STL Notes

David Kooi

June 18, 2019

Autonomous Vehicles 1

1.1 **Intersection Management**

Figure 1: Intersection Scenario

In [1] the ego-vehicle's behavior at an intersection is defined using STL. The system has a state:

$$\mathbf{x_t} = [x_t^{ego} \ y_t^{ego} \ x_t^{adv} \ y_t^{adv} \ v_t^{ego} \ v_t^{adv} \]^T$$
 (1)

Figure 1 shows the ego-vehicle in blue and the adversary-vehicle in red. The authors of [1] use the following specification to describe the behavior: ϕ_s : "When the ego-vehicle is within 2 meters of the adversary-vehicle the ego-vehicle will stop for two seconds."

$$\phi_s = \Box(|x_t^{ego} - x_t^{adv}| < 2) \implies \Box_{[0,2]}(|v_t^{ego}| < 0.1)$$
(2)

1.1.1 Alternate Formulation

The above STL specification relies on the adversary-vehicle to stop at the intersection, but a car should always stop at an intersection. Inspired from [2] the following specification describes: "When the ego-vehicle reaches an intersection it will stop for one second and only cross when safe (ϕ_{cross}) otherwise it will stay stopped. $(\phi_{stopped}\mathcal{U}_{[1,3]}\phi_{stopped})$."

$$\phi_{stopped} = (|v_t^{ego}| == 0) \tag{3}$$

$$\phi_{stopped} = (|v_t^{ego}| == 0)$$

$$\phi_{cross} = \Box_{[1,3]} (|y_t^{adv} - \mathbf{Y^{INT}}| > 0.1) \land (x_t^{ego} > 5)$$
(3)

$$\phi_{int} = \Box(|x_t^{ego} - \mathbf{X^{INT}}| < 0.1) \implies \Box[0.5, 1](\phi_{stopped}) \land (\phi_{stopped} \mathcal{U}_{[1,3]} \phi_{cross} \lor \phi_{stopped} \mathcal{U}_{[1,3]} \phi_{stopped})$$
Where $\mathbf{X^{INT}} = -5$ and $\mathbf{Y^{INT}} = -5$ are the positional coordinates of the intersection. (5)

Figure 2: Alternate Scenario

2 STL for Hybrid Systems

2.1 Hybrid Systems Preliminaries

Definition 2.1 (Hybrid System). A hybrid system $\mathcal{H} = (C, F, D, G)$ is defined by a flow set C, flow map F, jump set D, and jump map G, following [?]. $x \in \mathcal{X}$ is the system's state where $\mathcal{X} \subset \mathbb{R}^n$ is the state space. Continuous dynamics are defined on flow set C and are captured by the set valued map $F : \mathcal{X} \rightrightarrows \mathcal{X}$. Discrete dynamics are defined on jump set D and are captured by the set-valued map $G : \mathcal{X} \rightrightarrows \mathcal{X}$. Taken together, \mathcal{H} can be described as:

$$\dot{x} \in F(x) \qquad x \in C$$

$$x^+ \in F(x) \qquad x \in D$$
(6)

Solutions to a hybrid system \mathcal{H} are defined on ordinary and discrete time:

- 1. Ordinary Time: $t \in \mathbb{R}_{>0} := [0, \infty)$
- 2. Discrete Time: $j \in \mathbb{N} := \{0, 1, 2, ...\}$

Definition 2.2 (Hybrid Time Instance). A hybrid time instance is given by

$$(t,j) \in \mathbb{R}_{>0} \times \mathbb{N}$$

Definition 2.3 (Compact Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a compact hybrid domain if it can be written as

$$E := \bigcup_{j=0}^{J} ([t_j, t_{j+1}] \times \{j\})$$
 (7)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$.

Definition 2.4 (Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a hybrid domain if for each $(T,J) \in E$

$$E \cap ([0,T] \times \{0,1,...,J\})$$

is a compact hybrid time domain.

Definition 2.5 (Compact Hybrid Shift). Given a compact hybrid domain E and (t^*, j^*) , the forward compact hybrid shift of E by (t^*, j^*) is

$$(t^*, j^*) + E = \bigcup_{j=0}^{J} ([t_j + t^*, t_{j+1} + t^*] \times \{j + j^*\}$$
(8)

and the backward hybrid shift of E by (t^*, j^*) is

$$E - (t^*, j^*) = \bigcup_{j=0}^{J} ([t_j - t^*, t_{j+1} - t^*] \times \{j - j^*\}$$
(9)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$ and E satisfying (7).

Definition 2.6 (Compact Hybrid Interval). A compact hybrid interval is defined by two hybrid time instances (t_A^*, j_A^*) and (t_B^*, j_B^*) , where $t_A^* + j_A^* \le t_B^* + j_B^*$, and an hybrid domain E, over the range $[t_A^*, t_B^*] \times \{j_A^*, ..., j_B^*\}$, by

$$\mathcal{I} := (t_A^*, j_A^*) + E = \bigcup_{j=0}^{J} ([t_j + t_A^*, t_{j+1} + t_A^*] \times \{j + j_A^*\}$$
(10)

- where $J = j_B^* - j_A^*$ and $t_0 = 0 \le t_1 \le t_2 \le ... \le t_{J+1} = t_B^* - t_A^*$.

Definition 2.7 (Open Hybrid Interval). An open hybrid interval is defined by two hybrid time instances, (t_A^*, j_A^*) and (t_B^*, j_B^*) , on hybrid domain E, over the range $[t_A^*, t_B^*] \times \{j_A^*, ..., j_B^*\}$, by the following cases:

1. Left open interval

$$\mathcal{I} := \left((t_A^*, t_1 + t_A^*] \times \{j_A^*\} \right) \cup \left\{ (t_A^* + t_1, j_A^* + 1) + E \right\}
= \left((t_A^*, t_1 + t_A^*] \times \{j_A^*\} \right) \cup \left\{ \bigcup_{j=0}^{J} ([t_j + t_A^* + t_1, t_{j+1} + t_A^* + t_1] \times \{j + j_A^* + 1\} \right\}$$
(11)

- where $J=j_B^*-j_A^*-1$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_B^*-t_A^*-t_1;$

2. Right open interval

$$\mathcal{I} := \left\{ (t_A^*, j_A^*) + E \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right) \\
= \left\{ \bigcup_{j=0}^J ([t_j + t_A^*, t_{j+1} + t_A^*] \times \{j + j_A^*\} \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right)$$
(12)

- where $J=j_B^*-j_A^*-1$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_{j_B^*}-t_A^*;$

3. Open interval

$$\mathcal{I} := \left((t_A^*, t_1 + t_A^*) \times \{j_A^*\} \right) \cup \left\{ (t_A^* + t_1, j_A^* + 1) + E \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right) \\
= \left((t_A^*, t_1 + t_A^*) \times \{j_A^*\} \right) \cup \left\{ \bigcup_{j=0}^J ([t_j + t_A^* + t_1, t_{j+1} + t_A^*] \times \{j + j_A^* + 1\} \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right)$$
(13)

- where $J=j_B^*-j_A^*-2$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_{j_B^*}-t_A^*$.

Definition 2.8 (Hybrid Arc). A function $\phi: E \mapsto \mathcal{X}$ is a hybrid arc if E is a hybrid time domain and for each $j \in \mathbb{N}$, the function $t \mapsto \phi(t,j)$ is absolutely continuous on the interval $I_j := \{t : (t,j) \in E\}$. The interior of I_j is denoted int I_j .

Definition 2.9 (Solution of a Hybrid System). A hybrid arc ϕ is a solution to hybrid system $\mathcal{H} = (C, F, D, G)$ if

- 1. $\phi(0,0) \in C \cup D$
- 2. for all $j \in \mathbb{N}$ such that I^j has a nonempty interior
 - $\phi(t,j) \in C$ for all $t \in \text{int } I^j$
 - $\dot{\phi}(t,j) \in F(\phi(t,j))$ for almost all $t \in I^k$
- 3. for all $(t, j) \in E$ such that $(t, j + 1) \in E$
 - $\phi(t,j) \in D$
 - $\phi(t, j+1) \in G(\phi(t, j))$

2.2 STL Definitions

Definition 2.10. (Atomic Proposition)

An atomic proposition p^{μ} is a function that maps the state space of the system to a boolean value. The set of all atomic propositions is denoted by \mathcal{P} .

$$p^{\mu}: \mathcal{X} \to \mathbb{B}$$
 (14)

The function $\mu: \mathcal{X} \mapsto \mathbb{R}$ represents a robustness measure of the proposition such that. Where,

$$\begin{array}{ll} \mu > 0 \implies p^\mu = 1 \\ \mu \leq 0 \implies p^\mu = 0 \end{array}$$

Definition 2.11 (STL Grammar). STL formulas are defined recursively by the following grammar:

$$\varphi ::= p^{\mu} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Diamond_{\mathcal{I}} \varphi \mid \varphi_1 \ \mathcal{U}_{\mathcal{I}} \varphi_2$$

Where \mathcal{I} is a open or closed hybrid interval.

The fact that a hybrid arc satisfies STL formula φ at hybrid time instance (t,j) is given by $\varphi(\phi(t,j)) = 1$. When a hybrid arc does not satisfy a proposition then $\varphi(\phi(t,j)) = 0$.

The validity of a formula φ with respect to hybrid arc ϕ at at time (t,j) is defined inductively as

$$\begin{aligned} (\phi,(t,j)) &\models p^{\mu} &\iff \mu(\phi(t,j)) > 0 \\ (\phi,(t,j)) &\models \varphi &\iff \varphi(\phi(t,j)) = 1 \\ (\phi,(t,j)) &\models \neg \varphi &\iff \neg((\phi,(t,j)) \models \varphi) \\ (\phi,(t,j)) &\models \varphi \land \psi &\iff (\phi,(t,j)) \models \varphi \land (\phi,(t,j)) \models \psi \\ (\phi,(t,j)) &\models \Diamond_{\mathcal{I}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I} \text{ s.t. } (\phi,(t',j')) \models \varphi \\ (\phi,(t,j)) &\models \psi \ \mathcal{U}_{\mathcal{I}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I} \text{ s.t. } (\phi,(t',j')) \models \varphi \\ \land \forall (t'',j'') \in \mathcal{I} - (t,j) \text{ s.t. } (\phi,(t'',j'')) \models \psi \end{aligned}$$

The true and false conditions will be denoted by

$$\phi(t,j) \Vdash p^{\mu} \implies p^{\mu}(\phi(t,j)) = 1$$

$$\phi(t,j) \nvDash p^{\mu} \implies p^{\mu}(\phi(t,j)) = 0$$

Remark: Authors of [3] denote a ordinary time interval \mathcal{I} , relative to ordinary time t as:

$$t + \mathcal{I} := \{t + t' : t' \in \mathcal{I}\}$$

The same notation can be used denoting a hybrid temporal interval, \mathcal{I} relative to hybrid time instance (t, j):

$$(t,j)+I:=\{(t+t',j+j'):(t',j')\in I\}$$

2.3 Continuous Time STL

A STL formula ϕ is defined recursively as:

$$\psi ::= p^{\mu} \mid \neg \psi \mid \psi_1 \wedge \psi_2 \mid \Diamond_{\mathcal{I}} \psi \mid \psi_1 U_{\mathcal{I}} \psi_2 \tag{15}$$

Where ψ_1 , ψ_2 are STL formula and \mathcal{I} is an ordinary time interval of form $\mathcal{I} = (t_a, t_b), (t_a, t_b], [t_a, t_b), \text{ or } [t_a, t_b]$ with $t_a < t_b$ and $\mathcal{I} \subset \mathbb{R}_{\geq 0}$.

Inductive STL Definition

$$\begin{split} \phi &\models \psi &\Leftrightarrow (\phi,t) \models p \\ (\phi,t) &\models p^{\mu} &\Leftrightarrow \mu(\phi(t)) > 0 \\ (\phi,t) &\models \Box_{[a,b]} \psi \Leftrightarrow \forall t' \in [t+a,t+b] \ s.t \ (\phi,t') \models \psi \end{split}$$

2.3.1 Possible Notion of Hybrid STL

Recursive STL Definition

$$\psi ::= p^{\mu} \mid \neg \psi \mid \psi_1 \wedge \psi_2 \mid \Diamond_I \psi \mid \psi_1 U_I \psi_2 \tag{16}$$

Where ψ_1 , ψ_2 are STL formula and I is a hybrid time interval.

Inductive STL Definition

$$\phi \models \psi \qquad \Leftrightarrow (\phi, (t, j)) \models p
(\phi, (t, j) \models p^{\mu} \qquad \Leftrightarrow \mu(\phi(t)) > 0
((\phi, (t, j)) \models \Box_{I} \psi \Leftrightarrow \forall (t', j') \in (t, j) + I \text{ s.t. } (\phi, (t', j')) \models \psi$$

2.3.2 Previous Notions of Hybrid STL

From Atreya - Modeling Hybrid Systems using Signal Temporal Logic

Inductive STL Definition

$$((\phi, (t, j)) \models \Box_{(t, j)} \psi \Leftrightarrow \forall (t', j') \in dom \ \phi, t' + j' > t + j \ s.t \ (\phi, (t', j')) \models \psi$$

$$(17)$$

.1 Lane Changing

The authors of [2] use STL and Hamilton Jacobi reachability to combine temporal specification with quantification of a reachable set: STL temporal specifications are related to reachability operators.

.1.1 Example

Figure 3: Lane Change Scenario

In Figure 3 white represents the autonomous car, green a slow car, and red an adjacent car. The white car's lane change specification is given as: "Within 25 seconds, satisfy general safety ϕ until you can pass. Otherwise stay within the lane. Also ensure you are always within 5 seconds from re-entering the lane. (ψ^{lane} .)"

$$\phi = \phi^{off-road} \wedge \phi^{on-road} \wedge \phi^{avoid} \tag{18}$$

$$\square_{[0,25]} \lozenge_{[0,5]} \psi^{lane} \wedge (\phi \mathcal{U}_{[0,25]} \psi^{pass} \vee \phi \mathcal{U}_{[0,25]} \psi^{stay})$$

$$\tag{19}$$

.2 Solutions for Discrete Systems

Consider a discrete system of the form:

$$x^+ \in G(x, \gamma) \tag{20}$$

Let $x \in \mathbb{R}^n$ be states of the discrete system.

Let $\gamma \in \mathbb{R}^m$ be input to the discrete system.

Discrete time is denoted: $k \in \mathbb{N}$

Then, given an initial state, x_0 and an input $k \mapsto \gamma(k)$, a state trajectory(solution) can be constructed. The domain of γ is given: $dom \ \gamma = \{0, 1, 2, ..., K\} \cap \mathbb{N}$ where $K \in \mathbb{N} \cup \{\infty\}$. Solutions are defined as: $k \mapsto \phi(k)$ such that the following are satisfied:

- 1. $\phi(0) = x_0$
- 2. $dom \ \phi = dom \ \gamma \ \text{if} \ K = \infty$
- 3. $dom \ \phi \setminus \{max \ dom \ \phi\} = dom \ \gamma \ if \ K \ is finite$
- 4. $\forall k \in dom \ \gamma$: $\phi(k+1) = G(\phi(k), \gamma(k))$

.2.1 Discrete Time STL

$$\psi ::= p^{\mu} \mid \neg \psi \mid \psi_1 \wedge \psi_2 \mid \Diamond_I \psi \mid \psi_1 U_I \psi_2 \tag{21}$$

Where ϕ_1 , ϕ_2 are STL formula and I is an interval on $dom \phi$.

Inductive STL Definition

$$\begin{split} \sigma &\models \psi &\Leftrightarrow (\sigma, k) \models p \\ (\sigma, k) &\models p^{\mu} &\Leftrightarrow \mu(x_k, \gamma_k) > 0 \\ (\sigma, k) &\models \Box_{[n, m]} \psi \Leftrightarrow \forall k' \in [k' + n, k' + m] \ s.t \ (\sigma, k') \models \psi \end{split}$$

References

- [1] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, "Reactive synthesis from signal temporal logic specifications," Seattle, Washington, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2728606.2728628
- [2] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, "Signal Temporal Logic meets Hamilton-Jacobi Reachability: Connections and Applications," 2018.
- [3] A. Donzé and O. Maler, "Robust Satisfaction of Temporal Logic over Real-Valued Signals." Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.