Integrierter Kurs IV

Theoretische Physik II Tom Folgmann

5. Juli 2023

[Das Passwort für die offiziellen Kursfolien ist "2023ik4".]

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung und Wellenfunktion	1
	1.1	Die Heisenbergsche Unschärferelation (I)	6
	1.2	Die Schrödingergleichung für freie Teilchen	7
	1.3	Allgemeine Form der Schrödingergleichung	10
	1.4	Normierung und Erwartungswert	12
	1.5	Operatoren	14
	1.6	Der Kommutator	17
	1.7	Die Heisenbergsche Unschärferelation (II)	19
2 Lösen von Bewegungsgleichungen der Schrödingergleichun		en von Bewegungsgleichungen der Schrödingergleichung	20
	2.1	Potentialbarrieren	23
	2.2	Potentialtopf und gebundene Zustände	26
	2.3	Der harmonische Oszillator I	27
3	Dre	chimpuls und Bewegung im Zentralfeld	30
	3.1	Orientierungs- und Drehimpulsalgebra	30
	3.2	Ortsdarstellung und Kugelflächenfunktionen	32
4	Ma	thematische Grundlagen	33
	4.1	Zustände und Observablen	33
	4.2	Der Hilbertraum	33
		Dei Impermaum	აა
	4.3		ээ 33
		Uneigentliche Dirac Vektoren	
	4.3	Uneigentliche Dirac Vektoren	33
	4.3 4.4	Uneigentliche Dirac Vektoren	33 36 36
	4.3 4.4 4.5	Uneigentliche Dirac Vektoren	33 36

1 Einleitung und Wellenfunktion

Einleitung		
Bei der Auffassung kleinster Teilchen gab es Probleme	e mit dem Teilchenmodell. $25.04.2023,$ $08:15$	

(№1)	\square Stelle dieses Problem $deutlich$ dar. Skizziere eine Lösung desselben.		
	Schwarzkörperstrahlung		
	Jede sogenannte $Mode$ mit der Frequenz $\nu=c_0/\lambda$ des elektromagnetischen Feldes kann beliebige Energien enthalten, enthält jedoch nach dem Äquipositionsprinzip im Mittel die Energie $E=k_B\cdot T$, bekannt als das Rayleigh-Jeans-Gesetz.		
	Photoeffekt		
	Compton Effekt		
	$[\rightarrow$ IK4 Exp. II]		
	Welleneigenschaften der Materie		
	$[\rightarrow$ IK4 Exp. II]		
	Doppelspaltexperiment mit Elektronen		
	$[\rightarrow$ IK4 Exp. II]		
(2 $)$	\square Lies im Skript der $\textit{Experimentalphysik}$ II die Inhalte der Überschriften nach.		
(№2.1)	\rightarrow Was ist die Wellenfunktion beim Doppelspaltexperiment? Wie erklärt man, daß ein Elektron durch beide Spalten gehen kann? Was passiert mit einem einzeln eingestrahlten Elektron?		
(№2.2)	\rightarrow Wie lautet die de Broglie Relation?		
(№2.3)	→ Kann man das Doppelspaltexperiment auch mit massiveren Teilchen oder Molekülen durchführen? Gibt es hierbei eine Grenze? Recherchiere den Beitrag zur Doppelspaltuntersuchung der <i>Universität Konstanz</i> .		

Welle-Teilchen-Dualismus

Wir haben beobachtet:

- \rightarrow elektromagnetische Wellen verhalten sich wie Teilchen
- $\rightarrow\,$ materielle Teilchen verhalten sich wie Wellen

Als Ziel unserer folgenden Untersuchungen setzen wir eine einheitliche Theorie, welche sowohl die Wellen- als auch die Teilcheneigenschaften beschreibt.

 $\begin{tabular}{ll} Theoretische\ Physik\ II\\ {\tt Skript} \end{tabular}$

Wellenfunktion und Wahrscheinlichkeitsinterpretation

Wir wollen den folgenden Zusammenhang herstellen:

freies Teilchen	ebene Welle
Impuls $p \in \mathbb{R}^3$	Wellenvektor $k \in \mathbb{R}^3$
Energie $E(p) = p^2/2m$	Kreisfrequenz $\omega(k) = \hbar k^2/2m = c_0$.
	$ k _{2}$ Amplidute am Ort $r(t)$ mit $\psi(t, r(t)) = C \cdot \exp(\mathring{i}(\langle r(t), k \rangle - \omega \cdot t)) \rightarrow Wellenfunktion$

Tabelle 1: Gegenüberstellung der Teilchen- und Welleneigenschaften.

Es kommen nun die folgenden Fragen auf:

- \rightarrow Wie hängen p und k zusammen?
- \rightarrow Was ist die physikalische Bedeutung von $\psi \in C^1(\mathbb{R} \times \mathbb{R}^3, \mathbb{R})$?

Es stellt sich heraus, daß wir die erste Frage bereits mit der de Broglie Relation [\rightarrow IK4 Exp II] beantworten können: $p(k) = \hbar \cdot k$, wobei $\hbar := h/(2\pi)$ mit $h = 6.6 \cdot 10^{-34} \text{J s}$. Für die Energie finden wir aus der Schwarzkörperstrahlung den Zusammenhang $E(\omega) = \hbar \cdot \omega$ (Einstein/Planck) mit $\omega = 2\pi \cdot \nu$. In die Funktion ψ eingesetzt folgt

$$\psi(t,r(t)) = C \cdot \exp\biggl(\frac{ \stackrel{\circ}{\imath} \cdot (\langle p,r(t),-\rangle \, E(p) \cdot t)}{\hbar} \biggr).$$

Für die Dispersion der Welle gilt

$$E(\omega) = \hbar \cdot \omega = \begin{cases} \frac{\hbar^2 \cdot k^2}{2 \cdot m} & m > 0 \\ \hbar \cdot c_0 \cdot ||k||_2 & \text{sonst} \end{cases} = \begin{cases} \frac{\langle p, p \rangle}{2 \cdot m} & m > 0 \\ c_0 \cdot ||p||_2 & \text{sonst} \end{cases}$$

Für die physikalische Interpretation müssen wir uns der Wahrscheinlichkeitsinterpretation widmen:

Teilchen	Welle
Aufenthaltswahrscheinlichkeit	Intensität der Welle $ \psi(t,r(t)) ^2$
des Teilchens (pro Volumen) am	
Ort $r(t)$ zur Zeit $t \in \mathbb{R}$	

Prinzipiell ist es möglich, den Ort zum Zeitpunkt eines Teilchens zu kennen; anders ist es bei quantenmechanischen Wellen. Wir bemerken:

- $\rightarrow \ \psi$ bezeichnet man auch als Wahrscheinlichkeitsamplitude.
- \rightarrow Die Aufenthaltswahrscheinlichkeit des durch r beschriebenen Teilchens ist gegeben als Integral

$$P(t,V) := \int |\psi(t,x)|^2 \lambda_V(dx) =: \mu(V)$$

mit Wahrscheinlichkeitsmaß $P(t,\cdot)=:\mu$ auf $(\mathbb{R}^3,\sigma(\mathbb{R}^3))$. Ist der Aufenthalt in einem Volumen $V\subseteq\mathbb{R}^3$ bekannt, so sei

$$P(t,V) := \begin{cases} \int |\psi(t,x)|^2 \ \lambda_V(dx) & V \in \sigma(\mathbb{R}^3) \\ \infty & \text{sonst} \end{cases}$$

eine Umdefinition des Maßes.

 \rightarrow Aus der Wahrscheinlichkeitsmaß-Eigenschaft $\mu(\mathbb{R}^3)=1$ folgt

$$P(t, \mathbb{R}^3) = \int |\psi(t, x)|^2 \lambda_V(dx) = 1.$$

 \to In einem Volumen $W\subseteq V\subseteq \mathbb{R}^3$ gilt $\mu|_V(W)=\lambda(V)\cdot |C|^2$ und für W=V folgt $|C|^2=1/\lambda(V).$

Ebene Wellen beschreiben also Teilchen mit wohldefiniertem Impuls $p = \hbar \cdot k$, aber vollständig unbestimmtem Ort.

.....

(\otimes 3) \square Überlege dir den Spezialfall eines Punktes $\{x\}\subseteq\mathbb{R}^3$ als Testvolumen. Wie sieht die Aufenthaltswahrscheinlichkeit aus?

.....

Wellenpakete

Als nächstes beschäftigen wir uns mit der Frage, wie wir Teilchen mit genau definiertem Aufenthaltsort beschreiben. Wir wenden uns hierbei an das Prinzip der Superposition, konkreter der Fourier-Summation, bei der wir eine Funktion $f \in \mathcal{L}^2(\mathbb{R}^3)$ zerlegen in Funktionen des Typus der ebenen Welle:

$$\psi(t,r(t)) = \frac{1}{(2\cdot\pi)^3} \int \left(\exp\biggl(\mathring{\imath} \cdot (\langle x,r(t)\rangle - \frac{\hbar \cdot x^2}{2\cdot m} \cdot t) \biggr) \right)_{x \in \mathbb{R}^3} \, \Bigl(\mathbbm{1}_V \cdot \tilde{\psi} \Bigr) \quad V \subseteq \mathbb{R}^3,$$

wobei $(\mathbb{R}^3,\sigma(\mathbb{R}^3),\tilde{\psi})$ ein Maßraum ist. Wir haben dabei den Zusammenhang

$$E = \hbar \cdot \omega(k) = \frac{\hbar \cdot k^2}{2 \cdot m}.$$

.....

(§4) \square Warum wird bei der Fourier-Summation keine Wurzel im Vorfaktor gezogen? Recherchiere verschiedene Konventionen. [*Tipp:* Bedenke $\hbar = h/(2 \cdot \pi)$ und die Definition des Impulses über k.]

.....

VL 2 27.04.2023,

10:00

Gaußsches Wellenpaket

Als fundamentale Funktion eines Wellenpaketes zählt das sogenannte Gaußsche Wellenpaket. Es wird beschrieben durch die Funktion

$$\psi(k) = A \cdot \exp\left(\frac{-(k-k_0)^2}{4 \cdot \pi^2}\right), \quad \psi \in \text{Abb}\left(\mathbb{R}^3, \mathbb{R}^3\right),$$

wobei $4\pi^2$ mit der "Breite" korreliert und k_0 der *mittlere Wellenvektor* ist. Die Funktion hat die Form

Abbildung 1: Die Gaußkurve für A = 1, $k_0 = 1$ in \mathbb{R} .

Das Ergebnis der Fourier-Summation angewendet auf die Gaußfunktion ergibt

$$|\psi(t, r(t))|^2 = \frac{1}{\sqrt{2 \cdot \pi} \cdot w(t)}^{\frac{3}{2}} \cdot \exp\left(-\frac{(r(t) - v \cdot t)^2}{2 \cdot w(t)^2}\right)$$

mit der Definition $v:=\hbar\cdot k/m=\frac{\mathrm{d}}{\mathrm{d}t}\left[\omega(k_0+t\cdot h)]\right|_{t=0}=d\omega(k_0)(h)$ und $w(t):=\sqrt{w(0)^2+((\hbar\cdot t)/(2\cdot w(0)\cdot m))}$ mit dem Startwert $w(0)=1/(2\cdot\sigma)$.

☐ Man spricht bei Fourier-Summationen vom Raumwechsel. Was ist damit gemeint? Welche

- ☐ Man spricht bei Fourier-Summationen vom *Raumwechsel*. Was ist damit gemeint? Welche (₺5) Räume haben wir hier verwendet?
- □ Zeichne das Ergebnis einmal graphisch für dieselben Parameter wie oben. Was fällt dir auf? (%6)
- \square Welches $h \in \mathbb{R}^3$ ist bei der Ableitung $d\omega(k_0)(h)$ gemeint? (\otimes 7)

.....

Skript

Abbildung 2: Die Forier-Summierte Gaußkurve für $A=1,\,k_0=1$ in $\mathbb R$ zum Zeitpunkt t=0 und t=10

Zusammenfassung

 \rightarrow Das Wellenpaket bewegt sich mit der Aufenthalserwartung

$$\langle r(t) \rangle = \int (r \cdot |\psi(t, r)|)_{r \in \mathbb{R}^3} \lambda(dr).$$

- \rightarrow Das Wellenpaket im Ortsraum ist ebenfalls eine Gaußfunktion mit Peakbreite w(t) und Startwert $w(0) = 1/(2 \cdot \sigma)$.
- \rightarrow Das Wellenpaket erfährt Dispersion für t>0 durch die Funktionsdefinition w:
- \to Für $t >> w(0)^2 \cdot m/\hbar$ ist $w(t) \approx \hbar \cdot t/(2 \cdot w(0) \cdot m)$ linear von t abhängig. Für lange t ist die Dispersion also linear (und nicht proportional zu \sqrt{t}).
- \rightarrow Für die Mittelung $\langle r(t) \rangle$ folgt

$$\Delta r^2 := \langle r(t_1) - \langle r(t_0) \rangle \rangle = \int \left((r - \langle r \rangle) \cdot |\psi(t, r)| \right)_{r \in \mathbb{R}^3} \, \lambda (dr) = w(t)^2.$$

......

- (§8) $\Box 1$ Berechne die Integrale $\int x \cdot \exp(-x^2) \lambda(dx)$, $\int x \cdot \exp(-(x-x_0)^2) \lambda(dx)$ und $\int (x-x_0) \cdot \exp(-(x-x_0)^2) \lambda(dx)$ für $x_0 \in \mathbb{R}$ auf $(\mathbb{R}, \sigma(\mathbb{R}), \lambda)$. Wie ist die Struktur?
- (§9) \square Rechne die Dispersion des Wellenpaketes für t>0 gemäß w nach und zeige $w(t)^2>w(0)$.

1.1 Die Heisenbergsche Unschärferelation (I)

Zunächst bemerken wir die Eigenschaft der Normerhaltung gemäß des Satzes von Parseval der Fourier-Summation. Es gilt

$$\int \left| \psi(t,r) \right|^2 \lambda \left(dr \right) = \int \frac{\left| \tilde{\psi}(k) \right|^2}{(2 \cdot \pi)^3} \lambda \left(dk \right) = \int \frac{\left| \tilde{\psi}(p) \right|^2}{(2 \cdot \pi \cdot \hbar)^3} \lambda \left(dp \right)$$

Skript

und für die Mittelung

$$\langle p \rangle = \int \frac{p \cdot \left| \tilde{\psi}(p) \right|^2}{(2 \cdot \pi \cdot \hbar)^3} \lambda (dp) := \int \frac{p \cdot \exp\left(-\frac{(p - p_0)^2}{4 \cdot \hbar^2 \cdot \sigma^2}\right)}{(2 \cdot \pi \cdot \hbar)^3} \lambda (dp) \stackrel{(.??)}{=} p_0 = \hbar \cdot k_0.$$

Die mittlere Schwankung, also physikalisch die Genauigkeit des Impulses im Impulsraum, ergibt sich zu

$$\Delta p^2 = \langle (p - \langle p \rangle^2)^2 \rangle = \hbar^2 \cdot \sigma^2,$$

wobei unter Verwendung von $\Delta r^2 = w(t)^2$ folgt

$$\Delta r^2 = w(t)^2 \ge \left(\frac{1}{2 \cdot \sigma}\right)^2 = \frac{1}{4 \cdot \sigma^2},$$

sodaß mit beiden Gleichungen unter Produktbildung und Wurzelzug eine Ausdrucksweise der Unschärferelation, konkret jene von Heisenberg, folgt:

$$\Delta r \cdot \Delta p \ge \frac{\hbar}{2}.$$

.....

 \Box Lässt sich die Wellenfunktion direkt experimentell bestimmen? Recherchiere die $\it Quanten-$ (§10) $\it Zustands-Tomographie.$

Physikalische Bedeutung

Aus der Unschärferelation folgen folgende physikalische Konsequenzen:

- \rightarrow Unmittelbar ist ablesbar, daß bei genauerer Ortsbestimmung die Impulsgenauigkeit abnimmt.
- \rightarrow Für $\Delta p \rightarrow 0$ (Fall ebene Welle) ist $\Delta r \rightarrow \infty$.
- \rightarrow Der Phasenraum ist infolge der Unschärferelation quantisiert in Einheiten von \hbar .

1.2 Die Schrödingergleichung für freie Teilchen

Als Ziel der Untersuchungen ist eine Wellengleichung für die Wahrscheinlichkeitsamplitude Ψ zu finden. Wir lassen hierbei den mathematischen Beweis fallen und versuchen, die Gleichung zu "erraten".Mit unserem Ausdruck der Fouriertransformation $\mathscr F$ und dem Diffeomorphismus $p(t):=\hbar\cdot k(t)$ auf $\hat\psi:=\mathscr F\psi$ erhalten wir

$$\psi(t, r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \tilde{\psi}(p) \cdot f(t, r(t)) \,\lambda(dp) = (\mathscr{F}\hat{\psi})(t, r(t)).$$

Die Funktion f war dabei eine Abkürzung einer exp Verkettung, welche wir in zwei Kinderfunktionen aufteilen können:

$$f := \left(\exp\left(\hat{i}\cdot(\langle p, r(t)\rangle - p^2\cdot t/2m)/\hbar\right)\right)_{(t,r)\in\mathbb{R}\times\mathbb{R}^d} = f_1(t, r(t))\cdot f_2(t, r(t)).$$

Für die Ableitung gilt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\mathscr{F} \hat{\psi}(s,r(s)) \right] \right|_{s=t} = \frac{1}{(2\pi\hbar)^3} \int \left(\frac{-\stackrel{\circ}{i}}{2m\hbar} \right) \cdot p^2 \cdot f(t,r(t)) \, \lambda \left(dp \right).$$

.....

- (\$11) \square Rechne nach, daß es sich bei p um einen Diffeomorphismus zwischen ($\mathbb{R}, \tau_{\mathbb{R}}$) und ($\mathbb{R}^3, \tau_{\mathbb{R}^3}$) handelt und der Transformationssatz greifen kann. Welche Annahme musst du dabei machen?
- (§12) \square Wie lautet die Ableitungen $df_1(t,r)(0,h)$ und $df_2(t,r)(0,h)$? Notiere den Ausdruck in verschiedenen Ableitungsdarstellungen. Ersetze $p^2 \cdot f_1(t,r(t))$ durch den entsprechenden Ableitungsausdruck.

.....

Mit der Aufgabe folgt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\psi(s,r(s)) \right] \big|_{s=t} = \frac{\mathring{\imath} \cdot \hbar}{2 \cdot m} d(\mathscr{F} \tilde{\psi})(t,r(t))(\hbar)(\hbar)$$

mit der Definition

$$\mathbb{D}_{(\hbar,\hbar)}(\mathscr{F}\hat{\psi})(t,r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \hat{\psi}(p) \cdot f(t,r(t)) \,\lambda\,(dp)\,.$$

Wir erhalten also die zeitabhängige Schrödingergleichung für freie Teilchen der Form

$$\frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \frac{\mathring{i} \cdot \hbar}{2 \cdot m} \cdot \mathbb{D}_{(\hbar,\hbar)} (\mathscr{F} \hat{\psi})(t,r(t)) = \frac{\mathring{i} \cdot \hbar}{2 \cdot m} \cdot \mathbb{D}_{(\hbar,\hbar)} \psi(t,r(t)).$$

.....

- ($\$ 13) \square Berechne die Ableitung df(t, r(t))(0, h). Berechne weiter $d\psi(t, r(t))(1, 0)$ und verifiziere dadurch den oberen Funktionsausdruck.
- (№14) ☐ Klassifiziere die Schrödingergleichung. Welche Ordnung hat sie? Schreibe sie in eine Form, bei welcher die rechte Seite reell ist.
- ($\$ 15) \square Benenne drei Beispiele $(s, S) \in Anfangswert(\psi)$.
- (§16) \square Wie steht die erhaltene Schrödingergleichung mit der Diffusionsgleichung $\frac{\mathrm{d}}{\mathrm{d}s} \left[\phi(s, x(s)) \right] |_{s=t} = D \cdot \mathbb{D}_{(h,h)} \psi(t,s(t))$ im Zusammenhang? Stelle Ähnlichkeiten und Unterschiede heraus.
- (№17) ☐ Betrachte die Dispersionsreihe

$$E(p) = \sum_{n(x)=0}^{\infty} \sum_{n(y)=0}^{\infty} \sum_{n(z)=0}^{\infty} c(n(x), n(y), n(z)) \cdot p(1)^{n(x)} \cdot p(2)^{n(y)} \cdot p(3)^{n(z)}.$$

Wie kann man die Reihe umdefinieren für Operatoren? In welchem Raum liegt $\mathscr{E}_E := E(\boldsymbol{p})$, wenn $\boldsymbol{p} = -\mathring{\imath} \, \hbar \cdot \mathbb{D}_{(\hbar,\hbar)}$?

(\bigcirc 18) \square Verallgemeinere mit dem Operator \mathscr{E}_E die Gleichung auf beliebige Dispersionen.

.....

 ${\it VL~4}$ Um eine Lösung dieser partiellen Differentialgleichung zu erhalten, müssen wir mit 03.05.2023, dem Seperationsansatz beginnen. 08:15

(19)

Theoretische Physik II Skript

Zeitunabhängige Schrödingergleichung

Wir spalten unser ϕ in die Funktionen ϕ und χ auf nach der Form $\psi(t, r(t)) = \phi(r(t)) \cdot \chi(t)$. Wir nehmen hierbei an, daß dies problemlos möglich ist; typische Tücken des Seperationsansatz. Wir fordern sogar weiter, daß $\int |\psi(t,r(t))| \; \lambda\left(dt\right) = 1$, sodaß die implizite Bedingung $\chi(t) \neq 0$ für alle $t \in \mathbb{R}$ folgt. Setzen wir diesen Ansatz in die Schrödingergleichung ein, so erhalten wir

$$\phi(r(t)) \cdot \mathring{\boldsymbol{i}} \, \hbar \cdot \frac{\mathrm{d}}{\mathrm{d}s} \, \left[\chi(s) \right] |_{s=t} = \chi \left(-\frac{\hbar^2}{2m} \right) \cdot \mathrm{D}_{(\hbar,\hbar)} \phi \left(t \right).$$

 \square Rechne nach, daß $\int |\psi(t,r(t))| \lambda(dt) = 1$ zu $\chi(t) \neq 0$ für alle $t \in \mathbb{R}$ führt.

Nun ist der weitere Ansatz das Dividieren durch $\phi(r(t))$ und $\chi(t)$, um gemäß der Seperationschablene zeit- und ortsabhängige Funktionen voneinander zu trennen. Für $\chi(t)$ wissen wir durch unsere Annahme, daß sie ungleich Null sein wird; Für $\phi(r(t))$ müssen wir eine Fallunterscheidung machen. Schematisch erhalten wir zunächst

$$\mathring{\imath}\,\hbar\cdot\frac{\mathrm{d}}{\mathrm{d}s}\,\left[\chi(s)\right]|_{s=t}\cdot\frac{1}{\chi(t)}=-\frac{\hbar^{2}}{2\cdot m}\cdot\mathrm{D}_{(\hbar,\hbar)}\chi\left(t\right)\cdot\frac{1}{\phi(r(t))}=const.=:E.$$

Mit dem Analyseblick erkennen wir $(\frac{d}{dt}\chi(t))/\chi(t) = \frac{d}{dt}\ln(t)$, sodaß

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\chi(s) \right]_{s=t} = -\frac{\hat{\imath} \cdot E}{\hbar} \Leftrightarrow \chi(t) = C_1 \cdot \exp\left(-\frac{\hat{\imath} \cdot E \cdot t}{\hbar}\right),$$

Wobei die Konstante C_1 Resultat der Integration $\int f dt$ ist. Für die rechte Seite gilt zunächst

$$-\frac{\hbar^2}{2m} \cdot D_{(\hbar,\hbar)} \phi(r(t)) = E \cdot \phi(r(t)),$$

schematisch nahe der Laplace-Gleichung. Wir haben es hierbei konkret mit einem verallgemeinerten Eigenwertproblem zutun, welche wir spezieller in $[\rightarrow]$ math. Grund. der Quant.] behandeln werden. In diesem Kontext reicht uns der Name zeitunabhängige Schrödingergleichung. Der ausstehenden Fallunterscheidung kommen wir nun nach: Für $\phi(r(t)) = 0$ erhalten wir $D_{(\hbar,\hbar)}\phi(r(t))=0$, wodurch die Schrödingergleichung ebenfalls gilt; Wir hatten also bei unserem zunächst frei angenommenen Seperationsansatz Glück.

 \square Begründe, warum die Annahme der Konstante E im Seperationsansatz gerechtfertigt ist. (20)

$$\square$$
 Zeige, daß aus $\phi(r(t)) = 0$ folgt, daß $D_{(\hbar,\hbar)}\phi(r(t)) = 0$. (\$\infty21)

Als Lösungen der zeitunabhängigen Schrödingergleichung erhalten wir $\phi(r(t)) = C_2$. $\exp(\hat{i}\cdot\langle k,r(t)\rangle)$, welche der Form einer implizit zeitunabhängigen ebenen Welle entspricht. Zusammengesetzt gilt für ψ demnach

$$\psi(t,r(t)) = C \cdot \exp\biggl(\mathring{\imath} \cdot \biggl(\langle k,r(t)\rangle - \frac{\hbar \cdot k^2}{2m} \cdot t\biggr)\biggr),$$

wobei wir $E = \hbar^2 \cdot k^2/(2m)$ setzen.

1.3 Allgemeine Form der Schrödingergleichung

Bisherig nahmen wir an, daß unsere betrachteten Teilchen kräftefrei sind. Erweitern wir unseren Blick auf konservativ kräftebefallene Teilchen, existiert ein Kraftpotential V sodaß F(t,r(t)) = -dV(t,r(t))(h) gilt. Im klassischen Betrachtungsfall haben wir bereits die Hamiltonfunktion kennengelernt:

$$H(t, (r(t), p(t))) = \frac{p(t)}{2m} + V(t, r(t)).$$

Wir wollen nun die Schrödingergleichung erraten: angenommen, wir haben ein sehr schmales Wellenpaket relativ zur Änderung von V, sodaß wir eine gute Approximation von V am Ort (t, r(t)) durch $V(t_0, r(t_0))$ erhalten. Für die Funktion $p \mapsto H(t, (r, p))$ mit der Dispersionsreihe \mathscr{E} erhalten wir

$$\mathring{i}\,\hbar\cdot\frac{\mathrm{d}}{\mathrm{d}s}\left[\psi(s,r(s))\right]|_{s=t} = \mathscr{E}_{H}(\psi(t,r(t))) \quad (=H(t,(r(t),-\mathring{i}\,\hbar\nabla))),$$

wobei der geklammerte Term eine *Schreibweise* zur Erinnerung an die klassische Hamiltonfunktion ist. Damit folgt die *allgemeinste* Version der zeitunabhängigen Schrödingergleichung für einzelne Teilchen als fundamentalen quantenmechanischen Zusammenhang:

Es handelt sich hier wieder um ein AWP: Die Gleichung löst sich also eindeutig für einen Anfangswert $(s, S) \in AW(\psi)$.

.....

- ($\$ 22) \square Wie muss man $t_0 \in \mathbb{R}$ wählen, sodaß die Approximation von V ausreichend gut ist? Was bedeutet "schmal relativ zur Änderung von V"?
- (§23) \square Wie sieht die suggerierte Auswertung des Ausdrucks $(\cdot + \cdot)(\psi(\cdot))$ aus? Was bedeutet die Schreibweise?
- (\circ 24) \square Kläre den Zusammenhang der Schrödingergleichung mit der Newtongleichung F=ma. Recherchiere dazu im Nolting und beachte die folgende Optikanalogie:

Mechanik	Optik
Schrödingergleichung	Wellenoptik
\$	\
klassische Mechanik	geometrische Optik

(\$\infty\)25) \quad \text{Schlage alternative Formulierungen der Schrödingergleichung nach. Beachte als Beispiel die Feynmanschen Pfadintegrale ausgehend von Langrangian.

.....

In dem Ausdruck kann man schon den Hamilton-Operator identifizieren: $\hat{H} := -(\hbar^2)/(2m) \cdot \mathbb{D}_{(\hbar,\hbar)} + V(t,r(t))$, welchen wir näher in $[\to \text{math. Grund. der Quant.}]$ betrachten. Sogar in diesem verschachtelt sehen wir den Impulsoperator $\hat{p} := -\hbar \cdot \mathbb{D}_{\hbar}$, auch näher in $[\to \text{math. Grund. der Quant.}]$ (dringend empfohlen).

......

(⊗26)
☐ Meditiere eine halbe Stunde über den letzten Sätzen. Lege dir das Skript der Funktionalanalysis

 $Theoretische\ Physik\ II\\ {\tt Skript}$

und der mathematischen Grundlagen der Quantenmechanik bei.

.....

Eine wichtige Neuheit der Quantenmechanik lässt sich hier bereit feststellen: Die Observablen werden durch Operatoren dargestellt. Diese sind linear und (meist) selbstadjungiert auf einem geeigneten Hilbertraum. Wir sprechen hierbei von dem Korrespondenzprinzip. Wir werden später noch sehen, daß unsere Operatoren die Eigenschaft hermitesch, im Sinne von symmetrisch, dicht definert und abgeschlossen, erfüllen.

Explizit zeitunabhängiger Fall

Einzig im explizit zeitunabhängigen Fall $\frac{d}{dt}\hat{H}=0$ funktioniert der oben beschriebene Seperationsansatz $\psi=\phi\cdot\chi$. In diesem Fall erhalten wir wieder ein verallgemeinertes Eigenwertproblem. May the forth be with you!

Lösungen

Liegen uns Lösungen $(\psi_n)_{n\in I}$ der Schrödingergleichung vor, so können wir diese als Orthonormalbasis für den Hilbertraum verwenden. Es gilt demnach

$$\int \phi_n(x) \cdot \overline{\phi_m(x)} \,\lambda\left(dx\right) = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$
 [siehe Skalarprodukt $\mathbb{L}^2(\mathbb{R}^3)$].

Damit ist auch eine Linearkombination $\Phi = \sum_{i \in I} c_i \cdot \phi_i$ mit $c \in \text{Abb}\left(I, C^1(\mathbb{R}, \mathbb{C})\right)$ von Lösungen ϕ_i eine Lösung der Schrödingergleichung.

.....

 \square Diese Aussage beruht auf dem folgenden Satz: Ist T ein selbstadjungierter Operator mit $\sigma_c(T) = \emptyset$, dann ist $\sigma_P(T)$ höchstens abzählbar und es existiert eine ONB von $\mathscr H$ aus Eigenfunktionen von T. Zeige diesen Satz aus der Operatortheorie.

Setzt man eine solche Lösung in die Schrödingergleichung ein, so erhält man

$$\mathring{\imath} \, \hbar \cdot \sum_{i \in I} E_i(t) \cdot \phi_i(r(t)) = \sum_{i \in I} c_i(t) \cdot \hat{H} \phi_i(r(t)) = \sum_{i \in I} c_i(t) \cdot E_i \phi_i(r(t)),$$

und mit ϕ Orthonormalbasis

$$i \hbar \cdot c_i'(t) = E_i c_i(t) \iff c_i(t) = c_i(0) \cdot \exp(-i E_i t/\hbar),$$

wobei die $c_i(0)$ aus den Anfangsbedingungen folgen:

$$c_i(0) = \int \overline{\phi_i}(x) \cdot \psi(0, x) \lambda(dx).$$

Damit können wir im letzten Schritt durch Zusammenfassung eine allgemeine Lösung der zeitabhängigen AWPs konstruieren:

$$\Phi(t, r(t)) = \sum_{i \in I} c_i(0) \cdot \exp(-\stackrel{\circ}{i} Et/\hbar) \cdot \phi_i(r(t)).$$

Stationäre Zustände

Im letzten Abschnitt haben wir eine Lösung der zeitunabhängigen Schrödingergleichung konstruiert. Ist Φ nun eine solche konstruierte Lösung, dann ist für ein spezielles $c \in \text{Abb}(I, C^1(\mathbb{R}, \mathbb{C}))$ mit $c_n(t) \neq 0$ für ein singuläres $n \in I$ für Φ der Ausdruck

$$\Phi(t, r(t)) = c_n(t) \cdot \phi_n(r(t)) \cdot \exp(-i Et/\hbar) = c_n(t) \cdot \Phi(0, r(t)) \cdot \exp(-i Et/\hbar),$$

wobei in dem Absolutbetrag $|\psi(t,r(t))| = |\psi(0,r(t))|$ gilt. Man spricht hier von einem stationären Zustand.

1.4 Normierung und Erwartungswert

Wir wollen nun den Wahrscheinlichkeitsaspekt von $|\psi(t,r(t))|^2$ näher betrachten. Wir definieren zunächst das $Ma\beta$ mit Dichte $\mu_{\psi}:=\left(\int \left|\psi(t,x)\right|^2\lambda_A\left(dx\right)\right)_{A\in\mathscr{B}(\mathbb{R}^3)}$. Nun ist die Forderung von $\Gamma:=\left(\left|\psi(t,r(t))\right|^2\right)_{(t,r(t))\in\mathrm{Def}\,\psi}$ als Gewichtungsfunktion die Eigenschaft $P_{\mu_{\psi}}(\mathbb{R}^3)=1$ unseres gewünschten Wahrscheinlichkeitsmaßes $P_{\mu_{\psi}}$

.....

(\$29) \square Zeige für $\psi = c_1 \cdot \psi_1 + c_2 \cdot \psi_2$ mit geeigneten Gewichtungsfunktionen c_1, c_2 die Eigenschaft $\mu_{\psi}(\mathbb{R}^3) \neq 1$. Ist dies ein Widerspruch zwischen dem Superpositionsprinzip und der Normierung?

Nach der Aufgabe folgern wir also, daß es nur bestimmte ψ Funktionen gibt, welche unseren Wunsch erfüllen. Solche genannten normierbaren ψ charakterisieren wir also zunächst durch die Existenz des Integralwertes: Solche Funktionen finden wir in der Menge $\mathcal{L}^2(\mathbb{R}^3)$. Weiter wollen wir den μ_{ψ} Wert in \mathbb{R}^{\times} vorfinden, damit eine Normierung durch Multiplikation möglich wird. Aus diesen beiden Ideen folgen die Eigenschaften (i) $\psi \in \mathcal{L}^2(\mathbb{R}^3)$ und (ii) $\mu_{\psi}(\mathbb{R}^3) \neq 0 \Leftrightarrow \psi \neq 0$. Dann ergibt sich eine Normierung durch

$$P_{\psi}(t, r(t)) := \frac{\left|\psi(t, r(t))\right|^2}{\mu_{\psi}(\mathbb{R}^3)},$$

wobei P_{ψ} unser gewünschtes Wahrscheinlichkeitsmaße ist.

......

- ($\$ 30) $\$ Zeige, daß alle ψ , welche die Normierungsbedingungen erfüllen, zusammen mit dem Nullvektor $0_{\mathscr{L}^2(\mathbb{R}^3)}$ einen Vektorraum bilden. Welcher Raum ist es dann?
- ($\$ 31) \square Zeige, daß die ψ zwar einen physikalischen Zustand beschreiben, jedoch selbst als Funktionen nicht eindeutig wählbar sind. Wohin verschiebt sich die Eindeutigkeit?

.....

Zeitabhängigkeit der Normierung

Betrachten wir die Zeitableitung unseres auf ψ konstruierten Maßes P_{ψ} auf einer Menge $A \subseteq \mathbb{R}^3$, müssen wir zunächst sicherstellen, daß $\mu_{\psi}(\mathbb{R}^3)$ zeitunabhängig ist:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mu_{\psi}(\mathbb{R}^{3}) = \frac{\mathrm{d}}{\mathrm{d}t}\int\left|\psi(t,x)\right|^{2}\,\lambda_{\mathbb{R}^{3}}\left(dx\right) = \int\frac{\mathrm{d}}{\mathrm{d}t}\overline{\psi(t,x)}\,\lambda_{\mathbb{R}^{3}}\left(dx\right) + \int\frac{\mathrm{d}}{\mathrm{d}t}\overline{\psi(t,x)}\,\lambda_{\mathbb{R}^{3}}\left(dx\right).$$

Schreibt man die Definitionen sauber aus, dann bleibt nach Kürzung lediglich

$$\frac{\mathrm{d}}{\mathrm{d}t}\mu_{\psi}(\mathbb{R}^{3}) = \frac{-\stackrel{\circ}{n}\hbar}{2m} \cdot \int \overline{\psi(t,x)} \cdot D_{h}^{2}\psi(t,x) - \psi(t,x) \cdot D_{h}^{2}\overline{\psi}(t,x) \,\lambda_{\mathbb{R}^{3}} (dx)$$

$$= -\int D_{h} \left(\frac{-\stackrel{\circ}{n}\hbar}{2m} \cdot \left[\overline{\psi} \cdot D_{h}\psi - \psi \cdot D_{h}\overline{\psi} \right] \right) (t,x) \,\lambda_{\mathbb{R}^{3}} (dx).$$

......

- \square Rechne alle Schritte gründlich nach, um den letzten Ausdruck zu erhalten. [In der Vorlesung (\lozenge 32) war der Vorgang zu schnell.]
- □ Wende nun den Satz von Gauß auf den letzten Ausdruck an. Wie muss man korrekt Umgehen (\$\@33\$) mit der Hilfsidee "Rand von \mathbb{R}^3 "? Erhalte im letzten Schritt $\frac{d}{dt}\mu_{\psi}(\mathbb{R}^3)=0$.
- \square Berechne nun die Ableitung $\frac{d}{dt}\mu_{\psi}(A)$. (\$\infty\$34)

.....

Definiere nun den Wahrscheinlichkeitsstrom

$$j(t, r(t)) := \frac{-\stackrel{\circ}{t} \hbar}{2m} \cdot \left[\overline{\psi} \cdot D_h \psi - \psi \cdot D_h \overline{\psi} \right].$$

Dann kann man die Kontinuitätsgleichung wiederfinden:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Gamma(t,r(t)) + D_h j(t,r(t)) = 0.$$

Erwartungswerte

Als Mittelung über die Wahrscheinlichkeitsverteilung P_{ψ} definieren wir den Erwartungswert als

$$E_{P,r}(t) := \left(\int r \cdot P_{\psi}(t,r) \, \lambda_{A}\left(dx\right) \right)_{A \in \mathscr{B}(\mathbb{R}^{3})},$$

und für allgemeinere Funktionen des Ortes $f \in \text{Abb}\left(\mathbb{R}^3, \mathbb{R}^3\right)$

$$E_{P,r,f}(t) := \left(\int f(r) \cdot P_{\psi}(t,r) \, \lambda_A\left(dx\right) \right)_{A \in \mathcal{B}(\mathbb{R}^3)}.$$

Wellenfunktion im Impulsraum

Wir hatten bereits gesehen, daß wir ein Wellenpaket mit $\psi(0, r(t)) = \mathscr{F}\psi(0, (p \circ r)(t))$ konstruieren können. Für ein allgemeineres $t \in \mathbb{R}$ haben wir

$$\psi(t, r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \mathscr{F}\psi(t, p) \cdot \exp\left(-\frac{\mathring{i} p \cdot r(t)}{\hbar}\right) \lambda (dp)$$

Skript

und

$$\mathscr{F}\psi(t,(p\circ r)(t)) = \int \psi(t,x) \cdot \exp\left(\frac{\hat{\imath}\left\langle (p\circ r)(t),x\right\rangle}{\hbar}\right) \lambda\left(dx\right).$$

Die Auswirkungen auf die Wahrscheinlichkeitsverteilung sind

$$P_{\mathscr{F}_{\psi}}(t,(p\circ r)(t)) = \frac{1}{(2\pi\hbar)^3} \cdot P_{\psi}(t,(p\circ r)(t)).$$

.....

- (35) \square Weise die letzte Gleichung nach. Verwende hierzu die Definition von P und nutze Linearität.
- (\otimes 36) \square Berechne nun die Erwartungswerte $E_{P,p}(t)$ und $E_{P,p,f}(t)$.

.....

VL 6 05.05.2023,

11:45

1.5 Operatoren

Zunächt sei ein dringender Verweis zur Funktionalanalysis I II und Mathematische Grundlagen der Quantenmechanik gegeben.

Wir stellen uns die Frage, ob $\langle p \rangle$ oder $\langle g(p) \rangle$ direkt aus $\psi(t, r(t))$ bei fixiertem $t_0 \in \mathbb{R}$ berechnet werden kann, ohne die Fouriertransformation zu verwenden. Zunächst gilt

$$\langle p \rangle_{\psi} := E_{P(\mathscr{F}\psi),p}(t_0) = \frac{1}{(2\pi)^3} \cdot \int p \cdot |\mathscr{F}\psi(t_0,p)|^2 \lambda_{\mathbb{R}^3} (dp),$$

wobei wir den komplexen Betrag der Fouriertransformierten von ψ verwenden. Es gilt weiter nach Definition

$$\frac{1}{(2\pi)^3} \cdot \int p \cdot \int \int \overline{\psi(R)} \cdot \psi(r) \cdot \exp\biggl(-\frac{\mathring{\imath} \cdot p \cdot (r-R)}{\hbar}\biggr) \, \lambda_{\mathbb{R}^3} \left(dR\right) \, \lambda_{\mathbb{R}^3} \left(dr\right) \, \lambda_{\mathbb{R}^3} \left(dp\right),$$

wobei wir durch Umsortieren der Integrale

$$\frac{1}{(2\pi)^3} \cdot \int \left(\int \left[\int \overline{\psi(R)} \cdot \psi(r) \cdot \mathring{\imath} \, h \cdot D_h(\exp \circ g_R)(r) \, \lambda_{\mathbb{R}^3} \left(dR \right) \right] \, \lambda_{\mathbb{R}^3} \left(dr \right) \right) \, \lambda_{\mathbb{R}^3} \left(dp \right)$$

mit $g_R := (-\hat{i} \cdot p \cdot (r-R))_{r \in \mathbb{R}^3}$ und $h \in \mathbb{R}^3$. Mit partieller Integration $\int f'(x) \cdot g(x) \left(\mathbb{1}_{[a,b]} \cdot \mu(dx)\right) = [f(x) \cdot g(x)]_a^b - \int f(x) \cdot g'(x) \left(\mathbb{1}_{[a,b]} \cdot \mu(dx)\right)$ folgt

$$-\int\int \overline{\psi(R)}\cdot \mathring{\imath}\,\hbar\cdot D_h\psi(r)\,\lambda_{\mathbb{R}^3}\left(dR\right)\,\lambda_{\mathbb{R}^3}\left(dr\right)\cdot \underbrace{\int \frac{1}{(2\pi)^3}\cdot \exp\biggl(\frac{-\,\mathring{\imath}\,p\cdot(r-R)}{\hbar}\biggr)\,\lambda_{\mathbb{R}^3}\left(dp\right)}_{=\int R\,\left(\mathbbm{1}_{\mathbb{R}^3}\cdot\delta_r\right)}.$$

Mit $\int R (\mathbb{1}_{\mathbb{R}^3} \cdot \delta_r) = 1$ für r = R folgt

$$\int \overline{\psi(r)} \cdot (-\stackrel{\circ}{i} \hbar D_h) \psi(r) \, \lambda_{\mathbb{R}^3} \, (dr) =: \langle P \rangle,$$

wobei $\langle \cdot \rangle$ den Erwartungswert des Punktes ist, welcher in diesem Fall der $\mathit{Operator}$ P ist.

.......

Zusammenfassen

Für einen linearen stetigen Operator $T \in L_S(\mathcal{H})$ auf dem Hilbertraum \mathcal{H} gilt für den Erwartungswert

......

$$\langle T \rangle_{\psi} := \int \overline{\psi(r)} \cdot (T \circ \psi)(r) \, \lambda_{\mathscr{H}} \left(dr \right).$$

.....

 \square Zeige der vorigen Rechnung folgend die Aussage $\langle g(p) \rangle = \langle g(P) \rangle_{\psi}$ für $p \in \mathbb{R}^3$ und $P \in L_S(\mathbb{R}^3)$, (\$\infty 39 indem man für analytische g eine Potenzreihenentwicklung durchführt.

.....

Wenn $x \in \mathbb{R}^3$ ein Vektor der Form $[3] \to \mathbb{R}$ ist, dann ist der zugeörige Operator X eine Abbildung aus dem Definitionsbereich von x in den Raum $L_S(\mathbb{R})$ der stetigen linearen Operatoren auf R gemäß $X : [3] \to L_S(\mathbb{R})$.

Operatoren der Quantenphysik

In der Quantenmechanik beschreiben wir Observable nun durch Identifikation mit Operatoren:

$$\begin{array}{c|c} \text{Messgröße} & \text{Operator} \\ \hline \text{Energie} & ,, \hat{H} = H(t, (r(t), \hat{p}(t))) \text{``} \\ \text{Impuls} & ,, \hat{p} = - \hat{\imath} \hbar D_h \text{``} \\ \text{Ort} & ,, \hat{r} = (r(x) \cdot x)_{x \in \mathscr{H}} \text{``} \\ \end{array}$$

Wie in der Physik üblich handelt es sich hier allerdings nur um *Sprechweisen*, welche an die mathematischen Hintergründe im physikalisch ausreichenden Sinne *erinnern*.

Die sogenannten Eigenzustände sind Lösungen des verallgemeinerten Eigenwertproblemes $T(\psi) = \lambda \cdot \psi$ zu dem verallgemeinerten Eigenwert $\lambda \in \mathbb{C}$ und einem Operator $T \in L_S(\mathscr{H})$ über dem komplexen Hilbertraum \mathscr{H} . Ist ψ ein solcher Eigenzustand von T, so ist der Erwartungswert

$$E_{T(\psi),}(t_0) = \int \overline{\psi(t_0, r)} \cdot (T \circ \psi)(t_0, r) \,\lambda_{\mathbb{R}^3} (dr)$$

$$= \int \overline{\psi(t, r)} \cdot \lambda \cdot \psi(t_0, r) \,\lambda_{\mathbb{R}^3} (dr) = \lambda \cdot E_{P(\psi), r}(t_0)(\mathbb{R}^3) = \lambda.$$

$$\square \text{ Zeige die Aussage } E_{T(\psi), x}(t)(\mathbb{R}^3) = \lambda^2. \tag{\$40}$$

(§41) \square Zeige die *Varianz* des Operators $T \in L_S(\mathbb{H})$ mit $\psi \in \mathbb{H}$ als Eigenzustand zu $\lambda \in \mathbb{C}$. Erhalte $\operatorname{var}_{\psi} T^2 = \lambda^2 - \lambda^2 = 0$. Benutze hierzu das Ergebnis $E_{T^2(\psi),x}(t) = \lambda^2$.

.....

Wir können folgern $\operatorname{var}_{\psi}(T)=0$ genau dann, wenn λ ein verallgemeinerter Eigenwert von T bezüglich $T\psi=\lambda\cdot\psi$. Wir nennen den Operator T in diesem Zusammenhang scharf im Zustand ψ . Die Hinrichtung dieser Behauptung ist mit der obigen Aufgabe gelöst, für die Rückrichtung betrachen wir ψ als Linearkombination von Eigenzuständen $(\phi_i)_{i\in I}$ des Operators T, dann gibt es $c\in\mathbb{C}^{\operatorname{card}(I)}$ mit $\psi=\sum_{i\in I}c_i\cdot\phi_i$. Das Integral $\int\psi$ ist demzufolge

$$\int \psi = \langle \psi_i, \psi_j \rangle_{\mathscr{L}^2(\mathbb{R}^3)} = \delta_n(m),$$

also die gewählte Folge $(\phi_i)_{i\in I}$ stellt eine ONB. Wir können den Erwartungswert von T ausschreiben zu

$$\langle T \rangle_{\psi} := \int \overline{\psi(\tau) \cdot \tau \cdot \psi(\tau)} \, \lambda_{\mathbb{R}^3} \left(d\tau \right) = \sum_{(i,j) \in I^2} c_i \cdot c_j \cdot \int \overline{\phi_i(\tau)} \cdot \tau \cdot \phi_j(\tau) \, \lambda_{\mathbb{R}^3} \left(d\tau \right).$$

.....

(\$\infty\) \square Fülle die Beweislücke, indem du $\sum_{(i,j)\in I^2} c_i c_j \cdot \int \overline{\phi_i(\tau)} \cdot \tau \cdot \phi_j(\tau) \lambda_{\mathbb{R}^3} (d\tau) = \sum_{n\in I} \lambda_n \cdot |c_n|^2$ für $\lambda \in \mathbb{C}^{\operatorname{card}(I)}$ Eigenwerte zu T und $|c_n|^2 \in [0,1]$ zeigst.

.....

Mit dem Ergebnis der Aufgabe folgt dann weiter

$$\operatorname{var}_{\psi}(T) = \sum_{n \in I} \lambda_n^2 \cdot |c_n|^2 - \sum_{(m,n) \in I^2} \lambda_n \cdot \lambda_m \cdot |c_n|^2 \cdot |c_m|^2.$$

Nach Voraussetzung haben wir die Gleichheit $\operatorname{var}_{\psi}(T) = 0$. Nun wollen wir noch folgern, daß ϕ_n für ein $n \in I$ gleich unserem ursprünglichen ψ sein muss, sodaß ψ als Eigenzustand von T identifizierbar ist.

......

(§43) \square Zeige dieses nötige Hilfsergebnis. Zeige hierzu konkret, daß für ein $n \in I$ der Faktor $|c_n|^2$ ungleich Null bleibt, jedoch für alle übrigen $m \in I \setminus \{n\}$ verschwindet. Nutze hierzu $\operatorname{var}_{\psi}(T) = \langle \psi, (T - \operatorname{id}_{\mathscr{H}}(\langle T \rangle_{\psi})^2(\psi) \rangle_{\mathscr{H}} = 0$ und die Übertragbarkeit der Eigenwerte von T auf $\operatorname{var}_{\psi}(T)$. Erhalte damit die oder Aussage $|c_i|^2 = 0$ oder $\mu_i = 0$ genau dann, wenn $\langle T \rangle_{\psi} = \lambda_i$. Führe noch eine Fallunterscheidung für $n, m \in I$ bezüglich der Eigenwerte λ_n, λ_m durch. Folgere mit dieser Aussage den Abschluss der Rückrichtung des Beweises.

......

Anwendungsbeispiele

Für den Hamiltonoperator H sind alle Eigenwerte $E \in \mathbb{C}$ feste Energien, sodaß $H(\psi) = E \cdot \psi$ für Eigenzustände ψ gilt.

Der Impulsoperator ist ein weiteres anschauliches Paradebeispiel für Eigenzustände. Ist $P(\psi) = -\mathring{i} \hbar D_h \psi(x)$ für eine Funktion ψ und ein $h \in \mathbb{R}^3$ gegeben, so ist $P(\psi) = p \cdot \psi$ für $p \in \mathbb{R}^3$ genau dann, wenn ψ eine ebene Welle ist, also $\psi(x) = \mathring{i} \hbar^{-3/2} \cdot \exp(\mathring{i} \cdot \langle p, x \rangle)$ gilt.

 $\begin{tabular}{ll} Theoretische\ Physik\ II \\ {\tt Skript} \end{tabular}$

 \square Betrachte einmal selbst das Beispiel des Ortsoperators $R \in L_S(\mathbb{L}^2(\mathbb{R}))$ mit $R(f) := (x \cdot (\otimes 44 f(x))_{x \in \mathscr{H}}.$

1.6 Der Kommutator

Die klassische Physik zeichnet sich gegenüber der Quantenmechanik dadurch aus, daß die Messung von zwei Observablen A,B unabhängig voneinander ist und dadurch insbesondere scharf messbar sind. In der Quantenmechanik ist dies nicht der Fall, da die Messung von A den Zustand des Systems verändert und dadurch die Messung von B beeinflußt. Wir wollen nun die Unschärfe von zwei Observablen A,B durch den Kommutator [A,B] definieren. Dieser wird sich als Antwort auf die bisher ungeklärten Fragen

- (i) Wann können zwei Observablen A, B gleichzeitig scharf gemessen werden?
- (ii) Falls A, B nicht gleichzeitig scharf messbar sind, wie groß ist die Unschärfe?

erweisen. Für die zweite Frage haben wir sogar schon das Anwendungsbeispiel der Unschärferelation von Heisenberg kennengelernt. Den Kommutator definieren wir hierbei derart, daß bei Kommutativität von $A \circ B$ in \circ der Wert $0_{L_S(\mathscr{H})}$ für alle im Definitionsbereich liegenden Zustände ψ zugewiesen wird. Dies führt uns zu

$$[A,B] := (A \circ B - B \circ A)_{f \in D},$$

wobei $D:=\{f\in\operatorname{Def} B:B(x)\in\operatorname{Def} A\}\cap\{f\in\operatorname{Def} A:A(f)\in\operatorname{Def} B\}$ gilt. Mit unserer Terminologie sagen wir nun

A und B gleichzeitig scharf genau dann, wenn [A, B] = 0 gilt.

Beweis. Nach Definition sind A, B in ψ an Stelle $n \in I$ aus einer Eigenbasis $(\phi_n)_{n \in I}$ des betrachteten Hilbertraumes \mathscr{H} genau dann scharf, wenn $\lambda_A, \lambda_B \in \mathbb{C}$ existieren, sodaß $A(\psi) = \lambda_A \cdot \psi$ und $B(\psi) = \lambda_B \cdot \psi$ gilt. Dann folgt die Gleichungskette

$$(B \circ A)(\psi) = \lambda_A \cdot B(\psi) = \lambda_A \cdot \lambda_B \cdot \psi = \lambda_B \cdot A(\psi) = (A \circ B)(\psi),$$

woraus die Hinrichtung folgt.

Wenn andersherum [A, B] = 0, dann wissen wir $A \circ B - B \circ A = 0$ und

$$(A \circ B)(\psi) = (B \circ A)(\psi) \stackrel{(i)}{=} \lambda_A \cdot B(\psi).$$

Daraus können wir ablesen $B(\psi) \in \mathrm{EV}(A)$ zu λ_A als Eigenwert von $A(\psi) = \lambda_A \cdot \psi$ (i). Damit stimmen die normierten Eigenvektoren von A und B überein, was die Rückrichtung beweist.

Anwendungsbeispiele

In den Ortsoperator $R(f) := (x \cdot f(x))_{x \in \mathscr{H}}$ und $P_h(f) := (-\hat{\imath} \cdot D_h f(x))_{x \in \mathscr{H}}$ können wir zunächst in rechter Verkettung $(P \circ R)$ auswerten zu

$$(P \circ R)(f)(x) = (-\stackrel{\circ}{i} D_h f(x))_{x \in \mathscr{H}} (x \cdot f(x)) = -\stackrel{\circ}{i} \frac{\mathrm{d}}{\mathrm{d}t} t \cdot f(t)|_{t=x},$$

woraus durch Anwendung der Produktregel der Ausdruck $-\hat{i} \hbar \cdot x \cdot_{\mathscr{H}} (f(x) + f'(x))$ folgt. Insgesamt folgt dann

 $[P,R] = \hat{i} \, \hbar \cdot \mathrm{id}_{\mathscr{H}}.$

......

- (§45) \square Wir bewiesen einmal, daß $[A,B] \neq -\hat{i} \hbar \cdot \mathrm{id}_{\mathscr{H}}$ für $A,B \in L_S(\mathscr{H})$, wobei A,B beschränkt und selbstadjungiert sind. Warum gilt hier doch Gleichheit?
- (\otimes 46) \square Rechne komponentenweise den Abstand $[R_i, P_j]$ nach. Folgere $[R_i, P_j] = \mathring{i} \, \hbar \cdot \delta_i(j) \cdot \mathrm{id}_{\mathbb{H}}$.

Anschaulich können wir mit diesen Ergebnissen folgern, daß die Messung in unterschiedliche Richgungen scharf möglich ist.

Betrachten wir den Hamiltonoperator H im Kommutator mit dem Ortsoperator R, dann gilt stets $[H,R] \neq 0$ genau dann, wenn es keine stationären Zustände mit scharfem Ort gibt (bedenke das $Zerflie\beta en$ eines Wellenpaketes). Ist die potentielle Energie V=0, dann gilt andersherum für den Impulsoperator P und den Hamiltonoperator [H,P]=0. Dies ist beispielsweise bei freien Teilchen und ebenen Wellen der Fall.

Hermitsche Operatoren

Eine besondere Operatoreigenschaft für in der Quantenmechanik auftretende lineare, dicht definierte Operatoren $T \in L_S(\mathcal{H})$ ist hermitsch (auch selbstadjungiert), wenn:

VL 8 10.05.2023,

$$\langle \psi_1, T(\psi_2) \rangle_{\mathscr{H}} = \langle T(\psi_1), \psi_2 \rangle_{\mathscr{H}}$$

08:15

Beispiele für selbstadjungierte Operatoren sind der Orts- und Impulsoperator.

.....

- (\$47) \square Zeige die Symmetrie des Orts- und Impulsoperators. Für welche Funktionen $f \in \text{Abb}(\mathbb{R}^3, \mathbb{R})$ gilt ebenfalls Symmetrie?
- (§48) \square Zeige die Aussage Ein linearer stetiger Operator ist genau dann selbstadjungiert, wenn er symmetrisch ist. Nutze hierzu die Symmetrieeigenschaft $T \subseteq T^{ad}$.

......

Eigenschaften selbstadjungierter Quantenoperatoren

Als Quantenoperator bezeichnen wir meist stetige, lineare, dicht definierte Operatoren. Ist T ein solcher und zusätzlich selbstadjungiert, so können wir einige nützliche Eigenschaften feststellen. Betrachtet man zuerst einmal die Erwartungswerte von T, so finden wir

$$\langle T \rangle_{\psi}^* = \langle \psi, T(\psi) \rangle_{\mathscr{H}}^* = \langle T(\psi), \psi \rangle_{\mathscr{H}} = \langle T \rangle_{\psi}.$$

Damit sind die Erwartungswerte von T reell. Selbiges gilt für die Eigenwerte von T, wodurch das $Punktspektrum \sigma_P(T) \subseteq \mathbb{R}$ ist. Dies begründet die physikalisch notwendige Messbarkeit von T.

Der zweiten Frage, deren Antwort wir noch schuldig sind, wollen wir im folgenden Kapitel begegnen.

1.7 Die Heisenbergsche Unschärferelation (II)

Die Heisenbergsche Unschärferelation haben wir bereits kennengelernt. Ihren Zusammenhang zur Operatorunschärfe wollen wir nun jedoch genauer beleuchten: seien hierzu $\psi \in \mathcal{L}^2(\mathcal{H})$ quadratintegrierbar mit der speziellen Eigenschaft $\int |\psi|^2 = 1$. Seien $A, B \in L_S(\mathcal{H})$ weiter zwei selbstadjungierte Observablen und \mathcal{H} ein Hilbertraum. Mit dem Kommutator können wir die Fragestellung nun neu ausdrücken:

Wenn
$$[A, B] \neq 0$$
, wie "klein" können $var_{\psi}(A)$, $var_{\psi}(B)$ werden?

Rufe die Definition $\langle T \rangle_{\psi} := \langle \psi, T(\psi) \rangle_{\mathscr{H}} = \int \mathrm{id}_{\mathscr{H}} E_{\psi}$. Definiere auch $\Delta T := T - \mathrm{id}_{\mathscr{H}}(\langle T \rangle_{\psi})$. Dann definiere

$$\tilde{\psi}_A := \Delta A(\psi), \quad \tilde{\psi}_B := \Delta B(\psi).$$

Damit ist dann die Quadratintegralauswertung

$$\int \left| \tilde{\psi}_A \right|^2 := \int \tilde{\psi}_A^* \cdot \tilde{\psi}_A := \int (\Delta A(\psi))^* \cdot \Delta A(\psi)$$

$$\stackrel{sym.}{=} \int \psi^* \cdot (\Delta A)^2(\psi) = \left\langle \psi, (\Delta A)^2(\psi) \right\rangle_{\mathscr{H}} =: \left\langle \Delta A^2 \right\rangle = \Delta A^2$$

und analog für ΔB . Wir definieren nun $\psi_{A,B}:=\tilde{\psi}_{A,B}/\sqrt{\int \left|\tilde{\psi}_{A,B}^2\right|}$ mit $\tilde{\psi}_{A,B}:=\tilde{\psi}_A$ oder $\tilde{\psi}_B$. Wir sortieren ψ_A,ψ_B nun einer komplexen Zahl $z\in\mathbb{C}$ zu. Hierfür nutzen wir die Form $z_\pm:=\psi_A\pm\hat{\imath}\cdot\psi_B$. Für die Quadratintegralauswertung folgt damit im komplexen Betrag

$$0 \le \int |z_{\pm}|_{\mathbb{C}}^2 = \int |\psi_A|_{\mathbb{R}}^2 + \int |\psi_B|_{\mathbb{R}}^2 \pm \hat{\imath} \cdot \left(\int \psi_A^* \cdot \psi_B \mp \int \psi_B^* \cdot \psi_A \right),$$

wobei wir die komplexe Betragsdefinion $|z| = z^* \cdot z$ ausgenutzt haben. Mit $\int |\psi_A|^2 = 1 = \int |\psi_B|^2$ folgt zusammengefasst

$$1 \ge \mp \, \mathring{\imath} \cdot \int (\psi_A^* \cdot \psi_B - \psi_B^* \cdot \psi_A).$$

Multiplizieren unter Ausnutzung der Definitionen $\tilde{\psi}_A$ und $\tilde{\psi}_B$ mitsamt der Symmetrie von A,B folgt weiter

$$\Delta A \circ \Delta B \ge \mp \, \hat{\imath} \cdot \int (\tilde{\psi}_A^* \cdot \tilde{\psi}_B - \tilde{\psi}_A \cdot \tilde{\psi}_B^*) = \langle \psi, (\Delta A \circ \Delta B - \Delta B \circ \Delta A)(\psi) \rangle_{\mathscr{H}}.$$

Wir erkennen hier sofort den Kommutator $\Delta A \circ \Delta B - \Delta B \circ \Delta A = [A, B]$. Hier lässt sich nun eine Fallunterscheidung durchführen; wir fahren mit A, B nicht scharf fort. Mit Erwartungswerten umgeschrieben folgt

$$\Delta A \circ \Delta B \ge \mp \frac{\hat{i}}{2} \cdot \langle [A, B] \rangle_{\psi}.$$

......

- (\$49) \square Betrachte die Heisenbergsche Unschärferelation in dieser Form für den Ort- und Impulsoperator X, P. Folgere unsere oben zuerst kennengelernte Form der Heisenbergschen Unschärferelation.
- (∞ 50) \square Mit $E: \mathscr{B}(\sigma(T)) \to L_S(\mathscr{H})$ ist ein $Spektralma\beta$ gemeint. Überlege dir ein Beispiel für ein solches. Ist $E:=((F_f^*\circ\lambda)(A))_{A\in\mathscr{B}(\mathbb{R})}$ mit $F:=((x^*\cdot f(x))_{f\in L_S(\mathbb{R})})_{x\in\mathbb{R}}$ für $f\in L_S(\mathbb{R})$ ein $Spektralma\beta$?

.....

2 Lösen von Bewegungsgleichungen der Schrödingergleichung

VL~9 Die Idee der Betrachtung eines eindimensionalen Problems ist zur Übung der Lösung 11.05.2023, bereits kennengelernter Schrödingergleichungen. Diese Problemstellung eignet sich hierbei besonders aufgrund des relativ geringen Rechenaufwandes und liefert gleichzeitig die Grundlagen allgemeiner quantenmechanischer Probleme. Daß die Problemstellung also nicht vollkommen aus der Luft gegriffen ist, kann man auch an sogenannten Karbon $Nanor\"{o}hren$ oder Halbleiter $Nanodr\"{a}hten$ erkennen; Hier gelten die Lösungen real in guter Näherung. weiter motiviert die eindimensionale Problemstellung komplexere, separierbare Probleme. Setzt man also die eindimensionale Wellenfunktion $\psi(t,x) \in \mathscr{L}^2(\mathbb{R} \times \mathbb{R}^3)$ in die zeitabhängige Schrödingergleichung ein, so erhält man

$$\mathring{\imath}\,\hbar\cdot\frac{\mathrm{d}}{\mathrm{d}t}\psi(t,x)=(H\circ\psi)(t,x):=-\frac{\hbar^2}{2m}\cdot\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2\psi(t,x)+(V\cdot\psi)(t,x),$$

mit eine DGL mit rechter Seite $F:=\left(-\sqrt[3]{\hbar\cdot H(x)}\right)_{x\in\mathscr{L}^2(\mathbb{R}\times\mathbb{R}^3)}$. Für den zeitunabhängigen Fall ergibt sich mit Abkürzung des Hamilton Operators H die Gleichung

$$H(\psi(t,x)) = -\frac{\hbar^2}{2m} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi(t,x) + (V \cdot \psi)(t,x) = \lambda \cdot \psi(t,x).$$

.....

□ Welche Form des Problems suggeriert hier λ ?

.....

Das Lösungsvorgehen stellt sich nun wie folgt dar: Löse die zeitunabhängige Schrödingergleichung $H(\psi) = \lambda \cdot \psi$. Dabei ist der einfachste Fall zunächst $V \in konstant_{\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}}$, sodaß man mit freien Teilchen zutun hat und ebene Wellenfunktionen verwenden kann. Der nächste Fall wäre $V \in stückweisekonstant_{\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}}$. Hier werden wir es optisch mit Funktionen der folgenden Form zutun bekommen:

Abbildung 3: Beispiel für stückweise konstante Funktion $V \in \text{Abb}([0,6],\mathbb{R})$.

Definiere die Mengen $konstant_{V \to W}$ und $st \ddot{u} ckweisekonstant_{V \to W}$ zunächst für beliebige endlichdimensionale Vektorräume V, W und speziell für unsere Lösungskandidaten aus $\mathscr{L}^2(\mathbb{R} \times \mathbb{R}^3)$.

.....

Randbedingungen an Unstetigkeitsstellen

Ist $V = 0_{\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}}$, so fällt der zweite Summand des Hamilton Operators weg und es ergibt sich die Form

$$-\frac{\hbar^2}{2m} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi_t(x) = \lambda \cdot \psi_t(x),$$

für eine zeitlich konstante Funktion $t \mapsto \psi_t \in C^2(\mathbb{R})$. Hier fallen mehrere Lösungskandidaten ein, wir werden jedoch die Form $\psi_t(x) = C_0 \cdot \exp(\mathring{\imath} \cdot k \cdot x)$ für $C_0, k \in \mathbb{R}$ wählen.

.....

 \Box Finde weitere Kandidaten als Lösung der gegebenen Differentialgleichung zweiter Ordnung. (&53 Rechne dabei explizit mit dem Lösungsbegriff nach, daß sie Lösungen sind.

.....

Wir können an dieser Stelle die Konstanten der Gleichung zusammenfassen: Durch rüberdividieren des Terms $-\hbar^2/2m$ und Wurzelzug ergibt sich die Form

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi_t(x) = k_\lambda^2 \cdot \psi_t(x), \qquad k_\lambda := \left(\frac{\mathring{i}}{\hbar} \cdot \sqrt{2m\lambda}\right)_{\lambda \in \mathbb{R}},$$

wobei wir in $\lambda \mapsto k_{\lambda} \in \mathbb{C}$ die Vorfaktoren zusammengefasst haben.

- \square Rechne die Definition von k einmal nach, indem du die zeitunabhängige Schrödingergleichung (∞ 54) in skizzierter Weise umstellst.
- □ Betrachte einmal die Lösung $u:=(\sin(k\cdot x))_{x\in\mathbb{R}}$. Verifiziere, daß sie die DGL löst. Wir wollen fordern, daß in einem Potentialtopf zwischen $0\in\mathbb{R}$ und $a\in\mathbb{R}$ die Randbedingungen u(0)=u(a)=0 gelten. Innerhalb des Intervalls soll wie bisher angenommen $V=0_{\mathbb{R}\times\mathbb{R}\to\mathbb{R}}$ gelten. Für den ersten Fall x=0 wissen wir durch die Beschaffenheit des Sinus sofort u(0)=0. Dies wollen wir nun für x=a fordern: unter welcher Bedingung an $\lambda\mapsto k_\lambda$ gilt u(a)=0?
- \square Nutze das Ergebnis der Aufgabe und stelle nun die Bedingungsgleichung $k_{\lambda}=L$ nach λ_L (\$56) um, sprich bilde die *Inverse* von k_{λ} . Wann ist dies möglich? Wir nennen den Wert λ_L den zu L

gehörige Energieeigenwert der Lösung u. Was fällt dir an dieser Stelle physikalisch auf?

.....

Für allgemeinere $V \in konstant_{\mathbb{R}^2 \to \mathbb{R}}$ müssen wir einen Schritt zurücktreten und die um V erweiterte Form der Schrödingergleichung notieren:

$$H(\psi)(t,x) = -\frac{\hbar^2}{2m} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi(t,x) + (V \circ \psi)(t,x)$$

haben wir für die neue $k_{\lambda,V}$ Funktion die Form

$$k_{\lambda,V} := \left(\frac{\mathring{i}}{\hbar} \cdot \sqrt{2m \cdot (\lambda - V(t,x))}\right)_{(t,x) \in \mathrm{Def}(V)},$$

wobei wir uns an das Umstellungsschema von oben halten. Da V nach Voraussetzung konstant in seinen Argumenten ist, können wir uns den Wert in einem Testpunkt $\tau \in \mathrm{Def}(V)$ mit $V_0 := V(\tau)$ wählen und sichern. Damit ist $k_{\lambda,V}$ ebenfalls eine auf $\mathrm{Def}(V)$ konstante Funktion deren Wert wir ebenfalls in $k_{\lambda,V_0} := k_{\lambda,V}(\tau)$ sichern. Damit erhalten wir die Form

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi_t(x) = k_{\lambda, V_0} \cdot \psi_t(x),$$

welche mit dem neuen k_{λ,V_0} durch unsere Exponentiallösung ebenfalls gelöst wird.

.....

(§57) \square Rechne nach, daß die Exponentiallösung $\psi_t(x) = C_0 \cdot \exp(\hat{\imath} \cdot k_{\lambda, V_0} \cdot x)$ die Differentialgleichung löst. Finde eine Bedingungsgleichung für C_0 .

.....

Normierbarkeit

Da unser Wurzelbegriff auf dem reellen Zahlenstrahl nicht für alle Potential-Energie Paare greift, müssen wir hier jedoch eine Fallunterscheidung einführen. Ist $V_0 \geq \lambda$, so wird die Differenz $\lambda - V_0$ im negativen reellen Zahlenbereich liegen. Hier nutzen wir Fall (i). Ist $V_0 < \lambda$, so wird das Ergebnis durch den üblichen Wurzelbegriff ohne weitere Betrachtungen abgedeckt; Wir entscheiden uns für Fall (ii).

- (i) In diesem Fall bildet k_{λ,V_0} mit erweitertem komplexen Wurzelbegriff auf eine komplexe Zahl $z \in \mathbb{C}$ aus reinem Imaginärteil ab, sodaß sich in der Exponentialfunktion mit dem bereits vorhandenen \hat{i} eine insgessamt reelle Zahl ergibt: Wir erhalten also eine reelle Exponentialkurve der Form $\psi_t(x) = C_0 \cdot \exp(\operatorname{Im}(z) \cdot x)$.
- (ii) Es ist dann k(t,x) eine Zahl in \mathbb{R} , sodaß für die Normierung über eine kompakte Menge $M_{L,2} := \{x \in \mathbb{R}^3 : ||x||_2 \le L/2\}$ im Quadratintegral

$$1 \stackrel{!}{=} |C_0| \cdot \int |\exp(\mathring{\imath} \cdot \langle k, x \rangle)| \ \lambda_{M_{L,s}} (dx) = |C_0|^2 \cdot L,$$

also $C_0=1/L$. Für $L\to\infty$ folgt also $C_0\to 0$, der Erwartungswert bleibt jedoch erhalten.

.....

□ Rechne nach, daß im Fall (i) der Erwartungswert erhalten bleibt. (\$\sigma 58)

An einer Potentialstufe ist ψ also stetig differenzierbar. Dies wollen wir nun nachrechnen.

Annahmen

Angenommen wir haben ein $V \in \mathcal{L}^2(\mathbb{R} \times \mathbb{R})$ mit einer endlichen Unstetigkeit in x_0 . Nach Form der zeitunabhängigen Schrödingergleichung erhalten wir

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{2}\psi(t,x) = -\frac{2m}{\hbar}\cdot\left(E - V\right)(t,x)\cdot\psi(t,x).$$

......

 \square In der Vorlesung wurde eine Fallunterscheidung über die (Un-)Stetigkeit von ψ bei x_0 (\$59) durchgeführt, indem die (zweite) "Ableitung" berechnet wurde. Es wurde gefolgert " ψ ist stetig". Recherchiere nach einer Begründung für diese Aussage. Beachte die *schwache Ableitung*.

.....

Zusammenfassen

Falls |V(x)|<0 für alle Argumente x, dann folgt die Stetigkeit der Lösung $u=\psi$ auf dem ganzen Lösungsintervall. Ist V eine Verklebung von δ Integralen, so folgt die Stetigkeit von $\frac{\mathrm{d}}{\mathrm{d}x}\psi(t,x)$ jedoch nicht.

2.1 Potentialbarrieren

Beachte hierzu als Beispiel das Potential

$$V := \left(\begin{cases} 0 & x < 0 \\ V_0 & x \ge 0 \end{cases} \right)_{(t,x) \in \mathbb{R}^2}, \quad V_0 \in \mathbb{R}.$$

Dann gibt es die Fälle (i) $E(t,x) > V_0$ und (ii) $E(t,x) < V_0$. In klassischer Betrachtung fällt zunächst auf, daß der Bereich $x \ge 0$ nicht erreichbar sein.

......

□ Vermute zunächst, ob diese Behauptung auch für die Quantenmechanik gilt. (\$60)

Für den Impuls ergibt sich in (i) $p = \hbar \cdot k = \sqrt{2m \cdot E}$ und in (ii) $p = \hbar \cdot k = \sqrt{2m \cdot (E - V_0)}$. Wieder führt uns unsere Betrachtung in eine Fallunterscheidung (i) $E \geq V$, (ii) $0 \leq E(t, x) < V(t, x)$:

- (i) Für $\overline{k}(t,x) := 1/\hbar \cdot \sqrt{2m \cdot (E(t,x) V_0)} \in \mathbb{R}$ ergibt sich die Lösung $u(t,x) = C_0 \cdot \exp(\pm i \cdot \overline{k}(t,x) \cdot x)$.
- (ii) Für $\kappa(t,x) := 1/(\hat{\imath} \cdot \hbar) \cdot \sqrt{2m \cdot |E(t,x) V_0|} \in \mathbb{R}$, ist $\overline{k}(t,x) := \hat{\imath} \cdot \kappa$ mit $u(t,x) = \exp(\hat{\imath} \cdot \overline{k}(t,x) \cdot x)$ eine Lösung. Es handelt sich nun um eine exponentiell gedämpfte Wellenfunktion im klassisch verbotenen Gebiet.

Für E(t,x)<0 ergibt sich dabei keine normierbare Lösung. Damit erhalten wir die Verklebung

$$\psi(t,x) := \left(C_0 \cdot \begin{cases} \exp(\mathring{\imath} \cdot k(t,x) \cdot x) + \rho \cdot \exp(-\mathring{\imath} \cdot k(t,x) \cdot x) & x < 0 \\ \tau \cdot \exp(\mathring{\imath} \cdot \overline{k}(t,x) \cdot x) & x \ge 0 \end{cases}_{(t,x) \in \mathbb{R}^2}$$

mit Transmissionskoeffizient $\kappa \in \mathbb{R}$ und Reflexionskoeffizient $\rho \in \mathbb{R}$. Beachten wir nun die kritische Stelle x=0, dann ergeben sich durch die Stetigkeitsbedingung an ψ, ψ' die Bedingungen

$$1 + \rho = \tau$$
 $\mathring{i} \cdot (k - \overline{k} \cdot \rho) = \mathring{i} \cdot \overline{k} \cdot \tau.$

Durch Auflösen ergibt sich

$$_{k,\overline{k}}=\frac{k-\overline{k}}{k+\overline{k}}\in\mathbb{C}\qquad\tau_{k,\overline{k}}=\frac{2\cdot k}{k+\overline{k}}\in\mathbb{C}.$$

Die Funktionsverklebung ψ stellt mit diesen Koeffizienten also eine Lösung der Schrödingergleichung.

.....

- (&61) \Box Überlege dir, an welcher Stelle die Eindimensionalität von x gebraucht wurde. Lässt sich die Lösung auf $x \in \mathbb{R}^d$ erweitern?
- (${}^{\circ}$ 62) \square Schreibe in einer Tabelle auf, wie k,\overline{k} in welchem Fall definiert ist.
- (§63) \square Setze das Ergebnis ψ in den Wahrscheinlichkeitsstrom $j := \mathring{i} \hbar/(2m) \cdot (\psi^* \cdot \psi' \psi \cdot (\psi')^*)$ ein. Wofür steht der Ausdruck $\hbar \cdot k/m$?

.....

Mit der Aufgabe erhalten wir den Wahrscheinlichkeitsstrom

$$j(t,x) = |C_0|^2 \cdot \frac{p(t,x)}{m} \cdot \begin{cases} 1 - |\rho|_{\mathbb{C}}^2 & x \le 0 \\ \left|\tau \cdot \sqrt{\overline{k}/k}\right|_{\mathbb{C}}^2 & x > 0 \end{cases}.$$

VL 10

16.05.2023, Für die Ebene Welle $C_0 \cdot \exp(\hat{\imath} \cdot \langle k, x \rangle)$ folgt analog $j(t, x) = |C_0|^2 \cdot \hbar \cdot k/m$.

11:45

(§64) \square Verifiziere $|\rho|_{\mathbb{C}}^2 + |\tau|_{\mathbb{C}}^2 = 1$. Was ist die physikalisch anschauliche Begründung?

In der Fourierform haben wir den Identitätszusammenhang

$$\psi(t,x)=(\mathscr{F}^{-1}\circ\mathscr{F})\psi(t,x).$$

(∞ 65) \square Berechne für die obige eindimensionale zeitunabhängige Lösung $\psi(t,x)$ die Fouriertransformierte

 $\label{eq:continuous_problem} Theoretische\ Physik\ II \\ \textit{\textbf{Skript}}$

$$\mathscr{F}\psi(t,x) =: \hat{\psi}(p).$$

.....

Mit der obigen Aufgabe folgt dann, daß der Impuls p über die Zeit nicht erhalten ist; also $\overline{p} \neq p$ und in der Sprache des Kommutators $[p,H] \neq 0$. Optisch erhalten wir für die Wahrscheinlichkeitsverteilung eine Aufspaltung in zwei Peaks; Das Teilchen selbst ist allerdings nicht aufgespalten - die Implikation an dieser Stelle gilt also nicht.

Abbildung 4: Wahrscheinlichkeitsverteilung zu t < 0 (blau) und t > 0 (rot).

Wir führen nun eine Abkürzung für die allgemeine Lösung des zeitunabhängigen eindimensionalen Problems ein:

$$u_{f,x_0}(t,x) := \begin{cases} f_+(t,x) + \rho \cdot f_-(t,x) & x \le x_0 \\ \tau \cdot f_\kappa(t,x) & x > x_0 \end{cases},$$

wobei der Buchstabe f eine Erinnerung an entsprechende Funktionen f_-, f_+, f_κ ist.

.....

 \Box Überlege dir die Übersetzungsfunktionen f_+, f_-, f_κ für die oben erhaltene explizite Lösung. (&66)

Beachtlich ist nun, daß das quantenmechanische Teilchen mit einer Wahrscheinlichkeit > 0 auf der rechten Seite der Potentialbarriere vorfindbar ist; dies ist Resultat der Heisenbergschen Unschärferelation:

$$(\Delta x)_{u_{\exp,0}} \circ (\Delta H)_{u_{\exp,0}} \ge \frac{1}{2} \left| \langle [H, x] \rangle_{u_{\exp,0}} \right| = \frac{\hbar \cdot \langle p \rangle_{u_{\exp,0}}}{2 \cdot m} \ne 0.$$

Daraus folgt für eine Unschärfe $(\Delta x)_{u_{\exp,0}} > 0$ eine Unschärfe $(\Delta H)_{u_{\exp,0}} \approx p^2/(2m)$, sodaß $\hbar/\bar{p} = 1/\kappa$.

Als nächstes Beispiel wollen wir uns ein Potential von der Form einer Indikatorfunktion auf $[a,b]\subseteq\mathbb{R}$. Dann sei $V:=(\mathbb{1}_{[a,b]}(x)\cdot V_0)_{x\in\mathbb{R}}$. Für unsere Zusammengeklebte Lösung ergibt sich nun ein weiterer Fall: $x\in\mathbb{R}_{>b}$. Dieser war bisher nicht existent, führt jedoch zu dem berühmten Ereignis des Quanten-Tunneling. Unsere Verklebung von $u_{f,a}$ ist demnach

VL 11 15.05.2023, 11:45

$$u_{f,a} = \begin{cases} f_{+}(t,x) - \rho \cdot f_{-}(t,x) & x \in \mathbb{R}_{< a} \\ C \cdot f_{\kappa,-}(t,x) + D \cdot f_{\kappa,+}(t,x) & x \in [a,b] \\ \tau \cdot f_{+}(t,x-a) & x \in \mathbb{R}_{> b} \end{cases}$$

Beachte, daß f eine Funktionserinnerung an die bekannte exp Lösung ist, wobei $k(t,x) = p/\hbar \cdot (\sqrt{2m \cdot (E - V(t,x))})$ und $\kappa(t,x) = 1/\hbar \cdot \sqrt{2m \cdot (V(t,x) - E)}$.

......

 \square Setze die konkreten Funktionen für f ein. Halte dich dabei an die am Anfang des Kapitels (\lozenge 67 gefundene Lösung. Warum steht im dritten Funktionsteil x-a?

.....

Wir beachten nun speziell die Stetigkeitsbedingungen am Rand von [a,b]. Diese sind Diese vier Bedingungen führen uns nun auf ein lineares Gleichungssystem mit den Unbekannten C, D, ρ, τ .

.....

(\$\infty\$68) \$\square\$ Löse das Gleichungssystem. Verifiziere \$\tau(t,x) = 1/(\cosh(\kappa(t,x) \cdot a) + \hat{\ill} \varepsilon(t,x) \cdot \sinh(\kappa(t,x) \cdot a)/2)\$, wobei \$\varepsilon(t,x) := (\kappa(t,x)^2 - k(t,x)^2)/(\kappa(t,x) \cdot k(t,x))\$.

Mit der Aufgabe lässt sich nun das Wahrscheinlichkeitsquadrat $\left| \tau(t,x) \right|^2$ bestimmen:

$$\left|\tau(t,x)\right|^2 = \frac{1}{1 + \left(\varepsilon(t,x)/4 + 1\right) \cdot \sinh(\kappa(t,x) \cdot a)^2},$$

wobei $\cosh(x)^2 = 1 + \sinh(x)^2$ verwendet wurde.

.....

(\circ 69) \square Setze einmal die Funktionsdefinitionen in den Ausdruck ein. Quadriere zunächst ε , wobei du die κ und k Ausdrücke einsetzt und eine zusammengesetzte Funktion mit E und V erhältst.

.....

Für große Argumente χ nähert sich die Exponentialfunktionsauswertung $\exp(-\chi)$ der Null, sodaß nach Definition des sinh gerade

$$\sin(\chi) := \frac{1}{2} \cdot (\exp(\chi) - \exp(-\chi)) \approx \frac{\exp(\chi)}{2},$$

sodaß für die Abschätzung $1 + \hbar \cdot \sinh(\chi)^2 \approx 1 + \hbar \cdot (1/2 \cdot \exp(\chi))^2 \approx \hbar \cdot (1/2 \cdot \exp(\chi))^2$ der Ausdruck $|\tau(t,x)|^2$ durch Inversbildung ausgeschrieben werden kann als

$$\left|\tau(t,x)\right|^2 \approx \frac{b \cdot E \cdot (V(t,x) - E)}{V(t,x)^2} \cdot \exp(-2 \cdot \kappa(t,x) \cdot a) \approx \exp\left(-2 \cdot \sqrt{\frac{2m \cdot a \cdot (V(t,x) - E)}{\hbar}}\right).$$

Anwendungsbeispiele

In der Festkörperphysik trifft man auf dieses Phänomen an vielen Stellen, wie beispielsweise dem *Tunnelstrom* oder im Bereich der Supraleiter unter dem Namen *Josephson Effekt*. Ein weiteres Beispiel ist die *kalte Emission*, oder auch bekannt als *Feldemission*.

2.2 Potentialtopf und gebundene Zustände

Unser nächstes Thema beschäftigt sich mit dem Potentialtopf, bei welchem im Unterschied zu den bisherigen Betrachtungen das Potential gegen $x \to \pm \infty$ nicht gegen 0 geht. Hier sind auch nicht mehr alle Energiewerte $E \in \mathbb{R}_{\geq 0}$ Eigenwerte des Hamiltonoperators H, was uns auf die Diskretisierung durch Punktspektren führen wird. Dieses diskrete Spektrum werden wir antreffen an Potentialorten $V(t,x) < V_{\infty}$, wobei V_{∞} die Fälle $x \to \pm \infty$ bei konstanter Zeit t beschreibt. Unser Modell basiert auf einem Potential der Form

$$V_{V_0} := \left(\mathbb{1}_{\mathbb{R}\setminus[a,b]}\right)(x)\cdot V_0\big)_{(t,x)\in\mathbb{R}^2},$$

wobei $V_0 \in \mathbb{R}_{>0}$ eine Konstante ist. Eine Grenzfallbetrachtung ist zusätzlich für $\lim_{V_0 \to \infty} V_{V_0}$ interessant: Für einen Abfall der Form $\exp(-\kappa(t,x) \cdot x)$ folgt für den symmatrischen Fall a=-b im Betrag

$$\lim_{V_{0}\to\infty} \exp\left(-\sqrt{2m\cdot\left(V_{V_{0}}(t,x)\right)}\cdot\left|x\right|/\hbar\right) = 0$$

für $x \in \mathbb{R} \setminus [-b, b]$. Zu Lösen ist nun die Schrödingergleichung im Bereich [-b, b]. Erinnern wir uns an unsere zusammengeklebte Lösung $u_{f,-b}(t,x)$, so muss an den Rändern die Bedingung

$$u_{f,a}(t,\pm b) = C \cdot f_{\kappa,\pm}(t,x) + D \cdot f_{\kappa,\mp}(t,x) = 0,$$

wobei wir hier auf die Matrixschreibweise wechseln können:

$$\begin{pmatrix} f_{\kappa,+}(t,b) & f_{\kappa,-}(t,b) \\ f_{\kappa,+}(t,-b) & f_{\kappa,-}(t,-b) \end{pmatrix} \circledast \begin{pmatrix} C \\ D \end{pmatrix} = 0_{\mathbb{R}^2}.$$

......

 \square Löse das Gleichungssystem für k und E und f im Exponentialansatz. Finde die Diskretisierung ($^{\circ}$ 70) durch die Periodizität von $\exp(\hat{i} \cdot \phi)$.

 \square Betrachte die Fälle $n \in gerade$ und $n \in ungerade$. Erhalte $u_{\exp,a}(t,x) = \sqrt{2/a} \cdot \cos(\pi \cdot n \cdot x/2)$ (\$71) und $u_{\exp,a}(t,x) = \sqrt{2/a} \cdot \sin(\pi \cdot n \cdot x/2)$. Trage die Lösungen in verschiedenen n graphisch auf.

.....

Interessant ist dabei, daß das Energieminimum nicht bei 0 liegt:

$$E_1 = \frac{\pi^2 \cdot \hbar^2}{2ma} > 0.$$

Dies ist begründet durch die *Unschärferelation*, denn durch niedrigere Unschärfe des Ortsoperators folgt eine größere Unschärfe des Impulsoperators, was zu einer größeren kinetischen Energie führt. Eine weitere Beobachtung ist der Knotenzusammenhang $\mathcal{K}_{u,n} = n-1$. Die Grenzwertbetrachtung $V_0 \to \infty$ führt ebenfalls zu einem Knick in der Funktion $u_{\exp,a}(t,x)$ an den Rändern von [-b,b].

Potentialtopf mit endlich hohen Wänden

Betrachte als nächstes Beispiel das Potential

$$V_{V_0} := \mathbb{1}_{[a,b]}(x) \cdot -V_0, \quad V_0 \in \mathbb{R}_{>0}.$$

Das Verhalten von $t \mapsto |\tau(t,x)|^2$ ist durch

VL 12, 22.05.2023, 11:45

2.3 Der harmonische Oszillator I

Der harmonische Oszillator ist ein Mechanik gut bekanntes schwingendes System, antreffbar beispielsweise in Form einer schwingenden Masse. Ihn zeichnet dabei durch die

(\$72)

harmonisch angedeutete lineare Rückstellkraft $F=-k\cdot x$ aus, welche Resultat des Kraftpotentials $V=1/2\cdot k\cdot x^2$ ist. Ein quantenmechanisches Pendant wären zwei gekoppelte, schwingende Moleküle, welche in der Festkörperphysik noch auf sogenannte Gitterschwindungen bezüglich der Anzahl schwingender Moleküle verallgemeinert werden. Wir werden uns nun dem quantenmechanischen harmonischen Oszillator mithilfe der analytischen Methode nach Sommerfeld nähern. Zu einem späteren Zeitpunkt werden wir uns ebenfalls mit dem algebraischen Ansatz nach Dirac beschäftigen. Ausgangspunkt ist wieder die Eigenwertgleichung $H(\psi)=\lambda\cdot\psi$ mit dem Hamiltonoperator $H:=p^2/(2m)+k/2\cdot x^2$ mit $k\in\mathbb{R}$ als Kopplungskonstante. Daraus ergibt sich nach Definition wieder

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 \psi(t,x) + \frac{2m}{\hbar^2} \cdot \left(\lambda - \frac{k}{2} \cdot x^2\right) \psi(t,x) = 0.$$

Wir werden nun zur Lösung der Gleichung einen Exponentialansatz $\psi := (\exp(p(x)))_{x \in \mathbb{R}}$, wobei wir stillschweigend $t \in \mathbb{R}$ konstant wählen. Um die physikalischen Dimensionen abzulegen, wählen wir die Transformationen

$$u(x) := \sqrt{\frac{k}{\hbar} \cdot x} \quad \eta(E) := \frac{2 \cdot E}{\hbar \cdot k/m}, \ k = \omega \cdot m.$$

Setzt man die Inversen von u, η ein, so erhält man

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)(\psi \circ u^{-1})(x) + (\eta^{-1}(x) - u^{-1}(x)^2) \cdot (\psi \circ u^{-1})(x) = 0.$$

Für genügend große Ergebnisse $u(x) \gg 1$ folgt $\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)(\psi \circ u^{-1})(x) \approx u^{-1}(x)^2 \cdot (\psi \circ u^{-1})(x)$ und als Lösung $(\psi \circ u^{-1})(x) \propto \exp(\pm u^{-1}(x)^2/2)$. Mittels Aufspaltung

$$(\psi \circ u^{-1})(x) = \exp(-u^{-1}(x)^2/2) \cdot (\nu \circ u)(x)$$

erhalten wir eine transformierte Form der Differentialgleichung

$$\left(\left(\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 - 2 \cdot u^{-1}(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} + (\eta^{-1} - 1)\right) \circ \nu^{-1}\right)(x) = 0.$$

 \Box Unter welchen Voraussetzung gilt die Aufspaltung von $\psi \circ u^{-1}$?

.....

Lösen wir die Differentialgleichung mit dem Potenzreihenansatz $\nu := \lim \sum_{i=0}^{\infty} a_i \cdot (u^{-1})^i$, so erhalten wir

$$\lim_{n=2}^{\infty} a_n \cdot (n \cdot (n-1)) \cdot u^{-1}(x)^{n-2}$$
$$-2 \cdot \lim_{n=1}^{\infty} u(x) \cdot a_n \cdot n \cdot u^{-1}(x)^{n-1} + \eta^{-1} \left(\lim_{n=0}^{\infty} a_n \cdot u^{-1}(x)^n \right) + 1 = 0.$$

.....

- (\bigcirc 73) \square Bestimme die Rekursionsgleichung $a_{n+1} = h \cdot a_n$.
- ($\$ 74) $\$ Rechne nach, daß es ein $N \in \mathbb{N}$ gibt, sodaß alle Folgeglieder der gesuchten Reihe gleich Null sind.

 $\begin{tabular}{ll} Theoretische\ Physik\ II\\ Skript \end{tabular}$

Im Falle $a_{n+1}/a_n \to 2/\mu$ für ein $\mu \in \mathbb{R}_{>0}$ ist der Reihengrenzwert nicht mehr normierbar, sodaß das Ergebnis als physikalische Lösung nicht infrage kommt. Also nehmen wir an, daß es nach der Aufgabe ein $N \in \mathbb{N}$ gibt, sodaß die Reihe abbricht. Dann gilt für die Eigenwertfolge des Hamiltonoperators

$$\lambda = \left(\hbar \cdot \omega \cdot \left(n + \frac{1}{2}\right)\right)_{n \in \mathbb{N}_0}.$$

Es handelt sich dabei um die Quantisierungsbdingung des harmonischen Oszillators.

.....

 \Box Rechne die Eigenwertfolge nach, indem du die Abbruchbedingung der Reihe ausnutzt. Nutze dann die Definition von η und finde einen Ausdruck für λ .

.....

In der Lösung ψ finden wir nun für jeden Schritt $n \in \mathbb{N}$ Lösungspolynome, welche wir als die sogenannten Hermitepolynome H_n identifizieren. Sie haben für die ersten fünf Fälle die folgende Form.

Abbildung 5: Die ersten fünf Hermitepolynome: H_0 in blau, H_1 in rot, H_2 in grün, H_3 in orange und H_4 in lila.

Diese Polynome bilden selbst eine Orthonormalbasis des Hilbertraums $L^2(\mathbb{R})$, sodaß wir jede gegebene Wellenfunktion zerlegen können in die gefundenen Lösungen.

3 Drehimpuls und Bewegung im Zentralfeld

VL 13, Gleich zu Beginn betonen wir, daß wir im Folgenden die Absicht haben, in *drei Dimensionen* 24.05.2023, zu arbeiten. Wir betrachten also nun $\mathscr{L}^2(\mathbb{R}^3)$ und entsprechende Operatoren. Die optische 68:15 Form der Eigenwertgleichung bleibt jedoch erhalten: $H(\psi) = \lambda \cdot \psi$. Für ein Elektron-Proton Paar betrachten wir das Coulombpotential mit

$$V := \left(-\frac{e^2}{4\pi \cdot \varepsilon_0} \cdot \frac{1}{||x||_3} \right)_{x \in \mathbb{R}^3}.$$

3.1 Orientierungs- und Drehimpulsalgebra

Wir betrachten hier die Drehgruppe SO₃. Diese besteht dabei aus allen invertierbaren Funktionen f aus \mathbb{R}^3 nach \mathbb{R}^3 , welche in der Verkettung mit der transponierten die Identität ergeben, also in Formeln

$$SO_d := \left\{ A \in \mathbb{R}^{d \times d} : A \circledast A^T = A^T \circledast A = I_n, \ \det(A) = 1 \right\}.$$

Für eine bessere Ordnung beschreiben wir die Matrix A, welche einen Vektor $x \in \mathbb{R}^3$ um die Achse $a \in \mathbb{R}^3$ genau um den Winkel $\varphi \in \mathbb{R}$ dreht, als

$$\mathscr{D}_{\varphi,a} := \operatorname{Eintrag} \bigg\{ A \in \operatorname{SO}_3 : \frac{\langle x, Ax \rangle}{||x||_2 \cdot ||Ax||_2} = \cos(\varphi), \ \textit{rotiert um } a \bigg\}.$$

Dies ist äquivalent zu der Schreibweise

$$\mathscr{D}_{\varphi,a}x = x + \frac{a}{||a||_2} \times x.$$

.....

 \square Formuliere zunächst die Definition von $\mathscr{D}_{\varphi,a}$ aus. Zeige dann, dass $\mathscr{D}_{\varphi,a}$ eine Drehmatrix ist. Betrachte dann die alternative Schreibweise und verifiziere, dass diese äquivalent ist.

......

Der Drehimpulsoperator

Um die Drehung in der Anwendung zu sehen, betrachten wir den Drehimpulsoperator $L \in L_S(\mathbb{R}^3)$. Diesen definieren wir druch $L := r \times p$, wobei wir mit r und p den Orts- und Impulsoperator bezeichnen. Wendet man die Drehung auf ein $\psi \in \mathcal{L}^2(\mathbb{R}^3)$ an, gilt

$$\mathscr{D}_{\varphi,a}\psi(x) = \psi(x) - \frac{a}{||a||_2} \times x \cdot D_{1^3_{\mathbb{R}}}\psi(x) = \psi(x) - \frac{\hat{i}}{\hbar} \cdot \frac{a}{\hbar}$$

 $\cdot (x \times p)\psi(x)$, wodurch wir einen neuen Zusammenhang

$$\mathscr{D}_{\varphi,a} = I_3 - \frac{\mathring{i}}{\hbar} \cdot a \cdot L$$

mit unserem definierten Drehimpuls L vorfinden.

.....

 $\begin{tabular}{ll} Theoretische\ Physik\ II \\ {\tt Skript} \end{tabular}$

Mit der Aufgabe folgern wir nun eine allgemeinere: Für $(i,j) \in [3]^2$ gilt

$$[L_i,L_j] = \mathring{\imath} \, \hbar \cdot \sum_{l=1}^3 \varepsilon_{ijk} \cdot L_k \Longleftrightarrow L \times L = \mathring{\imath} \, \hbar \cdot L,$$

wobei ε als Rechenhilfe unter dem Namen Levi-Civita-Symbol bekannt ist.

.....

 \square Folgere nun als letzte Eigenschaft aus den bisherigen $[L^2,H]=0$ und $[L^2,L]=0$. (\$\infty\$80)

.....

Betrachten wir den Erwartungswert $\langle L_{\psi}^2$, so finden wir nach Definition

$$\int_{\mathbb{R}}^{3} \overline{\psi} \cdot L^{2}(\psi) = \sum_{i \in [3]} \int_{\mathbb{R}}^{3} \overline{L_{i}(\psi)} \cdot L_{i}(\psi) \ge 0.$$

Somit sind durch Selbstadjungiertheit und positiv definit die Eigenwerte von L^2 im reellen und größer Null: $L^2\psi=\hbar^2\lambda\psi$. Definiere $L_\pm:=L_x\pm\mathring{\imath}\cdot L_y$. Weitere Eigenschaften sind dann

$$\int_{\mathbb{R}}^{3} \psi \cdot L_{\pm}(\psi) = \int_{\mathbb{R}}^{3} (L_{\mp}(\psi)) \cdot \psi \qquad [L_{z}, L_{\pm}] = \pm \hbar \cdot L_{z}$$

$$[L_{+}, L_{-}] = 2\hbar \cdot L_{z} \qquad [L^{2}, L_{\pm}] = 0$$

$$L_{+} \circ L_{-} = L_{x}^{2} + L_{y}^{2} + \hbar \qquad L_{z}L^{2} = L_{-} \circ L_{+} + \hbar L_{z} + L_{z}^{2}.$$

......

 \square Zeige die Eigenschaften. (\otimes 81)

.....

Um den Zusammenhang zwischen L und L_{\pm} zu erkennen, behaupten wir nun $L_{\pm}(\psi)$ ist Eigenvektor von L_z mit Eigenwert \hbar . Wir finden

$$(L_z \circ L_+)(\psi) = (L_+ \circ L_z)(\psi) \pm \hbar L_+(\psi) = h \cdot (m \pm 1) \cdot L_+(\psi),$$

wobei $L_z(\psi) = h \cdot m \cdot \psi$ gelte.

.....

 \square Zeige ψ ist Eigenvektor von L^2 mit Eigenwert $\hbar^2 \cdot \lambda$. Zeige dann auch $L_{\pm}(\psi)$ ist Eigenvektor (§82) mit selbem Eigenwert.

.....

Ist ψ ein normierbarer Eigenvektor zu L^2 , dann ist $L_{\pm}(\psi)$ ebenfalls normierbar:

$$\int_{\mathbb{R}^3} |L_z(\psi)|^2 = \int_{\mathbb{R}^3} \overline{\psi} \cdot (L_{\mp} \circ L_{\pm})(\psi) = \hbar^2 \cdot (\lambda - m^2 \mp m) \cdot \int_{\mathbb{R}^3} |\psi|^2 \ge 0.$$

Wir können also sehen, daß nicht unbedingt jeder Eigenvektor von L^2 sich zur Normierbarkeit eignet.

......

(§83) \square Betrachte die Eigenwertgleichungen (i) $L^2\psi_{l,m} = \hbar^2 \cdot l \cdot (l+1) \cdot \psi_{l,m}$, (ii) $L_z(\psi_{l,m}) = \hbar \cdot m \cdot \psi_{l,m}$ und (iii) $L_{\pm}(\psi_{l,m}) = \hbar \cdot \sqrt{l \cdot (l+1) - m \cdot (m\pm 1)} \cdot \psi_{l,m}$. Was sagen die Zahlen $l, m \in \mathbb{N}$ aus?

3.2 Ortsdarstellung und Kugelflächenfunktionen

Wir suchen nun einen konkreten Ausdruck für die Eigenvektoren $\psi_{l,m} \in \mathcal{L}^2(\mathbb{R}^3)$ der Eigenwertgleichung $L^2(f) = \lambda \cdot f$. Nach der Definition von L steht in ausgeschriebener Form zunächst ein monströs aussehnder Ausdruck:

$$L^{2}(f(x)) = -\hbar \cdot (x \times D_{h})^{2}(f(x)) = \hbar^{2} \cdot l \cdot (l+1) \cdot f(x)$$

$$L_{3}(f(x)) = -\mathring{i} \, \hbar \cdot (x \times D_{h})^{2}_{3}(f(x)) = \hbar \cdot m \cdot f(x),$$

mit Identifikation L_z und L_3 . Unter der Transformation in Kugelkoordinaten f_K und Trennung der Variablen der Form $f(x) = R(||r||_2) \cdot Y(\vartheta, \varphi)$ und $Y(\vartheta, \varphi) = \Phi(\varphi) \cdot \Theta(\vartheta)$ kann man zunächst $\Phi(\varphi) = \exp(\mathring{\imath} \cdot m \cdot \varphi)$ setzen. Es ist dann zu Lösen eine Gleichung der Form

$$\left(\frac{\mathrm{d}}{\mathrm{d}z}\big(1-z^2\big)\cdot\frac{\mathrm{d}}{\mathrm{d}z}+\left(l\cdot(l+1)-\frac{m^2}{1-z^2}\right)\right)(\Theta(\vartheta))=0.$$

Wir nennen die Gleichung auch verallgemeinerte Legendre Gleichung, deren Lösung die verallgemeinerten Legendre Polynome sind. Diese sind von der Form

$$\Theta(\vartheta) = \sum_{k=0}^{l} a_k \cdot P_k^m(\cos(\vartheta)),$$

wobei P_k^m die asoziierten Legendre Polynome sind. Diese sind wiederum von der Form

$$P_k^m(z) = (-1)^m \cdot (1 - z^2)^{\frac{m}{2}} \cdot \frac{d}{dz}^m \cdot P_k(z).$$

Für Y finden wir eine Gleichung der Form

$$Y(\vartheta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot P_e(\cos(\vartheta)) \cdot \exp(-\mathring{\imath} \, m \cdot \varphi),$$

die sogenannte Kugelflächenfunktion.

Jetzt sind zwei Wochen Ferien.

VL 14 @home

Skript

Bloch Theorem

Das Bloch Theorem entspringt der Physik kondensierter Materie und besagt, daß bei angenommenem periodischen Potential $V \in periodisch_{\mathbb{R} \to \mathbb{R}}$ die Lösungen der Schrödingergleichung die Form einer ebenen Welle haben, welche in eine weitere periodische Funktion $p \in periodisch_{\mathbb{R} \to \mathbb{R}}$ eingehüllt ist. Ist a die Periode von V, dann müssen wir an die Lösung der Schrödingergleichung die Forderung

$$||\psi(x)||^2 = ||\psi(x+a)||^2$$

stellen. Damit haben wir allerdings bereits manifestiert, daß $\psi(x+a)$ nur eine gedrehte Version von $\psi(x)$ sein kann, da Streckung durch die Norm beschränkt wird. Wir finden also eine Zahl $\zeta_a \in (-\pi, \pi)$, sodaß die Bedingung

$$\psi(x) = \exp(\hat{\imath} \cdot \zeta_a) \cdot \psi(x)$$

erfüllt ist.

Definition. Bloch Funktion

Sei $\psi \in \mathscr{L}^2(\mathbb{R}^d)$ eine Lösung der Schrödingergleichung mit periodischem Potential V. Dann heißt ψ Bloch Funktion, falls es eine weitere periodische Funktion u gibt, so daß $\psi = \left(\exp(\mathring{\imath} \cdot \langle k, x \rangle_{\mathscr{H}}) \cdot u(x)\right)_{x \in \mathrm{Def}\; \psi}$ gilt.

4 Mathematische Grundlagen

4.1 Zustände und Observablen

4.2 Der Hilbertraum

Wir verstehen unter Hilbertraum einen Vektorraum \mathscr{H} mit Skalarkörper \mathbb{C} , welcher mit einem Skalarprodukt $\langle \cdot, \cdot \rangle_{\mathscr{H}}$ ausgestattet ist. Ist \mathscr{H} vollständig, so fällt er in die Kategorie der Hilberträume. Ist \mathscr{H} zusätzlich separabel, so besitzt er eine höchstens abzählbare Basis [\rightarrow LinA 1, mGdQM].

VL 17 15.06.2023, 10:00

VL 16

08:15

14.06.2023,

4.3 Uneigentliche Dirac Vektoren

In vielen Fällen ist der betrachtete Hilbertraum \mathscr{H} von einer nicht abzählbaren Dimension. Ein Hilbertraumelement $|\psi\rangle$ lässt sich in der Diracnotation darstellen als Summation über eine linear unabhängiges orthogonales Vektortupel $(|\alpha_i\rangle)_{i\in\mathbb{N}}$, welches einen Kontinuums- übergang

$$|\psi\rangle = \sum_{i \in \mathbb{N}} \langle \alpha_i | \psi \rangle \cdot |\alpha_i\rangle \leadsto \int_{\mathbb{R}} \langle \alpha_t | \psi \rangle \cdot |\alpha_t\rangle \ dt$$

besitzt. In der Vollständigkeit ist die Verwendung einer Linearform aus dem Dualraum \mathscr{H}^* der Form $\langle \phi |$ dann gerade

$$\langle \phi | \psi \rangle = \int_{\mathbb{R}} \langle \alpha_t | \psi \rangle \cdot \langle \phi | \alpha_t \rangle \ dt.$$

.....

□ Finde mathematische Analogien zu der präsentierten Diracnotation.

(986)

 \square Wodurch ist die Existenz des $\langle \phi |$ gesichert? Ist die Zuordnung eindeutig? Recherchiere hierzu (285) den Satz von Riesz-Fréchet.

Algebraische Dualräume

Als Dualraum eines Vektorraums V mit Grundkörper K verstehen wir die Menge aller Homomorphismen $\phi: V \to K$, bezeichnet als $V^* := \text{Hom}(V, K)$. Das Skalarprodukt auf V ist dabei definiert als

$$v \mapsto (w \mapsto \langle v, w \rangle_V) =: \Phi_v \in V^*.$$

Aus der vorigen Aufgabe und dieser Definition können wir nun bemerken, daß es eine Bijektion zwischen V und V* gibt $[\to 13.1.7]$. Diese Abbildung Φ_v notieren wir als $\langle v|$ und schreiben als Auswertung $\Phi_v(w) =: \langle v | (w) =: \langle v | w \rangle = \langle v, w \rangle_V$.

......

 \square Definiere für $c \in K$ und $v, w \in V$ die Addition und Skalarmultiplikation in V^* .

......

Adjungierter Operator

Den zu $T \in L_S(\mathcal{H})$ mit Def $(T) \subseteq \mathcal{H}$ adjungierten Operator T^* definieren wir über die Beziehung

$$\langle T(\psi)|\phi\rangle = \langle \psi|\varphi\rangle$$
,

wobei $\psi, \phi \in \text{Def}(T)$. Dann ist T^* gerade die eindeutige Abbildung T^* : $\text{Def}(T) \to$ $\mathcal{H}, \ \psi \mapsto \varphi$. Es gilt dann nach Definition $\langle T(\psi)|\phi\rangle = \langle \psi|T^*(\phi)\rangle$.

- \square Zeige die Eindeutigkeit von T^* zu T. Beachte hierzu $[\to 15.1.1].$ (\$87)
- \square Rechne die Eigenschaften (i) $(f^*)^* = f$, (ii) $(f+g)^* = f^* + g^*$, (iii) $(\lambda f)^* = \overline{\lambda} f^*$ für $f, g \in V^*$ (88₽) und $\lambda \in K$ nach.

...... Nach den Eigenschaften der adjungierten Abbildung gilt dann im oft betrachteten

Spezialfall $\mathcal{H} = \mathcal{L}^2(\mathbb{R}^d)$ gerade

$$\int_{\mathbb{R}^d} \psi_1(x)^* \cdot T(\psi_2)(x) \ dx = \int_{\mathbb{R}^d} T^*(\psi_1)(x) \cdot \psi_2(x) \ dx.$$

Selbstadjungierter Operator

Im Falle $T = T^* \in L_S(\mathcal{H})$ spricht man von einem selbstadjungierten Operator. Es gilt dann $\langle T(\psi)|\phi\rangle = \langle \psi|T(\phi)\rangle$ für alle $\psi, \phi \in \mathrm{Def}(T)$.

Beschränkter Operator

Lässt sich die Norm $||T(x)||_{\mathscr{H}}$ unter eine lineare Skalierung $C\cdot ||x||$ mit festem $C\in \mathbb{R}$ quetschen, so nennen wir T beschränkt. Dies ist in endlichdimensionalen Räumen immer

35

(\$89)

VL 18

11:45

16.06.2023,

Theoretische Physik II Skript

der Fall, jedoch nicht im unendlichdimensionalen Fall. Wir unterscheiden in letzterem Fall zwischen selbstadjungierten und symmetrischen Operatoren. Hierzu brauchen wir noch eine Definition:

$$T \in dicht definiert_{\mathscr{H}} : \iff \overline{\mathrm{Def}(T)} = \mathscr{H}.$$

Damit ist T genau dann symmetrisch, wenn $Def(T) \subseteq Def(T^*)$ und $T = T^*|_{Def(T)}$. Im Fall der Gleichheit definieren wir T als selbstadjungiert.

.....

□ Zeige den endlichdimensionalen Fall. Finde ein Gegenbeispiel im unendlichdimensionalen Fall.

.....

Der Umgang mit einem Hilbertraumelement und einer linearen Abbildung aus \mathscr{H}^* von der Form $\lambda \in \mathscr{H}$, $l \in \mathscr{H}^*$ ist durch punktweise Multiplikation in der Auswertung in $x \in \mathscr{H}$ gegeben:

$$(\lambda \cdot f)(x) := \lambda \cdot f(x).$$

Dies wollen wir einmal festhalten.

Dyadisches Produkt

Definition. Dyadisches Produkt

Für Vektoren $x,y\in\mathcal{H}$ ist das dyadische Produkt mit der zugeordneten Linearform $\Phi_y\in\mathcal{H}^*$ definiert als

$$(\lambda \cdot \Phi_y) := (\lambda \cdot \Phi_y(x))_{x \in \mathscr{H}}.$$

Wir schreiben in Diracscher Notation auch

$$(|\alpha\rangle\langle\beta|)(|\psi\rangle) := |\alpha\rangle\cdot\langle\beta|\psi\rangle$$
.

Setzt man in die Operatorauswertung A(x) für $x \in \mathcal{H}$, $A \in L_S(\mathcal{H})$ die Basisdarstellung bezüglich v als Basisvektortupel von \mathcal{H} ein, so gilt

$$A(x) = A\Big(\sum_{i \in I} \langle \underline{v}_i, x \rangle \cdot \underline{v}_i\Big) = \sum_{i \in I} \langle \underline{v}_i, x \rangle \cdot A(\underline{v}_i).$$

.....

□ Unter welchen Voraussetzungen existiert eine solche Basis?

(№90)

 \Box An der Tafel haben wir die Dirac Notation für obige Basisdarstellung verwendet. Kläre die $\quad (\$91)$ Bedeutung von

$$A(x) := \sum_{i \in I} r_i \cdot |\alpha_i\rangle = \sum_{(i,j) \in I^2} q_i \cdot \langle \alpha_i | A(\alpha_i) \rangle \, |\alpha_j\rangle = \sum_{(i,j) \in I^2} |\alpha_j\rangle \cdot \langle \alpha_j | A(\alpha_i) \rangle \cdot \langle \alpha_i | \psi \rangle \,,$$

wobei α eine Basis von $\mathscr H$ sei. r_j sei weiter definiert als $r_j := \sum_{i \in I} \left< \alpha_j | A(\alpha_i) \right> q_i = - \left< \alpha_j | A(x) \right>$.

.....

Skript

Unitärer Operator

Optisch leisten unitäre Operatoren die Winkel- und Längentreue von Vektoren, also insbesondere die Erhaltung des Skalarproduktes. Mathematisch können wir sie durch folgende Definition greifbar machen.

Definition. Unitärer Operator

Ein Operator $U \in L_S(\mathcal{H})$ heißt *unitär*, wenn $U^* = U^{-1}$ oder äquivalent $U \circ U^* = \mathrm{id}_{\mathcal{H}}$ gilt.

VL 19 03.07.2023, 11:45

4.4 Das Eigenwertproblem

Bei der Schrödingergleichung handelt es sich um ein Eigenwertproblem der Form $H(\psi) = \lambda \cdot \psi$ mit $H \in L_S(\mathcal{H}), \ \psi \in \mathcal{H}$ und $\lambda \in \mathbb{C}$ für ein komplexen Hilbertraum \mathcal{H} . Es heißt dann λ Eigenwert und ψ Eigenvektor zum Eigenwert λ . Gibt es mehrere Eigenvektoren zu einem Eigenwert, so bilden diese einen Unterraum, den Eigenraum zum Eigenwert λ . Wir bezeichnen dann λ als n-fach entartet, falls dim $E_{\lambda} = n$. Die Sammlung aller Eigenwerte ist das sogenannte $Punktspektrum \ \sigma_P(H)$ von H.

..... (\$92) □ Überlege dir jeweils Beispiele zu einem (i) diskreten Punktspektrum, (ii) kontinuierlichen Punktspektrum oder (iii) gemischten Punktspektrum. □ Betrachte noch einmal den Spektralsatz selbstaudjungierter linearer Operatoren. Formuliere ihn (№93) einmal für normale $H \in L_S(\mathcal{H})$ und notiere die Beziehung zur selbstadjungierten Formulierung. □ Zeige die Existenz einer ONB aus Eigenvektoren für selbstadjungierte Operatoren mithilfe des (94) Spektralsatzes der Funktionalanalysis. \square Zeige für eine ONB $\varphi \in \mathcal{H}^I$ die Eigenwertgleichungsbeziehung $A(\varphi_i) = \lambda_i \cdot \varphi_i$ für $A \in L_S(\mathcal{H})$ (\$95)und $\lambda_i \in \mathbb{C}$. Welche Forderung stellt sich an die Indexmenge I? (\$96) \square Berechne $q_n(A)$ als Funktionsauswertung mit q als n-te Potenzfunktion. \square Nutze den Einsetzungshomomorphismus um das Polynom p(A) n-ten Grades zu beschreiben. (97)

4.5 Messprozess in der Quantenmechanik

Wir wollen uns nun mit dem fundamentalen Standbein der Quantenmechanik beschäftigen. Für ein vorliegendes quantenmechanisches, also mikroskopisches System gilt die *Messung* als Zusammenhang zu dem makroskopischen, nicht quantenmechanischen Beobachter.

............

Im klassischen System ist die Auswirkung des Beobachters durch eine Messung, also eine Störung des Systemablaufes, im Prinzip beliebig klein. In der Quantenmechanik ist dies jedoch durch die Unschärfenrelation nach unten beschränkt. Eine weiter Besonderheit ist der Verlust von Informationen nach der Messung; Misst man beispielsweise den Ort, so kann man nicht erneut den Impuls messen, da die Wellenfunktion nach der Messung nicht mehr die ursprüngliche ist. Wir wollen uns nun mit dem Ablauf einer quantenmechanischen Messung beschäftigen.

VL 20 05.07.2023, 08:15

 $\begin{tabular}{ll} Theoretische\ Physik\ II\\ {\tt Skript} \end{tabular}$

Mögliche Ergebnisse eines Messprozesses eines Operators T sind seine Eigenwerte $\lambda \in \sigma_P(T)$. Da T im physikalischen Sinne s.a. ist $\lambda \in \mathbb{R}$, denn nur reelle Ergebnisse sind physikalisch sinnvoll. Die Wahrscheinlichkeit dafür, daß λ im Zustand ψ gemessen wird, ist

$$P(\lambda) = |\langle \lambda | \psi \rangle|^2$$
,

wobei $|\lambda\rangle$ der Eigenvektor zu λ ist. Dieser Zusammenhang ist auch als *Born'sche Regel* bekannt. Wurde die Messung durchgeführt, so kollabiert die Wellenfunktion zu $|\lambda\rangle$, d.h. der Zustand ist nach der Messung $|\lambda\rangle$.

.....

 \square Betrachte als Beispiel T=X als Ortsoperator in einer Dimension mit $P(x)=|\langle x|\psi\rangle|^2=|\psi(x)|^2$ (\$98) für $\psi\in L^2(\mathbb{R})$ und $x\in\mathbb{R}$. Wie sieht dann eine Gaußsche Wellenfunktion nach der Messung aus?

Konsequenzen

Durch eine Messung kann ein Zustand "präpariert" werden in dem Sinne, daß bei einer erneuten Messung mit demselben Operator genau der erste gemessene Wert λ messbar sein wird.

.....

 \square Betrachte das Operatortupel $T:n\mapsto T_n$ mit $T_n\in L_S(\mathbb{R})$ für $n\in\{1,2,3\}$. Notiere die (§99) Form der Eigenwerte $\lambda\in\sigma_P(T)$ und zugehörigen Eigenvektoren ψ_λ für T. Zeige weiter für beliebiges $\psi\in \mathrm{Def}(T)$ die Eigenschaft $\langle r|\psi\rangle=\psi(r)$. Zeige für den Impuls den Zusammenhang $\langle P|\psi\rangle=(\mathscr{F}\psi)(p)$ in der Fouriertransformierten.

Einen Zustand ψ können wir dann in einer gegebenen ONB $e: \mathbb{R} \to \mathbb{R}^3$ ausdrücken

durch

$$\psi = \int_{\mathbb{R}} |\underline{e}_x\rangle \langle \underline{e}_x | \psi \rangle \ dx = \int_{\mathbb{R}} \psi(\underline{e}_x) (|\underline{e}_x\rangle) \ dx.$$

- \square Wir wollen uns noch einmal dem Spektralsatz widmen. Wir wissen $T = \int_{\sigma(T)} \lambda \ E(d\lambda)$ für (\$100) $T \in L_S(\mathscr{H})$ s.a. Nun wollen wir in Dirac Notation über denselben Zusammenhang sprechnen.
 - (i) Notiere das Integral als Summe. We findet sich der Projektor $P_{\lambda} := |\lambda\rangle\langle\lambda|$ wieder?
 - (ii) Implementiere die Entartung, indem du zu einem Eigenwert g_n verschiedene Eigenvektoren zulässt. Erweitere den Ausdruck aus (i) durch $P_{\lambda,g_{\lambda}} := \sum_{i \in [g_{\lambda}]} |\lambda_i\rangle \langle \lambda_i|$ für g_{λ} als Entartungsgrad. Wir bezeichnen dabei P_{λ} als Projektor auf den Eigenraum E_{λ} .

.....

Mit der Aufgabe können wir nun den Bewertungsprozess neu definieren.

$$P(\lambda) = |\langle \lambda | \psi \rangle|^2 = \langle \lambda | \psi \rangle \cdot \langle \lambda | \psi \rangle^* = \langle \lambda | \psi \rangle \cdot \langle \psi | \lambda \rangle = \langle \psi | P_{\lambda} | \psi \rangle.$$

Beachten wir die Entartung, so folgt wieder mit der Aufgabe

$$\sum_{\lambda} P(\lambda \in \sigma_P(T)) = \sum_{\lambda \in \sigma_P(T)} \langle \psi | P_{\lambda} | \psi \rangle = \langle \psi | \left(\sum_{\lambda \in \sigma_P(T)} P_{\lambda} \right) | \psi \rangle = \langle \psi | \psi \rangle = 1.$$

Damit erhalten wir als Zustand nach der Messung den Zusammenhang

$$|\Psi\rangle = \frac{P_{\lambda}(\psi)}{||P_{\lambda}(\psi)||} = \frac{P_{\lambda}(\psi)}{\sqrt{\langle\psi|P_{\lambda}^{*}P_{\lambda}|\psi\rangle}} \stackrel{(*)}{=} \frac{P_{\lambda}(\psi)}{\sqrt{\langle\psi|P_{n}|\psi\rangle}},$$

wobei wir bei (*) die Eigenschaft der orthogonalen Projektion verwendet haben. Im Falle der Entartung gilt $P_{\lambda}(\psi) = |\lambda\rangle \langle \lambda|\psi\rangle = (\sqrt{P(\lambda)} \cdot \exp(\mathring{v}\varphi))(\psi)$.

.....

(§101) \square Wir identifiziern nun P_{λ} mit $E(\{\lambda\})$, wobei E das zu T gehörige $Spektralma \beta$ sei. Folgere durch die Eigenschaften des Spektralma ses (i) $E(\{\lambda\})$ ist wieder Observable, (ii) $P_{\lambda}^2 = P_{\lambda}$ und (iii) $\sigma_P(P_{\lambda}) = (\sigma_P \circ E)(\{\lambda\}) = \{0,1\}$. Was misst also E bzw P zusammenfassend?

4.6 Postulate der Quantenmechanik

Wir können nun zusammenfassend die Postulate der Quantenmechanik mit den kennengelernten Mitteln formulieren.

- (i) Die Zustände eines Systems werden durch Vektoren $\psi \in \mathcal{H}$ mit \mathcal{H} als Hilbertraum beschrieben.
- (ii) Die Messung einer physikalischen Größe entspricht der Anwendung eines s.a. linearen Operators $T \in L_S(\mathcal{H})$.
- (iii) Die Zeitentwicklung ist beschrieben durch die zeitabhängige Schrödingergleichung $\mathring{\imath} \cdot \hbar \cdot \frac{\mathrm{d}}{\mathrm{d}t} \psi(t) = H(\psi(t))$ für $\psi : \mathbb{R}_{\geq 0} \to \mathscr{H}$.

4.7 Erweiterung: Gemischte Zustände

Für einen Zustand $\psi \in \mathcal{H}$ gibt es einen Dichteoperator $\rho \in L_S(\mathcal{H})$ als statistischen Operator. Misst man nun mit T den Eigenzustand $|\lambda\rangle$ mit Eigenwert λ und Wahrscheinlichkeit P_{λ} , so würde man für einen zweiten Operator A den Erwartungswert (im diskreten Fall)

$$\langle A \rangle_{|\lambda\rangle} = \int_{\sigma(A)} \lambda \ E(d\lambda) = \sum_{\lambda \in \sigma(A)} P_{\lambda} \cdot \langle \lambda | A | \lambda \rangle$$

$$= \sum_{\lambda \in \sigma(A)} \sum_{(i,j) \in I^2} P_{\lambda} \cdot \langle \lambda | \varphi_i \rangle \langle \varphi_i | A | \varphi_j \rangle \langle \varphi_j | \lambda \rangle$$

$$= \sum_{(i,j) \in I^2} \underbrace{\langle \varphi_i | A | \varphi_j \rangle}_{\text{Messung von } A, =:A_{i,j}} \cdot \underbrace{\sum_{\lambda \in \sigma(A)} P_{\lambda} \cdot \langle \lambda | \varphi_i \rangle \langle \varphi_j | \lambda \rangle}_{\text{Präparation, } =:\rho_{i,j}}$$

$$= \sum_{(i,j) \in I^2} A_{i,j} \cdot \rho_{i,j} = \sum_{i \in I} (A \cdot \rho)_{i,i} = \text{Spur}(A \cdot \rho).$$

Damit ist die Dichtematrix gegeben durch $\rho_A = \sum_{\lambda \in \sigma(A)} P_{\lambda} \cdot |\lambda\rangle \langle \lambda|$.

Literatur