Laboratorio di Basi di Dati

Turni T1 e T2 Corso B

a.a. 2024/2025 Ruggero Pensa- Fabiana Vernero

Argomenti - 1

- Introduzione alla progettazione di basi di dati
- Progettazione concettuale:
 - > II modello E-R:
 - Entità
 - Relazioni
 - Attributi
 - Cardinalità delle relazioni
 - · Cardinalità degli attributi

Argomenti - 2

- Identificatori
- Generalizzazioni e sottoinsiemi
- Documentazione associata agli schemi concettuali

Introduzione alla progettazione di basi di dati

Obiettivo

- Progettazione di una base di dati a partire dai suoi requisiti.
- Progettare una base di dati significa definirne:
 - > Struttura
 - > Caratteristiche
 - > Contenuto

Il ciclo di vita dei sistemi informativi

Il ciclo di vita dei sistemi informativi

Studio di fattibilità Raccolta e analisi dei requisiti Progettazione dei dati Progettazione Implementazione Progettazione delle applicazioni Validazione e collaudo **Funzionamento**

Il ciclo di vita dei sistemi informativi

Studio di fattibilità Raccolta e analisi dei requisiti Progettazione dei dati Progettazione Implementazione Progettazione delle applicazioni Validazione e collaudo **Funzionamento**

Perché progettare? - 1

Scott Adams, Inc./Dist. by UFS, Inc.

Perché progettare? - 2

La diagnosi di appendicite acuta e prevaientemente ciinica, in quanto si basa sull'accurata valutazione dei dati forniti dalla raccolta anamnestica e sull'esame obiettivo del paziente.

La diagnosi precoce rappresenta una condizione essenziale per un trattamento efficace.

L'esecuzione di esami radiologici (ecografia e TAC) può infatti essere utile nel completamento diagnostico in casi selezionati (anziani, obesi) per escludere altre patologie o se si sospettano eventuali complicanze in atto, ma non deve ritardare inopportunamente il momento diagnostico: una conferma diagnostica tardiva può essere non solo inutile ma soprattutto dannosa per il paziente. Le peculiarità e le difficoltà del percorso diagnostico, in caso di sospetta appendicite acuta, sono dovute al polimorfismo del quadro clinico che si modifica in rapporto alla varietà dei quadri anatomo-patologici ed alla posizione anatomica dell'appendice stessa nella cavità addominale.

La triade sintomatologica classica è caratterizzata da nausea con o senza vomito, febbre e dolore addominale e si presenta in poco più del 50% dei casi.

Il dolore è il sintomo cardine, tipicamente inizia come dolore addominale continuo, non specifico, di tipo viscerale, che progressivamente aumenta di intensità peggiorando in 6-24 ore e migrando in fossa iliaca destra. Esso è causato dall'ostruzione del lume del viscere da parte di un coprolita o dalla presenza di iperplasia linfoide follicolare a livello sottomucoso, che procura la distensione della parete appendicolare da overgrowth batterico. Di conseguenza si instaura il processo di ischemia e necrosi della parete con successivo evento perforativo. Il dolore viene pertanto inizialmente riferito in regione epigastrica-periombelicale, per l'irritazione delle vie viscerali autonomiche afferenti fino al 10° ganglio toracico. Quando il processo infiammatorio progredisce fino a coinvolgere il peritoneo parietale (irritando le vie nervose somatiche) il dolore tende a localizzarsi in fossa iliaca destra con dolorabilità elettiva nel punto di McBurney (situato all'unione del terzo laterale e dei 2/3 mediali della linea spino-ombelicale). Tuttavia il punto di massima dolorabilità può variare in rapporto alla variabilità anatomica di sede dell'appendice cecale, potendo essa ruotare di 360° rispetto alla sua base d'inserzione colica, procurando scenari atipici come il dolore lombare, per

Perché progettare? - 3

What Product Marketing specified

What the salesman promised

Design group's initial design

Corp. Product Architecture's modified design

Pre-release version

General release version

What the customer actually wanted

E' facile progettare? - 1

E' facile progettare? - 2

 "Quando qualcuno dice: questo lo so fare anch'io, vuol dire che lo sa rifare, altrimenti lo avrebbe già fatto prima" [Bruno Munari].

Metodologia di progettazione

- Una metodologia di progettazione consiste in:
 - > Decomposizione dell'attività di progetto in fasi successive e indipendenti.
 - > Strategie da seguire in ogni fase e criteri per la scelta delle alternative.
 - Modelli di riferimento per la descrizione dei dati in ingresso/uscita delle varie fasi.

Metodologia di progettazione per basi di dati - 1

Metodologia di progettazione per basi di dati - 2

Prodotti della progettazione

- Proget. Concettuale
- Proget. Logica
- Proget, Fisica

Progettazione concettuale

- Permette di rappresentare specifiche informali tramite una descrizione formale indipendente dai criteri di rappresentazione usati nel DBMS.
 - > Alto livello di astrazione.
 - Nessun dettaglio implementativo (codifica, efficienza)
- Produce uno schema concettuale.
- Fa riferimento a un modello concettuale.
 - > Ad esempio: modello Entità Relazione (E R).

Progettazione logica

- Consiste nella traduzione di uno schema concettuale secondo il modello di rappresentazione usato nel DBMS.
 - > Indipendente dai dettagli fisici.
 - > Scelte basate su ottimizzazioni delle operazioni.
 - > Qualità dello schema verificata mediante tecniche formali (normalizzazione).
- Produce uno schema logico.
- Fa riferimento a un modello logico.
 - > Ad esempio: modello relazionale.

Modello dei dati

- E' un insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica.
- Componente fondamentale: meccanismi di strutturazione (o costruttori di tipo).
 - Come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori.
 - Ad esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei.

Modelli concettuali: perche'?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - > Da dove cominciamo?
 - > Rischiamo di perderci subito nei dettagli!
 - Dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
- I modelli logici sono rigidi!

Modelli concettuali: perche'?

- I modelli concettuali servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi.
 - > Permettono di rappresentare le classi di oggetti di interesse e le loro correlazioni.
 - > Prevedono efficaci rappresentazioni grafiche utili anche per documentazione e comunicazione.

Progettazione concettuale

Il modello Entità – Relazione (E-R)

- E' il modello concettuale più diffuso
- Fornisce costrutti per descrivere le specifiche sulla struttura dei dati in modo semplice e comprensibile:
 - > Con un formalismo grafico.
 - > In modo indipendente dal modello logico dei dati, che può essere scelto in seguito.

Costrutti principali

- Entità
- Relazioni
- Attributi
- Identificatori
- Generalizzazioni e sottoinsiemi

Entità

 Rappresentano classi di oggetti del mondo reale che hanno proprietà comuni e esistenza autonoma.

 Un'occorrenza di un'entità è un oggetto della classe che l'entità rappresenta: es. Roma, Sean Penn

Relazioni

- Rappresentano un legame logico tra due o più entità.
 - > A volte si utilizza il termine "associazione", per non generare confusione con la relazione del modello relazionale.

Relazioni: occorrenze - 1

- Una occorrenza di una relazione è un'ennupla costituita da occorrenze di entità (una per ciascuna entità coinvolta)
 - > es. (Rossi, BD), (Verdi, Prog1), ecc.

Relazioni: occorrenze - 2

- Non vi possono essere ennuple identiche.
 - Non è possibile che uno studente sostenga due volte lo stesso esame.

Relazioni ternarie - 1

- Uno studente può ripetere lo stesso esame in tempi diversi.
 - > es. (Rossi, BD, 13 febbraio 2019)

Relazioni ternarie - 2

> es. (Ditta Verdi, Stampanti, Vendite)

Relazioni diverse sulle stesse entità

Relazioni ricorsive - 1

 In una relazione ricorsiva, un'entità è in relazione con se stessa.

Relazioni ricorsive - 2

 Se la relazione non è simmetrica, occorre definire i due ruoli dell'entità

Relazioni ternarie ricorsive

Attributi

- Un attributo descrive una proprietà elementare di un'entità o di una relazione.
- Ogni attributo è caratterizzato dal dominio,
 l'insieme dei valori ammissibili per l'attributo.

Attributi: esempi di occorrenze

Attributi composti

- Gli attributi composti raggruppano attributi di una medesima entità o relazione che sono sotto-parti del concetto rappresentato.
 - Esempio: Via, Numero civico e CAP formano un Indirizzo.

Cardinalità di una relazione - 1

- La cardinalità di una relazione è una coppia di valori associati a ogni entità che partecipa a una relazione.
- I valori specificano il numero minimo e massimo di occorrenze della relazione cui ciascuna occorrenza di una entità può partecipare.

Cardinalità di una relazione - 2

- Per semplicità usiamo solo tre simboli:
 - > Per la cardinalità minima 0 e 1:
 - 0 → partecipazione opzionale
 - 1 → partecipazione obbligatoria
 - > Per la cardinalità massima 1 e N:
 - N non pone alcun limite

Cardinalità di una relazione - 3

Classificazione delle relazioni

- Con riferimento alle cardinalità massime, le relazioni si definiscono:
 - > uno a uno
 - > uno a molti
 - > molti a molti
- Per quanto riguarda le cardinalità minime, il caso di partecipazione obbligatoria è raro.

Cardinalità delle relazioni: esempi - 1

Cardinalità delle relazioni: esempi - 2

Cardinalità delle relazioni: esempi - 3

• Le relazioni uno a uno sono molto rare!

Cardinalità degli attributi - 1

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare attributi opzionali ("informazione incompleta")
 - indicare attributi multivalore

Cardinalità degli attributi - 2

- Cardinalità minima = 0 → attributo opzionale
- Cardinalità minima = 1 → attributo obbligatorio
- Cardinalità massima = N → attributo multivalore

Identificatori delle entità

- Gli identificatori sono "strumenti" per l'identificazione univoca delle occorrenze di un'entità.
- Possono essere costituiti da:
 - > Attributi dell'entità: identificatore interno.
 - Attributi dell'entità +) entità esterne collegate attraverso una relazione: identificatore esterno.

Identificatori interni

Singolo attributo

Attributi multipli

Identificatori esterni

Identificatori delle entità: osservazioni

- Ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno.
- Un identificatore può coinvolgere più attributi ognuno dei quali deve avere cardinalità (1,1).
- Una identificazione esterna è possibile solo attraverso una relazione a cui l'entità da identificare partecipa con cardinalità (1,1).
- Un'identificazione esterna può coinvolgere entità a loro volta identificate esternamente, purché non vengano generati cicli.

Identificatori ed attributi: osservazioni

- Le relazioni possono avere attributi ma non possono mai avere identificatori
- Mentre le entità godono di esistenza autonoma, le associazioni non hanno esistenza autonoma: esprimono semplicemente il fatto che alcune occorrenze di entità sono legate tra di loro
- Un'occorrenza di un'associazione si distingue dalle altre unicamente tramite le occorrenze delle entità che vi partecipano (oltre che tramite il nome dell'associazione)

Esercizio 1

- Rappresentare con uno schema E-R:
 - > Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
 - Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
 - > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato afferisce al massimo a un dipartimento.
 - > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
 - > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
 - > Gli impiegati lavorano su progetti a partire da una certa data. Ogni impiegato può lavorare su più progetti.
 - > I progetti hanno nome, budget e data di consegna.

- Evidenziamo nel testo tutte le parole che riteniamo corrispondere ad entità, ad esempio in rosso
 - In seguito potremo eliminare alcune entità se ci renderemo conto che non sono entità
- Dopodiché evidenziamo gli attributi di ogni entità, ad esempio in verde
- Per il momento non faremo distinzione fra attributi e identificatori

- Rappresentare con uno schema E-R:
 - Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
 - Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
 - > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
 - > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
 - > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
 - Gli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
 - > I progetti hanno nome, budget e data di consegna.

Laboratorio di Basi di Dati - a.a. 2024/25 - Turni T1 e T2

 Indirizzo e CAP possono essere collassati in attributo composto

 Azienda è una entità senza attributi, quindi non informativa.
 Potremmo doverla eliminare dal diagramma E-R in futuro.

 Procediamo ad individuare possibili relazioni nel testo (es, in blu)e relativi attributi (es, in azzurro)

- Rappresentare con uno schema E-R:
 - Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
 - > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
 - > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
 - > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
 - > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
 - Sli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
 - > I progetti hanno nome, budget e data di consegna.

- Se non avessimo ancora eliminato la falsa entità Azienda, potremmo eliminarla ora perché:
 - 1) non porta nessuna informazione
 - 2) non partecipa a nessuna relazione
 - 3) avrebbe una sola occorenza
- Quindi eliminiamo l'entità Azienda

 Per ogni relazione, andiamo a stabilire con che cardinalità ogni entità vi partecipa (es, in viola)

- Rappresentare con uno schema E-R:
 - Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
 - > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
 - > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
 - > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
 - > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
 - Gli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
 - > I progetti hanno nome, budget e data di consegna.

Rappresentare con uno schema E-R:

- > Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
- > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
- > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
- > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
- > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
- Gli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
- > I progetti hanno nome, budget e data di consegna.

Rappresentare con uno schema E-R:

- > Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
- > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
- > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
- > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
- > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
- Sli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
- > I progetti hanno nome, budget e data di consegna.

Rappresentare con uno schema E-R:

- > Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
- > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
- > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
- > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
- > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
- Sli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
- > I progetti hanno nome, budget e data di consegna.

Rappresentare con uno schema E-R:

- > Azienda con diverse sedi di cui rappresentiamo indirizzo e città: c'e' una sola sede per ogni città.
- > Ogni sede e' organizzata in dipartimenti che hanno nome, indirizzo e numero di telefono. Ogni sede può avere più dipartimenti mentre un dipartimento può appartenere a una sola sede.
- > Ai dipartimenti afferiscono a partire da una certa data gli impiegati dell'azienda, ogni impiegato ha un nome, codice matricola e afferisce al massimo a un dipartimento.
- > Alcuni impiegati dirigono i dipartimenti, ogni impiegato può dirigere al massimo un dipartimento.
- > Ogni dipartimento ha almeno un direttore e può non avere impiegati che vi afferiscono.
- Gli impiegati lavorano su progetti a partire da una certa data.
 Ogni impiegato può lavorare su più progetti.
- > I progetti hanno nome, budget e data di consegna.

- Identifichiamo le entità
- Progetto, Impiegato e Sede possono essere identificati tramite attributi semplici

- Un dato dipartimento è identificabile univocamente solo in relazione alla sede di appartenenza
- Servirà un identificatore esterno attraverso la «Composizione»
 - > «Dipartimento acquisti di Torino»

Soluzione esercizio 1

- Dipartimento e sede hanno entrambi un attributo «indirizzo»
- Per ogni città c'è una sola sede, quindi tutti gli indirizzi devono essere necessariamente identici
- Eliminiamo più ridondanza possibile, quindi da Dipartimento

Soluzione esercizio 1 - Finale

Generalizzazioni - 1

- •Una generalizzazione mette in relazione una o più entità E1, E2, ..., En con una entità E, che le comprende come casi particolari:
 - > E è generalizzazione di E1, E2, ..., En.
 - > E1, E2, ..., En sono specializzazioni (o sottotipi) di E.

Generalizzazioni - 2

Proprietà delle generalizzazioni

- Se E (genitore) è generalizzazione di E1,
 E2, ..., En (figlie):
 - Ogni proprietà di E è significativa per E1, E2, ..., En.
 - > Ogni occorrenza di E1, E2, ..., En è occorrenza anche di E.

Proprietà delle generalizzazioni: ereditarietà

• Tutte le proprietà (attributi, relazioni, altre generalizzazioni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente.

Proprietà delle generalizzazioni: esempio

Tipi di generalizzazioni

- Una generalizzazione è:
 - > Totale, se ogni occorrenza dell'entità genitore è occorrenza di almeno una delle entità figlie, altrimenti è parziale.
 - Esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta.
- Consideriamo solo generalizzazioni esclusive e distinguiamo fra totali e parziali.

Tipi di generalizzazioni: generalizzazione totale ed esclusiva

Tipi di generalizzazioni: generalizzazione parziale ed esclusiva

Tipi di generalizzazioni: generalizzazione parziale e sovrapposta

Tipi di generalizzazioni: generalizzazione parziale e sovrapposta

 Una generalizzazione sovrapposta può essere trasformata in una esclusiva aggiungendo entità figlie che rappresentano le "intersezioni"

Generalizzazioni: osservazioni

- Possono esistere gerarchie a più livelli e multiple generalizzazioni allo stesso livello.
- Un'entità può essere inclusa in più gerarchie, come genitore e/o come figlia.
- Se una generalizzazione ha solo un'entità figlia si parla di sottoinsieme.

Panoramica sul modello E - R

Panoramica sul modello E – R: osservazioni

- Alcuni vincoli non sono esprimibili tramite i costrutti offerti dal modello, ad esempio:
 - Le gerarchie di generalizzazione non possono avere cicli.
 - La cardinalità minima deve essere minore della cardinalità massima.
 - Non ci devono essere cicli di identificatori esterni.

Documentazione associata agli schemi concettuali

Documentazione associata agli schemi concettuali

- Uno schema E-R non è quasi mai sufficiente a rappresentare tutti gli aspetti di un'applicazione.
- Ad esempio (esercizio 1):
 - > Progetti interni o esterni?
 - > Il direttore deve afferire al dipartimento diretto...
 - > Stipendio direttore > stipendio impiegato...

Regole aziendali

- Sono uno strumento per rappresentare "regole" del dominio applicativo, in particolare:
 - Descrizione di un concetto (entità, relazione, attributo).
 - > Vincolo di integrità.
 - Derivazione (concetto ottenuto attraverso inferenza o calcoli da altri concetti dello schema).

Regole aziendali

- Sono uno strumento per rappresentare "regole" del dominio applicativo, in particolare:
 - > Descrizione di un concetto (entità, relazione, attributo). ← dizionario dei dati

Dizionario dei dati (entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, cognome, stipendio	Codice
Progetto	Progetti aziendali	Nome, budget	Nome
Dipartimento	Struttura aziendale	Nome, telefono	Nome, sede
Sede	Sede dell'azienda	Città, indirizzo	Città

Dizionario dei dati (relazioni)

Relazione	Descrizione	Componenti	Attributi
Direzione	Direzione di un dipartimento	Impiegato (0,1), dipartimento (1,1)	
Afferenza	Afferenza a un dipartimento	Impiegato (0,1), dipartimento (1,N)	Data afferenza
Partecipazione	Partecipazione a un progetto	Impiegato (0, N), progetto (1, N)	Data inizio
Composizione	Composizione dell'azienda	Dipartimento (1, 1), sede (1, N)	

Regole aziendali

- Sono uno strumento per rappresentare "regole" del dominio applicativo, in particolare:
 - Descrizione di un concetto (entità, relazione, attributo). ← dizionario dei dati
 - > Vincolo di integrità

 asserzioni
 - <concetto> deve/non deve <espressione su concetti>
 - Derivazione (concetto ottenuto attraverso inferenza o calcoli da altri concetti dello schema) ← regole che specificano le operazioni necessarie per ottenere il concetto derivato
 - <concetto> si ottiene <operazione su concetti>

Vincoli di integrità

Regole di vincolo

- (1) Il direttore di un dipartimento **deve** afferire a tale dipartimento.
- (2) Un impiegato **non deve** avere uno stipendio maggiore del direttore del dipartimento a cui afferisce.
- (3) Un dipartimento con sede a Roma **deve** essere diretto da un impiegato con più di dieci anni di anzianità.
- (4) Un impiegato che non afferisce a nessun dipartimento **non deve** partecipare a nessun progetto.

Derivazioni

Regole di derivazione

(1) Il budget di un progetto **si ottiene** moltiplicando per 3 la somma degli stipendi degli impiegati che vi partecipano.

Esercizio 2

- Rappresentare con uno schema E-R:
 - > Una casa automobilistica produce veicoli che possono essere automobili, motocicli, camion e trattori.
 - I veicoli sono identificati da un numero di telaio e hanno un nome (per esempio, Punto), una cilindrata e un colore.
 - > Le automobili si suddividono in utilitarie (lunghezza sotto i due metri e mezzo) e familiari (lunghezza sopra i due metri e mezzo). Vengono anche classificate in base alla cilindrata: piccola (fino a 1200 cc), media (da 1200 cc a 2000cc) e grossa cilindrata(sopra i 2000 cc).
 - > I motocicli si suddividono in motorini (cilindrata sotto i 125 cc) e moto (cilindrata sopra i 125 cc).
 - > I camion hanno un peso e possono avere un rimorchio.

Esercizio 2

- Rappresentare con uno schema E-R:
 - > Una casa automobilistica produce veicoli che possono essere automobili, motocicli, camion e trattori.
 - I veicoli sono identificati da un numero di telaio e hanno un nome (per esempio, Punto), una cilindrata e un colore.
 - Le automobili si suddividono in utilitarie (lunghezza sotto i due metri e mezzo) e familiari (lunghezza sopra i due metri e mezzo). Vengono anche classificate in base alla cilindrata: piccola (fino a 1200 cc), media (da 1200 cc a 2000cc) e grossa cilindrata(sopra i 2000 cc).
 - > I motocicli si suddividono in motorini (cilindrata sotto i 125 cc) e moto (cilindrata sopra i 125 cc).
 - I camion hanno un peso e possono avere un rimorchio.

Esercizio 2

- Nel testo precedente sono stati identificati diversi concetti,ma non tutti sono indipendenti
- Come primo passo stabilire una gerarchia di generalizzazioni in forma di diagramma E-R
- In seguito aggiungere relazioni, attributi, identificatori, etc.