Linear & Logistic Regression

FTI UII 13 Januari 2020

Dr. Ing. Ridho Rahmadi, S.Kom., M.Sc

- Head of Center of Data Science, UII
- Head of Research Laboratory, Informatics, UII
- Education
 - Universitas Islam Indonesia (S1)
 - Czech Technical University in Prague (S2)
 - Johannes Kepler University, Austria (S2)
 - Radboud University Nijmegen, the Netherlands (S3)
 - Carnegie Mellon University, USA (Visiting scholar)
- Research interest
 - Machine learning, deep learning, causal modeling, stability selection, multi-objective evolutionary algorithms
- ridho.rahmadi@uii.ac.id
- 081129513045

The more cookies I eat, the more weight I gain

I am not necessarily always happier as time passes

4 | 53

- If I eat 1 cookie per day, I gain 2 Kg weight
- If I eat 2 cookies per day, I gain 4 Kg weight

4 | 53

- If I eat 1 cookie per day, I gain 2 Kg weight
- If I eat 2 cookies per day, I gain 4 Kg weight

The more cookies I eat, the more weight I gain.

4 | 53

- If I eat 1 cookie per day, I gain 2 Kg weight
- If I eat 2 cookies per day, I gain 4 Kg weight

The more cookies I eat, the more weight I gain.

We call such an example as a linear model.

4 | 53

- If I eat 1 cookie per day, I gain 2 Kg weight
- If I eat 2 cookies per day, I gain 4 Kg weight

The more cookies I eat, the more weight I gain.

We call such an example as a linear model. For example,

- If A goes up, so does B, OR
- If A goes up, B goes down

4 | 53

- If I eat 1 cookie per day, I gain 2 Kg weight
- If I eat 2 cookies per day, I gain 4 Kg weight

The more cookies I eat, the more weight I gain.

We call such an example as a linear model. For example,

- If A goes up, so does B, OR
- If A goes up, B goes down

Given two variables, a linear relationship among them indicates consistent directions of changes.

5 | 53

I just woke up and

- I am happy (minute 1)
- I am angry as no one WA me (minute 10)
- I am happy as 1 WA comes (minute 11)
- I am nervous as I'll have an exam (minute 30)

- I am happy (minute 1)
- I am angry as no one WA me (minute 10)
- I am happy as 1 WA comes (minute 11)
- I am nervous as I'll have an exam (minute 30)

I am not necessarily always happier as time passes.

- I am happy (minute 1)
- I am angry as no one WA me (minute 10)
- I am happy as 1 WA comes (minute 11)
- I am nervous as I'll have an exam (minute 30)

I am not necessarily always happier as time passes.

We call such an example as nonlinear model.

- I am happy (minute 1)
- I am angry as no one WA me (minute 10)
- I am happy as 1 WA comes (minute 11)
- I am nervous as I'll have an exam (minute 30)

I am not necessarily always happier as time passes.

We call such an example as nonlinear model.

For example, if A goes up, B alternates up and down.

6 | 53

- If I eat 1 cookie per day, I gain 2 Kg of weight
- If I eat 2 cookies per day, I gain 4 Kg of weight

What if I eat 3 cookies? How many Kg of weight will I gain?

- I am happy (minute 1)
- I am angry as no one WA me (minute 10)
- I am happy as 1 WA comes (minute 11)
- I am nervous as I'll have an exam (minute 30)

Will I be happy in minute 110? Or nervous?

Say it in Mathematics

What if I eat 3 cookies?

We can draw a line that passes through the two points.

Say it in Mathematics

Using the line, we can predict "what if I eat 3 cookies?"

With the line, you can predict the weight gain for any (positive) number of cookies eaten.

Say it in Mathematics

14 | 53

In terms of mathematical function, a line can be represented by

$$y = \theta_0 + \theta_1 x$$

where θ_0 is the **intercept** and θ_1 is the **slope**.

In terms of mathematical function, a line can be represented by

$$y = \theta_0 + \theta_1 x$$

where θ_0 is the **intercept** and θ_1 is the **slope**.

The intercept indicates the y-coordinate through which the line passes. It is the value of y when x = 0.

In terms of mathematical function, a line can be represented by

$$y = \theta_0 + \theta_1 x$$

where θ_0 is the **intercept** and θ_1 is the **slope**.

The intercept indicates the y-coordinate through which the line passes. It is the value of y when x = 0.

The slope represents how steep the line is.

From the previous example, we have y = 0 + 2x.

From the previous example, we have y=0+2x. Now let's play a bit with the slope and intercept.

From y=0+2x, we have $\theta_1=2$. See what happens if we increase the slope θ_1 .

From $\emph{y}=\emph{0}+\emph{2}\emph{x}$, we have $\theta_1=\emph{2}.$ See what happens if we decrease the slope $\theta_1.$

From y=0+2x, we have $\theta_0=0$. See what happens if we increase the intercept θ_0 .

From y = 0 + 2x, we have $\theta_0 = 0$. See what happens if we decrease the intercept θ_0 .

Linear regression

20 | 53

The previous example illustratively describes the idea behind the **linear regression**.

That is, based on the data we have, we want to predict the weight gained, given the number of cookies we eat, by fitting a line.

Next, we will describe the linear regression in more detail.

Real-world cases

In real-world cases, the data sets are often of the form $(x^{(i)}, y^{(i)})$; $i = 1, \ldots, m$. For example,

House area (x)	Price (y)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Based on the data above, a typical question is, e.g., what is the price of a house if the area is 558 M²?

Plot the data

Does the data distribution form a linear fashion?

A typical question is, e.g., what is the price of a house if the area is 558 M^2 ?

Note that we are interested in to predict *unseen* \hat{y} based on \hat{x} from other population

- Note that we are interested in to predict *unseen* \hat{y} based on \hat{x} from other population
- Solution: we can find a line (model) that constitutes the data we have, and use the line to predict \hat{y} based on \hat{x}

- Note that we are interested in to predict *unseen* \hat{y} based on \hat{x} from other population
- Solution: we can find a line (model) that constitutes the data we have, and use the line to predict \hat{y} based on \hat{x}

This is called a model **generalization**, i.e., you obtain a model from a data set and apply it to another data set(s). This is a fundamental concept in Machine & Deep Learning.

The data do form a linear fashion, but how to find a good line/model?

Draw a line by connecting all the points like this?

Draw a line by connecting all the points like this? Recall that our objective is a model generalization; the model above will not fit well other data.

Draw a line like this?

But which line?

But which line?

But which line? What is the criteria of a good line/model? Define ones.

Informally, we can think of a *good* line/model is the one that is generally close to all data points.

To indicate how close a line, we can measure distances between data points to the line. The total distance is often called **error**; the lower it is, the better.

Linear regression is about to find the *best* line by selecting the one with the minimum error. How?

Recall that we can search lines by changing the values of intercept θ_0 and slope θ_1 in $y = \theta_0 + \theta_1 x$. But of course, we do not want to search **randomly**.

More formally, a straight line can be represented by,

$$h(x) = \sum_{i=0}^n \theta_i x_i = \theta^T x,$$

More formally, a straight line can be represented by,

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

• The error term indicates the distance between a point $y^{(i)}$ to the line $h_{\theta}(x^{(i)})$, i.e., $h_{\theta}(x^{(i)}) - y^{(i)}$.

The total error, or often called ${\color{blue} {\bf cost}}$ ${\color{blue} {\bf function}}$ in ML/DL, thus can be written

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

The total error, or often called $cost\ function$ in ML/DL, thus can be written

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

The function above is called the **ordinary least square**. Here is the plot.

• Hey, we get some clue here!

- Hey, we get some clue here!
- Obviously we know which one the minimum cost is, don't we?

- Hey, we get some clue here!
- Obviously we know which one the minimum cost is, don't we?
- That is, look at "I am here"

Each cost (data point) above represents an error term of a line/model. The question: How to find the minimum error?

How to find the minimum error? Answer: Simply going down to the *valley bottom*.

 Typically your randomly initialized line returns the "start here" cost. How can we go down?

- Typically your randomly initialized line returns the "start here" cost. How can we go down?
- We can use the gradient descent to update parameter θ, so as to get the minimum cost

We now use the term **model parameter** to represent slope and intercept.

• Initially guest θ , compute the cost (see Start here)

- Initially guest θ, compute the cost (see Start here)
- Repeatedly, update the parameter (see "down here") via

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} oldsymbol{J}(heta)$$

simultaneously for all $j = 0, \dots, n$.

- Initially guest θ, compute the cost (see Start here)
- Repeatedly, update the parameter (see "down here") via

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} oldsymbol{J}(heta)$$

simultaneously for all $j = 0, \dots, n$.

- Initially guest θ, compute the cost (see Start here)
- Repeatedly, update the parameter (see "down here") via

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} oldsymbol{J}(heta)$$

simultaneously for all $j = 0, \dots, n$.

- Initially guest θ, compute the cost (see Start here)
- Repeatedly, update the parameter (see "down here") via

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_i} J(heta)$$

simultaneously for all $j = 0, \dots, n$.

until reaching the minimum error.

 Once you reach the minimum error, the corresponding parameter θ should give you the fittest line/model

- 1. Pick an initial line/model ${\it h}(\theta)$ by randomly choosing parameter θ
- 2. Compute the corresponding cost function, e.g.,

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2},$$

3. Update the line/model $h(\theta)$ by updating θ that makes $J(\theta)$ smaller, using, e.g., the gradient descent that reads

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_i} extbf{ extit{J}}(heta),$$

where lpha is the learning rate.

4. Repeat steps 2 and 3 until converges

In more detail

The learning procedure above is a typical approach in mostly (parametric) models of machine and deep learning.

Note that we have been so far assuming the y in our data set $(x^{(i)}, y^{(i)})$; $i = 1, \ldots, m$ is continuous, e.g., house price, height, temperature, etc.

Linear regression: a summary

In more detail

The learning procedure above is a typical approach in mostly (parametric) models of machine and deep learning.

Note that we have been so far assuming the y in our data set $(x^{(i)}, y^{(i)})$; $i = 1, \ldots, m$ is continuous, e.g., house price, height, temperature, etc.

What if y is discrete? E.g., pass/fail, yes/true, 1/0, etc, that leads to nonlinear fashion and a classification task.

Linear regression: a summary

In more detail

The learning procedure above is a typical approach in mostly (parametric) models of machine and deep learning.

Note that we have been so far assuming the y in our data set $(x^{(i)}, y^{(i)})$; $i = 1, \ldots, m$ is continuous, e.g., house price, height, temperature, etc.

What if y is discrete? E.g., pass/fail, yes/true, 1/0, etc, that leads to nonlinear fashion and a classification task.

Let's see the plot example.

Exam status: 0 (fail), 1 (pass)

Exam status: 0 (fail), 1 (pass)

• Do you think the linear model $y = \theta_0 + \theta_1 * x$ will fit well?

Exam status: 0 (fail), 1 (pass)

- Do you think the linear model $y = \theta_0 + \theta_1 * x$ will fit well?
- Let's try one.

Exam status: 0 (fail), 1 (pass)

- Do you think the linear model $y = \theta_0 + \theta_1 * x$ will fit well?
- Let's try one
- Looks bad, try another one.

Exam status: 0 (fail), 1 (pass)

- Do you think the linear model $y = \theta_0 + \theta_1 * x$ will fit well?
- Let's try one
- Looks bad, try another one.
- We see that such a linear model won't fit well, because of the nonlinear fashion. We need another model!

Exam status: 0 (fail), 1 (pass)

 We can use the logistic (sigmoid) function that reads

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

• We typically predict "1" if $h_{ heta}(x) \geq 0.5$

- 1. Pick an initial line/model ${\it h}(\theta)$ by randomly choosing parameter θ
- 2. Compute the corresponding cost function, e.g.,

$$J(\theta) = \sum_{i=1}^{m} -y \log h_{\theta}(x^{(i)}) - (1-y) \log(1-h_{\theta}(x^{(i)}))$$

3. Update the line/model $h(\theta)$ by updating θ that makes $J(\theta)$ smaller, using, e.g., the gradient descent that reads

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_i} J(heta),$$

where lpha is the learning rate.

4. Repeat steps 2 and 3 until converges