Name: Anshika jain

Roll Number: 2K19/SE/012

Branch: SE

Tutorial Sheet – 2

Solution – 1:

$$X = (A + B * C) / (D - E / F)$$

a) Three address instructions

	Instructions	Comment
(i)	MPY X, B, C	X ← B x C
(ii)	ADD X, X, A	X ← X + A
(iii)	DIV T, E, F	T ← E / F
(iv)	SUB T, D, T	T ← D – T
(v)	DIV X, X, T	X ← X / T

b) Two Address Instructions

	Instructions	Comments
(i)	MOVE X, B	X ← B
(ii)	MPY X, C	$X \leftarrow B \times C$
(iii)	ADD A, X	X ← X + A
(iv)	MOVE Y, E	Y ← E
(v)	DIV Y, F	Y ← Y / F
(vi)	SUB D, Y	Y ← D − T
(vii)	DIV X, Y	X ← X / T

c) One Address Instructions

Instructions

	เมอนเนเบมอ	Comments
(i)	LOAD E	AC ← E
(ii)	DIV F	AC ← AC / F
(iii)	STORE X	X ← AC
(iv)	LOAD D	AC ← D
(v)	SUB X	$AC \leftarrow AC - X$
(vi)	STORE X	X ← AC
(vii)	LOAD B	AC ← B
(viii)	MPY C	AC ← AC x C
(ix)	ADD A	$AC \leftarrow AC + A$
(x)	DIV X	AC ← AC / X
(xi)	STORE X	X ← AC

Comments

d) Zero Address Instructions:

Instructions

- (i) PUSH A
- (ii) PUSH B
- (iii) PUSH C
- (iv) MUL
- (v) ADD
- (vi) PUSH D
- (vii) PUSH E
- (viii) PUSH F
- (ix) DIV
- (x) SUB
- (xi) DIV

Solution - 2:

- a) Implied addressing mode:
 - i. COM: Complement Accumulator
 Operand in AC is implied in the definition of the instruction. All register
 reference instruction that uses an accumulator are implied mode instruction.
 PUSH: Stack push → Operand is implied to be on top of the stack. Zero
 address instruction in stack are implied mode since the operands are implied
 on top of stack.
- b) Immediate addressing mode: To initialize register to a constant value
- c) Register addressing mode: to implement variables.
- **d)** Register Indirect addressing mode: to pass arrays as a parameter because array name is the base address and pointer is needed to point the address.
- e) Direct addressing mode: to access static data.
- **f) Indirect addressing mode:** to implement pointers because pointers are memory locations that store the address of another variable.
- g) PC Relative addressing mode:
 - i. For program relocation at run time i.e., for position independent code
 - ii. To change the normal sequence of execution of instructions.
 - iii. For branch type instructions since it directly updates the program counter.
- **h) Indexed addressing mode:** for array implementation or array addressing, for record implementations
- i) Auto-Increment addressing mode:
 - i. For implementing loops
 - ii. For stepping through arrays in a loop
 - iii. For implementing stack as push and pop
- j) Auto-Decrement addressing mode:
 - i. For implementing loops
 - ii. For stepping through arrays in a loop
 - iii. For implementing stack as push and pop
- k) Base Address Register addressing mode:
 - **i.** For writing relocatable code i.e., for relocation of program in memory even at run time
 - ii. For handling recursive procedures