Technology Arts Sciences TH Köln

Modulhandbuch Medieninformatik Master

TH Köln – Campus Gummersbach Fakultät für Informatik und Ingenieurwissenschaften Institut für Informatik

Inhaltsverzeichnis

1	Human-Computer Interaction	1
2	Multiperspective Product Development	2
3	Social Computing	3
4	Visual Computing	4
5	Weaving the Web	6
6	Computerethik	7
7	Masterarbeit	9
8	Spezielle Gebiete der Mathematik	11
9	Schwerpunktmodul 1	13
10	Schwerpunktmodul 2	14
11	Schwerpunktmodul 3	15
12	Wahlpflichtmodul 1	16
13	Wahlpflichtmodul 2	17
14	Wahlpflichtmodul 3	18
15	Research Methods	19
16	Design Methodologies	21
17	Interaction Design	23
18	Angewandte Statistik für die Mensch-Computer Interaktion	26
19	Sketching and Designing for User Experience	28
20	Projektarbeit - Entwicklung im Kontext des Studienschwerpunkts	30

21	Projektarbeit - Assessment/Evaluation, Forschung und Verwertung im Kontext des Studienschwerpunkts	32
22	Projektarbeit - Vision und Konzept im Kontext des Studienschwerpunkts	34
23	Netzwerk-und Graphentheorie	36
24	Soziotechnische Entwurfsmuster	39
25	WPF Computer Supported Collaborative Learning (CSCL)	42
26	WPF e-Science	45
27	Bildbasierte Computergrafik	47
28	Photorealistische Computergrafik	50
29	Storytelling und Narrative Strukturen	53
30	Visualisierung	55
31	Sicherheit, Privatsphäre und Vertrauen im Netz	59
32	Logik und semantische Modellierung	63
33	Qualitätssicherung und Qualitätsmanagement	65
34	Web Architekturen	68
35	Web Technologien	70

Human-Computer Interaction

Allgemeines:

Medieninformatik und Mensch-Computer Interaktion stehen in vielerlei Hinsicht in einem engen Zusammenhang. So beinhaltet etwa der Fachbereich "Mensch-Computer Interaktion" der GI e.V. die Fachgruppe "Medieninformatik" (siehe auch: http://fb-mci.gi.de/mensch-computer-interaktion-mci/fachgruppen/medieninformatik.html).

Im Zusammenhang mit der "third wave of HCI" (Susan Bødker, 2006 und 2016) wird die aktuelle Bedeutung der Disziplin der Mensch-Computer Interaktion für die Gestaltung interaktiver System und insbesondere ihre Rolle für die Medieninformatik deutlich. Nach Bødker besteht eine aktuelle Herausforderung der 3rd wave of HCI insbesondere darin, dass sich die Trennlinie von Technologienutzung zwischen beruflichem/gewerblichem und privatem Bereich mehr und mehr auflöst. Medieninformatik befasst sich insbesondere mit interaktiven und multimedialen Systemen in gewerblichen und privaten Nutzungskontexten und adressiert demnach die Herausforderungen der 3rd wave of HCI.

Zielsetzungen:

Dieser Schwerpunkt adressiert Kompetenzen, Fähigkeiten und Fertigkeiten die im Zusammenhang mit der Leitung und dem Management von Entwicklungsprojekten innovativer, interaktiver Systeme stehen. Dies umfasst die Nutzungskontexte in verschiedensten Anwendungsbereichen kritisch zu analysieren, Problemfelder zu identifizieren, Anforderungen zu spezifizieren, angemessene Vorgehen zur Lösungsentwicklung zu konzipieren und Gestaltungslösungen zu entwickeln und zu evaluieren. Absolventen dieses Schwerpunktes arbeiten als UX-Architects, Interaction Designer oder in Positionen mit ähnlichen Rollenbezeichnungen in Unternehmen/Institutionen und sind zentrale Entscheidungsträger, wenn es um die Entwicklung interaktiver Systeme aus Nutzungs -oder Nutzerperspektive geht.

Neben den vielfältigen weiterentwickelten Kompetenzen (formale, analytische, methodologische, gestalterische, technologische, etc.) haben sie die Befähigung zum fachlichen Diskurs vertieft und implementieren mit ihrer Kommunikationskompetenz eine wichtige Schnittstelle für die verschiedenen Stakeholder und Gewerke.

- · Interaction Design
- Design Methodologies
- · Angewandte Statistik für die Mensch-Computer Interaktion

Multiperspective Product Development

Zielsetzung:

Der Schwerpunkt "Multi-Perspective Product Development" bereitet die Studierenden auf die, für viele Projekte der Medieninformatik, typische Heterogenität vor, welche von der methodologischen über die technologische bis hin zur soziotechnischen Komponente reicht. Chakterisierende Merkmale solcher Projekte sind:

- Berücksichtigung von und Kommunikation mit Stakeholdern mit jeweils eigenen Perspektiven, die durch ihre Fachsprache, Methoden und Techniken sowie entsprechende Fähigkeiten, Verantwortlichkeiten und Kompetenzen definiert werden.
- · Heterogene soziale, technologische und ökonomische Rahmenbedingungen wie z.B.
- die Anwendung von unterschiedlichen, agilen bis hin zu "schwergewichtigen" Vorgehensmodellen,
- lokale Zusammenarbeit in kleinen Teams bis hin zu dezentraler Zusammenarbeit in großen, international und interdisziplinär aufgestellten Teams,
- ein breites Spektrum der Projektgegenstände von kleinen, nativen Apps für mobile Geräte bis hin zu großen, geschäftskritischen, internationalisierbaren und responsiven Web-Anwendungen,
- ein breites Spektrum der Projektkontexte von kleinen Inhouse-Projekten bis hin zu großen, organisationsübergreifenden internationalen Projekten.

- · Privatsphäre & Sicherheit im Netz
- Visualisierung
- · Qualitätssicherung und -management

Social Computing

Zielsetzungen:

Im Schwerpunkt "Social Computing" werden die Wechselwirkungen zwischen Gesellschaft und Informatik in den Mittelpunkt gestellt. Rechnersysteme und Netzwerke werden von Menschen intentional gestaltet, ausgerichtet an gesellschaftlichen Normen, Prozessen und Bedürfnissen. Gleichzeitig beeinflussen IT-Systeme diese gesellschaftlichen Normen und verändern Prozesse in allen Lebensbereichen. Die verantwortungsbewusste Konzeption und Realisierung von soziotechnischen Systemen (z.B. Social Software, Online Communities, e-Health, e-Government und e-Learning Angebote) sowie die empirische Evaluation existierender Systeme sind zentrale Ziele. Lösungen sollen unter ganzheitlichen Gesichtspunkten entwickelt werden. Verschiedene Wertvorstellungen und Interessen unterschiedlicher Stakeholder müssen identifiziert und berücksichtig werden.

Der Schwerpunkt verbindet daher Theorien, Modelle und Methodik der Human- und Sozialwissenschaften mit anwendungsorientierter Informatik. Studierende sollen in der Lage sein, computergestützte Systeme nach ethischen, politischen, sozialen und psychologischen Kriterien bewerten, planen und umsetzen zu können.

Ziel ist es, soziale Innovation durch digitale Anwendungen entstehen zu lassen. Neben den empirischen Methoden werden Designmethoden vermittelt, sowohl auf der konzeptionellen als auch auf der softwaretechnischen Implementierungsebene, um robuste, sichere und flexible Systeme zu gestalten.

- Privatsphäre, Vertrauen & Sicherheit im Netz
- · Soziotechnische Entwurfsmuster
- Netzwerk-und Graphentheorie

Visual Computing

Schwerpunktspezifische Pflichtmodule

- · Storytelling und Narrative Strukturen
- · Bildbasierte Computergrafik
- Visualisierung

Der Studienschwerpunkt "Visual Computing" steht an der Schnittstelle von Computergrafik, Computer Vision, Mensch-Maschine-Kommunikation, Bild- und Videoverarbeitung, sowie Visualisierung.

Ziel des Studienschwerpunktes Visual Computing ist es, den Studierenden ein solides Fundament bildbasierter und bildgebender Verfahren zu vermitteln, indem die Entwicklung praktischer Algorithmen und Programme anhand ihrer theoretischen Grundlagen erlernt wird. Zusätzlich sollen die Studierenden in die Lage versetzt werden, die entwickelten Applikationen zu bewerten, zu präsentieren und auf ihre ethischen Konsequenzen hin zu prüfen.

Die hohe Interdisziplinarität ist ein Innovationsfaktor und bietet Schlüsseltechnologien zur Lösung aktueller Problemstellungen in der Informatik, wie z.B. Virtual Engineering, Visual Analytics, Virtual- und Augmented Reality, Medizintechnik, Robotik, Animation und Bildsynthese. Anwendungen des Visual Computing finden sich in den verschiedensten Bereichen, z.B. in der Unterhaltungsindustrie (Visuelle Effekte, Computerspiele, Filmindustrie, 360° und 3D Videos), der Medizin (medizinische Bildverarbeitung, digitale Operationsplanung), der Automobilindustrie (Fahrerassistenzsysteme), der industriellen Fertigung (visuelle Qualitätskontrolle), der Internettechnologien und Mobilgeräte (Remote Rendering, Multimediale Datenbanken, Augmented Reality Anwendungen) und der digitalen Fotografie.

Um der Interdisziplinarität sowie den unterschiedlichen Ausrichtungen dieses Studienschwerpunktes gerecht zu werden müssen folgende Module im Umfang von 18 CP belegt werden:

- · Storytelling, Narrative Strukturen
- · Bildbasierte Computergrafik
- Visualistik

Zudem müssen folgende drei Projekte im Umfang von jeweils 12 cp belegt werden, die verschiedene Schwerpunkte in diesem heterogenen und schnell veränderlichen Bereich abdecken:

· Projekt Vision & Konzept im Studienschwerpunkt Visual Computing

- · Projekt Entwicklung im Studienschwerpunkt Visual Computing
- Projekt Forschung im Studienschwerpunkt Visual Computing

Weitere 18 CP können aus dem allgemeinen Angebot der Veranstaltungen aller Kurse aus den Masterstudiengängen Medieninformatik und Informatik belegt werden, um der Heterogenität der Medieninformatik und des Visual Computings gerecht zu werden.

Weaving the Web

Zielsetzung:

Im Studienschwerpunkt "Weaving the Web" wird die Entwicklung von Produkten und Diensten im Web in den Mittelpunkt gestellt. Dabei wird der gesamte Lebenszyklus von der Erarbeitung einer Vision, der eigentlichen Software Entwicklung bis hin zu der Verwertung als Produkt und/oder Publikation adressiert.

Als charakterisierende Merkmale für die Entwicklung von Produkten und Diensten im Web stehen:

- die Einbettung in ein Netz von Prozessen und Informationsflüssen, die Dienste, Informationen, Personen und Geräte im Web zusammenfassen.
- der Fokus auf Offenheit, sowohl bei den verwendeten Technologien, Frameworks und Plattformen als auch die Haltung in der Kommunikation im Team und gegenüber der Community und
- die konsequente Anwendung agiler Vorgehensmodelle sowie die Nutzung des Wissens und des kreativen Potentials von Nutzern durch Community Managenent.

Der Titel der Studienrichtung, "Weaving the Web" wurde gewählt, da neben dem klassischen Software Engineering vor allem auch die Integration eigener Produkte und Dienste in das Web thematisiert wird.

- · Sicherheit, Privatsphäre und Vertrauen im Netz
- · Web Architekturen
- · Web Technologien

Computerethik

- · Modulverantwortlich: Prof. Dr. Christian Kohls
- Kürzel: CE
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- · Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Pflichtmodul

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Seminar 2 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 90 h Seminar
- 45 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden sollen wesentliche Begriffe und Grundpositionen bezüglich ethischer und sozialer Fragen, die durch die Digitalisierung in Medien und Gesellschaft (z.B. mediale Kommunikation und der Einsatz von Informationssystemen) aufgeworfen werden, kennen. Sie sollen weiterhin Positionen aus wissenschaftlichen Veröffentlichungen in diesem Bereich erarbeiten, vortragen und dazu Stellung beziehen können.

Inhalt:

- Ethische Grundbegriffe
- Relativismus, Utilitarismus, Deontologische Theorien
- Ethik für Informatiker*innen
- Professionelle Verantwortung

- Privatsphäre und Datensicherheit
- Ethische Konsequenzen autonomer Systeme
- · Potentiale und Gefahren für demokratisches Handeln
- · Machtverhältnisse in digitalen Umwelten
- · Handlungsfreiheiten in digitalen Systemen
- · Quantifizierung von persönlichen Informationen
- · Positive Computing

Studien-/Prüfungsleistungen:

Abschlusspräsentation und schriftliche Ausarbeitung

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form)
- Fallstudien
- Diskussionsrunden
- Anonyme Abstimmungen und Kommentare (PINGO)

- Calvo, R. A., & Peters, D. (2014). Positive computing: Technology for wellbeing and human potential.
- · Johnson: Computer Ethics, 4rd Edition, Prentice Hall 2007
- Lawrence Lessing: Code Version 2.0 Basic Books, New York 2006
- Himma, Kenneth et al. (eds.): The Handbook of Information and Computer Ethics, Wiley
- Spinello, Richard: Case Studies in Information Technology Ethics, Prentice Hall
- · Capurro, Rafael: Ethik im Netz, Franz Steiner Verlag
- Tavani, Herman: Ethics & Technology Ethical Issues in an Age of Information and Communication Technology, Wiley
- Wendel, Stephen. (2013). Designing for behavior change: Applying psychology and behavioral economics.

Masterarbeit

- Modulverantwortlich: alle Informatik Professoren
- · Kürzel: MA
- Studiensemester Wintersemester: 4
- · Studiensemester Sommersemester: 4
- Sprache: deutschKreditpunkte: 30
- · Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Pflichtmodul

Kurzbeschreibung

Die Masterarbeit (Master Thesis) und das Kolloquium bilden den Abschluss des Studiums. Die Masterarbeit ist in der Regel eine eigenständige Untersuchung mit einer Aufgabenstellung aus der Medieninformatik und einer ausführlichen Beschreibung und Erläuterung ihrer Lösung. In fachlich geeigneten Fällen kann sie auch eine schriftliche Hausarbeit mit fachliterarischem Inhalt sein.

Lehrform/SWS:

Eigenständige betreute wissenschaftlich-fachpraktische Arbeit

Arbeitsaufwand:

900 Stunden

Angestrebte Lernergebnisse:

Ziel der Masterarbeit (Master Thesis) und des Kolloquiums ist die Befähigung, innerhalb einer vorgegebenen Frist eine wissenschaftlich orientierte Aufgabe aus der Medieninformatik, sowohl in ihren fachlichen Einzelheiten als auch in den fachübergreifenden Zusammenhängen, nach wissenschaftlichen, fachpraktischen und gestalterischen Methoden selbständig zu bearbeiten, zu dokumentieren und zu verteidigen.

Inhalt:

• Die Masterarbeit ist in der Regel eine eigenständige Untersuchung mit einer Aufgabenstellung aus der Medieninformatik und einer ausführlichen Beschreibung und Erläuterung ihrer Lösung.

- In fachlich geeigneten Fällen kann sie auch eine schriftliche Hausarbeit mit fachliterarischem Inhalt sein.
- Konkrete Inhalte je nach Thema.

Studien-/Prüfungsleistungen:

- Masterarbeit: Dokumentation der geleisteten Arbeit mit Zielsetzung und Aufgabenstellung, Stand von Wissenschaft und Technik, verwendeten Problemlösungsmethoden, erzielten Resultaten, offenen Fragen, Reflektion, verwendeten Quellen etc..
- Kolloquium: Darstellung und Verteidigung der Arbeit und der wichtigsten Ergebnisse im Rahmen eines Vortrages mit anschließender Diskussion
- Bearbeitungszeiten siehe Prüfungsordnung

Medienformen:

Je nach Thema

Literatur:

Je nach Thema

Spezielle Gebiete der Mathematik

- · Modulverantwortlich: Prof. Dr. Wolfgang Konen, Prof. Dr. Boris Naujoks
- · Kürzel: SGM-D
- · Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- · Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: Keine über die Zulassungsvorrausetzungen zum Studium hinausgehenden
- · Typ: Pflichtmodul

Kurzbeschreibung

Es werden Grundlagen für die Analyse und algorithmische Verarbeitung von Graph basierten Daten eingeführt.

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Seminar 2 SWS

Arbeitsaufwand:

Gesamtaufwand 150 h, davon

- 30 h Vorlesung
- 30 h Seminar
- 12 h Selbststudium

Angestrebte Lernergebnisse:

Mathematische Abstraktion und Fertigkeiten sind unverzichtbare Grundlagen wissenschaftlichen Arbeitens im Bereich der Informatik. Durch den Besuch dieser Veranstaltung sollen Studierende ihre mathematisch-abstrakte Analysefähigkeit weiter ausbauen, ihre Sicherheit im Umgang mit mathematischen Methoden mit Relevanz für die Informatik stärken, die Fähigkeit zur selbständigen Einarbeitung in neue mathematische Sachverhalte erhalten und ihre Beurteilungsfähigkeit im Umgang mit mathematisch-abstrakten Themen erhöhen.

Inhalt:

Exemplarische Fragestellungen der Mathematik in der Informatik mit beispielhaften Themen wie:

- · Deskriptive Statistik, Datenanalyse, Visualisierung
- Schließende Statistik, Trendanalyse
- Prädikatenlogik
- · gemischt-ganzzahlige Optimierung
- Simulationsverfahren
- Differentialgleichung und ihre numerische Lösung

Studien-/Prüfungsleistungen:

Präsentation und Klausur

Medienformen:

Präsentationsmaterialien, Arbeitsblätter

- Liu, Eric Zhi-Feng, e.a., Web-based Peer Review: The learner as both Adapter and Reviewer, IEEE Transactions on Education, Vol 44, No 3, August 2001
- Tufte, E.R., The Visual Display of Quantitative Information, Cheshire, CT, Graphics Press 1983
- Hanke-Bourgeois, M., Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, 2. Aufl., Teubner 2006.
- · Siehe ILIAS Modul MAS & SGM, Dokument Allgemeine Hinweise

Schwerpunktmodul 1

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: SPM1
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- Typ: Wahlpflichtmodul

Arbeitsaufwand:

Schwerpunktmodul 2

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: SPM2
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- Typ: Wahlpflichtmodul

Arbeitsaufwand:

Schwerpunktmodul 3

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: SPM3
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- Typ: Wahlpflichtmodul

Arbeitsaufwand:

Wahlpflichtmodul 1

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: WPM
- Studiensemester Wintersemester: 3
- Studiensemester Sommersemester: 3
- Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Pflichtmodul

Arbeitsaufwand:

Wahlpflichtmodul 2

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: WPM
- Studiensemester Wintersemester: 3
- Studiensemester Sommersemester: 3
- Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Pflichtmodul

Arbeitsaufwand:

Wahlpflichtmodul 3

- Modulverantwortlich: alle Informatik Professoren
- Kürzel: WPM
- Studiensemester Wintersemester: 3
- Studiensemester Sommersemester: 3
- Sprache: deutsch
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Pflichtmodul

Arbeitsaufwand:

Research Methods

- Modulverantwortlich: Prof. Dr. Gerhard Hartmann
- Kürzel: RM
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- · Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Pflichtmodul

Lehrform/SWS:

6 SWS: Vorlesung 2 SWS; Übung 2SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 30 h Übung
- · 105 h Projekt

Angestrebte Lernergebnisse:

Die Teilnehmer sind in der Lage verschiedene methodische Rahmen für die Beantwortung empirischer Problem- oder Fragestellungen zu benennen, kritisch einzuordnen und für ihre konkreten Projekte (Zielsetzungen, Rahmenbedingungen, etc.) eine rational begründete Wahl eines (oder einer Kombination aus verschiedenen) methodischen Rahme zu treffen und zu kommunizieren.

Sie sind in der Lage, die Methoden projektgerecht und methodenkompetent anzuwenden und Resultate angemessen zu interpretieren und

kritisch zu diskutieren...

Inhalt:

- · Forschungsdesign und -planung
- quantitative und qualitative Methoden

- empirische und analytische Ansätze
- in-vivo vs. in-vitro Rahmenbedinungen bei empirischen Methoden
- Datenweiterverarbeitung und Ergebnisinterpretation und -präsentation

Studien-/Prüfungsleistungen:

schriftliche Modulprüfung

Medienformen:

- beamergestützte Vorlesung
- E-Books

- Bortz, J.; Döring, N.: "Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler", Springer Heidelberg, Berlin, 2006
- Lazar, J. Feng, J., Hochheiser, H.: "Research Methods in Human-Computer Interaction", Wiley, 2009
- May, G., Mruck, K.: "Handbuch Qualitative Forschung in der Psychologie, Springer, 2010

Design Methodologies

- · Modulverantwortlich: Prof. Dr. Gerhard Hartmann, Prof. Dr. Christian Kohls
- · Kürzel: DM
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- · Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Schwerpunktmodul

Lehrform/SWS:

6 SWS: Vorlesung 2 SWS; Übung 1 SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 30 h Übung
- 105 h Projekt

Angestrebte Lernergebnisse:

Die Teilnehmer sind in der Lage verschiedene methodische Rahmen für die Gestaltung interaktiver Systeme zu benennen, kritisch einzuordnen und für ihre konkreten Projekte eine rational begründete Wahl eines (oder einer Kombination aus verschiedenen) methodischen Rahmen zu treffen und zu kommunizieren. Sie sind in der Lage, die Methoden projektgerecht und kompetent anzuwenden und Design-Entscheidungen und "trade-offs" zu begründen sowie Designresultate unter Einbeziehung der Designmethoden kritisch zu diskutieren.

Inhalt:

- Gestaltungstheorien
- Menschzentrierte Gestaltung (human-centered design)
- Nutzungszentrierte Gestaltung (usage-centered design)
- · Wertebezogene Gestaltungsansätze

- Gestaltungsprinzipien
- Gestaltungsmuster
- · Partizipatives Design
- Design Thinking

Studien-/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

- Beamer-gestützte Vorlesungen
- Lehrfilme
- E-Books
- Präsentationsmaterialien

- Borchers: "A Pattern Approach to Interaction Design", Wiley & Sons, 2001
- Brown: "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business, 2009
- ISO 9241, Teil 110, Grundsätze der Dialoggestaltung
- ISO 9241, Teil 210, Human-centered Design for interactive Systems
- Constantine & Lockwood: "Software for Use, A Practical Guide to the Models and Methods of Usage-Centered Design", Addison Wesley, 1999
- Schweppenhäuser: "Designtheorie", Springer, 2016
- Martin, Hanington: "Designmethoden .100 Recherchemethoden und Analysetechniken für erfolgreiche Gestaltung", Stiebner, 2013

Interaction Design

- · Modulverantwortlich: Prof. Dr. Gerhard Hartmann
- Kürzel: ID
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- · Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Schwerpunktmodul

Lehrform/SWS:

6 SWS: Vorlesung 2 SWS; Übung 1 SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 30 h Übung
- 105 h Projekt

Angestrebte Lernergebnisse:

Ziel ist vor allem, die Benutzerperspektive im Entwicklungsprozess interaktiver Systeme zu berücksichtigen, nicht von der Technologie sondern von menschlichen Erfordernissen auszugehen und eine entsprechende Interaktionsmodellierung und –gestaltung erreichen zu können. Dabei wird besonderer Wert auf den Auf- bzw. Ausbau von Entwurfskompetenz ("reflection in action", "conversation with the material") gelegt, die das systematische Entwickeln von Gestaltungsalternativen, deren Bewertung, der Synthese gefundener Qualitäten in kohärenten und konsistenten Systementwürfen und den systematischen, konstruktiven Umgang mit trade-offs und ein insgesamt iteratives Vorgehen beinhaltet.

Die Studierenden haben konzeptionelles Design (Conceptual Design) verstanden, können es souverän anwenden und als Vorgehen kritisch einordnen, um aufgabenangemessene und aus Benutzersicht angenehme Technologienutzung zu gestalten. Die Studierenden haben den Ansatz "Designing for Life" verstanden und wissen, wie sie dies methodisch umsetzen können.

Inhalt:

- · Analyse und Dokumentation menschlichen, situierten Handelns
- · Entwicklung präskriptiver Handlungsmodelle
- Analyse und kritische Einordnung präskriptiver Handlungsmodelle
- Konzeptuelles Design
- Interaktionskonzeption und -gestaltung
- Sketching und Prototyping Techniken
- · Case Studies
- Evaluationsmethoden und –techniken

Studien-/Prüfungsleistungen:

schriftliche Ausarbeitung und Designartefakte

Medienformen:

- Beamer-gestützte Vorlesungen
- Lehrfilme
- Präsentationsmaterialien

- Winograd, Terry (ed.), Bringing Design to Software, Addison Wesley, 1996, ISBN: 0-201-85491-
- Courage, Cathrine; Baxter, Kathy, "Understanding Your Users". A practical guide to user requirements. Methods, Tools, & Techniques, Kaufman Morgan Publishers, Elsevier, 2005, ISBN: 1-55860-935-0
- Dix, Allan; Filay, Janet; Abowd Gregory D.; Beale, Russel, Human-Computer Interaction, 3rd. edition, Pearson Prentice Hall, 2004, ISBN: 0130-461091
- Preece, Jenny; Rogers, Yvonne; Sharp, Helen, Interaction Design, beyond human-computer interaction, John Wiley & Sons, Inc., New York, ISBN: 0-471-49278-7
- Pruitt, John; Adlin Tamara, "The Persona Lifecycle". Keeping People in Mind Troughout Product Design, Morgan Kaufman Publishers, Elsevier, 2006. ISBN: 13- 978-0-12-566251-2

- Raskin, J., The Human Interface, Addison Wesley, 2000, ISBN: 0-201-37937-6
- Solso, Robert, L.; MacLin, M. Kimberley; MacLin, Otto, H., Cognitive Psychology, Pearson International Edition, Seventh Ed., 2005, ISBN: 0-205-41030-8
- Cooper, Alan und Reimann Robert, Cronin, David: "About Face 3.0", The Essentials of Interaction Design, Wiley, 2007. ISBN: 0470084111
- Snyder, Carolyn, "Paper Prototyping", Morgan Kaufman Publishers, 2003, ISBN: 1-55860-870-2
- Bortz, J.; Döring, N., Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler, Springer Heidelberg, Berlin, 2006

Angewandte Statistik für die Mensch-Computer Interaktion

- · Modulverantwortlich: Prof. Dr. Gerhard Hartmann
- · Kürzel: Stat
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- · Sprache: deutsch
- · Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- Typ: Schwerpunktmodul

Lehrform/SWS:

Vorlesung; Übung

Angaben zu SWS fehlen

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- · 45 h Vorlesung
- 30 h Übung
- 105 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden sind in der Lage empirische Daten so darzustellen, dass wesentlichen Strukturen erkennbar sind. Die Studierenden können angemessene Kennzahlen und Verfahren zur Charakterisierung von empirischen Daten spezifizieren und ermitteln. Sie beherrschen wesentliche Konzepte zur Visualisierung von empirischen Daten und können erste (explorative) Analysen durchführen.

Die Studierenden kennen grundlegende Konzepte und Verfahren der Inferenzstatistik. Sie sind in der Lage, empirische Daten zu analysieren, Hypothesen zu testen und die Ergebnisse hin-

sichtlich empirischer Fragestellungen zu interpretieren. Sie können Gütekriterien zur Auswahl unterschiedlicher Verfahren benennen und anwenden.

Inhalt:

Merkmale und Skalen, univariante Häufigkeitsverteilungen, Lagemaße, Streuung und Schiefe, Konzentration, bivariate Häufigkeitsverteilungen und Kontingenz, Korrelations- und Regressionsanalyse, Verhältnis – und Indexzahlen.

Diskrete und Stetige Zufallsvariablen, Population und Parameterschätzung, Hypothesentests und Signifikanz, t-Tests,

Konfidenzintervalle, Fehlertypen, Effektstärken und Power, multivariate Verfahren (ein- und mehrfaktorielle Varianzanalysen und entsprechendes Forschungsdesign).

Studien-/Prüfungsleistungen:

Übungsaufgaben und schriftliche Modulprüfung

Medienformen:

· Beamer-gestützte Vorlesungen (Vorlesungschrift mittels tablet) und Übungsaufgaben

- Statistik für Human- und Sozialwissenschaftler"; J. Bortz und C. Schuster, Springer, 2010
- "Modern Staistical Methods for HCI", Judy Robertson, Maurits Kaptein (Eds), Springer, 2016
- "Deskriptive Statistik"; R. Kosfeld, H. Eckey, M. Türck; Springer, 2016
- "Inferenzstatistik verstehen"; M. Janczyk, R. Pfister, Springer, 2013

Sketching and Designing for User Experience

- · Modulverantwortlich: Prof. Dr. Gerhard Hartmann
- Kürzel: SUE
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Wahlpflichtmodul

Lehrform/SWS:

6 SWS: Vorlesung 2 SWS; Übung 1 SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 30 h Übung
- 105 h Projekt

Angestrebte Lernergebnisse:

Die Studierenden sind in der Lage de- und präskriptiv Nutzer- oder deren nutzungsbezogene Sachverhalte oder Situationen mit einem umfänglichen Vokabular visuell-graphisch adäquat für verschiedene Stakeholder auszudrücken.

Inhalt:

- User Experience Modelle
- Sketching Techniken
- Storyboards
- · Empathy maps
- Prototyping

Studien-/Prüfungsleistungen:

Projektpräsentationsprüfung

Medienformen:

Bitte noch ergänzen

- Bill Buxton "Sketching User Experience", Focal Press, 2007
- Saul Greenberg, Bill Buxton et al. "Sketching User Experiences: The workbook", Elsevier, 2012
- Snyder, Carolyn, "Paper Prototyping", Morgan Kaufman Publishers, 2003

Projektarbeit - Entwicklung im Kontext des Studienschwerpunkts

- Modulverantwortlich: Prof. Dr. Kristian Fischer, Prof. Dr. Mario Winter, Prof. Hans Kornacher, Prof. Dr. Martin Eisemann, Prof. Dr. Christian Kohls, Prof. Dr. Gerhard Hartmann
- Kürzel: WTWP-E
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 3
- Sprache: deutsch
- Kreditpunkte: 12
- · Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktprojekt

Kurzbeschreibung

In einem Projekt wird, basierend auf einem existierenden Konzept, ein "minimal viable Prototype" entwickelt

Lehrform/SWS:

Projektarbeit

Arbeitsaufwand:

360 Stunden

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten

- können, basierend auf einem dokumentierten Konzept einen "minimal viable Prototype" entwickeln
- kennen Projektmanagement Techniken und Prozesse und können Sie auf ihr Projekt anwenden
- kennen Qualitätskriterien für Code, können Code auf dieser Basis analysieren und können die Kriterien in Ihrer Entwicklung erfüllen

Inhalt:

Das Projekt gliedert sich in zwei Teile:

- In der eigentlichen Projektarbeit wird der Prototyp entwickelt
- In dem Teil "Advanced Seminar" wird die Recherche durchgeführt. Es werden Analysetechniken für die Bewertung von kommerziellen Lösungen angewandt. Hierbei kann es sich sowohl um Konkurrenzprodukte handeln als auch um Dienste oder Frameworks, auf die das Produkt aufbauen könnte. Als Schwerpunkt dieses Teils werden wissenschaftliche Felder identifiziert, die Input und für das Produkt liefern können, es werden relevante Ergebnisse ermittelt und in einem wissenschaftlichen Seminar diskutiert.

Studien-/Prüfungsleistungen:

Projektarbeit

Medienformen:

n/a

Projektarbeit - Assessment/Evaluation, Forschung und Verwertung im Kontext des Studienschwerpunkts

- Modulverantwortlich: Prof. Dr. Kristian Fischer, Prof. Dr. Mario Winter, Prof. Dr. Martin Eisemann, Prof. Dr. Christian Kohls, Prof. Dr. Gerhard Hartmann
- Kürzel: WTWP-V
- Studiensemester Wintersemester: 3
- Studiensemester Sommersemester: 1
- · Sprache: deutsch
- Kreditpunkte: 12
- · Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktprojekt

Kurzbeschreibung

Auf Basis eines bereits ausgearbeiteten Prototypen werden in diesem Modul die Schritte Deployment, Qualitätssicherung, Kontinuierliche Integration sowie Produktmanagement und -marketing geplant, durchgeführt und kritisch reflektiert.

Lehrform/SWS:

Projektarbeit

Arbeitsaufwand:

360 Stunden

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten können die Kernfunktionen eines Produktes identifizieren und sind in der Lage einen Prototypen als minimal viable product in den Markt oder die Community zu bringen.

Die Teilnehmer kennen Deployment Strategien, Konzepte und Techniken der Kontinuierlichen Integration und können diese in einem spezifischen Projektkontext anwenden.

Die Studierenden sind in der Lage eine Produkt Management Strategie für ein Online Produkt zu entwickeln und zu implementieren. Alternativ können die Studierenden die gewonnen Erkennt-

nisse aus dem Produkt in der Community z.B. in Form eines Konferenzbeitrags sichtbar machen und einen wissenschaftlichen Diskurs dazu führen.

Inhalt:

In der eigentlichen Projektarbeit wird ein fertiger, lauffähiger Prototyp evaluiert und in Form eines minimal viable product zugänglich gemacht. Im Rahmen des Moduls wird eine Produktmanagement Strategie entwickelt und das Produkt wird unter Qualitätsmanagement Gesichtspunkten beleuchtet.

Variante: In der eigentlichen Projektarbeit wird ein fertiger, lauffertiger Prototyp evaluiert und in Form eines minimal viable product zugänglich gemacht. Im Rahmen des Projekts werden Konzepte und Techniken der Kontinuierlichen Integration auf das minimal viable product angewendet.

Zur Unterstützung werden Workshops/Seminare in den Bereichen Produkt Management, Web Deployment und Continuous Integration angeboten.

Studien-/Prüfungsleistungen:

Projektarbeit

Medienformen:

n/a

Projektarbeit - Vision und Konzept im Kontext des Studienschwerpunkts

- Modulverantwortlich: Prof. Dr. Kristian Fischer, Prof. Dr. Mario Winter, Prof. Dr. Martin Eisemann, Prof. Dr. Christian Kohls, Prof. Dr. Gerhard Hartmann
- Kürzel: WTWP-VK
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- Sprache: deutschKreditpunkte: 12
- · Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Schwerpunktprojekt

Kurzbeschreibung

In einem Projekt wird eine Idee für ein Produkt oder einen Dienst entwickelt, eine Recherche des Marktes und Standes des wissenschaftlichen Wissens durchgeführt, und ein Konzept soweit definiert und dokumentiert, dass in einem nachfolgenden Schritt ein Entwicklerteam in der Lage ist, einen ersten Prototyp zu realisieren.

Lehrform/SWS:

Projektarbeit

Arbeitsaufwand:

360 Stunden

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten

- · können Kreativitätstechniken anwenden um zu Produktideen zu kommen
- können zu einem kritischen Fachdiskurs über Potenziale und Risiken der Ideen beitragen
- können wissenschaftliche Gebiete, die für das Produkt wesentlich sein können, identifizieren, den Stand des Wissens ermitteln und in einem Fachdiskurs darstellen und diskutieren

- können auf Basis aktuellen Wissens und aktueller Dienste und Technologien ein Konzept für ein Produkt entwickeln, das in einem nachfolgenden Schritt von einem Team von Entwicklern als Prototyp realisiert werden kann.
- können die Vision in einen Design Mockup umsetzen

Inhalt:

Das Projekt gliedert sich in zwei Teile:

- In der eigentlichen Projektarbeit wird die Vision entwickelt und diskutiert, Alleinstellungsmerkmale herausgearbeitet, Alternativen für Nutzungskonzept und Architektur evaluiert und ein Konzept inklusive eines Projektplans erstellt.
- In dem Teil "Advanced Seminar" wird die Recherche durchgeführt: es werden Analysetechniken für die Bewertung von kommerziellen Lösungen angewandt. Hierbei kann es sich sowohl
 um Konkurrenzprodukte handeln als auch um Dienste oder Frameworks, auf die das Produkt
 aufbauen könnte. Als Schwerpunkt dieses Teils werden wissenschaftliche Felder identifiziert,
 die Input und für das Produkt liefern können, es werden relevante Ergebnisse ermittelt und in
 einem wissenschaftlichen Seminar diskutiert.

Studien-/Prüfungsleistungen:

Projektarbeit

Medienformen:

n/a

Netzwerk-und Graphentheorie

- · Modulverantwortlich: Prof. Dr. Kristian Fischer
- Kürzel: NGT
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- · Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktmodul

Kurzbeschreibung

Es werden Grundlagen für die Analyse und algorithmische Verarbeitung von Graph basierten Daten eingeführt.

Lehrform/SWS:

V/Ü

Angaben zu SWS fehlen

Arbeitsaufwand:

180 Stunden

Bitte Stunden noch aufsplitten

Beispiel:

Gesamtaufwand 150 h, davon

- 40 h Vorlesung
- 40 h Projektarbeit
- 90 h Selbststudium

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten

- kennen die Bedeutung von formalen Modellen von heutigen technischen, Informations- und sozialen Netzen,
- kennen wesentliche Konzepte, Kenngrößen und Algorithmen für Graphen und Netzwerke
- können in abgegrenzten Beispielen bestehende Netze anhand der Kenngrößen und Algorithmen analysieren um Methoden und Techniken zur Analyse sozialer und ggfs. anderer Netze auswählen zu können.

Inhalt:

- Empirische Untersuchung von Netzwerken: technische Netze, Informationsnetze, soziale Netze
- Psychologische Grundlagen Sozialer Netze
- Graphentheorie: Grundlegende Konzepte, Kenngrößen, strukturelle Eigenschaften
- Graph und Netzwerk Algorithmen

Studien-/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

- Präsentationsmaterialien
- Arbeitsblätter

- M.E.J. Newman: Networks An Introduction, Oxford University Press 2010
- S. Wassermann, K. Faust: Social Network Analysis Methods and Applications, Cambridge University Press 1994
- C. Kadushin: Understanding Social Networks: Theories, Concepts, and Findings, Oxford University Press 2011
- D. Easley, J. Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World , Cambridge University Press 2010

• J. Scott: Social Network Analysis, 3rd ed., Sage Pub 2012

Soziotechnische Entwurfsmuster

- Modulverantwortlich: Prof. Dr. Christian Kohls
- Kürzel: SZ
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Schwerpunktmodul

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Projekt 2 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 90 h Projekt
- 45 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden sollen:

- die Designphilosophie von Entwurfsmustern verstehen und einordnen können
- existierende Entwurfsmuster recherchieren, auswählen und umsetzen können
- neue Entwurfsmuster identifizieren und beschreiben können
- Konstruktives Feedback und Verbesserungsvorschläge für Entwurfsmuster geben können (Peer-Feedback)

Inhalt:

- · Pattern Theorie nach Christopher Alexander
- Wissenschaftstheoretische Verortung von Entwurfsmustern

- Kollaboratives Entwickeln von Entwurfsmustern
- Praktische Relevanz von Entwurfsmustern
- Wissensmanagement und Erfahrungsaustausch über Good Practices
- Übersicht über verschiedene soziotechnische Einsatzfelder von Entwurfsmustern (z.B. E-Learning, Social Interfaces, Interaction Design)
- Formale Struktur von Entwurfsmustern
- · Passung zwischen Lösungsform und Kontext
- Interventionen und Konsequenzen
- Forschungsmethoden zum Entdecken von neuen Entwurfsmustern (Pattern Mining)
- Schreiben von Entwurfsmustern

Studien-/Prüfungsleistungen:

Schriftliche Ausarbeitung zu neuen Entwurfsmustern

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form)
- Vertiefende Materialien in elektronischer Form (Screencasts und Handouts)
- Pattern Mining Workshop: Gemeinsames Identifizieren von Entwurfsmustern
- · Writers Workshop: Peer Feedback zu schriftlichen Ausarbeitung

- Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). A pattern language. New York, USA: Oxford University Press.
- Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press
- Bauer, R., & Waxmann Verlag. (2015). Didaktische Entwurfsmuster: Der Muster-Ansatz von Christopher Alexander und Implikationen für die Unterrichtsgestaltung.
- Bauer, R., & Baumgartner, P. (2012). Schaufenster des Lernens: Eine Sammlung von Mustern zur Arbeit mit E-Portfolios. (Schaufenster des Lernens.) Münstern: Waxmann
- Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-oriented software architecture: Vol. 5. Chichester, England: Wiley.

- Crumlish, C., & Malone, E. (2009). Designing social interfaces. Cambridge: O'Reilly Media
- Schuler, D. (2008). Liberating voices: A pattern language for communication revolution. Cambridge, Mass: MIT Press.
- Schümmer, T., & Lukosch, S. (2007). Patterns for computer-mediated interaction. Chichester, England: John Wiley & Sons.

WPF Computer Supported Collaborative Learning (CSCL)

- · Modulverantwortlich: Prof. Dr. Christian Kohls
- Kürzel: CSCL
- · Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- · Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Wahlpflichtmodul

Lehrform/SWS:

6 SWS: Vorlesung 2 SWS; Übung 1 SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 45 h Vorlesung
- 30 h Übung
- 105 h Projekt

Angestrebte Lernergebnisse:

Die Studierenden sollen:

- typische Funktionen von Systemen für rechnergestützte Gruppenarbeit kennen und in Bezug zu Gruppenprozessen, Lernprozessen, Aufgaben und der Organisation setzen können
- · Anforderungen für neue und existierende Systeme beschreiben und bewerten können
- Online Veranstaltungen und Besprechungen planen, durchführen und bewerten können
- Methoden für die nahtlose Integration von Präsenz- und Onlinephasen beherrschen (z.B. Blended Learning, Vor- und Nachbereitung von Meetings)

Inhalt:

- Klassifizierung von Systemen für die rechnergestützte Gruppenarbeit
- Synchrone und asynchrone Kommunikationsformen
- Effektive Gestaltung von Online-Besprechungen und virtuellen Arbeitsräumen
- Einsatz von Groupware und Roomware
- Soziale Regeln für Telearbeit und E-Learning
- · Groupworks Patterns
- Lerntheorien (z.B. Konstruktivismus, soziale Lerntheorien)
- · Konzeption von Blended Learning Arrangements
- Planung und Durchführung von Webinaren
- Planung und Produktion von digitalen Lernmaterialien

Studien-/Prüfungsleistungen:

Planung und Durchführung einer Onlineveranstaltung (ca. 15 Minuten)

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form)
- Vertiefende Materialien in elektronischer Form (z.B. Screencasts)
- Projekte in Kleingruppen, um die erlernten Methoden und Techniken einzuüben und zu vertiefen (Kollaborationsraum mit Videokonferenz und digitalen Arbeitsmitteln

- Bauer, R., & Waxmann Verlag. (2015). Didaktische Entwurfsmuster: Der Muster-Ansatz von Christopher Alexander und Implikationen für die Unterrichtsgestaltung.
- Bauer, R., & Baumgartner, P. (2012). Schaufenster des Lernens: Eine Sammlung von Mustern zur Arbeit mit E-Portfolios. (Schaufenster des Lernens.) Münstern: Waxmann
- Baumgartner, P. (2011). Taxonomie von Unterrichtsmethoden: Ein Plädoyer für didaktische Vielfalt. Münster: Waxmann.
- S. Khoshafian et al.: Introduction to Groupware, Workflow, and Workgroup Computing, Wiley 1995

- E. Andriessen: Working with Grouware Understanding and Evaluating Collaboration Technology, Springer 2002
- M. Kerres: Multimediale und telemediale Lernumgebungen, Oldenbourg Verlag 2000
- Leimeister, J. M. (2014). Collaboration Engineering: IT-gestützte Zusammenarbeitsprozesse systematisch entwickeln und durchführen. Berlin: Springer.
- R. Schulmeister: Grundlagen hypermedialer Lernsysteme: Theorie, Didaktik, Design 3. Auflage, Oldenbourg 2002
- R. Schulmeister: Lernplattformen für das virtuelle Lernen Evaluation und Didaktik, Oldenbourg 2003
- Schümmer, T., & Lukosch, S. (2007). Patterns for computer-mediated interaction. Chichester, England: John Wiley & Sons.
- N. Chapman et al.: Digital Multimedia, Wiley 2000
- Issing, Klimsa: Information und Lernen mit Multimedia

WPF e-Science

- · Modulverantwortlich: Prof. Dr. Christian Kohls
- · Kürzel: CE
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Wahlpflichtmodul

Lehrform/SWS:

6 SWS: Vorlesung 3 SWS; Projekt 3 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 60 h Vorlesung
- 30 h Selbststudium
- 90 h Seminar

Angestrebte Lernergebnisse:

Die Studierenden sollen quantitative und qualitative Forschungsmethoden mithilfe digitaler Medien durchführen können. Sie sollen elektronische Werkzeuge für die Datenerhebung und -auswertung beherrschen können. Sie sollen in der Lage sein, Forschungsergebnisse online zu diskutieren, sich international mit Forscherkollegen zu vernetzen und interdisziplinäre Forschungsprojekte durchzuführen. Zudem sollen Studierende in der Lage sein digitale Arbeitsumgebungen für die wissenschaftliche Zusammenarbeit zu gestalten.

Inhalt:

- Online-Interviews
- Experimente im virtuellen Raum
- · Gestaltung von Online-Fragebögen
- Auswertung von Forschungsergebnissen (z.B. SPSS)

- Nutzung und Bereitstellung von Open Data
- · Archivierung von Forschungsdaten
- Kollaboratives Online-Schreiben von wissenschaftlichen Publikaitonen
- Systeme für Peer-Reviews

Studien-/Prüfungsleistungen:

Mündiche Prüfung

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form)
- Skript und Handouts

- Döring, N. & Bortz, J. (2015). Forschungsmethoden und Evaluation: Für Human- und Sozialwissenschaftler. Berlin [u.a.]: Springer.
- Flick, U. (2011). Qualitative Sozialforschung: Eine Einführung. Reinbek bei Hamburg: Rowohlt-Taschenbuch-Verl.
- Popper, K. R. (1972). The logic of scientific discovery. London: Hutchinson.
- Schnädelbach, H. (2002). Erkenntnistheorie zur Einführung. Zur Einführung, 268. Hamburg: Junius.
- Westermann, R. (2000). Wissenschaftstheorie und Experimentalmethodik: Ein Lehrbuch zur psychologischen Methodenlehre. Göttingen [u.a.]: Hogrefe, Verl. für Psychologie.

Bildbasierte Computergrafik

- · Modulverantwortlich: Prof. Dr. Martin Eisemann
- · Kürzel: BCG
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: wahlweise deutsch oder englisch
- Kreditpunkte: 5
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Schwerpunktmodul

Kurzbeschreibung

Diese Vorlesung gibt eine Einführung in die grundlegenden Konzepte der bildbasierten Modellierung und der bildbasierten Synthese, Techniken, auf denen z.B. viele moderne Film-Spezialeffekte basieren.

Dabei werden verschiedenste Aspekte der Bild- und Videobe- und -verarbeitung, wie sie in modernen Bearbeitungstools vorkommen, erarbeitet und selbst implementiert. Die Teilnehmer erlernen die grundlegenden Konzepte der Modellierung anhand von Fotos realer Objekte. Es werden Methoden zur Bildaufnahme, Bildverarbeitung und Bildsynthese erarbeitet. Die Studierenden sind bei erfolgreicher Teilnahme in der Lage im Bereich Bild- und Videobearbeitung, sowie bildbasierter Modellierung, eigenständige Beiträge in Forschung und Wirtschaft leisten zu können.

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Projekt 2 SWS

Arbeitsaufwand:

Gesamtaufwand 150h, davon

- 50h Vorlesung (inkl. Vor-/Nachbearbeitung),
- 70h Praktikum / Projekt
- 30h Selbstlernphase

Angestrebte Lernergebnisse:

Nach erfolgreichem Abschluss

- haben die Teilnehmer ihr Wissen und Verständnis im Bereich der bildbasierten Computergrafik erweitert und vertieft, bspw. können Sie
- Filter und Segmentierungsverfahren beschreiben und implementieren
- verschiedene Bild- und Videooperatoren in ihrer Wirkung vergleichen, kombinieren und sinnvoll einsetzen
- mathematische Beschreibungen von Bild- und Videooperatoren verstehen
- Feature Detektoren einsetzen
- Kamerakalibrierungsverfahren erfolgreich einsetzen
- Photogrammetriemethoden zur 3D Rekonstruktion einsetzen
- · Augmented Reality Anwendungen entwerfen und entwickeln
- Bildinterpolationsmethoden und ihre Herausforderungen kennen
- Bildbasierte Darstellungsformen auswählen und anwenden (360° Panoramas, Lichtfelder, Morphing, Image-based Rendering)
- Die Konzepte auf CPU und GPU umsetzen
- sind die Studierenden somit in der Lage ihr Wissen und Verständnis einzusetzen, um Modelle, Systeme und Prozesse eigener Bild-, Video-, und Computer-Vision Applikationen zu konzipieren, umzusetzen und zu evaluieren.
- haben Sie ihre Fähigkeit vertieft, sich eigenständig in neue Themenbereiche einzuarbeiten und Problemstellungen, Technologien und wissenschaftliche Erkenntnisse im Umfeld der bildbasierten Verfahren zu erkennen und sich in relevante Theorien, Methoden und Techniken, sowohl aus theoretischer als auch aus technischer Sichtweise, einzuarbeiten und das erworbene Wissen effizient in die Lösung aktueller und auch zukünftiger Frage- und Problemstellungen einzubringen und anzuwenden. Dies wird durch eigene Recherche, Vorträge und ein Abschlussprojekt realisiert.

Inhalt:

- Filterverfahren: Lineare Filter (Box-, Gauss-, Sinc-), Nichtlineare Filter (Median, Vector-Median), kantenerhaltende Filter (Bilateral, Cross-Bilateral, Guided Image Filter), Kantendetektoren (Sobel, Laplace, Canny)
- Segmentierungs- und Mattingverfahren (Mean-Shift, k-means, Spectral Clustering, Rotoscoping, etc.)
- Feature Detektoren (Harris-Corner Detector, SIFT, SURF, etc.)

- Kamerakalibrierung (Projektive Geometrie, Kameramodelle, Linsenverzerrung, Kalibrierungsalgorithmen, wie Bundle Adjustment) und Tracking Methoden
- 3D Rekonstruktionsmethoden (Feature Matching, Stereo Rekonstruktion, Multi-View Rekonstruktion, Structured Light, Shape-from-Shading, Shape-from-X, etc.)
- · Warping und Morphing zur Bildinterpolation
- Lichtfelder
- · Panorama und 360° Panorama Stitching
- · Python, C++, Cuda, OpenCL Programmierung

Studien-/Prüfungsleistungen:

Die erfolgreiche Teilnahme an den Praktikas ist Voraussetzung für die Klausur (90 Minuten) oder mündliche Prüfung

Medienformen:

- · Beamergestützte Vorlesung;
- Praktika / Projekt in Kleingruppen, um die erlernten Methoden und Techniken einzuüben und zu vertiefen (Rechnerlabor)

- Bernd Jähne, Digitale Bildverarbeitung und Bildgewinnung, Springer, 2012
- Christian Demant, Bernd Streicher-Abel, Axel Springhoff, Industrielle Bildverarbeitung: Wie optische Qualitätskontrolle wirklich funktioniert, Springer, 2011
- Reinhard Klette, Andreas Koshan, Karsten Schlüns, Computer Vision, Vieweg 1996
- Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge 2000
- M. Magnor, Video-based Rendering, AK Peters, 2005

Photorealistische Computergrafik

- · Modulverantwortlich: Prof. Dr. Martin Eisemann
- Kürzel: PCG
- Studiensemester Wintersemester: 3
- Studiensemester Sommersemester: 2
- · Sprache: wahlweise deutsch oder englisch
- Kreditpunkte: 5
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Wahlpflichtmodul

Kurzbeschreibung

Die Studierenden erlernen aktuelle Techniken zur Erzeugung von photorealistischer Computergrafik, wie Sie in Filmen mittels vorhanden Tools wie Blender, Maya, 3DS Max verwendet wird. Dabei liegt der Schwerpunkt nicht auf der praktischen Anwendung sondern vor allem auf den darunterliegenden Algorithmen. Ziel ist es diese zu verstehen, zu erweitern und sinnvoll anwenden zu können.

Lehrform/SWS:

4 SWS, Vorlesung 2 SWS, Praktikum / Projekt 2 SWS

Arbeitsaufwand:

Gesamtaufwand 150h, davon

- 50h Vorlesung (inkl. Vor-/Nachbearbeitung),
- 70h Praktikum / Projekt
- 30h Selbstlernphase

Angestrebte Lernergebnisse:

 Die Studierenden verstehen den Bildentstehungsprozess und die physikalischen Wechselwirkungen von Licht und Licht-Materie. Sie kennen Rendering-Equation, stochastische Methoden (Monte Carlo Raytracing) und Methoden der natürlichen Beleuchtung, und erarbeiten sich damit tiefgehende Fachkenntnisse im Gebiet der photorealistischen Bildsynthese und dringen dabei bis an die Grenze des heute vorhandenen Wissens und die Spitze der aktuellen Technologie vor, bspw. auf technischer Seite durch moderne CPU/GPU Programmierung, sowie auf theoretischer Seite durch neueste Algorithmen.

- Dadurch erlangen Sie grundlegende F\u00e4higkeiten im Umgang mit 3D Modellierungstools. Sie k\u00f6nnen dieses Wissen einsetzen, sowohl um in einem praktischen 3D Modellierungstool gezielt eigene Renderings zu entwickeln als auch vor allem einen eigenen Renderer selbst zu entwickeln.
- Innerhalb des Praktikums/Projektes sollen die Studierenden befähigt werden in heterogenen Teams zu arbeiten und die Kommunikation zwischen Designern und Entwickler einzuüben.
- Die Studierenden k\u00f6nnen wissenschaftlich arbeiten, kritisch reflektieren und methodische Alternativen begr\u00fcndet ausw\u00e4hlen, um in der Lage zu sein auch wissenschaftliche Beitr\u00e4ge zur Weiterentwicklung des Gebietes der Bildsynthese zu leisten.

Inhalt:

- · Objekt- und Szenenmodellierung
- · Material- und Reflexionsmodelle
- · Licht-Materie-Wechselwirkung
- globale Beleuchtung und Lichttransportphänomene
- Path Tracing
- · Photon Mapping
- Radiometrie
- BRDFs
- Radiosity
- · Monte Carlo Verfahren
- · Importance Sampling
- Algorithmen der digitalen Bildverarbeitung zur Filterung von Monte Carlo Simulationen

Studien-/Prüfungsleistungen:

Klausur oder mündliche Prüfung, sowie Projektpräsentationsprüfung.

Die erfolgreiche Teilnahme an den Praktikas ist Voraussetzung für die Klausur (90 Minuten) oder mündliche Prüfung

Medienformen:

· Beamergestützte Vorlesung

• Praktika / Projekt in Kleingruppen, um die erlernten Methoden und Techniken einzuüben und zu vertiefen (Rechnerlabor)

- Matt Pharr, Greg Humphreys: Physically Based Rendering, 3rd Edition, Morgan Kaufmann 2016
- Peter Shirley: Realistic Ray Tracing, 3. Auflage, AK Peters 2003.
- Peter Shirley: Fundamentals of Computer Graphics, 4. Auflage, AK Peters 2016.
- Henrik Wann Jensen: Realistic Image Synthesis Using PhotonMapping, AK Peters 2001.
- Philp Dutre, Phillippe Bekaert, Kavita Bala: Advanced Global Illumination, B&T 2003

Storytelling und Narrative Strukturen

- · Modulverantwortlich: Prof. Hans Kornacher
- · Kürzel: SNS
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache:
- Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: Keine über die Zulassungsbedingungen hinausgehenden Voraussetzungen
- Typ: Schwerpunktmodul

Kurzbeschreibung

Das Modul führt in die grundlegenden narrativen Modelle in unterschiedlichen Medien und Kontexten ein. Die Studierenden lernen diese Konzepte zu verstehen und sinnvoll einzusetzen.

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Projekt 2 SWS

Arbeitsaufwand:

Gesamtaufwand 180 h, davon

- 36 h Vorlesung
- 36 h Projektarbeit
- 108 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden kennen die grundlegenden narrativen Modelle in unterschiedlichen Medien und Kontexten.

Sie haben die Fähigkeit zur Entwicklung eigener medienspezifischer Erzählformen und können für diese, unter Berücksichtigung zielgruppenspezifischer Bedürfnisse, narrativen Content erschaffen. Sie haben die notwendige Fertigkeit zur Analyse, Diskussion und kritischen Betrachtung der in den verschiedenen Medien unterschiedlich verwendeten narrativen Modelle.

Die Studierenden haben die Entwicklungs- und Methodenkompetenz auf dem Gebiet des Storytelling in unterschiedlichen Medien und Arbeitsumgebungen.

Pragmatisches Ziel ist es, in den unterschiedlichsten Berufsfeldern digitaler Medien die Entwicklung und den Einsatz narrativer Strukturen zu beraten, zu planen oder zu verantworten.

Inhalt:

- · Storytelling Grundlagen
- · dramaturgische Erzähl-Muster: Plot-Point-Modell und Heldenreise
- Anwendung in verschiedenen Kontexten wie Film, Computerspiel, Entwicklungsumgebung und Kommunikation

Studien-/Prüfungsleistungen:

Projektarbeit und schriftliche Ausarbeitung

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form)
- · Beispiele aus verschiedenen Medien in elektronischer Form
- · Projektentwicklungstools
- Projektarbeit in Teams, um die erlernten Methoden und Techniken einzuüben und zu vertiefen

- Field, Syd (1987): Drehbuchschreiben für Film und Fernsehen, München
- Fuchs, Werner T. (2013): Warum das Gehirn Geschichten liebt, Haufe-Lexware GmbH. Freiburg
- Vogler, Christopher (2007): Die Odyssee des Drehbuchschreibens. Zweitausendeins. Frankfurt a. M.

Visualisierung

- · Modulverantwortlich: Prof. Dr. Martin Eisemann
- Kürzel: VI
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 3
- · Sprache: wahlweise deutsch oder englisch
- Kreditpunkte: 5
- · Voraussetzungen nach Prüfungsordnung:
- · Typ: Schwerpunktmodul

Kurzbeschreibung

Die Studierenden sollen in die Lage versetzt werden, abstrakte, vorwiegend numerische Datenbestände in 2-und 3-dimensionalen Repräsentationen zu visualisieren und mit interaktiven Methoden zu untersuchen, um Strukturen aufzudecken, Hypothesen abzuleiten und zu verifizieren, sowie Ergebnisse zu kommunizieren. Die Studierenden sind in der Lage, die aus modernen Simulations- und Messmethoden resultierenden umfangreichere Datenvolumina durch Visualisierungsverfahren einer Analyse zuzuführen. Dies wird sowohl anhand von theoretischen Grundlagen, der Analyse und Präsentation aktueller Forschungsergebnisse als auch der Verifikation der erworbenen Kenntnisse an eigenen Visualisierungen vermittelt.

Lehrform/SWS:

4 SWS: Vorlesung 1 SWS; Seminar / Workshops 2SWS; Projekt 1 SWS

Arbeitsaufwand:

Gesamtaufwand 150h, davon

- · 20h Vorlesung (inkl. Vor-/Nachbearbeitung),
- 60h Seminar und Workshops (inkl. Vorbereitung)
- · 40h Projekt
- 30h Selbstlernphase

Angestrebte Lernergebnisse:

• Die Studierenden sollen in die Lage versetzt werden, abstrakte, vorwiegend numerische Datenbestände in 2-und 3-dimensionalen Repräsentationen zu visualisieren und mit interaktiven

Methoden zu untersuchen, um Strukturen aufzudecken, Hypothesen abzuleiten und zu verifizieren sowie Ergebnisse zu kommunizieren.

- Die Studierenden sind in der Lage, die aus modernen Simulations- und Messmethoden resultierenden umfangreicheren Datenvolumina durch Visualisierungsverfahren einer Analyse zuzuführen. Dies wird sowohl anhand von theoretischen Grundlagen, der Analyse und Präsentation aktueller Forschungsergebnisse als auch der Verifikation der erworbenen Kenntnisse an eigenen Visualisierungen vermittelt.
- Die Studierenden sind fähig, Problemstellungen grundlagenbasiert, systemanalytisch und multiperspektivisch zu analysieren, zu formulieren, zu formalisieren und durch geeignete Visualisierungen zu lösen sowie diese Lösungen kritisch zu evaluieren.
- Anhand eigener Recherche vertiefen die Studierenden ihre Fähigkeit, sich eigenständig in neue Themenbereiche einzuarbeiten, sowie Problemstellungen, Technologien und wissenschaftliche Erkenntnisse im Bereich der Visualisierung in ihre Projekte einzubeziehen und für eine effektive Lösung aktueller Fragestellungen anzuwenden. Dafür bereiten sie wissenschaftliche Arbeiten für unterschiedliche Zielgruppen auf und präsentieren diese fundiert und überzeugend. Das erworbende Wissen wird in einer eigenen interaktiven Visualisierung angewandt und gefestigt.
- Die Studierenden lernen ihre und andere Visualisierung zu verstehen, zu bewerten und angemessen in eigene wissenschaftliche Arbeiten einfließen zu lassen.
- Das erworbene Können kann in verschiedensten Bereichen eingesetzt werden, um als Datenanalyst, in der Qualitätskontrolle oder Informationsvisualisierung tätg zu werden.

Inhalt:

Grundlagen der Visualisierung und Exploration mehrdimensionaler Daten, aktuelle Visualisierungsverfahren und Interaktionsverfahren.

Darüber hinaus werden Grundlagen der statistischen Datenanalyse und der 3D-Computergrafik einbezogen.

Im speziellen, aber nicht ausschließlich, werden folgende Themen behandelt:

- · Design Prinzipien
- Daten Modelle
- · Visuelle Parameter
- Interaktion
- Netzwerke

- Prozesse
- Graphen
- · Hochdimensionale Daten
- Textvisualisierung
- Maps
- Wahrnehmung
- Farbe
- Kognition
- · Story Telling

Studien-/Prüfungsleistungen:

2 Fachvorträge sowie eine abschließende Projektarbeit samt Dokumentation und Präsentation.

Medienformen:

- · Beamergestützte Vorlesung
- Beamergestützte Seminarvorträge
- Kombinierte Workshops aus beamergestütztem Vortrag und praktischer Übung am Rechner
- Projekt in Kleingruppen, um die erlernten Methoden und Techniken einzuüben und zu vertiefen (Rechnerlabor)

- · Weitere themenbezogene Einzelverweise in der Vorlesung und im Seminar
- Murray, S.: Interactive Data Visualization for the Web, O'Reilly
- Meirelles, I.: Design for Information, Rockport
- Berger, W., Grob, H.L.: Präsentieren und Visualisieren -mit und ohne Multimedia, dtv 2002
- Kirckhoff,M.: Mind mapping, die Synthese von sprachlichem und bildhaftem Denken, Berlin 1988, und www.mindmanager.de
- Excel: z.B. Berk, Kenneth N.: Data analysis with Microsoft Excel, 2000, Middleton, M.R. Data analysis using Microsoft Excel

- Tufte, E.R., The Visual Display of Quantitative Information, Cheshire, CT, Graphics Press 1983, und Envisioning Information, Cheshire, CT, Graphics Press 1994
- Keim, D.A.: Data mining mit bloßem Auge, Spektrum der Wissenschaft, Nov 2002
- Ferreira de Oliveira, M.C., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A Survey, IEEE Trans. on Visualization and Computer Graphics, 9-3, Jul 2003
- Schumann,H., Müller,W.; Visualisierung -Grundlagen und allgemeine Methoden; Springer 2000, ISBN 3-540-64944-1
- Brodlie, K.W., e.a.: Scientific Visualization, Techniques and Applications, Springer 1992
- Open Visualization Data Explorer, open source
- · Visualization Toolkit, open Source, www.vtk.org
- Data-driven Documents D3, d3js.org

Sicherheit, Privatsphäre und Vertrauen im Netz

- · Modulverantwortlich: Prof. Dr. Stefan Karsch
- Kürzel: WTW-ITS
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- · Sprache: deutsch
- · Kreditpunkte: 6
- Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktmodul

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Seminar 2 SWS

Arbeitsaufwand:

180 Stunden

Bitte Stunden noch aufsplitten

Beispiel:

Gesamtaufwand 150 h, davon

- 40 h Vorlesung
- 40 h Projektarbeit
- 90 h Selbststudium

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten erlernen Fähigkeiten zur Analyse und Formulierung von Schutzzielen in Einsatzszenarien von IT.

Im Einzelnen:

- Kenntnis der aktuell in der Praxis eingesetzten kryptographischen Verfahren und ihrer Eigenschaften für die praktische Anwendung sowie Fähigkeit zur
- · Auswahl geeigneter Sicherheitsmechanismen, um vorgegebene Sicherheitsziele zu erreichen
- Fähigkeit zur Analyse von Systemen auf Sicherheitsschwächen und kritisches Hinterfragen von Aussagen zur Sicherheit
- · Kenntnis der Ursachen von Sicherheitsschwächen in TCP/IP-basierten Netzen und Diensten
- Fähigkeit zu Einsatz und Analyse der Sicherheitsmechanismen in TCP/IP-basierten Netzen
- Einüben der Fähigkeit zur Analyse der Sicherheitseigenschaften konkreter Werkzeuge mit Hilfe der im Vorlesungsteil der Veranstaltung vorgestellten Begriffe
- Einschätzen der Grenzen von Sicherheitswerkzeugen anhand konkreter Beispiele
- · Vertieftes Verständnis technischer Zusammenhänge in der IT-Sicherheit
- Einschätzen des Schutzbedarfs anhand konkreter Angriffsmöglichkeiten
- · Schulung der analytischen Fähigkeiten mittels konkreter Einsatzszenarien,
- die Basiskonzepte und Grundlagen der Betriebssysteme und der Rechnerarchitektur kennen und verstehen sowie
- ein einheitliches konsistentes Begriffsgebäude zu, teilweise aus der persönlichen Praxis, bekannten Sachverhalten der IT aufbauen

um (fachpraktische Begründung)

~.

Bitte fachpraktische Begründung noch ergänzen

~

Inhalt:

Teil I

• Einführung in die Grundbegriffe der IT-Sicherheit (Was ist Sicherheit?, Schutzziele, Mechanismen, Beispielszenarien)

- Einsatz aktueller kryptographischer Verfahren als Mechanismus zur Erreichung von Schutzzielen (symmetrische, asymmetrische Kryptographie, digitale Signaturen, Zertifikate, Angriffe)
- Aktuelle kryptographische Standards (AES, RSA,...)
- Prinzipien und Mechanismen zur Authentisierung (Biometrie, Passwörter, Chipkartensysteme, Single-Sign-On)
- Sicherheit TCP/IP basierter Netze und Dienste (Schwächen, Angriffe, Beispiele)
- Firewall-Systeme (Application-Level-Gateways, Paketfilter, Remote-Access)

Teil II: Spezielle Werkzeuge der IT-Sicherheit in der Praxis

- Sicherheitswerkzeuge
- · Werkzeuge zur Prüfung der Sicherheit
- · Angriffswerkzeuge und -methoden

Aufgabe der Studierenden

- · Beschreibung,
- · Test und Vorführung der Funktion,
- · Analyse und Erläuterung der Fähigkeiten und Grenzen im Kontext von Teil I der Veranstaltung
- Darstellung typischer Einsatzszenarien
- · Vergleich mit anderen Werkzeugen mit ähnlichen Fähigkeiten oder Eigenschaften

Studien-/Prüfungsleistungen:

Teil I und Teil II: Klausur sowie selbstständige Erarbeitung, Vortrag und Ausarbeitung zu einem speziellen Thema aus Teil II

Medienformen:

- Beamer-gestützte Vorlesungen
- · Seminar: Vortrag, schriftliche Ausarbeitung, Test und Vorführung von Werkzeugen

- Skript Kommunikationstechnik
- Anderson, Ross: Security Egnineering, John Wiley & Sons Inc, 2001
- Eckert, Claudia: IT-Sicherheit. Konzepte Verfahren Protokolle, Oldenbourg, 2006
- Schneier, Bruce: Practical Cryptography, John Wiley & Sons, 2003
- Schneier, Bruce : Secrets & Lies. IT-Sicherheit in einer vernetzten Welt, Dpunkt Verlag, 2006
- http://www.securityfocus.com
- weitere als themenbezogener Einzelverweis in der Vorlesung und im Seminar

Logik und semantische Modellierung

- · Modulverantwortlich: Prof. Dr. Kristian Fischer
- Kürzel: WTW-LSM
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 3
- · Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Wahlpflichtmodul

Kurzbeschreibung

Die Studentinnen und Studenten werden in die Entwicklung von semantischen Modellen als Basis für den Datenaustausch in verteilten, offenen Web Anwendungen eingeführt. Neben der praktischen Modellierung wird auch die theoretische Fundierung in der Prädikaten- und Beschreibungslogik behandelt.

Lehrform/SWS:

V/Ü

Bitte SWS noch ergänzen

Arbeitsaufwand:

180 Stunden

Bitte Stunden noch aufsplitten

Beispiel:

Gesamtaufwand 150 h, davon

- 40 h Vorlesung
- 40 h Projektarbeit

- 90 h Selbststudium

Angestrebte Lernergebnisse:

Die Teilnehmerinnen und Teilnehmer sollen die

- Grundgedanken, Potenziale und Grenzen von semantischer Modellierung und Semantic Web erfassen.
- · Sprachen des Semantic Web sowie deren Eigenschaften und Zusammenhänge verstehen,
- wesentliche Aspekte der Fundierung der Sprachen in der mathematischen Logik verstehen und
- ein semantisches Modell für eine Domäne in Ansätzen erstellen und diskutieren können.

Inhalt:

- Prädikatenlogik
- · Die Sprachen Hierarchie: XML, RDF, RDFS
- Beschreibungslogik
- Ontologie- und Abfragesprachen
- Entwicklung von Ontologien

Studien-/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

- Präsentationsmaterialien
- Arbeitsblätter

- D. Allemang, J. Hendler: Semantic Web for the Working Ontologist, Morgan Kaufman 2011
- F. Baader (ed.): The description logic handbook: theory, implementation, and applications, Cambridge University Press 2010
- M. Kreuzer, S. Kühling: Logik für Informatiker, Pearson 2006

Qualitätssicherung und Qualitätsmanagement

- · Modulverantwortlich: Prof. Dr. Mario Winter
- · Kürzel: OUS
- · Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 1
- · Sprache: deutsch, Seminar-Basisliteratur i.d.R. in englischer Sprache
- · Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktmodul

Kurzbeschreibung

Konstruktive und analytische Qualitätssicherung und Qualitätsmanagement für Web-Anwendungen

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS, Übung 1 SWS, Seminar 1 SWS

Arbeitsaufwand:

180 h, davon

- · 36 h Vorlesung
- 18 h Übung
- 18 h Seminar
- 108 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden sollen befähigt werden, Ziele, Methoden, Techniken und Werkzeuge sowie organisatorischen Maßnahmen zur begleitenden Qualitätssicherung (QS) und zum Qualitätsmanagement für Web-Anwendungen nennen, charakterisieren und anwenden zu können,

Methoden und Techniken hinsichtlich ihrer theoretischen Fundierung und ihrer Praxistauglichkeit analysieren und bewerten zu können, und ihre Fähigkeit zur selbständigen Weiterbildung festigen,

um die Methoden, Techniken und Werkzeuge zur Qualitätssicherung in eigenen, auch fachübergreifenden Projekten auswählen und anwenden zu können.

Inhalt:

Das Modul beschreibt Ziele, Methoden, Techniken und Werkzeuge sowie organisatorische Maßnahmen zur begleitenden Qualitätssicherung (QS) in der Entwicklung von Web-Anwendungen. Schwerpunkte liegen auf der QS in den frühen Phasen der Konzeption und Spezifikation sowie dem Qualitätsmanagement. Ausführungen zu einschlägigen Normen und Gesetzen runden das Modul ab.

Inhalte im Einzelnen:

- Qualitätssicherung im Entwicklungsprozess
- Quality Function Deployment (QFD) und Analytic Hierarchy Process (AHP)
- Risikomanagement und Software-Failure Modes Effects Analysis (SW-FMEA)
- · QS-Planung mit QFD und FMEA, Fehler- und Problem-Meldungsbehandlung
- Prozessverbesserungsmodelle (CMMI, SPICE)
- · QS-Werkzeuge, Normen und Gesetze.

Aufbauend auf dem in der Vorlesung vermittelten Stoff erstellt jeder Teilnehmer im Seminar-Teil eine Ausarbeitung mit experimenteller Realisierung und eine Präsentation zu einem ausgewählten aktuellen Forschungsgebiet der Qualitätssicherung.

Studien-/Prüfungsleistungen:

Seminar-Hausarbeit und -Vortrag

Klausur 60 Minuten

Medienformen:

- Beamer-gestützte Vorlesungen (Folien in elektronischer Form im Netz)
- Fallbeispielgestützte Übungen in Gruppen, um die erlernten Modelle und Methoden einzuüben und zu vertiefen (Seminarraum, Rechnerlabor).

Literatur:

• S. Wagner: Software Product Quality Control. Springer, Berlin, 2013

- A. Spillner, T. Roßner, M. Winter, T. Linz: Praxiswissen Softwaretest Testmanagement. 4., vollst. überarbeitete und akt. Auflage, dpunkt.verlag, Heidelberg, 2014
- E. Wallmüller: Software Quality Engineering. Hanser, München, 2011.
- E. Mendes, N. Mosley: Web Engineering. Springer, 2006

Web Architekturen

- · Modulverantwortlich: Prof. Dr. Kristian Fischer
- Kürzel: WTW-WBA
- Studiensemester Wintersemester: 1
- Studiensemester Sommersemester: 2
- Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung: keine
- · Typ: Schwerpunktmodul

Kurzbeschreibung

In der Veranstaltung werden zwei Felder eingeführt:

- Grundkonzepte der Software Architektur bezogen auf Web basierte Anwendungen
- Fragen der Internet Governance

Basierend auf diesem Grundlagenwissen werden dann Lösungen aus fortschrittliche Anwendungsfelder im Web analysiert.

Lehrform/SWS:

4 SWS: Vorlesung 2 SWS; Seminar 2 SWS

Arbeitsaufwand:

180 Stunden

Bitte Stunden noch aufsplitten

Beispiel:

Gesamtaufwand 150 h, davon

- 40 h Vorlesung
- 40 h Projektarbeit

- 90 h Selbststudium

Angestrebte Lernergebnisse:

Die Studentinnen und Studenten

- · kennen wesentliche Konzepte und Methoden aus dem Bereich Softwarearchitektur
- kennen wesentliche Elemente der Internet Governance und können Problemfelder in diesem Bereich kritisch analysieren
- können bestehende Web Anwendungen basierend auf den Konzepten der Software Architektur und der Internet Governance analysieren
- um in leitender Funktion zur Gestaltung der Architektur von Projekten für das Web beitragen zu können.

Inhalt:

Softwarearchitekturen: Designprozess, Kommunikationsmethoden (Connectoren), Sicherheit, Modellierung, Visualisierung, Analyse

Internet Governance: Governance der Infrastruktur des Web, Politik und Werte bei der Wahl von Protokollen, Softwarelizensierung, Systeme des Urheberrechts, Ethische Fragen bei Web Anwendungen

Fallstudien: Anwendungen beispielsweise aus den Bereichen Open Data, Internet of Things, Cloud Services

Studien-/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Präsentationsmaterialien

- R. Taylor et al.: Software Architecture Foundations, Theory, and Practice, Wiley 2009
- · L. DeNardis: Protocol Politics, MIT Press

Web Technologien

- · Modulverantwortlich: Prof. Christian Noss
- · Kürzel: WTW-WD
- Studiensemester Wintersemester: 2
- Studiensemester Sommersemester: 3
- Sprache: deutsch
- Kreditpunkte: 6
- · Voraussetzungen nach Prüfungsordnung: keine
- Typ: Schwerpunktmodul

Kurzbeschreibung:

In Modul werden fortgeschrittene Herangehensweisen, Technologien, Konzepte und Implementierungsansätze im Kontext Web-basierter Anwendungen adressiert.

Lehrform/SWS:

Seminar / Workshop 4 SWS

Arbeitsaufwand:

180 Stunden

Bitte Stunden noch aufsplitten

Beispiel:

Gesamtaufwand 150 h, davon

- 40 h Vorlesung
- 40 h Projektarbeit
- 90 h Selbststudium

Angestrebte Lernergebnisse:

Die Studierenden sind in der Lage auf Basis eines dokumentierten Konzepts ein Entwicklungsprojekt für eine Web-basierte Anwendung zu strukturieren, das Konzept ggf. zu erweitern, um das Entwicklungsprojekt im Team realisieren zu können

Die Studierenden kennen verschiedene Implementierungskonzepte und -methoden, also auch Frameworks und Best-Practices und können, bezogen auf die Projektanforderungen, die geeigneten auswählen, um möglichst effizient und nachhaltig entwickeln zu können.

Die Studierenden kennen geeignete Vorgehensmodelle, Dokumentationstechniken, sowie Entwicklungswerkzeuge und können diese im Projektkontext sinnvoll einsetzen um möglichst nachhaltig entwickeln und dokumentieren zu können.

Inhalt:

- Client-Server Kommunikation und Schnittstellen: REST, Nachrichtenbasierte Kommunikation, Web-Sockets, etc.
- APIs
- · CSS: Komplexe Layouts & Responsivität
- · CSS Pre- und Postprozessoren
- Frameworks
- Performance
- Namingkonventions und Methodologien (BEM, OOCSS, SMACSS, Atomic Design, MVC, etc.)
- Dokumentation & Living Styleguides
- Testing
- · Kommunikations- und Kollaborationswerkzeuge

Studien-/Prüfungsleistungen:

Projektarbeit

Medienformen:

n/a

Auflistung aller Fußnoten