Blockchains & Distributed Ledgers

Lecture 05

Dimitris Karakostas

The Byzantine Generals Problem

The Byzantine Generals Problem

The Byzantine Generals Problem

The Consensus Problem

Motivation for the Consensus Layer, I

- A transaction history and/or state of the service needs to be agreed by all servers.
- Servers may be operated by participants with diverging interests, in terms of the history of transactions and/or state of the service.

Motivation for the Consensus Layer, II

The consensus problem

Study initiated by Lamport, Pease, Shostak 1982

Consensus: Problem Statement

- A number (t) of the participating entities can diverge from the protocol.
- This has been called Byzantine behaviour in the literature.
- The properties of the protocol are defined in the presence of this "malicious" coalition of parties that attempts to disrupt the process for the "honest" parties.

$$H, |H| = n - t$$

Consensus Properties

• Termination $\forall i \in \mathsf{H}(u_i \text{ is defined})$

• Agreement
$$\forall i,j \in \mathsf{H} \, (u_i = u_j)$$

• Validity $\exists v (\forall i \in \mathsf{H} \, (v_i = v)) \implies (\forall i \in \mathsf{H} \, (u_i = v))$

 \circ Strong Validity $orall i \in \mathsf{H} \, \exists j \in \mathsf{H} \, (u_i = v_j)$

Honest Majority is Necessary, I

Consider an adversary that performs one of the following with probability 1/3

Honest Majority is Necessary, II

- If consensus protocol secure:
 - O Adversary corrupts A_0 : output of honest parties (that belong to A_1) should be 1.
 - O Adversary corrupts A_1 : output of honest parties (that belong to A_0) should be 0.
 - Adversary corrupts no-one: output of all parties should be the same.
- Adversary corrupts each set with prob. ⅓ and instructs corrupted parties to follow the honest protocol
 - honest parties cannot distinguish between honest/corrupted parties
- If all parties output same value: validity is violated with prob. at least ½
- If all parties output different value: consistency is violated with prob. at least ⅓

Is Honest Majority Sufficient?

- Two important scenarios have been considered in the consensus literature.
 - Point to point channels. **No setup.**
 - Point to point channels. With setup.

The setup provides a correlated private initialization string to each participant;
 it is assumed to be honestly produced.

Setup and Network

Setup/Network	Synchrony	Asynchrony / Partial Sync.
No Setup	t < n/3	t < n/3
With Setup	t < n/2	t < n/3

We know consensus can be achieved, assuming the above bounds on adversarial parties.

The typical setup and network configuration in classical consensus protocols

- Setup: a public-key directory
 - Parties have signing and verification keys for a digital signature scheme.
 - Each party knows every other party's verification key.
- Network: point-to-point channels
 - Synchronous, partial synchronous or asynchronous

Bitcoin Consensus

Enter Bitcoin (2008-09)

- Important concepts used
 - blockchain data structure
 - proof of work (POW)
- Both known and studied earlier, but put in combination for a novel application.

The setup and network configuration in Bitcoin

- Setup: a random (unpredictable) string
 - The blockchain protocol runs without relying on public-key crypto
- Network: peer-to-peer diffusion
 - Synchronous for at least a small subset of the participants (that may be evolving over time).

The Bitcoin Setting for Consensus

- Sometimes also referred to as the "permissionless" setting.
- The bitcoin setting is different, compared to what has been considered classically for the consensus problem.
 - Communication is by **diffusion** (no point-to-point channels).
 - Message delivery is assumed, but message origins and recipient list are not specified.
 - The protocol setup is not a private correlated setup (digital signatures are not used to authenticate miners)
 - A public setup is assumed (genesis block)

Blockchain

$$B_0 = \langle \bot, x_0, ctr_0 \rangle$$
 $B_1 = \langle s_1, x_1, ctr_1 \rangle$
 \vdots
 $B_n = \langle s_n, x_n, ctr_n \rangle$
 $C = \langle B_0, \dots, B_n \rangle$

head

genesis block

$$s_i = H(ctr_{i-1}, G(s_{i-1}, x_{i-1}))$$

$$\mathbf{x}_{\mathcal{C}} = \langle x_0, x_1, \dots, x_n \rangle$$
$$\mathcal{C}^{\lceil k} = \langle B_0, \dots, B_{n-k} \rangle$$

The Bitcoin "backbone"

- The core of the bitcoin protocol
 - The chain validation predicate.
 - The chain selection rule (max-valid)
 - The proof of work function.
 - The main protocol loop
- Protocol is executed by "miners"

[GKL2015] Garay, Kiayias, Leonardos. The Bitcoin Backbone Protocol: Analysis and Applications.

Model

- Assume there are *n* parties running of the protocol
 - synchronously
 - each one has a quota of q queries to the function H(.) in each round
- A number of t parties are controlled by an adversary (a malicious coalition)

Algorithm 1 The chain validation predicate, parameterized by q, T, the hash functions $G(\cdot), H(\cdot)$, and the content validation predicate $V(\cdot)$. The input is \mathcal{C} .

1: function validate(
$$C$$
)
2: $b \leftarrow V(\mathbf{x}_C)$

5: 6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

if $b \wedge (\mathcal{C} \neq \varepsilon)$ then

 \triangleright The chain is non-empty and meaningful w.r.t. $V(\cdot)$ $\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$

$$s' \leftarrow H(ctr, G(s, x))$$

repeat

$$\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$$

 $\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$

$$\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$$

if validblock_q^T($\langle s, x, ctr \rangle$) \wedge (H(ctr, G(s, x)) = s') then

$$\mathcal{C} \leftarrow \mathcal{C}^{\lceil 1}$$
 se

$$b \leftarrow \text{False}$$
end if

ad if
$$(C-\epsilon) \lor (b-\text{False})$$

until
$$(C = \varepsilon) \lor (b = \text{False})$$

$$1 (C = \varepsilon) \lor (b = \text{False})$$

$$o = raise$$

end if return
$$(b)$$

else

Algorithm 2 The function that finds the "best" chain, parameterized by function $\max(\cdot)$. input is $\{C_1,\ldots,C_k\}$.

- 1: **function** maxvalid(C_1, \ldots, C_k)
- 2: $temp \leftarrow \varepsilon$
- for i = 1 to k do 3:
- if validate(C_i) then $temp \leftarrow \max(\mathcal{C}_i, temp)$ 5:
 - end if

 - end for
- return temp 8:
- 9: end function

6:

Algorithm 3 The proof of work function, parameterized by q, T and hash functions $H(\cdot), G(\cdot)$. The input is (x, \mathcal{C}) . 1: function pow(x, C)if $C = \varepsilon$ then ▶ Determine proof of work instance $s \leftarrow 0$ 3: else 4: 5: $\langle s', x', ctr' \rangle \leftarrow \text{head}(\mathcal{C})$ $s \leftarrow H(ctr', G(s', x'))$ 6: end if 7: $ctr \leftarrow 1$ 9: $B \leftarrow \varepsilon$ $h \leftarrow G(s,x)$ 10: while $(ctr \leq q)$ do 11: if (H(ctr, h) < T) then \triangleright This $H(\cdot)$ invocation subject to the q-bound 12: $B \leftarrow \langle s, x, ctr \rangle$ 13: break 14: 15: end if $ctr \leftarrow ctr + 1$ 16: end while 17: $\mathcal{C} \leftarrow \mathcal{C}B$ ▶ Extend chain 18: return C19:

20: end function

Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function $I(\cdot)$ and the chain reading function $R(\cdot)$.

▶ Produce necessary output before the POW stage.

▶ Broadcast the chain in case of adoption/extension.

▷ Signals the end of the round to the diffuse functionality.

 \triangleright Determine the x-value.

2: $st \leftarrow \varepsilon$

1: $C \leftarrow \varepsilon$

6:

10:

13:

15:

16:

- 3: $round \leftarrow 1$
- 4: while TRUE do
 - $\mathcal{C} \leftarrow \mathsf{maxvalid}(\mathcal{C}, \mathsf{any\ chain\ } \mathcal{C}' \mathsf{\ found\ in\ Receive}())$
 - if INPUT() contains READ then write $R(\tilde{\mathcal{C}})$ to OUTPUT()
 - end if
 - $\langle st, x \rangle \leftarrow I(st, \tilde{\mathcal{C}}, round, INPUT(), RECEIVE())$ $C_{\mathsf{new}} \leftarrow \mathsf{pow}(x, \mathcal{C})$
- if $\mathcal{C} \neq \mathcal{C}_{new}$ then 11:
- $C \leftarrow C_{\text{new}}$ 12:
 - Diffuse(C)
 - else
- 14:
 - $Diffuse(\perp)$ end if
 - $round \leftarrow round + 1$
- 17: 18: end while

Basic Properties

- Common Prefix
- Chain Quality
- Chain Growth

Common Prefix, I

Common Prefix, II

(strong common prefix / consistency)

$$\forall r_1, r_2, (r_1 \leq r_2), P_1, P_2, \text{ with } \mathcal{C}_1, \mathcal{C}_2: \mathcal{C}_1^{\lceil k} \leq \mathcal{C}_2$$

 The property holds true, in a probabilistic sense, with an error that decays exponentially in k

Racing Attacks

Attacker splits from the main chain and tries to overtake the "honest chain"

=> Common prefix breaks

Intuition why the attack is a small probability event:

concentration bounds help honest parties

Chain Growth, I

Chain Growth, II

Parameters $\tau \in (0,1), s \in \mathbb{N}$ In any period of s rounds at least τs blocks are added to the chain of an honest party P.

 The property holds true in a probabilistic sense with an error probability that exponentially decays in s

 $\tau \approx$ probability at least one honest party finds a POW in a round

Abstention

- Attacker stops producing blocks
 - => Chain growth stops

- Intuition why the attack is a small probability event:
 - honest parties will eventually issue blocks

Chain Quality, I

Chain Quality, II

Parameters $\mu \in \{0, 1\}, \ell \in \mathbb{N}$ The ratio of blocks of an ℓ -long segment of an honest chain produced by the adversary is bounded by $(1 - \mu)\ell$

 The probability holds true probabilistically with an error that exponentially decays in €

$$\mu \approx \frac{n-2t}{n-t}$$

Block withholding attack

- Attacker mines privately and releases their block at the same time an honest party releases its own block
- Assuming honest propagation favours the adversary, the honest block is dropped, reducing chain quality

- Intuition why the attack is a small probability event:
 - over time the adversary will not have enough blocks to completely eliminate chain quality

Robust Transaction Ledger (RTL) - Ledger Consensus

- It can be shown that the three properties can provide a ledger with the following characteristics:
 - persistence: Transactions are organized in a "log" and honest nodes agree on it.
 - liveness: New transactions are included in the log, after a suitable period of time.

Establishing a RTL from a Blockchain

- Persistence follows from (strong) Common Prefix
 - (need to exclude *k* most recent blocks)
- Liveness from Chain Growth and Chain Quality
 - (leave sufficient time for chain to grow and then apply chain quality to ensure that at least one honest block is included)

Ledger Consensus vs. Consensus

- What is the connection?
 - ledger is an ever-going protocol with inputs (e.g., transactions) continuously coming from (also) external sources.
 - Consensus is a one-shot execution.
- Is it possible to reduce consensus to the ledger? Is it possible to reduce the ledger to consensus?
 - (See the GKL paper for more details)

Hash operations

- Consider a regular PC (30 MHash / sec)
- With expectation of 2⁷⁴ hashing operations, mining a block will require ~ 20 million years.

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

Parallelising mining

- Bitcoin's Proof of Work can be parallelized
- Mining pools
 - Instead of working separately, work together to solve the same block.
 - By collecting "shares" (small hashes of the block that are not quite as small as needed) one can prove how much they contributed.

Bitcoin mining pools

Hashrate Distribution

An estimation of hashrate distribution amongst the largest mining pools.

https://www.blockchain.com/pools

Dynamic Availability

- So far: n nodes maintain the blockchain
- This number may change over time:
 - o new users enter the system while existing users may go away
- The change over time can be dramatic
- The Bitcoin blockchain handles this, by adjusting the difficulty of the proof of work algorithm

Recall: PoW algorithm

```
int counter;
counter = 0
while Hash(data, counter) > Target
increment counter
return counter
```

Target difficulty over time

Adjusting the difficulty

"maxvalid" rule is changed so that parties adopt chain with highest difficulty linearly related to:

$$\sum_i rac{1}{T_i}$$

The f parameter [GKL15]

f = probability of producing a block in a round of interaction(depends on target T, # of miners n, and duration of round)

- If f becomes too small, parties do not do progress;
 chain growth becomes too slow. [liveness is hurt]
- if *f* becomes too large, parties "collide" all the time; an adversary, exploiting network scheduling, can lead them to a forked state. [persistence is hurt]

To resolve this in a dynamic environment, bitcoin **recalculates the target** *T* to keep *f* constant

Target recalculation

 $n_0 =$ estimation of the number of ready parties at the onset

[recall in this context $T_0 = \text{initial target}$ "party" = single CPU1

m = epoch length in blocks (In Bitcoin: 2016)

au= recalculation threshold parameter (In Bitcoin: 4)

T =target in effect

pT = prob of a single miner getting a POW in a round

$$\text{next target} = \begin{cases} \frac{1}{\tau} \cdot T & \text{if } \frac{n_0}{n} \cdot T_0 < \frac{1}{\tau} \cdot T; \\ \tau \cdot T & \text{if } \frac{n_0}{n} \cdot T_0 > \tau \cdot T; \\ \frac{n_0}{n} \cdot T_0 & \text{otherwise} \end{cases}$$

$$\Delta =$$
 last epoch duration based on block timestamps

The Diculty Raising Attack

- The recalculation threshold (τ) is essential
- Without it, an adversary can create a private, artificially difficult chain that will increase the variance in its block production rate
 - overcoming the chain of the honest parties becomes a non-negligible event

[B13] Lear Bahack. Theoretical Bitcoin Attacks with less than Half of the Computational Power (draft)

Understanding the attack : clay pigeons

clay pigeons

Clay pigeon shooting game

- Suppose you shoot on targets successively from 10m against an opponent
 - your success probability: 0.3 your opponent's: 0.4
 - you shoot in sequence 1000 targets
 - winner is the one that got the most hits
- What is your probability of winning?

Chernoff Bounds

Let

$$\delta > 0, \mathbf{Prob}[X_i = 1] = p_i, \mu = \sum_{i=1}^{n} p_i$$

Then

$$\mathbf{Prob}[\sum^{n} X_i \ge (1+\delta)\mu] \le \exp(-\delta^2 \mu/(2+\delta))$$

Prob
$$[\sum_{i=1}^{n} X_i \le (1-\delta)\mu] \le \exp(-\delta^2 \mu/2), \delta \in (0,1)$$

Analysis, I

- You have an expectation of 300 hits and your opponent has an expectation of 400 hits.
- What is your probability of winning?
- Denote by X, whether you hit a target, and similarly Y for your opponent. From Chernoff bounds

$$\mathbf{Pr}\left[\sum_{i=1}^{1000} X_i \ge 345\right] \le \exp(-(0.15)^2 300/2.15) < 4.3\%$$

$$\mathbf{Pr}\left[\sum_{i=1}^{1000} Y_i \le 348\right] \le \exp(-(0.13)^2 400/2) < 3.5\%$$

Analysis, II

 If the negation of both these events happens you will certainly loose

$$\mathbf{Pr}[X_{<345} \land Y_{>348}] = (1 - \mathbf{Pr}[X_{\ge 345}])(1 - \mathbf{Pr}[Y_{\ge 348}]) \ge 92.3\%$$

Thus the probability of you winning is below 8%

Analysis, III

- Now you are given a choice:
 - decrease the size of the clay pigeon target by a ratio β
 - augment your "kills" by multiplying with 1/β
 - your accuracy is linear with β
 - your opponent will keep playing in the same way as before
- Do you accept to play like this?

Analysis, IV

Each shot has success $\Pr[X_i' = 1] = \beta \cdot \Pr[X_i = 1]$

• The score expectation of each shot remains the same:

$$E[(1/\beta)X_i'] = (1/\beta)\beta E[X_i] = E[X_i]$$

$$\begin{aligned} & \mathbf{Pr}[\sum_{i=1}^{1000} X_i' \geq 345\beta] \\ \leq & \exp(-(0.15)^2 300\beta/2.15) \end{aligned} & \frac{\beta \quad \text{bound}}{1, \, \sim\!4.3\%} \\ & \text{decreasing } \beta \text{ results in} \\ & \text{increased variance and} \\ & \text{our previous concentration} \\ & \text{argument will fail} \end{aligned} & 0.5, \, \sim\!20.8\% \\ & 0.25, \, \sim\!45.6\% \\ & 0.10, \, \sim\!73.1\% \end{aligned}$$