SITUATION

Pour déterminer l'écriture explicite d'une suite, on peut avant tout montrer que la suite est géométrique et déterminer sa raison.

ÉNONCÉ

On considère la suite $\left(v_{n}
ight)$ définie par $v_{0}=2$ et, pour tout entier naturel \emph{n} , par :

$$v_{n+1} = 4v_n + 1$$

On s'intéresse alors à la suite $\left(u_{n}
ight)$ définie pour tout entier naturel n par :

$$u_n=v_n+rac{1}{3}$$

Montrer que la suite $\left(u_{n}\right)$ est géométrique et déterminer sa raison.

Etape 1

Exprimer u_{n+1} en fonction de u_n

Pour tout entier naturel \emph{n} , on factorise l'expression donnant u_{n+1} de manière à faire apparaître u_n , en simplifiant au maximum le facteur que multiplie u_n .

APPLICATION

Soit *n* un entier naturel :

$$u_{n+1} = v_{n+1} + rac{1}{3}$$
 .

On remplace $\,v_{n+1}\,$ par son expression en fonction de $\,v_n\,$:

$$u_{n+1} = 4v_n + 1 + rac{1}{3}$$

On remplace v_n par son expression en fonction de u_n :

$$u_{n+1} = 4\left(u_n - rac{1}{3}
ight) + 1 + rac{1}{3}$$

$$u_{n+1} = 4u_n - rac{4}{3} + rac{3}{3} + rac{1}{3}$$

$$u_{n+1}=4u_n$$

Etape 2

Identifier l'éventuelle raison de la suite

On vérifie qu'il existe un réel q indépendant de la variable n tel que, pour tout entier naturel n, $u_{n+1}=q imes u_n$.

APPLICATION

En posant $\,q=4$, on a bien, pour tout entier naturel $\it n,\, u_{n+1}=qu_n$.

Etape 3

Conclure sur la nature de la suite

S'il existe un réel q indépendant de la variable n tel que, pour tout entier naturel n, $u_{n+1}=q\times u_n$, on peut conclure que la suite est géométrique de raison q. On précise alors son premier terme.

APPLICATION

La suite $\left(u_{n}
ight)$ est donc une suite géométrique de raison 4. Son premier terme vaut :

$$u_0 = v_0 + rac{1}{3} = 2 + rac{1}{3} = rac{7}{3}$$