		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105,223 (2005)	22-Jun-2005

 $Q(\beta^{-})=-1870.5 \ 4$; $S(n)=9913.4 \ 13$; $S(p)=11412 \ 6$; $Q(\alpha)=-6971.5 \ 13$ 2012Wa38

Note: Current evaluation has used the following Q record \$ -1870.5 3 9913.7 16 11412 5 -6971.8 16 2003Au03.

Other reactions:

⁸⁰Se(e,e): 1988Kh02.

 82 Se(γ ,2n) GDR: 1976Ca06.

⁸²Se(n,3n): 1975FrZW.

Additional information 1. ⁸⁰Se(d, ³He): 1983Ro08 (g.s. proton occupation number for ⁸⁰Se).

⁷⁹Se(n,γ) resonances: 1979EnZZ, 1976Ca06, 1969Ma15, 1964Co31, 1962Ju01.

Mass measurements: 1985El01 (also 1984ElZY), 1977De20, 1964Ba03, 1963Ri07.

IBM description of even-even Se isotopes: 1996Ra44. Nuclear structure theory (levels in ⁸⁰Se): 2004Da36.

80 Se Levels

Deformation parameters are available from (p,p'), (n,n'), (α,α') and Coul. ex. datasets. Only selected values are given here. See (p,p') for such data on many levels.

Cross Reference (XREF) Flags

		B Muc C ⁸⁰ Br D ⁷⁸ Se	is β^- decay (15.2 s) onic atom is ϵ decay (17.68 min) o(t,p)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	XREF	Comments					
0.0 ^b	0+	stable	ABCDEFGHI JKLMN	$\%2\beta^-=?$ $^{1/2}=4.1399$ fm 19 (2004An14). 2β decay: theoretical calculations: 2005Do07, 2001Ka15, 2000Bo05. No experimental information is available. Additional information 2.					
666.27 ^b 7	2+	8.52 ps <i>21</i>	ABCDEFGHI JKLMN	B(E2)↑=0.253 6 (2001Ra27); $β_2$ =0.2318 27 (2001Ra27) $μ$ =0.87 5 (1998Sp03) Q=-0.31 7 (1977Le11,1989Ra17) J^π : L(t,p)=L(p,p')=2. $T_{1/2}$: from B(E2) taken from evaluation of 2001Ra27. Other: 8.3 ps 8 (from $(γ,γ')$,1976KaYY). $μ$: transient-field technique in Coul. Ex. (1998Sp03). Other: 0.84 24 (IMPAC in Coul. ex.,1969He11,1989Ra17). Q: reorientation effect in Coul. ex. (1977Le11). Other: -0.35 12 (1976VoZY). $β_2$ (p,p')=0.21 (1993Mo05), 0.193 (1988Ba35,1986Og01), 0.22 1 (1986MoZR), 0.229 15 (1984De01), 0.195 30 (1983Ma59), 0.210 15 (1979Ma28), 0.234 (1970He10). $β_2$ (n,n')=0.225 (1990Go13), 0.244 10 (1988Ba35,1984Ku09), 0.265 20 or 0.293 25 (1984De01), 0.25 (1979Ef01,1976La12). $β_2$ (α,α')=0.255 or 0.190 (1988Ba35). $β_2$ (Coul. ex.)=0.232 2 (1977Le11), 0.224 2 (1974Ba80), 0.245 (1962St02).					

80 Se Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &		XREF	Comments
1449.35 7	2+	1.95 ps 7	A	DEFGHIJKL	μ =0.70 20 (1998Sp03) μ : transient-field technique in Coul. Ex. (1998Sp03). 1449 and 1479 are unresolved in (α , α'). J^{π} : L(p,p')=2 and $\gamma\gamma(\theta)$ in (γ , γ'). β_2 (p,p')=0.047 (from β_2 R=0.25 (1986Og01)), 0.082 20 or 0.065 5 (1986MoZR).
1478.82 9	0+	11.4 ps <i>17</i>	A	C EFGHIJKL	$\beta_2(\alpha,\alpha')$ =0.05 (1988Ba35). β_2 (Coul. ex.)=0.054 (1974Ba80). $T_{1/2}$: other: 0.2 ps +24-3 (DSAM in (n,n' γ)). XREF: F(?). J^{π} : (812 γ)(666 γ)(θ) in ⁸⁰ Br decay. Parity from log ft =5.3 5 from 1 ⁺ .
1701.45 ^b 11	4+	0.66 ps 2		FGHIJKL N	μ =2.7 10 (1998Sp03) μ : transient-field technique in Coul. Ex. (1998Sp03). J^{π} : L(p,p')=4. β_4 (p,p')=-0.033 (from β_4 R=-0.18 (1986Og01)), -0.026 8 or -0.034 10 (1983Ma59). Others: 1984De01, 1986MoZR. β_4 (α , α ')=0.07 or -0.02 (1988Ba35).
1873.40 <i>12</i>	(0)+		A	DEFG IJ	$T_{1/2}$: other: 0.7 ps +10-4 (DSAM in $(n,n'\gamma)$). J^{π} : L(t,p)=0 but L(p,p')=2. $\gamma\gamma(\theta)$ in (γ,γ') gives J=0 or 2; 0^+ supported by comparison of experimental and theoretical yields in $(n,n'\gamma)$.
1959.82 9	2+	0.38 ps +22-12	A	D FG IJ L	J^{π} : $\gamma\gamma(\theta)$ in (γ,γ') and $L(p,p')=2$. $T_{1/2}$: from DSAM in $(n,n'\gamma)$. Other: 2.8 ps +14-7 or 7 ps +9-3 (from B(E2) in Coul. ex.).
2121.12 <i>14</i>	(3+)			D FG IJ	XREF: D(2150?)J(2150). J^{π} : from comparison of experimental and theoretical yields in
2311.29 9	(2+)	0.152 ps +28-14	A	EFG Ij	$(n,n'\gamma)$. J^{π} : from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2344.17 9	$(1^+, 2^+)$	0.35 ps +17-10		D FG Ij	J^{π} : L(t,p)=(2); 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2494.77 23 2513.57 10	(4 ⁺) (2 ⁺)	1.1 ps 7 0.048 ps 7	A	FG Ij DEFG Ij	J ^{π} : L(p,p')=4. XREF: F(?). J ^{π} : L(t,p)=1, but $\gamma\gamma(\theta)$ in (γ,γ') suggests J=2; 2 ⁺ also supported from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2627.40 19	(0^{+})			E I	J^{π} : primary transition in (γ, γ') from $1^{(-)}$; 0^+ from comparison of experimental and theoretical yields in $(n, n'\gamma)$.
2716.65 11	3-	0.38 ps <i>14</i>		D FGHIJ L	Comparison of experimental and theoretical yields in (n,n y). B(E3)↑=0.030 10 (2002Ki06) J ^{π} : L(p,p')=L(t,p)=3. B(E3) adopted in evaluation by 2002Ki06 from (p,p') (1993Mo05, 1986Og01,1979Ma28). Other: B(E3)=0.0084 14 from Coul. ex. (1974Ba80). Average β_3 (from inelastic scattering)=0.154 from $\beta_3(\alpha,\alpha')$ =0.161 (1988Ba35); β_3 (n,n')=0.151 10 (from b3r=0.78 5,1984Ku09); β_3 (p,p')=0.163 (1993Mo05), 0.124 (deduced by 1988Ba35 from 1986Og01), 0.144 (deduced by 1988Ba35 from 1984De01), 0.17 1 (1986MoZR), 0.167 (1979Ma28). β_3 (from B(E3) in Coul. ex.)=0.083.
2774.3 <i>10</i> 2787? <i>5</i>	$(1,2^+)^{@}$		A	F	
2814.50 <i>16</i>	$(2^+,1^+)$			EF Ij	XREF: F(2819). J^{π} : 2 ⁺ from $\gamma\gamma(\theta)$ in (γ,γ') and $L(p,p')=(2)$; 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2825.55 23	(6 ⁺)			Ij	J^{π} : γ to 4 ⁺ . 6 ⁺ from comparison of experimental and

80 Se Levels (continued)

E(level) [†]	\mathbf{J}^{π} ‡	T _{1/2} &	XREF			Comments	
2826.99 11	(2 ⁺)	0.18 ps 4		E G	Ιj		theoretical yields in $(n,n'\gamma)$. J^{π} : $\gamma\gamma(\theta)$ in (γ,γ') and γ to 0^+ . Parity from reduced strength for E1 transition in (γ,γ') .
2836.3 <i>10</i> 2895.5 ^b <i>10</i> 2947.54 <i>15</i>	$(1,2^+)^{\textcircled{0}}$ $(6^+)^{a}$ $(2^+,4^+)$	0.18 ps +11-6	A	F	j I	N	J^{π} : L(p,p')=(2); 4 ⁺ from comparison of experimental and
	(2 ,4)	0.18 ps +11-0			1		theoretical yields in $(n,n'\gamma)$.
2998? 5				F			
3025.17 <i>16</i>	$(1^+,2^+)^{@}$	0.049 ps <i>14</i>	A		Ι		J^{π} : 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
3033 4	(4 ⁺)			F	J		J^{π} : L(p,p')=4.
3036 10	(6^+)			d			J^{π} : L(t,p)=(2+6). E(level): doublet in (t,p).
3037.74 13	$(1^+,2^+)$	0.13 ps +9-5		d	I		J^{π} : L(t,p)=(2+6) and γ to 0 ⁺ ; 1 ⁺ from comparison of experimental and theoretical yields in (n,n' γ).
3125.79 <i>16</i>	$(2^+)^{\#}$	0.028 ps 14		EF	Ι		$T_{1/2}$: from DSAM in $(n,n'\gamma)$ (1989Do14); not given by 1999Ko46.
3160 9	0+			D			$J^{\pi} \colon L(t,p)=0.$
3176.92 <i>19</i>	$(1,2^+)^{\bigcirc}$			F	I		
3199.4 <i>3</i>	(2) #			EF	Ι		XREF: F(?).
3224.28 19	(1,2)	0.070 ps 28			I		J^{π} : γ to $0^{(+)}$.
3226 4	(4 ⁺)			F			J^{π} : $L(p,p')=4$.
3248.3 5	$(2^+)^{\#}$			E			
3280.4 4	$(1,2^+)^{\textcircled{a}}$			d	Ι		
3284 <i>4</i>	(3-)			d F			J^{π} : $L(p,p')=3$.
3314? 5	#			F	j		
3316.4 10	(0) [#]			EF	j		XREF: F(?).
3349.95 20 3354 <i>4</i>	(1^+)			E D F	I		J^{π} : from $\gamma\gamma(\theta)$ in (γ, γ') . XREF: J(3370).
3334 4	(3 ⁻)			υг	J		J^{π} : L(p,p')=3 and L(t,p)=(3).
3390.75 24	(2+)			DEF	j		$XREF: j(3370).$ $J^{\pi}: L(t,p)=(2).$
3441.88 22 3491 <i>5</i>	$(0^+)^{\#}$			EF D F	I		J ^{π} : L(p,p')=2 but $\gamma\gamma(\theta)$ in (γ,γ') suggests 0 ⁺ . XREF: D(3484).
3567 <i>5</i>				F			MEI. D(3101).
3606.4 <i>3</i>	(2) [#]		Α	E			
3619.7 <i>4</i>	$(0^+,2^+)^{\#}$		-	dEF			XREF: d(3635).
							J^{π} : L(t,p)=0 for a 3635 group suggests J^{π} =0 ⁺ for 3620 or 3640 level, but L(p,p')=(2) suggests 2 ⁺ .
3635.5 ^b 15	$(8^+)^a$					N	
3640 <i>5</i>				d F			XREF: d(3635).
3655.4 <i>10</i> 3675 <i>5</i>	(0,1,2)			E F			J^{π} : primary transition from $1^{(-)}$.
3727.2 5	(0,1,2)		A				J^{π} : log $ft=6.1$ from $1^{(+)}$.
3753 <i>4</i>	(3^{-})			d F	j		XREF: d(3760).
3774? 5				d F	4		J^{π} : L(p,p')=3. Also L(t,p)=(3) for a 3760 <i>10</i> group. XREF: d(3760).
3813.7 <i>4</i>	(6 ⁺)			иг	j I		J^{π} : γ to 4^{+} ; comparison of experimental and theoretical yields in
5015.7	(0)				•		$(n,n'\gamma)$.
3814.9 5	(8+)				I		
3826 5				F			
3845? 10				F			

⁸⁰Se Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3870.0 4	(1^{-})	DEF	$\mathbf{J}^{\pi} \colon \mathbf{L}(\mathbf{t}, \mathbf{p}) = (1).$
3931 4	(2+)	F	$J^{\pi}: L(p,p')=(2).$
3951.9 <i>4</i>	(2+)	EF	XREF: F(3960).
	,		J^{π} : L(p,p')=(2) for a 3960 4 group.
3976 8	(1^{-})	D	J^{π} : L(t,p)=(1).
3996 <i>4</i>	(5^{-})	F	J^{π} : L(p,p')=5.
4039 <i>4</i>		F	4.4.7
4047.1 5	(2^{+})	D I	XREF: D(4063).
			J^{π} : L(t,p)=(2).
4062.2 <i>4</i>	$(0^+)^{\#}$	EF	XREF: F(?).
4129 8	0+	D	J^{π} : $L(t,p)=0$.
4130 4	(3-)	F	J^{π} : $L(p,p')=3$.
4173 <i>4</i>	2+	D F J	XREF: J(4180).
			J^{π} : L(t,p)=2.
4225 <i>4</i>		F	
4247 7	2+	D	J^{π} : L(t,p)=2.
4295 <i>4</i>		F	
4322 4	(2^{+})	D F	J^{π} : L(t,p)=(2).
4352 <i>4</i>	2+	D F	J^{π} : L(t,p)=2.
4420 <i>4</i>	(2^{+})	F	J^{π} : $L(p,p')=(2)$.
4436.6 <i>4</i>	(5^{-})	FI	J^{π} : $L(p,p')=5$.
4464 5	(1^{-})	D	J^{π} : L(t,p)=1.
4511 <i>4</i>	(4^{+})	F	J^{π} : $L(p,p')=4$.
4570 <i>4</i>		F	
4673.5 ^b 18	$(10^+)^a$	N	
4682 <i>4</i>	(4^{+})	D F	XREF: D(4712).
			J^{π} : L(p,p')=4.
4950 <i>4</i>		F	
4993 <i>4</i>		F	
5180 <i>30</i>		D	
5325 4	(3^{-})	F	$J^{\pi}: L(p,p')=3.$
7818.52 9	1 ⁽⁻⁾	E	J^{π} : γ to 0^{+} . Parity from reduced strength for E1 transition in (γ, γ') .

[†] From least-squares fit to $E\gamma'$ s for levels populated in γ -ray studies. For others weighted averages of values available from different reactions have been taken.

 $^{^{\}ddagger}$ Above 2 MeV excitation energy, $J^{\pi'}$ s deduced from L(p,p') are given in parentheses due to high level density, ambiguity in level correspondence between different reactions, and tentative nature of L value.

[#] From $\gamma\gamma(\theta)$ in (γ,γ') . Parity is from a comparison of reduced strengths for E1 and M1 transitions with systematics of known E1 and M1 transitions in this mass region. The reduced strengths have been calculated by 1973Sz04 from relative intensities corrected for energy dependence, average level spacing and partial widths for the g.s. and the excited levels J^{π} assignments based on (γ,γ') study are considered tentative; first, because $\gamma(\theta)$ data are reported at only two angles and, second because transitions are assumed pure dipole with no quadrupole admixture.

 $^{^{\}tiny @}$ γ to 0^+ .

[&]amp; From B(E2) values in Coul. ex. for levels below 1900 keV. Above this, values are from DSA method in $(n,n'\gamma)$ (1999Ko46).

^a Systematics of yrast sequences in even-even nuclides populated in heavy-ion reactions.

^b Band(A): Yrast sequence.

					γ (80Se)		
$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ&	Comments
666.27 1449.35	2 ⁺ 2 ⁺	666.15 <i>10</i> 783.1 <i>1</i>	100 66.6 <i>10</i>	0.0 0 ⁺ 666.27 2 ⁺	E2 ^a E2+M1	-5 +2-6	B(E2)(W.u.)=24.7 6 B(M1)(W.u.)=0.0004 3; B(E2)(W.u.)=18.5 10 Mult., δ : from $\gamma(\theta)$ in Coul. ex. δ =-0.71 +12-17 is also possible but less likely from systematics of second
1478.82 1701.45 1873.40 1959.82	0 ⁺ 4 ⁺ (0) ⁺ 2 ⁺	1449.4 <i>I</i> 812.4 <i>I</i> 1035.1 <i>I</i> 1207.1 <i>I</i> 1293.7 2	100 3 100 100 100 100 100 5	0.0 0 ⁺ 666.27 2 ⁺ 666.27 2 ⁺ 666.27 2 ⁺ 666.27 2 ⁺	[E2] E2 ^a E2 M1+E2	-1.1 +6-11	2 ⁺ states in even-even nuclei. B(E2)(W.u.)=1.33 7 B(E2)(W.u.)=6.9 11 B(E2)(W.u.)=35.2 11 δ: from M1 and E2 matrix elements in
2121.12	(3 ⁺)	1959.9 <i>1</i> 671.7 2	55 <i>5</i> 15 <i>3</i>	0.0 0 ⁺ 1449.35 2 ⁺	[E2]		Coul. Ex. (1995Ka29). Other: $-0.31\ 5$ or $+10\ +10-2$ from $\gamma(\theta)$ in $(n,n'\gamma)$. B(E2)(W.u.)= $0.9\ +3-6$
2311.29	(2+)	1454.9 2 861.9 <i>I</i> 1645.0 <i>I</i>	100 8 15 5 100 12	666.27 2 ⁺ 1449.35 2 ⁺ 666.27 2 ⁺	D+Q		δ: +1.95 7 or -0.09 +2-6 from $γ(θ)$ in (n,n' $γ$).
2344.17	(1+,2+)	470.5 <i>4</i> 894.8 [‡] <i>1</i> 1677.9 [‡] <i>1</i> 2344 [‡] <i>1</i>	55 9 100 9 55 9 9.1 18	1873.40 (0) ⁺ 1449.35 2 ⁺ 666.27 2 ⁺ 0.0 0 ⁺			
2494.77	(4 ⁺)	793.0 3	100 30	1701.45 4+	M1+E2	+1.1 1	B(M1)(W.u.)=0.012 9; B(E2)(W.u.)=28 21 δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ and $T_{1/2}(2495$ level).
2513.57	(2+)	1046 ^{‡b} 1828.8 <i>3</i> 813.3 ^{@b} 2 1035.7 ^b 4	≈3 53 5 ≈40	1449.35 2 ⁺ 666.27 2 ⁺ 1701.45 4 ⁺ 1478.82 0 ⁺	[E2] [E2]		B(E2)(W.u.)=0.4 β Reported in (γ, γ') only. The placement is considered suspect since with the quoted intensity in (γ, γ') , it would have been seen in 80 As β^- decay and
2627.40 2716.65	(0 ⁺) 3 ⁻	1063.8 4 1847.3 I 2513.4 2 1178.2 [‡] 2 405.1 3 1015.1 2 2050.4 I (2716.6)	4.3 <i>14</i> 100 <i>9</i> 4.3 <i>14</i> 100 7.7 23 7.7 <i>15</i> 100 8 0.15 7	1449.35 2 ⁺ 666.27 2 ⁺ 0.0 0 ⁺ 1449.35 2 ⁺ 2311.29 (2 ⁺) 1701.45 4 ⁺ 666.27 2 ⁺ 0.0 0 ⁺	[E2] [E1] [E1] [E1] [E3]		in $(n,n'\gamma)$. B(E2)(W.u.)=0.17 7 B(E1)(W.u.)=0.0010 5 B(E1)(W.u.)=6.E-5 3 B(E1)(W.u.)=0.00010 4 B(E3)(W.u.)=10 6 I _{\gamma} : deduced (evaluator) from T _{1/2} and
2774.3 2814.50 2825.55	$(1,2^+)$ $(2^+,1^+)$ (6^+)	2774.2 <i>10</i> 2148.0 [‡] <i>3</i> 2814.6 2 1124.1 2	100 29 <i>14</i> 100 <i>14</i> 100	0.0 0 ⁺ 666.27 2 ⁺ 0.0 0 ⁺ 1701.45 4 ⁺			B(E3) for 2717 level. $E_{\gamma}: \text{ from } (\gamma, \gamma'). \ E_{\gamma} = 2817.7 \text{ in } (n, n'\gamma).$
2826.99 2836.3	(2^{+}) $(1,2^{+})$	2160.7 <i>I</i> 2826.9 <i>3</i> 2836.2 <i>10</i>	100 <i>15</i> 7.7 24 100	666.27 2 ⁺ 0.0 0 ⁺ 0.0 0 ⁺	[E2]		B(E2)(W.u.)=0.061 25

γ (80Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^π	Mult.&	Comments
2895.5	(6 ⁺)	1194		1701.45 4+		
2947.54	$(2^+,4^+)$	826.4 2	50 17	2121.12 (3 ⁺)		
		1498.1 2	100 33	1449.35 2+		
		2281.4 3	67 33	666.27 2+		
3025.17	$(1^+, 2^+)$	1577.6 [‡] 3	50 17	1449.35 2+		E_{γ} : poor fit. Level-energy difference=1575.8.
		2358.2 2	100 25	666.27 2+		E_{γ} : level-energy difference=2358.86.
3037.74	$(1^+, 2^+)$	3024.8 <i>3</i> 1078.6 2	30 <i>20</i> 100 <i>20</i>	$0.0 0^{+}$ 1959.82 2^{+}		E : laval anargy difference=1077.0
3037.74	(1 ,2)	1558.7 2	80 20	1939.82 2 1478.82 0 ⁺		E_{γ} : level-energy difference=1077.9.
		1587.9 2	56 12	1449.35 2 ⁺		
3125.79	(2^{+})	1677.0 [‡] <i>b</i> 5	≈1	1449.35 2 ⁺		
	(-)	2459.3 2	100	666.27 2 ⁺		
3176.92	$(1,2^+)$	1697.8 <i>5</i>	70 20	1478.82 0 ⁺		
		3176.9 2	100 20	$0.0 0^{+}$		
3199.4	(2)	3199.5 [‡] <i>5</i>	100	$0.0 0^{+}$		
3224.28	(1,2)	1522.8 2	100 13	1701.45 4+		
2200.4	(1.0+)	1745.5 3	43 22	1478.82 0+		
3280.4	$(1,2^+)$	2614.5 <i>5</i> 3280.0 <i>5</i>	73 <i>21</i> 100 <i>27</i>	666.27 2 ⁺ 0.0 0 ⁺		
3349.95	(1^+)	3348.4 5	100 27	$0.0 0^{+}$		
3390.75	(2^{+})	1909.9 5	100 20	1478.82 0 ⁺		E_{γ} : poor fit. Level-energy difference=1911.9.
	,	1941.9 5	100 20	1449.35 2 ⁺		, 1
3441.88	(0^+)	1097 [‡] <i>1</i>	80 20	2344.17 (1+,2+)		
		2775.9 3	100 30	666.27 2+		
3606.4	(2)	2156.9 [#] 5	100 50	1449.35 2+		
		2940.3 [#] <i>10</i>	100 50	666.27 2+		
3619.7	$(0^+,2^+)$	2953.7 5	100	666.27 2+		
3635.5	(8 ⁺)	740	100 50	$2895.5 (6^+)$		
3727.2	(0,1,2)	1415.9 5	100 50	2311.29 (2+)		
2012.7	((+)	3060.8 ^b 20	50 50	666.27 2+		
3813.7 3814.9	(6^+) (8^+)	2112.2 <i>3</i> 989.3 <i>4</i>	100 100	1701.45 4 ⁺ 2825.55 (6 ⁺)		
3870.0	(0) (1 ⁻)	2391.9 5	100	1478.82 0 ⁺		
3951.9	(2^{+})	3286.1 5	100	666.27 2+		
4047.1	(2^{+})	2597.7 5	100	1449.35 2 ⁺		
4062.2	(0^+)	2612.7 5	100	1449.35 2+		
4436.6	(5 ⁻)	1941.8 <i>3</i>	100	2494.77 (4 ⁺)		
4673.5	(10^{+})	1038		3635.5 (8+)		
7818.52	1 ⁽⁻⁾	3756.1 4	4.3 4	$4062.2 (0^+)$	(E1)	
		3866.9 <i>4</i> 3949.1 <i>5</i>	3.0 <i>5</i> 3.0 <i>4</i>	3951.9 (2 ⁺) 3870.0 (1 ⁻)		
		4163 <i>1</i>	1.3 3	3655.4 (0,1,2)		
		4199.1 5	2.8 3	3619.7 (0,1,2)		
		4212.0 <i>4</i>	3.7 <i>3</i>	3606.4 (2)		
		4376.8 <i>3</i>	5.2 4	$3441.88 \ (0^+)$		
		4427.1 3	8.5 3	3390.75 (2 ⁺)	(E1)	
		4468.2 2	9.2 4	3349.95 (1+)	(E1)	
		4502 <i>I</i> 4570.1 <i>5</i>	2.2 <i>4</i> 7.3 <i>3</i>	3316.4 (0) 3248.3 (2 ⁺)	(E1)	
		4619.1 3	5.5 <i>3</i>	3199.4 (2)	(E1)	
		4692.4 2	12.5 3	3125.79 (2 ⁺)	(E1)	
		4991.4 2	12.4 4	2826.99 (2+)	(E1)	
		5004.3 5	3.5 <i>3</i>	$2814.50 \ (2^+,1^+)$		
		5191.6 <i>4</i>	1.0 3	$2627.40 \ (0^{+})$		

γ (80Se) (continued)

[†] Weighted averages taken when data of comparable precision are available from more than one dataset.

[‡] Reported in $(n,n'\gamma)$ only. # Reported in 80 As β^- only.

[@] Reported in $(p,p'\gamma)$ only.

[&]amp; From $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL deduced from $T_{1/2}$. Mult=E1 for transitions from 7819 level is from $\gamma(\theta)$ in (γ,γ') and transition strengths.

^a From (813γ)(666γ)(θ) in ⁸⁰Br ε decay and T_{1/2} (levels).

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $^{80}_{34}\mathrm{Se}_{46}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $Band (A) \hbox{:} \ Yrast \ sequence$

