2012-2013 线性代数C A巷 这科545时

鸠鸠库制、版权所有 欢迎失注微信公众号iShareWHU

六、の、因为 A 5 B 相似,所以
$$|\lambda I - A| = |\lambda I - B|$$
 $P \left| \begin{array}{c} \lambda^{-2} \circ 0 \\ 0 & \lambda^{-1} \end{array} \right| = \left[\begin{array}{c} \lambda^{-2} \circ 0 \\ 0 & \lambda^{-1} \end{array} \right] = \left[\begin{array}{c} \lambda^{-2} \circ 0 \\ 0 & \lambda^{-1} \end{array} \right]$
 $P \left(\lambda^{-2} \circ 0 \right) = \left[\begin{array}{c} \lambda^{-2} \circ 0 \\ 0 & \lambda^{-1} \end{array} \right] = \left(\lambda^{-2} \circ 0 \right)$
 $P \left(\lambda^{-2} \circ 0 \right) = \left(\lambda^{-2} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \right) = \left(\lambda^{-2} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ 0 \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right) = \left(\lambda^{-2} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-1} \circ \lambda^{-1} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-1} \circ \lambda^{-1} \circ \lambda^{-1} \circ \lambda^{-1} \circ \lambda^{-1} \right)$
 $P \left(\lambda^{-1} \circ \lambda^{-1} \circ$

七.(n. 因为 $A(\frac{1}{1}) = (\frac{1}{1})$ 所以($\frac{1}{1}$) 为矩阵 A 的 属于特征值 1 的特征向量
i 设矩阵 A 的 属于特征值 2 的特征向量为($\frac{x_1}{x_2}$)
因为实对称矩阵的不同样驱伍对定的特征向量为 2 的所以 $x_1 + x_2 + x_3 = 0$ 线性无关特征向量为($\frac{1}{1}$)($\frac{1}{0}$) $P = (\frac{1}{1} - \frac{1}{0})$ $P = (\frac{1}{1} - \frac{1}{0})$

(3).
$$|A| = \lambda_1 \lambda_2 \lambda_3 = 4$$

(3). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(3). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(4). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(5). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(6). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(7). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(8). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(9). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(1). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(2). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(3). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(4). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(5). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(6). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(7). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(8). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(9). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(1). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(2). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(3). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(4). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(5). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(6). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(7). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(8). $|A| = \lambda_1 \lambda_2 \lambda_3 = 4$

(9). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(1). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(2). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(3). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(4). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(5). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(6). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(7). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(8). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(9). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(1). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(2). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(3). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(4). $|A| = \lambda_1 \lambda_3 \lambda_3 = 4$

(5)

强上所述,ATAX=0与AX=0同解

(假设介*, 51, 52, ···, 5n-r 线柱积 因为 51, 52, ···, 5n-r 线柱天东 所以介*可由 51, 52, ···, 5n-r 线柱表示 所以介*为 AX=0的约 与 竹*为 AX=0的约 与 竹*为 AX=b Cb +0) 的约寻盾 所以介*, 51, 52, ···, 5n-r 线柱天东