Distancias de Secuencias

Daniel Bustos

May 26, 2024

10.

Se define la distancia entre dos secuencias de naturales $X=x_1,\ldots,x_k$ e $Y=y_1,\ldots,y_k$ como

$$d(X,Y) = \sum_{i=1}^{k} |x_i - y_i|.$$

Dado un conjunto de secuencias X_1, \ldots, X_n , cada una de tamaño k, su grafo asociado G tiene un vértice v_i por cada $1 \le i \le n$ y una arista $v_i v_j$ de peso $d(X_i, X_j)$ para cada $1 \le i < j \le n$. Proponer un algoritmo de complejidad $O(kn^2)$ que, dado un conjunto de secuencias, encuentre el árbol generador mínimo de su grafo asociado.

Idea del algoritmo:

Vamos a construir el grafo en el cual todos están conectados con todos, y el peso de cada arista (X,Y) es d(X,Y). ¿Cuánto nos cuesta construirlo? Dado que computar d(X,Y) cuesta O(k) y hay $\binom{n}{2}$ aristas, el costo total de construcción del grafo es

$$k \cdot \binom{n}{2} \in O(n^2k).$$

Luego utilizamos el algoritmo de Prim con costo de $O(n^2)$ para generar el árbol mínimo, dejándonos un costo total de $O(n^2k + n^2)$, que se incluye en $O(n^2k)$.