1SPÉ

ÉNERGIE DISSIPÉE PAR UN REBOND

TP

Le but de ce TP est de déterminer l'évolution de l'énergie mécanique d'un ballon grâce au pointage d'une vidéo pour déterminer l'énergie perdue lors d'un rebond.

Pointage de la vidéo

- Vous aller réaliser le pointage de la vidéo darwin.mp4 dans le logiciel Regressi en vous aidant de la méthode décrite dans la notice à votre disposition (pensez à définir l'échelle en utilisant la taille de Darwin, 87 cm, et placer le repère de façon à ce que l'origine soit au centre de la balle au moment où elle touche le sol). Pour alléger le travail, on choisit de ne pointer qu'une image sur cinq (voir au tableau pour la marche à suivre).
- Une fois le pointage terminé, cliquer sur Traiter.

Exploitation

En vous aidant de la notice fournie :

- 1. Créer sur Regressi la grandeur vitesse horizontale V_x à partir de la dérivée de la position horizontale x, puis créer la grandeur vitesse verticale V_y à partir de la dérivée de la position verticale y.
- 2. Exprimer l'énergie cinétique E_c du ballon en fonction de la masse m du ballon, de sa vitesse horizontale v_x et de sa vitesse verticale v_y .
- 3. Créer la grandeur calculée Ec sur Regressi (la masse du ballon est de 100 g).
- 4. Exprimer l'énergie potentielle de pesanteur E_p du ballon en fonction de la masse m du ballon, de la pesanteur g et de l'altitude du ballon y.
- 5. Créer la grandeur calculée Ep sur Regressi.
- 6. Exprimer l'énergie mécanique E_m du ballon en fonction de son énergie cinétique E_c et de son énergie potentielle E_p .
- 7. Afficher le tracer des évolutions de E_c , E_p et E_m au cours du temps.
- 8. Déterminer sur le graphique l'énergie dissipée lors du rebond.
- 9. Où est passée l'énergie?