Flexible even densities

William McCausland
2018-11-24

Related files: robust_HESSIAN.pdf, 2017-06-17 and new_skew_draw.pdf, 2017-07-28.

Statement of problem

We are given a function $\varphi(x)$ with $\varphi(0) = 0$ such that $f(x) = c\varphi(x)e^{\varphi(x)}$ is a good approximation of a target density that has a mode at zero. Here, $\varphi(x)$ is the density of a N(0,1); we also let $\Phi(x)$ and $Q(x) = 1 - \Phi(x)$ be the corresponding cumulative distribution and survival functions. The normalizing constant c is not known.

Let $\varphi_e(x)$ and $\varphi_o(x)$ be the even and odd parts of $\varphi(x)$. Let $f_e(x)$ and $f_o(x)$ be the even and odd parts of f(x). Let $F_e(x)$ be the cdf corresponding to $f_e(x)$, which is itself a proper and fully normalized density. Also let $f_{e+}(x) = 2f_e(x)1_{[0,\infty)}(x)$, $\phi_+(x) = 2\phi(x)1_{[0,\infty)}(x)$, which are also proper and fully normalized densities. We see that $F_{e+}(x) \equiv 2F_e(x) - 1$ is the cdf corresponding to f_{e+} . We also see that $\Phi_+(x) \equiv 2\Phi(x) - 1$ and $Q_+(x) \equiv 2Q(x)$ are the cumulative distribution and survival functions corresponding to $\phi_+(x)$.

We can always write

$$F_{e+}(x) = F_u(F_v(\Phi_+(x))), \tag{1}$$

where $F_v(v) \equiv 1 - (1-v)^{1-\delta}$ and $F_u(u)$ is defined by $F(u) \equiv F_{e+}(F_v^{-1}(\Phi_+(u)))$. The point of the $F_v(v)$ function is to map a grid of evenly spaced points $u_i \in [0,1]$ to a grid of points $v_i \in [0,1]$ that are shifted towards one, which in turn correspond to points x_i that are well in the tails of the distribution with cdf $F_{e+}(x)$. For now, the values $\delta = 1/2$ (operations $(1-v)^{\delta}$ and $(1-u)^{1/(1-\delta)}$ are particularly efficient) and $\delta = 0$ (no transformation) make most sense.

Let $v = \Phi_+(x)$, $u = F_v(v) = F_v(\Phi_+(x))$. Then $x = \Phi_+^{-1}(v)$ and $v = F_v^{-1}(u)$ and $x = \Phi_+^{-1}(F_v^{-1}(u))$.

$$F_v(v) = 1 - (1 - v)^{1 - \delta}, \quad f_v(v) = (1 - \delta)(1 - v)^{-\delta}, \quad f_v'(v) = \delta(1 - \delta)(1 - v)^{-\delta - 1}.$$

$$F_v^{-1}(u) = 1 - (1 - u)^{1/(1 - \delta)}$$

The following figure shows the functions $F_v^{-1}(u)$, $F_v(v)$ and $f_v(v)$ for the value $\delta = 1/2$.

F_v(v) (solid), f_v(v) (dashed) and F_v_inverse(u) (dotted)

Now taking the derivative of $F_{e+}(x)$ in (1) gives $f_{e+}(x) = f_u(F_v(\Phi_+(x)))f_v(\Phi_+(x))\phi_+(x)$. We approximate $F_{e+}(x)$ and $f_{e+}(x)$ by the functions G(x) and g(x) defined by

$$G(x) = G_u(F_v(\Phi_+(x))), \quad g(x) = g_u(F_v(\Phi_+(x)))f_v(\Phi_+(x))\phi_+(x),$$

where the $g_u(u)$ on [0,1] is a fully normalized polynomial cubic spline density on [0,1] and $G_u(u)$ is the corresponding cumulative distribution function. The value and first derivative of $g_u(u)$ agree with those of $f_u(u)$, up to a common multiplicative normalization constant, at the spline knots.

We can write (r for ratio)

$$r(x) \equiv \frac{f_{e+}(x)}{\phi_{+}(x)} = ce^{\varphi_{e}(x)} \cosh \varphi_{o}(x) = f_{u}(F_{v}(\Phi_{+}(x))) f_{v}(\Phi_{+}(x)),$$

$$r'(x) = \frac{d}{dx} \frac{f_{e+}(x)}{\phi_{+}(x)} = ce^{\varphi_{e}(x)} \left[\cosh \varphi_{o}(x) \varphi'_{e}(x) + \sinh \varphi_{o}(x) \varphi'_{o}(x) \right]$$

$$= f'_{u}(F_{v}(\Phi_{+}(x))) f'_{v}(\Phi_{+}(x)) \phi_{+}(x) + f_{u}(F_{v}(\Phi_{+}(x))) f'_{v}(\Phi_{+}(x)) \phi_{+}(x).$$

and then

$$f_u(F_v(\Phi_+(x))) = \frac{r(x)}{f_v(\Phi_+(x))}$$
$$f'_u(F_v(\Phi_+(x))) = \left[\frac{r'(x)}{\phi_+(x)} - f_u(F_v(\Phi_+(x)))f'_v(\Phi_+(x))\right] / f_v^2(\Phi_+(x)).$$

Now we can evaluate $g_u(u_i) = f_u(u_i)$ at the spline knots $u_i = i/n$, i = 0, 1, ..., n-1. We first generate transformed knots $v_i = F_v^{-1}(u_i)$ then $x_i = \Phi_+^{-1}(v_i)$.

Then for i = 0, 1, ..., n - 1,

$$g_u(u_i) = \frac{e^{\varphi_e(x_i)} \cosh \varphi_o(x_i)}{f_v(v_i)},$$

$$g'_u(u_i) = \left[\frac{1}{\phi(x_i)} e^{\varphi_e(x_i)} [\varphi'_e(x_i) \cosh \varphi_o(x_i) + \varphi'_o(x_i) \sinh \varphi_o(x_i)] - g_u(u_i) f'_v(v_i)\right] / f_v^2(v_i).$$

For $i=n,\ u_i=v_i=1$ and $x_i=\infty$, so we need to take limits to find $f_u(1)$ and $f'_u(1)$. We can write $F_v(v)=1-Q_+(x)^{1-\delta},\ f_v(v)=(1-\delta)Q_+(x)^{-\delta}$ and $f'_v(v)=\delta(1-\delta)Q_+(x)^{-\delta-1}$.

Then

$$f_u(u) = r(x) \frac{1}{1-\delta} Q_+(x)^{\delta}, \qquad f'_u(u) = r'(x) \frac{1}{(1-\delta)^2} \frac{Q_+(x)^{2\delta}}{\phi_+(x)} - r(x) \frac{\delta}{(1-\delta)^2} Q_+(x)^{2\delta-1}.$$

Q(x) is bounded as follows (see Wikipedia page "Q-function"):

$$\frac{x\phi(x)}{1+x^2} < Q(x) < \frac{\phi(x)}{x},$$

with the same expression true for $\phi(x)$ and Q(x) replaced by $\phi_{+}(x)$ and $Q_{+}(x)$. Therefore, for $\delta \geq 2$,

$$\lim_{x \to \infty} \frac{Q_+^{2\delta}(x)}{\phi_+(x)} = 0, \quad \lim_{x \to \infty} Q_+^{2\delta - 1}(x) = 0.$$

If in addition, r(x) and r'(x) vanish at ∞ , then $g_u(1) = f_u(1) = 0$ and $g'_u(1) = f'_u(1) = 0$. Note that if $\delta = 0$, so that F(v) = v is "inert", $f_u(1) = 0$, but $f'_u(1) = \infty$ is quite possible: $\lim_{x\to\infty} f_{e+}(x)/\phi_+(x)^2 < \infty$ would be required to avoid this.

The values at the knot i=0 are constant: $Q_+(0)=1$, r(0)=c and r'(0)=0 and thus

$$f_u(0) = \frac{c}{1-\delta}, \quad f'_u(0) = \frac{-c\delta}{(1-\delta)^2}.$$

Note that the derivative of log $f_u(u)$ at u=0 is then $-\delta/(1-\delta)<0$.

To draw a variate x from the distribution with cdf G(x), you can draw $U \sim U(0,1)$, then compute $u = G_u^{-1}(U)$, then $v = F_v^{-1}(u)$ then $x = \Phi_+^{-1}(v) = \Phi^{-1}(F_v^{-1}(u))$.

Spline review

The cubic polynomial p(t) on [0,1] that satisfies $p(0) = p_0$, $p(1) = p_1$, $p'(0) = m_0$ and $p'(1) = m_1$ is $p(t) = p_0 h_{00}(t) + m_0 h_{10}(t) + p_1 h_{01}(t) + m_1 h_{11}(t)$, where

$$h_{00}(t) = 2t^3 - 3t^2 + 1 = (1 + 2t)(1 - t)^2 = B_{0,3}(t) + B_{1,3}(t),$$

$$h_{10}(t) = t^3 - 2t^2 + t = t(1 - t)^2 = \frac{1}{3}B_{1,3}(t),$$

$$h_{01}(t) = -2t^3 + 3t^2 = t^2(3 - 2t) = B_{2,3}(t) + B_{3,3}(t),$$

$$h_{11}(t) = t^3 - t^2 = t^2(t - 1) = -\frac{1}{3}B_{2,3}(t).$$

Here $B_{k,3}(t) = \binom{3}{k} t^k (1-t)^{3-k}$, one of the four third degree Bernstein polynomials. Note that $B_{k,3}(t)$ is also the normalized Beta density with paramaters $\alpha = k+1$ and $\beta = 4-k$.

We can also write this cubic in standard form as $c_0 + c_1t + c_2t^2 + c_3t^3$, where

$$c_0 = p_0$$
, $c_1 = m_0$, $c_2 = 3(p_1 - p_0) - (2m_0 + m_1)$, $c_3 = 2(p_0 - p_1) + (m_0 + m_1)$.

For the purposes of normalizing densities, we have

$$\int_0^1 p(t) dt = c_0 + c_1/2 + c_2/3 + c_3/4 = (p_0 + p_1)/2 + (m_0 - m_1)/12.$$

Second derivative:

$$p''(t) = p_0 h_{00}''(t) + m_0 h_{10}''(t) + p_1 h_{01}''(t) + m_1 h_{11}''(t),$$

where

$$h_{00}''(t) = 12t - 6$$
, $h_{10}''(t) = 6t - 4$, $h_{01}''(t) = -12t + 6$, $h_{11}''(t) = 6t - 2$.

So

$$p''(t) = [12(p_0 - p_1) + 6(m_0 + m_1)]t + [6(p_1 - p_0) - 4m_0 - 2m_1]$$

In particular, $p''(0) = 6(p_1 - p_0) - 4m_0 - 2m_1$, $p''(1) = 6(p_0 - p_1) + 2m_0 + 4m_1$, $p''(1/2) = 3m_0 + 3m_1 - 4m_0 - 2m_1 = m_1 - m_0$.

A flexible spline density on [0,1]

In this section we consider the problems of evaluating and simulating from a density $f_u(u)$ on [0,1], where we are given the values $g_u(i/n)$ and derivatives $g'_u(i/n)$, $i=0,\ldots,n$ of an unnormalized density $g_u(u) \propto f_u(u)$ at the knots $0, 1/n, 2/n, \ldots, (n-1)/n, 1$. The unnormalized density $g_u(u)$ is a cubic spline on [0,1].

We need to map back and forth between a value $u \in [0,1]$ and a pair (i,t), where $i \in \{0,1,\ldots,n-1\}$ is the index of the subinterval [i/n,(i+1)/n] and $t \in [0,1]$ is the position in subinterval i, as a fraction of the distance between i/n and (i+1)/n. Thus

$$i = \lfloor nu \rfloor, \quad t = nu - \lfloor nu \rfloor.$$

The inverse mapping gives u = (i + t)/n.

For
$$i = 0, 1, ..., n$$
, $p_i = g_u(i/n)$ and $m_i = \frac{1}{n}g'_u(1/n)$.

To evaluate $g_u(u)$, we compute i and t and then (direct evaluation of the second polynomial expression is more efficient than direct evaluation of the first)

$$g_u(u) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 = ((c_3 t + c_2)t + c_t)t + c_0,$$

```
where c_0 = p_i, c_1 = m_i, c_2 = -3p_i - 2m_i + 3p_{i+1} - m_{i+1} and c_3 = 2p_i + m_i - 2p_{i+1} + m_{i+1}.
```

Here is R code providing a function evaluating $g_u(u)$, followed by code that sets up an example.

```
# Evaluate unnormalized density q(u), where u is the point of evaluation,
# and p and m are vectors of values and derivatives at knots.
# Derivatives should already be transformed to suit the interval [0,1].
g.eval = function(u, p, m) {
 n = length(p) - 1
                     # Number of knots
  i = floor(u*n)
                       # Subinterval index in \{0,1,\ldots,n-1\}
                       # index of u in subinterval [i/n, (i+1)/n]
 t = u*n - i
 c0 = p[i+1]
                       # Subinterval spline
  c1 = m[i+1]
  c2 = -3*p[i+1] - 2*m[i+1] + 3*p[i+2] - m[i+2]
  c3 = 2*p[i+1] + m[i+1] - 2*p[i+2] + m[i+2]
 g = (((c3*t+c2)*t+c1)*t+c0)
# Set up values and [0,1]-normalized derivatives at knots.
p = c(0.1, 0.7, 1.0, 0.7, 0.1)
m = c(1/n, 2/n, 0/n, -2/n, -1/n)
# Plot unnormalized density
u = seq(0,1,by=0.01)
g = lapply(u, g.eval, p, m)
plot(u, g, type='l', main='Spline density with some tangent lines at knots')
abline(a=0.1, b=1, lt='dotted')
abline(a=0.2, b=2, lt='dotted')
abline(h=1, lt='dotted')
```

Spline density with some tangent lines at knots

We now move on to drawing a variate from the spline density and evaluating the fully normalized density. The total area A under the cubic spline $g_u(u)$ is

$$A = \frac{1}{n} \left[\frac{1}{2} p_0 + p_1 + \ldots + p_{n-1} + \frac{1}{2} p_n + \frac{1}{12} (m_0 - m_n) \right]$$

First draw a knot $k^* \in \{0, \ldots, n\}$ with probabilities $\pi_0 = p_0/2 + m_0/12$, $\pi_n = p_n/2 + m_n/12$, and $\pi_i = p_i$ for $i = 1, \ldots, n-1$.

If $k^* = 0$, draw

$$t \sim \frac{3p_0}{6p_0 + m_0} \text{Be}(1, 4) + \frac{3p_0 + m_0}{6p_0 + m_0} \text{Be}(2, 3).$$

If $k^* = n$, draw

$$t \sim \frac{3p_n}{6p_n - m_n} \text{Be}(4, 1) + \frac{3p_n - m_n}{6p_n - m_n} \text{Be}(3, 2).$$

If $0 < k^* < n$, draw

$$t \sim \frac{1}{2} \text{Be}(1,4) + \frac{1}{2} \text{Be}(2,3),$$

and then with probability

$$\frac{p_i(1+2t)+m_it}{2p_i(1+2t)} = \frac{p_i+(2p_i+m_i)t}{2p_i+4p_it},$$

set $i = k^*$; and with complementary probability set $i = k^* - 1$ and t = 1 - t. WJM Aside: postive t weight is $p_i(1 + 2t) + m_i t$ and negative weight is $p_i(1 + 2t) - m_i t$.

Then set u = (i + t)/n.

```
f.draw = function(p, m, pmf) {
  n = length(p) - 1
  k = sample.int(n+1, 1, prob=pmf)
  if (k==1) {
    i = 1
    if (runif(1) < 3*p[1]/(6*p[1]+m[1]))
      t = rbeta(1, 1, 4)
      t = rbeta(1, 2, 3)
  else if (k==n+1) {
    i = n
    if (runif(1) < 3*p[n+1]/(6*p[n+1]-m[n+1]))
      t = rbeta(1, 4, 1)
    else
      t = rbeta(1, 3, 2)
  else { # WJM: Combine two if clauses to save one runif() call?
    i = k
    t = runif(1)
    if (runif(1) < t*t*(3-2*t))
    if (runif(1) > (p[i]*(1+2*t) + m[i]*t) / (2*p[i]*(1+2*t))) {
      i = k-1
      t = 1-t
    }
 }
 u = (i-1+t)/n
```

```
# Set up vectors p, m and F defining spline on $[0,1]$
pmf = p
pmf[1] = p[1]/2 + m[1]/12
pmf[5] = p[5]/2 - m[5]/12
hist(replicate(1000000, f.draw(p, m, pmf)), 40, main='Histogram of sample from spline density')
```

Histogram of sample from spline density

replicate(1e+06, f.draw(p, m, pmf))

```
h.eval.05 = function(u, p, m, p05, m05) {
 n = length(p) - 1
                     # Number of knots
  i = floor(u*n)
                       # Subinterval index in \{0,1,\ldots,n-1\}
  t = u*n - i
                       # index of u in subinterval [i/2, (i+1)/n]
  c0 = p[i+1]
                       # Subinterval spline
  c1 = m[i+1]
  c2 = -3*p[i+1] - 2*m[i+1] + 3*p[i+2] - m[i+2]
  c3 = 2*p[i+1] + m[i+1] - 2*p[i+2] + m[i+2]
  if (i==n-1) {
    p.res = \max(p05 - 0.5*p[i+1] - 0.125*m[i+1], 0)
    m.res = m05 + 1.5*p[i+1] + 0.25*m[i+1]
    a = p.res + 0.5 * m.res
    b = p.res - 0.5 * m.res
    new.term = 16*t^2*(1-t)^2*(a*t + b*(1-t))
  } else { new.term = 0 }
  f = (((c3*t+c2)*t+c1)*t+c0) + new.term
```

Approximation testing ground

```
library(knitr)
# Step one: set up a true posterior distribution (of x) as a test case.
# The prior is x \sim N(mu, sigma^2). Let omega = 1/sigma^2
# The sample is Y=(Y_1,\ldots,Y_n), with, for i=1,\ldots,n,
# Y_i \sim iid Po(theta e^x)
# or Y_i \sim iid \ GaPo(r, (theta/r) e^x),
# Note that the Poisson case is the limit of the Gamma Poisson case as r->infty.
# In both cases, the sufficient statistic is (n, y_bar), where y_bar is the
# sample mean.
# The parameter values omega, theta and r, and the sufficient stastistic
# (n, y_bar) are specified here below.
# The value of mu is set to make the posterior mode of x equal to zero.
n = 1
y_bar = 1
r = 19 # Inf for Poisson, finite for Gamma-Poisson
theta = 2
omega = 2; sigma = omega^-0.5
# Step two: Compute derivatives of phi = log f(x|y) - log f_N(0), omega ^{-1}),
# normalized so that phi(0) = 0
if (is.infinite(r)) {
  # Value of mu parameter giving a mode at x=0
 mu = n*(theta-y_bar)/omega
  # Derivatives of phi at zero, from 2nd to 5th
 h 2 = -n*theta
 h_3 = -n*theta
 h_4 = -n*theta
 h_5 = -n*theta
} else {
  # Value of theta parameter giving a mode at x=0
  mu = n*r*(theta-y_bar)/(omega*(r+theta))
  th_by_r = theta/r
  # Derivatives of phi at zero, from 2nd to 5th
 h_2 = -n*(r+y_bar)*th_by_r / (1+th_by_r)^2
  h_3 = -n*(r+y_bar)*(th_by_r - th_by_r^2) / (1+th_by_r)^3
 h_4 = -n*(r+y_bar)*(th_by_r - 4*th_by_r^2 + th_by_r^3) / (1+th_by_r)^4
 h_5 = -n*(r+y_bar)*(th_by_r - 11*th_by_r^2 + 11*th_by_r^3 - th_by_r^4) / (1+th_by_r)^5
# Normalized values of h 2
a_2 = h_2/\text{omega}; a_3 = h_3/\text{omega}^{1.5}; a_4 = h_4/\text{omega}^2; a_5 = h_5/\text{omega}^{2.5}
# Step three: Compute true phi and its odd and even parts on a fine grid, as an
# illustration.
c = n*y_bar + omega*mu
x = seq(-4, 4, length.out=2001)
x.plus = x[x>=0]
z = x*sigma
if (is.infinite(r)) {
```

```
phi = c*z - n*theta*(exp(z)-1)
  phi_m = -c*z - n*theta*(exp(-z)-1) # phi(-x)
  phi_o = c*z - n*theta*sinh(z)
                                     # odd part of phi
  phi_e = n*theta*(1-cosh(z))
                                     # even part of phi
} else {
  phi = c*z - n*(r+y_bar)*log((1 + th_by_r * exp(z))/(1 + th_by_r))
  phi_m = -c*z - n*(r+y_bar)*log((1 + th_by_r * exp(-z))/(1 + th_by_r))
  phi_o = c*z - 0.5*n*(r+y_bar)*log((1 + th_by_r * exp(z))/(1 + th_by_r * exp(-z)))
  phi_e = -0.5*n*(r+y_bar)*(log(1 + th_by_r^2 + 2*th_by_r*cosh(z)) - 2*log(1 + th_by_r))
\# Plot phi (target) and 5th order Taylor expansion phi_h around x=0
plot(x, phi, type='l', main='Target phi and Taylor phi (dashed)', xlab='x', ylab='phi')
phi_h = a_2*x^2/2 + a_3*x^3/6 + a_4*x^4/24 + a_5*x^5/120
phi_h_e = a_2*x^2/2 + a_4*x^4/24
phi_h_o = a_3*x^3/6 + a_5*x^5/120
lines(x, phi_h, lt='dotted')
```

Target phi and Taylor phi (dashed)


```
# Step four: Select knots in u space at which to evaluate f_e and f_e',
# compute v knots and x knots
knot.n = 8
delta = 0.5 # Needs to be in [0,1] (delta=0 has no effect)
u.grid = seq(0, 1, length.out=knot.n+1)
u.grid[knot.n+1] = 1 - 0.5/knot.n
v.grid = 1-(1-u.grid)^(1/(1-delta))
x.grid = qnorm(0.5+0.5*v.grid)
z.grid = sigma*x.grid
# Step five: compute true target and Taylor approximation at knots
```

```
if (is.infinite(r)) {
  phi.grid = c*z.grid - n*theta*(exp(z.grid)-1)
  phi_m.grid = -c*z.grid - n*theta*(exp(-z.grid)-1) # phi(-x)
  phi_o.grid = c*z.grid - n*theta*sinh(z.grid)
                                                  # odd part of phi
  phi_e.grid = n*theta*(1-cosh(z.grid))
                                                    # even part of phi
} else {
  phi.grid = c*z.grid - n*(r+y_bar)*log((1 + th_by_r * exp(z.grid))/(1 + th_by_r))
  phi_m.grid = -c*z.grid - n*(r+y_bar)*log((1 + th_by_r * exp(-z.grid))/(1 + th_by_r))
  phi_o.grid = c*z.grid - 0.5*n*(r+y_bar)*log((1 + th_by_r * exp(z.grid))/(1 + th_by_r * exp(-z.grid)))
 phi_e.grid = -0.5*n*(r+y_bar)*(log(1 + th_by_r^2 + 2*th_by_r*cosh(z.grid)) - 2*log(1 + th_by_r))
true.f_u.grid = exp(phi_e.grid) * cosh(phi_o.grid)
phi_h.e.grid = a_2*x.grid^2/2 + a_4*x.grid^4/24
phi_h.o.grid = a_3*x.grid^3/6 + a_5*x.grid^5/120
phi_h.e.p.grid = a_2*x.grid + a_4*x.grid^3/6
phi_h.o.p.grid = a_3*x.grid^2/2 + a_5*x.grid^4/24
# Evaluate f_e(x)/phi(x), its derivative and f_v(v) and f_v(v) at knots
r.grid = exp(phi_h.e.grid) * cosh(phi_h.o.grid)
rp.grid = r.grid * phi_h.e.p.grid + exp(phi_h.e.grid) * sinh(phi_h.o.grid) * phi_h.o.p.grid
rp.grid = rp.grid / (2*dnorm(x.grid))
f_v.grid = (1-delta)*(1-v.grid)^-delta
f_vp.grid = delta*(1-delta)*(1-v.grid)^(-delta-1)
g_u.grid = r.grid / f_v.grid
gp_u.grid = (rp.grid - g_u.grid * f_vp.grid)/(f_v.grid)^2
p05 = g_u.grid[knot.n+1]; m05 = gp_u.grid[knot.n+1]
g_u.grid[knot.n+1] = 0
gp_u.grid[knot.n+1] = 0
plot(u.grid, g_u.grid, type='l', main='g_u.grid')
```

$g_u.grid$

plot(u.grid, gp_u.grid, type='l', main='gp_u.grid')

gp_u.grid

m.grid = gp_u.grid / knot.n; m05 = m05 / knot.n
table = data.frame(u=u.grid, g_u=g_u.grid, gp_u=gp_u.grid, m=m.grid)
kable(table, caption='Note that gp_u is the correct derivative, m is the scaled derivative for spline expressions.)

Table 1: Note that gp_u is the correct derivative, m is the scaled derivative for spline evaluation

	Ø 11	ero 11	***
u	g_u	gp_u	m
0.0000	2.0000000	-2.0000000	-0.2500000
0.1250	1.6841537	-2.9200544	-0.3650068
0.2500	1.2970810	-3.1840953	-0.3980119
0.3750	0.9068828	-2.9959841	-0.3744980
0.5000	0.5612876	-2.4906906	-0.3113363
0.6250	0.2923261	-1.7914069	-0.2239259
0.7500	0.1155287	-1.0432279	-0.1304035
0.8750	0.0261627	-0.4228145	-0.0528518
0.9375	0.0000000	0.0000000	0.0000000

```
# Normalize q_u values so that cubic spline integrates to one.
c = sum(g_u.grid) - 0.5*(g_u.grid[1] + g_u.grid[knot.n+1]) + (m.grid[1]-m.grid[knot.n+1])/12
c = c/knot.n
g_u.grid = g_u.grid/c
m.grid = m.grid/c
p05 = p05/c
m05 = m05/c
# Compute on fine grid
v = 2*pnorm(x.plus)-1
u = 1-(1-v)^(1-delta)
g_u = sapply(u, h.eval.05, g_u.grid, m.grid, p05, m05)
f_v = (1-delta)*(1-v)^-delta
target = exp(phi_e[x>=0]) * cosh(phi_o[x>=0])
target.Taylor = exp(phi_h_e[x>=0]) * cosh(phi_h_o[x>=0])
approx = g_u * f_v / (g_u[1] * (1-delta))
plot(u, g_u, type='l', main='Spline density g_u(u)')
abline(a=g_u[1], b=-g_u[1], lt='dotted')
```

Spline density g_u(u)


```
plot(x.plus, target, type='l', main='Target, Taylor approximation and spline-based approximation')
lines(x.plus, target.Taylor, col='green')
lines(x.plus, approx, col='red')
abline(v=x.grid, col='blue')
```

Target, Taylor approximation and spline-based approximation


```
plot(x.plus, target.Taylor - target, type='l', col='green', ylim=c(-0.005,0.005), main='Taylor - target
lines(x.plus, approx - target, col='red')
abline(v=x.grid, col='blue')
```

Taylor - target

plot(x.plus, approx - target.Taylor, type='l', col='green', main='spline approx - Taylor approx')
abline(v=x.grid, col='blue')

spline approx - Taylor approx

plot(x.plus, log(approx) - log(target.Taylor), type='l', col='green', main='log(approx)-log(Taylor)')
abline(v=x.grid, col='blue')

log(approx)-log(Taylor)

plot(x.plus, log(approx) - log(target), type='l', col='green', main='log(approx)-log(target)')
abline(v=x.grid, col='blue')

log(approx)-log(target)


```
phi01 = dnorm(x.plus)
Ew = sum(phi01 * target^2/approx)/sum(phi01 * target)
Ew2 = sum(phi01 * target^3/approx^2)/sum(phi01 * target)
var_w = Ew2 - Ew^2
sd_w = sqrt(var_w)

Ew.approx = sum(phi01 * target.Taylor^2/approx)/sum(phi01 * target.Taylor)
Ew2.approx = sum(phi01 * target.Taylor^3/approx^2)/sum(phi01 * target.Taylor)
var_w.approx = Ew2.approx - Ew.approx^2
sd_w.approx = sqrt(var_w.approx)
```

Standard deviation of Metropolis-Hastings numerator using target is 0.0032853. Same using Taylor approximation of target is 2.6924076×10^{-4} .

Coding steps

Precomputation of quantities only depending on K and δ

1. $u_k = k/K$, k = 0, 1, ..., K - 1, $u_K = 1 - k/(2K)$.

2.
$$v_k = F_v^{-1}(u_k) = 1 - (1 - u_k)^2, k = 0, 1, \dots, K.$$

3. $z_k = \Phi_+^{-1}(v_k), k = 0, 1, \dots, K.$

4.
$$f_v(v_k) = (1 - v_k)^{-1/2}/2, k = 0, 1, \dots, K.$$

5.
$$f'_v(v_k) = (1 - v_k)^{-3/2}/4, k = 0, 1, \dots, K.$$

5.
$$f'_v(v_k) = (1 - v_k)^{-3/2}/4$$
, $k = 0, 1, ..., K$.
6. $z_k^p/p!$ and $(-z_k)^p/p!$, $p = 1, ..., 5$ and $k = 0, 1, ..., K$.

Initial computation, whether drawing or just evaluating

These quantities depend on ω , h_2, \ldots, h_5 and pre-computed quantities.

1.
$$\sigma = \omega^{-1/2}$$
, σ^p for $p = 1, 2, 3, 4, 5$.

2.
$$a_p = h_p \sigma^p$$
 for $p = 2, 3, 4, 5$.

3.
$$\varphi(z_k) = \sum_{p=2}^{5} z_k^p / p!, \ \varphi(-z_i) = \sum_{p=2}^{5} z_k^p / p!, \ k = 0, \dots, K.$$

4.
$$p_0, \ldots, p_K, m_0 \text{ and } m_K$$

$$p_0 = 2$$
, $p_K = 0$, $m_0 = -2/K$, $m_K = 0$,

$$p_k = \frac{\exp(\varphi(z_k)) + \exp(\varphi(-z_k))}{2f_v(v_k)}, \quad k = 1, \dots, K - 1.$$

5.

Computation if drawing

- 1. Draw k^* from discrete distribution.
- 2. m_{k*}

$$m_{k^*} = \frac{1}{K f_v^2(v_{k^*})} \left[\frac{\exp(\varphi(z_{k^*}))\varphi'(z_{k^*}) + \exp(\varphi(-z_{k^*}))\varphi'(-z_{k^*})}{2} - p_{k^*} f_v'(v_{k^*}) \right]. \tag{2}$$

- 3. Draw t and adjust k and t if necessary.

- $\begin{aligned} 4. & \ u = (k+t)/K \\ 5. & \ v = F_v^{-1}(u) \\ 6. & \ z = \Phi_+^{-1}(v) \text{ or } z = \Phi_+^{-1}(u). \end{aligned}$

Computation if only evaluating

- 1. $v = \Phi_+(z)$.
- 2. $u = F_v(v) = 1 (1 v)^{1 \delta}$.
- 3. $k = |K \cdot u|, t = K \cdot u |K \cdot u|.$
- 4. Evaluate m_k and m_{k+1} as in (2).

Final computation

- 1. Evaluate $f_u(u)$.
- 2. Evaluate $f_v(v)$.
- 3. Evaluate $\varphi_+(z)$.
- 4. Reflection sampling
- 5. Scaling

Decisions to make, based on a_2 , a_3 , a_4 :

- 1. Whether to do polynomial in $e^{-ax^2/2}$ times $e^{-bx^2/2}$ or spline.
- 2. $\delta = 1/2 \text{ or } \delta = 0.$
- 3. Evaluate at 2nd and perhaps 3rd point.
- 4. Number of knots.
- 5. What to do about $\dot{\mu}$ part.

Brainstorm evaluation

- 1. Special attention to functions of e^{-x} in derivatives of $\log f(y_t|x_t)$.
- 2. Faa di Bruno with 5 derivatives of f but many more for $g = e^x$.
- 3. Keep values and derivatives from previous evaluations even if just x_t° .
- 4. Return limits of ψ , ψ' or other tail information.
- 5. Figure out f''(u) and how it changes discontinuously at knots (diagnostic of insufficient number of bins)
- 6. Do three evaluations x_t° , $x_t^{\circ} \pm 1$ as a matter of course.
- 7. Endogenous number of function evaluations, number of knots, based on
 - a. relative size of higher order terms compared with lower order terms
 - b. When 1st or second derivative becomes positive.
 - c. precomputed thresholds
 - d. h_2 relative to ω is important
- 8. Evaluate t and (1-t) powers at the same time.

Illustration using Gaussian SV model

From that model,
$$\psi''(x) = \psi^{(4)}(x) = -e^{-x}y_t^2 \equiv -c$$
, $\phi'''(x) = \psi^{(5)}(x) = c$. Then $h_2 = h_4 = -c$, $h_3 = h_4 = c$. Then $a_2 = -c/\omega = c\sigma^2$, $a_3 = c/\omega^{3/2} = c\sigma^3$, $a_4 = -c/\omega^2 = c\sigma^4$ and $a_5 = c/\omega^{5/2} = c\sigma^5$.

There are two dimensions on which to make a decision about what approximation to use: the level of a_2, \ldots, a_5 and how quickly they decay.

Brainstorm rapid quick draws

- 1. Scale mixture of normals or 3-component mixture of normals with symmetry around zero.
- 2. Single polynomial $1 + ax^2 + bx^4 + cx^6$ on [0,1] for f_u .
- 3. $f_u = e^{-ax^2}$ on [0, 1].
- 4. Simple draws I already have in HESSIAN method paper.
- 5. Simple draws I did a year ago.

Brainstorm tail information in $\log f(y_t|x_t)$

- 1. Even part of $\log f(y_t|x_t)$ is not that useful, even part of $f(y_t|x_t)$ more realistic.
- 2. Finding the largest c such that $c|x| + \log f(y_t|x_t)$ has limits at right and left that are not infinite seems promising.
- 3. Two functions $\psi_t(x_t) = \log f(y_t|x_t)$:

$$\begin{split} \psi_1(x) &= -\frac{1}{2}[\log 2\pi + x + e^{-x}y_t^2], \quad \psi_1'(x) = -\frac{1}{2}(1 - e^{-x}y_t^2). \\ \lim_{x \to \infty} \psi_1'(x) &= -1/2, \quad \lim_{x \to \infty} \psi_1(x) - \psi_1'(x) =?, \quad \lim_{x \to -\infty} \psi_1'(x) = -\infty. \\ \psi_2(x) &= c - \frac{1}{2}[x_t + (\nu + 1)\log(1 + z)], \quad \psi_2'(x) = -\frac{1}{2} + \frac{\nu + 1}{2}\frac{z}{1 + z}, \end{split}$$
 where $z = e^{-x}y_t^2/\nu$.
$$\lim_{x \to \infty} \psi_2'(x) = \nu/2, \quad \lim_{x \to -\infty} \psi_2'(x) = -1/2.$$

Probability of negative sign

Probability of changing sign is

$$\frac{e^{\varphi(-x)}}{e^{\varphi(-x)} + e^{\varphi(x)}} = \frac{e^{\varphi_o(-x)}}{e^{\varphi_o(-x)} + e^{\varphi_o(x)}} = \frac{1}{1 + e^{2\varphi_o(x)}}$$