Applied Machine Learning: Leak Detection in Water Pipelines

Andrea Maldonado

@andreamalhera

Praktikum Innovative Mobile Applications: "Gruppe A wie Anomalie"

Motivation

 $[1-3] \ Sources: \ \underline{https://www.wasser-macht-schule.de/trinkwasser...;} \ \underline{https://www.br.de/radio/...}; \ \underline{https://www.bund-naturschutz.de/alpen/...}$

Leak Detection in Water Pipelines

[4]: Source http://www.mobile.ifi.lmu.de/lehrveranstaltungen/praktikum-innovative-mobile-applications-sose19/

What is sound & how did we work with it?

[5] Source: https://steemit.com/steemstem/@wilians/fourier-series-and-transforms-applications-part-2

Preprocessing Pipeline

size

tones of brown

Autoencoder Principle

input

output

Autoencoder Principle

input

Autoencoder Architectures

Autoencoder Architectures

Simple Autoencoder

simple dense-layers

Convolutional Autoencoder

convolutions, max pooling, dense layers

Variational Autoencoder

learns about data distribution

Autoencoder Architectures: Simple Autoencoder

dim.: 3 - 300

dense layers only

Autoencoder Architectures: Convolutional Autoencoder (CNN)

Autoencoder Architectures: Variational Autoencoder

Autoencoder Architectures: Variational Autoencoder

Autoencoder Architectures: Training

Data Classification: E.g. CNN AE

Data Classification: Reconstruction Error of Two Files

6 layers CNN-autoencoder, encoding-dim. 2, 30 epoch training

E.g. for files with leak (red) vs. without leak (green)

snippet's leak spectrograms: input (top) vs. prediction (bottom)

snippet's leak spectrograms: input (top) vs. prediction (bottom)

3.425

6.671

7.425

input file in snippets

reconstruction errors

E.g. threshold: 0.4

input file in snippets

reconstruction errors

snippets' scores

input file score

Evaluation: Confusion matrix

CNN with 2D

Evaluation: Confusion matrix

SAE with 10D

Evaluation: ROC AUC curve

CNN with 2D

Evaluation: ROC AUC curve

SAE with 10D

Conclusion

1- week-successes:

- pipeline setup on multiple systems
- promising deep-learning-methods
- exciting knowledge extraction through analysis

future work:

- improve single misclassifications
- more experiments