

Innovation and Technopreneurial University

PREDICTING URBAN GROWTH PATTERNS IN HARARE USING MACHINE LEARNING

About this model and dataset	

→ 1 cell hidden

1. Necessary libraries and dependables

- > Imports
- 2. Definitions and variables
- > Google Maps API keys and focus area coordinates
- [] 4 cells hidden
- 3. Download dataset and define path variable
- Dataset

```
# Download dataset to be used and keep the path variable
# Dataset source : Kaggle (see 'About' section)
path = kagglehub.dataset_download("balraj98/deepglobe-land-cover-classification-dataset")
```

 $\ensuremath{\text{\#}}$ Show path variable to the dataset

```
print("Dataset downloaded to:", path)
```

Dataset downloaded to: /root/.cache/kagglehub/datasets/balraj98/deepglobe-land-cover-classification-dataset/versions/2

```
warnings.filterwarnings('ignore')
urban growth features df = pd.DataFrame({
    'distance to road km': np.random.uniform(0, 5, num samples),
    'distance_to_urban_center_km': np.random.uniform(0, 15, num_samples),
    'distance to protected area km': np.random.uniform(0, 10, num samples),
    'terrain_elevation_m': np.random.normal(1350, 40, num_samples),
    'population growth rate percent': np.random.normal(2.5, 0.8, num samples),
    'land_market_value_usd_per_m2': np.random.normal(20, 7, num_samples),
})
# Create spatial elevation grids (8x8) for CNN
spatial_elevation_grids = np.zeros((num_samples, 8, 8, 1))
for idx in range(num samples):
   base_elevation = urban_growth_features_df['terrain_elevation_m'].iloc[idx]
    spatial elevation grids[idx, :, :, 0] = base elevation + np.random.normal(0, 5, (8, 8))
# Compute logistic regression logit for urbanization target variable
logit_scores = (
   -0.6 * urban growth features df['distance to road km'] +
   -0.3 * urban_growth_features_df['distance_to_urban_center_km'] +
   -0.2 * urban growth features df['distance to protected area km'] +
   0.8 * urban growth features df['population growth rate percent'] +
   0.05 * urban growth features df['land market value usd per m2'] +
   np.random.normal(0, 1, num samples)
# Convert logits to probabilities and generate binary urbanization labels
urbanization_probabilities = 1 / (1 + np.exp(-logit_scores))
urban growth features df['urbanization label'] = (urbanization probabilities > 0.5).astype(int)
target_labels = urban_growth_features_df['urbanization_label'].values
# Exploratory Data Analysis (EDA) Visualizations
plt.figure(figsize=(18, 12))
plt.subplot(3, 3, 1)
sns.histplot(urban_growth_features_df['distance_to_road_km'], bins=20, kde=True, color='teal')
plt.title('Distance to Road (km)')
plt.subplot(3, 3, 2)
sns.histplot(urban growth features df['population growth rate percent'], bins=20, kde=True, color='orange')
```

```
plt.title('Population Growth Rate (%)')
plt.subplot(3, 3, 3)
sns.histplot(urban_growth_features_df['land_market_value_usd_per_m2'], bins=20, kde=True, color='purple')
plt.title('Land Market Value (USD/m2)')
plt.subplot(3, 3, 4)
sns.heatmap(spatial elevation grids[0, :, :, 0], cmap='terrain', cbar=False)
plt.title('Sample Elevation Grid (8x8)')
plt.subplot(3, 3, 5)
correlation matrix = urban growth features df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Feature Correlation')
plt.subplot(3, 3, 6)
sns.countplot(x='urbanization_label', data=urban_growth_features_df, palette='Set2')
plt.title('Urbanization Distribution')
plt.subplot(3, 3, 7)
sns.scatterplot(
   x='distance to road km',
   y='land_market_value_usd_per_m2',
   hue='urbanization label',
   data=urban_growth_features_df,
   palette='Set1',
   alpha=0.6
plt.title('Distance to Road vs Land Market Value')
plt.subplot(3, 3, 8)
sns.boxplot(x='urbanization_label', y='population_growth_rate_percent', data=urban_growth_features_df, palette='Set3')
plt.title('Population Growth Rate by Urbanization')
plt.subplot(3, 3, 9)
sns.scatterplot(
    x='terrain_elevation_m',
   y='distance_to_protected_area_km',
   hue='urbanization_label',
   data=urban_growth_features_df,
   palette='viridis',
   alpha=0.7
plt.title('Elevation vs Distance to Protected Area')
plt.tight layout()
plt.show()
print("   EDA visualizations completed\n")
```


4. Model training

Train the model using specified algorithms

```
# -----
# 4.1 Convolutional Neural Network (CNN) Model Definition and Training
# -----
cnn model = Sequential([
   InputLayer(input_shape=(8, 8, 1)),
   Conv2D(16, (3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
   Flatten(),
   Dense(32, activation='relu'),
   Dense(1, activation='sigmoid')
cnn model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
print("Training CNN model...")
cnn_history = cnn_model.fit(
   X_spatial_train, y_train,
    epochs=15,
   batch_size=32,
   validation split=0.2,
    verbose=0
# Plot CNN training and validation accuracy
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(cnn_history.history['accuracy'], label='Train Accuracy')
plt.plot(cnn history.history['val accuracy'], label='Validation Accuracy')
plt.title('CNN Training History')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# CNN model predictions and probabilities on test set
cnn_predictions = (cnn_model.predict(X_spatial_test) > 0.5).astype(int).flatten()
cnn probabilities = cnn model.predict(X spatial test).flatten()
# Plot histogram of CNN prediction probabilities by true label
plt.subplot(1, 2, 2)
cnn probs df = pd.DataFrame({
    "probability": cnn_probabilities,
    "true label": y test
sns.histplot(data=cnn_probs_df, x="probability", bins=20, kde=True, hue='true_label', palette='Set2')
plt.title('CNN Prediction Probabilities')
plt.tight layout()
plt.show()
print(" ✓ CNN training complete\n")
```



```
# ------
# 4.2 Gradient Boosting Regression Trees (GBRT) Model Training
gbrt_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5)
print("Training GBRT model...")
gbrt_model.fit(X_tab_train, y_train)
# Visualize GBRT feature importances
plt.figure(figsize=(10, 6))
feature_names = urban_growth_features_df.drop('urbanization_label', axis=1).columns
feature importances = pd.Series(gbrt model.feature importances , index=feature names)
feature_importances.nlargest(len(feature_names)).plot(kind='barh', color='darkcyan')
plt.title('GBRT Feature Importances')
plt.show()
# GBRT predictions and probabilities on test set
gbrt predictions = gbrt model.predict(X tab test)
gbrt_probabilities = gbrt_model.predict_proba(X_tab_test)[:, 1]
print("  GBRT training complete\n")
```



```
# -----
# 4.3 Simple Cellular Automata (CA) Model Definition and Prediction
# ------
class SimpleCellularAutomata:
   def predict(self, X):
       # Rule-based prediction: urbanized if at least two of three conditions met
       condition_road = (X[:, 0] < 2.5).astype(int)</pre>
       condition_population = (X[:, 4] > 2.5).astype(int)
       condition_land_value = (X[:, 5] > 20).astype(int)
       return (condition_road + condition_population + condition_land_value) >= 2
ca model = SimpleCellularAutomata()
ca_predictions = ca_model.predict(X_tab_test)
# -----
# 4.4 Voting Ensemble Model Combining CNN, GBRT, and CA Predictions
# -----
class VotingEnsembleModel:
   def __init__(self, cnn, gbrt, ca):
       self.cnn model = cnn
       self.gbrt_model = gbrt
```

```
self.ca_model = ca
    def predict(self, X_tab, X_spatial):
       cnn_preds = (self.cnn_model.predict(X_spatial) > 0.5).astype(int).flatten()
       gbrt_preds = self.gbrt_model.predict(X_tab)
       ca preds = self.ca model.predict(X tab)
       combined_votes = np.stack([cnn_preds, gbrt_preds, ca_preds], axis=1)
       majority vote = (combined votes.sum(axis=1) >= 2).astype(int)
       return majority_vote, combined_votes
ensemble_model = VotingEnsembleModel(cnn_model, gbrt_model, ca_model)
ensemble_predictions, ensemble_votes = ensemble_model.predict(X_tab_test, X_spatial_test)
print("Voting Ensemble Model Combining CNN, GBRT, and CA Predictions trained successfully ! ")
                            — 0s 6ms/step
     Voting Ensemble Model Combining CNN, GBRT, and CA Predictions trained successfully !
# -----
# 4.5 Ensemble Model Visualization
# ------
# Visualize voting patterns (e.g., heatmap of votes per sample)
votes = np.vstack([cnn_predictions, gbrt_predictions, ca_predictions])
plt.figure(figsize=(10, 4))
sns.heatmap(votes, cmap='coolwarm', cbar=True, xticklabels=False, yticklabels=['CNN', 'GBRT', 'CA'])
```

plt.title('Voting Patterns Across Test Samples')

plt.xlabel('Test Samples')
plt.ylabel('Models')
plt.show()


```
# Confusion matrix for ensemble predictions
ensemble_cm = confusion_matrix(y_test, ensemble_predictions)
disp = ConfusionMatrixDisplay(confusion_matrix=ensemble_cm, display_labels=[0, 1])
disp.plot(cmap='Blues')
plt.title('Voting Ensemble Confusion Matrix')
plt.show()
```



```
# Average the predicted probabilities from all models to get ensemble probabilities ensemble_probabilities = (cnn_probabilities + gbrt_probabilities) / 2

# Compute ROC curve and AUC fpr, tpr, thresholds = roc_curve(y_test, ensemble_probabilities) roc_auc = auc(fpr, tpr)

# Plot ROC curve plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (AUC = {roc_auc:.2f})') plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlabel('False Positive Rate') plt.xlabel('True Positive Rate') plt.title('ROC Curve - Voting Ensemble Model') plt.legend(loc='lower right') plt.slabe()
```


0.4

False Positive Rate

0.6

5. Model Evaluation

0.2

0.0

0.0

Evaluate the trained model

0.2

1.0

ROC curve (AUC = 0.92)

0.8

```
annot_kws={'size': 14}
    plt.title(f'{model_name} Confusion Matrix', pad=12)
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
plt.tight_layout()
plt.show()
# ROC curves comparing CNN and GBRT models
plt.figure(figsize=(8, 6))
for model_name, probabilities in zip(['CNN', 'GBRT'], [cnn_probabilities, gbrt_probabilities]):
    fpr, tpr, _ = roc_curve(y_test, probabilities)
    roc_auc_score = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f'{model_name} (AUC = {roc_auc_score:.2f})')
plt.plot([0, 1], [0, 1], linestyle='--', color='grey', alpha=0.5)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve Comparison for Urban Growth Models')
plt.legend(loc='lower right')
plt.show()
```


Classification Reports

∑ ₹						
		ation Reports	5:			
	CNN Report:					
		precision	recall	f1-score	support	
	No Growth	0.79	1.00	0.88	472	
	Urban Growth	0.00	0.00	0.00	128	
	accuracy			0.79	600	
	macro avg	0.39	0.50	0.44	600	
	weighted avg	0.62	0.79	0.69	600	
	GBRT Repo	rt:				
		precision	recall	f1-score	support	
	No Growth	0.90	0.93	0.91	472	
	Urban Growth	0.70	0.62	0.66	128	
	accuracy			0.86	600	
	macro avg	0.80	0.78	0.79	600	
	weighted avg	0.86	0.86	0.86	600	
	CA Report	:				
		precision	recall	f1-score	support	
	No Growth	0.89	0.60	0.72	472	
	Urban Growth	0.33	0.72	0.45	128	
	accuracy			0.62	600	
	macro avg	0.61	0.66	0.58	600	
	weighted avg	0.77	0.62	0.66	600	
	<pre>Sensemble </pre>	Report:				
		precision	recall	f1-score	support	
	No Growth	0.87	0.96	0.92	472	
	Urban Growth	0.77	0.49	0.60	128	
	accuracy			0.86	600	
	macro avg	0.82	0.73	0.76	600	
	weighted avg	0.85	0.86	0.85	600	

5. Model testing

Urban growth prediction model

```
# --- CONFIGURATION ---
CENTER_LATITUDE = -18.0174072 # Chitungwiza Hospital Latitude
CENTER_LONGITUDE = 31.0603241 # Chitungwiza Hospital Longitude
ANALYSIS RADIUS KM = 1
YEARS_TO_ANALYZE = 10
CURRENT YEAR = datetime.now().year
# --- DATA FETCHING UTILITIES ---
def get_distance_to_nearest_road(lat: float, lon: float) -> float | None:
   Query OpenStreetMap Overpass API to find the nearest highway within 5km radius and compute distance in km.
   Returns None if no road found.
   overpass_url = "http://overpass-api.de/api/interpreter"
   query = f"""
   [out:json];
     way(around:5000,{lat},{lon})["highway"];
   out geom 1;
    ....
       response = requests.post(overpass_url, data={'data': query}, timeout=10)
       response.raise_for_status()
       data = response.json()
   except (requests.RequestException, ValueError):
       return None
   point = Point(lon, lat)
   min_dist = float('inf')
   for element in data.get('elements', []):
       if 'geometry' in element:
           coords = [(pt['lon'], pt['lat']) for pt in element['geometry']]
           line = LineString(coords)
           # Approximate degrees to meters conversion (1 degree ~ 111 km)
           dist_meters = point.distance(line) * 111000
           if dist_meters < min_dist:
               min_dist = dist_meters
   if min_dist == float('inf'):
       return None
   return min_dist / 1000 # Convert meters to kilometers
def get_distance_to_protected_area(lat: float, lon: float) -> float:
   return 8.0 # Fallback value in km
def get terrain elevation(lat: float, lon: float) -> float | None:
   Query Open Elevation API to get terrain elevation in meters.
```

```
Returns None if request fails or data unavailable.
   url = f"https://api.open-elevation.com/api/y1/lookup?locations={lat}.{lon}"
       r = requests.get(url, timeout=10)
       r.raise for status()
       results = r.json().get('results', [])
       if results:
           return results[0].get('elevation')
   except (requests.RequestException, ValueError):
       return None
   return None
def fetch population for year(lat: float, lon: float, year: int) -> int:
   base_population = 350000 # Base population fall back
   growth_rate = 0.028
                             # 2.8% annual fall back
   years_ago = CURRENT_YEAR - year
   population = int(base_population * ((1 + growth_rate) ** (-years_ago)))
   return population
def get_population_growth_rate(lat: float, lon: float, year: int) -> float:
   Falls back to 2.8% if data unavailable or invalid.
   pop_now = fetch_population_for_year(lat, lon, year)
   pop_prev = fetch_population_for_year(lat, lon, year - 1)
   if pop_prev > 0:
       return 100 * (pop_now - pop_prev) / pop_prev
   return 2.8
def get_land_market_value(lat: float, lon: float) -> float:
   return 25.0 # Fallback average value
def extract features(latitude: float, longitude: float, analysis radius km: float, year: int) -> np.ndarray:
   Aggregate spatial and socioeconomic features for urban growth prediction.
   dist_to_road = get_distance_to_nearest_road(latitude, longitude)
   if dist_to_road is None:
       dist to road = 2.5 # Fallback average in km
   dist to center = 0.0 # Center point distance
   dist to protected = get distance to protected area(latitude, longitude)
   elevation = get terrain elevation(latitude, longitude)
   if elevation is None:
       elevation = 1350 # Fallback average elevation in meters
```

```
population_growth = get_population_growth_rate(latitude, longitude, year)
   land value = get land market value(latitude, longitude)
    population = fetch population for year(latitude, longitude, year)
    return np.array([
        dist_to_road,
        dist to center,
        dist to protected.
        elevation,
        population_growth,
        land value,
        population
    1)
def ensemble_urban_growth_predictor(features: np.ndarray) -> tuple[float, float]:
   Simple ensemble predictor returning urban growth likelihood and direction in radians.
    base likelihood = (0.5 + 0.1 * (5 - features[0]) + 0.1 * features[4] / 5) / 1.5
    clipped_likelihood = np.clip(base_likelihood, 0, 1)
    possible directions deg = [45, 90, 135, 180, 225]
    selected_direction_deg = random.choice(possible_directions_deg)
    selected direction rad = np.deg2rad(selected direction deg)
    return clipped_likelihood, selected_direction_rad
# --- MAIN ANALYSIS LOOP ---
results = []
for year in range(CURRENT_YEAR - YEARS_TO_ANALYZE + 1, CURRENT_YEAR + 1):
    features = extract features(CENTER LATITUDE, CENTER LONGITUDE, ANALYSIS RADIUS KM, year)
    growth_score, growth_direction = ensemble_urban_growth_predictor(features)
    population = features[-1]
    results.append({
        "year": year,
        "population": population,
        "growth_score": growth_score,
        "growth direction rad": growth direction
   })
# --- OUTPUT SUMMARY ---
for res in results:
   print(
        f"Year: {res['year']}, Population: {res['population']}, "
        f"Predicted Urban Growth Likelihood: {res['growth_score']:.2f}, "
        f"Direction (rad): {res['growth_direction_rad']:.2f}"
```

```
Fy Year: 2016, Population: 272979.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.14
     Year: 2017, Population: 280622.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 0.79
     Year: 2018, Population: 288480.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.93
     Year: 2019, Population: 296557.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.93
     Year: 2020, Population: 304861.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 1.57
     Year: 2021, Population: 313397.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.14
     Year: 2022, Population: 322172.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.14
     Year: 2023, Population: 331193.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.93
     Year: 2024, Population: 340466.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 0.79
     Year: 2025, Population: 350000.0, Predicted Urban Growth Likelihood: 0.53, Direction (rad): 3.14
# --- Helper functions for degree-km conversions accounting for latitude ---
def km to deg lat(km):
    """Convert kilometers to degrees latitude approximately."""
   return km / 111.32
def km_to_deg_lon(km, latitude):
    """Convert kilometers to degrees longitude at a given latitude."""
   return km / (111.32 * np.cos(np.radians(latitude)))
# --- Overpass QL query to get admin boundaries for the 3 districts ---
overpass query = """
[out:json][timeout:25];
area["name"="Zimbabwe"]->.searchArea;
 relation["boundary"="administrative"]["admin level"="6"]["name"="Harare"](area.searchArea);
 relation["boundary"="administrative"]["admin_level"="6"]["name"="Chitungwiza"](area.searchArea);
 relation["boundary"="administrative"]["admin level"="6"]["name"="Epworth"](area.searchArea);
);
out body;
out skel qt;
response = requests.post('http://overpass-api.de/api/interpreter', data={'data': overpass_query})
data = response.json()
# Convert OSM JSON to GeoJSON
geojson = json2geojson(data)
# Extract features and build GeoDataFrame
districts = []
for feature in geojson['features']:
   props = feature['properties']
   geom = shape(feature['geometry'])
   districts.append({'name': props.get('name', 'Unknown'), 'geometry': geom})
districts gdf = gpd.GeoDataFrame(districts, crs="EPSG:4326")
# Fix invalid geometries if any
```

```
districts_gdf['geometry'] = districts_gdf['geometry'].buffer(0)
```

Data visualization

```
# Extract years, populations, and growth scores from results list
years = [res['year'] for res in results]
populations = [res['population'] for res in results]
growth_scores = [res['growth_score'] for res in results]
fig, ax1 = plt.subplots(figsize=(10,6))
# Plot population on primary y-axis
color_pop = 'tab:blue'
ax1.set xlabel('Year')
ax1.set_ylabel('Population', color=color_pop)
ax1.plot(years, populations, marker='o', color=color_pop, label='Population')
ax1.tick_params(axis='y', labelcolor=color_pop)
# Create a secondary y-axis to plot growth likelihood
ax2 = ax1.twinx()
color_growth = 'tab:green'
ax2.set ylabel('Urban Growth Likelihood', color=color growth)
ax2.plot(years, growth_scores, marker='x', linestyle='--', color=color_growth, label='Growth Likelihood')
ax2.tick params(axis='y', labelcolor=color growth)
ax2.set_ylim(0, 1) # Since growth likelihood is clipped between 0 and 1
# Add title and legends
plt.title('Population and Predicted Urban Growth Likelihood Over 10 Years')
fig.tight_layout()
ax1.legend(loc='upper left')
ax2.legend(loc='upper right')
plt.show()
```

Population and Predicted Urban Growth Likelihood Over 10 Years


```
import folium
import numpy as np
import geopandas as gpd
from shapely.geometry import Polygon, MultiPolygon
from shapely.ops import unary_union
from folium import plugins
import branca
def create_maps(center_lat, center_lon, radius_km, pred_score, direction_rad):
   # Filter districts polygons only
   poly_mask = districts_gdf.geometry.type.isin(['Polygon', 'MultiPolygon'])
   districts_poly_gdf = districts_gdf[poly_mask].copy()
   # Convert all polygons to MultiPolygon for consistency
   districts_poly_gdf['geometry'] = districts_poly_gdf['geometry'].apply(
       lambda g: MultiPolygon([g]) if g.geom_type == 'Polygon' else g
   # Compute union polygon of all districts to get the yellow boundary shape
   union_polygon = unary_union(districts_poly_gdf.geometry)
   # Prepare green urban extent boxes clipped inside districts
```

```
def coords_to_polygon(coords):
    return Polygon(coords)
green boxes = {
    'Harare': coords_to_polygon(harare_coords),
    'Chitungwiza': coords to polygon(chitungwiza coords),
    'Epworth': coords_to_polygon(epworth_coords)
green gdf = gpd.GeoDataFrame(
    {'name': list(green_boxes.keys()), 'geometry': list(green_boxes.values())},
    crs=districts poly gdf.crs
clipped_green_gdf = gpd.overlay(
    green_gdf, districts_poly_gdf, how='intersection', keep_geom_type=False, make_valid=True
if 'name' not in clipped green gdf.columns:
    name_cols = [col for col in clipped_green_gdf.columns if 'name' in col]
    clipped green gdf['name'] = clipped green gdf[name cols[0]] if name cols else 'Unknown'
# Initialize base map
base_map = folium.Map(location=[center_lat, center_lon], zoom_start=11, tiles=None)
folium.TileLayer(
    tiles='https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}',
    attr='Google',
    name='Google Maps',
    overlay=False,
    control=True
).add to(base map)
folium.TileLayer(
    tiles='https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}',
    attr='Google',
    name='Google Satellite',
    overlay=False,
    control=True
).add_to(base_map)
# Add yellow/orange union polygon boundary covering all districts
folium.GeoJson(
    data=gpd.GeoSeries([union_polygon]).__geo_interface__,
    style function=lambda x: {
        'fillColor': '#ffff00',
        'color': 'orange',
        'weight': 3.
        'fillOpacity': 0.15
    tooltip="Focus Area Boundary covering all districts"
).add_to(base_map)
```

```
# Add green urban extent boxes inside yellow boundary with detailed popups/tooltips
color map = {
    'Harare': '#1f78b4'.
    'Chitungwiza': '#33a02c',
   'Epworth': '#e31a1c'
for _, row in clipped_green_gdf.iterrows():
   name = row['name']
   popup_html = f"""
   <b>{name} Urban Growth Area</b><br>
   Likelihood of growth: {pred_score:.2f}<br>
   Center coordinates: ({center lat:.4f}, {center lon:.4f})<br>
   Radius: {radius_km} km<br>
   Model prediction based on input parameters.
   iframe = branca.element.IFrame(html=popup_html, width=300, height=130)
   popup = folium.Popup(iframe, max_width=300)
   geom = row['geometry']
   if geom.geom_type == 'Polygon':
       coords = [(lat, lon) for lon, lat in geom.exterior.coords]
        folium.Polygon(
           locations=coords,
           color=color_map.get(name, 'green'),
           weight=3,
           fill=True,
           fill_color=color_map.get(name, 'green'),
           fill_opacity=0.5,
           popup=popup,
           tooltip=folium.Tooltip(f"Click for info: {name} Area"),
           highlight=True
       ).add_to(base_map)
   elif geom.geom type == 'MultiPolygon':
        for part in geom.geoms:
           coords = [(lat, lon) for lon, lat in part.exterior.coords]
           folium.Polygon(
                locations=coords,
                color=color_map.get(name, 'green'),
                weight=3,
                fill=True.
                fill_color=color_map.get(name, 'green'),
                fill_opacity=0.5,
                popup=popup,
                tooltip=folium.Tooltip(f"Click for info: {name} Area"),
                highlight=True
           ).add_to(base_map)
# Input center circle and labeled marker with popup
folium.Circle(
   location=[center_lat, center_lon],
```

radius=radius km * 1000,

```
color='blue'.
         fill=True,
         fill_opacity=0.2,
         popup=folium.Popup(f"""
                   <b>Input Area</b><br>
                  Center: ({center lat:.4f}, {center lon:.4f})<br>
                  Radius: {radius_km} km<br>
                  User-selected focus area.
         """, max_width=300),
         tooltip="Input Area"
).add_to(base_map)
folium.Marker(
         location=[center_lat, center_lon],
         popup="Input Center",
         tooltip="Input Center",
         icon=folium.Icon(color='blue', icon='star')
).add_to(base_map)
# Predicted growth circle and labeled marker with popup
offset distance deg = km to deg(radius km * 0.7)
pred_center_lat = center_lat + offset_distance_deg * np.sin(direction_rad)
pred center lon = center lon + offset distance deg * np.cos(direction rad)
growth_radius_km = radius_km * (0.5 + pred_score * 0.5)
pred_popup_html = f"""
<br/>

Likelihood: {pred_score:.2f}<br>
Center Offset: {pred_center_lat:.4f}, {pred_center_lon:.4f}<br>
Radius: {growth_radius_km:.2f} km<br>
Model prediction based on input parameters.
iframe = branca.element.IFrame(html=pred popup html, width=300, height=130)
pred_popup = folium.Popup(iframe, max_width=300)
folium.Circle(
         location=[pred center lat, pred center lon],
         radius=growth_radius_km * 1000,
         color='red',
         fill=True,
         fill opacity=0.3,
         popup=pred_popup,
         tooltip=folium.Tooltip("Predicted Growth Area - Click for details")
).add_to(base_map)
folium.Marker(
         location=[pred_center_lat, pred_center_lon],
         popup=pred popup,
         tooltip="Predicted Growth Center",
         icon=folium.Icon(color='red', icon='star')
).add_to(base_map)
```

```
folium.LayerControl().add_to(base_map)
plugins.Fullscreen().add_to(base_map)
plugins.LocateControl().add_to(base_map)
# Second map: Google Maps base with markers and circles, zoomed to input center
simple map = folium.Map(location=[center lat, center lon], zoom start=12, tiles=None)
folium.TileLayer(
    tiles='https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}',
    attr='Google',
    name='Google Maps',
    overlay=False,
    control=True
).add_to(simple_map)
folium.Circle(
    location=[center_lat, center_lon],
    radius=radius_km * 1000,
    color='blue',
    fill=True,
    fill opacity=0.2,
    popup="Input Area"
).add to(simple map)
folium.Marker(
    location=[center_lat, center_lon],
    popup="Input Center",
    tooltip="Input Center",
    icon=folium.Icon(color='blue', icon='star')
).add to(simple map)
folium.Circle(
    location=[pred_center_lat, pred_center_lon],
    radius=growth radius km * 1000,
    color='red',
    fill=True,
    fill_opacity=0.3,
    popup="Predicted Growth Area"
).add_to(simple_map)
folium.Marker(
    location=[pred_center_lat, pred_center_lon],
    popup="Predicted Growth Center",
    tooltip="Predicted Growth Center",
    icon=folium.Icon(color='red', icon='star')
).add_to(simple_map)
folium.LayerControl().add_to(simple_map)
plugins.Fullscreen().add_to(simple_map)
plugins.LocateControl().add_to(simple_map)
return base_map, simple_map
```

```
center_latitude = CENTER_LATITUDE
center_longitude = CENTER_LONGITUDE
analysis_radius_km = ANALYSIS_RADIUS_KM

print("center = " + str(center_latitude) + "," + str(center_longitude))

predicted_growth_score = growth_score
predicted_growth_direction_rad = growth_direction

output1 = widgets.Output()

with output1:
    output1.clear_output()
    detailed_map, _ = generate_urban_growth_maps(center_latitude, center_longitude, analysis_radius_km, predicted_growth_score, predicted_growth_direction_rad)
    print("\n--- Map 1: Harare Metropolitan with Districts and Predictions ---")
    display(output1)
```


print("\n--- Map 1: Harare Metropolitan with Districts and Predictions ---")

display(map1)
display(output1)

--- Map 1: Harare Metropolitan with Districts and Predictions ---


```
from IPython.display import display, HTML

output2 = widgets.Output()

with output2:
    output2.clear_output()
    _, map2 = create_maps(center_latitude, center_longitude, analysis_radius_km, predicted_growth_score, predicted_growth_direction_rad)
    print("\n--- Map 2: Google Maps Base with Predicted Areas ---")
    display(HTML(map2._repr_html_()))

display(output2)
```

⊋₹

--- Map 2: Google Maps Base with Predicted Areas ---


```
offset_deg = km_to_deg(analysis_radius_km * 0.7)
predicted_growth_lat = center_latitude + offset_deg * np.sin(predicted_growth_direction_rad)
predicted_growth_lon = center_longitude + offset_deg * np.cos(predicted_growth_direction_rad)
district_names = districts_gdf['name'].unique()
cmap = cm.get_cmap('Set2', len(district_names))
color_map = {name: colors.rgb2hex(cmap(i)) for i, name in enumerate(district_names)}
m = folium.Map(location=[center_latitude, center_longitude], zoom_start=13)
for _, district in districts_gdf.iterrows():
   color = color_map.get(district['name'], '#808080')
   gj = folium.GeoJson(
        district['geometry'],
        style_function=lambda feature, col=color: {
           'fillColor': col,
            'color': 'black',
            'weight': 2,
            'fillOpacity': 0.4,
```

```
tooltip = folium.Tooltip(f"District: {district['name']}")
   popup_html = f"<b>District: {district['name']}</b>"
   popup = folium.Popup(popup_html, max_width=300)
   gj.add_child(tooltip)
   gj.add child(popup)
   gj.add_to(m)
center_point = Point(center_longitude, center_latitude)
focused district = None
for _, district in districts_gdf.iterrows():
   if district.geometry.contains(center point):
        focused district = district
       break
district_name = focused_district['name'] if focused_district is not None else "Unknown"
buffer radius km = 5
buffer_radius_deg = buffer_radius_km / 111
input_center_point = Point(center_longitude, center_latitude)
predicted growth point = Point(predicted growth lon, predicted growth lat)
input_center_buffer = input_center_point.buffer(buffer_radius_deg)
predicted_growth_buffer = predicted_growth_point.buffer(buffer_radius_deg)
def filter nearby(gdf):
   return gdf[gdf.geometry.intersects(input_center_buffer) | gdf.geometry.intersects(predicted_growth_buffer)].copy()
urban_areas_nearby = filter_nearby(districts_gdf)
non_urban_areas_nearby = filter_nearby(districts_gdf)
expansion_areas_nearby = filter_nearby(districts_gdf)
def create_popup_html(row):
   html = f"""
    <div style="font-family: Arial; font-size: 14px; max-width: 300px;">
       <h4 style="margin-bottom: 8px;">{row.get('name', 'Unknown')}</h4>
       <b>Type:</b> {row.get('type', 'N/A')}<br>
       <br/><b>Population:</b> {row.get('population', 'N/A')}<br>
       <b>Density (people/km²):</b> {row.get('pop_density', 'N/A')}<br>
        <b>Urban State:</b> {row.get('urban state', 'N/A')}<br>
   if 'growth likelihood' in row and row['growth likelihood'] is not None:
```

html += f"Growth Likelihood: {row['growth_likelihood']:.2f}
"

html += "</div>"
return html