Watching paint dry

Aneet Dharmavaram Narendranath*, James C. Hermanson+, Robert W. Kolkka**, Allan A. Struthers**, Jeffrey S. Allen*

*Mechanical Engineering/Michigan Technological University, **Mathematical Sciences/Michigan Technological University,

+Aeronautics & Astronautics/University of Washington

01/24/2013

"Wrinkling paint" vs simulation results

Wrinkling paint

Simulation results with dichloromethane

Paint: Viscosity changes can affect paint stability

- 1. Paint is a highly viscous medium
- 2. Paint has molecules of different shapes and sizes and invariably components of different **concentrations**
- 3. The viscosity of the paint matters a lot because:
 - Highly viscous paint would stay put on a vertical surface (falling films)
 - ► Highly viscous paint is used to create "impasto" art ⁴
 - ► In high viscosity paint, the pigment components don't move about too fast as they are impeded
 - Low viscosity paint behaves in the opposite manner
 - ► The viscosity of the paint, determines the span of time required for the coat of paint to harden (to polymerize)
 - ► So if the viscous time scale is **larger** than the Thermo/solutocapillarity time scales, there is greater chance of severe wrinkling

Impasto Art

Impasto Art: Art that sticks out

Back to slide 3 3

Addition of a solvent to paint

- 1. Turpentine is added to paint to make it's viscosity "manageable".
- 2. There is such a thing as too much turpentine. It causes "wrinkling".
- 3. Wrinkling ⁶ can be caused because: non-uniform evaporative mass flux (of the turp.), + non-uniform vapor recoil = thermocapillary stresses on the surface = migration of paint polymer particles.
- 4. The non-uniform distribution of polymeric paint molecules innately sets up solutocapillarity.

Smudged paint

Oil paint "wrinkling" as a result of dilution with solvent

Controlling thermocapillary (TC) wrinkling

- Based on our numerical observation, TC wrinkling can be controlled to produce desired patterns with the proper application of perturbations to drying paint *
- 2. Our observations suggest:
 - 2.1 The initial condition has an effect on the final structure.
 - 2.2 Given the physical characteristics of the paint (thickness of coat, strength of thermocapillarity, strength of gravity), desired patterns (wavelengths) can be produced.
 - 2.3 This should be valid for polymeric substances like paint.
- * Our numerical evidence is based on the assumption that a layer of paint is susceptible to long wave instabilities.

Numerical evidence:

Smooth sine-like initial conditions

$$L=\lambda_{\max}$$
, \cos

$$L = \lambda_{\mathsf{max}}, \, \mathsf{cos}^2$$

$$\mathit{L} = \lambda_{\mathsf{max}}$$
, $\cos \sin$

Effect of initial conditions with $L = n\lambda_{\text{max}}$, where n = 1, 2, 3 E=0.0001, G=0.0

Effect of initial conditions with $L = n\lambda_{\text{max}}$, where n = 1, 2, 3 E=0.0001, G=0.0

10 / 15

Effect of initial conditions with $L = n\lambda_{\text{max}}$, where n = 1, 2, 3 E=0.0001, G=0.0

Numerical evidence: Jagged white noise (Using Dichloromethane(DCM) in zero gravity as an example*)

Initial condition

DFT, Initial condition

Rupture

DFT, rupture

Random perturbations, 2.35 mm DCM, g=0.0 m/s^2 in a domain size where $L=n\lambda_{\max}$, n=non whole number

* "Thick" DCM in zero gravity would behave like "thin" DCM in regular gravity

Numerical evidence: noisy initial condition (Using DCM in zero gravity as an example)

Initial condition

DFT, Initial condition

DFT, rupture

Rupture

Random perturbations, 2.35 mm DCM, $g=0.0 \ m/s^2$ in a domain size with rectangular domain

Conclusions

- ► Thermocapillarity and solutocapillarity cause wrinkling in paint.
- ► If paint were subject to long wave instabilities, we can "create" art by controlling the perturbation that a coat of paint is subject to.
- ► The nature of the perturbation changes mean curvature which in turn has an effect on strength of various terms.

Acknowledgements

The presenter would like to thank,

- Michigan Technological University, and the Microfluidics and Interfacial Transport Laboratory, where this research was performed.
- National Science Foundation and NASA, who supported the work.
- Dr. James C. Hermanson, Juan Carlos Gonzales (PhD Candidate) from the University of Washington.
- ► Dr. Robert W. Kolkka, Dr. Allan Struthers and Dr. Jeffrey S. Allen from Michigan Technological University.

