Figure 11.18 Send window for Selective Repeat ARQ

Figure 11.27 HDLC frames Information frames (I-Frames): Address Information Flag Control N(R)Supervisory frames (I-Frames): Flag Address Control FCS Flag 1 0 Code N(R)

Figure 11.28 Control field format for the different frame types

Figure 11.28 Control field format for the different frame types

Figure 11.28 Control field format for the different frame types

HDLC(cont'd)

□U-Frame is used to exchange session management and control information between connected devices

Code	Command	Response
00 001	SNRM	
11 011	SNRME	
11 100	SABM	DM
11 110	SABME	
00 000	UI	UI
00 110		UA
00 010	DISC	RD
10 000	SIM	RIM
00 100	UP	
11 001	RSET	
11 101	XID	XIID
10 001	F5	FRMR

Table 11.1 U-frame control command and response

Code	Command	Response	Meaning
00 001	SNRM		Set normal response mode
11 011	SNRME		Set normal response mode, extended
11 100	SABM	DM	Set asynchronous balanced mode or disconnect mode
11 110	SABME		Set asynchronous balanced mode, extended
00 000	UI	UI	Unnumbered information
00 110		UA	Unnumbered acknowledgment
00 010	DISC	RD	Disconnect or request disconnect
10 000	SIM	RIM	Set initialization mode or request information mode
00 100	UP		Unnumbered poll
11 001	RSET		Reset
11 101	XID	XID	Exchange ID
10 001	FRMR	FRMR	Frame reject

HESH KUMAR N

Figure 11.27 HDLC frames

Unnumbered frames (I-Frames):

UART *Introduction*

- ✓ Universal Asynchronous Receiver-Transmitter
- ✓ Serial Communication Protocol
- √ Two Wire Communication Protocol
- ✓ Data Format & Transmission Speed are configurable

What is UART?

- ► Universal asynchronous receiver / transmitter
- Protocol for exchanging serial data between two devices
- Uses only two wires
 - TX to RX (each direction)
- ► Can be simplex, half-duplex, or full-duplex
- ▶ Data is transmitted as frames

Where is UART used?

- ► UART was one of the earliest serial protocols
 - Serial (COM) ports, RS-232, modems, etc.

<u>Advantages</u>:

- Only uses two wires.
- No clock signal is necessary.
- Provide error detection by Parity bit check.
- ✓ Cost & size will be much lesser compare to the parallel communication.

Disadvantages:

- The size of the data frame is limited to a maximum of 9 bits.
- Doesn't support multiple slave or multiple master systems.
- Limited speed is the bottleneck for the application which required higher data transmission rate.

Pulse width Modelatar (PWM):-

* I pulse width modulator (PWM) generates an olp signal that suepeatedly switches between high and low values

- * We control the dividion of the high value and of the low value by indicating the desired period (T) & the desired duty cycle (D).

* Duty cycle is defined as the scatio of on time to the total period (on + off) & is empressed in percentage.

$$\left\{ \begin{array}{c|c} & & & \\ \hline \end{array} \right. D = \frac{T_{\text{on}}}{T_{\text{on}} + T_{\text{off}}} \times 100 \left. \begin{array}{c} \\ \end{array} \right\}$$

PWM

PWM

Controlling a DC Motor Using a PWM

* The speed of the DC Motor is proportional to the voltage applied to the motor. We must set the duty eyele of a PWM such that the average of voltage equals the desired voltage.

