CheMeleon

Descriptor-based Foundation Models for Molecular Property Prediction

Jackson W. Burns^{1†}, Akshat S. Zalte^{1†}, William H. Green^{1*}

¹Department of Chemical Engineering, MIT, Cambridge, MA.

*Corresponding author(s). E-mail(s): whgreen@mit.edu;
†These authors contributed equally to this work.

https://www.alphaxiv.org/abs/2506.15792 https://github.com/JacksonBurns/chemeleon

As you may know...

Predictive models

- Random Forest ⇒ Input: Fingerprint / Descriptors
- Fast Prop ⇒ Input: Topological / Phycochemical features (moldred)
- ChemProp ⇒ Input: Molecular graph

Limitation of Learned Representation method

Studies have shown that models leveraging learned representation (LR) tend to out-perform those using fixed molecular representations. However, in the limit of small datasets (\$\infty\$ O(1,000) samples), Chemprop and other LR models struggle often outperformed by classical methods like Random Forest.

This forces the model to simultaneously learn both a suitable representation and the target property mapping, which is challenging in low-data regimes and leads to poor generalization and overfitting.

Focused on learning meaningful, general representations using molecular foundation model

Prior art

- ➤ ChemBERTa-2: pretrained on >10M SMILE strings
- ➤ MolFormer: pretrained on >10M SMILE strings
- MolCLR: pretrained based on graph
- GROVER: pretrained with combination of graph and transformer
- MolE: self-supervised approach of molecular graph + multitask learning
- **>** ...

Proposed method: Chemelon

D-MPNN foundation model
pre-trained to predict Mordred
precomputed descriptors

- When incorporating experimental values, the sparsity of the data and the presence of experimental errors become problematic.
- Using data such as QM for training introduces method-specific biases and narrows the chemical space.

Mordred

twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint. Mordred is a promising choice of molecular descriptor calculation software that can be utilized

for cheminformatics studies, such as those on quantitative structure–property relationships.

Keywords: Molecular descriptor, QSPR, Cheminformatics, Calculation software, Python

Table 1 Comparison features of major descriptor calculation software

	Mordred	PaDEL- Descriptor	BlueDesc	ChemoPy	PyDPI	Rcpi	Cinfony	Dragon
Number of descriptors	1825	1875	174	1135	615	307		5270
Citation count ^b		598	2	48	17	21	38	148
Library	Python2/3	-	-	Python2	Python2	R	Python2/3	200
Parallel com- putation	/	/		2		=	2	-
GUI	-	1	-	-	-	-	-	1
CII	1	/	1	-	-	-	-	/
KNIME	-	1		9		-	2	/
RapidMiner	-	1	-			2		200
Web Interface	1	2	=:	=	=	=	=	1
Last release	2018/1/20	2014/7/21	2008/10/3	2013/2/1	2015/11/10	2017/11/18	2015/8/1	? ^d
License	BSD-3-Clause	e	GPL.	GPL.	GPL	Artistic license	BSD-2-clause/ GPLv2/GPLv3	Proprietary
Source code distribution	Github	Official site	Official site	Google code	pypi	github	github	D
Other advan- tages			Easy to use with libSVM		Can also calcu- late protein descriptor	Can also calcu- late protein descriptor		Include analysis tool
Other disad- vantages		Some bugs are founded	No configur- able options				Require many manually installed dependen- cies	Payware

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y

Results

- Blue are the absolute highest performers on the given benchmark,
- Red are practically worse performers and are considered to have "lost" on the indicated benchmark.

Table 1: Model performance comparison on Polaris benchmarks.

Model	Win Count	Win Rate (%)	
CheMeleon	22	79	
minimol	20	71	
MLP-PLR Pre-fitted	14	50	
RF Mordred	13	46	
RF Morgan	12	43	
PCA MLP	11	39	
fastprop	11	39	
PCA MLP Pre-fitted	11	39	
Chemprop	10	36	
Chemprop-Mordred	9	32	
MoLFormer	9	32	
MolCLR	6	21	

Table 2: Model performance comparison on Molecule ACE benchmarks.

Model	Win Count	Win Rate (%)	
CheMeleon	29		
RF Morgan	19	63	
minimol	13	43	
RF Mordred	8	27	
fastprop	5	17	
Chemprop-Mordred	4	13	
MLP-PLR Pre-trained	4	13	
PCA MLP Pre-fitted	3	10	
MoLFormer	3	10	
Chemprop	0	0	

Foundation Fingerprint

t-SNE projection maps CheMeleon's high-dimensional embeddings into a two-dimensional space, allowing for visual inspection of how structurally related molecules cluster. Three distinct chemical series from the benchmark are highlighted, each beginning with a lead compound shown in bold.

Computational resources

Nvidia 2080 Ti x 8 for foundation model training

Nvidia Quadro RTX 4000 x 1 for finetuning