MapReduce Project - AutoComplete

赵敏 老师

扫描二维码关注微信/微博 获取最新IT面试情报及权威解答

微信: ninechapter

知乎专栏: http://zhuanlan.zhihu.com/jiuzhang

微博: http://www.weibo.com/ninechapter

官网: www.jiuzhang.com

Outline

- What is auto-complete & Where auto-complete has been used.
- Learn what is N-Gram Model.
- Build N-Gram model.
- Run N-Gram model on MapReduce.
- Test your N-Gram result on web page.

Let's play Shannon Game!

Where auto-complete has been deployed

Google Suggestion

Spelling Correction(letter)

We can implement it on N-Gram Model!

What is N-Gram Model?

What is N-Gram Model?

What is N-Gram?

 An n-gram is a contiguous sequence of n items from a given sequence of text or speech

Example: I love big data

4-gram: I love big data

3-gram: I love big, love big data

2-gram?

What is N-Gram?

2-gram?

I love, love big, big data

What is Language Model?

 A language model is a probability distribution over entire sentences or texts.

What is Model?

I want to eat ____?

- apple
- shit

Probability:

P(apple) > P(shit)

What is N-Gram Model?

Use probability to predict next word/phrase

Let's build N-Gram Model

- Predict N-Gram based on 1-Gram
- I love big → data course/brother/island around

- Predict N-Gram based on N-Gram
- I love big → data course/brother/island around

Which one is better?

Predict N-Gram based on N-Gram

Implement N-Gram Model

Steps:

- Read a large-scale document collections
- Build n-gram library
- Calculate probability
- Run the project on Mapreduce

2-gram	
want to	200
eat apple	120
eat shit	1

want	to = 200
eat	apple = 120 shit = 1

Fetch a large-scale document collections

- Document preprocessing:
 - Read each document
 - Line by line?
 - sentence by sentence?
 - Remove all non-alphabetical symbols.

Build N-Gram Library

N=3

Phrase: This is cool since this is big data course.

1-gram	
This	2
is	2
cool	1
since	1
big	1
data	1
course	1

2-gram	
This is	2
is cool	1
cool since	1
since this	1
is big	1
big data	1
data course	1

3-gram	
This is cool	1
is cool since	1
cool since this	1
since this is	1
this is big	1
is big data	1
big data course	1

Copyright © www.jiuzhang.com

Build N-Gram Library

Let's use MR to solve this problem!

- Mapper
- Reducer

Mapper

Word Count:

This is cool since this is big data course.

一次划分

This, is, cool, since, this, is, big, data, course

N-Gram:

This is cool since this is big data course.

一次划分

This is, is cool, cool since, since this, this is, is big, big data, data course

二次划分

This is cool, is cool since, cool since this, since this is, this is big, is big data, big data course

Reducer

This is	1
This is	1
is cool	1
cool since	1
since this	1
is big	1
big data	1
data course	1

Merge

This is	2
is cool	1
cool since	1
since this	1
is big	1
big data	1
data course	1

Probability of a word apprearing after a phrase:

$$Pr(word \mid phrase) = \frac{Count(phrase + word)}{Count(phrase)}$$

Example:

(1. '	4000	$Pr(is \mid this) =$	Count(this is)	$=\frac{500}{1000}=0.5$
this	1000	ri (is tilis) =	Count(this)	$=\frac{1000}{1000}=0.3$

this is 500

this is a 125

$$\Pr(a \mid \text{this is}) = \frac{\text{Count(this is } a)}{\text{Count(this is})} = \frac{125}{500} = 0.25$$

Count(this is)

Can we simplify the probability computation?

$$Pr(word \mid phrase) = \frac{Count(phrase + word)}{Count(phrase)}$$

Simplify

Pr(data | big) = Count(big data) = 800

Pr(baby | big) = Count(big baby) = 100

Copyright © www.jiuzhang.com

Input

2-gram	
Key	Valu e
This is	2
is cool	1
cool since	1
since this	1
is big	1
big data	1
data course	1

		K
Value		_
		T
1		_
1		
-		C
1		S
1		si
1		
1		S
I .		
1 yright © wwv	/.jiuzhang.c	om
	1 1 1 1 1	1 1 1 1

Output

Key	Value
This	is = 2
This is	cool = 1
cool	math = 100
since I left	you = 10
since	I = 20
since I	left = 15

What should Mapper do?

Mapper

Reducer

Build Language Model: Reducer

Hint:

For a given phrase, store only the top n words with the highest probabilities. This value should also be a command-line parameter to your MapReduce application. If two words have the same probability, choose the one which is lexicographically higher i.e. 'ab' comes before 'bc'. Use n = 5. The following figure shows an example of sorted probabilities.

Build Language Model: Mapper

Hint:

You will want to ignore phrases that appear below a certain threshold, say t, from your n-gram count for your statistical language model to be accurate. Use t = 2 (This means that you need to ignore the phrases that fall under the category $\leq t$).

How to predict next n-gram?

starting_phrase	following_word	count
a	man	264
a	little	90
a	great	83
a day	or	14
a day	and	6

But this could only predict next 1-gram right?

MySQL will do the magic job!


```
mysql> select * from output
-> where starting_phrase like 'input%'
-> order by count
-> limit 10;
```

What you have learned

- How to build N-Gram library
- How to build Language Model
- How to chain MR jobs
- How to write from MapReduce to Database
- PHP tools