Profesor: Esteban Contreras Ayudantes: Luis Proudinat y Boris Belmont Gráficas y Juegos Grupo 4326 (2025-2)

 $0 \!\! \to \!\! 0 \!\!\! \to \!\!\! 0 \!\!\!\! \to \!\!\! 0 \!\!\!\! \to \!\!\! 0 \!\!\!\! \to \!\!\!\! 0 \!\!\!\!\! \to \!\!\!\! 0 \!\!\!\! \to \!\!\!\! 0 \!\!\!\! 0 \!\!\!\! \to \!\!\!\! 0 \!\!\!\!\! \to \!\!\!\! 0 \!\!\!$

2 Puntos

1. Demuestra que la propiedad "es bipartita" es una propiedad hereditaria de las gráficas.

Sea G una gráfica simple bipartita, entonces acepta particiones (X,Y) tales que X y Y son independientes; y sea S un subconjunto de los vértices de G, entonces tenemos los siguientes casos. Si $S \subseteq X$ donde $X \neq \emptyset$ es claro que todos los vértices de G[S] son independientes por definición de conjunto independiente de X pues no hay arístas que conecten a los vértices $u, v \in X$ y por definición S contine las aristas de las intersecciones pero como no hay ninguna se tiene que $E_S = \emptyset$ por lo que G[S] acepta biparticiones pues todos los vértices son independientes. Es análogo para $S \subseteq Y$.

Si $S \subseteq X \cap Y$, es claro que $S \cap X$ es un conjunto independiente de G pues son los mismos vértices que hay en G los que hay en S tales que son independientes, i.e., si $u,v \in S \cap X$ entonces $uv \in E_S$ pero u,v son independientes por lo que no hay aristas en la intersección, por lo que $uv \notin E_S$ lo que implica que $uv \notin E_G$ y lo mismo pasa para $S \cap Y$, por lo que $(S \cap X, S \cap Y)$ es una bipartición de G pues se tiene que si $u,v \in S \cap X$ y $x,y \in S \cap Y$ implica que $uv \notin S$ y $xy \notin S$ por lo que $uv,xy \notin E_G$

Entonces la bipartición es hereditaria.