Problema de Otimização do Transporte

(versão #4.1 -- atualizada em 11/07/2020)

O Brasil tem a terceira maior frota de veículos do mundo, atrás dos EUA e China. Há diversas montadoras de veículos espalhadas pelo Brasil que suprem a demanda nacional. Este problema se refere ao dimensionamento de uma frota de caminhões-cegonha de uma empresa de transporte.

As montadoras têm rotas de distribuição de veículos desde a fábrica até grandes centros consumidores. A direção da empresa fictícia "*Trans-cegonha*" participa de uma concorrência para oferta de serviços de transportes dos veículos. Há diversas rotas disponíveis. Porém, deve-se selecionar as rotas que sejam mais lucrativas, de acordo com a sua capacidade de transporte.

1) Objetivo

A empresa Trans-cegonha tem uma frota limitada de caminhões como os da Figura 1 a seguir, e pretende instalar um número de sedes operacionais nas cidades das montadoras para as quais pretende prestar serviço. É necessário determinar rotas serão exploradas para determinar em quais locais serão instaladas as sedes. A seleção das rotas implica em alocar um número de caminhões a cada rota e determinar qual o número de veículos será transportado. Isto deve ser otimizado de tal maneira maximizar o lucro do transporte, minimizar o número de caminhões utilizados e procurar satisfazer o máximo da demanda.

Figura 1: Frota de caminhões da Trans-Cegonha.

2) Detalhamento

A demanda <u>mensal</u> (**máxima**) de cada centro consumidor (considerando cada montadora) é mostrada na Tabela 1. Nesta tabela, as cidades-origem das montadoras estão em verde e as cidades-destino estão em vermelho, enquanto que as células vazias indicam que esta rota já está sendo servida por outra empresa. Isto também é ilustrado no grafo dirigido da Figura 1.

		destino							
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA	total/orig.
GMS	SCS		1701	1453	1072	975	384		5585
RNT	SJP	1908	929		431		153	218	3639
FRD	SBC		1245			547		304	2096
FAT	BET	5246		1152		1118	407		7923
VKW	DIA		1804	1452				703	3959
HYD	PIR				307	325	109	156	897
PGT	PRL	509			100	111			720
	total/dest.	7663	5679	4057	1910	3076	1053	1381	

Tabela 1: Matriz de **demanda** mensal dos veículos de cada montadora para cada centro consumidor.

Cada caminhão **sempre** transporta <u>11 veículos</u> a cada viagem (em nenhum caso trafega com outro número de veículos). Independentemente da rota e da distância, quando os caminhões trafegam carregados (na ida) a média de velocidade é de <u>55 Km/h</u>, e de <u>75 Km/h</u> quando trafegam descarregados (na volta). A Tabela 2 que mostra a matriz Origem-Destino com as distâncias (em Km) entre cada origem e destino. Com base nesta tabela e nas velocidades médias, pode-se calcular o tempo de viagem de ida e volta, sempre arredondando para a hora inteira superior.

Figura 1: Grafo de conectividade origem-destino.

Para cada viagem, deve-se somar <u>2h para carga</u> na origem e <u>2h para descarga</u> no destino. Com estes dados e o tempo de viagem é possível calcular o número <u>máximo</u> de viagens que um caminhão pode fazer em um mês (arredondando para o inteiro <u>inferior</u>), considerando-se que podem operar até 24h dia nos 30 dias do mês. Assim, pode-se obter o número máximo de veículos transportados pelos caminhões durante o mês para cada rota.

		destino						
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA
GMS	SCS		448	1021	589	445	2709	
RNT	SJP	413	853		1001		3058	728
FRD	SBC		465			434		1162
FAT	BET	554		746		962	2153	
VKW	DIA		465	1027				1162
HYD	PIR	·			650	539	2745	1267
PGT	PRL	287			421	698		

Tabela 2: Matriz mostrando a menor distância (em Km) entre origem e destino.

Os custos do transporte não são lineares em função da distância percorrida, pois incluem outros fatores (condições das estradas, pedágio, concorrência, diárias dos motoristas, manutenção etc.). A Tabela 3 mostra os custos totais (em unidades monetárias arbitrárias) para cada <u>viagem completa</u>, ida e volta, em cada rota.

		destino						
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA
GMS	SCS		7667	22509	9902	7010	64803	
RNT	SJP	5969	14539		16760		72317	12407
FRD	SBC		7739			6645		19279
FAT	BET	7570		15189		15068	42101	
VKW	DIA		10619	29910				25711
HYD	PIR	·			11235	7110	49876	16910
PGT	PRL	3756			4699	6711		

Tabela 3: Matriz de **custos** totais de transporte por viagem completa realizada.

A remuneração do serviço de transporte é variável para cada montadora e para cada rota. A Tabela 4 mostra a matriz de remuneração do transporte com carga completa (11 veículos) para cada viagem entre origem e destino.

		destino							
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA	
GMS	SCS		10703	24398	14069	10626	110813		
RNT	SJP	11248	22101		25729		127278	19716	
FRD	SBC		12606			11759		31504	
FAT	BET	12188		21151		21164	53181		
VKW	DIA		13854	27345				28820	
HYD	PIR				22169	14300	86746	33548	
PGT	PRL	7356			11754	18326			

Tabela 4: Matriz de **remuneração** do transporte por viagem completa realizada.

3) Restrições e outras informações

A frota de veículos da transportadora é de <u>68 caminhões</u>. Os caminhões são agrupados em bases sediadas na cidade da montadora servida. Por questões operacionais, só é viável economicamente instalar uma base se houver <u>pelo menos 2 destinos</u> a serem atendidos a partir daquela cidade. Em cada base há uma sub-frota atendendo com exclusividade cada destino. Considerando esta restrição, a *Trans-cegonha* pode escolher se vai ou não explorar cada rota, independentemente das demais.

Embora os caminhões possam ser utilizados 24h/dia durante os 30 dias de cada mês, pode haver rota onde o caminhão alocado não tenha que fazer viagens ocupando todo o tempo. Neste caso, o caminhão fica parcialmente ocioso devido à limitação da demanda.

Deve-se encontrar um arranjo de caminhões tal que a cobertura da demanda de transporte (total da Tabela 1) seja no mínimo 72% (idealmente, 100%).

O problema deve ser modelado para ser resolvido com **Algoritmos Genéticos**. Primeiramente identificar as variáveis e seus intervalos válidos, as restrições do problema e a política de penalidades. Estabelecer uma codificação apropriada para as variáveis, sempre procurando minimizar o espaço de busca. Criar uma função de fitness que englobe a função objetivo a ser otimizada, as normalizações, e as penalidades às restrições. Definir os parâmetros de controle do algoritmo e implementá-lo preferencialmente utilizando o software GALOPPS. Apresentar relatório com a modelagem do problema para o AG implementado e os experimentos realizados com parâmetros diversos. Mostrar o gráfico das curvas de *fitness* (máximo e média por geração) para rodada onde a melhor solução obtida. **Apresentar a planilha fornecida pelo professor para reportar os valores obtidos do processo de otimização**.