Automotive Electronics

Product Information Evaluation Circuit for Sensor Impedance Ratios – CC215

Evaluation Circuit for Sensor Impedance Ratios Replacement for CC212

The integrated circuit CC215 evaluates the ratio of two sensor impedances using the AC bridge- principle.

The sensor impedances Z, Z_0 are supplied from two antiphase sine wave signals (10 kHz). The reference generator produces constant amplitude U_0 at Z_0 , the second generator sources impedance Z with variable amplitude $A_0 = U_0$ Z/ Z_0 . The control voltage is used as analog output signal.

For A/D-conversion a second order SD-Coder with an over sampling rate of 128 is implemented. The resulting bit stream is decimated by a 128 stage FIR filter. The following filter stage calculates the moving average over 8 periods (10 kHz). This value is available at a 12 bit parallel interface.

On-line error control recognizes cable breakage and short circuits at the sensor connections, out-of-range conditions and overflow of the adders. Interference blanking is available to eliminate impulse noise on the sensor connections. Blanking is activated by μC or special hardware. The time constant of blanking can be modified in 8 steps. The IC is controlled by a BUS-test and a failure flag memory. The flags appear between two sensings. They are deleted after each sensing.

Customer benefits:

- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

Block diagram

Electrical characteristics

Parameter	Test Conditions	Symbol	Min.	Max.	Unit
Supply voltage		VDD, A, P	4.5	5.5	V
Supply current	VDD, A, P =5V	IDD		40	mA
Supply current	VDD, A, P =5V	IDDA		80	mA
Supply current	VDD, A, P =5V	IDDP		load dep.	mA
Operating temperature		Tu	-40	125	Deg C
Input current; Pins without Pull- up/ downs	VDD, A, P =5V	II		10	μΑ
Input capacitance		CI		10	pF
Digital H-Level	VDD, A, P =5V	ViH	2.5		V
Digital L-Level	VDD, A, P =5V	VIL		0.8	V
Output H-Level	VDD, A, P =5V; I= -1mA	Vон	3.75		V
Output L-Level	VDD, A, P =5V; I= -1mA	VoL		0.45	V
Digital range	Nominal	Do11	2C8	C83	Hex
Linear error digital	Offset, gain			+/-3	%
Ripple digital				+/-5	LSB
Temperature drift digital				+/-0.04	LSB/K
Analog range	Nominal	V _{Nom}	1.0	4.5	V
Linear error analog	Offset, gain			+/-3	%
Ripple analog				+/-5	mV
Temperature drift analog				+/-80	μV/K

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany

Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170 Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA

Tel.: +1 248 876-7441 Fax: +1 248 848-2818 Robert Bosch K.K.
Component Sales
9-1, Ushikubo 3-chome
Tsuzuki-ku, Yokohama 224
Japan
Tol. +81 45 9 12-83 01

Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

Internet: <u>www.bosch-semiconductors.de</u>

 $E\text{-Mail: }\underline{bosch.semiconductors@de.bosch.com}$

© 02/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution.

For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.