2do Parcial Matemática III

- 1. Crear la clase grafo (en Python) para este ejercicio. (valor = 1 punto)
- 2. Dada la siguiente matriz que determina nodos, pesos y conexiones, resolver usando networkx:

	Α	В	С	D	E	F	G
Α		5		6			
В			5		6		7
С							2
D						5	9
E							7
F							9

- a. Construir los nodos
- b. Construir con enlaces y pesos
- c. Emitir los vecinos de 'b'
- d. Emitir cantidad de aristas de cada nodo
- e. Convertir en diccionario la salida anterior
- f. Crear y emitir la matriz de adyacencia y emitirla
- g. Crear y emitir la matriz de incidencia y emitirla
- h. Emitir la ruta ponderada más corta entre 'a' y 'g' usando el algoritmo de Dijkstra
- i. Emitir la longitud de la ruta ponderada entre 'a' y 'g'
- j. Emitir la longitud de la ruta desde el nodo 'c
- k. Emitir el radio del grafo
- I. Emitir el diámetro del grafo
- m. Emitir la excentricidad
- n. Emitir el centro del grafo
- o. Emitir la periferia del grafo
- p. Emitir la densidad.
- q. Dibujar el grafo y emitir con matplotlib.pyplot
- r. Convertir en grafo dirigido
- s. Dibujar el nuevo grafo y emitir con matplotlib.pyplot