See Through Walls with Wi-Fi

Fadel Adib and Dina Katabi (Massachusetts Institute of Technology)

SIGCOMM '13

Date 19 May 2025 Wonseok

Table of Contents

- Introduction
- Static Object
- Moving Object
- Gesture
- Experiment
- Conclusion

Background

- Reflections of signals are imprinted with a signature of what's inside a closed room
- Limitations of existing systems
 - An 2.4 meters <u>long antenna array</u>
 - To achieve smaller Angular Resolution
 - At 2 GHz <u>ultra wide bandwidth</u>
 - To eliminate Flash Effect

Terms

- Angular Resolution
 - The smallest angle that can reliably detect two objects
 - The longer antenna array, the smaller angular resolution
- Flash Effect
 - Strong reflections from nearby surfaces
 - The wider the bandwidth, the less flash effect

Core Problems

- Ultra-wide Bandwidth (2GHz)
 - How to eliminate flash effect without using GHz bandwidth?
 - Use MIMO → nulling to eliminate reflections (signals)
 - 1. (Tx ↔ Rx) Measure the CSI matrix
 - -2. (Tx \rightarrow Rx) Null the signals
 - Reflections off static objects are nulled
 - -- Received signals are only reflections of moving objects
- Long Antenna Array (2.4m)
 - How to track moving objects without an antenna array?
 - Use ISAR* → virtual antenna array in snapshots
 - 1. Take snapshots of phase shift of a moving target
 - 2. Estimate a steering vector fits with θ
 - → A moving target acts as an antenna array

- Hardware Requirements
 - OFDM signals at 2.4GHz
 - 3-antenna MIMO (2 Tx + 1 Rx)
 - Directional antennas

- 1. MIMO Nulling
 - To eliminate the flash effect off the wall
- 2. Inverse SAR
 - To track a moving object and to detect gestures

Building Materials	2.4 GHz
Glass	3 dB
Solid Wood Door 1.75 inches	6 dB
Interior Hollow Wall 6 inches	9 dB
Concrete Wall 18 inches	18 dB
Reinforced Concrete	40 dB

Challenges

- Severe RF attenuation and low reflection coefficient of target object
- Direct signals from Tx antennas to Rx antenna

Eliminate Flash Effect

1. Initial Nulling

- a. Measure the CSI h₁, h₂ of each antenna
- b. Pre-code only the second antenna as $\rho = -\frac{\hat{h}_1}{\hat{h}_2}$
- → Ideally, nulling the signals reflected from static objects

$$h_{receive} = h_1 + h_2(-\frac{\hat{h_1}}{\hat{h_2}}) \approx 0$$

2. Power Boosting

- Initial nulling also reduces the received signal power
 - Making it indistinguishable from <u>noise</u>
- → Boost the transmit power to increase SNR (roughly by 12 dB)

3. Iterative Nulling

- Power boosting also amplifies residual reflections
- Why not first boost the power and measure? → ADC saturation
- → Iteratively re-estimate h'₁, h'₂ with the power boosted

Iterative Nulling

- Problem
 - The receiver gets the combined CSI
 - One equation and two unknowns

$$h_{receive} = h_1 + h_2(-\frac{\hat{h_1}}{\hat{h_2}}) \approx 0$$

Solution

- Assume one of $\hat{h_1}$ and $\hat{h_2}$ is accurate
 - Errors of $\hat{h_1}$ and $\hat{h_2}$ are much smaller than themselves
- Each $Tx \rightarrow Rx$ iteration, alternate $\hat{h_1}$ and $\hat{h_2}$ in turn

$$\hat{h}_{1}^{(i+1)} = h_{receive} + \hat{h}_{1(i)}$$

$$\hat{h}_{2}^{(i+1)} = \left(1 - \frac{h_{receive}}{\hat{h}_{1}^{(i)}}\right) \hat{h}_{2}^{(i)}$$

Lemma

• $\hat{h_1}$ and $\hat{h_2}$ converge exponentially fast

$$Assume\ that\ |\frac{\hat{h_2}-h_2}{h_2}|<1, then,\ after\ i\ iterations,$$

$$|\hat{h}_{res}^{(i)}|=|h_{res}^{(0)}||\frac{\hat{h_2}-h_2}{h_2}|^i$$

Algorithm

Algorithm 1 Pseudocode for Wi-Vi's Nulling

INITIAL NULLING: Tx ant. 1 sends x; Rx receives y; $\hat{h_1} \leftarrow y/x$ Tx ant. 2 sends x; Rx receives y; $\hat{h_2} \leftarrow y/x$ \triangleright Pre-coding: $p \leftarrow -\hat{h_1}/\hat{h_2}$ **POWER BOOSTING:** Tx antennas boost power Tx ant. 1 transmits x, Tx ant. 2 transmits px concurrently **ITERATIVE NULLING:** $i \leftarrow 0$ repeat Rx receives y; $h_{res} \leftarrow y/x$ if i even then $\hat{h_1} \leftarrow h_{res} + \hat{h_1}$ else $\hat{h_2} \leftarrow \left(1 - \frac{h_{res}}{\hat{h_1}}\right) \hat{h_2}$ $p \leftarrow -\hat{h_1}/\hat{h_2}$

Tx antennas transmit concurrently $i \leftarrow i + 1$

until Converges

Human Tracking

- Idea
 - A moving human can be treated as an antenna array
 - Successive time samples as spatial samples
- Phase Shift $\Phi(\theta, n)$
 - θ : Spatial angle
 - The angle between human to Wi-Vi and the normal to the motion
 - △: Spacing between successive antennas
 - $-\triangle = vt(v \approx 1m/s)$

Beamforming

- The virtual antenna array performs 'beamforming'
 - -w: Number of time samples
 - -h[n]: Channel gain

$$\Phi(\theta, n) = \frac{2\pi}{\lambda} n \triangle \sin \theta$$

$$A[\theta, n] = \sum_{i=1}^{w} h[n+i]e^{j\Phi(\theta, n)}$$

Moving Object

Beamforming

- Motion Direction
 - Estimate θ that maximizes the channel sum
 - Successive time samples as spatial samples
- Experiment Setup
 - 2s: The person crosses the Wi-Vi device
 - 2s~3s: The person is moving away from the device
 - 3s: The person turns inward, but signal gets weaker
- Heatmap Output of $A[\theta, n]$
 - Two lines are present
 - Zero line: Amplified residual reflection on power boosting
 - Curved line: Human motion

$$A[\theta, n] = \sum_{i=1}^{w} h[n+i]e^{j\Phi(\theta, n)}$$

Multiple Human Tracking

MUSIC Algorithm

- Estimate incoming AoAs from entangled channel gain
 - Orthogonality between noise space and steering vectors
- How come?
 - Only a steering vector matters, not distance
 - Antenna spacing \triangle are assumed the same ($\triangle = vt(v \approx 1m/s)$)
 - → Limitation of this paper

Steps

- 1. Create a correlation matrix $R_{w \times w} = E[hh^H]$
- 2. Find noise space from eigen-decomposition
- 3. Project angles onto the noise space
- 4. Find peaks at θ
 - Orthogonality at heta

$$[n] = \frac{1}{\sum_{k=1}^{K} ||\sum_{i=1}^{w} e^{-j\frac{2\pi}{\lambda}i\Delta \sin \theta} U_{N}[n](i,k)||^{2}}.$$

$$P_{MUSIC}(\theta) = A'[\theta, n] = \frac{1}{||U_{n}^{H}\vec{a}_{n}(\theta)||}$$

Number of Humans

- Number of Humans
 - Heuristically found
 - N people → N lines on the graph
 - Try machine learning
 - Related to VAR[θ] in statistical sense

- Machine Learning (Classification)
 - How many people given VAR[θ]?
 - Input: time-averaged angular variance

$$x = \frac{1}{T} \sum_{n=1}^{T} VAR_n[\theta]$$

Output: 0, 1, 2, or 3 humans

$$E[n] \approx C[n] = \sum_{\theta = -90}^{90} \theta \cdot 20 \log_{10} A'[\theta, n]$$

$$VAR_n[\theta] = E[\theta^2] - E^2[\theta]$$

Gesture Encoding

- Gestures
 - '0': A step forward + a step backward
 - MUSIC peaks at positive θ first
 - '1': A step backward + a step forward
 - MUSIC peaks at negative θ first

Gesture Decoding

- Decoding Steps
 - 1. Apply 'matched filter' on the heatmap $A[\theta, n]$
 - Matched filter's template: ▲ ▼

$$Matched\ Output = \sum_{\theta=90}^{90} A[\theta,n] * template[\theta]$$

• 2. Apply peak detector on the output

Experiment Environment

Locations

• Two conference rooms with standard furniture (tables, chairs, ...)

Room A: 7 X 4 meters

Room B: 11 X 7 meters

Wall: 6-inch, hollow

Wi-Vi device 1m away from a wall

Tracking

- Brightness
 - → Indicates distance

- Fuzziness
 - → Worsen by body partsz

$$P_{MUSIC}(\theta) = A'[\theta, n] = \frac{1}{||U_n^H \vec{a}_n(\theta)||}$$

Automatic Detection

- CDF (20 Trials each)
 - **x-axis**: spatial variance $\frac{1}{T}\sum_{n=1}^{T}VAR_{n}[\theta]$
 - y-axis: fraction of experiments
 - → y trials had variance ≤ x
- Observations
 - Spatial variance is higher with more moving bodies
 - Steep curves → consistent variance
 - The separation between successive CDFs
- Accuracy
 - Training set on Room A, testing set on Room B

$$VAR[n] = \sum_{\theta = -90}^{90} \theta^{2}C[n] - C[n]^{2}$$

Detected Actual	0	1	2	3
0	100%	0%	0%	0%
1	0%	100%	0%	0%
2	0%	0%	85%	15%
3	0%	0%	10%	90%

Gesture Decoding

CDF

- '0' bit's SNR is higher than '1'
 - Taking a step forward first -> average closer
 - Taking a step backward is naturally harder
 - People tend to take smaller steps

Accuracy

- 9m: 0% -> not enough energy to detect from the noise
 - 20mW used (USRP)
- Never mistook '0' or '1' bit

Conclusion Conclusion

- Impact
 - First low-bandwidth through-wall radar
 - Military purpose and ultra wide-band so far
 - MIMO interference nulling
 - Cancelling "flash effect"
- Limitation
 - Moving objects have constant speed
 - Only detect the direction of motion
 - Cannot detect if a person stops
 - Cannot estimate distance