

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN ESTRUCTURA DE DATOS Y ALGORITMOS II

Práctica 1

1. Probar utilizando el método de sustitución que $T(n) \in O(lg(n))$.

$$T(n) = \begin{cases} 1 & n=1 \\ T(\lfloor n/2 \rfloor) + 1 & n>1 \end{cases}$$

2. Sean $a, b \in \mathbb{R}^+$, utilizar el método de sustitución para encontrar funciones f(n) tales que $T(n) \in \Theta(f(n))$ para las siguientes recurrencias.

1.

$$T(n) \quad = \quad \left\{ \begin{array}{ll} a & n=1 \\ 2T(\lfloor n/2 \rfloor) + b & n>1 \end{array} \right.$$

2.

$$T(n) = \begin{cases} a & n=1\\ 2T(\lfloor n/2 \rfloor) + n & n>1 \end{cases}$$

Ayuda: Recuerde las propiedades:

- $\forall n, a, b \in \mathbb{Z}, a \neq 0 \land b \neq 0 \Rightarrow ||n/a|/b| = |n/(ab)|$
- 3. Utilice un árbol de recurrencia para encontrar una cota asintótica Θ para la recurrencia

$$T(n) = 4T(\lceil n/2 \rceil) + cn$$

donde c es una constante. Verifique que la cota encontrada es correcta.

4. Utilizar un árbol de recurrencia para obtener una cota asintótica para

$$\begin{array}{lcl} T(n) & = & T(n-1) + T(a) + cn & \text{si } n > a \\ T(n) & = & c' & \text{si } n \leq a \end{array}$$

donde $a \ge 1$, c > 0 son constantes.

5. Utilizar el teorema Maestro para encontrar cotas asintóticas Θ para las siguientes recurrencias (asumir que T(1) > 0):

1.
$$T(n) = 4T(n/2) + n$$

2.
$$T(n) = 4T(n/2) + n^2$$

3.
$$T(n) = 4T(n/2) + n^3$$

6. Para cada una de las siguientes funciones, determinar si son suaves o no. Demostrar.

- 1. ln(n)
- 2. n^2
- $3. n^n$

7. Encontrar cotas asintóticas Θ para cada una de las siguientes recurrencias (y demostrar. Asumir que T(1) > 0):

- T(n) = T(n/2) + 1
- T(n) = T(n-1) + n
- $T(n) = T(\lfloor \sqrt{n} \rfloor) + 1$. Ayuda: use "renombre de variable" con $n = 2^k$. En otras palabras, calcule primero una cota Θ para $T \circ 2^k$, usando $T(2^k) = T(\lfloor 2^{k/2} \rfloor) + 1$

8. Dadas las siguientes definiciones en seudocódigo de exp_1 y exp_2 , calcular el trabajo de cada una de ellas y determinar qué función es más eficiente.

```
\begin{array}{rcl} exp_1 \ 0 & = & 1 \\ exp_1 \ (n+1) & = & 2 \times exp \ n \end{array}
\begin{array}{rcl} exp_2 \ 0 & = & 1 \\ exp_2 \ n & = & case \ par \ n \ of \\ & & true \rightarrow square \ (exp_2 \ (div \ n \ 2)) \\ & & false \rightarrow 2 \times (exp_2 \ (n-1)) \end{array}
```

9. Dados los siguientes seudocódigos que implementan distintos algoritmos para invertir los elementos de una lista, calcular el trabajo de $reverse_1$ y $reverse_2$ y determinar qué función es más eficiente.

```
\begin{array}{lll} reverse_1 & : & [a] \rightarrow [a] \\ reverse_1 & [ & = & [ ] \\ reverse_1 & (x \triangleleft xs) & = & (reverse_1 \ xs) \ @ \ [x] \\ \hline [] @ \ ys & = & ys \\ (x \triangleleft xs) \ @ \ ys & = & x \triangleleft (xs \ @ \ ys) \\ \hline revStack & : & [a] \rightarrow [a] \\ revStack & [ys & = & ys \\ revStack & (x \triangleleft xs) \ ys & = & revStack \ xs \ (x \triangleleft ys) \\ \hline reverse_2 & : & [a] \rightarrow [a] \\ reverse_2 \ xs & = & revStack \ xs \ [] \\ \hline \end{array}
```

10. Dado el siguiente seudocódigo de un algoritmo que construye un árbol binario a partir de una lista:

```
data \ Tree \ a = Empty \mid Leaf \ a \mid Node \ (Tree \ a) \ (Tree \ a)
split
                         : \quad [a] \to [a] \times [a]
split
                         = ([x], [])
split(x \triangleleft y \triangleleft xs) = let(ys, zs) = split xs
                              in (x \triangleleft ys, y \triangleleft zs)
toTree
                             : [a] \rightarrow Tree \ a
toTree
                                 Empty
toTree[x]
                            = Leaf x
toTree\ (x \triangleleft y \triangleleft xs) = let\ (ys, zs) = split\ (x \triangleleft y \triangleleft xs)
                                        (t1,t2) = toTree\ ys\ ||\ toTree\ zs
                                  in Node t1 t2
```

- 1. Expresar las recurrencias correspondientes al trabajo y a la profundidad de la función toTree, asumiendo que $W_{split}(n) = S_{split}(n) = O(n)$, siendo n la longitud de la lista que recibe.
- 2. Resolver la recurrencia encontrada en el apartado anterior utilizando el teorema Maestro. Expresar la solución utilizando la notación Θ .