תשומה 1 (מקציר)

- א. au אותו סגור טרנזיטיבי. שונים מעל A שיש להם אותו סגור טרנזיטיבי.
- ב. $\,$ לא. השלימו נימוק: תנו יחס מעל $\,A\,$ שאינו טרנזיטיבי והסבירו מדוע זה מפריך את הטענה.
 - ג. לא. השלימו נימוק: תנו דוגמא נגדית.
 - ד. $\mathbf{c}(t)$ היחס (R) הוא טרנזיטיבי (הסגוֹר הטרנזיטיבי של יחס כלשהו הוא t(R) היחס (ד. t(t(R)) = t(R) טרנזיטיבי). הסגוֹר הטרנזיטיבי של יחס טרנזיטיבי הוא היחס עצמו, לכן

2 noien

 $f(R_1)=R_1K=\{(1,1)\}$ מתקיים $R_1=\{(1,1)\}$ א. א. לא. למשל עבור $R_1=\{(1,1)\}$ מתקיים $R_2=\{(1,2)\}$ ועבור $R_2=\{(1,2)\}$ מתקיים $R_2=\{(1,2)\}$ הצגנו שני איברים שונים ב- R_1 שיש להם אותה תמונה תחת R_2 משמע R_1 אינה חד-חד-ערכית.

. RK=R עלינו להוכיח , f(R)=R עלינו להוכיח . $R\subseteq K$ ב. יהי $RK\subseteq R$ עלינו להוכיח : $RK\subseteq R$ הוכחת הכלה בכיוון אחד,

 $(x,y) \in R$ יהי עלינו להראות כי $R \subseteq K$ וכאמור, $(x,y) \in RK$ יהי

 $(x,u) \in R$, $(u,y) \in K$ -ש כך ש כיים, קיים מהנתון ומהגדרת כפל יחסים,

. y=1 נובע (u,y) $\in K$ -ש ומכך K ומכך מהגדרת

u=1 נובע (x,u) $\in R$ -שוב מהגדרת אומכך הלכן, שוב לכן, אכן לכן, אוב מני, נתון

. (x, y) = (x, u) לכן בפרט . y = u = 1

. עם כך, מכיון שכאמור אז $(x,y) \in R$ אז אם כך, מכיון שכאמור

 $R \subseteq RK$ הוכחת הכלה בכיוון השני,

 $(x,y) \in RK$ יהי $R \subseteq K$ וכאמור $R \subseteq K$, וכאמור יהי

. y=1 נתון $(x,y) \in R$ - ומכך א ומכך K מהגדרת, $R \subseteq K$ נתון

. $(1,1) \in K$, K בנוסף, מהגדרת

 $(x,1) \in RK$ מתקבל מתוך $(x,1) \in R$, $(1,1) \in K$ מתקבל

. כמבוקש , $(x,y) \in RK$ כלומר

 $x \in A$ מכיל את כל הזוגות מהצורה (x,1), כאשר א מכיל את כל הזוגות

(מדועי:) מכאן ומהגדרת כפל יחסים נובע שעבור כל יחס R, המכפלה R חלקית ל-K (מדועי:) כלומר לכל R מתקיים $f(R)\subseteq K$

f נמצאת בתמונה של קבוצה חלקית שכל הקודם ראינו שכל הקודם ראינו שכל מצד שני, בסעיף הקודם ראינו שכל ה

. (של עצמו) או מישהו של מישהו $R\subseteq K$ הוא כלומר כל , f(R)=R או $R\subseteq K$ אם

K פיכך התמונה של f היא בדיוק קבוצת הקבוצות של

|P(K)| = 8 מכיון ש- 3 מכיון ש- , |K| = 3

K -שמונה החלקיות - שמונה בדיוק א יחסים בתמונה של f שמונה בדיוק אפוא יש

- לפי הסעיף ייהעתק טבעייי בספר - או לפי הקובץ שהוזכר בשאלה

f -ש היא פונקציה כלשהי, יש התאמה חד-חד-ערכית ועל בין קבוצת מחלקות השקילות שf משרה לבין תמונת f .

. בסעיף גי כאן ראינו שבתמונה של הפונקציה f שבשאלה זו יש בדיוק איברים בסעיף גי כאן ראינו

לכן מספר מחלקות השקילות הוא 8.

उ नगिरा

 $f(n) \leq f(n)$, $n \in \mathbb{N}$ לכל לכל $f \in F$. באופן טריביאלי, לכל $f \in F$ א. $f(n) \leq f(n) = f(n)$

 $(g,f) \in K$ וגם $(f,g) \in K$ ונניח ש- $f,g \in F$ אנטי-סימטריות: תהיינה

. $g(n) \leq f(n)$, $n \in \mathbb{N}$ וגם לכל $f(n) \leq g(n)$, $n \in \mathbb{N}$ כלומר לכל

. $g(n) \leq f(n)$ וגם $f(n) \leq g(n)$, $n \in \mathbb{N}$ משמע לכל

 $.\,g(n)=f(n)$, $n\in\mathbb{N}$ לכן, מתכונת של היחס של היחס היחס היחס לכן, מתכונת האנטי-סימטריות האf=g . f=g

 $(g,h)\in K$ וגם $(f,g)\in K$ ונניח ש- $f,g,h\in F$ וגם טרנזיטיביות: תהיינה

. $g(n) \le h(n)$, $n \in \mathbb{N}$ נלומר לכל $f(n) \le g(n)$, $n \in \mathbb{N}$ כלומר

 $g(n) \leq h(n)$ וגם $f(n) \leq g(n)$, $n \in \mathbb{N}$ משמע לכל

 $f(n) \leq h(n)$, $n \in \mathbb{N}$ לכל בטבעיים, ליחס של היחס של היחס מתכונת הטרנזיטיביות של

. $(f,h) \in K$ כלומר

f(n)=n , $n\in {\Bbb N}$ פונקציית הזהות, כלומר הפונקציה המוגדרת כך: לכל g(n)=n ... תהי g(n)=7 ... תהי g(n)=7 ... מכיוון ש- g(n)=1 . נקבל g(n)=1 . נקבל g(n)=1 .

 $f(10) > g(10) \in K$ מצד שני f(10) > g(10) ולכן

. מצאנו שני איברים של K שהיחס אינו משווה ביניהם, לכן אינו סדר-מלא מצאנו שני איברים של

. תהי $f \in F$ נראה ש- f אינה איבר מקסימלי.

 $g \neq f$ -שובן ש- $g \in F$ מובן ש- g(n) = f(n) + 1 נתבונן בפונקציה

 $f(g) \in K$ לכן . $f(n) \leq g(n)$ מתקיים $n \in \mathbb{N}$ לכל .

. ממנה איבר אינה איבר מקסימלי, כי g הוא איבר גדול ממנה לפיכך f

מכיון שאין איבר מקסימלי, ודאי אין איבר גדול ביותר (מדועי).

 $f: f \in F$ נגדיר $f,g \in F$ כך:

.
$$h(n) = f(n) + g(n) + 1$$
 , $n \in \mathbb{N}$ לכל

השלימו את ההוכחה: הוכיחו ש- h מקיימת את הנדרש.

4 22167

.
$$a_0 = \sum_{i=0}^{5} (0+i)^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$
 $: n = 0$ בדיקה עבור $: n = 0$

חילוק של 55 ב- 12 אכן נותן שארית 7.

. 12 - בחילוק שארית ק נותן שארית המבר: נניח שגם a_{n+1} נוכיח שגם ב- 12, נוכיח שארית ב- 7 נותן שארית a_n - נותן שארית (מדוע?). לשם כך די להראות שההפרש $a_{n+1}-a_n$ מתחלק ב- 7 ללא שארית (מדוע?).

: נחשב אפוא

$$a_{n+1} - a_n = \sum_{i=0}^{5} (n+1+i)^2 - \sum_{i=0}^{5} (n+i)^2 = (n+6)^2 - n^2 = 12n + 36 = 12(n+3)$$

. 12 - ביטוי (n+3 כמובן מתחלק ב- 12 לכל n

. 12 - בחילוק מותן שארית a_{n+1} נותן ב- 12 קיבלנו את הנדרש, כלומר גם

. הראינו בדיקה ומעבר מ- n ל- n+1 . לפי עקרון האינדוקציה הטענה נכונה לכל n טבעי.

איתי הראבן