МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-109

Яворський Володимир

Викладач:

Мельникова Н.І.

Тема №1: Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри, логіки, освоїти методи доведень.

Варіант № 14

1. Формалізувати речення.

Сашко працює, якщо він втомився, то він відпочиває; якщо він не відпочиває, то він хворий виконує простішу роботу.

Нехай висловлювання X- Сашко працює, висловлювання P — Сашко втомився, висловлювання Q — Сашко відпочиває, висловлювання R — Сашко хворий виконує просту роботу:

$$X \rightarrow ((P \rightarrow Q)^{\vee}(\neg Q \rightarrow R))$$

2. Побудувати таблицю істинності для висловлювань:

$$((x{\rightarrow}y) \land (y{\rightarrow}z)) \rightarrow (x{\rightarrow}z)$$

X	У	Z	х→у	y→z	$(x\rightarrow y)^{(y\rightarrow z)}$	x→z	$(x\rightarrow y)^{(y\rightarrow z)\rightarrow (x\rightarrow z)}$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

3. Побудовою таблиць істинності вияснити чи висловлювання є тавтологією або суперечностями:

$$(\neg(p\rightarrow q)\leftrightarrow (\neg q\rightarrow r))\rightarrow (p^{\vee}\neg r)$$

 $\neg(p\rightarrow q) = a$
 $(\neg q\rightarrow r) = b$

р	q	r	(p → q)	а	¬q	b	a ⇔ b	¬r	p [∨] ¬r	(a↔b)→(p [∨] ¬r)
0	0	0	1	0	1	0	1	1	1	1
0	0	1	1	0	1	1	0	0	0	1
0	1	0	1	0	0	1	0	1	1	1
0	1	1	1	0	0	1	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1
1	0	1	0	1	1	1	1	0	1	1
1	1	0	1	0	0	1	0	1	1	1
1	1	1	1	0	0	1	0	0	1	1

Оскільки висловлювання набуває лише істинних значень, то воно є тавтологією.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологіяю висловлювання:

$$((p\rightarrow q)^{(q\rightarrow q)})\rightarrow p$$

Припускаємо, що формула не є тавтологією. Оскільки остання операція, яка виконується, є імплікація, то формула є хибною, коли передумова (її ліва частина) є істинною, а висновок (права частина) хибним:

$$((p \rightarrow q)^{(q} \rightarrow q)) = T;$$

$$p = F;$$

Підставляємо значення p = F у вираз $((p \rightarrow q)^{\wedge}(q \rightarrow q))$:

$$((F \rightarrow q)^{(q} \rightarrow q)) = T$$

Значення **T** отримаємо, якщо одночасно $(F \rightarrow q) = T i (q \rightarrow q) = T$

Оскільки дві останні рівності є правильними при будь-яких значеннях q, то наше припущення є вірним, і висловлювання $((p \rightarrow q)^{\wedge}(q \rightarrow q)) \rightarrow p$ не є тавтологією.

5. Довести, що формули еквівалентні:

$(r \land q) \lor (q \rightarrow r) \tau a (p \leftrightarrow r) \rightarrow (p \land r)$

r	q	Р	r ^q	q→r	(r^q)∨(q→r)	p⇔r	p^r	(p↔r)→(p^r)
0	0	0	0	1	1	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1
1	0	1	0	1	1	1	1	1
1	1	0	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1

6. $((x\rightarrow y)^{(y\rightarrow z)})\rightarrow (x\rightarrow z)$

```
dm.c ×
1 #include<stdio.h>
2
3 int main()
4 {
5
      int x, y, z;
6
      printf("((x -> y)^(y -> z)) -> (x -> z) \n");
7
      printf("input x:");
8
      scanf("%d", &x);
9
10
11
      printf("input y:");
12
      scanf("%d", &y);
13
14
      printf("input z:");
      scanf("%d", &z);
15
16
17
      if ((x == 0) & (y == 0) & (z == 0))
18
          printf("Result is: True\n");
19
      else if (( x == 0 )&&( y == 0 )&&( z == 1 ))
```

```
18
           printf("Result is: True\n");
19
      else if (( x == 0 )&&( y == 0 )&&( z == 1 ))
20
          printf("Result is: True\n");
      else if (( x == 0 )&&( y == 1 )&&( z == 0 ))
21
22
          printf("Result is: True\n");
      else if ((x == 0) \& (y == 1) \& (z == 1))
23
           printf("Result is: True\n");
24
25
      else if (( x == 1 )&&( y == 0 )&&( z == 0 ))
           printf("Result is: True\n");
26
      else if (( x == 1 )&&( v == 0 )&&( z == 1 ))
27
28
           printf("Result is: True\n");
      else if (( x == 1 )&&( y == 1 )&&( z == 0 ))
29
          printf("Result is: True\n");
30
      else if (( x == 1 )&&( y == 1 )&&( z == 1 ))
31
          printf("Result is: True\n");
32
33
      else
          printf("Error\n");
34
35 }
```

```
jharvard@appliance (~/programs): ./dm
((x -> y)^{(y -> z)}) -> (x -> z)
input x:1
input y:0
input z:1
Result is: True
jharvard@appliance (~/programs): ./dm
((x -> y)^{(y -> z)}) -> (x -> z)
input x:0
input y:1
input z:1
Result is: True
jharvard@appliance (~/programs): ./dm
((x -> y)^{(y -> z)}) -> (x -> z)
input x:1
input y:2
input z:0
Error
jharvard@appliance (~/programs):
```

Висновок: за допомогою простих логічних операцій та побудови таблиці істинності можна знаходити значення складних висловлювань. Я навчився використовувати різні методи доведення та засвоїв закони математичної логіки.