Egzamin styczeń 2006 r. Arkusz I, zadanie 2.

Przeanalizuj działanie poniższego algorytmu, jeżeli tablica A zawiera n liczb całkowitych z zakresu <0, k>.

```
1  for i ← 0 to k
2   do B[i] ← 0;
3  pozycja ← 0;
4  for i ← 1 to n
5   do B[A[i]] ← B[A[i]] + 1;
6  for i ← 0 to k
7   do for j ← 1 to B[i]
8   do begin pozycja ← pozycja + 1;
9   A[pozycja] ← i end;
```

a) Uzupełnij tabelę — określ typy zmiennych: *i*, *j*, *A*, *B*, *pozycja* i opisz ich przeznaczenie:

Zmienna	Тур	Przeznaczenie
i, j		
Α		
В		
рогусја		

b) Opisz znaczenie czynności wykonywanych w wierszach o numerach:

	4-5:
	6-9:
:)	Uzupełnij podane niżej zdania:
	Tablica B jest tablicą pomocniczą. Jeśli tablica A zawiera n liczb z zakresu $<0, k>$, to tablica B zawiera liczb z zakresu
	Dla $A = [1, 2, 4, 2, 0]$, po wykonaniu algorytmu, tablica $B = [,,]$.
	Z uwagi na konieczność zastosowania dodatkowej tablicy powyższego algorytmu nie można określić mianem

Zał	óżmy, ż	ze k jest ustalone, np. zawsze równe 5. Wówczas:
	złożoność czasowa przedstawionego algorytmu ma charakter: (podkreśl prawidłowa odpowiedź)	
	_	liniowy,
	_	kwadratowy,

d) Przeprowadź analizę złożoności czasowej algorytmu i uzupełnij poniższy wniosek.

sześcienny,wykładniczy;

• symbolicznie złożoność taką można zapisać jako