

Convolutional Neural Networks

More edge detection

Vertical edge detection examples

So because the shade of the transition is reversed, the 30s now get reversed as well.

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

* 1 0 -1 0 -1 0 -

Andrew Ng

Vertical and Horizontal Edge Detection

Horizontal

	1	1	
	0	0	
	-1	-1	
_			

0003010-10-303010-10-300000

Learning to detect edges

And the advantage of this is, it puts a little bit more weight to the central row, the central pixel and this makes it maybe a little bit more robust.

(0	-
2	0	-2
	\bigcirc	-1

1

Treating these 9 numbers as parameters. The backprop can choose to learn filters.

W	$\widehat{w_2}$	W ₃
W ₄	W ₅	$\overline{w_6}$
$\overline{w_7}$	$\widetilde{w_8}$	$\widehat{W_9}$
	\rightarrow	

543

3	0	-3
0	0	0
3	J	-3

Schor Filter

