3 лаба отчёт

Алгоритм

Шаг 1. Задать начальную (первую) точку x_1 , величину шага по оси $X \Delta x > 0$, ϵ - малое положительное значение, характеризующее точность.

Шаг 2. Вычислить вторую точку: $x_2 = x_1 + \Delta x$.

Шаг 3. Вычислить значения функции в точках $f(x_1)$ и $f(x_2)$.

Шаг 4. Сравнить точки $f(x_1)$ и $f(x_2)$:

- а) если $f(x_1) > f(x_2)$, положить $x_3 = x_1 + 2\Delta {
 m x}$
- б) если $f(x_1) \leq f(x_2)$, положить $x_3 = x_1 \Delta \mathrm{x}$

Шаг 5. Вычислить $f(x_3)$

Шаг 6. Найти $F_{min}=min\{f_1,f_2,f_3\}$, $x_{min}=x_i$;.

Шаг 7. По точкам x_1 , x_2 , x_3 вычислить точку минимума квадратичного интерполяционного полинома и величину функции f(x).

$$x = rac{(x_2^2 - x_3^2)f_1 + (x_3^2 - x_3^2)f_2 + (x_1^2 - x_2^2)f_3}{2((x_2 - x_3)f_1 + (x_3 - x_1)f_2 + (x_1 - x_2)f_3}$$

Если знаменатель в формуле для x на некоторой итерации обращается в ноль, то результатом итерации является прямая. В этом случае рекомендуется обозначить $x_1 = x$ и перейти к шагу 2.

Шаг 8. Проверить выполнение условий окончания расчета:

$$|rac{F_{min} - f(x)}{f(x)}| < \epsilon; \qquad |rac{x_{min} - x}{x}| < eps$$

- а) если оба условия выполняются, закончить поиск $x^* = x$;
- б) если хотя бы одно из условий не выполняется и ${
 m x}$ принадлежит $[1;x_3]$, выбрать наименьшую точку (x_{min} или ${
 m x}$) и две точки по обе стороны от нее. Обозначить эти точки в обычном порядке и перейти к шагу 6;
- в) если хотя бы одно из условий не выполняется [1;3], то положить точку $\mathrm{x}_1=\mathrm{x}$ и перейти к шагу 2.

Данные

$$f(x) = rac{1}{4}x^4 + x^2 - 8x + 12$$

 $x = 1$
 $\Delta x = 0.3$
 $\epsilon = 0.0001$

Вычисления

Итерация 1

Шаг 2. Вычисляем вторую точку: $x_2 = x_1 + \Delta x = 1 + 0.3 = 1.3$

Шаг 3. Вычисляем значения функции в точках: $f(x_1) = 5.25$, $f(x_2) = 4.00403$

Шаг 4а. Поскольку $f(x_1) > f(x_2)$, положим $x_3 = x_1 + 2\Delta x = 1.6$

Шаг 5. Вычисляем $f(x_3) = 3.3984$

Шаг 6. Минимальное значение $F_{min} = \min\{f(x_1), f(x_2), f(x_3)\} = 3.3984$ при $x_{min} = 1.6$

Шаг 7. Вычисляем точку минимума квадратичного полинома:

$$x = \frac{(1.69 - 2.56)5.25 + (2.56 - 1)4.00403 + (1 - 1.69)3.3984}{2(1.3 - 1.6)5.25 + (1.6 - 1)4.00403 + (1 - 1.3)3.3984} = 1.73373$$

Шаг 7. Вычисляем значение функции в найденной точке f(x)=3.39472

Итерация 2

Шаг 2. Вычисляем вторую точку: $x_2=x_1+\Delta x=1.73373+0.30000=2.03373$

Шаг 3. Вычисляем значения функции в точках: $f(x_1)=3.39472$, $f(x_2)=4.14297$

Шаг 4б. Поскольку $f(x_1) \leq f(x_2)$, положим $x_3 = x_1 - \Delta x = 1.43373$

Шаг 5. Вычисляем $f(x_3) = 3.64209$

Шаг 6. Минимальное значение $F_{min}=\min\{f(x_1),f(x_2),f(x_3)\}=3.39472$ при $x_{min}=1.73373$

Шаг 7. Вычисляем точку минимума квадратичного полинома:

Шаг 7. Вычисляем значение функции в найденной точке f(x)=3.37413

Итерация 3

Шаг 2. Вычисляем вторую точку: $x_2 = x_1 + \Delta x = 1.65827 + 0.3 = 1.95827$

Шаг 3. Вычисляем значения функции в точках: $f(x_1) = 3.37413$, $f(x_2) = 3.84512$

Шаг 4б. Поскольку $f(x_1) \leq f(x_2)$, положим $x_3 = x_1 - \Delta x = 1.35827$

Шаг 5. Вычисляем $f(x_3)=3.82965$

Шаг 6. Минимальное значение $F_{min} = \min\{f(x_1), f(x_2), f(x_3)\} = 3.37413$ при $x_{min} = 1.65827$

Шаг 7. Вычисляем точку минимума квадратичного полинома:

$$x = \frac{(3.83482 - 1.8449)3.37413 + (1.8449 - 2.74986)3.84512 + (2.74986 - 3.83482)3.82965}{2(1.95827 - 1.35827)3.37413 + (1.35827 - 1.65827)3.84512 + (1.65827 - 1.95827)3.82965} = 1.65576$$

Шаг 7. Вычисляем значение функции в найденной точке f(x)=3.37447

Значения, полученные руками

x = 1.65576

f(x) = 3.37447

Значения, полученные программой

x = 1.65577

f(x) = 3.37447

Истинное значение (согласно Desmos)

x = 1.67024

f(x) = 3.37339