

#### Click Through Rate Prediction ML Analysis

• Name Vatsal Raicha

• Date 13<sup>th</sup> November 2022

• Course Master of Science in Data Science

upGrad / University of Arizona

• Email <u>vatsalraicha@arizona.edu</u>

vatsalraicha@outlook.com





# Agenda

- Objective
- Approach
- Observation
- Recommendations

# Objective

To predict whether a user will click on an ad or not.

## Approach

- Perform Exploratory Data Analysis
  - Most appearing categories for each column etc.
- Perform Data Cleaning
- Perform Feature removal (Remove Columns that may not be of use)
- Perform Scaling
- Apply Decision Tree Classifier
- Apply Random Forest Classifier
- Apply XGBoost Classifier
- Others Gradient Boost Classifier, Adaboost and Bagging exercises
- Document Observations.
- Make recommendations.

## **EDA**





### **EDA**





154

0.15

46.767468

-1

20

C20

int64

### **EDA**

- Columns day, dayoftheweek, hour, month will be retained
- Columns app\_id, device\_ip, device\_model, site\_id and site\_id have too many unique values and their most
  appearing value doesn't account for a lot of data, hence I would drop these.

|    | Column       | MostAppearingValue | Percentage | Col_Mean | Col_Max   | Col_Min | ColRepresentationOfData | Col_UniqueValues |
|----|--------------|--------------------|------------|----------|-----------|---------|-------------------------|------------------|
| 17 | device_ip    | 6b9769f2           | 0.521005   | 0.001282 | 0.521005  | 0.001   | 1.547015                | 78013            |
| 18 | device_model | 8a4875bd           | 6.041060   | 0.031797 | 6.041060  | 0.001   | 16.482165               | 3145             |
| 24 | site_id      | 85f751fd           | 36.022360  | 0.067340 | 36.022360 | 0.001   | 63.162632               | 1485             |
| 11 | app_id       | ecad2386           | 63.977640  | 0.073855 | 63.977640 | 0.001   | 74.446744               | 1354             |
| 23 | site_domain  | c4e18dd6           | 37.362374  | 0.075131 | 37.362374 | 0.001   | 67.180672               | 1331             |
|    |              |                    |            |          |           |         | 1                       | '                |

## Data Cleaning/Preparation/Formatting

For Columns – app\_domain, app\_category, site\_category, device\_id, lets look at their top 5 unique values

| Column<br>Values | app_domain<br>MostAppearingValue | Percentage | app_category<br>MostAppearingValue | Percentage | site_category<br>MostAppearingValue | Percentage | device_id<br>MostAppearingValue | Percentage |
|------------------|----------------------------------|------------|------------------------------------|------------|-------------------------------------|------------|---------------------------------|------------|
| 0                | 7801e8d9                         | 67.464675  | 07d7df22                           | 64.769648  | 50e219e0                            | 40.839408  | a99f214a                        | 82.579826  |
| 1                | 2347f47a                         | 12.893129  | 0f2161f8                           | 23.644236  | f028772b                            | 31.408314  | c357dbff                        | 0.062001   |
| 2                | ae637522                         | 4.701047   | cef3e649                           | 4.300043   | 28905ebd                            | 18.107181  | 0f7c61dc                        | 0.051001   |
| 3                | 5c5a694b                         | 2.850029   | 8ded1f7a                           | 3.519035   | 3e814130                            | 7.668077   | afeffc18                        | 0.034000   |
| 4                | 82e27996                         | 1.889019   | f95efa07                           | 2.868029   | f66779e6                            | 0.634006   | 936e92fb                        | 0.027000   |

We will replace the remaining values in these columns while maintaining the proportion of the spread of these 5
unique values. Result is -

| Column<br>Values | app_domain<br>MostAppearingValue | Percentage | app_category<br>MostAppearingValue | Percentage | site_category<br>MostAppearingValue | Percentage | device_id<br>MostAppearingValue | Percentage |
|------------------|----------------------------------|------------|------------------------------------|------------|-------------------------------------|------------|---------------------------------|------------|
| 0                | 7801e8d9                         | 77.666777  | 07d7df22                           | 65.668657  | 50e219e0                            | 41.391414  | a99f214a                        | 99.825998  |
| 1                | 2347f47a                         | 12.893129  | 0f2161f8                           | 23.644236  | f028772b                            | 31.833318  | c357dbff                        | 0.062001   |
| 2                | ae637522                         | 4.701047   | cef3e649                           | 4.300043   | 28905ebd                            | 18.354184  | 0f7c61dc                        | 0.051001   |
| 3                | 5c5a694b                         | 2.850029   | 8ded1f7a                           | 3.519035   | 3e814130                            | 7.775078   | afeffc18                        | 0.034000   |
| 4                | 82e27996                         | 1.889019   | f95efa07                           | 2.868029   | f66779e6                            | 0.646006   | 936e92fb                        | 0.027000   |
|                  |                                  |            |                                    |            |                                     |            |                                 |            |

• These unique values will now simply be replaced with 0,1,2,3,4, so that they are not strings anymore.

via this I was able to avoid unnecessary hashing and represent the data in almost the same way

# Scaling and prepping data for Model Building

- Rest of the columns will be kept, scaled
- Train Test Datasets will be created

# Scaling and prepping data for Model Building

- Rest of the columns will be kept, scaled
- Train Test Datasets will be created

## Model Performance – XGBoost

• XGBoost Slightly outperformed Random Forest

#### **Confusion Matrix**



#### Classification Report

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.84      | 0.99   | 0.91     | 24906   |
| 1            | 0.56      | 0.07   | 0.12     | 5094    |
|              |           |        | 0.07     | 70000   |
| accuracy     |           |        | 0.83     | 30000   |
| macro avg    | 0.70      | 0.53   | 0.51     | 30000   |
| weighted avg | 0.79      | 0.83   | 0.77     | 30000   |
|              |           |        |          |         |

#### **Evaluation metrics**



#### ROC AUC Score of 0.709



#### ROC Curve

- The figure shows the ROC curve of all the models tested. Higher the value of AUC, better the model is at predicting our classes.
- We can infer that ADA boost classifier has the highest AUC curve, which makes it the best among the others
- Single decision tree has the lowest AUC, as expected.

#### **Confusion Matrix**

- The confusion matrix clearly shows that the model is able to predict majority of class 0 and 1 correctly
- However further improvements can be made to reduce the false negative rate
- This can be achieved by feeding more class 1 examples for our model to learn from





#### What to look out for?

- A false negative predicted by our model indicates that the user has actually clicked the ad but the model predicted otherwise.
- This could potentially cause loss of revenue as we will not be able to target our audience with relevant ads and solutions.
- A false positive predicted by our model indicates that the user has not clicked ad yet our model predicted otherwise.
- This could lead to wrong ads pushed to our target audience, which indirectly would lead to loss of business.
- Further data and analysis must be invested to reduce FPR and FNR.

# Thank You!!!

# Appendix

Python Notebook built using DataSpell attached.