Centro de Procesamiento de Datos

Práctica 1. LXD

LXD permite ejecutar procesos y mantener recursos aislados de forma eficiente y compartiendo el núcleo del sistema operativo. Los dispositivos están virtualizados de forma que cada contenedor ve sus propios dispositivos. Los procesos que se ejecutan son nativos del equipo host y no es necesario crear un hardware virtualizado completo, por lo que el funcionamiento global es más eficiente. ubunut

D.:IVD
Primeros pasos con contenedores LXD Creamos un contenedor ubuntu que llamaremos c0:
lxc launch ubuntu: c0
Podemos comprobar que está funcionando
lxc list
Ver qué imágenes de contenedor tenemos
lxc image list
Accedemos mediante shell al contenedor
lxc exec c0 bash
IXC exec CO Dasii
Comprobamos la versión de Ubuntu
lsb_release -a
Conjumes al contender execute una puese
Copiamos el contenedor creando uno nuevo
lxc copy c0 c1
Comprobamos que se ha creado
lxc list
Activamos el contedor
lxc start c1
A goodomos al cogundo contonadores
Accedemos al segundo contenedores
lxc exec c1 bash
Paramos y borramos el segundo contenedor
lxc stop c1
lxc delete c1

Mostrar la lista de imágenes disponibles

lxc image list images:

Existen 3 repositorios con imágenes:

ubuntu: (para imágenes estables de Ubuntu) ubuntu-daily: (para imágenes diarias de Ubuntu) images: (para un conjunto de otras distribuciones)

Creamos un contenedor basado en Centos 7 y que se llame c2

lxc launch images:centos/7 c2

Accedemos mediante shell al contenedor c2

lxc exec c2 bash

Comprobamos la versión de Centos

More /etc/redhat-release

Comprobación de la red

Activamos 2 contenedores y comprobamos el acceso entre ambos verificando la ip asignada a cada contenedor

lxc list

Compartiendo un directorio local con el contenedores

mkdir disco1

lxc config device add c1 disco1 disk source=/home/usuario/prueba1 path=/mnt/disco1

Si queremos acceso de lectura y escritura hay que comprobar los permisos del propietario del contenedor

sudo ls -l /var/lib/lxd/containers

Limitando recursos en un contenedor

lxc config set c1 limits.memory 512MB

lxc config show c1

Podemos comprobar con lxc exec c1 /bin/bash

free -m

Algunos parámetros:

boot.autostart

limits.cpu

limits.cpu.allowance

limits.memory

Operaciones con contenedores LXD

Creando un contenedor

Los contenedores se crean a partir de imágenes y según donde están: remotos, built-in y locales

Órdenes básicas

Creamos un contenedor:

#la última versión lxc launch ubuntu: c0

#versión específica

lxc launch ubuntu:16.04 c1

#versión 32 bits

lxc launch ubuntu:14.04/i386 c2

#versión de alpine linux (ligera y segura)

lxc launch images:alpine/3.8 c2a

#versión centos

lxc launch images:centos/7 mi centos1

#versiones no testeadas

lxc launch ubuntu-daily:devel c3

Lista de contenedores

lxc list

lx image list images:

Ya que LXD está orientado a definir contenedores con un sistema operativo, podemos encontrar: ubuntu, debian, CentOS, Oracle, gentoo, plamo, Alpine, ...

Parar un contenedores

lxc stop c1

#parada forzada

lxc stop c1 --force

Iniciamos un contenedor

lxc start c1

Reiniciar

lxc restart c1

lxc restart c1 --force

Pausar

lxc pause c1

Borrar

lxc delete c1

Copiar un contenedor

Lxc copy <contenedor_origen> <contenedor_destino>

Mover un contenedor

Lxc move

Información

lxc info c1

Executamos un shell

lxc exec c1 bash

Leer un fichero del contenedor

lxc file pull <contenedor>/<path> <dest>

Grabar un fichero en el contenedor

lxc file push <source> <contenedor>/<path>

Editar un fichero

lxc file edit <contenedor>/<path>

Snapshots:

lxc snapshot <contenedor> <nombre_contenedor>

Restaurar

lxc restore <contenedor> <nombre_contenedor>

Renombrar

lxc move <contenedor>/<nombre_contenedor> <contenedor>/<nuevo_nombre_contenedor>

Copiar un contenedor desde un snapshot

lxc copy <contenedor>/<nombre_contenedor> <nuevo contenedor>

Borrar snapshot

lxc delete <contenedor>/<nombre_contenedor>

Importar

lxc image import <fichero> --alias mi_alias #después se puede utilizar dicho alias lxc launch mi_alias <contenedor>

Publicar

lxc publish <contenedor> --alias nombre

Interfaz en modo bridge

lxc config device add c1 eth1 nic nictype=bridged parent=lxdbr0

Accediendo remotamente a los contenedores

Creamos las claves RSA y utiliamos ssh-copy-id