import pandas as pd
covidData = pd.read_csv("Datasets/covid.csv")

In [3]: covidData.head()

Out[3]:	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Serious,Critical	Tot Cases/1M pop	Deaths/1M pop	TotalTests	Tests/1M pop	WHO Region
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	NaN	2576668.0	NaN	2292707.0	18296.0	15194.0	492.0	63139605.0	190640.0	Americas
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	NaN	2047660.0	NaN	771258.0	8318.0	13716.0	464.0	13206188.0	62085.0	Americas
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	NaN	1377384.0	NaN	606387.0	8944.0	1466.0	30.0	22149351.0	16035.0	South-EastAsia
3	Russia	Europe	1.459409e+08	871894	NaN	14606.0	NaN	676357.0	NaN	180931.0	2300.0	5974.0	100.0	29716907.0	203623.0	Europe
4	South Africa	Africa	5.938157e+07	538184	NaN	9604.0	NaN	387316.0	NaN	141264.0	539.0	9063.0	162.0	3149807.0	53044.0	Africa

Expectations

I expect these 2 to be very similar, since theyre almost the same. This dataset didnt have that many non numerical columns, so these were the best i could compare.

```
In [6]: covidData.groupby(['Continent','WHO Region']).size().unstack('Continent', fill_value=0).plot(kind='bar')
```

Out[6]: <AxesSubplot:xlabel='WHO Region'>

In [7]: covidData.groupby(['Continent','WHO Region']).size().unstack('Continent', fill_value=0)

Out [7]: Continent Africa Asia Australia/Oceania Europe North America South America

WHO Region						
Africa	47	0	0	0	0	0
Americas	0	0	0	0	23	12
EasternMediterranean	7	15	0	0	0	0
Europe	0	10	0	44	1	0
South-EastAsia	0	10	0	0	0	0
WesternPacific	0	11	4	0	0	0

In [8]: from scipy.stats import chi2_contingency

In [11]: chi2_contingency(covidData.groupby(['Continent','WHO Region']).size().unstack('Continent', fill_value=0))

Out[11]: (479.55382395382395, `1.3152901775915486e-85, array([[13.79347826, 11.75 , 1.02173913, 11.23913043, 6.13043478, 3.06521739], [10.27173913, 8.75 , 0.76086957, 8.36956522, 4.56521739, 2.2826087], [6.45652174, 5.5 , 0.47826087, 5.26086957, 2.86956522, 1.43478261], [16.14130435, 13.75 , 1.19565217, 13.15217391, 7.17391304, 3.58695652], [2.93478261, 2.5 , 0.2173913 , 2.39130435, 1.30434783, 0.65217391], [4.40217391, 3.75 , 0.32608696, 3.58695652, 1.95652174, 0.97826087]]))

There seems to be a 132% chance the columns arent the same. Since this number is higher than 100% I pressume this means