Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Loi

30 Novembre 2021

Capitolo 1

Gli integrali di Borwein

1.1 Introduzione

Lo scopo di questa tesi é descrivere gli integrali di Borwein. Useremo questi integrali per fornire esempi di formule valide per tutti i numeri naturali minori o uguali ad un numero \tilde{n} scelto arbitrariamente, ma che sono false per ogni numero intero maggiore di \tilde{n} .

Definizione 1.1.1 Siano g(x) e f(x) due funzioni. La funzione f(x) si dice O(g(x)) in $x = x_0$ se:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = l \ con \ l \in \mathbb{R}.$$

1.2 Uso degli integrali di Borwein

Si dice integrale di Borwein[1][3] un integrale che coinvolge prodotti di $\frac{\sin ax}{ax}$. Consideriamo adesso, al fine di capire l'importanza degli integrali di Borwein, la seguente successione di numeri a_k , con $k \in \mathbb{N}$, così definita:

$$a_k = \frac{1}{100k+1} \,.$$

Allora si può vedere che, dato un qualsiasi $m \in \mathbb{N}$ tale che $m < 10^{38}$, ho:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2}.$$

Tuttavia, nonostante si possa pensare tale proprietà valga, visto il grande numero raggiunto, per ogni $n \in \mathbb{N}$, si trova che per $n = 10^{38}$ si ha:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} \, dx \neq \frac{\pi}{2} \, .$$

Tale risultato è dovuto alla seguente proprietà, che in questa tesi ci proponiamo di dimostrare.

Teorema 1.2.1 Si consideri una sequenza $a_0, a_1, ..., a_n$ di numeri tali che valgano le seguenti proprietà:

$$a. \ a_0 > a_1 > \dots > a_n > 0.$$

b.
$$a_0 > a_1 + \dots + a_j \ \forall j \leq n - 1, \ ma \ a_0 < a_1 + \dots + a_n$$
.

Allora si ha che $\forall m = 0, ..., n-1 \ vale$:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{a_k x} \, dx = \frac{\pi}{2a_0} \,. \tag{1.1}$$

Mentre

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} \, dx \neq \frac{\pi}{2a_0} \,. \tag{1.2}$$

Posto $a_k = \frac{1}{100k+1}$ si ottiene esattamente quanto visto in precedenza. Infatti, avendo definito a_k in questo modo, ho che $a_0 = 1 \Rightarrow$ la condizione è verificata $\forall m \in \mathbb{N}$ tale che:

$$\sum_{j=1}^{m} \frac{1}{100j+1} < 1.$$

Per via del significato geometrico dell'integrale ho:

$$\sum_{j=1}^{m} \frac{1}{100j+1} < \int_{0}^{m} \frac{1}{100x+1} dx = \frac{1}{100} \ln(100m+1).$$

Quindi si ha:

$$\sum_{j=1}^{m} \frac{1}{100j+1} < 1 \text{ se } \frac{1}{100} \ln(100m+1) < 1.$$

Cioé otteniamo che la Formula 1.2.1 vale $\forall m$ tali che $100m+1 < e^{100}$, quindi $\forall m$ tali che $100m+1 < 10^{40}$, cioè tali che $m < 10^{38}$.

Allora, se dimostrassimo il Teorema 1.2.1, avremmo mostrato che la proprietà vale $\forall m \in \mathbb{N}$ tali che $m \leq 10^{38}$ ma non per numeri naturali maggiori. Ovviamente, scegliendo opportuni a_k , si possono trovare propietá valide per $\tilde{n} \in \mathbb{N}$ arbitrariamente grandi.

1.3 Trasformazione dell'integrale con l'integrazione per parti

1.3.1 Premesse al calcolo dell'integrale

Allo scopo di dimostrare il Teorema 1.2.1 cerchiamo di scrivere in modo più conveniente gli integrali (1.1) e (1.2) per poterli calcolare più facilmente. Per farlo definiamo:

$$C_n(x) := \prod_{k=0}^n \sin(a_k x), \ \forall n \in \mathbb{N}.$$

Allo scopo di risolvere gli integrali applicheremo ripetutamente l'integrazione per parti. Prima di farlo, tuttavia, osserviamo che $\sin(ax) = ax + O(x^3)$. Usando ció posso scrivere:

$$C_m(x) := \prod_{k=0}^m \sin(a_k x) = (a_0 x + O(x^3)) \cdots (x + O(x^3)) = (a_0 \cdots a_m) x^{m+1} + O(x^{m+3}).$$

Da questo risultato si può notare che la funzione $C_m(x)$ ha uno zero di ordine m+1 in x=0.

1.3.2 Calcolo degli integrali di Borwein per parti

Definito ció possiamo riscrivere le formule (1.1) e (1.2) come segue:

$$\int_0^\infty \frac{C_m(x)dx}{x^{m+1}} dx = \frac{\pi}{2} a_1 \cdots a_m, \quad \forall m \le n-1.$$

$$\int_0^\infty \frac{C_n(x)}{x^{n+1}} dx \neq \frac{\pi}{2} a_1 \cdots a_n.$$

Usando quanto visto nel paragrafo precedente possiamo calcolare gli integrali per parti ottenendo:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} = \left[-\frac{C_m(x)}{mx^m} \right]_0^\infty + \frac{1}{m} \int_0^\infty \frac{C_m'(x)}{x^m} dx.$$

 $C_m(x)$ é un prodotto di funzioni limitate e quindi è una funzione limitata, allora, avendo $\lim_{x\to\infty}-\frac{1}{mx^m}=0$. ho che $\lim_{x\to\infty}-\frac{1}{mx^m}\,C_m(x)=0$, inoltre, avendo $C_m(x)$ uno 0 di ordine m+1 in x=0, ho che $\lim_{x\to0}-\frac{1}{mx^m}C_m(x)=0$. Quindi:

$$[-\frac{1}{mx^m} C_m(x)]_0^\infty = 0.$$

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} dx = \frac{1}{m} \int_0^\infty \frac{C'_m(x)}{x^m} dx.$$
(1.3)

Applichiamo nuovamente l'integrazione per parti all'integrale a secondo membro ottenendo:

$$\int_0^\infty \frac{C'_m(x)}{x^m} \, dx = \left[-\frac{C'_m(x)}{(m-1)x^{m-1}} \right]_0^\infty + \frac{1}{m-1} \int_0^\infty \frac{C''_m(x)}{x^{m-1}} \, dx \, .$$

Eseguendo ragionamenti analoghi a quelli sopra ho che , essendo $C_m'(x)$ limitata e $\frac{1}{x^{m-1}}$ infinitesima per x tendente a ∞ , $\lim_{x\to\infty}-\frac{1}{(m-1)x^{m-1}}\,C_m'(x)=0$ mentre, essendo x=0 uno zero di ordine m+1 per $C_m(x)$ quindi x=0 è uno zero di ordine m per $C_m'(x)$. Dunque:

$$\lim_{x \to 0} -\frac{C'_m(x)}{(m-1)x^{m-1}} = 0.$$

Da ció ho che:

$$\int_0^\infty \frac{C'_m(x)}{x^m} \, dx = \frac{1}{m-1} \int_0^\infty \frac{C''_m(x)}{x^{m-1}} \, dx \, .$$

E quindi sostituendo nella (1.3) abbiamo:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} dx = \frac{1}{m(m-1)} \int_0^\infty \frac{C_m''(x)}{x^{m-1}} dx.$$

Iterando troveró:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} dx = \frac{1}{m!} \int_0^\infty \frac{C_m^{(m)}(x)}{x} dx.$$
 (1.4)

1.4 Calcolo esplicito di $C_m(x)$ e $C_m^{(m)}(x)$ ai fini del calcolo dell'integrale di Borwein

1.4.1 Calcolo di $C_m(x)$

Per calcolare esplicitamente l'integrale (1.4) é necessario ottenere in maniera esplicita il valore di $C_m^{(m)}(x)$. Per fare ció é utile esprimere $C_m(x)$ in modo più conveniente tramite l'uso delle formule di Eulero, tramite le quali ho che:

$$\sin(a_k x) = \frac{1}{2i} \left(e^{ia_k x} - e^{-ia_k x} \right).$$
$$\cos(a_k x) = \frac{1}{2} \left(e^{ia_k x} + e^{-ia_k x} \right).$$

Noto ció possiamo scrivere $C_m(x)$:

$$C_{m}(x) := \prod_{k=0}^{m} \sin(a_{k}x) = \frac{1}{(2i)^{m+1}} (e^{ia_{0}x} - e^{-ia_{0}x}) \prod_{k=1}^{m} (e^{ia_{k}x} - e^{-ia_{k}x}) =$$

$$= \frac{1}{(2i)^{m+1}} (e^{ia_{0}x} \prod_{k=1}^{m} (e^{ia_{k}x} - e^{-ia_{k}x}) - e^{-ia_{0}x} \prod_{k=1}^{m} (e^{ia_{k}x} - e^{-ia_{k}x})).$$
(1.5)

Ora studiamo separatamente i due prodotti tra parentesi nella (1.5)

$$e^{ia_0x} \prod_{k=1}^m (e^{ia_kx} - e^{-ia_kx}) = e^{ia_0x} (e^{ia_1x} - e^{-ia_1x}) \cdots (e^{ia_mx} - e^{-ia_mx}).$$

Si puó notare che esso sia la somma di tutti i possibili addendi del tipo:

$$e^{ia_0x}(\pm e^{\pm ia_1x})\cdots(\pm e^{\pm ia_mx}). \tag{1.6}$$

Allora ogni possibile scelta di segni è data da una m-upla $\gamma = (\gamma_1, \dots, \gamma_m) \in \{-1, 1\}^m$ e conseguentemente possiamo esprimere ogni addendo del tipo (1.6) come:

$$e^{ia_0x}(\gamma_1 e^{\gamma_1 ia_1x}) \cdots (\gamma_m e^{\gamma_m ia_mx}) = \gamma_1 \cdots \gamma_m e^{i(a_0 + a_1\gamma_1 + \cdots + a_m\gamma_m)x}.$$

Per semplicitá di notazione denotiamo per ogni $\gamma = (\gamma_1, \dots, \gamma_m)$ e:

$$b_{\gamma} = a_0 + a_1 \gamma_1 + \dots + a_m \gamma_m \wedge \epsilon_{\gamma} = \gamma_1 \dots \gamma_m.$$

$$e^{ia_0 x} \prod_{k=1}^m (e^{ia_k x} - e^{-ia_k x}) = \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} e^{ib_{\gamma} x}. \tag{1.7}$$

Analogamente l'altro termine della (1.5) é:

$$e^{-ia_0x} \prod_{k=1}^{m} (e^{ia_kx} - e^{-ia_kx}) = \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} e^{i\tilde{b}_{\gamma}x}.$$
 (1.8)

Dove:

$$\tilde{b}_{\gamma} = -a_0 + a_1 \gamma_1 + \dots + a_m \gamma_m .$$

Osserviamo che:

$$\tilde{b}_{\gamma} = -(a_0 - a_1 \gamma_1 - \dots - a_m \gamma_m) = -b_{-\gamma}.$$
 (1.9)

$$\epsilon_{\gamma} = \gamma_1 \cdots \gamma_m = (-1)^m \epsilon_{-\gamma}. \tag{1.10}$$

Inserendo la (1.9) e la (1.10) nella (1.8) otteniamo:

$$e^{-ia_0x} \prod_{k=1}^m (e^{ia_kx} - e^{-ia_kx}) = \sum_{\gamma \in \{-1,1\}^m} (-1)^m \epsilon_{-\gamma} e^{-ib_{-\gamma}x}.$$

Ovviamente al variare di γ in tutto $\{-1,1\}^m$ anche $-\gamma$ varia in tutto $\{-1,1\}^m \Rightarrow$ possiamo scrivere:

$$e^{-ia_0x} \prod_{k=1}^{m} (e^{ia_kx} - e^{-ia_kx}) = \sum_{\gamma \in \{-1,1\}^m} (-1)^m \epsilon_{\gamma} e^{-ib_{\gamma}x}.$$
 (1.11)

Mettendo assieme (1.11) e (1.7) abbiamo che la (1.5) puó essere riscritta come:

$$C_m(x) = \frac{1}{(2i)^{m+1}} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} (e^{ib_{\gamma}x} - (-1)^m e^{-ib_{\gamma}x}).$$

Ora, al fine di poter ottenere l'espressione di $C_m(x)$, distinguiamo 2 casi: m pari e m dispari. Per m pari si ha:

$$e^{ib_{\gamma}x} - (-1)^m e^{-ib_{\gamma}x} = e^{ib_{\gamma}x} - e^{-ib_{\gamma}x} = 2i\sin(b_{\gamma}x)$$
.

Conseguentemente, posto m=2k, ho:

$$\frac{1}{(2i)^{m+1}} \epsilon_{\gamma} (e^{ib_{\gamma}x} - (-1)^m e^{-ib_{\gamma}x}) = \frac{1}{2^m} \frac{1}{(-1)^k} \sin(b_{\gamma}x).$$

Allora otteniamo che per m pari possiamo scrivere:

$$C_m(x) = \frac{1}{2^m} \frac{1}{(-1)^k} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} \sin(b_{\gamma} x).$$
 (1.12)

Se invece m fosse dispari avrei:

$$e^{ib_{\gamma}x} - (-1)^m e^{-ib_{\gamma}x} = e^{ib_{\gamma}x} + e^{-ib_{\gamma}x} = 2\cos(b_{\gamma}x)$$
.

Posto m=2k+1:

$$\frac{1}{(2i)^{m+1}} \epsilon_{\gamma} (e^{ib_{\gamma}x} - (-1)^m e^{-ib_{\gamma}x}) = \frac{1}{2^m} \frac{1}{(-1)^k + 1} \cos(b_{\gamma}x).$$

Di conseguenza ho che per m dispari posso scrivere:

$$C_m(x) = \frac{1}{2^m} \frac{1}{(-1)^{k+1}} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} \cos(b_{\gamma} x).$$
 (1.13)

1.4.2 Calcolo di $C_m^{(m)}(x)$

A questo punto usiamo (1.12) e (1.13) per calcolare $C_m^{(m)}(x)$. Supponiamo m sia pari e usando la (1.12) otteniamo:

$$C'_{m}(x) = \frac{(-1)^{k}}{2^{m}} \sum_{\gamma \in \{-1,1\}^{m}} \epsilon_{\gamma} b_{\gamma} \cos(b_{\gamma}x).$$

$$C''_{m}(x) = \frac{(-1)^{k+1}}{2^{m}} \sum_{\gamma \in \{-1,1\}^{m}} \epsilon_{\gamma} b_{\gamma}^{2} \sin(b_{\gamma}x).$$

$$C_{m}^{(3)}(x) = \frac{(-1)^{k+1}}{2^{m}} \sum_{\gamma \in \{-1,1\}^{m}} \epsilon_{\gamma} b_{\gamma}^{3} \cos(b_{\gamma}x).$$

$$C_{m}^{(4)}(x) = \frac{(-1)^{k+2}}{2^{m}} \sum_{\gamma \in \{-1,1\}^{m}} \epsilon_{\gamma} b_{\gamma}^{4} \sin(b_{\gamma}x).$$

Iterando otteniamo che in generale abbiamo, se m pari:

$$C_m^{(2j)}(x) = \frac{(-1)^{k+j}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j} \sin(b_{\gamma} x).$$
 (1.14)

$$C_m^{(2j+1)}(x) = \frac{(-1)^{k+j}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j+1} \cos(b_{\gamma}x).$$

In modo analogo, usando la (1.13), per m dispari si ha:

$$C_m^{(2j)}(x) = \frac{(-1)^{k+j+1}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j} \cos(b_{\gamma}x) .$$

$$C_m^{(2j+1)}(x) = \frac{(-1)^{k+j+2}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j+1} \sin(b_{\gamma}x) . \tag{1.15}$$

In particolare, dovendo calcolare la derivata m-esima, ho che se é m pari useró la (1.14), mentre se m è dispari useró la (1.15). In entrambi i casi si otterá:

$$C_m^{(m)}(x) = \frac{1}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m \sin(b_{\gamma} x).$$
 (1.16)

Che possiamo sostituire nell'integrale da calcolare.

1.5 Calcolo dell'integrale di Borwein

Per concludere la dimostrazione del teorema 1.2.1 inseriamo la (1.16) nell'integrale (1.4) ottenendo:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} dx = \frac{1}{m!} \frac{1}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m \int_0^\infty \frac{\sin(b_{\gamma}x)}{x} dx.$$
 (1.17)

Per completare i calcoli useremo il fatto che[2]:

$$\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2} \, .$$

E che dato $b \in \mathbb{R}$ in generale si avrá:

$$\int_0^\infty \frac{\sin(bx)}{x} \, dx = sgn(b) \frac{\pi}{2} \, .$$

In quanto se b>0:

$$\int_0^\infty \frac{\sin(bx)}{x} dx = \int_0^\infty \frac{\sin(bx)}{bx} dbx = \frac{\pi}{2}.$$

E se b<0 e posto y=bx

$$\int_0^\infty \frac{\sin(bx)}{x} dx = \int_0^\infty \frac{\sin(bx)}{bx} d(bx) = -\int_0^\infty \frac{\sin(y)}{y} d(y) = -\frac{\pi}{2}.$$

Inserendo questo nella (1.17) otteniamo:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} dx = \int_0^\infty \frac{1}{x^{m+1}} C_m(x) dx = \frac{1}{m!} \frac{1}{2^m} \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_\gamma b_\gamma^m sgn(b_\gamma).$$
(1.18)

Per calcolare l'integrale e dimostrare (1.1) e (1.2) dobbiamo stimare la quantitá

$$\sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m sgn(b_{\gamma}) \tag{1.19}$$

Nei 2 casi $m \le n - 1$ e m=n.

Nel caso $m \leq n-1$ l'ipotesi é che $a_0 > a_1 + \cdots + a_m$ e quindi che $a_0 - a_1 - \cdots - a_m > 0$ allora $\forall \gamma = (\gamma_1, \cdots, \gamma_m) \in \{-1, 1\}^m$ si deve avere necessariamente

$$b_{\gamma} := a_0 + \gamma_1 a_1 + \dots + \gamma_m a_m \ge a_0 - a_1 - \dots - a_m > 0.$$

Allora $sgn(b_{\gamma}) = 1 \forall m \leq n-1$ allora la (1.19) diventa:

$$\sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m.$$

Allo scopo di calcolare questa quantità usiamo una procedura analoga a quella usata per esprimere $C_m(x)$, infatti usando la (1.7) e ponendo una variabile ausiliaria t al posto di ix, otteniamo la formula:

$$e^{a_0 t} \prod_{k=1}^m (e^{a_k t} - e^{-a_k t}) = \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} e^{b_{\gamma} t}.$$
 (1.20)

Usiamo lo sviluppo in serie di Taylor di e^x :

$$e^x = 1 + x + O(x^2).$$

Allora si ha:

$$e^{a_k t} - e - a_k t = 1 + a_k t + O(t^2) - (1 - a_k + O(t^2)) = 2a_k t + O(t^2)$$
.

E possiamo riscrivere la (1.20) come:

$$(1+a_0+O(t^2))\prod_{k=1}^m (2a_kt+O(t^2)) = \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} (1-b_{\gamma}t + \frac{1}{2!}b_{\gamma}^2t^2 + \dots + \frac{1}{m!}b_{\gamma}^mt^m + O(t^{m+1})).$$
(1.21)

Poiché il primo membro di tale uguaglianza, per via della produttoria, é un $O(t^m)$ e quindi si ha che tutti i coefficienti di $1, t, \dots, t^{m-1}$ a secondo membro sono nulli, mentre per il termine t^m la (1.21) ci dá:

$$\prod_{k=1}^{m} 2a_k = \frac{1}{m!} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m.$$

Ossia

$$\sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m = m! 2^m \prod_{k=1}^m a_k.$$
 (1.22)

Che é esattamente l'uguaglianza che volevamo ottenere, infatti sostituendo nella (1.18) si ottiene:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{x} \, dx = \frac{1}{m!} \, \frac{1}{2^m} \, \frac{\pi}{2} 2^m m! \prod_{k=1}^m a_k \,. \tag{1.23}$$

E dividendo entrambi i membri per $a_0 \cdots a_m$ si ottiene la (1.1):

$$\int_0^\infty \prod_{i=0}^m \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2a_0}.$$

Per dimostrare la (1.2) notiamo che, in una sequenza con le proprietà data nel Teorema 1.2.1 e con $b_{\gamma} = a_0 + \gamma_1 a_1 + \cdots + \gamma_n a_n$, vale chiaramente $b_{\gamma} < 0$ se $\gamma = (-1, \dots, -1)$ ma per qualsiasi altra n-upla $b_{\gamma} > 0$

Infatti $\forall j = 1, \dots, n$ ho che $2a_j > a_n$ di conseguenza $a_j > a_n - a_j$ e usando ció si trova:

$$a_1 + a_2 + \dots + a_{n-1} > a_1 + \dots + a_{j-1} - a_j + a_{j+1} + \dots + a_n$$
.

Che combinata con la proprietá b del Teorema 1.2.1 ci dice che:

$$a_0 > a_1 + \cdots + a_{j-1} - a_j + a_{j+1} + \cdots + a_n$$
.

$$a_0 - a_1 - \dots - a_{j-1} + a_j - a_{j+1} - \dots - a_n > 0$$
.

Che ci dice che $b_{\gamma} > 0$ se almeno una delle componenti della n-upla γ é 1. Allora denotando $\gamma_0 = (-1, \dots, -1)$ si ha $\operatorname{sgn}(b_{\gamma_0}) = 1$ e $\operatorname{sgn}(b_{\gamma}) = 1$ per ogni γ diverso da γ_0 . Quindi possiamo scrivere la (1.18) come:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} dx = \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^n - 2\epsilon_{\gamma_0} b_{\gamma_0}^n.$$

Ed essendo per definizione $\epsilon_{\gamma_0} = (-1)^n$ ho che:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} dx = \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^n - 2(-1)^n b_{\gamma_0}^n$$

Usando la (1.22) possiamo scrivere:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} \, dx = \frac{\pi}{2} \prod_{k=1}^n a_k - \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \, 2(-1)^n b_{\gamma_0}^n$$

Dividendo entrambi i membri per $a_0a_1\cdots a_n$ otteniamo

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2a_0} - \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \frac{(a_1 + \dots + a_n - a_0)^n}{a_0 \dots a_n} \neq \frac{\pi}{2a_0}$$

Che dimostra la (1.2)

Bibliografia

- [1] https://it.wikipedia.org/wiki/integrale_di_borwein.
- [2] https://www.math.unipd.it/ umarconi/did/esam2-20130515.pdf.
- [3] David Borwein and Jonathan M Borwein. Some remarkable properties of sinc and related integrals. *The Ramanujan Journal*, 5(1):73–89, 2001.

Gli integrali di Borwein

Valerio Bianco. Relatore:

Introduzion

Uso e definizione degli integrali di

Dimostrazione della proprietà degli integrali di

Ringraziamenti

Gli integrali di Borwein

Valerio Bianco, Relatore: Andrea Loi

Universitá degli studi di Cagliari - Corso di Laurea in Matematica

30 Novembre 2021

Indice

Gli integrali di Borwein

Valerio Bianco. Relatore Andrea L

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

- 1 Introduzione
- 2 Uso e definizione degli integrali di Borwein
- 3 Dimostrazione della proprietà degli integrali di Borwein

Introduzione

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzione

Uso e definizione degli integrali di Borwein

Dimostrazion della proprietà degli integrali di Borwein

Ringraziament

Obiettivo

Lo scopo di questa tesi é descrivere gli integrali di Borwein. Useremo questi integrali per fornire esempi di formule valide per tutti i numeri naturali minori o uguali ad un numero ñ scelto arbitrariamente, ma che sono false per ogni numero intero maggiore di ñ.

Introduzione

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzione

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di

Ringraziamenti

Definizione

Siano g(x) e f(x) due funzioni. La funzione f(x) si dice O(g(x)) in $x = x_0$ se:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \text{ con } I \in \mathbb{R}.$$

Gli integrali di Borwein

Valerio Bianco. Relatore Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli

Ringraziamenti

Definizione

Si dice Integrale di Borwein un integrale che coinvolge prodotti di $\frac{\sin(a_k x)}{ak_x}$.

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di

Ringraziamenti

Osservazione

Consideriamo la seguente successione di numeri $a_k, k \in \mathbb{N}$, cosí definita:

$$a_k=\frac{1}{100k+1}.$$

Si puó vedere che $\forall m \in \mathbb{N}$ tale che $m < 10^{38}$, ho:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2}.$$

Ma dato $n \ge 10^{38}$:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} \, dx \neq \frac{\pi}{2} \, .$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzior

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Teorema

Sia considerata una sequenza a_0 , a_1 ,..., a_n di numeri tali che valgano le seguenti proprietà:

a.
$$a_0 > a_1 > \dots > a_n > 0$$
.

b.
$$a_0 > a_1 + ... + a_j \ \forall j \le n-1$$
, ma $a_0 < a_1 + ... + a_n$.

Allora si ha che $\forall m = 0, ..., n-1$ vale:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2a_0}. \tag{1}$$

Mentre

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} \, dx \neq \frac{\pi}{2a_0} \,. \tag{2}$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Posto $a_k = \frac{1}{100k+1}$ si ottiene esattamente quanto visto nelle slide precedenti.

 $a_0=1$ allora la condizione è verificata $\forall m \in \mathbb{N}$ tale che:

$$\sum_{j=1}^{m} \frac{1}{100j+1} < 1.$$

Quindi $\forall m \in \mathbb{N}$ tali che $100m+1 < e^{100} \Rightarrow m < 10^{38}$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzior

Uso e definizione degli integrali d Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Definizione

$$C_n(x) := \prod_{k=0}^n \sin(a_k x) \ \forall n \in \mathbb{N}.$$

Osservazione

$$\sin(ax) = ax + O(x^3).$$

Definizione

$$C_m(x) := \prod_{k=0}^m \sin(a_k x) = (a_0 x + O(x^3)) \cdots (x + O(x^3)) = (a_0 \cdots a_m) x^{m+1} + O(x^{m+3}).$$

Osservazione

Vista l'equazione ottenuta possiamo notare che la funzione $C_m(x)$ ha uno zero di ordine m+1 in x=0.

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Possiamo usare $C_m(x)$ e quanto appena visto per scrivere la (1) come:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} \ dx = \frac{\pi}{2} a_1 \cdots a_m \ \forall m \le n-1$$

e la (2) come:

$$\int_0^\infty \frac{C_n(x)}{x^{n+1}} dx \neq \frac{\pi}{2} a_1 \cdots a_n.$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzior

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Calcolando per parti l'integrale si ottiene, sfruttando il fatto che $C_m(x)$ ha uno 0 di ordine m+1 in x=0

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} \, dx = \frac{1}{m!} \int_0^\infty \frac{C_m^{(m)}(x)}{x} \, dx \,. \tag{3}$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Calcoliamo $C_m(x)$. Usando la formula di Eulero posso scrivere:

$$\sin(a_k x) = \frac{1}{2i} \left(e^{ia_k x} - e^{-ia_k x} \right).$$

$$\cos(a_k x) = \frac{1}{2} \left(e^{ia_k x} + e^{-ia_k x} \right).$$

Allora $C_m(x)$ é scrivibile come:

$$\frac{1}{(2i)^{m+1}}(e^{ia_0x}\prod_{k=1}^m(e^{ia_kx}-e^{-ia_kx})-e^{-ia_0x}\prod_{k=1}^m(e^{ia_kx}-e^{-ia_kx}))\,.$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali d Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

Osservazione

Possiamo notare che il primo prodotto tra parentesi è la somma di tutti i possibili addendi del tipo:

$$e^{ia_0x}(\pm e^{\pm ia_1x})\cdots(\pm e^{\pm ia_mx}). \tag{4}$$

definito
$$\gamma = (\gamma_1, \cdots, \gamma_m) \in \{-1, 1\}^m$$
 e $b_{\gamma} = a_0 + a_1 \gamma_1 + \cdots + a_m \gamma_m \wedge \epsilon_{\gamma} = \gamma_1 \cdots \gamma_m$ abbiamo:

$$e^{ia_0x} \prod_{k=1}^m (e^{ia_kx} - e^{-ia_kx}) = \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} e^{ib_{\gamma}x}.$$
 (5)

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Loi

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Analogamente si trova, effettuando alcuni passaggi che il secondo termine é:

$$e^{-ia_0x} \prod_{k=1}^m (e^{ia_kx} - e^{-ia_kx}) = \sum_{\gamma \in \{-1,1\}^m} (-1)^m \epsilon_\gamma e^{-ib_\gamma x}.$$
 (6)

Allora otteniamo per m pari:

$$C_m(x) = \frac{1}{2^m} \frac{1}{(-1)^k} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} \sin(b_{\gamma} x) \tag{7}$$

e per m dispari:

$$C_m(x) = \frac{1}{2^m} \frac{1}{(-1)^{k+1}} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} \cos(b_{\gamma} x).$$
 (8)

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

Osservazione

Per finire calcoliamo $C_m^{(m)}(x)$. Per m pari derivando $C_m(x)$ dalla (7) ho:

$$C_m^{(2j)}(x) = \frac{(-1)^{k+j}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j} \sin(b_{\gamma} x).$$
 (9)

$$C_m^{(2j+1)}(x) = \frac{(-1)^{k+j}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j+1} \cos(b_{\gamma} x).$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Per m dispari derivando $C_m(x)$ dalla 8 ho:

$$C_m^{(2j)}(x) = \frac{(-1)^{k+j+1}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j} \cos(b_{\gamma} x).$$

$$C_m^{(2j+1)}(x) = \frac{(-1)^{k+j+2}}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^{2j+1} \sin(b_{\gamma} x). \tag{10}$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Dovendo, in entrambi i casi, calcolare la derivata m-esima, ho che se é m pari useró la (9), mentre se m è dispari useró la (10). In entrambi i casi si otterá:

$$C_m^{(m)}(x) = \frac{1}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m \sin(b_{\gamma} x). \tag{11}$$

Che possiamo sostituire nell'integrale da calcolare.

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

Osservazione

Per concludere inseriamo la (11) nell'integrale (3) ottenendo:

$$\int_0^\infty \frac{C_m(x)}{x^{m+1}} dx = \frac{1}{m!} \frac{1}{2^m} \sum_{\gamma \in \{-1,1\}^m} \epsilon_\gamma b_\gamma^m \int_0^\infty \frac{\sin(b_\gamma x)}{x} dx.$$

Usando il fatto che dato $b \in \mathbb{R}$ ho:

$$\int_0^\infty \frac{\sin(bx)}{x} dx = \operatorname{sgn}(b) \frac{\pi}{2}.$$

Otteniamo:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} dx = \frac{1}{m!} \frac{1}{2^m} \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_\gamma b_\gamma^m \operatorname{sgn}(b_\gamma).$$

(12)

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzior

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

Osservazione

Per calcolare l'integrale dobbiamo stimare la quantitá

$$\sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m \operatorname{sgn}(b_{\gamma}). \tag{14}$$

Nei 2 casi $m \le n-1$ e m=n. e si vede che nel caso $m \le n-1$ essa é

$$\sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^m = m! 2^m \prod_{k=1}^m a_k.$$
 (15)

sostituendolo nella (13) si ottiene:

$$\int_0^\infty \prod_{k=0}^m \frac{\sin(a_k x)}{x} \, dx = \frac{1}{m!} \, \frac{1}{2^m} \, \frac{\pi}{2} 2^m m! \prod_{k=1}^m a_k \, . \tag{16}$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziamenti

Osservazione

Per dimostrare la (2) notiamo che $b_{\gamma} < 0$ se $\gamma = (-1, \dots, -1)$ ma per qualsiasi altra n-upla $b_{\gamma} > 0$. Allora denotando $\gamma_0 = (-1, \dots, -1)$ si ha $\operatorname{sgn}(b_{\gamma_0}) = 1$ e $\operatorname{sgn}(b_{\gamma}) = 1$ per ogni γ diverso da γ_0 . Quindi possiamo scrivere la (13) come:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} \, dx = \frac{1}{n!} \, \frac{1}{2^n} \, \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_\gamma b_\gamma^n - 2\epsilon_{\gamma_0} b_{\gamma_0}^n \, .$$

Ed essendo per definizione $\epsilon_{\gamma_0} = (-1)^n$ ho che:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} dx = \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \sum_{\gamma \in \{-1,1\}^m} \epsilon_{\gamma} b_{\gamma}^n - 2(-1)^n b_{\gamma_0}^n.$$

Gli integrali di Borwein

Valerio Bianco. Relatore: Andrea Lo

Introduzion

Uso e definizione degli integrali di Borwein

Dimostrazione della proprietà degli integrali di Borwein

Ringraziament

Osservazione

Usando gli stessi calcoli usati per la (16) ottengo per m=n:

$$\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{a_k x} dx = \frac{\pi}{2a_0} - \frac{1}{n!} \frac{1}{2^n} \frac{\pi}{2} \frac{(a_1 + \dots + a_n - a_0)^n}{a_0 \dots a_n} \neq \frac{\pi}{2a_0}$$

Che dimostra la (2)

Ringraziamenti

Gli integrali di Borwein

Valerio Bianco. Relatore Andrea I

Introduzion

Uso e definizione degli integrali d

Dimostrazione della proprietà degli integrali di

Ringraziament

