Matrix

Popular type of matrix

Identity Matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 \times 3 \end{bmatrix}$$

Diagonal matrix

Scalar matrix

$$k \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Triangular matrix

Upper Triangular Matrix

$$U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}_{4\times4} \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}_{4\times4}$$

Symmetric matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 8 \end{bmatrix}^{T}$$
Symmetric matrix

Matrix Operation

Addition and Subtraction

The two matrices must be the same size.

Multiplication

The first column of the matrix must be the same as the first row of the matrix.

If I have a matrix of size m x n and a second matrix of size n x c.

We discovered that the size of the first column of the matrix is identical to the size of the first row. Consequently, the output matrix has a size of $m \times c$.

The operation of multiplication involves multiplying the first row by the first column to obtain the first element in the new matrix, and so on.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 10 & 11 \\ 20 & 21 \\ 30 & 31 \end{bmatrix}$$

$$= \begin{bmatrix} 1x10 + 2x20 + 3x30 & 1x11 + 2x21 + 3x31 \\ 4x10 + 5x20 + 6x30 & 4x11 + 5x21 + 6x31 \end{bmatrix}$$

$$= \begin{bmatrix} 10+40+90 & 11+42+93 \\ 40+100+180 & 44+105+186 \end{bmatrix} = \begin{bmatrix} 140 & 146 \\ 320 & 335 \end{bmatrix}$$

The multiplication is noncommutativity

 $M1 M2 \neq M2 M1$

We could show that matrix multiplication isn't communitive through numerical computation:

Matrix 4

I know we just said that matrices don't commute! That is true, *generally*. However there are some examples of matrices commuting, even if not every pair of matrices being multiplied is communitive like this

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

This example isn't intuitive in numeric form so let's think about it visually.

One matrix is rotating by $90 \circ 90 \circ$ counterclockwise. The other matrix is scaling by -2 (reflecting through the y=-x line and multiplying by 2). Does it matter if we first rotate and then scale, or can we also scale and then rotate?