

```
I terative methods: generate a sequence of approximations: x^0, x^1, x^2, to x.

Roughly speaking, cost = (# iterations) \times (cost per iteration).

We'll like cost to be small (at least smaller than 0 [ns].)

Stationary iterative methods:

B. a don't k. x^{k+1} = Bx^k + c, k=0,1,2,...

Be \mathbb{R}^{n\times n} iteration matrix c \in \mathbb{R}^n iteration matrix c \in \mathbb{R}^n iteration matrix
```

Iteration is called consistent if exact solve of
$$Azc=b$$

satisfies

[A this case, the error $e^k := x - x^k \in \mathbb{R}^n$ satisfies

 $e^{k+1} = Be^k$, $k=0,1,\ldots$ (exercise: check!)

so that $e^k = B^k e^0$, $h=0,1,\ldots$ (induction)

error ofter initial error.

 $e^{k+1} = B^k e^0$, $e^{k+1} = B^k$,

Theorem: A consistent stationary method is convergent for all initial $x^{\circ} \in \mathbb{R}^{n}$ if and only if S(B) < 1.

Proof: If S(B) < 1 then $B^{k} \xrightarrow{>} 0$, so $||e^{k}|| < ||B^{k}|| ||e^{\circ}|| > 0$ for all x° .

If $S(B) \ge 1$ then $\exists x^{\circ} s.t. e^{k} + 0$.

To see this, recall that $\exists \hat{y} \in \mathbb{R}^{n} \setminus \S \circ \S$ and $\varepsilon > 0$ s.t. $||B^{k}\hat{y}||_{y} \ge \varepsilon S(B)^{k} ||\hat{y}||_{y}$.

Then $||B^{k}\hat{y}||_{y} \ge \varepsilon ||\hat{y}||_{y} > 0$, so choosing $e^{\circ} = \hat{y} = \varepsilon \cdot (i.e. x^{\circ} = x - \hat{y})$ we have $e^{k} \ne 0$.

The mem:

The mem:

The mem:

If II II v is such that the induced norm II II m Satisfies

I Blim < I, then we get linear conveyence (+ x0)

and I eklly < (IBIIm) I e o IV, k=0,1...

Proof: | eklly = 118k e o | V < 118k | M | e o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o | V < 118l | M | le o |

(or ollow): If B is symmetric and S(B) < 1 then we get linear conveyence w.r.t. $||\cdot||_2$ (Euclidean norm at $||R^n|$) with constant C = S(B), so $||e^k||_2 \le (S(B)^k ||e^o||_2)$, k = 0,1,...

Simplest choice of B: B=I-A, c=b.

"Basic stationary method": $2c^{k+1}=(I-A)x^k+b$, k=0,1,....

(learly this is consistent with Ax=b.

Ax=b

X+Ax=x+b

X+Ax=x+b

X=(I-A)x+b

i.e. $\sigma(A)$ is contained in the open ball of radius 1 around the point 1.

(1-A|x| + b)

Ax=b

X+Ax=x+b

X+Ax=x+b