Über die isotrope Diskrepanz von Folgen

Von

GERHARD LARCHER

Für eine Punktfolge $\omega := x_1, x_2, ..., x_N$ im s-dimensionalen Einheitswürfel I^s wird die gewöhnliche Diskrepanz $D_N(\omega)$ von ω definiert durch

$$D_N(\omega) = \sup_{Q} \left| \frac{A_N(Q)}{N} - \lambda(Q) \right|.$$

Dabei wird das Supremum über alle achsenparallelen, rechts halboffenen Teilquader Q genommen, $A_N(Q)$ bezeichnet die Anzahl der in Q liegenden Punkte von ω und λ das Lebesguemaß.

Die isotrope Diskrepanz $J_N(\omega)$ von ω ist definiert durch

$$J_N(\omega) = \sup_C \left| \frac{A_N(C)}{N} - \lambda(C) \right|.$$

Dabei wird jetzt das Supremum über alle konvexen Teilmengen von I^s genommen. Natürlich ist stets $D_N(\omega) \leq J_N(\omega)$. Andrerseits gilt mit einer nur von s abhängigen Konstanten c_s (siehe [2], [5]):

(*)
$$J_N(\omega) \leq c_s \cdot (D_N(\omega))^{1/s}.$$

Während die gewöhnliche Diskrepanz sehr eingehend untersucht worden ist, sind für die isotrope Diskrepanz nur vereinzelte Resultate bekannt (siehe etwa [2], [4], [6], [7]). Die Abschätzung der isotropen Diskrepanz für spezielle Folgen ist hauptsächlich nur über die Abschätzung von D_N und mit Hilfe von (*) erreicht worden.

Etwa erhält man mit dieser Methode für die in dieser Arbeit behandelten Beispiele:

(a) Für die s-dimensionale Hammersleyfolge:

$$N \cdot D_N = O((\log N)^{s-1}) \to N^{1/s} \cdot J_N = O((\log N)^{1-1/s}).$$

(b) Für die s-dimensionale Haltonfolge:

$$N\cdot D_N=O\left((\log\,N)^s\right)\to N^{1/s}\cdot J_N=O\left((\log\,N)\right).$$

(c) Für die Folge
$$\left(\frac{k}{N}, \{k\alpha\}\right), k = 1, 2, ..., N, \alpha \in \mathbb{R}$$
:

Sind a_1, a_2, \ldots die Kettenbruchkoeffizienten und q_1, q_2, \ldots die Näherungsnenner von α , sowie $q_{r(N)} \leq N < q_{r(N)+1}$ dann ist:

$$N \cdot D_N = O\left(\sum_{i=1}^r a_i\right) \to N^{1/2} \cdot J_N = O\left(\left(\sum_{i=1}^r a_i\right)^{1/2}\right).$$

Offensichtlich strebt der rechte Term der letzten Abschätzung für alle irrationalen α gegen unendlich.

(d) Für die Folge $(\{k\alpha_1\}, \ldots, \{k\alpha_s\}), k = 1, 2, \ldots, N, \underline{\alpha} = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$:

Für alle $\varepsilon > 0$ ist nach [8] für fast alle α :

$$N \cdot D_N = O((\log N)^{s+1+\varepsilon})$$
 und damit $N^{1/s} \cdot J_N = O((\log N)^{1+1/s+\varepsilon})$.

Mit Hilfe einer einfachen Überlegung (Satz) lassen sich die Abschätzungen für diese Beispiele auf direktem Weg verbessern. Zaremba [9] hat gezeigt, daß der Exponent $\frac{1}{s}$ in (*) bestmöglich ist. Obwohl die folgenden Abschätzungen nahelegen, daß die Ungleichung auf andere Weise eine Verbesserung zuläßt, kann man aber doch zeigen, daß zumindest für s=2 die Ungleichung, abgesehen von der Konstanten, bestmöglich ist.

An dieser Stelle möchte der Autor dem Referenten sehr herzlich für die wertvollen Hinweise und Verbesserungsvorschläge danken.

Im folgenden sei für $x, y \in \mathbb{R}^s$ m(x, y) der gewöhnliche euklidische Abstand von x und y, weiters $d(x, y) := \min_{z \in Z^s} m(x, y + z)$ und für eine Teilmenge $B \subset \mathbb{R}^s$ sei $d(B) := \sup_{x, y \in B} d(x, y)$. Konstante c_i sind im folgenden nur von der Dimension s abhängig.

Satz. Seien $\omega:=x_1,x_2,\ldots,x_N$ eine endliche Punktfolge in I^s , $B:=\{B_1,\ldots,B_n\}$ eine Menge meßbarer Teilmengen von I^s mit $N\cdot\lambda(B_i)=k_i\in\mathbb{N}$ und $\lambda(B_i\cap B_j)=0$ für $i\neq j$, $U:=\bigcup\limits_{i=1}^nB_i,\ k:=\sum\limits_{i=1}^nk_i=N\cdot\lambda(U),$ und $\bar{\omega}:=x_{i_1},x_{i_2},\ldots,x_{i_k}$ eine k-elementige Teilfolge von $\omega.$ Ω sei die Indexmenge $\Omega:=\{i_1,\ldots,i_k\},\ \varphi\colon\Omega\to B$ surjektiv, sodaß für jedes j die Anzahl der Urbilder von B_j gleich k_j ist, weiters: $v_j:=\max_{x\in\varphi^{-1}(B_j)}\inf_{y\in B_j}d(x,y),\ d_j:=d(B_j),$ $\sigma_j=d_j+v_j$ und $0:=\sigma_{j_0}\leq\sigma_{j_1}\leq\ldots\leq\sigma_{j_n}:=\sigma$, dann gilt: Es gibt Konstante $c_1=c_1(s)$ und $c_2=c_2(s)$, sodaß mit

$$i_0 = \begin{cases} \max\left\{i \mid \sum_{k=i}^n d_{j_k}^{s-1} \ge c_1\right\} & \text{falls } \sum_{k=1}^n d_{j_k}^{s-1} \ge c_1 \\ 1 & \text{sonst} \end{cases}$$

gilt:
$$J_N(\omega) \leq c_2 \cdot \left(\sum_{k=i_0}^n \sigma_{j_k} \cdot d_{j_k}^{s-1}\right) + 1 - \lambda(U).$$

Bemerkung 1. Es gibt insbesondere ein c_3 mit:

$$J_N(\omega) \leq c_3 \cdot \sigma + 1 - \lambda(U)$$
.

Archiv der Mathematik 46

Bemerkung 2. Ein erster Wert für die Konstanten c_1 , c_2 , c_3 kann leicht aus den folgenden Beweisen erhalten werden, bzw. können die Konstanten durch genauere Überlegungen oder durch direkte Herleitung von Bemerkung 1 verbessert werden.

Zum Beweis benötigt man folgendes Lemma:

 $Q \subseteq I^s$ konvex und $\lambda(B \cap Q) = 0$. **Lemma.** Sei $B \subseteq I^s$ meßbar, sup inf $d(b,q) \le t \le \sqrt{s/2}$, dann gilt: $b \in B \ q \in Q$

$$\lambda(B) \leq c_{4}(s) \cdot d(B)^{s-1} \cdot t.$$

Be we is. Für $M \subseteq \{1, 2, ..., s\} := S$ sei $B_M := \{x = (x_1, ..., x_s) \in B | 0 \le x_i < \frac{1}{2} \leftrightarrow i \in M\}$ dann ist $m(B_M) := \sup_{x, y \in B_M} m(x, y) \le d(B)$. Sei für $L \subseteq R^s : L_t := \{x \in R^s | \inf_{l \in L} m(x, l) \le t\}$, \overline{L} die konvexe Hülle von L und sei $Y_M := \{z \in Z^s | z + x \in Q_t \text{ für ein } x \in B_M \}$. Dann hat Y_M höchstens $(\sqrt{s} + 1)^s$ Elemente, und:

$$\lambda(B) \leq \sum_{M \subseteq S} \sum_{z \in Y_M} \lambda((z + B_M) \cap (Q_t \setminus Q)).$$

Sei für festes $M \subseteq S$ und $z \in Y_M$: $B' := (z + B_M) \cap (Q_t \setminus Q)$, dann ist $m(B') \leq d(B)$ und daher $\lambda(B') \leq c_4 \cdot \overline{d}(B)^{s-1} \cdot t$ falls $d(B) \leq t$. Ist $t < \overline{d}(B)$: Sei $P := \overline{B}'_t \cap Q$, dann ist $m(P_t) \leq 4t + d(B)$ und $B' \subseteq P_t \setminus P$. Bezeichnet $O(P_t)$ den s-1-dimensionalen Inhalt der Oberfläche von P_t dann ist (da P_t konvex ist):

$$\lambda(B') \leq \lambda(P_t \setminus P) \leq O(P_t) \cdot t \leq c_4' \cdot (4t + d(B))^{s-1} \cdot t \leq c_4 \cdot d(B)^{s-1} \cdot t.$$

Beweis des Satzes. Die Anzahl der Punkte in $\omega \setminus \bar{\omega}$ ist $N \cdot (1 - \lambda(U))$. Sei C eine konvexe Teilmenge in I^s , $x_{i_r} \in \bar{\omega}$, $x_{i_r} \in C$ und $\varphi(i_r) = B_i$, dann ist:

(1)
$$\sup_{b \in B_i} \inf_{c \in C} d(b, c) \leq \sigma_i.$$

Sei B^c die Vereinigung aller B_i für die (1) erfüllt ist. Die Anzahl der Folgenpunkte in C

ist dann kleiner oder gleich $N \cdot (1 - \lambda(U)) + N \cdot \lambda(B^c)$. Sei $C_{j_i} := \{x \in R^s \mid \inf_{c \in C} d(x, c) \leq \sigma_{j_i} \}$, dann ist $d(C_{j_n}) \leq 1 + 2 \sigma \leq 1 + 2 \cdot \sqrt{s} := c'_5(s)$ und:

$$\lambda(B^{c}) \leq \lambda(C) + \sum_{i=0}^{n-1} \lambda((C_{j_{i+1}} \setminus C_{j_{i}}) \cap B^{c})$$

$$\leq \lambda(C) + \sum_{i=0}^{n-1} \min(c_{5} \cdot (\sigma_{j_{i+1}} - \sigma_{j_{i}}), c_{4} \cdot \sum_{k=i+1}^{n} d_{j_{k}}^{s-1} \cdot (\sigma_{j_{i+1}} - \sigma_{j_{i}})$$

$$\leq \lambda(C) + \sum_{i=0}^{i_{0}-2} c_{5} \cdot (\sigma_{j_{i+1}} - \sigma_{j_{i}}) + \sum_{i=i_{0}-1}^{n-1} c_{4} \cdot \sum_{k=i+1}^{n} d_{j_{k}}^{s-1} \cdot (\sigma_{j_{i+1}} - \sigma_{j_{i}})$$

$$\leq \lambda(C) + c_{2} \cdot \sum_{k=i_{0}}^{n} d_{j_{k}}^{s-1} \cdot \sigma_{j_{k}} \text{ und daher:}$$

$$A_N(C) - N \cdot \lambda(C) \leq N \cdot (1 - \lambda(U)) + N \cdot c_2 \cdot \sum_{k=i_0}^n \sigma_{j_k} \cdot d_{j_k}^{s-1}.$$

Ganz analog erhält man:

$$-N\cdot(1-\lambda(U))-N\cdot c_2\cdot\sum_{k=i_0}^n\sigma_{j_k}\cdot d_{j_k}^{s-1}\leq A_N(C)-N\cdot\lambda(C).$$

Daraus folgt die Behauptung.

Be is piele. (a) $\omega := \left(\frac{k}{N}, \Phi_{r_1}(k), \dots, \Phi_{r_{s-1}}(k)\right), k = 1, 2, \dots, N$ sei die s-dimensionale Hammersleyfolge, wie sie etwa in [2] definiert ist. Dabei seien $2 \le r_1 < r_2 < \dots < r_{s-1}$ und die r_i paarweise prim.

Behauptung. Es gibt eine Konstante $c_6(s)$, soda β für alle N gilt:

$$N^{1/s} \cdot J_N(\omega) \leq c_6 \cdot r_{s-1}$$

Beweis. Für $N \leq r_{s-1}^s$ ist $N^{1/s} \cdot J_N(\omega) \leq r_{s-1}$. Sei $N > r_{s-1}^s$ und seien natürliche Zahlen $e_1, e_2, \ldots, e_{s-1}$ so bestimmt, daß gilt: $r_i^{s+e_i} \leq N < r_i^{s+(e_i+1)}$ für $i=1,2,\ldots,s-1$, sei $R(e) := r_1^{e_1} \cdots r_{s-1}^{e_{s-1}}$ und

$$B_{j_0, \ldots, j_{s-1}} := \left[j_0 \cdot \frac{R(e)}{N}, (j_0 + 1) \cdot \frac{R(e)}{N} \right) \times \prod_{i=1}^{s-1} \left[j_i \cdot r_i^{-e_i}, (j_i + 1) \cdot r_i^{-e_i} \right]$$

$$B := \left\{ B_{j_0, \ldots, j_{s-1}} | j_0 = 0, \ldots, \left[\frac{N}{R(e)} \right] - 1, j_i = 0, \ldots, r_i^{e_i} - 1 \text{ für } i \neq 0 \right\}.$$

Dann ist $1 - \lambda(U) = \left\{\frac{N}{R(e)}\right\} \cdot \frac{R(e)}{N} \leq N^{-1/s}$, in jedem $B_{j_0, \dots, j_{s-1}}$ liegt genau ein Folgenpunkt, also ist $v_{j_0, \dots, j_{s-1}}$ stets = 0, weiters $d(B_{j_0, \dots, j_{s-1}}) \leq \frac{s^{1/2} \cdot r_{s-1}}{N^{1/s}}$ und damit:

$$N^{1/s} \cdot J_N \leqq c_6 \cdot r_{s-1}.$$

Bemerkung. Für $\omega := \left(\frac{k}{N}, \Phi_r(k)\right) k = 0, 1, 2, ..., N-1$ gilt:

$$N^{1/2} \cdot J_N \ge r^{-1/2}$$
 für alle N .

Be we is. Die Behauptung ist richtig für N < r. Sei für ein $e \ge 0$: $r^{e+1} \le N < r^{e+2}$ und $k < r^{e+1}$, $k = a_e \cdot r^e + \cdots + a_1 \cdot r + a_0$, dann ist

$$\Phi_r(k) = \frac{a_0 \cdot r^e + a_1 \cdot r^{e-1} + \dots + a_{e-1} \cdot r + a_e}{r^{e+1}}.$$

Ist $a_0, a_1, \ldots, a_{e-1}, a_e$ symmetrisch, also gleich $a_e, a_{e-1}, \ldots, a_1, a_0$ so liegt $\left(\frac{k}{N}, \Phi_r(k)\right)$ auf der Geraden $g(t) = t \cdot \left(\frac{1}{N}, r^{-e-1}\right)$. Für mindestens $r^{(e+1)/2}$ der $k < r^{e+1}$ ist die zu k gehörende Ziffernfolge symmetrisch. Auf g liegen daher mindestens $r^{-1/2} \cdot N^{1/2}$ Folgenpunkte. Daraus folgt die Behauptung.

(b) $\omega(N) := (\Phi_{r_1}(k), \dots, \Phi_{r_s}(k))$ $k = 1, 2, \dots, N$ sei die s-dimensionale Haltonfolge. $(r_i \text{ und } \Phi \text{ wie in Beispiel (a)}).$

Behauptung. Für alle $s \ge 2$ gibt es eine Konstante c_7 , sodaß für alle N gilt:

$$N^{1/s} \cdot J_N \leq c_7 \cdot r_1^2 \cdot r_2 \cdot \cdots \cdot r_{s-1} \cdot r_s^s.$$

Be we is. Für $e_s \in \mathbb{N}$ seien $e_i \in \mathbb{N}$ $i=1,2,\ldots,s-1$ gegeben durch $r_i^{e_i} < r_s^{e_s} < r_i^{e_i+1}$. Weiters sei $N(e_s) := \prod_{i=1}^s r_i^{e_i}$. Es ist $r_1 \cdot r_2 \cdots r_s \leq N(e+1)/N(e) \leq r_1 \cdot r_2 \cdots r_{s-1} \cdot r_s^s$. Sei e so, daß gilt: $N(e) \leq N < N(e+1)$ und $N=a_e \cdot N(e) + \cdots + a_1 \cdot N(1) + a_0$ mit $a_i \leq r_1 \cdot r_2 \cdots r_{s-1} \cdot r_s^s$. Analog zu [2], Seite 115 gilt: $N \cdot J_\omega \leq \sum_{\mu=1}^e a_\mu \cdot N(\mu) \cdot J_{\omega(\mu)}$ wobei mit $\omega(\mu)$ die Folge der ersten $N(\mu)$ Glieder der Haltonfolge und mit $J_{\omega(\mu)}$ deren isotrope Diskrepanz bezeichnet wird. Für festes $\mu := \mu_s \operatorname{sei} B_{j_1,\ldots,j_s} := \prod_{i=1}^s [j_i \cdot r_i^{-\mu_i}, (j_i+1) \cdot r_i^{-\mu_i})$. $B^\mu := \{B_{j_1,\ldots,j_s} | j_i = 0,1,\ldots,r_i^{\mu_i}-1\}$. Also $1-\lambda(U)=0$, $\lambda(B_{j_1,\ldots,j_s}) = 1/N(\mu)$ und $d(B_{j_1,\ldots,j_s}) \leq \frac{s^{1/2} \cdot r_1}{N(\mu)^{1/s}}$.

In jedem Quader liegt genau ein Folgenpunkt, also ist v_{j_1,\ldots,j_s} , stets gleich 0 und $J_{\omega(\mu)} \leq c'_7 \cdot r_1 \cdot N(\mu)^{-1/s}$. Daher ist:

$$N \cdot J_{\omega} \leq c'_7 \cdot r_1^2 \cdot r_2 \cdots r_{s-1} \cdot r_s^s \cdot \sum_{\mu=1}^e N(\mu)^{(s-1)/s}$$

und wegen

$$\sum_{\mu=1}^{e} N(\mu)^{(s-1)/s} \leq N(e)^{(s-1)/s} \cdot \sum_{i=0}^{\infty} (r_1 \cdots r_s)^{i(1-s)/s} \leq N(e)^{(s-1)/s} \cdot \sum_{i=0}^{\infty} 2^{-i}$$

$$\leq 2N^{(s-1)/s}$$

folgt die Behauptung.

(c)
$$\omega$$
 sei die s-dimensionale Folge $\left(\frac{k}{N}, \{k \alpha_1\}, \dots, \{k \alpha_{s-1}\}\right)$, $k = 0, 1, \dots, N-1$ $\alpha := (\alpha_1, \dots, \alpha_{s-1}) \in \mathbb{R}^{s-1}$.

Seien $\lambda_1, \lambda_2, \ldots, \lambda_s$ die sukzessiven Minima bezüglich der euklidischen Metrik des von $x_1 := \left(\frac{1}{N}, \alpha_1, \ldots, \alpha_{s-1}\right), \ e_2 := (0, 1, 0, \ldots, 0), \ldots, e_s := (0, 0, \ldots, 0, 1)$ im \mathbb{R}^s aufgespannten Gitters Λ (bzw. werden dadurch die Vektoren durch die diese Minima erreicht werden bezeichnet.)

Behauptung: Es gibt Konstante c_8 , c_9 , soda β für alle N und alle α gilt:

$$c_{s} \cdot \lambda_{s} \leq J_{N} \leq c_{s} \cdot \lambda_{s}$$
.

Be we is. Die Punkte des Gitters Λ die in I^s liegen sind gerade die Folgenpunkte von ω . Λ wird auch von $\lambda_1, \lambda_2, \ldots, \lambda_s$ erzeugt. Sei F ein Fundamentalbereich der von obigen Vektoren erzeugt wird. $\lambda(F) = \det(\lambda_1, \lambda_2, \ldots, \lambda_s) = \det(x_1, e_2, \ldots, e_s) = 1/N$. Eine Ecke E von F werde ausgezeichnet. Sei B die Menge aller F die ganz in I^s liegen. Jedem F in B kann eindeutig der in der Ecke E liegende Folgenpunkt zugeordnet werden. Also v = 0, $d(F) \leq s \cdot \lambda_s$, $\lambda(I^s \setminus U) \leq 2 \cdot s^2 \cdot \lambda_s$ und daher $J_N \leq c_9 \cdot \lambda_s$.

Für jede Dimension s gibt es eine Konstante c_8' sodaß gilt: Sei L die zwischen zwei Hyperebenen H_1, H_2 , die von $\lambda_1, \ldots, \lambda_{s-1}$ aufgespannt werden und Abstand

 $\frac{1}{N \cdot \lambda_1 \cdots \lambda_{s-1}}$ zueinander haben, gelegene Teilmenge von R^s . Man kann einen Gitterpunkt P von Λ so finden, daß gilt: Legt man L so, daß H_1 durch P geht, dann ist $\lambda(L \cap I^s) \ge \frac{c'_8}{N \cdot \lambda_1 \cdots \lambda_{s-1}}$. In $L \cap I^s$ liegt kein Folgenpunkt. Daher ist nach dem Satz von Minkowski über sukzessive Minima:

$$J_N \geqq \frac{c_8'}{N \cdot \lambda_1 \cdots \lambda_{s-1}} \geqq c_8 \cdot \lambda_s.$$

$$\mathrm{Bemerkung}\,.\,J_N \leqq c_9 \cdot \lambda_{\mathrm{s}} \leqq \frac{c_9'}{N \cdot \lambda_1 \cdots \lambda_{\mathrm{s}-1}} \leqq \frac{c_9'}{N \cdot \lambda_1^{\mathrm{s}-1}}.$$

B e m e r k u n g . Seien q_1, q_2, \ldots die simultanen Näherungsnenner von α bezüglich der Maximumsnorm, dann gilt:

$$\min_{q_i} \max \left(\frac{q_i}{N}, \| q_i \alpha_1 \|, \dots, \| q_i \alpha_{s-1} \| \right) \leq \lambda_1$$

$$\leq s^{1/2} \cdot \min_{q_i} \max \left(\frac{q_i}{N}, \| q_i \alpha_1 \|, \dots, \| q_i \alpha_{s-1} \| \right)$$

mit

$$||x|| := \min(\{x\}, 1 - \{x\}).$$

 $\begin{array}{l} \textbf{Korollar. } \textit{F\"ur } s = 2 \textit{ sei } \omega := \left(\frac{k}{N}, \{k\,\alpha\}\right), \ k = 0, 1, \ldots, N-1. \ \alpha \textit{ sei irrational. Es gibt } \\ \textit{Konstante } c_{10} \textit{ und } c_{11} > 0, \textit{ soda} \textit{\beta} \textit{ f\"ur alle } \alpha \textit{ und } N \textit{ gilt: Seien } q_1, q_2, \ldots \textit{ N\"aherungsnenner } \\ \textit{an } \alpha, \quad q_{i+1} = a_i \cdot q_i + q_{i-1} \quad \textit{und } \quad l := l(N) \quad \textit{soda} \textit{\beta} \quad q_l \leq N^{1/2} < q_{l+1}, \quad \textit{dann ist } \\ N^{1/2} \cdot J_N \leq c_{11} \cdot a_l^{1/2} \quad \textit{und } c_{10} \cdot \limsup_{l \to \infty} a_l^{1/2} \leq \limsup_{N \to \infty} N^{1/2} \cdot J_N \leq c_{11} \cdot \limsup_{l \to \infty} a_l^{1/2}. \\ \end{array}$

Beweis. Es ist $||q_i \cdot \alpha|| > \frac{1}{2 \cdot q_{i+1}}$ und daher:

$$c_{11}' \cdot \min_{q_i} \max \left(\frac{q_i}{N}, \frac{1}{q_{i+1}} \right) \leq \lambda_1 \leq c_{10}' \cdot \min_{q_i} \max \left(\frac{q_i}{N}, \frac{1}{q_{i+1}} \right).$$

$$\min_{q_i} \max \left(\frac{q_i}{N}, \frac{1}{q_{i+1}} \right) = \max \left(\frac{q_{l(N)}}{N}, \frac{1}{q_{l(N)+1}} \right) \ge c_{11}'' \cdot (a_l \cdot N)^{-1/2}.$$

$$\begin{split} &\text{Ist } N = q_l \cdot q_{l+1} \; \text{ dann ist } \max \left(\frac{q_{l(N)}}{N}, \frac{1}{q_{l(N)+1}} \right) \leq c_{10}'' \cdot (a_l N)^{-1/2}. \; \text{ Also ist } \; N^{1/2} \cdot J_N \\ &\leq c_{11} \cdot a_l^{1/2} \; \text{für alle } N, \; \text{und } \; N^{1/2} \cdot J_N \geq c_{10} \; a_l^{1/2} \; \text{für unendlich viele } N. \end{split}$$

(d) Die Folge $\omega := (\{k\alpha_1\}, \{k\alpha_2\}, \dots, \{k\alpha_s\}), k = 1, 2, \dots, N \text{ mit } \underline{\alpha} := (\alpha_1, \alpha_2, \dots, \alpha_s) \in \mathbb{R}^s$ und $1, \alpha_1, \dots, \alpha_s$ linear unabhängig über \mathbb{Q} .

Behauptung. Seien q_1, q_2, \ldots die simultanen Näherungsnenner von α bezüglich der Maximumsnorm, $N = a_r \cdot q_r + \cdots + a_1 \cdot q_1 + a_0$ mit $a_i \leq q_{i+1}/q_i$ und für jedes $i \in N$ und jedes

 $j=1,2,\ldots,s$ ein $p_i(j)\in\mathbb{N}$ so bestimmt, $da\beta\max_i\|q_i\alpha_j-p_i(j)\|\leq q_i^{-1/s}$ gilt. Für jedes i bestimme man ein j(i) und u_i so, $da\beta(p_i(j(i)),q_i)=1$ und $u_i\cdot p_i(j(i))\equiv 1\pmod{q_i}$ ist.

$$Sei \ f\ddot{u}r \ Q \in \mathbb{N}: M_i(Q):=\max_{k \ \neq \ j(i)} \left\| Q \cdot \frac{u_i \cdot p_i(k)}{q_i} \right\| \ und$$

$$B_{q_i}(Q):= \begin{cases} \min\left(\frac{q_i^{(s-1)/s}}{Q}, \frac{q_i^{-1/s}}{M_i(Q)}\right) & \text{f\"{u}r } \ M_i(Q) \neq 0 \\ \\ \frac{q_i^{(s-1)/s}}{O} & \text{f\"{u}r } \ M_i(Q) = 0 \end{cases}$$

sowie $A_{q_i} := \max_{Q} B_{q_i}(Q)$, dann gilt für alle $\underline{\alpha}$ alle N und mit einer Konstanten c_{12} :

$$N \cdot J_N \leq c_{12} \cdot \sum_{i=1}^{r} a_i \cdot q_i^{(s-1)/s} \cdot A_{q_i}^{s-1}$$
.

Be we is. Bezeichne $\omega_i := (\{k \cdot \underline{\alpha}\}), k = 1, 2, ..., q_i$ dann gilt wie schon in (b):

$$N \cdot J_N \leq \sum_{i=1}^r a_i \cdot q_i \cdot J_{q_i}(\omega_i).$$

Im folgenden betrachte man ein festes $q := q_i$ und lasse überall den Index i weg. O.B.d.A sei j(i) = 1.

Sei
$$\omega_i' := \left(k \cdot \frac{1}{q}, \left\{k \cdot \frac{u \cdot p(2)}{q}\right\}, \dots, \left\{k \cdot \frac{u \cdot p(s)}{q}\right\}\right), k = 1, 2, \dots, q. \ \omega_i' \text{ gibt die gleiche}$$

Punktmenge wie $\left(\left\{k \cdot \frac{p(1)}{q}\right\}, \left\{k \cdot \frac{p(2)}{q}\right\}, \dots, \left\{k \cdot \frac{p(s)}{q}\right\}\right), k = 1, 2, \dots, q$. Jedem Folgen-

element x' von ω_i' kann daher eindeutig ein Element x von ω_i zugeordnet werden, mit $d(x, x') \leq s^{1/2} \cdot q^{-1/s}$. Verwendet man für die Folge ω_i , eine Partition wie sie in (c) für eine Folge der Art von ω_i' , konstruiert wurde, dann ist v stets kleiner oder gleich $s^{1/2} \cdot q^{-1/s}$, und wegen der beiden Bemerkungen in (c) und da A_{q_i} stets ≥ 1 ist, gilt:

$$\begin{split} q \cdot J_q(\omega_i) & \leq c'_{12} \cdot q \cdot \left(s^{1/2} \cdot q^{-1/s} + \frac{c''_{12}}{q \cdot \lambda_1^{s-1}}\right) \\ & \leq c'_{12} \cdot q^{(s-1)/s} \cdot (s^{1/2} + c''_{12} \cdot A_q^{s-1}) \leq c_{13} \cdot q^{(s-1)/s} \cdot A_q^{s-1} \end{split}$$

und daraus folgt das Ergebnis.

Behauptung. Mit den Bezeichnungen von vorher gilt: Für alle $\varepsilon > 0$ ist für fast alle $\underline{\alpha} \in I^s$ (im Sinn des Lebesguemaßes):

$$A_{q_i} = O\left((\log q_i)^{1/s + \varepsilon}\right).$$

Be we is. Für $q \in N$ sei $m := m(q, \varepsilon, c)$ das Maß und die Menge der α die q als simultanen Näherungsnenner haben und für die $A_q > f := f(q, \varepsilon, c) := c \cdot c \log q)^{1/s + \varepsilon}$ ist, für mindestens eine Wahl von j(i). Alle diese α liegen in einem Würfel um einen Gitterpunkt $\frac{p(1)}{a}, \ldots, \frac{p(s)}{a}$ mit Volumen $2^s/q^{s+1}$ wobei mindestens eines der p(j) relativ prim zu q ist.

Sei m(j) das Maß bzw. die Menge der $\underline{\alpha}$ in m für die (p(j), q) = 1 ist. Wir betrachten etwa m(1): Sei p(1) mit (p(1), q) = 1 fest und $u \cdot p(1) \equiv 1 \pmod{q}$. Durchlaufen $p(2), \ldots, p(s)$ alle q^{s-1} möglichen Werte modulo q dann durchlaufen $u \cdot p(2), \ldots, u \cdot p(s)$ alle Werte r_2, \ldots, r_s modulo q.

 r_2, \ldots, r_s modulo q. Sei $\xi(q, c, \varepsilon, p_1) =: \xi(p_1)$ die Anzahl der s-1-Tupel $\left(\frac{r_2}{q}, \ldots, \frac{r_s}{q}\right)$ für die $A_q > f$ ist. Liegt α in m(1), so muß es im Würfel um einen dieser Gitterpunkte liegen.

Sei $\xi_1(p_1)$ die Anzahl der s-1-Tupel r_2, \ldots, r_s für die ein Q existiert mit:

$$f \le \frac{q^{(s-1)/s}}{Q} \le \frac{1}{q^{1/s} \cdot M(Q)}$$
 also mit

(1)
$$Q \le \frac{q^{(s-1)s}}{f} \quad \text{und} \quad (2) \quad \frac{M(Q)}{Q} \le \frac{1}{q}.$$

Für ein festes Q gibt es höchstens $2 \cdot Q^{s-1}$ s-1-Tupel r_2, \ldots, r_s so, daß (2) erfüllt ist. Daher:

$$\xi_1(p_1) \le 2 \cdot \sum_{i=1}^{(q^{(s-1)/s})/f} i^{s-1} < c_{14} \cdot \frac{q^{s-1}}{f^s}.$$

Sei $\xi_2(p_1)$ die Anzahl der r_2, \dots, r_s für die ein Q existiert mit

$$f \leq \frac{1}{q^{1/s} \cdot M(Q)} \leq \frac{q^{(s-1)/s}}{Q}$$
 also mit

(1)
$$Q \leq \frac{q^{(s-1)/s}}{f} \quad \text{und} \quad (2) \quad \frac{M(Q)}{Q} \leq \frac{1}{Q \cdot q^{1/s} \cdot f}.$$

Für ein festes Q gibt es höchstens $\left(\frac{2 q}{Q \cdot q^{1/s} \cdot f}\right)^{s-1} \cdot Q^{s-1}$ s-1-Tupel, die (2) erfüllen. Also ist:

$$\xi_2(p_1) \leqq c_{15} \cdot \frac{q^{(s-1)/s}}{f} \cdot \frac{q^{s-1}}{q^{(s-1)/s} \cdot f^{s-1}} \leqq c_{15} \cdot \frac{q^{s-1}}{f^s} \quad \text{und damit:}$$

$$\xi(p_1) \le c_{16} \cdot \frac{q^{s-1}}{f^s}$$
 sowie $m(1) \le \frac{c_{17}}{q \cdot f^s(q, \varepsilon, c)}$.

Eine analoge Abschätzung erhält man für alle m(j), und somit: $m \le \frac{c_{18}}{q \cdot f^s(q, \varepsilon, c)}$. Das Maß der $\underline{\alpha}$ für die für einen Näherungsnenner q, A_q mindestens einmal größer als f ist, ist also kleiner als $c_{18} \cdot \sum_{q=1}^{\infty} \frac{1}{q \cdot f^s(q, \varepsilon, c)} \le \frac{c_{19}(\varepsilon, s)}{c^s}$. Daraus folgt die Behauptung.

Korollar. Für alle $\varepsilon > 0$ ist für fast alle $\alpha \in I^s$

$$N^{1/s} \cdot J_N = O((\log N)^{1+\varepsilon}).$$

Be we is. Sei $\varepsilon > 0$. Für fast alle α ist $A_{q_i} = O((\log q_i)^{1/s+\varepsilon})$ nach der vorigen Behauptung und weiters folgt etwa aus [1], Seite 120 Theorem I, mit $\Psi(q) := q^{1/s} \cdot (\log q)^{(1+\varepsilon)/s}$

und aufgrund des Dirichletschen Approximationssatzes: $\frac{q_{i+1}}{q_i} = O\left((\log q_i)^{1+\epsilon}\right)$. Weiters gilt für alle $\alpha \in R^s$ nach [3] Theorem 2.2 für die simultanen Näherungsnenner bezüglich der Maximumsnorm: $\frac{q_{i+2^{s+1}}}{q_i} \ge 3$ für alle *i*. Für fast alle α ist daher:

$$\begin{split} N \cdot J_N &\leq c_{20} \cdot \sum_{i=1}^r a_i^{1/s} \cdot (a_i \cdot q_i)^{(s-1)/s} \cdot A_{q_i}^{s-1} \\ &= O((\log N)^{1+\varepsilon}) \cdot (N^{(s-1)/s} + \sum_{i=1}^r q_i^{(s-1)/s}). \end{split}$$

Schließlich ist:

$$\begin{split} \sum_{i=1}^{r} q_i^{(s-1)/s} &\leq q_r^{(s-1)/s} \cdot \sum_{i=1}^{r} \left(\frac{q_i}{q_r} \right)^{(s-1)/s} \\ &\leq \left(2^{s+1} \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3} \right)^{i(s-1)/s} \right) \cdot N^{(s-1)/s} \end{split}$$

und das Ergebnis folgt.

Die Ergebnisse der Beispiele könnten zu der Vermutung führen, daß die Ungleichung $J_N \leq c_s \cdot D_N^{1/s}$ nicht bestmöglich ist. Zaremba [9] hat zwar gezeigt, daß der Exponent 1/s nicht zu verbessern ist, es wäre aber immerhin möglich, daß etwa eine Ungleichung der Form $J_N \leq c_s \cdot \left(\frac{1}{-\log D_N} \cdot D_N\right)^{1/s}$ richtig sein könnte. Es ist jedoch zumindest im Fall s=2 leicht einzusehen, daß die Ungleichung abgesehen von der Konstanten c_s wirklich bestmöglich ist.

Denn sei ω_N eine beliebige Folge von N Punkten in I^2 mit Diskrepanz D_N . Verschiebt man jeden Punkt der Folge der zwischen den beiden Geraden $g_1(x) = D_N^{1/2} + x$ und $g_2(x) = -D_N^{1/2} + x$ liegt, parallel zur y-Achse in I^2 auf die Gerade g_1 oder auf g_2 , so erhält man eine neue Folge ω_N' . Sei R ein Rechteck in I^2 , so liegen in R höchstens $N \cdot \lambda(R) + 5 \cdot D_N$ und mindestens $N \cdot \lambda(R) - 5 \cdot D_N$ Punkte. Also ist $D_N' \leq 5 \cdot D_N$ und $J_N' \geq D_N^{1/2}$ und somit

$$J_N' \ge \frac{1}{\sqrt{5}} \cdot (D_N')^{1/2}.$$

Literaturverzeichnis

- [1] J. W. S. CASSELS, An Introduction to Diophantine Approximation. Cambridge 1957.
- [2] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. New York 1974.
- [3] J. C. LAGARIAS, Best Simultaneous Diophantine Approximations I. Trans. Amer. Math. Soc. (2) 272, 545-554 (1982).
- [4] H. Niederreiter, Methods for estimating discrepancy. In: Applications of Number Theory to Numerical Analysis (S. K. Zaremba ed.), 203-236, New York 1972.
- [5] H. Niederreiter und J. Wills, Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen. Math. Z. 144, 125-134 (1975).
- [6] W. M. SCHMIDT, Lectures on Irregularities of Distribution. Tata Institute, Bombay 1977.

- [7] W. M. SCHMIDT, Irregularities of Distribution IX. Acta Arith. 27, 385-396 (1975).
- [8] W. M. SCHMIDT, Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc. 110, 493-518 (1964).
- [9] S. K. ZAREMBA, Good Lattice Points in the Sense of Hlawka and Monte-Carlo Integration. Monatsh. Math. 72, 264-269 (1968).

Eingegangen am 2. 1. 1985*)

Anschrift des Autors:

Gerhard Larcher Institut für Mathematik der Universität Salzburg Petersbrunnstraße 19 A-5020 Salzburg

^{*)} Eine Neufassung ging am 21. 8. 1985 ein.