SCOMPOSIZIONI

$$a^3 \pm b^3 = (a \pm b) \cdot (a^2 \mp ab + b^2)$$

RADIC

$$\sqrt{x^2} \neq x \Rightarrow \sqrt{x^2} = |x|$$

GONIOMETRIA

$$sen(\alpha \pm \beta) = sen(\alpha) \cdot \cos(\beta) \pm sen(\beta) \cdot \cos(\alpha)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha) \cdot \cos(\beta) \mp sen(\alpha) \cdot sen(\beta)$$

LIMITI

$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$	$\lim_{x \to 0} \left(\frac{\ln(x+1)}{x} \right) = 1$
$\lim_{x \to 0} \left(\frac{\sqrt[\alpha]{1+x} - 1}{x} \right) = \frac{1}{\alpha}$	$\lim_{x \to 0} \left(\frac{x+1}{x} \right)^x = e$
$\lim_{x \to 0} \left(\frac{sen(x)}{x} \right) = \lim_{x \to 0} \left(\frac{tg(x)}{x} \right) = 1$	$\lim_{x \to 0} \left(\frac{arcsen(x)}{x} \right) = \lim_{x \to 0} \left(\frac{arctg(x)}{x} \right) = 1$
$\lim_{x \to 0} \left(\frac{1 - \cos(x)}{x} \right) = 0$	$\lim_{x \to 0} \left(\frac{1 - \cos(x)}{x^2} \right) = \frac{1}{2}$

De L'Hopital

Forma $[0 \cdot \pm \infty]$, capovolgo una delle due funzioni e uso De L'Hopital

DERIVATE

D(k)=0	$D(x^n) = n \cdot x^{n-1}$	$D(e^{x}) = e^{x}$ $D(\ln(x)) = \frac{1}{x}$
D(sen x) = cosx $D(cos x) = -senx$	$D(tg(x)) = \begin{cases} \frac{1}{\cos^2(x)} \\ 1 + tg^2(x) \end{cases}$	$D(\cot g(x)) = \begin{cases} -\frac{1}{\sin^2(x)} \\ -1 - \cot g^2(x) \end{cases}$
$D(arcsen x) = \frac{1}{\sqrt{1 - x^2}}$ $D(arccos x) = -\frac{1}{\sqrt{1 - x^2}}$	$D(arctg x) = \frac{1}{1+x^2}$ $D(arccotg x) = -\frac{1}{1+x^2}$	

$$D(f^g) = D(e^{\ln(f^g)}) = D(e^{g \cdot \ln(f)})$$

INTEGRALI

$\int kdx = x$	
$\int x^n dx = \frac{x^{n+1}}{n+1}$	$\int f^n \cdot f' dx = \frac{f^{n+1}}{n+1}$
$\int \frac{1}{x} dx = \ln(x)$	$\int \frac{f'}{f} dx = \ln(f)$
$\int e^x dx$	$e^f \cdot f' dx = e^f$
$\int senx \ dx = -cosx$	$\int sen(f) \cdot f' dx = -\cos(f)$
$\int \cos x dx = \sin x$	$\cos(f) \cdot f' dx = sen(f)$
$\int \frac{1}{\cos^2 x} dx = tgx$	$\int \frac{f'}{\cos^2(f)} dx = tg(f)$
$\int \frac{1}{\sin^2 x} dx = -\cot gx$	$\int \frac{f'}{\sin^2(f)} dx = -\cot g(f)$
$\int \frac{1}{\sqrt{1-x^2}} dx = arcsenx$	$\int \frac{f'}{\sqrt{1-f^2}} dx = arcsen(f)$
$\int \frac{1}{1+x^2} dx = arctgx$	$\int \frac{f'}{1+f^2} dx = arctg(f)$

$$\begin{split} &\int \frac{x^{n-1}+\cdots}{x^n+\cdots}dx \to \text{Mi riconduco a} \int \frac{f'}{f}dx \\ &\int \frac{x+\cdots}{x^2+\cdots}dx \to \text{Mi riconduco a} \int \frac{f'}{f}dx \text{ oppure } \int \frac{f'}{1+f^2}dx \\ &\int \frac{1}{ax^2+bx+c}dx = \frac{2}{\sqrt{-\Delta}} \cdot arctg\left(\frac{2ax+b}{\sqrt{-\Delta}}\right) + c \\ &\int \frac{x^n+\cdots}{x^{m\leq n}+\cdots} \to \text{Divisione} \to \text{Fratti semplici} \end{split}$$

SERI

Serie definite: geometriche; telescopiche; armoniche, potenze

Criteri serie positive: rapporto, confronto, asintotico, infinitesimi, integrale

Criteri serie segno alterno: assoluta convergenza, leibniz

Serie potenze:
$$\sum b_n(x-x_0)^n$$
 , converge per $x\in (x_0\pm r)$, $r=\frac{1}{\lim\left(rac{b_{n+1}}{b_n}
ight)}$

Infinitesimi: se $\lim (n \cdot a_n) < \infty$, allora studio $\lim (n^p \cdot a_n)$, con $p = \frac{3}{2}, \frac{5}{4}, \frac{9}{8}, \dots$

Resto geometrica
$$\leq \frac{q_{k+1}}{1-q}$$

Resto armonica
$$< \frac{1}{(\alpha - 1) \cdot n^{\alpha - 1}}$$

 $|Resto leibniz| < |b_{n+1}|$

Resto integrale
$$\leq \int_{n=i}^{+\infty} f(n) dn$$