MEC-E1050 Finite Element Method in Solids; Mathematica

"Structure is a collection of *elements* (earlier structural parts) connected by *nodes* (earlier connection points)". Displacement of the structure is defined by nodal translations and rotations of which some are known and some unknown."

Structure

$prb = \{ele, fun\}$ where
$ele = \{prt_1, prt_2,\}$ elements
$fun = \{val_1, val_2,\}$ nodes
Elements
$prt = \{typ, pro, geo\}$ where
$typ = BEAM \mid PLATE \mid SOLID \mid RIGID \mid \mid$ model
$pro = \{p_1, p_2,, p_n\}$ properties
$geo = Point[\{n_1\}] Line[\{n_1, n_2\}] Polygon[\{n_1, n_2, n_3\}] $ geometry
Nodes
$val = \{crd, tra, rot\}$ where
$crd = \{X, Y, Z\}$ structural coordinates
$tra = \{u_X, u_Y, u_Z\}$ translation components
$rot = \{\theta_X, \theta_Y, \theta_Z\}$ rotation components
Elements
Constraint
$\{ JOINT, \{ \} \{ \{ \underline{u}_X, \underline{u}_Y, \underline{u}_Z \} \}, Point[\{n_1\}] \} \qquad \qquad displacement \ constraint$
$ \{ \mbox{JOINT}, \{ \} \{ \{ \underline{u}_X, \underline{u}_Y, \underline{u}_Z \} \}, \mbox{Point}[\{n_1\}] \} $
${\rm JOINT}, {\}, Line[\{n_1, n_2\}]\}$
$ \{ \text{JOINT}, \{ \}, \text{Line}[\{n_1, n_2\}] \} $
$ \{ \text{JOINT}, \{ \}, \text{Line}[\{n_1, n_2\}] \} $
$ \{ \text{JOINT}, \{ \}, \text{Line}[\{n_1, n_2\}] \} $

 $\{\mathsf{FORCE}, \{f_X, f_Y, f_Z\}, \mathsf{Line}[\{n_1, n_2\}]\} \\ \dots \\ \mathsf{distributed} \ \mathsf{force}$

$\{FORCE, \{f_X, f_Y, f_Z\}, Polygon[\{n_1, n_2, n_3\}]\} \\ \qquad \qquad distributed force$
Beam model
$\{BAR, \{\{E\}, \{A\}, \{f_X, f_Y, f_Z\}\}\}, Line[\{n_1, n_2\}]\}$ bar mode
$\{ \text{TORSION}, \{ \{G\}, \{J\}, \{ \{m_X, m_Y, m_Z\} \} \}, \text{Line}[\{n_1, n_2\}] \} \ $ torsion mode
{BEAM,{ $\{E,G\},\{A,I_{yy},I_{zz}\},\{f_X,f_Y,f_Z\}\}$,Line[$\{n_1,n_2\}$]}beam
$\{BEAM, \{\{E,G\}, \{A,I_{yy},I_{zz}, \{j_X,j_Y,j_Z\}\}, \{f_X,f_Y,f_Z\}\}, Line[\{n_1,n_2\}]\} beam$
Plate model
$\{ \text{PLANE}, \{ \{ E, v \}, \{ t \}, \{ f_X, f_Y, f_Z \} \}, \\ \text{Polygon}[\{ n_1, n_2, n_3 \}] \} \\ \dots \\ \dots \\ \text{thin slab mode}$
$\{PLATE, \{\{E, v\}, \{t\}, \{f_X, f_Y, f_Z\}\}, Polygon[\{n_1, n_2, n_3\}]\} \ \\ bending \ mode$
$\{ SHELL, \{ \{E, v\}, \{t\}, \{f_X, f_Y, f_Z\} \}, Polygon[\{n_1, n_2, n_3\}] \} \qquad \qquad plate$
Solid model
$\{SOLID, \{\{E,v\}, \{f_X, f_Y, f_Z\}\}\}, Tetrahedron[\{n_1, n_2, n_3, n_4\}]\}$ solid
$\{ \text{SOLID}, \{ \{E, v\}, \{f_X, f_Y, f_Z\} \}, \text{Hexahedron} [\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}] \} \ \dots \dots$
$\{ \text{SOLID}, \{ \{E, v\}, \{ f_X, f_Y, f_Z, m_X, m_Y, m_Z, \} \}, \text{Tetrahedron}[\{ n_1, n_2, n_3, n_4 \}] \} \ \dots \dots$
Operations
prb = REFINE[prb] refine structure representation
Out = FORMATTED[prb]display problem definition
Out = STANDARDFORM[prb]display virtual work expression
sol = SOLVE[prb] solve the unknowns