理论作业-2: 朴素贝叶斯法

10225501443 刘蔚璁

Q1: 针对下表的数据,采用拉普拉斯平滑建立贝叶斯分类器,并求点 $x=(3,S)^{\mathrm{T}}$ 的类标记。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$X^{(1)}$	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
$X^{(2)}$	S	S	М	М	S	S	S	М	М	L	L	L	М	М	L
Y	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	-1

朴素贝叶斯算法

输入: 训练数据 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, 其中 $x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(n)})^T$, $x_i^{(j)}$ 是第 i 个样本的第 j 个特征, $x_i^{(j)} \in \{a_{j1}, a_{j2}, \dots, a_{jS_j}\}$, a_{jl} 是第 j 个特征可能取的第 l 个值, $j = 1, 2, \dots, n, l = 1, 2, \dots, S_j, y_i \in \{c_1, c_2, \dots, c_K\}$; 实例 x;

输出:实例 x 的分类。

(1) 计算先验概率及条件概率:

$$P(Y=c_k)=rac{\sum_{i=1}^{N}I(y_i=c_k)}{N},\quad k=1,2,\ldots,K$$

$$P(X^{(j)} = a_{jl} \mid Y = c_k) = rac{\sum_{i=1}^{N} I(x_i^{(j)} = a_{jl}, y_i = c_k)}{\sum_{i=1}^{N} I(y_i = c_k)}$$

$$j = 1, 2, \dots, n; \quad l = 1, 2, \dots, S_j; \quad k = 1, 2, \dots, K$$

(2) 对于给定的实例 $x = (x^{(1)}, x^{(2)}, \dots, x^{(n)})^T$,计算:

$$P(Y=c_k)\prod_{j=1}^n P(X^{(j)}=x^{(j)}\mid Y=c_k), \quad k=1,2,\dots,K$$

(3) 确定实例 x 的类:

$$y = rg \max_{c_k} P(Y = c_k) \prod_{j=1}^n P(X^{(j)} = x^{(j)} \mid Y = c_k)$$

拉普拉斯平滑

先验概率

$$P_{\lambda}(Y=c_k) = rac{\sum_{i=1}^{N}I(y_i=c_k) + \lambda}{N+K\lambda}$$

条件概率

$$P_{\lambda}(X^{(j)} = a_{jl} \mid Y = c_k) = rac{\sum_{i=1}^{N} I(x_i^{(j)} = a_{jl}, y_i = c_k) + \lambda}{\sum_{i=1}^{N} I(y_i = c_k) + S_j \lambda}$$

其中K为类别数, S_i 为某特征的可能取值数。

解

按照拉普拉斯平滑估计概率, 取 $\lambda = 1$:

$$A_1=\{1,2,3\}, \quad A_2=\{S,M,L\}, \quad C=\{1,-1\}_\circ$$

$$P(Y=1) = \frac{10}{17}, \quad P(Y=-1) = \frac{7}{17}$$

$$P(X^{(1)} = 1 \mid Y = 1) = \frac{3}{12}, \quad P(X^{(1)} = 2 \mid Y = 1) = \frac{4}{12}, \quad P(X^{(1)} = 3 \mid Y = 1) = \frac{5}{12}$$

$$P(X^{(2)} = S \mid Y = 1) = rac{2}{12}, \quad P(X^{(2)} = M \mid Y = 1) = rac{5}{12}, \quad P(X^{(2)} = L \mid Y = 1) = rac{5}{12}$$

$$P(X^{(1)} = 1 \mid Y = -1) = rac{4}{9}, \quad P(X^{(1)} = 2 \mid Y = -1) = rac{3}{9}, \quad P(X^{(1)} = 3 \mid Y = -1) = rac{2}{9}$$

$$P(X^{(2)} = S \mid Y = -1) = rac{4}{9}, \quad P(X^{(2)} = M \mid Y = -1) = rac{3}{9}, \quad P(X^{(2)} = L \mid Y = -1) = rac{2}{9}$$

对于给定的 $x = (3, S)^T$, 计算:

$$P(Y=1)P(X^{(1)}=3\mid Y=1)P(X^{(2)}=S\mid Y=1)=rac{10}{17}\cdotrac{5}{12}\cdotrac{2}{12}=rac{25}{612}pprox 0.0408$$

$$P(Y=-1)P(X^{(1)}=3\mid Y=-1)P(X^{(2)}=S\mid Y=-1)=rac{7}{17}\cdotrac{2}{9}\cdotrac{4}{9}=rac{56}{1377}pprox 0.0407$$

由于
$$P(Y=1)P(X^{(1)}=3\mid Y=1)P(X^{(2)}=S\mid Y=1)$$
 更大,所以 $y=1$ 。