Алгебра и геометрия Лекция 9

Детерминанты

Определение

- 1. Детерминантом матрицы порядка 1 называется ее единственный элемент.
- 2. Детерминантом матрицы $A = \left\| a_{ij} \right\|_{i,j=\overrightarrow{1,n}}$ при n>1 называется число

$$\det A = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} M_k^1,$$

где M_k^1 — детерминант матрицы, полученной из A вычеркиванием $1^{\frac{ec{\mu}}{L}}$ строки и $k^{\frac{\Gamma 0}{L}}$ столбца.

Детерминанты

Синоним: определитель матрицы

Обозначения

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

Определение

Детерминант матрицы, полученной в результате вычеркивания $i^{\frac{\check{\mathsf{M}}}{2}}$ строки и $j^{\frac{\mathsf{FO}}{2}}$ столбца, называется дополнительным минором элемента a_{ij} исходной матрицы.

Обозначение: M_j^i .

1. (Разложение по первому столбцу)

$$\det A = \sum_{i=1}^{n} (-1)^{i+1} a_{i1} M_1^i ,$$

Доказательство (по индукции)

База: n = 2 (проверяется непосредственно).

Предположение: формула верна для матриц порядка (n-1).

Доказательство (по индукции)

Переход: докажем, что формула справедлива для матриц порядка n.

По определению

$$\det A = a_{11}M_1^1 + \sum_{k=2}^n (-1)^{k+1} a_{1k}M_k^1. \tag{*}$$

 $\forall k \geq 2$ в матрицу A_k^1 входит (без первого элемента) первый столбец A.

Доказательство (по индукции)

По предположению разложим M_k^1 по этому столбцу:

$$M_k^1 = \sum_{i=2}^n (-1)^i a_{i1} M_{k1}^{1i}$$
 , где M_{k1}^{1i} – детерминант

матрицы, полученной из A_k^1 вычеркиванием $(i-1)^{\underline{H}}$ строки и $1^{\underline{\Gamma}0}$ столбца, то есть вычеркиванием из A $1^{\underline{H}}$ и $i^{\underline{H}}$ строк и $k^{\underline{\Gamma}0}$ и $1^{\underline{\Gamma}0}$ столбцов (учитывается, что $i^{\underline{H}}$ строка A входит в A_k^1 с номером (i-1)).

Доказательство (по индукции)

Подставим в (*):
$$n$$
 $\det A = a_{11}M_1^1 + \sum_{k=2}^n ((-1)^{k+1}a_{1k}\sum_{i=2}^n (-1)^ia_{i1}M_{k1}^{1i}) =$ $= a_{11}M_1^1 + \sum_{k=2}^n \sum_{i=2}^n (-1)^{k+i+1}a_{1k}a_{i1}M_{k1}^{1i} = a_{11}M_1^1 +$ $+ \sum_{i=2}^n (-1)^{i+1}a_{i1}\sum_{k=2}^n (-1)^ka_{1k}M_{k1}^{1i} = a_{11}M_1^1 +$ $+ \sum_{i=2}^n (-1)^{i+1}a_{i1}M_1^i = \sum_{i=1}^n (-1)^{i+1}a_{i1}M_1^i$

$$2. \det A^T = \det A$$

Доказательство (по индукции)

База: n = 1; утверждение очевидно.

Предположение: пусть доказываемое верно для

 $\forall A_{n-1}$.

Переход: докажем для $\forall A_n$.

Доказательство (по индукции)

Пусть A_j^1 получена из A, B_1^J получена из A^T . Ясно, что $B_1^j = (A_j^1)^T$. По предположению $\det B_1^j = \det A_j^1$, причем $a_{1j} = b_{j1} \Rightarrow$ разложение по первой строке $\det A$ совпадает с разложением по первому столбцу $\det A^T$.

Замечание

Из доказанного ⇒ равноправность строк и столбцов, то есть, если для det доказано утверждение, касающееся строк, то оно верно и для столбцов, и обратно. Поэтому все остальные свойства достаточно доказывать только для строк или только для столбцов.

3. (Антисимметричность по строке и по столбцу)

Если в матрице поменять местами две строки (два столбца), то её детерминант изменит знак.

Доказательство (по индукции)

3.1 Докажем сначала для двух соседних строк. База: для n=2 утверждение проверяется непосредственно.

Предположение: утверждение верно для $\forall A_{n-1}$.

Переход: докажем для $\forall A_n$.

Доказательство (по индукции)

Разложим $\det A$ по первому столбцу:

$$\det A_n = (-1)^{k+1} a_{k1} M_1^k + (-1)^{k+2} a_{k+1,1} M_1^{k+1} + \sum_{i \neq k, k+1} (-1)^{i+1} a_{i1} M_1^i$$
(1)

Поменяем местами $k^{\underline{\mathrm{o}}}$ и $(k+1)^{\underline{\mathrm{o}}}$ строки в A_n – получим B_n .

$$\det B_n = (-1)^{k+1} a_{k+1,1} N_1^k + (-1)^{k+2} a_{k1} N_1^{k+1} + \sum_{i \neq k, k+1} (-1)^{i+1} a_{i1} N_1^i$$
(2)

Доказательство (по индукции)

В M_1^i и N_1^i при $i\neq k,k+1$ входят $k^{\underline{a}}$ и $(k+1)^{\underline{a}}$ строки, но в разном порядке, а остальные строки одинаковы. По предположению $N_1^i=-M_1^i;$ $i\neq k,k+1$. Матрицы с детерминантами M_1^k и N_1^{k+1} совпадают $\Rightarrow M_1^k=N_1^{k+1}$ Аналогично $M_1^{k+1}=N_1^k$.

Подставляя все полученные значения в (1) и (2), видим, что $\det B_n = -\det A_n$

Доказательство (по индукции)

3.2 Пусть теперь переставлены строки с номерами i < j. Между ними j - i - 1 строк.

Рассматриваемую перестановку можно сделать, переставляя соседние строки 2(j-i)-1 раз.

$$(j-i) + (j-i-1) = 2(j-i) - 1$$

Это число нечётное.

При каждой перестановке det меняет знак, поэтому после нечётного числа перестановок знак изменится.

4. (Разложение детерминанта по ∀ строке и по ∀ столбцу).

$$\forall i: 1 \leq i \leq n$$

$$\forall i: 1 \le i \le n \quad \det A_n = \sum_{k=1}^n (-1)^{k+i} a_{ik} M_k^i$$

$$\forall j$$
: $1 \le j \le n$

$$\forall j: 1 \le j \le n \quad \det A_n = \sum_{k=1}^n (-1)^{k+j} a_{kj} M_j^k$$

Доказательство (для строк)

При i=1 получаем определение $\det A_n$.

При $i \geq 2$. Переставим i^{H} строку на 1 место, не нарушая порядка остальных строк. Для этого последовательно переставим i^{H} строку со всеми строками выше неё.

Если B_n — матрица, полученная после такой перестановки, то

$$\det A_n = (-1)^{i-1} \det B_n$$

Доказательство (для строк)

Разложим $\det B_n$ по первой строке (i-ой строке матрицы A_n) и подставим в предыдущее равенство:

$$\det A_n = (-1)^{i-1} \sum_{k=1}^n (-1)^{k+1} a_{ik} N_k^1, \text{ но } N_k^1 = M_k^i.$$

Тогда
$$\det A_n = \sum_{k=1}^n (-1)^{k+i} a_{ik} M_k^i$$
.

5. (Линейность детерминанта по столбцу и строке).

Если $i^{\frac{N}{2}}$ столбец (строка) матрицы A есть линейная комбинация столбцов (строк) p и q (т.е. $\alpha p + \beta q$), то

$$\det A = \alpha \det A_p + \beta \det A_q$$
 , где

матрицы A_p и A_q получаются из A заменой $i^{\underline{\Gamma} \underline{O}}$ столбца (строки) на p и q соответственно.

Доказательство

 $\forall k \colon 1 \leq k \leq n \quad a_{ki} = \alpha p^k + \beta q^k$, где p^k и $q^k -$ элементы столбцов p и q.

Подставим в разложение $\det A$ по $i^{\underline{M}\underline{y}}$ столбцу:

$$\det A = \sum_{k=1}^{n} (-1)^{k+i} a_{ki} M_i^k =$$

$$= \alpha \sum_{k=1}^{n} (-1)^{k+i} p^k M_i^k + \beta \sum_{k=1}^{n} (-1)^{k+i} q^k M_i^k =$$

$$= \alpha \det A_p + \beta \det A_q$$

6. Если в матрице A столбцы (строки) линейно зависимы, то $\det A = 0$.

Доказательство

- 6.1 Если в A есть нулевой столбец, то $\det A = 0$.
- 6.2 Если в A нет нулевых столбцов, но есть два одинаковых столбца, то, переставив эти столбцы, получим $\det A = 0$ в силу свойства 3.

Доказательство

6.3 Пусть $j^{\frac{N}{2}}$ столбец матрицы A есть линейная комбинация остальных столбцов (\Leftrightarrow линейной зависимости всех столбцов):

$$a_j = \sum_{k \neq j} \alpha_k a_k$$
 , причем некоторые α_k могут быть нулевыми.

Доказательство

Из линейности детерминанта по столбцу ⇒

$$\det A = \sum_{k \neq j} \alpha_k \det A_k$$
 , где A_k – матрица,

полученная из A заменой $j^{\underline{\Gamma o}}$ столбца на $k^{\underline{f H}}$ столбец.

В A_k столбец a_k повторяется дважды \Rightarrow $\det A_k = 0 \Rightarrow \det A = 0$.

7. Детерминант матрицы не изменится, если к какой-нибудь его строке (столбцу) прибавить линейную комбинацию остальных строк (столбцов).

Доказательство (для строк)

Утверждение сразу следует из линейности детерминанта по строке и того, что детерминант с линейно зависимыми строками равен нулю.

Формула полного развертывания детерминанта

Определение

Перестановкой чисел 1,2...,n называются эти числа, записанные в определенном порядке.

Пример

Из чисел 1 и 2 можно получить две перестановки: 1,2 и 2,1.

Обозначение $(i_1, i_2, ..., i_n)$.

Формула полного развертывания детерминанта

Определение

Число i_k нарушает порядок в перестановке (i_1,i_2,\ldots,i_n) , если оно стоит левее меньшего числа.

Общее число нарушений порядка в перестановке $(i_1, i_2, ..., i_n)$ обозначим $inv(i_1, i_2, ..., i_n)$.

Формула полного развертывания детерминанта

Справедлива формула, которая в наш курс входит без доказательства:

$$\det A_n = \sum_{(i_1, \dots, i_n)} (-1)^{inv(i_1, \dots, i_n)} a_{1i_1} a_{2i_2} \dots a_{ni_n}$$

Общий случай.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

СЛАУ из m уравнений с n неизвестными x_1, \dots, x_n .

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$
 — матрица системы; $a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$

$$b=egin{pmatrix} b_1 \ dots \ b_m \end{pmatrix}$$
— столбец свободных членов; $x=egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$ — столбец неизвестных;

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец неизвестных

 $A^* = (A|b)$ — расширенная матрица системы.

Матричная запись СЛАУ: Ax = b

Столбцовая запись СЛАУ:

$$x_1a_1 + x_2a_2 + \dots + x_na_n = b$$
 , где

 $a_1, a_2, ..., a_n$ — столбцы матрицы A.

Определение

Совокупность n чисел $\alpha_1, \alpha_2, \dots, \alpha_n$ называется решением системы

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$
(1)

если каждое её уравнение обращается в числовое равенство после подстановки в него чисел $\alpha_1, \dots, \alpha_n$ вместо x_1, \dots, x_n .

Специальный случай: n = m

Мы рассматриваем СЛАУ вида

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n, \end{cases}$$
(2)

Теорема 14.1. (Правило Крамера)

Если $\det A$, где A — матрица СЛАУ (2), отличен от нуля, то указанная СЛАУ имеет единственное решение, причем

$$x_i = \frac{\Delta_i}{\Delta} \ \ \forall i = \overrightarrow{1,n}$$
 , где

 $\Delta = \det A$,

 Δ_i — детерминант матрицы, полученной из A заменой её $i^{\Gamma O}$ столбца столбцом свободных членов.

Доказательство

1. Э решения.

К расширенной матрице A^* припишем сверху её строку с номером j. Получим матрицу \overline{A} , две строки которой одинаковы $\Longrightarrow \det \overline{A} = 0$.

Доказательство

По определению

$$\det \overline{A} = \sum_{i=1}^{n} (-1)^{i+1} a_{ji} M_i + (-1)^{n+1+1} (\det A) b_j = 0$$

 $(M_i$ - детерминант матрицы, полученной из A^* вычёркиванием $i^{\Gamma 0}$ столбца)

Доказательство

Учитывая, что $\det A = \Delta \neq 0$, получаем

$$\frac{(-1)^{n+1}}{\Delta} \sum_{i=1}^{n} a_{ji} (-1)^{i+1} M_i = b_j \iff$$

$$\Leftrightarrow \sum_{i=1}^{n} a_{ji} \frac{(-1)^{n+i} M_i}{\Delta} = b_j \quad \Leftrightarrow \quad \sum_{i=1}^{n} a_{ji} x_i = b_j$$

Доказательство

Набор чисел
$$x_i = \frac{(-1)^{n+i}M_i}{\Delta}$$
, $i = \overline{1,n}$

удовлетворяет $j^{\text{му}}$ уравнению СЛАУ (2).

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n, \end{cases}$$
 (2)

Так как j можно взять любым, а x_i не зависит от j, набор x_i удовлетворяет \forall уравнению СЛАУ (2).

Доказательство

2. Приведение x_i к виду $x_i = \frac{\Delta_i}{\Delta}$.

Подставим в \overline{A} последний столбец b на $i^{\underline{e}}$ место, поменяв его последовательно местами со столбцами с номерами $n,n-1,\ldots,i+1$. Нужно (n-i) перестановок \implies

$$\Rightarrow x_i = \frac{(-1)^{n+i}(-1)^{n-i}\Delta_i}{\Delta} = \frac{\Delta_i}{\Delta} \quad \forall i = \overrightarrow{1, n}$$

Доказательство

3. Единственность решения.

Пусть нашлись два различных решения (2):

$$\alpha_1,\ldots,\alpha_n$$
 и β_1,\ldots,β_n

Доказательство

Противоречие

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n, \end{cases}$$
 $\Leftrightarrow x_1a_1 + \dots + x_na_n = b; \ \alpha_1a_1 + \dots + \alpha_na_n = b$
$$\bowtie \beta_1a_1 + \dots + \beta_na_n = b \qquad \Rightarrow \\ \implies (\alpha_1 - \beta_1)a_1 + \dots + (\alpha_n - \beta_n)a_n = 0 \qquad \Rightarrow \\ \implies a_1, \dots, a_n \text{ линейно зависимы} \implies \det A = 0.$$