Algebra II (Doble grado Informática-Matemáticas)

17 de marzo de 2020

En esta clase, empezamos el Tema 4:

1. Tema 4: Grupos cocientes. Teoremas de isomorfía.

Definición 1.1. Sea G un grupo. Un subgrupo $N \leq G$ se dice **normal** si

$$aN = Na$$
, para todo $a \in G$.

Esto es, si las clases laterales por la izquierda módulo N coinciden con las clases laterales por la derecha módulo N.

Usaremos la notación

$$N \triangleleft G$$

para indicar que N es un subgrupo normal de G.

Veamos algunos ejemplos

- Ejemplo 1.2. 1. Es claro que si G es un grupo abeliano entonces todo subgrupo suyo es normal.
 - 2. Para cualquier grupo G, los subgrupos impropios $\{1\}$ y G son normales.
 - 3. Sea $G = S_3$, entonces $A_3 \subseteq S_3$. En efecto, puesto que $[S_3 : A_3] = 2$, hay dos clases laterales a izquierda y dos clases laterales a derecha que son

$$S_3/A_3 = \{A_3, (1\ 2)A_3\} \text{ y } A_3/S_3 = \{A_3, A_3(1\ 2)\}\$$

teniéndose que

$$(1\ 2)A_3 = \{(1\ 2), (1\ 2)(1\ 2\ 3) = (2\ 3), (1\ 2)(1\ 3\ 2) = (1\ 3)\}$$

У

$$A_3(1\ 2) = \{(1\ 2), (1\ 2\ 3)(1\ 2) = (1\ 3), (1\ 3\ 2)(1\ 2) = (2\ 3)\}.$$

Consecuentemente $(1\ 2)A_3 = A_3(1\ 2)$ y A_3 es normal.

4. Sea $G = S_3$ y $H = \langle (1\ 2) \rangle = \{id, (1\ 2)\}$. Puesto que

$$(1\ 2\ 3)H = \{(1\ 2\ 3), (1\ 2\ 3)(1\ 2) = (1\ 3)\}$$

mientras que

$$H(1\ 2\ 3) = \{(1\ 2\ 3), (1\ 2)(1\ 2\ 3) = (2\ 3)\},\$$

se tiene que (1 2 3) $H \neq H$ (1 2 3) y entonces H no es un subgrupo normal de S_3 .

Nos ocupamos a continuación de establecer un criterio útil para determinar la normalidad de un subgrupo.

Definición 1.3. Sea G un grupo y $H \leq G$ un subgrupo suyo. Para cada elemento $a \in G$ el conjunto

$$aHa^{-1} = \{axa^{-1}/x \in H\}$$

es un subgrupo de G (hacer como ejercicio) que llamaremos **conjugado** de H por el elemento a.

Tenemos entonces:

Proposición 1.4. Sea G un grupo y $N \leq G$ un subgrupo suyo. Son equivalentes los siguientes enunciados:

- (1) $N \subseteq G$,
- (2) $aNa^{-1} = N$ para todo $a \in G$,
- (3) $aNa^{-1} \le N$ para todo $a \in G$.

Demostración. (1) \Rightarrow (2) Sea $a \in G$, como $N \subseteq G$, entonces $aNa^{-1} = Naa^{-1} = N$, y se tiene (2).

- $(2) \Rightarrow (3)$ es evidente.
- (3) \Rightarrow (1) Sea $a \in G$ y $x \in aN$, entonces $\exists n \in N$ tal que x = an. Multiplicando por a^{-1} será $xa^{-1} = ana^{-1} \in aNa^{-1} \leq N$ y entonces, $\exists n' \in N$ tal que $xa^{-1} = n' \Rightarrow x = n'a \in Na$. Consecuentemente $aN \subseteq Na$.

Recíprocamente, sea $y \in Na$, entonces $\exists m \in N$ tal que y = ma. Multiplicando por a^{-1} será $a^{-1}y = a^{-1}ma \in a^{-1}Na = a^{-1}N(a^{-1})^{-1} \leq N$ y entonces, $\exists m' \in N$ tal que $a^{-1}y = m' \Rightarrow y = am' \in aN$. Consecuentemente $Na \subseteq aN$. Y de la doble inclusión se tiene que aN = Na, para todo $a \in N$.

Así pues un un subgrupo es normal si coincide con todos sus conjugado, o equivalentemente, un subgrupo es normal si contiene a todos sus conjugados.

Veamos un par de ejemplos mas de subgrupos normales haciendo uso de la proposición anterior

Ejemplo 1.5. 1. Sea $f: G \to G'$ un homomorfismo de grupos. Entonces $Ker(f) = \{x \in G/f(x) = 1\}$ es un subgrupo normal de G.

En efecto, sea $a \in G$ y $x \in Ker(f)$, entonces $f(axa^{-1}) = f(a)f(x)f(a)^{-1} = f(a)1f(a)^{-1} = 1$. Por tanto $aKer(f)a^{-1} \leq Ker(f)$, para todo $a \in G$ y se tiene el resultado.

2. Sea $G = S_4$. Veamos que

$$K = \{id, \alpha_1 = (1\ 2)(3\ 4), \alpha_2 = (1\ 3)(2\ 4), \alpha_3 = (1\ 4)(2\ 3)\}$$

es un subgrupo normal de S_4 . En efecto, sea $\sigma \in S_4$, entonces $\sigma i d \sigma^{-1} = i d \in K$, mientras que

$$\sigma \alpha_1 \sigma^{-1} = (\sigma(1\ 2)\sigma^{-1})(\sigma(3\ 4)\sigma^{-1}) = (\sigma(1)\ \sigma(2))(\sigma(3)\ \sigma(4))$$

donde en la segunda igualdad hemos usado el hecho de que $\sigma(x_1 x_2 \dots x_r)\sigma^{-1} = (\sigma(x_1) \sigma(x_2) \dots \sigma(x_r))$. Entonces, puesto que σ es biyectiva, $\sigma\alpha_1\sigma^{-1} \in K$. De la misma forma se demuestra que $\sigma\alpha_i\sigma^{-1} \in K$, para i = 2, 3. Consecuentemente $\sigma K\sigma^{-1} \leq K$, para todo $\sigma \in S_4$ y K es normal en S_4 .

Cuando conocemos un conjunto de generadores de un subgrupo, la condición de normalidad la podemos reducir a dicho conjunto en el sentido que se indica en la siguiente proposición:

Proposición 1.6. Sea G un grupo y $X \subseteq G$ un subconjunto no vacío. Sea $N = \langle X \rangle$. Entonces

$$N \leq G \Leftrightarrow axa^{-1} \in N \text{ para todo } x \in X \text{ y para todo } a \in G.$$

Demostración. La implicación hacia la derecha es clara.

Veamos la implicación hacia la izquierda: Para cualquier elemento $a \in G$ consideremos la aplicación

$$\varphi_a: G \to G$$
, definda por $\varphi_a(x) = axa^{-1}$.

Es fácil ver que φ_a es un homomorfismo de grupos (ejercicio) y entonces

$$aNa^{-1} = (\varphi_a)_*(N) = (\varphi_a)_*(\langle X \rangle) = \langle (\varphi_a)_*(X) \rangle = \langle aXa^{-1} \rangle \leq N$$

y se tiene el resultado.

Como aplicación del resultado anterior veamos el siguiente

Ejemplo 1.7. Para cada $n \geq 2$, $A_n \subseteq S_n$.

Veamos en primer lugar que A_n está generado por el conjunto de los ciclos de longitud 3. En efecto, puesto que todo elemento de A_n (de las permutaciones pares) se expresa como producto de un número par de trasposiciones, basta observar que el producto de 2 trasposiciones distintas se expresa como producto de ciclos de longitud 3:

(x y)(z t) = (x y z)(y z t) si las dos trasposiciones son disjuntas,

(x y)(y z) = (x y z) si las dos trasposiciones tienen un elemento en común.

Veamos entonces que A_n es un subgrupo normal: Sea $\alpha \in S_n$ y $(x \ y \ z)$ un ciclo de longitud 3. Entonces $\alpha(x \ y \ z)\alpha^{-1} = (\alpha(x) \ \alpha(y)\alpha(z))$ es de nuevo un ciclo de longitud 3 y, por tanto, un elemento de A_n . Haciendo uso de la proposición anterior, deducimos la normalidad de A_n en S_n .

Podemos también deducir la normalidad del grupo alternado desde el siguiente

Ejercicio 3 Relación 3. Demostrar que todo subgrupo de índice 2 es normal.

Resolución. En efecto sea N un subgrupo de un grupo G tal que [G:N]=2. Habrá entonces exactamente dos clases laterales por la izqda módulo N, una será N y otra será aN con $a \notin N$. Análogamente habrá exactamente dos clases laterales por la derecha módulo N una será N y, puesto que $a \notin N$, la otra será Na. Puesto que $G=N\cup aN=N\cup Na$ y ambas uniones son disjuntas, entonces aN=Na y se tiene la normalidad.

Como aplicación directa de este ejercicio tenemos:

Ejemplo 1.8. Para cada $n \geq 3$ el subgrupo $C_n = \langle r \rangle = \{1, r, r^2, \dots, r^{n-1}\}$ del grupo diédrico D_n es normal

También haciendo uso del ejercicio anterior podemos describir ya el retículo de subgrupos del grupo alternado A_4 :

Ejercicio. Ejercicio 4. Relación 3. Describir el retículo de subgrupos de A_4 .

Resolución. Recordemos que

$$A_4 = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3)\}.$$

Puesto que $|A_4| = 12$, los subgrupos propios de A_4 tendrán orden 2, 3, 4 ó 6. Los de orden 2 serán cíclicos generados por elementos de orden 2 y entonces

$$C_2 = \langle (1\ 2)(3\ 4) \rangle, C_2' = \langle (1\ 3)(2\ 4) \rangle, \ y \ C_2'' = \langle (1\ 4)(2\ 3) \rangle.$$

Los de orden 3 serán cíclicos generados por elementos de orden 3 y entonces

$$\begin{split} C_3 &= \langle (1\ 2\ 3) \rangle = \{id, (1\ 2\ 3), (1\ 3\ 2)\} = \langle (1\ 3\ 2) \rangle, \\ C_3' &= \langle (1\ 2\ 4) \rangle = \{id, (1\ 2\ 4), (1\ 4\ 2)\} = \langle (1\ 4\ 2) \rangle, \\ C_3'' &= \langle (1\ 3\ 4) \rangle = \{id, (1\ 3\ 4), (1\ 4\ 3)\} = \langle (1\ 4\ 3) \rangle, \\ C_3''' &= \langle (2\ 3\ 4) \rangle = \{id, (2\ 3\ 4), (2\ 4\ 3)\} = \langle (2\ 4\ 3) \rangle, \end{split}$$

Los de orden 4 serán ó cíclicos o tipo Klein. Como en A_4 no hay elementos de orden 4 entonces no tiene subgrupos de orden 4 que sean cíclicos. Sí hay un subgrupo de orden 4 tipo Klein que es

$$K = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$$

Finalmente veamos que A_6 no tiene subgrupos de orden 6:

En efecto, supongamos que existe $N \leq A_4$ con |N| = 6 entonces $[A_4:N] = 12$ y, por el ejercicio anterior, $N \leq A_4$. Puesto que N tiene 6 elementos entonces contiene al menos a un ciclo de longitud 3. Sea $(x_1 \, x_2 \, x_3) \in N$, entonces también contendrá a su inverso, esto es $(x_1 \, x_3 \, x_2) \in N$. Como $N \leq A_4$ entonces para $\alpha = (x_1 \, x_2)(x_3 \, x_4)$, tendremos que

$$\alpha(x_1 x_2 x_3)\alpha^{-1} = (x_1 x_4 x_2) \in N,$$

y entonces $(x_1 x_4 x_2) \in N$ y también contendrá a su inverso, es decir $(x_1 x_2 x_4) \in N$. De nuevo, como $N \subseteq A_4$ entonces para $\beta = (x_1 x_3)(x_2 x_4)$, tendremos que

$$\beta(x_1 x_2 x_3)\beta^{-1} = (x_2 x_4 x_3) \in N,$$

y entonces $(x_2 x_4 x_3) \in N$ y también contendrá a su inverso, es decir $(x_3 x_3 x_4) \in N$. Como todo subgrupo contiene al uno del grupo, vemos ya que tal subgrupo no puede existir ya que estaría obligado a tener mas de 6 elementos.

Así pues, el retículo de subgrupos de A_4 tiene el siguiente grafo:

Finalmente, los subgrupos normales de A_4 son los impropios, esto es A_4 y 1 y dentro de los propios únicamente es normal el subgrupo K (vease Ejemplo 1.5). No son normales los cíclicos de orden 2 ni tampoco los cíclicos de orden 3, pues por ejemplo considerando $\alpha=(1\ 4)(2\ 3),\ \alpha C_3\alpha^{-1}\not\leq C_3$ pues $\alpha(1\ 2\ 3)\alpha^{-1}=(4\ 3\ 2)\notin C_3$. De la misma forma se observa para los otros subgrupos cíclicos.