Matemática Discreta - Año 2025 Facultad de Ciencias Exactas UNRC Práctico 3

\S Ejercicios de repaso.	Los	ejercicios	marcados	con	(*)	son	para	resolver	como
práctica para el parcial.									

(1) Hallar el cociente y el resto de la división de:

a) 135 por 23.

b) −135 por 23.

c) 135 por −23.

d) -135 por -23.

e) 127 por 99.

f) -98 por -73.

(2) a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división de a por b.

b) Repetir el ejercicio anterior, suponiendo ahora que $-b \le r < 0$.

(3) Dado $m \in \mathbb{N}$ hallar los restos posibles de m^2 y m^3 en la división por 3, 4, 5, 7, 8, 11.

(4) Expresar en base 10 los siguientes enteros:

a) (1503)₆

b) (1111)₂

c) (1111)₁₂

d) (123)₄

e) (*) (12121)₃

f) (*) (1111)₅

(5) Convertir

a) (133)₄ a base 8,

b) (B38)₁₆ a base 8,

c) (*) (3506)₇ a base 2,

d) (*) (1541)₆ a base 4.

(6) Calcular:

a) $(2234)_5 + (2310)_5$,

b) $(10101101)_2 + (10011)_2$.

(7) Expresar en base 5: $(1503)_6 + (1111)_2$.

(8) Sean $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:

a) Si ab = 1, entonces a = b = 1 ó a = b = -1.

b) Si $a, b \neq 0$, a|b y b|a, entonces a = b ó a = -b.

c) Si a|1, entonces a = 1 ó a = -1.

d) Si $a \neq 0$, a|b y a|c, entonces a|(b+c) y a|(b-c).

1

e) Si $a \neq 0$, a|b y a|(b+c), entonces a|c.

f) Si $a \neq 0$ y a|b, entonces $a|b \cdot c$.

(9) Dados b, c enteros, probar las siguientes propiedades:

- a) 0 es par y 1 es impar.
- b) Si b es par y $b \mid c$, entonces c es par. (Por lo tanto, si b es par, también lo es -b).
- c) Si b y c son pares, entonces b + c también lo es.
- d) La suma de un número par y uno impar es impar.
- e) b + c es par si y sólo si b y c son ambos pares o ambos impares.
- (10) Probar que n(n + 1) es par para todo n entero.
- (11) (*) Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- (12) a) Usando el Binomio de Newton demostar que $5^n 1$ es divisible por 4.
 - b) (*) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: el número combinatorio $\binom{n}{4}$ es entero).
- (13) Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siquientes pares de números:
 - a) 14 y 35,
- b) 12 y 52,
- c) 725 y 441,
- d) (*) 606 y 108,
- (14) Encontrar el máximo común divisor entre 12 y 14. Demostrar por definición que el número encontrado satisface las dos propiedades del máximo común divisor.
- (15) Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.
- (16) *a)* Sean $a \ y \ b$ coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - *b)* Sean $a \ y \ b$ coprimos. Probar que si $a \mid c \ y \ b \mid c$, entonces $a \cdot b \mid c$.
- (17) Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.
- (18) Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.
 - a) a = 12 y b = 15.
- b) a = 11 y b = 13.
- c) a = 140 y b = 150.
- d) $a = 3^2 \cdot 5^2$ y $b = 2^2 \cdot 11$.
- (19) Encontrar todos los enteros positivos *n* y *m* que satisfagan la ecuación:

$$49n^3 = 30m^2$$