Devoir maison 7 - Espaces vectoriels normés

Définition : Soit E un \mathbb{K} -espace vectoriel. Une application N de E dans \mathbb{R} est une **norme** sur E si elle vérifie :

- $\forall x \in E, N(x) \ge 0$ (Positivité)
- $\forall x \in E, N(x) = 0 \Rightarrow x = 0_E$ (Séparation)
- $\forall x \in E, \forall \lambda \in \mathbb{K}, N(\lambda x) = |\lambda|N(x)$ (Homogénéité)
- $\forall (x,y) \in E^2, N(x+y) \le N(x) + N(y)$ (Inégalité triangulaire)

Un couple (E, N) où N est une norme sur E s'appelle un **espace vectoriel normé**. On note souvent une norme $\|\cdot\|$.

- 1. Soient $(E, (\cdot|\cdot))$ un espace préhilbertien réel. Montrer que l'application $\|\cdot\|: x \mapsto \|x\| = \sqrt{(x|x)}$ est une norme sur E. On l'appelle **norme euclidienne associée** à $(\cdot|\cdot)$.
- **2.** Soit $n \in \mathbb{N}^*$. On note $x = (x_1, ..., x_n) \in \mathbb{K}^n$. Montrer que les applications suivantes sont des normes sur \mathbb{K}^n :

a.
$$\|\cdot\|_1: x \mapsto \sum_{i=1}^n |x_i|$$
 (appelée norme 1);

b.
$$\|\cdot\|_2: x \mapsto \sqrt{\sum_{i=1}^n x_i^2}$$
 (appelée norme 2);

c.
$$\|\cdot\|_{\infty} \mapsto \max_{i \in [1,n]} |x_i|$$
 (appelée norme infinie)

- **3.** Montrer que $\forall x \in \mathbb{K}^n$, $||x||_{\infty} \le ||x||_1 \le \sqrt{n} ||x||_2 \le n ||x||_{\infty}$.
- 4. Pour tout endomorphisme f de \mathbb{R}^n , muni de sa structure euclidienne, on note :

$$|||f||| = \sup_{||x||=1} ||f(x)||$$

- **a.** Montrer que $\| | \cdot \| |$ définit une norme sur $\mathcal{L}(\mathbb{R}^n)$.
- **b.** Soit φ un endomorphisme orthogonal de \mathbb{R}^n . Calculer $|||\varphi|||$.
- c. Soit s est un endomorphisme symétrique de \mathbb{R}^n (c'est-à-dire canoniquement associé à une matrice symétrique).

Montrer que
$$||s|| = \max_{\lambda \in \operatorname{Sp}(s)} |\lambda|$$
.