Student: Quoc Tuan Vinh, Ngo

ID: 704526

Problem 1. "Coins"

From the question, we have:

• $p(X = t \mid C = c_1) = \theta_1$

•
$$p(X = t \mid C = c_2) = \theta_2$$

Since c_1 & c_2 are random variables $\in \{c_1, c_2\}$, we have $p(C = c_1) + p(C = c_2) = 1$

$$\Leftrightarrow p(C = c_2) = 1 - \pi_1$$

Since h & t are random variables $\in \{h, t\}$, we have:

•
$$p(X = h \mid C = c_1) + p(X = t \mid C = c_1) = 1 \Leftrightarrow p(X = h \mid C = c_1) = 1 - \theta_1$$

• Similarly:
$$p(X = h | C = c_2) = 1 - \theta_2$$

Applying Bayes conditional distribution:

$$p(C = c_1 \mid X = t) = \frac{p(X=t \mid C=c1) * p(C=c1)}{p(X=t)} = \frac{\theta_1 \pi_1}{p(X=t)}$$
(1)

However, we also have:

$$p(C = c_1 | X = t) = 1 - p(C = c_2 | X = t) = 1 - \frac{p(X = t | C = c_2) * p(C = c_2)}{p(X = t)} = 1 - \frac{\theta_2(1 - \pi_1)}{p(X = t)}$$
(2)

From (1), (2), we can calculate $p(X = t) = \theta_1 \pi_1 + \theta_2 - \pi_1 \theta_2$ (3)

Apply (3)
$$\rightarrow$$
 (1): $p(C = c_1 | X = t) = \frac{\theta_1 \pi_1}{\theta_1 \pi_1 + \theta_2 - \pi_1 \theta_2}$

And
$$p(C = c_1 \mid X = h) = \frac{p(X = h \mid C = c_1) * p(C = c_1)}{p(X = h)} = \frac{(1 - \theta_1) \pi_1}{1 - p(X = t)} = \frac{(1 - \theta_1) \pi_1}{1 - \theta_1 \pi_1 - \theta_2 + \pi_1 \theta_2}$$

Plot:

compute posterior probability of c_1

 $theta_1 = np.linspace(0,1, num=20, endpoint=False) \ \#(Stepwise of 0.05 \ between \ 0 \ and \ 0.95) \\ post_c1 = []$

for i in theta_1:

 $post_c1.append(np.round((i*pi_1)/(i*pi_1 + theta_2 - pi_1*theta_2),2))$

Theta_1 values are: [0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]

 $p(C = c_1 \mid X = t)$ values are: [0.0, 0.091, 0.167, 0.231, 0.286, 0.333, 0.375, 0.412, 0.444, 0.474, 0.5, 0.524, 0.545, 0.565, 0.583, 0.6, 0.615, 0.63, 0.643, 0.655]

Problem 2. "False positive paradox."

Let e_i , y_i denote the actual and detected outcomes respectively. Thus, y_i has two possibilities of Y (Correctly detected) and N (wrongly detected). Also, e_i also has two possibilities of H (students being honest in reality) and C (cheating students in reality).

From the description, we can easily realize that both of $p(Y \mid H) = p(N \mid C) = 0.98$ (given the actual outcome, we have the detected probabilities). From there, we can calculate $p(N \mid H)$ and $p(Y \mid C) = 0.02$ since the variables are random and $p(Y \mid H) + p(N \mid H) = p(N \mid C) + P(Y \mid C) = 1$

Also, from the actuality, we also know that p(C) (the actual percentage of cheating students) is $1/300 \sim 0.003333$, which means that p(H) is 0.996667.

According to Bayes conditional probability formulas, we know that:

 $p(y_i, e_i) = p(y_i | e_i) * p(e_i)$, so it is possible to compute $p(y_i, e_i)$ and $p(y_i)$.

From there, it is easy to compute $p(e_i | y_i) = p(y_i, e_i) / p(y_i)$. To make it easier, the table below is built:

			$p(y_i \mid e_i)$			$p(y_i,e_i)$		$p(e_i y_i)$	
		Detected (y _i)		1	Detected (y _i)		Detected (y _i)		
			Y	N	Σ	Y	N	Y	N
Actua l (e _i)	Н	0.996667	0.980000	0.020000	1	0.976733	0.019933	0.999932	0.859195
	C		0.020000	0.980000	1	0.000067	0.003267	0.000068	0.140805
Σ		1				0.976800	0.023200	1	1

The question asks "If the detector now flags a particular student X as a cheater, how likely is it that X has, in fact, cheated in the exam?", which means that given $y_i = N$, what is the probability of $e_i = C$. In this case, $p(C \mid N) = 0.140805 \sim 14.08\%$.

Problem 3. "Markov blanket definition."

The Markov blanket of a node is its parents, children and the parents of its children (excluding itself).

Node A: C, B, D, F

Node B: A, C, D, E, F

Node C: A, B, D

Node D: A,C,B,E,F

Node E: B, D, F

Node F: A, B, D, E.