Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М32021	К работе попущен
Студенты Воробьева, Лопатенко, Хасан	н Работа выполнена
Преподаватель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.13

Магнитное поле Земли

1. Цель работы.

Исследование силовых характеристик магнитного поля Земли

2. Задачи, решаемые при выполнении работы.

- 1. Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца;
- 2. Определить горизонтальную составляющую магнитного поля Земли.

3. Объект исследования.

Суперпозиция магнитного поля колец Гельмгольца и геомагнитного поля.

4. Метод экспериментального исследования.

Многократные прямые измерения физической величины с последующей обработкой

5. Рабочие формулы и исходные данные.

Физические величины:

В – индукция магнитного поля в пространстве между кольцами

 B_h – горизонтальная составляющая вектора индукции магнитного поля Земли

 B_c – величина магнитного поля катушек Гельмгольца

I — сила тока в катушках

n – число витков

R — радиус колец

ф – угол между направлением пробного поля и земного магнитного поля

α – угол между направлением результирующего поля и земного магнитного поля

Формулы:

(1)
$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R}$$
 (2) $\gamma = \frac{\sin(\alpha)}{\sin(\varphi - \alpha)}$ (3) $B_c = B_h \cdot \gamma$

6. Измерительные приборы.

No	Прибор	Используемый диапазон	Погрешность
1	Амперметр	[0, 0.04] A	0.0001 A
2	Транспортир	[0, 160] deg	0.5 deg

7. Схема установки.

Результаты прамых измерений и их обработки

	гезультаты прямых измерении и их оораоотки.					
$\varphi = 160^{\circ}$	Ток в катушках, мА			γ		
α	I_1	I_2	I_3	< <i>l></i>	$\frac{\sin(\alpha)}{\sin(\varphi-\alpha)}$	B_c , мкТл
10	7,9	7,2	7,0	7,4	0,347296355	4,4159
20	9,5	9,5	9,6	9,5	0,532088886	5,7148
30	14,1	13,7	14,7	14,2	0,652703645	8,4922
40	17,7	17,4	17,8	17,6	0,742227199	10,5703
50	18,9	19,6	19,2	19,2	0,815207469	11,5294
60	20,9	21,2	21,0	21,0	0,879385242	12,6084
70	23,4	23,0	22,1	22,8	0,939692621	13,6875
80	25,0	25,1	24,9	25,0	1,000000000	14,9863
90	25,3	25,5	25,4	25,4	1,064177772	15,2261
100	26,9	27,0	27,0	26,9	1,137158043	16,1652
110	29,4	29,0	28,9	29,1	1,226681597	17,4440
120	30,3	30,7	31,0	30,7	1,347296355	18,3836
130	33,4	33,2	33,8	33,5	1,532088886	20,0616
140	36,6	37,0	36,9	36,8	1,879385242	22,0798

9. Расчет результатов косвенных измерений. 10. Расчеты погрешностей
$$b = \frac{\Sigma B_{C_i} \gamma_i}{\Sigma \gamma_i^2} = 0,00001343 = B_h \qquad a = 0$$

Нашли значения магнитной индукции катушек Гельмгольца по формуле (1) и средних значений токов, а потом по МНК узнаем значение коэффициента B_h в линейно зависимости $B_c = B_c(\gamma)$.

$$d_i = B_{\mathcal{C}_i} - (a+bar{\gamma})$$
 $D = \sum (\gamma_i - ar{\gamma})^2 = 2,135075082$ Определяем СКО коэффициента b : $s_b^2 = \frac{1}{\sum \gamma_i^2} \frac{\sum d_i^2}{n-1}$

11. Графики

График 1: Зависимость магнитной индукции B_c от коэффициента γ

12. Окончательные результаты.

$$B_h = (13.431 \pm 0.289)$$
 мкТл

$$\varepsilon = 2.1524\%$$

13. Выводы и анализ результатов работы.

В результате проделанной лабораторной работы были получены следующие теоретические сведения: для оценки значения горизонтальной составляющей магнитной индукции геомагнитного поля необходимо создать магнитное поле катушек Гельмгольца и регистрировать суперпозицию таких векторов магнитной индукции. В зависимости от угла поворота магнитной стрелки под действием поля колец можно по теореме синусов узнать зависимость значений магнитной индукции колец (формула для которых известна из теории и в нашем случае зависит от силы тока) от коэффициента $\frac{sin(\alpha)}{sin(\varphi-\alpha)}$. Значение получили меньше, чем истинное (14.92 мкТл в Санкт-Петербурге), но это можно объяснить неточностью в измерениях и неидеальностью установки.

Работу выполнили:

Lonamenno T., XACAH K., Boposseta N

φ = 160°		Ток в кату				
α_{i}	1,	12	13	(1)	$\frac{\sin(\alpha_t)}{\sin(\varphi - \alpha_t)}$	B_c , мкТл
10°	79.9	-237472	20,6 7,0			
20°	95	9,5	20,6 7,0			
30°	141	13,7	14,7			
40°	17.7	17,4	17.8			
50°	18,8	1.9.6	13,2			
60°	20,8	21.2	21,0			
70°	23,4	23,0	22,1			
80°	23,4	21,2 23,0 25,1	24,3			1000
90°	25,3 26,8	25,5	25,4			
100°	26,8	27,0	27,0			
110°	28,4	23,0	28,5			
120°	28,4 30,3 33,4	250 30,7	28,9 300 33,8	and the same		
130°	33,4	33,2	33,8			
140°	36,6	37,0	36,8			

Tef-