MA 108 - Spring 2018 Tutorial Sheet 3

- 1. (a) Verify that $y_1 = 1/(x-1)$ and $y_2 = 1/(x+1)$ are solutions of $(x^2-1)y'' + 4xy' + 2y = 0$ on $\mathbb{R} \{\pm 1\}$. Find the general solution.
 - (b) Find the solution with initial conditions y(0) = -5, y'(0) = 1.
 - (c) What is the interval of validity of this solution?
- 2. Compute the Wronskians of the given set of functions.
 - (a) $\{e^x, e^x \sin x\}$.
 - (b) $\{x^{1/2}, x^{-1/3}\}.$
 - (c) $\{x \ln |x|, x^2 \ln |x|\}.$
- 3. Let y_1 and y_2 be two solutions of ODE. Find the Wronskian $W(y_1, y_2; x)$ of following ODE's.
 - (a) $y'' + 3(x^2 + 1)y' 2y = 0$ given that $W(\pi) = -1$.
 - (b) $(1-x^2)y'' 2xy' + a(a+1)y = 0$ given that W(0) = 1.
 - (c) $x^2y'' + xy' + (x^2 \nu^2)y = 0$ given that W(1) = 1.
- 4. Suppose p_1, p_2, q_1, q_2 are continuous on (a, b) and the equations $y'' + p_1(x)y' + q_1(x)y = 0$ and $y'' + p_2(x)y' + q_2(x)y = 0$ have the same solutions on (a, b). Show that $p_1 = p_2$ and $q_1 = q_2$ on (a, b). [Hint. Use Abel's formula.]
- 5. Solve the following IVPs.
 - (a) y'' 2y' + 2y = 0, y(0) = 3, y'(0) = -2.
 - (b) y'' + 14y' + 50y = 0, y(0) = 2, y'(0) = -17.
 - (c) 6y'' y' y = 0, y(0) = 10, y'(0) = 0.
 - (d) 4y'' 4y' 3y = 0, $y(0) = \frac{13}{12}$, $y'(0) = \frac{23}{24}$.
 - (e) 4y'' 12y' + 9y = 0, y(0) = 3, $y'(0) = \frac{5}{2}$.
- 6. Find the general solution of following ODE.

[Hint: Find two linearly independent solution of homogeneous part and then use variation of parameter method to find a particular solution.]

- (a) $x^2y'' + xy' 4y = 2x^4$.
- (b) $x^2y'' 3xy' + 3y = x$.
- (c) $y'' 3y' + 2y = 1/(1 + e^{-x})$.
- (d) $x^2y'' + xy' 4y = -6x 4$.

(e)
$$x^2y'' - 2xy' + 2y = x^{9/2}$$
.

(f)
$$y'' - 2y' + y = 14x^{3/2}e^x$$
.

(g)
$$y'' + 4y = \sin 2x \sec^2 2x$$
.

- 7. (Principle of Superposition) Assume y_1 is a solution of $a(x)y'' + b(x)y' + c(x)y = f_1(x)$ and y_2 is a solution of $a(x)y'' + b(x)y' + c(x)y = f_2(x)$. Show that $y_1 + y_2$ is a solution of $a(x)y'' + b(x)y' + c(x)y = f_1(x) + f_2(x)$.
- 8. Find a particular solution of $y'' + 4xy' + (4x^2 + 2)y = 4e^{-x(x+2)}$, given that $y_1 = e^{-x^2}$, $y_2 = xe^{-x^2}$ are solutions of homogeneous part.
- 9. Find a particular solution using variation of parameters method.

(a)
$$y'' - 2y' + y = 14x^{3/2}e^x$$
.

(b)
$$y'' - y = \frac{4e^{-x}}{1 - e^{-2x}}$$
.

(c)
$$y'' + y = \sec x \tan x$$
.

(d)
$$y'' - 3y' + 2y = \sin e^{-x}$$
.

(e)
$$x^2y'' - x(x+2)y' + (x+2)y = 2x^3$$
, $x > 0$, the fundamental set of solutions of homogeneous part is $\{x, xe^x\}$

(f)
$$(1-x)y'' + xy' - y = 2(x-1)^2 e^{-x}$$
, $0 < x < 1$; the fundamental set of solutions of homogeneous part is $\{e^x, x\}$.