II Mục lục

		1.3.7	Các định lý tách tập lồi	24
		1.3.8	Tập lồi đa diện	25
		1.3.9	Don hình	28
	1.4	Hàm l	òi	29
		1.4.1	Định nghĩa	29
		1.4.2	Các phép toán về hàm lồi	32
		1.4.3	Tính liên tục của hàm lồi	32
		1.4.4	Đạo hàm theo hướng của hàm lồi	33
		1.4.5	Tiêu chuẩn nhận biết hàm lồi khả vi	34
2	Bài	toán tố	វi រារ	39
	2.1	Một số	ố ví dụ	39
	2.2	Bài to	án tối ưu và các khái niệm cơ bản	51
	2.3	Các lo	gi bài toán tối ưu	57
	2.4	Điều k	ciện tồn tại nghiệm	58
3	Ouv	hoach	n tuyến tính	63
	3.1		nghĩa quy hoạch tuyến tính	
		3.1.1		
		_	Dang chính tác	
			Chuyển bài toán quy hoạch tuyển tính bất kỳ về dạng chuẩn tắc	-
			hay chính tắc	66
	3.2	Sự tổn	tại nghiệm và tính chất tập nghiệm của quy hoạch tuyến tính	
		3.2.1	Sự tồn tại nghiệm	68
		3.2.2	Tính chất tập nghiệm	70
	3.3	Giải b	ài toán quy hoạch tuyến tính hai biến bằng phương pháp hình học	71
	3.4	Phiron	ig pháp đơn hình giải quy hoạch tuyến tính dạng chính tắc	75
		3.4.1	Mô tả hình học của phương pháp đơn hình	77
		3.4.2	Cơ sở lý thuyết của phương pháp đơn hình	77
		3.4.3	Thuật toán đơn hình giải bài toán quy hoạch tuyến tính chính tắc	89
		3.4.4		
	3.5		hương án cực biên xuất phát và cơ sở xuất phát	
		3.5.1	Trường hợp bài toán có dạng chuẩn tắc	103
			Trường hợp bài toán có dạng chính tắc	
			Phương pháp đánh thuế hay phương pháp bài toán (M)	
	3.6		hữu hạn của thuật toán đơn hình	
	3.7	•	tượng xoay vòng	
	3.8		gẫu	
		3.8.1		
			Các định lý về đối ngẫu	
			Định lý về độ lệch bù	
		384	Một số ứng dụng của lý thuyết đối ngẫu	126

Mục lục

4	Bài	toán vận tải	135				
	4.1	Bài toán vận tải	135				
		4.1.1 Mô hình toán học	135				
		4.1.2 Sự tồn tại phương án tối ưu	140				
	4.2	Bảng vận tải, chu trình					
		4.2.1 Bảng vận tải					
		4.2.2 Chu trình					
	4.3	Phương pháp thế vị giải bài toán vận tải					
		4.3.1 Cơ sở lý thuyết					
		4.3.2 Thuật toán thế vị					
	4.4	Tìm phương án xuất phát cho bài toán vận tải					
		4.4.1 Phương pháp góc tây bắc (northwest - conner rule)					
		4.4.2 Phương pháp cực tiểu chi phí (The least-cost method)					
	4.5	Các bài toán vận tải mở rộng					
		4.5.1 Bài toán không cân bằng thu phát					
		4.5.2 Bài toán vận tải với ràng buộc bất đẳng thức					
		4.5.3 Bài toán lập kho nhân hàng					
		4.5.4 Bài toán vận tải có ô cấm					
		4.5.5 Bài toán vận tải dạng max					
		4.5.6 Bài toán phân việc (The personnel-assignment problem)					
5	On	Quy hoach nguyên 18					
	•	Mô hình toán học					
		Một số ví dụ					
		Ý tưởng của phương pháp nhánh cận					
	0.0	5.3.1 Một số khái niệm cơ bản					
		5.3.2 Ý tưởng của phương pháp nhánh cận					
	5.4						
	J	nguyên hoàn toàn					
		5.4.1 Tính cận trên					
		5.4.2 Chia nhánh					
		5.4.3 Thuật toán					
		5.4.4 Ví du					
	5.5	•					
	٥.٥	5.5.1 Công thức tính cận trên của bài toán ba lô (KP)					
		5.5.2 Tính cận trên của bài toán con					
		5.5.3 Thuật toán					
		5.5.4 Ví du					
		·					
6	_	y hoạch phi tuyến	22]				
	6.1	Bài toán quy hoạch phi tuyến không ràng buộc					
		6.1.1 Điều kiện tối ưu	. 22				

	6.1.2	Phương pháp hướng giảm	225
	6.1.3	Phương pháp gradient	231
	6.1.4	Phương pháp Newton ,	236
	6.1.5	Cực tiểu hàm một biến	248
	6.1.6	Phương pháp tìm kiếm trực tiếp	252
6.2	Bài to:	án quy hoạch phi tuyến có ràng buộc	256
		Diều kiện tối ưu	
	6.2.2	Phương pháp nhân tử Lagrange	266
	6.2.3	Phương pháp tuyến tính hóa giải quy hoạch lồi	273
	6.2.4	Phương pháp hướng có thể giải bài toán cực tiểu hàm tron với	
		ràng buộc tuyến tính	278
	6.2.5	Phương pháp Frank-Wolfe giải bài toán quy hoạch lồi với ràng	
		buộc tuyến tính	28
	6.2.6	Phương pháp hàm phạt	284
TN L IVA	41	likās	

Một số ký hiệu và chữ viết tắt

```
\mathbb{R}
                       tập số thực
\mathbb{R}^n
                       không gian Euclid n chiều
x \in D
                       x thuộc tập D
x \notin D
                       x không thuộc tập D
Ø
                       tấp rỗng
C \setminus D
                       hiều của tấp C và D
C \cup D
                       hợp của tập C và tập D
C \cap D
                       giao của tập C và tập D
\langle x, y \rangle
                       tích vô hướng của x và y
                       chuẩn Euclid của x
||x||
|x|
                       giá trị tuyệt đối của x
\operatorname{aff} E
                       bao afin của tập E
convE
                       bao lồi của tập E
\dim E
                       thứ nguyên (hoặc số chiều) của tập E
|X|
                       số phần tử của tập X
[x^1, x^2]
                       đoạn nối hai điểm x^1 và x^2
int X
                       phần trong của tập X
\operatorname{ri} X
                       phần trong tương đối của tập X
recX
                       nón lùi xa của tập X
cone\{v^1,\cdots,v^k\}
                       nón sinh bởi các véc tơ v^1, \dots, v^k
T(X, x^*)
                       nón tiếp xúc với tập X tại điểm x^*
F(X, x^{\bullet})
                       tập các hướng chấp nhận được của tập X tại x^*
\operatorname{dom} f
                       miền xác định hữu hiệu của f
epi(f)
                       epigraph của hàm f
\mathrm{hypo}(f)
                       hypograph của hàm f
f'(x^0,d)
                       đạo hàm theo hướng của hàm f theo hướng d tại x^3
\nabla f(x)
                       véc tơ gradient của hàm f tai điểm x
\nabla^2 f(x)
                       ma trận Hesse của hàm f tại điểm x
f'_{x_i}
                       đạo hàm riêng của f theo biến x_i
```