Calcolo integrale — Scheda di esercizi n. 4

5	Aprile 2022 —	Compito n.	00204 -					
---	---------------	------------	---------	--	--	--	--	--

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella " \mathbf{C} " serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \bowtie o \bowtie).

Nome:		
Cognome:		
Matricola:		

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1 A	1B	1C	1D	2A	2B	$^{2}\mathrm{C}$	^{2}D	3 A	3B	3C	3 D	4A	4B	4C	4D
\mathbf{v}																
\mathbf{F}																
\mathbf{C}																

- 1) Dire se le seguenti affermazioni sono vere o false.
- **1A)** La funzione $f(x) = 3x^2 3x + 3$ è integrabile
- **1B)** La funzione f(x) = x |x| non è integrabile su [3, 8].
- 1C) La funzione

$$f(x) = \begin{cases} 4x + 2 & \text{se } x < 0, \\ -4x - 2 & \text{se } x \ge 0 \end{cases}$$

è integrabile su [-3, 5].

- **1D)** La funzione f(x) = [x], dove [x] è la parte intera di x, è integrabile su [-4, 3].
- 2) Dire se le seguenti affermazioni sono vere o false.
- **2A**) Se

$$f(x) = \begin{cases} 5 & \text{se } x \ge 0, \\ 7 & \text{se } x < 0, \end{cases} \int_{-1}^{1} f(x) \, dx = 13.$$

2B) Se

$$f(x) = \begin{cases} 7 & \text{se } x \le 1, \\ 14x - 7 & \text{se } x > 1, \end{cases} \int_0^2 f(x) \, dx = 14.$$

2C) Se

$$f(x) = \begin{cases} 12 x & \text{se } x \le 1, \\ 24 - 12 x & \text{se } x > 1, \end{cases} \int_0^2 f(x) \, dx = 24.$$

2D) Se

$$f(x) = \begin{cases} 8x & \text{se } x \leq 1, \\ 32 - 16x & \text{se } x > 1, \end{cases} \quad \int_0^2 f(x) \, dx = 8. \text{ 4D) La funzione } F(x) \text{ è derivabile su tutto } \mathbb{R}.$$

3) Siano

$$f(x) = \begin{cases} 10 & \text{se } x \le 0, \\ 9 & \text{se } x > 0. \end{cases}$$
 $F(x) = \int_0^x f(t) dt.$

- **3A)** Si ha F(0) = 10.
- **3B)** Si ha

$$F(6) = 60$$
.

3C) Si ha

$$F(-3) = -30$$
.

- **3D)** Si ha F(x) = -10 x per ogni x < 0.

$$F(x) = \int_0^x \cos^2(t) dt.$$

- **4A)** La funzione F(x) è definita per ogni x in \mathbb{R} .
- **4B)** Si ha F(0) = 0.

5) Calcolare i seguenti integrali:

a1)
$$\int_0^{\pi} \sin(5x) dx$$
,

a2)
$$\int_0^1 e^{3x} dx$$
,

b1)
$$\int_0^1 \frac{6 x dx}{1 + 3 x^2}$$
,

b2)
$$\int_0^1 \frac{dx}{1+49 x^2}$$
,

eguenti integrali:
a1)
$$\int_0^{\pi} \sin(5x) dx$$
, **a2**) $\int_0^1 e^{3x} dx$, **b1**) $\int_0^1 \frac{6x dx}{1+3x^2}$, **b2**) $\int_0^1 \frac{dx}{1+49x^2}$, **c1**) $\int_0^{\sqrt[3]{\pi}} x^2 \cos(5x^3) dx$, **c2**) $\int_0^1 x^7 e^{x^8} dx$, **d1**) $\int_0^1 \frac{dx}{14x+7}$, **d2**) $\int_0^1 \frac{dx}{(3-x)^2}$.

c2)
$$\int_0^1 x^7 e^{x^8} dx$$
,

d1)
$$\int_0^1 \frac{dx}{14x+7}$$

12)
$$\int_0^1 \frac{dx}{(3-x)^2}$$

6) Calcolare una primitiva delle seguenti funzioni

a1)
$$x \sin(x)$$
, **a2**) $x^3 e^x$, **b1**) $x^2 \ln(x)$, **b2**) $(x^2 - 2x + 5) e^x$,

c1)
$$x e^{4x}$$
, **c2**) $x \cos(7x)$, **d1**) $e^{\sqrt{x}}$, **d2**) $\frac{e^{\frac{1}{x}}}{x^3}$,

Soluzioni del compito 00204

1) Dire se le seguenti affermazioni sono vere o false.

1A) La funzione
$$f(x) = 3x^2 - 3x + 3$$
 è integrabile su [2, 9].

Vero: Trattandosi di una funzione continua (è un polinomio) definita su un intervallo chiuso e limitato, la funzione è integrabile (come tutte le funzioni continue su intervalli chiusi e limitati).

1B) La funzione f(x) = x |x| non è integrabile su [3, 8].

Falso: Trattandosi di una funzione continua (è un polinomio) definita su un intervallo chiuso e limitato, la funzione è integrabile (come tutte le funzioni continue su intervalli chiusi e limitati).

1C) La funzione

$$f(x) = \begin{cases} 4x + 2 & \text{se } x < 0, \\ -4x - 2 & \text{se } x \ge 0 \end{cases}$$

è integrabile su [-3, 5].

Vero: La funzione è continua sia per x < 0 che per $x \ge 0$ (essendo un polinomio); essendo continua, è integrabile sia su [-3,0] che su [0,5], e quindi è integrabile sull'unione dei due intervalli.

1D) La funzione f(x) = [x], dove [x] è la parte intera di x, è integrabile su [-4,3].

Vero: La funzione "parte intera" è una funzione costante a tratti; sull'intervallo [-4,3] è discontinua in $-3, -2, \ldots, 2, 3$. Avendo un numero finito di punti di discontinuità, è integrabile su [-4,3].

2A) Se

$$f(x) = \begin{cases} 5 & \text{se } x \ge 0, \\ 7 & \text{se } x < 0, \end{cases} \int_{-1}^{1} f(x) \, dx = 13.$$

Vero: Si ha (ricordando le formule per l'area di un rettangolo)

Disegno non in scala

e quindi

$$\int_{-1}^{1} f(x) \, dx = 8 + 5 = 13 \, .$$

2B) Se

$$f(x) = \begin{cases} 7 & \text{se } x \le 1, \\ 14x - 7 & \text{se } x > 1, \end{cases} \int_0^2 f(x) \, dx = 14.$$

Falso: Si ha (ricordando le formule per l'area di un rettangolo e di un trapezio)

Disegno non in scala

e quindi

$$\int_0^2 f(x) \, dx = 7 + 14 = 21 \neq 14 \, .$$

2C) Se

$$f(x) = \begin{cases} 12 x & \text{se } x \le 1, \\ 24 - 12 x & \text{se } x > 1, \end{cases} \int_0^2 f(x) \, dx = 24.$$

Falso: Si ha (ricordando le formule per l'area di un triangolo)

Disegno non in scala

e quindi

$$\int_0^2 f(x) dx = 6 + 6 = 12 \neq 24.$$

2D) Se

$$f(x) = \begin{cases} 8x & \text{se } x \le 1, \\ 32 - 16x & \text{se } x > 1, \end{cases} \int_0^2 f(x) dx = 8.$$

Falso: Si ha (ricordando le formule per l'area di un triangolo)

Disegno non in scala

e quindi

$$\int_0^2 f(x) dx = 4 + 8 = 12 \neq 8.$$

$$f(x) = \begin{cases} 10 & \text{se } x \le 0, \\ 9 & \text{se } x > 0. \end{cases}$$
 $F(x) = \int_0^x f(t) dt.$

3A) Si ha F(0) = 10.

Falso: Infatti

$$F(0) = \int_0^0 f(x) \, dx = 0 \neq 10 \,,$$

dato che, per ogni f(x) e per ogni a,

$$\int_{a}^{a} f(x) \, dx = 0.$$

3B) Si ha

$$F(6) = 60$$
.

Falso: Infatti

$$F(6) = \int_0^6 f(x) \, dx = \int_0^6 9 \, dx = 9 \cdot 6 = 54 \neq 60 \, .$$

3C) Si ha

$$F(-3) = -30$$
.

Vero: Infatti

$$F(-3) = \int_0^{-3} f(x) \, dx = -\int_{-3}^0 f(x) \, dx = -\int_{-3}^0 10 \, dx = -10 \cdot 3 = -30 \,.$$

3D) Si ha F(x) = -10 x per ogni x < 0.

Falso: Infatti, dato che $f(t) \equiv 10$ per ogni t < 0, si ha

$$F(x) = \int_0^x f(t) dt = \int_0^x 10 dt = 10 x \neq -10 x.$$

4) Sia

$$F(x) = \int_0^x \cos^2(t) dt.$$

4A) La funzione F(x) è definita per ogni x in \mathbb{R} .

Vero: Dato che la funzione $t \mapsto \cos^2(t)$ è continua su ogni intervallo chiuso e limitato di \mathbb{R} , è integrabile su ogni intervallo chiuso e limitato. In particolare, lo è sugli intervalli della forma [0, x] (se $x \ge 0$) o [x, 0] (se x < 0), e quindi la funzione F(x) è definita per ogni x in \mathbb{R} .

4B) Si ha F(0) = 0.

Vero: Dato che, qualsiasi sia a, e qualsiasi sia f(x), si ha

$$\int_{a}^{a} f(x) \, dx = 0 \,,$$

allora

$$F(0) = \int_0^0 \cos^2(t) \, dt = 0 \, .$$

4C) La funzione F(x) è derivabile su tutto \mathbb{R} .

Vero: Dato che la funzione $t \mapsto \cos^2(t)$ è continua, per il Teorema fondamentale del calcolo integrale la funzione F(x) è derivabile ovunque e si ha

$$F'(x) = \cos^2(x), \quad \forall x \in \mathbb{R}.$$

4D) La funzione F(x) è decrescente su \mathbb{R} .

Falso: Per quanto detto nell'esercizio 4C), si ha

$$F'(x) = \cos^2(x), \quad \forall x \in \mathbb{R}.$$

Dato che $F'(x) \ge 0$ per ogni x, la funzione F(x) è crescente su \mathbb{R} (e quindi non è decrescente).

5) Calcolare i seguenti integrali:

$$\mathbf{a1}) \int_0^\pi \sin(5\,x)\,dx\,, \qquad \mathbf{a2}) \int_0^1 \,\mathrm{e}^{3\,x}\,dx\,, \qquad \mathbf{b1}) \int_0^1 \,\frac{6\,x\,dx}{1+3\,x^2}\,, \qquad \mathbf{b2}) \int_0^1 \,\frac{dx}{1+49\,x^2}\,,$$

$$\mathbf{c1}) \int_0^{\sqrt[3]{\pi}} \,x^2\,\cos(5\,x^3)\,dx\,, \qquad \mathbf{c2}) \int_0^1 \,x^7\,\mathrm{e}^{x^8}\,dx\,, \qquad \mathbf{d1}) \int_0^1 \,\frac{dx}{14\,x+7}\,, \qquad \mathbf{d2}) \int_0^1 \,\frac{dx}{(3-x)^2}\,.$$

Soluzione:

a1) Con la sostituzione y = 5x, da cui dy = 5dx, si ha, dato che $\cos(5\pi) = -1$,

$$\int_0^{\pi} \sin(5x) \, dx = \int_0^{5\pi} \sin(y) \, \frac{dy}{5} = -\frac{\cos(y)}{5} \Big|_0^{5\pi} = -\frac{\cos(5\pi) - 1}{5} = \frac{2}{5} \, .$$

a2) Con la sostituzione y = 3x, da cui dy = 3dx, si ha

$$\int_0^1 e^{3x} dx = \int_0^3 e^y \frac{dy}{3} = \frac{e^y}{3} \Big|_0^3 = \frac{e^3 - 1}{3}.$$

b1) Con la sostituzione $y = 1 + 3x^2$, da cui dy = 6x dx, si ha

$$\int_0^1 \frac{6x \, dx}{1+3x^2} = \int_1^4 \frac{dy}{y} = \ln(|y|) \Big|_1^4 = \ln(4) - \ln(1) = \ln(4).$$

b2) Con la sostituzione y = 7x, da cui dy = 7dx, si ha

$$\int_0^1 \frac{dx}{1+49x^2} = \int_0^7 \frac{1}{7} \frac{dy}{1+y^2} = \frac{\arctan(y)}{7} \Big|_0^7 = \frac{\arctan(7) - \arctan(0)}{7} = \frac{\arctan(7)}{7}.$$

c1) Con la sostituzione $y = 5 x^3$, da cui $dy = 15 x^2 dx$, si ha

$$\int_0^{\sqrt[3]{\pi}} x^2 \cos(5x^3) \, dx = \int_0^{5\pi} \cos(y) \, \frac{dy}{15} = \frac{\sin(y)}{15} \Big|_0^{5\pi} = \frac{\sin(5\pi) - \sin(0)}{15} = 0 \, .$$

c2) Con la sostituzione $y = x^8$, da cui $dy = 8x^7 dx$, si ha

$$\int_0^1 x^7 e^{x^8} dx = \int_0^1 e^y \frac{dy}{8} = \frac{e^y}{8} \Big|_0^1 = \frac{e-1}{8}.$$

d1) Ricordando che

$$\int \frac{dy}{ay+b} = \frac{\ln(|ay+b|)}{a},$$

si ha

$$\int_0^1 \frac{dx}{14x+7} = \frac{\ln(|14x+7|)}{14} \Big|_0^1 = \frac{\ln(21) - \ln(7)}{14} = \frac{\ln(3)}{21}.$$

d2) Ricordando che

$$\int \frac{dy}{(a-y)^2} = \int \frac{dy}{(y-a)^2} = -\frac{1}{y-a},$$

si ha

$$\int_0^1 \frac{dx}{(3-x)^2} = -\frac{1}{x-3} \Big|_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

6) Calcolare una primitiva delle seguenti funzioni

a1)
$$x \sin(x)$$
, **a2**) $x^3 e^x$, **b1**) $x^2 \ln(x)$, **b2**) $(x^2 - 2x + 5) e^x$, **c1**) $x e^{4x}$, **c2**) $x \cos(7x)$, **d1**) $e^{\sqrt{x}}$, **d2**) $\frac{e^{\frac{1}{x}}}{x^3}$,

Soluzione:

a1) Integriamo per parti, derivando x e integrando $\sin(x)$:

$$\int x \sin(x) dx = \begin{bmatrix} f'(x) = \sin(x) & \to & f(x) = -\cos(x) \\ g(x) = x & \to & g'(x) = 1 \end{bmatrix} = -x \cos(x) - \int (-\cos(x)) dx,$$

da cui

$$\int x \sin(x) dx = -x \cos(x) + \sin(x).$$

a1) Integriamo per parti, derivando x^3 e integrando e^x :

$$\int x^3 e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x^3 & \to & g'(x) = 3x^2 \end{bmatrix} = x^3 e^x - 3 \int x^2 e^x dx.$$

Per l'integrale rimasto, integriamo per parti, derivando x^2 e integrando e^x :

$$\int x^2 e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x^2 & \to & g'(x) = 2x \end{bmatrix} = x^2 e^x - 2 \int x e^x dx.$$

Per l'ultimo integrale, integriamo per parti, derivando x e integrando e^x :

$$\int x e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x & \to & g'(x) = 1 \end{bmatrix} = x e^x - \int e^x dx = x e^x - e^x.$$

Rimettendo insieme i risultati, si ha

$$\int x^3 e^x = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x = (x^3 - 3x^2 + 6x - 6)e^x.$$

b1) Integriamo per parti, derivando $\ln(x)$ e integrando x^2 :

$$\int x^2 \ln(x) dx = \begin{bmatrix} f'(x) = x^2 & \to & f(x) = \frac{x^3}{3} \\ g(x) = \ln(x) & \to & g'(x) = \frac{1}{x} \end{bmatrix} = \frac{x^3 \ln(x)}{3} - \int \frac{x^3}{3} \frac{1}{x} dx,$$

da cui

$$\int x^2 \ln(x) dx = \frac{x^3 \ln(x)}{3} - \int \frac{x^2}{3} dx = \frac{x^3 \ln(x)}{3} - \frac{x^3}{9} = \frac{x^3}{9} (3 \ln(x) - 1).$$

b2) Ricordiamo il seguente risultato: se P(x) è un polinomio, allora

$$\int P(x) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio dello stesso grado di P(x) e tale che

$$Q(x) + Q'(x) = P(x).$$

Pertanto,

$$\int (x^2 - 2x + 5) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio di secondo grado tale che

$$Q(x) + Q'(x) = x^2 - 2x + 5.$$

Scrivendo $Q(x) = a x^2 + b x + c$, si ha Q'(x) = 2a x + b, da cui

$$Q'(x) + Q(x) = a x^{2} + (2a + b) x + (b + c) = x^{2} - 2x + 5,$$

e quindi, per il principio di identità dei polinomi, deve essere a=1, 2a+b=-2 e b+c=5, da cui segue a=1, b=-4 e c=9. In definitiva,

$$\int (x^2 - 2x + 5) e^x dx = (x^2 - 4x + 9) e^x.$$

c1) Sostituiamo y = 4x, da cui dy = 4dx; si ha

$$\int x e^{4x} dx = \frac{1}{16} \int y e^y dy.$$

L'ultimo integrale si svolge per parti

$$\int y e^y dy = \begin{bmatrix} f'(x) = e^y & \to & f(x) = e^y \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y e^y - \int e^y dy = (y - 1) e^y,$$

e quindi

$$\int x e^{4x} dx = \frac{(4x-1)e^{4x}}{16}.$$

c2) Sostituiamo y = 7x, da cui dy = 7dx; si ha

$$\int x \cos(7x) dx = \frac{1}{49} \int y \cos(y) dy.$$

L'ultimo integrale si svolge per parti:

$$\int y \cos(y) dy = \begin{bmatrix} f'(x) = \cos(y) & \to & f(x) = \sin(y) \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y \sin(y) - \int \sin(y) dy = y \sin(y) + \cos(y),$$

$$\int x \cos(7x) dx = \frac{7x \sin(7x) + \cos(7x)}{49}.$$

d1) Sostituiamo $x=y^2$, da cui $dx=2\,y\,dy$. Pertanto,

$$\int e^{\sqrt{x}} dx = 2 \int e^y y dy.$$

Svolgendo l'ultimo integrale per parti, si ha

$$\int y e^y dy = \begin{bmatrix} f'(x) = e^y & \to & f(x) = e^y \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y e^y - \int e^y dy = (y - 1) e^y,$$

da cui segue che

$$\int e^{\sqrt{x}} dx = 2(\sqrt{x} - 1) e^{\sqrt{x}}.$$

d2) Sostituiamo $y = \frac{1}{x}$, da cui $dy = -\frac{dx}{x^2}$. Pertanto,

$$\int \frac{e^{\frac{1}{x}}}{x^3} dx = \int \frac{e^{\frac{1}{y}}}{x} \frac{dx}{x^2} = -\int y e^y dy.$$

Svolgendo l'ultimo integrale per parti, come nell'esercizio d1), si ha

$$\int y e^y dy = (y - 1) e^y,$$

da cui segue che

$$\int \frac{\mathrm{e}^{\frac{1}{x}}}{x^3} \, dx = \left(1 - \frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}} \, .$$