Find MST by applying prim's algorithm for the below graph

Solution:

The following steps are followed in prim's algorithm:

Where, The parenthesized labels of a vertex in the middle column in below table indicate the nearest tree vertex and edge weight; selected vertices and edges are shown in bold.

Tree Vertices	Remaining Vertices	Illustration
a(-,-)	$b(a,3)$ $c(-,\infty)$ $d(-,\infty)$ $e(a,6)$ $f(a,5)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b(a,3)	$c(b,1)$ $d(-,\infty)$ $e(a,6)$ $f(b,4)$	3 5 6 6 8 Activate Go to Setti

Therefore , the Minimum Cost Spanning Tree is

Where,

Number of edges=5

Edges selected are (a,b),(b,c),(b,f),(f,e),(f,d)

Cost of MST=15