Math115 1/23 notes

Vincent

2023-01-24

6.1 Definition

If S_1, S_2 are nonempty subsets of a vector space V then the sum of S_1 and S_2 , denoted $S_1 + S_2$ is the set $\{x + y : x \in S_1, y \in S_2\}$

6.2 Definition

Let W_1, W_2 be subspaces of the vector space V. We say that V is the direct sum of W_1 and W_2 if $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$, and we then write $V = W_1 + W_2$

6.3 Exercise

Show that $V = \mathbb{R}^2$ is the direct sum of $W_1 = \{(x, x) : x \in \mathbb{R}\}$ and $W_2 = \{(y, -y) : y\} \in \mathbb{R}$

First note that W_1, W_2 are indeed vector subspace of \mathbb{R}^2 indeed, if we take two elements $(x, x) \in W_1, (Z, Z) \in$ W_2 , then $(x,x)+(z,z)=(x+z,x+z)\in W_1$. Also, if $c\in\mathbb{R}$ is a scalar, then $c(x,x)=(cx,cx)\in W_1$ Similarly for W_2

Also, we see that $0 = (0,0) \in W_1$ and $0 = (0,-0) \in W_2$. So W_1, W_2 satisfy the conditions in Theom 5.2 so they are subspace of $V = \mathbb{R}^2$

We want show that:

- (a) $W_1 \cap W_2 = \{0\}$
- (b) $W_1 + W_2 = V$

To prove (a) assume $v = (v_1, v_2 \in \mathbb{R}^2)$ is both in W_1 and in W_2 . Since $(V_1, V_2) \in W_1$, we must have $V_2 = -V_1$. Thus $V_2 = V_1, V_2 = -V_1$ so $V_1 = -V_1$, Thus $2V_1 = 0$ which for $V_1 \in \mathbb{R}$ implies $V_1 = 0$. So $V_2 = V_1 = 0$ as well. To prove (b), let $v = (v_1, v_2) \in \mathbb{R}^2$ we want to find $(x, x) \in W_1, (y, -y) \in W_2$ such that $(x,x) + (y,-y) = (V_1,V_2)$. This means $(x+y,x-y) = (V_1,V_2)$

So
$$x + y = V_1, x - y = V_2$$

Thus, to find x,y satisfying these two conditions we need to solve this system of two equation with two unknown x,y in real numbers.

From 2nd equation, we get $x = y + V_2$ and replacing in the 1st equation

$$(y+V_2)+y=V_1$$

So
$$2y = V_1 - V_2, y = \frac{V_1 - V_2}{2}$$

and so
$$x = y + V_2 = \frac{V_1 - V_2}{2} + V_2 = \frac{V_1 + V_2}{2}$$

and so $x = y + V_2 = \frac{V_1 - V_2}{2} + V_2 = \frac{V_1 + V_2}{2}$ Thus $(V_1, V_2) = (\frac{V_1 + V_2}{2}, \frac{V_1 + V_2}{2}) + (\frac{V_1 - V_2}{2}, \frac{V_1 - V_2}{2})$ and so we denoted that $W_1 + W_2 = V$

Linear Combination of Vectors

6.4 Definition

Let V be a vector space over a field F and $S \in V$ a nonempty subset of V. A vector $v \in V$ is called a linear combination of vectors in S. If there exist a finite number of vectors $u_1, ..., u_n \in S$ and scalars $c_1, ..., c_n \in F$ such that $v = c_1u_1 + c_2u_2... + c_nu_n$

We then also say that V is a linear combination of $u_1, ... u_n$. The scalars $c_1, ... c_n$ are called the coefficients of the linear combination. because $O_v = O_F * V, \forall V \in S \neq 0$

Note: The vector $0 \in V$ is a linear combination of any $S \in V$

6.5 Example

Denote by V the set of polynomial of degree at most n with coefficients in R, i.e. expressions of the form $P(X) = a_0 + a_1X + a_2X^2 + ... + a_nX^n$

where $a_0, a_1, ..., a_n \in \mathbb{R}$, with the usual addition and multiplication by scalars in \mathbb{R} :

$$(a_0, a_1X + \dots + a_nX^n) + (b_0 + b_1X + \dots + b_nX^n) = (a_0 + b_0) + (a_1 + b_1)X + \dots + (a_n + b_n)X^n$$
 and $c(a_0 + a_1X + \dots + a_nX^n) = ca_0 + ca_1X + \dots + ca_nX^n$

Show that any polynomial in V is a linear combination of the "monomials" $1, X, X^2, ..., X^n$ indeed, if $P(X) = a_0 + a_1 X + ... + a_n X_n \in V$ then $a_0, a_1, ..., a_n \in \mathbb{R}$ are scalars and we have $P(X) = a_0 * 1 + a_1 * X + ... + a_n X^n = a_0 u_o + a_1 u_1 + ... + a_n u_n$

6.6 Definition

If V is a vector space and $S \neq 0 \in V$, Then the span of S, denoted span(S), is the set of all linear combinations of vectors in S.

i.e.
$$span(S) = \{ \sum_{i=1}^{n} c_i u_i : u_1, ... u_n \in S, c_1, ... c_n \in F, u \ge 1 \}$$

6.7 Example

If we take $V=\mathbb{R}^3$ and $S=\{(1,0,0),(0,1,0)\}$ Then span(S) is the set of all vectors in \mathbb{R}^3 of the form $au_1+bu_2=a(1,0,0)+b(0,1,0)=(a,0,0)+(0,b,0)=(a,b,0)$, with $a,b\in\mathbb{R}$ arbitrary scalars in \mathbb{R} Thus $span(S)=\{(a,b,0):a,b\in\mathbb{R}\}$ which we recognize to be the xy plane in the xyz 4-dimensional Euclidean space.

6.8 Example

If we take V to be the vector space of polynomials in X of degree $\leq n$ with coefficients in \mathbb{R} as in Example 6.5 and we let $S = \{1, X, X^2, ..., X^n\}$ then span(S) = V

6.9 Example

Given a Field F and denotes by F[X] the set of all polynomials in "undeterminate" X over the field F, i.e. expressions of the form $P(X) = a_0 + a_1X + ... + a_nX^n$ for some $n \ge 0$ and $a_0, a_1, ... a_n \in F$ with the "usual" addition and scalar multiplication

The degree of P(X) is the largest n such that $a_n \neq 0$.

- (a) show that if $S = \{1, X, X^2, ...\}$ then span(S)=F[X].
- (b) Denote $F_{odd}[X]$ the set of all polynomials with coefficients in F that have only odd coefficients possibly $\neq 0$ and by $F_{even}[X]$ the set of all polynomial with coefficient in F that have only even coefficients possibly $\neq 0$, i.e. $F_{odd}[X] = \{P(X) \in F[X] : P(X) = a_1X + a_3X^3 + a_5X^5 + ... + a_{2n+1}X^{2n+1}, a_1, a_3, ..., a_{2n+1} \in F, n \geq 0\}$

$$F_{even}[X] = \{P(X) \in F[X] : P(X) = a_0 + a_2X^2 + a_4X^4 + ... + a_{2n}X^{2n}, a_0, a_2, a_4, ..., a_{2n} \in F, n \ge 0\}$$

Show that $W_1 = F_{odd}[X], W = F_{even}[X]$ are subspaces of $F[X]$ and that $F[X] = W_1 + W_2$
Proof:(exercise)

6.10 Theorem

The span of any subset S of a vector space V is a subspace of V. Any subspace of V that contains S must contain span(S)

(e.e. if $W \in V$ subspace with $S \in W$ then $span(S) \in W$)

Proof:

We have to prove that if $x, y \in span(S)$ then $x + y \in span(S)$ and $cx \in span(S), \forall c \in F$ Since $x, y \in span(S)$, there exist $u_1, ..., u_n \in S, v_1, ..., v_n \in S$ and scalars $a_1, ... a_n \in F, b_1, ..., b_n \in F$ such that $x = a_1u_1 + ... + a_mu_m$ $y = b_1v_1 + ... b_nv_n$ But the $xy = a_1u_1 + ... + a_mu_m + b_1v_1 + ... + b_nv_n$

So x + y is itself a linear combination of $u_1, ... u_m, v_1, ... v_n \in S$, Thus $x + y \in span(S)$.

Also, $cx = c(a_1u_1 + ... a_mu_m) = (ca_1)u_1 + (ca_2)u_2 + ... + (ca_m)n_m \in span(S)$

For the last part of Theom: if $W \in V$ is a subspace that contains S and $W \in span(S)$, then there exist $u_1, ..., u_m \in S$ and $a_1, ..., a_m \in F$ such that $W = a_1u_1 + ... + a_mu_m$. Since W is a subspace and $u_1 + ... + u_m \in S \in W$, we have $a_1u_1 + ... + a_mu_m \in W$. Thus $w \in W$ showing that $span(S) \in W$.

6.11 Definition

We say that a subset S of a vector space V generates (or spans) V if span(S) = V.

6.12 Example

1). If we take $V = \mathbb{R}^2$ like in Exercise 6.3 then $S = \{(1,1),(1,-1)\}$ generate (span) V, because we showed in that exercise that any $v \in V$ is of the form $v = au_1 + bu_2$ for some scalars $a, b \in \mathbb{R}^2$ 2). If we take V = F[X] and $S = \{1, X, X^2, ...\}$ then span(S) = F[X]

6.13 Exercise

Show that the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ generate $M_{2\times 2}(F)$ Solution. Any matrix in $M_{2\times 2}(F)$ is of the form $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a,b,c,d\in F$ But then $a\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}+$ $b\begin{pmatrix}0&1\\0&0\end{pmatrix}+c\begin{pmatrix}0&0\\1&0\end{pmatrix}+d\begin{pmatrix}0&0\\0&1\end{pmatrix}=\begin{pmatrix}a&0\\0&0\end{pmatrix}+\begin{pmatrix}0&b\\0&0\end{pmatrix}+\begin{pmatrix}0&0\\c&0\end{pmatrix}+\begin{pmatrix}0&0\\0&d\end{pmatrix}=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ So A is indeed a linear combination of $\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}$