

Tarfala Research Station automatic weather station, 2008

Peter Jansson

Contents

1	Instrumentation	3
2	Notes on the station data	3
3	Data coverage	3
4	Notes on data storage	3
	Data files and content 5.1 Program for 2008 (same as for 2007)	4

1 Instrumentation

The TRS met station consisted of the following instruments during 2008

Sensor	Serial number	Remark
Pt100		in Stevenson screen
Pt100		in Young screen
Young Wind Monitor		at 3 m
LiCor Li-200SB pyranometer		at 2 m
Tipping bucket precipitation gauge		at 2 m
Vent HygroClip T/Rh		at 2 m
CR10X-2M data logger		

2 Notes on the station data

• Nothing reported in 2008

3 Data coverage

• No breaks during 2008

4 Notes on data storage

Example of hourly data:

 $101, 2008, 185, 1300, 14.291, 14.752, 13.439, 58.941, 2.6915, 162.09, .04553, 286.61, 0, 0, 0, 3.7926, 1246, \\14.199, 14.642, 13.51, 56.747, 14.182, 1230, 12.737, 1248, 895.82$

Column	Example data	Description
01:	101	ID
02:	2008	Year
03:	191	Day of Year
04:	1600	hour-minute (hhmm)
05:	14.291	2 Pt100 T in Stevenson screen)
06:	14.752	3 Pt100 in new Young screen
07:	13.439	4 Ventilated T
08:	58.941	5 Ventilated T
09:	2.6915	6 Mean horizontal wind speed
10:	162.09	7 resultant mean wind direction
11:	0.04553	8 Standard deviation of wind direction
12:	286.61	9 Global radiation
13:	0	10 Precipitation
14:	0	11 Not used
15:	0	12 Not used
16:	3.7926	13 hourly max wind speed
17:	1246	14 time for max wind speed
18:	14.199	15 Sample T Stevenson
19:	14.642	16 Sample T Young
20:	13.51	17 Sample ventilated T
21:	56.747	18 Sample ventilated Rh
22:	14.182	19 Max T
23:	1230	20 time for max T
24:	12.737	21 Min T
25:	1248	22 time for min T
26:	895.82	23 Barometric pressuree

Example of daily data summaries:

124,2008,185,2400,11.744,12.205,10.92,66.937,17.122,1516,6.092,432,5.6546,1625, 2.575,137.41,196.62,0,13.9,0,0,895.56

Column	Example data	Description
01:	124	ID
02:	2008	Year
03:	185	Day of Year
04:	2400	hour-minute (hhmm)
05:	11.744	2 Daily average T in Stevenson screen)
06:	12.205	3 Daily T from T/Rh in Young screen
07:	10.92	4 Daily T from ventilated T/Rh
08:	66.937	5 daily average Rh from ventilated T/Rh
08:	17.122	6 Daily maximum temperature in Young screen
10:	1516	7 hhmm for maximum daily temperature
11:	6.092	8 Daily minimum temperature in Young screen
12:	432	9 hhmm for minimum daily temperature
13:	5.6546	10 Maximum wind speed
14:	1625	11 hhmm for maximum wind speed
15:	2.575	12 Average wind speed
16:	137.41	13 Average wind direction
17:	196.62	14 Incoming radiation
18:	0	15 Totalized precipitation
19:	13.9	16 Battery voltage
20:	0	17 Not used
21:	0	18 Not used
21:	895.56	18 Average barometric pressure

Example of 'Synoptic' output: 103,2008,185,1300,14.642

Column	Example data	Description
01:	103	ID
02:	2008	Year
03:	185	Day of Year
04:	1300	hour-minute (hhmm)
05:	14.642	Pt100 in Young screen

5 Data files and content

TRSmet2008.csv Raw data file

TRS_met_2008_Barometric_pressure.csv

2008-01-01 01:00:00,900.8

 ${\tt TRS_met_2008_Precipitation.csv}$

Date-time, Precipitation

2008-01-01 01:00:00,0.00

TRS_met_2008_Radiation.csv

Date-time, Global radiation

2008-01-01 01:00:00,-1.00

 $\label{lem:trs_met_2008_Relative_humidity.csv} TRS_met_2008_Relative_humidity.csv \\ Date-time, Vented Rh, ssample ventilated Rh$

2008-01-01 01:00:00,74.9,76.2

TRS_met_2008_Temperature.csv

Date-time, hourly average T (Stevenson), hourly average T (Young), hourly average vented T/Rh, sample T (Stevenson), Sample T (Young), sample T vent, max T vent, time for max T vent, min T vent, time for min T vent $2008-01-01\ 01:00:00,-15.48,-14.32,-15.37,-14.12,-12.44,-13.51,-13.51,100,-17.25,3$

TRS_met_2008_Wind.csv

Date-time, Mean horizontal wind speed, resultant mean wind direction, hourly max wind speed, time of max wind spd

2008-01-01 01:00:00,0.0,302.4,0.0278,0.06,1

TRS_met_2008_Daily_data.csv

Data columns follows description above except last two columns (not used) 2008-01-02 00:00:00,-14.98,-13.85,-14.82,58.1,-9.34,1702,-19.15,1259,0.1,1648, 0.0,290.2,-0.6,0.0,13.91

TRS_met_2008_Synop_data.csv Date-time, sample temperature 2008-01-01 01:00:00,-12.44

The data collected during 2008 is summarized the figure 1 and Table 1.

Figure. 1. Summary of meteorological data from Tarfala Research Station automatic weather station 2008.

 $Table.\ 1.\ Monthly\ averages\ of\ meteorological\ parameters\ from\ the\ Tarfala\ Research\ Station\ automatic\ weather\ station\ 2008.$

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Average air te	emperature	(Stevenson)										
$_{n}^{(^{\circ}\mathrm{C})}$	$-10.1 \\ 743$	$-8.4 \\ 695$	$-11.2 \\ 767$	$-6.0 \\ 743$	$-1.0 \\ 743$	$\frac{4.7}{743}$	$9.0 \\ 743$	5.5 767	$\frac{2.4}{743}$	$-2.6 \\ 767$	$-7.5 \\ 743$	-7.1
Average air te	emperature	(Young)										
$\binom{\circ}{\mathrm{C}}$	$-9.5 \\ 743$	$-7.9 \\ 695$	$-10.5 \\ 767$	$-5.5 \\ 743$	$-0.5 \\ 743$	5.2 743	9.4 743	5.9 767	$\frac{2.8}{743}$	$-2.1 \\ 767$	$-6.9 \\ 743$	-6.5
Average air to	emperature											
$_{n}^{(^{\circ}\mathrm{C})}$	$-10.4 \\ 743$	$-8.9 \\ 695$	$-11.7 \\ 767$	$-7.0 \\ 743$	$-2.0 \\ 743$	3.8 743	$8.1 \\ 743$	$\frac{4.7}{767}$	$\frac{1.6}{743}$	$-3.1 \\ 767$	$-8.0 \\ 743$	-7.5 767
Positive degr	ee sum											
$_{n}^{(^{\circ}\mathrm{C})}$	0	2_2	0 0	189 64	$678 \\ 294$	$3027 \\ 635$	$6044 \\ 743$	3630 753	$1518 \\ 545$	158 137	10 12	46 30
Average relat	ive humidit	у										
$\binom{\%}{n}$	$76.2 \\ 743$	$76.7 \\ 695$	$74.4 \\ 767$	$79.2 \\ 743$	76.5 743	76.3 743	$75.1 \\ 743$	82.7 767	$78.6 \\ 743$	$81.4 \\ 767$	$74.2 \\ 743$	$74.2 \\ 767$
Average inco	ming global	l radiation										
$(W m^{-2})$ n	$\frac{0.4}{743}$	10.8 695	$\frac{50.4}{767}$	$103.6 \\ 743$	$156.4 \\ 743$	$147.6 \\ 743$	$140.3 \\ 743$	81.5 767	$59.4 \\ 743$	18.0 767	$\frac{2.6}{743}$	-0.6
Global incom	ning energy	sum										
$(W m^{-2})$ n	794 143	$7801 \\ 246$	38906 397	77088 519	116231 683	109681 739	$104274 \\ 720$	$62687 \\ 572$	$44414 \\ 429$	14165 318	$\frac{2438}{186}$	117 84
Totalized pre-	cipitation											
$\binom{\text{mm}}{n}$	$0.64 \\ 743$	$0.32 \\ 695$	$\frac{11.68}{767}$	$10.56 \\ 743$	$23.84 \\ 743$	148.80 743	$77.12 \\ 743$	$104.00 \\ 767$	$62.40 \\ 743$	$28.64 \\ 767$	$\frac{2.40}{743}$	18.56 767
Average wind	l speed											
$(m s^{-1})$ n	0.5 743	4.6 695	$\frac{2.1}{767}$	$\frac{3.0}{743}$	3.5 743	$\frac{2.1}{743}$	$\frac{2.6}{743}$	$\frac{2.1}{767}$	$\frac{3.0}{743}$	3.2 767	3.8 743	4.6 767
Average baro	metric press	sure										
$_{n}^{(\mathrm{hPa})}$	870.6 743	869.0 695	864.7 767	880.1 743	886.5 743	880.1 743	884.6 743	880.5 767	884.5 743	867.2 767	867.1 743	875.6 767

Logger program

5.1 Program for 2008 (same as for 2007)

```
*Table 1 Program
 01: 10.0000 Execution Interval (seconds)
; Check battery voltage
; and stop execution if lower than 9.7V
1: Batt Voltage (P10)
           Loc [ Battery ]
1: 10
2: If (X<=>F) (P89)
          X Loc [ Battery ]
1: 10
3: 9.7
            F
4: 0
            Go to end of Program Table
; AIR TEMPERATURE
; Measure R/RO for old met cage Rt100
3: 3W Half Bridge (P7)
            Reps
            25 mV 50 Hz Rejection Range
SE Channel
2: 33
3: 1
            Excite all reps w/Exchan 2
4: 2
5: 2100
            mV Excitation
6: 22
            Loc [ R_RO_T_1 ]
7: 100.1
            Mult
8: 0
            Offset
; Meaasure R/R0 for Young screen Rt100 \,
4: 3W Half Bridge (P7)
            Reps
            25 mV 50 Hz Rejection Range
            SE Channel
Excite all reps w/Exchan 2
3: 3
4: 2
5: 2100
            mV Excitation
6: 23
            Loc [ R_RO_T_2 ]
7: 100.2
            Mult
8: 0
            Offset
; Calculate T for both Rt100
5: Temperature RTD (P16)
            Reps
            R/RO Loc [ R_RO_T_1 ]
3: 1
            Loc [ T_1
4: 1
            Mult
5: 0
            Offset
; VENTILATED T&Rh
; Measure temperature from ventilated
 HygroClip sensor
6: Volt (Diff) (P2)
1: 1
            Reps
            2500 mV 50 Hz Rejection Range
2: 35
            DIFF Channel
3: 3
4: 3
            Loc [ T_vent
5: .1
            Mult
6: -40
            Offset
; HygroClip sensor 7: Volt (Diff.)
; Measure humidity from ventilated
   Volt (Diff) (P2)
1: 1
            2500 mV 50 Hz Rejection Range
2: 35
3: 4
            DIFF Channel
4: 4
            Loc [ rH_vent ]
5: .1
            Mult
6: 0.0
;-----
; W I N D
; Measure wind speed on Young Wind Monitor
8: Pulse (P3)
            Reps
2: 1
            Pulse Channel 1
3: 21
            Low Level AC, Output Hz
4: 5
            Loc [ Wind_spd ]
5: .098
            Mult
6: 0
            Offset
; Measure wind direction on Young Wind Monitor
```

```
9: Excite-Delay (SE) (P4)
         Reps
             2500 mV Slow Range
 2: 5
             SE Channel
 3: 9
            Excite all reps w/Exchan 1
Delay (0.01 sec units)
 4: 1
 5: 2
 6: 2500
             mV Excitation
 7: 6
             Loc [ Wind_dir ]
 8: .142
            Mult
 9: -135
            Offset
; Make corrections to wind direction
10: If (X<=>F) (P89)
 1: 6
          X Loc [ Wind_dir ]
 2: 4
           F
Then Do
 3: 0
 4: 30
11: Z=X+F (P34)
         X Loc [ Wind_dir ]
F
 1: 6
 2: 360
            Z Loc [ Wind_dir ]
 3: 6
12: End (P95)
; G L O B A L R A D I A T I O N
; Measure Li200s Pyranometer
13: Volt (SE) (P1)
         Reps
 1: 1
             25 mV 50 Hz Rejection Range
2: 33
3: 10 SE Chan
4: 7 Loc [ L
5: 116.55 Mult
0 Offset
 2: 33
            SE Channel
            Loc [ Li200S
; PRECIPITATION
; Measure tipping bucket rain gauge
14: Pulse (P3)
1: 1
            Reps
             Pulse Channel 2
 2: 2
            Switch Closure, All Counts
Loc [ Precip ]
 3: 2
 4: 8
            Mult
 5: .16
 6: 0
            Offset
; INTERNAL TEMPERATURE
15: Internal Temperature (P17)
           Loc [ T_int
; B A R O M E T R I C P R E S S U R E 16: If time is (P92)
         Minutes (Seconds --) into a
 1: 59
             Interval (same units as above)
 3: 48
            Set Port 8 High
17: If time is (P92)
         Minutes (Seconds --) into a
 1: 0
 2: 60
            Interval (same units as above)
 3: 30
            Then Do
    18: Volt (SE) (P1)
              Reps
2500 mV Fast Range
     1: 1
      2: 15
                 SE Channel
      3: 11
                Loc [ P_mb
      4: 11
     5: 0.2
     6: 600
                 Offset
    19: Do (P86)
                 Set Port 8 Low
     1: 58
20: End (P95)
; HOURLY OUTPUT
21: If time is (P92)
           Minutes (Seconds --) into a
            Interval (same units as above)
 3: 10
            Set Output Flag High (Flag 0)
22: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
```

```
2: 101
            Array ID
23: Real Time (P77)
            Year, Day, Hour/Minute (midnight = 2400)
 1: 1220
24: Resolution (P78)
            High Resolution
; Store average unvent and vent {\tt T} and {\tt Rh}
25: Average (P71)
 1: 4
            Reps
                           ]
            Loc [ T_1
 2: 1
26: Resolution (P78)
1: 1
            High Resolution
; Store wind speed, dir and std dev 27: Wind Vector (P69)
            Reps
             Samples per Sub-Interval
 3: 0
             S, theta(1), sigma(theta(1)) with polar sensor
            Wind Speed/East Loc [Wind_spd ]
Wind Direction/North Loc [Wind_dir ]
 4: 5
 5: 6
28: Resolution (P78)
           High Resolution
; Store average global rad
29: Average (P71)
1: 1 Reps
        Loc [ Li200S
 2: 7
; Store hourly precipitation
30: Totalize (P72)
            Reps
 1: 1
            Loc [ Precip
 2: 8
; no data
31: Average (P71)
          Reps
 1: 2
 2: 12
            Loc [ _____]
32: Resolution (P78)
            High Resolution
 1: 1
; Store maximum wind speed during last hour
33: Maximum (P73)
1: 1
            Reps
 2: 10
            Value with Hr-Min
            Loc [ Wind_spd ]
 3: 5
34: Resolution (P78)
1: 1
            High Resolution
; Store transient unvent and vent T and Rh
35: Sample (P70)
          Reps
 2: 1
            Loc [ T_1
36: Resolution (P78)
            High Resolution
1: 1
; Store max vent T
37: Maximum (P73)
 1: 1
            Reps
            Value with Hr-Min
 2: 10
            Loc [ T_vent
 3: 3
38: Resolution (P78)
            High Resolution
1: 1
; Store min vent T
39: Minimum (P74)
1: 1
            Reps
 2: 10
            Value with Hr-Min
            Loc [ T_vent
40: Resolution (P78)
            High Resolution
 1: 1
41: Sample (P70)
 1: 1
            Reps
            Loc [ P_mb
;-----
; D A I L Y O U T P U T
42: If time is (P92)
```

```
1: 0
             Minutes (Seconds --) into a
 2: 1440
             Interval (same units as above)
 3: 10
             Set Output Flag High (Flag 0)
43: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
             Array ID
44: Real Time (P77)
             Year, Day, Hour/Minute (midnight = 2400)
1: 1220
45: Resolution (P78)
1: 1
             High Resolution
; Store daily average unvent and vent T \&\ \mbox{Rh}
46: Average (P71)
1: 4 Reps
            Reps
             Loc [ T_1
2: 1
47: Resolution (P78)
            High Resolution
; Store daily max unvent T 48: Maximum (P73)
1: 1
            Reps
             Value with Hr-Min
3: 2
             Loc [ T_2
49: Resolution (P78)
             High Resolution
1: 1
; Store daily min unvent T
50: Minimum (P74)
1: 1
             Reps
             Value with Hr-Min Loc [ T_2 ]
 2: 10
 3: 2
51: Resolution (P78)
            High Resolution
; Store daily max wind speed 52: Maximum (P73)
          Reps
1: 1
 2: 10
             Value with Hr-Min
            Loc [ Wind_spd ]
53: Resolution (P78)
1: 1
            High Resolution
: Store average wind vector
54: Wind Vector (P69)
1: 1
             Reps
 2: 1
             Samples per Sub-Interval
             S, theta(1) with polar sensor
Wind Speed/East Loc [ Wind_spd ]
3: 1
 4: 5
             Wind Direction/North Loc [ Wind_dir ]
5: 6
55: Resolution (P78)
            High Resolution
; Store daily avg global radioation
56: Average (P71)
1: 1
            Reps
             Loc [ Li200S ]
; Store daily precipitation
57: Totalize (P72)
1: 1 Reps
             Loc [ Precip ]
; Store sample of battery voltage
58: Sample (P70)
1: 1
             Reps
2: 10
             Loc [ Battery ]
59: Average (P71)
1: 2
             Reps
2: 12
             Loc [ _____]
60: Resolution (P78)
1: 1
             High Resolution
61: Average (P71)
1: 1
             Reps
 2: 11
             Loc [ P_mb
                           ]
```

```
; SYNOPTIC OUTPUT; transient T data is stored every 3 hrs
; according to synoptic standards.
62: If time is (P92)
 1: 60
             Minutes (Seconds --) into a
             Interval (same units as above)
 3: 10
             Set Output Flag High (Flag 0)
63: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
             Array ID
 2: 103
64: Real Time (P77)
 1: 1220
            Year, Day, Hour/Minute (midnight = 2400)
65: Resolution (P78)
             High Resolution
 1: 1
66: Sample (P70)
             Reps
                           ]
             Loc [ T_2
 2: 2
*Table 2 Program
01: 0.0000 Execution Interval (seconds)
*Table 3 Subroutines
End Program
                  ] RW-- 3
] RW-- 6
] RW-- 5
       [ T_1
                                            Start -----
       T_2
3
       [ T_vent
                                            -----
                     RW-- 3
RW-- 4
RW-- 4
RW-- 2
RW-- 2
4
       [ rH_vent
                   ]
                                            ----- -----
       [ Wind_spd ] [ Wind_dir ]
                                            ----- -----
6
       [ Li200S
       Precip
9
       [ T_int
                      -W--
                             0
10
       [ Battery ] RW--
                             2
                                            -----
11
       [ P_mb
                   1 RW--
                             2
                                            ----- -----
                                            ----- -----
12
       [ _____]
                      R.---
                                     0
                      R---
                             2
13
                                     0
14
       [ ----- ]
                      ----
                             0
16
       [ _____]
                             0
                                     0
17
                     ----
                             0
                                     0
                                            ----- -----
       [ ---- ] ----
                                            -----
18
                             0
                                     0
                                            ----- -----
19
                     ----
                             0
                                     0
20
                     ----
                             0
                                            -----
                                     0
       [ _____ ] ---- 0
[ R_RO_T_1 ] RW-- 1
[ R_RO_T_2 ] RW-- 1
                            0
22
                                            -----
23
```

11