

685.621 Algorithms for Data Science

Supervised Learning Regression: Model Evaluation

Why Do We Need Model Evaluation

Purpose of Evaluation:

- Determines how well the model generalizes to unseen data.
- Helps compare different models objectively.
- Identifies overfitting and underfitting.
- Supports model selection and hyperparameter tuning by using consistent metrics.

Two types of evaluation:

- Training Performance: How well the model fits the training data.
- Generalization Performance: How well the model performs on unseen data.

Plots for Evaluating Models

Plots for Evaluating Models

Metrics for Evaluating Models

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

Adjusted
$$R^2 = 1 - \frac{(1-R^2)(n-1)}{n-p-1}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

$$MSLE = \frac{1}{n} \sum_{i=1}^{n} \left(\log \left(1 + y_i \right) - \log \left(1 + \hat{y}_i \right) \right)^2$$

Choosing the Best Models

$$AIC = 2k - 2\ln(\widehat{L})$$

$$BIC = k \ln(n) - 2 \ln(\widehat{L})$$

Head_size	R-squared:	0.639

Adj. R-squared: 0.638 Model: F-statistic: Method: Least Squares 416.5 Sun, 08 May 2022 Prob (F-statistic): 5.96e-54 Date: 21:40:40 Log-Likelihood: Time: -1613.4No. Observations: 3231. 237 AIC: Df Residuals: BIC: 3238. Df Model:

OLS Regression Results

Covariance Type: nonrobust

Dep. Variable:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	520.6101	153.215	3.398	0.001	218.759	822.461
Brain_weight	2.4269	0.119	20.409	0.000	2.193	2.661
Omnibus:		2.687	Durbin-	Wateon:		1.726
Prob(Omnibus):		0.261		Bera (JB):		2.321
Skew:		0.207	Prob(JB	, ,		0.313
Kurtosis:		3.252	Cond. No	0.		1.38e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.38e+04. This might indicate that there are strong multicollinearity or other numerical problems.

