

October 2006

FDMC6890NZ

Dual N-Channel PowerTrench® MOSFET

20V, 4A, Q1:68m Ω , **Q2:100m** Ω

Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 68m Ω at V_{GS} = 4.5V, I_D = 4A
- Max $r_{DS(on)}$ = 100m Ω at V_{GS} = 2.5V, I_D = 3A

Q2: N-Channel

- Max $r_{DS(on)}$ = 100m Ω at V_{GS} = 4.5V, I_D = 4A
- Max $r_{DS(on)}$ = 150m Ω at V_{GS} = 2.5V, I_D = 2A
- Low gate Charge
- RoHS Compliant

General Description

FDMC6890NZ is a compact single package solution for DC to DC converters with excellent thermal and switching characteristics. Inside the Power 33 package features two N-channel MOSFETs with low on-state resistance and low gate charge to maximize the power conversion and switching efficiency. The Q1 switch also integrates gate protection from unclamped voltage input.

Application

■ DC - DC Conversion

Power 33

S1 D1/S2 D2

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Q2	Units
V _{DS}	Drain to Source Voltage		20	20	V
V _{GS}	Gate to Source Voltage			±12	V
I _D	-Continuous		4		^
	-Pulsed		10		Α
Power Dissipation (Steady State) Q1		(Note 1a)	e 1a) 1.92		W
P_{D}	Power Dissipation (Steady State) Q2		1.78		VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150		°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	Q1	(Note 1a)	65	°C/W
Rain	Thermal Resistance, Junction to Ambient	Q2		70	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
6890N	FDMC6890NZ	Power 33	7inch	8mm	3000 units

Electrical Characteristics T₁ = 25°C unless otherwise noted

 $Q_{g(2)}$

 Q_{gs}

 Q_{gd}

Total Gate Charge at 2V

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1 Q2	20 20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C	Q1 Q2		13 12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16V, V _{GS} = 0V				1 1	μА
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$	Q1 Q2			±10 ±100	μA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	Q1 Q2	0.6 0.6	0.9 1.0	2 2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C	Q1 Q2		-3 -3		mV/°C
Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 4A$ $V_{GS} = 2.5V, I_D = 3A$	Q1		58 77	68 100	mΩ	
r _{DS(on)}		$V_{GS} = 4.5V, I_D = 4A$ $V_{GS} = 2.5V, I_D = 2A$	Q2		67 102	100 150	
9 _{FS}	Forward Transconductance	$V_{DS} = V$, $I_D = 4A$	Q1 Q2		10 7		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance		Q1 Q2		205 190	270 250	pF
C _{oss}	Output Capacitance	V _{DS} = 10V, V _{GS} = 0V, f= 1MHZ	Q1 Q2		60 60	80 80	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		40 35	60 55	pF
R _g	Gate Resistance	f = 1MHz	Q1 Q2		3.3 2.8		Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time		Q1 Q2		4 4	10 10	ns
t _r	Rise Time	$V_{DD} = 10V, I_D = 4A, R_{GEN} = 6\Omega$	Q1 Q2		13 12	22 21	ns
t _{d(off)}	Turn-Off Delay Time		Q1 Q2		10 7	19 14	ns
t _f	Fall Time		Q1 Q2		6 6	12 12	ns
$Q_{g(TOT)}$	Total Gate Charge at 4.5V	V _{GS} = 0V to 4.5V	Q1 Q2		2.4 1.8	3.4 2.6	nC
	4		L			1	

Q1

Q2

Q1

Q2

Q1

Q2

 $V_{DD} = 10 \text{ V}$ $I_D = 4A$

1.4

0.6

0.4

0.5

0.9

8.0

1.9

8.0

nC

nC

nC

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Drain-Sou	rce Diode Characteristics						
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 4A	Q1 Q2		0.94 0.92	1.25 1.25	V
t _{rr}	Reverse Recovery Time	I _E = 4A, di/dt = 100A/s	Q1 Q2		18 17	27 26	ns
Q _{rr}	Reverse Recovery Charge	1F - 4A, di/dt - 100A/S	Q1 Q2		9 10	14 15	nC

Notes:
 1: R_{θ,IA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θ,IC} is guaranteed by design while R_{θ,CA} is determined by the user's board design.

a. 65°C/W when mounted on a 1 in² pad of 2 oz copper

b. 150°C/W when mounted on a minimum pad of 2 oz copper

2: Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

Figure 1. On-Region Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On - Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Forward Bias Safe
Operating Area

Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

Figure 12. Transient Thermal Response Curve

Typical Characteristics (Q2 N-Channel)

Figure 13. On Region Characteristics

Figure 15. Normalized On Resistance vs Junction Temperature

Figure 17. Transfer Characteristics

Figure 14. Normalized on-Resistance vS Drain Current and Gate Voltage

Figure 16. On-Resistance vs Gate to Source Voltage

Figure 18. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics

Figure 21. Unclamped Inductive **Switching Capability**

t_{AV}, TIME IN AVALANCHE(ms)

0.1

0.01

1 └─ 1E-3

Figure 20. Capacitance vs Drain to Source Voltage

Figure 22. Forward Bias Safe **Operating Area**

Figure 23. Single Pulse Maximum Power Dissipation

Typical Characteristics

Figure 24. Transient Thermal Response Curve

RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION WEEA, DATED 11/2001
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP06HrevA

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
CROSSVOLT TM	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT [™]	MICROCOUPLER™	QFET®	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. Around	d the world.™	µSerDes™	TruTranslation™
The Power Franchise®		ScalarPump™	UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Programmable Active Droop™

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ UltraFET® VCX™ Wire™

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 120