

Maximizing Disinfection Reactor Ct via Integration of Chlorine Demand and Decay

Bill Persich, P.E.
PNWS AWWA Conference | Spokane, Washington
May 7-10, 2013

Presentation Summary Free Chlorine Ct Computations

- Present Reactor Ct Computations
- Suggested Integration Method for Ct
- Two-stage Algorithm for Predicting CDD
- Integration of CDD Algorithm
- Application of CDD Algorithm Integration

Importance of Ct Computations

- Protect Water Quality
 - Pathogen inactivation
 - DBP Minimization
- Assure compliance with disinfection regulations
- Meet regular reporting requirements

Typical CDD Profile

Two Existing Simple Methods to Compute Ct

Two Existing Simple Methods to Compute Ct

Method 2: Intermediate reactor sampling

$$Ct = \sum_{j=1}^{j=n} C_j(t_j - t_{j-1})$$

Existing methods

- Only accounts for reactor discharge concentration
- Ignores added value of CDD within reactor

Is there a better way?

New Method

- Mathematical model for CDD
- Integrate model
- Account for "lost" Ct value
- Helps when available Ct is "tight" or water is reactive

Existing Method vs. New

CDD Algorithms

General form to predict C versus t

CDD Algorithms

The most basic, simplified form

Where K is a rate constant $C = C_0e^{-kt}$

CDD Algorithms

A more elaborate and accurate form

For short term applications, can set A = 1 and ignore 2nd term

Yet Another Algorithm Twist

Rate constants vary with temperature!

Higher temperatures increase CDD

• Use Arrhenius Law and van't Hoff equation $d(lnk)/dT = \Delta H^0/(R_gT^2)$

 ΔH^0 = 15,048 cal/gm-mole; R_g = 1.987 cal/ $^{\circ}$ K-gm-mole Std. State Enthalpy Change

$$C = C_0 A e^{-kt} + C_0 (1-A) e^{-tt}$$

$$L = I_s EXP[\Delta H^0/(R_g T_s)] EXP[-\Delta H^0/(R_g T)] eq. 2$$

Scare you? It's not so bad!

Combine equations 1, 2, and 3. It's simple to integrate, right? Not so fast!

CDD Integration for Constant Temperature

$$Ct = \int Cdt$$

Ct =
$$\int_{0}^{t = t_f} C_0[Ae^{-kt} + (1-A)e^{-lt}]dt$$

 $t = t_0$

- Analytical integration works at constant temperature
- Not true for varying temperature

CDD Integration for Constant Temperature

CDD Varies with Time and Temperature

Integration for Varying Temperature

- For simplicity, assumeT = linear f(t)
- Re-express T and t in equations 1, 2, and 3 in terms of Z
- Cannot integrate analytically
- Resort to numerical integration
 - Use Simpson's Rule
 - Slice curve into numerous parabolic segments
 - Add up segment areas under the curve

Now what?

Next Steps

- Perform lab test to measure CDD constants
- Apply math
 - There's a free App for that!
- When to apply this method?
- Will regulators accept this method?

Example ComputationsNW City "X" WTP

Existing Method

GIVEN:

- 1.0 log inactivation credit via disinfection (direct filtration)
- Clearwell Volume: 325,000 gallons
- $t_{10}/t = 0.51$
- Flow = 8.4 mgd (5,833 gpm)
- pH = 7.8
- Temperature $T_0 = 19 \,^{\circ}\text{C} (292 \,^{\circ}\text{K})$
- Temperature $T_f = 20 \,^{\circ}\text{C} (293 \,^{\circ}\text{K})$
- $C_f = 0.8 \text{ mg/L as } Cl_2$

Integration Method

GIVEN:

- Same clearwell conditions
- A = 0.314
- $k_s = 0.0163 \text{ min}^{-1}$
- $I_s = 0.00017 \text{ min}^{-1}$
- $T_s = 292 \, ^{\circ} K = 19 \, ^{\circ} C$

Empirical values determined from City "X" CDD Study

Brown and Caldwell

Example ComputationsNW City "X" WTP

Existing Method

- $t_f = (325,000)(0.51)/5,833$ = 28.4 minutes
- Ct (available) = $C_f x t_f = (0.8)(28.4) = 22.7 \text{ mg-min/L}$
- Ct (required) = 24.4 mg-min/L from Ct tables for 1.0 log inactivation
- Log inactivation achieved = 22.7/24.4 = 0.9
- Just barely miss the inactivation target
- Causes City "X" to prechlorinate for added Ct
- This practice aggravates DBPs

Integration Method

- $t_f = (325,000)(0.51)/5,833$ = 28.4 minutes
- Ct (available) = 24.4 mg-min/L
- Ct (required) = 24.4 mg-min/L from Ct tables for 1.0 log inactivation
- Log inactivation achieved = 24.4/24.4= 1.00
- Improvement in log inactivation over traditional method > 7%
- Improvement may be small, but important in some circumstances
- In this case...no need to prechlorinate!

Brown and Caldwell 26

Summary

- Account for ALL reactor Ct, not just discharge value
- Determine CDD reaction variables
- Integrate CDD operating equations
- More useful for reactive waters
- Optimize disinfection reactor performance
 - Use less chlorine
 - Reduce disinfection byproducts

Spend same time on the math... with better resu ts

Questions?

Bill Persich, P.E. bpersich@brwncald.com

