

CMPS 251

Graphical User Interfaces (GUI)

Dr. Abdelkarim Erradi
CSE@QU

Outline

- GUI Programming Model
- Model-View-Controller (MVC) Pattern
- JavaFX Layout
- Handling Events

GUI Programming Model

You have open holidays!
We might send you to the **Museum** ©

ComboBox 08.01.2015 Hyperlink Label ListView Menutem ✓ CheckMenutem RadioMenutem 1 ✓ RadioMenutem 2

What is a GUI?

- Graphical User Interface (GUI)

 provides a visual User Interface
 (واجهة الاستخدام) for the users to interact with the application
 - Instead of a Character-based interface provided by the console interface 'the scary black screen'
- JavaFX can be used for creating GUI

GUI Programming Model

- GUI of an application is made up of Windows (JavaFX calls it <u>Stage</u>)
- A window has a container (called <u>Scene</u>) to host the UI root layout container
- UI Components are first added to a root layout container (such as VBox) then placed in the Scene
- UI Components raise Events when the user interacts with them (such as a MouseClicked event is raised when a button is clicked).
 - Programmer write Event Handlers to respond to the UI events

Structure of JavaFX application

Stage = Window where a scene is displayed

Scene = Container to host the UI root layout container

What Makes up JavaFx ?

- **OK** Button
- CheckBox
- ChoiceBox
- ColorPicker
- ComboBox
- DatePicker (FX8)
- **HTMLEditor**
- C Hyperlink
- **ImageView**
- Label
- ListView
- MediaView
- MenuBar
- MenuButton
- **Pagination**
- **PasswordField**
- ProgressBar
- ProgressIndicator
- RadioButton
- ScrollBar (horizontal)
- ScrollBar (vertical)
- □ Separator (horizontal)

- Separator (vertical)
- Slider (horizontal)
- Slider (vertical)
- Spinner (FX8)
- SplitMenuButton
- **TableColumn**
- **TableView**
- TextArea
- TextField
- ToggleButton
- TreeTableColumn (FX8)
- TreeTableView (FX8)
- TreeView
- w³ WebView

UI components

- Set of pre-built UI components that can be composed to create a **GUI**
- e.g. buttons, text-fields, menus, tables, lists, etc.

Layout containers

Control placement/ positioning of components in the form (e.g., VBox and HBox)

JavaFX UI Components

JavaFX UI Components Hierarchy

Creating JavaFX GUI: Stage (1/2)

- Create a class that extends javafx.application.Application
- Implement the

start(Stage stage) method to
build and display the UI

- start() is called when the app is launched
- JavaFX automatically creates an instance of Stage class and passes to start()
 - o when start() calls
 stage.show() a window is
 displayed

```
public class App extends Application {
  @Override

public void Start(Stage stage) {
    stage.setTitle("My First App");
    stage.show();
}

public static void main(String args[]) {
    Launch(args);
}
```

```
■ My First App — □ ×
```

Creating JavaFX GUI: Scene (2/2)

- Create a scene (instance of javafx.scene.Scene)
 within the start method as the top-level container for the UI components
 - then pass the scene to the stage using the setScene method
- UI components (a Button, a Label...) can be added to a layout container (e.g., VBox) then added to the Scene to get displayed

```
public void start(Stage stage) {
   VBox root = new VBox();
   Label label = new Label("JavaFX Rocks!");
   Button button = new Button("Submit");
   root.getChildren().addAll(label, button);
   Scene scene = new Scene(root, 200, 200);
   stage.setScene(scene);
   stage.show();
}
```

JavaFX Application: ColorChanger

 App that contains text reading "JavaFX Rocks!" and a Button that randomly changes text's color with every click

JavaFX App Components

The window is known as the stage

The root node of this scene graph is a layout container that arranges the other nodes

Each of the JavaFX components in this GUI is a node in the scene graph

UI Component

UI component is a class that has:

Using a UI Component

1. Create it

```
Button button = new Button("Press me");
```

Button

2. Initialize it / configure it

```
button.setTextFill( Color.BLUE );
```

3. Add it to a layout container

```
vBox.add(button);
```

4. Listen to and handle its events

Building GUI Applications using the Model-view-controller (MVC) Pattern

MVC-based Application

View

- Gets input from the user
- Notifies the controller about UI events
- Displays output to the user

Controller

- Handles events raised by the view
- Instructs the model to perform actions based on user input
- e.g. request the model to get the list of courses
 - Passes the results to the view to display the output

Model – implements business logic and computation, and manages the application data

Implementing MVC with JavaFX

- Define the model (ordinary Java classes) to represent data and encapsulate computation
- Build the view using JavaFX Components to collect input from the user and displays the results received from the controller
- 3. Use a controller to listen to and handle events raised by the view
 - Controller coordinates the execution of the request, get the request parameters from the View, calls the model to obtain the results (i.e., objects from the model)
 - Pass the results to the view to display the output

Advantages of MVC

Separation of concerns

- Views, controller, and model are separate components
 - Computation is not intermixed with Presentation. Consequently, code is cleaner, flexible and easier to understand and change.
 - Allow changing a component without significantly disturbing the others (e.g., UI can be completely changed without touching the model)

Reusability

The same model can used by different views (e.g., JavaFX view, Web view and Mobile view)

MVC is widely used and recommended particularly for interactive applications with GUI

Building the View using FXML

- You can create the View using Java code or FXML
- FXML is an XML-based language that defines the structure and layout of the View

FXML allows a clear separation between the view of

an app and the logic

 SceneBuilder is a WYSIWYG editor for FXML

Loading FXML file into a stage

```
@Override
public void start(Stage stage) throws Exception {
   Parent root =
    FXMLLoader.load(getClass().getResource("welcome.fxml"));
   stage.setTitle("Welcome to JavaFX");
   stage.setScene(new Scene(root, 400, 300));
   stage.show();
```

FXML Controller

- FXML file is associated with a Controller class that implements all the events handlers
 - Referenced by fx:controller attribute in the FXML
- The Controller defines:
 - attributes associated to the view components
 - FXML elements to be accessed programmatically in the controller must be named using **fx:id** attribute
 - event handlers (e.g., handle button onAction event)

```
public class LoginController {
    @FXML private Button loginBtn;

@FXML void handleLogin(ActionEvent event) {
        System.out.println("Login pressed");
    }
}
```

FXML + Controller

```
<BorderPane fx:controller="com.SuperController">
  <center>
    <Button text="Click !" fx:id="myButton"
                                    onAction="#doSomething" />
 </center>
</BorderPane>
public class SuperController { /
 @FXML private Button myButton;
 @FXML private void doSomething(ActionEvent e) {}
```



```
VBox root = new VBox();
Label label = new Label("JavaFX Rocks!");
Button button = new Button("Random Color");
button.setTextFill(Color.BLUE);
root.getChildren().addAll(label, button);
root.setSpacing(20);
root.setAlignment(Pos.CENTER);
```


Steps to creating a GUI Interface

- Design it on paper (sketch)
 - Decide what information to present to user and what input they should supply
 - Decide the UI components and the layout on paper
- Create a view and add components to it (using either SceneBuilder or java code)
 - Use layout panes to group and arrange components
- 3. Add event handlers to respond to the user actions (event driven programming)
 - Do something when the user presses a button, moves the mouse, change text of input field, etc.

UI Sketch - Example

Layouts

Layouts

- Layout classes are called Panes in JavaFX
- Layout Pane automatically controls the size and placement of components in a container
 - Frees programmer from handling/hardcoding positioning of UI elements
 - As the window is resized, the UI components reorganize themselves based on the rules of the layout

JavaFX Containers Hierarchy

Common Layouts

- VBox displays UI elements in a vertical line
- HBox displays UI elements in a horizontal line
- BorderPane provides five areas: top, left, right, bottom, and center.
- FlowPane lays out its child components either vertically or horizontally. Can wrap the components onto the next row or column if there is not enough space in a row/column.
- GridPane displays UI elements in a grid (e.g., a grid of 2 rows by 2 columns)

VBox & HBox

VBox Example

- VBox layout pane creates an easy way for arranging child components in a single vertical column
 - Create a VBox layout container
 - Add 3 buttons to the VBox

```
* Within App class */
    @Override
    public void start(Stage stage) {
    //code for setting root, stage, scene ...

    VBox root = new VBox();

    Button b1 = new Button("Button 1");
    Button b2 = new Button("Button 2");
    Button b3 = new Button("Button 3");
```

root.getChildren().addAll(b1,b2,b3);

Order matters - order buttons added effects order displayed (b1, b2, b3) vs. (b2, b1, b3)

Customizing VBox layout

- We can customize vertical spacing between children using VBox's setSpacing(double) method
- Can also set positioning of child components
 - Default positioning is in TOP_LEFT (Top Vertically, Left Horizontally)
 - Can change Vertical/Horizontal positioning of column using VBox's setAlignment(Pos position) method
 - e.g. Pos.BOTTOM_RIGHT represents positioning on the bottom vertically, right horizontally
 - full list of Pos constants can be found <u>here</u>

BorderPane

GridPane

FlowPane

 With FlowPane the components are arranged from left to right and top to bottom manner in the order they were added

TabPane

Complex Layouts

- For more complex views you can combine different layouts to group components
 - e.g., a BorderPane that contains VBox and HBox panes

Handling Events

What is Event Driven Programming?

- GUI programming model is based on event driven programming
- An event is a signal that some something of interest to the application has occurred
 - Keyboard (key press, key release)
 - Mouse Events (clicked, mouse enters, mouse leaves)
 - Input focus (gained, lost)
 - Window events (starting, closing, maximize, minimize)
- When an event is triggered, an event handler can run to respond to the event. e.g.,
 - When the button is clicked -> load the data from a file into a list
 - When a mouse is moved over a button -> show a tooltip

Event Hierarchy

Handling Events using Lambdas


```
btn.setOnMouseClicked(event ->
        handleMouseEvent(event));
// Or use method reference
btn.setOnMouseClicked(
         this::handleMouseEvent);
private void handleMouseEvent(MouseEvent event) {
     System.out.println(event);
```