# Tensor Decomposition Approaches for fMRI Classification

Vida John, Katie Keegan, Tanvi Vishwanath, Yihua Xu Faculty Advisor: Elizabeth Newman, PhD July 2, 2021

Emory University REU/RET in Computational Mathematics and Data Science



#### **Motivation**

#### Tensor

A multidimensional array of numbers, representing fMRI 3D brain images in response to stimuli over time.

- Exploit correlations of pixels in space and time,
- Use low rank approximations
- Better representation



## **Notation**





#### **Products**

## Mode-k Product $(A \times_k M)$ :

The mode-k product of a tensor  $\mathcal{A}$  with a matrix  $\mathbf{M}$  results in a tensor whose mode-k unfolding is  $\mathbf{M}$  times the mode-k unfolding of  $\mathcal{A}$ . In other words,  $\mathcal{A} \times_k \mathbf{M} = \operatorname{fold}(\mathbf{M} \mathcal{A}_{(k)})$ 

# Facewise Product $(\hat{A} \triangle \hat{B})$ :

The facewise product multiplies each of the  $n_1 \times n_2$  and  $n_2 \times \ell$  frontal slices of two tensors in the transform domain in parallel to create a set of  $n_1 \times \ell$  new slices.









## A Family of Tensor-Tensor Products

## $\star_{\mathrm{M}}$ -product:

Given the  $n_1 \times n_2 \times n_3$  tensor  $\mathcal{A}$ , and the  $n_2 \times \ell \times n_3$  tensor  $\mathcal{B}$ , with an invertible  $n_3 \times n_3$  matrix M:

$$\mathcal{C} = \mathcal{A} \star_{\mathrm{M}} \mathcal{B} = (\hat{\mathcal{A}} \triangle \hat{\mathcal{B}}) imes_3 M^{-1}$$

such that C is an  $n_1 \times \ell \times n_3$  tensor.



Spatial domain

Transform domain

Spatial domain



Kernfeld, Kilmer, and Aeron, "Tensor-tensor products with invertible linear transforms"

#### Our Research

#### Data

- StarPlus fMRI images of a subject's brain over time
- Multiple trials correspond to each subject
- Each trial corresponds to the subject either reading a sentence or seeing a picture

#### Questions

- Are tensor approaches better than matrix approaches to classifying fMRI data (i.e. picture or sentence)?
- If so, what tensor approach is best?





























5-dimensional representation of data: (trials, x, y, z, time)



# Review of Singular Value Decomposition

• SVD factorizes any matrix **A**:

$$A = U \Sigma V^T$$

- Properties
  - Columns of **U** can be used as a basis for **A**
  - ullet  $oldsymbol{U}$  and  $oldsymbol{V}$  are orthogonal
- Highly useful in compression or extracting dominant features





# Review of Singular Value Decomposition

SVD factorizes any matrix A:

$$A = U \Sigma V^T$$

- Properties
  - Columns of **U** can be used as a basis for **A**
  - ullet  $oldsymbol{U}$  and  $oldsymbol{V}$  are orthogonal
- Highly useful in compression or extracting dominant features



## How can this be extended to higher dimensions (tensors)?



## t-SVDM (third order)

Given  $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$  and an invertible  $M \in \mathbb{R}^{n_3 \times n_3}$ , the t-SVDM of  $\mathcal{A}$  is given by

$$\mathcal{A} = \mathcal{U} \star_{\mathrm{M}} \mathcal{S} \star_{\mathrm{M}} \mathcal{V}^{\mathsf{T}}$$

where  $\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3}$ ,  $\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ ,  $\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3}$ .





## **Local t-SVDM Algorithm**

- Pre-processing
  - 1. Separate the training dataset  ${\cal A}$  into distinct classes

$$oldsymbol{\mathcal{A}}_1, oldsymbol{\mathcal{A}}_2, \dots, oldsymbol{\mathcal{A}}_\#$$
 of classes

For each class i, compute a truncated local t-SVDM and store the first k basis elements

$$\mathcal{A}_i = \mathcal{U}_i \star_{\mathrm{M}} \mathcal{S}_i \star_{\mathrm{M}} \mathcal{V}_i^{\top}$$
  $\qquad \qquad \mathcal{U}_{i,k} = \mathcal{U}_i (:, 1:k,:)$ 



## **Local t-SVDM Algorithm**

- Pre-processing
  - 1. Separate the training dataset  ${\cal A}$  into distinct classes

$$\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_\#$$
 of classes

For each class i, compute a truncated local t-SVDM and store the first k basis elements

$$\mathcal{A}_i = \mathcal{U}_i \star_{\mathrm{M}} \mathcal{S}_i \star_{\mathrm{M}} \mathcal{V}_i^{\top}$$
  $\mathcal{U}_{i,k} = \mathcal{U}_i (:, 1:k,:)$ 

- ullet For each test image  ${\mathcal T}$ 
  - For each basis, project a test image onto the space spanned by the class basis

$$\mathcal{P}_i = \mathcal{U}_{i,k} \star_{\mathrm{M}} \mathcal{U}_{i,k}^{\top} \star_{\mathrm{M}} \mathcal{T}$$

Categorize the test image as the class whose projection was "closest" to the original image

$$i^* = \arg\min_i \|\mathcal{T} - \mathcal{P}_i\|_F$$



The Frobenius norm for third-order tensors is  $\|\mathbf{\mathcal{B}}\|_F = \sqrt{\sum_{i,j,k} b_{ijk}^2}$ .

Newman, Kilmer, and Horesh, Image classification using local tensor singular value decompositions

# Intuition - Stripe Data Example







#### Choice of M

To use t-SVDM, following Ms are selected and implemented:

| Matrix Type       | Advantage              | Orthogonal |
|-------------------|------------------------|------------|
| Banded            | Time Series            | No         |
| Haar              | Capture Data Structure | Yes        |
| Random Orthogonal | Base Line              | Yes        |
| Data-Dependent    | Data Matching          | Yes        |

Special choices of  $\boldsymbol{M}$  give us the following products:

| Method Type   | Abbreviation | Transformation            |
|---------------|--------------|---------------------------|
| Tensor-tensor | t            | Fast Fourier Transform    |
| Cosine        | С            | Discrete Cosine Transform |
| Facewise      | f            | No Transform              |



# **Preliminary Results**

| Attributes        | Matrix Approach      | Tensor Approach         |
|-------------------|----------------------|-------------------------|
| Dimensions        | (x·y·z·time, trials) | (x, trials, y, z, time) |
| Shape             | (524288,26)          | (64,26,64,8,16)         |
| Computation       | Expensive            | Parallelizable          |
| Transformation    | N/A                  | <b>M</b> can be varied  |
| Best Accuracy     | 78.6%                | 100%                    |
| (With Parameters) | k = 4                | M = 'ddm', k = 4/5      |

 Accuracy = number of correct classification in one class/all data points in one class



# **Hyperparameter Tuning**

**Number of basis elements:** Choose the k largest singular values and their corresponding tensors to be our basis element.

#### **Punchline:**

high representation power low representation power large k small k





## Choice of M





#### **Conclusions**

Conclusion: Tensor approach outperforms matrix approach

Future Work: Experiment with various parameters:

- Transformations (M)
- Bases (k)
- Distance metrics



Thank you!



#### References



Just, Marcel. StarPlus fMRI data. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/. Center for Cognitive Brain Imaging at Carnegie Mellon University.



Kernfeld, Eric, Misha Kilmer, and Shuchin Aeron. "Tensor-tensor products with invertible linear transforms". In: Linear Algebra and its Applications 485 (Nov. 2015), pp. 545-570. DOI: 10.1016/j.laa.2015.07.021.



Kilmer, Misha et al. Tensor-Tensor Products for Optimal Representation and Compression. 2019. arXiv: 2001.00046 [math.NA].



Kolda, Tamara G. and Brett W. Bader. "Tensor Decompositions and Applications". In: SIAM Review 51.3 (2009), pp. 455–500. DOI: 10.1137/07070111X.



Malik, Osman Asif et al. Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs. 2020. URL: https://openreview.net/forum?id=rvlVTTVtvH.



Newman, Elizabeth, Misha Kilmer, and Lior Horesh. Image classification using local tensor singular value decompositions. 2017. arXiv: 1706.09693 [stat.ML].



Strang, G. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019, pp. 56-74. ISBN: 9780692196380. URL: https://books.google.com/books?id=LOY\\_wQEACAAJ.



## Choice of M

- Banded Matrix
  - Lower triangular and banded matrix. Entries in M on the diagonal and a specific number of subdiagonals are set to 1, while all others are 0. Finally normalization along the row.
  - Example (4\*4, bandwidth = 1):  $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$
- Normalized Haar Matrix
- Random Orthogonal Matrix
- Data-Dependent Matrix
  - Unfold the tensor to a matrix along an axis (whose dimension later becomes the dimension of M)
  - ullet Conduct SVD on the matrix, and  $oldsymbol{U}$  is the  $oldsymbol{M}$  we need here.

