Summaries for Qualitative Variables

Data Science 101 Team

Qualitative variables

Let's think about variables that take on discrete qualitative values.

- Eye color
- Allele at different positions in the genome
- Animal species in a national park

How can we define summaries for these?

Specifically, how can we think of center and spread?

Center

We already have one notion of "center" that we argued works well for qualitative variables

Suppose we have data of the form

$$v_1$$
 v_2 \cdots v_m n_1 n_2 \cdots n_m

where n_j are the number of observations with value v_j

Recall that with $d(x,y) = \mathbf{1}\{x \neq y\}$, the minimizer of the average distance is the v_j for which n_j is maximum

This is called the **mode**, one sensible measure of "center" for qualitative variables

Diversity

When dealing with a qualitative variable, rather then "spread" we talk about diversity

Let's say that we have data in the following form

$$v_1$$
 v_2 \cdots v_m p_1 p_2 \cdots p_m

where v_1, \ldots, v_m are the different outcomes of the variable (ex. "Brown eyes", "Blue eyes", "Green eyes", …) and p_1, \ldots, p_m the relative frequencies with which they are observed in the data $(p_1 + p_2 + \cdots + p_m = 1)$

- ▶ Q: What would be the values of $p_1, ..., p_m$ that correspond to the least diversity?
- ▶ Q: How about the value of $p_1, ..., p_m$ that correspond to the most diversity?

Another comparison

Say that population 1 is such that

$$V_1$$
 V_2 \cdots V_m $\frac{1}{m}$ $\frac{1}{m}$ \cdots $\frac{1}{m}$

And population 2 is

$$\begin{array}{cccc} w_1 & w_2 & \cdots & w_k \\ \frac{1}{k} & \frac{1}{k} & \cdots & \frac{1}{k} \end{array}$$

Q: Which of the two populations is more diverse if $k \le m$?

An index of diversity

Now that we have some practice in thinking about diversity, let's see if we can come up with an "index" for diversity

$$v_1$$
 v_2 \cdots v_m
 p_1 p_2 \cdots p_m
 $D = ?$

Imagine you go fishing and you are going to get a sense of the species diversity of the fish population in the lake from the first two fish that you capture

Q: What are the possible outcomes in two "fish catching events," assuming that we care only about getting a sense of how diverse the fish population is?

One proposal

$$D=1-\sum_{i=1}^m p_i^2$$

Probability that if you capture two fish they are not the same species

Q: Why?

Let's work this out using reasoning. Assume that the species of the first fish I catch doesn't affect the species of the second fish (I practice catch and release, fish of a scale don't school together, etc...)

What's the chance that the first fish I catch is of species 1?

What's the chance that the second fish I catch is of species 1?

Now, what's the chance that **both** the first and second fish I catch are of species 1? Is it higher or lower than the chance that just the first fish is of species 1?

Verifying that the index does what we want

$$D=1-\sum_{i=1}^{m}p_i^2$$

- 0 < D < 1
- D = 0 if one $p_i = 1$
- Let's calculate the value of the index when $p_1 = p_2 = \cdots = p_m = \frac{1}{m}$

$$\sum_{i=1}^{m} p_i^2 = \sum_{i=1}^{m} (\frac{1}{m})^2 = m \frac{1}{m^2} = \frac{1}{m}$$

So, the diversity $1 - \frac{1}{m}$ is larger if m is larger

ightharpoonup D = 1 when there are an infinite number of species

Notes

- ▶ One can verify that for a population with m outcomes, $D \le 1 \frac{1}{m}$
- This index is known as Gini (again!) or Simpson's diversity index (be careful that actually there are multiple versions of the Simpson index)
- There are other measures of diversity. Most importantly one known as Shannon's index that is based on entropy

$$H = -\sum_{i=1}^{m} p_i \log(p_i)$$

Gini index in genetics

- ▶ When analyzing data on the frequency of different alleles in genetics, the $D = 1 \sum_{i=1}^{m} p_i^2$ is preferred
- ► This is because it has a very easy genetic interpretation: it represents the **probability of a heterozygous genotype**

Summarizing multiple qualitative variables

Suppose I have **two** qualitative variables (ex: eye color, hair color)

How could I compactly store them?

Idea: just make two tables like

$$v_1$$
 v_2 \cdots v_J
 n_1 n_2 \cdots n_J
 u_1 u_2 \cdots u_K
 m_1 m_2 \cdots m_K

Q: What do you think of this idea?

Summarizing multiple qualitative variables: contingency tables

So when we collapsed our data into two separate tables, we lost the ability to say things like "x% of people in the data have both brown hair and brown eyes"

In other words, we lost information on the **dependence** between the variables

Q: How could we still reduce data size, while keeping this info?

Contingency table

A **contingency table** stores the counts of the number of observations of every possible **combination** of the values of the two variables.

Example: hair and eye color

	u_1	u_2	• • •	u_K
v_1	n ₁₁	n ₁₂	• • •	n_{1K}
<i>v</i> ₂	n ₂₁	n_{22}	• • •	n_{2K}
:	:	:	٠.,	:
Vj	n_{J1}	n_{J2}		n_{JK}

Contingency tables and dependence

Recall that we lost information about **dependence** by making two separate tables

Consider three different cases:

- 1. There is no relationship between hair and eye color
- 2. There is a moderate relationship between hair and eye color
- 3. There is a very strong relationship between hair and eye color

Q: In which case would you lose the most information by making two separate tables?

Q: Now suppose you have a contingency table. Can you think of any ways to measure how strong the dependence is between the two variables just based on the table?