重庆大学《高等数学2》(工学类) 课程试 卷

2016 — 2017 学年 第 2 学期

开课学院: 数统 课程号: MATH10023 考试日期: 20170902

考试时间: 120分钟 考试方式: □开卷 □闭卷 □其他

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											

考试提示

- 1.严禁随身携带通讯工具等电子设备参加考试;
- 2.考试作弊, 留校察看, 毕业当年不授学位; 请人代考、 替他人考试、两次及以上作弊等,属严重作弊,开除学籍。
 - (A) L_1 与 L_2 平行,且重合 (B) L_1 与 L_2 平行,但不重合
 - (C) L₁与L₂异面
- (D) $L_1 与 L_2$ 垂直相交

$$\sum_{n=1}^{\infty} \frac{x^n}{n(3^n+(-2)^n)}$$
 的收敛半径是 R ,则(D)

- (A) $R = \infty$ (B) $R = \frac{1}{3}$ (C) R = 1 (D) R = 3
- 3.以下说法正确的是(B)
 - (A) 若f(x,y)沿任意直线y = kx 在某点 x_0 连续,则f(x,y)在 (x_0,y_0) 连续
 - (B) 若f(x,y)在 (x_0,y_0) 点连续,则 $f(x_0,y)$ 在 y_0 连续

- (x₀, y₀) 外连续
- $dz = f'_x(x_0, y_0)dx + f'_y(x_0, y_0)dy$
- 4.设f(x,y)在有界闭区域 $D: x^2 + y^2 \le 2a^2$ 上连续、则

当
$$a \rightarrow 0$$
 时 $\frac{1}{\pi a^2} \iint_{\mathcal{D}} f(x,y) dx dy$ 的极限为(A)

(A) 2f(0,0) (B) f(0,0) (C) $\sqrt{2}f(0,0)$

 $\int x^2 + y^2 + z^2 = R^2$

5.设L是圆周 $\left\{x+y+z=0\right\}$,若从x轴正向看去,此圆依逆时针方向进行,则

曲线积分 $\tilde{\mathbf{M}}$ ydx + zdy + xdz = (C)

(A) $-\sqrt{2}\pi R^2$ (B) $\sqrt{2}\pi R^2$

(C) $-\sqrt{3}\pi R^2$

(D) 不存在

- 6.方程 $y'' 2y' = xe^{2x}$ 的一个特解具有形式(D)
 - (A) $(ax + b)e^{2x}$
- (B) axe^{2x}

- (C) ax^2e^{2x} (D) $x(ax+b)e^{2x}$
- 二、填空题(每小题3分,共18分)

1.已知直线 L 过点 M(1,-2,0) 且与两条直线 $L_1: \begin{cases} 2x+z=1 & L_2: \\ x-y+3z=5 & n \end{cases} \begin{cases} y=1-4t \\ z=3 \end{cases}$

直,则 L 的参数方程为_____ x=1+8t, y=-2+2t, z=-

 $\sum_{k=1}^{\infty} \frac{2n+1}{k}$ 2.级数 ⁿ⁼⁰ n! 的和为_____ 3e.

3.已知微分方程 $y' + P(x)y = e^x$ 有特解 $y = xe^x$

则该微分方程的通解为_____ $y = e^x(c + x)$.

4.设L为取正向的圆周 $x^2 + y^2 = 4$,则曲线积分 $\mathbf{\tilde{N}} x dy - y dx = 8\pi$

5.若曲面 xyz = 32 上的点 (x_0, y_0, z_0) 处的法线平行于向量 s = (2, 8, 1) ,则

重庆大学2014版试卷标准格式

$$=\frac{1}{2}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}(\csc^2\theta-\frac{\cos\theta}{\sin\theta}-2)d\theta=\frac{1}{2}\cot\theta\Big|_{\frac{3\pi}{4}}^{\frac{3\pi}{4}}-\frac{1}{2}\cdot\ln|\sin\theta|_{\frac{\pi}{4}}^{\frac{3\pi}{4}}-\frac{1}{2}\cdot2\cdot\frac{\pi}{2}=1-\frac{\pi}{2}$$
4.将函数
$$f(x)=\frac{x^2}{x^2-5x+6}=1+\frac{5x-6}{(x-2)(x-3)}=1+\frac{9}{x-3}-\frac{4}{x-2}$$

$$=1-\frac{3}{1-\frac{x}{3}}+\frac{2}{1-\frac{x}{2}}=1-\sum_{n=0}^{\infty}\frac{x^n}{3^{n-1}}+\sum_{n=0}^{\infty}\frac{x^n}{2^{n-1}}=1+\sum_{n=0}^{\infty}\left(\frac{1}{2^{n-1}}-\frac{1}{3^{n-1}}\right)x^n,|x|<2$$
四、综合题(每小题8分,共6分)
1.计算曲线积分
$$I=\int_{0}^{\infty}\frac{xdy-ydx}{x^2+y^2},\;\;\sharp p+C\;\sharp e=\cosh\sharp |x|+|y|=1.$$

$$P=\frac{-y}{x^2+y^2},Q=\frac{x}{x^2+y^2},\;\;\sharp p+C\;\sharp e=\cosh\sharp |x|+|y|=1.$$

$$E=\int_{0}^{\infty}\frac{xdy-ydx}{x^2+y^2}=\int_{0}^{\infty}\frac{xdy-ydx}{x^2+y^2}=\int_{0}^{\infty}\frac{\partial P}{x^2+y^2}=\frac{y^2-x^2}{(x^2+y^2)^2}=\frac{\partial Q}{\partial x}$$

$$E=\int_{0}^{\infty}\frac{xdy-ydx}{x^2+y^2}=\int_{0}^{\infty}\frac{xdy-ydx}{x^2+y^2}=\frac{1}{\varepsilon^2}\int_{0}^{\infty}xd\int_{0}^{\infty}ydx$$

$$=\frac{1}{\varepsilon^2}\iint_{0}^{\infty}2dxdy=\frac{1}{\varepsilon^2}\cdot2\pi\varepsilon^2=2\pi.$$
2.设
$$\Gamma$$
2.设
$$\Gamma$$
3.
$$\pi^2+\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy=a$$

$$\pi^2+\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy=a$$

$$\pi^2+\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy=a$$

$$\pi^2+\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy=a$$

$$\pi^2+\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy-\int_{0}^{\infty}P\left[f(x)+e^x\right]dx+(e^x-xy^2)dy=-\int_{0}^{\infty}P\left[e^x-y^2-f(x)-e^x\right]dxdy=0$$

重庆大学2014版试卷标准格式

 $= -\iint_{D} (-y^2 - x^2 - a) dx dy$

$$\begin{split} &= \iint_D (x^2 + y^2) dx dy + a \iint_D dx dy \\ &= \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^3 d\rho + \frac{\pi}{2} a \\ &= \int_0^{\frac{\pi}{2}} 4\cos^4\theta d\theta + \frac{\pi}{2} a = \frac{3}{4}\pi + \frac{\pi}{2} a \\ &= \frac{3\pi}{2(2-\pi)}, \quad \text{for } x = x^2 + \frac{3\pi}{2(2-\pi)}. \end{split}$$

五、证明题 (每小题8分,共16分)

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}, \quad \text{有界区域}^{\ V} \text{的边界}^{\ S} \text{为光滑曲面,则有}$$

$$\iint_{\mathbb{S}} u \frac{\partial u}{\partial n} dS = \iiint_{\mathbb{F}} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] dx dy dz + \iiint_{\mathbb{F}} u \Delta u dx dy dz$$
 式中 $u \Delta u dx dy dz$

 $rac{\partial u}{\partial n}$ 阶偏导数是在区域 $^{I'}$ 内连续的函数, $rac{\partial u}{\partial n}$ 为沿曲面 S 的外法线方向 n 的导数。

$$\iint_{S} u \frac{\partial u}{\partial n} dS = \iint_{S} \left(u \frac{\partial u}{\partial x} \cos \alpha + u \frac{\partial u}{\partial y} \cos \beta + u \frac{\partial u}{\partial z} \cos \gamma \right) dS$$

$$= \iiint_{V} \left[\frac{\partial}{\partial x} (u \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y} (u \frac{\partial u}{\partial y}) + \frac{\partial}{\partial z} (u \frac{\partial u}{\partial z}) \right] dx dy dz$$

$$= \iiint_{V} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial u}{\partial z} \right)^{2} \right] dx dy dz + \iiint_{V} u \Delta u dx dy dz$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \frac{n+1}{n} \right)$$
收敛。

2.证明: 无穷级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \frac{n+1}{n}\right)$$
 收敛。
$$0 < \frac{1}{n} - \ln \frac{n+1}{n} = \frac{1}{n} - \ln(1+\frac{1}{n}) = \frac{1}{n} - (\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + ?)$$
 证明: 解: 因 $= \frac{1}{2n^2} - \frac{1}{3n^3} + L < \frac{1}{2n^2}$

$$\sum_{n=1}^{\infty} \frac{1}{2n^2}$$
 收敛,故原级数收敛。

六、应用题(共8分)

设曲线弧 AB 的极坐标方程为 $\rho=1+\cos\theta(-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}),\quad -\text{质点}^{P}$ 在力 F 的作用下沿曲线弧 AB 从点 $^{A(0,-1)}$ 运动到点 $^{B(0,1)}$,力 F 的大小等于点 P 到定点 M(3,4)的距离,其方向垂直于线段MP,且与 y 轴正向的夹角为锐角,求力 $^{\frac{1}{F}}$ 对质 点P所作的功。

解: 设点
$$P(x,y)$$
, 根据题意,得 $MP = (x-3,y-4)$, $F = (y-4,3-x)$, 功
$$W = \int_{3B} (y-4)dx + (3-x)dy$$
$$= \int_{3B+\overline{a}d} \tilde{N}(y-4)dx + (3-x)dy - \int_{\overline{a}d} (y-4)dx + (3-x)dy$$
$$= -2\iint_D dx dy - \int_1^{-1} 2dy = -2\int_0^{\frac{\pi}{2}} \rho^2 d\theta + 6$$
$$= 6 - 2\int_0^{\frac{\pi}{2}} (1 + \cos\theta)^2 d\theta$$
$$= 6 - 2\int_0^{\frac{\pi}{2}} (\frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos 2\theta)^2 d\theta = 2 - \frac{3\pi}{2}.$$

重庆大学2014版试卷标准格式