Probability Theory & Statistics

Innopolis University, BS-I,II Spring Semester 2016-17

Lecturer: Nikolay Shilov

Part I

LAW(S) OF LARGE NUMBERS

Bernoulli' law: statement

- Assume we are given an infinite series of trials $X_1, ... X_n, ...$ where $X_n = binomial(n, p)$ and 0 .
- Then for every $\epsilon>0$ the probability that normalized frequency of success equals p with accuracy ϵ

converges to 1:

$$P\left(\left|\frac{m}{n}-p\right|\leq\varepsilon\right)_{n\to\infty}$$
 1

Bernoulli' law: proof sketch

$$-n\varepsilon \leq m - np \leq n\varepsilon$$

$$x = \frac{m - np}{\sqrt{npq}}$$

$$x_1 = -\varepsilon \sqrt{\frac{n}{pq}} \leq x \leq \varepsilon \sqrt{\frac{n}{pq}} = x_2$$

$$P\left(\left|\frac{m}{n} - p\right| \leq \varepsilon\right) = P(x_1 \leq x \leq x_2) \approx$$

$$\approx \Phi_0(x_2) - \Phi_0(x_1) = 2\Phi_0(x_2) = 2\Phi_0\left(\varepsilon \sqrt{\frac{n}{pq}}\right) \xrightarrow{n \to \infty} 1$$

$$P\left(\left|\frac{m}{n} - p\right| \leq \varepsilon\right) \xrightarrow{n \to \infty} 1$$

Chebyshev's inequality: statement

- Let X be a random variable with a finite expectation μ and finite non-zero deviation σ .
- Then for any real number k>0

$$P(|X - \mu| \ge k\sigma) \le 1/k^2$$
.

Chebyshev's inequality: proof

•
$$P(|X - \mu| \ge k \sigma) = M(I_{|X - \mu| \ge k \sigma}) =$$

=
$$M(I_{|X-\mu|/(k\sigma)\geq 1}) \leq M((X-\mu)^2/(k\sigma)^2) =$$

=
$$M((X - \mu)^2)/(k^2 \sigma^2) = 1/k^2$$
.

Khintchin's (weak) law: statement

- Let X_1 , X_2 , ... be an infinite sequence of independent and identically distributed (i.i.d. or IID) random variables with same sets of outcomes, finite expectation μ and finite nonzero deviation σ .
- Let X_n be $(X_1 + ... + X_n)/n$
- Then for every $\varepsilon>0$ the probability

$$P(|\underline{X}_n - \mu| > \varepsilon)$$

converges to 0 (as $n \rightarrow \infty$)

Khintchin's (weak) law: proof

- $M(\underline{\mathbf{X}}_n) = \mu$ and $D(\underline{\mathbf{X}}_n) = \sigma^2/n$;
- Using Chebyshev' inequality

$$P(|X - \mu| \ge k\sigma) \le 1/k^2$$

for
$$\underline{\mathbf{X}}_n$$
: $P(|\underline{\mathbf{X}}_n - \mu| \ge \varepsilon) \le \sigma^2/(n\varepsilon^2)$.

Part II

A NEED OF CONTINUOUS SAMPLE/OUTCOME SPACES

Finite case doesn't work any more

- If X is a random variable with finite set of outcomes than the set of all random variables Y that are IID with X is *finite*.
- For example: there is no any random variable
 Y that is IID with
 - -tossing idealized coin,
 - rolling idealized dice,
 - a random variable X with n values and outcomes.

Tossing coin as a random variables with infinite outcomes

- There is an infinite chain of people but with a finite measure,
- they individually flip coins and half of them get head another half – tails.

Самая длинная цепочка рукопожатий (Книга Рекордов России, http://knigarekordovrossii.ru/index.php/rekord-y/kategorii/massovye-meropriyatiya/1035-samaya-dlinnaya-tsepochka-rukopozhatij.html#!prettyPhoto[galleryaf22339-2851/2/)

An infinite sequence of IID random variables

How to understand Law of Large Numbers

Part III

PROBABILITY SPACES (CONTINUES EUCLIDEAN CASE)

Probability Space Definition (compare with week 2)

• A probability space is a sample space Ω together with a set of events $\mathcal{F} \subseteq 2^{\Omega}$ (that must be a σ -algebra) and a non-negative additive probability function P to all events and satisfying normalization condition $P(\Omega)=1$.

In other words...

A probability space is a triple

$$(\Omega, \mathcal{F}, P)$$

where

- $-\Omega$ is a finite event/sample space,
- $-\mathcal{F}\subseteq 2^{\Omega}$ is the set of events,
- -and P: $\mathcal{F} \rightarrow [0,1]$ a (total) probability function satisfying *axioms*.

Probability Axioms

- Non-negativity: 0≤P(A) for every event;
- Normalization: $P(\Omega)=1$;
- Countable additivity: $P(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}P(A_k)$ assuming that all events are pair-wise exclusive.

Simple Properties

- Boundness: $P(A) \le 1$ for every event.
- Impossibility: $P(\emptyset)=0$.
- Additivity (finite case): for any finite collection of (pair-wise) mutually exclusive events

$$P(\bigcup_{1 \leq j \leq n} A_j) = \sum_{1 \leq j \leq n} P(A_j).$$

Further Properties

- Complimentarity: P(A^c) = 1 P(A) for every event.
- Difference: P(A\B) = P(A) P(A∩B) for all events.
- Monotonicity: if an event B implies A then A is more probable than B, i.e.

 $B \subseteq A$ implies $P(B) \leq P(A)$.

Variants in Euclidean Spaces

- Probability within
 - an interval of length L: for any set of subintervals of total length I let probability be I/L;
 - a figure with area S: for any subfigure with area s let probability be s/S;
 - a 3D-body with volume V: for any sub-body with volume v let probability be v/V.

Example

- What is probability that a randomly drown triangle be
 - an acute triangle;
 - a right triangle;
 - an obtuse triangle?

An intuitive approach

- Consider the angle for some fixed vertex of a "randomly drown" triangle: it ranges from 0 to 180 degrees.
- The probability that the angle
 - -ranges in [0,90) is 0.5,
 - is 90 exactly is 0,
 - -ranges in (90,180] is 0.5.

Another approach to the problem

- Two angles α and β are independently ranging in [0, 90], the third angle γ is (180 α β).
- The probability that γ
 - -ranges in [0,90) is 0.5,
 - is 90 exactly is 0,
 - -ranges in (90,180] is 0.5.

One more approach...

Results of the study...

- The probability that
 - -all angles range in [0,90) is 0.25,
 - -any angle is 90 exactly is 0,
 - —any angle ranges in (90,180) is 0.75.