```
In [2]: import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
df=pd.read_csv(r"C:\Users\DELL\Downloads\framingham.csv")
df
```

Out[2]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4233	1	50	1.0	1	1.0	0.0	0	1
4234	1	51	3.0	1	43.0	0.0	0	0
4235	0	48	2.0	1	20.0	NaN	0	0
4236	0	44	1.0	1	15.0	0.0	0	0
4237	0	52	2.0	0	0.0	0.0	0	0

4238 rows × 16 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
1.0	(1 (64/6) 1	164(7)	

dtypes: float64(9), int64(7)
memory usage: 529.9 KB

In [4]: df.head()

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	dia
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4.6									

In [5]: df.tail()

Out[5]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
4233	1	50	1.0	1	1.0	0.0	0	1
4234	1	51	3.0	1	43.0	0.0	0	0
4235	0	48	2.0	1	20.0	NaN	0	0
4236	0	44	1.0	1	15.0	0.0	0	0
4237	0	52	2.0	0	0.0	0.0	0	0
4								

In [7]: df.shape

Out[7]: (4238, 16)

In [8]: | df.describe()

Out[8]:

prevaler	BPMeds	cigsPerDay	currentSmoker	education	age	male	
4238	4185.000000	4209.000000	4238.000000	4133.000000	4238.000000	4238.000000	count
0	0.029630	9.003089	0.494101	1.978950	49.584946	0.429212	mean
0	0.169584	11.920094	0.500024	1.019791	8.572160	0.495022	std
0	0.000000	0.000000	0.000000	1.000000	32.000000	0.000000	min
0	0.000000	0.000000	0.000000	1.000000	42.000000	0.000000	25%
0	0.000000	0.000000	0.000000	2.000000	49.000000	0.000000	50%
0	0.000000	20.000000	1.000000	3.000000	56.000000	1.000000	75%
1	1.000000	70.000000	1.000000	4.000000	70.000000	1.000000	max
							4

In [9]: df.isnull().any()

dtype: bool

Out[9]: male

False False age education True currentSmoker False True cigsPerDay **BPMeds** True prevalentStroke False prevalentHyp False diabetes False totChol True sysBP False diaBP False BMI True heartRate True True glucose TenYearCHD False

```
In [10]: df.describe().any()
```

```
Out[10]: male
                             True
                             True
         age
                             True
         education
                             True
         currentSmoker
         cigsPerDay
                             True
         BPMeds
                             True
         prevalentStroke
                             True
         prevalentHyp
                             True
                             True
         diabetes
         totChol
                             True
         sysBP
                             True
         diaBP
                             True
         BMI
                             True
                             True
         heartRate
         glucose
                             True
                             True
         TenYearCHD
         dtype: bool
```

```
In [11]: ax=df["education"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=0.
df["education"].plot(kind='density',color='teal')
ax.set(xlabel='education')
plt.xlim(-0,15)
plt.show()
```



```
In [15]:
         print(df['totChol'].value_counts())
         sns.countplot(x='totChol',data=df,palette='Set2')
         plt.show()
         totChol
         240.0
                   85
         220.0
                   70
         260.0
                   62
         210.0
                   61
         232.0
                   59
                   . .
         392.0
                    1
         405.0
                    1
         359.0
                    1
         398.0
                    1
         119.0
                    1
         Name: count, Length: 248, dtype: int64
```



```
In [18]: df.isnull().any()
```

Out[18]: male False False age education True currentSmoker False cigsPerDay True **BPMeds** True prevalentStroke False prevalentHyp False diabetes False totChol True sysBP False diaBP False BMI True heartRate True glucose True TenYearCHD False dtype: bool

```
In [19]: ax=df["cigsPerDay"].hist(bins=15,density=True,stacked=True,color='cyan',alpha=@df["cigsPerDay"].plot(kind='density',color='teal')
    ax.set(xlabel='cigsPerDay')
    plt.xlim(-10,85)
    plt.show()
```



```
In [20]:
         print(df["cigsPerDay"].mean(skipna=True))
         print(df["cigsPerDay"].median(skipna=True))
         9.003088619624615
         0.0
In [21]:
         print((df['BPMeds'].isnull().sum()/df.shape[0]*100))
         1.2505899008966492
         print((df['BMI'].isnull().sum()/df.shape[0]*100))
In [22]:
         0.4483246814535158
In [23]: print((df['heartRate'].isnull().sum()/df.shape[0]*100))
         0.023596035865974516
In [24]:
         print(df['BPMeds'].value_counts())
         sns.countplot(x='BPMeds',data=df,palette='Set2')
         plt.show()
         BPMeds
         0.0
                4061
         1.0
                 124
         Name: count, dtype: int64
             4000
             3500
             3000
             2500
             2000
             1500
              1000
               500
                 0
                                   0.0
                                                                    1.0
                                                 BPMeds
```

```
In [25]:
         print(df['heartRate'].value_counts().idxmax())
         75.0
In [26]:
         data=df.copy()
         data["cigsPerDay"].fillna(df["cigsPerDay"].median(skipna=True),inplace=True)
         data["BPMeds"].fillna(df["BPMeds"].median(skipna=True),inplace=True)
         data["education"].fillna(df["education"].median(skipna=True),inplace=True)
         data["totChol"].fillna(df["totChol"].value_counts().idxmax(),inplace=True)
         data.drop('glucose',axis=1,inplace=True)
         data.drop('BMI',axis=1,inplace=True)
         data.drop('heartRate',axis=1,inplace=True)
In [27]: df.isnull().sum()
Out[27]: male
                              0
                              0
         age
                            105
         education
         currentSmoker
                              0
                              29
         cigsPerDay
```

BPMeds 53 0 prevalentStroke prevalentHyp 0 diabetes 0 totChol 50 sysBP 0 diaBP 0 BMI 19 heartRate 1 glucose 388 TenYearCHD 0 dtype: int64

In [28]: df.head()

Out[28]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	dia
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4.6						_			

```
In [29]: plt.figure(figsize=(15,8))
    ax=df["education"].hist(bins=15,density=True,stacked=True,color='teal',alpha=0.
    df["education"].plot(kind='density',color='teal')
    ax=data["education"].hist(bins=15,density=True,stacked=True,color='orange',alpha=0.
    data["education"].plot(kind='density',color='orange')
    ax.legend(["education","age"])
    ax.set(xlabel='education')
    plt.xlim(-0,10)
    plt.show()
```



```
In [31]: training=pd.get_dummies(data,columns=["currentSmoker","totChol","sysBP"])
    training.drop("TenYearCHD",axis=1,inplace=True)
    training.drop("male",axis=1,inplace=True)
    training.drop("diaBP",axis=1,inplace=True)

final_train=training
    final_train.head()
```

Out[31]:

	age	education	cigsPerDay	BPMeds	diabetes	Disease	currentSmoker_0	currentSmoker_1 1
0	39	4.0	0.0	0.0	0	1	True	False
1	46	2.0	0.0	0.0	0	1	True	False
2	48	1.0	20.0	0.0	0	1	False	True
3	61	3.0	30.0	0.0	0	0	False	True
4	46	3.0	23.0	0.0	0	1	False	True

5 rows × 490 columns

```
In [32]: plt.figure(figsize=(15,8))
    ax=sns.kdeplot(final_train["age"][final_train.Disease== 1], color="darkturquois
    sns.kdeplot(final_train["age"][final_train.Disease == 0], color="lightcoral", s
    plt.legend(['Disease', 'Died'])
    ax.set(xlabel='age')
    plt.xlim(10,100)
    plt.show()
```


In [33]: plt.figure(figsize=(20,8))
 avg_survival_byage = final_train[["age", "Disease"]].groupby(['age'], as_index=
 g = sns.barplot(x='age', y='Disease', data=avg_survival_byage, color="LightSea0
 plt.show()


```
In [34]: final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)</pre>
          print(final_train['IsMinor'])
          0
          1
                  0
          2
                  0
          3
                  0
          4
                  0
          4233
                  0
          4234
          4235
                  0
          4236
                  0
          4237
          Name: IsMinor, Length: 4238, dtype: int32
```

In [35]: sns.barplot(x='Disease', y='education', data=final_train, color="mediumturquois
plt.show()


```
import seaborn as sns
import matplotlib.pyplot as plt

# Assuming 'train_df' is your DataFrame containing the data
sns.barplot(x='diabetes', y='age', data=df, color='aquamarine')
plt.show()
```


In []: