

Empezar con la Raspberry Pi (RPi)

2016/02/5 Àngel Perles

Contenido

- Objetivo
- El hardware
 - Elegir RPi
 - Conexiones de la RPi
 - Los complementos mínimos
- El software
 - El sistema operativo Linux
 - S.O. disponibles para la RPi
 - Raspbian en la RPi para el curso
 - La máquina virtual del curso
 - Empezar fácil con NOOBS
 - Preparar la tarjeta SD
 - Volcar NOOBS en la SD
 - Arranque del NOOBS
 - Arranque del Linux

Objetivo

- Aprender a elegir bien los componentes hardware de la RPi
- Aprender a hacer un primer arranque y configuración de la RPi

El hardware: elegir RPi

- NO RECOMENDADOS
- Modelos "antiguos": A, A+, B, B+ e industrial
 - "SoC" (Sytem-on-Chip) Broadcom BCM2835
 - Procesador 700MHz ARM11
 - GPU VideoCore 4 para reproducir hasta 1080p
 - 512MB de RAM (soldados sobre el SoC\)
 - Salida de vídeo HDMI y salida de vídeo
 - Salida de audio
 - Cuatro puertos USB 2.0
 - Puerto Ethernet 10/100Mb
 - ¿Y la Flash ROM?. No hay: va por SD
- Modelo Rasberry Pi Zero
 - Baratísimo, pero con pegaS

El hardware: elegir RPi

- En enero 2015 apareció la Raspeberry Pi 2 modelo B
- Se recomienda este modelo + caja de plástico transparente (38 Eur.)
 - "SoC" (Sytem-on-Chip) Broadcom BCM2836
 - Procesador 900MHz quad-core <u>ARM Cortex-A7</u> <-- <u>importante diferencia</u>
 - GPU VideoCore 4 para reproducir hasta 1080p
 - 1 GB de RAM (soldados sobre el SoC)
 - Salida de vídeo HDMI
 - Salida de audio
 - Cuatro puertos USB 2.0
 - Puerto Ethernet 10/100Mb
 - ¿Y la Flash ROM?. No hay: va por SD

El hardware: elegir RPi

- Para el curso usaremos el modelo antiguo B versión 2.0
 - Se aplican exactamente los mismos conceptos

El hardware: conexiones de la RPi

Modelo B

GPIO (General-purpose input.output) RCA con vídeo compuesto Para conectar cosas (sensores, actuadores, etc.) Cuidadían aguí. - 8 entradas/salidas digitales (v pico) - consola serie (UART) para depuración Salida audio en jack estéreo de 3,5 mm. - I2C interface (3v3) - SPI interface (3v3) - Alimentaciones: 3v3, 5v y GND - Todo funciona con 3v3 (Debaio) conector tarieta SD Recomendado 8 GB, clase 4. "4" es "4" y cuidado con fardar de clase Dos USB para conectar cosas que consuman poquito. Para conectar muchas cosas o que consuman bastante y no sobrecargar el alimentador o hacer saltar el fusible, usa un HUB USB autoalimentado sin backpower. Haz caso a esto y no a lo que se diga por ahí. Micro-USB solo para alimentación. Empezar con un alimentador de 5 V. 1.2 A. Usar un HUB USB Conector RJ-45 para ethernet 10/100Mb en el otro lado si se quiren conectar Conector HDMI 1.3a con auto-MDIX (no necesita cruzar cables) muchos dispositivos USB adicionales. vídeo + audio 1080p ???

El hardware: los complementos mínimos

- Para empezar, necesitas complementos. Estos son los que te recomendamos
 - Tarjeta SD de 8 GB y clase 4. Que sea de marca
 - Alimentador con conector micro-USB 5V, 1.2 A. ¡Evita las marcas cutres!
 - Monitor o TV con conexión HDMI o DVI
 - Cable HDMI 1.3a o HDMI-DVI. Cuidado con los conectores DVI.
 - Teclado + ratón con cable USB 2.0 (no inalámbricos). Controlar la corriente que consumen

Cable red ethernet RJ-45 para acceso a Internet

El hardware: los complementos mínimos

- Lo conectas todo dejando para el final la alimentación
- Pero tendrás que esperar a la próxima sección para verlo funcionar

Recuerda mirar que consumen el teclado y el ratón

El software: el sistema operativo Linux

- Linux es el sistema operativo (S.O.) base de infinidad de equipos
 - la mayor parte de los servidores a los que te conectas
 - móviles, tablets, smart-TV ... (Android también es Linux)
 - ordenadores de oficina (PCs sobremesa y portátiles)
 - y, por supuesto, otros miles de sistemas embebidos: media players, navegadores, GPS, IVI de los coches, ... <u>Raspberry Pi</u> ...
- Una distribución de Linux es el S.O. + un empaquetado de aplicaciones
 - Ubuntu, Debian, Fedora, Red Hat, Mandriva, Arch linux, Raspbian, ...
- Lo natural para la Pi es Linux
 - ¡Usaremos Linux en la Pi!

TUX es la mascota de Linux

El software: S.O. disponibles para la RPi

- Raspbian: distribución Linux basada en Debian Wheezy
 - la más "oficial"
- Pidora: distribución Linux basada en Fedora Remix
 - Fedora es el proyecto open de Red Hat
 - Red Hat es la distribución de referencia comercial/industrial
- Ubuntu Mate y Ubuntu Snappy Core
 - El Ubuntu típico y una optimización para loT y similares
- OpenELEC y OSMC: Linux para XBMC (Xbox Media Center)
 - optimizado para ser un eficiente Home Theater
- RISC OS:
 - no todo es Linux en el mundo (ni Windows, ni Mac, ...)
- Microsoft Windows 10: esto tampoco es Linux
 - Es una opción si quieres Windows. Allá tu

El software: Raspbian en la RPi para el curso

- Asumimos que no venís para que os ayudemos a montar un Home Theather, ¿o sí?
- Raspbian: distribución Linux basada en Debian
 - Debian es la distribución Linux abierta de referencia
 - durilla para novatos
 - Ubuntu, que es facilona ... ¡y se basa en Debian!

- El 2x1
 - usaremos Linux Rasbian para la RPi
 - y usaremos Ubuntu para el ordenador de desarrollo (bueno, la variante Kubuntu 12.04)

El software: la máquina virtual del curso

- Os hemos preparado una máquina virtual
 - para Oracle Virtualbox
 - "host" comprobado en Microsoft Windows 7 y Ubuntu Linux
 - "guest" Kubuntu 12.04 LTS

El software: empezar fácil con NOOBS

- NOOBS: New Out Of the Box Software
 - software a grabar en una tarjeta SD para la RPi
 - permite instalar, configurar y probar las anteriores distribuciones
 - descargable en http://www.raspberrypi.org/downloads/
 - es nuestra recomendación para empezar, (y mejor la "offline")

El software: preparar la tarjeta SD

- Usaremos la utilidad típica de Linux gparted
 - <u>IMPORTANTE</u>: peligro de borrar el disco duro si nos equivocamos de unidad
 - insertar la SD en el lector USB, insertar lector en el PC
 - abrir terminal y ejecutar \$ sudo gparted
 - seleccionar la unidad correspondiente a la SD
 - eliminar todas las particiones
 - crear una nueva partición primaria tipo FAT 32 y poner etiqueta pepe
 - realizar los cambios

El software: volcar NOOBS en la SD

- Simplemente descomprimir el archivo NOOBS_x_xXX.zip en la SD
 - sacar el adaptador USB, esperar 5 segundos, volver a insertarlo
 - selecciona "Abrir carpeta" en desplegable, pulsa Ctrl+L en dolphin para saber el directorio donde se monta la SD, será /media/pepe
 - abrir otro explorador Dolphin e ir al directorio datos/raspberry_pi/noobs
 - pulsar con el botón derecho y seleccionar "Extraer en ..." y elegir ruta donde esté la SD, <u>desmarcar "Extraer en subcarpeta"</u>

El software: volcar NOOBS en la SD

 Esperaaaaaarrrrrrrr, y, cuando acabe, dar a "expulsar" en el gestor de USBs (no sacar a las bravas)

¡Un momento estupendo para que nos conozcamos! ¿Por qué te has apuntado al curso?

El software: arranque del NOOBS

- insertar la uSD en la SD y colocar en la RPi
- alimentar, rezar y esperar el siguiente menú

El software: arranque del Linux

(esto era hace unos meses)

- y ahora ... arrancamos de verdad Linux (casi)
- el primer arranque lanza "raspi-config"
 - "Internationalisation options" -> I3 Change Locale (esperaaaar) -> marcar "es-ES.UTF8 UTF8"
 - elegir "default es-ES.UTF8"
 - "Advanced Options" -> SSH -> enable

El software: arranque del Linux

(actualmente)

- sale directamente interfaz gráfica
- lo "arreglamos": Menú -> Raspberry Pi configuration

- y "reboot" amos
- ¡Ahora sí! Ja, ja ja ... como toda la vida

El software: arranque del Linux

• ¡Ahora sí! ... ¡Huy, que negrooooo!!!!

login: pi password: raspberry

