SME0104 Cálculo Numérico Aula 12

Maria Luísa Bambozzi de Oliveira marialuisa @ icmc . usp . br Sala: 3-241

Página: tidia-ae.usp.br

14 de abril de 2015

Tópico Anterior

Sistemas Lineares:

- Métodos Exatos:
 - Método de Gauss Compacto: adaptação do Método de Gauss Simples para armazenar matrizes L e L na mesma matriz;
 - Método de Cholesky (decomposição GG^T de matrizes simétricas, positivas definidas);
- Mal Condicionamento;
- Matriz Inversa.

Métodos Iterativos

Vantagens sobre Métodos Exatos:

- Melhores (quando matriz A é esparsa);
- Mais econômicos (menos memória);
- Autocorreção, redução dos erros de arredondamento;
- Em certos casos: solução de eqs. não-lineares.

Desvantagem: não possui número fixo de passos para atingir a solução exata.

Revisão: Normas

Norma de vetor \overrightarrow{x} : $||\overrightarrow{x}||$, é qualquer função definida em \mathbb{R}^n , com valores em \mathbb{R} , satisfazendo:

- $\|\overrightarrow{x}\| \ge 0$ e $\|\overrightarrow{x}\| = 0$ se e somente se $\overrightarrow{x} = \overrightarrow{0}$;
- ▶ $\|\lambda \overrightarrow{x}\| = |\lambda| \|\overrightarrow{x}\|$ para todo escalar λ ;
- ▶ $\|\overrightarrow{x} + \overrightarrow{y}\| \le \|\overrightarrow{x}\| + \|\overrightarrow{y}\|$ (designaldade triangular).

$$|\overrightarrow{x} \cdot \overrightarrow{y}| \le ||\overrightarrow{x}|| ||\overrightarrow{y}||.$$

Mais conhecidos: Se $\overrightarrow{x} = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$:

- $||\overrightarrow{x}||_{\infty} = \max_{1 \leq i \leq n} |x_i|;$
- $\|\overrightarrow{x}\|_1 = \sum_{i=1}^n |x_i|;$
- $\|\overrightarrow{x}\|_2 = \|\overrightarrow{x}\| = \sqrt{\sum_{i=1}^n x_i^2}.$

Exemplo: Normas de $\vec{x} = (1, 4, 3, -3, -1)$.

Revisão: Normas (cont.)

Norma de matriz A: ||A||, é qualquer função definida no conjunto de matrizes $n \times n$, com valores em \mathbb{R} , satisfazendo:

- ► $||A|| \ge 0$ e ||A|| = 0 se e somente se $A = \mathbf{0}$;
- ▶ $\|\lambda A\| = |\lambda| \|A\|$ para todo escalar λ ;
- ► $||A + B|| \le ||A|| + ||B||$ (designaldade triangular).

 $||AB|| \leq ||A|| ||B||.$

Mais conhecidos: Se A é matriz $n \times n$:

- ► $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ (norma linha);
- ▶ $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$ (norma coluna);
- $\|A\|_2 = \|A\| = \sqrt{\sum_{i,i=1}^n a_{ij}^2}$ (norma euclidiana).

Métodos Iterativos

Um método é **iterativo** quando fornece sequência de aproximações da solução, repetindo o mesmo tipo de processo.

Métodos estacionários: cada aproximação é obtida da anterior sempre pelo mesmo processo.

Se processos variam de passo para passo mas se repetem ciclicamente de *s* em *s* passos, o processo é *s*-cíclico.

Os métodos iterativos exigem que sempre se saiba se a sequência que está sendo obtida está convergindo ou não para a solução desejada.

Definição: Dadas uma sequência de vetores $\overrightarrow{x}^k \in E$ e uma norma sobre E, onde E é um espaço vetorial, dizemos que a sequência $\{\overrightarrow{x}^k\}$ **converge** para $\overrightarrow{x} \in E$ se $\|\overrightarrow{x}^k - \overrightarrow{x}\| \to 0$ quando $k \to \infty$.

Processos Estacionários

Sistema linear

$$\overrightarrow{Ax} = \overrightarrow{b} \sim \overrightarrow{x} = \overrightarrow{Bx} + \overrightarrow{g}$$

com solução $\overrightarrow{\overline{x}}$.

Se $\overrightarrow{x}^{(0)}$ é aproximação inicial para $\overrightarrow{\overline{x}}$, obtemos $\overrightarrow{x}^{(k)}$ usando

$$\overrightarrow{x}^{(k)} = B\overrightarrow{x}^{(k-1)} + \overrightarrow{g}, \quad k = 1, 2, \ldots$$

Teorema: A condição **necessária e suficiente** para a convergência do processo iterativo é que $\max |\lambda_i| < 1$, onde λ_i são os autovalores da matriz B de iteração.

Corolário (Critério Geral de Convergência): O processo iterativo é convergente se, para qualquer norma de matrizes, ||B|| < 1.

Processos Estacionários (cont.)

Exemplo: Seja

$$B = \begin{pmatrix} 0.2 & -0.7 & 0.2 \\ 0.1 & 0.1 & -0.3 \\ 0.6 & 0.1 & -0.3 \end{pmatrix}$$

Verificar se um sistema linear $\overrightarrow{Ax} = \overrightarrow{b}$, que tenha a matriz B anterior como matriz de iteração, convergirá para a solução.

$$||B||_{\infty} = \max\{1,1;0,5;1,0\} = 1,1 \ge 1 \Rightarrow ?$$

 $||B||_{1} = \max\{0,9;0,9;0,8\} = 0,9 < 1 \Rightarrow SIM$

Processos Estacionários (cont.)

Processo de Parada:

Quando aplicamos método iterativo escolhemos $\overrightarrow{x}^{(0)}$ como aproximação inicial para solução de $\overrightarrow{Ax} = \overrightarrow{b}$.

Refinamos solução até determinada precisão ε ser atingida, verificada com *erro relativo*:

$$\|\overrightarrow{x}^{(k+1)} - \overrightarrow{x}^{(k)}\|_{\infty} < \varepsilon \max\{1, \|\overrightarrow{x}^{(k+1)}\|_{\infty}\}$$

Para cada método a ser determinado, do que precisamos? Matriz B e vetor \overrightarrow{g} para definir $\overrightarrow{x} = B \overrightarrow{x} + \overrightarrow{g}$.

Métodos:

- Método de Jacobi-Richardson (JR);
- Método de Gauss-Seidel (GS).

Método de Jacobi-Richardson

Sistema $\overrightarrow{Ax} = \overrightarrow{b}$ com $det(A) \neq 0$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Decompor $A \in L + D + R$,

$$L: \quad \ell_{ij} = \begin{cases} a_{ij}, & i > j \\ 0, & i \leq j \end{cases}; \qquad D: \quad d_{ij} = \begin{cases} a_{ij}, & i = j \\ 0, & i \neq j \end{cases};$$

$$R: \quad r_{ij} = \begin{cases} a_{ij}, & i < j \\ 0, & i \geq j \end{cases}.$$

$$A = L + D + R$$

Se $det(D) \neq 0$:

$$(L+D+R)\overrightarrow{x} = \overrightarrow{b}$$

$$\Rightarrow D\overrightarrow{x} + (L+R)\overrightarrow{x} = \overrightarrow{b}$$

$$\Rightarrow D\overrightarrow{x} = -(L+R)\overrightarrow{x} + \overrightarrow{b}$$

$$\Rightarrow \overrightarrow{x} = -D^{-1}(L+R)\overrightarrow{x} + D^{-1}\overrightarrow{b}$$

$$\downarrow \downarrow$$

$$B = -D^{-1}(L+R); \quad \overrightarrow{g} = D^{-1}\overrightarrow{b}$$

$$A = L + D + R$$

$$D = \begin{pmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ 0 & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}, \quad \det(D) \neq 0$$

$$\Rightarrow D^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{n-1,n-1}} & 0 \\ 0 & 0 & \cdots & 0 & \frac{1}{a_{nn}} \end{pmatrix}$$

$$A = L + D + R$$

$$\Rightarrow D^{-1}A = D^{-1}L + D^{-1}D + D^{-1}R$$

$$\Rightarrow D^{-1}A = D^{-1}L + I + D^{-1}R$$

$$\Rightarrow A^* = L^* + I + R^*$$

$$\overrightarrow{X}^{(k+1)} = -(L^* + R^*)\overrightarrow{X}^{(k)} + \overrightarrow{b^*}$$

$$L^* : \ell_{ij}^* = \begin{cases} a_{ij}^* = \frac{a_{ij}}{a_{ii}}, & i > j \\ 0, & i \le j \end{cases}; \quad R^* : r_{ij}^* = \begin{cases} a_{ij}^* = \frac{a_{ij}}{a_{ii}}, & i < j \\ 0, & i \ge j \end{cases};$$

$$\overrightarrow{b}^* : b_i^* = \frac{b_i}{a_{ii}}.$$

Critérios de Convergência:

Com $B = -(L^* + R^*)$, usando o Critério Geral de Convergência, escolhemos as normas $||B||_{\infty}$ e $||B||_{1}$ nessa ordem para a verificação:

Critério das Linhas:

$$\max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} |a_{ij}^*| < 1$$

Critério das Colunas:

$$\max_{1 \le j \le n} \sum_{i=1, i \ne j}^{n} |a_{ij}^*| < 1$$

Critério Diagonal Dominante:

$$\sum_{i=1,i\neq i}^{n} |a_{ij}| < |a_{ii}|, \quad i = 1, 2, \dots, n$$

Observação: BASTA APENAS UM DOS CRITÉRIOS.

Exemplo: Resolver o sistema linear

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

pelo método JR, com $\overrightarrow{x}^{(0)} = (7/10, -8/5, 3/5)^T$.

Verificar primeiro se há garantia de convergência.

Se há garantia, reescrever sistema tal que $A * \overrightarrow{x} = \overrightarrow{b} *$.

Aplicar as iterações do método JR:

$$\overrightarrow{x}^{(k+1)} = -(L^* + R^*)\overrightarrow{x}^{(k)} + \overrightarrow{b}^*.$$

Maria Luísa

Exemplo: Resolver o sistema linear

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}$$

pelo método JR, com $\overrightarrow{x}^{(0)} = (7/10, -8/5, 3/5)^T$.

Critério Diagonal Dominante:

$$|2| + |1| = 3 < |10|$$

 $|1| + |1| = 2 < |5|$ \Rightarrow converge.
 $|2| + |3| = 5 < |10|$

$$\begin{cases} x_1 + 0.2x_2 + 0.1x_3 = 0.7 \\ 0.2x_1 + x_2 + 0.2x_3 = -1.6 \\ 0.2x_1 + 0.3x_2 + x_3 = 0.6 \end{cases}$$

$$\begin{cases} x_1^{(k)} = 0.7 - 0.2 x_2^{(k-1)} - 0.1 x_3^{(k-1)} \\ x_2^{(k)} = -1.6 - 0.2 x_1^{(k-1)} - 0.2 x_3^{(k-1)} \\ x_3^{(k)} = 0.6 - 0.2 x_1^{(k-1)} - 0.3 x_2^{(k-1)} \end{cases}$$

k	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	$\ \overrightarrow{X}^{(k)} - \overrightarrow{X}^{(k-1)}\ _{\infty}$
0	0,70000	-1,60000	0,60000	_
1	0,96000	-1,86000	0,94000	0,34000
2	0,97800	-1,98000	0,96600	0,12000
3	0,99940	-1,98880	0,99840	0,03240
4	0,99792	-1,99956	0,99676	0,01076
5	1,00024	-1,99894	1,00028	0,00352
6	0,99976	-2,00010	0,99963	0,00116
7	1,00006	-1,99988	1,00008	0,00045
8	0,99997	-2,00003	0,99995	0,00015
9	1,00001	-1,99998	1,00001	0,00006
10	1,00000	-2,00000	0,99999	0,00002
11	1,00000	-2,00000	1,00000	0,00001
12	1,00000	-2,00000	1,00000	< 0,00001

$$\begin{cases} x_1^{(k)} = 0, 7 - 0, 2x_2^{(k-1)} - 0, 1x_3^{(k-1)} \\ x_2^{(k)} = -1, 6 - 0, 2x_1^{(k-1)} - 0, 2x_3^{(k-1)} \\ x_3^{(k)} = 0, 6 - 0, 2x_1^{(k-1)} - 0, 3x_2^{(k-1)} \end{cases}$$

Método de Gauss-Seidel

Semelhante a Método JR:

$$\overrightarrow{Ax} = \overrightarrow{b} \implies (L^* + I + R^*)\overrightarrow{x} = \overrightarrow{b}^*$$

mas

$$(L^* + I)\overrightarrow{x} = -R^*\overrightarrow{x} + \overrightarrow{b}^*$$

$$\Rightarrow \overrightarrow{x} = -(L^* + I)^{-1}R^*\overrightarrow{x} + (L^* + I)^{-1}\overrightarrow{b}^*$$

$$\overrightarrow{x}^{(k+1)} = B\overrightarrow{x}^{(k)} + \overrightarrow{g}$$

$$B = -(L^* + I)^{-1}R^*; \quad \overrightarrow{g} = (L^* + I)^{-1}\overrightarrow{b}^*.$$

Método de Gauss-Seidel (cont.)

Dados valores iniciais
$$\overrightarrow{x}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)})^T$$
,
$$(L^* + I) \overrightarrow{x}^{(k+1)} = -R^* \overrightarrow{x}^{(k)} + \overrightarrow{b}^*$$

$$L^* \overrightarrow{x}^{(k+1)} + \overrightarrow{x}^{(k+1)} = -R^* \overrightarrow{x}^{(k)} + \overrightarrow{b}^*$$

$$\overrightarrow{x}^{(k+1)} = -I^* \overrightarrow{x}^{(k+1)} - R^* \overrightarrow{x}^{(k)} + \overrightarrow{b}^*$$

$$\begin{cases} x_1^{(k+1)} = & -a_{12}^* x_2^{(k)} - a_{13}^* x_3^{(k)} - \dots - a_{1n}^* x_n^{(k)} + b_1^* \\ x_2^{(k+1)} = -a_{21}^* x_1^{(k+1)} & -a_{23}^* x_3^{(k)} - \dots - a_{2n}^* x_n^{(k)} + b_2^* \\ & \vdots & \vdots & \vdots \\ x_n^{(k+1)} = -a_{n1}^* x_1^{(k+1)} - a_{n2}^* x_2^{(k+1)} - \dots - a_{n,n-1}^* x_{n-1}^{(k+1)} + b_n^* \end{cases}$$

Método de Gauss-Seidel (cont.)

Critérios de Convergência:

$$B = -(L^* + I)^{-1}R^*$$

 $||B|| < 1$

Critério de Sassenfeld:

se $\max_{1 \le i \le n} \beta_i < 1$, com

$$\beta_i = \sum_{j=1}^{i-1} |a_{ij}^*| \beta_j + \sum_{j=i+1}^{n} |a_{ij}^*|,$$

o método GS converge.