Señales y Sistemas

Problemas Tema 1: Conceptos Básicos de Señales y Sistemas

Francisco Javier Mercader Martínez

1) Exprese cada uno de los siguientes números complejos en su parte real e imaginaria (a + jb):

•
$$\frac{1}{2}e^{j\pi} = \frac{1}{2}(\cos(\pi) + j\sin(\pi)) = -\frac{1}{2}$$

•
$$\frac{1}{2}e^{-j\pi} = \frac{1}{2}(\cos(\pi) - j\sin(\pi)) = -\frac{1}{2}$$

•
$$e^{j\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + j \cdot \sin\left(\frac{\pi}{2}\right) = j$$

•
$$e^{-j\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) - j \cdot \sin\left(\frac{\pi}{2}\right) = -j$$

•
$$e^{j\frac{5\pi}{2}} = \cos\left(\frac{5\pi}{2}\right) + j \cdot \sin\left(\frac{5\pi}{2}\right) = j$$

•
$$\sqrt{2}e^{j\frac{\pi}{4}} = \sqrt{2} \cdot \left(\cos\left(\frac{\pi}{4}\right) + j \cdot \sin\left(\frac{\pi}{4}\right)\right) = 1 + j$$

•
$$\sqrt{2}e^{j\frac{9\pi}{4}} = \sqrt{2} \cdot \left(\cos\left(\frac{9\pi}{4}\right) + j \cdot \sin\left(\frac{9\pi}{4}\right)\right) = 1 + j$$

•
$$\sqrt{2}e^{-j\frac{9\pi}{4}} = \sqrt{2} \cdot \left(\cos\left(\frac{9\pi}{4}\right) - j \cdot \sin\left(\frac{9\pi}{4}\right)\right) = 1 - j$$

•
$$\sqrt{2}e^{-j\frac{\pi}{4}} = \sqrt{2} \cdot \left(\cos\left(\frac{\pi}{4}\right) - j \cdot \sin\left(\frac{\pi}{4}\right)\right) = 1 - j$$

2) Exprese cada uno de los siguientes números complejos en su módulo y fase $(|z|e^{j\varphi(z)} \text{ con } \varphi(z) \in [-\pi,\pi])$:

1

• 5:
$$\begin{cases} |z| = \sqrt{5^2 + 0^2} = 5\\ \varphi = \arctan\left(\frac{0}{5}\right) = 0 \end{cases} \longrightarrow 5$$

•
$$-2:$$

$$\begin{cases} |z| = \sqrt{(-2)^2 + 0^2} = 2\\ \varphi = \arctan\left(\frac{0}{-2}\right) = \pi \end{cases} \longrightarrow 2e^{j\pi}$$

•
$$-3j:$$

$$\begin{cases} |z| = \sqrt{0^2 + (-3)^2} = 3\\ \varphi = \arctan\left(\frac{-3}{0}\right) = -\frac{\pi}{2} \end{cases} \longrightarrow 3e^{-j\frac{\pi}{2}}$$

$$\bullet \quad -j\frac{\sqrt{3}}{2}: \begin{cases} |z| = \sqrt{0^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \frac{\sqrt{3}}{2} \\ \varphi = \arctan\left(\frac{-\frac{\sqrt{3}}{2}}{0}\right) = -\frac{\pi}{2} \end{cases} \longrightarrow \frac{\sqrt{3}}{2}e^{-j\frac{\pi}{2}}$$

•
$$1+j:$$

$$\begin{cases} |z| = \sqrt{1^2 + 1^2} = \sqrt{2} \\ \varphi = \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4} \end{cases} \longrightarrow \sqrt{2}e^{j\frac{\pi}{4}}$$

•
$$(1-j)^2 = -2j : \begin{cases} |z| = \sqrt{0^2 + (-2)^2} = 2\\ \varphi = \arctan\left(\frac{-2}{0}\right) = -\frac{\pi}{2} \end{cases} \longrightarrow 2e^{-j\frac{\pi}{2}}$$

•
$$j(1-j) = 1+j$$
:
$$\begin{cases} |z| = \sqrt{1^2 + 1^2} = \sqrt{2} \\ \varphi = \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4} \end{cases} \longrightarrow \sqrt{2}e^{j\frac{\pi}{4}}$$

•
$$\frac{1+j}{1-j} = j : \begin{cases} |z| = \sqrt{0^2 + 1^2} = 1\\ \varphi = \arctan\left(\frac{1}{0}\right) = \frac{\pi}{2} \end{cases} \longrightarrow e^{j\frac{\pi}{2}}$$

$$\bullet \frac{\sqrt{2} + j\sqrt{2}}{1 + j\sqrt{3}} = \frac{\sqrt{6} + \sqrt{2}}{4} + \frac{-\sqrt{6} + \sqrt{2}}{4}j : \begin{cases} |z| = \sqrt{\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 + \left(\frac{-\sqrt{6} + \sqrt{2}}{4}\right)^2} + \left(\frac{-\sqrt{6} + \sqrt{2}}{4}\right)^2} = 1 \\ \varphi = \arctan\left(\frac{\sqrt{6} + \sqrt{2}}{\frac{4}{-\sqrt{6} + \sqrt{2}}}\right) = -\frac{1}{12}\pi \end{cases} \longrightarrow e^{-j\frac{1}{12}}$$

- 3) Calcule los valores de potencia media y de energía de las siguientes señales:
 - $\mathbf{a)} \ x(t) = e^{-2t} u(t)$

$$E_T = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_0^{\infty} |e^{-2t}|^2 dt = \int_0^{\infty} e^{-4t} dt$$
$$= \left[-\frac{1}{4} e^{-4t} \right]_0^{\infty} = -\frac{1}{4} \cdot [0 - 1] = \frac{1}{4} J$$
$$P_m = \lim_{T \to \infty} \frac{1}{2T} = \int_{-T}^T |x(t)|^2 dt = \lim_{T \to \infty} \frac{E_T}{2T} = \frac{\frac{1}{4}}{+\infty} = 0W$$

b) $x(t) = e^{j(2t + \frac{\pi}{4})}$

$$E_T = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} \left| e^{j(2t + \frac{\pi}{4})} \right|^2 dt$$

$$= \int_{-\infty}^{\infty} 1^2 dt = [t]_{-\infty}^{\infty} = \infty - (-\infty) = \infty$$

$$P_m = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| e^{j(2t + \frac{\pi}{4})} \right|^2 dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt$$

$$= \frac{1}{T} \cdot [t]_{-\frac{T}{2}}^{\frac{T}{2}} = \frac{1}{T} \cdot \left(\frac{T}{2} - \left(-\frac{T}{2} \right) \right) = \frac{1}{T} \cdot T = 1$$

c) $x(t) = \cos(t)$

$$E_T = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |\cos(t)|^2 dt = \int_{-\infty}^{\infty} \cos^2(t) dt$$
$$= \frac{1}{2} \int_{-\infty}^{\infty} 1 + \cos(2t) dt = \frac{1}{2} \cdot \left[t + \frac{1}{2} \sin(2t) \right]_{-\infty}^{\infty}$$
$$=$$

$$P_{m} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos^{2}(t) dt = \frac{1}{2T} \left[t + \frac{\sin(2t)}{2} \right]_{-\frac{T}{2}}^{\frac{T}{2}}$$
$$= \frac{1}{2T} \left(\frac{T}{2} + \frac{t}{2} + \frac{\sin(T) - \sin(-T)}{2} \right) = \frac{1}{2T} \left(T + \sin(T) \right)^{-1} = \frac{1}{2} W$$

 $\mathbf{d)} \ x[n] = \left(\frac{1}{2}\right)^n u[n]$

$$E_T = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \left| \left(\frac{1}{2}\right)^n \right|^2 = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{2n}$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n = \frac{1-0\cdot\frac{1}{4}}{1-\frac{1}{4}} = \frac{4}{3}J$$
$$P_m = \lim_{N\to\infty} \frac{E_T}{2N+1} = \frac{\frac{4}{3}}{+\infty} = 0W$$

2

$$E_T = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \left| e^{j\left(\frac{\pi}{2}n + \frac{\pi}{8}\right)} \right|^2 = \sum_{n=0}^{\infty} 1^2 = \infty$$

$$P_m = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \left\{ \omega_0 = \frac{\pi}{2} \to N = \frac{2\pi}{\frac{\pi}{2}} k = 4k \underset{k=1}{=} 4 \right\}$$

$$= \frac{1}{4} \sum_{n=0}^{3} 1^2 = \frac{4}{4} = 1W$$

$$\mathbf{f)} \ x[n] = \cos\left(\frac{\pi}{4}n\right)u[n]$$

$$E_T = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \left| \cos \left(\frac{\pi}{4} n \right) \right|^2 = \infty$$

$$P_m = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \left\{ \omega_0 = \frac{\pi}{4} \to N = \frac{2\pi}{\frac{\pi}{4}} k = 8k = 8k = 8 \right\}$$

$$= \frac{1}{8} \sum_{n=0}^{7} \frac{1}{2} \left[1 + \cos(2n)^{-0} \right] = \frac{8}{16} + 0 = \frac{1}{2} W$$

4) Considere una señal x[n] en la que x[n] = 0 para n < -2 y n > 4. Para cada una de las señales siguientes determine los valores de n en los que se garantiza que la señal es cero.

a) x[n-3]

Vemos que esta señal se corresponde con un desplazamiento de 3 unidades a la derecha. Por tanto, x[n-3]=0 para n<1 y n>7.

b) x[n+4]

Vemos que la señal se corresponde con un desplazamine to de 4 unidades a la izquierda. Por tanto x[n+4]=0 para n<-6 y n>0.

c) x[-n]

Vemos que est señal se corresponde con una reflexión o simetría de la señal con respecto al eje central. Por tanto, x[-n]=0 para n<-4 y n>2.

d) x[-n+2]

Vemos que esta señal se corresponde con una reflexión o simetría de la señal con respecto al eje central y un desplazamiento a la derecha de 2 unidades. Por tanto, $x[-n+2]=0,\, \mathrm{para}\ n<-2\ \mathrm{y}\ n>4$

Vemos que esta señal se corresponde con una reflexión o simetría de la señal con respecto al eje central y un desplazamiento a la izquierda de 2 unidades. Por tanto, x[-n-2]=0, para n<-6 y n>0.

5) Considere una señal x(t) en la que x(t) = 0 para t < 3. Para cada una de las señales siguientes deteremine los valores de t en los que se garantiza que la señal es cero.

a) x(1-t)

Podemos expresar dicha señal de la forma x(-t+1), donde vemos rápidamente que se trata de una inversión y de un desplazamiento de un segundo hacia la derecha. Por lo tanto, como se muestra en la figura, la señal x(1-t) será cero para $t \geq -2$.

b) x(1-t) + x(2-t)

Si la señal x(1-t) es cero para $t \ge -2$, vemos fácilmente que x(2-t) es cero para $t \ge -1$. Por lo tanto, al sumarlas, seguirá siendo cero para $t \ge -1$.

c) x(1-t)x(2-t)

Si la señal x(1-t) es cero para $t \ge -2$, vemos fácilmente que x(2-t) es cero para $t \ge -1$. Por lo tanto, al multiplicarlas, seguirá 'siendo cero para $t \ge -2$.

 $\mathbf{d)} \ \ x(3t)$

Si la señal x(t) es cero para t < 3, al aplicar la compresión por el factor a = 3, la señal x(3t) será cero para t > 1.

 $\mathbf{e)} \ x\left(\frac{t}{3}\right)$

Si la señal x(t) es cero para t<3, al aplicar la expansión por el factor $a=\frac{1}{3}$, la señal $x\left(\frac{t}{3}\right)$ será cero para t>9.

6) Determine si cada de las siguientes señales es periódica:

a)
$$x(t) = 2e^{j(t + \frac{\pi}{4})u(t)}$$

b)
$$x(t) = x[n] = e[n] + u[-n]$$

c)
$$x[n] = \sum_{k=-\infty}^{\infty} (\delta[n-4k] - \delta[n-1-4k])$$

7) Para cada una de las señales siguientes determine los valores de la variable independiente en los que se garantice que la parte par de la señal es cero.

a)
$$x[n] = u[n] - u[n-4]$$

b)
$$x(t) = \sin\left(\frac{t}{2}\right)$$

$$\mathbf{c)} \ x[n] = \left(\frac{1}{2}\right)^n u[n-3]$$

d)
$$x(t) = e^{-5t}u(t+2)$$

8) Exprese la parte real de cada una de las siguientes señales de la forma $Ae^{-at}\cos(\omega t + \varphi)$, donde A, a, ω y φ son números reales con $A \ge 0$ y $-\pi \le \varphi \le \pi$.

6

a)
$$x(t) = -2$$

b)
$$x(t) = \sqrt{2}e^{j\frac{\pi}{4}}\cos(3t + 2\pi)$$

$$\mathbf{c)} \ x(t) = e^{-t} \sin(3t + \pi)$$

- **d)** $x(t) = je^{(-2+j100)t}$
- 9) Determine si cada una de las siguientes señales es periódica. En caso afirmativo especifique su periodo fundamental.
 - **a)** x(t) = -2
 - **b)** $x(t) = e^{(-1+j)t}$
 - **c)** $x[n] = e^{j7\pi n}$
 - **d)** $x[n] = 3e^{j3\pi \frac{n+\frac{1}{2}}{5}}$
 - **e)** $x[n] = 3e^{j\frac{3}{5}(n+\frac{1}{2})}$
- **10)** Determine el periodo fundamental de la señal $x(t) = 2\cos(10t+1) \sin(4t-1)$.
- 11) Determine el periodo fundamental de la señal $x[n] = 1 + e^{j\frac{4\pi n}{7}} e^{j\frac{2\pi n}{5}}$.
- 12) Considere la señal en tiempo discreto $x[n] = 1 \sum_{k=3}^{\infty} \delta[n-1-k]$. Determine los valores de los números enteros M y n_0 que permiten que x[n] pueda expresarse como $x[n] = u[Mn + n_0]$
- 13) Considere la señal en tiempo continuo $x(t) = \delta(t+2) \delta(t+2)$. Calcule la energía de la señal $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 14) La figura 1 muestra la señal continua x(t). Represente cada una de las siguientes señales.

Figura 1

- **a)** x(t-1)
- **b)** x(2-t)
- c) x(2t+1)
- **d)** $x \left(4 \frac{t}{2} \right)$
- **e)** [x(t) + x(-t)]u(t)
- **f)** $x(t) \left[\delta \left(t + \frac{3}{2} \right) \delta \left(t \frac{3}{2} \right) \right]$
- 15) La figura 2 muestra la señal discreta x[n]. Represente cada una de las siguientes señales:

Figura 2

a) x[n-4]

- **b)** x[3-n]
- **c)** x[3n]
- **d)** x[3n+1]
- **e)** x[n]u[3-n]
- **f)** $x[n-3]\delta[n-2]$
- **g)** $\frac{1}{2}x[n] + \frac{1}{2}(-1)^nx[n]$
- **h)** $x[(n-1)^2]$
- 16) Determine si cada una de las siguientes señales continuas es periódica. En caso afirmativo obtenga su periodo fundamental.
 - $\mathbf{a)} \ x(t) = 3\cos\left(4t + \frac{\pi}{3}\right)$
 - **b)** $x(t) = e^{j(\pi t 1)}$
 - $\mathbf{c)} \ x(t) = \cos^2\left(2t \frac{\pi}{3}\right)$
 - $\mathbf{d)} \ x(t) = \Pr\{\cos(4\pi t)u(t)\}\$
 - e) $x(t) = Par\{\sin(4\pi t)u(t)\}$
 - **f)** $x(t) = \sum_{n=-\infty}^{\infty} e^{-(2t-n)} u(2t-n)$