影像處理03強度轉換與空間濾波

教師:許閔傑、蕭兆翔

助教:莊媞涵

大綱

複習 索引、仿射

- > 強度轉換函數:
 - 對比度拉伸(Contrast Stretching)
 - 負片轉換 (Negative Transformation)
 - Gamma變換 (Power-Law Transformation)
 - 直方圖處理(Histogram Processing)
- >空間濾波基礎:
 - 卷積與相關操作(Convolution and Correlation)
 - (低通)均值濾波器 (Mean Filter)
 - (低通)中值濾波器 (Median Filter)
 - (低通)高斯濾波器 (Gaussian Filter) since
 - (高通) Sobel 和 Laplacian 邊緣檢測

強度(Intensity)

- 灰階影像(grayscale image)
- 二維的函數f(x,y),其中x、y為空間座標,f的大小就稱為這張影像在該點的強度(intensity)或灰階(gray level)
- ▶ 每個影像原素有特定的位置與值,稱為畫素、像素(pixel)。

f(200,350) = 139

(200,350):空間座標

139 : 影像強度

八位元(8Bit) 灰階影像的強度

- 灰階影像f(x,y): 影像在某個點(x, y)的值代表該點的 **強度值**。 灰階影像中,強度最小值代表「黑」,強度最大值代表「<mark>自</mark>」。
- 8-bit 灰階影像: 2⁸=256,從「黑」到「白」,共 256 個值。

灰階值:[0・1・2・3...253・254・255]

3.1 強度轉換函數

強度轉換函數T (intensity transformation)

函數輸入值(r):像素值

函數輸出值(s):經轉換後像素值

$$g(x, y) = T[f(x, y)]$$
$$s = T(r)$$

▶目的

對一張輸入影像中的「每個像素」,利用T,將像素值 做調整,例如:對比強化、二值化....

強度負轉換(負片)

■ 負轉換 (negative transformation)

將灰階強度反轉,以八位元灰階影像為例(強度最大值=255)

乳房X光照片

強度對數轉換

■ 對數轉換 (log transformation)

原因:對顯示器而言,輸出最暗、最量對比度階層的能力有限。影像中,強度最大值的像素,會決定「白色」的像素值。

八位元灰階影像

$$r = 0 \sim 255$$

傅立葉頻譜影像 (Fourier Spectrum):

$$r = 0 \sim 1.5 \times 10^6$$

灰階值:[0・1・2・3...253・254・255]

強度對數轉換

■ 對數轉換 (log transformation)

$$s = c \log(1+r)$$

取log目的:減少強度階層,以便輸出比較好的對比效果

傅立葉 頻譜影像

$$s = T(r)$$

 $s = log(1+r)$

強度對數轉換

■ 對數轉換 (log transformation)

 $r = 0 \sim 1.5 \times 10^6$

 $Log(1+r) = 0 \sim 6.2$

為啥不用 $\log(r)$? $\log(0) = -\infty$

空拍照片使用Gamma矯正

$$s = cr^{\gamma}$$

 $\gamma > 1$,更暗

核磁共振(MRI)影像使用Gamma矯正

 $\gamma < 1$,更亮

比較各個強度轉換函數

強度轉換函數優缺點

不考慮像素位置、特性,只看「像素值」

- 優點運算簡單
- 缺點 效果有限

3.2 直方圖

■ 數位影像的直方圖(Histogram) 計算每一個像素質出現的次數,依此「次數」所繪製的統計圖。

統計次數

0~255

利用直方圖的好處

■ 快速給予我們統計分析的概念

統計次數

直方圖代表「機率分布」

- 機率質量函數(Probability mass function, PMF)
- 機率質量函數,代表離散隨機變數,在各特定取直上的機率
- 舉例「丟骰子」

直方圖 vs. 機率質量函數

每個灰階值的像素個數

■ 直方圖:

每個灰階的 像素個數

影像總像素 個數

出現各個點數的機率

■ 機率質量函數:

「丢骰子」為例

(等化前)直方圖 vs. (等化後)直方圖

600 很少白色 200 150 50 100 200 250

(等化後)

均匀等化 高對比度

(等化前)

(直方圖等化)強度轉換函數

■ 強度轉換函數: s=T(r)

不同對比的照片

影像對比度強化的特性(1)

■問題描述

給予一張輸入影像,找出一個「恰當的」強度轉換函數, 使得輸出影像的對比度提高

■ 轉換函數特性

If $r_1 > r_2 \Rightarrow T(r_1) > T(r_2)$

裡面亮外面暗

保持裡面亮外面暗

影像對比度強化的特性(2)

- 轉換函數特性
- \blacktriangleright 輸入影像中,具有較大像素值的像素,經過轉換函數 s=T(r),還是會輸出較大的像素值。
- > 此轉換函數是「多對一」函數。

If
$$r_1 \neq r_2$$
, $T(r_1) = T(r_2)$ 可以 (多對一)

X If
$$r_1 = r_2$$
, $T(r_1) \neq T(r_2)$ 不可以! (一對多)

影像對比度強化的特性(3)

- 轉換函數特性
- ▶ 輸入影像中,具有較大像素值的像素,經過轉換函數 s=T(r),還是會輸出較大的像素值。
- > 此轉換函數是「多對一」函數。
- > 影像經過此轉換函數,灰階資訊的流失「是必然的結果」。

整理PMF、CDF

■ 機率質量函數(PMF): ½ 6

「丟骰子」為例

■ 累積分佈函數(CDF, cumulative distribution function):

$$PMF(x_1) = \frac{1}{6}$$

$$PMF(x_2) = \frac{1}{6}$$

$$\vdots$$

$$PMF(x_6) = \frac{1}{6}$$

$$CDF(x_k) = \sum_{i=1}^k PMF(x_i)$$

例題:
$$CDF(x_3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$$

直方圖等化例題(1)

- 假設有一張8階的64×64灰階影像,運用直方圖等化(HE)
- 找出轉換函數s=T(r)。

$$n_1$$
= 750 , n_2 = 1023 , n_3 = 890 , n_4 = 656, n_5 = 329 , n_6 = 245 , n_7 = 122 , n_8 = 81

統計像素個數nk

■ 影像包含64×64=4096個像素。

$$CDF(r_8) = \sum_{i=1}^{8} PMF(r_i)$$
$$= n_1 + n_2 + \cdots n_8$$
$$= 4096$$

直方圖等化例題(1)步驟一計算PMF

$$PMF(r_k) = \frac{n_k}{N}$$

$$PMF(r_1) = \frac{n_1}{N} = \frac{750}{4096} = 0.18$$

$$PMF(r_2) = \frac{n_2}{N} = 0.25$$

$$PMF(r_3) = \frac{n_3}{N} = 0.21$$

$$PMF(r_4) = \frac{n_4}{N} = 0.16$$

$$PMF(r_5) = \frac{n_5}{N} = 0.08$$

$$PMF(r_6) = \frac{n_6}{N} = 0.06$$

$$PMF(r_7) = \frac{n_7}{N} = 0.03$$

 $PMF(r_8) = \frac{n_8}{N} 0.02$

$$n_1$$
= 750 , n_2 = 1023 , n_3 = 890 , n_4 = 656, n_5 = 329 , n_6 = 245 , n_7 = 122 , n_8 = 81

- 灰階值為r₁的像素有750個
- 占總像素(4096)裡面的18%

直方圖等化例題(1)步驟二計算CDF

$$CDF(r_k) = \sum_{i=1}^{k} PMF(r_i)$$

$$CDF(r_1) = \sum_{i=1}^{1} PMF(r_i) = PMF(r_1) = 0.18$$

$$CDF(r_2) = \sum_{i=1}^{2} PMF(r_i) = PMF(r_1) + PMF(r_2) = 0.43$$

$$CDF(r_3) = \sum_{i=1}^{3} PMF(r_i) = 0.64$$

$$CDF(r_4) = \sum_{i=1}^4 PMF(r_i) = 0.80$$

$$CDF(r_5) = \sum_{i=1}^{5} PMF(r_i) = 0.88$$

$$CDF(r_6) = \sum_{i=1}^{6} PMF(r_i) = 0.94$$

$$CDF(r_7) = \sum_{i=1}^{7} PMF(r_i) = 0.97$$

$$CDF(r_8) = \sum_{i=1}^{8} PMF(r_i) = 0.99$$

$$PMF(r_1) = 0.18, PMF(r_2) = 0.25$$

 $PMF(r_3) = 0.21, PMF(r_4) = 0.16$
 $PMF(r_5) = 0.08, PMF(r_6) = 0.06$
 $PMF(r_7) = 0.03, PMF(r_8) = 0.02$

直方圖等化例題(1)步驟三推導轉換公式

$$s = T(r)$$
 轉換通式

(2)
$$CDF(r_k) = \int_{r_{min}}^{r_k} P(\mathbf{r}) d\mathbf{r}$$

CDF為PMF的累加

$$9(s_k) = \frac{1}{r_{max} - r_{min}}$$

設定轉換後的直方圖都是等量

直方圖等化例題(1)步驟三推導轉換公式

$$\int_{r_{min}}^{r_k} P(\mathbf{r}) d\mathbf{r} = \int_{s_{min}}^{s_k} \frac{1}{r_{max} - r_{min}} ds$$
 設定轉換後的CDF是 等量增長

$$(5)$$
 將②式帶入④式左側,並計算右側 $CDF(r_k) = \frac{S_k - S_{min}}{r_{max} - r_{min}}$

6) 移項整理得到
$$S_k = round(CDF(r_k) \times (r_{max} - r_{min}) + S_{min})$$

直方圖等化例題(1)步驟三計算S=T(r)

$$s_k = round(CDF(r_k) \times (r_{max} - r_{min}) + s_{min})$$

$$s_1 = round(CDF(r_1) \times (7 - 0)) = round(0.18 \times 7) = round(1.26) = 1$$

 $s_2 = round(CDF(r_2) \times (7 - 0)) = round(0.43 \times 7) = round(3.01) = 3$

 r_1 r_2 r_6 γ_7 r_8 r_3 r_4 r_{5} 0 原始強度 3 5 6 轉換後強度 3 6 6

空間域影像定義

f:輸入影像 g:輸出影像

輸入影像f(x,y),與四周數值,經某些**運算**T後得到輸出影像g(x,y)

空間域運算式:
$$g(x,y) = T[f(x,y)]$$

空間濾波概念

空間域運算式:
$$g(x,y) = T[f(x,y)]$$

定義濾波遮罩(filter)大小,例如:3×3、5×5、7×7......

將濾波遮罩在輸入影像移動(左到右,上到下),在每一點計算遮罩與涵蓋 範圍的乘積和。

空間相關性(Correlation)運算

影像f(x,y)

濾波器遮罩w(s,t)

全部相加起來

f	(x-1,y-1)	f(x,y-1)	f(x+1,y-1)		W(-1,-1)	W(0,-1)	W(1,-1)		f(x-1,y-1) . W(-1,-1)	$+ \frac{f(x,y-1)}{W(0,-1)}$	f(x+1,y-1) • • • • • • • • • • • • •
	f(x-1,y)	f(x,y)	f(x+1,y)	*	W(-1,0)	W(0,0)	W(1,0)	=	$ \begin{array}{c} f(x-1,y) \\ + \\ \hline W(-1,0) \end{array} $	$+ \frac{f(x,y)}{W(0,0)}$	$f(x+1,y)$ $+ \cdots$ $W(1,0)$
f((x-1,y+1)	f(x,y+1)	f(x+1,y+1)		W(-1,1)	W(0,1)	W(1,1)		f(x-1,y+1) + W(-1,1)	f(x,y+1) + W(0,1)	f(x+1,y+1) + . W(1,1)

$$g(x, y) = w(-1, -1) f(x-1, y-1) + w(-1, 0) f(x-1, y) + \dots + w(0, 0) f(x, y) + \dots + w(1, 1) f(x+1, y+1)$$

空間相關性公式

Sum(

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

$$g(x, y) = w(-1, -1)f(x-1, y-1) + w(-1, 0)f(x-1, y) + \cdots$$
$$+ w(0, 0)f(x, y) + \cdots + w(1, 1)f(x+1, y+1)$$

輸出g(x,y)

f(x-1,y-1) • W(-1,-1)	f(x,y-1) • W(0,-1)	f(x+1,y-1) • W(1,-1)	
f(x-1,y) . W(-1,0)	f(x,y) · W(0,0)	f(x+1,y) . W(1,0))
f(x-1,y+1) • W(-1,1)	f(x,y+1) . $W(0,1)$	f(x+1,y+1) . W(1,1)	

Example1:相關性運算

5×5 大小影像

1	1	1	0	0
0	7	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

3×3 kernel

1	0	1
0	1	0
1	0	1

*

output

?	? ·	?
		?
?	?	?

相關性運算gif

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Example1: 相關性運算 (解答)

5×5 大小影像

1	0	1
0	1	0
1	0	1

output

4	3	4
2	4	3
2	3	4

特徵圖反映了影像中斜線的特徵

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

特徵圖(Feature)

4	3	4
2	4	3
2	3	4

補空白Pad

Padding影像

影像

7	8	9
12	13	14
17	18	19

0	0	0	0	0
0	7	8	9	0
0	12	13	14	0
0	17	18	19	0
0	0	0	0	0

Kernel

1	0	0
0	1	0
0	0	1

可以運算了

0	0	0	0
0	7	8	9
0	102	113	14
0	17	18	19

濾波器名稱

書本常見的名稱:

- ▶濾波器 (filter)
- ➤ 遮罩 (mask)
- ▶核心 (kernel)
- ▶ 模板 (template)
- ➤ 窗(window)

卷積(Convolution)特性

性質	卷 積	相關性
交換性的	$f \star g = g \star f$	
結合性的	$f \star (g \star h) = (f \star g) \star h$	_
分配性的	$f \star (g+h) = (f \star g) + (f \star h)$	$f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$

條件:在沒有邊界條件干擾的情況下才成立

- > 交換性:不論它們的順序如何,卷積結果都是一樣的
- > 結合性:無論先對哪兩個函數進行卷積,結果都是一樣的
- > 分配性:卷積對於函數的加法是可以分配的

相關性(Correlation) vs. 卷積(Convolution)

相關性

$$(w \not \simeq f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

卷積

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x-s, y-t)$$

卷積(Convolution)特性(1):交換性

 $f \star g = g \star f$

 \int

1	2	3
4	5	6
7	8	9

g

7	0	1
-2	0	2
-1	0	1

g'(翻轉)

1	0	7
2	0	-2
1	0	-1

0 -1

	7	-15 8	9
1	04	_1_	-
2	01	- <mark>2</mark> 2	3

結果

-9	-6	9
-20	-8	20
-21	-6	21

g

7	0	1
-2	0	2
-1	0	1

f

1	2	3
4	5	6
7	8	9

f'(翻轉)

9	8	7
6	5	4
3	2	1

9 8 7

6	<u>5</u> 1	40	1
3	2 ₂	10	2
	-1	0	1

結果

-9	6	9
-20	-8	20
-21	-6	21

卷積(Convolution)特性(2):結合性

 $f \star (g \star h) = (f \star g) \star h$

g * hf * (g * h)f * g(f * g) * h

卷積(Convolution)特性(3):分配性 $f \star (g+h) = (f \star g) + (f \star h)$

但是

卷積核的倒轉是一個數學必要步驟,但對於像邊緣檢測這樣的應用,卷積核本身的設計才是真正決定特徵提取效果的關鍵。卷積核倒轉並不是直接負責提取特徵,而是為了確保卷積運算的數學正確性。

卷積核倒轉在訊號處理比較有用、影像處理還好。

空間-均值濾波(模糊)

	1	1	1
$\frac{1}{9} \times$	1	1	1
	1	1	1

空間-均值濾波(模糊)

空間-高斯濾波(模糊)

21×21 $\sigma = 3.5$

43×43 $\sigma = 7$

同樣都是7*7的遮罩

均值濾波

高斯濾波

較能保留原圖

空間-中值(Median)濾波(去除胡椒超猛)

假設這是一個3*3的遮罩選取的範圍

6	2	0	
3	97	4	
19	3	10	

原圖含有噪點

中值濾波

去除高頻噪點

均值濾波

遮罩

0	1	0
1	-4	1
0	1	0

(A) Original MR image

(B) Laplacian results

為啥用這個遮罩就可以抓邊緣?

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

找出x方向變化的變化 找出y方向變化的變化

一階導數:變化率

二階導數:變化率的變化率

二皆導數:變化率的變化率

(無限時)
$$\frac{\partial f(x,y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$

(有限時)
$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$

$$\frac{\partial}{\partial x} f(x,y) \approx \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}$$

$$\frac{\partial}{\partial x} f(x-\Delta x,y) \approx \frac{f(x,y) - f(x-\Delta x,y)}{\Delta x}$$

(二階)
$$\frac{\partial^2}{\partial x^2} f(x - \Delta x, y) \approx \frac{\frac{\partial}{\partial x} f(x - \Delta x + \Delta x, y) - \frac{\partial}{\partial x} f(x - \Delta x, y)}{\Delta x}$$
$$= \frac{\frac{\partial}{\partial x} f(x, y) - \frac{\partial}{\partial x} f(x - \Delta x, y)}{\Delta x}$$

$$\frac{\partial^2}{\partial x^2} f(x - \Delta x, y) \approx \frac{\frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} - \frac{f(x, y) - f(x - \Delta x, y)}{\Delta x}}{\Delta x}$$

$$\frac{\partial^2}{\partial x^2} f(x-1,y) \approx f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\left(\mathbf{X}$$
的)
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) \approx f(x + \Delta x) - f(x) - f(x) + f(x - \Delta x)$$
$$\approx f(x + 1, y) + f(x - 1, y) - 2f(x, y)$$

	x,y-1	
x-1,y	х,у	x+1,y
	x,y+1	

(y的)
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \approx f(y + \Delta y) - f(y) - f(y) + f(y - \Delta y)$$
$$\approx f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

0	1	0
1	-4	1
0	1	0

(合併)
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \approx f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y)$$
$$\approx f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

不同的Laplacian 遮罩

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Input image

Result (mask size = 5)

Result (mask size = 3)

Result (mask size = 7)

空間-Sobel運算子(抓邊緣)

我二階導數有效果,那我一階導數不行嗎?

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x}$$

(改良版,使用兩個點)

空間-Sobel運算子(抓邊緣)

$$G_x = \frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x}$$

$$\approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

(乘權重2倍) $G_x = f(x+1,y) - f(x-1,y)$

0	0	0
-1	0	1
0	0	0

(但因為其他地方也有x的分量所以在 加上去,並且原始位置放大權重)

-1	0	1
-2	0	2
-1	0	1

尋找垂直邊緣

空間-Sobel運算子(抓邊緣)

$$G_{y} = \frac{\partial f}{\partial y} \approx \frac{f(x, y + \Delta y) - f(x, y - \Delta y)}{2\Delta y}$$
$$\approx \frac{f(x, y + 1) - f(x, y - 1)}{2}$$

-1	-2	-1
0	0	0
1	2	1

尋找水平邊緣

兩種使用方法:平方開根號、絕對值相加

更精準

$$M(x, y) = ||\nabla f|| = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

更快速

$$M(x, y) \approx |g_x| + |g_y|$$

