Modelos para o Planejamento da Operação de Curto Prazo do Sistema Elétrico Brasileiro

Prof. Fernanda da Serra Costa Depto. Estatística - IME

27 de março de 2025, 18h00 – 19h00 Sala RAV62, 6° andar, Bloco F

Projeto de Extensão

Transição energética: vantagens e desafios técnicos das energias renováveis para o equilíbrio entre custos, segurança e mudanças climáticas

Departamento de Estatística

ELE Depto. de Eng. Elétrica

O Sistema Interligado Nacional

Matriz Elétrica - Capacidade Instalada 2014

Renováveis 2014: $pprox 99,2\,\mathrm{GW}$ (pprox 80%)

Fonte: www.ons.org.br

(MW)

	MW	%	
Hidro Nacional	81.435,0	66,69%	72,43%
Hidro Itaipu	7.000,0	5,73%	
Térmica convencional	20.484,0	16,78%	
Termonuclear	1.990,0	1,63%	
Biomassa	6.428.0	5,26%	
Eólica	4.759,0	3,90%	
Solar	8,0	0,01%	
Total	122.104,0	100,00%	

Dados referentes a 31/12/2014.

ENERGY SOURCES

		2014
Hidráulica	Reservatório	43.054
	Fio	32.902
	TOTAL	75.956
Térmica com CVU	Nuclear	1.990
	GN	10.921
	GNL	704
	Carvão	3.210
	Óleo	3.745
	Diesel	883
	Outros	1.021
	TOTAL	22.474

PCHs	5.479
Biomassa	6.428
Eólicas	4.759
Solar	8
Itaipu 60 Hz (Brasil)	7.000
Capacidade Instalada	122.104
Compras Itaipu	5.940
TOTAL	128.044

Matriz Elétrica - Capacidade Instalada 2024

Renováveis: 2024 – \approx 204 GW (\approx 91%)

Fonte: www.ons.org.br

Matriz Elétrica - Capacidade Instalada 2024/2028

EVOLUÇÃO DA CAPACIDADE INSTALADA NO SIN - OUTUBRO 2024/ DEZEMBRO 2028

Renováveis: 2024 – \approx 204 GW (\approx 91%) 2028 – \approx 232 GW (\approx 93%)

Fonte: www.ons.org.br

Rede de transmissão

230 kV	2023 64.265 km	2028 69.070 km
345 kV	2023 10.597 km	2028 10.744 km
440 kV	2023 7.061 km	
500/525 kV	2023 69.247 km	
600 kV	2023 9.544 km	
750 kV	2023 1.722 km	
800 kV	123 Jun	
TOTAL	171.640 km	200.015 km

Fonte: www.ons.org.br

Diagrama Esquemático das Usinas Hidroelétricas do SIN

Usinas Hidroelétricas Despachadas pelo ONS na Otimização da Operação Eletroenergética do Sistema Interligado Nacional

Comentários sobre o SIN

- Nossa matriz elétrica é fortemente renovável e deve continuar assim
- Nosso sistema (o SIN) é muito grande e bastante complexo
- A operação do SIN é bastante complexa, devido a sua dimensão, composição de fontes e diferentes atores
- No contexto da transição energética, além da utilização de fontes renováveis é muito importante o uso racional de energia (energia não gerada implica em menos emissões de GEE e impactos ambientais)
- Operação Interligada
- Modelos matemáticos para o Planejamento da Expansão e Operação do SIN
- Problema Grande -> solução -> Decomposição do Planejamento em Etapas
- Utilização de modelos que considerem as características do SIN (representação das diversas fontes, das incertezas, dos demais usos da água, etc)

Cadeia de modelos

Horizontes e Intervalos de Tempo:

20 a 30 anos, intervalos anuais a 1 semana, intervalos horários

Homologados pela ANEEL

Usuários:

ONS, CCEE, EPE, ANEEL, Sistema Eletrobras e Agentes

O desenvolvimento conta com parcerias entre Centros de Pesquisas e Universidades

Cadeia de modelos

Planejamento do Operação de Curto Prazo

MODELOS:

DECOMP: Otimização Energética

GEVAZP: Geração de cenários de vazões

mensais

PREVIVAZ: Previsão de vazões semanais

PREVIVAZH: Previsão de vazões diárias

Controle de Cheias: Alocação de espaço

nos reservatórios para amortecimento de

possíveis cheias

DECOMP Planejamento da Operação de Curto Prazo

O Problema da operação do SIN

- Sistemas formados apenas por Usinas Térmicas o custo de operação dependem apenas do combustível e manutenção, i é, o custo de cada unidade independe das demais, o que torna o planejamento da operação mais simples, pois basta iniciar a geração pelas usinas mais baratas
- Sistemas que contam com **fontes renováveis (Hidro, Solar, Eólica)**, como a água, o sol e o vento são "grátis" (e não emitem GEE), o **custo de operação** está relacionado ao combustível não utilizado. Além disso,
 - As afluências futuras (que dependem da precipitação), a velocidade do vento e a irradiação solar têm componentes sazonais e aleatórios

O Problema da operação do SIN

- O volume dos reservatórios das hidrelétricas atenua a questão da aleatoriedade
- Porém, como os reservatórios são limitados:
 - O problema de operação torna-se **acoplado no tempo**, pois a operação em um determinado instante de tempo afeta a operação nos instantes seguintes
 - A água liberada em uma hidrelétrica afeta a operação das hidrelétricas à jusante => acoplamento espacial
- Além disso, a operação deve ter como objetivo minimizar custo e garantir a confiabilidade de atendimento (preservando o meio ambiente e a sustentabilidade)

O Problema da operação do SIN

 Assim, o planejamento da operação do SIN é um problema de decisão sob incertezas com acoplamento no tempo e no espaço de grande dimensão

Etapa do Planejamento da Operação	Médio Prazo	Curto Prazo	Programação Diária
Modelo de Otimização Energética	NEWAVE	DECOMP	DESSEM
Nível de Detalhamento do SIN	Reservatórios Equivalentes (UI até 6 meses), Intercâmbios	Usinas individualizadas (UI), Intercâmbios	Unidades geradoras, Rede (Fluxo DC)
Horizonte de planejamento	Até 10 anos	Até 1 ano	Até 14 dias
Discretização temporal	Mensal	Semanal/ Mensal	½ hora / horária
Consideração das incertezas hidrológicas	Estocástico	Estocástico / determinístico	Determinístico
Estratégia de Solução	PDDE	PDD	MILP

DECOMP: Objetivo

Determinar as metas de **geração de cada usina** de um sistema hidrotérmico **sujeito a afluências estocásticas, de forma a minimizar o valor esperado do custo de operação** ao longo do período de planejamento, **considerando**:

- As restrições físicas e operativas associadas ao problema:
 - conservação da água, limites de turbinamento, defluência mínima, armazenamento, atendimento à demanda, limites de intercâmbio, etc.
- O Custo, composto pelo custo variável de combustível das usinas termoelétricas e pelo custo atribuído às interrupções de fornecimento de energia, representado por uma função de penalização dos déficits de energia (custo do déficit)
- A **incerteza** acerca das vazões afluentes aos diversos aproveitamentos do sistema, representada através de **cenários hidrológicos**

DECOMP Representação Gráfica do Problema e das afluências

Cenários de vazões mensais afluentes a cada UH do SIN

DECOMP Representação Gráfica do Problema e das afluências

Cenários de vazões mensais afluentes a cada UH do SIN

DECOMP Representação Matemática do Problema

$$\alpha_{t}(X_{t}) = \underset{A_{t}|X_{t}}{E} \left\{ \min_{U_{t}} \left[C_{t}(U_{t}) + \frac{1}{1+\beta} \alpha_{t+1}(X_{t+1}) \right] \right\}$$

s.a.

$$X_{t+1} = f_t (X_t, A_t, U_t)$$

$$g_{t+1}(X_{t+1}) \ge 0$$

$$h_t(U_t) \ge 0$$

para t = T, T-1, ..., 1; para todo X_t

T : horizonte do estudo

t : estágios do estudo, que podem ser diferentes

 β : a taxa de desconto

X_t: variáveis de estado do problema, afetam a decisão:

V_t volume armazenado nos reservatórios no início do estágio t

A_t vazões incrementais aos reservatórios nos estágios anteriores à t

U_t: variáveis de decisão do problema, tais como:

Q_t: volumes turbinados

S_t: volumes vertidos

 $C_t(U_t)$: custo imediato associado a decisão U_t

α_t(X_t): valor esperado do custo de operação do estágio t até o final do período sob a hipótese de operação ótima

DECOMP Representação Matemática do Problema

$$\alpha_{t}(X_{t}) = E_{A_{t}|X_{t}} \left\{ \min_{U_{t}} \left[C_{t}(U_{t}) + \frac{1}{1+\beta} \alpha_{t+1}(X_{t+1}) \right] \right\}$$

s.a.

$$X_{t+1} = f_t (X_t, A_t, U_t)$$

$$g_{t+1}(X_{t+1}) \ge 0$$

$$h_t(U_t) \ge 0$$

para t = T, T-1, ..., 1; para todo X_t

T: horizonte do estudo

t : estágios do estudo, que podem ser diferentes

β: a taxa de desconto

X_t: variáveis de estado do problema, afetam a decisão:

V_t volume armazenado nos reservatórios no início do estágio t

A_t vazões incrementais aos reservatórios nos estágios anteriores à t

U_t: variáveis de decisão do problema, tais como:

Q_t: volumes turbinados

S_t: volumes vertidos

C_t(U_t): custo imediato associado a decisão U_t

α_t(X_t): valor esperado do custo de operação do estágio t até o final do período sob a hipótese de operação ótima

DECOMP Representação Matemática do Problema

Custo Imediato

Obtido em cada estágio t PPL

$$\begin{split} C_t(U_t) &= \min \sum_{j=1}^{NT} C_j \Big(G_t^j \Big) \\ &\text{sujeito a} \\ &\sum_{i=1}^{NH_k} \rho_i \mathcal{Q}_t^i + \sum_{j=1}^{NT_k} G_t^j + \sum_{r \in \Omega_k} \Big(f_t(r,i) - f_t(i,r) \Big) = D_t^k \\ &\underline{G}_t^j \leq G_t^j \leq \overline{G}_t^j \end{split}$$
 Custo Total = CF +

 $\underline{G}_{t}^{r} \leq G_{t}^{r} \leq G_{t}$ $f_{t}(i,r) \leq \overline{f_{t}}(i,r)$ para k = 1, ..., NS;

Derivada do C Imediato = Custo Uts ou Déficit

Custo Futuro - FCF

Valor esperado do custo de operação da etapa t+1 até o horizonte T, a partir do estado X_{t+1} .

 $\alpha_{T+1}(X_{T+1})$: FCF para o último estágio do horizonte é proveniente da etapa de médio prazo - NEWAVE

Acoplamento com FCF do médio prazo

O acoplamento se dá transformando os volumes finais dos reservatórios do último estágio do horizonte de curto prazo (DECOMP) em energia armazenadas nos subsistemas do modelo de médio prazo (NEWAVE), e as vazões afluentes passadas em energias afluentes.

Derivada do C Futuro em relação ao VArm = Valor da Água

DECOMP Representação Atual

Semana Operativa: sábado à sexta-feira

Última semana operativa do mês: última semana do mês que todos os dias pertencem ao mês. Se a semana abrange pelo menos 1 dia do mês seguinte, esta será a 1ª semana operativa do mês seguinte.

Mês	Semana	Sábado	Domingo	2 ^a f	3 ^a f	4 ^a f	5 ^a f	6 ^a f
1	última	25	26	27	28	29	30	31
1	Última	23	24	25	26	27	28	29
2	Primeira	30	31	01	02	03	04	05

DECOMP Representação Atual

- Programação Dinâmica Dual PDD (Decomposição de Benders Mult-estágio)
- Os cortes de Benders são gerados para cada estágio (anterior) nas backwards
- Os cortes são gerados para cada semana e cenário do 2º mês em cada interação

Simulação Forward

Simulação Backward

Convergência do processo

(ZSUP-ZINF)/ZUP<Tol

- **Qual informação é adicionada à cada simulação backward?** Função de Custo Futuro
- Como?

Acoplamento entre estágios no horizonte do DECOMP
$$\alpha^{t+1,s} - \sum_{j=1}^{NH} (\pi_V)_j^{k,t+1,s} V_j^{t+1,s} \geq \pi_0^{k,t+1,s} \quad k=1,\dots,NCUT^t \ t \neq T$$

Cortes construídos pelo **DECOMP**

Acoplamento com o Newave

$$\alpha^{t+1,s} - \sum_{i=1}^{NS} \left(\pi_{EARM}^{k}\right)_{i}^{T+1,s} EARM_{i}^{t+1,s} + \sum_{i=1}^{NS} \sum_{p=1}^{P} \left(\pi_{AFL}^{k}\right)_{i}^{T+1-p} EAF_{i}^{T+1-p} \geq \pi_{0}^{k,T+1} \quad k = 1, \dots, NCUT^{t} \ t \neq T$$

Cortes do Newave

$$EARM = \sum_{i=1}^{NR} V_i x Prod^{Ac}$$

$$EAF = \sum_{i=1}^{NUH} Q_i x Prod^{Ac}$$

- Na 1ª simulação Forward não temos ainda FCF nos estágios do horizonte do DECOMP
- Podem ocorrer <u>inviabilidades</u>, inclusive até que o processo tenha "detalhado" a FCF poderão ocorrer inviabilidades, <u>que poderão ser solucionadas ao longo</u> <u>do processo interativo</u>
- Para prosseguir o processo iterativo, adotam-se variáveis de folgas nas restrições, que estão associadas à penalidades ("custo") na função objetivo
- Como o objetivo é a solução de menor custos, buscase zerar as variáveis de folga sempre que possível.

		X-		X
It	Zinf	7	GAP	I TEMPO I
10	(1.0E+03 \$)	Zsup (1.0E+03 \$)	(%)	IEMPO I
	(1.02+03 \$)	(1.02+03 \$)	(8)	
x	x	x-		X
1			24607.0625859	7.7
2			24607.0625859	
3	56957814.8	438741138.1	670.2913802	00:01:001
4	56958146.6	205632348.8	261.0235955	00:01:16
5	56962223.9	63721991.8	11.8671068	00:01:30
6	56962260.7	59282126.3	4.0726362	00:01:45
7	56962345.4	58177277.4	2.1328686	00:02:001
8	56969809.3	57653831.6	1.2006750	00:02:18
9	56984721.9	57653831.6	1.1741914	00:02:42
10	56998065.4	57653831.6	1.1505061	00:03:02
11	57000544.4	57116125.5	0.2027719	00:03:16
12	57002596.7	57038900.1	0.0636872	00:03:35
13	57005416.7	57038900.1	0.0587372	00:03:58
14	57005418.0	57038900.1	0.0587349	00:04:19
15	57005432.9	57038900.1	0.0587088	00:04:38
16	57005468.5	57038900.1	0.0586463	
17	57005525.8	57038900.1	0.0585458	
18	57023032.5	57037887.5	0.0260509	
19	57023400.2	57037887.5	0.0254059	
20	57023508.8	57029539.3	0.0105754	
21	57023512.8	57029539.3	0.0105684	
22	57025987.9	57029539.3	0.0062276	
23	57025994.8	57028827.9	0.0049680	
24	57026722.7		0.0036916	
25	57027149.1	57028827.9	0.0029439	
26	57027161.5		0.0021779	
27		57028403.5	0.0021707	The second second
28	57027457.2	57028053.0	0.0010448	
29	57027460.1	57028053.0	0.0010396	
30	57027593.3	57028053.0	0.0008060	00:09:59
31		57028053.0	0.0007962	

O SIN	O SIN VISTO PELO DECOMP
Usinas Hidrelétricas	Usinas Hidrelétricas
Usinas Térmicas	Usinas Térmicas
Usinas Térmicas - GNL	Usinas Térmicas - GNL
Usinas Eólicas	
Usinas Fotovoltaicas	Abatimento da carga diretamente
PCHs	
Importação/Exportação	Importação/Exportação
SIN	Dividido por subsistemas
Grandes Interligações entre Subsistemas	Grandes Interligações entre Subsistemas (Limites máximos e mínimos de fluxo de energia)
Rede elétrica interna aos Subsistemas	
Carga	Carga patamarizada: Leve. Média, Pesada
Déficit	Curva por patamar de déficit

Detalhamento/Restrição	
Carga por Patamar	Leve, Média, Pesada
Custo do Déficit	R\$ 8.327,76/MWh (2025; atualizado anualmente pela CCEE pela variação do Índice Geral de Preços – Disponibilidade Interna (IGP-DI)
Configuração Dinâmica do SIN	Entrada e saída de usinas
Restrição de Balanço Hídrico por patamar	$V^{t+1}(i) = V^{t}(i) + a^{t}(i)\Delta t - \sum_{k=1}^{K} \left[q_k^{t}(i) + s_k^{t}(i) - \sum_{j \in M(I)} (q_k^{t}(j) + s_k^{t}(j)) \right] \delta_k$

		. /-		
Deta	haman	せん/レ	oetri.	
Detai	lhamen	ת עט	COLIL	5au
				3

Restrição de Balanço Hídrico por patamar

Consideração dos usos múltiplos da água (retirada de água para outros usos, irrigação, abastecimento, etc)

$$V^{t+1}(i) = V^{t}(i) + a^{t}(i)\Delta t - \sum_{k=1}^{K} \left[q_k^{t}(i) + s_k^{t}(i) - \sum_{j \in M(I)} \left(q_k^{t}(j) + s_k^{t}(j) \right) \right] \delta_k$$

$$V^{t+1}(i) = V^{t}(i) + \alpha^{t}(i)\Delta t - \sum_{k=1}^{K} \left[q_k^{t}(i) + s_k^{t}(i) - \sum_{j \in M(I)} \left(q_k^{t}(j) + s_k^{t}(j) \right) \right] \delta_k - TI^{t}(i)\Delta t$$

Fonte: Cepel

Detalhamento/Restrição	
Restrição de atendimento à Demanda por patamar	$\sum_{i=1}^{NH} GH_k^t(i) + \sum_{j+1}^{NT} GT_k^t(j) + \sum_{i\cap int} Int_k^t(i) - \sum_{i=1}^{NCE} g_k^t(i) + \sum_{j}^{NCI} g_k^t(j) = D_k^t$ NCE: no contratos exportação em t
Geração eólica/solar/PCH	

Detalhamento/Restrição		
Usinas Elevatórias	Balanço Hídrico	$V^{t+1}_{A} = V^{t}_{A} + Qafl^{t}_{A} - Q^{t}_{A} - S^{t}_{A} - Q^{Bt}_{A}$ $V^{t+1}_{B} = V^{t}_{B} + Qafl^{t}_{B} - Q^{t}_{B} - S^{t}_{B} + Q^{Bt}_{A}$
	$\sum_{i=1}^{NH} GH_k^t(i) + \sum_{j=1}^{NT} GT_k^t(j) = D_k^t + \sum_{l=1}^{NUNE}$	$m{k(l)Q^{B^t}(l)}$ Atendimento à Demanda

Detalhamento/Restrição	
Enchimento de volume morto	Vazão mínima de armazenamento e defluência mínima
Volume de Espera p/ controle de cheias	$VARM_k \leq \overline{VE_k}$

Enchimento de Volume Morto:

Ex: UHE São Roque 29/4/22

Vazão afluente Vazão defluente Vazão

Fonte: Cepel

Volumes de Espera para Controle de Cheias

Detalhamento/Restrição	
Defluência mínima e máxima	$q^{t}(i) + s^{t}(i) \ge Qmin$ $q^{t}(i) + s^{t}(i) \le Qmax$
Restrições Hidráulicas Especiais	$RHA: \underline{A_k} \leq A_i + \sum_{j \in M_i} (Q_j + S_j) + \sum_{j \in D_i} (Desv_i) \leq \overline{A_k}$ $RHQ: \underline{Q_k} \leq \sum_{i=1}^{NHR} c_i^{def} Q def_i + \sum_{j=1}^{NHR} c_j^D Desv_j + \sum_{l=1}^{NUER} c_l^{bomb} Q bomb_l \leq \overline{Q_k}$ $RHV: \underline{V_k} \leq \sum_{i=1}^{NHR} c_i^{def} Q def_i + \sum_{j=1}^{NHR} c_i^D Desv_i + \sum_{l=1}^{NUER} c_l^{bomb} Q bomb_l + \sum_{m=1}^{NRR} c_m^V VARM_m \leq \overline{V_k}$ $RHE: \underline{Meta_k} \leq \sum_{i=1}^{NR} V_i \ x \ \rho_i^{acum}$

Detalhamento/Restrição

Restrições Elétricas:

limites máx/min de usinas (conj. Usinas)

sobrecarga (limites de geração e intercâmbios ponderados)

$$LI \leq \sum_{i=1}^{NHR} k_H(i)GH(i) + \sum_{j=1}^{NTR} k_T(j)GT(j) + \sum_{l=1}^{NIR} k_l(l)Int(l) + \sum_{m=1}^{NCR} k_c(m)g(m) \leq LS$$

GH, GT, Int, g: Geração das UHEs, UTEs, Fluxo de energia no Intercâmbio, Fluxo de energia Contratada

Detalhamento/Restrição

Engolimento Máximo (processo iterativo a priori)

$$q_{max_T} = \left(\frac{h_l(q_{def})}{h_{ef}}\right)^{\alpha} \cdot q_{ef}$$
 $h_l = h_{mon}(V_{inic}) - h_{jus}(q_{max_T}) - perdas$

h_{ef} q_{def} perdas : valores de cadastro das UHEs

qtur_{max} (valor até o qual há um estímulo natural para que a usina deflua) Depende do Volume Armazenado (processo iterativo)

função do **V**_{inic}

h_l (depende do Volume Armazenado)

Fonte: Cepel

Detalhamento/Restrição

Evaporação (aproximação linear por partes em torno de um V_{refevi})

$$f_{evapi}(V_i) = cte \times c_{ev}(i) \times A_i(h_{mon-i}(V_i))$$

coef. de evaporação

derivada da função f_{evap_i} no ponto V_{ref,ev_i}

$$Q_{evap_i}^t = f_{evap_i} \big(V_{ref,ev_i} \big) + k_{evap_i} \big(V_i^t - V_{ref,ev_i} \big) = \big[f_{evap_i} \big(V_{ref,ev_i} \big) - \underbrace{ \big(k_{evap_i} \big) V_{ref,ev_i} \big)}_{} \big] + k_{evap_i} V_i^t + V_{evap_i} V_i^$$

$$Q_{evap_i}^t = f_{evap_i}(V_{ref,ev_i}) + k_{evap_i}(V_i^t - V_{ref,ev_i}) = [f_{evap_i}(V_{ref,ev_i}) - (k_{evap_i})V_{ref,ev_i})] + k_{evap_i}V_i^t$$

$$V^{t+1}(i) = (1 - kvap)V^t(i) + a^t(i)\Delta t - \sum_{k=1}^{k} \left[(q_k^t(i) + s_k^t(i)) - \sum_{j \in Mi} (q_k^t(j) + s_k^t(j)) \right] \delta_k - TI^t(i)\Delta$$

A vazão evaporada nas UHEs é função do espelho d'água, que é função do volume armazenado

A relação volume x área é representada por um polinômio de 4° grau (curva cota x área x volume) $A_i(h_{mon-i}(V_i))$

Função de Produção Hidrelétrica

- A geração da UHE varia com a sua produtividade
- A produtividade da UHE é uma função não linear do VARM, Qturb e Qvert

GH =
$$Min\{Pdisp; \rho_{esp}, Q(h_{mon}(V) - h_{jus}(Q,S))k_{phd}\}$$
 [Mwmed]
Pinst e Perdas 9,81x10⁻³rmed Coef.perdas hidr

 Por simplificação, muitas vezes a produtividade da UHE é considerada constante, em geral, considera-se a produtividade média da UHE

Modelagem no DECOMP: Função de Produção Hidrelétrica Aproximada (FPHA)

- Aproximação linear por partes (LPP)
- Geração das UHEs modelada em função de VARMmédio, Qturb e Qvert
- Qturb e Qvert são considerados de forma independente

 $GH(V_{\rho}Q_{\rho}, 0)$

DECOMP Detalhamento do SIN e das Restrições no Problema

Modelagem no DECOMP: Função de Produção Hidrelétrica Aproximada (FPHA)

- Os pontos da região não côncava da FPH são eliminados na construção da envoltória convexa.
- Para determinação a envoltória convexa FPHA₀ considera algoritmo desenvolvido pelo Cepel
- A FPHA₀ é por construção otimista em relação à FPH
- Fator de correção: Min desv. quadr. Méd. FPH e FPHA
- Aproximação secante no eixo S, passando pelos pontos (V_i,Q_i,0,GH(V_i,Q_i,0)) e (V_i,Q_i,S_{ref},GH(V_i,Q_i,S_{ref}))
- Sref é calculado de forma a minimizar EMQ entre FPHA e FPH para S=0 à S=Smax (Smax definido por UHE, ex: 2xMLT ou 2xQmax)

Modelagem no DECOMP: Função de Produção Hidrelétrica Aproximada (FPHA)

Inclusão no problema do despacho hidrotérmico

$$\sum_{i=1}^{NH} GH_k^t(i) + \sum_{j+1}^{NT} GT_k^t(j) + \sum_{i \cap int} Int_k^t(i) = D_k^t$$

$$GH_{i,t} \leq \alpha \left(\gamma_0^{i,k} + \gamma_V^{i,k} \overline{V_i^t} + \gamma_Q^{i,k} Q_i^t \right) + \gamma_S^{i,k} S_i^t \ k = 1, \dots, K_i$$

$$0 \le Q_i^t \le \overline{Q_i^t}$$
 $GH_{i,t} \le \overline{GH_{i,t}}$

Onde:

K_i é o índice dos hiperplanos da FPHA (cortes)

$$\gamma \geq 0$$
 parâmetros de cada hiperplano $\overline{V_i^t} = \frac{V_i^t + V_i^{t+1}}{2}$

Se o atendimento à demanda for por patamar, haverá um conjunto de restrição por patamar

Os planos são construídos para faixas de V e Q em cada estágio, considerado limites físicos, disponibilidade, REs e RHs

- Para compatibilizar o tempo computacional e a acurácia da solução foi desenvolvida a FPHAD
- As inequações (cortes) descritas anteriormente são introduzidas iterativamente, ao longo da resolução do problema

- Geração Mínima e Cronograma de Manutenção das usinas térmicas
- Antecipação do despacho das UT à GNL

- Representação da Aversão à Risco
 - **Objetivo**: incorporar o custo dos cenários mais críticos no cálculo da política de operação, em conjunto com a minimização do valor esperado
 - Nível de proteção (α)
 - Aplicada diretamente no algoritmo de PDD utilizado no modelo DECOMP
 - Parâmetros da **CVaR**(α , λ)

$$\alpha_{t}(X_{t}) = \underset{A_{t}|X_{t}}{E} \left\{ \min_{U_{t}} \left[C_{t}(U_{t}) + \frac{1}{1+\beta} \alpha_{t+1}(X_{t+1}) \right] \right\}$$

 x_1 x_2

Nº de cenários considerados como críticos

- Diferente da maioria dos países, no Brasil as hidrelétricas são a principal fonte de energia elétrica (≈ 47%)
- Uma das principais características de sistema de geração de energia elétrica de base hidrelétrica é sua dependência das vazões naturais afluentes aos reservatórios
- As vazões futuras dependem das condições meteorológicas e hidrológicas
- Uma das características das vazões naturais é sua flutuações no tempo, estas flutuações tem componente sazonal e aleatória

- A existência de reservatórios de regularização de vazões é uma estratégia para contornar esta questão, assim como o planejamento e operação do sistema de energia elétrica de forma coordenada e interligada
- Independente das estratégias adotada, a previsão de vazões afluentes às usinas hidrelétricas é fundamental para a otimização da operação do SIN
- Existem diversos tipos de modelos de previsão:
 - Modelos chuva-vazão conceituais
 - Modelos estocásticos,
 - Modelos baseados em RN
 - etc

Etapa do Planejamento da Operação	Médio Prazo	Curto Prazo	Programação Diária
Modelo de Otimização Energética	NEWAVE	DECOMP	DESSEM
Nível de Detalhamento do SIN	Reservatórios Equivalentes (UI até 6 meses), Intercâmbios	Usinas individualizadas (UI), Intercâmbios	Unidades geradoras, Rede (Fluxo DC)
Horizonte de planejamento	Até 10 anos	Até 1 ano	Até 14 dias
Discretização temporal	Mensal	Semanal/ Mensal	½ hora / horária
Consideração das incertezas hidrológicas	Estocástico	Estocástico / determinístico	Determinístico
Estratégia de Solução	PDDE	PDD	MILP
Afluências	Cenários de afluências Mensais - GEVAZP	Cenários de afluências Mensais - GEVAZP Previsões de afluências semanais – PREVIVAZ e SMAP	Previsões de afluências diárias – PREVIVAZH e SMAP

Previsão de vazões no SIN

Previsão com base em modelos Chuva-vazão no SIN

Previsão com base em modelos Chuva-vazão no SIN

Modelo SMAP (fonte: ONS, NT 0097 2018)

Onde a incerteza, em geral, está na chuva prevista

P: precipitação

Ep: evapotranspiração potencial

Er: evapotranspiração real

Es: escoamento para o reservatório de superfície

Ed: escoamento superficial

K2t: constante de recessão do primeiro escoamento

superficial

Rec: recarga do aquifero

Eb: escoamento base

Kkt: constante de recessão do escoamento básico

Str: capacidade de saturação

Rsolo: reservatório do solo

Rsup: reservatório da superfície, correspondente ao

escoamento superficial da bacia

Rsub: reservatório subterrâneo, correspondente ao escoamento subterrâneo da bacia (escoamento de base

Previsão com base em modelos Estocásticos no SIN

Modelos PREVIVAZ e PREVIVAZM

- (1) Méd., D.P. e Corr. Cte
- (2) Méd., D.P. Sazonais e Corr. Cte
- (3) Méd., D.P. e Corr. Sazonais (semana, mês, trimestre, semestral)

PREVIVAZM: previsões mensais de afluências às UHE's para um horizonte de até 12 meses

PREVIVAZ: previsões semanais de afluências às UHE's para um horizonte de até 6 semanas (1º mês do PMO)

Características gerais:

Modelos Estocásticos de Séries Temporais (Box e Jenkins)

- Valor Esperado (previsão) e seu intervalo de confiança (segundo nível de confiança definido *a priori*)
- Considera o **comportamento sazonal** das séries e a tendência hidrológica.
- Estrutura de **dependência temporal** é definida pela função de autocorrelação **amostral** da série
- **Tendência hidrológica**: sequência de últimas vazões, associadas ao comportamento recente da bacia (recessão ou ascensão)
- Diferentes métodos de estimação
- Escolha do melhor modelo: validação cruzada

Modelos PREVIVAZ e PREVIVAZM

Validação Cruzada

Modelo de Previsão	Característica	Método de Estimação
CONSTANTE	previsão pela média anual	momentos
SAZONAL	previsão pela média da semana	momentos
AR(p) (1≤P≥4)	estrutura de correlação estacionária	momentos
ARMA(p,1) (1≤P≥3)	estrutura de correlação estacionária	momentos
PAR(p)-G1 (1≤P≥4)	estrutura de correlação sazonal semestral	momentos
PAR(p)-G2 (1≤P≥4)	estrutura de correlação sazonal trimestral	momentos
PAR(p)-G3 (1≤P≥4)	estrutura de correlação sazonal mensal	momentos
PAR(p)-G4 (1≤P≥4)	estrutura de correlação sazonal semanal	momentos
PAR(p)-RO (1≤P≥4)	estrutura de correlação sazonal	regressão-origem
PARMA(p,1)-G1 (1≤P≥4)	estrutura de correlação sazonal semestral	momentos
PARMA(p,1)-G2 (1≤P≥4)	estrutura de correlação sazonal trimestral	momentos
PARMA(p,1)-G3 (1≤P≥4)	estrutura de correlação sazonal mensal	momentos
PARMA(p,1)-G4 (1≤P≥4)	estrutura de correlação sazonal semanal	momentos
PARMA(p,1)-RO (1≤P≥3)	estrutura de correlação sazonal	regressão-origem
PARMA(p,1)-R (1≤P≥3)	estrutura de correlação sazonal	regressão

Modelo PREVIVAZH

Previsões de **afluências diárias** às UHE's para um horizonte de até **14 dias**

Características Gerais:

Combina conceito físico com uma abordagem não paramétrica estocástica de séries temporais

Gera sequencias de até 14 vazões diárias condicionada as últimas vazões observadas

A previsão tem como base a sequência de afluências cuja média é mais próxima da previsão semanal

O modelo diário de séries temporais é baseado no **modelo DIANA** (Kelman, 1983):

Previsões Semanais – PMO e REV

Cenários Mensais-PMO e REV

Fonte: Relatório PMO – RV2 (ONS)

5.274

Fonte: Relatório PMO – RV2 (ONS)

Comentários finais

A matriz de energia elétrica brasileira tem como vantagem:

- ser composta majoritariamente de fontes renováveis
- ser diversificada, inclusive em sua parcela renovável

Permitindo considerar as vantagens de cada fonte

Por outro lado, a operação do SIN, não só por sua dimensão mas também pela diversidade de fontes, é um problema complexo que exige um planejamento cuidadoso

Para se buscar a operação mais eficiente do SIN é necessário muita matemática, estatística e engenharia, somadas a outras disciplinas quando incluímos a questão socioambiental (que não tratamos nesta apresentação).

Mãos à obra !!!!

Comentários finais

Obrigado! fcosta@ime.uerj.br

Projeto de Extensão

Transição energética: vantagens e desafios técnicos das energias renováveis para o equilíbrio entre custos, segurança e mudanças climáticas