Le texte écrit en police Typewriter correspond au langage mathématica

Les équations, rappel

Q0 Lire et suivre pas à pas, avec mathématica, le texte suivant :

 $eq=x==x^2$

eq est le couple (x, x^2) (noté $\{x, x^2\}$ en mathématica), x vaut donc eq[[1]], x^2 vaut eq[[2]]. Pour résoudre eq, on utilise Solve:

sol=Solve[eq,x] qui signifie résoudre l'équation eq d'inconnue x

On obtient une liste de règles de substitution appelée sol, la première règle étant sol[[1]] . x n'est affecté ni à la valeur 0, ni à la valeur 1, ce dont on peut se convaincre en validant x.

Pour récuperer la première solution de eq, que l'on va encore noter x, on tape :

x = x/.sol[[1]]

En effet, schématiquement, x vaut x et le motif x est remplacé par 0 donc x vaut 0

Exercice 1

Soit
$$(C) = \{(x,y) \in \mathbb{R}^2, 13x^2 - 32xy + 37y^2 - 2x + 14y - 5 = 0\}$$

Q1 Ouvrir le package graphique en tapant << Graphics ' (inutile pour la version 6)

Q2 Tracer la courbe (C) en utilisant ImplicitPlot : noter x*y et pas xy, (\grave{a} remplacer par ContourPlot dans la version 6)

Pour θ réel, on note $\overrightarrow{u(\theta)} = \cos \theta \overrightarrow{i} + \sin \theta \overrightarrow{j}$ et $\overrightarrow{v(\theta)} = -\sin \theta \overrightarrow{i} + \cos \theta \overrightarrow{j}$

On note $\Re = (O, \overrightarrow{i}, \overrightarrow{j})$ et $\Re_1 = (O, \overrightarrow{u(\theta)}, \overrightarrow{v(\theta)})$ qui sont deux repères orthornormés directs du plan.

Un point M a pour coordonnées (x, y) dans \Re et (x1, y1) dans \Re_1 de sorte que : $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} = x1 \overrightarrow{u(\theta)} + y1 \overrightarrow{v(\theta)}$

 $\mathbf{Q3}$ (sans mathématica) Grâce à la relation ci-dessus, donner x et y en fonction de x1,y1 et θ

Q4 Soit $A = 13x^2 - 32xy + 37y^2 - 2x + 14y - 5$, développer A

(ne pas écrire x_1 avec le "1" en indice mais x_1 sinon mathématica pensera que x est une suite)

Q5 Regrouper les termes en x1y1 dans A (utiliser Collect) et en déduire la valeur de θ pour laquelle le coefficient de ce terme est nul (mathématica propose quatre valeurs, choisir la quatrième)

Soit $\Re' = (O', \overrightarrow{u(\theta)}, \overrightarrow{v(\theta)})$ où O' a pour coordonnées (α, β) dans $\Re_1 = (O, \overrightarrow{u(\theta)}, \overrightarrow{v(\theta)})$, c'est à dire que : $\overrightarrow{OO'} = \alpha \overrightarrow{u(\theta)} + \beta \overrightarrow{v(\theta)}$ (α et β seront choisis ultérieurement) Un point M a pour coordonnées (x_1, y_1) dans \Re_1 et (x_p, y_p) dans \Re'

Q6 (sans mathématica) Grâce à la relation ci-dessus, donner x1 et y1 en fonction de xp, yp, α et β

Q7 Développer A et en déduire les valeurs à donner à α et β pour que (C) ait une équation du type $\frac{xp^2}{a^2} + \frac{yp^2}{b^2} = 1$

Q8 Donner les coordonnées du centre de (*C*) dans le repère initial

Exercice 2

Soit
$$(C) = \{(x, y) \in \mathbb{R}^2, x^2 + xy + y^2 - 5x - 4y + 5 = 0\}$$

Q9 Reprendre Q1,2,...,8, choisir la deuxième valeur de θ proposée par mathématica

Exercice 3

Soit
$$(C) = \{(x, y) \in \mathbb{R}^2, 16x^2 - 24xy + 9y^2 - 5x - 5y = 0\}$$

Q10 Reprendre Q1,2,...6, choisir la troisième valeur de θ proposée par mathématica. Choisir α et β pour que l'équation soit du type $yp^2 = axp$

Exercice 4

Soit
$$(C) = \{(x, y) \in \mathbb{R}^2, 2x^2 - 3xy - 2y^2 + x + 3y - 1 = 0\}$$

Q11 Reprendre Q1,2,...,6, choisir la première valeur de θ proposée par mathématica. Quelle est la nature de (C) ?

Exercice 5

Soient F et F' les deux points du plan de coordonnées respectives (1,0) et (-1,0) et a un réel $> \frac{FF'}{2}$

On note Γ_a l'ensemble des points M du plan tels que MF + MF' = 2a, on admet que Γ_a est une ellipse de foyers F, F'

Q12 Tracer Γ_a pour différentes valeurs de a

Exercice 6

Soit (C) le cône de l'espace d'équation $x^2 + y^2 = z^2$.

Q13 Demander à mathématica de dessiner (C)

L'intersection de (C) et d'un plan est une conique (d'où le nom de ces figures!)

Q 14 Le vérifier graphiquement avec mathématica, choisir différents plans de façons à obtenir les trois types de coniques