

Fraud Detection in Financial Transactions

Microsoft Machine Learning Engineer

TEAM MEMBERS

- Abdelrahman Ashraf Abdelkarim
- Mohamed Abdelhamid Mohamed
- Mahmoud Hesham Shaban
- Yassen Mohsen Yassen Ali

Project Supervisor: Eng Mahmoud Safian

Group Code: FYM1_AIS5_M1e

Traning Company: GK

ABOUT TEAM

All team members contribute to all tasks.

- 1- Data Searching and Collection
- 2- Data Preparation, Cleaning, and Preprocessing
- 3- Statistical Analysis and Data Visualization
- 4- Model Architecture Design
- 5 Applying NLP Techniques to Text Datasets
- 6 Model Deployment and Monitoring
- 7- Testing Models in Real-World Applications
- 8 -Report and Presentation

Agenda Outline

- 1- Introduction
- 2- Problem Statement
- 3- Challenges in Fraud Detection
- 4- Project Aims and Objectives
- 5- Methodology
- 6- Week 1 (work Flow): Data Collection and Preprocessing
- 7- Week 2 (work Flow): Statistical Analysis and Machine Learning
- 8- Week 3 (work Flow): Integrated NLP Techniques
- 9- Week 4 (work Flow): MLOps and Final Presentation
- 10- Results
- 11- Evaluation Matrices
- 12- Future Works
- 13- Conclusion

Introduction & Background

01 Transaction Monitoring

Implement AI algorithms to continuously monitor banking transactions in real-time, enabling immediate detection of suspicious activities and reducing false positives in fraud alerts.

O2 Customer Behavior Analysis

Utilize machine learning models to analyze customers' spending patterns, identifying anomalies that may indicate fraudulent behavior while enhancing customer trust and satisfaction.

DEPI | 2024

Problem Statement

Data Imbalance

Fraudulent transactions are rare, causing model prediction bias.

High Bias

Models initially achieve high accuracy but fail to detect fraud.

Null Values

Missing data affects model performance and integrity.

Novel Fraud Detection

Traditional systems struggle to identify new and unforeseen fraudulent activities.

Robustness Requirement

Effective detection requires advanced AI techniques for diverse datasets.

DEPI | 2024

Challenges in Fraud Detection and Proposed Solutions

	Challenge	Solution	Tools/Techniques	
Imbalanced Data	Original dataset was imbalanced	Employed SMOTE and random sampling	Python, Scikit-learn	
Handling Null Values	Presence of null values	Removed rows with excessive NAs or used mean imputation	Python, Pandas	
Outliers Management	Outliers distorting performance	Applied techniques for outlier handling	Python, Scikit-learn	
Initial Model Performance High initial accuracy misled results		Balanced dataset improved Recall and F1-Score	Python, Scikit-learn, MLflow	

Project Aims and Objectives Overview

Data Processing

Clean and preprocess the dataset for model training performance.

Statistical Analysis

Analyze feature distributions relevant to detecting fraudulent transactions.

Model Development

Construct machine learning models focused on fraud detection tasks.

NLP Techniques

Employ NLP to extract insights from transaction descriptions and notes.

MLOps Implementation

Utilize MLflow for comprehensive tracking and management of models.

Performance Metrics

Evaluate models using Recall and F1-score for performance accuracy.

DEPI | 2024

Methodology: Step-by-Step Project Plan

Step 1

Collect and preprocess transactional data for analysis.

02 Step 2

Perform statistical analysis to identify key fraud indicators.

Step 3

Develop machine learning models for accurate fraud detection.

Step 4

Integrate NLP techniques to enhance data insights.

Track experiments using MLflow for model management.

Week 1: Data Collection and Preprocessing

Data Acquisition

Gather labeled transaction data from relevant sources.

Data Cleaning

Remove duplicates and irrelevant records from dataset.

Normalization

Standardize data formats for consistency across features.

Data Exploration

Visualize data to understand distributions and trends.

DEPI | 2024

Missing Values

Identify and address missing values in the dataset.

Final Review

Conduct a thorough review of the preprocessed data.

Create new features beneficial for fraud detection.

Week 2: Statistical Analysis and Model Development

Check Distribution

Examine feature distributions in the dataset.

Feature Selection

Identify key features influencing fraud detection.

Model Training

Fit models using training dataset for learning.

Evaluate Model

Calculate metrics like accuracy, recall, F1score.

Data Visualization

Utilize plots to reveal feature relationships.

Model Selection

Choose suitable algorithms for fraud detection.

Model Testing

Evaluate model performance on test datasets.

Results Analysis

Analyze results and prepare for adjustments.

Week 3: Integrating NLP Techniques

Data Preparation

Clean and preprocess transaction descriptions to ensure quality input for NLP analysis.

Feature Extraction

Utilize NLP methods to extract relevant features from text, enhancing the model's understanding of patterns.

Model Integration

Incorporate extracted features into the machine learning models for improved fraud detection accuracy.

Week 4: MLOps and Final Presentation Preparation

Model

Implement and finalize the fraud detection models developed.

Tracking

Utilize MLflow to record all model training metrics.

Evaluation

Assess model performance against established metrics and benchmarks.

Reporting

Compile comprehensive reports detailing methodologies and results.

Review

Conduct a thorough review of findings and insights.

Presentation

Prepare slides for the final project presentation.

Evaluation Matrices

Fraud Detection ML Models

Fraud Detection NLP Models

MLFlow Results

Run Name	Created =↓	Dataset	Duration	Source	Models
Fraud_detection_NLP(9)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	25.9s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(8)	② 21 hours ago	dataset (ee8fc596) Train , dataset (1c0	19.9s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(7)	② 21 hours ago	dataset (ee8fc596) Train , dataset (1c0	30.2s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(6)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	23.7s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(5)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	22.7s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(4)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	21.7s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(3)	② 21 hours ago	dataset (ee8fc596) Train	22.6s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(2)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	28.5s	c:\Users\	🕱 sklearn
Fraud_detection_NLP(1)	② 21 hours ago	dataset (1c0b7ef3) Eval , dataset (ee8f	25.2s	c:\Users\	🕱 sklearn
Fraud_detection_ML(5)	② 21 hours ago	dataset (6ff932be) Eval , dataset (4ec8	16.6s	c:\Users\	🕱 sklearn
Fraud_detection_ML(4)	② 21 hours ago	dataset (4ec87259) Train , dataset (6ffs	17.3s	c:\Users\	🕱 sklearn
Fraud_detection_ML(3)	② 21 hours ago	dataset (4ec87259) Train , dataset (6ffs	9.4s	c:\Users\	🕱 sklearn
Fraud_detection_ML(2)	② 21 hours ago	dataset (6ff932be) Eval , dataset (4ec8	7.0s	c:\Users\	🕱 sklearn
Fraud_detection_ML(1)	21 hours ago	dataset (6ff932be) Eval , dataset (4ec8	15.1s	ណ់ c:\Users\	℅ sklearn

Conclusion

This project successfully developed a fraud detection system that effectively handles imbalanced data and achieves reliable results. The initial model displayed high accuracy, but balancing techniques such as SMOTE significantly improved recall and F1-score, reducing bias. MLflow proved to be a valuable tool in managing experiments, tracking models, and maintaining transparency. Future improvements could include using deep learning techniques like RNNs to enhance the system's ability to analyze sequential data and integrating real-time data streams to improve responsiveness.

Future Work

Deep Learning

Implement LSTM networks to enhance sequential data analysis capabilities.

Feature Engineering

Explore additional features from transaction metadata to boost model performance.

Cross-Validation

Employ k-fold cross-validation to assess model performance rigorously.

Real-Time Monitoring

Integrate a system for continuous fraud detection during transactions.

Anomaly Detection

Utilize unsupervised learning techniques to identify novel fraudulent patterns.

User Feedback

Incorporate user feedback loops to refine fraud detection algorithms effectively.

THANKYOU

Any Questions?