Modelos y Simulación

Resolución Ejercicio 2-a - Guía 3

El juego es el siguiente:

Se simula $U \sim U(0,1)$. Si $U < \frac{1}{2}$, se simulan $W_i \sim U(0,1)$ con i=1,2 y se define $X=W_1+W_2$. Si $U \geq \frac{1}{2}$, se simulan $W_i \sim U(0,1)$ con i=1,2,3 y se define $X=W_1+W_2+W_3$. Se gana el juego si $X \geq 1$.

Queremos calcular la probabilidad de ganar, es decir, $P(X \ge 1) = ?$.

Usando el teorema de probabilidad total, esta probabilidad se puede plantear de la siguiente manera:

$$P(X \ge 1) = P(X \ge 1 | X = W_1 + W_2).P(X = W_1 + W_2) + P(X \ge 1 | X = W_1 + W_2 + W_3).P(X = W_1 + W_2 + W_3)$$

$$= P(W_1 + W_2 \ge 1).P(U < 1/2) + P(W_1 + W_2 + W_3 \ge 1).P(U \ge 1/2)$$

$$= (1 - F_{W_1 + W_2}(1)).F_U(1/2) + (1 - F_{W_1 + W_2 + W_3}(1)).(1 - F_U(1/2))$$

Luego, nos interesa conocer $F_U(1/2)$, $F_{W_1+W_2}(1)$, $F_{W_1+W_2+W_3}(1)$.

- F_U ya la conocemos porque es la función de distribucuión acumulada de una variable que distribuye uniforme. Es decir, $F_U(x) = x$ cuando $x \in (0,1)$. Entonces como $1/2 \in (0,1)$, $F_U(\frac{1}{2}) = \frac{1}{2}$.
- $F_{W_1+W_2}(1) = \int_{-\infty}^1 f_{W_1+W_2}(x) dx$. Es decir, nos interesa conocer $f_{W_1+W_2}(x)$ cuando $-\infty < x \le 1$. Como W_1, W_2 son independientes, calcular $f_{W_1+W_2}$ es equivalente a realizar la convolución de las densidades marginales f_{W_1} y f_{W_2} . Luego,

$$f_{W_1+W_2}(x) = \int_{-\infty}^{\infty} f_{W_1}(t) f_{W_2}(x-t) dt$$

Aquí hay que destacar que para que $f_{W_1+W_2}(x) > 0$, debe ocurrir que $f_{W_1}(t) > 0$ y $f_{W_2}(x-t) > 0$; y esto ocurre si y sólo si t > 0 y x - t > 0, es decir, $\mathbf{0} < \mathbf{t}$ y $\mathbf{t} < \mathbf{x}$.

- Si $\boldsymbol{x} \leq \boldsymbol{0}$, entonces $t < x \leq 0$ y $f_{W_1}(t) = 0$. Luego, $f_{W_1 + W_2}(x) = 0$
- Si $\mathbf{0} < x \leq \mathbf{1}$, entonces 0 < t < x y resulta $f_{W_1}(t) = 1$ y $f_{W_2}(x-t) = 1$. Luego

$$f_{W_1 + W_2}(x) = \int_0^x 1 dt = x.$$

Por lo tanto, $F_{W_1+W_2}(1) = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1^2}{2} = \frac{1}{2}$.

• Análogamente, $F_{W_1+W_2+W_3}(1) = \int_{-\infty}^1 f_{W_1+W_2+W_3}(x) dx$. Es decir, nos interesa conocer $f_{W_1+W_2+W_3}(x)$ cuando $-\infty < x \le 1$.

Como W_1, W_2, W_3 son independientes, calcular $f_{(W_1+W_2)+W_3}$ es equivalente a realizar la convolución de las densidades marginales $f_{W_1+W_2}$ y f_{W_3} . Luego,

$$f_{(W_1+W_2)+W_3}(x) = \int_{-\infty}^{\infty} f_{W_1+W_2}(t) f_{W_3}(x-t) dt$$

Aquí hay que destacar que para que $f_{W_1+W_2+W_3}(x) > 0$, debe ocurrir que $f_{W_1+W_2}(t) > 0$ y $f_{W_3}(x-t) > 0$; y esto ocurre si y sólo si t > 0 y x-t > 0, es decir, 0 < t y t < x.

- Si
$$\boldsymbol{x} \leq \boldsymbol{0},$$
entonces $t < x \leq 0$ y $f_{W_1 + W_2}(t) = 0.$ Luego, $f_{W_1 + W_2 + W_3}(x) = 0$

- Si $\mathbf{0} < \boldsymbol{x} \leq \mathbf{1},$ entonces 0 < t < xy resulta $f_{W_1 + W_2}(t) = t$ y $f_{W_2}(x - t) = 1.$ Luego

$$f_{W_1+W_2+W_3}(x) = \int_0^x t dt = \frac{t^2}{2} \Big|_0^x = \frac{x^2}{2}.$$

Por lo tanto, $F_{W_1+W_2+W_3}(1) = \int_0^1 \frac{x^2}{2} dx = \frac{x^3}{6} \Big|_0^1 = \frac{1^3}{6} = \frac{1}{6}$.

Finalmente, la probabilidad que queremos calcular es

$$P(X \ge 1) = (1 - \frac{1}{2}) \cdot \frac{1}{2} + (1 - \frac{1}{6}) \cdot (1 - \frac{1}{2}) = \frac{2}{3}.$$