Root Finding via Bisection

A Quick Review

Bisection Method: Overview

- Bisection method: one of 3 main root finding algorithms you'll see
- Premise: the root lies somewhere in a user-specified initial interval. The interval is narrowed down until it "hugs" the root.
- Called a bracketing method because the user must supply the algorithm with a bracket which contains the root
 - Contrast: Newton-Raphson method is an open method because it only requires an initial estimate (not a bracket) of the root
- Assumption: f(x) is real and continuous

Aside: f(x) = 0 form

- Whenever we mention a function f(x) in root finding, we imply a function in "f(x) = 0" form
 - Roots vs. intercepts there's a difference! (06a video)
- Example: If we want to compute the roots of $x^3 = 27$:

$$f(x) = x^3 - 27$$

$$f(x) = x^3$$

Brief Algorithm Overview

• Specify an initial interval: $[x_l \ x_u] \ni sign(f(x_l)) \neq sign(f(x_u))$

"such that"

- Assume the root x_r lies at the midpoint of the interval
- Divide the initial interval into two (equal) subintervals: $[x_l \ x_r]$ and $[x_r \ x_u]$
- Evaluate $f(x_l)$ and $f(x_r)$ and determine which of the two subintervals contains a sign change
- Assign new x_l , x_u accordingly and iterate

1st iteration:

1st iteration:

2nd iteration:

1st iteration:

2nd iteration:

3rd iteration:

Stopping Criterion

- Stopping criterion: condition which terminates the search if met
- Common (but not universal!) stopping criterion: $e_{\rm S}=0.0001$

$$|f(x_r)| \le e_s$$

Bisection Pros/Cons

Pros

- Guaranteed to converge
- Logical, easy-to-follow algorithm

Cons

- Slow
- Computationally expensive

Food For Thought

• From Slide 4: In the initial interval,

$$[x_l \ x_u] \ni sign(f(x_l)) \neq sign(f(x_u))$$

Why?