³⁶Ca εp decay (100.9 ms) 1997Tr05,2001Lo11,2015Su01

Parent: 36 Ca: E=0; J $^{\pi}$ =0+; T_{1/2}=100.9 ms 20; Q(ε p)=9275 6; % ε p decay=54.1 12

 36 Ca-J $^{\pi}$: From the Adopted Levels of 36 Ca (2012Ni01).

 36 Ca-T_{1/2}: Weighted average of 102 ms 2 (1995Tr02,1997Tr05), 100.1 ms 23 (2007Do17), and 100.0 ms 24 (2015Su01). Other: 100 ms +90-40 (1981Ay01).

³⁶Ca-Q(εp): Deduced by evaluators from ³⁶Ca mass excess of -6483 6; weighted average of -6483.6 56 (2021Su04), -6480 40 (2021La04), and -6450 40 (2021Wa16,1977Tr03), and ³⁵Ar mass excess of -23047.3 7 (2021Wa16). Q(εp) from 2021Wa16: 9310 40

 36 Ca-%εp decay: Unweighted average of %ε+ β +p=56.8 13 (1997Tr05), 54.3 18 (2001Lo11), 51.2 10 (2007Do17), and 53.9 72 (2015Su01).

1997Tr05,1995Tr02: A-300 AMeV 40 Ca primary beam was produced by the GSI heavy-ion synchrotron. The secondary 36 Ca beam was produced via the projectile fragmentation of 40 Ca impinging on a 9 Be target and was selected using ΔE -tof-B ρ by FRS at GSI, Darmstadt. A total of 2.8×10^4 36 Ca ions were implanted into a $500-\mu$ m-thick Si detector. $\varepsilon + \beta^+$ -delayed protons were detected by the implantation detector. β particles were detected by the implantation detector and two $500-\mu$ m-thick Si counters. γ rays were detected by two Ge detectors. Measured E_p , I_p , $E\gamma$, $I\gamma$, βp -coin, $\beta \gamma$ -coin, and $p\gamma$ -coin. Deduced levels, decay branching ratios, $\log ft$, B(F), and B(GT). Deduced parent 36 Ca $T_{1/2}$ from the time spectrum of proton events accumulated during the beam-off in the pulsed-beam mode. Comparisons with shell-model calculations.

2001Lo11: A 95-MeV 40 Ca primary beam was produced by the SISSI facility at GANIL. The secondary 36 Ca beam was produced via the projectile fragmentation of 40 Ca impinging on a natNi target and was selected using ΔE -tof by the LISE3 spectrometer and purified by a velocity filter. A total of 102407 36 Ca ions were implanted into a $500-\mu$ m-thick Si detector. $\varepsilon+\beta^+$ -delayed protons were detected by the implantation detector. β particles were detected by two $500-\mu$ m-thick Si counters. γ rays were detected by three Ge detectors. Measured E_p , I_p , E_γ , I_γ , βp -coin, and $\beta \gamma$ -coin. Deduced levels, decay branching ratios, $\log ft$, B(F), and B(GT). Comparisons with shell-model calculations.

2015Su01: A 69.42-MeV/nucleon 40 Ca primary beam was produced by the Sector Focusing Cyclotron and Separated Sector Cyclotron at the Heavy Ion Research Facility in Lanzhou (HIRFL). The secondary 36 Ca beam was produced via the projectile fragmentation 40 Ca impinging on a 9 Be target and was selected using ΔE -tof-B ρ by RIBLL. A total of 22890 36 Ca ions were implanted into a 525- μ m-thick DSSD. ε + β +-delayed protons were detected by the DSSD with a threshold of 500 keV. ε + β +-delayed γ rays were detected by four Clover Ge detectors surrounding the DSSD chamber. Measured E_p , E_p . Also see 2016Li45.

2007Do17: A 74.5-MeV/nucleon ⁵⁸Ni primary beam was produced by the SISSI facility at GANIL. The secondary ³⁶Ca beam was produced via the projectile fragmentation of ⁵⁸Ni impinging on a natNi target and was selected using ΔE -tof-B ρ by the ALPHA-LISE3 separator. A total of 16991 ³⁶Ca ions were implanted into a 500- μ m thick DSSD. ε + β ⁺-delayed protons were detected by the DSSD with a threshold of 60-80 keV. ε + β ⁺-delayed γ rays were detected by four Ge detectors surrounding the implantation array. A 5-mm thick lithium-drifted Si detector was used as a veto for implantation events and to detect β particles. Measured E_p , I_p , and implant-decay time correlations. Deduced levels, decay branching ratios, and parent ³⁶Ca $T_{1/2}$.

1995Ga16: 60-keV ³⁶Ca was produced by the ISOLDE general-purpose on-line isotope separator at the CERN PS/Booster and implanted into the entrance window of a gas-Si-Si ΔE-E-veto detector telescope. Measured E_p. Deduced coefficients of the isobaric multiplet mass equation for A=36, T=2 quintets. A by-product of ³⁷Ca decay study (1995Ga03).

1981Ay01,1980AyZZ: 36 Ca was produced via the 40 Ca(3 He, α 3n) reaction using a 95-MeV 3 He beam from the 88-inch Cyclotron at Lawrence Berkeley Laboratory. β -delayed protons were detected using a Si surface barrier detector telescope with FWHM=55 keV and a minimum threshold of \approx 1.5 MeV. Measured E_p. Deduced 36 Ca T_{1/2} and coefficients of the isobaric multiplet mass equation for A=36, T=2 quintets.

Theoretical studies involving ³⁶Ca decay: shell model (1984Mu25,1990Br26), covariant density functional theory (2013Ni09).

³⁵Ar Levels

Comments

E(level): From E γ data.

[†] From the Adopted Levels.

36 Ca ε p decay (100.9 ms) 1997Tr05,2001Lo11,2015Su01 (continued)

$\gamma(^{35}\text{Ar})$

Comments

 E_{γ} : weighted average of 1184.2 4 (1997Tr05) and 1185 1 (2001Lo11).

Delayed Protons (35Ar)

E(p) [†]	$E(^{35}Ar)$	$I(p)^{\#}$	$E(^{36}K)^{\frac{1}{4}}$	Comments
1.37×10^3	1184.3	1.2 4	4281.7	E(p),I(p): From 1997Tr05.
				$E(^{36}K)$: $J^{\pi}=0$, T=2 isobaric analog state in ^{36}K .
1648 <i>18</i>	0	8.4 12	3354	E(p): weighted average of 1676 39 (1997Tr05), 1645 21 (2001Lo11), 1660 18 (2007Do17), and 1624 22 (2015Su01).
				I(p): unweighted average of 11.3 6 (1997Tr05), 9.3 8 (2001Lo11), 7.3 8 (2007Do17), and 5.7 16 (2015Su01).
2549.9 22	0	37.4 10	4281.7	E(p): weighted average of 2519 21 (1981Ay01), 2550.2 22 (1995Ga16), 2548 37 (1997Tr05), 2551 21 (2001Lo11), 2538 18 (2007Do17), and 2594 30 (2015Su01).
				I(p): weighted average of 37.8 10 (1997Tr05), 32.1 42 (2007Do17), and 34.0 58 (2015Su01). Other: 37 1 (2001Lo11) without separating the weaker proton
				branch from the same level to ³⁵ Ar first excited state.
2712 21	0	260	4.4.40	$E(^{36}K)$: $J^{\pi}=0$, $T=2$ isobaric analog state in ^{36}K .
2713 <i>21</i>	0	2.6 9	4449	E(p): weighted average of 2713 31 (1997Tr05) and 2713 21 (2001Lo11). I(p): unweighted average of 1.7 2 (1997Tr05) and 3.5 5 (2001Lo11).
2921 35	0	1.3 2	4663	E(p): weighted average of 2937 35 (1997Tr05) and 2895 44 (2001Lo11).
				I(p): weighted average of 1.4 2 (1997Tr05) and 1.0 3 (2001Lo11).
3484 <i>21</i>	0	0.6 2	5242	E(p),I(p): From 2001Lo11.
$3.98 \times 10^3 7$	0	0.9 2	5753	E(p),I(p): From 2001Lo11.
$4.15 \times 10^3 5$	0	2.2 5	5927	E(p): weighted average of 4162 45 (1997Tr05) and 4135 44 (2001Lo11).
				I(p): unweighted average of 2.7 4 (1997Tr05) and 1.7 3 (2001Lo11).
$4.99 \times 10^3 7$	0	0.4 2	6791	E(p): weighted average of 4989 69 (1997Tr05) and 4983 67 (2001Lo11). I(p): weighted average of 0.7 2 (1997Tr05) and 0.3 <i>I</i> (2001Lo11).

[†] In lab frame. Evaluators take a weighted average when multiple measurements of a E(p) are available. 2007Do17 and 2015Su01 reported $E_{c.m.}$ 1997Tr05 and 2001Lo11 reported the E(level) of ^{36}K proton-emitting levels. Evaluators deduced proton center-of-mass energies $E_{c.m.}$ = $E(level)(^{36}K)$ - $E(level)(^{35}Ar)$ using their original S(p)=1666 8. Evaluators then deduced each $E(p)_{lab}$ = $E_{c.m.}$ × $m(^{35}Ar)/[m(p)+m(^{35}Ar)]$.

‡ $E(level)(^{36}K)$ = $E(p)_{lab}$ ×[m(p)+ $m(^{35}Ar)]/m(^{35}Ar)$ + $S(p)(^{36}K)$ + $E(level)(^{35}Ar)$, where $S(p)(^{36}K)$ =1658.9 8 (2021Wa16).

[†] Absolute intensity per 100 decays.

[#] Absolute intensity per 100 decays.

36 Ca ε p decay (100.9 ms) 1997Tr05,2001Lo11,2015Su01

Decay Scheme

 γ Intensities: I $_{\gamma}$ per 100 parent decays I(p) Intensities: I(p) per 100 parent decays

