

Julien Gabet

Mars-June, 2018

Memo/garbage part

$$M, N ::= x; \lambda x.M; MN$$

 $(\lambda x.M)N \to_{\beta} M[N/x]$

terms tend to get bigger

If $C[\]$ is a context, and $M \to_{\beta} N$ then $C[M] \to_{\beta} C[N]$

 $\begin{array}{l} P,Q ::= u(xy).P; \bar{u}xy.P; P|Q; (\nu x)P|!P \\ u(xy).P|\bar{u}ab.Q \rightarrow P[a/x,b/y]|Q \end{array}$

If
$$P \to Q$$
 then $C[P] \to C[Q]$
If $P \equiv P' \to Q \equiv Q'$ then $P \to Q$

(with necessary hypothesis on context C)

Krivine Abstract Machine (KAM) $M \star \Pi \star \mathcal{E}$

$$MN \star \Pi \star \mathcal{E} \to M \star (N, \mathcal{E}).\Pi \star \mathcal{E}$$
$$\lambda x.M \star (N, \mathcal{E}).\Pi \star \mathcal{F} \to M \star \Pi \star \mathcal{F}, s \mapsto (N, \mathcal{E})$$
$$x \star \Pi \star \mathcal{E}, x \mapsto (M, \mathcal{F}) \to M \star \Pi \star \mathcal{F}$$

For exponentials:

 $!P \simeq !P|!P$

 $(\nu u)!u(x).P \simeq 0$

idea : $!P|Q \simeq !P|!P|Q \ \forall Q$

We want $M \star \Pi \star \mathcal{E} \to M' \star \Pi' \star \mathcal{E}'$ iff $[\![M, \mathcal{E}]\!]_u | [\![\Pi]\!]_u \to [\![M', \mathcal{E}']\!]_v | [\![\Pi']\!]_v$

- equiv \simeq bisimulation
- the traduction goes well

Définition

A binary relation S is a reduction bisimulation if, for all $(P,Q) \in S$

- (1) $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} Q'$ for some Q' with $(P', Q') \in S$ (2) $Q \xrightarrow{\tau} Q'$ implies $P \xrightarrow{\tau} P'$ for some P' with $(P', Q') \in S$

Observability:

 $\overline{P\downarrow_x}$ if P can make an input action of subject x

 $P\downarrow_{\bar{x}}$ if P can make an output action of subject x.

Image-finite process:

 \overline{P} is image-finite if, for all derivative Q of P and any action $\alpha, \exists n \geq 0$ and Q_1, \dots, Q_n such that $Q \stackrel{\alpha}{\Rightarrow} Q'$ implies $Q' = Q_i$ for some i.

where \Rightarrow is the reflexive transitive closure of $\stackrel{\tau}{\rightarrow}$ and $\stackrel{\alpha}{\Rightarrow}$ is $\Rightarrow \stackrel{\alpha}{\rightarrow} \Rightarrow$ for some action α .