圧縮指標:計算と特定

東京医科歯科大学 の クップル

圧縮指標

最小の

- LZ77, LZ78, LZ-End, lexparse, etc.
- run-length of BWT r
- optimal LZ78
- bidirectional macro scheme b
- 文脈自由文法 g
- 文字列アトラクタ γ
- collage system
- optimal LZ-End

圧縮指標

- LZ77, LZ78, LZ-End, lexparse, etc.
- run-length of BWT r
- optimal LZ78
- bidirectional macro scheme b
- 文脈自由文法 g
- 文字列アトラクタ γ
- collage system
- optimal LZ-End

─ 線形時間で 計算可能

最小のサイズを 求めることは NP 困難

難しそう

圧縮指標の計算

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_1 ... \xrightarrow{MAX -SAT} x_1 = 1$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 1$$

圧縮指標

最小の

- LZ77, LZ78, LZ-End, lexparse, etc.
- run-length of BWT r
- optimal LZ78
- bidirectional macro scheme b
- 文脈自由文法 g
- 文字列アトラクタ γ
- collage system
- optimal LZ-End

[坂内、後藤、石 畠、神田、K、西 本: FPAI 22]:SATソルバで高 速に計算する手法

5 / 23

線形時間で

計算可能

SAT の問題

- 入力: 論理式 CNF
- 出力: 真にする割当

$$\begin{array}{c} X_1 \wedge (X_2 \vee X_3) \\ \wedge (X_2 \vee X_4 \vee ...) \end{array} \longrightarrow \begin{array}{c} X_1 = 1 \\ X_2 = 0 \\ X_3 = 1 \\ \vdots \end{array}$$

MAX-SAT 問題

SAT を拡張された最大化問題

- hard 節:絶対に充足しないといけない節
- soft 節: できるだけ充足
 - ⇒ 充足される soft 節の個数を最大化

soft 節

入力: 文字列 T

• 目的: 圧縮指標 (g, γ, b など) の最小の個数を定めたい

個数を soft 節で表現

- T[1..n] の位置を個数に割り合って、soft 節を作成
 - \forall *i* ∈ [1..*n*]: $\neg p_i$
 - つまり、Σ _i p_i を最小化

文字列アトラクタ

- cover(S): T の中に出現する部分文字列 S の出現範囲の位置集合
- 位置 p について p ∈ cover(S)
 のとき、p は S の出現を串刺しに すると呼ぶ
- 例:位置6はa, ana, ...の出現 を串刺しにする
- 「・」は cover(*S*) を表現する
- 「●」はSの出現開始位置

文字列アトラクタ

- T[1..n] のアトラクタは 以下を満たすTの位置集合 $\Gamma \subseteq [1..n]$
 - 任意の部分文字列 *S* に対して cover(S) n Γ ≠ Ø
 - ようは、S の出現を串刺しに する F の要素が存在
- すべての位置集合[1..n]は自明なアトラクタ(なおかつ最大の)
- 3 は最小のアトラクタの個数
- $\Gamma = \{1,2,3\}$

hard 節の表現

- $p_i = 1 \Leftrightarrow i \in \Gamma$
- Tの任意の部分文字列 S に対して、
 - hard 節 $C_S = \bigvee_{i \in \text{cover}(S)} p_i$ を作成する(アトラクタの制限)
- hard 節を全て満たしたら、 $\{i \mid p_i = 1\}$ はアトラクタになる
- なおかつ、充足する soft 節を最大化する p_i の割当について $\{i \mid p_i = 1\}$ は最小アトラクタ
- hard 節の個数は O(n²)
- 節のサイズは O(n)

minimal substrings

T の minimal substring は以下の状況を満たす*T* の部分文字列 *S:*

• すべての S の真の部分文字列の出現は S の出現より多い

主張: 任意部分文字列 S は minimal ではないと hard 節 C_S を作成しなくてもよい:

- S は minimal ではないと、S と同じ出現の個数が持つ S の minimal substring S_{min} が存在がある
- hard 節 C_{Smin} によって、計算したアトラクター の要素 は S_{min} の出現を を串刺しにする \Rightarrow あの S_{min} の出現を S の出現に伸ばすことができる

文字列アトラクタ

下線の部分文字列は minimal substrings

- m は minimal substring の個数とすると、
- hard 節の個数は O(nm)
- m = o(n) を満たす文字列集合が存在する問題
- hard 節をもっと減らすことができる?
- 節のサイズを減らすことができる?
- 個数の下界がある?
- MAX-SATソルバで高速に計算可能?

CNF の指標

	アトラクター Υ	SLP g	BMS b
Boolean 変数の個数	n	O(<i>n</i> ³)	$O(n^3)$
hard 節の集合	O(nm)	O(<i>n</i> ⁴)	O(<i>n</i> ⁴)
節のサイズ	O(n)	O(<i>n</i>)	$O(n^2)$

MAX-SAT について未決問題

- よい近似アルゴリズムは存在がある? (simulated annealing など) まだ MAX-SAT の CNF で表現しない問題
- 連超圧縮 SLP
- collage system
- optimal LZ78

解かれたということを小耳に挟んだ

collage system と optimal LZ-End は NP hard かどうか、まだ分からない

圧縮指標の特定 2 uniform morphism

$$\phi(a) = ab$$

$$\phi(b) = ba$$
 $T_0 = a$

$$T_1 = ab$$

$$T_2 = abba$$

$$T_3 = abbabaab$$

$$T_3 = abbabaab$$

string morphism

三重野、堀山、稲永: Fibonacci 列の最小文法 を特定できた

特徴な文字列集合に対して、圧縮指標を定めることができる?

- string morphism は以下の状況を満たす写像 φ
 - 任意 c ∈ Σ に対して、φ(c) ∈ Σ+
- $S_k = \varphi^k(a) = \varphi(...(\varphi(a)) ...) \in \Sigma^+$
- 2-uniform morphism: 任意 $c \in \Sigma$ に対して、 $|\varphi(c)| = 2$
- 例: $\varphi(a) = ab$, $\varphi(b) = ba \Rightarrow T_k = \varphi^k(a)$ k 番目の Thue-Morse 列
- $\varphi(a) = ab$, $\varphi(b) = aa \Rightarrow P_k = \varphi^k(a)$ k 番目の Period-Doubling 列
- φ をペアー (φ(a),φ(b)) = (ab,ba) で表現できる

2-uniform morphism, $\sigma = 2$

arphi(a)	arphi(b)	$arphi^{(k)}(a)$	γ	Z	^z no	g
aa	*	a^{2^k}	1	2	k+1	k+1
ab	ab	$(ab)^{2^k-1}$	2	3	k+1	k+2
	ba	T_k	4	2k	2k	2k+1
	aa	P_k	2	2k	2k	2k+1
	bb	ab^{2^k-1}	2	3	2 + k	addition chain
ba	ab	$\overline{T_{k}}$	same as T _k			
	ba	$(ba)^k$		same as (ab, ab)		
Da	bb	b^{2^k-1} a	same as (ab, bb)			
	aa	P^M_k	2	$\lfloor 3k/2 \rfloor + 1$?	unknown	same as P _k
bb	ab	$\overline{P_{k-1}}^M\overline{P_{k-1}}^M$	2	3k/2 + 2?	unknown	$z_{no}(P_{k-1}) + 2$
	ba	$\overline{P_{k-1}P_{k-1}}$	2			$z_{no}(P_{k-1}) + 2$
	aa	$\in \{a^{2^{k}},b^{2^{k}}\}$	same as (aa,aa)			
	bb	b^{2^k}	same as (aa, aa)			

- γ: アトラクター
- z:LZ77 の個数
- Z_{no}: 重複なし LZ77
- g:最小文法の サイズ
- $\overline{a} = b, \overline{b} = a$
- $(ab)^{M} = (ba)^{M}$

かなり大変

性質

- [Rytter 03, Mieno+ '22]: $z \le z_{no} \le g \sigma + 1$
- ullet \mathtt{ab}^{2^k-1} の最小文法の個数は $\mathtt{addition}$ chain と同値する
 - addition chain (OEIS A003313): v^x を v の乗算で計算する演算の最小の個数
 - 難しそうけど、 $x = 2^k 1$ なら、最小の個数を簡単に特定できる?

解決したい問題

• $\sigma > 2$ or k-uniform morphism (任意の $c \in \Sigma$ に対して、 $|\varphi(c)| = k$) に拡張できる?

paper-folding sequence

例: paper-folding sequence: 2-uniform, $\sigma = 4$

- $\varphi(a) = ab$, $\varphi(b) = cb$, $\varphi(c) = ad$, $\varphi(d) = cd$
- $F_0 = a$, $F_1 = ab$, $F_2 = abcb$, $F_3 = ...$
- 予想:
 - $-g = 4(k-1) \quad \forall \quad k \ge 4$
 - γ = 7 ∀ k ≥ 4 (九大の沓掛くん)

沓掛くんの卒論

•
$$z = 3k - 5$$