HAKE: Human Activity Knowledge Engine

Yong-Lu Li, Liang Xu, Xinpeng Liu, Xijie Huang, Yue Xu, Mingyang Chen, Ze Ma, Shiyi Wang, Hao-Shu Fang, Cewu Lu* Shanghai Jiao Tong University CVPR 2019

> 인공지능 연구실 석사과정 구자봉

Human-Object Interaction Detection on HICO

문제 정의 : HOI(Human-object interaction)

(human, ride, bicycle)
(human, sit_on, bicycle)
(human, straddle, bicycle)

기존 방법의 문제점 제시:

불균형 한 데이터 분배, 동작 모호성, 복잡한 시각적 패턴과 같은 문제가 아직 남아있다. 원 이미지에서 직접 인간의 행동을 추출하는 것은 성능이 떨어진다.

동기:

인간의 행동은 모든 신체 부위의 원자 행동 또는 상태로 구성된다.

1) 부분 상태는 동작의 기본 구성 요소이다.

2) 부분 상태 인식을 하면 이미지 공간과 시맨틱(의미론적)공간 사이의 간격을 크게 좁힌다.

3) 부분 상태 임베딩은 더 나은 해석을 제시한다.(모델의 최종 선택의 이유를 쉽게 알 수

있다.)

head-inspect-rearview

right_hand-hold-wheel

left_hand-hold-wheel

torso-lay_on-chair_back

hip-sit on-chair seat

HAKE: Human Activity Knowledge Engine

Figure 2. Previous one-stage paradigm and our hierarchical two-stage paradigm.

HAKE 인간 신체 부위

HAKE 구성

Existing Activity Datasets with

Instance-level Annotations

방대한 양의 데이터셋 HICO-DET [12], VCOCO [16], OpenImage [17], HCVRD [22], HICO [13], MPII [1], AVA [10]

Part States Definition: WordNet Expert Annotation

> Automatic Generation

Initial Annotations

Part States Refinement: Annotators

Repetitive Labelling Automatic Check

부품상태 개선을 위해 NPMI를 사용하여 최 종 부품 상태를 선택

WordNet의 동사를 기반으로 200개의 부품상태 풀을 구축, e.g. "hold", "push", "pick" for hands, "listen to", "eat", "talk to" for head

HAKE 구축을 위한 반 자동 라벨링을 통해 학습 데 이터 생성

- 1) 기존의 데이터셋에는 인간 및 객체의 바운딩 박스와 그 사이의 인터렉션 라벨이 있음
- 2) 포즈 추정을 사용해 키 포인트와 부분 경계상자를 얻음
- 3) 9명의 전문가를 초대, 154개의 모든 인스턴스 작업을 기준으로 10,000개의 이미지에 주석을 담
- 4) 모든 이미지의 초기 부품 상태 생성
- 5) 여러 전문가 및 어노테이터들이 반복 확인 및 여러 주석을 담으로써 품질을 향상 시킴

HAKE 계층적 Paradigm

head-drinks_with-bottleneck right_hand-hold-bottle_body

human-drink with-bottle

Activity2Vec을 통한 지식 추출을 통한 부분 상태인식

파트 상태에서 인 스턴스 활동을 추 론

head-talk_on-cellphone right_hand-hold-cellphone

human-talk_on-cellphone

hip-sit_on-seat right_hand-hold-handle left_hand-hold-handle right_foot-step_on-pedal left_foot-step_on-pedal

human-ride-bike

Part State Recognition & Activity2Vec

Figure 6. The overview of Part state recognition and Activity2Vec. http://docs.likejazz.com/bert/

HAKE Reasoning from Part States to Instance Activity

Figure 7. Reasoning from part states to instance activities.

데이터셋

MNIST MNIST를 이용한 단순화 실험 HICO (Humans Interacting with Common Objects) HICO를 이용한 HOI 실험

Train/test images : 38,116 / 9,658

Task 1: HOI Classification

The input is an image and the output is a set of binary labels, each representing the presence or absense of an HOI class.

Sample annotations in the HICO benchmark

Task 2: HOI Detection

The input is an image and the output is a set of bounding box pairs, each localizes a human plus an object and predicts an HOI class label.

Riding a horse

Feeding a horse

Eating an apple

Cutting an apple

단순화 MNIST를 이용한 비교 실험

Part-level Understanding

단순화 MNIST를 이용한 비교 실험

단순화 MNIST를 이용한 비교 실험

Method	Test Accuracy	
Instance Based Paradigm	15.2	
Part Based Paradigm	41.7	

Table 1. Comparison of accuracy on our dataset

Figure 10. Comparison of loss and accuracy

HICO 실험

Method	mAP
AlexNet+SVM [13]	19.4
R*CNN [7]	28.5
Girdhar & Ramanan [6]	34.6
Mallya & Lazebnik [19]	36.1
Pairwise [14]	39.9
Pairwise [14]+HAKE-GT	62.5
Pairwise [14]+HAKE	47.1
Gain	7.2

Method	Few@1	Few@5	Few@10
Pairwise [14]	13.02	19.79	22.28
Pairwise [14]+HAKE	25.40	32.48	33.71
Gain	12.38	12.69	11.43

HICO 실험

left_hand-hold-skateboard right_foot-jump_from-skateboard left_foot-jump_from-skateboard

√jump_from-skateboard √hold-skateboard √ride-skateboard

left_hand-hold-book right_hand-hold-book head-read-book

hip-sit_on-seat right_hand-hold-handle left_hand-hold-handle right_foot-step_on-pedal left_foot-step_on-pedal

√ ride-bicycle
 √

√ straddle-bicycle

√ jump-bicycle

left_hand-hold-baseball_bat right_hand-swing-baseball_bat left_hand-swing-baseball_bat left_hand-wear-baseball_glove

left_hand-hold-kite right_hand-hold-kite left_hand-launch-kite right_hand-launch-kite

√ hold-baseball_bat √ swing-baseball_bat √ wear-baseball_glove
√ hold-kite √ fly-kite √ launch-kite

left_knee-lean_on-bench right_knee-lean_on-bench hip-sit_on-bench

√ sit_on-bench

X lie_on-bench

right_foot-dribble-sports_ball right_foot-kick-sports_ball left_foot-kick-sports_ball

√ kick-sports_ball √ dribble-sports_ball √ block-sports_ball

left_hand-hold-hot_dog right_hand-hold-hot_dog head-eat-hot_dog

√ hold-hot_dog √ eat-hot_dog

Q&A

