



# Distributed Systems 600.437 Replication

Department of Computer Science
The Johns Hopkins University

Yair Amir Fall 04/ Lecture 8

# Replication

### Lecture 8

#### Further readings:

- \* Distributed Systems (Second edition) Sape Mullender, chapters 7 and 8. (Addison-Wesley) 1994.
- \* Concurrency control and recovery in Distributed Database Systems Bernstein, Hadzilacos and Goodman (Addison Wesley) 1987.
- \* Papers from ICDCS2002 and DISC98 on our www.cnds.jhu.edu/publications web page.





### Wide Area Replication



- Replicating both processing ability and data.
- The Technical Challenge:
  - Maintain consistency among the replicated servers, supporting high volume of dynamic updates in a timely fashion.

Yair Amir Fall 04/ Lecture 8

# Replication

- · Benefits of replication:
  - High Availability.
  - High Performance.
- Costs of replication:
  - Synchronization.
- Requirements from a generic solution:
  - Strict consistency.
  - Sometimes too expensive so requirements are tailored to applications.

### Replication Methods

- · Two phase commit, three phase commit
- Primary and backups
- Weak consistency (weaker update semantics)
- Primary component.
  - What happens when there is no primary component?
- Replication using group communication.

Yair Amir Fall 04/ Lecture 8

### Two Phase Commit

- Built for updating distributed databases.
- Can be used for the special case of replication.
- Consistent with generic update model.
- Relatively expensive.



## Primary and Backups

### Possible options:

- Backups are maintained for availability only.
- Backups can improve performance for reads, updates are sent to the primary by the user.
  - What is the query semantics? How can one copy serializability be achieved?
- The user interacts with one copy, and if it is a backup, the updates are sent to the primary
  - What is the query semantics with regards to our own updates?







# Weak Consistency (weaker update semantics)

The Anti-Entropy method: Golding 92

- State kept by the replication servers can be weakly consistent. i.e. copies are allowed to diverge temporarily. They will eventually come to agreement.
- From time to time, a server picks another server and these two servers exchange updates and converge to the same state.
- Total ordering is obtained after getting one message from every server (directly).
- Lamport time stamps are used to order messages.















### **Primary Component**

- A quorum can proceed with updates.
- When the network connectivity changes, if there is a quorum, the members can continue with updates.
- Dynamic methods will allow the next quorum to be formed based on the current quorum (for example – the next quorum is a majority of the current quorum).



# What can be improved?

- · Reduce number of forced writes to disk
- Reduce number of messages
  - Aggregate acknowledgements
- Avoid end-to-end (application to application) acknowledgements
- Robustness

# Group Communication "Tools"

- · Efficient message delivery
  - Group multicast
- Message delivery/ordering guarantees
  - Reliable
  - FIFO/Causal
  - Total Order
- Partitionable Group Membership
- Strong semantics (what is actually needed?)



### The Basic Idea

- Reduce database replication to Global Consistent Persistent Order
  - Use group communication ordering to establish the Global Consistent Persistent Order on the updates.
  - deterministic + serialized = consistent
- Group Communication membership + quorum = primary partition.
  - Only replicas in the **primary** component can commit updates.
  - Updates ordered in a primary component are marked green and applied. Updates ordered in a non-primary component are marked red and will be delayed.

Yair Amir Fall 04/ Lecture 8

Action Ordering

(Red)

Order is unknown

Order is known

(White)

(I know that)
Order is known to all

Yair Amir

Fall 04/ Lecture 8

27



### Not so simple...

- VS: If s<sub>1</sub> and s<sub>2</sub> move directly from membership M<sub>1</sub> to M<sub>2</sub>, then they deliver the same ordered set of messages in M<sub>1</sub>.
  - What about s₃ that was part of M₁but is not part of M₂?

 Total (Agreed) Order with no holes is not guaranteed across partitions or server crashes/recoveries!

### **Delicate Points**

s<sub>3</sub> receives update u in Prim and commits it right before a partition occurs, but s<sub>1</sub> and s<sub>2</sub> do not receive u. If s<sub>1</sub> and s<sub>2</sub> will form the next primary component, they will commit new updates, without knowledge of u!!



s<sub>1</sub> receives all CPC messages in Construct, and moves to Prim, but one of the servers that were with s<sub>1</sub> in Construct does not receive the last CPC message. A new primary is created possibly without having the desired majority!!

Yair Amir Fall 04/ Lecture 8

### **Extended Virtual Synchrony**

- Transitional/Regular membership notification
- Safe message = Agreed plus every server in the current membership will deliver the message unless it crashes.
- Safe delivery breaks the two-way uncertainty into 3 possible scenarios, the extremes being mutually exclusive!



Yair Amir Fall 04/ Lecture 8

32

31











## **Replication Server Summary**

- Knowledge propagation
  - Eventual Path Propagation.
- Amortizing end-to-end acknowledgments
  - Low level Ack derived from Safe Delivery of group communication.
  - End-to-end Ack upon membership changes.
- Primary component selection
  - Dynamic Linear Voting.