5. On sets

5.1 Basic exercises

- 1. Prove that \subseteq is a partial order, that is, it is:
 - (a) reflexive: \forall sets $A, A \subseteq A$

We shall prove that every element in A is also in A.

$$\forall a \in A : a \in A \iff A \subseteq A \text{ as required}$$
 (1)

(b) transistive: \forall sets A, B, C. $(A \subseteq B \land B \subseteq C) \Longrightarrow A \subseteq C$

We shall prove that every element in A must be in B. Since every element in B is in C: every element in A is also in C.

Assume $A \subseteq B \land B \subseteq C$

by assumption:
$$A \subseteq B \iff$$

$$\forall a \in A : a \in B$$
by assumption: $B \subseteq C \iff$

$$\forall b \in B : b \in C$$

$$\therefore \forall a \in A : a \in B \implies$$

$$\forall a \in A : a \in C \implies$$

$$A \subseteq C$$

(c) antisymmetric: \forall sets A, B. $(A \subseteq B \land B \subseteq A) \iff A = B$

I shall prove that every $a \in A$ is also in B and every $b \in B$ is also in A. This implies that A and B contain the same elements and hence are the same set.

$$A \subseteq B \iff$$

$$\forall a \in A : a \in B$$

$$B \subseteq A \iff$$

$$\forall b \in B : b \in A$$

$$\forall a \in A : a \in B \land \forall b \in B : b \in A \iff$$

$$A = B$$

$$(3)$$

- 2. Prove the following statements:
 - (a) \forall sets A. $\emptyset \subseteq A$

By definition if S is a set:

$$S \subseteq A \Longleftrightarrow \forall s \in S : s \in A \tag{4}$$

For \emptyset this is vacuously true.

$$(\emptyset \subseteq A \iff \forall s \in \emptyset : s \in A) \iff$$

$$(\emptyset \subseteq A \iff \text{true}) \iff$$

$$\emptyset \subseteq A \text{ as required}$$

$$(5)$$

- (b) \forall sets A. $(\forall x : x \notin A) \iff A = \emptyset$ TODO
- 3. Find the union, and intersection of:
 - (a) $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$

$$\{1, 2, 3, 4, 5\} \cup \{-1, 1, 3, 5, 7\} = \{-1, 1, 2, 3, 4, 5, 7\} \tag{6}$$

$$\{1, 2, 3, 4, 5\} \cap \{-1, 1, 3, 5, 7\} = \{1, 3, 5\} \tag{7}$$

(b) $\{x \in \mathbb{R} : x > 7\}$ and $\{x \in \mathbb{N} : x > 5\}$

$$\{x \in \mathbb{R} : x > 7\} \cup \{x \in \mathbb{N} : x > 5\}$$

$$= \{x \in \mathbb{R} : x > 7 \lor x \in \{6, 7\}\}$$
(8)

$$\{x \in \mathbb{R} : x > 7\} \cap \{x \in \mathbb{N} : x > 5\}$$

$$= \{x \in \mathbb{N} : x > 7\}$$

$$(9)$$

4. Find the Cartesian product and disjoint union of $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$. The Cartesian product of two sets S and T is $\{x : \forall s \in S, \forall t \in T : x = (s, t)\}$ For the sets $\{1, 2, 3, 4, 5\}$ and $\{-1, 1, 3, 5, 7\}$ this is equal to:

$$\{(1,-1),(1,1),(1,3),(1,5),(1,7),(2,-1),(2,1),(2,3),(2,5),(2,7),(3,-1),(3,1),(3,3),(3,5),(3,7),(4,-1),(4,1),(4,3),(4,5),(4,7),(5,-1),(5,1),(5,3),(5,5),(5,7)\}$$

$$(10)$$

- 5. Let $I = \{2, 3, 4, 5\}$ and for each $i \in I$, let $A_i = \{i, i + 1, i 1, 2 \cdot i\}$.
 - (a) List the elements of all sets A_i for $i \in I$

$$A_{2} = \{1, 2, 3, 4\}$$

$$A_{3} = \{2, 3, 4, 6\}$$

$$A_{4} = \{3, 4, 5, 8\}$$

$$A_{5} = \{4, 5, 6, 10\}$$
(11)

(b) Let $\{A_i : i \in I\}$ stand for $\{A_2, A_3, A_4, A_5\}$. Find $\bigcup \{A_i : i \in I\}$ and $\bigcap \{A_i : i \in I\}$.

$$\int \{A_i : i \in I\} \{1, 2, 3, 4, 5, 6, 8, 10\}$$
(12)

$$\bigcap \{A_i : i \in I\}\{4\} \tag{13}$$

- 6. Let U be a set. For all $A, B \in \mathcal{P}(A)$, prove that:
 - (a) $A^{c} = B \iff (A \cup B = U \land A \cap B = \emptyset)$
 - (b) Double complement elimination: $(A^{c})^{c} = A$
 - (c) The De-Morgan laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$

5.2 Core exercises

- 1. Prove that for all sets U and subsets $A, B \subseteq U$:
 - (a) $\forall X : A \subseteq X \land B \subseteq X \iff (A \cup B) \subseteq X$)
 - (b) $\forall Y : Y \subset A \land Y \subset B \iff Y \subset (A \cap B)$
- 2. Either prove or disprove that, for all sets A and B,
 - (a) $A \subseteq B \Longrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$
 - (b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
 - (c) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
 - (d) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
 - (e) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$
- 3. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that the following statements are equivalent.
 - (a) $A \cup B = B$
 - (b) $A \subseteq B$
 - (c) $A \cap B = A$
 - (d) $B^{\mathsf{c}} \subseteq A^{\mathsf{c}}$
- 4. For sets A, B, C, D, prove or disprove at least three of the following statements:
 - (a) $(A \subseteq C \land B \subseteq D) \Longrightarrow A \times B \subseteq C \times D$
 - (b) $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D)$
 - (c) $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$
 - (d) $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$
 - (e) $(A \times B) \cup (A \times D) \subseteq A \times (B \cup D)$
- 5. For sets A, B, C, D, prove or disprove at least three of the following statements:
 - (a) $(A \subseteq C \land B \subseteq D) \Longrightarrow A \uplus B \subseteq C \uplus D$
 - (b) $(A \cup B) \uplus C \subseteq (A \uplus C) \cup (B \uplus C)$
 - (c) $(A \uplus C) \cup (B \uplus C) \subseteq (A \cup B) \uplus C$
 - (d) $(A \cap B) \uplus C \subseteq (A \uplus C) \cap (B \uplus C)$
 - (e) $(A \uplus C) \cap (B \uplus C) \subseteq (A \cap B) \uplus C$
- 6. Prove the following properties of the big unions and intersections of a family of sets $\mathcal{F} \subseteq \mathcal{P}(A)$:
 - (a) $\forall U \subseteq A : (\forall X \in \mathcal{F} : X \subseteq U) \iff \bigcup \mathcal{F} \subseteq U$
 - (b) $\forall L \subseteq A : (\forall X \in \mathcal{F} : L \subseteq X) \iff L \subseteq \bigcap \mathcal{F}$
- 7. Let A be a set.
 - (a) For a family $\mathcal{F} \subseteq \mathcal{P}(A)$, let $\mathcal{U} \triangleq \{U \subseteq A : \forall S \in \mathcal{F} : S \subseteq U\}$. Prove that $| J\mathcal{F} = \cap \mathcal{U}$.
 - (b) Analogously, define the family $\mathcal{L} \subseteq \mathcal{P}(A)$ such that $\bigcap \mathcal{F} = \bigcup \mathcal{L}$. Also prove this statement.

5.3 Optional advanced exercises

1. Prove that for all families of sets \mathcal{F}_1 and \mathcal{F}_2

$$(\bigcup \mathcal{F}_1) \cup (\bigcup \mathcal{F}_2) = \bigcup (\mathcal{F}_1 \cup \mathcal{F}_2)$$
 (14)

State and prove the analogous property for intersections of non-empty families of sets.

2. For a set U, prove that $(\mathcal{P}(U),\subseteq,\cup,\cap,U,\emptyset,(\cdot)^{\mathsf{c}})$ is a Boolean algebra.