□PHYS115 □PHYS121 □PHYS123 □PHYS116 □PHYS122 □PHYS124 Lab Cover Letter

Au	thor	(You) Timer P	Signature: Tew D.	
i de asse to a	ciare essor nothe	that this assignment is original and has not be of this assignment may, for the purpose of asse	en submitted for assessment elsewhere, and acknowledge ssing this assignment: (1) reproduce this assignment and p a copy of this assignment to a plagiarism checking service	provide a copy
Lal	b Pa	urtner(s) Katherne		
Da	te P	erformed Mr 6	Date Submitted Mar 19	
Lal	`	uch as #1: UNC) #4 602		
ТА	.: _	Phillip		
			your TA) See your TA for detailed feedback. ns you need to improve this aspect of your work.	
Pa	per	· Subtotals (points)		
·	-)	General (6)	() Discussion & Conclusion Numerical comparison of results	ns (6)
(,	Sig. figs.	Logical conclusions	
		Units	Discussion of pos. errors Suggestions to reduce errors	
		Clarity of Presentation	Suggestions to reduce errors	
	_	Format	() D T 41(60 '4)	
			() Paper Total (60 points)	
()	Abstract (4)	(30 points for CME or 1	EPF)
	_	Quantity or principle	() Notebook (10 points)	
		How measurement was made	Format (proper style, following	
	_	Numerical Results	Apparatus (brief description of	f equipment,
	_	Conclusion	including sketches)	
,		T . 0 mt	Data (including computer file	names and
()	Intro & Theory (9)	manually recorded data)	
	_	Basic principle	Experimental Technique (des	
	_	Main equations to be used Apparatus	procedures; stating & justifyi.	ng uncerts.)
	_	What will be plotted	Analysis (results and errors)	
		Fitting parameters related		
			() Worksheet(s)/Fill-in-the	-Blank-
()	Exp. Procedures (15)	Report (30 points) if applicable	
(,	Description		
		Stating and justifying uncertainties	() Adjustments – late submi	ssions,
_	_	Data Record Quality of Lab Work	improper procedures, etc. – of for exceptional work.	
()	Analysis & Error Analysis (20)		
(,	Discussion	() Total Grade	
		Equations & Calculations	, 101111 0111110	
		Presentation inc. Graphs, Tables	- ·	
	_	Results Reported & Reasonable Underlined items addressed	Graded by(TA	's initial)

COL Worksheet

Your Name: Trouble N. Signature: The N.

Lab partner(s): Katherne

Course & Section: PHYS 121 Sec 18 Station # 14 Date: Mar 6 2024

Section D. Procedure

1. What are the masses of your two carts, gratings, and mass bars?

$$m_{cart1} = 490.3 \pm 0.1$$
 (units)

$$m_{cart2} = 495.3 \pm 0.1$$
 (units)

$$m_{grating1} = 12.7 \pm 0.1$$
 (units)

$$m_{grating2} = 13.$$
 $\pm 0.$ α (units)

$$m_{bar1} = 497.7 \pm 0.1$$
 (units)

$$m_{bar2} = 494.9 \pm 0.1$$
 (units)

2. What is the average velocity for each photogate? Remember that if the two don't agree, you will have to find their ratios and adjust the velocities of all subsequent velocity measurements.

$$v_{\text{photogate}1} = \frac{1.370}{\pm 0.006} \pm \frac{1.006}{1.006}$$
 (units)

$$v_{\text{photogate2}} = 1.330 \pm 0.004 \text{ m/s}$$
 (units)

Section E Analysis

3. Record your data in the tables below. Do not forget to include the directions for the vector quantities.

Collision 1

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 ± 0.0002	1.0002 ± 50007	1.0033 ± 0.0002	10033±0.0002
Velocity (m/s)	0.707 ± 0.004	_ O _ ± _ O _	_0_±_0_	U.572 ± 0.008
Momentum (kg m/s)	0.707	0	0	0.574
Kinetic energy (J)	0.250	0	Ò	0.164

Collision 2

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 ± 0.0002	1.0007 ± 0.0002	0.5084 ± 0.0001	D. SOBEL + 0.000
Velocity (m/s)	1,305 ± 0.002	0.38 ± 0.07	_O±_O	1.54 ± 0.01
Momentum (kg m/s)	1,306	0.38	O	0.783
Kinetic energy (J)	0.892	0.073	0	0.603

$$\epsilon_p = \underline{\quad \ \, 0 \, . \, \, \big\backslash \, \, \big\backslash}$$

$$\varepsilon_k = -0.21$$

Collision 3*

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1 600.0 ± 0.000 l	0.0030 ± 0.0001	1.0033 ± 0.0002	1.0033 ± 0.0002
Velocity (m/s)	1.18 + 0.02	~0.278 ± 0.007	0 <u>+</u> 0	0.720 ± 0.004
Momentum (kg m/s)	0.59 ± 0.01	-0.139 ± 0.004		0.722 ± 0.004
Kinetic energy (J)	0.35 ± 0.01	0.019 ± 0.001	=	0.260 ± 0.003

$$\epsilon_{p} = \frac{-0.01 \pm 0.01}{\epsilon_{k}} = \frac{-0.01}{0.01}$$

Collision 4

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 + 0.0005	1.0007 ± 0.0002	1,0082 + 0,0002	1.0033 ± 0.0002
Velocity (m/s)	1.50 ± 0.01	0.67 ± 0.02		0.67 ± 0.02
Momentum (kg m/s)	1.50	0.67	O	40,0
Kinetic energy (J)	1.13	0.23	0	0.23

$$\epsilon_p =$$
 _ ().|\

Collision 5

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	1.0007 ± 0.0002	1.007 ± 0.0002	0.5084 ± 0.0001	0.000t
Velocity (m/s)		-0.40a ± 0.004		0.821 ± 0.005
Momentum (kg m/s)	O	-0.409	O	0.421
Kinetic energy (J)	0	D.084	0	0.175

$$\Delta p = \underline{\text{0.012}} \quad Kg.m/s$$

$$\Delta K = 0.512 J$$

Collision 6

Maria (III)	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	0.5030 ± 0.0001	0.5000 + 0.000l	0.50801± 0.0001	0.5084 ± 0.0001
Velocity (m/s)	_o_±_o_	-0.926 ± 0.003	_ O _ ± _ O	0.891 + 0.005
Momentum (kg m/s)	0	-0.466	Ö	0.453
Kinetic energy (J)	0	0.216	0	0.202

$$\Delta p = 0.013$$
 Kg.m/s.

$$\Delta K = 0.835 J.$$

4*. Write out the error analysis for collision 3 to find the uncertainties in momentum and kinetic energy, and the uncertainties in ε_p and ε_k .

$$\frac{1}{C_p} = \frac{p_1^2 + p_2^2 - p_2^2}{p_1^2}$$

$$\delta_{\xi_{p}}^{2} = \int \delta_{\xi_{p}p_{1}^{2}}^{2} + \delta_{\xi_{p}p_{2}^{2}}^{2} + \delta_{\xi_{p}p_{1}}^{2} = \int \delta_{p_{1}^{2}}^{2} + \delta_{p_{1}^{2}}$$

$$\sqrt{\frac{K_{s}^{1}}{\xi_{s}^{K_{s}^{1}}} + \frac{K_{s}^{1}}{\xi_{s}^{K_{s}^{1}}} + \frac{K_{s}^{1}}{\xi_{s}^{K_{s}^{1}}(K_{s}^{1} + K_{s}^{1})_{s}}}$$

5. For the elastic collisions, did your data fit the conservation of energy and momentum model? Explain.

Yes, all of our & Ep were very low, ment it did not change much during the collision. which ment it Pollow the model

And not as much of consortin of energy, as pour collisions were not probetly elaster, more enorm was lost, as seen by our higher (but still low) Ex value.

6. For the inelastic collisions, did your data fit the conservation of momentum model? Explain. What was the relative energy loss? Where did the energy go?

You with the our downte collisions, our & were low.

Our Ex was -0.20±0.01, which is expected as the energy was absorbed by the velices holdy the curts together.

7. For the "explosion," did your data fit the conservation of momentum model? Explain. What was the energy gained?

Yes, just like the others, our to way low.

We gan energy from the stored spring energy, that a why

our Die was pusitive.

GRADE: (out of 30 points)

GRADED BY
(TA's initials)