Advanced Risk Management

Exercises Week 3

- 1. The QQ plot based on the theoretical N(0,1) distribution is a scatter plot of $\{x_i\}_{i=1}^T$ against $\Phi_{p_i}^{-1}$, where the x_i 's have been sorted from smallest to largest, and where $p_i = (i-0.5)/T$. We will assume that T=99, and that the sample median of $\{x_i\}_{i=1}^T$ is equal to 0.
 - (a) Show that the QQ plot passes through the origin (0,0).
 - (b) Suppose that $x_i < \Phi_{p_i}^{-1}$ for all $p_i < 0.5$, and $x_i > \Phi_{p_i}^{-1}$ for all $p_i > 0.5$, so that the QQ plot is steeper than the diagonal. Explain that the sample variance of $\{x_i\}_{i=1}^T$ is in that case larger than one (you may assume the sample average \bar{x} to be 0).
 - (c) Suppose that $x_i < \Phi_{p_i}^{-1}$ for all p_i except at $p_i = 0.5$, so that the QQ plot lies below the diagonal, touching it only in the origin. Explain that the distribution of $\{x_i\}_{i=1}^T$ is skewed to the left.
- 2. Suppose that we have T=1000 observations on the standardized shocks z_i of a GARCH model. We sort them from smallest to largest $(z_1 < \ldots < z_T)$ and we define $u=-z_{51}$, so that $T_u=50$ observations of $x_i=-z_i$ are larger than u. In a particular example, we find u=2, and the Hill estimate of the parameter ξ is equal to $\hat{\xi}=0.5$.
 - (a) Calculate the implied VaR_{T+1}^p for p=0.02, p=0.01 and p=0.005 from the formula on Slide 21 of Week 3, assuming $\sigma_{T+1}=1$.
 - (b) Suppose that we would continue this for many other values of p < 0.05, and then plot $\ln VaR_{T+1}^p$ against $\ln p$. Explain that this plot will be a straight line, i.e., the relationship between $\ln VaR_{T+1}^p$ and $\ln p$ is linear. What is the slope of this line?
- 3. A random variable X > 1 with a Pareto distribution has cumulative distribution function

$$F(x) = \Pr(X \le x) = 1 - x^{-1/\xi}, \quad x \ge 1;$$

for x < 1 we have F(x) = 0.

(a) For any u > 1, show that the probability density function of X, conditional on X > u, is given by

$$f_u(x) = \frac{f(x)}{1 - F(u)} = \frac{1}{\xi u} \left(\frac{x}{u}\right)^{-1/\xi - 1}, \quad x \ge u.$$

(b) Suppose we have observations x_1, \ldots, x_{T_u} larger than u. Assuming that these observations are i.i.d. with density $f_u(x)$, show that the log-likelihood function equals

$$\ln L = \sum_{i=1}^{T_u} \ln f_u(x_i) = -T_u \ln u - T_u \ln \xi - \left(\frac{\xi+1}{\xi}\right) \sum_{i=1}^{T_u} \ln \left(\frac{x_i}{u}\right).$$

(c) Derive the maximum likelihood estimator

$$\hat{\xi} = \frac{1}{T_u} \sum_{i=1}^{T_u} \ln\left(\frac{x_i}{u}\right)$$

by setting the derivative of $\ln L$ with respect to ξ equal to 0, and solving for ξ .

1