Prequel to Hawkes Processes: An Overview of Temporal and Spatio-Temporal Point Processes and Some Simulations

Frances Lin
June 2021

Major Professor: James Molyneux

Committee Members: Lisa Madsen & Charlotte Wickham

Abstract

1 Introduction

Hawkes process is also known as a self-exciting point process. More specifically, the original Hawkes processes (e.g. ETAS model) are temporal, whereas the more recently developed spatio-temporal, self-exciting point processes have been extended from temporal Hawkess processes to account for both the spatial and temporal aspects of the data.

The defining characteristic of Hawkes processes is that it self-excites. In other words, the occurrence of an event increases the occurrence of future events. For example, in seismology, an event can be an earthquake occurrence that causes aftershocks. In criminology, an event can be a gang rivalry that triggers retaliations following the gang crime.

Applications

In addition to modelling earthquake epicenters in seismology and crime patterns in criminology, Hawkess processes have also been used in modelling events such as forest wildfires, insurance claims, financial transcations, social network events, neuron activities, and disease spread or transmission. Thus, it can be found in a wide variety of fields such as emergency and disaster management, insurance, finance, social network, neuroscience, and epidemiology.

More recent work have been focused on modelling..... and leveraging the power the computing power to process and model big data.

Motivation

Given the flexibility and applicability of Hawkess processes, it is surprising to see that Hawkess processes have not gain enough attentions from the machine learning communities, which would find their predicting capability practical. In addition, understanding Hawkess processes would benefit from knowing some of the relevant point processes (e.g. Cox, cluster processes), which are often left out from graduate-level, introductory spatial statistics and stochastic processes course.

Objectives

The objectives of this project is then to give an overview of various types of point processes so that readers of interest have the necessary background knowledge to understand Hawkes process. The overview includes

- 1. introducing, defining and discussing properties of counting process, (homogeneous and nonhomogeneous) Poisson process, cluster process, Hawkes process, and spatio-temporal Hawkes process,
- 2. discussing the algorithms and simulating the processes,
- 3. extending (temporal) Hawkes process to spatio-temporal Hawkes process, and
- 4. discussing recent and future work of Hawkes process.

2 Introductions, Definitions and Properties

2.1 Counting Process

Counting processes count the occurrences (or numbers) of events over time. For example, if we were to count the numbers of events N(t) such as the numbers of customers arriving at a supermarket or the numbers of phone calls receiving at the help line up to some time t, we can use counting processes.

Before formally defined counting process, first we need to define stocastic process and point process. Stocastic process is a collection of random variables indexed by time t. The differences between stocastic process and point process are not clear, but they are included to help defining counting process. The definion of stocastic process and point process are as follow.

Definition 2.1.1 (Stochastic Process) A stochastic process is a family of random variables indexed by time t and is defined as

$$\{X_t\}_{t\in T}$$

Definition 2.1.2 (Point Process) Let $\{T_i\}_{i\in N}$ be a sequence of non-negative random variables such that $T_i < T_{i+1} \ \forall i \in N$, a point process on R^+ is defined as

$$\{T_i\}_{i\in\mathcal{N}}$$

Here, we define a function N(t) such that it counts the total number of events up to some time t. For example, the total number of event from t = 0 up to t = 1 is denoted as N(0), the total number of events from t = 1 up to t = 2 is denoted as N(1), and so on.

Definition 2.1.3 (Counting Process) Let N(t) be the total number of events up to some time t such that the values are nonnegative, interger and nondecreasing, a stocastic process is said to be a counting process and is defined as

$${N(t), t \ge 0}$$

Next, if we let the first occurrence of event occurs at T_1 , the 2nd occurence of event occurs at T_2 , and so on, then with counting process, we again sum up the numbers incremently. Thus, N(0) indicates the total number of events from t = 0 up to t = 1, which is 0 since there is no event occur in (0,1], N(1) is the total number of events from t = 1 up to t = 2, which is 1 since there is a total of one event occur in (1,2], and so on.

A PICTURE HERE MIGHT HELP

Definition 2.1.4 (Counting Process) Let $\{T_i\}_{i\in N}$ be a point process, a counting process associated with $\{T_i\}_{i\in N}$ is defined as

$$N(t) = \sum_{i \in N} I_{\{T_i \le t\}}$$

Corollary 2.1.1 A counting process satisfies that

- 1. $N(t) \ge 0$
- 2. N(t) is an integer
- 3. If $s \leq t$, then $N(s) \leq N(t)$
- 4. If s < t, then N(t) N(s) is the number of events occur in the interval (s, t]

Proposition 2.1.1 A counting process has the following properties

- 1. (Independence) If the numbers of events N(t) occur in disjoint interval t are independent, a counting process is said to have independent increments.
- 2. (Stationarity) If the distribution of the numbers of events N(t) depends only on the length of the interval t, a counting process is said to have stationary increments.
- 3. (Homogeneity) If the transition probability between any two states at two times depends only on the difference between the states, a stochastic process is said to be homogeneous. Stationarity implies homogeneity.

2.2 Poisson Process

Definition 2.2.1 (Poisson Process) If the following conditions hold, a counting process $\{N(t), t \ge 0\}$ is said to be a Poisson Process with constant rate (or intensity) $\lambda > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments
- 3. $P(N(t+h)) N(t) = 1) = \lambda h + o(h)$
- 4. $P(N(t+h)) N(t) \ge 2) = o(h)$

where o(h) function of little o...

In other words, 1. the process starts at t = 0, 2. the increments are independent, 3. λ is the rate (or intensity), and 4. no 2 or more events can occur at the same location.

Proposition 2.1.1 Poisson process has the same (?) properties as those of counting process.

Proposition 2.2.2 Poisson process has additional properties

1. The number of events in any interval t, N(t), $\sim Pos(\lambda t)$. That is, for all $s, t \geq 0$

$$P(N(t+s) - N(s) = n) = P(N(t) - N(0)) = P(N(t) = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

n = 0, 1,

2. The interarrival times, $W_i \stackrel{iid}{\sim} exp(\frac{1}{\lambda})$. That is, for rate $\lambda > 0$, the interarrival time W_i i = 1, 2, ...

$$P(W_1 > t) = P(N(t) = 0) = e^{-\lambda t}$$

This is because $p(1^{st} \text{ arrivial arrives after time } t)$ is the same as p(no arrivial in the interval [0,t]). Similarly, W_2 also $\sim exp(\frac{1}{\lambda})$ since

$$P(W_2 > t | W_1 = s) = P(N(t+s) - N(s) | N(s) - N(s^-) = 1) = P(N(t+s) - N(s)) = P(N(t) = 0) = e^{-\lambda t}.$$

2.3 Nonhomogeneous Poisson Process

Definition 2.3.1 (Nonhomogeneous Poisson Process) If the following conditions hold, a counting process $\{N(t), t \geq 0\}$ is said to be a nonhomogeneous Poisson Process with intensity function of time $\lambda(t), t > 0$

- 1. N(0) = 0
- 2. N(t) has independent increments
- 3. $P(N(t+h)) N(t) = 1) = \lambda(t)h + o(h)$
- 4. P(N(t+h)) N(t) > 2) = o(h)

Proposition 2.2.1 Nonhomogeneous Poisson process has the following properties

1. Independence

(Homogeneous) Poisson process has stationary increments since the distribution of the numbers of events N(t) that occur in any interval of time t depends only on the length of the interval t but not the location of the interval t. In contrast, nonhomogeneous Poisson process does not have stationary increments since the distribution of N(t) can change when shifted in t.

Proposition 2.2.2 Nonhomogeneous Poisson process has the following properties

1. The number of events in any interval t, N(t), $\sim Pos(\Lambda(t) = \int_0^t \lambda(s)ds)$. That is, for all $s,t \geq 0$

$$P(N(t) = n) = \frac{\left(\int_0^t \lambda(s)ds\right)^n e^{-\int_0^t \lambda(s)ds}}{n!}$$

 $n = 0, 1, \dots$

2. The law of occurance for the next point can be determined by

$$P(N(a,b] = 0) = e^{-\int_a^b \lambda(s)ds}.$$

In the following sections, we discuss conditional intensity models. Examples of such models include Cox, cluster, and Hawkes processes. First, we want to define the conditional intensity function since it fully characterizes a point process.

Definition 2.4.0 (Conditional Intensity Function) Let N(t) be the numbers of events N(t) that occur in any interval of time t, the conditional intensity function $\lambda(t)$ with respect to \mathcal{H}_t is defined as

$$\lambda(t) = \lim_{h \to 0^+} \frac{P(N(t, t+h] > 0 | \mathcal{H}_t)}{h} = \lim_{h \to 0^+} \frac{E(N(t, t+h) | \mathcal{H}_t)}{h}$$

where \mathcal{H}_t is the history prior to time t but can also be... Wiki: Intensity of a point process

- (?) Still don't quite see connection to Cox and cluster process
- (?) Hazard function

2.4 Cox and Cluster Process

Definition 2.4.1 (Cox Process) Let $\Lambda = (\Lambda(u))_{u \in S \subseteq \mathbb{R}^d}$ be a non-negative random field such that $\Lambda(u)$ is a locally integrable function. If $X \mid \Lambda \sim Pos(\Lambda)$, then X is said to be a Cox process driven by Λ with intensity function $\lambda(u) = E(\Lambda(u))$. That is,

$$P(N(u)=n) = \frac{(\lambda(u))^n e^{-\lambda(u)}}{n!} = \frac{(E(\Lambda(u)))^n e^{-E(\Lambda(u))}}{n!} =$$

(?)

$$\Lambda(u) \stackrel{a.s.}{=} \int_{u} \lambda(x) dx$$

(?) How to get here

$$= \int_0^\infty \frac{x^n e^{-x} F_u(dx)}{n!}$$

Note. Λ is a random field means that $\Lambda(u)$ is a random variable $\forall u \in S$.

Note. $\Lambda(u)$ is a locally integrable function means that $E(\Lambda(u))$ exists and is locally integrable with probabiliy 1.

Proposition 2.4.1 Propertities of Cox process are as follow

- 1. Propertities of Cox process X follow immediately from the properties of Poisson process X | Λ . For example, if Λ is stationary, then X is stationary.
- 2. For bounded $B \subseteq S$, the void probabilities are given by

$$\nu(B) = E(P(N(B) = 0)|\Lambda) = E(exp(-\int_B Z(u)du)).$$

Note. The void (or avoidance) probability ν is defined as the probability that no points of a point process N existing in B where B is a subset of the underlying space R^d .

Definition 2.4.2 (Cluster Process) Let x be points in a point process N and replacing every x with a cluster of points N_x , then the union of all the clusters forms a cluster process N_c . That is,

$$N_c = \bigcup_{x \in N} N_x$$

Note. Each N_x is a finite point process 'centered' at x and it is assumed that each N_x is independent of one another.

Note. N_x can be thought of as 'offspring'??

In addition, condition on..., the cluster process has the intensity function...

Proposition 2.4.2 Cluster process has the following model assumptions

- 1. Poisson parents
- 2. Independent clusters
- 3. Identically distributed clusters
- 4. Offsprings independent within a cluster
- 5. Poisson number of offsprings
- 6. Isotropic clusters

In other words, 1. 'parent' points follow a Poisson distribution, 2. clusters are independent of each other, 3. clusters, when shifted, have the same distributions, 4. the locations of 'offspring' points of each parent point are independently and identically distributed, 5. the numbers of 'offspring' points of each parent point follow a Poisson distribution, and 6. the distribution of 'offspring' points for each parent point depends only on the distance between the 'parent' and the 'offspring'.

Under assumption 1 - 4, it is a Neyman-Scott process. Under assumption 1 - 5, the cluster process is a Cox process. Under assumption 1 - 6, they are Matern cluster process and Thomas cluster process.

2.5 Hawkes Process

Definition 2.5.1 (Hawkes Process) A counting process $\{N(t), t \geq 0\}$ associated with past events $\{\mathcal{H}_t^N, t > 0\}$ is said to be a Hawkes process with conditional intensity function $\lambda(t|\mathcal{H}_t^N), t > 0$ and takes the form

$$\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t - T_i)$$

where

- $\lambda_0(t)$ is the base intensity function (or μ the constant background rate)
- $T_i < t$ are the events time occur before current time t
- $\phi(\cdot)$ is the kernel function (or $g(\cdot)$ the triggering function) through which intensity function depends on past events
- \mathcal{H}_t^N is the natural filration (or simply \mathcal{H}_t the past history) which represents the internal history of N up to time t

Corollary 2.5.1 Hawkes process satisfies that

1.
$$N(t) = 0$$

2.
$$\lambda(t|\mathcal{H}_t^N) = \lambda_0(t) + \int_{-\infty}^t \phi(t - T_i) dN(s) = \lambda_0(t) + \sum_{i:T_i < t} \phi(t - T_i)$$

3.
$$P(N(t+h)) - N(t) = 1|\mathcal{H}_t^N) = \lambda(t)h + o(h)$$

- 4. $P(N(t+h)) N(t) \ge 2|\mathcal{H}_t^N| = o(h)$
- **2.5.1** Choices of $\phi(\cdot)$ include, for example, exponentially decaying function and power-law kernel, and they take the form of

$$\phi(x) = \alpha e^{-\beta x}$$

$$\phi(x) = \frac{\alpha}{(x+\beta)^{\eta+1}}$$

- 2.5.2 There are two ways to view Hawkes processes
 - 1. Intensity-based Hawkes Process

Here, Hawkes process is defined through conditional intensity process.

In Section 3.5, we discuss algorithm for simulating intensity-based Hawkes process in details.

2. Cluster-based Hawkes Process

Alternatively, Hawkes process can also be defined through marked Poisson cluster process.

2.5 Spatio-Temporal Hawkes Process

Spatio-temporal Hawkes processes is an extention of temporal Hawkes processes. Recall that temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu + \sum_{i:T_i < t} g(t - t_i)$$

Spatio-temporal Hawkes processes take the form of

$$\lambda(t|\mathcal{H}_t) = \mu(s) + \sum_{i:T_i < t} g(s - s_i, t - t_i)$$

where

- $s_i, i = 1, 2, ...$ are the sequence of locations of events
- $t_i, i = 1, 2, ...$ are the times of the events

Next, we simulate... through... and packages.

3 Algorithms and Simulations

3.2 Poisson Process

Algorithm 1

3.3 Nonhomogeneous Poisson Process

There are multiple ways to simulate nonhomogeneous Poisson process: 1) inversion, 2) order statistics, 3) thinning and 4) hybride (inversion + thinning).

In this example, we use the thinning algorithm (or acceptance-rejection method) to simulate nonhomogeneous Poisson process with the intensity function $\lambda(t) = \dots$ since it is one of the most popular choices for both temporal and spatio-temporal cases.

Broadly put, thinning algorithm involves randomly deleting points from a point pattern.

Algorithm 2

Similarly, there are multiple ways to simulate Hawkes process. Here, we use thinning algorithm (or acceptance-rejection method)

3.5 Hawkes Process

Algorithm 3

3.6 Plots in 2D

All the following plots are created using the **spatstat** package in R.

HPP

NPP

Matern process involves generating homogeneous Poisson parents and each parent gives rise to Poisson number of offspring uniformmly distributed in a disc of radius r centered around the parent.

The following functions use thinning algorithm. Simulations of Matern I and Matern II processes are generated using the rMaternI and rMaternII functions of the **spatstat** package.

4 Conclusions and Discussion

5 Recent Advancement

Acknowledgments

Reference

Chen, Y. (2016). Thinning algorithms for simulating point processes. Florida State University, Tallahassee, ${\rm FL}$.

Obral, K. (2016). Simulation, estimation and applications of hawkes processes. (Master's thesis, University of Minnesota, Twin Cities, United States).

Rizoiu, M. A., Lee, Y., Mishra, S., & Xie, L. (2017). A tutorial on hawkes processes for events in social media. arXiv preprint arXiv:1708.06401.

Krishna, R. (2015). Simulation of Non-Homogeneous Poisson Processes.

Pasupathy, R. (2010). Generating homogeneous poisson processes. Wiley encyclopedia of operations research and management science.

Terminology

Stochastic Process

Counting Processes

Poisson Process

Nonhomogeneous Poisson Process

Cox Process