29 novembre 2012

Test

Chacune des questions 1 à 9 est à choix multiple. Il n'y a qu'une seule réponse correcte par question. Pour chacune des questions à choix multiple, on compte +3 points si la réponse est correcte, 0 point si la question reste sans réponse, -1 point si la réponse est fausse.

La question 10 (définitions) vaut 4 points (2 points pour chaque définition).

La question 11 (démonstration) vaut 4 points.

Total possible: 35 points

Exercice 1. On considère l'application \mathbb{R} -linéaire $\phi: \mathbb{R}^4 \longrightarrow \mathbb{R}^5$ définie par

$$\phi(x, y, z, t) = (x + y + 2z + 3t, y + t, x + y + 3t, 2x + 3y + 2z + 7t, x + 2y + 2z + 4t).$$

Soient $a, b \in \mathbb{R}$ fixés. Est-ce que (0, a, b, b + 1, 5) appartient à Im (ϕ) ?

- (A) Oui si a = 5 et b = 0.
- (B) Oui si a = 1 et b = -2.
- (C) Oui si a = 5 et tout b.
- (D) Non pour tout a et pour tout b.

Exercice 2. Soit $\mathbb{R}[t]$ le \mathbb{R} -espace vectoriel des polynômes en t à coefficients dans \mathbb{R} . On considère l'application \mathbb{R} -linéaire $\phi: \mathbb{R}[t] \longrightarrow \mathbb{R}[t]$ définie par $\phi(f(t)) = f'(t) - (c^2 + 1)f(t)$, où $c \in \mathbb{R}$ est fixé et où f'(t) désigne la dérivée de f(t). Quelle est la dimension de Ker (ϕ) ?

- (A) $\dim(\operatorname{Ker}(\phi)) = 0$.
- (B) $\dim(\operatorname{Ker}(\phi)) = 1$.
- (C) $\dim(\operatorname{Ker}(\phi)) = \infty$.
- (D) Cela dépend de c.

Exercice 3. On considère l'application \mathbb{F}_3 -linéaire $\alpha: (\mathbb{F}_3)^3 \longrightarrow (\mathbb{F}_3)^3$ définie par

$$\alpha(x, y, z) = (x, x + 2y, y + z).$$

On considère la base canonique $E=(e_1,e_2,e_3)$ de $(\mathbb{F}_3)^3$ et la base $F=(f_1,f_2,f_3)$ où $f_1=e_1$, $f_2=e_1+e_2$, $f_3=e_1+e_3$. Laquelle des matrices suivantes est la matrice de α par rapport à la base F?

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercice 4. Soit K un corps et soit V un K-espace vectoriel de dimension finie, avec une base $F = (f_1, \ldots, f_n)$. On suppose que $V = W \oplus U$, où W et U sont des sous-espaces vectoriels de V, distincts de V tout entier. Soit $\pi: V \to V$ la projection sur W le long de U (définie par $\pi(w + u) = w$, $\forall w \in W$ et $\forall u \in U$). Laquelle des assertions suivantes est correcte?

- (A) On peut extraire de F une partie qui est une base de W.
- (B) On peut extraire de $\pi(F)$ une partie qui est une base de W.
- (C) $\pi(F)$ est une partie libre de W.
- (D) $F \cap W$ est une partie génératrice de W.

Exercice 5. Soit $\mathbb{C}[t]$ l'ensemble des polynômes en t à coefficients dans \mathbb{C} . Soit $V = \{f(t) \in \mathbb{C}[t] \mid \deg(f(t)) \leq 4\}$. Laquelle des assertions suivantes est correcte?

- (A) V est un \mathbb{C} -espace vectoriel de dimension 4.
- (B) V est un \mathbb{R} -espace vectoriel de dimension 4.
- (C) V est un \mathbb{R} -espace vectoriel de dimension ∞ .
- (D) V est un \mathbb{R} -espace vectoriel de dimension 10.

Exercice 6. Soit $\mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel de toutes les fonctions de \mathbb{R} dans \mathbb{R} . Soit $f_1, f_2, f_3 \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ définies par $f_1(x) = \sin^2(x)$, $f_2(x) = \cos^2(x)$, $f_3(x) = 3$. Laquelle des assertions suivantes est correcte?

- (A) $\{f_1, f_2\}$ est une partie liée.
- (B) $\{f_1, f_2, f_3\}$ est une partie libre.
- (C) f_3 est combinaison linéaire de f_1 et f_2 .
- (D) $f_2 \notin \operatorname{Vect}(f_1, f_3)$.

Exercice 7. Soit $v_1 = (2, 3-7i, i)$, $v_2 = (2i+2, 3i-1, i-1)$, $v_3 = (1, -4, i/2)$ trois vecteurs dans le \mathbb{C} -espace vectoriel \mathbb{C}^3 . Quelle est la dimension de $\text{Vect}(v_1, v_2, v_3)$?

- (A) dim Vect $(v_1, v_2, v_3) = 1$.
- (B) $\dim \text{Vect}(v_1, v_2, v_3) = 2.$
- (C) $\dim \text{Vect}(v_1, v_2, v_3) = 3.$
- (D) dim Vect $(v_1, v_2, v_3) = 4$.

Exercice 8. Soit $\alpha : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application linéaire définie sur la base canonique (e_1, e_2, e_3) par $\alpha(e_1) = e_2$, $\alpha(e_2) = e_3$, $\alpha(e_3) = 0$. Laquelle des assertions suivantes est correcte?

- (A) La somme $\operatorname{Ker}(\alpha) + \operatorname{Im}(\alpha)$ est directe.
- (B) $\operatorname{Ker}(\alpha) \subset \operatorname{Im}(\alpha)$.
- (C) $\dim \operatorname{Ker}(\alpha) = 2$.
- (D) $\dim \operatorname{Im} (\alpha \circ \alpha) + \dim \operatorname{Ker} (\alpha) = 3.$

Exercice 9. Soit K un corps. On considère l'application K-linéaire $\phi: M_4(K) \longrightarrow K^3$ définie par

$$\phi\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(a+d,b+c,a\right),\qquad\forall\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in M_4(K)\,.$$

Laquelle des assertions suivantes est correcte?

- (A) L'image de ϕ est de dimension 2.
- (B) Le rang de ϕ vaut 1 de plus que la dimension de Ker (ϕ) .
- (C) ϕ est surjective.
- (D) ϕ est injective.

Exercice 10. Soit K un corps. Répondez de manière précise à chacune des questions suivantes.

- a) Qu'est-ce qu'une partie libre dans un K-espace vectoriel V ?
- b) Qu'est-ce que le sous-espace engendré par deux vecteurs v_1 et v_2 dans un K-espace vectoriel V?

Exercice 11. Soit V un K-espace vectoriel (où K est un corps). On suppose que V se décompose en somme directe $V = U \oplus W$ de deux sous-espaces vectoriels U et W. Soit $\{u_1, \ldots, u_p\}$ une base de U et soit $\{w_1, \ldots, w_q\}$ une base de W. Démontrer que $\{u_1, \ldots, u_p, w_1, \ldots, w_q\}$ est une base de V. Justifiez votre raisonnement et votre démarche.

(On demande une démonstration directe, sans utiliser le théorème des dimensions.)