$$x \in A \setminus (B \setminus C)$$

$$\Leftrightarrow x \in A, x \notin B \setminus C$$

$$\Leftrightarrow x \in A, \neg (x \in B \setminus C)$$

$$\Leftrightarrow x \in A, \neg (x \in B, x \notin C)$$

$$\Leftrightarrow (x \in A, x \notin B) \lor (x \in A, x \in C)$$

$$\Leftrightarrow x \in A \setminus B \cup (A \cap C)$$

0.1 Übung 1, 08.11.2004

0.1.1 Aufgabe 1

d) M,N Mengen, $f: M \to N$ Abb., $A, B \subset M$ z.Z. $f(A) \setminus f(B) \subset f(A \setminus B)$

Beweis: Für $f(A) \setminus f(B) = \emptyset$ gilt die Behauptung.

Sei daher im folgenden $f(A) \setminus f(B) \neq \emptyset$

Sei
$$y \in f(A) \setminus f(B)$$
 \Leftrightarrow $\exists x \in A : f(x) = y \land \forall x' \neq y$
 \Rightarrow $\exists x \in A \setminus B : f(x) = y$
 \Leftrightarrow $y \in f(A \setminus B)$

Also gilt: $f(A) \setminus f(B) \subset f(A \setminus B)$

0.1.2 Aufgabe 3

b) A endliche Menge, |A| = nGesucht: Eine Abb. von $\mathcal{P}(A)$ nach $\{0,1\}^A$. Wie definieren wir f?

$$\begin{split} f: \mathcal{P}(A) &\to & \{0,1\}^A \\ M &\to & h_M: & A \to \{0,1\} \\ & x \to \left\{ \begin{array}{l} 1, x \in M \\ 0, x \not\in M \end{array} \right. \end{split}$$

$$f^{-1}: \{0,1\} \to \mathcal{P}(A)$$

 $h \to h^{-1}(\{1\})$

Was man "leicht" sieht: $f^{-1} \circ f = id_{f(A)}$ und $f \circ f^{-1} = id_{\{0,1\}^A}$.