	ASSignment No. 2
8.4	Eind all correct
	Specify the domain of convet gence.
	about $z=:$
	<u></u>
->	we con express $z^2 + u$ as $(z+2i) \cdot (z-2i)$
	$2^{2}+u$ [2+2:1 (-)
	me hore to thug sexies about S=-i. The mosti
	15, +(2)= 1 Let uzz+i
	By Parkal fraction
	By solving the eqns
	A = -1 and $B = 1$ Ui
	GT GT
	:f(z)= -1 +1
	$4i^{2}(z+i)+i^{2}$ $4i^{2}(z+i)-3i^{2}$ $(z+i)^{2}$
4	= -1 + 1
<u> </u>	4î(4-3i)
	$f(z) = I \left(I - I \right)$ $Ui \left(U - 3i \right) U + i .$
	$U^{2}\left[U-3\right]^{2}\left[U+^{2}\right]$
G .	(ase 1: u-3? < 3
6 . 6	FOR EDUCATIONAL USE
Sundaram	

gu, Manav-17. : f(z): 1 (1+i) (1+i) $= \frac{1}{4} \left(\frac{1}{3} \left(\frac{1}{3} \right)^{-1} - \frac{1}{4} \left(\frac{1+i}{4} \right)^{-1} \right)$ $3i \left(\frac{1+u+u+u+2+...}{3i}\right)$ $\frac{-1}{U}\left(\frac{1-i}{U}+\frac{i}{U}\right)^{2}-\frac{1}{2}$ \mathcal{P} . Cose 2 lutil<1 F(Z)=1 (1+3i + 3i)2+... $\frac{-1}{1}\left(\frac{1-y}{7}\right)^2-\cdots$ (age 3 | u-3i | > 3 and | u+i | >1. (. $\frac{1}{4!} \left(\frac{1}{4} \left(\frac{1-3i}{4} \right) \right) - \frac{1}{4}$ $\frac{1.f(Z) = 1}{4i} \left(\frac{1+3i}{4} + \frac{3i}{4} \right)^{2} + \cdots$ $\frac{-1}{1}\left(1-\frac{2}{3}+\frac{1}{3}\right)^{2}+\cdots\right)^{7}$ Sundaram FOR EDUCATIONAL USE

	40.0.1.1.1
8.6	Find the laurent's series expansion of 2+5 (Z+1)2(2-2)
	(2+1)2(2-2)
વેં	0<12+11<3 2. 12+11\(\text{\rm 3}\) 3. 1<121<2
<u>U</u> .	12-21>3 5- 1<12-11<2
-5	SOLUTION
	f(z) = 2+5 is not analytic at $2z-1,2$.
	$f(Z) = \frac{2+5}{(2-2)} = \frac{-A}{(2+1)^2} + \frac{-D}{(2-2)}$ $(2+1)^2(2-2) + \frac{-D}{(2+1)^2} + \frac{-D}{(2-2)}$
	$(2+1)^{2}(2-2)$ $(2+1)^{2}$ $(2-2)$
	2+5 = A(2+1)(2-2) + B(2-2) + C(2+1)2
	for 222, 72(x32
	:- (=7 9
	FOX ZZ-1. (U= BX(-3) : B=-4
	coefficient of z2, o=A+c t= A+7 !A=-7
	Now, ear (1), becomes
	$f(z) = -7 \times 1$ -4×1 $+7 \times 1$ $(z+1)^2$ $(z+1)^2$ $(z-2)$
	(211) 3 (241) 1 (2-2)
(-	FOX 0<12+11<3
	(2-2) $(2+1)-3$ $(2+1)$
	3/
Sundaram ®	FOR EDUCATIONAL LIGH

27 28

28 29

manay_17. 1612162 (2+1) = (1+2) = (1+2) = (1+2) = (1+2) $(2+1)^2$ = $(1+2)^2$ = $(1+2)^2$... for |2| < 1. $\frac{1}{(2-2)} = \frac{1}{-2} \times \frac{1}{(1-2)} = \frac{-1}{2} \times \frac{1+2}{2} \times \frac{1}{2} \times \frac{$ for 12122 : fc2)= -7[1+2+22+in]-4×(1-22+322---) -7 (1+2+22+-7 for 1<12/<2 $\frac{1}{2+1} = \frac{1}{(2-2)+3} = \frac{2}{3} \times \frac{1}{(1+(2-2))}$ $\frac{2}{3} + \frac{1}{3} + \frac{2-2}{3} + \frac{2-2}{3} + \frac{2}{3} +$ $f(z) = -7 \times [1 -3 + 32 - ...]$ $\frac{-4}{3} \frac{1}{(2-2)} + \frac{2\times3}{(2-2)^2} + \frac{3\times3^2}{(2-2)^2} + \frac{7\times1}{9} + \frac{7\times1}{(2-7)}$ 12-2123 FOR EDUCATIONAL USE Sundaram

 $\frac{1}{2+1} = \frac{1}{(2-1)+2} = \frac{1}{2} = \frac{1}{(2-1)+1}$ $\frac{1}{2}$ $\frac{1}$ $(2+1)^2 = (2+(2-1))^2 = (1+(2-1))^2$ $\frac{1}{(2-2)} = \frac{1}{(2-1)-j} = -\frac{1}{(1-(2-1))} = \frac{1}{(2-1)} = \frac{1}{(2-1)}$ $\frac{1}{(2-2)} = \frac{1}{(2-1)} \times (1+1) + \frac{1}{(2-1)^2} + \frac{1}{(2-1)^2} + \frac{1}{(2-1)^2}$ 12-1121 $\frac{1}{9} f(z) = \frac{-7}{9} \times \left[\frac{1}{7} \times \left(\frac{2-1}{2} \right) + \frac{(2-1)^2}{2^2} \right]$ -4 x 1 (1- (2-1) + (2-1)2 h -- :) $47 \times (1 + 1 + 1 + 1) + ...$ for 1 < 1 < 2 < 1 $(2-1)^{3}$ $(2-1)^{3}$ $(2-1)^{3}$ FOR EDUCATIONAL USE Sundaram

VOLIVA

	manav_17
\$:7.	Find the type of singularity of 1 at 2-sinz
	z=0. Find desidue at this point
->	we have 2(z)= 1
	$z - \left(z - 23 + 25\right)$
	3! 51
	Hence, Z=0. is a pole of order 3
	Now, $f(z) = 1$ $(1 - 1 z^2 +)^{-1}$.
	$\frac{2}{2^{3}} \left(\frac{1+2^{2}+1}{20} + \frac{1}{20} \right)$
	$\frac{2}{7^2} \frac{6}{10} \frac{1}{2}$
	- Residue at Z=0=b1.
	b1= CO efficient of 1 = 3 Z 10
	b_= Coefficient of 1 = 3 = 10
	: Residue at 200 will be 3
	/0

(Sundaram)

8.15. Evaluate & 1 el-cosz dz, 121=1. f(z) has pole of order 3 at 200 and point lies 3 SPIZUE $\frac{2-30}{2!} = \frac{1}{42} = \frac{1}{23} = \frac{1}{2$ 5 >0 5 (955) = 71m 1 (95 (6 - cols) -95,) 2->0 2 ldz (e1-cosz) dz (1-cosz) 5-79 5 GS (2:VS. 6 (-(025)) = lim 1 e1-cosz (sin2(z) + (os(z))) = 1 x1. : S f(2) d2= 271/(1). : S f(z).dz= Ti

<u>Sundaram</u>