화학설비 안 전

2018. 03. 00

CONTENTS

- I 화학설비의 종류 및 안전기준
- Ⅲ 건조설비의 종류 및 재해형태
- Ⅲ 공정안전기술
- IV 예상문제

- 화학설비 및 그 부속설비
 - 화학설비 및 그 부속설비의 종류 (*)

화학설비의 종류

- ① 반응기·혼합조 등 화학물질 반응 또는 혼합장치
- ② 증류탑 · 흡수탑 · 추출탑 · 감압탑 등 화학물질 분리장치
- ③ 저장탱크·계량탱크·호퍼·사일로 등 화학물질 저장 또는 계량설비
- ④ 응축기·냉각기·가열기·증발기 등 열교환기류
- ⑤ 고로 등 접화기를 직접 사용하는 열교환기류
- ⑥ 카렌다·혼합기·발포기·인쇄기·압출기 등 화학제품 가공설비
- ⑦ 분쇄기·분체분리기·용융기 등 분체화학물질 취급장치
- ⑧ 결정조·유동탑·탈습기·건조기 등 분체화학물질 분리장치
- ⑨ 펌프류·압축기·이젝타 등의 화학물질 이송 또는 압축설비

- 화학설비 및 그 부속설비
 - 화학설비 및 그 부속설비의 종류 (*)

화학설비의 부속설비의 종류

- ① 배관·밸브·관·부속류 등 화학물질이송 관련설비
- ② 온도 · 압력 · 유량 등을 지시 · 기록 등을 하는 자동제어 관련설비
- ③ 안전밸브·안전판·긴급차단 또는 방출밸브 등 비상조치 관련설비
- ④ 가스누출감지 및 경보관련 설비
- ⑤ 세정기·응축기·벤트스택·플레어스택 등 폐가스처리설비
- ⑥ 사이클론·백필터·전기집진기 등 분진처리설비
- ⑦ ① ~ ⑥의 설비를 운전하기 위하여 부속된 전기관련 설비
- ⑧ 정전기 제거장치·긴급 샤워설비 등 안전관련 설비
- 화학설비를 설치하는 건축물의 구조
 - ❖ 화학설비 및 그 부속설비 를 내부에 설 치하는 건축물의 바닥 벽·기둥 계단 및 지붕 등에는 불연성의 재료를 사용하여야 한다.

- 화학설비 및 그 부속설비
 - 부식방지 (*)
 - ❖ 화학설비 또는 그 배관(화학설비 또는 그 배관의 밸브나 콕은 제외한다) 중 위험물 또는 인화점이 섭씨 60도 이상인 물질이 접촉하는 부분에 대해서는 위험물질 등에 의하여 그 부분이 부식되어 폭발·화재 또는 누출되는 것을 방지하기 위하여 위 험 물질 등의 종류 · 온도 · 농도 등에 따라 부식이 잘되지 않는 재료를 사용하거나 도장(逢裝) 등의 조치를 하여야 한다.
 - 덮개 등의 접합부 (*)
 - ❖사업주는 화학설비 또는 그 배관의 덮개 · 플랜지 · 밸브 및 콕의 접합부에 대하여 위험물질 등의 누출로 인한 폭발 · 화재 또는 위험물의 누출을 방지하기 위하여 적절한 개스킷 (gasket)을 사용하고 접합면을 상호 밀착시키는 등 적절한 조치를 하여야 한다.
 - 밸브 등의 개폐방향의 표시 등
 - ❖사업주는 화학설비 또는 그 배관의 밸브⋅콕 또는 이것들을 조작하기 위한 스위치 및 누름버튼 등에 대하여 이들의 오조작으로 인한 폭발 화재 또는 위험물의 누출을 방지하기 위하여 개폐방향을 색채등으로 표시하여 구분되도록 하여야 한다.

- 화학설비 및 그 부속설비
 - 안전밸브를 설치하여야 하는 곳
 - ❖ 다음 각 호의 어느 하나에 해당하는 설비에 대해서는 과압에 따른 폭발을 방지하기 위하여 폭발 방지 성능과 규격을 갖춘 안전밸브 또는 파열판을 설치하여야 한다. 다만, 안전밸브 등에 상응하는 방호장치를 설치한경우에는 그러하지 아니하다.

안전밸브(또는 파열판)을 설치하여야 하는 곳★

- ① 압력용기(안지름이 150밀리미터 이하치인 압력용기는 제외하며, 압력용기 중 관형 열교환기의 경우에는 관의 파열로 인하여 상승한 압력이 압력용기 의 최고사용압력을 초과할 우려가 있는 경우만 해당한다)
- ② 정변위 압축기
- ③ 정변위 펌프(토출축에 차단밸브가 설치된 것만 해당한다)
- ④ 배관(2개 이상의 밸브에 의하여 차단되어 대기온도에서 액체의 열팽창에 의하여 파열될 우려가 있는 것으로 한정한다)
- ⑤ 그 밖의 화학설비 및 그 부속설비로서 해당 설비의 최고사용압력을 초과할 우려가 있는 것

- 화학설비 및 그 부속설비
 - 안전밸브를 설치하여야 하는 곳
 - ❖ 안전밸브 등을 설치하는 경우에는 다단형 압축기 또는 직렬로 접속된 공기압축기에 대 해서는 각 단 또는 각 공기압축기별로 안전밸브 등을 설치하여야 한다. (*)
 - ❖ 안전밸브에 대해서는 다음 각 호의 구분에 따른 검사주기마다 국가교정 기관에서 교정을 받은 압력계를 이용하여 설정압력 에 서 안전밸브가 적 정하게 작동하는지를 검사한 후 납으로 봉인하여 사용하여야 한다.

안전밸브 검사주기**☆☆**

- ① 화학공정 유체와 안전밸브의 디스크 또는 시트가 직접 접촉될 수 있도록 설치된 경우: 매년 1회 이상
- ② 안전밸브 전단에 파열판이 설치된 경우 : 2년마다 1회 이상
- ③ 공정안전보고서 제출 대상으로서 고용노동부장관이 실시하는 공정안 전보고서 이행상태 평가결과가 우수한 사업장의 안전밸브의 경우: 4년 마다 1회 이상

- 화학설비 및 그 부속설비
 - 파열판의 설치

파열판을 설치하여야 하는 경우 **

- ① 반응폭주 등 급격한 압력상승의 우려가 있는 경우
- ② 급성독성물질의 누출로 인하여 주위의 작업환경을 오염시킬 우려가 있는 경우
- ③ 운전 중 안전밸브에 이상 물질이 누적되어 **안전밸브가 작동되지 아니할** 우려가 있는 경우

[파열판]

- 화학설비 및 그 부속설비
 - 파열판 및 안전밸브의 직렬설치
 - ❖사업주는 급성 독성물질이 지속적으로 외부에 유출될 수 있는 화학 설비 및 그 부속설비에 파열판과 안전밸브를 직렬로 설치하고 그 사이에는 압 력지시계 또는 자동경보장치를 설치하여야 한다.
 - 안전밸브 등의 작동요건 및 배출용량
 - ❖ 안전밸브 등이 안전밸브 등을 통하여 보호하려는 설비의 최고사용 압력이하에서 작동되도록 하여야 한다. 다만, 안전밸브 등이 2개 이상 설치된경우에 1개는 최고사용압력의 1.05배(외부화재를 대비한 경우에는 1.1배)이하에서 작동되도록 설치 할 수 있다. (**)
 - ❖ 안전밸브 등의 배출용량은 그 작동원인에 따라 각각의 소요분출량을 계 산하여 가장 큰 수치를 당해안전밸브 등의 배출용량으로 하여야 한다.

- 화학설비 및 그 부속설비
 - 차단밸브의 설치금지
 - ❖사업주는 안전밸브 등의 전 · 후단에는 차단밸브를 설치하여서는 아니된다. 다만, 다음 각 호의 1에 해당하는 경우에는 자물쇠 형 또는 이에 준하는 형식의 차단밸브를 설치할 수 있다.

안전밸브의 전·후단에 차단밸브를 설치할 수 있는 경우★

- ① 인접한 화학설비 및 그 부속설비에 안전밸브 등이 각각 설치되어 있고 당해 화학설비 및 그 부속설비의 연결배관에 차단밸브가 없는 경우
- ② 안전밸브 등의 배출용량의 2분의 1 이상에 해당하는 용량의 자동압력조절 밸브(구동용 동력원의 공급을 차단할 경우 열리는 구조인 것에 한한다)와 안전밸브 등이 병렬로 연결된 경우
- ③ 화학설비 및 그 부속설비에 안전밸브 등이 복수방식으로 설치되어 있는 경우
- ④ 예비용설비를 설치하고 각각의 설비에 안전밸브 등이 설치되어 있는 경우
- ⑤ 열팽창에 의하여 상승된 압력을 낮추기 위한 목적으로 안전밸브가 설치된 경우
- ⑥ 하나의 플레어스택(flare stack)에 2 이상의 단위공정의 플레어헤더(flare header)를 연결하여 사용하는 경우로서 각각의 단위공정의 플레어헤더에 설치된 차단밸브의 열림·닫힘상태를 중앙제어실에서 알 수 있도록 조치한 경우

- 화학설비 및 그 부속설비
 - 통기설비(대기밸브 Breather valve) (**)
 - ❖ 인화성 액체를 저장 · 취급하는 대기압탱크에 는 통기관 또는 통기 밸브 (breather valve) 등을 설치하여야 한다.
 - ❖통기설비는 정상운전 시에 대기압탱크 내부가 진공 또는 가압되지 않도록 충분한 용량의 것을 사용하여야 하며, 철저하게 유지 · 보수를 하여야한다.

[통기밸브]

- 화학설비 및 그 부속설비
 - 화염방지기(Flame arrestor)의 설치 등 (**)
 - ❖ 인화성 액체 및 인화성 가스를 저장 취급하는 화학설비에서 증기나 가스를 대기로 방출하는 경우에는 외부로부터의 화염을 방지하기 위하여 화염방지기를 그 설비 상단에 설치 하여야 한다.
 - ❖ 다만, 대기로 연결된 통기관에 통기밸브가 설치되어 있거나, 인화점이 섭씨 38도 이상 60도 이하인 인화성 액체를 저장 · 취급할 때에 화염 방지기능을 가지는 인화방지망을 설치한 경우에는 그러하지 아니하다.

- 화학설비 및 그 부속설비
 - 내화기준
 - ❖ 가스폭발 위험장소 또는 분진폭발 위험장소에 설치되는 건축물 등에 대해서는 다음 각 호에 해당하는 부분을 내화구조로 하여야 하며, 그 성능이 항상 유지될 수 있도록 점검 ⋅ 보수 등 적절한 조치를 하여야 한다. 다만, 건축물 등의 주변에 화재에 대비하여 물 분무시설 또는 폼 헤드 (foam head) 설비 등의 자동소화설비를 설치하여 건축물 등이 화재 시에 2시간 이상 그 안전성을 유지할 수 있도록 한 경우에는 내화구조로하지 아니할 수 있다.

내화구조로 하여야 하는 부분

- ① 건축물의 기둥 및 보:지상 1층(지상 1층의 높이가 6미터를 초과하는 경우에는 6미터)까지
- ② 위험물 저장·취급용기의 지지대(높이가 30센티미터 이하인 것은 제외 한다): 지상으로부터 지지대의 끝부분까지
- ③ 배관·전선관 등의 지지대: 지상으로부터 1단(1단의 높이가 6미터를 초과 하는 경우에는 6미터)까지

- 화학설비 및 그 부속설비
 - 방유제설치 (*)
 - ❖사업주는 위험물질을 액체상태로 저장하는 저장탱크를 설치하는 때에는 위험물질이 누출되어 확산되는 것을 방지하기 위하여 방유제(防油提)를 설치하여야 한다.
 - 사용전의 점검등
 - ❖사업주는 다음 각 호의 어느 하나에 해당하는 경우에는 화학설비 및 그 부속 설비의 안전검사 내용을 점검한 후 해당 설비를 사용하여야 한다.

설비의 안전검사 내용을 점검한 후 사용하여야 하는 경우

- ① 처음으로 사용하는 경우
- ② 분해하거나 개조 또는 수리를 한 경우
- ③ 계속하여 1개월 이상 사용하지 아니한 후 다시 사용하는 경우

- 화학설비 및 그 부속설비
 - 화학설비의 안전거리 기준 (**)

구분	안전거리	
1. 단위공정시설 및 설비로부터 다른 단위공정시설 및 설비의 사이	설비의 바깥 면으로부터 10미터 이상	
2. 플레어스택으로부터 단위공 정시설 및 설비, 위험물질 저 장탱크 또는 위험물질 하역설 비의 사이	플레어스택으로부터 반경 20미터 이 상. 다만, 단위공정시설 등이 불연재로 시공된 지붕 아래에 설치된 경우에는 그러하지 아니하다.	
3. 위험물질 저장탱크로부터 단 위공정시설 및 설비, 보일러 또는 가열로의 사이	저장탱크의 바깥 면으로부터 20미터 이상. 다만, 저장탱크의 방호벽, 원격 조종화설비 또는 살수설비를 설치한 경우에는 그러하지 아니하다.	

- 화학설비 및 그 부속설비
 - 화학설비의 안전거리 기준 (**)
 - 4. 사무실·연구실·실험실·정 비실 또는 식당으로 부터 단위 공정시설 및 설비, 위험물질 저장탱크, 위험물질 하역설 비, 보일러 또는 가열로의 사이

사무실 등의 바깥 면으로부터 20미터 이상. 다만, 난방용 보일러인 경우 또 는 사무실 등의 벽을 방호구조로 설치 한 경우에는 그러하지 아니하다.

- 특수화학설비
 - 특수화학설비의 종류 (*)
 - ❖ 위험물질을 기준량 이상으로 제조 또는 취급하는 다음 각 호의 1에 해당 하는 화학설비를 특수화학설비라 한다.

특수화학설비 🖈

- ① 발열반응이 일어나는 반응장치
- ② 증류 · 정류 · 증발 · 추출 등 분리를 행하는 장치
- ③ 가열시켜주는 물질의 온도가 가열되는 위험물질의 분해온도 또는 발화점 보다 높은 상태에서 운전되는 설비
- ④ 반응폭주 등 이상 화학반응에 의하여 위험물질이 발생할 우려가 있는 설비
- ⑤ 온도가 섭씨 350도 이상이거나 게이지 압력이 980킬로파스칼 이상인 상태 에서 운전되는 설비
- ⑥ 가열로 또는 가열기

- 특수화학설비
 - 특수화학설비의 방호장치 설치 (**)

계측장치	특수화학설비를 설치하는 때에는 내부의 이상상태를 조 기에 파악하기 위하여 필요한 온도계·유량계·압력계 등 의 계측장치를 설치하여야 한다.	
자동경보장치	특수 화학설비를 설치하는 때에는 그 내부의 이상상태를 조기에 파악하기 위하여 필요한 자동경보장치를 설치하 여야 한다. 다만, 자동경보장치를 설치하는 것이 곤란한 때 에는 감시인을 두고 당해 특수화학설비의 운전 중 당해설 비를 감시하도록 하는 등의 조치를 하여야 한다.	
긴급차단장치	특수화학설비를 설치하는 때에는 이상상태의 발생에 따른 폭발·화재 또는 위험물의 누출을 방지하기 위하여 원재료 공급의 긴급차단, 제품등의 방출, 불활성가스의 주입 또 는 냉각용수등의 공급을 위하여 필요한 장치등을 설치하 여야 한다.	
예비동력원	 동력원의 이상에 의한 폭발 또는 화재를 방지하기 위하여 즉시 사용할 수 있는 예비동력원을 갖추어 둘 것 밸브·콕·스위치 등에 대하여는 오조작을 방지하기 위하여 잠금장치를 하고 색채표시 등으로 구분할 것 	

- 반응기
 - 반응기 (Chemical reactor)
 - ❖ "반응기 (chemical reactor)"란 원료물질을 화학적 반응을 통하여 성질이 다른 물질로 전환하는 설비로서 이와 관련된 계 측, 제어 등 일련의 부속 장치를 포함하는 장치를 말한다.
 - 반응기의 구분

운전방식에 의한 분류	회분식 반응기 (Batch Reactor)	 원료를 반응기 내에 주입하고, 일정 시간 반응시킨 다음 생성물을 꺼내는 방식. 반응이 진행되는 동안 원료 도입 또는 생 성물의 배출이 없다. 다품종 소량 생산에 유리하다.
	반회분식 반응기 (semi-batch reactor)	• 반응 성분의 일부를 반응기 내에 넣어두고 반응이 진행됨에 따라 다른 성분을 계속 첨가하는 형식의 반응기이다.
	연속 반응기 (plug flow reactor)	 원료를 연속적으로 반응기에 도입하는 동시에 반응 생성물을 연속적으로 반응기에 배출시키면서 반응을 진행시키는 반응기이다. 소품종 대량생산에 적합하다.
구조에 의한 분류	① 관형반응기 ③ 교반기형 반응	② 탑형반응기 기 ④ 유동층형 반응기

- 반응기
 - 반응기의 구비조건
 - ❖고온 고압에 견딜 것
 - ❖균일한 혼합이 가능할 것
 - ❖ 촉매의 활성에 영향주지 않을 것
 - ❖체류시간 있을 것
 - ❖ 냉각장치, 가열장치 가질 것
 - 반응기의 설계 시 주요인자 (*)
 - ❖ 온도
 - ❖압력
 - ❖부식성
 - ❖상의 형태
 - ❖ 체류시간

• 증류탑

- 증류탑(Distillation tower)
 - ❖ 용액의 성분을 증발시켜서 끓는 점 차이를 이용하여 증발분을 응축하여 원하는 성분별로 분류하는 기기
- 증류탑 종류
 - ❖ 충전탑 : 증기와 액체와의 접촉면적을 크게 하기 위하여 탑 속에 충전물을 채운 형태의 탑이다.
 - ❖ 단탑 : 빈 탑 속에 여러 개의 수평관을 일정한 간격으로 설치하여 증기와 액체를 접촉시켜 증류, 흡수, 추출을 행하는 장치이 다.
 - ❖ 포종탑 : 탑 속의 각 단판에 포종을 설치, 유해 성분의 흡수효율을 높인 장치이다.
 - ❖ 다공판탑
 - ❖ 니플 트레이
 - ❖ 벨러스트 트레이

- 증류탑
 - 증류탑 설계 시 주요인자 (*)
 - ❖ 온도
 - ❖압력
 - ❖부식성
 - ❖액 및 가스비율
 - ❖ 연속식 및 회분식
 - 증류탑의 일상 점검항목 (*)
 - ❖ 보온재 · 보냉재의 파손 상황
 - ❖도장의 열화정도
 - ❖볼트의 풀림 여부
 - ❖ 플랜지, 맨홀, 용접부등에서의 누출 여부
 - ❖증기 배관의 열팽창에 의한 과도한 힘이 가해지지 않는지 여부

- 증류탑
 - 증류탑 개방 시 점검 항목 (*)
 - ❖트레이의 부식상태
 - ❖ 포종의 막힘여부
 - ❖ 넘쳐흐르는 둑의 높이가 설계와 같은지 여부
 - ❖용접선의 상황 및 포종의 고정여부
 - ❖균열, 손상여부
 - 증류장치 운전 시 주의사항
 - ❖라인, 라인업 확인
 - ❖ 증류탑으로 원료액이 공급되는지 확인
 - ❖ 응축기에 냉각수 확인
 - ❖계기의 조정 및 펌프의 작동상태 점검

- 열교환기
 - 열교환기(Heat exchanger)
 - ❖ 온도가 높은 유체로부터 전열벽을 통하여 온도가 낮은 유체에 열을 전달하는 장치
 - 열교환기 손실열량 (*)

열 교환기의 열 손실량 계산

$$Q = K \times A \times \frac{\Delta T}{\Delta X} (\text{kcal/hr})$$

여기서, K: 전열계수, A: 면적, $\triangle X$: 두께, $\triangle T$: 온도변화량

- 열교환기 효율이 낮아지는 원인
 - ❖ Scale이 관내 외벽에 부착되었을 때
 - ❖ 비응축 가스가 축적되었을 때
 - ❖폐쇄의 경우 스팀측 유량이 급속히 감소하여 배압이 올라간다.
 - ❖ 가열시킬 물질의 유량이 중지되는 경우

- 열교환기
 - 열교환기의 일상점검 항목 (*)
 - ❖보온재 및 보냉재의 상태
 - ❖도장의 열회장태
 - ❖용접부 등으로부터의 누출 여부
 - ❖ 기초 볼트의 풀림 상태
 - 다관식 열교환기의 종류
 - ❖고정관판 열교환기
 - ❖ 유동두식(유동관판식) 열교환기
 - ❖ U자관 열교환기
 - ❖ Kettle형 열교환기

- 건조기의 종류
 - 고체건조기
 - ❖ 상자건조기 : 입상의 고체를 회분식으로 건조하는 방식
 - ❖ 터널건조기 . 다량을 연속적으로 건조하는 방식
 - ❖ 회전건조기 : 회전통 내의 원료에 열가스를 접촉하여 건조하는 방식
 - 용액, 슬러리 건조기
 - ❖드럼건조기 : 롤러사이에서 증발, 건조하는 방식
 - ❖ 교반건조기 : 원료가 점착성이 있어 타건조기 사용이 어려울 때 사용
 - ❖ 분무건조기 : 고온가스 중에서 액체를 미세하게 분산시켜 건조하는 방식

- 건조설비 취급 시 주의사항
 - 위험물 건조설비 중 건조실을 독립된 단층 건물로 하여야 하는 경우 (*)
 - ❖ 위험물 건조설비 중 건조실을 설치하는 건축물의 구조는 독립된 단층건물로 하여야 한다. 다만, 당해 건조실을 건축물의 최상층에 설치하거나 건축물이 내화구조인 때에는 그러하지 아니하다.

건조실을 독립된 단층건물로 하여야 하는 경우 ★

- ① 위험물 또는 위험물이 발생하는 물질을 가열·건조하는 경우 내용적이 1세제곱미터(1m³) 이상인 건조설비
- ② 위험물이 아닌 물질을 가열·건조하는 경우로서 다음 각목의 1의 용량에 해당하는 건조설비
 - 고체 또는 액체연료의 최대사용량이 시간당 10킬로그램(10kg/h) 이상
 - 기체연료의 최대사용량이 시간당 1세제곱미터(1m³/h) 이상
 - 전기사용 정격용량이 10킬로와트(10kW) 이상

- 건조설비 취급 시 주의사항
 - 건조설비의 구조 (*)
 - ❖건조설비의 바깥 면은 불연성 재료로 만들 것
 - ❖건조설비 (유기 과산화물을 가열 건조하는 것을 제외한다) 의 내면과 내부의 선반이나 틀은 불연성 재료로 만들 것
 - ❖ 위험물건조설비의 측벽이나 바닥은 견고한 구조로 할 것
 - ❖ 위험물건조설비는 그 상부를 가벼운 재료로 만들고 주위상황을 고려하여 폭발구를 설치할 것
 - ❖ 위험물건조설비는 건조할 때에 발생하는 가스 · 증기 또는 분진을 안전 한 장소로 배출시킬 수 있는 구조로 할 것
 - ❖액체연료 또는 가연성가스를 열원의 연료로서 사용하는 건조설비는 점화할 때에 폭발 또는 화재를 예방하기 위하여 연소실이나 기타 점화하는 부분을 환기시킬 수 있는 구조로 할 것
 - ❖건조설비의 내부는 청소가 쉬운 구조로 할 것
 - ❖건조설비의 감시창 · 출입 구 및 배기 구 등과 같은 개구부는 발화 시에 불이 다른 곳으로 번지지 아니하는 위치에 설치하고 필요한 때에는 즉시 밀폐할 수 있는 구조로 할 것

- 건조설비 취급 시 주의사항
 - 건조설비의 구조 (*)
 - ❖건조설비는 내부의 온도가 국부적으로 상승되지 아니하는 구조로 설치 할 것
 - ❖ 위험물건조설비의 열원으로서 직화를 사용하지 말 것
 - ❖ 위험물 건조설비가 아닌 건조설비의 열원으로서 직화를 사용하는 때에 는 불꽃등에 의한 화재를 예방하기 위하여 덮개를 설치하거나 격벽을 설 치 할 것
 - 건조설비 사용 시 폭발·화재 예방 위한 준수사항 (*)
 - ❖ 위험물건조설비를 사용하는 때에는 미리 내부를 청소하거나 환기할 것
 - ❖ 위험물건조설비를 사용하는 때에는 건조로 인하여 발생하는 가스 · 증기
 - ❖ 또는 분진에 의하여 폭발' 화재의 위험이 있는 물질을 안전한 장소로 배출시킬 것
 - ❖ 위험물건조설비를 사용하여 가열 건조하는 건조물은 쉽게 이탈되지 아 니 하도록 할 것
 - ❖고온으로 가열 건조한 인화성 액체는 발화의 위험이 없는 온도로 냉각한 후에 격납시킬 것
 - ❖건조설비(바깥 면이 현저히 고온이 되는 설비만 해당한다)에 가까운 장소에는 인화성 액체를 두지 않도록 할 것

- 제어장치
 - 열린 루프 제어계(개회로 방식)
 - ❖ 열린 루프 제어계의 대표적인 예는 시퀀스 제어이다.
 - ❖시퀀스제어는 한 동작이 끝나면 그 결과를 쫓아 다음 동작이 시작되는 순서 제어이며 세탁기, 자동판매기, 엘리베이터, 공장 등의 가공공정 자 동화 등에 이용되고 있다.

[개회로방식 제어계 작동순서 ☎]

- 제어장치
 - 닫힌 루프 제어계(피드백 제어)
 - ❖ 닫힌 루프 제어계의 대표적인 예는 피드백 제어이다.
 - ❖ 피드백 제어는 제어결과를 입력측으로 되돌림으로써 제어결과가 소기의 목적에 일치하도록 연속적으로 조절하여 제어의 질을 개선하는 효과를 가져오게 한다.

[폐회로방식 제어계 작동순서 ★]

- 안전장치의 종류
 - 안전밸브
 - ❖ "안전밸브(safety valve) " 이란 밸브 입구 쪽의 압력이 설정압력에 도달 하면 자동적으로 작동하여 유체가 분출되고 일정압력 이하가 되면 정상 상태로 복원되는 방호장치를 말한다.

[안전밸브의 종류]

① 중추식	압력이 상승할 경우 추의 중량을 이용하여 가스를 외부로 배출 하는 방식
② 지렛대식 (레버식)	지렛대 사이에 추를 설치하여 추의 위치에 따라 가스배출량이 결정되는 방식
③ 파열판식	용기내 압력이 급격히 상승시 얇은 금속판이 파열되며 가스를 외부로 배출하는 방식
④ 스프링식	가장 많이 사용되는 방식으로 용기내 압력이 설정압력 이상이 되면 스프링의 작동으로 가스를 외부로 배출하는 방식. 분출용 량에 따라 저양식, 고양정식, 전양정식, 전량식이 있다. ★
⑤ 가용전식	용기 내의 온도가 설정온도 이상이 되면 가용금속이 녹아 가스 를 배출하는 방식

- 안전장치의 종류
 - 파열판
 - ❖ "파열판(rupture disc)" 이란 "안전밸브" 에 대체할 수 있는 방호장치로서 판 입구 측의 압력이 설정압력에 도달하면 판이 파열하면서 유체가 분출 하도록 용기 등에 설치 된 앓은 판을 말한다.

반드시 파열판을 설치하여야 하는 경우 **

- ① 반응폭주 등 급격한 압력상승의 우려가 있는 경우
- ② 독성물질의 누출로 인하여 주위의 작업환경을 오염시킬 우려가 있는 경우
- ③ 운전 중 안전밸브에 이상 물질이 누적되어 안전밸브가 작동되지 아니할 우려가 있는 경우
- ❖체크밸브: 유체의 역류를 방지한다. (*)
- ❖ 대기밸브(통기밸브 Breather valve) : 탱크내의 압력을 대기압과 평행하게 유지하는 역할을 한다. (**)

- 안전장치의 종류
 - 파열판
 - ❖ 블로밸브(blow valve) : 과잉 압력을 방출한다.
 - ❖ 화염방지기 (flame arrester) : 외부로부터의 화염을 차단할 목적으로 인 화성액체(유류탱크) 및 가연성가스 저장 설비의 상판에 설치한다. (**)
 - ❖ 벤트스택 : 탱크 내 압력을 정상상태로 유지하기 위한 가스방출장치이다.
 - ❖ 플레어스텍(Flare stack): 가스 고휘발성 액체의 증기를 연소하여 대기 중에 방출하는 장치 이다. Seal Drum을 통해 점화버너에 착화 연소하여 가연성, 독성, 냄새 제거 후 대기 중에 방출한다.
 - ❖ blow-down : 공정액체를 빼내고 안전하게 처리하기 위한 설비이다.
 - ❖ steam-draft : 응축수를 자동으로 배출하기 위한 장치이다.

- 송풍기와 압축기
 - 압축기 (com pressor) 는 기체를 압축하는 장치로서 통상 압력이 1kgf/cm³ 이상을 압축하는 기계를 말하며 그 이하를 송풍기 (blower) 라고 한다.
 - 송풍기 및 압축기의 구분

터보형 (회전형)	원심식	케이싱 안에 장치된 회전차의 회전에 의한 원심력을 이용 하여 기체를 압송한다.
	사류식	날개차 부분의 유로가 회전축에 대해 일정 각도로 기울어 져 있어 날개차의 경사 방향으로 유입되어 경사 방향으로 유출되는 형식이다.
	축류식	프로펠러의 회전에 의한 추진력에 의해 기체를 압송하는 방식이다.
용적형	왕복형	왕복하는 피스톤에 의해서 실린더 내의 공기를 압축한다.
	회전형	케이싱 내에 맞물려 회전하는 로터(Rotor)가 회전하면서 공기를 흡입, 압축한다.

- 송풍기와 압축기
 - 송풍기의 상사법칙

송풍기의 상사법칙

$$(3) \ HP_2 = HP_1 \times \left(\frac{D_2}{D_1}\right)^5 \times \left(\frac{N_2}{N_1}\right)^3 \times \frac{\rho_2}{\rho_1}$$

여기서 Q: 송풍량

D: 임펠러 직경

P : 송풍기 정압

N : 회전수

HP : 축동력

 ρ : 가스밀도

- 송풍기와 압축기
 - 왕복식 압축기의 이상음

실린더 주변 이상음	크랭크 주변 이상음
① 흡입, 배기밸브의 불량	• 크로스 헤드의 마모나 헐거움
② 실린더 내 이물질 혼입	• 주 베어링의 마모나 헐거움
③ 피스톤링의 파손 및 마모	• 연결봉 베어링의 마모나 헐
④ 피스톤과 실린더와의 틈새가 너무 많을 때	거움
⑤ 피스톤과 실린더헤드와의 틈새가 없을 때	

- 흡, 배기밸브 불량으로 인한 주요 현상
 - ❖ 가스온도가 올라간다.
 - ❖ 가스압력에 변화를 초래한다.
 - ❖ 밸브작동음에 이상을 초래한다.

- 배관 및 피팅류
 - 관이음의 종류
 - ❖고압 및 독성물질 배관 : 누설방지 위해 배관을 용접 접합하여 사용
 - ❖ 부착장소의 보수나 수리의 용이 목적 : 플랜지 접합부 사용
 - ❖ 관이 길고 온도변화에 따른 신축을 고려할 때 : 신축이음 사용
 - 용접용기의 장단점(용접용기와 이음새 없는 용기의 비교)

장점	 지렴한 강관을 사용하므로 이음새 없는 용기보다 제조비용이 저렴하다. 강판을 성형하고 용접하므로 용기의 형태나 크기의 선택이 이음새 없는 용기보다 자유롭다. 두께가 일정한 강판을 사용하므로 용기 두께 공차가 적다.
단점	① 용접 이음부에 의한 불연속부의 존재로 결함발생 우려가 있다. ② 용접 결함에 의한 가스 등 누설 우려가 있다.

- 배관 및 피팅류
 - 관의 부속품 (*)

2개관의 연결	플랜지, 유니언, 니플, 소켓
관의 지름 변경	리듀서, 부싱
관로방향 변경	엘보, Y형 관이음쇠, 티, 십자
유로차단	플러그, 밸브, 캡
유량조절	 게이트밸브(gate valve): 차단용 밸브로서 게이트가 열리거나 닫히며 유로를 차단 또는 개방한다. 글로브밸브(glove valve): 유량제어의 목적으로 가장 많이 사용된다. 체크밸브(checke valve): 유체가 한 방향으로만 흐르 도록 하는 역류방지용 밸브이다. ★ 니들밸브(needle valve): 공압작동식 밸브이다. 공기의 압력으로 변이 열리거나 닫히며 조절한다.

- 배관 및 피팅류
 - 배관의 이상현상
 - ❖ 공동현상(Cavitation) (*)
 - ▶ 유체의 증기압이 물의 증기압보다 낮을 경우 부분적으로 증기를 발생시켜 배관을 부식시키는 현상이다.

펌프에서 공동현상 발생원인	① 펌프의 흡입수두가 클 때 ② 펌프의 마찰손실이 클 때 ③ 펌프의 임펠러속도가 클 때 ④ 펌프의 설치위치가 수원보다 높을 때 ⑤ 관내 수온이 높을 때 ⑥ 관내의 물의 정압이 그때의 증기압 보다 낮을 때 ⑦ 흡입관의 구경이 작을 때 ⑧ 흡입거리가 길 때 ⑨ 유량이 증가하여 펌프물이 과속으로 흐를 때
펌프에서 공동현상 방지대책	① 펌프의 흡입수두를 작게 한다. ② 펌프의 마찰손실을 작게 한다. ③ 펌프의 임펠러속도를 작게 한다. ④ 펌프의 설치위치를 수원보다 낮게 한다. ⑤ 배관내 물의 정압을 그때의 증기압 보다 높게 한다. ⑥ 흡입관의 구경을 크게 한다. ⑦ 펌프를 2대 이상 설치한다.

- 배관 및 피팅류
 - 배관의 이상현상
 - ❖ 수격작용(Water hammering, 물망치작용) (*)
 - ▶ 밸브를 급격히 개폐 시에 배관 내를 유통하던 물이 배관을 치는 현상 (압력 파가 급격히 관내를 왕복하는 현상)으로 배관 파열을 초래한다.
 - ❖ 맥동현상(surging)
 - ▶ 유량이 단속적으로 변하여 펌프입출구에 설치된 진공계, 압력계가 흔들리고 진동과 소음이 일어 나며 펌프의 토출량의 변화를 초래한다.
 - ❖ 베이퍼로크(Vaper lock)
 - ▶ 유체이동 시 배관 내에서 외부 영향받아 액체가 기체로 변하는 현상

- 1. 폭발화재 발생시 장치내부의 이상압력을 안전하게 방출 경 감시키는 장치와 거리가 먼 것은? (05.05.29)
 - ① 안전밸브
 - ② 파열판
 - ③ 폭압방산구
 - ④ 격리밸브

- 2. 화학공정의 되먹임(피드백)제어에서 제어알고리즘을 이용하여 제어할 값을 결정하는 곳은? (05.05.29)
 - ① 검출부
 - ② 조절부
 - ③ 조작부
 - ④ 전송부

3. 법령상 가스집합장치는 화기를 사용하는 설비로부터 몇 m 이상 떨어진 장소에 설치하여야 하는가? (05.08.07)

- 1
- 2 5
- 3 10
- **4** 15

- 4. 압력방출장치가 간단하여 시간 지연이 없고 저항이 적어 압력상승이 급격한 경우에 많이 사용하는 방호장치는? (05.08.07)
 - ① 파열판
 - ② 안전밸브
 - ③ 블로우다운
 - ④ 플레어스택

- 5. 다음 중 과압에 의한 장치에 파손을 방지하기 위해 설치하는 방호설비가 아닌 것은? (06.03.05)
 - ① 안전밸브
 - ② 파열판
 - ③ 폭압방산공
 - ④ 블로우다운 시스템

- 6. 다음은 위험물 건조설비를 설치하는 건축물 구조에 관한 사항이다. 건조실을 설치하는 건축물의 구조가 독립된 단층 건물로 해야하는 조건이 아닌 것은? (단, 최상층에 설치 또는 내화구조로 설치하지 않음) (06.05.14)
 - ① 고체 또는 액체 연료의 최대 사용량이 10kg/hr 이상
 - ② 기체 연료의 사용량 1m³/hr 이상
 - ③ 가열·건조기의 내용적이 10cm³ 이상
 - ④ 전기사용 정격 용량 10kW 이상

- 7. 화학설비의 안전장치로서 파열판을 설치해야 할 경우로서 가장 거리가 먼 것은? (06.05.14)
 - ① 급격한 압력 상승의 우려가 있는 경우
 - ② 내부 물질이 액체와 분말의 혼합 상태인 경우
 - ③ 방출량이 많고 순간적으로 많은 방출이 필요한 경우
 - ④ 액체의 열팽창에 의한 압력 상승 방지를 해야 하는 경우

- 8. 반응기의 이상압력 상승으로부터 반응기를 보호하기 위해 파열판과 안전밸브를 설치하고자 한다. 다음 중 반응폭주 현상이 일어났을 때 반응기 내부의 과압을 가장 잘 분출 할 수 있는 방법은? (06.05.14)
 - ① 파열판, 안전밸브의 순서대로 반응기 상부에 직렬로 설치한다.
 - ② 안전밸브, 파열판의 순서대로 반응기 상부에 직렬로 설치한다.
 - ③ 파열판, 안전밸브의 병렬로 반응기 상부에 설치한다.
 - ④ 반응기 내부의 압력이 낮을 때는 직렬연결이 좋고, 압력이 높을 때는 병렬연결이 좋다.

- 9. 건조설비의 사용상 주의점이 아닌 것은? (06.08.06)
 - ① 건조설비 가까이 가연성 물질을 두지 말 것
 - ② 고온으로 가열 건조한 물질은 즉시 격리 저장할 것
 - ③ 위험물 건조설비를 사용할 때는 미리 내부를 청소하거나 환기시킨 후 사용할 것
 - ④ 건조로 인해 발생하는 가스·증기 또는 분진에 의한 화재·폭발의 위험이 있는 물질은 안전한 장소로 배출할 것

10. 화학설비에서 단위공정시설 및 설비로부터 다른 단위공정 시설 및 설비 사이의 적당한 안전거리는 설비의 외면으로 부터 몇 m 이상 유지되도록 하여야 하는가? (06.08.06)

- 1 3
- 2 5
- 3 8
- 4 10

11. 화학공정에서 반응을 시키기 위한 조작 조건에 해당되지 않는 것은? (06.08.06)

- ① 반응 온도
- ② 반응 농도
- ③ 반응 높이
- ④ 반응 압력

- 12. 염소산 칼륨 40kg, 니트로글리세린 8kg과 니트로글리콜 2kg을 취급하는 설비는 어느 것에 해당되는가?(염소산 칼륨 기준량 50kg, 니트로글리세린 기준량 10kg, 니트로글리콜 기준량 10kg) (07.03.04)
 - ① 특정설비
 - ② 화학설비
 - ③ 위험설비
 - ④ 특수화학설비

- 13. 여러 가지 성분의 액체 혼합물을 각 성분별로 분리하고자 할 때 비점의 차이를 이용하여 감압 또는 가압하에서 분리하는 화학설비를 무엇이라 하는가? (07.03.04)
 - ① 건조기
 - ② 반응기
 - ③ 증발관
 - ④ 증류탑

14. 다음 배관설비 중 역류를 방지하기 위하여 설치하는 밸브는? (08.03.02)

- ① 글로브밸브
- ② 체크밸브
- ③ 게이트밸브
- ④ 시퀀스밸브

15. 다음 중 증류탑의 일상점검항목으로 볼 수 없는 것은? (08.03.02)

- ① 도장의 상태
- ② 트레이(Tray)의 부식상태
- ③ 보온재, 보냉재의 파손여 부
- ④ 접속부, 맨홀부 및 용접부에서의 외부 누출 유무

16. 다음 중 반응기를 구조형식에 의하여 분류할 때 이에 해당하지 않는 것은? (08.05.11)

- ① 탑형
- ② 회분식
- ③ 교반조형
- ④ 유동층형

17. 다음 중 릴리프밸브(relief valve)의 주된 사용 대상으로 가 자 적절한 것은? (08.05.11)

- ① 액체
- ② 가스
- ③ 기체
- ④ 증기

18. 특수화학설비란 섭씨 몇 °C 이상인 상태에서 운전되는 설비를 말하는가? (09.03.01)

- ① 150°C
- ② 250°C
- ③ 350°C
- (4) 450°C

19. 다음 중 관로의 크기를 변경하고자 할 때 사용하는 관부속 품은? (09.05.10)

- ① 밸브(valve)
- ② 엘보우(elbow)
- ③ 부싱(bushing)
- ④ 플랜지(flange)

20. 화학장치에서 반응기의 위험성을 점검하고 있다. 반응기에서 화학반응이 있을 때 특히 유의할 사항들로 나열한 것은? (10.03.07)

- ① 낙하, 절단
- ② 감전, 협착
- ③ 비래, 붕괴
- ④ 반응폭주, 과압

- 21. 배관에 설치되는 밸브, 트랩, 기기 등의 앞에 설치하여 유체 속에 섞여 있는 이물질을 제거하여 기기 성능을 보호하기 위하여 설치하는 것은? (10.05.09)
 - reducer
 - 2 plug
 - 3 bail valve
 - 4 strainer

22. 다음 중 반응기를 구조형식에 의하여 분류할 때 이에 해당하지 않는 것은? (10.05.09)

- ① 탑형
- ② 화분식
- ③ 교반조형
- ④ 유동충형

- 23. 산업안전보건법상 위험물질을 기준량 이상으로 제조 또는 취급하는 특수화학설비에 설치하여야 할 계측 장치가 아닌 것은? (10.05.09)
 - ① 온도계
 - ② 유량계
 - ③ 압력계
 - ④ 경보계

Thank you