Climate Policy Uncertaity & Renewable Energy Consumption

Charles MAWUSI

19/03/2022

Paper Brief

In this paper I employ a time series methodology to explore the long and short run effects of climate policy ambiguity on renewable energy consumption in the United States.

Data processing

```
library(tidyverse)
library(dplyr)
library(stargazer)
library(gtsummary)
library(timetk)

Research_Data<-read.csv(file = file.choose(), header = T, sep=",")

# str(Research_Data)
# Research_Data %>%
# select(everything()) %>%
# summarise_all(funs(Missing_Values=sum(is.na(.)))) %>%
# glimpse()

Research_Data %>% select(-c(1:3))

Research_Data %>% as.data.frame() %>%
    stargazer(type = 'text')
```

Statistic	 N	Mean	St. Dev.	====== Min	Max
Total_Renewable_Energy_Consumption	263	704.410	187.320	395.833	1,088.369
Hydro_Consumption	263	216.992	38.369	145.715	316.615
Biofuelss_consumption	263	123.016	66.558	16.306	209.235
Geothermal_consumption	263	16.292	1.547	11.971	18.801
Solar_Energy_consumption	263	30.015	37.536	2.925	158.560
Biomas_consumption	263	340.092	75.653	199.370	458.954
Waste_energy_consumption	263	37.472	4.239	25.688	50.694
Wind_Energy_consumption	263	101.019	87.723	3.367	350.361
Wood_energy_consumption	263	179.604	12.055	148.458	208.323
Total_Renewable_Energy_Production	263	708.253	191.990	396.469	1,096.106
Biofuel_production	263	124.728	68.458	17.661	214.619
Biomass_production	263	343.935	79.580	198.932	467.556
Wood_Energy_production	263	181.735	12.843	148.458	215.800
CPU_INDEX	263	102.365	84.023	1.230	629.020

```
Industrial_production
                                   263 96.637
                                                4.843
                                                        84.202
                                                                 104.166
WTI_Crud_OIL_Price
                                   263 60.977
                                                25.599 16.550
                                                                 133.880
                                   263 178.384 27.369 128.100 243.272
Producer price Index
library(lubridate)
Research_Data <- Research_Data %>%
 mutate(date seq = seq(ymd('2000-01-01'), ymd('2021-11-21'), by = 'months'))
# Log transformation of all variables
Research data ln<-Research Data %>%
   mutate_at(1:17, list(ln = ~ log(.))) %% select(18:35) %>% glimpse()
Rows: 263
Columns: 18
$ date_seq
                                        <date> 2000-01-01, 2000-02-01, 2000-03-01, 2000-04-01, 200~
$ Total_Renewable_Energy_Consumption_ln <dbl> 6.225597, 6.212596, 6.325213, 6.340626, 6.325842, 6.~
                                        <dbl> 5.554965, 5.435267, 5.607261, 5.672027, 5.633786, 5.~
$ Hydro_Consumption_ln
                                        <dbl> 2.981278, 2.850360, 2.994381, 2.923753, 2.999575, 2.~
$ Biofuelss_consumption_ln
$ Geothermal_consumption_ln
                                        <dbl> 2.689479, 2.610511, 2.628141, 2.664934, 2.630809, 2.~
$ Solar_Energy_consumption_ln
                                        <dbl> 1.181420, 1.288682, 1.605631, 1.715238, 1.837211, 1.~
$ Biomas_consumption_ln
                                        <dbl> 5.404666, 5.502095, 5.574740, 5.534318, 5.540408, 5.~
                                        <dbl> 3.738169, 3.753074, 3.871076, 3.861887, 3.925808, 3.~
$ Waste energy consumption ln
$ Wind_Energy_consumption_ln
                                        <dbl> 1.884491, 1.974220, 1.272846, 1.214022, 1.426236, 1.~
$ Wood energy consumption ln
                                        <dbl> 5.079589, 5.221755, 5.276654, 5.231483, 5.214996, 5.~
$ Total_Renewable_Energy_Production_ln <dbl> 6.224855, 6.214526, 6.324368, 6.343044, 6.325656, 6.~
$ Biofuel production ln
                                        <dbl> 2.962124, 2.904603, 2.970517, 2.994982, 2.994381, 2.~
                                        <dbl> 5.402979, 5.506018, 5.572948, 5.539729, 5.540000, 5.~
$ Biomass_production_ln
$ Wood_Energy_production_ln
                                        <dbl> 5.079589, 5.221755, 5.276654, 5.231483, 5.214996, 5.~
$ CPU_INDEX_ln
                                        <dbl> 3.3666059, 3.0407056, 2.7887081, 0.2070142, 2.165619~
$ Industrial_production_ln
                                        <dbl> 4.519549, 4.523170, 4.526920, 4.533265, 4.536278, 4.~
$ WTI_Crud_OIL_Price_ln
                                        <dbl> 3.305420, 3.379974, 3.395850, 3.247269, 3.360028, 3.~
                                        <dbl> 4.854371, 4.865995, 4.873669, 4.872905, 4.879767, 4.~
$ Producer_price_Index_ln
# summary statistics of log transformed data
Research_data_ln %>% as.data.frame() %>%
   stargazer(type = 'text')
```

=======================================			=======		
Statistic	N	Mean	St. Dev.	Min	Max
Total_Renewable_Energy_Consumption_ln	263	6.521	0.273	5.981	6.992
Hydro_Consumption_ln	263	5.364	0.177	4.982	5.758
Biofuelss_consumption_ln	263	4.569	0.800	2.792	5.343
Geothermal_consumption_ln	263	2.786	0.098	2.482	2.934
Solar_Energy_consumption_ln	263	2.671	1.195	1.073	5.066
Biomas_consumption_ln	263	5.802	0.238	5.295	6.129
Waste_energy_consumption_ln	263	3.617	0.114	3.246	3.926
Wind_Energy_consumption_ln	263	3.980	1.330	1.214	5.859
Wood_energy_consumption_ln	263	5.189	0.067	5.000	5.339
Total_Renewable_Energy_Production_ln	263	6.525	0.278	5.983	7.000
Biofuel_production_ln	263	4.576	0.810	2.871	5.369
Biomass_production_ln	263	5.811	0.247	5.293	6.148

Wood_Energy_production_ln	263 5.200	0.071	5.000 5.374
CPU_INDEX_ln	263 4.282	0.923	0.207 6.444
Industrial_production_ln	263 4.570	0.051	4.433 4.646
WTI_Crud_OIL_Price_ln	263 4.015	0.450	2.806 4.897
Producer_price_Index_ln	263 5.171	0.162	4.853 5.494

PLoting time series

```
# sub-setting the time series for plots

Total_Ren_Cons<-ts(Research_Data$Total_Renewable_Energy_Consumption, start = c(2000, 1), frequency = 12
Hydro_Ren_Cons<-ts(Research_Data$Hydro_Consumption , start = c(2000, 1), frequency = 12)
Biofuel_Ren_Cons<-ts(Research_Data$Biofuelss_consumption , start = c(2000, 1), frequency = 12)
Geothermal_Ren_Cons<-ts(Research_Data$Geothermal_consumption , start = c(2000, 1), frequency = 12)
Solar_Ren_Cons<-ts(Research_Data$Solar_Energy_consumption , start = c(2000, 1), frequency = 12)
Biomas_Ren_Cons<-ts(Research_Data$Biomas_consumption , start = c(2000, 1), frequency = 12)
Waste_Ren_Cons<-ts(Research_Data$Waste_energy_consumption , start = c(2000, 1), frequency = 12)
Wind_Ren_Cons<-ts(Research_Data$Wind_Energy_consumption , start = c(2000, 1), frequency = 12)
cpu_time_Ren_Cons<-ts(Research_Data$CPU_INDEX , start = c(2000, 1), frequency = 12)
plot(cpu_time_Ren_Cons, main="U.S Climate Policy Uncertainty", plot.type = "single", xlab="date", ylab="date", y
```

U.S Climate Policy Uncertainty

plot(cbind(Total_Ren_Cons, Hydro_Ren_Cons, Biofuel_Ren_Cons, Geothermal_Ren_Cons, Solar_Ren_Cons, Biom

U.S Renewable Energy Consusmption

