[4]

Q.5	i.	Explain Push Down Automata.	3
	ii.	Design PDA for the following CFL.	7
		$L = \{ a^m b^n c^{n+m} n,m > = 0 \}$	
OR	iii.	Prove that the following languages are not CFL using Pumping	7
		lemma theorem.	
		(a) $L = \{ a^n b^n c^n \mid n > = 0 \}.$	
		(b) $L = \{ a^P \mid p \text{ is prime number } \}.$	
Q .6		Attempt any two:	
	i.	Explain different types of Turing machine in detail.	5
	ii.	Design Turing machine for the following language	5
		$L = \{ a^{n}b^{2n}c^{n} \mid n > = 0 \}$	
	iii.	Write down closure properties of Recursive and Recursive	5
		Enumerable Language.	

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 CS3CO10 Theory of Computation

Branch/Specialisation: CSE Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers o
Q.1 (MCQs) should be written in full instead of only a, b, c or d.

		should be writt		•	b, c or d.	
Q .1	i.	Consider the	languages L	$A = \emptyset$ and $A = \emptyset$	$2 = \{a\}$. Which one of the	1
	following represents L1.(L2* U L1*).					
		(a) $\{\epsilon\}$	(b) a*	(c) Ø	(d) None of these	
	ii.	A minimum	state deterr	ministic finite	automaton accepting the	1
		language L={	w w ε {0,1,	2} *, N0(w) m	$1 = 1 = 0 \text{ or } N1(w) \mod 4 = 0$	
		1 or N2(w) m	and 3 = 2 has	s fin	al state.	
	Note: Na(w) means number of a's in string w.					
		(a) 1	(b) 18	(c) 24	(d) None of these	
	iii.	Which of the	following lar	nguage is not re	egular?	1
	(a) $L = \{ a^n b^m n \ge 0 \text{ and } m \ge 0 \}$					
		(b) $L = \{ a^n b^n \}$	0 <= n < 1	00}		
		() T (n1 n				

- (c) $L = \{ a^n b^m \mid n > m \}$
- (d) None of these
- iv. Let A and B be language over $\Sigma = \{0,1\}$ represented by the regular 1 expressions (0+1*)* and (0+1)*, respectively. Which of the following is true?
 - (a) A is subset of B
 - (b) B is subset of A
 - (c) A and B both represent same set of strings.
 - (d) A and B both are incomparable.

Consider the following grammar

- S ---> aS/Sa/a Suppose string "aaa" is generated by the above grammar. How many parse tree exist for the string "aaa"?
 - (a) 2
- (b) 4
- (c) 8
- (d) 16

P.T.O.

1

vi.	If L1 is a context free language and L2 as a regular language, which of the following is/are true? P. L1 - L2 is not context free Q.L1 ∩ L2 is context free R.~L1 is context free S.~L2 is regular	1		
vii.	 (a) P and Q (b) Q and R (c) Q and S (d) P and S Which of the following statement is/are False? S1: NPDA and DPDA is equal in power. S2: NPDA is more powerful than DPDA. (a) S1 only (b) S2 only 	1		
	(c) Both (a) and (b) (d) None of these			
viii.	Consider a Context free Grammar G is in CNF form. The number of derivation steps required to generate string w of length n from grammar G is	1		
ix.	 (a) n (b) 2n-1 (c) 2n + 1 (d) Depends on G. Which of the following is true for the language L = { a^p p is prime number }? (a) L is not accepted by Turing Machine 	1		
	(b) L is accepted by Finite state automata.			
	(c) L is accepted by PDA.			
	(d) None of these			
х.	If L and L' are recursively enumerable, then L is	1		
	(a) Recursively enumerable (b) Recursive			
	(c) Context free (d) Context sensitive.			
i.	White down any three electron properties of Decylon I on green?	3		
ii.	Write down any three closure properties of Regular Language? Find out regular expression for complement of $L = \{ w \mid w \in (a,b)^*, \}$	<i>3</i>		
111.	Na(w) mod $2 = 0$ and Nb(w) mod $2 = 0$ }.	,		
	Note: Na(w) means number of a's in string w.			
iii.	(a) Design Melay machine to find two's complement of binary number.	7		
	(b) Design Moore machine to find two's complement of binary number.			
i.	Explain Finite State Automata. Write down main difference between NFA and DFA.	4		

Q.2

OR

Q.3

Marking Scheme CS3CO10 Theory of Computation

Q.1	i.	Consider the languages $L1 = \emptyset$ and $L2 = \{a\}$. Which one of the	1
		following represents L1.(L2* U L1*).	
		(c) Ø	
	ii.	A minimum state deterministic finite automaton accepting the language L={w w ε {0,1,2} *, N0(w) mod 2 = 0 or N1(w) mod 4 = 1 or N2(w) mod 3 = 2} has final state.	1
		Note: Na(w) means number of a's in string w.	
		(b) 18	
	iii.	Which of the following language is not regular?	1
		(c) $L = \{ a^n b^m \mid n > m \}$	
	iv.	Let A and B be language over $\Sigma = \{0,1\}$ represented by the regular expressions $(0+1^*)^*$ and $(0+1)^*$, respectively. Which of the following is true?	1
		(c) A and B both represent same set of strings.	
	v.	Consider the following grammar	1
	٧.	S> aS/Sa/a	-
		Suppose string "aaa" is generated by the above grammar.	
		How many parse tree exist for the string "aaa"?	
		(b) 4	
	vi.	If L1 is a context free language and L2 as a regular language, which of the following is/are true?	1
		P. L1 - L2 is not context free	
		Q.L1 \cap L2 is context free	
		R.~L1 is context free	
		S.~L2 is regular	
		(c) Q and S	
	vii.	Which of the following statement is/are False?	1
		S1: NPDA and DPDA is equal in power.	
		S2: NPDA is more powerful than DPDA.	
		(a) S1 only	
	viii.		1
		derivation steps required to generate string w of length n from	
		grammar G is	
		(b) 2n-1	

	ix. Which of the following is true for the language $L = \{ a^p \mid p \text{ is pri number } \}$?			
		(d) None of these		
	х.	If L and L' are recursively enumerable, then	Lis	1
		(b) Recursive		
Q.2	i.	Any three closure properties of Regular Language		
		1 mark for each	(1 mark * 3)	
	ii.	Find out regular expression for complement		7
		DFA for L	2 marks	
		Complement of DFA	1 mark	
		Regular expression of complemented DFA	4 marks	_
OR	iii.	(a) Melay machine to find two's complement	=	7
			3.5 marks	
		(b) Moore machine to find two's complement	it of binary number. 3.5 marks	
			5.5 Illaiks	
Q.3	i.	Finite State Automata	2 marks	4
V .5		Main difference between NFA and DFA	-	Ī
		Any four 0.5 mark for each (0.5 mark * 4)	2 marks	
	ii.	Design Minimized DFA	2 marks	6
	11.		(1 mort * 6)	U
ΩD	•••	Stepwise 1 mark for each correct step	(1 mark * 6)	_
OR	iii.	Design DFA	(1 1 4 6)	6
		Stepwise 1 mark for each correct step	(1 mark * 6)	
Q.4	i. Simplify the following context free grammar			
		Remove useless production	1 mark	
		Remove null production	1 mark	
		Remove unit production	2 marks	
	ii.	Convert the following grammar to GNF form	n.	6
		CFG to GNF		
		Stepwise 1 mark for each correct step	(1 mark * 6)	
OR	iii.	How many substring of string "aabbc" is	· · · · · · · · · · · · · · · · · · ·	6
-		context free grammar.	6	_
		For correct result	1 mark	
		1 mark for each step of CYK algorithm.	(1 mark *5)	
		i mark for each step of CTX argorithm.	(I mark J)	
0.5	i	Push Down Automata		3

	ii.	Design PDA for the following CFL.		7
		1 mark for each correct step	(1 mark * 7)	
OR	iii.	Prove languages are not CFL using Pumping lemma theorem.		7
		(a) $L = \{ a^n b^n c^n \mid n > = 0 \}.$	3.5 marks	
		(b) $L = \{ a^P \mid p \text{ is prime number } \}.$	3.5 marks	
Q.6		Attempt any two:		
	i.	Types of Turing machine		5
		Any 5 types 1 mark for each	(1 mark * 5)	
	ii. Design Turing machine for the following language		nguage	5
		1 mark for each step	(1 mark *5)	
	iii.	Closure properties of Recursive any five properties		5
		0.5 mark for each (0.5 mark * 5)	2.5 marks	
		Closure properties of REL any five properties		
		0.5 mark for each (0.5 mark * 5)	2.5 marks	
