Assignment 3

Deadline: May 29, 2021, 11.59 pm

1. Use R to solve the following question. Consider the following training set for a loan classification problem below.

Record	Age	Annual	Years of	Default
		Income	Education	(Loan)
1	59	\$132,000	18	No
2	41	\$85,000	14	Yes
3	29	\$60,000	16	Yes
4	25	\$35,000	10	Yes
5	49	\$170,000	12	No
6	30	\$70,000	9	Yes
7	33	\$45,000	13	Yes
8	29	\$110,000	12	No
9	43	\$45,000	12	No
10	56	\$112,000	16	No
11	28	\$65,000	12	Yes

- (a) Standardize the Age, Annual Income and Years of Education variables
- (b) Based on the standardized variables, calculate the Euclidean distances between a 45-year old person with 15 years of education and \$60,000 annual income and the 11 observations in the record.
- (c) Use the K-Nearest Neighbor approach and set K = 5 to find out whether a 45-year old person with 15 years of education and \$60,000 annual income will default.
- 2. Consider the following transaction table.

Transaction ID	Items Bought		
1	{Milk, Beer, Diapers, Milo}		
2	{Bread, Eggs, Milk, Milo}		
3	{Milk, Diapers, Eggs}		
4	{Beer, Eggs, Diapers, Coke}		
5	{Beer, Diapers, Coke }		
6	{Milk, Eggs, Bread, Butter, Milo}		
7	{Milk, Eggs, Coke}		
8	{Eggs, Bread, Coke}		
9	{Coke, Milo, Instant Noodles}		
10	{Instant Noodles, Coke, Bread}		

(a) Explain Support and Confidence and their significances in Market Basket Analysis.

- (b) What is the maximum size of frequent itemsets that can be extracted (assuming minsup > 0.1)?
- (c) Consider $\{Diapers\} \rightarrow \{Beer\}$. Calculate the support and confidence of the rule.

3. Use the Bank dataset.

- (a) Select the following eight variables: PersonalLoan, Age, Experience, Income, Family, CCAvg, Education, and CD.Account. Save them in mydata data frame.
 - [Hint: To select variables from a data frame, we could use the "select" function. Load library(dplyr) and select(name of the data frame, variable 1, variable 2,....)]
- (b) Calculate the descriptive statistics for these eight variables. Explain your findings.
- (c) Eliminate all the unreasonable data points for Experience variable.
- (d) Randomly draw 4500 observations to form a test set and let the rest be the validation set.
- (e) Use PersonalLoan as the Y variable and the rest as X variable. Apply the KNN approach to the test and validation sets in the part (d).
- (f) Calculate the accuracy rate for your model in the part (e)

4. [Classification Problem]

Refer to https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Pima.tr.html.

You need to load(MASS) and call the dataset out, i.e, mydata<-Pima.tr

- (a) Use the summary function to calculate the descriptive statistics
- (b) Draw histograms and boxplots for bmi, bp, and age. Which variables are normally distributed?
- (c) Apply the LDA approach to the Pima dataset. Use your LDA model to predict if one would have diabetes and save your results in mydata.lda.
- (d) Print out mydata.lda\$class. What are these?
- (e) Print out mydata\$type. What are these?
- (f) According to (d) and (e), calculate the accuracy rate.
- (g) Use the QDA approach and re-do (c) and (f).
- (h) Do you prefer to use LDA or QDA in this classification problem? Why?
- (i) Explain in detail the differences between LDA, QDA, and LPM.