LECTURE 11

일상생활에서는 수없이 회전을 이용한다. 물체의 운동은 직선이나 곡선을 따라서 움직이는 병진운동만 존재하는 것이 아니라 어떤 축을 중심으로 회전하는 회전운동도 존재한다. 이 단원에서는 병진운동에 대해 다룰 때와 마찬가지로 회전운동을 기술하는 여러 각변수들을 정의한다.

10 회전

10.1 회전변수

10.2 등각가속도 회전

10.3 선변수와 각변수의 관계

10.4 회전 운동에너지

10.5 회전관성 계산하기

10.6 토크

10.7 회전에 관한 Newton의 제2법칙

10.8 일과 회전 운동에너지

10.1 회전변수

하습목표

☞ 회전운동을 기술하는 각위치, 각변위, 각속도, 각가속도와 같은 변 수들을 이해한다.

강체

- 구성요소가 고정되어 있어서 어떠한 힘 에도 모양이 전혀 변하지 않는 물체를 강체라고 한다.
- 순수한 병진운동에서 강체의 각 점은 같은 시간간격 동안 같은 거리를 이동 하고, 회전축이 고정된 순수 회전운동에 서 강체의 각 점은 같은 시간간격 동안 같은 각도를 회전한다.

- 기<mark>준선과 각위치 ■</mark> 회전축과 수직하고 물체와 함께 돌아가는 선을 **기준선**(reference line)이라 한다.
 - 공간상에 정해진 어떤 방향¹⁾과 기준선이 이루는 각도를 기준선의 **각위치**라고 한다.

LECTURE 11 1

¹⁾ 별도의 언급이 없으면 이 방향은 x축의 양의 방향으로 간주한다.

라디안

■ 정해진 방향과 기준선이 일치하면 각위치는 0이다.

■ 1차원(*x*축) 병진운동에서는 숫자가 증가하는 방향을 양의 방향이라고 하고 숫자가 감소하는 방향을 음의 방향이라고 한다.

■ 회전운동에서는 반시계방향을 양의 방향이라고 하고 시계방향을 음의 방향이라고 한다.

 회전축 위에 반지름이 r인 원이 주어 졌을 때 x축에서 기준선까지의 원호 가 s이면 x축 양의 방향과 물체의 기준선이 이루는 각도(라디안; radian; rad) θ는 다음처럼 정의된다

2

$$\theta = \frac{s}{r}$$

- 순수한 병진운동에서는 위치함수 x(t)로 물체의 운동에 대한 모든 것을 알 수 있고 순수한 회전운동에서는 각위치 함수 $\theta(t)$ 로 물체의 운동에 대한 모든 것을 알 수 있다.
- 여기서 각위치 함수 $\theta(t)$ 는 회전수를 정확하게 구별한다.

평면각 단위

■ 각도의 단위는 SI 단위인 라디안을 제외하고 도(degree; °)와 회전 수(revolution; rev)가 존재한다.

1 회전 = 1 rev =
$$360^{\circ}$$
 = 2π rad

각변위

• 각위치가 θ_0 에서 θ_1 로 변할 때 각도의 차이 $\Delta \theta$ 를 **각변위**라 한다.

각속도

• 회전체의 각위치가 시간 t_0 에서 θ_0 이고 시간 t_1 에서 θ_1 이라고 할 때 그 각변위가 $\Delta\theta (=\theta_1-\theta_0)$ 이면 시간간격 $\Delta t (=t_1-t_0)$ 동안의 **평균 각속도** $\omega_{\rm avg}$ 는 다음처럼 정의된다.

$$\omega_{\rm avg} = \frac{\theta_1 - \theta_0}{t_1 - t_0} = \frac{\Delta \theta}{\Delta t}$$

LECTURE 11

• 평균 각속도의 시간간격 Δt 을 0으로 접근시킬 때 그 극한 값을 **순간 각속도** 또는 **각속도** ω 라고 하고 그 크기는 **순간 각속력**(또는 **각속력**)이라고 한다.

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

■ 평균 각속도와 순간 각속도의 SI 단위는 rad/s이지만 자동차 엔진, 하드디스크, 컴퓨터 쿨러에서는 분당 회전수(rev/min; rpm)을 자주 사용한다.

각가속도

• 회전체의 각속도가 시간 t_0 에서 ω_0 이고 시간 t_1 에서 ω_1 이라고 할 때 **평균 각가속도** $\alpha_{\rm avg}$ 는 다음처럼 정의된다.

$$\alpha_{\text{avg}} = \frac{\omega_1 - \omega_0}{t_1 - t_0} = \frac{\Delta \omega}{\Delta t}$$

• 평균 각가속도의 시간간격 Δt 을 0으로 접근시킬 때 그 극한 값을 $\frac{1}{2}$ **소간 각가속도** 또는 **각가속도** α 라고 한다.

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

- 평균 각가속도와 순간 각가속도의 SI 단위는 rad/s²이다.
- 회전운동에서의 각종 정의(각위치, 각변위, 평균 각속도, 각속도, 평균 각속도, 각가속도)는 강체를 하나의 물체로 생각했을 때뿐만 아니라 강체를 구성하는 모든 입자에 대해서도 성립한다.

회전과 벡터

(pp. 299-301)

- 병진운동에서 변위, 속도, 가속도를 벡터로 표현했듯이 회전운동에 서도 각변위, 각속도, 각가속도를 벡터처럼 다룰 수 있다.
- 다만, 각변위의 경우 그 크기가 작지 않으면 벡터로 다룰 수 없다.

10.2 등각가속도 희전

학습목표

☞ 등각가속도 운동을 기술하는 관계식들을 유도한다.

등각가속도

■ 물체의 각가속도가 시간에 따라 변하지 않을 때 **등각가속도 운동** 을 한다고 말한다.

1번째 관계식

■ 등각가속도 운동에서 평균 각가속도와 순간 각가속도는 같다.

$$\alpha = \alpha_{\text{avg}} = \frac{\omega_1 - \omega_0}{t_1 - t_0} = \frac{\Delta \omega}{\Delta t}$$

• ω_0 와 ω_1 가 각각 시간 t_0 과 t_1 에 해당하는 두 각속도일 때 각속도 변화 $\Delta\omega$ 는 다음처럼 표현될 수 있다.

$$\Delta\omega = \alpha\Delta t$$

평균 각속도

• 각위치 함수 $\theta(t)$ 는 각속도 함수 $\omega(t)$ 을 적분하여 얻을 수 있다.

• t_0 부터 t_1 까지의 평균 각속도 $\omega_{
m avg}$ 는 다음처럼 표현될 수 있다.

$$\omega_{\mathrm{avg}} = \frac{\varDelta \theta}{\varDelta t} = \frac{\left(\omega\left(0\right) + \alpha t_{0}\right) + \left(\omega\left(0\right) + \alpha t_{1}\right)}{2} = \frac{\omega_{0} + \omega_{1}}{2}$$

2번째 관계식

 θ_0 와 θ_1 가 각각 시간 t_0 과 t_1 에 해당하는 두 각위치일 때 각변위 $\Delta \theta$ 는 다음처럼 표현될 수 있다.

$$\begin{split} \varDelta\theta &= \omega(0)(t_1-t_0) + \frac{1}{2}\alpha(t_1^2-t_0^2) = (\omega_0-\alpha t_0)(t_1-t_0) + \frac{1}{2}\alpha(t_1^2-t_0^2) \\ \\ &= \omega_0(t_1-t_0) + \frac{1}{2}\alpha(t_0^2-2t_0t_1+t_1^2) = \omega_0(t_1-t_0) + \frac{1}{2}\alpha(t_1-t_0)^2 \end{split}$$

$$\Delta\theta = \omega_0 \Delta t + \frac{1}{2} \alpha (\Delta t)^2$$

3번째 관계식

1번째 관계식과 평균 각속도 ω_{avg} 의 관계식을 결합하면 다음 관계식 을 얻을 수 있다. **※일-회전 운동에너지 정리**에서 유용하게 사용된다.

$$\omega_1^2 - \omega_0^2 = (\omega_1 - \omega_0)(\omega_1 + \omega_0) = \alpha \varDelta t \times 2\omega_{\mathrm{avg}} = 2\alpha \varDelta \theta$$

$$\downarrow$$

$$\omega_1^2 - \omega_0^2 = 2\alpha \Delta \theta$$

4번째 관계식

평균 각속도의 관계식을 이용하면 다음 관계식을 얻을 수 있다.

$$\frac{\Delta\theta}{\Delta t} = \omega_{\text{avg}} = \frac{\omega_0 + \omega_1}{2}$$

$$\Delta\theta = \frac{1}{2}(\omega_0 + \omega_1)\Delta t$$

5번째 관계식

2번째 관계식에 1번째 관계식을 적용하면 다음 관계식을 얻을 수 있 다.

$$\varDelta\theta = \omega_0 \varDelta t + \frac{1}{2}\alpha(\varDelta t)^2 = (\omega_1 - \alpha \varDelta t)\varDelta t + \frac{1}{2}\alpha(\varDelta t)^2$$

$$= \omega_1 \varDelta t + \frac{1}{2} \alpha (\varDelta t)^2 - \alpha (\varDelta t)^2 = \omega_1 \varDelta t - \frac{1}{2} \alpha (\varDelta t)^2$$

$$\varDelta\theta = \omega_1 \varDelta t - \frac{1}{2} \alpha (\varDelta t)^2$$

10.3 선변수와 각변수의 관계

학습목표

☞ 고정된 회전축 주위로 회전하는 강체 내 입자의 선변수와 각변수 의 관계를 이해한다.

선변수와 각변수 고정된 회전축 주위로 회전하는 강체 내 입자를 고려하자.

- ❖ 입자의 선변수(원호, 속력, 가속도)를 s,v,a로 표기한다.
- � 입자의 각변수(각위치, 각속도, 각가속도)를 θ, ω, α 로 표기한다.
- ❖ 회전축에서 입자까지의 **수직거리**를 r이라고 가정한다.

원호

• 강체의 기준선이 각도 θ 만큼 회전하면, 회전축에서 r만큼 떨어진 입자는 s만큼 원호를 그리면서 이동한다.

$$s = \theta r$$

LECTURE 11 5

- 여기서 각도 θ의 단위는 반드시 라디안이여야 한다.
- s가 양의 값이면 반시계방향으로 원호를 그리면서 이동하고, s가 음의 값이면 시계방향으로 원호를 그리면서 이동하다.

선속력

• 수직거리가 r로 일정할 때 위치 방정식의 양변을 시간에 대해 미분하면 속력 방정식을 얻을 수 있다.

- 여기서도 각도 *θ*는 반드시 라디안이여야 한다.
- 입자의 선속도는 항상 원궤도에 접선 방향을 향한다.
- v의 부호는 선속도의 정확한 방향을 결정한다.
- 회전축으로부터 멀리 떨어진 입자일수록 그 선속력은 커진다.
- 강체의 각속력이 시간에 따라 변하지 않으면 강체 내 모든 입자는 등속 원운동을 한다. 이 경우 **회전주기** *T*는 다음과 같다.

$$v\,T = 2\pi r \quad \Rightarrow \quad \therefore \quad T = \frac{2\pi r}{v} \quad \text{E} \succeq \frac{2\pi}{\omega}$$

선가속도의 접선성분

- dv는 선속도 \overrightarrow{v} 의 크기인 v의 변화이므로 dv/dt은 선가속도 \overrightarrow{a} 의 크기가 아니라 **선가속도의 접선성분** a_t 이다.
- 수직거리가 r로 일정할 때 속력 방정식의 양변을 시간에 대해 미분하면 a_r 을 유도할 수 있다.

 $a_{\rm t} = \alpha r$

- 여기서도 각도 θ는 반드시 라디안이여야 한다.
- **선가속도의 지름성분** a_r 은 등속 원운동에서 이미 구했다.

$$a_{\mathrm{r}} = \frac{v^2}{r}$$
 또는 $\omega^2 r$

- 지름성분 $a_{
 m r}$ 은 각속도 ω 가 0이 아닌 한 항상 존재한다.
- 접선성분 a_{t} 은 각가속도 lpha가 0이 아닌 한 항상 존재한다.