Blockchain-based Federated Learning: privacy and incentive ECE6903J - Distributed Machine Learning Systems (Research project)

Hugo Vanhille, Pedro Hernández Rubio

Department of Automation

2022 年 12 月

目录

Background

Motivation

Crowdsensing

2 Research

Problems

The privacy-preserving of Federated

Learning

The incentive mechanism of Federated

Learning

3 System architecture

Software application

4 Security issues: privacy

Provenance of data

Data privacy

5 Quality management: incentive

Incentive mechanism

Mechanism design: multifactor

Mechanism design: issues

6 Conclusions

Application

Limitations

第1节

Background

Motivation

- Research interest mainly targeted to blockchain technology (its application to distributed Machine Learning systems)
- Specifically, applied to data-aggregation systems (e.g. crowdsensing in the Internet of Things (IoT) field)
- Could similar approach be applied for Federated Learning?

2022 年 12 月

Blockchain technology

Distributed ledger containing a time-stamped series of immutable blockchains, trustless, decentralized, proof-tampering and full traceability

Crowdsensing: definition

- Crowdsensing: emerging paradigm of data aggregation, having a key role in data-driven applications. Specially used for getting large ammounts of IoT sensing data, by using the individual intelligent sensing devices.
- Benefit: improved data collection efficiency and reduced costs effectively

Crowdsensing issues: security

Managed and maintained centralized platforms suffer from the single point of failure

图: Topology of traditional FL

Crowdsensing issues: incentive

① Encouraging workers by offering appropriate incentive mechanisms (monetary usually) → auction theory guarantees benefits for both requesters and workers but only provide short-term incentives

图: Monetary reward

图: Worker reputation

图: Data quality

第2节

Research

The privacy-preserving of Federated Learning

- FL provides an attractive structure for decomposing the overall machine learning workflow into the approachable modular units we desire.
- FL provides a level of privacy to participating users through data minimization.

The incentive mechanism of Federated Learning

- Main types of incentive mechanisms:
 - Monetary-based: distributing rewards.
 - 2 Reputation-based: reputation framework for worker selection (algorithms)
- Limitations
 - 1 Relies on a central platform, vulnerable to target attacks
 - 2 Single-attribute incentive mechanisms (multifactor incentive needed)

第3节

System architecture

System architecture

第4节

Security issues: privacy

Provenance of data

Model updates

A blockchain-based privacy-preserving federated learning framework leverages the immutability and decentralized trust properties of blockchain to provide the provenance of model updates (smart contracts)

Data privacy

Improving data privacy in FL scenario:

- Storing evidence: by using hashing and fingerprint mechanisms, references can be stored proving both local data and models are correct
- Limiting access: by making the ledger network only accessible via private network of participants
- Zero Knowledge Proofs: advanced (and computationally expensive) cryptographical techniques for granular information disclosure (both for mutual verification and partial data disclosure)

第5节

Quality management: incentive

Incentive mechanism

Federated Learning scenario

An effective incentive mechanism combining reputation with contract theory motivates high-reputation mobile devices with high-quality data to participate in model learning

- Based on three parameters:
 - 1 Workers' bidding
 - 2 Reputation
 - 3 Recent data quality estimation
- Analytic Hierarchy Process (AHP) framework →(top-down)
 - 1 Objective level: winning workers
 - 2 Criteria level: parameters criteria
 - 3 Alternative level: workers available

Multifactor worker evaluation approach

$$\theta_i = \omega_1 B_i + \omega_2 R_i + \omega_3 Q_i$$

where $\omega_i \geq 0$ and $\sum_{\omega_i=1}^{3} \omega_i = 1$

≣ ୬ዓ୍ତ 19/2

Mechanism design: issues

- How to select appropriate workers?
 - Proposal: decentralized architecture (blockchain technology) that lacks a single point of failure, and enhances privacy with asymmetric encryption and digital signature technology
- 2 How to distribute the rewards to the workers?

With the help of mechanism design theory two important properties for the incentive mechanism are guaranteed:

- **Incentive quality (IC):** the truthful submission of training cost is the worker's optimal bidding strategy
- Individual rationality (IR): the reward must compensate for the worker's cost (non-negative)

第6节

Conclusions

Results

Benefits of consortium blockchain technology:

- resistant to the single point of failure (system security)
- more transparency (trusting data provenance)
- privacy-preserving (e.g. ZKP)
- cooperative management (by requesters) reduces cost and enhances the flexibility of the system (selection criteria)
- Benefits of hybrid incentive mechanism:
 - encourages workers to contribute valuable data (and penalizes malicious ones)
 - ensures favorables short-term and long-term incentives for workers

Limitations

Further research:

- 1 Dynamic situation where evaluations attributes are changing
- Optimization of consensus protocol (better performance)
- § Further protection of worker privacy

