Disk spindown problem

- Experts a set of *n* fixed timeouts : $\tau_1, \tau_2, \ldots, \tau_n$
- Master Alg.
 - maintains a set of weights : s_1, s_2, \ldots, s_n
 - predicts with weighted average
- Multiplicative update

$$s_{t+1,i} = rac{s_{t,i} \; oldsymbol{e}^{-\eta \; ext{energy usage of timeout i}}}{Z}$$

Problem

Disk spindown problem

ML 3: Mix in little bit of uniform vector

$$\mathbf{s}' = \text{Multiplicative Update}$$
 $\mathbf{s} = (1 - \alpha) \mathbf{s}' + \alpha (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$
where α is small

Disk spindown problem

ML 3: Mix in little bit of uniform vector

$$\mathbf{s}' = \text{Multiplicative Update}$$

$$\mathbf{s} = (1 - \alpha) \mathbf{s}' + \alpha (\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$$
where α is small

Nature 4: use mutation for same purpose

ML 4: sleeping

Keep track of past average share vector r

$$\mathbf{s}'$$
 = Multiplicative Update

$$\mathbf{s} = (1 - \alpha) \mathbf{s}' + \alpha \mathbf{r}$$

- facilitates switch to previously useful vector
- long-term memory

Sleeping interpretation - "Putting Bayes to sleep"

[KAW]

- Some models predict with predictive distribution
- Weights of those models fixed Bayes rule is vacuous

Two-track in-vitro implementation of sleeping

Multiplicative update + small soup exchange gives long-term memory

Two-track in-vitro implementation of sleeping

Multiplicative update + small soup exchange gives long-term memory

Two-track in-vitro implementation of sleeping

Multiplicative update + small soup exchange gives long-term memory

Initially:

 $\mathbf{s} = \gamma$ "initial tube" $\mathbf{r} = (1 - \gamma)$ "initial tube"

 $\textbf{\textit{s}}^{\textit{m}} = \text{``mult.update''}(\textbf{\textit{s}})$

 $r^m = r$

Soup exchange:

$$\tilde{\boldsymbol{s}} = (1 - \alpha)\boldsymbol{s}^m + \beta\boldsymbol{r}^m$$

$$\tilde{r} = \alpha s^m + (1 - \beta) r^m$$

$$\gamma = \frac{\beta}{\alpha + \beta}$$

Total loss plots

Weights s on the awake track

Weights *r* on the sleeping track

Question

- How long-term memory realized in nature?
 - Junk DNA?
 - Sex?

ML methods

ML 1: Conservative update - learn multiple goals

ML 2: Upper bounding weights - "

ML 3: Lower bounding weights - robust against change

ML 4: Mixing in past average/sleeping - longterm memory

Nature's methods

Nature 1: Boundaries

Nature 2: Coupling

Nature 3: Super-predators

Nature 4: Mutations

Summary

- Multiplicative updates converge quickly their blessing but wipe out diversity - their curse
- Changing conditions require reuse of previously learned knowledge/alternatives
- Diversity is a requirement for success
- A mechanism is need to ameliorate the curse
 - ML and Nature have different tricks