

1-OF-8 DECODER/ **DEMULTIPLEXER**

The LSTTL/MSI SN54/74LS138 is a high speed 1-of-8 Decoder/ Demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LS138 devices or to a 1-of-32 decoder using four LS138s and one inverter. The LS138 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Typical Power Dissipation of 32 mW
- Active Low Mutually Exclusive Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

LOADING (Note a)

	HIGH	LOW
A0-A2 Address Inputs	0.5 U.L.	0.25 U.L.
E ₁ , E ₂ Enable (Active LOW) Inpu	ıts 0.5 U.L.	0.25 U.L.
E ₃ _ Enable (Active HIGH) Input	ut 0.5 U.L.	0.25 U.L.
O ₀ -O ₇ Active LOW Outputs (Note	e b) 10 U.L.	5 (2.5) U.L.

NOTES:

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

SN54/74LS138

1-OF-8 DECODER/ **DEMULTIPLEXER**

LOW POWER SCHOTTKY

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS138

FUNCTIONAL DESCRIPTION

The LS138 is a high speed 1-of-8 Decoder/Demultiplexer fabricated with the low power Schottky barrier diode process. The decoder accepts three binary weighted inputs (A $_0$, A $_1$, A $_2$) and when enabled provides eight mutually exclusive active LOW Outputs (O $_0$ -O $_1$). The LS138 features three Enable inputs, two active LOW (E $_1$, E $_2$) and one active HIGH (E $_3$). All outputs will be HIGH unless E $_1$ and E $_2$ are LOW and E $_3$ is HIGH. This multiple enable function allows easy parallel ex-

pansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four LS138s and one inverter. (See Figure a.)

The LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TRUTH TABLE

INPUTS			OUTPUTS										
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	00	0 ₁	02	03	04	05	06	07
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	L	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Figure a

SN54/74LS138

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits							
Symbol	Parameter			Тур	Max	Unit	Tes	est Conditions		
VIH	Input HIGH Voltage					V	Guaranteed Input HIGH Voltage for All Inputs			
\/"	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for			
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs			
V _{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$			
Vou	Output HIGH Voltage	54	2.5	3.5		٧	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table			
VOH		74	2.7	3.5		V				
V	Output LOW/Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{II} \text{ or } V_{IH}$		
VOL	Output LOW Voltage			0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table		
1	Institution Comment				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V			
l IH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V			
I _I L	Input LOW Current				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$			
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX			
ICC	Power Supply Current				10	mA	V _{CC} = MAX			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Levels of	Limits				
Symbol	Parameter	Delay	Min	Тур	Max	Unit	Test Conditions
tPLH tPHL	Propagation Delay Address to Output	2 2		13 27	20 41	ns	
^t PLH ^t PHL	Propagation Delay Address to Output	3 3		18 26	27 39	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Propagation Delay E ₁ or E ₂ Enable to Output	2 2		12 21	18 32	ns	C _L = 15 pF
^t PLH ^t PHL	Propagation Delay E ₃ Enable to Output	3 3		17 25	26 38	ns	

AC WAVEFORMS

Figure 1

Figure 2