## MA2219 Introduction to Geometry - Homework 1 Due in class on Friday 8 February

1. Let ABCD and WXYZ be quadrilaterals, and suppose that |AB| = |WX|, |BC| = |XY|, |CD| = |YZ|,  $\angle ABC = \angle WXY$  and  $\angle BCD = \angle XYZ$ . Prove that ABCD and WXYZ are congruent (i.e. all of the corresponding sides and angles are equal).

**Remark.** This result is used in Leonardo da Vinci's proof of Pythagoras' theorem from Tutorial 3.



- 2. Consider the diagram below of a right-angled triangle with an inscribed circle centred at I. Let x = |AD|, y = |DB| and h = |FG|. Recall that there are three ways to write the area of this triangle.
  - As half base times height  $Area(\Delta ABG) = \frac{1}{2}(x+y)h$ ,
  - after rotating the triangle so that BG is the base, as half base times height  $Area(\Delta ABG) = \frac{1}{2}|BG|\cdot|AG|$ , and
  - using the inradius formula from Lecture 5

$$Area(\Delta ABG) = |DI| \cdot \frac{1}{2}(|AB| + |BG| + |GA|).$$

- (a) Use the second and the third method to prove that the area of the triangle is xy.
- (b) Now use the first method to prove that  $h = \frac{2xy}{x+y}$ .



- 3. Given two numbers x and y, Euclid considered three ways of computing their mean.
  - The arithmetic mean is the average  $M_a = \frac{1}{2}(x+y)$ .
  - The geometric mean is  $M_g = \sqrt{xy}$ .
  - The harmonic mean is  $M_h = \frac{2xy}{x+y} = \frac{2}{\frac{1}{x} + \frac{1}{y}}$ .

In the following diagram, let x=|AD| and y=|DB|. Prove that  $M_a=|OC|$ ,  $M_g=|DE|$  and  $M_h=|FG|$ , and then prove that  $M_a\geq M_g\geq M_h$ .



4. Given a triangle  $\triangle ABC$ , choose a point  $X_2$  on side BC. Choose points P and Q on the line  $AX_2$ , and define  $Y_1$  and  $Y_2$  on side CA as the intersection with the extension of BQ and BP respectively. Similarly, define  $Z_2$  and  $Z_3$  on side AB as the intersection with the extension of CP and CQ respectively.

Define S as the intersection of  $BY_2$  with  $CZ_3$  and U as the intersection of  $BY_1$  with  $CZ_2$ . Define  $X_1$  as the intersection of BC with the extension of AS and define  $X_3$  as the intersection of BC with the extension of AU. Define R to be the intersection of  $AX_1$  with  $CZ_2$  and define T as the intersection of  $BY_2$  with  $AX_3$ .

Now define  $Z_1$  as the intersection of AB with the extension of CT and  $Y_3$  as the intersection of CA with the extension of BR.

Use Ceva's theorem to prove that the cevians  $AX_2$ ,  $BY_3$  and  $CZ_1$  are concurrent (at the point V in the diagram below).

(In the next homework we will give a different proof using Desargues' theorem.)

