Digitális technika I.

Adatirányítók

A több bemenetről 1 kimenetre választó adatirányítókat multiplexereknek nevezzük. Egy általános blokkvázlat az alábbi ábrán látható:

A címbitekkel kiválasztott bemenet jele kerül a kimenetre, ha ezt az engedélyező jel lehetővé teszi.

Nézzünk egy 4-ről 1-re multiplexert, vegyük sorra, milyen bemenetekkel rendelkezik, és melyiknek mi a szerepe. Elsőként egy szemléletes ábra egy 4-

ről 1-re multiplexer működésére:

Kapcsolóállás	A ₁	A ₀	Y=
1	0	0	Do
2	0	1	D ₁
3	1	0	D ₂
4	1	1	D ₃
	(marris +)40m	The second	

Készítette: Tolner Nikolet

Írjuk fel az általunk megtervezendő 4-1-re multiplexer működési igazságtábláját:

B

0

0

X

0

0

0

0

X

 I_0

 \mathbf{I}_1

 I_2

 I_3

()

E: Engedélyező bemenet, 0 értéke esetén engedélyezve van a MUX működése, vagyis a B, A szelekciós bemenetekkel kiválasztott indexű adatbemenet (I_{BA}) jele kerül a kimenetre (Y). \bar{E} 1-es értéke esetén a kimenet értéke a szelekciós bemenetek értékétől függetlenül 0 lesz (ez felépítés függő).

B, A: szelekciós bemenetek. Súlyozzuk a bemeneteket B≡2¹, A≡2⁰, és így mint 2 biten előállítunk 4 különböző értéket, amelyek a 0, 1, 2, 3. Ezek a bemenetek határozzák meg, hogy melyik indexű bemenet I₀, I₁, I₂, vagy I₃ jele kerül a kimenetre.

I₀, I₁, I₂, I₃: adatbemenetek, a B, A szelekciós bemenetek választják ki, hogy melyik indexű adatbemenet jele kerül a kimenetre.

Készítette: Tolner Nikoletta 2025. 08. 26.

Nézzük meg egy ilyen 4-ről az 1-re multiplexer egy lehetséges totem poole kimenetű megvalósítását: A teljes tokot (74.153) bemutatjuk, ezért látható az ábrán 2 teljesen egyforma multiplexer.

\overline{E}	В	A	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	X	X	0

Demultiplexerek

Az egy bemenetről több kimenetre választó adatirányítókat demultiplexereknek nevezzük. A demultiplexereknél a negált kimenettípus a gyakoribb változat. Egy lehetséges blokkvázlat:

A címbitek által kiválasztott kimenetre kerül a bemenet jele, ha ezt az engedélyező jel lehetővé teszi.

Demultiplexerek

Nézzük meg egy 1-ről a 4-re demultiplexer lehetséges felépítését, és a működési igazságtábláját, előtte azonban egy szemléletes ábrát mutatunk be a demultiplexer működésére:

Kapcsolóállás	A ₁	A ₀	Kimenet	
1	0	0	Y ₀ =D	
2	0	1	Y ₁ =D	
3	1	0	Y ₂ =D	
4	1	1	Y ₃ =D	

Demultiplexerek

 \overline{E} : engedélyező bemenet, 0 értéke esetén engedélyezve van a demultiplexer működése, vagyis a B, A szelekciós bemenetek által kiválasztott indexű Y kimenetre kerül 0, a

többi kimenetre 1-es. Ha 1-es értékű az engedélyező bemenet, akkor függetlenül a B, A szelekciós bemenetek értékétől az összes kimenet 1-es lesz.

B, A: szelekciós bemenetek. Súlyozzuk a bemeneteket, B=2¹, A=2⁰, így mint 2 bites értékek indexül szolgálnak az Y kimeneteknek. Ha engedélyezve van a demultiplexer működése, akkor az általuk kiválasztott indexű kimenetre 0 kerül, a többire 1.

 $\overline{Y_0}$, $\overline{Y_1}$, $\overline{Y_2}$, $\overline{Y_3}$ kimenetek. A B, A szelekciós bemenetek választják ki, hogy melyik indexű kimenetre kerüljön 0, feltéve, hogy engedélyezve van a demultiplexer működése.

Ē	В	Α	$\overline{\mathbf{Y}_0}$	Y,	$\overline{\mathbf{Y}_{2}}$	Y ₃
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	Х	х	1	1	1	1

Köszönöm a figyelmet!