Analiza III 1

Ostatnio

Była rozmaitość M z wymiarem dim M=n, krzywa

$$L: \{[a,b] \ni t \to \varphi(t) \in \mathbb{R}^n\},$$

jednoforma $\omega \in \Lambda^1 M$ i zastanawialiśmy się jak obliczyć

$$\int_{L} \omega = \int_{a}^{b} \left\langle \varphi^{*} \omega, \pm \frac{\partial}{\partial t} \right\rangle dt.$$

Wyszło nam dla $\omega = ydx$, (rys 0.1)

$$\int_{C_1} \omega = 2, \quad \int_{C_2} \omega = -2.$$

Rysunek 0.1: W każdym momencie chcemy wiedzieć, w którą stronę chcemy iść. $L_1 + L_2 + L_3 = {\cal L}$

Przykład 1. (rys 0.2)

$$\omega = A(x, y)dx + B(x, y)dy \in \Lambda^1 M.$$

Trzeba te krzywe sparametryzować:

$$L_1 = \{(x, b), a \le x \le c\}.$$

$$L_2 = \{(c, y), b \le y \le d\}.$$

$$L_3 = \{(x, d), a \le x \le c\}.$$

$$L_4 = \{(a, y), b \le y \le d\}.$$

Rysunek 0.2: $\dim M = 2$

$$\int_{L} \omega = \int_{L_{1}} \omega + \int_{L_{2}} \omega + \int_{L_{3}} \omega + \int_{L_{4}} \omega =$$

$$= \int_{a}^{c} \left\langle \varphi_{1}^{\star} \omega, \frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{2}^{\star} \omega, \frac{\partial}{\partial y} \right\rangle dy +$$

$$+ \int_{a}^{c} \left\langle \varphi_{3}^{\star} \omega, -\frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{4}^{\star} \omega, -\frac{\partial}{\partial y} \right\rangle =$$

$$= \int_{a}^{c} A(x, b) dx + \int_{b}^{d} B(c, y) dy +$$

$$- \int_{a}^{c} A(x, d) dx - \int_{b}^{d} B(a, y) dy.$$

(rys 0.3)

Rysunek 0.3: Tramwaj nie ma za dużo możliwości, jedynie przód, tył i ewentualnie szybciej - na rolkach

dla dim $M=\mathbb{R}^1$. Niech $\varphi:T_pM\to T_pM,\ \varphi(v)=a\cdot v\ (\varphi$ - liniowe). a>0 - nie zmienia orientacji (kierunku)

Analiza III 3

a<0- zmienia kierunek wektora.

(rys 0.4)

Rysunek 0.4: Różne orientacje na \mathbb{R}^2 , czy można to jakoś pogrupować?

Definicja 1. Niech B_1 , B_2 - bazy uporządkowane w V - przestrzeń wektorowa. Mówimy, że B_1 i B_2 należą do tej samej klasy orientacji, jeżeli wyznacznik odwzorowania liniowego z B_1 do B_2 jest większy od zera. Wybór klasy orientacji nazywamy zorientowaniem V.

Definicja 2. Orientacją standardową na \mathbb{R}^n nazywamy wybór zgodny z bazą standardową, tzn.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}, \quad e_3 = \dots$$

Definicja 3. Niech M - rozmaitość zorientowana, $\dim M = n$ i $S = \{[a,b] \times [c,d] \ni (t_1,t_2) \rightarrow \varphi(t_1,t_2) \in M\}$ - powierzchnia sparametry-zowana, $\Lambda^2 M \ni \omega$ - dwuforma. Wówczas

$$\int_{S} \omega \stackrel{def}{=} \int_{a}^{b} \int_{c}^{d} \left\langle \varphi^{\star} \omega, \underbrace{\pm \frac{\partial}{\partial t_{1}}, \pm \frac{\partial}{\partial t_{2}}}_{zgodne\ z\ orientacjq} \right\rangle dt_{1} dt_{2}.$$

Przykład 2. weźmy $\omega = A(x,y)dx + B(x,y)dy$ i obliczmy $\int \int_{P} d\omega$.

$$d\omega = \frac{\partial A}{\partial y} dy \wedge dx + \frac{\partial B}{\partial x} dx \wedge dy = \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy,$$
$$P = \left\{ (x, y) \in \mathbb{R}^2 : \substack{a \leqslant x \leqslant b \\ c \leqslant y \leqslant d} \right\}.$$

Wtedy mamy

$$\begin{split} \int\int\limits_{P}d\omega &= \int\limits_{[a,b]\times[c,d]} \left\langle d\omega, \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle = \\ &= \int\limits_{a}^{b}dx \int\limits_{c}^{d}dy \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) = \int\limits_{c}^{d}dy \int\limits_{a}^{b} \frac{\partial B(x,y)}{\partial x} dx - \int\limits_{a}^{b}dx \int\limits_{c}^{d}dy \frac{\partial A}{\partial y} = \\ &= \int\limits_{c}^{d}dy (B(b,y) - B(a,y)) - \left[\int\limits_{a}^{b}dx \left(A(x,d) - A(x,c) \right) \right] = \\ &= \int\limits_{a}^{b}A(x,c)dx + \int\limits_{c}^{d}B(b,y)dy - \int\limits_{a}^{c}A(x,d)dx - \int\limits_{c}^{d}B(a,y)dy = \\ &= \int\limits_{L_{1}}\omega + \int\limits_{L_{2}}\omega + \int\limits_{L_{3}}\omega + \int\limits_{l_{4}}\omega. \end{split}$$

Czyli

$$\int \int_{P} d\omega = \int_{L} \omega,$$

to kiedyś będzie twierdzenie Stokesa

Analiza III 5

Przykład 3. niech (sytuacja jak na rys 13) $S = S_1 \cup S_2$, gdzie

 $S_1 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1, z \ge 0\}, \quad S_2 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, z = 0\},$ $\alpha \in \Lambda^2 M.$

 $\int_{S} \alpha = \int_{S_1} \alpha + \int_{S_2} \alpha.$

Rysunek 0.5: Tak to wygląda

Definicja 4. Atlasem zorientowanym nazywamy taki zbiór otoczeń i map (U_1, φ_1) , że dla każdej pary (U_i, φ_i) , (U_j, φ_j) takiej, że $U_i \cap U_j \neq \phi$, odwzorowanie det $(\varphi_j \circ \varphi_i^{-1})' > 0$.

Definicja 5. Rozmaitość składająca się z atlasu zorientowanego nazywamy orientowalną.

Definicja 6. Po wyborze orientacji, rozmaitość nazywamy zorientowaną.