Cosmological Constraint from the Measurement of Baryon Acoustic Oscillations & Redshift Space Distortion

Group Members: Leyao Wei(韦乐瑶), Anning Gao(高安宁), Jiayi Li(李珈毅)

Outline

Physics of BAO & RSD by Leyao Wei

BAO Observation by Anning Gao

BAO Reconstruction by Jiayi Li

Cosmological Constraints from BAO by Jiayi Li

Baryon Acoustic Oscillations

• Before decoupling:

Baryon couples with radiation and oscillates

• After decoupling:

The acoustic wave got frozen and baryon remain as over-density structure

Mass profile for different species

Baryon Acoustic Oscillations

• Before decoupling:

Baryon couples with radiation and oscillates

• After decoupling:

The acoustic wave got frozen and baryon remain as over-density structure

Mass profile for different species

- Acoustic scale $r_d \sim 150$ Mpc Can be measured from the CMB anisotropy power spectrum
 - Avoid the impact of non-linear structure formation BAO can be a cosmological standard ruler

BAO for cosmological constraint

• Friedmann equation:

$$\frac{H^2(z)}{H_0^2} = \Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_k (1+z)^2 + \Omega_\phi \frac{u_\phi(z)}{u_\phi(z=0)}$$

BAO for cosmological constraint

• Friedmann equation:

$$\frac{H^2(z)}{H_0^2} = \Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_k (1+z)^2 + \Omega_\phi \frac{u_\phi(z)}{u_\phi(z=0)}$$

• Comoving line-of-sight distance & Comoving angular diameter(transverse) distance

$$D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')} \qquad \qquad D_A(z) \approx D_C \left[1 + \frac{1}{6} \Omega_k \left(\frac{D_C}{c/H_0} \right)^2 \right]$$

BAO for cosmological constraint

• Friedmann equation:

$$\frac{H^2(z)}{H_0^2} = \Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_k (1+z)^2 + \Omega_\phi \frac{u_\phi(z)}{u_\phi(z=0)}$$

• Comoving line-of-sight distance & Comoving angular diameter(transverse) distance

$$D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')} \qquad \qquad D_A(z) \approx D_C \left[1 + \frac{1}{6} \Omega_k \left(\frac{D_C}{c/H_0} \right)^2 \right]$$

• Dark energy:

- Measurement: Ω_m , H_0r_d
- Combing Measurement: H_0 , neutrino mass, equation of state for dark energy

BAO in the real universe

Single Acoustic Wave

Derive the BAO signal from galaxy clustering

Credit: Daniel Eisenstein

BAO peak in the 2-points correlation function

A series of peaks in the power spectrum

Step into the real universe: Redshift Space Distortion

• Galaxies are not just in the Hubble flow...

Galaxy line of sight velocity = Hubble flow + Peculiar velocity

Cosmological Spectroscopic Survey

- For BAO & RSD measurement:
 - Require precise distance measurement
 - Require to map enormous volume of the universe

Ongoing Stage-IV survey DESI & Upcoming Stage-V survey MUST

• How can we estimate the BAO scale? **2-point correlation function**

Theoretically: spatial average of <u>overdensity</u>

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$

Observationally: the excess probability of finding another tracer

$$\delta P = n[1 + \xi(r)]\delta V$$

• How to measure the correlation function? **Counting Pairs**

Trivial Estimator:

$$\xi(r) = \frac{DD}{RR} - 1$$

Landy-Szalay Estimator: (1993)

$$\xi(r) = \frac{DD - 2DR + RR}{RR}$$

• How to measure the correlation function? **Counting Pairs**

Trivial Estimator:

$$\xi(r) = \frac{DD}{RR} - 1$$

Landy-Szalay Estimator: (1993)

$$\xi(r) = \frac{DD - 2DR + RR}{RR}$$

• How to estimate the error bar? **Running simulations**

Sources of statistical uncertainty:

- 1. Limited survey volume: Cosmic Variance
- 2. Discrete sampling: Shot Noise

$$Cov = \frac{1}{N-1} \sum_{n=1}^{N} (\xi_i - \overline{\xi}) (\xi_i - \overline{\xi})^T$$

• How to estimate the error bar? Running simulations

Sources of statistical uncertainty:

- 1. Limited survey volume: Cosmic Variance
- 2. Discrete sampling: Shot Noise

$$Cov = \frac{1}{N-1} \sum_{n=1}^{N} (\xi_i - \overline{\xi}) (\xi_i - \overline{\xi})^T$$

Beutler et al. 2011

- Which targets do we need to observe? **Target Selection**
- 1. High number density
- 2. Distinguishable features to measure redshift
- Luminous Red Galaxies (LRG): break at 4000Å
- Emission Line Galaxies (**ELG**): [O II] doublet emission
- Quasi-stellar Objects (QSO): Ly α , Mg II, C IV emissions

• Bright Galaxy Sample (**BGS**) (low-z), Lyman- α Forest (high-z), ...

DESI 2024 III

DESI 2024 III: BAO from Galaxies and Quasars

BGS: 300,017, $z_{\text{eff}} = 0.30$

LRG1: $506,905, z_{eff} = 0.51$

LRG3+ELG1: 1,876,164, $z_{\text{eff}} = 0.93$ ELG1: 1,016,340, $z_{\text{eff}} = 0.95$

LRG2: 771,875, $z_{\text{eff}} = 0.71$

LRG3: 859,824, $z_{\text{eff}} = 0.92$

ELG2: 1,415,687, $z_{\text{eff}} = 1.32$

QSO: 1,016,340, $z_{\text{eff}} = 1.49$

• But where is cosmological parameters?

 $\Delta \theta = r_d/D_M(z)$ $\Delta z = r_d/D_H(z)$

• But where is cosmological parameters?

We always assume a fiducial cosmology when calculating distances!

line of sight

line of sight $\Delta\theta = r_d/D_M(z)$ $\Delta z = r_d/D_H(z)$

• But where is cosmological parameters?

We always assume a fiducial cosmology when calculating distances!

$$\xi(r)$$
? $\xi(r,\cos\phi)$!

• But where is cosmological parameters?

We always assume a fiducial cosmology when calculating distances!

$$\xi(r)$$
? $\xi(r,\cos\phi)$!

$$\xi_l(r) = \int_{-1}^{1} L_l(\cos\phi) \, \xi(r, \cos\phi) \, \, \mathrm{d}\cos\phi$$

 $L_l(\cos \phi)$: Legendre polynomials

$$\alpha_{\parallel} = \frac{[H(z)r_d]^{\text{fid}}}{H(z)r_d}$$

$$\alpha = \alpha_{\perp}^{2/3} \alpha_{\parallel}^{1/3}$$
: Isotropy

$$\alpha_{\perp} = \frac{D_M(z)/r_d}{[D_M(z)/r_d]^{\text{fid}}}$$

$$1 + \epsilon = \left(\frac{\alpha_{\parallel}}{\alpha_{\perp}}\right)^{1/3}$$
: Anisotropy

 $\xi_0(r)^{\text{measure}} \approx \xi_0(\alpha r)^{\text{true}}$: Isotropic Shift of BAO peak!

$$1 + \epsilon = (\alpha_{\parallel}/\alpha_{\perp})^{1/3}$$

The distortion of BAO Signal

• Non-linear gravitational effect: Influences galaxy position

Padmanabhan et al. 2012

The distortion of BAO Signal

large scale (~100 Mpc/h)

Ishikawa et al. 2015

- Non-linear gravitational effect: Influences galaxy position
- Redshift-space distortion: Influences observed galaxy position

$$z = z_{\text{Hubble}} + z_{\text{peculiar}}$$

Why BAO Reconstruction

- Non-linear gravitational effect: Influences galaxy position
- Redshift-space distortion: Influences observed galaxy position

Broaden and shift BAO peak

Moscardini et al. 2017

Why BAO Reconstruction

- Non-linear gravitational effect: Influences galaxy position
- Redshift-space distortion: Influences observed galaxy position

Broaden and shift BAO peak

To enhance the S/N of BAO signal

BAO Reconstruction

Moscardini et al. 2017

How to Reconstruct BAO

detected density distribution field recovered density distribution field displacement field

How to Reconstruct BAO

E. Sarpa et al, 2018

Cosmological constraints

Observable: $D_A(z)/r_d$, $H(z)r_d$

$$\Delta\theta = r_d/[(1+z)D_A(z)]$$

$$\Delta z = r_d H(z)/c$$

Cosmological constraints

 $r_d h$ degeneracy

Combined with BBN, CMB, SN...

Observable: $D_A(z)/r_d$, $H(z)r_d$

 $Flat \Lambda CDM$

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_{\Lambda}}$$

Cosmological constraints

 $r_d h$ degeneracy

Observable: $D_A(z)/r_d$, $H(z)r_d$

 $Flat w_0 w_a CDM$

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda (1+z)^{3(1+w(a))}}$$
$$w(a) = w_0 + w_a (1-a)$$

Combined with BBN, CMB, SN...

Summary

- BAO serves as a **standard ruler** and provides measurements of Ω_m and H_0r_d .
- RSD comes from galaxies' peculiar velocity and constrains the structure growth.
- BAO signal can be detected with **correlation functions** and can be strengthened with **BAO reconstruction**.
- Current constraint from DESI 2024 (alone): $\Omega_m = 0.295 \pm 0.015,$ $r_d h = (101.8 \pm 1.3) \text{ Mpc}$

