Vision Transformer (ViT)

기초심화CV팀 김수란

Table of contents

010203Background of ViTof ViT Architecture ViT Performance Analysis

01

Background of ViT

Sequential Data

Sequential data is common in various fields.

"The quick brown fox jumped Speech recognition over the lazy dog." Music generation "There is nothing to like Sentiment classification in this movie." DNA sequence analysis AGCCCCTGTGAGGAACTAG AGCCCCTGTGAGGAACTAG Voulez-vous chanter avec Machine translation Do you want to sing with moi? me? Video activity recognition Running Yesterday, Harry Potter Yesterday, Harry Potter Name entity recognition met Hermione Granger. met Hermione Granger.

Seq2Seq Model with RNN

Seq2Seq Model with Attention

Seq2Seq Model with Attention

Attention is great

- Attention significantly improves performance (in many applications)
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on

Transformer

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward Add & Norm Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

<- Decoder

Encoder ->

Transformer

Transformers have become the model of choice in NLP.

In CV, however, classic CNN architectures are still SOTA.

Chat GPT

Vision Transformer!

Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

*equal technical contribution, †equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

02

ViT Architecture and Workflow

Transformer -> Vision Transformer (ViT)

 Note that small difference compared to the transformer encoder.

 Norm comes before the MHA and MLP.

Vision Transformer (ViT)

ViT: Step-by-Step Example

Patches

- Using an image as a sequence of patches.
- Partition an image into equal sized patches.

224*224*3 image to 14 patches in each dimension.

Thus, patch size = 16*16*3

Total of 196 = 14*14 patches

Flattening

- Each patch is technically 16*16*3 dimension.
- Flattening (a.k.a. vectorization):
 Tensor becomes a 1D-vector

Patch Embedding

• Each 768*1 flattened patch goes through a fully connected layer to become a new 768D embedding.

Patch Embedding

- Extra learnable class embedding with non-patch information
- 197 = 196(patch embeddings) + 1(class embedding)

Positional Embedding

- Extra learnable class embedding with non-patch information
- 197 = 196(patch embeddings) + 1(class embedding)

Summary So Far

Summary So Far

Transformer Encoder

Transformer Encoder

Transformer Encoder

Classification

Only the [class token]'s output from the Transformer Encoder layer is used as the image representation for class prediction.

Classification

03

ViT Performance Analysis

Experiments

We evaluate the representation learning capabilities of

- ResNet (BiT)
- ViT

Model Variants

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

For instance, ViT-L/16 means the "Large" variant with 16x16 input patch size.

Datasets

• ImageNet: 1k classes with 1.3M images

• ImageNet-21k: 21k classes with 14M images

• JFT: 18k classes and 303M high-resolution images

• 19-task VTAB: 1000 training examples per task

Metrics

We report results on downstream datasets either through few-shot or finetuning accuracy.

Comparison to SOTA

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.07 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Pretraining Data Requirements

Good scalability: more data, higher performance

Inductive Bias: CNN vs. ViT

CNN, which has a strong inductive bias that the information is locally aggregated.

ViT, which has a relatively weak inductive bias because it only correlates all features.

ViTs vs. ResNets: Efficiency Edge

ViTs dominate ResNets on the performance/compute tradeoff!

Position Embedding Similarity

The learned positional embedding happen to distinguish their positions!

https://arxiv.org/pdf/2010.11929

Attention map

Examples of attention from the output token to the input space.

Significance of ViT

- Direct application of Transformers to image recognition.
- ViT matches or exceeds the SOTA of many image classification datasets and is cost-effective to pre-train.

Many challenges remain...

Thank You! Any Questions?