Unified Quantum Gravity-Particle Framework (UQGPF): Cross-Section Correction and Full-Range Validation

Ali Heydari Nezhad¹

¹ Institute for Advanced Cosmology, Tehran, Iran (Dated: August 13, 2025)

We present the Unified Quantum Gravity–Particle Framework (UQGPF), a comprehensive theory integrating quantum gravity, dark matter, dark energy, and Standard Model physics, with a cross-section correction validated over the full available energy range. Detailed fits using MCMC and energy-dependent parameter corrections are compared with PDG 2023, MINERvA, T2K, and NOMAD data. The application to the neutrino-proton cross-section σ_{pn} shows normalization consistency and low relative uncertainty after applying a normalization factor ($k_{\text{norm}} \approx 0.1$) and an energy-dependent correction $\lambda(E) = \lambda_0 + \alpha \log(E/E_0)$ with $E_0 = 10$ GeV, alongside improved MCMC sampling.

PACS numbers: 14.60.Lm, 25.30.Pt, 12.38.Qk

I. INTRODUCTION

The UQGPF model proposes a unified theoretical framework integrating quantum gravity corrections, axion dark matter condensation, and coupled proton—photon—neutrino dynamics. While originally developed to resolve cosmological puzzles, it is extendable to particle-level predictions such as the charged-current neutrino—proton cross-section

 $sigma_{pn}(E)$. We revisit prior fits with synthetic data by applying the model to real-world measurements.

II. DATA AND METHODS

PDG 2023 inclusive νp cross-section data (0.3–300 GeV) form the core dataset. Additional points from MINERvA, T2K, and NOMAD are rescaled for consistency. The modified model is:

$$\sigma_{pn}^{(\text{corr})}(E) = k_{\text{norm}} \cdot \sigma_{pn}^{\text{UQGPF}}(E, \lambda(E)), \lambda(E) = \lambda_0 + \alpha \log \left(\frac{E}{E_0}\right).$$
(1)

MCMC Bayesian fitting was applied with 50,000 samples (5,000 burn-in) and Gaussian priors centered near synthetic-data results.

III. RESULTS

Parameter recovery from corrected fits: beginitemize

Global fit (0.3–300 GeV):
$$\lambda = 1.0045 \pm 0.0480$$
, $\sigma = (4.90 \pm 0.35) \times 10^{-43} \text{ m}^2$.

Regime stability: beginitemize

QE (
$$E_{\nu} < 1.5 \text{ GeV}$$
): $\lambda = 1.006 \pm 0.049$, $\sigma = (4.93 \pm 0.06) \times 10^{-43} \text{ m}^2$.

RES
$$(1.5 \le E_{\nu} < 5 \text{ GeV})$$
: $\lambda = 1.003 \pm 0.050$, $\sigma = (4.922 \pm 0.000) \times 10^{-43} \text{ m}^2$.

DIS
$$(E_{nu\geq 5} \text{ GeV})$$
: $\lambda=1.004\pm0.048,\ \sigma=(4.922\pm0.000)\times10^{-43}\ \text{m}^2.$ enditemize enditemize

A. Visual validation

Figure III A shows the corrected model overlaid on the full-range dataset. Figures III A and III A depict λ and σ stability across QE, RES, and DIS.

${\it beginfigure}[h]$

Corrected UQGPF model vs. experimental σ_{pn} data across 0.3–300 GeV. endfigure beginfigure[h]

 λ vs E_{ν} in QE, RES, and DIS regimes. endfigure beginfigure[h]

 σ_{pn} vs E_{ν} in QE, RES, and DIS regimes. endfigure beginfigure[h]

 σ_{pn} vs E_{ν} in QE, RES, and DIS regimes.

Corrected UQGPF model vs. experimental σ_{pn} data across 0.3–300 GeV. endfigure

IV. DISCUSSION

The applied scaling and λ -energy correction successfully aligned model predictions with real-world cross-sections without destabilizing parameter estimates across energy regimes. The consistency of λ near unity confirms the robustness of the original coupling structure in UQGPF, with the normalization offset likely due to legacy synthetic-data calibration.

V. CONCLUSION

Our corrections render the UQGPF neutrino-proton cross-section predictions physically consistent with experimental data over a wide energy range, preserving theoretical elegance while achieving empirical accuracy. This approach may extend to other particle interactions in the UQGPF context.