Exercise 2

- There will be five exercises in this semester, which will account for 10% of the grade of this course.
- Exercise 2 includes 5 questions. Questions 1-3 are True/False (T/F) questions requiring explanations. Questions 4-5 are problem-solving questions requiring detailed solutions.
- Please show the details of your work leading to the solutions.
- Submit a pdf file of your answers on Blackboard by 11 p.m. Monday, Oct 26, 2020.

True/False questions part:

Question 1

If a discrete random variable X has a symmetric distribution about a parameter θ with $\Pr(a \le X \le b) = 1$, $\Pr(X = a) > 0$ and $\Pr(X = b) > 0$, then

- (a) $\theta = E[X] = (a+b)/2$;
- (b) $\Pr(X \le x) = \Pr(X \ge 2\theta x)$ for all $x \in \mathbb{R} = (-\infty, \infty)$;
- (c) $F(\theta+x)+F(\theta-x)=1$ for all $x \in \mathbb{R}$, where $F(x)=\Pr(X \le x)$.

Question 2

Let T^+ be the Wilcoxon signed rank statistic from a random sample $X_1,...,X_8$ with median θ , and R_i the rank of X_i for T^+ . The following statements are true:

- (a) $Pr(T^+ = 7) = 5/256$ under $H_0: \theta = 0$.
- (b) The distribution of T^+ is symmetric about 36.
- (c) If $X_i < 0 < X_j$, then $R_i > R_j \iff X_i + X_j < 0$.

[Question 3-4 start from next page]

Question 3

Based on two independent samples, if the Wilcoxon rank sum test rejects $\Delta = 0$ and the Ansari-Bradley test finds little evidence against $\gamma^2 = 1$, then:

- (a) We can reasonably conclude that the two samples have a significant difference in location, but not in dispersion.
- (b) The difference in location is justified, but not the equal dispersion. The results of both tests are questionable and not well justified.

Problem solving questions part:

Question 4

Let X_1 and X_2 be two independent continuous random variables, $T^+ = R_1 \psi_1 + R_2 \psi_2$ is the Wilcoxon signed rank test statistic, and $S = \psi_1 + 2\psi_2$ where $\psi_i = I_{\{X_i > 0\}}, i = 1, 2$.

- (a) If $X_1 \sim U([-1,1])$ and $X_2 \sim U([-2,2])$, show that $Pr(T^+ = i) = Pr(S = i), i \in \{0,1,2,3\}$.
- (b) Suppose that X_1 and X_2 have a common density $f(x) = 0.5e^{-x}I_{\{x \ge -\ln 2\}}$. Show that X_1 and X_2 have median 0, but $Pr(T^+ = 1) \ne Pr(S = 1)$.

[Question 5 starts from next page]

Question 5

The following table is a copy of Table 4.4 on page 135 of the textbook. The data in the table are explained in Problem 5 on page 134.

 Table 4.4
 Seconds Spent in Room after Witnessing Violence

Olympics watchers	Karate Kid watchers
X	Y
12	37
44	39
34	30
14	7
9	13
19	139
156	45
23	25
13	16
11	146
47	94
26	16
14	23
33	1
15	290
62	169
5	62
8	145
0	36
154	20
146	13

The question of interest is whether there exists a significant difference in variability (dispersion) between the two samples labelled by X and Y.

- (a) Find the scores $r_1,...,r_N$ assigned to all $X_1,...,X_m,Y_1,...,Y_n$ with average scores for ties and calculate the Ansari-Bradley rank test statistic C for dispersion.
- (b) Assume the location-scale parameter model with equal location parameter for the data. Test $H_0: \gamma^2 = 1$ (Var(X) = Var(Y)) against $H_1: \gamma^2 \neq 1$ (Var(X) \neq Var(Y)) by the large-sample approximate p-value of the Ansari-Bradley rank test.

