

Day: 2
Task: **graph**Version: **de-1.1**

 Graph 0.7 s/256 MiB

Du bekommst einen ungerichteten Graphen, in dem jede Kante eine von zwei Farben hat: schwarz oder rot.

Deine Aufgabe ist es, jedem Knoten eine reelle Zahl zuzuweisen, so dass:

- für jede schwarze Kante die Summe der Werte an ihren Endpunkten 1 ist;
- für jede rote Kante die Summe der Werte an ihren Endpunkten 2 ist;
- die Summe des Betrags aller zugewiesenen Werte so klein wie möglich ist.

Ansonsten, falls das nicht möglich ist, gib an, dass es keine gültige Zuweisung der Zahlen gibt.

Eingabe

Die erste Zeile enthält zwei ganze Zahlen N ($1 \le N \le 100\,000$) und M ($0 \le M \le 200\,000$): Die Anzahl Knoten und Kanten. Die Knoten sind von 1 bis N durchnummeriert.

Die nächsten M Zeilen beschreiben die Kanten. Jede Zeile enthält drei ganze Zahlen a, b und c, die für eine Kante zwischen den Knoten a und b $(1 \le a, b \le N)$ stehen. Die Farbe der Kante wird durch c beschrieben: 1 steht für schwarz und 2 steht für rot.

Ausgabe

Falls es eine Lösung gibt, soll die erste Zeile das Wort "YES" enthalten und die zweite Zeile soll N durch Leerzeichen getrennte Zahlen enthalten. Für alle i $(1 \le i \le N)$ soll die i-te Zahl die Zahl sein, die dem Knoten i zugewiesen wird.

Die Ausgabe soll so sein, dass:

- die Summe der Zahlen an den Endpunkten jeder Kante von dem korrekten Wert um weniger als 10⁻⁶ abweicht;
- die Summe der Beträge aller zugewiesenen Werte von der minimal möglichen Summe um weniger als 10^{-6} abweicht.

Wenn es mehrere gültige Lösungen gibt, gib eine beliebige aus.

Wenn es keine Lösung gibt, gib nur eine Zeile mit dem Wort "NO" aus.

Beispiele

Eingabe	Ausgabe	
4 4	YES	
1 2 1 2 3 2 1 3 2 3 4 1	0.5 0.5 1.5 -0.5	
Eingabe 2 1 1 2 1	Ausgabe YES 0.3 0.7	Kommentare Beachte, dass es mehr als eine Lösung gibt.
Eingabe 3 2 1 2 2 2 3 2	Ausgabe YES 0 2 0	

Day: 2
Task: graph
Version: de-1.1

Eingabe

Ausgabe

NO

3 4

1 2 2

2 2 1

2 1 1

1 2 2

Bewertung

Teilaufgaben:

- 1. (5 Punkte) $N \leq 5, M \leq 14$
- 2. (12 Punkte) $N \leq 100$
- 3. (17 Punkte) $N \leq 1000$
- 4. (24 Punkte) $N \le 10\,000$
- 5. (42 Punkte) Keine weiteren Beschränkungen