Khôlles de Mathématiques $\mathbb{H}\mathbb{XII}$ Fonctions usuelles

N. CLOAREC

Du 17-10-16 au 5-11-16

Exercice 1

- a) Établir que pour tout $x, y \in \mathbb{R}_+$, $|\sqrt{y} \sqrt{x}| \le \sqrt{|y x|}$.
- b) Ce résultat est-il encore vrai en terme de racine cubique?

Exercice 2

- a) Calculer $\sin 3\theta$, $\cos 3\theta$ et $\tan 3\theta$ respectivement en fonction de $\sin \theta$, $\cos \theta$ et $\tan \theta$.
- b) Résoudre l'équation :

$$x^3 - 3\tan\frac{\pi}{12}x^2 - 3x + \tan\frac{\pi}{12} = 0$$

Exercice 3 Soit $0 < a \le b$. On pose $f: x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$ définie sur \mathbb{R}_+^* .

En étudiant f et montrer que $\ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \leq (\ln 2)^2$.

Exercice 4 Résoudre le système

$$\begin{cases} a+b+c=0\\ e^a+e^b+e^c=3 \end{cases}$$

d'inconnue $(a, b, c) \in \mathbb{R}^3$

Exercice 5 Résoudre les équations suivantes d'inconnues $x \in \mathbb{R}$.

a)
$$\cos^4 x + \sin^4 x = 1$$

c)
$$\sin x + \sin 2x + \sin 3x = 0$$

b)
$$\sin x + \sin 3x = 0$$

d)
$$\cos x + \cos^5 x + \cos 7x = 3$$

Exercice 6 Soient x_1, \ldots, x_{13} des réels. Montrer qu'il existe i et j dans $\{1, \ldots, 13\}$ tels que $i \neq j$ et

$$0 \le \frac{x_i - x_j}{1 + x_i x_i} \le 2 - \sqrt{3}$$

Exercice 7 Simplifier:

- a) $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.
- b) $\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65}$.

Exercice 8 Étudier les fonctions suivantes afin de les représenter :

a)
$$f: x \mapsto \arcsin(\sin x) + \arccos(\cos x)$$

c)
$$f: x \mapsto \arccos\sqrt{\frac{1+\cos x}{2}}$$

b)
$$f: x \mapsto \arcsin(\sin x) + \frac{1}{2}\arccos(\cos 2x)$$

d)
$$f: x \mapsto \arctan \sqrt{\frac{1-\cos x}{1+\cos x}}$$

Exercice 9 Soient a et α deux réels. Résoudre le système d'inconnues x et y

$$\begin{cases} \operatorname{ch} x + \operatorname{ch} y = 2a \operatorname{ch} \alpha \\ \operatorname{sh} x + \operatorname{sh} y = 2a \operatorname{sh} \alpha \end{cases}$$

Exercice 10 Démontrer que, pour tout réel x supérieur ou égal à $\frac{1}{2}$, il existe un entier n tel que

$$\left|x - n^2\right| \le \sqrt{x - \frac{1}{4}}$$