



# WEEK 9 STATISTICAL DISTRIBUTIONS - THE SHAPE OF DATA



# Normal Distributions and its Characteristics

#### The Normal distribution

- · Most important & popular distribution in statistics.
- . Many problems can be (very well) approximated & solved using the normal distribution.
- · Very good approximation for sum of large number of uncertain quantities



Notation:  $N(\mu, \sigma^2)$ ; in figure:  $\mu = 0$ ,  $\sigma^2 = 1$ .

#### Characteristics of normal distributions



- Continuous data
- Interpretation:
  - $-P(X \in [x, x + dx]) \simeq f_X(x)dx$
  - $-f_X(\cdot)$  is the probability density function
  - $-P(a \le X \le b) =$ area under the curve between a, b.

## Standard Normal

## Standard normal: $Z \sim N(0, 1)$



$$P(Z \le 1.30) = ?$$

Find z such that  $P(Z \le z) = .95$ ?

Fact: If  $X \sim N(\mu, \sigma^2)$ , then

$$\frac{X - \mu}{\sigma} = Z \sim N(0, 1),$$

# Example 1 - Motivating Example

### Consider the stocks:

| Stock | Ann.return | Exp.ann.return | Stdev               |
|-------|------------|----------------|---------------------|
| A     | X          | $\mu_X = 15\%$ | $\sigma_{X} = 10\%$ |
| B     | Y          | $\mu_Y = 25\%$ | $\sigma_Y = 30\%$   |

X, Y are Normally distributed. We want to compare two portfolios:

- Safe (S): 70% invested in A and 30% in B
- Risky (R): 30% invested in A and 70% in B

## Expected return

# Recap of the Example

#### Recap of the formula: portfolio standard deviation

$$Var[aX + bY] = ?$$

Independent case ( $\Rightarrow \rho_{XY} = 0$ ):

$$Var[aX + bY] = a^2Var[X] + b^2Var[Y]$$

Correlated case ( $\rho_{XY} \neq 0$ ):

$$\mathsf{Var}[aX + bY] = a^2\mathsf{Var}[X] + b^2\mathsf{Var}[Y] + 2ab \cdot \mathsf{Cov}[X, Y]$$

#### Portfolio standard deviation calculation...

- $\bullet$  Recall:  $\sigma_X=10\%,\,\sigma_Y=30\%$  and X,Y Normal, and  $\rho_{XY}=0$
- $\bullet$  S = 0.7X + 0.3Y and R = 0.3X + 0.7Y

# Normally Distributed Random Variables

## Distribution of sums of Normal random variables is Normal

Fact: If X, Y are normally distributed and independent then

- aX + b is normal; i.e., linear transformation of normal is normal
- Z = aX + bY is normal; sum of independent normals is normal

$$-Z \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_y^2)$$



# Example 2

## Two other portfolios

 $P_1$ : 80% in A and 20% in B

 $P_2$ : 90% in A and 10% in B

## Joint Distributions

#### Joint Distributions

- Joint density function:  $f: \mathbb{R}^2 \to \mathbb{R}$
- Interpretation:

$$P(X \in [x, x+dx], Y \in [y, y+dy]) \simeq f(x, y) dx \cdot dy \qquad \text{ for all } (x, y)$$

Properties:

$$f_{X,Y}(x, y) \ge 0$$
 for all  $(x, y)$ ,  

$$\int_{x} \int_{y} f_{X,Y}(x, y) dy dx = 1$$

Probability of any event

$$P((X,Y) \in B) = \int \int_{(x,y)\in B} f_{X,Y}(x,y)dydx$$

· Marginal density function of X is defined as:

$$f_X(x) = \int_y f_{X,Y}(x,y)dy$$

If X and Y are independent:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
 (product of marginal densities)

# Joint Distributions and Normal Random Variables

#### Distribution of sums of Normal random variables is Normal

Fact: If X, Y are jointly normally distributed then

Any linear combination of X, Y also has a normal distribution



## Portfolios with Correlated Stocks

#### Positively correlated stocks: $\rho_{XY} = 0.1$

Q: can we construct better portfolios than S or R?

#### Proposed solution:

- ullet invest fraction w of wealth in A and (1-w) in B
- expected returns? standard deviations?

#### Portfolio diversification: $\rho_{XY} = 0.1$

Let's plot different portfolios:

Each point is a portfolio that invests a fraction w of wealth in A and (1-w) in B



## Portfolio with Correlated Stocks - 2

## Portfolio returns for variable $\rho$



## Portfolio Returns

## Portfolio returns with multiple stocks

- With multiple stocks, the best portfolio is more difficult to compute
- Basically, any point in region represents a portfolio
- Efficient frontier: first defined by Markowitz in his influential '52 paper that launched portfolio theory (he got the Nobel prize for that paper!)



# Value at Risk and Example

## Value-at-Risk (VaR)

The 99% Value-at-Risk of an investment is the amount x, such that the returns from that investment over a fixed time period will be  $\leq x$  with probability 1%.

What is the 99% VaR over one year for the S&P 500? (Annual rate of return of S&P 500 is normal with  $\mu=8.79\%$  and  $\sigma=15.75\%$ .)

## Value-at-Risk: a simple example

You are managing a portfolio, say worth \$100M, with average daily payoff  $\hat{X} = 80M$  and standard deviation of daily payoffs  $\sigma = 83M$ 

What is your 97.5% one-day Value-at-Risk? (Assume returns are Normally distributed.)

- 1. Plot a histogram of daily payoffs  $\bar{X} = 80M$  and  $\sigma = 83M$
- 2. From def'n of VaR: we want to find "z" such that 2.5% of days we lose z or more

# Value-at-Risk Summary

### Summary

1. Standardize:

$$X \rightarrow \frac{X - \mu}{\sigma} = Z \sim N(0, 1)$$

- Rephrase question of interest for X ~ N(μ, σ²) in terms of Z ~ N(0, 1); i.e., in # of StdDev. Translate solution back for X ~ N(μ, σ²)
- 3. Fact: If X, Y are jointly normally distributed then
  - aX + b is normal; i.e., linear transformation of normal is normal.
  - X + Y is normal; i.e., sum of jointly normally distributed random variables is normal.
  - aX + bY is normal; combination of the above.
- 4. Formulas you should know:

$$\mathbb{E}[aX+bY]=a\mathbb{E}[X]+b\mathbb{E}[Y]$$

$$\begin{aligned} \mathsf{Var}[aX+bY] &= a^2 \mathsf{Var}[X] + b^2 \mathsf{Var}[Y] + 2ab \cdot \mathsf{Cov}[X,Y] \\ &\quad \mathsf{or} \\ &\quad \mathsf{Var}[aX+bY] = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \, \rho_{XY} \, \sigma_X \sigma_Y \end{aligned}$$

## Bernoulli Distribution

#### Bernoulli Distribution

· Discrete distribution with two possible outcomes

٠

$$X = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } (1-p) \end{cases}$$

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - p & \text{if } 0 \leqslant x < 1 \\ 1 & \text{if } x \geqslant 1 \end{cases}$$

$$E(X) = p$$



$$Var(X) = p(1-p)$$

- Examples
  - probability of click in Display advertising
  - probability of stock price going up or down in a period

# Bernoulli Distribution – Building Blocks

### Bernoulli Distribution

- · Building block for other richer discrete distributions
  - Binomial Distribution number of successes in n trials (e.g. probability of k clicks out of n ads displayed)
  - Geometric Distribution number of failures before the first success
  - Negative Binomial Distribution number of failures before the  $x_{th}$  success

# Binomial Distribution - 1



# Binomial Distribution - 2

#### Binomial Distribution

k success in n independent trials

Per trial 
$$\begin{cases} \text{success (e.g. purchase) with probability } p \\ \text{failure (e.g. no purchase) with probability } 1-p \end{cases}$$

.

$$p_X(k) = Pr(k \text{ success in n trials})$$
  
=  $\binom{n}{k} p^k (1-p)^{n-k}$ 

$$E(X) = np$$

$$Var(X) = np(1-p)$$



**Approximation**: If n is large enough,  $N(\mu, \sigma^2)$  is a good approximation for B(n, p)

- $\bullet \mu = np$
- $\sigma^2 = np(1-p)$

## Geometric Distribution

## Geometric Distribution

Number of trials until first success

.

$$p_X(k) = p(1 - p)^{k-1}$$
  
 $F_X(k) = 1 - (1 - p)^k$   
 $E(X) = \frac{1}{p}$   
 $Var(X) = \frac{1 - p}{p^2}$ 



Example: A certain basketball player has a 60% chance of making a free throw. Assume
all free throws are independent. What is the probability that he makes his first free throw
on the 3<sup>rd</sup> try?

# **Exponential Distribution**

## **Exponential Distribution**

$$f_X(x) = \lambda e^{-\lambda x}$$
  $x \ge 0$ 

$$F_X(x) = 1 - e^{-\lambda x}$$
  $x \ge 0$ 

$$E(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$



#### Exponential distribution: Properties

· Exponential distribution is the continuous analogue of the geometric distribution

• Memoryless - P(T > s + t | T > s = P(T > t))

# Exponential Distribution - Example

#### Example of Exponential Distribution

Example: On average number of people arriving at the bus station in an hour is 3.
 Probability the time till the next person arrive is less than one hour is:

$$F_X(1) - P(X \le 1)$$

#### Call Center

Calls arrive at call center an average rate  $\lambda$  per hour. Customers wait in the queue until one of two things happen: an agent is allocated to serve them (through supporting software), or they become impatient and abandon the tele-queue. Service time and customer patience (time to abandonment) are both exponentially distributed.

#### Poisson Process



## Poisson Distribution

#### Poisson Distribution

· Probability of a given number of events occurring in a fixed interval of time and/or space

.



$$E(X) = \lambda$$





### Poisson Process

The counting process {N(t), t > 0} with rates λ, λ > 0,

$$P\{N(t) = n\} = \frac{(\lambda t)^n}{n!}e^{-\lambda t}$$

.

$$E[N(t)] = \lambda t$$

The inter-arrival times X<sub>1</sub>, X<sub>2</sub>, ... are independent and X<sub>i</sub> ~ Exponential(λ)

# Poisson Distribution - Example

## Example of Poisson Distribution

- Example: Which of the following is most likely to be well modeled by a Poisson distribution?
  - 1. Number of trains arriving at station every hour
  - 2. Number of lottery winners each year that live in Manhattan
  - 3. Number of days between solar eclipses
  - 4. Number of days until a component fails

Example: the mean number of people arriving per hour at a shopping center is 18.What is
the probability that the number of customers arriving in an hour is 20.

$$P(20) = e^{-18} \frac{18^{20}}{20!}$$

# Poisson Process - Example

#### Example of Poisson Process

#### Traffic Model

Suppose the time between arrival of buses at the student center is exponentially distributed with a mean of 60 minutes. If we arrive at the student center at a randomly chosen instant, what is the average amount of time that we will have to wait for a bus?

The Waiting Time Paradox: The memoryless property of the exponential distribution implies that whatever the time at which we arrive, the mean waiting time is the 60 min.

#### Birth and Death Process



# Lognormal Distribution

## **Lognormal Distribution**

- If ln(x) is normally distributed, x is lognormally distributed.
- $ln(X) \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}$$

$$F(x) = \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right)$$



- Consequence of CLT on the logarithm of product of independent random variables
- Arises in many natural phenomenon. For instance:
  - Biological processes: size of a living tissue, blood pressure in adult human
  - Epidemic or rumor spreading: number of affected nodes



www.emeritus.org