Aula 15 – Combinações de Funções Contínuas

Metas da aula: Estabelecer os principais fatos sobre operações com funções contínuas bem como sobre composição dessas funções.

Objetivos: Ao final desta aula, você deverá ser capaz de:

 Conhecer os resultados sobre operações com funções contínuas e sobre composição dessas funções, bem como suas aplicações no estabelecimento da continuidade de funções.

Introdução

Nesta aula vamos estabelecer os principais resultados sobre operações com funções contínuas assim como sobre a composição dessas funções.

Operações com Funções Contínuas

Seja $X \subset \mathbb{R}$, sejam f e g funções de X em \mathbb{R} e seja $c \in \mathbb{R}$. Vamos iniciar esta aula estabelecendo a preservação da continuidade pelas operações de soma f+g, diferença f-g, produto fg, multiplicação por constante cf, e, quando $g(x) \neq 0$ para todo $x \in X$, do quociente f/g. Subsequentemente, vamos analisar a questão sobre a continuidade da composição de funções contínuas.

Teorema 15.1

Sejam $X \subset \mathbb{R}, f, g: X \to \mathbb{R}, c \in \mathbb{R}$. Suponhamos que f e g são contínuas em $\bar{x} \in X$.

- (i) Então $f+g,\,f-g,\,fg$ e cf são contínuas em $\bar{x}.$
- (ii) Se $g(x) \neq 0$ para todo $x \in X$, então o quociente f/g é contínua em \bar{x} .

Prova: Se \bar{x} não é um ponto de acumulação de X, então a conclusão é automática. Portanto, vamos assumir que \bar{x} é um ponto de acumulação de X.

(i) Como f e g são contínuas em \bar{x} , então

$$\lim_{x \to \bar{x}} f(x) = f(\bar{x}), \qquad \lim_{x \to \bar{x}} g(x) = g(\bar{x}).$$

Logo, segue do Teorema 13.2 que

$$\lim_{x \to \bar{x}} (f+g) = \lim_{x \to \bar{x}} f + \lim_{x \to \bar{x}} g = f(\bar{x}) + g(\bar{x}).$$

Portanto, f+g é contínua em \bar{x} . De forma inteiramente semelhante, provamos que f - g, fg e cf são contínuas em \bar{x} .

(ii) Do mesmo modo, se $g(x) \neq 0$ para todo $x \in X$, o Teorema 13.2 implica que

$$\lim_{x \to \bar{x}} \left(\frac{f}{g} \right) = \frac{\lim_{x \to \bar{x}} f}{\lim_{x \to \bar{x}} g} = \frac{f(\bar{x})}{g(\bar{x})} = \left(\frac{f}{g} \right) (\bar{x}).$$

Portanto, f/g é contínua em \bar{x} .

O próximo resultado é uma consequência imediata do Teorema 15.1, aplicado a todo ponto de X.

Teorema 15.2

Sejam $X \subset \mathbb{R}$, $f, g: X \to \mathbb{R}$ funções contínuas em X, e $c \in \mathbb{R}$.

- (i) As funções f + g, f g, $fg \in cf$ são contínuas em X.
- (ii) Se $g(x) \neq 0$ para todo $x \in X$, então a função quociente f/g é contínua em X.

Observação 15.1

Para definir funções quocientes, às vezes é mais conveniente proceder do seguinte modo. Se $g: X \to \mathbb{R}$, seja $X_* := \{x \in X : g(x) \neq 0\}$. Podemos definir o quociente f/g no conjunto X_* por

$$\left(\frac{f}{q}\right)(x) := \frac{f(x)}{q(x)} \quad \text{para } x \in X_*. \tag{15.1}$$

Se g é contínua num ponto $\bar{x} \in X_*$, claramente a restrição g_* de g a X_* também é contínua em \bar{x} . Portanto, segue do Teorema 15.1 aplicado a g_* que f/g_* é contínua em \bar{x} . Como $(f/g)(x)=(f/g_*)(x)$ para $x\in X_*$ segue que f/g é contínua em $\bar{x} \in X_*$. Similarmente, se f e g são contínuas em X, então a função f/g, definida em X_* por (15.1), é contínua em X_* .

Exemplos 15.1

(a) Se p é uma função polinomial, de modo que $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_n x^{n-1}$ $\cdots + a_1 x + a_0$ para todo $x \in \mathbb{R}$, então segue do Exemplo 13.1 (e) que $\lim_{\bar{x}} p(x) = p(\bar{x})$ para todo $\bar{x} \in X$. Portanto, uma função polinomial é contínua em \mathbb{R} .

(b) Se p e q são funções polinomiais em \mathbb{R} , então existe no máximo um número finito de raízes de q, $\alpha_1, \ldots, \alpha_m$. Se $x \notin \{\alpha_1, \ldots, \alpha_m\}$, então $q(x) \notin 0$ de modo que podemos definir a função racional r por

$$r(x) := \frac{p(x)}{q(x)}$$
 para $x \notin \{\alpha_1, \dots, \alpha_m\}.$

Vimos no Exemplo 13.1 (f) que se $q(\bar{x}) \neq 0$, então

$$\lim_{x \to \bar{x}} r(x) = \lim_{x \to \bar{x}} \frac{f(x)}{g(x)} = \frac{f(\bar{x})}{g(\bar{x})} = r(\bar{x}).$$

Portanto, r é contínua em \bar{x} . Assim, concluímos que uma função racional é contínua em todo número real para o qual ela está definida.

(c) Consideremos a série $\mathbf{s}(x) := \sum a_n x^n$ para $x \in \mathbb{R}$. Segue do Teste da Raiz 11.4 que \mathbf{s} converge se

$$|x| \lim |a_n|^{1/n} < 1.$$

Suponhamos que existe $\alpha := \lim |a_n|^{1/n}$ em \mathbb{R} . Façamos

$$R := \frac{1}{\alpha}$$
 se $\alpha \neq 0$ e $R := +\infty$ se $\alpha = 0$.

O número R assim definido é chamado o raio de convergência de $\mathbf{s}(x)$. Defina $s(x) := \sum a_n x^n$ para todo $x \in X := (-R, R) \subset \mathbb{R}$. Então a função s(x) é contínua em todo $\bar{x} \in X$.

De fato, seja dado $\varepsilon > 0$. Tomemos $\delta_1 > 0$ e r > 0 tais que $-R < -r < \bar{x} - \delta_1 < \bar{x} < \bar{x} + \delta_1 < r < R$. Como $\sum a_n r^n$ converge, podemos obter $N \in \mathbb{N}$ tal que

$$\sum_{n=N+1}^{\infty} a_n r^n < \frac{\varepsilon}{3}.$$

Assim temos

$$\left| \sum_{n=N+1} a_n \bar{x}^n \right| + \left| \sum_{n=N+1} a_n x^n \right| \le 2 \sum_{n=N+1}^{\infty} a_n r^n < \frac{2\varepsilon}{3}$$

para todo $x \in X$ tal que $|x - \bar{x}| < \delta_1$. Agora $p(x) := \sum_{n=1}^{N} a_n x^n$ é uma função polinomial e, portanto, pelo item (a) é contínua em todo $\bar{x} \in \mathbb{R}$. Logo, existe δ_2 tal que se $|x - \bar{x}| < \delta_2$, então

$$|p(x) - p(\bar{x})| < \frac{\varepsilon}{3}.$$

Tomemos $\delta := \min\{\delta_1, \, \delta_2\}$. Então se $|x - \bar{x}| < \delta$, temos

$$|s(x) - s(\bar{x})| \le |p(x) - p(\bar{x})| + \left| \sum_{n=N+1} a_n \bar{x}^n \right| + \left| \sum_{n=N+1} a_n x^n \right|$$

$$< \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, concluímos que s(x) é contínua em \bar{x} para todo $\bar{x} \in X$.

(d) Consideremos as séries $\mathbf{s}(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} e \mathbf{c}(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$. Façamos $a_k := \frac{(-1)^k}{(2k+1)!}$ e $b_k := \frac{(-1)^k}{(2k)!}$ para $k = 0, 1, 2, \dots$ É fácil ver

$$\lim \frac{|a_{k+1}|}{|a_k|} = 0$$
 e $\lim \frac{|b_{k+1}|}{|b_k|} = 0$.

Assim, deduzimos pelo Exemplo 11.2 (c) que

$$\lim |a_k|^{1/k} = 0$$
 e $\lim |b_k|^{1/k} = 0$.

Portanto, ambas as séries $\mathbf{s}(x)$ e $\mathbf{c}(x)$ possuem raio de convergência igual a $+\infty$. Portanto, podemos definir as funções

$$s(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \quad \text{e} \quad c(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} \quad \text{para todo } x \in \mathbb{R}.$$

Vamos ver em aula futura que, de fato, temos

$$s(x) = \operatorname{sen}(x)$$
 e $c(x) = \cos(x)$ para todo $x \in \mathbb{R}$.

Do item anterior segue então que sen(x) e cos(x) são funções contínuas em \mathbb{R} .

(e) É possível provar analiticamente que vale a clássica interpretação geométrica para sen $x \in \cos x$. (Veja Figura 15.1.) Dessa interpretação geométrica vemos facilmente que valem

$$|\operatorname{sen} x| \le |x|$$
 e $\operatorname{sen}^2 x + \cos^2 x = 1$ para todo $x \in \mathbb{R}$.

Da segunda relação, segue imediatamente que $|\sin x| \le 1$ e $|\cos x| \le 1$. Além disso, valem as fórmulas

Portanto, se $\bar{x} \in \mathbb{R}$, então temos

$$| \operatorname{sen} x - \operatorname{sen} \bar{x} | \le 2 \cdot \frac{1}{2} |x - \bar{x}| \cdot 1 = |x - \bar{x}|.$$

Isto nos dá uma outra maneira de mostrar a continuidade de sen x para todo $x \in \mathbb{R}$.

Da mesma forma,

$$|\cos x - \cos \bar{x}| \le 2 \cdot 1 \cdot \frac{1}{2} |x - \bar{x}| = |x - \bar{x}|,$$

o que também nos dá uma outra prova da continuidade de $\cos x$ para todo $x \in \mathbb{R}$.

Figura 15.1: A interpretação geométrica de sen $x e \cos x$.

Composição de Funções Contínuas

Vamos agora mostrar que se $f:X\to\mathbb{R}$ é contínua num ponto $\bar x$ e se $g:Y\to\mathbb{R}$ é contínua em $\bar y:=f(\bar x)$, então a composta $g\circ f$ é contínua em $\bar x$. Para que tenhamos $g\circ f$ definida em todo X, é preciso também que $f(X)\subset Y$.

Teorema 15.3

Sejam $X,Y\subset\mathbb{R}$ e sejam $f:X\to\mathbb{R}$ e $g:Y\to\mathbb{R}$ funções tais que $f(X)\subset Y$. Se f é contínua num ponto $\bar x\in X$ e g é contínua em $\bar y:=f(\bar x)\in Y$, então a função composta $g\circ f:X\to\mathbb{R}$ é contínua em $\bar x$.

Prova: Seja W uma ε -vizinhança de $g(\bar{y})$. Como g é contínua em \bar{y} , existe uma δ' -vizinhança $V \operatorname{de} \bar{y} = f(\bar{x})$ tal que se $y \in V \cap Y$, então $g(y) \in W$. Como f é contínua em \bar{x} , existe uma δ -vizinhança U de \bar{x} tal que se $x \in U \cap X$, então $f(x) \in V$ (Veja Figura 15.2). Como $f(X) \subset Y$, segue que se $x \in U \cap X$, então $f(x) \in V \cap Y$ de modo que $g \circ f(x) = g(f(x)) \in W$. Mas como W é uma ε -vizinhança de $g(\bar{y})$ arbitrária, isso implica que $g \circ f$ é contínua em \bar{x} .

VWU $\bar{y} = f(\bar{x})$ $g(\bar{y})$ \bar{x} f g

Figura 15.2: A composição de $f \in g$.

O teorema seguinte é uma consequência imediata do Teorema 15.3. Porém vamos enunciá-lo devido à sua importância.

Teorema 15.4

Sejam $X, Y \subset \mathbb{R}, f: X \to \mathbb{R}$ contínua em $X \in g: Y \to \mathbb{R}$ contínua em Y. Se $f(X) \subset Y$, então a função composta $g \circ f : X \to \mathbb{R}$ é contínua em X.

Os Teoremas 15.3 e 15.4 são muito úteis para estabelecer a continuidade de certas funções. Eles podem ser usados em diversas situações em que seria difícil aplicar a definição de continuidade diretamente.

Exemplos 15.2

(a) Seja g(x) := |x| para $x \in \mathbb{R}$. Segue da desigualdade triangular que

$$|g(x) - g(\bar{x})| \le |x - \bar{x}|$$

para todo $x, \bar{x} \in \mathbb{R}$. Logo, g é contínua em todo $\bar{x} \in \mathbb{R}$. Se $f: X \subset \mathbb{R} \to \mathbb{R}$ é qualquer função contínua em X, então o Teorema 15.4 implica que $g \circ f = |f|$ é contínua em X.

- (b) Seja $g(x) := \sqrt{x}$ para $x \geq 0$. Segue do Exemplo 7.2 (b) e do Teorema 14.2 que g é contínua em todo número $\bar{x} \geq 0$. Se $f: X \subset \mathbb{R} \to \mathbb{R}$ é contínua em X e se $f(x) \geq 0$ para todo $x \in X$, então segue do Teorema 15.4 que $g \circ f = \sqrt{f}$ é contínua em X.
- (c) Seja $g(x) := \operatorname{sen} x$ para $x \in \mathbb{R}$. Vimos no Exemplo 15.1 (d) que g é contínua em \mathbb{R} . Se $f: X \subset \mathbb{R} \to \mathbb{R}$ é contínua em X, então segue do Teorema 15.4 que $g \circ f$ é contínua em X.

Em particular, se f(x) := 1/x para $x \neq 0$, então a função $g \circ f(x) = \text{sen}(1/x)$ é contínua em todo ponto $\bar{x} \neq 0$.

Exercícios 15.1

1. Determine os pontos de continuidade das seguintes funções e diga que teoremas são usados em cada caso.

(a)
$$f(x) := \frac{x^2 + 2x + 1}{x^2 + 1} \ (x \in \mathbb{R}),$$

(b)
$$f(x) := \sqrt{x + \sqrt{x}} \ (x \ge 0),$$

(c)
$$f(x) := \frac{\sqrt{1 + |\sin x|}}{x} \ (x \neq 0),$$

(d)
$$f(x) := \cos \sqrt{1 + x^2} \ (x \in \mathbb{R}).$$

- 2. Mostre que se $f: X \to \mathbb{R}$ é contínua em $X \subset \mathbb{R}$ e se $n \in \mathbb{N}$, então a função f^n definida por $f^n(x) := (f(x))^n$ para $x \in X$ é contínua em X.
- 3. Seja $x\mapsto [\![x]\!]$ a função parte inteira. Determine os pontos de continuidade da função $f(x):=x-[\![x]\!],\ x\in\mathbb{R}.$
- 4. Seja g definida em \mathbb{R} por g(1) := 0 e g(x) = 2 se $x \neq 1$, e seja f(x) := x + 1 para todo $x \in \mathbb{R}$. Mostre que $\lim_{x \to 0} g \circ f \neq g \circ f(0)$. Por que isso não contradiz o Teorema 15.3?
- 5. Sejam f,g definidas em \mathbb{R} e seja $\bar{x} \in \mathbb{R}$. Suponhamos que $\lim_{x \to \bar{x}} f = \bar{y}$ e que g é contínua em \bar{y} . Mostre que $\lim_{x \to \bar{x}} g \circ f = g(\bar{y})$.
- 6. Dê um exemplo de uma função $f:[0,1] \to \mathbb{R}$ que é descontínua em todo ponto de [0,1] mas tal que |f| é contínua em [0,1].

- 7. Seja $h: \mathbb{R} \to \mathbb{R}$ contínua em \mathbb{R} satisfazendo $h(m/2^n) = 0$ para todo $m \in \mathbb{Z}, n \in \mathbb{N}$. Mostre que h(x) = 0 para todo $x \in \mathbb{R}$.
- 8. Se f e g são contínuas em \mathbb{R} , seja $S:=\{x\in\mathbb{R}: f(x)\geq g(x)\}$. Se $(s_n) \subset S$ e $\lim s_n = s$, mostre que $s \in S$.
- 9. Seja $g: \mathbb{R} \to \mathbb{R}$ satisfazendo a relação g(x+y) = g(x)g(y) para todo $x,y\in\mathbb{R}.$ Mostre que se g é contínua em x = 0, então g é contínua em todo ponto de \mathbb{R} . Além disso, se tivermos $g(x_0) = 0$ para algum $x_0 \in \mathbb{R}$, então g(x) = 0 para todo $x \in \mathbb{R}$.
- 10. Sejam $f,g:\mathbb{R}\to\mathbb{R}$ contínuas num ponto $\bar{x}\in\mathbb{R}$, e seja h(x):= $\max\{f(x),g(x)\}\$ para $x\in\mathbb{R}$. Mostre que $h(x)=\frac{1}{2}(f(x)+g(x))+$ $\frac{1}{2}|f(x)-g(x)|$ para todo $x\in\mathbb{R}$. Use esse fato para mostrar que h é contínua em \bar{x} .