电磁现象的普遍规律

(第一次修订)

1. 真空中的静电场与恒磁场

[**库仑定律**] $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2 \vec{r}}{r^3}$, 真空电容率 $\epsilon_0 = 8.85 \times 10^{-12} F/m$.

[高斯定理 (电场散度)] $\oint_S \vec{E} \cdot d\vec{S} = \frac{\int_V \rho dV}{\varepsilon_0} = \frac{Q}{\varepsilon_0}$, 微分形式 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$.

[**静电场旋度**] $\oint_L \vec{E} \cdot d\vec{l} = 0$, 微分形式: $\vec{\nabla} \times \vec{E} = \vec{0}$.

[电荷守恒定律] $\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$.

[**毕奥-萨伐尔定律**] $\vec{B} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x'}) \times \vec{r}}{r^3} dV'$, 对于闭合回路 L 有 $\vec{B} = \frac{\mu_0}{4\pi} \oint_L \frac{I d\vec{l} \times \vec{r}}{r^3}$.

[恒电流磁场环量 (旋度)] $\oint_I \vec{B} \cdot d\vec{l} = \mu_0 \int_S \vec{J} \cdot d\vec{S} = \mu_0 I$, 微分形式 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$.

[磁场散度] $\vec{\nabla} \times \vec{B} = \vec{0}$.

[磁场散度和旋度公式证明]

由毕奥-萨伐尔定律 $\vec{B}=\frac{\mu_0}{4\pi}\oint_V \frac{\vec{J}(\vec{x'}\times\vec{r})}{r^3}dV'$ 和 $\vec{\nabla}\frac{1}{r}=-\frac{\vec{r}}{r^3}$ 得: $\vec{B}=\frac{\mu_0}{4\pi}\int_V \vec{J}(\vec{x'})\times\vec{\nabla}(-\frac{1}{r})dV'$

因 $\vec{\nabla}$ 只作用于变量 x 上,所以根据矢量外积的交换律有 $\vec{B} = \frac{\mu_0}{4\pi} \int_V \vec{\nabla} \times [\vec{J}(\vec{x'}) \frac{1}{r}] dV'$

即:
$$\vec{B} = \vec{\nabla} \times \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \frac{1}{r} dV'$$

引入磁矢势 $\vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \frac{1}{x} dV'$ 有: $\vec{B} = \vec{\nabla} \times \vec{A}$

综上所述, 磁场散度 $\vec{\nabla} \cdot \vec{B} = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{A} (\vec{\nabla} \cdot \vec{\nabla}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{\nabla}^2 \vec{A}$$

$$\vec{\nabla} \cdot \vec{A} = \frac{\mu_0}{4\pi} \vec{\nabla} \cdot \int_V \vec{J}(\vec{x'}) \frac{1}{r} dV' = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \cdot \vec{\nabla} \frac{1}{r} dV'$$

由
$$\vec{\nabla} \cdot [\vec{J}(\vec{x'})\frac{1}{r}] = \frac{1}{r}\vec{\nabla} \cdot \vec{J}(\vec{x'}) + \vec{J}(\vec{x'}) \cdot \nabla \frac{1}{r} = \vec{J}(\vec{x'}) \cdot \nabla \frac{1}{r}$$

得:
$$\vec{\nabla} \cdot \vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{\nabla} \cdot [\vec{J}(\vec{x'}) \frac{1}{\pi}] dV' = \frac{\mu_0}{4\pi} \oint_C \vec{J}(\vec{x'}) \frac{1}{\pi} \cdot d\vec{S}$$

因 V 内包括所有电流, 所以没有电流通过曲面 S, 即: $\vec{\nabla} \cdot \vec{A} = 0$

$$\vec{\nabla}^2 \vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \vec{\nabla}^2 \frac{1}{r} dV' = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \vec{\nabla} \cdot (-\frac{\vec{r}}{r^3}) dV' = -\frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x'}) \vec{\nabla} \cdot \frac{\vec{r}}{r^3} dV'$$

对于
$$|\vec{r}| \neq 0$$
(即 $\vec{x} \neq \vec{x}'$) 有 $\vec{\nabla} \cdot \frac{\vec{r}}{r^3} = -\frac{3\vec{r}}{r^5} \cdot \vec{r} + 3\frac{1}{r^3} = 0$

因此 $\vec{\nabla}^2 \vec{A}$ 除在源点 $\vec{x} = \vec{x}'$ 外均为零, 可以直接取 $\vec{J}(\vec{x'}) = \vec{J}(\vec{x})$

且
$$\vec{r} = \vec{x} - \vec{x'}$$
有 $\vec{\nabla} = -\vec{\nabla}'$

即有:
$$\vec{\nabla}^2 \vec{A} = \frac{\mu_0}{4\pi} \vec{J}(\vec{x}) \int_V \vec{\nabla}' \cdot \frac{\vec{r}'}{r^3} dV' = \frac{\mu_0}{4\pi} \vec{J}(\vec{x}) \oint_S \frac{\vec{r}}{r^3} \cdot d\vec{S}$$

因源-场失径 \vec{r} 与场区面元 $d\vec{S}$ 方向相反

所以
$$\vec{\nabla}^2 \vec{A} = -\frac{\mu_0}{4\pi} \vec{J}(\vec{x}) \oint_S \frac{dS}{r^2} = -\frac{\mu_0}{4\pi} \vec{J}(\vec{x}) \oint_S d\Omega = -\mu_0 \vec{J}(\vec{x})$$

综上所述, 磁场旋度 $\vec{\nabla} \times \vec{B} = -(-\mu_0 \vec{J}) = \mu_0 \vec{J}$

2. 真空中的电磁场

[电磁感应定律] $\mathscr{E} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}$.

[电场旋度 (闭合回路电势)] $\mathscr{E} = \oint_L \vec{E} \cdot d\vec{l}$, 微分形式 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$.

[位移电流] $\vec{J}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$.

[电流的连续性方程] $\vec{\nabla} \cdot (\vec{J} + \vec{J}_D) = 0$.

[磁场旋度] $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$.

[电荷系统力密度] $\vec{f} = \rho \vec{E} + \rho \vec{v} \times \vec{B}$.

[洛伦兹力] $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$.

[真空中的麦克斯韦方程组]

$$\begin{cases} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \\ \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \\ \vec{\nabla} \times \vec{B} = \vec{0} \end{cases}$$

3. 介质中的电磁场

[电偶极矩] $\vec{p} = q\vec{l}$.

[极化强度] $\vec{P} = \frac{\sum_{i} \vec{p}_{i}}{\Delta V}$.

[**束缚电荷密度**] $\int_V \rho_p dV = -\oint_S \vec{P} \cdot d\vec{S}$, 微分形式 $\rho_p = -\vec{\nabla} \cdot \vec{P}$.

[束缚电荷面密度 (两介质界面)] $\sigma_p = -\vec{e}_n \cdot (\vec{P}_2 - \vec{P}_1)$.

[电位移矢量] $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$.

[各项同性线性介质极化强度] $\vec{P} = \chi_e \varepsilon_0 \vec{E}$.

[相对电容率] $\varepsilon_r = 1 + \chi_e$.

[介质中的电场散度] $\vec{\nabla} \cdot \vec{D} = \rho_f$.

[磁矩] $\vec{m} = i\vec{a}$.

[磁化强度] $\vec{M} = rac{\sum \vec{m}_i}{\Delta V}.$

[**磁化电流密度**] $\int_S \vec{J}_M \cdot d\vec{S} = \oint_L \vec{M} \cdot d\vec{l}$, 微分形式 $\vec{J}_M = \vec{\nabla} \times \vec{M}$.

[极化电流] $\vec{J_p} = \frac{\partial \vec{P}}{\partial t} = \frac{\sum\limits_i e_i \vec{v_i}}{\Delta V} = \frac{\partial \sum\limits_i e_i \vec{x_i}}{\Delta V \partial t}$

[诱导电流] 磁化电流和极化电流统称为诱导电流 $\vec{J}_M + \vec{J}_p$, 诱导电流不能被直接测量.

[磁场强度] $\vec{H} = rac{\vec{B}}{\mu_0} - \vec{M}$.

[磁场旋度] $\vec{\nabla} \times \vec{H} = \mu_0 \vec{J}_f + \mu_0 \frac{\partial \vec{D}}{\partial t}$

[各向同性线性介质磁化率] $\vec{M} = \chi_M \vec{H}$.

[相对磁导率] $\mu_r = 1 + \chi_M$.

[介质中的麦克斯韦方程组]

$$\begin{cases} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \\ \vec{\nabla} \cdot \vec{D} = \rho \\ \vec{\nabla} \cdot \vec{B} = 0 \end{cases}$$
 对于各向同性线性介质有
$$\begin{cases} \vec{D} = \varepsilon \vec{E} \\ \vec{B} = \mu \vec{H} \\ \vec{J} = \sigma \vec{E} \end{cases}$$

4. 介质面上的电磁场

[介质中麦克斯韦方程组的积分形式]

$$\begin{cases} \oint_{L} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S} \\ \oint_{L} \vec{H} \cdot d\vec{l} = I_{f} + \frac{d}{dt} \int_{S} \vec{D} \cdot d\vec{S} \\ \oint_{S} \vec{D} \cdot d\vec{S} = Q_{f} \\ \oint_{S} \vec{B} \cdot d\vec{S} = 0 \end{cases}$$

[界面处的法向电场跃变] $\vec{e_n} \cdot (\vec{D}_{2n} - \vec{D}_{1n}) = \sigma_f, \ (\oint_S \vec{D} \cdot d\vec{S} = \int_S \sigma_f dS).$

[界面处的法向磁场跃变] $\vec{e_n} \cdot (\vec{B}_{2n} - \vec{B}_{1n}) = 0$, $(\phi_S \vec{B} \cdot d\vec{S} = 0)$.

[**界面处的切向电场跃变**] $\vec{e_n} \times (\vec{E}_{2n} - \vec{E}_{1n}) = \vec{0}$, $(\oint_L \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{S}$, 其中 $\frac{\partial \vec{B}}{\partial t}$ 有限).

[**界面处的切向磁场跃变**] $\vec{e_n} \times (\vec{H}_{2n} - \vec{H}_{1n}) = \vec{\alpha}_f$, $(\oint_L \vec{H} \cdot d\vec{l} = \int_L \vec{\alpha}_f \cdot d\vec{l} + \frac{d}{dt} \int_S \vec{D} \cdot d\vec{S}$, 其中 $\frac{\partial \vec{D}}{\partial t}$ 有限).

[界面上的电磁场变化]

$$\begin{cases} \vec{e}_n \cdot (\vec{D}_{2n} - \vec{D}_{1n}) = \sigma_f \\ \vec{e}_n \cdot (\vec{B}_{2n} - \vec{B}_{1n}) = 0 \\ \vec{e}_n \times (\vec{E}_{2n} - \vec{E}_{1n}) = \vec{0} \\ \vec{e}_n \times (\vec{H}_{2n} - \vec{H}_{1n}) = \vec{\alpha}_f \end{cases}$$

5. 电磁场的能量

[电磁场能量守恒定律] $-\oint_{S} \vec{S} \cdot d\vec{\sigma} = \frac{d}{dt} \int_{V} w dV + \int_{V} \vec{f} \cdot \vec{v} dV$.

流入能量: $-\oint_S \vec{S} \cdot d\vec{\sigma}$;

电磁能增量: $\frac{d}{dt} \int_V w dV$;

场对电荷做功: $\int_V \vec{f} \cdot \vec{v} dV$.

[电磁场能量密度] $\frac{\partial w}{\partial t} = \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$.

[电磁场能流密度 (坡印廷矢量)] $\vec{S} = \vec{E} \times \vec{H}$, 真空中有 $\vec{S} = \frac{1}{40} \vec{E} \times \vec{B}$.

[电磁场能量密度和能流密度公式证明]

由电磁场能量守恒定律: $-\oint_{S} \vec{S} \cdot d\vec{\sigma} = \frac{d}{dt} \int_{V} w dV + \int_{V} \vec{f} \cdot \vec{v} dV$

得微分形式:
$$-\vec{\nabla} \cdot \vec{S} = \frac{\partial w}{\partial t} + \vec{f} \cdot \vec{v}$$
, 即 $-\vec{f} \cdot \vec{v} = \vec{\nabla} \cdot \vec{S} + \frac{\partial w}{\partial t}$

由电荷在磁场中受力的洛伦兹力密度表达式 $\vec{f} = \rho \vec{E} + \rho \vec{v} \times \vec{B}$

得:
$$-\vec{f} \cdot \vec{v} = -\rho \vec{v} \cdot \vec{E} = -\vec{J} \cdot \vec{E}$$

由磁场旋度的麦克斯韦方程 $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

得:
$$\vec{J} = \vec{\nabla} \times \vec{H} - \frac{\partial \vec{D}}{\partial t}$$

$$-\vec{f}\cdot\vec{v} = -\vec{J}\cdot\vec{E} = -\vec{E}\cdot(\vec{\nabla}\times\vec{H}) + \vec{E}\cdot\tfrac{\partial\vec{D}}{\partial t}$$

因为
$$\vec{\nabla} \cdot (\vec{E} \times \vec{H}) = (\vec{\nabla} \times \vec{E}) \cdot \vec{H} - (\vec{\nabla} \times \vec{H}) \cdot \vec{E}$$

所以
$$-\vec{f} \cdot \vec{v} = -\vec{H} \cdot (\vec{\nabla} \times \vec{E}) + \vec{\nabla} \cdot (\vec{E} \times \vec{H}) + \vec{E} \cdot \frac{\partial \vec{D}}{\partial t}$$

由电场旋度的麦克斯韦方程 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

得
$$-\vec{f} \cdot \vec{v} = \vec{\nabla} \cdot (\vec{E} \times \vec{H}) + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} + \vec{E} \cdot \frac{\partial \vec{D}}{\partial t}$$

根据电磁场能量守恒定律的微分形式

得:
$$\vec{\nabla} \cdot (\vec{E} \times \vec{H}) + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} + \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} = \vec{\nabla} \times \vec{S} + \frac{\partial w}{\partial t}$$

两边对比得:

电磁场能流密度 (坡印廷矢量) 的可能形式: $\vec{S} = \vec{E} \times \vec{H}$

电磁场能量密度的可能形式: $\frac{\partial w}{\partial t} = \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$

[真空中的电磁场能量]

能量密度: $w=\frac{1}{2}(\varepsilon_0 E^2+\frac{1}{\mu_0}B^2)$ 能流密度: $\vec{S}=\frac{1}{\mu_0}\vec{E}\times\vec{B}$

[线性介质中的电磁场能量]

能量密度: $w = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B})$