1.00	. 1.00	. 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780
1,1,2-frichloroethane (GCMS)	. 1.00	< 1.00	.1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730
1,1-Dichloroethare (GCMS)	• 1.00	× 1.00	< 1.00
1,1-Dichloroethene	٠1.7	۲.1.x	61.7
1,1-Dichloroethene (GCMS)	. 1.00	* 1.00	. 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	. 1.00	< 1.00	. 1.00

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target enalyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.
 - R -- Data did not meet quality control criteria and were rejected.
- A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table Bi Groundwater Investigative Analytical Data

	37443	37444	37444
Date	06/13/50	03/02/90	06/13/90
Analytes	1 1 9 1 1 1 1 1		
Volatiles		•	976 9 7
1 2-Dichloroetheres (cis & trans)	× 0.760	70.V	3
1 2-Richlorothenes (ris & trans) (GDMS)	× 5.00	< 5.00	< 5.00
	< 1.05	1.77 A	< 1.05
	4 1.00	1.09 A	. 1.00
Carbon Tetrachioride	0600 >	06.0 >	× 0.990
	8	4 1.00	4 1.00
Carbon Tetrachloride (GCMS)		4 9.01	< 0.820
Chlorobenzene		10.2	1.00
Chlorobenzene (GCMS)		¥ 02	2.65
Chloroform			
Chloroform (GCNS)	2.20	Z0.0	9.6
A Company of the Comp	< 0.195	0.223 A	< 0.195
Pitt mouth controvers (CTMS)	< 12.0	< 12.0	< 12.0
	< 0.550	< 0.550	< 0.550
	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GOMS)	× 1.00	· 1.00	. 1.00
	\$ 1.32	< 1.32	< 1.32
		× 1.00	4 1.00
M-Kylene (GCMS)	07 2 >	07.7 >	< 7.40
Methylene Chioride		•	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were
 - rejected.
 A -- Data considered anomalous based on evaluation of his ald of i . A/OC sour

Table 81 Groundwater Investigative Analytical Data

Analytes 06/13/90 03/02/90 06/13/90 Analytes Volatiles (-1.00 < 1.00	Sample 10	37443	37444	37444
 < 1.00 < 4.90 < 4.90 < 1.40 < 1.36 < 1.36 < 2.00 < 2.00 < 2.00 < 2.00 < 0.750 < 0.750 < 0.750 < 1.00 <	Date	06/13/90	03/05/90	06/13/90
 < 1.00 < 4.90 < 4.90 < 1.40 < 1.36 < 1.36 < 2.00 < 2.00 < 0.750 < 0.750 < 0.750 < 1.00 < 1.47 < 1.47 < 1.00 <	Analytes			
<pre></pre>	Volatiles			
Ketone < 4.90 < 4.90 Ketone (GCMS) < 1.40 < 1.40 Ketone (GCMS) < 1.36 < 1.36 HS) < 2.00 < 2.00 F < 0.750 < 0.750 Enne < 0.750 < 0.750 F < 1.00 < 1.00 F < 1.47 < 1.47 C 1.00 < 1.00 < 1.00 F < 0.560 < 0.560 C CCMS) < 1.00 < 1.00 MA NA (GCMS) < 12.0 < 12.0	Hethylene Chloride (GCHS)	· 1.00	· 1.00	× 1.00
Ketone (GCMS) < 1.40 < 1.40 NS) < 1.36 < 1.36 NS) < 2.00 < 2.00 ene < 0.750 < 0.750 ene (GCMS) < 1.00 < 1.00 ene < 1.47 < 1.47 < 1.00 < 1.00 < 1.00 e (GCMS) < 0.560 < 0.560 e (GCMS) < 1.00 < 1.00 e (GCMS) < 12.0 < 12.0	Methylisobutyl Ketone	06.4 ×	06.4 >	, 4.90
KS) < 1.36 < 1.36 Former < 2.00 < 2.00 Former < 0.750 < 0.750 Former < 1.00 < 1.00 Former < 1.00 < 1.00 <	Methylisobutyl Ketone (GCHS)	< 1.40	< 1.40	< 1.40
HS) < 2.00 < 2.00 ene < 0.750 < 0.750 ene (GCHS) < 1.00 < 1.00 ene (GCHS) < 0.560 < 1.00 e (GCHS) < 1.00 < 1.00 e (GCHS) < 1.00 < 1.00 mA NA (GCHS) < 12.0 < 12.0	0,P-Xylene	< 1.36	< 1.36	< 1.36
erne < 0.750 < 0.750 erne (GCHS) < 1.00 < 1.00 erne (GCHS) < 1.47 < 1.47 e (GCHS) < 0.560 < 0.560 e (GCHS) < 1.00 < 1.00 e (GCHS) < 12.0 < 12.0	O,P-Xylene (GCMS)	< 2.00	< 2.00	< 2.00
 ene (GCMS) c 1.47 c 1.60 c 1.00 	Tetrachloroethene	< 0.750	< 0.750	< 0.750
(GCHS) (GCHS) (1.47 (1.47 (1.47 (1.47 (1.00 (1.0	Tetrachloroethene (GCMS)	٠ 1.00	· 1.00	× 1.00
 < 1.00 < 0.560 <	Toluene	< 1.47	< 1.47	< 1.47
 6CHS) 6CHS) 1.00 <	Toluene (GCMS)	× 1.00	. 1.00	· 1.00
(GCHS) < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 <	Trichloroethene	° 0.560	< 0.560	< 0.560
(GCMS) c 12.0 c 12.0 c 12.0	Trichlorethere (GCHS)	41.00	< 1.00	4 1.00
< 12.0 < 12.0	Vinyl Chloride	**	¥	×
	Viryl Chloride (GCMS)	< 12.0	< 12.0	< 12.0

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.
A -- Data considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 86 GC/MS Analytical Data for Domestic Well Samples

Sample 1D Date	HA1150 01/26/90 GC/MS of	HA1170 02/2 :/90 GC/HS of	
Analytes	11841TW096	10021TWPE0	
Phenols			
2,3,6-Trichlorophenol (GCMS)	× 1.70	s.1.	
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	
2,4-Dichlorophenol (GCHS)	× 8.40	< 8.40	
2,4-Dimethylphenol (GCHS)	07.7 >	07.7 >	
2,4-Dinitrophenol (GCMS)	× 176	× 176	
2-Chiorophenol (GCHS)	< 2.80	< 2.80	
2-Nethylphenol (GCHS)	< 3.60	< 3.60	
2-Witrophenol (GOMS)	× 8.20	< 8.20	
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	
4-Nethylphenol (GCMS)	< 2.80	< 2.80	
4-Witrophenol (GCMS)	· %·0	· %0.0	
Phenol (GCHS)	< 2.20	< 2.20	
Semivolatiles			
1,4-Okathiane (GCMS)	< 27.0	< 27.0	
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	

Notes: Values are reported in micrograms per liter.

Values are reported to three significant figures.

- .- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit.
- NA -- Not Analyzed.
 R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA1150	HA1170
Date	01/26/90	05/27/90
• •	GC/HS of	GC/MS of
	1184114096	10021TWE0
. Analytes		
Semivolatiles	0 e e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4-Chlorophemylmethyl Sulfide (GCMS)	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30
4-Chlorophenylaethyl Sulfoxide (GCHS)	< 15.0	< 15.0
Aldrin (GCMS)	< 13.0	< 13.0
Atrazine (GONS)	¢ 5.90	< 5.90
Bis (2-Ethylhexyl) Phthelate (GCMS)	× 7.70	67.7
Caprolactam (GDMS)	< 10.0	6.7.7
Chlordene (GCHS)	< 37.0	< 37.0
Dicyclopentadiene (GCMS)	< 5.50	< 5.50
Dieldrin (GCHS)	< 26.0	< 26.0
Diisopropyl Methylphosphomete (GCMS)	< 21.0	< 21.0
Dimethylmethyl Phosphonate (GCMS)	< 130	× 130
Dithiame (GCMS)	< 3.30	< 3.30
Endrin (GCMS)	< 18.0	× 18.0
Wexachlorocyclopentadiene (GCHS)	< 54.0	o.56.0
Isodrin (GCMS)	< 7.80	< 7.80

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{MA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table 86 GC/MS Analytical Data for Domestic Well Samples

Semple 10	HA1150	HA1170
Date	01/26/90	05/27/90
	GC/MS of	GC/MS of
	11841TW096	10021TUPE0
alytes		
maivolatiles		
Melathion (GCMS)	< 21.0	< 21.0
Parathion (GCHS)	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10
Supone (GCHS)	< 19.0	< 19.0
Vapona (GCHS)	< 8.50	< 8.50
slatiles		
1,1,1-Trichloroethane (GCMS)	× 1.00	· 1.00
1,1,2-Trichloroethane (GCMS)	. 1.00	. 1.00
1,1-Dichloroethane (GCMS)	. 1.00	. 1.00
1,1-Dichloroethene (GCMS)	< 1.00	. 1.00
1,2-Dichloroethane (GCNS)	· 1.00	• 1.00
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00
Benzene (GCH\$)	.1.00	. 1.00
Carbon Tetrachloride (GCMS)	. 1.00	· 1.00
Chlorobenzene (GCMS)	.1.00	. 1.00
Chloroform (GCMS)	. 1.00	. 1.00
Dibromochloropropane (GCMS)	< 12.0	< 12.0

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table 86 GC/MS Analytical Data for Domestic Well Samples

Sample 1D Date Analytes Volatiles Ethyl Benzene (GCMS) M-Kylene (GCMS) Methylene Chloride (GCMS) Methylisoburyl Ketone (GCMS)	HA1150 01/26/90 GC/MS of 1184174096 < 1.00 < 1.00 < 1.00	HA1170 02/27/90 GC/MS of 100211WPEO < 1.00 < 1.00 < 1.00	
O,P-Kylene (GCMS) Tetrachloroethene (GCMS) Toluene (GCMS) Trichloroethene (GCMS) Vinyl Chloride (GCMS)	5.001.001.001.0012.0	4.1.004.1.004.1.004.1.00	

Values are reported to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $\mbox{NA} \mbox{--} \mbox{Not Analyzed.}$ $\mbox{R} \mbox{--} \mbox{Data did not meet quality control criteria and were$

HA1151	01/26/90	18 of	11841TW096			< 0.760	0.780	< 0.730	6.1.2	< 1.10	< 0.760	< 1.05	0.00	< 0.820	< 0.500	< 1.37	< 1.32	o 4.7. ×	× 1.36	< 0.750 <
Sample 10	Date			Analytes	Volatiles	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1.2-Dichloroethenes (cis & trans)	Benzene	Carbon Tetrachloride	Chlorobenzene	Chloroform	Ethyl Benzene	M-Xylene	Methylene Chloride	O,P-Xylene	Tetrachloroethene

Values are reported to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

TB -- Trip Blank

01/26/90 TB of	11841TW096	< 1.47	< 0.560
Sample 1D Date	9	50]	Trichlorethene
Sampl Date	Analytes	Volatiles	Trich

Values are reported to three significant figures.

-- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.
> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

· Tri nk

Table B8 Duplicate Analytical Data for Domestic Well Samples

Seeple 10	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	Dup of	Dup of	po dng	Dup of	bup of
	13350TW104	11830TW112	107201WBR1	11841TW096	11841TW096
Analytes				-	
Metals/Anions/General Chem					
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35	< 2.35
Cednium	8.4 0	07.8 >	< 6.78	· 6.78 ·	< 6.78
Calcium	84200	110000	134000	1460	1380
Chloride	00069	86000	140000	 	3420
Chromium	< 24.0	< 24.0	< 16.8	< 16.8	< 16.8
Copper	< 26.0	< 26.0	< 18.8	× 18.8	< 18.8
Cyanide	< 5.00	10.2	< 5.00	< 5.00	× 8.90
Fluoride	1580	1520	1890	œ	2910
Iron	¥	Y.	M	¥	< 77.5
Peal	< 74.0	< 74.0	< 43.4	< 43.4	< 43.4
Magnesium	9110	31100	32000	< 135	< 135
Manganese	¥	¥	¥#	¥	< 9.67
Mercury	< 0.100	< 0.100	< 0.100	< 0.100 	< 0.100
Witrite, Mitrate Non-Specific	290	3500	7400	37.7	140
Potassium	1030	4530	3330	< 1240	< 1240
Sodium	200000	80600	160000	100000	00026

Values are reported to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Mot Analyzed.

R -- Data did not meet quality control criteria and were

rejected.

Table 88 Duplicate Analytical Data for Domestic Well Samples

Sample 10	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/51/90
	Dup of	pod ot	Dup of	Dup of	o dna
	13350TW104	11830TW112	10720TWBR1	11841TW096	11841TW096
Analytes				-	
Metals/Anions/General Chem					
Sulfate	320000	200000	290000	œ	21000
Total Organic Carbon	YN.	¥	009	· 1000	< 1000
2inc	24.6	< 22.0	51.3	< 18.0	< 18.0
Phenols					
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	× 1.70	· 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	¥	< 2.80	< 2.80	< 2.80	< 2.80 .
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	× 8.40	< 8.40	× 8.40	× 8.40	07'8 >
2,4-Dimethylphenol (GCMS)	07"7 >	07.7 >	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	4 176	× 176	< 176	v 176	< 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60	· 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80	< 2.80
4-Witrophenol (GCMS)	< 96.0	° %.0	< 96.0	· 96.0	0.96 >
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	< 2.20	< 2.20

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > .-- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table B8 Duplicate Analytical Data for Domestic Well Samples

Sample 10	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	Dup of	Dup of	Dup of	Dup of	to qua
	13350TW104	11830TW112	10720TWBR1	11841TW096	11841TW096
Analytes					
Senivolatiles					
1,4-0xathiane	< 2.38	< 2.38	< 2.38	< 2.38	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	< 0.0490	< 0.0490	< 0.0490	< 0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophemyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Suifide	< 5.69	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Chiorophenylmethyl Sulfone	> 7.46	< 7.46	> 7.46	< 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	0.0500	< 0.0500	< 0.0500
Aldrin (GCNS)	< 13.0	< 13.0	< 13.0	< 13.0	< 13.0
Atracine	< 4.03	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.80	< 5.90	< 5.90

Notes: Values are reported in micrograms per liter.
Values are reported to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.</p>

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table 88 Duplicate Analytical Data for Domestic Well Samples

Section 1	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	o dng	po dng	Dup of	omb of	orp of
	13350TW104	11830TW112	10720TWBR1	11841TW096	11841TW096
Analytes					
				•	
Semivolatiles	> 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Benzorniazore	< 5.90	< 5.90	< 5.90	< 5.90	< 5.90
Bicyclo [6,6,1] nepter-2,3 diene	¥¥	¥	< 7.70	< 7.70	< 7.70
818 (Z-Ethylnexyl) Phymerene (echs)	¥	¥	< 7.70	< 10.0	< 7.70
Caprolectem (GCNS) Chlordene	0.0950	0560.0 >	0.0950	< 0.0950	< 0.0950
	< 37.0	< 37.0	< 37.0	< 37.0	< 37.0
Chlordene (uchs)	< 5.00 < 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Oleyclopenced ene	< 5.50	< 5.50	< 5.50	< 5.50	< 5.50
Dicyclopentagiene (e.m.)	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCHS)	< 26.0	< 26.0	< 26.0	< 26.0	< 26.0
	18.9	5.61	79.0	< 0.392	< 0.392
Disopropyt Metnythnostatorate	< 21.0	< 21.0	77.4	< 21.0	< 21.0
prisopropy, metalythropisms (cons.)	< 0.188	0.253	< 0.188	< 0.188	< 0.188
Dimethylmethyl phosphones (COMC)	< 130	< 130	< 130	< 130	< 130
Dimetny metny from product comp.	< 1.34	< 1.34	< 1.34	× 1.3	× 1.34
Dithiame (GCHS)	< 3.30	< 3.30	< 3.30	< 3.30	< 3.30

< -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were 흔

Table B8 Duplicate Analytical Data for Domestic Well Samples

<u> </u>	HA1030	HA1031	HA1068	HA1149	HA1271
	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	Dup of	Dup of	go dng	Dup of	Dup of
	13350TW104	11830TW112	10720TWBR1	11841TW096	11841TW096
Analytes					
Semivolatiles					
Endrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Endrin (GCHS)	< 18.0	< 18.0	< 18.0	< 18.0	< 18.0
Mexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	< 0.0480	< 0.0480
Wexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Indfin (GCHS)	< 7.80	< 7.80	< 7.80	< 7.80	< 7.80
Malathion	< 0.373	< 0.373	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	< 0.647	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GDIS)	< 9.10	< 9.10	< 9.10	< 9.10	< 9.10
Strone	< 0.787	< 0.787	< 0.787	< 0.787	< 0.787
Suppose (60%)	< 19.0	< 19.0	< 19.0	< 19.0	< 19.0
Vaccina	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50	< 8.50
Voletiles					
1,1,1-Trichloroethane	< 0.760	< 0.760	3.26	< 0.760	< 0.760

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table 88 Duplicate Analytical Data for Domestic Well Samples

Sample 10	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	to and	o dng	bup of	Dup of	yo dha
	13350TW104	11830TW112	10720TWBR1	11841TW096	11841TW096
Analytes					
Volatiles					
1,1,1-Trichloroethane (GCMS)	¥N	¥	¥	· 1.00	. 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	Y.	¥	¥	. 1.00	. 1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	¥	¥	YN	· 1.00	• 1.00
1,1-Dichloroethene	4 1.70	< 1.70	< 1.70	4 1.70	× 1.70
1,1-Dichloroethene (GCMS)	¥¥	¥	¥	· 1.00	. 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	MA	YN	¥	. 1.00	× 1.00
1,2-Dichloroethenes (cis & trans)	c 0.760	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	¥N	¥	¥	< 5.00	< 5.00
Benzene	< 1.05	< 1.05	< 1.05	< 1.05	< 1.05
Benzene (GCHS)	¥	NA NA	¥	· 1.00	· 1.00
Carbon Tetrachloride	06.0 >	< 0.990	0.00	0.000	0600 >
Carbon Tetrachloride (GCNS)	Y.	¥	Y.	. 1.00	< 1.00
Chlorobenzene	< 0.820	< 0.820	< 0.820	< 0.820	< 0.820

Values are reported to three significant figures. Notes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- $\mbox{NA} \mbox{ -- Not Analyzed.}$ $\mbox{R} \mbox{ -- Data did not meet quality control criteria and were$

Table BB Duplicate Analytical Data for Domestic Well Samples

Ol e loues	HA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
-	Dup of	o dna	Dup of	Dup of	Dup of
	13350TW104	11830TW112	10720TWBR1	11841TW096	1184114096
Analytes					
Volatiles					
Chlorobenzene (GCMS)	K X	¥	YN	× 1.00	. 1.00
Chloroform	< 0.500	< 0.500	0.962	× 0.500	< 0.500
Chloroform (GCMS)	¥	¥	¥.	, · 1.00	. 1.00
Dibramochlorapropane	< 0.195	< 0.195	< 0.195	< 0.195	< 0.1%
Dibramochlorapropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCHS)	¥¥	¥	×	. 1.00	. 1.00
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCHS)	¥	¥	¥ X	· 1.00	< 1.00
Methylene Chloride	× 7.40	< 7.40	o 7.40	< 7.40	< 7.40
Methylene Chloride (GCMS)	4 %	¥	Y 2	· 1.00	. 1.00
Methylisobutyl Ketone	· 4.90	o6.4 ×	06.4 >	06.4 >	6.4 ×
Methylisobutyl Ketone (GCHS)	¥	MA M	M	< 1.40	< 1.40
D,P-Kylene	· 1.36	< 1.36	< 1.36	< 1.36	< 1.36
O,P-Xylene (GCHS)	¥	¥	¥	< 2.00	< 2.00

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

rejected.

Notes: Values are reported in micrograms per liter.
Values are reported to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

Table 88 Duplicate Analytical Data for Domestic Well Samples

	NA1030	HA1031	HA1068	HA1149	HA1271
Date	01/17/89	01/31/89	12/28/89	01/26/90	08/21/90
	Dup of	Dup of	Dup of	pod ot	Dup of
	13350TW104	11830TW112	10720TWBR1	1184114096	11841TW096
Analytes					
Volatiles					1
Tetrachloroethene	< 0.750	. 0.750	< 0.750	< 0.750	< 0.750
Tetrachioroethene (GCMS)	W	VN	¥	· 1.00	· 1.00
Tolliere	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47
Tolumon (GDIS)	¥	¥	¥	. 1.00	.1.00
Trichloroethene	< 0.560	< 0.560	< 0.560	< 0.560	< 0.560
Trichloroethene (GOHS)	¥	¥	¥	. 1.00	. 1.00
Vinyl Chloride (GCHS)	4	¥.	4	< 12.0	< 12.0

Values are reported to three significant figures. Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at ... or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table B9: Vinyl Chloride Analytical Results for Groundwater Samples

Sample ID	Sample Date	Value
37307	11/09/89	< 0.4600
37308	11/07/89	< 0.4600
37309	11/07/89	< 0.4600
37312	11/07/89	< 0.4600
37313	11/27/89	< 0.4600
37316	11/08/89	< 0.4600
37317	11/08/89	< 0.4600
37318	11/16/89	< 0.4600
37320	10/25/89	< 0.4600
37321	10/26/89	< 0.4600
37322	10/26/89	< 0.4600
37323	11/09/89	< 0.4600
37327	11/08/89	< 0.4600
37330	10/31/89	< 0.4600
37338	11/09/89	< 0.4600
37339	11/09/89	< 0.4600
37341	10/26/89	< 0.4600
37342	10/31/89	< 0.4600
37343	10/25/89	< 0.4600
37344	10/31/89	< 0.4600
37362	11/14/89	< 0.4600
37365	11/07/89	< 0.4600
37367	11/02/89	< 0.4600
37368	11/07/89	< 0.4600
37369	10/25/89	< 0.4600
37370	11/07/89	< 0.4600
37371	11/08/89	< 0.4600
37372	11/07/89	< 0.4600 < 0.4600
37373	10/31/89 10/31/89	< 0.4600 < 0.4600
37374	11/14/89	< 0.4600 < 0.4600
37376 37377	10/25/89	< 0.4600
37378 37378	11/17/89	< 0.4600
37378 37379	11/16/89	< 0.4600
37380	11/15/89	< 0.4600
37381	11/02/89	< 0.4600
37383	11/02/89	< 0.4600
37387	11/02/89	< 0.4600
37388	11/02/89	< 0.4600
37389	11/08/89	< 0.4600
37391	10/25/89	< 0.4600
37392	10/25/89	< 0.4600
37395	11/15/89	< 0.4600
37396	11/08/89	< 0.4600
37397	11/08/89	< 0.4600
BOLLER	11/27/89	< 0.4600

Table 82 Groundwater GC/MS Analytical Data

grapia 10	HA1048	HA1069	HA1163	HA1168
Date	12/18/89	12/28/89	05/01/90	05/22/20
	GC/MS of	GC/MS of	CC/MS of	GC/MS of
	37418	37430	HA1072	37404
Analytes				
Phenois				
2,3,6-Trichlorophenol (GCMS)	5.1.2	< 1.70	٠1.ð	¥
2,4,5-Trichlorophenol (GCHS)	< 2.80	< 2.80	< 2.80	4
2,4,6-Trichlorophenol (GCHS)	< 3.60	< 3.60	× 3.60	4
2,4-Dichlorophenol (GCHS)	6.4 0	07.9 >	07.8 >	4
2,4-Dimethylphenol (GCHS)	07.7 >	07.7 >	07.7 >	42
2,4-Dinitrophenol (GCHS)	× 176	> 176	× 176	¥.
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥
2-Hethylphenol (GCHS)	< 3.60	< 3.60	× 3.60	¥
2-Hitrophenol (GCHS)	< 8.20	< 8.20	6.20	4
3-Nethyl-4-Chlorophenol (GCHS)	< 8.50	< 8.50	< 8.50	Y#
4-Hethylphenol (GCHS)	< 2.80	< 2.80	< 2.80	K
4-Mitrophenol (GCMS)	· %·0	0.96 >	· %·0	¥
Phenol (GOIS)	< 2.20	< 2.20	< 2.20	YN
Semivoletites				
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	¥
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMf)	< 18.0	< 18.0	< 18.0	¥
2,2-8is(perachlorophenyl)-1,1-Dichloroethane (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. MA -- Not Analyzed.
- A -- Results considered enomelous based on evaluation of historical data and field GA/GC procedures.

Seed of	NA1048	MA1069	MA1163	MA1166
Dete	12/18/89	12/28/89	05/01/90	05/25/50
•	GC/NS of	GC/HS of	GC/NS of	GC/MS of
	37418	37430	MA1072	37404
Analytes				
Sanivolatiles				
4-Chlorophenylmethyl Sulfide (GCHS)	< 10.0	< 10.0	< 10.0	¥#
4-Chlorophenylmethyl Sulfone (GCHS)	< 5.30	< 5.30	< 5.30	¥¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	\$
Aldrin (60%)	< 13.0	< 13.0	< 13.0	\$
Atrazine (GDMS)	× 5.90	< 5.90	< 5.90	¥
Bis (2-Ethylhexyl) Phthalate (GCMS)	176	\$	< 7.70	ş
Caprolactem (GCHS)	< 10.0	*	< 10.0	¥
Chlordene (GCHS)	< 37.0	< 37.0	< 37.0	*
Dicyclopentediene (GCMS)	564	< 5.50	365	*
Dielarin (GCHS)	< 26.0	< 26.0	< 26.0	\$
Dileopropyl Methylphosphonate (GCMS)	200	< 21.0	× 200	¥
Dimethylmethyl Phosphorate (GCMS)	× 130	× 130	× 130	*
Dithiere (COMS)	< 3.30	< 3.30	< 3.30	*
Endrin (GCMS)	< 18.0	< 18.0	· 18.0	≨
Nexachlorocyclopentadiene (GCMS)	o.¥. ^	< 54.0	< 54.0	¥
ladrin (60%)	< 7.80	< 7.80	< 7.80	X

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were
 - rejected.

 A -- Results considered anomalous based on evaluation of historical decoration and file and constants.

Table B2 Groundwater GC/MS Analytical Data

OI elones	HA1048	HA1069	HA1163	MA1168	
Dete	12/18/89	12/28/89	05/01/90	05/22/20	
	GC/MS of	CC/MS of	CC/MS of	GC/MS of	
	37418	37430	HA1072	37404	
Sanivolatiles					
Malathion (GDMS)	< 21.0	< 21.0	< 21.0	¥	
Parathion (60%)	< 37.0	< 37.0	< 37.0	¥	
Pentechlorophenol (GCHS)	< 9.10	< 9.10	< 9.10	¥	
Supone (GCHS)	< 19.0	< 19.0	< 19.0	¥	
Vapona (GCHS)	< 8.50	< 8.50	< 8.50	¥	
Volatiles					
1,1,1-Trichloroethame (GCMS)	< 1.00	· 1.00	.1.00	.1.00	
1,1,2-Trichloroethane (GCMS)	× 1.00	< 1.00	. 1.00	. 1.8	
1,1-Dichloroethere (GCHS)	4 1.00	× 1.00	× 1.00	. 1.00	
1,1-Dichloroethere (GCMS)	× 1.00	× 1.00	× 1.00	.1.00	
1,2-Dichloroethane (GCHS)	1.23	× 1.00	12.0	· 1.00	
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	< 5.00	< 5.00	
Benzene (60%)	· 1.00	× 1.00	· 1.00	15.5	<
Carbon Tetrachloride (GCMS)	× 1.00	× 1.00	< 1.00	1.56	<
Chlorabenzene (6CHS)	· 1.00	· 1.00	. 1.00	8.2	<
Chloroform (GDHS)	. 1.00	× 1.00	× 1.80	v 150	<
Dibromochloropropere (GCMS)	< 12.0	< 12.0	< 12.0	*	

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criterie and were
 - rejected.
 A -- Results considered anomalous based on evaluation of historical data and field GA/GC procedures.

01 = 10005	NA1048	NA1069	HA1163	MA1168	_
900	12/18/89	12/28/89	05/01/90	02/22/90	_
	GC/MS of	GC/MS of	GC/MS of	GC/MS of	
	37418	37430	HA1072	32404	
Analytes					
Ethyl Benzene (GCMS)	• 1.00	· 1.00	.1.00	.1.8	
M-Xylene (GCMS)	< 1.00	.1.00	4 1.00	. 1.00	
Methylene Chloride (GCMS)	. 1.00	< 1.00	.1.00	. 1.00	
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40	
O,P-Kylene (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00	
Tetrachloroethane (GCMS)	13.9	× 1.00	7.41	· 1.00	
Toluene (60%)	. 1.00	.1.00	.1.00	3.00	<
Trichloraethene (GCMS)	6.20	.1.00	2.60	3.50	⋖
Vinyl Chloride (GCHS)	< 12.0	< 12.0	< 12.0	< 12.0	

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

 ⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were

rejected.
A -- Results considered anomalous based on evaluation of historian days and field na/QC namedures

Table 82 Groundwater GC/MS Analytical Data

OI elas	HA1169	NA1171	NA1199
Dete	05/27/90	05/58/90	06/15/90
	GC/NS of	GC/MS of	GC/MS of
	37435	37438	37441
Analytes			
Phenols			
2,3,6-Trichlorophanol (GCMS)	× 1.70	< 1.70	· 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCHS)	07.8 >	< 8.40	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCHS)	× 176	< 176	× 176
2-Chlorophanol (GCMS)	< 2.80	< 2.80	< 2.80
2-Nethylphenol (GCMS)	< 3.60	× 3.60	< 3.60
2-Hitrophenol (GCHS)	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8. 50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80
4-Hitrophenol (GCHS)	o.96 >	0.96 >	· 96.0
Phenol (GCMS)	< 2.20	< 2.20	< 2.20
Samivolatiles			
1,4-Onathiane (GONS)	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophanyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 18.0	< 18.0	× 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DOE) (GCMS)	< 14.0	< 14.0	< 14.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or
 - above the Maximum Reporting Limit.
 R -- Data did not meet quality control criteria and were rejected.
 NA -- Not Analyzed.
- rejected.
 A -- Results considered enomatous based on evaluation of historical data and field QA/QC procedures.

Of slower	HA1169	HA1171	HA1199
Date	02/27/90	05/58/90	06/12/90
	GC/NS of	GC/MS of	GC/MS of
	37435	37438	37441
Analytes			
Samivolatiles			
4-Chiorophenylmethyl Suifide (GCMS)	< 10.0	< 10.0	< 10.0
4-Chloropherylaethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30
4-Chloropherylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0
Atrezine (GCMS)	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthelate (GCMS)	× 7.70	× 7.70	< 7.70
Caprolactem (GCHS)	< 7.70	c 7.70	< 10.0
Chlordene (GCHS)	< 37.0	< 37.0	< 37.0
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0
Disopropyt Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate (GCMS)	< 130	· 130	× 130
	< 3.30	< 3.30	< 3.30
Endrin (GCMS)	× 18.0	· 18.0	· 18.0
Mexachlorocyclopentadiene (GCMS)	< 54.0	× 54.0	< 54.0
leadrin (GOIS)	× 7.80	< 7.80	< 7.80

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

c -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Date did not meet quality control criteria and were

A -- Results considered anomalous based on evaluation of hist '' I der '-1 fie' "1/90 '''' durer

() = [\tags]	HA1169		KA1171		HA1199	
Pate	02/21/90		05/58/90	_	06/12/90	
	GC/MS of		GC/MS of		GC/MS of	
	37435		37438	_	37441	
Analytes						
Semivoletiles	:					
Malathion (GCMS)	< 21.0		< 21.0		< 21.0	
Parathian (GCHS)	< 37.0		< 37.0		< 37.0	
Pantachi orochanol (GCMS)	< 9.10		< 9.10		< 9.10	
Supply (GDS)	< 19.0		< 19.0		< 19.0	
Vapora (GCHS)	< 8.50		< 8.5 0		< 8.50	
Voletiles						
1.1.1-Trichloroethene (GCHS)	< 1.00		× 1.00		. 1.00	
1.1.2-Trichloroethere (GCHS)	× 1.00		۰ 1.00		5.23	
1.1-Dichloroethane (GCMS)	< 1.00		۰ 1.00		. 1.00	
1.1-Dichlorethere (GCMS)	< 1.00		۰ 1.00 د		. 1.00	
1,2-Dichloroethane (GCMS)	4 1.00		٠ 1.00		• 1.00	
1.2-bichloroetheres (cis & trans) (GCHS)	< 5.00		< 5.00		< 5.00	
Benzene (GCMS)	7.44	<	9.30	<	< 1.00	
Carbon Tetrachloride (GCMS)	1.10	<	1.47	<	× 1.00	
	1.57	<	8.5	<	· 1.00	
Chloroform (GCMS)	× 150	<	× 150	<	· 1.00	
Dibromochloropropene (GCMS)	< 12.0		< 12.0		< 12.0	

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. MA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Sample 10	HA1169	HA1	HA1171	HA1199
Dete	02/27/90	05/58/90	06/1	06/12/90
	GC/NS of	GC/MS of	of of	GC/MS of
	37435	37	37438	37441
Analytes				
Volatiles				
Ethyl Benzene (GCHS)	× 1.00	× 1.00	_	× 1.00
M-Xylene (GCHS)	< 1.00	× 1.00	_	× 1.00
Nethylene Chloride (GCMS)	< 1.00	.1.00	_	. 1.00
Methyl isobutyl Ketone (GCHS)	< 1.40	< 1.40	_	< 1.40
O,P-Kylene (GCMS)	< 2.00	< 2.00	_	< 2.00
Tetrachloroethene (GCMS)	4 1.00	٠ 1.00	_	< 1.00
Toluene (GCMS)	2.30	3.30	<	· 1.00
Trichloroethene (GCMS)	2.30	A 3.20	<	27.0
Vinyl Chloride (GCHS)	< 12.0	< 12.0	_	< 12.0

Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

R -: Data did not meet quality control criteria and were

rejected.
A -- Results considered anomalous based on evaluation of hist I da' 1 fie - 700 dure-

Table B3 Groundwater QA/QC Analytical Data

Sample 10		HA1019	HA1021	HA1025	HA1046
Date		9/27/89	10/26/89	11/09/89	02/12/90
		FB of	RB of	TB of	RB of
	37402	37402	37341	37307	37408
Analytes					
Metals/Anions/General Chem					
Arsenic		48	NA NA	¥8	< 2.35
Cadaium		Y.	NA A	Y.	. 6.78
Calcium		KA	NA	¥,	657
Chloride		4	Z.	¥	< 278
Chromium		¥	¥	¥	< 16.8
Copper	Z	¥	NA	¥	× 18.8
Cyanide		KA	KA	¥	< 5.00
Fluoride		NA V	¥.	¥	< 153
Ira		¥	NA NA	ş	566
Peol		¥	VN V	¥	< 43.4
Magnesium		¥	YA.	4	< 135
Mangamese		¥	NA NA	₹	× 9.67
Mercury		¥	4 2	≨	0.100
Mitrite, Mitrate Hon-Specific		W.	₹ N	¥	116
Potassium		KA K	NA .	¥	< 1240
Sodium		¥	\$	¥	957

- < indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - indicates that the target analyte was detected at or
 - R -- Data did not meet quality control criteria and were above the Maximum Reporting Limit. rejected.
- NA -- Not Analyzed. RB Rinse Blank TB Trip Blank FB Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Metals/Anions/General Chem Sulfate Total Organic Carbon Total Suspended Solids Zinc	RB of 37402 MA MA MA MA MA MA	17402 17402 170 170 170	10/20/09/ RB of 37341 NA NA N	18 of 37307 NA NA NA	02/12/90 R8 of 37408 362 < 1000 NA < 18.0
2,3,6-Trichlorophenol (GCMS)	2	2.5	£ ±	.	< 2.80
2,4,5-Trichlorophenol (GCMS)	< 2.80 	25.2 ×	4 :	\$ \$	8
2,4,6-Trichlorophenol (GCMS)	× 3.60	× 3.60	X :	£ :	3
2 4-Dichlorochenol (GCMS)	07.8 >	× 8.40	¥	*	0.40
2,4-Dimethylphenol (GCMS)	05.4 >	05.5 >	W.	¥	07.4 >
2 4-Biniternational (BMC)	× 176	4 176	¥ X	¥.	× 176
2.4-0 III ii questo Camo	< 2.80	< 2.80	¥	¥	< 2.80
	> 3.60	< 3.60	¥.	₹	< 3.60
2-Mitmorhand (CMS)	< 8.20	< 8.20	¥¥	¥	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	6.50	< 8.50	¥¥	¥	8.5 0
SHCS) consider the second of	< 2.80	< 2.80	K	\$	< 2.80
4-Mitrophenol (GCHS)	0.% ×	· %.0	Y #	¥	· %·0

Reported values are accurate to three significant figures. < - indicates that the target analyte was not detected at Motes: Values are reported in micrograms per liter.

- indicates that the target analyte was detected at or or above the Certified Reporting Limit.
- R -- Data did not meet quality control criteria and were above the Maximum Reporting Limit.
 - MA -- Not Analyzed. rejected.

2 ritp ž

eld

Table B3 Groundwater QA/QC Analytical Data

					7,000	
Sample 10	HA1018	HA1019	HATUZI	HA1025	4A1040	
Date	09/21/89	09/27/89	10/26/89	11/09/89	02/12/90	
	RB of	FB of	RB of	TB of	RB of	
	37402	37402	37341	37307	37408	
Analytes						
Semivolatiles						
Dithiane (GCMS)	< 3.30	< 3.30	ž	¥	< 3.30	
Endrin	¥	¥	4	¥.	< 0.0500	
Endrin (GCMS)	< 18.0	< 18.0	¥	¥	< 18.0	
Hexachi orocyclopentadiene	< 0.0480	< 0.0480	4	¥3	< 0.0480	
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	¥	¥	< 54.0	
Isodrin	¥	¥	¥	¥	< 0.0510	
Isodrin (GCNS)	< 7.80	< 7.80	¥	¥	< 7.80	
Halathion	< 0.373	< 0.373	4	¥4	< 0.373	
Malathion (GCMS)	< 21.0	< 21.0	¥	ž	< 21.0	
Perathion	< 0.647	< 0.647	¥	≨ -	< 0.647	
Parathion (GCMS)	< 37.0	< 37.0	K	¥	< 37.0	
Pentachlorophenol (GCMS)	< 9.10	< 9.10	¥	¥	< 9.10	
enoting	< 0.787	< 0.787	¥	¥	œ	
Supone (GCHS)	< 19.0	< 19.0	¥	¥	< 19.0	
Vapone	< 0.384	< 0.384	¥	¥	< 0.384	
Vapona (GCHS)	< 8.50	< 8.50	¥	¥	< 8.50	

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. R8 - Rinse Blank T8 - Trip Blank F8 - Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Search 17	MA1018	HA1019	HA1021	HA1025	HA1046
Date	09/27/89	09/27/89	10/26/89	11/09/89	02/12/90
	RB of	FB of	RB of	18 of	RB of
•	37402	37402	37341	37307	37408
Analytes					,
Volatiles					
1,1,1-Trichloroethene	NA A	¥×	¥.	MA	< 0.760
1,1,1-Trichloroethane (GCMS)	¥×	4	KA	NA	· 1.00
1,1,2-Trichloroethane	MA	NA NA	¥	¥.	< 0.780
1,1,2-Trichloroethane (GCMS)	Y _N	42	¥.	¥.	· 1.00
1,1-Dichloroethane	¥	¥	¥	¥X	< 0.730
1,1-Dichloroethane (GCNS)	W	NA A	¥	¥	< 1.00
1,1-Dichloroethene	4 2	M	¥.	ş	× 1.70
1,1-Dichloroethene (GCMS)	*	Y.	¥¥	¥	· 1.00
1,2-Dichloroethane	YN	¥ N	¥	₹	< 1.10
1,2-Dichloroethane (GCMS)	¥	¥	¥	W W	4 1.00
1,2-Dichloroethenes (cis & trans)	¥	KA	KA	W	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	KN	42	¥	≨	< 5.00
Benzene	¥¥	¥H	¥	¥	< 1.05
Benzene (GCMS)	¥2	¥H	¥	≨	. 1.00
Carbon Tetrachloride	¥	¥¥	KA	\$	06.0 >
Carbon Tetrachloride (GCMS)	¥	¥	¥	¥	4 1.00

Reported values are accurate to three significant figures.

- < indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were

rejected.

a a pl -rip r . . FB Riner " * T" MA -- Not Analyzed.

· Table B3 Groundwater QA/QC Analytical Data

Service 10	HA1018	HA1019	HA1021	HA1025	HA1046
Date	09/21/89	09/27/89	10/26/89	11/09/89	02/12/90
	RB of	FB of	RB of	18 of	RB of
	37402	37402	37341	37307	37408
Analytes					
Absorb					
Phenol (GCHS)	< 2.20	< 2.20	¥	¥	< 2.20
Seelvoletilee					
1,4-Oxathiane	< 2.38	< 2.38	N	¥¥	< 2.38
1,4-0xathiane (GOMS)	< 27.0	< 27.0	¥	¥	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	¥	YN.	¥	¥R	< 0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	¥	4	< 18.0
2,2-Bia(parachlorophenyl)-1,1-Dichloroethene (DDE)	4	¥	¥	¥.	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	¥	V	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	¥	¥	< 5.69
4-Chloropherylmethyl Sulfide (GCMS)	< 10.0	< 10.0	¥ N	¥	< 10.0
4-Chlorophenylmethyl Sulfone	< 7.46	< 7.46	¥	ş	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	¥	¥	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	M	¥	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	¥	≨	< 15.0
Aldrin	¥	Ş	¥	¥	< 0.0500 <
Aldrin (GCMS)	< 13.0	< 13.0	M	¥	< 13.0
Atrazine	< 4.03	< 4.03	W	≨	< 4.03
					•

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. RB - Rinee Blank TB - Trip Blank FB - Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Sample ID Date	MA1018 09/27/69 RB of 37402	NA1019 09/27/89 FB of 37402	MA1021 10/26/89 RB of 37341	NA1025 11/09/89 TB of 37307	MA1046 02/12/90 RB of 37408	
Analytes						
Semivolatiles	8	< 5.90	\$	¥	< 5.90	
Atrazine (GDRS)		× 5.00	¥	¥	< 5.00	
Benzoth fazole	8 5	< 5.90	¥	≨	· 5.90	
Bicyclo [2,2,1] hepta-2,3-dlene	A	¥	**	4	6.7.	
Bis (2-Ethylhexyl) Phinalate (GCAS) Caprolactem (GCMS)	≦ ≦	K	¥	¥	< 10.0	
	4	¥	\$	ક	< 0.0950	
Chiordane	47.0	< 37.0	*	¥	< 37.0	
Chiordene (GCMS)		× 5.00	¥	¥	< 5.00	
Dicyclopentadiene	05.5	< 5.50	¥	¥	< 5.50	
Dicyclopentadione (GCMS) Dieldrin	*	¥	≨	¥	< 0.0500	
	26.0	< 26.0	≨	¥	< 26.0	
Dieldrin (GCRS)	202	< 0.392	¥	≨	< 0.392	
Dispercent Methylphosphonere	× 21.0	< 21.0	4 2	\$	< 21.0	
Dijeopropyl Methylphosphonate (w.m.s.)	× 0.188	< 0.186	¥¥	¥	< 0.136	
Dimethylmethyl Phosphonate Dimethylmethyl Phosphonate (GCHS)	× 130	× 130	\$	3	8.	
Dithiane	× 1.34	× 1.34	ş	\$	*:->	

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 R -- Data did not meet quality control criteria and were
 - rejected. MA -- Not Analyzed.

in at Trip : FB eld .

Table B3 Groundwater QA/QC Analytical Data

Sample 10	MA1018	MA1019	MA1021	HA1025	HA1046
Dete	09/21/89	09/27/89	10/26/89	11/09/89	02/12/90
	RB of	FB of	RB of	TB of	RB of
	37402	37402	37341	37307	37408
Analytes					
Volatiles					
Chlorobenzene	¥	£	≨	*	< 0. 6 20
Chlorabenzene (GCHS)	¥	¥	ş	4	· 1.00
Chloroform.	\$	¥	¥	¥8	< 0.500
Chloroform (GCHS)	≨	¥	₹	*	. 1.00
Dibromoch! oropropene	< 0.195	< 0.195	4	*	< 0.195
Dibromochtoropene (GCMS)	< 12.0	< 12.0	¥	4	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	4	¥,	< 0.550
Ethyl Benzere	¥	4	≨	¥	< 1.37
Ethyl Benzene (GCHS)	¥	≨	£	≨	· 1.00
M-Xylene	¥	¥	¥	¥	< 1.32
M-XVI ene (GCMS)	¥	ş	, ¥	\(\)	• 1.00
Hethylene Chloride	¥	≨	4	¥	05.7 >
Hethylene Chloride (GCHS)	¥	¥	≦	¥	.1.8
Methylisobutyl Ketone	× 4.90	6.4 ×	ş	¥	6.9
Hethylisobutyl Ketone (GCHS)	¥	¥	ş	¥	< 1.40
O,P-Xylene	≦	≦	\$	\$	× 1.36

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures. < - indicates that the target analyte was not detected at

> - indicates that the target analyte was detected at or or above the Certified Reporting Limit. above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were rejected.

MA -- Not Analyzed. RB - Rinse Blank 18 - Trip Blank FB - Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Serole 10	HA1018	HA1019	HA1021	HA1025	MA1046
Date	69/22/60	09/27/89	10/26/89	11/09/89	02/12/90
	RG of	FB of	RB of	TB of	RB of
	37402	37402	37341	37307	37408
Analytes					
Votatiles					
O,P-Xylene (GCMS)	¥¥	¥	MA	X	< 2.00
Tetrachloroethene	¥	Y,	¥	V.	< 0.750
Tetrachloroethene (GCMS)	K	YN.	¥	4	.1.00
Toluene	¥¥	¥R	¥	¥	< 1.47
Toluene (GCMS)	¥.	4	¥	¥	× 1.00
Trichloroethene	\$	4	¥	¥	< 0.560
Trichloroethene (GCMS)	¥	4	¥	≨	4 1.00
Vinyl Chloride	¥	4	097.0 >	097.0 >	*
Vinyl Chloride (GCMS)	4	£	¥	\$	< 12.0

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were

rejected.

MA -- Not Analyzed.

Table B3 Groundwater QA/QC Analytical Data

Semple 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	05/01/90	05/21/90
	FB of	RB of	FB of	18 of	18 of
	37418	37429	37429	HA1072	37407
Analytes					
Metals/Anions/General Chem					
Arsenic	< 2.35	< 2.35	< 2.35	¥	¥
Cacinius	6.78	< 6.78	< 6.78	¥	ş
Catcium	< 105	127	< 105	Y.	¥
Chloride	< 278	< 278	< 278	¥	¥
Chromium	< 16.8	< 16.8	< 16.8	¥.	¥.
Copper	× 18.8	< 18.8	× 18.8	¥	¥
Cyanide	< 5.00	< 5.00	< 5.00	MA	VN VN
Fluoride	< 153	< 153	< 153	¥¥	VN
	< 77.5	¥	¥	¥	VN VN
pee 1	< 43.4	< 43.4	< 43.4	YH	¥
Magnesium	< 135	< 135	< 135	¥	¥
Harganese	< 9.67	42	¥	¥	¥
Hercury	< 0.100	< 0.100	< 0.100	×	¥
Witrite, Witrate Non-Specific	067	20.7	20.5	KA	¥
Potessium	< 1240	< 1240	< 1240	W	¥X
Sodius	¢ 279	< 279	< 279	¥	¥

Indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> - indicates that the target analyte was detected at or above the staims Reporting Limit.

R -- Data did not meet quality control criteria and were rejected.

MA -- Not Analyzed.

RB - Ringe Blank TB - Trip Blank FB - Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Sample 1D Date	HA1047 12/18/89 FB of 37418	HA1066 12/29/89 RB of 37429	HA1067. 12/29/89 FB of 37429	HA1164 02/01/90 TB of HA1072	NA1167 02/21/90 TB of 37407
Analytes					
Metals/Anions/General Chem	ķ	ř.	Ķ	\$	*
Sulfate		Si v	200	¥N.	NA
Total Organic Carbon	0007 >	¥	NA	M	Y.
Total Suspended solids Zinc	< 18.0	< 18.0	< 18.0	¥	¥
Phenois	\$	ç,	£ *,	\$	4
2,3,6-Trichlorophenol (GCMS)	2.1.	0) G	1	1
2,4,5-Trichlorophenol (GCMS)	8.5	8.2	3.60	í á	: ≨
2,4,6-Trichlorophenol (GOIS)	07.60	07.8 >	× 8.40	¥	¥
2,4-Dichlorophenol (GDMS) 2,4-Dimethylphenol (GDMS)	05.4 >	07.7 >	07.7 >	¥N	¥
Company of the state of the sta	× 176	s 176	< 176	M	NA
C.A-UINITIONATION (BEAD)	< 2.80	< 2.80	< 2.80	¥	MA
C-Uniordimenol (GMs)	4 3.60	< 3.60	< 3.60	K	KA
	< 8.20	< 8.20	< 8.20	¥	. 48
3-Wethyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	¥	¥
Carry I amount to the Control of the	< 2.80	< 2.80	< 2.80	¥¥	YN.
4-Witrophenol (GCMS)	< 96.0	0.96.0	· %·0	¥	¥

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected.

NA -- Not Analyzed.

Rins ink if trip is FE Teld ...

Of a longs	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	02/01/90	02/21/90
	FB of	RB of	FB of	TB of	TB of
	37418	37429	37429	HA1072	37407
Phenols					
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	¥	¥
Semivolatiles					
1,4-Oxathiane	< 2.38	< 2.38	< 2.38	¥	NA
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	¥	W.
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	< 0.0490	< 0.0490	¥¥	¥.
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	¥	M
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	¥	4 2
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	¥	¥
4-Chiorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	¥	¥.
4-Chiorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	¥.	¥.
4-Chlorophenylmethyl Sulfone	> 7.46	97.7 >	> 7.46	¥	MA
4-Chlorophenylmethyl Sulfane (GCMS)	< 5.30	< 5.30	< 5.30	¥	¥,
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	¥	¥.
4-Chloropherylmethyl Sulfoxide (GCHS)	< 15.0	< 15.0	< 15.0	¥	¥8
Aldrin	< 0.0500	< 0.0500	< 0.0500	¥X	KN N
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	44	₹ 2
Atrezine	< 4.03	< 4.03	< 4.03	MA	W.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were
 - rejected.
- NA -- Not Analyzed, RB - Rinse Blank TB - Trip Blank FB - Field Blank.

Sample 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	02/01/90	02/21/90
	FB of	RB of	FB of	TB of	TB of
	37418	37429	37429	HA1072	37407
Analytes					
Somivolatiles					
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	¥	¥.
Benzothiazole	< 5.00	< 5.00	< 5.00	VN.	A.A.
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	¥N	¥N
Bis (2-Ethylhexyl) Phthalate (GCMS)	c 7.70	< 7.70	oz.2 >	¥,	N
Caprolactam (GCMS)	< 10.0	< 7.70	< 7.70	¥	Y.
Chlordene	< 0.0950	< 0.0950	< 0.0950	¥	4
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	¥	¥
Dicycl opentadiene	< 5.00	< 5.00	< 5.00	×	K.
Dicyclopentediene (GCMS)	< 5.50	< 5.50	< 5.50	¥	₹
Dieldrin	< 0.0500	< 0.0500	< 0.0500	YN	¥
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	¥	¥
Diisopropyl Methylphosphonate	< 0.392	< 0.392	< 0.392	4	¥3
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	¥	\$
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	¥ N	4
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	N	K
Dithiane	× 1.34	× 1.34	× 1.34	¥	¥

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected.
- NA -- Not Analyzed.

Rins nk Trip : FB

eld

Semple 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	02/01/90	02/21/90
	FB of	RB of	FB of	TB of	TB of
	37418	37429	37429	HA1072	37407
Analytes					
Semivolatiles					
Dithiene (GCMS)	< 3.30	< 3.30	< 3.30	¥N	NA NA
Endrin	< 0.0500	< 0.0500	< 0.0500	MA	KA KA
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	YN N	NA
Hexach lorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	NA NA	K
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	YN	4
Isodrin	< 0.0510	< 0.0510	< 0.0510	¥	¥
Isodrin (GCMS)	< 7.80	< 7.80	< 7.80	¥8	¥¥
Malathion	< 0.373	< 0.373	< 0.373	YN	¥N
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	VN	¥
Parathion	< 0.647	< 0.647	< 0.647	¥	¥ z
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	¥	¥
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	¥	¥
Supone	< 0.787	< 0.787	< 0.787	¥	¥
Supore (GCMS)	< 19.0	< 19.0	< 19.0	¥	¥
Vapora	< 0.384	< 0.384	< 0.384	YN.	¥.
Vepone (GCMS)	< 8.50	< 8.50	< 8.50	¥	4

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

R -- Data did not meet quality control criteria and were

rejected.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

RB - Rinse Blank TB - Trip Blank FB - Field Blank.

Table 83 Groundwater QA/QC Analytical Data

Semole 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	05/01/90	02/21/90
	FB of	RB of	FB of	18 of	TB of
	37418	37429	37429	HA1072	37407
Volatiles					
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760	· 1.09
1,1,1-Trichloroethane (GCMS)	< 1.00	¥¥	M	Y.	¥
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780	< 1.63
1,1,2-Trichloroethame (GCMS)	< 1.00	NA NA	. AN	K	NA NA
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730	< 1.93
1,1-Dichloroethane (GCMS)	1.00	¥	¥.	¥	¥
1,1 Dichloroethene	< 1.70	< 1.70	< 1.70	< 1.70	< 1.85
1.1-Dichloroethene (GCMS)	< 1.00	¥Z	¥z	¥N	¥N
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10	< 2.07
1,2-Dichloroethane (GCMS)	< 1.00	¥ X	¥N	¥2	YN Y
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760	× 1.73
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	4	Y.	≨	Y.
Denzene	< 1.05	< 1.05	< 1.05	< 1.05	< 1.92
Benzene (GCMS)	. 1.00	¥	¥	¥	¥
Carbon Tetrachloride	0.990	066.0 >	0.990	× 0.990	< 1.69
Cerbon Tetrachloride (GCMS)	< 1.00	¥	¥	Y2	¥

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were
 - rejected. NA -- Not Analyzed.

Rine Tank Trip CFF Teld T

Table B3 Groundwater QA/QC Analytical Data

Serrole 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	02/01/90	02/21/90
	FB of	RB of	FB of	TB of	TB of
	37418	37429	37429	HA1072	37407
Analytes					
Votatiles					
Chlorobenzene	< 0.820	< 0.820	< 0.820	< 0.820	< 1.36
Chlorobenzene (GCMS)	1.00	¥	¥.	¥	¥
Chloroform	1.01	< 0.500	< 0.500	< 0.500	< 1.88
Chloroform (GCMS)	· 1.00	¥ z	¥	¥N	¥N
Dibromochloropropane	< 0.195	< 0.195	< 0.195	¥.	¥
Dibromochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	¥	¥ X
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	¥	¥
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	< 0.620
Ethyl Benzene (GCMS)	.1.00	¥	¥	¥	¥
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	× 1.04
M-Xylere (GCMS)	1.00	¥8	¥	N	KA
Methylene Chloride	< 7.40	< 7.40	07.7 >	< 7.40	< 2.48
Methylene Chloride (GCMS)	.1.00	¥	YN	MA	YN .
Methyl isobutyl Ketone	06.4 >	· 4.90	06.4 >	¥X	¥N
Methylisobutyl Ketone (GCMS)	< 1.40	¥	¥	¥	NA NA
O,P-Xylene	< 1.36	< 1.36	< 1.36	< 1.36	< 1.34

Reported values are accurate to three significant figures.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. RB - Rinse Blank TB - Trip Blank FB - Field Blank.

Table B3 Groundwater QA/QC Analytical Data

Sample 10	HA1047	HA1066	HA1067	HA1164	HA1167
Date	12/18/89	12/29/89	12/29/89	05/01/90	02/21/90
	FB of	RB of	FB of	TB of	TB of
	37418	37429	37429	HA1072	37407
Analytes					
Volatiles					
O,P-Xylene (GCMS)	< 2.00	¥	KN	¥2	. NA
Tetrachloroethene	< 0.750	< 0.7 50	< 0.750	< 0.750	< 2.76
Tetrachloroethene (GCMS)	< 1.00	¥	N	VN	VN
Toluene	< 1.47	< 1.47	< 1.47	< 1.47	< 2.10
Toluene (GCMS)	.1.00	¥¥	¥	¥	42
Trichloroethene	< 0.560	< 0.560	< 0.560	< 0.560	< 1.31
Trichloroethene (GCMS)	× 1.00	¥	KA	¥¥	K8
Vinyl Chloride	4	M	M	<2	¥
Vinyl Chloride (GCHS)	< 12.0	¥	Y.	K N	YN

- < indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected.
- .. eld .. Trip -: ': FB NA -- Not Analyzed.

Table B3 Groundwater QA/QC Analytical Data

Sample ID	HA1175	HA1176	HA1177
	05/58/90	05/28/90	05/28/90
	RB of	FB of	TB of
	37438	37438	37438
Analytes			
Metals/Anions/General Chem			
Arsenic	< 2.35	< 2.35	Y 2
Cachaium	< 6.78	< 6.78	Ϋ́.
Calcíum	19800	< 105	V N
Chloride	14000	< 278	¥
Chromium	< 16.8	< 16.8	¥.
	× 18.8	× 18.8	¥.
Cyanide	< 5.00	< 5.00	¥
Fluoride	863	< 153	¥
82.	< 77.5	< 77.5	₹
Peel	< 43.4	< 43.4	4
Negres fun	4300	< 135	W.
Manganese	< 9.67	< 9.67	YN.
Mercury	< 0.100	< 0.100	¥
Witrite, Mitrate Non-Specific	560	32.3	¥
Potassium	. 1240	< 1240	VX
Sodium	11400	337	¥

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

< - indicates that the target analyte was not detected at or above the Certified Reporting Limit.

⁻ indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

MA -- Not Analyzed. RB - Rinse Blank TB - Trip Blank FB - Field Blank.

Sample 10	HA1175	HA1176	HA1177
Date	05/28/90	02/28/90	05/58/90
	RB of	FB of	TB of
	37438	37438	37438
Analytes			
Metals/Anions/General Cham	:		
Sulfate	42000	× 13	¥
Total Organic Carbon	< 1000	1000	¥
Total Suspended Solids	¥2	4	₹
Zinc	117	< 18.0	¥¥
Phenols			
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	¥
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	≨
2,4,6-Trichlorophenol (GCMS)	4 3.60	< 3.60	
2,4-Dichlorophenol (GCMS)	· 6.40	07.8 >	¥
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	¥.
2,4-Dinitrophenol (GCMS)	< 176	× 176	¥.
2-Chlorophenol (GCMS)	< 2.80	< 2.80	¥
2-Nethylphenol (GCMS)	× 3.60	< 3.60	¥
2-Witrophenol (GCMS)	< 6. 20	< 8.20	¥
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	4
4-Wethylphenol (GCMS)	< 2.80	< 2.80	¥
4-Witrophenol (GCMS)	· %·0	< 96.0	¥.

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. -- Rins -- nk -- - rip -- ' FB ''eld r' '.

Table B3 Groundwater QA/QC Analytical Data

Sample 10	HA1175	HA1176	HA1177
Date	05/58/90	02/28/90	02/28/90
	RB of	FB of	TB of
	37438	37438	37438
Analytes			
Phenot (GCMS)	< 2.20	< 2.20	VN V
Serivolatiles			
1,4-0xathiane	< 2.38	< 2.38	NA NA
1,4-0xathiane (GCMS)	< 27.0	< 27.0	KX
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.0490 >	< 0.0490	NA A
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	¥¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	KA
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	¥
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	KN KN
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	¥2
4-Chlorophenylmethyl Sulfone	> 7.46	< 7.46	KA
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	Y.
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	VN.
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	¥.
Aldrin	< 0.0500	< 0.0500	¥.
Aldrin (GCMS)	< 13.0	< 13.0	¥
Atrazine	< 4.03	< 4.03	¥¥

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. RB - Rinse Blank TB - Trip Blank FB - Field Blank.

Table 83 Groundwater QA/QC Analytical Data

•	MA1175	HA1176	HA1177
	05/28/90	02/28/90	05/28/90
	RB of	FB of	18 of
	37438	37438	37438
alytes			
misson actions			
	< 5.90	< 5.90	MA
	< 5,00	< 5.00	¥
Benzochterote Benzochterote	< 5.90	< 5.90	¥
GICYCLO [6,6,1] Hepter 6,5-diene Bir (3,8-b-1,8-b-1) Dhebalata (2000)	< 7.70	< 7.70	××
Gaptolactem (GCMS)	٠ 7.70	٠ 7.70	¥
	< 0.0950	0.0950	4
	< 37.0	< 37.0	¥
	< 5.00	· 5.00	4
Dicyclopenian remember 1	< 5.50	< 5.50	4
Distriction of the control of the co	< 0.0500	< 0.0500	X X
	< 26.0	4 26.0	¥
DISCOLL (CONS)	< 0.392	< 0.392	¥
Disappropri mennyiprosphorate (GDIS)	< 21.0	< 21.0	¥
Principal of the state of the s	< 0.188	< 0.188	NA
Dimethylmethyl Phosphonate (GCMS)	× 130	× 130	¥
Dithiane	× 1.34	× 1.34	¥

Reported values are accurate to three significant figures. Motes: Values are reported in micrograms per liter.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > indicates that the target analyte was detected at or
 - R -- Data did not meet quality control criteria and were above the Maximum Reporting Limit. rejected.
 - NA -- Not Analyzed.

E Trip

eld.

Table B3 Groundwater QA/QC Analytical Data

Sample 10	HA1175	HA1176	HA1177
Date	05/58/90	02/28/90	02/28/90
	RB of	FB of	18 of
	37438	37438	37438
Analytes			
Semivolatiles			
Dithiane (GCMS)	< 3.30	< 3.30	¥2
Endrin	< 0.0500	< 0.0500	M
Endrin (GCMS)	< 18.0	< 18.0	W.
Hexach lorocyclopentadiene	< 0.0480	< 0.0480	48
Hexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	X .
Isodrin	< 0.0510	< 0.0510	¥
Isodrin (GCMS)	< 7.80	< 7.80	¥
Malathion	< 0.373	< 0.373	¥¥
Malathion (GCMS)	< 21.0	< 21.0	YN
Parathion	< 0.647	< 0.647	*
Parathion (GCMS)	< 37.0	< 37.0	*
Pentachlorophenol (GCMS)	< 9.10	< 9.10	¥
Support	< 0.787	< 0.787	4
Suparia (GCMS)	< 19.0	< 19.0	4
Vapona	< 0.384	< 0.384	4
Vapona (GCHS)	< 8.50	< 8.50	¥

- < indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected.

 - NA -- Not Analyzed. RB Rinse Blank TB Trip Blank FB Field Blank.

Table 83 Groundwater QA/QC Analytical Data

OI e)dues	HA1175	HA1176	HA1177
Date	05/58/90	02/28/90	05/58/90
	RB of	FB of	TB of
	37438	37438	37438
Analytes			
Volatiles			
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	· 1.00	< 1.00	MA
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	< 1.00	< 1.00	YN
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730
1,1-Dichtoroethane (GCMS)	.1.00	1.00	¥
1,1-Dichloroethene	< 1.70	< 1.70	< 1.70
1,1-Dichloroethene (GCMS)	. 1.00	4 1.00	KA
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	• 1.00	• 1.00	¥.
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	Y#
Benzene	11.4	< 1.05	< 1.05
Benzene (GCHS)	86.9	. 1.00	4
Carbon Tetrachloride	0.990	< 0.990	× 0.990
Carbon Tetrachloride (GCMS)	1.10	1.00	¥

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were

MA -- Not Analyzed. rejected.

F8 r o

Table 83 Groundwater QA/QC Analytical Data

Sample 10	HA1175	HA1176	HA1177
Date	02/28/90	02/28/90	05/58/90
	RB of	FB of	TB of
	37438	37438	37438
Analytes			
Volatiles			
Chlorobenzene	0.0%	< 0.820	< 0.820
Chlorobenzene (GCMS)	80.8	1.25	¥.
Chioroform	193	< 0.500	0.612
Chloroform (GCHS)	> 150	. 1.00	¥
Dibramochloropropane	0.813	< 0.195	¥
Dibromochloropropene (GCMS)	< 12.0	< 12.0	¥
Dimethyl Disulfide	< 0.550	< 0.550	W
Ethyl Benzene	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	· 1.00	× 1.90	¥
M-Xylene	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	< 1.00	. 1.00	4
Methylene Chloride	< 7.40	o y. 2 >	07'2 >
Methylene Chloride (GCMS)	. 1.00	. 1.00	¥
Methylisobutyl Ketone	· 4.90	06.4 >	¥
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	¥
O,P-Xylene	< 1.36	< 1.36	< 1.36

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.

- rejected.
- NA -- Not Analyzed. RB - Rinse Blank TB - Trip Blank FB - Field Blank.

02/28/90	02/28/90	02/28/90
RB of	FB of	TB of
37438	37438	37438
< 2.00	< 2.00	¥¥
< 0.750	< 0.750	< 0.750
< 1.00	< 1.00	¥¥
2.67	< 1.47	< 1.47
2.60	. 1.00	KA
5.09	< 0.560	< 0.560
2.40	.1.00	¥ N
¥	¥	KX
< 12.0	< 12.0	4
• • • • • • • • • • • • • • • • • • • •	02/28/90 RB of 37438 37438 < 2.00 < 1.00 2.67 2.60 2.09 2.09 2.09	2 ± 8

Reported Values are accurate to three aignificant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected.
 - NA -- Not Analyzed.

ins ak T rip FB sldf

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1022	NA1023	HA1024	HA1026
Date	10/31/89	11/02/89	11/27/89	10/31/89
	Dup of	bup of	Dup of	po dng
	37330	37367	Boller	37374
Analytes				
Metals/Anions/General Chem				
Arsenic	¥	¥	4	M
Cachrium	¥	¥	¥	NA
Calcium	¥	¥,	¥	. KA
Chloride	¥	M	4	M
Chromica	NA NA	KA	¥¥	NA
Copper	¥	¥	≨	¥
Cyanide	¥	¥ X	4	MA
fluoride	¥	¥	≨	NA NA
<u>8-1</u>	¥	NA V	4	NA
Pee1	¥	¥¥	¥	M
Hagnes i um	¥	MA	¥	MA
Nanganese	¥.	W.	≨	NA
Mercury	¥	¥	¥	#Y
Mitrite, Mitrate Mon-Specific	¥	M	¥	KA
Potassium	M	¥	¥	KA
Sodium	¥	¥¥	¥#	NA AM

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
- A -- Results considered anomalous based on evaluation of historical date and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

	HA 1022	HA1023	HA1024	#A1026	
	10/31/89	11/02/89	11/27/89	10/31/89	
	or or of	o dng	Dup of	Dup of	
	37330	37367	Boller	37374	
nlytes				•	
tats/Anions/General Chem			;	•	
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	≨	¥	¥	¥	
	*	MA	¥	¥	
lotal Organic Carbon	i ≴	¥	W	M	
Total Suspended Solids Zinc	i≨	W W	¥	¥	
enot a		:	\$	ğ	
2 % A.Trichlorochenol (COMS)	4#	4	ć R	S E	
	¥	¥¥	¥	*	
C.A.J. ITTENIOR GENERAL COMPANY	\$	*	M	¥#	
Z,4,6-Irichioropherol (u.m.)	THE STATE OF THE S	K	KA	Y 2	
2,4-Dichloropherol (GUNS)	.	MA	¥	Y X	
יייין און און און און און און און און און או					
	*	**	MA	4	
Z,4-Dinitrophenol (suns)	* 3	¥	4	¥¥	
2-Chlorophenol (GCMS)	i 1	¥#	¥	¥¥	
2-Methylphenol (GCMS)		*	¥	¥ N	
2-Witrophenol (GCMS)	S :		1	4	
3-Methyl-4-Chlorophenol (GCMS)	≦	Š	£	f	
	¥	¥	¥	¥.	
4-Wethylphenol (GCMs)	i i	1	4	4 2	
4-Witrophenol (GCMS)	¥	Ē	Ç	į	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit.
 R -- Data did not meet quality control criteria and were rejected. Oup Ouplicate. MA -- Mot Analyzed.
 - rejected. Dup Duplicate. MA -- Not Analyzed.
 A -- Results considered anomalous based on evaluation of histo -- det -- fie' -- 700 p hures

Table 84 Groundwater Duplicate Analytical Data

Semple 10	MA1022	NA1023	HA1024	NA1026
Date	10/31/89	11/02/89	11/27/89	10/31/89
	po dng	po dng	Pup of	Dup of
	37330	37367	Boller	37374
Analytes				
Observing the second se				
Phenol (GCMS)	W	4	¥	V.
1.4-Oxathiene	¥	¥	NA NA	KX
1,6-Oxathiane (GCMS)	¥	K	NA	MA
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	VW	¥	KN K	Y2
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	¥	VN	K	YN.
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	¥ N	2	YN.	¥
2.2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	≦	ş	¥	¥
	¥	¥	KA	¥#
4-Chlorophenylmethyl Sulfide (GCMS)	¥	M	¥.	YN
4-Chlorophenylmethyl Sulfone	¥	¥	MA	¥#
4-Chlorophenylmethyl Sulform (GCNS)	¥ N	¥ 2	¥	¥
4-Chlorophenylmethyl Sulfoxide	≨	≨	\$	¥
4-Chlorophenyimethyl Sulfoxide (GCMS)	¥	KA	¥	4
Aldrin	YN	¥N	W.	*
Aldrin (GCMS)	\$	¥	¥	¥
Atrazine	¥	YN	MA	YH.

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- c -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
- A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

Sec. 10	HA1022	HA1023	HA1024	NA1026
Dete	10/31/89	11/02/89	11/27/89	10/31/89
	Dup of	Dup of	Dup of	orp of
	37330	37367	Boller	37374
Analytes				
Semivolatiles				
Atrazine (GCHS)	N.	¥	YN	¥¥
Benzothiazole	¥	¥	4 2	¥¥
Bicyclo (2,2,1) hepta-2,5-diene	M	¥	4	¥
Bis (2-Ethylhexyl) Phthalate (GCMS)	¥.	4	¥2	¥
Caprolactem (GCMS)	¥	¥	N.	M
Chlordene	¥#	¥	¥#	¥
Chlordene (GCMS)	¥	¥	4	KA
Dicyclopentadiene	¥#	£	¥#	¥ N
Dicyclopentadiene (GCHS)	¥#	¥	¥	
Dieldrin	¥ N	4	4	*
	:	;	•	3
Dieldrin (GCHS)	≦	K	< 2	\$
Diisapropyl Methylphosphonate	¥	¥	¥	W.
Diisapropyl Methylphosphonate (GCMS)	¥	¥	¥	¥
Dimethylmethyl Phosphonate	¥	¥	¥	YH
Dimethylmethyl Phosphonate (GDNS)	KA	¥	¥	¥
Dithiane	¥	¥	¥	¥

- Reported values are accurate to three significant figures.
 - -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit. R -- Data did not meet quality control criteria and were
- rejected. Dup Duplicate. NA -- Not Analyzed. A -- Results considered anomalous based on evaluation of

Nister" det "fiel" "40 pm fures

Sample 1D	HA1022	HA1023	HA1024	HA1026
Date	10/31/89	11/02/89	11/27/89	10/31/89
	Dup of	odho of	o dng	Dup of
	37330	37367	Boiler	37374
Semivolatiles				
Dithiane (GCMS)	*	¥	¥	KA
Endrin	¥	¥	N A	M
Endrin (GCHS)	M	¥	YN	MA
Mexach lorocyclopentadiene	¥	¥	¥¥	YN N
Mexachlorocyclopentadiene (GCMS)	4	¥	4	¥.
Isodrin	¥	¥.	¥	¥
leodrin (GCMS)	VN	¥	¥	NA NA
Malathion	Y.	W	·NA	¥.
Melethion (GCMS)	Y M	YN N	¥	MA
Parathion	¥2	¥	4	¥¥
Parathion (GCMS)	¥	¥	¥	¥.
Pentachlorophenol (GCMS)	¥	¥	¥	KA K
e wordns	¥	¥	M	¥¥
Supona (GCHS)	4	¥	Y.	NA
Vapona	£	¥	¥	Y.
Vapona (GCHS)	×	*	¥	¥

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomatous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

: : : : : : : : : : : : : : : : : : :	HA1022	HA1023	HA1024	NA1026
	10/31/89	11/02/89	11/27/89	10/31/89
	Duo of	Dup of	Dup of	Dup of
	37330	37367	Boller	37374
Analytes				
	¥M	\$	₹#	4
1,1,1-1frentoroetname	*	¥	¥	¥
1,1,1-Trichloroethane (GLMS)	: \$	¥	¥	¥N
1,1,2-Trichloroethene	1	A	¥	¥
1,1,2-Trichloroethane (GCMS)	£	£ :		•
1,1-Dichloroethane	¥	¥.	¥	Š
	4	¥ X	4	¥
1,1-Dichloroeinana (ucha)	.	YN	¥¥	¥X
1,1-Dichloroethene		*	*	4
t, t-Dichtoroethene (GCMS)	£ 3	¥ 2	.	**
1,2-Dichloroethane	S	£ '	£ :	1
1,2-Dichloroethane (GCMS)	¥ Z	Z Z	4	Ě
	ş	¥8	AM	42
1,2-pichlofoetherses (cie m times)	Z Z	*	\$	¥
1,2-Dichloretheres (cis a time) (uchs)	× A	×	¥	¥
Benzene	i 1	1	¥	¥
Benzene (GCMS)	£ :	•	· •	V.
Carbon Tetrachloride	¥	K	Ě	\$
Carbon Tetrachloride (GCHS)	42	¥	¥	\$

Motes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or
 - rejected. Dup Duplicate. NA -- Not Analyzed. R -- Data did not meet quality control criteria and were above the Maximum Reporting Limit.
- A -- Results considered anomalous based on evaluation of - 1 ffc. -- 20/-- qurehist---- (de'

Table 84 Groundwater Duplicate Analytical Data

GE alones	HA1022	HA1023	HA1024	HA1026
Dete	10/31/89	11/02/89	11/27/89	10/31/89
-	bup of	Pup of	o dng	Dup of
	37330	37367	Boiler	37374
Analytes				
Chlorobenzene	ş	¥	¥	¥
Chlorobenzene (GCMS)	4	MA	K#	¥ N
Chioroform	¥	K	¥	≨
Chioroform (GCMS)	¥N	KA	¥	¥
Dibromochloropropene	V.	¥ X	, M	¥
	\$	1	1	3
Dipromocnicorporopara (ecra)	E	£	S	E :
Dimethyl Disulfide	4	K.	¥X	¥
Ethyl Denzene	¥	¥	NA NA	¥
Ethyl Benzene (GCHS)	₹	¥N	M	¥
M-Kylene	4	¥	4	¥
M-Xylene (GCMS)	¥	¥	ş	¥
Methylene Chloride	¥	YM	N	¥
Methylene Chloride (GCMS)	¥	42	X	¥
Methylisobutyl Ketone	¥	VN	¥	M
Methylisobutyl Ketone (GCMS)	¥	YH	MA	¥
O,P-Kylene	¥	¥	¥	¥#

Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at

- or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit. $R \to Data \ did \ not \ meet \ quality \ control \ criteria \ and were$
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzad. A -- Results considered anomalous based on evaluation of

historical data and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

al elamas	HA1022	HA1023	HA1024	MA1026
Dete	10/31/89	11/02/89	11/27/89	10/31/89
	Out of	o dng	Dup of	Dup of
	37330	37367	Boller	37374
Volatiles				
O.P-Xylere (GDIS)	W	M	¥	¥
Tetrachloroethene	MA	¥¥	· Y	X
Tetrachloroethene (GCMS)	KA	¥¥	*	Y.
Toluene	¥R	Z.	YN	KA
Toluene (GCMS)	¥.	¥¥	YN	MA
Trichloroethene	¥	¥X	YN.	X
Trichloroethene (GCMS)	*	NA NA	N N	¥ X
Vinyl Chloride	< 0.460	< 0.460	° 0.460	097.0 >
Vinyi Chloride (GCMS)	¥	M	¥ N	¥

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

R -- Data did not meet quality control criteria and were

MA -- Not Anelyzed. rejected. Dup - Duplicate. NA -- Not Analyzed A -- Results considered anomalous based on evaluation of 1 ffr . . . Vac

hist . I de

Ş

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1027	HA1028	HA1029	HA1045	
Outo	11/08/89	10/31/89	11/09/89	12/18/89	
	Dup of	Dup of	Dup of	Dup of	
	37396	37344	37323	37418	
Analytes					
Metals/Anions/General Chem					
Arsenic	Y#	Y.	¥	3.80	
Cadalun	¥	4	¥	6.78	
Calcium	¥	₹2	¥N	290000	
Chloride	¥¥	¥	KA	1600000	
Chronium	KA	¥¥	MA	< 16.8	
	•	•	å	9	
Capper	₹	¥	¥	< 18.8	
Cyanide	¥	¥	¥	× 5.00	
fluoride	. KA	¥	KX	3290	
Iron	4	¥	¥N	276	
peol	Y _N	W	NA	< 43.4	
Hagnes i un	¥	¥	¥	199000	•
Manganese	¥	¥	≨	197	
Mercury	¥	¥	4	< 0.100	
Mitrite, Mitrate Non-Specific	4	¥	¥	1200	
Potessium	V 2	YN	¥	10200	
	42		***	470000	
	£	Š.	E		

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

Graffe 10	HA1027	HA1028	MA1029	HA1045
Dete	11/08/89	10/31/89	11/09/89	12/18/89
	Oup of	po dng	pro of	pro of
	373%	37344	37323	37418
Analytes				
Metals/Anions/General Chem				
Sulfate	¥	¥	YN	1500000
Total Organic Carbon	¥	KX	¥	10000
Total Suspended Solids	¥	¥	¥N	7000
Zinc	¥	4	¥	124
Phenole				
2,3,6-Trichlorophenol (GCMS)	¥	4	¥	· 1.70
2,4,5-Trichlorophenol (GCMS)	M	¥	¥	< 2.80
2,4,6-Trichlorophenol (GCMS)	¥	¥	¥	< 3.60
2,4-Dichlorophenol (GCMS)		¥N	YN	07.8 >
2,4-Dimethylphenol (GCMS)	¥	4	¥	07.7 >
2,4-Dinitrophenol (GCHS)	¥	W	¥	< 176
2-Chiorophenol (GCHS)	¥ N	¥	VII	< 2.80
2-Nethylphenol (GCHS)	¥	¥	¥¥	< 3.60
2-Hitrophenol (GCHS)	¥	4	¥¥	< 8.20
3-Methyl-6-Chlorophenol (GCMS)	KA	W.	X	< 8.50
4-Nethylphenol (GCMS)	Ş	¥*	4	< 5.80
4-Hitrophenol (GCMS)	¥	4	4	0.96 >

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. MA -- Not Analyzad.
 - A -- Results considered anomalous based on evaluation of hist---- t der --- 4 fie'- --/90 pr. turer

Table 84 Groundwater Duplicate Analytical Data

	NA 1027	NA1028	NA1029	HA1045
or sylling and syl	11/08/89	10/31/89	11/09/89	12/18/89
	Dup of	Dup of	Dup of	po dng
	373%	37344	37323	37418
alytes				
enols Phenol (GCHS)	¥	¥	¥	< 2.20
mivolatiles				
1.4-Oxathjane	*	KA	W	8.94
1.6-Ouathiane (GOMS)	YN	KN	¥	< 27.0
2.2-Bistos-schlorophery()-1.1.1-Trichtoroethane (DDI)	¥8	K	¥	0.139
2 2-mis(perschlororhery)-1.1.1-Trichloroethane (001) (GCMS)	¥	KA	VN	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	¥	4	4	0.400
2.2-Bis(berachloropherwl)-1.1-Dichtoroethene (DDE) (GCMS)	W	¥	YN	0.41 >
6-Chlorophanylmethyl Sulfide	\$	*	YN	< 5.69
6-Chlorothervinethyl Sulfide (GCHS)	ş	K	¥	< 10.0
6-Chlorophenylmethyl Sulfone	¥	K	KX	× 7.46
4-Chlorophenylmethyl Sulfone (GCHS)	¥#	¥N	YN.	< 5.30
4-Chloropherylaethyl Sulfoxide	\$	¥	42	< 11.5
6-Chlorophery Sulfoxide (GCMS)	4	₹	NA NA	< 15.0
	4	4	W.	0.300
Aldrin (GCHS)	4	4	¥	< 13.0
Atterine	¥	¥	M	< 4.03

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1027	HA1028	HA1029	NA1045
Dete	11/08/89	10/31/89	11/09/89	12/18/89
	Dup of	to and	Dup of	po ding
	373%	37344	37323	37418
Analytes				
Semivolatiles				
Atrazine (GCMS)	¥¥	V.	≦	< 5.90
Benzothiazole	W.	¥	≨	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	Y.	¥	*	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	NA NA	¥	\$	6.7.
Caprolactam (GCMS)	¥¥	NA	4	< 10.0
	¥	¥	\$	1.40
Chlordene (GCMS)	¥8	NA	4	< 37.0
Dicyclopentediene	KA	¥¥	¥	530
Dicyclopentadiene (GCMS)	Y.	¥	₹	227
Dieldrin	¥	V V	4	< 0.0500
Dieldrin (GCMS)	¥	¥	¥	< 26.0
Diisopropyl Methylphosphonete	4	¥H	¥	4300
Diisopropyl Methylphosphonate (GCMS)	W.	¥¥	¥	200
Dimethylmethyl Phosphonate	4	¥	¥	< 0.188
Dimethylmethyl Phosphonate (GCMS)	NA A	YH.	4	< 130
Dithiane	4	¥	M	97.9

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of

Table 84 Groundwater Duplicate Analytical Data

· <u>e</u>	HA1027	HA1028	MA1029	NA 1045	
	11/08/89	10/31/89	11/09/89	12/18/89	
	o de	Dup of	Dup of	Dup of	
	37396	37344	37323	37418	
Analytes					
Sanivolatiles				1	
Dithiana (GCMS)	¥	¥	4	7.73	
Endello	¥	¥N	¥ N	< 0.0500 <	
Endein (GDIS)	KN	MA	KA	< 18.0	
Newschi orantadiene	¥	KA	¥.	< 0.0480	
	Ą	A M	X	× 54.0	
Mexach(orocyclopentagrene (strs)	Š	Š.	i		
i aporti	¥	¥¥	¥	0.120	
Section (SCHS)	¥#	\$	4	< 7.60	
Halathion	M	K	YN	< 0.373	
Malathion (GCMS)	¥N.	4	YN	< 21.0	
Parathion	¥	YH.	¥	< 0.647	
(SMCS) colypared	≨	¥	¥ B	< 37.0	
Destachlorotherol (GDIS)	¥	\$	48	< 9.10	
Grove	¥¥	¥	*	< 0.787	•
Strone (GCIS)	K	¥	M	< 19.0	
Vapona	M	*	YN	< 0.364	
•					
Vapona (GCMS)	MA	¥.	¥N	< 8.50	

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.
< -- indicates that the target analyte was not detected at

- or above the Certified Reporting Limit.
- above the Maximum Reporting Limit.

 R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - rejected. Dup Duplicate. NA -- Not Analyzed.
 A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1027	HA1028	HA1029	HA1045
Date	11/08/89	10/31/89	11/09/89	12/18/89
	o dng	po de	Dup of	Dup of
	373%	37344	37323	37418
Analytes				
Volatiles				
1,1,1-Trichloroethane	MA	¥	¥.	< 0.760
1,1,1-Trichloroethane (GCMS)	¥	VN	¥¥	< 1.00
1,1,2-Trichloroethane	MA	¥¥	V.	< 0.780
1,1,2-Trichloroethane (GCMS)	¥N	V.	¥.	. 1.00
1,1-Dichloroethane	Y #	YN	NA	< 0.730
1,1-Dichloroethane (GCMS)	¥	¥	¥	< 1.00
1,1-Dichloroethene	¥	\$	Y#	× 1.70
1,1-Dichloroethene (GCMS)	¥	¥	4	. 1.00
1,2-Dichloroethane	¥	¥	¥	23.7
1,2-Dichloroethane (GCMS)	¥	4	Y.	19.1
1,2-Dichloroetheres (cis & trans)	¥8	¥	4	< 0.760
1,2-Dichioroethenes (cis & trans) (GCMS)	¥	¥ N	¥	< 5.00
Benzene	¥	¥	¥	< 1.05
Benzene (GCHS)	¥.	¥	¥	• 1.00
Carbon Tetrachloride	¥¥	K	¥8	× 0.990
Carbon Tetrachloride (GCNS)	, VI	¥	¥	4 1.00

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Naximum Reporting Limit. R -- Data did not meet quality control criteria and were
 - rejected. Dup Duplicate. NA -- Not Analyzed. A -- Results considered enomalous based on evaluation of

5

. OI alcaes	HA1027	HA1028	HA1029	NA1045
Dete	11/08/89	10/31/89	11/09/89	12/18/89
	Dup of	Dup of	Dup of	Dup of
	37396	37344	37323	37418
Analytes				
Voletiles				
Chlorobenzene	KA	KA.	*	< 0.820
Chlorobenzene (GCHS)	¥N	NA NA	¥	.1.00
Chloroform	NA	MA	¥	< 0.500
Chloroform (GCMS)	NA	NA NA	¥	.1.00
Dibromochioropropane	¥.	MA	MA	< 0.195
Dibramoch organie (GDRS)	\$	\$	¥	< 12.0
Dimethyl Disulfide	M	¥	¥	< 0.550
Ethyl Benzene	KA	KA KA	¥	< 1.37
Ethyl Benzene (GCMS)	V.	¥	¥	. 1.00
M-Xylene	¥	¥	W.	< 1.32
H-XVI ene (GCHS)	¥	\$	M	. 1.00
Nethylene Chloride	K	4	¥	< 7.40
Methylene Chloride (GCHS)	NA NA	\$	¥	4 1.90
Methylisobutyl Ketone	¥R	4	¥	06.7 >
Methylisobutyl Ketone (GCMS)	¥ X	¥	NA NA	< 1.40
O.P-Xylene	¥	¥	¥	· 1.36

- . indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or about the Mariana bandeless (fait
- above the Maximum Reporting Limit.
 R -- Data did not meet quality control criteria and were
 - rejected. Dup Duplicate. NA -- Not Analyzed.
 A -- Results considered anomalous based on evaluation of historical data and field GA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

	MA1027	HA1028	NA1029	HA1045	
	11/08/89	10/31/89	11/09/89	12/18/89	
	fo and	Dup of	po dng	o dro	
	37396	37344	37323	37418	
Analytes					
Volatiles					
	¥	¥	X	د 2.83	
	4	47	4	11.2	
Tetrachloroethene	S	£ .	i ;		
Tetrachioroethene (GCHS)	42	X	4	2.	
	K	W.	≨	3.80	
	4	2	47	× 1.00	
Toluene (GCMS)	S	£	\$		
	¥3	¥	4	7.08	
	*	¥	*	08.7	
If ich iorgethere (whs)	097.0 >	097.0 >	< 0.460	Y#	
Vinyl Chloride (GCMS)	¥2	42	4	< 12.0	

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed. A -- Results considered anomalous based on evaluation of

8

Ę

8

Table 84 Groundwater Duplicate Analytical Data

	HA1079	HA1165	HA1166	HA1172
Date	06/25/90	05/25/90	05/21/90	05/27/50
	Dup of	od dng	Dup of	out of
	37418	37404	37407	37435
Analytes				
Metals/Anions/General Chem				
Arsenic	œ	< 2.50	< 2.50	< 2.35
Cadaium	< 6.78	< 5.00	< 5.00	< 6.78
Calcium	174000	170000	240000	118000
Chloride	1800000	220000	36000	100000
Chromium	71.5	< 22.0	< 22.0	< 16.8
Copper	801	< 10.0	< 10.0	< 18.8
Cyanide	œ	× 8.90	× 8.90	< 5.00
Fluoride	6300	· 1000	1250	1740
Iron	76400	37.5	76 2	< 77.5
Peel	< 43.4	< 52.0	< 52.0	< 43.4
Megnesium	80800	00097	\$8000	36100
Manganese	2650	< 20.0	1360	12.6
Hercury	< 0.100	< 0.500	< 0.500	< 0.100 <
Mitrite, Mitrate Non-Specific	410	4200	4300	1800
Potassium	12200	\$	¥	4570
Sodium	150000	220000	340000	130000

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

	HA1079	HA1165	HA1166	HA1172
Date	06/22/90	02/22/90	02/21/90	05/21/90
	o dng	o dng	po dng	Dup of
	37418	37404	37407	37435
alytes				
tals/Anions/General Chem				
Sulfate	170000	230000	900009	300000
Total Organic Carbon	15000	9.00	7.00	3000
Total Suspended Solids	0007 >	27.0	· 4.00	¥
Zinc	117	54.4	23.3	< 18.0
enols				
2,3,6-Trichlorophenol (GCMS)	· 1.70	· 1.70	< 1.70	< 1.70
2,4,5-Trichloraphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	07.8 >	07.8 >	o7.8 >
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >	07.4 >
2,4-Dinitrophenol (GCMS)	4 176	× 176	< 176	4176
2-Chlorophenol (GCMS)	< 2.80	٨ 2.80	< 2.80	< 2.80
2-Methylphenol (GCHS)	× 3.60	< 3.60	< 3.60	< 3.60
2-Nitrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20
3-Wethyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50
4-Hethylphenol (GCHS)	< 2.80	< 2.80	< 2.80	< 2.80
6-Witrophenol (GCMS)	0°96 >	· 96.0	0.96 >	0.9% ^

Reported values are accurate to three significant figures.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- rejected. Dup Duplicate. NA -- Not Analyzed. A -- Results considered anomalous based on evaluation of

hist 'de

R -- Data did not meet quality control criteria and were

Table B4 Groundwater Duplicate Analytical Data

i elana	HA1079	HA1165	HA1166	HA1172
Dete	06/25/90	05/25/60	02/21/90	05/27/90
	o ding	o ding	o de	Dup of
	37418	37404	37407	37435
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	< 2.20
mivoletiles				
1,4-Oxathiane	98.9	YN.	YN	< 2.38
1.4-Oxathiane (GOIS)	< 27.0	< 27.0	< 27.0	< 27.0
2.2-Bis(parachlorophamyl)-1,1,1-Trichloroethane (DDI)	œ	< 0.0590	< 0.0590	< 0.0490
	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0460	09%0"0 >	< 0.0540
2.2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
6-Chloropherylaethyl Sulfide	< 5.69	W	NA NA	< 5.69
6-Chioropherylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
-Chloropherylmethyl Sulfone	< 7.46	YN.	W.A	< 7.46
t-Chlorophenylmethyl Bulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
-Chieropherylmethyl Sulfoxide	< 11.5	¥	*	< 11.5
-Chioropherylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
	·).0500	œ	~	< 0.0500
Aldrin (GCHS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	¥¥	KA	< 4.03

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. MA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

:	HA1079	HA1165	HA1166	MA1172	
	06/22/90	02/22/90	05/21/90	05/21/90	
	Duo of	bup of	Dup of	ong of	
	37418	37404	37407	37435	
alytes	•				
	0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Milyotatica Atomism (COMS)	< 5.90	< 5.90	< 5.90	< 5.90	
	< 5.00	43	¥	< 5.00	
Between acousting to the state of the state	< 5.90	4	¥	< 5.90	
Dicyclo Last, J mayor as a comment of the comment o	< 7.70	× 7.70	o.7.7 ×	× 7.70	
Caprolectem (GCMS)	< 10.0	< 7.70	۰ 7.70	< 7.70	
	0.0050	< 0.152	< 0.152	< 0.0950	
	< 37.0	< 37.0	< 37.0	< 37.0	
	380	¥	YN.	< 5.00	
	202	< 5.50	< 5.50	< 5.50	
Dispersions cares,	< 0.0500	< 9.0539	< 0.0539	< 0.0500	
	< 26.0	< 26.0	× 26.0	< 26.0	
District Comp.	3900	¥	**	10.0	
Discount Metal Theretaete (CMS)	> 200	< 21.0	79.7	< 21.0	
Discovery recipitations are constructed to the construction of the contract of	× 0.188	¥	M	< 0.188	
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	× 130	< 130	
Dithiana	30.0	\$	ş	< 1.34	

- Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of hist it ds d fit VQC dure

Table B4 Groundwater Duplicate Analytical Data

Sample 10	HA1079	HA1165	HA1166	HA1172
Dete	06/25/90	05/25/90	02/21/90	05/21/90
	to and	Pup of	Dup of	bup of
	37418	37404	37407	37435
Analytes	•			
Semivolatiles				
Dithiene (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0600	0.0600	< 0.0500
Endrin (GCHS)	< 18.0	< 18.0	< 18.0	< 18.0
Hexach lorocycl opentadiene	< 0.0480	e	œ	< 0.0480
Nexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	0.45 >
Isodrin	0.103	< 0.0560	< 0.0560	< 0.0510
leadrin (GCHS)	< 7.80	< 7.80	< 7.80	< 7.80
Natathion	1.63	¥N	¥	< 0.373
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Perethion	1.07	¥	YN.	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
8 about	< 0.787	M	¥	< 0.787
Supone (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0
Vapone	< 0.384	¥	ş	< 0.384
Vapona (GCHS)	< 8.50	8.5 0	< 8.50	< 8.50

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit.
 R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
- A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1079	HA1165	#A116		KA117	A 1
Date	06/22/90	05/25/60	02/21/90		05/27/90	_
	Dup of	Dup of	o dno		o de	_
	37418	37404	3740		3743	.
Analytes						
Volatiles						
1,1,1-Trichlorethane	< 0.760	< 1.09	< 1.09	•	0.760	
1,1,1-Trichlorethane (GCMS)	. 1.00	.1.00	< 10.0	•	1.8	
1,1,2-Trichlorethane	< 0.780	< 1.63	< 1.63	•	0.780	
1,1,2-Trichloroethane (GCHS)	٠ 1.00	· 1.00	< 10.0	•	1.00	
1,1-Dichloroethane	< 0.730	< 1.93	< 1.93	•	0.730	
1,1-Dichloroethare (GCMS)	· 1.80	4 1.00	< 10.0	•	1.00	
1,1-Dichloroethene	6.1.2	< 1.85	< 1.85	•	1.70	
1,1-Dichloroethene (GCMS)	. 1.00	. 1.00	< 10.0	•	1.00	
1,2-Dichloroethane	22.1	< 2.07	< 2.07	•	1.10	
1,2-Dichloroethame (GCMS)	• 1.00	٠ 1.00	< 10.0	•	4 1.00	
1,2-Dichloroetheres (cis & trans)	092.0 >	٠1. ك	¢ 1.3	•	< 0.760	
1,2-Dichloroethenes (cis & trans) (GDMS)	· 5.00	< 5.00	× 50.0	•	2.00	
Benzene	3.90	4.62 A	30.0	_ _	9.5	<
Benzene (GCMS)	4 1.00	2.56 A	12.4	V	.67	<
Carbon Tetrachloride	° 0.990	< 1.69	3.44	- <	.32	<
Carbon Tetrachloride (GCMS)	4 1.00	4 1.8	< 10.0	-	1.01	<

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.

Table 64 Groundwater Duplicate Analytical Data

01 = 10008	HA1079	HA1165	HA1166	NA1172	
Dete	06/25/90	05/25/90	02/21/90	02/27/90	
	Dup of	Dup of	bup of	to dud	
	37418	37404	37407	31435	
Amelytes	1 0 0				
Volatiles					
Chlorobanzene	7.62	38.5 A	150 A	9.17	
Chlorobenzene (GCHS)	2.98	31.7 A	91.3 A	4.2	<
Chloroform	45.1	V 9.67	V 055	380	<
Chloroform (GCHS)	5.30	V 0.04	S10 A	× 150	<
Dibromochloropene	0.391	ş	¥	1.37	<
Dibromochloropropere (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	
Dimethyl Disulfide	< 0.550	¥N	¥	< 0.550	
Ethyl Benzene	< 1.37	< 0.620	< 0.620	< 1.37	
Ethyl Benzene (GCMS)	× 1.00	.1.00	· 10.0	× 1.00	
M-Xylene	< 1.32	× 1.04	· 1.8	< 1.32	
M-Xylene (GCMS)	4 1.00	· 1.00	< 10.0	× 1.00	
Methylene Chloride	o 7.40	< 2.48	< 2.48	< 7.40	
Methylene Chloride (GCMS)	× 1.00	. 1.00	< 10.0	. 1.00	
Methyl isobutyl Ketone	× 4.90	¥	¥	6.7 ×	
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 14.0	< 1.40	
O,P-Kylene	< 1.36	× 1.34	· 1.34	< 1.36	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. MA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table B4 Groundwater Duplicate Analytical Data

	HA1079	HA1165	HA1166	HA1172	
	06/25/90	05/25/90	02/21/90	02/27/90	
	Dun of	Dup of	yo dha	oup of	
	37418	37404	37407	37435	
Analytes					
	< 2.00	< 2.00	< 20.0	< 2.00	
	8	< 2.76	< 2.76	< 0.750	
Tetrachioroethere		00.1	< 10.0	.1.00	
Tetrachloroethene (GDMS)	27.1 3	< 2.10	4.35 A	3.23	_
	. 60.	< 1.00	< 10.0	2.10	_
	•				
	6.18	< 1.31	6.65 A	2.43	_
	4 1.00	4 1.00	< 10.0	2.10	_
Il telled defined a company of the c	¥	4	¥	¥	
Viryl Chloride (GCHS)	< 12.0	< 12.0	< 120	< 12.0	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. MA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of hist I dm 1 fir /9C dure

Table B4 Groundwater Duplicate Analytical Data

	HA1173	HA1174	HA1198
Date	05/28/90	03/01/90	06/13/90
	po dng	po dna	Dup of
	37438	37439	37444
Analytes			
Metala/Anjona/General Chem	:		
Arsenic	< 2.35	< 2.35	< 2.35
Cachius	< 6.78	< 6.78	6.78
Calcius	92909	99300	00266
Chloride	280000	200000	140000
Chronica	< 16.8	< 16.8	< 16.8
Copper	20.7	× 18.8	< 18.8
Cyanide	< 5.00	< 5.00	~
Fluoride	0907	2350	1320
Iron	< 77.5	< 77.5	¥
peol	< 43.4	< 43.4	< 43.4
Megnae fun	21000	27100	21900
Nangarese	< 9.67	21.0	¥
Mercury	< 0.100	< 0.100	1.49
Mitrite, Mitrate Non-Specific	2000	1800	7500
Potessium	2190	3860	2800
Sodium.	260000	160000	10000

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
- > -- Indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed. A -- Results considered anomalous based on evaluation of

historical data and field QA/QC procedures.

Semple 10	HA1173	HA1174	HA1198
Date	05/58/90	03/01/90	06/13/90
	o drigo of	bup of	Dup of
	37438	37439	37444
slytes			
tals/Anions/General Cham	9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Sulfate	170000	170000	130000
Total Organic Carbon	2000	2000	1000
Total Suspended Solids	EA EA	NA NA	¥
Zinc	< 18.0	< 18.0	< 18.0
· · · · · · · · · · · · · · · · · · ·			
2,3,6-Trichlorophenol (GCMS)	41.70	< 1.70	< 1.70
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.9 >	07.8 >	07.8 >
2,4-Dimethylphenol (GCMS)	07.7 >	07.4 >	07.7 >
2,4-Dinitrophenol (GCMS)	4176	4 176	> 176
2-Chlorophenol (6CHS)	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	♦ 3.60	< 3.60	< 3.60
2-Witrophenol (GCMS)	< 8.20	< 8.20	< 8.20.
3-Methyl-4-Chlorophenol (GCHS)	< 8.50	< 8.50	< 8.50
4-Nethylphenol (GCMS)	< 2.80	< 2.80	< 2.80
4-Nitrophenol (GCMS)	0.9% >	· 96.0	· %.0

Motes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of isto date fiel 00 pr ares.

See 10	HA1173	HA1174	HA1198
Date	05/28/90	03/01/90	06/13/90
	Dup of	Pup of	Dup of
	37438	37439	37444
Analytes			
Phenols			
Phenol (GCHS)	< 2.20	< 2.20	< 2.20
Semivolatiles			
1,4-Oxathiane	< 2.38	< 2.38	< 2.38
1,4-0xathiane (GCNS)	< 27.0	< 27.0	< 27.0
2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.0490	< 0.0490	< 0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophamyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Suifide	< 5.69	< 5.69	< 5.69
6-Chiorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	< 7.46	< 7.46	< 7.46
4-Chiorophenylmethyl Bulfone (GCMS)	< 5.30	< 5.30	< 5.30
6-Chlorophenylmethyl Sulfaxide	< 11.5	< 11.5	< 11.5
6-Chiorophenylmethyl Sulfoxide (GCHS)	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500
Aldrin (GDHS)	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Sample 10	HA1173	HA1174	HA1198	
Date	02/28/90	03/01/90	06/13/90	
	po dng	Dup of	pro of	
	37438	37439	37444	
Analytes				
Semivolatiles				
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	
Benzoth i azol e	< 5.00	< 5.00	< 5.00	
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	
8is (2-Ethylhexyl) Phthalate (GCMS)	c 7.70	< 7.70	< 7.70	
	¢ 7.70	< 7.70	< 10.0	
Chlordene	< 0.0950	0.0950	< 0.0950	
Chlordene (GCMS)	< 37.0	< 37.0	< 37.0	
Dicyclopentadiene	< 5.00	< 5.00	· 5.00	
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	
Dieldrin	0.110	< 0.0500	< 0.0500	
Dieldrin (GOIS)	< 26.0	< 26.0	< 26.0	
Diisopropyl Methylphosphonate	3.76	2.56	5.54	
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	
Dithiere	× 1.34	< 1.34	× 1.34	

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or
 - R -- Data did not meet quality control criteria and were above the Maximum Reporting Limit.
 - NA -- Not Analyzed. A -- Results considered anomalous based on evaluation of <u>ة</u> 2 rejected. Dup - Duplicate. isto

1

Sample 10	HA1173	HA1174	HA1198
Date	05/28/90	03/01/90	06/13/90
	o dng	Dup of	Dup of
	37438	37439	37444
Analytes			
Semivolatiles			
Dithiane (GCHS)	< 3.30	< 3.30	< 3.30
Endrin	< 0.0500	< 0.0500	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 18.0
Nexach lorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480
Hexachlorocyclopentadiene (GCMS)	o 24.0	< 54.0	< 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510
leadrin (GCMS)	< 7.80	< 7.80	< 7.80
Halathion	< 0.373	< 0.373	< 0.373
Malathion (GCHS)	< 21.0	< 21.0	< 21.0
Parathion	× 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10
Supone	< 0.787	< 0.787	< 0.787
Supora (GCMS)	< 19.0	< 19.0	< 19.0
Vapone	× 0.384	< 0.384	< 0.384
Vapona (GCHS)	< 8.50	< 8.50	< 8.50

Notes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

	HA1173		HA1174		HA1198	
Date	02/28/90		03/01/90	_	06/13/90	
	Dup of		Pup of	_	Dup of	
	37438		37439	_	37444	
Analytes						
Volatiles						
1,1,1-Trichloroethane	< 0.760		< 0.760		< 0.760	
1,1,1-Trichloroethane (GCMS)	. 1.00		× 1.00		• 1.00	
1,1,2-Trichloroethane	< 7.780		< 0.780		< 0.780	
1,1,2-Trichloroethane (GCMS)	. 1.00		* 1.00		. 1.00	
1,1-Dichloroethane	< 0.730		< 0.730		< 0.730	
1,1-Dichloroethane (GCMS)	4 1.00		· 1.00		1.00	
1,1-Dichloroethene	< 1,70		< 1.70		< 1.70	
1,1-Dichloroethene (GCMS)	. 1.00		× 1.00		.1.00	
1,2-Dichioroethane	< 1.10		< 1.10		< 1.10	
1,2-Dichloroethane (GCMS)	.1.8		4 1.00		• 1.00	
1,2-Dichloroethenes (cis & trans)	< 0.760		< 0.760		< 0.760	
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00		< 5.00		< 5.00	
Benzene	21.9	•	2.07	«	< 1.05	
Benzene (GCHS)	13.2	•	2.25	<	. 1.00	
Carbon Tetrachloride	2.13	•	< 0.990		06.0 >	
Carbon Tetrachloride (GCMS)	2.02	<	4 1.00		< 1.00	

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at
- > -- indicates that the target analyte was detected at or or above the Certified Reporting Limit. above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were
 - MA -- Not Analyzed. A -- Results considered anomalous based on evaluation of d op. jejj . rejected. Dup - Duplicate. · isto · · datr

Table 84 Groundwater Duplicate Analytical Data

Sample 10	HA1173	r s	HA1174	2 8	HA1198	
Date	02/28/90 Dub of	2 %	07(50) GMO	₹ %	06/13/90 Duo of	
	37438	9	37439	2	37444	
Analytes						
Volatiles						
Chlorobenzene	110	<	18.2	<	< 0.820	
Chlorobenzene (GCMS)	115	<	7.07	<	. 1.00	
Chloroform	077	<	34.4	<	3.23	
Chloroform (GCMS)	× 150	<	0.76	<	3.10	
Dibromochi oropropene	1.10	<	0.463	<	< 0.195	
Dibromochloropropene (GCMS)	< 12.0		< 12.0		< 12.0	
Dimethyl Disulfide	< 0.550		< 0.550		< 0.550	
Ethyl Benzene	< 1.37		< 1.37		< 1.37	
Ethyl Benzene (GCHS)	< 1.00		. 1.00		< 1.00	
M-Kylene	< 1.32		< 1.32		< 1.32	
M-Xylene (GCMS)	1.00		< 1.00		< 1.00	
Methylene Chloride	< 7.40		× 7.40		05.7 >	
Methylene Chloride (GCMS)	< 1.00		08		.1.00	
Methylisobutyl Ketone	6.90		6.4 ×		· 4.90	
Methylisobutyl Ketone (GCMS)	< 1.40		< 1.40		07.1 >	
O,P-Kylene	< 1.36		< 1.36		· 1.36	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - R -- Data did not meet quality control criteria and were
 - rejected. Dup Duplicate. NA -- Not Analyzed.
 A -- Results considered anomalous based on evaluation of historical data and field QA/QC procedures.

Table 84 Groundwater Duplicate Analytical Data

	HA1173	HA1174	HA1198
Date	05/28/90	03/01/90	06/13/90
	po dng	Dup of	Dup of
	37438	37439	37444
Analytes			
Votatiles			
O.P-Xvlene (6CMS)	< 2.00	< 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750
Tetrachionoethere (GCMS)	× 1.00	. 1.00	.1.00
Toluene	3.77 A	< 1.47	< 1.47
Toluene (GCMS)	3.90 A	1.20 A	× 1.00
Trichloroethene	3.47 A	< 0.560	< 0.560
Trichloroethere (GCMS)	¥	1.20 A	· 1.00
Virvi Chloride	4	*	≨
Vinyl Chloride (GCMS)	< 12.0	< 12.0	< 12.0

Motes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > indicates that the target enalyte was detected at or
 - above the Naximum Reporting Limit.
 R -- Data did not meet quality control criteria and were rejected. Dup Duplicate. NA -- Not Analyzed.
 - A -- Results considered anomalous based on evaluation of his: | dn = 1fi, 1/90 dure

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10	09200TW090	09200TW090	10021TWPE0	10100TV108
Date	01/17/89	68/80/60	05/27/90	05/30/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.35	¥	< 2.35	£
Cadmium	07.8 >	K	s 6.78	¥
Calcium	2170	¥	1600	4
Chloride	5130	¥	3000	\$
Chromium	< 24.0	4	< 16.8	\$
Copper	< 26.0	¥	× 18.8	\$
Cyanide	< 5.00	M	< 5.00	≨
Fluoride	2330	¥	3090	¥
Iron	Y 2	¥	< 77.5	¥
Peal	< 74.0	¥	< 43.4	4
Magnes i um	> 500	¥X ·	149	¥
Manganese	M	KN	× 9.67	¥
Mercury	< 0.100	¥¥	< 0.100	¥
Nitrite, Nitrate Non-Specific	8 2	¥	200000	*
Potassium	< 250	¥	< 1240	≨
Sodium	78000	¥	00096	.
Sulfate	13300	YR	10300	≨
Total Organic Carbon	KA K	VN.	· 1000	≨.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	092001u090 01/17/89	09200TW090 09/08/89	10021TUPEO 02/27/90	10100TW108 05/30/90
Blytes				
tals/Anions/General Chem				
Zinc	< 22.0	¥	< 18.0	¥
enots				
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	6.1.70	¥
2,4,5-Trichlorophenol (GCMS)	¥	< 2.80	< 2.80	¥
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	¥
2,4-Dichlorophenol (GCMS)	8.4 0	8.40	8.4 0	¥
2,4-Dimethylphenol (GCMS)	07'7 >	07.7 >	07.4 >	ž
2,4-Dinitrophenol (GCMS)	4 176	× 176	4 176	≦
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥
2-Methylphenol (GCMS)	< 3.60	009.0 >	< 3.60	¥
2-Witrophenol (GCMS)	< 8.20	< 3.00	< 8.20	¥
3-Methyl-4-Chlorophenol (GCNS)	< 8.50	< 0.300	< 8.50	≨
4-Methylphenol (GCMS)	< 2.80	09.0 >	< 2.80	\$
6-Nitrophenol (GCMS)	× 96.0	007.0 >	· %·0	¥
Phenol (GCMS)	< 2.20	< 0.320	< 2.20	¥
nivolatiles				
1,4-Oxathiane	< 2.38	< 1.97	< 2.38	¥
1,4-Oxathiane (GCMS)	< 27.0	< 0.160	< 27.0	¥
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	VN	< 0.0490 <	\$
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 1.20	< 18.0	¥

Values are reported in micrograms per liter. Notes:

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	09200TW090 01/17/89	09200TW090 09/08/89	10021TUPE0 02/27/90	10100Tu108 05/30/90
Analytes		·		
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	¥2	< 0.0540	¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 3.39	< 14.0	¥
4-Chlorophenylmethyl Sulfide	< 5.69	< 10.5	< 5.69	¥
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 1.30	< 10.0	¥¥
4-Chlorophenylmethyl Sulfone	< 7.46	° 4.70	< 7.46	\$
4-rhlorophenylmethyl Sulfone (GCMS)	< 5.30	< 0.750	< 5.30	¥
. Jorophenylmethyl Sulfoxide	< 11.5	< 15.2	< 11.5	¥
4-Chlorophenylmethyl Sulfrxide (GCMS)	< 15.0	< 0.500	< 15.0	¥
A irin	< 0.0500	¥.	< 0.0500	· YH
Aldrin (GCMS)	< 13.0	< 0.800	< 13.0	¥
Atrazine	< 4.03	< 4.03	< 4.03	¥
Atrazine (GCMS)	< 5.90	< 0.500	< 5.90	\$
Benzothiazole	< 5.00	< 0.00234	< 5.00	¥
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	¥
Bis (2-Ethylhexyl) Phthalate (GCMS)	Y.	¥	ል.7 >	¥
Caprolactam (GCMS)	¥	Y2	6.7.	ş
Chlordane	< 0.0950	¥	< 0.0950	¥
Chiordane (GCMS)	< 37.0	< 0.260	< 37.0	¥

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

⁻⁻ Data did .wt meet quality control criteria and were NA -- Not Analyzed. R -- Data did .wt m rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 10	09200TW090	09200TM090	10021TWPE0	10100TV108
Date	01/17/89	09/08/89	05/21/90	05/30/50
Analytes		·		
Semivolatiles				
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	¥
Dicyclopentadiene (GCMS)	< 5.50	< 0.560	< 5.50	≨
Dieldrin	< 0.0500	M	< 0.0500	¥
Dieldrin (GCMS)	< 26.0	< 0.930	< 26.0	¥
Diisopropyl Methylphosphonate	1.32	1.38	< 0.392	< 0.392
Dissopropyl Methylphosphonate (GCMS)	< 21.0	< 1.60	< 21.0	¥
Dimethylmethyl Phosphonate	< 0.188	< 4.23	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 0.700	× 130	¥
Dithiane	< 1.34	< 0.114	× 1.34	¥
Dithiane (GCMS)	< 3.30	< 0.710	< 3.30	¥
Endrin	< 0.0500	\$	< 0.0500	42
Endrin (GCMS)	< 18.0	< 0.100	< 18.0	ĭ
Hexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	·
Hexachlorocyclopentadiene (GCMS)	< 54.0	< 0.520	< 54.0	Ş
Isodrin	< 0.0510	V N	< 0.0510	¥
Isodrin (GCMS)	< 7.80	× 0.990	< 7.80	¥ .
Malathion	< 0.373	< 0.373	< 0.373	¥
Malathion (GCMS)	< 21.0	< 0.620	< 21.0	ī

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m re jected.

Table 85 Investigative Analytical Data for Domestic Well Samples

		•			
Sample 10	0920014090	0920014090	10021110050	ACTUTOUTOR	
Date	01/17/89	68/90/60	05/27/90	05/30/50	
nalytes				·	
mivolatiles					
Parathion	< 0.647	< 0.647	< 0.647	¥	
Parathion (GCMS)	< 37.0	< 8.10	< 37.0	\(\)	
Pentachlorophenol (GCMS)	< 9.10	< 0.290	< 9.10	\$	
Support	< 0.787	< 0.787	< 0.787	≨	
Supona (GCMS,	< 19.0	< 3.90	< 19.0	¥	
Vapona	< 0.384	< 0.384	< 0.386		
Vapona (GCMS)	< 8.50	< 0.670	< 8.50	1	
latiles					
1,1,1-Trichloroethane	< 0.760	*	0,760	57.0 5	
1,1,1-Trichloroethane (GCMS)	ş	\$		1	
1,1,2-Trichloroethane	< 0.780	\$	92.0		
1,1,2-Trichloroethane (GCNS)	¥¥	*	4 1.00	*	
1,1-Dichloroethane	< 0.730	¥	6.730	< 0.730	
1,1-Dichloroethane (GCMS)	\$	¥	.00	¥	
1,1.Dichloroethene	< 1.70	¥¥	× 1.8	8.T.	
1,1-Dichloroethene (GCMS)	\(\)	¥	.1.00	¥.	
1,2-Dichloroethane	< 1.10	¥	< 1.10	< 1.10	
1,2-Dichloroethane (GCMS)	¥	¥	. 1.00	¥	
1,2-Dichloroethenes (cis & trans)	< 0.760	¥8	< 0.760	< 0.760	

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 10 Date	09200TW090 01/17/89	092001W090 09/08/89	10021TWE0 02/27/90	10100TW108 05/30/90
Analytes		·		
				,
1,2-Dichloroethenes (cis & trans) (GCMS)	¥.	YN	< 5.00	*
Benzene	< 1.05	VN.	< 1.05	¥
Benzene (GCMS)	MA	KA	< 1.00	¥
Carbon Tetrachloride	06.0 >	¥	× 0.990	< 0.990
Carbon Tetrachloride (GCMS)	\$	¥	1.00	¥
Chlorobenzene	< 0.820	\$	o 0.820	< 0.820
Chlorobenzene (GCMS)	Y.	¥	4 1.00	¥
Chloroform	< 0.500	¥	< 0.500	< 0.500
Chloroform (GCMS)	Y.	¥¥	. 1.00	¥
Dibromochloropropane	< 0.195	< 0.195	< 0.195	\$
Dibromochloropropane (GCMS)	c 12.0	< 0.250	< 12.0	¥
Dimethyl Disulfide	< 0.550	< 0.133	< 0.550	≦
Ethyl Benzene	< 1.37	¥	< 1.37	4
Ethyl Benzene (GCMS)	YH	¥	. 1.00	\(\)
M-Xylene	< 1.32	4	< 1.32	¥
M-XV(ene (GCMS)	¥	\$	× 1.00	¥.
Methylene Chloride	< 7.40	¥	< 7.40	07.7 >
Methylene Chloride (GCMS)	NA	KA	× 1.00	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were re iected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	09200TW090 01/17/89	09200TW090 09/08/89	100211WE0 02/27/90	1010014108 05/30/90
Analytes				
Volatiles			٠	
Methylisobutyl Ketone	× 4.90	06.4 >	o.4 ×	¥
Methylisobutyl Ketone (GCMS)	4 2	Y2	< 1.40	\$
O,P-Xylene	< 1.36	Y.	< 1.36	4
O,P-Xylene (GCMS)	¥.	42	< 2.00	¥
Tetrachloroethene	< 0.750	M	< 0.750	< 0.750
Tetrachloroetheme (GCMS)	¥	¥	.1.00	ş
Toluene	< 1.47	¥#	< 1.47	≦
Toluene (GCMS)	4 2	YN	. 1.00	\$
Trichloroethene	< 0.560	¥8	< 0.560	< 0.560
Trichloroethene (GCMS)	K H	42	< 1.00	₹.
Vinyl Chloride (GCMS)	¥	4	< 12.0	¥

Reported values are accurate to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10	10150TWHY2	10720TWBR1	10720TMBR1	10791TUBR1
Date	05/30/60	09/08/80	12/28/89	06/60/50
Analytes		٠		
Metals/Anions/General Chem				
Arsenic	KA	¥	< 2.35	1
Cachium	¥	W	× 6.78	ş
Calcium	M	¥	143000	·
Chloride	K	¥	150000	¥
Chromium	NA	V N	< 16.8	£
Соррег	¥	ş	< 18.8	ş
Cyanide	K	¥	< 5.00	1
Fluoride	¥	¥	1630	≨
Iron	¥	¥	¥	*
Lead	4	K	< 43.4	4
Magnesium	4	¥	34100	ž
Manganese	X	X X	KA	\$
Mercury	4 2	¥	< 0.100 <	≦
Nitrite, Nitrate Non-Specific	Y 2	¥	7800	≦
Potassium	YN.	¥	4180	
Sodie	¥	ş	160000	\$
Sulfate	4 2	¥	300000	\$
Total Organic Carbon	Y	¥.	1400	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- \mbox{Mot} Analyzed. \mbox{R} -- $\mbox{Data did}$ not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	10150TWHY2 05/30/90	107201WBR1 09/08/89	10720TWBR1 12/28/89	10791TWBR1 05/09/90
Analytes		·		•
Metals/Anions/General Chem Zinc	¥	¥	8.42	¥
Phenols				
2,3,6-Trichlorophenol (GCMS)	\$	< 1.70	× 1.70	¥
2,4,5-Trichlorophenol (GCMS)	4	< 2.80	< 2.80	MA
2,4,6-Trichlorophenol (GCMS)	¥.	< 3.60	< 3.60	¥
2,4-Dichlorophenol (GCMS)	¥	07.8 >	07.8 >	¥
2,4-Dimethylphenol (GCMS)	¥	07.7 >	07.7 >	4
2,4-Dinitrophenol (GCMS)	¥.	< 176	< 176	ş
2-Chlorophenol (GCMS)	¥	< 2.80	< 2.80	¥
2-Methylphenol (GCMS)	¥	009'0 >	< 3.60	¥
2-Nitrophenol (GCMS)	¥	< 3.00	8.20	¥
3-Wethyl-4-Chlorophenol (GCMS)	4	< 0.300	< 8.50	¥
4-Wethylphenol (GCMS)	¥	09.0 >	< 2.80	¥
4-Nitrophenol (GCMS)	¥	007.0 >	× 96.0	¥
Phenol (GCMS)	¥	< 0.320	< 2.20	4
Semivolatiles				
1,4-Oxathiane	¥	< 1.97	< 2.38	¥
1,4-Oxathiane (GCMS)	¥	< 0.160	< 27.0	W.
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	¥	X	< 0.0%90	W.
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	¥	< 1.20	< 18.0	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	10150TWHY2 05/30/90	107201WBR1 09/08/89	107201WBR1 12/28/89	10791TUBR1 05/09/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	4	×2	< 0.0540	¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	< 3.39	< 14.0	¥
4-Chlorophenylmethyl Sulfide	¥	< 10.5	< 5.69	¥
4-Chlorophenylmethyl Sulfide (GCMS)	VN	< 1.30	< 10.0	¥
4-Chlorophenylmethyl Sulfone	\$	٠ 4.70	< 7.46	¥
4-Chlorophenyimethyl Sulfone (GCMS)	¥8	< 0.750	< 5.30	\$
4-Chlorophenylmethyl Sulfoxide	¥N	< 15.2	< 11.5	¥
4-Chlorophenyimethyl Sulfoxide (GCMS)	¥	< 0.500	< 15.0	¥
Aldrin	¥#	N	< 0.0500	MA
Aldrin (GCMS)	¥ N	< 0.800	< 13.0	¥
Atrazine	ş	< 4.03	< 4.03	¥
Atrazine (GCMS)	¥#	< 0.500	< 5.90	4 *
Benzothiazole	¥.	< 0.00234	< 5.00	¥
Bicyclo [2,2,1] hepta-2,5-diene	¥	< 5.90	< 5.90	M
Bis (2-Ethylhexyl) Phthalate (GCMS)	¥	¥4	٠7.7	¥
Caprolactam (GCMS)	¥N	YN	6.7.	≨
Chlordane	4	Y.	< 0.0950	¥
Chlordane (GCMS)	4	< 0.260	< 37.0	¥#

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D	10150TWHY2	10720TWBR1	10720TWBRI	10791TWBRI
Date	05/30/90	09/08/80	12/28/89	06/60/50
Analytes				
Semivolatiles				•
Dicyclopentadiene	M	< 5.00	· 2.00	¥
Dicyclopentadiene (GCMS)	¥	< 0.560	< 5.50	¥
Dieldrin	¥	¥¥	< 0.0500	¥
Dieldrin (GCMS)	MA	< 0.930	< 26.0	ş
Diisopropyl Wethylphosphonate	5.11	81.0	80.0	13.4
Diisopropyl Methylphosphonate (GCMS)	¥N	77.3	56.6	¥
Dimethylmethyl Phosphonate	< 0.188	< 4.23	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	¥	< 0.700	< 130	¥.
Dithiane	¥.	< 0.114	< 1.34	¥
Dithiane (GCMS)	¥	< 0.710	< 3.30	¥
Endrin	¥N	¥	< 0.0500	≨
Endrin (GCMS)	¥	< 0.100	< 18.0	¥
Hexachlorocyclopentadiene	¥	< 0.0480	< 0.0480	¥
Hexachlorocyclopentadiene (GCMS)	¥	< 0.520	< 54.0	¥
Isodrin	4 2	¥.	< 0.0510	¥
Isodrin (GCMS)	¥	· 0.990	< 7.80	¥
Malathion	¥	< 0.373	< 0.373	Y.
Malathion (GCMS)	VN	< 0.620	< 21.0	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	10150TWHY2 05/30/90	10720TWBR1 09/08/89	10720148R1 12/28/89	10791TWBR1 05/09/90
Analytes		·		
Semivolatiles				
Parathion	¥.	< 0.647	× 0.647	¥
Parathion (GCMS)	¥N	< 8.10	< 37.0	≦
Pentachlorophenol (GCMS)	¥N	< 0.290	< 9.10	¥
Supona	¥N	< 0.787	< 0.787	¥
Supona (GCMS)	¥2	< 3.90	. 19.0	. 4
Vapona	¥	< 0.384	< 0.384	¥
Vapona (GCMS)	Y.	< 0.670	< 8.50	¥
Volatiles				
1,1,1-Trichloroethane	< 0.760	¥	3.34	< 0.760
1,1,1-Trichloroethane (GCMS)	¥2	Y.	4	¥
1,1,2-Trichloroethane	< 0.780	YN	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	43	¥3	¥	¥
1, 1-Dichloroethane	• 0.730	¥	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	¥	¥2	¥.	\$
1,1.Dichloroethene	· 1.70	KA	× 1.70	× 1.7
1,1-Dichloroethene (GCMS)	NA	¥N	≨	¥
1,2-Dichloroethane	< 1.10	MA	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	42	Y.	4	¥
1,2-Dichloroethenes (cis & trans)	< 0.760	Z Z	< 0.760	< 0.760

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D	10150TWHY2	10720TWBR1	10720TWBR1	10791TWBR!
Date	05/30/60	68/80/60	12/28/89	06/60/50
Wild I year				
Volatiles			;	;
1,2-Dichloroethenes (cis & trans) (GCMS)	V N	¥N	4	Y
	YZ.	¥N	× 1.05	¥
Renzene (CCMS)	NA NA	X	¥N	ş
Carbon Tetrachloride	× 0.990	¥X	06.0 >	06.0 >
Carbon Tetrachloride (GCMS)	NA NA	4 2	¥	¥
Ch orobenzene	< 0.820	¥	< 0.820	× 0.820
Chlorobenzene (GCMS)	AN.	Y.	¥	£
Chloroform	< 0.500	NA NA	0.961	< 0.500
Chloroform (GCMS)	M	¥	¥	¥
Dibromochloropropane	V.	< 0.195	< 0.195	YN .
Dibromochloropropane (GCMS)	¥.	< 0.250	< 12.0	\$
Dimethy! Disulfide	4 2	< 0.133	< 0.550	¥
Ethyl Benzene	4 2	4	< 1.37	¥
Ethyl Benzene (GCMS)	4 2	¥	MA	¥
M-Xylene	¥¥	¥	< 1.32	ş
(SEUS) ede XX-M	¥	¥	¥	\$
Methylene Chloride	05"2 >	¥	07.7 >	o 7 .7 ×
Methylene Chloride (GCMS)	¥	¥	¥	¥

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	10150TWHY2 05/30/90	107201WBR1 09/08/89	107201WBR1 12/28/89	10791TUBR1 05/09/90
Analytes				
Volatiles	43	6 7 >	06.4 >	.
Methyl isobutyl Ketone	< M	VX	*	\$
Methylisobuly! Ketone (ucms)	ş	¥	* 1.36	¥#
	\ X	42	¥	¥
O,r.xytene (uchs) Tetrachloroethene	< 0.750	¥	< 0.750	< 0.750
CANCEL STREET	¥	¥	4	¥#
	¥	¥	< 1.47	4
	¥	¥	¥2	4
lotuene (cons)	< 0.560	¥	< 0.560	< 0.560
Trichloroethene (GCMS)	¥	¥	¥	YN .
Vinyl Chloride (GCMS)	*	YN.	¥	4

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were reiected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10	11010TWHAV	11071TW112	11071TW112	11295TV108
Date	01/26/90	01/31/89	08/21/90	01/31/89
Analytes		٠		
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35
Cachium	< 6.78	8.4 0	× 6.78	× 8.40
Calcium	93500	101000	117000	00909
Chloride	œ	28000	92000	35000
Chronium	< 16.8	< 24.0	< 16.8	< 24.0
Copper	< 18.8	< 26.0	× 18.8	< 26.0
Cyanide	< 5.00	6.16	× 8.90	5.87
Fluoride	~	1630	1660	1640
Iron	YN	X	< 77.5	¥
Peal	< 43.4	< 74.0	< 43.4	< 74.0
Aagnesium	28900	25600	30800	14800
Manganese	¥	¥ 2	< 9.67	≨
Mercury	< 0.100	< 0.100	1.64	. 0.100
Nitrite, Nitrate Non-Specific	9300	2000	5300	3100
Potassium	3120	3190	7500	1970
Sodium	100000	80500	130000	60700
Sulfate	œ	220000	230000	100001
Total Organic Carbon	× 1000	¥¥	2400	¥

> -- indicates that the target analyte was detected at or

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table 85 investigative Analytical Data for Domestic Well Samples

Sample ID Date	11010TUHAV 01/26/90	110711W112 01/31/89	11n717u112 08/21/90	11295TW108 01/31/89
Analytes				
Metals/Anions/General Chem Zinc	542	36.5	28.7	24.9
Phenols 2 %.6-Trichlorophenol (GCMS)	< 1.70	× 1.70	< 1.70	× 1.70
2 & S-Trichlorochenal (GCMS)	< 2.80	< 2.80	<· 2.80	< 2.80
2 & 6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2 4-Dirthorochenol (GCMS)	× 8.40	8.4 0	o 9.40	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	05.2 >	07.4 >	07.7 >
2 4-Dinitropheral (GCHS)	4 176	× 176	> 176	× 176
2-th prohenol (GCES)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	< 3.60	× 3.60
Selection of the select	₹ 8.20	< B.20	< 8.20	× 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8. 50	< 8.50
(SMDD) Cooper of the second of	< 2.80	< 2.80	< 2.80	< 2.80
	0.96 >	× %.0	0.96 >	· %.0
Phenol (GCMS)	< 2.20	< 2.20	× 2.20	< 2.20 ·
Semivolatiles	, ,	5	< 2.38	< 2.38
1,4-Oxathlane	< 27.0	< 27.0	< 27.0	< 27.0
1,4-UX8tnlane (ucms) 2 3-pis/parachlorophane()-1 1-Trichloropthane (DDI)	< 0.0490	06700 >	< 0.0490	< 0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m relected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	11010TUHAV 01/26/90	11071TW112 01/31/89	11071TW112 08/21/90	11295TU108 01/31/89
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	< 7.46	< 7.46	× 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	· 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	¥	٠ 7.70	4
Caprolactam (GCMS)	< 10.0	¥	× 7.70	\$
Chlordane	< 0.0950	< 0.0950	< 0.0950	< 0.0950
Chlordane (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	11010TWHAV 01/26/90	1107174112 01/31/89	110717W112 08/21/90	11295TV106 01/31/89
Analytes				
Semivolatiles	,		\$ •	8
Dicyclopentadiene	< 2.00·		3.6	3.5
Divolopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	· 5.50
	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
Carrier Course	< 26.0	< 26.0	< 26.0	° 28.0
Diisopropyl Methylphosphonate	14.9	13.7	10.0	•
Titonomy Methylphochronic (CCMS)	< 21.0	< 21.0	< 21.0	< 21.0
Pilothianehil Bhoshbase	< 0.188	0.382	< 0.188	× 0.188
Competing the control of the Competing Comments of Com	< 130	< 130	< 130	× 130
Diskips	× 1.34	× 1.34	< 1.34	× 1.%
Dithiane (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30
	• 0.0500	0.0500	< 0.0500	00000 >
	· 18.0	< 18.0	< 18.0	× 18.0
Error III (Cons.)	< 0.0480	0.0480	< 0.0480	< 0.0480
	< 54.0	< 54.0	× %.º	. %.o
nexachiorocyclopeniative (achs)	< 0.0510	< 0.0510	< 0.0510	< 0.0510
	< 7.80	< 7.80	× 7.80	< 7.80
	< 0.373	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11010TWHAV 01/26/90	11071TW112 01/31/89	11071TW112 08/21/90	11295TW108 01/31/89
Analytes				
Semivolatiles				•
Parathion	× 0.647	< 0.647	< 0.647	× 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10
Subone	< 0.787	< 0.787	< 0.787	× 0.787
Supona (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0
Vanora	< 0.384	< 0.384	< 0.364	< 0.384
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	6.5 0
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	.1.00	¥	· 1.00	*
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780
1.1.2-Trichloroethane (GCMS)	. 1.00	¥¥	• 1.00	≨
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730
1.1-Dichloroethane (GDMS)	· 1.00	¥	4 1.80	¥
1,1-Dichloroethere	× 1.7	· 1.70	6.1.8	£
1,1-Dichloroethere (GCMS)	× 1.00	4	• 1.00	¥
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	× 1.10
1,2-Dichloroethane (GCMS)	* 1.00	42	× 1.00	≨
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760

Reported values are accurate to three significant figures.

> -- indicates that the target analyte was detected at or

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11010TUNAV 01/26/90	110711W112 01/31/89	11071TW112 08/21/90	11295TU108 01/31/89
Analytes		·		
Volatiles				
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	4	< 5.00	≦
Benzene	< 1.05	< 1.05	< 1.05	· 1.05
Benzene (GCMS)	× 1.00	¥#	· 1.00	¥H
Carbon Jetrachloride	× 0.990	< 0.990	060.0 >	× 0.990
Carbon Tetrachloride (GCMS)	· 1.00	Y.	< 1.00	4
Chlorobenzene	< 0.820	< 0.820	× 0.820	< 0.820
Chlorobenzene (GCMS)	° 1.00	4	· 1.00	4
Chloroform	< 0.500	< 0.500	2.32	< 0.500
Chloroform (GCMS)	4 1.00	£	23.0	≦
Dibromochloropropane	< 0.195	< 0.195	< 0.195	× 0.195
Dibromochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	× 1.00	4	. 1.00	\$
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	× 1.00	42	× 1.00	¥
Methylene Chloride	° 7.40	< 7.40	× 7.40	× 7.40
Methylene Chloride (GCMS)	· 1.00	¥.	× 1.00	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D	11010TWHAV 01/26/90	11071TW112 01/31/89	110711W112 08/21/90	11295TV108 01/31/89
alytes				
latiles		٠		
Methylisobutyl Ketone	06.7 >	06.4 >	06.4 >	06.4 >
Methylisobutyl Ketone (GCMS)	< 1.40	M	< 1.40	4
0,P-Xylene	< 1.36	< 1.36	< 1.36	< 1.36
O,P-Xylene (GCMS)	< 2.00	K	< 2.00	4
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	< 1.00	M	< 1.00	ş
Toluene	< 1.47	< 1.47	< 1.47	< 1.67
Toluene (GCMS)	< 1.00	¥N.	· 1.00	4
Trichloroethene	< 0.560	< 0.560	< 0.560	< 0.560
Trichloroethene (GCMS)	< 1.00	¥	• 1.00	¥
Vinyl Chloride (GCMS)	< 12.0	*	< 12.0	¥

No

> -- indicates that the target analyte was detected at or

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11295TW108 08/22/90	11295TW108 08/24/90	11460TWPE0 08/21/90	11755TWBR1 05/30/90
Analytes				
Metals/Anions/General Chem		• •		
Arsenic	< 2.35	4	< 2.35	¥
Cadmium	< 6.78	¥.	< 6.78	¥
Calcium	29900	¥	113000	\$
Chloride	92000	48	90098	W.
Chromicm	< 16.8	YN	< 16.8	\$
Copper	< 18.8	¥	< 18.8	¥
Cyanide	8.90	¥.	< 8.90	4
Fluoride	1520	42	1510	4
Iron	< 77.5	¥	< 77.5	K
Lead	44.7	4	< 43.6	4
Hagnes i un	18900	\$	29600	\$
Manganese	< 9.67	¥#	< 9.67	£
Mercury	1.34	KA	1.09	*
Nitrite, Nitrate Non-Specific	3400	¥2	5300	4
Potassium	3240	42	2490	4
Sodium	76000	¥	120000	. \$
Sulfate	140000	4	160000	≦
Total Organic Carbon	NA NA	1900	2500	4

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	112951V108 08/22/90	11295TW108 08/24/90	114601WPE0 08/21/90	11755TWBR1 05/30/90
Analytes				
Metals/Anions/General Chem				
Zinc	34.8	¥	< 18.0	¥
Phenots				
2,3,6-Trichlorophenol (GCMS)	¥ X	< 1.70	s.1.8	¥
2,4,5-Trichlorophenol (GCMS)	K	< 2.80	< 2.80	48
2,4,6-Trichlorophenol (GCMS)	KX	< 3.60	< 3.60	4
2,4-Dichlorophenol (GCMS)	K	07.8 >	8.40	¥#
2,4-Dimethylphenol (GCMS)	42	07.7 >	07.7 >	¥
2,4-Dinitrophenol (GCMS)	¥	< 176	× 176	¥
2-Chlorophenol (GCMS)	¥8	< 2.80	< 2.80	Ş
2-Methylphenol (GCMS)	¥ X	× 3.60	< 3.60	\$
2-Nitrophenol (GCMS)	¥	< 8.20	8.20	≨
3-Methyl-4-Chlorophenol (GCMS)	¥	< 8.50	< 8.50	¥
4-Methylphenol (GCMS)	×	< 2.80	< 2.80	\$
4-Nitrophenol (GCMS)	¥2	· %.0	· 96.0	į
Phenol (GCMS)	¥	< 2.20	< 2.20	\$
Semivolatiles				
1,4-0xathiane	¥	< 2.38	< 2.38	≨
1,4-0xathiane (GCMS)	42	< 27.0	< 27.0	≨
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	¥.	< 0.0490	< 0.0490	≨
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	NA	< 18.0	× 18.0	4

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > .. indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	11295TW108 08/22/90	11295TW108 08/24/90	11460TWPE0 08/21/90	11755TWBR1 05/30/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	N	< 0.0540	< 0.0540	¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	MA	< 16.0	< 14.0	**
4-Chlorophenylmethyl Sulfide	KN	< 5.69	< 5.69	¥
4-Chlorophenylmethyl Sulfide (GCMS)	KN	< 10.0	< 10.0	¥#
4-Chlorophenylmethyl Sulfone	¥.	> 7.46	× 7.46	¥
4-Chlorophenylmethyl Sulfone (GCMS)	Y.	< 5.30	< 5.30	¥
4-Chlorophenylmethyl Sulfoxide	¥	< 11.5	< 11.5	¥
4-Chlorophenylmethyl Sulfoxide (GCHS)	¥	< 15.0	< 15.0	¥
Aldrin	M	< 0.0500	< 0.0500	*
Aldrin (GCMS)	4	< 13.0	< 13.0	¥
Atrazine	4	< 4.03	< 4.03	\$
Atrazine (GCHS)	¥	< 5.90	< 5.90	4
Benzothiazole	¥	< 5.00	< 5.00	4
Bicyclo (2,2,1) hepta-2,5-diene	¥.	< 5.90	< 5.90	4
Bis (2-Ethylhexyl) Phthalate (GCMS)	Y 2	< 7.70	۰ 7.70	¥
Caprolactam (GCMS)	¥	× 10.0	67.7	ž
Chlordane	¥	< 0.0950	< 0.0950	4
Chlordane (GCMS)	¥N	< 37.0	< 37.0	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	112951W108 08/22/90	112951W108 08/24/90	11460TUPE0 08/21/90	11755TWBR1 05/30/90
Analytes		•		
Semivolatiles				
Dicyclopentadiene	Y.	< 5.00	< 5.00	¥.
Dicyclopentadiene (GCMS)	¥4	< 5.50	< 5.50	¥
Dieldrin	KA	< 0.0500	< 0.0500	¥
Dieldrin (GCMS)	Y#	< 26.0	< 26.0	¥
Diisopropyl Methylphosphonate	¥	3.24	0.830	< 0.392
Diisopropyl Methylphosphonate (GCMS)	¥	< 21.0	< 21.0	\$
Dimethyl Phosphonate	Y.	< 0.188	< 0.188	56.6
Dimethyl Phosphonate (GCMS)	M	< 130	< 130	¥
Dithiane	N	< 1.34	× 1.34	¥
Dithiane (GCMS)	Y	< 3.30	< 3.30	¥
Endrin	4 2	< 0.0500	< 0.0500	¥ #
Endrin (GCMS)	YN N	< 18.0	< 18.0	¥
Hexachlorocyclopentadiene	Y.	< 0.0480	< 0.0480	¥
Hexachlorocyclopentadiene (GCMS)	Y2	< 54.0	< 54.0	¥
Isodrin	¥x	< 0.0510	< 0.0510	¥
Isodrin (GCMS)	¥	< 7.80	< 7.80	\$
Malathion		< 0.373	< 0.373	¥
Malathion (GCMS)	Z.	< 21.0	< 21.0	¥

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- \mbox{Not} Analyzed. \mbox{R} -- \mbox{Data} did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10 Date	112951W108 08/22/90	11295TW108 08/24/90	11460TWPE0 08/21/90	11755TUBR1 05/30/90
Analytes				
Semivolatiles				
Parathion	¥	< 0.647	< 0.647	K
Parathion (GCMS)	¥2	< 37.0	< 37.0	¥¥
Pentachlorophenol (GCMS)	Y	< 9.10	< 9.10	¥
Supona	N	< 0.787	< 0.787	¥
Supone (GCMS)	¥.	< 19.0	< 19.0	¥
Vapona	¥	< 0.384	< 0.384	. \$
Vapona (GCMS)	¥N	< 8.50	< 8.50	
Volatiles				
1,1,1-Trichloroethane	< 0.760	¥	< 0.760	< 0.760
1,1,1-Trichtoroethane (GCMS)	. 1.00	¥	• 1.00	¥
1,1,2-Trichloroethane	< 0.780	WA	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	4 1.00	4	< 1.00	¥
1,1-Dichloroethane	< 0.730	r;	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	4 1.00	¥	4 1.00	\$
1,1-Dichtoroethene	< 1.70	¥	s.1.8	۶.1. د
1,1-Dichloroethene (GCMS)	< 1.00	Y.	< 1.00	¥
1,2-Dichloroethane	< 1.10	¥	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	• 1.00	Y 2	• 1.00	¥
1,2-Dichloroethenes (cis & trans)	092.0 >	¥	< 0.760	· 0.760 ·

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11295TW108 08/22/90	11295TW108 08/24/90	11460TWPE0 08/21/90	11755TWBR1 05/30/90
Analytes				
Volatiles				
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	VN N	< 5.00	¥
Benzene	< 1.05	¥X	< 1.05	¥
Benzene (GCMS)	< 1.00	¥¥	· 1.00	¥
Carbon Tetrachloride	° 0.990	¥X	° 0.990	< 0.990
Carbon Tetrachloride (GCMS)	< 1.00	K	< 1.00	¥
Chlorobenzene	< 0.820	¥	< 0.820	< 0.820
Chlorobenzene (GCMS)	< 1.00	¥	· 1.00	¥
Chloroform	< 0.500	Y.	< 0.500	< 0.500
Chloroform (GCMS)	< 1.00	¥	< 1.00	¥
Dibromochloropropane	< 0.195	Y 2	< 0.195	¥.
Dibromochloropropane (GCMS)	¥2	< 12.0	< 12.0	4
Dimethyl Disulfide	AN	< 0.550	< 0.550	¥
Ethyl Benzene	< 1.37	YN.	< 1.37	¥
Ethyl Benzene (GCMS)	< 1.00	¥.	< 1.00	¥
M-Xylene	< 1.32	4	< 1.32	¥
M-Xylene (GCMS)	× 1.00	4	< 1.00	¥
Methylene Chloride	< 7.40	¥	< 7.40	o 7.40
Methylene Chloride (GCMS)	× 1.00	NA NA	× 1.00	¥

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11295TW108 08/22/90	112951V108 08/24/90	11460TWPE0 08/21/90	11755TWBR1 05/30/90
Analytes				
Methylisobutyl Ketone	K	06.4 >	· 4.90	¥
Methylisobutyl Ketone (GCMS)	< 1.40	¥	< 1.40	¥
O,P-Xylene	< 1.36	¥	< 1.36	≨
O,P-Xylene (GCMS)	< 2.00	¥	< 2.00	¥
Tetrachloroethene	< 0.750	V	< 0.750	< 0.750
Tetrachloroethene (GCMS)	4 1.00	¥	.1.00	4
Toluene	< 1.47	¥	< 1.47	¥
Toluene (GCMS)	4 1.00	¥	· 1.00	≨
Trichloroethene	< 0.560	¥	< 0.560	< 0.560
Trichloroethene (GCMS)	• 1.00	₹	• 1.00	4
Vinyl Chloride (GCMS)	< 12.0	¥	< 12.0	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 10	11810TW8RI	11830TW112	11830TW112	11841TW096
Date	05/10/90	01/31/89	68/80/60	09/01/80
Analytes				
Metals/Anions/General Chem				
Arsenic	¥2	< 2.35	¥	\$
Cadmium	¥.	07.8 >	¥	≨
Calcium	¥N	100000	¥	4
Chloride	Y.	87000	¥	≨
Chromium	42	< 24.0	£	¥
Copper	¥	< 26.0	¥	≨
Cyanide	¥,	12.0	¥	≨
Fluoride	¥¥	1840	¥	4
Iron	Y.	Y 2	¥	≨
Lead	¥8	< 74.0	4	¥
Magnesium	×	32500	W.	*
Manganese	¥	W.	¥	≨
Mercury	42	< 0.100	¥	≨
Nitrite, Nitrate Non-Specific	KN KN	3400	¥	¥
Potessium	Y2	4200	¥¥	≨
Sodium	¥	78500	\\	¥
Sulfate	KN	200000	¥	≦
Total Organic Carbon	4 2	4	¥	¥

above the Maximum Reporting Limit.

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at > -- indicates that the target analyte was detected at or or above the Certified Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	11810TWBR1 05/10/90	11830TW112 01/31/89	11830TW112 . 09/08/89	11841TW096 09/07/89
Analytes				
Metals/Anions/General Chem				,
Zinc	NA N	< 22.0	¥	¥
Phenols				i
2.3.6-Trichlorophenol (GCMS)	₹	< 1.70	٠1.7	× 1.78
2 & S-Trichlorophenol (GCMS)	¥	< 2.80	< 2.80	< 2.80
2 & A-Trichlorophenol (GCMS)	¥	< 3.60	< 3.60	< 3.60
2 4-hirhlorophenol (GCMS)	¥	07.8 >	× 8.40	× 8.40
2,4-Dimethylphenol (GCMS)	Y N	07.7 >	05.5 >	07.4 >
2 4-hinitrochanol (GCMS)	¥	× 176	× 176	× 176
2-01-01-01-01-01-01-01-01-01-01-01-01-01-	¥	< 2.80	< 2.80	< 2.80
Section (Section 1)	¥	< 3.60	009.0 >	× 0.600
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	¥	< 8.20	< 3.00	× 3.00
3-Methyl-4-Chlorophenol (GCMS)	ž	< 8.50	< 0.300	< 0.300
CSMUUD Construction - 7	Š	< 2.80	009.0 >	009.0 >
(VECO) (COORTOLATE)	¥X	· 96.0	007.0 >	007.0 >
Phenol (GCMS)	Y.	< 2.20	< 0.320	< 0.320
Semivolatiles	;	;	,	Š
1.4-Oxathiane	Y	< 2.38	× 1.9/	78.1
	*	< 27.0	< 0.160	< 0.160 <
2 2.mis/parachiorochemy] - 1 1-Trichloroethane (DDI)	¥	< 0.0490	¥	¥
2 2-Ris(parachlorochenyl)-1,1,1-Trich(proethane (001) (GCMS)	¥	< 18.0	< 1.20	< 1.20

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m reiected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID	11810TWBR1 05/10/90	. 11830TW112	11830TW112 09/08/89	11841TW096 09/07/89
Semivolatiles 2 2-Ris(Darachlorophenyl)-1 1-Dirhloroethene (DDF)	\$	0750 0 >	\$	3
2.2-8is(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	< 14.0	< 3.39	< 3.39
4-Chlorophenylmethyl Sulfide	V.	< 5.69	< 10.5	< 10.5
4-Chlorophenylmethyl Sulfide (GCMS)	¥.	< 10.0	< 1.30	< 1.30
4-Chlorophenyimethyl Sulfone	4	< 7.46	oz.4 >	¢ 7.7 9
4-Chlorophenylmethyl Sulfone (GCMS)	¥.	< 5.30	< 0.750	< 0.750
	¥.	< 11.5	< 15.2	< 15.2
4-Chlorophenylmethyl Sulfoxide (GCMS)	MA	< 15.0	< 0.500	< 0.500
Aldrin	Y.	< 0.0500	Y.	\$
Aldrin (GCMS)	¥ Z	< 13.0	< 0.800	0.800
Atrazine	¥	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	Y.	< 5.90	< 0.500	< 0.500
Benzothiazole	¥N.	< 5.00	< 0.00234	< 0.00234
Bicyclo [2,2,1] hepta-2,5-diene	W.	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	¥ Z	4	¥ H	≦
. Caprolactem (GCMS)	4 ₹	¥.	¥.	¥
Chlordane	¥R	< 0.0950	¥8	≦
Chlordane (GCMS)	¥	< 37.0	< 0.260	< 0.260

Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at

c -- indicates that the target analyte was not detected a or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Anelyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11810TWBR1 05/10/90	11830TW112 01/31/89	11830TV112 09/08/89	11841TW096 09/07/89
Analytes				
Semivolatiles				
Dicyclopentadiene	42	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	¥	< 5.50	< 0.560	< 0.560
Dieldrin	¥	< 0.0500	¥N	¥
Dieldrin (GCMS)	¥	< 26.0	< 0.930	< 0.930
Diisopropyl Methylphosphonate	140	5.11	0.477	< 1.26
Diisopropyl Methylphosphonate (GCMS)	¥	< 21.0	. 1.60	· 1.60
Dimethylmethyl Phosphonate	< 0.188	0.241	< 4.23	< 4.23
Dimethylmethyl Phosphonate (GCMS)	¥¥	< 130	< 0.700	< 0.700
· Dithiene	V.	< 1.34	< 0.114	< 0.114
Dithiane (GCMS)	\$	< 3.30	< 0.710	< 0.710
Endrin	4	< 0.0500	4	\$
Endrin (GCMS)	4	< 18.0	< 0.100	< 0.100
Hexachlorocyclopentadiene	¥	< 0.0480	< 0.0480	< 0.0480
Hexachlorocyclopentadiene (GCMS)	A	< 54.0	< 0.520	< 0.520
Isodrin	4	< 0.0510	£	1
Isodrin (GCMS)	¥	< 7.80	× 0.990	¢ 0.990
Malathion	¥	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	4	< 21.0	< 0.620	0.620

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R .. Data did not meet quality control criteria and were rejected

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11810TWBRI 05/10/90	11830TW112 01/31/89	11830TW112 09/08/89	11841TU096 09/07/89
Analytes				
Semivolatiles				
Parathion	¥N	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	¥¥	< 37.0	< 8.10	< 8.10 ·
Pentachlorophenol (GCMS)	KA	< 9.10	< 0.290	° 0.290
Supona	KA	< 0.787	< 0.787	< 0.787
Supone (GCMS)	YN.	< 19.0	< 3.90	< 3.90
Vapone	¥	< 0.384	< 0.384	< 0.3 6 6
Vapona (GCMS)	Y2	< 8.50	× 0.670	< 0.670
Volatiles				
1,1,1-Trichloroethane	< 0.760	< 0.760	4	¥
1,1,1-Trichloroethane (GCMS)	¥8	¥	¥	ş
1,1,2-Trichloroethane	< 0.780	< 0.780	\$	¥
1,1,2-Trichloroethane (GCMS)	¥	4	\$	¥
1,1-Dichtoroethane	< 0.730	< 0.730	≨	ş
1,1-Dichloroethane (GCMS)	¥	≨	\$	¥
1,1-Dichloroethere	s 1.70	· 1.70	\$	¥
1,1-Dichtoroethere (GCMS)	¥8	W.	\$	¥
1,2-Dichloroethane	< 1.10	. 1.10	*	\$
1,2-Dichloroethane (GCMS)	YN.	4	1	£
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	¥	¥

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID	11810TWBR1	11830TW112	11830TV112	11841TW096
	1 1 1 1	•		
Volatiles				
1,2-Dichloroethenes (cis & trans) (GCMS)	¥	¥	¥	\$
Benzene	¥#	< 1.05	\$	≨
Benzene (GCMS)	¥¥	M	*	≨
Carbon Tetrachloride	× 0.990	· 066*0 >	¥	\$
Carbon Tetrachloride (GCMS)	¥	4	£	¥
Chlorobenzene	< 0.820	< 0.820	\$	S
Chlorobenzene (GCMS)	¥#	¥	¥	1
Chloroform	< 0.500	< 0.500	¥	≨
Chloroform (GCMS)	¥¥	¥	¥	¥8
Dibromochloropropene	¥	< 0.195	< 0.195	< 0.195
Dibromochloropropane (GCMS)	¥	< 12.0	< 0.250	< 0.250
Dimethyl Disulfide	¥	< 0.550	< 0.133	< 0.133
Ethyl Benzene	¥	< 1.37	4	\$
Ethyl Benzene (GCMS)	¥	¥	¥	≨
M-Xylene	¥	< 1.32	ş	¥
M-Xylene (GCMS)	\$	4	¥	¥8
Methylene Chloride	< 7.40	< 7.40	¥	\$
Methylene Chloride (GCMS)	¥ N	¥.	¥	£

Values are reported in micrograms per liter. Notes:

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11810TWBR1 05/10/90	11830TW112 01/31/89	11830TW112 09/08/89	11841TW096 09/07/89
Analytes				
Volatiles				
Methylisobutyl Ketone	NA A	· 4.90	· 4.90	× 4.90
Methylisobutyl Ketone (GCMS)	¥	¥	¥	¥
O,P-Xylene	¥	< 1.36	≨	≨
O,P-Xylene (GCMS)	¥	¥	¥	¥
Tetrachloroethene	< 0.750	< 0.750	4	4
· Tetrachloroethene (GCMS)	YN.	¥	¥	£
Toluene	¥	< 1.47	≨	≦
Toluene (GCMS)	¥	¥	\$	≨
Trichloroethene	< 0.560	< 0.560	≨	≨
Trichloroethene (GCMS)	¥	¥	¥	¥
Vinyl Chloride (GCMS)	¥	¥	ş	\$

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11841TW096 01/26/90	11841TW096 08/21/90	11921TW096 09/07/89	12001TuBR1 05/10/90
Analytes		·		
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	*	\$
Cadmium	< 6.78	< 6.78	¥	¥
Calcium	1510	1480	4	¥
Chloride	· «	3390	**	¥
Chromium	< 16.8	< 16.8	\$	ş
Copper	× 18.8	< 18.8	\$	¥
Cyanide	< 5.00	× 8.90	4	≨
Fluoride	æ	2920	¥	¥
Iran	¥.	< 77.5	≨	¥
Lead	< 43.4	< 43.4	\$	¥
Magnesitm	< 135	51.3	\$	4
Manganese	¥¥	< 9.67	≨	¥
Mercury	< 0.100	1.35	≨	≨
Nitrite, Nitrate Non-Specific	44.2	150	₹	¥
Potessium	< 1240	< 1240	\$	¥#
Sodium	100000	93000	\$	*
Sulfate	~	21000	≨	¥
Total Organic Carbon	1000	× 1000	\$	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. Rreincted.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11841TW096 01/26/90	11841TW096 08/21/90	11921TW096 09/07/89	12001TuBR1 05/10/90
Analytes				·
Metals/Anions/General Chem				
Zinc	< 18.0	< 18.0	¥	¥
Phenois				
2,3,6-Trichlorophenol (GCMS)	< 1.70	< 1.70	× 1.70	¥ #
2,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	4 8
2,4-Dichlorophenol (GCMS)	07.8 >	9.40	07.8 >	¥¥
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.4 >	*
2,4-Dinitrophenol (GCMS)	× 176	< 176	< 176	¥
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	¥
2-Methylphenol (GCMS)	< 3.60	< 3.60	009.0 >	¥
2-Nitrophenol (GCMS)	< 8.20	< 8.20	< 3.00	4
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 0.300	¥
4-Methylphenol (5CMS)	< 2.80	< 2.80	009.0 >	¥
4-Nitrophenol (GCMS)	· %.0	· %·0	007.0 >	\$
Phenol (GCMS)	< 2.20	< 2.20	< 0.320	¥
Semivolatiles				
1,4-0xathiane	< 2.38	< 2.38	< 1.97	≦
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 0.160	4
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.0490	< 0.0490	¥	¥
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	4 1.20	4

Values are reported in micrograms per liter. Notes:

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11841TW096 01/26/90	11841TW096 08/21/90	11921TW096 09/07/89	12001TWBR1: 05/10/90
Analytes		٠.		
Semivolatiles			1	\$
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	0.0340	0.0340	•	S
2,2-8is(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 3.39	¥
6-Chlorochenvimethy Suffide	< 5.69	< 5.69	< 10.5	\$
4-Chlorophenvimethvi Suffide (GCMS)	< 10.0	< 10.0	< 1.30	≨
4-Chlorophenylmethyl Sulfone	97.7 >	× 7.46	e.4.	4
6-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 0.750	¥
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 15.2	≨
4-Chlorochenviaethy Sulfoxide (GCMS)	< 15.0	< 15.0	< 0.500	¥
Aldrin	< 0.0500	< 0.0500	≨	≨
Aldrin (GCMS)	< 13.0	< 13.0	0.800	≦
Atrazine	< 4.03	< 4.03	< 4.03	¥
Attazine (GCMS)	< 5.90	< 5.90	< 0.500	\$
Benzothiazole	< 5.00	< 5.00	< 0.00234	¥
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	¥
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	× 7.70	¥	≨
Caprolactem (GCMS)	< 10.0	× 7.70	¥	¥
Chlordene	< 0.0950	< 0.0950	¥	\$
Chlordene (GCMS)	< 37.0	< 37.0	< 0.260	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were re lected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D	11841TW096	11841TW096	11921TW096	12001TWBR1
Date	01/26/90	08/21/90	09/01/80	05/10/90
Analytes				
Semivolatiles				
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	MA
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 0.560	¥
Dieldrin	< 0.0500	< 0.0500	¥	¥
Dieldrin (GCMS)	< 26.0	< 26.0	< 0.930	¥
Diisopropyl Methylphosphonate	0.521	< 0.392	< 1.26	6.52
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	· 1.60	4
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 4.23	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 0.700	¥
Dithiane	< 1.34	< 1.34	< 0.114	¥
Dithiane (GCMS)	< 3.30	< 3.30	< 0.710	¥
Endrin	< 0.0500	< 0.0500	4	¥
Endrin (GCMS)	< 18.0	< 18.0	< 0.100	¥
Hexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	¥
Hexachlorocyclopentadiene (GCMS)	< 54.0	× 54.0	< 0.520	¥
Isodrin	< 0.0510	< 0.0510	¥	¥#
Isodrin (GCMS)	< 7.80	< 7.80	< 0.990	¥
Malathion	< 0.373	< 0.373	< 0.373	¥
Malathion (GCMS)	< 21.0	< 21.0	< 0.620	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > .. indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- $\mbox{NA} \mbox{ -- Not Analyzed.}$ $\mbox{R} \mbox{ -- Data did not meet quality control criteria and were$ rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11841TW096 01/26/90	11841TW096 08/21/90	11921TW096 09/07/89	12001TWBR1 05/10/90
Analytes				
Semivolatiles		,		
Parathion	< 0.647	< 0.647	< 0.647	¥¥
Parathion (GCMS)	< 37.0	< 37.0	< 8.10	¥N
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 0.290	¥¥
Supona	< 0.787	< 0.787	< 0.787	¥H
Supona (GCMS)	< 19.0	< 19.0	< 3.90	YH.
Vapona	< 0.384	< 0.384	< 0.384	¥
Vapona (GCMS)	< 8.50	< 8.50 ·	< 0.670	Y Z
Volatiles				
1,1,1-Trichtoroethane	< 0.760	< 0.760	8	< 0.760
1,1,1-Trichloroethane (GCMS)	. 1.00	· 1.00	¥ .	¥
1,1,2-Trichloroethane	< 0.780	< 0.780	48	< 0.780
1,1,2-Trichloroethane (GCMS)	× 1.00	< 1.00	4 8	¥
1,1-Dichloroethane	< 0.730	< 0.730	\$	< 0.730
1,1-Dichloroethane (GCMS)	< 1.00	4 1.00	¥	¥
1,1-Dichloroethene	< 1.70	< 1.70	¥	٠ <u>.</u> ٠
1,1-Dichloroethene (GCMS)	. 1.00	· 1.00	4	¥
1,2-Dichloroethane	< 1.10	< 1.10	¥	× 1.10
1,2-Dichloroethane (GCMS)	< 1.00	· 1.00	4	¥ .
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	¥	< 0.760

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	11841TW096 01/26/90	11841TW096 08/21/90	11921TW096 09/07/89	12001TWBR1 05/10/90
Analytes				
Volatiles				
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	¥	X
Benzene	< 1.05	< 1.05	¥	¥
Benzene (GCMS)	< 1.00	< 1.00	¥	¥#
Carbon Tetrachloride	< 0.990	< 0.990	¥	× 0.990
Carbon Tetrachloride (GCMS)	< 1.00	• 1.00	4	¥
Chlorobenzene	< 0.820	< 0.820	¥	< 0.620
Chlorobenzene (GCMS)	< 1.00	< 1.00	¥	¥¥
Chloroform	24.9	1.17	¥	< 0.500
Chloroform (GCMS)	< 1.00	. 1.00	¥	¥
Dibromochloropropane	< 0.195	< 0.195	< 0.195	4
Dibromoch(oropropane (GCMS)	< 12.0	< 12.0	< 0.250	¥#
Dimethyl Disulfide	< 0.550	< 0.550	< 0.133	¥
Ethyl Benzene	< 1.37	< 1.37	¥	¥
Ethyl Benzene (GCMS)	× 1.00	. 1.00	¥	¥
M-Xylene	< 1.32	< 1.32	¥	¥
M-Xylene (GCMS)	< 1.00	× 1.00	\$	¥
Methylene Chloride	< 7.40	< 7.40	¥	< 7.40
Methylene Chloride (GCMS)	× 1.00	. 1.00	¥	4

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

⁻⁻ Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID	11841TW096	11841TW096	11921TW096	12001TWBR1
Date .	01/26/90	08/21/90	09/01/80	05/10/90
Analytes				
Volatiles				
Methylisobutyl Ketone	06.4 >	6. %	o. 4 ×	¥
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	¥¥	¥
0.P-Xylene	< 1.36	< 1.36	M	¥¥
O.P-XVIene (GCMS)	< 2.00	< 2.00	4 8	¥
Tetrachloroethene	< 0.750	< 0.750	¥	< 0.750
A STATE OF THE STA	5	5	Ā	
				7
Toluene	\ * \	* \	<u> </u>	S
Toluene (GCMS)	× 1.00	. 1.00	¥	Z Z
Trichloroethene	< 0.560	< 0.560	¥	< 0.560
Trichloroethene (GCMS)	· 1.00	< 1.00	¥	≨
Vinyl Chloride (GCMS)	< 12.0	< 12.0	¥	¥

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D	13350TW104	13701TW104	37431	37431
Date	01/1/89	68//1/10	09/13/89	11/2/18
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.35	< 2.35	¥	3.22
Cadmium	07.8 >	< 8.40	¥	6.73
Calcium	83500	34000	¥	1810
Chloride	00009	38000	¥	2580
Chromium	< 24.0	< 24.0	¥	19.8
Copper	< 26.0	< 26.0	. YN	× 18.8
Cyanide	< 5.00	< 5.00	¥	< 5.00
Fluoride	1540	3450	¥	≦
Iron	¥X	4	¥	≦
Pead	< 74.0	< 74.0	¥	< 43.4
Magnesium	8790	7110	¥	< 135
Manganese	¥#	¥	¥¥	≦
Mercury	< 0,100	< 0.100	¥	< 0.100
Nitrite, Nitrate Non-Specific	280	57.5	¥#	1000
Potassium	1070	916	¥	< 1240
Sodium	190000	160000	ş	120000
Sulfate	280000	180000	¥	2490
Total Organic Carbon	X	¥	¥	. 005 >

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	13350TW104 01/17/89	13701TW104 01/17/89	37431 09/13/89	37431 11/21/89
nalytes				
etals/Anions/General Chem		.,,		S
21hc	5.1	8	É) '
henols				
2,3,6-Trichlorophenol (GCMS)	< 1.70	× 1.70	5.1.3	٠»
2,4,5-Trichlorophenol (GCMS)	¥	¥	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	07.8 >	< 8.40	8.4 0	× 8.40
2,4-Dimethylphenol (GCMS)	07.4 >	× 4.40	07.7 >	07.4 >
2,4-Dinitrophenol (GCMS)	< 176	< 176	× 176	× 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	< 3.60	009.0 >	. 3.60
2-Nitrophenol (GCMS)	< 8.20	< 8.20	< 3.00	8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 0.300	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	009.0 >	< 2.80
4-Nitrophenol (GCMS)	< 96.0	· %.0	007.0 >	· %·0
Phenol (GCMS)	< 2.20	< 2.20	< 0.320	< 2.20
emivolatiles				
1,4-Oxathiane	< 2.38	< 2.38	< 1.97	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	. 0.160	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	< 0.0490	¥	× 0.0490
	< 18.0	< 18.0	< 1.20	× 18.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were reiected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	13350TW104 01/17/89	137011W104 01/17/89	37431 09/13/89	37431 11/21/89
Analytes		·		
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	ZN N	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 3.39	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 10.5	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 1.30	< 10.0
4-Chlorophenylmethyl Sulfone	> 7.46	> 7.46	٠ 4.70	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 0.750	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 15.2	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 0.500	< 15.0
Aldrin	< 0.0500	< 0.0500	¥	< 0.0500
Aldrin (GCMS)	< 13.0	< 13.0	< 0.800	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	< 5.90	< 0.500	< 5.90
Benzothiazote	< 5.00	< 5.00	< 0.00234	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthelate (GCMS)	¥¥	¥	¥	× 7.70
Caprotactem (GCMS)	42	¥.	¥	< 10.0
Chlordane	< 0.0950	< 0.0950	¥	< 0.0950
Chlordane (GCMS)	< 37.0	< 37.0	< 0.260	< 37.0

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 investigative Analytical Data for Domestic Well Samples

Sample ID Date	133507W104 01/17/89	13701TW104 01/17/89	37431 09/13/89	37431
Analytes				
Semivolatiles				
Dicyclopentadiene	< 5.00	< 5.00	< 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 0.560	< 5.50
Dieldrin	< 0.0500	< 0.0500	¥	< 0.0500
Dieldrin (GCMS)	< 26.0	< 26.0	< 0.930	· 26.0
Diisopropyl Methylphosphonate	22.0	3.87	< 1.26	< 0.392
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	4 1.60	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	¢ 4.23	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 0.700	< 130
Dithiane	< 1.34	× 1.34	< 0.114	¥.1.
Dithiane (GCMS)	< 3.30	< 3.30	< 0.710	< 3,30
Endrin	< 0.0500	< 0.0500	ş	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 0.100	< 18.0
Hexachiorocyclopentadiene	< 0.0480	< 0.0480	< 0.0400	< 0.0480
Hexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 0.520	· %.
Isodrin	< 0.0510	< 0.0510	\$	< 0.0510
Isodrin (GCMS)	< 7.80	< 7.80	· 0.990	< 7.80
Malathion	< 0.373	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	< 21.0	< 21.0	0.620	< 21.0

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

37431 37431 09/13/89 11/21/89			< 0.647 < 0.647		< 0.290 < 9.10		< 3.90 < 19.0	< 0.384 < 0.384	< 0.670 < 8.50		NA . 0.760	NA NA	MA < 0.780	NA NA	MA < 0.730	YH .	NA < 1.70	MA	MA < 1.10	YH YH	NA < 0.760
13701TW104 01/17/89			× 0.647 × (< 19.0 < 3	< 0.384 < 0			· 0.760	¥¥	< 0.780	¥	< 0.730	\$	s.1.8	*	< 1.10	¥	. 09.00 >
13350TW104 01/17/89			< 0.647	< 37.0	< 9.10	< 0.787	< 19.0	< 0.384	< 8.50		< 0.760	YN	< 0.780	YH.	< 0.730	Y	× 1.70	Ş	< 1.10	¥	< 0.760
Sample 1D Date	Analytes	Semivolatiles	Parathion	Parathion (GCMS)	Pentachlorophenol (GCMS)	Supona	Supona (GCMS)	Vapona	Vapona (GCMS)	Volatiles	1,1,1-Trichloroethane	1,1,1-Trichloroethane (GCMS)	1,1,2-Trichloroethane	1,1,2-Trichloroethane (GCMS)	1,1-Dichloroethane	1,1-Dichloroethane (GCMS)	1,1-Dichloroethere	1,1-Dichloroethene (GCMS)	1,2-Dichloroethane	1,2-Dichloroethane (GCMS)	1,2-Dichloroethenes (cis & trans)

 ⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D	13350TW104	13701TW104	37431	37431
Date	01/17/89	01/17/89	09/13/89	11/21/89
Analytes				
Volatiles	6 9 8 1		٠	•
1,2-Dichloroethenes (cis & trans) (GCMS)	¥	¥	4	1
Benzene	< 1.05	< 1.05	¥#	× 1.95
Benzene (GCMS)	¥	¥	4	4
Carbon Tetrachloride	× 0.990	06.0 >	\$	066.0 >
Carbon Tetrachloride (GCMS)	¥	¥	1	1
Chlorobenzene	< 0.820	< 0.820	\$	< 0.820
Chlorobenzene (GCMS)	\$	¥	¥	*
Chloroform	< 0.500	< 0.500	¥	< 0.500
Chloroform (GCMS)	¥	M	¥	≨
Dibromochloropropene	< 0.195	< 0.195	< 0.195	< 0.195
Dibromochloropropene (GCMS)	< 12.0	< 12.0	< 0.250	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.133	< 0.550 ×
Ethyl Benzene	< 1.37	< 1.37	\$	< 1.37
Ethyi Benzene (GCMS)	¥	¥	¥	¥
H-Xylene	< 1.32	< 1.32	\$	< 1.32
M-Xylene (GCMS)	¥	Š	ď.	\$
Methylene Chloride	07.7 >	< 7.40	\$	< 7.40
Methylene Chloride (GCMS)	¥	¥2	\$	¥

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 10	13350TW104	13701TW104	37431	37431
Date	01/17/89	01/17/89	09/13/89	11/21/89
Analytes				
VALORITOR				
Methyl isobutyl Ketone	06.7 >	06.4 >	06.4 >	× 4.9
Methylisobutyl Ketone (GCMS)	NA A	¥	\$	¥
O, P-Xylene	< 1.36	< 1.36	¥	< 1.36
O,P-Xylene (GCMS)	NA V	W	\$	¥
Tetrachloroethene	< 0.750	< 0.750	4	< 0.750
Tetrachloroethene "MS)	¥	¥	¥	\$
Toluene	< 1.47	< 1.47	4	< 1.47
Toluene (GCMS)	YN.	¥	¥	¥
Trichloroethene	< 0.560	<.0.560	¥	< 0.560
Trichloroethene (GCMS)	¥.	¥	4	ş
Vinyl Chloride (GCMS)	٧	¥	¥	≦

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at ा क्षा अंत the Certified Reporting Limit.

> -- incocates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10	37445	8834ATW096	8834ATW096	8834814096
Date	08/58/90	08/22/90	08/57/50	08/52/90
Analytes				
Metals/Anions/General Chem				
Arsenic	4.89	< 2.35	M	< 2.35
Cadmium	< 6.78	¥#	¥	≨
Calcium	2450	VN	¥	¥
Chloride	0966	120000	¥	00079
Chromium	< 16.8	M	¥	\$
Copper	31.8	¥	4	ş
Cyanide	× 8.90	¥#	4	¥
Fluoride	2850	1370	M	1060
Iron	XX	¥	¥	¥
Lead	< 43.4	¥	¥	¥
Hagnes fun	161	¥	Y.	\$
Manganese	4 2	YH	¥#	¥
Mercury	< 0.100	0.100	4	< 0.100
Nitrite, Nitrate Non-Specific	140	2500	W	2002
Potassium	< 1240	¥	ž	¥
Sodium	120000	*	ž	\$
Sulfate	38000	110000	\$	170000
Total Organic Carbon	· 1500 ·	¥	1500	¥

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	37445 08/28/90	8834ATW096 08/22/90	8834ATW096 08/24/90	8834BTM096 08/22/90
Analytes			•	
Metals/Anions/General Chem				
Zinc	616	¥ Z	¥	S .
Phenols				
2,3,6-Trichlorophenol (GCMS)	< 1.70	ZX.	· 1.70	٨.1.
2,4,5-Trichlorophenol (GCMS)	< 2.80	Y2	< 2.80	< 2.80
2,4,6-Trichlorophenol (GCMS)	< 3.60	Y.	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	× 8.40	¥	07.8 >	× 8.40
2,4-Dimethylphenol (GCMS)	07.7 >	YN.	07.4 >	05.4 >
2,4-Dinitrophenol (GCMS)	< 176	¥	× 176	> 176
2-Chlorophenol (GCMS)	< 2.80	N N	< 2.80	< 2.80
2-Methylphenol (GCMS)	< 3.60	¥8	< 3.60	< 3.60
2-Nitrophenol (GCMS)	< 8.20	¥.	< 8.20	× 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	42	< 8.50	< 8.50 ×
4-Methylphenol (GCMS)	< 2.80	¥	< 2.80	< 2.80
4-Nitrophenol (GCMS)	× 96.0	V N	° %°0	· 96.0
Phenol (GCMS)	< 2.20	¥	< 2.20	< 2.20
Semivolatiles				
1,4-Oxathiane	< 2.38	4	< 2.38	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	¥	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	¥	< 0.0490	0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	¥	< 18.0	× 18.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample ID Date	37445 08/28/90	8834ATW096 08/22/90	8834ATW096 08/24/90	88348TW096 08/22/90
Analytes		٠		
Semivolatiles		:		3
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	₹	< 0.0540 <	× 0.0340
2,2-Bis(parachloropheny()-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	¥	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	V.	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	¥¥	· 10.0	< 10.0
4-Chlorophenylmethyl Sulfone	> 7.46	¥#	< 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	¥	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	¥	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	≨	< 15.0	< 15.0
Aldrin	< 0.0500	¥	< 0.0500	< 0.0500
Aldrin (GCMS)	< 13.0	Y.	< 13.0	< 13.0
Atrazine	< 4.03	2	< 4.03	< 4.03
Atrazine (GCMS)	< 5.90	¥	< 5.90	· 5.90
Benzothiazole	< 5.00	¥	< 5.00	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90		< 5.90	· 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	× 7.70	ž	< 7.70	۶.7 د
Caprolactam (GCMS)	< 10.0	¥	6.7.3	o.7.7 >
Chlordane	< 0.0950	¥	< 0.0950	< 0.0950
Chlordane (GCMS)	< 37.0	¥	< 37.0	< 37.0

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	37445 08/28/90	8834ATW096 08/22/90	8834ATW096 08/24/90	88348TW096 08/22/90	
Analytes					
Semivolatites	: : : : :		,		
Dicyclopentadiene	< 5.00	¥	< 5.00	< 5.00	
Dicyclopentadiene (GCMS)	< 5.50	Y X	< 5.50	< 5.50	
Dieldrin	< 0.0500	YN.	< 0.0500	< 0.0500	
Dieldrin (GCMS)	< 26.0	¥	< 26.0	< 26.0	
Diisopropyl Methylphosphonate	< 0.392	4	7.86	< 0.392	
Diisopropyl Methylphosphonate (GCMS)	< 21.0	¥	< 21.0	< 21.0	
Dimethyl Phosphonate	< 0.188	YN	< 0.188	< 0.188	
Dimethylmethyl Phosphonate (GCMS)	< 130	¥	< 130	< 130	
Dithiane	< 1.34		< 1.34	× 1.34	
Dithiane (GCMS)	< 3.30	4	< 3.30	< 3.30	
Endrin	< 0.0500	K	< 0.0500	< 0.0500	
Endrin (GCMS)	< 18.0	¥	< 18.0	× 18.0	
Hexachlorocyclopentadiene	< 0.0480	¥	< 0.0480	< 0.0480	
Hexachlorocyclopentadiene (GCMS)	< 54.0	Y#	< 54.0	× 54.0	
Isodrin	< 0.0510	4	< 0.0510	< 0.0510	
Isodrin (GCMS)	< 7.80	¥	< 7.80	< 7.80	
Malathion	< 0.373	KX	< 0.373	< 0.373	
Malathion (GCMS)	0.15 >	¥	< 21.0	< 21.0	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table B5 Investigative Analytical Data for Domestic Well Samples

8834ATW096 8834BTW096 08/24/90 08/22/90						< 0.787 < 0.787		< 0.384 < 0.384	< 8.50 < 8.50		NA < 0.760	NA < 1.00	NA < 0.780	NA < 1.00	NA < 0,730	NA < 1.00	NA < 1.70	NA - 1.00		NA < 1.00	NA < 0.760
8834ATW096 08/22/90	٠		4	¥	¥	M	¥	¥	4		< 0.760	< 1.00	< 0.780	< 1.00	< 0.730 ·	4 1.00	< 1.70	< 1.00	< 1.10	× 1.00	< 0.760
37445 08/28/90			× 0.647	< 37.0	< 9.10	< 0.787	< 19.0	< 0.384	< 8.50		< 0.760	< 1.00	< 0.780	< 1.00	< 0.730	× 1.00	< 1.70	< 1.00	< 1.10	< 1.00	0.760
Sample 10 Date	Analytes	Semivolatiles	Parathion	Parathion (GCMS)	Pentachlorophenol (GCMS)	Supona	Supona (GCMS)	Vapona	Vapona (GCMS)	Volatiles	1,1,1-Trichtoroethane	1,1,1-Trichloroethane (GCMS)	1,1,2-Trichloroethane	1,1,2-Trichloroethane (GCMS)	1,1-Dichloroethane	1,1-Dichloroethane (GCMS)	1,1-Dichloroethene	1,1-Dichloroethene (GCMS)	1,2-Dichloroethane	1,2-Dichloroethane (GCMS)	1,2-Dichloroethenes (cis & trans)

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were -- reted

Table B5 Investigative Analytical Data for Domestic Well Samples

8834814096 08/55/90 8834ATW096 08/54/90 08/25/90 8834ATW096 37445 08/28/90 Sample 1D Date

	# ! ! !			
Volatiles				
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	¥	< 5.00
Benzene	< 1.05	< 1.05	¥	< 1.05
Benzene (GCMS)	× 1.00	< 1.00	¥X	× 1.00
Carbon Tetrachloride	06.0 >	< 0.990	¥	< 0.990
Carbon Tetrachloride (GCMS)	< 1.00	< 1.00	¥	.00
Chlorobenzene	< 0.820	< 0.820	¥	< 0.820
Chlorobenzene (GCMS)	· 1.00	· 1.00	¥	< 1.00
Chloroform	< 0.500	2.74	¥	< 0.500
Chloroform (GCMS)	< 1.00	33.0	¥	. 1.00
Dibromochloropropane	< 0.195	< 0.195	4	< 0.195
Dibromochloropropane (GCMS)	< 12.0	×	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	¥	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	¥	< 1.37
Ethyl Benzene (GCMS)	· 1.00	< 1.00	¥	. 1.00
M-Xylene	< 1.32	< 1.32	YN	< 1.32
M-Xylene (GCMS)	× 1.00	. 1.00	4	· 1.00
Methylene Chloride	o 7.40	< 7.40	¥	< 7.40
Methylene Chloride (GCMS)	× 1.00	· 1.00	¥	. 1.00

Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D Date	3; 45	8834ATW096 08/22/90	8834ATW096 08/24/90	88348TW096 08/22/90
Analytes			•	
Volatiles				
Methylisobutyl Ketone	× 4.90	¥	× 4.90	· 6.4 ×
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	¥	< 1.40
0, P-Xylene	< 1.36	< 1.36	¥	× 1.36
O,P-Xylene (GCMS)	< 2.00	< 2.00	≨	< 2.00
Tetrachloroethene	< 0.750	< 0.750	4	< 0.750
Tetrachloroethene (GCMS)	4 1.00	1.00	\$. < 1.00
Toluene	< 1.47	< 1.47	¥	< 1.47
Toluene (GCMS)	< 1.00	. 1.00	¥	· 1.00
Trichloroethene	< 0.560	< 0.560	¥	× 0.560
Trichloroethene (GCMS)	< 1.00	< 1.00	¥#	4 1.00
Vinyl Chloride (GCMS)	< 12.0	< 12.0	¥	< 12.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

8834CTW096	08/25/60	1 1 1 2 1		< 2.35	< 6.78	2470	2710	< 16.8	× 18.8	A N	2890	< 77.5	< 43.4	< 135	× 9.67	< 0.100	240	< 1240	100000	9180	< 1000
Sample 1D	Date	Analytes	Metals/Anions/General Chem	Arsenic	Cachium	Calcium	Chloride	Chromium	- Control	Cvanide	Fluoride	Iron	Lead	Magnesium	Manganese	Mercury	Nitrite, Nitrate Non-Specific	Potassium	Socien	Sulfate	total Organic Carbon

Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

8834CTW096 08/22/90		< 18.0	< 1.70	< 2.80	< 3.60 < 8.40	07.7 >	> 176	< 2.80	< 3.60	< 8.20	< 8.50	< 2.80	· %.0	< 2.20		< 2.38	< 27.0	< 0.0490	< 18.0
	0 0 1 1 1										•								(CCMS)
																		(DDT)	(100)
Sample 1D Date	Analytes	Metals/Anions/General Chem Zinc	Phenols . 2,3,6-Trichlorophenol (GCMS)	2,4,5-Trichlorophenol (GCMS)	2,4,6-Trichlorophenol (GCMS) 2,4-Dichlorophenol (GCMS)	2,4-Dimethylphenol (GCMS)	2,4-Dinitrophenol (GCMS)	2-Chlorophenol (GCMS)	2-Methylphenol (GCMS)	2-Nitrophenol (GCMS)	3-Methyl-4-Chlorophenol (GCMS)	4-Methylphenol (GCMS)	4-Nitrophenol (GCMS)	Phenol (GCMS)	Semivolatiles	1,4-0xathiane	1,4-Oxathiane (GCMS)	2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

8834CTW096	08/22/90
•	
Sample 10	Date

Analytes

Semivolatiles

2,2-Bis(parachlorophenyl)-1,1-0ichloroethene (DDE)	ne (DDE)	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	ne (DDE) (GCMS)	< 14.0
4-Chlorophenylmethyl Sulfide	•	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)		< 10.0
4-Chlorophenylmethyl Sulfone		< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)		< 5.30
4-Chlorophenylmethyl Sulfoxide		< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)		< 15.0
Aldrin		< 0.0500
Aldrin (GCMS)		< 13.0
Atrazine		< 4.03
Atrazine (GCMS)		< 5.90
Benzothiazole		< 5.00
Bicyclo [2,2,1] hepta-2,5-diene		< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)		< 7.70
Caprolactam (GCMS)		. 7.70
Chlordane		0560 ≎ >
Chlordane (GCMS)		< 37.0

Notes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

8834CTM096	08/22/90
Sample 10	Date

Analytes

Semivolatiles	
Dicyclopentadiene	× 5.00
Dicyclopentadiene (GCMS)	< 5.50
Dieldrin	< 0.0500
Dieldrin (GCMS)	< 26.0
Diisopropyl Methylphosphonate	< 0.392
Diisopropy! Methylphosphonate (GCMS)	< 21.0
Dimethylmethyl Phosphonate	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130
Dithiane	× 1.34
Dithiane (GCMS)	< 3,30
Endrin	< 0.0500
Endrin (GCMS)	< 18.0
Hexach lorocycl opent ad i ene	< 0.0480
Hexachlorocyclopentadiene (GCMS)	< 54.0
Isodrin	< 0.0510
Isodrin (GCMS)	< 7.80
Malathion	< 0.373
Halathion (GCMS)	< 21.0

Notes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were reincted.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample 1D	8834CTW096
Date	08/22/80
Analytes	
Semivolatiles	
Parathion	< 0.647
Parathion (GCHS)	< 37.0
Pentachlorophenol (GCMS)	< 9.10
Supona	< 0.787
Supona (GCMS)	< 19.0
Vapona	< 0.384
Vapona (GCMS)	< 8.50
Volatiles	
1,1,1-Trichloroethane	092.0 >
1,1,1-Trichloroethane (GCMS)	< 1.00
1,1,2-Trichloroethane	< 0.780
1,1,2-Trichloroethane (GCMS)	. 1.00
1,1-Dichloroethane	< 0.730
1,1-Dichloroethame (GCMS)	1.00
1,1-Dichloroethene	< 1.70
1,1-Dichloroethene (GCMS)	· 1.00
1,2-Dichloroethane	< 1.10
1,2-Dichloroethane (GCMS)	< 1.00
1,2-Dichloroethenes (cis & trans)	< 0.760

Notes: Values are reported in micrograms per liter.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table 85 Investigative Analytical Data for Domestic Well Samples

Sample ID	8834CTW096 08/22/90
Analytes	
Volatiles	
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00
Benzene	< 1.05
Benzene (GCMS)	× 1.00
Carbon Tetrachloride	066.0 >
Carbon Tetrachloride (GCMS)	. 1.00
Chlorobenzene	< 0.820
Chlorobenzene (GCMS)	< 1.00
Chloroform	< 0.500
Chloroform (GCMS)	. 1.00
Dibromochloropane	< 0.195
Dibromochloropropane (GCMS)	< 12.0
Dimethyl Disulfide	< 0.550
Ethyl Benzene	< 1.37
Ethyl Benzene (GCMS)	.1.00
M-Xylene '	< 1.32
	;
M-Xylene (GCMS)	• 1 .8
Methylene Chloride	07.7 >
Methylene Chloride (GCMS)	. 1.00

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

-- farted.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table B5 Investigative Analytical Data for Domestic Well Samples

Sample 10 Date	8834C1W096 08/22/90
Analytes	
Volatiles	·
Methyl isobutyl. Ketone	06°7 ×
Methylisobutyl Ketone (GCMS)	< 1.40
0,P-Xylene	< 1.36
O,P-Xytene (GCMS)	< 2.00
Tetrachloroethene	< 0.750
Tetrachloroethene (GCMS)	× 1.00
Toluene	< 1.47
Toluene (GCMS)	< 1.00
Trichloroethene	< 0.560
Trichloroethene (GCMS)	× 1.00
Vinyl Chloride (GCMS)	< 12.0

Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Appendix C
SURFACE-WATER ANALYTICAL DATA

LIST OF TABLES

Table No.

Cı	Surface-Water Investigative Analytical Data
C2	Surface-Water GC/MS Analytical Data
C3	Surface-Water Duplicate Analytical Data

Table C1 Surface-Water Investigative Analytical Data

Sample 10 Date	HA09715W 11/11/88	HA09735W 11/11/88	HA0977SW 11/15/88	HA0978SU 11/15/88	HA097954 11/15/88
Analytes					
Metals/Anions/General Chem					
Arsenic	280	< 2.35	4.55	4.31	5.27
Cadmium	8.4 0	< 8.40	× 8.40	× 8.40	< 8.40
Calcium	790000	190000	150000	160000	160000
Chloride	530000	320000	280000	30000	310000
Chromium	< 24.0	< 24.0	< 24.0	< 24.0	< 24.0
Copper	< 26.0	< 26.0	< 26.0	< 26.0	< 26.0
Cyanide	12.3	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	9360	3960	3740	3810	4590
Peal	< 74.0	< 74.0	< 74.0	< 74.0	< 74.0
Magnes i un	180000	78500	00299	00689	70200
Mercury	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Mitrite, Mitrate Non-Specific	2000	2600	3000	3300	1900
Potassium	8570	7590	4530	4140	07.27
Sodium	510000	290000	230000	240000	240000
Sulfate	1500000	480000	410000	000077	430000
Total Organic Carbon	W	¥	YH	\$	\$
. 2 inc	93.3	33.6	< 22.0	< 22.0	< 22.0
Phenots				;	;
2,3,6-Trichlorophenol (GCMS)	¥	¥	¥¥	¥	¥
2,4,5-Trichlorophenol (GCMS)	¥	¥	¥	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{MA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 1D Date	HA09715W 11/11/88	HA0973SW 11/11/88	HA097754 11/15/88	HA09785W 11/15/88	HA0979SU 11/15/88
Analytes					-
Phenols		;	1	4	*
2,4,6-Trichlorophenol (GCMS)	KA K	*	¥ ;	E 3	1
2,4-Dichlorophenol (GCMS)	\	4	≨	* :	£ :
2.4-Dimethylphenol (GCMS)	¥	¥	ş	¥	4 :
2 4-Dinitrophenol (GCMS)	¥N	¥	¥	¥	≨ :
2-Chlorophenol (GCMS)	Y2	MA	Y N	4	Y Z
	4	¥.	¥	ş	¥
2-Hetny(phenol (terns)	.	*	¥	¥	¥
2-Witrophenol (GCMS)	:	1	4	MA.	¥¥
3-Methyl-4-Chlorophenol (GCMS)	≨ :	S	S 3	 	: \$
4-Nethylphenol (GCMS)	≨	¥	£	§ :	E :
4-Nitrophenol (GCMS)	ş	¥	¥	¥	≦
Phenol (GCMS)	¥	¥	\$	\$	≨
Semivolatiles	,	;	•	, 5 Te	, ,
1,4-0xathiane	< 2.38	< 2.38	87.7 ×	8 : ·	
1 4-0xathiane (GCMS)	× 7.90	8.7	× 7.8	3. •	8. .
2 2-pin/conschend orostem/10-1 1 1-Trichlocosthane (DDI)	0.0490	< 0.0490	× 0.0490	× 0.0490	× 0.0490
2,2-Bistpalachicophenity 1,1,1 inchicophene (DIT) (CDIS)	< 9.20	< 9.20	< 9.20	< 9.20	× 9.20
2,2-8is(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	< 0.0540	0.0540	< 0.0540
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 6.10	< 6.10	< 6.10	< 6.10	< 6.10
C.C. BIS(paracitus) by the control occurrence of the control occurrence occurrence of the control occurrence oc	< 5.69	< 5.69	< 5.69	< 5.69	< 5.69
4-Uniorophenylmethyl suffide (GCMS)	< 17.0	< 17.0	< 17.0	< 17.0	< 17.0

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

⁻⁻ Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m

Table C1 Surface-Water Investigative Analytical Data

Sample ID Date	HA09715W 11/11/88	HA0973SW 11/11/88	HA0977SW 11/15/88	HA0978SW 11/15/88	HA09795W 11/15/88
Analytes					
Semivolatiles					
4-Chlorophenylmethyl Sulfone	> 7.46	> 7.46	19.4	× 7.46	57
4-Chlorophenylmethyl Sulfone (GCMS)	< 7.20	< 7.20	< 7.20	< 7.20	< 7.20
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5	120
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 29.0	< 29.0	< 29.0	v 29.0	< 29.0
Aldrin	< 0.0500	< 0.0500	× 0.0500	< 0.0500	< 0.0500
Aldrin (GCMS)	< 7.50	< 7.50	< 7.50	< 7.50	< 7.50
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	< 5.60	< 5.60	< 5.60	< 5.60	< 5.60
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00	· 2.00 ·
Bicyclo (2,2,1) hepta-2,5-diene	< 5.90	< 5.90	· 5.90	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	¥	¥2	¥	¥X	¥.
Caprolactem (GCMS)	NA NA	¥N	K	¥	4
Chlordane	< 0.0950	< 0.0950	< 0.0950	< 0.0950	< 0.0950
Chlordane (GCMS)	07.6 >	07.6 >	07.6 >	07.6 >	07.6 >
· Dicyclopentadiene	< 5.00	< 5.00	< 5.00	· 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 7.30	< 7.30	< 7.30	< 7.30	< 7.30
Dieldrin	< 0.0500	0.147	< 0.0500	< 0.0500	9920
Dieldrin (GCMS)	oz.70	oz., >	oz., >	¢ 4.70	٧.4 ٠
Diisopropyl Methylphosphonate	7.95	5.90	6.11	2.47	4.76

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample ID Date	HA09715W 11/11/88	HA09735W 11/11/88	HA09775W 11/15/88	HA0978SW 11/15/88	HA0979SW 11/15/88
Analytes					
Semivolatiles					
Diisopropyl Methylphosphonate (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0	< 14.0
Dimethylmethyl Phosphonate	0.227	0.238	0.257	0.209	0.251
Dimethylmethyl Phosphonate (GCMS)	< 33.0	< 33.0	< 33.0	< 33.0	< 33.0
Dithiane	< 1.34	< 1.34	× 1.34	× 1.34	× 1.34
Dithiane (GCMS)	< 21.0	< 21.0	44.2	< 21.0	< 21.0
Endrin	W	¥ N	¥	¥	¥
Endrin (GCMS)	× 8.00	× 8.00	× 8.00	× 8.00	< 8.00
Hexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	< 0.0480	0.0480
Hexachlorocyclopentadiene (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0	< 21.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCMS)	< 3.70	× 3.70	< 3.70	× 3.70	< 3.70
Malathion	< 0.373	< 0.373	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0	< 14.0
Parathion	< 0.647	< 0.647	< 0.647	< 0.647	× 0.647
Parathion (GCHS)	< 19.0	< 19.0	< 19.0	< 19.0	< 19.0
Pentachlorophenol (GCMS)	ş	¥	≨	¥	¥
supprise the state of the state	œ	~	~	æ	œ
Supona (GCHS)	< 9.30	< 9.30	< 9.30	< 9.30	< 9.30
Vapona	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384

> -- indicates that the target analyte was detected at or

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample ID Date	HA0971SW 11/11/88	HA0973SW 11/11/88	HA0977SW 11/15/88	HA0978SW 11/15/88	HA09795W 11/15/88
Analytes					
Senivolatiles					
Vapona (GCMS)	< 17.0	< 17.0	< 17.0	< 17.0	< 17.0
Volatiles					
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	< 1.00	< 1.00	< 1.00	. 1.00	. 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780	< 0.780
(GCMS)	. 1.00	< 1.00	× 1.00	< 1.00	< 1.00
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	.00	· 1.00	. 1.00	. 1.00	< 1.00
1,1-Dichloroethene	· 1.70	6.1.70	٠1.8	۰1.7	× 1.8
1,1-Dichloroethene (GCMS)	< 1.00	< 1.00	. 1.00	. 1.00	. 1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10	× 1.10
1,2-Dichloroethane (GCMS)	. 1.00	< 1.00	• 1.00	· 1.00	· 1.00
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Benzene	< 1.05	< 1.05	. 1.05	< 1.05	< 1.05
Benzene (GCMS)	. 1.00	8.1.8	· 1.8	. 1.00	.1.8
Carbon Tetrachloride	0.990	0.00	066.0 >	· 0.990	06.0 >
Carbon Tetrachloride (GCMS)	.1.00	× 1.00	.1.8	· 1.00	× 1.00
Chlorobenzene	< 0.820	< 0.820	< 0.820	< 0.820	< 0.820
Chlorobenzene (GCMS)	. 1.00	· 1.00	. 1.00	. 1.00	. 1.00

< -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 10	HA0971SW	HA0973SW	HA09775W	HA0978SW	HA0979SW
Date	11/11/88	11/11/88	11/15/88	11/15/88	11/15/88
Analytes					
Volatiles					
Chloroform	< 0.500	< 0.500	< 0.500	0.599	< 0.500
Chloroform (GCMS)	. 1.00	< 1.00	< 1.00	. 1.00	.1.00
Dibromochloropropane	< 0.195	< 0.195	< 0.195	< 0.195	< 0.195
Dibromochloropropane (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0	< 19.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	. 1.00	< 1.00	× 1.00	. 1.00	. 1.00
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	· 1.00	< 1.00	. 1.00	. 1.00	. 1.00
Methylene Chloride	< 7.40	< 7.40	< 7.40	< 7.40	< 7.40
Methylene Chloride (GCMS)	4 1.00	× 1.00	4 1.00	· 1.00	* 1.00
Methylisobutyl Ketone	06.4 >	o 4.90	06.4 >	· 4.90	× 4.90
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
0,P-Xylene	< 1.36	< 1.36	< 1.36	· 1.36	· 1.36
O,P-Xylene (GCMS)	< 2.00	< 2.00	< 2.00	4 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	. 1.00	< 1.00	. 1.00	. 1.00	.1.0
Toluene	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	· 1.00	· 1.00	٠ 1.00	· 1.00	· 1.00

re j:

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample 10 Date	HA0971SW 11/11/88	HA09735W 11/11/88	HA09775W 11/15/88	HA0978SW 11/15/88	HA0979SW 11/15/86
Volatiles				1	
Trichloroethene	< 0.560	< 0.560	• 0.560	× 0.560	× 0.560
Trichloroethene (GCMS)	٠ 1.00	× 1.00	. 1.00	× 1.00	1.8
Vinyl Chloride (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	< 12.0

Notes: Values are reported in micrograms per liter.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 1D	HA09805W	HA1154SW	HA1156SW	MA1158SW	MA1160SW
Date	11/18/88	08/11/90	05/11/90	05/15/90	05/11/90
Analytes					
Wetals/Anjons/General Chem					
Arsenic	20.9	2.78	< 2.35	< 2.35	< 2.35
Cactaica	· 8.40	< 6.78	< 6.78	6.78	< 6.78
Calcius	00007	87700	25500	61200	58800
Chloride	200000	140000	00007	00007	38000
Chromium	< 24.0	< 16.8	< 16.8	< 16.8	< 16.8
Copper	< 26.0	× 18.8	. 18.8	× 18.8	< 18.8
Cyanide	< 5.00	~	~	~	œ
Fluoride	0697	2330	926	1060	798
lead	< 74.0	< 43.4	< 43.4	< 43.4	× 43.4
Magnesium	20600	44700	12500	13800	13200
Mercury	0.100	0.393	0.508	0.303	0.321
Nitrite, Mitrate Non-Specific	108	< 10.0	1800	1600	2000
Potassium	5230	4330	4210	4220	3620
Sodium	220000	210000	49700	20500	45100
Sulfate	3900	360000	130000	110000	100000
Total Organic Carbon	\$	27.20	5190	3620	0087
Zinc	< 22.0	< 18.0	< 18.0	< 18.0	× 18.0
Phenots					
2,3,6-Trichlorophenol (GCMS)	¥N	۰1.8	٠1.8	5.1.	٠. د
2,4,5-Trichlorophenol (GCMS)	¥	< 2.80	< 2.80	< 2.80	< 2.80

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certiffed Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

⁻⁻ Data did not meet quality control criteria and were NA -- Not Analyzed.
R -- Data did not m

Table C1 Surface-Water Investigative Analytical Data

Camp a D	HA0980SW	HA1154SW	HA11565W	HA11585W	HA1160SW
Date	11/18/88	05/17/90	05/11/90	05/15/90	05/11/90
Analytes					
Phenols					
2.4.6.Trichlorochenol (GCMS)	Y.	< 3.60	< 3.60	< 3.60	< 3.60
2 4-Dichlorophenol (GCMS)	¥N	< 8.40	8.4 0	× 8.40	× 8.40
2 A-Dimethyl phenol (GCMS)	**	07.7 >	07.7 >	07.4 >	07.7 >
2 4-Dinitrochenol (GCHS)	*	< 176	< 176	> 176	× 176
2-Chlorophenol (GCMS)	¥	< 2.80	< 2.80	< 2.80	< 2.80
(NECO) COST CAST CAST	ş	< 3.60	× 3.60	× 3.60	< 3.60
2-Mitrophers (GDMS)	4	< 8.20	< 8.20	< 8.20	< 8.20
National Action (GDBS)	4	< 8.50	< 8.50	< 8.50	< 8.50
A-Methylphenol (GDMS)	ş	< 2.80	< 2.80	< 2.80	< 2.80
4-Nitrophenol (GCMS)	¥	· %.0	· %.0	· %.0	· 96.0
Phenol (GCHS)	¥	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles			i	•	;
1,4-0xathiene	< 2.38	< 2.38	< 2.38	2.3°	× 2.38
1.4-Oxathiane (GCMS)	YN	< 27.0	< 27.0	< 27.0	< 27.0
2 2-Bis(perachlorophenyl)-1.1.1-Trich(oroethane (007)	< 0.490	0.0490	< 0.0%00	0.184	< 0.0490
2.2-Bis(perachlorochenyl)-1.1-Trichloroethane (001) (GCMS)	¥	× 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.540	< 0.0540	< 0.0540	0.399	< 0.0540
2.2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	69.5 > .	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	¥	< 10.0	< 10.0	< 10.0	< 10.0

rejected.

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample 10	HA0980SW	HA1154SH	HA1156SW	HA11585W	HA1160SW
Date	11/18/88	05/11/90	05/17/90	05/15/90	05/11/90
Analytes					
Semivolatiles	1 1 5 0 0 1		-		
4-Chlorophenylmethyl Sulfone	× 7.46	× 7.46	4.7.46	< 7.46	< 7.46
4-Chlorophenylmethyl Sulfone (GCMS)	NA NA	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	NA NA	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Aldrin (GCMS)	¥	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	6.80	< 4.03	< 4.03	< 4.03
Atrazine (GCMS)	YN.	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	¥	· 5.90	· 5.90	< 5. %	6 2.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	YH.	22.0	٨.٢ >	67.7	< 7.70
Caprolactam (GCMS)	¥R	< 10.0	< 10.0	< 10.0	< 10.0
Chlordane	056.0 >	0.388	< 0.0950	< 0.0950	< 0.0950
Chlordane (GCMS)	YH.	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	¥N .	œ	· 5.00	< 5.00	· 5.00
Dicyclopentadiene (GCMS)	¥	7.43	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCMS)	YZ	< 26.0	< 26.0	< 26.0	< 26.0
Disconcont Methylphosphonete	17.1	0	0.01	613 0	201 0

[.] Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

^{..} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were ref --- 4.

Table C1 Surface-Water Investigative Analytical Data

Sample 1D Date	HA0980SW 11/18/88	HA1154SW 05/17/90	HA1156SW 05/17/90	MA1158SW 05/15/90	MA1160SW 05/11/90
Analytes	:				
Semivolatiles	42	39.6	< 21.0	< 21.0	< 21.0
Ulisopropy: Hetnythiosphonate tucho.	26.4	< 0.188	< 0.188	< 0.188	< 0.188
Dimpinytmenty Troubleste (CCS)	¥	< 130	× 130	< 130	× 130
	· 1.34	× 1.34	¥.1.×	< 1.34	× 1.%
Dithiane (GCMS)	NA .	< 3.30	< 3.30	< 3.30	< 3.30
	< 0.500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
	≤	< 18.0	< 18.0	< 18.0	< 18.0
Complete (complete)	0.480	< 0.0480	< 0.0480	< 0.0480	æ
nexaction ocycloperion and the control of the contr	*	< 54.0	. 54.0	< 54.0	× 54.0
nexecutor coverage and a second secon	< 0.510	< 0.0510	< 0.0510	< 0.0510	< 0.0510
	4	< 7.80	< 7.80	< 7.80	< 7.80
ווייין פראס)	< 0.373	< 0.373	< 0.373	< 0.373	< 0.373
	*	< 21.0	< 21.0	< 21.0	< 21.0
	× 0.647	< 0.647	× 0.647	< 0.647	× 0.647
Perathion (GCMS)	V N	< 37.0	< 37.0	< 37.0	< 37.0
(SM2) Croshort (40-store	×	< 9.10	4 9.10	< 9.10	< 9.10
	< 0.787	< 0.787	< 0.787	< 0.787	< 0.787
Simons (SCIIS)	¥	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.384	< 0.384	< 0.384	< 0.38¢	< 0.384

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 10 Date	HA09805W 11/18/88	HA1154SW 05/17/90	HA1156SW 05/17/90	HA1158SW 05/15/90	NA1160SW 05/11/90	
nalytes		,				
mivolatiles Vapona (GCHS)	¥	< 8.50	. 8.50	< 6.5 0	· 8.50	
latiles						
1,1,1-Trichloroethane	< 0.760	< 0.760	< 0.760	< 0.760	< 0.760	
1.1.1-Trichloroethane (GCMS)	. 1.00	× 1.00	< 1.00	· 1.00	. 1.00	
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780	< 0.780	
1,1,2-Trichloroethane (GCMS)	. 1.00	. 1.00	. 1.00	< 1.00	< 1.00	
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730	< 0.730	
1,1-Dichloroethane (GCMS)	4 1.00	· 1.00	.1.00	· 1.00	· 1.00	
1,1-Dichloroethene	× 1.70	× 1.78	6.1.3	6.1.7	s.1.8	
1,1-Dichloroethene (GCNS)	. 1.00	. 1.00	· 1.00	. 1.00	.1.8	
1,2-Dichloroethane	< 1.10	. 1.10	< 1.10	< 1.10	< 1.10	
1,2-Dichloroethane (GCNS)	٠ 1.00	. 1.00	.1.90	.1.8	× 1.00	
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760	< 0.760	< 0.760	0.760	
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	
Benzene	· 1.05	. 1.05	< 1.05	< 1.05	< 1.05	
Benzene (GCMS)	· 1.00	. 1.00	. 1.00	× 1.8	. 1.00	
Carbori Tetrachloride	0.690	0.990	× 0.990	¢ 0.990	× 0.990	
Carbon Tetrachloride (GCMS)	4 1.00	4 1.00	4 1.00	· 1.8	× 1.00	
Chlorobenzene	< 0.820	< 0.820	< 0.820	< 0.820	< 0.820	
Chlorobenzene (GCMS)	· 1.00	. 1.00	.1.00	. 1.00	.00	

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Semple 10	HA0980SW	HA1154SW	HA1156SW	HA1158SW	NA1160SU
Date	11/18/88	05/11/90	05/1/50	04/51/50	04/11/50
Analytes					
les			٠		
Chloroform	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
Chloroform (GCMS)	< 1.00	< 1.00	* 1.00	. 1.00	• 1.00
Dibromochloropropane	< 0.195	< 0.195	< 0.195	< 0.195	< 0.195
Dibromochloropropane (GCMS)	¥¥	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	· 1.00	· 1.00	< 1.00	. 1.00	.1.00
H-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCMS)	< 1.00	. 1.00	. 1.00	. 1.00	. 1.00
Methylene Chloride	< 7.40	× 7.40	< 7.40	< 7.40	< 7.40
Methylene Chloride (GCMS)	× 1.00	. 1.00	× 1.00	. 1.00	• 1.00
Methylisobutyl Ketone	42	o., v	· 4.90	%. 7 ×	œ
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
O,P-Xylene	< 1.36	< 1.36	< 1.36	< 1.36	< 1.36
O,P-Kylene (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCMS)	< 1.00	· 1.00	. 1.00	.1.00	• 1.00
Toluene	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	. 1.00	1.00	. 1.00	.1.00	.1.00

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample ID Date	HA0980SW 11/18/88	HA1154SW 05/17/90	NA1156SW 05/17/90	MA1158SW 05/15/90	HA1160SW 05/11/90
Analytes					
Volatiles					
Trichloroethene	< 0.560	< 0.560	< 0.560	< 0.560	< 0.560
Trichloroethene (GCMS)	. 1.00	* 1.00	× 1.00	< 1.00	. 1.00
Vinyl Chloride (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	< 12.0

rej · ·

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

^{...} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample ID Date	HA11615W 05/15/90	HA11785W 05/15/90	HA1179SW 05/15/90	HA1185SW 05/10/90	HA1196SW 06/01/90
Analytes					
Metals/Anions/General Chem					
Arsenic	< 2.35	< 2.35	< 2.35	< 2.35	2.82
Cadhiun	s 6.78	< 6.78	< 6.78	6.78	6.78
Calcium	63500	95000	61800	67200	27600
Chloride	41000	42000	00007	24000	57000
Chromium	< 16.8	< 16.8	< 16.8	< 16.8	< 16.8
Copper	× 18.8	× 18.8	× 18.8	× 18.8	< 18.8
Cyanide	œ	¥	~	~	œ
Fluoride	1130	1070	1090	1020	505
read	< 43.4	< 43.4	< 43.4	7.57 >	< 43.4
Magnesium	14000	13600	13500	15100	12400
Mercury	0.297	0.230	0.557	0.315	< 0.100
Nitrite, Nitrate Non-Specific	1900	2000	1900	1800	2300
Potassium	3970	3990	0987	5310	3640
Sodium	25000	78600	00567	73000	25400
Sulfate	110000	110000	110000	120000	130000
Total Organic Carbon	2670	3970	3920	7700	2000
Zinc	< 18.0	< 18.0	< 18.0	× 18.0	· 18.0
Phenols	;	;	;	•	1
2,3,6-Trichlorophenol (GCMS)	< 1.70	· 1.70	< 1.70	2.7	e.:
Z,4,5-Trichlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80	< 2.80

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 10	NA11615W 05/15/90	HA1178SW 05/15/90	HA: 1795W 05/15/90	HA1185SW 05/10/90	HA1196SW 06/01/90
Analytes					
Phenols					
2,4,6-Trichlorophenol (GCMS)	< 3.60	< 3.60	< 3.60	< 3.60	< 3.60
2,4-Dichlorophenol (GCMS)	× 8.40	× 8.40	07.8 >	07.8 >	o 9.40
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	07.7 >	07.7 >	07.7 >
2,4-Dinitrophenol (GCMS)	. < 176	< 176	< 176	< 176	× 176
2-Chlorophenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80	< 2.80
2-Methylphenol (GCMS)	· 3.60	< 3.60	< 3.60	< 3.60	< 3.60
2-Nitrophenol (GCMS)	< 8.20	< 8.20	< 8.20	< 8.20	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50	< 8.50
4-Methylphenol (GCMS)	< 2.80	< 2.80	< 2.80	< 2.80	< 2.80
4-Nitrophenol (GCMS)	< 96.0	0.96 >	· %.0	· %.0	· %·0
Phenol (GCMS)	< 2.20	< 2.20	< 2.20	< 2.20	< 2.20
Semivolatiles					
1,4-0xathiane	< 2.38	< 2.38	< 2.38	< 2.38	< 2.38
1,4-Oxathiane (GCMS)	< 27.0	< 27.0	< 27.0	< 27.0	< 27.0
2,2-Bis(parachlorophenyl)-1,1,1-Trichtoroethane (DDI)	< 0.0490	0.0490 >	× 0.0490	0.0490	× 0.0490
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540	< 0.0540	0.0540	0,0540	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 14.0	< 14.0	< 14.0	< 14.0	< 14.0
4-Chlorophenylmethyl Sulfide	< 5.69	< 5.69	< 5.69	< 5.69	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

⁻⁻ Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m

Table C1 Surface-Water Investigative Analytical Data

Sample 10 Date	HA1161SW 05/15/90	HA1178SW 05/15/90	HA1179SW 05/15/90	HA1185SW 05/10/90	HA1196SU 06/01/90
nalytes					
emivolatites		•			
4-Chlorophenylmethyl Sulfone	< 7.46	< 7.46	< 7.46	> 7.46	97.7 ×
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30	< 5.30	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5	< 11.5	< 11.5	< 11.5	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0	< 15.0	< 15.0	< 15.0
Aldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500	œ
Aldrin (GCMS)	< 13.0	< 13.0	< 13.0	< 13.0	< 13.0
Atrazine	< 4.03	< 4.03	< 4.03	< 4.03	4.13
Atrazine (GCMS)	< 5.90	< 5.90	< 5.90	< 5.90	< 5.90
Benzothiazole	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90	< 5.90	· 5.8	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	< 7.70	< 7.70	· 2.7 ×	× 7.70	6.7.
Caprolactam (GCMS)	< 10.0	< 10.0	< 10.0	< 10.0	< 7.70
Chlordane	< 0.0950	< 0.0950	< 0.0950	< 0.0950	< 0.0950
Chlordane (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	< 37.0
Dicyclopentadiene	< 5.00	· 5.00	< 5.00	× 5.00	< 5.00
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	< 5.50	< 5.50	< 5.50
Dieldrin	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Dieldrin (GCMS)	< 26.0	< 26.0	< 26.0	< 26.0	< 26.0
Diisopropyl Methylphosphonate	0.840	1.11	1.33	< 0.392	< 0.392

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water Investigative Analytical Data

Sample 10 Date	HA1161SW 05/15/90	HA1178SU 05/15/90	HA1179SW 05/15/90	HA1185SW 05/10/90	HA1196SU 06/01/90
Analytes					
Semivolatiles					
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0	< 21.0
Dimethylmethyl Phosphonate	< 0.188	< 0.188	< 0.188	< 0.188	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130	< 130	< 130	× 130
Dithiane	< 1.36	< 1.34	× 1.34	× 1. X	< 1.34
Dithiane (GCMS)	< 3.30	< 3.30	< 3.30	< 3.30	< 3.30
	< 0.0500	< 0.0500	< 0.0500°	< 0.0500	< 0.0500
Endrin (GCMS)	< 18.0	< 18.0	< 18.0	< 18.0	< 18.0
Hexachlorocyclopentadiene	< 0.0480	< 0.0480	< 0.0480	œ	< 0.0480
Mexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0	< 54.0	< 54.0	× 54.0
Isodrin	< 0.0510	< 0.0510	< 0.0510	< 0.0510	< 0.0510
Isodrin (GCHS)	< 7.80	< 7.80	< 7.80	< 7.80	< 7.80
Malathion	< 0.373	< 0.373	< 0.373	< 0.373	< 0.373
Malathion (GCMS)	< 21.0	< 21.0	< 21.0	< 21.0	< 21.0
Parathion	× 0.647	< 0.647	< 0.647	< 0.647	< 0.647
Parathion (GCMS)	< 37.0	< 37.0	< 37.0	< 37.0	< 37.0
Pentachlorophenol (GCMS)	< 9.10	< 9.10	< 9.10	< 9.10	< 9.10
Suporte	× 0.787	< 0.787	< 0.787	< 0.787	< 0.787
Supone (GCMS)	< 19.0	< 19.0	< 19.0	< 19.0	< 19.0
Vapona	< 0.38¢	< 0.384	< 0.384	< 0.384	< 0.384

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample 1D Date	HA11615W 05/15/90	HA11785W 05/15/90	HA1179SW 05/15/90	HA1185SW 05/10/90	HA1196SU 06/01/90
Analytes					
Semivolatiles	: : : :				
Vapona (GCMS)	< 8.50	< 8.50	< 8.50	< 8.50	< 8.50
Volatiles					
1,1,1-Trichtoroethane	< 0.760	< 0.760	< 0.760	< 0.760	< 0.760
1,1,1-Trichloroethane (GCMS)	× 1.00	< 1.00	× 1.00	.1.0	. 1.00
1,1,2-Trichloroethane	< 0.780	< 0.780	< 0.780	< 0.780	< 0.780
1,1,2-Trichloroethane (GCMS)	· 1.00	< 1.00	× 1.00	· 1.00	.1.8
1,1-Dichloroethane	< 0.730	< 0.730	< 0.730	< 0.730	< 0.730
1,1-Dichloroethane (GCMS)	× 1.00	.100		.1.00	· 1.00
1,1-Dichloroethene	٠.1.x	s.1.8	6.1.7	٠1.7	۶.1.×
1,1-Dichloroethene (GCMS)	· 1.00	. 1.00	. 1.00	• 1.00	.1.00
1,2-Dichloroethane	< 1.10	< 1.10	< 1.10	< 1.10	× 1.10
1,2-Dichloroethane (GCNS)	× 1.00	.1.00	· 1.00	· 1.00	· 1.00
1,2-Dichloroethenes (cis & trans)	< 0.760	× 0.760	< 0.760	< 0.760	< 0.760
1,2-Dichloroetheres (cis & trans) (GCMS)	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Benzene '	< 1.05	< 1.05	< 1.05	< 1.05	< 1.05
Benzene (GCMS)	· 1.00	. 1.00	× 1.00	. 1.00	. 1.80
Carbon Tetrachloride	066.0 >	× 0.990	× 0.990	× 0.990	× 0.990
Carbon Tetrachloride (GCMS)	· 1.00	.1.00	· 1.00	.1.00	. 1.00
Chlorobenzene	< 0.820	< 0.820	< 0.620	< 0.820	< 0.820
Chlorobenzene (GCMS)	· 1.00	. 1.00	. 1.00	. 1.00	. 1.00

- < -- indicates that the target analyte was not detected at. or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table C1 Surface-Water investigative Analytical Data

Sample ID Date	HA1161SW 05/15/90	HA1178SW 05/15/90	HA11795W 05/15/90	HA1185SW 05/10/90	NA1196SM 06/01/90
Analytes					
Volatiles					
Chloroform	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
Chloroform (GCMS)	· 1.00	.1.00	< 1.00	. 1.00	. 1.00
Dibramochloropropane	< 0.195	< 0.195	< 0.195	< 0.195	< 0.195
Dibromochloropropane (GCMS)	< 12.0	< 12.0	< 12.0	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550	< 0.550	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37
Ethyl Benzene (GCMS)	. 1.00	· 1.00	× 1.00	× 1.00	. 1.00
M-Xylene	< 1.32	< 1.32	< 1.32	< 1.32	< 1.32
M-Xylene (GCHS)	. 1.00	× 1.00	× 1.00	.1.00	· 1.00
Methylene Chloride	< 7.40	< 7.40	07.7 >	× 7.40	< 7.40
Methylene Chloride (GCMS)	· 1.00	. 1.00	.1.00	× 1.00	× 1.00
Methylisobutyl Ketone	o.4 ×	o.4.90	× 4.90	~	· 4.90
Hethylisobutyl Ketone (GCMS)	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
O,P-Kylene	.< 1.36	< 1.36	< 1.36	< 1.36	· 1.36
O,P-Xylene (GCMS)	< 2.00	< 2.00	< 2.00	4 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750	< 0.750	< 0.750	< 0.750
Tetrachloroethene (GCHS)	. 1.00	. 1.00	.1.0	. 1.00	.1.0
Toluene	< 1.47	< 1.47	< 1.47	< 1.47	< 1.47
Toluene (GCMS)	· 1.00	. 1.00	· 1.00	.1.00	• 1.00

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

Indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table C1 Surface-Water Investigative Analytical Data

Sample 1D Date	HA1161SW 05/15/90	HA1178SW 05/15/90	HA1179SW 05/15/90	HA1185SW 05/10/90	HA1196SW 06/01/90
Analytes					
Volatiles Trichloroethene Trichloroethene (GCMS)	< 0.560 < 1.00 < 12.0	< 0.560 < 1.00 < 12.0	< 0.560 < 1.00 < 12.0	0.5601.0012.0	< 0.560 < 1.00 < 12.0

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA11975W
Date	06/10/90
Analytes	
Metals/Anions/General Chem	
Arsenic	. 2.82
Cachrium	< 6.78
Calcium	59300
Chloride	26000
Chromium	< 16.8
Copper	< 18.8
Cyanide	œ
Fluoride	906
. peal	< 43.4
Magnesium	12600
Mercury	< 0.100
Nitrite, Witrate Non-Specific	2300
Potassium	3660
Sodium	24000
Sulfate	130000
Total Organic Carbon	2000
Zinc	< 18.0
Phenols	
2,3,6-Trichlorophenol (GCMS)	· 1.70
2,4,5-Trichtorophenot (GCMS)	< 2.80

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Sample 1D Date	HA11975W 06/01/90
Analytes	
Phenols	
2,4,6-Trichlorophenol (GCMS)	× 3.60
2,4-Dichlorophenol (GCMS)	< 8.40
2,4-Dimethylphenol (GCMS)	07.7 >
2,4-Dinitrophenol (GCMS)	< 176
2-Chlorophenol (GCMS)	< 2.80
2-Methylphenol (GCMS)	< 3.60
2-Witrophenol (GCMS)	< 8.20
3-Methyl-4-Chlorophenol (GCMS)	< 8.50
4-Methylphenol (GCMS)	< 2.80
4-Nitrophenol (GCHS)	× %.0
Phenol (GCMS)	< 2.20
Semivolatiles	
1,4-0xathiane	< 2.38
1,4-0xathiane (GCMS)	< 27.0
2,2-8is(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.0690 >
2,2-8is(perachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 18.0
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0540
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCNS)	<, 14.0
4-Chlorophenylmethyl Sulfide	< 5.69
4-Chlorophenylmethyl Sulfide (GCMS)	< 10.0

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

HA1197SW	06/01/90
01	
Semple	Date

Analytes

Semivolatiles	
4-Chlorophenylmethyl Sulfone	97. <i>L</i> >
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30
4-Chlorophenylmethyl Sulfoxide	< 11.5
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0
Aldrin	~
Aldrin (GCMS)	< 13.0
Atrazine	< 4.03
Atrazine (GCMS)	< 5.90
Benzothiazole	< 5.00
Bicyclo [2,2,1] hepta-2,5-diene	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	o.7.7
Caprolactem (GCMS)	< 10.0
Chlordene	< 0.0950
Chlordene (GCMS)	< 37.0
Dicyclopentadiene	< 5.00
Dicyclopentadiene (GCMS)	< 5.50
Dieldrin	< 0.0500
Dieldrin (GCMS)	< 26.0
Disopropyl Methylphosphonate	< 0.392

Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed. R -- Data did not meet quality control criteria and were rej .

Sample 10	HA1197SW
Date	06/01/90
Analytes	
Semivolatiles	
Diisopropyl Methylphosphonate (GCMS)	< 21.0
Dimethylmethyl Phosphonate	< 0.188
Dimethylmethyl Phosphonate (GCMS)	< 130
Dithiane	< 1.3¢
Dithiene (GCMS)	< 3.30
Endrin	< 0.0500
Endrin (GCMS)	< 18.0
Hexach lorocyclopentadiene	< 0.0480
Hexachlorocyclopentadiene (GCMS)	< 54.0
Isodrin	< 0.0510
Isodrin (GCMS)	< 7.80
Malathion	< 0.373
Halathion (GCHS)	< 21.0
Parathion	< 0.647
Parathion (GCMS)	< 37.0
Pentachlorophenol (GCMS)	· 9.10
. audous	< 0.787
Supona (GCMS)	< 19.0
Vapona	< 0.384

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Sample 1D Date	NA11975W 06/01/90
Analytes	
Semivolatiles	
Vapona (GCHS)	< 6. 50
Volatiles	
1,1,1-Trichloroethane	• 0.760
1,1,1-Trichloroethane (GCMS)	. 1.00
1,1,2-Trichloroethane	< 0.780
1,1,2-Trichloroethane (GCMS)	. 1.00
1,1-Dichloroethane	6.730
CONTRACTOR AND	
1.1-Dichloroethere	S
1,1-Dichloroethene (GDMS)	. 1.00
1,2-Dichloroethene	. 1.10
1,2-Dichloroethana (GCMS)	. 1.00
1.2-Dichloroethenes (cis & trans)	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00
Benzene	× 1.05
Benzene (GCHS)	. 1.00
Carbon Tetrachloride	0.990
Carbon Tetrachloride (GCMS)	4 1.00
Chlorobenzene	< 0.820
Chlorobenzene (GCHS)	. 1.00

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Sample 10	HA1197SW
Date	06/01/90
Analytes	
Volatiles	
Chloroform	< 0.500
Chloroform (GCMS)	< 1.00
Dibramochloropropare	< 0.195
Dibromochloropropane (GCMS)	< 12.0
Dimethyl Disulfide	< 0.550
Ethyl Benzene	< 1.37
Ethyl Benzene (GCMS)	· 1.00
M-Xylene	< 1.32
M-Xylene (GCMS)	< 1.00
Methylene Chloride	< 7.40
Methylene Chloride (GCMS)	· 1.00
Methylisobutyl Ketone	· 4.90
Methylisobutyl Ketone (GCMS)	< 1.40
O,P-Xylene	< 1.36
D,P-Xylene (GCMS)	< 2.00
Tetrachloroethene	< 0.750
Tetrachloroethene (GCMS)	< 1.00
Toluene	< 1.47
Toluene (GCMS)	• 1.00

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

rejected.

Sample ID Date	HA11975W 06/01/90
Analytes	
Volatiles	
Trichloroethene	< 0.560
Trichloroethene (GCMS)	. 1.00
Vinvl Chloride (GCMS)	< 12.0

Notes: Values are reported in micrograms per liter. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

HA1190SW HA1191SW	05/10/90 06/01/90	GC/MS OF GC/MS OF	HA1185SW HA1196SW		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	< 1.70 < 1.70	< 2.80 < 2.80	< 3.60 < 3.60	× 8.40 × 8.40	07.4 > 07.4 >	417	, < 2.80 < 2.80	< 3.60 < 3.60	< 8.20 < 8.20	< 8.50 < 8.50	< 2.80 < 2.80	0.96 > 0.96 >	< 2.20 < 2.20
Sample 10	Date			Analytes	Phenots	2,3,6-Trichlorophenol (GCMS)	2,4,5-Trichtorophenol (GCMS)	2,4,6-Trichlorophenol (GCMS)	2,4-Dichlorophenol (GCMS)	2,4-Dimethylphenol (GCMS)	2,4-Dinitrophenol (GCMS)	2-Chlorophenol (GCMS)	2-Methylphenol (GCMS)	2-Nitrophenol (GCMS)	3-Methyl-4-Chlorophenol (GCMS)	4-Nethylphenol (GCMS)	4-Nitrophenol (GCMS)	Phenol (GCMS)

rejected.

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Sample 10	HA1190SW	HA1191SW
Date	05/10/90	06/11/90
	GC/MS OF	GC/MS OF
	HA1185SW	HA11965W
Analytes	,	
Semivolatiles		
4-Chlorophenylmethyl Sulfone (GCMS)	< 5.30	< 5.30
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 15.0	< 15.0
Aldrin (GCMS)	. < 13.0	< 13.0
Atrazine (GCMS)	< 5.90	< 5.90
Bis (2-Ethylhexyl) Phthalate (GCMS)	c 7.70	< 7.70
Caprolactam (GCMS)	< 10.0	< 10.0
Chlordane (GCMS)	< 37.0	< 37.0
Dicyclopentadiene (GCMS)	< 5.50	< 5.50
Dieldrin (GCMS)	< 26.0	< 26.0
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0
Dimethylmethyl Phosphonate (GCMS)	< 130	< 130
Dithiane (GCMS)	< 3.30	< 3.30
Endrin (GCMS)	< 18.0	< 18.0
Hexachlorocyclopentadiene (GCMS)	< 54.0	< 54.0
Isodrin (GCMS)	< 7.80	< 7.80
Malathion (GCMS)	< 21.0	< 21.0
Parathion (GCMS)	< 37.0	< 37.0
		2

Notes: Values are reported in micrograms per liter.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Sample ID	WA1190SU	HA11915W	
Date	05/10/90	06/10/90	
	HA1185SW	HA1196SW	
Analytes			
Semivolatites			
Pentachlorophenol (GCMS)	< 9.10	< 9.10	
Supona (GCMS)	< 19.0	< 19.0	
Vapona (GCMS)	< 8.50	< 8.50	
Volatiles			
1,1,1-Trichloroethane (GCMS)	< 1.00	< 1.00	
1,1,2-Trichloroethane (GCMS)	< 1.00	< 1.00	
1,1-Dichloroethane (GCMS)	< 1.00	< 1.00	
1,1-Dichloroethene (GCMS)	× 1.00	· 1.00	
1,2-Dichloroethane (GCMS)	< 1.00	< 1.00	
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00	
Benzene (GCMS)	× 1.00	< 1.00	
Carbon Tetrachloride (GCMS)	< 1.00	< 1.00	
Chlorobenzene (GCMS)	√ 1.00	< 1.00	
Chloroform (GCMS)	× 1.00	< 1.00	
Dibromochloropropere (GCMS)	< 12.0	< 12.0	
Ethyl Benzene (GCMS)	· 1.00	. 1.00	
H-Xylene (GCMS)	< 1.00	· 1.00	
Methylene Chloride (GCMS)	× 1.00	. < 1.00	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

GI a lames	HA1190SW	HA11915W
Date	05/10/90	06/01/90
	GC/MS OF	GC/MS OF
	HA11855W	HA1196SW
Analytes		
Volatiles		:
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40
O.P-Xvlene (GCMS)	< 2.00	< 2.00
Tetrachloroethene (GCMS)	. 1.00	< 1.00
Toluene (GCMS)	. 1.00	· 1.00
Trichloroethene (GCMS)	< 1.00	< 1.00
Vinyl Chloride (GCMS)	< 12.0	< 12.0

rej 🤄

Notes: Values are reported in micrograms per liter.
Reported values are accurate to three significant figures.
< -- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.

above the Maximum Reporting Limit.
NA -- Not Analyzed.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

. Sample 10	HA11895W	HA11625W
Date	05/10/90	06/11/90
	o dng	Dup of
	HA1185SV	HA1196SW
Analytes		
Metals/Anions/General Chem		
Arsenic	< 2.35	< 2.35
Cadaium	6.78	× 6.78
Calcium	93000	58700
Chloride	49000	24000
Chromium	< 16.8	< 16.8

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per liter.

< 0.100 2200 4430 53000 130000

0.538 1800 4670 62000 130000

Nitrite, Mitrate -- Non-Specific

Hercury

Hagnes i um

Lead

Cyanide Fluoride

Copper

Potassium

Sodium Sul fate 2000

9800 * 18.0

Total Organic Carbon

907 < 43.4

< 43.4 14000

1030

12600

< 18.8

< 18.8

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA11895W	HA1162SW	
Date	05/10/90	06/11/90	
	bup of	Dup of	
	HA11855W	HA1196SW	
Phenots			
2.3.6-Trichlorophenol (GCMS)	.1.70	× 1.70	
2.4.5-Trichloraphenol (GCMS)	< 2.80	< 2.80	
2.4.6-Trichlorophenol (GCMS)	< 3.60	< 3.60	
2.4-Dichlorophenol (GCMS)	o 8.40	07.8 >	
2,4-Dimethylphenol (GCMS)	07.7 >	07.7 >	
2.4-Dinitrophenol (GCMS)	4 176	4 176	
2-Chlorophenol (GC+5)	< 2.80	< 2.80	
2-Methylphenol (GCMS)	< 3.60	< 3.60	
2-Witrophenol (GCMS)	< 8.20	< 8.20	
3-Methyl-4-Chlorophenol (GCMS)	< 8.50	< 8.50	
4-Hethylphenol (GCMS)	< 2.80	< 2.80	
4-Witrophenol (GCMS)	· %.0	· %·0	
Phenol (GCMS)	< 2.20	< 2.20	
Ses!volatiles			
1. 6. Oxathi ana	< 2.38	< 2.38	
1.4-Oxathiane (GCMS)	< 27.0	< 27.0	
2.2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0490	< 0.0490	
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	× 18.0	< 18.0	

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or erve the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

08/01/50	06/11/90	
bup of	Dup of	
HA1185SW	HA11965W	
	-	
< 0.0540	< 0.0540	
< 14.0	< 14.0	
< 5.69	< 5.69	
< 10.0	< 10.0	
< 7.46	< 7.46	
< 5.30	< 5.30	
< 11.5	< 11.5	
< 15.0	< 15.0	
< 0.0500	œ	
< 13.0	< 13.0	
< 4.03	4.58	
< 5.90	< 5.90	
< 5.00	< 5.00	
< 5.90	< 5.90	
6.7.	6.7.	
< 10.0	< 10.0	
< 0.0950	< 0.0950	
34 35 5 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	9 8 8

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

rejected.

Sample 10	HA11895W	HA11625W	
Date	05/10/90	06/01/90	
	o dng	Dup of	
	NA1185SW	HA1196SU	
Analytes		٠	
Semivolatiles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Chlordene (GCMS)	< 37.0	< 37.0	
Dicyclopentadiene	< 5.00	< 5.00	
Dicyclopentadiene (GCMS)	< 5.50	< 5.50	
Dieldrin	< 0.0500	< 0.0500	
Dieldrin (GCMS)	< 26.0	< 26.0	
Diisopropyl Methylphosphonate	< 0.392	< 0.392	
Diisopropyl Methylphosphonate (GCMS)	< 21.0	< 21.0	
Dimethylmethyl Phosphorate	< 0.188	< 0.188	
Dimethylmethyl Phosphorate (GCMS)	< 130	× 130	
Dithiane	4.1.34	< 1.34	
Dithiame (GCMS)	< 3.30	< 3.30	
Endrin	< 0.0500	< 0.0500	
Endrin (GOS)	× 18.0	< 18.0	
Mexacal procyclopentadiene	•	< 0.0480	
Hexachlorocyclopentadiene (GCMS)	× 54.0	× 54.0	
) post	< 0.0510	< 0.0510	
(SACE) (SACE)	× 7.80	× 7.80	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA11895W	NA1162SW	
Date	05/10/90	06/01/90	
	Dup of	Dup of	
	HA1185SW	HA1196SW	
Analytes			
Semivolatiles			
Malathion	< 0.373	< 0.373	
Melathion (GCMS)	< 21.0	< 21.0	
Perathion	< 0.647	< 0.647	
Parathion (GCMS)	< 37.0	< 37.0	
Pentachlorophenol (GCMS)	< 9.10	< 9.10	
Supone	< 0.787	< 0.787	
Supone (GCHS)	< 19.0	< 19.0	
Vapona	< 0.384	< 0.384	
Vapona (GCHS)	< 8.50	< 8.50 ×	
Volatites		•	
1,1,1-Trichloroethane	< 0.760	< 0.760	
1,1,1-Trichloroethane (GCMS)	. 1.00	.1.00	
1,1,2-Trichloroethane	< 0.780	< 0.780	
1,1,2-Trichloroethane (GCMS) .	. 1.00	. 1.00	
1,1-Dichloroethane	< 0.730	< 0.730	
1,1-Dichloroethane (GCMS)	* 1.8	× 1.00	
1,1-Dichloroethene	6.1.7	× 1.3	
1,1-Dichloroethene (GCMS)	. 1.00	· 1.00	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA11895W	HA11625W
Date	05/10/90	06/01/90
	jo ding	po dng
	HA1185SW	HA1196SW
Analytes		
Volatiles		
1,2-Dichloroethane	< 1.10	< 1.10
1,2-Dichloroethane (GCMS)	× 1.00	.1.00
1,2-Dichloroethenes (cis & trans)	< 0.760	< 0.760
1,2-Dichloroethenes (cis & trans) (GCMS)	< 5.00	< 5.00
Benzene	< 1.05	< 1.05
Benzene (GCMS)	× 1.00	· 1.00
Carbon Tetrachloride	06.0 >	06.0 >
Carbon Tetrachloride (GCMS)	× 1.00	• 1.00
Chlorobenzene	< 0.820	< 0.820
Chlorobenzene (GCMS)	· 1.00	• 1.00
Chloroform	< 0.500	< 0.500
Chloroform (GCMS)	× 1.00	.1.00
Dibromochloropropene	< 0.195	< 0.195
Dibramochloropropene (GCMS)	< 12.0	< 12.0
Dimethyl Disulfide	< 0.550	< 0.550
Ethyl Benzene	< 1.37	< 1.37
Ethyl Benzene (GCMS)	× 1.00	• 1.00

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA11895W	HA11625W
Date	05/10/90	06/01/90
	Dup of	Dup of
	HA11855W	HA1196SW
Analytes		
Volatiles		
M-Xylene	< 1.32	< 1.32
M-Xylene (GCMS)	· 1.00	< 1.00
Hethylene Chloride	07.7 >	< 7.40
Methylene Chloride (GCMS)	< 1.00	· 1.00
Methylisobutyl Ketone	œ	06.4 >
Methylisobutyl Ketone (GCMS)	< 1.40	< 1.40
0,P-Xylene	< 1.36	< 1.36
O,P-Xylene (GCMS)	< 2.00	< 2.00
Tetrachloroethene	< 0.750	< 0.750
Tetrachloroethene (GCMS)	. 1.00	· 1.00
Tolinera	27.1 >	27.1 >
Toluene (GCMS)	× 1.90	41.0
Trichloroethene	< 0.560	< 0.560
Trichloroethene (GCMS)	× 1.00	٠ 1.00
Vinyl Chloride (GCMS)	< 12.0	< 12.0

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
- above the Meximum Reporting Limit.
 NA -- Not Analyzed.

rejected.

R -- Data did not meet quality control criteria and were

HA1162SW 06/01/90

NA1189SW 05/10/90

Sample 1D	Date

Dup of Dup of HA1185SW HA1196SW

Analytes

.

Notes: Values are reported in micrograms per liter.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Appendix D STREAM-BOTTOM SEDIMENT ANALYTICAL DATA

LIST OF TABLES

Table No. D1 Stream-Bottom Sediment Investigative Analytical Data D2 Stream-Bottom Sediment GC/MS Analytical Data D3 Stream-Bottom Sediment Duplicate Analytical Data

Table Di Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA0972SE	HA0974SE	HA0975SE	HA0976SE
Depth	2 6	15 cm	15 cm	15 cm
Date	11/11/88	11/14/88	11/14/88	11/14/88
Wetals/Anjons/General Chem				
Arsenic	7.17	3.73	3.27	2.48
Cechium	< 0.740	97.0	< 0.740	< 0.740
Chromium	< 6.50	9.93	< 6.50	< 6.5 0
Copper	0.4.7	10.1	6.16	2.4
Cyanide	¥	4	≦	≦
Pead	× 8.40	24.4	× 8.40	07.8 >
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Total Organic Carbon	Y#	¥	¥	ĭ
. Zinc	11.8	45.9	26.3	6.8
Semivolatiles				
1,4-Oxathiane	< 1.74	< 1.74	× 1.7k	× 1.74
1,4-0xathiane (GCHS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00200	0.0222	< 0.00200	< 0.00200
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
2,2-Bis(parachloryphenyl)-1,1-Dichloroethene (DDE)	< 0.00240	< 0.00240	< 0.00240	< 0.00240
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	09.0 >	× 0.600	09.0 >
4-Chlorophenylmethyl Sulfide	07.4 >	07.4 >	07.4 >	07.7 >
4-Chlorophenyimethyl Sulfide (GCMS)	0.300	006.0 >	< 0.900	0.800

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Notes: Values are reported in micrograms per gram.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA0972SE	HA0974SE	HA0975SE	HAD976SE
Depth	85 S	15 GB	15 GB	
Date	11/11/88	11/14/88	11/14/88	11/14/88
Analytes				
Semivolatiles				
4-Chlorochenvimethyl Sulfone	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorocherylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
6-Chlorochervinethyl Sulfoxide	× 4.81	× 4.81	× 4.81	× 4.81
4-Chlorochenvinethvi Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	< 0.00190	0.00391	0.0120	< 0.00190
Aldrin (GCHS)	< 0.300	< 0.300	< 0.300	< 0.300
Atterine	*	¥	¥	¥
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	< 2.04	< 2.04	~ 2.04	~ 2.04
Bicyclo [2,2,1] hepta-2,5-diene	4	≨	¥	ī
Bicyclo (2.2.1) heota-2.5-diene (GCMS)	< 0.360	\$	ž	\$
Chlordene	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordene (60%)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	\$	¥	*	≦
Dicyclopentediene (GCHS)	× 0.640	· 1.00	4 1.00	4 1.00
Dield	0.370	0.0277	0.0264	< 0.00330
Dieldrin (GONS)	< 0.300	< 0.300	< 0.300	< 0.300

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not seet quality control criteria and were reje

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA0972SE	HA0974SE	HA0975SE	HA0976SE
Depth) CM	15 CM	11/14/88	15 CI
Analytes				
Semivolatiles				
Diisopropyl Methylphosphonate	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Diisopropyl Wethylphosphonate (GCMS)	< 1.00	· 1.00	· 1.00	. 1.00
Dimethylmethyl Phosphonate	< 0.0500	< 0.0500	× 0.0500	< 0.0500
Dithiane	< 1.45	< 1.45	< 1.45	< 1.45
Dithiane (GCMS)	007:0 >	007.0 >	004.0 >	007.0 >
Endrin	< 0.00580	< 0.00580	0.00743	< 0.00580
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexachlorocyclopentadiene	< 0.00180	< 0.00180	< 0.00180	< 0.00180
Hexachlorocyclopentadiene (GCMS)	009.0 >	< 0.600	009.0 >	0.600
leadrin	< 0.00110	< 0.00110	< 0.00110	< 0.00110
leodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion	¥N	¥	¥	*
Malathion (GCMS)	• 0.700	< 0.700	< 0.700	< 0.700
Parathion	¥#	¥	¥	1
Parathion (GCMS)	00.00	< 0.900 ×	v 0.900	< 0.900
euodns	\$	\$	ş	\$
Supone (GCMS)	009.0 >	009.0 >	009.0 >	009.0 >

Notes: Values are reported in micrograms per gram.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table Di Streem-Bottom Sediment Investigative Analytical Data

Sample 10	HA0972SE	HA0974SE	NA0975SE	HA0976SE
Deoth	S CB	15 cm	15 cm	15 cm
Date	11/11/88	11/14/88	11/14/88	11/14/68
Analytes	1 3 0 0			
Semivolatiles				
Vapona	NA.	\$	¥	¥
Vapona (GCMS)	× 3.00	< 3.00	< 3.00	× 3.00
Volatiles				
1,1,1-Trichloroethane	< 0.0880	< 0.0880	< 0.0880 ×	< 0.0680 <
1,1,1-Trichloroethane (GCMS)	< 0.430	¥	¥	NA NA
1,1,2-Trichloroethane	< 0.260	< 0.260	< 0.260	< 0.260
1,1,2-Trichloroethane (GCMS)	< 0.390	¥	*	¥
1,1-Dichloroethane	< 0.0740	< 0.0740	< 0.0740	< 0.0740
1,1-Dichloroethane (GCMS)	× 1.70	ş	1	≦
1,1-Dichloroethene	< 0.240	< 0.240	< 0.240	< 0.240
1,2-Dichloroethane	< 0.0850	< 0.0850	< 0.0850 <	< 0.0650
1,2-Dichloroethane (GCMS)	× 0.560	H	¥	≦
1,2-Dichloroethenes (cis & trans)	< 0.260	< 0.260	< 0.260	· 0.260
1,2-Dichloroethenes (cis & trans) (GCMS)	× 1.70	≦	.	ž
	¥.	¥	¥	¥
Benzere (GCHS)	< 0.250	¥	¥	1
Carbon Tetrachloride	< 0.120	< 0.120	< 0.120	< 0.120
Carbon Tetrachloride (GCMS)	< 0.250	¥	¥	¥

Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were reje

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA0972SE	HA0974SE	HA0975SE	HA0976SE
Depth	5 C#	15 cm	15 cm	15 cm
Date	11/11/88	11/14/88	11/14/88	11/14/88
Analytes				
:				
Chlorobenzene	< 0.200	< 0.200	< 0.200	< 0.200
Chlorobenzene (GCM ⁵)	< 1.50	¥	¥#	4
Chloroform	× 0.0680	0990.0 >	0090.0 >	< 0.0680 <
Chloroform (GCMS)	< 0.290	¥3	*	\$
Dibramochloropropane	< 0.00500	< 0.00500	< 0.00500	< 0.00500
Dibromochloropropene (GCMS)	< 2.40	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	< 20.0	¥	¥	≨
Ethyl Benzene	YN	¥	*	4
Ethyl Benzene (GCMS)	< 0.380	≨	≦	≨
M-Xylene	\$	¥	ž	\$
H-Xylene (GCMS)	< 0.740	¥	≨	≦
Methylene Chloride	× 3.73	× 3.70	× 3.7	6.8.v
Hethylene Chloride (GCMS)	< 1.50	¥	¥	≨
Methylisobutyl Ketone	4	≨	≦	ž
Methylisobutyl Ketone (GCMS)	< 0.730	¥	ž	\$
O,P-Xylene	≦	¥	≨	≨

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 - -- Data did not meet quality control criteria and were MA -- Not Analyzed.
 R -- Data did not m rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

0) a)chas	HA0972SE	HA0974SE	NA0975SE	HA0976SE
Depth		. 15 cm	15 cm	15 GB
Date	11/11/88	11/14/88	11/14/88	11/14/68
Analytes				
Volatiles				
O.P-Xylene (GCMS)	06.4 >	≨	≨	≨
Tetrachioroethene	< 0.270	< 0.270	< 0.270	< 0.270
Tetrachioroethene (GCMS)	• 0.250	¥	1	≨
Toluene	¥	¥	¥	¥
Toluene (GCMS)	< 0.250	¥	\$	¥
Trichloroethene	< 0.140	< 0.140	< 0.140	< 0.140
Trichloroethene (GCMS)	< 0.540	¥	≨	\$
vinyi Chloride	á	¥	¥	\$

^{.-} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Semple 10	HA0981SE	HA1152SE	HA1153SE	MA1155SE
Depth	0 0	93	ts cm	5 2
Date	11/18/88	05/11/90	05/11/90	05/14/90
Metals/Anions/General Chem				
Arsenic	< 2.50	6.59	< 2150	< 2.50
Cacinium	< 0.740	4.35	< 1.20	× 1.20
Chronium	15.5	30.0	11.7	61.1
Copper	7.90	62.7	%.9	39.7
Cyanide	¥	œ	œ	~
peel	16.1	131	47.4	117
Mercury	< 0.0500	1.01	< 0.0500	0.243
Total Organic Carbon	¥	13000	1010	7180
Zinc	43.6	717	30.7	545
Semivolatiles				
1,4-0xathiane	< 1.74	< 1.74	× 1.7%	× 1.74
1,4-Oxathiane (GOMS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.0100	< 0.00277	< 0.00277	0.00672
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500 ×	< 0.500	< 0.500	< 0.500
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0120	< 0.00466	< 0.00466	< 0.00466
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	0.600	09.0	< 0.600
6-Chlorophenylmethyl Sulfide	07.7 >	07.7 >	07.7 >	64.49
4-Chlorophenylmethyl Sulfide (GCMS)	× 0.900	< 0.900	< 0.900	< 0.900

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Ol elges.	NA0981SE	HA1152SE	HA1153SE	MA1155SE
Depth	8 5 0	₩5 0%	. 15 cm	28
Date	11/18/88	05/11/90	05/11/90	05/14/90
Analytes				
Semivolatiles				
4-Chlorophenylmethyl Sulfane	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorophenylmethyl Sulfone (GCHS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	× 4.81	· 4.81	< 4.81	19.4 >
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	0.0140	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Atrezine	≦	~	•	~
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	× 2.04	< 2.04	< 2.0k	< 2.04
Bicyclo [2,2,1] hepta-2,5-diene	4	< 1.10	< 1.10	< 1.10
Bicyclo [2,2,1] hepta-2,5-diame (GCMS)	\$	ž	\$	1
Chlordene	< 0.115	< 0.0230	< 0.0230	0.0374
Chlordens (GCHS)	~ 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentediene	\$	< 0.450	< 0.450	< 0.450
Dicyclopentediene (GCHS)	× 1.00	. 1.00	4 1.00	4 1.00
Dieldrin	0.0250	0.0126	< 0.00181	< 0.00161
Dieldrin (GDKS)	< 0.300	< 0.300	< 0.300	< 0.300

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

01 e louis	HA0981SE	HA1152SE	HA1153SE	HA1155SE
Deoth	0 0	80 03	15 cm	8 2
Date	11/18/88	05/11/90	05/11/90	05/14/90
_				
Semivoletiles				
Dijsopropyl Methylphosphonate	\$	\$	48	1
Dijsopropyl Methylphosphonate (GCMS)	× 1.00	· 1.00	. 1.00	. 1.00
Dimethylmethyl Phosphonate	**	\$	48	≨
Dithiere	< 1.45	< 1.45	< 1.45	< 1.45
Dithiama (GCMS)	007.0 >	007.0 >	007:0 >	007.0 >
Endrin	< 0.0290	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexach lorocyclopentadiene	< 0.00900	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	× 0.600	· 0.600	< 0.600	× 0.600
Isodrin	< 0.00550	< 0.00188	< 0.00168	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion	\$	~	~	~
Malathion (GCMS)	< 0.700	. 0.700	6.700	< 0.700
Parathion	\$	~	~	•
Perethion (GOIS)	006.0 >	< 0.900	< 0.900 <	v 0.900
Suppose	\$	•	~	~
Supone (GCHS)	v 0.600	× 0.600	009'0 >	009.0 >

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were MA -- Not Analyzed.
 R -- Data did not m rejected.

Table Di Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	NA0981SE	HA1152SE	HA1153SE	MA1155SE
Depth	5	5	5	5 S
Date	11/18/68	05/11/90	05/11/50	05/14/90
Inalytes				
Semivoletiles				
Vapona	\$	~	~	~
Vapora (GCHS)	< 3.00	< 3.00	· 3.00	× 3.00
Volatiles				
1,1,1-Trichloroethane	< 0.0880	< 0.200	• 0.200	< 0.200
1,1,1-Trichloroethane (GCMS)	¥	\$	¥	¥
1,1,2-Trichloroethane	< 0.260	< 0.330	< 0.330	< 0.330
1,1,2-Trichloroethane (GCMS)	\$	¥	¥	¥
1,1-Dichloroethane	< 0.0740	oo************************************	067.0 >	067.0 >
1,1-Dichloroethane (GCHS)	\$	≨	¥	ş
1,1-Dichloroethene	< 0.240	< 0.270	< 0.270	< 0.270
1,2-Dichloroethene	< 0.0650	< 0.320	< 0.320	< 0.320
1,2-Dichloroethane (GCHS)	¥	¥	¥	4
1,2-Dichloroethenes (cis & trans)	< 0.260	< 0.320	< 0.320	< 0.320
1,2-Dichloroethenes (cis & trans) (GCMS)	¥	. ₹	ž	¥
	< 0.0850	< 0.100	< 0.100	< 0.100
Benzene (GDMS)	¥	≦	≨	≨
Carbon Tetrachloride	< 0.120	< 0.310	< 0.310	< 0.310
Carbon Tetrachloride (GCMS)	K	¥	≦	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Mot Analyzed.
- R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Semple 10	HA0981SE	HA1152SE	NA1153SE	HA1155SE
Depth		8 0 09	15 cm	50 CB
Date	11/18/88	05/11/90	05/11/90	05/14/90
Analytes	•			
Volatiles				
Chlorobenzene	< 0.200	< 0.100	< 0.100	< 0.100
Chlorobenzene (GCHS)	*	*	≨	¥
Chloroform	0990.0 >	< 0.240	< 0.240	< 0.240
Chloroform (GCMS)	\$	¥	4	¥
Dibromochioropropene	0.240	< 0.00500	0.00862	< 0.00500
Dibromochloropropene (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	\$	¥	1	1
Ethyl Benzene	< 0.160	< 0.190	< 0.190	< 0.190
Ethyl Benzene (GCHS)	*	\$	\$	¥
H-Xylene	< 0.260	< 0.230	< 0.230	< 0.230
M-Xylene (GCHS)	¥ I	≨	₹	4
Methylene Chloride	× 3.70	07.4 >	07.7 >	07.7 >
Methylene Chloride (GCHS)	\$	≦	≦	\$
Methylisobutyl Ketone	≦	× 0.640	× 0.640	× 0.640
Methylisobutyl Ketone (GCMS)	\$	\$	1	\$
O,P-Xylene	× 0.390	< 0.780	< 0.780	< 0.780

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per gram.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

OI e la	HA0981SE	HA1152SE	HA1153SE	MA1155SE
Depth	0	8 5 09	ts ca	50 CB
Date	11/18/88	05/11/90	05/11/90	05/14/90
alytes				
latiles .				
0,P-Xytene (GCMS)	ş	¥	≨	≦
Tetrachloroethene	< 0.270	< 0.160	< 0.160	< 0.160
Tetrachloroethene (GCMS)	\$	¥	*	≨
Toluene	< 0.190	< 0.100	< 0.100	< 0.100
Toluene (GCMS)	\$	\$	4	4
Trichloroethene	< 0.140	< 0.250	< 0.250	< 0.250
Trichloroethene (GCMS)	¥.	¥	≨	≨
Vinyl Chloride	≦	× 1.80	< 1.80.	< 1.80

> -- indicates that the target analyte was detected at or

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit. MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Semple 1D Depth	NA1157SE 30 CM	HA1157SE 4 CM	HA1159SE 15 CM	HA1159SE 4 cm
Date Analytes	05/16/90	06/14/90	05/16/90	06/11/90
Metals/Anions/General Chem Araanic	< 2.50	4	3.26	\$
Cachrium	< 1.20	.	4 1.20	3
Chronium	77.8	¥	6.04	¥
Copper	14.4	¥	14.2	¥
Cyanida	œ	≨		ş
Peel	25.2	¥	£.5	\$
Mercury	0.138	¥	0.0661	¥
Total Organic Carbon	4150	¥	2270	¥
Zinc	1.69	\$	123	¥
Semivolatiles				
1,4-Oxathiane	< 1.74	¥	< 1.74	¥
1,4-Oxathiane (GCMS)	< 0.300	¥	< 0.300	¥
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	¥	0.00500	¥
2,2-Bis(perachlorophenyi)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	*	< 0.500	¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	≨	< 0.00466	¥
2,2-Bis(perachlorophamyl)-1,1-Dichloroethene (DDE) (GCMS)	× 0.600	≦	009.0 >	\$
4-Chlorophenylmethyl Sulfide	07.7 >	¥	07.7 >	¥
4-Chloropherylmethyl Sulfide (GCMS)	< 0.900	¥	× 0.900	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table Di Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1157SE	HA1157SE	HA1159SE	HA1159SE
Depth	30 08	4 CB	15 cm	5
Date	05/16/90	06/14/90	05/16/90	06/14/90
Analytes				
Semivolatites	0 0 0 0 0 0			
4-Chlorophenylmethyl Sulfone	< 9.01	¥	< 9.01	¥
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	¥¥	< 0.300	¥
4-Chlorophenylmethyl Sulfoxide	× 4.81	¥	< 4.81	¥
4-Chloropherylmethyl Sulfoxide (GCMS)	< 0.300	¥	< 0.300	¥
Aldrin	< 0.00211	غ	< 0.00211	¥
Aldrin (GCMS)	< 0.300	≦	< 0.300	¥
Atrazine	~	¥	œ	¥
Atrazine (GCMS)	< 0.300	¥	< 0.300	¥
Benzothiazole	× 2.04	¥	< 2.04	≨
Bicyclo [2,2,1] hepta-2,5-diene	< 1.10	4	< 1.10	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	\$	\$	¥	¥
Chlordane	< 0.0230	¥	0.0733	YN Y
Chlordane (GCNS)	< 2.00	¥	< 2.00	¥
Dicyclopentadiene	< 0.450	¥	< 0.450	4
Dicyclopentadiene (GCMS)	· 1.00	≦	. 1.80	ş
Dieldrin	× 0,00181	≦	0.00624	\$
Dieldrin (GCMS)	< 0.300	¥	< 0.300	4

Reported values are accurate to three significant figures.

> -- indicates that the target analyte was detected at or

c -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1157SE	HA1157SE	HA1159SE	HA1159SE
Depth	30 cm	4 cm	15 cm	4 CB
Date	05/16/90	06/11/90	05/16/90	06/11/90
Analytes				
Senivolatiles				
Diisopropyl Methylphosphonate	¥.	YN .	¥	¥
Diisopropyl Methylphosphonate (GCMS)	· 1.00	Y X	. 1.00	¥
Dimethylmethyl Phosphonate	YN .	X	¥	¥
Dithiane	< 1.45	M	< 1.45	¥
Dithiene (GCMS)	< 0.400	YN.	007.0 >	¥
Endrin	< 0.00471	¥	< 0.00471	≨.
Endrin (GCMS)	< 0.500	¥	< 0.500	¥
Hexachlorocyclopentadiene	< 0.00137	MA	< 0.00137	≨
Hexachlorocyclopentadiene (GCMS)	< 0.600	YN	009.0 >	≨
leodrin	< 0.00188	Y.	< 0.00188	≦
leodrin (GCMS)	< 0.300	¥	< 0.300	*
Malathion	œ	M	~	4
Melathion (GCMS)	< 0.700	M	< 0.700	¥
Parathion	Œ	¥	œ	\$
Parathion (GCHS)	× 0.900	\$	× 0.900	ž
Suppose	æ	¥	~	\frac{1}{2}
Suppore (GCMS)	009.0 >	Y.	0.600	\$

rejected.

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table Di Stream-Bottom Sediment Investigative Analytical Data

Semple 10	HA1157SE	HA1157SE	HA1159SE	NA1159SE
Deoth	30 CM	4 cm	15 cm	5
Date	05/16/90	06/1/90	05/16/90	06/14/90
lytes				
ivotati es	5 6 5 8 8 8			
	æ	K	~	¥
apone (GCMS)	× 3.00	¥	< 3.00	A .
atiles				
1,1-Trichloroethane	< 0.200	< 0.200	< 0.200	002.0 ×
,1,1-Trichloroethane (GCMS)	4	YH	S	≨
1,2-Trichloroethane	< 0.330	< 0.330	< 0.330	< 0.330
.1.2-Trichloroethane (GCMS)	\$	¥¥	¥	<u>.</u>
,1-Dichloroethane	× 0.490	< 0.490	< 0.490	06 7 .0 >
1-Dichtoroethane (GCMS)	\$	Ş	ş	\$
1-Dichloroethene	< 0.270	< 0.270	< 0.270	< 0.270
,2-Dichloroethane	< 0.320	< 0.320	< 0.320	< 0.320
.2-Dichloroethane (GCMS)	≦	≨	¥	≨
,2-Dichloroethenes (cis & trans)	< 0.320	< 0.320	< 0.320	< 0.320
.2-Dichloroethenes (cis & trans) (GCMS)	\$	¥	ş	4
	< 0.100	< 0.100	< 0.100 	0.100
enzere (GCMS)	\$	¥#	¥¥	¥
arbon Tetrachloride	< 0.310	< 0.310	< 0.310	< 0.310
arbon Tetrachloride (GCMS)	Y	¥	W.	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1157SE	HA1157SE	HA1159SE	HA1159SE
Depth	30 cm	4 cm	15 cm	4 CB
Date	05/16/90	06/14/90	05/16/90	06/14/90
Volatiles				
Chlorobenzene	< 0.100	< 0.100	< 0.100	< 0.100
Chlorobenzene (GCMS)	**	¥	¥	¥
Chloroform	< 0.240	< 0.240	< 0.240	< 0.240
Chloroform (GCMS)	YN.	YH	¥	¥
Dibromochloropropane	0°00200	4	< 0.00500	¥
Dibromochloropropene (GCMS)	< 0.300	M	< 0.300	\$
Dimethyl Disulfide	< 3.12	YN	< 3.12	¥
Dimethyl Disulfide (GCMS)	Y#	¥#	¥	¥
Ethyl Benzene	< 0.190	< 0.190	< 0.190	< 0.190
Ethyl Benzene (GCMS)	*	4	≦	¥
H-Xylene	< 0.230	< 0.230	< 0.230	< 0.230
M-Xylene (GCMS)	\$	*	\$	¥
Methylene Chloride	07.4 >	07.7 >	07.7 >	07.4 >
Methylene Chloride (GCMS)	***	¥	*	4
Methylisobutyl Ketone	0,970 >	< 0.630	× 0.640	< 0.630
Methylisobutyl Ketone (GCMS)	*	¥	\$	≦
O,P-Xylene	< 0.780	< 0.780	< 0.780	< 0.780

Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D Depth Date Analytes	MA1157SE 30 cm 05/16/90	HA1157SE 4 cm 06/14/90	NA1159SE 15 cm 05/16/90	MA1159SE 4 cm 06/14/90
Volatiles				
0,P-Xylene (GCMS)	¥ X	*	×	\$
Tetrachioroethene	< 0.160	< 0.160	< 0.160	091.0 >
Tetrachioroethene (GCMS)	¥	≨	\$	\$
Toluene	< 0.100	< 0.100	< 0.100	< 0.100
Toluene (GCHS)	¥	\$	≦	¥
Trichloroethene	< 0.250	< 0.250	< 0.250	< 0.250
Trichloroethene (GCHS)	¥	*	\$	≦
Vinyl Chloride	< 1.80	< 1.80	× 1.80	× 1.80

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were reje

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1180SE	HA1181SE	HA1182SE	HA1182SE
Date	05/11/90	06/71/50	05/16/90	06/11/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	< 2.50	< 2.50	*
Cednium	< 1.20	1.73	< 1.20	\$
Chromium	47.5	80.3	26.1	≨
Copper	8.44	53.5	13.3	\$
Cyanide	œ	«	~	¥
Peal	81.9	90.0	32.5	\$
Mercury	0.217	0.305	0.188	≨
Total Organic Carbon	14200	2070	0%4	\$
Zinc	273	283	126	4
Semivolatiles				٠
1,4-0xathiane	¥#	< 1.74	< 1.74	\$
1,4-Oxathiane (GCMS)	< 0.300	< 0.300	< 0.300	\$
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	0.0148	< 0.00277	\$
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	< 0.500	< 0.500	≦
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	0.00901	< 0.00466	≦
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	0.600	009.0 >	\$
6-Chlorophenyimethyl Sulfide	07.7 >	07.7 >	07.7 >	¥
4-Chlorophenylmethyl Sulfide (GCMS)	× 0.900	× 0.900	× 0.900	\$

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA1180SE	HA1181SE	HA1182SE	HA1182SE
Depth	8 5 09	8 5	5	8
Date	05/11/90	05/14/90	05/16/90	06/11/90
Analytes				
Senivolatiles				
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01	\$
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	*
4-Chlorophenylmethyl Sulfoxide	< 4.81	< 4.81	< 4.81	¥
4-Chlorophenylmethyl Sulfoxide (GCHS)	< 0.300	< 0.300	< 0.300	4
Aldrin	< 0.00211	< 0.00211	< 0.00211	1
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	¥
Atrazine	œ	~	~	4
Atrazine (GCHS)	< 0.300	< 0.300	< 0.300	4
Benzothíazole	< 2.0¢	< 2.04	< 2.0¢	4
Bicyclo [2,2,1] hepta-2,5-diene	< 1.10	< 1.10	< 1.10	\$
Bicyclo (2,2,1] hepta-2,5-diene (GCMS)	\$	\$	3	\$
Chlordane	< 0.0230	0.0775	< 0.0230	*
Chlordene (GCMS)	< 2.00	< 2.00	< 2.00	¥
Dicyclopentadiene	< 0.450	< 0.450	< 0.450	≦
Dicyclopentadiene (GCMS)	× 1.00	· • 1.00	· 1.00	≦
Dieldrin	< 0.00181	0.00685	< 0.00181	\$
Dieldrin (GCMS)	< 0.300	< 0.300	< 0.300	≨

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

^{.-} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1180SE	HA1181SE	HA1182SE	MA1182SE
Depth	60 cm	60 cm	60 CB	7
Date	05/11/90	05/14/90	05/16/90	06/11/90
Analytes				
Semivolatiles				
Diisopropyl Methylphosphonate	YN .	¥N .	¥	ş
Diisopropyl Methylphosphonate (GCMS)	· 1.00	· 1.00	4 1.00	≦
Dimethylmethyl Phosphonate	**	¥	¥	¥
Dithiane	< 1.45	< 1.45	< 1.45	¥
Dithiene (GCHS)	007:0 >	007.0 >	007.0 >	£
Endrin	< 0.00471	0.00925	< 0.00471	1
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	¥
Mexach lorocyclopent adiene	< 0.00137	< 0.00137	< 0.00137	\$
Wexachlorocyclopentadiene (GCMS)	< 0.600	009.0 >	009.0 >	\$
leadrin .	< 0.00186	< 0.00188	< 0.00188	¥
leodrin (GCMS)	< 0.300	< 0.300	< 0.300	≦
Helathion	*	~	~	≦
Melathion (GCMS)	< 0.700	· 0.70	< 0.700	≦
Parathion	ď	~	~	≦
Perethion (GCHS)	v 0.900	< 0.900 •	× 0.900	1
suchas	~	~	~	\$
Supone (GCHS)	009°0 >	009.0	× 0.600	1

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per gram.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	NA1180SE	NA1181SE	MA11828E	MA11625E
Depth	8 5 9 5	9	5	4
Date	05/11/90	05/14/90	05/16/90	06/11/90
Analytes				
Senivolatiles				
Vapone	~	€.	•	á
Vapona (GCMS)	< 3.00	< 3.00	< 3.00	¥
Volatiles				
1,1,1-Trichloroethane	< 0.200 <	• 0.200	• 0.200	• 0.200
1,1,1-Trichloroethame (GCMS)	*	¥	¥	¥
1,1,2-Trichloroethane	< 0.330	< 0.330	< 0.330	< 0.330
1,1,2-Trichloroethane (GCMS)	**	≦	¥	¥
1,1-Dichloroethane	× 0.490	0.490	0.490	× 0.490
1,1-Dichloroethere (GCMS)	\$	ş	¥	\$
1,1-Dichloroethene	< 0.270	< 0.270	< 0.270	< 0.270
1,2-Dichloroethene	< 0.320	< 0.320	< 0.320	< 0.320
1,2-Dichloroethame (GCMS)	*	¥	¥	≦
1,2-Dichloroethenes (cis & trams)	< 0.320	< 0.320	< 0.320	< 0.320
1,2-Dichloroetheres (cis & trans) (GCHS)	\$	\$	¥	1
	0.100	• 0.100	. 0.100	0.100
Benzene (GCMS)	\$	¥	≨	ī
Carbon Tetrachloride	< 0.310	< 0.310	< 0.310	< 0.310
Carbon Tetrachloride (GCMS)	YH.	¥	¥	1

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 - MA -- Not Analyzed.
 R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA1180SE	HA1181SE	NA1182SE	NA1182SE
Depth	80 Cm	99	8	8
Date	05/11/90	05/14/90	05/16/90	06/14/90
Analytes				
Volatiles	•			
Chiorobenzene	× 0.100	< 0.100	< 0.100	< 0.100
Chiorobenzene (GCMS)	≦	4	¥	¥
Chloroform	< 0.240	< 0.240	< 0.240	< 0.240
Chloroform (GCMS)	\$	4	M	*
Dibromochloropropene	< 0.00500	< 0.00500	< 0.00500	1
Dibromochioropropene (GCMS)	< 0.300	< 0.300	< 0.300	≨
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	4
Dimethyl Disulfide (GCHS)	\$	*	¥	¥
Ethyl Benzene	< 0.190	< 0.190	< 0.190	< 0.190
Ethyl Benzene (GCMS)	\$	1	\$	£
M-Xyt ane	< 0.230	< 0.230	< 0.230	< 0.230
M-Xylene (GCMS)	\$	≦	\$	¥
Nethylene Chloride	07.7 >	07.7 >	o 4.40	07.7 >
Methylene Chioride (GCHS)	\$	4	4	¥
Methylisobutyl Ketone	× 0.640	× 0.640	· 0.640	× 0.630
Methylisobutyl Ketone (GCMS)	\$	\$	≦	\$
0,P-Xylene	× 0.780	< 0.780	< 0.780	60.780

Notes: Values are reported in micrograms per gram.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA1180SE	HA1181SE	HA1182SE	NA1182SE
Depth	5 93	5	5	5 7
Date	05/11/50	05/14/90	05/16/90	06/14/90
Analytes				
Volatiles				
O,P-Xylene (GCHS)	¥¥	¥	\$	\$
Tetrachloroethene	< 0.160	< 0.160	< 0.160	< 0.160
Tetrachloroethene (GCMS)	¥	¥	±	\$
Toluene	< 0.100	< 0.100	< 0.100	< 0.100
Toluene (GCHS)	\$	≨	1	4
Trichloroethene	< 0.250	< 0.250	· 0.250	< 0.250
Trichloroethene (GCMS)	ş	\$	\$	¥
Vinyl Chloride.	< 1.80	× 1.80	. 1.80	4 1.80

Reported values are accurate to three significant figures.

> -- indicates that the target analyte was detected at or

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

MA -- Not Analyzed. R -- Date did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1183SE	HA1184SE	HA1187SE
Depth	#5 09	120 cm	244 CM
Date	05/14/90	05/14/90	05/10/90
Analytes			
Netals/Anions/General Chem			
Arsenic .	< 2.50	< 2.50	< 2.50
Cadaium	< 1.20	3.33	. 1.20
Chromitum	9.89	29.7	62.5
Copper	41.2	51.4	54.1
Eyanide	Œ		~
peel	24.1	901	9.06
Mercury	0.297	0.416	0.1%
Total Organic Carbon	2800	2070	16600
Zinc	267	337	242
Semivolatiles			
1,4-0xathiane	< 1.74	< 1.74	× 1.74
1,4-Oxathiane (GCMS)	< 0.300	< 0.300	< 0.300
2,2-Bis(perschlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	0.0215	0.0118
2,2-8is(perschlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	< 0.500	< 0.500
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	0.00679	0.00669
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	0.600	009.0 >	0.600
4-Chlorophenylmethyl Sulfide	07.7 >	07.7 >	07.4 >
4-Chlorophenylmethyl Sulfide (GCMS)	00.00	00.00	006"0 >

- Indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 1D	HA1183SE	HA1184SE	HA1187SE
Depth ·	90 CH	120 cm	244 cm
Date	05/14/90	05/14/90	05/10/90
Analytes			
Sesivoletiles	ı		
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01
4-Chlorophenylmethyl Sulfane (GCMS)	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	< 4.81	< 4.81	< 4.81
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300
Aldrin	< 0.00211	0.0102	< 0.00211
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300
Atrazine	æ		«
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300
Benzothiezole	< 2.04	< 2.04	~ 2.04
Bicyclo [2,2,1] hepta-2,5-diene	< 1.10	< 1.10	× 1.10
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	\$	\$	≦.
Chlordane	< 0.0230	0.0376	0.0645
Chlordene (GCHS)	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	< 0.450	< 0.450	< 0.450
Dicyclopentadiane (GCMS)	4 1.00	4 1.8	× 1.00
Dietain	< 0.00181	0.00515	0.0102
Dieldrin (GCHS)	< 0.300	< 0.300	< 0.300

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were reje

Sample 10	HA1183SE	HA1184SE	HA1187SE
Depth	8 5 09	120 cm	244 CB
Date	05/14/90	05/14/90	05/10/90
Analytes			
Semivolatiles			
Diisopropyl Methylphosphonate	¥.	¥	48
Diisopropyl Methylphosphonate (GCMS)	< 1.00	. 1.00	. 1.00
Dimethylmethyl Phosphonate	¥	¥	*
Dithiane	< 1.45	< 1.45	< 1.45
Dithiane (GCMS)	007.0 >	007.0 >	< 0.400
Endrin	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	< 0.500	< 0.500
Nexachlorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137
Mexachlorocyclopentadiene (GCMS)	009.0 ×	009.0 >	009.0 >
leodrin	< 0.00188	< 0.00188	< 0.00188
leodrin (GCMS)	< 0.300	< 0.300	< 0.300
Malathion	~	•	•
Malathion (GOMS)	< 0.700	< 0.700	< 0.700
Parathion	~	~	•
Parathion (GCHS)	0.900	< 0.900	× 0.900
euodns	æ	•	æ
Supone (GCMS)	009.0 >	009.0 >	009.0 >

Indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1183SE	HA1184SE	HA1187SE
Depth	5 9	120 cm	244 cm
Date	05/14/90	05/14/90	05/10/90
w			
Semivolatiles			
Vapons	œ	~	~
Vapora (GCMS)	< 3.00	< 3.00	< 3.00
Volatiles			
1,1,1-Trichlorgethane	< 0.200	< 0.200	< 0.200
1,1,1-Trichloroethane (GCMS)	¥	¥	¥
1,1,2-Trichloroethane	< 0.330	< 0.330	< 0.330
1,1,2-Trichloroethene (GCMS)	¥	¥	≨
1,1-Dichloroethane	o67°0 >	067.0 >	< 0.490
1,1-Dichloroethane (GCMS)	¥	¥	¥
1,1-Dichloroethene	< 0.270	< 0.270	< 0.270
1,2-Dichloroethane	< 0.320	< 0.320	< 0.320
1,2-Dichloroethane (GCMS)	MA.	¥	¥
1,2-Dichloroethenes (cis & trans)	< 0.320	< 0.320	< 0.320
1,2-Dichloroethenes (cis & trans) (GCMS)	\$	¥	¥
Benzene	< 0.100	< 0.100 <	6.100
Benzene (GCMS)	¥	4	¥
Carbon Tetrachloride	< 0.310	< 0.310	< 0.310
Carbon Tetrachloride (GCMS)	¥	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample 10	HA1183SE	HA1184SE	HA1187SE
Depth	mo 09	120 cm	244 CM
Date	05/14/90	05/14/90	05/10/90
Volatiles			
Chlorobenzene	< 0.100	< 0.100	< 0.100
Chlorobenzene (GCMS)	¥	YN Y	4
Chloroform	< 0.240	< 0.240	< 0.240
Chloroform (GCMS)	N	Y 8	¥
Dibromochloropropane	< 0.00500	< 0.00500	< 0.00500
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	¥	YN Y	¥
Ethyl Benzene	< 0.190	< 0.190	< 0.190
Ethyl Benzene (GCMS)		YN Y	¥
M-Xylene	< 0.230	< 0.230	< 0.230
M-Xylene (GCMS)	¥	4	≨
Nethylene Chloride	07.4 >	07.7 >	07.4 >
Methylene Chloride (GCMS)	¥.	¥#	¥
Methylisobutyl Ketone	< 0.640	× 0.640	× 0.640
Methylisobutyl Ketone (GCMS)	ş	¥	≦
O,P-Xylene	< 0.780	< 0.780	< 0.780

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit.

 NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table D1 Stream-Bottom Sediment Investigative Analytical Data

Sample ID Depth Date Analytes	MA1183SE 60 cm 05/14/90	120 cm 120 cm 05/14/90	HA1187SE 244 cm 05/10/90	
Volatiles O,P-Xylene (GCMS) Tetrachloroethene Toluene Toluene (GCMS)	NA N	A 0.160	NA 0.160 × 0.100 × NA	
Trichloroethene Trichloroethene (GCMS)	< 0.250 NA < 1.80	< 0.250 NA NA 1.80	< 0.250 NA NA 1.80	

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table D2 Stream-Bottom Sediment GC/MS Analytical Data

Sample 10	HA1194SE	HA1195SE	HA1195SE
Depth	15 cm	30 CB	4 68
Date	05/11/90	05/16/90	06/14/90
	GC/MS of	GC/MS of	GC/MS of
	HA1153SE	HA1157SE	HA1157SE
Analytes			
Serivolatiles			
1,4-Oxathiane (GONS)	< 0.300	< 0.300	4
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	< 0.500	< 0.500	¥
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	009.0 >	4
4-Chlorophenylmethyl Sulfide (GCMS)	< 0.900	< 0.900	¥
4-Chloropherylmethyl Sulfore (GCMS)	< 0.300	< 0.300	¥
4-Chlorophenyimethyl Sulfoxide (GCMS)	< 0.300	< 0.300	\$
Aldrin (GCMS)	< 0.300	< 0.300	¥
Atrazine (GCMS)	< 0.300	< 0.300	≦
Chlordene (GCMS)	< 2.00	< 2.00	≨
Dicyclopentadiene (GCHS)	• 1.00	• 1.00	\$
Dieldrin (GCMS)	< 0.300	< 0.300	≨
Diisopropyl Methylphosphonate (GCMS)	× 1.00	< 1.00	¥
Dithiane (GCMS)	007.0 ×	< 0.400	¥
Endrin (GCMS)	< 0.500	< 0.500	¥
Mexachlorocyclopentadiene (GCMS)	009.0 >	009.0 >	1
Isodrin (GCMS)	< 0.300	< 0.300	¥
Melathion (GCMS)	< 0.700	00.00	¥

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.

Table D2 Stream-Bottom Sediment GC/MS Analytical Data

Sample 10	HA1194SE	HA1195SE	HA1195SE
Depth	15 cm	30 cm	7
Date	05/11/90	05/16/90	06/11/90
	GC/MS of	GC/MS of	GC/MS of
	HA1153SE	HA1157SE	HA1157SE
Analytes			
Semivolatiles			
Parathion (GCMS)	< 0.900	< 0.900	4
Supona (GCMS)	< 0.600	0.600	¥
Vapona (GCMS)	< 3.00	< 3.00	YN
Volatiles			
1,1,1-Trichloroethane	< 0.200	< 0.200	< 0.200
1,1,2-Trichloroethane	< 0.330	< 0.330	< 0.330
1,1-Dichloroethane	< 0.490	× 0.490	067.0 >
1,1-Dichloroethene	< 0.270	< 0.270	< 0.270
1,2-Dichloroethane	< 0.320	< 0.320	< 0.320
1,2-Dichloroethenes (cis & trans)	< 0.320	< 0.320	< 0.320
Benzene	< 0.100	< 0.100	< 0.100
Carbon Tetrachloride	< 0.310	< 0.310	< 0.310
Chlorobenzere	< 0.100	< 0.100	< 0.100
Chloroform	< 0.240	< 0.240	< 0.240.
Dibromochloropropane (GCMS)	< 0.300	< 0.300	¥
Ethyl Benzene	< 0.190	< 0.190	< 0.190
M-Xylene	< 0.230	< 0.230	< 0.230
Methylene Chloride	07.7 >	07.7 >	07.7 >

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

Not /zed.

Table D2 Stream-Bottom Sediment GC/MS Analytical Data

Sample 10	HA1194SE	HA1195SE	HA1195SE
Depth	15 cm	30 6	8 5 7
Date	05/11/90	05/16/90	06/14/90
	GC/MS of	GC/MS of	GC/MS of
	HA1153SE	HA1157SE	HA1157SE
Analytes			
Volatiles			
Methylisobutyl Ketone	< 0.630	< 0.630	< 0.630
0,P-Xylene	< 0.780	< 0.780	< 0.780
Tetrachloroethene	< 0.160	< 0.160	< 0.160
Toluene	< 0.100	< 0.100	× 0.100
Trichloroethene	< 0.250	< 0.250	< 0.250
Vinyl Chloride	4 1.80	× 1.80	· 1.80

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Anelyzed.

Table D3 Stream-Bottom Sediment
Duplicate Analytical Data

Semple 10	HA1192SE	HA1192SE	HA1193SE
Depth	8 5 09	4 CB	244 cm
Date	05/16/90	06/14/90	05/10/90
	Dup of	Dup of	po dng
	HA1187SE	KA1182SE	HA1187SE
Metals/Anions/General Chem			
Arsenic	< 2.50	¥	< 2.50
Cadalum	< 1.20	¥	1.97
Chromium	30.1	¥	71.2
Copper	16.9	¥	63.5
Cyanide	~	¥	æ
. pee1	40.9	¥	100
Mercury	0.120	¥	0.240
Total Organic Carbon	0199	¥	16300
zinc	115	¥	280
Semivolatiles			
1,4-Oxathiene	< 1.74	¥	× 1.7k
1,4-0xathiane (GCMS)	< 0.300	¥	< 0.300
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	£	0.00515
2,2-Bis(perachlorophemyl)-1,1,1-Trichloroethame (DDI) (GCMS)	< 0.500	≨	< 0.500
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	ī	× 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	× 0.600	4	0.600

- indicates that the target analyte was not detected at
 or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Hot Anelyzed.
 - Dup -- Duplicate
- R -- Data did not meet quality control criteria and were rejected.

Sample 10	HA1192SE	HA1192SE	HA1193SE
Depth	8 5 09	#5 7	244 CM
Date	05/16/90	06/14/90	05/10/90
	po dng	Dup of	bup of
	HA1187SE	HA1182SE	HA1187SE
inalytes			
enivolatiles			
4-Chlorophenyimethyl Sulfide	07.7 >	¥	07.7 >
4-Chlorophenylmethyl Sulfide (GCHS)	0.900	ş	< 0.900
4-Chlorophenylmethyl Sulfane	< 9.01	48	< 9.01
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	4	< 0.300
4-Chlorophenylmethyl Sulfaxide	· 4.81	¥	× 4.81
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	≦	< 0.300
Aldrin	< 0.00211	1	< 0.00211
Aldrin (GCMS)	< 0.300	≨	< 0.300
Atrazine	~	4	~
Senzothiezole	< 2.04	¥	< 2.04
Bicyclo [2,2,1] hepta-2,5-diene	< 1.10	£	4 1.10
Chlordene	< 0.0230	≦	< 0.0230
Chlordane (GCMS)	< 2.00	1	4 2.00
Dicyclopentadiene	< 0.450	≦	× 0.450
Dicyclopentadiane (GCMS)	4 1.00	≦	4 1.00

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed.
- -- Data did not meet quality control criteria and were Dup -- Duplicate R -- Data did m relected.

Sample 10	HA1192SE	HA1192SE	HA1193SE
Depth	#5 9 9	#5 4	244 CM
Date	05/16/90	06/14/90	05/10/90
	Dup of	Dup of	Dup of
	HA1187SE	HA1182SE	HA1187SE
Analytes			
Dieldrin	0.00501	\$	0.00495
Dieldrin (GCMS)	< 0.300	¥	< 0.300
Diisopropyl Methylphosphonate (GCMS)	.1.00	¥	.1.8
Dithiane	< 1.45	¥	< 1.45
Dithiane (GCMS)	007.0 >	≦	< 0.400
Endrin	< 0.00471	4	0.00797
Endrin (GCMS)	< 0.500	¥	< 0.500
Nexach lorocyclopentadiene	0.0528	¥	< 0.00137
Nexachlorocyclopentadiene (GCMS)	0.600	≨	× 0.600
Isodrin	< 0.00188	≦	< 0.00188
Isodrin (GCHS)	< 0.300	4	× 0.300
Relathion		≦	ď
Perethian	~	≦	*
enochs	~	¥	•
Vapona	~	¥	~

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per gram.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Amelyzed.

-- Data did not seet quality control criteria and were Dup -- Duplicate R -- Data did no rejected.

Sample 10	HA1192SE	HA1192SE	HA1193SE
Depth	99	#5 7	244 CB
Date	05/16/90	06/14/90	05/10/90
	Dup of	Dup of	po dng
	HA1187SE	HA11825E	HA1187SE
Analytes			
Volatiles			
1,1,1-Trichloroethane	< 0.200	< 0.200	< 0.200
1,1,2-Trichtoroethane	< 0.330	< 0.330	< 0.330
1,1-Dichloroethane	< 0.490	< 0.490	< 0.490
1,1-Dichloroethene	< 0.270	< 0.270	< 0.270
1,2-Dichloroethane	< 0.320	< 0.320	< 0.320
1,2-Dichloroethenes (cis & trans)	< 0.320	< 0.320	< 0.320
Benzene	< 0.100	< 0.100	0.100
Carbon Tetrachloride	< 0.310	< 0.310	< 0.310
Chlorobenzene	< 0.100	< 0.100	< 0.100
Chloroform	< 0.240	< 0.240	< 0.240
Dibramochloropropene	< 0.00500	≦	0.0190
Dibromochioropropene (GCMS)	< 0.300	\$	< 0.300
Dimethyl Disulfide	< 3.12	≦	< 3.12
Ethyl Benzene	< 0.190	< 0.190	· 0.190
M-Xylene	< 0.230	< 0.230	< 0.230 <

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed.
 - Dup -- Duplicate
- R -- Date did not meet quality control criteria and were rejected.

Table D3 Stream-Bottom Sediment Duplicate Analytical Data

Sample 1D	HA1192SE	HA1192SE	NA1193SE
Depth	8 0 09	# C#	244 cm
Date	05/16/90	06/14/90	05/10/90
	po dng	Dup of	Dup of
	HA1187SE	NA1182SE	NA1187SE
Analytes			
Volatiles			
Methylene Chloride	07.7 >	07.4 >	07.4 >
Methyl isobutyl Ketone	0,640	< 0.630	× 0.640
O,P-Kylene	< 0.780	< 0.780	< 0.780
Tetrachloroether	< 0.160	< 0.160	< 0.160
Toluene	< 0.100	< 0.100	< 0.100
Trichloroethene	0.363	0.363	< 0.250
Vinyl Chloride	. 1.80	. 1.80	< 1.80

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> .. indicates that the target analyte was detected at or Approx the Maximum Reporting Limit.

NA -- Nec Analyzed.

-- Data did not meet quality control criteria and were Dup -- Duplicate
R -- Date did m rejected.

Appendix E SURFICIAL AND SUBSURFACE SOIL ANALYTICAL DATA

LIST OF TABLES

Table No.

El	Surficial and Subsurface Soil Investigative Analytical Data
E2	Surficial and Subsurface Soil GC/MS Analytical Data
E3	Surficial and Subsurface Soil Duplicate Analytical Data
E4	Surficial and Subsurface Soil Background Analytical Data

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA098550	HA09855045	HA098650	HA0987SO	
Depth	15 cm	137 cm	15 cm	15 cm	
Date	02/23/89	02/23/89	02/23/89	02/23/89	
natytes					
etals/Anions/General Chem					
Arsenic	< 2.50	< 2.50	< 2.50	< 2.50	
Cedhiun	42	¥	¥	¥	
Calcium	42	¥	¥	¥	
Chromium	4 %	¥N	¥	¥	
Соррег	4	¥	¥	¥	
Iron	KA	¥	¥	\$	
Lead	Y2	YN	¥	¥	
Magnesium	X	YN.	¥	¥	
Manganese	Y N	YN	¥	¥	
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Potassiun	¥	¥3	¥	¥	
Sodium	42	VN.	¥	¥	
Zinc	¥	4	Y _H	¥.	
emivolatiles					
1,4-0xathiane	< 1.74	< 1.74	< 1.74	< 1.74	
1,4-Oxathiane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300	
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
	< 0.500	< 0.500	< 0.500	< 0.500	

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA0985S0	HA0985SO45	MA0986S0	HA0987S0
Depth	15 cm	137 cm	15 cm	15 cm
Date	02/23/89	02/23/89	02/23/89	02/23/89
Analytes				
Semivotatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00240	< 0.00240	< 0.00240	< 0.00240
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	009.0 >	009.0 >	0.600
4-Chlorophenylmethyl Sulfide	07.7 >	07.7 >	07.7 >	07.7 >
4-Chlorophenylmethyl Sulfide (GCMS)	< 0.900	< 0.900	· 0.900	· 0.900
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorophenyimethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	œ	œ	œ	œ
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	< 0.00190	< 0.00190	< 0.00190	< 0.00190
Aldrin (GCNS)	< 0.300	< 0.300	< 0.300	< 0.300
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	< 2.04	< 2.0¢	, a.04	~ 2.04
Bicyclo [2,2,1] hepta-2,5-diene	4 2	œ	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥N	< 0.360	¥	¥
Chlordarie	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	4	œ	M	¥

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- \mbox{Not} Analyzed. \mbox{R} -- \mbox{Data} did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D Depth Date Analytes	HA0985SO 15 cm 02/23/89	на0985 s o 45 137 с m 02/23/89	нл0986s0 15 см 02/23/89	на0987so 15 сm 02/23/89
Semivolatiles Dicyclopentadiene (GCMS) Dieldrin	< 1.00 0.00704	< 1.00 < 0.00330	< 1.00 < 0.00330	< 1.00 < 0.00330
Dieldrin (GCMS) Diisopropyl Methylphosphonate (GCMS) Dithiane	< 0.300 < 1.00 < 1.45	< 0.300 < 1.00 < 1.45	< 0.300 < 1.00 < 1.45	< 0.300 < 1.00 < 1.45
Dithiane (GCMS) Endrin Endrin (GCMS)	< 0.400 < 0.00580 < 0.500	< 0.400 < 0.00580 < 0.500	< 0.400 < 0.00580 < 0.500	< 0.400 < 0.00580 < 0.500
Nexachlorocyclypentadiene Hexachlorocyclopentadiene (GCMS)	< 0.00180 < 0.600	< 0.00180 < 0.600	< 0.00180 < 0.600	< 0.00180 < 0.600 <
Isodrin Isodrin (GCMS) Malathion (GCMS)	< 0.00110 < 0.300 < 0.700	< 0.00110 < 0.300 < 0.700 < 0.700	< 0.00110 < 0.300 < 0.700	0.001100.3000.700
Supona (GCMS) Vapona (GCMS)	0.6003.00	0.6003.00	< 0.600	× 0.600 × 3.00
Volatiles 1,1,1-Trichloroethane	¥	0.0880	¥	₹

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

⁻ indicates that the target analyte was not detiled at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA0985S0	HA09855045	HA0986SO	MAD987SD
Deoth	15 cm	137 cm	15 cm	15 cm
Date	02/23/89	02/23/89	02/23/89	02/23/89
Analytes			-	
Volatiles				
1.1.1-Trichloroethane (GCMS)	X.	< 0.430	4	¥3
1.1.2-Trichloroethane	¥N	< 0.260	¥.	¥.
1.1.2-Trichloroethane (GCMS)	K	< 0.390	¥	¥
1.1-Dichloroethane	¥	0,0740	4	¥
1,1-Dichloroethane (GCMS)	¥8	< 1.70	4	¥
1,1-Dichtoroethene	¥	< 0.240	¥	4
1,2-Dichloroethane	YN Y	< 0.0850	¥	¥
1,2-Dichloroethane (GCMS)	¥	< 0.560	≨	¥
1,2-Dichloroethenes (cis & trans)	¥.	< 0.260	¥	¥
1,2-Dichloroethenes (cis & trans) (GCMS)	4	< 1.70	¥	¥
Benzene	¥	< 0.0850	¥	W.
Benzene (GCMS)	VN VN	< 0.250	¥	¥
Carbon Tetrachloride	4	< 0.120	¥	¥
Carbon Tetrachloride (GCMS)	4	< 0.250	Y _R	¥¥
Chlorobenzene	¥	< 0.200	¥.	¥.
Chlorobenzene (GCMS)	\$	< 1.50	¥.	¥
Chloroform	4	< 0.0680	¥	YN.

- ... indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R .. Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA098550	HA0985SO45	HA0986S0	HA0987S0
Denth	15 cm	137 cm	15 cm	15 cm
Date	02/23/89	02/23/89	02/23/89	02/23/89
Analytes			•	
Volatiles				
Chloroform (GCMS)	YN	< 0.290	¥N	¥
Dibromochloropropane	œ	œ	œ	~
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	42	< 20.0	4	¥#
Ethyl Benzene	¥	< 0.160	¥	¥
Ethyl Benzene (GCMS)	Y.	< 0.380	4	NA
M-Xylene	¥	< 0.260	4	¥N
M-Xylene (GCMS)	¥	< 0.740	¥	¥.
Methylene Chloride	YN	< 3.70	¥	¥.
Methylene Chloride (GCMS)	Y.	< 1.50	4	YH.
Methylisobutyl Ketone	¥	œ	¥	¥
Methylisobutyl Ketone (GCMS)	Y.	< 0.730	¥	¥
O,P-Xylene	¥	< 0.390	¥	¥8
O,P-Xylene (GCMS)	4	٠ 4.90	¥	¥
Tetrachloroethene	4	< 0.270	¥	4
Tetrachloroethene (GCMS)	NA NA	< 0.250	YN.	¥

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10 Depth Date Analytes	HA0985SO 15 cm 02/23/89	ндо9855045 137 ст 02/23/89	MA0986SO 15 cm 02/23/89	HA0987SO 15 cm 02/23/89
Volatiles				
Toluene	4	< 0.190	¥	W
Toluene (GCMS)	¥	< 0.250	N	42
Trichioroethene	≨	< 0.140	Ş	¥
Trichloroethene (GCMS)	Y.	< 0.540	4	¥

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	NA0987S050	HAC98850	HA098948	HA09904B
Depth	152 cm	15 cm	3 CM	3 CB
Date	02/23/89	02/23/89	02/24/89	02/24/89
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	3.59	< 2.50	< 2.50
Cadmium	¥	¥	≨	MA
Calcium	4	4 2	¥	KA
Chromium	4	¥	≨	¥¥
Соррег	¥.	¥N	4	¥
- F	¥	W	¥	¥
Lead	4	¥2	≨	¥X
Magnesium	¥	¥8	¥	¥
Manganese	K	¥.	≨ .	NA NA
Mercury	< 0.0500	< 0.0500	< 0.0500	0.127
Potassium	¥.	4	¥	4
Sodium	V.	₹	¥	4
Zinc	¥	¥	4	¥
Semivolatiles				
1,4-Oxathiane	< 1.74	< 1.74	< 1.74	< 1.74
1,4-0xathiane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.00200	< 0.00200	0.0535	0.230
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DD?) (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D Depth Date Analytes	HAD987SO50 152 cm 02/23/89	HA0988SO 15 cm 02/23/89	HA0989UB 3 cm 02/24/89	HA0990UB 3 cm 02/24/89
Semivolatiles 2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) 2 2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00240 < 0.600	< 0.00240 < 0.600	0.0363	0.0730
	< 4.40	07.7 >	07.7 >	07.7 >
4-Chlorophenylmethyl Sulfide (GCMS)	0.900	0.900	< 0.900	· 0.900
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	œ	~	æ	œ
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	< 0.00190	< 0.00190	0.0164	0.0103
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	< 2.04	< 2.04	< 2.04	< 2.04
Bicyclo [2,2,1] hepta-2,5-diene	œ	NA NA	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	< 0.360	Y.	¥	¥
Chlordane	< 0.0230	< 0.0230	< 0.0230	0.151
Chlordane (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	œ	¥8	¥	¥

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
- above the Maximum Reporting Limit.

rejrita.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil investigative Analytical Data

() e james	HA0987SO50	HA0988SO	NA098948	HA0990MB
. Death	152 cm	15 cm	3 CB	€ 5
Date C	02/23/89	02/23/89	02/24/89	05/54/89
Analytes				
Semivolatiles		·		
Dicyclopentadiene (GCMS)	. 1.00	• 1.00	. 1.00	. 1.00
Dietdrin	< 0.00330	< 0.00330	0.130	0.120
Dieldrin (GDMS)	< 0.300	< 0.300	< 0.300	< 0.300
Discorport Methylphosphonate (GCMS)	. 1.00	.1.00	. 1.00	. 1.00
Dithiane	< 1.45	< 1.45	< 1.45	< 1.45
Dithians	007:0 >	007:0 >	007:0 >	00**0 >
Forming	< 0.00580	< 0.00580	< 0.0290	0.0152
Endein (GDRS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexach occord ocentadiene	< 0.00180	0.00180	< 0.00180	< 0.00180
Hexachlorocyclopentadiene (GCMS)	009.0 >	009.0 >	009.0 >	009.0 >
leadrin	< 0.00110	< 0.00110	0.00110	< 0.00110
Isodrin (SCBS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion (GCMS)	× 0.700	< 0.700	< 0.700	< 0.700
Parathion (GCMS)	00.00	00.00	00.00	006:0 >
Supona (GCMS)	009.0 >	009.0 >	< 0.600	009.0 >
Vapona (GCMS)	< 3.00	< 3.00	< 3.00	< 3.00
Volatiles 1,1,1-Trichloroethane	< 0.0880	£	¥	4

- ... indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA0987S050	HA0988S0	HA098948	HA0990WB
Depth	152 cm	15 cm	8 5 29	8
Date	02/23/89	02/23/89	02/57/89	02/24/89
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	< 0.430	4	*	¥
1,1,2-Trichloroethane	< 0.260	¥	4	≦
1,1,2-Trichloroethane (GCMS)	< 0.390	¥	₹	¥
1.1-Dichloroethane	< 0.0740	¥	≨	¥
1,1-Dichloroethane (GCMS)	< 1.70	¥	¥	¥
1,1-Dichloroethene	< 0.240	¥	. As	¥
1,2-Dichloroethane	< 0.0850	¥	¥	¥
1,2-Dichloroethane (GCMS)	< 0.560	≨	4	¥
1,2-Dichloroethenes (cis & trans)	< 0.260	¥	¥	¥I
1,2-Dichloroethenes (cis & trans) (GCMS)	< 1.70	¥	¥N	≦
Benzene	< 0.0850	4	4	¥
Benzene (GCMS)	< 0.250	¥	¥	¥
Carbon Tetrachloride	< 0.120	¥	¥	ş
Carbon Tetrachloride (GCMS)	< 0.250	M	ş	¥
Chlorobenzene	< 0.200	¥	¥	¥
Chlorobenzene (GCMS)	< 1.50	≨	¥	¥
Chloroform	0.0680	¥	¥	¥.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA0987S050	HA0988S0	HA0989UB	HA0990UB
Depth	152 CM	2 6	5	2
Date	02/23/89	02/23/89	02/54/89	02/54/89
Analytes		•		
Volatites	4 5 1	•		
Chloroform (GCMS)	< 0.290	¥	¥ N	¥
Dibromochloropropane	œ	œ	æ	~
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	< 20.0	4	4	¥
Ethyl Benzene	< 0.160	¥	\$	\$
Ethyl Benzene (GCMS)	< 0.380	¥.	¥	≦
M-Xylene	< 0.260	¥	¥8	¥
M-Xylene (GCMS)	< 0.740	¥N	ş	¥
Methylene Chloride	< 3.70	¥	Y#	4
Methylene Chloride (GCMS)	< 1.50	4	¥	¥.
Methylisobutyl Ketone	œ	MA	≨	¥
Methylisobutyl Ketone (GCMS)	< 0.730	¥	₹	M
O, P-Xylene	< 0.390	Y.	≨	¥
O,P-Xylene (GCMS)	× 4.90	¥.	4	¥.
Tetrachloroethene	< 0.270	K	¥	¥
Tetrachloroethene (GCMS)	< 0.250	¥#	¥	¥

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10 Depth	HA0987SO50 152 cm 02/23/89 .	HA0988SO 15 cm 02/23/89	3 cm 3 cm 02/24/89	ило 990мв 3 с м 02/24/89
Analytes				
Volatiles Toluene	< 0.190	ş	*	¥
Toluene (GCMS)	< 0.250	¥	*	¥
Trichtoroethene	< 0.140	4	¥¥	M
Trichloroethene (GCMS)	< 0.540	4	¥	Ş

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample ID	HA0991WB	HA099248	HA09934B	HA0994UB	
Dete	02/24/89	02/24/89	05/57/89	05/24/89	
alytes					
tals/Anions/General Chem					
Arsenic	< 2.50	< 2.50	2.89	< 2.50	
Cochium	YN Y	NA NA	≨	¥	
Calcium	¥	W.	¥	YN YN	
Chromitan	¥	4	¥	KA KA	
Copper	¥	YN	¥	X	
ev 1	¥	¥	¥	\$	
is a	×	4	¥	×	
	*	4	A	4	
e agracia	¥2	ş	¥	K	
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Potessium	ş	¥	¥	¥	
Sodius	\$	¥	M	¥	
Zinc	¥	¥	YN	¥	
mivolatiles	, .	ž.	7.	7 1 7	
1,4-Oxarniane	**:- v	V 1.17	× 0.300	< 0.300	
1,4-0xatiliane (utns) 2 2-8is(perachlorochenvl)-1,1-1-Trichloroethane (DDI)	0.0370	0.0118	0.0229	0.0175	
_	< 0.500	< 0.500	< 0.500	< 0.500	

- .- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D Depth	HA099148 3 cm	NA0992WB 3 cm	HA0993WB 3 CM	HA0994UB 3 CM
Date Analytes	02/24/89	02/24/89	02/24/89	02/24/89
Semivolatiles				•
2,2-Bis(parachtorophenyt)-1,1-Dichtoroethene (DDE)	0.0198	0.00416	0.0110	< 0.00240
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	× 0.600	009.0 >	009.0 >
4-Chlorophenylmethyl Sulfide	07.4 >	07.7 >	07.7 >	07.4 >
4-Chlorophenylmethyl Sulfide (GCMS)	v 0.900	< 0.900	× 0.900	< 0.900
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	œ	œ	æ	œ
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	0.00727	0.0143	0.00754	0.0337
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	< 2.04	< 2.04	< 2.0¢	< 2.04
Bicyclo [2,2,1] hepta-2,5-diene	¥	¥	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥	¥	¥	¥
Chlordene	0.0458	< 0.0230	0.0997	0.0415
Chlordane (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	¥.	¥	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rej:

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample ID	HA0991WB	HA0992WB	HA0993UB 3 CB	NA0994UB 3 cm
Deptin	02/24/89	02/24/89	02/24/89	02/24/89
Analytes				
Semivolatiles				
Dicyclopentadiene (GCMS)	. 1.00	. 1.00	· 1.00	9.
Dieldrin	0.110	0.110	0.0890	0.250
Dieldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Disocropy Methylphosphonate (GCMS)	. 1.00	.1.00	.1.00	· 1.00
	< 1.45	< 1.45	< 1.45	< 1.45
Dithiane (GCMS)	< 0.400	007:0 >	00,00	< 0.400
Endrin	0.0189	0.0233	0.0160	0.0289
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexachlorocyclopentadiene	< 0.00180	< 0.00180	< 0.00180	< 0.00180
Hexachlorocyclopentadiene (GCMS)	009.0 >	009.0 >	0.600	009.0 >
Isodrin	< 0.00110	< 0.00110	< 0.00110	< 0.00110
Isodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion (GCMS)	< 0.700	< 0.700	< 0.700	00.700
Parathion (GCMS)	00.00	0.900	006.0 >	0.00
Supona (GCMS)	0.600	009.0 >	0.600	009.0 >
Vapona (GGMS)	< 3.00	< 3.00	< 3.00	< 3.00
Volatiles 1,1,1-Trichloroethane	*	¥	¥	¥

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or

above the Maximum Reporting Limit.

- NA -- Not Analyzed. R -- Data did not meet quality contro criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA09914B	HA0992WB	HA0993WB	HA0994WB
Depth	3 cm	3 CM	3 C	3 C
Date	02/24/89	02/24/89	02/54/89	02/54/89
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	4	Y.	*	*
1,1,2-Trichloroethane	¥	¥8	≨	4
1,1,2-Trichloroethane (GCMS)	¥	Y.	≨	¥3
1,1-Dichloroethane	¥	×2	¥	4
1,1-Dichloroethane (GCMS)	¥¥	MA	≨	4
1,1-Dichloroethene	¥	¥X	\$	ş
1,2-Dichloroethane	¥	ž	¥	4
1,2-Dichloroethane (GCMS)	¥	NA	¥	4
<u>ت</u>	¥	Z.	¥	¥
1,2-Dichloroethenes (cis & trans) (GCMS)	KA	42	¥	4
Benzene	¥	¥N	¥	4
Benzene (GCMS)	VN	¥#	¥	₹
Carbon Tetrachloride	¥	N.	¥	¥
Carbon Tetrachloride (GCMS)	¥#	NA NA	¥	≨
Chlorobenzene	¥	4	≦	¥
Chlorobenzene (GCMS)	¥	Y.	¥	¥
Chloroform	YN	YH.	¥#	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rej------

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

										¥											
HA099348	3 CB	02/54/89			¥¥	~	< 0.300	< 3.12	NA NA	¥	Y.	YN N	¥	¥	¥ X	¥ z	¥ N	K.	¥	\$	4
HA0992WB	3 cm	02/54/89			¥	œ	< 0.300	< 3.12	KA T	N	¥	¥	¥	¥	X	¥	¥	¥	¥	¥	4
HA 099148	3 cm	02/54/89			4	œ	< 0.300	< 3.12	NA	¥	4 2	Y2	¥2	VN V	¥	4	₹	≨	¥.	¥	¥
Sample 10	Depth	Date	Analytes	Volatiles	Chloroform (GCMS)	Dibromochloropropane	Dibromochloroprepane (GCMS)	Dimethyl Disulfide	Dimethyl Disulfide (GCMS)	Ethyl Benzene	Ethyl Benzene (GCMS)	M-Xytene	M-Xylene (GCMS)	Methylene Chloride	Methylene Chloride (GCMS)	Methylisobutyl Ketone	Methylisobutyl Ketone (GCMS)	0,P-Xylene	O,P-Xylene (GCMS)	Tetrachloroethene	Tetrachloroethene (GCMS)

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA0991WB	HA0992WB	HA09934B	HAD994WB
Depth	3 cm	3 CM	3 CB	3 6
Date	02/24/89	02/24/89	02/54/89	02/54/89
Analytes				
Volatiles				
Toluene	KN N	NA.	NA	Y.
Toluene (GCMS)	¥	YN	M	¥
Trichloroethene	¥	42	¥	Y.
Trichloroethene (GCMS)	¥¥	NA	W	MA

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA09964B	HA0997WB	HA09984B	HA09994B
Deoth	3 CM	3 cm	3 cm	3 CB
Date	02/54/89	02/24/89	02/24/89	02/5//89
Analytes				
Wetals/Anions/General Chem				
Arsenic	< 2.50	< 2.50	< 2.50	< 2.50
Cadmium	W	¥	NA NA	Y _N
Calcina	NA	¥	¥X	¥N
Chromium	¥	¥	¥¥	4
Copper	¥	NA NA	Y X	¥
Iron	¥N	N.	¥¥	4
Lead	¥	NA	¥¥	₹
Magnesium	¥	N N	¥	¥
Manganese	Ā	¥¥	¥	¥
Mercury	< 0.0500	< 0.0500	< 0.0500	0.0500
Potassium	¥.	¥.	¥	4
wipos wild	N	N.	¥	¥X
Zinc	N A	4 2	¥N	¥
Semivolatiles				
1,4-0xathiane	< 1.74	< 1.74	< 1.74	< 1.74
1,4-Oxathiane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.00474	0.00441	< 0.00200	0.00734
	< 0.500	< 0.500	< 0.500	< 0.500

rejected.

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> · · indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

The state of the state of

· ·

Application of the state

02/24/87 . 7 02/24/89 18/15/20

11. 11

		10.14.1.10	10/12/70	05/54/67
Analytes				
Senivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00240	< 0.00240	< 0.00240	< 0.00240
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	009.0 >	009.0 >	009.0
4-Chlorophenylmethyl Sulfide	07.7 >	07.7 >	07.7 >	07.7 >
4-Chlorophenylmethyl Sulfide (GCMS)	00.00	00.00	< 0.900	< 0.900
4-Chlorophenylmethyl Sulfone	< 9.01	< 9.01	< 9.01	< 9.01
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide	~	~	œ	œ
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	0.00713	0.00304	0.00269	0.0264
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Benzothiazole	< 2.04	< 2.04	< 2.04	< 2.04
Bicyclo [2,2,1] hepta-2,5-diene	¥	YN	≨	ş
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥	×	≨	¥
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	¥	Y 8	¥	¥

Notes: Values are reported to microgram per gram.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > .. indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were re j.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sampte In	HA0996WB	HA0997WB	HA0998UB	HA0999WB
Depth	3 cm	3 cm	3 cm	3 cm
Date	02/54/89	02/54/89	02/54/89	05/54/89
Analytes				
Sentrolatio				
Dieyeley at a comment		< 1.00	< 1.00	< 1.00
Dieldru.	0.0550	0.0440	0.0319	0.110
(Obelant)		< 0.300	< 0.300	< 0.300
	0.1.60	< 1.00	· 1.00	1. 00
	2.2	5-1-45	< 1.45	< 1.6
			0.000	
			10, G 10 10	: : : : : : : : : : : : : : : : : : :
			1.00,100	= v
			· =	:
			;	
			- - - - -	T.:
			Tang Ten A	, t:,
		2		· 0.7 ·
	1 · 1 · 1	D06*0 -	0.900	· 0.9mi
	10.270	Be2.0 ×	< 0.600	0.0 00 >
	(0.5)	< 3.00	< 3.00	< 3.00
Volatiles		÷		
1,1,1-Truckfore that	NA	NA A	X	¥

Notes: Yaka are experted to microgram per gram

i parted a secure actuate to three significant figures.

non that the target analyte was not detected at

or at the Certified Reporting Limit. Train is that the target analyte was detected at or

does the Basimaan Reporting Finit.

The state of the state of the state of the state and asset

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA0996WB	HA0997WB	HA0998WB	HA099948
Depth	3 cm	3 CB	3 CB	8 5 €
Date	02/54/89	02/54/89	02/24/89	02/24/89
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	XX	≨	¥	MA
1,1,2-Trichloroethane	¥.	¥.	¥	¥
1,1,2-Trichloroethane (GCMS)	¥	≨	¥	K
1,1-Dichloroethane	¥.	≨	¥	¥¥
1,1-Dichloroethane (GCMS)	VN.	¥.	Y.	NA
1,1-Dichloroethene	¥	N	¥	K
1,2-Dichloroethane	KA	¥	¥	¥8
1,2-Dichloroethane (GCMS)	Y X	4	¥	NA V
1,2-Dichloroethenes (cis & trans)	¥.	4	¥	Y.
1,2-Dichloroethenes (cis & trans) (GCMS)	Y 2	4	¥	4
Benzene	¥	4	¥	¥8
Benzene (GCMS)	K	¥	¥	¥#
Carbon Tetrachloride	¥	¥	¥	¥
Carbon Tetrachloride (GCMS)	KN	¥	¥	¥¥
Chlorobenzene	Y#	4	¥¥	Y.
Chlorobenzene (GCMS)	¥	4 2	¥	K
Chloroform	¥N	¥	¥	Y.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejc ...

Table El Surficial and Subsurface Soil Investigative Analytical Data

Semple 10	HA0996WB	HA099748	HA099848	HA0999WB
Depth	3 cm	3 CH	3 CB	3 C
Date	05/54/89	02/24/89	02/24/89	02/54/89
Analytes				
Volatiles				
Chloroform (GCMS)	¥	¥	¥	¥
Dibromochloropropane	~	~	~	œ
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	< 3.12	< 3.12	< 3.12	< 3.12
Dimethyl Disulfide (GCMS)	¥	K	4	Y X
Ethyl Benzene	¥	¥.	¥	¥
Ethyl Benzene (GCMS)	¥X	¥	¥	¥
M-Xylene	KA	Y.	¥	¥
M-Xylene (GCMS)	4	V.	¥	¥H
Methylene Chloride	¥#	Y.	¥.	¥ H
Methylene Chloride (GCMS)	¥	N	¥	¥#
Methylisobutyl Ketone	¥X	¥.	¥.	KM
Methylisobutyl Ketone (GCMS)	K	×	¥ x	¥
O,P-Xylene	¥	N N	¥	*
O,P-Xylene (GCMS)	¥#	¥ Z	¥	¥2
Tetrachloroethene	KA	N	¥	¥
Tetrachloroethene (GCMS)	NA NA	Y.	¥.	¥

Notes: Values are reported to microgram per gram. Reported values are accurate to three significant figures.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

indicates that the target analyte was detected at or

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10.	HA0996WB	HA099748	HA09984B	HA0999UB
Depth	3 CB	3 CM	3 CB	3 6
Date	02/54/89	02/24/89	02/24/89	05/54/89
Analytes				
Volatiles				
Toluene	KX	X	¥ X	¥#
Toluene (GCMS)	¥,	M	VN.	¥
Trichloroethene	¥¥	4	¥	MA
Trichloroethene (GCMS)	V R	PA	¥	W

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Semple ID	HA1200WB	HA1201WB	HA1202WB	HA1205HB
Depth	5 CB	5 cm	5 CB 06/11/90	5 CM
	06/14/00	06/10/20	04/11/00	24 /21 /22
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	79.7	< 2.50	< 2.50
Cadaium	¥	¥	¥	¥
Calcium	¥.	¥	¥	¥
Chromium	¥	¥	¥	YN
Copper	¥	¥		¥
	42	4	¥	\$
	*	4		¥
Magnesica	¥	¥		¥
Manganese	W	¥		¥
Mercury	< 0.0500	< 0.0500		
Potassium	¥8	4	4	¥
Sodium	¥ N	VN	¥8	
Zinc	¥ R	4	4	
Senivolatiles				
1,4-Oxathiane	¥.		VN	
1,4-Oxathiane (GCMS)	¥		¥	
enyl)-1,1	< 0.00277	0.00631	< 0.00277	0.0443
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	¥		K	

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > ·· indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R .- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Semple 10	HA1200WB	HA120148	HA1202WB	HA120348
Depth	S cm	5 cm	5 6	5 6
Date	06/11/90	06/18/90	06/11/90	06/18/90
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	> 0.00466	0.00844
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	NA NA	≨	M
4-Chlorophenylmethyl Sulfide	VN.	KA	¥	¥
4-Chlorophenylmethyl Sulfide (GCMS)	¥	¥8	W	¥
4-Chlorophenylmethyl Sulfone	4	≨	YI	¥
4-Chlorophenylmethyl Sulfone (GCMS)	¥	¥	¥	\$
	¥	48	*	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	W	¥8	¥#	¥
Aldrin	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	4	¥	¥	¥3
Atrazine (GCMS)	¥	¥	¥	¥
Benzothiazole	¥	NA NA	¥	YN
Bicyclo [2,2,1] hepta-2,5-diene	YN	YN .	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥N	¥2	¥	¥ N
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordene (GCMS)	¥	YN.	ş	W
Dievelopentadiene	¥	4	¥	*

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA12004B	HA1201WB	HA1202WB	HA1203WB
Depth	S CM	5 CM	5 CB	S CB
Date	06/14/90	06/18/90	06/14/90	06/18/90
Analytes				
Senivolatiles	ē ē			
Dicyclopentadiene (GCMS)	¥¥	42	¥	M
Dieldrin	0.00223	< 0.00181	90,000	0.0187
Dieldrin (GCMS)	YN	4 8	¥	¥
Diisopropyl Methylphosphonate (GCMS)	¥	42	MA	¥
Dithiane	Y	42	¥.	¥
Dithiane (GCMS)	4	¥	¥	¥
Endrin	< 0.00471	< 0.00471	< 0.00471	0.03%
Endrin (GCMS)	¥	Y #	¥	¥
Hexachlorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Mexachlorocyclopentadiene (GCMS)	Y X	¥N	¥	V #
Isodrin	< 0.00188	< 0.00188	< 0.00188	0.00339
Isodrin (GCMS)	¥	¥	48	¥X
Malathion (GCMS)	¥	Y.	¥¥	¥ N
Parathion (GCMS)	¥	¥2	¥	YN
Supona (GCMS)	V.	HA	YN	4
Vapona (GCMS)	¥	¥ N	¥	X
Volatiles				
1,1,1-Trichloroethane	YN.	¥ X	YH.	Y2

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Depth 5 cm 6 cm 7 cm 6 cm 7 cm 6 cm 7 cm <t< th=""><th></th><th>5 cm 06/14/90</th><th>5 5</th></t<>		5 cm 06/14/90	5 5
chloroethane (GCMS) chloroethane (GCMS) chloroethane (GCMS) oroethane (GCMS) NA oroethane (GCMS) NA oroethane (GCMS) NA itrachloride (GCMS) NA NA NA NA NA		06/14/90	
chloroethane (GCMS) Chloroethane chloroethane chloroethane (GCMS) Oroethane (GCMS) NA			06/18/90
chloroethane (GCMS) chloroethane chloroethane (GCMS) oroethane (GCMS) oroethane oro	¥		
E (GCMS) B (GCM	Y#		
E (GCMS) NA GCMS) NA NA GCMS & trans) Ccis & trans) Ccis & trans) NA		KA	¥ N
NA NA NA NA NA NA NA NA	¥.	4	¥¥
NA SCMS) NA NA SCMS) NA (cis & trans) (cis & trans) (GCMS) NA (GCMS) NA	M	YN YN	¥
SCMS) NA SCMS) (Cis & trans) (Cis & trans) (Cis & trans) (Cis & trans) (GCMS) NA NA NA NA NA NA NA NA NA N	W	NA	¥
NA ICHS) (CIS & trans) (CIS & trans) (GCMS) NA NA NA NA NA NA NA NA NA N	¥	MA	W.
NA (cis & trans) (GCMS) NA (GCMS) NA NA NA NA NA NA NA NA NA N	4	\$	¥
CCIS & trans) (CIS & trans) (GCMS) NA NA NA NA NA NA NA NA NA N	¥	MA	¥¥
(cis & trans) (GCMS) NA (cis & trans) (GCMS) NA NA (GCMS) NA NA	N	MA	NA NA
(cis & trans) (GCMS) NA NA (GCMS) NA NA	MA	¥	¥,
NA N	Z	¥	¥
(GCMS) NA NA	4	KA	ž
(GCMS) NA NA	N	¥¥	42
(GCMS) NA NA	¥N	NA A	4
Y2	¥N	NA V	¥
	X	MA	¥
	X	Y.	¥
**	4 2	¥N	¥8

- ... indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > ·· indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- by the between meet quality coursol after taking were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1200WB	HA120148	HA1202WB	HA1203WB
Depth	5 cm	S CM	S CM	5
Date	06/14/90	06/18/90	06/14/90	06/18/90
Analytes				
Volatiles				
Chloroform (GCMS)	ž	¥8	¥	¥
Dibromochloropropane	₹2	M	MA	¥
Dibromochloropropane (GCMS)	¥	4	¥	¥
Dimethyl Disulfide	¥	¥	¥	¥
Dimethyl Disulfide (GCMS)	Y.	4	Y.	¥
Ethyl Benzene	¥	N	¥	¥
Ethyl Benzene (GCMS)	¥	V	¥,	¥
M-Xylene	4	¥.	¥.	¥¥
M-Xylene (GCMS)	≨	¥	Y.	YN
Methylene Chloride	Y	4	Y.	¥
Methylene Chloride (GCMS)	¥	¥	Y.	¥
Methylisobutyl Ketone	¥	4	42	¥X
Methylisobutyl Ketone (GCMS)	¥	¥	YN	¥
O,P-Xytene	¥	¥ N	NA NA	¥#
O,P-Xylene (GCMS)	¥.	¥.	¥2	¥.
Tetrachloroethene	¥	ď	42	¥
Tetrachloroethene (GCMS)	¥ Z	¥ Z	¥	¥.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1204WB	HA120548	HA12064B	HA120748
Depth	5 cm	S C	2 CB	S C
Date	06/14/90	06/18/90	06/13/90	06/13/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	3.24	< 2.50	< 2.50
Cachium	YN .	¥	≨	KA
Calcium	YN	M	¥	¥¥
Chromium	Y2	Y.	¥	¥
Copper	NA NA			
Iron	¥	¥	¥	¥
Lead	4 2			
Magnesium	NA NA			
Manganese	¥X			
Mercury	< 0.0500			
Potassica	YN	¥.	YN Y	٧
Sodium	¥2	Y.	Y.	*
Zinc	Y.	¥.	NA	1
Semivolatiles				
1,4-0xathiane	Y.	M	4	4
1,4-Oxathiane (GCMS)	VN	¥¥	¥8	₹
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	0.00654	0.00561	0.00579	0.0419
2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	42	M	Z.	¥

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

(15/90	
tes/137.50	
j. (*),	

06/15/77

. .

Amaly to

Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	0.0113	> 0.00466	< 0.00466	0.0226
2,2-Bis(parachlorophunyl)-1,1-Dichloroethene (DDE) (GCMS)	¥.	¥N	¥	¥8
4-Chlorophenylmethyl Sulfide	¥	¥2	¥	4
4-Chlorophenylmethyl Sulfide (GCMS)	MA	¥	¥	¥
4-Chlorophenylmethyl Sulfone	Y.	42	£	¥¥
4-Chlorophenylmethyl Sulfone (GCMS)	¥N	M	¥	¥ X
4-Chlorophenylmethyl Sulfoxide	NA NA	¥8	¥	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	N	Y	¥	¥
Aldrin	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	ď	42	4	¥
Atrazine (GCMS)	¥2	N	*	N
Benzothiazole	NA	¥2	¥	4
Bicyclo 12,2,11 heptar2,5-diene	N.	¥	¥	¥,
Bicyclo (2,2,1) hept. 2,5 diene (GCMS)	NA NA	¥2	¥	¥
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	¥2	N	¥.	K
Dicyclopentadiene	¥ X	A N	AN	YN

The after option per St. Control Departs.

.: .:• soil the target analyte was not detected at

of above the Certified Reporting Limit.
> -- indicates that the target analyte was detected at or

above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample ID ·	HA1204WB	HA1205WB	HA1206WB	HA120748
Depth	S ca	. S CM	5 C	S C
Date	06/14/90	06/18/90	06/13/90	06/13/90
Analytes .				
Semivolatiles				
Dicyclopentadiene (GCMS)	K	NA.	YN	M
Dieldrin	0.0225	0.0167	0.0250	0.00451
Dieldrin (GCMS)	¥X	MA	KN	KA
Diisopropyl Methylphosphonate (GCMS)	¥	NA NA	42	¥
Dithiane	4	VN	YH.	MA
Dithiane (GCMS)	¥	¥	¥	VH.
Endrin	< 0.00471	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	M	Y X	¥¥	¥N
Hexachlorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	V.	٧.	YH.	Y 2
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	¥	42	¥	K X
Malathion (GCMS)	¥N	42	¥	MA
Parathion (GCMS)	. ¥	4 2	*	¥¥
Supona (GCMS)	Y.	¥	¥	4
Vapona (GCMS)	¥	¥	¥	, F
Volatiles 1,1,1-Trichloroethane	₹	, M	¥	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Semple 10	HA1204WB	HA1205WB	HA1206MB	HA120748
Depth	S CB	S CM	5 cm	5
Date	06/11/90	06/18/90	06/13/90	06/13/90
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	4	V#	4	¥
1,1,2-Trichloroethane	¥	¥	≦	≨
1,1,2-Trichloroethane (GCMS)	¥	¥	¥	≨
1,1-Dichloroethane	¥¥	Y Y	\$	¥
1,1-Dichloroethane (GCMS)	4	4	4	¥
1,1-Dichloroethene	¥	M	¥	¥
1,2-Dichloroethane	≨	¥.	¥	¥
1,2-Dichloroethane (GCMS)	4	¥.	≨	¥
1,2-Dichloroethenes (cis & trans)	≨	4	¥	¥
	4	4	¥	¥
Benzene	4	¥	\$	¥
Benzene (GCMS)	4	₹	¥	¥
Carbon Tetrachloride	£	\$	¥	¥
Carbon Tetrachloride (GCMS)	ş	≨	¥	¥
Chlorobenzene	¥	ş	¥	¥
Chlorobenzene (GCMS)	4	\$	¥	¥
Chloroform	¥	\$	VN	4

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejerant

MA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1204WB	HA1205WB	HA120648	HA120748
Depth	5 cm	5 CM	5	5 CM
Date	06/14/90	06/18/90	06/13/90	06/13/90
Analytes				
Volatiles	·			
Chloroform (GCMS)	4	¥	¥	MA
Dibramochloropropane	¥	¥¥	¥	≨
Dibramochioropropane (GCMS)	M	¥	≨	≨
Dimethyl Disulfide	¥X	4	≨	¥
Dimethyl Disulfide (GCMS)	YN	4	¥.	YN Y
Ethyl Benzene	YN .	N V	¥	¥
Ethyl Benzene (GCMS)	¥	4	¥	NA NA
M-Xylene	KN	¥	¥	ş
M-Xylene (GCMS)	¥	4	¥	ş
Methylene Chloride	YN	₹	¥	¥#
Methylene Chloride (GCMS)	¥N	4	¥	NA NA
Methylisobutyl Ketone	Y.	¥	¥	*
Methylisobutyl Ketone (GCMS)	YN	¥	¥	≨
O, P-Xylene	YN.	¥	KN K	\$
O,P-Xylene (GCMS)	¥.	¥.	¥	¥
Tetrachloroethene	VN	VN	YH.	¥
Tetrachloroethene (GCMS)	¥.	Y.	¥	¥

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.

rejected.

R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1204UB	HA1205WB	HA120648	HA120748
Depth	5	5	5	•
Date	06/11/90	06/18/90	06/13/90	06/13/90
Analytes				
Volatiles				
Toluene	¥	¥	¥	¥
Toluene (GCMS)	¥	¥¥	¥	₹
Trichloroethene	¥	¥	₹	¥
Trichloroethene (GCMS)	¥	¥	¥	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{MA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rej

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	NA1208WB	HA1209WB	HA121048	HA1211UB
Depth	5 CM	5 CB	5 6	20
Date	06/13/90	06/18/90	06/18/90	06/13/90
Analytes				
Metals/Anions/General Chem				
Arsenic	2.84	< 2.50	< 2.50	< 2.50
Cachrium	¥	¥	¥	¥
Calcium	¥	¥	¥	\$
Chromium	¥	¥	¥	¥#
Copper	¥.	N	YH.	YN Y
	:	;	;	;
Iron	¥	¥	\(\)	≨
Lead	¥	¥	¥.	¥
Magnes jum.	¥	W	¥	MA MA
Manganese	Y.	¥	¥	¥
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potessium	¥	\$	¥	¥
Sodica	¥	¥	4	¥
Zinc .	¥	YN	¥	\$
Semivolatiles				
1,4-Oxathiane	¥	M	¥	\$
1,4-0xathiane (GCMS)	¥	¥	4	≨
-(1/w	0.00376	0.00743	0.0106	0.00349
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	4	¥	¥	¥

Notes: Values are reported to microgram per gram.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- .NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1208WB	HA1209WB	HA12104B	NA1211WB
Depth	S cm	5 cm	5 CB	2 C
Date	06/13/90	06/18/90	06/18/90	06/13/90
Analytes				
Senivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	99 700.0 ×	
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	KA	¥	×	
4-Chlorophenylmethyl Sulfide	W	¥	¥	
4-Chlorophenylmethyl Sulfide (GCMS)	¥	ş	ş	
4-Chlorophenylmethyl sulfone	¥	\$	¥	
4-Chlorophenylmethyl Sulfone (GCMS)	¥	¥	¥	4
4-Chlorophenylmethyl Sulfoxide	××	4	K	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	¥N	≨	¥	¥
Aldrin	< 0.00211	< 0.00211	0.00571	< 0.00211
Aldrin (GCMS)	K	¥	¥¥	¥
Atrazine (GCMS)	¥	\$	¥	¥
Benzothiazole	£	≨	*	¥
Bicyclo [2,2,1] hepta-2,5-diene	¥.	¥	≨	¥
Bicyclo (2,2,1) hepta-2,5-diene (GCMS)	¥ X	¥	¥	¥
Chlordene	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	*	4	YN	¥
Dicyclopentadiene	¥	¥	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejerra

1. 1. 1. 1	ИА	< 0.00188	¥N	¥X	NA	N	4	
07.700.0	¥ X	0.00353	NA	¥	¥.	¥	¥	
	11.4	< 0.00188	NA	NA	NA	¥.	¥ z	
	19	< 0.00188	A N	A.	A4	Y2	N A	
	·	Isotrin	Isodrin (will)	Malathion (udfs)	Parathion (1417H2)	Supona (GCMS)	Vapona (GCHS)	Volotilus

2 4 1

44

¥.

::

4

· Volatile 1,1,1 a

Depth 5 cm 6 cm 7 cm <t< th=""><th>Sample 10</th><th>HA1208WB</th><th>HA1209WB</th><th>HA1210WB</th><th>HA1211WB</th></t<>	Sample 10	HA1208WB	HA1209WB	HA1210WB	HA1211WB
s richloroethane (GCMS) And MA Frichloroethane (GCMS) And CMA	Depth	S CB	5 cm	S cm	S CM
richloroethane (GCMS) In ichloroethane (GCMS) And MA Anthoroethane (GCMS) Anthoroeth	Date	06/13/90	06/18/90	06/18/90	06/13/90
ichloroethane (GCMS) HA HA HA HA Hichoroethane (GCMS) HIChoroethane (GCMS) HIChoroethane (GCMS) HIChoroethane (GCMS) HA HA HA HA HIChoroethane (GCMS) HIChoroethane (GCMS) HA HA HA HA HIChoroethane (GCMS) HA HA HA HA HIChoroethane (GCMS) HA H	ytes				
E (GCMS) NA N	tiles				
NA	1,1-Trichloroethane (GCMS)	4	≨	¥	¥
HA	1,2-Trichloroethane	¥ X	4	MA	≨
NA	1,2-Trichloroethane (GCMS)	4	¥.	¥	¥
CCMS) MA MA MA MA MA MA MA MA MA M	-Dichloroethane	Y.	¥.	¥	¥
CCMS) Cols & trans) (GCMS) CGCMS) MA MA MA MA MA MA MA MA MA M	-Dichloroethane (GCMS)	YN.	K	¥	≦
NA NA NA NA	-Dichloroethene	VH.	¥	ş	¥
Ccis & trans)	-Dichloroethane	₹2	4	¥	¥
(cis & trans) (GCMS) NA NA (GCMS) NA NA NA (GCMS) NA NA NA NA NA NA NA NA NA NA NA	-Dichloroethane (GCMS)	¥2	£	¥	¥
(GCMS) (GCMS) NA	-Dichloroethenes (cis & trans)	VN.	4	¥	Y
GCMS) NA N	-Dichloroethenes (cis & trans) (GCMS)	¥2	¥.	¥	4
GCMS) HA HA	zene ·	V.	\$	¥	4
(GCMS) NA NA NA NA NA NA NA NA	zene (GCMS)	¥	¥	¥	¥
(GCMS) NA NA NA NA NA NA NA NA NA N	bon Tetrachloride	YN.	¥	¥	¥
Y	9	YN.	¥	NA NA	¥.
< 2 < 2 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 7 < 6 < 7 < 6 < 7 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 6 < 6 < 7 < 6 < 7 < 6 < 7 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 6 < 6 < 7 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 7 < 7 < 7 < 7 < 6 < 7 < 7 < 6 < 7 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 6 < 6 < 7 < 7 < 6 < 7 < 7 < 6 < 7 < 6 < 6 < 6 < 7 < 6 < 7 < 7 < 7 < 6 < 7 < 7 < 7 < 6 < 7 < 6 < 6 < 7 < 6 < 6 < 6	orobenzene	¥	Y.	¥	ž
*** ***	orobenzene (GCMS)	¥3	¥	K	¥
	Chloroform	¥	Y.	¥	¥

Notes: Values are reported to microgram per gram. Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- . R -- Data did not meet quality control criteria and were rejorned.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1208WB	HA1209WB	MA1210WB .	HA1211WB
Depth	5 CB	S cm	S CB	5 5
Date	06/13/90	06/18/90	06/18/90	06/13/90
nalytes				
otatiles				
Chioroform (GCMS)	KX	4	¥.	¥
Dibromochloropropane	KA	≨	¥	¥
Dibromochloropropane (GCMS)	NA NA	¥	ş	¥
Dimethyl Disulfide	W.	≨	¥	¥
Dimethyl Disulfide (GCMS)	V.	¥	¥	¥
Ethyl Benzene	¥	M	¥	¥
Ethyl Benzene (GCMS)	Y.	≨	¥.	¥
M-Xylene	¥.	≨	¥	¥
M-Xylene (GCMS)	¥×	4	ş	¥
Methylene Chloride	¥	Ą.	4	¥
Methylene Chloride (GCMS)	¥	Y.	¥	¥
Methylisobutyl Ketone	¥.	¥	¥8	¥
Hethylisobutyl Ketone (GCMS)	YN	¥	¥ Z	¥
0,P-Xytene	Y.	¥	¥.	*
O,P-Xylene (GCHS)	¥	¥ Z	Ķ	¥
Tetrachloroethene	¥	¥	4	\$
Tetrachloroethene (GCMS)	Y.	¥.	¥	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit:
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10 .	HA1208WB	HA1209WB	HA1210VB	MA1211WB
Depth	5 CB	5 CB	8 0 S	5.0
Date	06/13/90	06/18/90	06/18/90	06/13/90
Analytes				
Volatiles				
Toluene	42	¥.	¥	¥
Toluene (GCMS)	42	4	¥	¥
Trichloroethene	44	¥	NA NA	¥¥
Trichloroethene (GCMS)	4	4	¥	4

Reported values are accurate to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 \mbox{NA} -- \mbox{Mot} Analyzed. \mbox{R} -- \mbox{Data} did not meet quality control criteria and were

rej

NA	NA	٨N	NA.	• 0.0500	¥ Z	MA	62
NA	V	V V	NA	< 0.0500	Z Z	NA	√: Z
413	NA	V.	ИЛ	< 0.05m	NA	÷	~
ከሕ	NA	11A	114	meratin	£31	÷	
:	Lead	Manha 11	1. 1. OF 运	Net cons.	Potas	=	

yours from interogram per groot Notes: ...ts

 $s \sim \mathrm{metr} (\log s)$ that the target analyte was not detected at . keported the are accurate to three significant figures.

> -- indicates that the target analyte was detected at or or above the Certified Reporting Limit. above the Maximum Reporting Limit.

bata hid not most quality control criteria and were NA -- Not Analyzed.

P. Data fid not m

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1212WB	HA1213VB	HA1214WB	HA121548
Depth	5 cm	2 cm	5 CM	E 2
Date	06/18/90	06/13/90	06/14/90	06/18/90
Analytes				
Semivolatiles				
achlorophenyl)-	< 0.00466	< 0.00466	0.00628	< 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	KA	¥	¥	¥
4-Chlorophenylmethyl Sulfide	. KA	¥	¥	¥
4-Chlorophenylmethyl Sulfide (GCMS)	¥N	¥	¥	¥
4-Chlorophenylmethyl Sulfone	MA	42	¥	V
4-Chlorophenylmethyl Sulfone (GCMS)	¥	¥	¥¥	¥
4-Chlorophenylmethyl Sulfoxide	¥	¥	K	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	Y.	¥	¥	¥
Aldrin	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	¥	¥.	¥.	4
Atrazine (GCMS)	¥	¥	. \$	Y.
Benzothiazole	Y.	¥	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene	YN Y	¥	H	M
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥2	¥¥	¥	Y.
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	¥¥	¥	¥	¥
Dicyclopentadiene	NA	Y.	¥N	YN

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

^{.-} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were reje

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

HA1215WB 5 cm 06/18/90			: ::	0.00157	NA • 0.0115:	A X	: Y = =
HA1214WB 5 cm 06/14/90	ž.	e.	1	NA < 0.00137	NA 0.00256	4 4 2 2	. A A
HA1213WB 5 cm 06/13/90				to, < 0,00157	NA - 0. (601893	44 A	<u> </u>
HA1212WB 5 cm (16/18/90				5 0.00187	#A . 60183	<	12.
	-				:		
Sample 10 Depth Date	1516			die Australia	12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	Position. Matures	

-

7

-1

conduction of the management of the folding of the conduction of t

of a 100 to partitle that the control of the contro

is a remarkable trial thatter

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Same a 10	HA1212WB	HA1213WB	HA1214WB	HA1215WB
4400	S C	5 cm	5	5
	06/18/90	06/13. 70	06/14/90	06/18/90
Analytes				
Volatiles		•		
1 1 1-Trichtocoethane (GCMS)	¥	¥	¥	MA
1 1 2-Trichloroethane	NA	¥	≨	¥
1 1 2-Trichloroethane (GCMS)	MA	¥	≨	¥
1.1-Dichloroethane		¥	NA NA	K *
1,1-Dichlorethane (GCMS)	Y.	VI.	¥	YH
1 1-Dichloroethene	¥	¥	¥	¥
1.2-Dichloroethane	¥#	¥#	4	4
1.2-Dichloroethane (GCHS)	VN .	¥N	≨	4
1.2-Dichloroethenes (cis & trans)	¥8	¥	≦	¥
	42	¥2	¥4	4
and	NA A	¥8	4	¥
	¥	\$	¥	¥
defined the state of the state	¥2	¥	¥	¥
Carbon Tetrachi Oride (GCMS)	YN.	4	¥	¥
Chlorobenzene	V.	4	4	¥
(SMJ) section (4)	4	¥	¥	≨
	¥	¥	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 - NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1212WB	HA1213WB	HA1214WB	HA1215UB
Depth	S CM	2 CB	2 CB	5
Date	06/18/90	06/13/90	06/14/90	06/18/90
Analytes				
Volatiles				
Chloroform (GCMS)	W.	¥.	¥	M
Dibramochloropropane	¥	¥	¥	¥
Dibromochloropropane (GCMS)	¥	¥	¥	¥
Dimethyl Disulfide	KN N	V.	¥	¥
Dimethyl Disulfide (GCMS)	YN	4	Y 2	¥
Ethyl Benzene	Y.	¥	¥	KA
Ethyl Benzene (GCMS)	¥	¥¥	₹	¥
M-Xylene	¥	4	₹	¥
M-Xylene (GCMS)	¥	¥3	₹	¥
Methylene Chloride	4	¥.	4	¥ H
Methylene Chloride (GCMS)	*	4	4	¥
Methylisobutyl Ketone	4	¥	¥	¥
Methylisobutyl Ketone (GCMS)	4	¥	¥	≨
O,P-Xylene	¥	¥	¥	¥
O,P-Xylene (GCMS)	¥	¥.	¥.	¥
Tetrachloroethene	4	*	¥.	¥
Tetrachloroethene (GCMS)	¥	¥¥	YN	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil • Investigative Analytical Data

Semanta 10	HA1212WB	HA1213WB	HA1214WB	HA1215WB
	S CB	S CM	5 C	8 5 CB
	00, 01, 70	907 237 70	06/11/00	04/18/90
Date	06/18/90	06/51/00	26/14/20	
Analytes				
Volatiles			;	•
Total	¥	≨	≨	£
	¥	¥	¥	¥
IO(UENE (GCRS)	: :	4	*	4
Trichloroethene		E :	ii	1
Trichloroethene (GCMS)	¥.	¥	¥	Ě

Notes: Values are reported to microgram per gram. Reported values are accurate to three significant figures.

^{...} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA121648	HA121748	HA121848	HA1219WB
Depth	S CM	2 6	S C	S G
Date	06/18/90	06/18/90	06/15/90	06/12/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	× 2.50	< 2.50	3.30
Cadmium	¥#	¥	¥	¥
Calcium	¥	¥	¥	¥
Chromium	¥	¥8	¥	¥
Copper	KA K	¥	ş	¥
Iron	¥	K	¥	¥#
Lead	¥N	¥8	YN	¥
Magnesium	¥N	¥	¥	¥
Manganese	¥	¥	≨	¥.
Wercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potessium	¥	¥	*	¥
Sodium	¥ N	M	4	¥¥
Zinc	NA NA	YH.	4	Y.
Senivolatiles				
1,4-0xathiane	¥Z			¥
1,4-0xathiane (GCMS)	¥			¥
enyl)-1	< 0.00277	< 0.00277	< 0.00277	< 0.00277
2,2-uis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	NA			¥

⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

 $[\]mbox{NA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were reject 3d.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Serole 10	NA1216WB	HA121748	HA121848	HA121948
Deoth	S CB	2 6	5 6	2 6
Date	06/18/90	06/18/90	06/12/90	06/12/90
Analytes				
Semivolatiles				
2.2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	99700.0 ×	< 0.00%66
2.2-Bis(parach(orophenyl)-1,1-Dichtoroethene (DDE) (GCMS)	¥¥	¥#	¥	¥
4-Chlorocherylmethyl Sulfide	¥#	¥	¥	¥
4-Chlorophery(methyl Sulfide (GCMS)	MA	¥	¥¥	≨
4-Chlorophenylmethyl Sulfone	YN	4	¥	≨
4-Chlorocheny [methy] Sulfore (GCMS)	ş	¥	¥	¥
4-Chlorochenvimethyl Sulfoxide	¥	¥	¥	¥
4-Chlorochenylmethyl Sulfoxide (GCMS)	\$	¥	¥	¥
Aldrin	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	M	\$	¥	4
Atrazine (GCMS)	¥	¥	YH.	¥
Benzothiazole	\$	¥¥	4	¥
Bicyclo (2.2.1) hepta-2.5-diene	\$	¥	*	ş
Bicyclo (2.2.1) hepta-2.5-diene (GCMS)	\$	¥	4	¥
Chlordene	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordene (GCHS)	YN.	ş	¥	¥
Dicyclopentadiene	¥	¥	\$	ž

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or whove the Maximum Reporting Limit.

 - -- Data did not meet quality control criteria and were MA -- Not Analyzed.
 R -- Data did not

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA121648	HA1217JB	WA1218WB	#A1219#
Depth	S CB	8 5	8	8
Date	06/18/90	06/18/90	06/12/90	06/12/90
Analytes				
Semivolatiles	i i			
Dicyclopentadiene (GCMS)	48	¥	4	≨
Dieldrin	0.00232	< 0.00181	< 0.00181	0.00315
Dieldrin (GCMS)	¥#	¥N	ş	≨
Diisopropyl Methylphosphonate (GCMS)	¥	YN Y	≨	≦
Dithiane	\$	42	ž	1
Dithiame (GCHS)	¥	¥	¥	¥
Endrin	< 0.00471	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	¥	≨	\$	4
Hexach lorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Nexachlorocyclopentadiene (GCMS)	*	\$	£	4
laodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00168
Isodrin (GCMS)	¥.	M	1	≦
Malathion (GCMS)	¥	¥	≨	≦
Parathion (GCMS)	W.	M	≨	≨
Supone (GCMS)	4	ž	≦	¥
Vapona (GCHS)	*	\$	¥	¥
Volatiles	:	;	;	•
1,1,1-Trichloroethane	4	≨	¥	≦

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA121648	HA1217UB	HA121848	HA1219UB
Depth	5 CM	8 5 S	5 CB	5
Date	06/18/90	c6/18/90	06/12/90	06/15/90
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	KA KA	¥	ş	¥
1,1,2-Trichloroethane	¥	¥	≨	¥
1,1,2-Trichloroethane (GCMS)	¥	¥	¥	≨
1,1-Dichloroethane	¥	¥	≨	ş
1,1-Dichloroethane (GCMS)	\$	MA	¥.	¥
1,1-Dichloroethene	¥	¥	\$	\$
1,2-Dichloroethane	¥	¥	\$	¥
1,2-Dichloroethane (GCMS)	¥	¥	¥	ş
-	¥	¥	≨	¥
1,2-Dichloroethenes (cis & trans) (GCNS)	≦	¥	4	¥
Benzene	¥	¥	¥	¥
Benzene (GCMS)	¥	¥	4	\$
Carbon Tetrachloride	¥	¥	≨	¥
Carbon Tetrachloride (GCMS)	¥	≨	ş	≨
Chlorobenzene	≦	¥	¥	¥
Chlorobenzene (GCMS)	\$	¥	*	. \$
Chloroform	£	¥	¥	¥

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1216WB	HA121748	HA121848	HA121948
Depth	5 C#	S CB	8 3	2 6
Date	06/18/90	06/18/90	06/12/90	06/11/90
Analytes				
Volatiles				
Chioroform (GCMS)	¥	¥ H	¥	4
Dibromochloropropane	¥	¥	≨	\$
Dibromochloropropane (GCMS)	¥	¥#	≨	4
Dimethyl Disulfide	¥	¥	≨	≨
Dimethyl Qisulfide (GCMS)	M	M	¥	*
Ethyl Benzene	¥	YN.	¥	¥
Ethyl Benzene (GCMS)	¥	¥	≨	¥
M-Xylene	Ą	¥¥	≨	≨
M-Xylene (GCMS)	¥	YN	¥	≨
Methylene Chloride	¥	4	₹	1
Methylene Chloride (GCMS)	¥	¥	W	≨
Methylisobutyl Ketone	¥	4 2	¥	≨
Methylisobutyl Ketone (GCMS)	¥	¥8	¥	≦
O,P-Xylene	¥	4	ž	≨
O,P-Xylene (GCMS)	Y.	¥	¥	1
Tetrachloroethene	¥	*	\$	1
Tetrachioroethene (GCMS)	¥	Y	¥	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R: -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D Depth	NA1216W8 5 cm 06/18/90	HA121748 5 cm 06/18/90	HA121848 5 cm 06/15/90	HA121948 5 cm 06/15/90
Date Analytes				
Volatiles .		;	1	4
Toluene	≼	¥	ž	Ē
(SMS)	¥.	×	¥	¥
Trick Control of the	¥	¥¥	¥.	¥
Trichloroethene (GONS)	K	W.	¥	¥

<... indicates that the target analyte was not detected at

> -- indicates that the target analyte was detected at or or above the Certified Reporting Limit. above the Maximum Reporting Limit.

 $[\]mbox{MA}$ -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1220VB	HA1221WB	HA12224B	HA1223UB
Depth	S cm	2 CB	2 6	2 6
Date	06/15/90	06/12/90	06/14/90	06/14/90
es es				
Metals/Anions/General Chem				
Arsenic	2.84	< 2.50	2.61	< 2.50
Cachium	V.	¥	¥	KA KA
Calcium	M	¥	¥	¥,
Chronium	N	¥	¥	NA.
Copper	¥	¥.	≦	¥
Iron	¥	¥	\$	¥
Lead	YN	¥	¥	K.
Magnesium	NA	¥	≨	W.
Manganese	MA	¥	¥	NA NA
Mercury	< 0.0500	< 0.0500	0.142	0.0719
Potessium	×	¥¥	¥	¥
Sodium	NA NA	K	¥	¥
Zinc	¥ X	¥	¥	ş
Semivolatiles				
1,4-0xathiane	YN	M	¥	Y
1,4-0xathiane (GCMS)	M	¥	¥¥	¥
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	0.0103	0.0221	0.00514
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT) (GCMS)	Y.	¥¥	¥1	¥

Notes: Values are reported to microgram per gram.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

^{..} Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1220WB	HA1221WB	HA122248	HA122348
Depth	2 CM	S cm	2 CB	S C
Date	06/15/90	06/11/90	06/14/90	06/11/90
Analytes				
Sesivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	< 0.00466	× 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥8	¥	¥	≦
4-Chlorophenylmethyl Sulfide	YN .	¥	¥	≨
4-Chlorophenylmethyl Sulfide (GCMS)	VN	KM	¥	¥
4-Chlorophenylmethyl Sulfone	¥.	¥	¥	YH.
4-Chlorophenylmethyl Sulfone (GCMS)	¥	\$	¥	ş
4-Chlorophenylmethyl Sulfoxide	4	\$	¥¥	4
4-Chlorophenylmethyl Sulfoxide (GCMS)	KN	¥	YY	≨
Aldrin	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	42	¥	¥	¥
Atrazine (GCMS)	¥ X	¥	¥N.	\$
Benzothiezole	Y#	¥	YN.	¥
Bicyclo (2,2,1) hepta-2,5-diene	YN	¥	4	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	W	¥	W	¥
Chlordare	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCNS)	KA	4	¥	ş
Dicyclopentadiene	YN	¥	¥	¥

- . indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1220WB	HA1221WB	HA12224B	HA1223WB
Depth	5 C#	5 cm	5 C	2 CB
	06/15/90	06/12/90	06/11/90	06/11/90
Analytes				
Semivolatiles				
adiene (GCMS)	KN	¥.	¥	¥
	< 0.00181	0.00361	0.0131	0.00749
Dieldrin (GCMS)	V.	¥	≨	¥
Diisopropyl Methylphosphonate (GCMS)	NA NA	¥	¥	¥
Dithiane	MA	4	4	Y.
Dithiane (GCHS)	¥	¥	ş	¥
Endrin	< 0.00471	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	N.	¥	¥	¥
Nexach lorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	NA	4	4	4
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	4 2	¥	¥	¥
Melathion (GCMS)	¥8	Y.	¥	¥
Parathion (GCMS)	4	M	M	W
Supona (GCMS)	¥	¥	¥	¥.
Vapona (GCMS)	¥ X	¥	¥.	¥
Volatiles 1,1,1-Trichloroethane	¥	4	¥	ş

- -- indicates that the target analyte was not detected at .. or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

	HA122048	HA1221WB	HA1222WB	HA122348
Depth	5 cm	S CB	S CM	5 cm
Date	06/12/90	06/15/90	06/14/90	06/14/90
alytes				
statiles				
1,1,1-Trichloroethane (GCMS)	¥N	₹	≨	¥
1,1,2-Trichloroethane	W	¥	¥	¥
1,1,2-Trichloroethane (GCMS)	¥	¥	\$	¥
1,1-Dichloroethane	¥	¥	¥	≨
1,1-Dichloroethane (GCMS)	Y Z	¥ X	¥	MA
1,1-Dichloroethene	4	¥	≨	¥
1,2-Dichloroethane	YH.	¥	¥	42
1,2-Dichloroethane (GCMS)	¥N	¥	≨	¥
1,2-Dichloroethenes (cis & trans)	YN.	¥	¥	K
1,2-Dichloroethenes (cis & trans) (GCMS)	¥.	¥.	¥	¥
Benzene	\$	¥	¥	¥
Benzene (GCMS)	YN N	¥ X	¥¥	¥
Carbon Tetrachloride	YH.	¥.	¥	¥
Carbon Tetrachloride (GCMS)	¥	¥N	VN N	¥N
Chlorobenzene	X	¥H	¥	ž
Chlorobenzene (GCMS)	¥	YH.	¥	¥
Chloroform	Y.	KA	¥	*

> -- indicates that the target analyte was detected at or

above the Maximum Reporting Limit.

rejć

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122048	HA1221WB	HA1222NB	HA1223WB
Depth	5 cm	S CM	2 6	5 5
Date	06/12/90	06/12/90	06/14/90	06/14/90
Analytes				
Volatiles				
Chloroform (GCMS)	¥	¥#	¥	M
Dibromochloropropane	¥	K	¥	¥¥
Dibramochioropropane (GCMS)	¥¥	YN	¥	¥
Dimethyl Disulfide	¥	¥.	¥	MA.
Dimethyl Disulfide (GCMS)	¥	NA NA	¥	¥
· Ethyl Benzene	\$	¥	≨	¥
Ethyl Benzene (GCMS)	KN	¥8	¥¥	M
M-Xylene	KN	¥8	¥	¥¥
M-Xylene (GCMS)	Y.	NA NA	¥	Y.
Methylene Chloride	YN	¥#	KN	¥ X
Methylene Chloride (GCMS)	¥	¥	¥	¥
Methylisobutyl Ketone	¥	MA	¥.	YH.
Methylisobutyl Ketone (GCMS)	¥	MA	ş	¥H
D,P-Xyiene	¥	¥	¥	¥
O,P-Xylene (GCMS)	NA	YN.	¥H.	4
Tetrach orosthere	43	.	4	4
Tetrachloroethene (GCMS)	¥¥	¥	¥	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample ID Depth Date	HA1220WB 5 cm 06/15/90	HA1221WB 5 cm 06/15/90	NA1222WB 5 cm 06/14/90	HA122348 5 cm 06/14/90
Analytes				
Volatilies	44	YN.	¥	≨
Tollogne (GDRS)	4	¥	¥	MA MA
Trichloroethene	YN	¥	¥	¥
Trichloroethene (GCMS)	K	4	¥	¥

Notes: Values are reported to microgram per gram. Reported values are accurate to three significant figures.

-- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.

above the Maximum Reporting Limit. NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122448	HA122548	HA122648	HA122748
Depth	S cm	5 CB	S C	8
Date	06/14/90	06/14/90	02/05/90	04/03/40
Analytes				
Netals/Anions/General Chem				
Arsenic	4.41	3.51	< 2.50	< 2.50
Cachium	4	¥	< 1.20	< 1.20
Calcium	¥	¥	¥	Y3
Chromium	V.	¥	15.5	13.1
Copper	¥	¥	10.1	11.1
i ron	¥	NA A	¥	¥
Peal	¥	¥	9.07	27.0
Magnesium	¥	¥	¥	NA NA
Manganese	¥	¥	¥	≨
Mercury	0.142	0.325	0.0500 >	< 0.0500
Potessium	¥	¥	ž	W
Sodium	¥.	¥	¥	¥
Zinc	4	¥	. 89.3	61.2
Semivolatiles				
1,4-0xathiane	¥	¥	ş	≨
1,4-0xathiane (GCMS)	¥	¥	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.00507	0.00865	0.0192	0.00704
	Y.	¥.	< 0.500	< 0.500

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122448	HA1225WB	HA12264B	HA1227UB
Depth	5 CB	5 cm	5 28	5 CB
Date	06/14/90	06/14/90	04/05/00	07/03/90
Analytes				
Senivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	0.0561	0.00478
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	¥	009.0 >	009.0 >
4-Chlorophenylmethyl Sulfide	¥	¥	¥	VII.
4-Chlorophenylmethyl Suilide (GCMS)	¥	¥	< 0.900	< 0.900
4-Chlorophenylmethyl Julfane	¥.	¥	4	¥
4-Chlorophenylmethyl Sulfone (GCMS)	¥			< 0.300
4-Chlorophenyimethyl Sulfoxide	¥#			¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	¥			< 0.300
Aldrin	< 0.00211		< 0.00211	0.00533
Aldrin (GCMS)	42	4		< 0.300
Atrazine (GCMS)	VH.	¥	< 0.300	< 0.300
Benzothiazole	¥	≨	¥	¥
Bicyclo [2,2,1] hepta-2,5-diene	¥	¥	ş	*
Bicyclo [2,2,1] hepta-2,5-diene (GCHS)	≨	¥	\$	¥
Chlordene	< 0.0230	< 0.0230	0.520	< 0.0230
Chlordene (GCMS)	¥	\$	7.71	~ 2.00
Dicyclopentadiene	¥	≨	M	¥

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA12244B	HA1225WB	HA122648	NA122748
· Depth	5 CB	S CM	2 6	5 CB
Date	06/14/90	06/14/90	07/02/90	04/03/90
Analytes				·
Semivolatites	•			
Dicyclopentadiene (GCMS)	V.	¥	.1.0	• 1.00
Dieldrin	0.00775	0,0040	0.0930	0.0160
Dieldrin (GCMS)	¥¥	¥N .	< 0.300	< 0.300
Diisopropyl Methylphosphonate (GCMS)	¥	K	. 1.00	. 1.00
Dithiane	\$	¥	\$	¥
Dithiane (GCMS)	4	42	007.0 >	< 0.400
Endrin	< 0.00471	< 0.00471	0.390	0.00659
Endrin (GCMS)	¥¥	M	< 0.500	< 0.500
Hexach lorocycl opentadiene	< 0.00137	0.0203	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	4	YN.	009.0 >	009.0 >
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	¥	K	< 0.300	< 0.300
Malathion (GCMS)	*	K	0.700	< 0.700
Parathion (GCMS)	YN	¥	× 0.900	× 0.900
Supone (GCMS)	¥	¥	009.0 >	009.0 >
Vapona (GCMS)	4	4	< 3.00	< 3.00
Volatiles				
1,1,1-Trichloroethane	YH.	KN	MA	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- $\mbox{Not Analyzed.}$ \mbox{R} -- $\mbox{Data did not meet quality control criteria and were$ rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

di circos	HA12244B	HA1225UB	NA122648	MA1227MB
	S CB	5	8	2
Opper	06/14/90	06/14/90	07/02/90	07/03/90
Analytes				
Z C C C C C C C C C				
COMPANY ACADAGA (Acadaga Acadaga Acada	**	¥	\$	¥
1, 1, 1, 1 toll of tight of the state of the	¥	VIII	¥	≨
	*	¥	\$	≨
	4	\$	≨	≨
1,1-Dichloroethane (GCMS)	¥	¥	#	¥
	4	ĭ	2	ş
וי ו-חוכעוסיסיפוויפויפ	\$	*	\$	≨
1,2-Dichloroethane	•	1	1	4
1,2-Dichloroethane (GCMS)	S :	:	i :	i 1
1,2-Dichloroethenes (cis & trans)	≦	4	1	S :
1,2-Dichloroethenes (cis & trans) (GCMS)	ş	4	4	š
	¥	\$	¥	\$
	*	¥	¥	¥
	*	≨	¥	¥
	*	¥	¥	¥
Carbon letrachioride (ucas)		1	*	\$
Chlorobenzene	Š	•	İ	
(SICE) anatomotivo (C	¥	YH	¥	ž
	*	¥ Z	¥	≨
Chlororor	<u>;</u>			

Reported values are accurate to three significant figures. Notes: Values are reported to microgram per gram.

< -- indicates that the target analyte was not detected at .

> -- indicates that the target analyte was detected at or or above the Certified Reporting Limit.

above the Maximum Reporting Limit.

 $\mbox{NA} \mbox{ --} \mbox{ Not Analyzed.}$ $\mbox{ --} \mbox{ Data did not meet quality control criteria and were$

3

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1224WB	HA1225WB	HA1226UB	HA12274
Depth	S CB	2	2 6	2 6
Date	06/11/90	06/11/90	07/02/90	07/03/90
Analytes				
Volatiles				
Chloroform (GCMS)	¥¥	\$	¥	4
Dibromochloropropane	KX	*	¥	¥
Dibromochloropropane (GCMS)	YN Yn	≨	< 0.300	< 0.300
Dimethyl Disulfide	W.	¥	¥	\$
Dimethyl Disulfide (GCMS)	¥ a	¥	¥	*
Ethyl Benzene	¥	ş	ž	\$
Ethyl Benzene (GCMS)	¥¥	¥	¥	\$
M-Xylene	¥¥	≨	¥	¥
M-Xylene (GCMS)	W.	¥	≨	≦
Methylene Chloride	¥	≨	¥	4
Methylene Chloride (GCMS)	¥	ş	¥	\$
Methylisobutyl Ketone	YM	\$	¥¥	¥
Methylisobutyl Ketone (GCMS)	¥8	≨	¥	¥
O,P-Xylene	¥	≨	ş	¥
O,P-Xylene (GCMS)	¥	ş	¥	≨
Tetrachloroethene	¥	¥	\$	\$
Tetrachloroethene (GCMS)	4	¥	¥	4

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

 \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample ID Depth Date	HA1224WB 5 cm 06/14/90	NA1225UB 5 CB 06/14/90	HA122648 5 cm 07/02/90	MA122748 5 cm 07/03/90
Analytes				
Volatiles		:	•	1
Toluene	¥	≨	≦	S :
Tolliene (SCNS)	4	≦	\$	¥
	¥	¥	≨	≨
Trichloroethere (GCMS)	¥	¥	1	¥

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA122848	HA1229WB	HA123048	NA1231UB
Depth	5 CB	5 CM	#O C	4 C C
Date Analytes	04/50/10	04/60/10	06/\$1/90	04/51/90
Wetals/Anions/General Chem				
Arsenic	< 2.50	< 2.50	< 2.50	3.26
Cachrium	< 1.20	< 1.20	· 1.20	· 1.20
Calcium	M	¥#	12600	4760
Chromium	12.3	17.3	17.6	23.2
Copper	12.0	12.9	11.5	20.9
lon	¥	¥	19600	25600
read	35.2	18.9	14.4	29.5
Magnesium	¥	M	4100	5010
Manganèse	¥	K N	278	230
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potassium	ş	4	4190	0079
Sodium	¥	¥	142	118
Zinc	82.1	53.2	47.8	87.1
Semivolatiles				
1,4-0xathiane	¥	¥	¥	¥
1,4-0xathiane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	0.0260	0.00472	< 0.00277	0.790
2,2-Bis(parachtorophenyt)-1,1,1-Trichtoroethane (DDI) (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122848	HA122948	HA123048	MA123148
	5 CB	E 5	20	8
	04/03/60	04/03/90	06/11/90	06/13/90
Analytes				
Seaivoletiles			,	
2 2.Bis/parachlorombanyl)-1 1-Dichloroethene (00E)	0.00675	< 0.00466	× 0.00466	6.13
2 2. piecharachioropheoul).1 1-Dichloroethene (DDE) (GCMS)	009.0 >	009.0 >	0.600	009.0 >
C. This contraction of the	42	¥#	¥	¥
A Children y marthy Sulfide (GDIS)	× 0.900	00.00	· 0.900	× 0.900
4-Chlorophenylmethyl Sulfone	4	¥	≦	≨
4-rhiorophaniaethyl Sulfane (GDBS)	< 0.300	< 0.300	< 0.300	< 0.300
4-chicachenci pethol Cul foxide	*	\$	¥1	¥
4-circo quieriy metrily control (CORS)	< 0.300	< 0.300	< 0.300	< 0.300
A table of the control of the contro	< 0.00211	< 0.00211	0.00719	< 0.00211
Aldrin (GCHS)	< 0.300	< 0.300	< 0.300	< 0.300
	< 0.300	< 0.300	< 0.300	< 0.390
	¥	¥	¥	¥
Deficient 12 2 11 hapter 2 5-dippe	¥	¥	4	¥
providents 2 to bester 2 5-diese (GCMS)	¥	Y.	¥	*
Chlordene	< 0.0230	< 0.0230	< 0.0230	< 0.0230
	· 5.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene	¥.	¥	≦	4

 ⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1228WB	HA1229UB	HA123048	HA123148
Date	02/03/90	04/07/0	06/14/90	06/13/90
Analytes				
Semivolatiles				
Dicyclopentadiene (GCMS)	· 1.00	. 1.00	. 1.00	. 1.00
Dieldrin	0.0184	0.0128	< 0.00181	0.130
Dieldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Diisopropyl Methylphosphonate (GCMS)	< 1.00	.1.00	.1.00	. 1.00
Dithiane	¥	¥	ş	¥.
Dithiane (GCMS)	007.0 >	007:0 >	< 0.400	< 0.400
Endrin	0.00511	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexachlorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	009.0 >	009.0 >	009.0 >	009.0 >
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Halathion (GCMS)	< 0.700	< 0.700	< 0.700	< 0.700
Parathion (GCMS)	00.00	< 0.900	× 0.900	00.00
Supona (GCMS)	0.600	009.0 >	009.0 >	009.0 >
Vapona (GCMS)	< 3.00	< 3.00	< 3.00	< 3.00
Volatiles 1,1,1-Trichloroethane	4	ž	ž	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122848	HA12294B	HA123048	MA12314B
Depth	S CM	5	200	5 CB
Date	04/03/40	07/03/90	06/14/90	06/13/90
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	¥#	¥	¥	¥
1,1,2-Trichloroethane	MA	¥	¥	¥
1,1,2-Trichloroethane (GCMS)	4	¥	¥	¥
1,1-Dichloroethane	W.	¥	¥	¥
1,1-Dichloroethane (GCMS)	¥H	4	H	¥
1,1-Dichloroethene	¥	≨	\$	\$
1,2-Dichloroethane	M	VN	¥	¥
1,2-Dichloroethane (GCMS)	¥ X	¥	¥	M
2	W.	¥	¥	¥
	Y2	¥	\$	¥
Benzene	VR	¥	ş	W
Benzene (GCMS)	YH	¥	¥	¥
Carbon Tetrachloride	VH.	¥	¥	¥
Carbon Tetrachloride (GCMS)	¥	¥	¥	¥.
Chlorobenzene	K)	¥	¥	¥
Chlorobenzene (GCMS)	¥	ş	¥	¥
Chloroform	¥	¥	¥	¥

- < -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA122848	HA12294B	HA123048	HA123148
Depth	S C#	5 CB	5	2
Date	04/03/90	04/03/90	06/14/90	06/13/90
Analytes				
Volatiles				
Chloroform (GCMS)	¥	ş	¥	*
Dibromochloropropane	A N	¥	¥	ş
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	YN	¥	¥	¥
Dimethyl Disulfide (GCMS)	4	Y	¥	4
Ethyl Benzene	¥	¥N	¥	¥
Ethyl Benzene (GCMS)	¥¥	¥	¥¥	¥
M-Xylene	¥#	¥	¥	¥
M-Xylene (GCMS)	4	¥	¥¥	¥
Methylene Chloride	4	¥.	¥.	¥
Methylene Chloride (GCMS)	*	¥¥	4	¥.
Methylisobutyl Ketone	¥	¥	¥	ş
Methylisobutyl Ketone (GCMS)	¥	¥	¥	¥
O,P-Xylene	4	¥	¥ N	≨
O,P-Xylene (GCMS)	YN	¥.	4 2	¥
Tetrachioroethene	YN	¥.	¥.	¥
Tetrachloroethene (GCMS)	YN .	¥N	Y.	¥

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample ID Depth Date	HA1228WB 5 cm 07/03/90	HA122948 5 cm 07/03/90	HA12304B 5 cm 06/14/90	HA1231WB 5 cm 06/13/90
Analytes				
Volatiles	ž	¥	¥	¥
Tallucine Tallucine	¥N	NA NA	¥	¥
Trichloroethene	W.	M	Y.	≨
Trichloroethene (GCMS)	¥	¥.	MA	¥

- indicates that the target analyte was not detected at
- or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did out meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1232VB	HA12334B	HA1234UB	HA123548
Depth	5 28	2 CB	2 C	S C
Date	06/14/90	06/18/90	06/12/90	07/03/90
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	< 2.50	2.76	< 2.50
Cadaiua	< 1.20	< 1.20	< 1.20	< 1.20
Calcium	2200	2260	14600	¥
Chromium	8.37	15.7	15.4	11.2
Copper	6.09	12.0	13.5	8.95
	13100	16800	20300	M
Lead .	14.7	20.6	19.1	16.4
Magnesium	2600	2650	0207	KA
Manganese	240	351	298	¥
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potassium	1570	3860	7560	¥
Sodium	65.4	68.2	116	¥
Zinc	45.4	47.2	53.7	36.6
Semivolatiles				
1,4-0xathiane	¥	≨	¥	≨
1,4-0xathiane (GCHS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	< 0.00277	< 0.00277	0.00657
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at . or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D Depth Depth Date Analytes	HA1232WB 5 cm 06/14/90	HA123348 5 cm 06/18/90	HA1234UB 5 cm 06/15/90	HA1235UB 5 cm 07/03/90
Semivolatiles 2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) 2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS) 4-Chlorophenylmethyl Sulfide 4-Chlorophenylmethyl Sulfide (GCMS) 4-Chlorophenylmethyl Sulfide	0.004660.0000.000NANANANANA	0.004660.600NANANANA	0.004660.600NA0.900NA1.900	0.004660.600NANANA
4-Chlorophenylmethyl Sulfone (GCMS) 4-Chlorophenylmethyl Sulfoxide 4-Chlorophenylmethyl Sulfoxide (GCMS) Aldrin Aldrin (GCMS)	0.300NA0.3000.002110.300	< 0.300 NA < 0.300 < 0.00211 < 0.300	< 0.300 NA < 0.300 0.00590 < 0.300	< 0.300 MA < 0.300 0.00480 < 0.300
Atrazine (GCMS) Benzothiazole Bicyclo [2,2,1] hepta-2,5-diene Bicyclo [2,2,1] hepta-2,5-diene (GCMS) Chlordane	< 0.300 NA NA NA < 0.0230	< 0.300 × NA	0.300NANANANA0.0230	0.300NANANA0.0230
Chlordane (GCMS) Dicyclopentadiene	× 2.00	× 2.00	< 2.00 NA	< 2.00 #A

Notes: Values are reported to microgram per gram.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed.
- R .. Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1232VB	HA1233WB	HA1234WB	HA123548
Depth	5 CM	5 cm	S C	8
Date	06/14/90	06/18/90	06/15/90	07/03/90
Analytes				
Seaivolatiles				
Dicyclopentadiene (GCMS)	< 1.00	< 1.00	۶ ۲	• 1.00
Dieldrin	< 0.00181	0.00545	0.00992	0.0332
Dieldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Diisopropyl Methylphosphonate (GCMS)	· 1.00	. 1.00	. 1.00	. 1.00
Dithiane	4	V V	NA N	¥
Dithiane (GCMS)	007.0 >	007.0 >	< 0.400	< 0.400
Endrin	< 0.00471	< 0.00471	< 0.00471	0.00993
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexach lorocycl opentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	009"0 >	009.0 >	009.0 >	009.0 >
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion (GCMS)	< 0.700	< 0.700	< 0.700	< 0.700
Parathion (GCMS)	< 0.900	0.900	< 0.900	0.00
Supone (GCMS)	009.0 >	009.0 >	0.600	009.0 >
Vapona (GCMS)	< 3.00	< 3.00	< 3.00	< 3.00
Volatiles 1,1,1-Trichloroethane	4	¥	¥	₹

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or
- above the Maximum Reporting Limit.

 NA -- Not Analyzed.

 R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	. HA1232WB	HA1233WB	HA123448	HA123548
Depth	5 cm	S cm	20	5
Date	06/14/90	06/18/90	06/12/90	07/03/90
Analytes				
Volatiles				
1,1,1-Trichloroethane (GCMS)	¥	¥	¥	¥
1.1.2-Trichloroethane	¥#	¥	¥	¥
1,1,2-Trichloroethane (GCMS)	YN.	\$	¥	¥
1,1-Dichloroethane	¥¥	¥	NA NA	¥
1,1-Dichloroethane (GCMS)	Y.	¥	\$	¥
1.1-Dichloroethere	¥	¥	¥	¥
1.2-Dichloroethane	YH.	¥.	¥	¥
1,2-Dichloroethane (GCMS)	YN.	¥	¥	¥
- 65	¥	¥	4	¥
1,2-Dichloroethenes (cis & trans) (GCMS)	¥	¥	¥	¥
Benzene	.	¥	¥	MA
Benzene (GCMS)	¥	¥	4	¥
Carbon Tetrachloride	¥	¥	¥	¥
Carbon Tetrachloride (GCMS)	YN.	ş	≨	\$
Chlorobenzene	YN.	¥	4	¥
Company of the Compan	¥	41	3	**
Culoropenzene (cumo)	Š	Ě	§ :	£ :
Chloroform	4	¥	¥	4

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA123248	HA12334B	HA1234WB	HA123548
Depth	5 CB	2 CB	5 CB	5 C
Date	06/14/90	06/18/90	06/15/90	04/03/90
Analytes				
Volatiles				
Chloroform (GCMS)	V.	¥	¥	¥
Dibromochloropropane	¥	¥	¥	≨
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Dimethyl Disulfide	¥.	¥	MA	W.
Dimethyl Disulfide (GCMS)	N	YH.	4	4
Ethyl Benzene	¥	¥	¥	¥
Ethyl Benzene (GCMS)	¥¥	¥#	44	¥#
M-Xyl ene	V.	¥	Y#	¥
M-Xylene (GCMS)	VZ.	¥	YN	¥
Methylene Chloride	YN .	¥1	YH.	4
Methylene Chloride (GCMS)	Ş	¥	¥	¥
Methylisobutyl Ketone	¥	¥#	MA	¥ N
Methylisobutyl Ketone (GCMS)	YN .	¥#	¥#	*
O,P-Xylene	¥	¥	¥	4
O,P-Xylene (GCMS)	YN.	4	VIII	Y.
Tetrachloroethene	4 2	¥	*	¥
Tetrachloroethene (GCMS)	₹2	4	¥	4

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at
 - > -- indicates that the target analyte was detected at or or above the Certified Reporting Limit. above the Maximum Reporting Limit.

rejected.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

HA123548 5 CM 07/03/90	;	≨	¥	¥	¥
HA1234MB 5 cm 06/15/90	;	≦	\$	≦	\$
HA123348 5 cm 06/18/90	,	≨	4	¥	¥
HA1232WB 5 cm 06/14/90		¥	¥	\$	¥
Sample 1D Depth Date Analytes	Volatiles	Toluene	Toluene (GCMS)	Trichloroethene	Trichloroethene (GCMS)

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- MA -- Mot Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1261S	HA12634B	NA1264UB	HA126548
Depth	30 cm	5 CB	2 6	2 6
Date	04/03/40	07/02/90	07/02/90	07/05/90
Analytes				
Metals/Anions/General Chem				
Arsenic	3.79	< 2.50	< 2.50	2.89
Cadhium	< 1.20	¥	4	4
Calcium	¥	¥#	1	\$
Chromium	31.3	¥	4	\$
Copper	21.7	¥	\$	1
Iron	¥	¥	\$	ž
Lead	32.4	¥	≦	≦
Magnesium	≨	¥	1	4
Manganese	≨	MA	≨	≦
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potessium	¥	¥	¥	\$
. Sodium	¥	¥8	4	4
2 inc	6.96	¥	4	≨
Semivolatiles				
1,4-0xathiane	≨	≨	4	
1,4-0xathiane (GCMS)	< 0.300	\frac{1}{2}	≦	
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	0.00364	< 0.00277	< 0.00277	
	< 0.500	\frac{1}{2}	≦	\$

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	MA1261S	MA1263UB 5 CM	NA1264UB 5 CB	NA1265UB 5 CB
Date	04/02/00	02/05/00	07/05/90	07/02/90
Analytes				
Senivolatiles				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	< 0.00466	< 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	¥		≨
4-Chlorophenylmethyl Sulfide	\$	¥		¥
4-Chlorophenyimethyl Sulfide (GCMS)	< 0.900	¥	¥	≨
4-Chlorophenylmethyl Sulfone	¥	¥		¥
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	\$	¥	¥
4-Chlorophenylmethyl Sulfoxide	¥#	≨	≨	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	4	¥	≨
Aldrin	< 0.00211	0.00414	0.00623	0.00320
Aldrin (GCMS)	< 0.300	4	¥	¥
Atrazine (GCMS)	< 0.300	4	¥	¥
Benzothiazole	¥	¥	*	¥
Bicyclo (2,2,1) hepta-2,5-diene	≨	¥	≦	¥
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥	¥	4	¥
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	< 2.00	4	ž	¥
Dicyclopentadiene	¥	¥	¥	¥

rej

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table El Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1261S	HA12634B	NA1264UB	MA1265WB
Depth	50 CM	C C C C C C C C C C C C C C C C C C C	02,002,000	00/60/20
Date	04/50/70	0//06/70	04/20/10	04/20/10
Albayyes				
Semivolatiles				
Dicyclopentadiene (GCMS)	.1.00	≨	¥	¥
Dieldrin	0.0461	0.0106	0.0245	< 0.00181
Dieldrin (GCMS)	< 0.300	Y.	¥	\$
Disopropyl Methylphosphonate (GCMS)	. 1.00	4	¥.	ş
Dithiane	4	*	¥	4
Dithiane (GCMS)	0.400	¥	ş	ž
Endrin	< 0.00471	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	¥ N	¥	4
Hexach lorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Mexachlorocyclopentadiene (GCMS)	< 0.600	¥	¥	¥
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	4	¥	\$
Malathion (GCMS)	< 0.700	¥	*	≨
Parathion (GCMS)	< 0.900 <	£	¥	≨
Supone (GCMS)	< 0.600	¥	¥	¥
Vapona (GCMS)	< 3.00	¥	¥	¥
Volatiles 1,1,1-Trichloroethane	¥	¥	¥	¥

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1261S	HA1263WB	HA1264UB	HA1265WB
Depth	30 cm	8 5 5	2 G	2 C
Date	02/03/90	04/05/00	07/05/90	07/05/90
Analytes			•	
Volatiles				
1,1,1-Trichloroethane (GCMS)	M	ş	¥	¥
1,1,2-Trichloroethane	¥	¥	¥	≨
1,1,2-Trichloroethane (GCMS)	ş	¥	¥	\$
1,1-Dichloroethane	¥.	¥	≨	¥
1,1-Dichloroethane (GCMS)	4	¥	ž	¥
1,1-Dichloroethene	¥	¥	¥	¥
1,2-Dichloroethane	¥#	¥	¥	≨
1,2-Dichloroethane (GCMS)	K	¥	¥	4
1,2-Dichloroethenes (cis & trans)	¥¥	¥	¥	≨
	YH.	¥	¥	¥
Benzene	\	¥	¥	¥
Benzene (GCMS)	Ş	¥	*	¥
Carbon Tetrachloride	≨	¥	4	≨
Carbon Tetrachloride (GCMS)	¥	¥	4	¥
Chlorobenzene	4	¥	\$	¥
Chlorobenzene (GCMS)	\$	M	¥	¥
Chloroform	\$	¥	\$	*

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- · · Data did not meet quality control criteria and were .MA -- Not Analyzed. R -- Data did not m rejraa

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA1261S	HA1263UB	HA1264UB	HA1265UB
Depth	30 CM	2 5	2 C B	8
Date	04/03/40	02/05/0	04/05/00	04/05/00
Analytes				
Volatiles	:			
Chloroform (GCMS)	*	\$	¥	¥
Dibronochtoropane	KA	¥	¥	¥¥
Dibromochloropropane (GCMS)	< 0.300	¥	¥	¥
Dimethyl Disulfide	¥	M	¥	¥
Dimethyl Disulfide (GCMS)	YN	¥	K	\$
Ethyl Benzene	YN	¥	¥	¥
Ethyl Benzene (GCMS)	YR.	¥	¥	¥
M-Xylene	YM.	¥	¥	¥4
M-Xylene (GCMS)	NA NA	Y.	¥	¥
Methylene Chloride	YN	¥.	ž	YH
Methylene Chloride (GCMS)	¥	K	¥	¥
Methylisobutyl Ketone	¥	¥	KA	¥
Methylisobutyl Ketone (GCMS)	AN	¥.	¥	M
O,P-Xylene	YN	¥	¥ X	Y
O,P-Xylene (GCMS)	YN	K	¥	¥
Tetrachloroethene	¥	¥.	Y.	*
Tetrachloroethene (GCMS)	¥¥	Y.	MA	4

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table El Surficial and Subsurface Soil Investigative Analytical Data

Depth Date	30 cm 07/03/90	5 cm 5 cm 07/02/90	5 cm 5 cm 07/02/90	67/02/90
Volatiles	Ş	\$	\$	ş
Toluene (GCMS)	*	¥ :	4	\$;
Trichloroethene Trichloroethene (GCNS)	\$ \$	\$ \$	4 4	5

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA12664B	HA126748	HA126948	HA127048
Depth	5 cm	5 CB	E C	2 C
Date	07/02/90	07/05/90	04/05/00	07/03/90
Analytes				
Metals/Anjons/General Chem				
Arsenic	< 2.50	< 2.50	< 2.50	< 2.50
Cadmium	¥	42	£	< 1.20
Calcium	¥	YN YN	≨	42
Chromium	¥.	¥N	¥	14.5
Copper	¥	Y X	¥	10.4
Iron	××	48	¥	¥
read	V.	42	\$	39.0
Magnesium	¥¥	¥	≨	ş
Manganese	V.	¥8	¥	4
Mercury	< 0.0500	0.0896	< 0.0500	< 0.0500
Potassium	¥	Y	Y X	≨
Sodium	¥	¥2	¥	*
Zinc	¥2	YH.	\$	55.6
Semivolatiles			•	
1,4-0xathiane	M	VN V	¥	¥
1,4-0xathiane (GCMS)	¥	4	¥	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	< 0.00277	0.00280	< 0.00277
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	¥	¥	¥N	< 0.500

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{NA} -- $\mbox{Not Analyzed.}$ \mbox{R} -- $\mbox{Data did not meet quality control criteria and were$ rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Semple 10	HA1266WB	HA1267WB	HA126948	HA127048
Depth	5 cm	5 cm	5 CB	2 CB
Date	02/05/90	04/05/00	07/02/90	04/03/40
Analytes				
Semivolatites				
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	0.00452	< 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	¥N	M	009.0 ×
4-Chlorophenylmethyl Sulfide	W	KN	¥	¥
4-Chlorophenylmethyl Sulfide (GCMS)	¥	¥	¥N	< 0.900 <
4-Chlorophenylmethyl Sulfone	¥	4	¥	£
4-Chlorophenylmethyl Sulfone (GCMS)	¥	¥	¥	< 0.300
4-Chlorophenylmethyl Sulfoxide	¥		¥	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	¥		K	< 0.300
Aldrin	< 0.00211	•	< 0.00211	0.00534
Aldrin (GCMS)	4		¥ `	< 0.300
Atrazine (GCMS)	¥2	¥	¥	< 0.300
Benzothiazole	¥	4	¥	
Bicyclo [2,2,1] hepta-2,5-diene	¥	4	¥	≨
Bicyclo [2,2,1] hepta-2,5-diene (GCMS)	¥	¥	K	4
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	¥	\$	¥	< 2.00
Dicyclopentadiene	¥	¥	¥	¥

re j:

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 1D	HA1266WB	HA126748	HA126948	HA12704B
Date	02/05/90	04/05/00 04/05/00	04/05/00	04/03/40
Analytes				
Senivolatiles				
Dicyclopentadiene (GCMS)	K	¥N.	\$. 1.00
Dieldrin	0.00741	0.00629	0.0124	0.00536
Dieldrin (GCMS)	4	MA	4	< 0.300
Diisopropyl Methylphosphonate (GCMS)	K	·	4	. 1.00
Dithiane	¥.	Y.	4	¥
Dithiane (GCMS)	¥	¥	¥N	< 0.400
Endrin	< 0.00471	< 0.00471	0.00509	< 0.00471
Endrin (GCMS)	YN	Y.	¥	< 0.500
Hexachlorocyclopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	¥	¥2	4	009.0 >
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	¥.	48	¥	< 0.300
Malathion (GCMS)	YN	44	4	< 0.700
Parathion (GCMS)	X	42	¥	× 0.900
Supone (GCMS)	¥.	¥	4	009.0 >
Vapona (GCMS)	¥	¥	¥	< 3.00
Volatiles 1,1,1-Trichloroethane	¥	¥	4	\$

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA126648	HA12674B	HA126948	HA127048
Depth	5 CH	25 CB	5 CB	5
Date	04/05/00	04/05/00	07/05/90	07/03/90
Analytes		٠		
Volatiles				
1,1,1-Trichloroethane (GCMS)	NA NA	¥¥	≨	≨
1,1,2-Trichloroethane	. AM	MA	≨	4
1,1,2-Trichloroethane (GCMS)	42	¥	≨	¥
1,1-Dichloroethane	Y.	NA NA	≨	4
1,1-Dichloroethane (GCMS)	¥#	YN	K	¥
1,1-Dichloroethene	¥	M	· ≨	\$
1,2-Dichloroethane	¥	YN	¥	¥
1,2-Dichloroethane (GCMS)	Y.	¥	¥	¥
1,2-Dichloroethenes (cis & trans)	Y4	¥	4	¥
	4	¥	¥	¥
Benzene	¥	¥	¥	4
Benzene (GCMS)	¥	\$	ş	¥
Carbon Tetrachloride	¥	¥	¥	¥
Carbon Tetrachloride (GCMS)	¥	≨	¥	M
Chlorobenzene	4	¥	¥	¥
Chtorobenzene (GCMS)	¥	ş	¥ I	¥
Chloroform	¥	M	¥1	¥

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed.
 R -- Data did not m

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10	HA126648	HA126748	HA126948	HA12704B
Depth	S CM	2 CB	2 6	S C8
Date	04/05/00	07/02/90	07/05/90	04/03/40
Analytes				
Volatiles				
Chloroform (GCMS)	Y.	4	¥	¥
Dibromochloropropane	KA	YN	¥	¥
Distromochioropropane (GCMS)	W	NA NA	¥	< 0.300
Dimethyl Disulfide	¥	48	¥	ş
Dimethyl Disulfide (GCMS)	VI	, AN	K	¥
Ethyl Benzene	¥#	¥.	¥	¥
Ethyl Benzene (GCMS)	H	¥	¥	₹
M-Xylene	NA	4	¥	¥
M-Xylene (GCMS)	YN	4	¥	¥.
Methylene Chloride	¥.	4	¥	¥
Methylene Chloride (GCMS)	¥	¥	¥	¥
Methylisobutyl Ketone	¥	VN	¥	¥
Methylisobutyl Ketone (GCMS)	¥	¥.	≨	¥
O,P-Xylene	¥	¥	¥	¥
O,P-Xylene (GCMS)	¥.	4	¥	¥
Tetrachloroethene	¥	4	¥	¥
Tetrachloroethene (GCMS)	NA NA	4	¥	W

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- NA -- Not Analyzed. R -- Data did not meet quality control criteria and were rejected.

Table E1 Surficial and Subsurface Soil Investigative Analytical Data

Sample 10 Depth	HA126648 5 cm	HA1267UB 5 cm	HA126948 5 cm	NA127048 5 cm
vate Analytes	04/25/10	04/20//0	01/02/90	04/03/90
Volatiles	4	4	\$	4
Toluene (GCMS)	≨ ≨	¥ ¥	£ £	\$ \$
Trichloroethene Trichloroethene (GCMS)	£ £	3 3	11	<u> </u>

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- \mbox{MA} -- Not Analyzed. \mbox{R} -- Data did not meet quality control criteria and were

Table E2 Surficial and Subsurface Soil GC/MS Analytical Data

Sample 1D	HA123748	HA12604B
Depth	5 cm	2 C
Date	06/18/90	02/03/90
	GC/MS OF	GC/MS OF
Analytes	9662140	2444
Netals/Anions/General Chem		
Arsenic	< 2.50	< 2.50
Cadmium	< 1.20	< 1.20
Calcium	2250	¥
Chromium	15.7	15.9
Copper	11.8	9.05
S. I	17000	Ş
peal	19.9	19.6
Magnesium	2690	¥¥
Manganese	356	¥
Mercury	< 0.0500	< 0.0500
Potessium	3870	\$
Sodium .	8.99	¥¥
Zinc	47.7	57.2
Sesivolatiles		
1,4-0xathiane (GCMS)	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	0.00718

rejected

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E2 Surficial and Subsurface Soil GC/MS Analytical Data

Sample 10	NA123748	HA126048
Depth	5 G	2 C
Date	06/18/90	04/03/90
	GC/MS of	GC/MS of
	NA123348	NA124448
Analytes		
Seaivolatiles		
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	< 0.500
2,2-Bis(parachlorophemyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	× 0.600	0.600
4-Chlorophenylmethyl Sulfide (GCMS)	× 0.900	< 0.900
4-Chlorophenylmethy! Sulfone (GCMS)	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300
Aldrin	< 0.00211	0.00361
Aldrin (GCMS)	< 0.300	< 0.300
Atrazine (GCMS)	< 0.300	< 0.300
Chlordane	< 0.0230	< 0.0230
Chlordane (GCMS)	< 2.00	< 2.00
Dicyclopentadiene (GCMS)	.1.0	• 1.00
Dieldrin	0.00443	0.0108
Dieldrin (GCMS)	< 0.300	< 0.300
Diisopropyl Methylphosphonate (GCMS)	· 1.00	. 1.00

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per gram.

- < -- indicates that the target analyte was not detected at
 - > -- indicates that the target analyte was detected at or or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

Sample 10	HA123748	KA126048
Depth	5 CF	20
Date	06/18/90	07/03/90
	GC/NS of	GC/MS of
	HA1233WB	MA1244WB
Semivolatiles	6 5 6 6 9 9	
Dithiane (GCMS)	007:0 >	007.0 >
Endrin	< 0.00471	0.00646
Endrin (GCMS)	< 0.500	< 0.500
Hexach lorocyclopentadiene	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	× 0.600	009.0 >
Isodrin	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300
Malathion (GCMS)	< 0.700	< 0.700
Parathion (GCMS)	× 0.900	× 0.900
Supona (GCMS)	° 0.600	009.0 >
Vapona (GCMS)	4 3.00	< 3.00
Volatiles		

< 0.300

< 0.300

Dibromochloropropane (GCMS)

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
- -- Data did not meet quality control criteria and were NA -- Not Analyzed. R -- Data did not m rejected

Table E3 Surficial and Subsurface Soil .

Duplicate Analytical Data

Sample 10	HAD9954B	HA123748	HA123848	HA1240UB
Depth	3 2	S CB	2	5
Date	02/54/89	06/18/90	06/18/90	06/18/90
	Dup of	Dup of	bup of	Pup of
	MA0994WB	HA123348	MA12014B	NA120948
Analytes		•		
Metals/Anjons/General Chem				
Arsenic	< 2.50	< 2.50	75.7	< 2.50
Cadhium	≰	< 1.20	¥	1
Calcíum	¥	2250	¥	4
Chronium	¥	15.7	¥	≨
Copper	4	11.8	ş	4
	¥	17000	*	4
lead	¥.	19.9	ş	¥
Magnesium	¥	2690	¥	¥
Managese.	¥	356	¥	¥
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Potessium	\$	3870	¥	ş
Sodium	¥	8.99	¥	¥
Zinc	4	47.7	¥ Z	. <u>¥</u>
Semivolatiles				
1,4-0xathiane	× 1.74	¥	\$	¥
1,4-Oxathiane (GCMS)	< 0.300	< 0.300	¥	¥

Reported values are accurate to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were

rejected.

Dup -- Duplicate

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample 1D	HA09954B	HA12374B	HA123848	NA1240UB
Depth	3 CB	. 8 CB .	20 05	25 6
Date	02/24/89	06/18/90	06/18/90	06/18/90
	Dup of	Dup of	Dup of	Out of
	HA0994uB	HA123348	HA120148	NA120948
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane.(DDI)	0.0198	< 0.00277	0.00911	0.0103
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	< 0.500	< 0.500	¥ 3	¥
2,2-8is(parachlorophenyl)-1,1-Dichloroethene (DDE)	0.00367	< 0.00466	99700'0 >	> 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 0.600	< 0.600	¥	¥
4-Chlorophenylmethyl Sulfide	07.4 >	¥	YN	¥
4-Chlorophenylmyl Sulfide (GCMS)	< 0.900	< 0.900	¥	¥
4-Chlorophenylmethyl Sulfone	< 9.01	W.	¥N	¥
4-Chlorophenyimethyl Sulfone (GCMS)	< 0.300	< 0.300	VH.	¥
4-Chlorophenylmethyl Sulfoxide	~	MA	Y#	¥¥
4-Chlorophenylmethyl Sulfaxide (GCMS)	< 0.300	< 0.300	42	*
Aldrin	0.0202	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	< 0.300	< 0.300	¥	¥¥
Atrazine (GCMS)	< 0.300	< 0.300	¥	\$
Benzothiazole	~ 2.0 4	≨	¥	\$
Chlordane	0.0515	< 0.0230	< 0.0230	< 0.0230

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or zhove the Maximum Reporting Limit.

MA .. Set Analyzed.

R -- Data did not meet quality control criteria and were rejected.

⁻ Du

Table E3 Surficial and Subsurface Soil
Ouplicate Analytical Data

Sample 10	HA0995UB	HA123748	HA123848	HA12404B
. Depth	3 CM	S CM	2 6	S CB
Date	02/54/89	06/18/90	06/18/90	06/18/90
	po dng	po dng	po de	Out of
	HA09944B	HA1233WB	HA1201WB	HA1209WB
Analytes				
Semivolatiles				
Chlordane (GCHS)	< 2.00	< 2.00	VN	NA NA
Dicyclopentadiene (GCMS)	.1.0	× 1.00	¥	NA NA
Dieldrin	0.210	0.00443	96800.0	0.00529
Dieldrin (GCMS)	< 0.300	< 0.300	¥	¥8
Diisopropyl Methylphosphonate (GCMS)	• 1.00	• 1.00	¥	¥
Dithiane	< 1.45	¥	M	*
Dithiane (GCMS)	007:0 >	007.0 >	¥	¥#
Endrin	0.0187	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	< 0.500	¥	¥¥
Hexach lorocyclopentadiene	< 0.00180	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	009.0 >	× 0.600	¥	¥
Isodrin	< 0.00110	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300	¥	¥¥
Malathion (GCMS)	< 0.700	< 0.700	¥	¥¥
Parathion (GCMS)	00.00	× 0.900	¥	¥

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Dup -- Duplicate

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample ID Depth Date	HA0995WB 3 cm 02/24/89	HA123748 5 cm 06/18/90	NA123848 5 cm 06/18/90	HA124048 5 cm 06/18/90
	Dup of HA0994uB	Dup of HA1233WB	Dup of NA120148	Dup of HA1209WB
Semivolatiles Supona (GCMS)	< 0.600	0.600	\{	¥
Vapona (GCMS)	· 3.00	< 3.00	¥	≨
Volatiles Dibromochloropropane	œ	¥	ş	¥
Dibromochloropropane (GCMS) Dimethyl Disulfide	< 0.300 < 3.12	< 0.300	¥ ¥	\$ \$

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - MA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
 - . . .

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample 10	HA1241WB	HA1242WB	HA126048	NA126848
Depth	5 CB	S CM	2 C	S C
Date	06/18/90	06/12/90	04/03/90	04/07/0
	Dup of	bup of	Dup of	bup of
	HA121748	HA122048	HA1244WB	HA1267UB
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	3.74	< 2.50	< 2.50
Cadhium	¥	KA	< 1:20	¥
Calcium	¥	¥.	4	≨
Chromium	¥	KA K	15.9	¥
Соррег	¥	¥	9.05	£
Iron	¥	¥	\$	¥
Lead	¥	¥.	19.6	≨
Magnesium	¥	YN YN	¥	≨
Manganese	¥	¥¥	¥	¥
Mercury	< 0.0500	. 00500 >	< 0.0500	0.111
Potessium	¥	¥	¥	¥
Sodium		¥#	¥	¥
Zinc	¥	43	57.2	₹
Semivolatiles				
1,4-Oxathiane	¥	V	¥	¥
1,4-0xathiane (GCMS)	¥¥	¥	< 0.300	ş

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Dup -- Duplicate

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample 1D	HA1241WB	HA1242WB	NA126048	HA1268UB
Depth .	S CM	S C#	5 CM	5
Date	06/18/90	06/15/90	07/03/90	07/02/90
	o dng	Dup of	po de	Dup of
	HA1217VB	HA12204B	HA12444B	HA126748
Analytes				
Semivolatiles				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	< 0.00277	0.00718	< 0.00277
	¥	YN	< 0.500	¥
	< 0.00466	< 0.00466	< 0.00466	99700.0 >
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	¥	¥8	0.600	≨
4-Chlorophenylmethyl Sulfide	¥.	¥ **	¥	4
4-Chlorophenylmethyl Sulfide (GCMS)	4	¥	< 0.900	¥
4-Chlorophenylmethyl Sulfone	¥.	K 2	¥	¥
4-Chlorophenylmethyl Sulfone (GCMS)	VN	Y 2	< 0.300	≨
4-Chlorophenylmethyl Sulfoxide	Y.	43	¥	¥
4-Chlorophenylmethyl Sulfoxide (GCMS)	¥.	4 2	< 0.300	4
Aldrin	< 0.00211	< 0.00211	0.00361	< 0.00211
Aldrin (GCMS)	¥	YN	< 0.300	\$
Atrazine (GCMS)	¥	¥	< 0.300	¥
Benzothiazole	¥.	≨	¥	¥
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.
- .. Dt ..te

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample ID	HA1241WB	HA1242WB	HA1260WB	HA126848
Deoth	5 cm	5 cm	5 CB	S C#
Date	06/18/90	06/12/90	04/03/40	07/05/90
	Dup of	o dng	Dup of	Dup of
	HA1217WB	HA1220WB	HA1244WB	HA1267WB
Analytes				
Semivolatiles				
Chlordane (GCMS)	¥	VN.	< 2.00	¥
Dicyclopentadiene (GCMS)	¥.	¥	· 1.00	KN N
Dieldrin	< 0.00181	< 0.00181	0.0108	0.00629
Dieldrin (GCMS)	¥	¥N	< 0.300	KA K
Diisopropyl Methylphosphonate (GCMS)	«	V V	< 1.00	4
Dithiane	¥	¥	¥	¥
Dithiane (GCMS)	¥	Y.	007.0 >	4 2
Endrin	< 0.00471	< 0.00471	0.00646	< 0.00471
Endrin (GCMS)	¥	¥	< 0.500	4
Hexachlorocyclope, tadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	¥	K	009.0 >	V.
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	¥	¥	< 0.300	W
Malathion (GCMS)	Y.	KX	< 0.700	V.
Parathion (GCMS)	Y.	¥N	00.00	¥

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at
 - or above the Certified Reporting Limit.
 - above the Maximum Reporting Limit. NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were

rejected. Dup -- Duplicate

Table E3 Surficial and Subsurface Soil Duplicate Analytical Data

Sample 10	HA1241WB	HA1242WB	HA126048	HA126848
Depth	5 cm	5 CM	S C#	S CM
Date	06/18/90	06/15/90	04/03/40	07/02/90
	Dup of	Dup of	Dup of	or of
	HA121748	HA1220MB	NA1244WB	HA126748
Analytes		•		
Semivolatiles				
Supona (GCMS)	¥2	4	009.0 >	¥
Vapona (GCMS)	Y X	¥.	< 3.00	¥
Volatiles				
Dibromochloropropane	¥¥	≨	¥	¥
Dibromochloropropane (GCMS)	43	¥	< 0.300	¥
Dimethyl Disulfide	¥	¥.	¥	¥

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> · · indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA .. Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Table E4 Surficial and Subsurface Soil Background Analytical Data

Sample 10	HA1236WB	HA1243WB	HA124418	HA126248
Depth	Б О С	6 cm	6 CM	8 5 9
Date	07/03/90	04/03/90	04/03/00	04/03/00
Analytes				
Metals/Anions/General Chem				
Arsenic	< 2.50	< 2.50	< 2.50	< 2.50
Cadhium	< 1.20	< 1.20	< 1.20	· 1.20
Chromium	14.9	11.4	14.1	17.1
Copper	8.14	6.61	7.95	9.35
Lead	13.0	10.6	18.2	19.3
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
2 inc	37.4	30.7	6.74	52.9
Semivolatiles				
1,4-0xathiane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.00277	< 0.00277	< 0.00277	0.00578
	< 0.500	< 0.500	< 0.500	< 1.500
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.00466	< 0.00466	> 0.00466	< 0.00466
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	009.0 >	009.0 >	009.0 >	009.0 >
4-Chlorophenylmethyl Sulfide (GCMS)	< 0.900	< 0.900	< 0.900	00.00
4-Chlorophenylmethyl Sulfone (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
4-Chlorophenylmethyl Sulfoxide (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Aldrin	0.00328	< 0.00211	< 0.00211	< 0.00211
Aldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300

Reported values are accurate to three significant figures.

- < -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

rejected.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were

Table E4 Surficial and Subsurface Soil Background Analytical Data

Sample 10	HA1236WB	HA1243WB	HA124418	HA12624B
Depth	0 CM	6 cm	85 9	8 5 9
Date	04/03/00	04/03/00	07/03/90	02/03/90
Analytes	. •			
Semivolatiles				
Atrazine (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Chlordane	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Chlordane (GCMS)	< 2.00	< 2.00	< 2.00	< 2.00
Dicyclopentadiene (GCMS)	< 1.00	* 1.00	. 1.00	• 1.00
Dieldrin	< 0.00181	< 0.00181	< 0.00181	0.00294
Dieldrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Diisopropyl Methylphosphonate (GCMS)	< 1.00	. 1.00	· 1.00	. 1.00
Dithiane (GCMS)	< 0.400	007.0 >	v 0.400	007:0 >
Endrin	< 0.00471	< 0.00471	< 0.00471	< 0.00471
Endrin (GCMS)	< 0.500	< 0.500	< 0.500	< 0.500
Hexach lorocyc lopentadiene	< 0.00137	< 0.00137	< 0.00137	< 0.00137
Hexachlorocyclopentadiene (GCMS)	009.0 >	× 0.600	0.600	× 0.600
Isodrin	< 0.00188	< 0.00188	< 0.00188	< 0.00188
Isodrin (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300
Malathion (GCMS)	< 0.700	< 0.700	< 0.700	< 0.700
Parathion (GCMS)	× 0.900	< 0.900	006.0 >	< 0.900
Supona (GCMS)	009.0 >	009.0 >	009.0 >	009.0 >

Notes: Values are reported to microgram per gram.

Reported values are accurate to three significant figures.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed. R -- Data did not meet quality control criteria and were reje

Table E4 Surficial and Subsurface Soil Background Analytical Data

Sample 10	HA1236WB	HA1243VB	HA1244WB	NA1262UB
Depth	0 cm	W 9	6 C B	8 5 9
Date	04/03/60	07/03/90	07/03/90	04/03/60
Analytes				
Semivolatiles		,	;	
Vapona (GCMS)	< 3.00	× 3.00	< 3.00	. s.w
Volatiles				,
Dibromochloropropane (GCMS)	< 0.300	< 0.300	< 0.300	< 0.300 <

Reported values are accurate to three significant figures.

above the Maximum Reporting Limit.

^{. &}lt; -- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.

NA -- Not Analyzed.

R -- Data did not meet quality control criteria and were rejected.

Appendix F
BIOTA ANALYTICAL DATA

LIST OF TABLES

Table No.

Fl	Biota Investigative Analytical Data
F2	Biota QA/QC Analytical Data
F3	Biota Duplicate Analytical Data
F4	Species of Possible Occurrence in Offpost Study Area

Table F1 Biota Investigative Analytical Data

Sample 1D Date	HA0982BA 11/18/88	на09638A 11/18/88	HA0984BA 11/18/88	HA1006BE 04/20/89	иа10098и 08/07/89	NA1010BM 06/07/89
Analytes						
٤						
Arsenic	< 0.250	< 0.250	< 0.250	< 0.2500 <	¥	¥
Mercury	< 0.0500	0.0518	0.155	< 0.0500	¥	¥
Semivolatiles	•					
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.132	< 0.132	< 0.132	< 0.1320	4	≨
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	< 0.0630	< 0.0630	¥	¥
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0130	≨	≨
Dieldrin	0.251	0.0264	0.235	0.0179	¥	¥
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0360	*	*
Volatiles						
p i branoch i oroprapene	¥	4	4	¥	< 0.195	< 0.195

Motes: Values are reported in micrograms per gram.
Reported values are accurate to three significant figures.
< -- indicates that the target analyte was not detected at

above the Maximum Reporting Limit. MA -- Not Analyzed.

Sample ID suffixes: 8A - fish, 88 - bovine, 8E - egg, 8F - fat, 8H - milk, 8P - poultry.

or above the Certified Reporting Limit.

Table F1 Biota Investigative Analytical Data

Sample ID Date	MA10128F 08/07/89	MA10138F 08/07/89	HA1017BP 09/07/89	HA103 688 10/19/89	NA103788 10/19/89	MA103 888 10/19/ 6 9
Analytes						
Arsenic	× 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
Mercury	< 0.0500	< 0.0500	0.0500 >	< 0.0500	< 0.0500	< 0.0500 <
Semivolatiles						
2.2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132
	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130
Dieldrin	0.0533	0.0784	0.0230	< 0.0180	< 0.0180	< 0.0180
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360
Voletiles						
Dibromochloropropene	¥	¥	¥	≨	NA NA	¥

Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or

above the Maximum Reporting Limit. ${\rm MA} \ \, \cdots \ \, {\rm Mot} \ \, {\rm Analyzed}.$

Sample 10 suffixes: BA - fish, 88 - bovine, BE - egg,

t, mit - x

Table #1 Biota Investigative Analytical Data

Sample ID Date	HA10398B 10/19/89	HA10408B 10/19/89	HA1042BP 09/07/89	HA10438P 09/07/89	HA10498 09/25/89	HA10508 09/07/89
nalytes						
etals/Anions/General Chem						
Arsenic	< 0.250	< 0.250	< 0.250	< 0.250	0.771	< 0.250
Wercury	< 0.0500	< 0.0500°	< 0.0500	< 0.0500	< 0.0500	< 0.0500
emivolatiles	. •					
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	0.106	< 0.0630	< 0.0630	< 0.0630
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130
Dieldrin	< 0.0180	< 0.0180	0.230	< 0.0180	< 0.0180	< 0.0180
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	· 0.0360
olatiles					-	
Dibramochlorapropene	¥	¥	¥	4	Ä	¥

⁻⁻ indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

Sample ID suffixes: BA - fish, 88 - bovine, 8E - egg,

BF - fat, BM - milk, BP - poultry.

Table F1 Biota Investigative Analytical Data

Sample ID Date	HA10518 09/23/89	HA1052B 09/13/89	HA1053B 09/12/89	NA10548 09/13/89	HA10558 10/24/89	HA10568 09/12/89
Analytes	. •					
Metals/Anions/General Chem	< 0.250	¥	1.36	< 0.250	< 0.250	< 0.250
Mercury	< 0.0500	4	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Semivolatiles	•				613	C1 0 7
2,2-Bis(perachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.132	< 0.152	< 0.132	× 0.132	. U. 136	
2.2-Bis(marachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630	× 0.0630
Aldein	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130
	0.571	< 0.0180	0.0230	< 0.0180	0.0327	0.0180
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360
Volatiles		- ;	;	:	;	3
Dibromochloropropene	4	¥	¥	Š	Š	į

8.

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures. < -- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.
> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed. Sample ID suffixes: BA - fish, BB - bovine, BE - egg,

Table F1 Biota Investigative Analytical Data

Sample ID Date	HA10578 09/13/89	HA10588 09/13/89	HA10598 09/23/89	NA10608 10/27/89	HA10618 09/22/89	NA10628 09/22/89
Analytes						
Wetals/Anions/General Chem			:	,	;	!
Arsenic	1.33	< 0.250	< 0.250	< 0.250	< 0.250 <	0.573
Mercury	0.0612	< 0.0500	< 0.0500	< 0.0500	0.0897	< 0.0500
Semivolatiles						
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (DDT)	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132	< 0.132
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130
Dieldrin	0.0211	< 0.0180	0.140	< 0.0180	< 0.0180	< 0.0180
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360
Votatiles						
Dibromochloropropane	¥N	¥	4	¥	¥	*

Reported values are accurate to three significant figures.

MA -- Not Analyzed.

Sample 10 suffixes: BA - fish, BB - bovine, BE - egg,

BF - fat, 84 - milk, 8P - poultry.

^{.-} indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

Table F1 Biota Investigative Analytical Data

Sample 1D Date	HA1063B 09/13/89	HA1064B 09/14/89	HA10658 09/23/89	HA12468 09/11/89	HA12478 09/11/89	NA12488 10/26/89
Analytes						
Metals/Anions/General Chem						
Arsenic	1.69	< 0.250	< 0.250	KN.	¥	< 0.250
Mercury	0.0612	< 0.0500	< 0.0500	¥.	¥	< 0.0500
Semivolatiles						
2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDI)	< 0.132	< 0.132	< 0.132	< 0.171	< 0.132	< 0.132
2,2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	< 0.0630	< 0.0819	< 0.0630	< 0.0630
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0169	< 0.0130	< 0.0130
Dieldrin	< 0.0180	< 0.0180	< 0.0180	< 0.0234	0.0282	< 0.0180
Endrin	< 0.0360	< 0.0360	< 0.0360	< 0.0468	< 0.0360	< 0.0360
Volatiles						
Dibromochloropene	¥	¥	YN	¥	¥	¥

Reported values are accurate to three significant figures. Notes: Values are reported in micrograms per gram.

< -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

Sample 1D suffixes: BA - fish, BB - bovine, BE - egg,

The second of th

Table F1 Biota Investigative Analytical Data

Sample 1D Date	HA12498 09/12/89	HA12498 10/24/89	на12508 09/12/89	HA1251B 09/23/89	HA12528 10/27/89	HA1253B 09/22/89
Analytes						
Metals/Anions/General Chem	**	< 0.250	1.85	< 0.250	< 0.250	1.02
Mercury	¥¥	< 0.0500	0.0767	0.0500	< 0.0500	< 0.0500
Semivolatiles						
2.2-Bis(parachlorophemyl)-1,1,1-Trichloroethane (DDT)	< 0.132	Y.	< 0.132	< 0.132	< 0.132	< 0.155
2.2-Bis(perachlorophenyl)-1,1-Dichloroethene (DDE)	¥ X	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0420
Aldrin	¥	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0210
Dieldrin	¥	< 0.0180	< 0.0180	0.0267	< 0.0180	< 0.0260
Endrin	NA	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0450
Volatiles Dibromochloropropene	ž	¥	4	1	¥	¥

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

c -- indicates that the target analyte was not detected at

or above the Certified Reporting Limit.
> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Anelyzed.

Sample ID suffixes: BA - fish, BB - bovine, BE - egg.

SF - fat, SM - milk, SP - poultry.

Table f1 Biota Investigative Analytical Data

						-
Metals/Anions/General Chem Araenic	0.965	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Semivolatiles 2.2-Ris(marachiormhervi)-1.1.1-Trichlormethane (DDI)	51.0 \$	\$1 U \$	50.0	50 0 5	31 0 7	CT1 0 >
2,2-Bis(perschlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630	< 0.0630
Aldrin	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130	< 0.0130
Dieldrin Endrin	0.0221 < 0.0360	< 0.0180 < 0.0360	< 0.0180 < 0.0360	< 0.0180 < 0.0360	< 0.0180 < 0.0360	< 0.0180 < 0.0360
Volatiles Dibramochloropropene	4	¥	ž	4	¥	¥
Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures. indicates that the target analyte was not detected at or above the Maximum Reporting Limit. indicates that the target analyte was detected at or above the Maximum Reporting Limit. MA Not Analyzad. Sample ID suffixes: BA - fish, BB - bovine, BE - egg,	gram. significant figures. was not detected at Limit. was detected at or 					

Table F1 Biota Investigative Analytical Data

Sample 10		HA1257BL
Date		01/23/90
Analytes		
Metals/Anions/General Chem	9 4 4 4 4 4 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Arsenic		MA
Mercury		¥
Semivolatiles		
2,2-Bis(parachlo	2,2-Bis(parachloropheny!)-1,1,1-Trichloroethane (DDI)	< 0.132
2,2-Bis(parachlor	2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630
Aldrin		< 0.0130
Dieldrin		0.380
Endrin		< 0.0360
Volatiles		
Dibramochloropropane	euedo	W
Hotes: Values Reporte	Values are reported in micrograms per gram. Reported values are accurate to three significant figures.	it figures.
. : •	indicates that the target analyte was not detected at	etected at
8	or above the Certified Reporting Limit.	

or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

MA -- Not Analyzed.

Sample 10 suffixes: BA - fish, BB - bovine, BE - egg, BF - fet, BM - milk, BP - poultry.

Sample 10	HA1011BM	HA1014BM	HA1015BM	HA1016BM
Date	08/07/89	08/0/80	08/07/89	08/01/89
	FB of	LS of	HS of	HS of
	HA1009BM	HA1009BM	HA1009BM	HA10098M
Analytes				
Volatiles				
Dibromochloropropane	< 0.195	0.396	2.95	2.53

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

-- indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

FB -- Field Blank

LS -- LOW Spike HS -- High Spike

Sample 10	HA09828AD	HA12558FD	
Date	11/18/88	01/02/90	
	bup of	Dup of	
	HA0982BA	HA1255BF	
Analytes			
Metals/Anions/General Chem			
Arsenic	< 0.250	< 0.250	
Mercury	< 0.0500	< 0.0500	
2 2-Bis/merschipmochamilt. 1 1-Trich pmocham (DDT)	5 ft 122	< 0.132	
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE)	< 0.0630	< 0.0630	
Aldrin	< 0.0130	< 0.0130	
Dieldrin	0.153	< 0.0180	
Endrin	< 0.0360	< 0.0360	

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
 - > -- indicates that the target analyte was detected at or above the Maximum Reporting Limit.
 - NA -- Not Analyzed.
- R -- Data did not meet quality control criteria and were rejected.

Sample 10 suffixes: 8A - fish, 8F - fat.

Sapping turtle Batter Newton Pollowbelly racer Batter Name Batter Repl., Ma, OW-5t/Ri, OW-L/R Batter Name Batter Batter Batter Batter, As ad Cachwhip Cachwhip Cachwhip Cachwhip By TP, Rpl., As ad Cachwhip By TP, Rpl., As ad Cachwhip By TP, Rpl., As ad By TP, Rpl., As ad Cachwhip By TP, Rpl., As ad By TP, Ma, In By TP, As ad By TP, Ma, In By MAP TEP, U By MAP TEP, As ad Creat Plains alink By MAP TEP, As ad By MAP TEP, As ad Creat Plains alink By TP, As an Creat Plains alink By TP, As ad Creat Plains alink By TP, As ad Creat Plains alink By TP, As ad Creat Plains alink By TP, As an Creat Plains alink Creat Plains alink By TP, As an Creat Plains alink Creat Plains Creat Plains Creat Plains Creat Plains By TP, As an Creat Plains By TP, As an Creat Plains C
Western hognose snake Western hognose snake Milk snake Coachwhip Northern water snake Bullanake Western Terrestrial garter Plains garter snake Red-sided garter snake Lined anake Western Painted turtle Western box turtle Western box turtle Western box turtle Western box turtle B short-horned lisard Western fence lisard B short-horned lisard B short-horned lisard Wastern fence lisard B short-horned lisard B short-horned lisard B short-horned lisard Western fence lisard B short-horned lisard B short-h
Western hognose snake Milk snake Coachwhip Northern water snake Bullanake Western Terrestrial garter Plains garter snake Red sided garter snake Eined anake Western Painted turtle Western Porned lisard B Short-horned lisard B B B B Short-horned lisard B B B B B B B B B B B B B B B B B B B
Milk snake Coachwhip Northern water snake Bullanake Western Terrestrial garter Plains garter snake Red sided garter snake Lined anake Western Painted turtle Western Painted turtle Western Painted turtle Western box turtle Western box turtle Western box turtle Western box turtle B short-horned lisard Wastern fence lisard B short-horned lisard B short-horned lisard B short-horned lisard B satern fence lisard B short-horned lisard B sho
Coachwhip Northern water snake Bullanake Bullanake Western Terrestrial garter Plains garter snake Red sided garter snake Lined anake Lined anake Western Painted turtle Western Porntel isard Western box turtle Bort-horned lisard Borthern leopard frog Bo
Northern water snake Bullanake Western Terrestrial garter Plains garter snake Red-sided garter snake Red-sided garter snake Lined anake Western Painted turtle Western box turtle Western box turtle Western box turtle Bort-horned lisard
Bullenake Western Terrestrial garter Plains garter snake Plains garter snake Red-sided garter snake Lined anake Western Painted turtle Western Painted turtle Western Painted turtle Boott-horned lisard Short-horned lisard Boott-horned lisard Boot
Western Terrestrial garter Plains garter anake Plains garter anake Red-sided garter snake Lined anake Western Painted turtle Western Painted turtle Western Painted turtle Boott-horned lisard Short-horned lisard Boott-horned li
Red-sided garter snake Red-sided garter snake Lined anake Western Painted turtle Western box turtle Western box turtle Western box turtle Worthern earles lisard Short-horned lisard Short-horned lisard Batern fence lisard Many-lined skink Great Plains akink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Byony soft-shelled turtle Byong horden Coyote Gray fox Red fox Multe tailed deer White tailed deer
Red-sided garter snake Lined anake Western Painted turtle Western Painted turtle Western box turtle B Short-horned lisard B Short-horned lisard B Short-horned lisard B Short-horned lisard Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake B Chorus frog Woodhouse's toad Woodhouse's toad B Plains spadefoot B B Plains spadefoot B B Chorus frog Worthern leopard frog B Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer White -tailed deer
Lined anake Western Painted turtle Western box turtle Western box turtle Short-horned lisard Short-horned lisard B Short-horned lisard B Short-horned lisard Many-lined stink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot B B Chorus frog Plains spadefoot Bullfrog Northern leopard frog B B Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer White tailed deer
Western Painted turtle Western box turtle Western box turtle Short-horned lisard Short-horned lisard Bastern fence lisard Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Woodhouse's toad Chorus frog Plains apadefoot Bullfrog Northern leopard frog Bullfrog White tailed deer White tailed deer
Western box turtle Western box turtle Northern earless lisard Bastern fence lisard Bastern fence lisard Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Bullfrog Swift fox Red fox Mule deer
Northern earless lisard Short-horned lisard Bastern fence lisard Bastern fence lisard Northern fence lisard Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattleanake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Bullfrog Swift fox Red fox Mule deer White tailed deer
Short-horned ligard Safern fence ligard Northern fence ligard Nany-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Bullfrog Northern leopard frog Swift fox Red fox Mule deer White tailed deer
ochlus Eastern fence lisard Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains apadefoot Bullfrog Northern leopard frog Bullfrog Northern leopard frog Swift fox Red fox Mule deer White tailed deer
Many-lined skink Great Plains skink Six-lined skink Spir-lined skink Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains apadefoot Bullfrog Northern leopard frog Proghorn Coyote Gray fox Red fox Mule deer White tailed deer
Many-lined skink Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog By Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer By White tailed deer
Great Plains skink Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Bronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer
Six-lined racerunner Spiny soft-shelled turtle Prairie rattlesnake Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer
Spiny soft-shelled turtle b Prairie rattlesnake B Great Plains toad B Woodhouse's toad B Chorus frog B Plains spadefoot B Bulfrog Northern leopard frog B Pronghorn Coyote Gray fox Swift fox B Mule deer B White tailed deer B
Tiger salamander Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer
Tiger salamander Great Plains toad Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White tailed deer
Tiger salamander Great Plains toad Woodhouse's toad Chorus frog Plains apadefoot Builfrog Northern leopard frog Pronghorn Coyote Gray fox Red fox Mule deer White tailed deer Builfrog White tailed deer Builfrog Builfro
Great Plains toad Woodhouse's toad Chorus frog Plains apadefoot Bullfrog Northern leopard frog Pronthern leopard frog Gray fox Swift fox Mule deer White tailed deer B
Woodhouse's toad Chorus frog Plains spadefoot Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer B
Chorus frog Plains spadefoot Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer B
Plains apadefoot B Bullfrog Northern leopard frog B Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer B
Bullfrog Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer
Northern leopard frog Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer
Pronghorn Coyote Gray fox Swift fox Red fox Mule deer White -tailed deer
Coyote B Gray fox B Swift fox B Red fox B Mule deer B White-tailed deer B
Gray fox Swift fox Red fox Mule deer White tailed deer B
Swift fox Red fox Mule deer White tailed deer B
ed deer B
B B
ed deer B
22

Observed Offpost		×	×							*						×		*	-	×		×					×		×	×								-				
Habitat	Ms, OW-Ri/St	SgP, MXP, TgP	Ali types (esp. MXP)	SgP, MXP, RpL, Ms, Ag	SgP, RpL	RpL, Ag, U		RpL, Me	SEP, MXP, TEP, Ag	. Ag	SgP, MXP, TgP, RpL		SgP, TgP	SgP, MXP, TgP	SgP, MXP, SS, RpL	SEP, MXP, TEP	SEP, MXP	SgP, RpL		RpL, Ms, Cr, U	RpL, Cr, U	All types	All types	SgP, MXP		د.	SgP, SgSD, TgP	RpL, Ms, Ag	8gP, MXP, U	RpL, U	SgP, TgP	MXP, TEP	MXP, RpL	RpL, Ms, Roadsides	Me, RpL		RpL, U	د		U, SEP, MXP, TEP		
Status	B Mis,	B Ser	B Vi	B SgF	B SgP	B Rpl	B RpL	B Rpl	B Ser	B SgF	B SgF	B SeP	B SgF	B Sg.	BSEF	BSE	BSE	BSEF	B RpL		B,3 Rp	•	B	E Ser	b RpL	B RpL	B Sgf	B Rp	BSE	B Rp	38 SE			_	W.	B SeP	B Rp	M RpL	n a		M Rol	
Common Name	Muskrat	Northern grasshopper mouse	Deer mouse	Western harvest mouse	Plains harvest mouse	Oposeum	Porcupine	Bobcat	Plains pocket gopher	Northern pocket gopher	Ord's kangaroo rat	Olive-backed pocket mouse	Plains pocket mouse	Silky pocket mouse	Hispid pocket mouse	Black-tailed jackrabbit	White-tailed jackrabbit	Desert cottontail	Eastern cottontail	House mouse	Norway rat	Striped skunk	Long-tailed wessel	Black-footed ferret	Mink	Spotted skunk	Badger	Raccoon	Black-tailed prairie dog	Fox squirrel	Spotted ground equirrel	13-lined ground squirrel	Rock squirrel	Least shrew	Masked shrew	Merriam's shrew	Big brown bat	Silver-haired bat	Little brown myotis	Small-footed myotis	Hoary bat	Meadow jumping mouse
Species	sibethicus	leucogaster	maniculatus	megalotis	montanus	virginiana	dorratum	rufus	bursarius	talpoides	ordii	fasciatus	flavescens	flavus	hispidus	californicus	townsendii	audubonii	floridanue	musculus	norvegicus	mephitis	frenata	nigripes	vison	putorius	taxus	lotor	ludovicianus	niger	spilosoma	tridecemlineatus	variegatus	parva	cinereus	merriami	fuscus	noctivagans	lucifugus	sublatus	cinerea	hudsonius
Genus	Ondatra	Onychomys	Peromyecus	Reithrodontomys	Reithrodontomys	Didelphis	Erethicon	Lynx	Geomys	Thomomys	Dipodomys	Perognathus	Perognathus	Perognathus	Perognathue	Lepus	Lepus	Sylvilacue	Sylvilague	Mus	Rettue	Mephitis	Mustela	Mustela	Mustela	Spilogale	Taxidea	Procyon	Cynomye	Sciura	Spermophilue	Spermophilue	Spermophilus	Cryptotie	Sorex	Sorex	Eptesicus	Lasionycteria	Myotis	Myotis	Nycteria	Zapus
Family	Cricetidae	Cricetidae	Cricetidae	Cricetidae	Cricetidae	Didelphida	Erethicontidae	Felidae	Geomyidae	Geomyidae	Heteromyidae	Heteromyidae	Heteromyidae	Heteromyidae	Heteromyidae	Leporidae	Leporidae	Leporidae	Leporidae	Muridae	Muridae	Mustelidae	Mustelidae	Mustelidae	Mustelidae	Mustelidae	Mustelidae	Procyonidae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Soricidae	Soricidae	Soricidae	Vespertilionidae	Vespertilionidae	Vespertilionidae	Vespertilionidae	Vespertilionidae	Zapodidae

ame	
Z	
2	ı

	l
	ļ
	ł
3	1

- 1
- 1
- 1
ı
ŀ
f
끸
-31
Ξ
의
_
201

Observed

Offpost Ag, U, RpL; All types SgP, Cr, W/OG, L Ms, RpL, Ri, L, Cr Is, Cr, Ag, Aq I, Ag, SgP, MXP GL, Ag, RpL, U tpL, Ms, L, Ri GL, Cr, Ag, U 3gP, Ag, RpL Me, RpL, Aq Ag, all types 4s, RpL, Ri RpL, Ri, L W/0G, L 4, RpL Iq, RpL Ag, RpL 4, RpL ರ State Black crowned night heron Red-breasted merganser Green-backed heron Semipalmated plover Rough-legged hawk Common merganser Common nighthawk Band-tailed pigeon Bohemian waxwing Hooded merganeer Green-winged teal erruginous hawk Great blue heron American bittern Common poorwill Northern shoveler American wigeon Red-tailed hawk Belted kingfisher Northern Pintail Blue-winged teal Northern Harrier Mountain plover Cedar waxwing Comm **Furkey vulture** Mourning dove Cinnamon teal Common crow Canada goose Snowy egret Cattle egret Golden eagle Horned lark Snow goose Rock dove Bald eagle Gadwall Mallard hawk Species platyrhynchoe etrepera canadensie caerulescens orachyrhynchos eucocephalus emipalmatus entiginosus yanoptera cucullatus veticorax mericana wainsoni edrorum nontanus nacroura serrator herodias ociferus lypeata triatus aKobus **Destris** yaneus arrulus minor nuttalii asciata lcyon iscore recca Shordeiles Phalaenoptilus Genus [aliaeetus kremophila Aerrus veticorax sombycilla ombycilla Sharadrius Charactrius Sharadrius Sotaurus Subulcus Sutorides Cathartes olumba olumba Tette Serve Serve Tente e OLVUS rdes rdes Caprimulgidae Cathartidae Ardeidae Bombycillidae Bombycillidae Caprimulgidae Charadriidae Charadriidae Family Accipitridae Accipitridae Accipitridae Alaudidae Alcedinidae Anatidae Charadriidae Accipitridae Accipitridae Accipitridae Columbidae Columbidae Columbidae Accipitridae Anatidae Ardeidae Ardeidae Ardeidae Ardeidae Ardeidae Corvidae

Genus	Species	Common Name	Status	Habitat	Offpost
	COLBX	Common raven	W GL, Ag		
Cyanocitta	cristata	Blue jay	R RpL, U,	γť	
1	pica	Black-billed magpie	R Ag, U		×
	phoeniceus	Red-winged blackbird	R Ms, Ag, GL	GL	
Aimophila	cassinii	Cassin's sparrow	P SEP		
Ammodramus	savannarum	Grasshopper sparrow	35		
Calamospisa	melanocorys	Lark bunting	B GL, Ag		
Calcarius	lapponicus	Lapland longspur	W GL, Cr		
Calcarius	mccownii	McCown's longspur	M Srp		
Calcarius	ornatus	Chestnut-collared longspur	M SEP. MXP	63	
Chondestes	Krammacue	Lark sparrow	B GL, RpL	. •	
Dendroice	coronata	Yellow warbler	M U, Ag, RpL	1 41	
Dendroice	pensylvanica	Chestnut-sided warbler		D.	
Dendroica	petchnia	Yellow warbler	B RpL, U, A	Ag	
Dendroica	striata	Blackpoll warbler	_	ָר.	
Jolichonyx	orygivorus	Bobolink	Ĭ		
Suphague	carolinus	Rusty blackbird	W RpL, Ag		
Suphague	cyanocephalus	Brewer's blackbird	•	D.	
Geothlypis	trichas	Common yellowthroat			•
cteria	virens	Yellow-breasted chat	B Ag, U		
cterus	Elpala	Northern oriole	B RpL, Ag, U	ם.	×
cterue	spurine	Orchard oriole	B RpL, Ag, U	D .	
nuco	hyemalia	Dark-eyed junco	n M		
Melospisa	Keorgiana	Swamp sparrow	W Ms, RpL		
Melospisa	lincolnii	Lincoln's sparrow	M, W.		
Melospisa	melodia	Song sparrow			
Mniotilta	varia	Black & white warbler	_		
<u>Molothrue</u>	ater	Brown-headed cowbird	B Ag, U, Ms	4.	
Operornie	tolmiei	MacGillivray warbler	M C, Ag		
Parula	americana	Northern parula	_		
Passerculus	sandwichensis	Savannah Sparrow	B GL, Me		•
Passerella	iliaca	Fox sparrow	W RpL		
Pheucticus	ludovicianus	Rose - breasted grosbeak	M RpL, Ag, U	ב ב	
Pipilo	erythrophthalum	Rufous-sided towhee	B RpL, U		
Poocetes	gramineus	Vesper sparrow	•		
Quiscalus	quiscula	Common grackle	B RPL, Ag. U	ם.	
Seiurus	aurocapillus	Ovenbird	B RPL, Ag, U	D.	
Seiurus	noveboracensis	Northern waterthrush	_	, U, Ms	
Setophaga	ruticilla	American redstart	B RpL		
	americana	Dickcissel			
Spisella	arborea	American tree sparrow	W RPL, GL, Ag, U	J, Ag, U	
3-11-11-					

Observed	•		×							•		×																															
Habitat	ם	γť	GL				Ms, Ag, RpL, U		GL. RpL, Ms. Ag, U	GL, Ag, Cr, SgP	,	Ag, RpL, SgP, U, GL				ָבָּי מ	, Ag							ę.	Ag, RpL, U, GL	SgP, RpL, GL, Ag		nmbe)	L, Ri, Cr, U (dumps)	L, Ri, Cr, U (dumpe)		75				Ť	D .	P. A.	, Ag	V		GL, U, Ag, RpL	
Status	M GL, Ag, U	B GL, U, Ag	R Ag, Cr, GL	Ī	M U, Ac	M Ag, U	B Ms, Ag	W U, Ag	W GL, Rp	R GL, Ag	M GL, Ma	R Ag, Rp	M GL	W RpL, U	B RpL	R RpL, Ag, U	R U, RpL, Ag	W U, SEP	B Ag, Aq	B Ag, Aq	B Ag, Aq	B Ag, Aq	В	_	W Ag, Rp	B SgP, R	_	W L, U (dumps)	_	_	M L, M				B RpL	R Ag, RpL	B Rol. Ag. U		B Rol. U. Ag	_			
Common Name	Clay-colored aparrow	Chipping sparrow	Western meadowlark	Orange-crown warbler	Tennessee warbler	Wilson's warbler	Yellow-headed blackbird	White-crowned sparrow	Merlin	Prairie falcon	Peregrine falcon	American kestrel	Common redpoll	Pine siskin	Lesser goldfinch	American goldfinch	House finch	Rosy finch	Cliff swallow	Barn swallow	Bank swallow	North. Rough-winged swallow	Tree swallow	Violet-green swallow	Northern shrike	Loggerhead shrike	Black tern	Herring gull	California gull	Ring-billed gull	Bonaparte's gull	Franklin's gull	Forster's tern	Common tern	Gray cathird	Northern mockingbird	Brown thrasher	Water pipit	Swainson's thrus	Townsend's solitaire	Mountain bluebird	Western bluebird	
Species	pallida	Dasserina	neglecta	celata	peregrina	Pusilla	xanthocephalue	leucophrys	columbarius	mexicanus	peregrinus	* parverius	flammes	pinus	pealtria	tristis	mexicanus	arctos	pyrrhonota	rustica	riparia	serripennis	bicolor	thalassina	excubitor	ludovicianue	niger	argentatus	californicus	delawarensis	philadelphia	pipixcan	foreteri	hirundo	carolinensis	polyglottos	rufum	spinoletta	ustulatus	townsendii	curricoides	mexicana	
Genus	Spisella	Spisella	Sturnella	Vermivora	Vermivora	Wilsonia	Xanthocephalus	Zonotrichia	Felco	<u> </u>	Palco	Pako	Carduelia	Carduelis	Carduelis	Carduelis	Carpodacus	Leucosticte	Hirundo	Hirundo	Riparia	Stelgidopteryx	Tachycineta	Techycineta	Lanius	Lanine	Chlidonias	Larne	Larie	Larm	Larus	Larus	Sterna	Sterns	Dumetella	Mimus	Toxostoma	Anthus	Catharus	Myadestes	Sielis	Sialia	
Family	Emberisidae	Emberisidae	Emberizidae	Emberizidae	Emberizidae	Emberisidae	Emberisidae	Emberisidae	Falconidae	Falconidae	Falconidae	Falconidae	Fringillidae	Fringillidae	Fringillidae	Fringillidae	Fringillidae	Fringillidae	Hirundinidae	Hirundinidae	Hirundinidae	Hirundinidae	Hirundinidae	Hirundinidae	Laniidae	Laniidae	Laridae	Laridae	Laridae	Laridae	Laridae	Laridae	Laridae	Laridae	Mimidae	Mimidae	Mimidae	Motacillidae	Muscicapidae	Muscicapidae	Muscicanidae	Muscicapidae	

Observed Officest		×			×	×						*																															
Habitat	RpL, Ag	Ag, U, RpL	RpL, U, Ag	U, RpL	n ::	Ms, L	W/OG, Ms, L, U	W/OG, Ms, Cr	Cr, Ag	Ag, RpL	Ag, RpL	Ag, Cr, RpL		Ag, RpL, U	U, RpL		L, Ri, Ms	Ms, L	Ms, L	Ms, L	Ms, L	Me	Ms	L, Me, W/OG	L, Ms, W/OG	rgP, SgP, Cr	W/0G, L, s	, Ms, W/0G	L, Ms, Cr, W/0G	L, W/0G	L, Ma, W/OG	L, Ma, W/OG	Ms, L, W/OG	GL, Ms, W/OG, Ag	L, Ms, W/OG, Cr	C, W/OG, Ma	SgP, Cr.Wheat, Ms, L, W/OG	L, Ri, Ms, W/0G	Ms. L. Ri, W/OG		U. RoL	V _d	
Status	X	•	_	_	R,I A	2	¥ ¥		N,I	•		R,I A	_	•			B	×	2		×	æ	×	×	8	b T	×	X L	X L	Z	Z	Z	X	<u>ح</u>	Z	Z	S Z	X					
Common Name	Eastern bluebird	American robin	Black-capped chickadee	Mountain chickadee	House sparrow	American White pelican	Northern phalarope	Wilson's phalarope	Chukar	Scaled quail	Northern bobwhite	Ring-necked pheasant	Northern flicker	Red-headed woodpecker	Downy woodpecker	Hairy woodpecker	Western grebe	Horned grebe	Eared grebe	Pied-billed grebe	American coot	Sora	Virginia rail	Black-necked stilt	American avocet	Upland sandpiper	Sanderling	Stilt sandpiper	Western sandpiper	Pectoral sandpiper	Least sandpiper	Semipalmated sandpiper	Willet	Common snipe	Long-billed dowitcher	Marbled godwit	Long-billed curlew	Lesser yellowlegs	Greater yellowlegs	Solitary sandpiper	Brown creeper	Spotted sandpiper	
Species	gialis	migratorius	atricapillus	gambeli	domesticus	erythrorhynchos	lobatus	tricolor	chukar	squameta	virginianus	colchicus	Puratus	erythrocephalus	Dubescens	villosus	occidentalis	auritus	nigricollia	podiceps	americana	carolina	limicola	mexicanus	americana	longicauda	u qle	himantopue	mauri	melanotos	minutilla	Pusilla	semipalmatus	Kallinako	scolopaceus	fedon	americanus	flavipes	melanoleuca	solitaria	americana	macularia	
Genus	Sialia	Turdue	Parue	Parus	Passer	Pelecanus	Phalaropus	Phalaropus	Alectoris	Callipepla	Colinus	Phasianus	Coleptes	Melanerpes	Picoides	Picoides	Aechmophorus	Podicepe	Podicepe	Podilymbus	Fulica	Porsana	Rallus	Himantopus	Recurvinostra	Bertramia	Calidria	Calidrie	Calidrie	Calidrie	Calidrie	Calidrie	Catoptrophorus	Gallinago	Limnodromus	Limosa	Numenius	Trings	Trings	Trings	Certhia	Actitis	
Family	Muscicapidae	Muscicapidae	Paridae	Paridae	Passeridae	Pelecanidae	Phalaropodidae	Phalaropodidae	Phasianidae	Phasianidae	Phasianidae	Phasianidae	Picidae	Picidae	Picidae	Picidae	Podicipedidae	Podicipedidae	Podici pedidae	Podici pedidae	Rallidae	Rallidae	. Rallidae	Recurvirostridae	Recurvirostridae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Scolopacidae	Sittidae	Solopacidae	

Observed Offpost				×			×												
Habitat	GL, Ms, Ag	RpL, Ag	GL, Rodent burrows	Ag, RpL	RpL, Ag, U	RpL, Ag, U	Ag, RpL, U	Ma, Aq, Ag	Ms	Ag	RpL	Ag, GL, U, RpL	Ag, RpL, U	Ag, RpL, U	Ag, RpL	Ag, RpL, U, Buildings	מ	RpL, Ag, U	Ag, U
Status	æ	~	æ	æ	æ	జ	R,I	Σ	æ	Z	Σ	æ	æ	æ	م	x	æ	æ	æ
Common Name	Short-eared awl	Long-eared owl	Burrowing owl	Great horned owl	Eastern screech owl	Western screech owl	Starling	White-faced ibis	Long-bill marsh wren	Olive-sided flycatcher	Willow flycatcher	Say's phoebe	Eastern kingbird	Western kingbird	Cassin's kingbird	Common barn owl	Warbling vireo	Red-eyed vireo	Solitary vireo
Species	flammeus	otus	cunicularia	virginianus	asio	kennicottii	vulgaris	chihi	palustris	borealis	traillii	SAYA	tyrannus	verticalis	vociferans	alba	Kilvus	olivaceus	solitarius
Genus	Asio	Agio	Athene	Bubo	Otas	Otas	Sturmus	Plegadia	Cistothorus	Contopus	Empidonax	Savornie	Tyrannus	Tyrannus	Tyrannus	Tyto	Vireo	Vireo	Vireo
Family	Strigidae	Strigidae	Strigidae	Strigidae	Strigidae	Strigidae	Sturnidae	Threskiorniithids.	Troglodytidae	Tyrannidae	Tyrannidae	Tyrannidae	Tyrannidae	Tyrannidae	Tyrannidae	Tytonidae	Vireonidae	Vireonidae	Vireonidae

Status:

B = definite breeder
b = likely breeder
E = endangered
G = game
I = introduced
M = migrant
n = non-breeder
R = resident
W = winter visitor

Habitat Type:

GL = grassland

SgP = short-grass prairie

GG = cactus/grassland

Sg/SD = shortgrass/semi-desert

MXP = mixed grass prairie

20000,350.10 - RIA 0808102191

TgP = tallgrass plains
Ms = marshes, bogs
W/OG = wet open ground
OW-Sk/Ri, Ri = open water (rivers/streams)
OW-L/R, L = lakes/reservoirs
Ag = agricultural areas
Gr = croplands
U = urban
RpL = riparian lowland
In = Intermittant ponds/lakes/streams
ad = aand dunes
cl = cliff/dirt bank/exposed bedrock

References: Environmental Science and Engineering, Inc. (ESE). 1989. Biota Remedial Investigation Final Report.
Colorado Division of Wildlife (CDOW). 1982. Colorado Reptile and Amphibian Distribution Latilong Study. G. Hammeson and D. Langlois, Eds. CDOW Nongame Section.

Appendix G

COLORADO DEPARTMENT OF HEALTH SURFICIAL SOIL ANALYTICAL DATA

Letter dated June 2, 1989, from Mr. Jeff Edson of CDH to Mr. Connally Mears of EPA Region VIII, transmitting analytical results for offpost surficial soils collected immediately north of RMA. 20000,350.10 (1) - APX-G-AD.RIA 1028102991

STATE OF COLORADO

COLORADO DEPARTMENT OF HEALTH

4210 East 11th Avenue Denver, Colorado 80220 Phone (303) 320-8333

Roy Romer .Governor

Thomas M. Vernon, M.D. Executive Director

Rec. 3/13/90

June 2. 1989

Mr. Connally Mears. 8HWM-SR U. S. EPA, Region VIII One Denver Place 999 18th Street. Suite #500 Denver, CO 80202-2413

Re: Offpost Surficial Soil Sampling North of RMA

Dear Mr. Mears:

Attached are the data for the CDH surficial soil samples collected earlier this year north of RMA at various residences in the vicinity of 96th Avenue and Peoria Street. Also enclosed is a copy of the Chain of Custody Record. a narrative describing sample locations, and a sample location map.

Two errors have been noted on the lab results from Hagar Laboratories (Report on Service Number 40289EN, March 20, 1989). After a cross-check with the field notes and chain of custody records, it was discovered that the lab misread two sample numbers. The first correction changes sample number SMAL5WB-CDH (Table 4) to SMAL4WB-CDH. The second correction changes sample number LAMB1WB-CDH (Table 8) to LAMB4WB-CDH. In addition, note that samples WERT2WB-CDH and WERT3WB-CDH are colocated duplicates and WERT-TB is a field blank.

CDH is currently calculating risks to the offpost residents exposed to contaminants identified in this sampling. Accordingly, CDH requests that before any agency of the United States or Shell Oil releases calculated risk determinations to the public, a meeting be held to discuss this issue.

Sincerely,

Jeff Edson

RMA Coordinator

Hazardous Materials and

Waste Management Division

/cf

TABLE 1

•				
Sample Number	Hager Reference #	Analysis C	oncentration (mg/kg)	Detection Limit (mg/kg)
SMAL1WB	AA~58148	arsenic	7	
	W-30140	cadmium	1.0	•
HA0989WB			20	
		copper chromium	14	
		lead	60	0.00
		mercury	ND	0.02
		selenium	ND	8
•		zinc	140	
		C	oncentration	Detection
			(ug/kg)	Limit
				(ug/kg)
		alaba Buc	170	10
		alpha-BHC	ND	10
		beta-BHC	ND	10
		delta-BHC	ND	10
		gamma-BHC (Lindar		10
		heptachlor	ND	10
		aldrin	LT(10)	
		isodrin	מא	10
		heptachlor epoxid		10
		a-endosulfan	מא	10
		dieldrin	90 .	
		4,4'-DDE	ND	10
		endrin	מא	10
		b-endosulfan	מא	10
		4,4"-DDD	ND	10
		endosulfan sulfat		100
		4,4'-DDT	ND	10
	•	methoxychlor	ďΩ	1000
		alpha-chlordane	ND	10
		gamma-chlordane	מא	10
		tozaphene	ND	1000
		endrin aldehyde	ND	100
		aroclor-1016	ND	500
•		aroclor-1221	ND	500
,		aroclor-1232	ND	500
		aroclor-1242	ND	500
		aroclor-1248	ND	500
		aroclor-1254	ND	500
		aroclor-1260	ND	500

TABLE 2

Sample Number	Hager Reference #	Analysis C	oncentration (mg/kg)	Detection Limit (mg/kg)
HAOGOWB	AA-58149	arsenic cadmium copper chromium lead mercury	7 LT(1.0) 20 12 50 ND	0.02
		selenium zinc	LT(8) 120	
		c	oncentration (ug/kg)	Detection Limit (ug/kg)
	·	alpha-BHC	ND	10
		beta-BHC	ND	10
		delta-BHC	ND	10
		gamma-BHC (Linda:		10
•		heptachlor	ND	10
		aldrin	ND	10
		isodrin	ND	10
•		heptachlor epoxi	de ND	10
•	•	e-endosulfan	ND	10
		dieldrin	40 .	
		4,4'-DDE	שמ	70
		endrin	פא	10
•		b-endosulfan	ND	10
	-	4,4'-DDD	ďΩ	10
		endosulfan sulfa		700
	•	4,4'-DDT	120	1000
		methoxychlor alpha-chlordane	ДИ ДИ	1000
	·	gamma-chlordane	מא מא	10
		toxaphene	מא	1000
		endrin aldehyde	סא סא	100
		aroclor-1016	סא	500
		aroclor-1221	סא	500
•		aroclor-1232	ND	500
•		aroclor-1242	ďИ	500
		aroclor-1248	ИĎ	500
•		aroclor-1254	ИD	500
•		aroclor-1260	ND	500

TABLE 3

Sample Number	Hager Reference #	Analysis (Concentration (mg/kg)	Detection Limit (mg/kg)
SMAL3WB-CDH	AA-58150	arsenic cadmium	5 LT(1.1)	
CDH only		copper chromium	10 10	
•		lead mercury selenium	50 หD หD	0.02 8
		zinc	80	
		C	concentration (ug/kg)	Detection Limit (ug/kg)
•		alpha-BHC	ND	10
		beta-BHC	ND	10
		delta-BHC	מא	10
		gamma-BHC (Linda heptachlor	ne) ND ND	10 10
		aldrin	LT(10)	10
		isodrin	ND	10
		heptachlor epoxi		10
		a-endosulfan	ND	10
		dieldrin	50 .	
		4,4'-DDE	ND	10
		endrin	ND	10
	•	b-endosulfan	ND	10
		4,4°-DDD	ND	10
		endosulfan sulfa		100
		4,4'-DDT	ND	10
		methoxychlor	ND	1000
		alpha-chlordane	אס	10
		gamma-chlordane tomaphene	מא	10
		endrin aldehyde	ND ND	1000
		aroclor-1016	ND	500
		aroclor-1221	מא	500
•		aroclor-1232	· ND	500
		aroclor-1242	ND	500
		aroclor-1248	. ND	500
	•	aroclor-1254	ND	500
,		aroclor-1260	ND	500

TABLE 4

Sample Number	Hager Reference #	Analysis Co	oncentration (mg/kg)	Detection Limit (mg/kg)
SMALSWB-CDH)	AA-58151	arsenic	4	
	W-20121	Cadmium	LT(1.0)	
C4D 3/22		copper	10	
1/22		chromium	11	
31-		lead	30	
		mercury	ND	0.02
		selenium	LT(8)	•
CDH only		zinc	50	
		Co	oncentration (ug/kg)	Detection Limit (ug/kg)
	•	alpha-BHC	מא	10
		beta-BHC	מא	10
	•	delta-BHC	ND	10
	•	gamma-BHC (Lindan		10
		heptachlor	מא	10
		aldrin	LT(10)	
		isodrin	מא	10
	•	heptachlor epoxid	e ND	10
		e-endosulfan	ИD	10
		dieldrin	70 .	
		4,4'-DDE	מא	10
		endrin	LT(10)	
		b-endosulfan	ND	10
	-	4,4'-DDD	מא	10
		endosulfan sulfat		100
		4,4'-DDT	ND	10
		methoxychlor	ND	1000
•		alpha-chlordane	סמ	10
		gamma-chlordane	ND	10
		toxaphene	ND	1000
		endrin aldehyde	מא	100
		aroclor-1016	מא	500
•		aroclor-1221	ND	500
		aroclor-1232	ND	500
	•	aroclor-1242	מא	500
	٠.	aroclor-1248	ДИ .	500
		aroclor-1254	ND	500
		aroclor-1260	ND	500

TABLE 5

Sample Number	Hager Reference #	Analysis Co	ncentration (mg/kg)	Detection Limit (mg/kg)
OHLE3WB-CDH	AA-58152	arsenic	10	
		cadmium	LT(1.1)	
and note		Copper	10	
CDH Only		chromium	17	
•		lead	20	
		mercury selenium	ND - ND	0.02
		zinc	- KD 50	. 4
		2-14-	30	
		Co	ncentration	Detection
			(ug/kg)	Limit
				(ug/kg)
		alpha-BHC	100	10
		beta-BHC	DN D	10 10
		delta-BHC	סא	10
		gamma-BHC (Lindan		10
		heptachlor	ND	10
		aldrin	LT(10)	
		isodrin	ND	10
		heptachlor epoxide	e ND	10
		a-endosulfan	MD	10
		dieldrin	10 .	
		4,4'-DDE	ND	10
		endrin	מא	10
		b-endosulfan	ND	10
		4,4'-DDD endosulfan sulfate	ND	10
		4,4'-DDT	·	100
		methoxychlor	ND ND	10 1000
		alpha-chlordane	מא	10
	·	gamma-chlordane	ND	10
•		toxaphene	מא	1000
		endrin aldehyde	ND	100
		eroclor-1016	מא	500
		eroclor-1221	ND	500
•		aroclor-1232	ND	500
•		aroclor-1242	ND	500
	• .	aroclor-1248	ND	500
		eroclor-1254	ND	500
		aroclor-1260	ND	500

TABLE 6

	•	CABLE U	,	
Sample Number	Hager Reference #	Analysis C	concentration (mg/kg)	Detection Limit (mg/kg)
OHLE4WB-CDH	AA-58153	arsenic cadmium copper	7 LT(1) 10	
Man lim		chromium	13	
CDH only		lead	20	
•		mercury	ND	0.02
		selenium	ИD	15
		zinc	40	
		C	Concentration	Detection
			(ug/kg)	Limit (ug/kg)
		alpha-BHC	ND	10
		beta-BHC	ND	10
		delta-BHC	ND	10
		gamma-BHC (Linds	ane) ND	10
		heptachlor	מא	10
		aldrin	LT(10)	_
		isodrin	ND	10
		heptachlor epox:	ide ND	10
		a-endosulfan	ND	10
		dieldrin	20	
		4,4'-DDE	מא	10
		endrin	מא	10
		b-endosulfan	ND	10
		4.4'-DDD	ND	10
	-	endosulfan sulf	ate ND	100
,		4,4'-DDT	ND	10
		methoxychlor	ND	1000 .
		alpha-chlordane	ďΩ	10
		gamma-chlordane	ND	10
		toxaphene	ND	1000
		endrin aldehyde	מא	100
		aroclor-1016	ND	500
		aroclor-1221	ND	500
•		aroclor-1232	ND	500
•		aroclor-1242	ND	500
•		aroclor-1248	. ND	500
		aroclor-1254	ND	500
•	•	aroclor-1260	ND	500

TABLE 7

Sample Number	Hager Reference #	Analysis C	oncentration (mg/kg)	Detection Limit (mg/kg)
Had 993NB	AA-58154	arsenic cadmium copper chromium	9 1.1 20 15	
		lead mercury selenium zinc	70 ND ND 110	0.02 8
		C	oncentration (ug/kg)	Detection Limit (ug/kg)
		alpha-BHC	ND	10
	•	beta-BHC	ND	10
		delta-BHC	ИD	10
		gamma-BHC (Linda:	ne) ND	10
		heptachlor	מא	10
		aldrin	ИD	10
		isodrin	ND	10
		heptachlor epoxic	e LT(10)	
		e-endosulfan	ND	10
		dieldrin	40	
		4,4'-DDE	ND -	10
		endrin	ND	10
		b-endosulfan	ND	10
		4,4'-DDD	· ND	10
		endosulfan sulfat	ce ND	100
		4,4'-DDT	ND	10
		methoxychlor	ND	1000
		alpha-chlordane	40	•
	•	gamma-chlordane	20	
_		toxaphene	ИD	1000
		endrin aldehyde	ND	100
		aroclor-1016	מא	500
·	•	aroclor-1221	ИD	500
		aroclor-1232	ND	500
	• .	aroclor-1242	ND	500
•		aroclor-1248	ND	500
•		aroclor-1254	ND	500
		aroclor-1260	ND	500

TABLE 8

Sample Number Hager Reference # >> LAMBYWB-coH	Analysis Co	ncentration (mg/kg)	Detection Limit (mg/kg)
LAMBIWB-CDH AA-58155	arsenic cadmium copper chromium	9 1.0 10 LT(30)	
CDH only	lead mercury selenium zinc	20 ND ND 90	0.02 8
	Co	ncentration (ug/kg)	Detection Limit (ug/kg)
•	alpha-BHC	ND	10
	beta-BHC	ND	10
	delta-BHC	מא	10
•	gamma-BHC (Lindane		10
	heptachlor	ND	10
	aldrin	LT(10)	
	isodrin	מא	10
•	heptachlor epoxide		10
	a-endosulfan	ND	10
	dieldrin	10 .	
	4,4'-DDE	20	
	endrin	LT(10)	
	b-endosulfan	ИD	10
•	4,4'-DDD endosulfan sulfate	ND	10
	4.4'-DDT	ND 140	100
	methoxychlor	ND	1000
	alpha-chlordane	ND	10
·	gamma-chlordane	ND	îo
· -	Toxaphene	ND	1000
	endrin aldehyde	ND	100
•	aroclor-1016	ND	500
	aroclor-1221	ND	500
	aroclor-1232	מא	500
	aroclor-1242	ND	500
•	aroclor-1248	ND	500
	aroclor-1254	ND	500
	aroclor-1260	ND	500

TABLE 9

Sample Number	Hager Reference #	Analysis C	Concentration (mg/kg)	Detection Limit (mg/kg)
LAMB5WB-CDH	AA-58156	arsenic	6	
mr. 10240 0011	741-30230	cadmium	ИD	0.9
		copper	10	
cottonly		chromium	9	
Cynond		lead	10	
		mercury	ND	0.02
	•	selenium	ND	14
		zinc	30	
		C	concentration (ug/kg)	Detection Limit
				(ug/kg)
		alpha-BHC	ND	10
		beta-BHC	מא	10
		delta-BHC	מא	10
		gamma-BHC (Linda		10
		heptachlor	ND	10
		aldrin	LT(10)	`- -
		isocrin	מא	10
•		heptachlor epoxi		10
	•	e-endosulfan	ND	10
		dieldrin	LT(10)	• •
		4,4'-DDE	ND	10
		endrin	LT(10)	
		b-endosulfan	ND	10
		4,4'-DDD endosulfan sulfa	מא	10
		4,4'-DDT	te ND ND	100 10
	•	methoxychlor	ND ND	1000
		alpha-chlordane	ND ND	10
		gamma-chlordane	אD	10
		toxaphene	ND	1000
		endrin aldehyde	ND .	100
,		aroclor-1016	ND	500
		aroclor-1221	אס מא	500
		aroclor-1232	מא	500
•		aroclor-1242	ND	500
		aroclor-1248	ND	500
•		aroclor-1254	אס	500
		aroclor-1260	ND	500
	•			

TABLE 10

	•			
Sample Number	Hager Reference #	Analysis Co	oncentration (mg/kg)	Detection Limit (mg/kg)
WERT2WB-CDH	AA-58157	arsenic	7 m / E \	
WERTEND-CDN	W-20121	cadmium	LT(5)	•
			ND 7	1
CDH only	•	copper chromium	7	
		lead		
			10	0 00
		mercury selenium	МD	0.02
•		zinc	ДИ 30	14
		Zinc	30	
			ncentration	Donomina
		CC		Detection Limit
			(ug/kg)	
				(ug/kg)
		alpha-BHC	מא	10
		beta-BHC	מא	10
		delta-BHC	ND	10
		gamma-BHC (Lindan		10
		heptachlor	ND	10
		aldrin	LT(10)	
		isodrin	מא	- 10
	•	heptachlor epoxid	e ND	10
		a-endosulfan	ND	10
		dieldrin	10	
		4,4'-DDE	ND -	10
		endrin	LT(10)	
		b-endosulfan	מא	10
•	<u>.</u>	4,4'-DDD	ND	10
	-	endosulfan sulfat	e ND	.100
		4,4'-DDT	LT(10)	
		methoxychlor	ND	1000
		alpha-chlordane	MD	10
	·	gamma-chlordane	ND	10
·		toxa, hene	מא	1000
		endrin aldehyde	מא	100
		aroclor-1016	מא	500
		aroclor-1221	ND	500
•		aroclor-1232	ND	500
		aroclor-1242	ND	500
	•	aroclor-1248	ИD	500
		aroclor-1254	ND	500
		aroclor-1260	ND	500

1 40289EN arch 20, 1989

TABLE 11

ample Number Hager Reference		entration ng/kg)	Detection Limit (mg/kg)
ERT3WB-CDH AA-58158	arsenic	LT(5)	•
	cadmium	סא	1
· · · ·	copper	6 6	
policate of	chromium	10	
7,10	lead	מא מא	0.02
10/42WB-CDH	mercury	מא	15
1	selenium zinc	20	
, and of solvete)	zinc		
iplicate of Jert2MB-CDH co-located duplicate)	Conc	entration	Detection
,	(ug/kg)	Limit
	•		(ug/kg)
			• •
	alpha-BHC	ND	10
	beta-BHC	ND	10 10
	delta-BHC	ND	10
	gamma-BHC (Lindane)	מא	10
	heptachlor	ND LT(10)	10
	aldrin	ND	10
	isodrin	ND	10
	heptachlor epoxide a-endosulfan	ND	10
	dieldrin	LT(10)	-
	4,4'-DDE	ND	10
	endrin	LT(10)	
	b-endosulfan	. אס	10
	4.4'-DDD	ND	10
•	endosulfan sulfate	-KD	100
	4.4'-DDT	LT(10)	
	methoxychlor	ИD	1000
	alpha-chlordane	מא	10
·	gamma-chlordane	ND	10
	toxaphene	ND	1000 100
	endrin aldehyde	מא	500
	aroclor-1016	D D	500
	aroclor-1221	אם מא	500
	eroclor-1232	אם מא	500
	aroclor-1242	אס מא	500
	aroclor-1248 aroclor-1254	ND	500
	aroclor-1254	ND	500
	0100101-1200	- · -	

TABLE 12

Sample Number	Hager Reference #	Analysis C	oncentration (ug/kg)	Detection Limit (ug/kg)
WERT~TB	AA-58159	alpha-BHC	מא	10
		beta-BHC	ND	10 .
		delta-BHC	ND	10
		gamma-BHC (Linda	ne) ND	10
		heptachlor	ND	10
		aldrin	. ND	10
		isodrin	ND	10
		heptachlor epoxi	de ND	10
		a-endosulfan	מא	10
		dieldrin	ND	10
		4,4'-DDE	ND	10
		endrin	מא	10
		b-endosulfan	ND	10
	•	4,4'-DDD	מא	10
		endosulfan sulfa	te ND	100
		4,4'-DDT	ND	10
		methoxychlor	מא	1000
		alpha-chlordane	ND	10
		gamma-chlordane	מא	10
		toxaphene	מא	1000
		endrin aldehyde	מא	100
		aroclor-1016	ND	500
		aroclor-1221	ND	500
		aroclor-1232	KD.	500
		aroclor-1242	ND	500
		aroclor-1248	ND	500
		aroclor-1254	ND	500
		aroclor-1260	ND	500

TABLE 13

Sample Number	Hager Reference #	Analysis Co	oncentration (mg/kg)	Detection Limit (mg/kg)
COLLIMB	AA-58160	arsenic	10	
_		cadmium	LT(1)	•
HA0997 NB		cobber	10	
MO 141 145		chromium	LT(15)	
		lead	20	0.00
		mercury .	מא	0.02
		selenium	ND 40	14
		zinc	40	•
		Co	oncentration (ug/kg)	Detection Limit (ug/kg)
		alpha-BHC	ND	10
		beta-BHC	ND	10
		delta-BHC	ND	10
		gamma-BHC (Lindar	ie) ND	10
		heptachlor	מא	10
		aldrin	LT(10)	
		isodrin	מא	10
		heptachlor epoxid		10
		e-endosulfan	מא	10
		dieldrin	20	•
	•	4,4'-DDE	מא	10
		endrin	ND	10
		b-endosulfan	סא	10
		4,4'-DDD endosulfan sulfat	פא	10
		4.4'-DDT	E DN D	100 10
		methoxychlor	מא	1000
		alpha-chlordane	ND .	10
		gamma-chlordane	ND	10
		toxaphene	מא	1000
N. Jan		endrin aldehyde	ND	100
		aroclor-1016	ND	500
		aroclor-1221	מא	500
		aroclor-1232	. מא	500
•		aroclor-1242	מא	500
		aroclor-1248	ND	500
	•	aroclor-1254	מא	500
		aroclor-1260	ND	500

TABLE 14

Sample Number	Hager Reference #	Analysis C	oncentration (mg/kg)	Detection Limit (mg/kg)
COLL2WB-CDH	AA-58161	arsenic	12	
	30202	Cadmium	LT(1)	
CDH only		copper	10	
CDA City		Chromium	16	
ŧ		lead	20	
		werchia	ND	0.02
		selenium	ND	30
		zinc	50	30
			30	
		Co	oncentration	Detection
			(ug/kg)	Limit
				(ug/kg)
	•	alpha-BHC	מא	10
		beta-BHC	מא	10
		delta-BHC	ďИ	10
		gamma-BHC (Lindan		10
		heptachlor	מא	10
		aldrin	LT(10)	
		isodrin	מא	10
		heptachlor epoxid		10
		a-endosulfan	מא	10
		dieldrin	LT(10)	
		4,4'-DDE endrin	ND ·	10
		b-endosulfan	LT(10)	
•		4,4'-DDD	ND	10
	-	endosulfan sulfat	מא	10
	•	4,4'-DDT	e ND ND	100
•		methoxychlor	ND	1000
		alpha-chlordane	ND	10
		gamma-chlordane	מא	10
		toxaphene	מא	1000
		endrin aldehyde	מא	100
		aroclor-1016	מא	500
		aroclor-1221	מא	500
•		aroclor-1232	מא	500
		aroclor-1242	ND	500
•		aroclor-1248	ND	500
		aroclor-1254	ND	500
		aroclor-1260	מא	500

TABLE 15
Non-Aqueous Surrogate Percent Recovery Summary

Surrogate N	Name: DBC
Sample Numb	pers:
AA-58148	104%
AA-58148 Du	up. 73% .
AA-58149	89%
AA-58150	70%
AA-58151	80%
AA-58152	73%
AA-58153	25%
AA-58154	75%
AA-58155	74%
AA-58156	72%
ሕ ሕ-58157	84%
AA-58158	62%
AA-58158 D	80%
AA-58159	100%
AA-58160	76%
AA-58161	44%
AA-58161 M	33*
AA-58161 M	0.8
W-SOTOT N	

OFFFOST CDH SURFICIAL SOIL SAMPLING NORTH OF RMA February 24, 1989

Description of sample locations:

Smalldone Residence

- 1. Smal 1wb (co-located) south side of house, 18" from foundation, below window.
- 2. Smal 2wb (co-located) 10 ft. from east side of house, 3 ft. south of patio in flowerbed area.
- 3. Smal 3wb (CDH) backyard, 8 ft. east of tree, 20 ft. south of barn.
- 4. Smal 4wb (CDH) southeast area of yard, 20 ft. north of front (south) fence, 25 ft. west of east fence.

Ohle Residence

- 1. Ohle 1wb (Army), backyard, in corner, on southwest side of workshed.
- 2. Ohle 2wb (Army), backward, west side of property, 250 ft. northwest of house, on west side of dog pens.
- 3. Ohle 3wb (CDH), southwest corner of front yard approximately 16 ft. north of 96th Avenue, 20 ft. east of west property line.
- 4. Ohle 4wb (CDH), front yard, 12' east of driveway entrance, 20 ft. north of 96th Avenue.

Lambert Residence

- 1. Lamb 1wb (co-located) near southwest corner of house.
- 2. Lamb 2wb (Army) near west boundary property line, approximately 60 ft. north of 96th Avenue.
- 3. Lamb 3wb, same locality as #2 duplicate.
- Lamb 4wb (CDH) near center of backyard garden.
- 5. Lamb 5wb (CDH), northeastern area of backvard, near flood plain boundary.
- 6. Lamb 6wb, between Lambert and Smalldone residence, in field.

Werth Residence

- 1. Wert 1wb (Army), backyard between work sheds.
- Wert 2wb (CDH), front yard, approximately 50 ft. east of driveway, 10 ft. south of pine tree.
- 3. Wert 3wb (CDH), same location as #2 duplicate.

Collins Residence

- 1. Coll lwb (co-located), 25 ft. west of front yard.
- 2. Coll 2wb (CDH), approximately 100 ft. north of house, in grassy area of field.

Spencer Property

1. Spen 1wb (Army), even with Collins' house, midway between Collins and Ohle residences (in open field).

REPORT ON SERVICE NUMBER 40289EN March 20, 1989

Customer Project Code:

To:

Mr. Chris Dacey

GeoTrans

3300 Mitchell, Suite 250

Boulder, CO 80301

Analysis:

The following samples were submitted for analysis: Thirteen soil samples for arsenic, cadmium, copper, chromium, lead, mercury, selenium, zinc, and EPA Method

BOBO

One water sample for arsenic, cadmium, copper, chromium,

lead, mercury, selenium, zinc, and EPA Method 8080.

Method:

METALS

A measured aliquot of the sample material was acid-ashed and diluted to a known volume. The quantity of the metal of interest was determined by atomic absorption spectroscopy. The absorbance readings for each sample were compared to a calibration curve obtained from standard metal solutions.

MERCURY

A measured aliquot of sample was digested with acid, potassium permanganate and potassium persulfate solutions in a hot water bath. The dissolved mercury was reduced to the vapor state and analyzed with flameless atomic absorption spectroscopy. Mercury concentration was determined by comparison to standard mercury solutions.

EPA Method 8080: Organochlorine Pesticides and/or PCB's 30 grams of soil is extracted with a solvent using a soxhlet extractor for 24 hours. The extract is dried, concentrated and exchanged for hexane. The pesticides and PCB's of interest are then determined by gas chromatography employing an electron capture detector by comparison to known concentrations of pesticides and PCB's.

Results:

The results are found on Tables 1 through 16.

Discussion:

The water sample was analyzed as if it was a soil per clients request.

LT() indicates "less than" with the lower limit of quantification shown in parentheses.

All samples for metal analysis have been corrected for the blank values found in sample WERT-TB (AA-58159).

Page 2, SN 40289EN GeoTrans March 20, 1989

Discussion (cont.)

Hager Laboratories, Inc., has been AIHA accredited since 1977.

Laboratory data are filed and available upon request.

If you have any questions, please contact Harry Borg, of our Technical Services Department, at (303)790-2727 or toll free

at (800)282-1835,

Submitted by:

Michael Aaronson, Ph.D.

Environmental Chemistry Manager

MA/sn

TABLE 16
Non-Aqueous Matrix Spike/Duplicate Matrix Spike Recovery

	piked Sample Result (SSR) (ug)		Sample Result (SR) (ug/g)	Spike Amount Added (SA) (ug) %	Sample	Duplicate Spiked Sample & Recovery
g-BHC	0.18	off scale	ND	0.2	90	peak off scale
heptachlor	0.16	0.14	ND	0.2	80	70
aldrin	0.18	off scale	0.001	0.2	90	peak off scale
dieldrin	0.21	0.02	0.005	0.5	41	3
endrin	0.33	0.60	0.001	0.5	86	113
DDT	0.138	0.154	ИD	0.5	277	154

ervice number 40289 E

Cilent Mene				-	Cilent Address						
Geotlans	Luc			[3	Boulder, a	Ç					
C) leat sample munder	Laboratory Sample Number	Number of Containers	Size t Type of Containers	Sample Prusurvative	Rample Haltit Desotiption	Seale Intact	Condition of Eample	Transfer Muchae Coluck Liens Leansfer	Frankfar k liena	Mundon Leaner	errad)
Smallers	31-151 00	,	C c2 2/635	2,16	Soil	17.7	טוני	1/2 1/2	<u>;\</u>	<u> </u>	<u> </u>
Smillors	64149		2/toph.	26.6	Scil	(,	2		1	<u> </u> -
Smal TWA-CIVI	5 41 50	,	1,268	34	50:1			2	<u> </u>	\	
Smillink-cort	5%151		-	7,5);&	/		3		\\ \(\)	<u> </u>
Unle 3.ch - Con	58152	1		44	Seed	_		د ا			
الكام - ١٠٠٨ - والمن	53153	,	•	42	Sid	<u> </u>		7			<u> </u>
LAMAIWB	1-5155	,		١,٠	1,25		-	2			
LAmilw B. Colt	58185	-	•	2.4	1 [23			1 2	<u> </u>	1	
LAMASW6-CDH	28186	-		24	S.J		-	7			
WERTIUR-COIL	58157	1	•	7.7	Zin3			1		<u> </u>	<u> </u>
WERT 348-504	85125	,	2	۲.,۰	1.85	/		7	<u> </u>	<u> </u>	
Wer-18	1,5185)	2	J.5	Water			7	<u> </u>	<u> </u>	
caling.	58160	1	:	ر د	Seu/			2	<u> \</u>	<u> \</u>	<u> </u>
COLL JUNG-COIL	19185	,	1.	3.4	25.7			1/1	\ 	<u> </u>	
			7						1	<u> </u> 	
										1	<u> </u>
lignature of Sampler	Chell	1	Print La	int test name OAC	DACE'Y	•	Transfer Humber	Received		pe t e	ri me
Date of Sampling 2/21/29	1	Samples Shipped to Lab By	10 Lab By (4.1 01		Date Shipped 2/24/89	1/89	1	mist alles	-42 m	7,	05.7
sumples Relinquished to Lab By $C. \mathfrak{O}_{\mathcal{LCL}_{\mathcal{LV}_{\mathcal{L}}}}$	d to tab by C. C)4C43	910	2/24/89			1	7110.	1/5/k	-15-	5.5
				7 7 7 7 7	The state of the s			L. I. P. S.			

VTSR 2/24 Sumples Seculved at Lab By R. C.

:

Pots Log-1

to Mushed											
					Client Address	1					
	,			2	Boulder, C	0					1
> Pu (raus	Inc					Guelle	Condition	25	Transfer !	Mumber C	
Cllont	Laboratory	Number Of Cost electe	Size t Type of Containers	State Volice	Motter Ca	700.	Bample	1 - 1 - 1 - 1 - 1 - 1 - 1	4	1	4
Mahar			0	7 _a h	seil			1	$\frac{1}{1}$		
Maltu B				60	Scil			<u> </u>	1	1	Ī
mallung			1000	1 2 2	6.2			<u> </u>	<u> </u>	1	
mal 11ch-Coll		-	1:35	27,	133				<u> </u>	1	
moldenk-cott		1	2	73.5	187				<u> </u>	1	
Lle 1.v. CO			ē.	3)	1				<u> </u>	1	
1, t. t. t. cot			*	42	700						
4531119		-	• •	3/2	177						
Jakima		-	٠	2.4					<u> </u> 	_	
Amblue - Chi		-	:	ላሂ	Z'''S			ľ	<u> </u> 	<u> </u>	
AMASW6-CD"	1		-,	34	Such			1	1	1	
DEKLAWS -CINT		-	>	٠.١	52.1			<u> </u>	<u> </u> 	<u> </u> -	
JUEAT JUNA-COL			=	7,5	Water	1		<u> </u>	<u> </u>	<u> </u>	
Dekr-Tis		-	:	دد	5007			<u> </u>	1	<u> </u> 	
CLIWE		-	2	76	25.		-	†	$\frac{1}{1}$	$\frac{1}{1}$	
COCT 1002-CDIL		-	-			1			<u> </u>	<u> </u>	
	1					_		1		<u> </u> 	
	1								<u> </u>	- 	
	11110			1	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		Transfer	Received		Pete	rlee
liensture of Campler	" (Let 11)	14.5	Print	Print test News	UACE I	•	-				
		ve dal to been de lab by	d to Lab by Ca	7	Pate Shipped 2/24/82		-				
bate of Sampling City	1	4	1	of of					-	Ì	
tamples Relinquished to Leb by	A de tes by	: Dacos	Date	1 '	90.	1	7		<u> </u>	Ì	
famoles Received	11 to by _ fix	101	WEN	441		1	7-7-7		1	4	
		<u>_</u>									3/69

Nr 104-1

Appendix H

ANALYTICAL RESULTS FOR ADDITIONAL OFFPOST SURFICIAL SOIL SAMPLES COLLECTED BY WOODWARD-CLYDE FEDERAL SERVICES (WCFS), MAY 1991

Samole 10	010F01	020F01	030F01	100F01
Date	05/21/91	05/21/91	05/20/91	05/20/91
Analytes				
2 2-Bistrarachlorophenvl)-1.1.1-Trichloroethane (DDI) (GCMS)	0.00418	0.0247	0.00986	0.180
2.2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 0.00466	0.0144	> 0.00466	0.260
Aldrin (GCHS)	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Chlordane (GCMS)	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Dieldrin (GCMS)	< 0.00181	0.0236	0.00205	0.00358
Endrin (GCMS) Hexachlorocyclopentadiene (GCMS) Isodrin (GCMS)	< 0.00471 < 0.00137 < 0.00188	0.00919 < 0.00137 < 0.00188	< 0.00471 < 0.00137 < 0.00188	0.00960 < 0.00137 < 0.00188

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

collected by Woodward Clyde - Federal Services.
NA -- Not Analyzed.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

⁻⁻ indicates that target analyte was detected at or above the Maximum Reporting Limit.
* -- Analytical results for Offpost Surficial Soil Samples

Table H1 Analytical Results for Surficial Soils Samples *

Sample ID Date	100f02 05/21/91	100F03 05/21/91	100F04 05/21/91	110F01 05/21/91
Analytes				
2,2-Bis(parachlorophenyl)-1,1,1-Trichloroethane (001) (GCMS)	0.0395	0.0695	0.00547	0.0589
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	0.130	7910.0	< 0.00466	0,0640
Aldrin (GCMS)	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Chiordane (GCMS)	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Dieldrin (GCMS)	0.00399	0.0135	0.00215	0.0227
Endrin (GCMS) Hexachlorocyclopentadiene (GCMS) Isodrin (GCMS)	0.00621 < 0.00137 < 0.00188	0.0402 < 0.00137 < 0.00188	0.0135 < 0.00137 < 0.00188	0.0147 < 0.00137 0.00220

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- indicates that target analyte was detected at or above the Maximum Reporting Limit.
 - * -- Analytical results for Offpost Surficial Soil Samples collected by Woodward Clyde Federal Services.

Not vzed

Table H1 Analytical Results for Surficial Soils Samples *

Sample ID Date	110F02 05/21/91	120F01 05/20/91	130F01 05/20/91	140F01 05/20/91
Analytes				
	0.00937	< 0.00277	< 0.00277	0.00700
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (UUE) (uchs)	< 0.00211	< 0.00211	< 0.00211	0.00407
	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Dieldrin (GCMS)	0.00451	0.00260	0.00744	0.0582
Endrin (GCMS) Nexachlorocyclopentadiene (GCMS) Isodrin (GCMS)	< 0.00471 < 0.00137 < 0.00188	< 0.00471 < 0.00137 < 0.00188	< 0.00471 < 0.00137 < 0.00188	0.00946 < 0.00137 < 0.00188

* -- Analytical results for Offpost Surficial Soil Samples

collected by Woodward Clyde - federal Services.

Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures.

indicates that the target analyte was not detected at or above the Certified Reporting Limit.

> -- indicates that target analyte was detected at or above the Maximum Reporting Limit.

NA -- Not Analyzed.

Table H1 Analytical Results for Surficial Soils Samples *

Sample 1D Date	140F02 05/20/91	150F01 05/20/91	150F02 05/20/91	160F01 05/20/91
Analytes	•			
-1,1	< 0.00277	< 0.00277	0.0589	0.0388
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 0.00466	> 0.00466	< 0.00466	0.0657
Aldrin (GCMS)	< 0.00211	< 0.00211	< 0.00211	< 0.00211
Chlordane (GCMS)	< 0.0230	< 0.0230	< 0.0230	< 0.0230
Dieldrin (GCMS)	0.0155	0.00877	0.0320	0.00431
Endrin (GCMS) Mexachlorocyclopentadiene (GCMS) Isodrin (GCMS)	0.00564 < 0.00137 < 0.00188	< 0.00471 < 0.00137 < 0.00188	0.0107 < 0.00137 < 0.00188	0.00667 < 0.00137 < 0.00188

Notes: Values are reported in micrograms per gram. Reported values are accurate to three significant figures.

- · < -- indicates that the target analyte was not detected at ...
- or above the Certified Reporting Limit.
 > -- indicates that target analyte was detected at or above the Maximum Reporting Limit.
 - * -- Analytical results for Offpost Surficial Soil Samples collected by Woodward Clyde Federal Services.

, vzed

Sample 10	220F01	
Date	05/20/91	
Analytes		
2,2-8is(parachlorophenyl)-1,1,1-Trichloroethane (DDI) (GCMS)	0.00825	
2,2-Bis(parachlorophenyl)-1,1-Dichloroethene (DDE) (GCMS)	< 0.00466	
Aldrin (GCMS)	< 0.00211	•
Chlordene (GCMS)	< 0.0230	
Dieldrin (GCMS)	0.0109	
Endrin (GCNS) Hexachlorocyclopentadiene (GCNS)	< 0.00471 < 0.00137	
ופספנוט (פראס)	30.0	

Notes: Values are reported in micrograms per gram.

Reported values are accurate to three significant figures.

- -- indicates that the target analyte was not detected at or above the Certified Reporting Limit.
- -- indicates that target analyte was detected at or above the Maximum Reporting Limit.

* -- Analytical results for Offpost Surficial Soil Samples collected by Woodward Clyde - Federal Services.

NA -- Not Analyzed.

Appendix I

COMMENTS AND RESPONSES TO THE OFFPOST OPERABLE UNIT REMEDIAL INVESTIGATION, DRAFT FINAL ADDENDUM, NOVEMBER 1991

RESPONSES TO U.S. ENVIRONMENTAL PROTECTION AGENCY COMMENTS REGARDING THE OFFPOST OPERABLE UNIT DRAFT FINAL REMEDIAL INVESTIGATION ADDENDUM

GENERAL COMMENTS

Comment No. 1

EPA is concerned that the CRLs for two compounds, atrazine and vinyl chloride, exceed the MCLs. Appropriate CRLs must be utilized in the FS to avoid the preparation of an incomplete FS.

Response

The certified reporting limits (CRLs) for atrazine and vinyl chloride are based on analytical protocols established in the Program Manager for Rocky Mountain Arsenal (PMRMA) Chemical Quality Assurance Plan (CQAP) (PMRMA, 1989). The CRLs for these two compounds are the best achievable levels based on the quality assurance/quality control (QA/QC) requirements specified in the CQAP. However, the U.S. Department of the Army (Army) conducted an additional sampling episode in conjunction with the Comprehensive Monitoring Program (CMP) to specifically assess the distribution of vinyl chloride in Unconfined Flow System (UFS) groundwater in the Offpost Operable Unit (OU) at levels below the EPA maximum contaminant level (MCL). The CRL for that episode was 0.46 µg/l. All results for that sampling round, which was conducted in November 1989, were below detection. Because of a minor laboratory reporting problem, these data were erroneously omitted from the Draft Final Remedial Investigation (RI) Addendum report issued in November 1991. The report has been revised, and these vinyl chloride results have been included Appendix B. The FS will consider this issue and other technical limitations, consistent with guidance.

Comment No. 2

EPA does not agree that the deeper aquifers (Denver and Arapahoe) are adequately characterized. Characterization of the Arapahoe is not possible based on three wells covering a ten square mile area. This points out a significant gap in the data for the Arapahoe Aquifer which needs to be addressed in order to adequately evaluate the hydrogeology of this important deeper aquifer. In addition, there are instances where the CRLs exceed the MCLs in the Denver aquifer.

Response

The Army strongly disagrees with the comment. Characterization of the Denver and Arapahoe formations has been conducted over the past several years. Monitoring wells have been installed in both formations, and groundwater samples have been collected from domestic and monitoring wells.

The Army presented its conceptual model for interaction between the Denver Formation and the UFS in the Final RI and at a feasibility study (FS) technical meeting on October 16, 1991. Based on the discussion in that meeting, consensus was reached that Denver Formation contamination occurs primarily as local effects of interaction between the UFS and the weathered upper portion of the Denver Formation. Additional data regarding contaminant distribution in the Denver Formation are not necessary for conducting the EA and FS for the Offpost OU.

The monitoring network for the Arapahoe Formation is not limited to three wells as suggested by EPA. The Army has collected over 90 groundwater samples from Arapahoe Formation wells in the Offpost OU, including eight locations depicted in Figure 2.2 of the Draft Final RI Addendum. The data from these wells permit a sufficient understanding of the nature and extent of contamination in the Arapahoe Formation for conducting the EA and FS for the Offpost OU.

Comment No. 3

EPA has also noted that there were historic DIMP detections in the alluvium that are outside the DIMP plume as currently portrayed in this document. Since there has not been any recent sampling in this area, the extent of the DIMP plume remains in question.

Response

The Army strongly disagrees with this comment. The extent of DIMP was adequately portrayed in the Draft Final RI Addendum for the purposes of conducting the EA and FS for the Offpost OU. The extent of DIMP depicted in this report is consistent with previous interpretations presented in the Final RI and annually in the Groundwater CMP report. The

infrequent, isolated occurrence of low levels of DIMP does not suggest the need for additional sampling to support the EA/FS. No changes to the report are necessary.

Comment No. 4

Please describe in the text what criteria were used to select soil sampling sites.

Response

The text has been revised to include additional information regarding the basis for selecting soil sampling sites.

Comment No. 5

Please include the 12 additional soil samples that were taken, in the methodology section of the document. Please present these data in a corresponding appendix. If the samples are already included in an appendix, please clearly flag the appropriate 12 samples.

Response

The 12 samples collected by CDH in 1989 are discussed in Section 2.4.1 and shown in Figure 2.5. Revisions to the text have been made to clarify that the 12 CDH samples are included in the report. The analytical results for these samples are discussed in Section 6.0 and are presented in Appendix G of the report. Appendix G is labeled as containing the CDH surficial soil analytical results.

The letter from CDH dated June 2, 1989, which contains the analytical results for the CDH surficial soil sampling program, does not report the sampling methodology used by CDH for sample collection. However, review of the CDH's Proposed Soil Sampling Plan Offpost, North and Northwest of the Rocky Mountain Arsenal (RMA), dated April 9, 1990, suggests that sampling protocols used by CDH were similar to Army procedures. Section 2.4.2 has been revised to indicate this similarity in sampling methodology.

20000,901.10 - RC-02.SMF 0115022992

3

SPECIFIC COMMENTS

Comment No. 1, page 6, paragraph 1, third sentence

EPA does not agree that ground water in the Denver formation has been adequately characterized. As we stated in our review of the original EA/FS, comment number 12, Page 3-11, P.1.. "The text states that, regarding Denver Fmn, contamination and remediation, more data collection is recommended prior to any remedial alternatives assessments for the Denver Fmn. This seems to imply that the present FS document is only a partial and/or interim FS, pending assessment of Denver Fmn, remedial action assessments. To which the Army response was, "If additional data indicates that an alternative analysis for the Denver Formation is required, this alternative analysis will be provided in the revised EA/FS report. What was the justification for not collecting additional data? In addition, there are several instances where contaminants have CRLs that are greater than MCLs.

Response

The Army strongly disagrees with this comment. The nature and extent of contamination in the Denver Formation in the Offpost OU has been adequately characterized for conducting the EA and FS of the Offpost OU. Nature and extent of contamination in the Denver Formation was discussed in the Final RI and subsequent CMP reports. In the Final RI, the Army presented its conceptual model for interaction between the UFS and Denver Formation. Additionally, the Army restated this conceptual model in an FS technical review meeting on October 16, 1991.

The comment also states that EPA considers the FS currently under preparation as "...a partial and/or interim FS..." The FS currently under preparation is not a partial or interim FS. The Army firmly believes that the analytical data for all media in the Offpost OU have been adequately characterized for conducting the EA and FS.

The RI Addendum presents additional data and interpretations for samples collected under the RI Addendum programs. Additional data for the Denver Formation were not considered necessary for the RI Addendum programs, but have been collected under the Groundwater CMP. These data are discussed in the revised Draft Final EA/FS. Those data are evaluated in the FS with respect to the need for a separate alternatives analysis for the Denver Formation. As stated in the Introduction to the revised Draft Final EA/FS, Nature and Extent of Contamination, additional data for 14 Denver Formation monitoring wells are discussed in that report. These data indicate

Additionally, as the Army has stated on many occasions, because of localized hydraulic communication between the Denver Formation and the UFS and the limited extent of contaminants in the Denver Formation, the effective remediation of the UFS will have a beneficial impact on contaminant distribution in the Denver Formation.

The Army recognizes that CRLs exceed MCLs for a few contaminants. The Army has made attempts to reduce CRLs for a number of compounds. However, the NCP provides appropriate procedures for situations when technical limitations, including those associated with analytical procedures, are encountered in the RI/FS process. The development of Preliminary Remediation Goals (PRGs) in the FS will consider the relationships between CRLs and MCLs, consistent with guidance.

No changes to the report are necessary.

Comment No. 2, page 6, paragraph 1

EPA agrees that the contamination in the Denver aquifer may have entered the system locally. However, a review of hydrographs for wells near the NBS clearly show an almost immediate response in the Denver Fm. correlating to changes in the alluvial water levels indicating that there is good communication between the alluvium and the Denver aquifer in this area. This pathway needs to be clearly investigated for completion of the FS.

Response

The FS will consider interaction between the UFS and Denver Formation in developing ground-water alternatives for the Offpost OU. Also, the hydraulic response noted in the comment applies to Denver wells in the UFS. The statement is not generally true for confined Denver Formation wells. No revisions to the report are necessary.

20000,901.10 - RC-02.SMF 0115022992

5

Comment No. 3, page 15, paragraph 1

The CDH sampling locations are not shown on Figure 2.5.

Response

All CDH sampling locations are shown on Figure 2.5. In the CDH letter to Mr. Connally Mears of EPA dated June 2, 1989, CDH reported collecting a total of 12 investigative samples, one duplicate sample, and a field blank on February 24, 1989. These samples, excluding the field blank, are identified in the explanation contained in the upper right corner of the figure.

Comment No. 4, page 15, paragraph 2

How was the approximate distance and direction of the windblown dust estimated? Where are these estimations presented?

Response .

The prevailing wind directions were estimated on the basis of information obtained from several sources, including the U.S. Weather Service and the RMA Comprehensive Monitoring Program Air Quality Data Assessment Report dated June 1990. These sources indicate that the prevailing wind direction is from the south. The estimated distance from RMA for which surficial soil samples were collected was based on two principal factors. First, the Army considered CDH's Proposed Soil Sampling Plan Offpost, North and Northwest of the RMA, dated April 9, 1990. The Army's proposed sampling program was designed to encompass the locations proposed by CDH. Second, the Army conducted a preliminary evaluation of surficial soil data from onpost and offpost areas within approximately one-half mile of the northern RMA boundary. This evaluation suggested approximately an order of magnitude decrease in concentration of selected target analytes over approximately 5000 feet of distance from the suspected sources near former Basin F. This information was used to estimate the maximum extent of OCPs in surface soil caused by windblown transport from onpost RMA sources. The Army's proposed sampling plan, which was presented to the Organizations and State (OAS) on June 26, 1990, identified sampling locations up to 12,000 feet from the northern RMA boundary. These locations were selected to

encompass the area within which wind-transported soils were anticipated, assuming that the offpost distribution of contaminants followed a pattern similar to that observed for the onpost and near offpost samples. The report has been revised accordingly to include this discussion.

Comment No. 5, page 25, paragraph 1

When was the assessment of the boundary systems effects on the rate of contaminants migration performed? Where are the results of this assessment presented?

Response

The assessments referred to in this paragraph were conducted in conjunction with and reported in the Final RI. This paragraph has been modified to clarify that the Final RI is the source of the information.

Comment No. 6, Figure 2.5

CDH sampling locations are not shown on this figure as indicated in the text.

Response

See the response to EPA Specific Comment No. 3.

Comment No. 7, Figure 3.1

Why are all of the contours inferred? Is the Army that uncertain of this interpretation or are the data insufficient to allow for a more definitive interpretation.

Response

The contours on Figure 3.1 are inferred to reflect some degree of uncertainty in the shape of the potentiometric surface for the UFS. However, the potentiometric surface of the UFS is sufficiently understood for use in conducting an EA/FS for the Offpost OU. No revisions to the report are necessary.

Comment No. 8, page 28, paragraph 1

EPA agrees with the Army's conclusion that the data from three wells do not permit a definitive assessment of the flow directions in the Arapahoe. It is possible that local flow patterns do not coincide with the regional pattern. Such cases are not unusual in the onpost, i.e., southerly flow south of South Plants, a more westerly flow in the Basin A neck area, etc.

Response

The Army has not concluded that the data do not permit a definitive assessment of flow directions in the Arapahoe Formation. As stated in the referenced paragraph, "...data from these wells are consistent with the northerly to northwesterly regional groundwater flow direction..." in the Arapahoe Formation. Additionally, as discussed in the RI Addendum in Section 3.1.3.2 and the Final RI, groundwater pumping from numerous wells in the Arapahoe Formation has resulted in local variations in the flow directions in the Arapahoe Formation. However, basin-wide flow in the Arapahoe Formation flows north to northwest. The data from the newly installed Arapahoe wells identified at the top of page 28 are consistent with regional flow directions.

Comment No. 9, page 28, paragraph 3

Were any data used from any domestic well samplings?

Response

As stated on page 29, paragraph 5, "Analytical data considered in generation plume maps of the UFS include...domestic wells sampled under the RI Addendum and IRA A programs".

Comment No. 10, page 29, paragraph 3

EPA agrees that distribution maps for the Arapahoe are not possible based on three wells covering a ten square mile area. This points out a significant gap in the data for the Arapahoe Aquifer which needs to be addressed in order to adequately evaluate the hydrogeology of this important deeper aquifer.

Also the references here to sporadic detections, false positives, and localized effects is inappropriate without a discussion of the sampling of the domestic wells. Much of the sporadic detections, false positives, and localized effects may be due to the fact that these data were collected from domestic wells rather than monitor wells. The domestic wells introduce a large number of variables into the sampling program which may effect the results. Such things as the amount of water that was pumped from the well by the residents prior to the arrival of the sampling team varies from

well to well and sample to sample. The rate at which the pump runs during sampling and the amount and type of piping that the water traverses during sampling also differs from well to well. The type and construction of the pump may also effect the sample. It is also unknown which portion or zone of the Arapahoe these domestic wells are completed in therefore the results from one well may not be comparable to another nearby well. Therefore, while the data collected from these wells is still useful, it has several limitations imposed upon it of which the reader needs to be aware. These limitations make it very difficult to adequately characterize the Arapahoe formation.

Response

The EPA has misstated the Army's position regarding preparation of distribution maps for the Arapahoe Formation. The Army has stated in the referenced paragraph that distribution maps are not necessary for adequately assessing the extent of contamination in the Arapahoe Formation for the purposes of conducting an EA and FS for the Arapahoe Formation. Data for the Arapahoe Formation clearly show that only low levels of a limited number of contaminants have been detected in the Arapahoe Formation and that concentrations are well below levels that are considered safe for protection of human health and the environment.

The Army has frequently stated its position on possible migration routes from the UFS to the Arapahoe Formation. It is highly unlikely that contaminants observed in Arapahoe Formation domestic wells are the result of migration from the UFS or Denver Formation through overlying geologic formations. Additionally, organic contaminants detected in samples from the Arapahoe Formation appear to be associated with older domestic wells, which may have construction problems. As described in the Final RI, the geology of the Arapahoe Formation consists of an upper clay/shale unit up to 100 feet thick that generally directly underlies the Denver Formation. At the northern RMA boundary, the top of Arapahoe Formation lies at a depth of 250 to 300 feet below ground surface. The lower portion of the Arapahoe Formation consists of a thick conglomerate and sandstone sequence up to 270 feet thick. These sandstone units are typically the aquifers used for production of domestic-use groundwater. Considering this geologic setting and the travel times that would be necessary for contaminants to migrate through the upper shale sequence, the contaminants observed in the Arapahoe Formation are localized and the result of

contaminant migration through preferred pathways, such as poorly constructed wells that penetrate the UFS and Denver Formation.

Comment No. 11, page 29, paragraph 4

The phrase "Analytical data considered" implies that not all analytical data was used or was used in a limited or qualified context. Please explain what is meant by this phrase and what the criteria are for selecting the data considered.

Response

The Army assumes that EPA is actually referencing paragraph 5 of this page, not paragraph 4 as indicated in the comment. Paragraph 5 has been modified to clarify that data from (1) monitoring wells and domestic wells sampled under the RI Addendum and IRA A programs and (2) CMP data collected during the Fall of 1989 and Winter of 1990-1991 sampling rounds were used to generate plume maps.

Comment No. 12, page 29, paragraph 5

Please explain the meaning of that statement, "More recent data collected during the winter of 1990-1991 CMP Sampling Round was . . . used in a qualitative manner..." What is a "qualitative manner" and specifically how were the data used.

Response

The Army assumes that EPA is actually referencing paragraph 6 of this page, not paragraph 5 as indicated in the comment. The Army conducted an assessment of the Winter of 1990-1991 data to provide a qualitative evaluation of more recent data being collected under the RMA Groundwater CMP. These data, except for selected analytes as discussed in Section 3.2.1.1.6, were not used for contouring, but only to confirm contours generated with the data referenced on the contour maps. The text has been modified to clarify the qualitative use of more recent data.

Comment No. 13, page 32, Diisopropylmethylphosphonate

EPA is concerned that the map showing the DIMP distribution may be incomplete. The RMA database clearly shows that there have been historic DIMP detections outside of the area currently

delineated as the DIMP plume. This well is located in the extreme eastern portion of Section 12, which is outside the currently plotted DIMP plume. Well 37340 had the following DIMP detections.

<u>DATE</u>	CONCUOM [SIC]
85323	17.1 ug/1
86085	29.2 ug/l
86156	36.9 ug/l
86231	28.2 ug/l
87083	39.1 ug/l
87267	35.3 ug/l

There are not records of this having been sampled since 1987. Please explain why there has not been any further sampling of this well and subsequently how the eastern edge of the plume was established. EPA is concerned that there may be another unidentified pathway to the east of the current DIMP plume.

Response

The Army used data collected under the RI Addendum to construct the disopropylmethyl phosphonate (DIMP) distribution map as discussed in the report. The eastern edge of the DIMP distribution was assessed considering the data for wells shown in Figure 3.2. Historical data for well 37340 were not considered because the data were several years old at the time the figure was prepared. This distribution is consistent with historical DIMP distribution maps prepared under the RMA Groundwater CMP. Sampling of well 37340 has been attempted by the Army on several occasions. However, the well produces little, if any, water during purging and, as a result, a representative groundwater sample cannot be collected for well 37340.

Comment No. 14, page 38, Section 3.2.1.1.4

The CRLs for atrazine and vinyl chloride are greater than the MCLs for these compounds. For atrazine the CRL is 4.03 ug/l and the MCL is 3 ug/l. Vinyl chloride has a CRL of 12.0 ug/l when the MCL is 2.0 ug/l. This complicates the determination of the amount of contamination, and the effectiveness of any remediation alternatives selected in the FS based on this data.

Response

See response to General Comment No. 1 and Specific Comment No. 1.

Comment No. 15, page 70, Section 4.2

The data for atrazine indicates a CRL of 4.13 ug/l. This CRL exceeds the MCL for atrazine which is 3 ug/l. See comment for Page 38, Section 3.2.1.1.4.

Response

See response to General Comment No. 1 and Specific Comment No. 1.

Comment No. 16, page 92, Section 6.1.3

EPA has several comments, which are detailed below, related to the statistical evaluation that was performed to assess background concentrations.

(a) EPA does not believe that four samples are adequate to characterize the background levels of an area covering several square miles. A minimum of 10 samples would be more representative of an area of that size of this site.

Response

The Army shared EPA's concern that the four originally designated background sites were too few to adequately characterize background levels. Consequently, other sampling sites were evaluated to see whether additional samples were representative of background conditions, and a statistical evaluation demonstrated that 12 other sites not directly downwind under prevailing wind conditions were also representative of background. Thus, the Army has shown that 16 sites can be and were used to characterize background soil levels.

(b) Chlordane is listed as a chemical of concern for soils in the Offpost EA/FS. Why was chlordane not included in the analyte list in Table 6.1.

Response

Chlordane was detected less frequently than the other OCPs and was not detected in the comparison data set. In addition, Table 6.1 was not developed for chemicals of concern for the Revised Draft Final EA/FS.

(c) The first paragraph indicates that, "A variety of RMA indicator contaminants, including dieldrin, was not detected in offpost surficial soil near RMA's northeast boundary." This

statement is ambiguous. Please specifically enumerate which RMA contaminants were not detected.

Response

The text has been revised to indicate that samples collected near RMA's northeastern boundary generally have lower concentrations and lower frequency of detection than other samples near the northwestern and northern RMA boundaries. Figure 2.6 has been revised to identify those sites used to assess background concentrations. Analytical results for these sites are presented in Appendix E.

(d) How were the data from the 13 samples handled; individually, or was the mean and 95th percentile of all the data for all the samples computed for comparison with background.

Response

The data sets, represented by individual values, were compared following guidance cited in the text. Although nonparametric tests were used in most comparisons, the hypothesis test is whether the means of the compared data sets are significantly different.

(e) The Wilcoxon rank sum test appears to be recognized in the literature as an appropriate method for paired data such as these. The method of proportion used by the Army, however, seems to be a bit more esoteric. Please provide an explanation of the applicability of this method to these circumstances, as well as a description of the parameters.

Response

The Army method and its limitations are fully described in the cited reference (EPA, 1989), which is a publicly available document. A complete recitation of this information is not warranted.

Comment No. 17, Figure 2.1 through 2.6

Please superimpose zone boundaries on these figures.

Response

Zones were developed during the EA/FS process by considering technical issues that are not part of this report. It is not appropriate to present them in this document. No revisions to the report are necessary.

Comment No. 18, Figure 7.1, 7.2, and 7.2

All data used in these figures are reported in obscure units of parts per thousand. Suggest that more conventional units of parts per million or parts per billion be used.

Response

The comment refers to Figure 7.2 twice. The Army assumes that the comment actually refers to Figures 7.1, 7.2, and 7.3. However, the concentrations shown in the figures are in micrograms per gram, or parts per million, not parts per thousand as indicated in the comment. These units are consistent with those presented in Table 2.5 and Appendix F. No revision to the report is necessary.

RESPONSES TO DRAFT SHELL OIL COMPANY COMMENTS REGARDING THE OFFPOST OPERABLE UNIT DRAFT FINAL REMEDIAL INVESTIGATION ADDENDUM

GENERAL COMMENTS

Comment No. 1

Groundwater quality data sets from 1989, 1990, and 1991 were used in the RI Addendum evaluation. During those years, modifications to both the NBCS and NWBCS have been made which have significantly reduced groundwater contaminant concentrations downgradient from these systems. Of the three data sets, the 1991 CMP data present the most accurate picture of the rapidly changing offpost contaminant distributions. Combining data sets to prepare distribution maps as performed in this report does not give the reader a sense of the declining contaminant concentrations or the actual current contaminant distributions.

The entire EA/FS is potentially affected and will not be accurate or realistic if the current offpost contamination distribution is not shown accurately. Furthermore, since the decrease in plume concentrations appear to be relatively rapid, the discrepancies between the 1989 and 1990 data sets and future distributions will be even greater. If the preferred alternatives selected in the EA/FS are to be accepted by EPA for the Final Remedy, the strongest supporting evidence must be presented. Therefore, Shell strongly believes that the 1991 CMP data should be used preferentially over the 1989 and 1990 data sets to depict offpost contaminant distributions in the RI Addendum.

Response

The data sets used to construct the contaminant distribution maps for unconfined flow system (UFS) groundwater were the most comprehensive data sets available at the time the Remedial Investigation (RI) Addendum report was being prepared. This required the use of data from several Rocky Mountain Arsenal (RMA) programs, including the Groundwater Comprehensive Monitoring Program (CMP). The U.S. Department of the Army (Army) made every effort to use the most recent data sets and to correctly reflect the extent of contamination in the UFS. However, because of the time required to collect samples, receive analytical data from the laboratories, conduct preliminary data management activities, perform data validation and correct errors or problems, and finalize the data management activities and elevate data to final, it was not possible to use all early-1991 CMP data for the RI Addendum. Additionally, it appears that some early-1991 CMP data have not yet been elevated to final, making it impossible to use at this time. No changes to the report are necessary.

Comment No. 2

Portions of the 1989 and 1990 groundwater quality data sets are considered to be anomalous or erroneous by the Army but have in some cases been used in the assessment. For example, erroneous 1990 RI Addendum volatile organic compound (VOC) data are cited in the text without qualification. Also, we believe that the interpretation of the DBCP plume is incorrect because of the use of anomalous 1989 RI addendum data. This is further justification for basing the analysis on 1991 CMP data.

The anomalous groundwater data sets discussed both in the text and in the attached specific comments include the 1989 CMP, 1990 RI Addendum, and possible components of the 1989 RI Addendum groundwater data.

Response

The Army has reevaluated the anomalous groundwater data cited in the report and has made several clarifications in the text regarding the anomalous data. However, the Army disagrees with Shell Oil Company's (Shell's) conclusion that early-1991 CMP data should be used exclusively in the report. Additionally, Shell indicates that "erroneous...data are cited in the text without qualification." However, Shell does not provide any specifics or examples and the Army has not been able to locate any citations of anomalous data in the text. No other changes to the report are necessary.

Comment No. 3

The presence of the erroneous 1990 RI Addendum VOC groundwater data in the RMA database has created confusion and wasted time and resources for Shell and the Army (in this report) in interpreting offpost groundwater contaminant distributions and will continue to do so. Some of these erroneous 1990 data were mistakenly used in this assessment. Therefore, we request that the 1990 RI Addendum VOC data be removed from the RMA database.

Response

The Army has initiated additional changes to the RMA database intended to flag any anomalous data in the database.

Comment No. 4

The distribution of offpost surficial soil contamination is likely the result of multiple and complex transport processes from RMA and offpost sources. The highest levels of offpost surficial contamination correspond well with the areal distribution of alluvial aquifer contaminant plumes. Since the area downgradient of the irrigation canals has been heavily irrigated alluvial groundwater during the past 30 years, it is worth quantitatively evaluating how much of the surficial soil contamination may be from this transport mechanism. As is typical of similar agricultural areas, the use of pesticides in these areas is also likely to be a substantial source of the observed contamination.

The following observations lend credence to these hypotheses. First, many of the elevated soil detections of dieldrin downgradient of the canals lie along extensions of the two prominent ground water pathways emanating from the RMA and are generally in areas that have historically been heavily irrigated. These areas, like other similar agricultural areas in Colorado, are likely to have used pesticides extensively. Secondly, with the exception of a couple relatively high detections along the eastern boundary, there is a general pattern of much lower surficial contaminant levels outside of the other RMA boundaries. Although wind patterns are likely to be partially responsible for this, the higher contaminant levels downgradient of the canals are not fully explained by this wind blown transport alone.

The importance of emphasizing multiple potential pathways for the offpost surficial soil contamination lies in its potential impact on the final onpost remedy. If the ground water irrigation pathway has been a significant source of the offpost surficial soil contamination, then placing complete emphasis on controlling windblown dust from onpost to the offpost area may be inappropriate. This is important particularly because the source of the offpost groundwater contaminants is being controlled by the North Boundary System and will be further abated by the offpost IRA.

Response

The Army agrees with Shell's comment that "The distribution of offpost surficial soil contamination is likely the result of multiple and complex transport processes from RMA and offpost sources." However, the Army does not believe that a quantitative evaluation of the contribution of the surficial soil contamination from irrigation over the past 30 years is warranted or even possible. The numerous factors that will affect any conclusions regarding the contribution from historical irrigation with contaminated groundwater are impossible to quantify with any reasonable degree of certainty. No changes to the report are necessary.

Comment No. 5

The argument that offpost surface water contaminants are the result of ground water exfiltration offpost can be strengthened by also including water quality data from First Creek where it exits the RMA. An evaluation of seasonal and onpost data to back up the hypothesis should be included in this document.

Response

The report includes information regarding surface-water sampling conducted under the surface-water element of the CMP. Analytical results for surface-water samples collected along First Creek, are presented to support the conclusion that most of the contaminants observed in First Creek surface water between the northern RMA boundary and Highway 2 result from ground-water discharge to First Creek along this reach. No revisions to the report are necessary.

Comment No. 6

Shell does not believe that presenting water quality data from wells of questionable construction together with newly installed monitoring wells will provide reliable information on the question of impact to the Arapahoe. The available data for the three "impacted" Arapahoe wells indicates they were installed in the 1960s and early 1970s. Nearly all of the available data for these wells (inorganic water chemistry, specific conductivity, proximity to DIMP plumes in the alluvium and time frame of installation) suggest that the observed DIMP is a result of cross-contamination from poor well construction. A more direct position stating that these wells are not reliable water quality wells would prevent having to address their inadequacies every time an anomalous detection is observed.

It is also unclear from reading this document why no further examination of the Denver Formation has been proposed. Shell believes that the existing data from the Denver Formation is sufficient for purposes of conducting the FS. Since this historically been the Army's position as well, we believe it should be clearly stated in this report. Also, the logic of evaluating a deeper formation while completely excluding discussion of an intermediate formation needs clarification in this document.

Response

Sufficient discussion of the integrity of domestic wells in the Arapahoe Formation and the usefulness of data from those wells in assessing the distribution of contaminants in the Arapahoe Formation has been provided in the Draft Final RI Addendum report. However, additional discussion that more clearly states the limitations of data from those wells has been added to the Proposed Final RI Addendum report.

The Army's position regarding the Denver Formation was stated in the Final RI and is summarized in Section 2.1.1 of the Draft Final RI Addendum report. The RI Addendum was prepared to eliminate data gaps for the Offpost OU. Because sufficient data for the Denver Formation were

presented in the Final RI for conducting an endangerment assessment (EA)/FS, additional discussion of the Denver Formation is not necessary in this report. However, a brief statement regarding the adequacy regarding the Denver Formation data for conducting an EA/FS has been added to the text in Section 2.1.1 of the report. Additionally, the introduction section of the revised Draft Final EA/FS presents the nature and extent of contamination in the Denver Formation and restates the adequacy of the Denver Formation data for conducting an EA/FS for the Offpost OU.

SPECIFIC COMMENTS

Comment No. 1, page 9, Section 2.1.2

In various parts of Section 3, it is stated that Winter 1990-1991 groundwater CMP sampling results were used to assess plume boundaries. This fact should also be mentioned here.

Response

The text has been revised in accordance with the comment.

Comment No. 2, page 26, last paragraph; page 27, first paragraph

Higher water levels at the NWBCS in February 1990 relative to the 1987 water levels in the Final RI Report were, in fact, due to a change in operation of the NWBCS. At the end of 1988, recharge-well flowrates at the northeastern end of the system were increased to improve the reverse hydraulic gradient along the slurry wall. This created higher water levels both in the recharge wells and offpost and helped to prevent bypass on the northeastern end of the NWBCS that, unknown to the Army at that time, had been occurring. The recent lowering of groundwater contaminant concentrations offpost near the NWBCS indicted in the RI Addendum Report was caused primarily by this operational change. The NWBCS IRA modifications will further improve the system's performance.

Response

The text has been revised to indicate that changes in the operation of the Northwest Boundary

Containment System (NWBCS) contributed to the observed increases in water levels downgradient
of the NWBCS.

Comment No. 3, page 28, first paragraph, first sentence

Water level data in three wells does not demonstrate that the Arapahoe aquifers are confined in all areas of the offpost OU. Perhaps this sentence should be appended with the phrase, "in these areas."

Response

The text has been revised in accordance with the comment.

Comment No. 4, page 29, third paragraph

Data from the Arapahoe Formation which is of poor quality and is not representative of the formation is misleading and should not be included in the document.

Response

The Army disagrees with the comment. The data to which Shell is referring are not considered of "poor quality." In fact, the isolated, sporadic occurrence of contaminants in Arapahoe Formation wells substantiates the interpretation of only localized, low-level contamination in the Arapahoe Formation that is largely the result of migration through poorly constructed domestic wells. No changes to the report are necessary.

Comment No. 5, paragraph 29, fourth paragraph

This paragraph states that CMP, RI Addendum, and IRA A water quality data have passed QA/QC review and have been accepted into the RMA database. This statement implies that all of these data were accepted, which is untrue and should be revised since some of the RI Addendum VOC data did not pass QA/QC review and were flagged as being anomalous.

It is stated that if data did not pass QA/QC review, they were either flagged in the appendices or eliminated from the database. The 1990 RI Addendum VOC data that were flagged as being anomalous due to inadequate decontamination of sampling equipment and subsequent cross-contamination of samples have not been eliminated from the RMA database as of January 31, 1992. In fact, DP Associates (Jim Clark) was not aware that a problem with these data existed. These data were not used in the RI Addendum assessment and plume interpretations for which they were collected. Therefore, these data are of no further use and are a potential source of serious misinterpretations of offpost groundwater contaminant distributions. Although with the DP Associates "RKPMCGW" table, the flagcode field could be used to indicate that they are erroneous, it would be preferable to remove this data set from the database since every potential user will not know of the faulty nature of the VOC data and may not check the flagcodes.

Because the above data were obviously erroneous, flagged as such in this report and unusable for the purpose for which they were collected, these data should not have been accepted into the RMA database. Are rinse blank results not considered in the QA/QC review? If not, the PMRMA procedures should be revised to account for such a situation.

Response

The text has been revised in accordance with the first paragraph of the comment. Additional discussions have been recently initiated with D.P. Associates to evaluate procedures for flagging anomalous data.

Comment No. 6, page 29, last paragraph

The 1990-1991 CMP data should have been used as the primary data set for plume map generation, because these data reflect the most recent contaminant distribution and the influence of recent boundary system modifications and operational changes.

Response

See response to General Comment No. 1.

Comment No. 7, page 30, second paragraph, first sentence

Some of the fall 1989 CMP data seem to be questionable for OCPs and DBCP. For which compounds and wells were the fall 1989 CMP results "highly anomalous?" If the anomalous 1990 RI Addendum VOC data were not used in mapping, why were the anomalous 1989 data averaged with other data sets and used for mapping? In the discussion of the distribution of compounds that were not mapped, the anomalous 1989 data should be qualified if they are retained.

Response

The Army is not aware of any anomalous data from Fall 1989 for OCPs or DBCP. The wells and analytes for which VOC data are considered anomalous and are identified as such in Appendix B. Because no anomalous data for OCPs or DBCP are recognized, the remaining portions of the comment do not require a response.

Comment No. 8, page 30, second paragraph, second sentence

This sentence appears to indicate that the anomalous data were used to develop the approximate averages for plume mapping. The last sentence in the third paragraph on page 58 indicates that these data were not used. Please clarify.

Response

The distribution of groundwater contaminants did not include data recognized as anomalous. The text has been revised in accordance with the comment.

Comment No. 9, page 32, last paragraph

A detection of DIMP 2 miles northwest of RMA could also be indicative of migration along one of the pathways from the RMA North Boundary.

Response

Based on available data regarding the interpreted distribution of dispropylmethyl phosphonate (DIMP), as depicted in Figure 3.2 and historically presented in groundwater element CMP reports, it appears that the occurrence of DIMP in well 10720TWBRI is most likely attributable to historical flows from the vicinity of the NWBCS. No changes to the report are necessary.

Comment No. 10, page 35, third paragraph, second sentence

Does this sentence refer to data collected in the RI Addendum?

Response

The specific data cited in this paragraph were collected under the groundwater element of the CMP. Groundwater-quality data generated under the RI Addendum are presented in Appendix B. No changes to the report are necessary.

Comment No. 11, page 37, Section 3.2.1.1.3

See the Specific Comment regarding page 30, second paragraph, first sentence.

Response

See response to Specific Comment No. 7.

Comment No. 12, page 37, second paragraph

The 1991 CMP aldrin sample result for well 37419 was < 0.05 ug/l. Was the 1989 concentration of 0.354 ug/l for well 37419 considered to be one of the "highly anomalous" CMP detections mentioned on page 30, second paragraph? If so, this sentence should be qualified.

The 1989 aldrin detection in well 37345 also appears to be anomalous as it is the only detection out of 11 analyses since 1987 and, as stated, it is an exception to the lack of aldrin detections downgradient of the canals. Please add qualification.

Response

The sample collected from well 37419, which had a reported aldrin concentration of 0.354 micrograms per liter (μ g/l), was sampled under the RI Addendum program, not under the CMP. The result is not considered anomalous and does not require qualification. The text has been revised to indicate that aldrin has not been previously detected in samples from well 37345.

Comment No. 13, page 38, first full paragraph

The consistent chlordane detections of approximately 1 ug/l in the fall 1989 CMP sampling round seem questionable. See the Specific Comment regarding page 30, second paragraph, first sentence.

Response

The text has been revised to indicate that a review of historical data and more recent data for the offpost wells in which chlordane was detected shows that chlordane is generally not detected in offpost wells.

Comment No. 14, page 40, Section 3.2.1.1.6

Refer to Comment No. 3.

Response

See response to General Comment No. 3.

Comment No. 15, page 44, second paragraph

On Figure 3.8, detections of DBCP in the eastern extension of the Northern Paleochannel plume in Section 12 appear anomalous compared to the 1991 CMP data, which were below CRL for all three RI Addendum Wells (37402, 37403, and 37404). All three of these detections were from the fall 1989 RI Addendum sampling round and samples from these three wells were not analyzed by GC methods in 1990, so comparison of results is not possible until 1991. Since DBCP was included in

the list of VOCs that were affected by inadequate decontamination of sampling equipment between wells in the 1990 RI Addendum sampling round, might the 1989 RI Addendum data for these three wells also have been affected by the same problem? If so, Figure 3.8 should be modified.

Response

There is no evidence that dibromochloropropane (DBCP) data from the Fall 1989 RI Addendum sampling round were affected by the cross-contamination problem identified for other volatile organic compounds in later sampling rounds. However, the text has been revised to note that DBCP was not detected in groundwater samples collected from wells 37402, 37403, or 37404 during the early-1991 CMP sampling event. Because no additional data are available for these wells, no changes to Figure 3.8 have been made.

Comment No. 16, page 47, first paragraph

The reported carbon tetrachloride detection of 6.98 ug/l in well 37407 was from the January through March 1990 RI Addendum sampling round that was problematic and should not have been cited in the text without qualification, if at all. Duplicate 1990 data and 1991 CMP sample data confirm that this reported concentration was false. In addition, all of the erroneous carbon tetrachloride analyses are not flagged with an "A" in Appendix B Table B1. Also, the ID numbers for duplicate samples HA1166 and HA1165 are reversed for wells 37407 and 37404 in Table 3.3. These discrepancies affect the QA evaluation for these wells and cause one to question whether the erroneous 1990 RI Addendum VOC data set has been used by mistake elsewhere in this report.

Response

Appendix B has been revised to show that the result for carbon tetrachloride is anomalous. Additional review has been performed to verify (1) the proper flagging of anomalous data in Appendix B and (2) that the anomalous data has not been used to interpret the extent of contamination in the Offpost OU. The ID numbers for duplicate samples HA1166 and HA1165 are correct as shown in Table 3.3. However, they were reversed in Appendix B. Table B4 has been corrected.

Comment No. 17, page 52, fourth paragraph, last sentence

Please rephrase the sentence to read "...and assessment of <u>possible</u> contamination in the Arapahoe Formation."

Response

The text has been revised in accordance with the comment.

Comment No. 18, page 53, second paragraph, fourth sentence

This sentence is confusing. DIMP was not found in January 1990.

Response

DIMP was found in the sample collected from well 11841TW096 in January 1990 at a concentration of 0.521 μ g/l, as shown in the text and Appendix B. However, the text has been revised to clarify in which wells DIMP and chloroform were detected.

Comment No. 19, page 53, Section 3.2.2.1

The sample results from the three new Arapahoe Formation monitoring wells are probably more indicative of Arapahoe water quality than are the sampling results from the existing domestic wells. This is because well drilling and construction practices were probably much superior for the monitoring wells than for the domestic wells, preventing mixing of water from different aquifers. The fact that no organic compounds were detected in the monitoring wells is significant and should be emphasized in the text.

Response

The Army agrees with Shell's comment. The text has been revised to indicate that groundwater-quality data from the newly installed Arapahoe Formation wells strongly support the Army's conclusion that contamination observed in the Arapahoe Formation is sporadic and localized, possibly as a result of well construction problems.

Comment No. 20, page 55, first paragraph, second sentence

We do not believe that the values of hardness and conductivity reported by the Tri-County Health Department (TCHD) in their 1989 private well inventory report are based upon an independent review of actual data in the offpost area by TCHD. These values are probably based upon ranges reported in other documents.

Response

The text has been revised to clarify that these ranges were reported by the Tri-County Health Department (TCHD) in their private well inventory report.

Comment No. 21, page 56, last paragraph

As stated in Section 3.2.1.1.6, the RI Addendum samples collected from January through March 1990 were anonymously high for volatiles because of inadequate decontamination of sampling equipment, not because of analytical problems. Both the GC and GC/MS results would be affected and the GC/MS results should not have been used as a guide for contour mapping. This report is inconsistent in its use of this erroneous data set and should be revised.

Response

The text has been revised to indicate that the anomalous volatile organic compound data are also reflected in the gas chromatography/mass spectrometry (GC/MS) results. The statement that the GC/MS results were used in contour mapping is not correct and has been deleted from the report. None of the anomalous data identified in Appendix B were used for contouring, averaging, or assessing the distribution of contamination in the UFS.

Comment No. 22, page 57, last paragraph

The DSA values exceeded 1.0 for several volatiles because HA1165 is actually the duplicate for well 37407, not for well 37404 as shown in Table 3.3, and not because of analytical problems. Table B4 in Appendix B contains the correct ID numbers. If the correct duplicate is used for well 37407, the DSA values for those volatiles should be much less than 1.0. Furthermore, a DSA analysis on the erroneous 1990 RI Addendum VOC data is unnecessary.

Response

The Army has reviewed chains of custody and information in the RMA database and compared analytical results for the samples in question. The correct investigative/duplicate sample pairs

have been compared in Table 3.3. That is, sample HA1165 is a duplicate of sample 37404 and sample HA1165 is a duplicate of sample 37407. Table B4 in Appendix B, Groundwater Duplicate Analytical Data, incorrectly identified the investigate/duplicate sample pairs. Table B4 has been revised accordingly.

Comment No. 23, page 58, second paragraph

Not only is rinse blank HAII75 a true rinse blank, it is a telling rinse blank. Please review Section 3.2.1.1.6. Five rinse blanks were collected during RI Addendum activities, yet only one (HAII75) is identified and discussed. Please provide the ID numbers and results for the other four.

Response

Table B3 in Appendix B has been revised to identify the types of quality assurance/quality control (QA/QC) samples represented by the analytical results presented in Table B3, including all trip, rinse, and field blanks. The text on page 58, second paragraph, has also been revised to indicate that the analytical results for sample HA1175 are thought to represent field decontamination problems as discussed in Section 3.2.1.1.6.

Comment No. 24, page 58, s cond paragraph

The Offpost OU RI reported sporadic and unexplainable detections of volatile compounds such as chlorobenzene and chloroform in Denver Formation wells. Is it possible that inadequate decontamination procedures were also responsible for these anomalous results?

Response

The evaluation of QA/QC analytical results were presented, discussed, and interpreted in the Final RI.

Comment No. 25, page 58, third paragraph

Please revise this paragraph to reflect the above comments.

Response

The text has been revised in accordance with the comment.

Comment No. 26, page 59, first full paragraph

The groundwater flow velocity and volume in the minor paleochannel located south of the First Creek Paleochannel is much less than in the First Creek Paleochannel and the analytes detected in this area may be relic contaminants and do not reflect the present effectiveness of the NBCS.

The plume maps do not indicate that trichloroethene or chlorobenzene are present in the eastern arm of the Northern Paleochannel in Section 12. Also, the DBCP detections in this area were questionable. See the Specific Comment regarding page 44, second paragraph.

Response

The text has been revised to indicate that only chloroform, DBCP, and DIMP were identified in the eastern arm of the Northern Paleochannel. Reference to chlorobenzene and trichloroethene have been removed from this sentence.

Comment No. 27, page 60, first paragraph

Historically, a diluting effect has also been noted downgradient of the NWBCS as a result of canal leakage. Although not as significant as downgradient of the NBCS, historical data indicate it is present. A probable reason for it not being apparent lately is the decreasing concentrations immediately downgradient of the NWBCS as a result of increased efficiency of this system.

Response

The Army agrees with Shell's comment. The text has been revised to indicate that the dilution effect downgradient of the NWBCS is less obvious in that area.

Comment No. 28, page 60, second paragraph

There is no doubt that the increased water table elevations immediately downgradient of the NBCS are due to the operation of the recharge trenches.

Response

The Army agrees with Shell's comment. The text has been revised in accordance with the comment.

Comment No. 29, page 65, second paragraph

Was the siphon which routes First Creek water directly to Burlington Ditch open when the samples which exhibited DIMP were collected? If not, what is the explanation of the detections in Burlington Ditch? An explanation of the mechanism for directly routing water to Burlington Ditch and the frequency with which it is used would be helpful to the reader.

Response

The siphon was not in use during surface-water sampling events conducted during the RI Addendum program. The occurrence of DIMP in Burlington Ditch is considered the result of groundwater/surface-water interaction along the reach of Burlington Ditch in the northwest corner of Section 14. Additional discussion of the surface-water system has been added to Section 4.1 of the report.

Comment No. 30, page 74, first paragraph

Section 4.1.1 states that "DIMP was the organic compound most frequently detected in offpost surface water" thus, DIMP should be mentioned in Section 4.5.

Response

The text has been revised in accordance with the comment.

Comment No. 31, page 77, third paragraph, first sentence

DBCP is written twice in the listing in this sentence.

Response

The text has been revised in accordance with the comment.

Comment No. 32, page 78, first paragraph

DBCP and hexachlorocyclopentadiene have moderate and high affinity for organic matter, respectively. Organic matter is commonly present in stream and lake-bottom sediment; therefore, these compounds may have affinity for sediments as is indicated by their detections.

Two acronyms for hexachlorocyclopentadiene are used in this report (CL6CP and HCCPD), which may lead to confusion.

Response

The text has been revised to indicate that DBCP and CL6CP tend to sorb to sediments. The text has also been revised by removing the HCCPD acronym for hexachlorocyclopentadiene.

Comment No. 33, page 84, last paragraph

As stated on page 79, second paragraph, other sources of dieldrin are indicated to be present in the Offpost OU; therefore, dieldrin should be added to the list of compounds with additional sources in this paragraph.

The previous discussion of contaminant distributions in the text did not establish that RMA was a source of endrin and DDE in sediments. Therefore, the last sentence should be revised to be more accurate.

Response

The text has been revised to include dieldrin as a compound for which additional sources exist in the Offpost OU. The last paragraph on page 84 has been revised to clarify the source of endrin and DDE.

Comment No. 34, page 88, third full paragraph

The surficial soil data presented in the report do not display any clear distribution pattern which would support a single source or a dominant mechanism of transport. Instead, the data suggest multiple sources and perhaps numerous transport mechanisms. To state that windblown contamination from Onpost to Offpost is the primary cause of the observed contamination with only sporadic influences from other sources or transport routes is inconsistent with the data.

Response

The Army disagrees with the comment. The Army has repeatedly stated that multiple sources of organochlorine pesticides (OCPs) exist in the Offpost OU. However, the distribution of the OCPs near the northern RMA boundary appears to follow a pattern that is consistent with windblown transport. No changes to the report are necessary.

Comment No. 35, page 89, last paragraph

The wind-transport mechanism for OCPs in offpost surficial soils is most plausible for dieldrin within a mile of the north boundary of RMA in Sections 13 and 14. In other offpost areas this mechanism is less plausible for dieldrin and other OCPs and their distribution is better explained by other offpost sources. The conclusions reached for the distribution of OCPs in surface soil are based on an overly qualitative and generalized analysis.

Response

The text has been revised to clarify that (1) windblown transport is most plausible for areas immediately north of RMA and (2) other sources, including irrigation northwest of the canals, are likely mechanisms in the other areas.

Comment No. 36, page 97, second paragraph

Please add that the mercury detections exceeding background concentrations north of the canals are from sources other than RMA.

Response

The text has been revised in accordance with the comment.

Comment No. 37, page 108, second paragraph

It is unfortunate that the review process for the RI Addendum Report was not completed prior to issuing the Offpost EA/FS Draft Report. Anomalous and erroneous groundwater quality data sets have been used in the RI Addendum that may have resulted in misinterpretations of plumes in the EA/FS.

Response

Comment noted. See also the response to Shell General Comment Nos. 2 and 3.

Comment No. 38, page 109, fourth paragraph

Modifications to the NWBCS include physical changes as well as operational ones. In addition to reducing chloroform offpost, these modifications will reduce concentrations of all RMA-related compounds offpost including dieldrin, DIMP, chloride, and fluoride.

Response

The text has been revised to note that reductions in other contaminants offpost are expected to occur as a result of modifications to the NWBCS.

Comment No. 39, page 110, second full paragraph, third sentence

Please add that the detection of mercury and arsenic in surface water upstream of First Creek indicates of fpost sources of these compounds.

Response

The text has been revised in accordance with the comment.

Comment No. 40, page 112, second paragraph, second and third sentence

The highest concentrations of arsenic and mercury in surface soil were detected northwest of Burlington Ditch, not "northeast" of the ditch as stated. It should be added that these detections were from sources other than RMA.

Response

The text has been revised in accordance with the comment.

Comment No. 41, page 113, only paragraph

Section 7.2.4 of this report indicates that contaminants attributed to RMA sources were not detected in an egg from an abandoned bald eagle nest at Barr Lake. This fact should be added to the paragraph.

Response

The comment does not accurately reflect the statement made in the text. The correct interpretation, as presented in the referenced section, is that the contaminants could not be clearly associated with releases from RMA. No revisions to the report are necessary.

Comment No. 42, Figure 3.2, Distribution of DIMP in the Offpost UFS: and Figure 3.6, Distribution of Chloroform in the Offpost UFS

It would be helpful to illustrate the similarities and/or differences between the Final RI and RI Addendum data sets for these two maps by using the same isoconcentration values as were used for contouring in the Final RI Report or the CMP Reports. Similar isoconcentration values were used in the plume maps for the other analytes.

Response

The Army believes that the isoconcentration lines used for these figures best depict the distribution of DIMP and chloroform in the UFS. For DIMP, the minimum isoconcentration contour represented in the Final RI was 11 μ g/l, which is considered too high for the current database. Additionally, the contour intervals for DIMP and chloroform used in the CMP report for 1989 (RSLA, 1990a) are not the same as those in the Final RI, as suggested by the comment. No changes to the report are necessary.

Comment No. 43. Figure 3.4. Distribution of Dieldrin in the Offpost UFS: and Figure 3.5. Distribution of Endrin in the Offpost UFS

At well 37307, the dieldrin and endrin plumes are drawn as part of the plumes located in the First Creek Paleochannel. Figure 3.1 shows an area of unsaturated alluvium separating Well 37307 and the First Creek Paleochannel. Therefore, isolated detections should be drawn for Well 37307 and based upon onpost data, the western margins of the First Creek dieldrin and endrin plumes should be moved east to Peoria Street.

The extent and variability in the shape of the unsaturated zones is uncertain. The purpose of depicting these zones is to give a general indication of the major groundwater flow pathways in the UFS. However, because water levels rise and fall over time, the extent of dieldrin and endrin cannot be tied directly to any particular depiction of these zones. The dieldrin and endrin plumes are consistent with their distributions shown in the Final RI and Groundwater CMP report for FY90 (RLSA, 1991a). No changes to the report are necessary.

RESPONSES TO COLORADO DEPARTMENT OF HEALTH COMMENTS REGARDING THE OFFPOST OPERABLE UNIT DRAFT FINAL REMEDIAL INVESTIGATION ADDENDUM

GENERAL COMMENTS

Comment No. 1

The Army has asserted that "[g]roundwater monitoring in the Denver Formation was not necessary for this addendum report because the Final RI adequately characterized the extent of contamination in the Denver Formation" and that "...mechanisms of contamination migration through the Denver Formation" were adequately identified in the Final Off-post RI (page 6). While several mechanisms of contaminant migration were presented in the document, historical operation of the North Boundary Containment System (NBCS) and resultant contamination of Denver Formation (Fm) sands was not included in the discussion. The State presented a conceptual model for Denver Fmalluvial aquifer interaction at the October 16, 1991. Technical Subcommittee Meeting at which our representatives identified historical operation of the NBCS as the predominant mechanism for contamination of Denver Fm sands in the vicinity and downgradient of the NBCS. In a report distributed to the organizations at the meeting, the State also proposed a monitoring program to determine the current impact of the system on lateral and vertical contaminant migration within the Denver Fm and the alluvial aquifer. The Army promised to review the report and respond to the State's proposal.

Additionally, at Feasibility Study data needs meetings being conducted during the same time period, the Army stated that NBCS Operations personnel had been evaluating detailed data on vertical and lateral gradients in the vicinity of the system. Without a summary of this evaluation, and without an Army review of the State's proposed NBCS monitoring program, we are not able to agree that Denver Fm contamination has been properly characterized. If the studies indicate a reversed gradient across the slurry wall and upward gradients between Denver Fm sands and the alluvial aquifer, the proposed program will not be necessary. We request a response to the State proposal, and will comment on the need for additional Denver Fm characterization in the vicinity of the NBCS after reviewing the response.

Response

The U.S. Department of the Army (Army) disagrees with the Colorado Department of Health (CDH) claim that the Denver Formation has not been adequately characterized for the purposes of conducting an Endangerment Assessment/Feasibility Study (EA/FS) for the Offpost Operable Unit (OU). The Final Remedial Investigation (RI) provided a description of the geology and hydrogeology of the Denver Formation and interactions between the Denver Formation and the Unconfined Flow System (UFS). In the FS technical meeting held on October 16, 1991, the Army restated its conceptual model for the interaction between the Denver Formation and UFS and migration routes for contaminants from the UFS. Based on the discussion and statements by the CDH representatives at that meeting, consensus was reached in that meeting that Denver

Formation contamination occurs primarily as local effects of interaction between the UFS and the weathered upper portion of the Denver Formation. Additionally, the focus of the CDH comments is on the nature of contamination in the vicinity of the North Boundary Containment System (NBCS). The Army will respond to the CDH proposal under a separate cover following complete review of the CDH document. However, based on the nature of the CDH comments and the response to the Army's presentation in the October 16, 1991, meeting, the only remaining issues associated with the Denver Formation contamination is assessment of the migration of contaminants to the Denver Formation in the vicinity of the NBCS, particularly in the immediate proximity of the pilot portion of the NBCS.

Comment No. 2

The State remains concerned that the nature and extent of groundwater contamination has not been sufficiently characterized for the Arapahoe Formation. In addition, the geology and hydrology have not been studied in sufficient detail to understand the relationship between the confined flow system, the confined Denver and the Arapahoe Formation. The State requests a response to the results of our Arapahoe sampling program which indicated Arapahoe F: contamination, and a follow-up technical meeting to discuss Arapahoe contamination and future investigations of the Arapahoe Formation.

Response

The Army strongly disagrees with the comment. The Army has collected over 90 groundwater samples from monitoring or domestic wells in the Arapahoe Formation. These data indicate that where contamination occurs, it is at low concentrations and appears to be highly localized. On the basis of these data, contamination in the Arapahoe Formation is likely the result of vertical migration of contamination from the UFS through poorly constructed domestic wells. The Army will respond to the CDH proposed Arapahoe Formation sampling program under separate cover. No revisions to the report are necessary.

Comment No. 3

In numerous instances soil and sediment contamination detected in the off-post OU is being attributed to sources other than RMA (e.g., mercury in Burlington Ditch sediments is attributed to the wastewater treatment facility and pesticide contamination is attributed to personal application). These conclusions are arbitrary and should be purely tentative in nature. Additional soil sampling will be needed to substantiate.

Response

The Army has presented a voluminous amount of analytical data for soil and sediment in the Offpost OU. The data were presented in the Final RI and RI Addendum reports. The data show that some of the contaminants detected in soil and sediment likely the result of past releases from RMA, and the reports have provided such interpretations. However, other data and interpretations suggest that other sources of some of the contaminants may also be present in the Offpost OU or in other areas that impact the Offpost OU. The data for these media presented in the Final RI and RI Addendum reports are sufficient for the purposes of conducting an EA/FS for the Offpost OU. No additional sampling for these media are necessary to allow the completion of the RMA Offpost OU RI and EA/FS programs. The Army has repeatedly and consistently stated its commitment to continue monitoring programs for the Offpost OU. No revisions to the report are necessary.

Comment No. 4

The Off-post Operable Unit should be expanded or additional operable units created to adequately characterize the nature and extent of surficial soil contamination that has been detected outside of the boundaries of the existing Off-post OU. High concentrations of dieldrin have been detected in surficial soils at localities east of RMA and the area south of RMA has yet to be investigated.

Response

The boundaries of the Offpost OU were identified in the Federal Facility Agreement (FFA) for Rocky Mountain Arsenal (RMA). In the FFA, the Army committed to a number of programs and activities, including conducting an RI/FS for the Offpost OU. The Army intends to complete those programs in a timely fashion. No compelling reasons to change the boundaries or definition

of the Offpost OU have been presented. The nature and extent of contamination in the Offpost OU has been adequately characterized for conducting and EA and FS.

Comment No. 5

Colorado Department of Health surficial soil sampling data should be incorporated into this report. These data would augment existing Army data and would provide a better understanding of the nature and extent of off-post surficial soils contamination. If the Army is unwilling to use the data from CDH surficial soil sampling efforts due to concerns pertaining to State QA/QC analytical/sampling protocol, locations identified by CDH to have significant concentrations of RMA contaminants should be resampled by the Army to confirm contaminant presence. The State will transmit all existing surficial soils data under separate cover and assist in whatever manner desired to facilitate this effort.

Response

The Army has included the data provided by CDH for the 12 surficial soil samples collected in February 1989. The CDH sampling locations are shown in Figure 2.5, and data are discussed in Section 6.0 and presented in Figure 6.1. The Army elected to use these data at the encouragement of CDH, although CDH repeatedly denied requests for the quality assurance/quality control (QA/QC) information for these data. Thus, although the data are included in the report, the reliability of the data cannot be verified. No revisions to the report are necessary.

Comment No. 6

The State does not concur with the choice of the 12 additional soil sample locations to represent background contamination values. Eleven of these locations are within the off-post OU. down-wind from RMA, and a majority showed detections of dieldrin. Different locations more distant from RMA, or limitation of representative background samples to the 4 locations east of Brighton (minus the duplicate sample in Section 34, see Comment #15) is warranted.

Response

The statistical comparison of the four Brighton samples with the 12 additional soil samples, using EPA-recommended statistical procedures (EPA, 1989), demonstrated that the additional 12 sites are not statistically different from the four Brighton sites. This analysis strongly supports the conclusion that the 12 additional sites are representative of background conditions. Wind

sometimes blows from all points downwind of RMA (R.L. Stollar and Associates, Inc., and others, 1990 and ESE, 1988); however, previous investigations show that the prevailing wind direction is from the south not the southwest, while the strongest winds are from the northwestern quadrant, indicating that the additional 12 sites are not "downwind". Additional references have been added to the report to clarify the sources of information supporting the prevailing wind directions and the EPA reference for performing the statistical analyses. No additional revisions to the report are necessary.

Comment No. 7

The seven off-post biota target analytes were not chosen as the product of an independent review but rather as part of the On-post Biota Remedial Investigation. This was inappropriate since the on-post selection process was itself flawed. For example, historical studies (see Table 4.1-5 of the On-post Biota RI) detected contaminants in on-post wildlife in addition to the seven selected to be present. These contaminants should at least have been treated as candidates for off-post biota sampling. Furthermore, the on-post selection process is not applicable to off-post. Among the critical listed on page 3-32 of the Biota RI is that the compound "Occurred in high volumes and/or with an areal extent of >5 acres." The relevance of this criterion off-post is unclear.

Response

The Army disagrees with the CDH comment. The biota target analytes were selected on the basis of an evaluation of the types and nature of contaminants detected in onpost and offpost media. These compounds were selected because they were considered the most likely contaminants to be detected in biota samples collected in the Offpost OU. These data are adequate for conducting an EA/FS for the Offpost OU. No revisions to the report are necessary.

Comment No. 8

The requirements of statistical significance do not appear to have been considered when choosing the sample sizes to be taken for the off-post biota program. Sample sizes given in Table 2.6 are not adequate to draw more than anecdotal conclusions regarding off-post biota contamination.

The biota sampling and analytical program conducted in the Offpost OU was adequate for conducting an EA/FS for the Offpost OU. In many instances, the adequacy of the sample size was limited by the availability of the specific biotic community in the area from which samples were being collected. For example, many limitations were encountered in collecting fish samples from the First Creek Impoundment and in collecting pheasants in the Offpost OU making it impossible to obtain a statistically based sample size. No revisions to the report are necessary.

Comment No. 9

Throughout the Draft Implementation Document for the Ground Water Intercept and Treatment System North of RMA, the Army states that the distribution of contaminants above Remedial Action Objectives (RAOs) extend beyond the off-post study area A boundary (e.g., Part II, pages 2, 5, and 12). In the Results of Pilot-Scale Hydraulic and Treatment Testing North of Rocky Mountain Arsenal Interim Response Action A Draft Final Report, June 1990, the Army states (pages ES-2):

"Because contaminants <u>are</u> present in excess of remediation goals at the down-gradient study area boundary in First Creek, remediation through ground water flow extraction using wells placed transverse to ground water flow direction is not preferred in this area (emphasis added)."

In other words, the Army decided that because they could not capture all off-post contaminant concentrations exceeding RAOs with an extraction system located within the study area boundaries defined in the Final Decision Document, it would instead optimize contaminant removal within those boundaries using an axial extraction well design. This action indicates, and data in Plates 11 and 12 of the Pilot-Scale Report support, that at least two contaminants of concern (dieldrin and diisopropylmethylphosphonate. DIMP), have and currently continue to migrate downgradient of the proposed First Creek pathway extraction system at concentrations exceeding ARARs.

Because the proposed system will fail to capture all contaminants exceed health-based limits, it is probable that modifications to the extraction system will be necessary to extract and treat ground-water downgradient of the O'Brian Canal. Therefore, hydrogeologic and geophysical investigations (similar to those conducted in Study Area A) must be conducted in this area, and the distribution of contaminants characterized.

The State previously submitted this comment on the Army's Draft Implementation Document for the off-post IRA; the Army responded as follows:

"The Army disagrees with the State's contention that selection of a new study area and preparation of a work plan are warranted at this time. As stated in Draft Implementation Document, the IRA, as designed, will meet the goals specified in the Final Decision Document for the Off-post IRA (HLA, 1989). The results of the off-post Remedial Investigation/Feasibility Study (RI/FS) will be used to assess the need for remediation downgradient of the IRA A

study area. If deemed necessary, remediation downgradient of the study area will be addressed either during operation of the IRA or as part of the final remedy selected for the off-post area."

Unfortunately, the Army has neglected to gather any additional data which would determine the leading edge of the First Creek plume exceeding health-based limits. The data which are available for DIMP indicate that approximately one order of magnitude of dilution may be taking place; this same amount of dilution would not reduce dieldrin to below the health-based standard of .002 ug/l. This problem, of course, is compounded by the fact that the Army's detection limit, to our knowledge, remains greater than one order of magnitude above the health-based limit. The Army must characterize the extent of this contamination. The State and EPA have previously requested that efforts be made to lower this detection limit. In the alternative, samples should be sent to other certified labs with lower detection limits.

Response

The Army disagrees with the CDH contention that additional site characterization downgradient of the IRA A study area is needed to complete the Offpost RI/FS program. Analytical results from the offpost groundwater programs conducted in support of IRA A, the Offpost Final RI and the RI Addendum, and Comprehensive Monitoring Program (CMP), indicate that diisopropylmethyl phosphonate (DIMP) and dieldrin are present within the First Creek pathway at concentrations exceeding remedial action objectives (RAOs) near the downgradient boundary of the IRA A study area. However, DIMP and dieldrin have not been detected in excess of RAOs downgradient of the IRA A study area within the First Creek pathway.

The CDH comment states that the Army has "...neglected to gather any additional data which would determine the leading edge of the First Creek plume exceeding health-based limits."

However, the Army installed two additional groundwater monitoring wells immediately downgradient of O'Brian Canal and four monitoring wells upgradient of O'Brian Canal to assess contaminant migration in the First Creek pathway in this area. In total there are approximately 15 monitoring wells in the immediate vicinity of O'Brian Canal and Burlington Ditch near the confluence with First Creek. The analytical data from these wells and the previously existing wells is presented in the RI Addendum. The distribution of DIMP in this area is depicted in Figure 3.2. The distribution of dieldrin is similarly shown in Figure 3.4. The figures clearly show that concentrations of these contaminants downgradient of the canals do not exceed health-based

limits. The maximum concentration of DIMP in the area downgradient of the canals was 140 micrograms per liter (μ g/l) in well 37428. This is significantly lower than the EPA Health Advisory for DIMP of 600 μ g/l. Dieldrin was not detected in wells immediately downgradient of the canals. The Army has been working with Oak Ridge National Laboratory to develop a new analytical method for dieldrin that has a lower certified reporting limit. Following method certification by the Army, the new analytical method will be used in subsequent programs. The existing data are sufficient to characterize the First Creek plume for conducting the EA/FS for the Offpost OU. No revisions to the report are necessary.

SPECIFIC COMMENTS

Comment No. 1 - Page 40, 3.2.1.1.6, Volatile Organic Compounds, fourth paragraph

The Army states:

"Samples collected between January 25 and March 2, 1990. [from wells installed under the RI Addendum program] exhibited anomalously high concentrations for a number of VOCs... The results reported by the laboratories for these affected samples were considerably higher than historical results and are not considered representative of groundwater conditions offpost... It appears that inadequate decontamination of the tubing [from the particular sampling pump] was the source of contamination observed in the groundwater samples collected during the period..."

To facilitate future reference of questionable data collected between 1/25/90 and 3/02/90, please include well name, dates and analytical results listed in Appendix B. Table B1 in a separate table. Evaluation of the anomalous VOC results are important, since any off-post areas that have true increases in concentration above historical levels would be masked by the inadequate decontamination problem. Wells needing particularly careful QA/QC evaluation include wells 37402, 37403, and 37404, which appear to define a minor paleochannel tributary to the Northern Paleochannel (see Specific Comment 6). The State further requests that those wells exhibiting anomalous VOCs due to poor sampling technique be resampled.

Response

Data considered anomalous because of suspected decontamination problems are identified in the respective table in Appendix B. Moving these data to a separate table is unwarranted and would not substantively change the manner in which these data have been identified in the report. Wells in the Offpost OU will be resampled under the RMA Groundwater CMP. No revisions to the report are necessary.

Comment No. 2 - Page 41, 3.2.1.1.6 Volatile Organic Compounds, second paragraph

The Army states:

"To provide a complete database for assessing groundwater contamination in the UFS, data from a CMP sampling round conducted in the first quarter of 1991 were used to augment the database where anomalous data [discussed in State Specific Comment 1] could not be used... Data used in this assessment are included in Appendix H."

Appendix H only includes analytical results from surficial soil samples, it does not include 1991 CMP groundwater sampling data. Because verification data are needed to support the exclusion of the anomalous data discussed in Specific Comment 1, please include the CMP data in the Final RI Addendum. This is especially important in the case of wells 37402, 37403, and 37404, as discussed in Specific Comment 1.

The reference to Appendix H was erroneous. The text has been revised to indicate that CMP data are available in the Program Manager for Rocky Mountain Arsenal (PMRMA) database.

Comment No. 3 - Page 53, 3.2.2.1 Arapahoe Formation Organics, second paragraph

The Army states:

"The sample from well 13701TW104 contained DIMP at a concentration of 3.87 ug/l, Because only one sample was collected from well 1370TW104, the occurrence of DIMP cannot be verified. Additionally.... this well appears to have structural problems..."

This well needs to be resampled for DIMP. If the well does in fact contain DIMP, it indicates that the contaminant is present in the UFS (at potentially greater concentrations than those found in the Arapahoe Formation due to dilution effects) farther to the east than currently projected by the Army. If the well is determined to be structurally unsound, it should be closed.

Response

This well is scheduled to be sampled by Tri-County Health Department (TCHD) in April 1992. Based on the results of subsequent sampling events for this well, the Army will propose future actions. However, the available analytical results for this well do no indicate additional information is necessary before conducing the EA/FS for the Offpost OU.

Comment No. 4 - Page 53, 3.2.2.1 Arapahoe Formation Organics, third paragraph

It is presumptuous to assume that "organic contamination of the Arapahoe Formation appears to be localized, possibly as a result of well construction problems" on the basis of analytical results from only 10 wells. While the State agrees that well construction problems likely contribute to localized contamination of the Arapahoe Formation, additional data obtained by the State and presented to the parties in November 1991 suggest that the contamination could be more widespread than suggested by the Army (see General Comment 2).

Response

See response to CDH General Comment No. 2.

Comment No. 5 - Page 55, 3.2.2.2 Arapahoe Formation Inorganics, first paragraph

The Army states:

"[t]he conductivity values measured in the field were consistent with the Tri-County ranges, except for well 13701TW104. The conductivity value reported for this well was approximately 850 uhos/cm at 25°C, which is about 50 percent higher that typical values for the Arapahoe Formation..."

The State would suggest that inorganic water chemistry (conductivity and hardness) are good indicators of well integrity. Inasmuch as well 13701TW 104 appears to deviate significantly from the typical Arapahoe values, we would suggest replacing well 13701TW 104 with another Arapahoe well for future data collection. If, as stated in Specific Comment #3, "this well appears to have structural problems..." (page 53) it is not a good source of reliable Arapahoe Aquifer water quality data and should no longer be incorporated in the off-post monitoring program.

Response

The Army disagrees with the CDH's conclusion that this well should be replaced. There are no compelling reasons to replace this well, particularly considering that only two samples have been collected from this well, and the concentrations of DIMP are far below health-based limits. The well provides a monitoring location for the Arapahoe Formation that is useful in assessing the possible extent of contamination in the Arapahoe Formation and the relationships between the Arapahoe Formation and the UFS.

Comment No. 6 - Page 59, 3.2.5 Comparison of Off-post RI Results and RI Addendum Results, first paragraph

The Army states:

"The third minor paleochannel is an eastern arm or tributary to the Northern Paleochannel in Section 12. This paleochannel was identified by the installation of three new IRA A monitoring wells..."

Separation of the minor pathway from the predominant Norther Paleochannel appears to be evident in Figures 3.6 and 3.8. However, current interpretations of the distribution of unsaturated alluvium do not support this observation (Figure 3.1).

The three wells completed in the Northern Paleochannel as part of the IRA A program are wells 37408, 37409, and 37410 (see Results of Pilot-Scale Hydraulic and Treatment Testing North of the Rocky Mountain Arsenal Interim Response Action A, Draft Final Report June 1990 [IRA A Pilot Study Document]). An examination of these well locations indicates that the wells are not completed in a minor paleochannel, but actually define the dominant flowpath of the northern pathway. The minor pathway referenced above appears to be identified by wells 37402, 37403, and 37404, which were not installed as part of the IRA A program. Contaminants identified in these

wells include chloroform, DIMP (IRA A Pilot Study Document), and DBCP (Draft Final Off-post RI Addendum).

Response

The Army agrees with the CDH comment. The identification of the minor paleochannel east of the Northern Paleochannel is predominantly based on the observed distribution of selected contaminants in groundwater samples from these and nearby wells. The text has been revised to clarify the basis for the identification of this minor paleochannel. The text has also been revised to correct the list of contaminants used to identify the minor paleochannel and the offpost program under which the wells were installed.

Comment No. 7 - Page 60, 3.2.5 Comparison of Off-post RI Results and RI Addendum Results, first paragraph

The Army states:

"Nearly all the contaminant plumes mapped in this area [between the RMA north boundary and O'Brian Canal] end at approximately O'Brian Canal or Burlington Ditch."

Based on minimal well coverage downgradient of the O'Brian Canal and the Burlington Ditch, the plumes are still present, but are diluted when compared to upgradient concentrations. Please revise the text accordingly.

Response

The text has been revised accordingly.

Comment No. 8 - Page 77, 5.1.1 Organic Compounds, first paragraph

Regarding the April 1986 sediment sampling locations, the text indicates that "(t)he CRLs for the organic analytes were quite high relative to current CRLs and are considered the principal reason that organic compounds were not detected in the samples." It is unclear if the subsequent sampling locations collected in November 1988 and May-June 1990 included the locations sampled in April 1986? If the April 1986 locations have not been resampled using the lower CRLs, they are inadequately characterized and accordingly must be resampled.

It is not necessary that all locations be resampled when technology improvements result in an improved certified reporting limit (CRL). The data collected during the RI Addendum sediment sampling program were developed with consideration of the various limitations imposed on previous sampling and analysis programs. The available database for samples collected by the Army under previous sampling episodes is adequate for conducting an EA/FS for the Offpost OU. No revisions to the report are necessary.

Comment No. 9 - Page 78, 5.1.1 Organic Compounds, first paragraph

Additional sampling must be conducted prior to concluding that the detection of hexachloro-cyclopentadiene in duplicate sample HA 1192SE is anomalous and not representative of sediment conditions off-post. The detection of 52.8 ug/kg is significantly greater than the certified reporting limit (CRL) of 1.4 ug/kg, and hence warrants further investigation.

Response

The Army disagrees with the CDH comment. Approximately 16 sediment samples were collected from the Offpost OU during RI Addendum activities. Hexachlorocyclopentadiene was not detected in any of the investigative samples at a CRL of less than 2 micrograms per kilogram (μ g/kg). However, this analyte was detected in a single duplicate sample at a concentration of 52.8 μ g/kg. This result is quite anomalous and is not considered representative of site conditions. This single result also does not warrant resampling. No revisions to the report are necessary.

Comment No. 10 - Page 81, 5,1,2 Inorganic Constituents, second paragraph

Additional sediment sampling for mercury must be conducted to determine potential contribution from RMA prior to concluding that the distribution of mercury detected along the O'Brian Canal are not attributable to releases from RMA. In addition, it would appear that RMA is a potential source given that Sample HA11525SE, located downstream of the Off-post Operable Unit, exceeded the values commonly reported for uncontaminated fresh water sediments (Table 5.1).

The Army disagrees with the CDH comment. Additional sampling for mercury along O'Brian Canal is not warranted to verify that RMA is not the source. The data for the samples collected during the Final RI and RI Addendum programs support the conclusion that RMA is not a likely source for mercury in Offpost OU sediment. The location of samples with elevated levels of mercury are located both upstream and downstream of RMA. Mercury was not detected in sediment samples collected along First Creek. These data suggest that mercury is probably not solely attributable to discharges from RMA. No revisions to the report are necessary.

Comment No. 11 - Page 82, 5.1.2 Inorganic Constituents, last paragraph

The text indicates that RMA is probably not the source of inorganic constituents in sediment off-post." Additional sediment sampling must be conducted upstream of the RMA to verify this assumption. Also, Sample HA1152SE, located on Burlington Ditch approximately 1 mile down-stream of the Off-post Operable Unit had the highest concentration of copper, lead, and zinc, suggesting that RMA may indeed be the source. Further investigation is warranted.

Response

The Army disagrees with the CDH comment. On the basis of the observed distributions of inorganic constituents in the offpost sediment samples, additional sampling is not necessary. The highest concentrations of all inorganic constituents detected in these samples were detected in samples collected from O'Brian Canal, Burlington Ditch, or Barr Lake, except for arsenic, which was detected in First Creek and O'Brian Canal at similar concentrations. The range of concentrations and the relative concentrations of these metals in sediments suggest that RMA is not a source of the generally higher concentrations of metals in sediments in the Offpost OU. Additionally, sample HA1152SE is 3.5 miles downstream of First Creek, not 1 mile downstream, as indicated in the CDH comment. No revisions to the report are necessary.

Comment No. 12 - Page 83, 5.1.2 Inorganic Constituents, first paragraph

The text indicates that "(a)dditionally, information presented in the Final RI shows that concentrations of several metals in sediment samples collected from the South Platte River outside the Offpost Operable Unit also exceeded the anticipated ranges shown in Table 5.1. These data further support off-post sources of metals other than RMA." The State does not concur with this conclusion. In most instances, concentrations of metals presented in the Final RI for localities outside and downstream of the Off-post Operable Unit were greater than corresponding sampling locations upstream. Accordingly, the text should more accurately read "these data may further support off-post sources of metals in addition to RMA. Future sampling efforts will clarify this issue."

Response

The text has been modified to clarify that these data further support sources of metals in addition to RMA. However, the data presented in the Final RI and RI Addendum reports are sufficient for conducting an RI/EA/FS for the Offpost OU. No additional soil sampling is necessary.

Comment No. 13 - Page 84, 5.5 Conclusions, second paragraph

The last part of the second sentence should read "RMA may not be the only source for these contaminants in the stream-bottom sediments in the Off-post Operable Unit. Future sampling efforts will address this question."

Response

The Army disagrees with the CDH comment. As noted in the responses to CDH Specific Comments Nos. 9 through 12, sufficient analytical data for sediment samples are available for the purposes of conducting the EA/FS for the Offpost OU. No revisions to the report are necessary.

Comment No. 14 - Page 91, 6.1.1.2 Inorganic Constituents, second paragraph

The text indicates that "the majority of the flow in Burlington Ditch, which is used for irrigation consists of treated sewage wastewater that may contain higher concentrations of metals, including arsenic and mercury, than natural background." To what wastewater treatment facility is the text referring? Please provide additional data and information to substantiate this statement.

Response

The Denver Northside Plant is located about 1000 feet upstream of the headgate of Burlington Ditch. Before to 1966, this plant discharged effluent to the South Platte River following primary

treatment. After 1966, the effluent was piped to the Denver Metropolitan Waste Water Plant for secondary treatment. The Denver Northside Plant became inactive in 1981 or 1982. These suspected historical discharges may be a possible source of some of the metals detected in stream sediment samples collected from Burlington Ditch and O'Brian Canal.

Comment No. 15 - Page 92, 6.1.3.1 Site Specific Data, first paragraph

The text indicates that "four background sample results were compared with 12 sample results located northeast of RMA, and one sample located west of RMA." Figures 2.7 and 6.5 present only the sample locations and data results for the four background samples near Brighton. Colorado. The locations and analytical results for the 12 samples located northeast of RMA and one sample located west of RMA are not contained in this report. It is impossible for the reader to adequately assess the statistical evaluation that was performed without knowing the locations and contaminant concentrations of the additional samples collected.

Using other sources we have identified the location and contaminant concentrations for the 12 additional samples deemed by the Army as representative of background conditions. The State does not concur that these 12 samples represent background because of the repeated detections of dieldrin at most of these sample locations northeast of RMA. In contrast, dieldrin was detected in only one of the four samples collected east of Brighton (the analytical results for duplicate sample HA 1260WB indicate a likely breech in QA/QC protocol and should not be used).

The last sentence of the first paragraph states that "(a) variety of RMA indicator contaminants, including dieldrin, was not detected in off-post surficial soil near RMA's northeast boundary."

This statement is incorrect and should be deleted from the text. Dieldrin was detected in off-post surficial soil samples HA1212WB (4.7 ug/kg); HA1213WB (2.9 ug/kg); HA1214WB (4.0 ug/kg); HA1215WB (2.2 ug/kg); HA1215WB (2.3 ug/kg); HA1219WB (3.2 ug/kg); and HA1233WB (5.5 ug/kg), all of which are located near RMA's northeast boundary.

Response

Figure 2.6 has been revised to show the 12 surficial soil sampling locations northeast and west of RMA used to estimate background concentrations. Analytical results for these samples are presented in Appendix E. The Army disagrees with the CDH claim that "...the analytical results for duplicate sample HA1260WB indicate a likely breech [sic] in QA/QC protocol and should not be used...." The collection of duplicate samples for soil samples is inherently difficult because of the heterogeneous nature of soil. Sampling protocols were followed during sample collection, and internal laboratory QA/QC criteria were met for these analyses. No breaches in protocol were

found. The data for both of the samples collected from this location are considered valid for the purposes of assessing the distribution of contaminants in surficial soil.

The last sentence of the first paragraph of Section 6.1.3.1, Site-specific Data, has been revised to indicate that samples collected near RMAs northeast boundary generally have lower concentrations and lower frequency of detection than other samples near the northwest and northern RMA boundaries.

Comment No. 16 - Page 93, 6.1.3.2 Literature Data, third paragraph

Complete references must be cited in the report in addition to the abbreviated references presented in Table 6.2. The reference information, as currently presented, does not allow the parties to verify the applicability of the reference presented.

Because only abbreviated references were presented in Table 6.2, and the standard decay equation was omitted, the validity of the initial concentrations that have been calculated (which represent the range of arithmetic means) remain in question. The State reserves the right to further comment on this section upon provision of the above referenced information.

Response

The reference list for the RI Addendum contained complete references for all citations in Table 6.2, with the exception of Laubscher and others (1971) which was inadvertently omitted. Because a complete reference to Laubscher and others (1971) could not be obtained, Table 6.2 has been modified to remove information obtained from that source. The decay equation has been added to Section 6.1.3.2 of the report.

Comment No. 17 - Page 95, 6.1.3.2 Literature Data, first paragraph

The objective and methodology for determining soil background levels described are unclear. The characterization of off-post soil contamination should be determined from site-specific data in the off-post, not from literature studies updated by degradation calculations. The State requests clarification of how this information will be used and why it is included in the RI report.

Literature data for background levels of pesticides are cited for informational purposes. As these data are all 12 to 20 years old, they are no longer representative of background concentrations unless decay is considered. This section provides updated calculated soil concentrations for aldrin and dieldrin. The text has been rewritten to clarify the decay equation used. The results support the data from Table 6.1 on the estimated mean and upper 95th percentile estimated background concentrations of aldrin and dieldrin in the Offpost OU.

Comment No. 18 - Page 97, 6.5 Conclusions, first paragraph

The text indicates that "several of the compounds detected are or have been commercially available and may have been applied by residents and/or in agricultural practices in the surrounding rural area." The Army must verify the extent of private or agricultural use of the various contaminants detected off-post of RMA if it wishes to avoid liability for cleanup of that contamination. Additional soil sampling around residences or other sampling strategies and surveys may be needed to satisfactorily address this issue.

Response

The statement quoted in CDH's comment is a factual statement. Several of the contaminants detected in the Offpost OU surface soil have been commercially available, and their occurrence in some areas may be related to past applications by current or former residents. Several references are cited in the report that support the commercial availability and persistence of these compounds in the environment. Additional characterization is neither necessary or possible. The approach of comparing sample data to background or ambient levels from literature sources is appropriate for these constituents. No additional soil sampling is necessary for the purposes of conducting an EA/FS for the Offpost OU. No revisions to the report are necessary.

Comment No. 19 - Pages 103 - 105, 7.2.2 Comparison of On-post and Off-post Contaminant Data

The first paragraph states "These comparisons were undertaken to permit general conclusions about the contaminant levels in biota in the Off-post OU." The State questions how a comparison of contaminated wildlife with contaminated wildlife will derive any strong conclusions about the

condition of off-post hiota. In addition, the report compares different hiota substrate. (1e; off-post pheasant liver with on-post pheasant whole carcus), flip-flops between average and maximum concentrations (mercury in fish) or fails to provide an on-post/off-post comparison (DDE in pheasants).

In some instances the section compares off-post contaminant levels to on-post controls identified in the Biota RI. The State objects to considering biota samples captured and sampled from the Arsenal to be considered "controls." These samples were taken in areas that were considered uncontaminated before the results of the surficial soil program was completed. The surficial soil program proved this assumption to be false.

It is reasonable to believe that the biota living off-post of the Arsenal will be less contaminated than on-post as a consequence of their decreased exposure; however, it is not the responsibility of the remedial investigation report to compare contaminant levels, but instead to identify the nature and extent of contamination. It appears this section is presented to give a biased conclusion regarding the contaminant levels in off-post wildlife, and should be deleted from the text.

Response

The Army disagrees with the CDH comment. The RI Addendum report provides necessary information regarding the nature and extent of contamination in biota samples in the Offpost OU.

The text does not present a biased conclusion, and no changes to the text are necessary.

Comment No. 20 - Page 105, 7.2.3 Comparison of Biota Contaminant Levels with Concentrations in Surface Soil and Water

Although the text states that the biota and soil samples were collocated, the maps provided to the State indicate that in most instances the two samples are significant distances from each other. For example, on Table 7.2 sampling location HA1057B (earthworms) indicated a dieldrin concentration of 0.0211 ug/g in the composite of worms and a collocated soil sample containing a dieldrin concentration of 0.0128 ug/g. After review of the soil contamination distribution map (Figure 6.2) the soil sample allegedly collocated to HA1057B appears to be hundreds of yards away, a distance that is greater than the migratory distance of an earthworm. In the same general location of the 0.0128 detection is a sample with 0.093 ug/g dieldrin. This result is not included in the report.

The section also unsuccessfully attempts to relate contaminant concentration ranges of biota and soil in the Off-Post OU. The text states "Earthworms contained dieldrin levels just above the CRL, while shallow soil concentrations ranged from 8.0 to 44 ug/g." (this statement should read ug/kg) Since these soil/biota samples were not truly collocated, the ranges of dieldrin soil contamination should from 8.0 ug/kg to 93 ug/kg.

The section is not representative of a true comparison between biota samples and soil/water samples and should be deleted from the text.

The text has been revised in a number of places to address the CDH comment, particularly regarding the distances between soil or surface-water sampling locations and the nearby biota sampling locations. The text has been revised to indicate that biota, surface-soil, and surface-water samples were collected as part of an integrated sampling approach and that the biota sampling locations were collocated with these other media to the maximum extent practicable. Sampling of the various media in the Offpost OU immediately north of RMA had to be performed while considering a number of logistical and physical limitations. However, the Army conducted these sampling programs, including the biota sampling program, to provide sufficient data to perform an EA/FS for the Offpost OU. The data developed for the biota in the Offpost OU are sufficient to conduct an EA/FS, and the discussion in the RI Addendum does not present intentional misstatements or incorrect interpretation of the available data.

The CDH comment indicates that the analytical result for sample HA1227WB (i.e., 93.0 μ g/kg dieldrin) was not included in the report. However, the results for this sample are clearly shown in Figure 6.2. The text has been revised to indicate that the range of dieldrin concentrations in surface soil located near sample HA1057B is 0.008 to 0.093 μ g/g.

Comment No. 21 - Page 106, 7.2.4 Threatened and Endangered Species in the Off-post OU

The text states "Residues detected in the egg contents were 0.099 ug/g mercury, 0.808 ug/g dieldrin, and 6.93 ug/g DDE. Preliminary evaluation of sediment and water data from on-post and off-post surveys and existing knowledge on the feeding habits and foraging range of the Barr Lake eagles did not indicate that the contaminant levels were from RMA sources." The State requests all pertinent information used by the Army to make this conclusion.

Response

These data were reported in the Final RI for the Offpost OU, as indicated by the reference. No revisions to the report are necessary.

Comment No. 22 - Pages 106 and 107, 7.3 Quality Assurance and Quality Control for Chemical Analyses

It appears from the report that the biota Quality Assurance/Quality Control (QA/QC) program was nonexistent. Of the 32 biota samples identified on Table 7.2 the Army chose to perform I laboratory duplicate and this sample was below detection for all compounds. The State has to question the accuracy and adequacy of the biota analytical program when the Army cannot provide any QA/QC data. The Army should consult the EPA document Guidance for Data Usability in Risk Assessment (1990) for support of their quality assurance program.

Response

Because of a laboratory reporting error, a second laboratory duplicate was not previously reported in the Draft Final RI Addendum. Because biota samples were analyzed in three laboratory lots, the two laboratory duplicates are sufficient to assess laboratory performance. Table F3 has been modified to include the additional laboratory duplicate.

Comment No. 23 - Page 107, 7.4 Summary and Conclusions of Characterization and Contaminant Studies

The summary again attempts to compare contaminated biota with contaminated biota instead of a comparison of the off-post biota to controls or literature values. The text also states without references or justification that "..the areal extent of contaminated biota was less in the Off-post OU compared to RMA." The text should be modified to include support for this statement, or it should be deleted.

The last sentence of the summary, "Contamination of off-post biota appears to come from in-situ environmental sources rather than from migration of on-post RMA wildlife" is without any follow-up discussion as to how this conclusion was derived. It is evident from the text that the contaminants detected in the tissue of the off-post biota result from contamination that has migrated and continues to migrate from the RMA. In addition, we must assume that various species of wildlife (ie; birds) identified in the Off-Post OU spend varying degrees of their life span on the Arsenal where exposure to contaminants may increase significantly. Therefore, the statement must be modified or deleted.

Response

The last paragraph of the text in this section has been modified.

Comment No. 24 - Page 111, 8.3 Stream-Bottom Sediment, first paragraph

The text of the last sentence should be changed to read "(1)his distribution indicates that other sources of these analytes may exist off-post." Additional sampling is needed to verify this

conclusion. CDH welcomes the opportunity to assist the Army in designing future sampling programs to address this issue.

Response

The text has been revised to indicate that additional sources of these constituents are likely to exist in the Offpost OU. However, no additional stream-bottom sediment sampling is necessary for conducting the EA/FS for the Offpost OU.

Comment No. 25 - Page 111, 8.4 Surficial and Subsurface Soils, first paragraph

Additional surficial soil sampling is needed to adequately characterize the extent of aldrin and dieldrin contamination detected in samples east of RMA, including: HA1219WB (dieldrin 3.2 ug/kg); HA1265WB (aldrin 3.2 ug/kg); HA1234WB (aldrin 5.9 ug/kg, dieldrin 99.2 ug/kg); HA1264WB (aldrin 6.2 ug/kg, dieldrin 24.5 ug/kg); HA1263WB (aldrin 4.1 ug/kg, dieldrin 10.6 ug/kg); and HA1221WB (ddt 10.3 ug/kg, dieldrin 3.6 ug/kg). The Off-post OU may need to be expanded or a new OU created to include these localities.

Response

See response to General Comment No. 4.

Comment No. 26 - Page 112, 8.4 Surficial and Subsurface Soils, second paragraph

Additional surficial soil sampling is needed to adequately characterize the nature, extent, and source of arsenic and mercury, contamination detected northeast of Burlington Ditch.

Response

The Army disagrees with the CDH comment. Sufficient data are available for conducting the EA/FS for the Offpost OU.

Comment No. 27 - Page 112, 8.5 Biota

This section again compares off-post and on-post biota instead of a comparison to controls. This section misrepresents actual contamination of off-post wildlife and must be modified or deleted from the text.

The Army disagrees with the CDH comment. Adequate data evaluation has been performed by the Army to conduct an EA/FS for the Offpost OU.

Comment No. 28 - Page 113, 8.5 Biota

The text should also reflect whether migratory birds, protected under the Migratory Bird Act. exist in the off-post OU.

Response

Species that may occur in the Offpost OU are listed in Table F4. The text has been modified to reflect that a number of birds listed in Table F4 are protected under the Migratory Bird Treaty Act.

Comment No. 29 - Table 2.1. Aquifer Designations and Sampling Dates for Wells in Off-post Operable Unit (Page 4 of 4)

The definitions for aquifer designators 3 and 4 reveal a probable migration pathway for contaminants from the alluvial aquifer to the Denver aquifer. The State would therefore recommend closure of wells 37323, 37334, 37336, 37371, 37382, and 37389.

Response

Aquifer designation categories for wells installed onpost and offpost of RMA have been developed and refined by PMRMA over the past several years. The designators for the Offpost OU indicate that several wells, which are partially screened in the alluvium, are representative of groundwater conditions in the UFS. The basis of the CDH comment is not clear and the evidence that the wells in question are "a probable migration pathway for contaminants from the alluvial aquifer to the Denver aquifer" is not presented. The well network has been adequately reviewed and provides potentiometric and water-quality information that accurately reflect conditions in the UFS. No revisions to the report are necessary.

Comment No. 30 - Table 2.2 Technical Justification for Monitoring Wells Installed Under Remedial Investigation Addendum Program

In a letter to CDH dated 10/25/89, the Army proposed a monitoring program for Study Area 1h. which included the completion of wells R1-2, -18, and -19. Although the State initially opposed completion of R1-19, we later agreed to the well and requested that it again be included in the program in a letter to the Army dated 1/26/90. All parties present at Technical Subcommittee Meetings held in November 1989 agreed to the proposed Study Area 1b program, which included completion of the above three wells. However, Table 2.2 indicates that the three wells were not completed as part of the program and does not provide a rationale for the exclusion. Please provide a rationale in the Final RI Addendum. Because the wells were proposed to provide data in areas of limited well control and no chemical data, and because the State requested that all parties be appraised of any changes to the program, we may request completion of the three wells after evaluating the rationale.

Response

The rationale for not installing wells RI-2, RI-18, and RI-19 has been added to Table 2.2. The Army disagrees with the CDH statement suggesting that these wells should now be installed in the Offpost OU. The current monitoring well network, which includes the wells installed under the RI Addendum program, provides an adequate monitoring network for assessing the extent of contamination in the UFS offpost. Also, the original objectives for installing three wells have generally been met by the other wells installed in this area by the Army. The CDH justification for installing these wells (i.e., that they were previously identified in earlier correspondence) is not sufficient justification for their installation at this time. Because data from wells RI-2, RI-18, and RI-19 are not necessary for completing the EA/FS for the Offpost OU, these wells will not be installed.

Comment No. 31 - Table 6.1 Arithmetic Mean and Upper 95th Percentile Concentrations for Selected organic Compounds in Off-post Operable Unit Background Surficial Soil

The State does not concur with the statistical results as presented in this table. Data that appear to be anomalous (see Specific Comment #37) plus the use of 12 additional sample locations, most of which are located in the off-post OU and may not represent background conditions, were utilized as the basis for generating the values presented. This table should be derived from the four Brighton samples (minus the anomalous duplicate) or different, true background samples taken.

The Army disagrees with the CDH comment. The statistical results for the 16 total samples depicted in Table 6.1 are reasonable estimates of the background levels in surficial soil for conducting an EA/FS for the Offpost OU. Table 6.1 has been revised slightly to reflect the actual degree of precision reflected by the results.

Comment No. 32 - Tables F1, F2, and F3, Biota Investigative Analytical Data

Use of these tables would be greatly facilitated by inclusion of descriptive terms in addition to the sample identification numbers, for example, labeling sample HA1010BM as "cow milk".

Response

The tables have been revised according to the comment.

Comment No. 33 - Figure 2.6 Off-post Operable Unit Subsurface and Surficial Soil Sampling Locations, June - July 1990 and May 1991

Colorado Department of Health surficial soil sampling locations should be included. For example. CDH collected and identified contamination in 7 surficial soil samples at the Irondale Trailer Court, 3 samples from the Davis residence (96th Avenue and Highway 2), and in many other localities off-post of RMA. If the Army is unwilling to accept CDH data because of concerns pertaining to State QA/QC sampling protocol, CDH locations should be resampled by the Army to gain a better understanding of the surficial soils contamination existing off-post of RMA.

Response

The Army disagrees with the CDH comment. The Army has included other data for surficial soil samples collected and analyzed by CDH, where laboratory QA/QC information was provided by CDH. The Army will not include any additional data in this report. The database for this report and the conclusions presented are adequate for conducting an EA/FS for the Offpost OU.

Comment No. 34 - Figure 6.2 Distribution of Organochlorine Pesticides Detected in Off-post soil, June - July 1990 and May 1991

Additional soil sampling is needed to adequately characterize the nature and extent of the organochlorine pesticide detections north and east of RMA. In numerous instances outlying sample locations indicate significant detections of various organochlorine pesticides (e.g., samples 020FO1, HA1207WB; 100F01; HA1204WB; 160F01; HA1268WB). Also, see Specific Comment #26 for locations east of RMA.

Response

Contaminant distribution in offpost surficial soil, as well as in other media in the Offpost OU, has been sufficiently characterized to permit conducting an EA/FS for the Offpost OU. See also the responses to CDH Specific Comment Nos. 25 and 26.

Comment No. 35 - Figure 6.2, Distribution of Organochlorine Pesticides Detected in Off-post Soil, June-July 1990 and May 1991

Colorado Department of Health off-post surficial soil sampling data should be included to augment Army data.

Response

See response to CDH General Comment No. 3.

Comment No. 36 - Figure 6.4 Distribution of Organochlorine pesticides, Arsenic and Mercury Detected in 96th Avenue Residential Area Off-post Subsurface Soil, February 1989

Figure 6.4 should be expanded to include surface as well as subsurface data to reflect a more accurate picture of soils contamination in this area. Also, CDH soil sampling data for this area, which includes a number of organochlorine pesticides and arsenic detections, should be included.

Response

Figure 6.4 presents only subsurface data. See also the response to CDH General Comment No. 3 regarding surface soil. No revisions to the report are necessary.

Comment No. 37 - Figure 6.5 Distribution of organochlorine pesticides, Arsenic, and Mercury detected in Off-post Background Surficial Soil Near Brighton, Colorado

The contaminant concentrations detected in duplicate sample HAI260WB are anomalous when compared to its mate or other adjacent sample locations. Accordingly, this data cannot be used as the basis for statistical evaluation or for directly establishing background contaminant values. QA/QC protocol appears to have been breached while collecting this sample.

Response

The Army disagrees with the CDH comment. See response to CDH Specific Comment No. 15.

Comment No. 38 - Appendix A

Please include the borelog for well 37431.

Response

The boring log and well completion diagram for well 37431 was included in the Draft Final RI report, as Figure A16. The location of this figure in Appendix A appears out of sequence, but was placed near the back of the appendix because the well is an Arapahoe Formation well. However, to avoid additional confusion, the Army has added a list of figures to Appendix A that provides a list of borings and associated figure numbers.

Comment No. 39 - Appendix B

Please include the analytical results for Arapahoe wells 37446, 11515TW096, and 09610TWPEO. Additionally, monitoring wells completed in the Arapahoe Fm and listed in Table B5 (domestic wells) should instead be included in Table B1. An aquifer designation should be included in the table.

Response

Data for wells 37431 and 37445 have not been moved to Table B1. These data will remain in Table B5. Well 37446 was not sampled under the RI Addendum. This well will be sampled in upcoming groundwater sampling events. Samples were collected from wells 11515TW096 and 096107WPEO during RI Addendum activities, but data were rejected for the RMA database because of laboratory certification problems.

Comment No. 40 - Appendix B, Table B-3, Groundwater QA/QC Analytical Data

In the "Notes" on Table B-3, it indicates that the samples will be designated as RB, TB, or FB. These do not appear in the table as they were in the Final RI. Please include these designators as indicated.

Response

Table B3 of Appendix B has been revised to designate which samples are rinse, trip, or field blanks.

Comment No. 41 - Appendix B, Table B-3, Groundwater OA/OC Analytical Data

Was HAI175 the only rinse blank collected during the 1/25/90-3/2/90 sampling rounds? If other rinse blanks were collected during this period, then HAI175 is the only sample with elevated VOC concentrations. These concentrations are not high enough however to explain elevated VOC levels. Explain what relationship these elevated VOC levels have with the pump problem discussed on page 41.

Response

Sample HA1175 was the only rinse blank collected during the period between January 25 and March 2, 1990. However, the assessment of elevated VOC levels is not based solely on data from this rinse blank. Historical and recent data were also evaluated to verify the VOC concentrations reported for the samples. Based on several factors, including the presence of VOCs in the rinse blank, the highly elevated concentrations in samples and the documented sampling procedures that identified which particular sampling group was used, the elevated VOC levels are considered the result of inadequate field decontamination procedures. Corrective actions have been implemented. No revisions to the report are necessary.

UNITED STATES DEPARTMENT OF THE INTERIOR COMMENTS REGARDING THE OFFPOST OPERABLE UNIT DRAFT FINAL REMEDIAL INVESTIGATION ADDENDUM

GENERAL COMMENTS

Comment No. 1, paragraphs 2 and 3

First, it is stated that based on onpost and offpost surveys and existing knowledge of the feeding habits and foraging range of the Barr Lake bald eagles, it does not appear that contaminant levels (0.099 ug/g mercury, 0.808 ug/g dieldrin, and 6.93 ug/g DDE) found in Barr Lake bald eagle egg are from Rocky Mountain Arsenal (Arsenal) sources (page 106, paragraph 1). The Service cannot fully support this statement. On November 17, 1989, the female bald eagle from Barr Lake was trapped on the Arsenal and radiotransmittered. Her mate was perched nearby. While the female was never relocated on the Arsenal by radiotelemetry during the 1989-90 wintering session, her presence on the Arsenal cannot be ruled out. It should also be noted that a nesting female hald eagle is very sedentary compared to the male, who may also provide food for the nesting female and her chicks. However, based on available data, use of the Arsenal by the Barr Lake eagles does appear to be minimal.

Additionally, contaminants (e.g., dieldrin) found in Barr Lake sediments may be from Arsenal sources (page 78, paragraph 4). Therefore, Arsenal contaminant sources cannot be completely ruled out based on the limited information available. The Service requests that this statement be modified to indicate that contaminants found in the bald eagle egg may or may not be from Arsenal sources as per the identified contaminant transport mechanisms.

Response

The text has been revised to indicate that although Rocky Mountain Arsenal (RMA) cannot be completely ruled out as a source of contaminants in the bald eagle egg, existing data regarding the distribution of contaminants and the foraging range of the eagles at Barr Lake did not indicate that the observed contaminants are the result of migration from RMA sources.

Comment No. 2, paragraph 4

Second, it is stated that contamination of offpost biota appears to come from in-situ environmental sources rather than from migration of onpost wildlife. Offpost biota sampling was very limited both in species and number; many species of wildlife, both mammalian and avian, migrate on and off the Arsenal and were not sampled, therefore, the above statement is not justified based on the limited information available. The Service requests that this statement be modified to address offpost biota exposure to Arsenal contaminant sources either directly or indirectly through secondary exposures.

The U.S. Fish and Wildlife Service (USFWS) comment addresses the last paragraph on page 111.

The text has been revised to indicate that although onpost RMA sources may impact some animal species found in the Offpost OU, contamination detected in offpost biota samples collected during Offpost Remedial Investigation (RI) Addendum activities appears to be the result of in situ environmental sources rather than from migration of onpost RMA wildlife.