التمرين الأوّل ض

$$f\left(x\right) = \frac{3e^x - 1}{e^x + 1}$$
 :ب \mathbb{R} بالدالة المعرّفة على f

المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(C_i, \overline{i}, \overline{j})$.

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to -\infty} f(x)$ احسب 1.

2. ادرس اتجاه تغیّر الدالة f، ثمّ شکل جدول تغیر اتها.

$$(C_f)$$
 حدّد معادلات المستقيمات المقاربة للمنحثى 3.

4. بیّن أنه، من أجل كل عدد حقیقي x، x عدد حقیقي f(x)+f(-x)=2 عدد حقیقی 4.

5. بيّن أنّ المنحنى
$$(C_f)$$
 يقبل مماسا (T) معامل توجيهه يساوي 1، يطلب كتابة معادلة له.

$$(C_f)$$
 و (T) مع محور الفواصل ثم ارسم كلا من (T) و (T) مع محور الفواصل ثم ارسم كلا من (T)

$$(3-m)e^x = m+1$$
 : ناقش بيانيا، حسب قيم الوسيط الحقيقي m عدد وإثنارة حلول المعادلة:

$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ عساب $\lim_{x \to -\infty} f(x)$

$$\lim_{x \to -\infty} e^{x} + 1 = \lim_{x \to -\infty} 3e^{x} - 1 = -1 \quad \text{if} \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3e^{x} - 1}{e^{x} + 1} = -1$$

$$\lim_{x \to +\infty} e^{-x} = 0 \quad \text{if} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3e^{x} - 1}{e^{x} + 1} = \lim_{x \to +\infty} \frac{e^{x} \left(3 + e^{-x}\right)}{e^{x} \left(1 + e^{-x}\right)} = \lim_{x \to +\infty} \frac{\left(3 + e^{-x}\right)}{\left(1 + e^{-x}\right)} = \frac{3}{1} = 3$$

f دراسة اتجاه تغيّر الدالة f

ولاينا
$$f'(x) = \frac{3e^x (e^x + 1) - e^x (3e^x - 1)}{(e^x + 1)^2}$$
 الدالة f تقبل الإشتقاق على \mathbb{R} ولدينا $\frac{e^x (3(e^x + 1) - (3e^x - 1))}{(e^x + 1)^2}$
$$= \frac{e^x (3e^x + 3 - 3e^x + 1)}{(e^x + 1)^2}$$

$$=\frac{4e^x}{\left(e^x+1\right)^2}$$

من أجل كل عدد حقيقي f'(x)>0 لأنّ f'(x)>0 و ط e^x+1 و عليه الدالة f'(x)>0 متزايدة تماما علي f'(x)>0

جدول تغيرات الدالة f.

х	$-\infty$	$+\infty$
f'(x)	+	
f(x)		, 3
	_1 ~	

$.(C_{\scriptscriptstyle f})$ تحديد معادلات المستقيمات المقاربة للمنحنى .3

 $-\infty$ بجوار y=-1 بجوار معادلته y=-1 بجوار پینا این $(C_f$) پینا

y=3 بجوار y=3 بجوار y=3 بجوار y=3 بجوار y=3 بجوار y=3

. f(x)+f(-x)=2 ، x عدر حقیقی عدر انه، من أجل كل عدر حقیقی 4.

$$f(x)+f(-x) = \frac{3e^{x}-1}{e^{x}+1} + \frac{3e^{-x}-1}{e^{-x}+1} = \frac{3e^{x}-1}{e^{x}+1} + \frac{e^{-x}(3+e^{x})}{e^{-x}(1+e^{x})} = \frac{3e^{x}-1}{e^{x}+1} + \frac{3-e^{x}}{1+e^{x}} = \frac{2e^{x}+2}{e^{x}+1} = 2$$

تفسير النتيجة هندسيا

لدينا من أجل كل $x \in \mathbb{R}$ فإنّ $x \in \mathbb{R}$ ولدينا من أجل كل $x \in \mathbb{R}$ فإنّ $x \in \mathbb{R}$ ولدينا من أجل كل

 $\omega(0;1)$ وعليه النقطة $\omega(0;1)$ هي مركز تناظر للمنحنى $\omega(0;1)$ وعليه النقطة وعليه النقطة $\omega(0;1)$

5. تبيين أنّ المنحنى (C_f) يقبل مماسا (T) معامل توجيهه يساوي 1، يطلب كتابة معادلة له.

f'(x)=1 معامل توجیهه 1 معناه (T)

f'(x)=1 liable like

$$(e^x - 1)^2 = 0$$
 و يكافئ $e^{2x} - 2e^x + 1 = 0$ ويكافئ $e^{2x} + 2e^x + 2e^x + 1 = 0$ ويكافئ $e^{2x} - 2e^x + 1 = 0$ ويكافئ $e^{2x} - 2e^x + 1 = 0$

.0 معامل توجيهه 1 عند النقطة أرات الفاصلة x=0 أي x=0 وبالتالي x=0 يقبل مماسا ولا معامل أي النقطة أرات الفاصلة x=0

(T) كتابة معادلة المماس

$$y = x + 1$$
 $y = f'(0)(x - 0) + f(0)$

مع محور الفواصل. (C_f) مع محور الفواصل.

$$(C_f) \cap (Ox) = \{B(-\ln 3;0)\}$$
 يكافئ $x = -\ln 3$ ياذن $e^x = \frac{1}{3}$ وتكافئ $e^x - 1 = 0$ وتكافئ $e^x - 1 = 0$ وتكافئ $e^x - 1 = 0$

 $oldsymbol{.}\left(C_{f}
ight.
ight)$ و $\left(T
ight.
ight)$ من کلا من

m عدد m عدد المناقشة بيانيا، حسب قيم الوسيط الحقيقي وإشارة حلول المعادلة: $(3-m)e^x = m+1$

$$3e^x - me^x = m + 1$$
 يكافئ $(3-m)e^x = m + 1$

$$f(x) = m$$
 ای $3e^x - 1 = m(e^x + 1)$

إذا كان $-1 \le m \le 1$ أو $m \le 1$ فإن المعادلة لاتقبل حلا.

إذا كان 1 < m < 1 فإن المعادلة تقبل حلا وحيدا سالبا

إذا كان 1 < m < 3 فإن المعادلة تقبل حلا وحيدا موجبا

إذا كان m=1 فإن المعادلة تقبل حلا واحد و وحيدا معدوما.

التمرين الثانى

- $g(x) = (2-x)e^x 1$ لتكن الدالة g المعرّفة على $\mathbb R$ كما يلي: (I
 - -2 عن نهایتی الدّالة g عند -2 و عند -2
 - 2. أـ ادرس تغيّرات الدالة g.

ب ـ شكل جدول تغيّرات الدّالة g.

- . $1,8 \prec \beta \prec 1,9$ و $-1,2 \prec \alpha \prec -1,1$ و β بحيث g(x)=0 تقبل حلين g(x)=0 . 3
 - g(x) على g.
 - $f(x) = \frac{e^x 1}{e^x x}$ نعتبر الدّالة f المعرّفة على \mathbb{R} كما يلي: (II
 - $\left(O; \overrightarrow{i}, \overrightarrow{j}
 ight)$ تمثیلها البیاني في مستو منسوب إلى معلم متعامد ومتجانس $\left(C_f
 ight)$
 - $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب.
 - $f'(x) = \frac{g(x)}{(e^x x)^2}$ يا عدد حقيقي عدد عدد عقيقي 2. أ ـ بيّن أنّه، من أجل كل عدد حقيقي 2.

ب ـ استنتج اتجاه تغيّر الدّالة f، ثمّ شكل جُرول تغير اتها.

((I حيث العدد α المعرّف في السؤال 3 الجزء) $f(\alpha) = \frac{1}{\alpha - 1}$ (د. أ ـ بيّن أنّ

ب ـ عيّن حصر اللعددين $f\left(lpha
ight)$ و $f\left(lpha
ight)$. (تدور النتائج إلى $f\left(lpha
ight)$

 $.(C_f)$ ج ارسم

الحل⊙

 $g(x)=(2-x)e^x-1$ لتكن الدالة g المعرّفة على $\mathbb R$ كما يلي: (I

-2 تعيين نهايتي الدّالة g عند $-\infty$ وعند $-\infty$

 $\lim_{x \to -\infty} e^x = 0$ و $\lim_{x \to -\infty} x e^x = 0$ ي $\lim_{x \to -\infty} x e^x = 0$ ي $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (2-x)e^x - 1 = \lim_{x \to -\infty} 2e^x - xe^x - 1 = -1$

 $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} (2-x)e^x - 1 = -\infty$ الدينا $\lim_{x\to +\infty} (2-x) = -\infty$ و $\lim_{x\to +\infty} e^x = +\infty$ الدينا

2- أ- دراسة تغيرات الدالة ع.

 $g(x) = -e^x + e^x (2-x) = e^x (1-x)$ الدالة g تقبل الإشتقاق على $\mathbb R$ ولدينا:

 $\left(1\!-\!x
ight)$ لدينا من أجل كل عدد حقيقي x>0 ، $e^x>0$ ومنه إشارة g ' $\left(x
ight)$ هي إشارة

g'(x) < 0 أي -x < 0 ، $x \in]1;+\infty[$ من أجل

g'(x) > 0 أجل $[-\infty;1]$ أي $[-\infty;1]$ من أجل

g وعليه الدالة g متناقصة تماما على المجال g المجال g متزايدة تماما على المجال g

ج ـ جدول تغيرات الدّالة g .

х	8		1		$+\infty$
g'(x)		+	0	_	
g(x)	-1		e −1 、		→ -∞

 $1.8 < \beta < 1.9$ و $\alpha < -1.1$ و $\alpha < 1.8$ و $\alpha < 1.9$ و $\alpha < 1.3$ تبيين أنّ المعادلة $\alpha < 1.9$ تقبل حلين $\alpha < 1.9$ تقبل حلين أنّ المعادلة و $\alpha < 1.9$

لدينا الدالة g مستمرة ومتزايدة تماما على المجال [-0,2] و خاصة على المجال [-1,2;-1,1] و $g(-1,2) \approx -0.03$ α ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد $g(-1,2) \times g(-1,1) < 0$ إذن g(-1,1) < 0 $g(\alpha) = 0$ بحيب]-1,2;-1,1[من المجال

ولدينا الدالة g مستمرة ومتناقصة تماما على المجال $]\infty+;1]$ و خاصة على المجال [1,8;1,9] و 0,2pprox 0,1ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد $g\left(1,8\right) \times g\left(1,9\right) < 0$ إذن $g\left(1,9\right) \approx -0.3$

 $g(\beta) = 0$ بحيث]1,8;1,9[بحيث g(x) على \mathbb{R} . استنتاج اشارة

Х	 α		β	$+\infty$
g(x)	0	+	0	

f المعرّفة على \mathbb{R} كما يلي: (II) نعتبر الدّالة f المعرّفة على f

 $\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ تمثیلها البیاني في مستو منسوب إلى معلم متعامد ومتحانس $\left(C_{f}
ight)$

. $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^{x} - 1}{e^{x} - x} = 0$ لاينا $\lim_{x \to -\infty} e^{x} - x = +\infty$ و $\lim_{x \to -\infty} e^{x} - 1 = -1$

$$\lim_{x \to +\infty} = \frac{1}{e^x} = 0 \quad \lim_{x \to +\infty} = \frac{x}{e^x} = 0 \quad \text{if } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x \left(1 - \frac{1}{e^x}\right)}{e^x \left(1 - \frac{x}{e^x}\right)} = \lim_{x \to +\infty} \frac{\left(1 - \frac{1}{e^x}\right)}{\left(1 - \frac{x}{e^x}\right)} = 1$$

 $f'(x) = \frac{g(x)}{(e^x - x)^2}$: x عدد حقیقی عدد عدد من أجل كل عدد .2

لیکن $x \in \mathbb{R}$ لدینا:

$$f'(x) = \frac{e^{x} (e^{x} - x) - (e^{x} - 1)(e^{x} - 1)}{(e^{x} - x)^{2}} = \frac{e^{2x} - xe^{x} - e^{2x} + 2e^{x} - 1}{(e^{x} - x)^{2}} = \frac{e^{x} (2 - x) - 1}{(e^{x} - x)^{2}} = \frac{g(x)}{(e^{x} - x)^{2}}$$

ب ـ استنتاج اتجاه تغيّر الدّالة f .

f'(eta)=0ادينا $(e^x-x)^2>0$ ومنه إشارة (x) هي نفس إشارة g(x) وعليه ومنه إشارة ومنه إشارة ومنه إ

 $[eta;+\infty[\ eta]]-\infty;lpha$ من أجل $[eta;+\infty[\ eta]]-\infty;lpha$ فإنّ $[a,+\infty[\ eta]]+\infty[$ و بالتالي الدالة $[a,+\infty[\ eta]]+\infty[$

 $[\alpha; \beta]$ من أجل $[\alpha; \beta]$ من أجل $[\alpha; \beta]$ فإنّ $[\alpha; \beta]$ وبالتالي الدالة $[\alpha; \beta]$ من أجل

f جدول تغيرات الدالة

X	∞	α		β		+∞
f'(x)	_	0	+	0	_	
f(x)	0	$f(\alpha)$,	$f(\beta)$		1

$$f(\alpha) = \frac{1}{\alpha - 1}$$
 اً .3

$$e^{\alpha}=rac{1}{2-lpha}$$
 لدينا $(2-lpha)e^{lpha}-1=0$ تكافئ $g\left(lpha
ight)=0$ وتكافئ $f\left(lpha
ight)=rac{e^{lpha}-1}{e^{lpha}-lpha}$ لدينا

$$f(\alpha) = \frac{\frac{1}{2-\alpha} - 1}{\frac{1}{2-\alpha} - \alpha} = \frac{\frac{1+\alpha}{2-\alpha}}{\frac{1-2\alpha+\alpha^2}{2-\alpha}} = \frac{\alpha-1}{(\alpha-1)^2} = \frac{1}{\alpha-1}$$
ومنه

 $f(\beta)$ و $f(\alpha)$ ب عيين حصرا للعددين

$$-0.48 < f(\alpha) < -0.45$$
 أي $\frac{1}{-2.1} < \frac{1}{\alpha - 1} < \frac{1}{-2.2}$ تكافئ $-2.2 < \alpha - 1 < -2.1$ أي $-1.2 < \alpha < -1.1$

$$1.1.1 < f(\beta) < 1.25$$
 اي $1.25 < \frac{1}{\beta - 1} < \frac{1}{\beta - 1} < \frac{1}{0.8}$ ولدينا $1.8 < \beta < 1.9$ معناه $1.8 < \beta < 1.9$ تكافئ

 $.(C_f)$ ج ۔ رسم

التمرين الثالث 🕾

$$f\left(x\right)=x+\dfrac{2}{e^{x}+1}$$
 :نعتبر الدّالة f المعرفة على كما يلي

. ($O; \vec{i}, \vec{j}$) المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

- $\omega(0;1)$ مرکز تناظر المنحنی $\omega(0;1)$ مرکز تناظر المنحنی $\omega(0;1)$ مرکز تناظر المنحنی المنحنی $\omega(0;1)$.1
 - . $\lim_{x \to -\infty} f(x)$ ثمّ استنتج $\lim_{x \to +\infty} f(x)$ أـ احسب

ب ـ ادرس اتجاه تغير الدالة f، ثمّ شكل جدول تغير اتها.

- y=x مستقيم ذا المعادلة y=x مستقيم مقارب مائل للمنحنى (C_f) بجوار y=x . 3.
 - ب ـ احسب (x+2) (x+2) بثم فسّر النتيجة بيانيا.

f(x)=k المعادلة يقيمة للعدد الحقيقي يكون العدد ($-\alpha$) علا للمعادلة يقيمة للعدد الحقيقي ب

. -1,7 < α < -1,6 بيّن أنّ المعادلة $f\left(x\right)=0$ تقبل حلا وحيدا α بحيث أنّ المعادلة

رسم (C_f) ومستقيميه المقاربين.

الحل⊙

$$f(x) = x + \frac{2}{e^x + 1}$$
 نعتبر الدّالة f المعرفة على \mathbb{R} كما يلي:

. $\left(O;\vec{i},\vec{j}\right)$ المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس المثال الدالة المنحنى الممثل الدالة المنطق المنسوب المنطق ا

f(x)+f(-x) عساب.

 $x \in \mathbb{R}$ ليكن

$$f(x)+f(-x) = x + \frac{2}{e^x + 1} - x + \frac{2}{e^{-x} + 1} = \frac{2}{e^x + 1} + \frac{2e^x}{e^x (e^{-x} + 1)} = \frac{2}{e^x + 1} + \frac{2e^x}{e^x + 1} = \frac{2e^x + 2}{e^x + 1} = 2$$

لدينا من أجل كل $x \in \mathbb{R}$ فإنّ $x \in \mathbb{R}$ والدينا f(x) + f(-x) = 2 اي $x \in \mathbb{R}$ اي

 $\omega(C_f)$ هي مركز تناظر للمنحنى $\phi(0;1)$ النقطة $\phi(0;1)$ النقطة $\phi(0;1)$

 $\lim_{x\to +\infty} f(x)$ 1.2

$$\lim_{x \to +\infty} x = +\infty \quad \lim_{x \to +\infty} \frac{2}{e^x + 1} = 0 \quad \text{if} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x + \frac{2}{e^x + 1} = +\infty$$

 $\lim_{x\to\infty} f(x)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[2 - f(x) \right] = \lim_{t \to +\infty} \left[2 - f(t) \right] = -\infty$$
 لاينا $f(x) = 2 - f(-x)$

f الدالة بغير الدالة f

$$(e^x + 1)^2 > 0$$
 و $e^{2x} + 1$ و $e^{2x} + 1$

 \mathbb{R} إذن f'(x) > 0 وعليه الدّالة f متزايدة تماما على

جدول التغيرات.

	- 4#	•••
х	$-\infty$	$+\infty$
f'(x)	+	
f(x)		→ +∞

y=x مستقيم مقارب مائل للمنحنى (C_f) بجوار y=x مستقيم مقارب مائل للمنحنى و . بجوار

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{2}{e^x + 1} = 0$$

 (C_f) بجوار مائل للمنحنى (C_f) بجوار مائل المنحنى (C_f) بجوار

 $\lim_{x\to\infty} f(x) - (x+2) + 1$

$$\lim_{x \to -\infty} f(x) - (x+2) = \lim_{x \to -\infty} \frac{2}{e^x + 1} - 2 = 2 - 2 = 0$$

تفسير النتيجة بيانيا.

6

aziz_mus1@hotmail.fr

 $-1.7 < \alpha < -1.6$ بحيث أنّ المعادلة f(x) = 0 تقبل حلا وحيدا α بحيث أنّ المعادلة و

لدينا الدالة f مستمرة على \Re و بالخصوص على المجال [-1,7;-1,6] و [-1,7;-1,6] و [-1,7;-1,6] و بالخصوص على المجال [-1,7;-1,6] من المجال [-1,7;-1,6] من المجال [-1,7;-1,6] من المجال [-1,7] من المجال [-1,7;-1,6] و منه حسب مبر هنة القيم المتوسطة يوجد على الأقل عدد حقيقي α من المجال [-1,7;-1,6] و منا أنّ الذالة α متز ايدة تماما على α فإنّ α وحيد.

 $f\left(x
ight)=k$ ب ـ من أجل أي قيمة للعدد الحقيقي k يكون العدد $\left(-lpha
ight)$ حلا للمعادلة

 $f(\alpha)=0$ لان العدد $f(\alpha)=2$ هو حل للمعادلة $f(\alpha)=0$ وعليه $f(\alpha)=0$ وخاصة $f(\alpha)=0$ ومنه $f(\alpha)=0$ لأن $f(\alpha)=0$ وغليه $f(\alpha)=0$ وعليه $f(\alpha)=0$ هو حل للمعادلة $f(\alpha)=0$ وعليه $f(\alpha)=0$ وعليه $f(\alpha)=0$

. رسم $\left(C_{f}
ight)$ ومستقيميه المقاربين.

التمرين الرابع⊗

- $g(x) = e^x + x + 1$ دالة معرّفة على \mathbb{R} بالعبارة g
 - \mathbb{R} ادرس تغیّرات الدّالة g على \mathbb{R} .
- -1,3<lpha<-1,2ين أنّ المعادلة $g\left(x
 ight) =0$ تقبل حلا وحيدا lpha حيث 2.
 - \mathbb{R} . استنتج إشارة g(x) على g(x)
 - . $f(x) = \frac{xe^x}{e^x + 1}$ دالة معرّفة على \mathbb{R} بالعبارة: f
- $(O;ec{i},ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - \mathbb{R} على استنتج تغيّرات $f'(x) = \frac{e^x g(x)}{(e^x + 1)^2}$.1
 - $f(\alpha)$. بيّن أنّ $f(\alpha) = \alpha + 1$ ، ثمّ استنتج حصرا لـ 2
- (C_f) عند النقطة ذات الفاصلة صفر، ثمّ ادرس الوضع النسبي لـ (C_f) عند النقطة ذات الفاصلة صفر، ثمّ ادرس الوضع النسبي ال (C_f) عند النقطة ذات الفاصلة عين معادلة المماس
 - $+\infty$ بيّن أن المستقيم (C_f) ذا المعادلة y=x مقارب مائل لـ (Δ) في جوار (Δ)
 - (C_f) و (Δ) و (d) النسبة إلى (Δ) ، ثمّ ارسم (Δ) و وضعية (C_f)

الحل⊙

- $g(x) = e^x + x + 1$ دالة معرّفة على $\mathbb R$ بالعبارة g -I
 - \mathbb{R} دراسة تغيرات الدّالة g على \mathbb{R} .

.
$$\lim_{x \to -\infty} x + 1 = -\infty$$
 و $\lim_{x \to -\infty} e^x = 0$ لأنً $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} e^x + x + 1 = -\infty$

$$\lim_{x \to +\infty} x + 1 = +\infty \quad \lim_{x \to +\infty} e^x = 0 \quad \text{if} \quad \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} e^x + x + 1 = +\infty$$

 $g'(x) = e^x + 1$ الدالة g تقبل الإشتقاق على \mathbb{R} ودالتها المشتقة هي الاشتقاق على

من أجل كل عدد حقيقي x، 0 < (x) > 0 و عليه الدّالة g متزايدة تماما على \mathbb{R} .

جدول التغيّرات:

 $-1,3 < \alpha < -1,2$ تبيين أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α

الدالة g مستمرة على \Re وبالتالي على المجال [-1,3] المجال [-1,3] ولدينا g $(-1,2) \approx 0.10$ ، g $(-1,3) \approx -0.02$ أي الدالة g مستمرة على g ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي α من المجال g $(-1,3) \times g$ (-1,2) < 0

بحيث $g\left(lpha
ight)$ وبما أنّ الدالة g متزايدة تماما على $\mathbb R$ فَإِنّ lpha وحيد.

 \mathbb{R} على g(x) على 3.

$$g(x) < 0$$
 ، $x \in]-\infty; \alpha[$ من أجل

$$g(\alpha) = 0$$
 و $g(x) > 0$ ، $x \in]\alpha; +\infty[$ من أجل

$$f(x) = \frac{xe^x}{e^x + 1}$$
 دالة معرّفة على \mathbb{R} بالعبارة: f

 $\left(Q; \overline{i}, \overline{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f\right)$

$$f'(x) = \frac{e^x g(x)}{(e^x + 1)^2}$$
 نبيين أنّ

$$f'(x) = \frac{(e^{x} + xe^{x})(e^{x} + 1) - e^{x}(xe^{x})}{(e^{x} + 1)^{2}}$$

$$= \frac{e^{2x} + e^{x} + xe^{2x} + xe^{x} - xe^{2x}}{(e^{x} + 1)^{2}}$$

$$= \frac{e^{x}(e^{x} + x + 1)}{(e^{x} + 1)^{2}}$$

$$= \frac{e^{x}g(x)}{(e^{x} + 1)^{2}}$$

استنتاج تغیّرات f علی \mathbb{R} .

g(x) إشارة f'(x) هي نفس إشارة

$$f'(x) < 0$$
 في المجال $g(x) < 0$ ، $]-\infty; \alpha[$ في المجال

$$f'(x) > 0$$
 وفي المجال $\alpha; +\infty$ ($\alpha; +\infty$ وفي المجال

 $[lpha;+\infty[$ إذن الدّالة f متناقصة تماما على المجال $[lpha;+\infty[$ و متزايدة تماما على المجال

$$\lim_{x \to \infty} e^x + 1 = 1 \quad \lim_{x \to \infty} x e^x = 0 \quad \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x e^x}{e^x + 1} = 0$$

$$\lim_{x \to +\infty} f\left(x\right) = \lim_{x \to +\infty} \frac{xe^{x}}{e^{x} + 1} = \lim_{x \to +\infty} \frac{xe^{x}}{e^{x} \left(1 + e^{-x}\right)} = \lim_{x \to +\infty} \frac{x}{1 + e^{-x}} = +\infty$$

جدول تغيرات الدالة أ.

х	 α		$+\infty$
f'(x)	0	+	
f(x)	$f(\alpha)$		**************************************

 $f(\alpha) = \alpha + 1$ تبيين أنّ 2.

$$e^{lpha}=-(lpha+1)$$
 لاينا $g\left(lpha
ight)=e^{lpha}+lpha+1=0$ يكافئ $g\left(lpha
ight)=0$ لدينا

$$f(\alpha) = \frac{\alpha e^{\alpha}}{e^{\alpha} + 1} = \frac{-\alpha(\alpha + 1)}{-(\alpha + 1) + 1} = \frac{-\alpha(\alpha + 1)}{-(\alpha + 1) + 1} = \frac{-\alpha(\alpha + 1)}{-\alpha} = \alpha + 1$$
 إذن

طريقة ثانية:

$$f\left(\alpha\right) - \left(\alpha + 1\right) = \frac{\alpha e^{\alpha}}{e^{\alpha} + 1} - \left(\alpha + 1\right) = \frac{\alpha e^{\alpha} - \alpha e^{\alpha} - e^{\alpha} - \alpha - 1}{e^{\alpha} + 1} = \frac{-\left(e^{\alpha} + \alpha + 1\right)}{e^{\alpha} + 1} = \frac{-g\left(\alpha\right)}{e^{\alpha} + 1}$$
الدينا

$$f(\alpha) = (\alpha+1)$$
 کن $g(\alpha) = (\alpha+1)$ ومنه $g(\alpha) = 0$ کن

 $f(\alpha)$ استنتاج حصرا لـ

$$-0.3 < f(\alpha) < -0.2$$
 أي $-0.3 < \alpha + 1 < -0.2$ معناه $-1.3 < \alpha < -1.2$

. تعيين معادلة المماس
$$\left(C_{f}\right)$$
 لـ $\left(C_{f}\right)$ عند النقطة ذات الفاصلة صفر.

$$(d): y = \frac{1}{2}x$$
 ومنه $f(0) = 0$ و $f'(0) = \frac{1}{2}$ ولدينا $y = f'(0)(x - 0) + f(0)$

 $\left(C_{f}\right)$ و $\left(d\right)$ دراسة الوضع النسبي لـ

 $x \in \mathbb{R}$ ليكن

$$f(x) - \frac{1}{2}x = \frac{xe^{x}}{e^{x} + 1} - \frac{x}{2} = \frac{2xe^{x} - xe^{x} - x}{2(e^{x} + 1)} = \frac{xe^{x} - x}{2(e^{x} + 1)} = \frac{x(e^{x} - 1)}{2(e^{x} + 1)}$$

$$x\left(e^{x}-1\right)$$
 د ومنه إشارة $f\left(x\right)-\frac{1}{2}$ هي نفس إشارة $2\left(e^{x}+1\right)>0$ لدينا

Х	$-\infty$	∞+ 0
x	- (+
$e^x - 1$	7	+
$f(x)-\frac{1}{2}x$		+
الوضعية	(d) فوق (C _f)	(d) فوق (C_f)

 $+\infty$ بيين أن المستقيم Δ ذا المعادلة χ أن المستقيم أن المعادلة χ أن المستقيم Δ

$$f(x)$$
 $x = \frac{xe^x}{e^x + 1} - x = \frac{xe^x - xe^x - x}{e^x + 1} = \frac{-x}{e^x + 1}$ لدينا

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{x}{e^x + 1} = \lim_{x \to +\infty} \frac{-x}{x \left(\frac{e^x}{x} + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{-1}{\left(\frac{e^x}{x} + \frac{1}{x}\right)} = 0$$

$$|\dot{y}|$$

 $\left(egin{aligned} c_f > & C_f \end{aligned}
ight)$ ومنه المستقيم $\left(\Delta
ight)$ مقارب مائل لـ

 $oxedsymbol{(\Delta)}$ دراسة وضعية $oxedsymbol{(C_f)}$ بالنسبة إلى. 5

-x إشارة f(x)-x هي نفس إشارة

x	$-\infty$	0	+∞
f(x)-x	+	0	_
الوضعية	$\left(\Delta ight)$ فوق $\left(C_{f} ight)$		$\left(\Delta ight)$ تحت $\left(C_{f} ight)$

 (Δ) و (Δ) يتقاطعان في (C_f)

 $oldsymbol{(}C_{f}ig)$ و $ig(\Deltaig)$ و ig(d)

التمرين الخامس⊗

- . $g(x)=1+(x^2-1)e^{-x}$ بالدّالة g معرّفة على $\mathbb R$ بالدّالة الدّالة الدّالة الدّالة الدّالة الدّ
 - . $\lim_{x \to +\infty} g(x)$ e $\lim_{x \to -\infty} g(x)$ e .1
- $g(1+\sqrt{2})$ و $g(1-\sqrt{2})$ و $g(1-\sqrt{2})$ و $g(1-\sqrt{2})$ و $g(1-\sqrt{2})$ و $g(1+\sqrt{2})$ و $g(1+\sqrt{2})$ ب ـ ادرس اتجاه تغیّر الدالة $g(1+\sqrt{2})$ جدول تغیّراتها.
- - $f(x) = x (x+1)^2 e^{-x}$ بـ \mathbb{R} بـ آلدّالة f معرّفة على f
 - . $(O; ec{i}, ec{j})$ المنحنى الممثل للدالة f في المستوى المنسوب إلى المعلم المتعامد والمتجانس المتعامد (C_f)
 - . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$.1
 - $+\infty$ عند (C_f) عند المعادلة y=x عند عند المعادلة عند (Δ) عند عند (Δ)
 - (Δ) بالنسبة إلى المستقيم ((C_f)) بالنسبة إلى المستقيم
 - 2. أ بيّن أنّه، من أجل كل عدد حقيقي x، (x) = g(x) ، (x) = g(x) إلى الدّالة المشتقة للدالة (x) = g(x)
 - $(f(\alpha) \approx 0.9)$ على \mathbb{R} . (نأخذ: 9.9 على الدّالة والدّالة والدّالة الدّالة والدّالة والدّالة الدّالة والدّالة والدّ
 - 3. أ بيّن أنّ المنحنى (C_f) يقبل مماسين، معامل توجيه كل منهما يساوي 1، يطلب تعيين معادلة لكل منهما.
 - $\left(C_{f}\right)$ والمماسين والمنحنى (Δ) والمماسين والمنحنى
 - $(x+1)^2 + me^x = 0$: x اقش بيانيا، حسب قيّم الوسيط الحقيقى x عدد حلول المعادلة ذات المجهول

الحل⊙

- $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x)$ 1.
- $\lim_{x \to \infty} (x^2 1) = +\infty \quad \lim_{x \to \infty} e^{-x} = +\infty \quad \text{if} \quad \lim_{x \to \infty} g(x) = \lim_{x \to \infty} 1 + (x^2 1)e^{-x} = +\infty$
 - $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} 1 + (x^2 1)e^{-x} = \lim_{x \to \infty} 1 + x^2 e^{-x} e^{-x}$
 - $\lim_{x \to +\infty} g(x) = 1$ التزايد المقارن) و $\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^{x}} = \lim_{x \to +\infty} \frac{x^2}{e^x} = 0$ لدينا
 - ب ـ دراسة اتجاه تغيّر الدالة g .
 - $g'(x) = 2xe^{-x} e^{-x}(x^2 1)$ الدالة g تقبل الإشتقاق على $\mathbb R$ ولدينا

$$=e^{-x}\left[2x-\left(x^2-1\right)\right]$$

$$=e^{-x}\left(-x^{2}+2x+1\right)$$

 $-x^2+2x+1$) من أجل كل عدد حقيقي x>0 ، x>0 ومنه إشارة $e^{-x}>0$ من أجل كل عدد حقيقي

Х	$-\infty$	$1 - \sqrt{2}$	$1+\sqrt{2}$	$+\infty$
$-x^{2} + 2x + 1$		_ 0 +	0	

 $-\sqrt{2};1+\sqrt{2}$ الدالة g متناقصة تماما على المجالين $\left[2-1;1+\sqrt{2} -1;1+\sqrt{2}
ight]$ ومتزايدة تماما على المجال

جدول تغيرات الدالة ع.

\mathbb{R} . أ ـ تبيين أنّ المعادلة g(x) = 0 تقبل حلين في \mathbb{R} .

الدالة
$$g$$
 مستمرة ومتناقصة تماما على المجال $\left[g\left(1-\sqrt{2}\right);+\infty\right]$ و تأخذ قيمها في المجال $g(x)=0$ ولدينا $g(x)=0$ ومنه المعادلة $g(x)=0$ تقبل حلا وحيدا $g(x)=0$ في المجال $g(x)=0$ ومنه المعادلة $g(x)=0$ ومنه المعادلة $g(x)=0$ ومنه المجال $g(x)=0$ ومنه المجال $g(x)=0$ ومنه المجال $g(x)=0$ ومنه المعادلة $g(x)=0$ ومنه المعادلة $g(x)=0$ ومنه المعادلة $g(x)=0$ ومنه المعادلة $g(x)=0$ والدينا كذلك $g(x)=0$ ومنه المجال $g(x)=0$ ومنه المجال $g(x)=0$ والدينا كذلك $g(x)=0$ ومنه المجال $g(x)=0$ ومنه المجال أو تأخذ قيمها في المجال $g(x)=0$ ومنه المجال أو تأخذ قيمها في المحال أو تأخذ أ

خلاصة: المعادلة g(x) = 0 تقبل حلين في \mathbb{R} .

 $-0.8 < \alpha < -0.7$:حيث معدوم والآخر التحقق أنّ أحدهما معدوم والآخر

$$g\left(-0.7\right) \times g\left(-0.8\right) < 0$$
 بما أنّ $g\left(-0.8\right) = 0$ فإنّ $g\left(-0.8\right) = 0$ و $g\left(-0.7\right) = 0.02$ بما أنّ $g\left(0\right) = 1 + (0-1)e^0 = 0$ فإنّ $g\left(0\right) = 1 + (0-1)e^0 = 0$ ومنه $g\left(-0.8\right) < \alpha < -0.7$

ب ـ استنتاج إشارة g(x) ؛ حسب قيم العدد الحقيقي x

х	$-\infty$	α	0	$+\infty$
g(x)	+	0	0	+

 $f(x) = x - (x+1)^2 e^{-x}$ بـ \mathbb{R} بـ معرّفة على f الدّالة f

 $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to -\infty} f(x)$.1

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x - (x+1)^2 e^{-x} = -\infty$$
 لدينا $\lim_{x \to \infty} x = -\infty$ و $\lim_{x \to \infty} x = -\infty$ و $\lim_{x \to \infty} -(x+1)^2 e^{-x} = -\infty$ لدينا

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - (x+1)^2 e^{-x} = \lim_{x \to +\infty} x - (x^2 e^{-x} + 2xe^{-x} + e^{-x}) = +\infty$$

$$\lim_{x \to +\infty} x = +\infty$$
 و $\lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to +\infty} 2x e^{-x} = \lim_{x \to +\infty} e^{-x} = 0$ لأنّ

 $+\infty$ عند C_f عند مثال للمنحنى (Δ) عند ب - تبيين أنّ المستقيم (Δ) عند ب - تبيين أنّ المستقيم

$$f(x)-x = x - (x+1)^2 e^{-x} - x = -(x+1)^2 e^{-x} = -(x^2 e^{-x} + 2xe^{-x} + e^{-x})$$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} -\left(x^{2}e^{-x} + 2xe^{-x} + e^{-x}\right) = \lim_{x \to +\infty} -\left(\frac{x^{2}}{e^{x}} + 2\frac{x}{e^{x}} + e^{-x}\right) = 0$$

$$|\dot{y}| = \frac{1}{1+x} \int_{0}^{1+x} \left(x^{2}e^{-x} + 2xe^{-x} + e^{-x}\right) = \lim_{x \to +\infty} -\left(\frac{x^{2}}{e^{x}} + 2\frac{x}{e^{x}} + e^{-x}\right) = 0$$

 (C_f) عند (C_f) عند المعادلة y=x مقارب مائل المنحنى عند عند المعادلة (Δ)

 (Δ) بالنسبة إلى المستقيم (Δ) بالنسبة إلى المستقيم

$$f(x)-x=-(x+1)^2e^{-x}$$
 الیکن x عددا حقیقیا؛

$$f(x) \to x \le 0$$
 اذی $(x+1)^2 \ge 0$ و $e^{-x} > 0$

ومنه المنحنى $\binom{\Delta}{f}$ يوجد تحت المستقيم ($\binom{\Delta}{f}$).

. f'(x) = g(x) با تبیین أنّه، من أجل كل عدد حقیقي f'(x) = g(x) . 2

$$f'(x) = 1 - \left[2(x+1)e^{-x} - e^{-x}(x+1)^2\right] = 1 - \left[e^{-x}(1-x^2)\right] = 1 + e^{-x}(x^2-1) = g(x)$$

ب - جدول تغيرات الدّالة f .

	1					
х		α		0		$+\infty$
f'(x)	+	0	_	0	+	
J (x)		$\pi^{f(\alpha)}$				▼ +∞
	$-\infty$		`	1 −1		

3. أ ـ تبيين أنّ المنحنى $\binom{C_f}{2}$ يقبل مماسين، معامل توجيه كل منهما يساوي $\binom{1}{2}$ ، يطلب تعيين معادلة لكل منهما.

$$x_0 = 1$$
 ويكافئ $x_0 = 1 + (x_0^2 - 1)e^{-x_0} \neq 0$ ادينا $(x_0^2 - 1)e^{-x_0} = 0$ ومنه $(x_0 - 1)e^{-x_0} = 1$ أو $(x_0 - 1)e^{-x_0} = 1$

$$M'\left(-1;f\left(-1
ight)
ight)$$
 و $M\left(1;f\left(1
ight)
ight)$ يقبل مماسين معامل توجيه كل منهما يساوي $x_0=-1$ عند النقطتين و $x_0=-1$

كتابة معادلة المماسين

$$y = x - 4e^{-1}$$
 المماس عند النقطة $(1;f(1))$ معادلته $(1;f(1))+f(1)$ معادلته $(1;f(1))+f(1)$ المماس عند النقطة $(1;f(1))$

$$y = x$$
 أي $y = x+1-1$ ومنه $y = f'(-1)(x+1)+f(-1)$ معادلته $y = x+1-1$ ومنه $y = x+1-1$

$$\left(C_{f}
ight)$$
 ب - تمثیل (Δ) والمماسین والمنحنی

 $(x+1)^2 + me^x = 0$: x المناقشة بيانيا، حسب قيّم الوسيط الحقيقي x عدد حلول المعادلة ذات المجهول و x المناقشة بيانيا، حسب قيّم الوسيط الحقيقي

$$me^{x} = -(x+1)^{2}$$
 نکافئ $(x+1)^{2} + me^{x} = 0$

وتكافئ
$$m = -(x+1)^2 e^{-x}$$
 و تكافئ

$$f(x) = x + m$$
 $(x + m) = x - (x + 1)^2 e^{-x}$

إذا كان
$$m\in]-\infty;-4e^{-1}$$
 إذا كان $m\in]-\infty;-4e^{-1}$

حيدا

إذا كان $m=-4e^{-1}$ فإن المعادلة تقبل حلين أحدهما

مضاعف

إذا كان $-4e^{-1}$ إذا كان $m\in -4e^{-1}$ إذا كان

سر النجاح أن تكون مخلصاً لأهدافك

إذا كان m=0 فإن المعادلة تقبل حلا واحدا مضاعفا

إذا كان $m \in [0; +\infty]$ فإن المعادلة لا تقبل حلا.

التمرين السادس

 $(O;\vec{i},\vec{j})$ نعتبر الدّالة f المعرّفة على \mathbb{R} كمايلي: $\frac{x}{e^x-x}$: نعتبر الدّالة f المعرّفة على المعرّفة عل

- g المعرّفة على \mathbb{R} كما يلي: g المعرّفة على g المعرّفة على (I
 - g ادرس اتجاه تغيّر الداله g .
 - x من أجل كُلُ عدد حقيقي $g(x) \ge 0$ استنتج أنّ $g(x) \ge 0$
 - $e^x x > 0$ ، x علل أنّه، من أجل كل عدد حقيقي x
 - f عند ∞ و 0 . + . + احسب نهایتی + عند + و نسر النتائج هندسیا.
 - f'(x) احسب (1.2
 - $oldsymbol{\psi}$ ادرس اتجاه تغيّر الدالة f ثمّ شكل جدول تغيّر اتها.
- (C_f) عين معادلة (T) مماس المنحنى معادلة التي فاصلتها 0.
 - (T) ادرس الوضعية النسبية للمنحنى (C_f) بالنسبة إلى (T)
- ج) علل أنّ المنحنى (C_f) يقبل نقطة انعطاف، يطلب تعيين إحداثياتها.
 - $.(C_{_f}\,)$ و $(T\,)$ أرسم.

الحل⊙

- g نعتبر الدّالة g المعرّفة على $\mathbb R$ كما يلي: g المعرّفة على g
 - 1) دراسة اتجاه تغيّر الدالة ع.
 - $g'(x) = e^x 1$ الدّالة g تقبل الإشتقاق على \mathbb{R} ولدينا: $g'(x) = e^x 1$
 - x = 0 ویکافئ $e^{x} = 1$ أي $e^{x} 1 = 0$ معناه g'(x) = 0
 - x > 0 أي $e^x > 1$ ويكافئ $e^x > 1$ معناه g'(x) > 0
 - x < 0 أي $e^x < 1$ ويكافئ $e^x < 1$ معناه g'(x) < 0

g إذن الدالة g متناقصة تماما على المجال g إذن الدالة g متناقصة تماما على المجال g

- x من أجل كل عدد حقيقى $g(x) \ge 0$ استنتاج أنّ
 - $g(0) = e^0 0 1 = 0$ لدينا

الدالة g متناقصة تماما على المجال $[0;-\infty[$ ومتزايدة تماما على المجال $]\infty+[0]$ إذن فهي تقبل قيمة حدية صغرى تبلغها عند

- $g(x) \ge 0$ أي $g(x) \ge g(0)$ ، وعليه من أجل كل عدد حقيقي $g(x) \ge g(0)$
 - $e^x x > 0$ ، تعلیل أنّه، من أجل كل عدد حقیقي (3

 $e^x-x>0$ لدينا من أجل كل عدد حقيقي $e^x-x>0$ يكافئ $e^x-x-1\geq0$ أي $e^x-x\geq0$ وبالتالي

 $-\infty$ عند f و $-\infty$. ا $+\infty$ و $-\infty$ عند $+\infty$ و الحساب نهایتی

$$\lim_{x \to -\infty} \frac{e^x}{x} = 0 \quad \forall \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{e^x - x} = \lim_{x \to -\infty} \frac{x}{x \left(\frac{e^x}{x_O}\right) - 1} = \lim_{x \to -\infty} \frac{1}{\left(\frac{e^x}{x}\right) - 1} = -1$$

$$\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty \quad \text{if} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{e^{x} - x} = \lim_{x \to +\infty} \frac{x}{x} = \lim_{x \to +\infty} \frac{1}{\left(\frac{e^{x}}{x}\right) - 1} = 0$$

ب) تفسير النتائج هندسيا.

. $-\infty$ بجوار y=-1 اذن (C_f) يقبل مستقيم مقارب معادلته $\lim_{x\to -\infty} f\left(x\right)=-1$ ادينا

. $+\infty$ بجوار y=0 بجوار معادلته y=0 بجوار معادلته y=0 بجوار (C_f) بجوار (C_f)

f'(x) حساب 2.

 $x \in \mathbb{R}$ لدينا

$$f'(x) = \frac{1(e^{x} - x) - x(e^{x} - 1)}{(e^{x} - x)^{2}} = \frac{e^{x} - x - xe^{x} + x}{(e^{x} - x)^{2}} = \frac{e^{x}(1 - x)}{(e^{x} - x)^{2}}$$

f دراسة اتجاه تغيّر الدالة

$$(1-x)$$
 لدينا $f'(x)$ هي إشارة $(e^x-x)^2>0$ ومنه إشارة

$$f'(x) < 0$$
 ومنه $1-x < 0$ ، $x \in]1;+\infty[$ من أجل

$$f'(x) > 0$$
 من أجل $1-x > 0$ ، $x \in]-\infty;1[$ من أجل

 $[1;+\infty[$ المجال الدالة f متزايدة تماما على المجال المجال $-\infty;1[$ و متناقصة تماما على المجال

جدول تغيّرات الدالة f.

			.,		-
х	$-\infty$	1			$+\infty$
f'(x)	+	0		_	
f(x)	-1	$\frac{1}{e-1}$			• 0

(C_f) عند النقطة التي فاصلتها .3 مماس المنحنى عند النقطة التي فاصلتها .3

$$y = x$$
 أي $y = f'(0)(x-0) + f(0)$ هي: (T) أي

. (T) بالنسبة إلى المنحنى (C_f) بالنسبة إلى المنحنى (C_f)

$$f(x)-x = \frac{x}{e^x - x} - x = \frac{x - xe^x + x^2}{e^x - x} = \frac{-x(e^x - x - 1)}{e^x - x} = \frac{-xg(x)}{e^x - x}$$
 : ليكن x عددا حقيقيا

$$-x$$
 الدينا $g(x) \geq 0$ ومنه إشارة $e^x - x > 0$ و و $g(x) \geq 0$

$$f(x)-x<0$$
 ومنه $-x<0$ اذا کان

$$f(x)-x>0$$
 ومنه $-x>0$ فإنّ $x<0$

$$(T$$
) يوجد تحت (C_f) ، $x\in]0;+\infty[$ ومن أجل (T) ، ومن (C_f) ، يوجد تحت (C_f) ، (C_f) ، وعليه من أجل (C_f)

15

سر النجام أن تكون مخلصاً لأهدافك

و (T_f) يخترق و (C_f) في النقطة و (T_f)

ج) تعليل أنّ المنحنى (C_{ϵ}) يقبل نقطة انعطاف، يطلب تعيين إحداثياتها.

بما أنّ المماس (T) يخترق المنكيني (C_f) في نقطة التماس O فإن النقطة O هي نقطة إنعطاف للمنحنى (C_f) .

 $.(C_f)$ و (T)

التمرين السابع⊗

- $g\left(x
 ight) = 1 + (x-1)e^{x}$ الدالة المعرفة على $\mathbb R$ كما يلي: $g\left(\mathbf I
 ight)$
 - 1. احسب نهایتی الدالة g عند ∞ و ∞ +.
 - 2. ادرس اتجاه تغیّر الدالة g، ثمّ شكل جدول تغیّر اتها.
 - \mathbb{R} . استنتج اشارة g(x) على g(x)
- $f(x)=x+(x-2)e^x$. يا نعتبر الدالة f المعرّفة على المجال $f(x)=\infty$

 (C_i, \vec{i}, \vec{j}) لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_i, \vec{i}, \vec{j}) .

- f'(x) = g(x) : فإنّ أنّه من أجل كل عدد حقيقي x من x من أجل كل عدد حقيقي 1. \mathbf{p} استنتج اتجاه تغيّر الدالة f ، ثمّ شكل جدول تغيّر اتها.
- (Δ) بالنسبة لـ (C_f) . ثم ادرس وضعية (Δ) بالنسبة لـ y=x مقارب مائل للمنحنى . ثم ادرس وضعية (Δ) بالنسبة لـ (Δ)
 - . أثبت أنّ المنحنى $\binom{C_f}{2}$ يقبل نقطة انعطاف ω يطلب تعيين إحداثياها.
 - .1 كتب معادلة المماس $\left(T
 ight)$ للمنحنى للمنحنى (C_{f}) عند النقطة ذات الفاصلة 4
 - $^{\prime}$. بيّن أنّ $(C_{_f})$ يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها lpha حيث: $(C_{_f})$
 - f(1) ، f(0) احسب (f(0) ، احسب (f(0) » (f(0)
 - f(x) = x + m : عدد حلول المعادلة: m عدد الوسيط الحقيقي m عدد حلول المعادلة:

الحل⊙

- . $g(x)=1+(x-1)e^x$: كما يلي كما هعرفة على الدالة المعرفة على الدالة المعرفة على
 - $-\infty$ عند ∞ و $\infty+$.
- $\lim_{x \to a} g(x) = \lim_{x \to a} 1 + (x 1)e^x = \lim_{x \to a} 1 + xe^x e^x = 1$ و $\lim_{x \to a} e^x = 0$ الدينا

. $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} 1 + (x - 1)e^x = +\infty$ إذن $\lim_{x \to +\infty} (x - 1) = +\infty$ و $\lim_{x \to +\infty} e^x = +\infty$

2. دراسة اتجاه تغيّر الدالة ع.

 $g'(x)=e^x+(x-1)e^x=xe^x$ الدالة g تقبل الإشتقاق علي $\mathbb R$ ولدينا: $g'(x)=e^x+(x-1)e^x=xe^x$

g'(0)=0 دينا من أجل كل عدد حقيقي x ومنه إشارة g'(x) هي نفس إشارة $e^x>0$ ومنه إشارة وعليه عدد حقيقي الدينا من أجل كل

g'(x) < 0 فإنّ $]-\infty;0[$ من أجل كل عدد حقيقي x من ألمجال

g'(x) > 0 فإنّ 0 ومن أجل كل عدد حقيقي x من المجال ∞

إذن الدّالة g متناقصة تماما على المجال $[0;\infty-[$ ومتزايدة تماما على المجال $]\infty+[0]$.

جدول التغيرات:

х	$-\infty$	0		$+\infty$
g'(x)	<u> </u>	0	+	
g(x)		• 0		+∞

\mathbb{R} . استنتاج اشارة g(x) على g(x)

 $g(x) \ge 0$ من جدول تغيرات الدالة g نلاحظ أنّ

. $f(x)=x+(x-2)e^x$ نعتبر الدالة f المعرّفة على المجال $f=-\infty;2$ كما يلي: f

 (C_f) نرمز بـ (C_f) لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس

f(x)=g(x) . أ) تبيين أنّه من أجل كل عدد حقيقي x من f(x)=g(x) فإنّ: 1.

$$f'(x) = 1 + e^x + (x - 2)e^x = 1 + (x - 1)e^x = g(x)$$

f استنتاج اتجاه تغیّر الداله ب

 $f'(x) \geq 0$ ، $x \in]-\infty;2]$ ومنه أجل كل g(x) هي نفس إشارة $g(x) \geq 0$ ومنه أجل كل

.]- ∞ ,2] متزایدة تماما علی f الداله f

f جدول تغيرات الدالة

х	$-\infty$ 0	2
f'(x)	+ φ +	
f(x)		2

 (Δ) بالنسبة لـ (C_f) بالنسبة لـ (C_f) بالنسبة لـ (C_f) بالنسبة لـ (C_f) بالنسبة لـ (C_f)

$$\lim_{x \to -\infty} = f(x) - x = \lim_{x \to -\infty} f(x) = (x - 2)e^{x} = \lim_{x \to -\infty} xe^{x} - e^{x} = 0$$

y=x مستقیم مقارب مائل (Δ) مستقیم مقارب مائل (C_f) معادلته

. ويطلب تعيين إحداثياها. (C_f) يقبل أن المنحنى يقبل يقبل يقبل يقبل يقبل يقبل . (C_f)

طريقة 1: لدينا (x) = g'(x)" f''(x) = g'(x) تنعدم عند g''(x) تنعدم عند g''(x) هي نقطة أن النقطة g'(x) هي نقطة أن النقطة g'(x) . g'(x)

طريقة 2: لدينا الدالة f متزايدة تماما على المجال $[0, -\infty; 2]$ و $[-\infty; 2]$ إذن المنحنى $[0, -\infty; 2]$ يقبل مماسا أفقيا عند النقطة $[0, -\infty; 2]$ معادلته $[0, -\infty; 2]$ معادلته $[0, -\infty; 2]$

f(x)+2 نلخص إشارة f(x)+2 من خلال جدول تغير ات

f(x)+2 من أجل f(x)<-2 ، $x \in]-\infty;0[$ من أجل

f(x)+2>0 ومن أجل f(x)>2 ، $x \in]0;2[$

في المجال]0;0[المنحنى (C_f) يقع تحت مماسه ؛ و في المجال]0;2[المنحنى (C_f) يقع فوق مماسه.

 $\omega(0;-2)$ هي نقطة إنعطاف للمنحنى في نقطة التماس $\omega(0;-2)$ وهذا يعني أن النقطة $\omega(0;-2)$ هي نقطة إنعطاف للمنحنى

ملحظة: يمكن إثبات ذلك مباشرة بما أنّ f'(x) تتعدم عند f'(x) ولا تغيّر من إشارتها فإن النقطة $\omega(0;-2)$ هي نقطة إنعطاف.

.1 كتابة معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة .4

(T): y = x - e أي y = (x - 1) + 1 - e ومنه y = f'(1)(x - 1) + f(1)

1.6 < lpha < 1.7 عقطع حامل محور الفواصل في نقطة وحيدة فاصلتها lpha حيث: lpha < 1.6

لدينا الدّالة f مستمرة على \mathbb{R} وخاصة على المجال [1,6;1,7] و الدينا الدّالة f مستمرة على f وخاصة على المجال أي

 $f\left(lpha
ight)=0$ بحيث $\left[1,6;1,7\right[$ بحيث ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي lpha من المجال $g\left(1,6\right) imes g\left(1,7\right)<0$

وبما أنّ الدالة f متزايدة تماما على $\mathbb R$ فإنّ g

ومنه $\left(C_{f}
ight)$ يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها

 $.1,6 < \alpha < 1,7$: ميث α

f(1) ، f(0) والمنحني .7

$$f(2) = 2 + (2-2)e^2 = 2 \cdot f(0) = 0 + (0-2)e^0 = -2$$

8. المناقشة بيانيا، حسب قيم الوسيط الحقيقي m عدد حلول المعادلة: f(x) = x + m.

إذا كان m < 0 أو m < 0 فإنّ المعادلة لا تقبل حلا

إذا كان m=-e فإنّ المعادلة تقبل حلا واحدا مضاعفا

إذا كان m=0 فإنّ المعادلة تقبل حلا واحدا وحيدا

إذا كان -e < m < 0 إذا كان -e < m < 0

التمرين الثامن ض

 $g(x) = 1 + (1 - x)e^{x}$ الدالة g معرّفة على g بـ (I

1. ادرس تغیّرات الدالة g، ثمّ شكل جدول تغیّراتها.

. [0;+ ∞] على المجال g(x)=0 قبل حلا وحيدا α على المجال 2.

 $g\left(x
ight)$ ، و استنتج، حسب قیّم x اشاره x اشاره (x استنتج، حسب قیّم عند (x اشاره (x

$$f(x) = \frac{e^x + x + 1}{e^x + 1}$$
 : كما يلي $f(x) = \frac{e^x + x + 1}{e^x + 1}$

. $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\right)$

النتيجة هندسيا. السين أنّ $\lim_{x\to 0} f(x) = 1$

 $\lim_{x \to -\infty} f(x) = 1.2$

 (C_f) دا المعادلة y=x+1 مستقيم مقارب للمنحنى (Δ) دا المعادلة

y=1 ادرس وضعیة C_f بالنسبة إلى كل من Δ من Δ و Δ حیث Δ هو المستقیم ذو المعادلة . Δ

. f الدّالة عدد حقيقي عدد حقيقي $(x) = \frac{g(x)}{(e^x + 1)^2}$ ، ثمّ استنتج اتجاه تغيّر الدّالة 4.

f بين أنّ $\alpha = \alpha$ ، ثمّ شكل جدول تغيرات الدالة $f(\alpha) = \alpha$

 $-\alpha$ يقطع محور الفواصل في النقطة التي فاصلتها C_f . أ - أثبت أنّ C_f

. (Δ) يقبل مماسا (T) في النقطة M $(-\alpha;0)$ موازيا للمستقيم (C_f) يقبل مماسا (C_f) . (T) .

 $.\left(C_{f}
ight)$ و (T) ، (Δ') ، (Δ) و 6.

7. ناقش بيانيا، حسب قيم الوسيط الحقيقي m، عدد وإشارة حلول المعادلة (x) = x + f(m) عدد وإشارة حلول المعادلة (x) = x + f(m)

<u>الحل</u>⊙

. $g(x) = 1 + (1-x)e^x$ بـ \mathbb{R} بـ و معرّفة على (I

 $oldsymbol{g}$ دراسة تغيّرات الداله $oldsymbol{g}$.

 $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} 1 + e^x - xe^x = 1$ لدينا $\lim_{x\to\infty} xe^x = 0$ يا $\lim_{x\to\infty} e^x = 0$ لدينا

 $\lim_{x \to +\infty} (1-x) = -\infty \quad \lim_{x \to +\infty} e^x = +\infty \quad \text{if } \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 1 + e^x (1-x) = -\infty$

 $g'(x) = -e^x + e^x (1-x) = -xe^x$ الدّالة g تقبل الإشتقاق على $\mathbb R$ ولدينا:

g'(0)=0 من أجل كل عدد حقيقي x، $e^x>0$ ومنه إشارة g'(x) هي إشارة عدد حقيقي

g'(x) < 0 من أجل -x < 0 ، $x \in]0; +\infty[$ و من أجل g'(x) > 0 و من أجل -x > 0 ، $x \in]-\infty; 0[$ من أجل

g إذن الدالة g متزايدة تماما على المجال $[0;\infty-[$ و متناقصة تماما على المجال $[\infty+,0]$

جدول تغيرات الدالة ع.

х	$-\infty$		0	α		$+\infty$
g'(x)		+	0		_	
g(x)	1		2	\display \text{\phi}		▲ -∞

. $[0;+\infty[$ المعادلة α على المجال g(x)=0 تقبل حلا وحيدا على المجال .2

الدالة g مستمرة ومتناقصة تماما على المجال $[0;+\infty[$ وتأخذ قيمها في المجال $[0;-\infty[$ و $[0;+\infty[$

. [0; + ∞ [تقبل حلا وحيدا α في المجال g(x)=0

 $1,27 < \alpha < 1,28$ التحقق أنّ

1,27 < lpha < 1,28 ومنه $g\left(1,28\right) imes g\left(1,27\right) < 0$ اذن $g\left(1,27\right) imes 0,03$ ومنه $g\left(1,28\right) imes -0,007$ لدينا

g(x) استنتاج، حسب قیّم x إشارة

 $g\left(\alpha\right)=0$ و $g\left(x\right)<0$ ، $x\in\left]\alpha;+\infty\right[$ ومن أجل $g\left(x\right)>0$ ، $x\in\left]-\infty;\alpha\right[$ من أجل

 $f(x) = \frac{e^x + x}{e^x + 1}$ كما يلي: \mathbb{R} كما يلي الدالة المعرفة على f(II)

. $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

 $\lim_{x\to +\infty} f(x) = 1$. تبيين أنّ 1

$$\lim_{x \to +\infty} f\left(x\right) = \lim_{x \to +\infty} \frac{e^x + x + 1}{e^x + 1} = \lim_{x \to +\infty} \frac{e^x \left(1 + \frac{x}{e^x} + \frac{1}{e^x}\right)}{e^x \left(1 + \frac{1}{e^x}\right)} = \lim_{x \to +\infty} \frac{\left(1 + \frac{x}{e^x} + \frac{1}{e^x}\right)}{\left(1 + \frac{1}{e^x}\right)} = 1$$

 $\lim_{x \to +\infty} \frac{1}{e^x} = 0 \quad \lim_{x \to +\infty} \frac{x}{e^x} = 0$ لأنّ

 $-\infty$ التفسير: (C_f) يقبل مستقيم مقارب معادلته y=1 بجوار

. $\lim_{x\to\infty} f(x)$ 1.2. أ عساب 2.

 $\lim_{x \to -\infty} f\left(x\right) = \lim_{x \to -\infty} \frac{e^x + x + 1}{e^x + 1} = -\infty \quad نڬ \lim_{x \to -\infty} e^x + 1 = 1$ و $\lim_{x \to -\infty} e^x + x + 1 = -\infty$ لدينا

 (C_y) ب - تبيين أنّ المستقيم (Δ) ذا المعادلة y=x+1 ، مستقيم مقارب للمنحنى

$$f(x) - (x+1) = \frac{e^x + x + 1}{e^x + 1} - (x+1) = \frac{e^x + x + 1 - xe^x - e^x - x - 1}{e^x + 1} = \frac{-xe^x}{e^x + 1}$$

$$\lim_{x \to -\infty} e^x + 1 = 1 \quad \lim_{x \to -\infty} -xe^x = 0 \quad \forall \quad \lim_{x \to -\infty} f(x) - (x+1) = \lim_{x \to -\infty} \frac{-xe^x}{e^x + 1} = 0$$

$$|\psi \rangle$$

 $ig(-\infty ig)$ ومنه المستقيم $ig(\Delta ig)$ ذو المعادلة y=x+1 ، مستقيم مقارب للمنحنى

 $\left(\Delta
ight)$ دراسة وضعية $\left(C_{f}
ight)$ بالنسبة إلى 3

$$f(x)-(x+1)=\frac{-xe^x}{e^x+1}$$
 ليكن : $x \in \mathbb{R}$

-x ومنه إشارة $f\left(x\right)-\left(x+1\right)$ على المي نفس إشارة $e^{x}>0$ ومنه إشارة $e^{x}>0$

f(x) - (x+1) < 0 ومنه -x < 0 فإن x > 0

$$f(x)-(x+1)>0$$
 ومنه $-x>0$ فإنّ $x<0$

 (Δ) يوجد تحت (C_f) ، $x\in]0;+\infty[$ وعليه من أجل (C_f) ، $x\in]-\infty;0[$ يوجد تحت وعليه من أجل

. (0;1) يقطع (Δ) في النقطة ذات الإحداثيتين (C_f)

. y=1 دراسة وضعية (C_f) بالنسبة إلى (Δ') ذو المعادلة

.
$$\mathbb{R}$$
 على $f(x)-1$ هي من نفس إشارة $f(x)-1$ على $f(x)-1$ هي من نفس إشارة $e^{x}+x+1$

$$(\Delta')$$
 یکون أسفل (C_f) ، $x\in]-\infty;0[$ وعلیه من أجل (Δ') یکون أسفل وق (Δ') یکون أسفل وعلیه من أجل

و (C_f) يقطع (Δ') في النقطة ذات الإحداثيتين (C_f).

$$f(x) = \frac{x}{e^x + 1} + 1$$
 ومنه $f(x) - 1 = \frac{x}{e^x + 1}$ لدينا

لیکن x عددا حقیقیا:

$$f'(x) = \frac{1(e^{x} + 1) - xe^{x}}{(e^{x} + 1)^{2}} = \frac{1 + (1 - x)e^{x}}{(e^{x} + 1)^{2}} = \frac{g(x)}{(e^{x} + 1)^{2}}$$

استنتاج اتجاه تغيّر الدّالة أ

اشارة
$$(x)$$
 الله (x) هي إشارة $g(x)$ الأنّ $g(x)$ وعليه

$$f'(x) > 0$$
 أي $g(x) > 0$ ، $x \in]-\infty; \alpha[$ من أجل كل

$$f'(x) < 0$$
 أي $g(x) < 0$ $(x \in]\alpha; +\infty[$ ومن أجل كل

 $[\alpha;+\infty[$ متزايدة تماما على المجال $[-\infty;\alpha]$ و متناقصة تماما على المجال $[\alpha;+\infty[$

 $f(\alpha) = \alpha$ أنّ

$$e^{\alpha}$$
 ولاينا $f(\alpha) = \frac{1}{1-\alpha}$ ومنه $g(\alpha) = 0$ تكافئ $g(\alpha) = 0$ ولاينا ولاينا والم

$$f\left(\alpha\right) = \frac{\alpha}{e^{\alpha} + 1} + 1 = \frac{\alpha}{\frac{-1}{1 - \alpha} + 1} + 1 = \frac{\alpha}{\frac{-\alpha}{1 - \alpha}} + 1 = \alpha \left(\frac{1 - \alpha}{-\alpha}\right) + 1 = \alpha$$

$$f(\alpha)-\alpha=\frac{e^{\alpha}+\alpha+1}{e^{\alpha}+1}-\alpha=\frac{e^{\alpha}+\alpha+1-\alpha e^{\alpha}-\alpha}{e^{\alpha}+1}=\frac{1+(1-\alpha)e^{\alpha}}{e^{\alpha}+1}=\frac{g(\alpha)}{e^{\alpha}+1}=0$$
 طریقهٔ ثانیه: لدینا

21

$$f(\alpha) = \alpha$$
 فإنّ $f(\alpha) - \alpha = 0$ بما أنّ

f الدالة عيرات الدالة f

х	$-\infty$		α	$+\infty$
f'(x)		+	0	_
f(x)			α	8

-lpha يقطع محور الفواصل في النقطة التي فاصلتها (C_f)

$$e^{-\alpha}=\alpha-1$$
 يكافئ $e^{\alpha}=\frac{-1}{1-\alpha}=\frac{1}{\alpha-1}$ ولاينا $f\left(-\alpha\right)=\frac{e^{-\alpha}-\alpha+1}{e^{-\alpha}+1}$

سر النجام أن تكون مخلصاً لأهدافك

$$-\alpha$$
 النقطة التي فاصلتها $f\left(-\alpha\right)=\frac{\left(\alpha-1\right)-\alpha+1}{\left(\alpha-1\right)+1}=0$ إذن $f\left(-\alpha\right)=\frac{\left(\alpha-1\right)-\alpha+1}{\left(\alpha-1\right)+1}=0$

 $M\left(-lpha;0
ight)$ عند النقطة $M\left(-lpha;0
ight)$ موازيا للمستقيم و تبيين أنّ المنحني و يقبل مماسا

 $f'(-\alpha)=1$ المماس (Δ) المستقيم المستقيم (T) المماس

$$f'(-\alpha) = \frac{g(-\alpha)}{(e^{-\alpha} + 1)^2} = \frac{1 + (1 + \alpha)e^{-\alpha}}{(e^{-\alpha} + 1)^2} = \frac{1 + (1 + \alpha)(\alpha - 1)}{(\alpha - 1 + 1)^2} = \frac{1 + \alpha^2 - 1}{\alpha^2} = 1$$

(T) جـ کتابة معادلة

 $y=x+\alpha$ أي $y=f'(\pi\alpha)(x+\alpha)+f(-\alpha)$ هي: $y=x+\alpha$

 $oldsymbol{\cdot} \left(C_f
ight)$ و (T) ، (Δ') ، (Δ) و .6

m المناقشة بيانيا، حسب قيم الوسيط الحقيقي $f\left(x\right)=x+f\left(m\right)$ عدد حلول المعادلة

f(m) < 1 فإنّ m < 0 إذا كان

ومنه المعادلة تقبل حلا واحدا موجبا

إذا كان m=0 فإنّ m=1 ومنه المعادلة تقبل

حلا وحيدا معدوما

إذا كان $m\in]0; lpha[\,\cup\,]lpha; +\infty[\,$ فإنّ

ومنه المعادلة تقبل حليّن سالبين $1 < f(m) < \alpha$

 $f(m) = \alpha$ فإنّ $m = \alpha$ إذا كان

 $x = -\alpha$ ومنه المعادلة تقبل حلا واحد مضاعفا

التمرين التاسع

. $g(x) = 2x + 4 - 4e^x$: كما يلي \mathbb{R} كما معرّفة على و دالة عددية معرّفة على

أ - ادرس تغيّرات الدّالة g.

-1,6<lpha<-1,59 : جين أنّ المعادلة $g\left(x
ight)=0$ تقبل حلّين أحدهما معدوم والآخر م

 \mathbf{R} على $\mathbf{g}(x)$ على . \mathbf{R}

. $f(x) = \frac{2e^x - 1}{2xe^x + 1}$: كما يلي $\mathbb R$ كما عددية معرّفة على f - II

. $\left(O;\overrightarrow{i},\overrightarrow{j}\right)$ سنيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس و $\left(C_{f}\right)$

. $f'(x) = \frac{e^x g(x)}{(2xe^x + 1)^2}$ ، x عدد حقیقی عدد عدد عند من أجل كل عدد .1

يا. و $\lim_{x\to\infty} f(x)$ قسّر النتائج هندسيا. احسب 2.

f ادرس تغیّرات الداله f

. f(x) المعادلة f(x) = 0 ، ثمّ استنتج إشارة \mathbb{R}

$$f(\alpha)$$
 . بيّن أنّ: $f(\alpha) = \frac{1}{\alpha+1}$ ثمّ عيّن حصرا للعدد .5

 $\binom{C_f}{c}$. ارسم المنحنى

 $2mx-2+(m+1)e^{-x}=0$: ناقش بيانيا، حسب قيّم الوسيط الحقيقي m ، عدد وإشارة حلول المعادلة:

الحل⊙

 $g(x) = 2x + 4 - 4e^x$ دالة عددية معرّفة على \mathbb{R} كما يلي: $g(x) = 2x + 4 - 4e^x$

أ ـ دراسة تغيرات الدّالة و.

 $g'(x) = 2 - 4e^x = 2(1 - 2e^x)$ الدالة g تقبل الإشتقاق على \mathbb{R} ولدينا: $g'(x) = 2 - 4e^x = 2(1 - 2e^x)$

$$x = -\ln 2$$
 یکافئ $e^{x} = \frac{1}{2}$ یکافئ $g'(x) = 0$

$$x<-\ln 2$$
 گوناه $e^x<rac{1}{2}$ يكافئ $e^x<rac{1}{2}$ معناه $g'(x)>0$

$$x>-\ln 2$$
 يكافئ $e^x>\frac{1}{2}$ يكافئ $1-2e^x<0$ معناه $g'(x)<0$

 $[-\ln 2; +\infty[$ متزايدة تماما على المجال $[-\infty; -\ln 2]$ ومتناقصة تماما على المجال $[-\ln 2; +\infty]$.

 $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} 2x + 4 - 4e^x = -\infty$ الدينا $\lim_{x \to \infty} 4e^x = -\infty$ و $\lim_{x \to \infty} 4e^x = -\infty$ و $\lim_{x \to \infty} 2x + 4 = -\infty$ الدينا

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \lim_{x \to +\infty} g\left(x\right) = \lim_{x \to \infty} 2x + 4 - 4e^x = \lim_{x \to +\infty} x\left(2 + \frac{4}{x} - 4\frac{e^x}{x}\right) = -\infty$$

جدول التغيرات:

				<u>- </u>	<u> </u>
х	$-\infty$		$-\ln 2$		$+\infty$
g'(x)		+	0	_	
g(x)			2-2ln2_		√ 8

 $-1,6 < \alpha < -1,59$ حيث: g(x) = 0 تقبل حلّين أحدهما معدوم والآخر α حيث:

 $0 \in]-\infty; 2-2\ln 2]$ و $]-\infty; 2-2\ln 2$ و المجال g (و تأخذ قيمها في المجال g (مستمرة و متزايدة تماما على المجال g (α) الدالة g (α) الدالة g (α) المجال g (α) المحال g (α) المحال g (α) المجال g (α) المجال g (α) المجال g (α) ال

و كذلك الدالة g مستمرة ومتناقصة تماما على المجال $[-1n\,2;+\infty]$ و تأخذ قيمها في المجال $[-\infty;2-2\ln2]$ و

 $g(\beta)=0$ بحيث $]-\ln 2;+\infty$ المجال $[-1 + 2;+\infty]$ بحيث وحيد β في المجال $[-\infty;2-2\ln 2]$

 $\beta = 0$ فإنّ $g(0) = 2(0) + 4 - 4e^{0} = 0$ فإنّ

ولدينا $g(-1,59) \approx g(-1,59) \approx g(-1,59) \approx g(-1,59) \approx g(-1,59)$ ومنه $g(-1,59) \approx g(-1,6) \approx -0,007$

 \mathbb{R} على g(x) على \mathbb{R} .

х	$-\infty$	α		0	+∞
g(x)		 0	+	0	

سلسلة تمارين محلولة في الدوال الأسبية

. $f(x) = \frac{2e^x - 1}{2xe^x + 1}$ کما یلي: \mathbb{R} کما عددیة معرّفة علی f - \mathbf{H}

. $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\right)$

.
$$f'(x) = \frac{e^x g(x)}{(2xe^x + 1)^2}$$
 ، x من أجل كل عدد حقيقي 1

 $x \in \mathbb{R}$ لدينا:

$$f'(x) = \frac{2e^{x} (2xe^{x} + 1) - ((2e^{x} + 2xe^{x})(2e^{x} - 1))}{(2xe^{x} + 1)^{2}} = \frac{4xe^{2x} + 2e^{x} - 4e^{2x} + 2e^{x} - 4xe^{2x} + 2xe^{x}}{(2xe^{x} + 1)^{2}}$$

$$f'(x) = \frac{4e^{x} + 2xe^{x} - 4e^{2x}}{(2xe^{x} + 1)^{2}} = \frac{e^{x}(2x + 4 - 4e^{x})}{(2xe^{x} + 1)^{2}} = \frac{e^{x}g(x)}{(2xe^{x} + 1)^{2}}$$

ي النتائج هندسيا. النتائج هندسيا. و f(x) عساب النتائج هندسيا.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2e^x - 1}{2xe^x + 1} = 1$$
 لاينا
$$\lim_{x \to -\infty} 2xe^x + 1 = 1$$
 و
$$\lim_{x \to -\infty} 2e^x - 1 = -1$$
 لاينا

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2e^x - 1}{2xe^x + 1} = \lim_{x \to +\infty} \frac{e^x (2 - e^{-x})}{e^x (2x + e^{-x})} = \lim_{x \to +\infty} \frac{(2 - e^{-x})}{(2x + e^{-x})} = 0$$

التفسير: (C_f) يقبل مستقيمين مقاربين معادلتيهما y=-1 و y=0 و y=-1 على الترتيب.

3. دراسة تغيّرات الدالة f.

 $f'(\alpha) = 0$ وعليه g(x) في نفس إشارة g(x) وعليه f'(x)

 $[0;+\infty[$ و $]-\infty;\alpha[$ و $]-\infty;\alpha[$ من أجل كل $]0;+\infty[$ على المجالين $[\alpha;0]$ و بالتالي الدالة $[\alpha;0]$ و بالتالي الدالة $[\alpha;0]$ و بالتالي الدالة $[\alpha;0]$ من أجل كل $[\alpha;0]$ يكون $[\alpha;0]$ و بالتالي الدالة $[\alpha;0]$ متزايدة تماماً على المجال $[\alpha;0]$.

f جدول تغیرات الداله f

				3		
X	-∞	α	-ln 2	0		$+\infty$
f'(x)	_	0	+	0	_	
f(x)	-1	$f(\alpha)$, 1		\ 0

f(x) . ثمّ استنتج إشارة f(x)=0 . 4.

$$x = -\ln 2$$
 أي $2e^x - 1 = 0$ وتكافئ $\frac{2e^x - 1}{2xe^x + 1} = 0$ تكافئ $f(x) = 0$

f(x) إشارة

یمکن استنتاج اشارة f(x) من جدول تغیراتها والتی تکون کما یلی:

 $f\left(-\ln 2
ight)=0$ من أجل $f\left(x
ight)>0$ ، $x\in\left]-\ln 2;+\infty\right[$ ومن أجل $f\left(x
ight)<0$ ، $x\in\left]-\infty;-\ln 2\right[$ عمن أجل أنّ

.
$$f(\alpha) = \frac{1}{\alpha + 1}$$
 .5

$$2\alpha e^{\alpha}=\alpha^2+2\alpha$$
 و المينا $e^{\alpha}=\frac{\alpha+2}{2}$ و يكافئ $2\alpha+4-4e^{\alpha}$ و يكافئ $g\left(\alpha\right)=0$ و لدينا $f\left(\alpha\right)=\frac{2e^{\alpha}-1}{2\alpha e^{\alpha}+1}$

$$f(\alpha) = \frac{2e^{\alpha} - 1}{2\alpha e^{\alpha} + 1} = \frac{(\alpha + 2) - 1}{\alpha^2 + 2\alpha + 1} = \frac{\alpha + 1}{(\alpha + 1)^2} = \frac{1}{\alpha + 1}$$
 إذن

لدينا
$$-1,6 < \alpha < -1,59$$
 معناه

ویکافئ
$$-0.6 < \alpha + 1 < -0.59$$

$$\frac{1}{-0.59} < \frac{1}{\alpha+1} < \frac{1}{-0.6}$$

$$-1,7 < f(\alpha) < -1,66$$

$$(C_f)$$
 رسم المنحنى .6

7. المناقشة بيانيا، حسب قيم الوسيط الحقيقي m، عدد وإشارة حلول المعادلة:

$$2mx - 2 + (m+1)e^{-x} = 0$$

معناه
$$2mx-2+(m+1)e^{-x}=0$$

$$f(x) = m$$
 وتكافئ $m = \frac{2e^x - 1}{2xe^x + 1}$ وتكافئ $m(2xe^x + 1) = 2e^x - 1$ ومعناه $2mxe^x - 2e^x + m + 1 = 0$

إذا كان
$$m < 1$$
 أو $m > 1$ فإنّ المعادلة لا تقبل حلا.

$$x=lpha$$
 فإن المعادلة تقبل حلا واحدا مضاعفا $m=rac{1}{lpha+1}$

إذا كان
$$m=1$$
 فإن المعادلة تقبل حلا مضاعفا معدوما.

إذا كان
$$m < -1$$
 فإن المعادلة تقبل حلين سالبين.

إذا كان
$$0 < m < 1$$
 فإن المعادلة تقبل حلا وحيدا سالبا

إذا كان
$$0 < m < 1$$
 فإن المعادلة تقبل حلين مختلفين في الإشارة.

التمرين العاشر 🕾

$$g(x) = (x-1)e^{-x} + 2$$
 نعتبر الدّلة g المعرّفة على $\mathbb R$ كما يلي: $\mathbf F$

$$g$$
 ادرس تغيّرات الدّالة g .

$$-0.38 < \alpha < -0.37$$
 يين أنّ المعادلة $g(x) = 0$ تقبل حلا وحيدا α

$$x$$
 استنتج إشارة $g(x)$ عسب قيّم $g(x)$

$$f$$
 المعرّفة على $\mathbb R$ كما يلي: f المعرّفة على f المعرّفة على المعرفة على المعرّفة على المعرّفة على المعرّفة على المعرّفة على المعرفة على المعرّفة على المعرّفة على المعرّفة على المعرّفة على المع

.
$$\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\right)$

$$f'(x) = g(x)$$
 ، x عدد حقیقی عدد من أجل كل عدد .1

سلسلة تمارين محلولة في الدوال الأسية

f ادرس تغيّرات الدّالة f

 (C_f) بجوار مائل المنحنى (C_f) بجوار مائل المنحنى y=2x+1 بجوار بين أنّ المستقيم .

. (d) بالنسبة للمستقيم (C_f) بالنسبة للمستقيم 4.

5. بين أنّ المنحنى يقبل نقطة انعطاف.

$$f(\alpha) = \frac{2\alpha^2 + \alpha - 1}{\alpha - 1}$$
 بيّن أنّ .6

 $\Omega_{lpha} pprox -0,375$ ارسم (d) و (C_f) ؛ نأخذ.

مستقیم معادلته eta = 2x + eta عدد حقیقی. Δ_{eta}

عيّن eta حتى يكون (Δ_{eta}) مماسا للمنحنى في نقطة يطلب تعيين إحداثياتها. 1

 $-\frac{x}{e^x}+1-\beta=0$: ناقش بیانیا، حسب قیم العدد الحقیقي β ، عدد حلول المعادلة : 2

الحل⊙

 $g(x) = (x-1)e^{-x} + 2$ نعتبر الدّلة g المعرّفة على $\mathbb R$ كما يلي: -I

1. دراسة تغيرات الدّالة ع.

 $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} (x-1)e^{-x} + 2 = -\infty$ ين $\lim_{x \to \infty} (x-1) = -\infty$ و $\lim_{x \to \infty} e^{-x} = +\infty$ لدينا

$$\lim_{x \to +\infty} e^{-x} = 0 \quad \text{im} \quad xe^{-x} = \lim_{x \to +\infty} \frac{x}{e^{x}} = 0 \quad \text{im} \quad g(x) = \lim_{x \to +\infty} (x-1)e^{-x} + 2 = \lim_{x \to +\infty} xe^{-x} - e^{-x} + 2 = 2$$

$$g'(x) = e^{-x}(x-1) = e^{-x}(2-x)$$
 الدالة g تقبل الإشتقاق على $\mathbb R$ ولدينا: $g'(x) = e^{-x}(x-1)$

$$g'(2)=0$$
 من أجل كل عدد حقيقي $e^{-x}>0$ ومنه إشارة $g'(x)$ هي إشارة $e^{-x}>0$ وعليه

. $[2;+\infty[$ فإنّ $x \in]2;+\infty[$ أي g'(x) < 0 إذن الدّالة g متتاقصة تماما على المجال أحب أجل كل

جدول التغيرات:

				,,,,,-,
х	$-\infty$ c	γ	2	+∞
g'(x)	+	+	0	_
g(x)		7	2+e ⁻²	2

 $-0.38 < \alpha < -0.37$ حيث α حيث g(x) = 0 تقبل حلا وحيدا .2

 $(-0,38) \approx -0,01$ و [-0,38;-0,37] و التالي على المجال $[-\infty;2]$ و الدينا الدّالة g

[-0,38;-0,37] إذن حسب مبر هنة القيم المتوسطة يوجد على الأقل عدد حقيقي α من المجال $g(-0,37)\approx 0,01$

وحيد. g وبما أنّ الدّالة g متزايدة تماما على المجال $g(\alpha)=0$

x اشارة g(x) عسب قيم 3.

$$g(x) < 0$$
 ، $x \in]-\infty; \alpha[$ من أجل كل

$$g(\alpha) = 0$$
 کما اُنّ $g(x) > 0$ ، $x \in]\alpha; +\infty[$ و من أجل كل

26

 $f(x) = 2x + 1 - xe^{-x}$ المعرّفة على \mathbb{R} كما يلى: $f(x) = 2x + 1 - xe^{-x}$

. $\left(O;\vec{i}\,,\vec{j}\,\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\,\right)$

f'(x) = g(x) ، x عدد حقیقی 1.

 $x \in \mathbb{R}$ ليكن

$$f'(x) = 2 - [e^{-x} - xe^{x}] = 2 + e^{-x}(x - 1) = g(x)$$

2. دراسة تغيرات الدّالة f

و دراسه تغیرات الداله
$$f$$
. f الداله $g(\alpha) = g(\alpha) = 0$ و غلیه $g(x)$ هي إشارة $f'(\alpha) = g(\alpha) = 0$

$$f'(x) < 0$$
 فإنّ $x \in]-\infty; lpha[$ من أجل

$$\int f'(x) > 0$$
 فإنّ $x \in]lpha; +\infty[$ و من أجل

وبالتالي الذَّالة f متناقصة تماما على المجال $\infty; \alpha$ وبالتالي الذَّالة f متناقصة تماما على المجال $\alpha; +\infty$.

f جدول تغيرات الدالة

 (C_f) بجوار هائل المنتقيم (C_f) بجوار y=2x+1 بجوار (d) بجوار .+ ∞

$$\lim_{x \to +\infty} f(x) - (2x + 1) = \lim_{x \to +\infty} -xe^{-x} = \lim_{x \to +\infty} -\frac{x}{e^{x}} = 0$$

(d) بجوار (C_f) المعادلة y=2x+1 مستقيم مقارب مائل للمنحنى . + ∞

. (d) بالنسبة للمستقيم (C_f) بالنسبة للمستقيم 4.

$$-x$$
 لدينا $f(x) - (2x+1) = -xe^{-x}$ ومنه إشارة

$$(d)$$
 في المجال $[-\infty;0]$ ومنه (C_f) يقع فوق (x)

$$(d)$$
 و في المجال $[0;+\infty[$ ، (C_f) ومنه $f(x)-(2x+1)<0$ أي $-x<0$ أي $-x<0$ ومنه و

A(0;1) في النقطة (C_{f}) و

5. تبيين أنّ المنحنى يقبل نقطة انعطاف.

g'(x) ومنه إشارة f''(x) هي نفس إشارة f''(x) = g'(x) لدينا

 $B\left(2;f\left(2
ight)$ تنعدم من أجل 2 وتغير من إشارتها بجوار 2 وهذا يعني أنّ النقطة $B\left(2;f\left(2
ight)$ هي نقطة الإعطاف للمنحنى f''(x).

$$f(\alpha) = \frac{2\alpha^2 + \alpha - 1}{\alpha - 1}$$
 نبيين أنّ 6.

 $e^{-\alpha} = -rac{2}{\alpha-1}$ لدينا $(\alpha-1)e^{-\alpha}+2=0$ معناه $g(\alpha)=0$ ولدينا $f(\alpha)=2\alpha+1-\alpha e^{-\alpha}$

$$f\left(\alpha\right) = 2\alpha + 1 + \frac{2\alpha}{\alpha - 1} = \frac{\left(2\alpha + 1\right)\left(\alpha - 1\right) + 2\alpha}{\alpha - 1} = \frac{2\alpha^2 + \alpha - 1}{\alpha - 1}$$
 إذن

 $. \alpha \approx -0.375$ رسىم (d) و (C_f) ؛ ناخذ (C_f)

مستقیم معادلته y=2x+eta عدد حقیقی -III مستقیم معادلته $\left(\Delta_{eta}
ight)$

. تعيين eta حتى يكون Δ_{eta} مماسا للمنحنى Δ_{eta} في نقطة يطلب تعيين إحداثياتها.

$$x=1$$
 کی $(x-1)e^{-x}=0$ یکافئ $(x-1)e^{-x}+2=2$ معناه $f'(x)=2$

 $f(1) = 3 - e^{-1}$ لدينا

 $eta=1-e^{-1}$ أي $A=1-e^{-1}$ أي $A=1-e^{-1}$ أي $A=1-e^{-1}$ أي $A=1-e^{-1}$ أي $A=1-e^{-1}$ أي مماس للمنحنى $A=1-e^{-1}$ أي مماس للمنحنى $A=1-e^{-1}$ أي مماسا للمنحنى $A=1-e^{-1}$ في النقطة $A=1-e^{-1}$ يكون $A=1-e^{-1}$ مماسا للمنحنى $A=1-e^{-1}$ في النقطة أي المنحنى أجل أي ماسا للمنحنى أي ماسا للمنحنى أي النقطة أي ال

 $\frac{x}{e^{x}}+1-eta=0$: المناقشة بيانيا، حسب قيم العدد الحقيقي eta ، عدد حلول المعادلة -eta=0

$$2x + \beta = -xe^{-\frac{x}{x}} + 1 + 2x$$
 ومنه $2x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $2x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$ ومنه $3x + \beta = -\frac{x}{e^x} + 1 + 2x$

إذا كان $-\infty;1-e^{-1}$ فإنّ المعادلة لا تقبل حلول.

اذا كان $eta=1-e^{-1}$ فإن المعادلة تقبل حلا واحدا مضاعفا و هو

إذا كان $[1-e^{-1}]$ فإنّ المعادلة تقبل حلين.

إذا كان $eta\in [1;+\infty]$ فإن المعادلة تقبل حلا واحدا.

f(x)

0.037

0.016

-0.005

-0.026

-0.048

-0.070

0.20

0.21

0,22

0.23

0,24

0.25

التمرين الحادي عشر⊗

$r = \frac{1}{r}$			
$f(x) = \frac{x}{1 + e^{x-1}}$	الدالة المعرّفة على $]-\infty;1$ بـ:	f	-I
x-1	·		

(α,\vec{i},\vec{j})) تمثيلها البياني في المستوي المتسوب إلى المعلم المتعامد والمتجانس (C
10, i, j	ا تعلینه البیاتی کی انعاب کی انعاب کی انعام انعاد کا در انعاب کی انعام انعاد کا در انعاب کی انعاب کی انعاب کی ا	\cup

$$(C)$$
 احسب $f(x)$ المنحنى المقاربين المنحنى المقاربين المنحنى المنحنى ((C)).

2) احسب
$$f'(x)$$
 . بيّن أنّ الدالة f متناقصة تماما على المجال $f(x)$ ، ثمّ شكّل جدول تغيّراتها.

3) بيّن أنّ المعادلة
$$f(x)=0$$
 تقبل في $f(x)=0$ حلا وحيدا α . باستعمال جدول القيم أعلاه جد حصرا للعدد α

.
$$|f|$$
 الممثل للدالة (C') ، ثمّ المنحنى المقاربين والمنحنى والمنحنى المثل للدالة (C')

5) عين بيانيا مجموعة قيم الأعداد الحقيقية
$$m$$
 التي من أجلها يكون للمعادلة $f(x) = m$ حلان مختلفان في الإشارة.

$$g(x)$$
 عير مطلوبة). $g(x) = f(2x-1)$ بير مطلوبة). $g(x) = g(x)$

1) ادرس تغیّرات الدالة
$$g$$
 على $]0;1$ ، ثمّ شكّل جدول تغیّراتها.

$$g'\left(\frac{\alpha+1}{2}\right)=2f'(\alpha)$$
 : ثمّ بيّن أنّ: $g\left(\frac{\alpha+1}{2}\right)=0$: ثمّ بيّن أنّ: (2

$$rac{lpha+1}{2}$$
 المماس لمنحنى الدالة g في النقطة ذات الفاصلة g استنتج معادلة g

$$(T)$$
 معادلة للمستقيم $y = \frac{2}{(\alpha - 1)^3} x - \frac{\alpha + 1}{(\alpha - 1)^3}$ تحقق من أنّ:

الحل⊙

$$f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$$
 :ب]-∞;1[بنالة المعرّفة على f - I

$$(O_j ec{i}, ec{j})$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C)

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{x-1} + e^{\frac{1}{x-1}} = 2$$
 ومنه $\lim_{x \to -\infty} e^{\frac{1}{x-1}} = 1$ ومنه $\lim_{x \to -\infty} \frac{x}{x-1} = 1$

.
$$\lim_{x \to 0} f(x) = \lim_{x \to 1} \frac{x}{x-1} + e^{\frac{1}{x-1}} = -\infty$$
 ولدينا $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x}{x-1} = 0$ ولدينا $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x}{x-1} = 0$

 $-\infty$ الدينا y=2 بجوار y=2 يقبل مستقيم مقارب معادلته y=1 بجوار y=1

ولدينا $-\infty = \lim_{x \to -\infty} f(x) = 1$ إذن المنحنى (C) يقبل مستقيم مقارب موازي لمحور التراتيب معادلته x = 1

.] $-\infty$;1[المجال على المجال f متناقصة تماما على المجال f (x) حساب (2

الدالة f عبارة عن عمليات على دوال قابلة للإشتقاق على المجال $-\infty$! فهي قابلة للإشتقاق على هذا المجال ولكينا:

$$f'(x) = \frac{-1}{(x-1)^2} - \frac{1}{(x-1)^2} e^{\frac{1}{x-1}} = \frac{-1}{(x-1)^2} \left(1 + e^{\frac{1}{x-1}}\right)$$

.] $-\infty$;1[على المجال على المجال f'(x) < 0 ، $x \in]-\infty$;1[من أجل كل

f جدول تغيرات الدالة

х	- ∞ 1
f'(x)	
f(x)	2
	$-\infty$

 α تبيين أنّ المعادلة f(x)=0 تقبل في $-\infty$; 1 تقبل في f(x)=0 حلا وحيدا

لدينا الدالة f مستمرة ومتناقصة تماماً على المجال $]1;\infty-[$ وتأخذ قيمها في المجال $]-\infty;2[$ و $]-\infty;2[$ و إذن المعادلة f تقبل حلا وحيدا α في المجال $[1;\infty-[$.

يجاد حصرا للعدد lpha باستعمال جدول القيم أعلاه

 $0.21 < \alpha < 0.22$ ومنه $f\left(0.21\right) \times f\left(0.22\right) < 0$ نلاحظ أنّ $f\left(0.21\right) \times f\left(0.22\right) \approx -0.005$ و $f\left(0.21\right) \approx 0.016$ نلاحظ أنّ

. |f| الممثل للدالة (C')، ثم المنحنى راك الممثل للدالة المدالة (C') رسم المستقيمين المقاربين والمنحنى

$$\begin{cases} |f(x)| = f(x); x \in]-\infty; \alpha \\ |f(x)| = -f(x); x \in [\alpha; 1[\end{cases} \begin{cases} |f(x)| = f(x); f(x) \ge 0 \\ |f(x)| = -f(x); f(x) \le 0 \end{cases}$$

[lpha;1[و (C') ينظر (C') يالنسبة لمحور الفواصل في المجال $[-\infty;lpha]$ ينظر (C') ينظر الفواصل في المجال

5) تعيين بيانيا مجموعة قيّم الأعداد الحقيقية m التي من أجلها يكون للمعادلة |f(x)|=m حلان مختلفان في الإشارة.

 $(f(0)=\frac{1}{e}$ ن المعادلة $\frac{1}{e}$ يكون للمعادلة $\frac{1}{e}$ حلان مختلفان في الإشارة من أجل قيّم m من المجال |f(x)|=m عكون للمعادلة |f(x)|=m

و. الدالة المعرّفة على g(x) غير مطلوبة g(x) . g(x) = f(2x-1) بير مطلوبة g(x) غير مطلوبة g(x)

.] $-\infty$;1[على على (1) دراسة تغيّرات الدالة

 $-\infty$ يئول t يئول $-\infty$ فإنّ t يئول t يئول ؛ $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} f(2x-1)$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} f(2x - 1) = \lim_{t \to -\infty} f(t) = 2$$

$$\lim_{x \to 1} g(x) = \lim_{t \to 1} f(t) = -\infty$$

g'(x) = 2f'(2x-1) الدالة g تقبل الإشتقاق على المجال $]-\infty;1$ ولدينا: g'(x) = 2f'(2x-1)

 $]-\infty;1$ ومنه 2x-1<1 ومنه g أذن الدالة g متناقصة تماما على المجال f'(2x-1)<0 ومنه وغير المجال

يمكن إتباع طريقة إتجاه تغير مركب دالتين.

 $g(x)=f\left[u(x)\right]=(f\circ u)(x)$ المعرّفة على المجال $[-\infty;1]$ المعرّفة على المجال $[u(x)]=(f\circ u)(x)$

الدالة u(x); $\lim_{x \to \infty} u(x)$; $\lim_{x \to 1} u(x)$ الدالة u(x) الدالة u(x) الدالة u(x) الدالة u(x)

 $-\infty$:1] وبالتالي الدالة g متناقصة تماما على المجال]

جدول تغيرات الدالة ع.

$$g'\left(\frac{\alpha+1}{2}\right)=2f'(\alpha)$$
 : ثمّ تبيين أنّ: $g\left(\frac{\alpha+1}{2}\right)=0$: ثمّ تبيين أنّ: (2)

$$g\left(\frac{\alpha+1}{2}\right) = f\left(2\left(\frac{\alpha+1}{2}\right)-1\right) = f\left(\alpha+1-1\right) = f\left(\alpha\right) = 0$$

$$g'\left(\frac{\alpha+1}{2}\right) = 2f'\left(2\left(\frac{\alpha+1}{2}\right)-1\right) = 2f'(\alpha+1-1) = 2f'(\alpha)$$

ب) استنتاج معادلة T المماس لمنحنى الدالة g في النقطة ذات الفاصلة T

$$y = 2f'(\alpha)\left(x - \frac{\alpha+1}{2}\right)$$
 ومنه $y = g'\left(\frac{\alpha+1}{2}\right)\left(x - \frac{\alpha+1}{2}\right) + g\left(\frac{\alpha+1}{2}\right)$

$$(T)$$
 معادلة للمستقيم $y = \frac{2}{(\alpha-1)^3}x - \frac{\alpha+1}{(\alpha-1)^3}$ عن أنّ:

$$e^{\frac{1}{\alpha-1}} = -\frac{\alpha}{\alpha-1}$$
 الدينا $f(\alpha) = 0$ لدينا أي $f(\alpha) = 0$

$$2f'(\alpha) = \frac{-2}{(\alpha-1)^2} \left(1 + e^{\frac{1}{\alpha-1}}\right) = \frac{-2}{(\alpha-1)^2} \left(1 - \frac{\alpha}{\alpha-1}\right) = \frac{-2}{(\alpha-1)^2} \left(\frac{-1}{\alpha-1}\right) = \frac{2}{(\alpha-1)^3}$$
 ومنه

.
$$y = \frac{2}{(\alpha - 1)^3} \left(x - \frac{\alpha + 1}{2} \right) = \frac{2}{(\alpha - 1)^3} x + \frac{\alpha + 1}{(\alpha - 1)^3}$$
 (عن معادلة المستقيم T) هي:

التمرين الثاني عشر <u>ض</u>

نعتبر الدّالة f المعرّفة على $\mathbb R$ كما يلي: $\frac{e^x-1}{xe^x+1}=\frac{e^x-1}{xe^x+1}$ نعتبر الدّالة f المعرّفة على $\mathbb R$ كما يلي:

 $h(x) = xe^x + 1$. نعتبر الدّالة h المعرّفة على كما يلي: 1-1.

أ) ادرس تغيّرات الدالة h.

.h(x) > 0: x بيّن أنّه، من أجل كل عدد حقيقي

 $g(x) = x + 2 - e^x$ ينعتبر الدالة g المعرّفة على \mathbb{R} كما يلى:

أ) احسب نهايتي الدالة g عند ∞ و $\infty+$.

ب) ادرس اتجاه تغيّر الدالة ﴿ ، ثُمُّ شكل جدول تغيّر اتها.

 $\alpha < 1,15$ جـ) بيّن أنّ المعادلة $\alpha < \alpha < 1,15$ تقبل حلين $\alpha < \beta$ مع $\alpha > \beta$ مع $\alpha > \beta$ تقبل حلين $\alpha < \beta$ عند تحقق أنّ

 \mathbb{R} د) استنتج اشارة $g\left(x
ight)$ على \mathbb{R}

و کے اسر النتائج هندسیا. $-\infty$ عند $-\infty$ عند $-\infty$ عند $-\infty$ عند هندسیا.

 $f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}$ ييّن أنّه، من أجل كل عدد حقيقي x عدد عقيقي (أ.2

ب) استنتج اتجاه تغيّر الدالة f، ثمّ شكل جدول تغيّر اتها.

 $f(\alpha) = \frac{1}{\alpha + 1}$ أي تحقق أنّ: 3.3

 $_{-10^{-2}}$ سعته $_{10^{-2}}$ سعته بين حصرا للعدد

4. عيّن معادلة المماس (T) للمنحنى (C) عند النقطة ذات القاصلة 0

 $u(x) = e^{x} - xe^{x} - 1$ حیث $f(x) - x = \frac{(x+1)u(x)}{xe^{x} + 1}$ نحقق أنّ (5.5)

 $u\left(x\right)$ ادرس اتجاه تغیّر الدالهٔ u ثمّ استنتج اشاره ایر ب

(T) استنتج الوضعية النسبية للمنحنى (C) بالنسبة إلى المماس (T)

 $(-1/19 < f(\beta) < -1,18$ و $(-1/19 < f(\beta) < -1,18$

<u>الحل</u>⊙

نعتبر الدّالة f المعرّفة على \mathbb{R} كما يلي: $\frac{e^x-1}{xe^x+1}$ على البياني في معلم

ومتجانس $(O; \vec{i}, \vec{j})$. وحدة الرّسم

 $.h(x)=xe^x+1$ نعتبر الدّالة h المعرّفة على $\mathbb R$ كما يلي: 1-1

أ) دراسة اتجاه تغيّر الدالة h

 $h'(x)=e^x+xe^x=e^x(x+1):x$ الدّالة h عدد حقيقي \mathbb{R} و من أجل كل عدد الدّالة الدّالة المّ

h'(-1) = 0 (1+x) هي إشارة h'(x) ومنه إشارة $e^x > 0$

.] $-\infty;-1$] من أجل h'(x)<0 ، $x\in]-\infty;-1$ من أجل أجل أجل أباد متناقصة تماما على المجال المجال أباد من أجل

. $[-1;+\infty[$ المجال على المجال h وعليه الدّالة h متزايدة تماما على المجال h'(x)>0 ، $x\in]-1;+\infty[$ من أجل

.h(x) > 0: x تبيين أنّه، من أجل كل عدد حقيقي

لدينا الدالة h تقبل قيمة حدّية صغرى تبلغها عند x=-1 وعليه من أجل كل عدد حقيقي $x=h(x)\!\geq\! h(x)$ أي

.h(x)>0 وبالتالي $h(x)\geq 1-e^{-1}$

. $g(x) = x + 2 - e^x$ يلي: g المعرّفة على g كما يلي: 2.

أ) حساب نهايتي الدالة g عند ∞ و $\infty+$.

32

سر النجام أن تكون مخلصاً لأهداذك

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x + 2 - e^x = -\infty$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \lim_{x \to +\infty} \frac{2}{x} = 0 \quad \text{if} \quad \lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} x + 2 - e^x = \lim_{x \to +\infty} x \left(1 + \frac{2}{x} - \frac{e^x}{x}\right) = -\infty$$

ب) دراسة اتجاه تغيّر الدالة ﴿ 8 . ^

$$g'(x) = 1 - e^x$$

$$x = 0$$
 ویکافی $e^{x} = 1$ ای $e^{x} = 0$ معناه $g'(x) = 0$

$$x < 0$$
 يأ $e^x < 1$ ويكافئ $e^x > 0$ معناه $g'(x) > 0$

$$x>0$$
 ویکافی $e^x>1$ ویکافی $g'(x)<0$

 $[0;+\infty[$ متزایدة تماما علی $[0;+\infty[$ متناقصة تماما علی $[0;+\infty[$.

جدول التغيرات.

$$lpha > eta$$
جـ) تبيين أنّ المعادلة $g\left(x
ight) = 0$ تقبل حلين $lpha$ و eta مع

الدّالة g مستمرة ومتزايدة تماما على المجال $[0;\infty-[$ وتأخذ قيمها في المجال $[1;\infty-[$ و $[0,\infty-[$ و إذن المعادلة

.] $-\infty$,0] نقبل حلا وحيدا β في المجال $g\left(x\right)=0$

ولدينا الدّالة g مستمرة ومتناقصة تماما على المجال $]\infty + \infty$ وتأخذ قيمها في المجال $[0;+\infty[$ و $[0;+\infty[$ و إذن المعادلة

. $[0;+\infty[$ تقبل حلا وحيدا α في المجال g(x)=0

 $1.14 < \alpha < 1.15$ التحقق أنّ

 $1.1,14 < \alpha < 1.15$ و منه $g(1,14) \times g(1,15) < 0$ و $g(1,14) \approx -0.008$ ومنه $g(1,14) \approx 0.013$ دينا

د) استنتاج اشارة g(x) على \mathbb{R}

X	$-\infty$	β		α	+∞
g(x)		0	+	0	

ال النتائج هندسيا. $-\infty$ عند f عند f عند عندسيا.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x - 1}{xe^x + 1} = -1$$
 الاينا $\lim_{x \to -\infty} xe^x + 1 = 1$ و $\lim_{x \to -\infty} xe^x + 1 = 1$ و $\lim_{x \to -\infty} e^x - 1 = -1$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{x} (1 - e^{-x})}{e^{x} (x + e^{-x})} = \lim_{x \to +\infty} \frac{1 - e^{-x}}{x + e^{-x}} = 0$$

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}$$
: x عدد حقیقی عدد من أجل كل عدد عدد .2

ليكن ير عددا حقيقيا:

$$f'(x) = \frac{e^x (xe^x + 1) - (e^x + xe^x)(e^x - 1)}{(xe^x + 1)^2} = \frac{xe^{2x} + e^x - e^{2x} + e^x - xe^{2x} + xe^x}{(xe^x + 1)^2}$$

$$f'(x) = \frac{2e^x - e^{2x} + xe^x}{(xe^x + 1)^2} = \frac{e^x (x + 2 - e^x)}{(xe^x + 1)^2} = \frac{e^x g(x)}{(xe^x + 1)^2}$$

$$f'(x) = \frac{1}{(xe^x + 1)^2} = \frac{e^x g(x)}{(xe^x + 1)^2}$$

$$f'(x) = \frac{1}{(xe^x + 1)^2} = \frac{1}{(xe^x + 1)^2} = \frac{1}{(xe^x + 1)^2}$$

$$f'(x) = \frac{1}{(xe^x + 1)^2} = \frac{1}{(xe^x + 1)^2} = \frac{1}{(xe^x + 1)^2} = \frac{1}{(xe^x + 1)^2}$$

$$f'(x) = \frac{2e^{x} - e^{2x} + xe^{x}}{(xe^{x} + 1)^{2}} = \frac{e^{x}(x + 2 - e^{x})}{(xe^{x} + 1)^{2}} = \frac{e^{x}g(x)}{(xe^{x} + 1)^{2}}$$

 $g\left(x\right)$ و $g\left(x\right)$ و منه إشارة $\left(xe^{x}+1\right)^{2}>0$ و $\left(xe^{x}+1\right)^{2}>0$ لدينا

في المجموعة $[-\infty;eta]$ اي $[-\infty;eta]$ أي $[-\infty;eta]$ وعليه الدّالة $[-\infty;eta]$ متناقصة تماما على المجالين و $[-\infty;eta]$ $[\alpha;+\infty[$

 $[\alpha; \beta]$ وفي المجال $[\alpha; \beta]$ وفي المجال $[\alpha; \beta]$ وعليه الدّالة $[\alpha; \beta]$ وفي المجال $[\alpha; \beta]$ وفي المجال المجال أ

حده أن تغتر أت الدالة

				•.) -	_, _,	
$x - \infty$		β		α		$+\infty$
f'(x)	_	0	+	0	_	
	\searrow_f	(eta)		$f(\alpha)$		0

$f(\alpha) = \frac{1}{\alpha+1}$. أ) التحقق أنّ:

$$e^{\alpha}=lpha+2$$
 لدينا $g\left(lpha
ight)=lpha+2-e^{lpha}=0$ معناه $g\left(lpha
ight)=0$

$$f\left(\alpha\right) = \frac{e^{\alpha} - 1}{\alpha e^{\alpha} + 1} = \frac{\alpha + 2 - 1}{\alpha(\alpha + 2) + 1} = \frac{\alpha + 1}{\left(\alpha + 1\right)^{2}} = \frac{1}{\alpha + 1}$$

 10^{-2} ب تعيين حصرا للعدد $f(\alpha)$ سعته

 (α) دينا (α) دينا (α) معناه (α) دينا (α) معناه (α) دينا (α) دينا (α)

(C) عند النقطة ذات الفاصلة (T) للمنحنى النقطة ذات الفاصلة (T)

. y = x أي y = f'(0)(x - 0) + f(0) هي: (T)

$$u(x) = e^{x} - xe^{x} - 1$$
 حيث $f(x) - x = \frac{(x+1)u(x)}{xe^{x} + 1}$ نتحقق أنّ 5.5

$$\int f(x) - x = \frac{e^x - 1}{xe^x + 1} - x = \frac{e^x - 1 - x^2 e^x - x}{xe^x + 1} = \frac{-1 - x + e^x (1 - x^2)}{xe^x + 1} = \frac{-(x + 1) + e^x (1 + x)(1 - x)}{xe^x + 1}$$

$$f(x) - x \frac{(1+x)(e^{x}(1-x)-1)}{xe^{x}+1} = \frac{(1+x)u(x)}{xe^{x}+1}$$

 $u\left(x\right)$ ب) دراسة اتجاه تغيّر الدالة u ثمّ استنتاج اشارة

 $u'(x) = e^x - e^x - xe^x = -xe^x$ الدالة u تقبل الإشتقاق على \mathbb{R} ومن أجل كل عدد حقيقي u

xإشارة (x) الله u الهارة x

u'(0) = 0 من أجل u(x) > 0 فإنّ u(x) < 0 فإنّ u(x) < 0 فإنّ u(x) < 0

u(0)=0 وعليه الدالة u متزايدة تماما على المجال $[0;+\infty[$ ومتناقصة تماما على المجال $[0;+\infty[$ ولها قيمة حدية عظمى هي $[0;+\infty[$ وعليه الدالة $u(x) \le 0$: x عند حقيقي x عند حقيقي x عند حقيقي المجال $[0;+\infty[$

(T) استنتاج الوضعية النسبية للمنحنى (C) بالنسبة إلى المماس (T)

. (1+x)u(x) هي إشارة $f(x)-x = \frac{(1+x)u(x)}{xe^x+1} = \frac{(1+x)u(x)}{xe^x+1}$ هي إشارة $f(x)-x = \frac{(1+x)u(x)}{xe^x+1} = \frac{(1+x)u(x)}{xe^x+1}$

х	-∞	Y)	$+\infty$
x+1		+	+	
u(x)	- 50	_	0 –	
f(x)-x	+ •	_ () –	

وفي المجال A(-1;-1) يقع فوق (T) وفي المجال $[-1;+\infty]$ يقع تحت [T) ويشتركان في النقطتين [T) و وفي المجال [T]

(C) و (T)

التمرين الثالث عشر<u>⊗</u>

 $f(x) = x - \frac{1}{e^x - 1}$ نعتبر الدالة العددية f المعرّفة على \mathbb{R}^* كما يلي:

 $(O;\vec{i}\,,\vec{j}\,)$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس البياني في المستوي المنسوب إلى المعلم البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس المتعامد والمتعامد والمتعامد والمتعامد في المستوي

. $\lim_{x \to \infty} f(x)$ e $\lim_{x \to \infty} f(x)$.1.

ب - احسب $\int_{x \to 0}^{+\infty} f(x)$ و $\lim_{x \to 0}^{+\infty} f(x)$ و فسّر النتيجة هندسيا.

- 2. ادرس اتجاه تغیّر الدّالة f على كل مجال من مجالي تعریفها ثمّ شكل جدول تغیّر اتها.
- 3. أ بيّن أنّ المنحنى $\binom{C_f}{2}$ يقبل مستقيمين مقاربين مائلين $\binom{\Delta}{2}$ و $\binom{\Delta}{2}$ معادلتيهما على الترتيب:

y = x + 1 y = x

. (Δ') و (Δ) من من ركب بالنسبة إلى كل من وضعية

$$.\left(C_{f}
ight)$$
 هي مركز تفاظر بالنسبة للمنحنى $\omega\left(0,rac{1}{2}
ight)$.4

-1,4<eta<-1,3 و α حيث: 1>lpha<1 و α المعادلة α و α تقبل حلين α و α حيث: α

$$oldsymbol{\cdot}$$
 ($oldsymbol{\Delta}$) بوازي المستقيم $oldsymbol{\cdot}$ ؛

$$(C_{\gamma})$$
 ثمّ المنحنى (Δ) ، (Δ) ثمّ المنحنى

 $(m-1)e^{-x}=m$: عدد وإشارة حلول المعادلة عدد ويشارة حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة

الحل⊙

 $f(x) = x - \frac{1}{e^x - 1}$ نعتبر الدالة العددية f المعرّفة على \mathbb{R}^* كما يكي:

 $(O; \vec{i}, \vec{j})$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f) .

. $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$.1.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x - \frac{1}{e^x - 1} = -\infty$$
 لاينا $\lim_{x \to \infty} \frac{1}{e^x - 1} = -1$ لاينا

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - \frac{1}{e^x - 1} = +\infty$$
 ولدينا
$$\lim_{x \to +\infty} \frac{1}{e^x - 1} = 0$$

$$\lim_{x \to 0} f(x)$$
 g $\lim_{x \to 0} f(x)$

$$\lim_{x \stackrel{<}{\longrightarrow} 0} f\left(x\right) = \lim_{x \stackrel{<}{\longrightarrow} 0} x \stackrel{1}{e^x - 1} = +\infty \quad \text{ومنه} \quad \lim_{x \stackrel{<}{\longrightarrow} 0} e^x - 1 = 0^- \quad \text{لاینا} \quad \lim_{x \stackrel{<}{\longrightarrow} 0} \frac{1}{e^x - 1} = -\infty \quad \text{لدینا}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x - \frac{1}{e^x - 1} = -\infty \quad \text{ولاينا} \quad \lim_{x \to 0} e^x - 1 = 0^+ \quad \text{لأنّ} \quad \lim_{x \to 0} \frac{1}{e^x - 1} = +\infty$$

x=0 التفسير: اليوب مستقيم مقارب معادلته التفسير:

2. دراسة اتجاه تغيّر الدّالة f جدول تغيّراتها.

$$f'(x) = 1 + \frac{e^x}{(e^x - 1)^2}$$
 الدينا: $x \neq 0$

من أجل كل عدد حقيقي x غير معدوم لدينا $e^x>0$ و $e^x>0$ و منه (x)>0 ومنه (x)>0 ومنه (x)>0 عليه الدّالة (x)>0 متزايدة تماما على مجالى تعريفها.

جدول التغيرات:

	х	-∞	0 +∞
f	'(x)	+	+
f	(x)	_∞ +∞	

3. أ - تبيين أنّ المنحنى $\binom{C_f}{2}$ يقبل مستقيمين مقاربين مائلين $\binom{\Delta}{2}$ و $\binom{\Delta}{2}$ معادلتيهما على الترتيب:

 $y = x + 1 \quad y = x$

y=x بجوار y=x بجوار مائلا معادلته y=x بجوار y=x

. $-\infty$ بجوار y = x + 1 بجوار مائلا معادلته y = x + 1 بجوار مستقیما مقاربا مائلا معادلته y = x + 1 بجوار y = x + 1 بجوار مستقیما مقاربا مائلا معادلته y = x + 1 بجوار y = x + 1

 (Δ) بالنسبة إلى (C_f) بالنسبة الى ب

 $e^{x}-1$ اشارة f(x)-x اشارة $f(x)-x=\frac{-1}{e^{x}-1}$

x	-∞	0 +∞
$e^x - 1$		+
f(x)-x	# 7	_
الوضعية النسبية	$\left(\Delta ight)$ يقع فوق $\left(C_{f} ight)$	$\left(\Delta ight)$ يقع تحت $\left(C_{f} ight)$

ب ـ دراسة وضعية (C_f) بالنسبة إلى (Δ') .

$$f(x)-(x+1) = -\frac{1}{e^x-1}-1 = \frac{-e^x}{e^x-1}$$

 e^x-1 ومنه إشارة f(x)-(x+1) ومنه إشارة $-e^x<0$ ، x عكس إشارة الدينا من أجل كل عدد حقيقي

	0 //	
x	<i>_</i> ∞	0 +∞
$e^{x}-1$		+
f(x)-(x+1)	+	_
الوصعية النسبية	$\left(\Delta^{\prime} ight)$ يقع فوق $\left(C_{f} ight)$	$\left(\Delta' ight)$ يقع تحت $\left(C_{f} ight)$

 $egin{aligned} \cdot \left(C_f
ight) & \omega & \omega\left(0,rac{1}{2}
ight) \end{aligned}$ وثبات أنّ $egin{aligned} \omega\left(0,rac{1}{2}
ight) & \omega & \omega \end{aligned}$.4

 $-x\in\mathbb{R}^*$ فإنّ $x\in\mathbb{R}^*$ مرکز تناظر إذا تحقق مايلي: من أجل $\omega\Big(0,\frac{1}{2}\Big)$

 $f\left(-x\right)+f\left(x\right)=1$: x ومن أجل كل عدد حقيقي غير معدوم

 $-x \in \mathbb{R}^*$ اي $x \in \mathbb{R}^*$ لدينا $x \in \mathbb{R}^*$ معناه $x \in \mathbb{R}$

$$f(-x)+f(x) = -x - \frac{1}{e^{-x}-1} + x - \frac{1}{e^{x}-1} = \frac{-e^{x}}{1-e^{x}} - \frac{1}{e^{x}-1} = 1$$

 $.ig(C_fig)$ هي مركز تناظر بالنسبة للمنحنى $\omegaig(0,rac{1}{2}ig)$

-1,4<eta<-1,3 و 1 المعادلة 1 المعادلة 1 و 1 تقبل حلين 1 و 1 عنين أنّ المعادلة و 1 تقبل حلين 1 تقبل حلين 1 و 1

الدالة f مستمرة ومتزايدة تماما على المجال $]-\infty;0$ وبالخصوص على المجال [-1,4;-1,3] ولدينا

ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي $f(-1,4) \times f(-1,3) < 0$ ومنه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي $f(-1,4) \times f(-1,3) < 0$ وحيد $f(-1,4) \times f(-1,3) < 0$ يحقق $f(-1,4) \times f(-1,3) < 0$ وحيد $f(-1,4) \times f(-1,3) < 0$ وحيد $f(-1,3) \times f(-1,3) < 0$

ولدينا الدالة f مستمرة ومتزايدة تماما على المجال $]0;+\infty[$ وبالخصوص على المجال $[\ln 2;1]$ و $(\ln 2)\approx -0.3$ و المجال $[\ln 2;1]$ و منه حسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد α من المجال f ($(\ln 2)\approx f$ ($(\ln 2)\approx f$ ($(\ln 2)\approx f$ ($(\ln 2)\approx f$).

 (Δ) ب - هل توجد مماسات لـ (C_f) توازي المستقيم

 $f/(x_{_0})\!=\!1$ المماس يوازي (Δ) معناه

. وهذا مستحيل
$$e^{x_0} = 0$$
 يكافئ $f'(x_0) = 1$ وهذا مستحيل $e^{x_0} = 0$ وهذا مستحيل $f'(x_0) = 1$

 (Δ) ومنه لا يوجد مماس لـ (C_f) يوازي المستقيم

 (C_f) والمنحنى (Δ') ، (Δ)

 $(m-1)e^{\sqrt{x}}$: عدد وإشارة حلول المعادلة m عدد والمناقشة بيانيا، حسب قيم الوسيط الحقيقي m

 $x+m=x-rac{1}{e^x-1}$ تكافئ $m=rac{-1}{e^x-1}$ وتكافئ m-1=m وتكافئ m-1=m وتكافئ $m-1=me^x$ ومنه حلول المعادلة هي فواصل النقط المشتركة بين $m=1=me^x$ ومنه حلول المعادلة هي فواصل النقط المشتركة بين $m=1=me^x$ ومنه حلول المعادلة تقبل حلا وحيدا موجبا إذا كان m<0 فإنّ المعادلة تقبل حلا وحيدا موجبا

إذا كان $1 \le m \le 1$ فإنّ المعادلة ليس لها حلول.

إذا كان 1 > 1 فإنّ المعادلة تقبل حلا وحيدا سالبا.

التمرين الرابع عشر 🛞

يان. و g المعرّفة على $\mathbb R$ كما يلي: $g(x) = ax + b - \frac{4e^x}{e^x + 2}$ عددان حقيقيان. g

 $(O;\vec{i},\vec{j})$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس

و عيّن a و b بحيث C_{g} يشمل النقطة A A A ويقبل عند النقطة A مماسا موازيا لمحور الفواصل A

38

aziz_mus1@hotmail.fr

$$f\left(x\right)=x+2-rac{4e^{x}}{e^{x}+2}$$
 : كما يلي $\mathbb R$ كما يلي الدّالة f المعرّفة على II

. $\left(O;\overrightarrow{i},\overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\right)$

$$f(x) = x - 2 + \frac{8}{e^x + 2}$$
: ييّن أنّه، من أجل كل عدد حقيقي 1.

روسب نهایتی الدّالة عند ∞ و ∞ ... ∞ ..

. $\lim_{x \to \infty} f(x) - (x+2)$ و $\lim_{x \to \infty} f(x) - (x-2)$.4

ا استنتج أنّ (C_{f}) يقبل مستقيمين مقاربيس (Δ) و (Δ) يطلب إعطاء معادلة لكل منهما.

5. بيّن أنّ المنحنى (C_f) يقبل نقطة انعطاف ω يطلب تعيين إحداثييها.

-1.7 < lpha < -1.6 حيث أنّ (C_f) يقطع محور الفواصل في نقطة وحيدة فاصلتها α حيث 6.

 $(C_{\scriptscriptstyle f})$ و (Δ') ، (Δ) و ر

h المعرّفة على $\mathbb R$ كما يلي: h المعرّفة على h المعرّفة على $\mathbb R$ المعرّفة على الدّالة h

- عين اتجاه تغير الدّالة ثمّ شكل جدول تغيراتها.

الحل⊙

يان. و معرفة على \mathbb{R} كما يلي: $ax + b - \frac{4e^x}{e^x + 2}$ كما يلي: \mathbb{R} كما يلي: g المعرفة على g كما يلي: g

 $(O;\vec{i},\vec{j})$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_s) .

يشمل النقطة $A\left(\ln 2;\ln 2\right)$ ويقبل عند النقطة مماسا موازيا لمحور الفواصل $A\left(\ln 2;\ln 2\right)$

ويكافئ $(\ln 2)a+b-\frac{4e^{\ln 2}}{e^{\ln 2}+2}=\ln 2$ يشمل النقطة $A\left(\ln 2;\ln 2\right)$ معناه $a+b-\frac{4e^{\ln 2}}{e^{\ln 2}+2}=\ln 2$ يشمل النقطة والمعناه معناه ويكافئ والمعناه ويكافئ والمعناه ويكافئ ويكاف

 $(\ln 2)a + b = \ln 2 + 2...(1)$ أي $(\ln 2)a + b - 2 = \ln 2$

 $g'(x) = a - \frac{8e^x}{(e^x + 2)^2}$ ، x ولدينا من أجل كل عدد حقيقي \mathbb{R} ولدينا من أجل كل عدد الدالة g

a=1 أي a=1 أي $g'(\ln 2)=0$ ويكافئ a=1 أي a=1 أي a=1 أي a=1 أي a=1

a ومنه b=2 بالتعويض عن قيمة a في المعادلة (1) نجد b=2+2+3 ومنه a

 $f(x) = x + 2 - \frac{4e^x}{e^x + 2}$ يلي: \mathbb{R} كما يلي: f المعرّفة على f المعرّفة على الدّالة المعرّفة على المعرفة على المعرفة على المعرّفة على المعرّفة على المعرّفة على

. $\left(O;\vec{i}\,,\vec{j}\,
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f

 $f(x) = x - 2 + \frac{8}{e^{x} + 2}$: تبيين أنّه، من أجل كل عدد حقيقي 1.

 $f(x) = x + 2 - \frac{4e^x}{e^x + 2} = x - 2 + 4 - \frac{4e^x}{e^x + 2} = x - 2 + \frac{4e^x + 8 - 4e^x}{e^x + 2} = x - 2 + \frac{8}{e^x + 2}$

$-\infty$ و $-\infty$ و $-\infty$ و $-\infty$

$$\lim_{x \to -\infty} \frac{4e^{x}}{e^{x} + 2} = 0 \quad \text{if} \quad \lim_{x \to -\infty} x + 2 = -\infty \quad \text{if} \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x + 2 - \frac{4e^{x}}{e^{x} + 2} = -\infty$$

$$\lim_{x \to +\infty} \frac{8}{e^x + 2} = 0 \quad \lim_{x \to +\infty} x + 2 = +\infty \quad \text{if } \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - 2 + \frac{8}{e^x + 2} = +\infty$$

3. دراسة اتجاه تغيّر الدّالة

الدّالة f تقبل الإشتقاق على ${\mathbb R}$ وكدينا:

$$f'(x) = 1 - \frac{8e^x}{(e^x + 2)^2} = \frac{e^{2x} + 4e^x + 4 - 8e^x}{(e^x + 2)^2} = \frac{e^{2x} - 4e^x + 4}{(e^x + 2)^2} = \frac{(e^x - 2)^2}{(e^x + 2)^2}$$

إذن الدّالة f متزايدة تماما على \mathbb{R} .

$$\lim_{x \to \infty} f(x) - (x+2)$$
 و $\lim_{x \to \infty} f(x) - (x-2)$ 4.

$$\lim_{x \to +\infty} e^{x} + 2 = +\infty \quad \forall \quad \lim_{x \to +\infty} f(x) - (x - 2) = \lim_{x \to +\infty} \frac{8}{e^{x} + 2} = 0$$

$$\lim_{x \to -\infty} e^{x} + 2 \neq 2 \quad \lim_{x \to -\infty} 4e^{x} = 0 \quad \text{if} \quad \lim_{x \to -\infty} f(x) - (x+2) = \lim_{x \to +\infty} -\frac{4e^{x}}{e^{x} + 2} = 0$$

استنتاج أنّ (C_f) يقبل مستقيمين مقاربين (Δ) و (Δ) يطلب إعطاء معادلة لكل منهما.

y=x-2 بجوار y=x-2 الدينا (Δ) معالمته (Δ) يقبل مستقيم مقارب مائل (Δ) يقبل مستقيم الدينا

y=x+2 مائل معادلته (Δ') مائل معادلته (C_f) و لدينا و منه $\lim_{x\to 0} f(x)-(x+2)=0$ و لدينا

.5 تبيين أنّ المنحنى (C_f) يقبل نقطة انعطاف ω يطلب تعيين إحداثييها.

. (C_f) بما أنّ $A\left(\ln 2;\ln 2\right)$ هي نقطة إنعطاف للمنحنى المناقل النقطة $A\left(\ln 2;\ln 2\right)$ هي نقطة إنعطاف للمنحنى

. $-1,7 < \alpha < -1,6$ حيث α حيث فصلتها محور الفواصل في نقطة وحيدة فاصلتها α حيث $\alpha < -1,6$ حيث $\alpha < -1,6$

الدالة f مستمرة ومتزايدة تماما على $\mathbb R$ وبالخصوص على المجال [-1,7;-1,6] ولدينا $\mathbb R$ وبالخصوص على الدالة

ومنه حسب مبر هنة القيم المتوسطة فإنه يوجد عدد حقيقي وحيد α من $f(-1.7) \times f(-1.6) < 0$ من f(-1.7) = -0.03

المجال [-1,7;-1,6] بحيث $f(\alpha)=0$ وبالتالي $f(\alpha)=0$ يقطع محور الفواصل في نقطة وحيدة فاصلته $f(\alpha)=0$ كيث

 $1.7 < \alpha < -1.6$

 (C_f) و (Δ') ، (Δ) رسم .7

 $h\left(x\right)=\left[f\left(x\right)\right]^{2}$. كمانيي: $\left(h\left(x\right)\right)=\left[f\left(x\right)\right]^{2}$. المعرّفة على \mathbb{R} كمانيي:

ـ تعيين اتجاه تغيّر الدّالة h

 $h(x) = [f(x)]^2$ نضع u(x) = u(x) = u(x) عندئذ $u(x) = x^2$

 $h'(x) = f'(x) \times u'(f(x)) = f'(x) \times 2f(x) = 2f'(x) \times f(x)$ ومنه u'(x) = 2x لاينا

f(x) دينا من أجل كل عدد حقيقي x ، $0 \ge 0$ ، x ومنه إشارة h'(x) هي نفس إشارة f(x) دينا من أجل كل

х		α	1	ln 2	+∞
f(x)	_	0	+	+	
h'(x)	_	0	+	0 +	

الدالة h متناقصة تماما على المجال $-\infty; \alpha$ ومتزايدة تماما على المجال $\alpha; +\infty$.

يمكن اتباع طريقة اتجاه تغيّر مركب دالتين:

لدينا الدالة f متزايدة تماما على المجال $[-\infty; \alpha]$ وتأخذ قيمها في المجال $[0; \infty]$ والدالة u متناقصة تماما على المجال $[-\infty; \alpha]$ متناقصة تماما على المجال $[-\infty; \alpha]$ متناقصة تماما على المجال $[-\infty; \alpha]$

.] $-\infty$; lpha] وبالتالي الدالمة h متناقصة تماما على المجال [$-\infty$; 0]

و لدينا الدالة f متزايدة تماما على المجال $[\alpha; +\infty[$ وتأخذ قيمها في المجال $[\alpha; +\infty[$ والدالة α متزايدة تماما على المجال $[\alpha; +\infty[$ وبالتالي الدالة α متزايدة تماما على المجال $[\alpha; +\infty[$ وبالتالي الدالة α متزايدة تماما على المجال $[\alpha; +\infty[$

 $\lim_{x \to -\infty} h\left(x\right) = +\infty \quad \text{iii} \quad \lim_{x \to -\infty} u\left(x\right) = +\infty \quad \text{o} \quad \lim_{x \to -\infty} f\left(x\right) = -\infty \quad \text{iiii} \quad h\left(x\right) = +\infty \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad \text{o} \quad \lim_{x \to +\infty} h\left(x\right) = +\infty \quad \text{o} \quad$

جدول تغير ات الدّالة h.

Х	$-\infty$	α	+∞
h'(x)		0	+
h(x)	+∞		+∞

 $.h(\alpha) = [f(\alpha)]^2 = 0$

