

MACHINE LEARNING 2018

Homework 1

November 10, 2018

- This homework is due at 2 PM, November 17, 2018.
- You may write your answers in Vietnamese or English or a mix of both languages.
- You may consult textbooks and print and online materials.

• Please show all of your work. Answers without appropriate justification will receive very little credit. For programming questions, please submit all the code.

Scores

- 1. Problem 1 (______ /30 pts.)
- 2. Problem 2 (______ /20 pts.)
- 3. Problem 3 (______ /50 pts.)

Total: (______ /100 pts.)

Problem 1. (30 points)

Prove the following properties:

- (a) Suppose A is a square matrix, λ is an eigenvalue of A, and $s \geq 0$ is an integer. Then, λ^s is an eigenvalue of A^s .
- (b) If A and B are square, nonsingular matrices and X is a square matrix, then $X(A+XBX^T)^{-1}=A^{-1}-A^{-1}X(B^{-1}+X^TA^{-1}X)^{-1}X^TA^{-1}$.

Problem 2 (20 points)

Prove that all isolated local minimizers are strict.

Problem 3 (50 points)

Consider a convex quadratic function in n-dimensional space of the form

$$f(x) = \frac{1}{2}x^T A x + b^T x,$$

where A is a symmetric, positive semidefinite matrix of size n x n and b is a vector of size n. Write a Python program that takes A and b as inputs and optimizes function f using Gradient Descent algorithm. Note: initialization is important.