Bell Lempert August 2018

Jelena Mojsilovic

June 2022

1 Problem 5

5. Consider a function ϕ holomorphic on $\{z \in \mathbb{C} : |z| > r\}$, where $r \in (0,1)$. Suppose that there are a real number K and a natural number N such that $|\phi(z)| \le K|z|^N$ for all z, and $|\phi(z)| \le 1$ when |z| = 1. Prove that $|\phi(z)| \le |z|^N$ when $|z| \ge 1$.

Proof. Consider $\phi(\frac{1}{z})$ on $\{z \in \mathbb{C} : |z| < r\}$. Since $|\phi(z)| \le K|z|^N$ on $\{z \in \mathbb{C} : |z| > r\}$, then $|\phi(\frac{1}{z})| \le K|\frac{1}{z}|^N$ on $\{z \in \mathbb{C} : |z| < r\}$. Since $|\phi(z)| \le 1$ when |z = 1|, then $|\phi(\frac{1}{z})| \le 1$ when |z = 1|.

Notice, $\phi(z)$ is holomorphic on $\{z \in \mathbb{C} : |z| > r\}$ and hence $\phi(\frac{1}{z})$ is holomorphic on $\{z \in \mathbb{C} : |z| < r\}$. By the maximum modulus principle, the maximum of $|\phi(\frac{1}{z})|$ is attained on the boundary |z| = 1. Thus $K|\frac{1}{z}|^N < 1$ and since $|z| \le 1$, then $|\frac{1}{z}| \ge 1$ and it must be that $K \le 1$. Therefore, $|\phi(\frac{1}{z})| \le |\frac{1}{z}|^N$ on $|z| \le 1$ implies that $|\phi(z)| \le |z|^N$ when $|z| \ge 1$.