4주차 3차시 순차논리

[학습목표]

- 1. 순차 논리회로와 조합논리 회로의 개요를 설명할 수 있다.
- 2. 동기식 카운터와 비동기식 카운터를 구분할 수 있다.

학습내용1: 레지스터

1. 순차 논리회로와 조합논리 회로회로 개요

조합논리회로 (combinational logic circuit)	• 출력이 현재의 입력에 의해서만 결정되는 논리회로
순차논리회로 (sequential logic circuit)	현재의 입력과 이전의 출력상태에 의해서 출력이 결정되는 논리회로 순차논리회로는 신호의 타이밍(timing)에 따라 동기 순차논리회로와 비동기 순차논리회로로 분류 동기 순서회로에서 상태(state)는 단지 이산된(discrete) 각 시점 즉, 클록펄스가들어오는 시점에서 상태가 변화하는 회로 클록펄스에 의해서 동작하는 회로를 동기순차논리회로 또는 단순히 동기순서회로라 함 비동기 순서회로는 시간에 관계없이 단지 입력이 변화하는 순서에 따라 동작하는 논리회로

2. 순차논리회로

1) 순차논리회로의 블록도

2) 순차논리회로의 해석과 설계 관계

- 순차논리회로의 동작은 입력과 출력 및 플립플롭의 현재상태에 의해 결정
- 출력과 차기상태는 현재상태의 함수가 됨
- 순차논리회로의 해석은 입력과 출력 및 현재상태에 의해 결정되는 차기상태의 시간순서를 상태표나 상태도로 나타냄으로써 해석이 가능

1) 순차논리회로의 해석과정

- ① 회로 입력과 출력에 대한 변수 명칭 부여
- ② 조합논리회로가 있으면 조합논리회로의 부울대수식 유도
- ③ 회로의 상태표 작성
- ④ 상태표를 이용하여 상태도 작성
- ⑤ 상태방정식 유도
- ⑥ 상태표와 상태도를 분석하여 회로의 동작 설명

2) 상태도 종류

3. 레지스터(Register)의 개요

- 플립플롭 여러 개를 일렬로 배열하고 적당히 연결함
- 여러 비트의 2진수를 일시적으로 저장하거나 저장된 비트를 좌측 또는 우측으로 하나씩 이동할 때 사용함

1) 이동(Shift) 레지스터

- * 이동(Shift) 레지스터 : 데이터를 좌우로 이동시키는 레지스터
- 직렬 입력, 병렬 출력과 병렬 입력, 직렬 출력 형태를 포함하여 직렬과 병렬의 입출력 조합을 가지고 있음
- 양방향성 이동 레지스터, 순환 레지스터도 있음

2) 직렬처리와 병렬처리의 특징

병렬처리

- 모든 비트의 데이터를 한 번에 전송함 하나의 클록 펄스(Clock Pulse) 시간 동안에 전송되므로 전송속도가 빠름
- 레지스터의 비트 수만큼 데이터 전송경로를 가지므로 직렬방식에 비하여 복잡함

직렬처리

- 레지스터에 직렬 입력과 직렬 출력을 연결하여 한 번에 한 비트씩 전송함
- 데이터를 전송할 때 전송 속도가 느리지만 하드웨어의 규모가 간단함

4. 이동 레지스터의 동작 유형에 따른 종류

5. 직렬 입력, 직렬 출력 이동 레지스터

- 가장 간단한 종류의 이동 레지스터
 - 단일 선으로 한 번에 한 비트씩 데이터를 받아 들이고, 저장된 정보를 직렬로 출력함
- 클록 펄스는 데이터를 이동시키는 제어 신호로, 클록 펄스가 이동 레지스터에 입력될 때마다 이동 레지스터에 저장되어 있는 데이터가 출력됨

- 1) 4비트로 구성된 직렬 입력, 직렬 출력의 이동 레지스터
- 각 플립플롭에 기억된 내용은 왼쪽에서 오른쪽으로 이동함
- 4비트의 직렬 입력, 직렬 출력의 이동 레지스터의 이동과정과 타이밍도

6. 직렬 입력, 병렬 출력 이동 레지스터

- 입력 데이터 비트는 직렬로 레지스터 내에 들어가고, 출력 비트들은 레지스터의 각 단에서 출력되어 병렬 형태가 됨
- 직렬 출력처럼 한 비트씩 출력되지 않고 모든 비트가 동시에 각각의 플립플롭 출력선을 타고 출력됨
- 1) 4비트의 직렬 입력, 병렬 출력 이동 레지스터 구성, 이동과정, 타이밍도

7. 병렬 입력, 직렬 출력 이동 레지스터

- 각 플립플롭 단에 병렬로 동시에 입력
- 첫 플립플롭에서는 하나의 입력만이 존재, 그 이후의 플립플롭에서는 이전 플립플롭의 출력과 새로운 입력이 존재
- 레지스터는 이 두 종류 입력에 대한 선택적인 판단이 필요한데, 이때 필요한 조합 논리 회로는 2×1 멀티플렉서

1) 2×1 멀티플렉서

- 선택 단자 S에 의해서 입력이 결정
- 즉, S가 0이면 입력 I가 선택되고 Y로 출력되며, S가 1이면 입력 Q가 선택되고 Y를 통해서 출력됨

* 논리회로

* 진리표

선택선	출력
S	Υ
0	I
1	Q

* 논리기호

<각 플립플롭으로 입력되는 4개의 데이터 입력선 I와 이동 레지스터 안으로 데이터를 병렬로 들어가게 하기 위한 SHIFT / \overline{LOAD} 입력이 있음>

- * SHIFT / LOAD 입력
- 0이면 새로운 데이터가 레지스터에 입력이 입력되고 클록 펄스에 의해서 마지막 플립플롭에서 한 비트를 출력함
- 1이면 클록 펄스에 의해 한 비트씩 오른쪽으로 이동

2) 병렬 입력, 직렬 출력 이동 레지스터의 회로도와 출력 파형도

8. 병렬 입력, 병렬 출력 이동 레지스터

- * 데이터의 병렬 입력과 병렬 출력의 방법을 결합한 이동 레지스터 : 데이터 비트들이 동시에 입력되면 클록 펄스에 의해서 바로 병렬 출력이 나타남
- 1) 4비트 병렬 입력, 병렬 출력 이동 레지스터 논리 회로
- 4비트의 입력 $D_AD_BD_CD_D$ 가 각 플립플롭에 입력되고 클록 펄스가 들어오면 각 플립플롭은 즉각적으로 $Q_AQ_BQ_CQ_D$ 를 출력함

- 병렬 입력, 병렬 출력 이동 레지스터는 다중 비트를 저장하는 기억장치로도 사용이 가능함
- 9. 재순환 이동 레지스터 (Recirculating Shift Register)
- * 재순환 이동 레지스터란?
- 출력되는 데이터가 다시 처음으로 입력되는 레지스터

1) 4비트의 재순환 이동 레지스터

- 데이터 제어 단자에 1이 입력되면 직렬 데이터가 입력되고, 0이면 이동 동작을 통해서 재순환 데이터가 입력됨

- 입력 데이터 1101가 입력되어 순환되는 과정을 클록 펄스와 상태 파형으로 나타낸 것임

10. 양방향 이동 레지스터

- 좌측과 우측방향으로 데이터를 이동시킬 수 있음
- 이동방향을 결정하는 RIGHT / LEFT 제어입력의 회로는 2×1 멀티플렉서임
- 1이면, 우측으로 데이터가 이동되고, 0이면 좌측으로 이동함

1) 2×1 멀티플렉서 논리회로와 논리기호

2) 양방향 이동 레지스터의 논리기호

〈RIGHT / LEFT이 1이면 데이터가 SRI를 통해서 입력되고 오른쪽으로 이동하면서 SRO(Serial Right Out)에서 출력됨〉

- 0이면 데이터는 SLI에 입력되고 왼쪽으로 이동하면서 SLO(Serial Left Out)에서 출력됨

3) 4비트의 양방향 이동 레지스터의 회로

- 4개의 플립플롭 입력에 2×1 멀티플렉서가 연결되어 있고, 이것에 의해서 이동방향이 결정됨
- 우측으로 이동하는 경우에서는 출력 단자는 OD가 되며, 좌측으로 이동하는 하는 경우에는 OA가 됨
- 2진수의 연산에서 비트의 이동은 2배수의 덧셈과 나눗셈 연산을 수행함 좌측으로 이동하면 2를 곱한 결과가 되고 우측으로 이동하면 2를 나눈 결과와 같음
- 양방향 이동 레지스터는 2진수의 곱셈과 나눗셈 연산기로 사용할 수 있음

학습내용2 : 카운터

- * 카운터(counter, 계수기)
- 클록 펄스에따라수를세는계수능력을갖는논리회로
- 컴퓨터가 여러 가지 동작을 수행하는 데에 필요한 타이밍 신호를 제공함
- 1) 카운터는 동기식과 비동기식으로 분류

동기식 카운터

입력 펄스의 입력 시간에 동기 되어 각 플립플롭이 동시에 동작하기 때문에 모든 플립플롭의 단에서 상태변화가 일어난

비동기식 카운터

- 앞단의 출력을 받아서 각 플립플롭이 차례로 동작하기 때문에 첫 단에만 클록 펄스가 필요함
- 직렬 카운터 또는 리플(Ripple) 카운터라 함

- 2) 카운터는 비트 수에 따라서 최대 카운트가 결정
- 4비트 카운터의 최대 카운트 범위는 24, 즉 0~15(0000~1111)이며, 8비트 카운터의 최대 카운트 범위는 $2^8 = 0 \sim 255(0000\ 0000 \sim 1111\ 1111)$ 가 됨
- 카운트를 시작해서 카운트를 끝낸 후, 다시 처음 상태로 돌아올 때까지의 상태 수를 카운터 계수(Modulus of a Count)라고 함
- 10진 카운터는 0~ 9까지의 10개의 상태가 존재 카운터 계수는 10이 됨
- 일반화 해서 표현하면, 카운터에서 구별되는 상태의 수가 m일 때 modulo- m (간단히 mod- m; m 진)의 카운터라고 한

1. 비동기식 카운터

- * 비동기식(asynchronous) : 어떤 동작들이 시간적으로 동시에 발생하지 않고, 순차적으로 혹은 서로 상관없이 발생하는 동작 모드
- * 비동기식 카운터
- 플립-플롭들을 직렬로 연결
- 카운트 될 입력 펄스들은 첫 번째 플립-플롭의 클록(CLK) 입력으로만 들어가며, 그 플립-플롭의 출력이 다음 플립-플롭의 클록 입력으로 접속되고, 그 다음 플립-플롭들도 같은 방식으로 접속
- 플립-플롭들은 앞에 위치한 플립-플롭의 출력 결과에 따라 순차적으로 트리거 되기 때문에, 플립-플롭들의 상태 변화가 서로 다른 시간에 발생
- 리플 카운터(Ripple Counter)라고도 불림

2. 비트 리플 카운터(2-bit ripple counter)

- 두 개의 T 플립-플롭들로 구성
- 플립-플롭의 T 입력은 모두 'high' 상태로 고정
- 카운트 될 입력 펄스들은 첫 번째 T 플립-플롭의 클록(CLK) 신호로 입력
- 첫 번째 플립-플롭(FFO)의 출력이 두 번째 플립-플롭(FF1)의 CLK 입력으로 접속

〈물결(ripple)이 전파되는 모습과 유사하여 리플 카운터라고도 부름〉

- 카운터의 상태(혹은 출력값) : 플립-플롭들의 출력 비트들(MSB: Q₁, LSB: Q₀)
- 카운팅 시퀀스(counting sequence): Q₁Q₀ = 00→01→10→11
- 1) 회로 구성도
- 2) 입출력 파형

3. BCD 리플 카운터

- 비동기식 10진 카운터(asynchronous decade counter) = BCD 리플 카운터
- 카운팅 시퀀스: 0000 ~ 1001

1) 상태 다이어그램

* 회로 설계 방법 : 카운터의 상태가 '1001' 다음에 ('1010' 이 아닌) '0000'으로 바뀌도록 하기 위하여, '1010' 이 되는 즉시 모든 플립-플롭들의 /CLR 신호를 활성화시켜, 상태를 '0'으로 리셋

2) 입출력 파형

〈(스파이크형 펄스 발생을 피하기 위한 다른 설계) JK 플립-플롭을 이용한 BCD 리플 카운터〉

- FFO 및 FF2는 i, k 입력이 모두 1로 고정 \rightarrow CLK의 하강 에지에서 항상 토글

- Q_3 '을 FF1의 j입력으로 접속, & $K=1 \rightarrow FF1$ 은 $Q_3=0$ 일 때만 토글
- $-Q_1$ 및 Q_2 를 AND 게이트 통과시킨 후 FF3의 J 입력으로 접속하고, $K=1 \rightarrow Q_1=Q_2=1$ 이라면, J=K=1 Q_0 를 FF3의 CLK 입력으로 접속 $\to Q_1=Q_2=1$ 일 때, Q_0 의 하강 에지에서 FF3가 토글

〈상태 '1001' → '0000' 전이 순간의 동작〉

- 상태가 1001일 때 Q_3 ' = 0이므로, FF1의 입력은 J = 0 & K = 1이 되며, 이 때 10번째 입력 펼스가 들어와서 Q_0 가 1→0으로 떨어지더라도, Q_1 은 상태가 변하지 않고 '0'을 유지
- Q_1 의 상태가 변하지 않기 때문에, Q_2 는 '0' 상태를 유지
- AND 게이트의 출력이 '0'이므로, FF3의 입력은 J=0, K=1이며, 이 때 10번째 입력 펼스가 들어와서 Q_0 가 $1→0으로 떨어지면, <math>Q_3$ 는 '0'으로 리셋
- 결과적으로, 10 번째 입력 펄스가 들어왔을 때 카운터의 상태는 '0000'으로 리셋
- 3) BCD 카운터의 직렬 연결
- 예 : 3개 직렬연결 → 000~999까지 카운트 가능

학습내용3 : 카운터의 종류

1. 상향 비동기식 카운터

* 4비트의 2진 상향 카운터 : 0부터 시작해서 클록의 수가증가하면15까지 증가, 16개의 상태를 가지므로 mod-16 카운터

* 상태도

1) 논리회로

2) 타이밍도

2. 하향 비동기식 카운터

- * 하향 비동기식 카운터 : 클록 펄스의 수가 증가함에 따라 카운터의 수가 감소하는 카운터
- * 4비트 하향 비동기식 카운터 : 최대값 15부터 시작해서 클록 펄스의 수가 증가하면서 하나씩 그 값이 감소함 그리고 카운터의 값이 0이면 되면 다시 15부터 시작하게 됨

* 상태도

* 논리회로

* 타이밍도

3. 3비트 동기식 2진 카운터

〈8개의 순차적인 상태 (000, 001, 010, 011, 100, 101, 110, 111)를 가짐〉

1) 상태도와 논리회로

2) 타이밍도

4. 링 카운터(Ring Counter)

- * 링 카운터 (Ring Counter) : 플립플롭들이 하나의 고리 모양으로 연결
- * 4비트 링 카운터의 상태도 : 논리 1의 값이 왼쪽으로 이동하면서 순환

1) 논리회로와 타이밍도

[학습정리]

- 1. 레지스터는 플립플롭으로 구성되어 있고 기억장치의 기본이 된다.
- 2. 디지털 시스템에서 카운터는 클록펄스에 따라 수를 세는 계수 능력을 갖는 논리회로이다.