

2do Parcial (30%)

TIPO 930 A

Nombre:	
Carnet:	Sección:

JUSTIFIQUE TODAS SUS RESPUESTAS

1

a)	Sean	f	y	g	dos	tun	ciones	tales	que
	Lim	f(.	x) =	= -	-3	y	Lim	g(x)	= 5

Hallar $\underset{x\to 3}{Lim} \frac{f(x)g(x)}{g(x)+1}$, indicando las

 $x \rightarrow 3$ propiedades utilizadas.

b) Definir formalmente Lim g(x) = L

c) Indicar los intervalos de continuidad, según la gráfica indicada a continuación

(1 Pto c/u)

- d) Hallar $\lim_{x \to 0} \frac{\tan^2(x)}{x}$
- e) Sabiendo que $|g(x)| < (x-3)^2$, para $x \ne 3$.

Hallar $\underset{x \to 3}{Lim} g(x)$

2. Hallar los siguientes limites:

a)	$\lim_{x \to 0} \frac{1 - \cos(x)}{\tan(x)} $ (3 Ptos)	b)	$\lim_{x\to 2} \frac{sen(x-2)\sqrt{(x-2)^2}}{x-2}$	(3 Ptos)
c)	$\lim_{h \to 0} \frac{(2-h)^3 - 8}{h}$ (4 Ptos)	d)	$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4x}}{4x + 1}$	(4 Ptos)

3. Dada la función
$$f$$
 definida por:
$$f(x) = \begin{cases} x+a & si & x < 2 \\ x^2 - 3x + 1 & si & 2 \le x < 4 \\ \frac{x+1-b}{x-2} & si & x \ge 4 \end{cases}$$
 (6 Ptos)

Hallar los valores de a y b para que f sea continua en todo \mathbb{R}

4.

- a) Enunciar el Teorema del valor intermedio. (2 Ptos)
- b) Probar que existe un $c \in (3,4)$, tal que: f(c) = g(c), donde $f(x) = x^3 + 1$ y $g(x) = 4x^2 1$ (3 Ptos)

Nota: Se tomará en consideración la redacción, el procedimiento y el resultado

MATEMATICAS I (MA-1111) 2do Parcial (30%) **TIPO** 930 **A**

Nombre:				
	g ''			
Carnet:	Sección:			

1.

a) Sean f y g dos funciones tales que:

$$\lim_{x \to 3} f(x) = -3 \quad y \quad \lim_{x \to 3} g(x) = 5$$

Hallar $\underset{x\to 3}{Lim} \frac{f(x)g(x)}{g(x)+1}$, indicando las

propiedades utilizadas.

Solución:

$$Lim_{x\to 3} \frac{f(x)g(x)}{g(x)+1} = \frac{Lim(f(x)g(x))}{Lim(g(x)+1)}$$

$$= \frac{\left(\underset{x\to 3}{Lim}(g(x)+1)\right)}{\left(\underset{x\to 3}{Lim}(g(x))\right)}$$

$$= \frac{\left(\underset{x\to 3}{Lim}g(x)\right)}{\left(\underset{x\to 3}{Lim}g(x)\right)}$$

$$= \frac{\left(\underset{x\to 3}{Lim}g(x)\right)}{\left(\underset{x\to 3}{Lim}g(x)\right)}$$

b) Definir formalmente

$$\underset{x \to c^{-}}{Lim} g(x) = L$$

Solución:

 $\forall \varepsilon > 0, \exists \delta > 0, talque$:

$$0 < c - x < \delta \Rightarrow |g(x) - L| < \varepsilon$$

(1 Pto c/u)

c) Indicar los intervalos de continuidad, según la gráfica indicada a continuación

Solución:

La función es continua en $(-\infty,-1) \cup (-1,0) \cup (0,1) \cup (1,+\infty)$

d) Hallar
$$\underset{x\to 0}{\underline{\lim}} \frac{\tan^2(x)}{x}$$

Solución:

$$\frac{\tan^2(x)}{x} = \frac{sen^2(x)}{x\cos^2(x)} = \frac{sen(x)}{x} sen(x) \frac{1}{\cos^2(x)}$$

Luego:

TIPO 930 **A**

UNIVERSIDAD SIMON BOLIVAR
DIVISIÓN DE FÍSICA Y MATEMÁTICAS
Departamento de Matemáticas
Puras y Aplicadas
MATEMATICAS I (MA-1111)
2do Parcial (30%)

Nombre:				
Carnet:	Sección:			

$$\lim_{x \to 0} \frac{\tan^2(x)}{x} = \lim_{x \to 0} \left(\frac{sen(x)}{x} sen(x) \frac{1}{\cos^2(x)} \right)$$

$$= \left(\lim_{x \to 0} \frac{sen(x)}{x} \right) \left(\lim_{x \to 0} sen(x) \right) \left(\lim_{x \to 0} \frac{1}{\cos^2(x)} \right)$$

$$= 1 \cdot 0 \cdot 1 = 0$$

e) Sabiendo que $|g(x)| < (x-3)^2$, para $x \ne 3$.

Hallar $\underset{x \to 3}{Lim} g(x)$

Solución:

$$|g(x)| < (x-3)^2 \Leftrightarrow -(x-3)^2 < g(x) < (x-3)^2$$

Como $\lim_{x\to 3} \left(-(x-3)^2 \right) = 0 = \lim_{x\to 3} (x-3)^2$, entonces por el teorema del

emparedado

$$\lim_{x\to 3} g(x) = 0$$

2. Hallar los siguientes limites:

a)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{\tan(x)}$$
 (3 Ptos)
Solución:
$$\frac{1 - \cos(x)}{\tan(x)}$$

$$= \cos(x) \frac{(1 - \cos(x))}{sen(x)} \frac{(1 + \cos(x))}{(1 + \cos(x))}$$

$$= \cos(x) \frac{(1 - \cos^2(x))}{sen(x)(1 + \cos(x))}$$

$$= \cos(x) \frac{sen^2(x)}{sen(x)(1 + \cos(x))}$$

$$= \cos(x) \frac{sen(x)}{(1 + \cos(x))}$$
Luego:

b)
$$\lim_{x \to 2} \frac{sen(x-2)\sqrt{(x-2)^2}}{x-2}$$
 (3 Ptos)
Solución:
$$\lim_{x \to 2} \frac{sen(x-2)\sqrt{(x-2)^2}}{x-2}$$

$$= \left(\lim_{x \to 2} \frac{sen(x-2)}{x-2}\right) \left(\lim_{x \to 1} \sqrt{(x-2)^2}\right)$$

$$= 1.0 = 0$$

TIPO 930 A

Nombre:	
Carnet:	Sección:

MATEMATICAS I (MA-1111) 2do Parcial (30%)

$$Lim \frac{1 - \cos(x)}{\tan(x)}$$

$$= Lim \left(\cos(x) \frac{sen(x)}{(1 + \cos(x))}\right)$$

$$= Lim \left(\cos(x)\right) \frac{Lim \ sen(x)}{Lim (1 + \cos(x))}$$

$$= 1 \cdot \frac{0}{2} = 0$$

c)
$$\lim_{h\to 0} \frac{(2-h)^3-8}{h}$$
 (4 Ptos)

Solución:

$$\frac{(2-h)^3 - 8}{h} = \frac{8 - 12h + 6h^2 - h^3 - 8}{h}$$
$$= \frac{-12h + 6h^2 - h^3}{h} = -12 + 6h - h^2$$

$$\lim_{x \to 0} \frac{(2-h)^3 - 8}{h} = \lim_{x \to 0} \left(-12 + 6h - h^2 \right)$$

= -12

d)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4x}}{4x + 1}$$
 (4 Ptos)

Solución:

$$\frac{\sqrt{x^2 + 4x}}{4x + 1} = \frac{\left(\frac{\sqrt{x^2 + 4x}}{x}\right)}{\left(\frac{4x + 1}{x}\right)} = \frac{\left(\sqrt{\frac{x^2 + 4x}{x^2}}\right)}{\left(\frac{4x + 1}{x}\right)}$$

$$=\frac{\left(\sqrt{1+4\frac{1}{x}}\right)}{\left(4+\frac{1}{x}\right)}$$

Luego:

$$\underset{x \to -\infty}{Lim} \frac{\sqrt{x^2 + 4x}}{4x + 1} = \underset{x \to -\infty}{Lim} \frac{\left(\sqrt{1 + 4\frac{1}{x}}\right)}{\left(4 + \frac{1}{x}\right)} = \frac{1}{4}$$

3. Dada la función f definida por: $f(x) = \begin{cases} x+a & si & x < 2 \\ x^2 - 3x + 1 & si & 2 \le x < 4 \\ \frac{x+1-b}{x^2-2} & si & x \ge 4 \end{cases}$

Hallar los valores de a y b para que f sea continua en todo \mathbb{R}

(6 Ptos)

Solución:

3.1.- f es continua en $(-\infty,2)$, ya que es un polinomio. f es continua en (2,4), ya que es un polinomio.

f es continua en $(4,+\infty)$, ya que es una función racional.

Nota: Se tomará en consideración la redacción, el procedimiento y el resultado

TIPO 930 **A**

Nombre:	
Carnet:	Sección:

MATEMATICAS I (MA-1111) 2do Parcial (30%)

3.2.- Continuidad en
$$x = 2$$
, $\left(\lim_{x \to 2} f(x) = f(2)\right)$
3.2.1.- $f(2) = 2^2 - 3 \cdot 2 + 1 = -1$
3.2.2.- $\lim_{x \to 2} f(x)$
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x + a) = 2 + a$
 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 - 3x + 1) = -1$,

Luego el limite existe si se satisface: $2 + a = -1 \Leftrightarrow a = -3$ Por lo tanto f es continua en x = 2, si se satisface: a = -3

3.3.- Continuidad en
$$x = 4$$
, $\left(\lim_{x \to 4} f(x) = f(4)\right)$
3.3.1.- $f(4) = \frac{4+1-b}{4-2} = \frac{5-b}{2}$
3.3.2.- $\lim_{x \to 4} f(x)$
 $\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} \left(x^2 - 3x + 1\right) = 5$
 $\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} \left(\frac{x+1-b}{x-2}\right) = \frac{5-b}{2}$
Luego el limite existe si se satisface: $5 = \frac{5-b}{2} \Leftrightarrow b = -5$

Por lo tanto f es continua en x = 4, si se satisface: b = -5f es continua en todo \mathbb{R} , si se toman los valores a = -3 y b = -5

4. (2 Ptos)

a) Enunciar el Teorema del valor intermedio.

Solución:

Sea h una función continua en el intervalo [a,b] y sea un w un valor entre h(a) y h(b), entonces existe un $c \in (a,b)$, talque: h(c) = w

b) Probar que existe un $c \in (3,4)$, tal que: f(c) = g(c), donde $f(x) = x^3 + 1$ y $g(x) = 4x^2 - 1$

Solución:

Solution: Considere h(x) = f(x) - g(x) (3 Ptos)

f(3) = 28, f(4) = 65, g(3) = 35, $g(4) = 63 \Rightarrow h(3) = -7$, h(4) = 2, como h(3) < 0 < h(4) y la función h es continua en [3,4], se puede aplicar el teorema del valor intermedios y en consecuencia, existe un $c \in (3,4)$, talque: h(c) = 0, lo que es equivalente a decir: existe un $c \in (3,4)$, talque: f(c) = g(c)

Nota: Se tomará en consideración la redacción, el procedimiento y el resultado