The #1 Classroom-Proven
IT Training and Exam Prep Tool

the Lead Developers of the Exam

Sun Certified Programmer for Java 6 Study Guide

SGIP

Exam 310-065

100% Coverage — 360+ Practice Exam Questions

Bert Bates

SCJP

SELFTEST ANSWERS

- **I.** Which is true? (Choose all that apply.)
 - A. "X extends Y" is correct if and only if X is a class and Y is an interface
 - **B.** "X extends Y" is correct if and only if X is an interface and Y is a class
 - C. "X extends Y" is correct if X and Y are either both classes or both interfaces
 - D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

Answer:

- ☑ C is correct.
- A is incorrect because classes implement interfaces, they don't extend them. B is incorrect because interfaces only "inherit from" other interfaces. D is incorrect based on the preceding rules. (Objective 1.2)
- 2. Which method names follow the JavaBeans standard? (Choose all that apply.)
 - A. addSize
 - B. getCust
 - C. deleteRep
 - D. isColorado
 - E. putDimensions

- \square B and D use the valid prefixes 'get' and 'is'.
- A is incorrect because 'add' can be used only with Listener methods. C and E are incorrect because 'delete' and 'put' are not standard JavaBeans name prefixes. (Objective 1.4)
- **3.** Given:

```
1. class Voop {
2.  public static void main(String[] args) {
3.   doStuff(1);
4.   doStuff(1,2);
5.  }
6.  // insert code here
7. }
```

Which, inserted independently at line 6, will compile? (Choose all that apply.)

```
A. static void doStuff(int... doArgs) \{
```

- B. static void doStuff(int[] doArgs) { }
- C. static void doStuff(int doArgs...) { }
- D. static void doStuff(int... doArgs, int y) { }
- E. static void doStuff(int x, int... doArgs) { }

Answer:

- \square A and E use valid var-args syntax.
- B and C are invalid var-arg syntax, and D is invalid because the var-arg must be the last of a method's arguments. (Objective 1.4)

4. Given:

```
1. enum Animals {
2.  DOG("woof"), CAT("meow"), FISH("burble");
3.  String sound;
4.  Animals(String s) { sound = s; }
5. }
6. class TestEnum {
7.  static Animals a;
8.  public static void main(String [] args) {
9.  System.out.println(a.DOG.sound + " " + a.FISH.sound);
10. }
11. }
```

What is the result?

- A. woof burble
- **B.** Multiple compilation errors
- C. Compilation fails due to an error on line 2
- D. Compilation fails due to an error on line 3
- E. Compilation fails due to an error on line 4
- F. Compilation fails due to an error on line 9

- \square A is correct; enums can have constructors and variables.
- B, C, D, E, and F are incorrect; these lines all use correct syntax. (Objective 1.3)

5. Given two files:

```
    package pkgA;

 2. public class Foo {
      int a = 5;
      protected int b = 6;
      public int c = 7;
 6. }
 3. package pkgB;
 4. import pkgA.*;
 5. public class Baz {
      public static void main(String[] args) {
 7.
        Foo f = new Foo();
 8.
        System.out.print(" " + f.a);
 9.
        System.out.print(" " + f.b);
        System.out.print(" " + f.c);
10.
11.
      }
12. }
```

What is the result? (Choose all that apply.)

- A. 567
- **B.** 5 followed by an exception
- **C.** Compilation fails with an error on line 7
- D. Compilation fails with an error on line 8
- **E.** Compilation fails with an error on line 9
- Compilation fails with an error on line 10

Answer:

- D and E are correct. Variable a has default access, so it cannot be accessed from outside the package. Variable b has protected access in pkgA.
- A, B, C, and F are incorrect based on the above information. (Objective 1.1)

```
1. public class Electronic implements Device
         { public void doIt() { } }
2.
3. abstract class Phone1 extends Electronic { }
5. abstract class Phone2 extends Electronic
     { public void doIt(int x) { } }
6.
```

```
    class Phone3 extends Electronic implements Device { public void doStuff() { } }
    interface Device { public void doIt(); }
```

What is the result? (Choose all that apply.)

- A. Compilation succeeds
- **B.** Compilation fails with an error on line 1
- **C.** Compilation fails with an error on line 3
- D. Compilation fails with an error on line 5
- **E.** Compilation fails with an error on line 7
- F. Compilation fails with an error on line 9

Answer:

- \square A is correct; all of these are legal declarations.
- B, C, D, E, and F are incorrect based on the above information. (Objective 1.2)

7. Given:

```
4. class Announce {
5.  public static void main(String[] args) {
6.   for(int __x = 0; __x < 3; __x++);
7.   int #lb = 7;
8.   long [] x [5];
9.   Boolean []ba[];
10.   enum Traffic { RED, YELLOW, GREEN };
11.  }
12. }</pre>
```

What is the result? (Choose all that apply.)

- A. Compilation succeeds
- B. Compilation fails with an error on line 6
- C. Compilation fails with an error on line 7
- D. Compilation fails with an error on line 8
- **E.** Compilation fails with an error on line 9
- F. Compilation fails with an error on line 10

- \(\overline{L}\) C, D, and F are correct. Variable names cannot begin with a #, an array declaration can't include a size without an instantiation, and enums can't be declared within a method.
- A, B, and E are incorrect based on the above information. (Objective 1.3)
- **8.** Given:

```
3. public class TestDays {
      public enum Days { MON, TUE, WED };
      public static void main(String[] args) {
        for(Days d : Days.values() )
 6.
 7.
        Days [] d2 = Days.values();
 8.
        System.out.println(d2[2]);
10.
11. }
```

What is the result? (Choose all that apply.)

- A. TUE
- B. WED
- **C**. The output is unpredictable
- D. Compilation fails due to an error on line 4
- **E.** Compilation fails due to an error on line 6
- Compilation fails due to an error on line 8
- **G.** Compilation fails due to an error on line 9

- ☑ B is correct. Every enum comes with a static values () method that returns an array of the enum's values, in the order in which they are declared in the enum.
- A, C, D, E, F, and G are incorrect based on the above information. (Objective 1.3)
- 9. Given:

```
4. public class Frodo extends Hobbit {
     public static void main(String[] args) {
 6.
        Short myGold = 7;
 7.
        System.out.println(countGold(myGold, 6));
 8.
      }
 9. }
10. class Hobbit {
      int countGold(int x, int y) { return x + y; }
12. }
```

What is the result?

- **A.** 13
- B. Compilation fails due to multiple errors
- **C.** Compilation fails due to an error on line 6
- D. Compilation fails due to an error on line 7
- E. Compilation fails due to an error on line 11

- \square D is correct. The Short myGold is autoboxed correctly, but the countGold() method cannot be invoked from a static context.
- A, B, C, and E are incorrect based on the above information. (Objective 1.4)

SELFTEST ANSWERS

I. Given:

Answer:

- ☑ B is correct, an abstract class need not implement any or all of an interface's methods.

 E is correct, the class implements the interface method and additionally overloads the twiddle() method.
- A is incorrect because abstract methods have no body. C is incorrect because classes implement interfaces they don't extend them. D is incorrect because overloading a method is not implementing it.

 (Objective 5.4)

```
class Top {
  public Top(String s) { System.out.print("B"); }
}
public class Bottom2 extends Top {
  public Bottom2(String s) { System.out.print("D"); }
  public static void main(String [] args) {
    new Bottom2("C");
    System.out.println(" ");
} }
```

What is the result?

- A. BD
- B. DB
- C. BDC
- D. DBC
- **E.** Compilation fails

Answer:

- ☑ E is correct. The implied super() call in Bottom2's constructor cannot be satisfied because there isn't a no-arg constructor in Top. A default, no-arg constructor is generated by the compiler only if the class has no constructor defined explicitly.
- A, B, C, and D are incorrect based on the above. (Objective 1.6)
- **3**. Given:

```
class Clidder {
  private final void flipper() { System.out.println("Clidder"); }
}

public class Clidlet extends Clidder {
  public final void flipper() { System.out.println("Clidlet"); }
  public static void main(String [] args) {
    new Clidlet().flipper();
} }
```

What is the result?

- A. Clidlet
- B. Clidder
- C. Clidder Clidlet
- D. Clidlet Clidder
- E. Compilation fails

- A is correct. Although a final method cannot be overridden, in this case, the method is private, and therefore hidden. The effect is that a new, accessible, method flipper is created. Therefore, no polymorphism occurs in this example, the method invoked is simply that of the child class, and no error occurs.
- B, C, D, and E are incorrect based on the preceding. (Objective 5.3)

4. Using the **fragments** below, complete the following **code** so it compiles. Note, you may not have to fill all of the slots.

Code:

Fragments: Use the following fragments zero or more times:

AgedP	super	this	
()	{	}
;			

Answer:

```
class AgedP {
   AgedP() {}
   public AgedP(int x) {
   }
}

public class Kinder extends AgedP {
   public Kinder(int x) {
      super();
   }
}
```

As there is no droppable tile for the variable x and the parentheses (in the Kinder constructor), are already in place and empty, there is no way to construct a call to the superclass constructor

that takes an argument. Therefore, the only remaining possibility is to create a call to the noargument superclass constructor. This is done as: super();. The line cannot be left blank, as the parentheses are already in place. Further, since the superclass constructor called is the noargument version, this constructor must be created. It will not be created by the compiler because there is another constructor already present.

(Objective 5.4)

- Which statement(s) are true? (Choose all that apply.)
 - A. Cohesion is the OO principle most closely associated with hiding implementation details
 - B. Cohesion is the OO principle most closely associated with making sure that classes know about other classes only through their APIs
 - C. Cohesion is the OO principle most closely associated with making sure that a class is designed with a single, well-focused purpose
 - D. Cohesion is the OO principle most closely associated with allowing a single object to be seen as having many types

Answer:

- Answer **C** is correct.
- A refers to encapsulation, B refers to coupling, and D refers to polymorphism. (Objective 5.1)
- **6.** Given the following,

```
1. class X { void do1() { } }
 2. class Y extends X { void do2() { } }
 3.
 4. class Chrome {
      public static void main(String [] args) {
 6.
         X \times 1 = \text{new } X();
        X \times 2 = \text{new } Y();
 7.
        Y y1 = new Y();
        // insert code here
10.
11. }
```

Which, inserted at line 9, will compile? (Choose all that apply.)

- A. x2.do2();
- **B.** $(Y) \times 2. do2();$

- $C. ((Y) \times 2) . do2();$
- D. None of the above statements will compile

- C is correct. Before you can invoke Y's do2 method you have to cast x2 to be of type Y. Statement B looks like a proper cast but without the second set of parentheses, the compiler thinks it's an incomplete statement.
- A, B and D are incorrect based on the preceding. (Objective 5.2)

7. Given:

- ClassA has a ClassD
- 2. Methods in ClassA use public methods in ClassB
- 3. Methods in ClassC use public methods in ClassA
- 4. Methods in ClassA use public variables in ClassB

Which is most likely true? (Choose the most likely.)

- A. ClassD has low cohesion
- B. ClassA has weak encapsulation
- C. ClassB has weak encapsulation
- D. ClassB has strong encapsulation
- E. ClassC is tightly coupled to ClassA

Answer:

- oxdots C is correct. Generally speaking, public variables are a sign of weak encapsulation.
- A, B, D, and E are incorrect, because based on the information given, none of these statements can be supported.

 (Objective 5.1)

```
3. class Dog {
4.  public void bark() { System.out.print("woof "); }
5. }
6. class Hound extends Dog {
7.  public void sniff() { System.out.print("sniff "); }
```

```
8. public void bark() { System.out.print("howl "); }
9. }
10. public class DogShow {
11.  public static void main(String[] args) { new DogShow().go(); }
12.  void go() {
13.   new Hound().bark();
14.   ((Dog) new Hound()).bark();
15.   ((Dog) new Hound()).sniff();
16.  }
17. }
```

What is the result? (Choose all that apply.)

- A. howl howl sniff
- B. howl woof sniff
- C. howl howl followed by an exception
- D. howl woof followed by an exception
- **E.** Compilation fails with an error at line 14
- **F.** Compilation fails with an error at line 15

Answer:

- A, B, C, D, and E are incorrect based on the above information. (Objective 5.2)

```
3. public class Redwood extends Tree {
      public static void main(String[] args) {
 5.
        new Redwood().go();
 6.
 7.
     void go() {
        go2(new Tree(), new Redwood());
 8.
 9.
        go2((Redwood) new Tree(), new Redwood());
10.
11.
      void go2(Tree t1, Redwood r1) {
12.
         Redwood r2 = (Redwood) t1;
         Tree t2 = (Tree)r1:
13.
14.
15. }
16. class Tree { }
```

What is the result? (Choose all that apply.)

- **A.** An exception is thrown at runtime
- B. The code compiles and runs with no output
- **C.** Compilation fails with an error at line 8
- **D.** Compilation fails with an error at line 9
- **E.** Compilation fails with an error at line 12
- F. Compilation fails with an error at line 13

Answer:

- ☑ A is correct, a ClassCastException will be thrown when the code attempts to downcast a Tree to a Redwood.
- B, C, D, E, and F are incorrect based on the above information. (Objective 5.2)

10. Given:

```
3. public class Tenor extends Singer {
4.  public static String sing() { return "fa"; }
5.  public static void main(String[] args) {
6.   Tenor t = new Tenor();
7.   Singer s = new Tenor();
8.   System.out.println(t.sing() + " " + s.sing());
9.  }
10. }
11. class Singer { public static String sing() { return "la"; } }
```

What is the result?

- A. fa fa
- B. fa la
- **C**. la la
- **D.** Compilation fails
- **E.** An exception is thrown at runtime

- oxdots B is correct. The code is correct, but polymorphism doesn't apply to static methods.
- A, C, D, and E are incorrect based on the above information. (Objective 5.2)

II. Given:

```
3. class Alpha {
      static String s = " ";
     protected Alpha() { s += "alpha "; }
6. }
7. class SubAlpha extends Alpha {
     private SubAlpha() { s += "sub "; }
9. }
10. public class SubSubAlpha extends Alpha {
   private SubSubAlpha() { s += "subsub "; }
12.
     public static void main(String[] args) {
       new SubSubAlpha();
13.
       System.out.println(s);
14.
15.
16. }
```

What is the result?

- A. subsub
- B. sub subsub
- C. alpha subsub
- D. alpha sub subsub
- E. Compilation fails
- F. An exception is thrown at runtime

Answer:

- ☐ C is correct. Watch out, SubSubAlpha extends Alpha! Since the code doesn't attempt to make a SubAlpha, the private constructor in SubAlpha is okay.
- A, B, D, E, and F are incorrect based on the above information. (Objective 5.3)

```
3. class Building {
4. Building() { System.out.print("b "); }
5. Building(String name) {
6. this(); System.out.print("bn " + name);
7. }
8. }
9. public class House extends Building {
```

```
House() { System.out.print("h "); }
10.
11.
      House(String name) {
                  System.out.print("hn " + name);
12.
13.
14.
     public static void main(String[] args) { new House("x "); }
15. }
```

What is the result?

- A. h hn x
- B. hn x h
- C. b h hn x
- D. b hn x h
- E. bn x h hn x
- F. b bn x h hn x
- G. bn x b h hn x
- H. Compilation fails

Answer:

- C is correct. Remember that constructors call their superclass constructors, which execute first, and that constructors can be overloaded.
- A, B, D, E, F, G, and H are incorrect based on the above information. (Objectives 1.6, 5.4)

```
3. class Mammal {
      String name = "furry";
      String makeNoise() { return "generic noise"; }
 6. }
 7. class Zebra extends Mammal {
      String name = "stripes ";
 9.
      String makeNoise() { return "bray"; }
10. }
11. public class ZooKeeper {
12.
      public static void main(String[] args) { new ZooKeeper().go(); }
13.
     void go() {
        Mammal m = new Zebra();
14.
15.
        System.out.println(m.name + m.makeNoise());
16.
17. }
```

What is the result?

- A. furry bray
- B. stripes bray
- C. furry generic noise
- D. stripes generic noise
- E. Compilation fails
- F. An exception is thrown at runtime

- ☑ A is correct. Polymorphism is only for instance methods.
- B, C, D, E, and F are incorrect based on the above information. (Objectives 1.5, 5.4)
- **14.** You're designing a new online board game in which Floozels are a type of Jammers, Jammers can have Quizels, Quizels are a type of Klakker, and Floozels can have several Floozets. Which of the following fragments represent this design? (Choose all that apply.)

```
A. import java.util.*;
   interface Klakker { }
   class Jammer { Set<Ouizel> q; }
   class Quizel implements Klakker { }
   public class Floozel extends Jammer { List<Floozet> f; }
   interface Floozet { }
B. import java.util.*;
   class Klakker { Set<Quizel> q; }
   class Quizel extends Klakker { }
   class Jammer { List<Floozel> f; }
   class Floozet extends Floozel { }
   public class Floozel { Set<Klakker> k; }
C. import java.util.*;
   class Floozet { }
   class Quizel implements Klakker { }
   class Jammer { List<Quizel> q; }
   interface Klakker { }
   class Floozel extends Jammer { List<Floozet> f; }
D. import java.util.*;
   interface Jammer extends Quizel { }
   interface Klakker { }
   interface Quizel extends Klakker { }
   interface Floozel extends Jammer, Floozet { }
   interface Floozet { }
```

- A and C are correct. The phrase "type of" indicates an "is-a" relationship (extends or implements), and the phrase "have" is of course a "has-a" relationship (usually instance variables).
- **B** and **D** are incorrect based on the above information. (Objective 5.5)

15. Given:

```
3. class A { }
 4. class B extends A { }
 5. public class ComingThru {
      static String s = "-";
     public static void main(String[] args) {
 7.
       A[] aa = new A[2];
       B[] ba = new B[2];
 9.
      sifter(aa);
10.
11.
       sifter(ba);
12.
       sifter(7);
13.
       System.out.println(s);
14.
     static void sifter(A[]... a2) { s += "1"; }
15.
     static void sifter(B[]... b1)
      static void sifter(B[] b1)
                                        \{ s += "3"; \}
17.
      static void sifter(Object o)
                                       \{ s += "4"; \}
18.
19. }
```

What is the result?

- **A.** -124
- **B**. -134
- C. -424
- **D.** -434
- E. -444
- Compilation fails

- D is correct. In general, overloaded var-args methods are chosen last. Remember that arrays are objects. Finally, an int can be boxed to an Integer and then "widened" to an Object.
- A, B, C, E, and F are incorrect based on the above information. (Objective 1.5)

SELFTEST ANSWERS

I. Given:

```
class CardBoard {
  Short story = 200;
  CardBoard go(CardBoard cb) {
    cb = null;
    return cb;
  public static void main(String[] args) {
    CardBoard c1 = new CardBoard();
    CardBoard c2 = new CardBoard();
    CardBoard c3 = c1.go(c2);
    c1 = null:
    // do Stuff
} }
```

When // dostuff is reached, how many objects are eligible for GC?

- **A**. 0
- **B**. 1
- **C**. 2
- **D.** Compilation fails
- **E.** It is not possible to know
- An exception is thrown at runtime

- C is correct. Only one CardBoard object (c1) is eligible, but it has an associated Short wrapper object that is also eligible.
- A, B, D, E, and F are incorrect based on the above. (Objective 7.4)
- 2. Given:

```
class Alien {
 String invade(short ships) { return "a few"; }
 String invade(short... ships) { return "many"; }
class Defender {
 public static void main(String [] args) {
    System.out.println(new Alien().invade(7));
} }
```

What is the result?

- A. many
- B. a few
- C. Compilation fails
- **D.** The output is not predictable
- E. An exception is thrown at runtime

Answer:

- C is correct, compilation fails. The var-args declaration is fine, but invade takes a short, so the argument 7 needs to be cast to a short. With the cast, the answer is B, 'a few'.
- A, B, D, and E are incorrect based on the above. (Objective 1.3)

3. Given:

```
1. class Dims {
2.  public static void main(String[] args) {
3.    int[][] a = {{1,2,}, {3,4}};
4.    int[] b = (int[]) a[1];
5.    Object o1 = a;
6.    int[][] a2 = (int[][]) o1;
7.    int[] b2 = (int[]) o1;
8.    System.out.println(b[1]);
9. } }
```

What is the result?

- **A.** 2
- B. 4
- C. An exception is thrown at runtime
- D. Compilation fails due to an error on line 4
- **E.** Compilation fails due to an error on line 5
- F. Compilation fails due to an error on line 6
- G. Compilation fails due to an error on line 7

- ☑ C is correct. A ClassCastException is thrown at line 7 because of refers to an int[][] not an int[]. If line 7 was removed, the output would be 4.
- A, B, D, E, F, and G are incorrect based on the above. (Objective 1.3)

4. Given:

```
class Mixer {
 Mixer() { }
  Mixer(Mixer m) \{ m1 = m; \}
 Mixer m1;
  public static void main(String[] args) {
    Mixer m2 = new Mixer();
    Mixer m3 = new Mixer(m2); m3.go();
    Mixer m4 = m3.m1;
                               m4.go();
    Mixer m5 = m2.m1;
                               m5.go();
  void go() { System.out.print("hi "); }
```

What is the result?

- A. hi
- B. hi hi
- C. hi hi hi
- D. Compilation fails
- E. hi, followed by an exception
- F. hi hi, followed by an exception

Answer:

- F is correct. The m2 object's m1 instance variable is never initialized, so when m5 tries to use it a NullPointerException is thrown.
- A, B, C, D, and E are incorrect based on the above. (Objective 7.3)

```
class Fizz {
  int x = 5;
  public static void main(String[] args) {
    final Fizz f1 = new Fizz();
    Fizz f2 = new Fizz();
    Fizz f3 = FizzSwitch(f1,f2);
    System.out.println((f1 == f3) + " " + (f1.x == f3.x));
  static Fizz FizzSwitch(Fizz x, Fizz y) {
    final Fizz z = x;
    z.x = 6;
    return z;
} }
```

What is the result?

- A. true true
- B. false true
- C. true false
- D. false false
- E. Compilation fails
- **F.** An exception is thrown at runtime

Answer:

- A is correct. The references f1, z, and f3 all refer to the same instance of Fizz. The final modifier assures that a reference variable cannot be referred to a different object, but final doesn't keep the object's state from changing.
- B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

6. Given:

```
class Bird {
    { System.out.print("b1 "); }
    public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird {
    static { System.out.print("r1 "); }
    public Raptor() { System.out.print("r2 "); }
    { System.out.print("r3 "); }
    static { System.out.print("r4 "); }
}
class Hawk extends Raptor {
    public static void main(String[] args) {
        System.out.print("pre ");
        new Hawk();
        System.out.println("hawk ");
    }
}
```

What is the result?

- A. pre b1 b2 r3 r2 hawk
- B. pre b2 b1 r2 r3 hawk
- C. pre b2 b1 r2 r3 hawk r1 r4
- D. r1 r4 pre b1 b2 r3 r2 hawk
- E. r1 r4 pre b2 b1 r2 r3 hawk

- F. pre r1 r4 b1 b2 r3 r2 hawk
- **G.** pre r1 r4 b2 b1 r2 r3 hawk
- H. The order of output cannot be predicted
- Compilation fails

- ☑ D is correct. Static init blocks are executed at class loading time, instance init blocks run right after the call to super() in a constructor. When multiple init blocks of a single type occur in a class, they run in order, from the top down.
- A, B, C, E, F, G, H, and I are incorrect based on the above. Note: you'll probably never see this many choices on the real exam! (Objective 1.3)

7. Given:

```
3. public class Bridge {
     public enum Suits {
5.
        CLUBS(20), DIAMONDS(20), HEARTS(30), SPADES(30),
 6.
        NOTRUMP(40) { public int getValue(int bid) {
                        return ((bid-1)*30)+40; };
7.
        Suits(int points) { this.points = points; }
8.
        private int points;
        public int getValue(int bid) { return points * bid; }
10.
11.
     public static void main(String[] args) {
12.
        System.out.println(Suits.NOTRUMP.getBidValue(3));
        System.out.println(Suits.SPADES + " " + Suits.SPADES.points);
13.
14.
        System.out.println(Suits.values());
15.
16. }
```

Which are true? (Choose all that apply.)

- A. The output could contain 30
- B. The output could contain @bf73fa
- C. The output could contain DIAMONDS
- D. Compilation fails due to an error on line 6
- **E.** Compilation fails due to an error on line 7
- F. Compilation fails due to an error on line 8

- **G.** Compilation fails due to an error on line 9
- H. Compilation fails due to an error within lines 12 to 14

- ☑ A and B are correct. The code compiles and runs without exception. The values () method returns an array reference, not the contents of the enum, so DIAMONDS is never printed.
- **EXECTION** C, D, E, F, G, and H are incorrect based on the above. (Objective 1.3)
- 8. Given:

```
3. public class Ouch {
      static int ouch = 7;
      public static void main(String[] args) {
 6.
        new Ouch().go(ouch);
 7.
        System.out.print(" " + ouch);
 8.
      void go(int ouch) {
 9.
10.
        ouch++;
        for(int ouch = 3; ouch < 6; ouch++)</pre>
11.
12.
        System.out.print(" " + ouch);
13.
14.
15. }
```

What is the result?

```
A. 5 7
```

B. 5 8

C. 8 7

D. 8 8

E. Compilation fails

F. An exception is thrown at runtime

- ☑ E is correct. The parameter declared on line 9 is valid (although ugly), but the variable name ouch cannot be declared again on line 11 in the same scope as the declaration on line 9.
- A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

9. Given:

```
3. public class Bertha {
     static String s = "";
     public static void main(String[] args) {
        int x = 4; Boolean y = true; short[] sa = \{1, 2, 3\};
 6.
 7.
       doStuff(x, y);
       doStuff(x);
8.
9.
       doStuff(sa, sa);
10.
       System.out.println(s);
11.
    static void doStuff(Object o)
12.
                                          \{ s += "1"; \}
    static void doStuff(Object... o)
13.
14. static void doStuff(Integer... i)
                                           \{ s += "3"; \}
    static void doStuff(Long L)
15.
16. }
```

What is the result?

- **A.** 212
- **B**. 232
- C. 234
- **D**. 312
- **E**. 332
- **F**. 334
- **G.** Compilation fails

Answer:

- A is correct. It's legal to autobox and then widen. The first call to dostuff() boxes the int to an Integer then passes two objects. The second call cannot widen and then box (making the Long method unusable), so it boxes the int to an Integer. As always, a var-args method will be chosen only if no non-var-arg method is possible. The third call is passing two objects—they are of type 'short array.'
- B, C, D, E, F, and G are incorrect based on the above. (Objective 3.1)

```
3. class Dozens {
     int[] dz = \{1,2,3,4,5,6,7,8,9,10,11,12\};
6. public class Eggs {
7. public static void main(String[] args) {
```

```
8.
        Dozens [] da = new Dozens[3];
 9.
        da[0] = new Dozens();
10.
        Dozens d = new Dozens();
        da[1] = d;
11.
        d = null;
12.
13.
        da[1] = null;
14.
        // do stuff
15.
16. }
```

Which two are true about the objects created within main(), and eligible for garbage collection when line 14 is reached?

- A. Three objects were created
- B. Four objects were created
- C. Five objects were created
- D. Zero objects are eligible for GC
- **E**. One object is eligible for GC
- F. Two objects are eligible for GC
- **G.** Three objects are eligible for GC

Answer:

- ☑ C and F are correct. da refers to an object of type "Dozens array," and each Dozens object that is created comes with its own "int array" object. When line 14 is reached, only the second Dozens object (and its "int array" object) are not reachable.
- A, B, D, E, and G are incorrect based on the above. (Objective 7.4)

II. Given:

```
3. class Beta { }
4. class Alpha {
     static Beta b1;
 6.
     Beta b2;
 7. }
 8. public class Tester {
     public static void main(String[] args) {
        Beta b1 = new Beta();
Beta b2 = new Beta();
10.
11.
       Alpha a1 = new Alpha(); Alpha a2 = new Alpha();
       a1.b1 = b1;
12.
13.
       a1.b2 = b1;
14.
       a2.b2 = b2;
       a1 = null; b1 = null; b2 = null;
15.
```

```
// do stuff
17.
18. }
```

When line 16 is reached, how many objects will be eligible for garbage collection?

- **A**. 0
- **B**. 1
- **C**. 2.
- D. 3
- E. 4
- **E**. 5

Answer:

- **B** is correct. It should be clear that there is still a reference to the object referred to by a2, and that there is still a reference to the object referred to by a2.b2. What might be less clear is that you can still access the other Beta object through the static variable a2.b1—because it's static.
- A, C, D, E, and F are incorrect based on the above. (Objective 7.4)
- **12.** Given:

```
3. class Box {
 4. int size;
      Box(int s) \{ size = s; \}
 7. public class Laser {
      public static void main(String[] args) {
 9.
        Box b1 = new Box(5);
10.
        Box[] ba = go(b1, new Box(6));
        ba[0] = b1;
11.
        for(Box b : ba) System.out.print(b.size + " ");
12.
13.
14.
      static Box[] go(Box b1, Box b2) {
15.
         b1.size = 4;
16.
         Box[] ma = {b2, b1};
17.
         return ma;
18.
      }
19. }
```

What is the result?

- **A.** 4 4
- **B.** 5 4

- **C**. 6 4
- **D**. 4 5
- **E.** 5 5
- F. Compilation fails

- ☑ A is correct. Although main()'s b1 is a different reference variable than go()'s b1, they refer to the same Box object.
- B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

13. Given:

```
3. public class Dark {
      int x = 3;
      public static void main(String[] args) {
        new Dark().go1();
 6.
 7.
 8.
      void go1() {
 9.
        int x;
10.
        go2(++x);
11.
12.
      void go2(int y) {
13.
        int x = ++y;
14.
        System.out.println(x);
15.
      }
16. }
```

What is the result?

- **A.** 2
- B. 3
- C. 4
- D. 5
- E. Compilation fails
- **F.** An exception is thrown at runtime

- \blacksquare E is correct. In go1 () the local variable x is not initialized.
- A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

SELFTEST ANSWERS

L. Given:

```
class Hexy {
  public static void main(String[] args) {
    Integer i = 42;
    String s = (i<40)?"life":(i>50)?"universe":"everything";
    System.out.println(s);
```

What is the result?

- **A**. null
- B. life
- C. universe
- D. everything
- **E.** Compilation fails
- **F**. An exception is thrown at runtime

Answer:

- ☑ D is correct. This is a ternary nested in a ternary with a little unboxing thrown in. Both of the ternary expressions are false.
- A, B, C, E, and F are incorrect based on the above. (Objective 7.6)

```
1. class Comp2 {
      public static void main(String[] args) {
 2.
 3.
        float f1 = 2.3f;
        float[][] f2 = \{\{42.0f\}, \{1.7f, 2.3f\}, \{2.6f, 2.7f\}\};
 5.
        float[] f3 = \{2.7f\};
 6.
        Long x = 42L;
        // insert code here
          System.out.println("true");
 9.
10. }
```

And the following five code fragments:

```
F1. if (f1 == f2)

F2. if (f1 == f2[2][1])

F3. if (x == f2[0][0])

F4. if (f1 == f2[1,1])

F5. if (f3 == f2[2])
```

What is true?

- A. One of them will compile, only one will be true
- B. Two of them will compile, only one will be true
- C. Two of them will compile, two will be true
- D. Three of them will compile, only one will be true
- E. Three of them will compile, exactly two will be true
- F. Three of them will compile, exactly three will be true

Answer:

- D is correct. Fragments F2, F3, and F5 will compile, and only F3 is true.
- A, B, C, E, and F are incorrect. F1 is incorrect because you can't compare a primitive to an array. F4 is incorrect syntax to access an element of a two-dimensional array. (Objective 7.6)

3. Given:

```
class Fork {
  public static void main(String[] args) {
    if(args.length == 1 | args[1].equals("test")) {
       System.out.println("test case");
    } else {
       System.out.println("production " + args[0]);
    }
  }
}
```

And the command-line invocation:

```
java Fork live2
```

What is the result?

- A. test case
- B. production live2

- C. test case live2
- **D.** Compilation fails
- **E.** An exception is thrown at runtime

- E is correct. Because the short circuit (||) is not used, both operands are evaluated. Since args [1] is past the args array bounds, an ArrayIndexOutOfBoundsException is thrown.
- A, B, C, and D are incorrect based on the above. (Objective 7.6)

4. Given:

```
class Feline {
 public static void main(String[] args) {
   Long x = 42L;
    Long y = 44L;
    System.out.print(" " + 7 + 2 + " ");
    System.out.print(foo() + x + 5 + " ");
    System.out.println(x + y + foo());
 static String foo() { return "foo"; }
```

What is the result?

- A. 9 foo47 86foo
- **B.** 9 foo47 4244foo
- C. 9 foo425 86foo
- D. 9 foo425 4244foo
- **E.** 72 foo47 86foo
- F. 72 foo47 4244foo
- **G**. 72 foo425 86foo
- H. 72 foo425 4244foo
- Compilation fails

- ☑ G is correct. Concatenation runs from left to right, and if either operand is a String, the operands are concatenated. If both operands are numbers they are added together. Unboxing works in conjunction with concatenation.
- A, B, C, D, E, F, H, and I are incorrect based on the above. (Objective 7.6)

5. Place the fragments into the code to produce the output 33. Note, you must use each fragment exactly once.

CODE:

FRAGMENTS:

У	У	У	У
У	х	х	
-=	*=	*=	*=

Answer:

```
class Incr {
  public static void main(String[] args) {
    Integer x = 7;
    int y = 2;

    x *= x;
    y *= y;
    y *= y;
    x -= y;

    System.out.println(x);
  }
}
```

Yeah, we know it's kind of puzzle-y, but you might encounter something like it on the real exam.

(Objective 7.6)

6. Given:

```
3. public class Twisty {
      { index = 1; }
 5.
      int index;
      public static void main(String[] args) {
        new Twisty().go();
 8.
 9.
      void go() {
        int [][] dd = \{\{9,8,7\}, \{6,5,4\}, \{3,2,1,0\}\};
10.
11.
        System.out.println(dd[index++][index++]);
12.
13. }
```

What is the result? (Choose all that apply.)

- **A**. 1
- **B.** 2
- C. 4
- D. 6
- E. 8
- Compilation fails F.
- **G.** An exception is thrown at runtime

Answer:

- C is correct. Multidimensional arrays' dimensions can be inconsistent, the code uses an initialization block, and the increment operators are both post-increment operators.
- A, B, D, E, F, and G are incorrect based on the above. (Objective 1.3)

```
3. public class McGee {
      public static void main(String[] args) {
 5.
        Days d1 = Days.TH;
 6.
        Days d2 = Days.M;
 7.
        for(Days d: Days.values()) {
          if(d.equals(Days.F)) break;
 9.
          d2 = d;
10.
11.
        System.out.println((d1 == d2)?"same old" : "newly new");
```

```
12. }
13. enum Days {M, T, W, TH, F, SA, SU};
14. }
```

What is the result?

- A. same old
- B. newly new
- C. Compilation fails due to multiple errors
- **D.** Compilation fails due only to an error on line 7
- **E.** Compilation fails due only to an error on line 8
- F. Compilation fails due only to an error on line 11
- **G**. Compilation fails due only to an error on line 13

Answer:

- A is correct. All of this syntax is correct. The for-each iterates through the enum using the values() method to return an array. Enums can be compared using either equals() or ==. Enums can be used in a ternary operator's Boolean test.
- B, C, D, E, F, and G are incorrect based on the above. (Objective 7.6)

8. Given:

```
4. public class SpecialOps {
      public static void main(String[] args) {
        String s = "";
 7.
        Boolean b1 = true;
       Boolean b2 = false;
 9.
        if((b2 = false) | (21%5) > 2) s += "x";
10.
       if(b1 \mid | (b2 = true))
                                     s += "y";
11.
       if(b2 == true)
                                      s += "z";
12.
        System.out.println(s);
13.
14. }
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- **B.** x will be included in the output
- C. y will be included in the output

- D. z will be included in the output
- **E.** An exception is thrown at runtime

- C is correct. First of all, boxing takes care of the Boolean. Line 9 uses the modulus operator, which returns the remainder of the division, which in this case is 1. Also, line 9 sets b2 to false, and it doesn't test b2's value. Line 10 sets b2 to true, and it doesn't test its value: however, the short circuit operator keeps the expression b2 = true from being executed.
- A, B, D, and E are incorrect based on the above. (Objective 7.6)

9. Given:

```
3. public class Spock {
 4. public static void main(String[] args) {
       int mask = 0;
       int count = 0;
 7.
      if(((5<7) | (++count < 10)) | mask++ < 10) mask = mask + 1;
      if( (6 > 8) ^ false)
 8.
                                                     mask = mask + 10;
 9.
      if( !(mask > 1) && ++count > 1)
                                                     mask = mask + 100;
10.
       System.out.println(mask + " " + count);
11.
12. }
```

Which two answers are true about the value of mask and the value of count at line 10? (Choose two.)

- A. mask is 0
- B. mask is 1
- C. mask is 2
- D. mask is 10
- **E.** mask is greater than 10
- E. count is 0
- **G.** count is greater than 0

- ☑ C and F are correct. At line 7 the | | keeps count from being incremented, but the l allows mask to be incremented. At line 8 the ^ returns true only if exactly one operand is true. At line 9 mask is 2 and the && keeps count from being incremented.
- A, B, D, E, and G are incorrect based on the above. (Objective 7.6)

10. Given:

```
3. interface Vessel { }
 4. interface Toy { }
5. class Boat implements Vessel { }
 6. class Speedboat extends Boat implements Toy { }
 7. public class Tree {
     public static void main(String[] args) {
9.
        String s = "0";
10.
       Boat b = new Boat();
11.
       Boat b2 = new Speedboat();
12.
       Speedboat s2 = new Speedboat();
       if((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
13.
14.
       if((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
       System.out.println(s);
16.
17. }
```

What is the result?

- **A.** 0
- **B.** 01
- **C**. 02
- **D**. 012
- E. Compilation fails
- F. An exception is thrown at runtime

- ☑ D is correct. First, remember that instanceof can look up through multiple levels of an inheritance tree. Also remember that instanceof is commonly used before attempting a downcast, so in this case, after line 15, it would be possible to say Speedboat s3 = (Speedboat) b2;.
- A, B, C, E, and F are incorrect based on the above. (Objective 7.6)

SELFTEST ANSWERS

I. Given two files:

```
1. class One {
2. public static void main(String[] args) {
       int assert = 0;
5. }
1. class Two {
    public static void main(String[] args) {
       assert (false);
4.
5. }
```

And the four command-line invocations:

```
javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java
```

What is the result? (Choose all that apply.)

- A. Only one compilation will succeed
- **B.** Exactly two compilations will succeed
- C. Exactly three compilations will succeed
- D. All four compilations will succeed
- E. No compiler warnings will be produced
- At least one compiler warning will be produced

- ☑ B and F are correct. Class One will compile (and issue a warning) using the 1.3 flag, and class Two will compile using the 1.4 flag.
- A, C, D, and E are incorrect based on the above. (Objective 2.3)
- **2.** Given:

```
class Plane {
  static String s = "-";
  public static void main(String[] args) {
    new Plane().s1();
```

```
System.out.println(s);
}
void s1() {
   try { s2(); }
   catch (Exception e) { s += "c"; }
}
void s2() throws Exception {
   s3(); s += "2";
   s3(); s += "2b";
}
void s3() throws Exception {
   throw new Exception();
}
```

What is the result?

- A. -
- **B.** -c
- **C**. -c2
- **D**. -2c
- **E.** -c22b
- F. -2c2b
- **G.** -2c2bc
- H. Compilation fails

Answer:

- \blacksquare B is correct. Once s3() throws the exception to s2(), s2() throws it to s1(), and no more of s2()'s code will be executed.
- A, C, D, E, F, G, and H are incorrect based on the above. (Objective 2.5)

3. Given:

```
try { int x = Integer.parseInt("two"); }
```

Which could be used to create an appropriate catch block? (Choose all that apply.)

- A. ClassCastException
- B. IllegalStateException
- C. NumberFormatException
- D. IllegalArgumentException

- E. ExceptionInInitializerError
- F. ArrayIndexOutOfBoundsException

- ☑ C and D are correct. Integer.parseInt can throw a NumberFormatException, and IllegalArgumentException is its superclass (i.e., a broader exception).
- A, B, E, and F are not in NumberFormatException's class hierarchy. (Objective 2.6)
- **4.** Which are true? (Choose all that apply.)
 - A. It is appropriate to use assertions to validate arguments to methods marked public
 - **B.** It is appropriate to catch and handle assertion errors
 - C. It is NOT appropriate to use assertions to validate command-line arguments
 - D. It is appropriate to use assertions to generate alerts when you reach code that should not be reachable
 - **E**. It is NOT appropriate for assertions to change a program's state

Answer:

- \square C, D, and E are correct statements.
- A is incorrect. It is acceptable to use assertions to test the arguments of private methods. B is incorrect. While assertion errors can be caught, Sun discourages you from doing so. (Objective 2.3)
- **5.** Given:

```
1. class Loopy {
2. public static void main(String[] args) {
    int[] x = \{7,6,5,4,3,2,1\};
      // insert code here
        System.out.print(y + " ");
6.
7. } }
```

Which, inserted independently at line 4, compiles? (Choose all that apply.)

```
A. for (int y : x) {
B. for (x : int y) {
C. int y = 0; for (y : x) {
```

```
D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

F. int y = 0; for(int z=0; z<x.length; z++) { y = x[z];
```

- ☑ A, D, and F are correct. A is an example of the enhanced for loop. D and F are examples of the basic for loop.
- **B** is incorrect because its operands are swapped. **C** is incorrect because the enhanced for must declare its first operand. **E** is incorrect syntax to declare two variables in a for statement. (Objective 2.2)

6. Given:

```
class Emu {
  static String s = "-";
  public static void main(String[] args) {
    try {
      throw new Exception();
    } catch (Exception e) {
      try {
         try { throw new Exception();
        } catch (Exception ex) { s += "ic "; }
         throw new Exception(); }
      catch (Exception x) { s += "mc "; }
      finally { s += "mf "; }
    } finally { s += "of "; }
    System.out.println(s);
}
```

What is the result?

```
A. -ic of
```

B. -mf of

C. -mc mf

D. -ic mf of

E. -ic mc mf of

F. -ic mc of mf

G. Compilation fails

- E is correct. There is no problem nesting try / catch blocks. As is normal, when an exception is thrown, the code in the catch block runs, then the code in the finally block runs.
- A, B, C, D, and F are incorrect based on the above. (Objective 2.5)

7. Given:

```
3. class SubException extends Exception { }
 4. class SubSubException extends SubException { }
 6. public class CC { void doStuff() throws SubException { } }
7.
8. class CC2 extends CC { void doStuff() throws SubSubException { } }
10. class CC3 extends CC { void doStuff() throws Exception { } }
11.
12. class CC4 extends CC { void doStuff(int x) throws Exception { } }
14. class CC5 extends CC { void doStuff() { } }
```

What is the result? (Choose all that apply.)

- A. Compilation succeeds
- **B.** Compilation fails due to an error on line 8
- C. Compilation fails due to an error on line 10
- **D.** Compilation fails due to an error on line 12
- **E.** Compilation fails due to an error on line 14

Answer:

- C is correct. An overriding method cannot throw a broader exception than the method it's overriding. Class CC4's method is an overload, not an override.
- A, B, D, and E are incorrect based on the above. (Objectives 1.5, 2.4)

```
3. public class Ebb {
    static int x = 7;
    public static void main(String[] args) {
      String s = "";
6.
```

```
7.
        for(int y = 0; y < 3; y++) {
 8.
          X++;
 9.
          switch(x) {
10.
            case 8: s += "8 ";
            case 9: s += "9 ";
11.
12.
            case 10: { s+= "10 "; break; }
13.
            default: s += "d ";
14.
            case 13: s+= "13 ";
15.
16.
17.
        System.out.println(s);
18.
19.
      static \{x++;\}
20. }
```

What is the result?

- **A.** 9 10 d
- **B.** 8 9 10 d
- C. 9 10 10 d
- D. 9 10 10 d 13
- **E.** 8 9 10 10 d 13
- F. 8 9 10 9 10 10 d 13
- **G**. Compilation fails

Answer:

- ☑ D is correct. Did you catch the static initializer block? Remember that switches work on "fall-thru" logic, and that fall-thru logic also applies to the default case, which is used when no other case matches.
- A, B, C, E, F, and G are incorrect based on the above. (Objective 2.1)

```
3. class Infinity { }
4. public class Beyond extends Infinity {
5. static Integer i;
6. public static void main(String[] args) {
7. int sw = (int) (Math.random() * 3);
8. switch(sw) {
9. case 0: { for(int x = 10; x > 5; x++)}
```

```
10.
                        if(x > 10000000) x = 10;
11.
                     break; }
12.
          case 1: \{ int y = 7 * i; break; \}
13.
          case 2: {
                     Infinity inf = new Beyond();
14.
                     Beyond b = (Beyond) inf; }
15.
16.
17. }
```

And given that line 7 will assign the value 0, 1, or 2 to sw, which are true? (Choose all that apply.)

- A. Compilation fails
- B. A ClassCastException might be thrown
- C. A StackOverflowError might be thrown
- D. A NullPointerException might be thrown
- An IllegalStateException might be thrown
- The program might hang without ever completing F.
- **G.** The program will always complete without exception

Answer:

- D and F are correct. Because i was not initialized, case 1 will throw an NPE. Case 0 will initiate an endless loop, not a stack overflow. Case 2's downcast will not cause an exception.
- A, B, C, E, and G are incorrect based on the above. (Objective 2.6)

```
3. public class Circles {
      public static void main(String[] args) {
 5.
        int[] ia = \{1,3,5,7,9\};
        for(int x : ia) {
 6.
          for (int j = 0; j < 3; j++) {
 7.
             if (x > 4 \&\& x < 8) continue;
             System.out.print(" " + x);
 9.
             if(j == 1) break;
10.
             continue;
11.
12.
13.
          continue;
14.
      }
15.
16. }
```

What is the result?

```
A. 1 3 9
```

- **D**. 1 1 3 3 9 9
- E. 111333999
- F. Compilation fails

Answer:

- ☑ D is correct. The basic rule for unlabeled continue statements is that the current iteration stops early and execution jumps to the next iteration. The last two continue statements are redundant!
- A, B, C, E, and F are incorrect based on the above. (Objective 2.2)

II. Given:

```
3. public class OverAndOver {
      static String s = "";
     public static void main(String[] args) {
       try {
 7.
         s += "1";
         throw new Exception();
        } catch (Exception e) \{ s += "2"; \}
 9.
        finally { s += "3"; doStuff(); s += "4";
10.
11.
12.
        System.out.println(s);
13.
      static void doStuff() { int x = 0; int y = 7/x; }
14.
15. }
```

What is the result?

- **A.** 12
- **B.** 13
- **C**. 123
- **D**. 1234
- **E.** Compilation fails
- F. 123 followed by an exception

- G. 1234 followed by an exception
- H. An exception is thrown with no other output

- H is correct. It's true that the value of String s is 123 at the time that the divide-byzero exception is thrown, but finally () is not guaranteed to complete, and in this case finally() never completes, so the System.out.println (S.O.P.) never executes.
- A, B, C, D, E, F, and G are incorrect based on the above. (Objective 2.5)

12. Given:

```
3. public class Wind {
      public static void main(String[] args) {
        foreach:
        for(int j=0; j<5; j++) {
 6.
          for(int k=0; k< 3; k++) {
 7.
 8.
            System.out.print(" " + j);
            if (j==3 \&\& k==1) break foreach;
 9.
            if(j==0 || j==2) break;
10.
11.
12.
13.
      }
14. }
```

What is the result?

```
A. 0 1 2 3
B. 1 1 1 3 3
C. 0 1 1 1 2 3 3
D. 1 1 1 3 3 4 4 4
E. 0 1 1 1 2 3 3 4 4 4
```

F. Compilation fails

- C is correct. A break breaks out of the current innermost loop and continues. A labeled break breaks out of and terminates the current loops.
- A, B, D, E, and F are incorrect based on the above. (Objective 2.2)

13. Given:

```
3. public class Gotcha {
4.  public static void main(String[] args) {
5.    // insert code here
6.
7.  }
8.  void go() {
9.  go();
10.  }
11. }
```

And given the following three code fragments:

```
I. new Gotcha().go();
II. try { new Gotcha().go(); }
    catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
    catch (Exception e) { System.out.println("ouch"); }
```

When fragments I - III are added, independently, at line 5, which are true? (Choose all that apply.)

- **A.** Some will not compile
- B. They will all compile
- C. All will complete normally
- D. None will complete normally
- E. Only one will complete normally
- F. Two of them will complete normally

- ☑ B and E are correct. First off, go() is a badly designed recursive method, guaranteed to cause a StackOverflowError. Since Exception is not a superclass of Error, catching an Exception will not help handle an Error, so fragment III will not complete normally. Only fragment II will catch the Error.
- A, C, D, and F are incorrect based on the above. (Objective 2.5)

14. Given:

```
3. public class Clumsy {
      public static void main(String[] args) {
        int j = 7;
 6.
        assert(++j > 7);
 7.
        assert(++j > 8): "hi";
        assert(j > 10): j=12;
 8.
        assert(j==12): doStuff();
 9.
10.
        assert(j==12): new Clumsy();
11.
      static void doStuff() { }
13. }
```

Which are true? (Choose all that apply.)

- A. Compilation succeeds
- **B.** Compilation fails due to an error on line 6
- **C.** Compilation fails due to an error on line 7
- D. Compilation fails due to an error on line 8
- Compilation fails due to an error on line 9
- Compilation fails due to an error on line 10

Answer:

- E is correct. When an assert statement has two expressions, the second expression must return a value. The only two-expression assert statement that doesn't return a value is on line 9.
- A, B, C, D, and F are incorrect based on the above. (Objective 2.3)

```
1. public class Frisbee {
2. // insert code here
3.
      int x = 0;
      System.out.println(7/x);
    }
6. }
```

And given the following four code fragments:

```
I. public static void main(String[] args) {
II. public static void main(String[] args) throws Exception {
III. public static void main(String[] args) throws IOException {
IV. public static void main(String[] args) throws RuntimeException {
```

If the four fragments are inserted independently at line 4, which are true? (Choose all that apply.)

- **A.** All four will compile and execute without exception
- B. All four will compile and execute and throw an exception
- **C.** Some, but not all, will compile and execute without exception
- D. Some, but not all, will compile and execute and throw an exception
- **E.** When considering fragments II, III, and IV, of those that will compile, adding a try/catch block around line 6 will cause compilation to fail

Answer:

- ☑ D is correct. This is kind of sneaky, but remember that we're trying to toughen you up for the real exam. If you're going to throw an IOException, you have to import the java.io package or declare the exception with a fully qualified name.
- **E** is incorrect because it's okay to both handle and declare an exception. **A**, **B**, and **C** are incorrect based on the above. (Objective 2.4)

```
2. class MyException extends Exception { }
3. class Tire {
4.  void doStuff() { }
5. }
6. public class Retread extends Tire {
7.  public static void main(String[] args) {
8.   new Retread().doStuff();
9.  }
10.  // insert code here
11.  System.out.println(7/0);
12.  }
13. }
```

And given the following four code fragments:

```
I.
    void doStuff() {
II. void doStuff() throws MyException {
III. void doStuff() throws RuntimeException {
IV. void doStuff() throws ArithmeticException {
```

When fragments I - IV are added, independently, at line 10, which are true? (Choose all that apply.)

- A. None will compile
- B. They will all compile
- C. Some, but not all, will compile
- D. All of those that compile will throw an exception at runtime
- None of those that compile will throw an exception at runtime
- Only some of those that compile will throw an exception at runtime

- C and D are correct. An overriding method cannot throw checked exceptions that are broader than those thrown by the overridden method. However an overriding method can throw RuntimeExceptions not thrown by the overridden method.
- A, B, E, and F are incorrect based on the above. (Objective 2.4)

SELFTEST ANSWERS

L. Given:

```
import java.util.regex.*;
class Regex2 {
  public static void main(String[] args) {
    Pattern p = Pattern.compile(args[0]);
    Matcher m = p.matcher(args[1]);
    boolean b = false;
    while(b = m.find()) {
      System.out.print(m.start() + m.group());
```

And the command line:

```
java Regex2 "\d*" ab34ef
```

What is the result?

- **A**. 234
- **B**. 334
- C. 2334
- D. 0123456
- E. 01234456
- F. 12334567
- **G**. Compilation fails

- ☑ E is correct. The \d is looking for digits. The * is a quantifier that looks for 0 to many occurrences of the pattern that precedes it. Because we specified *, the group () method returns empty Strings until consecutive digits are found, so the only time group () returns a value is when it returns 34 when the matcher finds digits starting in position 2. The start () method returns the starting position of the previous match because, again, we said find 0 to many occurrences.
- A, B, C, D, F, and G are incorrect based on the above. (Objective 3.5)

2. Given:

```
import java.io.*;
class Player {
 Player() { System.out.print("p"); }
class CardPlayer extends Player implements Serializable {
 CardPlayer() { System.out.print("c"); }
 public static void main(String[] args) {
    CardPlayer c1 = new CardPlayer();
    try {
      FileOutputStream fos = new FileOutputStream("play.txt");
      ObjectOutputStream os = new ObjectOutputStream(fos);
      os.writeObject(c1);
      os.close();
      FileInputStream fis = new FileInputStream("play.txt");
      ObjectInputStream is = new ObjectInputStream(fis);
      CardPlayer c2 = (CardPlayer) is.readObject();
      is.close();
    } catch (Exception x ) { }
}
```

What is the result?

- A. pc
- B. pcc
- C. pcp
- D. pcpc
- **E.** Compilation fails
- **F.** An exception is thrown at runtime

- C is correct. It's okay for a class to implement Serializable even if its superclass doesn't. However, when you deserialize such an object, the non-serializable superclass must run its constructor. Remember, constructors don't run on deserialized classes that implement Serializable.
- A, B, D, E, and F are incorrect based on the above. (Objective 3.3)

3. Given:

Which of the following will be included in the output String s? (Choose all that apply.)

- **A.** .e1
- **B.** .e2
- C. =s
- D. fly
- E. None of the above
- F. Compilation fails
- **G.** An exception is thrown at runtime

Answer:

- ☑ B, C, and D are correct. Remember, that the equals() method for the integer wrappers will only return true if the two primitive types and the two values are equal. With C, it's okay to unbox and use ==. For D, it's okay to create a wrapper object with an expression, and unbox it for comparison with a primitive.
- \blacksquare A, E, F, and G are incorrect based on the above. (Remember that A is using the equals () method to try to compare two different types.) (Objective 3.1)

```
import java.io.*;
class Keyboard { }
public class Computer implements Serializable {
```

```
private Keyboard k = new Keyboard();
 public static void main(String[] args) {
    Computer c = new Computer();
    c.storeIt(c);
 void storeIt(Computer c) {
   try {
     ObjectOutputStream os = new ObjectOutputStream(
         new FileOutputStream("myFile"));
      os.writeObject(c);
      os.close();
      System.out.println("done");
    } catch (Exception x) {System.out.println("exc"); }
 }
}
```

What is the result? (Choose all that apply.)

- A. exc
- B. done
- C. Compilation fails
- D. Exactly one object is serialized
- E. Exactly two objects are serialized

- A is correct. An instance of type Computer Has-a Keyboard. Because Keyboard doesn't implement Serializable, any attempt to serialize an instance of Computer will cause an exception to be thrown.
- **B**, C, D, and E are incorrect based on the above. If Keyboard did implement Serializable then two objects would have been serialized. (Objective 3.3)
- 5. Using the fewest fragments possible (and filling the fewest slots possible), complete the code below so that the class builds a directory named "dir3" and creates a file named "file3" inside "dir3". Note you can use each fragment either zero or one times.

Code:

Fragments:

```
File;
      FileDescriptor; FileWriter; Directory;
try {
       .createNewDir();
                        File dir
                                    File
       (Exception x) ("dir3");
{ }
                                    file
file
       .createNewFile(); = new File
                                    = new File
       (dir, "file3");
                        (dir, file); .createFile();
dir
} catch ("dir3", "file3"); .mkdir(); File file
```

Answer:

```
import java.io.File;
class Maker {
  public static void main(String[] args) {
    try {
      File dir = new File("dir3");
      dir.mkdir();
      File file = new File(dir, "file3");
      file.createNewFile();
    } catch (Exception x) { }
}
```

Notes: The new File statements don't make actual files or directories, just objects. You need the mkdir() and createNewFile() methods to actually create the directory and the file. (Objective 3.2)

6. Given that 111928000000L is roughly the number of milliseconds from Jan. 1, 1970, to June 20, 2005, and that you want to print that date in German, using the LONG style such that "June" will be displayed as "Juni", complete the code using the fragments below. Note: you can use each fragment either zero or one times, and you might not need to fill all of the slots.

```
Code:
    import java._____
    import java.____
    class DateTwo {
      public static void main(String[] args) {
        Date d = new Date(1119280000000L);
        DateFormat df = _____
       System.out.println(
      }
    }
Fragments:
      io.*;    new DateFormat(
                                             Locale.LONG
      nio.*;
              DateFormat.getInstance(
                                              Locale.GERMANY
      util.*; DateFormat.getDateInstance(
                                              DateFormat.LONG
                                              DateFormat.GERMANY
      text.*; util.regex;
      date.*; df.format(d));
                                              d.format(df));
Answer:
    import java.util.*;
    import java.text.*;
    class DateTwo {
      public static void main(String[] args) {
        Date d = new Date(1119280000000L);
      DateFormat df = DateFormat.getDateInstance(
                       DateFormat.LONG, Locale.GERMANY);
        System.out.println(df.format(d));
      }
```

Notes: Remember that you must build DateFormat objects using static methods. Also remember that you must specify a Locale for a DateFormat object at the time of instantiation. The getInstance() method does not take a Locale. (Objective 3.4)

7. Given:

```
import java.io.*;

class Directories {
   static String [] dirs = {"dir1", "dir2"};
   public static void main(String [] args) {
      for (String d : dirs) {

            // insert code 1 here

            File file = new File(path, args[0]);

            // insert code 2 here
      }
   }
}
```

and that the invocation

```
java Directories file2.txt
```

is issued from a directory that has two subdirectories, "dir1" and "dir2", and that "dir1" has a file "file1.txt" and "dir2" has a file "file2.txt", and the output is "false true", which set(s) of code fragments must be inserted? (Choose all that apply.)

```
A. String path = d;
    System.out.print(file.exists() + " ");
B. String path = d;
    System.out.print(file.isFile() + " ");
```

```
C. String path = File.separator + d;
   System.out.print(file.exists() + " ");
D. String path = File.separator + d;
   System.out.print(file.isFile() + " ");
```

- A and B are correct. Because you are invoking the program from the directory whose direct subdirectories are to be searched, you don't start your path with a File.separator character. The exists() method tests for either files or directories; the isFile() method tests only for files. Since we're looking for a file, both methods work.
- **Z** C and D are incorrect based on the above. (Objective 3.2)

```
import java.io.*;
public class TestSer {
  public static void main(String[] args) {
    SpecialSerial s = new SpecialSerial();
    try {
      ObjectOutputStream os = new ObjectOutputStream(
         new FileOutputStream("myFile"));
      os.writeObject(s); os.close();
      System.out.print(++s.z + " ");
      ObjectInputStream is = new ObjectInputStream(
         new FileInputStream("myFile"));
      SpecialSerial s2 = (SpecialSerial)is.readObject();
      is.close();
      System.out.println(s2.y + " " + s2.z);
    } catch (Exception x) {System.out.println("exc"); }
class SpecialSerial implements Serializable {
  transient int y = 7;
  static int z = 9;
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- **B.** The output is 10 0 9
- **C.** The output is 10 0 10
- **D.** The output is 10 7 9
- **E.** The output is 10 7 10
- F. In order to alter the standard describilization process you would implement the readObject() method in SpecialSerial
- **G.** In order to alter the standard deserialization process you would implement the defaultReadObject() method in SpecialSerial

Answer:

- ☑ C and F are correct. C is correct because static and transient variables are not serialized when an object is serialized. F is a valid statement.
- A, B, D, and E are incorrect based on the above. G is incorrect because you don't implement the defaultReadObject() method, you call it from within the readObject() method, along with any custom read operations your class needs. (Objective 3.3)

```
3. public class Theory {
      public static void main(String[] args) {
        String s1 = "abc";
 5.
 6.
        String s2 = s1;
 7.
        s1 += "d";
 8.
        System.out.println(s1 + " " + s2 + " " + (s1==s2));
 9.
10.
        StringBuffer sb1 = new StringBuffer("abc");
        StringBuffer sb2 = sb1;
11.
12.
        sb1.append("d");
13.
        System.out.println(sb1 + " " + sb2 + " " + (sb1==sb2));
      }
14.
15. }
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- B. The first line of output is abc abc true
- C. The first line of output is abc abc false
- D. The first line of output is abcd abc false
- E. The second line of output is abcd abc false
- F. The second line of output is abcd abcd true
- G. The second line of output is abcd abcd false

Answer:

- ☑ D and F are correct. While String objects are immutable, references to Strings are mutable. The code s1 += "d"; creates a new String object. StringBuffer objects are mutable, so the append() is changing the single StringBuffer object to which both StringBuffer references refer.
- A, B, C, E, and G are incorrect based on the above. (Objective 3.1)

10. Given:

```
import java.io.*;
 4. public class ReadingFor {
      public static void main(String[] args) {
 6.
        String s;
 7.
        try {
 8.
          FileReader fr = new FileReader("myfile.txt");
 9.
          BufferedReader br = new BufferedReader(fr);
10.
          while((s = br.readLine()) != null)
11.
            System.out.println(s);
12.
          br.flush();
13.
        } catch (IOException e) { System.out.println("io error"); }
16.
17. }
```

And given that myfile.txt contains the following two lines of data:

ab cd What is the result?

- A. ab
- B. abcd
- C. ab
- D. a
 - b
 - С
 - d
- E. Compilation fails

Answer:

- ☑ E is correct. You need to call flush() only when you're writing data. Readers don't have flush() methods. If not for the call to flush(), answer C would be correct.
- A, B, C, and D are incorrect based on the above. (Objective 3.2)

II. Given:

```
3. import java.io.*;
 4. public class Talker {
 5. public static void main(String[] args) {
        Console c = System.console();
 7.
        String u = c.readLine("%s", "username: ");
 8.
        System.out.println("hello " + u);
 9.
        String pw;
       if(c != null && (pw = c.readPassword("%s", "password: ")) != null)
          // check for valid password
11.
12.
      }
13. }
```

If line 6 creates a valid Console object, and if the user enters *fred* as a username and 1234 as a password, what is the result? (Choose all that apply.)

- A. username: password:
- B. username: fred
 password:

- C. username: fred password: 1234
- D. Compilation fails
- **E.** An exception is thrown at runtime

- ☑ D is correct. The readPassword() method returns a char[]. If a char[] were used, answer B would be correct.
- A, B, C, and E are incorrect based on the above. (Objective 3.2)

12. Given:

```
3. import java.io.*;
4. class Vehicle { }
5. class Wheels { }
6. class Car extends Vehicle implements Serializable { }
7. class Ford extends Car { }
8. class Dodge extends Car {
 9.
     Wheels w = new Wheels();
10. }
```

Instances of which class(es) can be serialized? (Choose all that apply.)

- A. Car
- B. Ford
- C. Dodge
- D. Wheels
- E. Vehicle

- A and B are correct. Dodge instances cannot be serialized because they "have" an instance of Wheels, which is not serializable. Vehicle instances cannot be serialized even though the subclass Car can be.
- **EXECTION** C, D, and E are incorrect based on the above. (Objective 3.3)

13. Given:

```
3. import java.text.*;
 4. public class Slice {
     public static void main(String[] args) {
        String s = "987.123456";
 6.
 7.
        double d = 987.123456d;
 8.
        NumberFormat nf = NumberFormat.getInstance();
 9.
        nf.setMaximumFractionDigits(5);
        System.out.println(nf.format(d) + " ");
10.
11.
12.
          System.out.println(nf.parse(s));
13.
        } catch (Exception e) { System.out.println("got exc"); }
14.
15. }
```

Which are true? (Choose all that apply.)

- **A.** The output is 987.12345 987.12345
- **B.** The output is 987.12346 987.12345
- C. The output is 987.12345 987.123456
- D. The output is 987.12346 987.123456
- E. The try/catch block is unnecessary
- F. The code compiles and runs without exception
- **G.** The invocation of parse () must be placed within a try/catch block

Answer:

- $\ensuremath{\square}$ D, F, and G are correct. The setMaximumFractionDigits () applies to the formatting but not the parsing. The try/catch block is placed appropriately. This one might scare you into thinking that you'll need to memorize more than you really do. If you can remember that you're formatting the number and parsing the string you should be fine for the exam.
- A, B, C, and E are incorrect based on the above. (Objective 3.4)

```
3. import java.util.regex.*;
4. public class Archie {
5.  public static void main(String[] args) {
6.  Pattern p = Pattern.compile(args[0]);
```

```
7.
        Matcher m = p.matcher(args[1]);
 8.
        int count = 0;
        while(m.find())
 9.
10.
          count++;
11.
        System.out.print(count);
12.
13. }
```

And given the command line invocation:

```
java Archie "\d+" ab2c4d67
```

What is the result?

- **A**. 0
- B. 3
- C. 4
- **D**. 8
- **E**. 9
- Compilation fails

Answer:

- B is correct. The "\d" metacharacter looks for digits, and the + quantifier says look for "one or more" occurrences. The find() method will find three sets of one or more consecutive digits: 2, 4, and 67.
- A, C, D, E, and F are incorrect based on the above. (Objective 3.5)

```
3. import java.util.*;
 4. public class Looking {
      public static void main(String[] args) {
 6.
        String input = "1 2 a 3 45 6";
        Scanner sc = new Scanner(input);
 7.
        int x = 0;
 8.
 9.
        do {
10.
        x = sc.nextInt();
11.
          System.out.print(x + " ");
        \} while (x!=0);
13.
14. }
```

540 Chapter 6: Strings, I/O, Formatting, and Parsing

What is the result?

- **A.** 1 2
- **B.** 1 2 3 45 6
- **C**. 1 2 3 4 5 6
- **D.** 1 2 a 3 45 6
- E. Compilation fails
- F. 1 2 followed by an exception

- $\ensuremath{\square}$ F is correct. The nextXxx() methods are typically invoked after a call to a hasNextXxx(), which determines whether the next token is of the correct type.
- A, B, C, D, and E are incorrect based on the above. (Objective 3.5)

SELFTEST ANSWERS

I. Given:

```
public static void main(String[] args) {
  // INSERT DECLARATION HERE
  for (int i = 0; i <= 10; i++) {
    List<Integer> row = new ArrayList<Integer>();
    for (int j = 0; j <= 10; j++)
      row.add(i * j);
    table.add(row);
  for (List<Integer> row : table)
    System.out.println(row);
```

Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to compile and run? (Choose all that apply.)

```
A. List<List<Integer>> table = new List<List<Integer>>();
```

- B. List<List<Integer>> table = new ArrayList<List<Integer>>();
- C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();
- D. List<List, Integer> table = new List<List, Integer>();
- E. List<List, Integer> table = new ArrayList<List, Integer>();
- F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();
- **G**. None of the above

- ☐ B is correct.
- A is incorrect because List is an interface, so you can't say new List () regardless of any generic types. D, E, and F are incorrect because List only takes one type parameter (a Map would take two, not a List). C is tempting, but incorrect. The type argument <List<Integer>> must be the same for both sides of the assignment, even though the constructor new ArrayList () on the right side is a subtype of the declared type List on the left. (Objective 6.4)

- **2.** Which statements are true about comparing two instances of the same class, given that the equals() and hashCode() methods have been properly overridden? (Choose all that apply.)
 - A. If the equals () method returns true, the hashCode () comparison == might return false
 - B. If the equals () method returns false, the hashCode () comparison == might return true
 - **C.** If the hashCode() comparison == returns true, the equals() method must return true
 - D. If the hashCode () comparison == returns true, the equals () method might return true
 - E. If the hashCode() comparison! = returns true, the equals() method might return true

- ☑ B and D. B is true because often two dissimilar objects can return the same hashcode value. D is true because if the hashCode() comparison returns ==, the two objects might or might not be equal.
- A, C, and E are incorrect. C is incorrect because the hashCode() method is very flexible in its return values, and often two dissimilar objects can return the same hash code value.

 A and E are a negation of the hashCode() and equals() contract. (Objective 6.2)

3. Given:

```
public static void before() {
   Set set = new TreeSet();
   set.add("2");
   set.add(3);
   set.add("1");
   Iterator it = set.iterator();
    while (it.hasNext())
   System.out.print(it.next() + " ");
}
```

Which statements are true?

- A. The before() method will print 1 2
- B. The before () method will print 1 2 3
- C. The before () method will print three numbers, but the order cannot be determined
- D. The before() method will not compile
- **E.** The before () method will throw an exception at runtime

- **E** is correct. You can't put both Strings and ints into the same TreeSet. Without generics, the compiler has no way of knowing what type is appropriate for this TreeSet, so it allows everything to compile. At runtime, the TreeSet will try to sort the elements as they're added, and when it tries to compare an Integer with a String it will throw a ClassCastException. Note that although the before () method does not use generics, it does use autoboxing. Watch out for code that uses some new features and some old features mixed together.
- A, B, C, and D are incorrect based on the above. (Objective 6.5)

4. Given:

```
import java.util.*;
class MapEQ {
  public static void main(String[] args) {
    Map<ToDos, String> m = new HashMap<ToDos, String>();
    ToDos t1 = new ToDos("Monday");
    ToDos t2 = new ToDos("Monday");
    ToDos t3 = new ToDos("Tuesday");
    m.put(t1, "doLaundry");
    m.put(t2, "payBills");
    m.put(t3, "cleanAttic");
    System.out.println(m.size());
} }
class ToDos{
  String day;
  ToDos(String d) { day = d; }
  public boolean equals(Object o) {
    return ((ToDos)o).day == this.day;
  // public int hashCode() { return 9; }
```

Which is correct? (Choose all that apply.)

- **A.** As the code stands it will not compile
- **B.** As the code stands the output will be 2
- C. As the code stands the output will be 3
- D. If the hashCode () method is uncommented the output will be 2
- E. If the hashCode() method is uncommented the output will be 3
- If the hashCode () method is uncommented the code will not compile

- ☑ C and D are correct. If hashCode() is not overridden then every entry will go into its own bucket, and the overridden equals() method will have no effect on determining equivalency. If hashCode() is overridden, then the overridden equals() method will view t1 and t2 as duplicates.
- A, B, E, and F are incorrect based on the above. (Objective 6.2)
- **5.** Given:

```
12. public class AccountManager {
        private Map accountTotals = new HashMap();
14.
        private int retirementFund;
15.
        public int getBalance(String accountName) {
16.
            Integer total = (Integer) accountTotals.get(accountName);
17.
            if (total == null)
18.
                total = Integer.valueOf(0);
19.
20.
            return total.intValue();
21.
23.
        public void setBalance(String accountName, int amount) {
            accountTotals.put(accountName, Integer.valueOf(amount));
24.
25.
```

This class is to be updated to make use of appropriate generic types, with no changes in behavior (for better or worse). Which of these steps could be performed? (Choose three.)

A. Replace line 13 with

```
private Map<String, int> accountTotals = new HashMap<String, int>();
```

B. Replace line 13 with

```
private Map<String, Integer> accountTotals = new HashMap<String, Integer>();
```

C. Replace line 13 with

```
private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();
```

D. Replace lines 17–20 with

```
int total = accountTotals.get(accountName);
if (total == null) total = 0;
return total;
```

E. Replace lines 17–20 with

```
Integer total = accountTotals.get(accountName);
if (total == null) total = 0;
return total;
```

```
F. Replace lines 17–20 with
     return accountTotals.get(accountName);
G. Replace line 24 with
     accountTotals.put(accountName, amount);
H. Replace line 24 with
     accountTotals.put(accountName, amount.intValue());
```

- B, E, and G are correct.
- A is wrong because you can't use a primitive type as a type parameter. C is wrong because a Map takes two type parameters separated by a comma. D is wrong because an int can't autobox to a null, and F is wrong because a null can't unbox to 0. H is wrong because you can't autobox a primitive just by trying to invoke a method with it. (Objective 6.4)

6. Given:

```
interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
```

Which of the following changes (taken separately) would allow this code to compile? (Choose all that apply.)

- **A.** Change the Carnivore interface to interface Carnivore<E extends Plant> extends Hungry<E> {}
- **B.** Change the Herbivore interface to interface Herbivore<E extends Animal> extends Hungry<E> {}
- **C.** Change the Sheep class to class Sheep extends Animal implements Herbivore<Plant> { public void munch(Grass x) {}

F. No changes are necessary

Answer:

- B is correct. The problem with the original code is that Sheep tries to implement Herbivore<Sheep> and Herbivore declares that its type parameter E can be any type that extends Plant. Since a Sheep is not a Plant, Herbivore<Sheep> makes no sense— the type Sheep is outside the allowed range of Herbivore's parameter E. Only solutions that either alter the definition of a Sheep or alter the definition of Herbivore will be able to fix this. So A, E, and F are eliminated. B works, changing the definition of an Herbivore to allow it to eat Sheep solves the problem. C doesn't work because an Herbivore<Plant> must have a munch(Plant) method, not munch(Grass). And D doesn't work, because in D we made Sheep extend Plant, now the Wolf class breaks because its munch (Sheep) method no longer fulfills the contract of Carnivore. (Objective 6.4)
- **7.** Which collection class(es) allows you to grow or shrink its size and provides indexed access to its elements, but whose methods are not synchronized? (Choose all that apply.)
 - A. java.util.HashSet
 - B. java.util.LinkedHashSet
 - C. java.util.List
 - D. java.util.ArrayList
 - E. java.util.Vector
 - F. java.util.PriorityQueue

- ☑ D is correct. All of the collection classes allow you to grow or shrink the size of your collection. ArrayList provides an index to its elements. The newer collection classes tend not to have synchronized methods. Vector is an older implementation of ArrayList functionality and has synchronized methods; it is slower than ArrayList.
- A, B, C, E, and F are incorrect based on the logic described above; Notes: C, List is an interface, and F, PriorityQueue does not offer access by index. (Objective 6.1)

8. Given a method declared as

```
public static <E extends Number> List<E> process(List<E> nums)
```

A programmer wants to use this method like this

```
// INSERT DECLARATIONS HERE
output = process(input);
```

Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow the code to compile? (Choose all that apply.)

- A. ArrayList<Integer> input = null; ArrayList<Integer> output = null;
- B. ArrayList<Integer> input = null; List<Integer> output = null;
- C. ArrayList<Integer> input = null; List<Number> output = null;
- D. List<Number> input = null; ArrayList<Integer> output = null;
- E. List<Number> input = null; List<Number> output = null;
- F. List<Integer> input = null; List<Integer> output = null;
- **G.** None of the above

Answer:

- \square B, E, and F are correct.
- The return type of process is definitely declared as a List, not an ArrayList, so A and D are wrong. C is wrong because the return type evaluates to List<Integer>, and that can't be assigned to a variable of type List<Number>. Of course all these would probably cause a NullPointerException since the variables are still null—but the question only asked us to get the code to compile. (Objective 6.4)
- **9.** Given the proper import statement(s), and

```
PriorityQueue<String> pq = new PriorityQueue<String>();
13.
14.
       pq.add("2");
```

pq.add("4"); 15.

What is the result?

- A. 2233
- B. 2234
- C. 4334
- D. 22333
- E. 43333
- F. 22334
- **G.** Compilation fails
- H. An exception is thrown at runtime

Answer:

- ☑ B is correct. For the sake of the exam, add() and offer() both add to (in this case), naturally sorted queues. The calls to poll() both return and then remove the first item from the queue, so the if test fails.
- A, C, D, E, F, G, and H are incorrect based on the above. (Objective 6.1)

```
3. import java.util.*;
4. public class Mixup {
5.  public static void main(String[] args) {
6.   Object o = new Object();
7.   // insert code here
8.   s.add("o");
9.   s.add(o);
10.  }
11. }
```

And these three fragments:

```
I.
     Set s = new HashSet();
     TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();
```

When fragments I, II, or III are inserted, independently, at line 7, which are true? (Choose all that apply.)

- A. Fragment I compiles
- B. Fragment II compiles
- C. Fragment III compiles
- D. Fragment I executes without exception
- **E.** Fragment II executes without exception
- Fragment III executes without exception

Answer:

- \square A, B, C, D, and F are all correct.
- Months of a TreeSet must in some way implement Comparable. (Objective 6.1)

II. Given:

```
3. import java.util.*;
4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
     public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
8.
     // insert code here
 9.
10. public class TurtleTest {
     public static void main(String[] args) {
       LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
12.
       t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
      System.out.println(t.size());
15.
16. }
```

And these two fragments:

```
I. public int hashCode() { return size/5; }
II. // no hashCode method declared
```

If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

- **A.** If fragment I is inserted, the output is 2
- **B.** If fragment I is inserted, the output is 3
- C. If fragment II is inserted, the output is 2
- D. If fragment II is inserted, the output is 3
- **E.** If fragment I is inserted, compilation fails
- F. If fragment II is inserted, compilation fails

Answer:

- A and D are correct. While fragment II wouldn't fulfill the hashCode() contract (as you can see by the results), it is legal Java. For the purpose of the exam, if you don't override hashCode(), every object will have a unique hashcode.
- B, C, E, and F are incorrect based on the above. (Objective 6.2)
- **12.** Given the proper import statement(s), and:

```
13.
       TreeSet<String> s = new TreeSet<String>();
14.
       TreeSet<String> subs = new TreeSet<String>();
       s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
15.
16.
17.
       subs = (TreeSet)s.subSet("b", true, "d", true);
18.
       s.add("g");
19.
       s.pollFirst();
20.
       s.pollFirst();
       s.add("c2");
21.
22.
       System.out.println(s.size() +" "+ subs.size());
```

Which are true? (Choose all that apply.)

- A. The size of s is 4
- B. The size of s is 5
- C. The size of s is 7
- D. The size of subs is 1

- The size of subs is 2
- The size of subs is 3
- **G.** The size of subs is 4
- H. An exception is thrown at runtime

- B and F are correct. After "g" is added, TreeSet s contains six elements and TreeSet subs contains three (b, c, d), because "q" is out of the range of subs. The first pollFirst() finds and removes only the "a". The second pollFirst () finds and removes the "b" from both TreeSets (remember they are backed). The final add () is in range of both TreeSets. The final contents are [c,c2,d,e,g] and [c,c2,d].
- A, C, D, E, G, and H are incorrect based on the above. (Objective 6.3)

13. Given:

```
3. import java.util.*;
 4. public class Magellan {
      public static void main(String[] args) {
        TreeMap<String, String> myMap = new TreeMap<String, String>();
 6.
 7.
        myMap.put("a", "apple"); myMap.put("d", "date");
        myMap.put("f", "fig"); myMap.put("p", "pear");
 8.
        System.out.println("1st after mango: " + // sop 1
 9.
10.
          myMap.higherKey("f"));
11.
        System.out.println("1st after mango: " + // sop 2
12.
          myMap.ceilingKey("f"));
        System.out.println("1st after mango: " + // sop 3
13.
14.
          myMap.floorKey("f"));
15.
        SortedMap<String, String> sub = new TreeMap<String, String>();
16.
        sub = myMap.tailMap("f");
        System.out.println("1st after mango: " + // sop 4
17.
          sub.firstKey());
18.
19.
      }
20. }
```

Which of the System.out.println statements will produce the output 1st after mango: p? (Choose all that apply.)

```
A. sop 1
```

B. sop 2

C. sop 3

- D. sop 4
- E. None; compilation fails
- F. None; an exception is thrown at runtime

- A is correct. The ceilingKey() method's argument is inclusive. The floorKey() method would be used to find keys before the specified key. The firstKey() method's argument is also inclusive.
- **B**, C, D, E, and F are incorrect based on the above. (Objective 6.3)

14. Given:

```
3. import java.util.*;
4. class Business { }
5. class Hotel extends Business { }
6. class Inn extends Hotel { }
7. public class Travel {
8. ArrayList<Hotel> go() {
9.  // insert code here
10. }
11. }
```

Which, inserted independently at line 9, will compile? (Choose all that apply.)

- A. return new ArrayList<Inn>();
- B. return new ArrayList<Hotel>();
- C. return new ArrayList<Object>();
- D. return new ArrayList<Business>();

- \square B is correct.
- A is incorrect because polymorphic assignments don't apply to generic type parameters. C and D are incorrect because they don't follow basic polymorphism rules. (Objective 6.4)

15. Given:

```
3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
     public static void main(String[] args) {
        TreeSet<Integer> i = new TreeSet<Integer>();
 7.
        TreeSet<Dog> d = new TreeSet<Dog>();
 8.
 9.
10.
        d.add(new Dog(1));
                             d.add(new Dog(2)); d.add(new Dog(1));
11.
        i.add(1);
                             i.add(2);
                                                   i.add(1);
        System.out.println(d.size() + " " + i.size());
12.
13.
14. }
```

What is the result?

- **A**. 12.
- **B**. 22
- C. 2.3
- D. 32
- E. 33
- Compilation fails
- **G.** An exception is thrown at runtime

Answer:

- \square G is correct. Class Dog needs to implement Comparable in order for a TreeSet (which keeps its elements sorted) to be able to contain Dog objects.
- A, B, C, D, E, and F are incorrect based on the above. (Objective 6.5)

```
3. import java.util.*;
4. public class GeoCache {
5. public static void main(String[] args) {
       String[] s = {"map", "pen", "marble", "key"};
7.
      Othello o = new Othello();
8.
     Arrays.sort(s,o);
```

```
9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- **B.** The output will contain a 1
- **C.** The output will contain a 2
- D. The output will contain a-1
- **E.** An exception is thrown at runtime
- F. The output will contain "key map marble pen"
- G. The output will contain "pen marble map key"

- ☑ D and G are correct. First, the compareTo() method will reverse the normal sort.

 Second, the sort() is valid. Third, the binarySearch() gives -1 because it needs to be invoked using the same Comparator (o), as was used to sort the array. Note that when the binarySearch() returns an "undefined result" it doesn't officially have to be a -1, but it usually is, so if you selected only G, you get full credit!
- A, B, C, E, and F are incorrect based on the above. (Objective 6.5)

SELF TEST ANSWERS

- **1.** Which are true about a static nested class? (Choose all that apply.)
 - A. You must have a reference to an instance of the enclosing class in order to instantiate it
 - B. It does not have access to non-static members of the enclosing class
 - C. Its variables and methods must be static
 - D. If the outer class is named MyOuter, and the nested class is named MyInner, it can be instantiated using new MyOuter.MyInner();
 - E. It must extend the enclosing class

Answer:

- **B** and **D**. **B** is correct because a static nested class is not tied to an instance of the enclosing class, and thus can't access the non-static members of the class (just as a static method can't access non-static members of a class). D uses the correct syntax for instantiating a static nested class.
- A is incorrect because static nested classes do not need (and can't use) a reference to an instance of the enclosing class. C is incorrect because static nested classes can declare and define non-static members. E is wrong because...it just is. There's no rule that says an inner or nested class has to extend anything.
- 2. Given:

```
class Boo {
   Boo(String s) { }
   Boo() { }
class Bar extends Boo {
   Bar() { }
   Bar(String s) {super(s);}
   void zoo() {
   // insert code here
}
```

Which create an anonymous inner class from within class Bar? (Choose all that apply.)

- A. Boo $f = new Boo(24) \{ \};$
- **B.** Boo $f = new Bar() \{ \};$

```
C. Boo f = new Boo() {String s; };
D. Bar f = new Boo(String s) { };
E. Boo f = new Boo.Bar(String s) { };
```

- ☑ B and C. B is correct because anonymous inner classes are no different from any other class when it comes to polymorphism. That means you are always allowed to declare a reference variable of the superclass type and have that reference variable refer to an instance of a subclass type, which in this case is an anonymous subclass of Bar. Since Bar is a subclass of Boo, it all works. C uses correct syntax for creating an instance of Boo.
- A is incorrect because it passes an int to the Boo constructor, and there is no matching constructor in the Boo class. D is incorrect because it violates the rules of polymorphism; you cannot refer to a superclass type using a reference variable declared as the subclass type. The superclass doesn't have everything the subclass has. **E** uses incorrect syntax.
- 3. Which are true about a method-local inner class? (Choose all that apply.)
 - A. It must be marked final
 - B. It can be marked abstract
 - C. It can be marked public
 - D. It can be marked static
 - **E.** It can access private members of the enclosing class

Answer:

- ☑ B and E. B is correct because a method-local inner class can be abstract, although it means a subclass of the inner class must be created if the abstract class is to be used (so an abstract method-local inner class is probably not useful). E is correct because a method-local inner class works like any other inner class—it has a special relationship to an instance of the enclosing class, thus it can access all members of the enclosing class.
- A is incorrect because a method-local inner class does not have to be declared final (although it is legal to do so). C and D are incorrect because a method-local inner class cannot be made public (remember—local variables can't be public) or static.

```
1. public class TestObj {
2. public static void main(String[] args) {
   Object o = new Object() {
```

```
4.         public boolean equals(Object obj) {
5.             return true;
6.         }
7.     }
8.         System.out.println(o.equals("Fred"));
9.     }
10. }
```

What is the result?

- A. An exception occurs at runtime
- B. true
- C. fred
- **D.** Compilation fails because of an error on line 3
- E. Compilation fails because of an error on line 4
- F. Compilation fails because of an error on line 8
- **G.** Compilation fails because of an error on a line other than 3, 4, or 8

Answer:

- ☑ G. This code would be legal if line 7 ended with a semicolon. Remember that line 3 is a statement that doesn't end until line 7, and a statement needs a closing semicolon!
- A, B, C, D, E, and F are incorrect based on the program logic described above. If the semicolon were added at line 7, then answer B would be correct—the program would print true, the return from the equals() method overridden by the anonymous subclass of Object.

```
1. public class HorseTest {
      public static void main(String[] args) {
        class Horse {
 3.
 4.
          public String name;
 5.
          public Horse(String s) {
 6.
            name = s;
 7.
 8.
 9.
       Object obj = new Horse("Zippo");
10.
        System.out.println(obj.name);
11.
12. }
```

What is the result?

- **A.** An exception occurs at runtime at line 10
- B. Zippo
- C. Compilation fails because of an error on line 3
- D. Compilation fails because of an error on line 9
- **E.** Compilation fails because of an error on line 10

Answer:

- ☑ E. If you use a reference variable of type Object, you can access only those members defined in class Object.
- A, B, C, and D are incorrect based on the program logic described above.

6. Given:

```
public abstract class AbstractTest {
   public int getNum() {
      return 45;
   public abstract class Bar {
     public int getNum() {
       return 38;
   public static void main(String[] args) {
      AbstractTest t = new AbstractTest() {
         public int getNum() {
           return 22;
      };
      AbstractTest.Bar f = t.new Bar() {
         public int getNum() {
           return 57;
      };
      System.out.println(f.getNum() + " " + t.getNum());
```

What is the result?

- **A**. 57 22
- **B.** 45 38
- **C**. 45 57
- D. An exception occurs at runtime
- E. Compilation fails

- A. You can define an inner class as abstract, which means you can instantiate only concrete subclasses of the abstract inner class. The object referenced by the variable t is an instance of an anonymous subclass of AbstractTest, and the anonymous class overrides the getNum() method to return 22. The variable referenced by f is an instance of an anonymous subclass of Bar, and the anonymous Bar subclass also overrides the getNum() method (to return 57). Remember that to create a Bar instance, we need an instance of the enclosing AbstractTest class to tie to the new Bar inner class instance. AbstractTest can't be instantiated because it's abstract, so we created an anonymous subclass (non-abstract) and then used the instance of that anonymous subclass to tie to the new Bar subclass instance.
- B, C, D, and E are incorrect based on the program logic described above.

7. Given:

```
3. public class Tour {
4.  public static void main(String[] args) {
5.    Cathedral c = new Cathedral();
6.    // insert code here
7.    s.go();
8.  }
9. }
10. class Cathedral {
11.    class Sanctum {
12.    void go() { System.out.println("spooky"); }
13.  }
14. }
```

Which, inserted independently at line 6, compile and produce the output "spooky"? (Choose all that apply.)

```
A. Sanctum s = c.new Sanctum();
B. c.Sanctum s = c.new Sanctum();
C. c.Sanctum s = Cathedral.new Sanctum();
D. Cathedral.Sanctum s = c.new Sanctum();
E. Cathedral.Sanctum s = Cathedral.new Sanctum();
```

- \square D is correct. It is the only code that uses the correct inner class instantiation syntax.
- A, B, C, and E are incorrect based on the above. (Objective 1.1)

8. Given:

```
5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
      public static void main(String[] args) {
 9.
        new TestInners().go();
10.
11.
     void go() {
12.
        new A().m();
13.
        class A { void m() { System.out.println("inner"); } }
14.
      class A { void m() { System.out.println("middle"); } }
15.
16. }
```

What is the result?

- A. inner
- B. outer
- C. middle
- **D.** Compilation fails
- **E**. An exception is thrown at runtime

Answer:

- C is correct. The "inner" version of class A isn't used because its declaration comes after the instance of class A is created in the go () method.
- A, B, D, and E are incorrect based on the above. (Objective 1.1)

```
3. public class Car {
      class Engine {
        // insert code here
 5.
 6.
      public static void main(String[] args) {
 7.
        new Car().go();
 9.
10.
     void go() {
11.
       new Engine();
12.
      void drive() { System.out.println("hi"); }
13.
14. }
```

Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)

```
A. { Car.drive(); }
B. { this.drive(); }
C. { Car.this.drive(); }
D. { this.Car.this.drive(); }
E. Engine() { Car.drive(); }
F. Engine() { this.drive(); }
G. Engine() { Car.this.drive(); }
```

Answer:

- ☑ C and G are correct. C is the correct syntax to access an inner class's outer instance method from an initialization block, and G is the correct syntax to access it from a constructor.
- A, B, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

10. Given:

```
3. public class City {
     class Manhattan {
       void doStuff() throws Exception { System.out.print("x "); }
 5.
6.
 7.
     class TimesSquare extends Manhattan {
       void doStuff() throws Exception { }
8.
9.
10.
     public static void main(String[] args) throws Exception {
11.
       new City().go();
12.
     void go() throws Exception { new TimesSquare().doStuff(); }
13.
14. }
```

What is the result?

```
A. x
```

- **B.** x x
- C. No output is produced
- D. Compilation fails due to multiple errors
- E. Compilation fails due only to an error on line 4
- F. Compilation fails due only to an error on line 7
- G. Compilation fails due only to an error on line 10
- H. Compilation fails due only to an error on line 13

- ☑ C is correct. The inner classes are valid, and all the methods (including main()), correctly throw an Exception, given that doStuff() throws an Exception. The doStuff() in class TimesSquare overrides class Manhattan's doStuff() and produces no output.
- A, B, D, E, F, G, and H are incorrect based on the above. (Objectives 1.1, 2.4)

II. Given:

```
3. public class Navel {
      private int size = 7;
 5.
      private static int length = 3;
      public static void main(String[] args) {
        new Navel().go();
 7.
 8.
 9.
     void go() {
        int size = 5;
10.
11.
        System.out.println(new Gazer().adder());
12.
13.
     class Gazer {
        int adder() { return size * length; }
14.
15.
16. }
```

What is the result?

- **A.** 15
- **B**. 21
- C. An exception is thrown at runtime
- D. Compilation fails due to multiple errors
- **E.** Compilation fails due only to an error on line 4
- F. Compilation fails due only to an error on line 5

- oxdots B is correct. The inner class Gazer has access to Navel's private static and private instance variables.
- A, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

12. Given:

```
3. import java.util.*;
4. public class Pockets {
     public static void main(String[] args) {
        String[] sa = {"nickel", "button", "key", "lint"};
7.
        Sorter s = new Sorter();
       for(String s2: sa) System.out.print(s2 + " ");
8.
9.
       Arrays.sort(sa,s);
10.
       System.out.println();
11.
        for(String s2: sa) System.out.print(s2 + " ");
12.
13. class Sorter implements Comparator<String> {
       public int compare(String a, String b) {
14.
15.
         return b.compareTo(a);
16.
17.
18. }
```

What is the result?

- A. Compilation fails
- B. button key lint nickel nickel lint key button
- C. nickel button key lint button key lint nickel
- D. nickel button key lint nickel button key lint
- E. nickel button key lint nickel lint key button
- F. An exception is thrown at runtime

- \square A is correct, the inner class Sorter must be declared static to be called from the static method main(). If Sorter had been static, answer E would be correct.
- B, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4, 6.5)

SELFTEST ANSWERS

1. The following block of code creates a Thread using a Runnable target:

```
Runnable target = new MyRunnable();
Thread myThread = new Thread(target);
```

Which of the following classes can be used to create the target, so that the preceding code compiles correctly?

```
A. public class MyRunnable extends Runnable {public void run() {}}
```

- B. public class MyRunnable extends Object{public void run(){}}
- C. public class MyRunnable implements Runnable {public void run() {}}
- D. public class MyRunnable implements Runnable{void run(){}}
- E. public class MyRunnable implements Runnable {public void start() {}}

Answer:

- C is correct. The class implements the Runnable interface with a legal run() method.
- A is incorrect because interfaces are implemented, not extended. B is incorrect because even though the class has a valid public void run() method, it does not implement the Runnable interface. D is incorrect because the run() method must be public. E is incorrect because the method to implement is run(), not start(). (Objective 4.1)

```
class MyThread extends Thread {
        public static void main(String [] args) {
 4.
           MyThread t = new MyThread();
 5.
           Thread x = new Thread(t);
 6.
 7.
           x.start();
 8.
 9.
        public void run() {
           for (int i=0; i<3; ++i) {
10.
               System.out.print(i + "..");
11.
12.
```

What is the result of this code?

- A. Compilation fails
- **B**. 1..2..3..
- C. 0..1..2..3..
- D. 0..1..2...
- **E.** An exception occurs at runtime

Answer:

- D is correct. The thread MyThread will start and loop three times (from 0 to 2).
- A is incorrect because the Thread class implements the Runnable interface; therefore, in line 5, Thread can take an object of type Thread as an argument in the constructor (this is NOT recommended). B and C are incorrect because the variable i in the for loop starts with a value of 0 and ends with a value of 2. E is incorrect based on the above. (Objective 4.1)

3. Given:

```
class Test {
        public static void main(String [] args) {
 5.
           printAll(args);
 6.
 7.
        public static void printAll(String[] lines) {
           for(int i=0;i<lines.length;i++){</pre>
 8.
              System.out.println(lines[i]);
 9.
10.
              Thread.currentThread().sleep(1000);
11.
```

The static method Thread.currentThread() returns a reference to the currently executing Thread object. What is the result of this code?

- A. Each String in the array lines will print, with exactly a 1-second pause between lines
- B. Each String in the array lines will print, with no pause in between because this method is not executed in a Thread
- C. Each String in the array lines will print, and there is no guarantee there will be a pause because currentThread() may not retrieve this thread
- D. This code will not compile
- E. Each String in the lines array will print, with at least a one-second pause between lines

- ☑ D is correct. The sleep() method must be enclosed in a try/catch block, or the method printAll() must declare it throws the InterruptedException.
- E is incorrect, but it would be correct if the InterruptedException was dealt with (A is too precise). B is incorrect (even if the InterruptedException was dealt with) because all Java code, including the main() method, runs in threads. C is incorrect. The sleep() method is static, it always affects the currently executing thread. (Objective 4.2)
- **4.** Assume you have a class that holds two private variables: a and b. Which of the following pairs can prevent concurrent access problems in that class? (Choose all that apply.)

```
A. public int read() {return a+b;} public void set(int a, int b) {this.a=a;this.b=b;}
B. public synchronized int read() {return a+b;} public synchronized void set(int a, int b) {this.a=a;this.b=b;}
C. public int read() {synchronized(a) {return a+b;}} public void set(int a, int b) {synchronized(a) {this.a=a;this.b=b;}}
D. public int read() {synchronized(a) {return a+b;}} public void set(int a, int b) {synchronized(b) {this.a=a;this.b=b;}}
E. public synchronized(this) int read() {return a+b;} public synchronized(this) void set(int a, int b) {this.a=a;this.b=b;}
F. public int read() {synchronized(this) {return a+b;}}
```

Answer:

■ B and F are correct. By marking the methods as synchronized, the threads will get the lock of the this object before proceeding. Only one thread will be setting or reading at any given moment, thereby assuring that read() always returns the addition of a valid pair.

public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

A is incorrect because it is not synchronized; therefore, there is no guarantee that the values added by the read() method belong to the same pair. C and D are incorrect; only objects can be used to synchronize on. E fails—it is not possible to select other objects (even this) to synchronize on when declaring a method as synchronized. (Objective 4.3)

```
    public class WaitTest {
    public static void main(String [] args) {
    System.out.print("1 ");
    synchronized(args) {
```

What is the result of trying to compile and run this program?

- A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt with in line 7
- **B**. 1 2 3
- **C**. 1 3
- **D**. 1 2
- E. At runtime, it throws an IllegalMonitorStateException when trying to wait
- F. It will fail to compile because it has to be synchronized on the this object

Answer:

- D is correct. 1 and 2 will be printed, but there will be no return from the wait call because no other thread will notify the main thread, so 3 will never be printed. It's frozen at line 7.
- A is incorrect; IllegalMonitorStateException is an unchecked exception. B and C are incorrect; 3 will never be printed, since this program will wait forever. E is incorrect because IllegalMonitorStateException will never be thrown because the wait() is done on args within a block of code synchronized on args. F is incorrect because any object can be used to synchronize on and this and static don't mix. (Objective 4.4)
- **6.** Assume the following method is properly synchronized and called from a thread A on an object B: wait (2000);

After calling this method, when will the thread A become a candidate to get another turn at the CPU?

- A. After object B is notified, or after two seconds
- B. After the lock on B is released, or after two seconds
- C. Two seconds after object B is notified
- D. Two seconds after lock B is released

- A is correct. Either of the two events will make the thread a candidate for running again.
- ☑ B is incorrect because a waiting thread will not return to runnable when the lock is released, unless a notification occurs. C is incorrect because the thread will become a candidate immediately after notification. D is also incorrect because a thread will not come out of a waiting pool just because a lock has been released. (Objective 4.4)
- **7.** Which are true? (Choose all that apply.)
 - A. The notifyAll() method must be called from a synchronized context
 - B. To call wait (), an object must own the lock on the thread
 - C. The notify() method is defined in class java.lang.Thread
 - D. When a thread is waiting as a result of wait(), it releases its lock
 - E. The notify() method causes a thread to immediately release its lock
 - F. The difference between notify() and notifyAll() is that notifyAll() notifies all waiting threads, regardless of the object they're waiting on

- \square A is correct because notifyAll() (and wait() and notify()) must be called from within a synchronized context. D is a correct statement.
- B is incorrect because to call wait(), the thread must own the lock on the object that wait() is being invoked on, not the other way around. C is wrong because notify() is defined in java.lang.Object. E is wrong because notify() will not cause a thread to release its locks. The thread can only release its locks by exiting the synchronized code. F is wrong because notifyAll() notifies all the threads waiting on a particular locked object, not all threads waiting on any object. (Objective 4.4)
- **8.** Given the scenario: This class is intended to allow users to write a series of messages, so that each message is identified with a timestamp and the name of the thread that wrote the message:

```
public class Logger {
    private StringBuilder contents = new StringBuilder();
    public void log(String message) {
        contents.append(System.currentTimeMillis());
        contents.append(": ");
        contents.append(Thread.currentThread().getName());
```

```
contents.append(message);
    contents.append("\n");
}
public String getContents() { return contents.toString(); }
}
```

How can we ensure that instances of this class can be safely used by multiple threads?

- A. This class is already thread-safe
- B. Replacing StringBuilder with StringBuffer will make this class thread-safe
- **C.** Synchronize the log() method only
- D. Synchronize the getContents () method only
- **E.** Synchronize both log() and getContents()
- **E.** This class cannot be made thread-safe

Answer:

- ☑ E is correct. Synchronizing the public methods is sufficient to make this safe, so F is false. This class is not thread-safe unless some sort of synchronization protects the changing data.
- B is not correct because although a <code>stringBuffer</code> is synchonized internally, we call append() multiple times, and nothing would prevent two simultaneous <code>log()</code> calls from mixing up their messages. C and D are not correct because if one method remains unsynchronized, it can run while the other is executing, which could result in reading the contents while one of the messages is incomplete, or worse. (You don't want to call <code>getString()</code> on the <code>StringBuffer</code> as it's resizing its internal character array.) (Objective 4.3)

9. Given:

```
public static synchronized void main(String[] args) throws
InterruptedException {
    Thread t = new Thread();
    t.start();
    System.out.print("X");
    t.wait(10000);
    System.out.print("Y");
}
```

What is the result of this code?

- **A.** It prints x and exits
- **B.** It prints x and never exits
- C. It prints XY and exits almost immeditately

- D. It prints xy with a 10-second delay between x and y
- **E.** It prints xy with a 10000-second delay between x and y
- F. The code does not compile
- **G.** An exception is thrown at runtime

- ☑ G is correct. The code does not acquire a lock on t before calling t.wait(), so it throws an IllegalMonitorStateException. The method is synchronized, but it's not synchronized on t so the exception will be thrown. If the wait were placed inside a synchronized(t) block, then the answer would have been D.
- A, B, C, D, E, and F are incorrect based the logic described above. (Objective 4.2)

10. Given:

```
class MyThread extends Thread {
   MyThread() {
      System.out.print(" MyThread");
   }
   public void run() { System.out.print(" bar"); }
   public void run(String s) { System.out.print(" baz"); }
}
public class TestThreads {
   public static void main (String [] args) {
      Thread t = new MyThread() {
       public void run() { System.out.print(" foo"); }
      };
      t.start();
}
```

What is the result?

- A. foo
- B. MyThread foo
- C. MyThread bar
- D. foo bar
- E. foo bar baz
- F. bar foo
- G. Compilation fails
- **H.** An exception is thrown at runtime

- **B** is correct. The first line of main we're constructing an instance of an anonymous inner class extending from MyThread. So the MyThread constructor runs and prints MyThread. Next, main() invokes start() on the new thread instance, which causes the overridden run() method (the run() method in the anonymous inner class) to be invoked.
- A, C, D, E, F, G, and H are incorrect based on the logic described above. (Objective 4.1)

II. Given:

```
public class ThreadDemo {
    synchronized void a() { actBusy(); }
    static synchronized void b() { actBusy(); }
    static void actBusy() {
        try { Thread.sleep(1000); }
        catch (InterruptedException e) {}
    public static void main(String[] args) {
        final ThreadDemo x = new ThreadDemo();
        final ThreadDemo y = new ThreadDemo();
        Runnable runnable = new Runnable() {
            public void run() {
                int option = (int) (Math.random() * 4);
                switch (option) {
                    case 0: x.a(); break;
                    case 1: x.b(); break;
                    case 2: y.a(); break;
                    case 3: y.b(); break;
        };
        Thread thread1 = new Thread(runnable);
        Thread thread2 = new Thread(runnable);
        thread1.start();
        thread2.start();
```

Which of the following pairs of method invocations could NEVER be executing at the same time? (Choose all that apply.)

```
A. x.a() in thread1, and x.a() in thread2
B. x.a() in thread1, and x.b() in thread2
C. x.a() in thread1, and y.a() in thread2
```

```
D. x.a() in thread1, and y.b() in thread2
E. x.b() in thread1, and x.a() in thread2
F. x.b() in thread1, and x.b() in thread2
G. x.b() in thread1, and y.a() in thread2
H. x.b() in thread1, and y.b() in thread2
```

- ☑ A, F, and H. A is a right answer because when synchronized instance methods are called on the same *instance*, they block each other. F and H can't happen because synchronized static methods in the same class block each other, regardless of which instance was used to call the methods. (An instance is not required to call static methods; only the class.)
- C could happen because synchronized instance methods called on different instances do not block each other. B, D, E, and G could all happen because instance methods and static methods lock on different objects, and do not block each other. (Objective 4.3)

```
public class TwoThreads {
    static Thread laurel, hardy;
    public static void main(String[] args) {
        laurel = new Thread() {
            public void run() {
                System.out.println("A");
                try {
                    hardy.sleep(1000);
                 } catch (Exception e) {
                    System.out.println("B");
                System.out.println("C");
        };
        hardy = new Thread() {
            public void run() {
                System.out.println("D");
                try {
                    laurel.wait();
                 } catch (Exception e) {
                    System.out.println("E");
                System.out.println("F");
```

```
laurel.start();
        hardy.start();
}
```

Which letters will eventually appear somewhere in the output? (Choose all that apply.)

- **B**. B
- **C**. c
- D. D
- E. E
- F. F
- **G**. The answer cannot be reliably determined
- H. The code does not compile

Answer:

- A, C, D, E, and F are correct. This may look like laurel and hardy are battling to cause the other to sleep() or wait()—but that's not the case. Since sleep() is a static method, it affects the current thread, which is laurel (even though the method is invoked using a reference to hardy). That's misleading but perfectly legal, and the Thread laurel is able to sleep with no exception, printing A and C (after at least a 1-second delay). Meanwhile hardy tries to call laurel.wait()—but hardy has not synchronized on laurel, so calling laurel.wait() immediately causes an IllegalMonitorStateException, and so hardy prints D, E, and F. Although the order of the output is somewhat indeterminate (we have no way of knowing whether A is printed before D, for example) it is guaranteed that A, C, D, E, and F will all be printed in some order, eventually—so G is incorrect.
- **B**, **G**, and **H** are incorrect based on the above. (Objective 4.4)

```
3. public class Starter implements Runnable {
     void go(long id) {
       System.out.println(id);
5.
6.
     public static void main(String[] args) {
7.
       System.out.print(Thread.currentThread().getId() + " ");
9.
       // insert code here
```

```
10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }
```

And given the following five fragments:

```
I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();
```

When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

- A. All five will compile
- B. Only one might produce the output 4 4
- C. Only one might produce the output 4 2
- D. Exactly two might produce the output 4 4
- E. Exactly two might produce the output 4 2
- F. Exactly three might produce the output 4 4
- **G**. Exactly three might produce the output 4 2

Answer:

- ☑ C and D are correct. Fragment I doesn't start a new thread. Fragment II doesn't compile. Fragment III creates a new thread but doesn't start it. Fragment IV creates a new thread and invokes run() directly, but it doesn't start the new thread. Fragment V creates and starts a new thread.
- A, B, E, F, and G are incorrect based on the above. (Objective 4.1)

```
3. public class Leader implements Runnable {
4.  public static void main(String[] args) {
5.    Thread t = new Thread(new Leader());
6.    t.start();
7.    System.out.print("m1 ");
8.    t.join();
9.    System.out.print("m2 ");
10. }
```

```
public void run() {
11.
12.
        System.out.print("r1 ");
        System.out.print("r2 ");
14.
15. }
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- B. The output could be r1 r2 m1 m2
- C. The output could be m1 m2 r1 r2
- D. The output could be m1 r1 r2 m2
- E. The output could be m1 r1 m2 r2
- An exception is thrown at runtime

Answer:

- A is correct. The join() must be placed in a try/catch block. If it were, answers B and D would be correct. The join() causes the main thread to pause and join the end of the other thread, meaning "m2" must come last.
- B, C, D, E, and F are incorrect based on the above. (Objective 4.2)

```
3. class Dudes {
      static long flag = 0;
      // insert code here
        if(flag == 0) flag = id;
 7.
        for(int x = 1; x < 3; x++) {
          if(flag == id) System.out.print("yo ");
 9.
          else System.out.print("dude ");
10.
11.
12. }
13. public class DudesChat implements Runnable {
      static Dudes d;
15.
      public static void main(String[] args) {
16.
        new DudesChat().go();
17.
18.
     void qo() {
19.
        d = new Dudes();
```

```
20.    new Thread(new DudesChat()).start();
21.    new Thread(new DudesChat()).start();
22.    }
23.    public void run() {
24.        d.chat(Thread.currentThread().getId());
25.    }
26. }
```

And given these two fragments:

```
I. synchronized void chat(long id) {
II. void chat(long id) {
```

When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)

- A. An exception is thrown at runtime
- B. With fragment I, compilation fails
- C. With fragment II, compilation fails
- D. With fragment I, the output could be yo dude dude yo
- E. With fragment I, the output could be dude dude yo yo
- F. With fragment II, the output could be yo dude dude yo

Answer:

- ☑ F is correct. With fragment I, the chat method is synchronized, so the two threads can't swap back and forth. With either fragment, the first output must be yo.
- A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

```
3. class Chicks {
      synchronized void yack(long id) {
 5.
        for (int x = 1; x < 3; x++) {
          System.out.print(id + " ");
          Thread.yield();
 7.
 8.
 9.
10. }
11. public class ChicksYack implements Runnable {
12.
13.
      public static void main(String[] args) {
14.
        new ChicksYack().go();
15.
```

```
16.
      void go() {
17.
        c = new Chicks();
        new Thread(new ChicksYack()).start();
18.
19.
        new Thread(new ChicksYack()).start();
20.
21.
      public void run() {
22.
        c.yack(Thread.currentThread().getId());
23.
24. }
```

Which are true? (Choose all that apply.)

- A. Compilation fails
- B. The output could be 4 4 2 3
- C. The output could be 4 4 2 2
- D. The output could be 4 4 4 2
- E. The output could be 2 2 4 4
- An exception is thrown at runtime

Answer:

- F is correct. When run() is invoked, it is with a new instance of ChicksYack and c has not been assigned to an object. If c were static, then because yack is synchronized, answers C and E would have been correct.
- A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

```
3. public class Chess implements Runnable {
      public void run() {
 5.
        move(Thread.currentThread().getId());
 6.
 7.
      // insert code here
        System.out.print(id + " ");
 8.
 9.
        System.out.print(id + " ");
10.
11.
      public static void main(String[] args) {
12.
        Chess ch = new Chess();
13.
        new Thread(ch).start();
14.
        new Thread(new Chess()).start();
15.
      }
16. }
```

And given these two fragments:

```
I. synchronized void move(long id) {
II. void move(long id) {
```

When either fragment I or fragment II is inserted at line 7, which are true? (Choose all that apply.)

- A. Compilation fails
- B. With fragment I, an exception is thrown
- C. With fragment I, the output could be 4 2 4 2
- D. With fragment I, the output could be 4 $\,$ 4 $\,$ 2 $\,$ 3
- E. With fragment II, the output could be 2 4 2 4

- \square C and E are correct. E should be obvious. C is correct because even though move () is synchronized, it's being invoked on two different objects.
- A, B, and D are incorrect based on the above. (Objective 4.3)

SELF TEST ANSWERS

I. Given:

```
1. // insert code here
2. class StatTest {
3.   public static void main(String[] args) {
4.      System.out.println(Integer.MAX_VALUE);
5.   }
6. }
```

Which, inserted independently at line 1, compiles? (Choose all that apply.)

```
A. import static java.lang;
```

```
B. import static java.lang.Integer;
```

- C. import static java.lang.Integer.*;
- D. import static java.lang.Integer.*_VALUE;
- E. import static java.lang.Integer.MAX_VALUE;
- F. None of the above statements are valid import syntax

Answer:

- \square C and E are correct syntax for static imports. Line 4 isn't making use of static imports, so the code will also compile with none of the imports.
- A, B, D, and F are incorrect based on the above. (Objective 7.1)

```
import static java.lang.System.*;
class _ {
   static public void main(String... _A_V_) {
     String $ = "";
     for(int x=0; ++x < _A_V_.length;)
      $ += _A_V_[x];
     out.println($);
   }
}</pre>
```

And the command line:

```
java - A .
```

What is the result?

- **A.** -A
- B. A.
- C. -A.
- D. A.
- **E.** _-A.
- F. Compilation fails
- **G.** An exception is thrown at runtime

Answer:

- ☑ B is correct. This question is using valid (but inappropriate and weird) identifiers, static imports, var-args in main(), and pre-incrementing logic.
- A, C, D, E, F, and G are incorrect based on the above. (Objective 7.2)

3. Given the default classpath:

```
/foo
```

And this directory structure:

```
foo
 test
    xcom
        --A.class
        |--B.java
```

And these two files:

```
package xcom;
public class A { }
package xcom;
public class B extends A { }
```

Which allows B. java to compile? (Choose all that apply.)

- A. Set the current directory to xcom then invoke javac B.java
- B. Set the current directory to xcom then invoke javac -classpath . B.java
- C. Set the current directory to test then invoke javac -classpath . xcom/B.java
- D. Set the current directory to test then invoke javac -classpath xcom B.java
- E. Set the current directory to test then invoke javac -classpath xcom:. B.java

Answer:

- C is correct. In order for B.java to compile, the compiler first needs to be able to find B.java. Once it's found B.java it needs to find A.class. Because A.class is in the xcom package the compiler won't find A.class if it's invoked from the xcom directory. Remember that the -classpath isn't looking for B.java, it's looking for whatever classes B.java needs (in this case A.class).
- A, B, and D are incorrect based on the above. E is incorrect because the compiler can't find B. java. (Objective 7.2)

4. Given two files:

```
a=b.java
c_d.class
```

Are in the current directory, which command-line invocation(s) could complete without error? (Choose all that apply.)

- A. java -Da=b c_d
- B. java -D a=b c_d
- C. javac -Da=b c_d
- D. javac -D a=b c_d

- A is correct. The -D flag is NOT a compiler flag, and the name=value pair that is associated with the -D must follow the -D with no spaces.
- B, C, and D are incorrect based on the above. (Objective 7.2)
- **5.** If three versions of MyClass.class exist on a file system:

```
Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing
```

And the system's classpath includes

```
/foo/bar/baz
```

And this command line is invoked from /foo

```
java -classpath /foo/bar/baz/bing:/foo/bar MyClass
```

Which version will be used by java?

- A. /foo/MyClass.class
- B. /foo/bar/MyClass.class
- C. /foo/bar/baz/MyClass.class
- D. /foo/bar/baz/bing/MyClass.class
- **E**. The result is not predictable.

- D is correct. A -classpath included with a java invocation overrides a system classpath. When java is using any classpath, it reads the classpath from left to right, and uses the first match it finds.
- A, B, C, and E are incorrect based on the above. (Objective 7.5)

6. Given two files:

```
1. package pkgA;
 2. public class Foo {
     int a = 5;
     protected int b = 6;
 5. }
 1. package pkgB;
 import pkqA.*;
 3. public class Fiz extends Foo {
      public static void main(String[] args) {
        Foo f = new Foo();
        System.out.print("
 6.
                            " + f.a);
 7.
        System.out.print(" " + f.b);
        System.out.print(" " + new Fiz().a);
 8.
 9.
        System.out.println(" " + new Fiz().b);
10.
      }
11. }
```

What is the result? (Choose all that apply.)

- **A.** 5 6 5 6
- **B.** 5 6 followed by an exception
- **C.** Compilation fails with an error on line 6
- D. Compilation fails with an error on line 7
- **E.** Compilation fails with an error on line 8
- F. Compilation fails with an error on line 9

Answer:

- ☑ C, D, and E are correct. Variable a (default access) cannot be accessed from outside the package. Since variable b is protected, it can be accessed only through inheritance.
- A, B, and F are incorrect based on the above. (Objectives 1.1, 7.1)

```
3. import java.util.*;
4. public class Antique {
5.  public static void main(String[] args) {
6.  List<String> myList = new ArrayList<String>();
```

```
7.
        assert (args.length > 0);
        System.out.println("still static");
 8.
 9.
10. }
```

Which sets of commands (javac followed by java) will compile and run without exception or error? (Choose all that apply.)

- A. javac Antique.java java Antique
- B. javac Antique.java java -ea Antique
- C. javac -source 6 Antique.java java Antique
- D. javac -source 1.4 Antique.java java Antique
- E. javac -source 1.6 Antique.java java -ea Antique

Answer:

- A and C are correct. If assertions (which were first available in Java 1.4) are enabled, an AssertionError will be thrown at line 7.
- D is incorrect because the code uses generics, and generics weren't introduced until Java 5. B and E are incorrect based on the above. (Objective 7.2)

```
3. import java.util.*;
 4. public class Values {
      public static void main(String[] args) {
 6.
        Properties p = System.getProperties();
        p.setProperty("myProp", "myValue");
 7.
        System.out.print(p.getProperty("cmdProp") + " ");
 9.
        System.out.print(p.getProperty("myProp") + " ");
        System.out.print(p.getProperty("noProp") + " ");
10.
        p.setProperty("cmdProp", "newValue");
11.
        System.out.println(p.getProperty("cmdProp"));
12.
13.
14. }
```

And given the command line invocation:

```
java -DcmdProp=cmdValue Values
```

What is the result?

- A. null myValue null null
- B. cmdValue null null cmdValue
- C. cmdValue null null newValue
- D. cmdValue myValue null cmdValue
- E. cmdValue myValue null newValue
- F. An exception is thrown at runtime

Answer:

- ☑ E is correct. System properties can be set at the command line, as indicated correctly in the example. System properties can also be set and overridden programmatically.
- A, B, C, D, and F are incorrect based on the above. (Objective 7.2)
- **9.** Given the following directory structure:

```
x-|
|- FindBaz.class
|
|- test-|
|- Baz.class
|
|- myApp-|
|- Baz.class
```

And given the contents of the related .java files:

```
1. public class FindBaz {
2.  public static void main(String[] args) { new Baz(); }
3. }
```

In the test directory:

```
1. public class Baz {
2. static { System.out.println("test/Baz"); }
3. }
```

In the myApp directory:

```
1. public class Baz {
     static { System.out.println("myApp/Baz"); }
3. }
```

If the current directory is x, which invocations will produce the output "test/Baz"? (Choose all that apply.)

```
A. java FindBaz
```

```
B. java -classpath test FindBaz
```

```
C. java -classpath .: test FindBaz
```

```
D. java -classpath .:test/myApp FindBaz
```

```
E. java -classpath test:test/myApp FindBaz
```

G. java -classpath test/myApp:test:. FindBaz

Answer:

- C and F are correct. The java command must find both FindBaz and the version of Baz located in the test directory. The "." finds FindBaz, and "test" must come before "test/myApp" or java will find the other version of Baz. Remember the real exam will default to using the Unix path separator.
- A, B, D, E, and G are incorrect based on the above. (Objective 7.2)
- **10.** Given the following directory structure:

```
test-
     - Test.java
     - myApp-
              - Foo.java
              |- myAppSub-|
|- Bar.java
```

If the current directory is test, and you create a jar file by invoking this,

```
jar -cf MyJar.jar myApp
```

then which path names will find a file in the .jar file? (Choose all that apply.)

```
A. Foo.java
```

```
B. Test.java
```

G. myApp/myAppSub/Bar.java

Answer:

- ☑ C and G are correct. The files in a .jar file will exist within the same exact directory tree structure in which they existed when the .jar was created. Although a .jar file will contain a META-INF directory, none of your files will be in it. Finally, if any files exist in the directory from which the jar command was invoked, they won't be included in the .jar file by default.
- A, B, D, E, and F are incorrect based on the above. (Objective 7.5)

II. Given the following directory structure:

```
test-|
|- GetJar.java
|
|- myApp-|
|-Foo.java
```

And given the contents of GetJar.java and Foo.java:

```
3. public class GetJar {
4.  public static void main(String[] args) {
5.    System.out.println(myApp.Foo.d);
6.  }
7. }
3. package myApp;
4. public class Foo { public static int d = 8; }
```

If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar located in test, which set(s) of commands will compile GetJar.java and produce the output 8? (Choose all that apply.)

- A. javac -classpath MyJar.jar GetJar.java java GetJar
- B. javac MyJar.jar GetJar.java iava GetJar
- C. javac -classpath MyJar.jar GetJar.java java -classpath MyJar.jar GetJar
- D. javac MyJar.jar GetJar.java java -classpath MyJar.jar GetJar

Answer:

- A is correct. Given the current directory and where the necessary files are located, these are the correct command line statements.
- **B** and **D** are wrong because javac MyJar.jar GetJar.java is incorrect syntax. **C** is wrong because the -classpath MyJar.java in the java invocation does not include the test directory. (Objective 7.5)

12. Given the following directory structure:

```
- GoDeep.class
- test-
       - myApp-
               |-Foo.java
               |-Foo.class
```

And given the contents of GoDeep.java and Foo.java:

```
3. public class GoDeep {
4. public static void main(String[] args) {
      System.out.println(myApp.Foo.d);
6.
7. }
package myApp;
4. public class Foo { public static int d = 8; }
```

And MyJar.jar contains the following entry:

```
myApp/Foo.class
```

If the current directory is x, which commands will successfully execute GoDeep.class and produce the output 8? (Choose all that apply.)

- A. java GoDeep
- B. java -classpath . GoDeep
- C. java -classpath test/MyJar.jar GoDeep
- D. java GoDeep -classpath test/MyJar.jar
- E. java GoDeep -classpath test/MyJar.jar:.
- F. java -classpath .:test/MyJar.jar GoDeep
- G. java -classpath test/MyJar.jar:. GoDeep

- ☑ F and G are correct. The java command must find both GoDeep and Foo, and the -classpath option must come before the class name. Note, the current directory (.), in the classpath can be searched first or last.
- ☑ A, B, C, D, and E are incorrect based on the above. (Objective 7.5)