2022/11/30 凌晨1:23 ADL Hw3 - HackMD

ADL Hw3

R11944014 戴靖婷

tags: ADL Python Report

Q1: Model

Model: Describe the model architecture and how it works on text summarization.

google/mt5-small:

- Multilingual T5 (mT5) is a text-to-text, encoder-decoder transformer with attention mechanism, which means it figures out the relationship between all words in a sentence.
- Also, it is pretrained on ultilingual Common Crawl corpus (mC4).
- The folloing is the content of config.json.

```
"_name_or_path": "google/mt5-small",
"architectures": [
 "MT5ForConditionalGeneration"
"d_ff": 1024,
"d_kv": 64,
"d_model": 512,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "mt5",
"num_decoder_layers": 8,
"num_heads": 6,
"num_layers": 8,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"tokenizer_class": "T5Tokenizer",
"torch_dtype": "float32",
"transformers_version": "4.22.2",
"use_cache": true,
"vocab_size": 250100
```

• For text summarization,

2022/11/30 凌晨1:23 ADL Hw3 - HackMD

• It can be seen as a machine translation task by translating a text into a shorter summarization.

- To specify the task of mt5, add a prompt prefix -source_prefix "summarize: ".
- I made use of the sameple code from the hugginface github.
 https://github.com/huggingface/transformers/tree/t5-fp16-no-nans/examples/pytorch/summarization (https://github.com/huggingface/transformers/tree/t5-fp16-no-nans/examples/pytorch/summarization)

Preprocessing: Describe your preprocessing (e.g. tokenization, data cleaning and etc.)

- Tokenization:
 - Tokenizer class: T5Tokenizer
 - T5Tokenizer is based on SentencePiece method.
 - It treats the input as the raw input including space because not every language separate sentences by a space, such as Chinese.
 - Then, it constructs vocabulary by the BPE or unigram tokenization algorithms.
 - Therefore, it is suitable for multilingual T5 and also builds an independent system for each language end-to-end.

Q2: Training

Hyperparameter: Describe your hyperparameter you use and how you decide it.

```
python ./train_summarization.py \
   --model_name_or_path google/mt5-small \
   --do_train \
   --do_eval \
   --train_file ./data/train.jsonl \
   --validation_file ./data/public.jsonl \
   --source_prefix "summarize: " \
   --text_column maintext \
   --summary_column title \
   --per_device_train_batch_size 4 \
   --per_device_eval_batch_size 4 \
   --optim adafactor \
   --learning_rate 5e-4 \
   --max_source_length 256 \
   --max_target_length 64 \
   --output_dir ./ckpt/ \
   --overwrite_output_dir \
   --predict_with_generate \
   --evaluation_strategy_steps \
   --eval_steps 500 \
    --logging_steps 500
```

• I trained my model with 1024 and 256 at first. However, it used more than 8G memory, so I truncated the text length.

Learning Curves: Plot the learning curves (ROUGE versus training steps)

• This result is generated by greedy method with fp32.

Q3: Generation Strategies

Stratgies: Describe the detail of the following generation strategies:

- Greedy
 - For the next word, select the word with the highest probability.
 - \circ w_t=argmax_wP(w|w_{1:t-1})
- Beam Search
 - Keep the most likely num_beams of possible words at each time and choose the one with overall highest probability.
 - It avoids missing the hidden high probability word sequences behind a relatively lower probability word.
- Top-k Sampling
 - Keep only the K most likely next words for sampling from the reconstructed distribution.
 - And, sampling means picking the next word based on its conditional probability distribution. $w_t \sim P(w|w_{1:t-1})$
- Top-p Sampling
 - Choose the next word from the set of words whose cumulative probability exceeds the probability p.
- Temperature
 - Temperature changes the probability of every word.

- The range of temeperature is between 0.0 to 1.0.
 - When temperature is closer to 0.0, it is closer to greedy.
 - When temperature is closer to 1.0, each word has the same probability to be generated as the next word.
- Lower the temperature of the softmax makes the distribution P sharper, which
 means increasing the likelihood of the words with high probability and decreasing
 the likelihood of the words with low probability.
- Reference: https://huggingface.co/blog/how-to-generate (https://huggingface.co/blog/how-to-generate)

Hyperparameters

- Try at least 2 settings of each strategies and compare the result. The ROUGE result is evaluated by --do_eval in run_summarization.py instead of eval.py (http://eval.py).
 - Greedy
 - The more accurate the floating point number (fp32) is, the better the result is.

	rouge-1	rouge-2	rouge-l
fp32	27.1872	10.1801	24.2615
fp16	26.9455	9.981	23.9738

Beam Search

- Adjust num beams and set early stopping=True.
- The larger the num_beams is, the more possible predictions it keeps. So the result is better when the num_beams is larger.

	rouge-1	rouge-2	rouge-l
num_beams = 2	28.0982	11.0138	25.0553
num_beams = 5	28.3986	11.4707	25.3744
num_beams = 10	28.3385	11.5820	25.2885

Top-k Sampling

- Adjust top_k and set do_sample=True.
- The result is not good if using a large set of likely next words, so we may narrow down the set of the likely next words.

	rouge-1	rouge-2	rouge-l
top_k = 20	23.0773	7.2718	20.1300
top_k = 10	24.2822	8.0891	21.3037
top_k = 5	25.5530	8.7149	22.3640

Top-p Sampling

- Adjust top_p and set top_k=0, do_sample=True.
- The result is better when p is smaller, which means using less likely word set is better. The trend of top_p is the same as the trend of top_k.

	rouge-1	rouge-2	rouge-l
top_p = 0.95	18.7501	5.6598	16.5373
top_p = 0.50	24.2476	8.5073	21.3852
top_p = 0.30	25.7993	9.2286	22.7769

Temperature

- Adjust temperature and set top_k=0, do_sample=True.
- It is better to set temperature closer to 0, it is closer to greedy.

	rouge-1	rouge-2	rouge-l
temperature = 0.7	24.1415	8.4414	21.2756
temperature = 0.5	25.9870	9.4473	22.9505
temperature = 0.3	26.9834	9.9318	24.0372

- What is your final generation strategy? (you can combine any of them)
 - Over the experiments, I found that the result of beam search is the best, so my final generation strategy is num_beams=5 with early_stopping=True and the test file is predicted from it.