Lecture 4: Divide & Conquer

General techniques in this course

- Greedy algorithms
- Divide & Conquer algorithms
- Sweepline algorithms
- Dynamic programming algorithms
- Network flow algorithms

Divide-and-Conquer

Divide-and-conquer [usually 3 parts]

- 1. Divide: Break up problem into several parts.
- 2. Conquer: Solve each part recursively.
- 3. Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size n/2.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Searching

Input: A sorted sequence S of n numbers $a_1, a_2, ..., a_n$, stored in an array A[1..n].

Question: Given a number x, is x in S?

0	1	3	4	5	7	10	13	15	18	19	23

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

0	1	3	4	5	7	10	13	15	18	19	23

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

0	1	3	4	5	7	10	13	15	18	19	23

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

0	1	3	4	5	7	10	13	15	18	19	23	
---	---	---	---	---	---	----	----	----	----	----	----	--

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

0 1 3 4 5 7 10 13 15 18 19

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

Analysis: T(n) = 1 + T(n/2)

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

Analysis: T(n) = 1 + T(n/2)

Analyze recursion

$$T(n) = T(n/2) + O(1)$$

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example: x=1 (non-integers are rounded up)

Analysis: $T(n) = 1 + T(n/2) = O(\log n)$

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank

results.

Problems become easier once sorted.

Find the median.

Find the closest pair.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on Amazon.

Load balancing.

•••

Mergesort

1. Divide array into two halves.

2. Conquer: Recursively sort each half.

3. Combine: Merge two halves to make sorted whol

Jon von Neumann (1945)

- Merging. Combine two pre-sorted lists into a sorted whole.
- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

Mergesort

1. Divide array into two halves.

2. Conquer: Recursively sort each half.

3. Combine: Merge two halves to make sorted whol

Jon von Neumann (1945)

A Useful Recurrence Relation

- **Definition:** T(n) = number of comparisons to mergesort an input of size n.
- Mergesort recurrence.

$$T(n) = \begin{cases} 0 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{otherwise} \end{cases}$$

- Solution: T(n) = ?

Proof by unrolling

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$
sorting both halves merging

Proof by unrolling

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$
sorting both halves merging

1 (of size n) \rightarrow cn 2 (of size n/2) \rightarrow cn 4 (of size n/4) \rightarrow cn log₂n 2^k (of size $n/2^k$) \rightarrow cn $n (of size 1) \rightarrow cn$

Proof by unrolling

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$
sorting both halves merging

1 (of size n) \rightarrow cn 2 (of size n/2) \rightarrow cn 4 (of size n/4) \rightarrow cn log₂n 2^k (of size $n/2^k$) \rightarrow cn $n (of size 1) \rightarrow cn$

A Useful Recurrence Relation

- **Definition:** T(n) = number of comparisons to mergesort an input of size n.
- Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

- Solution: $T(n) = O(n \log_2 n)$.

Counting Inversions

Counting Inversions

- Music site tries to match your song preferences with others.
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two rankings.
 - My rank: 1, 2, ..., n.
 - Your rank: $a_1, a_2, ..., a_n$.
 - Songs i and k inverted if i < k, but $a_i > a_k$.

	Songs				
	Α	В	С	D	Ε
Me	1	2	3	4	5
You	1	3	4	2	5

Inversions 3-2, 4-2

- Brute force: check all $\Theta(n^2)$ pairs i and k.

Applications

- Applications.
 - Voting theory.
 - Collaborative filtering.
 - Measuring the "sortedness" of an array.
 - Sensitivity analysis of Google's ranking function.
 - Rank aggregation for meta-searching on the Web.
 - Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

- Divide-and-conquer.
 - Divide: separate list into two pieces.

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.

5 blue-blue inversions

8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions

Total =
$$5 + 8 + 9 = 22$$
.

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_i are in different halves.
- Merge two sorted halves into sorted whole.

5 blue-blue inversions

8 green-green inversions

25

How many blue-green inversions?

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

The University of Sydney Page 57

Total: 6 + 3

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

The University of Sydney Page 58

Total: 6 + 3 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_i are in different halves.
- Merge two sorted halves into sorted whole.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

Time: $T(n) = 2T(n/2) + O(n) = O(n \log n)$

Count: O(n)

Counting Inversions: Implementation

- Pre-condition. [Merge-and-Count] A and B are sorted.
- Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r<sub>B</sub>, L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

Closest Pair of Points

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
- Fundamental geometric primitive.
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 - Special case of nearest neighbor, Euclidean MST, Voronoi diagram...
- **Brute force.** Check all pairs of points p and q with $\Theta(n^2)$ comparisons.
- 1-D version. O(n log n) easy if points are on a line.
- Assumption. No two points have same x coordinate.

- Algorithm.

- Divide: draw vertical line L so that roughly n/2 points on each side.

- Algorithm.

- Divide: draw vertical line L so that roughly n/2 points on each side.
- Conquer: find closest pair in each side recursively.

- Algorithm.

- Divide: draw vertical line L so that roughly n/2 points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

- Find closest pair with one point in each side, assuming that distance $< \delta$.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2δ -strip by their y-coordinate.

- Find closest pair with one point in each side, assuming that distance $< \delta$.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2δ -strip by their y coordinate.
 - Only check distances of those within 11 positions in sorted list!

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

- Claim: If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ .

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

- Claim: If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ .

– Proof:

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta) = \delta$.

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

- Claim: If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ .

- Proof:
 - No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
 - Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta) = \delta$.

Fact: Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
 If |P|≤ 3 then compute closest-pair brute force
 else
   Compute separation line L such that half the points
                                                                         O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                         2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                         O(n)
   Sort remaining points by y-coordinate.
                                                                         O(n log n)
   Scan points in y-order and compare distance between
                                                                         O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
 return \delta.
```

Closest Pair of Points: Analysis

Running time

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Question: Can we achieve O(n log n)?
- **Answer:** Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

```
Sort P by x-coordinates \Rightarrow P,
                                                                              O(n \log n)
Sort P by y-coordinates \Rightarrow P<sub>v</sub>
Closest-Pair(P<sub>x</sub>, P<sub>v</sub>) {
 If |P| \le 3 then compute closest-pair brute force
 else
                                                                               O(n)
   Compute separation line L
   P_{x,left} = points to the left of L sorted by x-coordinate
   P<sub>v.left</sub> = points to the left of L sorted by y-coordinate
                                                                              O(n)
   P_{x,right} = points to the right of L sorted by x-coordinate
   P<sub>y,right</sub> = points to the right of L sorted by y-coordinate
   \delta_1 = \text{Closest-Pair}(P_{x,left}, P_{v,left})
   \delta_2 = \text{Closest-Pair}(P_{x,right}, P_{y,right})
                                                                               2T(n / 2)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                               O(n)
    Scan points in y-order and compare distance between
    each point and next 11 neighbors. If any of these
                                                                               O(n)
    distances is less than \delta, update \delta.
 return \delta.
                                                                                  Page 87
```

Closest Pair of Points (improved): Analysis

- Running time

Preprocessing: O(n log n)

$$T(n) = 2 T(n/2) + O(n) = O(n log n)$$

Total running time: O(n log n)

Solving recursions

Unrolling and the Master method

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

T(n)

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Appendix: geometric series

$$1 + x + x^2 + ... + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \ne 1$

$$1 + x + x^2 + ... = \frac{1}{1-x}$$
 for x<1

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

The master method

The master method applies to recurrences of the form

$$T(n) = a \cdot T(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

$T(n) = a \cdot T(n/b) + f(n)$

width $w = a^{\log_b n} = n^{\log_b a}$

$T(n) = a \cdot T(n/b) + f(n)$

width $w = a^{\log_b n} = n^{\log_b a}$

Three common cases

Compare f(n) with nlogba:

Case 1:

If $f(n) = O(n^{\log_b a - \epsilon})$ for any constant $\epsilon > 0$ then f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log_{b}a})$.

Idea of master theorem: Case 1

Three common cases [Compare f(n) with $n^{\log_b a - \epsilon}$]

Case 1: Example

$$T(n) = 8T(n/2) + 10n^{2}$$

$$\Rightarrow a = 8, b = 2 \text{ and } f(n) = 10n^{2}$$

$$f(n) = 10n^{2}$$

$$n^{\log_{b} a - \epsilon} = n^{\log_{2} 8 - \epsilon} = O(n^{3 - \epsilon}) \text{ for } \epsilon = 1 > 0.$$

$$\Rightarrow f(n) = O(n^{\log_{b} a - \epsilon}) \Rightarrow \text{Case 1 holds.}$$

Solution: $T(n) = \Theta(n^{\log_{b} \alpha}) = \Theta(n^3)$

Three common cases (cont'd) [Compare f(n) with nlogba - E]

Case 2:

If $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \ge 0$ then f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_{b^{\alpha}}} \log^{k+1} n)$.

Idea of master theorem

Recursion tree:

Three common cases [Compare f(n) with $n^{\log_b a - \epsilon}$]

Case 2: Example

$$T(n) = 2T(n/2) + n \log n$$

 $\Rightarrow a = 2, b = 2 \text{ and } f(n) = n \log n$

 $f(n) = n \log n = \Theta(n^{\log_{b^{\alpha}}} \log^k n) = \Theta(n \log n) \text{ for } k=1$ \Rightarrow Case 2 holds.

Solution: $T(n) = \Theta(n^{\log_{b^{\alpha}}} \log^{k+1} n) = \Theta(n \log^2 n)$

Three common cases (cont.) [Compare f(n) with $n^{\log_b a - \epsilon}$]

Case 3:

If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$.

- f(n) grows polynomially faster than $n^{log_{b^{\alpha}}}$ (by an n^{ϵ} factor), and
- f(n) satisfies the **regularity condition** that $a \cdot f(n/b) \le c \cdot f(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

Recursion tree:

Three common cases

[Compare f(n) with $n^{\log_b a - \epsilon}$]

$$T(n) = 4T(n/2) + n^3$$

$$a = 4$$
, $b = 2$ \Rightarrow $n^{\log_b a} = n^2$ and $f(n) = n^3$.

CASE 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 1$ and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.

Solution: $T(n) = \Theta(n^3)$

Integer Multiplication

Integer Arithmetic

- **Add.** Given two n-digit integers a and b, compute a + b.
 - O(n) bit operations.
- **Multiply.** Given two n-digit integers a and b, compute a \times b.

Divide-and-Conquer Multiplication: Warmup

- To multiply two n-digit integers:
 - Given two numbers A and B with n bits each.
 - Partition the n bits into the n/2 "high" bits and the n/2 "low" bits.

$$B B_H B_L$$

$$A = A_H \cdot 2^{n/2} + A_I$$

$$B = B_H \cdot 2^{n/2} + B_L$$

Divide-and-Conquer Multiplication: Warmup

- To multiply two n-digit integers:
 - Given two numbers A and B with n bits each.
 - Partition the n bits into the n/2 "high" bits and the n/2 "low" bits.

A
$$A_H$$
 A_L $A = A_H \cdot 2^{n/2} + A_L$

B B_H B_L $B = B_H \cdot 2^{n/2} + B_L$

– 4 multiplications of n/2-bit numbers: A_HB_H , A_HB_L , A_LB_H , A_LB_L , additions and shifts. Multiplications by powers of 2 are just shifts.

Divide-and-Conquer Multiplication: Warmup

- To multiply two n-digit integers:
 - Given two numbers A and B with n bits each.
 - Partition the n bits into the n/2 "high" bits and the n/2 "low" bits.

A
$$A_H$$
 A_L $A = A_H \cdot 2^{n/2} + A_L$

B B_H B_L $B = B_H \cdot 2^{n/2} + B_L$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

Karatsuba Multiplication [1960]

Multiply two n-digit integers

$$B B_H B_L$$

$$A = A_H \cdot 2^{n/2} + A_I$$

$$B = B_H \cdot 2^{n/2} + B_L$$

Observation:

$$A \cdot B = A_H B_H \cdot 2^n + [(A_H + A_L) \cdot (B_H + B_L) - A_H B_H - A_L B_L] \cdot 2^{n/2} + A_L B_L$$

Theorem: [Karatsuba-Ofman, 1962]

3 multiplications of n/2-bit numbers + additions, subtractions and shifts.

Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2}\right)^k = \frac{\left(\frac{3}{2}\right)^{1 + \log_2 n} - 1}{\frac{3}{2} - 1} = 3n^{\log_2 3} - 2$$

$$= O(n^{1.59})$$

T(2)

T(2)

T(2)

T(2)

The University of Sydney

T(2)

T(2)

T(2)

T(2)

 $n^{\log_2 3} \cdot (2)$

Summary: Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Master theorem

Problems

- Merge Sort
- Closest pair
- Multiplication

This weeks quiz is all about solving recursions!