

[EH-7860_111019-CH] **AU7860** 系统应用说明

版本 V0.1 2011 年 10 月

申明

山景集成电路技术有限公司(简称"山景")保留更改本文件的权利,相关内容以最新 版本为准。用户使用本文件引起的任何损失或法律诉讼与山景无关。

任何人不得以任何形式 (如: 电子的、机械的、手书的、光学存储的或以其它语 言表述的形式,等等)复制、复印或存储本文件的全部或一部分内容,除非得到 山景的书面同意。

修改记录

日期	版本号	描述
2011-10-24	V0.1	Initial

AU7860 的特点

- 增强型 8051 内核(以下简称"E8051")
- 支持 USB2.0 OTG FULL SPEED
- 支持 SD/MMC 卡
- 支持 MPEG1/2/2.5 layer2/3 格式,包括 VBR
- 支持 WMA 格式
- 支持 WAV 和 ADPCM 格式
- EQ 音效模式
- 支持 ID3 信息
- 支持 FAT16 和 FAT32 文件系统
- 内置 18 位的高品质音频 CODEC
- 内置 3 路立体声 LINE IN 通道
- 9通道 12 位 SARADC
- 内置 15 路段码 LCD 驱动, 支持 1/3 和 1/4 偏置电压
- 内置 RTC 模块
- GPIO 具有各种复用功能
- 内置 LDO,支持电源范围 3.35V 5.5V
- 具备上电复位(POR)
- 内置 64K 字节 OTP
- Microphone 信号输入
- 录音功能(可录音源: LINE_IN / FM / Microphone)
- 支持 iPhone USB (USB 连接 iPhone / iPod 设备)
- 支持 USB 声卡
- 支持 USB 读卡器
- 支持频率计数器检测(模调数显)
- DC-DC Booster, 支持 USB5V 升压功能
- GPIO 管脚 ESD 抗静电能力+/-4KV

AU7860 硬件资源介绍

1. E8051

AU7860集成了一个兼容标准MCS-51的E8051内核,可以使用通用的8051开发 工具进行程序开发。

2. OTP

芯片内置 64KByte 可一次性烧录的程序空间,可用于存储客户的程序代码(但芯 片的最后 32Byte 留给厂家,供厂家生产测试时使用)

3. GPIO 复用

内含 5 组 GPIO, 大多 IO 具有复用功能(具体的 IO 复用关系请详见 SDK 使用 说明)

4. UART

两种UART,一种是8051内核的UART,另一种是高速UART(最高支持 57600bps波特率)

5. PWM

共有 6 个 IO 口具有 PWM 输出功能,应用目标有:触摸屏时钟,彩灯控制,蜂 鸣器控制等。

6. ADC

内置 12 位 SARADC 模块,共有 9 路 IO 口用于此功能,可以支持触摸按键。

7. LCD

内置段码 LCD 显示驱动模块,共有 15 路 GPIO 可用于此功能。

8. RTC

内置RTC硬件模块,为系统提供实时时钟,闹钟以及休眠模式下的唤醒功能。

9. SPI

一组 SPI 总线,复用于 GPIO B4 - B7。

10. IR

芯片内部集成了红外信号硬件解码器,支持NEC通讯协议,并支持从SLEEP模 式下唤醒系统功能。

11. LDO

芯片内置 LDO 模块,只需要提供一个 LDOIN 输入电源(3.35V~5.5V)。在 LDOIN 端输入电压 5V 时,芯片 IOVDD 输出电流为 150mA。

AU7860 工作模式

AU7860 支持以下工作模式:

(1) 正常工作模式

AU7860播放歌曲时,通常工作在正常工作模式下。以AU7860芯片为例,测试 芯片电源输入端消耗的电流约为:

播放U盘	播放SD卡	
28~32m/	4 28~31mA	

注:测试结果会随测试方法和测试条件变化。

(2) 分频模式

AU7860提供分频模式,内部MCU可以降低工作频率,分频工作模式下,结合关 闭不使用的功能模块,可以有效地降低系统功耗和EMI,同时人机接口的功能 (如按键,显示)仍然正常工作。以AU7860芯片为例,测试16分频模式下,芯 片电源输入端消耗的电流约为4mA。

注:测试结果会随测试方法和测试条件变化。

(3) SLEEP (休眠) 模式

SLEEP模式下MCU不工作,RTC模块保持工作,系统功耗降为最低,部分IO和 RTC可以唤醒系统。此时,以AU7860芯片为例,芯片电源输入端消耗的电流约 为1.2mA。

注:测试结果会随测试方法和测试条件变化。

四 AU7860 应用电路说明

1. AU7860 应用电路说明

应用电路说明是依据芯片本身设计特点,要求芯片外围达到如下的合理配置条件,使之得到高性能发挥,降低 EMI,及提高 EMC 性能。

1.1 时钟电路

AU7860 主时钟频率是 12MHZ。 12.0MHZ 晶振选用,支持 RTC 功能时,请采用<10ppm 值器件。 RTC 精度 24Hours +/-1S。

AU7860 内部集成 RTC 模块电路

1.2 USB 接口电路

USB接口电路设计上外围不需要增加器件,如果产品需过EMC认证,建议在DP/DM 信号上串联一个电感。

大功率的机器建议在USB的+5V电源端串入小电阻(2R2),滤除读U盘噪音,及限流保护作用。

1.3 Microphone 输入电路

使用芯片内部 Volume 增益调节,只支持 Microphone/FM in 信号录音,FM 录音模式,GPIO 需输出低电平,来控制 Microphone 放大电路的电源,Microphone 录音模式,需关闭 FM 音频信号输出,并尽量使 FM 音频信号通道输出高阻态。

使用外部 Volume 增益调节,可支持 Microphone/FM in/Line in 信号录音,附图部分参数可以取消。

Microphone 放大电路的 AVDD33 直接从芯片 IOVDD 端滤波电容端口取。

Microphone输入电路

电源滤波对录音SNR影响很大

使用芯片内部volume增益调节,只支持Micro/FM信号录音功能. 使用外部Volume增益调节,可支持Micro/FM/Line in信号录音功能.

1.4 录音应用功能设计

录音的存储设备为 USB/SD 两种, USB 设备默认优先。 不带录音功能时, C17 可以改为 22uF, C27 可以改为 1uF。

1.5 DAC LINE OUT 电路

系统上电DAC输出会存在轻微POP声,便携式产品可以取消DAC MUTE电路。

1.6 EARPHONE 音频输出电路

DAC 驱动(32OHM Loading) OUT Power(Max) =25MW。

DAC POWER OUT WITH 32R/Loading =25MW

1.7 USB DEVICE 功能及电路

USB DEVICE 功能可以支持 USB 声卡和 USB 读卡器功能。

进入 DEVICE 模式(声卡及读卡器模式),是通过软件查询检测,与 PC 机连接,检测到设备,才能进入到 DEVICE 模式。

因 USB HOST 与 USB DEVICE 共用一组 USB 接口,只支持单独的设备工作模式。

1.8 LED显示屏电路

GPIO D0、D2~D7 的最大输出电流为 24mA。

GPIO D口配置为 COM, B口配置为 SEG。

支持共阳极数码管,可以省略限流电阻。

GPIO B 口的输入电流可配置为 1.2mA/2.4mA/3.6mA。

1.9 SD 卡控制电路

如果 GPIO 资源不够,可采用软硬件复用检测电路,如图示: SD DETECT PIN 复用 SD CLK 做后插优先播放。

GPIO 资源足够,请取消 R17 电阻,改用独立 GPIO 做 SD DETECT 用。

1.10 GPIO 电性及复用功能

GPIO C2 输入电压 Vin(Max)<5.5V, 其余 GPIO 的输入电压 Vin(Max)<3.6V。 9路 GPIO 复用 ADC 功能。(芯片内部集成高压 ADC 电源采集通道,音频频谱采集通道)

7路 GPIO 复用 PWM 功能。(GPE4 口只能固定做 Booster PWM 输出,不可配置)

3组 UART 口,其中 2组为 Fast UART, 1组为 i51 UART。

GPIO只能连接3.3V IO口通讯

1.11 Sleep 模式中断唤醒电路

系统进入 Sleep 模式,GPIO C0~C2 支持中断唤醒,可以通过 IR、脉冲、高低电平唤醒。

1.12 Booster 升压电路

Booster 功能,只能固定配置 GPE4 口为 DC-DC PWM 输出。

1.13 LCD 显示屏驱动电路

最多支持 15 路 GPIO 直接驱动 LCD 屏。

1.14 Line in 后插优先检测电路

Line in 做后插优先检测,可复用 IIC _CLK 做检测,GPIO 资源足够,可不复用 GPIO 做检测。

FM Receive线路

1.15 车机面板硬件复位电路

车机面板上需要独立的针孔 RESET 按键,设计的时候可使用 GPIOE3,单独做一个按键,长按 5S 可以使芯片系统硬件复位。

2. AU7860 应用 PCB 设计中注意的问题

在应用电路中,其 PCB 的设计决定 AU7860 的性能指标,请重点参考以下注意事项:

2.1 时钟电路

AU7860 主时钟频率是 12MHZ, PCB Layout 时需将晶振电路靠近芯片管脚位置:

2.2 音频信号电路设计

音频模拟信号易受到外围信号干扰,在PCB layout中为了减弱数字信号对音频信号的干扰,需使用模拟地(AGND)包裹两根音频信号线。

DAC 输出需要直接驱动32OHM耳机,音频信号线路需要加粗0.5mm,如图示。

耳机接口的地,需接DAC 模拟地。

2.3 USB信号电路设计

USB读写数据速度为12Mbps,对其他电路会产生干扰,USB电路设计应尽量远离音频,射频,晶振电路,并且DP/DM信号线设计尽量短,USB DP/DM 差分信号并行设计,合理PCB设计,信号线外围需包一层地(DGND)线,以减少EMI辐射。如下图所示:

2.4 DAC VMID 电路设计

AU7860 的 DAC VMID PIN 外接两个电容对 DAC 内部电路提供参考电压,两个电容要求尽可能靠近 AU7860。如下图所示:

2.5 RS232 串口电路设计

调试开发板上 RS232 串口有调试数据传输及同时播放音乐,播放的音乐会受到干扰,尤其表现为底噪较大,通过测试设备对音频地线的观测,会发现地线上的杂波信号超过正常范围。所以针对上述现象提出以下建议:

- (1) 系统的电源尽量采用较干净的电源,或者系统电源的滤波多加一些抗干扰环节;
- (2) RS232 的芯片建议采用工作电压在+3.3V 的 MAX3232, 因为 AU7860 的 IO 口电平也为+3.3V,(而不是 MAX232);另外其电源部分建议串入磁珠,同时加大电源的滤波电容;在 IO 口 RX/TX 中各串入 100 欧姆电阻;且让此模块区域远离音频模拟部分;

2.6 FM 电路设计

FM 电路工作的干扰,具体表现为 FM 搜台效果差,如假台多,搜台不稳定,接收的电台背景不清晰,干扰大。建议:

- (1) FM 模块供电,从 AU7860 的 LDO 输出后直接分一路电源供电;同时需加电源滤波.
- (2) AU7860 主芯片与 FM 模块的距离尽量远离,他们之间的音频信号线要串接 0.1uF 的电容,IIC 数据线可串 1K 消噪电阻.
- (3) FM 模块的位置尽量远离干扰源,天线输入端 PCB 走线短而直,周围避开其它电源等干扰源:
- (4) FM 模式下,需要关闭其他功能模块的时钟信号干扰源。

(5) FM 录音功能,设计上要考虑干扰问题,PCB Layout 时,FM 模块位置一定要 远离 USB 及 SD 卡数据线路,以减少录音模式下,设备读写数据对 FM 的接收信号 的干扰, FM 模块的 GND 与 USB 接口电路, SD 接口控制电路的电源地需要分开。 以减少录音时对 FM 的干扰

2.7 数字和模拟电源电路设计

对于数字与模拟电源设计有以下几点建议:

- (1) 3.3V LDO 正极滤波电容输出端,分2路独立走线,一路供模拟的3.3V电源 (DACVDD) 使用,另一路供系统的所有数字线路使用。
- (2) 地线的分割(DACVSS和其它数字地),从系统地的接入点开始,即从LDO的接 地端开始分割。尽量做到铺地面积越大越好,尤其是数字地部分。
- (3) 给USB供电的5V与系统其它5V的电路应该在5V LDO的输出端立即分开走 线。
- (4) ADC和LINE-IN电路模拟电平输入信号线径>0.3MM,设计上短距离走线,信 号线间距保持0.3MM以上。

五 芯片存储注意事项

AU7860属于湿度敏感器件,湿敏等级为level 4,山景公司对于AU7860系列芯 片采用真空包装,包装内有干燥剂与湿度指示卡,以保证芯片不会受潮。但有时芯 片在运输到终端客户过程中,由于运输中碰撞导致真空包装失效,或者用户拆封 后,芯片没有使用完,剩下芯片保存不当,致使芯片受潮,而芯片受潮会影响焊接 质量。对于上述这些情况,山景公司对于用户使用湿敏等级为Level 4的芯片有如下 建议:

- 1. 芯片在密封袋内的寿命为: 温度<40℃, 湿度<90%下的寿命是12个月;
- 2. 封装体峰值温度: 220 ℃;
- 3. 密封袋开封后,要求进行红外回流、气相回流、波峰焊或等效处理的器件; 必须按照下列条件进行:
 - (1) 工厂条件为温度≤30 ℃,湿度≤60%时,72小时内安装;
 - (2) 在湿度<10%的环境下存储;
- 4. 若器件符合下列条件,要求安装前烘烤
 - (1) 温度为23 ℃ +/- 5 ℃时, 湿度指示卡的读数>10%
 - (2) 不符合3.(1)或3.(2)
- 5. 若要求烘烤,器件可以在115 ℃ +/- 5 ℃下烘烤8小时

注: 若器件容器不是高温或短时间的, 要求烘烤条件 参考: IPC/JEDEC J-STD-003

联系方式

上海山景集成电路技术有限公司

地址:上海浦东软件园亮秀路112号Y座602

邮编: 201203

电话: 021-68549851、68549853、68549857

传真: 021-61630162

山景深圳代表处(销售与技术支持)

地址:深圳市福田区商报路2号奥林匹克大厦8C

邮编: 518034

电话: (0755) 83522955、83522956、83522952

传真: (0755) 83522957

电子邮件: support@mvsilicon.com 公司网站: http://www.mvsilicon.com