SEQUENCE LISTING

```
<110> Schimmel, Paul
      Wakasugi, Keisuke
<120> Human Aminoacyl-tRNA Synthetase Polypeptides Useful For
      The Regulation of Angiogenesis
<130> 00-221
<140>
<141>
<160> 58
<170> PatentIn Ver. 2.0
<210> 1
<211> 5174
<212> DNA
<213> Artificial Sequence
<220>
<221> CDS
<222> (3428)..(5035)
<220>
<223> Description of Artificial Sequence: human
       full-length TyrRS in pET20B
```

<400> 1 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540 tccqctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960

cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tecegaaggg agaaaggegg acaggtatee ggtaagegge agggteggaa eaggagageg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactetea gtacaatetg etetgatgee gcatagttaa geeagtatae acteegetat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tetgeteecg geateegett acagacaage tgtgacegte teegggaget 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820

ttttttcctg ttt	ggtcact gatgcc	tccg tgtaagggg	g atttctgttc atgggggtaa	2880
tgataccgat gaa	acgagag aggatg	ctca cgatacggg	tactgatgat gaacatgccc	2940
ggttactgga acq	gttgtgag ggtaaa	caac tggcggtat	g gatgeggegg gaceagagaa	3000
aaatcactca ggg	gtcaatgc cagcgo	ttcg ttaatacag	a tgtaggtgtt ccacagggta	3060
gccagcagca tcc	ctgcgatg cagato	cgga acataatgg	t gcagggcgct gacttccgcg	3120
tttccagact tta	acgaaaca cggaaa	accga agaccattc	a tgttgttgct caggtcgcag	3180
acgttttgca gca	agcagtcg cttcac	egtte getegegta	t cggtgattca ttctgctaac	3240
cagtaaggca acc	cccgccag cctago	ccggg tcctcaacg	a caggagcacg atcatgcgca	3300
cccgtggcca gga	acccaacg ctgcco	egaga tetegatee	c gcgaaattaa tacgactcac	3360
tatagggaga cca	acaacggt ttccct	ctag aaataattt	t gtttaacttt aagaaggaga	3420
			g aaa ctg cac ctt atc u Lys Leu His Leu Ile 10	3469
		Leu Gly Glu Gl	g aag ctg aag gag ata u Lys Leu Lys Glu Ile 5 30	3517
			a acg gca acc acg ggc y Thr Ala Thr Thr Gly 45	3565
Lys Pro His V			a aag att gca gac ttc r Lys Ile Ala Asp Phe 60	3613
			t gcg gac ctc cac gca e Ala Asp Leu His Ala 75	3661
tac ctg gat a Tyr Leu Asp A 80	ac atg aaa gcc sn Met Lys Ala 85	cca tgg gaa ct Pro Trp Glu Le	t cta gaa ctc cga gtc u Leu Glu Leu Arg Val 90	3709
			g gag agc att ggt gtg u Glu Ser Ile Gly Val 15 110	3757
			et gat tac cag ctc agc or Asp Tyr Gln Leu Ser 125	3805
Lys Glu Tyr T			ec tee gtg gte aca cag er Ser Val Val Thr Gln 140	3853
			ta aag cag gtg gag cac al Lys Gln Val Glu His 155	3901
cct ttg ctg a	agt ggc ctc tta	tac ccc gga c	g cag gct ttg gat gaa	3949

Pro	Leu 160	Leu	Ser	Gly	Leu	Leu 165	Tyr	Pro	Gly	Leu	Gln 170	Ala	Leu	Asp	Glu	
														aga Arg		3997
att Ile	ttc Phe	acc Thr	ttt Phe	gca Ala 195	gag Glu	aag Lys	tac Tyr	ctc Leu	cct Pro 200	gca Ala	ctt Leu	ggc Gly	tat Tyr	tca Ser 205	aaa Lys	4045
cgg Arg	gtc Val	cat His	ctg Leu 210	atg Met	aat Asn	cct Pro	atg Met	gtt Val 215	cca Pro	gga Gly	tta Leu	aca Thr	ggc Gly 220	agc Ser	aaa Lys	4093
atg Met	agc Ser	tct Ser 225	tca Ser	gaa Glu	gag Glu	gag Glu	tcc Ser 230	aag Lys	att Ile	gat Asp	ctc Leu	ctt Leu 235	gat Asp	cgg Arg	aag Lys	4141
gag Glu	gat Asp 240	gtg Val	aag Lys	aaa Lys	aaa Lys	ctg Leu 245	aag Lys	aag Lys	gcc Ala	ttc Phe	tgt Cys 250	gag Glu	cca Pro	gga Gly	aat Asn	4189
gtg Val 255	Glu	aac Asn	aat Asn	ggg Gly	gtt Val 260	ctg Leu	tcc Ser	ttc Phe	atc Ile	aag Lys 265	cat His	gtc Val	ctt Leu	ttt Phe	ccc Pro 270	4237
					Val									gga Gly 285		4285
				Āla										Ala	gag Glu	4333
gtt Val	gta Val	cat His 305	Pro	gga Gly	gac Asp	ctg Leu	aag Lys 310	Asn	tct Ser	gtt Val	gaa Glu	gtc Val 315	gca Ala	ctg Leu	aac Asn	4381
aag Lys	ttg Leu 320	Leu	gat Asp	cca Pro	atc Ile	cgg Arg 325	gaa Glu	aag Lys	ttt Phe	aat Asn	acc Thr 330	Pro	gcc Ala	ctg Leu	aaa Lys	4429
aaa Lys 335	: Leu	geo Ala	ago Ser	gct Ala	gcc Ala 340	Tyr	cca Pro	gat Asp	ccc Pro	Ser 345	: Lys	cag Gln	aag Lys	cca Pro	atg Met 350	4477
					Lys					Gli					tcc Ser	4525
				Arg					: Ile					s His	c cca s Pro	4573
			Sei					ı Lys					/ Glu		gaa Glu	4621
Pro	a cgo Aro 400	Th:	c gto	g gto L Vai	g ago l Sei	ggc Gly 405	Le	g gta ı Val	a caq L Glr	g tto n Pho	c gto e Val 410	l Pro	aaq Lys	g gaq s Glu	g gaa ı Glu	4669

ctg cag gac agg ctg gta gtg gtg ctg tgc aac ctg aaa ccc cag aag Leu Gln Asp Arg Leu Val Val Leu Cys Asn Leu Lys Pro Gln Lys 415 420 425 430	7
atg aga gga gtc gag tcc caa ggc atg ctt ctg tgt gct tct ata gaa 476 Met Arg Gly Val Glu Ser Gln Gly Met Leu Leu Cys Ala Ser Ile Glu 435 440 445	5
ggg ata aac cgc cag gtt gaa cct ctg gac cct ccg gca ggc tct gct 481 Gly Ile Asn Arg Gln Val Glu Pro Leu Asp Pro Pro Ala Gly Ser Ala 450 455 460	3
cct ggt gag cac gtg ttt gtg aag ggc tat gaa aag ggc caa cca gat 486 Pro Gly Glu His Val Phe Val Lys Gly Tyr Glu Lys Gly Gln Pro Asp 465 470 475	1
gag gag ctc aag ccc aag aag aaa gtc ttc gag aag ttg cag gct gac 490 Glu Glu Leu Lys Pro Lys Lys Lys Val Phe Glu Lys Leu Gln Ala Asp 480 485 490	9
ttc aaa att tct gag gag tgc atc gca cag tgg aag caa acc aac ttc 495 Phe Lys Ile Ser Glu Glu Cys Ile Ala Gln Trp Lys Gln Thr Asn Phe 495 500 505 510	, 7
atg acc aag ctg ggc tcc att tcc tgt aaa tcg ctg aaa ggg ggg aac 500 Met Thr Lys Leu Gly Ser Ile Ser Cys Lys Ser Leu Lys Gly Gly Asn 515 520 525	5
att agc ctc gag cac cac cac cac cac tgagatccgg ctgctaacaa 505 Ile Ser Leu Glu His His His His His His 530 535	55
agcccgaaag gaagctgagt tggctgctgc caccgctgag caataactag cataacccct 511	. 5
tggggcctct aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggat 517	74
<210> 2 <211> 536 <212> PRT <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: human full-length TyrRS in pET20B	
<400> 2 Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile Thr Arg 1 5 10 15	
Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile Leu Lys 20 25 30	

Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly Lys Pro \$35\$

His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe Leu Lys 50 60

Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala Tyr Leu 70 Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Arg Val Ser Tyr Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val Pro Leu Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser Lys Glu 120 Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln His Asp Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His Pro Leu Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu Glu Tyr Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys Ile Phe Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys Arg Val 200 His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys Met Ser 215 Ser Ser Glu Glu Ger Lys Ile Asp Leu Leu Asp Arg Lys Glu Asp 225 230 Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn Val Glu 250 Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro Leu Lys 260 Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu 310 Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu 330 Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Pro Ser Arg Leu 360 Asp Ile Arg Val Gly Lys Ile Ile Thr Val Glu Lys His Pro Asp Ala Asp Ser Leu Tyr Val Glu Lys Ile Asp Val Gly Glu Ala Glu Pro Arg 390 395

Thr Val Val Ser Gly Leu Val Gln Phe Val Pro Lys Glu Glu Leu Gln
405 410 415

Asp Arg Leu Val Val Leu Cys Asn Leu Lys Pro Gln Lys Met Arg 420 425 430

Gly Val Glu Ser Gln Gly Met Leu Leu Cys Ala Ser Ile Glu Gly Ile 435 440 445

Asn Arg Gln Val Glu Pro Leu Asp Pro Pro Ala Gly Ser Ala Pro Gly 450 455 460

Glu His Val Phe Val Lys Gly Tyr Glu Lys Gly Gln Pro Asp Glu Glu 465 470 475 480

Leu Lys Pro Lys Lys Lys Val Phe Glu Lys Leu Gln Ala Asp Phe Lys
485
490
495

Ile Ser Glu Glu Cys Ile Ala Gln Trp Lys Gln Thr Asn Phe Met Thr 500 505 510

Lys Leu Gly Ser Ile Ser Cys Lys Ser Leu Lys Gly Gly Asn Ile Ser 515 520 525

Leu Glu His His His His His His 530 535

<210> 3 <211> 4682

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4543)

<220>

<223> Description of Artificial Sequence: human mini TyrRS in pET20B

<400> 3
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgcct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgcct gatagacggt ttttcgcct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaattcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600

gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tegttgggaa eeggagetga atgaageeat accaaaegae gagegtgaea eeaegatgee 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cqctacqtqa ctgqgtcatq gctgcgccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca acccegecag ectageeggg teeteaacga caggageacg ateatgegea 3300 cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3360 tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420 tatacat atg ggg gac gct ccc agc cct gaa gag aaa ctg cac ctt atc 3469 Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile acc cgg aac ctg cag gag gtt ctg ggg gaa gag aag ctg aag gag ata 3517 Thr Arg Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile 15 3565 ctg aag gag cgg gaa ctt aaa att tac tgg gga acg gca acc acg ggc Leu Lys Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly 3613 aaa cca cat gtg gct tac ttt gtg ccc atg tca aag att gca gac ttc Lys Pro His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe 3661 tta aag gca ggg tgt gag gta aca att ctg ttt gcg gac ctc cac gca Leu Lys Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala 3709 tac ctg gat aac atg aaa gcc cca tgg gaa ctt cta gaa ctc cga gtc Tyr Leu Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Arg Val 3757 agt tac tat gag aat gtg atc aaa gca atg ctg gag agc att ggt gtg Ser Tyr Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val

ccc Pro																3805
aaa Lys	gag Glu	tac Tyr	aca Thr 130	cta Leu	gat Asp	gtg Val	tac Tyr	aga Arg 135	ctc Leu	tcc Ser	tcc Ser	Val	gtc Val 140	aca Thr	cag Gln	3853
cac His	gat Asp	tcc Ser 145	aag Lys	aag Lys	gct Ala	gga Gly	gct Ala 150	gag Glu	gtg Val	gta Val	aag Lys	cag Gln 155	gtg Val	gag Glu	cac His	3901
cct Pro	ttg Leu 160	ctg Leu	agt Ser	ggc Gly	ctc Leu	tta Leu 165	tac Tyr	ccc Pro	gga Gly	ctg Leu	cag Gln 170	gct Ala	ttg Leu	gat Asp	gaa Glu	3949
gag Glu 175	tat Tyr	tta Leu	aaa Lys	gta Val	gat Asp 180	gcc Ala	caa Gln	ttt Phe	gga Gly	ggc Gly 185	att Ile	gat Asp	cag Gln	aga Arg	aag Lys 190	3997
att Ile	ttc Phe	acc Thr	ttt Phe	gca Ala 195	gag Glu	aag Lys	tac Tyr	ctc Leu	cct Pro 200	gca Ala	ctt Leu	ggc Gly	tat Tyr	tca Ser 205	aaa Lys	4045
cgg Arg	gtc Val	cat His	ctg Leu 210	Met	aat Asn	cct Pro	atg Met	gtt Val 215	cca Pro	gga Gly	tta Leu	aca Thr	ggc Gly 220	agc Ser	aaa Lys	4093
atg Met	agc Ser	tct Ser 225	tca Ser	gaa Glu	gag Glu	gag Glu	tcc Ser 230	aag Lys	att Ile	gat Asp	ctc Leu	ctt Leu 235	gat Asp	cgg Arg	aag Lys	4141
gag Glu	gat Asp 240	Val	aag Lys	aaa Lys	aaa Lys	ctg Leu 245	Lys	aag Lys	gcc Ala	ttc Phe	tgt Cys 250	gag Glu	cca Pro	gga Gly	aat Asn	4189
gtg Val 255	gag Glu	aac Asn	aat Asn	ggg	gtt Val 260	ctg Leu	tcc Ser	ttc Phe	atc	aag Lys 265	His	gtc Val	ctt Leu	ttt Phe	ccc Pro 270	4237
					Val					Glu					aac Asn	4285
aaa Lys	acc Thr	tac Tyr	aca Thr 290	: Ala	tac Tyr	gtg Val	gac Asp	cto Lev 295	ı Glü	aaq Lys	g gac s Asp	ttt Phe	gct Ala 300	Ala	gag Glu	4333
gtt Val	gta Val	cat His	Pro	gga Gly	gac Asp	cto Lev	g aag Lys 310	Ası	tct Ser	gtt Val	gaa L Glu	gtc Val 315	Ala	cto Lev	g aac 1 Asn	4381
aag Lys	tto Let 320	ı Let	g gat 1 Asp	cca Pro	ato Ile	c cgg Arg 325	g Gli	a aaq ı Lys	g ttt s Phe	aat Ası	acc n Thi 330	Pro	gco Ala	c cto	g aaa u Lys	4429
aaa Lys 335	Lei	g gco ı Ala	a Se	c gct r Ala	gco A Ala 340	а Ту	c cca	a gat o As _l	cco Pro	Se:	r Lys	g caq s Glr	l aad Lys	g cc	a atg o Met 350	4477

gcc aaa ggc Ala Lys Gly	cct gcc aag Pro Ala Lys 355	aat tca gaa Asn Ser Glu	cca gag gag Pro Glu Glu 360	gtc atc ctc gad Val Ile Leu Glo 365	g 4525 u
His His His		tgagatccgg	ctgctaacaa ag	cccgaaag	4573
gaagctgagt t	ggctgctgc ca	ccgctgag ca	ataactag cata	acccct tggggcc	tct 4633
aaacgggtct t	gaggggttt tt	tgctgaaa gg	aggaacta tatc	cggat	4682
<210> 4 <211> 372 <212> PRT <213> Artifi	cial Sequenc	ce			
	ption of Art in pET20B	cificial Seq	uence: human	mini	
<400> 4 Met Gly Asp 1	Ala Pro Ser 5	Pro Glu Glu	Lys Leu His 10	Leu Ile Thr Ar 15	g
Asn Leu Gln	Glu Val Leu 20	Gly Glu Glu 25	_	Glu Ile Leu Ly 30	rs
Glu Arg Glu 35	Leu Lys Ile	Tyr Trp Gly	Thr Ala Thr	Thr Gly Lys Pr 45	:o
His Val Ala 50	Tyr Phe Val	Pro Met Ser 55	Lys Ile Ala 60	Asp Phe Leu Ly	'S
Ala Gly Cys 65	Glu Val Thr 70		e Ala Asp Leu 75	His Ala Tyr Le	eu 30
Asp Asn Met	Lys Ala Pro 85	Trp Glu Le	ı Leu Glu Leu 90	Arg Val Ser Ty 95	ŗr
Tyr Glu Asn	Val Ile Lys 100	Ala Met Let 105		Gly Val Pro Le	eu
Glu Lys Leu 115	Lys Phe Ile	Lys Gly The	r Asp Tyr Gln	Leu Ser Lys G	Lu
Tyr Thr Leu 130	Asp Val Tyr	Arg Leu Se 135	r Ser Val Val 140	Thr Gln His As	sp
Ser Lys Lys 145	Ala Gly Ala 150		l Lys Gln Val 155	Glu His Pro Le	eu 60
Leu Ser Gly	Leu Leu Tyr 165	Pro Gly Le	u Gln Ala Leu 170	Asp Glu Glu Ty 175	yr
Leu Lys Val	Asp Ala Glr 180	Phe Gly Gl 18		Arg Lys Ile P	he
Thr Phe Ala 195		Leu Pro Al 200	a Leu Gly Tyr	Ser Lys Arg V	al

His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys Met Ser 210 215 220

Ser Ser Glu Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys Glu Asp 225 230 235 240

Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn Val Glu 245 250 255

Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro Leu Lys 260 265 270

Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr 275 280 285

Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val 290 295 300

His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu 305 310 315 320

Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu 325 330 335

Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys 340 345 350

Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu His His 355 360 365

His His His His 370

<210> 5

<211> 4100

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(3961)

<220>

<223> Description of Artificial Sequence: human TyrRS carboxyl-terminal domain in pET20B

<400> 5
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgcct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420

acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280

ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400
gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580
gacgggcttg tetgeteceg geateegett acagacaage tgtgacegte teegggaget 2640
gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820
ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880
tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060
gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180
acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240
cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3360
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420
tatacat atg cca gag gag gtc atc cca tcc cgg ctg gat atc cgt gtg 3469 Met Pro Glu Glu Val Ile Pro Ser Arg Leu Asp Ile Arg Val 1 5 10
ggg aaa atc atc act gtg gag aag cac cca gat gca gac agc ctg tat 3517 Gly Lys Ile Ile Thr Val Glu Lys His Pro Asp Ala Asp Ser Leu Tyr 15 20 25 30
gta gag aag att gac gtg ggg gaa gct gaa cca cgg act gtg gtg agc 3565 Val Glu Lys Ile Asp Val Gly Glu Ala Glu Pro Arg Thr Val Val Ser 35 40 45
ggc ctg gta cag ttc gtg ccc aag gag gaa ctg cag gac agg ctg gta 3613 Gly Leu Val Gln Phe Val Pro Lys Glu Glu Leu Gln Asp Arg Leu Val 50 55 60
gtg gtg ctg tgc aac ctg aaa ccc cag aag atg aga gga gtc gag tcc 3661 Val Val Leu Cys Asn Leu Lys Pro Gln Lys Met Arg Gly Val Glu Ser 65 70 75
caa ggc atg ctt ctg tgt gct tct ata gaa ggg ata aac cgc cag gtt 3709 Gln Gly Met Leu Leu Cys Ala Ser Ile Glu Gly Ile Asn Arg Gln Val 80 85 90

95	cct Pro	ctg Leu	gac Asp	cct Pro	ccg Pro 100	gca Ala	ggc Gly	tct Ser	gct Ala	cct Pro 105	ggt Gly	gag Glu	cac His	gtg Val	ttt Phe 110	3757
gtg Val	aag Lys	ggc Gly	tat Tyr	gaa Glu 115	aag Lys	ggc Gly	caa Gln	cca Pro	gat Asp 120	gag Glu	gag Glu	ctc Leu	aag Lys	ccc Pro 125	aag Lys	3805
aag Lys	aaa Lys	gtc Val	ttc Phe 130	gag Glu	aag Lys	ttg Leu	cag Gln	gct Ala 135	gac Asp	ttc Phe	aaa Lys	att Ile	tct Ser 140	gag Glu	gag Glu	3853
tgc Cys	atc Ile	gca Ala 145	cag Gln	tgg Trp	aag Lys	caa Gln	acc Thr 150	aac Asn	ttc Phe	atg Met	acc Thr	aag Lys 155	ctg Leu	ggc Gly	tcc Ser	3901
att Ile	tcc Ser 160	tgt Cys	aaa Lys	tcg Ser	ctg Leu	aaa Lys 165	Gly ggg	ggg Gly	aac Asn	att Ile	agc Ser 170	ctc Leu	gag Glu	cac His	cac His	3949
		cac His		tga	gatco	egg (etgel	taaca	aa a	gccc	gaaa	g ga	agct	gagt		4001
tgg	ctgc	tgc (cacco	gctga	ag ca	aataa	acta	g cat	caac	ccct	tgg	ggcc	tct	aaac	gggtct	4061
tga	gggg	ttt 1	ttg	ctga	aa g	gagga	aact	a tai	ccg	gat						4100
<21	0> 6 1> 1 2> P															
<21	3> A	rtif.	icia	l Se	quen	ce										
<22	0> 3> D	rtif escr arbo	ipti	on o	f Ar	tifi					huma	n Ty	rRS			
<22 <22 <40	0> 3> D c	escr arbo	ipti xyl-	on o term	f Ar inal	tifi dom	ain	in p	ET20	В		-		C) w		
<22 <22 <40	0> 3> D c 0> 6 Pro	escr arbo	ipti xyl-	on o term	f Ar inal Ile	tifi dom	ain	in p	ET20	B Asp		-		Gly 15	Lys	
<22 <22 <40 Met	0> 3> D c 0> 6 Pro	escr arbo Glu	ipti xyl- Glu	on o term Val 5 Glu	f Ar inal Ile	tifi dom Pro	ain Ser	in p	ET20 Leu 10	B Asp	Ile	Arg	Val	15 Val		
<22 <22 <40 Met 1	0> 3> D c 0> 6 Pro	escr arbo Glu Thr	ipti xyl- Glu Val 20 Val	on o term Val 5 Glu	f Ar inal Ile Lys	tifi dom Pro His	ain Ser Pro	Arg Asp 25	Leu 10 Ala	B Asp Asp	Ile Ser	Arg	Val Tyr 30	15 Val		
<22 <22 <40 Met 1 11e	0> 3> D c 0> 6 Pro	escr arbo Glu Thr Asp 35	ipti xyl- Glu Val 20 Val	on o term Val 5 Glu Gly	f Ar inal Ile Lys	tifi dom Pro His Ala	Ser Pro Glu 40	Arg Asp 25	Leu 10 Ala Arg	B Asp Asp Thr	Ile Ser	Arg Leu Val 45	Val Tyr 30	15 Val	Glu	
<22 <22 <40 Met 1 11e Lys	0> 3> D c 0> 6 Pro E Ile Gln 50 1 Cys	escr arbo Glu Thr Asp 35	iptic xyl- Glu Val 20 Val	on o term Val 5 Glu Gly Pro	f Ar inal Ile Lys Glu	tifi dom Pro His Ala Glu 55	Ser Pro Glu 40	Arg Asp 25 Pro	Leu 10 Ala Arg	Asp Asp Thr	Ser Val	Arg Leu Val	Val Tyr 30 Ser	15 Val	Glu Leu	
<22 <22 <40 Met 1 11e Lys Val	0> 3> D c 0> 6 Pro : Ile : Gln 50 : Cys	escr arbo Glu Thr Asp 35	ipti xyl- Glu Val 20 Val Val	on o term Val Glu Gly Pro	f Arinal Ile Lys Glu Lys Pro	tifi dom Pro His Ala Glu 55	Ser Pro Glu 40 Glu	Arg Asp 25 Pro	Leu 10 Ala Arg Gln	Asp Asp Thr Asp Gly 75	Ser Val	Arg Leu Val 45 Leu	Val Tyr 30 Ser Val	15 Val Gly Val	Glu Leu Val Gly 80	
<222 <222 <400 Met 1 Ile Lys Val Leu 65	0> 3> D 0> 6 Pro 1le Gln 50 1 Cys	escr arbo Glu Thr Asp 35 Phe	ipti xyl- Glu Val Val Val Leu	On O term Val 5 Glu Gly Pro Lys Ala 85	f Arinal Ile Lys Glu Pro 70	tifi dom Pro His Ala Glu 55	Ser Pro Glu 40 Glu Lys	Arg Asp 25 Pro Leu Gly	Leu 10 Ala Arg Gln Arg	Asp Asp Thr Asp 75	Ser Val Arc 60 Val	Arg Leu Val 45 Leu Glu	Val Tyr 30 Ser Val	15 Val	Glu Leu Val Gly 80	

Val Phe Glu Lys Leu Gln Ala Asp Phe Lys Ile Ser Glu Glu Cys Ile 130 135 140

Ala Gln Trp Lys Gln Thr Asn Phe Met Thr Lys Leu Gly Ser Ile Ser 145 150 155 160

Cys Lys Ser Leu Lys Gly Gly Asn Ile Ser Leu Glu His His His His 165 170 175

His His

<210> 7

<211> 4682

<212> DNA <213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4543)

<220>

<223> Description of Artificial Sequence: human mini TyrRS mutant in pET20B

<400> 7 tggcgaatgg gacgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagogtgace getacacttg ceagegeest agegeeeget cetttegett tettecette 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acqtaqtqqq ccatcqccct qataqacqqt ttttcqccct ttqacqttgq agtccacqtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttqctcac ccaqaaacqc tqqtqaaaqt aaaaqatqct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020

aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accgctacca geggtggttt gtttgeegga teaagageta eeaactettt tteegaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880

tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2	940
ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3	3000
aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3	3060
gccagcagca tectgegatg cagateegga acataatggt geagggeget gaetteegeg 3	3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3	3180
acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3	3240
cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3	3300
cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3	3360
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3	3420
tatacat atg ggg gac gct ccc agc cct gaa gag aaa ctg cac ctt atc Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile 1 5 10	3469
acc cgg aac ctg cag gag gtt ctg ggg gaa gag aag ctg aag gag ata Thr Arg Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile 15 20 25 30	3517
ctg aag gag cgg gaa ctt aaa att tac tgg gga acg gca acc acg ggc Leu Lys Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly 35 40 45	3565
aaa cca cat gtg gct tac ttt gtg ccc atg tca aag att gca gac ttc Lys Pro His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe 50 55 60	3613
tta aag gca ggg tgt gag gta aca att ctg ttt gcg gac ctc cac gca Leu Lys Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala 65 70 75	3661
tac ctg gat aac atg aaa gcc cca tgg gaa ctt cta gaa ctg cag gtc Tyr Leu Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Gln Val 80 85 90	3709
agt tac tat gag aat gtg atc aaa gca atg ctg gag agc att ggt gtg Ser Tyr Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val 95 100 105 110	3757
ccc ttg gag aag ctc aag ttc atc aaa ggc act gat tac cag ctc agc Pro Leu Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser 115 120 125	3805
aaa gag tac aca cta gat gtg tac aga ctc tcc tcc gtg gtc aca cag Lys Glu Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln 130 135 140	3853
cac gat tcc aag aag gct gga gct gag gtg gta aag cag gtg gag cac His Asp Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His 145 150 155	3901
cct ttg ctg agt ggc ctc tta tac ccc gga ctg cag gct ttg gat gaa Pro Leu Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu 160 165 170	3949

					gat Asp 180											3997
					gag Glu											4045
					aat Asn											4093
					gag Glu											4141
					aaa Lys											4189
					gtt Val 260											4237
					gtg Val											4285
					tac Tyr											4333
			Pro		gac Asp								Ala			4381
		Leu			atc Ile		Glu					Pro			aaa Lys	4429
	Leu				gcc Ala 340	Tyr					Lys					4477
					Lys					Glu					gag Glu	4525
				His	cac His		gato	:cgg	ctgo	taac	aa a	igeed	gaaa	g		4573
gaa	gctg	agt	tggc	tgct	gc c	acco	ıctga	ıg ca	ataa	ctaç	g cat	aaco	cct	tggg	gcctct	4633
aaa	cggg	ıtct	tgaç	gggt	tt t	ttgc	tgaa	ıa go	agga	acta	a tat	ccgc	gat			4682

<210 <211 <212 <213	> 37 > PR	T	cial	Sec	luenc	e									
<220 <223	> De		-		Art n pE			Sequ	ence	e: hu	ıman	mini			
<400															
Met 1	Gly	Asp	Ala	Pro 5	Ser	Pro	Glu	Glu	Lys 10	Leu	His	Leu	Ile	Thr 15	Arg
Asn	Leu	Gln	Glu 20	Val	Leu	Gly	Glu	Glu 25	Lys	Leu	Lys	Glu	Ile 30	Leu	Lys
Glu	Arg	Glu 35	Leu	Lys	Ile	Tyr	Trp	Gly	Thr	Ala	Thr	Thr 45	Gly	Lys	Pro
His	Val 50	Ala	Tyr	Phe	Val	Pro 55	Met	Ser	Lys	Ile	Ala 60	Asp	Phe	Leu	Lys
Ala 65	Gly	Суз	Glu	Val	Thr 70	Ile	Leu	Phe	Ala	Asp 75	Leu	His	Ala	Tyr	Leu 80
Asp	Asn	Met	Lys	Ala 85	Pro	Trp	Glu	Leu	Leu 90	Glu	Leu	Gln	Val	Ser 95	Tyr
Tyr	Glu	Asn	Val 100	Ile	Lys	Ala	Met	Leu 105	Glu	Ser	Ile	Gly	Val 110	Pro	Leu
Glu	Lys	Leu 115		Phe	Ile	Lys	Gly 120	Thr	Asp	Tyr	Gln	Leu 125	Ser	Lys	Glu
Tyr	Thr 130	Leu	Asp	Val	Tyr	Arg 135		Ser	Ser	Val	Val 140	Thr	Gln	His	Asp
Ser 145	Lys	Lys	Ala	Gly	Ala 150	Glu	Val	Val	Lys	Gln 155		Glu	His	Pro	Leu 160
Leu	Ser	Gly		Leu 165	Tyr		Gly				Leu	Asp	Glu	Glu 175	
Leu	Lys	Val	Asp 180		Gln	Phe	Gly	Gly 185		Asp	Gln	Arg	Lys 190		Phe
Thr	Phe	Ala 195		Lys	Tyr	Leu	Pro 200		Leu	Gly	Tyr	Ser 205		Arg	Val
His	Leu 210		Asn	Pro	Met	Val 215		Gly	Leu	Thr	Gly 220		Lys	Met	Ser
Ser 225		Glu	Glu	Glu	Ser 230		: Ile	asp	Leu	Leu 235		Arg	Lys	Glu	Asp 240
Val	Lys	Lys	Lys	Let 245		Lys	s Ala	n Phe	Cys 250		Pro	Gly	/ Asn	Val 255	Glu
Asn	Asn	Gly	/ Val 260		ı Ser	Phe	e Ile	265		s Val	Leu	ı Phe	270		Lys

Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr 275 280 285

Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val 290 295 300

His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu 305 310 315 320

Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu 325 330 335

Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys 340 345 350

Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu His His 355 360 365

His His His His

<210> 9 <211> 5018

<212> DNA <213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4879)

<220>

<223> Description of Artificial Sequence: human
 full-length TrpRS in pET20B

<400> 9

tggcgaatgg gacgcgcct gtagcggcg attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgcct agcgccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgcttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgcct gatagacggt ttttcgcct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgatta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaaattcag gtggcacttt 480 tccggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gctcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tcccttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg acctcaacag cggtaagatc ctttgaggtt tccgcccga 780

agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tegttgggaa eeggagetga atgaageeat accaaaegae gagegtgaca eeaegatgee 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaace 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640

gcat	atat	ca q	aggt	tttca	а сс	atca	tcac	cga	aacσ	cac	gagg	cage	ta c	agta	aagct	2700
															ctcgt	
							_	_							ggcgg	
															ggtaa	
tgat	accg	at g	aaac	gaga	g ag	gatg	ctca	cga	tacg	ggt	tact	gatg	at c	gaaca	tgccc	2940
ggtt	actg	ga a	cgtt	gtga	g gg	taaa	caac	tgg	cggt	atg	gatg	cggc	gg g	gacca	gagaa	3000
aaat	cact	ca g	ggtc	aatg	с са	gcgc	ttcg	tta	atac	aga	tgta	ggtg	tt d	ccaca	gggta	3060
gcca	gcag	ca t	cctg	cgat	g ca	gato	cgga	aca	taat	ggt	gcag	ggçg	ct ç	gactt	ccgcg	3120
tttc	caga	.ct t	tacg	aaac	a cg	gaaa	ccga	aga	ccat	tca	tgtt	gttg	ct o	caggt	cgcag	3180
acgt	tttg	ca c	gcagc	agtc	g ct	tcac	gttc	gct	cgcg	tat	cggt	gatt	ca t	ttctg	ctaac	3240
cagt	aagg	ca a	acccc	gcca	g cc	tago	cggg	tcc	tcaa	cga	cagg	agca	icg a	atcat	gcgca	3300
cccg	tggc	ca ç	ggacc	caac	g ct	gccc	gaga	tct	cgat	ccc	gcga	aatt	aa t	tacga	ctcac	3360
tata	ggga	ıga d	ccaca	acgg	t tt	ccct	ctag	aaa	taat	ttt	gttt	aact	tt a	aagaa	ıggaga	3420
tata	cat													ttc Phe		3469
														gga Gly		3517
														tca Ser 45		3565
														gac Asp		3613
														gcc Ala		3661
Glu														agc Ser		3709
														agt Ser		3757
														ggc Gly 125		3,805
														aga Arg		3853

	cag Gln 145														3901
	ggc Gly														3949
	ttt Phe														3997
	atc Ile														4045
	gac Asp														4093
_	tgt Cys 225			_			_						_	_	4141
	atg Met														4189
	cat His														4237
	gac Asp														4285
	ttc Phe		Asn					Ile						gat Asp	4333
	tgc Cys 305	Leu					Ile					Tyr		aga Arg	4381
	Arg					Arg					Lys			ctg Leu	4429
His					Pro					Ala				atg Met 350	4477
				Asn					Leu					aag Lys	4525
			Lys					Ala					Arc	gac JAsp	4573

acc atc gag gag cac agg cag ttt ggg ggc aac tgt gat gtg gac gtg Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val 385 390 395	621
tet tte atg tae etg ace tte tte etc gag gae gae gae aag etc gag Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu 400 405 410	1669
cag atc agg aag gat tac acc agc gga gcc atg ctc acc ggt gag ctc Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu 415 420 425 430	1717
aag aag gca ctc ata gag gtt ctg cag ccc ttg atc gca gag cac cag Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln 435 440 445	4765
gcc cgg cgc aag gag gtc acg gat gag ata gtg aaa gag ttc atg act Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr 450 455 460	4813
ccc cgg aag ctg tcc ttc gac ttt cag aag ctt gcg gcc gca ctc gag Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu Glu 465 470 475	4861
cac cac cac cac cac tgagateegg etgetaacaa ageeegaaag His His His His His 480	4909
gaagetgagt tggetgetge cacegetgag caataactag cataacceet tggggeetet	4969
aaacgggtet tgaggggttt tttgetgaaa ggaggaaeta tateeggat	5018
<pre><210> 10 <211> 484 <212> PRT <213> Artificial Sequence</pre>	5018
<210> 10 <211> 484 <212> PRT	5018
<210> 10 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: human	5018
<210> 10 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: human full-length TrpRS in pET20B <400> 10 Met Pro Asn Ser Glu Pro Ala Ser Leu Leu Glu Leu Phe Asn Ser Ile	5018
<pre><210> 10 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: human full-length TrpRS in pET20B <400> 10 Met Pro Asn Ser Glu Pro Ala Ser Leu Leu Glu Leu Phe Asn Ser Ile 1</pre>	5018
<pre><210> 10 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: human</pre>	5018
<pre><210> 10 <211> 484 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: human</pre>	5018

- Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile 100 105 110
- Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro 115 120 125
- His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn 130 135 140
- Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr 145 150 155 160
- Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile Pro 165 170 175
- Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val
- Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu 195 200 205
- Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala 210 215 220
- Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr 225 230 235 240
- Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys 245 250 255
- His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser 260 265 270
- Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser 275 280 285
- Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln 290 295 300
- Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr 305 310 315 320
- Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His 325 330 335
- Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser Ala 340 345 350
- Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile 355 360 365
- Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile 370 375 380
- Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe 385 390 395
- Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile 405 410 415
- Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys 420 425 430

Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg 435 440 . 445

Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg 450 . 455 . 460

Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu Glu His His 465 470 475 480

His His His His

<210> 11

<211> 4877

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4738)

<220>

<223> Description of Artificial Sequence: human mini TrpRS in pET20B

<400> 11 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagogtgace getacacttg ecagogeeet agegeeeget cetttegett tettecette 120 etttetegee aegttegeeg gettteeeeg teaageteta aateggggge teeetttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccaqaaacqc tqqtqaaaqt aaaagatgct gaagatcagt tgggtgcacg 720 aqtqqqttac atcqaactqq atctcaacaq cqqtaaqatc cttqaqaqtt ttcqccccqa 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tittetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accyctacca gcygtygttt ytttyccyga tcaagaycta ccaactcttt ttccyaagyt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880

tgataccgat gaaac	gagag aggatgc	ctca cgatacgg	gt tactgatgat	gaacatgccc	2940
ggttactgga acgtt	gtgag ggtaaac	caac tggcggta	tg gatgcggcgg	gaccagagaa	3000
aaatcactca gggto	aatgc cagcgct	tcg ttaataca	ga tgtaggtgtt	ccacagggta	3060
gccagcagca teetg	cgatg cagatco	egga acataatg	gt gcagggcgct	gacttccgcg	3120
tttccagact ttacg	gaaaca cggaaac	ccga agaccatt	ca tgttgttgct	caggtcgcag	3180
acgttttgca gcago	agtcg cttcacg	gttc gctcgcgt	at cggtgattca	ttctgctaac	3240
cagtaaggca accco	gccag cctagcc	eggg teeteaac	ga caggagcacg	atcatgcgca	3300
cccgtggcca ggacc	caacg ctgcccg	gaga tctcgatc	cc gcgaaattaa	tacgactcac	3360
tatagggaga ccaca	acggt ttccctc	ctag aaataatt	tt gtttaacttt	aagaaggaga	3420
tatacat atg agc Met Ser 1	tac aaa gct g Tyr Lys Ala A 5	gee geg ggg g Ala Ala Gly G	gag gat tac aag Glu Asp Tyr Lys 10	gct gac Ala Asp	3469
tgt cct cca ggg Cys Pro Pro Gly 15	aac cca gca c Asn Pro Ala F 20	cct acc agt a Pro Thr Ser A	aat cat ggc cca Asn His Gly Pro 25	gat gcc Asp Ala 30	3517
aca gaa gct gaa Thr Glu Ala Glu	gag gat ttt g Glu Asp Phe V 35	gtg gac cca t Val Asp Pro T 40	gg aca gta cac Trp Thr Val Glr	aca agc Thr Ser 45	3565
agt gca aaa ggc Ser Ala Lys Gly 50	ata gac tac g Ile Asp Tyr A	gat aag ctc a Asp Lys Leu I 55	att gtt cgg ttt [le Val Arg Phe 60	Gly Ser	3613
agt aaa att gac Ser Lys Ile Asp 65	aaa gag cta a Lys Glu Leu I	ata aac cga a Ile Asn Arg I 70	ata gag aga gco Ile Glu Arg Ala 75	acc ggc Thr Gly	3661
caa aga cca cac Gln Arg Pro His ' 80	cac ttc ctg of His Phe Leu A 85	cgc aga ggc a Arg Arg Gly I	atc ttc ttc tca Ile Phe Phe Ser 90	cac aga His Arg	3709
gat atg aat cag Asp Met Asn Gln 95	gtt ctt gat o Val Leu Asp A 100	Ala Tyr Glu <i>P</i>	aat aag aag cca Asn Lys Lys Pro 105	ttt tat Phe Tyr 110	3757
ctg tac acg ggc Leu Tyr Thr Gly	cgg ggc ccc t Arg Gly Pro S 115	tct tct gaa o Ser Ser Glu <i>F</i> 120	gca atg cat gta Ala Met His Va	a ggt cac L Gly His 125	3805
ctc att cca ttt Leu Ile Pro Phe 130	att ttc aca a	aag tgg ctc o Lys Trp Leu 0 135	cag gat gta tti Gln Asp Val Pho 140	Asn Val	3853
ccc ttg gtc atc Pro Leu Val Ile 145	Gln Met Thr A	gat gac gag a Asp Asp Glu I 150	aag tat ctg tgo Lys Tyr Leu Tr 155	j aag gac) Lys Asp	3901
ctg acc ctg gac Leu Thr Leu Asp 160	cag gcc tat of Gln Ala Tyr (165	ggc gat gct o Gly Asp Ala V	gtt gag aat gco Val Glu Asn Alo 170	aag gac Lys Asp	3949

atc Ile 175	atc Ile	gcc Ala	tgt Cys	ggc Gly	ttt Phe 180	gac Asp	atc Ile	aac Asn	aag Lys	act Thr 185	ttc Phe	ata Ile	ttc Phe	tct Ser	gac Asp 190	3997
												aat Asn				4045
att Ile	caa Gln	aag Lys	cat His 210	gtt Val	acc Thr	ttc Phe	aac Asn	caa Gln 215	gtg Val	aaa Lys	ggc Gly	att Ile	ttc Phe 220	ggc Gly	ttc Phe	4093
												gcc Ala 235				4141
												cga Arg				4189
												gat Asp				4237
												cct Pro				4285
				Thr								gcc Ala				4333
												acc Thr 315				4381
		Ile					Asn					tct Ser				4429
	Thr					Arg					Asn	tgt Cys				4477
					Leu					Ğlu		gac Asp			ctc Leu	4525
				Lys					Gly					Gly	gag Glu	4573
			Ala					. Leu					Ala		cac His	4621
caç Glr	g gcc Ala 400	Arc	g cgc g Arc	aaq J Lys	g gag Glu	gto Val 405	. Thi	gat Asp	gaç Glu	g ata 1 Ile	gto Val	Lys	gag Glu	tto Phe	atg Met	4669

		t cag aag ctt gcg gcd ne Gln Lys Leu Ala Ala 425										
gag cac cac cac cac Glu His His His His 43	His His	ccgg ctgctaacaa agcco	gaaag 4768									
gaagctgagt tggctgctgc caccgctgag caataactag cataacccct tggggcctct												
aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggat												
<210> 12 <211> 437 <212> PRT <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: human mini TrpRS in pET20B												
_	a Ala Ala Gly G	lu Asp Tyr Lys Ala As _l 10	Cys Pro 15									
Pro Gly Asn Pro Al		sn His Gly Pro Asp Ala 25 3										
Ala Glu Glu Asp Ph 35	e Val Asp Pro T: 40	rp Thr Val Gln Thr Se 45	r Ser Ala									
Lys Gly Ile Asp Ty 50	r Asp Lys Leu I 55	le Val Arg Phe Gly Se 60	r Ser Lys									
Ile Asp Lys Glu Le 65	u Ile Asn Arg I 70	le Glu Arg Ala Thr Gl 75	y Gln Arg 80									
Pro His His Phe Le 8		le Phe Phe Ser His Ar 90	g Asp Met 95									
Asn Gln Val Leu As		sn Lys Lys Pro Phe Ty 05 11										
Thr Gly Arg Gly Pr 115	o Ser Ser Glu A 120	la Met His Val Gly Hi 125	s Leu Ile									
Pro Phe Ile Phe Th 130	r Lys Trp Leu G 135	ln Asp Val Phe Asn Va 140	l Pro Leu									
Val Ile Gln Met Th	r Asp Asp Glu L 150	ys Tyr Leu Trp Lys As 155	p Leu Thr 160									
Leu Asp Gln Ala Ty 16		al Glu Asn Ala Lys As 170	p Ile Ile 175									
Ala Cys Gly Phe As 180	_	hr Phe Ile Phe Ser As 85 19										
Tyr Met Gly Met Se 195	r Ser Gly Phe T 200	yr Lys Asn Val Val Ly 205	s Ile Gln									

Lys	His 210	Val	Thr	Phe	Asn	Gln 215	Val	Lys	Gly	Ile	Phe 220	Gly	Phe	Thr	Asp
Ser 225	Asp	Cys	Ile	Gly	Lys 230	Ile	Ser	Phe	Pro	Ala 235	Ile	Gln	Ala	Ala	Pro 240
Ser	Phe	Ser	Asn	Ser 245	Phe	Pro	Gln	Ile	Phe 250	Arg	Asp	Arg	Thr	Asp 255	Ile
Gln	Суз	Leu	Ile 260	Pro	Cys	Ala	Ile	Asp 265	Gln	Asp	Pro	Tyr	Phe 270	Arg	Met
Thr	Arg	Asp 275	Val	Ala	Pro	Arg	Ile 280	Gly	Tyr	Pro	Lys	Pro 285	Ala	Leu	Leu
His	Ser 290	Thr	Phe	Phe	Pro	Ala 295	Leu	Gln	Gly	Ala	Gln 300	Thr	Lys	Met	Ser
Ala 305	Ser	Asp	Pro	Asn	Ser 310	Ser	Ile	Phe	Leu	Thr 315	Asp	Thr	Ala	Lys	Gln 320
Ile	Lys	Thr	Lys	Val 325	Asn	Lys	His	Ala	Phe 330	Ser	Gly	Gly	Arg	Asp 335	Thr
Ile	Glu	Glu	His 340	Arg	Gln	Phe	Gly	Gly 345	Asn	Cys	Asp	Val	Asp 350	Val	Ser
Phe	Met	Tyr 355		Thr	Phe	Phe	Leu 360		Asp	Asp	Asp	Lys 365	Leu	Glu	Gln
Ile	Arg 370		Asp	Tyr	Thr	Ser 375	Gly	Ala	Met	Leu	Thr 380	Gly	Glu	Leu	Lys
Lys 385		Leu	Ile	Glu	Val 390		Gln	Pro	Leu	Ile 395		Glu	His	Gln	Ala 400
Arg	Arg	Lys	Glu	Val 405		Asp	Glu	Ile	Val 410		Glu	Phe	Met	Thr 415	Pro
Arg	Lys	Leu	Ser 420		Asp			Lys 425		Ala	Ala	Ala	Leu 430		His
His	His	His 435	His	His	i										
<210> 13 <211> 4811 <212> DNA <213> Artificial Sequence															
<22	<220> <221> CDS <222> (3428)(4672)														

<220>
<223> Description of Artificial Sequence: human supermini TrpRS in pET20B

<400> 13

 ${\tt tggcgaatgg} \ {\tt gacgcgccct} \ {\tt gtagcggcgc} \ {\tt attaagcgcg} \ {\tt gcgggtgtgg} \ {\tt tggttacgcg} \ {\tt 60}$

cagogtgace getacacttg ceagegeest agegeeget cetttegett tettecette 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tecaaactgg aacaacacte aaccetatet eggtetatte 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa cattteegtg tegeeettat teeetttttt geggeatttt geetteetgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tegttgggaa eeggagetga atgaageeat accaaaegae gagegtgaea eeaegatgee 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 1680 accyctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccactte aagaactetg tagcaccgee tacatacete getetgetaa teetgttace 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920

accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980
gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400
gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580
gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640
gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
catcagegtg gtegtgaage gatteacaga tgtetgeetg tteateegeg teeagetegt 2760
tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820
ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880
tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060
gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180
acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240
cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3360
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420
tatacat atg agt aat cat ggc cca gat gcc aca gaa gct gaa gag gat 3469 Met Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp 1 5 10
ttt gtg gac cca tgg aca gta cag aca agc agt gca aaa ggc ata gac 3517 Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly Ile Asp 15 20 25 30
tac gat aag ctc att gtt cgg ttt gga agt agt aaa att gac aaa gag 3565 Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile Asp Lys Glu 35 40 45

		cga Arg 50												3613
		ggc Gly												3661
		gaa Glu												3709
		gaa Glu												3757
		ctc Leu												3805
		gag Glu 130												3853
		gct Ala												3901
		aag Lys											atg Met	3949
		ttc Phe											acc Thr 190	3997
													att Ile	4045
							Ala					Ser	aac Asn	4093
		Gln				Arg					Cys		atc	4141
	Ala				Pro					Thr			gtc Val	4189
Pro				Pro					Leu				Phe 270	4237
			Gly					Met					c cca Pro	4285

30/32											
aac tcc tcc atc ttc ctc acc gac acg gcc aag cag atc aaa acc aag Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile Lys Thr Lys 290 295 300	3										
gtc aat aag cat gcg ttt tct gga ggg aga gac acc atc gag gag cac 438. Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile Glu Glu His 305 310 315	1										
agg cag ttt ggg ggc aac tgt gat gtg gac gtg tct ttc atg tac ctg Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe Met Tyr Leu 320 325 330	9										
acc ttc ttc ctc gag gac gac gac aag ctc gag cag atc agg aag gat Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile Arg Lys Asp 335 340 345 350	7										
tac acc agc gga gcc atg ctc acc ggt gag ctc aag aag gca ctc ata 452 Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys Ala Leu Ile 355 360 365	5										
gag gtt ctg cag ccc ttg atc gca gag cac cag gcc cgg cgc aag gag 457 Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg Arg Lys Glu 370 375 380	3										
gtc acg gat gag ata gtg aaa gag ttc atg act ccc cgg aag ctg tcc 462 Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg Lys Leu Ser 385 390 395	:1										
ttc gac ttt cag aag ctt gcg gcc gca ctc gag cac cac cac cac cac cac Phe Asp Phe Gln Lys Leu Ala Ala Leu Glu His His His His His 400 405 410	i9										
cac tgagatccgg ctgctaacaa agcccgaaag gaagctgagt tggctgctgc 472 His 415	!2										
caccgctgag caataactag cataacccct tggggcctct aaacgggtct tgaggggttt 478	32										
tttgctgaaa ggaggaacta tatccggat 481	.1										
<210> 14 <211> 415 <212> PRT <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: human supermini TrpRS in pET20B											
<pre><400> 14 Met Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp Phe Val</pre>											
Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly Ile Asp Tyr Asp 20 25 30											
Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile Asp Lys Glu Leu Ile 35 40 45											
Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro His His Phe Leu Arg 50 55 60											

Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile Pro Phe Ile Phe Thr Lys 105 Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys His Val Thr Phe Asn 180 Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser Asp Cys Ile Gly Lys 200 Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser Phe Ser Asn Ser Phe 210 220 Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln Cys Leu Ile Pro Cys 230 Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser Ala Ser Asp Pro Asn Ser 280 Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile Glu Glu His Arg Gln 315 Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys Ala Leu Ile Glu Val 360

Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg Arg Lys Glu Val Thr

375

380

Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg Lys Leu Ser Phe Asp 385 390 395 400

Phe Gln Lys Leu Ala Ala Ala Leu Glu His His His His His 405 410 415

<210> 15

<211> 4742

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4603)

<220>

<223> Description of Artificial Sequence: human minor Trp-RS fragment in pET20B

<400> 15 tggcgaatgg gacgcccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc getacacttg ccagcgccct agcgcccqct cctttcqctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200

ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaace 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tecegaaggg agaaaggegg aeaggtatee ggtaagegge agggteggaa eaggagageg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940: ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060

gccagcagca	tcctgcga	tg cagato	ccgga ac	ataatggt	gcagggcgct	gacttccgcg	3120
tttccagact	ttacgaaa	ca cggaaa	accga ag	accattca	tgttgttgct	caggtcgcag	3180
acgttttgca	gcagcagt	cg cttca	cgttc go	tcgcgtat	cggtgattca	ttctgctaac	3240
cagtaaggca	accccgcc	ag cctag	ccggg to	ctcaacga	caggagcacg	atcatgcgca	3300
cccgtggcca	ggacccaa	cg ctgcc	cgaga to	tcgatccc	gcgaaattaa	tacgactcac	3360
tatagggaga	ccacaacg	gt ttccc	tctag aa	ataatttt	gtttaacttt	aagaaggaga	3420
Me	g agt gca t Ser Ala 1	aaa ggc Lys Gly 5	ata gad Ile Asp	tac gat Tyr Asp	aag ctc att Lys Leu Ile 10	gtt cgg Val Arg	3469
ttt gga ag Phe Gly Se 15	t agt aaa r Ser Lys	att gac Ile Asp 20	aaa gaq Lys Glu	g cta ata Leu Ile 25	aac cga ata Asn Arg Ile	gag aga Glu Arg 30	3517
gcc acc gg Ala Thr Gl	c caa aga y Gln Arg 35	cca cac Pro His	cac tto His Phe	c ctg cgc Leu Arg 40	aga ggc atc Arg Gly Ile	ttc ttc Phe Phe 45	3565
tca cac ag Ser His Ar	a gat atg g Asp Met 50	aat cag Asn Gln	gtt ctt Val Leu 55	ı Asp Ala	tat gaa aat Tyr Glu Asn 60	Lys Lys	3613
Pro Phe Ty	t ctg tac r Leu Tyr 5	acg ggc Thr Gly	cgg ggd Arg Gly 70	ccc tct Pro Ser	tct gaa gca Ser Glu Ala 75	atg cat Met His	3661
gta ggt ca Val Gly Hi 80	c ctc att s Leu Ile	cca ttt Pro Phe 85	att tto Ile Phe	c aca aag e Thr Lys	tgg ctc cag Trp Leu Glr 90	gat gta Asp Val	3709
ttt aac gt Phe Asn Va 95	g ccc ttg l Pro Leu	gtc atc Val Ile 100	cag ato	g acg gat Thr Asp 105	gac gag aag Asp Glu Lys	tat ctg Tyr Leu 110	3757
tgg aag ga Trp Lys As	c ctg acc p Leu Thr 115	Leu Asp	cag gco Gln Ala	tat ggc a Tyr Gly 120	gat gct gtt Asp Ala Val	gag aat Glu Asn 125	3805
gcc aag ga Ala Lys As	c atc atc p Ile Ile 130	gcc tgt Ala Cys	ggc tt: Gly Pho 13	e Asp Ile	aac aag act Asn Lys Thr 14(Phe Ile	3853
ttc tct ga Phe Ser As 14	p Leu Asp	tac atg Tyr Met	ggg ate Gly Me 150	g agc tca t Ser Ser	ggt ttc tac Gly Phe Tyr 155	: aaa aat : Lys Asn	3901
gtg gtg aa Val Val Ly 160	g att caa s Ile Gln	aag cat Lys His 165	Val Th	c ttc aac r Phe Asn	caa gtg aaa Gln Val Lys 170	ggc att Gly Ile	3949
ttc ggc tt Phe Gly Ph 175	c act gad e Thr Asp	agc gac Ser Asp 180	tgc at Cys Il	t ggg aag e Gly Lys 185	atc agt tt Ile Ser Phe	cct gcc Pro Ala 190	3997

												cag Gln				4045
												att Ile				4093
												atc Ile 235				4141
												ctg Leu				4189
												atc Ile				4237
												cat His				4285
												ggg Gly				4333
												ctc Leu 315				4381,
		Leu										gga Gly				4429
	Gly										Leu	cag Gln				4477
gca Ala	gag Glu	cac His	cag Gln	gcc Ala 355	Arg	cgc Arg	aag Lys	gag Glu	gtc Val 360	Thr	gat Asp	gag Glu	ata Ile	gtg Val 365	aaa Lys	4525
				Pro					Phe					Leu	gcg Ala	4573
	gee gea ete gag eac eac eac eac eac tgagateegg etgetaacaa Ala Ala Leu Glu His His His His His 385 390								4623							
agecegaaag gaagetgagt tggetgetge cacegetgag caataactag cataacceet										4683						
tggggcctct aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggat									4742							

<210> 16

<211> 392

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: human minor
 TrpRS fragment in pET20B

<400> 16

Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly 1 5 10 15

Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr 20 25 30

Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His 35 40 45

Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe 50 60 .

Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly 65 70 75 80

His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn 85 90 95

Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys
100 105 110

Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys 115 120 125

Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser 130 135 140

Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val 145 150 155 160

Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly 165 170 175

Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln 180 185 190

Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg 195 200 205

Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr 210 215 220

Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro 225 230 235 240

Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr 245 250 255

Lys Met Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr 260 265 270

Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly 275 280 285

Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val 290 295 300

Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys 305 310 315 320

Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly 325 330 335

Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu 340 345 350

His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe 355 360 365

Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala 370 375 380

Leu Glu His His His His His His 385 390

<210> 17

<211> 6

<212> PRT

<213> Homo sapiens

<400> 17

Glu Leu Arg Val Ser Tyr 1 5

<210> 18

<211> 6

<212> PRT

<213> Escherichia coli

<400> 18

Glu Thr Val Gln Glu Trp

<210> 19

<211> 9

<212> PRT

<213> Homo sapiens

<400> 19

Ser Ala Lys Glu Leu Arg Cys Gln Cys

```
<210> 20
<211> 11
<212> PRT
<213> Homo sapiens
<400> 20
Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys
<210> 21
<211> 7
<212> PRT
<213> Homo sapiens
<400> 21
Ala Glu Leu Arg Cys Gln Cys
<210> 22
<211> 58
<212> PRT
<213> Homo sapiens
<400> 22
Gly Asp Glu Lys Lys Ala Lys Glu Lys Ile Glu Lys Lys Gly Glu Lys
                                                           15
Lys Glu Lys Lys Gln Gln Ser Ile Ala Gly Ser Ala Asp Ser Lys Pro
Ile Asp Val Ser Arg Leu Asp Leu Arg Ile Gly Cys Ile Ile Thr Ala
         35
                              40
Arg Lys His Pro Asp Ala Asp Ser Leu Tyr
     50
<210> 23
<211> 58
<212> PRT
<213> Homo sapiens
<400> 23
Pro Ala Leu Lys Lys Leu Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys
Gln Lys Pro Met Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu
Val Ile Pro Ser Arg Leu Asp Ile Arg Val Gly Lys Ile Ile Thr Val
Glu Lys His Pro Asp Ala Asp Ser Leu Tyr
<210> 24
<211> 7
<212> PRT
 <213> Homo sapiens
```

```
<210> 25
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 25
        Arg Ile Gly Cys Ile Ile Thr
        <210> 26
        <211> 7
        <212> PRT
        <213> Homo sapiens
        <400> 26
ĹĴ
        Arg Ile Gly Arg Ile Ile Thr
ijŢ
Į)
ļ.,.
        <210> 27
        <211> 7
        <212> PRT
        <213> Caenorhabditis elegans
        <400> 27
        Arg Val Gly Arg Ile Ile Lys
Fij
<u>|</u>..
        <210> 28
Ľ.J
        <211> 7
<u>|</u>...
        <212> PRT
        <213> Saccharomyces cerevisiae
        <400> 28
        Arg Val Gly Phe Ile Gln Lys
        <210> 29
        <211> 7
        <212> PRT
        <213> Bos taurus
        <400> 29
        Arg Val Gly Lys Val Ile Ser
        <210> 30
        <211> 7
         <212> PRT
```

<213> Mus musculus

<400> 30

<400> 24

Arg Val Gly Lys Ile Ile Thr

```
Arg Ile Gly Cys Ile Val Thr
<210> 31
<211> 7
<212> PRT
<213> Mesocricetus auratus
<400> 31
Arg Ile Gly Arg Ile Val Thr
<210> 32
<211> 7
<212> PRT
<213> Ovis aries
<400> 32
Arg Ile Gly Cys Ile Ile Thr
<210> 33
<211> 7
<212> PRT
<213> Calcarea sp.
<400> 33
Arg Ile Gly Arg Ile Thr Ser
 1
<210> 34
<211> 7
<212> PRT
<213> A. aeolicus
<400> 34
Arg Val Ala Lys Val Leu Ser
<210> 35
<211> 7
<212> PRT
<213> Escherichia coli
<400> 35
Arg Val Gly Lys Ile Val Glu
<210> 36
<211> 7
<212> PRT
<213> Escherichia coli
<400> 36
Arg Val Ala Leu Ile Glu Asn
```

<210> 37 <211> 7 <212> PRT <213> Haemophilus influenzae <400> 37 Arg Val Ala Lys Val Leu Lys <213> Bacillus subtilis Arg Val Ala Glu Val Ile Glu <213> B. stearothermophilus Arg Val Ala Glu Val Val Gln <213> Thermus thermophilus Arg Val Ala Glu Val Leu Ala <213> Escherichia coli <400> 41 Val Gly Glu Val Val Glu <210> 42 <211> 6 <212> PRT <213> Bacillus subtilis <400> 42

Ile Gly His Val Leu Glu


```
<210> 43
<211> 6
<212> PRT
<213> Synechococcus sp.
<400> 43
Val Gly Arg Val Leu Glu
<210> 44
<211> 6
<212> PRT
<213> Thermus thermophilus
<400> 44
Phe Ala Arg Val Leu Glu
<210> 45
<211> 85
<212> PRT
<213> Homo sapiens
<400> 45
Met Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro
Pro Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu
Ala Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
Pro His His Phe Leu
                 85
<210> 46
<211> 85
<212> PRT
<213> Bos taurus
<400> 46
Thr Ser Tyr Lys Ala Ala Thr Gly Glu Asp Tyr Lys Val Asp Cys Pro
Pro Gly Asp Pro Ala Pro Glu Ser Gly Glu Gly Leu Asp Ala Thr Glu
Ala Asp Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
```

Ile Asp Lys Glu Leu Val Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg 65 70 . 75 80

Pro His Arg Phe Leu 85

<210> 47

<211> 85

<212> PRT

<213> Mus musculus

<400> 47

Met Ser Tyr Lys Ala Ala Met Gly Glu Glu Tyr Lys Ala Gly Cys Pro 1 5 10 15

Pro Gly Asn Pro Thr Ala Gly Arg Asn Cys Asp Ser Asp Ala Thr Lys
20 25 30

Ala Ser Glu Asp Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala 35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Gln Pro Gly Ser Ser Lys 50 55 60

Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg 65 70 75 80

Pro His Arg Phe Leu

<210> 48

<211> 85

<212> PRT

<213> Oryctolagus cuniculus

<400> 48

Thr Ser Tyr Lys Glu Ala Met Gly Glu Asp Tyr Lys Ala Asp Cys Pro 1 10 15

Pro Gly Asn Ser Thr Pro Asp Ser His Gly Pro Asp Glu Ala Val Asp 20 25 30

Asp Lys Glu Asp Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala 35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Gln Phe Gly Ser Ser Lys 50 55 60

Ile Asp Lys Glu Leu Val Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg 65 70 75 80

Pro His Arg Phe Leu

```
<210> 49
```

<213> Homo sapiens

<400> 49

Ile Ser Tyr Gln Gly Arg Ile Pro Tyr Pro Arg Pro Gly Thr Cys Pro
1 5 10 15

Gly Gly Ala Phe Thr Pro Asn Met Arg Thr Thr Lys Glu Phe Pro Asp 20 25 30

Asp Val Val Thr Phe Ile Arg Asn His Pro Leu Met Tyr Asn Ser Ile 35 40 45

Tyr Pro Ile His Lys Arg Pro Leu Ile Val Arg Ile Gly Thr Asp Tyr 50 55 60

Lys Tyr Thr Lys Ile Ala Val Asp Arg Val Asn Ala Ala Asp Gly Arg 65 70 75 80

Tyr His Val Leu Phe Leu 85

<210> 50

<211> 86

<212> PRT

<213> Mus musculus

<400> 50

Ile Ser Tyr Gln Gly Arg Ile Pro Tyr Pro Arg Pro Gly Thr Cys Pro 1 5 10 15

Gly Gly Ala Phe Thr Pro Asn Met Arg Thr Thr Lys Asp Phe Pro Asp 20 25 30

Asp Val Val Thr Phe Ile Arg Asn His Pro Leu Met Tyr Asn Ser Ile 35 40 45

Ser Pro Ile His Arg Arg Pro Leu Ile Val Arg Ile Gly Thr Asp Tyr 50 55 60

Lys Tyr Thr Lys Ile Ala Val Asp Arg Val Asn Ala Ala Asp Gly Arg 65 70 75 80

Tyr His Val Leu Phe Leu

<210> 51

<211> 46

<212> PRT

<213> Homo sapiens

<400> 51

Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro Gly Asn Pro 1 5 10 15

Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp
20 25 30

<211> 86

<212> PRT

Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly 35 40 45

<210> 52

<211> 46

<212> PRT

<213> Bos taurus

<400> 52

Ala Ala Thr Gly Glu Asp Tyr Lys Val Asp Cys Pro Pro Gly Asp Pro 1 5 10 15

Ala Pro Glu Ser Gly Glu Gly Leu Asp Ala Thr Glu Ala Asp Glu Asp 20 25 30

Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly 35 40 45

<210> 53

<211> 46

<212> PRT

<213> Mus musculus

<400> 53

Ala Ala Met Gly Glu Glu Tyr Lys Ala Gly Cys Pro Pro Gly Asn Pro 1 5 10 15

Thr Ala Gly Arg Asn Cys Asp Ser Asp Ala Thr Lys Ala Ser Glu Asp 20 25 30

Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala Lys Gly 35 40 45

<210> 54

<211> 46

<212> PRT

<213> Oryctolagus cuniculus

<400> 54

Glu Ala Met Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro Gly Asn Ser 1 5 10 15

Thr Pro Asp Ser His Gly Pro Asp Glu Ala Val Asp Asp Lys Glu Asp 20 25 30

Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala Lys Gly 35 40 45

<210> 55

<211> 41

<212> PRT

<213> Mus musculus

<400> 55

Ala Phe Ala Gly Glu Asp Phe Lys Val Asp Ile Pro Glu Thr His Gly
1 5 10 15

```
Gly Glu Gly Thr Glu Asp Glu Ile Asp Asp Glu Tyr Glu Gly Asp Trp
Ser Asn Ser Ser Ser Ser Thr Ser Gly
         35
<210> 56
<211> 5
<212> PRT
<213> Homo sapiens
<400> 56
Met Gly Asp Ala Pro
<210> 57
<211> 5
<212> PRT
<213> Homo sapiens
<400> 57
Ser Asn His Gly Pro
  1
<210> 58
<211> 5
<212> PRT
<213> Homo sapiens
<400> 58
```

1

Ser Ala Lys Gly Ile

£.,}

4) []

ļ.ì

إٍ , يه

ļ.:1

Cij

Ęij

Ļij

<u>ئ</u>انچ

1

1