

Build the next generation of intelligent agents

Team Details

- a. Team name: FAIR Labs
- b. Team leader name: Sandhiya
- c. Problem statement: Al Teaching Assistant Sahayak
- d. Team members: Abhijay, Aditya, Elakkiya, Karthika

Sahayak - The Ironman Suit For Teachers

Imagine a teacher in an under-resourced area equipped with a powerful tool like Iron Man's suit, powered by AI to supercharge their teaching capabilities.

Introducing "Sahayak" – the AI teaching companion that helps teachers

- Create hyper-localized lesson plans, worksheets, quizzes, and visual aids.
- Generate culturally relevant content in regional languages.
- Instantly differentiate materials for multiple grade levels in one classroom.
- Transform text lessons into visual stories and create animated explanations for complex concepts.
- Assess student work and provide clear, actionable feedback in real-time.
- Create efficient weekly planners that organize student activities and optimize classroom time.

Sahayak is built to uplift teachers and redefine learning —

"Because every teacher deserves a suit of armor to fight educational challenges"

Opportunities

- How different is it from any of the other existing ideas?
 - A unified AI platform, handles worksheets, quizzes, videos, and more with minimal models.
 - Seamless integration, low latency, and tailored for low-resource, multi-grade schools.
- How will it be able to solve the problem?
 - MCP Architecture: Server manages all AI tasks; client offers a lightweight, teacher-friendly app.
 - Simplifies deployment and scales easily.
- USP of the proposed solution
 - On-demand video creation along with audio transforms classrooms helping teachers to explain complex concepts visually and effectively in less time.

Why MCP?

- MCP acts like "USB-C for AI integrations" a universal, scalable, secure communication layer between LLMs and external systems.
- Offers standardized integration across diverse tools/systems, eliminating one-off connector code for each LLM-tool pairing

How MCP Solves the Problem?

- Solves the M×N integration problem: one protocol replaces the need for separate adapters to connect M models with N systems
- Decouples reasoning from execution: agents focus on planning while MCP routes tool calls (e.g. DB queries, API calls)
- Maintains multi-step context: carries state across workflows for example,
 Creates content for worksheet, exports that to Google Docs ensures continuity

List of features offered by the solution

Phase	Feature Area	Key Features
Phase 1: Core Features (20 hours)	Content Generation Engine	Local language story generationGrade-appropriate worksheet creationCultural context integration
	Multimodal Textbook Processing	 - Upload and analyze textbook pages - Generate differentiated worksheets - Extract key concepts automatically
	Knowledge Base Integration	- Simple Q&A system in local languages - Age-appropriate explanations
	On-Demand Video Creation and Animations	- Transform text lessons into visual stories - Generate animated explanations for complex concepts
Phase 2: Enhanced Features (10 hours)	Firebase Studio Integration	- Real-time content sharing - Teacher collaboration features - Progress tracking
	Deployment & Polish	Firebase hosting setupMobile-responsive designBasic teacher onboarding

Process flow diagram or use-case diagram

Technologies to be used in the solution

Component	Technology/Model	Purpose
MCP Server	Cloud Run / GKE	Hosts APIs, orchestrates AI tasks
MCP Client	Web/mobile app via Firebase Studio	Teacher-facing interface, handles user input/output
Core Al Model	Gemini 2.0 Flash (Vertex AI)	Multimodal content generation, language, reasoning
Speech/Audio	Vertex AI Speech-to-Text, TTS	Audio assessments, text-to-speech for local language
Video Generation	Veo2 (Google)	Generate educational videos from audio or prompts
Storage	Cloud Storage / Firestore	Store materials, user data, logs
Integration	Google workspace APIs	Export worksheets/quizzes for HITL

Classroom Feature Mapping with Google & Gemini Al Stack

Use Case	Al Tool/Platform
Hyper-local content generation	Gemini 2.0 Flash
Differentiated worksheets from images	Gemini 2.0 Flash (Multimodal)
Instant knowledge base (Q&A)	Gemini 2.0 Flash
Visual aid generation (drawings/charts)	Imagen (Vertex AI)
Audio-based reading assessments	Vertex AI Speech-to-Text
Lesson planners, game generation	Gemini 2.0 Flash
Video generation for content	Veo 2, Google TTS
Export to Google Docs/Forms for HITL review	Google Workspace APIs

Architecture diagram of the proposed solution

Architecture diagram of the proposed solution - Highlevel abstraction

MCP Server-Client Architecture – High-Level Workflow

1. User Interaction & Authentication

- User accesses MCP Client (App) via web/mobile.
- Authentication handled by Firebase Auth (OAuth/JWT).

2. Request Routing & Session Management

- Requests routed through API Gateway (FastAPI backend).
- Session/context stored in NoSQL DB for quick retrieval.

3. Input Processing & Storage

- Text queries are preprocessed.
- Media files (images/videos) uploaded to Cloud Storage.

4. Agent Orchestration & Tool Invocation

- FastAPI calls AI tools: Gemini 2.0 (LLM), Speech-to-Text, Veo2 (video).
- Agents coordinate multi-modal processing and task execution.

Response Generation & Data Management

1. Response Aggregation & LLM Finalization

- a. Tool outputs aggregated and refined by Gemini LLM.
- b. Final answer formatted and prepared for client delivery.

2. Client Response Delivery

a. FastAPI sends structured response back to MCP Client (App).

3. Data Persistence & Analytics

- a. Chat history and metadata stored in Firestore (NoSQL).
- b. Media assets saved in Google Cloud Storage with references in DB.
- c. Analytics and monitoring via BigQuery and Cloud Logging.

Wireframes/Mock diagrams of the proposed solution

User login

Weekly planner

On demand - video generation

Worksheet generation for different grades

Voice assistant - reading regional content

Future scope

Including three user roles:

- **Teacher** (Primary Agent) The heart of the solution
- Student Agent Personal learning companion
- Well-Wisher Agent Bridging communities with classrooms
- Primary Agent (Teacher): Creates lesson plans, evaluates work, generates visuals & differentiated materials instantly.
- Secondary Agents:
 - Well-Wishers provide time, resources, mentorship.
 - Students get Al-driven assistance, oral tests, and progress insights.

Google Cloud

PRESENTS

Agentic AJ Day

Build the next generation of intelligent agents

Thank you!