In [1]:

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

In [3]:

 $\label{lower} traindf=pd.read_csv(r"C:\Users\G S R KARTHIK\Downloads\Mobile_Price_Classification_train.csv") traindf$

Out[3]:

l_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_h	sc_w	talk_time	three_
0	1	0	7	0.6	188	2	 20	756	2549	9	7	19	
1	0	1	53	0.7	136	3	 905	1988	2631	17	3	7	
1	2	1	41	0.9	145	5	 1263	1716	2603	11	2	9	
0	0	0	10	0.8	131	6	 1216	1786	2769	16	8	11	
0	13	1	44	0.6	141	2	 1208	1212	1411	8	2	15	
1	0	1	2	8.0	106	6	 1222	1890	668	13	4	19	
1	0	0	39	0.2	187	4	 915	1965	2032	11	10	16	
1	1	1	36	0.7	108	8	 868	1632	3057	9	1	5	
0	4	1	46	0.1	145	5	 336	670	869	18	10	19	
1	5	1	45	0.9	168	6	 483	754	3919	19	4	2	

In [4]:

testdf=pd.read_csv(r"C:\Users\G S R KARTHIK\Downloads\Mobile_Price_Classification_test.csv")
testdf

Out[4]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_height
0	1	1043	1	1.8	1	14	0	5	0.1	193	 16	226
1	2	841	1	0.5	1	4	1	61	0.8	191	 12	746
2	3	1807	1	2.8	0	1	0	27	0.9	186	 4	1270
3	4	1546	0	0.5	1	18	1	25	0.5	96	 20	295
4	5	1434	0	1.4	0	11	1	49	0.5	108	 18	749
				•••				•••			 	
995	996	1700	1	1.9	0	0	1	54	0.5	170	 17	644
996	997	609	0	1.8	1	0	0	13	0.9	186	 2	1152
997	998	1185	0	1.4	0	1	1	8	0.5	80	 12	477
998	999	1533	1	0.5	1	0	0	50	0.4	171	 12	38
999	1000	1270	1	0.5	0	4	1	35	0.1	140	 19	457
4000	4000 rays v 24 aglumna											

1000 rows × 21 columns

In [6]: M traindf.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): Column Non-Null Count Dtype # _ _ _ 0 battery_power 2000 non-null int64 1 2000 non-null int64 blue 2 clock_speed 2000 non-null float64 2000 non-null 3 dual_sim int64 4 fc 2000 non-null int64 5 four_g 2000 non-null int64 6 2000 non-null int64 int_memory 7 2000 non-null float64 m dep 8 2000 non-null int64 mobile wt 9 n cores 2000 non-null int64 10 рс 2000 non-null int64 px_height 2000 non-null 11 int64 2000 non-null px_width int64 12 2000 non-null 13 ram int64 14 sc_h 2000 non-null int64 15 sc_w 2000 non-null int64 16 talk_time 2000 non-null int64 three_g 2000 non-null 17 int64 18 touch_screen 2000 non-null int64 2000 non-null 19 wifi int64 20 price_range 2000 non-null int64 dtypes: float64(2), int64(19) memory usage: 328.2 KB

In [7]:

testdf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	id	1000 non-null	int64				
1	battery_power	1000 non-null	int64				
2	blue	1000 non-null	int64				
3	clock_speed	1000 non-null	float64				
4	dual_sim	1000 non-null	int64				
5	fc	1000 non-null	int64				
6	four_g	1000 non-null	int64				
7	int_memory	1000 non-null	int64				
8	m_dep	1000 non-null	float64				
9	mobile_wt	1000 non-null	int64				
10	n_cores	1000 non-null	int64				
11	рс	1000 non-null	int64				
12	px_height	1000 non-null	int64				
13	px_width	1000 non-null	int64				
14	ram	1000 non-null	int64				
15	sc_h	1000 non-null	int64				
16	SC_W	1000 non-null	int64				
17	talk_time	1000 non-null	int64				
18	three_g	1000 non-null	int64				
19	touch_screen	1000 non-null	int64				
20	wifi	1000 non-null	int64				
dtyp	es: float64(2),	int64(19)					

localhost:8889/notebooks/Random Forest Mobile.ipynb

memory usage: 164.2 KB

```
In [11]:
                                                                                                                            M
traindf.shape,testdf.shape
Out[11]:
((2000, 21), (1000, 21))
In [17]:
                                                                                                                            M
traindf=traindf.head(1000)
traindf
Out[17]:
     fc four_g int_memory m_dep mobile_wt n_cores ... px_height px_width
                                                                               ram sc_h sc_w
                                                                                               talk_time
                                                    2 ...
   0
      1
              0
                         7
                                0.6
                                          188
                                                                 20
                                                                         756
                                                                              2549
                                                                                       9
                                                                                             7
                                                                                                      19
      0
                                          136
                                                                                      17
                                                                                             3
                                                                                                      7
   1
              1
                        53
                                0.7
                                                    3 ...
                                                                905
                                                                        1988
                                                                              2631
      2
                        41
                                                    5 ...
                                                                              2603
                                                                                             2
                                                                                                      9
   1
              1
                               0.9
                                          145
                                                               1263
                                                                        1716
                                                                                      11
  0
      0
                         10
                                8.0
                                          131
                                                    6 ...
                                                               1216
                                                                        1786
                                                                              2769
                                                                                      16
                                                                                             8
                                                                                                      11
                                                                                             2
  0
     13
              1
                        44
                                0.6
                                          141
                                                    2 ...
                                                               1208
                                                                        1212 1411
                                                                                       8
                                                                                                      15
                                                    3 ...
   1
      5
              0
                        49
                                0.2
                                          193
                                                               1285
                                                                        1427
                                                                              3624
                                                                                      12
                                                                                            11
                                                                                                      16
      2
                         10
                               0.5
                                          188
                                                    2 ...
                                                               1480
                                                                        1731
                                                                              2944
                                                                                       8
                                                                                             6
                                                                                                      2
   1
                                                    8 ...
   1
      0
              1
                         19
                                0.9
                                          197
                                                                322
                                                                         875
                                                                              1209
                                                                                      19
                                                                                            12
                                                                                                      12
                                                                                                      7
   1
      1
              1
                        29
                                0.9
                                          141
                                                    6 ...
                                                               1220
                                                                        1348 2752
                                                                                      15
                                                                                             2
  0
      3
              0
                        20
                                          188
                                                    6 ...
                                                                511
                                                                         616
                                                                              3868
                                                                                       5
                                0.6
                                                                                             1
In [18]:
                                                                                                                            H
traindf.shape,testdf.shape
Out[18]:
((1000, 21), (1000, 21))
In [21]:
                                                                                                                            H
X=testdf
y=traindf['price range']
X_train, X_test, y_train, y_test=train_test_split(X,y,train_size=0.7, random_state=42)
In [22]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(X_train,y_train)
Out[22]:
 ▼ RandomForestClassifier
RandomForestClassifier()
In [23]:
                                                                                                                            M
rf=RandomForestClassifier()
```

```
In [24]:
                                                                                                               H
params={\max_depth':[2,3,5,10,20],\min_samples_leaf':[5,10,20,50,100,200],\n_estimators':[10,25,30,50,100,200]
In [25]:
                                                                                                               M
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring="accuracy")
In [26]:
grid_search.fit(X_train,y_train)
Out[26]:
             GridSearchCV
 estimator: RandomForestClassifier
       ▶ RandomForestClassifier
In [27]:
                                                                                                               M
grid_search.best_score_
Out[27]:
0.28714285714285714
In [28]:
                                                                                                               M
rf_best=grid_search.best_estimator_
rf_best
Out[28]:
                           RandomForestClassifier
RandomForestClassifier(max_depth=20, min_samples_leaf=5, n_estimators=25)
In [37]:
                                                                                                               H
traindf['price_range'].value_counts()
Out[37]:
price_range
     276
2
     248
0
     242
     234
Name: count, dtype: int64
```

In [38]: ▶

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],feature_names=X.columns,class_names=['3','2','1','0'],filled=True);
```


In [41]: ▶

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5],feature_names=X.columns,class_names=['3','2','1','0'],filled=True);
```


In [42]:

```
rf_best.feature_importances_
```

Out[42]:

```
array([0.07452831, 0.0840681 , 0.01058722, 0.0487497 , 0.01410742, 0.05441149, 0.0093944 , 0.05685027, 0.03936693, 0.07051028, 0.05329185, 0.05874796, 0.0899535 , 0.06566282, 0.07999385, 0.04863076, 0.04819872, 0.05349038, 0.00852583, 0.01442232, 0.01650787])
```

```
In [43]:
imp_df=pd.DataFrame({"Varname":X_train.columns,"Imp":rf_best.feature_importances_})

In [44]:
imp_df.sort_values(by="Imp",ascending=False)
```

Out[44]:

	Varname	lmp
12	px_height	0.089954
1	battery_power	0.084068
14	ram	0.079994
0	id	0.074528
9	mobile_wt	0.070510
13	px_width	0.065663
11	рс	0.058748
7	int_memory	0.056850
5	fc	0.054411
17	talk_time	0.053490
10	n_cores	0.053292
3	clock_speed	0.048750
15	sc_h	0.048631
16	sc_w	0.048199
8	m_dep	0.039367
20	wifi	0.016508
19	touch_screen	0.014422
4	dual_sim	0.014107
2	blue	0.010587
6	four_g	0.009394
18	three_g	0.008526

In []: