1 Semi-martingales

Dans la suite, on aura besoin du rappel suivant:

1.1 *Rappel*

Définition:

Une fonction $F:[a,b] \to \mathbb{R}$ est dite à variations finies (ou bornées) si

$$||F||_{a,b} := \sup \sum_{i} |F(a_{i+1}) - F(a_i)| < \infty$$

où le suprémum est pris sur l'ensemble des subdivisions

$$d = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$$

de [a,b].

Note que l'ensemble des fonctions à variations finies muni de $||.||_{a,b}$ est un espace vectoriel normé

Exemple 1:

Si F croissante alors elle est à variations finies. En effet, pour toute subdivision $d = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$ de [a, b] on a

$$\sum_{i} |F(a_{i+1}) - F(a_i)| = F(b) - F(a),$$

d'où

$$||F||_{a,b} \le F(b) - F(a) < \infty.$$

Il en est de même pour F est décroissante et on a par le même raisonnement

$$||F||_{a,b} \le F(a) - F(b) < \infty.$$

Exemple 2:

Si F est de la forme

$$F(t) = \int_{a}^{t} f(s) \, ds$$

où f est une fonction positive, alors elle est à variations finies car elle croissante.

De plus on peut montrer que $||F||_{a,b} = \int_a^b f(s) ds$.

Exemple 3:

Si maintenant on suppose que f est de signe quelconque, alors elle est également à variations finies. En effet $f = f^+ - f^-$, où $f^+(x) = \max(f(x), 0) \ge 0$ et $f^-(x) = \max(-f(x), 0) \ge 0$ et donc

$$||F||_{a,b} = \int_{a}^{b} |f(s)| ds.$$

est à variations finies comme étant la différence de deux fonctions à variations finies. On peut montrer dans ce cas que

$$F(t) = \int_{a}^{t} f^{+}(s) ds - \int_{a}^{t} f^{-}(s) ds$$

1.2 Motivation

Supposons qu'on a à résoudre l'équation suivante:

$$\Delta X_t = \sigma\left(X_t\right) \Delta B_t + V\left(X_t\right) \Delta t,$$

où X_t représente la position d'une particule (par exemple un gaz), $(B_t)_{t\geq 0}$ est un mouvement brownien de dimension n, $\sigma(x)$ une matrice carré $n\times n$ (appelé champ des covariances) et V(x) un champ de vecteur (appelé champ des vitesses). Ici, on entend par ΔX_t (resp. ΔB_t) l'accroissement $X_{t+h} - X_t$ (resp. $B_{t+h} - B_t$) et par Δt un temps infiniment petit h. Comme pour les équations différentielles ordinaires, X_t doit nécessairement satisfaire l'égalité suivante:

$$X_{t} = X_{0} + \int_{0}^{t} \sigma\left(X_{s}\right) dB_{s} + \int_{0}^{t} V\left(X_{s}\right) ds \qquad (*)$$

d'où la définition suivante.

1.3 Processus d'Itô

Définition:

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel standard défini sur un espace probabilisé filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$. On appelle semi-martingale (ou processus d'Itô) tout processus de la forme:

$$X_t = X_0 + \int_0^t \alpha_s dB_s + \int_0^t \beta_s ds,$$

satisfaisant les propriétés suivantes:

- 1) X_0 est \mathcal{F}_0 -mesurable,
- 2) $\alpha \in \overline{S}$.
- 3) β est un processus adapté tel que $\mathbb{E}\left(\int\limits_0^t |\beta_s| \,ds\right) < \infty$ (on dira que le processus $\beta \in L^1_{loc}$).

Remarque:

On notera que le processus (X_t) est nécessairement adapté et que le processus β est p.s. à variations finies.

Définition:

Le processus $M_t := \int_0^t \alpha_s dB_s$ s'appelle la partie martingale de X_t et $V_t := \int_0^t \beta_s ds$ sa partie à variations finies.

On notera que l'ensemble des semi-martingales est un espace vectoriel et que la représentation (*) est unique à une égalité p.s. prés (voir T.D.).

Notation:

Au lieu d'écrire (*) on écrit

$$dX_t = \alpha_t dB_t + \beta_t dt \qquad (**)$$

Définitions:

- La forme (**) s'appelle la différentielle (ou la dynamique) de X.
- Lorsque α_t et β_t dépendent de X_t (i.e. $\alpha_t = \sigma(X_t)$ et $\beta_t = V(X_t)$), (**) prend la forme suivante:

$$dX_{t} = \sigma(X_{t}) dB_{t} + V(X_{t}) dt \qquad (***)$$

-La forme (***) s'appelle équation différentielle stochastique (EDS en abrégé). On dira dans ce cas que X_t satisfait l'EDS (***), σ est sa diffusion et V est sa vitesse (ou son drift).

On notera que si $\sigma \equiv 0$, alors l'EDS (***) devient une EDO.

Règle de multiplication (très importante):

Soient (X_t) , (Y_t) et (Z_t) trois semi-martingales définies par les différentielles suivantes:

$$dX_t = \alpha_t dB_t + \beta_t dt,$$

$$dY_t = \alpha'_t dB_t + \beta'_t dt \text{ et}$$

$$dZ_t = \alpha''_t dB_t + \beta''_t dt.$$

On pose par définition:

$$dX_t dY_t := \alpha_t \alpha_t' dt$$

Conséquences:

Puisque

$$dB_t = 1.dB_t + 0.dt$$
 et $dt = 0.dB_t + 1.dt$,

alors on conclut que

$$dB_t dB_t = dt$$
 et que $dt dB_t = dt dt = 0$.

Il résulte aussi de cette règle que

$$dX_t dY_t dZ_t = 0.$$

Dans tout ce qui suit, on convient que si $(B_t')_{t\geq 0}$ est un autre mouvement brownien indépendant de $(B_t)_{t\geq 0}$, alors $dB_tdB_t'=\bar{0}$.

1.4 Temps d'arrêt

On aura besoin de la notion de temps d'arrêt relativement à la filtration $(\mathcal{F}_t)_{t\geq 0}$ suivante:

Définition:

On appelle temps d'arrêt (t.d'a. en abrégé) toute variable aléatoire $T: \Omega \to \overline{\mathbb{R}_+} = [0, \infty]$ telle que $\{T \le t\} \in \mathcal{F}_t$ pour tout $t \ge 0$.

Ainsi les v.a. constantes sont des t.d'a.

Définition:

Soient S et T deux t.d'a.. On défini les intervalles stochastiques de la manière suivante:

$$[S,T] = \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : S(\omega) \leq t \leq T(\omega)\},$$

$$[S,T[= \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : S(\omega) \leq t < T(\omega)\},$$

$$]S,T[= \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : S(\omega) < t \leq T(\omega)\},$$

$$]S,T[= \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : S(\omega) < t < T(\omega)\},$$

$$]T,\infty[= \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : T(\omega) < t\},$$

$$[T,\infty[= \{(t,\omega) \in \mathbb{R}_{+} \times \Omega : T(\omega) \leq t\}.$$

L'ensemble $|[T]| := \{(t, \omega) \in \mathbb{R}_+ \times \Omega : T(\omega) = t\}$ s'appelle le graphe de T.

Remarque:

Soit T une v.a. à valeurs dans $\overline{\mathbb{R}_+}$. Alors on a les équivalences suivantes: T est un $t.d'a. \iff \{T > t\} \in \mathcal{F}_t$ pour tout $t \ge 0$ \iff le processus $X := 1_{[0,T]}$ est adapté.

Définition:

Soient X processus et T un t.d'a.. Le processus $X^{|T|}$ défini par $X_t^{|T|} = X_{t \wedge T}$ pour tout $t \geq 0$ s'appelle le processus arrêté de X à T.

Lemme:

Soient $\alpha \in \overline{S}$ et T un t.d'a.. Alors le processus $\alpha 1_{[0,T[} \in \overline{S}$. En particulier si X est une semi-martingale, alors il en est de même pour le processus arrêté $X^{|T|}$.

Preuve:

On considère le processus $u:=\mathbf{1}_{[0,T[}$ et on pose $u^{\varepsilon}=u*\left(\frac{1}{\varepsilon}\mathbf{1}_{[0,\varepsilon]}\right)$ pour tout $\varepsilon>0$. Alors les processus u^{ε} sont adaptés continus et convergent ponctuellement vers u. Ainsi, si α est adapté continu (donc $\alpha\in\overline{S}$), alors il en est de même pour le processus αu^{ε} , d'où $\alpha u^{\varepsilon}\in\overline{S}$. Il résulte que $\alpha u^{\varepsilon}\in\overline{S}$ pour tout $\alpha\in\overline{S}$. Comme αu^{ε} converge vers αu , alors $\alpha u\in\overline{S}$.

Si maintenant $X_t = X_0 + \int_0^t \alpha_s dB_s + \int_0^t \beta_s ds$ est une semi-martingale, alors

$$X_{t}^{|T} = X_{0} + \int_{0}^{t} \alpha_{s} dB_{s} + \int_{0}^{t} \beta_{s} ds$$

$$= X_{0} + \int_{0}^{t} \alpha_{s} \mathbf{1}_{[0,T[}(s,.)) dB_{s} + \int_{0}^{t} \beta_{s} \mathbf{1}_{[0,T[}(s,.)) ds$$

Comme $\alpha \mathbf{1}_{[0,T]} \in \overline{S}$ et comme

$$\mathbb{E}\left(\int\limits_{0}^{t}\left|\beta_{s}\mathbf{1}_{\left[0,T\right[}\left(s,.\right)\right|ds\right)\leq\mathbb{E}\left(\int\limits_{0}^{t}\left|\beta_{s}\right|ds\right)<\infty,$$

alors le processus $X^{|T}$ est également une semi-martingale.

Remarque:

Il résulte de cette démonstration que l'arrêté d'une martingale (resp. d'un processus à variations finies) est également une martingale (resp. un processus à variations finies).

La proposition suivante nous permet de montrer que la représentation d'une semi-martingale $X_t = X_0 + M_t + V_t$ est unique à une égalité p.s. prés.

Proposition:

Soit X une martingale à variations finies. Alors $X_t = 0$ p.s. pour tout $t \ge 0$.

Preuve:

Comme $X_t^2 \geq 0$, il suffit de montrer que $\mathbb{E}(X_t^2) = 0$ pour tout $t \geq 0$. La démonstration se fait en deux étapes.

1) Cas où X_t est bornée: $|X_t| \le a \ (a > 0)$

Observons d'abord que le fait que X soit une martingale entraı̂ne que pour tout $t \geq s \geq 0$,

$$\mathbb{E}\left(\left(X_t - X_s\right)^2\right) = \mathbb{E}\left(X_t^2 - X_s^2\right).$$

En effet;

$$\mathbb{E}\left(\left(X_{t}-X_{s}\right)^{2}\right) = \mathbb{E}\left(\mathbb{E}\left(\left(X_{t}-X_{s}\right)^{2}\mid\mathcal{F}_{t}\right)\right)$$

$$= \mathbb{E}\left(\mathbb{E}\left(X_{t}^{2}-2X_{s}X_{t}+X_{s}^{2}\mid\mathcal{F}_{s}\right)\right)$$

$$= \mathbb{E}\left(\mathbb{E}\left(X_{t}^{2}\mid\mathcal{F}_{s}\right)-2\mathbb{E}\left(X_{s}X_{t}\mid\mathcal{F}_{s}\right)+\mathbb{E}\left(X_{s}^{2}\mid\mathcal{F}_{s}\right)\right)$$

$$= \mathbb{E}\left(\mathbb{E}\left(X_{t}^{2}\mid\mathcal{F}_{s}\right)-2X_{s}\mathbb{E}\left(X_{t}\mid\mathcal{F}_{s}\right)+X_{s}^{2}\right) \text{ car } X_{s} \text{ est } \mathcal{F}_{s}-\text{ mes.}$$

$$= \mathbb{E}\left(\mathbb{E}\left(X_{t}^{2}\mid\mathcal{F}_{s}\right)-2X_{s}^{2}+X_{s}^{2}\right) \text{ car } X \text{ est une martingale}$$

$$= \mathbb{E}\left(\mathbb{E}\left(X_{t}^{2}-X_{s}^{2}\mid\mathcal{F}_{s}\right)\right) \text{ car } X_{s} \text{ est } \mathcal{F}_{s}-\text{ mes.}$$

$$= \mathbb{E}\left(X_{t}^{2}-X_{s}^{2}\right).$$

On a

$$X_t = \int_0^t \alpha_s dB_s = \int_0^t \beta_s ds,$$

où $\alpha \in \overline{S}$ et $\beta \in L^1_{loc}$. Soit $(d_n) = (\{0 = t^n_0 < t^n_1 < ... < t^n_N = t\})$ une suite de subdivision de [0,t] dont le pas $\delta_n := \max_{1 \le k \le N} \left| t^n_k - t^n_{k-1} \right|$ tends vers 0 lorsque n tend vers l'infini.

Comme

$$X_t^2 = \sum_{k=1}^{N} \left(X_{t_k^n}^2 - X_{t_{k-1}^n}^2 \right)$$

et comme X est une martingale, alors

$$\mathbb{E}(X_{t}^{2}) = \sum_{k=1}^{N} \mathbb{E}\left(X_{t_{k}^{n}}^{2} - X_{t_{k-1}^{n}}^{2}\right) = \sum_{k=1}^{N} \mathbb{E}\left(\left(X_{t_{k}^{n}} - X_{t_{k-1}^{n}}\right)^{2}\right)$$

$$\leq \sum_{k=1}^{N} \mathbb{E}\left(\left|X_{t_{k}^{n}} - X_{t_{k-1}^{n}}\right| \max_{1 \leq l \leq N} \left|X_{t_{l}^{n}} - X_{t_{l-1}^{n}}\right|\right)$$

$$\leq \mathbb{E}\left(\max_{1 \leq l \leq N} \left|X_{t_{l}^{n}} - X_{t_{l-1}^{n}}\right| \sum_{k=1}^{N} \left|X_{t_{k}^{n}} - X_{t_{k-1}^{n}}\right|\right).$$

D'autre part, comme $X_t = \int_0^t \beta_s ds$

$$\begin{split} \sum_{k=1}^{N} \left| X_{t_{k}^{n}} - X_{t_{k-1}^{n}} \right| &= \sum_{k=1}^{N} \left| \int_{t_{k-1}^{n}}^{t_{k}^{n}} \beta_{s} ds \right| \\ &\leq \sum_{k=1}^{N} \int_{t_{k-1}^{n}}^{t_{k}^{n}} \left| \beta_{s} \right| ds = \int_{0}^{t} \left| \beta_{s} \right| ds, \end{split}$$

et comme

$$\max_{1 \le l \le N} \left| X_{t_l^n} - X_{t_{l-1}^n} \right| \le 2a,$$

alors

$$\max_{1 \le l \le N} \left| X_{t_l^n} - X_{t_{l-1}^n} \right| \sum_{k=1}^N \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \le 2a \int_0^t |\beta_s| \, ds,$$

qui et intégrable. Il résulte du théorème de la convergence dominée, puisque

$$\lim_{n\to\infty} \left(\max_{1\leq l\leq N} \left| X_{t^n_l} - X_{t^n_{l-1}} \right| \right) = 0 \text{ grâce à la continuité de } X,$$

que

$$\lim_{n\to\infty} \mathbb{E}\left(\max_{1\leq l\leq N} \left|X_{t_l^n} - X_{t_{l-1}^n}\right| \sum_{k-1}^N \left|X_{t_k^n} - X_{t_{k-1}^n}\right|\right) = 0.$$

Par suite $\mathbb{E}\left(X_t^2\right) = 0$.

2) Le cas général:

On considère pour tout $n \in \mathbb{N}$, la variable aléatoire

$$T_n := \inf \{ t \ge 0 : |X_t| > n \}.$$

Comme $\{T_n > t\} = \{|X_t| \le n\} = X_t^{-1}([-n,n]) \in \mathcal{F}_t$ pour tout $t \ge 0$, alors (T_n) est une suite de t.d'a.. Comme $\{t \ge 0 : |X_t| > n+1\} \subset \{t \ge 0 : |X_t| > n\}$ alors $T_n \le T_{n+1}$. De plus, pour tout $(t,\omega) \in \mathbb{R}_+ \times \Omega$ on a pour tout $n \ge N_0 := [|X_t(\omega)|], |X_t(\omega)| < n$. Il résulte que $t \le T_n$, qui signifie que $\lim_{n \to +\infty} T_n = +\infty$. Ainsi (T_n) est une suite croissante de t.d'a. divergente.

Soit maintenant le processus arrêté $X^{|T_n|}$. D'après les deux propositions précédentes ce processus est une martingale à variations finies, d'où $X_{t \wedge T_n} = X_t^{|T_n|} = 0$ p.s. pour tout $t \geq 0$ et comme le processus X est continu alors $X_t = \lim_{n \to +\infty} X_{t \wedge T_n} = 0$ p.s..