AUTOMATION OF SPUR GEAR DESIGN AND CAD MODELLING: TECHNICAL SUMMARY FOR DESIGN

Atharv Darekar

May 20, 2020

Principal geometrical symbols^{1,2}

a centre distance mm

b face width mm

s tooth thickness mm

e space thickness mm

c tip and root clearance mm

m module mm

 h_a addendum mm

 h_f dedendum mm

n speed of rotation rpm

c clearance mm

Formulae:²

1. $a = \frac{m(z_P + z_G)}{2}$

2. d = mz

3. $p = \pi m$

4. $u = \frac{n_P}{n_G} = \frac{z_G}{zP}$

5. $\rho_f = \frac{c}{1-\sin(\alpha)} = \frac{\pi \frac{m}{4} - (h_f \tan(\alpha))}{\tan(\frac{90^\circ - \alpha}{2})}$

6. $s = e = \frac{p}{2} = \frac{\pi m}{2}$

 ρ_f fillet radius mm

d pitch circle diameter mm

z number of teeth

p pitch, lead mm

u gear ratio

 α pressure angle $^{\circ}$

 ϕ tooth thickness half angle $^{\circ}$

P pinion

G gear

Specified values of modules:³

Series	
I	II
1 1.25 1.5	1.125 1.375
2 2.5	1.75 2.25
3	2.75 3.5
5	4.5 5.5
6	6.5 7
10	9
12 16	14 18
20 25	22
32	28 36
40 50	45

Design procedure:⁴

I. Standard system of gear tooth:

Table 1: Proportions of standard involute teeth in terms of module

	Full depth		Stub
α	14.5°	20°	20°
h_a	m	m	0.8m
h_f	1.157m	1.25m	m
c	0.157m	0.25m	0.2m
s	1.5708m	1.5708m	1.5708m

II. Interference and undercutting:

The minimum number of teeth to avoid interference is given by

$$z_{min} = \frac{2}{\sin^2 \alpha}$$

Table 2: Minimum number of teeth to avoid interference and undercutting

Involute full depth 14.5°	32
Involute full depth 20°	17
Involute stub 20°	14

III. Force analysis:

Assumptions

- i. As the point of contact moves, the magnitude of the resultant force changes. This effect is neglected.
- ii. Only one pair of teeth takes the entire load.
- iii. Effect of dynamic force is neglected.

Then, PkW is power transmitted by the gear,

$$M_t = \frac{60 \times 10^6 \times P}{2\pi n} N \cdot mm \tag{1}$$

where M_t is torque transmitted by gears.

$$P_t = \frac{2M_t}{d}N\tag{2}$$

where P_t is tangential load at the pitch circle radius.

$$P_r = P_t \tan \alpha \, N \tag{3}$$

where P_r is radial load acting towards the centre.

$$P_N = \frac{P_t}{\cos \alpha} N \tag{4}$$

where P_N is resultant load.

Beam strength of gear tooth.⁵

Assumptions

- i. The effect of radial load P_r which induces compressive stresses, is neglected.
- ii. The tangential load P_t is uniformly distributed over the face and width of the gear.
- iii. The effect of stress concentration is neglected.
- iv. Only one pair of teeth is in contact and takes the total load at any given time.

$$S_b = mb\sigma_b Y N \tag{5}$$

where,

 S_b is beam strength of gear tooth

b = 10m is face width in mm

 $\sigma_b = \frac{1}{3} S_{ut}$ is permissible bending stress in $N \cdot mm^{-2}$ and S_{ut} is ultimate tensile strength⁶ in $N \cdot mm^{-2}$

 $Y = y\pi$ is Lewis form factor.

Table 3: Lewis form factor⁵

Number of Teeth	У	Number of Teeth	У
12	0.078	27	0.111
13	0.083	30	0.114
14	0.088	34	0.118
15	0.092	38	0.122
16	0.094	43	0.126
17	0.096	50	0.130
18	0.098	60	0.134
19	0.100	75	0.138
20	0.102	100	0.142
21	0.104	150	0.146
23	0.106	300	0.150
25	0.108		

Approximation of Lewis form factor:⁷

$$y = 0.124 - \frac{0.684}{z}$$
 for involute full depth 14.5°
$$= 0.154 - \frac{0.912}{z}$$
 for involute full depth 20°
$$= 0.175 - \frac{0.950}{z}$$
 for involute stub 20°

Wear strength of gear tooth:⁶

$$S_w = bQd_PKN \tag{7}$$

where,

 S_w is wear strength of the gear tooth.

Q is ratio factor defined as

$$Q = \frac{2z_G}{z_G + z_P} \text{ for external gearing}$$

$$= \frac{2z_G}{z_G - z_P} \text{ for internal gearing}$$
(8)

K is load stress factor defined as

$$K = \frac{\sigma_c^2 \sin \alpha \cos \alpha \left(\frac{1}{E_P} + \frac{1}{E_G}\right)}{1.4} \tag{9}$$

According to Gustav Niemann,⁸

$$\sigma_c = 0.27(BHN) kgf \cdot mm^{-2}$$

= 2.65(BHN) N · mm⁻² (10)

Effective load on gear tooth:

The service factor is defined as $C_s = \frac{maximum torque}{rated torque}$.

Table 4: Service factor for speed reduction gearbox

Workin characteristics of driving machine	Working characteristics of driven machine		
	Uniform	Moderate	Heavy
$\operatorname{Uniform}$	1.00	1.25	1.75
Light	1.25	1.50	2.00
Medium	1.50	1.75	2.25

Table 5: Examples of driving machines with different working characteristics

Driving machines
Electric motor, steam turbine, gas turbine
Multi-cylinder internal combustion engine
Single-cylinder internal combustion engine

Table 6: Examples of driven machines with different working characteristics

Characteristic of operation Driven machines

Uniform Generator, belt conveyor, platform conveyor, light elevator, elec-

tric hoist, feed gears of machine tools, ventilators, turbo-blower,

mixer for constant density material

Moderate Main drive to machine tool, heavy elevator, turning gear of

crane, mine ventilator, mixer for variable densoty material, multi-

cylinder piston pump, feed pump

Heavy Press, shear, rubber dough mill, rolling mill drive, power shovel,

heavy centrifuge, heavy feed pump, rotary drilling apparatus, bri-

quette press, pug mill

In the final stage of gear design, when gear dimensions are known, errors specified and the quality of gears determined, the dynamic load is calculated by equations derived by Earle Buckingham.⁶

$$P_{eff} = C_s P_t + P_d N \tag{11}$$

where,

$$P_d = \frac{21v\left(Ceb + P_t\right)}{21v + \sqrt{(Ceb + P_t)}}N$$
(12)

 P_d is dynamic load.

v is pitch line velocity in $m \cdot s^{-1}$

 $e = e_P + e_G$ is sum of errors between two meshing teeth in mm

b is face width of tooth in mm

 P_t is tangential force due to rated torque in N

The deformation factor C depends upon the modulii of elasticity of materials for pinion and gear and the form factor of tooth or pressure angle. It is given by,

$$C = \frac{k}{\left(\frac{1}{E_P} + \frac{1}{E_G}\right)} \tag{13}$$

where,

k is constant depending upon the form of tooth.

E is modulus of elasticity of materials in $N \cdot mm^{-2}$

Table 7: The values of k for various tooth forms

Involute full depth 14.5 0.107 Involute full depth 20 0.111 Involute stub 20 0.115 The tolerances are calculated by using the following basic equation

$$\phi = m + 0.25\sqrt{d} \tag{14}$$

where, ϕ is tolerance factor.

Table 8: Tolerances on the adjacent pitch

Grade	$e\mu m$
1	$0.80 + 0.06\phi$
2	$1.25 + 0.10\phi$
3	$2.00 + 0.16\phi$
4	$3.20 + 0.25\phi$
5	$5.00 + 0.40\phi$
6	$8.00 + 0.63\phi$
7	$11.00 + 0.90\phi$
8	$16.00 + 1.25\phi$
9	$22.00 + 1.80\phi$
10	$32.00 + 2.50\phi$
11	$45.00 + 3.55\phi$
12	$63.00 + 5.00\phi$

Bibliography

- [1] "IS 2467:2002 International gear notation Symbols for geometrical data.," standard, Bureau of Indian Standards, New Delhi, June 2002.
- [2] "IS 2535:2004 Cylindrical gears for general and heavy engineering. Part 1: Standard basic rack tooth profile," standard, Bureau of Indian Standards, New Delhi, Dec. 2004.
- [3] "IS 2535:2004 Cylindrical gears for general and heavy engineering. Part 2: Module," standard, Bureau of Indian Standards, New Delhi, Dec. 2004.
- [4] V. B. Bhandari, Design of Machine Elements. Tata McGraw-Hill, 2010.
- [5] W. Lewis, "Investigation of the strength of gear teeth.," Engineer's Club of Philadelphia, 15 October 1892.
- [6] E. Buckingham, Analystical Mechanics of Gears. Dover Publication, 1949.
- [7] P. C. of Technology, Design Data Book. PSG College of Technology, 1966.
- [8] G. Niemann, Machine Elements Design and Calculation in Mechanical Engineering. Springer-Verlag, 1978.