

Functional data analysis of stocks during COVID-19

Antonio De Patto, Danial Yntykbay, Jackie Islam

Vilnius University - Functional Data Analyses project

April 29, 2025

Table of contents

- Goal
- Data presentation
 - The stocks considered
 - Data Transformation
- Depth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
 - Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- 8 Hypothesis Testing

April 29, 2025

Goal

- To study the variability of returns of stocks belonging to different industries during COVID-19 period.
- To study stocks and industries that were affected by COVID-19 and the ones that were not
- To predict the returns by macro-economic events

Table of contents

- Goal
- 2 Data presentation
 - The stocks considered
 - Data Transformation
- Oepth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
 - Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- 8 Hypothesis Testing

April 29, 2025

Data Presentation

- Stocks data from 2020/01/01 until 2022/12/31
- 8 main industrial sectors were considered:
- automobile
- fashion and clothing
- food and beverage
- healthcare
- tech
- logistic
- oil and gas
- travel and tourism
- For each sector 8 stocks were considered
- The closing price for each end of week was considered
- Total of 157 weeks

The stocks considered

- The main stocks were:
 - Automobile: VW Ferrari Stellantis Renault Mercedes BMW Tesla -Toyota
 - Fashion and clothing: Kering Capri Hermès LVMH Richemont Adidas
 Nike Puma
 - Food and beverage: Nestlè Uniliver Danone Bonduelle Pepsi -McDonalds - Kellogs
 - Healthcare: Sanofi Novartis Bayer AstraZeneca UCB Merck Argenx
 GSK
 - Tech: Spotify Netflix Nvidia Meta Apple IBM Microsoft Google
 - Logistic: Zalando UPS Amazon DHL FedEx Maersk Walmart SF express
 - Oil and Gas: Shell Eni Enel Engie Orsted Chevron Repsol
 - Travel and tourism: Trivago Booking Ryanair Lyft Trip.com -Tripadvisor - Hilton - Uber

Data transformation

Logarithmic return:

$$R = 100 * \log \left(\frac{P_t}{P_{t-1}}\right)$$

- R is the log return
- P_t is the stock price at time t
- ullet P_{t-1} is the stock price at the previous time period

Before vs. After Transformations

Figure: Before vs. After Transformations.

Table of contents

- - The stocks considered
 - Data Transformation
- Depth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- - Smoothing methods
 - Results of smoothing
- - Derivatives
 - Depth analysis
 - - Functional Principal Component variations
 - VARIMAX Rotation

Euclidean depth

• Euclidean depth of the deepest point in the dataset: 0.00002917722

> st[mdE,]				> apply(st,2,median)		
ZAL.DE.Close	UPS.Close	AMZN.Close	DHL.DE.Close	ZAL.DE.Close	UPS.Close	AMZN.Close	DHL.DE.Clos
47.25000	207.17999	146.81750	42.44000	66.55000	175.50500	155.11150	40.2250
FDX.Close	AMKBY.Close		X002352.SZ.Close	FDX.Close	AMKBY.Close	WMT.Close	X002352.SZ.Clos
219.28000	15.27000	47.54333	53.69000	229.71000	11.60500	46.21500	61.5850
SPOT.Close	NFLX.Close	NVDA.Close	META.Close	SPOT.Close	NFLX.Close	NVDA.Close	META.Clos
148.91000	380.14999	25.93100	231.84000	223.00000	480.54001	14.61325	249.0700
AAPL.Close	IBM.Close	MSFT.Close	GOOG.Close	AAPL.Close	IBM.Close	MSFT.Close	GOOG.Clos
175.06000	128.89000	310.88000	141.06300	135.38000	128.15134	245.14500	104.7637
VOW3.DE.Close	RACE.MI.Close	STLAM.MI.Close	RNO.PA.Close	VOW3.DE.Close	RACE.MI.Close	STLAM.MI.Close	RNO.PA.Clos
151.00000	177.89999	14.15600	22.99000	151.89000	177.42500	13.50200	30.1300
MBG.DE.Close	BMW.DE.Close	TSLA.Close	TM.Close	MBG.DE.Close	BMW.DE.Close	TSLA.Close	TM.Clos
62.14000	75.32000	267.29666	165.92999	57.85313	76.27000	225.39667	153.3149
KER.PA.Close	CPRI.Close	RMS.PA.Close	MC.PA.Close	KER.PA.Close	CPRI.Close	RMS.PA.Close	MC.PA.Clos
557.20001	50.16000	1113.50000	590.000000	564.75000	46.55000	1066.25000	601.1000
CFR.SW.Close	ADS.DE.Close	NKE.DE.Close	PUM.DE.Close	CFR.SW.Close	ADS.DE.Close	NKE.DE.Close	PUM.DE.Clos
104.00000	203.70000	108.44000	71.86000	97.14000	256.25000	110.13000	77.1950
SAN.PA.Close	NOVN.SW.Close	BAYN.DE.Close	AZN.Close	SAN.PA.Close	NOVN.SW.Close	BAYN.DE.Close	AZN.Clos
93.46938	75.47266	55.94000	61.37000	86.79584	76.67636	53.35000	56.3150
UCB.BR.Close	MRK.DE.Close	ARGX.Close	GSK.L.Close	UCB.BR.Close	MRK.DE.Close	ARGX.Close	GSK.L.Clos
100.50000	179.20000	286.47000	1581.55164	87.80000	155.32500	293.18500	1503.2799
NESN.SW.Close	UL.Close	BN.PA.Close	BON.PA.Close	NESN.SW.Close	UL.Close	BN.PA.Close	BON.PA.Clos
115.74000	44.39000	52.76000	17.18000	109.47158	54.25500	56.19500	20.2000
PEP.Close	MCD.Close	K.Close	KHC.Close	PEP.Close	MCD.Close	K.Close	KHC.Clos
159.00000	232.57001	57.57747	37.82000	148.05500	233.28500	60.92958	36.1300
SHEL.Close	ENI.MI.Close	ENEL.MI.Close	ENGI.PA.Close	SHEL.Close	ENI.MI.Close	ENEL.MI.Close	ENGI.PA.Clos
50.35000	12.92400	5.82600	11.53400	41.60500	10.52400	7.22800	12.1310
ORSTED.CO.Close	CHV.F.Close	REP.MC.Close	TTE.PA.Close	ORSTED.CO.Close	CHV.F.Close	REP.MC.Close	TTE.PA.Clos
829.59998	144.72000	11.46800	45.75500	842.39999	89.35000	10.63039	39.7475
SHEL.Close.1	ENI.MI.Close.1	ENEL.MI.Close.1	ENGI.PA.Close.1	SHEL.Close.1	ENI.MI.Close.1	ENEL.MI.Close.1	ENGI.PA.Close.
50.35000	12.92400	5.82600	11.53400	41.60500	10.52400	7.22800	12.1310
ORSTED.CO.Close.1	CHV.F.Close.1	REP.MC.Close.1	TTE.PA.Close.1	ORSTED.CO.Close.1	CHV.F.Close.1	REP.MC.Close.1	TTE.PA.Close.
829.59998	144.72000	11.46800	45.75500	842.39999	89.35000	10.63039	39.7475

Comparison of the deepest point vs. columns-wise medians

• some values (e.g., UPS.Close, MSFT.Close, GOOG.Close) in the deepest point differ significantly from the median. This may suggest that the dataset contain outliers affecting the distribution

Euclidean depth

Figure: Comparison between the deepest point(in blue) and the median point(in red) in a scatter plot

Minimum Volume Depth (MBD)

Figure: Comparison between the deepest point(in blue) and the median point(in red) in a scatter plot

Frainman-Muniz depth

Figure: Comparison between the deepest point(in green) and the median point(in red) in a scatter plot

Table of contents

- - The stocks considered
 - Data Transformation
- - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- Smoothing
 - Smoothing methods
 - Results of smoothing
- - Derivatives
 - Depth analysis
 - - Functional Principal Component variations
 - VARIMAX Rotation

Smoothing methods

Methods:

- B-splines
- Local regression kernel
- Nadaraya-Watson kernel
- Normal kernel
- Triweight kernel
- Uniform kernel

B-splines results

Smoothing with penalty:

- Generalized cross-validation
 - ullet Optimal lambda \sim 371
 - ullet Number of basis ~ 7
 - GCV \sim 2230
 - SSE ~ 307923

Figure: Comparison of SSE and GCV with respect to lambda.

Kernel smoothing results

Generalized cross-validation

• Sequence of bandwidth between 3 and 70

Figure: GCV criteria respect to bandwidth

Comparing optimal GCV and SSE

Figure: Comparison of optimal GCV and SSE among smoothing methods.

B-splines vs. Normal kernel

Figure: Comparison of fitted and actual values for B-splines and Normal kernel.

B-splines vs. Triweight kernel

Figure: Comparison of optimal GCV and SSE among smoothing methods.

B-splines fitted

Figure: B-splines fitted for all stocks

Table of contents

- 1 Goal
- 2 Data presentation
 - The stocks considered
 - Data Transformation
- Depth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- 5 EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
 - Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- Bypothesis Testing

Derivatives

Figure: 1st and 2nd derivatives of B-splines smoothed

Outliers detection

Figure: Mean curve

Euclidean depth

Figure: Comparison between the deepest point(in blue) and the median point(in red) in a scatter plot

Frainman-Muniz and The Most Central Point

Figure: Friman-Munith depth and MBD

Bivariate Covariance Function

Figure: 3D visualization of the variance function for smoothed stock returns

Contour plot

Figure: Contour plot

Table of contents

- Goal
- 2 Data presentation
 - The stocks considered
 - Data Transformation
- Oppth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
- 6 Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- 8 Hypothesis Testing

Principal Component Analysis

FPCA Component	Percentage Contribution
PCA Function 1	34%
PCA Function 2	24%
PCA Function 3	15%
PCA Function 4	9%
Total	82%

Table: FPCA Component Contributions

VARIMAX Rotation

PCA Function (Varimax Rotation)	Percentage Contribution
PCA Function 1	27.8%
PCA Function 2	18.3%
PCA Function 3	13.0%
PCA Function 4	20.7%
Total	79.8%

Table: PCA Function Contributions after Varimax Rotation

VARIMAX Rotation

- PCA 4 captured 20.7% and showed strong variability from the mean among stocks till the 70th week(could explain starting phase)
- PCA 1 may capture the overall market variability across different phases in response to specific events possibly COVID-19 related.

Figure: VARIMAX rotation of FPCA 1 and FPCA 4

VARIMAX Rotation

Figure: VARIMAX rotation of FPCA 2 and FPCA 3

- Volatility in stock prices in beginning, mid and end of pandemic
- PCA Functions captured the most volatility in different time periods

Table of contents

- Goal
- Data presentation
 - The stocks considered
 - Data Transformation
- Oepth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
 - Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- 8 Hypothesis Testing

April 29, 2025

The choice of the best number of clusters

```
>> K = 2
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
>> K = 3
AkiBk
                 bic = -350051.4
>> K = 4
                 bic = -318623.1
AkiBk
>> K = 5
AkjBk
                 bic = -198106.2
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
>> K = 7
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
>> K = 9
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
Error in .fstep(fd, T, lambda) : One cluster is almost empty!
The best model is AkjBk with K = 5 (bic = -198106.2)
```

	K	model	bic	aic	icl	nbprm	11
1	2	AkjBk	NA	NA	NA	NA	NA
2	3	AkjBk	-350051.4	-350021.2	-350051.4	28	-349993.2
			-318623.1			46	-318527.5
4	5	AkjBk	-198106.2	-198033.9	-198106.2	67	-197966.9
5	6	AkjBk	NA	NA	NA	NA	NA
6	7	AkjBk	NA	NA	NA	NA	NA
7	8	AkjBk	NA	NA	NA	NA	NA
8	9	AkjBk	NA	NA	NA	NA	NA
9	10	AkjBk	NA	NA	NA	NA	NA

Figure: The choice of the best number of clusters to consider

- The best clustering model selected is AkjBk with K = 5 clusters, based on the highest BIC score (-198106.2)
- Models with K > 5 resulted in empty clusters.

From original data to clusters

Figure: Comparison between original smoothed data and clusters

Centroids

Figure: A more in-depth analyses comparing the first 20 curves(on the left) and the mean of each cluster(on the right)

Discriminative Space Plot

Hierarchical Clustering (HCLUST)

Figure: Hclust with 5 clusters and complete linkage_method

HCLUST interpretation

Silhouette Plot for HCLUST Evaluation: assesses the quality of our hierarchical clustering results.

Coefficient Interpretation:

- Values close to +1: Well-clustered data point.
- Values around 0: Data point near the cluster boundary.
- Values close to -1: Potential misclassification.

Key Observations:

- Variable Coefficients: Significant differences in silhouette values across data points.
- **Negative Values Present:** Some data points (e.g., around indices 17 and 58) show s(i)<0, indicating likely misclassification.
- Values Near Zero: Many points have s(i)0, suggesting borderline assignments.
- **Well-Defined Clusters:** Some groups exhibit higher positive s(i) (e.g., indices 45-55), indicating good cluster structure.

Overall Conclusion: The silhouette plot suggests that while some clusters are well-formed while other need further investigations

K-means Clustering

Figure: K-means clustering with 5 clusters and mean used for centroid computation

KMEANS interpretation

Observations from the Plot:

- Predominantly positive silhouette coefficients suggest a reasonable clustering structure.
- Variability in coefficients indicates that some points fit their clusters better than others.
- Several coefficients near zero warrant attention as these points are close to cluster boundaries.
- The absence of strongly negative coefficients implies minimal severe misclassification.

Overall Conclusion: The silhouette plot indicates a moderately good K-Means clustering result. A higher average silhouette score (which can be calculated from these individual values) would signify better overall cluster quality.

DBSCAN Clustering

Figure: Results from DBSCAN clustering methods. Red function is Tesla

```
> dt w[dt w$FunFEM == 1,]
      StockName FunEFM Holust Kmeans Dbscan
      IBM.Close
10 RACE.MI.Close
16
       TM. Close
   KFR.PA.Close
20 MC.PA.Close
21 CFR.SW.Close
22 ADS.DE.Close
23 NKE.DE.Close
  SAN.PA.Close
26 NOVN.SW.Close
28
      AZN.Close
   MRK.DE.Close
    GSK.L.Close
33 NESN.SW.Close
       UL.Close
34
35
    BN.PA.Close
37
      PEP.Close
38
      MCD.Close
39
        K.Close
40
      KHC.Close
63
      WMT.Close
```

Figure: Stocks collected in cluster 1 according to the FunFEM method


```
> dt w[dt w$FunFEM == 2,]
       StockName FunFEM Hclust Kmeans Dbscan
      AAPL.Close
15
      TSLA.Close
      ARGX.Close
45 ORSTED.CO.Close
56 UBER.Close
59
   AMZN.Close
    FDX.Close
> dt w[dt w$FunFEM == 3,]
     StockName FunFEM Hclust Kmeans Dbscan
    SPOT.Close
   NFIX.Close
   NVDA.Close
   META.Close
    MSFT.Close
19 RMS.PA.Close
24 PUM.DE.Close
29 UCB.BR.Close
36 BON.PA.Close
57 ZAL.DE.Close
60 DHL.DE.Close
> dt w[dt w$FunFEM == 4,]
        StockName FunFEM Hclust Kmeans Dbscan
       GOOG.Close
   ENEL.MI.Close
        UPS.Close
64 X002352.S7.Close
```

Figure: Stocks collected in cluster 2-3-4 according to the FunFEM method

p. 45 of 57

```
> dt w[dt w$FunFEM == 5,]
        StockName FunFEM Hclust Kmeans Dbscan
   VOW3.DF.Close
11 STLAM.MI.Close
    RNO.PA.Close
    MBG.DE.Close
13
    BMW.DE.Close
18
       CPRI,Close
   BAYN.DE.Close
41
       SHEL.Close
    ENI.MI.Close
    FNGT.PA.Close
    CHV.F.Close
47
    REP.MC.Close
    TTE.PA.Close
48
49
       TRVG.Close
       BKNG.Close
    RYA.IR.Close
52
       LYFT.Close
53
      TCOM.Close
54
      TRTP, Close
55
        HLT.Close
62
      AMKBY.Close
```

Figure: Stocks collected in cluster 5 according to the FunFEM method

- Applied FunFEM, hierarchical, k-means, and DBSCAN clustering on smoothed weekly stock price functions.
- Cluster 1: Stable, mature companies (e.g., IBM, WMT, MCD) likely low-volatility, defensive stocks - related to different economic sectors
- Cluster 2: High-growth, tech-oriented firms (e.g., AAPL, TSLA, AMZN) showing dynamic, possibly volatile trends.
- Cluster 3: Digital and streaming-focused stocks (e.g., SPOT, NVDA, META) — potentially similar usage trends or momentum patterns.
- Cluster 4: Smaller, mixed group includes GOOG and UPS, may indicate intermediate or hybrid behaviors.
- Cluster 5: Automotive, energy, and travel sectors (e.g., BMW, ENI, TRIP) — exhibiting cyclical, macro-sensitive patterns.
- Consistency observed between FunFEM, k-means, and hierarchical clustering, especially for Clusters 1 and 5.
- DBSCAN detected one outlier(Tesla), indicating strong internal cohesion in the smoothed data.

Table of contents

- Goal
- Data presentation
 - The stocks considered
 - Data Transformation
- Depth Analyses Before Transformation
 - Euclidean depth
 - Minimum Volume Depth (MBD)
 - Frainman-Muniz depth
- 4 Smoothing
 - Smoothing methods
 - Results of smoothing
- EDA and outliers detection for B-spline
 - Derivatives
 - Depth analysis
- Functional Principal Component Analysis
 - Functional Principal Component variations
 - VARIMAX Rotation
- Functional Clustering
- 8 Hypothesis Testing

Mean Trajectories

Figure: Mean Trajectories

ANOVA Pointwise

Figure: Pointwise ANOVA: Industry Differences Over Time

Figure: Tukey p-values

Figure: Tukey p-values

Figure: Tukey p-values

Figure: Tukey p-values

Figure: Tukey p-values

Figure: Tukey p-values

Thank you for your attention