Newton Divided Differences

Recursive Divided Differences, for all i, j (common nodes in blue)

$$f[x_i, x_{i+1}, \cdots, x_j, x_{j+1}] = \frac{f[x_{i+1}, \cdots, x_j, x_{j+1}] - f[x_i, x_{i+1}, \cdots, x_j]}{x_{j+1} - x_i},$$

Newton Divided Differences

Recursive Divided Differences, for all i, j (common nodes in blue)

$$f[x_i, x_{i+1}, \cdots, x_j, x_{j+1}] = \frac{f[x_{i+1}, \cdots, x_j, x_{j+1}] - f[x_i, x_{i+1}, \cdots, x_j]}{x_{j+1} - x_i},$$

then in

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}),$$

we have

$$a_0 = f[x_0]$$
 $a_1 = f[x_0, x_1]$
 $a_2 = f[x_0, x_1, x_2]$
 \vdots
 \vdots
 $a_n = f[x_0, x_1, \dots, x_n]$

$$\begin{array}{ccc}
f[x_0] \\
f[x_1] & \uparrow & f[x_0, x_1]
\end{array}$$

$$f[x_2] \uparrow f[x_1, x_2] \uparrow f[x_0, x_1, x_2]$$

$$f[x_{n-2}] \uparrow f[x_{n-3}, x_{n-2}] \uparrow f[x_{n-4}, x_{n-3}, x_{n-2}] \uparrow \cdots$$
 $f[x_{n-1}] \uparrow f[x_{n-2}, x_{n-1}] \uparrow f[x_{n-3}, x_{n-2}, x_{n-1}] \uparrow \cdots$
 $f[x_n] \uparrow f[x_{n-1}, x_n] \uparrow f[x_{n-2}, x_{n-1}, x_n] \uparrow \cdots f[x_0, x_1, \cdots, x_n]$

$$f[x_{2}] \uparrow f[x_{1}, x_{2}] \uparrow f[x_{0}, x_{1}, x_{2}]$$

$$\vdots \qquad \ddots \qquad \vdots$$

$$f[x_{n-2}] \uparrow f[x_{n-3}, x_{n-2}] \uparrow f[x_{n-4}, x_{n-3}, x_{n-2}] \uparrow \cdots$$

$$f[x_{n-1}] \uparrow f[x_{n-2}, x_{n-1}] \uparrow f[x_{n-3}, x_{n-2}, x_{n-1}] \uparrow \cdots$$

$$f[x_{n}] \uparrow f[x_{n-1}, x_{n}] \uparrow f[x_{n-2}, x_{n-1}, x_{n}] \uparrow \cdots f[x_{0}, x_{1}, \cdots, x_{n}]$$

$$\blacktriangleright \text{ storage (with memory re-use): output is } F_{0}, F_{1}, \cdots, F_{n}$$

$$f[x_{0}] \stackrel{def}{=} F_{0}$$

$$f[x_{1}] \leftarrow f[x_{0}, x_{1}] \stackrel{def}{=} F_{1}$$

 $f[x_2] \leftarrow f[x_1, x_2] \leftarrow |f[x_0, x_1, x_2] \stackrel{\text{def}}{=} F_2|$

computation flow

 $f[x_1] \uparrow f[x_0, x_1]$

 $f[x_0]$

$$P(x) = F_0 + F_1(x - x_0) + F_2 \cdot (x - x_0)(x - x_1) + \cdots + F_n \cdot (x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$P(x) = F_0 + F_1(x - x_0) + F_2 \cdot (x - x_0)(x - x_1) + \cdots + F_n \cdot (x - x_0)(x - x_1) \cdots (x - x_{n-1}) = F_0 + (x - x_0) \cdot (F_1 + (x - x_1) \cdot (F_2 + \cdots (F_{n-1} + (x - x_{n-1}) \cdot F_n)))$$

$$P(x) = F_0 + F_1(x - x_0) + F_2 \cdot (x - x_0)(x - x_1) + \cdots + F_n \cdot (x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$= F_0 + (x - x_0) \cdot (F_1 + (x - x_1) \cdot (F_2 + \cdots (F_{n-1} + (x - x_{n-1}) \cdot F_n)))$$

$$ightharpoonup f = F_n$$

$$P(x) = F_0 + F_1(x - x_0) + F_2 \cdot (x - x_0)(x - x_1) + \cdots + F_n \cdot (x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$= F_0 + (x - x_0) \cdot (F_1 + (x - x_1) \cdot (F_2 + \cdots (F_{n-1} + (x - x_{n-1}) \cdot F_n)))$$

$$ightharpoonup f = F_n$$

▶ **for**
$$i = n - 1, \dots, 1, 0$$

$$f = F_i + (x - x_i) \cdot f.$$

Output f = P(x).

Interpolation via NDD

```
function f = EvaluateNDD(xnew,x,F)
%
This function evaluates the interpolating polynomial given
% point xnew, nodes x, and NDF coefficients F
%
n = length(x);
m = length(xnew);
f = F(n)*ones(m,1);
for k=n-1:-1:1
f = F(k) + f .* (xnew_x(k));
end
```

Polynomial Interpolation: Experiments:

▶ Easy function: $f(x) = e^x$ on [-1,1]. $|f^{(n)}(\xi)| \le e$ for all $\xi \in (-1,1)$.

7 nodal points (n = 6) random x points.

Divided difference coefficients for e^x on [-1,1]

Polynomial Interpolation: Experiments:

- ▶ Hardest function: $f(x) = \frac{1}{0.2+x^2}$ on [-1,1].
 - $|f^{(n)}(\xi)|$ can be very large for some $\xi \in (-1,1)$.
- random x points.

21 nodal points (n = 20) random x points.

Divided difference coefficients for e^x on [-1,1]

Finite Differences

Variation: Forward Differences

Let
$$x_1 = x_0 + h$$
, $x_2 = x_0 + 2h$

$$f[x_0, x_1] = f[x_0, x_0 + h] = \frac{f(x_0 + h) - f(x_0)}{h} \text{ (first order FD)},$$

$$f[x_0, x_1, x_2] = f[x_0, x_0 + h, x_0 + 2h] = \frac{f[x_1, x_2] - f[x_0, x_1]}{2h}$$

$$= \frac{f(x_2) + f(x_0) - 2f(x_1)}{2h^2} \text{ (second order FD)}$$

Variation: Forward Differences

Variation: Backward Differences

Let
$$x_{n-1} = x_n - h$$
, $x_{n-2} = x_n - 2h$

$$f[x_{n-1}, x_n] = f[x_n - h, x_n] = \frac{f(x_n) - f(x_n - h)}{h}$$
 (1st order BD),

$$f[x_{n-2}, x_{n-1}, x_n] = f[x_n - 2h, x_n - h, x_n]$$

$$= \frac{f[x_n - h, x_n] - f[x_n - 2h, x_n - h]}{2h}$$

$$= \frac{f(x_n) + f(x_{n-2}) - 2f(x_{n-1})}{2h^2}$$
 (2nd order BD)

Variation: Backward Differences

Let
$$x_{n-1} = x_n - h$$
, $x_{n-2} = x_n - 2h$

$$f[x_{n-1}, x_n] = f[x_n - h, x_n] = \frac{f(x_n) - f(x_n - h)}{h}$$
 (1st order BD),

$$f[x_{n-2}, x_{n-1}, x_n] = f[x_n - 2h, x_n - h, x_n]$$

$$= \frac{f[x_n - h, x_n] - f[x_n - 2h, x_n - h]}{2h}$$

$$= \frac{f(x_n) + f(x_{n-2}) - 2f(x_{n-1})}{2h^2}$$
 (2nd order BD)

```
>> x=0;h=0.1;x1=x-h;x2=x-2*h;

>> f1=(exp(x)-exp(x1))/h;

>> f2 = (exp(x2)+exp(x)-2*exp(x1))/(2*h^2);

>> f=exp(x);

>> [f f1 f2]

ans =

1.00000 0.95163 0.45280
```

§3.4 Double nodes: linear interpolation

► Given 2 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1))$$

▶ Interpolating polynomial of degree ≤ 1

$$P(x) = a_0 + a_1(x - x_0)$$

with $P(x_0) = f(x_0), P(x_1) = f(x_1),$

Where

$$a_0 = f(x_0), \quad a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

§3.4 Double nodes: linear interpolation

► Given 2 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1))$$

lnterpolating polynomial of degree ≤ 1

$$P(x) = a_0 + a_1(x - x_0)$$

with $P(x_0) = f(x_0), P(x_1) = f(x_1),$

Where

$$a_0 = f(x_0), \quad a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

Now let $x_1 \to x_0$, we obtain $a_1 \stackrel{def}{=} f[x_0, x_0] = f'(x_0)$.

$$P(x) = a_0 + a_1(x - x_0),$$

Interpolating polynomial now satisfies

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0).$$

Double nodes: quadratic interpolation

► Given 3 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)),$$

► Interpolating polynomial of degree ≤ 2

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1),$$

where we have

$$a_0 = f[x_0], a_1 = f[x_0, x_1], a_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}.$$

Double nodes: quadratic interpolation

► Given 3 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)),$$

► Interpolating polynomial of degree < 2

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1),$$

where we have

$$a_0 = f[x_0], a_1 = f[x_0, x_1], a_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}.$$

Now let $x_2 \rightarrow x_1$, we obtain single node x_0 , double node x_1 :

$$f[x_1, x_1] = f'(x_1),$$

$$a_2 = f[x_0, x_1, x_1] \stackrel{def}{=} \frac{f[x_1, x_1] - f[x_0, x_1]}{x_1 - x_0} = \frac{f'(x_1) - f[x_0, x_1]}{x_1 - x_0}.$$

Interpolating polynomial now satisfies

$$P(x_0) = f(x_0), P(x_1) = f(x_1) P'(x_1) = f'(x_1).$$

Double nodes twice: cubic interpolation (I)

► Given 4 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)),$$

► Interpolating polynomial of degree ≤ 3

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2).$$

where
$$a_0 = f[x_0],$$

 $a_1 = f[x_0, x_1]$
 $a_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
 $a_3 = f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}.$

Double nodes twice: cubic interpolation (II)

Let $x_1 \rightarrow x_0$, and $x_3 \rightarrow x_2$. It follows that

$$a_{0} = f[x_{0}]$$

$$a_{1} = f[x_{0}, x_{0}] = f'(x_{0})$$

$$a_{2} = f[x_{0}, x_{0}, x_{2}] = \frac{f[x_{0}, x_{2}] - f[x_{0}, x_{0}]}{x_{2} - x_{0}} = \frac{f[x_{0}, x_{2}] - f'(x_{0})}{x_{2} - x_{0}}$$

$$f[x_{0}, x_{2}, x_{2}] = \frac{f[x_{2}, x_{2}] - f[x_{2}, x_{0}]}{x_{2} - x_{0}} = \frac{f'(x_{2}) - f[x_{0}, x_{2}]}{x_{2} - x_{0}}$$

$$a_{3} = f[x_{0}, x_{0}, x_{2}, x_{2}] = \frac{f[x_{0}, x_{2}, x_{2}] - f[x_{0}, x_{0}, x_{2}]}{x_{2} - x_{0}}.$$

This is a Hermite interpolation:

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^2(x - x_2)$$

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), P(x_2) = f(x_2), P'(x_2) = f'(x_2).$$

- ▶ Given n+1 distinct points
- $(x_0, f(x_0), f'(x_0)), (x_1, f(x_1), f'(x_1)), \cdots, (x_n, f(x_n))$
 - ► Interpolating polynomial H(x) of degree < 2n + 1 with

$$H(x_0) = f(x_0), H'(x_0) = f'(x_0),$$

 $H(x_1) = f(x_1), H'(x_1) = f'(x_1),$
:

$$H(x_n) = f(x_n), H'(x_n) = f'(x_n).$$

ightharpoonup 2n+2 conditions, 2n+2 coefficients in H(x).

Divided differences: double node version

▶ Given m+1 distinct points (m=2 n-1)

$$(z_0, f(z_0)), (z_1, f(z_1)), \cdots, (z_m, f(z_m)),$$

▶ Interpolating polynomial of degree $\leq m = 2n - 1$

with
$$P(x) = a_0 + a_1(x - z_0) + a_2(x - z_0)(x - z_1) + \cdots + a_m(x - z_0)(x - z_1) \cdots (x - z_{m-1}),$$

satisfying $P(z_0) = f(z_0), P(z_1) = f(z_1), \cdots, P(z_m) = f(z_m).$

Coefficients satisfy

$$a_j = f[z_0, z_1, \dots, z_j], \text{ for } j = 0, 1, \dots, m = 2n - 1.$$

Make each node a double node:

$$z_j \longrightarrow x_{\lfloor j/2 \rfloor}$$
 for $j = 0, 1, \dots, 2n - 1$.

Review: Newton Divided Difference Table						
zi	$f[z_i]$	$f[z_{i-1},z_i]$	$f[z_{i-2},z_{i-1},z_i]$	• • •	$f[z_0,z_1,\cdots]$, z ₇]
<i>z</i> ₀	$f[z_0] \stackrel{def}{=} a_0$					
		$f[z_0, z_1] \stackrel{\text{def}}{=} a_1$				
z_1	$f[z_1]$		$f[z_0,z_1,z_2] \stackrel{\text{def}}{=} a_2$			
	cr 1	$f[z_1,z_2]$	cr 1			
<i>z</i> ₂	$f[z_2]$	$f[z_2,z_3]$	$f[z_1,z_2,z_3]$			
<i>Z</i> 3	$f[z_3]$, [22, 23]	$f[z_2, z_3, z_4]$			
		$f[z_3,z_4]$	• , •,			
<i>Z</i> 4	$f[z_4]$		$f[z_3,z_4,z_5]$	$\cdots f[z_0]$	$[0, z_1, \cdots, z_7]$	$\stackrel{def}{=} a_7$
	cr 1	$f[z_4,z_5]$	cr 1			
<i>Z</i> 5	$f[z_5]$	$f[z_5, z_6]$	$f[z_4,z_5,z_6]$			
<i>z</i> ₆	$f[z_6]$	7 [25, 26]	$f[z_5, z_6, z_7]$			
	. 01	$f[z_6, z_7]$	[3, 3, 1]			
<i>Z</i> 7	$f[z_7]$					

$f[z_{i-2}, z_{i-1}, z_i] \quad \cdots \quad f[z_0, z_1, \cdots, z_7]$ $f[x_i]$ $f[z_{i-1},z_i]$ x_0 $f[x_0] \stackrel{\text{def}}{=} a_0$

Double nodes, m = 2n + 1, $x_i = z_{|i/2|}$, $f[x_i, x_i] = f'(x_i)$

 $f[x_0, x_0] \stackrel{\text{def}}{=} f'(x_0) \stackrel{\text{def}}{=} a_1$ $f[x_0, x_0, x_1] \stackrel{\text{def}}{=} a_2$ $f[x_0]$ x_0 $f[x_0, x_1]$ $f[x_1]$ $f[x_0, x_1, x_1]$ x_1

 $f[x_1, x_1] \stackrel{\text{def}}{=} f'(x_1)$ $f[x_1]$ $f[x_1, x_1, x_2]$

 X_1 $f[x_1, x_2]$ $f[x_1, x_2, x_2]$ \cdots $f[x_0, x_0, \cdots, x_3]$ X_2

 $f[x_2]$ $f[x_2,x_2] \stackrel{\text{def}}{=} f'(x_2)$

 $f[x_2]$ $f[x_2, x_2, x_3]$ X_2

 $f[x_2, x_3]$

 $f[x_3]$ $f[x_2, x_3, x_3]$ *X*3

 $f[x_3, x_3] \stackrel{\text{def}}{=} f'(x_3)$

*X*3

 $f[x_3]$

Newton Divided Differences for Hermite Interpolation

```
function F = NDD2(x,f,df)
% This function implements Newton's Divided Difference Algorithm
% for Hermite Interpolation, f is the vector of function values
% and df vector of derivatives.
% Updated by Ming Gu for Math 128A. Spring 2015
N = length(x);
x = x(:);
xx = reshape(repmat(x',2,1),2*N,1);
f = f(:);
df= df(:);
F = reshape(repmat(f',2,1),2*N,1);
NN = N * 2:
F(2*(1:N))
F(1+2*(1:N-1)) = (f(2:N)-f(1:N-1)) \cdot /(x(2:N)-x(1:N-1))
for k=3:2*N
    for j = 2*N:-1:k
       F(j) = (F(j)-F(j-1))/(xx(j)-xx(j-k+1));
```

Newton Divided Differences for Hermite Interpolation

```
## function F = NDD2(x,f,df)
%
% This function implements Newton's Divided Difference Algorithm
% for Hermite Interpolation. f is the vector of function values
% and df vector of derivatives.
% Updated by Ming Gu for Math 128A, Spring 2015
%
N = Length(x);
x = x(:);
x = reshape(repmat(x',2,1),2+N,1);
f = f(i);
df= df(i);
df= df(i);
N = N = 2;
F(2+(1:N)) = df;
F(1+2+(1:N)) = df;
F(1+2+(1:N)) = (f(2:N)-f(1:N-1))./(x(2:N)-x(1:N-1));
for ks3:2+N
for j = 2+N:-1:k
F(j) = (F(j)-F(j-1))/(xx(j)-xx(j-k+1));
end
```

Evaluate Hermite Polynomial given coefficients

```
function f = EvaluateNDD2(xnew,x,F)
%
% This function evaluates the Hermite interpolating polynomial given
% point xnew, nodes x, and NDF coefficients F
%
n = length(x);
m = length(xnew);
f = F(2*)**ones(m,1);
z = kron(x(:),ones(2,1));
for k=2*n-1:-1:1
f = F(k) + f .* (xnew-z(k));
end
```


Hermite Interpolation on e^x on [-1,1]

Coefficients a_j for Hermite Interpolation

Hermite Interpolation on

$$\frac{1}{0.2+x^2}$$
 on $[-1,1]$

Hermite Interpolation on $\frac{1}{0.2+x^2}$ on [-1,1]

Coefficients a_j for Hermite Interpolation

Hermite Interpolation, Alternative form

▶ Given n + 1 distinct points

$$(x_0, f(x_0), f'(x_0)), (x_1, f(x_1), f'(x_1)), \cdots, (x_n, f(x_n), f'(x_n)),$$

▶ Interpolating polynomial H(x) of degree $\leq 2n + 1$ with

$$H(x_0) = f(x_0), H'(x_0) = f'(x_0),$$

 $H(x_1) = f(x_1), H'(x_1) = f'(x_1),$
 $\vdots \qquad \vdots$
 $H(x_n) = f(x_n), H'(x_n) = f'(x_n).$

ightharpoonup Alternative H(x) form

$$H(x) = \sum_{j=0}^{n} f(x_j) H_j(x) + \sum_{j=0}^{n} f'(x_j) \widehat{H}_j(x), \text{ where}$$

$$H_i(x) = (1 - 2(x - x_i)L_i'(x_i)) L_i^2(x), \quad \widehat{H}_i(x) = (x - x_i)L_i^2(x),$$

with $L_j(x) = \prod_{i \neq j} \frac{x - x_i}{x_i - x_i}$.

Hermite Interpolation Error

Theorem: Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval [a, b] and $f \in C^{2n+2}[a, b]$. Then, for each $x \in [a, b]$, a number $\xi(x)$ between x_0, x_1, \dots, x_n (hence $\xi(a, b)$) exists with

$$f(x) = H(x) + \frac{f^{(2n+2)}(\xi(x))}{(2n+2)!} (x-x_0)^2 (x-x_1)^2 \cdots (x-x_n)^2,$$

where H(x) is the interpolating polynomial.

Hermite Interpolation Error: Proof

If $x = x_0, x_1, \dots, x_n$, then error = 0 and theorem is true. Now let x be not equal to any node. Define function g for $t \in [a, b]$

$$g(t) \stackrel{\text{def}}{=} (f(t) - H(t)) - (f(x) - H(x)) \frac{(t - x_0)^2 (t - x_1)^2 \cdots (t - x_n)^2}{(x - x_0)^2 (x - x_1)^2 \cdots (x - x_n)^2}$$

$$= (f(t) - H(t)) - (f(x) - H(x)) \prod_{i=0}^{n} \frac{(t - x_i)^2}{(x - x_i)^2} \in C^{2n+2}[a, b].$$

Then g(t) vanishes at n+2 distinct points:

$$g(x) = 0$$
, $g(x_k) = 0$, for $k = 0, 1, \dots, n$.

and g'(t) vanishes at n+1 distinct points:

$$g'(x_k) = 0$$
, for $k = 0, 1, \dots, n$.

There must be a ξ between x and nodal points such that

$$g^{(2n+2)}(\xi)=0.$$

Hermite Interpolation Error: Proof

Since

$$g^{(2n+2)}(\xi) = (f(t) - H(t))^{(2n+2)} |_{t=\xi} - (f(x) - H(x)) \left(\prod_{j=0}^{n} \frac{(t-x_j)^2}{(x-x_j)^2} \right)^{(2n+2)} |_{\xi}$$

$$= f^{(2n+2)}(\xi) - (f(x) - H(x)) \frac{(2n+2)!}{\prod_{j=0}^{n} (x-x_j)^2}$$

$$= 0$$

Therefore

$$f(x) = H(x) + \frac{f^{(2n+2)}(\xi(x))}{(2n+2)!} (x-x_0)^2 (x-x_1)^2 \cdots (x-x_n)^2,$$

Hermite interpolation not good enough

- For small *n*: some approximation, but error not small enough
- For large *n*: may not be any approximation

§3.5 A Car Wrapped in Splines

§3.5 A Car Wrapped in Splines

Carl de Boor: The book about Splines

Carl de Boor

Carl-Wilhelm Reinhold de Boor

Born	3 December 1937 (age 79) Stolp, Germany (present-day Słupsk, Poland) Mathematics (Numerical analysis)							
Institutions	Purdue University University of Wisconsin– Madison University of Washington							
Alma mater	University of Michigan							
Notable awards	John von Neumann Prize (1996) National Medal of Science (2003)							

The Splines Idea

Given n+1 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)),$$

Find cubic spline interpolant S(x):

• for
$$x \in [x_j, x_{j+1}], \ j = 0, 1, \dots, \underline{n-1},$$

$$S(x) = S_j(x) \stackrel{\text{def}}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

(S(x) piece-wise cubic: 4 n unknowns)

The Splines Idea

Given n+1 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)),$$

Find cubic spline interpolant S(x):

• for
$$x \in [x_j, x_{j+1}], \ j = 0, 1, \dots, \underline{n-1},$$

$$S(x) = S_j(x) \stackrel{\text{def}}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

(S(x) piece-wise cubic: 4 n unknowns)

$$S(x_j) = f(x_j) \ j = 0, 1, \dots, \underline{n}.$$

$$(S(x) = f(x) \text{ all nodes: } n+1 \text{ conditions})$$

The Splines Idea

Given n + 1 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)),$$

Find cubic spline interpolant S(x):

• for
$$x \in [x_i, x_{i+1}], j = 0, 1, \dots, n-1,$$

$$(S(x))$$
 piece-wise cubic: $4 n$ unknowns)

 $S(x) = S_i(x) \stackrel{\text{def}}{=} a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$.

S(
$$x_j$$
) = $f(x_j)$ $j = 0, 1, \dots, \underline{n}$.
($S(x) = f(x)$ all nodes: $n + 1$ conditions)

►
$$S(x) \in C^2[x_0, x_n]$$
 (smooth-enough: $3(n-1)$ conditions)

▶
$$4 n$$
 unknowns vs. $4 n - 2$ conditions so far.

For
$$x \in [x_j, x_{j+1}], \ j = 0, 1, \dots, n-1,$$

$$S(x) = S_j(x) \stackrel{\text{def}}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

▶ for
$$j = 0, 1, \dots, n-1 : a_j = S_j(x_j) = f(x_j)$$

For
$$x \in [x_j, x_{j+1}], j = 0, 1, \dots, n-1,$$

$$S(x) = S_j(x) \stackrel{def}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- ▶ for $j = 0, 1, \dots, n-1 : a_j = S_j(x_j) = f(x_j)$
- let $a_n = f(x_n)$, and let $h_j = x_{j+1} x_j$.
- for $j = 0, 1, \dots, n 1$,

$$a_{j+1} = S_{j+1}(x_{j+1}) = S_j(x_{j+1}) = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
$$b_j + c_j h_j + d_j h_j^2 = \frac{a_{j+1} - a_j}{h_j}. \qquad (\ell_{\underline{0}})$$

 $S(x) \in C^{\underline{0}}[x_0, x_n]$ (3 *n* unknowns, *n* conditions)

and
$$S(x_j) = f(x_j)$$
, for $j = 0, 1, \dots, n - 1, n$.

For
$$x \in [x_i, x_{i+1}], j = 0, 1, \dots, n-1,$$

$$S_{j}(x) = a_{j} + b_{j}(x - x_{j}) + c_{j}(x - x_{j})^{2} + d_{j}(x - x_{j})^{3}$$

$$\Rightarrow S'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2}$$

▶ Define $b_n \stackrel{def}{=} S'_{n-1}(x_n)$ (artificial new unknown)

For
$$x \in [x_i, x_{i+1}], j = 0, 1, \dots, n-1,$$

$$S_{j}(x) = a_{j} + b_{j}(x - x_{j}) + c_{j}(x - x_{j})^{2} + d_{j}(x - x_{j})^{3}$$

$$\Rightarrow S'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2}$$

- ▶ Define $b_n \stackrel{def}{=} S'_{n-1}(x_n)$ (artificial new unknown)
- For $j = 0, \dots, n-1,$ $b_{j+1} = S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1}) = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2}(\ell_{\underline{1}})$
- Ensures $S(x) \in C^{1}[x_0, x_n]$ (with 3n + 1 unknowns, n additional conditions)

$$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}), \text{ for } j = 0, 1, \dots, n-1.$$

For
$$x \in [x_i, x_{i+1}], j = 0, 1, \dots, n-1,$$

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

 $S_i''(x) = 2c_j + 6d_j(x - x_j)$

▶ Define $c_n = S''_{n-1}(x_n)/2$ (second **artificial** new unknown)

For
$$x \in [x_j, x_{j+1}], \ j = 0, 1, \dots, n-1,$$

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

 $S_j''(x) = 2c_j + 6d_j(x - x_j)$

- ▶ Define $c_n = S''_{n-1}(x_n)/2$ (second **artificial** new unknown)
- For $j = 0, \dots, n-1$, $2c_{j+1} = S''_{j+1}(x_{j+1}) = S''_j(x_{j+1}) = 2c_j + 6d_jh_j. \qquad (\ell_2)$
- ► Ensures $S(x) \in C^2[x_0, x_n]$ (with 3n + 2 unknowns, 3n conditions)

For
$$x \in [x_i, x_{i+1}], j = 0, 1, \dots, n-1,$$

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

 $S_j''(x) = 2c_j + 6d_j(x - x_j)$

- ▶ Define $c_n = S''_{n-1}(x_n)/2$ (second **artificial** new unknown)
- For $j = 0, \dots, n-1,$ $2c_{j+1} = S''_{j+1}(x_{j+1}) = S''_j(x_{j+1}) = 2c_j + 6d_jh_j. \qquad (\ell_{\underline{2}})$
- Ensures $S(x) \in C^2[x_0, x_n]$ (with 3n + 2 unknowns, 3n conditions)

$$b_j + c_j h_j + d_j h_j^2 = \frac{a_{j+1} - a_j}{h_j}$$
 (ℓ_0)

$$b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2$$
 $(\ell_{\underline{1}})$

$$2c_{j+1} = 2c_j + 6d_jh_j. \qquad (\ell_{\underline{2}})$$

For $x \in [x_i, x_{i+1}], i = 0, 1, \dots, n-1$,

- $S_i(x) = a_i + b_i(x x_i) + c_i(x x_i)^2 + d_i(x x_i)^3$
- ▶ Define $c_n = S''_{n-1}(x_n)/2$ (second **artificial** new unknown)
- ightharpoonup For $j=0,\cdots,n-1$,
 - $2c_{i+1} = S''_{i+1}(x_{i+1}) = S''_i(x_{i+1}) = 2c_i + 6d_ih_i.$
- ► Ensures $S(x) \in C^2[x_0, x_n]$ (with 3n + 2unknowns, 3 n conditions)

$$b_{j} + c_{j}h_{j} + d_{j}h_{j}^{2} = \frac{a_{j+1} - a_{j}}{h_{j}} \qquad (\ell_{\underline{0}})$$

$$b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \qquad (\ell_{1})$$

$$2c_{j+1} = 2c_j + 6d_jh_j. \qquad (\ell_{\underline{2}})$$

Next: solve for d_i in (ℓ_2) and b_i in (ℓ_0)

 (ℓ_2)

$$b_{j} + c_{j}h_{j} + d_{j}h_{j}^{2} = \frac{a_{j+1} - a_{j}}{h_{j}}, \quad j = 0, \dots, n-1, \quad (\ell_{\underline{0}})$$

$$b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \qquad (\ell_{\underline{1}})$$

$$2c_{j+1} = 2c_{j} + 6d_{j}h_{j}. \qquad (\ell_{\underline{2}})$$

$$\begin{array}{rcl} b_{j+1} &=& b_j + 2c_j n_j + 3d_j n_j^{-} & (\ell_{\underline{1}}) \\ 2c_{j+1} &=& 2c_j + 6d_j h_j. & (\ell_{\underline{2}}) \end{array}$$

$$\boxed{\text{Solve for } d_j \mid (\ell_{\underline{2}}) : \qquad 2c_{j+1} = 2c_j + 6d_j h_j, \quad \Rightarrow \quad d_j = \frac{c_{j+1} - c_j}{3h_j} \quad (\widehat{\ell}_2)}$$

$$\begin{array}{rcl} b_{j+1} & = & b_j + 2c_jh_j + 3d_jh_j^2 & (\ell_{\underline{1}}) \\ 2c_{j+1} & = & 2c_j + 6d_jh_j. & (\ell_{\underline{2}}) \\ \hline \text{Solve for } d_j \end{array} (\ell_{\underline{2}}): & 2c_{j+1} = 2c_j + 6d_jh_j, \quad \Rightarrow \quad d_j = \frac{c_{j+1} - c_j}{3h_j} \quad (\widehat{\ell}_2) \\ \hline \\ \hline \text{Solve for } b_j: \quad b_j + c_jh_j + d_jh_j^2 = \frac{a_{j+1} - a_j}{h_i}, \quad \stackrel{(\widehat{\ell}_2)}{\Longrightarrow} \quad b_j = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_i} \quad (\widehat{\ell}_0) \end{array}$$

$$b_{j} + c_{j}h_{j} + d_{j}h_{j}^{2} = \frac{a_{j+1} - a_{j}}{h_{j}}, \quad j = 0, \dots, n-1, \quad (\ell_{\underline{0}})$$

$$b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \qquad (\ell_{\underline{1}})$$

$$2c_{j+1} = 2c_{j} + 6d_{j}h_{j}. \qquad (\ell_{\underline{2}})$$

$$\begin{array}{rcl} b_{j+1} &=& b_j+2c_jh_j+3d_jh_j^2 & \left(\ell_{\underline{1}}\right) \\ 2c_{j+1} &=& 2c_j+6d_jh_j. & \left(\ell_{\underline{2}}\right) \end{array}$$
 Solve for d_j $\left(\ell_{\underline{2}}\right)$:
$$2c_{j+1}=2c_j+6d_jh_j, \quad \Rightarrow \quad d_j=\frac{c_{j+1}-c_j}{3h_i} \quad (\widehat{\ell}_2)$$

Solve for
$$b_j$$
: $b_j + c_j h_j + d_j h_j^2 = \frac{a_{j+1} - a_j}{h_j}$, $\stackrel{(\widehat{\ell}_2)}{\Longrightarrow} b_j = -\frac{h_j}{3} (2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_j} (\widehat{\ell}_0)$
Get rid of d_j in $(\ell_{\underline{1}})$: $b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$, $\stackrel{(\widehat{\ell}_2)}{\Longrightarrow} b_{j+1} = b_j + h_j (c_j + c_{j+1}) (\widehat{\ell}_1)$

$$b_{j} + c_{j}h_{j} + d_{j}h_{j}^{2} = \frac{a_{j+1} - a_{j}}{h_{j}}, \quad j = 0, \dots, n-1, \quad (\ell_{\underline{0}})$$

$$b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \qquad (\ell_{\underline{1}})$$

$$2c_{j+1} = 2c_{j} + 6d_{j}h_{j}. \qquad (\ell_{\underline{2}})$$

$$2c_{j+1} = 2c_j + 2c_j h_j + 3c_j h_j \qquad (e_{\underline{1}})$$

$$2c_{j+1} = 2c_j + 6d_j h_j. \qquad (\ell_{\underline{2}})$$

$$\boxed{\text{Solve for } d_j \mid (\ell_{\underline{2}}) : \qquad 2c_{j+1} = 2c_j + 6d_j h_j, \quad \Rightarrow \quad d_j = \frac{c_{j+1} - c_j}{3h_j} \quad (\widehat{\ell_2})$$

Solve for
$$d_j$$
 (ℓ_2) : $2c_{j+1} = 2c_j + 6d_jh_j$, $\Rightarrow d_j = \frac{c_{j+1} - c_j}{3h_j}$ $(\widehat{\ell}_2)$

Solve for b_j : $b_j + c_jh_j + d_jh_j^2 = \frac{a_{j+1} - a_j}{h_j}$, $\xrightarrow{\widehat{\ell}_2}$ $b_j = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_j}$ $(\widehat{\ell}_0)$

Get rid of
$$d_j$$
 in $(\ell_{\underline{1}})$: $b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2$, $\xrightarrow{(\widehat{\ell}_2)}$ $b_{j+1} = b_j + h_j(c_j + c_{j+1})$ $(\widehat{\ell}_1)$

$$(\widehat{\ell}_1) - \frac{h_{j+1}}{3}(2c_{j+1} + c_{j+2}) + \frac{a_{j+2} - a_{j+1}}{h_{j+1}} = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_i} + h_j(c_j + c_{j+1})$$

Solve for
$$d_j$$
 (ℓ_2) : $2c_{j+1} = 2c_j + 6d_jh_j$, $\Rightarrow d_j = \frac{c_{j+1} - 1}{3h_j}$
Solve for b_j : $b_j + c_jh_j + d_jh_j^2 = \frac{a_{j+1} - a_j}{h_j}$, $\stackrel{(\widehat{\ell_2})}{\Longrightarrow} b_j = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{\widehat{\ell_2}}{3}$

the Spinies Equations (IV). Solving for
$$d_j$$
 and D_j
$$b_j + c_j h_j + d_j h_j^2 = \frac{a_{j+1} - a_j}{h_j}, \quad j = 0, \cdots, n-1, \ (\ell_{\underline{0}})$$

$$b_{j} + c_{j}h_{j} + d_{j}h_{j}^{2} = \frac{a_{j+1} - a_{j}}{h_{j}}, \quad j = 0, \dots, n-1, \quad (\ell_{\underline{0}})$$

$$b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \qquad (\ell_{\underline{1}})$$

$$2c_{j+1} = 2c_{j} + 6d_{j}h_{j}. \qquad (\ell_{\underline{2}})$$

$$2c_{j+1} = 2c_j + 6d_jh_j. \qquad (\ell_2)$$

$$\boxed{\text{Solve for } d_j \mid (\ell_2) : \quad 2c_{j+1} = 2c_j + 6d_jh_j, \quad \Rightarrow \quad d_j = \frac{c_{j+1} - c_j}{3h_j}$$

Get rid of
$$d_j$$
 in $(\ell_{\underline{1}})$: $b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$, $\Longrightarrow b_{j+1} = b_j + h_j (c_j + c_{j+1}) (\widehat{\ell}_1)$

$$(\widehat{\ell}_1) - \frac{h_{j+1}}{3} (2c_{j+1} + c_{j+2}) + \frac{a_{j+2} - a_{j+1}}{h_{i+1}} = -\frac{h_j}{3} (2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_i} + h_j (c_j + c_{j+1})$$

Solve for b_j : $b_j + c_j h_j + d_j h_j^2 = \frac{a_{j+1} - a_j}{h_i}$, $\stackrel{(\widehat{\ell}_2)}{\Longrightarrow} b_j = -\frac{h_j}{3} (2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_i} (\widehat{\ell}_0)$

Final equation only for $j=1,\cdots,n-1,$ simplifies to

Solve for d_j $(\ell_{\underline{2}})$: $2c_{j+1} = 2c_j + 6d_jh_j$, \Rightarrow $d_j = \frac{c_{j+1} - c_j}{3h_i}$ $(\widehat{\ell}_2)$

 $h_{j-1} c_{j-1} + 2(h_{j-1} + h_j) c_j + h_j c_{j+1} = 3 \left(\frac{a_{j+1} - a_j}{h_i} - \frac{a_j - a_{j-1}}{h_{i-1}} \right).$

Final equations, for $j = 1, \dots, n-1$:

$$h_{j-1} c_{j-1} + 2(h_{j-1} + h_j) c_j + h_j c_{j+1} = 3 \left(\frac{a_{j+1} - a_j}{h_i} - \frac{a_j - a_{j-1}}{h_{j-1}} \right).$$

n-1 equations with n+1 unknowns.

Final equations, for $j = 1, \dots, n-1$:

$$h_{j-1} c_{j-1} + 2(h_{j-1} + h_j) c_j + h_j c_{j+1} = 3 \left(\frac{a_{j+1} - a_j}{h_j} - \frac{a_j - a_{j-1}}{h_{j-1}} \right).$$

n-1 equations with n+1 unknowns.

Under-defined problem. Need two additional conditions

Final equations, for $j = 1, \dots, n-1$:

 $h_{j-1} c_{j-1} + 2(h_{j-1} + h_j) c_j + h_j c_{j+1} = 3 \left(\frac{a_{j+1} - a_j}{h_i} - \frac{a_j - a_{j-1}}{h_{i-1}} \right).$

$$n-1$$
 equations with $n+1$ unknowns.

Under-defined problem. Need two additional conditions

Special case, **Natural Splines**.
$$S_0(x_0) = S_{n-1}$$

$$ightharpoonup c_0 = S_0''(x_0)/2 = 0, \ c_n = S_{n-1}''(x_n)/2 = 0.$$

$$2(h_0+h_1)c_1+h_1c_2=3\left(\frac{a_2-a_1}{h_1}-\frac{a_1-a_0}{h_0}\right),$$

$$h_{j-1}c_{j-1}+2(h_{j-1}+h_j)c_j+h_jc_{j+1}=3\left(\frac{a_{j+1}-a_j}{h_i}-\frac{a_j-a_{j-1}}{h_{i-1}}\right), 2\leq j\leq n-3,$$

 $h_{n-2} c_{n-2} + 2(h_{n-2} + h_{n-1}) c_{n-1} = 3 \left(\frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}} \right)$

▶
$$n-1$$
 equations with $n-1$ unknowns

Special case, **Natural Splines**:
$$S_0''(x_0) = S_{n-1}''(x_n) = 0$$
:
• $c_0 = S_0''(x_0)/2 = 0$, $c_n = S_{n-1}''(x_n)/2 = 0$.
• $n-1$ equations with $n-1$ unknowns

Natural Splines: equations in matrix form

▶ Equations for $\{c_i\}_{i=1}^{n-1}$,

$$\begin{pmatrix} 2(h_0+h_1) & h_1 & & & & & \\ h_1 & 2(h_1+h_2) & & & & & \\ & \ddots & \ddots & \ddots & & & \\ & h_{n-3} & 2(h_{n-3}+h_{n-2}) & h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-2} \\ c_{n-1} \end{pmatrix} = 3 \begin{pmatrix} \frac{a_2-a_1}{h_1} - \frac{a_1-a_0}{h_0} \\ \vdots \\ \frac{a_n-a_{n-1}}{h_{n-1}} - \frac{a_{n-1}-a_{n-2}}{h_{n-2}} \end{pmatrix}$$

► Equations for $\{d_j\}_{j=0}^{n-1}, \{b_j\}_{j=0}^{n-1},$

$$d_j = \frac{c_{j+1} - c_j}{3h_i}$$
, and $b_j = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_i}$.

Recall $b_j = -\frac{h_j}{3}(2c_j+c_{j+1}) + \frac{a_{j+1}-a_j}{h_i}.(\hat{\ell}_0)$

 $b_{i+1} = b_i + h_i(c_i + c_{i+1}).$ $(\widehat{\ell}_1)$

 $2h_0c_0 + h_0c_1 = 3\left(\frac{a_1-a_0}{h_0} - f'(x_0)\right).$

 $f'(x_n) = S'_{n-1}(x_n) = b_n \stackrel{(\ell_1)}{=} b_{n-1} + h_{n-1}(c_{n-1} + c_n)$

 $f'(x_0) = S'_0(x_0) = b_0 = \frac{\ell_0}{2} (2c_0 + c_1) + \frac{a_1 - a_0}{b}.$

 $\frac{\widehat{(\ell_0)}}{=} -\frac{h_{n-1}}{3}(2c_{n-1}+c_n) + \frac{a_n-a_{n-1}}{h_{n-1}} + h_{n-1}(c_{n-1}+c_n),$

Clamped Splines: $S'_0(x_0) = f'(x_0), S'_{n-1}(x_n) = f'(x_n)$

▶ Equation for
$$c_0, c_1$$
:

Equation for c_{n-1}, c_n :

Clamped Splines: equations in matrix form

► Equations for $\{c_j\}_{j=0}^n$,

$$\begin{pmatrix} 2h_0 & h_0 \\ h_0 & 2(h_0 + h_1) \\ & \ddots & \ddots & \ddots \\ & & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ & & h_{n-1} & 2h_{n-1} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \\ c_n \end{pmatrix} = 3 \begin{pmatrix} \frac{a_1 - a_0}{b_0} - f'(x_0) \\ \frac{a_2 - a_1}{h_1} - \frac{a_1 - a_0}{h_0} \\ \vdots \\ \frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}} \\ f'(x_n) - \frac{a_n - a_{n-1}}{h_n} \end{pmatrix}.$$

▶ Equations for $\{d_j\}_{j=0}^{n-1}, \{b_j\}_{j=0}^{n-1},$

$$d_j = \frac{c_{j+1} - c_j}{3h_j}$$
, and $b_j = -\frac{h_j}{3}(2c_j + c_{j+1}) + \frac{a_{j+1} - a_j}{h_j}$.

Clamped Splines

```
function Splines = ClampedSplines(x,f,df)
% This code implements the clamped splines
% Written by Ming Gu for Math 128A, Fall 2008
% Updated by Ming Gu for Math 128A, Spring 2015
윰
n = length(x):
h = diff(x(:));
rhs = 3 * diff([df(1);diff(f(:))./h;df(2)]);
A = diag(h,1)+diag(h,-1)+2*diag([[0;h]+[h;0]]);
% compute the c coefficients. This is a simple
% but very slow way to do it.
용
          = A \setminus rhs;
C
          = (diff(c)./h)/3;
d
          = diff(f(:))./h-(h/3).*(2*c(1:n-1)+c(2:n));
b
Splines.a = f(:);
Splines.b = b;
Splines.c = c;
Splines.d = d:
```

Natural Splines, $f(x) = e^x$, $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$

Natural Splines,
$$f(x) = e^x$$
, $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$

Clamped Splines, $f(x) = e^x$, $x_0 = 0, x_1 = 1, x_2 = 2$, $x_3 = 3, f'(0) = 1, f'(3) = e^3$

Review: Splines

▶ Given n + 1 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)),$$

► Find cubic spline interpolant $S(x) \in C^2[x_0, x_n]$,

$$S(x) = S_j(x) \stackrel{\text{def}}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3,$$

for
$$x \in [x_j, x_{j+1}], 0 \le j \le n-1$$
.

 $S(x_j) = f(x_j), \quad 0 \le j \le n.$

Review: Splines

▶ Given n + 1 distinct points

$$(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n)),$$

▶ Find cubic spline interpolant $S(x) \in C^2[x_0, x_n]$,

$$S(x) = S_j(x) \stackrel{\text{def}}{=} a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3,$$

for $x \in [x_j, x_{j+1}], 0 \le j \le n-1$.

A duck in Splines

► A duck in flight

► Goal: to approximate the top profile.

A duck in Splines

► A duck in flight

► Goal: to approximate the top profile.

duck top profile

Duck top profile in Natural Splines, a coefficients

x	0.9	1.3	1.9	2.1	2.6	3.0	3.9	4.4	4.7	5.0	6.0	7.0	8.0	9.2	10.5	11.3	11.6	12.0	12.6	13.0	13.3
f(x)	1.3	1.5	1.85	2.1	2.6	2.7	2.4	2.15	2.05	2.1	2.25	2.3	2.25	1.95	1.4	0.9	0.7	0.6	0.5	0.4	0.25

Duck top profile in Natural Splines, a coefficients

Duck top profile in 20-degree polynomial interpolation

§3.6 Parametric Curve Approximation: x = x(t), y = y(t)

▶ Given n+1 distinct points

$$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n),$$

Example

 $x_i = x(t_i), \quad y_i = y(t_i), \quad 0 \le i \le n.$

▶ 4^{th} degree interpolation on x = x(t) and y = y(t)

$$x(t) = \left(\left(\left(64t - \frac{352}{3} \right) t + 60 \right) t - \frac{14}{3} \right) t - 1,$$

$$y(t) = \left(\left(\left(-\frac{64}{3} t + 48 \right) t - \frac{116}{3} \right) t + 11 \right) t.$$

Bezier Curves in Computer Graphics

- Design: Piece-wise cubic Hermite polynomials.
- Feature: Each cubic Hermite polynomial is completely determined by function/derivative at endpoints.
- Consequence:, Each portion of the curve can be changed while leaving most of the curve the same.

Bezier Curves in Computer Graphics

- Design: Piece-wise cubic Hermite polynomials.
- Feature: Each cubic Hermite polynomial is completely determined by function/derivative at endpoints.
- Consequence:, Each portion of the curve can be changed while leaving most of the curve the same.

► Bezier Curves with GUIDE POINTS

