Utilisation de la dérivation : le sens de variation d'une fonction.

I. Sens de variation et dérivée.

a. du sens de variation au signe de la dérivée.

Propriété: Soit f une fonction dérivable sur un intervalle I.

- 1) Si f est croissante sur I, alors pour tout réel x de I, $f'(x) \ge 0$.
- 2) Si f est constante sur I, alors pour tout réel x de I, f'(x)=0.
- 3) Si f est décroissante sur I, alors pour tout réel x de I, $f'(x) \le 0$.

Démonstration: nous démontrerons le 1) et 2) de la propriété ci-dessus, le 3) se démontrant comme le 1) à quelques signes prés.

Soit une fonction f dérivable sur un intervalle I.

1) Supposons que la fonction f est croissante sur I.

Soit $x \in I$, $h \in \mathbb{R}^*$ tel que $x+h \in I$.

- si
$$h>0$$
, $x \le x+h$ donc $f(x) \le f(x+h)$ et donc $\frac{f(x+h)-f(x)}{h} \ge 0$.

- si
$$h < 0$$
, $x + h \le x$ donc $f(x+h) \le f(x)$ et donc $\frac{f(x+h) - f(x)}{h} \ge 0$.

Comme f est dérivable, f'(x) est la limite de $\frac{f(x+h)-f(x)}{h}$ quand h tend vers 0.

Or, si l'on donne à h des valeurs proches de 0, $\frac{f(x+h)-f(x)}{h}$ prend des valeurs positives.

On admet alors que sa limite est positive et on a donc $f'(x) \ge 0$ pour tout x appartenant à

2) Supposons que la fonction f est constante sur I.

Soit $x \in I$, $h \in \mathbb{R}^*$ tel que $x + h \in I$.

$$f(x+h)=f(x)$$
 d'où $f(x+h)-f(x)=0$ et $\frac{f(x+h)-f(x)}{h}=0$.

Par conséquent, pour tout x appartenant à I, f'(x)=0.

b. Du signe de la dérivée au sens de variation.

On admettra le théorème suivant.

Théorème: Soit f une fonction dérivable sur un intervalle I.

- 1) Si f'(x)=0 pour tout x appartenant à I, f est une fonction constante sur I.
- 2) Si $f'(x) \ge 0$ pour tout x appartenant à I, f est croissante sur I.
- 3) Si $f'(x) \le 0$ pour tout x appartenant à I, f est décroissante sur I.

Application: Étudions le sens de variation de la fonction f définie sur \mathbb{R} par $f(x)=x^3+2x^2-7x+1$.

Déterminons la dérivée de f sur \mathbb{R}

f est une fonction polynôme, elle est définie et dérivable sur \mathbb{R} et on a ,pour tout x , $f'(x)=3x^2+4x-7$. Étudions le signe de f'.

f' est un trinôme du second degré. Étudions le signe de $3x^2+4x-7$. On a $\Delta = 4^2 - 4 \times 3 \times (-7) = 16 + 84 = 100$.

L'équation
$$3x^2 + 4x - 7 = 0$$
 admet deux racines:
 $x_1 = \frac{-4 + \sqrt{100}}{6} = \frac{-4 + 10}{6} = 1$ et $x_2 = \frac{-4 - \sqrt{100}}{6} = \frac{-4 - 10}{6} = \frac{-7}{3}$.

D'où f' est positive partout sauf entre $\frac{-7}{3}$ et 1.

En déduire le sens de variation de f.

x	$-\infty$	-7/3	1	$+\infty$
f'(x)	+	- 0	- 0	+
f(x)	,	419/3	-3	*

II. extremum local.

Définitions: f est une fonction définie sur un intervalle I et x_0 est un réel de I.

- dire que $f(x_0)$ est un maximum local (respectivement un minimum local) de fsignifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant x_0 tel que pour tout x de J, $f(x) \le f(x_0)$.
- dire que $f(x_0)$ est un extremum local signifie que $f(x_0)$ est maximum local ou un minimum local.

Exemple:

Soit f une fonction définie sur l'intervalle I=[-2; 2].

1,2=f(-0,8) est un maximum local, car pour tout x appartenant à l'intervalle]-2; 1[,

-1,2=f(0,8) est un minimum local, car pour tout x appartenant à l'intervalle]0; 2[,

$$f(x) \ge -1.2$$
.

-4=f(-2) n'est pas un minimum local car on ne peut pas trouver d'intervalle ouvert contenu dans I et contenant -2.

Propriété: Si une fonction f dérivable sur un intervalle I admet un extremum ou un extremum local en α et si α n'est pas une borne de I, alors $f'(\alpha) = 0$.

Preuve: Supposons qu'il s'agisse d'un maximum ou d'un maximum local en α , α n'étant pas une borne de I. C'est à dire qu'il existe un intervalle ouvert J autour de α tel que $f(\alpha)$ soit le maximum de f sur J.

$$f'(\alpha)$$
 est la limite de $\frac{f(\alpha+h)-f(\alpha)}{h}$ quand h tend vers 0.

Alors pour h assez voisin de 0, $\alpha+h\in J$ et donc $f(\alpha+h)\leqslant f(\alpha)$. De ce fait, $f(\alpha+h)-f(\alpha)\leqslant 0$.

On en déduit que si
$$h>0$$
, $\frac{f(\alpha+h)-f(\alpha)}{h} \le 0$ et si $h<0$, $\frac{f(\alpha+h)-f(\alpha)}{h} \ge 0$.

Quand h tend vers 0, les rapports $\frac{f(\alpha+h)-f(\alpha)}{h}$ prennent des valeurs aussi bien

positives ou nulles que négatives ou nulles. On admet alors que leur seule limite possible est 0. D'où $f'(\alpha)=0$.

On tient le même raisonnement avec un minimum.

Remarque: la réciproque de cette propriété est fausse.

Contre-exemple: $f(x)=x^3$ sur \mathbb{R} , alors f'(0)=0, cependant f(0) n'est pas un extremum local.

On admettra la propriété suivante:

Propriété: f est une fonction dérivable sur un intervalle ouvert I et x_0 un réel de I. Si f' s'annule en x_0 en changeant de signe, alors $f(x_0)$ est un extremum local.

x	$-\infty$	x_0	+ ∞
f'(x)	_	0	+
f(x)		$f(x_0)$	*

x	$-\infty$ x_0	+ ∞
f'(x)	+ 0	_
f(x)	$f(x_0)$	