Modelo de Asignación de Turnos en Clínica

Formulación Matemática del Modelo de Asignación de Turnos

Conjuntos e Índices

- $i \in I = \{1, ..., N\}$: conjunto de trabajadores.
- $d \in D = \{1, \dots, H\}$: conjunto de días en el horizonte de planificación.
- $s \in S = \{1, 2, 3\}$: conjunto de turnos diarios, donde:

$$1 = man$$
ana, $2 = tarde$, $3 = noche$.

• $w \in W = \{1, \dots, \lfloor H/7 \rfloor\}$: conjunto de semanas (para control de fines de semana).

Parámetros

- $a_{i,d,s} \in [0, 10]$: nivel de disposición o compatibilidad del trabajador i para trabajar el turno s del día d (0 = no disposible, 10 = totalmente dispuesto).
- $r_{d,s} \in \mathbb{Z}_+$: demanda de trabajadores requerida en el turno s del día d.
- N : número total de trabajadores.
- H: número total de días en el horizonte de planificación.

Variables de Decisión

- $x_{i,d,s} = \begin{cases} 1, & \text{si el trabajador } i \text{ es asignado al turno } s \text{ del día } d, \\ 0, & \text{en caso contrario.} \end{cases}$
- $y_{i,w} = \begin{cases} 1, & \text{si el trabajador } i \text{ trabaja al menos un turno el fin de semana } w, \\ 0, & \text{en caso contrario.} \end{cases}$

Función Objetivo

$$\max Z = \sum_{i \in I} \sum_{d \in D} \sum_{s \in S} a_{i,d,s} x_{i,d,s}$$

El objetivo es maximizar la suma total de las disposiciones de los trabajadores asignados, buscando la mayor satisfacción global posible sin comprometer la cobertura ni las condiciones operacionales.

Restricciones

1. Límite de turnos diarios por trabajador

$$\sum_{s \in S} x_{i,d,s} \le 2 \quad \forall i \in I, \ \forall d \in D$$

Ningún trabajador puede desempeñar más de dos turnos en un mismo día.

2. Prohibición de turnos noche-mañana consecutivos

$$x_{i,d,3} + x_{i,d+1,1} \le 1 \quad \forall i \in I, \ \forall d \in D \setminus \{H\}$$

Evita que un trabajador realice el turno de noche y al día siguiente el de mañana.

3. Cobertura exacta de la demanda

$$\sum_{i \in I} x_{i,d,s} = r_{d,s} \quad \forall d \in D, \ \forall s \in S$$

Cada turno debe estar cubierto exactamente por la cantidad de trabajadores requerida.

4. Identificación de trabajo en fin de semana

$$y_{i,w} = \begin{cases} 1, & \text{si } \sum_{s \in S} (x_{i,7(w-1)+6,s} + x_{i,7(w-1)+7,s}) \ge 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Indica si un trabajador realiza al menos un turno durante sábado o domingo.

5. Prohibición de tres fines de semana consecutivos trabajados

$$y_{i,w} + y_{i,w+1} + y_{i,w+2} \leq 2 \quad \forall i \in I, \ \forall w \in W \setminus \{ \lfloor H/7 \rfloor - 2, \lfloor H/7 \rfloor - 1, \lfloor H/7 \rfloor \}$$

Evita que un trabajador trabaje tres fines de semana consecutivos.

Naturaleza de las Variables

$$x_{i,d,s} \in \{0,1\}, \qquad y_{i,w} \in \{0,1\}$$