Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 10 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) $\mathcal{A}_1=(\mathbb{C},M^{\mathcal{A}_1})$ und $\mathcal{B}_1=(\mathbb{R},M^{\mathcal{B}_1})$, wobei M ein 3-stelliges Relationssymbol ist und es gilt $(a,b,c)\in M^{\mathcal{A}_1}\Leftrightarrow a\cdot b=c$ für $a,b,c\in\mathbb{C}$ und $M^{\mathcal{B}_1}=M^{\mathcal{B}_1}\cap\mathbb{R}^3$

Die Duplikatorin gewinnt das 2-Runden Spiel

```
1. Zug: Fall 1. H wählt a_1 \in \mathbb{C} mit M(a_1, a_1, a_1)
D wählt b_1 \in \mathbb{R} mit M(b_1, b_1, b_1)
Fall 2. H wählt a_1 \in \mathbb{C} mit \neg (M(a_1, a_1, a_1))
D wählt b_1 \in \mathbb{R} mit \neg (M(b_1, b_1, b_1))
```

2. Zug: Fall 1. H wählt
$$a_2 \in \mathbb{C}$$
 mit $M(a_2, a_2, a_1) \land a_1 \neq a_2$
D wählt $b_2 \in \mathbb{R}$ mit $M(b_2, b_2, b_1) \land b_1 \neq b_2$

Fall 2. H wählt
$$a_1 \in \mathbb{C}$$
 mit $\neg (M(a_2, a_2, a_1)) \land a_1 \neq a_2$
D wählt $b_2 \in \mathbb{R}$ mit $\neg (M(b_2, b_2, b_1)) \land b_1 \neq b_2$

Fall 3. H wählt
$$a_2 \in \mathbb{C}$$
 mit $a_2 = a_1$
D wählt $b_2 \in \mathbb{R}$ mit $b_2 = b_1$

Der Herausforderer gewinnt das 3-Runden Spiel

```
1. Zug: H wählt a_1 \in \mathbb{C} mit M(a_1, a_1, a_1)
D wählt b_1 \in \mathbb{R} mit M(b_1, b_1, b_1) sonst verliert sie sofort.
```

2. Zug: H wählt
$$a_2 \in \mathbb{C}$$
 mit $M(a_2, a_2, a_1) \land a_1 \neq a_2$
D wählt $b_2 \in \mathbb{R}$ mit $M(b_2, b_2, b_1) \land b_1 \neq b_2$ sonst verliert sie sofort.

3. Zug: H wählt $a_3 \in \mathbb{C}$ mit $M(a_3, a_3, a_2) \land a_3 \neq a_2$ Dann gilt $M^{\mathcal{A}_1}(a_1, a_1, a_1)$, $M^{\mathcal{A}_1}(a_2, a_2, a_1)$, $M^{\mathcal{A}_1}(a_3, a_3, a_2)$ Da $M^{\mathcal{B}_1}(b_1, b_1, b_1)$ gelten muss, muss b_1 gleich 1 oder 0 sein. Da jedoch auch $M^{\mathcal{B}_1}(b_2, b_2, b_1)$ mit $b_2 \neq b_1$ gelten muss, muss $b_1 = 1$ und $b_2 = -1$ sein. Nun gibt es aber keine $b_3 \in \mathbb{R}$ mit $M^{\mathcal{B}_1}(b_3, b_3, b_2)$, in \mathbb{C} gibt es dafür $i \lor -i$

Aus dem Spiel folgt die Formel: $\exists a \exists b \exists c (M(a, a, a) \land M(b, b, a) \land M(c, c, b) \land (a \neq b) \land (b \neq c))$

(ii) $A_1 = (\mathbb{C}, M^{A_1})$ und $B_1 = (\mathbb{R}, M^{B_1})$.

Die Duplikatorin gewinnt das 1-Runden Spiel

```
1. Zug: Fall 1. H wählt a_1 \in \mathbb{Z} mit R(a_1, a_1, a_1)
D wählt b_1 \in \mathbb{Z} mit R(b_1, b_1, b_1)
Fall 2. H wählt a_1 \in \mathbb{Z} mit \neg (R(a_1, a_1, a_1))
D wählt beliebiges b_1 \in \mathbb{Z}
```

Der Herausforderer gewinnt das 2-Runden Spiel

```
1. Zug: H wählt a_1 \in \mathbb{Z} mit R(a_1, a_1, a_1)
D wählt b_1 \in \mathbb{Z} mit R(b_1, b_1, b_1), sonst verliert sie sofort.
```

2. Zug: H wählt $a_2 \in \mathbb{Z}$ mit $R(a_2, a_2, a_2) \land a_1 \neq a_2$ Dann gilt $R^{\mathcal{A}_1}(a_1, a_1, a_1), R^{\mathcal{A}_1}(a_2, a_2, a_2)$. $R^{\mathcal{B}_1}(b_1, b_1, b_1)$ gilt zwar auch, aber da $a_1 \neq a_2 \Rightarrow b_1 \neq b_2$ gelten muss, jedoch nur die 0 diese Bedingung erfüllt, gewinnt H das 2-Runden Spiel.

Aus dem Spiel folgt die Formel: $\exists a \exists b (R(a, a, a) \land R(b, b, b) \land b \neq a)$

Aufgabe 2

Um zu beweisen, dass die Strukturen m-Äquivalent sind, reicht es eine Gewinnstrategie für die Duplikatorin anzugeben.

Gewinnstrategie per Induktion:

IA:

m = 0, weswegen noch nichts gespielt wurde und die Duplikatorin kann noch nicht verloren haben kann.

IS: Es gilt, dass bereits m-Runden gespielt wurden und die Duplikatorin noch nicht verloren hat, wobei $a_1, a_2, ..., a_m \in A$ und $b_1, b_2, ..., b_m \in B$ bereits gespielt wurden.

Angenommen H spielt auf $b_{m+1} \in B$ mit $b_{m+1} \neq b_i$, $i \in \{1, ..., m\}$. Fall b_{m+1} ein bereits gespieltes Element ist, spielt es die D auf das Element, welches es vorher gewählt hat.

- Fall 1. $b_{m+1} = (\infty, b)$ mit $b \in \mathbb{N}$, dann wird b_{m+1} auf (m+k,b) abgebildet, wobei k > 0.
 - i. Es existiert ein $i \in \{1,...,m\}$, sodass $a_i = (m+k,b)$. Suche ein b', sodass b' < m+k und $(m+k,b') \neq a_i$ mit $i \in \{1,...,m\}$, welches existiert, da bis jetzt nur m Runden gespielt wurden und damit nur m Elemente, welcher kleiner m + k sind genutzt wurden, existieren noch k passende b'. D bildet (∞,b) nun auf (m+k,b') ab.
 - ii. Es existiert kein $i \in \{1, ..., m\}$, sodass $a_i = (m + k, b)$. D bildet (∞,b) nun auf (m + k, b) ab.
- Fall 2. $b_{m+1} = (n, b)$ mit $n, b \in \mathbb{N}$.
 - i. Falls es ein b_i mit $i \in \{1, ..., m\}$ gibt, sodass $b_i = (n, l)$ mit $l \in \mathbb{N}$, dann bildet D (n, b) auf (n, b') ab:
 - A. Falls es ein $i \in \{1, ..., m\}$ gibt mit $a_i = (n, b)$, dann bildet D (n, b) auf (n, b') ab und wenn b < n gilt, bildet D (n, b) auf (n, b') ab, sodass b' < n gilt. Dieses (n, b') existiert, da für n genau eine Komponente der Größe n existiert, sodass es eine noch nicht belegte Kombination (n, b') gibt, für die b' < n gilt.
 - B. Falls es ein $i \in \{1, ..., m\}$ gibt mit $a_i = (n, b)$, dann bildet D (n, b) auf (n, b') ab und wenn b > n gilt, bildet D (n, b) auf (n, b') ab, sodass b' < n gilt. Dieses (n, b') existiert, da unendlich viele $b' \in \mathbb{N}$ existieren, die größer als n sind.
 - ii. Falls es kein b_i mit $i \in \{1, ..., m\}$ gibt, sodass $b_i = (n, l)$ mit $l \in \mathbb{N}$, dann bildet D (n, b) auf (n, b) ab.

Angenommen H spielt in A, dann gilt der Fall, wenn H in B analog dazu.

Beweis, dass es keinen Isomorphismus $\pi: B \to A$ gibt zwischen \mathcal{A} und \mathcal{B} .

Wenn es eine Isomorphismus geben würde, müsste er auch die Tupel aus B mit unendlich auf Elemente aus A abbilden, in der Weise, dass ∞ des Tupels (∞ ,b) immer auf das selbe Element x abgebildet wird und b auf ein beliebiges y.

$$\pi((\infty, b)) = (x, y)$$

Würde dies nicht gelten, so würde gäbe es 2 Tupel (∞, b) , (∞, b') :

$$\pi((\infty,b)) = (x,y) \neq (x',y) = \pi((\infty,b')) \Rightarrow E^{\mathcal{B}}((\infty,b),(\infty,b')) \neq E^{\mathcal{A}}(\pi((\infty,b)),\pi((\infty,b')))$$

Das stünde im Widerspruch zu den Isomorphismuseigenschaften.

Da gilt $E^B((\infty,b),(\infty,b')) \equiv T$ für alle b, b' $\in \mathbb{N}$ muss nach Isomorphimuseigenschaften gelten:

$$E^A(\pi((\infty,b)),\pi((\infty,b')))$$
 für alle b, b' $\in \mathbb{N}$.

Das ist aber nicht möglich, denn ∞ wird immer auf die natürliche Zahl x abgebildet, für das es immer ein y gibt, sodass y > x. Da es nur endliche viele verschiedene Zahlen gibt, die kleiner sind als x, aber unendlich viele Tupel der Form (∞,b) auf ein Tupel (x,y) injektiv abgebildet werden müssen, folgt, dass es ein Tupel (x,y) geben muss, sodass x < y.

Daraus folgt unweigerlich: $E^A((x,y),(x,y)) \equiv \bot$, was ein Widerspruch zu den Isomorphismuseigenschaften ist.

Aufgabe 3

In Aufgabe 2. wurde gezeigt, dass die σ -Strukturen \mathcal{A} und \mathcal{B} elementar äquivalent sind, d.h. heißt f.a. $\varphi \in FO[\sigma]$ gilt: $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$. \mathcal{A} besitzt nur endliche Komponenten, \mathcal{B} auch eine unendliche.

Somit kann es keine Formel $\varphi \in FO[\sigma]$ geben, die nur dann erfüllbar ist genau dann wenn der Graph nur endliche Komponenten enthält, da die Strukturen elementar äquivalent sind.

Aufgabe 4

Bei bestimmten Strukturen, bei denen man keine allgemeine Gewinnstrategie für die Duplikatorin wählen kann, sondern ein m benötigt, sagt ein Gewinn für die Duplikatorin in \mathfrak{G}_{∞} etwas anderes aus, als dass sie f.a. m das \mathfrak{G}_m Spiel gewinnt. (Die Strukturen aus 2. sind solche)

Wie in 2.) gezeigt wurde, sind \mathcal{A} und \mathcal{B} elementar äquivalent, also dass die Duplikatorin f.a. $m \in \mathbb{N}$ das \mathfrak{G}_m Spiel gewinnt. Sei zu zeigen, dass die Duplikatorin das \mathfrak{G}_{∞} nicht gewinnen kann.

Beweis: Der Herausforderer gewinnt das ∞-Runden Spiel

```
1. Zug: H wählt a_1 \in B mit a_1 = (\infty, 0)
D wählt b_1 \in A mit b_1 = (x, 0). Normalerweise sollte x eine möglichst grosse Zahl sein, damit D lange überlebt, aber dies ist irrelevant bei diesem Spiel.
```

2-x Zug: H wählt
$$a_x \in B$$
 mit $a_x = a_{x-1} + (0,1)$
D wählt $b_x \in A$ mit $b_x = b_{x-1} + (0,1)$
x+1. Zug: H wählt $a_{x+1} \in B$ mit $a_x = a_x + (0,1)$
D wählt $b_{x+1} \in A$

Da D von Anfang an eine Struktur auswählen muss, aus der sie wählt, hat diese eine bestimmte Grösse x, nach x-Runden sind alle Elemente daraus aufgebraucht und ein Element aus einer anderen Struktur würde den partiellen Isomorphismus zerstören.

Damit wurde gezeigt, dass dies zwei verschiedene Spiele sind.