STATISTICAL COMPUTATIONAL METHODS

Seminar Nr. 3

Computer Simulations of Random Variables and Monte Carlo Studies; Inverse Transform Method, Rejection Method, Special Methods

1.

- a) Use the DITM to generate a $Geo(p), p \in (0, 1)$, variable.
- **b)** Then use that to generate a $NB(n, p), n \in \mathbb{N}, p \in (0, 1)$, variable.

2.

- a) Use the ITM to generate an $Exp(\lambda), \lambda > 0$, variable.
- **b)** Then use that to generate a $Gam(\alpha, \lambda)$, $\alpha \in \mathbb{N}$, $\lambda > 0$, variable (a Gamma $Gam(\alpha, \lambda)$ variable is the sum of α independent $Exp(1/\lambda)$ variables).
- **3.** Use a special method to generate a $Poiss(\lambda), \lambda > 0$, variable.
- 4 Use the rejection method to approximate π (see Example 7.2, Lecture 4).

5. Application: Forecasting for new software release

An IT company is testing a new software to be released. Every day, software engineers find a random number of errors and correct them. On each day t, the number of errors found, X_t , has a Poisson(λ_t) distribution, where the parameter λ_t is the lowest number of errors found during the previous k days,

$$\lambda_t = \min\{X_{t-1}, X_{t-2}, \dots, X_{t-k}\}.$$

If some errors are still undetected after tmax days (i.e. if not all errors are found in tmax-1 days), the software is withdrawn and goes back to development. Generate a Monte Carlo study to estimate

- a) the time it will take to find all errors;
- b) the total number of errors found in this new release;
- c) the probability that the software will be sent back to development.

(Try
$$k = 4$$
, $[X_{t-1}, X_{t-2}, X_{t-3}, X_{t-4}] = [10, 5, 7, 6]$, $tmax = 10$.)