Does RoBERTa Perform Better than BERT in Continual Learning: An Attention Sink Perspective

Xueying Bai, Yifan Sun, Niranjan Balasubramanian

Problem Statement

Continual Learning (CL): A Model sequentially learns new tasks without forgetting previous tasks' knowledge.

Question: Does a pre-trained model which has better single-task performance also perform better in CL?

Previous Works' Results: Not always. RoBERTa does not always outperform BERT in CL tasks (Wu et al., 2022).

This Paper: Study the influence of attention sinks in models' CL performance.

Measurements

- \triangleright Average outer degree: $d_i = \sum_{k=1}^n a_{ki} / n$
- ightharpoonup Attention deviation: $\Delta_i = \sqrt{\sum_{k=1}^n (a_{ki} d_i)^2}/(nd_i)$
- > Ratio of CST: Ratio of sink tokens that are in the set of common tokens.

- ☐ High attention scores are allocated to specific tokens (i.e., sink tokens): (1) high average degrees; (2) small attention deviation. ☐ Sink tokens are usually common tokens shared across different tasks (e.g., [SEP], punctuation).

Single Task: Over-Smoothing

Over-Smoothing (OS): token representations become identical after several self-attention layers.

Over-Smoothing is related to the attention deviations of sink tokens: $d_{\mathcal{M}}(\mathbf{A}\mathbf{H}) \leq \sqrt{\lambda_{\max}} d_{\mathcal{M}}(\mathbf{H})$

 $\lambda_{\max} \ge \max_{i} \sum_{k=1}^{n} \left(a_{ki} - d_i \right)^2$

- ⇒ Over-Smoothing may occur with attention sinks above.
- ⇒ Model distorts pre-trained features -> less generalizable.

Cross Task: Interference

Interference: dot product between a model's (vectorized) gradients on different tasks' losses.

Case study: Given (1) two irrelevant tasks; (2) each task's input token embeddings are orthogonal except embeddings of common sink tokens; (3) a single-head attention layer:

If sink attention deviations are **small**, the interference largely depends on dot product between sink token representations.

⇒ Attention sink on common tokens may propagate unexpected interference across tasks.

Method: Pre-Scaling Mechanism For Diverse Attention

Motivation: pre-trained representations of non-sink tokens (e.g., 'fantastic' in sentiment analysis task) may contain more information about downstream tasks.

Two-Step Training:

- Pre-Scaling: pre-scale classes' attentions on tokens.
 - $\mathbf{A}_{c} = \operatorname{softmax}(\mathbf{V} f(\mathbf{H})^{T} / \sqrt{d})$ [V and f(.) are learnable]
- Fine-tuning: fine-tune the whole model, including the encoder and the scaling layer.

Table 1. CL evaluation by sequentially tuning BERT and RoBERTa

	Model	Yahoo Split		DB Split		News Series	
	Wiodei	ACC std	FGT std	ACC std	FGT std	ACC std	FGT std
BERT	Probing	88.43 0.06		99.30 0.03	_	74.81 0.46	_
	FT	86.19 0.92	6.70 1.08	66.22 8.13	39.15 9.47	68.98 5.68	17.13 7.48
	PT+FT	90.24 0.53	2.23 0.77	98.47 2.23	1.64 2.59	77. 09 2.11	8.16 2.50
	Prescale (ours)	90.92 0.53	1.47 0.71	99.74 0.05	0.13 0.06	79.76 0.76	4.40 1.18
RoBERTa	Probing	88.06 0.09		99.33 0.01	_	68.27 1.32	
	FT	83.54 4.66	10.91 5.74	71.94 7.48	32.53 8.73	70.61 4.42	18.24 5.21
	PT+FT	90.76 0.86	2.14 1.06	99.68 0.24	0.21 0.29	79.39 2.00	8.01 3.24
	Prescale (ours)	90.92 0.77	1.95 1.01	99.78 0.08	0.09 0.11	81.59 1.74	4.16 2.33

Experiments evaluation compared to other CL models

able 2. CL evaluation compared to other CL mod							
	Model	Yahoo Split		DB Split		News Series	
		ACC std	FGT std	ACC std	FGT std	ACC std	FGT std
CL	ER	87.42 0.52	5.61 0.68	91.05 10.20	10.20 10.14	75.47 3.93	7.81 5.27
	A-GEM	89.43 0.58	2.95 0.64	94.71 4.70	5.98 5.49	75.90 3.34	6.60 3.84
	MBPA++	86.50 2.78	6.62 2.82	97.17 3.76	3.09 3.68	72.55 5.50	9.64 3.99
	IDBR (-R)	89.32 1.46	2.74 1.35	96.47 4.67	3.95 4.66	72.36 2.93	8.67 4.23
	IDBR `	90.48 0.55	1.32 0.64	99.84 0.03	0.04 0.03	76.90 1.98	3.24 2.50
	CTR	87.06 1.23	1.28 0.93	99.04 0.95	0.29 0.35	75.12 3.09	3.40 2.92
	L2P	$\underline{90.82}$ 0.58	0.60 0.56	99.63 0.36	0.29 0.36	73.99 2.36	3.43 2.42
Sequential	FT	86.19 0.92	6.70 1.08	66.22 8.13	39.15 9.47	68.98 5.68	17.13 7.48
	Prescale (ours)	90.92 0.53	1.47 0.71	99.74 0.05	0.13 0.06	79.76 0.76	4.40 1.18
Non-CL	Separate	92.25 0.04	_	99.87 0.01	_	83.72 0.53	_
	MTI	92 27 0.05		99 88 0 01		82 04 0 90	

A_c for SST data in News Series

not paraphrase

World

Sports

Business

Sci/Tech

positive

Model

Uniform

Table 3: ACC and FGT Table 4: ACC on taskof different scaling strate- agnostic evaluations for gies on News Series. DB and Yahoo Split.

> 79.09 9.26 81.59 4.16

_		Model	DB	Yanoo
	BERT	FT	15.90	36.19
		PT+FT	72.41	53.34
		Prescale	70.38	53.21
	RoBERTa	FT	18.71	36.24
		PT+FT	67.32	52.98
		Prescale	77.55	53.51

0.30

0.25

0.20

0.15

0.10