Problem 1.

Determine from the graph whether the function has any absolute extreme values on the interval [a, b].

Answers *

Absolute minimum and absolute maximum

No absolute extrema

Absolute maximum only

Problem 2.

Determine from the graph whether the function has any absolute extreme values on the interval [a,b].

Answers *

Absolute minimum and absolute maximum.

Absolute maximum only.

Absolute minimum only.

Problem 3.

Find the a	aheoliita.	avtrama	tralmag	oftha	function	on the	interval	

$$g(x) = -x^2 + 11x - 30, 5 \le x \le 6$$

Answers *

absolute maximum is $5/4$ at $x = 13/2$; absolute minimum is 0 at 6 and 0 at $x = 5$
absorbte maximum is 5/4 at x = 15/2, absorbte minimum is 0 at 0 and 0 at x = 5

- absolute maximum is 241/4 at x = 11/2; absolute minimum is 0 at 6 and 0 at x = 5
- absolute maximum is 1/4 at x = 11/2; absolute minimum is 0 at 6 and 0 at x = 5
- absolute maximum is 1/4 at x = 13/2; absolute minimum is 0 at 6 and 0 at x = 5

Problem 4

Find the absolute extreme values of the function on the interval.

$$F(x) = -\frac{1}{x^2}, \ 0.5 \le x \le 5$$

Answers *

- absolute maximum is -1/25 at x = 5; absolute minimum is -4 at x = -1/2
- absolute maximum is -1/25 at x = 1/2; absolute minimum is -4 at x = -5
- absolute maximum is -1/25 at x = 5; absolute minimum is -4 at x = 1/2
- absolute maximum is 1/25 at x = 1/2; absolute minimum is -4 at x = 5

Problem 5.

Dind	tho.	abaaluta	artrama	*******	of the	function		tho.	intornal	
rma	tne	absolute	extreme	values	or the	Tunction	on	tne	interval	١.

$$g(x) = 10 - 6x^2, -2 \le x \le 5$$

Answers *

absolute maximum is 20 at $x = 0$; absolute minimum is -14 at $x = 5$

absolute maximum is 6 at
$$x = 0$$
; absolute minimum is -160 at $x = 5$

absolute maximum is 60 at
$$x = 0$$
; absolute minimum is -14 at $x = -2$

Problem 6.

Find the absolute extreme values of the function on the interval.

$$f(x) = x^{\frac{2}{3}}, -1 \le x \le 27$$

Answers *

absolute maximum is 8 at
$$x = 27$$
; absolute minimum is 0 at $x = 0$

absolute maximum is 9 at
$$x = 27$$
; absolute minimum is 0 at $x = 0$

Problem 7.

Find the extre	me values	of	the	function	and	where	they	occur.
----------------	-----------	----	-----	----------	-----	-------	------	--------

$$f(x) = x^2 + 2x - 3$$

Answers *	
	Absolute minimum is -1 at $x = 4$.
	Absolute minimum is 1 at $x = 4$.
	Absolute minimum is 1 at $x = -4$.
✓	Absolute minimum is -4 at x = -1
Problen	ı 8.
Find th	ne extreme values of the function and where they occur.
f(x) =	$=(x-4)^{2/3}$
Answers '	•
	Absolute minimum value is 0 at $x = -4$.
	There are no definable extrema.
	Absolute maximum value is 0 at $x = -4$.
\checkmark	Absolute minimum value is 0 at x = 4

Problem 9.

100111	fy the critical values of function $y = 2x^3 - 3x^2$.
Answers	*
	-1, 1
	0, 0
	0, -1
✓	0, 1
roblem	10.
Identif	y the critical values of function $y = 2x^3 - 3x^2$.
Identif	y the critical values of function $y = 2x^3 - 3x^2$.
Identif	y the critical values of function $y = 2x^3 - 3x^2$.
Identif	y the critical values of function $y = 2x^3 - 3x^2$. -1, 1

Problem 11

For wh	nat value of x does the function $y = x^3 - 6x$ have a local minimum?	
Answers		
	0	
	$\sqrt{2}$	
\checkmark	$-\sqrt{2}$	
	6	
Problem	12.	
Find the $y = \frac{x^3}{3}$	the x-coordinate(s) of the inflection point(s) of the curve of the following function $-x^2$	
Answers	•	
\checkmark	1	
	0, 2	
	0, 1	
	1, 2	

Problem 13.

The function $f(x)=x^2+2x^3$ has	
Answers *	
no relative extrema	
two relative extrema and one inflection point	
one relative extrema and two inflection points	
one relative extrema and one inflection point	
three relative extrema and two inflection point	
Problem 14.	
Let $f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 10x$. Which of the following statements must be true?	
Answers *	
f(x) has critical points at -2, 5 and 3/2.	
f(x) has critical points at -2 and 5, and an inflection point at $3/2$.	
f(x) has critical points at -2 and 5 but has no inflection points.	
f(x) has an inflection point at 3/2 but has no critical points.	