SPRINGBOARD CAPSTONE PROJECT

PREDICTING FUTURE SALES

RETAIL BUSINESS MODEL

- Stock stores or warehouse with merchandise for customers to make purchases in store or online.
- Make forecast of future demand to make more accurate stocking.
- Conventionally, companies use historical data to make forecast.

THE PROBLEM

- Under stocking can lose out on potential revenue.
- Overstock can result in too much merchandize in stock and fail to turn goods into revenue.
- For electronic stores, demand is constantly shifting. Therefore, historical data is not always reliable.
- Changing demand can be hard to track and predict.

DATA ACQUISITION

- Dataset used in this project is featured in a Kaggle challenge: Predict Future Sales - Final project for "How to win a data science competition" Coursera course.
- Over 2,935,849 entries of daily sales
- Over 20,000 unique item IDs (SKUs) in 50 stores
- Data span from January 2013 to October 2015
- Each data point contains date, store ID, item ID, item price, number of units sold

EXPLORATORY DATA ANALYSIS

TOTAL SALES

Shows higher daily sale volumes between September and February each year.

NEGATIVE SALES

Negative sales in some daily and monthly totals, assuming returned items

Number of item	s have ne	egative s	ales in a	given month: 2	25
date_bl	.ock_num	shop_id	item_id	item_cnt_day	
4604	7	2	6457	-1.0	
4751	7	12	1830	-1.0	
4754	7	12	2753	-1.0	
4758	7	12	5822	-1.0	
4760	7	12	6740	-2.0	
4762	7	12	7894	-1.0	
4765	7	12	15044	-1.0	
6694	9	12	1830	-1.0	
7786	10	12	3329	-1.0	
7788	10	12	3732	-4.0	
7789	10	12	3734	-2.0	
11083	12	56	6675	-1.0	
13864	15	6	2753	-1.0	
16517	17	12	1905	-1.0	
18098	18	24	4870	-1.0	
20806	20	21	1830	-1.0	
26566	24	12	3733	-1.0	
28218	25	19	7018	-1.0	
31785	28	4	3733	-1.0	
35087	30	41	5672	-1.0	
35613	31	4	6675	-1.0	
35771	31	12	6497	-1.0	
36900	32	5	6738	-1.0	
36995	32	12	2808	-1.0	
37900	32	57	6675	-1.0	

- Category 71 has only one item ID and has the most units sold than other categories
- But the revenue from category 71 is extremely small

PRICE OF ITEMS INCREASE OVER TIME

PRICE OF ITEMS DECREASE OVER TIME

PRICE OF ITEMS ARE NOT FIXED

PREDICTIVE MODELING

APPROACH

- For methods that can only forecast one time-series at a time, the project will adopt middle out approach using weights of shops to determine proportional sales in each shop
- Forecasting over 2000 items in all shops can be computationally unfeasible with some models for this project, therefore the data will be narrowed down to 50 top selling items
- Use baseline model to measure model performance

MODEL COMPARISON

▶ Gradient boosting regressor yields the lowest mean absolute error at 4.984

MODEL COMPARISON

MODEL COMPARISON AFTER REMOVING ABNORMAL SALES DATA

CONCLUSION

MODEL CONCLUSION

- Gradient boosting reduced error by 0.289, which is 5.5% error reduction.
- By total amount of items sold in Oct 2015, it is equivalent to 300 units of monthly overstocking and under stocking combined.

ASSUMPTION & LIMITATION

- Sales are not independent
- Negative units sold are assumed as returned item and is built into models

RECOMMENDATION & IMPROVEMENT

- Companies can use the model by feeding historical sales data to reduce both overstocking and under-stocking beyond using historical sales data as par stock
- Include record of special events or national holidays that boost sales, similar to Black Friday or Cyber Monday
- Use entire sales data from the source