L17: Random Variables

Reading: Rosen 7.4

Random Variables

Definition

A random variable is a function from the sample space of an experiment to the set of real numbers, i.e., a random variable assigns a real number to each possible outcome.

Note: This function is not random!

Example

Suppose that a coin is flipped three times. Let X(t) be the random variable that equals the number of heads that appear when t is the outcome. Then X(t) is the function where:

```
X(HHH) = 3, X(TTT) = 0,

X(HHT) = X(HTH) = X(THH) = 2,

X(TTH) = X(THT) = X(HTT) = 1.
```

Distribution of a Random Variable

Definition

The distribution of a random variable X on a sample space S is the set of pairs (r, p(X = r)) for all $r \in X(S)$, where p(X = r) is the probability that X takes the value r, i.e., $p(X = r) = \sum_{s \in S, X(s) = r} p(s)$

Example

Continuing with the previous example, we have

$$p(X = 3) = 1/8$$

 $p(X = 2) = 3/8$
 $p(X = 1) = 3/8$
 $p(X = 0) = 1/8$

Bernoulli Trials

Definition:

Each performance of an experiment with two possible outcomes is called a Bernoulli trial. The two possible outcomes are generally referred to as success and failure.

• Example:

A coin is biased so that the probability of heads is 2/3. What is the probability that exactly four heads occur when the coin is flipped seven times?

Solution:

$$C(7,4)\left(\frac{2}{3}\right)^4\left(\frac{1}{3}\right)^3$$

Binomial Distribution

Theorem

Let X be the number of successes in n independent Bernoulli trials, with probability of success p and probability of failure q = 1 - p. Then

$$p(X = k) = b(k:n,p) = C(n,k)p^kq^{n-k}$$

Definition:

X follows the binomial distribution with parameters n and p, and b(k:n,p) is the pmf.

Check (from the binomial theorem)

$$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = (p+q)^n = 1$$

Binomial Distribution

Question

What is $Pr(10 \le X \le 20)$?

Solution

$$\sum_{k=10}^{20} \binom{n}{k} p^k q^{n-k},$$

which, unfortunately, has no closed form.

- For large n, and p not too close to 0 or 1, the normal distribution approximates binomial distribution well.
 - A special case of the central limit theorem.
 - The Galton Board

Continuous Probability Distribution

- Defined over a domain of real numbers
- Characterized by a probability density function (pdf)
- Example: The pdf of a normal (Gaussian) distribution

is
$$f(x) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
.

- Remark: f(x) does not represent a probability!
- The probability of an interval: $\Pr[a \le X \le b] = \int_a^b f(x) dx$

Infinite Sample Space

Example

Experiment: Flip a fair coin until it turns up heads. Let random variable X = the number of flips.

- Verify $\sum_{x=1}^{\infty} p(X = x) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$
- The probability of the event that we get 3 or more flips = $p(X = 3) + p(X = 4) + \dots = \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{4}$.

Geometric Distribution

Theorem

Let X be the number of independent Bernoulli trials until success and the probability of success is p. Then

$$p(X = k) = (1 - p)^{k-1}p$$

- Note: X follows a geometric distribution
- Check: $\sum_{i=0}^{\infty} (1-p)^i p = 1$
- Example:

Experiment: Roll 2 dice, probability of seeing a sum of 6 is 5/36. Let random variable X be number of trials until getting a sum of 6.

$$p(X = 3) = (\frac{31}{36})^2 (\frac{5}{36})$$

Expected Value

Definition

The expected value (or expectation or mean) of a random variable *X* is

$$E(X) = \sum_{x \in S} p(s)X(s)$$

Example

Let X be the number that comes up when a fair dice is rolled. What is the expected value of X?

Solution

The random variable *X* takes the values 1, 2, 3, 4, 5, or 6. Each has probability 1/6. It follows that

$$E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = \frac{21}{6} = \frac{7}{2}.$$

Expected Value

- Recall $p(X = r) = \sum_{s \in S, X(s) = r} p(s)$
- Theorem

$$E(X) = \sum_{r \in X(S)} p(X = r)r$$

Example: Flip a coin twice. X is number of heads

S	X(s)	p(s)	
HH	2	1/4	$E(X) = \sum_{s} p(s)X(s)$
TH	1	1/4	res
HT	1	1/4	$= \frac{1}{4}(2) + \frac{1}{4}(1) + \frac{1}{4}(1) + \frac{1}{4}(0) = 1$
TT	0	1/4	
r	p(s)		
2	1/4		$E(X) = \sum_{r \in X(S)} p(X = r)r$
1	1/2		$= \frac{1}{4}(2) + \frac{1}{2}(1) + \frac{1}{4}(0) = 1$
0	1/4		4 (2 () 4 () -

Expected Value

- Recall $p(X = r) = \sum_{s \in S, X(s) = r} p(s)$
- Theorem

$$E(X) = \sum_{r \in X(S)} p(X = r)r$$

Example

Suppose that a coin is flipped three times. Let X(t) be the random variable that equals the number of heads that appear when t is the outcome. We know that

$$p(X = 3) = 1/8$$

 $p(X = 2) = 3/8$
 $p(X = 1) = 3/8$
 $p(X = 0) = 1/8$
So $E(X) = \frac{1}{8} \cdot 3 + \frac{3}{8} \cdot 2 + \frac{3}{8} \cdot 1 + \frac{1}{8} \cdot 0 = 1.5$

Example: Binomial Distribution

• Recall that a random variable X with the binomial distribution with parameter n and p,q has

$$p(X = k) = C(n, k)p^{k}q^{n-k}$$

• We can derive its expectation through a rather complicated sequence of derivations:

$$E(X) = np$$

Linearity of Expectations

Theorem

If X_i , i = 1, 2, ..., n are random variables on S, and if a and b are real numbers, then

- $E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$
- $\bullet E(aX + b) = aE(X) + b$

Proof

$$E(X_1 + X_2 + \dots + X_n)$$

$$= \sum_{s \in S} p(s) \Big[X_1(s) + X_2(s) + \dots + X_n(s) \Big]$$

$$= \sum_{s \in S} p(s) X_1(s) + \sum_{s \in S} p(s) X_2(s) + \dots + \sum_{s \in S} p(s) X_n(s)$$

$$= E(X_1) + E(X_2) + \dots + E(X_n).$$

Proof (cnt'd)

For the second result, note that

$$E(aX + b) = \sum_{s \in S} p(s) [aX(s) + b]$$

$$= a \sum_{s \in S} p(s)X(s) + b \sum_{s \in S} p(s)$$

$$= a E(X) + b,$$

because $\sum_{s \in S} p(s) = 1$.

Example: Binomial Distribution

- X is the number of successes in n independent Bernoulli trials, with success probability p on each trial
- $X = X_1 + X_2 + \cdots + X_n$, where $X_i = 1$ if *i*th trial is successful and 0 otherwise These X_i 's are called indicator random variables
- $E(X_i) = p \cdot 1 + (1-p) \cdot 0 = p$
- $E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = np$

Example: the Hatcheck Problem

Question

A new employee started a job checking hats, but forgot to put the claim check numbers on the hats. So, the *n* customers just receive a random hat from those remaining. What is the expected number of hat returned correctly?

Solution

Let X be the random variable that equals the number of people who receive the correct hat. We can write

$$X = X_1 + X_2 + \dots + X_n,$$

where $X_i = 1$ if the *i*th person receives the correct hat and 0 otherwise. (Note that they are not independent.)

$$E(X_i) = 1/n.$$

$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = 1$$

Example: Hiring Problem

```
\begin{array}{l} \textbf{Hire-Assistant}(n): \\ \textbf{randomly permute all} \ n \ \textbf{candiates} \\ best \leftarrow 0 \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ n \\ \textbf{interview candidate} \ i \\ \textbf{if candidate} \ i \ \textbf{is better than} \ best \ \textbf{then} \\ \textbf{fire} \ best \\ \textbf{hire candidate} \ i \\ best \leftarrow i \end{array}
```

• Questions: What's the expected number of hires?

Hiring Problem: Solution

- Let $X_i = 1$ if you hire candidate i and 0 otherwise.
- Let X = number of hires $= X_1 + \cdots + X_n$.
- $E(X_i) = p(X_i = 1) = 1/i$.
 - Among the first i candidates, the best has probability 1/i to be placed at the ith position.
- $E(X) = E(X_1) + \dots + E(X_n) = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} = \Theta(\log n)$.

Example: Balls and Bins

Question

Throw m balls into n bins randomly. How many boxes will be empty in expectation?

Solution

- Let $X_i = 1$ if box i is empty, and 0 otherwise.
- Let X = number of empty boxes $= X_1 + \cdots + X_n$.

•
$$E(X_i) = p(X_i = 1) = \left(1 - \frac{1}{n}\right)^m$$
.

•
$$E(X) = E(X_1) + \dots + E(X_n) = n\left(1 - \frac{1}{n}\right)^m$$

• If throwing n balls into n bins, $n\left(1-\frac{1}{n}\right)^n \approx \frac{n}{e}$ for large n

Average-case Analysis of Algorithms

Definition

Let X be the random variable representing the running time (i.e., # of instructions) of an algorithm, when the input is drawn from a certain distribution (usually, uniform). Then the average-case running time of the algorithm is E(X).

Example: Linear Search

```
procedure linear search(x:integer,

a_1, a_2, ..., a_n: distinct integers)

i := 1

while (i \le n \text{ and } x \ne a_i)

i := i + 1

if i \le n \text{ then } location := i

else location := 0

return location
```

- Assume that x is one of the a_i 's with equal probability
- For asymptotic analysis, it's enough to count the number of iterations, denoted as X

•
$$E(X) = \frac{1}{n} \cdot 1 + \frac{1}{n} \cdot 2 + \dots + \frac{1}{n} \cdot n = \frac{n+1}{2} = \Theta(n)$$

Example: Insertion Sort

```
Insertion-Sort(A):
for j \leftarrow 2 to n do
      key \leftarrow A[j]
      i \leftarrow j - 1
      while i \ge 1 and A[i] > key do
             A[i+1] \leftarrow A[i]
             i \leftarrow i - 1
      endwhile
      A[i+1] \leftarrow key
endfor
```

sorted	key	unsorted

Example: Insertion Sort

- Assumption: The input is a random permutation.
- For asymptotic analysis, it's sufficient to count the total number of iterations of the inner loop, denoted X
- X_i : the # of iterations of the inner loop for inserting a_i
 - $E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n)$
- a_i can be inserted into one of the first i locations with equal probability
 - The first i elements of a random permutation is a random permutation of i elements
 - The rank of the last element in a random permutation is one of 1, ..., i with equal probability
- $E(X_i) = \frac{1}{i} \cdot 1 + \frac{1}{i} \cdot 2 + \dots + \frac{1}{i} \cdot i = \frac{i+1}{2}$
- $E(X) = \sum_{i=2}^{n} \frac{i+1}{2} = \frac{n^2 + 3n 4}{4} = \Theta(n^2)$

Geometric Distribution

• Experiment: Flip a fair coin until it turns up heads. Let random variable X = the number of flips.

- General case: each coin turns up heads with prob. p
- Definition

A random variable X has geometric distribution with parameter $p \le 1$ if $p(X = k) = (1 - p)^{k-1}p$, k = 1, 2, 3, ...

• Theorem:
$$E(X) = \sum_{k=1}^{\infty} p(1-p)^{k-1} k = \dots = \frac{1}{p}$$

Example: Coupon Collector

Question

Each box of cereal contains a coupon. There are *n* different types of coupons. Assuming a box contains each type of coupon equally likely, how many boxes do you need to open to have at least one coupon of each type?

Coupon Collector: Solution

- Let X_i = number of boxes you need to open between having i and i+1 distinct coupons (geometric distribution)
- Let X = number of boxes in total = $X_0 + X_1 + \cdots + X_{n-1}$.

$$E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=1}^{n} \frac{1}{i} = \Theta(n \log n)$$

geometric distribution with p = (n - i)/n

Independent Random Variables

Definition

The random variables *X* and *Y* on a sample space *S* are independent if

$$p(X = r_1 \text{ and } Y = r_2) = p(X = r_1) \cdot p(Y = r_2)$$
 for all r_1, r_2

Theorem

If X and Y are independent variables on a sample space S, then E(XY) = E(X)E(Y).

Note

Linearity of expectation holds no matter the random variables are independent or not.

Example

- Let X and Y be random variables that count the number of heads and the number of tails when a fair coin is flipped twice.
- Show that X and Y are not independent.
 - p(X = 2 and Y = 2) = 0
 - p(X = 2) = 1/4, p(Y = 2) = 1/4
- Check
 - $E(XY) = 1 \cdot \frac{1}{2} = \frac{1}{2}$
 - E(X) = E(Y) = 1
 - $E(XY) \neq E(X)E(Y)$
- Check E(X + Y) = 2 = E(X) + E(Y)

Proof

 From the definition of expected value and because X and Y are independent random variables, it follows that

$$E(XY) = \sum_{s \in S} X(s)Y(s) p(s)$$

$$= \sum_{r_1 \in X(S), r_2 \in Y(S)} r_1 r_2 \cdot p(X(s) = r_1 \text{ and } Y(s) = r_2)$$

$$= \sum_{r_1 \in X(S), r_2 \in Y(S)} r_1 r_2 \cdot p(X(s) = r_1) \cdot p(Y(s) = r_2)$$

$$= \left[\sum_{r_1 \in X(S)} r_1 p(X(s) = r_1) \right] \cdot \left[\sum_{r_2 \in Y(S)} r_2 p(Y(s) = r_2) \right]$$

$$= E(X)E(Y).$$

Variance and Standard Deviation

Definition

Let X be a random variable on the sample space S. The variance of X, denoted by V(X) is

$$V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s) = E\left((X - E(X))^2\right)$$

Definition

The standard deviation of X, denoted by $\sigma(X)$, is $\sqrt{V(X)}$

Example

Bernoulli trial: X = 1 with probability p, 0 otherwise

$$E(X) = p$$

$$V(X) = (1-p)^2 p + (0-p)^2 \cdot (1-p) = (1-p)p$$

Variance

Theorem

$$V(X) = E(X^2) - E(X)^2$$

Proof

$$V(X) = \sum_{s \in S} (X(s) - E(X))^{2} p(s)$$

$$= \sum_{s \in S} X^{2}(s) p(s) - 2E(X) \sum_{s \in S} X(s) p(s) + E(X)^{2} \sum_{s \in S} p(s)$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}.$$

Corollary

 $V(aX) = a^2V(X)$, for any real number $a \ge 0$.

Example

Question

What is the variance of a random variable *X*, where *X* is the number that comes up when a fair dice is rolled?

Solution

$$E(X) = \frac{1+2+3+4+5+6}{6} = \frac{7}{2}$$

Using the first definition:

$$V(X) = \frac{(1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (4-3.5)^2 + (5-3.5)^2 + (6-3.5)^2}{6} = \frac{35}{12}$$

Using the second definition:

$$E(X^{2}) = \frac{1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2}}{6} = \frac{91}{6}$$

$$V(X) = E(X^{2}) - E(X)^{2} = \frac{91}{6} - \left(\frac{7}{2}\right)^{2} = \frac{35}{12}$$

Bienaymé's Formula

Theorem

If *X* and *Y* are two independent random variables on a sample space *S*, then

$$V(X + Y) = V(X) + V(Y)$$

Furthermore, if X_i , i = 1, 2, ..., n, are pairwise independent random variables on S, then

$$V(X_1 + \dots + X_n) = V(X_1) + \dots + V(X_n)$$

Proof of Bienaymé's Formula

We note that

$$V(X + Y) = E((X + Y)^{2}) - E(X + Y)^{2}$$

$$= E(X^{2} + 2XY + Y^{2}) - (E(X) + E(Y))^{2}$$

$$= E(X^{2}) + 2E(XY) + E(Y^{2}) - E(X)^{2} - 2E(X)E(Y) - E(Y)^{2}$$

Because X and Y are independent, we have E(XY) = E(X)E(Y). It follows that

$$V(X + Y) = (E(X^2) - E(X)^2) + (E(Y^2) - E(Y)^2) = V(X) + V(Y).$$

 The proof of the case with n pairwise independent random variables can be constructed by generalizing the proof of the case for two random variables.

Examples

Question

X = the sum of numbers of two dice What's V(X)?

Solution

Write $X = X_1 + X_2$, where X_1 is the number on the first dice, X_2 is the number on the second dice

We already know
$$V(X_1) = V(X_2) = \frac{35}{12}$$

So
$$V(X) = \frac{35}{12} + \frac{35}{12} = \frac{35}{6}$$
.

Question

Given that X follows the binomial distribution. What's V(X)?

Solution

Write $X = X_1 + \cdots + X_n$, where $X_i = 1$ with prob. pWe already know $V(X_i) = p(1-p)$ So V(X) = np(1-p).

Example

■ Suppose we take a measurement by repeating the same experiment many times. Each trial returns a random measurement that is correct in expectation, but with some deviation. More precisely, let X_i be the measurement from the i-th experiments we have

$$E(X_i) = \mu$$
, $V(X_i) = \sigma^2$

If we repeat the experiments n times independently, and report the average $Y = (X_1 + \cdots + X_n)/n$. What is E(Y) and V(Y)?

Solution

$$E(Y) = \frac{E(X_1) + \dots + E(X_n)}{n} = \mu$$

$$V(Y) = \frac{V(X_1) + \dots + V(X_n)}{n^2} = \frac{\sigma^2}{n}$$