Digitaltechnik Wintersemester 2017/2018 5. Vorlesung

Inhalt

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Einleitung

010000010100011110001010001010011100	1111
001001001001010110000110111101000000	0111
101101111000010001010101111110001000	1101
011010111000010001110111000111010111	0011
001011100010110011011000110110010000	0111
10011001100000101001111110101111111000	1111
111100110001011111111010110111011011	0001
110110101011011001000001111100110010001	1010
010010000001000111010001000000001011	1110
10100111010111111100010100111000000111	1101
11011011011101111111111101110101010101	1000
0010101100000100101001011001011100	0010
11110011100010101010001110010001111010	0101
11101010000010000010001111011010011	1011
10011111001011011111101110011011011	1001
111011101000000100011010110010011100	1111

Organisatorisches

- Anmeldung zu Studienleistung und Fachprüfung offen
- mündliche Prüfung für Austauschstudenten

Rückblick auf die letzten Vorlesungen

- Komplexität und (digitale) Abstraktion
- Zahlensysteme
- Logikgatter
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz
- Kombinatorische Logik
 - Boole'sche Gleichungen
 - Boole'sche Algebra

Harris 2013 Kapitel 1,2

Konzept des Spannungsteilers

Wiederholung: nMOS

- ► Gate = 0, ausgeschaltet (R_{sd} sehr groß)
- Gate = 1, eingeschaltet (R_{sd} sehr klein)

Wiederholung: pMOS

- ► Gate = 1, ausgeschaltet (R_{sd} sehr groß)
- Gate = 0, eingeschaltet (R_{sd} sehr klein)

Wiederholung: CMOS

15.11.2017 | TU Darmstadt | Andreas Engel | 5. Vorlesung Digitaltechnik | 9 / 40

Konstruktion von CMOS-Schaltungen

- 1. Y enthält nur negierten Variablen
 - pMOS konstruieren (OR parallel, AND seriell)
 - nMOS komplementär
 - keine negierten Variablen an Gates
- 2. Y enthält nur nicht-negierten Variablen
 - nMOS konstruieren (OR parallel, AND seriell)
 - pMOS komplementär
 - keine negierten Variablen an Gates
- 3. Y enthält nur nicht-negierten Variablen
 - Konstruktion wie 2.
 - zusätzlicher Inverter am Ausgang
- 4. \overline{Y} enthält nur negierten Variablen
 - Konstruktion wie 1.
 - zusätzlicher Inverter am Ausgang
- 5. sonst
 - negierte Literale an Gates verwenden
 - ▶ bspw. $Y = \overline{A} + \overline{B}$

(bspw.
$$Y = \overline{A} + \overline{B}$$
)

- (bspw. $\overline{Y} = A + B$)
- (bspw. Y = A + B)
- (DSPW. T = A + D
- (bspw. $\overline{Y} = \overline{A} + \overline{B}$)
- (bspw. $Y = \overline{A} + B$)

Wiederholung: Transmissionsgatter

Theoreme der boole'schen Algebra

	Theorem		Duales Theorem	Bedeutung
T1	$A \cdot 1 = A$	T1'	A + 0 = A	Neutralität
T2	$A \cdot 0 = 0$	T2'	A+1=1	Extremum
Т3	$A \cdot A = A$	T3'	A + A = A	Idempotenz
T4	$\overline{\overline{A}} = A$			Involution
T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
T6	$A \cdot B = B \cdot A$	T6'	A+B=B+A	Kommutativität
T7	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	T7'	A + (B + C) = (A + B) + C	Assoziativität
T8	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	T8'	$A+(B\cdot C)=(A+B)\cdot (A+C)$	Distributivität
Т9	$A\cdot (A+B)=A$	T9'	$A + (A \cdot B) = A$	Absorption
T10	$(A\cdot B)+(A\cdot \overline{B})=A$	T10'	$(A+B)\cdot(A+\overline{B})=A$	Zusammenfassen
T11	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	T11'	$(A+B)\cdot (\overline{A}+C)\cdot (B+C)=$ $(A+B)\cdot (\overline{A}+C)$	Konsensus
T12	$\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$	T12'	$\overline{A+B+C\dots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\dots$	De Morgan

Beweis für Konsensus (T11) durch Anwendung von Axiomen und Theoremen

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - Bubble Pushing
 - Logik-Realisierung mit Basis-Gattern
 - Karnaugh Diagramme

Harris 2013 Kap. 2.4,2.5,2.7,2.8

Bubble Pushing

100110000001011011111000010100100101	110
1010100111010100100000010100011100110	111
1101000011010111011010000001101111101	111
0100000101101110010000001110100111100	000
1000011000100011110000011111011111011	001
1101000001000001111100101111010101	111
00011010101110011110000011000001011	111
11000100111000000000010001111000000111	101
1110001001000011111001100000011100010	111
1010100011011001110011101111011110010	111
110001111111101010111110101111101000101	011
0110101101111010001000100010010110000	1110
1110111110100100101010110100000100000	000
1010100101001011001010111010111000101	001
10111001111111100001010001101111001111	0 1 1
011011110100111010101010110101010101111	100

Graphische Umformung von Schaltungen nach De Morgan und Inversion

$$\begin{array}{c} A > \\ B > \\ \end{array} \longrightarrow \overline{A \cdot B} = \overline{A} + \overline{B} \longleftrightarrow \begin{array}{c} A \\ > \\ > \\ \end{array} \xrightarrow{B}$$

$$A \rightarrow \overline{\overline{A}} = A$$

Invertierungsblasen verschieben Bubble Pushing

über Gatter (AND/OR/NOT/BUF) hinweg

vorwärts: Eingang → Ausgang rückwärts: Ausgang → Eingang

Art des Gatters ändern: $AND \leftrightarrow OR$

Blasen an *allen* Eingängen ändern: vorhanden ↔ nicht vorhanden Blase an Ausgang ändert: vorhanden ↔ nicht vorhanden

zwischen Gattern

vorwärts: Treiber → alle Empfänger rückwärts: alle Empfänger → Treiber

doppelte Blasen heben sich gegenseitig auf (Involution)

verbleibende Buffer (vorher Inverter) können entfernt werden

Beispiel: Invertierungsblasen rückwärts verschieben

- De Morgan über G3
 - lacktriangleright Blase an beiden Eingängen
 - ► AND → OR
- Blasen entlang Leitungen verschieben
 - G3 → G1
 - $\blacktriangleright \ \ \text{G3} \rightarrow \text{G2 (Doppelblase aufheben)}$
- De Morgan über G1
 - Blasen an Ein- und Ausgängen invertieren
 - ightharpoonup OR ightharpoonup AND
- Buffer G2 entfernen
- zwei Inverter weniger

Wozu das Ganze?

- Schaltungen vereinfachen
 - weniger Invertierer
 - weniger Literale
 - ightharpoonup weniger verschiedene Gatter-Arten ightarrow einfachere Zellbibliothek
- Komplementäre Schaltungen ableiten
 - bspw. für CMOS- oder Transmissionsgatter-Schaltung

Logik-Realisierung mit Basis-Gattern

1100000001100000111001101000110001110	111
10010010111100101000111110111110011111	0 1 C
10011100001000010111011100100101001100	1 1 C
01011001000111101110101000000111110	100
11100001000110100100011111111001100000	110
011000100111000110100111111111110000011	111
00100100101011111110011001110000	100
10010010101000000001111111001101100000	0 0 C
001001011000100010001100000010110101010	1 1 C
11000001001100101001001010000000011000	1 1 C
01110100011000101010000010001011101010	001
001000000111000000111100001000000101	111
00111000010001010001111101011001000100	001
10001100001010001000110000101010101000	0 1 C
1000001000011001011011110110001010101	0 0 C
101111101101011010111101000110011111111	100

Zweistufige Logik

- direkte (konstruktive) Umsetzung der disjunktiven Normalform
 - ► Eingangsliterale: ein Inverter pro Variable
 - ► Minterme: je ein "breites" AND Gatter an passende Literale anschließen
 - ► Summe: alle Minterme an ein "breites" OR Gatter anschließen
- "breite" Gatter als Kaskaden kleinerer Gatter
- ⇒ jede boole'sche Funktion realisierbar mit Basisgattern
 - ► AND2
 - OR2
 - NOT

Konventionen für lesbare Schaltpläne

- ► Eingänge links (oder oberen)
- Ausgänge rechts (oder unteren)
- Gatter von links nach rechts (oben nach unten) angeordnet
- gerade (oder rechtwinklige) Verbundungen
- ⇒ keine Schrägen oder Kurven
- 3-armige Kreuzungen gelten implizit als verbunden
- 4-armige Kreuzungen gelten nur bei Markierung (Punkt) als verbunden

verbunden verbunden verbunden

Weitere kombinatorische Grundelemente

- zweistufige Logik
 - sehr mächtig
 - aufwändige Darstellung und Realisierung
 - realisiertes Verhalten nicht intuitiv ersichtlich
- weitere Basisgatter neben AND, OR, NOT:

XOR: Parität

Multiplexer: n zu 1 Auswahl

Dekodierer: n zu 2ⁿ Auswahl ("One-Hot")

- ▶ verbindet einen von n Dateneingängen $A_0, ..., A_{n-1}$ mit Ausgang Y
- ▶ $k = \lceil \log_2 n \rceil$ Steuersignale $S_0, ..., S_{k-1}$
- $Y = A_{U_{2,k}(S_{k-1}...S_0)}$

S_0	Y
0	A_0
1	A_1

Multiplexer

 $\text{MUX4}: \mathbb{B}^6 \to \mathbb{B}$

S_1	\mathcal{S}_0	Y
0	0	A_0
0	1	A_1
1	0	A_2
1	1	<i>A</i> ₃

Logikrealisierung mit Multiplexern

- Variablen als Steuersignale verwenden
- Wahrheitswertetabelle als Konstanten an Dateneingängen
- entspricht adressiertem Speicherzugriff
 - Look-up Tabelle
 - ► ROM oder RAM → rekonfigurierbare Logik
- weitere funktionsspezifische Optimierungen möglich

Α	В	Y = A B
0	0	0
0	1	0
1	0	0
1	1	1

15.11.2017 | TU Darmstadt | Andreas Engel | 5, Vorlesung Digitaltechnik | 26 / 40

Dekodierer

$\mathsf{DECODE}n:\mathbb{B}^n\to\mathbb{B}^{2^n}$

- ▶ n Eingänge $A_0, ..., A_{n-1}$
- ▶ 2^n Ausgänge $Y_0, ..., Y_{2^n-1}$
- "One-Hot" Kodierung: $Y_i = u_{2,n}(A_{n-1} ... A_0) == i ? 1 : 0$

A_1	A_0	Y_0	Y_1	Y_2	Y_3
0 0 1 1	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1 0 0 0	0	0	1

Implementierung von Dekodierern

Logikrealisierung mit Decodern

- ▶ Summe über Minterme, auf denen Zielfunktion wahr ist
- ⇒ Decoder ersetzt erste Stufe der zweistufigen Logikrealisierung

Α	В	$Y = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Karnaugh Diagramme

1100010111001101010101101110101100001100
0101010011110101101011001011101010011101
01100011100000100110101111101010101101
1010111111001010000001001101100000100110
0001010110101100001001110000110011000000
11101111000110010101111100111111111010000
1100000110010001011101111100000101000001
10110011111111011001001111111110001010110
0100101011000100111111101100010101010111
1010101011001000010010110001110011000101
00100100001010111011111111010000001111011
0010011001011111100001100110111111100100
1100011100011001100100111010110101101
10011111101100100111110000110011010011000
0010000100110011100001111010111101000101
11111010011000100101111011100111100010000

Maurice Karnaugh, 1924 -

- Bell Laboratory
- ▶ IBM Research
- ► Techniken und Methoden für den schnellen Entwurf informationstechnischer Systeme
- ⇒ Karnaugh(-Veitch) Diagramme

Karnaugh Diagramme

- Boole'sche Ausdrücke können durch Zusammenfassen von Mintermen minimiert werden
 - $Y = AB + A\overline{B} = A$
- Karnaugh-Diagramme stellen Zusammenhänge graphisch dar
 - geschickte Anordnung der Wahrheitswertetabelle
 - benachbarte Einträge gehören zu gleichem Literal
 - ⇒ Zusammenhängende Minterme besser erkennbar

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	0	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	1	$m_3 = A B$

Y:		_A_
$B \setminus$	0	1
0	0	1
<i>B</i> 1	1	3 1

Karnaugh Diagramm für drei Eingänge

Α	В	С	Y	Minterm
0	0	0	0	$m_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	$m_1 = \overline{A} \overline{B} C$
0	1	0	1	$m_2 = \overline{A} B \overline{C}$
0	1	1	0	$m_3 = \overline{A} B C$
1	0	0	0	$m_4 = A \overline{B} \overline{C}$
1	0	1	0	$m_5 = A \overline{B} C$
1	1	0	1	$m_6 = A B \overline{C}$
1	1	1	1	$m_7 = A B C$

Y∶ ∖AE	3	/	4			
c	00	01	11	10		
0	0	1	6 1	4		
<i>C</i> 1	1	3	⁷ 1	5		
В						

$$Y = AB + B\overline{C}$$

Karnaugh Diagramm für vier Eingänge

Α	В	С	D	Y	Minterm
0	0	0	0	1	$m_0 = \overline{A} \overline{B} \overline{C} \overline{D}$
0	0	0	1	0	$m_1 = \overline{A} \overline{B} \overline{C} D$
0	0	1	0	1	$m_2 = \overline{A} \overline{B} C \overline{D}$
0	0	1	1	0	$m_3 = \overline{A} \overline{B} C D$
0	1	0	0	0	$m_4 = \overline{A} B \overline{C} \overline{D}$
0	1	0	1	1	$m_5 = \overline{A} B \overline{C} D$
0	1	1	0	0	$m_6 = \overline{A} B C \overline{D}$
0	1	1	1	0	$m_7 = \overline{A} B C D$
1	0	0	0	1	$m_8 = A \overline{B} \overline{C} \overline{D}$
1	0	0	1	0	$m_9 = A \overline{B} \overline{C} D$
1	0	1	0	1	$m_{10} = A \overline{B} C \overline{D}$
1	0	1	1	0	$m_{11} = A \overline{B} C D$
1	1	0	0	0	$m_{12} = A B \overline{C} \overline{D}$
1	1	0	1	1	$m_{13} = A B \overline{C} D$
1	1	1	0	0	$m_{14} = A B C \overline{D}$
1	1	1	1	0	$m_{15} = ABCD$

Abdeckung von Mintermen durch Implikanten

- n Eingangsvariablen
- ▶ Implikant aus $k \le n$ Literalen deckt 2^{n-k} Minterme ab
- Primimplikant
 - nicht vergrößerbare zusammenhängenden viereckigen Fläche im Karnaugh-Diagramm
 - Achtung: muss nicht größte Fläche sein

Minimierungsregeln für Karnaugh-Diagramme

- Eintragen von Mintermen
 - Finsen aus Wahrheitswertetabelle
 - "Don't Cares" (*) für ungültige Eingangskombinationen
- Markieren von Implikanten
 - markierte Bereiche dürfen 1 und * enthalten, aber keine 0
 - nur Rechtecke mit 2^k Einträgen erlaubt (keine L- oder Z-Formen)
 - Bereiche dürfen sich überschneiden
 - ▶ Bereiche dürfen um die Ränder des Diagrammes herum reichen (Torus)
 - Bereiche müssen so groß wie möglich sein (Primimplikanten)
- ➤ Ziel: Überdeckung aller Einsen mit möglichst wenigen Primimplikanten

Karnaugh-Diagramm mit vier Eingängen

Karnaugh-Diagramm mit "Don't Cares"

Zusammenfassung

000100100011101001100001110010000001	100
1011001001011000010100110100000100011	001
0010111011010101001010111000101011100	001
0001100001010011101000010000111001110	001
0011100010011100110001000011000011001	111
1101101010110000100111011010100110000	000
000001010100010010011010101000011101011	000
0111001101110001110101101001100010000	011
1011100111101110100110011110101000111	110
000110111110011001000011011001000101	101
101010001001001110000000010100011100	001
1100000001111100001000010000111101111	111
11000011111110011001110000011110110001	110
11000110101100011101011000101001111000	011
111000110101100110011001111001001111010	101
01101001001111110100010000010000011000	000

Zusammenfassung und Ausblick

- Bubble Pushing
- Logik-Realisierung mit Basis-Gattern
- Karnaugh Diagramme
- Nächste Vorlesung behandelt
 - automatisierte Logikminimierung
 - Zeitverhalten von Schaltungen