Statistics 101C - Week 5 - Model Selection in Regression

Shirong Xu

University of California, Los Angeles shirong@stat.ucla.edu

October 28, 2024

Regression

Given a data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$ and $\mathbf{Y} = (y_1, \dots, y_n)^T$, where $\mathbf{x}_i \in \mathbb{R}^p$ is p-dimensional feature.

Linear Regression framework:

$$\min_{oldsymbol{eta}} (oldsymbol{Y} - oldsymbol{X}eta)^T (oldsymbol{Y} - oldsymbol{X}eta)$$

• What if we include unrelated features?

Regression

Given a data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$ and $\mathbf{Y} = (y_1, \dots, y_n)^T$, where $\mathbf{x}_i \in \mathbb{R}^p$ is p-dimensional feature.

Linear Regression framework:

$$\min_{oldsymbol{eta}} (oldsymbol{Y} - oldsymbol{X}eta)^T (oldsymbol{Y} - oldsymbol{X}eta)$$

What if we include unrelated features?

Regression

Given a data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$ and $\mathbf{Y} = (y_1, \dots, y_n)^T$, where $\mathbf{x}_i \in \mathbb{R}^p$ is p-dimensional feature.

Linear Regression framework:

$$\min_{oldsymbol{eta}} (oldsymbol{Y} - oldsymbol{X}eta)^T (oldsymbol{Y} - oldsymbol{X}eta)$$

What if we include unrelated features?

Example

```
C<-c(1,1,1,1,1,1,1,1)
x_1<-c(1,2,3,4,5,6,7,8)
x_2<-runif(8, -1, 1)
x_3<-runif(8, -1, 1)
x_4<-c(1,2,3,4,5,6,7,8.1)
y<-C + x_1 + runif(8, -1, 1)
Data <- data.frame(C,x_1,x_2,x_3,x_4,y)
model_1 <- lm(y ~ x_1, data = Data)</pre>
```

Example: Model 1 $Y \sim X_1$

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9586 0.5438 7.280 0.000342 ***
x_1 1.0149 0.1077 9.425 8.11e-05 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Residual standard error: 0.6979 on 6 degrees of freedom Multiple R-squared: 0.9367, Adjusted R-squared: 0.9262 F-statistic: 88.83 on 1 and 6 DF, p-value: 8.111e-05

 R^2 : 0.9367

Coefficients:

All features are significantly not equal to 0

Example: Model 2 $Y \sim X_1 + X_2$

```
model_2 \leftarrow lm(y \sim x_1 + x_2, data = Data)
summary(model_2)
```

(Intercept) 4.0059 0.5323 7.525 0.000656 ***

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Residual standard error: 0.6811 on 5 degrees of freedom Multiple R-squared: 0.9498, Adjusted R-squared: 0.9297 F-statistic: 47.28 on 2 and 5 DF, p-value: 0.0005652

• R^2 : 0.9498 (increase by including an unrelated feature)

Example: Model 2 $Y \sim X_1 + X_4$

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.2160 0.5737 7.349 0.000732 ***

X_1 -9.3684 8.9618 -1.045 0.343731

X_4 10.2975 8.8871 1.159 0.298906

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
```

Residual standard error: 0.6788 on 5 degrees of freedom Multiple R-squared: 0.9501, Adjusted R-squared: 0.9302 F-statistic: 47.62 on 2 and 5 DF, p-value: 0.0005556

 \bullet Both features X_1 and X_4 are significantly equal to 0.

Sparse regression

Given training set $(\mathbf{x}_i, y_i)_{i=1}^n$ with $y_i \in \mathcal{R}$ and $\mathbf{x}_i \in \mathcal{R}^p$, it is assumed that

$$y_i = \beta_0 + \sum_{j=1}^{p_0} \beta_j x_{ij} + \epsilon_i,$$

where $p_0 \ll p$, and thus the sparsity.

Sparse regression

Given training set $(\mathbf{x}_i, y_i)_{i=1}^n$ with $y_i \in \mathcal{R}$ and $\mathbf{x}_i \in \mathcal{R}^p$, it is assumed that

$$y_i = \beta_0 + \sum_{j=1}^{p_0} \beta_j x_{ij} + \epsilon_i,$$

where $p_0 \ll p$, and thus the sparsity.

- $\mathcal{A}^* = \{1, \dots, p_0\}$ indexes the informative predictors, and $\{p_0 + 1, \dots, p\}$ indexes the redundant predictors
- ullet The goal of variable selection is to correctly detect \mathcal{A}^* from $\{1,\ldots,p\}$
- We focus on linear regression models, while detecting nonlinear relationship is possible and largely open

Why do we care?

Multicollinearity: masked significance, inflated variance, ...

Why do we care?

- Multicollinearity: masked significance, inflated variance, ...
- \circ Prediction accuracy can be deteriorated due to overfitting when p is large
- Interpretability can be unnecessarily complicated when irrelevant variables are included

Popular techniques

- Best subset selection
 - Various information criteria, cross validation, ...
- Sequential variable selection
 - Forward/backward selection
- Shrinkage method
 - Lasso and its variants
- Dimension reduction
 - Principal component analysis, sufficient dimension reduction, ...

Best subset selection

- lacktriangle Let \mathcal{M}_0 denote the null model, which contains no predictors
- ② For k = 1, ..., p
 - Fit all C_p^k models that contain exactly k predictors
 - ullet Pick the best among these models and call it \mathcal{M}_k
- ullet Select a single best model among $\mathcal{M}_0,\ldots,\mathcal{M}_p$

Best subset selection

- Let \mathcal{M}_0 denote the null model, which contains no predictors
- ② For k = 1, ..., p
 - Fit all C_n^k models that contain exactly k predictors
 - **b** Pick the best among these models and call it \mathcal{M}_k
- § Select a single best model among $\mathcal{M}_0, \dots, \mathcal{M}_p$

Popular selection criteria:

- Validation set
- Cross validation (CV) error
- "Estimate" test error by making an adjustment to the training error to account for overfitting

Model selection criteria

For a linear model with d predictors, denote its SSE as SSE_d ,

• Mallow's C_p :

$$C_p = \frac{1}{n}(SSE_d + 2d\hat{\sigma}^2)$$

Akaike information criterion (AIC):

$$AIC = \frac{1}{n\hat{\sigma}^2}(SSE_d + 2d\hat{\sigma}^2)$$

Bayesian information criterion (BIC):

$$BIC = \frac{1}{n\hat{\sigma}^2}(SSE_d + \log(n)d\hat{\sigma}^2)$$

• Other criteria: other IC's, adjusted R^2

An illustrative example

An illustrative example

Question: Any drawbacks?

Forward/backward selection

- Forward selection
 - ① Let \mathcal{M}_0 denote the null model, which contains no predictors
 - ② For k = 1, ...
 - Fit all models that contain \mathcal{M}_{k-1} plus one additional predictor not in \mathcal{M}_{k-1}
 - **b** Pick the best among these models and call it \mathcal{M}_k
 - Terminate if \mathcal{M}_k is worse than \mathcal{M}_{k-1} under certain model selection criterion

Forward/backward selection

- Forward selection
 - 1 Let \mathcal{M}_0 denote the null model, which contains no predictors
 - ② For k = 1,...
 - Fit all models that contain \mathcal{M}_{k-1} plus one additional predictor not in \mathcal{M}_{k-1}
 - **b** Pick the best among these models and call it \mathcal{M}_k
 - Terminate if \mathcal{M}_k is worse than \mathcal{M}_{k-1} under certain model selection criterion
- ullet Backward selection starts with \mathcal{M}_p and iteratively delete predictors until the best model is found
- Stagewise selection mixes forward addition and backward deletion in each iteration

Some remarks

- Forward/backward selection is computationally more efficient than subset selection
- It has no guarantee of the best possible model
- It usually performs well in practice
- Forward versus backward selection

Shrinkage methods

Shrinkage methods are formulated as

$$(\hat{\beta}_0, \hat{\beta}) = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i^T \beta)^2 + \lambda J(\beta)$$

 ${\mathfrak P}$ Various choices of $J({\beta})$ lead to different shrinkage methods and possess different properties

Shrinkage methods

Shrinkage methods are formulated as

$$(\hat{\beta}_0, \hat{\beta}) = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i^T \beta)^2 + \lambda J(\beta)$$

- \bullet Various choices of $J(\beta)$ lead to different shrinkage methods and possess different properties
- After centralization, it becomes

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda J(\beta)$$

 \bullet Ridge regression uses an L_2 -norm penalty, $\|\beta\|^2 = \sum_{j=1}^p \beta_j^2 = \beta^T \beta$,

$$\hat{\beta}_{\lambda}^{\textit{ridge}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ (\mathbf{y} - \mathbf{X} \, \boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \, \boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|^2$$

ullet Ridge regression uses an L_2 -norm penalty, $\|eta\|^2 = \sum_{j=1}^p eta_j^2 = eta^Teta$,

$$\hat{\beta}_{\lambda}^{\textit{ridge}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ (\mathbf{y} - \mathbf{X} \, \boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \, \boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|^2$$

- The second term, $\lambda \|\beta\|^2$, is a shrinkage penalty, which shrinks the estimates of β towards zero
- \circ The tuning parameter $\lambda>0$ controls the trade-off between regression fitting and coefficient shrinkage
- If $\lambda=0$, ridge regression produces LSE; if $\lambda\to\infty$, estimates of β will approach zero

Solution of the ridge regression is

$$\hat{eta}_{\lambda}^{\mathit{ridge}} = (\mathbf{X}^{T}\,\mathbf{X} + \lambda \mathit{I}_{\mathit{p}})^{-1}\mathbf{X}^{T}\,\mathbf{y}$$

Solution of the ridge regression is

$$\hat{eta}_{\lambda}^{ extit{ridge}} = (\mathbf{X}^{ extit{T}} \, \mathbf{X} + \! \lambda I_p)^{-1} \mathbf{X}^{ extit{T}} \, \mathbf{y}$$

An equivalent formulation,

$$\hat{eta}_{\lambda}^{ridge} = \underset{eta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X} \, eta)^T (\mathbf{y} - \mathbf{X} \, eta)$$
subject to $\|eta\|^2 \leq s$

Effective degree of freedom

• The effective degree of freedom (df) of the ridge regression is

$$df(\hat{\mathbf{f}}_{\lambda}) = \operatorname{tr}(\mathbf{X}(\mathbf{X}^T \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^T) = \sum_{j=1}^p \frac{d_j^2}{d_j^2 + \lambda}$$

where $\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^T$ is the SVD decomposition of \mathbf{X} , and d_j 's are the diagonal entries of \mathbf{D}

An example

• In general, $\hat{\beta}_{\lambda}$ is a biased estimator that may have smaller MSE than the LSE estimator

|□▶◀疊▶◀불▶◀불▶ | 불 | 쒸익(C

Lasso

ullet The lasso uses an L_1 -norm penalty, $\|eta\|_1 = \sum_{j=1}^p |eta_j|$,

$$\hat{\beta}^{\textit{lasso}} = \underset{\beta}{\operatorname{argmin}} \ (\mathbf{y} - \mathbf{X} \, \beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \, \beta) + \lambda \|\beta\|_{1}$$

Or equivalently,

$$\hat{eta}^{\textit{lasso}} = \operatorname*{argmin}_{eta} (\mathbf{y} - \mathbf{X} \, eta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \, eta)$$
subject to $\|eta\|_1 \leq s$

 No explicit solution in general, and a quadratic programming (QP) algorithm can be used to solve the optimization problem

Sparse solution

 Some coefficients of the lasso solution will become exactly zero, and thus it does some kind of continuous variable selection

Example: Prostate cancer

Left: ridge regression; Right: lasso regression

Ridge vs Lasso

- Both lasso and ridge regression will shrink estimated coefficients while introducing some bias
- The lasso produces simpler and more interpretable models that involve only a subset of predictors
- It is unclear which one leads to better prediction accuracy in general though

An orthogonal case

Consider a simple case with n=p and $\mathbf{X}=\mathbf{I}_p$, then $\hat{\beta}_j^{ols}=y_j$,

ullet Ridge regression multiplies \hat{eta}_j^{ridge} by a constant, $\hat{eta}_j^{ridge}=y_j/(1+\lambda)$

An orthogonal case

Consider a simple case with n=p and $\mathbf{X}=\mathbf{I}_p$, then $\hat{eta}_j^{ols}=y_j$,

- ullet Ridge regression multiplies \hat{eta}_j^{ridge} by a constant, $\hat{eta}_j^{ridge} = y_j/(1+\lambda)$
- Lasso truncates $\hat{\beta}_j^{ridge}$ towards zero by a constant, $\hat{\beta}_i^{lasso} = \text{sign}(y_j)(|y_j| \lambda/2)_+$

An orthogonal case

Consider a simple case with n = p and $\mathbf{X} = \mathbf{I}_p$, then $\hat{\beta}_j^{ols} = y_j$,

- ullet Ridge regression multiplies \hat{eta}_j^{ridge} by a constant, $\hat{eta}_j^{ridge}=y_j/(1+\lambda)$
- Lasso truncates $\hat{\beta}_j^{ridge}$ towards zero by a constant, $\hat{\beta}_i^{lasso} = \text{sign}(y_j)(|y_j| \lambda/2)_+$

Bridge estimators

With
$$L_r(\beta) = \sum_{j=1}^p |\beta_j|^r$$
,
$$\hat{\beta}^{bridge} = \operatorname*{argmin}_{\beta} \| \mathbf{y} - \mathbf{X} \, \beta \|^2 + \lambda L_r(\beta)$$

- $L_0(\beta) = \sum_{j=1}^p I(\beta_j \neq 0)$; (Hard thresholding)
- \bullet $L_1(eta) = \sum_{j=1}^p |eta_j|$; (Lasso)
- $L_2(\beta) = \sum_{j=1}^p \beta_j^2$; (Ridge regression)
- $L_{\infty}(\beta) = \max_{j} |\beta_{j}|$.

Nonnegative garrote

$$\min_{c} \frac{1}{2} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} c_j \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} c_j$$

subject to $c_j \geq 0$, and then $\hat{\beta}_j^{ng} = \hat{c}_j \hat{\beta}_j$.

Nonnegative garrote

$$\min_{c} \frac{1}{2} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} c_j \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} c_j$$

subject to $c_j \geq 0$, and then $\hat{eta}_j^{ng} = \hat{c}_j \hat{eta}_j$.

The resulting estimator is

$$\hat{eta}_j^{\mathsf{ng}} = \left(1 - rac{\lambda}{2\hat{eta}_j^2}
ight)_+ \hat{eta}_j$$

- ullet It is almost unbiased for large $|\hat{eta}_j|$
- ullet It shrinks small $|\hat{eta}_i|$ to zero

Other extensions

 \circ Group lasso: if the p variables are partitioned into J groups, and then it is desirable to include or exclude the whole group

$$\min_{\beta} \ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \, \beta \|^2 + \lambda \sum_{j=1}^J \| \vec{\beta_j} \|_2,$$

where $ec{eta_j}$ is a coefficient vector for the j-th group

Other extensions

ullet Group lasso: if the p variables are partitioned into J groups, and then it is desirable to include or exclude the whole group

$$\min_{\beta} \ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 + \lambda \sum_{j=1}^J \| \vec{\beta_j} \|_2,$$

where $ec{eta}_j$ is a coefficient vector for the j-th group

• Elastic net:

$$\min_{\beta} \ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \beta \|^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$$

Other extensions

 \circ Group lasso: if the p variables are partitioned into J groups, and then it is desirable to include or exclude the whole group

$$\min_{\beta} \ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 + \lambda \sum_{j=1}^J \| \vec{\beta_j} \|_2,$$

where $\vec{\beta_j}$ is a coefficient vector for the *j*-th group

• Elastic net:

$$\min_{\beta} \ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \, \beta \|^2 + \lambda_1 \| \beta \|_1 + \lambda_2 \| \beta \|_2^2$$

Fused lasso: penalize the difference between adjacent coef's

$$\min_{\boldsymbol{\beta}} \ \frac{1}{2} \| \, \mathbf{y} - \mathbf{\chi} \, \boldsymbol{\beta} \|^2 + \lambda \sum_{j=2}^p \| \beta_j - \beta_{j-1} \|_1,$$