Probability theory using numpy and scipy libraries

```
import numpy as np
import scipy.stats as sps
import ipywidgets as widgets
import matplotlib.pyplot as plt
%matplotlib inline
```

1) Изучение свойств плотности

Рассмотрим распределения:

- Нормальное
- Равномерное
- Экспоненциальное
- Гамма-распределение
- Бета-распределение

Построим график плотности. Сгенерируем наборы случайных величин из каждого распределения и построим по ним гистограмму.

```
# Построение графика плотности непрерывного распределения

def show_pdf(pdf, xmin, xmax, ymax, grid_size=100, **kwargs):

    pdf -- плотность
    xmin, xmax -- границы графика по оси х
    ymax -- граница графика по оси у
    grid_size -- размер сетки, по которой рисуется график
    kwargs -- параметры плотности

    grid = np.linspace(xmin, xmax, grid_size)

    plt.figure(figsize=(12, 5))
    plt.plot(grid, pdf(grid, **kwargs), lw=3, color = 'deepskyblue')
    plt.grid(ls=':')
    plt.xlim((xmin, xmax))
    plt.ylim((None, ymax))
    plt.show()
```

Нормальное распределение

```
show_pdf(sps.norm.pdf, -3, 3, 0.5, scale=0.85)
```



```
# Создание виджета.
ip = widgets.interactive(show pdf,
                         pdf=widgets.fixed(sps.norm.pdf),
                         grid size=widgets.IntSlider(min=25, max=300,
step=25, value=100),
                         xmin=widgets.FloatSlider(min=-10, max=0,
step=0.1, value=-5),
                         xmax=widgets.FloatSlider(min=0, max=10,
step=0.1, value=5),
                         ymax=widgets.FloatSlider(min=0, max=2,
step=0.1, value=1),
                         loc=widgets.FloatSlider(min=-10, max=10,
step=0.1, value=0),
                         scale=widgets.FloatSlider(min=0.01, max=2,
step=0.01, value=1);
# отображаем слайдеры группами
display(widgets.HBox(ip.children[:2]))
display(widgets.HBox(ip.children[2:4]))
display(widgets.HBox(ip.children[4:6]))
# отображаем вывод функции
display(ip.children[-1])
ip.update()
             # чтобы функция запустилась до первого изменения
слайдеров
{"version major":2, "version minor":0, "model id": "3c9f441d9b044b42aaafe
5a9c21b5ce2"}
{"version major":2, "version minor":0, "model id": "ade141f73020475297084
e5f74f5bd3f"}
{"version major":2, "version minor":0, "model id": "095988b950a4431d9a9d7
e369d0fb920"}
```

```
{"version_major":2,"version_minor":0,"model_id":"b931a0eedfcd49c5b551b
0ec4bc0f482"}
grid = np.linspace(-3, 5, 1000)
sample = sps.norm.rvs(size=200)
plt.figure()
plt.scatter(sample, np.zeros(200) - 0.02, alpha=0.05, color =
'yellow', label='sample')
plt.hist(sample, range=(-3, 5), bins=13, density=True, color =
'palegreen', label='histogram')
plt.plot(grid, sps.norm.pdf(grid), color='deepskyblue', lw=2,
label='density')
plt.legend(fontsize=14, loc=1)
plt.show()
density
```


Вывод: Для нормального распределения:

параметр α отвечает за (вдоль оси X); параметр β отвечает за (сжатие/растяжение по оси Y).

Равномерное распределение.

 $show_pdf(sps.uniform(-1, 1).pdf, -3, 2, 1.5)$

создание виджета

```
step=0.01, value=1));
# отображаем слайдеры группами
display(widgets.HBox(ip.children[:2]))
display(widgets.HBox(ip.children[2:4]))
display(widgets.HBox(ip.children[4:6]))
# отображаем вывод функции
display(ip.children[-1])
ip.update() # чтобы функция запустилась до первого изменения
слайдеров
{"version major":2, "version minor":0, "model id": "943ebe519d264666a3003
1a21c352396"}
{"version major":2, "version minor":0, "model id": "d1560511071b42558f874
fa1c066ff35"}
{"version major":2, "version minor":0, "model id": "67202bd9357d4eca9aab6
7cc59dc28cf"}
{"version major":2, "version minor":0, "model id": "fle860687f7a4bfea96bb
27433cca0e3"}
grid = np.linspace(-1, 4, 1000) # сетка для построения графика
sample = sps.uniform.rvs(size=200)
plt.figure()
plt.scatter(sample, np.zeros(200) - 0.05, alpha=0.05, color =
'yellow', label='sample')
plt.hist(sample, range=(-1, 4), bins=20, density=True,
label='histogram', color='palegreen')
plt.plot(grid, sps.uniform.pdf(grid), color='darkblue', lw=2,
label='density')
plt.title(r'RV = xi ~ U(0, 1)', fontsize=20)
plt.legend(fontsize=14, loc=1)
plt.show()
```


Вывод: Для равномерного распределения:

параметр α отвечает за (вдоль оси X); параметр β отвечает за (сжатие/растяжение по оси Y).

Экспоненциальное распределение

show pdf(sps.expon(scale=1).pdf, 0, 5, 1.5)


```
# создать виджет, но не отображать его
ip = widgets.interactive(show pdf,
                         pdf=widgets.fixed(sps.expon.pdf),
                         grid size=widgets.IntSlider(min=25, max=300,
step=25, value=175),
                         xmin=widgets.FloatSlider(min=-10, max=0,
step=0.1, value=-5),
                         xmax=widgets.FloatSlider(min=0, max=10,
step=0.1, value=5),
                         ymax=widgets.FloatSlider(min=0, max=2,
step=0.1, value=1.4),
                         loc=widgets.FloatSlider(min=-4, max=0,
step=0.1, value=0),
                         scale=widgets.FloatSlider(min=0.01, max=4,
step=0.01, value=1));
# отображаем слайдеры группами
display(widgets.HBox(ip.children[:2]))
display(widgets.HBox(ip.children[2:4]))
display(widgets.HBox(ip.children[4:6]))
# отображаем вывод функции
display(ip.children[-1])
ip.update() # чтобы функция запустилась до первого изменения
слайдеров
{"version major":2, "version minor":0, "model id": "70e7348ac02341c3b032e
079ad82f5da"}
```

```
{"version major":2, "version minor":0, "model id": "ffe71e44cb104c05b22de
31e0ab2ffe0"}
{"version major":2, "version minor":0, "model id": "4a4ad00236c94e2293f67
f39a72e6e49"}
{"version major":2, "version minor":0, "model id": "58d3b164da114e68876c7
a5b13074290"}
grid = np.linspace(0, 6, 1000)
sample = sps.expon.rvs(size=200)
plt.figure()
plt.scatter(sample, np.zeros(200) - 0.04, alpha=0.05, color =
'yellow', label='sample')
plt.hist(sample, range=(0, 6), bins=20, density=True,
label='histogram', color='palegreen')
plt.plot(grid, sps.expon.pdf(grid), color='darkblue', lw=2,
label='density')
plt.title(r'RV = xi ~ expon(1)', fontsize=20)
plt.legend(fontsize=14, loc=1)
plt.show()
```


grid = np.linspace(-2, 20, 1000) # сетка для построения графика lambda_list = [1.5, 1, 0.25] # набор значений параметра lambda

plt.figure(figsize=(12, 4))

for i, (l, color) in enumerate(zip(lambda_list, ['navy', 'm', 'limegreen'])):
 plt.plot(grid, sps.expon(scale=1/l).pdf(grid), color=color, lw=3,

```
\label='\$\backslash \{Exp\}' + '(\{\})\$'.format(l)) \\ plt.legend(fontsize=16) \\ plt.ylim((0, 0.5)) \\ plt.xlim((0, 20)) \\ plt.grid(ls=':') \\ plt.show()
```


Вывод: Для экспоненциального распределения:

параметр отвечает за (чем меньше параметр, тем больше масштаб, то есть больше растяжение по оси Y).

Гамма распределение

 $show_pdf(sps.gamma(a=9, scale=0.5).pdf, 0, 8, 0.4)$

создание виджета

```
xmax=widgets.FloatSlider(min=0, max=100,
step=0.1, value=5),
                         ymax=widgets.FloatSlider(min=0, max=2,
step=0.1, value=1.4),
                         a = widgets.FloatSlider(min=0, max=100,
step=0.1, value=2),
                         scale=widgets.FloatSlider(min=0.01, max=4,
step=0.01, value=1);
# отображаем слайдеры группами
display(widgets.HBox(ip.children[:2]))
display(widgets.HBox(ip.children[2:4]))
display(widgets.HBox(ip.children[4:6]))
# отображаем вывод функции
display(ip.children[-1])
ip.update() # чтобы функция запустилась до первого изменения
слайдеров
{"version major":2, "version minor":0, "model id": "c05a589d3f514755a5111
6559b4c5c8f"}
{"version major":2, "version minor":0, "model id": "0ab4e678bcc3437ea93b8
dbf588c8afd"}
{"version_major":2,"version minor":0,"model id":"e23d1c60405c43cb9c43e
db0948da1a2"}
{"version major":2, "version minor":0, "model id": "6d58111938384aa487c11
605c003f32c"}
grid = np.linspace(0, 10, 1000)
sample = sps.gamma.rvs(a=3, size=200)
plt.figure()
plt.scatter(sample, np.zeros(200) - 0.02, alpha=0.05, color =
'yellow', label='sample')
plt.hist(sample, range=(0, 10), bins=20, density=True,
label='histogram', color='palegreen')
plt.plot(grid, sps.gamma.pdf(grid, a=3), color='darkblue', lw=2,
label='density')
plt.title(r'RV = xi ~ gamma(3, 1)', fontsize=20)
plt.legend(fontsize=14, loc=1)
plt.show()
```

RV = $\xi \sim \text{gamma}(3, 1)$ density histogram sample 0.15 0.00 0 2 4 6 8 10 12

Вывод: Для гамма-распределения:

параметр α отвечает за (то есть за то на сколько график перекосится); параметр β отвечает за (сжатие/растяжение вдоль оси Y).

Бета распределение

show_pdf(sps.beta(1, 2).pdf, 0, 1, 3)


```
# создание виджета
ip = widgets.interactive(show pdf,
                         pdf=widgets.fixed(sps.beta.pdf),
                         grid size=widgets.IntSlider(min=25, max=300,
step=25, value=100),
                         xmin=widgets.FloatSlider(min=-1, max=0,
step=0.1, value=-5),
                         xmax=widgets.FloatSlider(min=0, max=2,
step=0.1, value=5),
                         ymax=widgets.FloatSlider(min=0, max=10,
step=0.1, value=3),
                         a = widgets.FloatSlider(min=0, max=10,
step=0.1, value=1),
                         b = widgets.FloatSlider(min=0, max=10,
step=0.1, value=1),
                         loc=widgets.FloatSlider(min=-4, max=4,
step=0.1, value=0),
                         scale=widgets.FloatSlider(min=0.01, max=4,
step=0.01, value=1);
# отображаем слайдеры группами
display(widgets.HBox(ip.children[:2]))
display(widgets.HBox(ip.children[2:4]))
display(widgets.HBox(ip.children[4:6]))
# отображаем вывод функции
display(ip.children[-1])
ip.update() # чтобы функция запустилась до первого изменения
слайдеров
{"version major":2, "version minor":0, "model id": "4d9653e2c944429e8e6b6
fc011e92fc4"}
{"version major":2, "version minor":0, "model id": "a4016b7190fb4e16b08a8
da77adfc456"}
{"version major":2, "version minor":0, "model id": "f5f00e20c2564a4aa59ee
b2caf72855a"}
{"version major":2, "version minor":0, "model id": "bcfb38eb87e44c1b82bef
cd25f2f6f7f"}
grid = np.linspace(0, 1, 1000)
sample = sps.beta.rvs(a=3, b=2, size=200)
plt.figure()
plt.scatter(sample, np.zeros(200) - 0.07, alpha=0.05, color =
'yellow', label='sample')
plt.hist(sample, range=(0, 1.5), bins=30, density=True,
label='histogram', color = 'palegreen')
plt.plot(grid, sps.beta.pdf(grid, a=3, b=2), color='darkblue', lw=2,
label='density')
```

```
plt.title(r'RV = $\xi$ ~ beta(3, 2)', fontsize=20)
plt.legend(fontsize=14, loc=1)
plt.show()
```


alpha_list = [1, 1, 1, 4, 2, 3] # набор значений параметра а

Вывод: Для бетта-распределения:

если параметр α < 1 и параметр β < 1, то график вогнутый если один из параметров и равен 1, а другой лежит в промежутке от 1 до 2, то график выпуклый если один из параметров равен 1, а другой больше 2, то график вогнутый если один из параметров равен 1, а другой 2, то график - прямая

Вывод по гистограммам:

для каждого из построенных распределений гистограмма выборки из 200 случайных величин примерно совпадает с областью под графиком плотности соответствующего распределения. Это подтверждает интуитивный смысл определения плотности распределения - чем чаще случайная величина попадает в окрестность некоторой точки, тем выше соответствующий столбец гистограммы и, очевидно, плотность распределения в окрестности данной точки также выше.

2) Скажем, что имеется симметричная монета. Напишем функции генерации независимых случайных величин из некоторых распределений.

Напишем функцию генерации случайных величин из равномерного распределения на отрезке.

Для этого запишем случайную величину $\xi \sim U[0,1]$ в двоичной системе системе счисления $\xi = 0, \xi_1, \xi_2, \xi_3...$ Тогда $\xi \sim Bern(1/2)$ и есть независимость в совокупности.

```
coin = sps.bernoulli(0.5).rvs # симметричная монета
# coin(size=10) --- реализация 10 бросков монеты

def uniform(size=1, precision=30):
    return (coin(np.hstack((size,
precision)))/(2.**(np.arange(precision)
+1))).sum(axis=np.array(size).size)
```

Для U[0,1] сгенерируем 200 независимых случайных величин, построим график плотности на отрезке [-0.25,1.25], а также гистограмму по сгенерированным случайным величинам.

```
size = 200
grid = np.linspace(-0.25, 1.25, 500)
sample = uniform(size, precision=50)

plt.figure(figsize=(10, 4))
# отображаем значения случайных величин полупрозрачными точками
plt.scatter(sample, np.zeros(size) - 0.08, alpha=0.2, color =
'yellow', label='sample')
# по точкам строим нормированную полупрозрачную гистограмму
plt.hist(sample, bins=8, density=True, color='palegreen')
# рисуем график плотности
plt.plot(grid, sps.uniform.pdf(grid), color='darkblue', lw=2,
label='density')
plt.legend()
plt.grid(ls=':')
plt.show()
```


Реализованная функция uniform работает правильно, так как построенная гистограмма похожа на область под графиком плотности равномерного распределения.

Исследуем, как меняются значения случайных величин в зависимости от precision.

```
if i < 4: plt.xticks([])
plt.show()</pre>
```


Вывод:

с увеличением точности генерации равномерно распределенной случайной величины увеличивается диапазон принимаемых ею значений.

precision = 1: для генерации $\xi \sim U(0,1)$ задействовано одно подбрасывание монеты, поэтому ξ может принимать всего два значения - на графике это проиллюстрировано $\leq min(2,size)$ точками.

precision = 2: для генерации $\xi \sim U(0,1)$ задействовано два подбрасывания монеты, поэтому ξ может принимать четыре значения - на графике это проиллюстрировано $\leq min(4,size)$ точками.

precision = 3: для генерации $\xi \sim U(0,1)$ задействовано три подбрасывания монеты, поэтому ξ может принимать восемь значений - на графике это проиллюстрировано $\le min(8,size)$ точками.

precision = 5: для генерации $\xi \sim U(0,1)$ задействовано пять подбрасываний монеты, поэтому ξ может принимать 32 значения - на графике это проиллюстрировано $\leq min[32,size]$ точками.

precision = 10: для генерации $\xi \sim U(0,1)$ задействовано десять подбрасывания монеты, поэтому ξ может принимать 1024 значения - на графике это проиллюстрировано $\le min(1024,size)$ точками.

precision = 30: для генерации $\xi \sim U(0,1)$ задействовано тридцать подбрасываний монеты, поэтому ξ может принимать 2^{30} значений - на графике это проиллюстрировано $\leq min(2,size)$ точками.

Напишем функцию генерации случайных величин в количестве size штук из распределения $N(loc,scale^2)$ с помощью преобразования Бокса-Мюллера.

```
def normal(size=1, loc=0, scale=1, precision=30):
    #если размерность size равна 1, то для удобства приводим size к
tuple
    if type(size) != tuple:
```

```
s = (size, )
    else:
        s = size
    #генерируем равномерно распределенные случайные величины
    xi = uniform(int((np.prod(s)-np.prod(s)%2)/2), precision)
    teta = uniform(int((np.prod(s)-np.prod(s)%2)/2), precision)
    #защищищаемся от случая, когда teta = 0, потому что в этом случае
далее берется ln(0)
    teta = teta + 0.5**(precision+5)
    #вычисляем тригонометрические множители из преобразования Бокса-
Мюллера
    factor cos = np.cos(2*np.pi*xi)
    factor sin = np.sin(2*np.pi*xi)
    #вычисляем общий множитель из преобразования Бокса-Мюллера
    factor sqrt = np.sqrt(-2*np.log(teta))
    #вычисляем значения нормально распределенных случайных величин
    part1 = factor cos*factor sqrt
    part2 = factor sin*factor sqrt
    #рассматриваем случай, когда от функции требуют нечетную выборку
    if np.prod(s)%2 == 1:
        #отдельно вычисляем еще одно значение случайной величины
        xi = uniform(1, precision)
        teta = uniform(1, precision)
        add = np.cos(2*np.pi*xi)*np.sqrt(-2*np.log(teta))
        #объединение полученных выборок
        result = np.hstack((part1, part2, add))
        return result.reshape(s)
    else:
        #объединение полученных выборок
        result = np.hstack((part1, part2))
        return result.reshape(s)
```

Для N(0,1) сгенерируем 200 независимых случайных величин, построим график плотности на отрезке [-3,3], а также гистограмму по сгенерированным случайным величинам.

```
size = 200
sample = normal(size)
grid = np.linspace(-3, 3, 500)

plt.figure(figsize=(10, 4))
# отображаем значения случайных величин полупрозрачными точками
plt.scatter(sample, np.zeros(size) - 0.02, alpha=0.2, color =
```

```
'yellow', label='sample')
# по точкам строим нормированную полупрозрачную гистограмму
plt.hist(sample, bins=10, range = (-3, 3), density=True,
color='palegreen')
# рисуем график плотности
plt.plot(grid, sps.norm.pdf(grid), color='darkblue', lw=2,
label='density')
plt.legend()
plt.grid(ls=':')
plt.show()
```


Вывод:

Имея возможность сгенерировать равномерно распределенную случайную величину, можно сгенерировать нормально распределенную случайную величину при помощи преобразований Бокса-Мюллера. Реализованная функция normal работает правильно, так как построенная гистограмма похожа на область под графиком плотности нормального распределения.

Напишем функцию генерации выборки многомерного нормального распределения с заданным вектором средних mean и матрицей ковариаций cov_matrix. Используем теорему об эквивалентных определениях гауссовского вектора.

Исследуем, как меняются значения случайных величин в зависимости от precision.

```
from scipy.linalg import eigh

def gauss(mean, cov_matrix, size=1, precision=30):
    # Преобразование типов
    mean = np.array(mean)
    cov_matrix = np.array(cov_matrix)

# Проверка на корректность входа
```

```
assert mean.ndim == 1 and cov matrix.ndim == 2
   assert mean.shape[0] == cov matrix.shape[0]
   assert cov matrix.shape[0] == cov matrix.shape[1]
   specter = eigh(cov matrix)[0]
   D = specter*np.array([[1, 0], [0, 1]])
   D = np.sqrt(D)
   B = np.matmul(eigh(cov matrix)[1], D)
   normal rv = normal(size*mean.size, precision).reshape(mean.size,
size)
    F = np.matmul(B, (normal rv))
    return mean + F.transpose()
Сгенерируем 200 случайных векторов из двумерного нормального
распределения с нулевым вектором средних и матрицей ковариаций
     . Нанесём сгенерированные точки на график и отметим цветом
значение плотности.
size = 1000
mean = [0, 0]
cov matrix=[[2,1], [1,2]]
sample = gauss(mean, cov matrix, size=1000) # Генерация векторов
grid = np.mgrid[-4:4:0.05, -4:4:0.05]
c = np.hstack((grid[0].reshape(grid[0].size, 1),
```

grid[1].reshape(grid[1].size,

plt.pcolormesh(grid[0], grid[1], density, cmap='Greens')

density = sps.multivariate normal.pdf(c, mean=mean, cov=cov matrix)

plt.scatter(sample[:, 0], sample[:, 1], alpha=0.5, color='yellow',

1))).reshape(len(grid[0]), len(grid[0]), 2)

plt.figure(figsize=(10, 10))

label='random vectors')

plt.legend()
plt.grid(ls=':')
plt.xlim((-4, 4))
plt.ylim((-4, 4))

plt.show()

Вывод:

По графику видно, что случайная величина, имеющая многомерное нормальное распределение, чаще принимает значения в местах большей плотности данного распределения. Значит, мы верно реализовали функцию генерации случайных величин, имеющих многомерное распределение.

Напишем функцию генерации случайных величин из экспоненциального распределения.

```
def expon(size=1, lambd=1, precision=30):
    return -(np.log(1-uniform(size, precision))/lambd)
```

Для $E \times p(1)$ сгенерируем 200 независимых случайных величин, построим график плотности на отрезке [-0.5,5], а также гистограмму по сгенерированным случайным величинам.

Вывод:

При помощи генерации равномерно распределенной случайной величины можно сгенерировать экспоненциально распределенную случайную величину.

Пусть $\xi \sim U[0,1]$, $\frac{-\ln(1-\pi)}{\lambda}$. Тогда: $F_{\text{ca}}(x)=P(\hat x)=P(\hat x)=P(\lambda x)=P(\ln(1-\pi))$ \leq x)= $P(\ln(1-\pi)$ \leq x)= $P(\ln(1-\pi)$ \leq x)= $P(\ln(1-\pi)$ \ge -\lambda x)= $P(1-\pi)$ \leq x)= $P(\ln(1-\pi)$ \ge -\lambda x)= $P(1-\pi)$ \quad \texp^{-\lambda x}= $P(1-\pi)$ \quad \quad \texp^{-\lambda x}= $P(1-\pi)$ \quad \qua

Получаем, что $\eta \sim e \times p$ on (λ) . Мы использовали тот факт, что для $\xi \sim U(0$, 1) функция распределения $F_{\xi}(x) = x$

#3) Визуализируем закон больших чисел. Пусть ξ_1,\dots,ξ_n независимые случайные величины из распределения $N(a,\sigma^2)$. Согласно закону больших чисел выполнена сходимость $\frac{\xi_1+\dots+\xi_n}{n} \stackrel{n.н.}{\to} \Pi$ окажем это, сгенерировав

множество наборов случайных величин и посчитав по каждому из наборов среднее в зависимости от размера набора. Нанесём на один график зависимость среднего значения от кол-ва элементов.

Выполним эти же действия для распределений $E \times p(1)$ и Pois(1).

```
grid = np.arange(1, 301, 1)
sample = sps.norm.rvs(size=(500, 300)) # генерируем 500 наборов
number = np.fromfunction(lambda i: i + 1, (300,))
means = sample.cumsum(axis=1)/number # среднее значение

plt.figure(figsize=(10, 8))
for i in range (500):
    plt.plot(grid, means[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((-3, 3))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 нормально распределенных случайных величин. На данном графике изображена зависимость среднего арифметического частичных сумм соответствующих случайных величин от количества слагаемых в этой сумме. По графику видно, что с увеличением числа слагаемых каждая из 500 кривых все ближе "прижимается" к прямой у = 0. Математическое

ожидание N(0,1) равно нулю, соответственно построенный график подтверждает закон больших чисел с точностью до 300 испытаний.

```
sample = sps.expon.rvs(size=(500, 300)) # генерируем 500 наборов means = sample.cumsum(axis=1)/number # среднее значение

plt.figure(figsize=(10, 8))

for i in range (500):
```

```
plt.figure(figsize=(10, 8))
for i in range (500):
    plt.plot(grid, means[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((0, 6))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 экспоненциально распределенных случайных величин. На данном графике изображена зависимость среднего арифметического частичных сумм соответствующих случайных величин от количества слагаемых в этой сумме. По графику видно, что с увеличением числа слагаемых каждая из 500 кривых все ближе "прижимается" к прямой у = 1. Математическое ожидание $e \times pon(1)$ равно 1, соответственно построенный график подтверждает закон больших чисел с точностью до 300 испытаний.

```
sample = sps.poisson.rvs(mu=1, size=(500, 300)) # генерируем 500
наборов
means = sample.cumsum(axis=1)/number # среднее значение

plt.figure(figsize=(10, 8))
for i in range (500):
    plt.plot(grid, means[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((0, 4.5))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 пуассоновски распределенных случайных величин. На данном графике изображена зависимость среднего арифметического частичных сумм соответствующих случайных величин от количества слагаемых в этой сумме. По графику видно, что с увеличением числа слагаемых каждая из 500 кривых все ближе "прижимается" к прямой у = 1. Математическое ожидание Pois(1) равно 1, соответственно построенный график подтверждает закон больших чисел с точностью до 300 испытаний.

Вывод:

Для N(0,1) имеем μ = 0. Для Pois(1) имеем μ = 1. Для expon(1) имеем μ = 1.

Из построенных графиков мы видим, что при увеличении числа испытаний среднее значение случайной величины все больше приближается к прямой $y=\mu$, где μ - значение математического ожидания данного распределения. Это именно то, что утверждает закон больших чисел - среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения. Таким образом, мы экспериментально подтвердили закон больших чисел.

#4)Визуализируем центральную предельную теорему.

Пусть ξ_1,\dots,ξ_n - независимые случайные величины из распределения ξ_1,\dots,ξ_n . Согласно центральной предельной теореме выполнена

сходимость
$$Z_n = \frac{X_n - EX_n}{\sqrt{DX_n}} \stackrel{d}{\to} N(0,1)$$
, где $X_n = \sum_{i=1}^n \xi_i$. Покажем это, сгенерировав

множество наборов случайных величин и посчитав по каждому из наборов величину Z_n в зависимости от размера набора. Для каждого j нанесём на один график зависимость Z_{jn} от n. Для по набору случайных величин $Z^{\square}_{1,300},\ldots,Z_{500,300}$ построим гистограмму.

Повторим те же действия для распределений U(0,1) и Pois(1).

```
grid = np.arange(1, 301, 1)
sample = sps.expon.rvs(size=(500, 300)) # генерируем 500 наборов
means = sample.cumsum(axis=1)
expectation = means.mean(axis=0) # математическое ожидание
dispersion = means.var(axis = 0) # дисперсия
sqroot = dispersion** .5 # квадратный корень из дисперсии
z = (means - expectation)/sqroot

plt.figure(figsize=(10, 5))
for i in range (500):
    plt.plot(grid, z[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((-4, 6))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 экспоненциально распределенных случайных величин. На данном графике изображена зависимость величины $(S_n - E S_n)/\sqrt{D S_n}$ от количества слагаемых в этой сумме, сделано это для 500 выборок. По графику видно, что с увеличением числа слагаемых кривые не сходятся к определенной константе.

```
grid = np.linspace(-4, 4, 400) # задаем сетку для построения графика плотности
plt.figure(figsize=(10, 6))
plt.scatter(z[...,-1], np.zeros(500) - 0.02, alpha=0.05,
label='sample', color = 'yellow')
plt.hist(z[...,-1], range=(-3, 3), bins=10, density=True, color = 'palegreen')
plt.plot(grid, sps.norm.pdf(grid), color='darkblue', lw=2,
label='density $\mathcal{N}(0, 1)$')
plt.legend() # добавляет легенду
plt.show()
```


На данном графике изображена гистограмма, построенная по 500 значениям случайных величин $(S_{300}-ES_{300})/\sqrt{DS_{300}}$, где $S_{300}=\xi_1+\ldots+\xi_{300}$ каждая величина ξ_i имеет экспоненциальное распределение. Также на данном графике изображена кривая, соответствующая плотности нормального распределения с параметрами 0 и 1. Нетрудно заметить, что построенная гистограмма примерно совпадает с областью под графиком плотности нормального распределения.

```
grid = np.arange(1, 301, 1)
sample = sps.uniform.rvs(size=(500, 300)) # генерируем 500 наборов
means = sample.cumsum(axis=1)
expectation = means.mean(axis=0) # математическое ожидание
dispersion = means.var(axis = 0) # дисперсия
sqroot = dispersion** .5 # квадратный корень из дисперсии
z = (means - expectation)/sqroot

plt.figure(figsize=(10, 5))
for i in range (500):
    plt.plot(grid, z[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((-5, 5))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 нормально распределенных случайных величин. На данном графике изображена зависимость величины $(S_n - ES_n)/\sqrt{DS_n}$ от количества слагаемых в этой сумме, сделано это для 500 выборок. По графику видно, что с увеличением числа слагаемых кривые не сходятся к определенной константе.

```
grid = np.linspace(-4, 4, 400) # задаем сетку для построения графика плотности
plt.figure(figsize=(10, 6))
plt.scatter(z[...,-1], np.zeros(500) - 0.02, alpha=0.05,
label='sample', color = 'yellow')
plt.hist(z[...,-1], range=(-4, 4), bins=10, density=True, color = 'palegreen')
plt.plot(grid, sps.norm.pdf(grid), color='darkblue', lw=2,
label='density $\mathcal{N}(0, 1)$')
plt.legend() # добавляет легенду
plt.show()
```


На данном графике изображена гистограмма, построенная по 500 значениям случайных величин $(S_{300}-ES_{300})/\sqrt{DS_{300}}$, где $S_{300}=\xi_1+\ldots+\xi_{300}$ каждая величина ξ_i имеет нормальное распределение. Также на данном графике изображена кривая, соответствующая плотности нормального распределения с параметрами 0 и 1. Нетрудно заметить, что построенная гистограмма примерно совпадает с областью под графиком плотности нормального распределения.

```
grid = np.arange(1, 301, 1)
sample = sps.poisson.rvs(mu=1, size=(500, 300)) # генерируем 500
наборов
means = sample.cumsum(axis=1)
expectation = means.mean(axis=0) # математическое ожидание
dispersion = means.var(axis = 0) # дисперсия
sqroot = dispersion** .5 # квадратный корень из дисперсии
z = (means - expectation)/sqroot

plt.figure(figsize=(10, 5))
for i in range (500):
    plt.plot(grid, z[i,...], alpha=0.05, color='mediumpurple')
plt.ylim((-5, 6))
plt.show()
```


Имеем 500 кривых, каждая из которых соответствует выборке из 300 пуассоновски распределенных случайных величин. На данном графике изображена зависимость величины $(S_n - E S_n)/\sqrt{DS_n}$ от количества слагаемых в этой сумме, сделано это для 500 выборок. По графику видно, что с увеличением числа слагаемых кривые не сходятся к определенной константе.

```
grid = np.linspace(-4, 4, 400) # задаем сетку для построения графика плотности
plt.figure(figsize=(10, 6))
plt.scatter(z[...,-1], np.zeros(500) - 0.02, alpha=0.05,
label='sample', color = 'yellow')
plt.hist(z[...,-1], range=(-4, 4), bins=10, density=True, color = 'palegreen')
plt.plot(grid, sps.norm.pdf(grid), color='darkblue', lw=2,
label='density $\mathcal{N}(0, 1)$')
plt.legend() # добавляет легенду
plt.show()
```


На данном графике изображена гистограмма, построенная по 500 значениям случайных величин $(S_{300}-ES_{300})/\sqrt{DS_{300}}$, где $S_{300}=\xi_1+\ldots+\xi_{300}$ каждая величина ξ_i имеет имеет пуассоновское распределение. Также на данном графике изображена кривая, соответствующая плотности нормального распределения с параметрами 0 и 1. Нетрудно заметить, что построенная гистограмма примерно совпадает с областью под графиком плотности нормального распределения.

Вывод:

Центральная предельная теоремма утверждает, что сумма достаточно большого количества слабо зависимых случайных величин примерно одинакового масштаба, имеет распределение, близкое к нормальному. Как мы заметили ранее, все построенные гистограммы похожи на плотность нормального распределения, поэтому эксперементальные данные подтверждают центральную предельную теорему.