1 General Topology

Definition 1.1 (Topology). A topological space is a set X with a collection of subsets \mathcal{U} , called open sets, such that

- 1. $\emptyset, X \in \mathcal{U}$.
- 2. The arbitrary union of open sets is open.
- 3. The finite union of open sets is open.

The complement X-U of an open set U is called closed. If $x \in U$ open, then U is called a neighborhood of x. Sometimes a non open set $A \supset U$ is also referred to as a neighborhood.

Definition 1.2. Let (X, \mathcal{U}) , (X, \mathcal{V}) be topologies. \mathcal{U} is called stronger(finer) than \mathcal{V} if $\mathcal{V} \subset \mathcal{U}$, and weaker(coarser) if $\mathcal{U} \subset \mathcal{V}$.

Definition 1.3. A basis \mathcal{B} of a topology for X is a collection of subsets of X such that

- 1. For each $x \in X$ there is at least one $B \in \mathcal{B}$ with $x \in B$.
- 2. If $x \in B_1 \cap B_2$ then there exists a $B_3 \subset B_1 \cap B_2$ with $x \in B_3$.

We say that \mathcal{B} generates the topology \mathcal{U} if U is open iff for every $x \in U$ there exits $B \in \mathcal{B}$ with $x \in B \subset U$.

Lemma 1.4. Let \mathcal{B} be a basis for a topology \mathcal{U} on X. Then \mathcal{U} is equal to the collection of all unions of elements of \mathcal{B} .

Lemma 1.5. If \mathcal{C} is a collection of open sets, such that for each $U \subset X$ open, $x \in U$ there is $C \in \mathcal{C}$ such that $x \in C \subset U$, then \mathcal{C} is a basis for X.

Lemma 1.6. Let \mathcal{B} , \mathcal{B}' be bases for topologies \mathcal{U} , \mathcal{U}' respectively on X. Then the following are equivalent:

- 1. \mathcal{U}' is finer than \mathcal{U} .
- 2. For each $x \in B \in \mathcal{B}$, there is a $B' \in \mathcal{B}'$ with $x \in B' \subset B$.

Definition 1.7. A subbasis S for a topology on X is a collection of subsets whose union equals X. The topology generated by the subbasis is defined to be the collection of all unions of finite intersections of elements of S.

Definition 1.8. The product topology on $X \times Y$ is defined by the basis consisting of all sets of the form $U \times V$, $U \subset X$, $V \subset Y$ open.

Theorem 1.9. If \mathcal{B}_1 , \mathcal{B}_2 are bases of X_1 , X_2 respectively, then

$$\mathcal{B} = \{ B_1 \times B_2 \mid B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2 \} \tag{1}$$

is a basis for $X_1 \times X_2$.

Definition 1.10. The projections are defined by

$$\pi_n: X_1 \times X_2 \to X_n; \quad \pi_n(x_1, x_2) = x_n.$$
(2)

Theorem 1.11. The following is a subbasis for $X \times Y$:

$$\{\pi_1^{-1}(U) \mid U \in X \text{ open}\} \cup \{\pi_2^{-1}(V) \mid V \in Y \text{ open}\}.$$
 (3)

Definition 1.12. For (X, \mathcal{U}) and $Y \subset X$, the subspace topology \mathcal{V} on Y is defined as

$$\mathcal{V} = \{ Y \cap U \mid U \in \mathcal{U} \}. \tag{4}$$

Lemma 1.13. If \mathcal{B} is a basis for X then the following is a basis for Y:

$$\{B \cap Y \mid B \in \mathcal{B}\}. \tag{5}$$

Lemma 1.14. Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

Theorem 1.15. Let A, B be subspaces of X, Y respectively, then the product topology on $A \times B$ is equal the subspace topology $A \times B$ inherits from $X \times Y$.

Theorem 1.16. Arbitrary intersections and finite unions of closed sets are closed.

Theorem 1.17. If Y is a subspace of X, then a set is closed in Y iff it equals the intersection of a closed set in X with Y.

Theorem 1.18. If Y is a subspace of X, A is closed in Y and Y is closed in X, then A is closed in X.

Definition 1.19. For A a subset of X, the closure \overline{A}_X of A (in X) is defined as the intersection of all closed sets containing A, the interior of A is defined as the union of all open sets contained in A.

Theorem 1.20. Let Y be a subspace of X, A a subset of Y. Then $\overline{A}_Y = \overline{A}_X \cap Y$.

Theorem 1.21. Let A be a subset of X.

- 1. Then $x \in \overline{A}$ iff every open set containing x intersects A.
- 2. If X is given by a basis, then $x \in \overline{A}$ iff every basis element containing x intersects A.

Definition 1.22. $x \in X$ is called a limit point of $A \subset X$ if every neighborhood of x intersects A in some other point than x itself, or equally if x belongs to the closure of $A - \{x\}$.

Theorem 1.23. Let A' be the set of all limit points of $A \subset X$, then

$$\overline{A} = A \cup A'. \tag{6}$$

Corollary 1.24. A subset of a topological space is closed iff it contains all its limit points.

Definition 1.25. A sequence x_k converges to $x \in X$ if for each neighborhood U of x there is a positive integer N such that for all $n \leq N$, $x_n \in U$.

Definition 1.26. X is called a Hausdorff space if for each $x_1 \neq x_2$ there are neighborhoods of x_1 and x_2 respectively that are disjoint. It is called T_1 if all finite point sets are closed.

Theorem 1.27. Every finite point set in a Hausdorff space is closed, so it is T_1 .

Theorem 1.28. Let X be T_1 , then x is a limit point of A iff every neighborhood of x contains infinitely many points of A.

Theorem 1.29. A sequence in a Hausdorff space converges to at most one point.

Theorem 1.30. The product of two Hausdorff spaces is Hausdorff, so is a subspace of a Hausdorff space.

Definition 1.31. A function $f: X \to Y$ is called continuous if for every open $V \subset Y$, $f^{-1}(V)$ is open in X. If f is also a bijection and f^{-1} is also continuous then f is called a homeomorphism.

Theorem 1.32. Let $f: X \to Y$, then the following are equivalent:

- 1. f is continuous.
- 2. For every subset $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.
- 3. For every closed $B \subset Y$, $f^{-1}(B)$ is closed in X.
- 4. For every $x \in X$ and every neighborhood V of f(x) there is a neighborhood U of x with $f(U) \subset V$.

If (4) holds for some point $x \in X$, then f is called continuous at x.

Definition 1.33. Let $f: X \to Y$ be injective and continuous, then f is called an imbedding if f is a homeomorphism under the subspace topology $f(X) \subset Y$.

Theorem 1.34. Constant functions, inclusions, composites of continuous functions, restriction of the domain or range of a continuous function to a subspace, are continuous. If $f: X \to Y$ is continuous in the subspace topology when restricted to an open cover $f|U_a$, then f is continuous.

Theorem 1.35 (The pasting lemma). Let $X = A \cup B$, with A, B closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. If their values agree for every $x \in A \cap B$, then their combination to $X \to Y$ is continuous.

Theorem 1.36. Let $f: A \to X \times Y$ be given by $f(a) = (f_1(a), f_2(a))$. Then f is continuous iff f_1, f_2 are continuous. Those are called the coordinate functions of f.