環論(第6回)の解答

問題 6-1

 $(1) z, w \in I \cdot J$ とすると,

$$z = \sum_{i=1}^{m} x_i y_i, \quad w = \sum_{j=1}^{n} u_j v_j, \quad (x_i, u_j \in I, \ y_i, v_j \in J)$$

と表せる. $-u_j \in I \ (j = 1, ..., m)$ より

$$z - w = \sum_{i=1}^{m} x_i y_i + \sum_{i=1}^{n} (-u_i) v_j \in I \cdot J.$$

(2) $a \in A$, $z \in I \cdot J$ とすると,

$$z = \sum_{i=1}^{m} x_i y_i \quad (x_i \in I, \ y_i \in J)$$

と表せる. $ax_i \in I (i = 1, ..., m)$ より,

$$az = \sum_{i=1}^{m} (ax_i)y_i \in I \cdot J.$$

以上より $I \cdot J$ は A のイデアルである.

問題 6-2

 $z \in I \cdot J$ とすると,

$$z = \sum_{i=1}^{m} x_i y_i \quad (x_i \in I, \ y_i \in J)$$

と表せる. $x_i \in I$ より $x_i y_i \in I$ であり, $y_i \in J$ より $x_i y_i \in J$. よって $x_i y_i \in I \cap J$. 従って $z \in I \cap J$. これで $I \cdot J \subseteq I \cap J$ が示せた. 逆に $z \in I \cap J$ とする. $1_A \in A = I + J$ より

$$1_A = x + y \quad (x \in I, \ y \in J)$$

と表せる. $x \in I$, $z \in J$ より $xz \in I \cdot J$. また $z \in I$, $y \in J$ より $zy \in I \cdot J$. よって $z = xz + zy \in I \cdot J$. これで $I \cdot J \supseteq I \cap J$ も示せた.

問題 6-3

まず,

$$I + J \cdot K = (x) + (2, x - 1) \cdot (3, x + 1)$$
$$= (x) + (6, 2(x + 1), 3(x - 1), x^{2} - 1)$$
$$= (x, 6, 2(x + 1), 3(x - 1), x^{2} - 1).$$

ここで

$$1 = (-x) \cdot x + (-1) \cdot (x^2 - 1)$$
. ($\mathbb{C}[x]$ の元で考えている)

よって $1 \in I + J \cdot K$. 従って $I + J \cdot K = A$.

問題 6-4