## **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.



aSB763.C2F45

**Forest Service** 

Forest Pest Management 2810 Chiles Rd., Ste. B Davis, CA 95616



Drop Size Spectra Micronair AU5000 Atomizer
And Hollow Cone Nozzles
With Special Tank Mix



February 1986

FPM 86-5



FPM 86-5 February 1986

# Drop Size Spectra – Micronair AU5000 Atomizer And Hollow Cone Nozzles With Special Tank Mix

Prepared by:

W. E. Yates R. E. Cowden

Agricultural Engineering Department University of California Davis, CA 95616

### Prepared for:

U.S. Department of Agriculture Forest Service Forest Pest Management 2810 Chiles Road, Suite B Davis, CA 95616 (916)758-4600

John W. Barry Project Leader

Purchase Order No. 40-0158-0825 (Work under this purchase order was completed in September 1985) Pesticide Precautionary Statement and Disclaimer

This publication reports research involving pesticides or their simulants. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife - if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Information contained in this report has been developed for the guidance of employees of the Forest Service, U.S. Department of Agriculture, its contractors, and its cooperating Federal and State agencies. The Department of Agriculture assumes no responsibility for the interpretation or use of this information by other than its own employees.

The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others which may be suitable.

#### PREFACE

The purpose of this wind tunnel test was to establish atomization characteristics of special aerially applied tank mixes used in a sub-study of Program WIND. The objective of the sub-study was to compare different application techniques (nozzles and aircraft) to canopy penetration and spray deposition on manikins and equipment. Drop spectra of sprays must be determined at the nozzle where atomization occurs. This then makes it possible to establish base-lines and to evaluate nozzles on a comparative bases. Another important use of these data is as input to spray dispersion models which predict the dispersion of sprays. Spray dispersion models move each drop size through the atmosphere; therefore, for effective predictions it is essential to know the drop spectra of the tank mix.

TRUMACE

TRU

The late of binds, then, or serious the same in our de planet in and the same in the same

### Table of Contents

|                                                                                                                                                 | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Preface                                                                                                                                         | i    |
| Table of Contents                                                                                                                               | ii   |
| Introduction                                                                                                                                    | 1    |
| Results                                                                                                                                         | 2    |
| Summary                                                                                                                                         | 2    |
| Table I - Test conditions for drop size measurements with the hollow cone nozzles                                                               | 4    |
| Table II - Test conditions for drop size measurements with the rotary atomizer                                                                  | 4    |
| Table III - Summary of drop size spectrum from the three atomizers with selected mixtures                                                       | 4    |
| Table IV - Droplet spectra for D2-45 nozzle atomizing MnSO <sub>4</sub> , Rhodamine BX, and water                                               | 5    |
| Figure I - Droplet spectra data for a D2-45 nozzle atomizing MnSO <sub>4</sub> , Rhodamine BX, and water                                        | 6    |
| Table V - Droplet spectra for D4-45 nozzle atomizing MnSO <sub>4</sub> , Rhodamine BX, and water · · · · · · · · · · · · · · · · · · ·          | 7-8  |
| Figure II - Droplet spectra data for a D4-45 nozzle atomizing MnSO <sub>4</sub> , Rhodamine BX, and water                                       | 9    |
| Table VI - Droplet spectra for Micronair AU5000 rotary atomizer atomizing a tank mix of MnSO <sub>4</sub> , Rhodamine BX, Nalco-Trol, and water | 10   |
| Figure III - Droplet spectra data for Micronair AU5000 rotary atomizer atomizing MnSO <sub>4</sub> , Rhodamine BX, Nalco-Trol, and water        | 11   |

#### Discharge o plact

| Thence 11 - Droplot traits date for a Da-63 cours and the color of Bhoderfoe CV, and water |
|--------------------------------------------------------------------------------------------|
|                                                                                            |
|                                                                                            |

#### Introduction:

Tests were conducted in a wind tunnel to measure the drop size spectra from a D2-45 hollow cone nozzle and a D4-45 hollow cone nozzle with a tank mixture of 10 lbs. of technical grade Manganese sulfate (MnSO<sub>4</sub>) plus 48 oz. Rhodamine BX dye in 100 gal. of water. Also a Micronair AU500 rotary atomizer was tested with a tank mixture of 10 lbs. technical grade MnSO<sub>4</sub> plus 3 oz. Nalco-Trol plus 48 oz. Rhodamine BX dye in 100 gal. water.

#### Equipment:

The tests were conducted in a wind tunnel at the University of California, Department of Agricultural Engineering. The wind tunnel has a test section 8 ft. long and a 2 x 2 ft. cross section. A Particle Measurement System (PMS) probe, OAP-2D-GA1, with a PMS 11-C data acquisition system was used to measure the drop size spectra. The probe has a nominal class size of 33  $\mu$ m. The system counts and classifies the drops into 62 size classes from 28 to 2062  $\mu$ m.

#### Procedures:

The drop size spectra was measured from a D2-45 hollow cone nozzle directed with the airstream at an airspeed of 25 mph and a D4-45 hollow cone nozzle directed with the airstream at 17 mph, Table I. We were unable to perform tests with the nozzles directed 90° to the airstream because the tunnel velocity was not sufficient to turn the particles with the direction of the airflow before they struck the bottom of the tunnel. We feel, however, that the particle size would not be significantly different at such a low airspeed velocity. The nozzles were mounted on a microprocessor controlled mechanism that could move the nozzle to scan the entire spray pattern.

The drop size measurement procedures for the Micronair AU5000 atomizer were similar to protocol developed for testing rotary atomizers described in earlier Forest Pest Management reports by the same authors. Briefly, the PMS probe was mounted in the wind tunnel with the laser beam located 5.25 inches

b, Stops:

ers were nondwored in a view turned to measure the drop size account of the drop of the drop size account of the holims cone mostle view and a first holims cone mostle view a rack.

1 (0 lbs. of recharcel grade Manganese sulfate (MntD) plus 49 ox.

If dre in 100 gal. In weter. Also a Micronair AU: in rotary standard.

... with a rack mixture of 10 lbs. technical grade MntD, plus 1 ct.

( : 11mm

The rests were conducted in a what tunced at the Colversity SY igliformia.

Rep rest of Adriedheral Ingineering. The wind tunned has a cost section 2 22.

and a 2 g . Ec. trues at tion. A Particle Measurement States (MAS) proba
OA -2D-CA1, with a 277 11 data acquisition system was used to accesure that

or size spectes. The probability a nominal class size of FU um. The system

and classifies the fires tota 62 size classes from 28 to 2002 in

Trocedures.

The drop rice spectra was tresured from a black; hellow, come are the directed with the eigetreem at en eigepeed of 21 mph and a black; bulley come notate offer 22 with the eigetreem at 12 mph. Table 1. We were unable to perform teems with the nozzlew directed 00° to the eigetreem because the tunnel velocity was at sufficient to turn the particles with the direction of the eighteen has airflow helota hay eight to be bottom of the tunnel. We feel, however, that the particle would not be eightficently different at such a low airspeed velocity. The were nounted on a microprocessor controlled methanism that could note.

above the bottom of the wind tunnel test section and 12" downstream from the rear of the rotary atomizer. The atomizer was mounted on an adjustable vertical shaft such that the unit could be moved to a series of radial distances from the laser beam. Sample positions were calculated based on radial locations to represent the center of equal size sample areas. A single nozzle test involved taking a sample at six to nine sample positions, based on the size of the spray pattern. The reports for the different positions were combined into one composite pattern that represents the overall temporal drop size distribution for the atomizer. The Micronair AU5000 rotary atomizer was tested at an airspeed of 95 mph and blade angle of 40°, Table II.

#### Results:

Table III is a summary of the drop size spectra for the two formulations.

The nomenclature used is as follows:

 $D_{V.1}$  = Diameter that contains 10% of volume in drops of smaller size.

 $D_{V.5}$  = Diameter that contains 50% of volume in drops of smaller size. (Volume median diameter)

 $D_{V,Q}$  = Diameter that contains 90% of volume in drops of smaller size.

Relative Span = R.S. = 
$$\frac{D_{V.9} - D_{V.1}}{D_{V.5}}$$

The appendix contains the complete results of the drop size frequency data, statistical results and graphs for each of the 3 tests.

#### Summary:

Three tests were conducted using two hollow cone nozzles, a D2-45, D4-45 and a Micronair AU5000 Spinner. The two tests using the hollow cone nozzles were conducted using a tank mixture of 10 lbs. technical grade MnSO<sub>4</sub> plus 48 oz. Rhodamine BX dye in 100 gal. water. The test using the Micronair was conducted with a tank mix of 10 lbs. technical grade MnSO<sub>4</sub> plus 3 oz. of Nalco-Trol plus 48 oz. Rhodamine BX dye in 100 gal. water.

of text was of the wind the service of the deal text of the service of the servic

or is the note of the same

s seen. Searle postrada wird ... seen

resent the center of squal sand invest

7 · 11 · 2

E. . S. E. E. L. Office 1

es main ner

ing command of or votice

The condition of the complete results of the erro alse ice any

These seets were conducted using sweller care nearlys. 2 32-43, 74-43

Louiser: The teat using the Microsoft on to the Louise.

the testimical grade Must, plus 1 oc. of Dalacrical plus

The drop size from the hollow cone nozzles are very similar to the previous tests with water (MEDC Report Measurement of Drop Size Frequency From Nozzles Used For Aerial Application Of Pesticides In Forests, Oct. 1984, Missoula, MT.). For example, results with the D4-45 nozzle at 40 psi,  $0^{\circ}$ , and 100 mph airstream with water produced a D $_{V.5}$  of 255 µm compared to 264 µm for the same nozzle with the MnSO $_4$  mixture and an airspeed of 95 mph. The AU5000 at 100 mph with water at 3 gpm and a blade angle of 35 $^{\circ}$ , and 8000 rpm produced a D $_{V.5}$  of 118 µm. The test in this report had several different conditions, i.e., 95 mph airspeed, 5.9 gpm,  $40^{\circ}$  blade angle, 5575 rpm and a mixture of MnSO $_4$  and Nalco-Trol. As expected, the D $_{V.5}$  was somewhat larger, 189 µm, compared to the above test with water.

e frog often the heritest some megaled are very oledfor to the provision of the test (MEDC Report Mesontration of Perioddes to Porents, Oct. 1984, Miller test to postal Application of Perioddes to Porents, Oct. 1984, Miller test to the Wish the Method to the Method to

 $\label{thm:conditions} \mbox{ Table I}$   $\mbox{Test conditions for drop size measurements with the hollow cone nozzles.}$ 

| Nozzle<br>Type | Airspeed mph | Flowrate<br>gpm | Pressure<br>psi | • |
|----------------|--------------|-----------------|-----------------|---|
| D2-45          | 25           | 0.20            | 40              |   |
| D4-45          | 17           | 0.47            | 70              |   |

Table II

Test conditions for drop size measurements with the rotary atomizer.

| Atomizer            | Airspeed | VRU     | Pressure | Flowrate | Blade | RPM  |
|---------------------|----------|---------|----------|----------|-------|------|
| Type                | mph      | Setting | psi      | gpm      | Angle |      |
| Micronair<br>AU5000 | 95       | 13      | 50       | 5.9      | 40°   | 5575 |

Table III

Summary of drop size spectrum from the three atomizers with selected mixtures.

| Atomizer       | Tank                                                                                          | Drop              | size,            | μт               |      |
|----------------|-----------------------------------------------------------------------------------------------|-------------------|------------------|------------------|------|
| Туре           | Mixture                                                                                       | D <sub>V• 1</sub> | D <sub>V•5</sub> | D <sub>V•9</sub> | R.S. |
| D2-45          | 10 lbs $MnSO_4$ + 48 oz. Rh BX dye per 100 gal. $H_2O$                                        | 141               | 251              | 382              | 0.96 |
| D4-45          | 10 1bs $MnSO_4$ + 48 oz. Rh BX dye per 100 gal. $H_2O$                                        | 138               | 264              | 410              | 1.03 |
| Micro-<br>nair | 10 lbs MnSO <sub>4</sub> + 48 oz. Rh BX dye<br>+ 3 oz NalcoTrol per 100 gal. H <sub>2</sub> O | 104               | 189              | 307              | 1.07 |

I pldoT

. Calarda paga Gellad ada dara pagaganungan pata magis dal magistism

| ri s | 0.20 |  |
|------|------|--|

|     |     |  | ons for drug |  |
|-----|-----|--|--------------|--|
| دوه |     |  |              |  |
|     | 904 |  | 68           |  |

lil offer

## . or gan also appeared from the three exemisers with rejected algerrys.

| .00 - 0 | 383 |       | to tea throat 4 AS oz. III III dys                                |
|---------|-----|-------|-------------------------------------------------------------------|
| 1.03    |     | seg t | 10 16s Anso, c 43 oz. E3 5% dya                                   |
| Ene (   |     |       | O the Moso, + 53 oz. Rh fk dwo<br>+ or MalcoTrol per 100 gel. Rg0 |

Droplet spectra for D2-45 nozzle atomizing MnSO  $_4$ , Rhodamine BX, and water.

TABLE IV

| Nozzle Angle to Airstream Spray Pressure Airspeed Flow Rate Tank Mix  FILE: C:\PMS\DATA\ Number of Tests Co                                                                                                                                                                                                                                                                                                               | 40 psi<br>25 mph<br>0.20 gpm<br>10# Mn/100                                                                                                                             | gal H20                                                                                                                   | Slice Rate AVG DFM BAR Distance to F Sample Inters Number of Sam Number of Sam Number of Scan Scan Spacing Scan Length | val 600 sec. mples 1 ans 16 2.3 cm. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| UPPER<br>LIMIT N(RAW)                                                                                                                                                                                                                                                                                                                                                                                                     | -NYSEC G                                                                                                                                                               | m/SEC %                                                                                                                   | _N %_VOL.                                                                                                              | ACCUMULATED %_N %_YOL.              |
| 56       3165         89       7248         122       9442         154       11436         187       9906         220       7907         252       6249         284       4256         318       2801         351       1534         382       857         414       408         447       165         479       93         512       42         545       14         578       2         611       2         644       2 | 1.79E+06<br>664949<br>741717<br>776556<br>547396<br>366417<br>259948<br>163589<br>105922<br>56879<br>31870<br>16292<br>6508<br>4063<br>1785<br>513<br>171<br>214<br>96 | 0.13 12 0.45 13 1.06 14 1.42 9 1.60 6 1.77 4 1.64 2 1.52 1 1.11 1 0.81 0 0.54 0 0.54 0 0.27 0 0.21 0 0.11 0 0.02 0 0.02 0 | .30                                                                                                                    | 32.30                               |
| TOTAL 6.55E+04                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                           |                                                                                                                        |                                     |
| TOTAL ACCEPTED RAW                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                        |                                                                                                                           | GES = 65529/                                                                                                           | 43175 =151.8%                       |
| NUMBER MEAN DIA. =<br>VOLUME MEAN DIA. =<br>SAUTER MEAN DIA. =                                                                                                                                                                                                                                                                                                                                                            | D <sub>10</sub> 117<br>D <sub>30</sub> 164<br>D <sub>32</sub> 218                                                                                                      | .88 µm<br>.21 µm<br>.61 µm                                                                                                |                                                                                                                        |                                     |
| NUMBER MEDIAN DIA.                                                                                                                                                                                                                                                                                                                                                                                                        | D <sub>N.1</sub> 102<br>D <sub>N.9</sub> 231                                                                                                                           | <56 µm<br>.92 µm<br>.52 µm                                                                                                |                                                                                                                        |                                     |
| VOLUME MEDIAN DIA.                                                                                                                                                                                                                                                                                                                                                                                                        | D <sub>V</sub> .1 141<br>=D <sub>V</sub> .5 25D<br>D <sub>V</sub> .9 381                                                                                               | .46 µm<br>.83 µm<br>.54 µm                                                                                                |                                                                                                                        |                                     |
| RELATIVE SPAN= 0.                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                     |                                                                                                                           |                                                                                                                        |                                     |

```
ele etenining Me30 g Rhodemice 2 u 2 114
```

en even man manticles / Total Phages - 65529/ 43175 -151.6%

Nozzle Type . . . D2-45
Angle to Airstream 0°
Spray Pressure . . 40 psi
Airspsed . . . . 25 mph
Flow Rate . . . 0.20 gpm
Tank Mix: 10# Mn/100 gal H20

FILE: C: \PMS\DATA\100385.001







Figure I - Droplet spectra data for a D2-45 nozzle atomizing MnSO<sub>4</sub>, Rhodamine BX, and water.

D. 1 9 D BO BO EN ED BO AND A MUNICIPAL NOT A

Droplet spectra for D4-45 nozzle atomizing  ${\rm MnSO}_4$ , Rhodamine BX, and water.

TABLE V

| Nozzle Angle to Airs Spray Pressure Airspeed Flow Rate Tank Mix  FILE: C:\PMS\{\text{Number of Test}\} | 70 psi<br>17 mph<br>.47 gpr<br>10# Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n<br>/100 gal H20                                                                                                            |                  | to Probe 30 terval 60 Samples 1 Scans 16 ing 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cm.<br>5<br>1 cm.<br>10 sec.                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UPPER<br>LIMIT N(RA)                                                                                   | My NYSEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>Gm/SEC</u>                                                                                                                | <u>%_N %_V</u> C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JMULATED %_VOL.                                                                                                                                                          |
| 611<br>644<br>677<br>710<br>743<br>776<br>809                                                          | 2.48E+06<br>7.2.19E+06<br>1.80E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18E+06<br>1.18 | 0.29<br>0.49<br>1.33<br>2.46<br>3.58<br>4.04<br>3.44<br>2.23<br>1.26<br>0.42<br>0.42<br>0.17<br>0.29<br>0.17<br>0.00<br>0.00 | 46.63            | 59.73<br>71.30<br>80.82<br>87.05<br>91.38<br>94.49<br>96.62<br>98.03<br>98.96<br>79.69<br>69.69<br>66.99.98<br>66.99.98<br>66.99.99<br>66.99.99<br>66.99.99<br>66.99.99<br>66.99.99<br>66.99.99<br>66.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>69.00<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6 | D.87<br>2.305<br>13.45<br>457.49<br>56.77<br>457.78<br>457.80<br>457.97<br>45.12<br>98.12<br>98.12<br>99.98<br>99.98<br>99.98<br>99.98<br>99.98<br>99.98<br>99.98<br>100 |
| TOTAL 6.38E+0                                                                                          | 4 1.89E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.49                                                                                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |

| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |       |     |           |         |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-----|-----------|---------|-----------|
| ## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |      |       |     |           |         | 20 - 0 -0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |       |     |           |         |           |
| AS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |       |     |           |         |           |
| AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |       |     |           |         |           |
| AS AS A CARD A C |          |      |       |     |           |         |           |
| AP 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      | \$765 |     |           |         |           |
| AS AS TO DO 1 IS TO DO 0 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      |       |     |           |         |           |
| AG 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |       |     |           |         |           |
| AG 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |       |     |           |         |           |
| AG 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |       |     |           |         |           |
| AS 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |       |     |           |         |           |
| ### ### ### ### #### #################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |       |     | \$77<br>- |         | ī         |
| ### ### ### #### #####################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |       |     |           |         |           |
| ### ### ### #### #####################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •        |      |       |     |           | · ·     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     | E 2       |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           | El. É   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           | NA SARE |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       | 6 1 |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F 63 929 | 7.73 |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
| 0 00 10 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |     |           |         |           |

#### TABLE V (continued)

TOTAL ACCEPTED RAW PARTICLES / TOTAL IMAGES = 63818/ 60054 =106.3%

NUMBER MEAN DIA. = D10... 97.29 μm
VOLUME MEAN DIA. = D30... 150.20 μm
D32... 220.29 μm

NUMBER MEDIAN DIA. = DN.1.. (56 μm
DN.5... 209.38 μm

VOLUME MEDIAN DIA. = DV.1.. 138.22 μm
DV.5... 264.40 μm
DV.5... 264.40 μm
DV.7.. 409.72 μm

## DECERTED BAN TAKELICIES / TOTAL IMAGES + 633883/ ANDRE :124

| Nozzle Type .   | D4-45          |
|-----------------|----------------|
| Angle to Airstr | ream O°        |
| Spray Pressure  | 70 psi         |
| Airspeed        | 17 mph         |
| Flow Rate       | 47 gpm         |
| Tank Mix: 10# N | /n/100 gal H20 |

FILE: C: \PMS\DATA\10048510.002







Figure II - Droplet spectra data for a D4-45 nozzle atomizing MnSO<sub>4</sub>, Rhodamine BX, and water.

TABLE VI

Droplet Spectra for Micronair AU5000 rotary atomizer atomizing a tank mix of  $\mathbf{M}$ nSO $_4$ , Rhodamine BX, Nalco-Trol, and water.

| Airspee<br>Flow Ra<br>Tank Mi                                                                                                       | ite                                                                                                                                       | 100 GAL                                                                                                                                                                                                         | 3 oz NALCO<br>. H20                                                                                      | AVG<br>DFM<br>BAR<br>Dist<br>Numb                                                                                              | ance to lole Inter                                                                                                               | 3 MHz 20000 1 cm. 1.5 Probe 32 cm. val 60 sec. imples 1 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Number of Tests Combined:2                                                                                                          |                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                |                                                                                                                                  |                                                         |  |  |  |  |
| UPPER                                                                                                                               | N(RAW)                                                                                                                                    | _N/SEC                                                                                                                                                                                                          | Gm/SEC                                                                                                   | <u>%_N</u>                                                                                                                     | %_VOL.                                                                                                                           | ACCUMULATED %_N %_YQL.                                  |  |  |  |  |
| 56<br>89<br>122<br>154<br>187<br>2252<br>284<br>3151<br>252<br>284<br>3151<br>381<br>414<br>447<br>479<br>515<br>571<br>6447<br>710 | 8705<br>9742<br>8710<br>9762<br>9960<br>8141<br>6587<br>4594<br>1970<br>939<br>541<br>313<br>208<br>136<br>91<br>33<br>27<br>11<br>0<br>1 | 2.37E+08<br>6.07E+07<br>5.19E+07<br>4.13E+07<br>2.39E+07<br>1.19E+07<br>6.28E+06<br>3.38E+06<br>1.18E+06<br>494299<br>233360<br>126749<br>75309<br>40484<br>30431<br>7428<br>7641<br>1370<br>4974<br>234<br>180 | 52.27<br>42.78<br>33.92<br>16.98<br>9.67<br>5.96<br>4.17<br>3.14<br>2.10<br>1.93<br>0.71<br>0.15<br>0.04 | 13.83<br>11.83<br>9.42<br>5.44<br>2.72<br>1.43<br>0.77<br>0.27<br>0.11<br>0.05<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00 | 2.26<br>3.50<br>9.14<br>16.41<br>17.91<br>15.16<br>12.41<br>9.80<br>1.72<br>1.21<br>0.91<br>0.56<br>0.17<br>0.19<br>0.19<br>0.01 |                                                         |  |  |  |  |
| TOTAL 7.05E+04 4.39E+08 344.81  TOTAL ACCEPTED RAW PARTICLES / TOTAL IMAGES = 70474/ 96924 = 72.7%                                  |                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                |                                                                                                                                  |                                                         |  |  |  |  |
| NUMBER MEAN DIA.= $D_{10}$ 78.82 $\mu$ m VOLUME MEAN DIA.= $D_{30}$ 114.51 $\mu$ m SAUTER MEAN DIA.= $D_{32}$ 161.62 $\mu$ m        |                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                |                                                                                                                                  |                                                         |  |  |  |  |
|                                                                                                                                     | MEDIAN DIA                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                |                                                                                                                                  |                                                         |  |  |  |  |
| VOLUME                                                                                                                              | MEDIAN DIA                                                                                                                                | DV.1<br>DV.5                                                                                                                                                                                                    | 104.22 µm<br>188.57 µm<br>304.85 µm                                                                      |                                                                                                                                |                                                                                                                                  |                                                         |  |  |  |  |

10

RELATIVE SPAN= 1.07

s Speci fa lebonour 185000 retury accriser atomizin . tank min.

|    | Ŗ   |  |           |  |
|----|-----|--|-----------|--|
|    |     |  |           |  |
|    |     |  |           |  |
|    |     |  |           |  |
| f) |     |  | 400 p 3   |  |
|    | 7.4 |  |           |  |
|    |     |  | - was 301 |  |
|    | 4+  |  |           |  |

amber of letts Combine 2

| 5<br>- 11 - 8 -<br>- 10 - 10 |                      |       | 7802PE 8 | 9767<br>8721<br>970<br>970 |  |
|------------------------------|----------------------|-------|----------|----------------------------|--|
|                              |                      | CW CW | # 185    |                            |  |
|                              | 20 .mu/<br>c 00<br>f |       |          |                            |  |

na 18.411 . . . ma 53.131 . . .

ตร (48) คะศ (48) คะศ (58) (48)

e4 \$3.891







Figure III - Droplet spectra data for Micronair AU5000 rotary atomizer atomizing  ${\rm MnSO}_4$ , Rhodamine BX, Nalco-Trol, and water.





