

# Sprint Planning Document (Sprint 2) Sprint Goal Backlog (Sprint 2)

February 19, 2025 – March 25, 2025 Trang Do, Donovan Kohler, Samuel Kwon, Raudel Armenta, Anthony Rutherford

# **High-level Project Overview**

# **Project Mission:**

 The focus of our project is to explore what is possible with the cutting-edge Apple Vision Pro. We aim to build an app that collects data from the Vision Pro and utilizes Hugging Face models for inference to provide a kind of distributed intelligence. This project will also set up initial infrastructure for future development with the Vision Pro and cloud computing.

# **Problems We Are Solving:**

- People don't know exactly what the Vision Pro can be used for
- Developing on the Vision Pro is relatively new and a sandbox environment to play around with the headset would make further development easier

# **Project Overview (High-Level Features):**

- VisionOS app Discover:
  - Photo Library: Users can select an image from the Photos app on the Apple Vision Pro and display the image.
  - Main Camera Access: Users can capture an image using the main camera from the Apple Vision Pro and display the captured image.
  - Connect to WebSocket: Users can send the selected image to AWS Lambda function via WebSocket. Then, the app can receive the response from the function and display the result to users.
  - Speech Recognition: Users can talk to the headset and apply speech recognition to send a request to OpenAI. Then, the app can receive the response from the OpenAI and display the result to users.

## • Cloud Computing

- o Cloud Service: AWS, using either EC2 instance or Lambda functions
- Protocol: WebSockets Secure, as required by project sponsor
- o AI/ML: Hugging Face models
- o Flow:
  - Client establishes WebSocket connection with AWS
  - Client sends message over connection
  - AWS receives message and uses Hugging Face models to infer and provide result
  - Result sent back to user over connection

# **Sprint 2 Planning**

#### **Sprint 2 Goals:**

- 1. Attempt to install dependencies within AWS lambda (pivot to EC2 if necessary)
- 2. Get our code running in AWS so frontend can integrate
- 3. Add speech recognition to the visionOS app
- 4. Make the project website more appealing, interactive, and user-friendly
- 5. Display the result from the data processing in AWS to the user in the visionOS app

### **Sprint 2 Deliverables:**

- Install dependencies on AWS lambda
  - Assigned: Sam Kwon, Donovan Kohler, Anthony Rutherford
  - Attempted to install dependencies on AWS lambda function:
    - Tried zip file of dependencies
    - Tried AWS S3 bucket with dependencies
    - Tried AWS lambda layers
    - Researched Docker use
  - Concluded that AWS lambda is not the right fit for what we need due to large dependencies and lack of persistence
- Setup EC2 instance
  - o **Assigned:** Anthony Rutherford, Sam Kwon, Donovan Kohler
  - Get permission from sponsor to spend money on more compute
  - o Create and configure EC2 instance
- Port code over to EC2, install dependencies in EC2, hit with Postman
  - Assigned: Sam Kwon
  - Port code into EC2 instance
  - Install dependencies
  - Run code and hit with postman
- Update the project website to add animations and make it more appealing, interactive and user-friendly
  - Assigned: Trang Do
  - Create a website using NextJS
  - Design the landing page about project description and used technology
  - Add subpage about the team member information
  - Add subpage about deliverables

 Use Framer Motion to add animation to each component and use Tailwind CSS to style each element

### Create components to display results from the server after sending the data

- Assigned: Trang Do
- Create a new view called ResultTableView to display the objects detected and their confidence level from the data processing in AWS to the user

### Refactoring the visionOS code to follow Model-View-ViewModel (MVVM) architecture

- Assigned: Trang Do
- Follow SwiftUI tutorials online to understand SwiftUI better
- Refactor the code to improve readability and follow MVVM architecture

### Apply speech recognition on the visionOS app

- Assigned: Raudel Armenta
- Created a new button to translate speech to text.
- Researched how to send requests to OpenAI.