

Keep a limit on it IO Throttling in QEMU

Ryan Harper – ryanh@us.ibm.com Open Virtualization IBM Linux Technology Center

August 15, 2011

Contributors

Zhi Yong Wu – wuzhy@linux.vnet.ibm.com Stefan Hajnoczi – stefanha@linux.vnet.ibm.com Karl Rister – krister@us.ibm.com Khoa Huynh, Ph.D. – khoa@us.ibm.com Steve Pratt – spratt@us.ibm.com

Limited Resources

cgroup blkio controller

Proportional

Bw or IOPs Requires CFQ Bandwidth

IOPs

Upper limits per block device

Non host block access

QEMU Block Layer Limits

Block IO Throttle Comparison

- Effectiveness
 - Can your configuration be throttled?
 - Is the cap ever exceeded?
 - What amount of IO does the guest observe?
- Cost
 - Is there a substantial cost to implement throttling?
 - If so, where is that cost incurred?

_

_

Block IO Throttle Configuration

- Storage backends
 - LVM over SATA disk
 - EXT4 over SATA disk
 - NFS (IBM n3600)
- Image Formats
 - RAW
 - QCOW2
- Host Cache mode
 - ,cache=none
 - ,cache=writethrough
- Block Limiting
 - cgroup blkio throttling
 - QEMU blk-throttle

Workloads

- 5 different workloads
 - streaming writes
 - mkfs.ext4
 - random reads and writes
 - fio iometer with randrw mix
 - random reads
 - fio aio-read
 - random writes
 - fio aio-write
 - streaming reads
 - fio disk-surface-scan
- 1 and 5VM instances, isolated and mixed
- VMs have 50G virtio-blk device

_

Host Config

- IBM System x iDataPlex dx360 M3
 - 2x Intel X5670 @ 2.93GHz
 - 128G RAM
 - 5 2TB SATA
 - 2 1G Intel NIC
 - 1 10G Emulex NIC
- RHEL 6.1
- ioscheduler=deadline

CFQ vs Deadline

Cgroup vs QEMU - IOPs cache=none

Cgroup vs QEMU - Throughput cache=none

Cgroup vs QEMU - IOPs cache=writethrough

Cgroup vs QEMU - Throughput cache=writethrough

QEMU Capped vs Uncapped cache=none, nfs-backed

QEMU Capped vs Uncapped -- Throughput cache=none, nfs-backed

QEMU Capped vs Uncapped -- IOPs cache=none, nfs-backed

Throttling Cost -- utlization

Work per %cpu

Next Steps

- Algorithm improvements
 - Focus on preventing spikes
- Reduce CPU consumption
 - Data are incomplete but suggests there is room for improvement

_

Questions?

http://wiki.qemu.org/Features/DiskIOLimits

