NAME: Solution

A#: ----

Problem 1. Exercise 24.1.g (10 points) Find the general solution of the following ordinary differential equation. Use variation of parameters even if another method might seem easier. For you convenience the equation is accompanied by a general solution to the corresponding homogeneous equation.

$$x^2 y'' + x y' - y = \sqrt{x}, \quad y_h = c_1 x + c_2 x^{-1}$$

Solution:

For the sproblem
$$a = x^{2} \quad g(x) = \sqrt{x} = x^{1/2}$$

$$y_{1} = x \quad y_{2} = x^{-1}$$

$$y_{1} = x \quad y_{2} = x^{-1}$$

So
$$y = y_1 u + y_2 v$$
 implies
$$u = -\int \frac{x^{-1} \cdot x^{2}}{(-2x^{-1}) \cdot x^{2}} = + \int \frac{x^{2}}{2x^{2}} dx = \frac{1}{2} \cdot (-2x^{-1}) + C$$

$$= -x^{-1} \cdot x^{2} + C$$

$$V = \begin{cases} x \cdot x^{3/2} \\ x^{3$$

$$= y = x(x^{-1/4} + C_1) + x^{-1}(-\frac{1}{3}x^{3/6} + C_2)$$

$$= x^{1/4} + C_1x - \frac{1}{3}x^{1/6} + C_2x^{-1}$$

$$= \frac{2}{3}x^{1/6} + C_1x + C_2x^{-1}$$

•			