Kapittel 5: Produsentteori: Inntekts- og kostnadsteori

Oppdatert: 2022-09-07

Innledning

- Vi skal starte med å se litt generelt på inntekter, kostnader og ulike kostnadsbegreper.
- Deretter skal vi se på kostnadslinja, som ser kostnadene i forbindelse med faktorbruk.
- Vi skiller mellom kort og lang sikt.
- Til slutt skal vi se på bedriftens optimale tilpasning, hvor vi vil legge til grunn at bedriften har et mål om å maksimere antall produserte enheter under en budsjettbetingelse.

Inntekter på kort og lang sikt

- Bedriftens inntekter bestemmes av antall enheter den selger, og prisen på disse enhetene.
- Pris: p. Mengde: x.
- Inntekt: R = px. Stigende i et (x, R)-diagram
- ullet Grenseinntekt: endring i inntekt ved en marginal endring i solgt kvantum: R'(x)
- Gjennomsnitsinntekt: inntekt per produsert enhet: \overline{R} .

Tabelleksempel for salgsinntekter

Solge enheter	Pris per enhet	Salgsinntekt	Grenseinntekt	Gjennomsnittsinntekt
1	1000	1000		1000
2	1000	2000	1000	1000
3	1000	3000	1000	1000

Kostnader på kort sikt

- Kostnader: De beløp som påløper som følge av virksomhet.
- Faste kostnader (C_F) : Kostnader som er uavhengige av produsert kvantum.
- ullet Variable kostnader (C_V) : Varierer i takt med produsert kvantum

$$\circ CV = CV(x)$$

ullet Totale kostnader (C): Summen av faste og variable kostnader

$$\circ C = CF + CV$$

• Gjennomsnittskostnader (enhetskostnader): Disse finner vi ved å dividere de respektive kostnadene med antall produserte enheter.

$$\circ \ \overline{C} = \tfrac{CF}{X} + \tfrac{CV}{X} = \overline{C}_F + \overline{C}_V$$

ullet Grensekostnader (GK eller C'): Endringen i bedriftens totale kostnader ved en liten endring i produsert kvantum

$$\circ \ GK = rac{dC(x)}{dx} = C'(x)$$

Sammenhengen mellom gjennomsnittskostnad og grensekostnad

Tabelleksempel a): med avtagende marginalproduktivitet (mest relevant for dette kurset) og uten faste kostnader

Produserte enheter	Lønnskostnader	Antall arbeidere	Variable kostnader
1	1000	1	1000
2	1000	2	2000
3	1000	3.1	3100

Faste kostnader	Totale kostnader	Grensekostnader	Gjennomsnittskostnad
0	1000		
0	2000	1000	1000
0	3100	1100	1032

Tabelleksempel b): med økende marginalproduktivitet (mindre relevant) og uten faste kostnader

Produserte enheter	Lønnskostnader	Antall arbeidere	Variable kostnader
1	1000	1	1000
2	1000	2	2000
3	1000	2.9	2900

Faste kostnader	Totale kostnader	Grensekostnader	Gjennomsnittskostnad
0	1000		
0	2000	1000	1000
0	2900	900	966

Tabelleksempel c): med avtagende marginalproduktivitet og med faste kostnader

Produserte enheter	Lønnskostnader	Antall arbeidere	Variable kostnader
1	1000	1	1000
2	1000	2	2000
3	1000	3.1	3100

Faste kostnader	Totale kostnader	Grensekostnader	Gjennomsnittskostnad
2000	3000		3000
2000	4000	1000	2000
2000	5100	1100	1700

Grensekostnad og gjennomsnittskostnad uten faste kostnader

Grensekostnad og gjennomsnittskostnad med faste kostnader

Kostnader på lang sikt

Kostnadslinjen og isokostlinja

- Totale kostnader for bedriften er summen av variable og faste kostnader. La oss nå se bort fra de faste, dette siden vi antar alle faktorer antas å være variable på lang sikt.
- Vi antar at bedriftens kostnader kan uttrykkes ved summen av utgiftene på de to innsatsfaktorene.
 - Pris på N: w
 - o Pris på K: r
- $C=w \dot{N} + r K$ Totale kostnader (C) er da gitt ved:

$$C = wN + rK$$

Isokost (låser totalkostnadene til et bestemt nivå, $C^o=C$

$$C^o = wN + rK$$

Helningen på isokostlinja

$$\Delta C^{0} = w\Delta N + r\Delta K = 0$$

$$r\Delta K = -w\Delta N$$

$$\frac{\Delta K}{\Delta N} = -\frac{w}{r}$$
(1)

Bruker hele budsjettet på arbeidskraft $\Rightarrow K=0$

$$C^0 = wN + r0 = wN$$
 (2)
 $C^0/w = N$
 $N = C^0/w$

Bruke hele budsjettet (kostnaden) på kapital $\Rightarrow N=0$

$$C^0 = w0 + rK = wN$$
 (3)
 $C^0/r = K$
 $K = C^0/r$

Produktmaksimering for en gitt kostnadsramme (optimal tilpasning)

- Målsetting er her å maksimere produsert kvantum innenfor en gitt kostnadsramme.
- Dette kan være typisk for en bedrift i offentlig sektor, der de økonomiske rammebetingelsene utgjøres av en gitt kostnadsramme eller et gitt budsjett som er blitt tildelt over de offentlige budsjetter.

- Tar utgangspunkt i produktfunksjonen:
- x = f(N, K)
- Helningen er gitt ved MTSB.
- Tar så utgangspunkt i kostnadslinja: C = wN + rK
- Kombinerer disse for å finne optimal tilpasning.

Max x=f(K,N) gitt $\hat{\mathbb{C}}^0=wN+rK$ gitt (beskrankning)

Lagrange metode:

$$L = f(K, N) - \lambda(wN + rK - C^0) \tag{4}$$

Første ordens betingelsen er gitt ved

$$\partial L/\partial N = f_N' - \lambda w = 0$$
 (5) $\partial L/\partial K = f_K' - \lambda r = 0$

Kombinerer de to første ordens betingelsene gir oss løsningen

$$\lambda w/\lambda r = w/r = rac{f_N'}{f_K'} = MTSB$$
 (6)

Optimal løsning er her karakterisert ved tangeringspunktet mellom isokvant og isokostlinjen.

Endrede faktorpriser

Redusert pris på kapital

Redusert pris på arbeidskraft

Substitumalen: økonomisk substitusjon

• Dersom vi tenker oss flere endringer i bedriftens kostnadsramme med tilhørende optimale isokvant, vil vi få frem en rekke tangeringspunkter.

- Kurven gjennom alle disse punktene kalles *ekspansjonsveien* eller *substitumalen*.
- På ethvert punkt på denne kurven kan det leses av produksjonsmengde, tilhørende kostnader og etterspørsel etter innsatsfaktorer.
- Alle punktene på substitumalen viser tilpasninger der det ikke er mulig å øke produktmengden, uten at kostnadene øker. Det er heller ikke mulig å redusere kostnadene, uten samtidig å redusere produsert kvantum.
- Dersom bedriften er utenfor substitumalen kan den alltid bedre sin situasjon ved økonomisk substitusjon.

Appendiks (alle figurene samlet)

