CLAIMS

- 1. A microplasma jet generator, driven with a VHF power supply, for generating an inductively coupled microplasma jet, the microplasma jet generator comprising a substrate, a micro-antenna disposed on the substrate, and a discharge tube located close to the micro-antenna, wherein the micro-antenna has a flat meandering shape with plural turns.
- 2. The microplasma jet generator according to Claim 1, wherein the micro-antenna is located close to a microplasma jet-generating end portion of the substrate.
- 3. The microplasma jet generator according to Claim 1, wherein the micro-antenna includes a plating layer which is made of copper, gold, or platinum or which includes sublayers made of these metals.
- 4. The microplasma jet generator according to Claim 3, wherein the thickness of the plating layer is at least two times greater than the depth (δ) below the surface of a conductor at which a high-frequency current flows, the depth being represented by the following equation:

$$\delta = (2 / (\omega \mu \sigma))^{1/2}$$

wherein σ represents the conductivity of a metal, μ represents the magnetic permeability thereof, and ω represents the angular frequency of the high-frequency current.

5. The microplasma jet generator according to Claim 1,

wherein the substrate is made of one selected from the group consisting of alumina, sapphire, aluminum nitride, silicon nitride, boron nitride, and silicon carbide.

- 6. The microplasma jet generator according to Claim 5, wherein the substrate is made of alumina.
- 7. The microplasma jet generator according to Claim 1, further comprising a high voltage-generating unit.
- 8. A method for generating a microplasma jet, comprising introducing plasma gas into the microplasma jet generator according to Claim 1 at a flow rate of 0.05 to 5 slm and applying a VHF wave to the micro-antenna.
- 9. A chemical microanalysis method comprising using the microplasma jet generator according to Claim 1.
- 10. The chemical microanalysis method according to Claim9, further comprising using micro-capillary electrophoresis.
- 11. A method for processing or surface treatment, comprising using the microplasma jet generator according to Claim 1.
- 12. The method according to Claim 11, wherein the processing or the surface treatment is the cutting of a predetermined portion of a workpiece, etching, film deposition, cleaning, or hydrophilization.
- 13. The method according to Claim 11, further comprising using a unit, located close to a microplasma jet source included in the microplasma jet generator, for introducing

reactive gas.

14. The method according to Claim 13, wherein the reactive gas is one selected from the group consisting of oxygen, nitrogen, air, carbon fluoride, and sulfur hexafluoride.