东南大学考试卷

高等数学 A(期中)

选学高数 A 的各专业 适用专业 考试时间长度 120 分钟 考试形式 闭卷

题号	ı	11	Ш	凹	五	六
得分						

- 一. 填空题(本题共5小题,每小题4分,满分20分)
- 1. 设z = z(x, y) 是由方程 $2\sin(x + 2y 3z) = x + 2y 3z$ 所确定的隐函数,则

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \underline{\qquad};$$

- 2. 交换二次积分的顺序 $\int_{-6}^{2} dx \int_{\frac{1}{2}x^2-1}^{2-x} f(x,y) dy = ______;$
- 3. $u = \ln \left(x + \sqrt{y^2 + z^2} \right)$ 在点 A(1,0,1) 处沿着点 A 指向点 B(3,-2,2) 的方向的方向导数
- 4. $\iint_{x^2+y^2\leq 1} ((x+1)^2+2y^2) dx dy = \underline{\hspace{1cm}};$
- **5.** 设 $L: \begin{cases} x^2 + y^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases}$ 是线密度为 1 的物质曲线,则其关于 z 轴的转动惯量为_____.
- 二. 单项选择题(本题共4小题,每小题4分,满分16分)
- 6. 设 $e^z = (-3 4i)^i$,则复数z的主值为

(A)
$$\arctan \frac{4}{3} - \pi + i \ln 5$$

(B)
$$\pi - \arctan \frac{4}{3} + i \ln 5$$

(C)
$$\ln 5 + i \arctan \frac{4}{3}$$

(A)
$$\arctan \frac{4}{3} - \pi + i \ln 5$$
 (B) $\pi - \arctan \frac{4}{3} + i \ln 5$ (C) $\ln 5 + i \arctan \frac{4}{3}$ (D) $\ln 5 + i \left(\pi - \arctan \frac{4}{3}\right)$

- 7. 已知 $f(x, y) = x^2 + xy y^2$ 的驻点(0,0), f(0,0) 是 f(x,y) 的
- (A) 极大值
- (B) 极小值
- (C) 非极值
- (D) 不能确定
- 8. 球体 $x^2 + y^2 + z^2 \le 4a^2$ 与柱体 $x^2 + y^2 \le 2ax(a > 0)$ 的公共部分的体积等于

(A)
$$4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2a\cos\varphi} \sqrt{4a^{2} - \rho^{2}} d\rho$$

(A)
$$4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2a\cos\varphi} \sqrt{4a^{2} - \rho^{2}} d\rho$$
 (B) $8 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2a\cos\varphi} \sqrt{4a^{2} - \rho^{2}} d\rho$

(C)
$$4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\alpha \cos \varphi} \sqrt{4\alpha^{2} - \rho^{2}} \rho d\rho$$

(C)
$$4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2a\cos\varphi} \sqrt{4a^{2} - \rho^{2}} \rho d\rho$$
 (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2a\cos\varphi} \sqrt{4a^{2} - \rho^{2}} \rho d\rho$

9. 设曲面 Σ : $x^2 + y^2 + z^2 = 1, y \ge 0, z \ge 0$, 平面区域 $D: x^2 + y^2 \le 1, x \ge 0$, 则

(A)
$$\iint_{S} x dS = 4 \iint_{D} y dx dy$$

(A)
$$\iint_{\Sigma} x dS = 4 \iint_{D} y dx dy$$
(B)
$$\iint_{\Sigma} y dS = 4 \iint_{D} y dx dy$$
(C)
$$\iint_{\Sigma} x dS = 4 \iint_{D} x dx dy$$
(D)
$$\iint_{\Sigma} y dS = 4 \iint_{D} x dx dy$$

(C)
$$\iint_{\Sigma} x dS = 4 \iint_{D} x dx dy$$

(D)
$$\iint_{\Sigma} y dS = 4 \iint_{D} x dx dy$$

三. 计算下列各题(本题共5小题,每小题8分,满分40分)

- **10.** 设 $z = f(x + \varphi(x y), y)$, 其中 f, φ 分别有二阶连续偏导数和导数,求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial^2 z}{\partial y \partial x}$.
- 11. 设可微函数 f(x,y) 对任意实数 t(t>0) 满足条件 f(tx,ty)=tf(x,y), $P_0(1,-2,2)$ 是曲 面 z=f(x,y) 上的一点,且 $f_y(1,-2)=4$,求该曲面在点 P_0 处的切平面方程.
- 12. 计算二重积分 $\iint\limits_{D} \sqrt{x} d\sigma$, 其中 $D = \{(x,y) \mid x^2 + y^2 \le x\}$.
- 13. 计算三重积分 $\iiint (xy + yz + ze^{x^2 + y^2}) dV$,其中 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 与平面 z = h (h > 0) 所围成的区域.
- 14. 计算第一型曲线积分 $\int \left|y\right| ds$,其中 c 为双纽线 $\left(x^2+y^2\right)^2=x^2-y^2$.
- 四(15)(本题满分 8 分)已知解析函数 f(z) = u + iv 的实部u = -2xy 2y, 求 f(z) 的表 达式 (用 z 表示) 及 f'(i).

五(16)(本题满分 8 分)将 33 分解成三个正数 x, y, z 之和,试问当 x, y, z 各等于多少时,函数 $u = x^2 + 2y^2 + 3z^2$ 取到最小值.

六(17)(本题满分 8 分)曲面 $z = 13 - x^2 - y^2$ 将球面 $x^2 + y^2 + z^2 = 25$ 分成三部分,试计算球面被分割成三部分的曲面面积之比.

10-11-3 高数 A 期中试卷参考答案

一. 填空题(本题共5小题,每小题4分,满分20分)

1.1; 2.
$$\int_{-1}^{0} dy \int_{-2\sqrt{y+1}}^{2\sqrt{y+1}} f(x,y) dx + \int_{0}^{8} dy \int_{-2\sqrt{y+1}}^{2-y} f(x,y) dx;$$

3.
$$\frac{1}{2}$$
; 4. $\frac{7}{4}\pi$; 5. $\frac{4}{3}\pi a^3$.

- 二. 单项选择题(本题共4小题,每小题4分,满分16分)
- 6. B; 7. C; 8. C; 9. A.
- 三. 计算下列各题(本题共5小题,每小题8分,满分40分)

10. AP:
$$\frac{\partial z}{\partial x} = (1 + \varphi') f_1$$
 (3 分) $\frac{\partial^2 z}{\partial y \partial x} = (1 + \varphi') (-\varphi' f_{11} + f_{12}) - \varphi'' f_1$ **(5 分)**.

11. 解: f(tx,ty) = tf(x,y) 的等号两边对t 求导,令t=1 ,得 $xf_x + yf_y = f$,(4分)

由
$$f_y(1,-2) = 4$$
 , $f(1,-2) = 2$ 得 $f_x(1,-2) = 10$, (2分)

所求切平面方程为10(x-1) + 4(y+2) - (z-2) = 0 , 即10x + 4y - z = 0 . (2分)

12. **M**:
$$\iint_{D} \sqrt{x} \, d\sigma = 2 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\cos\varphi} \sqrt{\cos\varphi} \, \rho^{\frac{3}{2}} d\rho = \frac{4}{5} \int_{0}^{\frac{\pi}{2}} \cos^{3}\varphi \, d\varphi = \frac{8}{15}. \quad (4+2+2 \, \%)$$