Plan

Service Réseau, Routage et IP

- Les fonctionnalités
 - Modes de connexion
 - L'adressage
 - Routage
 - Contrôle de flux
- Internet Protocol (IP)
 - L'adressage
 - Fonctionnalités
 - IPv6

Couche Réseau - Généralité

Quelques rappels:

- ◆ L'unité d'information élémentaire est le paquet
- Le rôle de cette couche est d'acheminer des paquets entre un système source et un système destination ne se trouvant pas sur le même médium.
 - Les couches MAC sont insuffisantes

◆ La couche *Réseau* rend des services à la couche transport et demande des services à la couche liaison de données.

Fonctionnalités

Fonctionnalités obligatoires

- Modes de connexion
- Désignation des réseaux, des systèmes (adressage)
- Calcul de routes, gestion du routage
- Pilotage de la transmission des données de couche liaison en couche liaison

Fonctionnalités facultatives

Contrôle de flux

Quelques protocoles de couche réseau

```
IP, X25, IPX, ...
ARP, RARP, ICMP,...
```

Connexions

Modes de connexion

- Mode connecté
 - mise en place d'un circuit virtuel
 - communication en 3 phases :
 - établissement d'un circuit virtuel
 - échange des données
 - libération circuit virtuel
 - Exemple: RTC, ATM, X25, ...
- Mode non connecté
 - envoi des paquets sur le réseau (Datagramme) avec une adresse complète
 - commutation de paquets (routage)
 - Exemple : IP

Adressage

Adressage

 L'adresse permet de déterminer de façon unique le destinataire d'un paquet et son emplacement géographique.

> Ex : N°téléphone pour le RTC N°IP pour une machine

- mode connecté après création circuit virtuel :
 - N° du circuit virtuel
- mode non connecté:
 - L'adresse complète pour chaque paquet

Routage (1)

L'acheminement des paquets vers un destinataire dans un réseau maillé est réalisé par un procédé appelé routage

A chaque nœud correspond un routeur contenant *une table et mettant en place des algorithmes permettant l'acheminement des paquets dans Internet* et éventuellement la mise a jour des tables automatiquement.

Les nœuds routent du mieux qu'ils peuvent (notion de best effort d'IP);

Routage (2)

Politiques de calcul

- Fixe (une fois pour toutes)
- Adaptative aux modifications de topologie ou de charge

Participants aux calculs

- Un centre (routage centralisé)
- Tout ou partie des systèmes appelés routeurs (routage distribué ou réparti)

Portée du calcul

- Le prochain pas (hop by hop)
- Toute la route (source routing)

Routage hiérarchique

Si le réseau est organisé en régions

Méthodes de calcul

- Aléatoire (dirigé ou non)
- Inondation
- Local (hot potatoe)
- Avec table de routage
 - Fixes
 - Adaptatives
 - Nécessitent la transmission d'informations d'état de la topologie et de la charge
 - Protocoles d'échange d'informations de routage : RIP, BGP, OSPF, IS-IS...

Routage (3)

Procédure de routage pour le mode connecté

Le calcul de route permet de décider sur quelle ligne de sortie un paquet entrant doit être retransmis.

- Calcul à l'établissement de connexion du Circuit Virtuel (CV) à utiliser pendant la communication
- ◆ Chaque commutateur a une « table de commutation » qui mémorise les deux liens participant à un circuit virtuel.

EN	TREE	SORTIE		
nœud, N℃oie		nœud, N℃oie		
Α	1	В	2	
Α	0	D	1	
D	0	Α	2	
В	1	D	2	

Table du commutateur C

Routage (4)

Procédure de routage pour le mode non connecté

- Utilisation d'une table de routage
 => donne le destinataire suivant
 (comparaison entre les informations de la table de routage et le destinataire du paquet)
- La table de routage peut-être créée d'une façon
 - statique
 - dynamique -> protocole de routage (RIP, OSPF, BGP,...)

Attention, ne pas confondre un protocole routé (IP,..) et un protocole de routage (qui permet de créer les tables de routage)...

Contrôle de flux

Contrôle de flux

- But : Eviter la surcharge du réseau
 - Eviter l'engorgement des routeurs

Méthodes possibles

- Pré allocation des tampons (mode connecté)
- Destruction des paquets « perdus »
- Méthode isarythmique
 - Nb fixe de jetons dans le réseau

Le service IP (v4)

Transmission d'un bloc d'octets entre systèmes désignés par une adresse IP

Caractéristiques

- Destinataire unique ou multiple
- Mode non connecté
 - pas de garantie de livraison
 - pas d'avertissement en cas de non livraison
- Mais, ...livraison sans erreur quand le paquet arrive

Une facilité, deux primitives (envoyer/recevoir)

paramètres qualité : priorité, délai de transmission, ...

Points d'accès

- jusqu'à 254 points d'accès par entité-IP
- ◆ Adresse IP pour chaque carte réseau, pas par hôte

L'adressage IP, version 4 (1)

- Adresse Internet: 4 octets = 32 bits
 - Première composante : identificateur du réseau (géographique)
 - Seconde composante : identificateur d'hôte
- Classes des réseaux IP
 - 0 1 8 16 24 31
- A 0 Id.réseau Id.hôte
- B 1 0 Id.réseau Id.hôte
- C 1 1 0 Id.réseau Id.hôte
- D 1 1 1 0 Id.groupe

Notation en 4 entiers notés en base 10

L'adressage IP, version 4 (2)

- Adresses spéciales :
 - Adresse d'un réseau : l'id hôte -> tous les bits à 0
 - Adresse de diffusion : l'id hôte -> tous les bits à 1
 - Adresse d'interface = id de la machine hôte

Ex : adresse réseau : 16.0.0.0 ou 193.55.97.0

adresse diffusion: 120.255.255.255 ou 198.23.23.255

adresse interface: 134.23.67.234

Adresses RFC1918: en A: 10.0.0.0

en B: 172.16.0.0 - 172.31.0.0

en C: 192.168.0.0 - 192.168.255.0

◆ Masque d'un réseau

Pour calculer l'adresse du réseau auquel appartient un hôte

Classe A: 255.0.0.0

Classe B: 255.255.0.0

Classe C: 255.255.255.0

Fonctionnement d'une table de routage

Effectué pour chaque PDU-IP à transmettre Confrontation de l'adresse-IP destination à la table de routage de l'entité-IP ayant actuellement le paquet

Table de routage de l'entité-IP d'appellation 193.54.51.1

Si l'adresse-IP destination est de la forme 193.54.51.0 192.168.51.0 193.54.49.0 autre avec le masque 255.255.255.0 255.255.255.0 255.255.255.0 expédier à l'entité d'appellation 193.54.51.1 193.54.51.8 193.54.51.241 193.54.51.254 par la couche MAC In0 In0 In0 In0

Table de routage de l'entité-IP d'appellation 193.54.51.241, 193.54.49.14 et 192.168.51.241

Si l'adresse-IP destination est de la forme 193.54.51.0 192.168.51.0 193.54.49.0 autre avec le masque 255.255.255.0 255.255.255.0 255.255.255.0 expédier à l'entité d'appellation 193.54.51.241 192.168.51.241 193.54.49.14 193.54.49.126 par la couche MAC hme0:1 hme0:2 hme0 hme0

La table de routage ne donne que le prochain système sur la route vers la destination

ISIMA Couche Réseau 14

Architecture d'un routeur

Architecture du Routeur:

Station composée de plusieurs cartes réseau, lui permettant de se connecter à plusieurs réseaux locaux.

Dans ce cas, une carte réseau est appelée une interface du routeur

Transmission d'une PDU IP (1)

1) L'entité-IP expéditrice (ou source) (IP_s) détermine à quelle entité-IP (IP_d) expédier la PDU-IP.

(utilisation du DNS si nécessaire)

Le calcul de route renvoie l'adresse-IP d'une entité-IP (IP_2) liée à la même couche MAC que l'entité-IP (IP_s)

L'entité-IP (IP_s) peut donc demander à la couche MAC d'effectuer la transmission.

Transmission d'une PDU IP (2)

- 2) L'entité-IP (IP_s) demande à la couche MAC de transmettre la PDU_IP II faut l'appellation de l'entité-MAC (m2) servant l'entité-IP (IP_2) Utilisation du service ARP (Address Resolution Protocol)
- 3) La couche MAC livre la PDU_IP à l'entité-IP (IP_2)

ISIMA

Transmission d'une PDU IP (3)

- 4) L'entité-IP (IP_2) analyse I 'adresse-IP destinataire inscrite dans la PDU-IP reçue Si c'est sa propre adresse-IP, la PDU-IP est livrée au destinataire sinon l'entité-IP (IP_2) examine sa table de routage pour transmettre la PDU-IP à une autre entité-IP, un peu plus loin sur la route vers la destination finale
- 5) Utilisation du service ARP pour que la couche MAC puisse livrer sa trame
- 6) etc...

Les sous-réseaux (1)

Raisons

- topographiques
- facilité de la gestion du réseau
- sécurité

Différentes étapes

- Mettre en place la connectivité physique
- Choisir la taille des sous-réseaux
 - puissance de 2
 - pour chaque sous-réseau,
 1 adresse réseau + 1 adresse diffusion

Réseaux sans classe (classless) ≠ classfull

Les sous-réseaux (2)

- Calcul du masque du sous-réseau
 - augmentation du masque du réseau de 1 bit par puissance de 2

Exemple pour un classe C:

Nb de sous-réseaux	Nb d'hôtes	Masque
2	126	255.255.255.128
4	62	255.255.255.192
8	30	255.255.255.224

Numéros IP spéciaux (exemple)

masque réseau	Nb sous réseaux	Réseau	Diffusion	minIP	MaxIP	Nb hotes
128	2	0	127	1	126	126
		128	255	129	254	126
192	4	0	63	1	62	62
		64	127	65	126	62
		128	191	129	190	62
		192	255	193	254	62

Une entrée dans la table de routage pour chaque sous-réseau

IPv6 (1)

Raisons:

- Croissance rapide d'internet manque d'adresses IP
- Tables de routage gigantesques...
- Des fonctionnalités manquantes à mettre en œuvre

Caractéristiques:

- Adresse sur 16 octets (128 bits, 8 * 16 bits)
- Fonctionnalités nouvelles :
 - sécurité (chiffrement des paquets, authentification,...)
 - source routing
 - temps réel
 - autoconfiguration (amélioration de DHCP)

IPv6 (2)

Format de l'en-tête du paquet: (min 40 octets)

Version (4 bits)	Priorité (8 bits)		Etiquette de flot (20 bits)		4 octets
Lg données (16 bits)	I	en-tête suiva (8 bits)		nb nœuds traversés (8 bits)	4 octets
Adresse émetteur (16 octets)					16 octets
Adresse récepteur (16 octets)				16 octets	
Options					

Etiquette de flot : Pour s'assurer d'une QoS

Ig données : taille des données utiles (max 65536)

en-tête suivant : protocole encapsulé (4, IP : 6, TCP : 17, UDP : 58, ICMP,...)

Nb nœuds traversés : remplace le TTL

Actuellement, le champ option n'est pas utilisé

IPv6 (3)

Les différentes sortes d'adresses

- Unicast
 - -> pour un destinataire unique
- Multicast
 - -> pour désigner un groupe d'interfaces, donc un groupe de machines
- Anycast
 - -> pour désigner une interface, appartenant à un groupe de machines
 - -> théoriquement, la machine la plus proche doit recevoir le paquet
- Broadcast
 - -> n'existe plus.

Adressage IPv6 (1)

 Utilisation de la notation hexadécimale, en regroupant les chiffres par 4 et en les séparant par ':'

ex: FEDC:E323:A65A:95F5:63D4:08BB:76F5:A234

 Disparition des sous-réseaux, apparition de la taille du préfixe '/' (nb de bits appartenant au préfixe)

ex: 2F45:EE34:C23E::/48

Elimination des 0 présents dans l'adresse:

ex: 2001:0:0:0:0:342D:342F:FF45

2001::342D:342F:FF45

Adressage IPv6 (2)

- Réservé : (par l'IETF). Les 8 premiers bits à 0
 → utilisé pour la compatibilité IPv4 et IPv6
- Privé : interne à l'entreprise et ne pouvant être routé Les 9 premiers bits : 111111101
- Loopback : ::1/128
- Non spécifié : 0::0 -> utilisation avec DHCPv6

Adressage IPv6 (3)

Adresse Unicast ou Anycast

- 64 bits pour le réseau et 64 bits pour l'hôte
 - 48 bits pour le préfixe global de routage (topologie publique)
 - → théoriquement, 3 premiers bits à : 001
 - → 45 bits suivants dépendent de l'IANA, et donc AFNIC
 - 16 bits pour le réseau d'entreprise (topologie du site)
 - 64 bits -> interface (unicast ou anycast)

Adressage IPv6 (4)

Adresse Multicast

- Les 8 premiers bits sont à 1 : 11111111 → FF
- indicateur (8 b) + drapeau (4 b) + visibilité (4 b) + group ld (112 b)
 - Indicateur : FF
 - Drapeau: 000 puis 0 pour un groupe permanent, 1 sinon
 - Visibilité : sur internet, local à l'entreprise...
 - Node Local (même médium)
 - Link Local (même domaine broadcast)
 - Site Local (même site)
 - Organization Local (même entreprise)
 - Global
- Exemple: FF01::1 -> multicast pour node local et machines (id =1)
 FF05::2 -> multicast pour site-local et routers (id =2)

27