This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Pharmaceutical Biotechnology

The University of Kansas Series Editor; Ronald T. Borchardt Lawrence, Kansas

Recent volumes in this series:

STABILITY OF PROTEIN PHARMACEUTICALS, Part A: Chemical and Physical Pathways of Protein Degradation Volume 2

Edited by Tim J. Abern and Mark C. Manning

Part B: In Vivo Pathways of Degradation and Strategies STABILITY OF PROTEIN PHARMACEUTICALS, for Protein Stabilization Volume 3

30

Jan.

Edited by Tim J. Ahern and Mark C. Manning

BIOLOGICAL BARRIERS TO PROTEIN DELIVERY Edited by Kenneth L. Audus and Thomas J. Raub Volume 4

PROTEIN AND PEPTIDE DRUGS: Case Histories STABILITY AND CHARACTERIZATION OF Volume 5

Edited by Y. John Wang and Rodney Pearlman

VACCINE DESIGN: The Subunit and Adjuvant Volume 6

Edited by Michael F. Powell and Mark J. Newman Approach

PHYSICAL METHODS TO CHARACTERIZE Edited by James N. Herron, Wim Jiskoot, PHARMACEUTICAL PROTEINS and Daan J. A. Crommelin Volume 7

MODELS FOR ASSESSING DRUG ABSORPTION Edited by Ronald T. Borchardt, Philip L. Smith, AND METABOLISM and Glynn Wilson Volume 8

STABILITY OF PROTEIN DRUGS: Case Histories FORMULATION, CHARACTERIZATION, AND Edited by Rodney Pearlman and Y. John Wang Volume 9

Z Z

Stability of Protein Drugs Characterization, and Formulation,

Case Histories

Edited by

Rodney Pearlman

Megabios Corporation Burlingame, California

and

Y. John Wang

Scios Nova, Inc. Mountain View, California

Plenum Press · New York and London

To Jessica and Lynn

ISBN 0-306-45332-0

© 1996 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N. Y. 10013

10987654321

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Printed in the United States of America

Steinetz, B. G., Beach, V. L., and Kroc, R. L., 1969, Bioassay of relaxin, in: Methods in Hormone Research, 2nd ed. (R. I. Dorfman, ed.), Academic Press, New York, pp. 481-513.

Steinetz, B. G., O'Byrne, E. M., Butler, M. C., and Hickman, L. B., 1982, Hormonal regulation of the connective tissue of the symphysis pubis, in: Biology of Relaxin and Its Role in the Human (M. Bigazzi, F. C. Greenwood, and F. Gaspari, eds.). Excents Medica Princeton MT.

Bigazzi, F. C. Greenwood, and F. Gaspari, eds.), Excerpta Medica, Princeton, NJ, p. 71.
Stults, J. T., Bourell, J. H., Canova-Davis, E., Ling, V. T., Laramee, G. R., Winslow, J. W., Griffin, P. R., Rinderknecht, E., and Vandlen, R. L., 1990, Structural characterization by mass spectrometry of

native and recombinant human relaxin, Biomed. Environ. Mass Spectrom. 19:655-664. Unemori, E. L., and Amento, E. P., 1990, Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts, J. Biol. Chem. 265:337-342.

Unemori, E. L., Bauer, E. A., and Amento, E. P., 1992, Relaxin alone and in conjunction with interferongamma decreases collagen synthesis by cultured human scleroderma fibroblasts, J. Invest. Dermatol. 99:337-342.

Unemori, E. N., Beck, S. L., Lee, W. P., Xu, Y., Siegel, M., Keller, G., Liggit, H. D., Bauer, E. A., and Amento, E. P., 1993, Human relaxin decreases collagen accumulation in vivo in two rodent models of fibrosis, J. Invest. Dermatol. 101:280-285.

Ward, D. G., Thomas, G. R., and Cronin, M. J., 1992, Relaxin increases rat heart rate by a direct action on the cardiac atrium, Biochem. Biophys. Res. Commun. 186:999-1005.

Weiss, G., 1989, Relaxin in the male, Biol. Reprod. 40:197-200.

Winslow, J. W., Shih, A., Bourell, J. H., Weiss, G., Reed, B., Stults, J. T., and Goldsmith, L. T., 1992, Human seminal relaxin is the same product gene as human luteal relaxin, Endocrinology 130:2660–2668.

Wood, S. P., Blundell, T. L., Lazarus, N. R, and Neville, W. J., 1975, The relation of conformation and association of insulin to receptor binding; x-ray and circular-dichroism studies on bovine and hystricomorph insulins, Eur. J. Biochem. 55:531-542.

9

Interferon-β-1b (Betaseron®): A Model for Hydrophobic Therapeutic Proteins

Leo S. Lin, Michael G. Kunitani, and Maninder S. Hora

1. INTRODUCTION

Interferon-β-1b is a form of interferon-β (IFN-β) which has shown biological activity in a variety of *in vitro* and *in vivo* systems. IFN-β belongs to a class of proteins known as interferons (IFNs). Interferons were originally classified based on the cell type from which they were derived. Thus, the three major classes of IFNs were designated as leukocyte-, fibroblast-, and immune-interferon as these species were predominantly synthesized by leukocytes, fibroblasts, and T-lymphocytes, respectively (Pestka, 1983; Zoon, 1987). With our increasing knowledge of IFN structure and function, the nomenclature of IFN has also evolved. Today, the three major classes of IFN are referred to as IFN-α, IFN-β, and IFN-γ. Human IFN-α and -β, are approximately 30% similar at their primary amino acid-sequence level, while IFN-γ is similar to neither. It is also believed that IFN-α and IFN-β bind to the same IFN receptor while there is a separate receptor for IFN-γ (Faltynek and Baglioni, 1984).

Natural human IFN-β is a glycoprotein with an approximate molecular weight of 23,000 Daltons. Correctly engineered recombinant, nonglycosylated, IFN-β species (molecular weight 18,500 Daltons) display the same biological effects as the native molecule. The IFN-β protein has been associated with a variety of antiviral

275

Leo S. Lin and Michael G. Kunitani • Department of Analytical Development, Chiron Corporation, Emeryville, California 94608. Maninder S. Hora • Department of Formulation Development, Chiron Corporation, Emeryville, California 94608.

Formulation, Characterization, and Stability of Protein Drugs, Rodney Pearlman and Y. John Wang, eds., Plenum Press, New York, 1996.

(Кет and Stark, 1992; Soike, 1987), antiproliferative (Arabje et al., 1993), antiinfective (Kirchner, 1986), and immunomodulating (Reiter, 1993; Murray, 1992) activities. A brief history of the interferons, including IFN-β, has been discussed by Dianzani and Dolei (1984).

2. MOLECULAR BIOLOGY AND PROTEIN CHEMISTRY

The human IFN- β gene was cloned and expressed in a variety of host systems under the control of different promoter systems. A production strain of the bacterium Escherichia coli (E. coli) harboring a recombinant plasmid containing the human IFN-β gene and capable of expressing a part of its cellular proteins as recombinant IFN-β was introduced into well-controlled fermentation processes. Recombinant human IFN- β (rhIFN- β) was extracted from cells and purified by a series of column chromatographic and other steps (Mark et al., 1984). The resulting product, purified to >95% purity as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), displayed a specific activity that was about 10-fold less than that of IFN- β produced from cultured human fibroblast cells. It was also found that most of the IFN-β protein existed in its covalent-linked dimeric and higher oligomeric forms in E. coli. Furthermore, the purified rhIFN- β exhibited loss of purity and potency over time (Mark et al., 1984).

IFN-β has three cysteine residues, located at amino acid positions 17, 31, and 141. One or more of these cysteines could be involved in intermolecular disulfide bridging, resulting in the formation of inactive dimers and oligomers. Likewise, the three cysteines may also interact randomly within each molecule, resulting in three types of molecular species in the cell, each one with one of the three possible bilities could together result in the formation of inactive monomers and oligomers IFN-β protein, then removal of one of the cysteines would allow only one unique intramolecular disulfide bridge formation, leaving no free-sulfhydryl group to generfor cysteine because the two amino acids differ by only a single atom: the cysteine (Shepard et al., 1981). By analogy with the IFN-\alpha molecules in which a -S-S- bond is formed between Cys-29 and Cys-138 (Wetzel et al., 1981), it was thought that the intramolecular disulfide bridges. It was postulated that only one of these forms may in the cell. If the sulfhydryls were responsible for the lower specific activity of the ate dimers or oligomers. Therefore, it was sought to eliminate one of the three cysteine residues by site-specific mutagenesis of the IFN- β gene, whereby one of the codons for cysteine is changed to that of serine. Serine was chosen as a replacement Cys-141 of the IFN-ß molecule was known to be required for biological activity Cys-141 of IFN- β could be involved in a disulfide bridge with Cys-31, leaving a free. resemble the native conformation and retain biological activity. Both these possiresidue has a sulfur atom that is replaced by an oxygen atom in the serine residue. and reactive thiol group on Cys-17. The Cys-17 residue was therefore chosen for

replacement with serine. A schematic diagram showing the primary sequence of IFN- β_{ser17} is presented in Fig. 1.

The biological activities of IFN- β_{cys17} and IFN- β_{ser17} were compared in a virus 3×10^7 units/mg. In contrast, the purified IFN- β_{ser17} exhibited a specific activity of $2\times$ 108 units/mg, comparable to that of purified native IFN-\(\beta\) (Derynick et al., 1980). The biological activity of purified preparations of IFN- β_{cys17} and IFN- β_{ser17} were comspecies stored at -70°C. The activity of IFN-β_{ser17} remained unchanged over a yield reduction assay. The purified IFŃ-β_{cys17} had a specific antiviral activity of PAGE, a significant amount of dimers and oligomers could be detected in the pared in a number of studies. Figure 2 illustrates the activity profile of the two IFN IFN-8_{cys17} sample but not in the IFN-8_{ser17} preparation (Mark et al., 1984). These data demonstrate that substitution of the cysteine residue at position 17 in the IFN- β with a period of 150 days, while IFN-B_{cys17} lost a significant amount of its antiviral activity in 75 days. In addition, when these preparations were analyzed by nonreducing SDSserine residue prevents the formation of incorrect disulfide bonds resulting in a stable and bioactive rhIFN- β molecule. The IFN- β_{serl7} mutein was further developed as Berlex Biosciences. The IFN- β_{scr17} molecule has been assigned an USAN name of Betaseron® by Cetus Corporation, now Chiron Corporation in collaboration with

Similar to the situation with human IFN-B, the Cys-31-141 disulfide bond is also important for biological activity of recombinant murine IFN-eta synthesized in $E.\ coli$ (Day et al., 1992).

3. PRECLINICAL AND CLINICAL APPLICATIONS OF IFN-β

3.1. Preclinical Studies

The pharmacokinetics and antiviral activity of IFN- β_{ser17} (Betaseron®) were (Soike et al., 1987, 1990). IFN-β_{ser17} was administered by the intravenous, intramuscular, and subcutaneous routes. Following i.v. administration, mean clearance, fully used for the evaluation of efficacy and pharmacokinetics of antiviral agents steady-state volume of distribution and terminal half-life values were 0.36 ± 0.08 evaluated in an African green monkey model. This animal model has been successliters/hr-kg, 0.65 ± 0.09 liters/kg, and 1.9 ± 0.43 hr, respectively. Bioavailability values for IFN-B_{ser17} delivered by the intramuscular and subcutaneous routes were tration of 1×10^6 IU/kg of IFN- β_{serl7} twice daily (Chiang et al., 1993). These studies determined to be 51% and 31%, respectively. Despite only 30–50% bioavailability by these non-i.v. routes, antiviral activity was comparable for i.v., i.m., and s.c. adminisalso indicated that higher doses of the protein resulted in increases of the area under the serum concentration-time curve and of its antiviral efficacy. Finally, these studies demonstrated that significant accumulation of IFN- β_{ser17} in serum occurred with

150

120

times. Each point represents the result of assays run in triplicate.

Figure 2. Stability of IFN- β_{sel7} (top) and IFN- β_{cysl7} (bottom) to storage at -70° C. Interferon samples were thawed and the antiviral activities determined by a viral yield reduction bioassay at the indicated

280

repeated twice-daily dosing and greatest antiviral efficacy of the molecule were observed under this dosing regimen.

3.2. Clinical Studies

Early clinical development of IFN- β , like other interferons, was directed toward anticancer (Borden et al., 1988, 1992; Quesada et al., 1982; Reinhart, 1986) As for other indications, Jacobs et al. (1981) used natural IFN-\(\beta\) intrathecally in infection. They reported a significant reduction in exacerbations experienced by the multiple sclerosis (MS) patients suspecting that the disease was caused by a viral patients (Jacobs et al., 1987). While the mechanism of action of IFN- β in MS is not antiviral (Higgins et al., 1986) and antiinfective indications (Schonfeld et al., 1984), fully understood, one or a combination of IFN-B activities, e.g., antiviral (Reder and Arnason, 1985), correction of deficient IFN secretion by immune cells (Neighbor and Bloom, 1979), reversal of the effects of IFN- γ (Fertsch *et al.*, 1987) and enhancement of suppressor T-cell function (Noronha et al., 1990), have been implicated. A doubleblind, dose-finding pilot study in subjects with relapsing-remitting MS showed that 1993). A pivotal multicenter, randomized, double-blind, placebo-controlled trial of IFN-β_{ser17}, could be administered safely at a dose of 8 million IUs every other day, Betaseron® was conducted in 372 ambulatory patients with relapsing-remitting MS. The Betaseron® treatment caused significant reduction in exacerbation rates (compared to the placebo group), severity of exacerbations, and accumulation of magnetic tiple Sclerosis Study Group, 1993; Patty et al., 1993). Betaseron® (IFN-B_{ser17} or and demonstrated that treatment reduced the risk of exacerbations (Knobler et al., resonance imaging abnormalities in the absence of serious side effects (IFNB Mul-IFN-β-1b) is currently the only approved therapy in the United States for the treatment of relapsing-remitting multiple sclerosis.*

4. PHYSICOCHEMICAL CHARACTERISTICS OF IFN-B

4.1. Primary Structure

The primary structure of IFN- β_{ser17} was determined by amino acid composition, N-terminal amino acid sequencing, and peptide mapping.

*A second therapeutic, Interferon-6-1a (Avonex®, Biogen, Cambridge, MA) was approved by the FDA for the same indication in May 1996. Interferon-β-1a is a glycosylated version of the natural interferon-β.

Table I. Amino Acid Composition of Purified IFN- ϕ_{ser-17}

idue 24 48 72 Cumulative means 16.9 16.9 16.7 16.8 ± 0.5 7.2 7.1 6.8 7.0 ± 0.3 9.7 8.8 8.4 9.7 ± 0.3 24.4 24.6 24.7 24.5 ± 0.7 6.3 6.4 6.4 6.3 ± 0.2 6.3 6.3 6.3 ± 0.2 6.3 ± 0.2 4.9 5.3 5.2 5.1 ± 0.2 3.0 3.0 3.1 3.1 ± 0.2 10.2 10.7 10.7 10.3 24.6 24.6 24.6 ± 0.3 24.6 24.6 24.6 ± 0.3 9.9 9.9 9.9 ± 0.3 9.0 9.2 9.2 9.2 ± 0.4 10.6 10.7 11.1 10.8 ± 0.5 4.8 4.9 4.8 ± 0.2 11.1 10.9 11.1 11.0 ± 0.4 2.5 - - 2.5 ± 0 2.0 - - 2.0 ± 0.1		. Hydro	Hydrolysis time (hr)	ne (hr)		
16.9 16.9 16.7 16.8 ± 0.5 7.2 7.1 6.8 7.0 ± 0.3 9.7 8.8 8.4 9.7 ± 0.3 24.4 24.6 24.7 24.5 ± 0.7 6.3 6.4 6.4 6.3 ± 0.2 6.3 6.3 6.3 6.3 ± 0.2 3.0 3.0 3.1 3.1 ± 0.2 10.2 10.7 10.7 10.7 ± 0.3 9.9 9.8 9.9 9.9 ± 0.3 9.0 9.2 9.2 9.2 ± 0.4 10.6 10.7 11.1 10.8 ± 0.5 4.8 4.9 4.8 ± 0.2 11.1 10.9 11.1 11.0 ± 0.4 2.5 — 2.0 ± 0.1 1.0 — 1.0 ± 0.1	Residue	74	48	1 2		Predicted value from
16.9 16.9 16.7 16.8 ± 7.0 ± 6.8 7.1 6.8 7.0 ± 6.3 6.3 6.4 6.4 6.3 ± 6.3 6.3 ± 6.3 6.3 ± 6.3 5.2 5.1 ± 10.2 10.7 10.7 ± 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6	annicali	5	ş	7/	Cumulative meana	DNA sequence ^b
7.2 7.1 6.8 7.0 ± 9.7 ± 24.4 24.6 24.7 24.5 ± 6.3 6.3 6.3 6.3 6.3 ± 6.3	Asx	16.9	16.9	16.7	+1	17
9.7 8.8 8.4 9.7 ± 24.5 ± 4.4 24.6 24.7 24.5 ± 4.9 6.3 6.3 6.3 6.3 6.3 ±	킾	7.2	7.1	8.9	+1	, ,
24.4 24.6 24.7 24.5 ± 6.3 6.3 6.4 6.4 6.3 ± 6.3 6.3 6.3 ± 6.	Ser	6.7	8.8	8.4	+1	· 10
6.3 6.4 6.4 6.3 ± 6.3 ± 6.3 6.3 ± 6.3 6.3 6.3 6.3 ± 6.3 6.3 ± 4.9 5.3 5.2 5.1 ± 10.2 10.7 10.7 ± 24.6 24.6 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ±	ď×	24.4	24.6	24.7	+1	24
6.3 6.3 6.3 6.3 6.3 4.9 4.9 5.3 5.2 5.1 ± 3.0 3.0 3.1 3.1 ± 10.2 10.7 10.7 ± 24.6 24.6 24.6 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 2	Gly	6.3	6.4	6.4	+!	, 4
4.9 5.3 5.2 5.1 ± 3.0 3.0 3.1 3.1 ± 10.2 10.7 10.7 ± 24.6 24.6 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24	Ala	6.3	6.3	6.3	+1	o vo
3.0 3.0 3.1 3.1 ± 10.2 10.7 ± 24.6 24.6 24.6 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ±	Val	4.9	5.3	5.2	+1	o vr
10.2 10.7 10.7 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.6 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ± 24.8 ± 24.9 ±	Met	3.0	3.0	3.1	+1	י מי
24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6	lle	10.2	10.7	10.7	+1	. =
9.9 9.8 9.9 9.9 ± 4.9 ± 4.8 ± 4.9 1.11 11.0 ± 2.5 ± 2.0 ± 2.	Len	24.6	24.6	24.6	+1	7, 7
9.0 9.2 9.2 9.2 1.0.4 1.0.6 10.7 11.1 10.8 ± 4.8 4.9 4.8 ± 11.1 11.0 ± 2.5 ± 2.0 ± 2	Ţ,	6.6	8.6	6.6	+1	
10.6 10.7 11.1 10.8 ± ± 4.8 ± 4.9 ± 4.8 ± 11.1 11.0 ± 11.1 11.0 ± 2.5 ± 2.0 ±	Phe	9.0	9.2	9.2	+1	2 0
4.8 4.8 4.9 4.8 ± 11.1 11.0 ± 2.5 ± 2.0 ± 2.0 ± 1.0 ±	Lys	10.6	10.7	11.1	+1	`=
11.1 10.9 11.1 11.0 ± 2.5 ± 0.2 ± 0.	His	4.8	4.8	4.9	+1	, ,
2.5 — 2.5 ± 0 2.0 — 2.0 ± 0 1.0 — 1.0 ± 0	Arg	11.1	10.9	11.1	+	ີ =
2.0 1.0	Тър	2.5	l	I	+	1 (
1.0	Cys	2.0	1	ı	2.0 ± 0.1	
	Pro	1.0	١	1	1.0 ± 0.1	٠-

hydrolysis times except where indicated. Uncertainties represent half the range of values hydrolysis series, each performed in duplicate. Cumulative mean values represent three The numbers representing the mean residues/molecule are averages from four separate bNH,-terminal methionine omitted. averaged from cumulative mean.

24 hr values only.

448 and 72 hr values only. *Analyzed separately from the timed hydrolyses by performic acid oxidation.

4.1.1. AMINO ACID COMPOSITION

The primary amino acid sequence of IFN- β_{ser17} consists of 165 amino acids. The amino acid composition was experimentally determined to be similar to that predicted from the DNA sequence. Table I presents these data.

4.1.2. N-TERMINAL AMINO ACID SEQUENCE

Purified IFN- β_{ser17} was analyzed by N-terminal amino acid sequencing by subjecting it to automated Edman degradation in a Beckman Model 890M spinningcup sequencer. The phenylthiohydantoin (PTH) amino acid derivatives formed in the instrument were identified using isocratic reversed-phase HPLC. These data, pre-

Table II. Partial Amino Acid Sequence of Purified IFN-6... ;

			"" C-VI TOTTION TO CO.	
Residue number	Major residue	Yield (nmol)⁴	Minor residue	Yield (nmol)
1	Que'S	1.40		
·	Š 1	1.40		
۰ ,	Tyr	22.1		
٠,	Asn	13.9	Agn	100
4	Len	17.0	decr	0.91
ν.	Leu	20.4		
9	Gly	14.8		
7	Phe	17.8		
∞	Leu	15.4		
6 (Gln	13.0	G	2 \$4
10	Arg	1.07	!	¥C.4
11	Ser			
12	Ser			
13	Asn	6.46	δ	
14	Phe	9.05	der	100
15	Glu	7.88	į	1 43
91	· Ser		5	1.43
13	Glu	6,94	ē	-
<u>&</u>	Lys	2.31	5	1.72
19	Leu	10.3		
20	Leu	. 10.2		^
	Тр	3.37		
2	Gln	4.54	dJ	2 11
:	Leu	9.93	!	7117
4 . '	Asn	2.10	Asn	1 10
25	Gly	3.69		01:1
yo.	Arg	1.94		
	Len	4.04		
∞	Glu	4.37		
6	Tyr	4 17		
0	Cys	•		

⁹A 35.7nmol sample of IFN-β_{4e,11} was subjected to automated Edman degradation, and the PTH amino acids were analyzed by reverse-phase HPLC.

⁵Serine was recovered primarily as PTH-dehydrosenine which could be detected at 313 nm.

Cysteine was identified as PTH-cystine. Dehydroserine and cystine were not quantitated.

sented in Table II, indicate that the first 30 amino acids from the N-terminus yielded an amino acid sequence (minus the methionine residue on the N-terminus) predicted by the DNA sequence of the IFN-B_{ser17} gene. The N-terminal methionine of mature human IFN- β is used in *E. coli* as the initiation codon to direct the synthesis of the human protein. After initiation of translation, the N-terminal methionine is removed in *E. coli* by the enzyme methionine amino peptidase (MAP, Ben-Basset *et al.*, 1987). The removal of the N-terminal methionine from newly synthesized proteins by MAP is dependent on the identity of the penultimate residue and the biosynthetic rate of the recombinant protein. In the case of IFN-B_{ser17} in the production strain used for manufacturing, the removal of amino

Interferon-β-1b

Figure 3. Peptide map of IFN-B_{ser17} digested by Lys-C. Peaks are labeled according to the order in which the corresponding peptides occur in the IFN-B_{ser17} molecule (see Fig. 4). All expected peaks are displayed, with the exception of a tripeptide (K7) and a dipeptide (K11), which elute in the unretained peak from the RP-HPLC column. Two additional peaks, "K1a" and "K1b," resulting from cleavage of Arg₁₁ and Ser₁₂ bond, are seen as well.

terminal methionine is very efficient, resulting in IFN- β_{ser17} with a homogeneous amino terminal albeit one residue less than that predicted by the DNA sequence.

4.1.3. PEPTIDE MAPPING

The entire amino acid sequence of IFN- β_{serl7} was determined by peptide mapping using lysyl endopeptidase Lys-C. The Lys-C peptide map in conjunction with other protein fragmentation methods provided overlapping amino acid sequences for the entire IFN- β_{serl7} molecule. The results obtained provided the entire sequence of the IFN- β_{serl7} molecule and is identical to that predicted by the DNA sequence. Figure 3 shows a typical peptide map of this molecule.

Figure 4 displays the sequence of IFN-8_{ser17} showing the cleavage sites of Lys-C. Amino acid analysis, amino acid sequence analysis, and mass spectrometry of the peptides generated by Lys-C digestion confirmed that the generated peptide fragments were identical to those predicted

짂

09 ProGluGluIleLys GlnLeuGlnGlnPhe GlnLysGluAspAla AlaLeuThrIleTyr LeuTrpGlnLeuAsn GlyArgLeuGluTyr CysLeuLysAspArg MetAsnPheAspIle ß 8 K4

GluMetLeuGlnAsn IlePheAlaIlePhe ArgGlnAspSerSer SerThrGlyTrpAsn

. 9X GluThrileValGlu AsnLeuLeuAlaAsn ValTyrHisGlnIle AsnHisLeuLysThr

ValLeuGluGluLys LeuGluLysGluAsp PheThrArgGlyLys LeuMetSerSerLeu 120 110 Ж8 Κ7

130 HisbeulysargTyr TyrGlyargIlebeu HisTyrbeubysala LysGluTyrSerHis CysAlaTrpThrIle ValArgValGluIle LeuArgAsnPheTyr PheIleAsnArgLeu **T** K12

ThrGlyTyrLeuArg Asn

Figure 4. Amino acid sequence of IFN-B_{ser17} showing sites of proteolysis by Lys-C. Residues are numbered as in native IFN-β. Lys-C cleavage sites are indicated by bold атгоws. Names of the theoretical fragments generated by Lys-C proteolysis appear beneath the sequence near their N-terminal ends.

4.2. Secondary and Tertiary Structure

4.2.1. CD AND NMR SPECTROSCOPY

and 1H nuclear magnetic resonance spectroscopy. The two interferon preparations were studied by the CD and NMR methods in an acidic pH environment (pH 4.6 to lated) and E. coli-derived IFN-β (nonglycosylated) by circular dichroism (CD) Utsumi et al. (1986) examined the conformation of fibroblast IFN-β (glycosy-

Interferon-B-1b

1.6) due to good solubility and stability of IFN under these conditions. The CD spectra indicated that both IFN- β s had approximately 70% α -helix content. The data conformational change was observed below pH 2.0 which was thought to induce the indicated that fibroblast IFN- β and E. coli-derived IFN- β have very similar secondary structures, thus demonstrating that the lack of glycosylation of the recombinant molecule did not alter the secondary structure of the protein. Moreover, a slow disruption of \beta-sheets. NMR analysis were used to study the folding of IFN-\beta and the two spectra showed that both fibroblast and recombinant IFN-β molecules possess characteristic features of globular proteins. The NMR data also confirmed the low-B-sheet content of IFN-B.

Boublik et al. (1990) recently examined the relationship between the conformation and antiviral activity of $\emph{E. coli}$ -derived rIFN- β . The extent of ordered secondary structure was determined by CD spectroscopy in various buffer conditions. In contrast to the work of Utsumi et al. described above, they reported α -helical content of 40% to 50% in the pH range 2.9 to 7.2. At pH 2.9, IFN-β exhibited maximum helicity and antiviral activity of the IFN-ß decrease in parallel with denaturation by structure of rIFN- β in the form of a two-dimensional helical surface. Using a stability to heat denaturation and highest antiviral activity. It was found that both urea, heat, or repeated freeze-thaw cycles. These authors also displayed the primary computer program, the potential for helix formation was calculated based on the knowledge of the primary structure. Using this model, the α -helical content of hIFN-β was estimated to be approximately 35%.

Acharya et al. (1985) compared the conformations of IFN- β_{cys17} and IFN- β_{se17} α -helical content. These data on α -helix content of IFN- β_{sel7} and IFN- β_{cys17} were by CD spectroscopy to assess whether the single amino acid substitution induces significant secondary structure changes. The studies were performed in the presence of 0.1% sodium dodecyl sulfate (SDS) at neutral pH. SDS was added to render the ited essentially the same CD spectra, consisting of approximately 35% to 40% proteins soluble under these conditions. Both recombinant variants of IFN-B exhibin good agreement with that obtained by Boublik et al. (1990) for rIFN-8 and the value estimated for native human IFN-B.

The far-ultraviolet CD spectrum of IFN- β_{ser17} is presented in Fig. 5. This shows α -helical content of 45% with the rest being β -sheet.

4.2.2. FLUORESCENCE SPECTROSCOPY

Fluorescence spectroscopy has successfully been used to characterize conformational properties of IFN- α (Vincent et al., 1992) and other proteins (Poklar et al., 1994). The IFN-B molecule has three tryptophan residues which are located at positions 22, 79, and 143 in the sequence. The fluorescence emission maximum of IFN-8 under physiological pH conditions occurs at 338 nm. In contrast, free tryptophan under identical conditions exhibits an emission maximum at 351 nm. These data indicate that the tryptophan residues within the IFN-β molecule resides in a highly hydrophobic environment (Borukhov and Strongin, 1990). Moreover. the emission

Figure 5. A representative far-ultraviolet circular dichroism spectrum of IFN-13 ser17

maximum of IFN- β in its fully unfolded form (in 7 M guanidine hydrochloride) was seen at 352 nm. Further, the microenvironment of the tryptophan residues was studied in aqueous solutions at pH 2.0, 7.2, and 8.5 with KI, CsCl, and acrylamide as From these data, it was inferred that two of the three tryptophan residues of IFN- β were located near the surface of the protein. By analogy to IFN-α, tryptophan anionic, cationic, and neutral charge contact quenchers (Lehrer and Leavis, 1978). residues 22 and 143 would be expected to reside near the surface.

5. ANALYTICAL METHODS FOR EVALUATION OF PROTEIN PURITY

Besides structural information, the purity of the therapeutic protein under question is an important parameter before it is deemed suitable for use as a pharmaceutical product. The purity of the protein must also be assessed to evaluate its stability and for assignment of a shelf life to the product. Several analytical methods are used for this purpose; the primary among them being based on electrophoretic and chromatographic techniques.

5.1. SDS-PAGE

SDS-PAGE has widely been used for characterizing the purity of both native and recombinant forms of IFN- β .. This method was first employed for detection of

dimers, trimers, and higher oligomers of $\it E.~coli$ -derived IFN- β_{cys17} (Colby et al., 1986; Lin et al., 1986; Mark et al., 1984). Visualization of gels was facilitated either The nonreduced SDS-PAGE is capable of showing dimers, trimers, and higher temperatures, oligomers are observed. For example, a sample of IFN- β_{serl7} (1.2 1988). Figure 6 shows a representative densitometric scan of SDS-PAGE analysis of a by staining with Coomassie Brilliant Blue dye stain or Fast Green dyes or by an antioligomers. In SDS-PAGE of IFN- β samples subjected to stress by placement at high IFN-β monoclonal antibody after transfer on a nitrocellulose paper (Western blots). mg/ml in 50 mM sodium acetate, 10 mg SDS, 2 mM EDTA, pH 5.5) formed reduced sample. The reduced samples exhibit only dimers and some low-molecularweight fragments. Since the dimers are present in reduced samples, it is likely that approximately 30% oligomers after placement at 37°C for 3 months (Geigert et al., these dimers are not linked by disulfide bonds.

5.2. Isoelectric Focusing (IEF)

The IEF method is useful for separation and visualization of charge variants of IFN-β. Utsumi et al. (1987) compared the IEF profiles of fibroblast IFN-β and E. coli produced rIFN-β on silver stained gels. Whereas fibroblast IFN-β exhibited three distinct bands with pI of 8.9 \pm 0.1, 8.6 \pm 0.1, and 7.8 \pm 0.1, the rIFN- β showed a single, trailing band at pI of 8.9 \pm 0.1. The heterogeneity in the fibroblast preparation is ascribed to the presence of varying amounts of sialic acid on the carbohydrate moiety of the molecule. All three variants possessed antiviral activities. The trailing

Figure 6. SDS-PAGE gel scan of reduced IFN-Bactive. Sample reduced with 2-mercaptoethanol was run on a 12-15% linear gradient polyacrylamide oel etained with East Gannary.

of the rhIFN- β band is presumably due to hydrophobic interaction between the protein and the acrylamide gel. IFN- β_{ser17} was electrofocused using the nonionic surfactant polyoxyethylene-12-lauryl ether (Laureth 12) to maintain the IFN- β_{ser17} solubility (Hershenson and Thomson, 1989). Because of the difficulties in calibrating IEF gels in the highly basic range (>pH 9), the pI for IFN- β_{ser17} was initially assigned by Hershenson as 9.6–9.7. Later, a more accurate calibration of the IEF gel was made, and a pI of 9.2 \pm 0.1 was assigned.

5.3. RP-HPLC

Utsumi et al. (1987) reported the RP-HPLC profiles of fibroblast IFN- β and E. coli-derived IFN- β . They observed that the recombinant IFN- β was retained longer on the column than the fibroblast IFN- β , indicating that the former was more hydrophobic than the latter.

A representative RP-HPLC chromatogram of IFN-β_{ser17} is shown in Fig. 7. The second peak to elute (peak B) from the column represents the main IFN-β_{ser17} species.

The first peak is known as peak A. Peak B can be converted to peak A under conditions specific for oxidation of methionines in proteins, suggesting that peak A is an IFN-β_{ser17} variant containing an oxidized methionine. Site-specific mutation was used to produce IFN-β_{ser17} analogues in which alanine was substituted for methio-

Figure 7. A RP-HPLC chromatogram of IFN-8_{ser17}. Reversed-phase high-performance liquid chromatography was conducted using a Vydac C₄ column. A gradient of 10% acetonitrile in 0.1% trifluoroacetic acid (TFA) to 100% acetonitrile in 0.1% TFA was used, and the clution was monitored by ultraviolet

Interferon-β-1b

nine at 36, 62, and 117 positions, respectively. Results of RP-HPLC analysis of the methionine analogues after chemical oxidation inferred that peak A contains an oxidized methionine at amino acid position 62. This was confirmed by peptide mapping of a Lys-C digest of isolated peak A.

The shoulder on the main peak, peak B', was isolated by collecting fractions from the eluted column and thoroughly analyzed. The two isolated species had equivalent specific activities, IEF profiles, ELISA antibody responses, and peptide maps. These results indicated that peak B' consists of a different conformational form(s) of IFN-β ser17 having a primary structure identical to that of peak B but resolvable by RP-HPLC.

The peaks eluting after peak B' are mainly oligomeric forms of the IFN-B protein. These oligomers are primarily SDS-dissociable as they are not seen in the SDS-PAGE analysis (Geigert et al., 1988).

6. IN VITRO BIOLOGICAL ACTIVITY OF IFN-B

The potency of IFN- β preparations are measured by *in vitro* biological activity assays. These assays are also important for assigning a shelf life for final commercial preparations and reference materials (Geigert *et al.*, 1988).

6.1. Antiviral Yield Reduction Assay

For measuring the antiviral activity of IEN-β, a virus yield reduction assay is hr at 37°C in a 7% CO₂ atmosphere. The cells are infected with 106 pfu of vesicular stomatitis virus (VSV) and incubated for 50 min. The cells are rinsed with Dulacco's modified Eagle's medium to remove unadsorbed VSV and further incubated at 37°C for 24 hr in a 7% CO₂ atmosphere. The reduction in virus production as a result of the added IEN-β was measured in a plaquing assay by transferring the min. The number of plaques is inversely proportional to IEN-β activity. A standard of an unknown IEN-β sample is determined. The potency of IEN-β serr in the yield reduction assay was found to be equivalent to that reported for native human IFN-β.

6.2. Cytopathic Effect Bioassay

A second assay that is used for measuring the potency of IFN- β preparations is based on the ability of IFN- β to inhibit viral cytopathic effects (Grossberg et al.,

291

Interfe

1985). In this assay, IFN-β induced protection of A549 human lung carcinoma cells from infection with encaphlomyocarditis virus (ECV) is measured by a colorimetric method based on the ability of viable cells to reduce a dye 3-(4,5-dimethylthiazol-2-ally)-2,5-diphenyltetrazolium bromide (or MTT). Samples containing IFN-β are serially diluted and then A549 human lung carcinoma cells added. A dose-dependent antiviral state is induced in the cells by the interferon and the cells subsequently metric assay utilizing the MTT stain. The mitochondrial enzymes in viable cells reduce MTT to a dark blue formazan product which exhibits peak absorbance around Potency of IFN-β samples are determined relative to the National Institute of Health recombinant IFN-β reference material which is included on each assay plate. An seron potency determined using the CPE assay is equivalent to potency obtained using the antiviral yield reduction assay.

7. FORMULATION STUDIES

7.1. Solubility Aspects

7.1.1. SOLUBILITY OF IFN-9_{ser17}

One major challenge with *E. coli*—derived IFN-β, partly due to it being untered time and again during its production and analyses. Lin *et al.*, (1986) report that EFN-β seri? can be solubilized at neutral pH in the presence of surfactants such as 0.1% SDS or chaotropic agents such as 4 M guanidine hydrochloride at concentrations in the range 1–5 mg/ml. The ready solubility of IFN-β in SDS-containing solutions has been utilized throughout the purification procedure described by Lin and co-workers. Hershenson and Thomson (1989) reported the use of a nonionic surfactant (Laureth Utsumi *et al.* (1987) described the hydrophobicity of the *E. coli*—derived IFN-β based on longer retention of the recombinant molecule on the RP-HPLC column as compared to the retention of the fibroblast human IFN-β.

The rIFN-β_{ser17} protein is sparingly soluble (<0.05 mg/ml) at neutral pH on its own. The protein is fairly soluble (at approximately 1 mg/ml concentrations) at acidic pHs (pH 3 and below) or strongly alkaline pHs (pH 10 and above). The low solubility of this protein in the absence of stabilizers is most likely due to its hydrophobic nature. The protein tends to precipitate out due to protein-protein aggregate formation presumably through hydrophobic interactions at neutral or near-neutral pHs in the absence of solubilizing agents. These aggregates are "reversible" as they are

rendered soluble again by readdition of a solubilizer such as 0.1% SDS (Fernandes and Taforo, 1991). These data are similar to the results obtained for human fibroblast IFN-\(\beta\) by Utsumi et al. (1989). These authors reported that IFN-\(\beta\) formed predominantly tetrameric aggregates through hydrophobic interaction which were dissociable by 1% SDS or 1% lithium dodecyl sulfate (LDS). These tetramers were seen by size-exclusion chromatography but migrated as monomers on SDS-PAGE. Moreover, tetramers retained only 10% of the biological activity displayed by the IFN-\(\beta\) monomeric form but retained full activity upon 1% SDS addition.

While solubility of IFN-B in other solvent systems has not been studied in a Thus, Utsumi et al. (1987) used a 100 μ g/ml solution of E. coli-derived rIFN- β in a 10 mM sodium phosphate buffer (pH 6.8) containing 0.5 M NaCl and 40% ethylene glycol. In the same report, the authors describe the use of a 2 mg/mL rIFN- β solution systematic manner, selected reports present such information in an indirect way. in 10 mM sodium phosphate buffer prepared with deuterium oxide (pD 6.8) containing 0.5 M NaCl and 40% perdeuterated ethylene glycol for NMR studies. In agreement with these data, Boublik et al. (1990) used 0.5 mg/ml solutions of E. coliderived IFN- β in 50% ethylene glycol, 1 M NaCl, and 50 mM sodium phosphate (pH 7.2) for their studies. Solutions of 50 $\mu g/ml$ rIFN- β were also prepared in 50% ethylene glycol in a citric acid-sodium phosphate buffer (pH 2.9) and ammonium acetate-NaCl buffer (pH 5.1) for CD spectral studies. Boublik et al. also reported that ethylene glycol had strong cryoprotective and helix-promoting effects on IFN- β and that IFN- β was fully active in these systems. These studies demonstrate that rIFN- β has reasonable solubility in 40-50% ethylene glycol perhaps in the presence of 0.5 to I molar NaCl. No information regarding solubility of IFN- β in glycerol, propylene glycol, and polyethylene glycol exists currently.

7.1.2. SOLUBILITY-ENHANCING STRATEGIES USED FOR IFN- β_{sel7}

rIFN- β_{set17} is readily soluble under physiological pH conditions in the presence of the anionic surfactant SDS. Reference preparations of IFN- β_{set17} in 0.1% SDS are described by Geigert *et al.* (1988). The minimum concentration of SDS required for amount of SDS needed for IFN- β_{set17} at pH 7.0 was found to be approximately 660 μ_B . The protein by addition of 1 mg of a nonionic surfactant polysorbate-80 (Durafax-80, IFN- β_{set17} than polysorbate-80. These data indicate that SDS is a more effective solubilizer for from Utsumi *et al.* (1989), who reported that SDS and LDS are effective solubilizers for rIFN- β_{set17}

A number of nonionic surfactants were evaluated for solubilization of this hydrophobic protein (Shaked *et al.*, 1993). The solubility of IFN- β_{sel17} was evaluated using an ultracentrifugation assay. In this assay, recovery of the IFN- β_{sel17} protein in the supernatant of a test solution at a given protein concentration (usually 250 to

292

Interferon-β-1b

for measuring solubility of the protein under rigorous conditions. In addition, it is a 500 µg/ml) after subjecting it to ultracentrifugation at 35,000 g for 1 hr at ambient temperature was measured. A recovery value of 80% protein in the supernatant was valuable tool for screening effective solubilizers for a given protein concentration and has often been used as such in the biochemical literature (Schein, 1990). A large number of nonionic surfactants were evaluated to aid solubilization of IFN-B_{ser17} considered as an evidence of good solubility by this test. While this method does not provide the absolute maximum solubility of a protein in the test solution, it is useful (Hershenson et al., 1989). Selected results from the ultracentrifugation screening are shown in Fig. 8.

Four formulations of IFN- $\beta_{\text{serl7}},$ containing surfactants such as Laureth 12 (trade nol-30 (trade name Triton X305), polyethylene glycol-8-oleate (trade name Nopalcol name Trycol LAL12), an oxyalkylated alcohol (trade name Plurafac C-17), octoxy-4-O), or their mixtures were selected for further optimization studies (described next) based on the visual clarity, UV absorption, and ultracentrifugation data. A complete

0.25 mg/mL IFN β_{εσ17} in 10 mM sodium phosphate and one of the following surfactant(s): 0.15% laureth-12 (1), 0.10% oxyalkylated alcohol (Plurafac C-17), (2) a combination of 0.10% octoxynol-30 and 0.05% PEG-8-oleate (3) or a combination of 0.10% laureth-12 and 0.05% PEG-8-oleate (4) were evaluated Figure 8. Comparison of four surfactant systems for formulation of IFN- eta_{set17} . Formulations containing by the ultracentrifugation assay. Individual bars show the recovery of IFN- β_{set77} in the top half of the solution after centrifugation at 35,000 g for $\Gamma \, h r \, by \, A_{280}$ measurements.

lations, sodium phosphate was better for maintaining solubility of the protein upon cross-reference of generic and trade names of these surfactants is available (Ash and Ash, 1993). A comparison of buffers indicated that for lyophilized IFN- β_{ser17} formureconstitution than sodium citrate and sodium maleate buffers. It was also surmised by Hershenson et al. (1989) that pH change caused by the well-known crystallization of the disodium phosphate component of the phosphate buffer during freezing may have helped in preserving the solubility of IFN- β_{ser17}

For maintaining solubility of IFN-B_{ser17} after Tyophilization, formulations with were suitable for this purpose while dextran, mannitol, or a dextrose/glycine mixture were unable to preserve solubility of IFN- β_{serl7} upon reconstitution (Hershenson etpotential bulking agents were evaluated by the ultracentrifugation assay. The data, shown in Fig. 9, indicate that dextrose or a combination of dextrose and mannitol

Finally, carrier proteins, such as human serum albumin (HSA) and plasma protein fraction (PPF), have also been found to be useful for rendering the IFN- β_{set17}

Figure 9. Effect of different bulking agents on the solubility of IFN-8_{ser17} upon reconstitution of the freeze-dried product. Formulations contained IFN-8 er17 (0.25 mg/ml) in 0.15% laureth-12 and 10 mM sodium phosphate buffer (pH 7) and one of the following bulking agents: 2.0% dextran (1), 2.0% mannitol (2), 2.0% dextrose (3), a combination of 0.1% dextrose and 2.0% mannitol (4) or a combination of 0.1% dextrose and 2.0% glycine (5). Individual bars show the recovery of IFN- eta_{set7} in the top half of the solution after ultracentrifugation at 35,000 g for 1 hr.

Leo S. Lin et al.

et al. Interferon-β-1b

soluble under physiological pH conditions (Fernandes and Taforo, 1991). IFN-β_{ser17} could be solubilized by adding HSA to a 1:50 weight/weight (wt/wt) ratio. Formulations at 1 mg/ml IFN-β_{ser17} concentration were prepared using the 1:50 IFB-β_{ser17} ratio. PPF, which consists of 83% HSA and a maximum of 17% globulins (α- and β-), was also shown to solubilize IFN-β_{ser17} at similar wt/wt ratios. Solubilization of IFN-β_{ser17} in HSA and PPF solutions is thought to occur via interaction between the hydrophobic segments of IFN-β_{ser17} and HSA.

7.2. Parenteral Formulations of IFN- β_{ser17}

A recombinant form of IFN-β, interferon-β-1b or IFN-β_{ser17} (Betaseron®, a product of Chiron Corporation), is available commercially in the United States since 1993. Betaseron® is supplied as a lyophilized powder consisting of 0.25 mg of interferon-β-1b and contains 12.5 mg each of human serum albumin and dextrose. Appropriate amounts of sodium hydroxide and hydrochloric acid may have been used for adjustment of pH of the solution to 7.5. A diluent vial containing 0.54% sodium chloride is supplied along with Betaseron®. This concentration of sodium directed in the package insert. Each vial of Betaseron® is reconstituted with 1.2 ml of the supplied diluent and 1.0 ml of the reconstituted solution is injected subcutaneseron, Physician Desk Reference, 1995).

7.3. Long-Acting Formulations of IFN-B_{ser17}

Considerable research has been done to prolong the *in vivo* delivery of IFN-β_{ser17}. To enhance solubility and *in vivo* half-life of the recombinant molecule, it was modified by attachment of water-soluble polymers such as polyethylene glycol (PEG) and polyoxyethylene glycol (POG) (Katre and Knauf, 1990). Attachment with such polymers has successfully been used for altering the hydrodynamic radius of the resulting PEG-protein yielding a product with a desired *in vivo* half-life (Knauf *et al.*, 1988). The solubility of IFN-β_{ser17} could be greatly enhanced by PEG-attachment while maintaining the bioactivity of IFN-β. Similarly, the *in vivo* half-life of IFN-β_{ser17} was enhanced severalfold by the modification (Katre and Knauf, 1990).

Liposomal formulations of IFN- β have also been evaluated. Felgner and Epstein (1985) described a liposomal formulation of IFN- β_{ser17} made by hydrating a lyophilized mixture of multilamellar vesicles with an IFN- β_{ser17} solution. The encapsulated IFN- β retained full antiviral activity. The controlled release of IFN- β_{ser17} from this system was demonstrated in a mouse model after intramuscular injection. In control animals, free IFN- β_{ser17} disappeared from the injection site in 1 day while IFN- β_{ser17}

from liposomes was maintained at the injection site up to 9 days. In a subsequent study, this formulation was tested in a Simian *Varicella* virus infected African green monkey model (Eppstein *et al.*, 1989). It was observed that intramuscularly injected liposomal IFN-β_{ser17} resulted in a sustained release of the IFN-β from the injection site. Finally, the liposomal preparation exerted antiviral efficacy in the primate model superior to that obtained with the identical dosing regimen of free IFN-β_{ser17}.

295

The biodegradable polylactide-co-glycolide (PLG) polymer system has also protein was incorporated in the PLG matrix by a spray-casting technique. Prior to the encapsulation process, the IFN-β_{ser17} was spiked with a small amount of radiolabeled of encapsulation. Hollow cylindrical devices of PLG containing IFN-β_{ser17} was seen by the process (300 μ thick, 5 mm long with ~0.5 mm external diameter) were sterilized by gamma irradiation and implanted subcutaneously in mice. No information on the effect of The devices were removed surgically at periodic intervals and assayed for remaining days.

8. STABILITY OF IFN-β

8.1. Stability-Indicating Assays

Several stability-indicating methodologies for IFN- β are available. The choice of the method depends upon the nature of the formulation. In formulations containing analyses of IFN- β can be difficult because of interference from the carrier protein. In Thus, enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antithe presence of a carrier protein. Similarly, the SDS-PAGE gels used for evaluation of IFN- β in oligomers and fragments of the IFN- β protein, are visualized by monoclonal antitimitation of the immunological methods is that they can only detect only certain epitopes on the molecule.

In formulations utilizing no carrier protein, the regular SDS-PAGE method has been applied for detection and quantitation of oligomers and fragments of the IFN-β_{ser17} protein (Geigert *et al.*, 1988). Additionally, the RP-HPLC method has been used which is capable of tracking increases in the oxidized methionine form as well as oligomers of IFN-β. Based on RP-HPLC data of IFN-β_{ser17} formulated in the absence of a carrier protein, no increase in the oxidized methionine IFN-β_{ser17} peak

was observed even after placement at 37°C for 3 months. By RP-HPLC, only oligomer formation was observed in the IFN- β_{serl7} product. These oligomers were not seen by the SDS-PAGE method, indicating that the oligomers were SDS-dissociable.

8.2. Stability of IFN-B_{ser17}

As expected, stability of IFN- β_{ser17} is a function of the formulation parameters. In the noncarrier protein solution formulation of IFN- β_{ser17} (per milliliter composition: 1.2 mg IFN- β_{ser17} , 10 mg SDS in 50 mM sodium acetate and 2 mM EDTA, ph 5.5) described by Geigert *et al.* (1988), an Arrhenius fit of the data was attempted. Based on the SDS-PAGE and RP-HPLC data, a t_{90} (i.e., time to reach 90% IFN purity) of 7 years was predicted at 5° C (2-8°C). An activation energy of 24 kcal/mole was reported for the rate of IFN- β degradation.

In IFN-8_{ser17} formulations containing human serum albumin as a solubilizing and stabilizing agent, the biological potency of IFN- 8_{ser17} was reported during storage of the lyophilized product at 5°C (Geigert *et al.*, 1987). While no changes in the potency of the three subject formulations were observed at 5°C over 2 years, temperature-dependent decreases in this parameter were observed at elevated temperatures (25, 37, 55, 75, and 80°C). Based on the elevated temperature data, an activation energy of 25 kcal/mole was obtained.

Figure 10 presents data on the stability of the Betaseron® product as measured by its biological potency.

IFN β_{ser17} formulations have also been evaluated by linear nonisothermal stability (LNS) studies (Geigert *et al.*, 1987; Jameson *et al.*, 1979). In this method, Jyophilized IFN-β_{ser17} formulations were heated from 50°C to 80°C at a linear rate of 1.5°C/hr and samples were withdrawn at pre-determined set points and analyzed for biological potency. This method is best used for comparing different formulations within a short time frame. For example, Geigert *et al.* (1987) evaluated three slightly 0.06, 0.30, and 1.20 mg of IFN-β_{ser17} with 15, 15, and 60 mg of HSA, respectively; and each formulation used 15 mg dextrose as a bulking agent. All formulations contained each formulation used 15 mg dextrose as a bulking agent. All formulations contained amount of HSA showed maximal stability by the real-time, multiple isothermal, and poses.

Lyophilized formulations of IFN- β_{serl7} based on the surfactant Laureth 12 were analyzed by the LNS method (Fig. 11). An HSA-based formulation was used as a control in this study as a relative relationship of stability indicated by the real-time and LNS studies had already been established for this formulation. IFN- β_{serl7} formu-

Interferon-β-1b

Figure 10. Potency stability of Betaseron® at 5°C. Stability of six different batches of IFN-β_{ser17} formulated with human serum albumin as measured by the virus yield reduction biological activity assay as a function of the time of incubation under refrigeration conditions. The potency in international units per milligram of the IFN-β protein on a logarithmic scale on the y-axis and the time of incubation at 5°C on the x-axis are shown.

lations containing Laureth 12 with either dextrose or dextrose/mannitol appear to have potency stability characteristics similar to that of the HSA formulation of IFN-B $_{\rm scr17}$.

9. CONCLUSIONS

In this chapter, we have attempted to provide a brief historical perspective on the development of human recombinant interferon beta, with a special emphasis on the research and development of Betaseron®, a recombinant human IFN- β , as a therapeutic protein drug. Brief summaries of the molecular biology and protein chemistry of IFN- β and its preclinical and clinical evaluations are presented to familiarize the reader with the complexity of the drug development process as it applies to therapeutic protein molecules.

299

Figure 11. Stability comparison of three different formulations of IFN-\$ serit by linear nonisothermal studies. IFN-B_{tet17} formulations (0.25 mg/ml) containing 1.25% HSA and 1.25% dextrose (1), 0.15% laureth-12 and 5% dextrose (2), or 0.15% laureth-12 and 5% mannitol (3) are compared. The x-axis represents the temperature at which the IFN-ß sample was withdrawn during linear nonisothermal heating and the y-axis shows the biological potency of the sample measured by the yield reduction bioassay and represented as the logarithmic of the initial value.

Betaseron® was one of the first few recombinant protein drugs to be tested in human clinical trials at the time when the recombinant DNA technology was at its tered during its development, especially due to the strong hydrophobic nature of the tein and a description of the analytical methods used for defining its purity. Finally, infancy. We have described to the reader some of the difficulties that were encounmolecule. We have presented the important physicochemical properties of this pro-IFN- β formulations and their stability have been discussed. ACKNOWLEDGMENTS. The authors would like to thank the many people from Chiron and Berlex who have worked on development of Betaseron® from its inception to the present time. This important therapy would not have been available to multiple sclerosis patients without their hard work and dedication.

Interferon-β-1b

REFERENCES

Acharya, A. S., Manjula, B. N., and Drummond, R. J., 1985, Conformational analysis of human fibroblast Arabje, Y. M., Bittner, G., Yingling, J. M., Storer, B., and Schiller, J. H., 1993, Antiproliferative effects of interferon cloned and expressed in E coli poster presented at FASEB Meeting, Anaheim, CA.

interferons •a and •B in combination with 5-fluorouracil, cisplatin and cis- and trans-retinoic acid in three human lung carcinoma cell lines, J. Interferon Res. 13:25-32.

Ash, M., and Ash, I. 1993, Handbook of Industrial Surfactants, Gower, Hants, UK.

Ben-Bassat, A., Bauer, K., Chang, S.-Y., Myabo, K., Boosman, A., and Chang, S., 1987, Processing of the initiation methionine from proteins: Properties of the Escherichia coli methionine aminopeptidase and its gene structure, J. Bacteriol. 169:751-757.

Betaseron, 1995, Physician Desk Reference, pp. 622-626.

Clinical and biological effects of recombinant interferon-B administered intravenously daily in phase Borden, E. C., Hawkins, M. J., Sielaff, K. M., Storer, B. M., Schiesel, J. D., and Smalley, R. V., 1988, I trial, J. Interferon Res. 8:357-366.

Borden, E. C., Kim, K., Ryan, L., Blum, R. H., Shiraki, M., Tormey, D. C., Comis, R. L., Hahn, R. G., and Parkinson, D. R., 1992, Phase II trials of interferons- α and - β in advanced sarcomas, J. Interferon Res.

Borukhov, S. I., and Strongin, A. Y., 1990, The intrinsic fluorescence of the recombinant human leukocyte

Boublik, M., Moschera, J. A., Wei, C., and Kung, H., 1990, Conformation and activity of recombinant interferon-αA and fibroblast-β1, Biochem. Biophys. Res. Comm. 169:282-288.

human fibroblast interferon-β, J. Interferon Res. 10:213-219.

Chiang, J., Gloff, C. A., Soike, K. F., and Williams, G., 1993, Pharmacokinetics and antiviral activity of recombinant human IFN-B_{ser17} in African green monkeys, J. Interferon Res. 13:111-120.

Colby, C. B., Geigert, J. H., Ruzicka, F. J., Schiller, J. H., Willson, J. K. V., Chen, B. P., Sondel, P. M., and Borden, E. C., 1986, In vitro biological assessment of an interferon beta with a site specific amino acid substitution, in: The Biology of the Interferon System (W. E. Stewert II and H. Schellekens, eds.), Elsevier, pp. 273-278.

Day, C., Schwartz, B., Li, B.-L., and Pestka, S., 1992, Engineered disulfide bond greatly increases specific activity of recombinant murine interferon-B. J. Interferon Res. 12:139-143.

Derynick, R., Remaut, E., Saman, E., Stranssens, P., De Clercq, E., Content, J., and Fiers, W., 1980, Dianzani, F., and Dolei, A., 1984, From Isaacs to Escherichia coli, in: Contributions to Oncology (L. Expression of human fibroblast interferon gene in Escherichia coli, Nature (London) 287:193-197. Borecky and V. Lackovic, eds.), Karger, Basel, pp. 1-14.

Eppstein, D. A., and Schryver, B. B., 1990, Controlled release of macromolecular polypeptides, U.S.

Eppstein, D. A., Van Der Pas, M. A., Gloff, C. A., and Soike, K. F., 1989, Liposomal interferon-β: sustained release treatment of simian varicella virus infection in monkeys, J. Infect. Dis. 159;

Faltynek, C. R., and Baglioni, C., 1984, Interferon is a polypeptide hormone, Microbiol. Sci. 1:81-85. Felgner, P. L., and Eppstein, D. A., 1985, Stable liposomes with aqueous-soluble medicaments and methods for their preparation. European Patent Publication No. 0172007A2.

Fernandes, P. M., and Taforo, T., 1991, Formulations for lipophilic IL-2 proteins, U.S. Patent, No.

Fertsch, D., Schoenberg, D. R., German, R. N., Tou, J. Y. L., and Vogel, S. N., 1987, Induction of macrophage la antigen expression by rIFN- Γ and down-regulation by IFNlpha/eta and dexamethasone are mediated by changes in steady-state levels of Ia mRNA, J. Immunol. 139:244-249.

Geigert, J., Panschar, B. M., Fong, S., Huston, H., Wong, D. A., Wong, D. Y., Taforo, C., and Pemberton, M., 1988, The long-term stability of recombinant (serine-17) human interferon-β, J. Interferon Res.

300

Interferon-B-1b

Geigert, J., Ziegler, D. L., Panschar, B. M., Creasey, A. A., and Vitt, C. R., 1987, Potency stability of recombinant (serine-17) human interferon-β, J. Interferon Res. 7:203-211.

Grossberg, S. E., Taylor, J. L., Seibenlist, R. E., and Jameson, P., 1985, Biological and immunological assays of human interferons, in: Manual of Clinical Immunology (N. R. Rose, H. Friedman, and J. L.

Hershenson, S., Stewart, T., Carrol, C., and Shaked, Z., 1989, Formulation of recombinant interferon-B Fahey, eds.), American Society of Microbiology, pp. 295-299.

using laureth-12, a novel nonionic surfactant, in: Therapeutic Peptides and Proteins: Formulation, Hershenson, S., and Thomson, J., 1989, Isoelectric focusing of recombinant interferon-B, Appl. Theor. Delivery and Targeting (D. Marshak and D. Liu, eds.), Cold Spring Harbor, NY, pp. 31-36.

Higgins, P. G., Al-Nakib, W., Willman, J., and Tyrell, D. A. J., 1986, Interferon-B_{ser} as prophylaxis against

IFNB Multiple Sclerosis Study Group, 1993, Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial, experimental rhinovirus infection in volunteers, J. Interferon Res. 6:153-159. Neurology 43:655-661.

Jacobs, L., O'Malley, J., Freeman, A., and Ekes, R., 1981, Intrathecal interferon reduces exacerbations of multiple sclerosis, Science 214:1026-1028.

Jacobs, L., Salazar, A. M., Herndon, R., et al.. 1987, Intrathecally administered natural human fibroblast interferon reduces exacerbations of multiple sclerosis: results of a multicenter, double-blinded study, Arch. Neurol. 44:589-595.

Jameson, P., Grieff, D., and Grossberg, S. E., 1979, Thermal stability of freeze-dried mammalian interferons. Analysis of freeze-drying conditions and accelerated storage tests for murine interferon, Cryobiology 16:301-314.

Katre, N., and Knauf, M. J., 1990, Solubilization of immunotoxins for pharmaceutical compositions using polymer conjugation, U.S. Patent No. 4,917,888.

Kerr, I. M., and Stark, G. R., 1992, The antiviral effects of the interferons and their inhibition, J. Interferon

Kirchner, H., 1986, The interferon system as an integral part of the defense system against infections,

Knauf, M. J., Bell, D. P., Hirtzer, P., Luo, Z. P., Young, J. D., and Katre, N. V., 1988, Relationship of effective molecular size on systemic clearance in rats of recombinant interleukin-2 chemically

Knobler, R. L., Greenstein, J. I., Johnson, K. P., et al., 1993, Systemic recombinant human interferon-β treatment of relapsing-remitting multiple sclerosis: pilot study analysis and six-year follow-up, J. modified with water soluble polymers, J. Biol. Chem. 263:1564-1570. Interferon Res. 13:333-340.

Lehrer, S. S., and Leavis, P. C., 1978, Solute quenching of protein fluorescence, in: Methods in Enzymology, Vol. 49, Academic, New York, pp. 222-254.

Lin, L. S., Yamamoto, R., and Drummond, R. J., 1986, Purification of recombinant human interferon-ß

Mark, D. F., Lu, S. D., Creasey, A. A., Yamamoto, R., and Lin, L. S., 1984, Site-specific mutagenesis of the expressed in Escherichia coli, in: Methods in Enzymology, Vol. 119, Academic, New York, pp. 183-192. human fibroblast interferon gene, Proc. Natl. Acad. Sci. USA 81:5662-5666.

Mossman, T., 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays, J. Immunol. Methods 65:55-63.

Murray, H. W., 1992. The interferons: macrophage activation, and host defence against nonviral pathogens, J. Interferon Res. 12:319-322.

Neighbor, P. A., and Bloom, B. R., 1979, Absence of viral-induced lymphocyte suppression and interferon Noronha, A., Toscas, A., and Jensen, M. A., 1990, Interferon beta augments suppressor cell function in production in multiple sclerosis, Proc. Natl. Acad. Sci. USA 76:476-480.

multiple sclerosis, Ann. Neurol. 27:207-220.

Patty, D. W., Li, D. K. B., et al., 1993, Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial, Neurology 43:662-667.

Pestka, S., 1983, The human interferons: from protein purification and sequence to cloning and expression in bacteria: before, between and beyond, Arch. Biochem. Biophys. 221:1-37.

Poklar, N., Vesnaver, G., and Lapanje, S. 1994, Denaturation behavior of α-chymotrypsinogen A in Quesada, J. R., Gutterman, J. U., and Hersh, E. M., 1982, Clinical and immunological study of beta interferon by intramuscular route in patients with metastatic breast cancer, J. Interferon Res. 2; urea and alkylurea solutions: fluorescence studies, J. Protein Chem. 13:323-331.

Reder, A. T., and Arnason, B. G. W., 1985, Immunology of multiple sclerosis, in: Handbook of Clinical Neurology. Demyelinating Diseases, Vol. 3 (J. C. Koetsier, G. W. Vinken, G. W. Bruyn, and H. L.

Reinhart, J., Malspies, L., Young, D., and Neidhart, J., 1986, Phase I/II trial of human recombinant Klawans, eds.), Elsevier, Amsterdam, pp. 337-395.

Reiter, Z., 1993. Interferon—a major regulator of natural killer cell-mediated cytotoxicity, J. Interferon B-interferon serine in patients with renal cell carcinoma, Cancer Res. 46:5364.

Schein, C. H., 1990. Solubility as a function of protein structure and solvent components, Bio/Technology

Schonfeld, A., Nitke, S., Schatner, A., Wallach, D., Crespi, M., Hahn, T., Lavavi, H., Yarden, O., Shoham,

J., Doerner, T., and Revel, M., 1984, Intramuscular human interferon-β injections in treatment of condylomata acuminata, Lancet 1038-1042.

Shaked, Z., Stewart, T., Hershenson, S., Thomson, J. W., and Thomson, J., 1993, Formulation processes for Shepard, H. M., Leung, D., Stebbing, N., and Goddel, D. V., 1981, A single amino acid change in IFN B pharmaceutical compositions of recombinant beta-interferon, U.S. Patent No. 5,183,746.

Soike, K. F., Chou, T.-C., Fox, J. J., Watanabe, K. A., and Gloff, C. A., 1990, Inhibition of simian Varicella abolishes its antiviral activity, Nature (London) 294:563-565.

virus infection of monkeys by 1-(2-deoxy-2 fluoro-1-D-arabinofuranosyl)-5-ethyl uracil (FEAU) and Soike, K. F., Eppstein, D., Gloff, C. A., Cantrell, C., Chou, T.-C., and Gerone, P. J., 1987, Effect of 9-(1,3synergistic effects of combination with human recombinant interferon-B, Antiviral Res. 13:165.

dihydroxy-2-propoxymethyl)guanine and recombinant human interferon alone and in combination on Simian Varicella virus infection in monkeys, J. Infect. Dis. 156:607-614.

Utsumi, J., Yamazaki, S., Hosoi, K., Kimura, S., Hanada, K., Shimazu, T., and Shimizu, T., 1987, Characterization of *E. coli*-derived recombinant human interferon-β as compared with fibroblast human interferon-β, J. Biochem. 101:1199-1208.

Utsumi, J., Yamazaki, S., Kawagucki, K., Kimura, S., and Shimizu, H., 1989, Stability of human interferon-\(\beta\)!: oligomeric human interferon-\(\beta\)1 is inactive but is reactivated by monomerization, Biochim. Biophys. Acta 998:167-172.

Utsumi, J., Yamazaki, S., Hosoi, K., Shimizu, H., Kawaguchi, K., and Inagaki, F., 1986, Conformations of fibroblast and $\it E.~coli$ -derived recombinant human interferon-eta s as studied by nuclear magnetic resonance and circular dichroism, J. Biochem. 99:1533-1535.

Time-resolved fluorescence study of human recombinant interferon α_2 association state of the Vincent, M., Sierra, I. M., Berbaron-Santos, M. N., Diaz, A., Diaz, M., Padron, G., and Gallay, J. 1992,

Wetzel, R., Johnson, P. D., and Czarniecki, C. W., 1983, Roles of the disulphide bonds in a human alpha interferon, in: The Biology of the Interferon System (E. De Maeyer and H. Schellekens, eds.), Elsevier, protein, spatial proximity of the two tryptophan residues, Eur. J. Biochem. 210:953-961. Amsterdam, pp. 101-120.

Zoon, K., 1987, Human interferons: structure and function, in: Interferon 9 (I. Gresser, ed.), Academic, New York, pp. 1-13.

Series Editor: Ronald T. Borchardt

The University of Kansas Lawrence, Kansas

Recent volumes in this series:

STABILITY OF PROTEIN PHARMACEUTICALS, Part A: Chemical and Physical Pathways of Protein Volume 2

5007

Edited by Tim J. Ahern and Mark C. Manning

STABILITY OF PROTEIN PHARMACEUTICALS, Volume 3

Part B: In Vivo Pathways of Degradation and Strategies

for Protein Stabilization

Edited by Tim J. Ahern and Mark C. Manning

BIOLOGICAL BARRIERS TO PROTEIN DELIVERY Volume 4

Edited by Kenneth L. Audus and Thomas J. Raub

Volume 5

PROTEIN AND PEPTIDE DRUGS: Case Histories STABILITY AND CHARACTERIZATION OF

Edited by Y. John Wang and Rodney Pearlman

VACCINE DESIGN: The Subunit and Adjuvant Volume 6

Approach

Edited by Michael F. Powell and Mark J. Newman

PHYSICAL METHODS TO CHARACTERIZE PHARMACEUTICAL PROTEINS Volume 7

Edited by James N. Herron, Wim Jiskoot,

and Daan J. A. Crommelin

MODELS FOR ASSESSING DRUG ABSORPTION Volume 8

AND METABOLISM

Edited by Ronald T. Borchardt, Philip L. Smith,

and Glynn Wilson

STABILITY OF PROTEIN DRUGS: Case Histories FORMULATION, CHARACTERIZATION, AND Volume 9

Edited by Rodney Pearlman and Y. John Wang

Powell, **Characterization, and** Formulation,

Case Histories

Stability of Protein Drugs

Edited by

Rodney Pearlman

Burlingame, California Megabios Corporation

and

Y. John Wang

Scios Nova, Inc. Mountain View, California

Plenum Press • New York and London

Contents

Chapter 1
A Compendium and Hydropathy/Flexibility Analysis of Common Reactive Sites in Proteins: Reactivity at Asn, Asp, Gln, and Met Motifs in Neutral pH Solution
Michael F. Powell
2.1. Common Chemical Degradation Pathways in Proteins
3. Summary of Protein Stability in Aqueous Solution
Agglutinin Aldolase
Amylin Antagonist Amyloid-Related Serum Protein (ARSP)
Angiogenin Anti-HER-2 Heavy Chain
Anti-HER-2 Light Chain
Antibody 4D5 Light Chain
Antibody 17-1A Heavy Chain
Antibody Light Chain-k (mouse)Antibody OKT3 Heavy Chain
Antibody OKT3 Light Chain
Antibody OKT4a Heavy Chain (humanized)
Antibody OKT4a Light Chain (humanized)

Contents	
XX	

Conte	Contents xxi
Atrial Natriuretic Peptide (AlvP) (numan)	Myelin Basic Protein (MBP)
	Nerve Growth Factor (human) (NGF)
CD4 (nunian) 42 CD4-IgG 43	Ribonuclease A (RNase A)99
	lease U2 (RNase U2) (Ustilago sphaerogena)
	Tissue Factor-243
	TGF-Beta
Cytochrome c	
	'ator (human) (t-PA)
	ı (bovine)
	4. Statistical Analysis of Protein Degradation Sites in Aqueous Solution . 112
	Ceneral Conclusions Regarding Protein Degradation in Aqueous
Fibroblast Growth Factor, Basic (human) (bFGF)	
Glucagon 62	134
ıman)	
	Chapter 2
	Characterization Stability and D 1.
	Growth Factor
(Iluiliali)	
Hirudin71	Y. John Wang, Zahra Shahrokh, Sriram Vemuri, Gert Eberlein,
	I'llia Beylin, and Mark Busch
IXGT)	
	2.1 Structure and the Conformation and Analysis
Insulinotropin78	TIV Spectroscopie
	Filiprescence Chectrocom
	Spectroscopy (FTTR)
	(RP-HPI C)
	2.8. Size-Exclusion HPLC (HP-SEC)
Interleukin-11 (human)	gical Methods of Evaluation
	Cell Proliferation Assays
	nal Models
	4. Informal Stability

3.2. Selection of a Formulation for Intravesical Dosing in the Clinic 3.3. Formulation Summary	388 389 390 390
Recombinant Human Deoxyribonuclease I [Pulmozyme® (Dornase Alpha)] Steven J. Shire	
Background	393
1.1. Cystic Fibrosis	394
_	394
1.3. Human DNase I as Treatment for Cystic Fibrosis	395
Structure and Properties of DNase I	397
2.1. Primary Structure of rhDNase and Homology with bDNase	397
2.2. Secondary and Tertiary Structure	400
2.3. Physical and Chemical Properties	401
. Analytical Characterization	403
3.1. Analysis of Molecular Size	403
3.2. Analysis of Charge Heterogeneity	403
3.3. Analysis of Nuclease Activity	405
Formulation Development	406
4.1. Aerosol Delivery of rhDNase: Characterization of DNase Aerosols	406
4.2. Choice of Formulation Components	408
4.3. Solution Stability	410
4.4. Choice of Container Closure	416
5. Summary and Conclusions	420
References	422

A Compendium and Hydropathy/ Flexibility Analysis of Common Reactive Sites in Proteins: Reactivity at Asn, Asp, Gln, and Met Motifs in Neutral pH Solution

Michael F. Powell

with Godfrey Amphlett, Jerry Cacia, William Callahan, Eleanor Cannova-Davis, Byeong Chang, Jeffrey L. Cleland, Todd Darrington, Linda DeYoung, Bhim Dhingra, Rich Everett, Linda Foster, John Frenz, Anne Garcia, David Giltinan, Gerry Gitlin, Wayne Gombotz, Michael Hageman, Reed Harris, Debra Heller, Alan Herman, Susan Hershenson, Maninder Hora, Rebecca Ingram, Susan Janes, Madav Kamat, Dan Kroon, Rodney G. Keck, Ed Luedke, Leonard Maneri, Carl March, Louise McCrossin, Tue Nguyen, Suman Patel, Hong Qi, Michael Rohde, Barry Rosenblatt, Nancy Sahakian, Zahra Shahrokh, Steve Shire, Cynthia Stevenson, Kenneth Stoney, Suzanne Thompson, Glen Tolman, David Volkin, Y. John Wang, Nicholas Warne, Colin Watanabe

Michael F. Powell • Department of Pharmaceutical Research and Development, Genentech, Inc., South San Francisco, California 94080.

Formulation, Characterization, and Stability of Protein Drugs, Rodney Pearlman and Y. John Wang, eds., Plenum Press, New York, 1996.

1. INTRODUCTION

racemization, pyroglutamic acid formation, diketopiperazine formation, disulfide tions is one of the more challenging goals in protein formulation. Almost all protein and peptide liquid formulations are designed to be at or near the pH of maximum reactions that may occur at high or low pH, but are negligible in the pH 4.5-7.5 range. Within this window of "neutral" pH, the major degradation reactions are deamidation, cyclic imide formation, iso-Asp formation, and oxidation. Other chemi-The accurate prediction of protein stability under pharmaceutical formulation condistability of the protein, usually between pH 4.5 and 7.5. The reactions that most proteins undergo within this pH range are also narrowly defined; there are several cal reactions, including backbone cleavage (such as at the reactive Asp-Pro site) exchange, and others, occur predominantly at high or low pHs (Scheme 1).

neighboring amino acid sequence, hydrophobicity and backbone flexibility. Given a the likelihood of a particular deamidation or oxidation reaction under conditions of a The goal of this compilation on the chemical reactivity of proteins is to establish boundaries for the reactivity of Asn, Asp, Gln, and possibly Met, in the context of particular primary amino acid sequence, is it possible to predict with some certainty liquid pharmaceutical formulation? To answer this question, we surveyed the literature for protein degradation under "typical" formulation conditions (aqueous solution, pH 4.5-7.5, 2-37°C). Our goal was to address several questions:

- 1. What are the predominant site(s) of chemical degradation, either deamidation or oxidation, in the proteins reported so far? Are there many exceptions to the rules already in place for predicting reactivity of proteins in aqueous solution at neutral pH?
 - the reaction site? What percentage of reactive sites are not predictable based solely on 2. Are these predominant sites of reactivity in a protein predictable, based on the primary amino acid sequences, and the regional hydropathy and flexibility near sequence or hydrophobicity calculations?
- 3. Does the absolute local protein conformation play an overriding role in determining the reactivity of individual Asn, Gln, Asp and Met such that prediction of reaction "hot spots" based on primary sequence and hydrophobicity is a shot in the dark? Or is it just a subtle variable in the background, and other factors are predominant most of the time? There are examples in the literature where the local

of particular Asn residues (Kossiakoff, 1988). Further, potential catalytic side groups conformation and flexibility bring potential catalytic residues from distant regions in may be prevented from participating in the deamidation reaction because of hydrogen bonding or interactions with cofactors or ligands (Wright, 1991b). How much do the sequence into close proximity of the deamidating amide side chain (Wright, 1991a). Alternatively, constraints on the backbone conformation may inhibit the deamidation these effects complicate the prediction of protein chemical reactivity?

4. Is this rate of chemical reaction fast enough to compromise a 2-year shelf life should be aware of this when reading the protein degradation literature (there are at 2-8°C and at pH 4.5-7.5? Although the kinetics of protein degradation are not addressed specifically in this report, it should be realized that all amino acids will degrade if followed long enough at sufficiently high temperatures, and the reader numerous examples of protein degradation at elevated temperatures and high or low pH, and these may not be representative of protein degradation in typical protein formulations).

2. PREDICTION OF PROTEIN CHEMICAL REACTIVITY BASED ON AMINO ACID SEQUENCE ANALYSIS

comparison of these studies is easily made. This chapter attempts to fill this need in prone to hydrolytic degradation (such as deamidation, cyclic imide formation, and iso-Asp formation at Asn, deamidation at Gln, or cyclic imide and iso-Asp formation at Asp), it has been argued that the neighboring substituent effects and conformational aspects are too complicated to allow routine prediction of chemical reactivity based on amino acid sequence and hydrophobicity/flexibility calculations. The same is believed to be true for Met oxidation; there is little correlation of reactivity and neighboring substituent effect (also called the sequence effect). To date, however, there does not exist a systematic analysis of protein reactivity in solution, such that a formulation science, with the goal of attaining a better understanding of protein Although it has been known for years that certain amino acid sequences are chemical reactivity in aqueous solution.

It is appropriate at this point to introduce the caveats in this analysis, lest the unwary reader be led astray from the main focus of this paper:

1. Proteins degrade by different pathways, both chemical and physical. The data and calculations herein do not address all protein degradation pathways, but only the radation, racemization, and other common routes are not part of this analysis. Further, there is no correction made for potential glycosylation at Asn (possible in the hot-spot motifs, -XNGS., -XNGT., -XNSS., or -XNST.) which eliminates reaction at these chemical degradation pathways of deamidation, hydrolysis (cleavage), and oxidation. Degradation by other pathways including aggregation, precipitation, conformational denaturation, transamination, disulfide scrambling, reduction, enzymatic degpotential hot spots.

- 2. There are several protein purification reports in which the isolated and purified protein is heterogeneous at a particular site, often Asn. The heterogeneity is usually caused by deamidation, giving Asp and iso-Asp. Many of these papers milieu containing enzymes that may cause deamidation. There is sufficient evidence plasma medium than in aqueous solution of comparable pH and temperature (Nyberg tion pathway is different than the nonentzymatic pathway, so data generated under exposure during isolation. Further, these proteins are isolated from a biological in the literature to suggest that deamidation can be significantly faster in a cellular or et al., 1985; Q'Kelley et al., 1985). Further, it is possible that the enzymatic deamidadescribe deamidation under extreme conditions that are not applicable to the longterm storage of protein formulations, including heating to 100°C, or acetic acid "work-up" conditions must be viewed cautiously.
- been included in this analysis to thoroughly represent pharmaceutically relevant 3. Some proteins are quite small, such as secretin (27 amino acids) or insulin, and are close to the limit of being described as "large peptides." A few of these have peptides and proteins, as well as to show that the data presented herein are directly applicable to smaller polypeptides as well.
 - ied in detail, in which deamidation occurs by cyclic imide formation, giving Asp or iso-Asp, or by deamidation of Asn, directly giving Asp without cyclic imide formation. This chapter does not attempt to review the excellent work in this area, but rather attempts to capitalize on it with the goal of addressing the sites of probable reaction and their likelihood of compromising the stability of a liquid protein formulation 4. Much of the literature on protein degradation focuses on determining the For example, the mechanistic distinctions in deamidation pathways have been studdetailed mechanism of degradation and the factors that affect the reaction pathway(s) stored at 2-8°C for 1.5 years or more.
- 5. The "quality" of the different reports of protein degradation vary widely. Some studies are fairly extensive, for example, when conducted as part of a phartion were not nearly as sophisticated as they are today. For example, detecting isoand may be underreported in the protein degradation literature. The detection of other species, such as succinimide formation or a particular oxidized isoform, is also often maceutical drug development program. Others are short reports in the biochemical literature more than 20 years ago when the techniques for detecting protein degrada-Asp formation from Asp has been problematic by most chromatographic methods, difficult to detect and so may be underreported in older literature reports.

2.1. Common Chemical Degradation Pathways in Proteins

Much of our understanding of protein deamidation comes from the study of (Robinson and Rudd, 1974; Wright, 1991b; Cleland et al., 1993) and should be deamidation in small peptides. Several reviews on deamidation have been published consulted if more detail is required. In general, deamidation is catalyzed by base,

showed no substituent effect (Tyler-Cross and Schirch, 1991). In this study, it is deamidation rate, and bulky or hydrophobic residues tend to retard the deamidation rate. Figure 1 shows the substituent effect for the -X-Asn- and -X-Gln- motifs. In contrast, deamidation of peptides at pH 7.3 and 60°C containing the -XNS- motif possible that any subtle substituent effect may be masked at the higher temperature of 8; Ala, 20; Leu, 70; Pro, 106 days, respectively. Hydrophobic or bulky amino acids in the sequence -Asn-X- appear to slow the deamidation rate considerably. At the motif shows that polar amino acids in the position -X-Asn- or -X-Gln- accelerate the heat; and ionic strength and is retarded by the addition of organic solvents (Capasso by the pH and the adjacent amino acid(s). The deamidation rate for Asn is usually or -Gln-Gly-) (Robinson et al., 1973a). The higher reactivity of the -Asn-Gly-bond compared to -Asn-X- (where $X \neq Gly$) is shown by the degradation of Val-Tyr-Pro-Asn-X-Ala at pH 7.4 and 37°C. The half-lives for these peptides are X = Gly, 1.1; Ser, preceding position, there are conflicting reports as to the nature of the substituent effect. Inspection of the rate data for peptides containing the -XNA- or the -XQAet al., 1991). The rate of deamidation (as well as the detailed mechanism) is dictated greater than for Gln, and is greatest when Asn or Gln are adjacent to Gly (-Asn-Glythis reaction.

sively via the cyclic imide intermediate from pH 5-12, and via direct hydrolysis of the amide side chain at acidic pH to give the Asp-hexapeptide (Patel and Borchardt, 1990). Under similar conditions, the deamidation half-lives for a series of pentapeptides yield values ranging from 6 days (Gly-Ser-Asn-His-Gly) to 3400 days (Gly-Thr-Gln-Ala-Gly) (Robinson et al., 1973a; McKerrow and Robinson, 1974). At pH The model peptide containing the -GNA- motif was found to degrade exclu-

and charged amino acids adjacent to the reaction site accelerate the reaction rate, whereas hydrophobic or Figure 1. Correlation of deamidation half-life at pH 7.4 and 37°C with the Kyte-Doolittle hydrophobicity parameter. These data are from Robinson and Rudd (1974) and are determined by using a series of peptides defined by Gly-X-Asn-Ala-Gly. Inspection of the data show that, for both Asn and Gln, polar bulky residues decrease the rate of deamidation.

7.4 and 37°C, the rate of -Asn-Gly- bond cleavage was found to be 30- to 40-fold faster than for -Asp-Gly- (see below). A summary mechanism for Asn deamidation is shown in Scheme 2, including direct hydrolysis of the amide side chain and cyclic

imide formation. This reaction may also result in racemization, thus forming the D-amino acid analogues.

The -Asp-Gly- bond is also fairly reactive at neutral pH, yielding reversible isomerization between the Asp and iso-Asp forms via the cyclic imide intermediate (Scheme 3). Several Asp-containing peptides also yield detectable amounts of this

Scheme 3

intermediate (Bodansky *et al.*, 1967). The higher reactivity of the -Asp-Gly- bond is observed in the degradation of Val-Tyr-Pro-Asp-X-Ala at pH 7.4 and 37°C. The half-lives for these peptides are X = Gly, 41; Ser, 168; Ala, 266 days (Stephenson and Clarke, 1989). Iso-Asp also forms from Asp when Asp is adjacent to sterically hindered groups, such as in glucagon (-Asp-Tyr-) (Ota *et al.*, 1987) and calmodulin (-Asp-Gln-, -Asp-Thr-) (Ota and Clarke, 1989). Oliyai *et al.* (Oliyai and Borchardt, 1993) determined the effect of pH on the degradation of a model hexapeptide, in which the rate constant for -Asp-Gly- hydrolysis below pH 3 at 37°C was 7.5 × 10⁻⁴ M⁻¹s⁻¹, corresponding to a shelf life at pH 5 of approximately 0.5 year.

Asp is also reactive under acid conditions if the adjacent amino acid is proline, as in -Asp-Pro- (Schultz, 1967). For example, the reaction half-life of the -Asp-X-peptide bond in 0.015 N HCl at 110°C is much more rapid for Pro than for other amino acids: X = Pro, 11; Leu, 84; Ser, 108; Phe, 130; Lys, 228 min. The enhanced rate of this hydrolytic reaction is due to the increased leaving-group ability of the protonated proline due to the higher basicity of the proline nitrogen (Scheme 4). Model peptide studies suggest that this reaction is not sufficiently rapid at pH 5–7 and 2–8°C to compromise an aqueous-based protein formulation, but one should pay attention to

A Compendium of Common Protein Reactive Sites

this degradation reaction as it is unlikely that the clipped fragments of the parent are biologically active.

= Ser (89%) (Patel and Gitlin, 1995). In the same study it was shown that the pH of of the N-terminal nitrogen on the amide carbonyl between the second and third amino prevented by blocking the α -amino group. Unfortunately, there is a paucity of data for this reaction, especially at 2-8°C, making a stability prediction difficult. It has variable amounts of N-terminal degradation for X = Ala (83%), X = Val (35%), and X maximum stability for DKP formation of the Ala-Pro-Ala- peptide was approximately pH 4.5. The mechanism of DKP formation involves the nucleophilic attack There are other hydrolytic reactions that may compromise protein shelf life at pH 5-7, such as diketopiperazine (DKP) and pyroglutamic acid formation (Steinberg and Bada, 1983). Peptides containing glycine as the third amino acid from the N-termini undergo DKP formation much more easily than peptides with other amino been shown that there is a modest substituent effect at position I for DKP formation; reaction of X-Pro-Ala-Arg-Ser-Pro-Ser-Thr at 55°C and pH 7.0 for 3 days showed acids in the third position (Sepetov et al., 1991). Further, DKP formation is enhanced by incorporation of Pro or Gly into positions 1 or 2, whereas cyclization is completely acids (Scheme 5).

homo 5

The reaction of N-terminal Gln is faster than predicted based on other amino acids, including Asn (Blomback, 1967). In this case, the Gln-amide undergoes nucleophilic attack by the N-terminal amino group, giving pyroglutamic acid (Scheme 6). Fukawa has shown that Gln-Gly reacts much faster than the other similar peptides studied, including Pro-Gln-Gly and Leu-Gln-Gly (Fukawa, 1967). Again, there are several kinetic studies of pyroglutamic acid formation at higher tempera-

tures, but few at 2–8°C. The available data in small peptides however, may model the reaction rates of pyroglutamic acid seen in proteins with the Gln-X-Gly- N-terminal sequence, in that proteins often show flexible and disordered N-terminal sequences with little secondary structure. Another interesting reaction of glutamate has been observed for the chimeric Fab antibody fragment, ReoPro, wherein incubation of this protein at 37°C and pH 7.2 gives pyroglutamate, as identified by IEF and hydrophobic interaction chromatography (Everett *et al.*, 1995). The formation of pyroglutamic acid should not be universally considered a "degradation product," as nature has protected several proteins from aminopeptidase attack by this modification.

Another major degradation route for proteins in liquid formulations is thermal oxidation. The terminology "thermal" protein oxidation is actually a misnomer, as the degradation rate is often governed by trace amounts of peroxide, metal ions, light, base, and free-radical initiators (Johnson and Gu, 1988). Although there are several reactive amino acids that are known to oxidize (Met, Cys, cystine, His, Trp, and Tyr), a review of the literature shows that, under mild oxidative conditions at pH 5–7, Met is the predominant amino acid that oxidizes (Stadtman, 1990). Met oxidizes by both chemical and photochemical pathways to give methionine sulfoxide and, under extremely oxidative conditions (rarely found in protein pharmaceutical formulations), methionine sulfone (Scheme 7).

Scheme 7

Even though a great deal is known about reactive oxygen species, the presence (or absence) of these initiators makes the prediction of autooxidation in parenteral formulations imprecise. For example, free-radical oxidation involves the separate effects of initiation, propagation, and termination. Further, there are several reactive oxygen species including singlet oxygen $^{1}O_{2}$, superoxide radical O_{2}^{-} , alkyl or hydrogen peroxide ROOH or $H_{2}O_{2}$, hydroxyl radicals (HO· or HOO·), and halide oxygen complexes (CIO⁻) (Halliwell and Gutteridge, 1990). There is limited published data on the oxidation of proteins in pharmaceutical formulations because only a few of the

A Compendium of Common Protein Reactive Sites

proteins developed thus far have shown significant amounts of oxidation. Methionine residues in polypeptides show widely varying reactivity, as some Met residues are protected from oxidation by steric effects or inaccessibility, being buried in the hydrophobic core of the protein (Teh *et al.*, 1987). The second-order rate constants (M⁻¹s⁻¹) of Met oxidation by hydrogen peroxide have been determined at room temperature for Met free amino acid (0.93), Ac-Ser-Trp-Met-Glu-Glu-CONH₂ (1.07), Ac-CysNH₂-S-S-AcCys-Gly-Met-Ser-Thr-CONH₂ (1.07), and the Met in relaxin B chain at positions 25 and 4 (Met B²⁵, 0.85; Met B⁴, 0.34) (Nguyen *et al.*, 1993a). This study shows that the peroxide-catalyzed degradation of Met has little temperature dependence (ΔH ~ 10-12 kcal/mol) and is negligibly effected by pH or ionic strength. The amount of peroxide in some excipients such as polyethylene glycols and surfactants varies widely (Hamburger *et al.*, 1975; McGinity *et al.*, 1975) and should be used cautiously in the formulation of Met-containing proteins. Using the data of Nguyen *et al.* (1993a), it is estimated that 1 nM peroxide in a Metcontaining formulation would shorten the shelf life to less than 2 years.

2.2. Calculation of Protein Hydropathy and Flexibility

The general literature, and Genentech's GenBank data base, were surveyed for proteins that exhibit deamidation, hydrolysis, cyclization, or oxidation. Also included are a few unpublished observations from reliable laboratories. The protein sequences were scanned for the reactive residues, Asn, Asp, Gln, and Met, and the motifs surrounding these residues were tabulated as "reactive sites," although it is recognized that not all Asn, Asp, Gln, or Met are predicted to be reactive. To aid the reader, only the highly reactive motifs were labeled on the hydroflex plots (see below), and these included Asn-Gly, Asn-Ser, Asp-Gly, Gln-Gly, Asp-Pro, and Met.

The primary amino acid sequences were then used to construct "hydrofflex" plots, consisting of the calculated hydropathy of the amino acid sequence, as well as its flexibility (see below). Hydropathy has been used to calculate antigenic determinants, as well as the surface characteristic of proteins (Hopp and Woods, 1981, 1983; Hopp, 1985, 1986). The hydropathy plot was constructed using the "hydro" program that scans the protein (or actually the individual hydropathy values assigned to each amino acid in the protein) with a window of specified size and computes the average hydrophobicity of each window (Watanabe, 1991). For example, a model protein shown in Scheme 8 is subjected to a window size of six amino acids, and the average hydropathy (ϕ) calculated.

Using this nomenclature, a hydropathy plot is simply a plot of ϕ versus amino acid number for the entire amino acid sequence. A window of 6 was chosen for several reasons: a window size of approximately 7–10 is believed to be optimal for searching for interior hydrophobic and exterior hydrophilic regions. A window size of 6–7 is believed to be optimal for searching for antigenic regions. Windows of sizes 5, 6, 7, and 10 amino acids were tested for several proteins with little visual difference

at position 3) at position 4) at position 5)

A Compendium of Common Protein Reactive Sites

. 41	(41.	(#1 = hydropathy average of ASDFGH, plotted	average	οę	ASDFGH,	plotted
Z b -	.2∳)	(*2.= hydropathy average of SDFGHC, plotted	average	of	SDFGHC,	plotted
B	(4 3	(43 = hydropathy average of DFGHCM, plotted	average	oę	DFGHCM,	plotted
\$	•	(44 = hydropathy average of FGHCMN, plotted	average	of	FGHCMN,	plotted
¥	(\$ 2	(ϕS = hydropathy average of GHCMNQ, plotted	average	of	GHCMNQ,	plotted
ASDFGHCMNQW						

at position 6) position 7)

123456789...

plot calculations is approximately 5 (see below), and so a window size of 6 amino acids was selected as a compromise between the methods for consistency. We chose in the hydropathy plots (data not shown). The optimal window size for the flexibility the Kyte-Doolittle scale for our analysis of the various proteins. The individual amino acid hydropathy values used (Kyte-Doolittle parameters) are shown in Table I along with several other hydropathy scales for comparison.

values of $\boldsymbol{\varphi}$ denote regions of predicted high hydrophobicity; large negative values of φ denote regions of hydrophilicity. Although it is likely that hydrophobic regions be held as absolute from a simple calculation (the X-ray crystal, or NMR solution structure are the definitive indicators which amino acids are found in the core and For our purposes, the absolute values of the hydropathy values $\boldsymbol{\varphi}$ shown in the plots do not have significance; only the relative scale is important. Large positive tend to be found near the core of the protein, this is only a generalization and cannot which are found on the exterior of the protein).

amino acids available in nature. The individual amino acid flexibility values are shown in Table I. Again, the absolute flexibility values do not have significance, but only the relative position on the plot. In the normalized plots, regions of flexibility normalization to plot with the hydrophobicity values. The mean value of zero for the flexibility plots was determined by computing the average flexibility of all of the proteins in the GenBank database, and included a statistical correction for the relative The flexibility plots were calculated in a similar fashion using the parameters of hydrophobicity and side-chain volume according to Ragone et al. (1989). In this case, the relative flexibility scales gave values ranging from 1000 to 3000 and required have values less than zero; constrained regions have large positive values.

methods. Conveniently, these plots provide at a single glance a visual picture of the protein. Reactive regions are typically found in large negative values, and stable regions found in large positive values of both hydropathy and flexibility (using either different than the hydropathy plots, largely because they are the cross product of hydropathy and amino acid side-chain volume (a correlate of "flexibility). So as to thy plot and the flexibility plot are shown together to compare and contrast these Engleman, and Eisenberg hydropathy scales; all gave similar plots regardless of the nydropathy scale used (data not shown). The flexibility plots were often quite contrast the two major ways to analyze primary sequence analysis, the Kyte hydropa-Hydropathy plots were calculated for several proteins using the Kyte, Hopp, scale).

Table I. Summary of Hydropathy and Flexilibity Values for Individual Amino Acids^a

AA	Kyte	Норр	Engelman	Eisenberg	Ragoné ^b
A (Ala)	1.8	0.5	1.6	0.62	-0.91
C (Cys)	2.5	1.0	2.0	0.29	-0.17
D (Asp)	-3.5	-3.0	-9.2	-9.0	-0.68
E (Glu)	-3.5	-3.0	-8.2	-0.74	-0.68
F (Phe)	2.7	2.5	3.7	1.19	1.37
G (Gly)	-0.4	0.0	1.0	0.48	-1.40
H (His)	-3.2	0.5	-3.0	-0.4	0.25
I (Ile)	4.5	1.8	3.1	1.38	1.09
K (Lys)	-3.9	-3.0	-8.8 8.8	1.50	0.13
L (Leu)	3.7	1.8	2.8	1.06	0.89
M (Met)	1.9	1.3	3.4	0.64	0.83
N (Asn)	-3.5	-0.2	-4.8	-0.78	-0.42
P (Pro)	-1.6	0.0	-0.5	0.12	-0.52
Q (Gln)	-3.5	-0.2	-4.1	-0.85	90:0
R (Arg)	-4.5	-3.0	12.3	-2.53	0.71
S (Ser)	-0.9	-0.3	9.0	-0.18	-1.01
T (Thr.)	-0.7	0.4	1.2	-0.05	-0.58
V (Val)	4.2	1.5	2.6	1.08	0.52
W (Тrp)	-0.9	3.4	1.9	0.81	2.00
Y (Tyr)	-1.3	2.3	-0.7	0.26	1.21

"Kyte and Doolittle (1982); Hopp and Woods (1981, 1983); Engelman et al. (1986); Eisenberg (1984); Ragoné et al. (1989).

3. SUMMARY OF PROTEIN STABILITY IN AQUEOUS SOLUTION

ions consisting of aqueous solution of pH $\sim 4.5-7.5$) where there is evidence for to "guesstimate" regions of preferred chemical reactivity. In this analysis it is probability of being on the "outside" of the protein, and should be fairly flexible so as to allow the correct geometry for reaction. The following pages are summaries of The strategy used herein is straightforward: (i) Assemble all of the data on data obtained from protein purification studies (if controls are available showing reaction in aqueous solution). These data may have some peculiarities due to enzyme catalyzed reactions. (ii) Compile the relevant primary sequence information for these (iii) Analyze the primary sequence in terms of hydrophobicity and flexibility in order assumed that these reactive regions are also hydrophilic, and thus have a higher hese parameters for different proteins. Included in each summary is the primary degradation of proteins in pharmaceutical liquid formulations (or in model formuladegradation by hydrolysis, cyclization, deamidation, or oxidation. Include salient proteins, including a subset analysis of the reactive groups Asn, Asp, Gln, and Met.

an average window of six amino acids of approximately +1.0 and -1.0, Corrected to provide a mean at ≈ 0 and maximum and minimum values over

sequence of the protein, the motifs for all Asn, Asp, Gln, and Met, the calculated hydroflex plot, a short summary of the degradation pathway(s) reported in the literature, and comments on how predictive the primary sequence and the hydroflex plot were for protein degradation in aqueous solution (albeit retrospectively). Further mention is noted as to the reliability of the data for prediction of peptide/protein degradation under neutral pH formulation conditions.

Adrenocorticotropin (ACTH) (39 residues)

SEQUENCE

SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF

REACTIVE SITES

.Q.(0)	
.M.(1)	4 SME
.D.(1)	29 EDE
.N.(1)	25 PNG

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ACTH

ACTH contains only a single site susceptible to hydrolytic degradation, Asn-25, with the -PNG- motif. Further, Asn-25 is located in a region predicted to be fairly flexible and hydrophilic, suggesting that this is the predominant reactive residue. Based on this, ACTH is expected to degrade primarily at Asn-25. Under neutral pH conditions, the 39-mer ACTH

A Compendium of Common Protein Reactive Sites

peptide underwent deamidation at Asn-25 to give the cyclic imide, and the Asp-25 and iso-Asp-25 ACTH variants (Aswad, 1984; Patel, 1993). The reactivity of Asn-25 was studied extensively in the parent hormone and in smaller peptides of similar motif about Asn (such as the hexapeptide VTPNGA). No oxidation at Met was reported.

Agglutinin (171 residues)

SEQUENCE

QRCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGA-TCTNNQCCSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQW-GFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYCGA-GCQSGGCDG

REACTIVE SITES

	200 200 200 200 200 200 200 200 200 200
.Q.(11)	92 90 106 122 165
۳.	6 EQG 20. SQY 36 CQN 49 SQA 59 NQC 63 SQY
.M.(2)	10 NME 26 GMG
.D.(5)	29 GDY 86 ADI 129 TDK 135 KDA 170 CDG
	PNN NNL TNN NNY
(10) V.(10)	100 101 143 144
ج	9 SNM 14 PNN 15 NNL 37 QNG 57 TNN 58 NNQ

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF AGGLUTININ

The hydroflex plot shows that there are a few predicted sites of chemical reactivity, notably the Asn-Gly at position 37, and possibly the Asp-Gly at the C-termini. The nucleotide sequence code for agglutinin encodes for Asn at position 37 (within the -QNG- motif), yet amino acid sequence analysis indicated that Asp was the predominant amino acid observed at this site (Wright and Raikhel, 1989). It was not determined if this discrepancy was due to deamidation in the intact protein or in the proteolytically generated peptides used in the sequencing. No oxidation of Met was reported.

Aldolase (363 residues)

SEQUENCE

PHSHPALTPEQKKELSDIAHRIVAPGKGILAADESTGSIAKRLQSIGTENTEENRRFYR-QLLLTADDRVNPCIGGVILFHETLYQKADDGRPFPQVIKSKGGVVGIKVDKGVVPLA-GTNGETTTQGLDGLSERCAQYKKDGADFAKWRCVLKIGEHTPSALAIMENANVLA-RYASICQQNGIVPIVEPEILPDGDHDLKRCQYVTEKVLAAVYKALSDHHIYLEGTLL-KPNMVTPGHACTQKYSHEEIAMATVTALRRTVPPAVTGVTFLSGQQSEEEASINLNA-INKCPLLKPWALTFSYGRALQASALKAWGGKKENLKAAQEEYVKRALANSLACQG-KYTPSGQAGAAASESLFISNHAY

REACTIVE SITES

.Q.(16)	11 EQK	44 LQS	60 RQL	85 YQK	95 PQV	125 TQG	136 AQY	178 CQQ	179 QQN	202 CQY	241 TQK	274 GQS	306 LQA	324 AQE	339 CQG
.M.(3)	164 IME	232 NMV	250 AMA				٠								
.D.(14)	IZ SDI	33 ADE	66 ADD	67 DDR	88 ADD	89 DDG	109 VDK	128 LDG	148 KDG	143 ADF	193 PDG	195 GDH	197 HDL	218 SDH	
.N.(14)	SO ENT	54 ENR	70 VNP	119 TNG	166 ENA	168 ANV	180 QNG	231 PNM	282 INL	284 LNA	287 INK	319 ENL	334 ANS	360 SNH	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ALDOLASE

This molecule has several predicted degradation sites. Isolation of rabbit muscle aldolase and subsequent amino acid sequencing of the carboxyl-terminal peptide liberated by chymotrypsin hydrolysis shows that Asn undergoes deamidation to give Asp within the motif, ISNHAY (Midelfort and Mehler, 1972). It has been pointed out that this Asn may be activated by the neighboring His, but otherwise the Asn-Ala motif is usually considered poorly reactive, as based on data obtained from small peptides. In fact, several other proteins have the -XNH-motif, including ARSP, anti-HER-2, 4D5 antibody, 17-1A antibody, CD4-IgG, chloroperoxidase, acidic-FGF, HXGT, IFN-B, OKT-3 antibody, SHMT, and t-PA, and showed no sign of reacting at this site, indicating that -XNH- is not particularly activating unless composed of -SNH-. In this study, no control experiments were carried out to show that the same deamidation reaction occurs in pH 4.5–7.5 buffer, and reaction at this site may be enzymatic in nature. Further, insufficient controls were carried out to determine if deamidation, cyclization, or oxidation occurred at many of the other sites predicted to be labile.

Amylin Antagonist (24 residues)

SEQUENCE

Ac-LGRLSQELHRLQTYPRTNTGSNTY-CONH,

REACTIVE SITES

.Q.(2)	6 SQE
.M.(0)	
.D.(0)	
.N.(2)	18 TNT 92

347 GQA

HYDROFLEX PLOT

16

PREDICTED REACTIVITY AND DEGRADATION OF AMYLIN ANTAGONIST

(no account for these modifications was made in the hydroflex plot). Inspection of the hydroflex plot shows that this peptide should be quite stable in that it is devoid of the which is reported to activate reactivity at Asn only slightly. The solution stability of this amylin antagonist was investigated under acidic conditions (pH 2.6-5.0), approaching the desired pH range for parenteral formulations. Deamidation at Asn-22 was observed, with a rate minimum at pH 4.3, resulting in the formation of iso-Asp-22 and Asp-22 (3.2.2), consistent with cyclic "traditional" hot spots for chemical degradation. Asn-18 and Asn-22 are adjacent to Thr, This peptide is acylated at the N-termini and has the carbamoyl moiety at the C-termini imide formation. Deamidation at Asn-18 was not detected (Darrington, 1995).

Amyloid-Related Serum Protein (ARSP) (104 residues)

SEQUENCE

RSFFSFLGEAFDGARDMWRAYSNMREANYIGSDKYFHARGNYDAAKRGPGGAWA-AEVISNARENIQRFFGHDAENSLADQAANEWGRSGKDPNHFRPAGLPEKY

REACTIVE SITES

	.N.(8)	8		.D.	.D.(7)	.M.(2)	.Q.(2)
23 SA	ΣŽ	2	ENI	12 FDG	72 HDA	17 DMW	66 IQR
28 AI	ANY	75	ENS	16 RDM	79 ADQ	24 NMR	80 DQA
41 G	λ¥	83	ANE	33 SDK	91 KDP		
80 SP	SNA	93		43 YDA			

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF AMYLOID-RELATED SERUM PROTEIN

shows microheterogeneity at Asn-23 (-SNM-), Asn-60 (-SNA-), and Asn-75 (-ENS-), where 1983). No controls were carried out to determine if this deamidation was due to isolation or only the later motif (-XNS-) is predicted to be chemically reactive at neutral pH (Sletten et al., differences in protein expression from different patients. Insufficient data was presented to Isolation of amyloid-related serum protein (ARSP) gives a 104-amino-acid protein that allow the estimation of degradation at pH 4.5-7.5 at 5°C.

Angiogenin (123 residues)

SEQUENCE

EDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICE-NKNGNPHRENLRISKSSFQVTTCKLHGGSPWPPCQYRATAGFRNVVVACENGLPVH-LDQSIFRRP

REACTIVE SITES

.Q.(5)		19 PQG	77 FQV	93 CQY	117 DQS	'
.M.(1)	30 IMR					
.D.(6)	2 END	15 YDA	22 RDD	23 DDR	41 KDI	116 LDQ
N.(9)	68 ENL	102 RNV	109 ENG			
4.	3 DNS	43 INT	49 GNK	59 ENK	61 KNG	63 GNP

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ANGIOGENIN

The hydroflex plot shows that Asn-61 and Asn-109 are likely spots for reactivity, in that they are located adjacent to Gly and are found in moderately flexible regions. A third reactive site could also be Asn-3 in the -DNS- motif. Incubation of angiogenin at pH 8 and 4°C for 2 years resulted in approximately 35% loss of the original molecule (Hallahan et al., 1992). Degradation occurred simultaneously at Asn-61 (-KNG-) and Asn-109 (-ENG-), which likely accounts for their observation of a third (and unidentified) acidic product—the doubly deamidated molecule. Alternatively, deamidation may have occurred at Asn-3, in that the reaction product of this third reaction product was not identified. Deamidation resulted in a dramatic loss in biological activity.

Anti-HER-2 Heavy Chain (450 residues)

SEQUENCE

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNG-YTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGGGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT-SCWHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD-KTHTCPPCPAPELLGGPSVFLFPKPKDTLMISRTPEVTCVVDVSHEDPEVKFNWY-VDGVEVHNAKTRPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE-KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPEN-NYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS-PGK

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

.Q.(16)	3 VOL	13 VQP	39 RQA	82 LQM	112 GQG	178 LQS	199 TQT	298 EQY	314 HQD	345 GQP	350 PQV	365 NOV	389 GQP	421 WQQ	422 QQG	441 TOK	,		
.M.(5)	83 QMN	107 AMD	255 LMI	361 EMT	431 VMH														
.D.(18)	31 KDT	62 ADS	73 ADT	90 EDT	102 GDG	108 MDY	151 KDY	215 VDK	224 CDK	252 KDT	268 VDV	273 EDP	283 VDG	315 QDW	379 SDI	402 LDS	404 SDG	416 VDK	
.N.(19)	28 FNI	SS TNG	77 KNT	84 MNS	162 WNS	204 CNV	206 VNH	211 SNT	279 FNW	289 HNA	300 YNS	318 LNG	328 SNK	.364 KNQ	387 SNG	392 ENN	393 NNY	424 GNV	437 HNH

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ANTI-HER-2 ANTIBODY HEAVY CHAIN

Inspection of the amino acid sequence for the anti-HER-2 heavy chain shows that there are several reactive sites, including predicted deamidation at Asn-318 in the -LNG- motif, Asn-387 in the -SNG- motif, iso-Asp formation at Asn-55 in the -TNG- motif, at Asp-102 in the

-GDG- motif, at Asp-283 in the -VDG- motif, and Asp-404 in the -SDG- motif. This antibody is formulated as a liquid in 5 mM isotonic acetate, pH 5.0, 0.01% Polysorbate 20. After 1.5 years at 2–8°C storage, it was shown using an ion-exchange assay the formation of cyclic imide at Asp-102 (located in the CDR3 region); this identification of succinimide intermediate was done also carried out by HIC after alkaline hydroxylamine cleavage (Kwong and Harris, 1985). This degradation product, as well as the iso-Asp product (Harris *et al.*, 1995), has been isolated and shown to retain full biological activity. All other assays were virtually unchanged after storage at 2–8°C. Although this protein did not show oxidation under formulation cc.nditions at 2–8°C, rapid oxidation of Met-255 and Met-431 was catalyzed by *t*-butylhydroper-xide (Shen *et al.*, 1996).

Anti-HER-2 Light Chain (214 residues)

SEQUENCE

DIQMTQSPSSLSASVGDRVTTCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSG-VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVF-IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST-YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

REACTIVE SITES

.Q.(15)	3 IQM	sot 9	27 SQD	37 YQQ	38 QQK	79 LQP	89 CQQ	90 оон	100 GQG	124 EQL	147 VQW	155 LQS	160 SQE	166 EQD	199 НQG
.M.(1)	4 QMT														
.D.(9)	17 GDR	28 QDV	70 TDF	82 EDF	122 SDE	151 VDN	167 QDS	170 KDS	185 ADY						
.N.(6)	30 VNT	137 LNN	138 NNF	152 DNA	158 GNS	210 FNR									

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF ANTI-HER-2 ANTIBODY LIGHT CHAIN

Inspection of the amino acid sequence for the anti-HER-2 light chain shows that there are few reactive sites, perhaps the most reactive being the single Met. Gln-Gly appears in the HER-2 light chain, but is the least reactive of the traditional (Asn-Gly, Asn-Ser, Asp-Gly, Asp-Pro, Met, and Gln-Gly) hot spots. This absence of hot spots suggests that the light chain of anti-HER-2 should be fairly stable compared to the heavy chain. Some deamidation of the light chain has been observed at Asn-30 in CDR1 of the light chain during the cell culture process, typically 10–12%. Deamidation of Asn-30 in one chain resulted in an ~18% decrease in activity as measured in the ECD plate binding assay (Harris, 1995; Shire, 1995), but little has been observed at pH 5. This residue is not a traditional hot spot, but is predicted to be in a flexible hydrophilic region. All other assays are virtually unchanged at 2–8°C storage.

Antibody 4D5 Heavy Chain (450 residues)

SEQUENCE

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNG-YTRYADSVKRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGTHYTFAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDK-THTCPPCPAPELLGGPSVFLFPRFWDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV-DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK-TISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY-KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

REACTIVE SITES

.Q.(16)	3 VQL	13 VQP	39 RQA	82 LQM	112 GQG	178 LQS	199 TQT	298 EQY	314 HQD	345 GQP	350 PQV	365 NQV	389 GQP	421 WQQ	422 QQG	441 TOK	,		
.M.(5)	83 QMN	107 AMD	255 LMI	361 EMT	431 VMH														
.D.(18)	31 KDT	62 ADS	73 ADT	90 EDT	102 GDG	108 MDY	151 KDY	215 VDK	224 CDK	252 KDT	268 VDV	273 EDP	283 VDG	315 QDW	379 SDI	402 LDS	404 SDG	416 VDK	
.N.(19)	28 FNI	55 TNG	77 KNT	84 MNS	162 WNS	204 CNV	206 VNH	211 SNT	279 FNW	289 HNA	300 YNS	318 LNG	328 SNK	364 KNQ	387 SNG	392 ENN	393 NNY	424 GNV	437 HNH

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF 4D5 ANTIBODY HEAVY CHAIN

There are a number of predicted potentially reactive deamidation and isomerization sites in the 4D5 heavy chain. Inspection of the primary amino acid sequence for the 4D5 heavy chain shows that the most reactive is predicted to be Asn-55 within the -TNG- motif in the

A Compendium of Common Protein Reactive Sites

CDR2 domain, Asn-318 within the -LNG- motif, Asn-387 within the -SNG- motif. All reside in a region predicted to be hydrophilic and flexible. There are several other hot spots, including several Asp-Gly (that may isomerize to form iso-Asp-Gly), and three Met residues. The Asp-Gly within the -GNG- motif may be particularly labile, as aspartic acid residues adjacent to C-terminal glycine residues are very susceptible to imide formation and subsequent isomerization (Cleland et al., 1993). This antibody was found to be stable for more than 12 months at 22-8°C by all methods tested, and showed some loss in activity at 25°C and 40°C (Harris, 1995; Shire, 1995). Decrease in activity did not correlate with formation of aggregates, but detected by IEF. No conclusive identification of the reactive site in the heavy chain (if at all) was made.

Antibody 4D5 Light Chain (214 residues)

SEQUENCE

DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSG-VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVF-IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST-YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

REACTIVE SITES

.Q.(15)	3 IOM	50T 9		_	_				100 GQG	147 VQW	160 SQE	199 HOG
.M.(1)	4 OMT	į.										
.D.(9)	17 GDR	28 QDV	70 TDF	82 EDF	122 SDE	151 VDN	167 QDS	170 KDS	185 ADY			
.N.(6)	30 VNT	37 LNN	38 NNF	52 DNA	158 GNS	10 FNR						

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF 4D5 ANTIBODY LIGHT CHAIN

in the generation of acidic bands as detected by IEF. No conclusive identification of the reactive Inspection of the primary amino acid sequence for the 4D5 light chain shows that there are few reactive sites, perhaps the most reactive being Asn-158 within the Asn-Ser motif, as it resides in a predicted hydrophilic and flexible region. None of the hot spots reside in the CDR domain. This antibody, formulated as a liquid in isotonic 5 mM acetate at pH 5.0 with 0.01% polysorbate 20, was stable for more than 12 months at 2-8°C (Shire, 1995). At 25°C and 40°C there were decreases in activity (up to 77%). The decrease in activity did not correlate with formation of aggregates, but appeared to be related to alterations in the protein which result site in the light chain (if at all) was made.

Antibody 17-1A Heavy Chain (446 residues)

SEQUENCE

TOTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKPKGSVR-QVQLQQSGAELVRPGTSVKVSCKASGYAFTNYLJEWVKQRPGOGLEWJGVINPGSG-GTNYNEKFKGKATLTADKSSSTAYMQLSSLTSDDSAVYFCARDGPWFAYWGQGTLV-TVSAAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSSGVHTF-APQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNTEPVLD-PAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKC-PAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVDVSEDDPDVQISWFVNNVEVHTAQ-SDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK

REACTIVE SITES

A Compendium of Common Protein Reactive Sites

Ζ.	N.(19)	.D.	D.(19)	.M.(7)	Ò	Q.(16)
1 TNY				81 YMQ	3 VOL	287 AOT
2 INP				251 LMI	5 100	289 TOT
YNT 6	382 TNN	SGG 06	294 EDY	313 WMS	9 00S	308 IOH
I YNE				357 EMT	39 KOR	310 HOD
SNW 6				367 CMV	43 GOG	346 POV
O CNA				372 FMP	82 MOL	361 KOV
12 PNL				405 FMY	108 GOG	,
NNA 6					174 LOS	
-280 NNV					194 SOS	
SNX 90					273 VQI	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF 17-1A ANTIBODY HEAVY CHAIN

should be very reactive in that it resides within the -NNG- motif, located in a hydrophilic and Lys in a nonenzymatic process (enzyme inhibitors had no effect on this process, and there was that this novel pathway was not the only reaction pathway for the 17-1A antibody, as numerous The observed reaction of the 17-1.A antibody occurred largely at the C-terminus, with loss of no C-terminal reaction of other antibodies sensitive to C-terminal clipping when incubated with 17-1A antibody). This reaction pathway was found to be stabilized at acid pH. It is likely IEF bands were observed over time. This protein does, however, represent another example The primary amino acid sequence for the 17-1A antibody heavy chain shows that Asn-383 slexible region. There are several other reactive sites, including Asp-Pro, Asp-Gly, and Met. of an "unexpected" protein reaction at a non-hot-spot site.

SEQUENCE

GVPDRFTGSGSATDFTLTISSVQAEDLADYHCGQGYSYPYTFGGGTKLEIKRADAAP-NIVMTQSPKSMSMSVGERVTLTCKASENVVTYVSWYQQKPEQSPKLLIYGASNRYT-TVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSK-DSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

REACTIVE SITES

.Q.(9)	6 TQS	37 YQQ	38 QQK	42 EQS	79 VQA	90 GQG	124 EQL	156 RQN	166 DQD		
.M.(4)	4 VMT	11 SMS	13 SMS	175 SMS							
.D.(11)	60 PDR	70 TDF	82 EDL	85 ADY	110 ADA	143 KDI	151 IDG	165 TDQ	167 QDS	170 KDS	184 KDE
.N.(10)	28 ENV	53 SNR	137 LNN	138 NNF	145 INV	157 QNG	161 LNS	190 HNS	210 FNR	212 RNE	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF 17-1A ANTIBODY LIGHT CHAIN

should be reactive in that it resides within the -QNG- motif, although its motif is located in a region of only modest hydrophilicity and predicted chain flexibility. There are several other largely on the heavy chain (see previous entry), although the authors observed that several new IEF bands were found over time, supportive of possible reaction at this Asn-Gly hot spot The primary amino acid sequence for the 17-1A antibody light chain shows that Asn-157 reactive sites, including Asp-Gly and Met. The degradation of the 17-1A antibody occurred (Everett, 1995). No oxidation of Met was reported.

Antibody E25 Light Chain (218 residues)

SEQUENCE

AAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ-YLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHEDPYTFGQGTKVEIKRTV. DIQLTQSPSSLSASVGDRVTITCRASQSVDYDGDSYMNWYQQKPGKAPKLLIYAAS-DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSSPVTKSFNRGEC

REACTIVE SITES

.Q.(15)	3 IQL	6 TQS	27 SQS	41 YQQ	42 QQK	83 LQP	93 CQQ	94 QQS	104 GQG	128 EQL	151 VQW	159 LQS	164 SQE	170 EQD	203 HQG
.M.(1)	37 YMN	~							,						
.D.(12)	17 GDR	30 VDY	32 YDG	34 GDS	74 TDF	86 EDF	98 EDP	126 SDE	155 VDN	171 QDS	174 KDS	189 ADY			
.N.(6)	38 MNW	141 LNN	142 NNF	156 DNA	162 GNS	214 FNR					. •				

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ANTIBODY E25 LIGHT CHAIN

The E25 antibody is a humanized monoclonal antibody that binds to human IgE and is under development for the treatment of asthma and other allergic diseases. The light chain has several reactive sites, including Asn-Gly, Asp-Gly, Asp-Pro, a single Met and Gln-Gly that may show chemical instability in aqueous solution. Recent studies have demonstrated the lability of the Asp-32 (in the YDG motif) towards isomerization, forming both cyclic imide and iso-Asp variants upon storage at pH 5.2 at room temperature (Cacia et al., 1996). The Asp-32 residue also converts to the iso-Asp residue upon storage at pH 7.2 at room temperature, presumably through a cyclic imide intermediate. Both iso-Asp-32 and the cyclic imide variants show reduced binding to IgE. No other significant degradation products have been detected.

Antibody E25 Heavy Chain (451 residues)

SEQUENCE

EVQLVESGGGLVQPGGSLRLSCAVSGYSITSGYSWNWIRQAPGKGLEWVASITYDG-STNYNPSVKGRITISRDDSKNTFYLQMNSLRAEDTAVYYCARGSHYFGHWHFAVW-GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT-SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD-KTHTCPPCPAPELLGGPSVFLPPKPDTLMISRTPEVTCVVVDVSHEDPEVKFNWY-VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA-PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE-NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL-SV SPGK

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

.Q.(16)	3 VOL	13 VOP	40 ROA	82 LOM	113 GÕG	179 LOS	200 TOT	299 EOY	315 HQD	346 GOP	351 POV	366 NOV	390 GOP	422 WOO	423 00G	442 TOK	,			
.M.(4)	83 QMN	256 LMI	362 EMT	432 VMH																
.D.(16)	55 YDG	73 RDD	74 DDS	90 EDT	152 KDY	216 VDK	225 CDK	253 KDT	269 VDV	274 EDP	284 VDG	316 QDW	380 SDI	403 LDS	405 SDG	417 VDK				
.N.(20)	36 WNW	S9 TNY	61 YNP	77 KNT	84 MNS	163 WNS	205 CNV	. 207 VNH	212 SNT	280 FNW	290 HNA	301 YNS	319 LNG	329 SNK	365 KNQ	388 SNG	393 ENN	394 NNY	425 GNV	. 438 HNH

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ANTIBODY E25 HEAVY CHAIN

The E25 antibody is an anti-IgE antibody under development for the treatment of asthma and other allergic diseases (Presta et al., 1993). This protein has several reactive sites, including

A Compendium of Common Protein Reactive Sites

Asn-Gly, Asn-Ser, Asp-Gly, Asp-Pro, Met and Gln-Gly that may show chemical instability in aqueous solution. Recent studies have shown no significant degradation under mild conditions. In particular, Asp-55 (in the YDG motif) did not show evidence of isomerization, even though a similar Asp-Gly motif in the E25 light chain did show isomerization (see E25 light chain) (Cacia et al., 1996). This variation in reactivity for Asp-Gly further illustrates the dependence of reactivity on tertiary structure, as well as on sequence motifs (Kossiakoff et al., 1988).

Antibody Light Chain-k (mouse) (214 residues)

SEQUENCE

NIVMTQSPKSMSMSVGERVTLTCKASENVVTYVSWYQQKPEQSPKLLIYGASNRYT-GVPDRFTGSGSATDFTLTISSVQAEDLADTHCGQGYSYPYTFGGGTKLEIKRADAAP-TVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLBSBTXWBSKD-STTSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

REACTIVE SITES

.Q.(8)	6 TQS 37 YQQ 38 QQK 42 EQS 79 VQA 90 GQG 124 EQL 156 RQN
.M.(4)	4 VMT 11 SMS 13 SMS 175 SMS
D.(12)	163 SBT 167 WBS 170 KDS 184 KDE
.D.	60 PDR 70 TDF 82 EDL 85 ADT 110 ADA 143 KDI 151 IDG 161 LBS
N.(12)	167 WBS 190 HNS 210 FNR 212 RNE
Ż.	28 ENV 53 SNR 137 LNN 138 NNF 145 INV 157 QNG 161 LBS 163 SBT

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF KAPPA LIGHT

CHAIN

heterogeneity, likely due to deamidation at Asn-157 (Svanti and Milstein, 1972). The paper The hydroflex plot for kappa light chain shows that there are only a few predicted reactive sites for degradation. These include Asn-157 within the -QNG- motif and several Met amino acids. Isolation and complete sequencing of the mouse kappa light chain was carried out over two decades ago, where it was found that the isolated product showed some microchromatography methods used make the assignment of this Asn rather ambiguous but plausble, considering the lack of other hot spots for deamidation in the same tryptic peptide.

Antibody OKT3 Heavy Chain (449 residues)

SEQUENCE

KGSVRAPQVYVLPPPEEEMTKKQVTLTCMVTDFMPEDIYVEWTNNGKTELNYKNT-**QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSR**. ĠYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWG-**ĠVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPC**. VHTAQVQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNKDLPAPIERTISKP-QGTTLTVSSAKTTAPSVYPLAPVCGDTTGSSVTLGCLVKGYFPEPVTLTWNSGSLSS-PPCKCPAPNLLGGPSVFIFPPKIKDVLMISLSPIVTCVVDVSEDDPDVQISWFVNNVE. **EPVLDSDGSYFMYSKLRVEKKNWVERNSYSCSVVHEGLHNHHTTKSFSRTPGK**

REACTIVE SITES

N.(18)	.D.	.D.(21)	.M.(9)	.Q.(17)
52 INP	66 KDK	_	20 KMS	3 VOL
VNI 65	73 TDK	40Í LDS	34 TMH	5 LOO
0NX 19	90 EDS		81 YMQ	6 008
161 WNS	101 YDD		254 LMI	39 KOR
202 CNV	102 DDH		316 WMS	43 GÕG
235 PNL	107 LDY		360 EMT	62 NQK
282 VNN	136 GDT		370 CMV	82 · MQL
283 NNV	179 SDL		375 FMP	111 GQG
299 YNS	213 VDK		408 FMY.	177 LQS
326 VNN	251 KDV			197 SQS
327 NNK	267 VDV			276 VÕI
385 TNN	271 EDD			290 AOT
386 NNG	272 DDP			292 TOT
392 LNY	274 PDV			311 Юн
395 KNT	297 EDY			313 HQD
418 KNW	314 QDW			349 PQV
423 RNS	329 KDL			364 KQV
436 HNH	373 TDF			r

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF OKT3 HEAVY CHAIN

observed that the first OKT3 product formulation was eventually reformulated to include an Asn-Ser sites. Further, this heavy chain has numerous Met residues, and so some oxidation The larger size of the OKT3 heavy chain makes it more likely that this is the more reactive chain, especially considering the large number of moderately reactive hot spots. This protein is predicted to react predominantly at Asn-386 (-NNG-) and possibly at some of the less reactive might be expected. The major degradation pathway for this protein (as a part of the entire OKT3 complex) is at Asn-386 as predicted (Kroon et al., 1992). Additionally, oxidation was observed at Met-34, Met-316, Met-360, and Met-408, most of which are found in fairly hydrophilic regions as predicted by hydropathy analysis. Sufficient oxidation of Met-34 was nert headspace to reduce oxidation. A minor amount of deamidation was also found at Asn-423 (-RNS-), which is in a hydrophilic region of poor flexibility,

Antibody OKT3 Light Chain (213 residues)

SEQUENCE

VSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDS QIVLTQSPAIMSASPGEKVTIMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASG-VPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINRADTAPT. **IYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC**

REACTIVE SITES

N.(11)	.D.(9)	.M.(5)	.Q.(8)
33 MNW	49 YDT	11 IMS	6 ROS
93 SNP	81 EDA	21 TMT	36 YOO
106 INR	109 ADT	32 YMN	37 OOK
136 LNN	142 KDI	77 GME	88 COO
137 NNF	150 IDG	174 SMS	W00 68
144 INV	164 TDQ		123 EOL
: 156 QNG	166 QDS		155 RON
160 LNS	169 KDS		165 DOD
189 HNS	183 KDE) :
209 FNR			
311 DME			

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF OKT3 LIGHT CHAIN

The OKT3 antibody is a murine IgG2a antibody capable of binding CD3 and is used to shows that the OKT3 light chain has several hot spots, of which the predominant site is clinically reverse rejections of human kidney transplants. Inspection of the hydroffex plot predicted to be Asn-156, possibly followed by Asn-189, found in a hydrophilic region of predicted poor flexibility. The major degradation pathway for this protein (as a part of the entire OKT3 complex) in pH 7 PBS was at Asn-156 as predicted. A small amount of oxidative degradation occurred at Met-174, found in a region of intermediate hydropathy and flexibility. No other significant degradation was observed for the other potential hot spots (Kroon et al.,

Antibody OKT4a Heavy Chain (humanized) (447 residues)

SEQUENCE

QVQLVESGGGVVQPGRSLRLSCSASGFTFSNYAMSWVRQAPGKGLEWVAAISDHST-NTYYPDSVKGRFTISRDNSKNTLFLQMDSLRPEDTGVYFCARKYGGDYDPFDYWG-QGTPVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG-VHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPP-CPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVDVSQEDPEVQFNWYVDGVE-VHNAKTRPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGPSSIEKTISKAK-GQPREPQVYTLLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP-PVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK

REACTIVE SITES

Q.(17)	342 GQP 347 POV	355 SQE	386 GOP	418 WQE	438 TQK			
.Q.	3 VQL 13 VOP	39 RQA 82 LOM	112 GQG	178 LQS	268 SQE	274 VQF	295 EQF	311 HQD
.M.(5)	34 AMS 83 OMD	252 LMI 358 FMT	428 VMH					
.D.(20)	215	265 VDV	280	312	376	399	401	413
.D.(53 SDH 62 PDS	73 RDN 84 MDS	90 EDT	103 GDY	105 YDP	108 FDY	151 KDY	206 VDH
18)		361 KNQ						
.N.(31 SNY 57 TNT	74 DNS	162 WNS	204 CNV	211 SNT	276 FNW	286 HNA	297 FNS

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF OKT4a HEAVY CHAIN

The larger size of the OKT4a heavy chain makes it the likely reactive chain, especially considering the large number of moderately reactive hot spots. This protein is predicted to react predominantly at Asn-315 (-LNG-) and Asn-384 (-SNG-), and possibly at some of the less reactive Asn-Ser sites. Reaction is also predicted at Asp-Gly to give iso-Asp-Gly (although this is often difficult to detect experimentally), as well as at Asp-Pro at lower pHs. This heavy chain has numerous Met residues, and thus some oxidation might be expected. The major degradation pathway for OKT4 heavy chain (as a part of the entire OKT4a complex) at pH's less than 6.5 was cleavage at Asp-270 within the -EDP- motif (Kroon, 1994). Interestingly, no cleavage was found at Asp-105 within the -YDF- motif. A minor amount of cleavage was observed at bonds N-terminal to several Ser and Thr residues, including Ser-220, Thr-250, Thr-335, and Thr-350. Deamidation was found to be slow for this protein below neutral pH; however, the exact sites of deamidation were not determined, and deamidation was identified only by an acidic shift in the IEF pattern.

Antibody OKT4a Light Chain (humanized) (214 residues)

SEQUENCE

DIQMTQSPSSLSASVGDRVTITCKASQDINNYIAWYQQTPGKAPKLLIHYTSTLQPG-VPSRFSGSGSGTDYTFTISSLQPEDIATYYCLQYDNLLFTFGQGTKLQITRTVAAPSVF-IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST-YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

.Q.(16)	3 IOM	6 TOS	27 SOD	37 YOO	38 QOT	SS LOP	79 LOP	M LQY	100 GOG	102 LQI	124 EQL	147 VQW	155 LQS	160 SQE	166 EQD	199 HOG
.M _. (1)	4 QMT	•														
.D.(10)	17 GDR	28 QDI	70 TDY	82 EDI	92 YDN	122 SDE	151 VDN	167 QDS	170 KDS	185 ADY						
.N.(8)	30 INN	31 NNY	93 DNL	137 LNN	138 NNF	152 DNA	158 GNS	210 FNR								

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF OKT4a LIGHT CHAIN

This light chain has few reactive sites, suggesting that the OKT4a heavy chain is the major 👸 site of chemical degradation. A minor amount of cleavage at Ser-203 was found as a trace reaction. No oxidation of Met-4 was reported (Kroon, 1994).

Atrial Natriuretic Peptide (ANP) (human) (28 residues)

SEQUENCE

SLRRSSCFGGRMDRIGAQSGLGCNSFRY

REACTIVE SITES

.Q.(1)	18 408
.M.(1)	12 RMD
.D.(1)	13 MDR
.N.(1)	24 CNS

A. Compendium of Common Protein Reactive Sites

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ANP

The primary amino acid sequence for ANP shows that this peptide has only one of the traditional hydrolytic hot spots, Asn-Ser, and lacks the Asn-Gly, Asp-Gly, and Gln-Gly hot spots. Asn-24 resides within the -CNS- motif and is expected to be reactive based on its primary amino acid sequence. It does have, however, a single Met that is capable of being oxidized. Two degradation pathways have been observed for this cyclic peptide, deamidation of Asn-24 and oxidation of Met-12 (Wang, 1995).

Brain-Derived Neurotrophic Factor (BDNF) (human) (120 residues)

SEQUENCE

ETKCNPMGYTKEGCRGIDKRHWNSQCRTTQSYVRALTMDSKKRIGWRFIRIDTSCV MHSDPARRGELSVCDSISEWVTAADKKTAVDMSGGTVTVLEKVPVSKGQLKQYFY-CTLTIKRGR

.Q.(4)	49 GOL	52 KOY	80 SOC	85 TQS
.M.(4)	1 MH	32 DMS	62 PMG	93 TMD
D.(7)	73 IDK	94 MDS	107 IDT	
1:	4 SDP	15 CDS	25 ADK	31 VDM
N.(2)	60 CNP	SNW 8/		

HYDROFLEX PLOT

HYDROFLEX PLOT

38

PREDICTED REACTIVITY AND DEGRADATION OF BDNF

between Asp-4-Pro-5 (Hershensen et al., 1995). Oxidation at Met-1 and Met-62 was also This protein is relatively free of activated hot spots, except for Met and the acid-sensitive observed, with minor amounts of oxidation at Met-32. Other minor degradation pathways Asp-Pro motive. Some degradation studies have been carried out in the neutral pH range where it was found that the primary degradation pathways were cleavage at His-2-Ser-3 and included cleavage at Val-45-Ser-46, Lys-47-Gly-48, and Asn-60-Pro-61 (reaction conditions not specified).

Calbindin (bovine) (76 residues)

SEQUENCE

MKSPBELKGIFEKYAAKEGDPNQLSKEELKLLLQTEFPSLLKGPSTLDELFEELDKN. 🖔 **GDGEVSFEEFQVLVKKISQ**

REACTIVE SITES

.Q.(4)	23 NOL	34 LQT	68 FQV	76.50
.M.(0)				
.D.(4)	20 GDP	48 LDE	55 LDK	59 GDG
.N.(2)	22 PNQ	57 KNG		

0.5 8 Hydrophobicity ··· Flexibilit 9 Amino acid 2 Ηλατορμορίειτγ

Flexibility

PREDICTED REACTIVITY AND DEGRADATION OF CALBINDIN

spot within a region that is predicted to be fairly hydrophilic and flexible. An Asp-Gly motive is also found nearby in this hydrophilic region. Preparations of recombinant bovine calbindin The hydroflex plot for calbindin shows that this protein contains the reactive Asn-Gly hot D9k have been shown to be heterogeneous by IEF, due to deamidation of Asn-57 within the -KNG- motif (Chazin et al., 1989). Calbindin also contains an Asp-Gly in the same region, but no degradation at the Asp-Gly site or at the acid-labile Asp-Pro site was reported.

Calmodulin (148 residues)

SEQUENCE

ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDA-DGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLG-EKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK

.Q.(6)	3 DOL	8 EOI	41 GON	49 LOD	135 GOV	143 VOM	,		
.M.(9)	36 VMR	S1 DMI	71 TMM	72 MMA	76 KMK	109 VMT	124 EMI	144 OMM	145 MMT
D.(17)	80 TDS	93 FDK	95 KDG	118 TDE	122 VDE	129 ADI	131 IDG	133 GDG	
Q.	2 ADQ	20 FDK	22 KDG	24 GDG	50 QDM	56 VDA	58 ADG	64 IDF	78 KDT
.N.(6)	42 QNP	53 INE	90 GNG	97 GNG	III TNL	137 VNY		1	

Michael F. Powell

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CALMODULIN

Calmodulin contains at least eight sites that may undergo deamidation or cyclization, as well as numerous Met residues. All of the -XDG- and -XNG- reactive motifs lie in moderately hydrophilic regions of good predicted flexibility, further supporting the notion that calmodulin should be particularly susceptible to hydrolytic degradation. Calmodulin has two Asn-Gly sites, which are predicted to be more reactive than the Asp-Gly sites. Measurements of ammonia release and methyl transfer rates showed that calmodulin was extremely reactive towards hydrolytic degradation, giving 0.5 mole of ammonia released per mole calmodulin at pH 7.4 and 37°C after 8–9 days (Johnson et al., 1989a). Comparison measurements of ammonia release and methyl transfer with other proteins showed that calmodulin is much more reactive than the other proteins surveyed. Although the entire degradation profile for calmodulin was not determined, it was believed that the primary sites of deamidation were Asn-60 (-GNG-) and Asn-97 (-GNG-). Calmodulin has numerous methionine residues, and the C-terminal residues are most susceptible to oxidation by peroxynitrite (Hühmer et al., 1996) or by hydrogen peroxide (Yao et al., 1996).

Carbonic Anhydrase C (259 residues)

SEQUENCE

SHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSL.
RILNNGHAFNVEFDDSEDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSQHTVDKKKYAAELHLVHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASFK

A Compendium of Common Protein Reactive Sites

4

REACTIVE SITES

.Q.(11)	27 RQS 52 DQA 91 IQF 102 GQG 105 SQH 134 VQQ 135 QQP 136 LQK 220 EQV 220 EQV 221 AQP 233 RQI
.M.(1)	239 LMV
.D.(19)	18 KDF 31 VDI 33 IDT 40 YDP 51 YDQ 70 FDD 71 DDS 74 EDK 84 LDG 100 LDG 109 VDK 128 GDF 137 PDG 160 VDV 163 LDS 173 ADF 173 ADF 178 FDP 188 LDY 188 LDY
.N.(10)	10 HNG 60 LNN 61 NNG 66 FNV 123 WNT 76 TNF 728 LNF 330 FNG 442 DNW 551 KNR

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CARBONIC ANHYDRASE C

This protein has several residues predicted to be reactive, including three Asn-Gly motifs. In one of the original papers describing the primary structure of human carbonic anhydrase C it was noted during the sequence analysis work that several residues underwent facile deamida-

analysis. Several of the steps used were carried out at elevated temperatures or used strong acid (1 M acetic acid for example), and so it was not possible to determine the origin of the protein if the protein was deamidated before isolation, during its purification, or during peptide tion. All were identified as Asn-Gly sequences (Henderson et al., 1976). It was not determined microheterogeneity.

CD4 (human) (370 residues)

SEQUENCE

IDIVVLAFQKASSIVYKKEGEQVEFSFPLAFTVEKLTGSGELWWQAERASSSKSWITF-OEVNLVVMRATOLOKNLTCEVWGPTSPKLMLSLKLENKEAKVSKREKAVWVLNPE-TLTLESPPGSSPSVQCRSPRGKNIQGGKTLSVSQLELQDSGTWTCTVLQNQKKVEFK-SRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFGLTANSDTHLLQGQSL DLKNKEVSVKRVTQDPKLQMGKKLPLHLTLPQALPQYAGSGNLTLALEAKTGKLH-KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRAD-**AGMWQCLLSDSGQVLLESNIKVLPTWSTPVH**

REACTIVE SITES

.																								
.Q.(27)			40 NQG		94 VQL	110 LQG	112 GQS	129 VQC	139 IQG	148 SQL	152 LQD	163 LQN	165 NQK	180 FQK	193 EQV	216 WQA	243 TQD	248 LQM	261 PQA	265 PQY	285 HQE	296 TQL	298 LQK	344 WQC
.M.(4)	249 QMG	314 LML																						
.D.(13)	10 GDT		63 WDQ																					
.N.(16)	1 —	 _	S2 LND	_																				

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CD4

C-terminal end of the molecule. An elegant study on the deamidation of soluble CD4 has been reported, wherein it was found that Asn-52 (in the -LND- motif) was the primary degradation Asn-52 resides in a region predicted to be moderately hydrophilic and flexible, in good This protein harbors four Gln-Gly sites and two Asn-Ser sites, all of which are commonly regarded as the potential hot spots for degradation. CD4 also has four Met residues in the site at pH 7.2 and 25°C (Teshima et al., 1991a, 1995a). The -LND- motif is generally thought to be fairly unreactive, and so this is a clear-cut example where deamidation may occur in aqueous formulations at sites other than Asn-Gly or Asn-Ser. It is interesting to note that agreement with its crystal structure of the V1 and V2 domains (Wang et al., 1990) and this may contribute to its reactivity. No oxidation at Met was observed.

CD4-IgG (407 residues)

SEQUENCE

NKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE-SRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFGLTANSDTHLLQGQSL-ILTLESPPGSSPSVQCRSPRGKNIQGGKTLSVSQLELQDSGTWTCTVLQNQKKVEFK-PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS-KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRAD. DIVVLAFQDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVDVSHED SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT **QKSLSLSPGK**

352 GQV

REACTIVE SITES

				٠																
.Q.(25)	322 NOV	346 GOP	378 WOO	379 OOG	398 TOK	***														
ġ	20 SOK	25 IOF	33 NOI	40 NOG	64 DOG	89 DOK	94 VOL	110 LOG	112 GOS	129 VOC	139 IOG	148 SOL	152 LOD	163 LON	165 NOK	180 FOD	255 EOY	271 HOD	302 GOP	307 PQV
.M.(3)	212 LMI	318 EMT	388 VMH													••				
.D.(20)	10 GDT	53 NDR	56 ADS	63 WDQ	78 EDS	80 SDT	88 EDQ	105 SDT	153 QDS	173 IDI	181 QDK	209 KDT	225 VDV	230 EDP	240 VDG	272 QDW	336 SDI	259 LDS	361 SDG	373 VDK
.N.(20)	30 KNS	32 SNQ	39 GNQ	52 LND	66 GNF	73 KNL	103 ANS	137 KNI	164 QNQ	236 FNW	246 HNA	257 YNS	275 LNG	285 SNK	321 KNQ	344 SNG	349 ENN	350 NNY	381 GNV	394 HNH

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CD4-IgG

This protein has partial identity with CD4 (Harris et al., 1990) and so might be expected to degrade at the same hot spots in this region. This CD4 molecule also has two Asn-Gly and two

A Compendium of Common Protein Reactive Sites

Asp-Gly moieties (the two most reactive hot spots) and so is predicted to degrade at these hot spots. The observed degradation pathway of CD4-1gG was found to be similar to CD4, that is, degradation at Asn-52 (in the -LND- motif) (Teshima and Yim, 1995b; Teshima and Wu, 1996). Again, the -LND- motif is generally thought to be fairly unreactive, and so this example illustrates that deamidation may occur in aqueous formulations at sites other than Asn-Gly or Asn-Ser.

CD4-PE40 (545 residues)

SEQUENCE

MKKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRA-DSRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFGLTANSDTHLLQGQS-LTLTLESPPGSSPVQCRSPRGKNIQGGKTLSVSQLELQDSGTWTCTVLQNQKKVEFK-IDIVVLAHMAEEGGSLAALTAHQACHLPLETFTRHRQPRGWEQLEQCGYPVQRLVA-LYLAARLSWNQVDQVIRNALASPGSGGDLGBAIREQPEQARLALTLAAAESERFVR-LYLAARLSWNQVDQVIRNALASPGSGDLGBAIREQPEQARLALTLAAAESERFVR-QGTGNDEAGAANADVVSLTCPVAAGECAGPADSGDALLERNYPTGAEFLGDGGDV-SFSTRGTQNWTVERLLQAHRQLEERGYVFVGYHGTFLEAAQSIVFGGVRARSQDL-DAIWRGFYIAGDPALAYGYAQDQEPDARGRIRNGALLRVYVPRSSLPGFYRTSLTLA-APEAAGEVERLIGHPLRLDAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDPRNV-GGDLDPSSIPDKEQAISALDDYASQPGKPPREDLK

Q.(34)	V	213 EQE	218 EQC	224 VQR	V)N 652	242 DQV	264 EQP	267 EQA	285 ROG	347 TON	356 1.04	330 LQA	SOU RUL	380 AQS	392 SQD	415 AOD	417 DOF	504 EO4	124 EVA	535 SQP
Ģ	Š	26 TOE	20 IQF	TON TO	000	50 DOG	M VQK	95 VQL	111 LQG	113 GOS	130 VOC	25.051	25.05.	149 SQL	133 LQD	164 LQN	166 NOK	105 HOA	מסמ מסמ	209 KQP
.M.(1)	181 HMA																			
.D.(30)				406 GDP																
.O.	11 GDT	54 NDR	57 ADS	64 WDO	79 EDS	81 SDT	SO FDO	707 701	100 001	154 QDS	174 IDI	241 VDO	256 GDL	290 NDF	VA 900	270 ADV	316 ADS	319 GDA	335 GDG	
N.(17)	31 KNS	33 SNQ	40 GNQ	53 LND	67 GNF	74 KNL	104 ANS	138 KMI	INIV OCT	DND COL	238 WNQ	246 RNA	289 GND	296 ANA	325 PNV	140 OM	MNIO OFC	427 RNG	509 RNV	47. 1 27. 1

Michael F. Powell

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CD4-PE40

The recombinant human CD4-Pseudomonas exotoxin hybrid protein shows selective AIDS (Chaudhary et al., 1988). Comparative analysis of this protein with soluble CD4 (see reactive sites such as Gln-Gly. This protein also has a single Met near the conjugation site of CD4 and PE40. The major degradation site for this protein in aqueous solution was Met Scheme 9). Of note, however, was the lack of degradation at Asn-427 in the RNG motif in Asn-53 within the -LND- motif, observed to be the major site of degradation of soluble CD4 in previous entry) provides additional insight into protein degradation in aqueous solution. CD4-E40 has a single Asn-Gly site which is predicted to be reactive, as well as a number of lesser this position (see comparison of the soluble CD4 and CD4-PE40 amino acid sequences in CD4-PE40 (a predicted hot spot); this may be due to the conformational nature of the protein about this motif. It is also of interest to note that CD4-PE40 did not show any deamidation at aqueous solution (see previous entry). Because the CD4 binding activity of CD4-PE40 is generally thought to be fairly unreactive. This is likely due to the different methods of analysis killing of HIV-1 infected cells and thus represents a novel therapeutic agent for the treatment of Soluble CD4 did not show degradation at Met, because soluble CD4 does not have a Met at PE40 is similar to soluble CD4. Thus, this protein provides some contrast to the "unusual" degradation pathway for soluble CD4, in that no degradation was observed at the -LND- motif oxidation, with no other clearly detectable degradation pathways noted (Hageman, 1995) similar to soluble CD4, one must assume that the conformation of the CD4 region in CD4-

10 20 30 40 KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPS ************************************	50 60 70 80 90 KLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFG ************************************	100 110 120 130 140 LTANSDTHLLQGQSLTLTLESPPGSSPSYQCRSPRGKNIQGGKTLSVSQL ************************************	150 160 170 180 190 190 ELQDSGTWTCTVLQNQKKVEFKIDIVVLAFQKASSIVYKKEGEQVEFSFP ***********************************	200 230 240 L-AFTVEKLTGSGELWWQAERAS-SSKSWITFDLKNKEVSVKRVTQDPKL * ** LETFTRHRQPRGWEQLEQCGYPVQRLVALYLAAR-LSWNQVDQVIRN 210 220 230 240	250 260 290 QMGKKLPLHLTLPQALPQYAGSGNLTLALEAKTGKLHQEVNLVVMRAT ALASPGS-GGDLGEATREQPEQARLALTLAAAESERFVRQGTGNDEAGAA 250 260 270 280 290	320 330 330 320 330 330 QLQ-KNLTCEVWGPTSPKLMLSLKLENKEAKVSKREKAVWVLNPE *** *** *** *** *** *** *** *** *** *	340 350 360 370 AGMWQCLLSDSGQVLLESNIKVLPTWSTPVH * TQNWTVERLLQAHRQLEERGYVFVGYHGTFLEAAQSIVFGGVRARSQDLD 350 360 370 380	AIWRGFYIAGDPALAYGYAQDQEPDARGRIRNGALLRVYVPRSSLPGFYR 400 410 420 430 440	TSLTLAAPEAAGEVERLIGHPLPLRLDAITGPEEEGGRLETILGWPLAER 450 460 470 480 490	TVVIPSAIPTDPRNVGGDLDPSSIPDKEQAISALPDYASQPGKPPREDLK 500 510 520 530 540	Scheme 9. Sequence comparison of CD4 and CD4-PE40.
CD4 CD4-PE40	CD4 CD4-PE40	CD4 - PE40	CD4. CD4-PE40	.¢D4 CD4-PE40	CD4 CD4-PE40	CD4 CD4-PE40	3 CD4-PE40	CD4-PE40	CD4-PE40	CD4-PE40	S

∞

Chloroperoxidase (Caldariomyces fumago) (300 residues)

SEQUENCE

EPGSGIGYPYDNNTLPYVAPGPTDSRAPCPALNALANHGYIPHDGRAISRETLQNAF-LNHMGIANSVIELALTNAFVVCEYVTGSDCGDSLVNLTLLAEPHAFEHDHSFSRKDY-KQGVANSNDFIDNRNFDAETFQTSLDVVAGKTHFDYADMNEIRLQRESLSNELDFP-GWFTESKPIQNVESGFIFALVSDFNLPDNDENPLVRIDWWKYWFTNESFPYHLGWH-PPSPAREIEFVTSASSAVLAASVTSTPSSLPSGAIGPGAEAVPLSFASTMTPFLLATNAP-YYAQDPTLRPQRQA

REACTIVE SITES

N.	.N.(21)	.D.	D.(19)	.M.(3)	.Q.(8)
DNN	129 RNF	11 YDN	152 ADM	61 HMG	54 I ON
NNT	154 MNE	24 TDS		153 DMN	116 KOG
LNA	165 SNE	44 HDG	193 SDF	276 TMT	136 FOT
ANH	181 QNV	86 SDC	198 PDN		159 1 OB
QNA	195 FNL	SGD 68	200 NDE		180 ION
LNH	199 DND	106 HDH	208 IDW		183 VOS
65 ANS	202 ENP	113 KDY	291 ODP		290 4 090
TNA	216 TNE	123 NDF	ļ		207 POB
VNL	284 TNA	126 IDN			290 POA
ANS		131 FDA			יאלע היא
SND		140 LDV			
DNR		149 FDY			

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF CHLOROPEROXIDASE

This glycoprotein has several sites that may undergo degradation in aqueous solution, including pyroglutamic acid formation at the N-terminus. This was confirmed experimentally, in that approximately two thirds of the protein resisted Edman degradation, indicative of a blocked N-terminus. Purification of chloroperoxidase from the filamentous fungus Caldario-blocked N-terminus. Purification of chloroperoxidase from the filamentous fungus Caldario-fronvers fungus protein at Asn-13 (-NNT-), Asn-199 (-DND-), and Gln-183 (converted completely to -VES-) (Kenigsberg et al., 1987), all at sites not thought to be traditional hot spots. Unfortunately the work-up of this protein had a heat-inactivation step (pH > 8, 100°C for 2 min), which may account for some of the deamidation observed at these sites. Further, no controls were carried out to show that these chemical modifications were due to enzymatic hydrolysis during the lengthy work-up.

Cholera B Subunit Protein (Vibrio cholerae) (103 residues)

SEQUENCE

TPQNITDLCAEYHNTQIHTLNNKIFSYTESLAGKREMAIITFKNGATFEVEVPGSQHI-DSQKKAIERMKNTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

REACTIVE SITES

M.(3) .Q.(4)	EMA RMK 10 SMA 50
.D.(2)	7 TDL 37 59 IDS 68 101
.N.(9)	4 QNI 70 KNT 14 HNT 89 WNN 21 LNN 90 NNK 22 NNK 103 AN 44 KNG

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CHOLERA B TOXIN

This subunit protein contains only two different residues predicted to be reactive: Asn-Gly (-KNG-) and Met. Mass spectral analysis and Edman degradation of peptides derived from the B subunit of *Vibrio cholerae* toxin showed microheterogeneity at Asn-44 found within the -KNG- motif (Takao *et al.*, 1985). This is the only site predicted to show hydrolytic reactivity based on primary amino acid sequence and hydroflex analysis. Interestingly, the authors reported Asp instead of Asn at position 22 (-NNK-) and position 70 (-KNT-), even though Asn was found at these positions in some of the earlier cholera B toxin strains (shown in the sequence above). However, the nucleotide sequences encode for both Asp and Asn (depending on the strain), and so Asp for Asn at these sites should not be considered conclusively as microheterogeneity. No indication of Met oxidation in this protein was reported.

Ciliary Neurotrophic Factor (CNTF) (human) (199 residues)

SEQUENCE

AFTEHSPLTPHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLNKNINLDSADGMPV. ASTDQWSELTEAERLQENLQAYRTFHVLLARLLEDQQVHFTPTEGDFHQAIHTLLL.QVAAFAYQIEELMILLEYKIPRNEADGMPINVGDGGLFEKKLWGLKVLQELSQWTV.RSIHDLRFISSHQTGIPARGSHYIANNKKM

REACTIVE SITES

.Q.(12)	41 HOG	62 DQW	73 LQE	77 LOA	93 DÕO	94 00V	106 HQA	114 LQV	121 YQI	162 LQE	166 SQW	182 HQT
.M.(4)	55 GMP	126 LMI	141 GMP	199 KM								
.D.(10)	14 RDL	29 SDL	SO LDS	53. ADG	61 TDQ	92 EDQ	103 GDF	139 ADG	147 GDG	174 HDL		
.N.(8)	44 LNK	46 KNI	48 INL	75 ENL	136 RNE	144 INV	195 ANN	196 NNK				

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CNTF

Inspection of the hydroflex plot for CNTF shows that this protein has a few moderately reactive hot spots: three Asp-Gly residues and four Mets. None of the Asp-Gly are found in highly hydrophilic regions, and so might be expected to show reduced reactivity (if any at all). The major degradation pathway for CNTF was recently deduced and found not to involve any of the traditional hot spots; deamidation was observed at Asn-195 in the -ANN- motif close to the C-terminus (Maneri, 1994). Although deamidation takes place in the hydrophilic region of the molecule, the -ANN- sequence is not thought to be particularly activating, and so this degradation pathway would not have been predicted.

Crystallin-A (chicken) (173 residues)

SEQUENCE

MDITIQHPWFKRALGPLIPSRLFDQFFGBGLLEYDLLPLFSSTISPYYRQSLFRSVLES-GISEVRSDRDKFTIMLDVKHFSPEDLSVKIIDDFVEIHGKHSERQDDHGYISREFHRR-YRLPANVDQSAITCSLSSDGMLTFSGPKVPSNMDPSHSERPIPVSREEKPTSAPSS

REACTIVE SITES

.Q.(5)	нді 9	25 DQF	50 RQS	104 RQD	126 DQS									
.M.(3)	74 IML	138 GML	150 NMD											
.D.(14)	2 MDI	24 FDQ	35 YDL	67 SDR	69 RDK	76 LDV	84 EDL	91 IDD	92 DDF	105 QDD	106 DDH	125 VDQ	136 SDG	151 MDP
.N.(2)	123 ANV	I49 SNM												

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF α -CRYSTALLIN-A

This protein has only a few predicted hot spots and may be expected to show degradation at Asp-Gly or Met. This was not observed experimentally, however. Extraction and purification of α-crystallin-A from chicken eye lenses afforded a protein that showed microheterogeneity at position 149 (Voorter *et al.*, 1987) due to deamidation of Asn-149 within the -SNM- motif. This sequence is not predicted to be particularly reactive, in that Asn is not followed by either Gly or Ser. Indeed, the authors pointed out that the deamidation at this site is age-related and that only partial microheterogeneity was observed in 10-year-old chickens, but not observed in young chickens. Crystallin in eye lenses is known to have a negligible turnover rate, indicative that it takes 10 years at physiological temperature for even partial deamidation to occur. That

A Compendium of Common Protein Reactive Sites

deamidation did not occur at other Asn residues is not surprising, in that the only other Asn in α-crystallin-A is located within an even less reactive motif (-ANV-). This protein contains an Asp that is predicted to show some degradation (Asp-136 within the -SDG- motif), but it is unlikely that the authors would have seen this with their method of high-voltage paper electrophoresis. No controls were carried out to show that Asn-149 undergoes deamidation under formulation conditions (neutral pH at 5-25°C within 2 years).

Cytochrome c (140 residues)

SEQUENCE

GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGFSYTDANKN. KGITWGEETLMEYLENPKKYIPGTKMIFAGIKKKGEREDLIAYLKKATNE

REACTIVE SITES

52 ANK

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF CYTOCHROME c (Cy 1)

might be expected to be fairly stable, at least at 2–8°C at neutral pH. One of the earliest studies neglecting pyro-Glu formation in the comparative analysis of Glu and Asn free amino acid Inspection of the primary amino acid sequence for cytochrome c shows that it is devoid of traditional hot spots (Asn-Gly, Asn-Ser, Asp-Gly, and Gln-Gly), and so, a priori, this protein to detail protein microheterogeneity was reported by Flatmark on the reaction of cytochrome $c_s^{\mathbb{Z}}$ the C-termini (-TNE) after tryptic mapping. This region of cytochrome c is predicted to be both (It appears that the Cy II subfraction showing microheterogeneity was obtained by preparative work-up of tissue rather than as the degradation product of Cy I, and so the reaction of Asn-103in aqueous buffers (Flatmark, 1966). This protein showed microheterogeneity at Asn-103 near hydrophilic and flexible, but this Asn is located within a motif not thought to be reactive. slope significantly less than unity (when plotted as log k versus pH). Refitting the data to as log k–pH rate profile suggests that cytochrome c should exhibit a shelf-life in aqueous solution $ilde{s}$ reactivity, or the "visual" determination that the rate constant for reaction of Cy I is significated is considered a "work-up" deamidation reaction.) Data were reported at both 4 and 37°C and at several pHs ranging from 3 to 11. The pH rate profiles for reaction of Cy I suggest that several \hat{s} reactions may be occurring, in that the slope of these plots in the region of base catalysis has a of 20 years or more at pH 6 (Fig. 2). Based on this, the -TNE motif is fairly unreactive, despite Although this early report has some errors in the interpretation of the kinetic data (for example, cantly less than for Cy II for the sequential reaction Cy I \rightarrow Cy II \rightarrow Cy III), it was found that the major site of microheterogeneity in Cy I was Asn-103 in the -TNE motif at the C-terminus. standard log k-pH rate profile suggests that cytochrome c should exhibit a 2-year shelf life below pH ~7.5. Indeed, use of the kinetic data provided in this chapter to construct a typical its ease of deamidation at high pH and 37°C.

Figure 2. Log k-pH rate profiles for the reaction of Cy I to Cy II in aqueous buffers at 4° and 37° C. The slopes of values less than unity suggest that degradation may be occurring by several pH-dependent pathways. Linear extrapolation at 4° C suggests that the shelf life (due to deamidation) of cytochrome c-will be >20 years at pH 6.

DNase (human) (260 residues)

A Compendium of Common Protein Reactive Sites

SEQUENCE

LKIAAFNIQTFGETKMSNATLVSYIVQILSRYDIALVQEVRDSHLTAVGKLLDNLNQ-DAPDTYHYVVSEPLGRNSYKERYLFVYRPDQVSAVDSYYYDDGCEPCGNDTFNRE-PAIVRFFSRFTEVREFAIVPLHAAPGDRVAEIDALXDVYLDVQEKWGLEDVMLMGD-FNAGCSYVRPSQWSSIRLWTSPTFQWLIPDSADTTATPTHCAYDRIVVAGMLLRGA-VVPDSALPFNFQAAYGLSDQLAQAISDHYPVEVMLK

REACTIVE SITES

.Q.(11)	101 6	27 VOI	38 VOE	57 NOD	20 VOV	155 VOE	180 SOW	103 EOW	236 FOA	244 POI	247 AOA
.M.(5)	16 KMS	164 VML	166 LMG	219 GML	258 VMI						
D.(22)	145 IDA	149 YDV	153 LDV	162 EDV	168 GDF	198 PDS	201 ADT	212 YDR	228 PDS	243 SDO	251 SDH
.D.	33 YDI	42 RDS	53 LDN	58 QDA	61 PDT	87 PDQ	93 VDS	98 YDD	99 DDG	107 NDT	139 GDR
.N.(9)	7 FNI	I8 SNA	S4 DNL	26 LNQ	74 RNS	106 GND	110 FNR	170 FNA	234 FNF		

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF DNase

Deamidation in DNase occurs at the -RNS- motif, where it is expected that this Asn is the likely hot spot due to the presence of Ser on the C-terminal side, as well as the flanking polar

Michael F. Powell

99

Arg. The hydropathy plot also supports this as the most likely site of deamidation, in that this motif is predicted to exist in a hydrophilic region of intermediate flexibility. There is another motif (-DDG- at Asp-99) that is also predicted to be a hot spot, in that it exists in a hydrophilic flexible region. Reaction at this site, however, has not been observed. The major degradation pathway of DNase at pH 5–8 in aqueous solution was found to be deamidation at Asn-74, giving the Asp and the iso-Asp variants. Modification at this site does not lead to complete inactivity, wherein the deamidated product exhibited ~50% of the original activity (Frenz, 1991; Cipolla et al., 1994). Reaction at this site did not compromise a 2-year shelf life when the product was stored at 2-8°C.

Epidermal Growth Factor (EGF 1-48) (human) (48 residues)

SEQUENCE

NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLK

REACTIVE SITES

.Q.(I)	43 CQY
.M.(1)	21 CMY
D.(5)	27 LDK 46 RDL
.D.	3 SDS 11 HDG 17 HDG
.N.(1)	1 NS 32 CNC

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF EGF (HUMAN)

The hydroflex plot for EGF shows that there are two reactive hydrolytic sites (Asn-1 in the NS- motif and Asp-11 in the -HDG- motif). Oxidation of Met may also be a likely pathway for

A Compendium of Common Protein Reactive Sites

degradation. An elegant study on the degradation of EGF showed that succinimide formation at Asp-11 was most prominent below pH 6, whereas deamidation of Asn-1 was the primary degradation pathway above pH 6 (Senderoff et al., 1994). The relative contribution of oxidation was found to increase as the temperature was lowered. This study also included the pH rate profiles for both reactant loss and degradation product formation at both 4 and 30°C. Deamidation as the primary degradation pathway for EGF at neutral pH was recently confirmed in another study showing the effects of buffer ions and surfactants at higher temperatures (Son and Kwon, 1995).

Epidermal Growth Factor (murine) (53 residues)

SEQUENCE

NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDGCQTRDLRWWQLR

REACTIVE SITES

.Q.(2)	43 COT	51 WOL	,	
.M.(1)	21 CMH			
.D.(4)	11 YDG	27 LDS	40 GDG	זעת אוי
.N.(2)	1 NS	Je LNG	32 CNC	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF EGF (MURINE)

The hydroflex plot for EGF shows that there are two reactive Asn (Asn-1 in the NS- motif and Asn-16 in the -LNG- motif). Insufficient data exist to predict which of these should react

A Compendium of Common Protein Reactive Sites

HYDROFLEX PLOT

fastest, because of the lack of reactivity data for N-terminal Asn residues. Reaction of murine the amount of reaction at Asn-16. A similar reaction was observed at pH 7.4 at 22°C, where the observed half-life was approximately 500 hr (DiAugustine et al., 1987); it was also reported that the half-life at pH ~13 and 22°C was 63 hr, suggesting that the rate of deamidation is not amount of reaction at Asn-16 (-LNG-) (Galletti et al., 1989). Unfolding the protein increased EGF at pH 9 and 37°C for 48 hr afforded primarily reaction at Asn-1 (NS-), with a small

linearly proportional with hydroxide ion concentration (Tyler-Cross and Schirch, 1991). Insuf-

ficient experiments were carried out to determine the rate of reaction at pH 4.5-7.5 at 2-8°C.

Erythrocyte Protein 4.1 (human) (588 residues)

SEQUENCE

MHCKVSLLDDTVYECVVEKHAKGQDLLKRVCEHLNLLEEDYFGLAIWDNATSKT. WLDSAKEIKKOVRGVPWNFTFNVKFYPPDPAOLTEDITRYYLCLOLRODIVAGRLPC-MTPAQADLEFLENAKKLSMYGVDLHKAKDLEGVDIILGVCSSGLLVYKDKLRINR-FPWPKVLKISYKRSSFFIKIRPGEQEQYESTIGFKLPSYRAAKKLWKVCVEHHTFFRL-STDTIPKSKFLALGSKFRYSGRTQAQTRQASALIDRPAPHFERTASKRASRSLDGAA AVDSADRSPRPTSAPAITQGQVAEGGVLDASAKKTVVPKAQKETVKAEVKKEDEPP-EQAEPEPTEAWKKKRERLDGENIYIRHSNLMLEDLDKSQEEIKKHHASISELKKNF-PTKDVPIVHTETKTITYEAAQTVKGGISETRIEKRIVITGDADIDHDQVLVQAIKEAK. MESVPEPRPSEWDKRLSTHSPFRTLNINGQIPTGEGPPLVKTQTVTISDNANAVKSEI-SFATLALLGSYTIQSELGDYDPELHGVDYVSDFKLAPNQTKELEEKVMELHKSYRS-EQHPDMSVTKVVVHQETEIADE

REACTIVE SITES

25)					568 ЕОН														
.Q.(25)	24 GQD	65 KQV	86 AQL	70T 66	102 RQD	125 IQS	150 NQT	172 AQA	247 EQE	249 EQY	305 TQA	307 AQT	310 RQA	357 TQG	359 GQV	379 AQK	396 EQA	433 SQE	480 GQI
.M.(6)	159 VME	168 SMT	186 SMY	425 LML	451 FME	572 DMS													
.D.(37)	316 IDR	335 LDG	341 VDS	344 ADR	367 LDA	391 EDE	413 LDG	428 EDL	430 LDK	463 WDK	499 SDN	512 KDV	549 GDA	551 ADI	533 IDH	555 HDQ	571 PDM	587 ADE	•
.D.(6 LDD	10 DDT	25 QDL	40 EDY	48 WDN	S7 LDS	83 PDP	90 EDI	103 QDI	130 GDY	132 YDP	139 VDY	143 SDF	174 ADL	190 VDL	196 KDL	201 VDI	216 KDK	284 TDT
.N.(14)	35 LNL	49 DNA	72 WNF	76 FNV	149 PNQ	180 ENA	221 INR	416 ENI	423 SNL	449 KNF	476 LNI	478 ING	500 DNA	502 ANA					

9 Hydrophobicity -- Flexibility 450 Amino acid 150 **Ηλαιο**bυοριειελ

Flexibility

PREDICTED REACTIVITY AND DEGRADATION OF ERYTHROCYTE PROTEIN 4.1

to Gly (-ING-). Asn-502 is flanked by Ala on both sides (-ANA-), yielding an Asn that would be only weakly reactive based on model peptide studies. Indeed, the authors found that reaction of Asn-502 was much slower than at Asn-478, taking months for reaction to occur in vivo. No controls were carried out to show that reaction of Asn-502 occurred under formulation conditions in the absence of catalytic enzymes, nor was sufficient kinetic data presented (other This protein has several hot spots of predicted reactivity, including an Asn-Gly motive. Isolation and purification of this large protein result in the selective deamidation at two sites, Asn-478 and Asn-502 (Inaba et al., 1992). The first is unremarkable in that Asn-478 is adjacent than the reaction was slow) to permit an estimation of the reaction rate at 2-8°C.

Fibroblast Growth Factor, Acidic (human) (aFGF) (141 residues)

SEQUENCE

YIKSTETGQYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYISKKHAEKNWFV. MFNLPPGNYKKPKLLYCSNGGHFLRILPDGTVDGTRDRSDQHIQLQLSAESVGEV-GLKKNGSCKRGPRTHYGQKAILFLPLPVSSD

REACTIVE SITES

.Q.(6)	41 DOH	44 IOL	46 LOL	64 GOY	78 SOT	128 GOK	,	
.M.(2)	1 MF	68 AMD						
.D.(7)	29 PDG	33 VDG	37 RDR	40 SDQ	TOM 69	71 TDG	141 SD	
.N.(8)	3 FNL	8 GNY	19 SNG	81 PNE	93 ENH	96 YNT	107 KNW	115 KNG

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF ACIDIC FGF

Acidic FGF contains two Asn-Gly motifs that are predicted to be reactive, as well as a number of Asp-Gly residues. This molecule is known to be fairly reactive in solution, and so elegant formulations have been designed utilizing its stabilizing complexation with heparin to extend shelf life (Volkin and Middaugh, 1996). Some degradation studies have been carried out, wherein it was found that deamidation was one of the major degradation pathways. N-terminal sequence analysis showed that Asn-8 (-GNY-) was deamidated, but that Asn-19 was not (-SNG-). This is somewhat unusual, in that the Asn-Gly sequence is usually much more reactive than the Asn-Tyr sequence. The authors pointed out that Asn-8 is in a hydrophilic flexible region, possibly enhancing its reactivity. Conversely, Asn-19 is located in the heparin binding region for acidic-FGF, and this may contribute to its lack of reactivity. No degradation was reported for the Asn-Gly site near the C-termini, although the methods used (sequence analysis) were not developed to look at this region of the molecule. No oxidation of Met was reported, however oxidation at Cys leads to inactivation of the protein.

A Compendium of Common Protein Reactive Sites

Michael F. Powell

Fibroblast Growth Factor, Basic (human) (bFGF) (154 residues)

SEQUENCE

AAGSITTLPALPEDGGSGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVREKSDP-HIKLQLQAEERGVVSIKGVCANRYLAMKEDGRLLASKCVTDECFFFERLESNNYNT-YRSRKYTSWYVALKRTGQYKLGSKTGPGQKAILFLPMSAKS

REACTIVE SITES

.Q.(4)	63 LQL 65 LQA 132 GQY 143 GQK
.M.(2)	85 AMK 151 PMS
.D.(7)	15 EDG 57 SDP 28 KDP 88 EDG 46 PDG 99 TDE 50 VDG
.N.(5)	36 KNG 113 YNT 80 ANR 110 SNN 111 NNY

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF BASIC FGF

Degradation of bFGF occurs at Asp-15 within the -EDG- motif, where it is expected that this Asp is a likely hot spot due to the presence of Gly on the C-terminal side, as well as the flanking polar Glu. The hydropathy plot also supports this as the most likely site of succinimide formation, in that this motif is predicted to exist in a hydrophilic region of moderate flexibility. There also exists a -KNG- motif at Asn-36 that is likely to be a reactive hot spot, particularly at higher pH's. Asn-36 is found in a region of only intermediate hydrophobicity and flexibility, and so may be of reduced reactivity compared with a -KNG- motif found in smaller peptides. There is also another -EDG- motif found at Asp-88, although this Asp is predicted to be of lower reactivity because the regional flexibility is less than at Asp-15. When the stability of

stability of bFGF at 2-8°C was not addressed directly in this chapter, but mention was made Hè-IEC, indicative of a more acidic deamidated product (although this was not confirmed with product analysis). The major degradation pathway of bFGF at pH 5 in aqueous solution was succinimide formation at Asp-15 (Shahrokh et al., 1994). In addition, two truncated monomer Gly. Modification at these sites did not lead to inactivity, where the cleaved or cyclized products remained bioactive in a heparin binding assay and in a cell proliferation assay. No evidence was found for oxidative degradation of Met within 13 weeks at pH 5 at 25°C. The that iso-Asp formation was less than 2% in 24 weeks at 4°C, which should be interpreted as a bFGF was investigated at pH 6.5, the degradation product eluted sooner than the parent by forms were found as minor degradation products, due to cleavage at Asp-28-Pro and Asp-15ower limit because the cyclic imide is also formed.

Glucagon (29 residues)

SEQUENCE

HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

REACTIVE SITES

.Q.(3)	3 800	20 AQD	24 VOW
.M.(1)	27 LMN		
.D.(3)	9 SDY	15 LDS	21 QDF
.N.(I)	28 MNT		

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF GLUCAGON

hot spots. Inspection of the hydroflex plot shows a Gln-Gly motive near the N-termini which showed that glucagon contained some iso-Asp at Asp-9 and Asn-28 (Ota et al., 1987). Both of may be expected to be mildly reactive. Methylation of glucagon to identify iso-Asp residues these amino acids are located within motifs that are not expected to be reactive (-SDY- and -MNT-) based on data obtained in synthetic peptides. No control experiments were carried out to determine if the same degradation reaction occurs in pH 4.5-7.5 buffer. Of note, glucagon This peptide is not predicted to be very reactive, in that it is missing most of the traditional samples were boiled for a short time before carrying out the enzymatic maps, and the consequence of this preparative step on the degradation of glucagon was undetermined.

Granulocyte-Colony Stimulating Factor (G-CSF) (human) (175 residues)

SEQUENCE

PWAPLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFA-TTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQSFLEVSYRVLRH. MTPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGI-LAQP.

REACTIVE SITES

.Q.(17)	12 POS	21 EQV	26 1QG	33 LQE	68 SQA	71 LQL	78 SQL	87 YQG	91 LQA	108 LQL	120 WQQ	121 QQM	.132 LQP	135 TQG	146 FQR	159 LQS
.M.(3)	122 QME	127 GMA	138 AMP						•							
.D.(4)	28 GDG	105 LDT	110 LDV	113 ADF												
.N.(0)																

174 AQP

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF GCSF

This molecule is devoid of Asn and has only a few predicted hot spots such as Asp-Gly (cyclization and iso-Asp formation), Gln-Gly (deamidation), or Met (oxidation). The degradation pathways of GCSF in aqueous solution have been determined, wherein it was found that the predominant site of deamidation was at Gln-21 (in the -EQV- motif), and oxidation at Met-122 and at either Met-127 or Met-138 (these residues are in the same peptide in the tryptic digest and so differentiation has not been made) (Herman et al., 1995). Even though Gln-21 is located in a region of predicted hydrophilicity, deamidation at Gln-21 is unexpected because the -EQV- motif is not a traditional hot spot based on the deamidation of Gln in small peptides.

Growth Hormone (bovine) (191 residues)

SEQUENCE

AFPAMSLSGLFANAVLRAQHLHQLAADTSKEFERTYTPEGQRYSIQNTQVAFCFSET. MPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTNSLVFGTSDRVYEKLK-DLEEGILALMRELEDGTPRRGQILKQTYDKFDTNMRSDDALLKNYGLLSCFRKDL-HKTETYLRVMKCRRFGEASCAF

:

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

Q.(11)	69 QQK 84 IQS 91 LQF 136 GQI 140 KQT
Ò.	19 AQH 23 HQL 41 GQR 46 IQN 49 TQV 68 AOO
.M.(5)	5 AMS 58 TMP 124 LMR 149 NMR 179 VMK
D.(10)	143 YDK 146 FDT 152 SDD 153 DDA 168 KDL
.D.(27 ADT 72 SDL 107 SDR 115 KDL 129 EDG
.N.(6)	13 ANA 47 QNT 65 KNE 99 TNS 148 TNM 158 KNY

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF BOVINE GROWTH HORMONE

The primary sequence of bovine growth hormone has two potential hot spots for hydrolytic degradation, where Asn-99 in the -TNS- motif is the most likely. The other hot spot is Asp-129, although it is likely that reactivity at this site at pH 7.4 will be much slower than at Asn-99. [It has been reported that Asp-129 is the predominant site of reaction in porcine somatotropin under acidic conditions giving the cyclic imide (Violand et al., 1992).] Although the Asn-99 site is a predicted hot spot based on primary sequence alone, it is not predicted to be a hot spot based on the hydroflex plot, in that Asn-99 lies in a hydrophobic region of little flexibility. In contrast, Asp-129 lies in a hydrophilic flexible region. It has been shown that the primary site of degradation in bovine (and porcine) growth hormone at pH 7.4 was deamidation at Asn-99 to give predominantly iso-Asp-99 (Violand et al., 1990). The authors pointed out that it is likely that reaction may occur at other sites in bovine growth hormone, but may not be resolvable under their HPLC conditions. These studies were carried out at 37°C, so an estimate of the reaction rate at 2-8°C could not be made from these studies. There is sufficient data on bovine growth hormone showing conclusively that bovine growth hormone undergoes different degradation pathways under "work-up" conditions and under "formulation" conditions,

Michael F. Powell A

even at the same pH and temperature. For example, the major reaction site in purified pituitary bovine growth hormone in aqueous buffer was Asn-99, but the predominant variants isolated from work-up samples were Asn-13 and Asn-148 in one study (Violand *et al.*, 1990) and Asp-129 in another (Wood *et al.*, 1989). Although reactivity at Asp-129 is not unexpected (see above), neither the Asn-13 (-ANA-) nor Asn-148 (-TNM-) is predicted to reactive based on primary sequence and hydroflex plot analysis. This is another example showing that deamidation or iso-Asp formation under work-up conditions should not be used to predict the site(s) of major degradation in typical pH 5–7 aqueous formulations. The interspecies variation in GH primary amino acid sequence is given in Scheme 10 for reference.

GH-b 1 AFPAMSLSGLFANAVLRAQHLHQLAADTSKEFERTYIPEGQRYS-IQNTQ	GH-b 50 VAFCFSETMPAPTGKNEAQQKSDLELLRISLLLIQSWLGPLQFLSRVFTN GH-h 50 TSLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLGPVQFLSSVFAN GH-p 49 AAFCFSETIPAPTGKDEAQQRSDVELLRISLLLIQSWLGPVQFLSRVFTN	GH-b 100 SLVFGTSD-RYYEKLKDLEEGILALMRELEDGTPRRGQILKQTYDKFDTN	GH-b 149 MRSDDALLKNYGLLSCFRKDLHKTETYLRVMKCRFGEASCAF
GH-h 1 -FPTIPLISRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQ		GH-h 100 SLVYGASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTN	GH-h 150 SHNDDALLKNYGLLYCFRKDMDKVETFLRIVQCRS-VEGSCGF
GH-p 1 -FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERTYIPEGQRYS-IQNAQ		GH-p 99 SLVFGTSD-RYYEKLKDLEEGIQALMRELEDGSPRAGQILKQTYDKFDTN	GH-p 148 LRSDDALLKNYGLLSCFKKDLHKAFTYIRVMKCPRFVESSCAF
555	ಕಕಕ	3 B B	ಕ ಕ ಕ

Scheme 10. Primary amino acid sequences of bovine, human, and porcine growth hormones.

Growth Hormone (human) (191 residues)

SEQUENCE

FPTIPLSRLFDNAMLRAHŘLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQTSLCFSESIP-TPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDSNVYDLLKDL. EEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNYGLLYCFRKDMDKV. ETFLRIVQCRSVEGSCGF

REACTIVE SITES

Q.(13)	84 IQS 91 VQF 122 IQT 137 GQI 141 KQT 181 VQC
ġ.	22 HQL 29 YQE 40 EQK 46 LQN 49 PQT 68 TQQ 69 QQK
.M.(3)	14 AML 125 LMG 170 DMD
D.(11)	153 NDD 154 DDA 169 KDM 171 MDK
Ü.	11 FDN 26 FDT 107 SDS 112 YDL 116 KDL 130 EDG 147 FDT
.N.(9)	152 HND 159 KNY
Z.	12 DNA 47 QNP 63 SNR 72 SNL 99 ANS 109 SNV 149 TNS

A Compendium of Common Protein Reactive Sites

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HUMAN GROWTH HORMONE

There are three likely hot spots for hydrolytic degradation in hGH: Asn-99, Asp-130, and Asn 149. Degradation of hGH occurred primarily at Asn-149 and Asp-130, as might be expected in that Asn is next to Ser and Asp is next to Gly. The hydropathy plot also supports this as the most likely site of degradation, in that these motifs exist in a hydrophilic region of good flexibility. Peptide chain flexibility is probably quite important for the deamidation of Asn-149 in human growth hormone (Johnson et al., 1989b). The structure of human growth normone is likely to be similar to porcine growth hormone, which is poorly ordered in the region of residues 128 to 151 (Abdel-Meguid et al., 1987). Asn-99 has a similar motif (-ANS-) as Asn-149 (-TNS-), and yet Asn-99 does not undergo reaction. An elegant explanation for this has been given by comparing the bovine and human sequences of growth hormone and then rationalizing the decreased reactivity at this site by an unfavorable conformational structure near Asn-99. Often this in-depth explanation is not possible because the 3D structure is plots suggests that Asn-149 should be reactive (in that it exists in a hydrophilic region of good unavailable, so it would be useful if this lack of reactivity could be predicted based on primary sequence hydrophobicity calculations. Indeed, inspection of the hydropathy and flexibility flexibility), whereas the Asn-99 exists in a hydrophobic region of lower flexibility and thus may be removed from the solvent and less available for reaction. The major degradation pathway of hGH at pH 6 in aqueous solution was found to be deamidation at Asn-149, with minor 1991b), and oxidation at Met-14 and Met-125 (Teshima and Canova-Davis, 1992). None of these reactions, nor their sum, compromised the shelf life of the liquid growth hormone formulation, having a shelf life of at least 18 months at 2-8°C. This formulation contained a degradation pathways including cyclic imide and iso-Asp formation at Asp-130 (Teshima $\it et\,al.$, preservative, as well as Tween 20. In another study, the degradation products of hGH were also Asn-152. Iso-Asp formation at Asp-130 was also observed, but not deamidation at Asn-99, a determined after incubation at pH 7.4 and 37°C, giving largely deamidation at Asn-149 to form the iso-Asp and Asp degradation products. A small amount of deamidation was found

A Compendium of Common Protein Reactive Sites Michael F. Powell

similar Asn sequence of -ANS-. It has also been reported that hGH forms the N-terminal diketopiperazine product during fermentation and/or work-up, although this is not a degradation product in the final formulation (Battersby et al., 1994).

Growth Hormone (porcine) (190 residues)

SEQUENCE

EEGIQALMRELEDGSPRAGQILKQTYDKFDTNLRSDDALLKNYGLLSCFKKDLHKA-FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERTYIPEGQRYSIQNAQAAFCFSETIP-APTGKDEAQQRSDVELLRISLLLIQSWLGPVQFLSRVFTNSLVFGTSDRVYEKLKDL. ETYLRVMKCRRFVESSCAF

REACTIVE SITES

2.(12)	68 QQR 83 IQS 90 VQF 120 IQA 135 GQI 139 KQT
Ö.	18 AQH 22 HQL 40 GQR 45 IQN 48 AQA 67 AQQ
.M.(3)	4 AMP 123 LMR 178 VMK
D.(11)	142 YDK 145 FDT 151 SDD 152 DDA 167 KDL
.D.(26 ADT 64 KDE 71 SDV 106 SDR 114 KDL 128 EDG
.N.(5)	12 ANA 46 QNA 98 TNS 147 TNL 157 KNY

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF PORCINE GROWTH HORMONE

In contrast to human GH, there are only a few predicted hot spots for hydrolytic degradation in porcine GH, at Asn-98, Asp-128, and the Met residues. Degradation of pGH is predicted to occur primarily at Asn-98, as might be expected in that Asn is next to Ser (Violand et al., 1990). This residue is in a moderately hydrophobic region, and so degradation might be expected to be slower than if it were in a hydrophilic region. The major degradation pathway of pGH in aqueous solution was found to be deamidation at Asn-98, with other degradation pathways at residues Cys-180-Cys-188 and Cys-52-Cys-163 (McCrossin et al., 1994). This study was carried out at pH 9 to effect faster reaction rates, and this higher pH may be the reason that reaction occurred at the Cys-Cys bonds. Under these conditions, reaction at Asn-98 gave iso-Asp-98 and Asp-98 in a 3:1 ratio.

Growth Hormone Releasing Factor (GHRF) Variant (human) (32 residues)

SEQUENCE

YADAIFTNSYRKVLGQLSARKLLQDILSRQQG

REACTIVE SITES

Q.(4)	30 RQQ 31 QQG
ġ.	16 GQL 24 LQD
.M.(0)	
.D.(2)	3 ADA 25 QDI
.N.(1)	8 TNS

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF (Leu-27) GHRF (1–32)

The hydroflex plot for this GHRF variant shows that Asn-8 resides in a hydrophilic region

or intermediate flexibility (although peptides such as GHRF may show flexibility throughout because of their small size), and thus Asn-8 may be expected to be a reactive site. Of secondary predicted reactivity is the C-terminal Glu, in that Glu-Gly typically reacts somewhat slower than Asn-Ser. Reaction of GHRF in aqueous solution at pH 7.4 and 37°C gave primarily reaction at Asn-8 (-TNS-) (Friedman et al., 1991). Studies have been carried out using modified bovine GHRF analogues (for example, substitution of Gly-15 with Pro-15 or Ala-15 to disrupt the helical structure in the helical region near Asn-8), and these showed altered rates of deamidation (Stevenson et al., 1993). Insufficient experiments were carried out to determine the rate of reaction at pH 4.5–7.5 or at 2–8°C. The parent molecule has Met at position 27, and has been nonenzymatically oxidized to give Met sulfoxide (Campbell et al., 1990).

Hemoglobin (human) (146 residues)

SEQUENCE

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQ-VKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTL-**AAHLPAEFTPAVHASLDKFLASVSTVLTSNTVKLQPR**

REACTIVE SITES

.0.(2)	54 AOV	144 LOP	,					
.M.(2)	32 RMF	76 DMP						
.D.(8)	6 ADK	47 FDL	64 ADA	74 VDD	75 DDM	85 SDL	94 VDP	126 LDK
.N.(5)	VNT 6	68 TNA	78 PNA	97 VNF	139 SNT			

A Compendium of Common Protein Reactive Sites

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HEMOGLOBIN (WAYNE)

This variant of hemoglobin has few predicted reactive sites, the most likely being cleavage of Asp-Pro (-VDP-) at low pH, or oxidation of Met. Isolation and purification of this alpha-chain variant gives two forms, where the microheterogeneity was found at Asn-139 unreactive, based on data obtained in small peptides (Tyler-Cross and Schirch, 1991). No (other than the reaction was slow) to permit an estimation of the reaction rate at 2-8°C. This is within the internal sequence -SNT- (Seid-Akhavan et al., 1976). This motif is considered fairly controls were carried out to show that reaction of Asn-139 occurs under formulation conditions (for example, in the absence of catalytic enzymes), nor was sufficient kinetic data presented another example of deamidation occurring at site other than Asn-Gly or Asn-Ser, but no evidence showing that the reaction proceeds rapidly by a nonenzymatic reaction.

Hirudin (65 residues)

SEQUENCE

VVYTDCTESGQNLCLCEGSNVCGQGNKCILGSNGEKNQCVTGEGTPKPQSHNNG-DFEEIP

REACTIVE SITES

.Q.(5)	11 GQN	24 GOG	38 NOC	49 POS	65 LO	,	
.M.(0)							
.D.(4)	5 TDC	55 GDF					
.N.(5)	12 QNL	20 SNV	26 GNK	33 SNG	37 KNQ	52 HND	53 NNG

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HIRUDIN

Hirudin is a glycoprotein under development as an antithrombotic agent. This small protein contains two Asn-Gly residues in flexible, hydrophilic regions, and may be expected to undergo some cyclization and iso-Asp formation. Mass spectral degradation product studies on hirudin showed that Asn-33 underwent cyclic imide formation to form the Q4 variant with resultant Asp-33 formation, as well as a Q5 variant with Asp-53 (Grossenbacher et al., 1993). These studies were carried out under slightly acidic conditions, which may promote degradation. Further, these product studies were carried out under harsh conditions (180-fold molar excess DTT, followed by pyridylation at pH 8.3 and enzymatic degradation at pH 7.8 at 37°C), making it difficult to determine if these degradation pathways would compromise hirudin shelf-life in a neutral pH aqueous formulation at 2–8°C. Another study of the hirudin variant 2 (rHV-Lys-47) showed that Asn-33 and Asn-53 (again both found within the Asn-Gly motif) were altered, either in the fermentation process or during the work-up (no stability data under formulation conditions were reported); it was determined that the variants were stable succinimide intermediates (Bischoff et al., 1993). Based on these studies, both Asn-33 and Asn-53 in hirudin are very susceptible to cyclic imide formation.

A Compendium of Common Protein Reactive Sites

Histone (102 residues)

SEQUENCE

SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRG VLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG

REACTIVE SITES

.Q.(2)	27 IQG	93 RQG
.M.(1)	84 AMD	
.D.(3)	24 RDN	68 KDA 85 MDV
.N.(2)	25 DNI	P EN

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HISTONE

The amino acid sequence of histone from several species was carried out as part of a study on histone evolution (Hayashi *et al.*, 1982). The authors found that histone-H4 (one of the fractionated histones in this study) showed microheterogeneity at Asn-25 after purification, where some Asp-25 was detected. Asn-25 resides within the -DNI- primary sequence motif, one that is thought to be fairly unreactive because of the neighboring Ile. Isolation of histone-H4 was done using several steps that might promote deamidation, including storage of the denatured protein with 2-mercaptoethanol at pH 8 and 40°C, an extraction and separation at pH 2.8, and purification using a pyridine-performic acid gradient at 55°C. No controls were carried out to determine if this unusual deamidation reaction occurred during the work-up or if the deamidation would occur in pH 4.5-7.5 formulation buffer.

Hypoxanthine-Guanine Phosphoribosyltransferase (HXGT) (217 residues)

SEQUENCE

ATRSPGVVISDDEPGYDLDLFCIPNHYAEDLERVFIPHGLIMDRTERLARDVMKEMG-GHHIVALCVLKGGYKFFADLLDYIKALNRNSDRSIPMTVDFIRLKSYCNDQSTGDIK-VIGGDDLSTLTGKNVLIVEDIIDTGKTMQTLLSLVRQYNPKMVKVASLLVKRTPRSV. GYKPDFVGFEIPDKFVVGYALDYNEYFRDLNHVCVISETGKAKYKA

REACTIVE SITES

.Q.(3)	108 DOS	143 MOT	151 ROY	,							
.M.(6)	42 IMD	53 VMK	56 EMG	94 PMT	142 TMO	156 KMV					
D.(21)	107 NDQ	112 GDI	119 GDD	120 DDL	134 EDI	137 IDT	176 PDF	184 PDK	193 LDY	200 RDL	
.D.	11 SDD	12 DDE	17 YDL	19 LDL	30 EDL	43 MDR	51 RDV	76 ADL	79 LDY	89 SDR	97 VDF
.N.(8)	25 PNH	85 LNR	87 RNS	106 CND	128 KNV	153 YNP	195 YNE	202 LNH			

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HXGT

reactive. Isolation and purification of HXGT from normal human erythrocytes afforded a tetramenic product that showed heterogeneity after tryptic digestion and peptide mapping This protein has several Met residues, suggesting that this may be one of the predominant degradation pathways. In addition, it has an Asn-Ser motif that may be expected to be mildly which encompasses Asn-106 within the -CND- motif. Although the work-up used in this paper included strong acid (9% formic acid), sufficient control experiments were carried out to show experiments were carried out to show that the same deamidation reaction occurs in pH 4.5-7.5 (Wilson et al., 1982). The heterogeneity was localized to a peptide spanning Ser-103 to Lys-114, that this deamidation was not due to the work-up but to in vivo deamidation. No control buffer. No oxidation was reported.

Insulin (human)

SEQUENCE (A CHAIN) (21 residues)

GIVEQCCTSICSLYQIENYCN

SEQUENCE (B CHAIN) (30 residues)

FVNQHLCGSHLVEALYLVCGERGFFYTPKT

REACTIVE SITES (A CHAIN)

.Q.(2)	5 EQC 15 YQI
.M.(0)	
.D.(0)	
.N.(2)	18 ENY 21 CN

REACTIVE SITES (B CHAIN)

.Q.(1)	4 NQH
.M.(0)	
.D.(0)	
.N.(1)	3 VNQ

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF HUMAN INSULIN

Insulin contains three Asn and two Gln that might be available for hydrolytic degradation. None of these residues, however, are predicted to be particularly susceptible to degradation based on their primary sequence, in that the motifs of highest reactivity, -XNG-, -XNG-, -XNG-, and -XQG-, are absent in insulin. Of the three Asn motifs in insulin, the -VNQ- would be predicted to be more reactive than the -ENY- or the -CN motifs, based on the deamidation rates in model peptides (Robinson and Rudd, 1974). Inspection of the hydropathy plots for insulin shows that the Asn-3 residue is in a region of intermediate hydrophobicity and flexibility. The major degradation pathway of insulin at neutral pH was deamidation of an Asn-3 in the B chain (Asn-B3), giving a mixture of Asp-3 and iso-Asp-3 (Brange et al., 1992). The stability data also suggested that this deamidation at neutral pH is fairly slow, where only 0.05% per month was lost, corresponding to a shelf life of several years. Although of limited utility for the prediction of insulin stability at neutral pH, it was also noted that deamidation under acidic conditions occurred predominantly at Asn-21 in the A chain (Asn-A21) (Darrington and Anderson, 1994, 1995), where the reaction proceeded via rate-limiting formation of a cyclic anhydride intermediate.

Insulin-like Growth Factor I (IGF-I) (70 residues)

SEQUENCE

GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRR-LEMYCAPLKPAKSA

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

.Q.(2)	15 LQF 40 PQT	
.M.(1)	59 EMY	
.D.(4)	12 VDA 20 GDR 45 VDE	
.N.(1)	26 FNK	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IGF-I

Inspection of the primary sequence shows that IGF-I is missing the traditional hot spots for hydrolytic degradation, in that it is missing Asn-Gly, Asn-Ser, Asp-Gly, Asp-Pro, and Gln-Gly. There is a single Met (Met-59) found in a fairly hydrophobic region of low flexibility. Based on the primary amino acid sequence and the hydroflex plot, IGF-I is predicted to be a stable protein to hydrolytic and oxidative degradation. The major degradation route for IGF-I at pH 6 was found to be oxidation at Met-59; there was also some evidence for minor amounts of the des-Gly-Pro product formed by diketopiperazine formation (which is favored by Pro at position 2) (Poulter *et al.*, 1990). The sum of these degradation products did not compromise the shelf life of the product, where IGF-I was stable for more than 2 years at 2-8°C.

Michael F. Powell

Insulinotropin (26 residues)

SEQUENCE

GTFTSDVSSYLEGQAAKEFIAWLVKG

REACTIVE SITES

.0.(1)	14 GQA
.M.(0)	
.D.(1)	6 SDV
.N.(0)	

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF INSULINOTROPIN

Insulinotropin does not have the traditional hot spots and so is predicted to be fairly stable in aqueous solution. As an aside, this peptide has a highly hydrophobic C-terminal region and may be expected to show adsorption to surfaces and filters (Brophy and Lambert, 1994). This peptide is formulated in aqueous solution at pH containing 22.6% dextran to promote onceaday subcutaneous injection. Under these conditions it was found that this peptide degraded fairly rapidly ($t_{90} = \sim 40$ hr at 25°C) giving biphasic kinetics (Heller and Qi, 1994). Excipient and degradation studies suggest that the Trp moiety is the reactive site in this peptide, corroborated by a significant loss in the absorption spectra at 300 nm.

A Compendium of Common Protein Reactive Sites

5

Interferon-alpha-2b (human) (IFN- α -2b) (165 residues)

SEQUENCE

CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLH-EMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE-DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKE

REACTIVE SITES

.Q.(12)	5 PQT 20 AQM 40 PQE 46 NQF 48 FQK 61 IQQ 62 QQI 90 YQQ 91 QQL 101 IQG 124 FQR
.M.(5)	16 LML 21 QMR 59 EMI 111 LMK 148 IMR
.D.(8)	2 CDL 32 KDR 35 HDF 71 KDS 77 WDE 82 LDK 94 NDL 114 EDS
.N.(4)	45 GNQ 65 FNL 93 LND 56 TNL

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IFN- α -2b

This protein does not have any hydrolytic hot spots, so the main degradation routes (if any) would likely be due to Met oxidation. The Met-111 variant was isolated by RP-HPLC and

identified by tryptic mapping and mass spectral studies (Gitlin et al., 1995). The oxidation of temperature thermal stress studies, but no extrapolation was made to determine the extent of deamidation at 2-8°C. These thermal stress studies did not increase the rate of Met oxidation at after fermentation and likely was not a formulation degradation product. Upon storage of IFN- α -2b in pH 7.2 phosphate buffer, there was some evidence for deamidation upon high-Met-111 did not affect the biological activity of this protein. Further, this variant was observed neutral pH.

Interferon-beta (IFN-B) (166 residues)

SEQUENCE

M§YNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKEDA-ALNIYEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLEKEDFT. RGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN

REACTIVE SITES

.Q.(11)	51 FQK	64 LQN	72 RQD	94 HQI			
.Q.	10 LQR	16 FQC	18 CQK	23 WQL	46 KQL		49 QQF
.M.(3)	36 RMN	62 EML	117 LMS				
.D.(5)	34 KDR	39 FDI	54 EDA	73 QDS	110 EDF		
N.(13)	86 ENL	90 ANV		153 RNF		166 RN	
Ź.	4 YNL	14 SNF	25 LNG	37 MNF	S8 LNI	es oni	80 WNE

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IFN-B

This protein has only a few sites predicted to be reactive, including an Asn-Gly (-LNG-) and three Mets. The Asn-Gly motif is located within a region predicted to be fairly hydrophilic but only moderately flexible. Stability studies of Ser-17-IFN-β at pH 5.5 with 0.1% SDS at 4°C for I year showed no detectable degradation of IFN-β by bioassay, SDS-PAGE, or RP-HPLC (Geigert et al., 1988). Unfortunately no methods were used that were specific for detecting charged variants (such as an -LNG- to an -LDG- conversion), so it is uncertain whether the Asn-Gly residue reacts at 4°C. Oxidation of Met-62 was reported in liquid parenteral formulations under "conditions specific for Met oxidation" (Lin et al., 1995). This protein was also mined), indicative that the formulation and ex vivo stabilities may be different and depend on found to be unstable in biological media (although the degradation pathway was not deterthe nature of both the protein and the biological fluid (O'Kelley et al., 1985).

Interferon-gamma (human) (γ -IFN) (144 residues)

SEQUENCE

KL-KNFKDDQSIQKSVETIKEDMNVKFFNSNKKKRDDFEKLTNYSVTDLNVQRKAI-MQDPYVKEAENLKKYFNAGHSDVADNGTLFLGILKNWKEESDRKIMQSQIVSFYF-HELIQVMAELSPAAKTGKRKRSQMLFRGRRASQ

.Q.(9)	2 MQD	47 MQS	49 SQI	65 DQS	68 IQK	107 VQR	116 IQV	134 SQM	144 SQ	
.M.(4)	46 IMQ	78 DMN	118 VMA	135 QML						
.D.(10)	3 QDP	22 SDV	25 ADN	42 SDR	63 KDD	64 DDQ	77 EDM	91 RDD	92 DDF	103 TDL
.N.(10)	11 ENL	17 FNA	26 DNG	36 KNW	60 KNF	VNM 67	84 FNS	86 SNK	98. TNY	105 LNV

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF INTERFERON-GAMMA

γ-IFN has only a few sites predicted to undergo hydrolytic degradation (Asn-26, Asn-84). Asn-26 is predicted to be the faster of the two, based on primary amino acid sequence (Asn-26 is adjacent to Gly; Asn-84 is adjacent to Ser). Both Asn are found in regions of similar hydrophobicity, but Asn-26 is in a region of greater flexibility. It is not surprising that reaction at Asp was not observed, in that none of the Asp in γ-IFN are predicted hot spots based on primary sequence (no -XDG-). Similarly, there are nine Gln in γ-IFN, but again none are traditional hot spots (no -XQG-). The major degradation pathway of γ-IFN at neutral pH was found to be deamidation at Asn-26 and Asn-84 (Pearlman and Nguyen, 1992; Keck, 1995). A minor amount of Met oxidation was observed at Met-1 and Met-135. No evidence was found for cleavage at the -QDP- motif, nor reaction at Asp or Gln. At pH 5, the sum of these reaction rates did not compromise shelf life when the product is stored at 2–8°C. Interestingly, the covalent dimerization of γ-IFN has also been reported (Lauren et al., 1993).

Interleukin-1 Receptor Antagonist (IL-1RA) (153 residues)

SEQUENCE

MRPSGRKSSKMQAFRIWDVNQKTFYLRNNQLVAGYLQGPNVNLEEKIDVVPIEPHA. LFLGIHGGKMCLSCVKSGDETRLQLEAVNITDLSENRKQDKRFAFIRSDSGPTTSFES. AACPGWFLCTAMEADQPVSLTNMPDEGVNVTKFYFOEDE

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

.Q.(8)	12 MOA	21 NOK	30 NOL	37 LOG	80 LOL	95 KOD	130 DOP	150 FOE	,
.M.(5)	1 MR	11 KMO	66 KMC	126 AME	137 NMP				
.D.(9)	18 WDV	48 IDV	75 GDE	88 TDL	96 QDK	105 SDS	129 ADQ	139 PDE	152 EDE
.N.(9)	20 VNQ	28 RNN	29 NNQ	40 PNV	42 VNL	85 VNI	92 ENR	136 TNM	143 VNV

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IL-IRA

This protein has few reactive hot spots and is predicted to be fairly stable because the few reactive sites (Met and Gln-Gly) are often not shelf-life-limiting. The degradation of IL-1RA has been studied in some detail, and a number of unusual reaction sites have been observed (Maneri, 1994). IL-1RA formed a stable cyclic imide at Asp-152 (in the -EDE- motif) and underwent disulfide formation at Cys-68—Cys-71, and cyclization between the N- and C-termini of des-Glu-153. Minor degradation pathways were oxidation at the N-terminal Met (Met-1) and deamidation of Asn-136 (in the -TNM- motif). The pH of maximum stability was near pH 6, and aggregation was the primary route of degradation (and so not applicable to this

Interleukin-1 α (IL-1 α) (155 residues)

SEQUENCE

SFLSNVKYNFMRIIKYEFILNDALNQSIIRANDQYLTAAALHNLDEAVKFDMGAYKS-SKDDAKITVILRISKTQLYVTAQDEDQPVLLKEMPEIPKTTTGSETNLLFFWETHGTK-NYFTSVAHPNLFIATKQDYWVCLAGGPPSITDFQILENQA

REACTIVE SITES

.Q.(8)	26 NOS	34 DQY	74 TOL	80 AQD	84 DOP	132 KQD	149 FQI	154 NOA	•	
.M.(3)	11 FMR	52 DMG	91 EMP							
.D.(10)	22 DNA	33 NDQ	45 LDE	51 FDM	60 KDD	61 DDA	81 QDE	83 EDQ	133 QDY	147 TDF
.N.(10)	5 SNV	9 YNF	21 LND	25 LNQ	32 AND	43 HNL	104 TNL	116 KNY	125 PNL	153 ENQ

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IL-1 α

IL- 1α lacks all of the traditional hydrolysis hot spots: Asn-Gly, Asn-Ser, Asp-Gly, and Gln-Gly. IL- 1α contains three Met residues, and all of them are found in regions predicted to be fairly rigid, although it is not known if this should inhibit their oxidation. Based on the

A Compendium of Common Protein Reactive Sites

considered accelerated reaction conditions. In retrospect, it is perhaps not surprising that reaction was observed at this site, in that it exists in a hydrophilic region of intermediate lexibility. Perhaps even more surprising is that this site is significantly more reactive than would be expected based on the reactivity found in small peptides (Robinson and Rudd, 1974). hydroffex plot, it is predicted that IL-1 α should be fairly stable. The only residue found to For example, the peptide GTND (where the TNX sequence is more reactive than the ANX notif) showed a half-life of 380 hr under the similar reaction conditions of pH 7.5 and 37°C, significantly longer than observed for the -AND- motif of IL-1 α . The major degradation Wingfield et al., 1987). This is in agreement with deamidation found in recombinant IL-1a NMR. Similar results were observed in another study describing the development of a 1989). No evidence was reported for Met oxidation. Unfortunately, the stability data presented in the literature were insufficient to determine whether or not this deamidation reaction proceeds sufficiently fast to compromise product shelf life at 2–8°C. IL-1 α provides a clear cut example showing that the prediction of protein reactivity is not straightforward, when basing L-la also shows that the -XND- motif can be sufficiently reactive in aqueous solution that it degrade was Asn-32 (-AND-) giving a $t_{1/2}$ of approximately 25–30 hr at pH 7.5 and 42°C, pathway of IL-1α at both pH 7.5 and pH 10.5 was found to be deamidation at Asn-32 ourified from E. coli, as identified by the appearance of pI bands at 5.45 and 5.20, and by IHdeamidation-specific ELISA for detection of Asn-32-IL-1lpha and Asp-32-IL-1lpha (Sunahara et al., the prediction on a primary sequence analysis and reactivity in small peptides of similar motif. t is satisfying to find that Asn-32 is harbored in a hydrophilic region of intermediate flexibility. may become the dominant site of degradation if other, more reactive sites (such as Asn-Gly, Asn-Ser, Asp-Gly, and Gln-Gly) are not available.

Interleukin-1 β (human) (IL-1 β) (153 residues)

SEQUENCE

APVRSLNCTLRDSQQKSLVMSGPYELKALHLQGQDMEQQVVFSMSFVQGEESNDK-IPVALGLKEKNLYLSCVLKDDKPTLQLESVDPKNYPKKKMEKRFVFNKIEINNKLEF-ESAQFPNWYISTSQAENMPVFLGGTKGGQDITDFTMQFVSS

	16	, ∀	ő	10F	į				
$\overline{}$	16	126 SOA	41.0	49					
Q.(12)	-								
ب	8	Ğ,	8	9	, 8	⁄ <u>></u>	NOG	, 1	ļ
	4 S	5 0	2		38 E				
	-	_	3				`	∞	
9	,WS	36 DME	MS	ME	MP	Mo	,		
.M.(6)	00	Q 9	4 S	λ Χ	20				
	7	6.3	4	5	13	14			
(SC	Σ	×	5	×	Ę.	=	Ä	
.D.(8)	RI	5	Ħ	X	Ö	I	142 QDI	H	
	12	35	54	75	9/	8	142	145	
_	ري	Д	_	≽	×	ァ	≅	×	×
6.	Z	S_{N}	\mathbf{Z}	\mathbf{Z}	Æ	Z	108 NNK	PN	E
~	7	53	99	8	102	107	108	119	129

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IL-1B

Inspection of the human sequence suggests that the most likely site for deamidation is either Gln-32 or Gln-48. Although these Gln are preceded by bulky hydrophobic residues (-LQG- and -VQG) that are deactivating, both of these Gln are in regions of moderate hydrophobicity and flexibility which may allow their reaction. An alternative, but less likely, reaction site is Asn-53 (-SND-), in that it is activated by the preceding Ser and exists in a region predicted to be hydrophilic and flexible. The major degradation pathway of IL-1β at neutral pH and temperatures less than 30°C was reported to be deamidation, although the site of deamidation was not determined (Gu et al., 1991). It was reported that murine recombinant IL-1β selectively deamidated at Asn-32 (-LNG-), but this sequence is not found in human IL-1β, as it is modified to contain Gln (-LQG-) of lower chemical reactivity (Daumy et al., 1991). Modification at this site did not lead to complete inactivity, wherein the deamidated product had ~50% of the original activity. The reactivity of IL-1β was sufficiently slow at temperatures less than 5°C that it was predicted that this reaction would not compromise the formulation shelf life. H₂O₂-catalyzed oxidation has been observed at Met-20, Met-36 or -44, Met-130, and Met-148 (Foster, 1996).

Interleukin-1ß (murine) (152 residues)

SEQUENCE

VPIRQLHYRLRDEQQKSLVLSDPYELKALHLNGQNINQQVIFSMSFVQGEPSNDKIP. VALGLKGKNLYLSCVMKDGTPTLQLESVDPKQYPKKKMEKRFVFNKIEVKSKVEF. ESAEFPNWYISTSQAEHKPVFLGNNSGQDIIDFTMESVSS

REACTIVE SITES

.Q.(11)	5 RQL	14 E00	15 QOK	34 GON	38 NOO	39 OOV	48 VQG	81 LQL	89 KQY	126 SQA	140 GQD
.M.(4)	44 SMS	73 VMK	95 KME	147 TME							
.D.(7)	12 RDE	22 SDP	54 NDK	75 KDG	86 VDP	141 QDI	144 IDF		•		
.N.(9)	32 LNG	35 QNI	37 INQ	53 SND	66 KNL	102 FNK	119 PNW	136 GNN	137 NNS		

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF IL-18 (MURINE)

Inspection of the hydroflex plot shows that the -LNG- motif (Asn-32) lies in a hydrophilic region of moderate flexibility and is the most likely reaction site. Interestingly, Asn-137 (-NNS-) also resides in a hydrophilic flexible region and may also react slightly. Comparison of the amino acid sequences for human and murine IL-1β show that neither of these predicted hot spots is available for reaction on human IL-1β, so it is expected that murine and human IL-1β should have different degradation pathways (see comparison of sequences in Scheme 11). Incubation of murine IL-1β in pH 8.5 aqueous solution at 37°C for 35 hr afforded deamidated IL-1β, where deamidation occurred primarily at Asn-32 (original numbering, Asn-149). Although the tryptic maps on IL-1β (murine) were inconclusive for deamidation in several regions of the molecule, they did show that the C-terminal end (containing the -NNS- motif)

Interleukin-11 (human) (178 residues)

SEQUENCE

PGPPPGPPRVSPDPRAELDSTVLLTRSLLADTRQLAAQLRDKFPADGDHNLDSLPTL. AMSAGALGALQLPGVLTRLRADLLSYLRHVQWLRRAGGSSLKTLEPELGTLQARL. DRLLRRLQLLMSRLALPQPPPDPPAPPLAPPSSAWGGIRAAHAILGGLHLTLDWAVR. GLLLKTRL

REACTIVE SITES

.Q.(7)	34 RQL 38 AQL 68 LQL 88 VQW 109 LQA 120 LQL 130 PQP
.M.(2)	59 AMS 123 LMS
.D.(11)	13 PDP 19 LDS 31 ADT 41 RDK 46 ADG 48 GDH 52 LDS 79 ADL 113 LDR 113 LDR
.N.(1)	SO HNL

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF INTERLEUKIN-11

The hydroflex plot for IL-11 shows that there are only a few predicted reactive sites for degradation. These include two Asp-Pro linkages that may be susceptible to acid-catalyzed cleavage: Asp-Gly, which may form iso-Asp-Gly, and Met oxidation. An excellent study on IL-11 degradation by Ingram and Warne (1994) included the effect of pH on the different pathways and degradation due to dimerization and aggregation. Briefly, IL-11 showed cleavage between Asp-13—Pro-14 and Asp-134—Pro-135 under acid conditions, but only minor amounts of cleavage at pH 7.2 after 146 days. IL-11 also showed some deamidation at higher pHs at Asn-50 (6.2%/wk at pH 9.6 and 30°C), but only minor amounts at lower pHs (0.19%/wk at pH 5.5 at 30°C). Based on these rates, it is roughly predicted that deamidation at these sites would not compromise the shelf life at 2–8°C. Some oxidation of Met-59 was also observed, especially at lower pH, but was minor at neutral pH for most of the buffers studied. No degradation of the Asp-Gly site was reported (-ADG-), although it is unknown whether the analytical methods used would have detected this.

Lung Surfactant SP-C (human) (34 residues)

SEQUENCE

GIPSSPVHLKRLLIVVVVVVLIVVVIVGALLMGL

REACTIVE SITES

0).	
.M.(1)	32 LMG
.D.(0)	
N.(0)	

□ 1

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF LUNG SURFACTANT

have a single Met near its C-termini, although this is in a hydrophobic region that is predicted to storage at 2-8°C after 1 month. This polypeptide was susceptible to oxidation at Met-32, the Recombinant human lung surfactant is predicted to be extremely resistant to hydrolytic degradation, notably because of a complete absence of reactive sites. Lung surfactant does be fairly inflexible. Lung surfactant did not show any hydrolysis after reconstitution and only site of predominant chemical reactivity.

Lysozyme (hen egg white) (129 residues)

SEQUENCE

ILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVA. KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYG-WRNRCKGTDVQAWIRGCRL

REACTIVE SITES

.N.(14)	.D.	D.(7)	.M.(2)	.Q.(3)
9 DNY	65 CND	18 LDN	12 AMK	41 TOA
7 GNW	74 RNL	48 TDG	105 GMN	57 LQI
7 SNF	77 CNI	S2 TDY		121 VQA
39 FNT	93 VNC	99 NDG		•
4 TNR	103 GNG	S7 SDI		
6 RNT	106 MNA	101 SDG		
SNI 6	113 RNR	119 TDV		

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF LYSOZYME

Based on this, it is anticipated that lysozyme should be fairly unstable in aqueous solution; indeed, anecdotal observations of lysozyme instability likely prompted the seminal peptide model studies of Robinson and colleagues (Robinson and Tedro, 1973b). Unfortunately, the degradation pathways of lysozyme itself were not studied in depth nor monitored using chromatographic techniques where subtle changes such as Asp conversion to iso-Asp would be detected. It was noted that the primary amino acid sequence consisted of Gly-Asp-Gly instead Asp-101 in the -SDG- motif when incubated at 40°C and pH 4 (Tomizawa et al., 1994). This authors did not report cyclic imide formation or iso-Asp formation at this site. No account of Inspection of the primary amino acid sequence for lysozyme shows that there are several reactive residues, including Asn-103 within the -GNG- motif, and several Asp-Gly residues. of Gly-Asn-Gly at positions 102-104 (Canfield, 1963), indicating a high propensity for deamidation at this reactive site. There is also another report showing cyclic imide formation of motif is known to be located within a solvent-accessible and flexible region. Interestingly, the -TDG- motif is also located in a region of predicted hydrophilicity and flexibility, and yet the lysozyme oxidation was reported in aqueous formulation.

Myelin Basic Protein (MBP) (169 residues)

SEQUENCE

AAQKRPSQRSKYLASASTMDHARHGFLPRHRDTGILDSLGRFFGSDRGAPKRGSGK-FSWGAEGQKPGFGYGGRASDYKSAHKGLKGHDAQGTLSKIFKLGGRDSRSGSPM-DGHHAARTTHYGSLPQKAQGHRPQDENPVVHFFKNIVTPRTPPPSQGKGRGRSLSR-

.Q.(8)	3 AQK	8 SQR	72 PQK	75 AQG	80 PQD	102 SQG	120 GQK	146 AQG	
.M.(2)	19 TMD	- 166 PMA							
.D.(9)	20 MDH	32 RDT	37 LDS	46 SDR	57 KDG	81 QDE	132 SDY	144 HDA	159 RDS
.N.(2)	83 ENP	91 KNI							

Michael F. Powell

F. Powell A

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF MYELIN BASIC PROTEIN

MBP has a single Asp-Gly (-KDG-) that may undergo cyclization and iso-Asp formation, as well as some Gln-Gly residues or predicted lesser reactivity. Both of these Gln are located in hydrophilic regions of modest flexibility. Isolation of bovine MBP resulted in partial deamidation of the Gln residues at positions 102 and 146 (corrected numbering) (Chou *et al.*, 1976). Unfortunately, it was not possible to distinguish whether the microheterogeneity was present in the original protein or was due to the work-up carried out at pH 10.4. There also exists a reactive Asp-Gly linkage, but it is unlikely that the paper chromatography methods used in this paper would isolate the iso-Asp product.

Neocarzinostatin (109 residues)

SEQUENCE

AAPTATVTPSSGLSDGTVVKVAGAGLQAGTAYDVGQCASVNTGVLWNSVTAAGSA-CDPANFSLTVRRSFQGFLFDFTRWGTVNCTTAACQVGLSDAAGDGQPGVAISFN

REACTIVE SITES

	>	GQP	,
.Q.(5))))	101 Q	
Q.	27 LQA	36 GQC	70 EOG
.M.(0)			
	FDF	SDA	COC
.D.(6)	75	95	00
Q.	SDG	YDV	au
	15	33	2
	VNC	몺	
(2)	-83	109	
.N.(5)	VNT	47 WNS	ANE
	#	47	9

A Compendium of Common Protein Reactive Sites

95

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF NEOCARZINOSTATIN

Inspection of the primary amino acid sequence for neocarzinostatin shows that there are several reactive hydrolysis sites, including Asn-47 (-WNS-), Asp-15 (-SDG-), and Asp-99 (-GDG-). The Asn-47 site may be only mildly reactive, in that it is in a region of moderate hydrophobicity. On the other hand, Asp-99 is in a flexible, hydrophilic region and is expected to be reactive. Under weakly acidic conditions at 4°C the major degradation pathway of neocarzinostatin was conversion of Asn-83 to Asp-83 (Maeda and Kuromizu, 1977). No other degradation products were observed during the several-day course of the reaction. Because these experiments were carried out at pH 3.2 (somewhat lower than would likely be used in a protein parenteral liquid formation), the rate data obtained in this paper are of limited utility in neocarzinostatin would exhibit a shelf life of 2 years between pH 5 and pH 7. This protein determining the preferred pathway at intermediate pH or for estimating whether or not shows that reaction in aqueous solution may occur at sites other than the traditional hot spots (or that pH is crucial in making predictions and that data at pH 3 should not be used to predict the major degradation pathways at pH 5-7). From the methods used, it is unlikely that iso-Asp formation would have been detected at Asp-15 or Asp-99, so it is unknown whether or not reaction at these hot spots actually occurred.

Nerve Growth Factor (human) (NGF) (120 residues)

SEQUENCE

SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETK-CRDPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLS-RKAVRRA

REACTIVE SITES

.N.(5)	.D.(8)	.M.(2)	.0.(2)
	16 CDS	37 VMV	51 KQY
	24 GDK	92 TMD	96 KQA
	30 TDI		,
	60 RDP		
	65 VDS		
	72 IDS		
	93 MDG		
	105 IDT		

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF NGF

sensitive to acid-catalyzed cleavage only, and is generally stable above pH 5 at 2-8°C. Of the The primary sequence of NGF indicated that there are three hot spots for hydrolytic degradation: Asn-46 (-NNS-), Asp-93 (-MDG-), and Asp-60 (-RDP-). This last motif is and so this site might be expected to be reactive. Asn-46 is adjacent to the Ser and is expected to be only moderately activated (as compared to Gly). It resides in a region of intermediate resides in a hydrophobic, inflexible region. It was shown that the primary degradation site in other two motifs, Asp-93 resides in a hydrophilic region that is calculated to be fairly flexible, hydrophobicity and flexibility, and so may be expected to be only moderately reactive. Met-37 tion were observed at Asn-45 (-INN-), a site not predicted to be normally reactive, and it was believed that this may have occurred in the processing steps at higher pH. Also minor amounts oxidative degradation reactions did not compromise the shelf life of liquid parenteral formula-NGF at pH 5.5 was iso-Asp formation at Asp-93 (-MDG-). Only minor amounts of deamidaof Met oxidation were found, both at Met-37 and Met-92. The sum of all these hydrolytic and tions of NGF at 2-8°C.

Parathyroid Hormone (84 residues)

A Compendium of Common Protein Reactive Sites

SEQUENCE

SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNFVALGAPLAPRDAGSQRPRKKE-DNVLVESHEKSLGEADKADVNVLTKAKSQ

REACTIVE SITES

.Q.(4)	6 IQL	29 LQD	49 SQR	84 SQ	,
.M.(2)	8 LMH	18 SME			
.D.(5)	. 30 QDV	45 RDA	S6 EDN	71 ADK	74 ADV
(c).N.	10 HNL	16 LNS	33 HNF	57 DNV	76 VNV

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF PARATHYROID HORMONE

complete that no microheterogeneity was observed at position 76. This reaction occurred at an This protein has only a few hot spots, including Asn-16 in the -LNS- motif and the Met sites. For years it was believed that parathyroid hormone contained Asp at position 76, in that all reports of extracted and purified human, bovine, or porcine parathyroid hormone contained Asp-76 (Keutmann et al., 1978). Later, however, nucleotide sequencing of cloned cDNAs encoding human parathyroid hormone messenger RNA showed that the correct residue was Asn-76 (Hendy et al., 1981). This is another dramatic example of in vivo deamidation and so unlikely site, that is, within the -VNV- motif. Further, this reactive site is in a region that is not particularly hydrophilic or flexible. No control experiments were carried out to show that the

Relaxin

SEQUENCE (A CHAIN) (24 residues)

QLYSALANKCCHVGCTKRSLARFC

SEQUENCE (B CHAIN) (29 residues)

DSWMEEVIKLCGRELVRAQIAICGMSTWS

REACTIVE SITES (A CHAIN)

.M.(0) .D.(0) .N.(1) 8 ANK

.Q.(0)

REACTIVE SITES (B CHAIN)

19 AQI .0.(1) 4 WME 25 GMS .M.(2) .D.(1) 1 DS .N.(0)

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF RELAXIN

A Compendium of Common Protein Reactive Sites

This small protein has few predicted reactive sites, perhaps the likeliest being oxidation of At pH 5-7, the major degradation pathways were again cleavage of this Asp, and oxidation of peroxide-catalyzed oxidation studies (Nguyen et al., 1993a). Disulfide scrambling occurred at he Met residues on the relaxin B chain. It was shown that the predominant cleavage pathway or relaxin at pH 3-5 was cleavage of the N-terminal Asp on the B chain (Nguyen et al., 1993a). Met-4 and Met-25 on the B chain (Cipolla and Shire, 1991), in agreement with hydrogen igher pHs (Canova-Davis et al., 1990, 1991).

Ribonuclease A (RNase A) (124 residues)

SEQUENCE

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADV-QAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQANKHIIVAC-EGNPYVPVHFDASV

REACTIVE SITES

.Q.(7)	74 YQS 101 TQA		
Ŏ.	11 RQH 28 NQM	-	60 SQK 69 GQT
.M.(4)	13 HMD 29 QMM		79 TMS
.D.(5)	14 MDS 38 KDR		83 TDC 121 FDA
N.(10)	67 KNG 71 TNC		103 ANK 113 GNP
Ŋ.	24 SNY 27 CNQ	34 RNL	44 VNT 62 KNV

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF RNase A

Inspection of the primary amino acid sequence, and the hydropathy and flexibility plots for RNase A shows that there is a single site for facile hydrolytic degradation at Asn-67 in the -KNG- motif. Based on this, Asn-67 is the most likely site of degradation. There are also several Met residues found in fairly hydrophilic regions of varying flexibility. This protein degraded primarily at its predicted hot spot (Asn-67) at both low and high pH. Reaction under strong acid conditions at 30°C showed reaction at Asn-67 (Venkatesh and Vithayathii, 1984) as it did at pH 8 and above (Bornstein and Balian, 1970; Wearne and Creighton, 1989). The conformation of this protein played a major role in its rate of deamidation, as shown by deamidation studies of ribonuclease (Bornstein and Balian, 1970; Wearne and Creighton, 1989) where an Asn that ordinarily does not deamidate in the native structure deamidates in the denatured protein. The oxidative degradation pathways of RNase A have not been reported.

Ribonuclease U2 (RNase U2) (Ustilago sphaerogena) (114 residues)

SEQUENCE

CDIPQSTNCGGNVYSNDDINTAIQGALDDVANGDRPDNYPHQYYDEASDQITLCC-GSGPWSEFPLVYNGPYYSSRDNYVSPGPDRVIYQTNTGEFCATVTHTGAASYDGFT-QCS

REACTIVE SITES

.M.(0)Q.(6)	S PQS	24 IQG	42 HQY	S0 DQI	89 YQT	112 TQC							
.D.(12)	2 CDI	17 NDD	18 DDI	28 LDD	29 DDV	34 GDR	37 PDN	45 YDE	49 SDQ	76 RDN	84 PDR	108 YDG	
.N.(9)	8 TINC	12 GNV	16 SND	20 INT	32 ANG	38 DNY	98 YNG	77 DNY	91 TNT				

A Compendium of Common Protein Reactive Sites

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF RNase U2

Inspection of the primary arnino acid sequence and the hydropathy and flexibility plots for ribonuclease U2 shows that there is a site for facile hydrolytic degradation at Asn-32 in the -ANG- motif and another Asn-Gly in the -YNG- motif. There also exists an Asp-Gly near the C-termini that may be susceptible to iso-Asp formation. Isolation of this protein results in two isoforms, RNase U2-A and RNase U2-B, of which the major difference in these is a change in the protein pl (Kanaya and Uchida, 1986). Degradation of this protein at one of its predicted hot spots (Asn-32) is the cause of the RNase U2-B isoform, where an iso-Asp-Gly linkage was found. The catalyst for this deamidation reaction was not determined but was likely due to simple pH catalysis during work-up (although enzymatic catalysis during fermentation cannot be ruled out based on the conditions used). Of interest, there is also another Asn-Gly motif in RNase U2 (-YNG-) that is surprisingly resistant to hydrolytic modification. Asn-68 is in a region of similar predicted hydrophobicity, and only slightly less flexible than Asn-32, and remained stable as the Asn form.

Secretin (27 residues)

SEQUENCE

HSDGTFTSELSRLRDSARLQRLLQGLV

.Q.(2)	20 LOR
.M.(0)	
.D.(2)	3 SDG
N.(0)	

Michael F. Powell

HYDROFLEX PLOT

102

PREDICTED REACTIVITY AND DEGRADATION OF SECRETIN

The amino acid sequence for secretin is short, with a concomitant few number of reactive sites. Nevertheless, the predicted site of reactivity is reaction at Asp-3 (-SDG-), and this should predominate easily over reaction at Gln-24 in the -LQG- motif. The -SDG- motif is also found in a fairly hydrophilic and flexible environment, suggesting that reaction may be possible (this flexibility calculation may be of little value in a peptide of this size which is likely to be highly flexible through its entire length). The major degradation pathway of secretin at neutral pH was reaction at Asp-3 to give the iso-Asp-3 product (Tsuda et al., 1990). In this study, the degradation of secretin was carried out at 60°C, much higher than the 2–30°C likely for storage of an aqueous secretin formulation. This example is still included, however, in that secretin is a small peptide rather than a protein, and data obtained at higher temperatures under accelerated stability conditions are likely to mimic the reaction pathway observed at lower temperatures. Unfortunately, these authors did not carry out their stability kinetics at different temperatures, so it is not possible to estimate the shelf life for secretin at 2-8°C.

Serine Hydroxymethyltransferase (SHMT) (rabbit) (483 residues)

SEQUENCE

ATAVNGAPRDAALWSSHEQMLAQPLKDSDAEVYDIIKKESNRQRVGLELIASENFAS-RAVLEALGSCLNNKYSEGYPGQRYYGTEHIDELETLCQKRALQAYGLDPQCWGV-NVQPYSGSPANFAVYTALVEPHGRIMGLDLPDGGHLTHGFMTDKKKISATSIFFESM-AYKVNPDTGYIDYDRLEENARLFHPKLIIAGTSCYSRNLDYGRLKIADENGAYLM-ADMAHISGLVVAGVVPSPFEHCHVVTTTTHKTLRGCRAGMIFYRRGVRSVDPKTGK-EILYNLESLINSAVFPGLQGGPHNHAIAGVAVALKQAMTPEFKEYQRQVVANCRAL-SAALVELGYKIVTGGSDNHLILVDLRSKGTDGGRAEKVLEACSIACNKNTCPGDKS-

A Compendium of Common Protein Reactive Sites

REACTIVE SITES

.N.(18)	.D.(24)	.M.(8)	.Q.(17)
NNG	10 RDA	20 QML	19 EQM
SNR	27 KDS	138 IMG	23 AQP
ENF	29 SDA	153 FMT	43 ROR
LNN	34 YDI	169 SMA	79 GOR
NNK	89 IDE	225 LMA	96 CQK
۸N۸	106 LDP	228 DMA	101 LQA
ANF	141 LDL	265 GMI	108 PQC
VNP	144 PDG	319 AMT	115 VQP
ENA	155 TDK		300 LQG
RNL	176 PDT		317 KQA
ENG	181 IDY		327 YOR
XNL	183 YDR		329 RQV
SNI	209 LDY		418 FQK
HNH	218 ADE		433 VQI
ANC	227 ADM		435 IQD
HNC	276 VDP		458 HQR
CNK	354 SDN		466 ROE
ZN.	361 VDL		,
	368 TDG		
	391 GDK		
	416 KDF		
	436 QDD		
	437 DDT		

HYDROFLEX PLOT

454 GDE

PREDICTED REACTIVITY AND DEGRADATION OF SHMT

expected to show deamidation. The second, Asn-220, is found in a motif predicted to be fairly reactive (-ENG-) and is found in a hydrophilic flexible region. Other reactive hot spots include Asp-144 (-PDG-), Asp-368 (-TDG-), and Gln-300 (-LQG-), all of which are found in fairly hydrophilic, flexible regions of the protein. Artigues *et al.* (1990) demonstrated that SHMT deamidated *in vivo* at Asn-5 to give iso-Asp-5. In addition, they carried out a short set of control experiments and showed that this deamidation reaction was not a consequence of the purification work-up, and that deamidation occurred at pH 7.3 and 37°C. They found that the Asn-5 moiety in SHMT disappeared with a half-life of 450 hr, significantly slower than model peptides Ac-VNGA ($t_{I/2} = 80$ hr) and Ac-ATAVNGAPRDAALW ($t_{I/2} = 70$ hr) of the identical N-terminal sequence. The work-up procedure (chymotryptic cleavage of the N-terminal 15-mer followed by HPLC analysis) precluded determination of deamidation at other sites in the protein. No analysis was made to determine if Met oxidation occurred upon storage in aqueous solution. The degradation rate constants were determined at only 37°C, so no extrapolation can be made as to the stability at 2-8°C.

Tissue Factor-243 (243 residues)

SEQUENCE

SGTTINTVAAYNLTWKSTNFKTILEWEPKPVNQVYTVQISTKSGDWKSKCFYTTDTE-CDLTDEIVKDVKQTYLARVFSYPAGNVESTGSAGEPLYENSPEFTPYLETNLGQPTIQ-SFEQVGTKVNVTVEDERTLVRRNNTFLSLRDVFGKDLIYTLYYWKSSSSGKKTAKT-NTNEFLIDVDKGENYCFSVQAVIPSRTVNRKSTDSPVECMGQEKGEFREIFYIIGAVV-FVVIILVIILAISLH

REACTIVE SITES

.Q.(8)	32 NQV	37 VQI	69 KQT	110 GQP	114 IQS	118 EQV	190 VQA	212 GQE						
.M.(1)	210 CMG													
.D.(11)	44 GDW	54 TDT	58 CDL	61 TDE	66 KDV	129 EDE	145 RDV	150 KDL	178 IDV	180 VDK	204 TDS			
.N.(14)	S TINT	11 YNL	18 TNF	31 VNQ	82 GNV	96 ENS	107 TNL	124 VNV	137 RNN	138 NNT	171 TNT	173 TNE	184 ENY	199 VNR

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF TISSUE FACTOR-243

domain (amino acids 1-243) has been developed, and some stability data exist for this trancated form. Inspection of the amino acid sequence of TF-243 shows that, even though there are a large number of Asn, Asp, and Gin, only one residue (Asn-96) in the -ENS- motif is a Tissue factor is a blood coagulation protein cofactor which exists as a glycosylated integral membrane protein. A truncated form of tissue factor that includes the transmembrane predicted hot spot. This motif containing Ser rather than GIy adjacent to Asn is predicted to be only moderately reactive. Note, however, that Asn-96 resides in a hydrophilic region, but of only intermediate flexibility. Formulation of the truncated form of tissue factor at 0.1 mg/ml and pH 7.3 in 10 mM isotonic pH 7.3 sodium phosphate and 0.8% octylglucoside showed no signs of degradation by several different methods when stored for 0.5 year at 2-8°C (Shire, 1995). No alterations in tissue factor were detected by SDS PAGE, size-exclusion chromalography, ELISA, chromogenic and clotting activity assays after 54 weeks at 2-8°C and at 25°C, when compared to a sample stored at -70°C. In the starting material stored at -70°C there were two bands at approximately pI 5.3, and after 54 weeks at 2-8°C another band was formed at ~pI of 5.2. At 25°C, the band at pI 5.2 was more intense than the doublet of bands at pI 5.3, and there was also an additional band at pI 5.0, whereas the original doublet at pI 5.3 by a chromogenic assay remained unaltered after 54 weeks at 2-8°C but decreased by 33% during storage at 25°C. Extrapolation of these data suggest that TF-243 is sufficiently stable to during storage, but was not conclusively proven. The activity of tissue factor as determined was barely visible. The generation of acidic components suggests that deamidation occurred permit storage at 2-8°C for at least 18 months.

TGF-Beta (112 residues)

SEQUENCE

ALDTNYCFSSTEKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIWSLDT-QYSKVLALYNQHNPGASAAPCCVPQALEPLPIVYYVGRKPKVEQLSNMIVRSCKCS

REACTIVE SITES

	۔ ا	1	
	PQ/	EQL	
.Q.(5)	81	100	
Q.	19 RQL	57 TQY	HON 19
.M.(1)	104 NMI		
D.(4)	55 LDT		
.D.	3 LDT	23 IDF	27 KDL
:	YNQ	HNP	SNM
9	99	69	103
.N.(6)	TNY	KNC	ANF
	5	14	42

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF TGF-B

the traditional hot spots for hydrolytic reactivity at neutral pH, in that Asn-Gly, Asn-Ser, Asp-Gly, and Asp-Pro are absent. TGF- β does have a single Met, and this is found in a region of predicted high hydrophobicity and decreased flexibility, possibly rendering this Met only stored for at least 1 year at 2-8°C. This is in good agreement with its hydroflex plot analysis, in Inspection of the primary amino acid sequence reveals that TGF-B does not have any of weakly susceptible to oxidation. Recombinant TGF-B was remarkably stable and did not undergo noticeable chemical degradation in 0.1-1.0 mg/ml liquid formulations at pH 5 when that there are no traditional sites of reaction (except for a single Met in a nonflexible, hydrophobic environment).

Thrombopoietin (TPO) (332 residues)

A Compendium of Common Protein Reactive Sites

SEQUENCE

NELPNRTSGLLETNFTASARTTGSGLLKWQQGFRAKIPGLLNQTSRSLDQIPGYLNRI-POGRTTAHKDPNAIFLSFQHLLRGKVRFLMLVGGSTLCVRRAPPTTAVPSRTSLVLTL-HELLNGTRGLFPGPSRRTLGAPDISSGTSDTGSLPPNLQPGYSPSPTHPPTGQYTLFP-TKAQDILGAVTLLEGVMAARGQLGPTCLSSLLGQLSGQVRLLLGALQSLLGTQLP-SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQMEE-**PPTLPTPVVQLHPLLPDPSAPTPTPTSPLLNTSYTHSQNLSQEG**

REACTIVE SITES

	.N.(10)	.D.(9)	.M.(3)	Ö.	Q.(19)
	125 PNA	8 CDL	SS QME	28 SQC	201 WQQ
	172 LNE	18 RDS	75 VMA	54 TQM	, 202 QQG
	176 PNR	45 VDF	143 LML	61 AQD	214 NQT
٠.	185 TNF	62 QDI		80 GQL	221 DQI
	213 LNQ	123 KDP		92 GQL	268 LQP
٠.	227 LNR	220 LDQ		96 GQV	282 GQY
	234 LNG	252 PDI		105 LQS	298 VQL
	266 PNL	259 SDT		111 TQL	326 SQN
	319 LNT	305 PDP		115 PQG	330 SQE
	327 QNL			132 FQH	

HYDROFLEX PLOT

A Compendium of Common Protein Reactive Sites

PREDICTED REACTIVITY AND DEGRADATION OF THROMBOPOIETIN

There are several forms of TPO, including the natural full length sequence shown above (produced in either *E. coli* or CHO cells), as well as a number or truncated forms, some of which have also been pegylated. A preliminary stability analysis has been carried out on the full length "natural" molecule under physiological conditions (pH 7.4) (Lim *et al.*, 1996). Inspection of the primary amino acid sequence for TPO shows that the most reactive is predicted to be Asn-234 within the -LNG- motif, Asp-123 within the -KDP- motif, Asn-305 within the -PDP- motif, and Gln-115 within the -PQG- motif. The first of these, Asn-234, showed N-linked glycosylation in the CHO-derived molecule studied, and so this site was unavailable for reaction. All reside in a region predicted to be hydrophilic and flexible. The chemical stability of TPO was monitored by SEC and tryptic mapping. TPO deamidated at Asn-227 (in the -LNR- motif) and formed iso-Asp at Asp-220 (in the -LDQ- motif). Reaction at these sites did not alter TPO activity, nor did diketopiperazine formation at Ala-3 (des-Ser-Pro). Further, it was found that TPO aggregates, as well as oxidized TPO (using hydrogen peroxide), had little or no biological activity. The time required to achieve 90% rhTPO mononmer (t₉₀ shelf life) was determined to be greater than 2 years at 2-8°C.

Tissue Plasminogen Activator (human) (t-PA) (527 residues)

SEQUENCE

SYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCNSGRAQCHSVPVKSCSEPR-CFNGGTCQQALYFSDFVCQCPEGFAGKCCEIDTRATCYEDQGISYRGTWSTAESGAE-CFNWNSSALAQKPYSGRRPDAIRLGLGNHNYCRNPDRDSKPWCYVFKAGKYSSE-CTNWNSSALAQKPYSGRRPDAIRLGLGNHNYCRNPDRDSKPWCYVFKAGKYSSE-FCSTPACSEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQ-ALGIGKHNYCRNPDGDAKPWCHMLKNRRLTWEYCDVPSCSTCGLRQYSQPGR-IKGGLFADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERFPHHLT-VILGRTYRVVPGEEEQKFEVEKYIVHKEFDDDTYDNDNALLQLKSDSSRCAQESS-VVRTVCLPPADLQLPDWTECELSGYGKHEALSPFYSERLKEAHVRLYPSSRCTSQH-LLNRTVTDNMLCAGDTRSGPQANLHDACQGDSGGPLVCLNDGRMTLVGIISWGL-GCGQKDVPGVYTKVTNYLDWIRDNMRP

REACTIVE SITES

.Q.(26)	3 YOV 271 SOP	12 TOM 273 POF	16 YOO 290 WOA	17 OOH 325 FOE	19 HOS 350 EOK	42 AOC 376 LOI.	63 COO 386 AOE	64 00A 402 I.OI	74 COC 444 SOH	96 DOG 467 POA	123 AOK 475 COG	217 AON 504 GOK	222 AOA	
.M.(6)	13 OMI	207 SMI	245 HML	455 NML	490 RMT	525 NMR								
(28)	366 DDT	369 YDN	371 NDN	380 SDS	400 ADL	405 PDW	453 TDN	460 GDT	472 HDA	477 GDS	487 NDG	506 KDV	519 LDW	
.D.(8 RDE	70 SDF	87 IDT	95 EDQ	132 PDA	148 PDR	150 RDS	179 SDC	236 PDG	238 GDA	257 CDV	283 ADI	364 FDD	200
23)	248 KNR	370 DND	372 DNA	448 LNR	454 DNM	469 ANL	486 LND	516 TNY	524 DNM					
.N.(23)	29 SNR	37 CNS	58 FNG	115 TNW	117 WNS	140 GNH	142 HNY	146 RNP	177 GNS	184 GNG	205 WNS	218 QNP	230 HNY	diad bec

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF t-PA

sequence -GNS-, Asn-37 in the -CNS- motif, and Asn-117 in the -WNS- motif. Reaction was observed at most of these sites, including iso-Asp formation via deamidation of Asn-37 in the sequence -CNS- (Paranandi et al., 1994). The Asn-Gly motifs are predicted to be reactive at neutral pH; the Asn-Ser motifs are also predicted to be reactive at 37°C based on synthetic peptide studies. When incubated at pH 7.3, 37°C, human recombinant t-PA accumulated 0.77 nol of iso-Asp per mol of t-PA over a 14-day period. All three sites appeared to be on the than average chain mobility. It is interesting to note that Asn-184 within the -GNGS- motif was in t-PA expressed in CHO cells and so is unavailable for reaction. This protein is also WNS- is not necessarily reactive). Although this molecule has numerous Mets, no reports of Met oxidation were reported. These hydrolysis reactions did not limit the shelf life in that this This serine protease is predicted to have several sites of possible degradation, notably deamidation at Asn-58 in the sequence -FNG, Asn-184 in the -GNG- sequence, Asn-177 in the surface of the protein, and all three occurred in regions of the protein predicted to have higher not susceptible to deamidation. The reason for this is straightforward; this Asn is glycosylated glycosylated at Asn-117, possibly accounting for its lack of reaction at this motif (although the This molecule is a serine protease and so is subject to autocatalytic degradation; because of molecule is subject to another, more rapid, degradation pathway (Nguyen and Ward, 1993b). his, it is formulated as a lyophilized powder and reconstituted before use.

Trypsin (bovine) (223 residues)

SEQUENCE

IVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDN-INVVEGNEQFISASKSIVHPSYNSNTLNNDIMLIKLKSAASLNSRVASISLPTSCASAG-TQCLISGWGNTKSSGTSYPDVLKCLKAPILSDSSCKSAYPGQITSNMFCAGYLEGG-KDSCQGDSGGPVVCSGKLQGIVSWGSGCAQKNKPGVYTKVCNYVSWIKQTIASN

REACTIVE SITES

Q.(10)	199 AQK	218 KQT						
9.	15 YQV	33 SQW	47 IQV	63 EQF	115 TQC	155 GQI	174 CQG	188 LQG
.M.(2)	86 IML	160 NMF						
.D.(6)	53 EDN	84 NDI	133 PDV	145 SDS	171 KDS	176 GDS		
N.(16)	82 LNN	83	6	123	159	201	211	223
Z,	10 ANT	IO LNS	31 INS	S4 DNI	26 INV	el GNE	77 YNS	TNS 6L

HYDROFLEX PLOT

PREDICTED REACTIVITY AND DEGRADATION OF TRYPSIN

Inspection of the amino acid sequence of trypsin shows that there are several Asn-Ser motifs, all located in hydrophilic, flexible regions. Trypsin also contains two Met residues, both located in hydrophobic, inflexible regions. Based on this, it is likely that trypsin may show deamidation or cyclic imide formation at any (or all) of the -XNS- motifs. Interestingly, Gln-174 is found in a region that is fairly flexible and hydrophilic, although this motif contains a cysteine that, when forming a disulfide bridge, may reduce the local flexibility dramatically, rendering it fairly unreactive. An elegant NMR study showed that three residues were prone to microheterogeneity (in the form of a deamidated product): Asn -31 (-INS), Asn-77 (-YNS-), and Asn-97 (-LNS) (revised numbering system to make the N-termini start at 1) (Kossiakoff, 1988). None of the other 13 Asn residues showed reactivity under the experimental conditions used. Of note, Asn-19 (-LNS-) did not show microheterogeneity, even though it has the same motif as Asn-97. This is another clear-cut demonstration that conformational aspects are crucial for deamidation in proteins. In this study, it was not determined if deamidation occurred prior to crystallization or if it occurred during the 1-year period of crystal growth and data

A Compendium of Common Protein Reactive Sites

collection. Nevertheless, these data show that trypsin does not degrade at sites other than the predicted hot spots.

Vascular Endothelial Growth Factor (VEGF) (165 residues)

SEQUENCE

APMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMR-CGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPKKDRA-RQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR

REACTIVE SITES

.N.(7)	.D.(8)	.M.(6)	.Q.(11)
62 CND	34 VDI	18 FMD	22 YOR
S SNI	41 PDE	55 LMR	37 FQE
) HNK	63 NDE	78 TMQ	19 MQI
5 ENP	109 KDR	81 IMR	87 HQG
I KNT	131 QDP	94 EMS	89 СОН
t LNE	143 TDS		98 LQH
	161 CDK	•	113 RQE
			130 VQD
			133 PQT
			150 ROL

HYDROFLEX PLOT

113

PREDICTED REACTIVITY AND DEGRADATION OF VEGF

at Asn-10 in the -QNH- motif to give a variety of products, as yet to be determined. At higher pH, proteolysis and additional deamidation were observed but not fully characterized. At or Inspection of the amino acid sequence of VEGF shows that there are few hot-spot motifs, and the two that exist (Gln-Gly and Asp-Pro) are not predicted to be as reactive as Asn-Gly or Asn-Ser. VEGF has a Pro at position 2 (APM ...), suggesting that this molecule might undergo diketopiperazine formation. It also has several Met residues that may oxidize. The degradation From pH 5 to 6, the major degradation route at accelerated conditions of 40°C was deamidation above pH 6.5, some diketopiperazine formation was observed under accelerated conditions of of VEGF in aqueous solutions from pH 5 to 7 has been determined (Keyt and Cleland, 1995). 40°C for 4 weeks, giving the expected reaction product, des-Ala-Pro VEGF.

4. STATISTICAL ANALYSIS OF PROTEIN DEGRADATION SITES IN **AQUEOUS SOLUTION**

These data show that the primary reaction of proteins at pH 4.5-7.5 occurs largely at Asn and Asp within these motifs: -Asn-Gly-, -Asn-Ser-, -Asp-Gly-, and to a lesser extent -Gln-Gly-, -Asp-Pro-, and -Met-. A few proteins, however, react at sites other than these and are exceptions to the rule. These proteins react at sites that are deemed "unreactive" sites (such as at Asn 52 in the -LND- motif in CD4), based largely upon data obtained in small model peptides. There are several reasons why proteins may show unusually high reactivity at these non-hot-spot sites:

- The motif is in the "correct" conformation for reaction to occur.
- Reaction may be due to enzymatic catalysis (traces of unwanted proteases in the purified protein product).
 - The protein degrades under the harsh conditions of isolation and work-up.
- (iv) The DNA encodes for both the parent and the product forms (such as encoding for Asn and Asp in cholera B subunit, depending on the strain studied), so both isoforms are expressed.

that facilitates reaction is an often-touted explanation for "non-hot-spot" protein reactivity. But is it the only reason? For example, some proteins deamidate faster under work-up conditions than in pH 7.4 buffer at 37°C, suggesting that enzyme acceleration in the rate of deamidation, but may also promote deamidation at motifs that would have otherwise been unreactive at pH 7.4 and 37°C. There are also numerous examples in the literature (see below) of non-hot-spot protein degradation The first reason that the reactive motif is held conformationally in a geometry catalysis [point (ii)] is operational. Enzymatic catalysis may not only cause an coming from publications where the work-up of the protein was carried out under fairly harsh conditions and often without controls. Finally, a few concrete examples

of protein microheterogeneity due to different DNA coding have been reported and provide an elegant rationale for apparent non-hot-spot protein degradation.

frequency of hot spots of each type. Most of these proteins show degradation, and this degradation information is available as to whether it has been observed to occur at a formulation-type studies where the reaction catalyst and the degradation kinetics are oxidation as the primary degradation pathway in aqueous solution. A final column summarizes those proteins that react as predicted, based on the hypothesis that the To sort through this, we have constructed a table summarizing protein reactivity in aqueous solution, based on whether or not the primary degradation pathway was observed to be at one or more of the predicted hot spots (Table II). This table contains information on the degradation behavior of 73 proteins, including information on the hot spot, at some other motif, or through oxidation. Information on 54 of the 73 proteins was obtained under formulation conditions (i.e., carefully controlled fairly well understood and not complicated by the initial protein quality or enzymatic degradation); for 21 proteins, degradation information pertains to behavior determined under "work-up" conditions (where degradation may also occur due to the work-up process, enzymatic catalysis in a biological milieu, or to fermentation degradation before isolation). Two proteins, calmodulin and interleukin 2, have been studied under both formulation and work-up conditions and so are included in both data sets. An additional column was added to address oxidation as the primary degradation pathway (under either formulation or work-up conditions), and no distinction between formulation and work-up was made as few proteins undergo primary degradation pathway occurs at one of the predicted hot spots for reaction.

at non-hot-spots; these are traditionally thought to be exceptions to the rule of protein reactivity. For example, of the 54 proteins that were studied under formulation showed reaction at non-hot-spot sites. Of the 21 proteins that were studied under (~52%) show reaction at non-hot-spot sites. Closer scrutiny of the data, however, shows that some of these differences arise because many proteins are devoid (or have Inspection of the data in Table II shows that there are several proteins that react conditions, 32 (~60%) showed primary reaction at hot-spot sites and 22 (~40%) work-up conditions, 10 (~48%) showed primary reaction at hot-spot sites and 11 very few) of the traditional hot spots, so when degradation is observed it is ultimately at a non-hot-spot site of degradation. To account for this, a column in the table called "predicted reactivity" was added. An absence of an X in the last column indicates proteins that are the truly unusual cases of protein degradation (i.e., proteins that degrade at non-hot-spots, even though there are traditional hot spots which remain unreactive). Inspection of the table shows that there is a slightly higher tendency to although this may not be statistically valid (i.e., p < 0.05) because of the limited data subset size. In several of these cases, these exceptions are found under conditions may account for some of the observed degradation. From a formulator's point of view, reaction of proteins at 37°C at pH 7.4 in a biological milieu containing enzymes observe non-hot-spot protein degradation when studied under work-up conditions, where work-up reaction may occur, or where harsh conditions of protein isolation

Protein Adrenocorticotropin Aglutinin Adolase Amylin antagonist Amyloid-related serum protein Angiogenin	7 I I MC #	I SN #	t I DC			5 00 #	2 I W #	Hot-spot formul. X	Other formul	X work-nb Hot-zbot	Other	noisabixO	Pred reac X X
Agglurinin Aldolase Amylin antagonist Amyloid-related serum protein	I	ī				7	7	x		x	х		
Amylin antagonist Amyloid-related serum protein	7	ī	Þ			7	ε				X		
Amyloid-related serum protein									1				
• • •		•	•	-			Ū		x				x
ພາເຮັາດຮິດແຕ	L	I	ī	I			7	Λ			x		A
mieda uvesad C. NHH-itmA	7	E I	Ł	L		. I	I.	x			Λ.		x
Anti-HER-2 heavy chain Anti-HER-2 light chain	7	I E	ε	Į.		z I	Ĭ Þ				x		X X
Anti-HER-2 light chain	·		·	•				Λ				•	X
Antibody 4D5 heavy chain	7	٤	ε	ι.		7	ç	X					x
Antibody 4D5 light chain	ı	E I	L	ı		7	I	x	Λ.				x
Antibody 17-1A heavy chain	l I	ζ 3	I Z	I		I 7	t L	Х	х				
Antibody 17-1A light chain	ī							x					X
Antibody light chain kappa	I.	ε	Ī			ī	7	X					x
Antibody OKT3 heavy chain	Ī	7	Ī	•			ς	X		,			x
Antibody OKT3 light chain	7 I	£	Z I	Z I		I 7	ς 6	X X					X
Antibody OKT4 heavy chain	7		7	7				V					x
Antibody OKT4 light chain		I				7	I.	Λ.	stable			^	·x
trial natriuretic peptide		I I		ı			E I.	X X	A			x	X
Srain derived neurotrophic factor	Ţ	т.	Ţ	I I			ε	X	x				X
				т						A.			x
Salmodulin	7		9	-			6	х		X			X
Sarbonic anhydrase	ε	L	ε	7		1	Ī		^	· X			X
ID4-FE40 ID4	I	7 7	ī	7 I		9	I Þ		x			x	x
					73/3 23/3 24/3	200							
улогорегохідаяе		ζ	Ţ	I			ε				x		
holera toxin B subunit	ī		_				ε		==	X			x
iliary neurotrophic factor			٤	-	[7		x		**		
A-nillateyr.			I	I			ε				X		
учоськоте с							7		X				X
əseNe		I	ī				ς	X					X
pidermal GF (human)		ī	z				I	X				x	X
pidermal GF (murine)	I	ī	7				I	x					X
rythrocyte protein 4.1	I		7	7	I		9			X			X
ibroblast GF acidic	7		٤				7		X				
ibroblast GF basic	I		Þ	7			7	X					X
ງຕຣສຣວນ					ĩ		ι				X		х
ranulocyte CSF	-		I		Ε		ε		X				
rowth hormone (bovine)		Ţ	I				ς	x					X
гоми погтопе (питап)		7					ε	X					X
rowth hormone (porcine)		I	τ				ε	X					X
rowth hormone rel factor		I			ī			, X					X
				Ι			7				X		
nidolgoma			z		I		-			X			X
nibmi					7						x		
					_		Ţ				Х		

Interferon-α-2b Interferon-γ Interferon-γ Interfeukin 1-RA

HXGT Insulinotropin Insulinotropin

(bəuniinoə)

X X X

x x

X X

x

X X

X

X

X

. X

Ţ

† † £ \$

X

A Compendium of Common Protein Reactive Sites

AECE				ī	Ţ	9		X				X
Lypsin		Þ			7	7	X					X
Tissue plasminogen activator	7	Þ	7		7	9	x					X
Tissue growth factor-B						I		stable		-		X
Tissue factor-243		I				I		stable				X
TMHZ	7	ĭ	z	7.	Ţ	.8	X					X
Secretin	·	•	ī	•	Ī	•	X					X
RNAase U2	7		ī		ī				x			X
RNAsse A	ī		-			Þ			X			X
						ζ		X			x	X
Parathyroid hormone Relaxin		7				7				X		
Nerve growth factor		7	Ţ	ı.		7	X				X	X
Neocarzinostatin		ī	z	Ī	τ			X				
		•	T	-	ε	7			x			X
Myelin basic protein	т	т	٤		C	z	X					X
Lysozyme Lung surfactant	ı	٠	L		•	ī	71				X	X
Interleukin 11			τ	7		ż		X			X	X
	т					Þ	X	x		x		X
Interleukin 2	T T	т	7	7	т	Þ	X					X
Interleukin 19 (murine)		ı		ī	ž	9	71	x				X
Interleukin lo Interleukin lβ (human)				٠	·	ε		x				X
Protein	DN #	SN #	DQ #	Db #	бе #	W #	Hot-spot formul.	Other	Motk-up Hot-spot	могк-ир	Oxidation	Pred read

The main objective of our analysis is to determine if the frequency of motifs of a what is the probability of primary reaction at Asn-Ser for a new, unstudied protein? particular type affects the propensity for proteins to degrade at a hot spot or at some other motif. In addition, the association between oxidation and the frequency of It has long been known that many proteins react at the traditional hot spots, but the predictive value of this general knowledge has not yet been tested. For example, methionine residues was investigated. conditions.

that may cause protein degradation does not mimic optimal formulation reaction

117

In assessing hot-spot degradation, the following evaluations were conducted because some proteins are structurally similar and so would unduly weight the analysis if all were used. For each hot-spot type, the frequency distribution was compared between proteins which exhibited degradation at a hot spot and those A two-tailed Fisher's exact test was used to assess significance of the association between degradation at a hot spot and frequency of a particular motif for each of the five hydrolytic hot-spot types. An additional evaluation investigated this association with the frequency of hot spots of any type. The results are shown in Appendix A. For proteins studied under formulation conditions, results are summarized in Tables relationship between oxidation and frequency of Met residues is summarized in Table separately for proteins studied under formulation conditions and those studied under work-up reaction conditions. Note that the number of proteins used in the statistical analysis differs slightly from the total number of proteins in this compendium, largely which did not. This comparison was carried out by formal contingency table analysis. Ala-f and Figs. Ala-f, respectively. The corresponding Tables Alla-f and Figs. Alla-f present results for the proteins investigated under work-up conditions. The AIII; Fig. A3 provides a graphical summary.

By convention, p-values less than 0.05 are reported as representing a statistically significant association; however, all p-values should be interpreted with caution, since not all 73 of the proteins analyzed can be considered to provide independent information (e.g., results for the antibodies are unlikely to be independent because of sequence similarity outside of the CDR region). Since only 21 proteins were studied under work-up conditions, p-values were not reported for the association between degradation and hot-spot frequency; small sample sizes and discreteness of the distributions involved render formal hypothesis tests suspect in this case. For proteins studied under work-up conditions, graphs and tables are provided for descriptive purposes only.

The frequency distribution of Met residues was compared across proteins which did and did not undergo oxidation in similar fashion. This analysis was carried out for all 73 proteins combined, without distinguishing between those studied under formulation and work-up conditions. The analyses support the following conclusions: · There is a pronounced shift in the frequency distribution of the -Asn-Glymotif among proteins which degrade at a hot spot under formulation condi119

tions. The majority (86%) of proteins not exhibiting hot-spot degradation lack an -Asn-Gly- motif, whereas a majority (59%) of those which do degrade at a hotspot have at least one -Asn-Gly- motif (Table AIa/Fig. AIa). The *p*-value of 0.004 suggests that this is not a random event.

- Similarly, the frequency of the -Asn-Ser- motif appears positively associated with hot-spot degradation under formulation conditions (Table AIb/Fig. AIb). The majority (71%) of proteins not exhibiting hot-spot degradation lack an -Asn-Ser- motif, whereas nearly half (40%) of those which do degrade at a hot spot have at least one -Asn-Ser- motif. The *p*-value for this analysis is 0.002 suggesting that this is not a random event.
- The tendency to degrade at a hot spot under work-up conditions does not appear to be associated with frequency of the other motifs: -Asp-Gly- (p = 0.22), -Asp-Pro- (p = 1.00), or -Gln-Gly- (p = 0.27). (Tables Alc-e/Figs. Alc-e). There may be several reasons for this. First, if these motives are unreactive on the time scale studied, then large values of p will be obtained. Second, if reaction goes undetected because of experimental difficulty (such as might be the case for iso-Asp formation from Asp), this will also result in an apparent lack of association.
 - Not surprisingly, there is a significant association between degradation at a hydrolytic hot spot and the overall number of hot spots. The significance of this association, however, may be driven in part by the structural zero in Table AIf (proteins without any hot spot cannot degrade at a hot spot).
- In general, patterns for degradation under work-up conditions appear similar to those for the proteins studied under formulation conditions. An exception may be the pattern of -Asn-Ser- motifs (compare Tables AIIb and AIb), although the sample size (20) is too small to draw definitive conclusions.
- Since oxidation occurred for relatively few (11) of the 73 proteins, the ability to assess the relationship to the frequency of Met residues is limited. The p-value of 0.62 shows that there is no correlation between oxidation and the presence of Met (i.e., many proteins containing Met do not oxidize).

5. GENERAL CONCLUSIONS REGARDING PROTEIN DEGRADATION IN AQUEOUS SOLUTION

This literature compilation on the chemical reaction of proteins was assembled to establish boundaries to the reactivity of Asn, Asp, Gln, and possibly Met, in the context of neighboring amino acid sequence, regional hydrophobicity, and backbone flexibility. An extensive review of the literature, as well as several unpublished reports, afforded numerous proteins that selectively hydrolyze, deamidate, undergo iso-Asp formation, or oxidize in aqueous solution. Inspection of the primary amino acid sequence alone gives a modest indicator of the most reactive motifs; it was found

protein oxidation data available, because of the complex nature of protein oxidation flexibility plots (termed "hydroflex" plots) to provide a way of further examining the degradation of peptides and proteins. By doing so we found that some residues tally) were calculated to be in hydrophobic regions of limited flexibility. Further, the where the protein may have degraded upon work-up (herein termed, work-up studies). We present several examples of work-up degradation that do not adhere to the above rules (based on the predicted hot spots), possibly because of enzymatic For these reasons, work-up degradation results should not be used to predict protein reactivity in aqueous formulations. Finally, the prediction of Met reactivity based on by a variety of different oxidative catalysts (Knepp et al., 1996), or because protein served (Asn-Gly, Asn-Ser, Asp-Gly, Gln-Gly, Asp-Pro, and Met). Of the proteins of which we have compiled reliable degradation data, only 5 (CD4, CNTF, acidic-FGF, GCSF, and neocarzinostatin) degraded primarily at "unusual" sites of degradation, and not at the available and predicted hot spots. We calculated the hydropathy/ predicted to react based on their amino acid sequence (but did not react experimenhydrolytic protein degradation studies have been carried out under two types of conditions: those carefully controlled studies in aqueous solution at near-neutral pH where the integrity of the initial protein was well known (termed formulation studies) and those where degradation was observed after isolation from biological media or catalysis or extreme reaction conditions used for protein isolation and purification. primary amino acid sequence was not successful, possibly because of the limited conformation prohibits reaction of Mets found in the protein core. Some general that the general rules already established predict the majority of reactive sites obconclusions are emphasized.

- 1. Data used to predict protein reactivity in aqueous formulations should be carefully scrutinized before making general conclusions. Several of the exceptions to the rule for protein degradation in aqueous solution come from examples in the literature where the nature of the "unusual" degradation is unknown and may be caused by enzymatic degradation, heterogeneity of protein expression at the gene level, or hydrolytic or oxidative degradation upon work-up. These examples are not representative test cases for protein degradation in aqueous formulations.
 - 2. Hydropathy seems to be a better predictor for protein degradation than does calculated flexibility. Inspection of more than 70 hydroflex plots shows that most of the reactive hot spots lie in regions predicted to be hydrophilic. In large part this is due to the nature of the calculation (for example, Asn, Asp, and Gln have large negative Kyte parameters, lowering the overall value of calculated hydrophobicity). For example, the literature average (over 500,000 protein entries included in this calculation) hydropathy for all residues is -0.32 (statistically corrected for the amount of each amino acid found in nature); similarly the hydropathy values for NG, NS, DG, QG, DP, and M (again statistically corrected and using a window of six amino acids in

2

the hydropathy calculation) are -0.81, -0.89, -0.84, -0.84, -1.06, and 0.04 reconstitution.

3. Met oxidation is not a major pathway for degradation for most proteins and is difficult, if not impossible, to predict based on primary sequence alone. Many of the proteins studied had several Met amino acids and yet did not show oxidative degradation; other proteins, however, showed oxidation as the primary degradation pathway. A few proteins also showed oxidation as a minor degradation pathway. For the handful of proteins that showed oxidation at Met, there was no observable correlation between Met reactivity and hydrophobicity. Again, the average Met hydrophobicity (statistically corrected) over the entire database was 0.04; the value, along with the standard deviation of the calculated hydropathy for reactive Mets was 0.2 ± 1.6.

4. There appears to be a fairly good correlation between degradation at hot spots and the number of available hot spots for reaction. Proteins with only a few hot spots (or the lesser reactive hot spots such as Gln-Gly) tended to react at non-hot-spot sites, whereas proteins with numerous hotspots, particularly if they included Asn-Gly, Asn-Ser, and Asp-Gly, tended to react primarily at these sites. There were exceptions to this conclusion, but they were few and did not represent the norm.

5. Based on the above, the design of protein stability experiments in aqueous formulations should focus initially on the identity of hot-spot degradation pathways, with emphasis on Asn-Gly and Asn-Ser (as applicable). Less attention should be focused on Gln-Gly, as this motif appears to be less reactive than Asp-Gly, Asp-Pro, or even Met.

APPENDIX A

There was a pronounced shift in the frequency distribution of the -Asn-Gly- motif among proteins which degraded at a hot spot under formulation conditions. The majority (86%) of proteins not exhibiting hot-spot degradation lacked an -Asn-Gly- motif, whereas a majority (59%) of those which degraded at a hot spot had at least one -Asn-Gly- motif. The p-value of 0.004 suggests that this is not a random event.

Table AIa. Hot-Spot Degradation under Formulation Conditions by Frequency of Asn-Gly motifs

		Ę	requency			
Degrades	0	1	2	3+	Total	
No	18 (86%)	2 (10%)	1 (5%)		21	
Yes	13 (41%)	12 (37%)	7 (22%)		32	
Total	31 (59%)	14 (26%)	8 (15%)		53	p = 0.004

degraded at a hot spot had at least one -Asn-Ser- motif. The p-value for this analysis is $0.002_i\%$ spot degradation lacked an -Asn-Ser- motif, whereas nearly half (40%) of those which The frequency of the -Asn-Ser- motif appeared positively associated with hot-spot degradation under formulation conditions. The majority (71%) of proteins not exhibiting hotsuggesting that this is not a random event.

The tendency to degrade at the -Asp-Gly- hot spot under formulation conditions did not appear to be associated with frequency of the -Asp-Gly- motif. The p-value for this analysis was 0.22, suggesting that this was a random event. The reaction of Asp-Gly is often difficult to

detect because of experimental difficulty (such as iso-Asp formation from Asp), and may

account, at least in part, for the apparent lack of association.

Table AIc. Hot-Spot Degradation under Formulation Conditions

by Frequency of Asn-Gly Motifs

Frequency

Table AIb. Hot-Spot Degradation under Formulation Conditions by Frequency of Asn-Ser motifs

			•		!	
Degrades	0	1	2	3+	Total	
S.	15 (71%)	3 (14%)	2 (10%)	1 (5%)	21	
Yes	(16%)	15 (47%)	4 (13%)	7 (22%)	32	
Total	21 (40%)	18 (34%)	6 (11%)	8 (15%)	53	p = 0.002

Degradation (n=32)

0.8

0.7

p = 0.22

21 32 53

5 (16%) 7 (13%)

2 (9.5%) 5 (16%) 7 (13%)

11 (34%) 14 (26%) 3 (14%)

14 (67%) 11 (34%) 25 (47%)

No Yes Total

0

Degrades

Frequency

0.4

0.3

Relative

0.2

0.1

of Asn-Ser

Number

near-neutral pH, it is likely that this reaction is minimized and may account, at least in part, for The tendency to degrade at the -Asp-Pro- hot spot under formulation conditions did not was 1.00, suggesting that this was a random event. The reaction of Asp-Pro is favored at low pH's and becomes less favorable as the pH is raised. Because many formulations are made at appear to be associated with frequency of the -Asp-Pro- motif. The p-value for this analysis the apparent lack of association.

appear to be associated with frequency of the -Gln-Gly- motif. The p-value for this analysis

was 0.27, suggesting that this was a random event. The reaction of Gln-Gly was observed only

The tendency to degrade at the -Gln-Gly- hot spot under formulation conditions did not

rarely in all of the proteins tabulated, even though this motif was found often. It is likely that the apparent lack of association of this motif with reactivity is caused by just that-lack of

reactivity under formulation conditions.

Table AId. Hot-Spot Degradation under Formulation Conditions by Frequency of Asp-Pro Motifs

		Ē	Frequency			
Degrades	0	1	2	3+	Total	
%	15 (71%)	4 (19%)	2 (9.5%)		21	
Yes	21 (66%)	7 (22%)	4 (12%)		32	
Total	36 (68%)	11 (21%)	6 (11%)		53	a = 1.00

Table AIe. Hot-Spot Degradation under Formulation Conditions Total 21 32 53 by Frequency of Gln-Gly Motifs 3 (14%) 3+ 3 (14%) 6 (19%) Frequency 7 9 (28%) 12 (57%) 17 (53%) 29 (55%) 0 Degrades No Yes

p = 0.27

3 (6%)

9 (17%)

12 (23%)

Total

Relative

Freduency

The tendency to degrade at any hot spot under formulation conditions was tightly associated with the frequency of hot spots. The p-value for this analysis is 0.0004 suggesting that this was not a random event. The small p-value for this association may in part be driven by the structural zero in the degradation plot; no degradation at a hot spot is possible if the protein does not have a hot spot.

Table AIf. Hot-Spot Degradation under Formulation Conditions by Frequency of Any Motif

	İ	٠,			Frequency	neuc	<u>~</u>			
Degrades	0	1	2	3	4	5	9	1+	Total	
No	6	2	0	3	7	7	0	3	21	
Yes	0	3	7	S	4	7	3	∞	32	
Total	6	2	7	∞	9	4	e	Ξ	53	n = 0004

of Hotspot Sites

Number

0

Degrades 0 1 2 3+ Total No 8 2 1 0 11 Yes 2 4 2 1 9 Total 10 6 3 1 20

Degradation (n=9)

0.8

Degradation (n=32)

0.5

Voneuper3 0.0 6.0

evitaleA 0 0

0.1

Table AIIb. Hot-Spot Degradation by Frequency of Asn-Ser Motifs under Work-up Conditions

	i		Frequency	ency		
Degrades	0	-	2	3+	Total	
No	9	4			=	
Yes	6	0	0		6	
Total	15	4	_		20	p = 0.056

Degradation (n=9)

Table AIIc. Hot-Spot Degradation under Work-up Conditions

No Degradation (n=11)

0.7

9.0

of Asp-Gly Sites

Number

0.1

These plots are intriguing and provocative, in that the did not find a correlation of oxidation with number of Met residues. This is perhaps somewhat surprising, in that one might have intuitively expected that proteins with many Met residues maight be more prone to oxidation that those with few. Indeed, there existed a single example where oxidation was the

predominant pathway, and yet the protein is devoid of Met (oxidation occurred at Trp).

Table AIII. Oxidation by Frequency of Met Residues

0

Oxidation?

 $\dot{p} = 0.062$

0 0 0 3 3 13

5

No Yes Total

Degradation (n=9)

9.0

0.5

Oxidation (n=11)

0.5

0.4

	రి	onditio	lons	Dy.	rreq	nen	y of	by Frequency of Any Motil	MOUI	
Degrades	0	-	2	3	4	2	9	1+	Total	
oN N	0	9	7	-	0	–	0	-	=	
Yes	0	7	0	_	3	0	_	7	6	
Total	0	∞	7	7	e		-	'n	70	n = 0.133

Kelative Frequency

Number

0

0.1

Number of Metholnine Residues ဖ

ACKNOWLEDGMENTS. This chapter would not have come together without the help of Jessica Burdman and Milianne Chin. Several others have contributed to this Diane Corbo (R. W. Johnson), Bim Dhingra (Circa Pharmaceuticals Inc.), Marcia Leah Lipsich (Boehringer Ingelheim), Mike Mulkerrin (Genentech, Inc.), Rajiv Nayar (Miles Laboratories), John O'Connor (Genentech, Inc.), James "J.Q." Oeswein (Genentech, Inc.), Rodney Pearlman (Megabios, Inc.), Laurie Peltier (Amcompendium: Sid Advant (Protein Design Labs), Dana Aswad (UC Irvine), Nancy Babour (Bristol Myers), John Battersby (Genentech, Inc.), Tom Bewley (Genentech Federici (SKB), John Frenz (Genentech, Inc.), Gerry Gitlin (Biogen, Inc.), Leo Gu ylin), Steve Prestrelski (Alza Corp.), Shelly Prince (Univ. of Oklahoma), Lynda Mike Spellman (Genentech, Inc.), Robert Strickley (Univ. of Utah), Patricia Smialkowski (SmithKline Beecham), Glen Teshima (Genentech, Inc.), Jim Wells Inc.), Ron Borchardt (University of Kansas), Bill Charman (Monash University), (Syntex Research), Andy J. Jones (Genentech, Inc.), Victoria Knepp (Alza, Corp.), Sanders (Syntex Research), Richard Senderoff (Zymogenetics), Paula Shadle (SKB), (Genentech, Inc.), and Tonie Wright (Medical College of Virginia).

REFERENCES

Abdel-Meguid, S. S., Shieh, H. S., Smith, N. W., Dayrenger, H. E., Violand, B. N., and Bentls, L. A., 1987, Three-dimensional structure of a genetically engineered variant of porcine growth hormone, Proc. Natl. Acad. Sci. USA 84(18):6434-6437.

Artigues, A., Birkett, A., and Schirch, V., 1990, Evidence for the in vivo deamidation and isomerization of Aswad, D. W., 1984, Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl an asparaginyl residue in cytosolic serine hydroxymethyltransferase, J. Biol. Chem. 265:4853-4858.

methyl transferase requires deamidation of asparagine-25, J. Biol. Chem. 259:10714-10721. Battersby, J. E., Hancock, W. S., Canova-Davis, E., Oeswein, J. Q., and O'Connor, B., 1994, Diketopiperazine formation and N-terminal degradation in recombinant human growth hormone, Int. J. Peptide Res. 44:215-222.

Bischoff, R., Lepage, P., Jaquinod, M., Cauet, G., Asker-Klein, M., Cleese, D., Laporte, M., Bayol, A., Dorsselaer, A. V., and Roitsch, C., 1993, Sequence specific deamidation: Isolation and biochemical Blomback, B., 1967, Derivatives of glutamine in peptides, in: Enzyme Structure, Vol. 11 (C. H. W. Hitsh, characterization of succinimide intermediates or recombinant hirudin, Biochemistry 32:725-734. ed.), Academic Press, New York, pp. 398-411.

Bodansky, M., Ondetti, M. A., Levine, S. D., and Williams, N., 1967, Synthesis of secretin. II. The stepwise approach, J. Am. Chem. Soc. 89:6753-6757

Bornstein, P., and Balian, G., 1970, The specific nonenzymatic cleavage of bovine ribonuclease with Brange, J., Langkjaer, L., Havelund, S., and Vølund, A., 1992, Chemical stability of insulin. 1. Hydrolytic hydroxylamine, J. Biol. Chem. 245:4854-4856.

Brophy, R. T., and Lambert, W. J., 1994, The adsorption of insulinotropin to polymeric sterilizing filters, J. degradation during storage of pharmaceutical preparations, Pharm. Res. 9:715-726. Pharm. Sci. Tech. 48:92-94.

Cacia, J., Keck, R., Presta, L. G., and Frenz, J., 1996, Isomerization of an aspartic acid residue in the complementarity region of a recombinant antibody (in preparation).

Campbell, R. M., Lee Y., Rivier, J., Heimer, E. P., Felix, A. M., and Mowles, T. F., 1991, GRF analogs and fragments: correlation between receptor binding, activity and structure, Peptides 12:569-574,

Canfield, R. E., 1963, The amino acid sequence of egg white lysozyme, J. Biol. Chem. 238:2698-2707.

Canova-Davis, E., Baldonado, I. P., and Teshima, G. M., 1990, Characterization of chemically synthesized human relaxin by high performance liquid chromatography, J. Chromatogr. 508:81-96.

Rinderknecht, E., 1991, Use of recombinant DNA derived human relaxin to probe the structure of the Canova-Davis, E., Kessler, T. J., Lee, P., Fei, D. T. W., Griffin, P., Stults, J. T., Wade, J. D., and native protein, Biochemistry 30:6006-6013.

Capasso, S., Mazzarella, L., and Zagari, A., 1991, Deamidation via cyclic imide of asparaginyl peptides: dependence on salts, buffers and organic solvents, Pept. Res. 4:234-238.

1988, Selective killing of HIV-infected cells by recombinant human CD4-Pseudomonas exotoxin Chaudhary, V. K., Mizukami, T., Fuerst, T. R., Fitzgerald, D. J., Moss, B., Pastan, I., and Berger, E. A., hybrid protein, Nature 335:369-372.

Chazin, W. J., Kördel, J., Thulin, E., Hofmann, T., Drakenberg, T., and Forsén, 1989, Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D9k and structural characterization by 2D ¹H NMR, Biochemistry 28:8646-8653.

Chou, F. C., Chou, C., Shaperia, R., and Kibler, R. F., 1976, Basis of microheterogeneity of myelin basic protein, J. Biol. Chem. 251:2671-2679.

Cipolla, D., Gonda, I., Meserve, K. C., Weck, S., and Shire, S. J., 1994, Formulation and aerosol delivery of recombinant DNA-derived human deoxyribonuclease (rhDNase), in: Formulation and Delivery of Proteins and Peptides (J. L. Cleland and R. Langer, eds.), ACS Press, pp. 322-342.

Cipolla, D. C., and Shire, S. J., 1991, Analysis of oxidized human relaxin by reverse phase HPLC, mass spectrometry and bioassays, in: Techniques in Protein Chemistry II, (J. J. Villafranca, ed.), Academic Press, New York, pp. 543-555.

Cleland, J. L., Powell, M. F., and Shire, S. J., 1993, The development of stable protein formulations: a close

Darrington, R. T., and Anderson, B. D., 1994, The role of intramolecular nucleophilic catalysis and the look at protein aggregation, deamidation, and oxidation, Crit. Rev. Ther. Drug Carrier Syst. 10:307–377. effects of self-association on the deamidation of human insulin at low pH, Pharm. Res. 11:784-793.

Darrington, R. T., and Anderson, B. D., 1995, Evidence for a common intermediate in insulin deamidation and covalent dimer formation: Effects of pH and aniline trapping in dilute acidic solutions, J. Pharm. Sci. 84:275-282.

Darrington, T., 1995, personal communication.

Reduction of biological activity of murine recombinant interleukin-1b by selective deamidation at Daumy, G. O., Wilder, C. L., Merenda, J. M., McColl, A. S., Geoghegan, K. F., and Otterness, I. G., 1991, asparagine 149, FEBS 278:98-102.

DiAugustine, R. P., Gibson, B. W., Aberth, W., Kelly, M., Ferrua, C. M., Tomooka, Y., Brown, C. F., and Walker, M., 1987, Evidence for isoaspartyl¹ (deamidated) forms of mouse epidermal growth factor, Anal. Biochem. 165:420-429.

Eisenberg, D., 1984, Three dimensional structure of membrane and surface proteins, Annu. Rev. Biochem. 53:595-623

Engelman, D. M., Steitz, T. A., and Goldman, A., 1986, Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins, Annu. Rev. Biophys. Chem. 15:321-353. Everett, R., 1995, personal communication.

Everett, R. R., Felice, C. J., Adomaitis, M., Plucinsky, M. C., and Siegel, R. C., 1995, Glutamate to pyroglutamate: Identification of a novel protein degradation mechanism, Ninth Symp. Protein

Flatmark, T., 1966, On the heterogeneity of beef heart cytochrome c. III. A kinetic study of the nonenzymatic deamidation of the main subfractions (Cy I-Cy III), Acta. Chim. Scand. 20:1487-1496.

Frenz, J., Shire, S. J., and Sliwkowski, M. B., Purified forms of DNase. US Patent 5,279,823 (1994). Foster, L., personal communication, 1996.

Friedman, A. R., Ichhpurani, A. K., Brown, D. M., Hillman, R. M., Krabill, L. F., Martin, R. A., Zurcher-

Neeley, H. A., and Guido, D. M., 1991, Degradation of growth hormone releasing factor analogs in neutral aqueous solution is related to deamidation of asparagine residues, Int. J. Pept. Protein Res. A Compendium of Common Protein Reactive Sites

- Fukawa, H., 1967, Changes of glutamine-peptides on heating in aqueous media, J. Chem. Soc. Jpn.
- Galletti, P., Iardino, P., Ingrosso, D., Manna, C., and Zappia, V., 1989, Enzymatic methyl esterification of a deamidated form of mouse epidermal growth factor, Int. J. Pept. Protein Res. 33:397-402.
- Geigert, J., Panschar, M., Forng, S., Huston, H. N., Wong, D. E., Wong, D. Y., Taforo, C., and Pemberton, M., 1988, The long term stability of recombinant (Serine-17) human interferon-b, J. Interf. Res.
 - S., and Bausch, J. N., 1996, Isolation and characterization of a monomethioninesulfoxide variant of Gitlin, G., Tsarbopoulos, A., Patel, S. T., Sydor, W., Pramanik, B. N., Jacobs, S., Westreich, L., Mittelman, interferon α-2b, Pharm. Res., in press.
- Grossenbacher, H., Marki, W., Coulot, M., Muller, D., and Richter, W. J., 1993, Characterization of succinimide-type dehydration products of recombinant products of recombinant hirudin variant 1 by electrospray tandem mass spectrometry, Rapid Commun. Mass Spectrom. 7:1082-1085.
 - Gu, L. C., Erdos, E. A., Chiang, H., Calderwood, T., Tsai, K., Visor, G. C., Duffy, J., Hsu, W., and Foster, L. C., 1991, Stability of interleukin-1b (IL-1b) in aqueous solution: Analytical methods, kinetics, products and solution formulation implications, Pharm. Res. 8:485-490.
 - Hageman, M. J., 1995, personal communication.
- Hallahan, T. W., Shapiro, R., Strydom, D. J., and Vallee, B. L., 1992, Importance of asparagine-61 and asparagine-109 to the angiogenic activity of human angiogenin, Biochemistry 31:8022-8029.
 - Halliwell, B., and Gutteridge, M. C., 1990, Role of free radicals and catalytic metal ions in human disease: An overview, Methods Enzymol. 186:1-85.
 - Hamburger, R., Azaz, E., and Donbrow, M., 1975, Autooxidation of polyoxyethylenic non-ionic surfactants and of polyethylene glycols, Pharm. Acta Helv. 50:10-17.
 - Harris, R. J., 1995, personal communication.
- Harris, R. J., Kwong, M. Y., Molony, M. S., and Ling, V. L., 1995, Mass Spectrometry in the Biological Sciences, Humana Press.
- Harris, R. J., Wagner, K. O., and Spellman, M. W. 1990, Structural characterization of a recombinant CD4-IgG hybrid molecule, Eur. J. Biochem. 194:611-620.
- Hayashi, T., Ohe, Y., and Hayahi, H., 1982, Human spleen histone H4. Isolation and amino acid sequence, J. Biochem. 92:1995-2000.
- Heller, D. L., and Qi, H., 1994, Stabilization of a 31 amino acid peptide formulation in a viscous dextran vehicle. AAPS 9th Natl. Meeting, San Diego, CA.
- Henderson, L. E., Henriksson, D., and Nyman, P. O., 1976, Primary structure of human carbonic anhydrase C, J. Biol. Chem. 251:5457-5463.
- Hendy, G. N., Kronenberg, H. M., Potts Jr., J. T., and Rich, A., 1981, Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone, Proc. Natl. Acad. Sci. USA 78:7365-7369. Herman, A., Sahakian, N., Taniguchi, G., Rohde, M., and Stoney, K., 1995, unpublished results.
 - Hopp, T. P., 1985, Prediction of protein surfaces and interaction sites from amino acid sequences, in: Hershenson, S., Thompson, S., Luedke, E., Callahan, W., and Garcia, A., 1995, unpublished results.
 - Synthetic Peptides in Biology and Medicine (K. Alitalo, P. Partanen, and A. Vaheri, eds.), Elsevier,
- Hopp, T. P., 1986, Protein surface analysis. Methods for identifying antigenic determinants and other interaction sites, J. Immunol. Methods 88:1-18.
- Hopp, T. P., and Woods, K. R., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. USA 78:3824-3828.
- Hopp, T. P., and Woods, K. R., 1983, A computer program for predicting protein antigenic determinants, Mol. Immunol. 20:483-489.
 - Hora, M., 1995, personal communication.
- reduction of calmodulin stimulation of neuronal nitric oxide synthase, Chem. Res. Toxicol. 9; Hühmer, A. F. R., Gerber, N. C., Ortiz de Montellano, P. R., and Schöneich, C., 1996, Peroxynitrile

- Inaba, M., Gupta, K. C., Kuwabara, M., Takahashi, T., Benz Jr., E. J., and Maede, Y., 1992, Deamidation of human erythrocyte protein 4.1: Possible role of aging, Blood 79:3355-3361.
- Ingram, R., and Warne, N., 1994, The stability of rhIL-11 as a function of pH, time, and temperature, AAPS
 - 9th Natl. Meeting, San Diego, CA.
- alkaline pH: Quantitative relationships between ammonia loss and the susceptibility of calmodulin to Johnson, B. A., Shirokawa, J. M., and Aswad, D. W., 1989a, Deamidation of calmodulin at neutral and modification by protein carboxyl methyltransferase, Arch. Biochem. Biophys. 268:276-286.
 - Johnson, B. A., Shirokawa, J. M., Hancock, W. S., Spellman, M. W., Basa, L. J., and Aswad, D. W., 1989b, Formation of isoaspartate at two distinct site during in vitro aging of human growth hormone, J. Biol. Chem. 264:14262-14271.
 - Johnson, D. M., and Gu, L. C., 1988, Absorption of drugs to bioavailability and bioequivalence, in: Encyclopedia of Pharmaceutical Technology, 1 (J. Swarbnick and J. C. Boylan, eds.), Marcel Dekker, New York, pp. 415-449.
 - Kanaya, S., and Uchida, T., 1986, Comparison of the primary sequences of ribonuclease U2 isoforms, Biochem. J. 240:163-170.
- Keck, R. C., 1995, Structural characterization of deamidated species formed during in vitro aging of recombinant interferon gamma, in preparation.
 - Kenigsberg, P., Fang, G., and Hager, L. P., 1987, Post-translational modifications of chloroperoxidase from Caldariomyces fumago, Arch. Biochem. Biophys. 254:409-415.
- Keutmann, H. T., Sauer, M. M., Hendy, G. N., O'Riordan, J. L. H., and Potts Jr., J. T., 1978, Complete amino acid sequence of human parathyroid hormone, Biochemistry 17:5723-5729 Keyt, B., and Cleland, J., 1995, personal communication.
 - Knepp, V. M., Whatley, J. L., Muchnik, A., and Calderwood, T. S., 1996, Identification of antioxidants for
 - prevention of peroxide-mediated oxidation of recombinant human ciliary neurotrophic factor and recombinant human nerve growth factor, J. Pharm. Sci. Tech. 50:163-171.
 - Kossiakoff, A. A., 1988, Tertiary structure is a principal determinant to protein deamidation, Science 240:191-194.
 - Kroon, D. J., 1994, personal communication.
- Kroon, D. J., Baldwin-Ferro, A., and Lalan, P., 1992, Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping, Pharm. Res. 9:1386-1393.
 - Kwong, M. Y., and Harris, R. J., 1985, Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage, Protein Sci. 3:147-149.
 - Kyte, J., and Doolittle, R., 1982, A simple method of displaying the hydropathic character of a protein, J. Mol. Biol. 157:105-132.
- Lauren, S. L., Arakawa, T., Stoney, K., and Rohde, M. F., 1993, Covalent dimerization of recombinant human interferon-y, Arch. Biochem. Biophys. 306:350-353.
- Lim, A., Canova-Davis, E., Ling, V., Eng, M., Truong, L., Henzel, B., Stults, J., Harris, R., Gorrell, J., Heinsohn, H., McHugh, C., Weissburg, R. P., and Powell, M. F., 1996, Stability of rhTPO: Aggregation, oxidation, deamidation, diketopiperazine formation, AAPS Meeting, South San Francisco, CA March, 1996.
- L., Kunitani, M., and Hora, M., 1996, Interferon-b-1b (Betaseron): A model for hydrophobic therapeutic proteins, in: Formulation, Characterization, and Stability of Protein Drugs: Case Histories (R. Pearlman and Y. John Wang, eds.), Plenum. Press, New York, pp. 275-301. Ľi,
 - Maeda, H., and Kuromizu, K., 1977, Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH, J. Biochem. 81:25-35.
 - Maneri, L., 1994, personal communication.
- McCrossin, L. E., Charman, W. N., Currie, G. J., and Charman, S. A., 1994, Degradation rates of Asn-99 and Cys-181-Cys-189 residues in native porcine growth hormone or the respective isolated tryptic peptides, AAPS 9th Natl. Meeting, San Diego, CA.
 - McGinity, J. W., Hill, J. A., and La Via, A. L., 1975, Influence of peroxide impurities in polyethylene glycols on drug stability, Pharm. Sci. 64:356-357.

- "AcKerrow, J. H., and Robinson, A. B., 1974, Primary sequence dependence on the deamidation of rabbit muscle aldolase, Science 183:85.
 - Midelfort, C. F., and Mehler, A. H., 1972, Deamidation in vivo of an asparagine residue of rabbit muscle aldolase, *Proc. Natl. Acad. Sci. USA* 69:1816–1819.
- Vabuchi, Y., Fujiwara, E., Ueno, K., Kuboniwa, H., Asoh, Y., and Ushio, H., 1995, Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity. Pharm. Res. 12:2049.
- Nguyen, T. H., Burnier, J., and Meng, W., 1993a, The kinetics of relaxin oxidation by hydrogen peroxide, *Pharm. Res.* 10:1563-1571.
- Nguyen, T. H., and Ward, C., 1993b, Stability characterization and formulation development of Alte-plase, a recombinant tissue plasminogen activator, in: Stability and Characterization of Protein and Peptide Drugs: Case Histories, 5 (Y. J. Wang and R. Pearlman, eds.), Plenum Press, New York, pp. 91–134.
- Nyberg, F., Bergman, P., Wide, L., and Roos, P., 1985, Stability studies on human pituitary prolactin, Upsala J. Med. Sci. 90:265-277.
 - O'Kelley, P., Thomsen, L., Tilles, J. G., and Cesario, T., 1985, Inactivation of interferon by serum and synovial fluids, *Proc. Soc. Exp. Biol. Med.* 178:407–411.
- Oliyai, C., and Borchardt, R. T., 1993, Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide, *Pharm. Res.* 10:95-102.
 - Ota, I. M., and Clarke, S., 1989, Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation, J. Biol. Chem. 264:54-60.
- Ota, I. M., Ding, L., and Clarke, S., 1987, Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase, *J. Biol. Chem.* 262:8522-8531.
- Paranandi, M. V., Guzzetta, A. W., Hancock, W. S., and Aswad, D. W., 1994, Deamidation and isoaspartate formation during in vitro aging of recombinant tissue plasminogen activator, J. Biol. Chem. 269: 243-253.
- Patel, K., 1993, Stability of adrenocorticotropic hormone (ACTH) and pathways of deamidation of asparaginyl residue in hexapeptide segments, in: Stability and Characterization of Protein and Peptide Drugs: Case Histories, (Y. J. Wang and R. Pearlman, eds.), Plenum Press, New York, pp. 201-220.
- Patel, K., and Borchardt, R. T., 1990, Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide, Pharm. Res. 7:703-711.
 - Patel, S. T., and Gitlin, G., 1995, personal communication.
- Pearlman, R., and Nguyen, T., 1992, Pharmaceutics of protein drugs, J. Pharm. Pharmacol. 44 (Suppl
- Poulter, L., Green, B. N., Kaur, S., and Burlingame, A. L., 1990, The characterization of native and recombinant proteins by electrospray mass spectrometry, in: *Biological Mass Spectrometry* (A. L. Burlingame and J. A. McCloskey, eds.), Elsevier, Amsterdam, pp. 119-128.
 - Presta, L. G., Lahr, S. J., Shields, R. L., Porter, J. P., Gorman, C. M., Fendley, B. M., and Jardieu, P. M., 1993, Humanizatiion of an antibody directed against IgE, J. Immunol. 151:2623-2632.
- Ragone, R., Facchiano, F., Facchiano, A., Facchiano, A. M., and Colonna, G., 1989, Flexibility plot of proteins, *Protein Eng.* 2:497-504.
- Robinson, A. B., and Rudd, C. J., 1974, Deamidation of Glutaminyl and Asparaginyl Residues in Peptides and Proteins, Academic Press, New York.
- Robinson, A. B., Scotchler, J. W., and McKerrow, J. H., 1973a, Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides, J. Am. Chem. Soc. 95:8156-8159.
 - Robinson, A. B., and Tedro, S., 1973b, Sequence dependent deamidation rates for model peptides of hen egg, Int. J. Pept. Protein Res. 5:275-278.
- Sasaoki, K., Hiroshima, T., Kusumoto, S., and Nishi, K., 1989, Oxidation of methionine residues of recombinant human interleukin 2 in aqueous solutions, Chem. Pharm. Bull. (Tokyo) 37:2160-2164.

- Sasaoki, K., Hiroshima, T., Kusumoto, S., and Nishi, K., 1992, Deamidation at asparagine-88 in recombinant human interleukin-2, Chem. Pharm. Bull. (Tokyo) 40:976-980.
 - Schultz, J., 1967, Cleavage at aspartic acid, Methods Enzymol. 11:255-263.
- Seid-Akhavan, M., Winter, W. P., Abramson, R. K., and Rucknagel, D. L., 1976, Hemoglobin Wayne: A frameshift mutation detected in human hemoglobin alpha chains, Proc. Natl. Acad. Sci. USA 73: 882-886.
- Senderoff, R. I., Wootton, S. C., Boctor, A. M., Chen, T. M., Giordani, A. B., Julian, T. N., and Radebaugh, G. W., 1994, Aqueous stability of human epidermal growth factor 1-48, Pharm. Res. 11:1712-1720.
 - Sepetov, N. F., Krymsky, M. A., Ovchinnikov, M. V., Bespalava, Z. D., Isakova, O. L., Soucek, M., and Lebi, M., 1991, Rearrangement, racemization and decomposition of peptides in aqueous solution, *Pept. Res.* 4:308-313.
- Shahrokh, Z., Eberlein, G., Buckley, D., Paranandi, M. V., Aswad, D. W., Stratton, P., Mischak, R., and Wang, Y. J., 1994, Major degradation products of basic fibroblast growth factor: Detection of succinamide and iso-aspartate in place of aspartate-15, Pharm. Res. 11:936-944.
 - Shen, F. J., Kwong, M., Keck, R. G., and Harris, R. J., 1996, Application of t-butylhydroperoxide to study sites of potential methionine oxidation in recombinant antibodies, in: *Techniques in Protein Chemis-*177, Vol. 7 (D. Mershak, ed.), Academic Press, San Diego.
 - Shire, S. J., 1995, personal communication:
- Sletten, K., Marhaug, G., and Husby, G., 1983, The covalent structure of amyloid-related serum protein SAA from two patients with inflammatory disease, Z. Physiol. Chem. 364:1039-1046.
- Son, K., and Kwon, C., 1995, Stabilization of human epidermal growth factor (hEGF) in aqueous solution, *Pharm. Res.* 12:451-454.
 - Stadtman, E. R., 1990, Metal ion catalyzed oxidation of proteins: biochemical mechanism and biological consequences, Free Radical Biol. Med. 9:315-325.
- Steinberg, S. M., and Bada, J. L., 1983, Peptide decomposition in the neutral pH region via the formation of diketopiperazines, J. Org. Chem. 48:2295-2298.
- Stephenson, R. C., and Clarke, S., 1989, Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins, J. Biol. Chem. 264:6164-6170.
- Stevenson, C. L., Donlan, M. E., Freedman, A. R., Kubiak, T. M., and Borchardt, R. T., 1993, The effect of secondary structure on the rate of deamidation of several growth hormone releasing factor analogs, Int. J. Pept. Protein Res. 42:497-503.
- Sunahara, N., Kawata, S., Kaibe, K., Furuta, R., Yamayoshi, M., Yamada, M., and Kurooka, S., 1989, Differential determination of recombinant human interleukin-lα and its deamidated derivative by two sandwich enzyme immunoassays using monoclonal antibodies, J. Immunol. Methods 119:75–82.
 - Svanti, J., and Milstein, C., 1972, The complete amino acid sequence of a mouse kappa light chain, J. Biochem. 128:427-444.
 - Takao, T., Watanabe, H., and Shimonishi, Y., 1985, Facile identification of protein sequences by mass spectrometry, Eur. J. Biochem. 146:503-508.
- Teh, L., Murphy, L. J., Huq, N. L., Surus, A. S., Friesen, H. G., Lazarus, L., and Chapman, G. E., 1987, Methionine oxidation in human growth hormone and human chorionic somatomammotropin, J. Biol. Chem. 262:6472-6477.
- Teshima, G., and Canova-Davis, E., 1992, Separation of oxidized human growth hormone variants by reversed-phase high-performance chromatography, J. Chromatogr. 625;207-215.
 - Teshima, G., Hancock, W. S., and Canova-Davis, E., 1995a, Effect of deamidation and isoaspartate formation on the activity of proteins, in: Deamidation and Isoaspartate Formation in Peptides and Proteins (D. Aswad, ed.), CRC Press, Boca Raton, FL, pp. 167–191.
- Teshima, G., Porter, J., Yim, K., Ling, V., and Guzzetta, A., 1991a, Deamidation of soluble CD4 at asparagine-52 results in reduced binding capacity for the HIV-1 envelope glycoprotein gp120, Biochemistry 30:3916-3922.
- Teshima, G., Stults, J. T., Ling, V., and Canova-Davis, E., 1991b, Isolation and characterization of a succinimide variant of methionyl human growth hormone, J. Biol. Chem. 266:13544-13547.

- Feshima, G., and Wu, S., 1996, Capillary electrophoresis analysis of proteins, in: Methods in Enzymology (B. C. Kange and W. S. Hancock, eds.) in press.
 - Peshima, G., and Yim, K., 1995b, personal communication.
- Pomizawa, H., Yamada, H., Ueda, T., and Imoto, T., 1994, Isolation and characterization of 101succinimide lysozyme that possesses the cyclic imide at Asp-101-Gly102, Biochemistry 33:8770-8778
- Tsuda, T., Uchiyama, M., Satao, T., Yoshino, H., Tsuchiya, Y., Ishikawa, S., Ohmae, S., Watanabe, S., and Miyake, Y. J., 1990, Mechanism and kinetics of secretion degradation in aqueous solutions, J. Pharm. Sci. 79:223–227.
 - Tyler-Cross, R., and Schirch, V., 1991, Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides, J. Biol. Chem. 266: 22549–22556.
- Venkatesh, Y. P., and Vithayathil, P. J., 1984, Isolation and characterization of monodeamidated derivatives of bovine pancreatic Ribonuclease A, Int. J. Peptide Protein Res. 23:494-505.
- Violand, B. N., Schlittler, M. R., Toren, P. C., and Siegel, N. R., 1990, Formation of isoaspartate 99 in bovine and porcine somatotropins, J. Protein Chem. 9:109-117.
 - Violand, B. N., Siegel, M. R., Kolodziej, B. W., Toren, P. C., Cabonce, M. A., Siegel, N. R., Duffin, K. L., Zobel, J. F., Smith, C. E., and Tou, J. S., 1992, Isolation and characterization of porcine somatotropin
- containing a succinimide residue in place of aspartate 129, Protein Sci. 1:1634-1641.
 Volkin, D. B., and Middaugh, C. R., 1996, The characterization, stabilization, and formulation of acidic fibroblast growth factor, in Formulation, Characterization, and Stability of Protein Drugs: Case Histories (R. Pearlman and Y. John Wang, eds.), Plenum Press, New York, pp. 181-217.
 - Voorter, C. E. M., Roersma, E. S., Bloemendal, H., and de Jong, W. W., 1987, Age-dependent deamidation of chicken αA-crystallin, FEBS Lett. 221:249–252.
 - Wang, J., 1995, personal communication.
- Wang, J. H., Yan, Y. W., Garett, T. P., Liu, J. H., Rodgers, D. W., Garlick, R. L., Tarr, G. E., Husain, Y., Reinherz, E. L., and Harrison, S. C., 1990, Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains, Nature 348:411-418.
 - Watanabe, C., 1991, Genentech Sequence Analysis Programs, Genentech, Inc., San Francisco.
- Wearne, S. J., and Creighton, T. E., 1989, Effect of protein conformation on rate of deamidation:
- Ribonuclease and its ligands, Proteins Struct. Funct. Genet. 5:8-12. Wilson, J. M., Landa, L. E., Kobayashi, R., and Kelley, W. N., 1982, Human hypoxanthine-guanine ribosyltransferase, J. Biol. Chem. 257:14830-14834.
- Wingfield, P. T., Mattaliano, R. J., McDonald, H. R., Craig, S., Clore, G. M., Gronenborn, A. M., and Schmeissner, U., 1987, Recombinant-derived interleukin-Ia stabilized against specific deamidation, *Protein Eng.* 1:413–417.
 - Wood, D. C., Salsgiver, W. J., Kasser, T. R., Lange, G. W., Rowold, E., Violand, B. N., Johnson, A., Leimgruber, R. M., Parr, G. R., Siegel, N. R., Kimack, N. M., Smith, C. E., Zobel, J. F., Ganguli, S. M., Garbow, J. R., Bild, G., and Krivi, G. G., 1989, Purification and characterization of pituitary bovine somatotropin, J. Biol. Chem. 264:14741–14747.
 - Wright, C. S., and Raikhel, N., 1989, Sequence variability in three wheat germ agglutinin isolectins: products of multiple genes in polyploid wheat, J. Mol. Evol. 28:327-336.
- Wright, H. T., 1991a, Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins, *Protein Eng.* 4:283–291.
- Wright, H. T., 1991b, Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins, CRC Crit. Rev. Biochem. Mol. Biol. 26:1-52.
- Yao, Y., Yin, D., Jas, G. S., and Kuczera, K., Williams, T. D., Schöneich, C., and Squier, T. C., 1996, Oxidative modification of carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase, Biochemistry 35:2767-2787.

Comparative Structures of Mammalian Interferons

K. C. Zoon and R. Wetzel

A. Introduction

Our knowledge of the structure of mammalian interferons has been limited in the past, predominantly because only minute quantities were available for structure studies. Advances in amino acid analysis and sequence determination of picomol quantities of protein have permitted the acquisition of composition and partial squence data for several native human and mouse interferons. However, the major ity of information on the structure of interferon has been the direct result of recorbinant DNA (rDNA) technology. Not only has this application of genetic e gineering provided amino acid sequence data for a number of human interferon but has also allowed the isolation of sufficient quantities of human interferon other structural studies, e.g., disulfide bond analysis and circular dichroism spetroscopy. Studies aimed at determining the composition and structure of the can bohydrate moiety of interferon are, of course, dependent upon the availability of naturally derived material, and thus have been more limited.

B. Purification and Characterization of Native Interferons

I. Human Interferons-α

1. Purification

A summary of the major procedures developed for the purification of native h man interferons- α (HuIFN- α)¹ was reported recently (Zoon 1981). Some of th most powerful steps include immunoabsorbant affinity chromatography using e ther monoclonal or polyclonal antibodies, sodium dodecylsulfate polyacrylamic gel electrophoresis (SDS PAGE), and high pressure liquid chromatograph (HPLC). Multiple species of native HuIFN- α have been isolated from virus-ir duced cultures of buffy coat (Zoon et al. 1982 a; Berg and Heron 1980), Namalw (Zoon et al. 1979; Allen and Fantes 1980), chronic myelogenous leukemia (Ru BINSTEIN et al. 1981), and KG-1 (D. Hobbs 1981, personal communication) cells.

We have attempted to use current recommended nomenclature (leukocyte= α , fibre blast= β , immune= γ) as much as possible in this review. The following exceptions will be found, however: cloned interferon genes or their products derived from the work of Goedder et al. (1981) are referred to as either IFN- α A, B, C, etc., or LeIF-A, B, C, etc. single subtype interferons originally purified at the protein level (Runnstran et al. 1981) are designated as α , β , γ based on their high pressure liquid chromatography retentio times; in this case, the use of Greek letters in both systems of nomenclature is accommedated by placing the designations of Runnstren et al. in parentheses. For instance, IFN α (Le₁ β ₁) is purified subtype β , of human interferon...

Table 1. Amino acid compositions of several native human interferons

	•			!	
Amino acid	HuIFN-α(α ₁) ^{ε, b}	$\operatorname{HulFN-lpha(lpha_1)^{\mathfrak{a},\mathfrak{b}}}$ $\operatorname{HulFN-lpha(eta_1)^{\mathfrak{a},\mathfrak{b}}}$	HuΙFN-α(γ ₂)°. ^d	HuIFN-α (Ly, 18,500 daltons) ^{d.e}	HuIFN-β ^{4,f}
Asx	14.9	12.5	14.4	14.9	18.9
Thr	8.3	1.6	10.4	8.0	8.9
Ser	6.6	11.2	8.4	10.7	10.5
Ğļx	21.9	22.6	27.2	27.3	27.0
Pro	9.9	5.7	5.2	9.0	2.7
Gly	5.5	5.4	5.4	10.7	7.8
Ala	1.6	8.0	8.8	11.0	10.0
Val	8.0	6.5	7.6	7.7	0.9
Met	3.9	5.3	4.2	4.0	2.9
lle Ile	8.0	7.0	8.7	6.9	0.6
Leu	19.4	19.9	21.8	17.8	20.4
Tyr	4.3	4.8	5.2	3.8	7.5
Phe	7.4	9.5	7.6	7.1	9.4
His	3.3	3.1	3.6	4.4	4.9
Lys	11.4	7.6	10.9	10.4	11:6
Arg	6.7	8.8	9.3	9.6	10.9
Cys	4.2	3.4	3.2	1.8	1.7

Lines indicate identity to IFN-a (Ly, 18,500 daltons).

S S

8

ĸ

, F 5 5

LEVY et al. (1981)

Based on 155 amino acid residues total (including 2 tryptophan residues)

RUBINSTEIN et al. (1981)

Based on 166 amino acid residues total

Zoon et al. (1981

KNIGHT et al. (1980)

Characterization

23,000 (RUBINSTEIN et al. 1981). The amino acid compositions of these interferons show a great deal of similarity. Several examples are shown in Table 1. These HuIFN-a exhibit extensive amino acid sequence homology among themselves Purified native HuIFN-lpha have an apparent molecular weight range of 16,000-(Fig. 1) as well as to those derived from DNA technology (see Fig. 3).

rackets at position 44 indicate a deletion. Blanks-indicate sequence not identified or uncertain

ig. I. Comparison of the partial amino acid sequences of several native human interferons.

ĸ

a

1FN α-(LY, Α) 1FN α-(Le, α₂)/(Le, β₁)

IFN a-(LY, B)

of a number of HulFN-a (see Fig. 3) as well as the sequences of several native αA , or HuIFN- α_2 . Interestingly, the multiple species of native HuIFN- α show a pear to lack the ten COOH terminal amino acids predicted from cDNA sequences HuIFN-a (Fig. 1) (LEVY et al. 1981). No alterations in the specific activity of these abbreviated interferons have been observed (LBvy et al. 1981). In addition, the amino acid sequences of HuIFN- $\alpha(\alpha_2)$ and HuIFN- $\alpha(\beta_1)$ appear to be virtually they exhibit different ratios of cell growth inhibition to antiviral activity (Evinger range of antiviral activity titers on a number of animal cell lines and, in addition, et al. 1981). Similar properties are observed for the rDNA-derived HuIFN-α (see $\alpha(\alpha_2)$, and HuIFN- $\alpha(\beta_1)$, isolated from chronic myelogeneous leukemia cells apidentical to the sequence of one of the major rDNA-derived interferons, HuIFN-It is noteworthy that three major species of HulFN- α : HulFN- $\alpha(\alpha_1)$, HulFN. Table 3).

EIMRSLTL F = F OEB LRNK NI ٨ 3 ٨ d S KAEGB SVA s ⋾ 091 120 0+1 150 TEF ∃· H 1 - a ٦ 9 T S IFN &-(LY, Ţ z Τ ٦ s a w ACELL **Y Q Q L N D L E A** Ξ IEN 0-([] B) ESTED **ESTKDSY** LNL NIGGI 08 04 09 011 001 з х и г ге в — о в з з и в о с о к г г IEN B1 1FN α-(LV, MW21 000) (Le, MW 19.000) IFN o'-(Le, 1FN a-(Le, 1FN α-(Ly, A) S a 18 8 н S 3 FN <u>α-(۲</u>√, B) **KDBHD E G** S £ A Q M G R I S L **АЯЯИ** Б знточла(<u>s</u>) 7 09 0t 30 50 ÓΙ

K. C. Zoon and R. Wetzel

Table 2. Amino acid composition of interferons from mouse Ehrlich ascites tumor cells (CABRER et al. 1979)

	MulFN-\(\beta\) (35,000 daltons) (residues/100 amino acids)	MuIFN-α (20,000 daltons) (residues/18,000 daltons)
Asx	9.3	14.3
LP.		7.4.7
≣,	1.1	9.4
Ser	4.8	9.2
Glx	16.4	23.0
Pro	2.8	7.5
Gly	3.9	
Ala		0.0
Val	4.7	7.0
Met		0.7
lle	4.4	2.4 2.3
Leu	11.7	7.7
Tyr	4.6	4.8
he	4.6	5.0
His	1.3	
Lys	7.8	16.0
Arg	7.2	9.6
SLCN.	8.0	. 00
Cys	N.D.	4.0

II. Human Interferon- β

1. Purification

FAHBY 1981). At present only one species of biologically active HuIFN- β has been Several purification schemes have been successfully developed to isolate human interferon- β (HuIFN- β) (Stewart 1981). Particularly noteworthy is the one-step purification procedure employing Blue Sepharose chromatography (KNIGHT and dentified.

2. Characterization

(Кміснт et al. 1980; Е. Кміснт 1981, personal communication). This sequence is composition is similar to that observed for the family of HuIFN-a (Table 1) and mouse interferons (Table 2). The partial amino acid sequence data obtained from excluding the signal peptide (see Fig. 4). Of the first $21~\mathrm{NH_2}$ terminal amino acids, Native HuIFN-eta has an apparent molecular weight of 20,000. The amino acid microsequencing studies of the native protein (or proteins) is shown in Fig. 1 identical to that predicted from the nucleotide sequence of the HuIFN- $\bar{\beta}$ cDNA, only I residue at position 9 corresponds to that residue in the NH2 terminal sequences of the native HuIFN-a.

Comparative Structures of Mammalian Interferons

2,	
	0
	딸
_	, i
20	7
	ഥ
•	0
	~
	¥۱
1.5	~
	-
	z
	F
_	₽4
10	52
	0
	- -₹
	0
	1
'n	0
	×
	\succ
	z
⊣	Н
	00) INYKQLQLQERTNIRK?QELLEQL
	0 9
	3 3
	E E
	MuIFN-β (MW 35 000) (MW 26 000)
	نح

ADLPQTYNLGNKGALKVLAQ Fig. 2. NH₂ terminal amino acid sequences of MuIFN- α and MuIFN- β MuIFN-α (MW 20 000)

III. Human Interferon-y

and 25,000 were detected by SDS PAGE (Yrr et al. 1982). In contrast, with gel fil These studies suggest that native HuIFN-y may be an aggregate. Currently, neithe The purification of native human interferon- γ (HuIFN- γ) has been recently de scribed (Yre et al. 1981). Two species with apparent molecular weights of 20,00 tration, HuIFN- γ has an apparent molecular weight between 40,000 and 70,000 amino acid composition nor sequence data is available for native HuIFN-y.

IV. Mouse Interferons

Three mouse interferons, one MuIFN- α and two MuIFN- β , have been purified t_{c} homogeneity (DEMABYER-GUIGNARD et al. 1978; IWAKURA et al. 1978; KAWAKITA et al. 1978). In contrast to MuIFN- α and MuIFN- β , no homogeneous species o $MuIFN-\gamma$ has been obtained. The amino acid compositions of $MuIFN-\beta$ (molecular weight 35,000), MuIFN- β (molecular weight 26,000), and MuIFN- α (molec ular weight 20,000) are shown in Table 2. Again a similarity is apparent among the MuIFN and between the MuIFN and the HuIFN- α and - β . Partial amino acid se quence data for MuIFN-lpha and both types of MuIFN-eta are shown in Fig. 2 (TAIR $_I$ et al. 1980).

V. Comparison of Amino Acid Sequences of Human and Mouse Interferons

 $20~\mathrm{NH_2}$ terminal amino acids of native and rDNA-derived HuIFN- α , 8-13 are A comparison of the NH_2 terminal amino acid sequences of $\mathrm{MuIFN}\text{-}\alpha$ and MuIFN-eta to those of HuIFN-lpha and HuIFN-eta clearly shows homology. Of the first identical to those of MuIFN-α. Of the first 24 NH2 terminal amino acid residues of HuIFN- β , 8 are identical to those of both forms of MuIFN- β .

C. Purification and Characterization of rDNA-Derived Interferons

I. Human Interferons- α

tiple HuIFN- α genes represent a family of homologous proteins. The primary The DNA sequences of 13 distinct HuIFN-α cDNA clones indicate that these mul-

GLCN=glucosamine N.D.=not determined

Dash for LeIF A indicates a deletion. Asterisk indicates inphase termination codons. SI etc. denote signal peptide amino acid residues Comparison of the protein sequences of 13 HulFN-a deduced from nucleotide sequences. Lines indicate identity to HulFN-aA (LeIF A).

Comparative Structures of Mammalian Interferons

(Werzel et al. 1981) and of tryptic fragments collected from HPLC (Korn a in Fig. 3 (GOEDDEE et al. 1981; STREULI et al. 1980). Each species consists of a amino acid residue signal peptide and a 165 (or 166) amino acid residue mat HuIFN- α protein, except for subtype E which appears to be a pseudogene α which are not found in isolated interferons, are presumably involved in cellular cretion, during which they are proteolytically removed. Some interferon genes h: pression in bacteria (for review, see Werzel and Goedder, to be published). E_3 erichia coli-derived HuIFN-aA has been purified to homogeneity using mo weight of purified subtype A is approximately 19,500 (Staehelin et al. 1981; W ZEL et al. 1981), again within the range observed for native human interferons. amino acid composition (STAEHELIN et al. 1981; WETZEL et al. 1981) of this spec (Tables 1 and 2). The amino acid sequence of E coli-derived HuIFN- αA is iden (R. Wetzel 1982, unpublished work). Depending on fermentation conditions ε predicted cysteine residues at positions 1, 29, 99 (or 100), and 139 of the mat HuIFN- αD and HuIFN- α_1 (Fig. 3). The signal peptide amino acid sequences sh been expressed in yeast as well (HITZEMAN et al. 1982). Genes coding for preint clonal antibody chromatography as the major purification step (STAEHELIN et 1981). The specific activity of the purified molecule is $1-3\times 10^8~\mathrm{U/per}$ milligr specific activities observed for native human interferons. The apparent molecu is similar to those published for native human and mouse interferons-a and amino acid sequences deduced from the DNA sequences of the clones are sho (GOEDDEL et al. 1981). Greater than or equal to 73% homology is observed for mature HuIFN-α amino acid sequences. Disregarding subtype E, approxima >65% homology with 11 out of 23 positions identical. These signal peptic protein (Staeheln et al. 1981; Wetzel et al. 1981) which is in the same range cal to that predicted by the nucleotide sequence of the gene for the mature prot (Fig. 3). This was determined by sequence analysis of the molecule's NH2 termin Werzer, to be published). HPLC analysis of trypsin digests also allowed char terization of the disulfide bond arrangements in subtypes A (Werzer. 1981) and observed. The rDNA-derived HuIFN- α like the native HuIFN- α exhibit a sp frum of antiviral activities on a variety of cell lines (Streeul et al. 1981; Weck have antiviral properties distinct from the parent molecules (STREULI et al. 19 60% of the amino acids are identical in all sequences (GOEDDEL et al. 1981). M al. 1981a). In addition, genetically engineered hybrid HuIFN-α (see Sect. II) Many of the native interferon structural genes have been engineered for $\text{HuIFN-}\alpha$ are highly conserved. HuIFN- αA and HuIFN- α_2 differ by only feron, when expressed in yeast, secrete correctly processed interferon into on the strain of bacteria used, variable amounts of NH2 terminal methionine of the amino acid changes can be attributed to single nucleotide alterations. amino acid (Fig. 3). A single amino acid substitution was also observed growth medium (Hrtzeman et al., to be published). WECK et al. 1981 b)

II. Human Interferons- β

In contrast to the multigene family of HuIFN-lpha, only a single HuIFN-eta gene kbeen found (DERYNCK et al. 1980: OHNO and Tanggiern 1981) The amina naid

for native HuIFN- α . The 30 amino acids nearest the NH $_2$ terminus of mature IFN eta expressed in E. coli have been determined and are as expected from the gene st quence (Harkins et al., to be published). The NH2 terminal initiator methionin shorter than that isolated from fibroblast cell culture. No effect on interferon ac predicts, like the HuIFN-α cDNA sequences, a signal peptide (21 residues instead polypeptide. The signal peptide is absent from native $\operatorname{HuIFN-}\!\beta$ as was observe of HuIFN- β is about 80% removed by $E.\ coli,$ giving a molecule one amino aci quence deduced from the HuIFN-eta gene sequence is shown in Fig. 4. This sequenc of the 23 residues observed for HuIFN-a) and 166 amino acid mature HuIFNtivity of this difference has been observed

FINBLTGYL

091

100

IDHYVNA

Oε

06

II. Human Interferons-y

1980; Yip et al. 1981). This may be due to glycosylation and/or a dimeric native structure. There are two potential N-glycosylation sites in the predicted sequence in HuIFN- α and HuIFN- β genes. The mature protein coded on the gene is 140 amino acids long, approximately 20 amino acids shorter than HuIFN-α and HuIFN- β . Several groups have reported detection of limited homologies between EPSTEIN 1982; DEGRADO et al. 1982). The molecular weight, 17, 110, of the mole cule predicted by the DNA sequence is smaller than that reported for the activit derived from induced lymphocyte culture (LANGFORD et al. 1979; DELEY et al Sequence analysis of the cloned cDNA coding for HuIFN-y (GRAY et al. 1982) al lows some insight into the structure of the protein molecule. This clone was iden tified as interferon-y by the ability of derived DNA to command expression in tibodies, but not by anti-lpha or anti-eta antibodies. In addition, other properties of the protein, predicted from the gene sequence, are consistent with those observed during purification of lymphocyte-derived interferon-y (see Sect. B.III). The aminc acid sequence predicted for this molecule is shown in Fig. 5. The first 20 aminc acids are probably a signal peptide for protein secretion, similar to sequences founc HuIFN- γ and HuIFN- α or HuIFN- β (Gray et al. 1982; Gray and Goeddel. 1982 mouse cells of an antiviral activity that could be neutralized by authentic anti-y an at amino acid 28 and 100.

4. Protein sequence of HulFN-\$ deduced from nucleotide sequence. SI etc. indicate signal peptide amino acid residues

14 4

130

H C K B A A C B I C H A C K K E A S H C B M T

е в о в з

O

٥ı

s s

CMNELI

oz

08

A E N T

SSNFOCOKLLWOLNGRLEYCLKDRMN

pl of about 8.7 (Yip et al. 1981). Eight of the basic residues occur in two cluster: of four each (amino acids 89-92 and 131-134), similar to one of the cleavage site: One striking feature of the amino acid sequence is the basicity of the molecule Some of the excess positive charge may be neutralized in the glycosylated form by sialic acid, but the glycosylated, lymphocyte-derived form is basic as well, with ϵ There are 27 basic amino acids (Arg + Lys) and only 19 acidic residues (Asp + Glu) in the corticotropin– β -lipotropin precursor (NAKANISHI et al. 1979).

٦S

150

JΛ

SMSJATT

09

TRGKLMS

ועררר

015

KOLOOFOKEDA

KEDE

011

Assuming the signal peptide is processed as expected (GRAY et al. 1982), the There are no proteins known which contain a disulfide bond between cysteines separated by only one amino acid (RICHARDSON 1981). In addition, the activity of naturally derived HuIFN-y is not sensitive to reducing agents tested (YIP et al. 1981). While the actual thiol structure of the unusual NH $_{
m 2}$ terminal end of HuIFN. mature HuIFN- γ molecule has only two cysteine residues, at positions 1 and 3 remains uncharacterized, there are clearly no disulfides in Hulfbl a analogue.

	DSAR	140 F R G R	ס א ד	ខម
С К В О	I 2 N K I	KFFN	80 N N W (33
פור	30 TLFL		∕∧ūs	нε

140	130	0	31	011	100	a a
V K F F N S N K	8 V E T I K E D M N 80	. K D D O 2 I O K 3 . V 0	E K ר ב K N ב פס	W G S G I N S E A I 20	N M K E E 2 D B K I V 40	KΙ
30 A D N G T L F L	SO C V F N A G H S D V	VKEAENLK! 10	YCQDPY	CIAFESFEC	810 KYTSYILAFQL	r S M

A ELSP Fig. 5. Protein sequence of HuIFN-y deduced from nucleotide sequence. S 1 etc. denote signal peptide amino acid residues. GRAY et al. (1982) to those found in HuIFN- α and presumed in HuIFN-eta (Sect. D.I). Like interferons- α and - β , HuIFN- γ contains a large number of aromatic residues: ten phenylalanine, five tyrosine, and one tryptophan. A high α -helix content is expected based on structural prediction calculations (Sect. E).

D. Protein Structure and Interferon Activity

atively low amount of protein available; (b) the lack of purity of most preparations; and (c) the heterogeneity of the preparations with respect to molecules possessing interferon activity. Recent work under these restrictions has centered on following TO et al. 1980; BRAUDE et al. 1979, 1981 a) show that the apparent molecular weight Until recently, structure-function studies on interferon suffered from: (a) the relextracted interferon activity by SDS PAGE. Limited proteolysis experiments (Orof gel-extracted activity can be reduced when interferon preparations are exposed to some proteinases.

to be published) has recently made possible structure-function studies on single The availability of relatively large amounts of single subtypes of HuIFN- α (Wetzel et al. 1981; Staeheein et al. 1981) as well as HuIFN-eta (Harkins et al., results from some of the studies, as well as results taken from structure-function molecular species (Werzel et al. 1982). The following section includes preliminary studies pursued at the DNA level.

I. Disulfide Bonds

There are four or five cysteines in the HuIFN- α , three in HuIFN- β , and two in $\operatorname{HuIFN-}_{\gamma}$. None of the naturally derived interferons, however, has been characterized for disulfide arrangements. It is known that while HuIFN- α (Mogensen and Cantell 1974) and HuIFN-eta (Shepard et al. 1981) antiviral activity is sensitive to reducing agents, HuIFN-y is insensitive (YIP et al. 1981).

and Cys-98, and between Cys-29 and Cys-138, were characterized in HuIFN-aA Among the HuIFN-α, all cloned genes so far isolated contain conserved cysteines at positions 1, 29, 99, and 139 (numbering based on 166 amino acid length), which suggests two conserved disulfide bonds. Two disulfide bonds, between Cys-1 synthesized in E. coli (Werzel 1981; Werzel et al. 1981). A similar arrangement is likely in HuIFN-aD (R. Wetzel 1982, unpublished work).

A chemical derivative of IFN-aA containing only the Cys-29-Cys-138 bond was found to possess full in vitro antiviral activity (Werzer et al. 1982; Morehead et al., to be published). The lack of importance of the Cys-1-Cys-99 bond is also implied in the results of Streut et al. (1980), who obtained active interferon from E. coli transformed with a plasmid containing an incomplete HuIFN- α_2 gene infirst AUG occurs at amino acid 16 of the HuIFN-α molecule, and the isolated promRNA. Because the cDNA is incomplete at the 5' end of the HuIFN-a gene, the serted into the eta-lactamase gene of pBR322. If, as seems likely, their gene product tein product thus can begin no earlier than Met-16. Thus, at least in HuIFN-a2, is not a hybrid heta-lactamase-interferon molecule, then it must arise from reinitiation of protein synthesis at the first interferon AUG in the "polycistronic" the Cys-1-Cys-98 (or 99) disulfide as well as amino acids 1-15 seem to be nonessential or antiviral activity.

Previous work on crude IFN- α (Merigan et al. 1965; Mogenson and Cantell 1974) or cloned E coli $\,$ material (STEWART et al. 1980) has revealed differing $\,$ ses of IFN- α to reducing agent. Antiviral activity is either reversibly or irreversibly destroyed, depending on conditions and the IFN preparation used. Reduction of IFN- α A under native conditions inactivates the molecule and produces, depending upon reducing agent, varying amounts of disulfide-linked oligomers (Werzel, to be published). Such thermally denatured preparations can be reactivated by a denaturation/renaturation cycle (using guanidine hydrochloride, urea, or sodium docecylsulfate) followed by thiol-disulfide interchange or air oxidation.

This behavior of IFN-aA has been further studied using an S-sulfonate derivative of IFN-aA (Wetzel et al. 1982; Morehead et al., to be published). While this inactive disulfide-free derivative retains immunochemical relatedness to IFN-aA as well as the ability to regain antiviral activity after thiol-disulfide interchange, both these properties are lost after incubation of the derivative at 37°C under native conditions. This denaturation was shown to be driven by a conformational change to a monomeric from of lower free energy. Exposure of this form to denaturants, the inability of IFN-aA to survive reduction is due to the fact the the initial conformation of reduced IFN-aA decays at 37°C (the minimum temperature for complete reduction) to a form which is incapable, under native conditions, of recovering an active or proactive conformation. The 29-138 disulfide, which is required conformation. In its absence, IFN-aA is subject to irreversible thermal denaturation (Wetzel, to be published).

II. Physical Studies

1. rDNA-Derived Interferons

a) Human Interferons-α

Preliminary investigation of HuIFN-αA by circular dichroism and ultraviolet spectroscopy indicates that the molecule is a typical globular protein with a densely packed, hydrophobic core. One can measure an α-helix content at neutral pH ranging from 45% to 70% (Bewley et al. 1982; M. Boublik and H. Kung 1982, personal communication), while no major β-sheet structure is apparent. Raman spectroscopy of IFN-αA gave these approximate values: α-helix, 49%; disordered helix, lished results). At least one of the molecule's tryptophans is tightly held in an asymmetric environment. This interaction, as well as about 50% of the α-helix, is reversibly lost on titration of the molecule to pH 2 (Bewley et al. 1982).

Ultracentrifugation studies on IFN- α A show a concentration-dependent aggregation in the neutral range, with sedimentation coefficients consistent with a dimeric or trimeric structure. The molecule behaves as a monomer at pH 2 and at lower concentrations (Shire 1982). A major conformational change at low pH can also be detected when IFN- α A is studied by pH titration. The change occurs around pH 3 and is entirely reversible. Several residues (Lys or Tyr) were found to ionize at abnormally low pH (Shire 1982).

Comparative Structures of Mammalian Interferons

b) Human Interferon-β

Circular dichroism studies on HuIFN- β purified from E. coli show it to contai about 55% α -helix (M. Boublik and H. Kung 1982, personal communication consistent with structure predictions (Fig. 7).

2. Interferon Fragments

COOH terminal fragments of HuIFN-α, containing residues 121–166 and 111–16 have been chemically-synthesized using solid-phase synthesis techniques (ARN HEITER et al. 1981; SMITH et al. 1981). These fragments do not exhibit antiviral activity nor do they compete with radiolabeled native HuIFN-α for its binding sit reactive with HuIFN-α, and exhibit secondary structure as observed by circula sheet (ARNHEITER et al. 1981). The fragment 121–166 exhibited an α-helix content sheet (ARNHEITER et al. 1981). The fragment of HuIFN-α average (SMITH et all mixtures, had no detectable antiviral or receptor binding activities (WeTzEL et al. 1982).

III. Effect of Sequence Changes on Activity

1. NH₂ Terminal Variations

The first 15 amino acids of IFN- α_2 are probably not essential for antiviral activity (see Sect. D.I).

2. COOH Terminal Variations

Some of the COOH terminal amino acids of the cDNA-predicted interferon-a amino acid sequence are not essential for antiviral activity. Levy et al. (1981) have characterized by microsequencing of tryptic fragments several active interferons-a COOH terminus of these molecules. An interferon isolated from limited proteolysis of HulFN-aA, which lacks the 13 amino acids nearest the COOH terminus, has has been made by introducing an early stop codon in the cloned gene after position of the full length subtype (Franke et al., to be published).

3. cDNA-Encoded Analogs

At least 14 subtypes of interferon-\$\alpha\$ have been cloned, leading to structure-function information derived from comparisons of specific activities with amino acid sequences in the different proteins (Streul et al. 1980; Yelverton et al. 1981; Weck at al. 1981 a). In addition, these cloned genes can in some bases be used to generate artifical subtypes, by making hybrid genes that encode new sequence variants. This can be done by in vitro recombination of seconds.

Fig. 6. Design of hybrid interferons-α produced by expression of cloned cDNAs derived from in vitro recombination of naturally derived cDNA Wecκ et al. (1981 b)

Table 3. Relative specific activities of interferons

LeIF	STREULI e	STREULI et al. (1981)		WECK et al (ıl (1981 b)	
	MDBK	WISH	L 929	MDBK	HSIM .	L929
A D AD (<i>Bgl</i>) AD (<i>Pvu</i>) DA (<i>Bgl</i>) DA (<i>Pvu</i>)	100 131 54 46 46	100 14 28 144 < 1	100 667 667 333 < 2 < 1	100 74 97 47 110	100 15 190 280 2 2 2 2	100,000 100,000 4,000 20 100

a DNA restriction site common to two subtype genes. Using cloned cDNA for $\operatorname{HuIFN-\alpha A}(\alpha_2)$ and D(α_1), Stretul et al. (1981) and Weck et al. (1981b) reported the construction of AD and DA hybrids and specific activity comparisons in a number of cell lines.

Figure 6 (Weck et al. 1981b) shows the nature of these constructions at the BgIII site (amino acid 61 of IFN-αA) and the Pvu site (amino acid 91 of IFN-αA). Despite the facts that the interferons produced in one study (Streul et al. 1981) were synthesized at the ribosome as 21 amino acid NH₂ Terminal extensions of the native interferons produced in the other study (Weck et al. 1981b), and that the two groups used different techniques to compensate for possible differential stability in vivo of interferon analogs, the data produced are quite similar. Table 3 shows data from each group in which the analogs as well as the parent molecules were assayed in vitro on different cell lines.

Although some dramatic effects were observed on interferon activity on different cell lines, the data cannot be rationalized with respect to any simple structure-function model. Activity seems to be associated with one end of the molecule in one series and with the other end in another series (Streul et al. 1981). Streul

Comparative Structures of Mammalian Interferons

9

et al. (1981) propose a model in which both ends of the molecule are involved ir binding to receptor components capable of differentially responding to these NH; and COOH termini.

Hybrid experiments like these are valuable initial forays into interferon structure–function studies, and, aided by other physical or biochemical studies on the purified proteins, may yet provide real clues to the way the interferon molecule functions. In addition, some hybrid interferons may prove to be of clinical use Nonetheless, it appears that higher resolution methods of analog generation, such as transpositions of shorter gene fragments, and ultimately site-specific mutagen such analog has already been made. By constructing a gene containing a Cys to such analog has already been made. By constructing a gene containing a Cys to importance of cysteine at this position. The lack of antiviral activity of this interferon analog may be due to its loss of ability to form a disulfide bond.

IV. Carbohydrate Content

1. Native Human Interferons-α

Studies designed to elucidate whether native HuIFN- α are in fact glycoproteins have yielded conflicting results (Grob and Chadha 1979; Bose et al. 1976; Allen and Fantes 1980). Recent amino acid composition and sequence studies of native and rDNA-derived HuIFN- α suggest HuIFN- α are not glycosylated. Amino acid Fantes of anivo acid sequence data of these interferons show the absence of residues. These observations do not show the presence of amino sugars (Allen and an Asn-X-Ser(Thr) sequence, which is required for the glycosylation of asparagine hydrate—peptide linkage. While it is controversial as to whether native HuIFN- α necessary for biologic activity, since: (a) treatment of HuIFN- α with a glycosidase tivity (Bose et al. 1976); and (b) rDNA-derived E. coli HuIFN- α lacking carbohy-drate have similar specific activities to native HuIFN- α .

2. Native Human Interferons-β

In contrast to HuIFN- α , HuIFN- β appears to be a glycoprotein. Amino acid analysis of native HuIFN- β indicates the presence of the amino sugars galactosamine and mannosamine (TAN et al. 1979), and amino acid sequence data obtained from tDNA-derived HuIFN- β shows a potential N-glycosidic linkage site at the asparativity of rDNA-derived HuIFN- β is similar to note that the biologic specific activity of rDNA-derived HuIFN- β is similar to that of native HuIFN- β , thus again HuIFN- β . In addition, treatment of homogeneous native HuIFN- β with a glycosidase mixture results in an apparent molecular weight change of approximately 5,000 as observed by SDS PAGE (KNIGHT and FAHEY 1982). These studies suggest thal for expression of its biologic activity.

3. Native Human Interferons-y

cosidic linkage points at asparagine residues 28 and 100 (see Fig. 5). In addition, Although HuIFN-y has been purified to apparent homogeneity, no amino acid or amino sugar composition is available. The amino acid sequence deduced from the nucleotide sequence of the HuIFN-y cDNA clone shows two potential N-glychromatographic and inhibitor studies indicate HuIFN-y are glycoproteins. They exhibit lectin specificity, i.e., they bind to concanavalin A (con A)-Sepharose and are eluted with α-methylmannopyranoside (Mizrahn 1978). Species of HuIFN-γ glucosaminylpyrophosphorylpolyisoprenol, do not bind to con A-Sepharose, but produced in the presence of tunicamycin, an inhibitor of the synthesis of N-acetylstill exhibit antiviral activity (MIZRAHI 1978).

4. Native Mouse Interferons

of the inhibitor (RAJ and PITHA 1981). Experiments on con A-Sepharose binding lpha and MuIFN-eta stain with periodate Schiff's Reagent on SDS gels, indicating the cies with apparent molecular weights of 15,000 and 18,000 are produced by NDVtons (MuIFN- α) and 35,000 daltons (MuIFN- β) species produced in the absence suggest that MuIFN- α , MuIFN- β (BESANCON and BOURGEADE 1974), and MuIFNy (E. HAVELL 1982, personal communication) possess carbohydrate moieties. Changes in the isoelectric point of MuIFN-y following neuramidinase treatment Amino acid analyses of MuIFN-α and MuIFN-β show the presence of the amino presence of carbohydrate (DEMAEYER-GUIGNARD et al. 1978). Two interferon spenduced mouse C243 cells in the presence of tunicamycin in lieu of the 24,000 dalalso support its glycoprotein nature (E. HAVELL 1982, personal communication). Many if not all MuIFNs (lpha,eta, and γ) appear to be glycoproteins. Purified MuIFNsugar, glucosamine (Table 2).

Structure Prediction

ture in Fig. 7 is thus expected to be significantly more reliable (5%-10%) than predictions of any individual interferon-a. Secondary structure calculations using al. 1982), and 9 (R. Werzell 1982, unpublished work)-were calculated by the method of Garnier et al. (1978). Predictions by this method benefit in principle The predicted secondary structures for interferons shown in Figs. 7, 8 (WETZEL et from the availability of a series of homologous protein sequences. Since it is based upon eight cDNA-predicted IFN-α amino acid sequences, the average IFN-α structhe Chou-Fasman (1974) method for HuIFN- eta_1 and HuIFN-lphaD have been pubished (HAYES 1980)

All the interferons are predicted to be highly helical (50%-70%) by either method. Available experimental data (Sect. D.II) for HuIFN- α and HuIFN- β is in by experiment, the calculations are limited in their ability to locate elements of structure precisely. Other predictive or experimental methods must be used to reagreement with these calculations. While overall helical contents were confirmed fine the calculations.

Comparative Structures of Mammalian Interferons

Residue Number

Regions with moderate helical potential which might be strengthened by adjoining helica Fig. 7. Secondary structure predictions for HuIFN-lpha and HuIFN-eta applying the algorithm to be in a helix or extended chain are shown with these structures dotted and superimposea Residues were scored for their relative tendencies to exist in four possible states (a-helix, ex amination of 26 protein crystal structures. Only α -helix (barrels) and extended chain (β of Garnier et al. (1978) to amino acid sequences predicted from sequences of cloned cDNA tended chain, reverse turn, and coil) based on values for each amino acid obtained by ex sheet, zigzags) are shown since they are predicted most accurately. Stretches equally likely regions are shown as dotted connections between helices

HuIFN- α structure shows the strongest predicted structural elements, which are predictions, while cleavages at positions 103, 109, and 117 cast doubt on a strong Figure 7 shows that HuIFN-aA and HuIFN-aD, differing in amino acid se quence, are predicted to have some structural homology, but also some differences The "average" structure shown is a best guess at HuIFN-a secondary structure which is assumed to be constant throughout the subtypes. The "conserved" consistently predicted in all subtypes. One method of further refining the average at solvent-exposed regions such as eta-turns. The four reverse turns predicted by the algorithm of Garnner et al. (1978) are supported by their coincidence with maxima tide can also be tested experimentally by limited proteolysis experiments. The arrows of Fig. 8 indicate points on the polypeptide chain cleaved by limited digestion with a variety of endoproteases. Cleavages at positions 7, 28, and 152 support the prediction is to use a different algorithm to predict folding. Figure 8 shows a hyin the hydrophilicity curve. Predicted regions of flexible, solvent-exposed polypepdrophilicity profile for IFN-&A. These calculated affinities of polypeptide seg. ments for an aqueous environment should be highest (most negative free energy) y-helical character in this rasion of 1721 ... A K. C. Zoon and R. Wetzel.

in 22 protein crystal structures. In jumps of one amino acid, average free energies along the he values plotted with respect to the central amino acid. The JANIN (1979) values were amino acid side chains (WOLFENDEN 1981). The arrows on the top of the figure indicate loci along the primary sequence which suffered initial nicks by a variety of endoproteases under 7 is redrawn, including the four strongly predicted reverse turns, shown as loops. The the 20 amino acids determined by JANIN (1979) from static accessibility tests on amino acids chosen based on their agreement with experimentally determined hydration potentials for Fig. 8. Tests of the predicted average IFN-lpha structure. The average IFN-lpha structure from hydrophilicity profile was computed using as a data base the free energies of transfer for primary sequence of IFN-aA were calculated for a moving window of five amino acids, and limiting conditions. W. KOHR and R. Werzel (1981, unpublished work), Werzel et al.

Fig.9. Secondary structure prediction for HulFN- γ by the algorithm of Garnier et al. (1978). See Fig. 7

Except for overall helix content, the HuIFN- β structure prediction very little a true prediction of a structural difference that is compensated in the real molecule by glycosylation. The potential N-glycosylation site of HuIFN- β at residue 80 is in fact in an area of the molecule which is predicted to have different structure from HuIFN-a. HuIFN-y also predicted to contain over 50% a-helix (Fig. 9). While the resembles that for HuIFN-α (Fig. 7). This may be due in part to an error in the algorithm, to some real difference between interferon- α and - β structure, or may be prediction for IFN-a has had some experimental support (Sect. II.1.b), the predicted structures for IFN- β and IFN- γ have not been further tested.

Comparative Structures of Mammalian Interferons

primary sequences. They interpreted their results as evidence for divergent ev tween interferons- α , - β , and - γ in a presumed α -helix in the middle portion of t Using the helical wheel analysis of Shurfer and Edmundson (1967), DEGR. et al. (1982) have built a convincing case for significant structural homology tion of interferons- α , $-\beta$, and $-\gamma$ from a common precursor.

References

Allen G, Fantes KH (1980) A family of structural genes for human lymphoblastoid (lei cyte-type) interferon. Nature 287:408-411

antigenic properties of synthetic fragments of human leukocyte interferon. Na Arnheiter H, Thomas RM, Leist T, Fountoulakis M, Gutte B (1981) Physico-chemical 294:278-280

Berg K, Heron I (1980) The complete purification of human leukocyte interferon. Sca

Besancon F, Bourgeade M (1974) Affinity of murine and human interferon for concanav A. J. Immunol 113:1061-1063

Bewley TA, Levine HL, Wetzel R (1982) Structural features of human leukocyte A as termined by circular dichroism spectroscopy. Int J Pept Protein Res 20:93-96

Bose S, Gurari-Rotman D, Ruegg UT, Corley L, Anfinsen CB (1976) Apparent dispense ity of the carbohydrate moiety of human interferon for antiviral activity. J Biol Cl 251:1659-1662

Braude IA, Lin LS, Stewart WE (1979) Differential inactivation of homologous and he ologous antiviral activity of human leukocyte interferon by a proteolytic enzyme. I chem Biophys Res Comm 89:612-619

Braude IA, Lin LS, Stewart WE (1981 a) Isolation of a biologically active fragment of man alpha interferon. J Interferon Res 1:245-252

Braude IA, Lin LS, Stewart WE (1981b) Size characteristics of human leukocyte interfe under reducing and nonreducing conditions. Biochem J 193:947-951

Cabrer B, Taira H, Broeze RT, Kempe TD, Williams K, Slattery E, Konigsberg V Lengyel P (1979) Structural characteristics of interferons from mouse. Ehrlich asc tumor cells. J Biol Chem 254:3681-3684

DeGrado WF, Wasserman ZR, Chowdhry V (1982) Sequence and structural homolo, Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222-

Somer P (1980) Interferon induced in human leukocytes by mitogens: production, r De Ley M, Van Damme J, Clacys H, Weening H, Heine JW, Billiau A, Vermylen C, among type I and type II interferons. Nature 300:379-381

DeMacyer-Guignard J, Tovey MG, Gresser I, DeMaeyer E (1978) Purification of mo interferon by sequential affinity chromatography on poly(U)- and antibody-agar tial purification and characterization. Eur J Immunol 10:877-883 columns. Nature 271:622-625

Derynck R, Content J, DeClercq E, Volckaert G, Tavernier J, Devos R, Fiers W (19 Isolation and structure of a human fibroblast interferon gene. Nature 285:542-546

Epstein LB (1982) Interferon-gamma: success, structure, and speculation. Nature 295:4:

Evinger M, Rubinstein M, Pestka S (1981) Antiproliferative and antiviral activities of 1 man leukocyte interferons. Arch Biochem Biophys 210:319-329

Franke AE, Shepard HM, Houck CM, Leung DW, Goeddel DV, Lawn RM (to be pa lished) Carboxy terminal region of hybrid interferons affects antiviral specificity

Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications simple methods for prediciting the secondary structure of globular proteins. J Mol B

- Goeddel DV, Leung DW, Dull TJ, Gross M, Lawn RM, McCandliss R, Seeburg PH, Ullrich A, Yelverton E, Gray PW (1981) The structure of eight distinct cloned human leukocyte interferon cDNAs. Nature 290:20-26
- Gray PW, Goeddel DV (1982) Structure of the human immune interferon gene. Nature
- Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PI, Wallace DM, Berger SL, Levinson AD, Goeddel DV (1982) Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 295:503-508
 - Grob PM, Chadha KC (1979) Separation of human leukocyte interferon components by concanavalin A-agarose affinity chromatography and their characterization. Biochem-
- Harkins RN, Weck PK, Apperson S, Haas P, Agarwal B (to be published) Structural and biological properties of purified bacteria derived human fibroblast interferon
 - Hayes TG (1980) Chou-Faman analyses of the secondary structure of F and Le interferons. Biochem Biophys Res Commun 95:872-879
- Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Expression
 - Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV (to be published) of a human gene for interferon in yeast. Nature 293:717-722 Secretion of human interferons by yeast
- Iwakura J, Yonehara S, Kawade Y (1978) Purification of mouse L cell interferon. J Biol Chem 253:5074-5079
- Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491-492
- Kawakita M, Cabrer B, Taira H, Rebello M, Slattery E, Weideli H, Lengyel P (1978) Purification of interferon from mouse Ehrlich ascites tumor cells. J Biol Chem 253:598-602
- Knight E Jr, Fahey D (1981) Human fibroblast interferon: an improved purification. J Biol Chem 256;3609-3612
- Knight E Jr, Fahey D (1982) Human interferon- β : effects of deglycosylation. J Interferon Res 2:421-429
- Knight E Jr, Hunkapiller MW, Korant BD, Hardy RWF, Hood LE (1980) Human fibroblast interferon: amino acid analysis and amino terminal amino acid sequences. Science
- Kohr W, Wetzel R (to be published) Amino acid sequence of E. coli-produced human alpha
- interferon subtype A by characterization of the HPLC/tryptic map.

 Langford MP, Georgiades JA, Stanton GJ, Dianzani F, Johnson HM (1979) Large-scale production and physicochemical characterization of human immune interferon. Infect mmun 26:36-41
- Levy WP, Rubinstein M, Shively J, Del Valle U, Lai CY, Moschera J, Brink L, Gerber L, Stern S, Pestka S (1981). Amino acid sequence of a human leukocyte interferon. Proc Natl Acad Sci USA 78:6186–6190
- Merigan TC, Winget CA, Dixon CB (1965) Purification and characterization of vertebrate interferons. J Mol Biol 13:679–681
 - Mizrahi A, O'Malley JA, Carter WA, Takatsuki A, Tamura G, Sulkowski E (1978) Glycosylation of interferon: effects of tunicamycin on human immune interferon. J Bio Chem 253:7612-7615
- Mogensen KE, Cantell K (1974) Human leukocyte interferon: a role for disulfide bonds. J Gen Virol 22:95-103
- Morehead H, Johnston P, Wetzel R (to be published) The role of the disulfide bonds of human alpha interferon. I. Contribution to antiviral avtivity Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nu
 - cleotide sequences of cloned cDNA for bovine corticotropin- β -lipotropin prescursor. Nature 278:423-427
 - Ohno S, Taniguchi T (1981) Structure of a chromosomal gene for human interferon β . Proc Natl Acad Sci USA 78:5305-5309
- Otto MJ, Sedmak JJ, Grossberg SE (1980) Enzymatic modifications of human fibroblast and leukocyte interferons. J Virol 35:390-399
- Raj NBK, Pitha PM (1981) Interferon heterogeneity resulting from differences in glycosy-

Comparative Structures of Mammalian Interferons

- Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein C
 - (1981) Human leukocyte interferon: isolation and characterization of several molec Rubinstein M, Levy WP, Moschera JA, Lai CY, Hershberg RD, Bartlett RT, Pest forms. Arch Biochem Biophys 210:307-318
- Shepard HM, Leung D, Stebbing N, Goeddel DV (1981) A single amino acid change ii
- man fibroblast interferon (IFN-ß1) abolishes antiviral activity. Nature 294:563-565 Shiffer M, Edmundson AB (1967) Use of helical wheels to represent the structures of teins and to identify segments with helical potential. Biophys J 7:121-135
 - Shire S (1982) pH dependent behavior of purified biosynthetic human leukocyte interf A (LIF-A). Biophys J 37:384a
- Smith ME, Komoriya A, Anfinsen CB (1981) Chemical synthesis and properties of 1 ments of human leukocyte interferon. In: DeMaeyer E, Galasso G, Schellekens H (
- Stachelin T, Hobbs DS, Kung H, Lai CY, Pestka S (1981) Purification and characteriza of recombinant leukocyte interferon (IFLra) with monoclonal antibodies. J Biol C The biology of the interferon system. Elsevier/North Holland, Amsterdam, pp 39-4 256:9750-9754
 - Stewart WE II (ed) (1981) The interferon-system. Springer, Berlin Heidelberg New Y .pp 168-171
- of several biological and physicochemical properties of human leukocyte interfe produced by human leukocytes and by B. coli. Gene 11:181–186 Stewart WE II, Sarkar FH, Taira H, Hall A, Nagata S, Weissman C (1980) Compai
- Streuli M, Nagata S, Weissman C (1980) At least three human type α interferons: struc of a2. Science 209:1343-1347
- Streuli M, Hall A, Boll W, Stewart WE II, Nagata S, Weissman C (1981) Target cell s isicity of two species of human interferon-a produced in Escherichia coli and of hy molecules derived from them. Proc Natl Acad Sci USA 78:2848-2852
 - Taira H, Broeze RJ, Jayaram GM, Lengyel P, Hunkapiller MW, Hood LE (1980) Mt interferons: amino terminal amino acid sequences of various species. Science 207;
- amino acid/sugar composition of human fibroblastoid interferon. J Biol Cl Tan YH, Barakat F, Berthold W, Smith-Johannsen H, Tan C (1979) The isolation 254:8067-8073
 - Weck PK, Apperson S, May L, Stebbing N (1981 a) Comparison of the antiviral activ of various cloned human-a subtypes in mammalian cell cultures. J Gen Virol 57:233-
- b) Antiviral activities of hybrids of two major human leukocyte interferons. Nu-Weck PK, Apperson S, Stebbing N, Gray PW, Leung D, Shepard HM, Goeddel DV (1 Acids Res 9:6153-6166
 - Wetzel R (1981) Assignment of the disulfide bonds of leukocyte interferon. Nature 289:0
- Wetzel R (to be published) The role of the disulfide bonds of human alpha interferon Contribution to conformational stability
- Wetzel R, Goeddel DV (1983) Synthesis of polypeptides by recombinant DNA meth In: Gross E, Meienhofer J (eds) The peptides: analysis, synthesis, biology. Acade New York (in press)
- Wetzel R, Perry LJ, Estell DA, Lin N, Levine HL, Slinker B, Fields F, Ross MJ, Shi J (1981) Properties of a human alpha-interferon purified from E. coli extracts. J II. feron Res 1:381-390
 - Wetzel R, Levine HL, Estell DA, Shire S, Finer-Moore J, Stroud R, Bewley TA (1! Structure-function studies on human alpha interferon. In: Merigan T, Friedman R, CF (eds) Chemistry and biology of interferons: relationship to therapeutics. UC symposia 25. Academic, New York, pp 365-376
 - Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Affinities of amino acid chains for solvent water. Biochemistry 20:849-855
- Yelverton E, Leung DW, Weck PK, Gray PW, Goeddel DV (1981) Bacterial synthesi a novel hiiman lenknewte interferon Ninclair Acids Donn 1711

Yip YK, Barrowclough BS, Urban C, Vilcek J (1982) Molecular weight of human gamma interferon is similar to that of other human interferons. Science 215:411-413

Zoon K (1981) Purification, sequencing, and properties of human lymphoblastoid and leukocyte interferon. In: DeMaeyer E, Galasso G, Schellekens H (eds) The biology of the interferon system. Elsevier/North Holland, Amsterdam, pp 47–55

Zoon K.C., Smith ME, Bridgen PJ, ZurNedden D, Anfinsen CB (1979) Purification and partial characterization of human lymphoblastoid interferon. Proc Natl Acad Sci USA 76:5601-5605

Zoon KC, Miller D, ZurNedden D, Hunkapiller M (1982a) Human leukocyte interferon: purification and amino terminal amino acid sequence of two components. J Interferon Res 2:253-260

Zoon K.C., ZurNedden D, Arnheiter H (1982b) Specific binding of human alpha interferon to a high affinity cell surface binding site on bovine kidney cells. J Biol Chem 257:4695-4697

CHAPTER 6

Regulatory Control of Interferon Synthesis and Action

H. SMITH-JOHANNSEN, Y-T. HOU, X-Y. LIU, and Y-H. TAN

A. Regulatory Control of IFN Synthesis

I. Introduction

The induction of interferon (IFN) consists of a series of cellular events result in the transcription and translation of the IFN genes followed by events lead to the curtailment of these activities. After induction, cells remain refractory several hours before they can be stimulated for IFN synthesis again. Much co be learned of mammalian gene regulation from the mechanism or mechanisms which IFN genes are stimulated and regulated. This chapter reviews the evide regarding the number and nature of human IFN genes and the progress tow understanding the regulation of their expression.

II. Human IFN Genes

1. A Multigene Family

Several lines of evidence indicate that both IFN- α and IFN- β are families consing of a number of genes. Molecular cloning studies have revealed the existence at least 15 gene-like sequences for IFN- α , including 5 pseudogenes (NAGATA et 1980; BRACK et al. 1981; GOEDDEL et al. 1981). None of the IFN- α genes so far amined contains introns (NAGATA et al. 1981). None of the IFN- α genes so far amined contains introns (NAGATA et al. 1980; LAWN et al. 1981 a, b). Based on striction mapping, sequencing, and R-loop and heteroduplex analyses, BRACK al. (1981) conclude that nine of the IFN- α genes are nonallelic and one is alle The data also indicate that some of the genes are clustered in linkage groups. (Inkage group is 36 kilobases long and consists of three genes interspersed where pseudogenes. A second group is 25 kilobases long and contains one gene three pseudogene. The presence of extensive homologies in the flanking sequence of some of these genes, in particular the 35 kilobase-linkage group, led Brack al. to speculate that these flanking regions may play a role in the regulation of expression of these IFN- α genes.

When human leukocytes are induced to produce IFN by Sendai virus, a hete geneous mixture of IFN- α mRNAs can be detected in the cytoplasmic extra (SehGAL et al. 1981). These mRNAs can be resolved into two size classes. The n jor population (IFN- α_s) corresponds to a size range of 0.8–1.4 kilobases an minor population (IFN- α_s) corresponds to a size range of 1.6–3.5 kilobases. I induction of the IFN- α_s mRNAs is preferentially inhibited by treatment of the duced leukocytes with 5,6-dichloro-1-D-ribofuranosylbenzimidazole (DRB).

Interferons and Their Applications

Contributors

J.A. Armstrong · A. Attallah · C. Baglioni · S. Baron · D. C. Burke P. E. Came · W. A. Carter · E. De Clercq · V. G. Edy · E. C. Esber K. H. Fantes · N. B. Finter · W.R. Fleischmann, Jr. D. C. Gajdusek · J. A. Georgiades · C. J. Gibbs, Jr. · D. Gillespie S. B. Greenberg · J. J. Greene · S. E. Grossberg · J. U. Gutterman M. W. Harmon · N. O. Hill · H. E. Hopps · Y.T. Hou P. M. Jameson · M. Krim · M. Langford · H. B. Levy X-Y. Liu · P.I. Marcus · S. Panem · E. Pequignot · J. C. Petricciani F. L. Riley · J. L. Sabran · A. D. Sagar · A. M. Salazar · D. S. Secher J. J. Sedmak · P. B. Sehgal · R. A. Smith · H. Smith - Johannsen G. J. Stanton · D. R. Strayer · D. A. Stringfellow · Y. H. Tan J. L. Taylor · P. F. Torrence · P. O. P. Tso · P. K. Weck · D. A. Weigent R. Wetzel · J. M. Zarling · K. C. Zoon

Editors

P. E. Came and W. A. Carter

Springer-Verlag Rerlin Heidelhera New Varlz Talzus 1001 豆

Comparative Analysis of Interferon Structural Genes

P. B. SEHGAL and A. D. SAGAR

A. Introduction

Interferons (IFNs) are a family of inducible proteins which exert potent biologic effects on target cells. These proteins render animal cells resistant to infection by a wide spectrum of viruses, inhibit cell proliferation and exert immunomodulator; effects on a variety of target cells (Sehgal et al. 1982). IFNs can be induced in a large number of different animal species (Stewart 1979) and usually exert their effects on cells of homologous species. However, certain IFNs are also active on cells of heterologous species (Stewart 1979).

Human and murine IFNs are presently classified into α (leukocyte), β (fibroblast), and γ (immune) subtypes based primarily on their antigenic relationships. Thus, antisera raised against IFN- α , - β , or - γ do not cross-react with IFNs of a different type. However, antisera raised against human IFN- α do cross-react with certain species of murine IFN- α (STEWART and HAVELL 1980). This relationship be tween the IFN proteins also extends to the structure of the respective IFN genes Thus human IFN- α cDNA sequences do not cross-hybridize human IFN- β o- γ -genes, but do cross-hybridize murine IFN- α genes (Owerbach et al. 1981).

Recent advances in the characterization of IFN mRNA species, the molecula cloning of some of the corresponding cDNA molecules, and the elucidation of the structure of some of the human IFN genes have provided remarkable insights into the structural and evolutionary relationships that exist in this complex multigenfamily that codes for proteins which exert potent antiviral, anticellular, and immunomodulatory effects on animal cells. Some of the human IFN genes are closelrelated (cross-hybridize), others only distantly related (do not cross-hybridize) some are located in tandem on the same chromosome in the human genome, other are widely dispersed; some of the genes are coordinately expressed while others are expressed in a grossly noncoordinate manner. The structural and functional complexity of the human IFN gene family suggests that the induction of specific IFN may represent finely tuned responses by different cells or tissues to particular physiologic or pathologic stimuli. The recent elucidation of the precise structural relationships between some of the human IFN genes represents a major advance in understanding the complex functions of this gene family.

B. Molecular Cloning of Some Human IFN- α cDNA and Chromosomal Genes

NAGATA and his colleagues (NAGATA et al. 1980a; STRBULI et al. 1980) have de scrihed the molecular cloning of two dietingt TRM ... NAMA Action for

.9

blood leukocytes. These two cDNA species, designated IFN- α_1 and IFN- α_2 , were then used to screen a human DNA gene bank. This led to the isolation of at least ten distinct human IFN-α genes which cross-hybridize an α₁ cDNA probe (NAGATA et al. 1980b, 1981). Similarly, GOEDDEL and his colleagues isolated an IFN-a cDNA clone derived from 12 S polyadenylated RNA extracted from Sendai virus-induced human myeloblastoid cells (KG-1) (GOEDDEL et al. 1980a), This brary in pBR322 (GOEDDEL et al. 1980a, 1981). These investigators have also used these cDNA clones to screen a human DNA gene bank and have isolated up to 12 distinct, but cross-hybridizing IFN- α genes (LAWN et al. 1981 a, b). This set of cross-hybridizing human IFN-α genes and their derived mRNAs and proteins has been designated IFN- α_S in order to distinguish it from a second set of human IFNa. mRNAs which do not appear to cross-hybridize IFN-as-specific DNA probes 12 S polyadenylated RNA extracted from Sendai virus-induced human peripheral cDNA clone (LeIF A) 1 was then used as a DNA hybridization probe to isolate at least eight distinct, but cross-hybridizing cDNA clones from their 12 S mRNA li-(ŠAGAR et al. 1981; SEHGAL et al. 1981 a, b).

C. Molecular Cloning of a Human IFN- β cDNA and Its Chromosomal Gene

Taniguceh and his colleagues (Taniguceh et al. 1979, 1980a, b) were the first to report the molecular cloning of a single species of IFN- β cDNA derived from 12 S polyadenylated RNA extracted from poly(I) poly(C)-induced diploid human fibroblasts. This species of cDNA is designated IFN- β_1 in order to distinguish it from other IFN- β mRNAs which do not appear to cross-hybridize an IFN- β_1 cDNA probe (Sehgal and Sagar 1980; Weissenbach et al. 1980; Sagar et al. 1981, 1982). Numerous other investigators have also cloned and characterized IFN- β_1 cDNA (Goeddle et al. 1980b; Derynck et al. 1980a, b). Several investigators have screened human DNA gene banks using IFN- β_1 cDNA probes and have isolated and characterized a single gene corresponding to IFN- β_1 (Houghton et al. 1981; Tavernier et al. 1981; Degrave et al. 1981; Lawn et al. 1981; Cohno and Taniguch 1981; Gross et al. 1981).

D. Comparative Structure of Some IFN- α and - β mRNAs and Proteins Deduced from cDNA Clones

The IFN- α cDNA clones described in Sect. B correspond to a group of cross-hybridizing mRNA species of length between 0.7 and 1.4 kilobases (Sehgal et al. 1981 a, b). This set of IFN- α mRNAs is collectively designated IFN- α s. A second set of IFN- α , mRNAs which corresponds to mRNA species of length between 1.6 and 3 kilobases (peak activity 1.8 kilobases) has not yet been cloned (Sehgal et

Comparative Analysis of Interferon Structural Genes

al. 1981a, b). The IFN- β_1 cDNA described in Sect. C corresponds to an mRNA species of length approximately 0.9 kilobases (Sehgal and Sagar 1980). Although a total of five distinct human IFN- β mRNA species have been described recently (Sehgal and Sagar 1980; Sagar et al. 1981, 1982) four of these have not yet beer cloned. Thus, the discussion in Sect. D and E is restricted to the human IFN- α_3 sel and to the IFN- β_1 gene.

I. The Coding Regions

sist of 166 amino acids, except for IFN-a2, which would code for a protein contain ing 165 amino acids (Fig. 1). There is approximately 80% homology in the aminc acid sequences of the mature proteins, but 85%-95% homology in the DNA sequence in the coding region. Two domains, amino acids 28-80 and 115-150 are highly conserved in all of these IFN- α proteins. These regions may represent the biologically active sites on these proteins. Studies on the activity of hybrid interferons derived from fused cloned IFN cDNA (STREULI et al. 1981) where codon: for the NH₂ terminal amino acids 63 or 92 of IFN- α_1 are fused with codons for that species-specific IFN activity segregates with the NH_2 terminal portion of the binds to the cell surface receptor. It has been suggested that the second region (amino acids 115-150) may have a role in modulating this binding or may contain A detailed characterization of the 8–10 distinct IFN- α cDNA clones available a° the present time has revealed that most of these would code for proteins which conthe remainder of the COOH terminal amino acids of IFN- α_2 and vice versa sugges IFN molecule. These data suggest that the region 28-80 may contain the site which a site responsible for some other biologic function (Streull et al. 1981).

IFN- β_1 cDNA also codes for a mature protein of 166 amino acids (Taniguch et al. 1980a, c). IFN- β_1 is only 29% homologous with IFN- α_1 at the protein level but is ~45% homologous in the DNA sequence of the coding region (Taniguch et al. 1980c). The two conserved domains in codons 28-80 and 115-150 observed in IFN- α_1 and $-\alpha_2$ proteins are also conserved in IFN- β_1 . However, the degree o nucleotide sequence conservation is not sufficient for cross-hybridization of IFN β_1 RNA or DNA with IFN- α_1 DNA probes, even under relaxed hybridization conditions. Furthermore, the degree of amino acid sequence conservation is not sufficient for cross-reaction between antisera raised against IFN- α or - β and the het erologous interferons.

The IFN-protein sequences deduced from the cDNA clones indicate marked conservation of cysteine at positions 1, 29, 98 or 99, and 138 or 139 in the IFN- ρ proteins and the presence of cysteine residues at positions 31 and 141 in IFN- ρ (Fig. 1; Streull et al. 1980; Goedder et al. 1981; Wetzel 1981). In the IFN- σ proteins, Cys-1 is bonded to Cys-98 or -99 and Cys-29 to Cys-138 or -139 by disulfide bridges (Wetzel 1981). Similarly, IFN- ρ ₁ may contain Cys-31 bonded to Cys-141.

The natural IFN- α proteins characterized to date are devoid of carbohydrate moieties (Rubinstein et al. 1981; Allen and Fantes 1980) whereas IFN- β_1 has been shown to be a glycoprotein (Knight 1976; Tan et al. 1979). Attachment of carbohydrate through N-glycosidic linkage is known to occur on the asparagine in the triplets Asn-X-Ser or Asn-X-Thr and the presence of this sequence is a necessary, but not a sufficient condition for glycosylation (Neuberger 1972). IFN- β .

I IFN nomenclature is in a state of flux at the present time, with different laboratories using different designations. In the case of the human α system, LeIF A and LeIF D (Goeddifferent al. 1981) are equivalent to HuIFN- α_2 and HuIFN- α_1 respectively (Nagata et al. 1980a; Streull et al. 1980)

											•												,											-														
			ķ		В	٦				-	1							5	i	I	: 3		Ł	i			M	1 7	, 5)	S	. ,		K			٦	Y			I	Я				Ł	ſΑ	
				N	Я	7	Y	9	T	0 9	1 8 9 T	! N	1 1		,	_ ا	i N	l	1 7	l I	Ξ,	٨	8	۱ ۸	I	1	. м	ı A	, D	H 0 +	S	, A	Э.	к	٧	к	٦	Y		7		Я					1 g -	HUIF)
		3	K	S	В	٦	2 e o	ξ,	Ò	٦	l N	1	. \$; -	1 . 5	E :	I S		l k	! [3	A	' 8	٨	٨		M	۲)	d	S	'X	K	K	3	ĸ	٦ ٥٤٠	,	٦		I	В				;	4-a2	HuIF
		3	K	Я	Я		В			7	N	1	. S	; -	1 5	7		80	W	I	3	A	Я	٠.٧	٨		М	-		d	s	Y	K	Κ,	Έ.	1	٦			T	Ι	Я				1	η-α ^τ	HuIFI
			¥					٦		S																				٦		N		Ò		Å.		•								L	ſA.	
!	9	Y	Y	В	K	٦		٦ 50		S	W	٦	K	9	В	T		D 10		ĸ	3	٦	ĸ	Ε	3	٦		ᇲ		٦	н	N	I	δ	Н	Y	۸,	N .	A	7	1 1	N				7	8-N	RUIF!
()	4	Y		<u>ש</u> וכנ			٦	I	S	O	3	K	M	٦ ٥ ت	ď	1	Ξ	Ţ	٨	9	٨	9	þ	I	٨	Э	A	3	٦	a	N	٦	Ò	0 0 0	Y	7		L .	۱.	1 :	K				7	D-N	HuIF
2	. i	4	Y	K	K	۱2 ا		7	I	s	a	A	N	W	٦		ĭ	3	9	٨	Я	3	3		W			A	Ξ	7	a	N	٦		ď	у У	ר :	3.	L :	. (4)	k				t	N-or	HuIF
					Ξ		M			S	S					£			4	I		Ò			3									K	þ	Ł	Ò									ιι	Α.	- .
3	i	١.	I	1	3	N	M	9	Τ	s	s	s	a	þ	Я	년 노		A	4	I	N	Ò	٦	W	Ε	۲ ۲	I	Ţ	٦	A	A	a	3	ĸ		3(F	òί	b .	1 () >	1 3	[•		Ι	8-N	HuIF
C	Ι.		٦. 90	1	3	O	M	Ä	A	S	S		K 20	1	S			N	4	I	b	þ		W				٨	d	I	T	_	-				d 1	Ņ 5) -	٠ -	į	Í				7	n-N	ΉυΙĖ
O	١.		٦ (0 e	3	a	M	A	A	s	s		ĸ	1 02	1	4	٦	N	£	I	Ò		09 I	٦ 9		Н	٦	٨	S	I	٧				Ò	.	b I	1 5) (ء ا	1 3	l				I	и-а	HuIF
Ε		•	4			4			Я	a		٦	Э						В				Ò		٦	٦													7	Ī						ш	A	
																						٦	Ò	3	٦	٦	3	δ	ż	К	Я	I	N	I	8	3 6	5 -	j	7	Ò	K		N	Ī	A.	-и-	ı ə	snow
3	3	c	. L		α.	4	N I	W	Я	Q	K	٦	Э	0ε Υ	3	٦	-	-	В	9	N	٦	Ò	M		7 0 Z		Ò	3	Ò:	Ė	N	S	Ś))	1 3	9	7	٦	N	Å	s	W		τ	8-N:	HuIF
									8	a	K	٦		s	F	7	S	I.	В	9	-	W	Ò	A	٦	٦	I	٦	A	8	Я	N	9	7			b	d	7	a	s	1	IEN	p	ioti	\$ P [6	qoyo	τλut
3	b	d	! :	₫ !	9 .	4 (] [H :	8	O	K	٦	c	S	F	7	S	I	Я	В	-	W	Ò	A	7	7	W	7	ı	Я	Я	S :	9	٦ .	s i	4 3	Ó	d	7	a	Э					7,	N-0	Hulf
3	0	d,	ء ا	!!	9 .	d (]	H 7	8 (Q		٦ ٥٤	Э	S	S	ď	S	I	В	S	-	M	Ò	A	7	۱ ٦	W	٦.	T	8	8 1	N (a	: ד	S 1	1	. 3	d	٦	a	Э					τ,	p- N-	Huli
	•										,											C	o O	A	٦	۸	K	٦ .	∀ :	9 :	l K		9) t	וד	N ,	L	. ბ	d	7	a	A				ე-	EN:	Į as	now

Fig. 1. The coding region of some IFN genes. Comparison of amino acid sequences of human IFN- α_1 and $-\alpha_2$, deduced from the cDNA sequence (MANTE et al. 1980), with human lymphoblastoid IFN, deduced from amino acid analyses, murine IFN-A and -C, deduced from NH₂ terminal amino acid analyses (Tarra et al. 1980), and human fibroblast IFN- β_1 from the cDNA sequence (Tangucht et al. 1980a). The amino acids are written according to the one-letter notation as recommended by the IUPAC-IUB Commission on Biochemical Nomenclature (Dayore 1978). A-alanine, C-cysteine; D-aspartic acid; B-glutamic acid; F-phrolline; Q-glutamine; R-arginine; S-serine, T-threonine; V-valine; W-tryptophan; Y-prolline; Q-glutamine; R-arginine; S-serine, T-threonine; V-valine; W-tryptophan; Y-tyrosine. A question mark indicates a sequence not yet identified. Dashes have been introduced to obtain maximum homology. Mouse IFN-C corresponds to IFN- α and mouse IFN-A corresponds to IFN- α and mouse IFN-

Comparative Analysis of Interferon Structural Genes

contains such an asparagine at position 80 of the amino acid sequence while not the IFN-a protein sequences deduced to date indicates the presence of this ami acid triplet.

A number of cDNA molecules which have unusual features in their coding gions have been cloned:

- 1. The IFN-α cDNA designated "LeIFN E" (GOEDDEL et al. 1981) conta one nucleotide more than the other IFN-α cDNAs at position 187, correspond to amino acid 40. Subsequent to this translation termination condons are encortered in all three phases. Thus "LeIFN E" cDNA appears to represent a pseur gene that is transcribed and expressed at a low level in virus-induced myeloblasticells.
- 2. Two IFN- α cDNA clones designated "LeIFN H" and "LeIFN H₁" are tually identical except for a single nucleotide deletion in H₁ (at nucleotide 545, which is followed six nucleotides later by a correcting insertion (after nucleot 551, G), thus restoring the original reading frame. These two clones probably r resent allelic genes (Goeddelet et al. 1981).
- 3. An IFN-β₁ cDNA has been isolated in which the deduced protein seque includes the change of Cys-141 to Tyr-141. The protein expressed in *Escheric coli* corresponding to this unusual cDNA displays no antiviral activity, does compete with anti-IFN-β immunoglobulin, and does not bind to cell membra (Shepard et al. 1981). Thus, it appears that Cys-141 may play an important r in the biologic activity of IFN-β₁.

While many of the conclusions about these IFN- α and $-\beta_1$ proteins deduc from the nucleotide sequences of the cDNA clones have been confirmed by dir analyses of the mature proteins (KNIGHT et al. 1980; TANIGUCHI et al. 1980a MAEDA et al. 1980; ALLEN and FANTES 1980), a recent report (Levy et al. 1981) si gests that three particular species of mature IFN- α proteins derived from virusduced human leukocyte cell cultures (the cells were obtained from patients we chronic myelogenous leukemia) lack the ten COOH terminal amino acids preded by the DNA sequence.

II. The Signal Peptides

IFNs are secretory proteins. Thus, each of the IFN cDNA clones that has be characterized reveals the presence of a hydrophobic signal peptide 21–23 am acids long (Taniguchi et al. 1980 a, c; Mantei et al. 1980 a, Goeddel et al. 1981 b). There is a greater degree of variability in the signal sequence than in the cod regions. The six IFN- α signal peptides that have been deduced consist of 23 am acids, are approximately 70% homologous to each other with 11 (43%) of amino acids completely conserved. On the other hand the 21 amino acid IFN signal peptide is markedly different from the IFN- α signal peptides (~60% div gence in nucleotide sequence) (Taniguchi et al. 1980; Streul et al. 1980).

II. The Noncoding Regions

The 5' noncoding region in the IFN- α and β_1 mRNAs is approximately 65–75 $_1$ cleotides long (Houghton et al. 1981: Nagara et al. 1980 h. 1 and 1001

7	(e) -125 TGAAAACCCATG TCTACACCCATG	(d) -80 G-AAAGTA GAAAAAAA	(c) -59 TTTGGAA TTCAGAA	(b) -30 TATTTAA TATTTAA	(a) - 1 CA	Corresponding designation designation IFN-a ₂
	CTTAAACACATG TTTAAACACATG	G-AAAGTA G-AAAGTA	TTTAGAA TTTAGAA	TATTTAA TATTTAA	c A	
	TTTAAACACATG TCTAAAATCATG TCTATACCATG	G-AAAGTA G-AAAGTG G-AAAGTA	TTTAGAA TTAAGAA TTCTGAA	TATITAA TATITAA TATITAA	S C C	IFN-a1
1	-114 TACTAAAATG	-72 GAAAGTGG	-57 CTCTGAA	-31 TATAAA	-1 CA	IFN-61

cleotide sequences, upstream from the transcription initiation site of several human IFN-a tion. a transcription initiation site; b Goldberg-Hogness box; c and e presumably involved Fig. 2a-e. The 5' flanking region of some IFN genes. Comparison of homologous nugenes and the IFN-β, gene. These sequences could conceivably play a role in gene regulain induction; d CCAAT box thought to be involved in RNA polymerase II binding. Sequences 1-7 taken from Lawn et al. (1981 b); 8 from Degrave et al. (1981)

There is marked (\sim 75%) sequence homology in the 5' noncoding regions of seven of the IFN-a genes sequenced so far. On the other hand the 5' noncoding region of IFN. eta_1 has a much lower degree of homology with the IFN-lpha sequences. The 3' noncoding regions of IFN-lpha and - eta_1 mRNAs are highly variable. The length of (+175)) nucleotides preceding the poly(A). There is approximately 50% homology restriction fragments corresponding to this region can be used as hybridization the 3' noncoding region can vary from 203 (IFN- eta_1) to approximately 506 (LeIF A in the nucleotide sequence in this region among the IFN- α mRNAs. Thus, DNA probes for the individual IFN-a mRNA species (Streul et al. 1980; GOEDDEL et al. 1981). There is only 30% homology between the nucleotide sequence in this region in IFN- θ_1 mRNA and IFN- α_1 and $-\alpha_2$ mRNAs (Streul et al. 1980).

The hexanucleotide, AAUAAA precedes the site of polyadenylation in many site. One-half of the IFN-α cDNAs sequenced contain the corresponding AATAAA sequence approximately 15-20 nucleotides from the poly(A) site (LeIFN A, D, F, and G; GOEDDEL et al. 1981) while several others (LeIFN B, C, E, and H; Goeddel et al. 1981) contain the related sequence ATTAAA. LeIFN B contains the ATTAAA approximately 400 nucleotides from the end of the coding region, but is not polyadenylated until after a second ATTAAA sequence is al. 1981). Whereas LeIF A or IFN- α_2 is usually polyadenylated approximately 330 quence 20 nucleotides proximal to this poly(A) site (GOEDDEL et al. 1981), a variant mRNA contains the AAUAAA sequence 20 nucleotides-internal to the poly(A) reached approximately 485 nucleotides into the 3' noncoding region (GOEDDBL et nucleotides from the end of the coding region and contains the AAUAAA seeukaryotic cellular mRNAs by 15–25 nucleotides (Prouproor 1976). IFN- θ_1

Comparative Analysis of Interteron Structural Genes

urther downstream (Lawn et al. 1981b). A second AATAAA hexanucleotide p which polyadenylation did not occur at this site, but at a location 175 nucleotic cDNA [LeIFN A (+175)] has been cloned which represents an mRNA species cedes the 3' end of this extended cDNA clone (LAWN et al. 1981 b).

er poly(A) than newly synthesized mRNA molecules derived from most other c ular split genes (150-250 nucleotides). mRNAs derived from mammalian histo in the 3' noncoding sequence suggests that this region may not be particularly co approximately 200 nucleotides (Soreg et al. 1981). Since the group of IFN-4s ger and the IFN-\$1, gene are known to be devoid of introns (Sect. E) it is intriguing determine whether newly synthesized mRNAs derived from these genes have sho genes, which also lack introns, are devoid of 3' poly(A). The degree of variabil The length of the 3' poly(A) tails present in IFN- α mRNA species has not be investigated. The length of the 3' poly(A) in cytoplasmic IFN- $\bar{\beta}_1$ mRNA has be cial to the translational function of IFN mRNAs. Indeed, deletion of the poly(and large (100-200 nucleotides) segments of the 3' noncoding sequence internal the poly(A) does not affect the translational function of IFN- β_1 and $-\beta_2$ mRN estimated to be approximately 100 nucleotides and that of IFN- β_2 mRNA to in Xenopus laevis oocytes (Soreq et al. 1981).

E. Comparative Structure of Some IFN- α and $-\beta_1$ Chromosomal Genes

et al. 1981). These chromosomal genes and their flanking 5' and 3' regions ha A set of up to 12 distinct, but cross-hybridizing genes and pseudogenes has be 1981; Ohno and Taniguchi 1981; Tavernier et al. 1981; Lawn et al. 1981 c; Gr solated by screening human DNA gene banks (e.g., in lambda phage charon 4 contrast, a single IFN- β_1 gene has been isolated in this manner (Houghton et using IFN- α cDNA probes (NaGATA et al. 1980b, 1981; LAWN et al. 1981a, b). been extensively characterized.

All of the cloned chromosomal IFN- α and $-\beta_1$ genes lack introns. The chron dant" noncoding DNA (introns) interspersed within the coding regions (exo (HAMER and LEDER 1979). The DNA sequence in the introns frequently divers somal DNA sequence is completely colinear with the nucleotide sequence of IFP and - β_1 mRNA species. The absence of intervening sequences in these IFN- α a β_1 genes is unusual in that eukaryotic genes (except the histones) contain "red1 much more rapidly than in the exons of related genes (Henng et al. 1980). Seve tandem and contain inverted repeats in the flanking regions, suggestive of a ge duplication mechanism in the evolution of these IFN-a genes (NAGATA et al. 19; of the cross-hybridizing and closely related IFN-a genes are also closely linked LAWN et al. 1981 a, b).

Figure 2 presents a comparison of the nucleotide sequences in the 5' noncodi and the 5' flanking region in several IFN- α genes and in the IFN- β_1 gene. The homologies are present in the 5' flanking region of eukaryotic structural gen These regions could represent loci where RNA polymerase II binds to the DN flanking region immediately upstream from an mRNA sequence is thought to pl to initiate transcription or where other inducers of regulatory molecules could bi an important role in the regulation of gene expression. Specific sequer

7

to activate or repress the transcriptional acitivity of genes. Figure 2 reveals regions eukaryotic genes and may thus be important in the regulation and expression of of distinct homology between the IFN genes, several of which are also seen in other

a. There is a transcription initiation/capping site CA* approximately 70 nucleotides upstream from the translation initiation codon ATG.

b. A sequence TATTTAA approximately 31 nucleotides upstream from the presumed cap site is common to all the IFN-a genes. A similar sequence TATAAA 30 nucleotides upstream from the cap site is seen in the IFN- eta_1 gene. This sequence is thought to play an important role in positioning the initiation of transcription and is generally found at a similar distance from the transcriptional start sites of eukaryotic genes (GOLDBERG 1979; GROSVELD et al. 1981; BAKER et al. 1981).

c. The sequence GAAAGTA is present at position -77 in the IFN- α genes and at -72 in the IFN- eta_1 genes. This region presumably serves as a controlling or recognition region for transcription by RNA polymerase II (Benoisr et al. 1980, WASYLYK et al. 1980).

d. The sequence CTCTGAA (-57 to -51 in IFN- β_1) in present at about the same distance in chicken ovalbumin (BENOIST et al. 1980) and conalbumin (COCHET et al. 1979), and in modified form in the IFN- α genes.

e. Further upstream, the sequence TACTAAAATG is observed in IFN- β_1 and to some degree in the IFN-x genes. A similar sequence also occurs at a considerable distance (-125 to -140 nucleotides) from the cap site in human insulin, chicken BELL et al. 1980). Homologies indicated in e and c may be common to inducible ovalbumin, and chicken conalbumin genes (Benoısт et al. 1980; Соснвт et al. 1979;

f. Small direct repeats are present several hundred (300) nucleotides upstream from some of the IFN-lpha genes and the IFN- eta_1 gene in addition to a palindromic sequence in positions -280 to -240 (LAWN et al. 1981 a, b; Gross et al. 1981).

These homologies in 5' flanking sequence suggest not only that these genes may have evolved from a common ancestor, but that these regions may also have an nals (AATAAA or ATTAAA) are seen in the 3' flanking region of several IFN-lphaimportant function in the expression of IFN genes. Multiple polyadenylation siggenes. It is clear that the same gene can give rise to mRNA species which utilize different poly(A) sites (GOEDDEL et al. 1981; LAWN et al. 1981 b)

F. Other Human IFN- α and - β Genes

Recent evidence suggests the existence of a second set of human IFN-α mRNAs hybridize IFN-a1-related cDNA probes, even under relaxed hybridization conditions (Sagar et al. 1981; Sengal et al. 1981 a, b). This set of unusual mRNA spewhich code for IFNs which are serologically of the α type but which do not crosscies of length 1.6-3 kilobases (designated IFN- α_L) can be resolved from the conventional IFN- α mRNAs of length 0.7-1.4 kilobases (designated IFN- $\alpha_{\rm S}$) by electrophoresis of RNA through agarose-CH3 HgOH gels.

the recognition of five distinct IFN-eta mRNAs designated IFN- eta_1 through IFN- eta_5 Similarly, electrophoresis of RNA through agarose-CH3HgOH gels has led to

Comparative Analysis of Interferon Structural Genes

SENDACH et al. 1980). Thus, the IFN- α and - β gene family is even more complex than has been described in Sects. D and E. There appears to be even greater vari-SEHGAL et al. 1981 a; SAGAR et al. 1981, 1982). Even though these mRNAs code for IFNs which are serologically of the eta type, their nucleic acids do not appear to cross-hybridize (Sengal and Sagar 1980; Weissenbach et al. 1980; Sagar et al. 1982). The molecular cloning of IFN- β_2 cDNA has been recently reported (Weis-(of lengths 0.9, 1.3, 1.8, 0.7, 0.9 kilobases, respectively) (Sengar, and Sagar, 1980; ability in IFN structural genes than had been anticipated.

G. Chromosomal Localization

these genes have been localized to human chromosome 9 (Owerbach et al. 1981),. chromosomal DNA (NAGATA et al. 1981; LAWN et al. 1981 a). Although most of Several of the IFN-as genes are closely linked and are arranged in tandem in it is unclear whether all of these are present on chromosome 9. The IFN- eta_1 gene has also been localized to human chromosome 9 (Meager et al. 1979; Owerbach et al. 1981). Nevertheless, the IFN- eta_1 gene is not closely linked to the IFN- $lpha_s$ genes since large (35-40 kilobases) segments of chromosomal DNA containing IFN- eta_1 have been found to lack IFN-α sequences (GRoss et al. 1981).

2, 5, or 9 (Sagar et al. 1982). Although IFN- β_1 is a gene without introns, there known. It has been clearly shown that the other human IFN-eta genes are widely 1982). In addition, there may exist another IFN- β on a chromosome other than is suggestive evidence that IFN- eta_2 may be a gene with introns (SEHGAL and TAMM The chromosomal localization of IFN-a, genes (SEHGAL et al. 1981a, b) is not dispersed in the human genome (TAN et al. 1974; SLATE and RUDDLE 1979, 1986; SAGAR et al. 1982). The available data are consistent with the localization of IFN. eta_2 to human chromosome 5, and IFN- eta_3 and - eta_5 to chromosome 2 (Sagar et al 1980; M. REVEL 1980, personal communication).

Several of the IFN- $\alpha_{\rm s}$ genes localized to chromosome 9 are expressed in a coordinate manner (GOEDDEL et al. 1980a, 1981). The IFN- eta_1 gene which is also localized to chromosome 9 can be expressed independently of these α genes following 1980a, b) as well as coordinately with the IFN-a genes following virus induction of human myeloblastoid cells (GOEDDEL et al. 1980b). Furthermore, the various poly(I) · poly(C) induction of diploid human fibroblasts (ТАNIGUCHI et al. 1979; IFN- β genes can be expressed in a grossly noncoordinate manner in poly(I) poly(C)-induced diploid human fibroblasts (SEHGAL and SAGAR 1980; SAGAR et al.

b). It is likely that this variability in the expression of human IFN genes reflects The expression of IFN- α_S genes can be inhibited and that of IFN- α_L genes en hanced when human peripheral blood leukocytes are induced with Sendai virus in the complex structural relationships between them. Insights into these phenomena covered human α and β genes. Similarly, human IFN- γ genes await detailed charmay have to await the motecular cloning and characterization of the recently disthe presence of 5,6-dichloro-l- $oldsymbol{eta}$ -D-ribofuranosylbenzimidazole (Sehgal et al. 1981 acterization.

H. IFN Structural Genes in Other Species

reveals some homology with human IFN- β_1 (Fig. 1; Taira et al. 1980). Antisera to human IFN- α cross-react with a species of murine IFN- α (Stewart and Havell gress in the elucidation of the structure of not only the murine IFN genes, but of FNs are expressed in a wide range of animal species (Stewarr 1979). The murine and -y have been clearly recognized (YAMAMOTO and KAWADE 1980; OSBORNE et al. 1979). The NH2 terminal amino acid sequence of a species of murine IFN-α reveals good homology with a species of human IFN-α and that of murine IFN-β 1980; Havell and Carter 1981). DNA probes derived from human IFN-α genes appear to cross-hybridize with analogous sequences in the murine genome drate moieties and human IFN- β_1 contains carbohydrate, both murine IFN- α and - b proteins are glycoproteins (HAVELL and CARTER 1981). Appropriate differences (e.g., Asn-X-Ser or Asn-X-Thr sequences) between the structure of human IFN-α and murine IFN-a genes can be anticipated. It is likely that there will be rapid pro-IFN genes are likely to be as complex as the human IFN genes. Murine IFN- α , - β , (Оwеввасн et al. 1981). While the known human IFN- α proteins lack carbohythose in a wide variety of animal species.

J. Conclusions

are closely related are present in a cluster on chromosome 9 (IFN- α_s genes) whereas FNs represent a highly complex multigene family which consists of numerous closely related as well as several distantly related genes. Some of the genes which genome (IFN- β genes). Although recent advances in the characterization of some human IFN genes have provided fascinating insights into some of the structural genes still remain to be characterized. It is likely that even more exciting insights several of the genes which are more distantly related are dispersed in the human relationship that exist in this gene family, several of the newly recognized IFN lie ahead Acknowledgments. We thank Dr. IGOR TAMM for numerous helpful discussions. Research in the authors' laboratory is supported by Grant AI-16262 from the NIAID. P. B. S. is the recipient of a Junior Faculty Research Award from the American Cancer Society and A. D. S. is supported by an NIH Institutionl predoctoral fellowship.

References

Allen G, Fantes KH (1980) A family of structural genes for human lymphoblastoid (leucocyte-type) interferon. Nature 287:408-411

Baker CC, Herisse J, Courtois G, Galibert F, Ziff E (1979) Messenger RNA for the Ad 2 DNA binding protein: DNA sequences encoding the first leader and heterogeneity at

Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Sequence of the human insulin gene. Nature 284:26-32 the mRNA 5' end. Cell 18:569-580

Benoist C, O'Hare K, Breathnach R, Chambon P (1980) The ovalbumin genese-quence of putative control regions. Nucleic Acids Res 8:127-142

Cochet M, Gannon F, Hen R, Marotéaux L, Perrin F, Chambon P (1979) Organization and

sequence studies of the 17 piece chicken conalbumin gene. Nature 282:567-574

Comparative Analysis of Interferon Structural Genes

Dayoff MO (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Bior edical Research Foundation, Washington, DC

the chromosomal gene for human fibroblast ($eta_{
m i}$) interferon and of the flanking region Degrave W, Derynck R, Tavernier J, Haegeman G, Fiers W (1981) Nucleotide sequence

Derynck R, Content J, DeClercq E, Volckaert G, Tavernier J, Devos R, Fiers W (1980 Isolation and structure of a human fibroblast interferon gene. Nature 285:542-546

Derynck R, Remaut E, Saman E, Stanssens P, DeClercq E, Content J, Fiers W (1980b) E pression of human fibroblast interferon gene in Escherichia coli. Nature 287.193-197

Goeddel DV, Yelverton B, Ullrich A, Heyneker HL, Miozzari G, Holmes W, Seeburg P Dull T, May L, Stebbing N, Crea R, Maeda S, McCandliss R, Sloma A, Tabor B Gross M, Familletti PC, Pestka S (1980a) Human leucocyte interferon produced by coli is biologically active. Nature 287:411-416

Goeddel DV, Shepard HM, Yelverton E, Leung D, Crea R, Sloma A, Pestka S (1980b) Sy thesis of human fibroblast interferon by B. coli. Nucleic Acids Res 8:4057-4074

Goeddel DV, Leung DW, Dull TJ, Gross M, Lawn RM, McCandliss R, Seeburg PH, U rich A, Yelverton B, Gray P (1981) The structure of eight distinct cloned human leuc cyte interferon cDNAs. Nature 290:20-26

Goldberg M (1979) Ph. D. Thesis, Stanford University

Gross G, Mayr U, Bruns W, Grosveld F, Dahl HHM, Collins J (1981) The structure of thirty-six kilobase region of the human chromosome including the fibroblast interfen gene IFN β. Nucleic Acids Res 9:2495-2507

Grosveld CC, Shewmaker CK, Jat P, Flavell RA (1981) Localization of DNA sequenc necessary for transcription of the rabbit β globin gene in vitro. Cell 25:215–226

Havell EA, Carter WA (1981) Effects of tunicamycin on the physical properties ar Hamer DH, Leder P (1979) Splicing and the formation of stable RNA. Cell 18:1299-1302

Heilig R, Perrin F, Cannon F, Mandel JL, Chambon P (1980) The ovalbumin gene famil antiviral activities of murine L cell interferon. Virology 108:80-86

The absence of introns within a human fibroblast interferon gene. Nucleic Acids Re Houghton M, Jackson IJ, Porter AG, Doel SM, Catlin GH, Barber C, Carey NH (198 structure of the X gene and evolution of duplicated split genes. Cell 20:625-637

Knight E Jr (1976) Interferon: Purification and initial characterization from human diploi cells. Proc Natl Acad Sci USA 73:520-523

blast interferon: amino acid analysis and amino terminal amino acid sequence. Scienc Knight E Jr, Hunkapiller MW, Korant BD, Hardy RWF, Hood LE (1980) Human fibre

Lawn RM, Adelman J, Dull TJ, Gross M, Goeddel D, Ullrich A (1981a) DNA sequenc of two closely linked human leucocyte interferon genes. Science 212:1159-1162

Lawn RM, Gross M, Houck CM, Franke AE, Gray PV, Goeddel DV (1981b) DNA si quence of a major human leucocyte interferon gene. Proc Natl Acad Sci USA 78:5435

Lawn RM, Adelman J, Franke AE, Houck CM, Gross M, Najarian R, Goeddel DV (1981 Human fibroblast interferon gene lacks introns. Nucleic Acids Res 9:1045-1052

Stein S, Pestka S (1981) Amino acid sequence of a human leucocyte interferon. Pro Levy WP, Rubinstein M, Shively J, Delvalle U, Lai CY, Moschera J, Brink L, Gerber I Natl Acad Sci USA 78:6186-6190

Maeda S, McCandliss R, Gross M, Sloma A, Familletti PC, Tabor JM, Evinger M, Lev WP, Pestka S (1980) Construction and identification of bacterial plasmids containin nucleotide sequence for human leukocyte interferon. Proc Natl Acad Sci USA 77.7010

Mantei N, Schwarzstein M, Streuli M, Panem S, Nagata S, Weissman C (1980) The nu cleotide sequence of a cloned human leucocyte interferon cDNA. Gene 10:1-10

Meager A, Graves M, Burke DC, Swallow DM (1979) Involvement of a gene on chromo some 9 in human fibroblast interferon production. Nature 280:493-495

- Nagata S, Taira H, Hall A, Johnsrud L, Streuli M, Escodi J, Boll W, Cantell K, Weissmann C (1980a) Synthesis in E. coli of a polypeptide with human leucocyte interferon activity. Nature 284:316-320
- Nagata S, Mantei N, Weissmann C (1980b) The structure of one of the eight or more distinct chromosomal genes for human interferon- α . Nature 287:401-408
- Nagata S, Brack C, Henco K, Schamböck A, Weissmann C (1981) Partial mapping of ten genes of the human interferon-a family. J Interferon Res 1:333-336
 - Neuberger A, Gottschalk A, Marshall RD, Spiro RG (1972) In: Gottschalk A (ed) The glycoproteins: their composition, structure and function. Elsevier, Amsterdam, p 450
- Ohno S, Taniguchi T (1981) Structure of a chromosomal gene for human interferon \(\beta \). Proc Natl Acad Sci USA 78:5305-5309
 - Osborne LC, Georgiades JA, Johnson HM (1979) Large scale production and partial purification of mouse immune interferon. Infect Immun 23:80-86
- Owerbach D, Rutter WJ, Shows TB, Gray P, Goeddel DV, Lawn RM (1981) Leukocyte and fibroblast genes are located on human chromosome 9. Proc Natl Acad Sci USA 78:3123-3127
 - Proudfoot NJ, Brownlee GG (1976) 3' Noncoding region sequences in eukaryotic messenger RNA. Nature 263:211–214
- Rubinstein M, Levy WP, Moschera JA, Lal GY, Hershberg RD, Bartlett RT, Pestka S (1981) Human leucocyte interferon: isolation and characterization of several molecular forms. Arch Biochem Biophys 210:307-318
 - Sagar AD, Pickering LA, Sussman-Berger P, Stewart WE II, Sehgal PB (1981) Heterogeneity of interferon mRNA species from Sendai virus-induced human lumphoblastoid (Namalva) cells and Newcastle disease virus-induced murine fibroblast (L) cells. Nucleic Acids Res 9:149-159
 - Sagar AD, Sehgal PB, Slate DL, Ruddle FH (1982) Multiple human β interferon genes. J Exp Med 156:744-755
- Sehgal PB, Sagar AD (1980) Heterogeneity of poly(I) · poly(C)-induced human fibroblast interferon mRNA species. Nature 287:95-97
 - Sehgal PB, Tamm I (1980) The transcription unit for poly(I) poly(C)-induced human fibroblast interferon messenger RNA. Virology 102:245-249
 - Sehgal PB, Sagar AD, Braude IA, Smith D (1981a) Heterogeneity of human α and β interferon mRNA species. In: DeMaeyer E, Schellekens H (eds) The biology of the interferon system, North-Holland/Elsevier, Amsterdam, p 43
 - Sehgal PB, Sagar AD, Braude IA (1981b) Further heterogeneity of human α interferon mRNA species. Science 214:803-805
 - Sehgal PB, Pfeffer LM, Tamm I (1982) Interferon and its inducers. In: Came PB, Caliguiri LA (eds) Chemotherapy of viral infections. Hdbk Exp Pharm 61:205-311 Springer Berlin, Heidelberg, New York
- Shepard M, Leung D, Stebbing N, Goeddel DV (1981) Synthesis in E. coli of a naturally occurring mutant fibroblast interferon. Abstr of the 5th international congress of virology, Strasbourg, p 89
- Slate DL, Ruddle FH (1979) Fibroblast interferon in man is coded by two loci on separate chromosomes. Cell 16:171-180
- Slate DL, Ruddle FH (1980) Somatic cell genetic analysis of interferon production and response. Ann NY Acad Sci 350:174-178
- Soreq H, Sagar AD, Sehgal PB (1981) Translational activity and functional stability of human fibroblast eta_1 and eta_2 interferon mRNAs lacking 3-terminal RNA sequences. Proc Natl Acad Sci USA 78:1741–1745
 - Stewart WE II (ed) (1979) The interferon system. Springer Berlin Heidelberg New York
- Stewart WE II, Havell EA (1980) Characterization of a subspecies of mouse interferon cross-reactive on human cells and antigenically related to human leukocyte interferon. Virology 101:315-318
- Streuli M, Nagata S, Weissmann C (1980) At least three human type α interferons: Structure of α 2. Science 209:1343–1347

Comparative Analysis of Interferon Structural Genes

- Streuli M, Hall A, Boll W, Stewart WE II, Nagata S, Weissmann C (1981) Target cell speificity of two species of human interferon-α produced in Escherichia coli and of hybrimolecules derived from them. Proc Natl Acad Sci USA 78:2848–2852
 - Taira H, Broeze RJ, Jayaram BM, Lengyel P, Hunkapillar MW, Hood LE (1980) Mou: interferous: Amino terminal amino acid sequences of various species. Science 207:528
- Tan YH (1974) The somatic cell genetics of human interferon: Assignment of human inte feron loci to chromosomes 2 and 5. Proc Natl Acad Sci USA 71:2251-2255
- Tan YH, Barakat F, Berthold W, Smith-Johannsen H, Tan C (1979) The isolation ar amino acid/sugar composition of human fibroblastoid interferon. J Biol Che 254:8067-8073
- Taniguchi T, Sakai M, Fujii-Kuriyama Y, Muramatsu M, Kobayashi S, Sudo T (1979) Co struction and identification of a bacterial plasmid containing the human fibroblast i terferon gene sequence. Proc Jpn Acad Ser B 55:464-469
- Taniguchi T, Ohno S, Fujii-Kuriyama Y, Muramatsu M (1980a) The nucleotide sequen of human fibroblast interferon cDNA. Gene 10:11-15
- Taniguchi T, Guarente L, Roberts TM, Kimelman D, Douhan J, Ptashne M (1980b) B pression of the human fibroblast interferon gene in Escherichia coli. Proc Natl Acad S USA 77:5230-5233
- Taniguchi T, Mantei N, Schwarstein M, Shigekazu N, Muramatsu M, Weissmann C (198 c) Human leucocyte and fibroblast interferons are structurally related. Nature 285:54;
- Tavernier J, Derynck R, Fiers W (1981) Evidence for a unique human fibroblast interfero (IFN β_1) chromosomal gene, devoid of intervening sequences. Nucleic Acids Res 9:461 471
- Wasylyk B, Derbyshire R, Guy A, Molko D, Roget A, Tedule R, Chambon P (1980) Spacific in vitro transcription of conalbumin gene is drastically decreased by single-poin mutations in T-A-T-A hox homelow seminars Prox Not A on Strain 2007.
- mutations in T-A-T-Â box homology sequence. Proc Natl Acad Sci USA 77:7024-7028 Weissenbach J. Chernajovsky Y, Zeevi M, Shulman L, Soreq H, Nir U, Wallach D, Perr caudet M, Tiollais P, Revel M (1980) Two interferon mRNAs in human fibroblasts: I vitro translation and Escherichia coli cloning studies. Proc Natl Acad Sci USA 77:7152 7156
 - Wetzel R (1981) Assignment of the disulphide bonds of leucocyte interferon. Natul 289:606-607
 - Yamamoto Y, Kawade Y (1980) Antigenicity of mouse interferons: Distinct antigenicity of the two L cell interferon species. Virology 103:80-88