San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Expressions

(Part 2)

Lecture 20 Day 24/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 24

- Solution and Feedback of Quiz 7 and Quiz ++
- Summary of Lecture 19
- Lecture 20: Teaching ...
 - Regular Expressions (Part 2)

Solution and Feedback of Quiz 7 (Out of 20)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	18.94	20	14
02 (TR 4:30 PM)	17.27	20	11
03 (TR 6:00 PM)	18.37	20	15

Solution and Feedback of Quiz ++ (Out of 45)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	39.32	45	30
02 (TR 4:30 PM)	37.38	45	14
03 (TR 6:00 PM)	39.55	45	31

Summary of Lecture 19: We learned ...

Regular Expressions (REGEXs)

- REGEXs are another way to represent formal languages.
- We like REGEXs because ...
 - they represent formal languages in a more compact way.
 - They are shorthand for some formal languages.
 - They have practical applications in OS's and programming languages.
- This course introduces the mathematical base of them.

- The elements of REGEXs are:
 - φ, λ, Σ
 - ()
 - Operators:
 - + (union)
 - (dot or concatenation)
 - * (star-closure)

Any Question?

Summary of Lecture 19: We learned ...

REGEXs

- We defined REGEXs formally as:
- 1. ϕ , λ , and $a \in \Sigma$ are all REGEXs.
- If r₁ and r₂ are REGEXs, then the following expressions are REGEXs too:

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

 A string is REGEX if it can be derived recursively from the primitive REGEXs by a finite number of applications of the rule #2.

- Between REGEXs and languages, there are the following correspondence:
 - 1. $L(\phi) = \{ \}$
 - 2. $L(\lambda) = {\lambda}$
 - 3. $L(a) = \{a\}$ for all $a \in \Sigma$
 - 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 - 5. $L(r_1 \cdot r_2) = L(r_1) L(r_2)$
 - 6. $L((r_1)) = L(r_1)$
 - 7. $L(r_1^*) = (L(r_1))^*$
- We learned how to calculate the language represented by a REGEX by using the above correspondences.

Any Question?

① REGEX → **Language Examples**

Example 18

- Given r = (aa)*
- L(r) = ?

① REGEX → **Language Examples**

Example 19

- Given r = (bb)* b
- L(r) = ?

Solution

8

REGEX → Language Examples

Example 20

- Given r = (aa)* b (bb)*
- L(r) = ?

REGEX → Language Examples

Example 21

- Given $r = (a + b)^* (a + bb)$
- L(r) = ?

Associated Languages to REGEXs

Definition

 If REGEX r represents language L, then L is called the "associated language" to r and is denoted by L(r).

As we saw in the previous slides ...

```
If r = (aa)^*, then
 L(r) = \{a^{2n} : n \ge 0\}
```

Equivalency of REGEXs

Definition

 Two regular expressions r₁ and r₂ are equivalent iff both has the same associated language.

$$r_1 \equiv r_2 \leftrightarrow L(r_1) = L(r_2)$$

Equivalency of REGEXs Example

Example 22

- Given r₁ and r₂ as:
- $r_1 = (a + b)* a$
- $r_2 = (a + b)^* (a + b)^* a$
- Are r₁ and r₂ equivalent?
- Both of these REGEXs are expressing a language containing any string of 'a' and 'b' terminated by an 'a'.
- For a given language L, how many REGEX we can make?
 - Infinite

REGEXs Identities

REGEXs Identities

- If r, s, and t are REGEXs, and a, b $\in \Sigma$, then:
 - 1. r(s + t) = rs + rt
 - 2. (s + t)r = sr + tr
 - 3. $(a^*)^* = a^*$
 - 4. $(a ... a)^* a = a (a ... a)^*$
 - 5. $a^* (a + b)^* = (a + b)^* a^* = (a + b)^*$
- We can use the seven mathematical rules mentioned before to prove the above identities.
- Obviously, we should show both sides represent the same language.
- For example, for the first one, we should show:

$$L(r(s + t)) = L(rs + rt)$$

REGEXs Identities Examples

Example 23

$$a b^* + b b^*$$

= $(a + b) b^*$

Example 24

$$b^* + b^* a$$

= $b^* (\lambda + a)$

Example 25

Homework: Identities

- Given $r = (aa)^* (\lambda + ab) (bb)^*$
- L(r) = ?

Language → **REGEX Examples**

Example 26

Given L(r) = {w ∈ Σ* : w has exactly one a} over Σ = {a, b}
 r = ?

Example 27

Given L(r) = {w ∈ Σ* : w has at least one pair of consecutive a's} over Σ = {a, b}
 r = ?

Example 28

Given L(r) = {aⁿ b^m : n ≥ 3, m is even} over Σ = {a, b}
 r = ?

Example 29

• Given $L(r) = \{w : |w| \ge 3, 3^{rd} \text{ symbol of } w \text{ is 'a'} \} \text{ over } \Sigma = \{a, b\}$ r = ?

Example 30

Given L(r) = {aⁿ b^m : n + m is even} over Σ = {a, b}
 r = ?

Homework

- Find a REGEX for the following languages.
 - 1. $L(r) = \{w \in \{a, b\}^* : w \text{ contains no } a\}$
 - 2. $L(r) = \{w \in \{a, b\}^* : w \text{ contains exactly two a's}\}$
 - 3. $L(r) = \{a^{2n} : n \ge 0\}$ over $\Sigma = \{a\}$
 - 4. $L(r) = \{a^{2n+1} : n \ge 0\}$ over $\Sigma = \{a\}$
 - 5. $L(r) = \{w \in \{a, b\}^* : w \text{ contains at least two a's}\}$
 - 6. $L(r) = \{w \in \{a, b\}^* : w \text{ begins with an 'a' and ends with a 'b'}\}$
 - 7. $L(r) = \{w \in \{a, b\}^* : w \text{ begins and ends with the same symbol}\}$
 - 8. $L(r) = \{w \in \{a, b\}^* : w \text{ contains exactly one occurrence of aa} \}$

What is the relationship between:

the set of REGEXs, and

the set of all formal languages?

- You agree that "every REGEX represents a language".
- BUT we don't know yet whether we can represent every language by a REGEX or not!
 - Our knowledge is not enough yet.

REGEX for More Complex Languages

Find a REGEX for each of the following languages:

- 1. $L = \{a^nb^n : n \ge 0\}$ over $\Sigma = \{a, b\}$
- 2. $L = \{ww^R : w \in \Sigma^*\}$ over $\Sigma = \{a, b\}$

- ...
- Struggling?!
- After some struggling, you realize that you cannot find any REGEX for these languages! Why?
 - Look at the theorems in the next slide!

REGEXs and Regular Languages

Theorem

• If r is a REGEX, then L(r) is a regular language over Σ .

Theorem

Let L be a regular language over Σ.
 Then there exists a REGEX r such that L = L(r).

REGEXs and Regular Languages

 The following definition shows that REGEXs are another way to represent regular languages.

Definition

A language is regular iff a REGEX represents it.

Set of Languages Represented by REGEXs

=

Set of Regular Languages

- We've already agreed that "every REGEX represents a language".
- Now we know that:

Those languages are regular.

And there is no association between non-regular Languages and REGEXs.

What is the Next Step?

- We started this topic to look for a compact way to represent formal languages.
- We introduced REGEXs and experienced their usefulness.
- But the theorems showed their limitations.
 - REGEXs represent only regular languages.
- So, the next step would be looking for ...
 a practical compact way to represent non-regular languages.

Last Question: Do We Have a Standard REGEX?

- In computer science, we do NOT have a standard REGEX!
- Every OS and every programming language has its own REGEX.
- Of course, there are some common elements and rules between all of them.
 - So, you should learn each one based on their elements and rules.
- But the basic idea is the same.
 - In fact, they have implemented their REGEXs based on the REGEX we introduced here.

Homework

- Fill out the following tables.
- For example, $\phi + a = \phi + a = a$ or a. a = aa
 - Note that '+' and '.' are binary operators and need two operands but '*' is unary operator and needs one operand.

+	ф	λ	a
ф			a
λ			
a	a		а

	ф	λ	a
ф			
λ			
a			aa

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790