

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 40 35 455 A 1

⑮ Int. Cl. 5:
C 07 D 401/12
C 07 D 491/056
C 07 H 15/18
// (C07D 401/12,
235:28,213:34) (C07D
491/056,235:00,
325:00)

⑯ Aktenzeichen: P 40 35 455.5
⑯ Anmeldetag: 8. 11. 90
⑯ Offenlegungstag: 14. 5. 92

⑯ Anmelder:
Byk Gulden Lomberg Chemische Fabrik GmbH, 7750
Konstanz, DE

⑯ Erfinder:
Kohl, Bernhard, Dr.; Senn-Bilfinger, Jörg, Dr., 7750
Konstanz, DE

⑯ Enantiomerentrennung

⑯ Die Erfindung betrifft konfigurativer einheitliche, enantiomer
reine Pyridylmethylsulfinyl-1H-benzimidazole, ein Verfahren
zu ihrer Herstellung und neue Zwischenprodukte, die in dem
Verfahren benötigt werden.

DE 40 35 455 A 1

DE 40 35 455 A 1

Beschreibung

Anwendungsgebiet der Erfindung

5 Die Erfindung betrifft ein Verfahren zur Auftrennung von chiralen Pyridylmethylsulfinyl-1H-benzimidazolen in ihre Enantiomeren. Die Enantiomeren werden in der pharmazeutischen Industrie zur Herstellung von Medikamenten verwendet.

10 Stand der Technik

In einer Vielzahl von Patentanmeldungen und Patenten werden Pyridylmethylsulfinyl-1H-benzimidazole beschrieben, die magensäuresekretionshemmende Eigenschaften besitzen. Im Zusammenhang mit der vorliegenden Erfindung seien hier beispielsweise die folgenden Patentanmeldungen und Patente erwähnt: EP-B-5 129, EP-A-1 34 400 (= USP 45 55 518), EP-A-1 27 763 (= USP 45 60 693), EP-B-1 66-287 (= USP 47 58 579), EP-A-1 74 726, EP-A-2 01 575 (= USP 46 86 230), WO89/05 299 und WO89/11 479. — Es ist weiterhin bekannt, daß diese Pyridylmethylsulfinyl-1H-benzimidazole ein Chiralitätszentrum besitzen und daß sie daher in ihre Enantiomeren trennbar sein sollten. Trotz der Vielzahl von Patentanmeldungen auf dem Gebiet der Pyridylmethylsulfinyl-1H-benzimidazole ist bisher jedoch noch kein Verfahren beschrieben worden, mit dessen Hilfe die Pyridylmethylsulfinyl-1H-benzimidazole in die optischen Antipoden getrennt werden könnten. Auch die Enantiomeren der Pyridylmethylsulfinyl-1H-benzimidazole sind bisher (mangels eines geeigneten Trennverfahrens) noch nicht isoliert und charakterisiert worden.

Beschreibung der Erfindung

25 Es wurde nun ein Verfahren gefunden, mit dessen Hilfe die nachstehend näher bezeichneten Pyridylmethylsulfinyl-1H-benzimidazole in ihre optischen Antipoden gespalten werden können.
Das Verfahren ist dadurch gekennzeichnet, daß man Verbindungen der Formel I,

worin
40 R1 Wasserstoff, 1-4C-Alkyl oder 1-4C-Alkoxy bedeutet,
R2 Wasserstoff, Trifluormethyl, 1-4C-Alkyl, 1-4C-Alkoxy, ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy, Chlordifluormethoxy, 2-Chlor-1,1,2-trifluormethoxy oder gemeinsam mit R3 gewünschtenfalls ganz oder teilweise durch Fluor substituiertes 1-2C-Alkyldioxy oder Chlortrifluorethylendioxy bedeutet,
45 R3 Wasserstoff, 1-4C-Alkyl, 1-4C-Alkoxy, ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy, Chlordifluormethoxy, 2-Chlor-1,1,2-trifluorethoxy oder gemeinsam mit R2 gewünschtenfalls ganz oder teilweise durch Fluor substituiertes 1-2C-Alkyldioxy oder Chlortrifluorethylendioxy bedeutet,
R4 Wasserstoff oder 1-4C-Alkyl bedeutet,
R5 Wasserstoff, 1-4C-Alkyl oder 1-4C-Alkoxy bedeutet und
50 R6 1-4C-Alkoxy, ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy oder Benzyloxy bedeutet, oder ihre Salze mit Basen mit konfigurativer einheitlich chiralen Verbindungen der Formel II,

Rchi-X (II)

worin Rchi einen konfigurativen einheitlichen, chiralen Rest und X eine Abgangsgruppe darstellt, umsetzt, das
55 erhaltenen Isomeren- bzw. Diastereomerengemisch III,

65 worin R1, R2, R3, R4, R5 und R6 die oben angegebenen Bedeutungen haben und Rchi einen konfigurativen einheitlichen, chiralen Rest darstellt, trennt und aus den optisch reinen Diastereomeren die konfigurativen einheitlichen, optisch reinen Verbindungen I durch Solvolyse in stark saurem Medium freisetzt.

1-4C-Alkyl steht für geradkettige oder verzweigte Alkylreste; beispielsweise seien der Butyl-, i-Butyl-, sec.-Butyl-, t-Butyl-, Propyl-, Isopropyl-, Ethyl- und insbesondere der Methylrest genannt.

1-4C-Alkoxy steht für geradkettige oder verzweigte Alkoxyreste; beispielsweise seien genannt der Butoxy-, i-Butoxy-, sec.-Butoxy-, t-Butoxy-, Propoxy-, Isopropoxy-, Ethoxy- und insbesondere der Methoxyrest.

Als ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy seien beispielsweise der 1,2,2-Trifluorethoxy-, der 2,2,3,3,3-Pentafluorpropoxy-, der Perfluorethoxy- und insbesondere der 1,1,2,2-Tetrafluorethoxy-, der Trifluormethoxy-, der 2,2,2-Trifluorethoxy- und der Difluormethoxyrest genannt.

Wenn R₂ und R₃ gemeinsam ganz oder teilweise durch Fluor substituiertes 1-2C-Alkylendioxy oder Chlortrifluorethylendioxy bedeuten, so sind die Substituenten R₂ oder R₃ in Nachbarpositionen am Benzoleil des Benzimidazolringes gebunden.

Als ganz oder teilweise durch Fluor substituiertes 1-2C-Alkylendioxy seien beispielsweise der 1,1-Difluorethylendioxy- ($-\text{O}-\text{CF}_2-\text{CH}_2-\text{O}-$), der 1,1,2,2-Tetrafluorethylendioxy- ($-\text{O}-\text{CF}_2-\text{CF}_2-\text{O}-$) und insbesondere der Difluormethylendioxy- ($-\text{O}-\text{CF}_2-\text{O}-$) und der 1,1,2-Trifluorethylendioxyrest ($-\text{O}-\text{CF}_2-\text{CHF}-\text{O}-$) genannt.

Als Verbindungen der Formel II kommen prinzipiell alle chiralen, konfigurativ einheitlichen Verbindungen in Frage, die mit der Verbindung I oder ihrem Anion unter Abspaltung der Abgangsgruppe X zu reagieren in der Lage sind und deren Rest R_{chi} nach der Diastereomerentrennung glatt und ohne unerwünschte Nebenreaktion wieder abgespalten werden kann.

Als Abgangsgruppen X kommen insbesondere alle nucleophil ablösbarer Atome oder Gruppen, wie beispielsweise Halogenatome (J, Br oder insbesondere Cl) oder durch Veresterung (z. B. mit Sulfonsäuren) aktivierte Hydroxylgruppen ($-\text{O}-\text{SO}_2-\text{CH}_3$, $-\text{O}-\text{SO}_2-\text{CF}_3$ oder $-\text{O}-\text{SO}_2-\text{C}_6\text{H}_4-\text{p}-\text{CH}_2$) in Frage.

Als Reste R_{chi} kommen alle konfigurativ einheitlichen Reste in Frage, die sich von natürlich vorkommenden oder synthetisch zugänglichen chiralen Verbindungen ableiten lassen und die solvolytisch unter sauren Bedingungen aus den Verbindungen III abgespalten werden können. Als Reste R_{chi} seien insbesondere genannt

- Glycosylreste, die sich von Glycopyranosiden, Glycofuranosiden oder Oligosacchariden ableiten und die gewünschtenfalls mit in der Kohlenhydratchemie üblichen Schutzgruppen teilweise oder vollständig geschützt sind, oder
- chirale, über das Sauerstoffatom verknüpfte Terpenalkoholreste, oder
- andere chirale, über das Sauerstoffatom verknüpfte Alkoholreste,

die jeweils an dem als Verknüpfungsglied fungierenden Sauerstoffatom eine Carbonylgruppe oder insbesondere eine Methylengruppe tragen.

Bevorzuge Reste R_{chi} sind Reste der Formel IV

worin R' gemeinsam mit dem Sauerstoffatom, woran es gebunden ist, einen Glycosylrest, einen chiralen Terpenalkoholrest, oder einen sonstigen chiralen Alkoholrest darstellt.

Als Glycosylreste R'-O- seien beispielsweise die Reste genannt, die sich von natürlich vorkommenden Mono- oder Disacchariden, wie Arabinose, Fructose, Galactose, Glucose, Lactose, Mannose, Ribose, Xylose, Maltose, Sorbose oder N-Acetyl-D-glucosamin herleiten.

Als chirale Terpenalkoholreste R'-O- seien insbesondere solche Reste genannt, die sich von einem natürlich vorkommenden oder synthetisch leicht zugänglichen Terpenalkohol herleiten. Als beispielhafte Terpenalkohole seien hierbei genannt: Isopulegol, Neomenthol, Isomenthol, Menthol, Carveol, Dihydrocarveol, Terpinen-4-ol, Mirtenol, Citronellol, Isoborneol, Borneol, Isopinocampheol und insbesondere Fenchol.

Als sonstige chirale Alkoholreste R'-O- seien beispielsweise die Reste genannt, die sich von folgenden Alkoholen herleiten: Mandelsäureester, Cinchonidin, Cinchonin, Ephedrin, Serinmethylester, Sitosterol, 3-Hydroxy-2-methyl-propionsäuremethylester und Milchsäureethylester.

Ein besonders bevorzugter Rest R_{chi} ist der Fenchyloxyethylrest.

Die Umsetzung der Verbindung I mit der Verbindung II erfolgt auf eine dem Fachmann vertraute Weise. Zur Erhöhung der Nucleophilie der Verbindungen I ist es zweckmäßig, diese zu deprotonieren, d. h. von den Salzen der Verbindungen I mit Basen auszugehen. Als Beispiele für basische Salze seien Natrium-, Kalium-, Calcium-, Aluminium-, Magnesium-, Titan-, Ammonium- oder Guanidiniumsalze erwähnt, die beispielsweise durch Umsetzung der Verbindungen I mit den entsprechenden Hydroxiden (z. B. Natriumhydroxid oder Kaliumhydroxid) auf übliche Weise erhalten werden können.

Die Umsetzung der Verbindungen I mit Verbindungen II wird in inertem, protischen oder aprotischen Lösungsmitteln durchgeführt. Als solche eignen sich beispielsweise Methanol, Isopropanol, Dimethylsulfoxid, Aceton, Acetonitril, Dioxan, Dimethylformamid und vorzugsweise N-Methylpyrrolidon.

Die Umsetzung wird — in Abhängigkeit von der Reaktivität der Verbindung II — vorzugsweise bei Temperaturen zwischen -30°C und +100°C, insbesondere bei Temperaturen zwischen 0°C und 50°C durchgeführt.

Die Trennung des nach der Umsetzung von I mit II erhaltenen Diastereomerengemisches erfolgt in an sich bekannter Weise, beispielsweise durch Chromatographie an geeigneten Säulen oder vorzugsweise durch fraktionierte Kristallisation.

Aufgrund der Prototropie im Benzimidazolteil der Verbindungen I (die 5- und 6-Positionen einerseits bzw. die 4- und 7-Positionen andererseits sind zueinander identisch) entstehen bei der Umsetzung mit den Verbindungen II bei entsprechendem Substitutionsmuster im Benzimidazol Isomerengemische. Zweckmäßigerweise werden die Isomeren noch vor Trennung der Diastereomeren voneinander getrennt, beispielsweise durch Säulen-

chromatographie an geeignetem Trägermaterial (z. B. Kieselgel) und mit geeigneten Elutionsmitteln (z. B. Ethylacetat).

Die Freisetzung der konformativ einheitlichen Verbindungen I aus den optisch reinen Diastereomeren III erfolgt durch Solvolyse unter stark sauren Bedingungen. Als für die Solvolyse geeignete Reagenzien seien beispielsweise starke höherkonzentrierte Säuren (z. B. 60–100%ige Schwefelsäure, konzentrierte Salzsäure, wasserfreie oder wasserhaltige Tetrafluorborsäure, Methansulfonsäure, Trifluormethansulfonsäure, Phosphorsäure oder Perchlorsäure), bevorzugt ca. 90%ige Schwefelsäure genannt. Die Freisetzung erfolgt vorzugsweise bei Temperaturen zwischen 0° und 40° C. Bei der auf die Freisetzung folgenden Aufarbeitung wird vorteilhaftweise so verfahren, daß der pH-Wert möglichst rasch erhöht wird, beispielsweise durch Einbringen der stark sauren Lösung in Pufferlösung oder bevorzugt in Lauge.

Die Verbindungen der Formel II sind bekannt bzw. sie sind auf eine für den Fachmann vertraute Weise aus bekannten Verbindungen auf analoge Weise zugänglich. So können beispielsweise die Verbindungen II, in denen R_{chi} die Bedeutung der Formel IV hat und X ein Chloratom darstellt, durch Chlormethylierung entsprechender Alkohole [z. B. in Analogie zu R. C. Ronald et. al., J. Org. Chem. 45 (1980) 2224] hergestellt werden.

Die Verbindungen der Formel III sind neu und ebenfalls Gegenstand der Erfindung.

Die konformativ einheitlichen, optisch reinen Verbindungen der Formel I sind ebenfalls neu und daher auch Gegenstand der Erfindung.

Als beispielhafte, durch das erfindungsgemäße Verfahren herstellbare, optisch reine Verbindungen der Formel I und als dazugehörige erfindungsgemäße Zwischenprodukte III seien anhand der Substituentenbedeutungen in den obenstehenden Formeln I bzw. III die folgenden Verbindungen der nachstehenden Tabelle 1 besonders erwähnt:

25

30

35

40

45

50

55

60

65

Tabelle 1

R1	R2, R3		R4	R5	R6	5
H	S-CF ₃	H	H	H	4-OCH ₃	
H	S-CF ₃	H	3-CH ₃	H	4-OCH ₃	
H	S-CF ₃	H	3-CH ₃	5-CH ₃	4-OCH ₃	10
H	S-OCH ₃	H	3-CH ₃	5-CH ₃	4-OCH ₃	
H	5,6-O—CH ₂ —O—		H	H	4-OCH ₃	
H	5,6-O—CH ₂ —CH ₂ —O—		H	H	4-OCH ₃	15
H	H	5-OCF ₃	H	H	4-OCH ₃	
H	H	5-OCF ₃	3-CH ₃	H	4-OCH ₃	
H	H	5-OCF ₃	H	5-CH ₃	4-OCH ₃	20
H	H	5-OCF ₂ CF ₂ H	H	H	4-OCH ₃	
H	H	5-OCF ₂ CF ₂ H	3-CH ₃	H	4-OCH ₃	
H	H	5-OCF ₃	3-CH ₃	5-CH ₃	4-OCH ₃	25
H	H	5-OCH ₂ CF ₃	3-CH ₃	H	4-OCH ₃	
H	H	5-OCF ₂ H	3-CH ₃	H	4-OCH ₃	
H	5-OCF ₂ H	6-OCF ₂ H	H	H	4-OCH ₃	30
H	5-OCF ₂ H	6-OCF ₂ H	3-CH ₃	H	4-OCH ₃	
H	S-OCH ₃	6-OCF ₂ H	3-CH ₃	H	4-OCH ₃	
H	H	5-OCF ₂ Cl	H	H	4-OCH ₃	35
H	5,6-O—CF ₂ —O—		H	H	4-OCH ₃	
H	5,6-O—CF ₂ —O—		3-CH ₃	H	4-OCH ₃	
H	5,6-O—CF ₂ —CHF—O—		H	H	4-OCH ₃	
H	5,6-O—CF ₂ —CHF—O—		3-CH ₃	H	4-OCH ₃	40
H	5,6-O—CF ₂ —O—		H	5-CH ₃	4-OCH ₃	
H	5,6-O—CF ₂ —CHF—O—		3-CH ₃	5-CH ₃	4-OCH ₃	
H	5,6-O—CF ₂ —CFCI—O—		3-CH ₃	H	4-OCH ₃	45
4-CH ₃	6-CH ₃	5-OCF ₂ H	3-CH ₃	H	4-OCH ₃	
H	S-OCH ₃	6-OCF ₂ H	H	H	4-OCH ₃	
H	H	5-OCF ₂ CF ₂ H	H	H	4-OCH ₃	50
H	5,6-O—CF ₂ —O—		H	H	4-OCH ₃	
H	H	5-OCF ₂ CCIFH	H	H	4-OCH ₃	
H	H	5-OCF ₂ CCIFH	H	H	4-OCH ₃	55
H	H	5-OCF ₂ CCIFH	3-CH ₃	H	4-OCH ₃	
4-CH ₃	6-CH ₃	5-OCF ₂ H	H	3-CH ₃	4-OCH ₃	
H	H	5-OCF ₂ H	H	3-OCH ₃	4-OCH ₃	60
H	H	5-OCF ₂ H	3-CH ₃	5-OCH ₃	4-OCH ₃	
H	H	5-OCF ₃	3-CH ₃	5-OCH ₃	4-OCH ₃	
H	H	5-OCF ₂ CF ₂ H	H	3-OCH ₃	4-OCH ₃	65
H	H	5-OCH ₂ CF ₃	H	3-OCH ₃	4-OCH ₃	
H	S-OCH ₃	6-OCF ₂ H	H	3-OCH ₃	4-OCH ₃	

R1	R2, R3	R4	R5	R6
H	5,6-O—CF ₂ —O—	H	3-OCH ₃	4-OCH ₃
5	H 5,6-O—CF ₂ —CHF—O—	H	3-OCH ₃	4-OCH ₃
H	H 5-OCF ₃	H	5-OCH ₃	4-OCH ₃
10	H H 5-OCF ₂ CF ₂ H	H	5-OCH ₃	4-OCH ₃
H	5,6-O—CF ₂ —O—	H	5-OCH ₃	4-OCH ₃
15	H 5,6-O—CF ₂ —O—	H	4-OCH ₃	5-OCH ₂ —
H	H 5-OCF ₂ H	H	3-OCH ₃	4-OCH ₂ —
20	H H 5-OCF ₂ H	3-CH ₃	4-OCH ₃	3-OCH ₂ —
H	H 5-OCF ₂ H	H	3-OCH ₃	4-OCH ₂ CF ₃
25	H H 5-OCF ₂ H	H	3-CH ₃	4-OCH ₂ CF ₃
H	H 5-OCH ₂ CF ₃	H	3-CH ₃	4-OCH ₂ CF ₃
H	5,6-O—CF ₂ —O—	H	3-CH ₃	4-OCH ₂ CF ₃

30

Besonders bevorzugte, durch das erfindungsgemäße Verfahren herstellbare Verbindungen sind die Verbindungen

35 (+)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol,
 (-)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol,
 (+)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol,
 (-)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol,
 (+)-2-[(3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl)methyl]sulfinyl-1H-benzimidazol, und
 40 (-)-2-[(3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl)methyl]sulfinyl-1H-benzimidazol,

und ihre Salze mit Basen.

Die folgenden Beispiele dienen der näheren Erläuterung der Erfindung. Die Abkürzung h steht für Stunde(n), Schmp. für Schmelzpunkt.

45

Beispiele

1. (+)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1-[(+)-fenchyloxymethyl]-benzimidazol

50

Zu einer Lösung von 50 g (0,123 Mol) (\pm)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Na-Salz in 125 ml N-Methylpyrrolidon tropft man bei einer Temperatur von 25–35°C innerhalb einer Stunde 27,5 g (0,136 Mol) (+)-Fenchyl-chlormethylether zu. Nach 6 h wird mit 500 ml Wasser verdünnt, der pH-Wert auf 9,0 gestellt und dreimal mit je 100 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit Wasser gewaschen, getrocknet und im Vakuum vollständig eingeengt. Der ölige Rückstand wird an Kieselgel chromatographiert (Laufmittel: Ethylacetat). Man isoliert 25,2 g (74%) eines Diastereomerengemisches aus (+)- und (-)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1-[(+)-fenchyloxymethyl]-benzimidazol als blaßgelbes, allmählich kristallisierendes Öl (Rf.-Wert in Ethylacetat ca. 0,85). Viermalige Umkristallisation aus Ethylacetat/Diisopropylether liefert die Titelverbindung (9,0 g 60 71,4%) in Form farbloser Kristalle vom Schmp. 138–139°C [α]_D²⁵ = +155,2° (c = 1, Chloroform).

2. (+)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol

65 1,0 g (1,8 mMol) (+)-4-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1-[(+)-fenchyloxymethyl]-benzimidazol werden portionsweise bei 5–10°C unter Rühren in 7 ml 90%ige Schwefelsäure eingetragen. Nach vollständiger Auflösung wird das Reaktionsgemisch unter Kühlung in 8N Natronlauge eingetropt, der pH auf 7,5 gestellt und mehrmals mit Dichlormethan extrahiert. Die vereinigten Extrakte werden mit Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum vollständig eingeengt. Der rote ölige Rückstand

wird über Kieselgel chromatographiert (Dichlormethan/Methanol) und anschließend aus Diisopropylether kristallisiert. Man erhält 0,3 g (44%) der Titelverbindung als farbloses Kristallisat vom Schmp. 147–148°C (Zers.) $[\alpha]_D^{25} = +146,0^\circ$ (c=0,5, Acetonitril/Methanol 1:1).

3.

(–)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1-[(–)-fencyloxyethyl]-benzimidazol

Nach der in Beispiel 1 beschriebenen Arbeitsweise erhält man durch Umsetzung von 28 g (0,069 Mol) (\pm)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Na-Salz mit 16,5 g (0,084 Mol) (–)-Fenchylchloromethylether in 75 ml N-Methylpyrrolidon nach Chromatographie an Kieselgel (Dichlormethan/Methanol) 11,0 (58%) eines Diastereomerengemisches aus (+)- und (–)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)-methyl]sulfinyl]-1-[(–)-fencyloxyethyl]-benzimidazol. Mehrmalige Umkristallisation aus Ethylacetat/Diisopropylether liefert die Titelverbindung in Form farbloser Kristalle (4,0 g, 72%) vom Schmp. 138–139°C $[\alpha]_D^{25} = -152,8^\circ$ (c=1, Chloroform).

5

10

15

4. (–)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol

Nach der in Beispiel 2 beschriebenen Arbeitsweise erhält man aus 1 g (1,8 mMol) (–)-5-Difluormethoxy-2-[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1-[(–)-fencyloxyethyl]-benzimidazol in 7 ml 90%iger Schwefelsäure 0,25 g (36%) der Titelverbindung vom Schmp. 144–145°C (Zers.) $[\alpha]_D^{25} = -144,4^\circ$ (c=0,5, Acetonitril/Methanol 1:1).

20

25

5.

(+)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-[(+)-fencyloxyethyl]-benzimidazol

Nach der in Beispiel 1 beschriebenen Arbeitsweise erhält man aus (\pm)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Na-Salz (60 mMol) in 80 ml N-Methylpyrrolidon nach Chromatographie an Kieselgel (Ethylacetat) nach mehrmaliger Umkristallisation aus Ethylacetat/Diisopropylether 3,1 g (40%) der Titelverbindung in Form farbloser Kristalle vom Schmp. 161°C (Zers.) $[\alpha]_D^{25} = +103,0^\circ$ (c=1, Chloroform).

30

6. (+)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol

Nach der in Beispiel 2 beschriebenen Arbeitsweise erhält man aus 0,51 g (1 mMol) (+)-5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-[(+)-fencyloxyethyl]-benzimidazol in 4 ml 90%iger Schwefelsäure 0,15 g (43%) der Titelverbindung als amorphe Feststoff $[\alpha]_D^{25} = +165^\circ$ (c=0,5, Chloroform).

35

40

Gewerbliche Anwendbarkeit

Nach dem erfindungsgemäßen Verfahren können Pyridylmethylsulfinyl-1H-benzimidazole erstmals in ihre optischen Antipoden aufgespalten werden. Als besonders überraschend ist hierbei die Tatsache zu werten, daß die Freisetzung der optisch reinen Verbindungen aus den Diastereomeren mit Hilfe hochkonzentrierter Mineralsäuren vorgenommen wird, obwohl bekannt ist, daß es sich bei den Pyridylmethylsulfinyl-1H-benzimidazolen um sehr säurelabile Verbindungen handelt.

45

Die erfindungsgemäß hergestellten Verbindungen werden als Wirkstoffe in Arzneimitteln für die Behandlung von Magen- und Darmerkrankungen eingesetzt. Bezuglich der Anwendungsweise und Dosierung der Wirkstoffe wird z. B. auf das europäische Patent 1 66 287 verwiesen.

50

Patentansprüche

1. Konfigurativer einheitliche, optisch reine Verbindungen der Formel I

55

60

worin

R1 Wasserstoff, 1-4C-Alkyl oder 1-4C-Alkoxy bedeutet,
 R2 Wasserstoff, Trifluormethyl, 1-4C-Alkyl, 1-4C-Alkoxy, ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy, Chlordifluormethoxy, 2-Chlor-1,1,2-trifluormethoxy oder gemeinsam mit R3 gewünschtenfalls ganz oder teilweise durch Fluor substituiertes 1-2C-Alkylendioxy oder Chlortrifluorethylendioxy bedeutet,
 R3 Wasserstoff, 1-4C-Alkyl, 1-4C-Alkoxy, ganz oder überwiegend durch Fluor substituiertes 1-4C-Alkoxy,

65

