Siamese Networks

- Introduction
- Model architecture
- Lost function
- One-shot learning
- A Siamese Network is a neural network which uses the same weights while working in tandem on two different input vectors to compute comparable output vectors
- Question Duplicates

How old are you? = What is your age?

Where are you from? + Where are you going?

What do Siamese Networks learn?

I am happy because I am learning

Classification: categorize things

Siamese Networks: Identify similarity between things

What is your age? Difference or Similarity

- Aiming to identify what's makes two input similar and what makes them different.
- Computing a single similarity score representing the relationship between the two input

Siamese Networks in NLP

What is your age? How old are you?

Handwritten checks

× /-

Question duplicates

Queries

Model Architecture

Model Architecture

- 1) Inputs
- 2) Embedding
- 3) LSTM
- 4) Vectors
- 5) Cosine Similarity
- a siamese network made up of two identical subnetworks
- each question gets transformed into an embedding and passed through an LSTM layer,
- take the outputs of each of the subnetworks and compare them using cosine similarity

Loss Function

$$\hat{y} = s(v_1, v_2)$$

Calculate the similarity between the two questions

Loss Function

How old are you?

Anchor

$$\cos(v_1, v_2) = \frac{v_1 \cdot v_2}{||v_1|| \, ||v_2||}$$
$$s(v_1, v_2)$$

What is your age?

Positive

s(A, P)

Where are you from? Negative

$$s(A, N) \approx -1$$

$$s(A, N) - s(A, P)$$

- Anchor is use to compare against two other questions
- Questions that have the same meaning as the anchor are called positive questions
- questions do not have the same meaning as the anchor are called negative questions

Loss Function

Triplets

How old are you?

What is your age?

Where are you from?

Anchor

Positive

Negative

Whether or not a question has the same meaning as the anchor

Triplet Loss

Simple loss:

$$diff = s(A, N) - s(A, P)$$

How old are you?

What is your age?

Where are you from?

Anchor

Positive

Negative

$$\mathcal{L} = \begin{cases} 0; & \text{if } diff \leq 0 \\ diff; & \text{if } diff > 0 \end{cases}$$

With alpha margin

$$\mathcal{L} = \begin{cases} 0; & \text{if } diff + \alpha \leq 0 \\ diff + \alpha; & \text{if } diff + \alpha > 0 \end{cases}$$

Triplet Loss

$$\mathcal{L} = \begin{cases} 0; & \text{if } diff + \alpha \leq 0 \\ diff; & \text{if } diff + \alpha > 0 \end{cases}$$

$$\text{Simplified}$$

$$\mathcal{L}(\underline{A}, P, N) = \max(diff + \alpha, 0)$$

From the neural network

You can use any similarity function or distance metric

Triplet Selection

$$\mathcal{L} = \max (diff + \alpha, 0)$$

diff = s(A, N) - s(A, P)

Easy to satisfy. Little to learn

$$s(A, N) \approx s(A, P)$$

Hard

Harder to train. More to learn

- select a pair of duplicates questions as the anchor and positive example from the training set.
- select a question that is known to be different in meaning from the anchor to form the anchor and the negative pair.

Computing The Cost I

Prepare the batches as follows:

How old are you? What is your age? Can you see me? Are you seeing me? Where are thou? Where are b = 4you? When is the game? What time is the

Computing The Cost

Batch 1

What is your age?

Can you see me?

Where are thou?

When is the game?

Batch 2

How old are you?

Are you seeing me?

Where are you?

What time is the game?

Computing The Cost

$$\mathcal{L}(A, P, N) = \max (diff + \alpha, 0)$$
$$diff = s(A, N) - s(A, P)$$

$$\mathcal{J} = \sum_{i=1}^{m} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$$

Computing The Cost II

Batch 1

What is your age?

Can you see me?

Where are thou?

When is the game?

Batch 2

How old are you?

Are you seeing me?

Where are you?

What time is the game?

$oldsymbol{v}_{1_1}$			
\boldsymbol{v}_{1_2}			
\boldsymbol{v}_{1_3}			
$oldsymbol{v}_{1_4}$			
	$\overline{oldsymbol{v}_2}$		

 $v_1 = (1, d_model)$

	_		
\boldsymbol{v}_{2_1}			
\boldsymbol{v}_{2_2}			
\boldsymbol{v}_{2_3}			
$oldsymbol{v}_{2_4}$			

Hard Negative Mining

		$s(v_1, v_2)$			
		$oldsymbol{v}_1$			
		_1	_2	_3	_4
	_1	0.9	-0.8	0.3	-0.5
12.	_2	-0.8	0.5	0.1	-0.2
\boldsymbol{v}_2	_3	0.3	0.1	0.7	-0.8
	_4	-0.5	-0.2	-0.8	1.0

mean negative:

mean of off-diagonal values in each row

closest negative:

off-diagonal value closest to (but less than) the value on diagonal in each row

Hard Negative Mining

mean negative mean of off-diagonal values

closest negative: closest off-diagonal value

Sest negative: closest off-diagonal value
$$\mathcal{L}_{\mathrm{Original}} = \max \left(\underbrace{s(A,N) - s(A,P) + \alpha}, 0 \right)$$

$$\mathcal{L}_{1} = \max \left(\underbrace{mean_neg} - s(A,P) + \alpha, 0 \right)$$

$$\mathcal{L}_{2} = \max \left(\underbrace{closest_neg} - s(A,P) + \alpha, 0 \right)$$

$$\mathcal{L}_{\mathrm{Full}}(A,P,N) = \mathcal{L}_{1} + \mathcal{L}_{2}$$

$$\mathcal{J} = \sum_{i=1}^{m} \mathcal{L}_{\mathrm{Full}}(A^{(i)},P^{(i)},N^{(i)})$$

One Shot Learning

Classification vs One Shot Learning

One Shot Learning

No need for retraining!

Learn a similarity score!

$$s(sig1, sig2) > \tau$$

$$s(sig1, sig2) \le \tau$$

Training / Testing

Dataset

Question 1	Question 2	is_duplicate
What is your age?	How old are you?	true
Where are you from?	Where are you going?	false
:	:	:

Prepare Batches

Question 1: batch size b

Batch 1
What is your age?
Can you see me?
Where are thou?
When is the game?

Batch 2

Question 2: batch size b

How old are you?
Are you seeing me?

Where are you?
What time is the game?

Siamese Model

Create a subnetwork:

- 1) Embedding
- 2) LSTM
- 3) Vectors
- 4) Cosine Similarity

Testing

- The goal is to find a similarity score between two inputs questions.
- Then test the score against some threshold τ and if the cosine similarity is greater than Tau, then the questions are classified as duplicates.

- 1. Convert each input into an array of numbers
- 2. Feed arrays into your model
- 3. Compare v_1 , v_2 using cosine similarity
- 4. Test against a threshold τ