Tarea 4 - Análisis de un sistema LTE

Ruz Nieto, Andrés DNI: 58451215G

Resumen

En este entregable se realizará el análisis de un sistema de comunicaciones LTE en un espacio urbano.

Datos

lacktriangle Tasa de transmisión mímima: $R_{DL}=15~Mb/s$

• Frecuencia: f = 2.6 GHz

■ Potencia máxima: $P_{max} = 43 dBm$

■ Ganancia eNB: $G_{eNB} = 3 dB$

Pérdidas

• Conectores: $L_{conectores} = 1 dB$

• Cables: $L_{cables} = 1.1 dB$

- Penetración: $L_{penetracion} = 10,1 dB$

■ Altura: h = 6.5 m

■ Factor de ruido térmico: F = 4.5 dB

■ Shadowing: $\sigma = 6.8 dBm$

1. Ejercicio

1.1. Relación portadora-interferencia (CIR) de forma exacta y aproximada

Para obtener la relación portadora-interferencia solo se considerarán las celdas cocanal del primer anillo.

A partir del modelo de propagación, el exponente de pérdidas será:

$$\gamma = 3.8 \cdot (1 - 4 \cdot 10^{-3} \cdot 6.5) = 3.70 \tag{1}$$

Al haber 3 celdas por clúster:

$$\frac{C}{I} = \frac{R^{-\gamma}}{\sum_{i=1}^{6} D_{i}^{-\gamma}} \approx \frac{R^{-\gamma}}{\sum_{i=1}^{6} D^{-\gamma}} = \frac{1}{6} q^{\gamma} = \frac{1}{6} \left(\sqrt{3k}\right)^{\gamma} = 9.7 \to 9.867 dB \tag{2}$$

Para realizar el cálculo de forma exacta se tendrá que calcular la distancia entre células interferentes y la célula interferida

Se necesitará usar el apotema del hexágono, empleando el teorema de Pitágoras se obtiene:

$$ap = \sqrt{(R)^2 - \left(\frac{R}{2}\right)^2} = \frac{\sqrt{3}R}{2}$$
 (3)

Figura 1: Disposición de las células

Figura 2: Cálculo de la Distancia 2

En la Figura 2 se puede observar cómo calcular la distancia 2, siguiendo la misma filosofía se calculan el resto de distancias.

1.
$$D = 4R$$

2.
$$D = \sqrt{2,5^2 + (3 \cdot \sqrt{3}/2)^2} R = \sqrt{13}R$$

3.
$$D = \sqrt{0.5^2 + (3 \cdot \sqrt{3}/2)^2} R = \sqrt{7}R$$

4.
$$D = 2R$$

5.
$$D = \sqrt{0.5^2 + (3 \cdot \sqrt{3}/2)^2} R = \sqrt{7}R$$

6.
$$D = \sqrt{2.5^2 + (3 \cdot \sqrt{3}/2)^2} R = \sqrt{13}R$$

$$\frac{C}{I} = \frac{R^{-\gamma}}{\sum_{j=1}^{6} D_{j}^{-\gamma}}$$

$$\frac{C}{I} = \frac{R^{-\gamma}}{4^{-3,7}R^{-\gamma} + 2^{-3,7}R^{-\gamma} + 2\sqrt{13}^{-3,7}R^{-\gamma} + 2\sqrt{7}^{-3,7}R^{-\gamma}}$$

$$= 6.45 \to 8.095dB$$
(4)

Se puede observar una diferencia de casi $2\,dB$ entre la relación aproximada y exacta. Cuanto menor es el número de celdas por clúster peor es la aproximación.

1.2. Ancho de banda mínimo

Se sabe que $SINR \leq CIR$, si se asume SINR = CIR obtenemos:

$$\eta = 0.75 \log_2(1 + SINR) = 0.75 \log_2(1 + 6.45) = 2.17 \, b/s/Hz$$
 (5)

$$B_w = \frac{R_{DL}}{\eta} = \frac{15 \ Mbps}{2,17 \ b/s/Hz} = 6,91 \ MHz/portadora$$
 (6)

Al disponer de tres portadoras:

$$B_w = 6.91 \cdot 3 = 20.73 \, MHz \tag{7}$$

A partir de la tabla se puede observar que el ancho de banda nominal debe ser de $10\ MHz$ ya que el ancho de banda ocupado es de $6,91\ MHz$ por lo tanto:

Ancho de banda nominal (MHz)	1,4	3	5	10	15	20
Ancho de banda ocupado (MHz)	1,08	2,7	4,5	9	13,5	18
Número de RB (UL o DL)	6	15	25	50	75	100
Número de subportadoras	72	180	300	600	900	1200

Figura 3

$$\eta = \frac{15 \,Mbps}{10 \,MHz} = 1.5 \,b/s/Hz
\eta = 0.75 \log_2(1 + SINR)
\frac{1.5}{0.75} = \log_2(1 + SINR)
2^2 = 1 + SINR
SINR = 3 \rightarrow 4.77dB$$
(8)

1.3. Margen de pérdidas admisibles en DL

De la Figura 3 se obtiene un número de RB de 50

$$L_{total}(dB) = 121,5dB + 10log_{10} \left(1 - \frac{sinr}{cir}\right) + P_{tx}(dBm) - F(dB) - 10log_{10}(N_{RB}) - SINR(dB)$$

$$L_{total}(dB) = 121,5dB + 10log_{10} \left(1 - \frac{3}{6,45}\right) + 43 - 4,5 - 10log_{10}(50) - 4,77 = 135,52 dB$$
(9)

1.4. Margen de valores del radio máximo

$$MF(dB) = \sqrt{2}\sigma \cdot erf^{-1} \left[2\left(p - \frac{1}{2}\right) \right]$$

$$MF(dB) = \sqrt{2} \cdot 6.8 \cdot erf^{-1} \left[2\left(0.95 - \frac{1}{2}\right) \right] = 11.1850dB$$
(10)

Fórmula obtenida de [1]

$$L_{prop}(dB) = L_{total}(dB) - L_{conectores}(dB) - L_{cables}(dB) + G_{antenaEB}(dB) + G_{antenaUE}(dB) - MF_{95\%}(dB)$$

$$L_{prop}(dB) = 135,52 - 1 - 1,1 + 3 + 0 - 11,1850 = 125,235dB$$
(11)

A partir del modelo dado se despeja R

$$L_{prop}(dB) = 38log_{10}R(km) - 18log_{10}(h_{tx}(m)) + 87,11log_{10}(f(GHz)) + 80dB$$

$$log_{10}(R(km)) = \frac{L_{prop}(dB) + 18log_{10}(h_{tx}(m)) - 87,11log_{10}(f(GHz)) - 80dB}{38}$$

$$R(km) = 10^{\frac{L_{prop}(dB) + 18log_{10}(h_{tx}(m)) - 87,11log_{10}(f(GHz)) - 80dB}{38}}$$

$$R(km) = 10^{\frac{125,235 + 18log_{10}(6,5) - 87,11log_{10}(2,6) - 80dB}{38}} = 4,37km$$
(12)

1.5. Radio máximo con pérdidas de penetración

Sabiendo que las pérdidas de penetración son de $10 \ dB$ y repitiendo los cálculos anteriores, se obtiene:

$$R(km) = 10^{\frac{L_{prop}(dB) + 18log(h_{tx}(m)) - 87,11log_{10}(f(GHz)) - 80dB - L_{penetracion}}{38}}$$

$$R(km) = 10^{\frac{125,235 + 18log_{10}(6,5) - 87,11log_{10}(2,6) - 80dB - 10,1dB}{38}} = 2,28km$$
(13)

1.6. CIR en la capa macrocelular

Si se consideran solamente los 2 eNB más cercanos, D=R:

$$\frac{C}{I} = \frac{R^{-\gamma}}{p \cdot (R^{-\gamma} + R^{-\gamma}) + (4^{-3,7} + 2^{-3,7} + 2\sqrt{13}^{-3,7} + 2\sqrt{7}^{-3,7}) \cdot R^{-\gamma}} = \frac{1}{2p + 0,155}$$
 (14)

En cambio, cuando se consideran 8 eNB:

$$\frac{C}{I} = \frac{R^{-\gamma}}{p \cdot [2R^{-\gamma} + 2(2R)^{-\gamma} + 4(\sqrt{7}R)^{-\gamma}] + 0.155 \cdot R^{-\gamma}} = \frac{1}{2,263p + 0.155}$$
 (15)

Figura 4: 2 eNB vs 8 eNB

Se puede observar que conforme aumenta el número de eNB disminuye el valor de CIR aunque no disminuye en exceso.

1.7. Cumplimiento de especificaciones

La potencia de transmisión es de $13\,dB$, sabiendo que la tasa de transmisión es de $15\,Mbps$:

$$L_{prop} = 121, 5 + 10log_{10} \left(1 - \frac{sinr}{cir} \right) + P_{tx} - F - 10log_{10}(N_{RB}) - SINR$$

$$L_{prop} - 121, 5 - P_{tx} + F + 10log_{10}(N_{RB}) = 10log_{10} \left(1 - \frac{sinr}{cir} \right) - SINR(dB)$$

$$L_{prop} - 121, 5 - P_{tx} + F + 10log_{10}(N_{RB}) = 10log_{10} \left(\frac{1 - \frac{sinr}{cir}}{sinr} \right)$$

Llamando a la parte izquierda del igual como X

$$10^{\frac{X}{10}} = \frac{1 - \frac{sinr}{cir}}{sinr}$$

$$10^{\frac{X}{10}} = \frac{1}{sinr} - \frac{1}{cir}$$

$$10^{\frac{X}{10}} + \frac{1}{cir} = \frac{1}{sinr}$$

$$sinr = \frac{1}{10^{\frac{X}{10}} + \frac{1}{cir}}$$

$$sinr = \frac{1}{10^{\frac{L_{prop}-121,5-P_{tx}+F+10log_{10}(N_{RB})}{10}} + \frac{1}{cir}$$

$$p = 10^{\frac{-13}{10}} = 0,05012$$

$$CIR = \frac{1}{2,263 \cdot 0,05012 + 0,155} = 3,725 \rightarrow 5,712 dB$$

$$L_{prop}(dB) = 38log_{10}(2,28) - 18log_{10}(6,5) + 87,11log_{10}(2,6) + 80dB = 115,11 dB$$

$$sinr = \frac{1}{10^{\frac{115,11-121,5-43+4,5+10log_{10}(50)}{10}} + \frac{1}{3,725}} = 3,703 \to 5,68 \, dB \tag{16}$$

$$\eta = 0.75 \log_2(1 + 3.703) = 1.67 \, b/s/Hz$$
(17)

Se obtiene una velocidad de $16,7\ Mbps$, es decir, se cumplen las especificaciones (DL mínimo de $15\ Mbps$).

Referencias

[1] J. O. Sallent Roig and J. Pérez Romero. Fundamentos de diseño y gestión de sistemas de comunicaciones móviles celulares. Number UPCGrau; 26. Universitat Politècnica de Catalunya. Iniciativa Digital Politècnica, 2014.