

Produkte Products

Prüfbericht - Nr.:		19660246 001			Seite 1 von 139
Test Report No	o. <i>:</i>				Page 1 of 139
Auftraggeber		HANDHELD GROUP	AB		
Client:		Kinnegatan 17 A			
		531 33 Lidköping			
		Sweden			
		Tel: +46 (0) 510-54 7	1 70		
Gegenstand of Test item:	der Prüfung:	Rugged 7" Tablet			
Bezeichnung Identification:	ı:	118207		r ien-Nr.: rial No.	Engineering Sample
Wareneingan Receipt No.:	ıgs-Nr.:	1803156247		igangsdatum: te of receipt:	20.07.2016
Prüfort: Testing location	on:	Refer Page 4 of 139	for test facilit	ies	
Prüfgrundlag	ie:	FCC Part 2, Part 22h	H, Part 24E , Pa	art 27 & RSS 13	2 Issue 3, RSS 133 Issue
Test specifica		& RSS139 Issue 3,	RSS 310 Issue	1, ANSI C63.1	0-2013 & TIA-603-D-2010
Test specifica	ntion:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe	RSS 310 Issue d entspricht ob	e 1, ANSI C63.10 Den genannter F	0-2013 & TIA-603-D-2010
Test specifica Prüfergebnis Test Result:	ition:	& RSS139 Issue 3, Der Prüfgegenstand	d entspricht ob	e 1, ANSI C63.10 Den genannter F	0-2013 & TIA-603-D-2010
Test specifica Prüfergebnis Test Result:	rium:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe	d entspricht ob d the test spec lia) Pvt. Ltd.	pen genannter F	0-2013 & TIA-603-D-2010
Prüfergebnis Test Result: Prüflaborato	rium:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win	d entspricht ob d the test spec lia) Pvt. Ltd. g, Electronic City P 560 100. India	een genannter Feification(s).	0-2013 & TIA-603-D-2010 Prüfgrundlage(n).
Test specifical Prüfergebnis Test Result: Prüflaborator Testing Labor	rium: ratory:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore –	d entspricht ob d the test special (ia) Pvt. Ltd. eg, Electronic City P 560 100. India o.: 176555 & I	een genannter Feification(s).	0-2013 & TIA-603-D-2010 Prüfgrundlage(n).
Prüfergebnis Test Result: Prüflaborato	rium: ratory:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore –	d entspricht ob d the test special (ia) Pvt. Ltd. eg, Electronic City P 560 100. India o.: 176555 & I	e 1, ANSI C63.10 pen genannter F ification(s). Phase 1 C OATS Reg. N I reviewed by: Saibaba Siddapi Assistant Manager	o-2013 & TIA-603-D-2010 Prüfgrundlage(n). umber.: 3466E
Test specifical Prüfergebnis Test Result: Prüflaborato Testing Labor geprüft / teste	rium: ratory: ed by: Shrikanth S Naik Sr.Engineer Name/Stellung	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore – FCC Registration N Unterschrift	d entspricht ob the test special Pvt. Ltd. Ig, Electronic City P 560 100. India O.: 176555 & In kontrolliert / 23.11.2016	e 1, ANSI C63.10 pen genannter F ification(s). Phase 1 C OATS Reg. N I reviewed by: Saibaba Siddapt Assistant Manager Name/Stellung	O-2013 & TIA-603-D-2010 Prüfgrundlage(n). umber.: 3466E Unterschrift
Prüfergebnis Test Result: Prüflaborato Testing Labor geprüft / teste 17.10.2016 Datum Date	rium: ratory: ed by: Shrikanth S Naik Sr.Engineer Name/Stellung Name/Position	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore – FCC Registration N Unterschrift Signature	d entspricht ob de the test special Pvt. Ltd. Ig, Electronic City P 560 100. India Ig. 176555 & Ig. kontrolliert / 23.11.2016 Datum Date	e 1, ANSI C63.10 pen genannter F cification(s). Phase 1 C OATS Reg. N I reviewed by: Saibaba Siddapt Assistant Manager Name/Position	o-2013 & TIA-603-D-2010 Prüfgrundlage(n). umber.: 3466E
Prüfergebnis Test Result: Prüflaborato Testing Labor geprüft / teste 17.10.2016 Datum Date Sonstiges /O	rium: ratory: ed by: Shrikanth S Naik Sr.Engineer Name/Stellung Name/Position other Aspects:	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore – FCC Registration N Unterschrift Signature FCC ID :YY3-118207	d entspricht ob the test special Pvt. Ltd. Ig, Electronic City F 560 100. India Ig.: 176555 & Ir. kontrolliert // 23.11.2016 Datum Date & IC: 11695A-1	e 1, ANSI C63.10 Den genannter F Diffication(s). Phase 1 C OATS Reg. N I reviewed by: Saibaba Siddapt Assistant Manager Name/Stellung Name/Position 18207	o-2013 & TIA-603-D-2010 Prüfgrundlage(n). umber.: 3466E Unterschrift Signature
Prüfergebnis Test Result: Prüflaborato Testing Labor geprüft / teste 17.10.2016 Datum Date	rium: ratory: Shrikanth S Naik Sr.Engineer Name/Stellung Name/Position Other Aspects: P(ass) = ents F(ail) = ents N/A = nich	& RSS139 Issue 3, Der Prüfgegenstand The test items passe TÜV Rheinland (Ind 82/A, 3rd Main, West Win Hosur Road, Bangalore – FCC Registration N Unterschrift Signature	d entspricht ob de the test special Pvt. Ltd. Ig, Electronic City P 560 100. India Ig. 176555 & Ig. kontrolliert / 23.11.2016 Datum Date	e 1, ANSI C63.10 Den genannter F Diffication(s). Phase 1 C OATS Reg. N I reviewed by: Saibaba Siddapt Assistant Manager Name/Stellung Name/Position 18207	O-2013 & TIA-603-D-2010 Prüfgrundlage(n). umber.: 3466E Unterschrift Signature passed failed not applicable

This test report relates to the a.m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any safety mark on this or similar products.

TÜV Rheinland India Pvt. Ltd. 82/A, 3rd Main, West Wing Electronic City Phase 1, Hosur Road, Bangalore-560100, India Tel.: +9180 6723 3500 · Fax: +9180 6723 3542 · Web: www.tuv.com

Test Result Summary

Took Itom		Clause	Result
Test Item	FCC	IC	
RF Output Power – Conducted Mode	FCC Part 2.1046	RSS 132 Issue 3 section 5.4, SRSP-503 section 5.1.3 & RSS 133 Issue 6 section 4.1/6.4, SRSP-510.5.1.2 & RSS 139 Issue 3 section 6.5, RSS-130 Issue 1 section 4.4	Pass
99% Occupied Bandwidth & 26dB Emission Bandwidth	FCC Part 2.1049	RSS-Gen Issue 4 section 6.6	Pass
Band Edge Compliance	FCC Part 2.1051, 22.917(a)(b), 24.238(a)(b), 27.53(h)	RSS 132 Issue 3 section 5.5(i)(ii), & RSS 133 Issue 6 section 6.5.1 (i)(ii) & RSS 139 Issue 3 section 6.6(i)(ii), RSS-130 Issue 1 section 4.6	Pass
Conducted Spurious Emission	FCC Part 2.1051, 2.1057, 22.917(a)(b), 24.238(a)(b),27.53(h)	RSS 132 Issue 3 section 5.5 (i)(ii) & RSS 133 Issue 6 section 6.5.1 (i)(ii) & RSS 139 Issue 3 section 6.6(i)(ii), RSS-130 Issue 1 section 4.6	Pass
Frequency Stability	FCC Part 2.1055(a) (1), 22.355, 24.235, 27.54	RSS 132 Issue 3 section 5.3 & RSS 133 Issue 6 section 6.3 & RSS 139 Issue 3 section 6.4, RSS-130 Issue 1 section 4.3	Pass
RF Output Power (ERP/EIRP) – Radiated Mode	FCC Part 2.1046(a), 22.913(a) (2) 24.232(c), 27.50(d) (4)	RSS 132 Issue 3 section 5.4, SRSP-503 section 5.1.3 & RSS 133 Issue 6 section 4.1/6.4, SRSP-510.5.1.2 & RSS 139 Issue 3 section 6.5, RSS-130 Issue 1 section 4.4	Pass
Field Strength of Spurious Radiation	FCC Part 2.1053(a), 22.917(a)(b), 24.238(a)(b) 27.53(h)	RSS 132 Issue 3 section 5.5 (i)(ii) & RSS 133 Issue 6 section 6.5.1 (i)(ii) & RSS 139 Issue 3 section 6.6(i)(ii), RSS-130 Issue 1 section 4.6	Pass

Note: Testing Performed according to the procedure given in 971168 D01 Power Meas License Digital Systems v02r02.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 2 of 139

Content

List of Test and Measurement Instruments	4
General Product Information	5
Product Function and Intended UseRatings and System Details	
Test Set-up and Operation Mode	
Principle of Configuration Selection Test Operation and Test Software Test Modes – Data Rates and Modulations	9
Operational description	10
Test Methodology	11
Test Results	11
RF Output Power – Conducted Mode	13
99% Occupied Bandwidth &	21
26dB Emission Bandwidth	21
Band Edge Measurement	62
Conducted Spurious Emission	91
Frequency Stability	129
RF Power (ERP/EIRP) – Radiated Mode	134
Field Strength of Spurious Radiation	137
Appendix 1: Test Setup Photo	

- **Appendix 2: EUT External Photo**
- **Appendix 3: EUT Internal Photo**
- Appendix 4: FCC Label and Label Location
- Appendix 5: Block Diagram
- **Appendix 6: Specification of EUT**
- **Appendix 7: Schematic Diagrams**
- Appendix 8: Bill of Material
- Appendix 9: User Manual
- **Appendix 10: SAR Test Report**

Test Report No.: 19660246 001 Date: 17.10.2016 Page 3 of 139

List of Test and Measurement Instruments

Equipment	Manufacturer	Model Name	Serial Number	Calibration Due Date	Periodicity	Used for Test Items
EMI Test Receiver	Rohde & Schwarz	ESU 40	100288	23.11.2016	Yearly	
Broadband Antenna	Frankonia	ALX-4000	ALX-4000- 806	20.01.2017	Yearly	
Active Loop Antenna	Frankonia	LAX-10	LAX-10-800	22.12.2016	Yearly	Spurious
Broadband Horn Antenna	Frankonia	HAX-18	HAX18-802	14.03.2017	Yearly	Radiated Emissions
Double-Ridged Waveguide Horn Antenna	ETS Lindgren	116706	00107323	02.11.2016	Yearly	
Anechoic Chamber	Frankonia	-	-		-	
Spectrum Analyser	Agilent Technologies	E4407B	US41192772	23.04.2017	Yearly	
Signal Analyzer	Rohde & Schwarz	FSV7	101644	07.12.2016	Yearly	Antenna - Port
Environmental Chamber	Envisys	EM80-40H	ET/022/14-15	09.06.2017	Yearly	Conducted Tests
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	158345	26.09.2017	Yearly	1 6515

Testing Facilities:

TUV Rheinland (India) Private Limited 108, Beside ISBR Business School, Electronic city Phase I Bangalore - 560 100.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 4 of 139

General Product Information

Product Function and Intended Use

The Algiz RT7 is a rugged tablet, designed for use by field personnel in demanding conditions. It integrates best-in-class connectivity with efficient computing and multimedia features. The tablet runs Android Lollipop (5.1.1) operating system, and comes pre-installed with many Google applications, including Google Play.

Ratings and System Details

Operating Frequency	Refer page 7 of 134
Modulation	QPSK , 16-QAM
Power Class	3 (23dBm)
Release	10
Modulation Type	QPSK , 16-QAM
Number of Antenna – Two	Primary Antenna – One Diversity Antenna - One
Antenna Gain and Antenna type	0dBi & Integrated Antenna
Supply Voltage to Product	Internal Battery Pack -> 3.7- 4.2 VDC & Adaptor 5VDC to EUT
Environmental	Storage Temperature -> -40°C to +70 °C Operating Temperature-> -20°C to 50°C in a humidity up to 95% noncondensing

Test Conditions:

Supply Voltage: 3.7- 4.2 VDC & Adaptor 5VDC to EUT

Environmental conditions:

Temperature: +25 ° C RH: 62%

Test Report No.: 19660246 001 Date: 17.10.2016 Page 5 of 139

Equipment used for testing as identified in below Table.

Equipment Used for	S/N Number	IMEI No.	Hardware Version	Software version
Conducted Measurement on Antenna Port	6G010057	911381250014927 & 911381250014935	Engineering Sample	Android 5.1.1, LMY47V'
Radiated Mode Test	6G010310	911381250019983 & 911381250019991	Engineering Sample	Android 5.1.1, LMY47V'

Summary of Measured Power & Emission Designator:

FDD Band	Bandwidth	Maximum Power - Conducted Mode - QPSK (Pk)		Maximum Power - Conducted Mode - 16-QAM (Pk)		Output Power (dBm) - Radiated Mode
		dBm	Watt	dBm	Watt	-QPSK
	5	26.25	0.42169	26.44	0.44055	22.16
2	10	26.53	0.449779	26.73	0.47097	21.42
	15	26.59	0.45603	26.91	0.49090	20.89
	20	26.77	0.47533	27.24	0.52966	20.2
	5	26.84	0.48305	26.54	0.45081	20.23
4	10	26.71	0.46881	27.63	0.57942	18.95
4	15	27.04	0.05082	27.12	0.51523	19.12
	20	26.68	0.46558	26.84	0.48305	17.58
5	5	25.99	0.39719	25.89	0.38815	17.86
5	10	26.30	0.42657	26.35	0.43151	18.14
17	5	26.43	0.43954	26.14	0.41115	16.96
17	10	26.61	0.45814	26.14	0.41115	16.75
13	10	25.94	0.392644	25.86	0.385478	17.93

Emission Designator Details

FDD Band	Bandwidth	Emission Designator (QPSK)	Emission Designator (16-QAM)
	5	4M51G7D	4M54W7D
2	10	8M94G7D	8M94W7D
2	15	13M4G7D	13M4W7D
	20	17M9G7D	17M9W7D
	5	4M53G7D	4M52W7D
4	10	8M95G7D	8M95W7D
4	15	13M5G7D	13M5W7D
	20	17M9G7D	17M9W7D
5	5	4M54G7D	4M53W7D
5	10	8M96G7D	8M94W7D
17	5	4M52G7D	4M54W7D
17	10	8M93G7D	8M91W7D
13	10	8M92G7D	8M91W7D

Test Report No.: 19660246 001 Date: 17.10.2016 Page 6 of 139

FDD bands Frequency Details:

FDD Band	Transmitter Frequency (Uplink) (MHz)	Receiver Frequency (Downlink) (MHz)
2	1850 – 1910	1930 – 1990
4	1710 – 1755	2110 – 2155
5	824 – 849	869 – 894
17	704 - 716	734 - 746

Frequency List of Low/Mid/High channel

LTE FDD Band	2			
Bandwidth	Channel/Frequency (MHz)	Low	Mid	High
5	Channel No.	18625	18900	19175
5	Frequency	1852.5	1880	1907.5
10	Channel No.	18700	18900	19150
10	Frequency	1860	1880	1905
15	Channel No.	18675	18900	19125
	Frequency	1857.5	1880	1902.5
20	Channel No.	18700	18900	19100
20	Frequency	1860	1880	1900

LTE FDD Band 4					
Bandwidth	Channel/Frequency (MHz)	Low	Mid	High	
5	Channel No.	19975	20175	20375	
5	Frequency	1712.5	1732.5	1752.5	
10	Channel No.	20000	20175	20350	
10	Frequency	1715	1732.5	1750	
4.5	Channel No.	20025	20175	20325	
15	Frequency	1717.5	1732.5	1747.5	
20	Channel No.	20050	20175	20300	
20	Frequency	1720	1732.5	1745	

LTE FDD Band 5					
Bandwidth	Channel/Frequency (MHz)	Low	Mid	High	
5	Channel No.	20425	20525	20625	
	Frequency	826.5	836.5	846.5	
10	Channel No.	20450	20525	20600	
10	Frequency	829	836.5	844	

Test Report No.: 19660246 001 Date: 17.10.2016 Page 7 of 139

LTE FDD Band 17								
Bandwidth	Channel/Frequency (MHz)	Low	Mid	High				
5	Channel No.	23755	23790	23825				
3	Frequency	706.5	710	713.5				
10	Channel No.	23780	23790	23800				
10	Frequency	709	710	711				

LTE FDD Band 13								
Bandwidth Channel/Frequency (MHz) Low Mid High								
10	Channel No.	23230	23230	23230				
Frequency 782 782 782								

Test Report No.: 19660246 001 Date: 17.10.2016 Page 8 of 139

Test Set-up and Operation Mode

Principle of Configuration Selection

Transmission was enabled with help of CMW500 on low, mid and high channel

Test Operation and Test Software

No Special Test software used for enabling the Transmission, SIM inserted in EUT to communicate with CMW500 simulator

Special Accessories and Auxiliary Equipment

- None

Countermeasures to achieve EMC Compliance

A ferrite bead was used on the USB cable which is connected to the adaptor (accessory) closer to the DUT during testing. Refer appendix 1 for test setup photos.

Ferrite no. 742 711 12 & 742 717 33 (make: Wurth Electronics).

Test Modes - Data Rates and Modulations

For Radiated spurious emissions, the tests were performed for all data rates and only worst case results are reported in this report.

Note: Product Rugged 7" Tablet has multiple protocols. All the supported wireless protocols and their respective test report numbers are mentioned in the below table.

Radio Protocol	Report Number
NFC	19660243 001
Wi-Fi (IEEE 802.11bgn)	19660240 001
BLE	19660242 001
Bluetooth (BDR+EDR)	19660241 001
GSM	19660244 001
W-CDMA	19660245 001

Test Report No.: 19660246 001 Date: 17.10.2016 Page 9 of 139

Operational description

Whether you're collecting data, crunching numbers or viewing graphics, the Algiz RT7's powerful Qualcomm quad-core processor provides reliable, uninterrupted work performance.

And the Algiz RT7 doesn't just run Android flawlessly — its capacitive touchscreen also enhances the Android experience with five-point multi-touch capability, 600-nit high-brightness sunlight readability and chemically strengthened glass.

Yet the Algiz RT7 also meets stringent MIL-STD-810G military standards for withstanding extreme temperatures, drops and vibrations, and its IP65 rating means it's waterproof and fully protected against sand and dust.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 10 of 139

Test Methodology

Frequency Range 9 kHz -30 MHz

Test performed as per ANSI C63.10-2013 section 6.4

The loop Antenna was placed at 1m above the ground plane & EUT is 3 meters far from the measuring antenna. With 3m measurement distance, correction data were applied to the measured results. The test arrangement, measuring antenna guidelines and operational configurations in 6.3.1 and 6.3.2, shall be followed. The measurement antenna shall be positioned with its plane perpendicular to the ground at the Specified distance, when perpendicular to the ground plane, the lowest height of the magnetic antenna shall be 1 m above the ground and shall be positioned at the specified distance from the EUT.EUT & its associates are placed on non-conducting table of 0.8m height which is placed on the turn table, For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable. The report shall list worst case emission results, for each of the parallel & perpendicular orientations.

Frequency Range 30MHz to 10th harmonics of the highest fundamental frequency Test performed as per ANSI/TIA-603-D-2010 Clause 2.2.12/17

ERP/EIRP Radiated Power & Radiated spurious emission test are performed as below.

The equipment under test is placed on non-conductive table at 3m away from the receive antenna in accordance with above mentioned standard. Turn table is rotated through 360 degree, and receiver antenna height is varied in order to determine the level of maximum emission. The maximum emission level and position of the maximized emission is recorded with use of spectrum analyzer.

The EUT is substituted by a substitution antenna. The substitute antenna is connected to a signal generator. Adjust the output level of the signal generator to get the same power recorded in with EUT and record the power level of Signal Generator. The cable loss at the test frequency should be compensated

Test Report No.: 19660246 001 Date: 17.10.2016 Page 11 of 139

The Power is calculated by the following formula

Pd (dBm) =Pg (dBm)-Cable Loss (dB) +Antenna Gain (dB)

Where

Pd is the dipole equivalent power.

Pg is the generator output power into the substitution antenna

These steps are repeated with the receiving antenna in the both vertical & horizontal polarization

Measurement Method

Substitute measurement method

Test Report No.: 19660246 001 Date: 17.10.2016 Page 12 of 139

Test Results

RF Output Power – Conducted Mode Result

Pass

Specification FCC Part 2.1046 & RSS 132 Issue 3 section 5.3, RSS 133 Issue 6 section 4.1/6.4,

RSS 139 Issue 3 section 4.1/6.5,RSS 130 Issue 1 section 4.4

Measurement Bandwidth (RBW) ≥ OBW

Detector Function Peak/Average

Test Setup:

Note: For measurement of RF Output Power, section 5.1.1 & 5.2.1 & Measurement of Peak to Average Power Ratio method 5.7.2 in "971168 D01 Power Meas License Digital Systems v02r02" & Attenuator & Cable loss is included in the test results

Remark: For #1RB, verified for both Position Low & Position high & only worst case position low results are reported.

Note: Cable Loss (1.5dB) + Attenuator (30dB) are considered for Band 2 Cable Loss (1.3dB) + Attenuator (30dB) are considered for Band 4 Cable Loss (1.3dB) + Attenuator (30dB) are considered for Band 5 Cable Loss (0.7dB) + Attenuator (30dB) are considered for Band 17 Cable Loss (0.9dB) + Attenuator (30dBm) are considered for Band 13

PAPR – Peal to Average Power Ratio.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 13 of 139

Test Results

Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)
		Low	25.87	21.42	4.45	≤13
	1	Mid	26.25	21.93	4.32	≤13
		High	26.21	21.74	4.47	≤13
		Low	25.5	20.74	4.76	≤13
5	50%	Mid	26.17	21.54	4.63	≤13
		High	26.06	21.28	4.78	≤13
		Low	25.18	20.69	4.49	≤13
	100%	Mid	25.72	21.42	4.30	≤13
		High	25.5	21.14	4.36	≤13
		Low	26.08	20.64	5.44	≤13
	1	Mid	26.36	21.15	5.21	≤13
		High	26.53	21.40	5.13	≤13
		Low	26.26	20.66	5.60	≤13
10	50%	Mid	26.09	21.46	4.63	≤13
		High	26.26	21.55	4.71	≤13
		Low	25.75	20.70	5.05	≤13
	100%	Mid	25.97	21.34	4.63	≤13
		High	25.92	21.47	4.45	≤13
		Low	26.11	20.86	5.25	≤13
	1	Mid	26.59	21.51	5.08	≤13
		High	26.44	20.78	5.66	≤13
		Low	25.74	20.55	5.19	≤13
15	50%	Mid	26.24	21.08	5.16	≤13
		High	26.44	21.26	5.18	≤13
		Low	25.36	20.39	4.97	≤13
	100%	Mid	25.71	21.19	4.52	≤13
		High	25.81	21.13	4.68	≤13
		Low	25.96	21.05	4.91	≤13
	1	Mid	26.44	21.59	4.85	≤13
		High	26.77	21.89	4.88	≤13
		Low	25.55	20.65	4.90	≤13
20	50%	Mid	25.81	21.20	4.61	≤13
		High	26.09	21.59	4.50	≤13
		Low	25.18	20.68	4.50	≤13
	100%	Mid	25.21	21.27	3.94	≤13
		High	25.43	21.49	3.94	≤13

Test Report No.: 19660246 001 Date: 17.10.2016 Page 14 of 139

FDD Band 4,	Modulation- Q	PSK				
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)
		Low	26.73	20.77	5.96	≤13
	1	Mid	26.34	20.88	5.46	≤13
		High	26.84	20.77	6.07	≤13
		Low	26.22	20.26	5.96	≤13
5	50%	Mid	26.42	21.01	5.41	≤13
		High	26.69	20.29	6.40	≤13
		Low	25.88	20.38	5.50	≤13
	100%	Mid	26.08	20.96	5.12	≤13
		High	26.35	20.36	5.99	≤13
		Low	26.6	20.84	5.76	≤13
	1	Mid	26.47	20.63	5.84	≤13
		High	26.53	20.34	6.19	≤13
	50%	Low	26.26	20.20	6.06	≤13
10		Mid	26.53	20.95	5.58	≤13
		High	26.71	20.63	6.08	≤13
		Low	26.26	20.25	6.01	≤13
	100%	Mid	26.36	20.94	5.42	≤13
		High	26.65	20.92	5.73	≤13
		Low	26.92	20.90	6.02	≤13
	1	Mid	26.88	21.47	5.41	≤13
		High	27.04	21.49	5.55	≤13
		Low	26.28	21.19	5.09	≤13
15	50%	Mid	26.59	21.34	5.25	≤13
		High	26.67	21.67	5.00	≤13
		Low	25.25	21.37	3.88	≤13
	100%	Mid	25.28	21.84	3.44	≤13
		High	25.28	21.52	3.76	≤13
		Low	26.68	19.80	6.88	≤13
	1	Mid	26.59	20.25	6.34	≤13
		High	26.5	20.22	6.28	≤13
		Low	26.16	20.19	5.97	≤13
20	50%	Mid	25.9	20.98	4.92	≤13
		High	25.97	20.60	5.37	≤13
		Low	25.64	20.30	5.34	≤13
	100%	Mid	25.56	20.81	4.75	≤13
		High	25.83	20.48	5.35	≤13

Test Report No.: 19660246 001 Date: 17.10.2016 Page 15 of 139

FDD Band 5, Modulation- QPSK									
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)			
		Low	25.86	21.46	4.40	≤13			
	1	Mid	24.8	21.44	3.36	≤13			
		High	25.99	21.60	4.39	≤13			
		Low	25.69	21.19	4.50	≤13			
5	50%	Mid	25.19	21.40	3.79	≤13			
		High	25.73	21.19	4.54	≤13			
	100%	Low	25.47	21.13	4.34	≤13			
		Mid	25.74	21.33	4.41	≤13			
		High	25.35	21.14	4.21	≤13			
		Low	25.73	21.56	4.17	≤13			
	1	Mid	24.32	21.36	2.96	≤13			
		High	26.3	21.62	4.68	≤13			
		Low	25.71	21.23	4.48	≤13			
10	50%	Mid	24.98	21.35	3.63	≤13			
		High	26.67	21.18	5.49	≤13			
		Low	25.74	21.33	4.41	≤13			
	100%	Mid	26.1	21.34	4.76	≤13			
		High	25.77	21.24	4.53	≤13			

FDD Band 17, Modulation- QPSK									
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)			
		Low	26.32	22.25	4.18	≤13			
	1	Mid	25.82	22.10	3.72	≤13			
		High	26.33	22.16	4.17	≤13			
5	50%	Low	25.87	21.54	4.33	≤13			
5		Mid	25.81	21.56	4.25	≤13			
		High	26.14	21.43	4.71	≤13			
	100%	Low	25.50	21.53	3.97	≤13			
		Mid	25.50	21.75	3.75	≤13			

Test Report No.: 19660246 001 Date: 17.10.2016 Page 16 of 139

		High	25.96	21.43	4.53	≤13
		Low	26.48	21.29	5.19	≤13
	1	Mid	26.61	21.40	5.21	≤13
		High	25.74	21.21	4.53	≤13
		Low	25.83	21.70	4.13	≤13
10	50%	Mid	25.71	21.58	4.13	≤13
		High	25.63	21.68	3.95	≤13
		Low	25.80	21.71	4.09	≤13
	100%	Mid	25.84	21.65	4.19	≤13
		High	25.83	21.55	4.28	≤13

FDD Band 13, Modulation- QPSK									
Channel Bandwidth (MHz) Resource Block Allocation Channel Peak Output Power (dBm) Peak Output Power (dBm) PAPR (dB) PAPR (dB)									
	1	Mid	25.81	21.87	3.94	≤13			
10	50%	Mid	25.94	21.99	3.95	≤13			
	100%	Mid	25.91	21.91	4.00	≤13			

FDD Band 2, Modulation- 16-QAM										
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)				
		Low	25.8	20.45	5.35	≤13				
	1	Mid	26.3	20.74	5.56	≤13				
		High	26.44	20.85	5.59	≤13				
		Low	25.68	19.45	6.23	≤13				
5	50%	Mid	26.01	20.41	5.60	≤13				
		High	26.09	20.24	5.85	≤13				
	100%	Low	25.49	19.77	5.72	≤13				
		Mid	25.75	20.36	5.39	≤13				
		High	25.84	20.26	5.58	≤13				
		Low	26.31	19.13	7.18	≤13				
	1	Mid	26.51	19.87	6.64	≤13				
		High	26.73	20.71	6.02	≤13				
		Low	25.84	19.90	5.94	≤13				
10	50%	Mid	26.37	20.31	6.06	≤13				
		High	26.37	20.46	5.91	≤13				
		Low	25.96	19.55	6.41	≤13				
	100%	Mid	26.13	20.33	5.80	≤13				
		High	26.18	20.33	5.85	≤13				
15	1	Low	26.91	19.97	6.94	≤13				

Test Report No.: 19660246 001 Date: 17.10.2016 Page 17 of 139

٧	V	W	ľ۷	۷	.t	u	٧	.c	0	n	n
---	---	---	----	---	----	---	---	----	---	---	---

		Mid	26.81	20.93	5.88	≤13
		High	26.7	21.19	5.51	≤13
		Low	25.83	19.75	6.08	≤13
	50%	Mid	25.97	20.46	5.51	≤13
		High	26.43	20.50	5.93	≤13
		Low	24.41	19.61	4.80	≤13
	100%	Mid	25.08	20.34	4.74	≤13
		High	25.34	20.43	4.91	≤13
	1	Low	26.78	20.52	6.26	≤13
		Mid	27.14	20.37	6.77	≤13
		High	27.24	21.23	6.01	≤13
		Low	25.44	19.99	5.45	≤13
20	50%	Mid	25.62	20.36	5.26	≤13
		High	26.19	20.61	5.58	≤13
	100%	Low	24.41	19.84	4.57	≤13
		Mid	24.8	20.43	4.37	≤13
		High	25.34	20.38	4.96	≤13

Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)
		Low	26.54	20.61	5.93	≤13
	1	Mid	26.54	21.81	4.73	≤13
		High	26.5	21.08	5.42	≤13
	50%	Low	26.47	20.25	6.22	≤13
5		Mid	26.23	20.97	5.26	≤13
		High	26.62	20.50	6.12	≤13
	100%	Low	26.3	20.43	5.87	≤13
		Mid	25.99	21.12	4.87	≤13
		High	25.73	20.57	5.16	≤13
	1	Low	26.52	21.31	5.21	≤13
		Mid	26.73	21.89	4.84	≤13
		High	27.63	21.73	5.90	≤13
	50%	Low	26.4	20.41	5.99	≤13
10		Mid	26.52	20.92	5.60	≤13
		High	26.77	20.67	6.10	≤13
	100%	Low	26.52	19.44	7.08	≤13
		Mid	26.46	21.02	5.44	≤13
		High	26.8	20.55	6.25	≤13
	1	Low	26.75	19.75	7.00	≤13
45		Mid	26.76	20.37	6.39	≤13
15		High	27.12	20.81	6.31	≤13
	50%	Low	26.18	20.19	5.99	≤13

Test Report No.: 19660246 001 Date: 17.10.2016 Page 18 of 139

		Mid	26.68	20.77	5.91	≤13
		High	26.7	20.46	6.24	≤13
		Low	25.61	20.47	5.14	≤13
	100%	Mid	25.65	20.75	4.90	≤13
		High	25.68	20.44	5.24	≤13
	1	Low	26.79	21.22	5.57	≤13
		Mid	26.84	21.82	5.02	≤13
		High	26.75	21.52	5.23	≤13
	50%	Low	26.12	20.73	5.39	≤13
20		Mid	26.12	21.12	5.00	≤13
		High	26.19	21.07	5.12	≤13
	100%	Low	24.93	20.69	4.24	≤13
		Mid	25.18	20.97	4.21	≤13
		High	25.44	20.96	4.48	≤13

Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)
		Low	25.78	21.06	4.72	≤13
	1	Mid	25.23	20.74	4.49	≤13
		High	25.89	21.26	4.63	≤13
	50%	Low	25.57	20.18	5.39	≤13
5		Mid	25.18	20.57	4.61	≤13
		High	25.62	20.40	5.22	≤13
	100%	Low	25.29	20.24	5.05	≤13
		Mid	25.52	20.79	4.73	≤13
		High	25.41	20.32	5.09	≤13
		Low	25.83	20.95	4.88	≤13
	1	Mid	24.71	20.48	4.23	≤13
10		High	26.35	21.12	5.23	≤13
	50%	Low	25.63	20.31	5.32	≤13
		Mid	25.17	20.74	4.43	≤13
		High	26.08	20.51	5.57	≤13
	100%	Low	25.71	20.43	5.28	≤13
		Mid	26.33	20.36	5.97	≤13
		High	26.03	20.36	5.67	≤13

Test Report No.: 19660246 001 Date: 17.10.2016 Page 19 of 139

FDD Band 17, Modulation- 16-QAM							
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)	
		Low	26.14	21.02	5.12	≤13	
	1	Mid	25.56	21.48	4.08	≤13	
		High	25.84	20.61	5.23	≤13	
	50%	Low	25.77	20.09	5.68	≤13	
5		Mid	25.76	20.68	5.08	≤13	
		High	26	20.45	5.55	≤13	
	100%	Low	25.47	20.51	4.96	≤13	
		Mid	25.67	20.47	5.2	≤13	
		High	25.84	20.50	5.34	≤13	
10	1	Low	26.14	20.80	5.34	≤13	
		Mid	26.08	20.55	5.53	≤13	
		High	25.64	19.78	6.06	≤13	
	50%	Low	25.74	20.59	5.15	≤13	
		Mid	25.61	20.53	5.08	≤13	
		High	25.55	20.74	4.81	≤13	
	100%	Low	25.85	20.66	5.19	≤13	
		Mid	25.91	20.57	5.34	≤13	
		High	25.84	20.67	5.17	≤13	

FDD Band 13, Modulation- 16-QAM								
Channel Bandwidth (MHz)	Resource Block Allocation	Channel	Peak Output Power (dBm)	Average Output Power (dBm)	PAPR (dB)	PAPR Limit (dB)		
	1	Mid	25.86	20.78	5.08	≤13		
10	50%	Mid	25.69	20.90	4.79	≤13		
	100%	Mid	25.85	20.85	5.00	≤13		

Test Report No.: 19660246 001 Date: 17.10.2016 Page 20 of 139

99% Occupied Bandwidth & 26dB Emission Bandwidth Result

Pass

Specification FCC Part 2.1049 & RSS-Gen Issue 4 section 6.6

Measurement Bandwidth (RBW) ≥ 100KHz (1 to 5% of anticipated OBW)

Detector Function Peak

Requirement Reporting Only.

Test Setup:

Note: For measurement of occupied bandwidth, section 4.2 in "971168 D01 Power Meas License Digital Systems v02r02" was used.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 21 of 139

Test Results

Modulation: QPSK	(
FDD Band	Bandwidth	Channel	99% Occupied Bandwidth (MHz)	-26dB Bandwidth(MHz)
		Low	4.51	5.03
	5	Mid	4.53	5.06
		High	4.51	5.04
		Low	8.94	9.66
	10	Mid	8.93	9.66
2		High	8.94	9.79
۷		Low	13.36	14.35
	15	Mid	13.38	14.34
		High	13.38	14.44
		Low	17.88	19.40
	20	Mid	17.84	19.25
		High	17.84	19.33
		Low	4.51	5.06
	5	Mid	4.51	5.01
		High	4.53	5.06
	10	Low	8.94	9.75
		Mid	8.95	9.73
4		High	8.94	9.75
4		Low	13.49	15.02
	15	Mid	13.52	15.00
		High	13.44	14.80
		Low	17.88	19.35
	20	Mid	17.90	19.50
		High	17.87	19.37
		Low	4.51	5.00
	5	Mid	4.52	5.05
5		High	4.54	5.06
5		Low	8.94	9.73
	10	Mid	8.96	9.82
		High	8.90	9.67
		Low	4.52	5.05
	5	Mid	4.52	5.04
17		High	4.51	4.99
17		Low	8.93	9.77
	10	Mid	8.92	9.67
		High	8.89	9.60
13	10	Mid	8.92	9.71

Test Report No.: 19660246 001 Date: 17.10.2016 Page 22 of 139

FDD Band 2_Channel Low_5MHz

FDD Band 2_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 23 of 139

FDD Band 2_Channel High_5MHz

FDD Band 2_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 24 of 139

FDD Band 2_Channel Mid_10MHz

FDD Band 2_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 25 of 139

FDD Band 2_Channel Low_15MHz

FDD Band 2_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 26 of 139

FDD Band 2_Channel High_15MHz

FDD Band 2_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 27 of 139

FDD Band 2_Channel Mid_20MHz

FDD Band 2_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 28 of 139

FDD Band 4_Channel Low_5MHz

FDD Band 4_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 29 of 139

FDD Band 4_Channel High_5MHz

FDD Band 4_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 30 of 139

FDD Band 4_Channel Mid_10MHz

FDD Band4_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 31 of 139

FDD Band4_Channel Low_15MHz

FDD Band4_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 32 of 139

FDD Band4_Channel High_15MHz

FDD Band 4_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 33 of 139

FDD Band 4_Channel Mid_20MHz

FDD Band 4_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 34 of 139

FDD Band 5_Channel Low_5MHz

FDD Band 5_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 35 of 139

FDD Band 5_Channel High_5MHz

FDD Band 5_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 36 of 139

FDD Band 5_Channel Mid_10MHz

FDD Band 5_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 37 of 139

FDD Band 17_Channel Low_5MHz

FDD Band 17_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 38 of 139

FDD Band 17_Channel High_5MHz

FDD Band 17_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 39 of 139

FDD Band 17_Channel Mid_10MHz

FDD Band 17_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 40 of 139

FDD Band 13_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 41 of 139

Modulation: 16QAM								
FDD Band	Bandwidth	Channel	99% Occupied Bandwidth (MHz)	-26dB Bandwidth(MHz)				
2	5	Low	4.54	5.07				
		Mid	4.52	5.03				
		High	4.53	4.99				
	10	Low	8.94	9.67				
		Mid	8.94	9.75				
		High	8.94	9.82				
	15	Low	13.39	14.35				
		Mid	13.38	14.35				
		High	13.36	14.32				
	20	Low	17.85	19.47				
		Mid	17.88	19.25				
		High	17.84	19.33				
4	5	Low	4.51	5.03				
		Mid	4.52	5.00				
		High	4.51	4.99				
	10	Low	8.93	9.54				
		Mid	8.95	9.82				
		High	8.94	9.65				
	15	Low	13.47	14.96				
		Mid	13.50	14.93				
		High	13.44	14.84				
	20	Low	17.91	19.59				
		Mid	17.90	19.48				
		High	17.86	19.31				
5	5	Low	4.51	5.00				
		Mid	4.53	5.01				
		High	4.51	4.99				
	10	Low	8.94	9.60				
		Mid	8.94	9.63				
		High	8.88	9.46				
17	5	Low	4.54	5.07				
		Mid	4.51	5.05				
		High	4.53	5.05				
	10	Low	8.91	9.61				
		Mid	8.90	9.59				
		High	8.90	9.57				
13	10	Mid	8.91	9.76				

Test Report No.: 19660246 001 Date: 17.10.2016 Page 42 of 139

FDD Band 2_Channel Low_5MHz

FDD Band 2_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 43 of 139

FDD Band 2_Channel High_5MHz

FDD Band 2_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 44 of 139

FDD Band 2_Channel Mid_10MHz

FDD Band 2_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 45 of 139

FDD Band 2_Channel Low_15MHz

FDD Band 2_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 46 of 139

FDD Band 2_Channel High_15MHz

FDD Band 2_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 47 of 139

FDD Band 2_Channel Mid_20MHz

FDD Band 2_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 48 of 139

FDD Band 4_Channel Low_5MHz

FDD Band 4_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 49 of 139

FDD Band 4_Channel High_5MHz

FDD Band 4_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 50 of 139

FDD Band 4_Channel Mid_10MHz

FDD Band 4_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 51 of 139

FDD Band 4_Channel Low_15MHz

FDD Band 4_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 52 of 139

FDD Band 4_Channel High_15MHz

FDD Band 4_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 53 of 139

FDD Band 4_Channel Mid_20MHz

FDD Band 4_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 54 of 139

FDD Band 5_Channel Low_5MHz

FDD Band 5_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 55 of 139

FDD Band 5_Channel High_5MHz

FDD Band 5_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 56 of 139

FDD Band 5_Channel Mid_10MHz

FDD Band 5_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 57 of 139

FDD Band 17_Channel Low_5MHz

FDD Band 17_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 58 of 139

FDD Band 17_Channel High_5MHz

FDD Band 17_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 59 of 139

FDD Band 17_Channel Mid_10MHz

FDD Band 17_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 60 of 139

FDD Band 13_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 61 of 139

Band Edge Measurement Result

Pass

FCC Part 2.1051, 2.1057, 22.917(a)(b), 24.238(a)(b),27.53(h) &

Specification RSS 132 Issue 3 section 5.5, RSS 133 Issue 6 section 6.5 (i)(ii),

RSS 139 Issue 3 section 6.6(i)(ii), RSS 130 Issue 1section 4.6

Measurement Bandwidth (RBW) 100 kHz Detector Function Average

Requirement Shall be attenuated below the transmitter power (P in watt) by at least 43+10log(P)

dBm,

Test Setup:

Note: For measurement of Band Edge Measurement, section 6.0 in "971168 D01 Power Meas License Digital Systems v02r02" was used, Attenuator & Cable loss included in the test results

Test Report No.: 19660246 001 Date: 17.10.2016 Page 62 of 139

Test Results:

Modulation: QPSK										
FDD Band	Bandwidth	Channel	Channel Frequency (MHz)	Band edge Frequency Range (MHz)	Band Edge Value (dBm)	Limit (dBm)				
2	5	Low	1852.5	1849-1850	-23.34	-13				
		High	1907.5	1910-1911	-24.40	-13				
	10	Low	1860	1849-1850	-35.40	-13				
		High	1905	1910-1911	-18.47	-13				
	15	Low	1857.5	1849-1850	-34.15	-13				
		High	1902.5	1910-1911	-34.18	-13				
	20	Low	1860	1849-1850	-31.33	-13				
		High	1900	1910-1911	-28.89	-13				
4	5	Low	1712.5	1709-1710	-25.64	-13				
		High	1752.5	1755-1756	-25.88	-13				
	10	Low	1715	1709-1710	-17.93	-13				
		High	1750	1755-1756	-17.48	-13				
	15	Low	1717.5	1709-1710	-33.85	-13				
		High	1747.5	1755-1756	-34.15	-13				
	20	Low	1720	1709-1710	-30.00	-13				
		High	1745	1755-1756	-28.43	-13				
5	5	Low	826.5	823-824	-20.77	-13				
		High	846.5	849-850	-22.87	-13				
	10	Low	829	823-824	-25.30	-13				
		High	844	849-850	-33.82	-13				
17	5	Low	706.5	703-704	-22.08	-13				
		High	713.5	716-717	-25.66	-13				
	10	Low	709	703-704	-26.69	-13				
		High	711	716-717	-31.68	-13				
13	10	Mid	782	776-777	-22.40	-13				
		Mid	782	787-789	-20.00	-13				

Test Report No.: 19660246 001 Date: 17.10.2016 Page 63 of 139

FDD Band 2_Channel Low_5MHz

FDD Band 2_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 64 of 139

FDD Band 2_Channel Low_10MHz

FDD Band 2_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 65 of 139

FDD Band 2_Channel Low_15MHz

FDD Band 2_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 66 of 139

FDD Band 2_Channel Low_20MHz

FDD Band 2_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 67 of 139

FDD Band 4_Channel Low_5MHz

FDD Band 4_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 68 of 139

FDD Band 4_Channel Low_10MHz

FDD Band4_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 69 of 139

FDD Band4_Channel Low_15MHz

FDD Band4_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 70 of 139

FDD Band 4_Channel Low_20MHz

FDD Band 4_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 71 of 139

FDD Band 5_Channel Low_5MHz

FDD Band 5_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 72 of 139

FDD Band 5_Channel Low_10MHz

FDD Band 5_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 73 of 139

FDD Band 17_Channel Low_5MHz

FDD Band 17_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 74 of 139

FDD Band 17_Channel Low_10MHz

FDD Band 17_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 75 of 139

FDD Band 13_Channel Mid_10MHz

FDD Band 13_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 76 of 139

Modulation: 16QAM						
FDD Band	Bandwidth	Channel	Channel Frequency (MHz)	Band edge Frequency Range (MHz)	Band Edge Value (dBm)	Limit (dBm)
2	5	Low	1852.5	1849-1850	-25.00	-13
		High	1907.5	1910-1911	-24.40	-13
	10	Low	1860	1849-1850	-37.74	-13
		High	1905	1910-1911	-20.30	-13
	15	Low	1857.5	1849-1850	-37.33	-13
		High	1902.5	1910-1911	-36.99	-13
	20	Low	1860	1849-1850	-34.38	-13
		High	1900	1910-1911	-31.22	-13
4	5	Low	1712.5	1709-1710	-23.91	-13
		High	1752.5	1755-1756	-26.17	-13
	10	Low	1715	1709-1710	-19.43	-13
		High	1750	1755-1756	-19.14	-13
	15	Low	1717.5	1709-1710	-35.78	-13
		High	1747.5	1755-1756	-36.99	-13
	20	Low	1720	1709-1710	-31.73	-13
		High	1745	1755-1756	-30.98	-13
5	5	Low	826.5	823-824	-23.88	-13
		High	846.5	849-850	-25.46	-13
	10	Low	829	823-824	-25.30	-13
		High	844	849-850	-36.54	-13
17	5	Low	706.5	703-704	-23.91	-13
		High	713.5	716-717	-25.87	-13
	10	Low	709	703-704	-29.53	-13
		High	711	716-717	-32.12	-13
13	10	Mid	782	776-777	-24.83	-13
		Mid	782	787-789	-23.18	-13

Test Report No.: 19660246 001 Date: 17.10.2016 Page 77 of 139

FDD Band 2_Channel Low_5MHz

FDD Band 2_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 78 of 139

FDD Band 2_Channel Low_10MHz

FDD Band 2_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 79 of 139

FDD Band 2_Channel Low_15MHz

FDD Band 2_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 80 of 139

FDD Band 2_Channel Low_20MHz

FDD Band 2_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 81 of 139

FDD Band 4_Channel Low_5MHz

FDD Band 4_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 82 of 139

FDD Band 4_Channel Low_10MHz

FDD Band4_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 83 of 139

FDD Band4_Channel Low_15MHz

FDD Band4_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 84 of 139

FDD Band 4_Channel Low_20MHz

FDD Band 4_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 85 of 139

FDD Band 5_Channel Low_5MHz

FDD Band 5_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 86 of 139

FDD Band 5_Channel Low_10MHz

FDD Band 5_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 87 of 139

FDD Band 17_Channel Low_5MHz

FDD Band 17_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 88 of 139

FDD Band 17_Channel Low_10MHz

FDD Band 17_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 89 of 139

FDD Band 13_Channel Mid_10MHz

FDD Band 13_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 90 of 139

Conducted Spurious Emission Result

Pass

FCC Part 2.1051, 2.1057, 22.917(a)(b), 24.238(a)(b),27.53(h) & Specification

RSS 132 Issue 3 section 5.5, RSS 133 Issue 6 section 6.5 (i)(ii),

RSS 139 Issue 3 section 6.6(i)(ii), RSS 130 Issue 1section 4.6

Measurement Bandwidth (RBW) 100KHz/1MHz

Detector Function Peak

Shall be attenuated below the transmitter power (P in watt) by at least 43+10log (P) Requirement

dBm,

Test Setup:

Note: For measurement of Conducted Spurious emission test, section 6.0 in "971168 D01 Power Meas License Digital Systems v02r02" was used.

Remark: Limit for antenna port conducted spurious emission test is -13dBm.

Test Report No.: 19660246 001 Date: 17.10.2016 Page 91 of 139

www.tuv.com Test Results:

FDD Band 2_Channel Low_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 92 of 139

FDD Band 2_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 93 of 139

FDD Band 2_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 94 of 139

FDD Band 2_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 95 of 139

FDD Band 2_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 96 of 139

FDD Band 2_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 97 of 139

FDD Band 2_Channel Low_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 98 of 139

FDD Band 2_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 99 of 139

FDD Band 2_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 100 of 139

FDD Band 2_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 101 of 139

FDD Band 2_Channel Mid_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 102 of 139

FDD Band 2_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 103 of 139

FDD Band 4_Channel Low_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 104 of 139

FDD Band 4_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 105 of 139

FDD Band 4_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 106 of 139

FDD Band 4_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 107 of 139

FDD Band 4_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 108 of 139

FDD Band4_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 109 of 139

FDD Band4_Channel Low_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 110 of 139

FDD Band4_Channel Mid_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 111 of 139

FDD Band4_Channel High_15MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 112 of 139

FDD Band 4_Channel Low_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 113 of 139

FDD Band 4_Channel Mid_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 114 of 139

FDD Band 4_Channel High_20MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 115 of 139

FDD Band 5_Channel Low_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 116 of 139

FDD Band 5_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 117 of 139

FDD Band 5_Channel High_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 118 of 139

FDD Band 5_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 119 of 139

FDD Band 5_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 120 of 139

FDD Band 5_Channel High_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 121 of 139

FDD Band 17_Channel Low_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 122 of 139

FDD Band 17_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 123 of 139

FDD Band 17_Channel Mid_5MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 124 of 139

FDD Band 17_Channel Low_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 125 of 139

FDD Band 17_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 126 of 139

FDD Band 17_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 127 of 139

FDD Band 13_Channel Mid_10MHz

Test Report No.: 19660246 001 Date: 17.10.2016 Page 128 of 139

Frequency Stability Result

Pass

Specification

FCC Part 2.1055(a) (2), 22.355, , 24.235, 27.54 & RSS 132 Issue 3 section 5.3, RSS 133 Issue 6 section 6.3, RSS 139 Issue 3 section 6.4& RSS 130 Issue 1, section 4.3

Requirement

Frequency Stability shall be sufficient to ensure that the fundamental

emission stay within the authorised frequency blok.

Test Setup:

Note: For measurement of Frequency Stability test, method 9.0 in "971168 D01 Power Meas License Digital Systems v02r02" was used.

Frequency Stability on Voltage variation

Donal	Bandwidth	Voltage	Nominal Middle		Frequency ror	Limit
Band	(MHz) (Vdc) Frequency (MHz)	Frequency (MHz)	(Hz)	(ppm)	(ppm)	
		3.7	1880	-7.07	-0.0038	±2.5
		3.8	1880	-6.07	-0.0032	±2.5
	5	3.9	1880	-8.34	-0.0044	±2.5
	5	4.0	1880	-6.85	-0.0036	±2.5
		4.1	1880	-6.68	-0.0036	±2.5
		4.2	1880	-6.87	-0.0037	±2.5
		3.7	1880	-8.34	-0.0044	±2.5
		3.8	1880	-7.88	-0.0042	±2.5
	10	3.9	1880	-7.17	-0.0038	±2.5
	10	4.0	1880	-6.71	-0.0036	±2.5
		4.1	1880	-6.12	-0.0033	±2.5
FDD 2		4.2	1880	-7.14	-0.0038	±2.5
FDD 2		3.7	1880	-7.32	-0.0039	±2.5
		3.8	1880	-8.30	-0.0044	±2.5
	4.5	3.9	1880	-7.80	-0.0041	±2.5
	15	4.0	1880	-6.17	-0.0033	±2.5
		4.1	1880	-6.81	-0.0036	±2.5
		4.2	1880	-7.47	-0.0040	±2.5
		3.7	1880	-9.10	-0.0048	±2.5
		3.8	1880	-8.57	-0.0046	±2.5
	20	3.9	1880	-6.51	-0.0035	±2.5
	20	4.0	1880	-6.37	-0.0034	±2.5
		4.1	1880	-5.91	-0.0031	±2.5
		4.2	1880	-8.23	-0.0044	±2.5

Test Report No.: 19660246 001 Date: 17.10.2016 Page 129 of 139

vww.tuv.com	า					
		3.7	1732.5	5.72	0.0033	±2.5
		3.8	1732.5	-5.59	-0.0032	±2.5
	_	3.9	1732.5	4.78	0.0028	±2.5
	5	4.0	1732.5	-5.99	-0.0035	±2.5
		4.1	1732.5	6.87	0.0040	±2.5
		4.2	1732.5	5.48	0.0032	±2.5
		3.7	1732.5	7.02	0.0041	±2.5
		3.8	1732.5	2.98	0.0017	±2.5
	40	3.9	1732.5	-5.39	-0.0031	±2.5
	10	4.0	1732.5	-3.38	-0.0020	±2.5
		4.1	1732.5	-2.6	-0.0015	±2.5
EDD 4		4.2	1732.5	5.34	0.0031	±2.5
FDD 4		3.7	1732.5	-5.13	-0.0027	±2.5
		3.8	1732.5	-6.81	-0.0036	±2.5
		3.9	1732.5	-7.62	-0.0041	±2.5
	15	4.0	1732.5	-4.48	-0.0024	±2.5
		4.1	1732.5	-4.94	-0.0026	±2.5
		4.2	1732.5	-7.58	-0.0040	±2.5
		3.7	1732.5	-4.03	-0.0023	±2.5
		3.8	1732.5	-6.51	-0.0038	±2.5
		3.9	1732.5	-8.60	-0.0050	±2.5
	20	4.0	1732.5	-4.28	-0.0035	±2.5
		4.1	1732.5	4.85	0.0028	±2.5
		4.1	1732.5	-8.58	-0.0050	±2.5
		3.7	836.5	-2.92	-0.0035	±2.5 ±2.5
		3.8	836.5	-3.35	-0.0035	±2.5 ±2.5
		3.9	836.5	-2.09	-0.0025	±2.5 ±2.5
	5	4.0	836.5	-2.09 -6.46	-0.0025	±2.5 ±2.5
		4.0	836.5	-3.81	-0.0077	±2.5 ±2.5
		4.1	836.5	-3.01 -3.19	-0.0038	±2.5 ±2.5
FDD 5		3.7				
		3.8	836.5	-2.86 -2.12	-0.0034	±2.5 ±2.5
		3.9	836.5 836.5	-2.12	-0.0025	
	10			-2.35 -6.18	-0.0028	±2.5
		4.0	836.5		-0.0074	±2.5
		4.1	836.5	-2.17	-0.0026	±2.5
		4.2	836.5	-3.22	-0.0038	±2.5
		3.7	710.0	-3.41	-0.0048	±2.5
		3.8	710.0	-4.12	-0.0058	±2.5
	5	3.9	710.0	-2.67	-0.0038	±2.5
		4.0	710.0	-7.46	-0.0035	±2.5
		4.1	710.0	-4.58	-0.0065	±2.5
FDD 17		4.2	710.0	-3.21	-0.0045	±2.5
		3.7	710.0	-4.86	-0.0068	±2.5
		3.8	710.0	-3.12	-0.0044	±2.5
	10	3.9	710.0	-3.35	-0.0047	±2.5
		4.0	710.0	-5.18	-0.0073	±2.5
		4.1	710.0	-2.56	-0.0036	±2.5
		4.2	710.0	-4.67	-0.0066	±2.5
		3.7	782	-7.8	-0.00997	±2.5
		3.8	782	-7.77	-0.00994	±2.5
FDD 13	10	3.9	782	-8.08	-0.01033	±2.5
. 55 .6	10	4.0	782	-7.40	-0.00946	±2.5
		4.1	782	-6.59	-0.00843	±2.5
		4.2	782	-6.58	-0.00841	±2.5

Test Report No.: 19660246 001 Date: 17.10.2016 Page 130 of 139

Frequency Stability on Temperature variation

	Bandwidth	Channel			equency Error	Limit
Band	(MHz)	Frequency (MHz)	(°C)	(Hz)	(ppm)	(ppm)
		1880	-30	-7.08	-0.0038	±2.5
		1880	-20	-7.16	-0.0038	±2.5
		1880	-10	-7.41	-0.0039	±2.5
		1880	0	-8.12	-0.0043	±2.5
	5	1880	10	-6.17	-0.0033	±2.5
		1880	20	-4.99	-0.0027	±2.5
		1880	30	-7.12	-0.0038	±2.5
		1880	40	-8.73	-0.0046	±2.5
		1880	50	-5.02	-0.0027	±2.5
		1880	-30	-5.72	-0.0030	±2.5
		1880	-20	-6.12	-0.0033	±2.5
		1880	-10	-6.34	-0.0034	±2.5
		1880	0	-7.45	-0.0040	±2.5
	10	1880	10	-7.15	-0.0038	±2.5
		1880	20	-6.17	-0.0033	±2.5
		1880	30	-8.64	-0.0046	±2.5
		1880	40	-7.10	-0.0038	±2.5
EDD 0		1880	50	-10.50	-0.0056	±2.5
FDD 2		1880	-30	-6.85	-0.0036	±2.5
		1880	-20	-7.07	-0.0038	±2.5
		1880	-10	-6.55	-0.0035	±2.5
		1880	0	-8.33	-0.0044	±2.5
	15	1880	10	-6.25	-0.0033	±2.5
		1880	20	-10.59	-0.0056	±2.5
		1880	30	-7.27	-0.0039	±2.5
		1880	40	-7.54	-0.0040	±2.5
		1880	50	-6.59	-0.0035	±2.5
		1880	-30	-5.31	-0.0028	±2.5
		1880	-20	-6.12	-0.0033	±2.5
		1880	-10	-7.72	-0.0041	±2.5
		1880	0	-7.14	-0.0038	±2.5
	20	1880	10	-8.04	-0.0043	±2.5
		1880	20	-6.44	-0.0034	±2.5
		1880	30	-8.94	-0.0048	±2.5
		1880	40	-9.00	-0.0048	±2.5
		1880	50	-8.70	-0.0046	±2.5
		1732.5	-30	6.65	0.0038	±2.5
EDD 4	_	1732.5	-20	5.76	0.0033	±2.5
FDD 4	5	1732.5	-10	4.72	0.0027	±2.5
		1732.5	0	5.16	0.0030	±2.5

Test Report No.: 19660246 001 Date: 17.10.2016 Page 131 of 139

		4	
w/w	ww	TIIV	com

www.tuv.com						
		1732.5	10	6.07	0.0035	±2.5
		1732.5	20	5.79	0.0033	±2.5
		1732.5	30	4.15	0.0024	±2.5
		1732.5	40	-3.73	-0.0022	±2.5
		1732.5	50	-6.22	-0.0036	±2.5
		1732.5	-30	6.05	0.0035	±2.5
		1732.5	-20	-6.10	-0.0035	±2.5
		1732.5	-10	5.78	0.0033	±2.5
		1732.5	0	5.16	0.0030	±2.5
	10	1732.5	10	5.26	0.0030	±2.5
		1732.5	20	5.12	0.0030	±2.5
		1732.5	30	-5.16	-0.0030	±2.5
		1732.5	40	5.40	0.0031	±2.5
		1732.5	50	-5.21	-0.0030	±2.5
		1732.5	-30	5.76	0.0069	±2.5
		1732.5	-20	-6.11	-0.0073	±2.5
		1732.5	-10	-5.74	-0.0069	±2.5
		1732.5	0	4.68	0.0056	±2.5
	15	1732.5	10	-5.12	-0.0061	±2.5
	.0	1732.5	20	4.08	0.0049	±2.5
		1732.5	30	5.23	0.0063	±2.5
		1732.5	40	5.89	0.0070	±2.5
		1732.5	50	-4.97	-0.0059	±2.5
_		1732.5	-30	6.15	0.0035	±2.5
		1732.5	-20	-6.10	-0.0035	±2.5
		1732.5	-10	-5.94	-0.0034	±2.5
		1732.5	0	5.12	0.0030	±2.5
	20	1732.5	10	-4.56	-0.0026	±2.5
	20	1732.5	20	4.42	0.0026	±2.5
		1732.5	30	5.32	0.0020	±2.5
		1732.5	40	6.19	0.0036	±2.5
		1732.5	50	-5.15	-0.0030	±2.5
		836.5	-30	3.78	0.0030	±2.5 ±2.5
		836.5	-20	-3.42	-0.0043	±2.5 ±2.5
		836.5	-10	-3.63	-0.0041	±2.5
		836.5	0	-3.03	-0.0043	±2.5 ±2.5
	5	836.5	10	+	1	
	5			-2.49	-0.0030	±2.5
		836.5	20	3.28	0.0039	±2.5
FDD 5		836.5	30	-3.01	-0.0036	±2.5
		836.5	40	-3.81	-0.0046	±2.5
<u> </u>		836.5	50	-2.86	-0.0034	±2.5
		836.5	-30	-3.37	-0.0040	±2.5
	4.5	836.5	-20	-2.56	-0.0031	±2.5
	10	836.5	-10	-3.20	-0.0038	±2.5
		836.5	0	-2.70	-0.0032	±2.5
		836.5	10	2.75	0.0033	±2.5

Test Report No.: 19660246 001 Date: 17.10.2016 Page 132 of 139

W W W.ta V.001	••					
		836.5	20	2.19	0.0026	±2.5
		836.5	30	3.01	0.0036	±2.5
		836.5	40	-3.39	-0.0041	±2.5
		836.5	50	-3.03	-0.0036	±2.5
		710.0	-30	4.62	0.0065	±2.5
		710.0	-20	-4.21	-0.0059	±2.5
		710.0	-10	-4.12	-0.0058	±2.5
		710.0	0	-4.24	-0.0060	±2.5
	5	710.0	10	-3.12	-0.0044	±2.5
		710.0	20	4.34	0.0061	±2.5
		710.0	30	-2.86	-0.0040	±2.5
		710.0	40	-4.36	-0.0061	±2.5
EDD 47		710.0	50	-3.22	-0.0045	±2.5
FDD 17		710.0	-30	-4.78	-0.0067	±2.5
		710.0	-20	-3.42	-0.0048	±2.5
		710.0	-10	-4.13	-0.0058	±2.5
		710.0	0	-4.56	-0.0064	±2.5
	10	710.0	10	3.78	0.0053	±2.5
		710.0	20	2.83	0.0040	±2.5
		710.0	30	3.42	0.0048	±2.5
		710.0	40	-4.28	-0.0060	±2.5
		710.0	50	-4.57	-0.0064	±2.5
		782	-30	-6.83	-0.00873	±2.5
		782	-20	-7.01	-0.00896	±2.5
		782	-10	-7.37	-0.00942	±2.5
		782	0	-6.38	-0.00816	±2.5
FDD 13	10	782	10	-7.02	-0.00898	±2.5
		782	20	-7.42	-0.00949	±2.5
		782	30	-6.28	-0.00803	±2.5
		782	40	-6.89	-0.00881	±2.5
		782	50	-7.89	-0.01009	±2.5

Test Report No.: 19660246 001 Date: 17.10.2016 Page 133 of 139

RF Power (ERP/EIRP) – Radiated Mode

Result Pass

FCC Part 2.1046(a), 22.913(a) (2) 24.232(c), 27.50(d) (4) &

Specification RSS 132 Issue 3 section 5.4, SRSP-503 section 5.1.3 & RSS 133 Issue 6 section 4.1/6.4, SRSP-510.5.1.2 &

RSS 139 Issue 3 section 6.5 & RSS 130 Issue 1 section 4.4

Measurement Bandwidth (RBW) 100KHz/1MHz

Detector Function Peak

≤ FDD Band 2 : 2 Watts (33 dBm)

FDD Band 4 : 1 Watts (30 dBm)

Requirement FDD Band 5: 7 Watts (38.4dBm) for FCC & 11.5 Watts (40.60dBm) for IC

FDD Band 17: 5 Watts (36.98dBm)

FCC Band 13:

Test Setup:

Note: For measurement of RF Output Power, Test performed as per ANSI/TIA-603-D-2010 Clause 2.2.17.

Test Results

Only Worst Case test results are reported.

FDD Band	Bandwidth	Channel	Polarization	Radiated Output Power (dBm)	Limit (dBm)	Margin (dB)		
		1	Vertical	22.16	33	-10.84		
		Low	Horizontal	21.14	33	-11.86		
	5	Mid	Vertical	22.08	33	-10.92		
	5	IVIIG	Horizontal	21.1	33	-11.90		
		High	Vertical	22.4	33	-10.60		
		High	Horizontal	21.2	33	-11.80		
		Low	Vertical	21.42	33	-11.58		
		LOW	Horizontal	20.11	33	-12.89		
	40	Mid	Vertical	21.25	33	-11.75		
	10	IVIIG	Horizontal	19.85	33	-13.15		
				High	Vertical	21.51	33	-11.49
2		riigii	Horizontal	19.61	33	-13.39		
_		Low	Vertical	20.89	33	-12.11		
		LOW	Horizontal		33	-13.12		
	15	Mid	Vertical	20.67	33	-12.33		
	15	IVIIG	Horizontal	20.01	33	-12.99		
		High	Vertical	20.91	33	-12.09		
		riigii	Horizontal	19.79	33	-13.21		
		Low	Vertical	20.2	33	-12.80		
		LOW	Horizontal	18.87	33	-14.13		
	20	Mid	Vertical	19.81	33	-13.19		
		IVIIU	Horizontal	18.71	33	-14.29		
		High	Vertical	19.97	33	-13.03		
		riigii	Horizontal	19.19	33	-13.81		

Test Report No.: 19660246 001 Date: 17.10.2016 Page 134 of 139

www	4111/	com
www	TIIV	4:43111

www.tuv.com			Vertical	18.51	30	-11.49
		Low	Horizontal	19.45	30	-10.55
			Vertical	20.23	30	-9.77
	5	Mid	Horizontal	19.55	30	-10.45
			Vertical	19.88	30	-10.12
		High	Horizontal	18.41	30	-11.59
			Vertical	17.71	30	-12.29
		Low	Horizontal	18.9	30	-11.1
			Vertical	18.95	30	-11.05
	10	Mid	Horizontal	18.24	30	-11.76
			Vertical	18.98	30	-11.02
		High	Horizontal	17.33	30	-12.67
4		+	Vertical	19.12	30	-12.07
		Low	Horizontal	18.01	30	-10.88
			Vertical			
	15	Mid		18.86	30	-11.14
			Horizontal	18.23	30	-11.77
		High	Vertical	19.02	30	-10.98
			Horizontal	18.32	30	-11.68
		Low	Vertical	17.26	30	-12.74
	20		Horizontal	16.61	30	-13.39
		Mid	Vertical	17.55	30	-12.45
			Horizontal	16.77	30	-13.23
		High	Vertical	17.58	30	-12.42
		<u> </u>	Horizontal	16.02	30	-13.98
		Low	Vertical	17.86	38.45	-20.59
			Horizontal	12.05	38.45	-26.4
	5	Mid	Vertical	17.06	38.45	-21.39
			Horizontal	12.29	38.45	-26.16
		High	Vertical	16.34	38.45	-22.11
5		+	Horizontal	12.73	38.45	-25.72
-		Low	Vertical	18.14	38.45	-20.31
			Horizontal	15.29	38.45	-23.16
	10	Mid	Vertical	17.93	38.45	-20.52
			Horizontal	15.17	38.45	-23.28
		High	Vertical	17.31	38.45	-21.14
		3	Horizontal	14.45	38.45	-24.00
		Low	Vertical	11.21	36.98	-25.77
			Horizontal	16.69	36.98	-20.29
	5	Mid	Vertical	16.7	36.98	-20.28
	J	IVIIG	Horizontal	16.75	36.98	-20.23
17		High	Vertical	11.69	36.98	-25.29
		riigii	Horizontal	16.96	36.98	-20.02
		Low	Vertical	10.98	36.98	-26.00
	10	LOW	Horizontal	16.3	36.98	-20.68
		Mid	Vertical	11.7	36.98	-20.28

Test Report No.: 19660246 001 Date: 17.10.2016 Page 135 of 139

			Horizontal	16.75	36.98	-20.23
		∐iab	Vertical	11.42	36.98	-25.56
		High	Horizontal	15.84	36.98	-21.14
40	10	10 Mid	Vertical	11.63	36.98	-25.35
13	10	IVIIG	Horizontal	17.93	36.98	-19.05

Test Report No.: 19660246 001 Date: 17.10.2016 Page 136 of 139

Field Strength of Spurious Radiation Result

Pass

FCC Part 2.1053(a), 22.917(a)(b), 24.238(a)(b) 27.53(h) & Specification

RSS 132 Issue 3 section 5.5, RSS 130 Issue 1 Section 4.6

RSS 133 Issue 6 section 6.5 (i)(ii), RSS 139 Issue 3 section 6.6(i)(ii)

Measurement Bandwidth (RBW) 100KHz/1MHz

Detector Function Peak

Shall be attenuated below the transmitter power (P in watt) by at least 43+10log (P) Requirement

dBm,

Note: For measurement of RF Output Power, Test performed as per ANSI/TIA-603-D-2010 Clause 2.2.12.

Test Results

Test Results below 1GHz

Worst case test results are reported for 1GB RAM Variant.

Polarization	Frequency (MHz)	Emission (dBm)	Limit (dBm)	Margin (dB)
\/ti	98.38	-57.05	-13	-44.05
Vertical	210.71	-58.68	-13	-45.68
Horizontal	97.6	-58.72	-13	-45.72
	213.03	-55.78	-13	-42.78

Worst case test results are reported for 2GB RAM Variant.

Polarization	rization Frequency (MHz) Emission (dBm)		Limit (dBm)	Margin (dB)
Montical	100.91	-56.84	-13	-43.84
Vertical	211.64	-57.28	-13	-44.28
11.2	99.27	-55.29	-13	-42.29
Horizontal	210.15	-56.29	-13	-43.29

Test Report No.: 19660246 001 Date: 17.10.2016 Page 137 of 139

Worst Case Test Result above 1GHz

FDD Band	Channel Bandwidth (MHz)	Channel	Channel Frequency (MHz)	Polarization	Frequency (MHz)	Emission (dBm)	Limit (dBm)	Margin (dB)	
2	5,10,15 & 20	Low	No Spurious Emissions were found						
		Mid							
		High							
4	5,10,15 & 20	Low	No Spurious Emissions were found						
		Mid							
		High							
	5	Low	829	Vertical	1660.2	-40.24	-13	-27.24	
				Horizontal	1659.4	-40.68	-13	-27.68	
				Vertical	2490.2	-49.34	-13	-36.34	
				Horizontal	2489.7	-48.98	-13	-35.98	
		Mid	836.5	Vertical	1675.4	-41.64	-13	-28.64	
				Horizontal	1675.2	-41.38	-13	-28.38	
				Vertical	3346.2	-50.48	-13	-37.48	
				Horizontal	3346.1	-49.85	-13	-36.85	
		High	844	Vertical	1693.2	-38.67	-13	-25.67	
				Horizontal	1693.1	-39.32	-13	-26.32	
				Vertical	2532.6	-50.12	-13	-37.12	
				Horizontal	2531.8	-49.78	-13	-36.78	
_	10	Low	826.5	Vertical	1658.1	-44.53	-13	-31.53	
5				Horizontal	1658.1	-44.34	-13	-31.34	
				Vertical	2500.1	-47.07	-13	-34.07	
				Horizontal	2500.1	-51.61	-13	-38.61	
				Vertical	3316.2	-51.20	-13	-38.20	
				Horizontal	3316.2	-50.89	-13	-37.89	
		Mid	836.5	Vertical	1672.9	-45.33	-13	-32.33	
				Horizontal	1673	-44.48	-13	-31.48	
				Vertical	2500.1	-47.74	-13	-34.74	
				Horizontal	2500.1	-52.14	-13	-39.14	
		High	846.5	Vertical	1694.2	-40.12	-13	-27.12	
				Horizontal	1694.5	-41.24	-13	-28.24	
				Vertical	2541.2	-48.21	-13	-35.21	
				Horizontal	2540.9	-49.43	-13	-36.43	
17	5	Low	706.5	Vertical	1413	-65.03	-13	-52.03	
				Horizontal	1413	-59.23	-13	-46.23	
				Vertical	2119.5	-63.26	-13	-50.26	
				Horizontal	2119.5	-62.82	-13	-49.82	
				Vertical	2826	-57.55	-13	-44.55	
				Horizontal	2826	-55.53	-13	-42.53	

Test Report No.: 19660246 001 Date: 17.10.2016 Page 138 of 139

www.tuv.	 							
				Vertical	3532.5	-57.96	-13	-44.96
		Mid		Horizontal	3532.5	-58.93	-13	-45.93
			710	Vertical	1420	-64.34	-13	-51.34
				Horizontal	1420	-57.89	-13	-44.89
				Vertical	2130	-61.97	-13	-48.97
				Horizontal	2130	-62.09	-13	-49.09
				Vertical	2840	-55.60	-13	-42.60
				Horizontal	2840	-54.43	-13	-41.43
				Vertical	3550	-57.06	-13	-44.06
				Horizontal	3550	-57.66	-13	-44.66
			713.5	Vertical	1427	-64.56	-13	-51.56
				Horizontal	1427	-58.89	-13	-45.89
				Vertical	2140.5	-62.92	-13	-49.92
				Horizontal	2140.5	-62.73	-13	-49.73
				Vertical	2854	-55.68	-13	-42.68
				Horizontal	2854	-55.88	-13	-42.88
				Vertical	3567.5	-58.50	-13	-45.50
				Horizontal	3567.5	-57.97	-13	-44.97
				Vertical	1418	-64.92	-13	-51.92
				Horizontal	1418	-60.01	-13	-47.01
		Low	709	Vertical	2127	-63.93	-13	-50.93
		LOW	709	Horizontal	2127	-64.03	-13	-51.03
				Vertical	2836	-58.78	-13	-45.78
				Horizontal	2836	-56.48	-13	-43.48
			710	Vertical	1420	-66.67	-13	-53.67
				Horizontal	1420	-60.47	-13	-47.47
	10 Mid	Mid		Vertical	2130	-64.04	-13	-51.04
		IVIIG		Horizontal	2130	-63.62	-13	-50.62
				Vertical	2840	-59.98	-13	-46.98
				Horizontal	2840	-60.12	-13	-47.12
				Vertical	1422	-66.25	-13	-53.25
				Horizontal	1422	-60.73	-13	-47.73
		High	711	Vertical	2133	-64.09	-13	-51.09
	riigii	'''	Horizontal	2133	-63.93	-13	-50.93	
				Vertical	2844	-61.97	-13	-48.97
				Horizontal	2844	-60.57	-13	-47.57
13	10	Mid	782	Vertical	1564	-65.92	-13	-52.92
				Horizontal	1564	-63.64	-13	-50.64

END OF TEST REPORT

Test Report No.: 19660246 001 Date: 17.10.2016 Page 139 of 139