Projet Optimisation Robuste

Benoit DUVAL, Raphaël TAISANT

16 février 2024

Résolution des sous-problèmes

$$\max_{\delta^{1}} \sum_{a \in A} d_{a} \left(1 + \delta_{a}^{1}\right) x_{a}^{*}
st \sum_{ij \in A} \delta_{a}^{1} \leq d_{1}
\delta_{a}^{1} \in [0, D_{a}] \quad \forall a \in A$$
(1)

- 1: Entrée: G, P ensemble d'arcs utilisés
- 2: Trier les arcs de P selon d_a décroissant
- 3: budget \leftarrow 0.0, $\delta_a^1 \leftarrow$ 0, score $\leftarrow \sum_{a \in P} d_a$
- 4: **while** budget $< d_1$ et il reste des arcs dans P **do**
- 5: Sélectionner l'arc a avec le + grand d_a
- 6: $\delta_a^1 \leftarrow \min(D_a, d_1 \text{budget})$
- 7: budget \leftarrow budget $+\delta_a^1$
- 8: score \leftarrow score $+\delta_a^1 d_a$
- 9: end while

Contrainte Borne inférieure

- Beaucoup de temps passé à prouver l'optimalité en montant la borne inf
- A chaque itération, on obtient une borne inférieure (solution optimale)
- On ajoute la contrainte $z \ge$ borne inférieure précédente
- Toujours vraie car on ajoute des contraintes et permet de clore la résolution plus rapidement

Sauvegarde Solution

S=1

 itération 1: s-1-t, z=2. Non admissible car score pas robuste, mais solution admissible en terme de p

Sauvegarde Solution

$$S=1$$

- itération 1: s-1-t, z=2. Non admissible car score pas robuste, mais solution admissible en terme de p
- itération 2: s-2-t.
 Non admissible car score pas robuste et solution non admissible en p

Sauvegarde Solution

- itération 1: s-1-t, z=2. Non admissible car score pas robuste, mais solution admissible en terme de p
- itération 2: s-2-t.
 Non admissible car score pas robuste et solution non admissible en p
- Fin de l'algorithme (limite de temps)

Warm starts

- A chaque itération, on résout le problème maitre à la racine
- Pour accélerer sa résolution, on peut lui ajouter des warm starts
- Ce qui a marché le mieux, c'est de créer un seul model au début, ainsi qu'un objet cplex et ajouter à chaque itération les contraintes au model courant et laisser cplex.solve()

Réduction des symétries (1/2)

Figure: Sous-chemins entre u et w

Réduction des symétries (2/2)

Équivalence entre les sous-chemin (u-v-w) et (u-v'-w): on interdit (u-v'-w) $x_{uv'}+x_{v'w}\leq 1$

Trop de contraintes ajoutées pour être réalisé en pré-traitement. Dans les CallBacks: pour tout triplet de sommet (u, v, w), on réduit les symétries des sous chemins entre u et w.

Nette amélioration des performances du Branch and Cut et de la méthode des Plans coupants.

Possibilité de généraliser cette méthode avec des sous-chemin plus long ou des sous-chemin strictement dominés.

Heuristique (1/4)

cout du chemin
$$s - u =$$
 longueur robuste de $s - u$
+ $K \times$ poids robuste de $s - u$

Exploration du graphe avec une structure d'information adaptée. Pour chaque noeuds:

- le parent dans le sous chemin.
- les parties statique et robuste du cout et du poids du sous-chemin.
- le contenu des sac à dos associés.

Amélioration des performances avec A^* :

borne inf de
$$u-t=$$
 distance statique min $u-t$ $+\ \mathcal{K} imes ext{ poids statique min de } u-t$

Heuristique (2/4)

coût du chemin
$$s-u=$$
 longueur robuste de $s-u$ $+ K \times$ poids robuste de $s-u$

Utilisation de A^* pour différentes valeurs de K. Objectif: trouver le K^* qui fait coïncider la solution de l'heuristique avec la solution optimale.

- $\forall K < K^*$ on a sol(K) non admissible, et $val(K) < val(K^*)$
- ullet $\forall K > K^*$ on a sol(K) admissible, et $val(K) > val(K^*)$

L'heuristique garde en mémoire un K_{inf} et un K_{sup} pour encadrer K^* .

Heuristique (3/4)

Figure: Convergence de K_{inf} et K_{sup} dans l'heuristique

Heuristique (4/4)

Limites de l'heuristique:

- Perte des propriétés des algorithmes d'origine
- Aucune garantie sur la borne inférieure
- Peu pertinent si il est "facile" de trouver un chemin admissible
- Certains cas pathologique ou l'algorithme n'arrive pas à instantier un K_{sup}

Conclusion sur l'heuristique: très bonne performance en pratique. La solution renvoyée en quelques secondes est la même que CPLEX en plusieurs minutes

Résultats

Figure: Fraction d'instances fermées par les différentes méthodes

Résultats

Figure: Fraction d'instances résolues avec un gap inférieur à l'abscisse par les différentes méthodes

Ouverture

Pistes d'approfondissement:

- étendre la méthode actuelle de réduction de symétrie pour les méthodes de Branch and Cut et plans coupants
- étudier l'origine des symétries pour les traiter dans la partie dualisation
- utiliser l'heuristique comme un WarmStart pour la résolution du problème dualisé
- ajouter du preprocessing pour réduire l'instance envoyée au solveur

Une autre façon de comparer les méthodes serait d'évaluer l'instant auquel elles obtiennent leur meilleure solution.

