UNCLASSIFIED

AD NUMBER

AD-851 518

CLASSIFICATION CHANGES

TO UNCLASSIFIED

FROM CONFIDENTIAL

AUTHORITY

DD 254 MSCG WS107A; May 14, 1965 by Richard J. Cook per Document Markings

1991004329

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD NUMBER

AD-851 518

NEW LIMITATION CHANGE

TO

DISTRIBUTION STATEMENT: A

Approved for public release; Distribution Unlimited.

LIMITATION CODE: 1

FROM

No Prior DoD Distr Scty Cntrl St'mt Assgn'd

AUTHORITY

SAMSO Ltr; Mar 20, 1972

THIS PAGE IS UNCLASSIFIED

This document is subject

BERRY MA AE60-0653 un 26 October 1960 48

GENERAL DYNAMICS ASTRONAUTICS

WS-107A-1

INSTRUMENTATION CONFIGURATION OPERATIONAL SYSTEM TEST FACILITY NO. 2

VAFB

special export controls and

each transmittal to foreign nationals may be made only Ha. SAMSO, LA., Ca. 90045 with prior approval of: Sovernments or foreign

Classification Changed To:

D D 254 MSCG Reclassified By:

Date 5-14-65 WS:07A Dept.

PREPARED BY __TEST_PLANNING GROUP

APPROVED BY

Mac lonal

Test Planning

CHECKÈD EY

T. M. Wooster Instrumentation APPROVED BY

P. J. Lynch

Chief-Field Test Engineering

GR. 4 DOWNGRADED AT 3 VEAR INTER-VALS, DECLASSION OF ALLE 12 31 5 DOD DIR 5200 10

LASSIFIED

Best Available Copy Reproduced From

Instrumentation Configuration Report

AE60-0653 OSTF NO. 2

D851518

REPORT.	AE60-0653
	A

US-107A-1 INSTRUMENTATION CONFIGURATION OPERATIONAL SYSTEM TEST FACILITY NO.2 VAFB

REVISIONS

Nà.	SATE	BY	CHAME	PARES AFFECTES
В	12 JUL 61	RTL	Change company name	Title, i thru vi.
				all revised rares
			UPDATS:	
			Text to include program changes:	
			ECP1090, ECP1452, S.O. 142-1-3,	i three
			Definition of Part 2 program	Section I thru IV
			All illustrations	Section 7
			All tubulations	Sections 5, 0, 10
			ISM Code Key	Section 13
		(S)	CALIV HRM An	
		·		

FORM NO. A-701-1

UNCLASSIFIED

INSTRUMENTATION PLAN
FOR
OFERATIONAL SYSTEM TEST FACILITY
VAFB

REVISIONS

NG.	BATE	87	CHAMGE	PAGES AFFECTED
С	6 DEC 61	HLW	Program Summary	viii
			Discussion of Instrumentation to	1-1 thru 1-7
			reflect program changes	2=: thru 2=25
			Data Gathering Systems	3-1 thru 3-
			Illustrations	7-1,3,5,7,8,9,10
				11,12,18,20,21
			Tabulations to reflect program changes	Sections 8,9,10
			IBM Code Key	Section 13
			ADDED:	
			GOX Vent System discussion	2-12
			Illustrations of Crib Drop Accelero-	2-15 thru 7-20
			moters	
			DELETED:	
			Countdown Instrumentation	Section 12
			BEH CHICHWAND IM	
	<u> </u>			

FORM NO A-701-1

UNCLASSIFIED

BLANK PAGE

REPORTAE60_0653	
PAGE MG D	

INSTRUMENTATION PLAN

FOR

OPERATIONAL SYSTEM TEST FACILITY VAFB REVISIONS

#0.	BATE	87	CHAMGE	PAGES AFFECTED	
ם	6 JULY 62	WEEB	Program Summary	Viii and ix	
			Discussion of Instrumentation to	1-9 and	
			reflect program changes	2-27	
			Tabulations to reflect program	Sections 8,9,10	
			changes		
			ADDED :		
			IRSS modification discussion	1-9	
<u></u>			Recoverable camera Pod discussion		
			Lift-Off cameras discussion		
			Launch control instrumentation	2-27	
<u> </u>			discussion		
			Silo Ambient Pressure Instrumentation		
			Bendix Inverter Instrumentation		
		<u></u> -	Trailing Wire Instrumentation discussi	on -	
			MER IN THOUTH		

FORM NO. A-701-1

UNCLASSIEIED

REPORT_	AE60-0653
PARE NO	Ε

INSTRUCTION PLAN

FOR

OPERATIONAL SYSTEM TEST FACILITY

VAFB REVISIONS

MA.	BATE	87	CHAMBE	PAGES AFFECTED
E	26 Sept62	VEB	Program Summary	viii and im
			Tabulations to reflect program changes	Sections 8,9,10
			ADDED:	
			Pressure Pulse Instrumentation	1-13
		· · · · · · · · · · · · · · · · · · ·	Deleted:	
			Crib Drop Test Instrumentation	2-11 and 2-12
			11.56 3. ATK.	
			Fru apelor	
			Sperfix 2 pr/12	
			•	
				· · · · · · · · · · · · · · · · · · ·

PORM NO. A-701-1

8

UNCLASSIFIED

GENERAL DYNAMICS ASTRONAUTICS REPORT NO. AEGO-0353 26 SEPTEMBER 1962

FOREWORD

This report is prepared at the direction of U.S. Air Force Ballistic System Division by Letter Contract NO. AF04(647)-453.

This report provides the integrated instrumentation requirements and details necessary to accomplish programs described in Astronautics Report AE60-0807, "Integrated Test Plan for WS107A-1 Operational System Test Facility OSTF-2 Category II," prepared by Test Planning, Dept. 370-1. This report will be considered the primary source of information related to instrumentation for the OSTF-2 program. Instrumentation of integrated equipment of Associate Contractors is included. All changes or additions to the instrumentation will be indicated in revisions to this report, after coordination with Instrumentation Planning, Dept. 370-1.

(CO)

0

(3)

PAGE NO. 1

REPORT NO. AE60-0653 26 SEPTEMBER 1962

This page intentionally left blank.

PAGE NO. 11

ING MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL DEFENDE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE B. M.S.G., SECTIONS 700 AND 700, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MAINTER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 26 September 1962

TABLE OF CONTENTS

			PAUL
FO	REWORD		i
TA	BLE OF CON	iii	
LIS	T OF ILLUST	TRATIONS	v
INT	roduction		vii
os:	TF-2 PROGRA	AM INSTRUMENTATION SUMMARY	viii
I.	DISCUSSIO	ON OF MISCILE INSTRUMENTATION	1-1
	General		1-1
	Propulsion	1	1-2
	Propellant	Utilization	1-3
	Airborne F	Pneumatics	1-3
	Missile Ai	rframe	1-3
	Flight Con	trol	1-4
•	Α.	Autopilot	1-4
	В.	Guidance	1-4
	Re-entry V	7ehicle	1-7
	Revision D	Changes Missile	1-9
	Revision E	Change	1-13
u.	DISCUSSIO	ON OF FACILITY INSTRUMENTATION	2-1
		ation Systems	2-1
	Launch Co		2-2
	Propellant	Loading	2-4

PAGE NC. iii

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONATE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISSION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISSION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISSION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISSION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISSION.

REPORT NO. AE60-0653 26 September 1962

TABLE OF CONTENTS (Continued)

		PAGE
Α.	Fuel	2-4
В.	Liquid Oxygen	2-6
C.	Liquid Nitrogen/Helium	2-8
D.	Gaseous Nitrogen	2-9
Air Condit	ioning	2-10
Α.	Facility Heating, Ventilating and Air Conditioning	2-10
В.	Pod Cooling	2-11
c.	Engine Compartment Environment	2-11
Gox Vent S	lystem	2-12
Launch Pl	atform	2-12
Load Cells	and Facility Missile	2-14
Missile Lo	oft Systems	2-21
Α.	General	2-21
В.	Launch Platform Driving Mechansim	2-21
Launch Pl	atform Locking System	2-22
Door Clos	ure System	2-23
Crib Lock	ing System	2-23
Pacility H	ydraulic Power System	2-23
Hydraulic	Pumping Unit	2-24
Facility P	ower.	2-25
Revision I	2-27 D	

PAGE NO. iv

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER 1G AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 JULY 1962

TABLE OF CONTENTS (Continued)

		PAGE
ш.	DATA GATHERING SYSTEMS	3-1
	General	3-1
	FM	3-1
	Digital	3-2
	Graphic Recorder	3-3
	Instrumentation Calibration	3-4
	Miscellaneous Launch Area Data	3-6
	Airborne Data Gathering System	4-1
ıv.	OSTF-2 DATA SOURCES	7-1
	ILLUSTRATIONS	
	TABULATIONS	
	Master Instrumentation Log	8
	Objective Instrumentation Composite	9
	Test Plan and Recorder Assignment	10
	SEQUENCE RECORDER PEN LIST	11-1
	APPENDIX A	12-1

PAGE NO. V

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPHONAGE LAWS LITTLE SE. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 JULY 1962

This page intentionally left blank.

PAGE NO. VI

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE (AN. 1111) IS, M.S.C., SECTIONS 799 AMB 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISELY. BY 1 TW.

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS REPORT NO. AE60-0653 26 SEPTEMBER 1962

INTRODUCTION

The Operational System Test Facility (OSTF-2), F Series silo at Vandenberg AFB will have instrumentation provided to support testing the weapon system as part of the overall category II program. The facility configuration is covered in Astronautics Report AE60-0306. The purpose of the OSTF-2 Category 2 program is to test the F Weapon System and to determine if any modifications are necessary to meet or improve operational requirements at the silo sites.

The areas of testing will include evaluation of Aerospace Ground Equipment (AGE), Airborne, and Facility system and subsystem performance. Operational capability will also be evaluated in terms of maintainability, reliability, and human engineering factors.

A detailed discussion of system and subsystem instrumentation will be found in the main body of this report.

PAGE NO. vii

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED FY LAW.

REPORT NO. AE60-0653 26 SEPTEMBER 1962

OSTF-2 PART 2 PROGRAM INSTRUMENTATION SUMMARY

The test program consists of three (3) test series divided into blocks of testing. Test Series 1 is divided into the following blocks: (a) Block 0, (b) Block 1, (c) Block 1A, (d) Block 1B, and (e) Block 1C. Block 0 testing consists of three LN₂ countdowns utilizing Missile 3F. Block 1 testing, using Missile 13F, contains an inspection, two LN₂ countdowns, and three LOX countdowns. One of the LN₂ and one of the LOX countdowns also include hour hold periods. Block 1A and 1B testing comprise Operation Shotgun. Missile 57F will be used for Block 1A testing which includes an inspection, one LN₂ countdown with an hour hold, a LOX countdown, and a launch. Missile 13F will be used for Block 1B testing which includes an inspection, two LN₂ countdowns, a 5 day hold, a LOX countdown, and a launch. Block 1C testing consists of an inspection to be accomplished at 576E.

Test Series II and III are divided into two blocks of testing for each. Test Series II will utilize Missile 83F. Special testing consisting of EMI and $\rm LN_2$ countdowns will be accomplished as well as ECP updatings. Test Series III as yet has not been defined for any special testing.

All Test Objectives are listed in tabular form in the Objective Instrumentation Composite, (see Section 9). In order to obtain data to fulfill these objectives, instrumentation has been assigned from the master OSTF-2 instrumentation list. Recorder assignments for the various measurements are found in the Recorder Assignment Tab, (see Section 10).

A measurement composite has been compiled and only measurements on the composite will be recorded at OSTF-2. All test objectives have been assigned instrumentation from the composite list; and where required, a priority will be assigned according to the following ground rules:

- a) Priority 1 measurements are the minimum required to satisfy the objectives.
- b) Priority 2 measurements are those desired for the fulfillment of the objective.
- c) For any given run, the site personnel will be required to record all priority 1 measurements for the specific objectives of that run. The recording of priority 2 measurements will in general be left to the discretion of the site personnel so that recording capabilities will not be exceeded.

PAGE NO. viii

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, LIT. E LS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 26 SEPTEMBER 1962

The instrumentation system will assist in the evaluation of Technical Orders and trouble-shooting. It may be necessary for site personnel to select the parameters required for correcting problem areas. Complete information concerning the parameters, such as pick-up point, range, and recorder, along with a description of the problem requiring the instrumentation changes, should be forwarded to Test Planning, Dept. 370-1, as soon as practicable after each change for record purposes.

PAGE NO. ix

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. T.T.F.
18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY JAMPHER TO AN UNMAITHORIZED PERSON IS PROMISTED BY IAV.

REPORT NO. AE60-0563 26 SEPTEMBER 1962

This page intentionally left blank.

PAGE NO. x

THIS MATERIAL CONTAINS INFORMATION AFFECTION THE NATIONAL REFERSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS TITLE LE, IS S., RECTIONS 798 AND 794, THE TRANSMISSION OF REVELATION OF WHICH IS ANY MARKER TO ARE UNANTROPINED PERSON IS PROMISSION OF TAPE

CONFIDENTIAL:

REPORT NO. AE60-0653 6 DECEMBER 1961

DISCUSSION OF MISSILE INSTRUMENTATION

GENERAL

The instrumentation program described in this report has been coordinated with various design groups and Associate Contractors. The instrumentation requirements are based upon the following categories:

Evaluative Instrumentation - that instrumentation required to support test objectives.

Operating Instrumentation - redline and design limit measurements which are required by site personnel to monitor critical parameters during validation, integration and test operations.

Failure Analysis Instrumentation - any of the OSTF-2 program measurements may, in the event of particular types of failure, become useful in failure analysis. Therefore, measurements not specifically assigned in the above two categories are automatically classified as failure analysis instrumentation.

The ground rules used in this instrumentation program are as follows:

- A. All instrumentation is to be coordinated through Astronautics Test Planning Instrumentation Group, 578-12.
- B. All subsystem and Associated Contractor equipment interfaces are considered for instrumentation and instrumented where required.
- C. A standardized boss is used for all pressure and temperature transducers. Measurement provision in the AGE is the reponsibility of the cognizant design group.

A design objective is that the over-all instrumentation program, including methods, techniques and procedures for human factor data collection, will allow changes of measurements with no appreciable delay or cost in testing. A complete listing of the instrumentation provided for testing at OSTF-2 is published in this report; however, instrumentation changes will be made if necessary to accemplish objectives resulting from previous runs.

PAGE NO. 1-1

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAME LAI'S, TITLE 18. U.S.C., SECTIONS 753 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANUEL TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

Three basic types of recording systems will be utilized for data gathering. Direct writing recorders will be used for quick look type analysis, sequence measurements, and operating instrumentation. An FM system will be employed for data requiring a more complete analysis. A digital system will be provided for recording measurements requiring a high degree of accuracy. Limited playback facilities will be available at the site for quick look analysis of the data, including unscaled playback of digital data. The instrumentation system is capable of handling all types of measurements including pressure (potentiometers and strain gauges), temperature (resistance bulbs and thermocouples), flow (venturi, orifice and turbine type), rotational velocity, and others that might arise. Scale factor calibration techniques will be employed to reduce the set-up time for each run

PROPULSION

The silo configuration requires that fuel be constantly stored in the missile tanks. Automatic prevalves in the airborne low pressure fuel ducting keep the fuel from flowing into the engines while the missile is in standby condition. The fuel turbopump inlet pressures (P7002P, P7306P, P7055P) will be monitored to ascertain prevalve performance during the standby and flight pressurization periods.

The ability of the rapid LOX topping unit to maintain satisfactory LOX turbopump inlet conditions and to meet interface requirements will be exhibited by temperature (P7134T P7304T, P7305T) and pressure (P7907P) measurements in the LOX pump inlet ducting

During LOX tanking, gaseous and liquid oxygen flow through the turbopumps and cause the pumps to motor. If the pumps motor excessively, the preservation and lubrication materials utilized by Rocketdyne are destroyed and the pumps must be represerved. In order to determine the number and rate of turbopump revolutions, the existing missileborne tachometers will be adjusted for low range output (P7137B, P7138B) and will be connected to the landline FM recording system. Prior to flight, the tachometers must be readjusted to the normal range and reconnected to the telemetry system

Additional propulsion system instrumentation, telemetered via the IRSS, will furnish information on engine performance during flight.

PAGE NO. 1-2

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL REFERRE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIRIMAGE LAWS. SITES IS, U.S.C., MCCTIONS 705 AND 764, THE TRANSMISSION ON REVELATION OF WHICH HE MAY MANUER TO AN UNAUTHORIZED PERSON IS FROMINITED BY LAW.

-CONFIDENTIAL

REPORT NO. AE60-0653 6 DECEMBER 1961

PROPELLANT UTILIZATION

The acoustica propellant utilization (P/U) system will be installed on those missiles allocated to the OSTF-2 facility. This system consists essentially of a sensor string portion and a computer portion. Propellant levels (fuel and lox) are sensed by ultrasonic probes and this level information is fed into the computer portion. The computer section uses these level indications and the time differences between these level indications to apply a correction voltage to the electrically controlled hydraulic servo valve which positions the main fuel valve and thus controls the fuel flow rate.

Present plans for light instrumentation for the Acoustica P/U system consists of two telemetry measurements (U113V, U135X) in the IRSS kit. Official Air Force action to add these two measurements to the IRSS kit (ECP 1260) has not been received at the time of this report.

Since the Acoustica P/U system is relatively passive during a countdown, two landline measurement (U7132X, U7125X) and instrumentation common to other systems (e.g. missile 28 volt power) will provide information for system capability. Computer reset (U7125X) will determine that a pulse has been received by the computer while station counter output (U7132X) will verify that the computer has been reset and is connected to the proper sensor pair in order to provide operational readiness.

PNEUMATICS

Missileborne helium requirements are very critical on Silo missiles due to countdown restrictions. The quantity of helium loaded will be determined by airborne pressure (F7145P, F7246P) and temperature (F7248T, F7249T, F7250T, F7290T) instrumentation in the missileborne helium storage spheres. Performance of the F Series boiloff valve will be established by the missile tank ullage (F7001P) pressure measurement.

MISSILE AIRFRAME

Eight strain gage measurements will be made on the missile to measure bending moment as the missile is raised and lowered.

PAGE NO. 1-3

THIS MATERIAL CONTAINS INFORMATION APPECTIGS THE MATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EMPIRICAGE LAWS. TITLE 18. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARMINS TO AN IMMALTHORIZED PERSON IS PROMISED BY LAW.

- CONFIDENTIAL 1

REPORT NO. AE60-0653 6 DECEMBER 1961

Each installation will consist of two gages (one hoop and one longitudinal strain) located halfway between the X and Y axes in quadrants I, II, and IV at Sta. 900; and in the same relative locations at Sta. 1100 as follows:

	STA	STA 900		1100
	LONG.	ноор	LONG.	ноор
QUAD I	A7820S	A7533S	A7824S	A7537S
QUAD II	A7822S	A75358	A7826S	A7539S
QUAD III	A7823S	A7536S	A7827S	A7540S
QUAD IV	A7821S	A75348	A78255	A7538S

FLIGHT CONTROL

The flight control system is made up of two major subsystems, the airborne autopilot system and the inertial guidance system.

A. Autopilot

Refer to General Dynamics/Astronautics do ument AZC-27-068, Instrumentation Configuration of Operational Missiles - IRSS, for a discussion of measurements made via the telemetry system.

The Operational Test and Automatic Launch Control Parameters document, AZM-27-452, describes those functions monitored during testing and system checkout.

B. Quidance

The following guidance instrumentation has been coordinated with the Arma Corporation and is in accordance with ARMA DAG 7764 Rev III.

PAGE NO. 1-4

ting material contains information appecting the maticulal septemb of the whites states within the meaning of the espicimal land, title M. U.S.C., SECTIONS 700 AMD 704, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MAINTER TO AN UMALTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

REPORT NG. AE60-0653 6 DECEMBER 1961

All of the Arma Inertial Guidance measurements telemetered via the IRSS, except I581W are also being recorded via landline. Of these measurements the analog to analog convertor (AAC'S) (I7552D, I7528V, I7529V, I7580V, I7527X, I7521X, I7522X, and I7570X) are to be picked up at the umbilical junction box and are already conditioned to 0-5 VDC; the calibration procedure of these measurements will be supplied at a later date. The digital signal convertor (DSC) Outputs (I7505H, I7506H, I7507H, I7508H, I7509H I7502L, I7503L, I7504L and I7510W) are also picked up at the same umbilical juntion box and require only one recording channel.

In addition, the following measurements are also made on landline recorders:

- 1. Arma String Frequencies 17515A, 17516A, 17515A, 17518A, 17519A and 17520A. These string frequencies, to o from each of the three accelerometers on the stable platform are fed directly into the airborne computer and are used to calculate missile vector velocity, position and steering functions. This measurement will be recorded on tape using a 70 KC subcarrier oscillator.
- 2. Optical Azimuth Signal I7501D. This measurement is normally a null and is derived from the azimuth alignment group servo loop and indicates the azimuth with respect to polaris.
- 3. Roll and Pitch Pendulum 17511D and 17512D. These measurements monitor the leveling of the guidance platform preparatory for launch and test purposes.
- 4. Roll, Pitch and Azimuth Memory 17572D, 17573D and 17574D.

 The guidance is put on memory prior to elevator lift, and this memory capability is therefore monitored to evaluate any changes when the missile arrives at launch position.
- 5. Pitch. Roll and Yaw Gyro Torque 17591C, 17592C, and 17593C. This measures the torquing signals fed to each respective gyro axis to maintain platform alignment. It compensates for earth's rotation and normal gyro drifts.

PAGE NO. 1-5

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18. U.S.C., SECTIONS 783 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNES TO AK UMAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

- 6. Pitch, Roll and Azimuth Servo Error 17549D, 17550D and 17551D. These are measurements of the error signals in the platform servos which maintain the platform initial orientation. However, when positioned on the ground these signals should be near null.
- 7. Zero Lag Output #1 I7576D. This signal is associated with the azimuth alignment loop and provides the added stability in the azimuth alignment servo loop.
- 8. Alignment Group Radial, Tangential and Axial Vibration 175380, 175390 and 175420. These measurements monitor the vibration environment of the theodolite which is a part of the alignment group.
- 9. Temperature Controls Amplifier Output 17540V. This measurement monitors the power required to maintain a fixed stable temperature of the high density fluid surrounding the spherical housings which contains the gyros, on the stable platform.
- 10. Twenty-One Arma Discrete Commands 17611X thru 17628X, 17630X, 17631X, and 17637X. These measurements are self explanatory when referred to in the measurement tabulations.
- 11. Indication of Start Elevator and Elevator Complete. H7807X, L/P LOCK ASSY OPEN; H7812X, L/P LOCK ASSY CLOSE.

These measurements provide a time history of "Elevator Lift" environment for the AIG.

12. AIG Pod Environmental Monitors - N7032T, A7907T, T015T, N7048T, N7156T, N7050R, N7155R, N7154T, N7046J. These measurements monitor the air flow rate, temperature, and relative humidity of the air going into B1 and B2 Pods. They aimo monitor the air inside the B1 and B2 Pods.

A discussion of the pod cooling instrumentation is in the air conditioning section, paragraph "B."

PAGE NO. 1-6

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE URITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., RECTIONS 703 AND 704, THE TRANSMISSION OR REVELATION OF WHICH IN ARY MANNER TO AN UNAMITHURIZES PERSON IS PROMISETED BY LAW

CONFIDENTIAL

to the total and at the same of the

CONSIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

RE-ENTRY VEHICLE

Basic Category Two (2) Tests for the Re-entry Vehicle (R/V) are a) to prove reliability, b) determine that the R/V is tactically operational, and c) evaluate the R/V as a part of the weapon system to determine operational limitations and capabilities. The units involved with R/V system evaluation are as shown below in a simplified configuration:

Instrumentation requirements for the Part 2 Program are listed below:

MEAS. NO.	DESCRIPTION	REMARKS
Y7052X	R/V BATT HTR THERMOST	Effective only on Mark 3-Mark 4 always shows positive signal.
Y7054X	L/C POWER	Signal is sent to Launch Control Console (LCC) from GE at countdown initiation.
Y7055X	START C/D PWR	Signal is sent from GE which indicates another bus has been switched in to provide power to select the target.
Y7056X Y7064X	28 VDC VERIFICATION 115 VAC VERIFICATION	GE initiated signals to ascertain that GE is receiving operating power from Astronautics.

PAGE NO. 1-7

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 16, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARKER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

MEAS, NO.	DESCRIPTION	REMARKS
Y7059X	R/V CONTINUITY (GOOD)	Determines that electrical continuity exists through the R/V circuits.
Y7068X Y7061X	MARK 3 R/V MARK 4 R/V	Identity loop to indicate that a Mark 3 or Mark 4 R/V is installed on the flight vehicle.
Y7062X	R/V TACTICAL	Signal represents a summation of a series of R/V relay closures: (a) that the GE simulator is not connected, (b) that the target selector switch is in the remote position and the "Test Power Good" switch is in the OFF position.
¥7065 X	START C/D VFY	Signal received from GE acknowledging receipt of countdown initiation from the Launch Control Console.
Y7066X Y7067X	TARGET A SET TARGET B SET	Indicates that the command from the LCC (via the R/V monitor) has been set in the R/V.
Y7069X Y7070X	TARGET A SELECT TARGET B SELECT	Indicates that the R/V prelaunch monitoring set has received the target command from the LCC.
Y7071X	START C/D SIGNAL	Countdown initiation signal sent from LCC to GE.
Y7072X	+28 VDC	Generated by GD/A when +28 VDC supplied to R/V prelaunch monitor.

PAGE NO. 1-8

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 12, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 JULY 1962

REVISION "D" CHANGES MISSILE

The information contained under Discussion of Missile Instrumentation, Section I should be referred to for a description of reasoning used in establishing missile instrumentation configuration.

The text is still applicable except as amended below.

IRSS MODIFICATION

こうしょう インス・ストース かんかん いっぱい

The launching of Missile 66E pointed up the desirability of expanding the IRSS telemetry to provide a greater failure analysis capability. This increased capability requires the addition of three continuous and one commutated channels (IRIG channels 2, 3, 8 & 16) to the IRSS kits and provides channel space for approximately 27 additional telemetry measurements. The new baseline (effective on launches after 57F) will consist of the present instrumentation including ECP 1260 plus those measurements added by OST - ECP 8073. The measurements added include 8 pressures, 3 temperatures, 2 valve positions, 5 autopilot voltages, 1 Dreakwire, and 1 conax valve command voltage. One rate gyro and 2 pump speed measurements are rechannelized from commutated to continuous channels. An auxiliary signal converter will be utilized to house channel 8 and 16 and the 10 RPS commutator.

Due to the time element Missile 57F received the minimum IRSS telemetry changes compatible with launch schedule. The measurements added include 1 temperature, 1 pressure, 1 breakwire, and 1 conax valve command voltage as listed below:

A770T ENGINE COMPARTMENT AMBIENT @ SUST. HYD. PUMP
M32X CONAX VALVE COMMAND
H185P SUST. HYDRAULIC PUMP INLET PRESSURE
M185X RECOVERABLE CAMERA PKG. - EJECTION SIGNAL
MEASUREMENT P714T (B2, GAS GENERATOR COMBUSTOR) was deleted to provide channel space for A778T.

PAGE NO. 1-9

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, THITE IS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELLION OF WHICH IN ANY MANNER TO AR UNAUTHORIZED PERSON IS PROHIBULD BY U.S. U.S.C.,

REPORT NO. AE60-0653 6 JULY 1962

The following measurements have been added to the basic IRSS Kits (Ref. Report AZC-27-068) to form new baseline kits;

P529D	SUSTAINER MAIN LOX VALVE POSITION
P30P	VERNIER LOX TANK PRESSURE
P27P	VERNIER FUEL TANK PRESSURE
F247T	BOOSTER TANK HELIUM BOTTLES TEMPERATURE
M32X	CONAX VALVE COMMAND
8373X	BOOSTER CUTOFF
8241X	SUSTAINER CUTOFF
8376X	VERNIER CUTOFF
S248X	AUTOPILOT PROGRAMMER SW 17
8379X	FIRE RETROROCKETS
A778T	ENGINE COMPARTMENT AMBIENT @ SUST. HYD. PUMP
A743T	Ambient @ sustainer instr. panel
H185P	SUSTAINER HYDRAULIC PUMP INLET PRESSURE
H224P	BOOSTER HYDRAULIC SYSTEM LOW PRESSURE
P830D	SUSTAINER FUEL VALVE POSITION
· P337P	SUST. GAS GEN LOX INJECTION MANIFOLD
P463P	SUST. GAS GEN FUEL INJECTION MANIFOLD
P1P	B1 LOX PUMP INLET
P351P	SUSTAINER LOX INJECTION MANIFOLD
*M185X	RECOVERABLE CAMERA PKG EJECTION SIGNAL
G504C	MOD III PULSE BEACON MAGNETRON
G583E	MOD III RB RF OUTPUT
G 594 V	MOD III RATE BEACON PHASE DET

* Excluding Missile 83F.

PAGE NO. 1-10

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIONAGE LAWS, TITLE 18, N.S.C., SECTIONS 763 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MAINTER TO AN UNAUTHORIZES PERSON IS PROHIBITS BY LAW

REPORT NO. AE60-0653 6 JULY 1962

The following measurements are rechannelized from commutated to continuous channels:

P84B

B1 PUMP SPEED

-- P349B

SUSTAINER PUMP SPEED

S52R

ROLL RATE GYRO

RECOVERABLE CAMERA PACKAGE

A recoverable camera package (RCP) (measurement M7606N) will be installed on missiles being launched from OSTF #2. The RCP consists of a Milliken model DBM3 motion picture camera (400 frames per second) loaded with 200 feet of film (40 frames per foot); a Sylvania flash flood lamp model FF33 which burns for 1.7 seconds to provide an illumination source, and a battery to operate both lamp and camera. The camera is mounted within a carbon diskide operated ejector tube which together with the battery and illumination source are located on the aft end of the Quad IV jettison rail. The camera lens is focused on sustainer engine hardware to optically observe and record any visual abnormality which occurs in the engine compartment region during staging. Filming and illumination of the engine compartment are initiated by a timer, which in turn is triggered by the booster engine cutoff (BECO) signal. Tea seconds after BECO, the timer initiates the gas operated ejector mechanism and the camera is jettisoned from the tube. The jettisoned camera contains a baroswitch operated para-ballocn which opens at a predetermined altitude and a SARAH beacon transmitter so that camera impact location may be determined.

Design for two additional RCP's have been completed and locations have been designated as position 2 and position 3. Position 2 is designed to mount on the Quad II jettison rail at approximately station 1200 with camera lens facing aft. Position 3 is planned for Quad II! approximately 37 degrees off the X-axis with the aft end of the ejection tube at station 1133. This camera will be looking at the booster thrust section to visually record booster jettison events.

RCP position 1 will be employed on Missile 57F. Other missiles in this series are presently planned to use position 3 only.

PAGE NO. 1-11

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, 51 & 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARKER TO AN UNAUTHORIZED PERSON 15 PROMISETS BY LAW

CONFIDENTIAL.

_CONFIDENTIAL,

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 JULY 1962

IJFTOFF CAMERAS

Optical coverage of the engine compartment on flights after 67E will be accomplished through the use of two ejectable liftoff cameras (LOC). The purpose of these cameras is to visually detect and record any fires or live ruptures that occur during engine start and missile liftoff. The forward camera (measurement M7604N) whose location is indicated as position 5 will be installed at station 1191 in Quad III approximately 15 degrees off the X-axis. The prime componer's in this camera's field of view are the Sustainer Lox Pump and Lox Y Ducting. The camera will be ejected at an angle of 90 degrees from the missile Z-axis.

The aft camera (measurement M7605N) will be located in Quad III approximately 40 degrees off the X-axis. Its location is known as position 4. Included within this camera's field of view are part of the tank apex, the low pressure fuel line from the tank and various components within this area. This camera will be ejected at an angle of 60 degrees from the missile Z-axis. For recovery, both cameras will be ejected at approximately five (5) seconds after missile liftoff.

PAGE NO. 1-13

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENCE OF THE WINTED STATES WITHIN THE MEANING OF THE ESPIONAL LAWE. (17) (NG, U.S.S., SECTIONS FOR AND FOA, THE TRANSMISSION OF NEVELATION OF WHICH IN ANY MANUES TO ARE WANTEDLIED FRIDON IN PROMINITED BY LAW.

CONFIDENTIAL

1 }

GEMERAL DYNAMICS ASTRONAUTICS REPORT NO. AE60-0653 26 SEPTEMBER 1962

PRESSURE PULSE INSTRUMENTATION

Several measurements will be added to the OSTF-2 facility and missiles in order to determine the effects of a pressure pulse such as occurred on the launches of Missiles 67E and 57F. Two of these measurements (A1585P and A1586P) will be located inside the missile in Quads I and III adjacent to the heat shield. The remaining six measurements (L7017P through L7016P, L7601P, and L7602P) will be located external to the missile. Measurements L7601P and L7602P will be mounted on the launcher and located adjacent to the heat shield in Quads I and III. Measurements L7013P through L7016P will be located on the flame bucket with their sensing elements facing into the bucket.

The data from the above measurements should reveal the severity of the pressure pulse for the silo configuration and should also provide a correlation between OSTF-1 and OSTF-2.

PAGE NO. 1-13

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE RATIONAL SETEMS OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIONAGE LAWN. 1111(IS, U.S.C., MCCTIONS 723 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ART MARKER TO AN LAMITHORIZED PERSON IS PROMISED BY LAW

SCONFIDENTIAL

.,}

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 26 SEPTEMBER 1962

This page intentionally left blank.

PAGE NO. 1-14

THIS MATERIAL CONTAINS IMPORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPINITION LAWS, STATES WITHIN THE MEANING OF THE EXPINITION LAWS, STATES WITHIN THE MEANING PROPERTY OF THE STATES OF THE STAT

CONFIDENTIAL

REPORT NO. AE60-0653 6 DECEMBER 1961

DISCUSSION OF FACILITY INSTRUMENTATION

COMMUNICATION SYSTEM

The design of the operational weapon system communications equipment will be verified at OSTF #2. The configuration will be identical to Operational Bases.

It will be necessary to establish that the sufficient communications channels have been provided and that the transmission characteristics are adequate. The system consists of 41 telephones and 38 loudspeakers. Refer to functional schematic 7-6.

The above will be determined by a study of:

- 1. The amount of traffic per station.
- 2. Delays per station due to simultaneous calls.
- 3. Traffic distribution.
- 4. Frequency of usage of various systems, e.g., public address, dial.
- 5. Holding times.
- 6. Post operation check-lists/questionnaires.
- 7. Time intervals in relation to particular activities.

The above data requirements will be ascertained from:

Twenty event measurements (N7051X - N7070X, COM STA ON-OFF) which will be connected to the stations whose usage is greatest. Astronautics will supply wiring to the communications room and Kellogg will condition and connect the wiring to the stations.

Ten channels of voice recording (N7072Y - N7081Y) supplied by Kellogg for traffic analysis.

PAGE NO: 2-1

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPICIAGE LAWS, TITLE 18. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION ON REVELLIBRY OF WHICH IN ANY MARKING TO AN UNBUTHORIZED PERSON IS PROMISED BY LAW.

- CONFIDENTIAL -

REPORT NO. AE60-0653 6 DECEMBER 1961

LAUNCH CONTROL

The equipment and procedures by which automatic and remote operation of a missile launch is effected is called Launch Control. The launch control operation is capable of being performed by one person, the Launch Control Officer. The system is primarily a relay logic system, time sequenced to accomplish the launching countdown within the prescribed time. A minimum of fault indications will be provided as necessary to isolate faults on a subsystem basis. The Launch Cortrol Equipment consists of one Launch Console, two relay logic units. and two signal responder units. The launch control system is capable of maintaining a readiness state for an extended period of time. Launch Control will perform static monitoring of the missile and AGE subsystem, and by comparison to the responder unit. which consists of equipment arranged to simulate functional circuitry of the missile and AGE, will be selfmonitoring. The signal responders will have the capability through switching connections to respond to all control signals originating at the Launch Console or at the Relay and Logic Units. For a given input signal the responders will provide the suitable replies to permit the full operation of the Launch Control system. This will permit determination that the relay logic circuits are functioning correctly. The responder will include fault insertion to test the ability of the system to detect faults and to provide the unit proficiency system capabilities checks.

MOBILE APCHE (Automatic Programed Checkout Equipment) is used for missile system analysis only. MAPCHE is in essence a sophisticated voltmeter and accomplishes its checkout of systems by reducing all measurements such as pressures and temperatures to voltages which it compares to internal standards. Voltage ranges for each test are contained on punched cards and a go- or no-go comparison is made. The value of MAPCHE lies in the high speed with which a large number of tests can be accomplished with a great degree of reliability. MAPCHE, like Launch Control is self-checking, therefore no instrumentation is planned to evaluate or analyze it.

The logical place to gain easy access for AGE instrumentation pickup points is through Launch Control, since nearly all signals and measurements either terminate there or pass through before activating other sequences. The cables to the Launch Control Console are provided with breakouts in the form of cable splices to allow instrumentation connections to any of the

PAGE NO. 2-2

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE RATIONAL DEFENSE OF THE UNITED STATE" WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, IF S.C., SECTIONS 783 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ARY MANNER TO AN UNAUTHORIZED PERSON IS PROMISED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

wires in the cables. The following breakout cables are provided to allow rapid connection of contained wires to the recording facility via a patch panel and appropriate landlines cables.

107 P 111	107 P 149
107 P 120	107 P 150
107 P 143	107 P 151
107P145	

If necessary other breakout cables can be routed and connected to the patch panel, but at present these cables contain all needed pickup points. The other cable breakouts will be ready for use any time additional instrumentation is needed, but will remain vaconnected until required.

At this time, the following instrumentation will be used to monitor the launch control operation.

N7002X SELECT A BUTTON, and N7003X SELECT B BUTTON, are event recordings of the application of electrical power from the STANDBY BUS to Target and Roll Voltage set circuitry when these buttons are pressed, thus partially interlocking the light indication circuitry for the TARGET A SELECTED or TARGET B SELECTED indicator lights. These indicator lights are directly above the select buttons on the Launch Officer's Control Panel.

N7024X START BUTTON, N7028X COMMIT START BUTTON, and N7042X START ABORT SWITCH, are event recordings of application of electrical power to the COMMIT START BUS, (N7024X monitoring initiating of the countdown) and the START ABORT BUS. The power is applied by pressing these buttons. Activation of the ALARM RESET SWITCH (N7030X) shuts off the launch control console alarm buzzer, permitting the alarm to be available for further warning. In addition to the above, two color 16mm motion picture cameras (N7754N, N7755N) will be utilized to obtain data on Launch Console displays and operator action during a countdown.

In order to show that all Launch Control and missile systems receive adequate activation voltage, and that all power supplies provide the specified power required, the following measurements have been added:

PAGE NO. 2-3

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANMER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-6653 6 DECEMBER 1961

E7003V	28 VDC GND VOLTAGE
E7004V	400 CPS GND VOLTAGE
E7005V	28 VDC A/B VOLTAGE
E7006V	400 CPS INVERTER OUT
E7007V	440 V IN TO DC SUP

PROPELLANT LOADING

A. FUEL LOADING

The fuel loading system is unique in that fuel is stored in the missile in lieu of separate tank storage. Fuel is initially transferred from a fuel tank truck at grade level through silo plumbing and fuel loading prefab at a flow rate of approximately 250 gallons-per-minute. This flow (P7569R) is monitored by a turbine type flow meter installed in the 4 inch fill line. Pressure instrumentation (P7691P, P7909P) will be used to determine if excessive pressure surges exist in the fuel loading prefab plumbing which could be detrimental to the hardware. Fuel flow into the missile requires that valve F-1 and the airborne fill-and-drain valve be open. Valve positions for F-1 (P7922X, P7923X) and the airborne valve (P7934X, P7935X) will be monitored by these discrete measurements.

Two dual element sensors installed in the missile give discrete level indications as fuel covers the sensors. The lower sensor A and B elements (U7021X, U7022X) must be wet and the upper sensor A and B elements, (U7023X, U7024X) must be dry to indicate correct fuel level. These level measurements will also varify operation of the fuel portion of the PLCU. A delta-pressure measurement (U7081P), will be used to verify fuel level with respect to sensor activation.

As fuel is transferred to the missile, its temperature is monitored at the fuel loading prefab. This temperature is used to determine the level to which the fuel leveling tank is filled. Two temperatures (P7572T, P7566T) in the missile fuel tank and at the launch platform rise off disconnect will verify operation of the fuel leveling subsystem. The fuel leveling tank is sized to a volume commensurate with maximum fuel temperature variations. Heat transfer to or from the loaded fuel in the missile

PAGE NO. 2-4

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

during long periods will cause the fuel to either increase or decrease in volume and thus require corrective action to restore the desired volume. The fuel leveling tank receives or transfers fuel in response to the corrective action required. Depending on inlet fuel temperature during initial loading, the fuel leveling tank is filled to one of two levels. For fuel temperatures above 85°F, the tank is filled completely (monitored by P7938X). For fuel temperature between 55°F and 85°F the tank is filled to the 50% level (P7939X). For fuel temperatures below 55°F, the tank is left e.npty.

Pressurization for the fuel leveling tank, associated plumbing and pneumatic control pressure for automatic valves F-1, F-2, F-3, and F-4 is supplied from a GN₂ cylinder mounted on the fuel loading prefab. Instrumentation installed to monitor the GN₂ pressure (P7911P) and temperature (P7908T) will be used to determine gas usage and supply adequacy during a countdown. The leveling tank ullage pressure (P7567P) and vent valve positions (P7195X, P7196X), will furnish data on GN₂ valve and regulator action. Sequence measurements (P7930X, P7931X) will monitor position of the fuel leveling tank pressurization valve NF-1, while the pressure equalizing valve NF-2 position will be monitored by P7932X and P7933X. Automatic fuel valves F-1, F-2 and F-3 will be monitored for the closed position (P7923X, P7925X, P7927X) as well as the open position (P7922X, P7924X, P7926X). Positions (P7928X, P7929X) of the fuel drainback valve NF-4 (drainback from the fuel fill line to the leveling tank) will also be monitored. All valve position indications (as listed above) will be used for analysis of valve sequencing, valve operation and system routines required by an operational site.

Draining the fuel from the missile tank to grade level requires operation (P7936X) of the centrifugal fuel pump F-11. Pressure instrumentation at the pump inlet (P7689P) and discharge (P7688P) will determine the pressure differential through the pump and that pump output satisfies operational requirements. Pressure drop (P7690P) across the fuel filter F-10 will determine fuel cleanness and that the filtering unit meets operational requirements. Two pressures (P7692P, P7693P) at the elevator disconnect and at the rise-off disconnect will be monitored to detect excessive pressure drops during line drain which could cause fill line collapse. The fuel liquid sensor at the stub-up (oscillating crystal type) will be monitored (P7937X) to verify proper operation within the operational requirements.

PAGE NO. 2-6

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL OFFENSE OF THE UNITED STATES WITHIN THE MEARING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION. IF WHICH IN ANY MARKER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

Prevalves will be incorporated into the missile low pressure fuel ducting to contain the fuel continuously stored in the missile tank. Pressure instrumentation installed at the fuel turbopump inlets (P7002P, P7004P, P7055P) will reveal if the prevalves have opened or closed on command and thus verify the operational requirements.

B. LIQUID OXYGEN LOADING

The operational liquid oxygen loading system has been revised to include a rapid toping system which replaces the slug unit used for final LO_2 loading against sequence III (flight) pressurization.

The main LO₂ storage tank and the LO₂ topping tank are initially filled from resupply trailers located at grade level. The operation of the fill system will be established by monitoring the pressure drop (P7707P) through the resupply filter L-12 and the pressure (P7917P) at the inlet of valve L-7 which is opened to fill the main LO₂ storage tank. Since there is only one supply line for the separate storage tanks, fill valve sequencing is necessary to assure control over LO₂ flow during filling operations from the resupply trailers. Sequence measurements of the main storage tank fill valve L-7 (P7957X, P7958X) and the topping storage tank fill valve L-6 (P7959X, P7960X) will be taken to ascertain proper valve operation. Initial filling of the LO₂ main storage tank will be verified by a sequence measurement (P7947X) monitoring the full level indication.

Missile liquid oxygen loading is controlled by a propellant loading control unit in conjunction with four dual element liquid level sensors mounted in the missile liquid oxygen tank. Dual element sensors forestall the possibility of losing a signal and thus preventing tanking to the 100% full level. LO₂ rapid load is terminated by the 95 percent sensors (U7011X, U7015X) while fine load is terminated by the topping low sensors (U7012X, U7016X). Topping action ("" les until the level reaches the topping high sensors (U7013X, U7017X). During numit sequence the rapid topping system fills the missile to the 100 percent level (""...4X, U7018X) to complete LO₂ loading prior to raising the launch platform. An independent delta pressure measurement (U7682P) across the top one-third of the LO₂ tank is used as a check on sensor level indications, while another delta pressure measurement (U7080P) across the entire tank is used as an over-all check on the loading operation with respect to level indications.

PAGE NO. 2-6

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 703 AND 704, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY : W

- CONFIDENTIAL ...

REPORT NO. AE60-0653 6 DECEMBER 1961

Transfer of LO₂ from the storage tanks to the missile is accomplished by pressurizing the storage tanks with GN_2 and actuating automatic valves in the proper sequence. The inlet (F7057P) and outlet (F7058P) pressures of pressurizing valve II-2 with two strain measurements (P7183S, P7184S) will verify valve operation and line integrity. The ullage pressures in the main storage (P7549P) and topping (P7709P) tanks will be measured to obtain valve sequencing and gas supply regulation information. Flow rate (P7564P, P7914P) during ${
m LO_2}$ rapid loading will be in the order of 5500 GPM and will be monitored by use of a venturi flowmeter. Since high flow rate capability is coupled to system pressure differences, the inlet pressures to rapid load valve L-2 (P7914P), fine load valve L-1 (P7913P) and pressure (P7565P) in the main LO_2 line will be monitored. This pressure instrumentation will also determine if the hydraulic snubbers on valves L-1 and L-2 perform properly to prevent the valves from slamming shut with a resultant damaging pressure surge upstream of the valves. Pressure drop (P7699P) across the main LO2 filter L-15 will determine LO2 cleanness and that the filtering unit meets operational requirements. The position of the rapid load valve L-2 (P7225X, P7227X), fine load valve L-1 (P7226X, P7228X), and airborne fill and drain valve (P7963X, P7964X) will be recorded to provide valve timing data for verification of operational performance. A pressure survey covering the rapid load valve (P7700P) the fine load valve (P7701P) and the drain valve (P7706P) will determine if the pressure drop across these valves are compatible with the neccessary operational flow rate. Data to determine operational childown requirements will be provided by monitoring the temperature and pressure of the main LO2 line at the elevator disconnect (P7571T, P7578P) at the rise-off disconnect (P7698T, P7697P): and the topping line at the elevator disconnect (P7114T, P7108P) and at its rise-off disconnect (P7702T, P7696P).

The topping control unit (TCU) is designed to provide three different LO₂ flow rates with a constant ullage pressure (approximately 160 PSIG) in the topping tank. Three automatic valves control these tiow rates in relation to countdown progression. Control pressure (P7105P) for these valves will be monitored at the TCU manifold. Bleed LO₂ flow rate (P7109P) will monitor the operation required to maintain the ground transfer line temperature (P7114T) below -290°F during a hold period. Topping valve L-60 position (P7117X, P7118X) rapid topping valve L-50 position (P7115X, P7116X) and topping tank vent valve positions (P7193X, P7194X) in conjunction with topping flow rate (P7104P) will determine operational capability with respect to LO₂ flow rate and valve sequencing. LO₂ topping tank level (P7530P) will verify adequate

PAGE NO. 2-7

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

LO₂ supply to prevent the transfer of gas instead of LO₂ to the missile. Topping valve L-60 is opened at the start of the commit sequence and is used to fill the missile from the 99.25 percent level to the 100 percent level against sequence III (flight) pressure. Thus, the missile liquid oxygen tank is at the 100 percent full level prior to raising the launch platform. A pressure survey (P7106P, P7107P, P7108P), will determine the pressure drop across the TCU while two temperatures (P7113T, P7114T) will determine heat input to the TCU.

The TCU is also used to drain and vent the main LO_2 transfer line prior to raising the launch platform. Valve position of N-80 (P7129X, P7130X) and N-60 (P7131X, P7132X) along with the main LO_2 line drain pressure (P7135P) will determine operational adequacy of the system.

The inlet pressure (P7915P) to the missile drain valve L-16, the pressure drop (P7706P) across this valve and position (P7238X, P7240X) of the valve will provide data to determine valve action and whether or not excessive pressure drops occur during drain.

Sequence measurements (P7223X, P7236X) of the LO₂ storage tank vent valve will provide valve timing data with relation to the fill and drain procedures. The over-all engine compartment environment and temperature gradient and distribution will be established by an extensive array of ambient temperature measurements (P7812T through P7827T).

C. LN2-HELIUM TRANSFER

Gas from the two helium storage bottles and the GN₂ supply goes directly into the Pneumatic Distribution Unit (PDU). From there it is routed to the LN₂ Helium heat exchanger, the Helium Charge Unit (HCU), the missileborne controls bottle, and the Pressure Control Unit (PCU). The adequacy of the helium and GN₂ supply to the PDU will be determined by pressure measurements at the PDU inlets (F7723P, P7724P, F7725P). The quantity of helium used during test operations will be calculated from temperature (F7836T, F7837T) and pressure (F7723P, F7724P) information. LN₂ Helium heat exchanger efficiency and pressure drop will be exhibited by temperature and pressure instrumentation in the heat exchanger helium inlet (F7714T, F7716P)

PAGÉ NO. 2-8

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENDE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIMANCE LAWS, TITLE 18, U.S.C., SECTIONS 763 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNES TO AN UNAUTHORIZED PERSON IS PROMIBITED BY JAM.

REPORT NO. AE60-0653 6 DECEMBER 1961

and outlet (F7715T, F7717P) ducts. The effectiveness of the LN_2 coaxial shroud around the helium charge line to the missile will be obtained by a temperature instrument at the missile riseoff disconnect (F7745T). Instrument air regulation will be exhibited by a pressure measurement (F7727P).

Liquid nitrogen is loaded into the shrouds surrounding each missileborne tank pressurization sphere. As liquid nitrogen is a critical commodity in the silo, the amount of liquid nitrogen flowing from the storage tank (F7719R) will be measured. Since liquid flow rate is sensitive to pressure drops in the system, pressure instrumentation in the missile LN₂ riseo. I disconnect (F7020P) and missile LN₂ shroud (F7713P) will verify system design criteria.

The Helium Charge Unit (HCU) keeps the missileborne tank pressurization bottles fully charged during missile elevation and countdown. The ability of the HCU to maintain pressure in the missileborne spheres and the amount of helium utilized will be monitored by pressure (F7735P) and temperature (F7736T) instrumentation in the HCU discharge line. HCU response and deadband will be exhibited by pressure and temperature measurements in the missile fuel tank ullage pressure sensing line (F7737P, F7738T).

The Pressure Control Unit (PCU) maintains missile tank pressures at all times except during missile elevation and flight. The pressure at which helium is supplied to the missile by the PCU will be determined by pressure measurements in each pressurization line (F7729P, F7730P). Temperature instrumentation in the PCU pressurization ducts (F7017T, F7018T) will exhibit the condition of the gas. Pressure measurements in the LOX and Fuel tank pressurization ducts at the riseoff disconnects (F7013P, F7006P) will indicate the magnitude of pressure losses to be expected in the pressurization lines.

D. GASEOUS NITROGEN PRESSURIZATION

Gaseous nitrogen pressurizes the fuel, liquid oxygen, and liquid nitrogen storage tanks, and the liquid oxygen topping tank to emble propellant transfer. Gaseous nitrogen is also supplied to the nitrogen control unit (NCU) and the pneumatic distribution unit (PDU) to perform various service functions.

PAGE NO. 2-9

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNES TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

As gas supplies are a critical item in the silo concept, the pressure (P7546P) and temperature (P7547T) of the gas from the nitrogen bank supplying the NCU, PDU, and fuel prefab will be monitored to provide gas usage and system adequacy information. The LOX storage tanks GN₂ supply pressure will be measured at the bottle manifold (P7056P). Ullage and pressurization line pressure measurements for the main LOX (P7549P, P7710P) and topping (P7709P, P7711P) storage tanks, in conjunction with LOX storage tank vert valve position (P7223X, P7236X) and pressurization valve inlet pressure (P7972P) information will determine over-all system performance.

AIR CONDITIONING

A. FACILITY HEATING, VENTILATING AND AIR CONDITIONING

Proper functioning of the launch site depends on the ability of the air conditioning system to maintain a proper environment for all equipment. An extensive temperature, humidity and air velocity survey will be made at OSTF-2. This will involve 40 total measurements distributed throughout the silo and launch control center: See Figures 13 and 14.

Some of the steady state parameters will be manually recorded using portable instruments. These are the air intake and exhaust temperatures of the electrical equipment cabinets located on level 3 of the silo, (N7621T through N7630T) and relative humidities in the silo and launch control building, (N7685J, N7800J, N7697J, N7801J and N7802J).

During various phases of testing, it may be desirable to measure temperatures and relative humidities at locations not specifically defined in this report. These portable instruments would also be available for this purpose.

Temperatures within duots and other high air flow areas may change rapidly over short period of time. In this case it would be desirable to record these on remain instruments. Measurements plunned for remote recording are: N7579T through N7588T, N7597T through N7620T, N7646T and N7807T.

PAGE NO. 2-10

IMS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL BEFRING OF THE UNITED STATES WITHIN THE MEARING OF THE ESPIONANE LAWS, TITLE M. U.S.G., SECTIONS 783 AND 784, THE THANNMISSION OR REVELATION OF WHICH IN ANY MARINES TO AN UNAUTHORIZES PERSON IS PROHIBITED BY LAX

REPORT NO. AE60-0653 26 SEPTEMBER 1962

investigated. The engine compartment is supplied with air from a forced air heater located below the 8th level of the silo. To ensure that the missile engine compartment is receiving enough air at the proper temperature, the pressure and the temperature of the air will be measured. F7722P will determine the pressure and F7721T, the temperature.

Certain fluids and materials present in the engine compartment must be within a specified temperature range in order to have a satisfactory engine start. Among these items, the main engine hypergolic fluid (P7802T, P7803T, P7806T) and the hydraulic fluid to the sustainer engine actuators (P7181T, P7182T) will be instrumented.

LAUNCH PLATFORM INSTRUMENTATION

During the raising and lowering tests of the launch platform, it will encounter both sustained and transient accelerations. The magnitudes and directions will be determined by N7842A through N7849A. See figure 18. During an actual launch, vibration data will be obtained with six \pm 50G accelerometers in the following locations.

- 1. Flame deflector area (N7829A and N7830A)
- 2. Directly below the missile (N7831A, N7832A)
- 3. Fourth level of the launch platform (N7833A, N7834A)

MISSILE LIFTING SYSTEM

A. GENERAL

The missile lifting system consists of AGE and facility equipment which support the missile in the Silo during standby and delivers it to the ready position for launching. It contains the following major subsystems used during countdown and launch.

- 1. Launch Platform Drive Mechanism
- 2. Launch Platform Lock System

PAGE NO. 2-11

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. THEE IS, V.S.C., DECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNES TO AN UNAUTHORIZED PERSON IS PROMISSED BY LAW.

REPORT NO. AE60-0653 26 SEPTEMBER 1962

- 3. Door Closure
- 4. Crib Lock

B. LAUNCH PLATFORM DRIVING MECHANISM

The drive mechanism consists of two 125 HP, 400v 60 cycle 3-phase motors, speed reducer, brake, drive cables, motor control center, and counterweight.

During the countdown cycle the drive mechanism is operated at high speed to get the missile in firing position within countdown time requirements. In order to stay within available power limitations the lowering cycle is accomplished at slow speed. Power limitations also require slow speed operation when hoisting the empty launcher platform.

PAGE NO. 2-12

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE RATIONAL SEPENCE OF THE UNITED STATES WITHIN THE MEANING OF THE SEPTIMANS LAW! TITLE IS, M.S.S. SECTIONS 793 AND 794, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MANUER TO AN UNAUTHORIZED PERSON IS PROMISELD B. LAW.

6 DECEMBER 1961

design indicates use of linear potentic meter transducers. They would be affixed between the wall of the silo and the movable crib.

- Six ± 4G accelerometers will be positioned as required for each test. These measurements are designated as "movable accelerometers" and are N7542A, N7543A, N7741A, N7742A, N7743A, and N7744A.
- 3. Four \pm 20G accelerometers are also to be monitored: two on the first level of the crib (N7835A, N7836A); and two located between the first and second level of the crib (N7837A, N7838A).
- 4. One \pm 5G accelerometer is to be located on the third level (N7839A); and another \pm 5G accelerometer on the fifth level (N7840A).

Twelve alternate locations are planned for these same accelerometers. During the latter part of the drop test they will be moved to the following locations:

Hydraulic Manifold	Figure 73218A
Pipe out of Hydraulic	
manifold (L/P 2nd level)	Figure 73218A
Umbilical Junction	
Box (L/P 2nd level)	
Low speed motor,	
coupling actuator	
(Crib 1st level)	Figure 73214A
L/P Lock Actuator	
(L/P 2nd level)	Figure 73219A
Horizontal crib lock	
(crib, 1st level)	Figure 73213A
Hydraulic Power Pack	
(Crib 2nd level)	Figure 73215A
Hydraulic Pump motor	
mount (crib, 2nd level)	
Optimum location to	
be selected	
	Pipe out of Hydraulic manifold (L/P 2nd level) Umbilical Junction Box (L/P 2nd level) Low speed motor, coupling actuator (Crib 1st level) L/P Lock Actuator (L/P 2nd level) Horizontal crib lock (crib, 1st level) Hydraulic Power Pack (Crib 2nd level) Hydraulic Pump motor mount (crib, 2nd level) Optimum location to

7

PAGE NO 2-13

THIS MATERIAL CONTAINS INFIRMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS SITTE.

18. U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OF SEVELATION OF SHAWN IN ANY MARKET TO AN INMALTENCINE OF SECURITIES BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

N7838A AMF Logic Rack

(small component X

axis) optimum location

to be selected.

N7839A Personnel Elevator,

Drive motor mount

N7840A Chilled water pump

(crib, 4th level)

Figure 73217A

LOAD CELLS & FACILITY MISSILE

The facility missile will rest upon four load cells (N7962S through N7965S) which will record both positive and negative forces to be imposed upon the main support longerons of the actual missile during raising and lowering operations.

The facility missile has springs around its thrust barrel section in order to more closely simulate the stiffness of an actual missile so that the same dynamic response will be obtained from external loads. In addition strain gages on each of the four springs (N7958S through N7961S) will act as backup measurements and also will be useful in determining dynamic loads. (See Illustration, Page 7-4.)

ACCELERATION AND DEFLECTION MEASUREMENTS

Tests will be performed to determine if the missile will be adequately supported and properly stabilized during ascending and descending platform operations. As the launch platform is raised or lowered, two accelerometers on the missile nose (A7541A, A7542A) will sense the rate, direction and amplitude of the horizontal movements.

Two measurements will monitor missile vertical alignment in the X(A7828D) and Y(A7829D) axes. Pendulous type accelerometers will be utilized as these instruments have good sensitivity and accuracy. The accelerometer outputs will be integrated twice to obtain missile displacement information. These measurements will determine how much the missile shifts from the vertical during raising and lowering operations.

PAGE NO. 2-14

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 763 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARKER TO AN UNACTINORIZED PLESON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

1

2-15 | FIDENTIAL

REPORT NO. AE60-0653 6 DECEMBER 1961

CONFIDENTIAL

1

REPORT NO. AE60-0653 6 DECEMBER 1961

1

6 DECEMBER 1961

3

2-19

FEPORT NO. AE60-0653 6 DECEMBER 1961

€.

*

REPORT NO. AE60-0653 6 DECEMBER 1961

MISSILE LIFTING SYSTEM

A. GENERAL

The missile lifting system consists of AGE and facility equipment which support the missile in the Silo during standby and delivers it to the ready position for launching. It contains the following major subsystems used during countdown and launch.

- 1. Launch Platform Drive Mechanism
- 2. Launch Platform Lock System
- 3. Door Closure
- 4. Crib Lock

B. LAUNCH PLATFORM DRIVING MECHANISM

The drive mechanism consists of two 125 HP, 400 v 60 cycle 3-phase motors, speed reducer, brake, drive cables, motor control center, and counterweight.

During the countdown cycle the drive mechanism is operated at high speed to get the missile in firing position within countdown time requirements. In order to stay within available power limitations the lowering cycle is accomplished at slow speed. Power limitations also require slow speed operation when hoisting the empty launcher platform.

The integrity of the missile and the silo depend upon proper performance of the L/P drive mechanism. The ability of the system to function within the allotted time limit plus the capability of the system to develop the required forward and reverse torque for L/P control during rise will be obtained by monitoring L/P displacement (N7908D), motor torque (N7804F) and motor RPM (N7803B). Performance of the L/P braking system will be obtained by measuring the actuation signal (H7813X) and brake cylinder actuation pressure (H7529P).

PAGE NO. 2-21

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

The drive cables are anchored to the tension equalizer and to the counterweight. A portable strain measuring device (N7923S) will be used to periodically check cable tension. The tension equalizer is a three bar linkage that enables loads to be distributed equally to the lift cables to compensate for varying conditions. Its displacement (N7935D) will be monitored to insure proper performance during L/P raising and lowering operations.

The most critical portion of Launch Platform displacement is prior to reaching the uplock or down-lock strikers. The Launch Platform is to be stopped in approximately 13 inches of travel at creep (1 inch/sec) speeds. High accuracy measurements of velocity will be monitored during the last 7 inches of up (N7980L, N7981L) or down (N7982L) travel, with observer cut-off capability in the event of a malfunction.

Counterweight vertical (N7912A), lateral (N7913A) and transverse (N7914A) acceleration will be monitored in conjunction with launch platform vertical displacement (N7908D) to establish impact loading, counterweight wobble, and counterweight/launch platform alignment.

LAUNCHER PLATFORM LOCKING SYSTEM

The Launcher Platform Lock System consists of mechanical locks at the third level of the launcher platform which lock against strikers on the crib at both the lower and raised positions of the launcher platform. Each of the locks has two hydraulic cylinders, one of which is the lock actuator, the other drives a wedge to hold the lock actuator in locked position. Hydraulic power is supplied through the umbilical loop by the Missile Lift Hydraulic Power System.

Performance of the launch platform locks and wedge locks, and any resulting peak cylinder pressures will be obtained by monitoring their closing (locking) pressures (H7516P, H7528P) and main lock opening (H7976P) pressure. Sciencid valve actuation (H7807X, H7812X) will provide event start and stop times for pressure versus time data.

PAGE NO. 2-22

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 763 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

DOOR CLOSURE SYSTEM

The Door Closure System consists of two breakaway hydraulic cylinders and one door closure hydraulic cylinder for each of the two doors. Each door operates separately from the other door except for control interlocks which insure proper logic sequence. These same interlocks are also tied into the launcher platform drive mechanism logic units.

Solenoid pilot valve activation (H7805X, H7806X, H7810X, H7811X) for each door (open and close) and head end (opening) pressures (H7981P, H7982P) will be monitored to determine pressure vs time data for system performance and sequencing. Cylinder rod end pressures (H7975P, H7986P) will also be measured to determine peak pressures and snubbing action as the doors reach the extremes of travel while opening. Door angular position (H7987D, H7988D) will be taken for tracking studies and correlation with L/P travel for proper sequencing.

CRIB LOCKING SYSTEM

The Crib Lock System consists of three hydraulic actuators for the horizontal crib locks and four hydraulic actuators for the vertical crib locks. The functions of the crib locks are to lock out the crib shock mounts (springs) and align the crib centerline with the silo centerline during the countdown. Actuating pressures for the horizontal (H7515P) and vertical (H7969P) locks will be monitored to determine peak cylinder pressures. In conjunction with this the solenoid pilot valve position for the horizontal (H7202X, H7203X) and vertical (H7809X, H7816X) locks will be monitored to provide base line data for cylinder pressures recorded.

FACILITY HYDRAULIC POWER SYSTEM

The Facility Hydraulic Power System consists of a bank of accumulators, two electric motor-driven hydraulic pumps to resupply the accumulators and hydraulic distribution lines.

The bank includes filled hydraulic accumulators and GN_2 bottles at 4000 psig. At "Start Countdown," the GN_2 bottles are used to pressurize the hydraulic bottles. All hydraulic power for the facility equipment during the countdown is supplied by accumulators. The

PAGE NO. 2-23

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653 6 DECEMBER 1961

door opening cylinders have their own independent accumulators, the remaining items of the facility being supplied by a main system accumulator. System testing is not practical until installation is completed.

In order to evaluate the adequacy of hydraulic fluid and gas supplies to provide sufficient power during the countdown, pressure measurements in the main system accumulator (H7507P) and door opening accumulators (H7508P, H7509P) will be taken.

HYDRAULIC PUMPING UNIT

The Hydraulic Pumping Unit is installed on the launch platform. It provides fluid pressure to the missile hydraulic system through two independent pumping systems before the missile pumps start. The unit contains a common reservoir, pump-drive motor and controls. Fin-tube and fan type oil coolers are used. Semi-automatic, the unit contains most of the logic needed for its operation, with a minimum of electrical signals interfacing the Launch Control Center.

The first stage pumping system serves the booster engines and the second stage serves the sustainer and vernier engines. Both stages are rated at 8 gpm at 3000 psig. Before engine start the following functions are performed by this unit:

- 1. Provide pressure and flow to the missile hydraulic systems until engines are started and the missile booster and sustainer hydraulic pumps are working.
- 2. Fill and bleed the missile hydraulic system.
- 3. Provide pressure and flow for hydraulic or autopilot system testing.
- 4. Remove a fixed volume of oil (65 cu in) from each missile system fluid tank prior to engine start.

Temperature measurements of the booster (H7531T) and sustainer (H7532T) return lines will be monitored to insure that hydraulic fluid is maintained at the proper temperature.

PAGE NO. 2-24

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

The capability of the HPU to provide and maintain hydraulic pressure to the missile will be obtained by taking pressure measurements in the booster (H7501P, H7502P) and sustainer (H7503P, H7504P) pressure and return lines.

FACILITY POWER

In order to obtain a power profile for operational sites several facility power measurements are being made. At present only estimated requirements are available for planning new sites. Factual information on power demands is needed. To do this HI-LINE POWER (N7952E) is measured for total power consumption, INSTR-BLDG POWER (N7953E) is measured for instrumentation building power consumption, and the UTILITY BLDG POWER (N7954E) for utility building power consumption. The instrumentation building power plus the utility building power subtracted from the total power gives the remaining power consumed by other areas. The 400 CYCLE POWER (N7974E) and 28 VDC LOAD CURRENT (N7975C) are taken to indicate the power consumed by these important electric power generating systems.

The power measurements shall be taken according to the following:

N7952E - OSTF 2 Hi-Line Power. The power will be measured on a portable type recording wattmeter. The site subcontractor shall be reaponsible for obtaining and installing the necessary potential and current transformers in the site substations and connections to the wattmeters. Some means either electrically or physically shall be used to correlate the recording to real time. The chart speed shall be two (2) inches per hour.

N7953E - OSTF 2, Instrumentation Bldg. Power. These measurements shall be taken with portable clamp-on type ammeters and portable voltmeters. They need not be continuously recorded measurements but spot checks will be taken during the normal work day and logged with respect to real time so that an average power consumption may be computed.

N7954E - OSTF 2, Utility Bldg. Power. These measurements shall be taken in accordance with the same procedures as outlined for the Instrumentation Bldg. Power.

N7974E - OSTF 2, 400 Cycle Power. The power requirements shall be measured on the 60 cycle feeder of the motor-alternators. The measurements shall be taken on a portable type

PAGE NO. 2-25

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18. U.S.C., SECTIONS 793 AND 794 THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

recording wattmeter. Potential and current transformers shall be supplied and installed by the subcontractor. Correlation to real time shall be provided on the charts—Chart speed shall be two (2) inches per hour.

N7975E - OSTF 2, 28 VDC Current. These measurements shall be obtained from the ammeter in the Launch Control power supply by the use of the shunt used for the control ammeter. They shall be recorded on suitable instruments within the Instrumentation Room.

The additional measurements required by objectives 001-13, 001-14, 001-15, 001-16 and 001-17 will also be done by a subcontractor specializing in electrical power measurements. These measurements in addition to all of the above measurements, comprise a complete power profile of the site.

PAGE NO. 2-26

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW:

EEPORT NO. AE60-0653 6 JULY 1962

REVISION "D" CHANGES - FACILITY

The information contained under <u>Discussion of Facility Instrumentation</u>, Section II should be referred to for description of reasoning used in establishing system instrumentation configuration.

The text is still applicable except as amended below.

Launch Control

The following sequence measurements have been added via Launch Control in order to obtain data in the event of a failure:

N7046X	SILO DOORS OPEN
N7047X	SILO DOORS CLOSED
N7500X	ZONE CHECK LIMIT SWITCH CLOSED
N7551X	1000 IN LIMIT SWITCH CLOSED
N7502X	HIGH SPEED DECELERATION SWITCH CLOSED
N7503X	UPPER OVERSPEED ZONE LIMIT SWITCH CLOSED
N7504X	OVERSPEED SENSOR ENERGIZED
N7505X	BOILOFF VALVE CLOSED
N7506X	DIFFERENTIAL PRESSURE NOT LOW
N7507X	MISSILE LIFT COMMIT START
N7508X	AUTOMATIC
N7509X	READY FOR COMMIT
N7510X	POWER TO INTERNAL
N7511X	POWER TO EXTERNAL
N7512X	COMMIT LOCKUP
N7513X	MISSILE LIFT DOWN & LOCKED
N7514X	AUTOPILOT ON-AMBER
N7515X	LOWER FUEL TANK PRESSURE
N7516X	RAISE FUEL TANK PRESSURE
•	

PAGE NO. 2-27

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 764, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LIW

REPORT NO. AE60-0653 6 JULY 1962

N7517X	GUIDANCE FAIL MARGINAL
N7518X	AUTOPILOT FAIL MARGINAL
N7519X	FLIGHT PROGRAMMER SAFE
N7520X	INSTRUMENT AIR BELL 50
N7521X	AUTOPILOT FAIL
N7522X	HELIUM VALVE 14 OPEN
N7523X	DC AT MISSILE
N7524X	RE-ENTRY VEHICLE BATTERY TEMP
N7525X	VENT HELIUM BOTTLES
N7526X	HYDRAULIC PRESSURE
N7527X	GUIDANCE FAIL
N752 BX	MISSILE LIFT UP & LOCKED
N7529X	PNEUMATICS INTERNAL - GREEN
N7530X	PNEUMATICS PHASE 2 - AMBER
N7531X	HELIUM LOAD - AMBER
N7532X	PROGRAMMER ARMED - AMBER
N7533X	ENGINE START - AMBER
N7534X	GUIDANCE COMMIT - GREEN
N7535X	POWER INTERNAL - GREEN
N7536X	AUTOPILOT TEST - AMBER
N7537X	GUIDANCE READY - AMBER
N7984X	MISSILE AWAY
N7985X	MISSILE ON STAND
N7048X	POD HEATER 2 RATE GYRO

SILO AMBIENT PRESSURE INSTRUMENTATION

Six ambient pressure measurements have been added to record ambient pressure at different levels in the silo during a launch. These measurements are N7230P through N7235P. In the event of an over-pressure during launch resulting in damage to the silo structure or ducting, the above measurements would provide a criteria for redesign.

PAGE NO. 2-28

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE50-0653 6 JULY 1962

BENDIX INVERTER INSTRUMENTATION

Three temperature measurements, E7010T, E7011T, and E7012T, have been added to a Bendix Inverter on Missile 83F. These measurements will provide data for failure analysis of Bendix Inverters under normal operating conditions. Normal operating conditions could not be exactly simulated in the lab so that a failure of the Bendix Inverter resulted. Since Bendix Inverters have failed in the field, it is desirable to obtain data on their operation under normal operating conditions.

TRAILING WIRE INSTRUMENTATION

The following measurements have been added via a trailing wire umbilical.

A1217P	HEAT SHIELD D'FFERENTIAL PRESSURE QUAD 2
A1218P	HEAT SHIELD DIFFERENTIAL PRESSURE Y-Y AXIS
A1219P	HEAT SHIELD D.FFERENT AL PRESSURE QUAD 1
A1220P	HEAT SHIELD D.FFERENT:AL PRESSURE QUAD 3
A1194T	HEAT SHIELD FORWARD QUAD 4
A1195T	HEAT SH.ELD FORWARD QUAD 2
A1780Y	ARMA POD ACOUSTIC COMPARTMENT
F1145P	SUSTAINER CONTROL HELIUM BOTTLE DISCHARGE
F1247T	BOOSTER TANK HEL UM BOTTLE
F1290T	SUSTAINER CONTROL HELIUM BOTTLE
P1529D	SUSTAINER MAIN LOX VALVE
P1830D	SUSTAINER FUEL VALVE POSITION
P1206O	SUSTAINER ENGINE LOX DOME
P1208O	B1 ENGINE LOX DOME
P1209O	B2 ENGINE LOX DOME
P1002P	B1 FUEL PUMP NLET
P1006P	SUSTAINER THRUST CHAMBER
P1038P	B2 FUEL PUMP DISCHARGE
P1039P	B1 FUEL PUMP D'SCHARGE
P1056P	SUSTAINER LOX PUMP INLET
P1059P	B2 THRUST CHAMBER
P1060P	
P1091P	B1 LOX INJECTOR MANIFOLD

PAGE NO. 2-29

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 JULY 1962

	P1092P	B2 LOX INJECTOR MANIFOLD
	P1155P	B1 GAS GENERATOR COMBUSTOR
	P1184P	B2 GAS GENERATOR COMBUSTOR
,	P1200P	ENGINE COMPARTMENT AMBIENT
	P1337P	SUSTAINER GAS GENERATOR LOX INJECTOR MANIFOLD
	P1351P	SUSTAINER LOX INJECTOR MANIFOLD
	P1463P	SUSTAINER GAS GENERATOR FUEL INJECTOR MANIFOLD
	P1325T	ENGINE COMPARTMENT AMBIENT
	P1530T	SUSTAINER LOX PUMP INLET
	P1711T	B1 NACELLE AMBIENT
	P1712T	B2 NACELLE AMBIENT
	P1051Y	ENGINE COMPARTMENT ACGUSTIC

The measurements listed above were chosen to provide data on problem areas of the different missile systems. The trailing wire umbifical consists of an eighty-five wire cable which is explosively ejected from the missile upon receipt of an electrical signal which occurs after approximately forty feet of missile travel. Should the cable not be ejected electrically, a mechanical lanyard provides a means of backup. A trailing wire cable was devised in order to protile additional means of obtaining missile parameter data during critical portions of the manch sequence. With the trailing wire cable, data may be obtained while raising the massile to its launch position as well as through engine ignition and liftoff. These areas of the launch sequence usually cannot be obtained until the missile is airborne and after which, all missile parameter launch control data is lost.

PAGE NO. 2-30

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED TO LAW.

REPORT NO. AE60-0653

PAGE NO. 3-1

12 JULY 1961

DATA GATHERING SYSTEMS

I. GENERAL

The landline instrumentation system will provide visual indication and recordings in the Launch Operations Building of physical and electrical parameters originating at the various ground support equipment, missile and associated launch control equipment. The system will provide magnetic tape recording for subsequent playback. The system will have a programming flexibility such that the measurements and recordings channels can be rapidly changed from test to test.

II. FM MAGNETIC TAPE RECORDER

The FM recording system will consist of 72 channels recorded on 12 magnetic tape tracks. One tape transport will provide continuous recording at 60 inches per second. The tape transport will accommodate either 10-1/2 or 14 inch reels, providing 9 and 21 minutes, respectively, of recording time. The frequency response will extend to 2100 CPS. Accessory information consisting of voice, timing, control tones and speed-lock will be recorded on tape track 7. A limited "on site" playback capability for FM data will be provided as an adjunct to the existing San Diego Data Processing Station.

III. DIGITAL

The digital system will provide magnetic tape recording of 20 channels of analog signals in digital form. It will supplement other basic recording methods in providing a system with greater resolution and accuracy. Commutation is by solid state and may be set in high, medium and low speeds to digitize from 66 times per second to 1 time per second. Signal conversion is performed with a 12 bit plus sign code for a full scale range of 999. In addition, a time code and record frame number may be recorded. The tape format will be compatible with the IBM 7090 computer. The digital system will be available for use for Part 2 testing.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UMITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

GEHERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

PAGE NO. 3-2

IV. GRAPHIC RECORDERS

The primary purpose of graphic recorders is to provide critical missile parameters in visual recorded fashion which will facilitate determining operational status of missile and ground systems prior to and during a firing. Data gathered by this means are also utilized to a limited extent for post-test analysis.

A. Oscillograph Recorders

Oscillographs are used to record functions requiring high frequency response but no real-time display. A photographic method of simultaneously recording channels on a light-sensitive paper is employed. This method provides response to 2000 CPS. The oscillograph to be used at OSTF #2 is a Heiland Visicorder with self-developing paper.

B. Sanborn Recorders

For functions requiring a higher response than is available from Brown recorders and real-time display as well, a "hot-stylus" passing over heat sensitive paper is used. The response of this type of recorder is 40 CPS.

C. Brown Recorders

Single channel Brown recorders will be used. The frequency response is low (1 CPS) and therefore limited to slowly varying functions. Information is easily read in real time. The accuracy of the Brown recorder is generally the highest of the available recorder types.

D. Sequence Recorders

In addition to analog and frequency measurement requirements, there are event type measurement requirements. Brush operations recorders will be used for this purpose. Each recorder has 100 pens on a single sheet of moving graph paper. The recorders will be used to monitor the activations and deactivations of various relays, switches and other types of sequence functions.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED B. LAW

5

PAGE NO. 3-3

12 JULY 1961

Graphic Recorder Capability

Oscillograph	6
Sanborn	24
Brown	18
Brush (event)	196

V. INSTRUMENTATION CALIBRATION

The calibration technique for instrumentation does away with the need for highly accurate calibration facilities at the site. The Standards Laboratory at Astronautics calibrates the transducers which convert the measurement sensed into an analog voltage equivalent. The linear relationship between measurement sensed and transducer voltage output is expressed in slope intercept form and transmitted to the test sites. With S1 and S2 as parameter levels, E_1 and E_2 corresponding transducer output levels, and

$$\frac{S_2 - S_1}{E_1 - E_1} = m$$

the slope of the calibration curve, any calibrated range can be established knowing m, the intercept b and the related units (i.e., PSI and volts, etc.). For landline recorder calibration, and to determine recording system linearity, electrical signals are recorded on each channel just prior to test data. These signals establish the lower and upper limit of the recorder range.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, T 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY 1

CONFIDENTIAL GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 3-4

12 JULY 1961

The calibration signals are generated by the Excitation, Calibration and Normalization (ECAN) network. The ECAN also provides transducer excitation, source matching and signal normalization.

VI. MISCELLANEOUS LAUNCH AREA DATA

In addition to the specific measurements discussed there are other special support data required, for back-up and supplementary use. This includes data which will be used for evaluating testing and establishing conditions under which the testing was performed. Also visual monitoring to gain sequential, documentary, and reliability data will be made possible through the media of closed circuit television, and motion pictures.

A. Timing

At OSTF #2 when testing components and during normal countdowns, not involving a launch, a site installed timing generator which recycles at 900 seconds will

THIS MATERIAL CONTAINS INFORMATION AFTECT WE THE MATIONAL DEFINIT OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAW, JULIE IN U.S.C. SELTIONS 193 GHIS 794. THE INFORMATION IN REVELATION IN WHICH IN ANY MANNER TO AN UNAUTHWRIZED PENSON IS PROMISSIVED by Line

REPORT NO. AE60-0653 6 DECEMBER 1961

be utilized to provide time correlation. When a launch is conducted Range Timing will be used and will be recorded on FM tape for post-test analysis. An explanation of the 3-digit binary timing code which is used with both timing systems can be found on Fig. 22 in Section 7. This code is a 12-bit, 100 PPS, 1000 cycle amplitude modulated timing code. The time word is contained in the 12 bits, 4 bits for each of three digits contained in the time word, and the 100 PPS are amplitude modulated on a 1000 cps carrier. The AM modulation is 3.3 to 1 with the pulses at a 10 volt level and the no pulses at a 3 volt level. The three digits represent units, tens, and hundreds of seconds by using a binary-coded decimal (8-4-2-1). A reference pulse always appears first and indicates the beginning of the time word. The leading edge of this pulse is the point on the trace at which the time occurred. No other part of the time word is time coherent. To read the code one must recognize the difference in pulse widths of three types of pulses: the reference pulse is five units wide, a binary "1" is three units wide and a binary "0" pulse is one unit wide

B. Weather

Certain weather observations are to be made of surface conditions at the time that testing is being corried on to assist in establishing standard conditions for test to test correlation. These observations will consist of temperature, barometric pressure, relative humidity, wind speed and wind azimuth. The measurements of wind velocity will determine if the missile may be raised, or not, thus defining weather conditions hazardous to test fulfillment. This data will be taken by Air Force personnel.

C. Television

Seven T. V. cameras will be utilized at OSTF-2 to obtain data for Human Engineering evaluation. One camera (N7747N) will be installed in the launch control room to monitor the Launch Control operator and Console. Three cameras (N7751N, N7752N, N7753N) will be located at grade level around the silo cap to monitor crew operations such as resupply, missile mating, checkout. Movable T. V. cameras (N7748N, N7749N, N7750N) will be used at appropriate levels in the silo to observe crew functions during various tests.

PAGE NO. 3-5

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18. U S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 6 DECEMBER 1961

D. Motion Picture Coverage

In order to verify the proper operation of the launch-platform-to-silo disconnect panels, two cameras (U7019N. U7020N) will be used. Four other cameras (L7009N, L7010N, L7011N, L7012N) will be located above ground to obtain data on umbilical ejections, and missile raising operations.

Alignment group tilt will be measured with a tilt monitoring display unit mounted directly to the alignment group. Pictures of the leveling bubbles, which are a part of this unit, will be obtained via movie cameras N7983N.

E. Audio Recordings

Kellogg Switchboard and Supply Company will provide 10 channels of magnetic tape recording for a permanent record of all intercommunications traffic.

F. A portable light meter (N75321) and portable sound intensity meter (N75334Y) will be used at various levels in the silo for Human Engineering evaluation of environmental conditions.

VIL AIRBORNE DATA GATHERING SYSTEM

Each OSTF missile will have a factory installed Instrumentation and Range Safety System (IRSS) to provide data from which gross weapon system performance can be determined and to furnish a means for ground command missile destruction when necessary.

The airborne data system which will be employed is a PAM/FM/FM telemeter using an RF carrier which is modulated for information carrying purposes and also serves as an RF signal stimulus for two AME Cotar Ground stations. The Cotar system will provide a "real time" tracking input to the range safety network to indicate missile flight path with respect to predetermined limits.

PAGE NO. 3-6

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

. CONFIDENTIAL.

REPORT NO. AE60-0653 6 DECEMBER 1961

Sixty measurements of missile performance parameters are to be made via the IRSS telemeter. Astronautics is to provide the transducers, signal conditioning (except for the inertial guidance measurements), and cabling necessary for the selected measurements. Ground rules governing selection of the measurements included the following points.

- A. Only gross malfunction of major missile systems is of interest. (No measurement of an R&D nature is allowed.)
- B. Measurement changes will be held to a minimum.
- C. Installation and checkout of the measurements should be simple inaccessible locations should be avoided.
- D. Minimum cost consistent with intent.

Report AZC-27-068 contains a detailed description of each of the selected measurements. Additional information, i.e., channel assignment, Astronautics installation drawing numbers, etc., is contained in the tabulations of the IRSS measurements, Sections 6 and 7 of that report.

PAGE NO. 3-7

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

This page intentionally left blank.

PAGE NO. 3-8

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653

PAGE NO. 4-1

12 JULY 1961

TABULATION OF OSTF-2 DATA SOURCES

1. Maintenance and Operational Logs

4.>

- A. Maintenance Inspection Record (AFTO 26B)
- B. Maintenance Discrepancy/Production Credit Record (AFTO 130C-4)
- C. A/F Maintenance Log (MAB)
- D. A/F Maintenance Log (PAD)
- E. A/F Maintenance Log MAPCHE
- F. Daily Maintenance Service Card A365-1
- G. Preventative Maintenance Surveillance Daily Check-Off Sheet
- H. Periodic Equipment Check Sheets
- I. Rocketdyne GSE Log
- J. Calibration Report, Form 576-3
- K. Fluids and Gas Consumption
- L. A/F Unsatisfactory Report and Supplement Sheet (AFTO Form 29 and 29a)

2. Change Report Forms

- A. ECP's Engineering Change Proposal, Form A78
- B. EO's Engineering Order, Form A1218
- C. TCTO Time Compliance Technical Order
- D. Field Service Bulletin (Rocketdyne in House)
- E. CIC Schedule Summary, Form A1379
- F. Drawing Summary, Form A1378
- G. DCB Change Summary, Form A1535
- H. CIC Control Card, Form 576-4-66
- I. ECP Status Card, Form 576-4-65
- J. Request Change Form DAC 576-8-3-0K. DWG Change Request, GE-MSVD

3. Inspection Report Forms

- A. F&CD Failure and Consumption Data Form CV-A-131, BMD 0-50 and Associate Contractor's F&CD
- B. BOI's Break of Inspection, Form A233

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW.

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 4-2 12 JULY 1961

- C. Temporary Removal Tag, Form A2313-2
- D. Inspection Clean-up Sheet, Form A836
- E. BOI Index
- F. Assembly List Shortage Log, Form A1815
- G. Desiccant Log
- H. Leak Report Log
- L Engine Operating Time Log
- J. Engine Log
- K. Inspection Rejection Index, Form 280-156
- L. AFTO Series 130 Forms
- M. Inspection Missile Cleaning Log, Form 576-4-47
- N. Component Installation Record GSE/GOE/RPIE, Form 576-4-73
- O. Transducer Installation Log, Form 576-4-14
- 4. Discrete Events (Completely Documented in Tabulations, Sections 8, 9).
 - A. Valve Openings
 - B. Specific Countdown Events
 - C. Pressure Switch Sequence
 - D. Presence of Liquid and Liquid Levels
 - E. Communication System
- 5. Analog (Completely Documented in Tabulations, Sections 8, 9).
- 6. Digital (Completely Documented in Tabulations, Sections 8, 9).
- 7. MAPCHE (Tapes)
- 8. Visual Operation
 - A. Meters
 - B. Lights
 - C. Contamination Survey Fluids Purity (GN_2 Helium, Fuel, LOX) Smith-Emery Company (SECO) Field Laboratory Report

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 792 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISETED BY LAW,

L. REPORT NO AE 60-0653

GENERAL DYNAMICS ASTRONAUTICS PAGE NO. 4-3

12 JULY 1961

9. Motion Picture Coverage

10. Television

General Surveillance

- A. LSB
- B. LOB Consoles

11. Auditory - Communication Ringing Alarm

12. PROCEDURES FORMS

- A. Personnel Performance Check List
- B. Interview Questionnaires (Post-Test Interview Form)
- C. Difficulty Summaries (Deviation/Difficulty Report)
- D. Summary Analysis Report
- E. Human Engineering Check List
- F. Deviation/Difficulty Log
- G. Safety Support Notation, Form A1560
- H. Supervisor's Report of Accident Investigation, Form A1068
- I. Field Service Report, Form A416

13. PERSONNEL SUBSYSTEMS FORMS

For a complete description, refer to Space Technology Laboratories, Inc., Document GM 6300.5-1060

14. RELIABILITY FORMS

- A. Failure and Consumption Data Reports, Form CV-A A131, BMD 0-50, NAA-609-P, GE-MO-1051, Arma 50-71, AFTO Form 130C, KSS F&CD Form
- B. Operation and Life Record, Form A-18
- C. Component Operation and Life Record, Form 2295
- D. System Operation and Life Record, Form 2296
- E. Reliability Action Report (RAR), Form A204
- F. Failure Analysis Report (FAR), BMD Form No. 0-51, CV-A Form A-567
- G. Reliability Diagnostic Report
- H. Reliability Technical Directive, Form A-531

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 792 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANMER TO AN UMAUTHORIZED PERSON IS PROMISITED BY LAW.

CONFIDENTIAL

PAGE NO. 4-4

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

- I. Daily Performance Log, KSS
- J. Daily Trouble Record, KSS
- K. Failure Report Form, KSS

15. Associate Contractor Reports

A. Rocketdyne

- 1. Failure and Consumption Data Report
- 2. Failure Analysis Report
- 3. Engineering Work Request
- 4. Rocketdyne Field Service Publication Change Suggestion
- 5. Field Service Operation Report
- 6. Certificate of Completion-Form 606W
- 7. GSE Log Book

B. General Electric, Missile and Space Vehicle Dept. (GE-MSVD)

- 1. Failure and Consumption Reports, Form MO-1051
- 2. Field Service Report
- 3. Failure Analysis Report

C. Kellogg Switchboard and Supply Company (KSS)

- 1. Corrective Action Request
- 2. Daily Performance Log
- 3. Daily Trouble Record
- 4. Failure Report Form

D. American Bosch Arma (Arma)

- 1. Daily Activity Report
- 2. Supplementary Activity Report
- 3. Failure and Consumption Data Report
- 4. Historical Record Technical Instruction Compliance Report
- 5. Outstanding/Delayed Maintenance Record

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARKET TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

ILLUSTRATIONS

BLANK PAGE

REPORT NO. AE60-0653

PAGE NO. 7-1

6 DECEMBER 1961

MA-3 BOOSTER ENGINE

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 364, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZES PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 PAGE NO. 7-2 6 DECEMBER 1961

MA-3 SUSTAINER ENGINE

ŧ

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 15, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

CONFIDENT

REPORT NO. AE60-0653

PAGE NO. 7-3

6 DECEMBER 1961

AIRBORNE PNEUMATICS SYSTEM

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS U.S.C., SECTIONS 783 AND 784. THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMIBITED BY LAW

PAGE NO. 7-4

6 DECEMBER 1961

THIS MATERIAL CONTAINS IMPORMATION AFFECTING THE NATIONAL DEFENDE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, M.S.C., SECTIONS 793 AMB 304, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MARMER TO AN UNAUTHORIZES PERSON IS PROMISITED BY LAW

REPORT NO. AE60-0653

PAGE NO. 7-5

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 792 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISTED BY LAW.

REPORT NO. AE60-0653

PAGE NO. 7-6

6 DECEMBER 1961

COMMUNICATION SYSTEMS

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAIFS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

Commence of the State of the St

REPORT NO. AE60-0653

PAGE NO. 7-7

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653

PAGE NO. 7-8

6 DECEMBER 1961

FUEL FLOW SYSTEM
INSTRUMENTATION CONFIGURATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

PAGE NO. 7-9

6 DECEMBER 1961

SAPETY POPPET

LIQUID OXYGEN SYSTEM
INSTRUMENTATION CONFIGURATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERCOR IS PROHIBITED BY LAW.

- CONFIDENTIAL -

REPORT NO. AE60-0653

PAGE NO. 7-10

A-

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

PAGE NO. 7-11

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE
18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL ---

Section of the sectio

REPORT NO. AE60-0653

PAGE NO. 7-12

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHISITED BY LAW

CONSIDENTIAL ...

PAGE NO. 7-13 12 JULY 1961

THIS MATERIAL CONTAINS INFERMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 784, THE IRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW.

CONFIDENTIAL

PAGE NO. 7-14

12 JULY 1961

FIRST LEVEL

A. HEATING, VENTILATING AND AIR CONDITIONING ROOM. N7807T, LAUNCH CONTROL EQUIPMENT AIR RETURN.

SECOND LEVEL

- B. OFFICE N7687J, RELATIVE HUMIDITY
- C. LAUNCH CONTROL ROOM N7801J, RELATIVE HUMIDITY

LAUNCH CONTROL CENTER HEATING, VENTILATING AND AIR-CONDITIONING SYSTEM

THIS MATERIAL CONTAINS IMPORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIGNAGE LAWS, TITLE LE, U.S.C., SECTIONS 793 AND 364, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZES PERSON IS PROGRESSED VI LAW

REPORT NO. AE60-0653

PAGE.NO. 7-15

12 JULY 1961

MA-3 ENGINE COMPARTMENT INSTRUMENTATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS TITLE 18, U.S.C., SECTIONS 793 AND 764, THE TRANSMISS ON OR REVELATION OF MINICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

SIGNALS:
NO GO
STANTER READY, CV-A START
COUNTDOWN START

MAS COMMIT START, SOFT SITE MCTE:
THIS SEQUENCY IS SUBJECT
TO MODIFICATION DUE TO
DESIGN CHANGES AND JR
LAUNCH CONTROL CHANGES.

> SIGNAL FROM LAUMCH CONTROL SIGNAL TO LAUNCH CONTROL

PLATPORM RISE TIME
DESIGN COAL 60 SEC.
ALCHRAREE 67 SEC.
CHA T BASEO ON 67 SEC.
AS DESIGN COAL IS APPROACHED
SIGNAL NO. I SILL APPROACH TIME SEQUENCE UP TO
READY TO LAUNCH

OSTF II LAUNCH PLATFORM RISE SEQUENCE

i _

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL SEFENCE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 704, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PEPSON IS PRUHIBITED BY LAW

CONTIDENT AND THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PEPSON IS PRUHIBITED BY LAW

GOX VENT SYSTEM INSTRUMENTATION

THIS MATFRIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

REPORT NO. AE60-0653

PAGE NO. 7-18

12 JULY 1961

SILO MISSILE LIFT INSTRUMENTATION CONFIGURATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONACE LIWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW.

REPORT NO. AE60-065:

PAGE NO. 7-19

12 JULY 1961

CRIB AND LAUNCH PLATFORM - ACCELERATION AND DEFLECTION INSTRUMENTAION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18 U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW.

CONFIDENTIAL

PAGE NO. 7-20

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMIBITED BY LAW.

and the or with the second of the second of

CONFIDENTIAL --

REPORT NO. AE60-0653

FAGE NO. 7-21

6 DECEMBER 1961

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE MATERIAL CONTAINS INFORMATION OF THE PROPERTY OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, THE TRANSMISSION OF REVELLATION OF WHICH IN ANY MANNER TO AN UNALTHORIZED PERSON IS PROMISITED BY LAWS.

PAGE NO. 7-22

12 JULY 1961

INSTRUMENTATION BUILDING

Ü

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

REPORT NO. AE60-0653 PAGE NO. 7-23

12 JULY 1961

THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE BY OR REVELATION OF WHICH IN ANY MANUEL TO AN UMAUTHORIZED PERSON IS PROHIBITED BY LAW THIS MATERIAL CONTAINS INFORMATION AFFECTING 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISS

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

This page intentionally left blank.

PAGE NO. 7-24

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL BEFERRE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONABE LESS, LITLE 18, U.S.C., SECTIONS 783 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZES PERSON IS PROMISES OF LAW

GENERAL DYNAMICS ASTRONAUTICS

SECTION 8

OSTF #2 MASTER INSTRUMENTATION LOG

The OSTF #2 Master Instrumentation Log presented in this section contains the latest available characteristics of the individual measurements.

NOTE: For a key to abbreviations and coding see the IBM code key of this report.

BLANK PAGE

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

COMPOSITE 26 SEP 62 AE60-0653 123 123456 1234 123456 1 12345	001
TEST SERIES 1 BLOCK 0 /3F/ SHOTGON BLOCK 1A /57F/ SHOTGON BLOCK 1 /3F/ BLOCK 2 /83F/ TEST SERIES 2 BLOCK 1 /81F/ BLOCK 2 /83F/ TEST SERIES 3 BLOCK 1 /3F/ BLOCK 2 /83F/ BLOCK 2 /83F/ TEST SERIES 3 BLOCK 1 /3F/ BLOCK 2 /83F/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MOTE. /1/ THE SEQUENCE OF NUMBERS APPEARING
AT THE TOP OF EACH PAGE CORRESPONDS
TO THE NUMBERED EVENTS SHOWN IN
THE ABOVE TABLE.

OSTF-2 OBJ

- /2/ SEE PAGE 145 OF THIS REPORT FOR DEFINITION OF TEST OBJECTIVE PRIORITIES.
- /3/ MEASUREMENTS HAVING PRIORITY ! ARE THE MINIMUM REQUIRED TO SATISFY THE OBJECTIVE. MEASUREMENTS HAVING PRIORITY 2 ARE DESIRED TO SATISFY THE TEST OBJECTIVE.
- /4/ CERTAIN MEASUREMENTS ARE SHOWN

EFFECTIVE FOR TEST EVENTS ALTHOUGH THE OBJECTIVE THEY APPER UNDER IS NOT EFFECTIVE. THESE OPERATIONAL MEASUREMENTS WILL BE RECORDED AS PRIORITY 1 MEASUREMENTS DURING FACH FEST EVENT THEY ARE SHOWN EFFECTIVE FOR. AND ARE NOT REQUIRED FOR SATISFACTION OF THE TEST OBJECTIVE.

- /5/ BLOCK IC TEST SERIES 1 /P-4 INSP/ WILL BE PERFORMED AT \$76E SITE.
- /6/ THE REMAINDER OF THE CAT II TEST PROGRAM WILL BE INCLUDED IN A LATER REVISION.

000	001-01-	FACILITY AGE COMPATIBILITY	222 222222 2222 222222 2 22222	2
963	001-02-	THR SECT HEATER ADEQ	1	2
-015	•	HT181T HYD FLUID SUS PITCH ACTR	1	3
-026	-	HT182T HYD FLUID SUS YAM ACTR	1	
-025	-	H7551T BOOSTER SYSTEM OIL	i	9
-010	-	H75327 SUS 575/EM OIL	1	9
-015		PTBO2T SKIN B1 HYPERGOL CTL	2	9

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

	123 123456 1234 123456 1 12345	002
OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123434 1234 001	5
-040 - PTBOST SKIN BZ HYPERGOL CTL	2	5
-045 - PT806" SKIN SUS HYPERGOL CTL	2	5
-050 - PTELZT ANS SUS HYD CTL MAN	2	5
-055 - P7813T AMB QUAD 4 STA 1205	1	5
-060 - PT814T AMB QUAD 3 STA 1175	1	3
-065 - P7815T AMB QUAD 2 STA 1245	1	5
	1	5
-075 - P7817T AMB 81 NAC STA 1245	1	5
-080 - PT818T AMS BZ NAC STA 1245	1	9
-085 - P7819T AMB QUAD 2 STA 1234	1	5
-090 - P7820T AMB 82 NAC STA 1156	1	5
-055 - P7821T AMB B1 NAC STA 1156	1	5
-100 - PTEZZT AND B1 FUEL CTL VLV	1	5
-109 - PTREST AND BE FUEL CTL VLV	1	5
-110 - PTEZAT ANS QUID 4 STA 1240	1	5
-115 - PT025T SKIN B1 MAC STA 1220	1	5
-120 - PT826T SKIN B2 BAC STA 1220	1	5
-125 - F7827T SKIN X AXIS STA 1200	1	2
ODG 0-1-09- FAC GOX VENT SYSTEM	2	5
-01" - F7001" LOA TANK PRESSURE	1	5
-015 - N7654R GOX VENT GAS FLOWRATE	· •	5
-020 - HY1591 VENT GOX TEMP & ELBOW	1 ,	5
-025 - NY160T VENT GOX TEMP @ FAN INL	1	\$
-030 - N7161T VENT GOX TEMP @ GATE INL	1	5
-035 - P7549P LOS STOR TK ULLAGE PRESS	•	
	222 22222 2222 22222 22222	2
000 001-04- FAC ITEMS ADEQUACY		
909 001-05- FAC AIR COMDITIONING	1 111	2
	1 111	9
-015 - N7685J SILO UPPER NO PAR -020 - N7687J ISLOO NH HUN		3
HARAL MAL COMPT BM HAM	1 111	3
THE POLICE OF THE PARTY OF THE		3
THE PARTY AND LONG BY ISM	1 111	,
was an anal was FL/I	RT .	,
THE THE TAN 38 MIST FL/RT		•
-049 - R7650R AND THE		

05TF-2	08J CO#	POSITE 2	6 SEP 52 AE60-0653	123 123456 1234	123456 1 123	45 003
-050	-	N7579T	AIR DUCT INLET TEMP	1	111	5
-055	•	N7580T	AIR DUCT OUTLET TEMP	1	171	5
-060	-	N7581T	SILO QUAD 2 LVL 1 TEMP		111	5
~065	-	N7592T	SILO QUAD 2 LVL 2 TEMP	1	111	5
-070	-	H7583T	SILO QUAD 2 LVL 3 TEMP		111	5
-075	-	N7584T	SILO QUAD 2 LVL & TEMP	1	111	5
-080	-	N7585T	SILO QUAD 2 LVL 5 TEMP		111	5
-085	-	H75867	SILO QUAD 2 LVL 6 TEMP		111	5
-090		N7587T	SILO QUAD 2 LVI. 7 TEMP		111	5
-095	-	N7582T	SILO QUAD Z LVL 8 TEMP	1	111	5
-100		N75891	HT RECOVERY HZO IN TEMP	1	111	3
-105	_	M7590T	ELEC BOILER HZO OUT TEMP	1	111	5
-110		N7597T	MSL COMPT LVL 1 TEMP	1	111	5
-115		N7598T		1	111	5
	_			1	111	5
-120 -125	-			1	111	5
-130	-			1	111	5
-135	_	N7602T		1	111	5
-140	_	N7603T		1	111	5
-145	-	N7604T	MSL COMPT LVL 8 TEMP	1	111	5
-150	-	N7605T	DUST SEP AIR OUT TEMP		111	5
-155	-	N7606T	COOLING TWR HZO IN TEMP			5
-160	-	- N7607T	MSL COMPT AIR SUPPLY TEMP	1	111	5
-165		- M7620T	HEO HT RECLAIMER TEMP	1	.11	5
-170	-	- N7621T	ELCT EQUIP AIR IN 1 TEMP		111	5
-175		- N7622T	ELCT EQUIP AIR IN 2 TEMP		111	5
-180		- N76237	ELCT EQUIP AIR IN 3 TEMP		111	5
-185		- N76241	ELCT EQUIP AIR IN 4 TEMP		111	5
-190		- N76251	ELCT EQUIP AIR IN S TEMP		111	5
~195		- N7626	ELCT EQUIP ATR OUT 1 TEMP		111	5
-200			ELCT EQUIP AIR OUT 2 TEMP		111	5
-205		- M76281	T ELCT EQUIP AIR OUT 3 TEMP		111	5
-210		- M76291	T ELCT EQUIP AIR OUT 4 TEMP		111	5
-215		- N76301	T ELCT EQUIP AIR OUT 5 TEMP		111	5
220		- N7641	T POD AIR COND HZO IN TEMP	1	111	•
-225		- N7642	T POD AIR COND HED OUT TEMP	1	111	5

•

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

0 5 TF=2	OBJ COMPOSITE 26	SEP 62 AE60-0653	123 123456 1234 123456 1 12345	004
-230	- N7643T	COOL COIL 10 HZO OUT TEMP		5
-235	- N7644T	COOL COIL 40 H20 OUT TEMP	1 111	5
-240	- N7645T	COOL COIL 41 H20 GUT TEMP	1	5
-245	- N7646T	HEAT COIL 40 H20 IN TEMP	1 111	5
	- N7647T	HEAT COIL 40 H20 OUT TEMP	1 111	5
-250 -255	- N7649T	WCU 50 H20 OUT TEMP	1 111	5
-240	- N7650"	WCU 50+51 (20 IN TEMP	1 111	5
-265	- N7651T	LCC COLD H20 OUT TEMP		5
-270		COOLING TWR H20 OUT TEMP		5
-275	****	L/C EQUIP AIR RETURN TEMP		5
-213	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_
000	001-06- L/P DRI	VE SYSTEM		2
-015		SILO L/P ACCELN Z1		5
-020	- N7843A	SILO L/P ACCELN ZZ		5
-025	- N7844A	SILO L/P ACCELN Z3		,
-030		SILO L/P ACCELN Z4		5
-033	- M7846A	EILO L/P ACCELN X1		5
-040	- M7847A	SILO L/P ACCELN X2		5
-045	- M7848A	SILO L/P ACCULN X3		5
-050	- N7849A			5
-060	- N7803B	L/P DRIVE MOTOR SPEED	111 1 111 1 11	3
-045	- N7908D	L/P DISPLACEMENT	111 1 111 1 11	9
-070	- N7804F	DRIVE MOTOR TORQUE	111 1 111 1 11	9
-075	- N7980L	7 IN. MOTION UP FAST		,
-080	- N7981L	7 IN. MOTION UP SLOW		•
-085	- M7982L	7 IN. MOTION DOWN SLOW		,
-090	- H7962S	LOAD CELL QUAD 1 L/P		,
-095	- N7963S	LOAD CELL QUAD 2 L/P		,
-100	- N79645	LOAD CELL QUAD 3 L/P		•
-105		LOAD CELL QUAD 4 L/P		9
-110		ZONE CHECK LS CLSD	111 1 111 1 11	_
-115		1000 IN. LS CLSD	111 1 111 1 11	
-120		HI SPEED DECELN SW CLSD		_
-125		UPR OVERSPEED ZONE LS CLSD		
-130		OVERSPEED SENSOR ENERGIZED	-	
-135	- H7513	MSL LIFT DOWN & LOCKED	111 1 111 1 11	·

SECTION 8

26 SEPTEMBER 1962

OSTF-	1 COM	POSITE 2	26 SEP 62 AE60-0653	123 1	23456 1234	123456 1	12345	005
-140	-	N7528X	MSL LIFT UP & LOCKED		111	1 111	1 11	5
000	001-07-	DOOR CL	OSURZ SYS	22		1 111		2
-010	-	H7987D	UPPER DOOR POSITION			1 111		5
-015	-	H79880	LOWER DOOR POSITION			1 111		5
-020	~	H7508P	UPR DOOR HYD ACUM PRESS		111	1 411		5
-025	-	H7509P	LWR DOOR HYD ACUM PRESS		111	1 111		•
-030		H7975P	LWR DOOR CYL ROD PRESS			1 111		5
-035	-	H7981P	UPR DOOR CYL HO PRESS			1 111		5
-040	· -	H7982P	LWR DOOR CYL HO PRESS			1 111		5
-045	-	H7586P	UPR DOOR CYL ROD PRESS			1 111		5
-050		H7805X	UPR OR CTL VLV OPEN	11	111	1 111	1 11	5
-055	-	H7806X	LWR DR CTL VLV OPEN	11	111	1 111	1 11	5
-060	-	H781CX	UPR DR CTL VLV CLSD	11	111	1 111	1 11	5
-065	:	H7811X	LWR DR CTL VLV CLSD	11	111	1 111	1 11	5
-070	-	H7046X	DOORS OPEN		111	1 111	1 11	5
-075	-	N7047X	DOORS CLOSED		111	1 111	1 11	5
000	001-08-	CRIB LO	OCK SYS	22		1 111		2
-010	-	H7507P	SYS H'D ACUM PRESS		111	1 111	1 11	3
-015	-	H7515P	HORIZ CRIB LE HO PRESS			1 111		5
-020		H796 9P	VERT CRIB LKS PRESS			1 111		5
-025	-	H7190X	HORIZ CRIB LKS RETR	11	111	1 111	1 11	3
-030	-	H7191X	HORIZ CRIB LKS EAT	11	111	1 111	1 11	5
-035	•	H7192X	VERT CRIB LKS EXT	11	111	1 111	1 11	•
-040	•	H71934	YERT CRIB LES RETR	11	111	1 111	1 11	•
-045	-	H7202X	HORIZ LES CTL VLV CLSD	11	111	1 111	1 11	9
-050		H7203X	HORTZ LES CTL VLV OPEN	11	111	1 111	1 11	•
-055	-	14780 9X	VERT LES CTL VLV OPEN	11	111	1 111	1 11	5
-060	-	H7816X	VERT LKS CTL VLV CLSD	11	111	1 111	1 11	•
000	001-09-	COMPAT	OF LIFT SYS WITH MSL					2
-015			ACCEUM MIL X ANIS					•
-020		A7542A	ACCELM MIL Y AAIS					•
-025	•	A78280	MSL NOSE X AXIS DISPL					3

SECTION 8

SENERAL DYNAMICS ASTRONAUTICS

OSTF-	3 087 COM	IPO\$17E 2	6 SEP 62 AE60-065	3 123	123456	1234	12345	6 1	12345	000	•
-035	-	H7507P	SYS HYD ACUM PRESS			111	1 11	1	1 11		5
-040	-	H7516P	L/P LOCK-LOCKING PR	ESS							5
-045	-	H7527P	WEDGE LKS CYL ROD P	RESS							5
-050	-	H7528P	WEDGE LKS CYL HO PR	ESS							5
-055	-	H7976P	L/P LOCK-UNLOCKING	PRESS							•
-060	-	H7194X	L/P WEDGE LKS PRESS								3
-065	-	H7195X	L/P WEDGE LKS RETR								5
-070	-	H7196X	L/P MAIN LKS PRESS								5
-075	-	H7197X	L/P MAIN LKS RETR								5
-080	-	H7198X	WEDGE LKS CTL VLV C	LSD							5
-085	•	H7199X	WEDGE LKS CTL VLV O	PEN							5
-090	-	H7200X	MAIN LKS CTL VLV CL	SO							5
-095		H7201X	MAIN LKS CTL VLV OF	EN							5
-100	-	H7807X	L/P LK ASSY /RETRAC	T/ OPEN							5
-105	-	H7812X	L/P LK ASSY /EXTEND	/ CL50							•
000	001-10-	L/P LOC	KING SYS	22			1 11	1			2
-025	•	H7516P	L/P LOCK-LOCKING PR	ESSURE			1 11	1			•
-010	•	H7527P	WEDGE LKS CYL ROD P	RESS			1 11	1			3
-035	-	H7528P	MEDGE LKS CYL HO PR	ESS			1 11	1			3
-040	•	H7529P	L/P BRAKE PRESS			111	1 11	1	1 11		•
-045	•	H7976P	L/P LOCK-UNLOCKING	PRESS			1 111	1			•
-050	•	H7194X	L/P MEDGE LES PRESS	11		111	1 111	1	1 11		5
-055	•	H7195X	L/P WEDGE LRS RETR	11		111	1 111	1	1 11		•
-060	-	H7196X	L/P MAIN LKS PRESS	11		111	1 11	4	1 11		•
-045	-	H7197X	L/P MAIN LKS RETR	11		111	1 111	1	1 11		3
-070	•	H7190X	MEDGE FKP CIF AFA C	LSO 11		111	1 111	1	1 11		•
-075	•	17199X	MEDGE LKS CTL VLV O	PEN 11		111	1 111	1	1 11		9
-080	•	H7200X	MAIN LES CTL VLV CL	11		111	1 111	1	1 11		•
-005	-	H7201X	MAIN LEB CTL VLV OP	CH 11		111	1 111	1	1 11		•
-006	•	H7807X	L/P LE ASSY /RETRAC	T/ OPEN 11		111	1 111	ì	1 11		•
-084	•	H7612X	L/P LK ABBY /EXTENO	√ CF20 11		111	1 111	١	1 11		\$
-090	•	H7613X	SOL 1 L/P SK CTL VL	A 71							3
-099	•	H79727	PRESS SWITCH RETURN	11		111	1 111	1	1 11		•
000	001-11-	105 516	COMPATIBILITY		ŧ	2					2

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	2 OBJ COM	POSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	007
000	001-12-	PROP HANDLING SYSTEM		2
-040	_	P7546P GN2 STOR TK DISCH PRESS		5
-045	-	P7547T GNZ STOR TK DISCH TEMP		5
000	001-13-	FACILITY SUPPLY POWER		2
000	001-14-	28 VDC POWER		2
-035	-	E7003V 28 VDC GND VOLTAGE		5
000	001-15-	400 C"CLE GEN ADEQUACY.		2
000	0016-	FAC TRANSFORMER ADEQ		2
000	001-17-	48 V BAT CHARGER		2
000	001-18-	BONDING & GNDING SURVEY	111	2
		VIBRATION EVALUATION	11	2
-035		N7829A L/P ACCELN 1	11	,
-040		N7830A L/P ACCELN 2	11	5
-045		N7831A L/P ACCELN 3	11	,
-050		N7832A L/P ACCELN 4	11	,
-055		N7833A L/P ACCELN 5	11	,
-060	-	N78344 L/P ACCELN 6 N7835A CRIB ACCELN 7	11	,
-065		MT834A CRIB ACCELN &		
-075			11	•
-080	_	NTESEA CRIB ACCELN 10	11	,
-089	_	N7839A CRIB ACCELN 11	11	,
-040		N7840A CRIB ACCELN 12	11	•
-040	_	MINNESS COLOR NUCLEUR SE	,,	•
000	001-20-	MAINT FAC ADEQUACY	722 777217 722 777727 3 77772	1
000	002-01-	HANDLING ADEQUACY	1 2 2 1 1 2	1

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

051F-2	08J C0H	POSITE 26	SEP 62 AE60-0653	123	123456	1234	123	456 1	12345		
000	002-02-	effects	OF TRANSPORT	3	2	2	2		2		2
009	002-03-	DECOY TE	RANSPORTATION ADEQUACY						2		. 2
000	092-04-	PROPULS	ION LEAK CHECK								2
000	003-01-	MSL POG	AIR CONDITIONING	22	!						2
-015	•	A7901T		11							•
-020	_	A7905T	TLM XMTR SKIN TEMP	11	L						3
-029	_	A7906T	ROTARY INV AND AIR TEMP	11							3
-030	•	A79071	ARMA PLAT AND AIR TEMP	11	L .						•
-035	-	A79081	ARMA COMPT AND AIR TEMP	11	1						5
-040	-	A7909T	TLM MATE AND AIR TEMP	1	1						,
-045	•	A7911T	WE POD INLET AIR TEMP	1	1						5
-050	-	M7046J	81 POD INLET AIR HUN	1	3						•
-055	-	M7090R	BZ POD AIR FLOW GUAD	1	1						, ,
-040	•	N7154T	BI POD AIR INLET TEMP	1	1						,
-06>	-	- M7641T	POD AIR COND HED IN TEMP	1	1						,
-070	•	- H7642"	POD AIR COND MED OUT TEMP	1	1.						•
000	001-01	- PCU 6	POU EVALUATION	22	:2			1			3
-015		- F7001P	LOX TANK PRESSURE	11	.1	11	1	1 111	1 11		,
-010		- F7003P	FUEL TANK PRESSURE	11	1	11	1	1 111	7 73		,
-025		- F7005P	FUEL TR PRESS DUCT & PCU	11	1	11	1	1 111	1 1	ı	
-050		- F7006P	FUEL TE PRESS DUCT # R-0-0	11	11						•
-019		- F7012P	LOX TE PRESS DUCT & PCU	11	11	11	1	1 111	1 1	1	•
-040	1	- 770135	LOX TE PRESS OUCT & R-O-D	11	13						•
-C49		- #7723#	HE SUPPLY 1 0 POU	1.1	11						•
-044		- 777246	HE SUPPLY 2 0 POU	13	11						
-011		- P17296	ONE SUMPLY PRESS O POU	11	11						•
-060	•	- 617276	REGULATED INST AIR PRESS	1	11						•
-041	•	- F7791				1					•
-041	•		FUEL TE PRESE DUCT TEMP		11						;
-076	•	- F7018	T LON TR PRESS DUCT TEMP	1	7.7					•	•
-079)	- N7900	E SONE CHECK LA CLED			1	11	1 111	1 1	•	•

•

•

.

٠.

-m - 1 10

GENERAL DYNAMICE ASTRONAUTICS

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	009
~080 ~ N7505X B/O VLV CLSD	111 1 111 1 11	5
-085 - N7506X DP NOT LOW	111 1 111 1 11	5
-089 - N7515X LOR FUEL TANK PRESS	111 1 111 1 11	•
-090 - N75164 RAISE FUEL TK PRESS	111 1 111 1 11	5
-095 - NTS29X PREU INTERNAL GREEN	111 1 111 1 11	5
-100 - N7530X PMEU PM 2 AMBER	111 1 111 1 11	5
-105 - N7531X HE LOAD AMBER	111 1 111 1 11	5
		2
000 003-03- GND HE SYS SUFFICIENCY	222	5
-015 - FT001P LOX TANK PRESSURE	111	5 ·
-020 - F7003P FUEL TANK PRESSURE	111	5
-025 - F7723P HE SUPPLY 1 # PDU	111	5
-030 - FTTZAP HE SUPPLY 2 # POU	111	\$
-035 - N7522X HE YLY 14 OPEN	111 1 111 1 11	3
-040 - N7531X HE LOAD AMBER	111 1 111 1 11	-
000 003-04- HE SYS CAPABILITY	222	5
TANK DOES LOS		•
-010 - F7001P LOX TANK PRESSURE -015 - F7003P FUEL TANK PRESSURE		5
-020 - F7246P B TK HE BTL HI PRESS	111	3
-025 - F7717P GNO HT XCHGR HE OUT PRESS		3
-030 - F7723P HE SUPPLY 1 - POU		•
-035 - F7724P HE SUPPLY 2 # POU		•
-040 - F7735P HE SUP TO HEL PRESS & HCU		,
-045 - F7248T HE TEMP HI 4 BTL	111	•
-050 - FTZ49T HE TEMP LO 4 BTL	111	•
-055 - F72501 HE TEMP LO 2 BTL	111	,
-060 - P7736T HE SUP TO HEL TEMP # HCU		,
-065 - PTTSET FUEL TK HE SENS LINE TEMP		,
-OTO - NTSSIR HE LOAD AMBER	111 1 111 1 11	,
-QTS - N7525X VENT HE BTL	111 1 111 1 11	,
and and marginalist Ale	227	1
OOO OO3-OS- INSTRUMENT AIR -OZO - F1727P REGULATED INST AIR PRESS	111	•
A LUARA ALA ARLOW AA	111 1 111 1 11	9
-025 - MYSZOR INSTRACT SCLOUP		

OSTF-	: 08J COM	POSITE 26 S	SEP 62	AE60-0653	123	123456	1234	123456 1	12345	010
000	003-06-	EVAL HYD S	SYSTEM				1			2
-010	-	n 33P 81	HYD ACU	M PRESS			1			•
-015	-	H 140P VE	ERNIER HY	9 PRESS			1			5
-020	-	H 185P St	US HYD PU	MP IN PRESS			1			5
-035	-	N7526X HY	TO PRESS				111	1 111	1 11	3
000	003-07-	TOOLS SUFF	FICIENCY		222	222222	222	222222 3	22222	2
000	003-08-	FLUID CONS	SUMPTION			222222	3233	222222	12272	2
				•						_
000	003-09-	THE COOFIL	NG ADEQUA	C*	222					2
-025	•	P7020P LA	12 PRESS	# R-0-0	111					•
-030	•	F77130 A	B LN2 SH	ROUD PRESS	111					\$
-035	•	F7716P GF	O HT XCH	GR HE IN PRESS	111					•
-040	-	F7717P GR	O HT XCH	GR HE OUT PRESS	111					5
-045	•	F7720P LR	12 STOR T	K XFFP PRESS	111					•
-050	•	F77198 LA	12 STOR T	K OUT FL/RT	111					\$
-055	•	F7248T H	E TEMP HI	4 BTL	111					5
-040	•	F72497 H	E TEMP LO	4 STL	111					3
-065	•	F7230T H	TEMP LO	2 B1L	111					•
-070	•	F7714T G	40 HT XCH	GR HE IN PRESS	111					5
-475	-	F7715T GA	10 HT XCH	GR HE OUT PRESS	111					5
-080	•	F7745T HE	E SUP TO	HSL TEMP # R-O-O	111					3
000	003-10-	COLLINATOR	REF PRI	SM STABIL	111	2	2	z		2
000	003-11-	AC\$16 & AG	35P STABI	LITY	133	1	2	2	2	1
000	009-12-	MGS STATUS	.		222	11212	212	2 211	111	2
-019	-	ATTOET AR	MA PLAT	SKIN TEMP FYD	222	22222				9
-010	•	A79037 AR	IMA PLAT	MAIN TEMP AFT	222	22222				3
-028	•	ATTOAT AR	MA CONTR	OL SKIN TEMP	222	22222				5
-010	-	A79127 A1	6 POD 1M	NER SKIN TEMP	222	22222				A
-015	-	17515A AC	CELEROME	TER AFL	111	11111	111	1 111		9 .
-040	-	179161 AC	CELEROME	TER YFL	111	11111	111	1 111		1
-045	•	17517A AC	CELEROME	TER 271	111	11111	111	1 111		•

GENERAL DYNAMICS ASTRONAUTICS

05TF-2 0B	SJ COMPOSITE 26 SEP 62 AE60-0653 123 123456 1234 12	3454 1 12345 011
-050	- 17518A ACCELEROMETER XF2 111 11111 111	1 111
-055	- 17519A ACCELEROMETER YF2 111 11111 111	1 111 5
-060	- 175204 ACCELEROMETER ZF2 111 11111 111	1 111 5
-045	- 17591C PITCH GYRO TORQUE 222 22222	5
-070	- 17592C ROLL GYRO TORQUE 222 22222 222	2 211 5
-075	- 17593C YAW GYRO TORQUE 222 22222 222	2 222 5
-080	- 17501D OPTICAL AZIMUTH SIG 111 11111 111	1 111 5
-085	- 175110 ROLL PENDULUM 111 11111 111	1 111 5
-040	- 175120 PITCH PENDULUM 111 11111 111	1 111 9
-095	- 175490 PITCH SERVO ERROR 222 27 22 222	2 222 5
-100	- 175500 ROLL SERVO ERROR 222 22222 222	2 222 5
-105	- 17551D AZIMUTH SERVO ERROR 222 22222 222	2 222 5
-110	- 17992D REDNT GYRO PICK-OFF 111 11111 111	1 111
-115	- 17572D ROLL MEMORY 111 1111 111	1 111 5
-120		1 111 5
-125	• • • • • • • • • • • • • • • • • • • •	1 111
-130		2 222 5
-135		1 111
-140	- 17506H COMPUTER POSITION Y 111 11111 111	1 111 9
-145	- 17507H COMPUTER POSITION Z 111 11111 111	1 111 5
-150	- 17508H DOWN RANGE ERROR FUNCTION 111 11111 111	1 111
-155	- 17509H CROSS RANGE ERROR FUNCTION 111 11111 111	1 111
-160	- 1750%L COMPUTER VELOCITY X 111 11111 111	1 111
-165	- 17503L COMPUTER VELOCITY Y 111 11111 111	1 111
-170	- 17504L COMPUTER VELOCITY 2 111 11111 111	1 111
-175	- 179380 ALMMT GROUP RADIAL 222 22222	•
-160	- 179396 ALMMT GROUP TANG 222 22222	•
-165	- 179420 ALNMT GROUP AXIAL 222 22222	•
-190	- 1701ST COMPUTER EXHAUST TEMP 111 11111	•
-195	- 17928V YAW STEERING SIG 111 11 1 111	1 111
-100	- 17929V ROLL RESOLVER SIG 111 11111 111	1 111
-209	- 17530V PITCH RESOLVER SIG 111 11111 111	1 111
210	- 17540V TEMP CTL AMP OUT 222 22222	•
-419	- 17980V AZIMUTH RESOLVER SIG 111 11111 111	1 111
-220	- 17910F ELAPSED TIME 111 11111 111	1 111
-115	. 179218 VERNIER ENG CUTOFF SIG 111 11111 111	1 111

000 003-16- N/V PRE-LNCH HONITORINS

SECTION 8

GRNERAL DYNAMICE ASTRONAUTICS

051F-1	OBJ COMPOSITE	26 SEP 62 AE60-0653	123	123454	1234	123456 1	12345	013
-230	- 17522X	SUS ENG CUTOFF SIG	111	11111	111	1 111		5
-235	- L7527X	PRE-ARM RELAY CLSD	111	11111	111	1 111		5
-240	- 17537X	ELEVATION WARNING	111	11111	111	1 111		5
-245	- 17570X	STAGING SIGNAL	111	11111	111	1 111		3
-250	- 17611X	START COUNTDOWN	111	11111	111	1 111		5
-255	- 1765 QX	START FINE ALMMT-TRIG MODE	111	11111	111	1 111		5
-240	- 176198	Z AXIS VERT-FINE ALMMT	111	11111	111	1 111		5
-245	- 176148	FINE ALMIT COMPLETE	111	11111	111	1 111		5
-270	- 17615#	COMPUTER TEST COMPLETE	111	11111	111	1 111		3
-275	- 176168	ST X ACCELENOMETER OFFSET	111	11111	111	1 111		3
-280	- 17617X	ACCELEROMETER TEST COMPL	111	11111	111	1 111		5
-285	- 17618X	165 READY	111	11111	111	1 111		3
-290	- 17619X	40 INERTIAL COMMAND	111	11111	111	1 111		3
-275	- 176208	MGS INERTIAL	111	11111	111	1 111		1
-100	- 176218	ZERO Z ACCELEROMETER COMPL	111	11111	111	1 111		3
-305	- 176228	SCALE X PLUS 16	111	11111	111	1 111		3
-310	- 174258	SCALE X MINUS 16	111	11111	111	1 111		•
-315	- 176248	START ZERO X ACCELEROMETER	111	11111	11%	1 111		3
-320	- 176258	RETURN TO READY REQ	111	11111	111	1 111		3
-325	- 176268	RETIME TO READY COMPLETE	111					•
-330	- 176278	60 ON VERT HENORY	111					•
-335	- 176204	PROMISE NO 68	111					•
-140	- 176308	CHAS A IN SAMO	111					•
-145	- 176314		111	11111		1 111	•••	,
-144	- N7050A				1		111	•
-347	- N7199A				1		111	•
-340	- N70481				1		111	•
-144	- K71967				1		111	,
-350	- 475172	GUID FAIL MARGIMAL				1 111		_
-111		SUIDANCE STANGEY				1 111		,
-140	,	S SUIDANCE COMMIT				1 111		,
-145	- M7537A	RIGHT YOAR CIVE			111	1 111		•
000	003-13- A/V TO	**************************************	٧		1	,		•

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	-2 OBJ COM	POSITE 2	26 SEP 62	AE60-0653	123	123456	1234	123456	1 12345	013
-015	-	N7524X	R/V BAT T	EMP			111	1 111	1 11	5
-020	-	Y7054X	LAUNCH COL	ATROL POWER		111	111	1 111	1 11	5
-025	-	Y7055X	START COU	ATDOWN POWER		111	111	1 111	1 11	5
-030	-	Y7056X	28 VDC VE	RIFICATION		111	111	1 111	1 11	5
-035	•	Y7061X	MARK 4 R/	•		111	111	1 111	1 11	5
-040	-	¥7064X	115 VAC V	ERIFICATION		111	111	1 111	1 11	•
-045	-	Y70654	START COU	ATDOWN VERIFY		111	111	1 111	1 11	5
-050	-	Y7066X	TARGET A	SET		111	111	1 111	1 11	5
-055	-	¥7067X	TARGET 8	SET		111	111	1 111	1 11	5
-940	-	Y7071X	START COU	STOOMN SIGNAL		111	111	1 111	1 11	3
-965	-	Y7072X	28 VOC RE	CEIVER		111	111	1 111	1 11	5
000	003-15-	B/V 581	F-TEST CAP	AMILITY		2	2	2	2	2
-015				TR THERMOSTAT		1	1	1	-	3
-020	_	¥7059X				1	1	1		3
-025	-	Y70621	_			1	1	1		5
-010	-			SELECT		1	1	1		5
-035	•	Y7070X	TARGET B	SELECT		1	ı	1		5
000	003-16-	R/V ELE	CTRICAL CH	ECKOUT		2	2	2		1
-015	-	Y7059X	R/V COUNT	INUITY		1	1	1		5
-020	•	Y7062X	R/V TACTIO	:AL		1	1	1		3
-025	•	Y7069X	TARGET A	SELECT		1	1	1		3
-050	•	¥7070#	FARGET &	SELECT		1	1	1		3
000	003-18-	ELECTRO	MAGNETIC IN	TERFERENCE TEST					1 11	1
000	003-19-	EMI ON	ARMA LINES		111					1
000	003-23-	EMI ON	ACOUSTICA (INES	555					1
000	003-24-	AL I GNME	NT DATA			11		11	2	*
-019	•	A7902T	ARMA PLAT	SKIN TEMP FWO		5.5				9,
-010	•	A7903T	ARMA PLAT	SKIN TEMP AFT		33				5
-025	•	A7904T	ARMA CONTR	ICL SKIN TEMP		3.5				•
-010	•	A7912T	A16 POD 11	MER SKIN TEMP		5.5				5
-015	•	17515A	ACCELEROME	TER XF1		11		1 1	1	•

GENERAL DYNAMICS ASTRONAUTICS

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 12	234 123456 1	12315	014
-040 - 17514A ACCELEROMETER YF1	11	-1.1	1	5
-045 - 17517A ACCELEROMETER 2F1	11	1 1	1	5
-050 - 1751BA ACCELEROMETER XF2	11	1 1	1	3
-051 - 17919A ACCELEROMETER YFZ	11	1 1	1	5
-USS - 17520A ACCELEROMETER ZF2	11	1 1	1	3
-060 - 17591C PITCH GYRO TORQUE	2.5			5
-065 - 17592C ROLL GYRO TORQUE	22	2 2	2	5
-070 - 17593C YAW GYRO TORQUE	22	2 2	2	5
-075 - 17501D OPTICAL AZIMUTH SIG	11	1 1	1	5
-380 - 17511D ROLL PENDULUM	11	1 1	1	5
-085 - 17512D. PITCH PENDULUM	11	1 1	1	5
-040 - 175490 PITCH SERVO ERROR	22	2 2	2	,
-095 - 175500 ROLL SERVO ERROR	22	2 2	2	•
-100 - 17551D AZINUTH SERVO ERROR	22	2 2	2	5
-105 - 17592D REDMY GYRO PICK-OFF	11	1 1	1	5
-110 - 175720 ROLL HEHORY	11	1 1	1	5
-115 - 175730 PITCH HEHORY	11	1.1	1	5
-120 - 175740 AZINUTH MEMORY	11	1 1	1	,
-125 - 17576D ZERO LAG OUTPUT	22	5 5	2	5
-130 - 1750SH COMPUTER POSITION X	11	1 1	1	5
-135 - ITSOEM COMPUTER POSITION Y	11	1 1	1	5
-140 - 1750TH COMPUTER POSITION Z	11	1 1	1	
-145 - 17508M DOWN RANGE ERROR FUNCTION	11	1 1	1	3
-150 - 17509H CROSS RANGE ERROR FUNCTION	11	1 1	1	•
-195 - 17902L COMPUTER VELOCITY X	11	1 1	1	3
-160 - 17503L COMPUTER VELOCITY Y	11	1 1	1	5
-165 - 17504L COMPUTER VELOCITY Z	11	1 1	1	5
-170 - 179380 ALIGHMENT GROUP RADIAL	22			•
-175 - 175390 ALIGNMENT GROUP TAN	55			3
-180 - 179420 ALIGNMENT GROUP ARIAL	33			3
-185 - 1701ST COMPUTER EXHAUST TEMP	11			•
-190 - 175204 YAW STEERING SIG	11	1 1	1	3
-195 - 17929V ROLL RESOLVER SIG	11	1 1	1	\$
-200 - 17530V PITCH RESOLVER SIG	11	1 1	ı	9
-205 - 17540V TEMP CTL AMP OUT	11			5
-210 - 17980V AZIMUTH RESOLVER SIG	11	1 1	1	•

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	·2 08J CO	MPOSITE 26	SEP 62	AE60-0653	123 123456	1234	123456	1 12345	015
-215	•	17510W E	ELAPSED T	IME			1 1	1	5
-220	-	17521/1 \	VERNIER E	NG CUTOFF SIG	11		1 1	1	5
-225	-	17522X S	SUS ENG C	UTOFF SIG	11		1 1	1	5
-230	-	17527X F	PRE-ARM R	ELAY CLSD	11		1 1	1	5
-235	-	17537X E	ELEVATION	WARNING	11		1 1	1	5
-240	-	17570X S	STAGING S	IGNAL	11		1 1	1	5
-245	-	17611X S	START COU	NTDOWN	11		1 1	1	5
-250	-	17612X S	START FIN	E ALNMT-TRIG MODE	11		1 1	1	5
-255	-	17613X 2	Z AXIS VE	RT-FINE ALNHT	11		1 1	1	5
-260	-	17614X F	FINE ALMM	T COMPLETE	11		1 1	1	5
-245	-	17615X (COMPUTER	TEST COMPLETE	11		1 1	1	5
-270	-	17616X S	ST X ACCE	LEROMETER OFFSET	11		1 1	1	5
-275	-	17617X	ACCELEROM	ETER TEST COMPL	11		1 4	1	5
-280	-	17618X	IGS READY		11		1 1	1	5
-285	-	17619X (O INERTI	AL COMMAND	11		1 1	1	5
-470	-	17620X P	GE INERT	TAL	11		1 1	1	5
-295	-	17621X 2	LERO Z AC	CELEROMETER COMFL	11		1 1	1	5
-100	-	17622X S	SCALE X P	LUS 1G	11		1 1	1	5
-305	-	17623X S	SCALE X M	INUS 1G	11		1 1	1	5
- 10		17624X S	ST ZERO X	ACCELEROMETER	11		1 1	1	5
-315	-	17625X F	RETURN TO	READY REQ	11		1 1	1	5
-320	-	17626X #	RETURN TO	READY COMPLETE	11		1 1	1	5
-325	•	17627X G	O ON VER	T MEMORY	11		1 1	1	5
000	003-25-	MGS STATE	IS /W/S E	MI TESTS/					2
000	003-26-	SOLV TK P	RESS G-2	000	2	2			2
000	003-28-	DECOY SUB	ISYSTEM M	GE ADEQUACY.				2	2
90 0	004-01-	MAPCHE MI	SSILE CHI	ECKOUT AT MANS	2	2	2	2	2
000	04-01-	MAPCHE MS	L C/O AT	LAUNCH SITE	2	2	2	2 2	3.
000	004-03-	QGE/HGE-M	IAPCHE-FAI	C-HSL COMPAT	2	2	2	2	2

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	2 087 COM	POSITE 2	6 SEP 62	AE60-0653	123	123456	1234	123456 1	. 12345	016
000	004-04-	IGS-MAP	CHE COMPAT			2	2	2	2	2
-015	•	17505H	COMPUTER	POSITION X		1	1	1	1	5
-020	•	17506H	COMPUTER	POSITION Y		1	1	1	1	5
-025		17507H	COMPUTER	POSITION Z		ì	1	1		5
-030	-	17508H	RANGE ERR	OR FUNCTION		1	1	1	1	5
-035	-	I 7509H	AZIMUTH E	RROR FUNCTION		1	1	1	1	. 5
-040	-	17502L	COMPUTER	VELOCITY X		1	1	1	1	5
-045	-	17503L	COMPUTER	VEFOCITY A		1	1	1	1	5
-050	-	17574L	COMPUTER	VELOCITY Z		1	1	1	1	5
-055	-	17528V	YAW STEER	ING SIGNAL		1	1	1	1	5
-040	-	17529V	ROLL RESO	LVER SIGNAL		1	1	1	1	5
-065	-	17530V	PITCH RES	OLVER SIGNAL		1	1	1	1	5
-070	-	17580V	AZM RESOL	VER SIGNAL		1	1	1	1	5
-075	-	17510W	ELAPSED T	IME		1	1	1	1	5
-080	-	17521X	VERN ENG	CUTOFF SIGNAL		1	1	1	1	5
-085	•	17522X	SUS ENG C	UTOFF SIGNAL		1	1	1	1	5
-090	-	17527X	PRE-ARM R	ELAY CLSD		1	1	1	1	5
-095	-	17570X	STAGING S	IGNAL		1	1 .	1	1	5
000	004-05-	MAPCHE-	PU COMPAT			2	2	2	2	2
000	005-01-	IGS STA	BILITY			2	2	111		2
-015	-	A7902T	ARMA PLAT	SKIN TEMP FWD		2				5
-020	-	A7903T	ARMA PLAT	SKIN TEMP AFT		2				5
-025	-	A7904T	ARMA CONT	ROL SKIN TEMP		2				5
-030	-	A7907T	ARMA PLAT	AMB AIR TEIP		2				5
-035	-	A7912T	AIG POD I	NNER SKIN TEMP		2				5
-040	-	H7807X	L/P LOCK	ASSY OPEN		2	2	2 2		5
-045	-	H7812X	L/P LOCK	ASSY CLSD		2	2	2 2		5
-050	-	17515A	ACCELEROM	ETER XF1		2	2	2 2		5
-055	-	175164	ACCELEROM	ETER YF1		2	2	2 2		5
-060	-	17517A	ACCELEROM	ETER ZF1		2	2	2 2		5
-065	-	175184	ACCELEROM	ETER XF2		2	2	2 2		5
-070	-	17519A	ACCELEROM	ETER YF2		2	2	2 2		5
-075	-	17520A	ACCELEROM	ETER 2F2		2	2	2 2		5
-080	-	175910	PITCH GYR	3 TORQUE		2				5

SENSE DYNAMICS ASTRONAUTICS

05TF-2 08	J COMPOSITE 26 SEP 6	2 AE60-0653	123 123456	1234	123456 1 12345	017	
-085	- 17592C ROLL G	YRO TORQUE	2	2	2 2	•	•
-090		RO TORQUE	2	2	2 2	•	5
-095	- 17501D OPTICA	L AZIMUTH SIGNAL	2	2	2 2	9	•
-100		ENDULUM	2	2	2 2	:	3
-105		PENDULUM	2	2	2 2	!	•
-110	- 1750SH COMPUT	ER POSITION X	2	2	2 2	:	5
-115	- 17506H COMPUT	ER POSITION Y	2	2	2 2	:	5
-120	- 17507H COMPUT	ER POSITION Z	2	2	2 2	•	5
-125		ANGE ERROR FUNCTION	2	2	2 2	!	5
-130	- 17509H CROSS	RANGE ERROR FUNCTION	2	2	2 2	!	5
-135	- 17502L COMPUT	ER VELOCITY X	2	2	2 2	!	5
-140	- 17503L COMPUT	ER VELOCITY Y	2	2	2 2		3
-145	- 17504L COMPUT	ER VELOCITY Z	2	2	2 2		5
-150	- 17015T COMPUT	ER EXHAUST	2				5
-155	- 17528V YAW ST	EERING SIGNAL		2	2 2		5
-160	- 17529V ROLL F	RESOLVER SIGNAL	2	2	2 2		5
-165	- 17530" PITCH	RESOLVER SIGNAL	2	2	2 2		5
-170	- 17540V TEMP	CONTROL AMP OUT	2				5
-175	- 175807 AZIMU	TH RESOLVER SIGNAL	2	2	2 2		5
-180	- 17510H ELAPS	ED TIME	2	2	2 2		•
-185	- 17537X ELEVA	TION WARNING	2	2	2 2		5
-190	- 17611X START	COUNTDOWN	2	2	2 2		5
-195	- 17612X START	FINE ALMMT-TRIG MODE	2	2	2 2		5
-200	- 17613X Z AXI	S VERT-FINE ALNMT	2	2	2 2		•
-205	- 17614X FINE	ALNMT COMPLETE	2	2	2 2		5
-210	- 17615X COMPU	TER TEST COMPLETE	2	2	2 2		•
-215		ACCELEROMETER OFFSET	2	2	2 2		5
-220	- 17617X ACCEL	EROMETER TEST COMPLET	E 2	2	2 2		,
-225	- 17618% IG5 R		2	2	2 2		5
-230	- 17619X GO IN	ERTIAL COMMAND	2	2	2 2		5
-235	- 17620X MGS I		2	3	2 2		5
-240		Z ACCELEROMETER COMPL		2	2 2		5
-245	- 17622X SCALE		2	2	2 2		5
-250	- 17623X SCALE		2	2	2 2		5
-255		ZERO X ACCELEROMETER		2	2 2		3
-260	- 17625X RETUR	N TO READY REG	2	2	2 2		•

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

0 5 7 F -	2 0BJ COM	POSITE 26 SEP 62 AE60-0653	123 1234	56 1234	123456 1	1 12345	018
-265	-	17626X RETURN TO READY COMP	2	2	2 2		5
-270	-	17627X GO ON VERT MEMORY	2	2	2 2		5
-275	-	17628X GO ON AZIMUIH MEMORY	2	2	2 2		5
-280	-	17630X GYRO A IN BAND	2	2	2 2		5
-285	-	17631" GYRO B IN BAND	2	2	2 2		5
-290	•	N7032T GUIDANCE POD XHST TEMP	2				5
000	005-02-	FAC AIR CONDITIONING		1	111		2
000	005-03-	THR SECT HEATER ADEQ	2				2
000	005-04-	28VOC POWER					2
000	005-05-	ADD CYCLE GEN ADEQUACY					2
000	005-06-	MSL POD AIR CONDITIONING	22				. 2
000	005-07-	PCU EVALUATION	222		2		2
000	005-08-	ACSIG & AGSP STABILITY	333 2	2	2		2
000	005-09-	R/V PRE-LNCH MONITORING	222	222	2 2		2
000	005-10-	FUEL THERMAL COMPENSATION					2
000	005-11-	PU SENSOR READINESS	222	22 222	2 2		2
000	005-12-	PROP SYS READINESS	11	222	2 2		2
000	006-01-	OGE RESPONSE TO L/C	242	22			2
-		N7002X SELECT A BUTTON			1 111		•
		N7003X SELECT 8 BUTTON					3
		N7030X ALARM RESET SWITCH			1 111		5
-030	-	N7042X START ABORT SWITCH	1111	111	1 111	1 11	,
000	006-02-	COUNTDOWN TIME	2222	22 222	2 222	2 22	2

GENERAL DYNAMICE ASTRONAUTICS

05TF-2 (OBJ COMPOSITE 26 SEP 62 AE60-0653	120 123456 1234 123456 1 12345	019
	- N7509X READY FOR COMMIT	111 1 111 1 11	5
-045	- N7514X AUTOPILOT ON AMBER	111 1 111 1 11	5
-050	COEEN	111 1 111 1 11	5
~055		111 1 111 1 11	5
-060		111 1 111 1 11	5
-065	- N7531X HE LOAD AMBER - N7533X ENGINE START AMBER	111 1 111 1 11	5
-070	- N7533X ENSINE STANT ANDEN	111 1 111 1 11	5
-075	- N7535X PRR INTERNAL GREEN		
000	006-03- OGE DEFICIENCIES	22222 222 22222 2222	2
000	006-04- L/C SAFE STATUS	333	2
-050	- N7513X MSL LIFT DOWN & LOCKEL	111 1	5
20,0			
000	006-05- R/V PRE-LNCH MONITOR EVAL	222 2	2
-020	- Y7052X R/V BAT HTR THERMOSTAT	111 111 1 111 1 11	5
-025	- Y7054X LAUNCH CONTROL POWER	111 111 1 111 1 11	3
-030	- Y7055X START COUNTDOWN POWER	111 111 1 111 1 11	5
-035	- Y7056X 28 VDC VERIFICATION	111 111 1 111 1 11	,
-040	- Y7059X R/V CONTINUITY	111 111 1 111	,
-045	- Y7061X MARK 4 R/V	111 111 1 11	3
-050	- Y7062X R/V TACTICAL	111 111 1 111 1 11	5
-055	- YTOGAX 115 VAC VERIFICATION	111 111 1 111 1 11	3
-060	- Y7065X START COUNTDOWN VERIFY	111 111 1 11	3
-065	- Y7066X TARGET A SET	111 111 1 111 1 11	5
-070	- Y7067X TARGET B SET	111 111 1 11	3
-075	~ Y7068X MARK 3 R/V	111 111 1 111	,
-000	- Y7069X TARGET A SELECT	111 111 1 111 1 11	3
-085	- Y7070X TARGET B SELECT	111 111 1 111 1 11	3
-090	- Y7071X START COUNTDOWN SIGNAL	111 111 1 111 1 11	3
-095	- Y7072X 28 VDC RECEIVER	111 111 1 111 1 11	3
		·	
***	007-01- PHEUMATIC SYSTEM READINESS	111 1 111	2
	TALLY DOESSIDE	111 1 111 1 11	5
-015	TANK COESSIOF	111 1 111 1 11	5
-020	DIFFERENTIAL DOESS/GAGE/	, 111 1 111	5
-025	- N7035P DIFFERENTIAL PRESS/GAGE/		

SECTION 8

THE THE TYNAMICS ASTRONAUTICS

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	020
-035 - F1145P S CTL HE BTL DISCH PRESS	777 7 777	5
-040 - F1247T B TK HE BTL TEMP	. 111	5
-045 - F1290T S CTL HE BOTTLE TEMP	111 1 111	5
-055 - F 1P LOX TANK HELIUM PRESS	111 1 111	5
-060 - F 3P FUEL TANK HELIUM PRESS	111 1 111	. 5
-045 - F 145P S CTL HE BTL DISCH PRESS	111 1 111	. 5
-070 - F 266P B TANK HE BTL HE PRESS	111 1 111	5
-075 - " 2471 B TK HE BTL TEMP	1 111	,
000 007-02- FLIGHT CONTROL READINESS	222 111 1 111	2
-015 - N7514X AUTOPILOT ON AMBER	111 1 111 1 11	5
-020 - N7518% AUTOPILOT FAIL MARGINAL	111 1 111 1 11	9
-025 - N7519X FLT PROGRAMMER SAFE	111 1 111 1 11	9
-030 - N7521X AUTOPILOT FAIL	111 1 111 1 11	9
-035 - N7532X PROGRAMMER ARMED AMBER	111 1 111 1 11	5
-04U - N7536X AUTOPILOT TEST AMBER	111 1 111 1 11	,
-050 - \$ 610 ROLL DISP GYRD SIG	111 1 111	5
-055 - S 620 PITCH DISP GYRO SIG	111 1 111	9
-060 - S 63D YAW DISP GYRO SIG	111 1 111	9
-065 - \$ 2030 B1 PITCH/ROLL POS	111 1 111	,
-070 - \$ 204D B2 PITCH/ROLL POS	111 1 111	9
-075 - \$ 2050 B1 YAW POS	111 1 111	,
-080 - \$ 206D B2 YAW POS	111 1 111	,
-085 - \$ 2220 V1 PITCH POS	111 1 111	,
-090 - \$ 2230 V2 PITCH POS	111 1 111	3
-095 - \$ 233D V1 YAW/ROLL POF	111 1 111	,
-100 - 5 294D V2 YAW/ROLL POS	111 1 111	9
-105 - \$ 256D SUS YAW POS	111 1 111	9
-110 - 8 2570 SUS PITCH POS	111 1 111	9
-115 - S 52R ROLL RATE GYRO SIG	111 1 111	,
-120 - 5 53R PITCH RATE GYRO SIG	111 1 111	,
-125 - 8 54C YAM RATE GYRO SIG		·
000 007-03- ELECTRICAL SYS FUNCT	222 111 1 111	2
-030 - E 30Q 40G CYC AC PWR SUP	111 111 1 111	•
-035 - E 28V MSL SYS INPUT	111 111 1 111	5

GENERAL DYNAMICS ASTRONAUTICS

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	021
	111 111 1 111	5
-040 - E 31V 400 CYCLE AC PHASE A	111 1 111 1 11	5
-045 - N7510X PWR TO INTERNAL	111 4 111 1 11	5
-050 - N75LIX PWR TO EXTERNAL	111 1 111 1 11	5
-055 - N7523X DC AT MSL		
000 007-04- HYD SYS READINESS	111 1 111	2
AND BY MYD ACCUMULATOR PRESS	111 1 111	5
WERN ENG MYD PRESS	111 1 111	5
THE PRESS	111 1 111	5
-025 - H 185P S HYD PUMP INLE! PRESS		
000 007-05- PROPELLANT LOADING READINESS	222 111 1 111	2
THURSD LOW TANK DEFESURE	111 111 1 111 1 11	5
TRACE FUEL TAME DRESSURE	111 111 1 111 1 11	5
-020 - P7569P LOX STOR TK ULLAGE PRESS	111 111 1 114 1 14	5
-030 - P7564P LOX STOR TK TO MSL DP	111 111 1 111 1 11	5
-035 - P7709P LUX TOP TK ULLAGE PRESS	111 111 1 111 1 11	5
-OAO - PTILSX RAPID TOP VLV OPEN	111 111 1 111 1 11	5
-045 - P7116X RAPID TOP VEV CLSD	111 111 1 111 1 11	5
-050 - P7117X TOPPING VLV OPEN	111 111 1 111 1 11	,
-955 - P7118% TOPPING VLV CLSD	111 111 1 111 1 11	5
-060 - P7225X LOX RAPID LD VLV OPEN	111 111 1 111 1 11	5
-065 - P7226X LUA FINE LD VLV OPEN	111 111 1 111	5
-070 - P7227X LOX RAPID LD VLV CLSD	111 111 1 111 1 11	3
-075 - P7228X LOX FINE LD VLV CLSO	111 111 1 111 1 11	3
-080 - U7011X RAPID FILL LOX CTL-1	111 111 1 111 1 11	3
-085 - U7012X TOPPING LOW CTL-1	111 111 1 111 1 11	3
-090 - UTOLSX TOPPING HIGH CTL-1	111 111 1 111 1 11	3
-095 - U7014X 100% LOX CTL-1	111 111 1 11	3
-100 - U7015X RAPID FILL LOX CTL-2	111 111 1 111 1 11	3
-105 - U7016X TOPPING LOW CTL-2	111 111 1 111	_
-110 - U7017X TOPPING HIGH CTL-2	111 111 1 111	. 3
-115 - U7018X 1008 LOX CTL-2	111 111 1 11	,
-125 - F 1P LOX TANK HELIUM PRESS	111 1 111	5
-130 - F 3P FUEL TANK HELIUM PRESS	111 1 111	•
000 007-06- PROPULSION SYS READINESS	22 111 1 111	2

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

0\$TF~Z	ORJ COMP	OSITE 26 SEP 62 AE60-0653	123 123456 12	34	123456 1	12345	022
-015	-	F7001P LOX TANK PRESSURE	11 1	11	1 111	1 11	5
-020	-	F7003P FUEL TANK PRESSURE	11 1	11	1 111	1 11	5
-022	-	P7126V & IGN STAGE CTL VOLT	1	11			5
-025	-	P7935X FUEL A/B F6D VLV CLSD	11 1	11	1 111	1 11	5
-030	-	P7964X LOX A/B FGD VLV CLSD	11 1	11	1 111	1 11	5
-040	-	P1002P B1 FUEL PUMP INLET PRESS	1	11	1 111		
-045	-	P1038P 82 FUEL PUMP DISCH PRESS	1	11	1 111		3
-047	•	P1039P B1 FUEL PUMP DISCH PRESS	1	11	1 111		5
-050	-	P1530T S LOX PUMP INLET TEMP	1	11	1 111		5
-060	•	F 1P LOX TANK HELIUM PRESS	1	11	1 111		5
-065	-	F 3P FUEL TANK HELIUM PRESS	1	111	1 111		5
-070	-	P 3P B2 LOX PUMP INLET PRESS	1	111	1 111		5
-075	-	P 38P 82 FUEL PUMP DISCH PRESS	1	111	1 111		9
-080	•	P 39P 31 FUEL PUMP DISCH PRESS	1	111	1 111		5
-085	-	P 330P S FUEL PUMP DISCH PRESS	1	111	1 111		5
000	007-07-	ENG IGNITION ELEC SIG	2212	111	1 111		2
U00	007-08-	PU SYSTEM READINESS	2212	111	1 111	1 11	2
-015	-	M7028X COMMIT START BUTTON	2 222	111	1 111	1 11	5
~018	•	UT126V AA COMP 28 VDC INPUT				1 11	5
-019	-	U7134V AA TINE SHARED OSC OUTPUT	•			1 11	5
-020		UT125X AA COMPUTER RESET	1 111	111	1 111		5
-025	-	UT132X AA STA COUNTER OUTPUT	1 111	111	1 111		5
-035	-	U 113V AA VLV POS FEEDBACK	:	111	1 111		5
-040	-	U 135X AA SENSOR SIG		111	1 111		•
000	007-09-	TELEMETRY SYSTEM READINESS	22211	111	1 111		2
000	006-01-	PNEU SYSTEM READINESS					2
000	008-02-	FLIGHT CONTROL READINESS	2				2
200	008-03-	ELECTRICAL SYSTEM FUNCT	2				2

•

•

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	0,23
	2	2
000 008-05- PROPELLANT LOAD	·	
STANDING SYS OF ADINESS		2
000 008-06- PROPULSION SYS READINESS		Ł
000 008-07- PU SYSTEM READINESS	2	-
		2
000 008-Gd- ENG IGNITION ELEC SIG	1	
	22222 1 1	2
000 009-01- READINESS PRESENTATION	11111 111 11111 1111	3
-015 - N7754N LAUNCH COMSOLE RM CAMERA	11111 111 11111 11111	5
-020 - N7755H LAUREN CONTROL		2
000 009-02- LCC DISCRETE OCCURRANCE	*2222	5
HATEALA LAUNCH CONSOLE RH CAMERA	11111 111 1 111 1 11	,
HARRA LAUNCH CONSOLE LH CAMERA	11111 111 1 111 1 11	3
-020 - M7755N ELECT COMMIT START	111 1 111 1 11	5
-030 - N7508X AUTOMATIC PRESSN	111 1 111 1 11	5
-035 - N7512X COMMIT LOCKUP	***	5
-940 - NISSEX MSL LIFT UP & LOCKED	111 1 111 1 11	
000 009-03- LCC CABINETS ENVIRONMENT		2
HERET LIC EQUIPMENT RH HUM		5
HEROT L SUID LOWER RH HUM		3
THUT" L/C EQUIP AIR RETURN TEMP	•	3
-040 - NT6211 ELCT EQUIP AIR IN #1 TEMP		3
-045 - N7622T ELCT EQUIP AIR IN #2 TEM		5
- WISO - NY623T ELCT EQUIP AIR IN #3 TEM	P	,
-055 - NT624T ELCT EQUIP AIR IN #4 TEM		5
-060 - N7629T ELCT EQUIP AIR IN #5 TEM	P	5
-045 - N7626T ELCT EQUIP AIR OUT #1 TE	HP	3
-OTC - N74271 ELCT EQUIP AIR OUT #2 TE	NP	5
-075 - N7628T ELCT EQUIP AIR OUT #5 TE	: mr FMO	,
-080 - N76291 ELCT EQUIP AIR OUT #4 TE	EMP	5
-085 - N7630" ELCT EQUIP AIR OUT #5 TE	•••	

• •

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

0\$TF-	\$ 08J COM	POSITE 2	6 SEP 62		123 123456	1234	123456	1 12345	024
000	009-04-	LCC-R.'Y	COMPAT181	ILITY	22222				2
-010	-	Y7054X	28 YOC VE	RIFICATION	11111	111	1 111	1 11	5
-015	-	Y7059X	R/V CONTI	: YTIUNI	11111	111	1 111	1 11	5
-020	•	Y7061X	MARK 4 R/	/v :	11111	111	1 111	1 11	5
-025	-	Y7062X	R/V TACTI	ICAL	11111	111	1 111	1 11	5
-030	-	Y7068X	MARK 3 R/	/v :	11111	111	1 111	1 11	5
-035	-	Y7069X	TARGET A	SELECT	11111	111	1 111	1 11	5
-040	-	Y7070X	TARGET B	SELECT	11111	111	1 111	1 11	5
-045	-	Y7071X	START COU	INTOOWN SIG	11111	111	1 111	1 11	\$
									•
000	010-01-	FOS CHE	TEDOMM VOE	EQUACT	22212	211			2
-015	-	F7001P	LOX TANK	PRESSURE	11111	111	1 111	1 11	5
-020	•	P7949P	LOX STOR	TK ULLAGE PRESS	11111	111	1 111	1 11	3
-025	-	P7564P	LOX STOR	TK TO MSL DP	11111				3
-030	-	P7565P	LOX XFER	LINE TO MSL PRESS	11111				5
-035	-	P7578P	LOX TO LA	/P DISCON IN PRESS	11111				,
-940	-	P7682P	MSL LOX T		11111				,
-045	-	P7696P		LINE PRESS # R-O-D					,
-050	-	P7697P		E PRESS # R-O-D	11111				,
-055	-	P7699P	MAIN LOX	FILTER OF	11111				,
-040	-	P7700P	LOX RAPID	D LD VLV DP	11111				
-045	-	P77010	LOX FINE	TO AFA DE	11111				5
-048	-	P7913P		LD IN PRESS		111			3
-069	•	P7916P	LOX DRAIN	N VLV L-16 OUT PRE		1			3
-070	•	P7194R	LOX TOP P	FL/RT VENTURI	11111				,
-075	-	P7109R		BLEED FL/RT	11111				5
-000	-	P/114T	LOX TOP L	L/P DISCON IN TEMP	11111				,
-085	•	P7134T	B1 LOX PU	UMP IN TEMP	11111				•
-090	•	P7304T	SUS LOX F	PUMP IN TEMP	11111				•
-099	-	P7305T		UMP IN TEMP	11111				•
-100	•	P75717		E TEMP-L/P DISCON	11111	111			•
-105	-	P7498T	MAIN LOX	LINE TEMP . R-O-D					,
-110	•	P7702T	_	LINE TEMP . R-O-D	11111				•
-115	•			P VLV OPEN	11111		1 111	1 11	• • • • • • • • • • • • • • • • • • •
-120	•	P7116X	RAPID TOP	P VLV CLSD	11111	111	1 111	1 11	. 3

- 2

SENERAL DYNAMICS ASTRONAUTICS

OSTF-2	OBJ COMPOSITE 26 SEP 62 AE600653	123 123456 1234 123456 1 12345	025
-125	- P7117X TOPPTHE VLV OPEN	11111 111 1 111 1 11	5
-130	- P7118X TOPPING VLV CLSD	11111 111 1 111 1 11	5
-135	- P7129X VENT VLV NBO OPEN	11111 111 1 111 1 11	5
+140	- PTIBOX VENT VLV NBO CLSO	11111 111 1 111 1 11	5
-145	- P7131X LOX DRAIN VLV N60 OPEN	11111 111 1 111 1 11	5
-150	- P7132X LOX DRAIN VLV 450 CLSD	11111 111 1 111 -1 11	5
-155	- P7193X LOX TOP TK VENT VLV OPEN	11111 111 1 111 1 11	5
~160	- P7194X LOX TOP TK VENT VL√ CLSD	11111 111 1 111 1 11	5
-165	- P7223X LOX STOR TX VENT VLV CLSD	11111 111 1 111 1 11	,
-170	- P7225X LOX RAPID LD VLV OPEN	11111 111 1 111 1 11	5
-171	- P7226X LOX FINE LD VLV OPEN	11111 111 1 111 1 11	5
-172	- P7227X LOX RAPID LD VLV CLSD	11111 111 1 111 1 11	5
-173	- P7228X LOX FINE LD VLV CLSD	11111 111 1 111 1 11	9
-180	- P7236X LOX STOR TK VENT VLV OPEN	11111 1111 1 111 1 11	,
-185	- P7241X LOX CHILLOWN VLV N-1 CLSD	111 1 111 1 11	•
-186	- P7251X LOX CHEON VLV NZ CLSD	111	3
-187	- P7252X LOX CHLON VLV N3 CLSD	111	,
-188	- P7253X LOX CHLON VLV NSO CLSD	111	•
-192	- F 1P LOX TK HE PRESS	111 1 111 1 11	•
000	010-02- LOZ TRANSFER SEQUENCES	22212 211	:
-015	- P7549P LOX STOR TK ULLAGE PRESS	11111 111 1 111 1 11	:
-020	- PTTOPP LOX TOP TK ULLAGE PRESS		!
-025	- P7115X RAPID TOP VLV OPEN	11111 111 1 111 1 11	
-030	- P7116X RAPID TOP VLV CLSD	11111 111 1 111 1 11	!
-035	- P7117X TOPPING VLV OPEN	11111 111 1 111 1 11	!
-040	- PT118X TOPPING VLV CLSD	11111 111 1 111 1 11	
-045	- P7129X VENT VLV NGO OPEN	11111 111 1 111 1 11	
-050	- P7150X VENT VLV NGO CLSD	11111 111 1 111 1 11	
-055	- P7131X LOX DRAIN VLV NGO OPEN	11111 111 1 111 1 11	
~0 6 0	- PT132X LOX DRAIN VLV N60 CLSD	11111 121 1 111 1 11	
-065	- P7193X LOX TOP TK VENT VLV OPEN	11111 111 1 111 1 11	
-070	- P7194X LOX TOP TK VENT VLV CLSD	11111 111 1 111 1 11	
-075	- P7223X LOX STOP TK VENT VLV CLSD	11111 111 1 111 1 11	
-080	- P7225X LOX RAPID LD VLV OPEN	11111 111 1 111 1 11	
-085	- P7226X LOX FINE LD VLV OPEN	11111 111 1 111 1 11	

GENERAL DYNAMICS ASTRONAUTICS

024

	- P7227X LOX RAPID LD VLV CLSD	11111 111 1 111 1 11	5
-090	- P7228X LOX FINE LD VLV CLSD	11111 111 1 111 1 11	5
-095	- P7236X LOS STOR TK VENT VLV OPE	EN 11111 111 1 111 1 11	5
-100	- P7238X LOX DRAIN VIV OPEN	11111 111 1 111 1 11	5
-105	- P7240X LOX DRAIN VLV CLSD	12111 111 1 111 1 11	5
-110	- P7251X LOX CHLON VLV N2 CLSD	. 111	•
-111	- P7252X LOX CHLON VLV N3 CLSD	111	5
-112	THE STATE OF CHICK VIV NSO CLSD	111	5
-113	DOCUMENT LOW WIND OPEN	11111	5
-115	104 W.W.17 CLSD	11111	5
-120		11111	5
-125	- P7959X 10X VLV L6 OPEN - P7960X L0X VLV L6 CL50	11111	5
-130		11111 111 1 111 1 11	5
-135	- P7963X LOX A/8 FGD VLV OPEN	11111 112 1 111 1 11	5
-140	- P7934X LOX A/8 F60 VLV CLSD	11111 11. 1 111 1 11	5
-145	- UTO11X RAPID FILL LOX CTL-1	11111 111 1 111 1 11	5
-150	- U7012% TOPPING LOW CTL-1 U7013X TOPPING HIGH CTL-1	11111 111 1 111 1 11	5
-155		11111 111 1 141 1 11	5
-160	- U7016% 100% LOX CTL-1 - U7015% RAPID FILL LUX CTL-2	11111 111 1 111 1 11	5
-165	- U7016X TOPPING LOW CTL-2	11111 111 1 111 1 11	• •
-170	- U7017X TOPPING HIGH CTL-2	11111 111 1 111 1 11	5
-175	- U7018X 100% LOX CTL-2	11111 111 1 111 1 11	5
-180	T Oldfax loop fow the a		
	010-03- LOZ TRANSFER PREFORMANCE	22212 211 2 211	2
	- FTOOLP LOX TANK PRESSURE	11111 111 1 111 1 11	5
-025	- P7105P TCU CTL MANIFOLD PRESS	11111	5
-030	- P7106P TCU LOX IN PRESS	11111	\$
-035	- P7107P TCU LOX FILTER IN PRES	is 11111	3
-040	THE STATE OF THE PRES		5
-045	- P7135P MAIN LOX LINE DRAIN PR		5
-050	- P7946P GN2 STOR TK DISCH PRES		•
-055	- PTSASP LOX STOR TK ULLAGE PRE		3
-060	- P7564P LOX STOR TK TO HSL DP		3
-045	- P7965P LOX XFER LINE TO MSL S		5
-070 -075	- P7578P LOX TO L/P DISCON IN I		9
-060	- P7682P MSL LOX TANK DP	11111	,

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	027
-085 - P7694P LOX TOP LINE PRESS # R-0-0	11111	5
-090 - P7697P MAIN LINE PRESS # R-0-D	11111	5
-095 - P7699P MAIN LOX FILTER DP	11111 111 1 111	5
-100 - P7700P LOX RAPID LD VLV DP	11111	5
-105 - P7701P LOX FINE LD VLV DP	11111	5
-110 - P7706P LOX DRAIN VLV DP	11111	5
-115 - P7707P LOX FILL FILTER CP	11111	5
-120 - P7709P LOX TOP TK ULLAGE PRESS	11111 111 1 111 1 11	5
-125 - PTT10P LOX STOR TK PRESN LINE	11111	5
-130 - P7711P LOX TOP TK PRESM LINE	11111	5
-125 - P7907P B1 LOX PUMP IN PRESS	11141	5
-140 - PT913P FINE LD VLV L1 IN PRESS	11111 1111	5
-145 - P7914P RAPID LD VLV LZ IN PRESS	11111	5
-150 - P79150 LOX DRAIN YLV LIG IN PRESS	11111	\$
-155 - P7917P LOX STOR TK FILL VLV L7 IN	11111	3
-160 - P7972P STOR TK PRESN VLV IN PRESS	11111	5
-165 - PTIOAR LOX TOP FL/RT YENTURE	11111 111	5
-170 - P710YR LOX TOP BLEED FL/RT	11111 111	5
-175 - P71131 TCU LOX INLET TEMP	11111	5
-180 - P7114T LOX TOP L/P DISCON IN TEMP	11111	3
-185 - P7134T 81 LOX PUMP IN TEMP	11111	3
-190 - P7304T SUS LOX PUMP IN TEMP	11111	\$
-195 - P7305T 82 LOX PURP IN TEMP	111.1	3
-200 - P7947T GNZ STOR TK DISCH TEMP	11111	5
-205 - P7571T MAIN LINE TEMP-L/P DISCON	41111	3
-210 - P7698" MAIN LOX LINE TEMP # R-0-0	11111	5
-215 - P7702T LOX TOP LINE TEMP # R-0-0	11111	3
-220 - P7193X LOX TOP TK VENT VLV OPEN	11111 111 1 111 1 11	3
-225 - P7194X LOX TOP TK VENT VLV CLSD	11111 111 1 111 1 11	3
-230 - P7223X LOX STOR TK VENT VLV CLSO	11111 111 1 111 1 11	3
-235 - P72364 LOX STOR TK VENT VLV OPEN	11111 111 1 111 1 11	3
-240 - PTSATE LOX STOR TE FULL	11111 111 1 111 1 11	5
-245 - U7080P LOX TANK HEAD PRESS	11111	3
-250 - U7011X RAPID FILL LOX CTL-1	1111. 111 1 111 1 11	•
-255 - U7G12X TOPPING LOW CTL-1	1111 111 1 111 1 11	,
-260 - U7013A TOPPING HIGH CTL-1	11111 111 1 111 1 11	3

SECTION 9

GUNERAL DYNAMICS ASTRONAUTICS

OSTF-2	OBJ COM	POSITE 2	6 SEP 62 AE60-0653	123 123456	1234	123456 1	12345	028
-265	-	U7014X	100% LOX CTL-1	11111	111	1 111	1 11	5
-270	-	U7015:1	RAPID FILL LOX CTL-2	11111	111	1 111	1 11	5
-275	-	U7016X	TOPPING LOW CTL-2	11111	111	1 111	1 11	,
-280	-	U7017X	TOPPING HIGH CTL-2	11111	111	1 111	1 11	5
-285	-		100% LOX CTL-2	11111	111	1 111	1 11	5
-288	-	F 1P	LOX TK HE PRESS		111	1 111	1 11	5
000	010-04-	LOZ LOA	DING SENSOR SYS	22212	211			2
-015			LOX TANK PRESSURE	11111	111	1 111	1 11	5
-020			LOX STOR TK ULLAGE PRESS	11111	111	1 111	1 11	5
-025	-	P7544P	LOX STOR TK TO MSL DP	11111	111	1 111	1 11	5
-030	-	P7682P	HUL LOX TANK OP	11111				5
-035	_	P7709P	LOX TOP TK ULLAGE PRESS	11111	111			5
-040	-	P7104R	LOX TOPPING FL/RT VENTURE	11111	111			5
-045	-	P7109R	LOY TOPPING BLEED FL/RT	11111	111			5
-050	-	P7115X	RAPID TOP VLV OPEN	11111	111	1 111	1 11	5
-055	-	P7116X	RAPID TOP VLV CLSD	11111	111	1 111	1 11	5
-060	-	P7117X	TOPPING VLV CPEN	11111	111	1 111	1 11	5
-065	-	P7118X	TOPPING VLV CLSD	11111	111	1 111	1 11	5
-070	-	P7225X	LCX RAPID LD VLV OPEN	11111	111	1 111	1 11	5
-075	-	P7226X	LOX FINE LD VLV OPEN	11111	111	1 111	1 11	5
-080	-	P7227X	LUX RAPID LD VLV CLSD	11111	111	1 111	1 11	5
-085	-	P7228X	LOX FINE LD VLV CLSD	11111	111	1 111	1 11	5
-090	-	U7080P	LOX TANK HEAD PRESS	11111				5
-645	-	U7011A	RAPID FILL LOX CTL-1	11111	111	1 111	1 11	3
-100	-	U7012X	TOPPING LOW CTL-1	11111	111	1 111	1 11	5
-105	-	U7013X	TOPPING HIGH CTL-1	11111	111	1 111	1 11	5
-110	-	U7014X	100% LOX C1L-1	11111	111	1 111	1 11	
-115	-	U7015X	RAPID FILL LOX CTL-2	11111	111	1 111	1 11	5
-120	•	U7016X	TOPPING LOW CTL-2	11111	111	1 111	1 11	5
-125	-	U7017X	TOPPING HIGH CTL-2	11111	111	1 111	1 11	5
-130	•	U7018X	100% LOX CTL-2	11111			1 11	5
-140	•	F 1P	LOX TK HE PRESS		111	1 111	1 11	5
000	010-05-	LOZ XF	ER INTERFACE EFFECTS	22212	222			2

GENERAL DYNAMICS ASTRONAUTICS

0 5 1F-	2 OBJ COM	POSITE 2	6 SEP 62	AE60-0653	123 123456	1234	123456	1 12	345	029
000	010-06-	LOZ LOAD	DING TIME		22212	211				2
-020	-	F7001P	LOX TANK F	PRESSURE	11111					5
-030	-	N7024X	START C/D	BUTTON	11111	111	1 111	1	11	5
-035	_	N7028X	COMMIT ST	ART BUTTON	11111	111	1 111	1	11	5
-040	_	P7108P	LOX L/P D	ISCON IN PRESS	11111					5
-045	-	P7549P	LOX STOR	TK ULLAGE PRESS	11111	111	1 111	1	11	5
-050	-	P7564P	LOX STOR	TK TO MSL DP	11111					5
-055	-	P7565P	LOX XFER	LINE TO MS. PRESS	11111					5
-060	-	P7578P	LOX TO L/	P DISCON IN PRESS	11111					5
-065	_	P7682P	MSL LOX T	K DP	11111					5
-070	-	P7696P	LOX TOP L	INE PRESS # R-O-D	11111					5
-075	-	P7697P	MAIN LINE	PRESS . R-0-D	11111					5
-078	-	P7699P	MAIN LOX	FILTER DP	11111					5
-080	-	P7700P	LOX RAPID	LOAD YLV DP	11111					5
-085	_	P7701P	LOX FINE	LOAD VLV DP	11111					5
-090	-	P7709P	LUX TOP T	K ULLAGE PRESS	11111					5
-095	-	P7907P	81 LOX PU	MP IN PRESS	11111					5
-100	-	P7913P	LOX FINE	LD VLV L-1 IN	11111					5
-105	-	P7914P	LOX RAPID	LD VLV L-2 IN	11111					5
-110	-	P7104R	LOX TOPPI	NG FL/RT VENTURI	11111					5
-115	-	P7109R	LOX TOPPI	NG BLEED FL/RT	11111					5
-120	-	P7113T	TCU LOX 1	N TEMP	11111					5
-125	-	P7114T	LOX TOP T	EMP . L/P DISCON	11111					5
-130	-	P7134T	B1 LOX PU	MP IN TEMP	11111					5
-135	-	P7304T	SUS LOX P	UMP IN TEMP	11111					5
-140	-	P7305T	32 LOX PU	MP IN TEMP	11111					5
-145	-	P7698T	MAIN LOX	LINE TEMP # R-O-D	11111					5
-150	-	P7702T	LOX TOP L	INE TEMP . R-Q-D	11111					5
-151	-	P7225X	LOX RAPID	LD VLV OPEN		111	1 111	. 1	. 11	5
-152	-	P7226X	LOX FINE	LD VLV OPEN		111	1 111	1 1	11	5
-153	-	P7227%	LOX RAPID	LD VLV CLSD		111	1 111	1 1	111	5
-155				HEAD PRESS	11111					9
-160	-	X1107U	RAPID FIL	L LOX CTL-1			1 11		1 11	5
-165	-	U7012X	TOPPING L	OW CTL-1			1 11		1 11	5
-170	-	U7013X	TOPPING H	HIGH CTL-1			1 11		1 11	5
-175	-	U7014X	100% LOX	CTL-1	11111	111	1 11	1	1 11	5

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF-	2 OBJ COMPOS	ITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	030
-180	- 070	DISK RAPID FILL LOX CTL-2	11111 111 1 111 1 11	5
-185	- 470	DIGX COPPING LOW CTL-2	11111 111 1 111 1 11	5
-190	- U70	D17X TOPPING HIGH CTL-2	11111 111 1 111 1 11	5
-195	- 070	018% 100% FOX CTF-5	11111 111 1 111 1 11	5
000	010-07- LO	STORAGE TK MACK PRESS	22212	. 2
-015	- +70	DOIP LOX TANK PRESS	11111	5
-020	- P71	LOSP TOU OTE MANIFOLD PRESS	11111	5
-025	- P71	106P TCU LOX IN PRESS	11111	5
-030	- P71	107P TOU LOX FILTER IN PRESS	11111	5
-035	- P71	LOSP LOX L/P DISCON IN PRESS	11111	5
-040	- P75	349P LOX STOR TK ULLAGE PRESS	11111	5
-045	- P75	564P LOX STOR TK TO MSL DP	11111	5
-050	- P75	SASP LOX XFER LINE TO MSL PRESS	11111	5
-055	- P79	STEP LOX TO L/P DISCON IN PRESS	11111	5
-060	- P76	SEZP MSL LOX TANK DP	11111	5
-065	PTE	SOOP LOX TOP LINE PRESS . R-O-D	11111	5
-070	- P71	709P LOX TOP TK ULLAGE PRESS	11111	5
-075	- P79	9140 RAPID LD VLV L-2 IN PRESS	11111	5
-080	- P7	104R LOX TOPPING FL/RT VENTURI	11111	5
-085	- P71	LOSR LOX TOPPING BLEED FL/RT	11111	5
-090	- P71	113T TOU LOX INLET TEMP	11111	•
-095	- P71	114T LOX TOP L/P DISCON IN TEMP	11111	5
-100	- P71	134T 81 LOX PUMP IN TEMP	11111	5
-105	- P71	304T SUS LOX PUMP IN PRESS	11111	5
-110	- P73	BOST BZ LOX PUMP IN PRESS	11111	5
-115	- P75	STIT MAIN LINE TEMP-L/P DISCON	11111	5
-120	- P76	SORT MAIN LOX LINE TEMP # R-O-D	11111	5
-125	- P71	702" LOX TOP LINE TEMP # R-O-D	11111	5
-145	- P71	LISK RAPID TOP VLV OPEN	11111	5
-150	- P71	116X RAPID TOP VLV CLSD	11111	\$
-155	- P71	117X TOPPING VLV OPEN	11111	5
-160	- P71	118X TOPPING VLV CLSD	11111	5
-165	- P71	193X LOX TOP TX VENT VLV OPEN	11111	5
-170	- P71	94X LOX TOP TK VENT VLV CLSD	11111	5
-175	- P72	23% LOX STOR TK VENT VLV CLSD	11111	5

É

GENERAL DYNAMICS ASTRONAUTICS

0 5 1F=2	MO) L80 9	POSITE 2	6 SEP 62	AE60-0653	123 123456	1234 123456	1 12345	031
-180	_	P7225X	LOX RAPID L	D VLV OPEN	11111			5
-185	-	P7226X	LOX FINE LD	VLV OPEN	11111			5
-190	_	P7227%	LOX RAPID L	D VLV CLSD	11111			5
-195	-	P7228X	LOX FINE LD	VLV CLSD	11111			5
-200	_	P7236::	LOX STOR TK	VENT VLV OPEN	11111			5
-202	-	U7011X	RAPID FILL	LOX CTL-1	11111			5
-203	-	U7012X	TOPPING LOW	CTL-1	11111			5
-204	-	U7013X	TOPPING HIG	H CTL-1	11111			5
-205	-	U7014X	100% LOX CT	L-1	11111			5
-210			RAPID FILL		11111	•		5
-215			TOPPING LOW		11111			5
-220			TOPPING HIG		11111			5
-225			100% LOX CT		11111			5
•••								
000	010-08-	LO2 5PR	A' 6 FREEZIN	IG	212	211		2
-020	_			CON IN PRESS	11111			5
-025	-			DISCON IN PRESS	11111			5
-030	-	P7114T	LOX TOP L/P	DISCON IN TEMP	11111			5
-035	-	P7571T	MAIN LINE T	TEMP-L/P DISCON	11111			5
-040	-	U7019N	L/P LOX DIS	CON CAMERA	11111	111		5
-045	-	U7020N	HOT-COLD DE	SCON CAMERA	11111			5
000	010-10-	BOOSTER	TURBOPUMP C	PERATION				2
-015	-	P71378	B1 PUMP SPE	ED LO				5
-020	-	P71388	BZ PUMP SPE	ED LO				5
000	011-01-	FUEL TR	ANSFER PERFO	ORMANCE				2
-010	-	F7003P	FUEL TANK P	RESSURE				5
-015	-	P7567P	FUEL LVL TA	NK ULLAGE PRESS				5
-020	-	P7690P	GND FUEL FI	LTER DP				5
-025	•	P7691P	FUEL FILL L	INE IN PRESS				5
-030	-	P7692P	FILL LINE P	PRESS-L/P DISCON				5
-035	-	P7693P	FILL LINE P	PRESS # R-O-D				5
-040	-	P7909P	FUEL VLV F1	IN PRESS				5
-045		P7569R	GND FUEL SU	IPPLY FL/RT				5
		12-						

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

os‡F	-2 08J CO	MPOSITE	26 SEP 62	AE60-0653	123 123456 1234 123456 1 12345	032
-050	-	P7566T	FUEL LINE	TO MSL TEMP		5
-055	-	P7572T	MSL TANK F	TUEL TEMP		5
-060	•	P7922X	FUEL VLV F	1 OPEN		5
-065	-	P7923X	FUEL VLV	1 CLSD		5
-066	-	P7924X	FUEL VLV F	2 OPEN		5
-070	-	P7925X	FUEL VLV F	2 CLSD		5
-075	-	P7926X	FUEL VLV F	3 OPEN		5
-080	-	P7927X	FUEL VLV F	3 CLSD		5
-065	•	P7928X	FUEL VLV N	F4 OPEN		5
-100	-	P7929X	FUEL VLV N	F4 CLSD		5
-105	-	P7930X	FUEL VLV	F1 OPEN		5
-110	-	P7931X	FUEL VLV A	FI CLSD		5
-115	-	P7932X	FUEL VLV A	F2 OPEN		5
-120	-	P7933X	FUEL VLV N	F2 CLSD		5
-125	-	P7934X	FUEL A/B F	GD VLV OPEN		5
-130	-	P7935X	FUEL A/B F	RD ATA CFED		5
-135	-	P7936X	FUEL LVL 1	K F11 PUHP OPEN		5
-140	-	P7937X	FUEL SENSO	R L\$-10		5
-145	-	r7938X	FUEL LVL T	K FULL		5
-150	-	P7939X	FUEL LVL T	K HALF FULL		5
-155	-	U70#1P	FUEL TANK	HEAD PRESS		5
-100	-	U7021X	FUEL LVL N	OT LOW-1		5
-165	•	U7022X	FUEL LVL N	OT LOW-2		5
-170	-	U7023X	FUEL LVL T	00 HIGH-1		5
-175	•	U7024X	FUEL LVL T	00 HIGH-2		5
000	011-02-	FUEL TH	IERMAL COMPE	NSATION	•	2
-010			rUEL TANK			,
-015	_			K ULLAGE PRESS		5
-020				TK DISCH PRESS		5
-025			FUEL LINE			5
-030	•	P7572T				5
-035	-	_		TK DISCH TEMP		5
-040	_	•	FUEL VLV F			,
-045	-	P7923X	FUEL VLV			5
-050	-	P7924X	FUEL VLV F	2 OPEN		5

`

GENERAL DYNAMICS ASTRONAUTICS

05TF-2 0B	1 COM	POSITE 2	6 SEP 62	AE60-0653	123 123456 1234 123456 1 12345	0:3
-055	-	P7925X	FUEL VLV	F2 CLSD		5
-060	_	P7926X	FUEL VLV	F3 OPEN		5
-065	-		FUEL VLV			5
-070	-	P7928X	FUEL VLV	NF4 OPEN		5
-075	-	P7929X	PUEL VLV	NF4 CLSD		5
-080	-	P7930X	FUEL VLV	NF1 OPEN		5
-085	-	P7931X	FUEL VLV	NF1 CLSD		5
-090	-	P7932X	FUEL VLV	NF2 OPEN		5
-095	-	P7933X	FUEL VLV	NF2 CLSD		5
-100	-	P7934%	FUEL A/B	FGD VLV OPEN		5
-105	-	P7935X	FUEL A/B	FED VLV CLSD		5
-110	-	P7938X	FUEL LVL	TK FULL		5
000 011	1-03-	FUEL CO	ITANIMATH	ON		2
000 011	1-04-	FUEL PU	MPING SYS	TEM		2
-005	-	F7003P	FUEL TAN	K PRESSURE		5
-010	-	P7688P	GND FUEL	PUMP OUT PRESS		5
-015	-	P1689P	SNO FUEL	PUMP IN PRESS		5
-020	•	P7691P		L LINE IN PRESS		5
-025	-	P7692P		E PRESS-L/P DISC	ON ,	5
-030	-	P7693P		E PRESS @ R-O-D		5
-035	-	P7909P		F1 INLET PRESS		5
-040	-	P7569R		SUPPLY FL/RT		5
-045	-		FUEL VLV			5
-050	_	P7196X	FUEL VLV			5
-055	_		FUEL VLV			5
-060 -065	_		FUEL VLV			5
-070	-		FUEL VLV			5
-075			FUEL VLV			5
-080			FUEL VLV			5
-085	-			NF4 OPEN		5
-090	-		FUEL VLV			5
-100	-	P7930X	FUEL VLV	NF1 OPEN		5
-105	-	P7931X	FUEL VLV	NF1 CLSD		5

SECTION 3

GENERAL DYNAMICS ASTRONAUTICS

051F-	2 08J COM	POSITE 2	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	034
-110	•	P7932X	FUEL VLV NF2 OPEN		5
-115	-	P7933X	FUEL VLV NF2 CLSD		5
-120	-	P7934X	FUEL A/B FGD VLV OPEN		5
-125	-	P7935X	FUEL A/B FGL VLV CLSD		,
000	011-05-	DISCRET	TE/SEQUENCE OPRN		2
-010	-	P7567P	FUEL LVL TANK ULLAGE PRESS	5	5
-015	-	P7691P	FUEL FILL LINE IN PRESS		5
-020	-	P7692P	FILL LINE PRESS-L/P DISCOR	4	5
-025	-	P7693P	FILL LINE PRESS # R-O-D		5
-030	-	P7909P	FUEL VLV FI INLET PRESS		5
-035	-	P7911P	FUEL PRESN TK DISCH PRESS		5
-040	-	P7572T	MSL TANK FUEL PRESS		5
-045	-	P7195X	FUEL VLV FA OPEN		5
-050	-	P7196X	FUEL VLV F4 CLSD		, 5
-055	-	P7922X	FUEL VLV FI OPEN		5
-060	•	P7923X	FUEL VLY F1 CLSD		5
-065	-	P7924X	FUEL VLV FZ OPEN		5
-070	-	P1925X	FUEL VLV F2 CLSO		5
-075	-	P7926%	FUEL VLV F3 OPEN		•
-080	-	P7927X	FUEL VLV F3 CLSD		5
-085	-	P7928X	FUEL VLV MF4 OPEN		5
-090	•	P7929X	FUEL VLV NF4 CLSD		,
-095	-	P7930X	FUEL VLV NF1 OPEN		,
-100	-	P7931X	FUEL VLV NF1 CLSD		5
-105	-	P7932X	FUEL VLV NF2 OPEN		,
-110	•	P7933X	FUEL VLV NF2 CLSO		5
-115	-	P7934X	FUEL A/B FGD VLV OPEN		,
-120	-	P7935X	FUEL A/B FGD VLV CLSD		5
-125	•	P7937X	FUEL SENSOR LS-10		5
-130	•		FUEL LYL TK FULL		,
*135	•		FUEL LVL TK HALF FULL		,
-140	-		FUEL TANK HEAD PRESS		5
-145	-		FUEL LVL NOT LOW-1		•
-150	-		FUEL LYL NOT LOW-2		5
-155	-	U7023X	FUEL LVL TOO HIGH-1		•

SECTION 8 GENERAL DYNAMICS | ASTRONAUTICS 26 SEPTEMBER 1962

0\$TF-	2 OBJ COM	POSITE 26 SEP 62 AE60-0653	123 123456	1234	12345ú	1 12345	035
-160	-	U7024X FUEL LVL TOO HIGH-2	٠				5
000	011-06-	FUEL TRANSFER INTERFACE					. 2
-015	-	F7003P FUEL TANK PRESSURE					5
-020	-	UTOZIX FUEL LVL NOT LOW-1					5
-025	-	U7022X FUEL LVL NOT LOW-2					5
-030	-	U7023X FUEL LVL TOO HIGH-1					5
-035	•	U7024X FUEL LVL TOO HIGH-2					5
000	011-08-	FUEL LEVEL					2
		P7566T FUEL LINE TO MSL TEMP					5
-010 -015		P7572T MISSILE TANK FUEL TEMP					5
-017		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
000	011-09-	FUEL PREVALVE LEAKAGE	22222	2			2
000	012-01-	MAINTENANCE CONFERENCE NETWORK		22	22222	2 22222	2
000	012-02-	LCO SIGNALI G SYSTEM		22	22222	22222	. 2
000	012-03-	DIRECT LINE SYSTEM		22	22222	2 22222	2
000	012-04-	DIAL LINE SYSTEM		22	22222	2 22222	2
000	012-05-	LAUNCH ENABLE SYSTEM		2	2 22	2 2 32	2
000	012-06-	BACKGROUND NOISE		22	2 22	2 2 22	2
000	012-07-	RADIO AND AUDIO INTERFERENCE					2
000	012-08-	COMMUNICATIONS EQUIP MAINTENANCE		22	22222	2 22222	2
000	012-09-	MAINTENANCE DATA AND PROCEDURES		22	22222	2 22222	2
000	013-01-	CONTAMINATION BUILD-UP					2

- 2 3

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

051F-2	MO2 L80 2	POSITE 26 SEP 62 AE60-0653	123	123456	1234	123456	1	12345		036
000	014-01-	T.O. DATA ADEQUACY	333	222222	222	222222	2	22222		2
000	014-02-	FUNCTIONAL ANALYSIS ADEQUACY	333	222222	222	222222	2	22222		2
000	014-01-	TECH ORDER WEAPON SYSTEM SUPPORT			2222	22222	2	22222		2
000	014-04-	PERSONNEL REQUIREMENTS		222222		22222	2	22222		2
0 00	015	WEAPONS SYSTEM INSPECTIONS		2	3	3	3	2		2
၁ ૦૦	016	UNSCHEDULED MAINT EFFECTS		222222	3333	222222	3	22222	1	2
000	017	QUALITY CONTROL ADEQUACY		222222		22222	3	22222		2
000	018	MAINT RECORDS ADEQUACY		222222		22222	2	22222		2
000	019	MAINT PROCEDURES ADEQUACY		222222		22222	2	23333		2
0 00	020	SQUADRON MAINT EFFECTIVENESS		222222		22222		22222		2
0 00	021	24 HR SELF SUFFICIENCY FIRST READ						2		2
0 00	022	OPERATIONAL CONTROL BY PERSONNEL		222227	!	22222	2	22222		2
000	023	RELATIONSHIP MAINT CONCEPT		22222	!	22222	3	22222		2

GENERAL DYNAMICS ASTRUNAUTICS

ostF-	Z OBJ COM	PO\$11E 2	6 SEP 62 AE60	-0653	123 123456 1234	123456 1	12345		037
9 00	024	WEAPON	SYSTEM FIRST REA	DINESS		111	111		2
- 275	-	F7001P	LOX TANK PRESSU	RE		1 1	1 1		5
-080	-	F 7003P	FUEL TANK PRESS	URE		1 1	1 1		5
-085	-	F7005P	FUEL TK PRESS D	UCT # PCU		1 1	1 1		5
-090	-	F7012P	LOX TK PRESS DU	CT # PCU		1 1	1 1		5
-095	-	F1145P	S CTL HE BTL DI	SCH PRESS		1 1	1 1		5
-100	-	F 24/T	B TK HE BTL TEN	P		1 1	1 1		5
-110	-	F 1P	LOX TK HELIUM P	RESS		1 1	1 1	,	5
-115	-	F 3P	FUEL TK HELIUM	PRESS		1 1	1 1		5
-120	_	н ззр	81 HYD ACUM PRE	ss		1 1	1 1		5
-125	-	s 1400	JERN HYD PRESS			1 1	1 1		5
-130	_	i 185P	S HYD PUMP INLE	T PRESS		1 1	1 1		5
-140	-	N7350R	B2 POD AIR FLOW	QUAD 2			111		5
-145	_	N7155R	BZ PCD AIR FLOW	QUAD 3			111		5
-150	_	N7048T	B2 AIR INLET TE				111		5
-155	-	N7156T	BZ AIR INLET TE				111		5
-165	-	N7028X	COMMIT START BU	ITTON		1 1	1 1		5
-170	-	N7535X	PWR INTERNAL GR	EEN		1 1	1 1		5
-175	-	N7984X	MISSILE AWAY			1 1	1 1		5
-180	-	P7108P	LOX L/P DISC IN	PRESS		1 1	1 .		5
-185	-	P7549P	LOX STOR TK ULL	AGE PRESS		1 1	1 1		5
-190	-	P7709P	LOX TOP TK ULLA	GE PRESS		1 1	1 1		5
-195	-	P7115#	RAPID TOP VLV	PEN		1 1	1 1		5
-200	-	P7116X	RAPID TOP VLV	LSD		1 1	1 1		•
- 205	-	P7117X	TOPPING VLV OPE	IN .		1 1	1 1		5
-210	-	P7118X	TOPPING VLV CLS	SD.		1 1	1 1		5
-215	-	P7193X	LOX TOP TK VENT	VLV OPEN		1 1	1 1		5
-220	-	P7194X	LOX TOP TK VENT	VLV CLSD		1 1	1 1		•
-225	-	P7225X	LOX RAPID LD VE	V OPEN		1 1	ı 1		•
-230	-	P7226X	LOX FINE LD VLV	OPEN		1 1	1.1		•
-235	-	P7227X	LOX RAPID LU VI	V CLSD		1 1	1 1		5
-240	-	P7228X	LOX FINE LD VL	CLSD		1 1	1 1		5
-245	-	P7238X	LOX DRAIN VLV	PEN		1 1	1 1		5
-250	-	P7240X	LOX DRAIN VLV	LSD		1 1	1 1		•
-255	-	U7011X	RAPID FILL LCX	CTL-1		1 1	1 1		•
-260	-	U7012X	TOPPING LOW CT	1		1 1	1 1		5

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

OSTF-2 OBJ COMPOSITE	26 SEP 62 AE60-0653	123 123456 1234 123456 1	12345	038
-265 - U7013	X TOPPING HIGH CTL+1	1 1	1 1	5
-270 - 07014	X 100% LOX CTL-1	1 1	1 1	5
-275 - U7015	X RAPID FILL LOX CTL-2	1 1	1 1	5
-280 - U7016	X TOPPING LOW CTL-2	1 1	1 1	5
-285 - U7017	x TOPPING HIGH CTL-2	1 1	1 1	5
-290 - U7018	X 100% LOX CTL-2	1 1	1 1	5
-295 - U7021	X FUEL LVL NOT LOW-1	1 1	1 1	5
-300 - U7022	X FUEL LVL NOT LOW-2	1 1	1 1	5
-305 - U7023	X FUEL LVL TOO HIGH-1	1 1	1 1	5
-310 - U7024	X FUEL LVL TOO HIGH-2	1 1	1 1	3
-320 - 5 61	D ROLL DISPL GYRO SIG	1 1	1 1	5
-325 - 5 62	D PITCH DISPL GYRO SIG	1 1	1 1	5
-330 - \$ 63	D YAW DISPL GYRO GIG	1 1	1 1	5
-335 - 5 203	D BY PITCH/ROLL POS	1 1	1 1	5
-340 - 5 204	D B2 PITCH/ROLL POS	1 1	1 1	5
-345 - \$ 205	D B1 YAW PGS	1 1	1 1	5
-350 - 5 206	D B2 YAW POS	1 1	1 1	5
-355 - 5 222	D V1 PITCH PGS	1 1	1 1	5
-360 - 5 223	D V2 PITCH POS	1 1	1 1	5
-365 - 5 232	D VI YAW/ROLL POS	1 1	1 1	5
-370 - \$ 234	G V2 YAW/ROLL POS	1 1	1 1	5
-375 - 5 256	D SUS YAW POS	1 1	1 :	5
-380 - \$ 257	D SUS PITCH POS	1 1	1 1	5
-385 - 5 52	R ROLL RATE GYRO SIG	1 1	1 1	5
-390 - 5 53	R PITCH RATE GYRO SIG	1 1	1 1	5
-395 - 5 54	R YAW RATE GYRO SIG	1 1	1 1	5
-405 - E 50	Q 400 CPS AC PWR SUPPLY	1 1	1 1	5
-410 - E 28	V MSL SYS INPUT VOLT	1 1	1 1	5
-415 - E 51	V 400 CPS AC PHASE A VOLT	1.1	1 1	5
-420 - U7126	V AA COMP 28 VDC INPUT		1 1	5
-425 - U7134	V AA TIME SHARED OSC OUTPUT		1 1	5
-435 - H7507	P SYS HYD ACUM PRESS	1 1	1 1	5
-440 - H7506	P UPR OR HYD ACUM PRESS	1 1	1 1	5
-445 - H7509	P LWR DR HYD ACUM PRESS	1 1	1 1	\$
-450 - H7529	P L/P BRAKE PRESS	1 Y	1 1	5
-455 - N7803	B L/P DRIVE MOTOR SPEED	1 1	1 1	5

26 SEPTEMBER 1962

SECTION 8 GENERAL DYNAMICS ASTRONAUTICS

STF-2 08	BJ COMPOSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	039
-460	- N7908D L/P DISPLACEMENT	1 1 1 1	,
465	- N7804F DRIVE MOTOR TORQUE	11 11	
475	- P1002P B1 FUEL PUMP INLET PRESS	1 1 1 1	5
480	- P1038P BZ FUEL PUMP DISCH PRESS	1 1 1 1	5
485	- P1039P B1 FUEL PUMP DISCH PRESS	1 1 1 1	!
490	- PIOSSP SUS LOX PUMP INLET PRESS	1 1 1 1	5
495	- P1325T ENG COMPT AMP TEMP	1 1 1 1	,
-500	- P1530T SUS LOX PUMP INLET TEMP	1 1 1 1	5
	- P1711T B1 NACELLE AMB TEMP	11 11	5
-505	- P1712T B2 NACELLE AMB TEMP	1 1 1 1	9
510	THE SOURLIST DECET	1 1 1 1	:
525	- U7125X AA COMPUTER RESET	1 1 1 1	•
-530	THE THE PART OF SEEDBACK	1 1 1 1	•
-535 -540	- U 135V AA SENSOR SIG	1 1 1 1	!
000 02	25 CONTAMINATION BUILD-UP		
000 02	26 MATHEMATICAL MODEL	111 111111 1111 111111 1 11111	
000 0	ZB CRIB AND LCC DROP TESTS		

000 031- - 24 HOUR HOLD LIMITATIONS

000 029- - VENT VALVE OPERATION

222222 2222 22222 22222 000 032- - COMPLEX SOFT TIME

111 111111 1111 111111 1 11111 000 033- - WEAPON SYSTEM SAFETY

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

20 021 12.112.21 20 02	123 123456 1234 123456 1 12345	040
OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-0653	123 123490 1234 123430 1 1000	
000 034 FLIGHT PERFORMANCE	1 1	2
-036 - A1217P HT SHIELD DP QUAD 2	1	5
-037 - A1218P HT SHIELD OP Y-Y AXIS	1	5
-038 - A1219P HT SHIELD DP QUAD 1	1	5
-039 - A1220P HT SHIELD OF GUAD 3	1 1	5
-040 - A1585P HT SHIELD INSIDE PRESS 1	1	5
-042 - A1586P HT SHIELD INSIDE PRESS 2	1	5
-043 - All94T HT SHIELD TEMP FWD Q4	1 1	5
-044 - A1195T HT SHIELD TEMP FWD Q2	1 1	5
-045 - A1780Y ARMA POD ACOUSTIC	1 1	5
-046 - F1145P SUS CTL HE BTL OUT PRESS	1 1	5
-047 - F1247T B TK HE BTL TEMP	1	5
-050 - F1290T SUS CTL HE BTL TEMP	1 1	5 .
-052 - N1870" TWU NOISE 1	1 1	5
-055 - P15290 SUS MAIN LOX VLV POS	1	5
-060 - P1830D SUS FUEL VLV POS	1	5
-065 - P12060 SUS ENG LOX DOME	1 1	•
-070 - P12080 51 ENG LOX DOME	1 1	9
-079 - P12090 B2 ENG LOX DOME	1	9
-080 - P1002P B1 FUEL PUMP INLET PRESS	1 1	,
-085 - P1006P SUS THE CHAMBER PRESS	1 1	,
-040 - P1038P B2 FUEL PUNP CISCH PRESS	1 1	,
-045 - P1034P B1 FUEL PUMP DISCH PRESS	1 1	,
-100 - PloseP SUS LOX PUMP INLET PRESS	1 1	,
-105 - P1059P BZ THR CHAMRER PRESS	1 1	,
-110 - PIOSON BI THE CHAMBER PRESS	1 1	,
-119 - PlogiP SI LOX INJ MANIFOLD PRESS	1 1	,
-120 - PIOPEP BE LOX INJ MANIFOLD PRESS	1 1	,
-125 - P1155P B1 GAS GEN COMBUSTOR PRESS	1 1	,
-130 - PILEAP RZ GAS GEN COMMUSTOR PRESS	1 1	,
-131 - P1200P ENG COMPT AMR PRESS	1	,
-132 - P1337P SGG LOX INJ MANIFOLD SRESS		,
-134 - P1351P S LOR INJ MANIFOLD PRESS	, ,	,
-13 PleasP & GO FUEL INJ MAN PRESS	, ,	·
-149 - PISTST ENG COMPT AMB TEMP	i i	,
-190 - P1990T SUB LOR PUMP INLET TEMP	1 1	•

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	-2 08J CO	4POSITE 26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	C 41
-155	_	PITIIT 81 NACELLE AMB TEMP	1 1	5
-160	-	P1712 B2 NACELLE AMB TEMP	1 1	5
-165	-	P1051Y ENG COMPT ACOUSTIC	1 1	5
-215	-	M7604M FWO LIFT-OFF CAMERA	1 1	5
-216	-	M7605N AFT LIFT-OFF CAMERA	1	5
-225	-	N7984X MISSILE AWAY	1 1	5
-230	-	N7985X MISSILE ON STAND	1 1	5
-235	-	L7601P HT SHIELD CUTSIDE PRESS 1	1	5
-240	-	L7602P HT SHIELD OUTSIDE PRESS 2	1	•
-245	-	L7013P FLAME DEFLECT AMB PRESS 1	1	5
-250	-	L7014P FLAME DEFLECT AMB PRESS 2	1	•
-255	-	L7015P FLAME DEFLECT AMB PRESS 3	1	5
-260	-	L7016P FLAME DEFLECT AMB PRESS 4	1	5
)0 0	035-01-	EQUIPMENT USABILITY	222222 22222 2 2222	2
100				
		TECH DATA USABILITY 6 SUITABILITY	22272 2 22272 22272 22272 2 2227	2
700	935-03-	JOB ENVIRCHMENT	222222 22222 2 22227	2
000	035-04-	CUSTOMER PERSONNEL REQUIREMENTS	22222 2 22222	2
200	035-05-	TRAINING	222722 22222 2 22722	*
200	035-06-	OPRNAL CIL BY CUSTOMER PERSONNEL	22222 2 22222	\$
nna	036	SAC INTEGRATION	?????? 2 ?????? 1 /????	,
000	037-01-	THRUST SECT ENVERONMENT	1 1	2
-015	-	A1217P HT SHIELD OF GUAD 2	1	•
-020	•	ALZIER HT SHIELD DR Y-Y ARIS	i.	•
-075	-	ALZIAM HE SHEELD OF GUAD 1	1 1	•
-010	-	ALZZOP HT SHIELD OF QUAD 3	1 1	•
-011	•	ALSESP HT SHIELD INSIDE PRESS 1	1 1	•

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

ostf-	2 083 COM	POSITE 2	6 SEP 62	AE60-0653	123 123456	1234 1	23456 1	1 12345	042
-032	•	A1584P	HT SHIELD	INSIDE PRESS 2		1	1		
-035	•	A1194T	HT SHIELD	TEMP FWD Q4		1	1		5
-040	-	A1195T	HT SHIELD	TEMP FWD Q2		1	1		5
-045	-	P1200P	ENG COMPT	AMB PRESS		1			5
-050	-	P1325T	ENG COMPT	AMB TEMP		1	1		5
-055	-	P1711T	B1 NACELLE	AMB TEMP		1	1		5
-060	-	P1712T	BZ MACELLE	E AMB TEMP		1	1		5
-045	-	P1091Y	ENG COMPT	ACOUSTIC		1	1		5
-071	•	A 743T	AMB # SUS	INSTR PANEL			1		5
-075	-	A 778T	ENG COMPT	AND TEMP		1	1		•
-095	-	M 185X	STAGING CA	IMERA BKW		1			5
-096	-	H 189X	RCP 1 PLUC	DISCON			1		5
-105	•	M7604N	FWD LIFTOF	FF CAMERA		1	1		5
-106	-	M7605N	AFT LIFTOF	FF CAMERA			1		5
-110	-	M 605N	STAGING RO	CP Q4		1	1		•
-120	-	L7601P	HT SHIELD	OUTSIDE PRESS 1			1		5
-125	-	L7602P	HT SHIELD	OUTSIDE PRESS 2			1		5
									_
000	037-02-	GUIDANC	E POD ACOUS	571CS.		1	1		2
-015	•	A1760Y	ARMA POD	ACOUSTIC		1	1		,
									2
000	037-03-	PROP SY				1	1		,
-012	•		S MAIN LO			•			•
-013	•	P18300	SUS FUEL Y			1	1		•
-013	•	P12060	5US ENG LO			,	1		,
-010	•	P12000	41 EM6 LO			1	•		,
-019	•	P12090	85 EMB FO:			•	1		,
-010	-	P1002P		UMP INLET PRESS		1	•		,
-035	•	P1004P		HAMBER PRESS		•	1		•
-040	•	P1018P	-	UMP DISCH PRESS		1	•		3
-045	-	518845 518340		UMP INLET PRESS		1	1		3
-050	-		·	AMBER PRESS		i	1		3
-000	-			AMBER PRESS		i	1	•	•
-065				J MANIFOLD PRESS		1	1	•	•
-070				J MANIFOLD PRESS		1	1		•
7.4									

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

05TF-2 08J	J COMPOSITE 26 SEP 62 AE60-0653 123 123456 1234 123456 1 12345	043
-075	- P1155P B1 GAS GEN COMPUSTOR PRESS 1 1	5
-080	- P1184P 32 GAS GEN COMBUSTOR PRESS 1 1	5
-085	- P1337P S GG LOX INU MANIFOLD PRESS 1 1	5
-090	- P1351P S LOX INJ MANIFOLD PRESS 1 1	5
-092	- P1463P S GG FUEL INJ MAN PRESS 1	5
-095	- P1530T SUS LOX PUMP INLET TEMP 1 1	5
-105	- D 160% MANUAL FUEL CUTOFF 1 1	5
-110	- D 161X AUTOMATIC FUEL CUTOFF 1 1	5
-115	- F 1450 S CTL HE BTL DISCH PRESS 1 1	5
-120	- F 246P B TK HE BTL HI PRESS 1 1	5
-125	- H 185P S HYD PUMP INLET 1 1	5
-130	- P 918 82 PUMP SPEED 1 1	5
-135	- P 848 P1 PUMP SPEED 1 1	5
-140	- P 3498 S PUMP SPEED 1 1	5
-145	- P 529D S MAIN LOX VALVE POS	5
-150	- P 810D SUS FUEL VLV POS	5
-155	- P 10 B1 LOX PUMP INLET PRESS 1	5
-160	- P 3P B2 LUX PUMP INLET PRESS 1 1	5
-163	- P 60 S THRUST CHAMBER PRESS 1 1	5
-170	- P 270 VERNIER FUEL TX PRESS	5
-175	- P 28P V1 THRUST CHAMBER PRESS 1 1	5
-140	- P 29P V2 THRUST CHAMBER PRESS 1 1	5
-185	- P 30P VERNIER LOX TK PRESS	5
-170	- P 38P B2 FUEL PUMP DISCH PRESS 1 1	5
-175	- P 39P B1 FUEL PUMP DISCH PRESS 1 1	5
-200	- P 56P 5 LOX PUMP INLET PRESS 1 1	5
-205	- P 59P B2 THRUST CHAMBER PRESS 1 1	5
-210	- P 60P 01 THRUST CHAMBER PRESS 1 1	5
-215	- P 3300 S FUEL PUMP DISCH PRESS 1 1	5
-220	- P 197P 5 GG LCX INJ MAN PRESS	5
-129	- P 151P S LOX INJ MAN PRESS 1	9
2 30	- P 463P 5 GG FUEL INJ MAN PRESS 1	5
-219	- P 474P VERNIER CTL PRESS REG OUT 1 1	,
-240	- P TO9T 5 GG COMBUSTOR TEMP 1 1	•
-744	- P 713T B1 GAS GEN COMBUSTOR TEMP 1 1	•
-250	- P 714T B2 GAS GEN COMBUSTOR TEMP	5

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF-2	. 081 COM	POSITE 2	6 SEP 62 AE60-0553	123 123456 1234 123	456 1 12345	0 4 4
-255		5 241X	SUS CUTOFF DISCRETE		1	5
-260	-	S 373X	BOOSTER CUTOFF		1	5
-265	-	S 376X	VERNIER CUTOFF		1	5
-270	_	U 101A	AXIAL ACCELN-STA 910	1	1	5
-275		u sor	LOX TANK HEAD PRESS	1	1	5
-280		U 81P	FUEL TANK HEAD PRESS	1	1	5
-286	-	M7604H	FWD LIFTOFF CAMERA	1	1	5
-287	-	M7605N	AFT LIFTOFF CAMERA		1	5
000	037-04-	SHUTOFF	VALVE EFFECT	1	1	2
-015	-	M 606N	STAGING RCP Q4	1	1	5
-0z0	-	H 185X	STAGING CAMERA BKW	1		5
-021	_	H 189X	RCP 1 PLUG DISCON		1	5
000	037-05-	THRUST	SECTION CONDITIONS.	1	1	2
-012	•	A 743T	AMB P SUS INSTR PANEL		1	5
-015	-	A 778T	ENG COMPT AMB TEMP	1	1	5
-030	•	H 32X	COMAX VALVE COMMAND	1	1	5
-035	-	M 185X	STAGING CAMERA BKW	1		5
-036	-	M 189X	RCP 1 PLUG DISCON		1	5
-040	-	U 101A	AXIAL ACCELN-STA 910	1	1	5
-050	-	M 606N	STAGING RCP Q4	1	1	5
						•
000	038-01-	RANGE	TRAJECTORY & CEP	1	1	2
						2
000	038-02-		HE ADEQUACY	1	1	•
-012	-		AMB . SUS INSTR PANEL		1	,
-015	-	A 778T	ENG COMP AND TEMP	1	1	,
-020	-	F 1P	LON TANK HE PRESS	1	1	
-025	-	F 3P	FUEL TANK HE PRESS	1	1	3
-035	•	M 185X		1		3
-036	•		RCP 1 PLUG DISCON		1	,
-040	•		AXIAL ACCELN-STA 910	1	1	,
-050	-		GUID POD ACOUSTIC	1	1	
-060	-	M 606N	STAGING RCP Q4	1	1	•

...

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	OBJ COM	MPOSITE	26 SEP 62	AE60-0653	123 123456 1234	123456	1 12345	045
200	U38-03-	ELEC S'	YS PERF		1	1		2
-015	-	E 500	400 CPS AC	PWR SUPPLY	1	1		5
-020	-	£ 51V	400 CPS AC	PHASE A VOLT	1	1		5
-025	-	E 28V	MSL SYS IN	PUT VOLT	1	1		5
٥0 ٥	038-04-	FLIGHT	CTL SYS PER	F :	1	1		2
-015	-	S 61D	ROLL DISPL	GYRO SIG	1	1		5
-020	-	5 620	PITCH DISP	L GYRO SIG	1	1		5
-025	-	S 63D	YAW DISPL	GYRO SIG	1	1		5
-030	-	S 203D	B1 PITCH/R	OLL POS	1	1		5
-035	-	5 204D	B2 PITCH/R	OLL POS	1	1		5
-040	-	S 2050	81 YAW POS	1	1	1		5
-045	-	S 206D	B2 YAW POS	1	1	1		5
-050	-	S 222D	V1 PITCH PO	os	1	1		5
-055	-	5 2230	V2 PITCH PO	05	1	1		5
-060	-	5 2330	V1 YAW/ROLL	POS.	1	1		5
-065	-	S 234D	/2 YAW/ROLI	L POS	1	1		5
~070	-	S 2560	SUS YAN POS	s	1	1		5
-075	• -	\$ 2570	SUS PITCH	Pos	1	1		5
-080	-	S 52R	ROLL RATE	SYRO SIG	1	1		5
-385	-	S 53R	PITCH RATE	GYRO SIG	1	1		5
-090	-	S 54R	YAW RATE GY	TRO SIG	1	1		5
-091	-	S 241X	SUS CUTOFF	DISCRETE		1		5
-092	-	5 248X	A/P PROGRAM	MER SW 17		1		5
-093	-	5 373X	BOOSTER CUT	OFF		1		5
-094	-	5 376X	VERNIER CUT	OFF		1		5
-095	-	S 379X	FIRE RETROR	OCKETS		1		5
-096	-	M 32X	CONAX VALVE	COMMAND	1	1		5
-100	-	I 570x	STAGING SIG	•	1	1		5
-105	-	1 522X	SUS ENG CUT	OFF SIG	1	1		5
-110	-	1 521X	VERNIER ENG	CUTOFF SIG	1	1		5
-115	-	1 527X	PRE-ARM REL	AY CLŠD	1	1		5
-120	-	I 528V	YAW STEERIN	G SIG	1	1		5
-125	-		PITCH RESOL		1	1		9
-130	-	1 580V	AZM RESOLVE	R SIG	1	1		•

SECTION 8

DSTF-	-2 OBJ CO	MPOSITE :	26 SEP 62 AE60-0653	123 123456 1234 1	23456 1 12345	. 46
200	U38-05-	GUIDANO	E SYS PERF	1	1	2
-615	•	1 5520	REDNOT GYRO PICKOFF	1	1	5
-020	-	I 505H	COMPUTER POS X	1	1	4
-025	-	1 506H	COMPUTER POS Y	1	1	5
-030	-	1 507H	COMPUTER POS Z	1	1	:
-035	-	1 508H	RANGE ERROR FUNCTION	1	1	5
-040	-	1 509H	AZM ERROR FUNCTION	1	1	5
-045	-	I 502L	COMPUTER VEL X	1	1	5
-350	-	1 503L	COMPUTER VEL Y	1	1	5
-055	-	1 5044	COMPUTER VEL Z	1	1	>
-060	-	1 528V	YAW STEERING SIG	1	1	Ĺ
-065	-	1 5297	ROLL RESOLVER SIG	1	1	٤,
-070	-	1 530V	PITCH RESOLVER SIG	1	1	'5
-075	-	I 580V	AZM RESOLVER SIG	1	1	5
-080	-	1 510W	ELAPSED TIME	1	1	,
-065	-	1 551W	TIME T	1	1	,
-090	-	1 521X	VERNIER ENG CUTOFF SIG	1	1	•
-095	•	1 522X	SUS ENG CUTOFF SIG	1	1	•
-100	-	I 527X	PRE-ARM RELAY CLSD	1	1	•
-105	-	1 570x	STAGING SIG	1	1	4
-115	-	A1780Y	GUID POD ACOUSTIC	1	1	`
					•	
200	338-06-	HY0 545	PERF	1	1	,
-015	-	H 33P	81 HYD ACCUM PRESS	1	1	•
-020	-	H 140P	VERNIER HYD PRESS	1	1	•
-025	-	H 185P	SUS HYD PUMP INLET PRESS	1	1	•
-026	•	H 224P	B HYD SYS LO PRESS		1	•
٥٥ ٥	238-07-	PHEU SY	S PERF	1	1	:
-015	-	F 1P	LOX TANK HE PRESS	1	1	•
-020	•	F 3P	FUEL TANK HE PRESS	1	1	•
-025	-	F 1450	S CTL HE BTL DISCH PRESS	1	1	•
-010	-	F 246P	8 TK HE BTL HI PRESS	1	1	•
-011	-	F 2477	B TK HE BTL PRESS		1	•
-040	-	F12901	S CTL HE BTL TEMP	1	ı	•
-245	-	F1145P	SUS CTL HE BTL DISCH PRESS	1	1	•

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

natre:	r ieu com	POSITE 26	SEP 62	AE60-0653	123 123456 1234	123456	1 12345	047
-050	-	F1247T B	TK HE B	TE TEMP	1			5
00 0	038-08-	PU SYSTEM	PEPF		1	1		2
-012				LOX VLV POS		1		5
-013	-	P 830D S	US FUEL	VLV POS		1		5
-015	-	U 101A A	XIAL ACC	ELN	1	1		5
- 220	-	U 80P L	OK TK HE	EAD PRESS	1	1		5
-025	-	U 81º F	FUEL TK H	HEAD PRESS	1	1	l	5
-030	-	U 113V	A VLV PO	os FB	1	1	ı	5
-035	-	U 135# /			1	1	ı	5
-045	-	P1529D	SUS MAIN	LOX VLV POS	1			5
-050		P18300			1			,
2 00	938-09-	PROPULSI	CN 548 P	ERF	1	1	1	2
ono	r38-10-	1855 6 5	ERSIS PE	R F	1	1	1	2
-215		G 504C				,	1	•
-020		G 582E	111 COM	RATE BON HE OUT			1	•
-025	-	G 594V	111 gom	RATE UCH PH DET			1	,
-015	•	0 1101	MSL DEST	RUCT 516	:	1	1	5
-040	-	D 1608	MANUAL F	UEL CUTOFF 516			1	3
-045	-	- D 161X	AUTO FUE	CUTOFF SIG		1	1	,
							_	,
ပ ဝ	038-11-	- R/V PERF	•			•	1	•
-019	•	- Y 1X	SEPARATI	ON \$19		1	1	,
2 00	030-12	- L/P-FLAM	ie auckel	T -MSL INTERFACE		1	ı	,
-340		- L7601P	HT SHIEL	D 001510E PRESS	1		1	,
-049	ı	- 676029	HT SHIFL	D OUTSIDE PRESS	1		1	•
-050		- 670130	FLAME DE	FLECT AMB PRESS	1		i .	,
-055		- L1014P	FLAME DE	FLECT AMB PRESS	2		1	•
-060	,			CFLECT AND PRESS			1	,
-049	•	- L7016P	FLWE DE	CPLECT AND PRESS	•		1	•

DOD DAD-DI- COMPRESSOR PERFORMANCE

SECTION 8

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

OSTF-	-2 08J CO	POSITE 26 SEP 62	AE60-0653	123 123456	1234	123456 1	12345	048
000	040-02-	INSTRUMENT AIR SUPP	LY		1			2
000	040-03-	SILO OVERPRESSURE			1	1		2
-015	-	N7230P CRIB AMB PR	ESS 1		1	1		5
-020	-	N7231P CRIS A A PR	ESS 2		1	1		5
-025	-	N7232P CRIB AMB PR	ESS 3		1	1		5
-030	-	N7233P CRIB AMB PR	ESS 4		1	1		5
-035	-	N7234P CRIB AMB PR	ES\$ 5		1	1		5
-040	-	N7235P CRIB AMB PR	ESS 6		1	1		5
၁၀ ၀	041-00-	HOUSEKEEPING & CORRE	DSION			22222	22222	2
000	042-00-	SACS MAMS CHECKOUT				2	2	2
000	099-00-	OPERATIONAL MEASURE	1ENTS					2
-020	_	F7001P LOX TANK PRE	SSURE 1	11 11111	111	1 111	1 11	5
-025	-	F7003P FUEL TANK PE	RESSURE 1	11 11111	111	1 111	1 11	5
-030	-	F7005P FUIL TK PRES	S DUCT # PCU 1	11 11111	111	1 111	1 11	5
-035	-	F7012P LOX TK PRESS	DUCT + PCU 1	11 11111	111	1 111	1 11	5
-040	-	H7507P SYS HYD ACUR	PRESS		111	1 111	1 11	5
-645	•	H7529P L/P BRAKE PE	ESS		111	1 111	1 11	5
-050	•	N78038 L/P DRIVE HO	TOR SPEED		111	1 111	1 11	5
-055	•	N7908D L/P DESPLACE	MENT		111	1 111	1 11	5
-040	•	N7804F DRIVE MOTOR	TORQUE		111	1 111	1 11	5
-065	-	N7747N TV CAMERA 1				1 111	1 11	5
-044	•	N7748N TV CAMERA 2				1 111	1 11	5
-047	•	N7749N TV CAMERA 3				1 111	1 11	5
-066	-	N7750N TV CAMERA &				1 111	1 11	5
-069	-	N7751N IV CAMERA 5				1 111	1 11	5
-070	•	N7752N TV CAMERA &				1 111	1 11	5
-071	-	N7793N TV CAMERA 7				1 111	1 11	5
-080	•	P7549P LOX STOR TK	ULLAGE PRESS	11111	111	1 111	1 11	5
-005	•	PTS64P LOX STOR TK-	MSL DP	11111	111	1 111	1 11	5

-

SECTION 8

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF-2 OBJ COMPOSITE 26 SEP 62 AE60-3553

123 123456 1234 123456 1 12345

-090 - P7709P LOX TOP TK ULLAGE PRESS 11111 111 1 111 1 11

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 26 SEPTEMBER 1962

This page intentionally left blank.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TILL 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIP!*TED BY LAW

CONFIDENTIAL

1 2 1 2 3 1 2

GENERAL DYNAMICS ASTRONAUTICS

SECTION 9 OBJECTIVE/INSTRUMENTATION COMPOSITE - OSTF *2

TEST SERIES -

		•								
	his is a concise des I the test objective.		TEST BLOCK 1 COUNTDOWN 1234	2 1234	3 1234	1 2	1	2	3	1
R	O ESTABLISH WEA EACTION TIME DU EADINESS CONDIT	RING FIRST	OBJECTIVE EFFECTIVITY		xxxx	хх	x	x	x	
D	ATA REQUIREMEN	TTS:								
1.	ESTABLISH NOF PERFORM AN O COUNTDOWN.									
2.	ESTABLISH NOF FOR A SUBSYST ACT WITHIN TH	EM TO RE-								
N	ON-METRIC DATA									
	NOT REQUIRED		•							
М	ETRIC DATA				1111	11	1	1	1	
N7051X	COM. STA. 1	ON-OFF			1111	11	1	1	1	
N7052X	COM. STA. 2	ON-OFF								
ME ASURI	EMENT NUMBER									
	MEASUREMENT	DESCRIPTION		MEASURI	MENT	PRIC	RIT	<u>r</u>		
	nis is a brief, usual ription of the meas			e number tivity and					nt	

NOTE: For a more detailed explanation of this format and a key to the abbreviations and coding see the Appendix of this report.

OBJECTIVE

BLANK PAGE

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF 2 REC ASSIGNMNT 26 SEP 62 AE60-0653 123 123456 1234 123456 1 12345

001

- NOTE: /1/ 7000 SERIES MEAS. NUMBERS INDICATE LANDLINE MEASUREMENTS.
- /2/ 1000 SERIES MEAS NUMBERS INDICATE TRAILING WIRE MEASUREMENTS.
- THE FOLLOWING SYMBOLS INDICATE THE CODE USED IN PREPARING THIS
- RECORDER ASSIGNMENT.
- B-DIGITAL RECORDER
- D-SANBORN RECORDER
- F-FM TAPE RECORDER
- L-CAMERA
- N-DYNAMICS LAS RECORDER
- O-OSCILLOGRAPH RECORDER
- P-PORTABLE RECORDER
- R-EA SEQUENCE RECORDER
- S-BROWN OR STRIP RECORDER
- 1-SILO RECORDER
- V-VISUAL PANEL GAGE
- A7941A ACCELN MSL X AXIS A7941A ACCELN MSL X AXIS 001-09
- A7542A ACCELN MSL Y AXIS 001-09
- A78280 MSL NOSE X AXIS DISPL 001-09 A78280 MSL NOSE X AXIS DISPL
- ATBZ9D MSL NOSE Y AXIS DISPL
- A1217P HT SHIELD DP AD 2 A1217P HT SHIELD DP QUAD 2 A1217P HT SHIELD DP QUAD 2 A1217P HT SHIELD DP QUAD 2 034-00

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

	V	L SEP 62 AE60-0653		
	A1218P	HT SHIFLD OP YAY AXIS	2	E
	A1218P	HT SHIELD OF Y-Y AXIS	Б 1	
334-00	A1218P	HT SHIELD OP Y-Y AXIS	i	
037-01	A1218P	HT SHIELD OF Y-Y AXIS	·	
	A1219P	HT SHIELD OF QUAD 1	f f	E
	A1219P	HT SHIELD OF QUAD 1	8 8 1 1	
234-00	A1219P	HT SHIELD DP QUAD 1 HT SHIELD DP QUAD 1	1 1	
037-01	A			£.
	A1220P	HT SHIELD OF QUAD 3	r r	•
	A1220P	HT SHIELD DP QUAD 3	i i	
034-00 037-01	A1220P	HT SHIELD OF QUAD 3 HT SHIELD OF QUAD 3	ĭ 1	
•••				ŧ
	A1585P	HT SHIELD INSIDE PRESS 1		•
034-00	A1585P	HT SHIELD INSIDE PRESS 1 HT SHIELD INSIDE PRESS 1	i i	
037-01	MIJOJA	, January Constant		_
	A1584P	HT SHIELD INSIDE PRESS 2	* *	£
034-00	A 1 5 8 6 P	MT SHIELD INSIDE PRESS 4	1 1	
037-01	A1586P	HT SHIELD INSIDE PRESS 2	•	
		HT SHIELD TEMP FWD Q4	, ,	C
	ALLPAT	HT SHIELD TEMP FWD Q4	1 1	
034-00 037-01	A1194T	HT SHIELD TEMP FWD Q4	1 1	
			• •	E
	A1195T	HT SHIELD TEMP PWD Q2 HT SHIELD TEMP PWD Q2	i i	
_		HT SHIELD TEMP FWD 92	1 1	
034-00 037-01	A11951	HT SHIELD TEMP FWD 92	1 1	
			**	C
003-01	A7901T	ROT INV SKIN ROTARY INV SKIN TEMP	11	
443-41	~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			c
	A7902T	ARMA PLAT SKIN FWD	888 888688 222 22211	•
203-12		ARMA PLAT SKIN TEMP PWO ARMA PLAT SKIN TEMP PWO	22	
003-24 009-01	A7902T	ARNA PLAT SKIN TEMP PWO	2	
				ŧ
	A7903T	ARMA PLAY SKIN AFT	588 856668 222 22222	
003-12	ATTGST	ARMA PLAT SKIN TEMP AFT ARMA PLAT SKIN TEMP AFT	12	
003-24	A7903T	ARMA PLAT SKIN TEMP AFT	1	
				•
	A7904T	ARMA CONTROL SKIN	311 15551 311 15551	•
993-12	A7904T	ARMA CONTROL SKIN TEMP ARMA CONTROL SKIN TEMP	11	
003-24	A79041	ARMA CONTROL SKIN TEMP	3	
740 -4.	A			•
	A7905T	TEM AMER SKIN	••	•
003-01	A7905T	TLM XMTR SKIN TEMP	11	
		BOOLEM THU AME ATE	10	t.
003-01	A79061	ROTARY INV AMB AIR ROTARY INV AMB AIR TEMP	11	
203-41				
				•

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF Z REC AS	SIGNMNT (26 SEP 62 AE60-0653	123	123456	1234	123456 1	12345	003
003-01 005-01	A79077 TTC87A	ARMA PLAT AMB AIR TEMP ARMA PLAT AMB AIR TEMP	11	2				
003-01	A79081 A79081	ARMA COMT AMB AIR ARMA COMPT AMB AIR TEMP	98 11					E
003-01	A7909T A7909T	TLM XMTR AMB AIR TLM XMTR AMB AIR TEMP	88 11					E
003-01	A79117 A79117	B2 POD INLET AIR B2 POD INLET AIR TEMP	88 11					E
	A79127	AIG POD INNER SKIN AIG POD INNER SKIN TEMP		63866B 22222				E
003-12	A7912T	AIG POD THNER SKIN TEMP	***	22				
003-24	A7912T	AIG POD INNER SKIN TEMP		2				
005-01	A17141	ALG FOR LINEA SKIN TEMP		•				
	A1780Y	ARMA POD ACOUSTIC			Ņ	M		
034-00	A1780Y	ARMA POD ACOUSTIC			1	1		
037-02	41780Y	ARMA POD ACOUSTIC			1	1		
038-02	A1780Y	GUID POD ACOUSTIC			i	i		
038-05	A1780Y	GUID POD ACOUSTIC			•	•		
								_
	E7003V	28 VDC-GND VOLTAGE						ŧ
001-14	E7003V	28 VOC GNO VOLTAGE						
	F7001P	LOX TANA PRESSURE	555	55555	555	\$ 555	\$ 55	٤
	F7001P	LOX TAME PRESSURE	888	66856	858	8 888	F 86	
		LAW TANK SHEETINE	1					
001-03	#7001P	LOX TANK PRESSURE LOX TANK PRESSURE	111		111	1 111	1 11	
003-02	F7001P	LOX TANK PRESSURE	iii		•	•		
003-04	F7001F	LOX TANK PRESSURE	-					
007-01	F7001P	LOX TANK PRESSURE			111	1 111	1 11	
007-05	F7001P	LOX TANK PRESSURE		111	111	1 111	1 11	
007-06	#7001P	LOX TANK PRESSURE		11	111	i iii	1 11	
010-01	#7001# #7001#	LOX TANK PRESSURE LOX TANK PRESSURE		11111	iii	i iii	1 11	
010-04	#7001F	LOX TANK PRESSURE		11111	111	1 111	1 11	
010-04	F7001P	LOX TANK PRESSURE		11111				
010-07	F7001P	LOX TANK PRESS		11111			1 1	
024-	F7001P	LOX TANK PRESSURE				1 1 1 1 1 1	1 11	
099-00	F7001P	LOX TANK PRESSURE	111	11111	• • • •		• ••	
								_
	#7003#	FUEL TANK PRESSURE	155		\$55	5 555	3 33	E
	#7003P	FUEL TANK PRESSURE	886		865	6 556	8 83 1 11	
003-02	#7003P	FUEL TANK PRESSURF FUEL TANK PRESSURF	111		111	1 111		
003-03	F7003P	PUEL TANK PRESSURE	•••					
007-01	#7003P	FUEL TANK PRESSURE				1 111	1 11	
007-05	#7003P	FUEL TANK PRESSURE		111		1 111	1 11	
007-06		FUTL TANK PRESSURE		11	111	1 111	1 11	
011-01	F7003F							
011-02	#7001P	FISEL TANK PRESSURE						
011-04	# 700 JP	FULL TANK PRESSURE						
024-		PUEL TANK PRESSURE				1 1	1 1	
099-00		FUEL TANK PRESSURE	111	11111	111	1 111	1 11	
		FUL TE PRES DUCT POU	***	11111	155	5 555	5 55	ŧ
	#7005P			08068	848	6 460	₩ U#	-
003-02	#7005P		111		111	1 111	1 11	
• • • • •	-							

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

REC ASS	SEGNMNT 2	6 SEP 62 AE60-0653	123	123456	1234	123456 1	12345	01
024-	F7005P F7005P	FUEL TK PRESS DUCT # PCU FUEL TK PRESS DUCT # PCU	111	11111	111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 11	
003-02		FUL TK PRES DUCT ROD FUEL TK PRESS DUCT # R-0-D	FFF 111					
		A PART DUCT DOLL	***		• • •	5 555	5 55	
	F7012P	LOX TR PRES DUCT PCU LOX TR PRES DUCT PCU	rrr	8888	888	888	5 88	
003-02	F7012P	LOX TK PRESS DUCT @ PCU	111		111	1 111	1 11 1 1	
024- 099-00		LOX TK PRESE DUCT # PCU LOX TK PRESE DUCT # PCU	111	11111	111	i in		

003-02		LOX TK PRES DUCT ROD LOX TK PRESS DUCT # R-0-0						
	#7020P	LN2 P • ROD	***					
003-09		LNZ PRESS # R-O-D	111					
	F1145P	S CTL HE BTL DISCH PRESS			\$55	5 555	s s	
	F1145P	S CTL HE BTL DISCH PRESS				1 111	7 8	
	F1145P	S CTL HE BTL DISCH PRESS			***	iii	1 1	
024-	#1145P	S CTL HE BTL DISCH PRESS SUS CTL HE BTL OUT PRESS			1			
038-07	F1345P	SUS CTL HE BTL DISCH PRESS			1	1		
aa 3-a +		B TANK HE BOTTLES HI B TK HE BTL H! PRESS	5 35 111					
		FUEL LVL TK ULLAGE PRESS						
011-05	F7567P	FUEL LVL TK ULLAGE PRESS						
003-09		A/B LNZ SHROUD A/B LNZ SHROUD PRESS	777 111					
003-07	711137	7,0 6/16 3/1/1000	-					
		GNO HT KOR HE IN	***					
003-09	P7716P	GND HT XCHGR HE IN PRESS	111					
		GNO HT XGR HE OUT	***					
003-04		GNO HT XCHGR HE OUT PRESS GNO HT XCHGR HE OUT PRESS						
		LN2 STOR XFER P	,,,					
003-09		LN2 STOR TK AFER PRESS	111					
	F7723P	HE SUPPLY #1 # POU	111					
003-02	P7723P	HE SUPPLY 1 0 POU	111					
003-03	777239	HE SUPPLY 1 # POU HE SUPPLY 1 # POU	111					
003-04	711230	ME SUPPER I & PINO						
	F1724P		854					
30-600	#7724P		111					
003-03		HE SUPPLY 2 & POU	•••					
	#773 4	GM2 SUPPLY & POU	**1					

SECTION 9

OSTF 2	REC ASS	IGNMNT 26	SEP 62	AE60-0653	123 123456	1234 1	23456 1 12345	005
	003-02	F7727P	REGULATED	INST AIR INST AIR PRESS INST AIR PRESS	FFF 111 111			č
	003-05							
	003-02	£77319	HE SUPPLY	2 e TEST PT E 2 e TEST PT E 2 e TEST PT E		8 F 1		E
			WE 500 10	MSL # HCU				٤
	003-04	#7735P	HE SUP TO	MSL PRESS # HCU				
	011-02	F7911P F7911P	FUEL PRES	N TK DISCH PRESS N TK DISCH PRESS				E
	003-09	F7719R F7719R	STORAGE T	ANK LN2 OUT TK OUT FL/RT	FFF 111			E
		F7017T	FUEL TK P	RES DUCT	FFF			E
	003-02	F7017T	FUEL TK P	PRESS DUCT TEMP	111			
	003-02	F70181 F70181	LOX TK PR	RES DUCT RESS DUCT TEMP	FFF 111			£
		F1247T	8 TK HE 8	TL TEMP		FFF 111		٤
	007-01	F1247T F1247T	B TK HE B	BTL TEMP BTL TEMP		1		
	038-07	F1247T	B TK HE	STL TEMP		1		
		F7248T	HE TEMP	41 4 BTL	CFF			٤
	003-04 003-09	F72481	HE TEMP	HI 4 BTL	111			
		F7249T	HE TEMP	LO 4 8TL	FFF			C
	003-04	F7249T F7249T	HE TEMP !	LO 4 87L LO 4 87L	111			
					***			£
	003-04	F72501	HE TEMP	LO 2 PTL	111			
	003-09	F7250T	HE TEMP	LO 2 81L				_
		F1290T	S CTL HE	BOTTLE TEMP		FFF 588	# FFF 8 808	E
	007-01	F1290T	S CTL HE	BOTTLE TEMP		111	1 111	
	034-00	#1290T	SUS CTL	HE BIL ILMP		1	1	
	038-07	#1290T	S CTL HE	BTL TEMP		•		_
		F77141	GND HT X	GR HE IN CHGR HE IN PRESS	FFF 111			•
	003-09	F77141	GRD HT X	CHUR HE IN THESE	***			
		F7715T	GNO HT X	(GR HE OUT (CHGR HE OUT PRESS	**************************************			•
	003-09	F7715T	UNU MI A		. •			ι
	003-04	F77367 F77367	HE SUP T	TO MSL # HCU TO MSL TEMP # HCU				•
		F77301	FUL TK	HE SENS # HCU				£

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF	2 REC ASS	IGNMNT	26 SEP 62	AE60-0653	123 12	3456 1234	123454	1 12	345	006
	003-04	F77301	FUEL TK HI	E SENS LINE TEMP						
	003-09		HE SUP TO	MSL # ROD MSL TEMP # R-0-0	FFF 111					٤
	001-07		HI DOOR PO UPPER DOOR	OSITION R POSITION			D DOO 1 111			£
	001-07		LO DOOR PO				D DOD 1 111			٤
	024-	H7507P H7507P H7507P	SYSTEMS HY SYS HYD AC SYS HYD AC SYS HYD AC SYS HYD AC	TUM PRESS TUM PRESS TUM PRESS		111	D FFF 1 111 1 111 1 1 1 111	1	FF 11 11 1 1	ŧ
	001-07 024-	H7508P		HYD ACUM HYD ACUM PRESS ACUM PRESS			0 FFF 1 111 1 1			€
	001-07 024-	H7509P	LWR DOOR H	HYD ACUM HYD ACUM PRESS ACUM PRESS			0 FFF 1 111 1 1			٤
	001-0#		HOR CRIB L HORIZ CRIB	K CYL HO LK HO PRESS			F FFF 1 111			ŧ
		H7516P		OCKING OCKING PRESS OCKING PRESSURE			F FFF 1 111			¢
	001-09	H7327P		CK ROD END CYL ROD PRESS CYL ROD PRYSS			, ,,,, 1 111			ŧ
	001-09	H7528P		KM CYL END CYL MO PRESS CYL MO PRESS			r rrr 1 111			C
	701-10 024-	H7529P	L/P BRAKE L/P BRAKE L/P BRAKE	PRESS		111	0 \$55 1 111 1 1 1 111	\$ 1 1	1 1 1	C .
			CRIB LOCKS VERT CRIB I				, ,,,, 1 111			c
			LWR DOOR CY				7 777 1 111			C
	001-09	H7976P H7976P H7976P	LIP LOCK-UN	ILOCKING ILOCKING PRESS ILOCKING PRESS			P PPP 1 111			¢
		H7901P	UPR DOOR CY	L HD END			• •••			•

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC AS	SIGNMNT 2	6 SEP 62	AE60-0653	123 1234	56 1234	123456	1 12343	•	007
001-07	H7981P	UPR DOOR	CYL HD PRESS			1 111			
001-07			CYL HO END CYL HO PRESS			r ppp 1 111			٤
001-07			CYL ROD END CYL ROD PRESS			F FFF 1 111			ξ
001-02	H7181T H7181T	HYD FLUIC HYD FLUIC	S PCH ACTR	1					E
001-02	H7182T H7182T	HYD FLUIC	O S YAW ACTR O SUS YAW ACTR	7					٤
001-02			SYSTEM OIL SYSTEM OIL	1					t
001-02	H7532T H7532T	SUS SYSTI	EM OIL	F					t
301-06	H7190X H7190X	HOR CRIB	LKS RET IB LK 2 NOT EXT	** 11	### 111	R RRR 1 111			
c 01-0 \$	н7191X н7191X	HOR CRIB	LKS EXT IB LK 2 RETR	RR 11	RRR 111	R RRR 1 111	4 AM 1 11		
U01-0#	H7192X H7192X	VER LKS (EXT S LK 2 RETR	RR 11				•	
001-06		VER LKS F VERT CHIE	RET B LK 2 EXT	## 11		R RRR 1 111	A ##		
	H7194X	L/P WLUGI	E LKS PRESS E LK 3 EXT E LK 3 EXT	RR 11		R RRR	A RA		
	H7195X	L/P WEDGE	T LKS RET E LK 3 NOT RETR	RA	RRR	R RR R	9 84	•	
	H7195X	L/P WEDU	E LK 3 NOT RETR	11		1 111	1 1:		
001-10	H71765	L/P MAIN	LK 3 NOT ERT		111	1 111	1 11		
001-09	H7197X	L/P MAIN L/P MAIN L/P MAIN	LK 3 RETR	RR 11		# ### 1 111	A RE		
001-09 001-10	H7198X	WED LES (EXT WEDGE EXT WEDGE		RR 11		# ### 1 111	# RM		
301-0 1	H1144X	WED LES O	CTL VLV OPN	44		4 444	9 88		
301-10			e Las Sig	11	111	1 111	1 11		

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

20 001 10											
OSTF 2 REC	ASSIGNMNT	26 SEP 62	AE60-0653	123	123456	1234	1234	.56 l	1234	• •	008
	H7200X	MAIN LKS		RR		RRR	R f	RRR	a i	₹ ₱	
001-0	9 #72003	EXT MAIN	LKS SIG						1	11	
001-1	0 H7200X	EXT MAIN	LKS SIG	11		111			•	••	
	u72011	MAIN IES	CTL VLV OPN	RR		RRR	R	RRR	R	RR	
201-0	9 47201)	RETR MAIL	wire cia								
001-0		RETR MATE	N LKS SIG	11		111	1	111	1	11	
									_		
	H72023	HOR LKS	CTL VLV CLS	RR		RRR 111	R	RRR	R		
001-0	8 H7202	EXTEND H	CTL VLV CLS ORIZ LKS SIG	11		111		111	•	••	
							R		R	0.0	
	H72031	HOR LKS	CTL VLV OPN	R# 11				111	î		
001-0	8 H7203	RETR HOR	IZ LKS SIG	**		•••	•				
			T. W. W. OB S. M.			RRR	R	RRR	R	RR	
001-0	H7805)	L UPR DR C L OPEN UPR	TL VLV OPEN DOOR SIG	îî		22 111	1	111	1	11	
001-0	., .,,,,,,,										
	w780A		TL VLV OPEN	RR				RRK	R		
001-0	7 H7806	K OPEN LWR	DOOR SIG	11		111	1	111	1	11	
	H7807	E LIP LOCK	ASSY OPEN	RR	R	RRR	R	RRR	R	RR	
001-0	7847	V 1/91K A	SSY /RETRACT/ OPE	N					1	11	
001-1	n H7807	X L/P LK A	ISY /RETHACT/ UPS	N 11	2	111	ş	,	•	••	
005-0	1 H7807	X L/P LOCK	ASSY OPEN		4	•	•	•			
							•	RRR	R	RR	
_	H7809	X VER LK C	TE VEV OPEN	RR 11			ì		1		
001-0)8 H/80Y	X MEIN VER	T LKS SIG								
			*** W.Y. CLOSE	A.R		RRR	R	RRR	R	RR	
201-	H7610	X UPR DR C X CLOSE UP	TL VLV CLOSE R DOOR SIG	îï		111	1	111	1	11	
001-	,, ,,,,,,,										
	H7811	x LWR DR C	TE VEV CLOSE	RR		RRR	R	RRR		RR	
001-0	7 H7811	X CLOSE LW	TE VEV CLOSE IR DOOR SIG	11		111	. 1	111	•	11	
							_			RR	
	H7812	X L/P LOCK	ASSY CLOSE	R.R.	•			RRR			
001-	30 H7812	X L/P LK A	SSY /EXTEND/ CLSC	11		111	. 1	111	1	11	
001-	10 H7812	X LIP LOCK	ASSY CLSD		2	2	2	2			
	H7613	X SOL 1 L	P BE CTL VIV	RR							
001-	10 H7813	X SOL 1 LA	P BE CTL VLV	11							
								RRR		RR	
	H7816	X VER LE	TL VLV CLOSE	RR 11				111		11	
001-	06 H7816	X EXTEND	PERT LES SIG	••			_				
			- ACTURN	RR		RRR		***		RR	
		X PRESS ST	SITCH RETURN	11			1			11	
001-	10 41313										
	17515	A ACCELES	OMETER XFL		*****			FFF	•		£
003-	12 17515	A ACCELERO	DMETER XFL	111	11111	111		111			
003-	36 17519	A ACCELERO	CHETER XFL		'17	2		1	1		
005-		A ACCELER	OMETER XF1		2	•	•	•			
								FFF	F		E
	17516	A ACCELER	OMETER YFL		11111			111	۲		-
001-	12 1751	A ACCELER	OMETER YFI	111	11	•••		i	1		
001-	24 17910	A ACCELER	AMPIEN I		· -						

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

REC ASSI	EGNMNT 26	SEP 62 AE60-0653	123	123456	1234	123456 1	12345	009
005-01	17516A	ACCELEROMETER YF1		2	2	2 2		
				FFFFFF	FFF	F FFF	F	Ε
	17517A	ACCELEROMETER Z61		11111		1 111	_	
003-12	17517A	ACCELEROMETER ZF1 ACCELEROMETER ZF1		11		1 1	1	
003-24 005-01	17517A	ACCELEROMETER ZF1		2	2	2 2	•	
•••								Ε
	17518A	ACCELEROMETER XF2		FFFFF		F FFF 1 111	F	-
003-12	17518A	ACCELEROMETER XF2	111	11111	111	iii	1	
003-24	17518A	ACCELEROMETER XF2 ACCELEROMETER XF2		2	2	2 2		
005-01	17518A	ACCEPTAGE TO THE						_
	*****	ACCELEROMETER YF2	FFF	FFFFF	FFF	F FFF	F	E
003-13	17519A 17519A	ACCELEROMETER YF2		11111	111	1 111	1	
003-12 003-24	17519A	ACCELEROMETER YFZ		.11		1 1 2	1	
05-01	17519A	ACCELEROMETER YF2		2	2	- 4		
							F	5
	17520A	ACCELEROMETER ZF2		FFFFFF	111	1 111		
003-12	17520A	ACCELEROMETER ZFZ	111	11111	111	1 1	1	
003-24	17520A	ACCELEROMETER ZF2		211	2	2 2	-	
005-01	17520A	ACCELEROMETER ZF2		-				
			***	FFFFFF				5
		PITCH GYRO TORQUE PITCH GYRO TORQUE		22222				
003-12	175910	PITCH GYRO TORQUE	-	22				
003-24	175910	PITCH GYRO TORQUE		2				
							D	
	175920	ROLL GYRO TORQUE	000	2 22222	222		U	
003-12	175920	ROLL GYRO TORQUE	244	22		2 2	2	
003-24	17592C 17592C	ROLL GYRO TORQUE ROLL GYRO TORQUE		2	2	2 2		
03-01	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						!
	17593C	YAW GYRO TORQUE		000000			D	
003-12		YAW GYRO TORQUE	222	2 22222	222	2 222	2	
003-24	175930	YAW GYRO TORQUE		22 2	2	2 2 2	•	
005-01	17593C	YAW GYRO TORQUE		2	•	• •		
			200	0 000000	000	D DDD	D	
	175010		11	1 11111				
003-12	17501D 17501D		**	11		1 1	1	
003-24	175010			2	2	2 2		
	175110	ROLL PENDULUM		0 000000			D	
003-12	175110	ROLL PENDULUM	11	1 111111	111	1 111	1	
003-24	175110	ROLL PENDULUM		211	2	2 2	-	
005-01	175110	ROLL PENDULUM		•	-			
		STACE BENDERING	ממ	0 00000	000	0 000	D	
	175120	PITCH PENDULUM PITCH PENDULUM		1 1111		1 1111		
003-12	175120	PITCH PENDULUM		11		1 1	1	
005-01		PITCH PENDULUM		2	2	2 2		
							D	
	175490	PITCH SERVO ERROR	DC	00000	2 22	0 DOD 2 2 222		
003-12		PITCH SERVO ERROR	22	22		2 2	2	
003-24	1 /5490	PITCH SERVO ERROR						
			61	re FEFF	F FF	F F FFF	F	
		O ROLL SERVO ERROR O ROLL SERVO ERROR	22	22 2222	2 22	2 2 222		
003-12	, , , , , , ,	- NACE AND A PROPERTY OF						

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC A	SSIGNMNT	26 SEP 62 AE60-0653	12	3 123454	1234	123456	1 12345	010
003-24	175500	ROLL SERVO ERROR		22		2 2	2	
003-12	17551D 175510		FF(F	ε
003-24		AZIMUTH SERVO ERROR	22.	22	***	2 2	2	
	17552D 17552D		DD0			D 000 F FFF	D F	
003-12 003-24	175520 175520		111	11111	111	1 111	1	
003-12	175720 175720	ROLL MEMORY ROLL MEMORY	0D0			D DDD	D	٤
003-24	175720		•••	ii	•••	i i	1	
003-12	17573D 17573D		111	11111		0 000 1 111	0	£
003-24	175730	PITCH MEMORY		11		1 1	1	
003-12 003-24	17574D 17574D	AZIMUTH MEMORY AZIMUTH MEMORY AZIMUTH MEMORY	111		111	0 000 1 111 1 1	D 1	ξ
005-24								
003-12 003-24	17576D 17576D 17576D		222		333 000	D DDD 2 222 2 2	2	ŧ
	17505H	COMPUTER POSITION X	FFF	FFFFF	FFFF	<i>**</i> ***	**	
003-12 003-24		COMPUTER POSITION X	111	11		1 111	. 1	
004-04		COMPUTER POSITION X COMPUTER POSITION X		1 2	1,2	1 2 2	ì	
003-12	17506H 17506H	COMPUTER POSITION Y COMPUTER POSITION Y	FFF 111	PPPPPP 11111	FFFF 111	FF FFF	**	
003-24	17506H	COMPUTER POSITION Y COMPUTER POBITION Y		11	1	1 1	1	
005-01	17506H	COMPUTER POSITION Y		2	2	1 1		
003-12	17507H 17507H	COMPUTER POSITION 2 COMPUTER POSITION 2		11111		** *** 1 111	**	
003-24	17507H	COMPUTER POSITION 2 COMPUTER POSITION 2		111		iii	1	
005-01		COMPUTER POSITION 2		i	72	2 2	•	
003-12		RANGE ERROR FUNCTION DOWN RANGE ERROR FUNCTION		11111		1 111	**	
003-24 004-04 003-01	17508H 17508H 17508H	DOWN RANGE ERROR FUNCTION RANGE ERROR FUNCTION DOWN RANGE ERROR FUNCTION		11 2	1 2	1 1	i i	
		AZM ERROR FUNCTION	,,,	,,,,,,			,,	
003-12	17509H	CROSS RANGE ERROR FUNCTION CROSS RANGE ERROR FUNCTION		11111		1 111		
004-04	17509H				1, 1	1 1	1	
	17502L	COMPUTER VELOCITY X	***	,,,,,,	,,,,		**	

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC ASSI	GNMNT 26 SEP 62 AE	60-0653 123 1	25456 1234 123456 1	12345 011
003-12 003-24 004-04 005-01	17502L COMPUTER VELO 17502L COMPUTER VELO 17502L COMPUTER VELO 17502L COMPUTER VELO	CITY X		1 1
003-12 003-24 004-04 005-01	17503L COMPUTER VELC 17503L COMPUTER VELC 17303L COMPUTER VELC 17503L COMPUTER VELC 17503L COMPUTER VELC	OCITY Y 111 OCITY Y 1	FFFFF FFFF FF FFF 11111 111 1111 11 1 1 2 2 2 2	ff 1
003-12 003-24 004-04 005-01	17504L COMPUTER VELI 17504L COMPUTER VELI 17504L COMPUTER VELI 17504L COMPUTER VELI 17504L COMPUTER VELI	OCITY Z 111 OCITY Z OCITY Z	PFFFFF FFFF FF FFF 11111 111 1 111 11 1 1 2 2 2 2 2	1 1
003-12 003-24	175380 ALIGN GROUP 175380 ALNMT GROUP 175380 ALIGNMENT GR	RADIAL 444	FFFFF 22222 22	E
003-12 003-24	175390 ALIGN GROUP 175390 ALNMT GROUP 175390 ALIGNMENT GR	TANG 222	FFFFF 22222 22	E
003-12 003-24	175420 ALIGN GROUP 175420 ALNMT GROUP 175420 ALIGNMENT GR	AXIAL 222	FFFFF 22222 22	ε
003-12 003-24 005-01	17015T COMPUTER EXH 17015T COMPUTER EXH 17015T COMPUTER EXH 17015T COMPUTER EXH	HAUST TEMP 111	555555 11111 11 2	ε
003-12 003-24 004-04 005-01	17528V YAW STEERIN: 17528V YAW STEERIN: 17528V YAW STEERIN: 17528V YAW STEERIN: 17528V YAW STEERIN	G SIG 111 G SIG G SIGNAL	FFFFFF FFFF FF FFF 11111 111 1 111 11 1 1 1 2 2 2	FF 1
003-12 003-24 004-04	17529V ROLL RESOLV 17529V ROLL RESOLV 17529V ROLL RESOLV 17529V ROLL RESOLV 17529V ROLL RESOLV	ER SIG 111 ER SIG ER SIGNAL	FFFFFF FFFF FF FFF 11111 111 1 111 11 1 1 2 2 2 2 2	FF 1
003-12 003-24 004-04 005-01	17530V PITCH RESOL 17530V PITCH RESOL 17530V PITCH PESOL 17530V PITCH RESOL 17530V PITCH RESOL	VER SIG 111 VER SIG VER SIGNAL	FFFFFF FFFF FFF FFF 11111	FF 1
003-12 003-24 003-01	17540V TEMP CTL AN	AP OUT	7 FFFFFF 2 22222 11 2	•
003-12 003-24		SOLVER SIG 11	# PPPPPP PPPP PP PPP 1 11111 111 1 111 11 1 1 1	1

SECTION 9

OSTF 2 REC AS	SIGNMNT	26 SEP 62 AE60-0653	123	123456	1234	123456 1	12349
004-04 005-01	17580V 17580V		AL	1 2	2	1 2 2	1
003~12	17510W 17510W		FFF 111	FFFFFF 11111		FF FFF 1 111	FF
003-24	17510W		•	11)	1 1	1
004-04	17510W			1	1	1	1
005-01	17510W	ELAPSED TIME		2	. 2	2. 2	
003-12	17521X 17521X	VERN ENGINE COF SIG		FFFFFF 11111		FF FFF 1 111	FF
003-24	17521x			11	•••	i i	1
004-04	17521X	VERN ENG CUTOFF SIGNA	Ĺ	1	1	1	1
	17522X	S ENGINE COF SIG		FFFFF			FF
003-12	17522X 17522X	SUS ENG CUTOFF SIG	111		: 111		•
003-24 004-04	17522X			111	1	1 1	1
•••		ood the toron of stance		•	•	•	-
	17527X	PRE-ARM RELAY CLSD	FFF	FFFFFF	FFFF	FP FFF	FF
003-12	17527X		111		111	1 111	
003-24	17527X 17527X	PRE-ARM RELAY CLSD PRE-ARM RELAY CLSD		,11		,1 1	1
004-04	173278	PRE-ARM RELAY CESD		1	1	1	•
	17537X	ELEVATION WARNING		RRRRRR	RRR	R RRR	R
003-12 003-24	17537X 17537X	ELEVATION WARNING ELEVATION WARNING	111		111	1 111	1
005-01	17537X	ELEVATION WARNING		2 11	2	1 1 2 2	•
				•			
003-12	17570X 17570X	STAGING SIGNAL STAGING SIGNAL	FFF 111	FFFFFF 11111	111	FF FFF 1 111	77
003-24	17570X	STAGING SIGNAL	***	11	• • •	iii	1
004-04	17570X	STAGING SIGNAL			1	1	1
	17611X	START COUNTDOWN	RRR	RRRRRR	RRR	R RRR	R
003-12	17611X	START COUNTDOWN	111	11111	111	1 111	_
003-24	17611X	START COUNTDOWN		ុ11	,	1 1	1
005-01	17611X	START COUNTDOWN		2	2	5 5	
043-13	17612X 17612X	ST FINE ALM-TRG MODE		RRRRRR	RRR	R RRR	R
003-12 003-24	17612X	START FINE ALMMT-TRIG		11111	111	1 111 -	1
005-01	17612X	START FINE ALMMT-TRIG		2	2	2 2	•
	17613X	Z AXIS VERT-FINE ALM	ARR	RRRRRR	RRR	R RRR	R
003-12	17613X	Z AXIS VERT-FINE ALNMT		11111	111	1 111	
003-24	17613X	Z AXIS VERT-FINE ALAMT		11	_	1 1	7
005-01	17613X	Z AXIS VERT-FINE ALNMT		2	2	2 2	
		FINE ALMNT COMPLETE		RRRRRR	RRR		R
003-12 003-24		FINE ALMMT COMPLETE FINE ALMMT COMPLETE	111	11111	111	1 111	1
005-01		FINE ALAMT COMPLETE		2 2	2	1 1 2 2	•
AA44.3		COMPUTER TEST COMP		RRRRRR		R RRR	R
203-12 203-24		COMPUTER TEST COMPLETE		11111	111	1 111	1
009-01		COMPUTER TEST COMPLETE		2 .	2	2 2	•
	176168	START X ACCEL OFFSET		*****	***		

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF 2	REC ASS	IGNMNT 2	5 SEP 62	AE60-0653	123	123456	1234	123	456	1 12345	013
						11111	111	,	111		
				EROMETER OFFSET	111	11	•••		ī	1	
	•			EROMETER OFFSET		2	2		ž	_	
	005-01	110107	31 X ACCEL	EROMETER OFF SET		-	_	_			
			ACCEL TEST			RRRRRR			RRR	R	
	003-12	17617X	ACCELEROME	TER TEST COMPL	111	11111	111		111	1	
	003-24			TER TEST COMPLETE		211	Z		2	•	
	005-01	11011X	ACCELEROME	HER TEST COMPLETE		•	•	-	-		
		17618X	IGS READY			RRRRRR			RRR	R	
	003-12		IGS READY		111	11111	111		111 1	1	
	003-24		IGS READY			211	2		ž	•	
	•••		• • • • • • • • • • • • • • • • • • • •								
				L COMMAND		RRRRRR			RRR	R	
	003-12			L COMMAND	111	11111	111		111	1	
	003-24			L COMMAND		2 2	2		1 2	•	
	005-01	1/019X	GO INEKITA	AL COMMAND		•	•	•	•		
		17420¥	MGS INERT	ľ ∆ t	***	RRRRRRR	RRR	R	RRR	R	
	003-12	17620X	MGS INERT	AL		11111			111		
	003-24	17620X	MGS INERTI	IAL		11			ļ	1	
	005-01	17620X	MGS INERT	TAL		2	2	4	2		
		176214	1590 G ACC	COMPLETE		RRRRRR	ARR	R	発発費	R	
	003-12			ELEROMETER COMPL		11111		1	111		
	003-24	17621X	ZERO Z ACC	CELEROMETER COMPL			_		7	1	
	009-01	17621X	ZERO Z ACC	CELEROMETER COMPL		2	2	2	2		
		174228	SCALE X PE	us 16	288	FRRRRR	RRR	R	RRR		
	003-12		SCALE X PE		111	11111	111		111		
	003-24		SCALE X PI			2 11	2		1 2	7	
	005-01	17622X	SCALE X PI	105 16		•	•	•	•		
		17623X	SCALE X M	INUS 1G		RRRRRR			RRR	R	
	003-12	17623X	SCALE X M	INUS 16	111	11111	111		111		
	003-24		SCALE X M			2 11	2		1 2	1	
	005-01	17623X	SCALE X M.	1402 10		•	•	•	•		
		17624x	START ZER	X ACCELEROMETER		RRRRRR			RRR	A	
	003-12	17624X	START ZER	D X ACCELEROMETER	111	11111	111		111	,	
	003-24	17624X	ST ZERO X	ACCELEROMETER		211	2		1	•	
	005-01	17624X	START ZER	O X ACCELEROMETER		•	•	•	•		
		17625X	RETURN TO	READY REG	RRR	RRRRRR	RAR		RRR	A	
	003-12		RETURN TO	READY REG	111	11111	. :11		111		
	003-24	17625X		READY REQ		2 11	2		1 2	1	
	005-01	17625X	RETURN TO	READY REG		•	•	•	•		
		17626×	RETURN TO	READY COMP		RRRRRR			RAR	R	,
	003-12	17626X	RETURN TO	READY COMPLETE	111	11111	. 111		111	•	
	003-24			READY COMPLETE		211	2		1	1	
	005-01	170268	RETURN TO	READY COMP		•	•	•	•		
		17627x	GO ON VER	T MEMORY		RRRRRR			RRR	A	
	003-12	17627X	GO ON VER	T MEMORY	111	11111	111		111		
	063-24		GO ON VER			211	2		7	1	
	005-01	17627X	GO ON VER	T MEMURY		•	•	•	•		
		17628X	GO ON AZI	MUTH MEMORY	ARR	RRRRRR			RAR		

)

SECTION 9

26 SEPTEMBER 1962

OSTF 2 REC AS	SIGNMNT	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	014
003-12 005-01	17625X 17628X	GO ON AZIMUTH MEMORY GO ON AZIMUTH MEMORY	111 11111 111 1 111	
003-12 005-01	17630X 17630X 17630X	GYRO A IN BAND GYRO A IN BAND GYRO A IN BAND	RRR RRRRRR RRR R RRR 111 11111 111 1 111 2 2 2 2 2	
003-12 005-01	17631X 17631X 17631X	GYRO B IN BAND GYRO B IN BAND GYRO B IN BAND	RRR RRRRRR RRR R RRR 111 11111 111 1 111 2 2 2 2 2	
	L7013P	FLAME DEFLECT AMB PRESS 1 FLAME DEFLECT AMB PRESS 1 FLAME DEFLECT AMB PRESS 1	F 4 1	ŧ
	L7014P	FLAME DEFLECT AMB PRESS 2 FLAME DEFLECT AMB PRESS 2 FLAME DEFLECT AM9 PRESS 2	7 1	t
	L7015P	FLAME DEFLECT AMB PRESS 3 FLAME DEFLECT AMB PRESS 3 FLAME DEFLECT AMB PRESS 3	F 1 1	ŧ
	L7016P	FLAME DEFLECT AMB PRESS & FLAME DEFLECT AMB PRESS & FLAME DEFLECT AMB PRESS &	F 1 1	t
	L7601P	HT SHIELD OUTSIDE PRESS 1	F 1 1	t
034-00 037-01	L7402P L7602P L7602P	HT SHIELD OUTSIDE PRESS 2 HT SHIELD OUTSIDE PRESS 2 HT SHIELD OUTSIDE PRESS 2 HT SHIELD OUTSIDE PRESS 2	, i i i	t
034-00 037-01	M7604N M7604N M7604N	FWO LIFT-OFF CAMERA FWO LIFT-OFF CAMERA FWO LIFTOFF CAMERA FWO LIFTOFF CAMERA	L L 1 1 1 1	
034-00 037-01 037-03	M7605N M7605N M7605N	AFT LIFTOFF CAMERA AFT LIFT-OFF CAMERA AFT LIFTOFF CAMERA AFT LIFTOFF CAMERA		
001-19	H7829A	SILO-L/P ACCEL #1 L/P ACCELN 1	• • •	t
001-19		SILO-L/P ACCEL #2	00 11	t
001-19		SILO-L/P ACCEL #9 L/P ACCELN 3	00 11	t
	M7832A	SILO-L/P ACCEL #4	00	t

<u>.</u>

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC A	SSIGNMNT :	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	015
001-19	N7832A	L/P ACCELN 4	11	
001-19		SILO-L/P ACCEL #5 L/P ACCELN 5	00 11	E
001-19		SILO-L/P ACCEL #6. L/P ACCELN 6	∞ 11	E
001-19		CRIB ACCELERATION #7 CRIB ACCELN 7	00 11	£ .
001-19		CRIB ACCELERATION #6 CRIB ACCELN 8	00 11	E
J01 -1 9		CRIB ACCELERATION #9 CRIB ACCELN 9	00 11	ŧ
001-19		CRIB ACCELERATION #1 CRIB ACCELN 10	00 11	£
001-19		CRIB ACCELERATION #1 CRIB ACCELN 11	00 11	C
001-19		CRIB ACCELERATION #1 CRIB ACCELN 12	∞ 11	£
001-06		SILO L/P ACCELN ZI SILO L/P ACCELN ZI		£
J01-06	N7843A N7843A	SILO L/P ACCELN ZZ SILO L/P ACCELN ZZ		ť
001-06		SILO L/P ACTEIN 23 SILO L/P /CCELN 23		& .
001-06		SILO L/P ACCELN 24 SILO L/P ACCELN 24		C
001-06		SILO L/P ACCELN XI SILO L/P ACCELN XI		ſ
001-06		SILO L/P ACCELN XZ SILO L/P ACCELN XZ		t
001-00		SILO L/P ACCELM X3 SILO L/P ACCELM X3	·	C
001-06		SILO L/P ACCELN X4 SILO L/P ACCELN X4		t
001-06 024- 099-00	N78038 N78038	L/P DRIVE MOTOR SPEED L/P DRIVE MOTOR SPEED L/P DRIVE MOTOR SPEED L/P DRIVE MOTOR SPEED	555 5 55 5 55 111 1 111 1 11 1 1 1 1 1 1	¢

SECTION 9

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2	Z REC	ASSIGNMNT	26 SEP 62	AE60-0653	123	123456 1	234	123456	1 12:	145		016
	001-0 024- 099-0	6 N79080 N79080	L/P DISPLA L/P DISPLA L/P DISPLA L/P DISPLA	CEMENT			111	\$ \$\$\$ 1 111 1 1 1 111	1	55 11 1 11		E
	001-0 024- 099-0	6 N7804F N7804F	DRIVE MOTO DRIVE MOTO DRIVE MOTO CRIVE MOTO	R TORQUE			111	\$ 55\$ 1 111 1 1 1 111	1	55 11 1 11		£
	003-0			IR REL HUM ET AIR HUM	pp 11							
	001-0		SILO UPPER SILO UPPER				1	PPP 111				
	001-0		IGLOO RH IGLOO RH H	UM								
	001-6	L0087N	MSL COPPAR MSL COMPT	TMENT RH RH HUM			1	PPP 111				
	001-0 009-0	N7801J	L/C EQUIPM L/C EQUIPM L/C EQUIPM	RH HUM								
	001-0: 009-0:	M7802J	SILO LOWER SILO LOWER SILO LOWER	RH HUM		1		999 111				
	001-0		7 IN. MOTIO									ŧ
	001-0		7 IN. MOTIO 7 IN. MOTIO									£
	001-0			ON DOWN SLOW								6
	099-00	M7747M M7747N	TV CAMERA					1 111	1	11		
	099-00		TV CAMERA 2					1 111	1	11		
	099-00		TV CAMERA 1					1 111	1 1	11		
•	099-00	M7790N M7790N	TV CAMERA O					1 111	1 :	11		
(099-00		TV CAMERA 1					1 111	1 1	11		
		M7752N	TV CAMERA 6	•								

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

						20	, obi i binbbit i	
OSTF 2 REC ASSIG	NMNT 26	5 SEP 62 AE60-0653	123 123456	1234	123456 1	12345		017
099-00 N	1752N	TV CAMERA 6			1 111	1 11		
		TV CAMERA 7 TV CAMERA 7			1-111	1 11		
309-01 N 009-02 Y	7754N 7754N 17754N	LAUNCH CONSOLE RH LAUNCH CONSOLE RH CAMERA LAUNCH CONSOLE RH CAMERA	11111 11111 11111	111 111	11111 1 111	1111 1 11		
N 009-01 N 009-02 N	17755N 17755N 17755N	LAUNCH CONSOLE LM LAUNCH CONSOLE LH CAMERA LAUNCH CONSOLE LH CAMERA	11111 11111 11111	111 111	LLLLL 11111 1 111	111/ 111/ 1 1:		
007-01 N	17035P 17035P	TANK DIFFERENTIAL P DIFFERENTIAL PRESS/GAGE/		7 77	Y YYY 1 111			
		CRIB AMB PRESS 1 CRIB AMB PRESS 1		7	7			E
		CRIB AMB PRESS 2 CRIB AMB PRESS 2		F 1	۶ ۱			ŧ
		CRIB AMB PRESS 3 CRIB AMB PRESS 3		1	ĩ			•
		CRIB AMO PRESS 4 CRIB AMB PRESS 4		1	1			£
		CRIB AMB PRESS 5 CRIB AMB PRESS 5		1	1			5
		CRIB AMB PRESS 6 CHIB AMB PRESS 6		1	7			t
003-01 N 003-12 N	17050R	B2 POD AIR FLOW QUAD 2 B2 POD AIR FLOW QUAD U2 POD AIR FLOW QUAD 2 B2 POD AIR FLOW QUAD 2	11	C 1		111		•
003-12 N	7155R	82 POD AIR FLOW QUAD 3 82 POD AIR FLOW QUAD 3 82 POD AIR FLOW QUAD 3		1		000 111 111		t
		GOZ VENT GOX VENT GAS FLOWRATE	0					t
001-05 N	17695R 17695R	EF 40: 41 EXMAUST XHST FAN 40:41 XHST FL/RT						ŧ
		XHST FAN 30 XHST FL/RT RHGT FAN 30 XHST FL/RT						C
		LOAD CELL QUAD 1 L/P						•
	179438	LOAD CELL QUAD 2 L/P						ŧ

}

SECTION 9

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC A	SSIGNMAT	26 SEP 62	NE60-0653	123	123456	1234	123456 1	12345	018
001-06	N7943S	LOAD CELL SU	1AD 2 L/P						
001-06		LOAD CELL QU							£
001-06		LOAD CELL QU							t
003-01	N7032T N7032T	GUIDANCE POD	EXHAUST XHST TEMP		\$ 2	•			¢
003-12 024-	M7048T	62 AIR INLET 63 AIR INLET 62 AIR INLET	TEMP GUAD 2 TEMP GUAD 2 TEMP GUAD 2			D 1		000 111 111	£
003-01	N7154T N7154T	81 AIR AT RH 81 POD AIR I	MEAS NLET TEMP	\$ \$ 11					E
003-12 024-	M7156T M7156T M7156T	BZ AIR INLET BZ AIR INLET BZ AIR INLET	TEMP QUAD 3 TEMP QUAD 3 TEMP QUAD 3			0		000 111 111	•
001-03	N7159T N7159T	VERT SYS GOX VENT GOX TEM	● ELBOW	0					t
001-03	M7160T M7160T	VNT SYS GOX (VENT GGX TEM	FAN IN P # FAN INL	0					t
001-03	M7161T M7161T	VNT SYS GOX (VENT GOX TEMP	GAT IN	1					C
001-05		AIR DUCT IN AIR DUCT INLE	LT TEMP			1	777 111		
001-05	M7540T M7540T	AIR DUCT OUT AIR DUCT OUTL	.ET TEMP			7	††† 111		
001-05		\$110 0 11 LVL					777 111		
001-09	H7582T H7582T	SILO O II LVL SILO SUAD 2 L	-2 VL 2 TEMP				777 111		
001-09	M7543T M7543T	SILO Q II LVL SILO OUAD Z L	-3 VL 3 TEMP				177 111		
001-05		SILO Q II LVL SILO QUAD 2 L			1		111		
001-05		\$100 QUAD 2 L					777 111		
201-09	M7586T M7386T	\$100 QUAD & L	-6 VL 6 TEMP				77 7 111		

₹ -----

SECTION 9

26 SEPTEMBER 1962 051F 2 REC ASSIGNMNT 26 SEP 62 AE60-0653 123 123456 1214 123456 1 12345 019

OSTF 2 REC ASSIGNMENT	26 SEP 62 AE60-0653	123 123456 1254 123456 1 12345	019
	! SILQ Q [! LVL-7 SILQ QUAD 2 LVL 7 TEMP	777 111	
N7588T	SILO Q II LYL-8 SILO QUAD 2 LVL 8 TEMP	T TTT 1 111	
	HT REC WATER IN HT RECOVERY HZO IN TEMP	7 500 1 111	t
	ELEC BLR WATER OUT ELEC BOILER HZO OUT TEMP	7 DDD 1 111	ε
N7597T 001-05 N7597T	MSL COMP LYL-1 MSL COMPT LYL 1 TEMP	7 777 1 111	
N7598T	MSL COMP LVL-2 MSL COMPT LVL 2 TEMP	7 777	
47599T 001-05 N7599T	: MSL (COMP LVL-) MSL (COMPT LVL 3 TEMP	T TTT	
	MSL COMP LYL-4 MSL COMPT LYL 4 TEMP	7 111 1 111	
	MSE COMP LYE-S MSE COMPT LYE S TEMP	7 777 1 111	
	HSL COMP LYL-6 HSL COMPT LYL 6 TEMP	T TTT 1 111	
	MSL COMP LYL-7 MSL COMPT LYL 7 TEMP	Ţ ŢŢŢ	
	MSL COMP LYL-8 MSL COMPT LYL 8 TEMP	Ţ ŢŢŢ	
N76057 001-05 N76057	DUST SEP AIR OUT DUST SEP AIR OUT TEMP	TTT ill	
	COOLING TOWER HZO IN COOLING TWA HZG IN TEMP		
	MSC COMP AIR SUPPLY MSC COMPT AIR SUPPLY TEMP	T	
M7620T 301-09 M7620T	HEAT RECLAIMER MAD HT RECLAIMER TEMP	P 000	ŧ
001-09 M:621T	ELEC EQUIP AIR IN #1 ELCT: EQUIP AIR IN 1 TEMP ELCT EQUIP AIR IN #1 TEMP	900 111	
	TLEC EQUIP AIR IN 02 ELCTIEQUIP AIR IN 2 TEMP	900 114	

- -

- 25

SECTION 9

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC AS	SSIGNMNT	26 3EP 62	AE60-0653	123	12345	6 123	4 123456 1 12345	020
209-03	476221	ELCT EQUIP	AIR IN W2 TEMP					
		ELEC EQUIP					PPP	
			AIR IN 3 TEMP				111	
201-03		ELEC EQUIP	AIR IN #4 AIR IN & TEMP				PPP	
			AIR IN 84 TEMP				111	
		5: 50 50:110						
	N 7625T		AIR IN 5 TEMP				111	
009-03	N7625T	ELCT . EQUIP	AIR IN #5 TEMP					
	N7626T	ELEC EQUIP	AIR OUT #1				PP#	
			AIR OUT 1 TEMP				111	
		ELEC EQUIP					200	
			AIR OUT 2 TEMP				111	
221-05		ELEC EQUIP	AIR OUT #3 AIR OUT 3 TEMP				>	
			AIR OUT #3 TEMP				111	
		£1. £2. £0						
301-05		ELEC EQUIP	AIR OUT & TEMP				PPP 111	
009-03	N7629T	ELCT EQUIP	AIR OUT #4 TEMP					
	M7630T	ELEC EQUIP	AIR OUT #5				PPP	
	N 7630T	ELCT EQUIP	AIR OUT & TEMP				111	
337 32	4,0301	1201 20017	7 TO		!			
		POD AIR CON		TT		•	006	E
331-0 5 39 3- 01	M7641T	POD AIR CON	HE O IN TEMP	11		1	1.1	
001-05	M7642T		D HZG OUT TEMP	ŤŸ		1	00 0 111	E
003-01	N7642T	POD AIR CON	D HZO OUT TEMP	11				
	H76431	CC 10 COLD	H20 OUT					
001-05			O HEO OUT TEMP					
	m7444T	CC 40 COLD	410 MIP				•••	
001-09			O HZO OUT TEMP			ĭ	111 111	
991-05	N7645T N7645T	CC 41 COLD	HIG OUT TEMP			Ť		
001-09	M7646T M7646T	HEAT COIL A	ZO IN O HZO IN TEMP			1	777 111	
****			A compared them.			•	•••	
	M7647T	HC 46 HOT H	20 OUT			T	111	

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

OSTF 2 REC ASS	SIGNMNT	26 SEP 62 AE60-0653	123 123450	1234	123456 1	12345	021
001-05	N7647T	HEAT COIL 40 H20 OUT TEMP		1	111		
001-05	N7645T N7649T	WCU 50 H20 OUT WCU 50 H20 OUT TEMP		Ť 1	TTT 111		
001-05	N7650T N7650T	WCU 50. 51 H20 IN WCU 50.51 H20 IN TEMP		Ť 1	TTT 111		
001-05	N7651T N7651T	FCC COFD MS0 ONL LEWB					
		COOLING TOWN H20 OUT COOLING TWN H20 OUT TEMP					
001-05	N7807T	L/C EQUIP AIR RETURN L/C EQUIP AIR RETURN TEMP L/C EQUIP AIR RETURN TEMP					
034-00	N1870V N1870V	TRL WIRE NOISE 1 TWU NOISE 1		F 1	F 1		
006-01	N7002X N7002X	SELECT A BUTTON SELECT A BUTTON	RRRRR 11111	RRR 111	R RRR 1 111	R RR 1 11	
006-01	N7003X N7003X	SELECT B BUTTON SELECT B BUTTON	RRRRR 11111	RRR 111	R RRR 1 111	R RR 1 11	
010-06	N7024X N7024X	START BUTTON START C/D BUTTON	RRRRR 11111	RRR 111	R RRR 1 111	R RR 1 11	
007-08 010-06 024-	N7028X N7028X N7028X N7028X	COMMIT START BUTTON COMMIT START BUTTON COMMIT START BUTTON COMMIT START BUTTON	RRRRRR 2 222 11111	RRR 111 111	R RRR 1 111 1 111 1 1	R RR 1 11 1 11 1 1	
006-01	N7030X N7030X	ALARM RESET SWITCH ALARM RESET SWITCH	RRRRR 11111	RRR 111	R RRR 1 111	R RR 1 11	
006-01	N7042X N7042X	START ABORT SWITCH START ABORT SWITCH	RRRRR 11111	RRR 111	R RRR 1 111	# RR 1 11	
CO1-07	N7046X N7046X	DOORS OPEN DOORS OPEN		RRR 111	R RRR 1 111	R RR 1 11	
001-07		DOORS CLOSED			R RRR 1 111		
001-06 003-02	N7500X N7500X N7500X	ZONE CHECK LS CLSD ZONE CHECK LS CLSD ZONE CHECK LS CLSD		RRR 111 111	R RRR 1 111 1 111	R RR 1 11 1 11	
		1000 IN. LS CLSD		RRR 111	R RRR 1 111	R RR 1 11	
	N7502X	HI SPEED DECELN SW CLSD		RRR	R RRR	A RR	

--

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

26	SEP	TEMB.	ER 1962
----	-----	-------	---------

STF 2 REC AS	SIGNMNT	26 SEP 62	AE60-0653	123	123/56 1236	123456	1 12	345
001-06	N7502X	HI SPEED (DECELN SW CLSI		111	1 111	1	11
001-06	N7503X N7503X	UPR OVERSE	PEED ZONE LS (LSD LSD	RRR 111	R RRR 1 111		RR 11
001-06	N7304X N7304X	OVERSPEED OVERSPEED	SENSOR ENERGI SENSOR ENERGI	ZED ZED	RRR 111	R RRR 1 111	8	RR 11
003-02	N7505X N7505X	B/O VLV CL	.SD .SD			R RRR 1 111		RR 11
003-02		DP NOT LOW			RRR 111			RR 11
009-02	N7507X N7507X	MSL LIFT C	OMMIT START		RRR 111	R RRR 1 111		RR 11
009-02		AUTOMATIC AUTOMATIC			RRR 111	R RRR 1 111	R 1	
006-02		READY FOR READY FOR				R RRR 1 111		
007-03		PWR TO INT				R RRR 1 111		
007-03	N7511X N7511X	PWR TO EXT				R RRR 1 111		
009-02	N7512X N7512X	COMMIT LOC	KUP KUP		RRR 111	R RRR 1 111	R (
	N7513X	MSL LIFT D	OMN & FOCKED OMN & FOCKED OMN & FOCKED		RRR 111 111	R RRR 1 111 1	R (RR 11
	N7514X	AUTOPILOT (ON AMBER		111	R RRR 1 111 1 111	1 1	11
003-02		LWR FUEL TA				R RRR 1 111	K #	
003-02	N7516X N7516X	RAISE FUEL RAISE FUEL			RRR 111	R RRR 1 111	A R	
003-12		GUID FAIL N				R RRR 1 111		
007-02			AIL MARGINAL			R RRR 1 111	R R	
		FLT PROGRAM FLT PROGRAM				R RRR 1 111	R R	

922

SECTION 9

	GENERAL DYNAMI	CS ASTRONAUTICS	26 SE	PTEMBER 1962
	4540-0443	123 123456 1234 123456	1 12345	023
OSTF 2 REC ASSIGNMNT 26	25h 97 #590-0933			
N7520X [NSTR AIR BELOW 50	RRR R RRR	R RR 1 11	
003-05 N7520X I	NSTR AIR BELOW 50	111 1 111	• ••	
N7521Y A	SUTOPILOT FAIL	RRR R RRR	RRR	
007-02 N7521X A	SUTOPILOT FAIL	111 1 111	1 11	
₩7522¥ H	HE VLV 14 OPEN	RRR R RRR	R RR	
003-03 N7522X H	HE VLV 14 OPEN	111 1 111	1 11	
N7523X (DC AT MSL	RRR R RRR	R RR 1 11	
007-03 N7523X	OC AT HSL	111 1 111	* **	
475 747 (R/V BAT TEMP	ARR R ARR		
003-14 N7524X	R/V SAT TEMP)11 1 111	1 11	
	ueur ue BTI	RRR R RRR		
003-04 N7525X	VENT HE BTL VENT HE BTL	111 1 111	1 11	
		ARR R ARR	A AA	
N7526X 003-06 N7526X	HYO PRESS HYO PRESS	111 1 111	1 11	
M7527X 003-12 N7527X	GUIDANCE FAIL GUIDANCE STANDBY	RRR R RRR 111 1 111		
003032 413214				
	MSL LIFT UP & LOCKED MSL LIFT UP & LOCKED	якя Я НЯЯ 111 1 111	R RR 1 11	
001-06 M7528X 009-02 M7528X	MSL LIFT UP & LOCKED	111 1 111	1 11	
N 78 26 V	PNEU INTERNAL GREEN	ARA 4 ARA		
003-02 N7527X	PNEU INTERNAL GREEN	111 1 111		
006-02 M7529X	PHEU INTERNAL GREEN			
N7530X	PNEU PH 2 AMBER	MRR R RRR 111 1 111		
003-02 N7530X 006-02 N7530X	PNEU PH 2 AMBER PNEU PH 2 AMBER	111 1 111		
		RAR R RAR	R 28	
M7931X 003-02 M7531X	HE LOAD AMBER HE LOAD AMBER	111 1 111	1 11	
003-03 N7531X	HE LUAD AMBER HE LOAD AMBER	111 1 111	1 11	
003-04 N7331X 006-02 N7531X	HE LOAD AMBER	111 1 111	1 11	
	PROGRAMMER ARMED AMBER	RRR R RRR	9 88	
007-02 N7532X	PROGRAMMER ARMED AMBER	111 1 111	1 11	
119414V	ENGINE START AMBER	ARR R ARR		
006-02 N7933X	ENGINE START AMBER	111 1 111	1 11	
	COLDANICE COMMITTE	ANG R RAF	1	
47536X 003-12	GUIDANCE COMMIT GUIDANCE COMMIT	111 1 111		
		ARR R ARI		
004-02 M7414Y	PWR INTERNAL GREEN PWR INTERNAL GREEN	111 1 111	1 11	
024- N7535X	PUR INTERNAL GREEN	i 1	1 1	
M7536K	AUTOPILOT TEST AMBER	RRA R RRI	A A AA	

GENERAL DYNAMICS ASTRONAUTICS

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC ASSIGNMENT 2	26 SEP 62 AE60-0653	123 123456 1234	123456	1 12345	024
0G7-02 N7536X	AUTOPILOT TEST AMBER	111	1 111	1 11	
	GUID READY AMBER		R RRR 1 111		
024- N7984X	MISSILE AWAY MISSILE AWAY MISSILE AWAY	R 1	R R R	R R 1 1	
N7985X	MISSILE ON STAND MISSILE ON STAND	R	R 1		
	81 PUMP SPEED LO 81 PUMP SPEED LO				E
	B2 PUMP SPEED LO B2 PUMP SPEED LO				£
034-00 P15290 037-03 P15290	SUS MAIN LOX YLV POS SUS MAIN LOX YLV POS S MAIN LOX YLV POS SUS MAIN LOX YLV POS	7 1 1 1			£
034-00 P18300 037-03 P1830D	SUS FUEL VLV POS SUS FUEL VLV POS SUS FUEL VLV POS SUS FUEL VLV POS	7 1 1 1			ŧ
034-00 P12060	SUS ENG LOX DOME SUS ENG LOX DOME SUS ENG LOX DOME	7 1 1	F 1		٤
034-00 \$12080	B1 ENG LOX DOME B1 ENG LOX DOME B1 ENG LOX DOME	1	7 1 1		t
034-00 P12090	82 ENG LOX DOME 82 ENG LOX DOME 82 ENG LOX DOME	1 1			t
P1002P 007-06 P1002P 074- P1002P 034-00 P1002P	81 FUEL PUMP INLET 81 FUEL PUMP INLET 81 FUEL PUMP INLET PRESS	355	F FFF 5 555 1 111 1 1 1 1	9 9 8 8 1 1	ŧ
P100eP P100eP 034-00 P100eP 037-03 P100eP	SUS THE CHAMBER PRESS SUS THE CHAMBER PRESS SUS THE CHAMBER PRESS SUS THE CHAMBER PRESS	D P 1	0 # 1 1		¢
P1036P 007-06 P1034P 024- P1034P 034-00 P1034P	84 FUEL PUMP DISCM PRESS 62 FUEL PUMP DISCM PRESS 82 FUEL PUMP DISCM PRESS 82 FUEL PUMP DISCM PRESS	\$13 FFF 111 1	\$ 355 F FFF 1 111 1 1 1	5 5 F F 1 1	t

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC ASSIGNMNT	26 SEP 62 AE60-0653	123 123456 1234 123456	1 12345 029	5
P1039 007-06 P1039 024- P1039 034-00 P1039 037-03 P1039	P B1 FUEL PUMP DISCH P B1 FUEL PUMP DISCH PRESS	FFF F FFF 111 1 111 1 1 1 1 1 1	F F E	
P1056 024- P1056		F F F F F 1 1 1 1 1 1	F F E	
P1059	P B2 THR CHAMBER PRESS	D D F F 1 1 1 1 1	E	
P1066	OP 81 THR CHAMBER PRESS	D D F F 1 1 1 1	e	
034-00 P109	IP 81 LOX INJ MANIFOLD PRESS IP 81 LOX INJ MANIFOLD PRESS IP 81 LOX INJ MANIFOLD PRESS	F F 1 1 1 1 1	τ	
034-00 P109	2P B2 LOX INJ MANIFOLD PRESS 2P B2 LOX INJ MANIFOLD PRESS 2P B2 LOX INJ MANIFOLD PRESS	F F 1 1 1	ε	•
P710 010-03 P710 010-07 P71^	SP TCU CTL MANIFOLD DP TCU CTL MANIFOLD PRESS SP TCU CTL MANIFOLD PRESS	FFFFF 11111 11111	t	!
010-03 P710	6P TCU INLET LOX PRESS 6P TCU LOX IN PRESS 6P TCU LOX IN PRESS	FFFFF 11111 11111	t	t
010-03 P710 010-07 P710	7P TCU LOX FILTER IN 7P TCU LOX FILTER IN PRESS 7P TCU LOX FILTER IN PRESS	##### 11111 11111	t	ţ
010-03 P710 010-04 P710 010-07 P710 010-08 P710	AP LOX L/P DISC IN PRES AP LOX L/P DISCON IN PRESS AP LOX L/P DISC IN PRESS	######################################		ľ
P713	SP MAIN LOX LN ORAIN PR SP MAIN LOX LINE DRAIN PRESS	FFFFF 11111	1	ľ
034-0G P115 037-03 P115	5P B1 GAS GEN COMBUSTOR PRESS 5P B1 GAS GEN COMBUSTOR PRESS 5P B1 GAS GEN COMBUSTOR PRESS		•	(
034-00 Pl18 037-03 Pl18	AP B2 GAS GEN COMBUSTOR PRESS AP B2 GAS GEN COMBUSTOR PRESS AP B2 GAS GEN COMBUSTOR PRESS		•	•

SECTION 9

GENERAL DYNAMICS | ASTRONAUTICS

OSTF 2 REC	ASSIGNMNT	26 SuP 62 AE60-0653	123	123456	1234	123456 1	12349	026
	P1200				r			Ę
034-0		P ENG COMPT AMB PRESS P ENG COMPT AMB PRESS			1			
	P1337				,	F		٤
034-0 037-0		P SGG LOX INJ MANIFOLD SRESS P S GG LOX INJ MANIFOLD PRESS			1	1		
	91351				F	F		e
034-0 037-0		P S LOX INJ MANIFOLD PRESS P S LOX INJ MANIFOLD PRESS			1	1		
	P1463I				,			t
034-0		P S GG FUEL INJ MAN PRESS P S GG FUEL INJ MAN PRESS			1			
	P7544I			****				1
010-0				11111				
	P75491	LOX STORAGE TANK ULL	S	33355	555	5 555	5 55	t
001-0 067-0			1	111	111	1 111	1 11	
010-0	1 P7549F	LOX STOR TH ULLAGE PRESS		11111	iii	1 111	i ii	
010-0	2 P7549F	LOX STOR TH ULLAGE PRESS		11111		1 111	1 11	
010-0 010-0	3 P7549F	LOW STOR TH HILLACE BOSES		11111		1 111	1 11	
010-0	6 P7549F	LOX STOR IN ULLAGE PRESS		11111	111	1 111	1 11	
010-0		LOX STOR TH ULLAGE PRESS		11111	•••		• ••	
024-		LOW SIGN IN OFFICE PACES				1 1	1.1	
099-0	10 P75491	P LOX STOR TK ULLAGE PRESS		11111	111	1 111	1 11	
007-0	P7344F	LOX-ST TK TO MSL DP		\$\$\$\$\$ 111	\$\$\$ 111	8 588 1 111	8 55 1 11	£ .
010-0		LOX STOR TE TO MSI DE		11111	•••	• •••	- ••	
010-0				11111	111	1 111	1 11	
010-0 010-0	4 P7544P	P LOX STOR TK TO MSL OP P LOX STOR TK TO MSL OP		11111	111	1 111	1 11	
010-0				11111				
099-0	0 P7564P	LON STOR TK-MSL DP		11111	111	1 111	1 11	
	P7565F			****				t
010 -0		P LGX XFER LINE TO MSL PRESS P LOX XFER LINE TO MSL PRESS		11111				
010-0				11111				
010-0				11111				
	P7567P							t
011-0 011-0								
	P7574P	LOX IN TO ELEV DISC		,,,,,	,,,			· ·
010-0		LOX TO LIP DISCON IN PRESS		11111				•
010-0 210-0				11111	111			
010-0				1111				
010-0				iiiii				
910-01	P7682P			****				ı
0.40-0		M&L LOS TANK OF		11111				

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF	Z REC AS	SIGNMNT	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	027
	010-63		MSL LOX TANK DP	11111	
			MSL LOX TANK OP	11111	
	010-06		MSL LOX TK DP MSL LOX TANK DP	11111 11111	
	010-07	P 1002P	HSC CUR TANK UP	****	
	211 04		GNO FUEL PUMP OUT PRESS		£
	011-04	P/800P	GND FUEL PUMP OUT PRESS		
	011-04		GNO FUEL PUMP IN PRESS GNO FUEL PUMP IN PRESS		t
	011-04	P / 4 Q 7 P	OND FOLE FORF IN FRESS		
		P7690P	GNO FUEL FILTER OP		£
	011-01	P7690P	GNO FUEL FILTER OP		
		P7691P	FUEL FILL LINE IN PRESS		E
	011-01		FUEL FILL LINE IN PRESS		
	011-04		FUEL FILL LINE IN PRESS		
	011-05	PIGATE	FUEL FILL LINE IN PRESS		
			FUEL FILL LINE PRESS # L/P		C
	011-01		FILL LINE PRESS-LIP DISCON		
	011-04		FILL LINE PRESS-LYP DISCON- FILL LINE PRESS-LYP DISCON		
	· · · · · ·				
			FUEL FILL LINE PRESS & ROO		C
	011-01		FILL LINE PRESS # R-O-D		
	011-04		FILL LINE PRESS # R-O-D FILL LINE PRESS # R-O-D		
		974948	LOX TOP LINE ROD	35333	ι
	010-01		LOX TOP LINE PRESS # R-0-0	11111	•
	010-03		LOX TOP LINE PRESS . R-0-0	11111	
	010-06 010-07		LOX TOP LINE PRESS # R-U-D LOX TOP LINE PRESS # K-U-D	11111	
	314 -07	,			
		P7497P		****	£
	010-01		MAIN LINE PRESS # R-0-0	11111	
	010-01		MAIN LINE PRESS & R+0+0 Main Line Press & R+0+0	11111	
	0,0-00	, , , , , ,			
		P7699P		00000 000 0 000	E
	010-01	P7499P	MAIN LOX FILTER OF MAIN LOX FILTER OF	11111 11111 111 1 111	
	010-03		MAIN LOR FILTER OF	11111	
		P1700P		******	C
	010-01 010-03	P7700P		11111	
	013-06		LON MAPID LOAD VLV DP	iiii	
		A 7 4 A 1 A	104 E18E 10 WW 00	****	
	010-01		LOX FINE LO VLV DP	11111	•
	010-03	P7701P	LOX FINE LO VLV OP	11111	
	010-04	#7701P	LOX FINE LOAD VLV OF	11111	
		P7734H	LOX DRAIN VLV DP	****	€
	010-01		LOE ORAIN VLV OF	11111	-
		011a10	LOX FILL FILTER OF	,,,,,	e e
			era i tee i terteri et	•	-

SECTION 9

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC AS	SIGNMAT	26 SEP 62 AE60-0653	123 123456	1234	12	456	1 12	345		028
010-03	P7707P	LOX FILL FILTER OP	11111							
	P7709P	LOX TOP TK ULLAGE	5.5 5.5	553	5	555	s	5 5		ε
	P7709P	LOX TOP TK ULLAGE		FFF	F	FFF	*	FF		
007-05	P7709P		111	111	1	111	4	11		
010-02	PITUYP	LUX TUP TX ULLAGE PRESS	1111	111				11		
010-03	P7709P	LOX TOP TK ULLAGE PRESS	11111	111	1	111	1	11		
010-04	P7709P	LOX TOP TK ULLAGE PRESS	11111	111						
010-06	P7739P	LOX TOP TK ULLAGE PRESS	11111							
	P7703P		11111							
024-	P7709P				ŗ	1.,	•	111		
099-00	P7709P	LOX TOP TR ULLAGE PRESS		•••	•	•••	•	••		
	P7710P	GNO LOX TK PRESS IN LOX STOR TK PRESN LINE	ppp=p 11111							E
010-03	PITTOP	FOX SION IN PACSA CINE	****							
	P7711P	LOX TOP TK PRESS LN LOX TOP TK PRESN LINE	FFFF							ŧ
010-03	P7711P	LOX TOP TK PRESM LINE	11111							
	879n78	B1 LOX PUMP INLET	15555							E
010-03	#7907P	81 LOX PUMP IN PRESS	11111							-
		81 LOX PUMP IN PRESS	11111							
	P7909P	FUEL VLV F1 IN PRESS								E
011-01	P7909P	FUEL VLV F1 IN PRESS								
011-04		FUEL VLV F1 INLET PRESS								
011-05	P7909P	FUEL VLV F1 INLET PRESS								
	P7911P	FUEL PRESN TK DISCH PRESS						•		£
011-05		FUEL PRESN TK DISCH PRESS								
•••										
	P7913P	LOX FINE LV LI IN	3660 0 F/FFF	888					•	_
	P7913P	LOX FINE LV L1 IN	P/#FF							E
010-01	P7913P	LOX FINE LD IN PRESS		111						
010-03	P7913P	LOX FINE LV L1 IN LOX FINE LD IN PRESS FINE LD VLV L1 IN PRESS LOX FINE LD VLV L-1 IN	11111	111						
010-06	P7913P	LOX PINE LD VLV L-1 IN	11111							
	P7914P	LOX RAPID LV LZ IN	****							£
010-03	P7914P	LOX RAPID LV L2 IN RAPID LD VLV L2 IN PRESS LOX RAPID LD VLV L-2 IN	11111							
010-06	P7914P	LOX RAPID LD VLV L-2 IN	11111							
010-07	P7914P	RAPID LD VLV L-2 IN PRESS	11111							
	PT915P	LOX DRAIN VLV LIG IN	****							•
010-03	P7915P	LOX DRAIN VLV LIS IN PRESS	11111							
										_
		LOX DRAIN VLV L-16 DUT PRE		*						€
010-01	P7916P	LOX DRAIN VLV L-16 OUT PRE		1						
	#7917#	LOX STOR TK PV LT IN	****							•
010-03		LOX STOR TR FILL VLV LT IN								
										_
		LOX TR PRESS VLV IIL	****							(
010-03	P7972P	STOR TK PRESM VLV IN PRESS	11111							
			00000	000						
		LOX TOP PL/RT VNTURE LOX TOP PL/RT VNTURE	****							ŧ
010-01		LOX TOP FLIRT VENTURE	11111							-
*** **										

GENERAL DYNAMICE ASTRONAUTICS

OSTF 2 REC ASS	IGNMNT :	26 SEP 64 AL60-0653	123 123450	1234	123456	1 12345	029
010~03	P7104R	LOX TOP FLIRT VENTURE	1111	1 111			
010-04	P7104R	LOX TOPPING FLIRT VENTURI	1111	1 111			
010-06		LOX TOPPING FLIRT VENTURE		1			
010-07	P7104R	LOX TOPPING FL/RT VENTURE	1111	1			
		LOX TOP BLEED FL/RT	8838	8 8 8 8	,		
		LOX TOP BLEED FL/RT	FFFF				E
010-01	P7109R	LOX TOP BLEED FL/RT	1111				
010-03	P7109R	LOX TOP BLEED FL/RT	1111				
010-04 010-06	P7109R	LOW TOPPING BLEED FL/RT	1111				
010-07	P7109R	LOX TOP BLEED FL/RT LOX TOP BLEED FL/RT LOX TOPPING BLEED FL/RT LOX TOPPING BLEED FL/RT LOX TOPPING BLEED FL/RT	1111				
		GNO FUEL SUPPLY FLIRT					C C
011-01		GND FUEL SUPPLY FLART					
011-04	P/369R	GNO FUEL SUPPLY FL/RT					
		TCU LOX IN TEMP	\$555	i			t
010-03	P7113T	TCU LOX INLET TEMP TCU LOX IN TEMP	1111	l .			
010-06			11111	l .			
010-07	P7113T	TCU LOX INLET TEMP	1111	ı			
	P7114T	LOX TOP L/P DISC IN	33555	.			c c
010-01	P7114T	LOX TOP L/P DISC IN LOX TOP L/P DISCON IN TEMP	11111				
010-03	P7114T	LOX TOP LIP DISCON IN TEMP	1111	i			
010-04		LOX TOP TEMP & L/P DISCON					
010-07		LOX TOP LIP DISCON IN TERM					
010-08	P/1141	LOX TOP LIP DISCON IN TEMP	11111	١			
		BI LOX PUMP INLET	85555	•			C
010-01		BI LOX PUMP IN TEMP	11111				
010-03		B1 LOX PUMP IN TEMP	11111				
010-06		BI LOX PUMP IN TEMP	11111				
010-07	F11341	81 LOX PUMP IN TEMP	11111	1			
	P7364T	SUS LOX PUMP INLET	38553				t
010-01		SUS LOX FUMP IN TEMP	11111				
010-03	P73041	SUS .OX PUMP IN TEMP	11111				
010-0 6 010-07	P73047	SUS LOX PUMP IN TEMP SUS LOX PUMP IN PRESS	11111				
010-07	P73041	JOS CON PUMP IN PRESS	****				
	P73057	82 LOX PUMP INLET	\$\$55				t
010-01	P73051	BZ LOX PUMP IN TEMP	11111				
010-01 010-06	P73031	BZ LOV BUMP IN TEMP	11111				
	P7305T	82 LOX PUMP IN TEMP 82 LOX PUMP IN TEMP 82 LOX PUMP IN TEMP 82 LOX PUMP IN PRESS	iiiii				
		404 4404 400 45 F					
	*13257			Ì	1 1 1	3 3	-
024-	P1325T P1325T			•			C C
034-00		ENG COMPT AMB TEMP		1	11	• •	
037-01		ENG COMPT AMB TEMP		i	i		
	B18307	S LOX PUMP INLET		***	1 100		•
		S LOX PUMP INLET TEMP			1 111		t
007-06		S LOX PUMP INLET TEMP			1 111	- •	
024-		SUS LOX PUMP INLET TEMP			ii	1 1	
014-00		SUS LOX PUMP INLET TEMP		1	1		
037-03	P1530T	SUS LOX PUMP INLET TEMP		1	,		
	#7847 T	GNZ STORAGE TK DISCH	****				•

SECTION 9

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

OSTF	2 REC A	SSIGNMNT	26 SEP 62	AE60-0653	123	123456	1234	123	456	1 12	345	030
	001-12			K DISCH TEMP		11111						
	011-01 011-02 011-08		FUEL LINE	TO MSL TEMP TO MSL TEMP TO MSL TEMP TO MSL TEMP								£
	010-01 010-03 010-07 010-06	P75717 P75717 P75717 P75717 P75717	MAIN LINE MAIN LINE MAIN LINE	N @ DISC TEMP-L/P DISCON TEMP-L/P DISCON TEMP-L/P DISCON TEMP-L/P GISCON		5\$555 11111 11111 11111 11111	\$5\$ 111					t
	011-01 011-02 011-05 011-08	P7572T P7572T P7572T P7572T P7572T	MSL TANK F MSL TANK F MSL TANK F	UEL TEMP UEL TEMP								t
	010-01 010-03 010-06 010-07	P7698T P7698T P7698T P7698T P7698T	MAIN LOX L MAIN LOX L MAIN LOX L	INE 8 ROD INE TEMP 0 R-0-0 INE TEMP 0 R-0-0 INE TEMP 0 R-0-0 INE TEMP 0 R-0-0		\$\$\$(\$ 11111 11111 11111 11111						C C
	010-01 010-03 010-06 010-07	P7702T P7702T P7702T P7702T P7702T	LOX TOP LI	NE ROD NE TEMP @ R-O-D NE TEMP @ R-O-D NE TEMP @ R-O-D NE TEMP @ R-O-D		\$\$\$\$\$ 11111 11111 11111 11111						t
	024- 034-00 037-01		BI MACELLE	AMS TEMP AMS TEMP			0 P 1	0 0 F F 1 1	P	0 7 1	ř	t
	024- 036-00 037-01	P1712T P1712T P1712T P1712T P1712T	85 WACEFFE 85 WACEFFE	AMB TEMP AMB TEMP AMB TEMP				0 0 F F 1 1	•	1	ę.	t
	001-02	P78021 P76021	•		7							•
	001-03	P7803T P7803T	SKIN 82 HYS SKIN 82 HYS		7							t
	001-02		SKIN & HYPR SKIN SUS HY		,							t
	10-100		AMB & HYD C		0							t
	1001-02	P70137 P70137	A CAUC SMA A CAUC SMA	87A 1208 87A 1208	7 D							ţ

ŧ .

SECTION 9

	GENERAL DYNAM	ASTRONAUTICS	26 SEPTEMBER 1962
		·	
OSTF 2 REC ASSIGNMENT 26	SEP 62 AE60-0653	123 123454 1234 123456 1 12	
P7814T A	MB QUAD 3 STA 1175 MB QUAD 3 STA 1175	0	E
978157 / 001-02 P78157 /	AMB QUAD 2 STA 1245 AMB QUAD 2 STA 1245	D 1	E E
P7816T - 0	AMB QUAD 1 STA 1248 MB QUAD 1 STA 1248	0	
P78177 001-02 P78177	AMB 51 NAC STA 1245 AMB 81 NAC STA 1245	0	
P7818T 201-02 P7818T	AMB B2 NAC STA 1245 AMB B2 NAC STA 1245	5 1	
P78197 001-02 P78197	AMB QUAD 2 STA 1234 MB QUAD 2 STA 1234	\$ 1	¢
P7820T 001-02 P7820T	AMB 82 NAC STA 1156 AMB 82 NAC STA 1156	\$ 1	Ē.
P7821T 001-02 P7821T	AMR 81 NAC STA 1156 AMB 81 NAC STA 1156	5 1	t .
001-02 P7822T	AMM 51 FUL CTL /LV AMM 31 FUEL CTL VLV	\$ }	t .
#1823T 001-02 P7823T	AMB BZ FUEL CTL VLV AMB BZ FUEL CTL VLV	Ş	t (
001-02 P7824T	AMB 2040 & STA 1240 AMB QUAD & STA 1260	\$ 1	ŧ
978257 001-02 P76257	SKIN 81 NAC STA 1220 SKIN 81 NAC STA 1220	3 1	
P7826T 001-02 P7826T	SKIN BZ NAC STA 1220 SKIN BZ NAC STA 1220	1	•
001-02 P76277	SKIN X AXIS STA 1200 SKIN X AXIS STA 1200	3 1	•
911-02 P79087	PUEL PRESM TE DISCH TEMP PUEL PRESM TE DISCH TEMP		
907-96 P7126V	S IGN STAGE CFL VOLT S IGN STAGE CFL VOLT	111	•
007-09 P7119x 010-01 P7119x 010-02 P7119x 010-04 P7119x	RAPID TOP VLV OPEN	######################################	# ## 1 11 1 11 1 11 1 11

والمعارض للموار

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

123 123456 1234 123456 1 12345

OSTF	2	REC	ASSIGNMNT	26	SEP	62	AE60-0653
0311	•	~~~	A3310.0411				7500 -077

TF 2 REC ASSIGNMENT 26	SEP 62 AE60-0653	123 123494 1234 123494 1 12349
007-05 P7116X F 010-01 P7116X F 010-02 P7116X F 010-04 P7116X F 010-07 P7116X F	RAPID TOP VLV CLSD	RRRRR R R RR RRR R RR 111 111 111 111 1
007-05 P7117X 1 010-01 P7117X 1 010-02 P7117X 1 010-04 P7117X 1	COPPING VLY OPEN COPPING VLV OPEN	RRRRR R R RR RRR R RR RR 111 111 1 111 1111 1111 1111 1111 1111 1111
007-05 P7118X 1 010-01 P7118X 1 010-02 P7118X 1 010-04 P7118X 1	OPPING VLV CLSD	RRRRR R R RR RRR RRR 111 111 1 111 1 111 1 111 1 111 1 111 1
010-01 P7129X V	ENT VLV A-EQ OPEN ENT VLV NEO OPEN ENT VLV NEO OPEN	RRRRR RRR R RRR R RR 11111 111 1 111 1 11 11111 111
010-01 P7130X V	ENT VLV N-80 CLSD ENT VLV N80 CLSD ENT VLV N80 CLSD	RRRRR RRR R RRR R RR 11111 111 1 111 1 11 11111 111
010-01 P7131X L	N DRN PRES NGO OPEN OX DRAIN VLY NGO OPER OX DRAIN VLY NGO OPEN	RRRRR WRR R RRR R PR 11111 111 1 111 1 11 11111 111 1 111 1 11
010-01 P7132X L	N DRN PRES N60 CLSD OX DRAIN VLV N60 CLSD OX DRAIN VLV N60 CLSD	######################################
010-01 P7193K L 010-02 P7193K L 010-03 P7193K L 010-07 P7193K L	OX TOPG TK VV OPEN OX TOP TK VENT VLV OPEN	######################################
010-01 P7194X L 010-02 P7194X L 010-03 P7194X L 010-07 P7194X L	OR TOPG TR VV CLSD OX TOP TR VENT VLV CLSD	RRRRR WAR R RRR R RR 11111 111 1 111 1 11 11111 111
011-04 P7175X P	UEL VLV PA OPEN UIL VLV PA OPIN UEL VLV PA OPIN	
011-04 P7196X F	UEL VLV FA CLSD UEL VLV FA CLSD UEL VLV FA CLSD	

032

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC ASSIGNMNT	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12	245 033
	C LOX STOR TK VV CLSD C LOX STOR TK VENT VLV CLSD		
P7225) 007-05 P7225) 010-01 P7225) 010-02 P7225) 010-04 P7225) 010-06 P7225) 010-07 P7225) 024- P7225)	LOX RAPID LY OPEN LOX RAPID LD VLY OPEN	RRRRR RRR R RRR R 111 111 1 111 1 1111 1 1111 1 1111 1 1111	RR 11 11 11 11 11
P7226) 007-05 P7226) 010-01 P7226) 010-02 P7226) 010-04 P7226) 010-06 P7226) 010-07 P7226) 024- P7226)	LOX FINE LV OPEN LOX FINE LD VLV OPEN	RRRRR RRR R RRR R 111 111 111 1 11111 111	RR 11 11 11 11 11 11 11 11 11 11 11 11 1
P7227) 007-05 P7227) 010-01 P7227) 010-02 P7227) 010-04 P7227) 010-06 P7227) 010-07 P7227) 024- P72273	LOX RAPID LY CLSD LOX RAPID LD VLV CLSD	RRRRR RRR R RRR R RR R R RR R RR R RR R	RR 11 11 11 11 11 11 11 11 11 11 11 11 1
P72281 007-05 P72281 010-01 P72281 010-02 P72281 010-04 P72281 010-07 P72281 024- P72283	LOX FINE LY CLSD LOX FINE LD VLV CLSD	RRRRR RRR R RRR R 111 1111 1 1111 1 1111 1 1111 1 1111 1	
P7236x 010-01 P7'36x 010-02 P7236x 010-03 P7226x 010-07 P7236x	LOX STOR TK VV OPEN LOX STOR TK VENT VLV OPEN LOS STOR TK VENT VLV OPEN LOX STOR TK VENT VLV OPEN LOX STOR TK VENT VLV OPEN	RHRRR RRR R RRR R 11111 111 1111 1 11111 111	RR 11 11 11
P7236X 010-02 P7236X 024- P7236X	LOX DRAIN VALVE OPEN LOX DRAIN VLY OPEN LOX DRAIN VLV OPEN	RRRRR RRR R RRR R 11111 111 1 111 1 1 1 1	RR 11 : :
97240X 010-02 97240X 024- 97240X	LOX DRAIN VALVE CLSD LOX DRAIN VLV CLSD LOX DRAIN VLV CLSD	RRRRR RRR R RRR R 11111 111 1 111 1 1 1 1	RR 11 1
P7241X 010-01 P7241X	LOX CHILLDAN ATA W-1 CT2D	RRR R RRR R 111 1 111 1	RR 11
010-01 P7291x	LOX CHILLDWN VLV N-2 CLSD LOX CHLDN VLV NZ CLSD LOX CHLDN VLV NZ CLSD	MRR 111 111	
P7252X	LOX CHILLDWN VLV N-3 CLSD	RRR	

26 SEPTEMBER 1962

STF 2 REC ASSIGNMNT	26 SEP 62 AE60-1653	123 123456 1234 123456 1 12345
010-01 P7252X 010-02 P7252X		111
P7253X 010-01 P7253X 010-02 P7253X	LOX CHLON VLV N50 CLSD	RRR 111 111
P7922X 011-01 P7922X 011-02 P7922X 011-04 P7922X 011-05 P7922X	FUEL VLV F1 OPEN FUEL VLV F1 OPEN	
P7923X 011-01 P7923X 011-02 P7923X 011-04 P7923X 011-05 P7923X	FUEL VLV F1 CLSD FUEL VLV F1 CLSD	;
	FUEL VLV FZ OPEN	
	FUEL VLV 72 CLSD	
	FUEL VLV F3 OPEN	
P7927X 011-01 P7927X 011-02 P7927X 011-04 P7927X 011-05 P7927X	FUEL VLV F3 CLSD FUEL VLV F3 CLSD	
P7928X 011-01 P7928X 011-02 P7928X 011-04 P7928X 011-05 P7928X	FUEL VLV NF4 OPEN FUEL VLV NF4 OPEN FUEL VLV NF4 OPEN	
P7929X 011-01 P7929X 011-02 P7929X 011-04 P7929X 011-05 P7929X	FUEL VLV NF4 CLSD FUEL VLV NF4 CLSD	
P7930X 011-01 P7930X 011-02 P7930X 011-04 P7930X 011-05 P7930X	FUEL VLV NF1 OPEN FUEL VLV NF1 OPEN FUEL VLV NF1 OPEN	

P7931X FUEL VLV NF1 CLSD

.

-

. .

OSTF	2 REC ASS	SIGNMNT 2	6 SEP 62	AE60-0653	12	3 123456	1234	123456	1 12:	345	
	011-01	P7931X	FUEL VLV	NF1 CLSD							
	011-02	P7931X	FUEL VLV	NF1 CLSD							
	011-04	P7731X	FUEL VLV	NF1 CLSD NF1 CLSD							
	011-03			·							
		27932X	FUEL VLV	NF2 OPEN							
	011-02	P7932X	FUEL VLV	NF2 OPEN							
	211-04	27932X	FUEL VLV	MF2 OPEN							
	011-05	P7932X	FUEL VLV	NFZ OPEN							
		P7933X	FUEL VLV	NF2 CLSD							
	011-01	P7933X	FUEL VLV	NF2 CLSD							
	011-02	P7933X	FUEL VLV	NFZ CLSD NFZ CLSD							
	011-05	P7933X	FUEL VLV	NF2 CLSD							
		P7934X	FUEL A/8	FED VLV OPEN							
	011-01	P7934X	FUEL A/8	FED VLV OPEN							
	011-02	P7934X	FUEL A/8	FED VLV OPEN							
	011-04			FGD VLV OPEN FGD VLV OPEN							
	011-05	F 1734X	FUEL A/B	PER APA CARA							
				FOD VLV CLS		RR		R RRR		RR 11	
	007-04			FED VLV CLSD		11	111	1 111	•	••	
	011-01			F F F F F F F F F F F F F F F F F F F							
	011-02 011-04	P7935X	FUEL A/8	FED VLV CLSD							
	011-05	P7935X	FUEL A/E	B F&D VLV CLSD							
		P7936X	FUEL LVL	TK F11 PUMP OF	PEN						
	011-01	P7936X	FUEL LVI	L TK F11 PUMP OF	EN						
				NSOR LS-10							
	011-01		FUEL SE	NSOR LS-10 NSOR LS-10							
	011-05	P / 93 / A	FUEL SE	430K E3-10							
				L TK FULL							
	011-01	P7938X	FUEL LVI	L TK FULL L TK FULL							
	011-02 011-05		FUEL LVI	L TK FULL							
	· · · · · ·										
		P7939X	FUEL LV	L TK HALF FULL							
	011-01		FUEL LVI	L TK HALF FULL L TK HALF FULL							
	011-05	F 1737X	LACE EA								
				RE TK FULL				R RRR 1 111		RR L 11	
	010-03	P7947X	LOX STO	R TK FULL		11111			•		
		P7957¥	LOX VLV	L7 OPEN		RRRRR					
	010-02		FOX AFA			11111					
		PTOSAY	LOX VLV	L7 CLOSED		RRRRR					
	010-02	P7958X	LOX VLV	L7 CLSD		11111					
		P7959X	LOX VLV	L6 OPEN		RRRRR					
	010-02		LOX VLV			11111					
		P7960X	LOX VLV	L& CLOSED		RRRRR					

STF 2 REC ASSIGNMNT	26 SEP 62 AE60-0653	123 123456 1234 123456 1 12345	936
010-02 P7960X	LOX VEV L& CLSD	11111	
P7963X 010-02 P7963X	LOX A/B F6D VLV OPEN LOX A/B F6D VLV OPEN	RRRRR RRR R RRR R RR 11111 111 1111 1 11	
P7964X 007-06 P7964X 010-02 P7964X	LOX A/B F6D VLV CLSD LOX A/B F6D VLV CLSD LOX A/B F6D VLV CLSD	RRRRR RRR R RRR R RR 11 111 1111 111 11111 111	
034-03 P1051Y 037-01 P1051Y	ENG COMPT ACQUISTIC ENG COMPT ACQUISTIC ENG COMPT ACQUISTIC	N N 1 1 1 1	
U7019N 010-08 U7019N	L/P LOX DISC CAMERA L/P LOX DISCON CAMERA	11111 111	
U7020N	HOT-COLD DISC CAMERA HOT-COLD DISCON CAMERA	LLLL 11111	
010-03 U7080P 010-04 U7080P 010-04 U7080P 010-06 U7080P	LOX TANK HEAD LOX TANK HEAD PRESS LOX TANK HEAD PRESS LOX TANK HEAD PRESS	FFFFF 11111 11111 11111	ξ
011-01 U7081P	FUEL TANK HEAD PRESS FUEL TANK HEAD PRESS FUEL TANK HEAD PRESS		
007-08 U7126V	AA COMP 28 VDC INPUT AA COMP 28 VDC INPUT AA COMP 28 VDC INPUT	F FF 1 11 1 1	ξ
U7134V U7-08 U7134V 024- U7134V	AA TIME SHARED OSC OUTPUT AA TIME SHARED OSC OUTPUT AA TIME SHARED OSC OUTPUT	F FF 1 11 1 1	٤
007-05 U7011X 010-02 U7011X 010-03 U7011X 010-04 U7011X 010-06 U7011X 010-07 U7011X 024- U7011X	RAPID FILL LCX CTL-1 RAPID FILL LOX CTL-1	RRRRR RRR R RRR	
010-02 U7012X 010-03 U7012X 010-04 U7012X 010-06 U7012X 010-07 U7012X	TOPPING LOW CTL-1	RRRRR RRR R RRR R RR 111 111 1111 1 11 11111 111	
007-05 U7013X 010-02 U7013X 010-03 U7013X	TOPPING HIGH CTL-1	RRRRR RRR R RRR R RR 111 111 1111 1 11 11111 111	

26 SEPTEMBER 1962

REC ASSIGNMNT	26 SEP 52 AE60-0653	123 123456 1234 123456 1 12345	•
010-06 U7013 010-07 U7013 024- U7013	X TOPPING HIGH CTL-1 X TOPPING HIGH CTL-1 X TOPPING HIGH CTL-1	11111 111 1 121 1 11 1 11 1 1 1 1 1 1 1	
007-05 U7014 010-02 U7014 010-03 U7014 010-04 U7014 010-06 U7014 010-07 U7014	100% LOX CONTROL-1 100% LOX CTL-1	RRRRR RRR R RRR R RR 111 111 111 1 11 1111 111	
07-05 U701 010-02 U701 010-03 U701 010-04 U701 010-06 U701 010-07 U701	5X RAPID FILL LOX CTL-2	111 111 1 111 1 11 11111 111 1 111 1 11 11111 111	
007-05 U701 010-02 U701 010-03 U701 010-04 U701 010-06 U701 010-07 U701	LEX TOPPING LOW CTL-2	RRRRR RRR RRRR RRR RRR RRR RRR RRR RRR	
970 007-05 U70 010-02 U70 010-03 U70 010-04 U70 010-04 U70 010-07 U70	17X TOPPING HIGH CTL-2		
007-05 U70 010-02 U70 010-03 U70 010-04 U70 010-06 U70 010-07 U70 010-07 U70	18x 100% LOX CONTROL-2 118X 100% LOX CTL-2 118X 110% LOX CTL-2 110% LOX CTL	RRRRR RRR R RRR R RR R RR 111 111 111 1	
011-01 U70 011-05 U70	DZIX FUEL LVL NOT LOW-1	R R R R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
011-01 U7 011-05 U7 011-06 U7	022X FUEL LVL NOT LOW-2	. 11 11	
U7 011-01 U7	7023X FUEL LVL TOO HIGH-1 7023X FUEL LVL TOO HIGH-1	RR AR	

ė

SECTION 9

OSTF 2 REC AS	SIGNMNT	26 SEP	62	AE60-06	53	123	123496	1234	12	23456	1 13	2345		038
011-04	U7023; U7023; U7023;	FUEL	I VI TO	M HIGH-	1				1	. 1	;	1 1		
011-01 011-05 011-06 024-										t R	1	t a		
011-06 024-	U7024X U7024X	FUEL	LVL TO	00 HTGP 00 1/1 //	•				1	. 1	1	1		
007-08 024-	U7125X U7125X U7125X	AA CO	MPUTER MESTER MPUTER	RESET RESET RESET			F FFF 1 111	PFF 111	1	FFF 111		F F		ε
007-08 024-	U7132X U7132X U7132X	AA 51 AA 51 AA 51	A COUN A COUN A COUN	TER OTP	PUT		F FFF 1 111	FFF 111	1	FFF 111		, k		ε
003-15 006-05	Y7052X Y7052X Y7052X	R/V 8 R/V 8 R/V 8	ATT HT	R THERMOS THERMOS THERMOS	S STAT STAT		RRRR 1 111	RRRR 1 111	RR 1	RRA 111	R	RR 11		
003-14 004-05	Y7054X Y7054X Y7054X	LAUNC LAUNC LAUNC	H CONT H CONT H CONT	ROL POWE ROL POWE	IR IR IR		RRR 111 111	RRR 111 111	R 1	RR# 111 111	R 1	RR 11 11		
003-14 006-05	Y7055X Y7055X Y7055X	START START START	COUNT	DOWN PWR DOWN POW DOWN POW	ER ER		RRR 111 111	RRR 111 111	R 1 1	ARR 111 111	R 1	RR 11 11		
003-14 006-05 009-04	Y7056X Y7056X Y7056X Y7056X	28 VD 28 VD 28 VD	C VĒRII C VĒRII C VĒRII	FICATION FICATION FICATION FICATION	 		RRR 111 111 1111	RRR 111 111 111	R 1 1	RRR 111 111 111	R 1 1	RR 11 11		
003-15 003-16 006-05 009-04	Y7059X Y7059X Y7059X Y7059X Y7059X	R/V C R/V C R/V C R/V C	ONTINU ONTINU OUNTINU ONTINU	114 114 114 114		1	RRRRRR 1 1 111 1111	RRRR 1 1 111 111	RR 1 1	RRR 111 111	R	AR		
003-14 006-05 009-04											R 1	RR 11 11		
003-15 003-16 006-05	Y7062X Y7062X Y7062X Y7062X	R/V T. R/V T. R/V T.	ACTICAL ACTICAL ACTICAL ACTICAL	• •		, 1	RRARRA L L 111	RR R	RR 1 1	RRR	R 1	RR		
009-04	¥7062X	R/V T	ACTICAL				iiiii	īii	i	111	ī	ii		
003-14 006-05				FICATION FICATION FICATION	N N		RRR 111 111	RRR 111 111	1	111	1	RR 11 11		
003-14 006-05	Y7065X	START	COUNTD	OWN VFY OWN VER	LFY		RRR 111 111	RRR 111 111	1	111	1	RR 11 11		

GENERAL DYNAMICS ASTRONAUTICS

OSTF 2 REC ASS	SIGNMNT 2	6 SEP 62 AE60-	-0653 123	123456	1234	1234	56 1	. 12	345	Q	39
	¥7066X	TARGET A SET		RRR	RRR	RR			RR		
003-14	Y7066X	TARGET A SET		111	111	1 1			11		
206-05	Y7366X	TARGET A SET		111	111	1 1	11	1	11		
	Y7067X	TARGET B SET		RRR	RRR	RR			RR		
003-14	Y7067X	TARGET B SET		111	111	1 1			11		
006-05	Y7067X	TARGET B SET		111	111	1 1	11	1	11		
	Y7068X	MARK 3 R/V		RRRRH	RRR	R F			KR		
006-05	Y7068X	MARK 3 R/V		111	111	1 1			11		
009-04	Y7068X	MARK 3 R/V		11111	111	1 1	.11	1	11		
	¥7069X	TARGET A SELECT		RRRRRR	RRRR	R RF	RR	R	RR		
003-15	Y7069X	TARGET A SELECT		1	1	1					
003-16	Y7069X	TARGET A SELECT		1	1	1					
006-05	¥7069X	TARGET A SELECT		111	111	1 1			11		
009-04	¥7069X	TARGET A SELECT		11111	111	1	111	1	11		
	Y7070X	TARGET B SELECT		RRRRRR	RRRR	R RE	RR	R	RR		
	Y7070X	TARGET B SELECT		1	1	1					
003-15	Y7070X	TARGET B SELECT		ī	1	1					
003-16	Y7070X	TARGET B SELECT		111	111	1	111		11		
006-05	Y7070X	TARGET B SELECT		11111	111	1	111	1	11		
009-04	110102	TARGET & SEELET									
	77071X	START COUNTDOWN	SIG	RRRRR 111	RRR 111		RRR 111		RR 11		
003-14	Y7071X	START COUNTDOWN	SIGNAL	111	111	i			ii		
006-05	Y7071X	START COUNTDOWN		11111	iii	î			11		
009-04	Y7071X	START COUNTDOWN	210	*****	•••	•		Ī			
	Y7072X	28 VOC RECEIVER		RRRRR					RR 11		
003-14	Y7072X	28 VOC RECEIVER		111	111	1	111		11		
006-05	Y7072X	28 VOC RECEIVER		111	111	1	• • •	•			

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS REPORT NO. AE60-0653 26 SEPTEMBER 1962

This page intentionally left blank.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, THEE IS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIPTED BY LAW.

CONFIDENTIAL

SECTION 10 TEST PLAN AND RECORDER ASSIGNMENTS

This section indicates the recorder assignment of each measurement for each block in which the measurement is required. In addition the code of the test objectives supported by each measurement and the measurement priority in regard to each of those objectives are listed after each measurement.

BLANK PAGE

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

rage 1 OATE 26 SEP 62

_	_			.,,,		- 1	_	- 11			11	Ī												_		_	_	_		
_		_	+			7	TACK.	1	HEAL		-	8		3 U 8								_	_					-		
3	3	1			DESCRIPTION	Ä	>	Counsel		A 1100		10	COMME	De CHAMES PREQUENCY PUNCTION	37	13	3.3				i			L	L	Ш	Ц	_		
į	SYSTEM	MALA SUBSECTION				ì	MECALEKE /	SE I	104	Τ.		8	8	588	П		T		Γ							L		丄		
_		·	_ !	2		-	3	∪ E	100	+			_			_	#	-	+		7	+	Ŧ	-	F		\dashv	\dashv		
_			+	1													_	\perp	$oldsymbol{\perp}$		\bot	1	\perp	Ļ	\perp	-	Ц	\dashv	_	
_	-	 	+	╫						T									L		\perp	\perp	1	1	\downarrow	1		4	- !!	
_	Ļ	754	1 /	╣	ACCEL MSL X AXIS	_	F		Me:	,	•5	G	5%	30							\perp					\perp	Li	_	_	
_	L .	L		_11	ACCEL MSL Y AXIS	-	F		Me	,	.5	G	5%	30	i			T	T							L		\perp		
_	٦	147	- 1	4	Acces not the	_	_		-	+															L		Ш			
L	L	<u> </u>	\dashv	_		_	F	+	M1.	+	1.5	DEG	5%	5				\top	T	П			Ţ	T	Τ	Γ				
L	┺			11	MISSILE NOSE X AXIS	-	-	\vdash	M1.	_1_	1.5			5		Н		\dashv	+	Ť	1		1	1	T	T		П	lli	
L	٨	782	9	٥	MISSILE NOSE Y AXIS	-	-	\vdash	-	+		-			#-	\vdash	7	+	+	\dagger	1	┪	+	T	T	T	П	П	iii	
L	L	<u> </u>				L	_	\vdash		+			-	30	 	H	H	+	+	+	+	+	+	+	+	\dagger	T	1	-#	
	٨	121	7	ρ	HEAT SHIELD DP Q2	_		$\downarrow \downarrow$	M1	+		PID		-	++	1	Н	+	+	+-	-	+	+	+	+	+-	+	\vdash		
ľ	A	121	8	ρ	HT SHLD DP Y-Y AXIS	L	F	\perp	H1	_		PID		30	+	 	Н	+	+	╁	Н	+	+	+	+	+	+	\vdash	- :	
ľ	A	121	9	ρ	HEAT SHIELD DP 01		BF		MI	_	1	PID	.05	30	++-	+		\dashv	+	╁	H	+	+	+	+	+	+	Н		
l	A	122	23	ρ	HEAT SHIELD DP Q3		85		M1		1	PID	.05	30	×	X	L	-	+	+	Н	4	+	+	+	+	+	H	-#	
۲	1	150	35	ρ	HT SHIELD INSIDE 1		F			0	25	PIA	1	500	1	X	X	\sqcup	+	+	\vdash	\dashv	+	+	+	\dotplus	+	-	-+	
r			_	_	HT SHIELD INSIDE 2		,	·		0	25	PIA	1	500	Щ.	X	X	\sqcup	\downarrow	\bot	L	_	+	4	+	+	+	\vdash	$\vdash \downarrow$	-
r	†-	+-				Γ	Γ					l			Щ.	\downarrow	L		\downarrow	\perp			+	\downarrow	4	+	\bot	\vdash		
r	1.	7.9	11	٠	BEND AT STA 900 #1	Ī	7			0	5 K	PIA	250		Ш	\perp	L	Ц	\downarrow	\perp	L	Ц	_	4	4	+	4	\sqcup		
H	_	1				T	١,			٥	5K	PIA	250					Ц	\perp	\perp	L		_ _	-	4	\downarrow	4	1	1	
ł	_			T I	BEND AT STA 900 #2 BEND AT STA 900 #3	Ť	Τ,			0		PIA	1								L		\perp	1	\downarrow	\perp	1	\perp	Щ	<u> </u>
H	_	_			11	t	+		₩-	0	5 K	PIA	250		$\ $	Ţ	Τ.								_	\perp	\perp	1		
ŀ	~	_		1	BEND AT STA 900 #4	\dagger	+-	-	₩-	0	10K		T			T					Ĺ				\perp	\perp	-	\perp	Ш	ļ
ŀ	7		_	+	BEND AT STA 1100 #1	\dagger	+-	-	#	0		PIA	_			T	Ī									\perp	\perp		Ш	<u> </u>
+	+			+-	BEND AT STA 1100 #2	+	+	•	-	0		PIA	+	1	\parallel	T		П			Τ						\perp	L	Ш	
	-			+	BEND AT STA 1100 #3	+	+	F	# -	0		PIA	+	1	\parallel	Ţ	1				T					\prod				
-	÷			+-	BEND AT STA 1100 #4	+	+-	F	#-	0		PIA	+	+	#	+	T			1	T	Γ					\prod	T		
	-			-	BEND AT STA 900 #5	+	+	,	#	0		PIA		-	#	\dagger	+			1	T		П			1	T	1	\prod	
	4	1			BEND AT STA 900 #6	+	+-	-	╫╴	0		PIA	+	+	₩	\dagger	\dagger	1	\sqcap	1	\top		П			T	T	T	Ti	
	_				BEND AT STA 900 #7	+	+	F	₩	0		PIA		+	#	+	+	\dagger	\vdash	+	\dagger	T	Г		П	T	1	T	\prod	
	- 1			_1_	BEND AT STA 900 #8	+	-	-+-		- 1	10K	111	_1		╫	+	+	\dagger		\top	\dagger				Πİ	1	+	+		1
ļ					BEND AT STA 1100 #5	_	-	-	╫╌		10K		_	_	╫	+	+	+	H	Ť	+	+	T	П	\Box	\sqcap	+	+	\top	-
-					BEND AT STA 1100 #4	-	-	-	₩-				-+		₩	+	+	+	H	\dashv	+	+	+	-	H	П	+	+	-	
		1		_	BEND AT STA 1100 #7	$\overline{}$	-+	<u> </u>	₩-		10K	111	_		╢	+	+	+	\vdash	+	+	+	+	\vdash	Н	H	+	+	+	#
		A 7	8 2 1	r	BEND AT STA 1100 #8	_	\perp	7	₩_	0	10K	PI	500	-	╢	+	+	+	\vdash	\dashv	+	+	+-	-	\vdash	\vdash	\dashv	+	+	#
	Γ			T			\perp	\perp	-#-			₩_	+-	+-	-	4	4	+	 	\vdash	+	+	+	\vdash	\vdash	Н	\vdash	+	+	#
	Π	A 1	194	, 1	HT SHLD FWD Q IV		E	F		0	1000) o G	-	5 SL) 	X	× >	-	+	\vdash	+	+	+	-	-	H	\vdash	+	+	₩
	Г	\sqcap		\dagger			\prod											\perp	L	Ц	\perp	Ţ								Ш

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

EPORT NO OSTF-2 L/L COMP

									-		-	 							_		_		_	_		- 11	
,	,	١.			y 2	CHANGE	MEASU	-	UNITS PUNCTION	5	OF CHAMBE PREQUENCY FUNCTION	37	13	3 1	П	1	T	T	_			Т	\neg		1		
1	1		4	DESCRIPTION	T. T.	23	w			ACCURACY	8 2 2		_			+	+	+	-		-	+	4	+-	+	!	
ľ	į	3	E		3	SE	row	111011	8		138	L	L	L	-	_	\downarrow	1	_	Ш		4	4	+	\perp		
F									255		SLO		Ţ	Ţ		+	+	+	-			\dashv	_	\dagger	+		
-	_			HT SHLD FWD Q II	BF		1	1000	DGF		-	+-	^	Ĥ		+	+	+	 -	Н		+	+	+	+	- 11	
L	_		-4	ROTARY INV SKIN	<u>, s</u>		30	120			SLO	4	H		\vdash	+	╁	+	-	Н		\dashv	+	+	+	-	
	٨	7902	T	ARMA PLAT SKIN FWO	S		30	120	DGF		SLO		_	L	Н	+	+	+	L	\vdash		\dashv	+	+	+		
Γ	A	7905	T	ARMA PLAT SKIN AFT	5		30	120	DGF		SLO		_	L		\perp	+	\downarrow	L	H		-	4	+	+-	-	
Γ	A	7904	7	ARMA CONTROL SKIN	S		30	120	DG&		SLO	L	L	Ц		4	1	1	L			4	4	-	\downarrow	-#	
Γ	A	7903	7	TLM XMTR SKIN	S		30	120	DGF		sto	$\!\!\!\perp$	L	L		\perp	1	1	L	Ц		4	4	_	4-	-	
Γ	A	7906	T	ROTARY INV AMB AIR	S		30	120	DGF		SLO	L					\perp		L	Ц	Ц	4	4			_	
r	A	7907	T	AFMA PLAT AMB AIR	5		40	75	DGF	• 5	SLO							\perp					_	ॏ-	\perp	_	
	A	7908	т	ARMA CONT AMB AIR	S		30	750	DGF		SLO					\perp				Ц		\perp	1	\perp	\perp		
十	\vdash		 	TLM XMTR AMB AIR	S		30	120	OGF		SLO						\perp		L	Ц			\perp	\perp		_	
	_			82 POD INLET AIR	S		30	120	DGF		SLO																
1	H		-	AIG POD INNER SKIN	s		30	120	DGF		SLO					\prod											ļ
十						1						il				$oxed{I}$										ij	
\vdash		1780	v	ARMA POD ACGUST	N		115	155	DB	5%	20K	×	×	x			Ţ	\prod				Ī			L	أ	<u> </u>
\vdash															П		Ī	T									
-	-	7002	V	28 VDC GND VOLTAGE	F	1	ŏ	35	VDC	5%	25		Γ	x	П	1	T						7				
\vdash					F	1-1	٥	 	VAC	5%	25						T	T		П			Ī				
\vdash				400 CPS GND VOLTAGE		1	1		VOC		100	\parallel	Γ	×		\top		T		П							
-	_			28 VDC A/B VOLTAGE	5		-					\parallel	T	×		1	T	Ť					1	\top	Ī		
-			Τ.	400 CPS INVERTER OUT		+ 1	0		VAC	55	25	#	-	Î	П	+	\dagger	\dagger	1	П	П		7	\top			
-	-			440 V IN TO DC SUP	1	+	100		VAC	5%	25	#	-	×	H	\dagger	\dagger	\dagger	-	П		1	+	1	T		
-	٤	7010	V	115V 60 CPS GND VOLT	-	-	100	120	VAC	34		╫╌	1	1	H	+	+	\dagger		П		\dashv	+	\top	T		1
-	-		\vdash		H-	+	#		2:0		20	-	x	,	H	+	+	\dagger	-	Н	H	+	+	+	+		
			++	LOX TANK PRESSURE	85	+ +	0	 	PIG	.5		+		1	H	+	+	+	-		Н	\dashv	+	+	\dagger		
-	-		++	FUEL TANK PRESSURE	35	+	0	 	PIG	1	20	il -	×	+-	Н	+	+	\dagger	\vdash		H	+	+	+	Ť		-
L	_		++	FUL TK PRES DUCT PCU	85	+	-	75	PIG	2		×	X	^	Н	+	+	+	-			+	+	+	+		
L	_		++	FUL TK PRES DUCT ROD	,	+-1	0	75	₩	1.5	20	-	-	-	Н	+	+	+	+	-	Н	+	+	+	+	-	
L	-		++	LOX TK PRES DUCT PCU	BS	+	0		PIG	.5	20	×	X	×	H	+	+	+	\vdash	\vdash	\vdash	+	+	+	+	-	
L	₩.		-	LOX TE PRES DUCT ROD	F	+ +	c		PIG	.5	20	₩-	-	\vdash	H	+	+	+	-			\vdash	-	+	+		
L	F	7020	P	LN2 P . ROD	<u> </u>	-	11	100	+		+	#-	\vdash	-	H	+	+	+	\vdash	-		\dashv	+	+	+		
L	F	7056	P	GNZ H PRESS MANIFOLD	,	1_	 	5000	+			+	L	\vdash	Н	+	+	+	-	\vdash	Н	}+	+	+	+		
	7	7057	P	GM2 PRES VLV N-2 INL	-		0	5000	+		+	++ -	L	L	Н	\dashv	+	+	-	-	Н	H	4	+	+		-
	F	7058	P	GNZ PRES VLV N-2 OUT	P	$oxed{oxed}$	0	200	PIA	•	750	Щ_	L	_	Ц	1	+	+	L	Ļ	Ц	$\vdash \downarrow$	4	+	+		
i									↓	<u> </u>		Щ_	Ļ	L	Ш	1	+	+	L	\perp	L	\sqcup	4	4	+		-
1	Γ		П											<u> </u>				<u> </u>		L				ŀ		Ш	

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

_	-		П			_		Ī					I	_					_	_		_								
		1.	1		y .	MECARE IN / MACK	CHANNEL	MEASU	-	UNITS PUNCTION	ACT .	OF CHARGE PREQUENCY FUNCTION	57	nt 3	8 :		- 1	_	1	-	1	- _T	1	-	1	_	_			l
A CEE	T.	PENSON ELECTRON	3	DESCRIPTION	TLM / MAC	`	,5	w		25	ACCURACY	243			L	Ц	Ц	4	1	4	4	+	4	4	4	+	+	+	4	
	-	1"	T.				SE	row	H1644	8	•	188											1			\perp	\perp	\perp		
\vdash	+		-			_										\Box		7	7	-	7	7	+	4	7	+	+	+	-	\dashv
		7059	P	LOX STOR TK ULLAGE	\perp	F		٥		PIA	٠	750		_	L	L		4	4	4	+	\dashv	+	+	+	+	\downarrow	+	₩	
	F	1145	P	S CTL HE BOTTLE DISC	!	5		0	3250	PIA	65	10	×	X	X	Ц	Ц	1	4	4	4	\downarrow	4	4	4	4	+	+	₩_	
П	F	7145	P	S CTL HE BTL DISCH		s		0	3500	PIG	76	SLO		L	L			_	4	4	4	4	4	+	+	+	. ļ	+	₩	
П	F	7246	P	B TANK HE BOTTLES HI		\$		0	3500	PIG	70	SLO	<u> </u>		L	\perp	Ц	4	4	+	4	4	4	4	4	+	+	\downarrow	₩	
	F	7713	ρ	A/8 LN2 SHROUD		F		0	20	PIG	. 5		L	L	L	_	Ц	4	4	4	4	4	4	-	+	+	\downarrow	\dotplus	₩-	
\Box	F	7716	P	GND HEAT XGR HC IN	Ц			0	4000	PIG	80	ŝLO	\parallel	L	L	L	Ц		4	4	4	+	4	4	4	+		\downarrow	#	¦
	F	7717	Ρ	GND HEAT XGR HE OUT	Ц			0	4000	PIG	80	SLO	 	_	L	4_			4	4	4	4	4	+	+	+	\downarrow	\dotplus	₩-	
	f	7720	ρ	LN2 STORE XFER P				0	150	PIG	3	SLO	1	L	L	L	Ц	4	4	4	-	-	4	-	+	+	+	+	-	
	F	7723	P	HE SUPPLY #1 # PDU	Ц	F		0	8000	PIG	160		\parallel	L	L	\perp			4	-	4	4	-	1	+	4	+	+	#	
П	F	7725	Ρ	GNZ SUPPLY & POU		F		0	4000	PIG	80		1	L	L	+-			4	\dashv	4	4	4	4	+	+	4-	-	#	
	F	7727	P	REGULATED INST AIR		F		0	350	PIG	7		Щ_	L	Ļ	+-	\perp		4	4	_	4	4	-	4	+	+	+		
	F	7731	P	HE SUP #2 @ TP E	Ш	٥		•	8000	PIG	160	10	Ш_	L	Ļ	1			-	4	_	-	4	4	+	+	+	+	-	
	F	7735	ρ	HE SUP TO MSL . HCU	Ц	F		0	5000	PIG	100		\parallel	L	1	1			4	-	4	4	-	-	\downarrow	+	+	+	4	
	f	7737	F	FUL TK HE SENS HOU	Ц			0	70	PIG	1.5		\parallel	L	1	\perp			_	4	_	_	4	4	4	_	+	+	<u> </u>	
													L	L	ļ	\perp	L		_	_	_	_	4	_	4	4	4	4	Щ_	
	F	7719	R	STORAGE TANK LNZ OUT		F		٥	120	GPM	3			L		\perp	L		_	_		_	_	4	4	\downarrow	\downarrow	\downarrow	- -	
							Ш	<u> </u>		L		_	\parallel	L	1	\downarrow	L	Ц	_	4	_		_	-	4	\downarrow	+	\downarrow	₩-	
	۶	7017	7	FUEL TK PRESS DUCT				0	150	DGF	3	SLO	\parallel	Ļ	Ļ	1	-	Ц	_	_	_		4		-	- 	-	+	₩-	
	F	7018	Т	LOX:TK PRESS DUCT	Ц			0	150	OGF	3	SLO	1	L	+	\downarrow	\perp	_	_	-	4		4	\dashv	+	+	+	+	₩-	
	۴	1247	7	S TANK HE BOTTLE		5		M400	M250	DGF	10	SLO	×	-	\downarrow	\downarrow	L		4	-	4	-	\dashv		-	+	+	+		
	F	7248	7	HE TEMP HI 4 BTL		F		M330	100	DGF	2%	SLO	Щ_	↓.	1	\downarrow	$oldsymbol{ol}}}}}}}}}}}}}}$	Ш	-	_	4		-		+	+	+	+		
	F	7249	Т	HE TEMP LO 4 BTL	Ц	*		мэ30	M200	DGF	2%	SLO			\downarrow	\perp	_		_	_	_		4		_	4	4	+	-	
	F	7250	Ŧ	HE TEMP LO 2 BTL	Ц	F		M330	M200	DGF	+	SLO		1	1	4-	-	Ц		_	4				4	+	\downarrow	\downarrow	-#-	
	F	1290	7	S CTL HE BOTTLE	Ц	8		M100	300	DGF	4	SLO	×	X	×	1	1	Ц	_	_	_				-	4	4	+	#	
	F	7290	7	S CTL HE BOTTLE	Ц	5	<u> </u>	M100	300	DGF	•	SLO	_	Ļ	\downarrow	1	-	Ц	4		4		Ц		1	4	4	4	-#-	
	F	7714	T	GND:HEAT XGR HE IN	Ц		<u> </u>	0	100	DGF	2	SLO		\downarrow	1	_	L	Ц	_				Ц		4	_	+	\downarrow	-#-	
	F	7715	T	GND HEAT XGR HE OUT	Ц		1_		1	DGF	1	SLO	_	1	1	1	L	\sqcup	_	Ц		L			4	+	4	\downarrow	#	
	1	<u> </u>	_	HE SUP TO MSL . HCU		F	<u> -</u>		160			ļ		1	1	\downarrow	\perp	L			_	L		Ц	_	\dashv	\downarrow	+	-₩-	
	F	7738	T	FUL TK HE SENS . HCU		F	↓_	₩	160	++	 -	-	₩.	\downarrow	1	+	ļ.	-		_	_					4	+	+	-# -	
	F	7745	7	HE SUP TO MSL # ROD	$oxed{oxed}$		_	M350	M300	DGF	1	<u> </u>	#	Ļ.	1	4	+	L				L	L			+	+	+	-₩-	
				!					<u> </u>	II				\downarrow	1	1	\downarrow	L			_	L	L	L			\downarrow	+	- -	
Γ	н	7987	0	HI DOOR POSITION		٥		0	100	D€G	2	SLO	\parallel	×	4	\downarrow	1	_	_	L	L	L	L			_	\downarrow	+	- -	
Γ									<u> </u>	Щ			\parallel	1	\downarrow	1	1	L	L.		_	L	_	_		_¦	_	4	#	
Γ												-		1	ł	_	L	L		L.	L	_		L						

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

Т	Ĭ		\Box	lit:		_		il		ill	T	Ι	iii		_		_		_			_	-	_				
		1.	10000		y,	mod	4	₩	A CHARLES	Ž.	15	FOR CHAINGE PROUGNEY		. 7	76	,		,				_	_		T .	_		
ž	E	A SAULE SAUL	1	DESCRIPTION		ľ	1.3	•	. #6 4	UMITS FUNCTION	ACCURAC	2 8 2		571	10	1			1		1							
ľ		3.			The /		35	row	нен	8	3	388								Ĩ		T						.
F			#						-	#	1	#	#	7	Ŧ	\top		7	7	+	7	Ŧ	F	_	\Box	7		#
L	н	7988	0	LO DOOR POSITION		٥		0	100	DEG	2	SLO	Щ	X	\downarrow	\perp		1	1	\perp	\perp	Ļ	L	_	Ц	\downarrow	\perp	<u> </u>
L												1	Ш	\perp														
	H	7501	P	HPU B FILL LINE P		F		0	5000	PIG	30	5	\parallel															
	н	7502	P	HPU B RETURN LINE P		F		0	500	PIG	5	5	\parallel						L		ŀ							il II
	Ħ	7503	P	HPU SUS FILL LINE P		F		0	5000	PIG	50	5																
L	н	7504	۹ .	HPU SUS RET LINE P		F		0	500	91G	5	3	\parallel			Ш	\perp	\perp				L					Ш	
L	н	7507	P	SYSTEMS HYD ACUM		F		0	5000	PIG	100	200		X														<u> </u>
	н	7508	P	UPPER DOOR HYD ACUM		F		0	5000	PIG	100	200		×						$oldsymbol{\perp}$								
	н	7509	P	LOWER DOOR HYD ACUM		F		0	5000	PIG	100	200	\parallel	X	L	Ш		1		1		L					Ц	
	н	7515	P	HOR CRIB LK CYL HD	\perp	F		0	5000	PIG	100	40		×	L	Ц	\perp	1		\perp	Ĺ	Ĺ					Ц	ļ
	н	7516	P	L/P LOCK-LOCKING		F		0	5000	PIG	100	200	Щ	X		Ц	\perp	\perp	1			L			\perp	\perp		
	н	7527	P	WGE LKS LOCK ROD END		ř		0	5000	PIG	100	200		×	L				L			L						
	н	7528	P	WEDGE LK LKN CYL END		F		0	5000	PIG	100	500		x	L		\perp		L			L						
	н	7529	P	L/P BRAKE		s		0	5000	PIG	100	+0		X														
	н	7969	P	CRIB LOCKS VERT		F		0	5000	PIG	100	40		X														
	н	7975	P	LWR DOOR CYL ROD END		F		0	5000	PIG	100	40		×						L								
	н	7976	P	L/P LOCK-UNLOCKING		F		0	5000	PIG	100	200		×	L	Ц			L									
Ц	н	7981	P	UPR DOOR CYL HD END		-			5000	PIG	100	40		×			\perp	\perp	L						1			
	н	7982	Р	LWR DOOR CYL HD END		F		0	5000	PIG	100	40		×		Ц	\perp											
	н	7986	Р	UPR DOOR CYL ROD END					5000	PIG	100	40		x			\perp	\perp	L							Ĺ		
																			L									
	H	7181	T	HYD FLUID S PCH ACTR				M200	200	DGF		SLO																
	н	7182	T	HYD FLUID S YAW ACTR		F		H200	200	DGF	8	SLO				\prod			L									
	H	7531	T	BOOSTER SYSTEM OIL		•		M50	150	DGF	3	SLO																
	Ħ	7532	T	SUST SYSTEM OIL		•		M50	150	DGF	3	SLO																
						Ī																						
	Η.	7190	X	H CRIB LK 2 NOT EXT		1		OFF	ON	VDC		STP	×	x	x		I											
ŀ	•	7191	×	HOR CRIB LK #2 RET	I	ı		OFF	ON	voc		STP	x	x	X		I							I				
7	7		Γ	VERT CRIB LK #2 RET	F	į		OFF	ON	YDC		STP	×	×	x	\prod								I	\prod			
J	•	7193	×	VERT CRIB LK #2 EXT	F	ı		OFF	ON	VDC		STP	x	x	X	\prod												
	1	7194	x	L/P WEDGE LK 3 EXT	,	1		OFF	ON	voc		STP	X	x	χŢ						Ī	\int						
ŀ	4 7	7195	x	L/P WDG LK 3 NOT RET	F			OFF	ON	VDC		STP	X	x	χ							\int						
													L															
\int	\int					I											\prod					T		\int				

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO OSTE-2 L/L COMP

													-	_	_									
	,	Ĭ.	1977		9	1	NA NA	MEASU	a Parker?	3	ţ	E OF CHANGE PRECIONCY FUNCTION		77	17	***	7 7	 -	T T		,			-
THE CLE	\$75TE	MEASURE LIEUT THE LIEUTE	MASUR	DESCRIPTION	The / Mic		,5		×66	Punct.	ACCUBAC	339	L	ľ	13	1	Ш		1					-i.i
ľ		À.	2		-	MOCARRIE	Sž	row	нен	8	1	188	H							1				11]
F			\Box		_	_		-					Ŧ	F	H			Ŧ	Н			4	+	11
L	Ħ	7196	X	L/P MIN LK 3 NOT EXT	L	R		OFF	ON	VDC		STP	X	X	X	\Box	\sqcup	+	4		L	1	+	lil .
L	н	7197	X	L/P MAIN LK #3 RET	L	R		OFF	ON	VDC	L	STP	X	X	X			_	Ш	1			+	
	н	7198	X	EXTEND WOG LKS SIG		R		OFF	ON	voc		STP	×	X	X			_	Ц	\perp			_	<u> </u>
	H	71,99	X	RETRACT WDG LKS SIG		R		OFF	ON	VDC		STP	×	X	X				Ш	\perp				
Г	н	7200	X	EXTEND MIN LKS SIG		R		OFF	ON	VDC		STP	X	X	X				Ш					
Γ	н	7201	×	RETRACT MIN LKS SIG		R		OFF	ON	VDC		STP	x	X	X									
Γ	н	7202	x	EXTEND HOR LKS SIG		R		OFF	ON	voc		STP	X	X	×									
Γ	н	7203	×	RETRACT HOR LKS SIG		R		OFF	ON	VDC		STP	X	×	x					$oxed{oxed}$				
Γ	н	7805	x	OPEN UPR DOOR SIG		R		OFF	CN	voc		STP	x	x	x			1				Ī		
Γ	н	7806	x	GPEN LWR DOOR SIG		R		OFF	ON	VDC		STP	x	x	×			İ				Ĺ	Ĺ	
Γ	н	7807	x	L/P LOCK ASSY OPEN		R		OFF	ON	VDC		STP	x	x	X									
Г	н	7809	x	RETRACT VER LKS SIG		R		ON	OFF	VDC	c	STP	x	x	x									il
	н	7810	×	CLOSE UPR DR SIG		R		NC	OFF	VDC		STP	x	X	x					İ	: ;		l	į)
	Η	7811	x	CLOSE LWR DR SIG		R		ON	OFF	VDC	Ī	STP	×	x	x		Ш			\perp				
Γ	н	7812	X	L/P LOCK ASSY CLUSE		R		CN	OFF	VDC		STP	×	X	X						L			.11
Γ	н	7816	×	EXTEND VER LKS SIG		R		ON	OFF	VDC		STP	ļχ	x	x									
	н	7820	x	HPU START		R		OFF	ON	VDC		STP		x	x									
	1:	7972	x	PRESS SW RETURN		R		ON	OFF	VDC			×						Ш					<u> </u>
П																						į	!	<u>III</u>
	í	7515	A	ACCELEROMETER XF1		F			. 1.80	VAC		5K	x	x	x								İ	
	ī	7516	A	ACCELEROMETER YF1		F			:180	VAC		5K	x	X	x					j			L	iil
Γ	1	7517	A	ACCELEROMETER ZF1		F			-180	VAC		5K	x	x	x		Π						Ī	ili
Γ	I	7518	A	ACCELEROMETER XF2		F			•180	VAC		5K	x	x	x							_ [
Γ	ī	7519	A	ACCELEROMETER YF2		F			.180	VAC		5K	x	x	x					Ţ				
Γ	1	7520	A	ACCELEROMETER 2F2		F			•180	VAC		3K	х	×	X									
Γ							П											Ī					Ī	l.
Γ	I	7591	c	PITCH GYRO TORQUE		D		M+5	. 5	VDC		10		Γ	×			Ì			Π		T	ill
Γ	1	7592	С	ROLL GYRO TORQUE		D		M.5	.5	VDC		10	x	x	×								Ĺ	
				YAW SYRO TORQUE		D		M. 45	.45			10			-									
Γ																					П			
Γ	1	7501	D	OPTICAL AZM SIGNAL		0		M. 05	•05	VAC		20	x	×	×				Ιİ					1
Γ	ı	7511	D	ROLL PENDULUM		D		M+02	•02	VAC		10	×	x	x		П		П	1	П		İ	
Γ					Г									† 			П	1		1				
Г	7												-	T			\sqcap	T	П		П	\dashv		1
_	_		<u> </u>	·			L		<u> </u>			ــــــــــــــــــــــــــــــــــــــ	٠	-	-		<u> </u>		1 1	- 1		<u> </u>		

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

DATE 26 SEP 62 PAGE 6

F			=		_	4						9.	╫╌									-					li	\neg
	,	Į,	1		¥	/macc	3	MEASU	-	UNITS PUNCTION	5	OF CHANGS FEGURESCT FUNCTION	3	Œ.	83	FT	Т			Т	Т	Т	Т		I	_	1	
A CALL	Srint.	MAASURE S	ut v	DESCRIPTION	Tal / MAC	3	1.0	144	•••	3 2	ACCURAC	8 2 2	L	Ļ	L	1	+		\perp	+	+	+-	+		+	+	-	
		: 1 ·	Ē	i L		3	32	row	ні фи	દ		188		L			\perp			1	1	_	_	Ц	_	4		
			-											+	-	+	+		\dashv	+	+	+	+	H	+	\dagger		
L	1	7512	٥	PITCH PENDULUM		د		M.02	•02	VAC		10	₩	+-	╁		+-	-	\vdash	+	+	+	╁	Н		+	-	ᅱ
L	1	7549	٥	PITCH SERVO ERROR		٥			20	VAC		10	₩-	X	+-		+	-	4	+	+	+	÷	-+	+	+		
Γ	1	7550	٥	ROLL SERVO ERROR		٥			20	VAC		10	×	×	X	Ц	\perp		\sqcup	4	1	4	↓_	Li	_	4		∤
Γ	I	7551	D	AZIMUTH SERVO ERROR		٥			20	VAC		10	×	X	X		L	L	Ц	\perp	_	\perp	Ļ	Ш	_	\perp	1	
Г	I	7552	٥	REDNOT GYRO PICK-OFF		OF			5	VDC		20	X	X	X		\perp		Ц				ot	Ц	\perp	_		
卜	1	7572	٥	ROLL MEMORY		0		0	.010	VAC		10	×	X	×								L					
r	ı	7573	٥	PITCH MEMORY		D			•01C	VAC		10	×	X	x		\perp					_	L					
卜	1	7574	٥	AZIMUTH MEMORY		D			0600	VAC		10	×	X	X	L	\perp			1	\downarrow	1	\perp		\perp	<u> </u>	1	
Г	1	7576	D	ZERO LAG OUTPUT I		0			.030	VAC		20	×	X	×	Ц	\perp				\downarrow		\perp		1	_	•••	
T															L						\perp		L		_	\perp		
r	ı	7505	H	COMPUTER POSITION X		F		0	5	VDC		10K	×	X	X						Ĺ		<u> </u>				1	
r	1	7506	н	COMPUTER POSITION Y		F		0	3	VDC		10K	x	X	×								L					
H	-	7507	-	COMPUTER POSITION Z	Г	F		0	5	VDC		10K	×	×	x									Ш				
	1	7508	Н	RINGE ERROR FUNCTION	Г	F		С	5	voc		10K	×	x	x											\perp	111	
	Н		-	AZM ERHOR FUNCTION		F		0	5	voc		10K	×	X	X								L			\perp	Ш_	
 						_															Ĺ							
十	,	7502		COMPUTED VELOCITY X	Г	F			5	VDC		10K	×	×	x													
				COMPUTER VELOCITY Y		*		0	5	VDC		10K	x	x	x											\perp	Ⅲ_	
ì-			1 1	CHPUTER VELOCITY Z	Γ	F	П		,	νος		10K	×	x	x													
H	1	7504		APOTER VEEDCHT 2	Г	Ė	!	<u> </u>		1				Γ	Г		T	Γ									$ lap{ } lap$	
卜		75.28		ALIGN GROUP RADIAL		F		мэ	5	G		30			x													
+			П	ALIGN GROUP TANG		F		м5	5	G		30		Ī	x													
\vdash	-		\rightarrow	ALIGN GROUP AXIAL		F		мэ	9	G		30		T	x	П	T	Γ			T	T	Γ	П		Ī		
\vdash	Ė	1746	۲	ME-OIL GROUP CAICE		 	\Box	 		₩ <u>-</u>			#	1	T	\sqcap	\top		П	1	T		T	П	1	1		
\vdash		7015		COMPUTER EXHAUST	-	5	\vdash	40	75	DGF	.5	SLO	#	\dagger	\vdash		\top	T		Ť	\dagger	+	\top		7	1	111	
-	۲	1013	H	COMPOTER CANNOT	\vdash	 	+-+	#		·			\parallel	t	\vdash	H	\dagger	 -	\Box	†	\dagger		1	П	\top	+	111	
-	Ļ			WANT # # # # # # # # # # # # # # # # # # #	\vdash	-	\vdash	#	-	VDC	-	20	×		X	\vdash	+	1	\Box	+	\dagger	+		H	+	+	\parallel	\dashv
H	-		\vdash	YAW STEERING SIG	_	,	-		5	VDC	_	20	×	┿	X	\vdash	+	-	H	+	+	\dagger	+	H	+	+	#-	\dashv
\vdash	1		-	ROLL RESOLVER SIG	-	╀	╁╼┥		5	₩		20	#	┿	┿	\vdash	+	-	H	+	+	+	+	H	\dashv	+		\dashv
-	-		-	PITCH RESOLVER SIG	-	-				VOC			Ĥ	^	1	H	+	-	H	+	+	+	+	-	\dashv	+		\dashv
L	-		-	TEMP CONTROL AMP OUT	-	F			+	VDC		1	-	+	+	\vdash	+	\vdash	-	+	+	+	+	H	+	+	#-	\dashv
_	1	7580		AZM RESOLVER SIG	-	F	\vdash		5	VDC		20	X	X	Ť.	\vdash	+	\vdash		+	+	+	+	\vdash	\dashv	+		ㅓ
-			Ц		-	<u> </u>				 			-	\vdash	1	+	+	\vdash	╁	+	+	+	+-	\vdash	+	+		\dashv
L	1	7510	w	ELAPSED TIME	L	•		0		SEC	-	-	X	X	×	-	+	\vdash	\vdash	+	+	+	+	Н	+	+	#	\dashv
					L			1		-	L]		L		Ш		_	Ц	┸	1		<u></u>	Ш	_		Ш	

-

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

PEPORT NO OSTF-2 L/L COMP

	X	VERN ENGINE COF SIG S ENGINE COF SIG PRE-ARM RELAY CLOS ELEVATION WARNING STAGING SIGNAL START COUNTOOWN ST FIME ALN-TRG MODE Z AXIS VERT-FINE ALN FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL ZERO Z ACC COMPLETE	Ball Bo	HINTOTO H. H. H. R. H. R. R. R. R. R. R. R. R. R. R. R. R. R.	32	OFF OFF OFF OFF OFF OFF	5 5 ON 5 ON	VDC VDC VDC VDC VDC VDC VDC VDC VDC VDC	Corphopor	STP STP STP STP STP	x x x x x x x x x x x x x x x x x x x	X X X X X X X	X X X X X X X X X X											
1 7522 2 7927 1 7537 1 7537 1 7570 1 7611 1 7612 1 7613 1 7616 1 7615 1 7616 1 7617 1 7620 1 7621 1 7623 1 7624 1 7625 1 7626	X	S ENGINE COF SIG PRE-ARM RELAY CLOS ELEVATION WARNING STAGING SIGNAL START COUNTOOWN ST FIME ALM-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		F R R R R R R R		OFFOFFOFFOFF	5 5 ON 5 ON ON ON ON ON	DOV DOV DOV DOV DOV DOV DOV DOV DOV DOV		STP STP STP STP STP STP STP	x x x x x x x x x x x x x x x x x x x	X X X X X X X X	X X X X X X X X X X											
1 7522 1 7527 1 7537 1 7537 1 7518 1 7618 1 7619 1 7620 1 7620 1 7623 1 7626	X	S ENGINE COF SIG PRE-ARM RELAY CLOS ELEVATION WARNING STAGING SIGNAL START COUNTOOWN ST FIME ALM-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		F R R R R R R R		OFFOFFOFFOFF	5 5 ON 5 ON ON ON ON ON	DOV DOV DOV DOV DOV DOV DOV DOV DOV DOV		STP STP STP STP STP STP STP	x x x x x x x x x x x x x x x x x x x	X X X X X X X X	X X X X X X X X X X											
: 7927 1 7937 1 7937 1 7570 1 7611 1 7613 1 7613 1 7615 1 7616 1 7617 1 7616 1 7619 1 7620 1 7621 1 7623 1 7624 1 7625 1 7626	X	PRE-ARM RELAY CLOS ELEVATION WARNING STAGING SIGNAL START COUNTDOWN ST FIME ALM-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL		F R R R R R R R R		OFF OFF OFF OFF OFF	5 ON 5 ON ON ON ON ON ON ON ON ON ON ON ON ON	voc voc voc voc voc voc voc voc voc voc		STP STP STP STP STP STP STP	x x x x x x x x	X X X X X X X	X X X X X X X X											
1 7537 1 7570 1 7570 1 7611 1 7612 1 7615 1 7616 1 7617 1 7620 1 7622 1 7623 1 7626 1	X	ELEVATION WARNING STAGING SIGNAL START COUNTOOWN ST FIME ALM-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R F R R R R R R R		OFF OFF OFF OFF OFF	ON 5 ON ON ON ON ON ON ON ON ON ON ON ON ON O	20V 20V 20V 20V 20V 20V 20V 20V 20V		STP STP STP STP STP STP STP	x x x x x x x x x x x x x x x x x x x	XXXXXXXXX	X X X X X X X											
1 7570 1 7611 1 7612 1 7613 1 7616 1 7615 1 7616 1 7617 1 7618 1 7620 1 7622 1 7623 1 7624 1 7625	x x x x x x x x x x	STAGING SIGNAL START COUNTOOWN ST FIME ALN-TRG MODE Z AXIS VERT-FINE ALN FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL MGS INERTIAL		F R R R R R R R		OFF OFF OFF OFF	5 ON ON ON ON ON ON ON ON ON	VDC VDC VDC VDC VDC VDC VDC		STP STP STP STP STP STP STP	x x x x x	X X X X X	x x x x x x											
1 7611 1 7612 1 7613 1 7614 1 7619 1 7616 1 7617 1 7618 1 7619 1 7620 1 7621 1 7623 1 7624 1 7625 1 7626	x x x x x x x x x	START COUNTOOWN ST FIME ALM-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R R R R R R		OFF OFF OFF OFF	ON ON ON ON ON ON ON ON ON ON ON ON ON O	V0C V0C V0C V0C V0C V0C		STP STP STP STP STP STP	x x x x x x x x x	XXXXX	x x x x											
I 7612 I 7613 I 7614 I 7615 I 7616 I 7617 I 7618 I 7620 I 7622 I 7623 I 7624 I 7626	x x x x x x x x	ST FIME ALN-TRG MODE Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R R R R		OFF OFF OFF OFF	ON ON ON ON ON ON ON ON ON ON	00V 00C 00C 00C 00C 00C		STP STP STP STP STP STP	x x x x x	X X X X	x x x x x											
I 7613 I 7614 I 7615 I 7616 I 7617 I 7618 I 7620 I 7622 I 7623 I 7624 I 7626	X X X X X X	Z AXIS VERT-FINE ALM FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R R R		OFF OFF OFF	ON ON ON ON ON ON	20V 20V 20V 20V 20V 20V		STP STP STP STP STP	x x x x	x x x	x x x x											
I 7614 I 7615 I 7616 I 7617 I 7618 I 7619 I 7620 I 7621 I 7623 I 7623 I 7624 I 7625 I 7626	X X X X X X	FINE ALMNT COMPLETE COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R R		OFF OFF OFF	ON ON ON ON ON ON ON ON	voc voc voc voc voc		STP STP STP STP	x x x	X X X	x x x											
I 7615 I 7616 I 7617 I 7618 I 7619 I 7620 I 7622 I 7623 I 7624 I 7625 I 7626	x x x x x x	COMPUTER TEST COMP START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R R		OFF OFF OFF	ON ON ON ON ON ON	VDC VDC VDC VDC		STP STP STP	×	X	x x	-										
I 7616 I 7617 I 7618 I 7619 I 7620 I 7621 I 7623 I 7624 I 7625 I 7626	x x x x	START X ACCEL OFFSET ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R		OFF OFF OFF	ON ON ON	VDC VDC VDC		STP STP	x x	x	x											
I 7617 I 7618 I 7619 I 7620 I 7621 I 7623 I 7624 I 7625 I 7626	x x x x	ACCEL TEST COMPLETE IGS READY GO INERTIAL COMMAND MGS INERTIAL		R R		OFF OFF	ON ON	VDC VDC		STP	x	X	x	-		-								
1 7618 1 7619 1 7620 1 7621 1 7622 1 7623 1 7624 1 7626	x x x	IGS READY GO INERTIAL COMMAND MGS INERTIAL		R		OFF	ON ON	VDC VDC		STP	x	┿		-						_	H		-	<u> </u>
I 7619 I 7620 I 7621 I 7622 I 7623 I 7624 I 7625 I 7626	x x	GO INERTIAL COMMAND		R		OFF	ON	VDC			44	x								- 1	1	1 1	1	
I 7620 I 7621 I 7622 I 7623 I 7624 I 7625 I 7626	x	MGS INERTIAL				 		₩		STP			1^1								Ш		<u> </u>	
I 7621 I 7622 I 7623 I 7624 I 7625 I 7626	x			R		OFF	ON	l _{voc}		i	ıl x	X	X					Ц		\perp		Ц		
I 7622 I 7623 I 7624 I 7625 I 7626	+ +	ZERO Z ACC COMPLETE		_		11	1	VUC		STP								Ш						
I 7623 I 7624 I 7625 I 7626	T	 	1 !	₹		OFF	94	VDC		STP	ji ji	X	x										_	
I 7624 I 7625 I 7626	X	SCALE X PLUS 13		R		0*F	ON	VDC		STP	×	x	X			\perp		Ц	_			!	\perp	╙——
I 7625	×	SCALE X MINUS 1G		ત		OFF	ON	VDC		STP	×	x	x		-	_			\perp	\perp	L		1	II
1 7626	x	HOLD COUNTDOWN		R		OFF	ON	VOC		STP	×	×	x	\perp			╧	Ш	1	1		1	\perp	II
 	x	RETURN TO REACY REG		9		OFF	ON	VDC		STP	×	x	x	\perp		1	\perp		_	_	_	Ц		₩
1 7627	x	RETURN TO READY COMP		ব		OFF	01	VDC	<u> </u>	STP	×	x	x		Ш		_	Ц		1			_	<u> </u>
	x	GO ON VERT MEMORY		ત		OFF	ON	VDC		STP	×	x	x					Ц		\perp		Ц	_	₩
1 7628	x	GO ON AZIMUTH MEMORY		વ		OFF	ON	voc		STP	×	×	x		Ш			Ш			L	Ц	-	
1 7630	x	GYRO A IN BAND		Ŋ,		OFF	ON	VDC		e TP	×	×	×				\perp		\perp	\perp		Ш	_	Ш
1 7631	x	GYRO B IN BAND	П	R		OFF	ON	VDC		STP	x	x	x										\perp	║
																					L		<u> </u>	<u> </u>
L 7009	N	LAUNCHER CAM X AXIS																						<u> </u>
L 7010	N	LAUNCHER CAM BZ SIDE																	Ĺ					
L 7011	N	RISE OFF DISC CAMERA	П																					Ш
	+	UMBILICAL CAMERA										Ι					$oxed{\Box}$		$oxed{I}$					
HH-	T		\top																					
L 7013	P	FLAME DEFLECT AMB 1		F		0	25	PIA	1	100		×	x											
	1									ı		Τ											$oldsymbol{\mathbb{I}}$	
	T		1		+	111	1	#	 		##-	+	+-	-		_	-+-	_		T	T			777

SECTION 10

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. OSTF-2 L/L COMP

F	Ŧ	\vdash	4.		-			1			ļ	\Box	₩.	_	_	_	_				_	_		_	_			=
١,		1.			u.		7	-	-	3	6	PACCHARA PACCHON PURCTION		_				_	_	, ,					_	, ,	-11	
1	FILME		1	DESCRIPTION	3 / AL	1	.8	-	***	E 0	Owner, or	232	2	\prod_{i}	153			\perp	1									
1		1.	E			3	32	rom	111011	8	1 4	388	$\ \Gamma$	Τ				T	T					T			7	
F	Ħ	=	#							#	-		#	#	T		7					1	7	#		\Box		
L	L	701	P	FLAME DEFLECT AMB 2		•		0	25	PIA	1	100	\parallel	X	X		1				\sqcup	1	1	\perp	L		₩	
L	L	701	P	FLAME DEFLECT AMB 3		F		٥	25	PIA	1	100	ı	×	x			Ĺ					1					
Γ	L	701	P	FLAME DEFLECT AMB 4		#		0	25	PIA	1	100		X	X													
	L	760		HT SHIELD OUTSIDE 1		F		0	25	PIA	1	300	III	×	X.		Τ	T			T			T				
Γ	L	760	2 P	HT SHIELD OUTSIDE 2		F		0	25	PIA	1	500	III	×	X		T	Ţ	Γ	П		T	T	T			\mathbb{T}	
	Γ		1		П									T			T	T				T		T				٦
Γ	Ĺ	700	T	LAUNCHER FRAME	П	s		0	1200	DGF	36	SLO		T	П		1	T				T	T	T	П			٦
	L	700	T	LAUNCHER FRAME	Н	s		0	1200	DGF	36	310		T	П		1	1			7	Ť	1	T			111	٦
广			\top		H	_				#				1	П	+	\dagger	1			+	+		1		1	111	7
	M	7604	N	FOR LIFT OFF CAM									×	×		7	+	+	П		1		1	1		+	11	٦
-	_		-	AFT LIFT OFF CAM				1						×		+	\dagger	\dagger	Н		+	+	+	T		\top	111	7
1			Ť		\sqcap					-	-	H				\dashv	+	+	Н	+	\dagger	+	+	1		+	#	7
+	N	7542	LA	CRIB ACCELERATION 1	Н	,		MA	4	G	•2	100		T		\dagger	+	✝			+	\dagger	+	\vdash		+		٦
H	_		→ -	CRIB ACCELERATION 2	Н	F		<u> </u>	•	<u> </u>		100	#			+	+	+		+	+	t	+-	\vdash		+	₩	┨
-	$\overline{}$		_	CRIB ACCELERATION >	┝┥	<u>.</u>		M4	•			100	╫╴	+	+	+	+	-		+	+	+	+		+	+	₩	\dashv
-	•		-	CRIB ACCELERATION &	\vdash	-				-	-	11	-	\vdash	-	+	+	╁	Н	\dashv	+	+	+-	-	-	+	₩	ㅓ
-			+	1	Н			M4	•	G		100	╫	Н	+	+	+			+	+	+	+	Н	+	+	₩	\dashv
-				CRIB ACCELERATION 3	\dashv			M4	•	3		100	#-	Н	-	+	╁	+-	\vdash	+	+	+	╁	+	\dashv	+	₩	\dashv
-		i .	1 1	CRIB ACCELERATION &	-	*		MA		9_		100	#-	\vdash		+	+	\vdash	-	+	+	+	+-	H	\dashv	+	₩	4
L	N.	7925	A.	SILO-L/P ACCEL #1	4	٥		<u> </u>	- 50	G	3.2	2K	X.	Н	4	+	+-	-		+	+	+	+	-	\dashv	+	₩	4
L	N	7830	4	SILO-L/P ACCEL #2	_	0		M50	50	٥	2.5	2 %	X.	\sqcup	4	+	\downarrow	\perp	4	\downarrow	-	4	\perp	\sqcup	+	\bot	₩	4
L			_	SILO-L/P ACCEL #3	4	0		M50	50	G	2.5	2K	×	Ц	4	4	\downarrow	Ц		_	+	4	4		\downarrow	+		4
L	j		ļ	SILO-L/P ACCEL #4	\downarrow	0		M50	50	3	2.5	2K	×	Ц	4	1	\perp		_	4	4	\downarrow	\perp	Ц	1	1	₩	4
\square	N	7833		SILO-L/P ACCEL #5	\perp	٥		M50	50	G	2.5	2 K	×	Ц	_	\perp	\perp	Ц	_	\perp	1	\perp	\perp	Ц	╧		₩	1
	N	7834	A	SILO-L/P ACCEL #6		c		M50	50	G	2.5	2K	×	Ц		\perp		Ц		\perp	١.	1	_	Ш		\downarrow	∭	╛
	N	7635	A	CRIB ACCELERATION 7		0		M20	20	G	1	2 K	X								1			Ш				
	N	7#36	A	CRIB ACCELERATION 8		0		M20	20	G	1	2K	X													\perp		
	N	7837	A	CRIB ACCELERATION 9		0		M20	20	G	1	2K	X			$oxed{oxed}$			\rfloor	\int	floor	\prod				\int		
	N	7838	A	CRIB ACCELERATION 10		٥		MZO	20	G	1	2K	×									Γ				I]
	N	7839	A	CRIB ACCELERATION 11		0		мэ	5	G	.25	2K	×												ĺ			
П	N	7840	A	CRIB ACCELERATION 12	7	0		М5	5	G	.25	2K	×						T						T			7
П	N	7642	A	SILO L/P ACCEL 21	1			МЭ	5	G	3%	100			T				1						T	T		7
П	N	7843	A	SILO L/P ACCEL ZZ	1		-	мэ	5	G	3%	100	П		1	T		\Box		T	1	T				T		1
П	7		\sqcap		7		$-\parallel$		#				П	1	7	1	П		1	1	T		П	1	1	1		1
П	7		Ħ		\dagger	1	-#					#	Н	1	1	十	П	1	+	\dagger	\dagger		П	1	+	+	 	1
ш	_			لــــــــــــــــــــــــــــــــــــ		i	ii	ئــــــ	بالبسي	لمسل			ليا	<u> </u>		٠.	٠	_	Ц.		٠.	٠	لـــا		<u> </u>		ш	_

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

PAGE __ 9 DATE 25 SEP 62 REPORT NO OSTE-2 L/L COMP ACCURACT

BAR OF CHANGE

OR PHROUGHCT

OF PARCHON WENCHE SYSTEM MANUEL MENTER BURNERS BU DESCRIPTION -ON HE 8 LOW 5 || 0 38 100 51.5 N 7844 A SILO L/P ACCEL Z3 38 200 1 5 G M5 N 7845 A SILO L/P ACCEL Z4 3% 100 3 G M5 N 7846 A SILO L/P ACCEL X1 3% 2K 20 || G M20 N 7847 A SILO L/P ACCEL X2 5 | : 38 100 N 7848 A SILO L/P ACCEL YI 3% | 2K M20 20 G N 7849 A SILO L/P ACCEL YZ Ш 5 2 | G N 7912 A CTRWEIGHT VERT SCCEL 0 111 .5 || G 5 N 7913 A CTRWEIGHT LAT ACCEL o i 5 || . 5 | G N 17914 A H CTRWEIGHT TRANS ACC 0 1.1 (4) 0 1800 || RPM | 1% |SLO || X | X N 7803 B LAP DRIVE SOTOR RPM AMP 10% | 17575 | C | 29 VOC CURRENT 2 ||| 1. IN .4 N 7900 D CRIB UPPER DEFL #1 cl 2 ||| ၀ 10 | IN .4 N 79:1 DI CRIB UPPER DEFL #2 8 11 .4 48 N 7902 D CRIB UPPER DEFL #3 3 | IN 2 N 7903 O CRIS UPPER DEFL #4 2 8 14 .4 N 7904 D CRIB LOWER CEFL #1 v g 2 MB IN N 7905 DI CRIB LOWER DEFL #2 2 м8 8 IN N 7906 D CRIE LOWER DEFL #3 8 ||| IN . 4 98 N 7907 D CRIB LOWER DEFL #4 2 X X X 0 140 FT N 7908 D LIP DISPLACEMENT 10 | IN 0 N 7917 D VERTICAL LOCK POS A 10 | IN N 7918 D VERTICAL LOCK POS 8 10 IN N 7919 D VERTICAL LOCK POS C 0 ht ۱ ۵ 10 IN N 7920 D VERTICAL LOCK POS D IN N 7935 D TENSION EQUALIZER 6 || KW 2% SLO 0 350 N 7805 E DRIVE SYS PWR 3 PH 60 0 500 N 7911 E MOTOR POWER F E 104 N 7952 E HI-LINE POWER

SECTION 10

GENERAL DYNAMICS ASTRONAUTIC®

. 26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

DATE 25 SEP 62

and a	1v5Mee	-	MA SUPPLEMENT	EESCRIPTION	387 / REC	A PARTY	1.5	146A54	yaquent ined	Perchon	ACCURACY	DE MECHANICA OF MECHANICA OF FUNCTION	15	71	18		T	П	1	T	Γ		П	Ţ	$\overline{\downarrow}$	I	
L	Ļ	1	E		1	3	81	row	HIGH	8	<u> </u>	<u> </u>	#	\downarrow	1	11	+	H	4	\downarrow	\downarrow	ļ.,	\dashv	+	4	+	
卜	N	7953	Ε	INSTR-BLDG POWER		F		-		E	10%		#	1	+	††	\top		†	T			П	\dagger	\top	T	
一	N	7954	E	UTILITY-BLDG POWER		F		1		Ε	10%			T	T	\sqcap			T	T			П	1	T	T	
r	N	7974	ε	400 CYCLE POWER		F				Ε	10%		-	T	T	\sqcap	T		T	T	Γ		П	T	T	\top	
r	T		T		П			1						T		\sqcap	T		T		Γ		П	T	T	\top	
r	N	7804	F	DRIVE MOTOR TORQUE	П	5		M6K	8.5K	1LB	18	SLO	×	×	x	\sqcap	T		Ť	T				T	T		
Γ					П		П							T					T	T			П	T	T		
Γ	N	7532	1	LIGHT INTENSITY	П			0	500	FC	1.0			T	T	П				Ι				Ι	T		
					П									T	Ī	П			T					T			
	N	7046	J	B1 INLET AIR REL HUM				0	100	•	1	SLO		\prod											\prod		
	N	7685	J	SILO UPPER RH		ρ		0	100	*	2	sLo												\perp			
	N	7800	J	MSL COMPARTMENT RH		ρ		0	100	8	2	SLO						1						1			
	N	7802	J	SILO LOWER RH		Р		0	100	4	2	SLO											\perp				
																			\perp	L			\perp	\perp	L	Ц	
	N	7980	L	7 IN MOTION UP FAST	Ц	F		0	3	IN	1%				L		$oxed{oxed}$	┵			L		\perp	\perp	\perp	Ц	
	N	7981	L	7 IN MOTION UP SLOW	Ш	F		0	1	IN	1%							\perp	\perp	L	L			\perp		Ц	
	N	7982	L	7 IN MOTION DOWN SLO	Ц	F		0	1	IN	1%				L	Ц	\coprod	\perp	1	L				\perp	\perp	Ц	
					Ц										L	Ц		\perp	\downarrow				\perp	_	Ļ	Ц	
	N	7544	×	CRIB MOTION CAMERA 1	Ц			0	8	IN	.25		$\ $	L	Ц	Ц	Ц	\perp		Ц			\perp	\perp	\perp	\sqcup	
	N	7545	N	CRIB MOTION CAMERA 2	$\perp \downarrow$			0	8	IN	.25			L				\perp	1	Ц			\bot	\downarrow	_	Ш	
	N	7747	N	TV CAMERA 1	Ц			ļ					x	x	x	Ш	\coprod		\perp	Ц		\perp	\bot	\perp			
	N	7748	N	TV CAMERA 2	\sqcup		Щ						×	J	, ,	Ц.	Ц	4	L	Ц		4	4	4			
_	N	7749	N	TV CAMERA 3	\dashv								x	X	x	4	Ц	1	\perp	Ш		1	_	4	\perp	Ц	
_	N	7750	N	TV CAMERA 4	4								x	X	x	\perp	Ц	1	\perp	Ц		1	4	1	Ц	Щ	
4	-		-	TV CAMERA 5	4								X	X	X	\perp	\sqcup	_	Ļ		_	1	4	1	$\perp \mid$	Щ	
-+	-		-	TV CAMERA 6	\dashv		$\sqcup \downarrow$						X	+	\vdash	\bot	\coprod	_	ļ_		4	_	+	_	$\downarrow \downarrow$		
-	-		-	TY CAMERA 7	\downarrow								X	-	-		\sqcup	\perp	-	\sqcup	_	_	1	1	$\downarrow \downarrow$	Щ	
-+	-+		\rightarrow	LAUNCH CONSOLE RH	4	_	\parallel			FPS			X	-		_	\sqcup	\bot	\downarrow	\sqcup	4	1	+	\downarrow	$\downarrow \downarrow$	Щ	
-+	-		\rightarrow	LAUNCH CONSOLE LH	\downarrow		\parallel			FPS			X	×	X	4	Ц	+	\perp	\sqcup	4	4	4	1	\sqcup	Щ	
4	M	7983	N	ALIN GRP TILT CAMERA	\downarrow	_	#						X	X	X	\perp	\sqcup	4	L	Ц	4	-	4	1	$\downarrow \downarrow$		├ ──
4	4		4		\dashv								1	Ц	4	\bot	ot	+	L	Ц	-	4	\downarrow	\downarrow	$\downarrow \downarrow$		
-+	-+			TANK DIFFERENTIAL P	4	<u> </u>		٥		PID			×	-	X	+	\sqcup	\downarrow	ļ.		-	+	\bot	_	\sqcup	Щ	ļ——ļ
4	4	7230	P	CRIB AMB PRESS #1	4	-		0	25	PIA	1	10	X	X	-	<u> </u>	-	+	L	Ц	4	 -	+	+-	+	-	
4	4		4		\downarrow	_							L		_	+	\sqcup	\bot	L	4	\downarrow	+	\perp	· - }	\dashv	4	
ı	- 1	i		ı J	i	- 1	- 111	l j	- 11	1 1	- !	- 11	1 1	1 1	- 1		1 1		1	1 !		1	i	í	1 1	Hi	i

26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

T								Ţ					.									_	_				
[3 .	1		ایرا	2	1	MARI	SMEM!	ş	ټا	OF CHANGE HESOURICY FUNCTION	L.	7 [3	R T			T	, T		_	1	Ţ		_	I	
W.C.L.	STSTA	Ma justade	- EASIVEE	DESCRIPTION	The / Bac)	.3	941		UNITS PURCTION	ACCURAC	225	Ľ			4	\downarrow	↓_		+	\downarrow	\downarrow	1	\sqcup	+	+-	
1	-	3.	2				3₹	rom	HIGH	8	•	200					1			\perp	\perp		_	Ц	\perp	\perp	
			Ħ		П								-	-	-	+	+	╁		+	+-	+	+-	\vdash	+	+-	#
L	₩		-	CRIB AMB PRESS #2		F		0		PIA	1	10	X	+-		\dashv	+	+	\vdash	+	+	+-	+	+	+	+	
L	N	7232	Ρ	CRIB AMB PRESS #3	\sqcup	F		0		PIA	1	 	X	┿	\vdash	+	+	╀	\vdash	+	+	+	╁	H	+	+	
L	N	7233	٩	CRIB AMB PRESS #4		F		0		PIA	1	10	#	X	-	+	+	+	┼┤	+	+	+	╁	H	+	+	
L	N	7234	Р	CRIB AMB PRESS #5	Ц	F		0	25	PIA	1	10	X	×		4	+	+	\vdash	+	+	+-	+-	H	+	+	-
L	N	7235	ρ	CRIB AMB PRESS #6		F		0	25	PIA	1	10	×	×		_	- -	-	-	+	+	+	\dotplus	\vdash	+	+	
Γ	N	7530	P	LOX TOPG TANK LEVEL		5		0	15	PID	5%	SLO	1	_		4	4	_		+	1	\downarrow	+-	Ц	\downarrow	+	
Γ															Ц	\perp	\perp			_	\perp	1	\perp	\sqcup	4	\perp	
Γ	N	7050	R	AIG AIR FLOW IN GII		F		100	400	CFM	15	SLO		L		\perp	_	$oldsymbol{\perp}$		\perp	1	\perp	1		_	1	
Γ	N	7155	R	AIG AIR FLOW IN GIII		F		200	500	СРМ	15	SLO					-		Ш		1	1	\perp		\perp	İ	
卜	N	7654	R	GO2 VENT	П			0	10K	CFM	300	SLO						L				-	1	Ц			
-	N	7635	R	EF 40. 41 EXHAUST	П			0	13K	CF4	400	SLO													\perp		₩ <u></u>
上	N	7656	R	EF 30 EXHAUST			i	0	35K	CFM	1K	SLO															d
+	+		H		\sqcap					ii					П										Ţ		
H	N	7756	5	CRIB LOAD CELL #1	\Box	F		0	150	KIP	5%	20						T									
H	N		-	CRIB LOAD CELL #2	\sqcap	F		٥	150	KIP	5%	20					Ī	Ţ							\perp		
+	N	7758	5	CRIB LOAD CELL #3	1	F		0	150	KIP	5%	20		Τ	Γ												
H	N	7759	,	CRIB LOAD CELL #4		F			150	KIP	5%	20		T													
卜	+		\vdash	CABLE STRAIN PORT				0	100	KPS	2%	SLO		Ī									\perp		\perp		<u> </u>
r	N			FACIL MSL SPRG ST 01				M20	155	KP5		100		Τ				Ĺ									
T	N			FACIL MSL SPRG ST Q2	П			M20	155	KPS		100													\perp		<u> </u>
r	N	7960	;	FACIL MS' SPRG ST Q3				MZO	155	KPS		100												Ш			1
卜	+	7961	+-		\vdash			M20	155	KP5		100													Ц		#
r	N	 	+	LOAD CELL QUAD 1 L/P	1	F		M20	155	KPS		100		T				\int									
H	N	7963	+	 	\top	F		M20	155	KPS		100		T							brack						
+	+	7964	+-	 	+	F		M20	155	KPS		100		T		\prod	\top				T	T				j	
H	+	├	╁	LOAD CELL QUAD 4 L/P	+	F		M20	155	KPS		100	1	1	T	П											
H	+		+		T		\vdash	-		-	\vdash	\top	\parallel	T	T		1	T	T	П					ī		
\vdash	N	7032	T	GUIDANCE POD EXHAUST	+	5		40	75	DGF		SLO	$\parallel \parallel$	\dagger	T	П		T		П	1			1			
}				AIG POD INLET GII	\dagger	5	<u> </u>	40		DGF	_	SLO			T	П											
+	+-		+	BI AIR AT RH MEAS	+	5	+	40	+	DGF	+	SLO	111	T	1	П	1	T							П		
H	-∔	↓		AIG POD INLET GIII	+	5	┿	40	+	DGF		SLO	+++	T		П	1	1	1	\prod	1			T			
H			+	VENT SYS GOX . ELBO	\dagger	5	┼	M380	M80	DGF		SLO	+++-	\dagger	T		T	T	T			1					
ł	+		+		+		\dagger			#	†	\dagger	#	T	1	П		1	1			-†	1		i	ĺ	
H	+	-	+		+	_	+		1	\parallel	1	+	\parallel	\dagger	\dagger			Ť	T	П	1	1		1	П	Ī	111
L	1_	1	1	111		L		ĽĹ	1	للا	1		Ш	_	1	ىــــــــــــــــــــــــــــــــــــــ					-	_	_	_		_	للن

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

			Ę	H		3						35.						_									
,	,	1.			DESCRIPTION	/Imc	3	PEASUR	- 11	Ments Puechos	ACCURA CT	OF CHAMGA PREQUENCY PURCTION	24	138			T									∭	ļ
į	1		1		DESCRIPTION	SUCCESSION AND AND AND AND AND AND AND AND AND AN	31		HEH	35	¥	188	П	1	1		T										
L	L		E			3	32	1040		_			H	+	#	-	\mp	-	F		Ŧ	+	\vdash	-	+	╫	
۲	N	7160	T	V	NT SYS GOX & FAN IN	S		M380	MBO	DGF	6	SLO	\vdash	_	+-	\vdash	+	+	+	\vdash	+	+	+-		+	₩	
┝	N	7161	T	V	INT SYS GOX & GAT IN	S		M300	300	DGF	12	SLO	\downarrow	+	+	\vdash	+	+	+	\vdash	╫	+	╁		+	#	
r	٠	7579	+		IR DUCT IN	T		0	200	DGF	2.5			4	+	\sqcup	-+	+	+	\vdash	+	+	╁		+	₩	
H	N	7580	T	1	IR DUCT OUT	Ţ		0	200	DGF	2.5				+	\vdash	+	+	+	H	+		╁	-	+	₩	
r	N	7581	T	1	SILO O II LVL-1	7		0	200	DGF	2.5			\dashv	+	\dashv	+	+	+	H	+	+	╁	H	+	₩	
r	N	7582	1 7	∭.	SILO 2 11 LVL-2	7		0	200	DGF	2.5			+	+	H	+	+	+	\vdash	+	+	+	\vdash	+	#	
r	<u> </u>		_		SILO Q II LVL-3	7		0	200	DGF	+		Щ	4	+	\vdash	+	+	+	\vdash	\dashv	+	+	H	+	₩	
t	N	7584	. 1	1	51L0 Q 11 LVL-4	7		0	500	DGF	2.5			\vdash	+	\vdash		+	+	++	+	+	+	+	\vdash	#	
r	N	7585	, т	11	SILO Q II LVL-5	T		0	200	DGF	2.5		#-	\sqcup	+	\vdash	\vdash	+	+-	-	-	+	╁		+	╫	
t	N	†	5 7	11	SILO Q 11 LVL-6	7		0		DGF	_		₩-	\sqcup	+	+	-	+	+	\vdash	+	\dashv	+	+	\vdash	#	
r	N	758	7 7	\parallel	SILO Q II LVL-7	Ţ		0			+	-	-	\vdash	+	╁-	\vdash	+	+	\vdash	\vdash	+	+	╁	H	₩	
t	-4-				SILO 9 II LVL-8	1		0	200	DGF	+		₩-	\vdash	-	+	\vdash	+	+	╀		+	+	╁	\vdash	#	
t	N	758	9 1		HT REC WATER IN	0		50	250	DGF	+	SLO	1	\vdash	+	+	\vdash	+	+	╁	\vdash	\dashv	+	+	\vdash	-#	
t	N	759	0 1	-11	ELEC BLR WATER OUT	C		50	+	OGF	+	SLO	₩-	H	+	+	\vdash	+	+	╁╴	H	+	+	╁	+	₩	
ľ	1	759	7 1		MSL COMP LVL-1			0	 +==	DGF	-		#	\dashv	+	+	\vdash	+	+	+-	-		+	╁	H	╫	
t	,	759	6 1	-	MSL COMP LVL-2	<u> </u>	7	٥	200	DGF	2.5	↓_	₩_	$\vdash \downarrow$	+	+	\vdash	+	+	+	H	\vdash	+	+	++	╢	
Ì	١,	759	9 1		MSL COMP LVL-3	1	r	₩	200	DGF	2.5	-	₩-	\sqcup	+	+	+	+	+	╁	\vdash		+	+	+	╢	
Ì	-		$\overline{}$	Ш	MSL COMP LVL-4		7		200	DG	2.5	┼-	₩-	H	+	+	\vdash	-	+	+	Н	Н	+	+	$\forall t$	╫	
I	_		_	-11	MSL COMP LVL-5		<u>- </u> _	<u> </u>	200	DGF	2.5	4-	₩-	\vdash	+	+	\vdash	\dashv	+	+	+	H	+	+	$\dagger\dagger$	\parallel	
Ì	_			- 111	MSL COMP LVL-6		<u>* </u>	₩	200	DGI	2.5	-	₩	Н	\dashv	+	╁	\dashv	+	+	\vdash	\vdash	\dagger	+	$\dagger \dagger$	-#	
I	1	760	3	r	MSL COMP LVL-7		<u> </u>	# 9	-	DGI			₩-	+	+	+	╁		+	+	+	+	+	+	$\dagger \dagger$	-	
I		4 760	4	1	MSL COMP LVL-8	\sqcup	 	₩	-	DGI	_		₩	+	+	+	╀		+	+	+	Н	\dagger	+	$\dagger \dagger$	-	
1		N 760	9	7	DUST SEP AIR OUT	-	7	₩		DGI			₩	+	-	+	+-		\dashv	+	+		+	+	1	_	
					COOLING TOWER HZO IN		<u> </u>			DG	_		₩	╁	\vdash	+	+	Н	_	+	+	H	+	\dagger			
		N 760	7	7	MSL COMP AIR SUPPLY	├ ┼	1	╫┈	200	-+++	2	+-	╫	+	\vdash	+	+		+	╅	╁		1	+	+-	1	
		N 762		-11	H20 HEAT RECLAIMER	₩	<u> </u>	5		I DG	-+	1-	₩	+	\vdash	+	+-	+	+	- -	+		\vdash	+			
		N 76			ELEC EQUIP AIR IN #1	++	P	-#}	200			SLO	-##-	+-	H	+	+	-	Н	+	+	\vdash		+	+		
					ELEC EQUIP AIR IN #2	₩	P	2		DG		3 SLC	-++-	+	H	+	+	\vdash	H	+	+	+	H	\dagger	+	П	
	1		-	_	ELEC EQUIP AIR IN #3	т т	<u> </u>	-₩		og		3 SLC		╁	Н	+	+	\vdash	H	+	+	T	H	+	\top	П	
					ELEC EQUIP AIR IN #4		P	-#	_	9 06	_	3 5LC	- 111	+	Н	+	+	+	Н	+	+	+	H	╁	+	\sqcap	
					ELEC EQUIP AIR IN #5		P	-#-		9 00	_	3 SLC	-++	+	+	+	+	+	Н	+	+	+	H	\dashv	\dagger	H	
		N 76	26	٢	ELEC EQUIP AIR OUT#1	\sqcup	P	2	5 12	DG	P	3 SLC	' ∰	+	H	+	+	T	Н	+	+	+	H	+	\top	H	1
						\coprod	_		+	₩-		+-	₩	+	+	\vdash	+	+		+	+	+	$\dagger \dagger$	-	+	H	
	Γ									Ш_			Ш					<u>i</u>					لــــا				<u> </u>

SECTION 10

GENERAL DYNAMICS | ASTRONAUTICS.

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

DATE 26 SEP 62

PAGE _13

F					П	_				-			II!	_		_	_	_	_	_		_	_	_		_	_	_	_		
		ā.	H See		y.	2	Change		RELIGIT	3	Ş	OF Change PESOURICE FUNCTIONS	_	-	47				.,	_	_	_	_	_		-	_	, 	_		
WHICLE	\$ V S 1744	MEASURE LAGAT POLIMERA	NA SE	DESCRIPTION	R. M. / MGC	ì			444	2 E	ACCUBACI	12 2 2	IĽ	71	1	1	\perp	1	1	\perp	1				L		L	\square			
		3	¥				3	LOW	нем	8	1	288	\parallel	1											Ĺ						<u> </u>
F					H					#-	-		#	Ŧ	Ŧ	7	Ŧ	+	-	7	-	-	7	_	\vdash	F	F	\Box		-	
Н	-	7627	+ +	ELEC EQUIP AIR OUT#2	$\vdash \downarrow$	P	-	25	125	DGF	 	SLO		+	+	+	4	+	+	+	+	-	_		-	Ļ	⊢	H	Н	\dashv	
\vdash	-		+-1	ELEC EQUIP AIR OUT#3	Ц	<u>Р</u>	\vdash	25	 	DGF	 	SLO	_	+	4	+	4	\downarrow	4	+	4	-	_	_	L	ļ.	L	Ц	L	Ц	
L	N	7629	ľ	ELEC EQUIP AIR OUT#4	Ц	P		25	125	DGF	3	SLO		\downarrow	4	4	4	\downarrow	1	4	4	-	4		<u> </u>	-	_	Ц		4	
L	N	7630	T	ELEC EQUIP AIR OUT#5	Ц	ρ		25	125	DGF	3	SLO	ij.	\downarrow	\downarrow	1	\downarrow	\downarrow	1	\downarrow	4	4	4	_	_	L		Ц		4	
L	N	7641	T	POD AIR COND H20 IN	Ц	٥		30	120	DGF	3	SLO	1	1	1	\downarrow	\perp	_	1	1	1	_	_		L		L	Ц		4	<u> </u>
	N	7642	T	POD AIR COND H20 OUT		٥		30	120	DGF	3	SLO		1		\downarrow	1	1	1		1	1	1	_	L		Ц	Ц		4	
	N	7643	T	CC 10 COLD H20 OUT		1		0	200	DGF	3	SLO							1											\sqcup	
	N	7644	T	CC 40 COLD H20 OUT		Ť		0	200	DGF	3	SLO						ĺ							L			\Box			
	N	7645	т	CC 41 COLD H22 OUT		Ť		0	200	DGF	3	SLO						ا ــــــــــــــــــــــــــــــــــــ							_				L		
	N	7646	7	HC 40 HOT HZO 1N		T		0	200	DGF	3	SLO		1	\perp	1		\perp		1	1					,					. i
Ц	N	7647	7	HC 40 HOT H20 OUT		Ť		0	200	DGF	3	SLO		L	l			1	,			-	Ĺ		L						
	N	7649	T	WCU 50 H20 OUT		۲		0	200	DGF	3	SLO						Ĺ	i		1				L		Ц		Ц		!
	N	7 65 C	T	WCU 56. 51 H20 IN		T		0	200	DGF	3	SLO								1		1					Ĺ				L
	N	7651	T	LCC CO',D H20 OUT		5		0	200	OGF	3	SLO													L						
	N	7652	T	GO2 VENT AT A & E		s		M300	100	DGF	12	SLO			1	ĺ															
	N	7653	۲	GO2 VENT AT BLAST DR		5		M300	100	DGF	12	SLO							Ĺ						L		Ц			j	
	N	7746	7	COOLING TOWN HZD OUT		s		0	200	DGF	2.5											4									
Ш														l		1			_].		1			L						
	N	1870	v	TRL WIRE NOTSE 1		F		0	10	MV	2%	300	×	x	x																
																					Ì	1									
	N	7002	x	SELECT A BUTTON		R		CFF	07	VOC		5 7 P	x	X	X							j								Ī,	
	N	7003	x	SELECT B BUTTON		R		OFF	ON	VDC		STP	x	х	×																
	N	7024	x	START BULTON		R		OFF	ON	VDC		STP	x	x	×					Ĺ											
	N	7028	·	COMMIT START BUTTON	\prod	R		OFF	ON	VDC		STP	x	×	×		\int	\prod	I	I	\int		J				Ī	Ī		Į.	
	N	7030	x	ALARM RESET SWITCH		Ę		OFF	CN	VDC		STP	×	×	×	T	I	\prod	I	Ţ											
	N	7042	x	START ABORT SWITCH		À		OFF	ON	VDC		STP	X	×	×	I	I				I		J							ľ	
	N	7046	x	SILO DOORS OPEN		R		OFF	ON	VDC		STP	x	×	x		I	I	I	\int	I		Ţ								
	N	7047	x	SILO DOORS CLSD		R		OFF	ON	voc		STP	X	×	X		I		I	Ī			I							ŀ	
	N	7046	×	PAD HTR 2 RATE GYRO		R		OFF	ON	VDC		STP	x			\int				I		Ĭ	\int	j				j	:		
	N	7051	X	COM STA 1 ON-OFF		R		ON	OFF	VDC		STP			Ι	I	\prod		I	Ī	I	Ī	\int					Ī		1;	
	N	7052	X	COM STA Z ON-OFF	$oldsymbol{\mathbb{I}}$	R		ON	OFF	VDC		STP	ш.					I					I					j			1
	N	7053	ناب	COM STA 3 ON-OFF		R		ON	OFF	VDC		STP										Ĺ		1				$oxed{J}$	Ī]!	
														[\prod	\int		Ι	\prod	I		Ţ	I					Ţ		1	
															Γ			I	I	Ī							Ì			-	
	_		- 1			_								_		_	_	_		_	_	_	_	_	_		_	_	_		-

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

	•	FPORT N	c 0:	STF-2 L/L COMP									C	ATE	26		E P	6	2		_			• A	GE _	14		_	
_	1				I									_	Ξ	_	_		_	_	_	_			_		_	₩	
			1			PACE	4	MEASU	rander .	8	5	AAN OF CHANGE OR PREQUENCY OF FUNCTION	L		× -4	<u>-</u> -	_		-	_	Τ.	+	_	_	. T	-	1	╢	
Mana Cal	875.78ad	-	ABASUME.	DESCRIPTION	7 7 7		Comme		100	UNITE PUNCTION	ACCURACI	200	3 1	13	8 3	1									Ц	1	\perp	╢	
Į	E	31			/2		32	LOW	HIGH	8	4	188	П															Ш	
H	Н		E											7	7	7	Ŧ	7	Ŧ	Ŧ	+	+	-	-	H	+	+	₩	
Γ	N	7054	×	COM STA 4 ON-OFF		R		ON	OFF	voc		STP	Ц	4	4	4	4	\downarrow	4	1	+	\downarrow	+	Ļ	\vdash	+	+	₩	
Γ	×	7055	x	COM STA 5 ON-OFF		9		ON	OFF	VDC		STP			4	_	4	\downarrow	1	1	\downarrow	\perp	+	-	\vdash	\dashv	+	#	
r	×	7056	x	COM STA 6 ON-OFF		8		ON	OFF	VDC		STP			_	_	_	\downarrow	1	1	1	1	\downarrow	L	\sqcup	4	4	#	
H	N	7057	x	COM STA 7 ON-OFF	ì	R		ON	OFF	VOC		STP							\downarrow	\downarrow	\perp	1	\perp	L	L	\dashv	\downarrow	Щ	
-	Н	7058	+	COM STA 8 ON-OFF	7	R		ON	OFF	VDC		STP											┵	L	Ш	_	\perp	Щ	
-	-	705	×	COM STA 9 ON-OFF	+	R	\neg	ON	OFF	VDC		STP					1						\perp			_		Щ	
-	-	_	╅┪		7	R	-	ON	OFF	VCC		STP															1	Щ	
-	┢	7060	+-+	COM STA 11 ON-OFF	+	R		ON	OFF	VDC		STP													Ш			\parallel	
\vdash	⊢	7061	+ +	COM STA 12 ON-OFF	+	R	-	ON	OFF	VDC		STP									I							\parallel	
-	+	7062	H		\dashv	R		ON	OFF	VDC		STP			T		T	T										Ш	
H	╈	7063	+	COM STA 13 ON-OFF	+	R		ON	OFF	VDC	_	STP	\parallel	Г		1	7		1	T	1	1		Γ			I		
\vdash	┿	7064	\vdash	H	\dashv			ON	OFF	VDC	 	STP	#	Π		1	1	1	1	1	Ť		T	T					
L	N	7065	+-	COM STA 15 ON-OFF	\dashv	R		-	OFF	VDC	\vdash	STP	#-	Г	H	1	+	7	1	†	1	1	T	T	П		1	\parallel	
L	N	7066	X	COM STA 16 ON-OFF		R	-	ON	-	VDC	-	STP	\parallel	┢		+	+	+	1	Ť	7	†	\top	T	Π		T	\parallel	
L	N		-	COM STA 17 ON-OFF	\vdash	R		ON	OFF	VDC		STP	\parallel	┢	H	1	+	+	1	+	+	\dagger	\dagger	\dagger			1	\parallel	
L	N	7068	×	COM STA 18 ON-OFF	\vdash	R		ON	 	₩	-	+	#-	\vdash	Н	+	+	\dashv	+	+	+	7	\dagger	+	T		十	\parallel	
L	N	7069	×	COM STA 19 ON-OFF	\sqcup	R		ON	OFF	VDC	├	STP		\vdash	Н	-	+	+	+	+	+	+	+	+	+	H	十	₩	, <u>.</u>
	N	7070	×	COM STA 20 ON-OFF		R		ON	OFF	VDC	-	STP	#-	\vdash		\dashv	\dashv	+	+	+	+	+	+	+	+	H	+	-#	
L	N	7162	×	LOX/GOX & VENT FAN	Ц	a		OFF	ON	VDC	-	STP	#-	-	Н		+	+	\dashv	+	+	+	+	+	╁		+	₩	
	N	7165	X	LOX/GOX & VENT FAN		R		OFF	ON	VDC	ļ	STP	₩-	╀	Н		\dashv	+	+	+	+	+	+	+	+	H	+	₩	
Г	N	7500	x	ZONE CHECK LS CLS		8		ON	OFF	VDC	┞-	STP	×	X			\dashv	\dashv	+	\dashv	+	+	+	+	╁		+	₩	
Γ	N	750	×	1000 IN LS CLS	Ш	R		ON	OFF	VDC	<u></u>	STP	×	X	L		-	4	4	_	4	4	+	+	╀	Н	+	₩	
T	N	7502	2 X	HI SPO DECEL S. CLS		R		ON	OFF	VDC	_	STP	×	X	_		4	\dashv	4	+	+	+	+	+	┿-	Н	+	₩	
ľ	N	750	x	UPR OSPD ZONE LE CLE		R		ON	OFF	VDC	4_	STP	×	X	L		_	-	4	-	+	-	+	+	+-	Н	+	#	
T	N	7504	×	OVRSPD SEN ENLE		R		ON	OFF	VDC	_	STP	x	X	L			4	4	_	4	\dashv	+	+	+	H	+	#	<u> </u>
t	N	750	3 X	BOILOFF VLV CLGD		R		ON	OFF	VOC		STP	×	×	L	L		4	_	_		4	+	+	+	\vdash	+	#	
t	N	750	×	DIFF PRESS NOT LOW		R		ON	OFF	VDC		STP	111	×	1	L	Ц		_	_	4	_	4	+	+	\vdash	1	4	-
t	N	750	7 X	M/L COMMIT START		ď		ON	OFF	VDC		STP				L					\dashv	-	+	4	+	\vdash	-	#	
t	N	750	B X	AUTOMATIC	Γ	R		ON	OFF	VDC		STP				L	Ц	Ц			4	4	_	4	+-	L	Ц	4	
ł	-		-	RDY FOR COMMIT	Γ	R		ON	OFF	VDC		STP	×	×	X		Ц						\downarrow	_	1	L		4	-
ł				PWR TO INTERNAL		R		ON	OFF	VDC		STP	×	×									_	1	+	L		4	
Ĺ		_	-	PWR TO EXTERNAL		R	T	ON	OFF	VDC		STP	×	X									\perp	\perp	1	1	Ц	4	
+	-		_+	COMMIT LOCKUP	T	R	1	ON	OFF	VDC		STP	X	x											\perp		Ц	Щ	<u> </u>
ŀ	+	+	╬		\dagger	<u> </u>		#	1	#		\top	\parallel	T	Γ														
}	+	+-	+		+		\dagger	# -	+	#	1		\parallel	T	T														
1	\perp	Ш_	止		┸	<u> </u>	1	ш		ш		Щ	ш	_	_	-	_	_		_	_	_	_	_	_				

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

DATE 26 SEP 62

PAGE 15

3	3	TASUBEREEST NUMBER	MASUBENSHI		9	/mce	CHANNEL	we.u	- Tracket	UNITS	57	OF CHANGE PROUBNCY PUNCTION	-	11	383			_			_			_		_	
WENDERS	NE STATE	37		DESCRIPTION	ì	WECALBARR	3	24	Me4	3.5	ACCURAC	945		1	1		+	+	L	\sqcup	4	4	\downarrow	+	\sqcup	+	
-	<u> </u>	ļ <u>,</u>	E		_	ž	Š₹	row	HIGH	<u> </u>		229	₩.	\downarrow	4	\sqcup	4	+	Ļ		4	\downarrow	+	_		+	
卜	N	7513	x	M/L DWN & LOCKED		R		ON	OFF	VDC		STP	x	×	T	П	\top	Ť		П		1	T	T	П		
Γ	N	7514	×	A/P ON AMBER		R		ON	OFF	VDC		STP	×	×	×		Ť	T				1	1		П	+	
	N	7515	×	LWR FUEL TK PRESS		3		ON	OFF	VDC		STP	x	×	T			T			7	Ť	1			\top	
Γ	N	7516	x	RAISE FUEL TK PRESS		R		ON	OFF	VDC		STP	×	×			1	T		П	1		T	T		T	
Γ	N	7517	x	GUID FAIL MARGINAL		२		940	OFF	VDC		STP	×	×		П		T			T		T			T	
Γ	N	7518	x	A/P FAIL MARGINAL		R		ON	OFF	VDC		STP	x	x	Г							T	T				
Г	N	7519	X	F/P SAFE		R		ON	OFF	VDC		STP	×	x			T										
Г	N	7520	X	INST AIR BELL 50		R		QN	OFF	VDC		STP	×	X							1	T					
	N	7521	x	A/P FAIL		R		ON	OFF	VDC		STP	×	x			T					1	T				
	N	7522	x	HE VLV 14 OPEN		R		ON	OFF	VDC		STP	×	×		T	T				Ī				T		
	N	7523	X	DC AT MSL		R		ON	OFF	VDC		STP	×	x								1	T				
	N	7524	X	R/V BATT TEMP		R		ON	OFF	VDC		STP	×	x	x												
	N	7525	X	VENT HE BILES		R		ON	OFF	VDC		STP	×	X							Ī						
L	N	7526	x	HYD PRESS		R		ON	OFF	VDC		STP	×	x													
L	N	7527	X	GUID STANDBY		R		ON	OFF	VDC		STP	×	X						\prod							
L	N	7528	X	M/L UP & LOCKED		R		ON	OFF	VDC		STP	×	X													
	N	7529	X	PNEU INT GRN	_	R		ON	OFF	VDC		STP	×	x	x	\perp					\perp			Ц			
L	N.	7530	X	PNEU PHZ AMBER	\perp	R	_#	ON	CFF	VDC		STP	x	×	x	\perp	\perp				1	\perp					
	N	7531	x	HE LOAD AMBER	4	Ŗ	\parallel	ON	OFF	VDC		STP	×	x	x	\perp	\perp		\perp	\perp	_	\perp	\perp	Ц			
L	N	7532	X	PROG ARMED AMBER	\downarrow	R		ON	OFF	VDC		STP	×	×		⊥	\perp			1		\perp	ot		\perp	+++	
Ц	N	7533	X	ENG START AMBER	\downarrow	R		ON	OFF	VDC		STP	x	x	x	\downarrow		Ц		\downarrow	1	\perp	L		_		
Ц	N	7534	X	GUID COMMIT GREEN	\downarrow	R	_	ON	OFF	VDC		STP	×	×		\perp	\perp		_		\perp	\downarrow	L		\perp	\coprod	
Ц	N	7535	X	PWR INT GREEN	\downarrow	R	_#	ON	OFF	VDC		STP	×	x	×	\downarrow	\perp		4	\perp	\perp	\perp	L		_	\sqcup	
Ц	N	7536	X	A/P TEST AMBER	1	R	_#	ON	OFF	VDC		STP	x	X		\downarrow	1		_	\perp	\downarrow	1	L			$\downarrow \downarrow$	
H	+		-	GUID ROY AMBER	4	R		ON	OFF	VDC	_	STP	X	X	4	\perp		Ц	1	\perp	1	\perp	L		\perp	\perp	
Ц	+	7984	X	MISSILE AWAY	4	R	\parallel	OFF	ON	VDC		STP	X	X	X	\perp	\perp		1	\downarrow	1	1		Ц	\perp		
Н	N	7985	X	MISSILE ON STAND	4	R		OFF	ON	VDC		STP	×	X	X	\perp		Ц	4	\perp	1	\downarrow	L		1	+	
Н	4		4		4	_			il						1	\downarrow	\perp		_	\downarrow	1	\perp			_		
-	+		- #	COM SYS VOICE REC 1	4	^	_#						L		_	\bot	\perp		1	\downarrow	1	-	L		1		
-	_			COM SYS VOICE REC 2	4	1								Ц	_	\perp	\sqcup	4	4	\perp	4	1		1	1	-	
-	-			COM SYS VOICE REC 3	4	<u> </u>	_#							Ц		1	1		+	4	4	1			+		+
Н	N	7075	Y	COM SYS VOICE REC 4	4	1	_#			_				Ц	4	1	$oldsymbol{\perp}$	Ц	4	\perp	\downarrow	1	Ц	1	1	$\downarrow \downarrow$	
Н	닠.		\parallel		4	+	-#				\dashv		L		+	\downarrow			4	\downarrow	+	\perp	\sqcup	4	\bot		
Ш	\perp		_!		L									Ш						1	L						<u></u>

SECTION 10

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. OSTF-2 L/L COMP

	Γ		I	N.	Γ									_			_	_	_	_	_			_	_	_		
The CLA	SYSTEM	-	Transference Transfer	DESCRIPTION	TA / MC	/200	Comme	1484.5 E.	URBHU11	USHITA PRESCTION	ACCUEACT	OP CHANGE PROUBLECT		1	38	7		T	Ţ	T	Т	T	T	T	T		-	
18	=	3.	A SE	}	2	-	81	.tow	HOR	8	1	102		+	\dagger	1	-	+	+	+	+	+	-'-	+	\dagger	+	\top	
F	\vdash		1			3		100				-	╫	1	\pm			+	\pm	\pm	İ	\pm	\pm	\pm			+	
Γ	N	7076	٧	COM SYS VOICE REC 5		A							III	T	T					T	Ţ	T		T				
Γ	N	7077	Y	COM SYS VOICE REC 6		A							$\ $	T	T					T	T	T	T	T				
	N	7078	Y	COM SYS VOICE REC 7		A							\parallel	T					T	T	T	T	Ţ	T			7	
	N	7079	٧	COM SYS VOICE REC 8		A							\parallel	T	T	П		1	T	T	T	T	T	T			Ť	
1	N	7080	Y	COM SYS VOICE REC 9	П	A							\parallel	T	1	П	1	1	T	T	Ť	T	T	T		1		
1	N	7081	v	COM SYS VOICE REC 10	П	A		1					\parallel	†	1	П	7	1	+	1	1	T	1	T				
r	_		-	SOUND INTENSITY	П	A		24	140	DB	1.0		\parallel	1	T	П	_	+	T	1	1	T	1	T	П	1		1
r	Г		H		П			1		#		\vdash	╫	t	1	Н	7	$^{+}$	t	t	T	t	\dagger	\dagger		\dagger		1
H	ρ	7137	8	81 PUMP SPEED LO	П	F		0	200	RPM	5%	1KC	#	\dagger	\vdash	Н	+	+	T	\dagger	+	T	\dagger	T	Ħ	\top	+	
-	_		•	BZ PUMP SPEED LO		F		0		RPM	 	1KC	╫	\dagger	+	H	+	+	†	+	\dagger	T	t	1	H	+		
 			H			<u> </u>		╫─Ğ		1			#	\dagger	+	H	+	\dagger	+	\dagger	\dagger	+	+	+	H	+		;
H	P	1520		S MAIN LOX VLV				0	90	DEG	,	SLO	,	+	-	H	+	+	\dagger	+	\dagger	t		-	\forall	+	+	<u> </u>
H	_		+-1	S FUEL VLV POS	H	6		18	+	DEG		SLO	₩-	+-		H	+	\dagger	\dagger	+	+	+	+	+	H	+	++	+
H	Н		+		\vdash	_		₩ -:-	"	1500	 •	323	₩~	+		H	+	+	+	+	+	\vdash	\vdash	-	+-	+	+	
H	P	1204	6	S ENG LOX DOME		F		MED	80	a		2KC	¥	×	×	\vdash	+	\dagger	+	\dagger	+	+	+	-	-	+	+	
H	-		+++	B1 ENG LOX DOME	Н			MBO	80	 ~		2XC	₩-	+-	-	H	+	+	+	+	+	+	-	-	H	+	+ i	
H	-		1-1		H					 		+	#	+-	Ĥ	H	+	+	+	+	+	\vdash		-	H	+	+	
\vdash	-	1209	위	BZ ENG LOX DOME	+	_		MBO	80	G	•	2KC	×	┝	Н	\vdash	+	+	+	\vdash	╁	┝	-	-	\vdash	+	+	
H	\dashv		Н		+	_	-	₩					#-	╀	Н	\dashv	+	+	+	\vdash	┝	+-		-	\vdash	+		
_	_			81 FUEL PUMP INLET	-	' \$		9				1KC	11	×	×	+	+	+	+	+	+	-	\vdash		+	+	++	
_	_		$\overline{}$	B1 FUEL PUMP INLET	+	•			1			SLO	-	\vdash	Н	+	+	+	+	┝	-	-	Н	-	+	+	+	+
_				S THRUST CHAMBER	-	0 🗗	-		1000			SLO	'''	1	X	4	+	+	+	-	-	-	Н		+	+	1	
_	-		_	B2 FUEL PUMP DISC	4	'3		 	1002				+	X	٠.,	+	+	+	L	-	μ,	 	Н		+	+		
Н	-			B1 PUEL PUMP DISC	\dashv	•	$-\parallel$	-	1000	-		100	#	×	×	+	+	+	+	-	-	_	Ц	Ц	4	+		
Н	-		-	S FUEL PUMP INLET	+	-		0	100	+		SLO	#	_		\dashv	+	+	-	-	Н	_	Н		+	+	+ 4	}
ш	_		_	S LOX PUMP INLET	4		_		 	PIG		SLO	₩	┣		+	+	\downarrow	L	_	Н	_			+	+		
_	_		_	82 THRUST CHAMBER	+)r		0		+		IKC	#	Η-	-	-+	+	+	_	-	Н		\sqcup		+	+	1 11	├
				S1 THRUST CHAMBER	-10	7	-#	•		PIG		IKC	-	_	_	+	+	-		_	Ц			4	+	+		
_	_		_	B1 LOX INJ MANIFOLD	+	-			1500			7KC	₩	_	-	+	+	L	H	Ц		Ц		4	+	+		
_	_		_	B2 LOX INJ MANIFOLD	+	4			1900			1KC	₩~	×	×	4	\downarrow	L	Н		Н			_	4	+		1
-	-			TOU CTL MANIFOLD	+	-1	_		1230			SLO	-		4	\downarrow	Ļ	L		Ц	Ц		Ц	_	+	1	+++	
-	-+		-#	TOU INLET LOX PRESS	+	-		٥	200	 	•	10			4	_}	1	_			Ц	_		_	\downarrow	4		
Ц	1	7107		TOU LOX FILTER IN	\downarrow		_#	٥	200	P1G	٠	10			\downarrow	\downarrow	4	L			Ц	_		_	4	\perp	$\perp \parallel$	
Ц	\downarrow		\parallel		\downarrow	4							Ш		4	\downarrow	\perp	L	Ц	Ц			_	_	\perp	\perp		
	1			<u> </u>																								
												-																

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO. OSTF-2 L/L COMP

			Į.	₩	T					I					_		_										
1.		Ĭ.			2	TAGE .	Comme	146700		ğ	t	OF CHANGE PRÉCISECT PUNCTION		•	- T				,		_		-,- -	, ,	_		
PLANCIA	\$15Pa	Description of the second	1	DESCRIPTION	187	3	3	**		UMITS PUNCTION	ACCHRACY	200		ľ	10,	Ц		\perp	L	Ш			\perp				
		3	E		-	3	81	LOW	ни	8	1	229							1.				1		1		1
	\Box		Ŧ							-			F	F	F	П	7	Ŧ	F	H	-	Ŧ	Ŧ	$\overline{+}$	4	\mp	
	٩	710	P	LOX L/P DISC IN PRES	L	F		•	200	PIG	•	10	#_	×	L		+	+	-	-	+	+	+	\dashv	4	- -	
L	P	7135	P	MAIN LOX LN ORAIN PR	L	F		0	200	PIG	•	10		-		\sqcup	4	1	\perp	\sqcup	4	4	1	Н	4	4	ļ
L	٩	1155	P	81 GAS GEN COMBUSTOR	\sqcup	F		0	1000	PIG	20	SLO	×	×	X	Ц	1	1	L	Ц	1	1	1	Ц	\downarrow	\perp	ļ
	٩	1184	P	B2 GAS GEN COMBUSTOR		P		0	1000	PIG	20	SLO	×	×	×		\perp	\perp	L	Ц	1	\perp	1	Ц	\perp	4	
	ρ	1200	P	ENG COMP AMBIENT	L	F		0	20	PIA	0.5	100	×	L		Ц	1		L	Ц	\downarrow	1	1		1	4	
L	p	7306	P	B2 FUEL PUMP INLET		F		0	100	PIA	2	SLO		L			\perp			Ш		\perp	\perp		\perp		
	p	1337	P	S GG LOX INJ MANFOLD		F		0	1000	P16	20	SLO	×	X	X											\perp	
	P	1351	P	S LOX INJ MANIFOLD		F		0	1500	PIG	30	SLO	X	X	X		\perp					1					
	p	1463	P	SGG FUEL INJ MAN		F		0	1000	PIA	15	SLO	×								· ·	J					
	P	7544	P	GNZ STORAGE TK DISCH		#		0	3000	PIG	100	SLO						L									
	ρ	7549	P	LOX STORAGE TANK ULL		5		0	200	PIG	4	SLO	×	X	X			L]		
	P	7564	P	LOX ST TK TO MIL DP		5		0	27	PID	120	SLO	×	X	X			\prod							-		
	p	7565	P	LOX XFER LINE TO MSL		P		0	200	₽1G	٨	SLO						\prod							Ì		
	ρ	7567	P	FUEL LVL TANK ULLAGE		,		0	75	PIG	1	SLO	\prod								Ĺ	\prod			_		
	P	7578	P	LOX IN TO ELEV DISC		*		0	200	PIG	•	SLO	X					Γ									
	ρ	7682	P	DP ON LOX TANK		P		0	2	PID	.04	SLO											L				
	p	7688	ρ	GND FUEL PUMP OUT				0	190	PIG	,	SLO					Ì				\prod						
	ρ	7699	p	GND FUEL PUMP IN				2	100	PIG	2	SLO										İ		П			
	ρ	7690	p	GND FUEL FILTER DP		p		Q	23	910	و,	340											1		1		
	P	7691	p	FUEL FILL LINE IN		p		0	100	PIG	2	1												\prod	\prod	\coprod	
	ρ	7692	P	FUL FILL . ELEV DISC		•		9	125	PIG	2	9									Ī		Ī	\prod	\prod		
	ρ	7693	•	FUEL FILL LINE . ROD		F		5	125	PIG	2	,						I			\prod	Ī			$oxed{L}$	\prod	
	P	7696	P	LOX TOP LINE ROD		•		0	200	910	•	SLO						Ι			I	\perp			$oxed{I}$		
	•	7697	•	MAIN LOX LINE # ROD				0	200	P10	10	,					I								\perp		
	P	7699	•	MAIN LOX FILTER OF		٥		0	25	PID	• •	SLO	×	×			I	Γ		I	Ī	I			I		
	P	7700	P	LOX RAPID LD VLV OF		•		0	25	P10	. 5	SLO					I	Γ		\prod		I			I		
	•	7701	•	LOX FINE LO VLV OF		•		0	29	PID	. 3	sio				\Box	\prod			\prod	I	I			Ι		
1 _1	_ 1			LOX DRAIN VLV DP		P		0	10	PID	• 2	SLO				I	I			\prod	Ĭ	Ī			I		
		7707	P	LOX FILL FILTER OF		•		0	10	PID	• 2	sto					Ĭ	Γ		\prod	I	Ι			I		
	P	7709	P	LON TOP TH ULLAGE		73		0	200	P14	•	\$ L0	×	×	x		I			\prod	I	I					
	١	7710	P	GNO LOX TK PRESS LN		P		0	200	P10	•						Ι			\int	Ī						
	•	7711	P	LOX TOP TK PRESS LN		P		0	200	P10	•						I			\prod	I		Ι		\prod		
																	$oxed{I}$				I	I			I		
	Ţ								i												I	I					
-	_		_		_	_							_	_	_	-			_		-	_	-	_	_	ينسبن	

26 SEPTEMBER 1962

GENERAL DYNAMICE ASTRONAUTICS

PHORT NO OSTF-2 L/L COMP

													-	_			_	_					_				-	
		1_			,	3	Comme	-	-	1 3	5	1						_	_	,	, -	_			_		\dashv	
C	7 TE			DESCRIPTION		~	3	•		E 3	ON BOOM	OF CHAINGS	2		83									\perp	\perp	\perp	Ш	
ľ	•	3.	E		•	TO THE PERSON	32	LOW	1000	8	*	388																
E						-							#	1			7	#	Ŧ	F	F			二	7	#		
	٥	7907	P	81 LOX PUMP INLET		F		0	200	PIA	24	120		\perp			\downarrow	\perp	\downarrow	L	<u> </u>	<u> </u>		\dashv	4	\bot	\sqcup	
Γ	Ρ	7909	ρ	FUEL VLV F1 INLET		F		0	100	PIG	2	SLO							\perp					\perp	\downarrow			
Γ	ρ	7911	P	FUEL PRESN TK CISCH		F		0	5000	PIG	100	SLO		Ĺ														
r	P	7913	P	LOX FINE LV LI IN		F		0	300	PIG	4	10	X							L	L							
卜	P	7914	P	LOX RAPID LV LZ IN		F		0	300	PIG	٠	10		Ι			Ì			Γ				oxed				
	p	7915	p	LOX DRAIN VLV LIS IN		,		0	300	PIG	4	10		Γ											I			
H	\vdash			LOX DRN VLV L16 OUT		F		0	300	PIG	٠	10			Γ									\Box	\Box			
H	-		┿	LOX STOR TK FV L7 IN		P		•	150	PIG	٠	10												П	T			
H	P	7918	P	LOX FILTER LIS IN		2		0	200	PIA								T	T					П	T	T		
H	-		+++	LOX TK PRESS VLV IN		F	1	0	5000	PIG	100	SLO			Γ									T	T			
H																	\top		T	Ī				T	T	T		
H	p	7104	R	LOX TOP FL/RT	Н	,	\dagger	0	2	GPM	6	SLO	×		Γ			\top		1				\top		7		
H	\vdash		 	LOX TOP BLEED FL/RT		,		1	10	GPM	.2	SLO	X	T	Γ		1	1		T				T	T	T		
H	\vdash			GND FUEL SUPPLY		<u> </u>	\vdash	0	350	GPM	7			T			+	\dagger						\top	T	\top		
\vdash	?	7367		GNO FUEL SUPPLY	Н	-	+	-	330	1	 			+			\dashv	+	+	 			Н	\uparrow	\dagger	Ť		
H					H	-	+	-			100	300	#	╁	H		+	+	+	-				+	+	+	 	
H		7183	5	LOX ST TK PR LINE A	H	•		1	3000	1	_		#-	╁			+	+	+-				H	+	+	+	-	
H	2	7184	3	LOX ST TK PR LINE 8	_	_	╁╌┼	0	3000	UIN	104	200	#-	╁	┝		+	+	╁	╁		_	\vdash	+	+	+	╁┼	
L	Ц		Ц	ļ		_	-			₩	-	-	#	╀	├-	\vdash	+	+	+-	-	\vdash		\vdash	+	+	+	- #	
L	•	7113	1	TOU LON IN TEMP		•	\sqcup	M225	M269	007	1	340	\parallel	-	Ļ		+	+	╀	\vdash	-		-	+	+	+	╁╌╫	
L	P	7114	•	LOX TOP L/P DISC IN		,	Ш	H929	M265	DGF	1	SLO	Щ_	L	ļ.,		+	+	+	-				+	+	+	-#	
L	•	7134	7	81 LOX PUMP INLET		,		H325	H275	DGF	1	SLO	4	L	L		_	1	\downarrow	-	L		\dashv	\rightarrow	+	+	-	
L	•	7304	1	SUS LOX PUMP INLET		•		M320	M270	DOP	1	SLO	Щ.	L			_	4	1	_				\downarrow	\downarrow	+-	- !!	
	•	7305	7	82 LOX PUMP INLET		,		M325	M275	047	1	10	1	L		Ц	\perp	\perp		L	\sqcup			\downarrow	ــــــــــــــــــــــــــــــــــــــ	-		
Г	•	1325	1	ENG COMP AMBIENT		78		0	500	DGF	34	SLO	X	×	X		\downarrow	\perp		L				\downarrow	\downarrow	_		
Γ	•	1930	7	S LOX PUMP INLET		8 \$		M920	H2 79	047	.7	SLO	×	×	×		\perp		L	L	L			_	\downarrow	\perp		
Γ	•	7547	1	GNE STORAGE TE DISCH		•		H100	190	047	,	SLO		L			1	\perp		L			\sqcup	\downarrow	\downarrow	\bot		
Γ	•	7344	Ŧ	PUEL LINE TO MSL		7		•	190	944	•	810				ĺ							Ц	\perp		1	- 11	
Γ	•	7571	7	MAIN LON IN # DISC		•		M300	M265	DGF	1	84.0	×				I							_	\downarrow			
Γ	•	7972	1	MISSILE TANK FUEL		,		0	190	047	•	SLO					$oxed{\int}$							\perp	1			
Γ	•	7498	7	MAIN LOX LINE O ROD		,		M300	4269	047	1	810									L			\perp	\downarrow			
Γ	•	7702	7	LOX TOP LINE ROD		•		M\$25	M269	04	1	8L0					\prod							\perp	\perp	\perp		
Γ	•	1711	7	BI MACELLE AMBIENT		0 1		•	500	047	34	SLO	×	A	X		I											
Г														Γ				Ι	Γ					\int				
H			П											Ι				Τ	Ι					I	Ι			
_	_		للسية		_	_	4		·	-			-	-	_	_	-	-	_	-	_			-	-	_		

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

PLANCIA .	brs na.	***************************************	MA LUMBARACT	DESCRIPTION	RW/ BC	/muca /cumman		MONANT MOA	Delits PareChOr	ACCURACT	OF CHANGE MEDULANCY FUNCTION	5		38	1	_ [I	 [L		\Box	_						
L		3	E		3	Šž	704	HIGH	8		388							L							L			
F			\vdash				-				-		Τ.	Ŧ	+	+	-	-		F		-	+	+	+			
-	\vdash		1 	BZ NACELLE AMBIENT	D	+	0	500	OGF	 	 	X	ľ	1	-}-	+	╀	-	-	-		\dashv	+	+	+	H	- !!	
\vdash			+-+	SKIN 81 HYPRGOL CTL	\vdash		MZOO	200	DGF		SLO	#	+	4	+	\downarrow	Ļ	L	L	_	\dashv	4	+	+	╁	\vdash	-#	
L	Н		-	SKIN BZ HYPRGOL CTL			MZOO	200	DGF	-	SLO		+	+	+	\downarrow	1	-	_	L	\vdash	4	4	+	╁-	-	-#	
L	Ρ	7806	T	SKIN S HYPRGOL CTL			M200	200	OGF	8	SLO	1	1	\downarrow	4	1	-				4	4	\downarrow	1	↓	\sqcup	-#	
	ρ	7812	T	AMB S HYD CTL MAN		1	M200	200	DGF	8	SLO	1	\downarrow	\downarrow	\downarrow	L	L	L	_			-	\downarrow	1	1	Ц	-!	
L	ρ	7813	T	AMB QUAD 4 STA 1205		5	M200	200	DGF	8	SLO		\perp	\perp	\perp	L	L					_	\perp	\downarrow	\perp	Ц	\parallel	
L	Ρ	7814	7	AMB QUAD 3 STA 1175		5	M200	200	OGF	8	SLO				\perp	L									\perp	Ш		
L	Ρ	7815	7	AMB QUAD 2 STA 1245		5	M200	200	DGF	8	SLO			1	L	L	L										i	
	ρ	7816	7	AMB GUAD 1 STA 1248		5	M200	200	DGF	8	SLO																li	
	Ρ	7817	T	AMB B1 NAC STA 1245		3	M200	200	DGF	8	SLO																i	
	Ρ	7818	т	AMB 92 NAC STA 1245		5	M200	200	DGF	8	SLO		I	I	Ι													
	Ρ	7819	7	AMB QUAD 2 STA 1234			M200	200	DGF	8	SLO		I	\prod	Ι							Ī					1	
	₽	7820	Ŧ	AMB BZ NAC STA 1156		3	M200	200	DGF	8	SLO		T	I	Γ												il	
	ρ	7821	7	AMB B1 NAC STA 1156		;	M200	200	DGF	8	SLO																1	
Г	۵	7822	Ŧ	AMB B1 FUL CTL VLV		•	M200	200	DGF	8	SLO		T	Ι														
Г	P	7823	T	AMB BZ FUL CTL VLV		,	M200	200	DGF	8	SLO														Ī			
	p	7824	7	AMB QUAD 4 STA 1260			M200	200	DGF	8	SLO		Γ															
Γ	p	7825	7	SKIN B1 NAC STA 1220			M200	200	DGF	8	SLO		T	T	T							T	T	T			Ī	
Γ				SKIN BZ NAC STA 1220			M200	200	DGF	8	SLO					Γ												
	7			SKIN X AXIS STA 1200			MZOO	200			SLO		T	T	T						T	T		Τ				
Г				FUEL PRESN TK DISCH			M100	150			SLO		Ī	T	Ţ	Γ							1	T		П	il	
					\top								T	T		Γ					1		1	T		П	ij	
	P	7126	V	S EGN STAGE CTL VOLT	1		0	30	VOC	1	100	×		T								1	1			П	ill	
П	7				1								T	T	T			П				1		T				
	Ρ	7115	x	RAPID TOP VLV OPEN	1		ON	OFF	VDC		STP	×	×	×	T	Γ				1	T	1	1	T				
П	P	7116	X	RAPID TOP VLV CLSD	7		ON	OFF	VDC		STP	x	×	×	Ī	Γ				1	1	1	T	T	Г			
П	P	7117	X	TOPPING VILV OPEN	,		ON	OFF	VDC		STP	×	×	×	T					7	1	7	1	\top		П	1	
	ρ	7110	X	TOPPING VLV CLSD	,		ON	OFF	VDC		STP	×	×	×						1		T	7-	T				
П	P	7129	×	VENT VLV N-80 OPEN	f		ON	OFF	VDC		STP	×	×	×	Γ					1	1	1		T		j		
П	P	7130	X	VENT VLV N-80 CLSD	-		ON		VDC		STP	×	×	×		Γ	П		1	1	1	1	\top	T		П	-#	
П	P	7131	x	LN DRN PRES NÃO OPEN	F	++	ON	OFF	VDC		STP	x	×	×		Γ			1	1	1	1	1	T				
П	P	7132	x	LN DRN PRES NOO CLSD	-		ON	OFF	VDC		STP	×	×	×	1		П		7	1	1	†	1	T				
	7				1	1							T	T	T	Γ	П		1	1	+	†	+	1		\dashv	111	
H	7					++							T	T	T			_	+	1	\dagger	\dagger	\dagger	\dagger		\dashv	-	

SECTION 10

26 SEPTEMBER 1962

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO OSTF-2 L/L COMP

DATE 26 SEP 62

.... 20

	Ι			11								I	Ш	_	_	_			_	_	_		_		_		11
673	1		-	DISCRIPTION	20/100	/	/cum		/404/4//	Pherits Preschion	COMMON	TO COLUMN	3	71	181	Π	T	Ţ	Ţi		П	T	T	Τ			_
ľ	-	1.	E			-	31	row		8	8	188		Ť			1	T				\uparrow	\dagger	1	П	十	1
F	F							-		-	匚		#	1		\dashv	7	#	-			7	#	Ϊ.		ヰ	#
L	ľ	7193	M	LOX TOPG TK VV OPEN	Ц	R		OFF	ON	VDC		STP	∭×	×	×	4	\downarrow	ļ	L	L	Ц	_	1	\perp	Ц	\downarrow	₩
L	٠.		₩	LOX TOPS TK VV CLSD	Ц	R		OFF	ON	VDC		STP	×	×	×		\perp	ļ	L		Ц	1	\perp	L		\perp	₩
	P	7195	×	FUEL VALVE F4 OPEN	Ц	R		OFF	ON	VDC		STP		\perp	Ц		\perp		L					L			
L	P	7296	×	FUEL VALVE F4 CLOSED		R		OFF	CN	VDC		STP				\perp	\perp		1								
L	P	7223	×	LOX STOR TK VV CLSD		R		ON	off	VDC		STP	×	×	x			L	L								Ⅲ
L	P	7225	×	LOX RAPID LY OPEN		R		ON	OFF	VDC		STP	×	x	×												
	P	7226	×	LOX FINE LV OPEN		٩		ON	OFF	voc		STP	×	×	x		I	L									
	P	7227	X	LOX RAPID LY CLSD		R		ON	OFF	VOC		STP	×	×	×		I				$oxed{I}$						
	P	7228	X	LOX FINE LV CLSD		R		ON	OFF	VDC		57P	×	X	×	\prod	I				\prod	I	I			floor	
	ρ	7236	x	LOX STOR TK VLV OPEN		R		ON	OFF	VDC		512	×	×	×	1							T			T	
	P	7236	×	LOX DRAIN VALVE OPEN		R		ON	OFF	VDC		STP	×	X	×		I				T	T				T	
	ρ	7240	x	LOX DRAIN VALVE CLSD		R		ON	OFF	VDC		STP	×	X	×	T		Γ								T	
	P	7241	x	LOX CHLON VL N1 CLO		R		ON	OFF	VDC		STP	×	×	×	I	T				T	T				1	
Г	•	7251	×	LOX CHEDN VE N2 CLD				ON	OFF	VDC		STP	×		П	T	T	Γ				T	T			T	
	Ρ	7252	X	CON CHIDM VL NO CLO		R		ON	of#	VOC		STP	×		П	T	Τ	Γ			T	T	T			T	
	P	7253	x	LOX TPNG VL NSO CLD	П	R		ON	OFF	VDC		STP	×		П	Т	Τ				T	Τ	T			T	
Г	•	7550	×	BOIL-OFF VLV OPEN		R		017	ON	VDC		STP	I	×	×	T	Τ				7					T	
			_]]	JUEL VLV F1 OPEN		R		ON	OFF	voc		STP				T	T			T	T					T	
П			11	FUEL VLV F1 CLOSED		R		0:1	OFF	VUC		87P				Ι	Γ			T	T	T	Τ		T	T	
			- 11	FUEL VLV FZ OPEN		8		ON		νος		379					L			T	T					T	
			п	FUEL VLV FZ CLOSED		R		ON		YDC		STP				T	Γ					T	Γ		T	T	
ГΙ	· T		- 11	FUEL VLV F3 OPEN		R		ON	OFF	VOC		\$1P				T				T					T	T	
	_		-11	FUEL VLV F3 CLOSED		R		2K	OFF	voc		STP				I	Γ			Ţ	T	Ι	Γ		Ţ	Τ	
	•	7928	x	FUEL VLV NF4 OPEN	\prod	R		Си	OFF	VDC		STP				I						Ι				Ι	
П	P	7929	×	FUEL VLV NF4 CLOSID		R		ON	OFF	VDC		STP								T	T	Ī	П				
	•	7930	×	FUEL VLV NF1 OPEN		R		ON	OFF	VDC		STP				I			7	Ī	T	T			1	T	
	P	7931	×	FUEL VLV HF1 CLOSED		*		ON	077	VOC		STP			T					1	T	T	П		T	T	
П	•	7932	×	FUEL VLV NF2 OPEN				ON	077	VDC		STP			\top	T	Γ		1	1	T		П	1	1	Т	
				FUEL VLV NF2 CLOSED		R		ON	077	VDC		STP			T	T			7	T	T	1	П	7	T		
П	•	7934	X II	FUEL A/B FGD VLV OPN	T	R				VOC		17P			x	7			1	1	T	T	П	7	1		
	•	7935	*	FUEL A/8 F40 VLV CLS	T	R		ON	077	VDC		57P			T	T	П		1	T	T			1	1	П	
П	•	7936	.	FUEL LVL F11 OPEN	T	A			OFF	voc		179		1	1	T	П	7	1				П	1	T	\prod	
П	1				1	1									1	T	П	7	1	1	T		П	1	T		
П	1				T			İ					П	7	T			7	1	T	T			1	T	\Box	

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

REPORT NO OSTF-2 L/L COMP

DATE 26 SEP 62 PAGE 21

MemCLE	STITLES		The State of Section 1	DESCRIPTION	The / MC	WCARAGE / TACK	"/cume	MEAS	Usqueent	Parity Pa	ACCUBA-77	OF CHANGE FREQUENCY FUNCTION	3	7	38:							1		二 工	<u> </u>	 		
L	L	3	E		L	3	32	LOW	нен	8	•	188	$\parallel \parallel$	L				\perp						\perp	\perp			
\vdash		7937	×	FUEL SENSOR LS	\vdash	R	-	ON	CFF	VDC	- -	STP	#	Ŧ	F	H	\mp	Ŧ			+	+	+	Ŧ	F	\exists	-	
'n	┷-		-	FUEL LVL TK FULL	\vdash	R	\vdash	ON	FULL	100	┼-	STP	₩	+	-	\vdash	╁	╁	Н		+	+	+	+	╀	\dashv	#	
-	-		-	FUEL LVL TK HALF FUL	┝	R	-	ON	 	1426	∤	-	₩.	÷	╁	H	+	+	Н		+	+	+	+	╀	\dashv	-#	
-	٠.,		-	LOX STORE TK FULL	H	_	\vdash	₩	OFF	VDC	<u> </u>	519	₩.	-	-	\vdash	+	+	Н		4	+	+	+	╀	\vdash	-#	
-	Н		+-	H	_	R		ON	OFF	VDC	 	┼	∭×	X	×	\dashv	+	1	\sqcup	H	4	+	\downarrow	+	1	\vdash	-#	
-	Н		┿	LOX VLV L7 OPEN		R		ON	OFF	VOC	<u> </u>	STP	11	1	L	Ц	1	\perp	\sqcup	Ц	4	1	\downarrow	\downarrow		\sqcup	_	
-	щ	7958	4-	LOX VLV L7 CLOSED		R		ON	OFF	VDC		STP	\parallel	\perp	L		1	\perp			\downarrow	1	_	_			-	
L	_		+-	LOX VLV L6 OPEN		R		ON	OFF	VDC		STP	1		L		1	L			\perp							
L	Ρ	7960	X	LOX VLV L& CLOSED	Ц	R		ON	OFF	voc		STP																
L	ρ	7963	X	LOX A/8 FED VLV OPEN		R		ON	OFF	VDC		STP	X	x	x	\prod												
L	Р	7964	X	LOX A/8 FGD VLV CLSD		R		ON	OFF	VDC		STP	×	x	X										Ī			
L																					T		T		П			
	ρ	1051	٧	ENG COMPT ACOUST		N		115	160	ов	5%	20K	×	×	x						T	Ī			П		ill	
																T	T	Γ			1	T	T		П		III	
	U	7019	N	L/P LOX DISC CAMERA				96		FP5			×			T	1			1	T		T		П			
	U	7020	×	HOT-COLD DISC CAMERA				96		FPS							T			1	T	T	T	П	П	7	111	
																\top	T			7	1	T	T	П		1	111	
	υ	7080	P	LOX TANK HEAD	1	F		٥	7	PIO	0.1	SLO	11				†		7	7	1	T	T	П		\top	\parallel	
П	U	7081	P	FUEL TANK HEAD		F		0		PID		SLO	1		П	1			7	1	\top	T	T	\sqcap	\sqcap	\top	\parallel	$\neg \neg$
П	Ī		П		7								#	\Box		+	\top		\dashv	1	†	T	Ť	Ħ	\sqcap	\dagger	₩	\neg
П	U	7126	v	AA COMP 28VDC IN		0		0	40	VDC	2%	1KC		H		\top	1	П	1	\dagger	1	\dagger	1	\dagger	1	+	╫	
$\overline{}$	_			AA TIME SHRD OSC OUT	7	0	1	0	1	VDC			#-		1	\dagger	+		1	\dagger	\dagger	\dagger	1	H	\dashv	\dagger	11	
П	1		П		7								-	Н		+	\dagger		+	+	\dagger	+	1	1	+	十	╫	$\neg \uparrow$
П	U	7011	x	RAPID FILL LOX CTL-1	- †	R	_	OFF	ON	VDC		STP	×	x	×	+	\dagger		7	\dagger	+	+	 	H	\dashv	+	╫	\dashv
-	-+		-	TOPPING LOW CTL-1	+	R	-#	OFF	ON	VDC			X	1	×	+		H	\dagger	\dagger	+	+	\vdash	H	+	+	₩	
-	-		+	TOPPING HIGH CTL-1	7	2		OFF	ON	VDC		STP	Η	X	+	\dagger			+	+	+	+		H	+	+	₩	\dashv
-	+		-+	100% LOX CONTROL-1	1	R	1	OFF	ON	VDC		STP	X	+-+	X	+		-	+	+	+	+	-	\vdash	+	+		\dashv
H	u l	7015	x	RAPID FILL LOX CTL-2	+	9	-#	OFF	ON	VDC		STP	4-	x	-+	+	+	1	+	+	+	+	\vdash	H	+	+	 	\dashv
-	-+		-	TOPPING LOW CTL-2	1	R	-#	OFF		VDC		STP		L		+	\vdash	+	+	+	\dagger	\dagger		-	+	+	₩	\dashv
П	,	7017	X	TOPPING HIGH CTL-2	\dagger	3	-#		ON	VDC		STP	ĺ	\neg		+	\forall	\vdash	+	+	+	+	\vdash	+	+	+	₩	\dashv
-	-+-		-	100% LOX CONTROL-2	+	R	#			VDC		STP	4	┝╌┢	-+	+	+	+	-	+	+	+		1	+	+	₩	
-	-		-	FUEL LVL NOT LOW-1	+	R	#			VDC		STP	4-4		7	+	H	+	+	+	+	+		\dashv	+	+	₩	
	-		-	FUEL LVL NOT LOW-2	+	q			JN	VOC		STP	4-4	┝╼┢	+	+	╁┤	+	+	+	+-	+		\vdash	+	+	₩	
H	+				+	+	-#	-	~··	700			+	\vdash	+	+	H	+	+	+	+	-	-	4	+	+	#	
\vdash	+		-		+	+	-#						H	1	+	+	\vdash	+	+	+	+	-	\vdash	+	+	+	#	
Щ	1		لـــ		_									Ц		١.,				L		L		<u>.</u>	┵	Ĺ	Щ	

SECTION 10

GENERAL DYNAMICS ASTRONAUTICS

26 SEPTEMBER 1962

-	AMORT NO OSTF-2 L/L COMP											· · · · ·		DATE 26 SEP 62 PAGE 22										
77.7	THE STATE OF	***************************************	TYPE MEASUREMENT	DISCRIPTION	Day / Mic	/	G-3/cum	1	urader?	COP PARECTICAL	ACCHANCE	BAR OF CHARGE OR PRECION OF PURCHON	2	113	83									
F	U	7023	X	FUEL LVL TOO HIGH-1		R		OFF	ON	VDC		STP				$\downarrow\downarrow$		\bot	<u> </u>	+	$\downarrow \downarrow$	+	+	}
H	1 .	l		FUEL LVL TOO HIGH-2		R		OFF	ON	VDC		STP	L			$\perp \downarrow \downarrow$		\downarrow	} →		\vdash	+	+-	
H	1		1 1	AA COMPUTER RESET		F		(25	VDC		SLO				44	4	+	┼-	+	\dashv	+	+	
r	U	7132	x	AA STA COUNTER OTP		•			25	VDC	5%	SLO	X	X	X	\dashv	-	\perp	\dashv	+	╁┥	+	+	╫╼╾┫
r	\dagger									Ш				_			-	+	H	+	\mathbb{H}	+	+-	
r	₩	7092	x	R/V BAT HTR THERMOST		R				Щ	<u> </u>	<u> </u>	×	-		\dashv	-	+	+	+	+	+	+-	-
Γ				LAUNCH CONTROL POWER		R				₩			Щ.	×	++	+	+	+	+	+	H	+	+	
T	7	7055	X	START COUNTDOWN PWR		R				Щ		ļ	×	+-		\dashv	+	+	+	+	+-	+	+-	
r	Y	7056	x	28 VDC VERIFICATION		R				₩_	↓_	ــــ	×	+	+++		+	\vdash	+-	+	+-	\dashv	+	
r	Y	7059	X	R/V CONTINUITY		R				₩	<u> </u>		₩-	×	+		+		+	+		$\vdash \vdash$	+	
t	Į,	7061	x	HARK 4 R/V		R	_			₩_	↓_	 	₩	X	+-+-		-	+	\dotplus	-	╁	\vdash	+	
T	Y	7062	x	R/V TACTICAL	L	R	Ĺ			Щ	↓_	 _	 	×	┷┿╾		-	-	+	\vdash	+-	╁		
t	Y	7064	×	119 VAC VERIFICATION		A				₩_	_	-	₩	×	+			++	+	++	+	\vdash	-+-	
t	Y	7065	×	START COUNTDOWN VFY	L	A		║		₩_		↓	₩	+-	X	-	-	\vdash	+-	╁┼	+	\vdash	+	-
t	٧	7066	×	TARGET A SET		A	1				1	 	Щ.	+-	X	-	-	+	+	\vdash	+	╁┼	-	<u> </u>
Ì	Y	7061	×	TARGET B SET			1			-	-	┼	₩×	+-	×		-	\dashv	+	\vdash	+	\vdash	+	#
Ì	1,	7068	×	MARK S R/V		1				_#	┿		₩×	1	X	╁┼-	- ¦-	\dashv	+	╁┼	+	\vdash	+	₩
I	_		Т	TARGET A SELECT		,	4		<u> </u>	₩_		-	117	_	X		╁┼	H	+	+	+	H	-	₩
Ì	_		_	TARGET & SELECT		Ŀ	<u> </u>					-	₩×	Т	X	-	╁┼	++	+	╁┼	+	H	+	
Ì	_		\neg	START COUNTDOWN SIG		,	·	Щ					-##-	+	×		╁┼	╁┼	+	╁┼	+	+	+	
Ì	-	_	_	28 VOC RECEIVED	\perp	1	1	₩	\bot		_	-	#	×	X	++	₩	+	+	++	+	+	+	
I			I		1	\perp	\perp	₩_	_		-	+-	₩	+	++	++	╁┼	+	+	+	+	H	+	#
			I		1	+		₩_		_#_			₩	+	++-	+-+-	++	\dashv	+	\forall	+	H		#
١			Ι		1	\perp	\perp	₩_		- -		+	╫	+	++	++	+	++	+	+		+		
					1	\perp		#		111	-+-	+	₩	+	++	++	++	╁┽	+	+	+	+	-+	. 4 :
			I		\downarrow	\perp	4-	₩_		·	-	-	₩	+	+-	++	++	+	+	++	+	+	+	
					4	\downarrow	4-	₩		_#-	+-	+-	₩	+	++	++	++	+	+	+	-	+	+	- 44
					\downarrow	1	+		_			+-	-#	+	++	++	++	++	+	+	+	+	\vdash	-
					\downarrow	4	+	₩-		-#	+	+	╫	+	++	++	++	+	+	+	+	+	+	
	\prod				+	+	+	-#-		- -		+-	-#	+	++	++	++	+	+	\forall		+	$\dagger \dagger$	-#
					\downarrow	-		₩-		-#-		+	-#	+	++-	+	╁┼	+	+	+		+	+	-#
	П				\perp		\perp	₩-		- #-			-#	_ļ	-+-	++	++	+	-+	+	+	+	++	-#

SECTION 11

CSTF 42 PEN ASSIGNMENTS

This section is a tabulation of all sequence measurements (OFF-ON) and their associated Esterline-Angus recorder pen assignments.

MEASUREMENT IDENTIFICATION

N 7001 X PRESSURE MODE RED
N 7002 X SELECT A BUTTON

MEASUREMENT DESCRIPTION

This is a brief, usually abbreviated, description of the measurement. *

PICK-UP POINT

This indicates the electrical plug number and pin number of the pick-up point provided in the electrical control system for this measurement.

This denotes the sequence recorder pen assignment for the measurement.

*NOTE: For a key to abbreviations and coding see the IBM code key or this report,

· CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS
REPORT NO. AE60-0653
6 DECEMBER 1961

SEQUENCE PEN LIST (to be supplied at a later date)

PAGE NO. 11-1

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIOPS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MEMBER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

COUNTDOWN INSTRUMENTATION

BLANK PAGE

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

APPENDIX A

INSTRUMENTATION CONFIGURATION

IBM CODE KEY

Master tabulations of all performance measurements applicable to all test articles are maintained by the Test Planning Group. Operational tabulations are compiled from these masters for individual missiles. All instrumentation logs are maintained on IBM punched cards. This facilitates rapid sorting, rearrangement, and tabulation of measurements as required for program preparation and data analysis. Such storage necessitates a systematic classification of the measurements and uniformity in method used to describe the many types of measurements. To achieve this, an extensive codic i of the identification, description, and measurement parameters is necessary. The following is an explanation and key for this coding. Each section may be identified in the key by the section heading or the IBM card column number.

I. MISSILE IDENTIFICATION (Col. 1-3)

This section is used to indicate the vehicle upon which the measurement is made.

II. MEASUREMENT IDENTIFICATION (Col. 4-9)

A. Each measurement has a unique six-character identification. The first character defines the system within which the measurement exists. The second character defines the monitoring agency. The third, fourth, and fifth characters are number assignments which define a particular measurement within the system defined by the first character. The sixth character defines the type of measurement.

PAGE NO. 12-1

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFFISE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OF REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

-CONFIDENTIAL

_ 5 _ _____

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

SYMBOL	VEHICLE (Coi. 3)	SYSTEM (Col. 4)	TYPE OF MEASUREMENT (Col. 9)
	, 0011 0,	(001. 1)	(601. 3)
A	Atlas Booster	Airframe	Acceleration
В	*	Beacon	Retation Rate
C	Centaur	*	Current
D	*	Range Safety Command	Deflection
E	*	Electrical	Power
F	*	Pressurization	Force
G	*	Guidance (Radio)	•
H	•	Hydraulte	Position
1	•	Guidance (Inertial)	Intensity
J	*	•	Humidity
L	WS 117L 2nd Stage	Launcher	Velocity
M	Mercury Capsule	Miscellaneous	Maes
			(Dimensionless
			coefficient)
N	•	Facilities and Site	Camera Coverage
0	•	•	Vibration
P	•	Propulsion	Pressure
Q	•	•	Frequency
R	•	•	Rate
S	•	Flight Control System	Strain
T	•	Telemetering	Temperature
U	•	Propellant Utilization	•

PAGE NO. 12-2

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

Vendor Code

WK Wiancko Engineering Co. BLH

Baldwin-Lima Hamilton

MASSA Massa Laboratories, Inc.

Thermo Electric Co., Inc.

R-D Rocketdyne

WAUGH Waugh Engineering Co.

Indicates the transducer is the same one as that used for the measurement number immediately following this symbol.

VII. TRANSDUCER SERIAL NUMBER (Col. 62-66)

VIII. TRANSDUCER LOCATION (Col. 67-70)

Station Number (Col. 67-70)

Location by station number to the nearest inch.

Quadrant Number (Col. 71)

- Quadrant I
- Quadrant II
- Quadrant III
- Quadrant IV
- XX Axis X
- YY Axis

FOR LANDLINE AND CAPTIVE TEST

TYPE OF RECORDER (Col. 30-34) IX.

- A AM tape
- D Sanborn type recorder
- E Eput meter, counter
- FM tape

PAGE NO. 12-3

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

- G Esterline-Angus-Type-AW Graphic Recorder
- L Panel Light
- M Meter
- MS Multi-Point Strip Chart
- O Oscillograph (CEC)
- P Printer
- R EA Sequence Recorder
- S Strip Chart (Brown, Speedomax)

FOR TELEMETERING ONLY

X. MEASUREMENT CHANNEL ASSIGNMENTS (Col. 30-34, on TLM only)

Telemeter transmitter number (Col. 30)

Subcarrier channel numbers (Col. 31-32)

1-13, A, C, E

Pin Number (Col. 33-34)

Pin number if commutated in telemeter package

Pin number 1 thru 60

TYPE OF MEASUREMENT (Col. 76, on TLM only)

- P Primary An original measurement with one transducer, the output of which is sent to only one telemetering package.
- Multiple When a measurement is picked up by one transducer but sent over two or more telemetering packages the original measurement is considered primary and the repeated ones considered multiple.

1)

PAGE NO. 12-4

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

· CONFIDENTIALS

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

SPECIAL CODING (Col. 76, on TLM only)

C Installation Drawing/Wiring Diagram
(Signal available will be shown in tabulation Section 15)
(Output impedance will be shown in tabulation Section 16)

PAGE NO. 12-5

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

CONFIDENTIAL

SENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0663 6 DECEMBER 1961

	<u>A</u>		В
A/B A/P AC	AIRBORNE AUTOPILOT ALTERNATING CURRENT	BECO BGG BHD	BOOSTER ENGINE CUTOFF BOOSTER GAS GENERATOR BULKHEAD
ACA ACCELN	ACOUSTICA ACCELERATION	BK BKHS	BREAK BLOCKHOUSE
ACCRY ACC	ACCELEROMETER	BLWS BP BRG	BELLOWS BOOST PUMP BEARING
ACT, ACTR ACUM ADAPT	ACTUATOR ACCUMULATOR ADAPTER	BRKT BSD	BRACKET BESIDE
AGC	AUTOMATIC GAIN CONTROL	BSTR BTL	BOOSTER BOTTLE BETWEEN
AIG AMB	ALL INERTIAL GUIDANCE AMBIENT AMPLIFIER	BYP	BYPASS
AMP, AMPL ANG ANT	ANGLE ANTENNA		<u>C</u>
APS	ACCESSORY POWER SUPPLY	C-O, C/O CALC CAL, CALIB	CUT OFF CALCULATED CALIBRATE
ASSY ATT AUD	ASSEMBLY ATTITUDE AUDIO	CAN CENT	CANISTER CENTAUR
AUX AVG	AUXILIARY AVERAGE	CHAN CHM	CHANNEL CHAMBER
AX AZ	AXIS AZIMUTH	CKT CLSD CLSG	CIRCUIT CLOSED CLOSING
	В	CMD COEF	COMMAND COEFFICIENT
B1 B2	BOOSTER #1 BOOSTER #2	COF COMB COMPT	CUTOFF COMBUSTION COMPARTMENT
B-0 B & S BAT	BOIL OFF BOOSTER & SUSTAINER BATTERY	COND	CONDITIONER CONTINUOUS
BCN	BEACON	CONV	CONVERTER

PAGE NO. 12-6

THIS MATERIAL CONTAINS INFORMATION AFFECTINE THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.G., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UMAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

	c		<u>E</u>
COR CTL CTR CY CYL	CORNER CONTROL CENTER CYCLE CYLINDER	EMER ENG EXHST EXPLO EXT	EMERGENCY ENGINE EXHAUST EXPLOSIVE EXTERNAL
DBLR DC DCDR DEL DEMOD DESTR DET DG DI DIA DIFRN DIR DIS DISCH DISCON DISPL	DOUBLER DIRECT CURRENT DECODER DELIVERY DEMODULATOR DESTRUCTOR DETECTOR DISPLACEMENT GYRO DISCRETE INTEGRATOR DIAMETRIC DIFFERENCE DIRECT DISCRETE DISCRETE DISCHARGE DISCONNECT DISPLACEMENT	F & C F & D FAIL FAIR FB FRG FL FL/RT FREQ FV FWD	FILL & CHECK FILL & DRAIN FAILURE FAIRING FEEDBACK FAIRING FLAME FLOW RATE FREQUENCY FUEL VALVE FORWARD G GENERATOR GAS GENERATOR GIMBAL
DLY DN DO DP DRVR DS DT DV	DELAY DOWN DROP OUT PRESSURE DROP DRIVER DOWN STREAM TEMPERATURE DROP DELTA VELOCITY	GPM GND GN ₂ GO ₂ GU GUID	GALLONS PER MINUTE GROUND GASEOUS NITROGEN GASEOUS OXYGEN GROUND UNIT GUIDANCE

PAGE NO. 12-7

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

-CONFIDENTIAL -

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

	H		L
H/D	HOLDDOWN	LAT	LATERAL
HE	HELIUM	LCHR	LAUNCHER
ш	HIGH	LH ₂	LIQUID HYDROGEN
HLDR	HOLDER	LIM	LIMITER
HORZ	HORIZONTAL	LIT	LIGHT
HS	HEAD SUPPRESSION	ЦQ	LIQUID
HSV	HEAD SUPPRESSION	LKN	LOCKIN
	VALVE	LKUP	LOCKUP
HSU	HYDRAULIC SUPPLY UNIT	LLFM	LANDLINE FM
HTR	HEATER	LN	LINE
HYD	HYDRAULIC	ro	LOW
		LN ₂	LIQUID NITROGEN
	<u> </u>	LOÑG	LONGITUDINAL
	_	\mathtt{LO}_2	LIQUID OXYGEN
IF	INTERMEDIATE	LT	LIGHT
	FREQUENCY	LUB	LUBRICATE
IGN	IGNITOR OR IGNITION	LVL	LEVEL
IND	INDICATOR		
INFO	INFORMATION		
INJ	INJECTOR OR INJECTION		M
INL	INLET		—
INNR	INNER		
INP	INPUT	MAN	MANUAL
INS	INSULATOR	man, manf	MANIFOLD
INST, INSTR		MANO	MANOMETER
INSUL	INSULATION	MC	MEGACYCLES
INT	INTERNAL	MGTRN	MAGNETRON
INTGRD	INTEGRATED	MID	MIDDLE
INVTR	INVERTER	MK	MARK
	_	MOT	MOTOR
	J	MSG	MESSAGE
TDM	Immusou	MSL	MISSILE
JET	JETTISON	MTR	MOTOR
JUNCT	JUNCTION	MULT	MULTIPLIER

PAGE NO. 12-8

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.G., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

	N		P
NAA	NORTH AMERICAN AVIATION	PNL POS	PANEL POSITION OR POSITIONER PULSES PER SECOND
NORM NOZ NR	NORMAL NOZZLE NEAR O OVERBOARD	PPS PRE-RLS PRESD PRESG PRESN PRESS PREVLV	PRERELEASE PRESSURIZED PRESSURIZING PRESSURIZATION PRESSURE PREVALVE
OB OP OPN OPT ORFC OSC OTB OUT OUTBR, OTB OUTR OVBD OVRSPEED	OPTICAL PROBE, OUTPUT OPEN OUTPUT ORIFICE OSCILLATOR OUTBOARD OUTLET OUTBOARD OUTER OVERBOARD OVERSPEED	PRF PRG PRGR PROP PROP VLVS PPS PS PU PUV. PU VLV PV PWR PWR SUP	PULSE REPETITION RATE PURGE PROGRAMMER PROPELLANT PROPELLANT VALVES POUNDS PER SECOND POWER SUPPLY PROPELLANT UTILIZATION PROPELLANT UTILIZATION VALVE PROPELLANT VALVE PROPELLANT VALVE POWER POWER
P, PCH PB PB-IP PG PH PKG PL PLAT PMP PNEU	PITCH PULSE BEACON PULSE BEACON-IMPACT PREDICTOR PROGRAMMER PHASE PACKAGE PLATE PLATFORM PUMP PNEUMATIC	QUAD QLTY R RADL	QUADRANT QUALITY R ROLL RADIAL

PAGE NO. 12-9

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANGER TO AN UNAUTHURIZED PERSON IS PROHIBITED BY LAW.

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

	R		<u>s</u>
RB	RATE BEACON	SAT'S	SATISFACTORY
RB-IP	RATE BEACON-IMPACT	SECO	SUSTAINER ENGINE
	PREDICTOR		CUTOFF
RCC	RCUGH COMBUSTION	SECT	SECTION
	CUT-OFF	SEP	SEPARATION
RCVR	RECEIVER	SEQ	SEQUENCE
RD	ROCKETDYNE	SGG	SUSTAINER GAS
RDY	PEADY		GENERATOR
REF	REFERENCE	SIG	SIGNAL
REG	REGULATOR	SNSR	SENSOR
REL	RELEASE	SOL	SCLENOID
RESP	RESPONSE	SPRT	SUPPORT
RESVR	RESERVOIR	SRV AMPL	SERVO AMPLIFIER
RETR	RETRACT	SRV VLV	SERVOVALVE
RF	RADIO FREQUENCY	S8	SUBSYSTEM
RG	RATE GYRO	ST	START
RLF	RELIEF	STA	STATION
RLY	RELAY	STABR	STABILIZER
RNG	RANGE	STAT	STATIC
ROL	ROLL	STOR	STORAGE
RSB	Range Safety Beacon	STRN	STRENGTH
RSC	RANGE SAFETY COMMAND	STRT	START
RTN	RETURN	STRUC	STRUCTURE
RV	RE-ENTRY VEHICLE	SUNTRKR	SUNTRACKER
	(NOSECONE)	SUP	SUPPLY
		SUPHT	SUPERHEAT
	8_	SUPRN	SUPPRESSION
	 -	SURF	SURFACE
5 1	SYCAMORE TEST STAND	sus, s	SUSTAINER
	51	sw	SWITCH
84	SYCAMORE TEST STAND	8YS	SYSTEM
	54		
8/C	SUBCARRIER		
SAF	SAFETY		

PAGE NO. 12-10

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.S. SECTIONS 793 AME 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

-CONFIDENTIAL -

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

	T		v
T/B T/C TACH TANG TBN TCC	TURBOPUMP THERMOCOUPLE TACHOMETER TANGENTIAL TURBINE TEST CONDUCTOR'S CONSOLE	VECT VEL VERT VIBN VLV VRN VTRI	VECTOR VELOCITY VERTICAL VIBRATION VALVE VERNIER VENTURI
TEMP TH, THR TK TLM	TEMPERATURE THRUST TANK TELEMETER TRAILER	wT	<u>w</u> weight
TLR TMR TOR TOT TRGT TRIG TURB	TIMER TORQUE TOTAL TARGET TRIGGER TURBINE	X XCIT XCNGR XDCR	X TRANS EXCITATION EXCHANGER TRANSDUCER
UMBL UP	U UMBILICAL UPPER	XFER SYS XFER UN XMTR XPL XPNDR, XPONDER	TRANSFER SYSTEM TRANSFER UNIT TRANSMITTER EXPLOSIVE TRANSPONDER CRYSTAL
V1 V2 VAP VDC VECO	VERNIER ENGINE #1 VERNIER ENGINE #2 VAPOR VOLTS DIRECT CURRENT VERNIER ENGINE CUTOFF	XTAL XVERS Y-R, Y/R	TRANSVERSE Y YAW ROLL Z

PAGE NO. 12-11

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMIBITED BY LAW.

-CONFIDENTIAL .

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

This page intentionally left blank.

PAGE NO. 12-12

THIS MATERIAL CONTAINS INFORMATION APPECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 70°, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653 6 DECEMBER 1961

EXTERNAL DISTRIBUTION

	No. Copies
ATR FORCE	16
AIR FORCE	1
GE (MSVD)	2
ARMA GARDEN CITY, NY	
ARMA, SAN DIEGO	2
MAJOR FRANK A SILVASY	1
ROCKETDYNE	1
ACOUSTICA ASSOCIATES	1
VELLOC SUITCUROARD & SUPPLY	1

PAGE NO. 12-13

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNFUTNORIZED PERSON IS PROHIBITED BY LAW.

-CONFIDENTIAL

C

APPENDIX

OSTF

IBM CODE KEY

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 13-1 12 JULY 1961

APPENDIX A

INSTRUMENTATION CONFIGURATION

IBM CODE KEY

Master tabulations of all performance measurements applicable to all test articles are maintained by the Test Planning Group. Operational tabulations are compiled from these masters for individual missiles. All instrumentation logs are maintained on IBM punched cards. This facilitates rapid sorting, rearrangement, and tabulation of measurements as required for program preparation and data analysis. Such storage necessitates a systematic classification of the measurements and uniformity in method used to describe the many types of measurements. To achieve this, an extensive coding of the identification, description, and measurement parameters is necessary. The following is an explanation and key for this coding. Each section may be identified in the key by the section heading or the IBM card column number.

I. MISSILE IDENTIFICATION (Col. 1-3)

This section is used to indicate the vehicle upon which the measurement is made.

II. MEASUREMENT IDENTIFICATION (Col. 4-9)

A. Each measurement has a unique six-character identification. The first character defines the system within which the measurement exists. The second character defines the monitoring agency. The third, fourth, and fifth characters are number assignments which define a particular measurement within the system defined by the first character. The sixth character defines the type of measurement.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITE STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARKER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

· CONFIDENTIAL,

PAGE NO. 13-2

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

	VEHICLE	System	TYPE OF MEASUREMENT
SYMBOL	(Col. 3)	(Col. 4)	(Col. 9)
A	Atlas Booster	Airframe	Acceleration
В	*	Beacon	Rotation Rate
C	Centaur	*	Current
D	*	Range Safety Command	Deflection
E	•	Electrical	Power
F	*	Pressurization	Force
G	•	Guidance (Radio)	•
H	•	Hydraulic	Position
I	•	Guidance (Inertial)	Intensity
J	•	•	•
L	WS 117L 2nd Stage	Launcher	Velocity
M	Mercury Capsule	Misceilaneous	Mass
	•		(Dimensionless
			coefficient)
N	•	Facilities and Site	Camera Coverage
O	•	•	Vibration
P	*	Propulsion	Pressure
Q	•	•	Frequency
R	•	•	Rate
8	•	Flight Control System	Strain
T	•	Telemetering	Temperature
U	•	Propellant Utilization	•

"HIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATERIAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, STATES WITHIN THE MEANING STATES WITHIN TH

-CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 13-3 12 JULY 1961

SYMBOL	VEHICLE (Col. 3)	SYSTEM (Col. 4)	TYPE OF MEASUREMENT (Col. 9)
v	*	*	Voltage
w	*	*	Time
X	*	External	Discrete Position
Y	*	Payload	Acoustical
Z	*	Azusa Transponder	Azimuth

^{*} Note: Unassigned

MONITORING AGENCY (Col. 5)

0	Telemetering
1	Direct Line (Captive Test and AFMTC Landline)
v	Checkout and Valldation Instrumentation
M	Visual Panel Presentations

III. MEASUREMENT RANGE (Col. 35-42)

This represents the desired capability of the measuring system. "M" preceding a number indicates minus quantity.

IV. UNITS OF FUNCTION (Col. 43-45)

AMP	Amperes	F/S	Feet per second
CPS	Cycles per second	FS ²	Feet per second ²
DB	Decibles	FTN	Foot ton
DBM	Decibles above 1 Milliwatts	G	Acceleration of Gravity
DEG	Degrees Angular	GPM	Gallons per minute
DGC	Degrees Centigrade	GPS	Gallons per second
DG F	Degrees Fahrenheit	IN	Inches
DGR	Degrees Rankine	INW	Inches of water
D/S	Degrees per second	ILB	Inch pound
E	Watts	IPI	Inches per inch

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18. U.S.C., SECTIONS 753 AND 764, THE TRANSMISSION ON REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

PAGE NO. 13-4

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

KC	Kilocycles	PIG	Pounds per square inch gage
KID	Thousands of pound per	PPS	Pulses per second
	square in. differential	PS	Pounds per second
KPS	Kilo-pounds	PSI	Pounds per square inch
KPM	Thousands of RPM's	RPM	Revolutions per minute
LBS	Pounds	RS^2	Radians per second ²
MA	Milliamperes	\mathtt{SF}^2	Slugs feet ²
MC	Megacycles	SLG	Slugs
ME	Milliwatts	SPS	Samples per second
MII	Microinches per inch	υ v	Microvolts
MS	Milliseconds	UA	Microamperes
MV	Millivolts	VAC	Volts, alternating current
PIA	Pounds per square inch absolute	VDC	Volts, direct current
PID	Pounds per square inch	VPK	Peak volts, AC
	differential	PR V	Phase reversing AC voltage

V. FREQUENCY RESPONSE REQUIRED (Col. 49-51)

The required response of the measuring system in cycles per second unless otherwise noted or implied.

SLO	Less than 1 cycle per second
400	400 cycles per second
1KC	1 Kilocycle (1000 cycles) per second
2MC	2 Megacycles (2,000,000 cycles) per second
STP	Step Function
UNK	Unknown

VI. TYPE OF TRANSDUCER (Col. 52-61)

*Indicates an "off the shelf" commercial transducer. This is followed by a coded identification of the vendor and the vendor model number if known.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS.

PAGE NO. 13-5 12 JULY 1961

Vendor Code

WK Wianco Engineering Co. BLH Baldwin-Lima Hamilton

MASSA Massa Laboratories, Inc. T Thermo Electric Co., Inc.

R-D Rocketdyne WAUGH Waugh Engineering Co.

Indicates the transducer is the same one as that used for the measurement number

immediately following this symbol.

VII. TRANSDUCER SERIAL NUMBER (Col. 62-66)

VIII. TRANSDUCER LOCATION (Col. 67-70)

Station Number (Col. 67-70)

Location by station number to the nearest inch.

Quadrant Number (Col. 71)

- 1 Quadrant I
- 2 Quadrant II
- 3 Quadrant III
- 4 Quadrant IV
- X XX Axis
- Y YY Axis

FOR LANDLINE AND CAPTIVE TEST

IX. TYPE OF RECORDER (Col. 30-34)

- A AM lape
- D Sanborn type recorder
- E Eput meter, counter
- F FM tape
- G Esterline-Angus-Type-AW Graphic Recorder
- L Panel Light

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONACE LAW. TITLE 18. U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MAINTER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

CONFIDENTIAL

PAGE NO. 13-6

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

- M Meter
- MS Multi-Point Strip Chart
- O Oscillograph (CEC)
- P Printer
- R EA Sequence Recorder
- S Strip chart (Brown, Speedomax)

FOR TELEMETERING ONLY

X. MEASUREMENT CHANNEL ASSIGNMENTS (Col. 30-34, on TLM only)

Telemeter transmitter number (Col. 30)

Subcarrier channel numbers (Col. 31-32)

1-13, A, C, E

Pin number (Col. 33-34)

Pin number if commutated in telemeter package

Pin number 1 thru 60

TYPE OF MEASUREMENT (Col. 76, on TLM only)

- P Primary An original measurement with one transducer, the output of which is sent to only one telemetering package.
- Multiple When a measurement is picked up by one transducer but sent over two or more telemetering packages the original measurement is considered primary and the repeated ones considered multiple.

SPECIAL CODING (Col. 76, on TLM only)

C fastallation Drawing/Wiring Diagram
(Signal available will be shown in tabulation Section 15)
(Output impedance will be shown in tabulation Section 16)

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 16, U.S.C., SECTIONS 793 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARMER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

PAGE NO. 13-7

12 JULY 1961

XI. INSTRUMENTATION TEST PLAN

A. Measurement Functions (Col. 31-34)

Functions are assigned two or four digit codes and are classified as (1) operational requirements, (2) Post Test Failure Detection Requirements or (3) Test Objectives.

1. Operating Requirements

Operating measurements are those required on a continuing basis for checkout of the missile during the countdown and for safe operation during start, running, and shutdown of a hot firing. These measurements must be presented on a visual display, all others have no such requirements. Operating measurements are indicated by the two digit code (01).

2. Post Test Failure Detection Requirements

This measurement function includes those measurements which will provide "quick look" type of post test data necessary to detect a possible malfunction. Analysis of this data should indicate an unsafe firing condition. These measurements are indicated by the two digit code (02).

3. Test Objectives

a. Coding System: The coding system for test objectives has been developed to provide a rapid means of identification and handling of a large number of objectives. Coded objectives are listed by system along with the instrumentation required for accomplishment.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECT ONS 792 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

FAGE NO. 13-8

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

- b. Letters used to identify the system are identical to those used to identify the system described in Section II of the code key with the following addition:
 - o over-all general objectives i.e. Reliability, Compatibility
 - w propellant loading
- c. Objectives Headers
 - (1) The instrumentation test plan presents a tabulation of measurements by test objectives.
 - (2) Each objective normally contains one of the following five key terms. These terms defined below will establish a standard datum for uniform interpretation of test objectives.

DEMONSTRATE (DEM) denotes the occurrence of an action or an event during a test. The accomplishment of this type objective requires a qualitative answer. The answer will be derived through the relation of this action or event to some other known information or occurrence. This category of objective implies a minimum of airborne instrumentation, and/or that the information be obtained external to the missile.

DETERMINE (DET) denotes the measuring of performance of any unit or system. This category implies the quantitative investigation of over-all operation which includes, generally, the instrumentation for measuring basic inputs and outputs of the unit or system. The information obtained should indicate to what extent the system is operating as designed. The instrumentation should allow performance deficiencies to be isolated to either the system or to the system inputs.

EVALUATE (EVAL) denotes the measuring of performance of any unit or system as well as the performance and/or inter-action of its sections or subsystems that are under investigation.

THIS MATERIAL CONTAINS IMPORMATION AFFECTING THE NATIONAL DEFENCE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MARINER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

PAGE NO. 13-9

12 JULY 1961

The accomplishment of objectives of this type requires quantitative data on the performance of both unit or system and its sections or subsystems. Instrumentation for this category generally includes measuring basic inputs and outputs of the unit or system as well as basic inputs and outputs of its sections or subsystems. The performance levels of the sections or subsystems will then be analyzed for their contribution toward performance of the unit or system. This category will provide the most detailed information of any of these categories.

OBTAIN DATA (OBTN) denotes gathering engineering information which is to be measured to augment the general knowledge required in the development of the over-all weapon system. This category may also be used for supplemental investigations such as environmental studies, ascertaining k factors, ground equipment studies, etc. The degree of instrumentation is not implied by this definition; individual objectives will indicate extent of instrumentation required.

ESTABLISH (ESTB) denotes gathering engineering information for the development of ground procedures and operating techniques. Objectives in this category are not necessarily dependent on analytic studies.

B. Test Block Numbers (Captive only)

Two columns of information are given under each run. These columns indicate which parameters are to be recorded on each test run. The first column gives the measurement priority. The second is used only for priority 1 measurements and gives the measurement category.

C. Priority Symbols (Captive only)

1. These measurements are necessary to ensure safe operation or satisfactory fulfillment of the test objectives. This includes functional readiness indications, the so-called "red line" indications. The test would be authorized to either "hold" or "abort" as applicable for any one of these measurements.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS SITTLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY 15W.

CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

PAGE NO. 13-10

- 2. These are measurements secondary to any particular test objective. They will contribute additional information toward fulfillment of the test objective but the test would be authorized to "hold" only if the number and nature of the incomplete instrumentation in this category appeared detrimental to accomplishment of the test objective.
- 3. These are measurements of general information nature. They may supplement the priority 1 and 2 measurements, or they may be of environmental nature in and around the test stand. They will be taken only when manpower and schedules permit. No hold action will be authorized for any of these measurements.

Absence of a priority entry in the first column on any run indicates that the measurement will not be made on that run.

D. Measurement Categories (Captive only)

- 1A Operating Measurements Those functions that have to be monitored before and/or during a test. Category "A" measurements will be identified as such irrespective of whether the function has most significance before or during a test.
- IB Post-Test Inspection Measurements Those functions that are to be reviewed after a test to determine that systems operated properly and that the test was conducted safely.

SYSTEM EVALUATION MEASUREMENTS

A number of measurements are required for basic systems evaluation. Some of these are already included in categories 1A and 1B as defined above. The rest consist of all other priority 1 measurements.

E. Missile Area (Col. 75-79)

This system of coding is used to group related measurements for easier analysis. Descriptive heading of this coding appear in all tabulations that are presented in this order.

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 783 AND 784, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

• CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 13-11 12 JULY 1961

	A		В
A/B	AIRBORNE	BAT	BATTERY
A/P	AUTOPILOT	BCN	BEACON
AC	ALTERNATING CURRENT	BECO	BOOSTER ENGINE CUTOFF
ACA	ACOUSTICA	BGG	BOOSTER GAS GENERATOR
ACCELN	ACCELERATION	BHD	BULKHEAD
ACCRY	ACCESSORY	BK	BREAK
ACLMTR, ACC	ACCELEROMETER	BKHS	BLOCKHOUSE
ACT, ACTR	ACTUATOR	BLWS	BELLOWS
ACUM	ACCUMULATOR	BP	BOOST PUMP
ADAPT	ADAPTER	BRG	BEARING
AFCRC	AIR FORCE CAMERIDGE	BRKT	BRACKET
	RESEARCH CENTER	BSD	BESIDE
AGC	AUTOMATIC GAIN CON-	BSTR	BOOSTER
	TROL	BTG	BEACON TRIGGER
AIG	ALL INERTIAL GUIDANCE		GENERATOR
ALTR	ALTERNATE	BTL	BOTTLE
AMB	AMBIENT	BTWN	BETWEEN
AMP, AMPL	AMPLIFIER	BYP	BYPASS
ANG	ANGLE		
ANT	ANTENNA		<u> </u>
APS	ACCESSORY POWER		
	SUPPLY	C-O, C/O	CUT OFF
ASSY	ASSEMBLY	CALC	CALCULATED
ATT	ATTITUDE	CAL, CALIB	
AUD	AUDIO	CAN	CANISTER
AUX	AUXILIARY	CATH	CATHODE
AVG	AVERAGE	CATH FOL	CATHODE FOLLOWER
AX	AXIS	CENT, CENTR	
AZ	AZIMUTH	CH	CHILL
		CHAN	CHANNEL
	В	CHM, CHAMB	CIRCUIT
B1	BOOSTER #1	CLSD	CLOSED
B2	BOOSTER #2	CISG	CLOSING
B-O	BOIL OFF	CMD	COMMAND
B 4 8	BOOSTER & SUSTAINER	CMPST	COMPOSITE

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 796, THE TRANSMISSION OR REVELATION OF WHICH IN ARY MANNES TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW

CONFIDENTIAL

. CONFIDENTIAL

GENERAL DYNAMICS ASTRONAUTICS

12 JULY 1961

PAGE NO. 13-12

	C		D
COEF COMB COMPT COMUTR COND CONT	COEFFICIENT CUTOFF COMBUSTION COMPARTMENT COMPUTER CONDITIONER CONTINUOUS CONVERTER	DO DP DRVR DS DSHE	DROP OUT PRESSURE DROP DRIVER DOWN STREAM DOWN STREAM HEAT EXCHANGER TEMPERATURE DROP DELTA VELOCITY
COR CTL CTR, CNTR CY CYL	CORNER CONTROL CENTER CYCLE CYLINDER	EMER ENG ENGMT	E EMERGENCY ENGINE ENGAGEMENT
	D	ETP EVC-O	ENGINE TEST PANEL ELECTRONIC VIBRATION
DBLR DC DCDR DEFLN DEFLR	DOUBLER DIRECT CURRENT DECODER DEFLECTION DEFLECTOR	EXHST EXPLO EXT	CONTROL EXHAUST EXPLOSIVE EXTERNAL
DEL DEMOD DESTR DET DG DI TILA DIFRN DIR DIS DISCH DISCON DISPL DLY	DELIVERY DEMODULATOR DESTRUCTOR DESTRUCTOR DISPLACEMENT GYRO DISCRETE INTEGRATOR DIAMETRIC DIFFERENCE DIRECT DISCRETE DISCRETE DISCONNECT DISPLACEMENT DELAY	F & C F & D FAIL FAIR FB FRG FL FLDN FL/RT FLS FL/TOT	FILL & CHECK FILL & DRAIN FAILURE FAIRING FEEDBACK FAIRING FLAME FIELCEN FLOW RATE FLASHING LIGHT SYSTEM FLOW TOTALIZER
DN	DOWN	FLWR	FOLLOWER

44

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPRIMAGE LAWS, TITLE LE, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ARY MARKET TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 13-13 12 JULY 1961

	F		
FREQ	FREQUENCY	I F'	INTERMEDIATE
FV	FUEL VALVE		FREQUENCY
FWD	FORWARD !	IGN	IGNITOR OR IGNITION
	i	IND	INDICATOR
	G	INFO	INFORMATION
		INJ	INJECTOR OR INJECTION
GEN	GENERATOR	INL	INLET
GG	GAS GENERATOR	INNR	INNER
GMBL	GIMBAL	INP	INPUT
GPM	GALLONS PER MINUTE	INS	INSULATOR
GND	GROUND	INST, INSTR	INSTRUMENTATION
GN_2	GASEOUS NITROGEN	INSUL	INSULATION
\mathtt{GO}_2^-	GASEOUS OXYGEN	INT	INTERNAL
GU	GROUND UNIT	INTGRD	INTEGRATED
GUID	GUIDANCE	INTGRG	INTEGRATING
		INVTR	INVERTER
	<u>H</u>		
			<u>J</u>
H/D	HOLDDOWN		
HE	HELIUM	JET	JETTISON
HI	HIGH	JUNCT	JUNCTION
HLDR	HOLDER		•
HORZ	HORIZONTAL		L
HPD	HYDRAULIC PUMP DIS-	7 400	LATERAL
unn	CHARGE	LAT	LATERAL LAUNCHER
HPP HS	HY PNEU PANEL HEAD SUPPRESSION	LCHR	LIQUID HYDROGEN
ns HSV	HEAD SUPPRESSION	LH ₂	LIMITER
nav	VALVE	LIM	LIMITER
HSU	HYDRAULIC SUPPLY UNIT	Limr Lit	LIGHT
HT	HEAT	LIQ	LIQUID
HTR	HEATER	LKN	LOCKIN
HYD	HYDRAULIC	LKUP	LOCKUP
1110	HIDNAULIC	LACE	~ Unut

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL DEFENSE OF THE UNITED STATES WITHIN THE SAMING OF THE EXPIONACE LAWS. TITLE 18, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION F. REVELATION OF WHICH IN ANY MARKES TO AN CONTINUE PERSON IS PRINCIPLED BY LAW.

UNCLASSIELED

12 JULY 1961

NORM

NORMAL

PAGE NO. 13-14

	L		<u>N</u>
LLFM	LANDLINE FM	NOZ	NOZZLE
LN	LINE	NPSH	NET POSITIVE SUCTION
LNG	LONG		HEAD
LO	LOW	NR	NEAR
LNo	LIQUID NITROGEN		
LONG	LONGITUDINAL		0_
LO_2	LIQUID OXYGEN		
LT	LIGHT	ОВ	OVERBOARD
LUB	LUBRICATE	OP	OPTICAL PROBE, OUTPUT
LVL	LEVEL	OPN	OPEN
		OPNG	OPENING
	M	OPRNL	OPERATIONAL
		OPT	OUTPUT
MAN	MANUAL	ORFC	ORIFICE
MAN, MANF	MANIFOLD	OSC	OSCILLATOR
MANO	MANOMETER	OTB	OUTBOARD
MC	MEGACYCLES	OUT	OUTLET
MGTN	MAGNETRON	OUTBR, OTB	OUTBOARD
MID	MIDDLE	OUTR	OUTER
MK	MARK	OVBD	OVERBOARD
MOT	MOTOR	OVRSPEED	OVERSPEED
MPCP	MISSILE POWER CONTROL		
	PANEL		P
MSG	MESSAGE		
MSL	MISSILE	P, PCH	PITCH
WEM	MICROSWITCH	PB	Pulse Beacon
MT	MOUNT	PB-IP	PULSE BEACON-IMPACT
MTL	METAL		PREDICTOR
MTR	MOTOR	PG	PROGRAMMER
MULT	MULTIPLIER	PH	PHASE
	••	PH REV	PHASE REVERSING
	N .	PKG	PACKAGE
A7 A A	NOT 511 1 14 5 5 1 1 1	PL	PLATE
NAA	NORTH AMERICAN	PLAT	PLATFORM
	AVIATION	PMP	PUMP

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE MATIONAL SEPENCE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPINANCE LAWS TITLE IS. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNES TO AN UNAUTHORIZED PERSON IS FROMBITED BY LAW

PNEU

PNEUMATIC

U

UNCLASSIFIED

GENERAL DYNAMICS ASTRONAUTICS

REPORT NO. AE60-0653

PAGE NO. 13-15

12 JULY 1961

	<u> </u>		R
PNL	PANEL	RB	RATE BEACON
POS	POSITION OR POSITIONER	RB-IP	RATE BEACON-IMPACT
PPS	PULSES PER SECOND		PREDICTOR
PR	PRESSURE	RCC	ROUGH COMBUSTION
PREP	PREPARATION		CUT-OFF
PRE-RLS	PRERELEASE	RCVR	RECEIVER
PRESD	PRESSURIZED	RD	ROCKETDYNE
PRESG	PRESSURIZING	RDY	READY
PRESN	PRESSURIZATION	RECLT	RECIRCULATE
PR ESS	PRESSURE	REDNT	REDUNDANT
PREVLV	PREVALVE	REF	REFERENCE
PRF	PULSE REPETITION	REG	REGULATOR
	RATE	REGS	REGULATORS
PRG	PURGE	REL	RELEASE
PRGR	PROGRAMMER	RESP	RESPONSE
PROP	PROPELLANT	RESVR	RESERVOIR
PROP VLVS	PROPELLANT VALVES	RETR	RETRACT
PS	POUNDS PER SECOND	RF	RADIO FREQUENCY
PS	POWER SUPPLY	RG	RATE GYRO
PU	PROPELLANT	RLF	RELIEF
	UTILIZATION	RLY	RELAY
PUV,	PROPELLANT	RNG	RANGE
PU VLV	UTILIZATION VALVE	ROL	ROLL
PV	PROPELLANT VALVE	RSB	RANGE SAFETY BEACON
PWR	POWER	RSC	RANGE SAFETY COMMAND
PWR SUP	POWER SUPPLY	RTN	RETURN
		RV	RE-ENTRY VEHICLE
	<u> </u>		(NOSECONE)
QUAD	QUADRANT		8
QLTY	QUALITY		
	_	81	SYCAMORE TEST STAND
	R		81
_		84	Sycamore test stand
R	ROLL		54
RADL	RADIAL	8/C	SUBCARRIER

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, LITLE 16, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OF PEYELALION OF WHICH IN ANY MANNES TO AN UNAUTHORIZED PLASON IC PROMISES SY LAW

PAGE NO. 13-16

1>

12 JULY 1961

	<u> </u>		8
s/Ţ	START TANK	SURF	SURFACE
SAD	SADDLE	sus, s	SUSTAINER
SAF	SAFETY	sw	SWITCH
SATIS	SATISFACTORY	SYS	SYSTEM
SDC	SECONDARY DISTRIBUTION		
	CENTER		r
SECO	SUSTAINER ENGINE		
	CUTOFF	T/B	TURBOPUMP
SECT	SECTION	T/C	THERMOCOUPLE
SELR	SELECTOR	TACH	TACHOMETER
SEPN	SEPARATION	TANG	TANGENTIAL
SEQ	SEQUENCE	TBN	TURBINE
SGG	SUSTAINER GAS	TCC	TEST CONDUCTOR'S
	GENERATOR		CONSOLE
SHLD	SHIELD	TEMP	TEMPERATURE
SIG	SIGNAL	TH, THR	THRUST
SK	SKIN	TK	TANK
SNERS	SENSORS	TLM	TELEMETER
SNSR	SENSOR	TLR	TRAILER
SOL	SOLENOID	TMR	TIMER
SPRT	SUPPORT	TOR	TORQUE
SRV AMPL	SERVO AMPLIFIER	TOT	TOTAL
SRV VLV	SERVOVALVE	TRGT	TARGET
58	SUBSYSTEM	TRIG	TRIGGER
ST	START	TURB	TURBINE
STA	STATION		11
STABR	STABILIZER		U
STAT	STATIC		2134D17.1C.5.1
STOR	STORAGE	UMBL	UMBILICAL
STRN	STRENGTH	UP	UPPER UPSTREAM HEAT
STRT	START	USHE	EXCHANGER
STRUC	STRUCTURE		EXCHANGER
SUNTRKR	SUNTRACKER		V
SUP	SUPPLY	***	VERNIER ENGINE *1
SUPHT	SUPERHEAT	V1	VERNIER ENGINE #2
SUPRN	SUPPRESSION	V2	APMAINT SHOULD AN

THE MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE IS. U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHURIZED PERSON IS PROMISITED BY LAW.

UNCLASSIFIED.

PAGE NO. 13-17 12 JULY 1961

V

VAP YAPOR

VDC VOLTS DIRECT CURRENT

VECO VERNIER ENGINE CUTOFF

VECT VECTOR
VEL VELOCITY
VERT VERTICAL

VIBN VIBRATION

VLV VALVE
VRN VERNIER
VTRI VENTURI

W

WT WEIGHT

<u>x</u>

X TRANS

XCIT EXCITATION
XCNGR EXCHANGER
XDCR TRANSDUCER

XDCR SUP TRANSDUCER SUPPLY
XFER SYS TRANSFER SYSTEM
XFER UN TRANSFER UNIT

XMTR TRANSMITTER
XPL EXPLOSIVE
XPNDR, TRANSPONDER

XPONDER

XTAL CRYSTAL
XVERS TRANSVERSE
XVTR TRANSVERTER

Y-R, Y/R YAW ROLL

Z

PAGE NO. 13-18

GENERAL DYNAMICS ASTRONAUTICS UNCLASSIFIED

12 JULY 1961

This page intentionally left blank.

TINCI ASSIMED

GENERAL DYNAMICS ASTRONAUTICS

PAGE NO. 13-19

UNCLASSIFIED

12 JULY 1961

EXTERNAL DISTRIBUTION

	No. Copies
	16
AIR FORCE	1
GE (MSVD)	2
ARMA GARDEN CITY, NY	2
ARMA, SAN DIEGO	2
MAJOR FRANK A SILVASY	1
ROCKETDYNE	1
ACOUSTICA ASSOCIATES	1
KELLOG SWITCHBOARD & SUPPLY	1

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL SEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS, U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION AS MULCIL IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

PAGE NO. 13-20

GENERAL DYNAMICS ASTRONAUTICACLASSIFICA

12 JULY 1961

UNCLASSIFIED

This page intentionally left blank.

UNCLASSIFIED

THE MATERIAL CONTAINS INFORMATION APPECTING THE NATIONAL DEFENCE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE IS, W.S.S., SECTIONS 700 AND 704, THE TRANSMISSION OR REVELATION OF WHICH HE ANY MARKET TO AN UNAUTHORIZED PERSON IS PROMISSION BY UNITED BY LINK.

DATE FILMED 6-5-69