Ammissione al corso di Dottoratoin Fisica a.a.2018/2019 PROBLEMI

Problema 1. Un protone di impulso 10 TeV/c entra in collisione elastica con un elettrone fermo nel sistema del laboratorio.

- 1) Si calcoli l'energia totale del sistema nel centro di massa.
- 2) Si calcoli la velocità del protone nel centro di massa.
- 3) Quanto vale l'angolo massimo di diffusione del protone nel laboratorio?

Problema 2. Un dispositivo conta il numero di auto e camion che passano un casello autostradale. Il rapporto R tra auto e camion in quel tratto di strada vale \approx 2 in un giorno feriale.

- 1) Quanti veicoli devono passare il casello in un giorno feriale perché si possa misurare *R* con una incertezza statistica relativa dell'1%?
- 2) In un giorno festivo non possono passare camion in quel casello. Quante automobili devono passare il casello per poter determinare che ci troviamo in un giorno festivo a livello di confidenza CL?

Problema 3. Si consideri un sistema di due corpi di massa m1 e m2 in un'orbita gravitazionale chiusa.

- 1) Derivare, partendo dalla Lagrangiana (spiegare la scelta), le equazioni del moto. Derivare in particolare le quantità conservate.
- 2) Mostrare che la soluzione dipendente dal tempo può essere espressa in forma chiusa in termini di una oscillazione armonica di una variabile periodica.
- 3) Si assuma che un astronauta stenda il suo braccio in direzione radiale rispetto alla Terra e rilasci una piccola sfera senza imprimerle alcuna spinta. Che cosa succede e perché?

Problema 4. Si consideri il problema unidimensionale di una particella di massa m che incide con una data energia cinetica E su di una barriera di potenziale quadrata di altezza V_0 e spessore b.

- 1) Calcolare e discutere il profilo di trasmissione T(E).
- 2) Calcolare il termine dominante della trasmissione nel limite di bassa energia.
- 3) Discutere in quali condizioni/limiti è possibile avere una trasmissione del 100%.

DISSERTAZIONE

Dissertazione 1. Si descriva una misura di costante fondamentale (giustificare la scelta). Si discutano il metodo di misura, la precisione ottenibile e le sorgenti di incertezza sistematica.

Dissertazione 2. Si descriva una applicazione dell'analisi di Fourier in fisica.

Dissertazione 3. Discutere un'applicazione fisica del concetto di gruppo.

Dissertazione 4. Si illustri l'importanza dei fenomeni di interferenza e coerenza nella fisica, fornendo almeno un esempio specifico.

English version – PhD Admission test 2018/2019 PROBLEMS

Problem 1. A proton with momentum 10 TeV/c scatters elastically with an electron that is at rest in the laboratory system.

- 1) What is the centre-of-mass energy?
- 2) What is the velocity of the proton in the centre-of-mass frame?
- 3) What is the maximum scattering angle of the proton in the laboratory frame?

Problem 2. A device counts the number of cars and trucks passing through a motorway exit. The ratio R between cars and trucks is ≈ 2 on a working day.

- 1) How many vehicles should pass through that motorway exit to have a relative statistical uncertainty on *R* of 1%?
- 2) On holidays trucks are forbidden to pass through that exit. How many cars should pass through the exit to determine that we are on a holiday at a confidence level CL?

Problem 3. Consider a gravitationally bound two body system with masses *m*1 and *m*2.

- 1) Starting from the Lagrangian (with explanation for your choice) derive the equations of motion. Derive the conserved quantities.
- 2) Show that the time dependent solution can be found in closed form by reducing it to a harmonic oscillator in a periodic variable.
- 3) Assume an astronaut in orbit stretches her arm out while holding a small sphere radially away from the Earth. She then releases it without moving her arm. What happens and why?

Problem 4. Consider the one-dimensional problem of a particle with mass m impinging on a square barrier. The particle has a kinetic energy E, the barrier has a height V_0 and thickness b.

- (1) Calculate and discuss the transmission function T(E).
- (2) Calculate the dominant term of the transmission in the low energy limit.
- (3) Discuss in which limit it is possible to obtain a 100% transmission.

DISSERTATIONS

Dissertation 1. Describe the measurement of a fundamental constant (justify the choice). Discuss the experimental method, the achievable precision, and sources of systematic uncertainties.

Dissertation 2. Describe an application of Fourier analysis in physics.

Dissertation 3. Describe an application of groups in physics.

Dissertation 4. Discuss the importance of interference phenomena and coherence in physics, providing at least one example.