C1 Set Theory

Robin Adams

August 18, 2022

1 Primitive Notions

Let there be sets.

Let there be a binary relation called *membership*, \in . When $x \in y$ holds, we say x is a *member* or *element* of y. We write $x \notin y$ iff x is not a member of y.

2 The Axioms

Axiom 1 (Extensionality). If two sets have exactly the same members, then they are equal.

As a consequence of this axiom, we may identify a set A with the class $\{x:x\in A\}$. The use of the symbols \in and = is consistent.

Definition 2. We say that a class **A** is a set iff there exists a set A such that $A = \mathbf{A}$. That is, the class $\{x : P(x)\}$ is a set iff

$$\exists A. \forall x (x \in A \leftrightarrow P(x))$$
.

Otherwise, **A** is a proper class.

Definition 3 (Subset). If A is a set and **B** is a class, we say A is a *subset* of **B** iff $A \subseteq \mathbf{B}$.

Axiom 4 (Empty Set). The empty class is a set, called the empty set.

Axiom 5 (Pairing). For any objects a and b, the class $\{a,b\}$ is a set, called a pair set.

Definition 6 (Union). For any class of sets **A**, the *union* \bigcup **A** is the class $\{x: \exists A \in \mathbf{A}. x \in A\}.$

We write $\bigcup_{P[x_1,...,x_n]} t[x_1,...,x_n]$ for $\bigcup \{t[x_1,...,x_n]: P[x_1,...,x_n]\}.$

Proposition 7. If $A \subseteq B$ then $\bigcup A \subseteq \bigcup B$.

Proof: Easy.

Axiom 8 (Union). For any set A, the union $\bigcup A$ is a set.

Proposition 9. For any sets A and B, the class $A \cup B$ is a set. PROOF: It is $\bigcup \{A, B\}$. \square **Proposition Schema 10.** For any objects a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\}$ is a set. Proof: By repeated application of the Pairing and Union axioms. \square **Definition 11** (Power Set). For any set A, the power set of A, $\mathcal{P}A$, is the class of all subsets of A. **Axiom 12** (Power Set). For any set A, the class PA is a set. **Axiom 13** (Subset, Aussonderung). For any class **A** and set B, if $\mathbf{A} \subseteq B$ then A is a set. **Proposition 14.** For any set A and class B, the intersection $A \cap B$ is a set. PROOF: By the Subset Axiom since it is a subclass of A. \square **Proposition 15.** For any set A and class B, the relative complement A - B is a set. PROOF: By the Subset Axiom since it is a subclass of A. \square **Theorem 16.** The universal class **V** is a proper class. Proof: $\langle 1 \rangle 1$. Assume: **V** is a set. $\langle 1 \rangle 2$. Let: $R = \{x : x \notin x\}$ $\langle 1 \rangle 3$. R is a set. PROOF: By the Subset Axiom. $\langle 1 \rangle 4$. $R \in R$ if and only if $R \notin R$ $\langle 1 \rangle$ 5. Q.E.D. PROOF: This is a contradiction. **Definition 17** (Intersection). For any class of sets A, the *intersection* $\bigcap A$ is the class $\{x : \forall A \in \mathbf{A}. x \in A\}.$ We write $\bigcap_{P[x_1,...,x_n]} t[x_1,...,x_n]$ for $\bigcap \{t[x_1,...,x_n]: P[x_1,...,x_n]\}.$ **Proposition 18.** For any nonempty class of sets A, the class $\bigcap A$ is a set. PROOF: Pick $A \in \mathbf{A}$. Then $\bigcap \mathbf{A} \subseteq A$. \square

Proposition 20. For any set A and class of sets B, we have

Proposition 19. *If* $A \subseteq B$ *then* $\bigcap B \subseteq \bigcap A$.

Proof: Easy. \square

$$A \cup \bigcap \mathbf{B} = \bigcap \{A \cup X \mid X \in \mathbf{B}\}$$

Proof: Easy.

Proposition 21. For any set A and class of sets B, we have

$$A\cap\bigcup\mathbf{B}=\bigcup\{A\cap X\mid X\in\mathbf{B}\}$$

Proof: Easy. \square

Proposition 22. For any set C and class of sets A, we have

$$C - \bigcup \mathbf{A} = \bigcap \{C - X \mid X \in \mathbf{A}\}\$$
.

Proof: Easy. \square

Proposition 23. For any set C and class of sets A, we have

$$C - \bigcap \mathbf{A} = \bigcup \{C - X \mid X \in \mathbf{A}\} .$$

Proof: Easy.

3 Ordered Pairs

Definition 24 (Ordered Pair). For any objects a and b, the ordered pair (a,b) is $\{\{a\},\{a,b\}\}$. We call a its first coordinate and b its second coordinate.

Theorem 25. For any objects (a,b), we have (a,b) = (c,d) if and only if a = c and b = d.

Proof:

- $\langle 1 \rangle 1$. If (a,b) = (c,d) then a = c and b = d
 - $\langle 2 \rangle 1$. Assume: (a,b) = (c,d)
 - $\langle 2 \rangle 2$. a = c

PROOF: Since $\{a\} = \bigcap (a, b) = \bigcap (c, d) = \{c\}.$

 $\langle 2 \rangle 3. \ \{a,b\} = \{c,d\}$

Proof: $\{a, b\} = \bigcup (a, b) = \bigcup (c, d) = \{c, d\}.$

- $\langle 2 \rangle 4$. b = c or b = d
- $\langle 2 \rangle$ 5. Case: b = c
 - $\langle 3 \rangle 1. \ a = b$
 - $\langle 3 \rangle 2. \ \{c,d\} = \{a\}$
 - $\langle 3 \rangle 3. \ \ b = d$
- $\langle 2 \rangle 6$. Case: b = d

PROOF: We have a = c and b = d as required.

 $\langle 1 \rangle 2$. If a = c and b = d then (a, b) = (c, d)

PROOF: Trivial.

Definition 26 (Cartesian Product). The *Cartesian product* of classes **A** and **B** is the class

$$\mathbf{A}\times\mathbf{B}=\{(x,y):x\in\mathbf{A},y\in\mathbf{B}\}$$
 .

Lemma 27. For any objects x and y and set C , if $x \in C$ and $y \in C$ then $(x,y) \in \mathcal{PPC}$.
Proof: Easy. \square
Corollary 27.1. For any sets A and B, the Cartesian product $A \times B$ is a set.
PROOF: By the Subset Axiom applied to $\mathcal{PP}(A \cup B)$. \square
Lemma 28. If $(x,y) \in \mathbf{A}$ then $x,y \in \bigcup \bigcup \mathbf{A}$.
Proof: Easy. \square
4 Relations
Definition 29 (Relation). A relation is a class of ordered pairs. It is small iff
it is a set. When R is a relation, we write $x\mathbf{R}y$ for $(x,y) \in \mathbf{R}$.
Definition 30 (Domain). The <i>domain</i> of a class R is dom R = $\{x : \exists y . (x,y) \in \mathbf{R}\}.$
Definition 31 (Range). The range of a class \mathbf{R} is ran $\mathbf{R} = \{y : \exists x . (x, y) \in \mathbf{R}\}.$
Definition 32 (Field). The <i>field</i> of a class \mathbf{R} is fld $\mathbf{R} = \operatorname{dom} \mathbf{R} \cup \operatorname{ran} \mathbf{R}$.
Proposition 33. If R is a set then dom R , ran R and fld R are sets.
PROOF: Apply the Subset Axiom to $\bigcup \bigcup R$. \Box
Definition 34 (Single-Rooted). A class R is <i>single-rooted</i> iff, for all $y \in \operatorname{ran} \mathbf{R}$, there is only one x such that $x\mathbf{R}y$.
Definition 35 (Inverse). The <i>inverse</i> of a class \mathbf{F} is the class $\mathbf{F}^{-1} = \{(y, x) \mid (x, y) \in \mathbf{F}\}.$
Theorem 36. For any class \mathbf{F} , we have dom $\mathbf{F}^{-1} = \operatorname{ran} \mathbf{F}$ and $\operatorname{ran} \mathbf{F}^{-1} = \operatorname{dom} \mathbf{F}$.
Proof: Easy. \square
Theorem 37. For a relation \mathbf{F} , $(\mathbf{F}^{-1})^{-1} = \mathbf{F}$.
Proof: Easy. \square
Definition 38 (Composition). The <i>composition</i> of classes F and G is the class $\mathbf{G} \circ \mathbf{F} = \{(x,z) \mid \exists y.(x,y) \in \mathbf{F} \land (y,z) \in \mathbf{G}\}.$
Theorem 39. For any classes \mathbf{F} and \mathbf{G} , $(\mathbf{F} \circ \mathbf{G})^{-1} = \mathbf{G}^{-1} \circ \mathbf{F}^{-1}$.
Proof: Easy. \square

Definition 40 (Restriction). The *restriction* of the class **F** to the class **A** is the class **F** \upharpoonright **A** = $\{(x,y): x \in A \land (x,y) \in \mathbf{F}\}.$

Definition 41 (Image). The *image* of the class **A** under the class **F** is the class $\mathbf{F}(\mathbf{A}) = \{y : \exists x \in \mathbf{A}.(x,y) \in \mathbf{F}\}.$

Theorem 42.

$$F(A \cup B) = F(A) \cup F(B)$$

Proof: Easy. \square

Theorem 43.

$$\mathbf{F}(\c|\ \mathbf{J}\mathbf{A}) = \c|\ \mathbf{J}\{\mathbf{F}(X) : X \in \mathbf{A}\}$$

Proof: Easy.

Theorem 44.

$$\mathbf{F}(\mathbf{A}\cap\mathbf{B})\subseteq\mathbf{F}(\mathbf{A})\cap\mathbf{F}(\mathbf{B})$$

Equality holds if F is single-rooted.

Proof: Easy.

Theorem 45.

$$\mathbf{F}(\bigcap \mathbf{A}) \subseteq \bigcap \{ \mathbf{F}(X) : X \in \mathbf{A} \}$$

Equality holds if ${f F}$ is single-rooted.

Proof: Easy.

Theorem 46.

$$\mathbf{F}(\mathbf{A}) - \mathbf{F}(\mathbf{B}) \subseteq \mathbf{F}(\mathbf{A} - \mathbf{B})$$

Equality holds if \mathbf{F} is single-rooted.

Proof: Easy. \square

Definition 47 (Reflexive). A binary relation **R** on **A** is *reflexive* on **A** if and only if $\forall x \in \mathbf{A}.x\mathbf{R}x$.

Definition 48 (Symmetric). A binary relation **R** is *symmetric* iff, whenever $x\mathbf{R}y$, then $y\mathbf{R}x$.

Definition 49 (Transitive). A binary relation **R** is *transitive* iff, whenever $x\mathbf{R}y$ and $y\mathbf{R}z$, then $x\mathbf{R}z$.

5 n-ary Relations

Definition 50. Given objects a, b, c, define the *ordered triple* (a, b, c) to be ((a, b), c).

Define (a, b, c, d) = ((a, b, c), d), etc.

Define the 1-tuple (a) to be a.

Definition 51 (n-ary Relation). Given a class \mathbf{A} , an n-ary relation on \mathbf{A} is a class of ordered n-tuples, all of whose components are in \mathbf{A} .

6 Functions

Definition 52 (Function). A function is a relation \mathbf{F} such that, for all $x \in \text{dom } \mathbf{F}$, there is only one y such that $x\mathbf{F}y$. We call this unique y the value of \mathbf{F} at x and denote it by $\mathbf{F}(x)$.

We say **F** is a function *from* **A** *into* **B**, or **F** *maps* **A** into **B**, and write $\mathbf{F} : \mathbf{A} \to \mathbf{B}$, iff **F** is a function, dom $\mathbf{F} = \mathbf{A}$, and ran $\mathbf{F} \subseteq \mathbf{B}$.

If, in addition, ran $\mathbf{F} = \mathbf{B}$, we say \mathbf{F} is a function from \mathbf{A} onto \mathbf{B} .

Theorem 53. For a class \mathbf{F} , \mathbf{F}^{-1} is a function if and only if \mathbf{F} is single-rooted.

Proof: Easy.

Theorem 54. A relation \mathbf{F} is a function if and only if \mathbf{F}^{-1} is single-rooted.

Proof: Easy.

Theorem 55. For any function G and classes A and B,

$$\mathbf{G}^{-1}(\bigcup \mathbf{A}) = \bigcup \{\mathbf{G}^{-1}(X) : X \in \mathbf{A}\}$$

$$\mathbf{G}^{-1}(\bigcap \mathbf{A}) = \bigcap \{\mathbf{G}^{-1}(X) : X \in \mathbf{A}\}$$

$$(if \mathbf{A} \neq \emptyset)$$

$$\mathbf{G}^{-1}(\mathbf{A} - \mathbf{B}) = \mathbf{G}^{-1}(\mathbf{A}) - \mathbf{G}^{-1}(\mathbf{B})$$

Proof: Easy.

Theorem 56. Assume that \mathbf{F} and \mathbf{G} are functions. Then $\mathbf{F} \circ \mathbf{G}$ is a function, its domain is $\{x \in \text{dom } \mathbf{G} : \mathbf{G}(x) \in \text{dom } \mathbf{F}\}$, and for x in its domain,

$$(\mathbf{F} \circ \mathbf{G})(x) = \mathbf{F}(\mathbf{G}(x))$$
.

Proof: Easy.

Definition 57 (One-to-one). A function F is one-to-one or an injection iff it is single-rooted.

Theorem 58. Let **F** be a one-to-one function. For $x \in \text{dom } \mathbf{F}$, $\mathbf{F}^{-1}(\mathbf{F}(x)) = x$.

Proof: Easy.

Theorem 59. Let **F** be a one-to-one function. For $y \in \operatorname{ran} \mathbf{F}$, $\mathbf{F}(\mathbf{F}^{-1}(y)) = y$.

Proof: Easy.

Definition 60 (Identity Function). For any class **A**, the *identity* function on **A** is $id_{\mathbf{A}} = \{(x, x) \mid x \in \mathbf{A}\}.$

Theorem 61. Let $F: A \to B$. Assume $A \neq \emptyset$. Then F has a left inverse (i.e. there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$) if and only if F is one-to-one.

Proof:

 $\langle 1 \rangle 1$. If F is one-to-one then F has a left inverse.

- $\langle 2 \rangle 1$. Assume: F is one-to-one.
- $\langle 2 \rangle 2$. $F^{-1} : \operatorname{ran} F \to A$
- $\langle 2 \rangle 3$. Pick $a \in A$
- $\langle 2 \rangle 4$. Define $G: B \to A$ by:

$$G(x) = \begin{cases} F^{-1}(x) & \text{if } x \in \operatorname{ran} F \\ a & \text{if } x \in B - \operatorname{ran} F \end{cases}$$

- $\langle 2 \rangle 5. \ \forall x \in A.G(F(x)) = x$
- $\langle 1 \rangle 2$. If F has a left inverse then F is one-to-one.
 - $\langle 2 \rangle 1$. Assume: F has a left inverse G.
 - $\langle 2 \rangle 2$. Let: $x, y \in A$ with F(x) = F(y)
 - $\langle 2 \rangle 3. \ x = y$

PROOF: x = G(F(x)) = G(F(y)) = y.

Definition 62 (Binary Operation). A binary operation on a set A is a function from $A \times A$ into A.

7 The Axiom of Choice

Axiom 63 (Choice). For any relation R there exists a function $H \subseteq R$ with dom H = dom R.

Theorem 64. Let $F: A \to B$. Then F has a right inverse if and only if F maps A onto B.

Proof:

 $\langle 1 \rangle 1$. If F has a right inverse then F maps A onto B.

PROOF: If $H: B \to A$ is a right inverse, then for any y in B, we have y = F(H(y)).

- $\langle 1 \rangle 2$. If F maps A onto B then F has a right inverse.
 - $\langle 2 \rangle 1$. Assume: F maps A onto B.
 - $\langle 2 \rangle 2$. PICK a function H with $H \subseteq F^{-1}$ and dom $H = \operatorname{dom} F^{-1}$

PROOF: By the Axiom of Choice.

 $\langle 2 \rangle 3$. dom H = B

PROOF: dom $H = \text{dom } F^{-1} = \text{ran } F = B \text{ by } \langle 2 \rangle 1.$

- $\langle 2 \rangle 4$. For all $y \in B$ we have F(H(y)) = y
 - $\langle 3 \rangle 1$. Let: $y \in B$
 - $\langle 3 \rangle 2. \ (y, H(y)) \in F^{-1}$
 - $\langle 3 \rangle 3$. F(H(y)) = y

8 Sets of Functions

Definition 65. Let A be a set and B be a class. Then \mathbf{B}^A is the class of all functions $A \to \mathbf{B}$.

9 Dependent Products

Definition 66. Let I be a set and H_i a set for all $i \in I$. Define

$$\prod_{i \in I} H_i = \{f : f \text{ is a function}, \text{dom } f = I, \forall i \in I.f(i) \in H_i \} .$$

Theorem 67. The Axiom of Choice is equivalent to the statement: For any set I and any function H with domain I, if $H(i) \neq \emptyset$ for all $i \in I$, then $\prod_{i \in I} H(i) \neq \emptyset$

Proof:

- $\langle 1 \rangle 1$. If the Axiom of Choice is true then, for any set I and any function H with domain I, if $H(i) \neq \emptyset$ for all $i \in I$, then $\prod_{i \in I} H(i) \neq \emptyset$.
 - $\langle 2 \rangle 1$. Assume: The Axiom of Choice.
 - $\langle 2 \rangle 2$. Let: I be a set.
 - $\langle 2 \rangle 3$. Let: H be a function with domain I.
 - $\langle 2 \rangle 4$. Assume: $H(i) \neq \emptyset$ for all $i \in I$.
 - $\langle 2 \rangle 5$. Let: $R = \{(i, x) : i \in I, x \in H(i)\}$
 - $\langle 2 \rangle$ 6. PICK a function $F \subseteq R$ with dom F = dom R PROVE: $F \in \prod_{i \in I} H(i)$

PROOF: By the Axiom of Choice.

 $\langle 2 \rangle 7$. dom H = I

PROOF: We have dom R = I since for all $i \in I$ there exists x such that $x \in H(i)$.

 $\langle 2 \rangle 8. \ \forall i \in I.F(i) \in H(i)$ PROOF: Since iRF(i).

- $\langle 1 \rangle 2$. If, for any set I and any function H with domain I, if $H(i) \neq \emptyset$ for all $i \in I$, then $\prod_{i \in I} H(i) \neq \emptyset$, then the Axiom of Choice is true.
 - $\langle 2 \rangle$ 1. Assume: For any set I and any function H with domain I, if $H(i) \neq \emptyset$ for all $i \in I$, then $\prod_{i \in I} H(i) \neq \emptyset$
 - $\langle 2 \rangle 2$. Let: R be a relation
 - $\langle 2 \rangle 3$. Let: I = dom R
 - $\langle 2 \rangle 4$. Define the function H with domain I by: for $i \in I$, $H(i) = \{y : iRy\}$
 - $\langle 2 \rangle 5$. $H(i) \neq \emptyset$ for all $i \in I$
 - $\langle 2 \rangle 6$. Pick $F \in \prod_{i \in I} H(i)$

Proof: By $\langle 2 \rangle 1$

- $\langle 2 \rangle 7$. F is a function
- $\langle 2 \rangle 8. \ F \subseteq R$

PROOF: For all $i \in I$ we have $F(i) \in H(i)$ and so iRF(i).

 $\langle 2 \rangle 9. \operatorname{dom} F = \operatorname{dom} R$

10 Equivalence Relations

Definition 68 (Equivalence Relation). An *equivalence relation* on **A** is a binary relation on **A** that is reflexive on **A**, symmetric and transitive.

Theorem 69. If \mathbf{R} is a symmetric and transitive relation then \mathbf{R} is an equivalence relation on fld \mathbf{R} .

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \operatorname{fld} \mathbf{R}$
- $\langle 1 \rangle 2$. PICK y such that either $x \mathbf{R} y$ or $y \mathbf{R} x$
- $\langle 1 \rangle 3$. $x \mathbf{R} y$ and $y \mathbf{R} x$

PROOF: Since \mathbf{R} is symmetric.

 $\langle 1 \rangle 4$. $x \mathbf{R} x$

PROOF: Since \mathbf{R} is transitive.

Definition 70 (Equivalence Class). If **R** is an equivalence relation and $x \in \operatorname{fld} \mathbf{R}$, the *equivalence class* of x modulo **R** is

$$[x]_{\mathbf{R}} = \{t : x\mathbf{R}t\} .$$

Lemma 71. Assume that ${\bf R}$ is an equivalence relation on ${\bf A}$ and that x and y belong to ${\bf A}$. Then

$$[x]_{\mathbf{R}} = [y]_{\mathbf{R}} \text{ iff } x \mathbf{R} y$$
.

Proof:

- $\langle 1 \rangle 1$. If $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$ then $x \mathbf{R} y$
 - $\langle 2 \rangle 1$. Assume: $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$
 - $\langle 2 \rangle 2. \ y \in [y]_{\mathbf{R}}$

PROOF: Since \mathbf{R} is reflexive on \mathbf{A} .

- $\langle 2 \rangle 3. \ y \in [x]_{\mathbf{R}}$
- $\langle 2 \rangle 4$. $x \mathbf{R} y$
- $\langle 1 \rangle 2$. If $x \mathbf{R} y$ then $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$
 - $\langle 2 \rangle 1$. Assume: $x \mathbf{R} y$
 - $\langle 2 \rangle 2$. $[y]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}}$
 - $\langle 3 \rangle 1$. Let: $z \in [y]_{\mathbf{R}}$
 - $\langle 3 \rangle 2. \ y \mathbf{R} z$
 - $\langle 3 \rangle 3. \ x \mathbf{R} z$

PROOF: Since \mathbf{R} is transitive.

- $\langle 3 \rangle 4. \ z \in [x]_{\mathbf{R}}$
- $\langle 2 \rangle 3. \ y \mathbf{R} x$

PROOF: Since \mathbf{R} is symmetric.

 $\langle 2 \rangle 4. \ [x]_{\mathbf{R}} \subseteq [y]_{\mathbf{R}}$

PROOF: Similar.

Definition 72 (Partition). A partition of a set A is a set $P \subseteq \mathcal{P}A$ such that:

- \bullet Every member of P is nonempty.
- ullet Any two distinct members of P are disjoint.
- $A = \bigcup P$

Theorem 73. Let R be an equivalence relation on the set A. Then the set of all equivalence classes is a partition of A.

Proof:

 $\langle 1 \rangle 1$. Every equivalence class is nonempty.

PROOF: For any $x \in A$ we have $x \in [x]_R$.

- $\langle 1 \rangle 2$. Any two distinct equivalence classes are disjoint.
 - $\langle 2 \rangle 1$. Let: $x, y \in A$
 - $\langle 2 \rangle 2$. Assume: $z \in [x]_R \cap [y]_R$ Prove: $[x]_R = [y]_R$
 - $\langle 2 \rangle 3$. xRy
 - $\langle 3 \rangle 1$. xRz
 - $\langle 3 \rangle 2$. yRz
 - $\langle 3 \rangle 3$. zRy

PROOF: By $\langle 3 \rangle 2$ and symmetry.

 $\langle 3 \rangle 4$. xRy

PROOF: By $\langle 3 \rangle 1$, $\langle 3 \rangle 3$ and transitivity.

 $\langle 2 \rangle 4$. $[x]_R = [y]_R$

Proof: By Lemma 3N.

 $\langle 1 \rangle 3$. A is the union of all the equivalence classes.

PROOF: For any $x \in A$ we have $x \in [x]_R$.

П

Definition 74 (Quotient Set). If R is an equivalence relation on the set A, then the quotient set A/R is the set of all equivalence classes, and the natural map or canonical map $\phi: A \to A/R$ is defined by $\phi(x) = [x]_R$.

Theorem 75. Assume that R is an equivalence relation on A and that F: $A \to B$. Assume that F is compatible with R; that is, whenever xRy, then F(x) = F(y). Then there exists a unique $\overline{F}: A/R \to B$ such that $F = \overline{F} \circ \phi$.

PROOF: The unique such \overline{F} is $\{([x], F(x)) : x \in A\}$. \square

11 Linear Orders

Definition 76 (Linear Ordering). Let A be a class. A *linear ordering* or *total ordering* on A is a relation B on A such that:

- R is transitive.
- R satisfies trichotomy on A; i.e. for any $x, y \in A$, exactly one of

$$x\mathbf{R}y, x = y, y\mathbf{R}x$$

holds.

Theorem 77. Let R be a linear ordering on A.

1. There is no x such that $x\mathbf{R}x$.

2. For distinct x and y in A, either xRy or yRx.

PROOF: Immediate from trichotomy.

12 Natural Numbers

Definition 78 (Successor). The *successor* of a set a is the set $a^+ = a \cup \{a\}$.

Definition 79 (Inductive). A class **A** is *inductive* iff $\emptyset \in \mathbf{A}$ and $\forall a \in \mathbf{A}.a^+ \in \mathbf{A}$.

Axiom 80 (Infinity). There exists an inductive set.

Definition 81 (Natural Number). A *natural number* is a set that belongs to every inductive set.

We write ω for the class of all natural numbers.

Theorem 82. The class ω is a set.

PROOF: Pick an inductive set I (by the Axiom of Infinity), then apply a Subset Axiom to I. \Box

Theorem 83. The set ω is inductive, and is a subset of every inductive set.

Proof: Easy.

Corollary 83.1 (Proof by Induction). Any inductive subclass of ω is equal to ω .

Theorem 84. Every natural number except 0 is the successor of some natural number.

Proof: Easy proof by induction. \square

Definition 85 (Peano System). A *Peano system* is a triple $\langle N, S, e \rangle$ consisting of a set N, a function $S: N \to N$ and an element $e \in N$ such that:

- 1. $e \notin \operatorname{ran} S$
- 2. S is one-to-one
- 3. Any subset $A \subseteq N$ that contains e and is closed under S equals N.

Definition 86 (Transitive Set). A set A is a *transitive set* iff every member of a member of A is a member of A.

Theorem 87. For any transitive set a, $\bigcup (a^+) = a$.

Proof:

$$\bigcup (a^{+}) = \bigcup (a \cup \{a\})$$

$$= \bigcup a \cup \bigcup \{a\}$$

$$= \bigcup a \cup a$$

$$= a$$

since $\bigcup a \subseteq a$. \square

Theorem 88. Every natural number is a transitive set.

PROOF:

 $\langle 1 \rangle 1$. 0 is a transitive set.

Proof: Vacuous.

- $\langle 1 \rangle 2$. For any natural number n, if n is a transitive set then n^+ is a transitive set.
 - $\langle 2 \rangle 1$. Let: n be a natural number that is a transitive set.
 - $\langle 2 \rangle 2$. $\bigcup (n^+) \subseteq n^+$

PROOF: Theorem 87.

П

Theorem 89. $\langle \omega, \sigma, 0 \rangle$ is a Peano system, where $0 = \emptyset$ and $\sigma = \{\langle n, n^+ \rangle : n \in \omega \}$.

Proof:

 $\langle 1 \rangle 1$. $0 \notin \operatorname{ran} \sigma$

PROOF: For any $n \in \omega$ we have $0 \neq n^+$ since $n \in n^+$ and $n \notin 0$.

 $\langle 1 \rangle 2$. σ is one-to-one.

PROOF: If $m^+ = n^+$ then $m = \bigcup (m^+) = \bigcup (n^+) = n$ using Theorems 87 and 88.

 $\langle 1 \rangle 3$. Any subset $A \subseteq \omega$ that contains 0 and is closed under σ equals ω .

Theorem 90. The set ω is a transitive set.

Proof:

- $\langle 1 \rangle 1$. For every natural number n we have $\forall m \in n$. m is a natural number.
 - $\langle 2 \rangle 1$. $\forall m \in \mathbb{O}$. m is a natural number.

Proof: Vacuous.

 $\langle 2 \rangle 2$. If n is a natural number and $\forall m \in n$. m is a natural number, then $\forall m \in n^+$. m is a natural number.

PROOF: Since if $m \in n^+$ we have either $m \in n$ or m = n, and m is a natural number in either case.

Theorem 91 (Recursion Theorem on ω). Let A be a set, $a \in A$ and $F : A \to A$. Then there exists a unique function $h : \omega \to A$ such that

$$h(0) = a ,$$

and for every n in ω ,

$$h(n^+) = F(h(n)) .$$

Proof

- $\langle 1 \rangle 1$. Let us call a function v acceptable iff dom $v \subseteq \omega$, ran $v \subseteq A$ and:
 - 1. If $0 \in \text{dom } v \text{ then } v(0) = a$
 - 2. For all $n \in \omega$, if $n^+ \in \text{dom } v$ then $n \in \text{dom } v$ and $v(n^+) = F(v(n))$.

```
\langle 1 \rangle 2. Let: \mathcal{K} be the set of acceptable functions.
\langle 1 \rangle 3. Let: h = \bigcup \mathcal{K}
\langle 1 \rangle 4. h is a function.
    \langle 2 \rangle 1. Let: S = \{ n \in \omega : \text{for at most one } y, (n, y) \in h \}
   \langle 2 \rangle 2. S is inductive.
       \langle 3 \rangle 1. \ 0 \in S
            \langle 4 \rangle 1. Let: \langle 0, y_1 \rangle, \langle 0, y_2 \rangle \in h
            \langle 4 \rangle 2. PICK acceptable v_1 and v_2 such that v_1(0) = y_1 and v_2(0) = y_2
            \langle 4 \rangle 3. \ y_1 = a
            \langle 4 \rangle 4. \ y_2 = a
            \langle 4 \rangle 5. \ y_1 = y_2
        \langle 3 \rangle 2. \forall k \in S.k^+ \in S
            \langle 4 \rangle 1. Let: k \in S
            \langle 4 \rangle 2. Let: (k^+, y_1), (k^+, y_2) \in h
            \langle 4 \rangle 3. PICK acceptable v_1, v_2 such that v_1(k^+) = y_1 and v_2(k^+) = y_2
            \langle 4 \rangle 4. y_1 = F(v_1(k))
            \langle 4 \rangle 5. f_2 = F(v_2(k))
            \langle 4 \rangle 6. \ v_1(k) = v_2(k)
                \langle 5 \rangle 1. \ (k, v_1(k)), (k, v_2(k)) \in h
                \langle 5 \rangle 2. Q.E.D.
                   Proof: By \langle 4 \rangle 1
           \langle 4 \rangle 7. \ y_1 = y_2
    \langle 2 \rangle 3. \ S = \omega
\langle 1 \rangle 5. h is acceptable.
   \langle 2 \rangle 1. If 0 \in \text{dom } h \text{ then } h(0) = a
        \langle 3 \rangle 1. Assume: 0 \in \text{dom } h
        \langle 3 \rangle 2. Pick v acceptable with v(0) = h(0)
        \langle 3 \rangle 3. \ v(0) = a
        \langle 3 \rangle 4. h(0) = a
    \langle 2 \rangle 2. For all n \in \omega, if n^+ \in \text{dom } h then n \in \text{dom } h and h(n^+) = F(h(n))
        \langle 3 \rangle 1. Let: n \in \omega with n^+ \in \text{dom } h
        \langle 3 \rangle 2. PICK v acceptable with v(n^+) = h(n^+)
        \langle 3 \rangle 3. n \in \text{dom } v
        \langle 3 \rangle 4. \ v(n) = h(n)
        \langle 3 \rangle 5. \ h(n^+) = F(h(n))
           Proof:
                                                            h(n^+) = v(n^+)
                                                                        = F(v(n))
                                                                        = F(h(n))
\langle 1 \rangle 6. dom h = \omega
    \langle 2 \rangle 1. \ 0 \in \text{dom } h
       PROOF: Since \{(0,a)\} is an acceptable function.
    \langle 2 \rangle 2. \forall n \in \text{dom } h.n^+ \in \text{dom } h
       \langle 3 \rangle 1. Let: n \in \text{dom } h
```

 $\langle 3 \rangle 2$. PICK an acceptable v such that $n \in \text{dom } v$

```
\langle 3 \rangle 3. Assume: w.l.o.g. n^+ \notin \text{dom } v
```

- $\langle 3 \rangle 4. \ v \cup \{(n^+, F(v(n)))\}$ is acceptable.
- $\langle 1 \rangle 7$. For any acceptable function $h': \omega \to A$ we have h' = h
 - $\langle 2 \rangle 1$. Let: $h' : \omega \to A$ be acceptable.
 - $\langle 2 \rangle 2$. h'(0) = h(0)

Proof: h'(0) = h(0) = a

 $\langle 2 \rangle 3. \ \forall n \in \omega.h'(n) = h(n) \Rightarrow h'(n^+) = h(n^+)$

PROOF: We have $h'(n^+) = F(h'(n)) = F(h(n)) = h(n^+)$.

Theorem 92. Let (N, S, e) be a Peano system. Then $(\omega, \sigma, 0)$ is isomorphic to (N, S, e), i.e. there is a function h mapping ω one-to-one onto N in a way that preserves the successor operation

$$h(\sigma(n)) = S(h(n))$$

and the zero element

$$h(0) = e .$$

Proof:

 $\langle 1 \rangle 1$. There exists a function h that satisfies those two conditions.

PROOF: By the Recursion Theorem.

- $\langle 1 \rangle 2$. For all $m, n \in \omega$, if $m \neq n$ then $h(m) \neq h(n)$
 - $\langle 2 \rangle 1$. For all $n \in \omega$, if $n \neq 0$ then $h(n) \neq h(0)$
 - $\langle 3 \rangle 1$. Let: $n \in \omega$
 - $\langle 3 \rangle 2$. Assume: $n \neq 0$
 - $\langle 3 \rangle 3$. Pick p such that $n = p^+$
 - $\langle 3 \rangle 4$. $h(n) \neq h(0)$

PROOF: $h(n) = S(h(p)) \neq e = h(0)$.

- $\langle 2 \rangle 2$. For all $m \in \omega$, if $\forall n (m \neq n \Rightarrow h(m) \neq h(n))$ then $\forall n (m^+ \neq n \Rightarrow h(m^+) \neq h(n))$
 - $\langle 3 \rangle 1$. Let: $m \in \omega$
 - $\langle 3 \rangle 2$. Assume: $\forall n (m \neq n \Rightarrow h(m) \neq h(n))$
 - $\langle 3 \rangle 3$. Let: $n \in \omega$
 - $\langle 3 \rangle$ 4. Assume: $m^+ \neq n$ Prove: $h(m^+) \neq h(n)$
 - $\langle 3 \rangle 5$. Case: n=0

PROOF: $h(m^+) = S(h(m)) \neq e = h(n)$

- $\langle 3 \rangle 6$. Case: $n = p^+$
 - $\langle 4 \rangle 1. \ m \neq p$
 - $\langle 4 \rangle 2$. $h(m) \neq h(p)$
 - $\langle 4 \rangle 3. \ S(h(m)) \neq S(h(p))$
 - $\langle 4 \rangle 4$. $h(m^+) \neq h(p^+)$
- $\langle 1 \rangle 3$. For all $x \in N$, there exists $n \in \omega$ such that h(n) = x

PROOF: An easy induction on x.

П

Arithmetic 13

Definition 93 (Addition). Addition + is the binary operation on ω such that, for all $m, n \in \omega$,

$$m + 0 = m$$
$$m + n^+ = (m+n)^+$$

Theorem 94 (Associative Law for Addition).

$$\forall m, n, p \in \omega.m + (n+p) = (m+n) + p$$

Proof:

$$m + (n+0) = m+n = (m+n) + 0$$
If $m + (n+p) = (m+n) + p$ then
$$m + (n+p^+) = m + (n+p)^+$$

$$= (m+(n+p))^+$$

$$= ((m+n) + p)^+$$

$$= (m+n) + p^+$$

Theorem 95 (Commutative Law for Addition).

$$\forall m, n \in \omega.m + n = n + m$$

Proof:

- $\langle 1 \rangle 1$. $\forall n \in \omega . 0 + n = n + 0$
 - $\langle 2 \rangle 1. \ 0 + 0 = 0 + 0$
 - $\langle 2 \rangle 2$. For all $n \in \omega$, if 0 + n = n + 0 then $0 + n^+ = n^+ + 0$ Proof:

$$0 + n^+ = (0 + n)^+$$

= n^+ (induction hypothesis)
= $n^+ + 0$

- $\langle 1 \rangle 2$. For all $m \in \omega$, if $\forall n.m + n = n + m$ then $\forall n.m^+ + n = n + m^+$
 - $\langle 2 \rangle 1$. Let: $m \in \omega$
 - $\langle 2 \rangle 2$. Assume: $\forall n.m + n = n + m$
 - $\langle 2 \rangle 3. \ m^+ + 0 = 0 + m^+$ PROOF: From $\langle 1 \rangle 1$

 $\langle 2 \rangle 4$. For all $n \in \omega$, if $m^+ + n = n + m^+$ then $m^+ + n^+ = n^+ + m^+$

Proof:

$$m^{+} + n^{+} = (m^{+} + n)^{+}$$

$$= (n + m^{+})^{+}$$

$$= (n + m)^{++}$$

$$= (m + n)^{++}$$

$$= (m + n^{+})^{+}$$

$$= (n^{+} + m)^{+}$$

$$= n^{+} + m^{+}$$

$$(\langle 2 \rangle 2)$$

Definition 96 (Multiplication). *Multiplication* \cdot is the binary operation on ω such that, for all $m, n \in \omega$,

$$m0 = 0$$
$$m \cdot n^+ = mn + m$$

Theorem 97 (Distributive Law).

$$\forall m, n, p \in \omega.m(n+p) = mn + mp$$

Proof:

 $\langle 1 \rangle 1. \ \forall m,n \in \omega. m(n+0) = mn + m0$

Proof:

$$m(n+0) = mn$$
$$= mn + 0$$
$$= mn + m0$$

 $\langle 1 \rangle 2$. For all $p \in \omega$, if m(n+p) = mn + mp then $m(n+p^+) = mn + mp^+$ PROOF:

$$m(n+p^+) = m(n+p)^+$$

 $= m(n+p) + m$
 $= (mn+mp) + m$
 $= mn + (mp+m)$ (Associative Law for Addition)
 $= mn + mp^+$

Theorem 98 (Associative Law for Multiplication).

$$\forall m, n, p \in \omega.m(np) = (mn)p$$

Proof:

 $\langle 1 \rangle 1. \ \forall m, n \in \omega.m(n0) = (mn)0$

PROOF: Both are equal to 0.

 $\langle 1 \rangle 2$. For all $m, n, p \in \omega$, if m(np) = (mn)p then $m(np^+) = (mn)p^+$

Proof:

$$m(np^+) = m(np + n)$$

= $m(np) + mn$ (Distributive Law)
= $(mn)p + mn$
= $(mn)p^+$

Theorem 99 (Commutative Law for Multiplication).

$$\forall m, n \in \omega.mn = nm$$

Proof:

- $\langle 1 \rangle 1. \ \forall n \in \omega.0n = n0$
 - $\langle 2 \rangle 1. \ 0 \cdot 0 = 0 \cdot 0$
 - $\langle 2 \rangle 2$. For all $n \in \omega$, if 0n = n0 then $0n^+ = n^+0$

Proof:

$$0n^{+} = 0n + 0$$

$$= 0n$$

$$= n0$$

$$= 0$$

$$= n^{+}0$$

- $\langle 1 \rangle 2$. For all $m \in \omega$, if $\forall n \in \omega.mn = nm$ then $\forall n \in \omega.m^+n = nm^+$
 - $\langle 2 \rangle 1$. Let: $m \in \omega$
 - $\langle 2 \rangle 2$. Assume: $\forall n \in \omega.mn = nm$
 - $\langle 2 \rangle 3. \ m^+0 = 0 m^+$

Proof: By $\langle 1 \rangle 1$.

 $\langle 2 \rangle 4$. For all $n \in \omega$, if $m^+ n = n m^+$ then $m^+ n^+ = n^+ m^+$

Proof:

$$m^{+}n^{+} = m^{+}n + m^{+}$$

$$= (m^{+}n + m)^{+}$$

$$= (nm^{+} + m)^{+}$$

$$= (nm + n + m)^{+}$$

$$= (mn + n + m)^{+}$$

$$= (mn + m + n)^{+}$$
 (Associative and Commutative Laws for Addition)
$$= (mn^{+} + n)^{+}$$

$$= (n^{+}m + n)^{+}$$

$$= n^{+}m + n^{+}$$

$$= n^{+}m^{+}$$

14 Ordering on the Natural Numbers

Lemma 100. For any natural numbers m and n, $m \in n$ if and only if $m^+ \in n^+$.

```
\langle 1 \rangle 1. \ \forall m, n \in \omega (m \in n \Rightarrow m^+ \in n^+)
    \langle 2 \rangle 1. \ \forall m \in \omega (m \in 0 \Rightarrow m^+ \in 0^+)
       Proof: Vacuous.
    \langle 2 \rangle 2. For all n \in \omega, if \forall m \in n.m^+ \in n^+ then \forall m \in n^+.m^+ \in n^{++}
       \langle 3 \rangle 1. Let: n \in \omega
       \langle 3 \rangle 2. Assume: \forall m \in n.m^+ \in n^+
       \langle 3 \rangle 3. Let: m \in n^+
       \langle 3 \rangle 4. Case: m \in n
          \langle 4 \rangle 1. \ m^+ \in n^+
              Proof: By \langle 3 \rangle 2
           \langle 4 \rangle 2. \ m^+ \in n^{++}
       \langle 3 \rangle 5. Case: m=n
          PROOF: m^{+} = n^{+} \in n^{++}
\langle 1 \rangle 2. \ \forall m, n \in \omega(m^+ \in n^+ \Rightarrow m \in n)
    \langle 2 \rangle 1. Let: m, n \in \omega
    \langle 2 \rangle 2. Assume: m^+ \in n^+
    \langle 2 \rangle 3. \ m \in m^+
    \langle 2 \rangle 4. m^+ \in n or m^+ = n
   \langle 2 \rangle 5. \ m \in n
       PROOF: If m^+ \in n this follows because n is transitive (Theorem 88).
Lemma 101. For any natural number n we have n \notin n.
Proof:
\langle 1 \rangle 1. \ 0 \notin 0
\langle 1 \rangle 2. For all n \in \omega, if n \notin n then n^+ \notin n^+
    \langle 2 \rangle 1. Let: n \in \omega
    \langle 2 \rangle 2. Assume: n^+ \in n^+
            Prove: n \in n
    \langle 2 \rangle 3. n^+ \in n or n^+ = n
   \langle 2 \rangle 4. \ n \in n^+
   \langle 2 \rangle 5. \ n \in n
       PROOF: If n^+ \in n this follows because n is transitive (Theorem 88).
Theorem 102 (Trichotomy Law for \omega). For any natural numbers m and n,
exactly one of
                                             m\in n, m=n, n\in m
holds.
```

Proof:

```
\langle 1 \rangle 1. For any m, n \in \omega, at most one of m \in n, m = n, n \in m holds.
  PROOF: If m \in n and m = n then m \in m contradicting Lemma 101.
  If m \in n and n \in m then m \in m by Theorem 88, contradicting Lemma 101.
\langle 1 \rangle 2. For any m, n \in \omega, at least one of m \in n, m = n, n \in m holds.
   \langle 2 \rangle 1. For all n \in \omega, either 0 \in n or 0 = n
      \langle 3 \rangle 1. \ 0 = 0
      \langle 3 \rangle 2. For all n \in \omega, if 0 \in n or 0 = n then 0 \in n^+
   \langle 2 \rangle 2. For all m \in \omega, if \forall n \in \omega (m \in n \vee m = n \vee n \in m) then \forall n \in \omega (m^+ \in m)
           n \vee m^+ = n \vee n \in m^+
      \langle 3 \rangle 1. Let: m \in \omega
      \langle 3 \rangle 2. Assume: \forall n \in \omega (m \in n \lor m = n \lor n \in m)
      \langle 3 \rangle 3. Let: n \in \omega
      \langle 3 \rangle 4. Case: m \in n
         Proof: Then m \in n^+
      \langle 3 \rangle 5. Case: m = n
         PROOF: Then m \in n^+
      \langle 3 \rangle 6. Case: n \in m
         PROOF: Then n^+ \in m^+ by Lemma 100 so n^+ \in m or n^+ = m.
```