MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 5.3

The Dimension Theorem

Let $L: V \to W$ be a LT.

Let $L: V \to W$ be a LT. The kernel of L, denoted by $\ker(L)$,

Let $L: V \to W$ be a LT. The kernel of L, denoted by $\ker(L)$, is the subset of all vectors in V that map to $\mathbf{0}_W$, i.e.,

Let $L: V \to W$ be a LT. The kernel of L, denoted by $\ker(L)$, is the subset of all vectors in V that map to $\mathbf{0}_W$, i.e.,

$$\ker(L) = \{ v \in V | L(v) = \mathbf{0}_W \}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x, y, z]) = [0, y].

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x, y, z]) = [0, y]. Find $\ker(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [0, y] = [0, 0] \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [0, y] = [0, 0] \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | y = 0 \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [0,y]. Find $\ker(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [0, y] = [0, 0] \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | y = 0 \} \\ = \{ [x, 0, z] | x, z \in \mathbb{R} \} \end{cases}$$

In Example 1, **Note that**

$$\ker(L) = \{ [x, 0, z] \in \mathbb{R}^3 \mid x, z \in \mathbb{R} \}$$

In Example 1, **Note that**

$$\ker(L) = \{ [x, 0, z] \in \mathbb{R}^3 \mid x, z \in \mathbb{R} \}$$

is a subspace of the vector space \mathbb{R}^3 .

In Example 1, **Note that**

$$\ker(L) = \{ [x, 0, z] \in \mathbb{R}^3 \mid x, z \in \mathbb{R} \}$$

is a subspace of the vector space \mathbb{R}^3 .

Result: If $L: V \to W$ is a LT, then $\ker(L)$ is a subspace of V.

Let $L: V \to W$ be a LT.

Let $L: V \to W$ be a LT. The range of L, denoted by range(L),

Let $L: V \to W$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in W that are image of some vector in V, i.e.,

Let $L: V \to W$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in W that are image of some vector in V, i.e.,

$$range(L) = \{L(v)|v \in V\}$$

Let $L: V \to W$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in W that are image of some vector in V, i.e.,

$$range(L) = \{L(v)|v \in V\}$$

Thus a vector $w \in range(L)$

Let $L: V \to W$ be a LT. The range of L, denoted by range(L), is the subset of all vectors in W that are image of some vector in V, i.e.,

$$range(L) = \{L(v)|v \in V\}$$

Thus a vector $w \in range(L)$ if there exists some vector $v \in V$ such that L(v) = w.

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = ([0,y]).

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = ([0,y]). Find range(L).

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = ([0,y]). Find range(L). Also, find basis for $\ker(L)$ and range(L).

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = ([0,y]). Find range(L). Also, find basis for $\ker(L)$ and range(L).

$$\begin{cases} \operatorname{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = ([0,y]). Find range(L). Also, find basis for $\ker(L)$ and range(L).

$$\begin{cases} \text{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \\ = \{[0, y] | y \in \mathbb{R}\} \\ = \{y[0, 1] | y \in \mathbb{R}\} \end{cases}$$

Note that $range(L) = span\{[0, 1]\}.$

Note that range(L) = span{[0,1]}. Since {[0,1]} is LI subset of \mathbb{R}^2 (Why?).

Also, range(L)

Also, range(L) is a subspace of the vector space \mathbb{R}^2 .

Also, range(L) is a subspace of the vector space \mathbb{R}^2 .

Result: If $L: V \to W$ is a LT, then range(L) is a subspace of W.

$$\begin{cases} \ker(L) = \{ [x, 0, z] | x, z \in \mathbb{R} \} \end{cases}$$

$$\begin{cases} \ker(L) = \{ [x, 0, z] | x, z \in \mathbb{R} \} \\ = \{ x[1, 0, 0] + z[0, 0, 1] | x, z \in \mathbb{R} \} \end{cases}$$

$$\begin{cases} \ker(L) = \{ [x, 0, z] | x, z \in \mathbb{R} \} \\ = \{ x[1, 0, 0] + z[0, 0, 1] | x, z \in \mathbb{R} \} \\ = \operatorname{span}\{ [1, 0, 0], [0, 0, 1] \} \end{cases}$$

$$\begin{cases} \ker(L) = \{ [x, 0, z] | x, z \in \mathbb{R} \} \\ = \{ x[1, 0, 0] + z[0, 0, 1] | x, z \in \mathbb{R} \} \\ = \operatorname{span}\{ [1, 0, 0], [0, 0, 1] \} \end{cases}$$

Now, $\{[1,0,0],[0,0,1]\}$ is a LI subset of \mathbb{R}^3 , hence, they form a basis for $\ker(L)$.

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z].

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$.

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \end{cases}$$

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find ker(L) and range(L). Also, find basis for ker(L) and range(L).

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [x - 2y, y + z] = [0, 0] \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [x - 2y, y + z] = [0, 0] \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | x = 2y, z = -y \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [x - 2y, y + z] = [0, 0] \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | x = 2y, z = -y \} \\ = \{ [2y, y, -y] | y \in \mathbb{R} \} \end{cases}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a LT given by L([x,y,z]) = [x-2y,y+z]. Find $\ker(L)$ and $\operatorname{range}(L)$. Also, find basis for $\ker(L)$ and $\operatorname{range}(L)$.

$$\begin{cases} \ker(L) = \{ [x, y, z] \in \mathbb{R}^3 | L([x, y, z]) = \mathbf{0}_{\mathbb{R}^2} \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | [x - 2y, y + z] = [0, 0] \} \\ = \{ [x, y, z] \in \mathbb{R}^3 | x = 2y, z = -y \} \\ = \{ [2y, y, -y] | y \in \mathbb{R} \} \\ = \operatorname{span}\{ [2, 1, -1] \} \end{cases}$$

$$\begin{cases} \operatorname{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \end{cases}$$

$$\begin{cases} \text{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \\ = \{[x - 2y, y + z] | x, y, z \in \mathbb{R}\} \end{cases}$$

$$\begin{aligned}
\text{range}(L) &= \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \\
&= \{[x - 2y, y + z] | x, y, z \in \mathbb{R}\} \\
&= \{x[1, 0] + y[-2, 1] + z[0, 1] | x, y, z \in \mathbb{R}\}
\end{aligned}$$

$$\begin{cases} \operatorname{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \\ = \{[x - 2y, y + z] | x, y, z \in \mathbb{R}\} \\ = \{x[1, 0] + y[-2, 1] + z[0, 1] | x, y, z \in \mathbb{R}\} \\ = \operatorname{span}\{[1, 0], [-2, 1], [0, 1]\} \end{cases}$$

$$\begin{aligned} (\operatorname{range}(L) &= \{L([x,y,z]) | [x,y,z] \in \mathbb{R}^3\} \\ &= \{[x-2y,y+z] | x,y,z \in \mathbb{R}\} \\ &= \{x[1,0] + y[-2,1] + z[0,1] | x,y,z \in \mathbb{R}\} \\ &= \operatorname{span}\{[1,0],[-2,1],[0,1]\} \\ &= \operatorname{span}\{[1,0],[0,1]\} \end{aligned}$$

$$\begin{cases} \operatorname{range}(L) = \{L([x, y, z]) | [x, y, z] \in \mathbb{R}^3\} \\ = \{[x - 2y, y + z] | x, y, z \in \mathbb{R}\} \\ = \{x[1, 0] + y[-2, 1] + z[0, 1] | x, y, z \in \mathbb{R}\} \\ = \operatorname{span}\{[1, 0], [-2, 1], [0, 1]\} \\ = \operatorname{span}\{[1, 0], [0, 1]\}$$

Basis for range(L) is {[1,0],[0,1]}.

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Sol. $\ker(L) = \{0t^3 + 0t^2 + 0t + d | d \in \mathbb{R}\}$ and $range(L) = P_2$.

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Sol. $\ker(L) = \{0t^3 + 0t^2 + 0t + d | d \in \mathbb{R}\}$ and $range(L) = P_2$.

Q:. Let $L: \mathbb{R}^4 \to P_2$ be a LT given by $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2$.

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Sol. $\ker(L) = \{0t^3 + 0t^2 + 0t + d | d \in \mathbb{R}\}$ and $range(L) = P_2$.

Q:. Let $L: \mathbb{R}^4 \to P_2$ be a LT given by $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2$. Find $\ker(L)$ and range(L).

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Sol. $\ker(L) = \{0t^3 + 0t^2 + 0t + d | d \in \mathbb{R}\}$ and $range(L) = P_2$.

Q:. Let $L: \mathbb{R}^4 \to P_2$ be a LT given by $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2$. Find $\ker(L)$ and range(L). Also, find basis for $\ker(L)$ and range(L).

Q:. Suppose $L: P_3 \to P_2$ is a LT given by $L_1(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$. Find $\ker(L)$ and range(L).

Sol. $ker(L) = \{0t^3 + 0t^2 + 0t + d | d \in \mathbb{R}\}$ and $range(L) = P_2$.

Q:. Let $L: \mathbb{R}^4 \to P_2$ be a LT given by $L([a,b,c,d]) = a + (b+c)x + (b-d)x^2$. Find $\ker(L)$ and range(L). Also, find basis for $\ker(L)$ and range(L).

Sol. $\ker(L) = \{[0, b, -b, b] | b \in \mathbb{R}\} = \operatorname{span}\{[0, 1, -1, 1]\}$ and $\operatorname{range}(L) = \operatorname{span}\{1, x + x^2, x, x^2\} = \operatorname{span}\{1, x, x^2\}.$

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^4$ be a LT given by

L([x,y,z]) = [x,y-z,x-y+z,x+y-z]. Find a basis for $\ker(L)$ and $\operatorname{range}(L)$.

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^4$ be a LT given by

L([x,y,z]) = [x,y-z,x-y+z,x+y-z]. Find a basis for $\ker(L)$ and $\operatorname{range}(L)$.

Sol. $\{[0,1,1]\}$ is a basis for for ker(L) and

 $\{[1,0,1,1],[0,1,-1,1]\}$ is a basis for range(L).

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a LT.

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a LT.

Step 1: Express L(X) = AX for some $m \times n$ matrix A.

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a LT.

Step 1: Express L(X) = AX for some $m \times n$ matrix A.

For Example 4, we have L(X) = AX where

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a LT.

Step 1: Express L(X) = AX for some $m \times n$ matrix A.

For Example 4, we have L(X) = AX where

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX = 0 to compute $\ker(L)$ such that $\ker(L) = \operatorname{span}(S)$ for some $S \subseteq \mathbb{R}^n$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX = 0 to compute $\ker(L)$ such that $\ker(L) = \operatorname{span}(S)$ for some $S \subseteq \mathbb{R}^n$ $(\ker(L) = X \in \mathbb{R}^n | L(X) = 0)$.

Step 2: Find matrix B, the RREF of A.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: Solve the system BX = 0 to compute $\ker(L)$ such that $\ker(L) = \operatorname{span}(S)$ for some $S \subseteq \mathbb{R}^n$ $(\ker(L) = X \in \mathbb{R}^n | L(X) = 0)$.

$$BX = 0$$
 gives

$$x = 0, y = z \implies \ker(L) = \{[0, z, z] | z \in \mathbb{R}\} = \operatorname{span}\{[0, 1, 1]\}$$

Step 4: Find a LI subset of S which forms a basis for $\ker(L)$.

Step 4: Find a LI subset of S which forms a basis for $\ker(L)$.

For Example 4, $\{[0,1,1]\}$ is a basis for for ker(L).

Step 1: Find matrix B, the RREF of A.

Step 1: Find matrix B, the RREF of A.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 1: Find matrix B, the RREF of A.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of RREF(A) forms a basis for range(L).

Step 1: Find matrix B, the RREF of A.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of RREF(A) forms a basis for range(L). Note that, Columns I and II have leading entry.

Step 1: Find matrix B, the RREF of A.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Column vectors in A corresponding to **pivot columns** of RREF(A) forms a basis for range(L). Note that, Columns I and II have leading entry. Thus, the corresponding column vector of A, i.e.,

 $\{[1,0,1,1],[0,1,-1,1]\}$ is a basis of range (L).

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Q:. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Is $[1, -2, 3]^T \in \ker(L)$.

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Is $[1, -2, 3]^T \in \ker(L)$.
- Is $[2,-1,4]^T \in \text{range}(L)$.

Q: Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a LT given by

$$L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Is $[1, -2, 3]^T \in \ker(L)$.
- Is $[2,-1,4]^T \in \text{range}(L)$.

Sol. Yes, $[1, -2, 3]^T \in \ker(L)$ because $L([1, -2, 3]^T) = [0, 0, 0]^T$.

If $v = [2, -1, 4]^T \in \text{range}(L)$, then there would exist a vector $X = [x, y, z]^T$ such that AX = v.

If $v = [2, -1, 4]^T \in \text{range}(L)$, then there would exist a vector $X = [x, y, z]^T$ such that AX = v. This is equivalent to the system

If $v = [2, -1, 4]^T \in \text{range}(L)$, then there would exist a vector $X = [x, y, z]^T$ such that AX = v. This is equivalent to the system

$$\begin{cases} 5x + y - z = 2 \\ -3x + z = -1 \\ x - y - z = 4 \end{cases}$$

If $v = [2, -1, 4]^T \in \text{range}(L)$, then there would exist a vector $X = [x, y, z]^T$ such that AX = v. This is equivalent to the system

$$\begin{cases} 5x + y - z = 2 \\ -3x + z = -1 \end{cases}$$
 which has no solution.
$$x - y - z = 4$$

The Dimension Theorem

The Dimension Theorem

If $L: V \to W$ is a LT and V is finite dimensional, then range(L) is finite dimensional, and

$$\dim(\ker(L)) + \dim(\operatorname{range}(L)) = \dim(V)$$

The Dimension Theorem

If $L: V \to W$ is a LT and V is finite dimensional, then range(L) is finite dimensional, and

$$\dim(\ker(L)) + \dim(\operatorname{range}(L)) = \dim(V)$$

Note: $\dim(\ker(L))$ is called $\operatorname{nullity}(L)$ and $\dim(\operatorname{range}(L))$ is called $\operatorname{rank}(L)$.

Q:. Consider a LT $L: P_2 \to P_3$ given by

$$L(a+bx+cx^2) = x(a+bx+cx^2).$$

Q:. Consider a LT $L: P_2 \to P_3$ given by $L(a+bx+cx^2) = x(a+bx+cx^2)$. Find $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$ independently and hence verify the dimension theorem

Q:. Consider a LT $L: P_2 \to P_3$ given by $L(a+bx+cx^2) = x(a+bx+cx^2)$. Find $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$ independently and hence verify the dimension theorem.

Sol.

$$\ker(L) = \{(a+bx+cx^2) \in P_2 | L(a+bx+cx^2) = 0_{P_3} \}$$

$$= \{(a+bx+cx^2) \in P_2 | ax+bx^2+cx^3 = 0 \}$$

$$= \{(a+bx+cx^2) \in P_2 | a=b=c=0 \}$$

$$= \{0_{P_2} \}$$

$$\implies$$
 dim(ker(L)) = 0.

$$\implies$$
 dim(ker(L)) = 0.

Also $\dim(\operatorname{range}(L)) = 3$ (why).

$$\implies$$
 dim(ker(L)) = 0.

Also
$$\dim(\operatorname{range}(L)) = 3$$
 (why). Since, $\dim(P_2) = 3$,

$$\implies$$
 dim(ker(L)) = 0.

Also $\dim(\operatorname{range}(L)) = 3$ (why). Since, $\dim(P_2) = 3$, clearly, we have

$$\implies$$
 dim(ker(L)) = 0.

Also $\dim(\operatorname{range}(L)) = 3$ (why). Since, $\dim(P_2) = 3$, clearly, we have $\dim(\ker(L)) + \dim(\operatorname{range}(L)) = \dim(P_2)$.

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

$$L(A) = \operatorname{trace}(A)$$
.

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

 $L(A) = \operatorname{trace}(A)$. Find $\ker(L)$, $\dim(\ker(L))$, $\operatorname{range}(L)$ and $\dim(\operatorname{range}(L))$.

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\text{range}(L))$.

Sol.
$$\ker(L) = \begin{cases} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \end{cases} \Longrightarrow$$

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\text{range}(L))$.

Sol.
$$\ker(L) = \begin{cases} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \end{cases} \implies \dim(\ker(L)) = 8.$$

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\text{range}(L))$.

Sol.
$$\ker(L) = \begin{cases} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \end{cases} \implies \dim(\ker(L)) = 8. \text{ Also, } \operatorname{range}(L) = \mathbb{R}$$

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\text{range}(L))$.

Sol.
$$ker(L) =$$

$$\left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \right\} \Longrightarrow$$

 $\dim(\ker(L)) = 8$. Also, $\operatorname{range}(L) = \mathbb{R}$ and

 $\dim(\operatorname{range}(L)) = 1.$

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\text{range}(L))$.

Sol.
$$ker(L) =$$

$$\left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \right\} \Longrightarrow$$

 $\dim(\ker(L)) = 8$. Also, $\operatorname{range}(L) = \mathbb{R}$ and

 $\dim(\operatorname{range}(L)) = 1$. Hence,

Q:. Consider a LT $L: M_{33} \to \mathbb{R}$ given by

L(A) = trace(A). Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Sol.
$$ker(L) =$$

$$\left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{bmatrix} \in M_{33} | a, b, c, d, e, f, g, h \in \mathbb{R} \right\} \Longrightarrow$$

 $\dim(\ker(L)) = 8$. Also, $\operatorname{range}(L) = \mathbb{R}$ and

 $\dim(\operatorname{range}(L)) = 1$. Hence,

$$\dim(\ker(L)) + \dim(\operatorname{range}(L)) = \dim(M_{33})$$

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by

$$L(A) = A + A^T.$$

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by $L(A) = A + A^T$. Find $\ker(L)$, range(L) and verify dimension theorem.

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by

 $L(A) = A + A^{T}$. Find ker(L), range(L) and verify dimension theorem.

Sol. ker(L) is precisely the set of all skew-symmetric 3×3 matrices.

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by

 $L(A) = A + A^{T}$. Find ker(L), range(L) and verify dimension theorem.

Sol. ker(L) is precisely the set of all skew-symmetric 3×3 matrices.

range(L) is the set of all symmetric 3×3 matrices.

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by

 $L(A) = A + A^{T}$. Find ker(L), range(L) and verify dimension theorem.

Sol. ker(L) is precisely the set of all skew-symmetric 3×3 matrices.

range(L) is the set of all symmetric 3×3 matrices.

$$\dim(\ker(L)) = 3$$

Q:. Consider a LT $L: M_{33} \to M_{33}$ given by

 $L(A) = A + A^{T}$. Find $\ker(L)$, range(L) and verify dimension theorem.

Sol. ker(L) is precisely the set of all skew-symmetric 3×3 matrices.

range(L) is the set of all symmetric 3×3 matrices.

 $\dim(\ker(L)) = 3$ and $\dim(\operatorname{range}(L)) = 6$.

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5$, $\dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5$, $\dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample:

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$.

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$. $\ker(L) = \mathbb{R}^5 \Longrightarrow$

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$. $\ker(L) = \mathbb{R}^5 \Longrightarrow \dim(\ker(L)) = 5 \neq 2$.

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$. $\ker(L) = \mathbb{R}^5 \Longrightarrow \dim(\ker(L)) = 5 \neq 2$.

Q:. If $L: V \to W$ is a LT, then range(L) is a subspace of V.

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$. $\ker(L) = \mathbb{R}^5 \Longrightarrow \dim(\ker(L)) = 5 \neq 2$.

Q:. If $L: V \to W$ is a LT, then range(L) is a subspace of V.

Sol. False,

Q:. If $L: V \to W$ is a LT and $\dim(V) = 5, \dim(W) = 3$, then the Dimension Theorem implies that $\dim(\ker(L)) = 2$.

Sol. False Counterexample: Let $L: \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(v) = 0_{\mathbb{R}^3}$ for all $v \in \mathbb{R}^5$. $\ker(L) = \mathbb{R}^5 \Longrightarrow \dim(\ker(L)) = 5 \neq 2$.

Q:. If $L: V \to W$ is a LT, then range(L) is a subspace of V.

Sol. False, range(L) is a subspace of W.

Exercises

Q:. Let W be the vector space of all 2×2 symmetric matrices. Define a LT $L: W \to P_2$ by

$$L\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2$$

Find $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$.

Exercises

Q:. Let W be the vector space of all 2×2 symmetric matrices. Define a LT $L: W \to P_2$ by

$$L\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = (a-b) + (b-c)x + (c-a)x^2$$

Find $\dim(\ker(L))$ and $\dim(\operatorname{range}(L))$.

Sol. dim(ker(L)) = 1 and dim(range(L)) = 2.

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by $T(e_1) = [1, 1, 1], T(e_2) = [1, -1, 1], T(e_3) = [1, 0, 0], T(e_4) = [1, 0, 1].$

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L : \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by $T(e_1) = [1, 1, 1], T(e_2) = [1, -1, 1], T(e_3) = [1, 0, 0], T(e_4) = [1, 0, 1]$. Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L : \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by $T(e_1) = [1, 1, 1], T(e_2) = [1, -1, 1], T(e_3) = [1, 0, 0], T(e_4) = [1, 0, 1].$ Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Sol. $\dim(\ker(L)) = 1$ and $\dim(\operatorname{range}(L)) = 3$.

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L : \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by $T(e_1) = [1, 1, 1], T(e_2) = [1, -1, 1], T(e_3) = [1, 0, 0], T(e_4) = [1, 0, 1].$ Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Sol. $\dim(\ker(L)) = 1$ and $\dim(\operatorname{range}(L)) = 3$.

Q:. Consider $L: P_2 \to P_4$ given by $L(p) = x^2 p$. Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Q:. Let $\{e_1, e_2, e_3, e_4\}$ be standard basis for \mathbb{R}^4 and $L : \mathbb{R}^4 \to \mathbb{R}^3$ be a LT given by $T(e_1) = [1, 1, 1], T(e_2) = [1, -1, 1], T(e_3) = [1, 0, 0], T(e_4) = [1, 0, 1].$ Find $\ker(L)$, $\dim(\ker(L))$, range(L) and $\dim(\operatorname{range}(L))$.

Sol. $\dim(\ker(L)) = 1$ and $\dim(\operatorname{range}(L)) = 3$.

Q:. Consider $L: P_2 \to P_4$ given by $L(p) = x^2 p$. Find $\ker(L)$, $\dim(\ker(L))$, $\operatorname{range}(L)$ and $\dim(\operatorname{range}(L))$. Sol. $\dim(\ker(L)) = 0$ and $\dim(\operatorname{range}(L)) = 3$.

