PCT

Shunichi [/]; (). INABA, Yoshiyuki; ().

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	51) International Patent Classification: H05B 33/14, C09D 11/00, C09K 11/06, H05B 33/10		(11) International Publication Number: (43) International Publication Date:		WO 00/59267 05 October 2000 (05.10.2000)	
	International Application Number:		/JP00/01962	Published		
(22)	International Filing Date: 29 March	2000	(29.03.2000)			
(30)	Priority Data: 11/250486 03 September 1999 (03. 11/86944 29 March 1999 (29.03.					
(60)	Parent Application or Grant SEIKO EPSON CORPORATION [/]; ().					

(54) Title: COMPOSITION, METHOD FOR PREPARING FILM, AND FUNCTIONAL ELEMENT AND METHOD FOR PREPARING THE SAME

(54) Titre: COMPOSITION, PROCEDE DE PREPARATION D'UN FILM, ET ELEMENT FONCTIONNEL ET SON PROCEDE DE PREPARATION

(57) Abstract

A composition comprising a solvent comprising at least one benzene derivative having one or more substituents and having three or more carbon atoms in all the substituents and a functional material; a functional film formed from the above composition, which is homogeneous and uniform; a method for preparing the same; a display device having a luminous material layer formed from the above composition between two electrodes, such as an EL element; and a method for preparing the same, the composition is suitable for use in the ink-jet printing method and can use a functional material having no or weak polarity. The composition is free from clogging and deposition of a solute during the discharge thereof, can be discharged with stability and is free from phase separation upon the film formation therefrom.

(57) Abrégé

L'invention porte: sur une composition comprenant (a) un solvant constitué d'au moins un dérivé du benzène à un ou plusieurs substituants dont chacun contient au moins trois atomes de carbone et (b) un matériau fonctionnel; sur un film fonctionnel, homogène et uniforme fait de la composition ci-dessus et son procédé de préparation; sur un dispositif de présentation comportant une couche d'un matériau lumineux électroluminescent fait de la composition ci-dessus placée entre deux électrodes et son procédé de préparation. Ladite composition, adapté aux procédés d'impression par jet d'encre, peut utiliser un matériau fonctionnel à polarité nulle ou faible. Cette composition ne formant ni de bouchon ni de dépôt de soluté pendant son éjection s'éjecte régulièrement, et sans séparation des phases lors de la formation du film.

世界知的所有權機関国 際 事 務 局

PCT

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 H05B 33/14, 33/10, C09D 11/00, C09K 11/06 (11) 国際公開番号

WO00/59267

(43) 国際公開日

2000年10月5日(05.10.00)

(21) 国際出願番号

PCT/JP00/01962

A1

(22) 国際出願日

2000年3月29日(29.03.00)

(30) 優先権データ

特願平11/86944 特願平11/250486 1999年3月29日(29.03.99) JP 1999年9月3日(03.09.99) JP

(71) 出願人 (米国を除くすべての指定国について)

セイコーエプソン株式会社

(SEIKO EPSON CORPORATION)[JP/JP]

〒163-0811 東京都新宿区西新宿二丁目4番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

神戸貞男(KANBE, Sadao)[JP/JP]

関 俊一(SEKI, Shunichi)[JP/JP]

〒392-8502 長野県諏訪市大和三丁目3番5号

セイコーエプソン株式会社内 Nagano, (JP)

(74) 代理人

稻葉良幸, 外(INABA, Yoshiyuki et al.)

〒105-0001 東京都港区虎ノ門三丁日5番1号

37茲ビル803号室 TMI総合法律事務所 Tokyo, (JP)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書 補正書・説明書

(54)Title: COMPOSITION, METHOD FOR PREPARING FILM, AND FUNCTIONAL ELEMENT AND METHOD FOR PREPARING THE SAME

(54)発明の名称 組成物、膜の製造方法、並びに機能素子及びその製造方法

1...NOZZLB

5...COMPOSITION

2...GLASS SUBSTRATE

6...BLUE

3...ITO TRANSPARENT ELECTRODE

7...GREEN

4...BANK

8...RED

(57) Abstract

A composition comprising a solvent comprising at least one benzene derivative having one or more substituents and having three or more carbon atoms in all the substituents and a functional material; a functional film formed from the above composition, which is homogeneous and uniform; a method for preparing the same; a display device having a luminous material layer formed from the above composition between two electrodes, such as an EL element; and a method for preparing the same, the composition is suitable for use in the ink-jet printing method and can use a functional material having no or weak polarity. The composition is free from clogging and deposition of a solute during the discharge thereof, can be discharged with stability and is free from phase separation upon the film formation therefore.

(57)要約

インクジェットプリンティング法に採用でき、機能材料として、非極性あるいは極性の弱い材料を使用でき、吐出時の目詰まりを防ぎ、安定な吐出を達成し、吐出中の内容物の析出、成膜時の相分離を防ぐ組成物、これを用いて形成された、均一、均質な機能膜及びその作製法並びに有機EL素子等の表示装置及びその製造方法である。本発明の組成物は、1以上の置換基を有し、該置換基の炭素の総数が3以上のベンゼン誘導体の少なくとも1種を含む溶媒と、機能材料とからなる構成としたものである。本発明の機能膜は、上記組成物を用いて形成したものである。本発明の表示装置は、二つの電極間に、上記組成物を用いて形成した発光材料層を具備するものである。上記表示装置は、有機EL素子等である。

```
PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)
AE アラブ音長国連邦
AG アンティグア・パーブーダ
AG アンティグア・パーブーダ
AL アルバニア
AL アルバニア
AT オーストリア
AT オーストリア
AT オーストリア
AT オーストリア
AD アルグニンア
BD アルグニーア
BD アルドウニーア
BD アルグニーア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルビア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルドウニーア
BD アルグニーア
BD アルビア
BD アルドウニーア
BD アルビア
BD アルドウニーア
BD アルゲーグア
BD アルビア
BD アルーグ
BD アルビア
BD アルビア
BD アルーグ
BD アルーグ
BD アルーグ
BD アルーグ
BD アルーグ
BD アルーグ
BD アルーグルー
BD アルーグルー
BD アルーグルー
BD アルーグルー
BD アルーグリア
BD アルー
```

Description

明 細

10

組成物、膜の製造方法、並びに機能素子及びその製造方法

技術分野 5

15

安定して吐出できる組成物(吐出組成物)、及び該組成物を用いて均一 な膜(機能膜)を形成する膜の製造方法、並びに前記組成物を用いて形 成された発光材料層を具備する機能素子、特に発光ディスプレイ用途に

本発明は、吐出装置を用いる機能性材料のパターン膜形成に用いられ、

20

有用な有機EL素子等の機能素子(表示素子)及びその製造方法に関す 10

る。

20

25

背景技術

30

ていた。この方法はコスト的に高い、工程が複雑という欠点があるため、 15 最近、簡便で低コスト化が可能となる吐出装置による機能材料のパター ンニングが検討されている。特にインクジェットプリンティング装置を

従来、機能材料のパターン化はフォトリソグラフィー法により行われ

用いた方法が検討されている。

35

例えば、インクジェットプリンティング装置を用いた微細パターニン グの例として液晶表示体用のカラーフィルター製造の例があげられる。

40

これは赤、緑、青の三色のインクを打ち出すノズルを有するプリンティ

45

ング装置により、赤、緑、青の染料又は顔料インク等を適宜打ち分け、 カラーフィルターとするものである。この製造方法に用いられるインク

は、通常水溶性の極性インクである。このような水溶性のインクは、乾 燥によるノズルのつまりを防ぐためにグリセリン等の溶媒を添加してい 25

る例が多い。

10

15

20

25

10

30

35

40

45

50

また、例えば、有機蛍光材料等の発光材料をインク化し、インクジェット法により当該インク (組成物) を基材上に吐出により供給し、発光材料のパターニングを行う方法を採用して、陽極及び陰極間に該発光材料の層が挟持された構造のカラー表示装置、特に発光材料として有機発光材料を用いた有機EL (エレクトロルミネセンス)表示装置の開発が行われている。

このカラー表示装置(有機EL表示装置)の作製は、例えば以下の通りでる。

まず、蛍光材料を適当な溶媒に溶解しインク化する。このインク (組成物)を有機EL表示装置の陽極としての透明電極付き基材上の該透明電極を覆うように吐出する。ここで、電極は一面に形成されたもの、あるいは短冊状、モザイク状のパターン形状等を有するもので、電源に接続され駆動され得る構造である。続いて、インクに対する溶剤を乾燥除去して発光材料層を形成した後、この発光材料層上に、仕事関数の小さな金属、例えば銀、リチウム、カルシウム、アルミニウム等の金属を適宜、蒸着やスパッタ等の方法に堆積させ、陰極を形成する。こうして、陽極及び陰極間に該発光材料の層が挟持された構造の表示装置が得られる。

従来のこのようなインクジェットプリンティング法によるパターンの 20 形成法は、無製版、省資源、省力化等の非常に優れた特徴がある反面、 組成物(吐出組成物)に用いる材料に制限を受ける欠点があった。

インクジェット法では、吐出組成物の溶媒成分として、例えば、エタ ノール、水等の溶媒を使用するが、非極性、あるいは極性の弱い機能材 料、あるいは高分子の機能材料(発光材料等)にはこれら溶媒に溶解し ないものがある。さらに水や、アルコール類と反応したり、アルコール 類により分解する機能材料は使用できない等の欠点がある。

10

15

20

25

30

15

20

35

40

45

50

また、機能材料を溶かす溶媒として、ベンゼン、トルエン、キシレン等の、非極性の材料を良く溶かす溶媒を使用した場合、沸点が低い(蒸気圧が高い)ため、乾燥し易く、ノズルの目詰まりを起こし易い欠点がある。また、吐出時あるいは吐出後、膜の形成において、溶媒の揮発により吐出組成物から気化熱を奪い、吐出組成物の温度を下げ機能材料の析出を促進すことがある。その上、機能材料が多成分系の場合、相分離を起こし、不均一となり機能膜の本来の役目を果たさなくなる欠点があった。

更に、このような簡単には使用できない、溶解度の小さな材料を無理 10 して用い、吐出組成物の濃度を濃くした場合、析出、目詰まり等をおこ す。日詰まりを阻止しようとして、濃度を薄くした場合、機能材料の特 性を出すためには多数回吐出する必要があり、工程数を増やす必要があ る等の欠点があった。

本発明の目的は、従来の機能材料のパターン化の方法であるフォトリ ソグラフィー法に代わるインクジェットプリンティング法に採用でき、 機能材料として、非極性、あるいは極性の弱い材料や、水と反応し易い 反応性の材料を使用できる組成物を提供することにある。

また、本発明の他の目的は、吐出時の目詰まりを防ぎ、安定な吐出を 達成し、吐出中の内容物の析出、さらに吐出後の膜の形成において相分 離を防ぐ組成物を提供することにある。更に、本発明の他の目的は、均 一な膜(機能膜)の製造方法、有機EL素子等の機能素子(表示素子) 及びその製造方法を提供することにある。

発明の開示

25 本発明は、1以上の置換基を有し、該置換基の炭素の総数が3以上の ベンゼン誘導体の少なくとも1種を含む溶媒と、機能材料とからなるこ

とを特徴とする組成物を提供することにより、上記目的を達成したものである。

10

また、本発明は、前記組成物を用いて形成されたことを特徴とする膜の製造方法を提供するものである。また、本発明は、第一及び第二の電極間に、前記組成物を用いて形成された発光材料層を具備する機能素子及びその製造方法を提供するものである。

15

図面の簡単な説明

20

第1図は、本発明の組成物を用いた機能性薄膜及び機能素子としての 有機EL素子の製造工程を模式的に示す斜視図である。第2図は、本発明の組成物を用いた機能素子としての有機EL素子の製造工程の一部 (基板形成工程~正孔注入/輸送層形成工程)を模式的に示す概略断面 図である。第3図は、本発明の組成物を用いた機能素子としての有機E L素子の製造工程の一部(発光層形成工程~封止工程)を模式的に示す

30

25

15 概略断面図である。

35

発明を実施するための最良の形態

40

以下、本発明の組成物、膜の製造方法、並びに機能素子及びその製造 方法について、詳細に説明する。

20 本発明の組成物は、1以上の置換基を有し、該置換基の炭素の総数が 3以上のベンゼン誘導体の少なくとも1種を含む溶媒と、機能材料とか らなることを特徴とする。

45

尚、ここでいう「該置換基の炭素の総数が3以上」とは、ベンゼン誘導体に置換している置換基全ての炭素の総数(和)が3以上であることをいう。従って、例えば、一つの置換基の炭素数が1又は2であるメチル基やエチル基を有するものでも、他の置換基と合わせることで炭素数

が3以上となるものであれば、本発明に係る前記ベンゼン誘導体に包含 される。

10

10

20

15

25

30

35

40

45

50

本発明の組成物に用いられる前記ベンゼン誘導体は、前述の通り1以上の置換基を有するものである。この一置換基としては、全置換基の炭素の総数が3以上となるようなものであれば、特に制限はなく、例えば、直鎖又は分岐の脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基等が挙げられ、更にこれらの炭化水素基中に酸素原子、窒素原子、硫黄原子等のヘテロ原子を含有するものであってもよい。また、各置換基同士は、互いに結合して、シクロアルカン環等の環構造を形成してもよい。

また、前記ベンゼン誘導体は、その炭素の総数が、前記の通り3以上 であるが、非極性、あるいは極性の弱い機能材料の溶解性をより向上で きる点で、好ましくは3~12であり、更に好ましくは3~6である。

前記ベンゼン誘導体は、これを少なくとも含む溶媒として本発明の組成物に用いられる。そのような溶媒としては、前記に例示したベンゼン誘導体の1種からなる単一溶媒又は該ベンゼン誘導体の二種以上からなる混合溶媒でもよく、また、前記ベンゼン誘導体と、前記ベンゼン誘導体以外の溶媒との混合物でもよい。

ここで、前記ベンゼン誘導体以外の溶媒としては、キシレン、トルエ 20 ン等の、1以上の置換基を有し、該置換基の炭素の総数が2以下(3未 満)のベンゼン誘導体や、無置換のベンゼン化合物の他、炭素原子を含 まない置換基で置換されたベンゼン誘導体等が挙げられる。

本発明の組成物に用いられる機能材料としては、特に制限されるものではなく、非極性、あるいは極性の弱い材料や、水と反応し易い反応性の材料であっても使用することができる。このような機能材料としては、本発明の組成物の用途に応じた材料が用いられ、例えば、有機FL材料

等の発光材料、シリカガラスの前駆体、カラーフィルター用材料、有機 金属化合物等の導電性材料、誘電体あるいは半導体材料等が挙げられ、 特に、有機EL材料、シリカガラスの前駆体、カラーフィルター用材料 が好適である。

15

10

5 本発明の組成物は、種々の用途に用いられるものであるが、特に、インクジェット法に好適に使用される。

可溶となる材料の選択性が広くなり、少なくとも吐出中での乾燥が防止 され、安定な吐出が可能となり、均一、均質で、微細な膜(機能膜)が

本発明の上記ベンゼン誘導体を必須とする組成物を使用すれば、特に、

20

10 得られる。この優れた膜を作製するには、前述した本発明の組成物を基 材上に吐出供給打ち分けた後、該基材を熱処理(加熱)すること等によ

25

り行われる。具体的には、吐出装置により基板上に、本発明の組成物を 吐出打ち分けた後、基板を吐出時温度より高温に処理する方法等が挙げ

られる。一般的には吐出温度は室温であり、吐出後基板を加熱する。こ

30

15 のような処理をすることにより、吐出後溶媒の揮発による温度の低下に より析出した内容物が再溶解され、相分離がなく、均一、均質な膜を得

35

加熱処理の

ることが出来る。

40

20

45

50

加熱処理の温度は、室温付近であまり効果がみられず、40℃以上で効果が現れる。200℃を超えると加熱した途端溶剤が蒸発し効果がなくなる。以上より加熱処理温度としては40℃~200℃が好適である。 更に好ましくは50~200℃で加熱することにより、より均一、均質な機能膜を得ることができる。かかる加熱処理温度の設定により下記の効果が得られる。特に、インクジェット法により組成物(インク)を吐出する場合、一般に、溶媒が気化し、インク滴の温度が下がり、内容物の析出が考えられる。インクの内容物が2種以上の成分よりなる場合、

均一混合系から不均一混合系に変化する場合がある。この場合、発光材

料内で相分離が起こり、均一系で得られる色度、発光効率などが得られなくなる。そこで、上記温度範囲で加熱により熱処理することにより、 吐出された組成物の内容物が再溶解され、より均一化するといった効果がある。

また、膜の製造に際しては、熱処理(加熱)だけでなく、必要に応じて減圧、加圧若しくはこれらと加熱との組合せにより行うこともできる。例えば、減圧と加熱との組合わせとして、加熱処理後に、そのまま直ちに減圧にし、溶媒を除去することが好ましい。減圧にする際の圧力は、より均一、均質な機能膜を得ることが出来る点で、好ましくは20×10⁻³mmHg(Torr)以下である。この様にすることにより組成物の濃縮時の内容物の相分離を防ぐことが出来る。即ち、一度再溶解した内容物が濃縮される際に一気に溶媒を除き、不均一化する前に内容物を均一に固定することにより、内容物の不均一化(相分離)は防げ、形成される発光材料の層で、所望の当初の目的とする発光強度、色度が得られる。

また、加熱処理開始から減圧を開始する時点までの時間については、 吐出量や材料の特性に応じて設定する。

本発明の組成物をインクジェット法に適用して上記の膜(機能膜)を作製する際に使用される吐出装置としては、インクジェットプリンティング装置、ディスペンサー等が挙げられ、好ましくはインクジェットプリンティング装置である。

ここで、正孔注入/輸送層とは、正孔等のホールを内部に注入する機能を有するとともに、正孔等のホールを内部において輸送する機能をも有する層をいう。このような正孔注入/輸送層を設けることにより、特に有機EL素子の発光効率、寿命等の素子特性が向上するため好ましい。

尚、機能素子としては、有機発光材料を用いた薄い、軽い、低消費電力、高視野角というマルチカラーの表示素子、例えば、上記有機EL素子のほか、複数の画素を有し、各画素に薄膜トランジスタ等のスイッチング素子が設けられたディスプレイ等が挙げられる。

10 この優れた機能素子としての表示装置を製造するには、第一の電極を有する基材上に、前述した本発明の組成物を選択的に供給し、好ましくは加熱、又は減圧、加圧若しくはこれらと加熱との組合せによる処理を施して発光材料層パターンを形成し、続いて該発光材料層パターン上に第二の電極を形成すること(好ましくは、第一の電極を有する前記基材上に、極性溶媒を含む溶液を用いてインクジェット法により正孔注入/輸送層を形成した後、該正孔注入/輸送層上に、特に好ましくは非極性溶媒を用いた溶液を用いて前記発光材料層パターンを形成すること)等により行われる。このようにして、優れた有機EL素子等を得ることができる。

上記機能素子における本発明の組成物を用いた機能膜としての発光材料層は、前記の膜(機能膜)の製造方法に準じて形成することが好ましい。

また、正孔注入/輸送層の形成する場合に用いられる、極性溶媒を含む溶液(組成物)としては、例えば、ポリエチレンジオキシチオフェン 等のポリチオフェン誘導体や、ポリスチレンスルホン酸等の成分を、α ープチロラクトン、Nーメチルビロリドン、1,3ージメチルー2ーイ

5

10

15

20

25

30

35

40

45

50

ミダソリジノン及びその誘導体、カルビトールアセテート、ブチルカル ビトールアセテート等のグリコールエーテル類等の極性溶媒に配合した もの等が挙げられる。このような極性溶媒を用いることにより、ノズル 詰まりなく安定吐出ができ、成膜性に優れるため好ましい。

以下、本発明の組成物を、その好ましい実施形態に基づいて詳述する。 [第1実施形態]

本発明の組成物の第1実施形態は、吐出装置を用いる機能材料のパターン膜形成に用いられる組成物であって、1以上の置換基を有し、該置 10 換基の炭素数の総数が3以上のベンゼン誘導体を少なくとも含む溶媒と 機能材料よりなる組成物である。

本実施形態によれば、非極性又は極性の弱い機能材料を良好に溶解でき、機能材料の選択性を広げるとともに、特に蒸気圧が相対的に低い溶媒を使用する場合には、遅乾性の観点から、溶媒吐出時の日詰まりを防ぎ、安定した吐出を可能とし、特に後の加熱、又は加圧や加熱直後の減圧等の処理を加熱と組合せることにより、吐出後成膜時における内容物の析出、相分離の防止を達成することができるという効果を奏する。

第1実施形態に適合する、1以上の置換基を有し、該置換基の炭素数の和が3以上のベンゼン誘導体を少なくとも含む溶媒としては、クメン、20 シメン、シクロヘキシルベンゼン、ドデシルベンゼン、ジエチルベンゼン、インチルベンゼン、ジペンチルベンゼン、ブチルベンゼン、テトラリン、テトラメチルベンゼン等の単一溶媒、あるいはこれらの溶媒の混合溶媒が考えられる。あるいはこれら単一溶媒、または混合溶媒に適宜、キシレン、トルエン、ベンゼン等を加えても良い。ここに例示したような単一溶媒、あるいは混合溶媒を用いることにより非極性、あるいは極性の弱い機能材料を溶解した組成物が可能となる。つまり、材料の選択

性が広まる。また、このような単一溶媒、あるいは混合溶媒を用いるこ とにより、目詰まりを防ぐことが出来る。

第1実施形態の組成物に用いられるベンゼン誘導体の沸点は、20

10

0℃以上であることが好ましい。このような溶媒には、ドデシルベンゼ 5 ン、シクロヘキシルベンゼン、テトラリン、ジペンチルベンゼン、ペン チルベンゼン等がある。これらの溶媒を用いることにより、溶媒の揮発 を一層防ぐことができ、尚好適である。

15

、第1実施形態の組成物に用いられるベンゼン誘導体としては、ドデシ ルベンゼンであることが好ましい。ドデシルベンゼンとしてはn-ドデ

20

10 シルベンゼン単一でも良く、また異性体の混合物でも良い。

25

この溶媒は、沸点300℃以上、粘度6mPa・s以上(20℃)の 特性を有し、この溶媒単一でももちろん良いが、他の溶媒に加えること により、組成物の乾燥を防げ、好適である。また上記溶媒のうちドデシ ルベンゼン以外は粘度が比較的小さいため、この溶媒を加えることによ

30

る粘度調整もできるため非常に好適である。 15

35

とができる。特に、極性が無いか、極性の弱い材料よりなる有機EL材 料であることが好ましい。例えば(ポリ)パラフェニレンビニレン系、 ポリフェニレン系、ポリフルオレン系、ポリビニルカルバゾール系の誘

第1実施形態に適合する機能材料としては、有機EL材料を考えるこ

40

導体よりなるEL材料、その他ベンゼン誘導体に可溶な低分子有機EL 20

45

材料、高分子有機EL材料等も考えることができる。例えばルブレン、 ペリレン、9,10-ジフェニルアントラセン、テトラフェニルブタジ エン、ナイルレッド、クマリン6、キナクリドン、ポリチオフェン誘導 体等も使用可能である。また、有機EL表示体の周辺材料である電子輸

25 送性、ホール輸送性材料に対しても使用可能である。

また、第1実施形態に適合する機能材料としては、前記有機EL材料

10

15

20

25

30

15

20

35

40

45

50

の他に、半導体等に多用される層間絶縁膜のシリコンガラスの前駆物質 であるポリシラザン (例えば東燃製)、有機SOG材料等も考えられる。

更に、第1実施形態の組成物を形成する機能材料としては、カラーフィルター用材料であることも好ましい。該カラーフィルター用材料としては、例えば、スミカレッドB(商品名、住友化学製染料)、カヤロンフアストイエローGL(商品名、日本化薬製染料)、ダイアセリンフアストブリリアンブルーB(商品名、三菱化成製染料)等の昇華染料を各種選択できる。

更にまた、機能材料として有機金属化合物を用いても良い。あるいは 10 前記溶媒に溶解するものであれば、どのような機能材料でも組成物とし ては使用可能である。

第1実施形態の組成物を使用することにより、吐出装置を用いる機能材料のパターン膜等の機能膜を作製することができる。かかる機能膜の作製法は、前記の膜の製造方法に従って行うことができる。即ち、第1実施形態の組成物を基材上に吐出供給打ち分けた後、該基材を好ましくは40℃~200℃で加熱処理することにより機能膜を得ることができる。特に、第1実施形態においては、この加熱処理温度を50~200℃とすることにより、より均一、均質な機能膜を得ることが出来るため更に好ましい。また、第1実施形態においては、高温処理の時に、加圧しながら加熱することが好ましい。この様にすることにより、加熱時の溶媒の揮発を遅らすことが出来、内容物の再溶解が更に完璧になる。その結果、より均一、均質な機能膜を得ることが出来る。加圧する際の圧力は、更に均一、均質な機能膜を得ることが出来る。かましくは1520~76000mmHg(2~100気圧)である。

25 また、第1実施形態の組成物の加熱処型においては、組成物が完全に 乾燥する前に、前述のように減圧等により溶媒を除去することが好まし

*ل*١٧ م

第1実施形態の組成物を適用できる吐出装置としては、インクジェットプリンティング装置、ディスペンサーなどを用いることが出来るが、インクジェットプリング装置がその微細さ、正確さにより好ましく、該インクジェットプリンティング装置を用いることにより微細な機能膜が簡便、かつ低コストで製造できる。

第1実施形態の組成物を使用することにより、前述した機能素子として有用な有機EL素子等の表示装置(好ましくは前記第一の電極と前記発光材料層との間に、正孔注入/輸送層を設けてなる表示装置)を好適に得ることができる。

[第2実施形態]

本発明の組成物の第2実施形態は、ドデシルベンゼンを少なくとも含む溶媒と、下記化合物1乃至5の少なくとも1種のフルオレン系高分子誘導体とを含有する組成物である。即ち、第2実施形態は、本発明の組成物において、第2実施形態に適合する、1以上の置換基を有し、該置換基の炭素数の和が3以上のベンゼン誘導体を少なくとも含む溶媒として、ドデシルベンゼンを少なくとも含む溶媒を用い、第2実施形態に適合する機能材料として、化合物1乃至5の少なくとも1種のフルオレン系高分子誘導体を用いたものである。

本実施形態は、前述した第1実施形態のより好ましい形態であり、ドデシルベンゼンといった蒸気圧の低い溶媒を使用しており、遅乾性の観点から、溶媒吐出時の目詰まりを防ぎ、安定した吐出を可能とし、特に好ましくは後述する加熱及び加圧又は加熱直後の減圧により相分離なく均一な膜を得ることができるという効果を奏する。

25 本実施形態は上記のように第1実施形態のより好ましい形態であるため、本形態の項で特に詳述しない点に関しては、前記第1実施形態につ

いて詳述したことが適宜適用される。

10

15

20

25

30

15

20

25

35

40

45

50

第2実施形態について詳述する。当該実施形態の組成物は、その溶媒としてドデシルベンゼンを使用することにより、当該組成物をインクジェット法によりパターン形成する際のインク組成物として用いる場合、当該ドデシルベンゼンの遅乾性効果が発現されるため、インクジェットへッドにおける目詰まりを防ぐことができる。また、吐出後も被吐出材上に吐出物が液状で残存し、加熱等の後処理が可能になる。更に、上記特定の構造のフルオレン系高分子誘導体(化合物1~5)は、発光材料として配合され、発光強度が強く、また極性が弱いためドデシルベンゼンに対して溶解性が良好であり、この発光材料と溶媒との組み合わせによれば、特に有機EL表示装置の構成部材として良好にパターニング可能である。

発光材料を溶解し得る種々の第二溶媒を混合して用いることができる。 好ましくは、沸点140℃以上の溶媒を混合して用いる。かかる沸点1 40℃以上の第二溶媒としては、シメン、テトラリン、クメン、デカリ ン、ジュレン、シクロヘキシルベンゼン、ジヘキシルベンゼン、テトラ メチルベンゼン、ジブチルベンゼン等を用いることができる。特に、ベ ンゼン環に炭素数3以上の置換基を有する化合物を有する溶媒を用いる ことが好ましい。また、テトラリン、1,2,3,4-テトラメチルベンゼン、 1,2,3,5-テトラメチルベンゼン、シクロヘキシルベンゼン、デカリン、ジ ブチルベンゼン等の沸点180℃以上の溶媒を用いることが好ましい。 これらの溶媒を加えることによりインクとしての組成物の濃度、乾き速 度等調節することができる。また、ドデシルベンゼンの高粘性を下げる

第2実施形態の組成物においては、溶媒として、ドデシルベンゼンに、

効果もある。更に、上記180℃以上の沸点を有する溶媒としてテトラ リンを用いた組成物は、その濃度を濃くできる利点がある。その他、溶

媒として、トルエン、キシレン、クロロホルム、四塩化炭素等を用いる ことができる。

10

15

20

10

15

25

もよい。

25

30

35

40

50

45

第2実施形態に適合する機能材料としての発光材料としては、上記特定のフルオレン系高分子誘導体に加えて、(ポリ)パラフェニレンビニレン誘導体、ポリフェニレン誘導体、ポリビニルカルバソール、ポリチオフェン誘導体、ペリレン系色素、クマリン系色素、ローダミン系色素、非極性または極性の弱い材料等が好適であるが、その他ベンゼン誘導体に可溶な低分子有機EL材料、高分子有機EL材料等も使用できる。例えばルブレン、ペリレン、9,10-ジフェニルアントラセン、テトラフェニルブタジェン、ナイルレッド、クマリン6、キナクリドン等も使用可能である。また、有機EL表示装置を構成するホール輸送材料や電子輸送材料等も適使用することが可能である。

また、前記発光材料として、下記構造を有する化合物 (6) を加えて

化合物6

第2実施形態の組成物を使用することにより、前記の第1実施形態と 20 同様に、前述した機能素子として有用な有機EL素子等の表示装置(好 ましくは前記第一の電極と前記発光材料層との間に、正孔注入/輸送層 を設けてなる表示装置)を好適に得ることができる。

第2実施形態の組成物を使用して前記発光材料層を作製するに際しては、例えば、前述のように、該組成物を吐出装置により基板上に吐出打ち分けた後、基板を吐出時温度より高温(好ましくは40℃~200℃)に加熱処理する。加熱処理工程は、高温で行うほどよいが、低沸点溶媒

10

15

20

25

30

35

40

45

50

を用いた場合、吐出直後に乾燥が終了してしまいこの工程の利点が充分 に得られない恐れがある。本実施形態によれば、高沸点溶媒であるドデ シルベンゼンを用いているため、熱処理することにより、吐出された紙 成物の内容物が再溶解され、より均一化するという前述の効果が絶大と 5 なる。

上記の組成物の加熱処理は、前記の第1実施形態の場合と同様の温度 で行うことが好ましい。また、上記の組成物の加熱処理は、前記の第1 実施形態と同様に、加圧下で行うことが好ましく、更に、上記の組成物 の熱処理において、組成物が完全に乾燥する前に減圧等により溶媒を除 去することが好ましい。

[第3実施形態]

10

20

本発明の組成物の第3実施形態は、1以上の置換基を有し、該置換基 の炭素の総数が3以上であり且つ蒸気圧 (室温、以下同じ)が0.10 ~10mmHgのベンゼン誘導体の少なくとも1種を含む溶媒と、機能 材料とからなる組成物である。即ち、第3実施形態は、本発明の組成物 において、第3実施形態に適合する、1以上の置換基を有し、該置換基 の炭素数の和が3以上のベンゼン誘導体を少なくとも含む溶媒として、 蒸気圧が0. 10~10mmHgのベンゼン誘導体を少なくとも含む溶 媒を用いたものである。

本実施形態によれば、非極性乂は極性の弱い機能材料を良好に溶解で きるとともに、溶媒吐出時の目詰まりを防ぎ、安定した吐出を可能とし、 かつ、吐出中の内容物の析出、吐出後成膜時における相分離の防止を達 成することができるという効果を奏する。特に、上記範囲の蒸気圧の溶 媒を使用すれば、ある程度乾きにくく、材料が相分離を起こさない程度 25 に早く乾燥するといったバランスのある特性が得られ、室温での自然乾 燥で相分離なく成膜がなされる。

10

15

20

10

15

20

25

30

35

40

45

50

第3実施形態の組成物に用いられる前記の蒸気圧が0.10~10 mmHgのベンゼン誘導体の少なくとも1種を含む溶媒としては、1,2,3,4ーテトラメチルベンゼン、1,2,3,5ーテトラメチルベンゼン、シクロヘキシルベンゼン、ペンチルベンゼン、メシチレン、クメン、シメン、ジエチルベンゼン、テトラリン、デカリン等が挙げられ、これちのうち、特に、1,2,3,4ーテトラメチルベンゼンが好ましい。また、前記ベンゼン誘導体としては、蒸気圧0.10~0.50 mm Hgのベンゼン誘導体の少なくとも1種と、蒸気圧0.50~10 mm Hgのベンゼン誘導体の少なくとも1種との混合物であることも好まし

ここで、前記の蒸気圧 0. 10~0. 50 mm H g のベンゼン誘導体 としては、テトラメチルベンゼン又はシクロヘキシルベンゼンであるこ とが好ましい。

また、前記の蒸気圧 O. 50~10 mm H g のベンゼン誘導体としては、ジエチルベンゼン及び/又はメシチレンであることが好ましい。

第3実施形態の組成物に適合する機能材料としては、特に制限される ものではなく、例えば、前記の有機EL材料、シリコンガラスの前駆物 質等を本実施形態に適用することができるが、特に、フルオレン系高分 子誘導体の少なくとも1種、とりわけ、前述した第2実施形態の組成物 に用いられる前記化合物1~5が好適である。従って、本実施形態に用 いられる機能材料としては、前述した第2実施形態において説明した機 能材料としての発光材料が適宜適用される。

また、第3実施形態の組成物は、成膜後、加熱、又は加熱と減圧との組合せにより残留溶媒を除去することにより、特定の優れた素子を得ることができる。このとき、加熱温度は、40 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0 $^{\circ}$ 0,特に50 $^{\circ}$ 100 $^{\circ}$ 0が好ましい。また、減圧時の圧力は、 20×10^{-3} mmHg以

下が好ましい。また、吐出後(基板全面に吐出後)、液滴が残っていても、加熱、又は加熱と減圧との組合せの下で成膜してもよい。

10

第3実施形態の組成物を使用することにより、前記の第1及び第2実施形態と同様に、前述した機能素子として有用な有機EL素子等の表示 装置 (好ましくは前記第一の電極と前記発光材料層との間に、正孔注入/輸送層を設けてなる表示装置)を好適に得ることができる。

15

以下、実施例を挙げて本発明を更に具体的に説明する。しかしながら、 本発明はこれらの実施例により何等制限されるものではない。

20

10 [第1実施形態の実施例]

15

20

(実施例1-1)

25

ITO (インジウムチンオキサイド) 透明電極付きガラス基板の電極 がある面側に、ポリビニルカルバゾールのテトラヒドロフラン溶液を塗 布し、スピンコート法により 0. 1 マイクロメータのポリビニルカルバ

30

ゾール膜を形成した。該膜上に、インクジェットプリンティング装置を 用い、ポリヘキシルオキシフェニレンビニレンのキシレン/テトラリン の0.1重量パーセント混合溶液(キシレン/テトラリン=1/4、体 積比)を所定の形状に吐出した。更にこの上にアルミニウムを蒸着した。

35

ITOとアルミニウムよりリード線を引き出し、ITOを陽極、アル

40

ミニウムを陰極として10ボルトの電圧を印加したところ、所定の形状で橙色に発光した。従来のキシレンのみを溶媒としたインキを吐出する場合、乾燥が速く、目詰まりをおこし、すぐに使えなくなってしまったのに対し、本方法によれば目詰まりをおこすことはなくなった。

45

(実施例1-2)

50

25 シメンとテトラリンの混合溶液 (シメン/テトラリン=1/1) にポリシラザンの20重量パーセントキシレン溶液 (東燃製) を混合溶媒に

10

15

20

25

30

35

40

25

45

50

対して20体積パーセントになるように調合した。このようにして得られたポリシラザン溶液をインクジェットプリンティング装置により、プラスチック製液晶パネル面に全面濡れるように吐出し、乾燥した。反対側も同じ処理をし、両面ポリシラザン膜とした。このパネルを85度C、

90パーセントの恒温恒室槽にいれ20分間放置し、シリカガラス膜と した。このパネルを取り出し乾燥したのち、2枚の偏光板が直交するよ うに両側から張り合わせた。

この方法によりポリシラザンの使用量がスピンコート法に比べ激減し、 ほぼロスなしでシリカガラス膜が形成できた。また、液晶パネルのガス 10 透過率が改善され液晶パネルの寿命も改善された。

(実施例1-3)

シメンとテトラリンの混合溶液 (シメン/テトラリン=1/1) にポリシラザンの20重量パーセントキシレン溶液 (東燃製) を混合溶媒に対して20体積パーセントになるように調合した。このようにして得られたポリシラザン溶液をインクジェットプリンティング装置により、半導体素子形成及びアルミ配線を施したシリコン基板上に吐出し、全面塗布した。塗布後、150度Cで、20分乾燥し、しかる後、水蒸気雰囲気中350度Cで2時間焼成した。

その結果、スピンコート法による場合と、略同じ特性のシリカガラス 20 による平坦化膜が得られた。しかし使用量は2桁程少なくなった。

(実施例1-4)

更に本発明の実施の形態について詳細に説明する。図1に示すように、 モザイク状に区切られた1TO(インジウムチンオキサイド)透明電極、 および透明電極を囲む土手付きガラス基板の電極上に、赤、緑、青に発 色する有機EL材料を溶解した下記に示す吐出組成物を各色モザイク状 に配列する様インクジェットプリンティング装置により打ち分けた。固

10

,0

15

20

25

30

35

40

45

50

形物の溶媒に対する割合はいずれも0.4%(重量/体積)である。図 1において、1はノズル、2はガラス基板、3はITO透明電極、4は 土手(仕切り)、5は組成物(インク滴)をそれぞれ示す。 <吐出組成物>

5 溶媒 ドデシルベンゼン/テトラリン(1/1、体積比)

赤 ポリフルオレン /ペリレン染料 (98/2、重量比)

緑 ポリフルオレン/クマリン染料 (98.5/1.5、重量比)

青 ポリフルオレン

吐出により得られた基板を100℃で加熱し、溶媒を除去してからこ 10 の基板上に適当な金属マスクをしアルミニウムを2000オングストロ ーム蒸着した。

ITOとアルミニウムよりリード線を引き出し、ITOを陽極、アルミニウムを陰極として15ボルトの電圧を印加したところ、所定の形状で赤、緑、青色に発光した。従来のキシレンのみを溶媒としたインキを 15 吐出する場合、乾燥が速く、目詰まりをおこし、すぐに使えなくなってしまったのに対し、本方法によれば目詰まりをおこすことはなくなった。また吐出後基板を加熱し内容物を再溶解したため、内容物の分離が防げ、発光スペクトル等に何ら問題はない。キシレン等の低沸点溶媒を用いた場合、吐出直後から乾燥が始まり、気化熱の除去等により内容物の析出、 40 相分離が起こり発光スペクトルの変化が起こり、望ましくなかった。

上記各ITO電極がTFT素子につながっておれば、現在流通している液晶ディスプレイと同様なディスプレイが有機ELにより作製できることになる。

(実施例1-5)

25 実施例1-4と同様にして吐出した基板を100℃で1分乾燥した後、 直ちに減圧(2mmHg)で溶媒を除去した。このようにして得られた

10

15

20

25

30

35

40

基板を用い、実施例1-4と同様な方法によりパネルを作成し点灯した ところ実施例1-4と同じような結果が得られた。

(実施例1-6)

実施例1-4と同様にして吐出した基板をベルジャー内に設置し、チッソガスを封入し内圧を2気圧とし、100℃で乾燥、溶媒を除去した。このようにして得られた基板を用い、実施例1-4と同様な方法によりパネルを作成し点灯したところ実施例1-4と同じような結果が得られた。

[第2実施形態の実施例]

10 (実施例2-1)

本実施例では、カラー表示装置を作製する。

本実施例におけるプロセスについても、前述した第1実施形態の実施例と同様に、図1により説明することができる。即ち、図1に示す構造では、ITO透明電極3は、ドット状状パターンで形成されており、個々15 独立してTFT素子(不図示)に直結されて画素を形成し駆動可能である。各画素(ITO透明電極3のドット)の境界部で各画素を区画するように土手4が形成されており、ノズルから打ち出された組成物(インク組成物)5が土手4により仕切られたITO透明電極上に供給され付着する。組成物として、三色の発光材料を用いることでマルチカラーの20 発光ディスプレイを作製することができる。

まず組成物(インク組成物)として下記表1に示す処方で発光材料を 溶媒に対して配合して三種の組成物を調製した。発光材料としては前述 した本発明で特徴的な化合物1乃至5から選択し、更に必要に応じて化 合物6を用いている。

25 次にインクジェット装置を用いポリイミドからなる土手4を有し、画 素毎にTFTが設けられた基板(TFT基板)上に該組成物を吐出した。

50

10

15

20

25

30

35

40

45

50

吐出される領域(土手4で区画された領域)の大きさは 30μ m× 30μ m、ピッチ 70μ mであり、組成物(インク組成物)の吐出のピッチは 70μ mとした。インクジェットのヘッドにおける目詰まり等を生じることなく良好に吐出がなされ、モザイク状に三種のインクが配列した基板を得ることができた。

表1

10

Ţ	発光材料	溶媒
R (赤) インク	化合物 1 0.70g 化合物 2 0.2 g 化合物 6 0.1 g	ドデシルベンゼン100ml テトラリン 100ml
G(緑)インク	化合物 1 0.76g 化合物 2 0.2 g 化合物 4 0.04g	ドデシルベンゼン100ml テトラリン 100ml
B (青) インク	化合物 1 0.78g 化合物 2 0.15g 化合物 3 0.07g	ドデシルペンゼン100ml テトラリン 100ml

この基板を窒素雰囲気中、100℃のホットプレート上で熱処理して 発光層を得た。得られた発光層の膜厚は0.08~0.1μmであった。 更に発光層上に弗化リチウム(100nm)、カルシウム(100nm)、 アルミニウム(150nm)の順に蒸着し、得られた積層構造をエポキ

各ITO透明電極 (ドット) に設けられたTFT素子を10ボルトで駆動したところ、画素に所望の色 (当該画素に設けられた発光層に相当20 する色)を表示することができた。また動画の表示も可能であった。特に、Gインクを吐出した画素において、発光波長スペクトルの440nmと530nmのピーク比を測定したところ(440nm/530nm)、1.0であり、視覚的に良好に緑色が表示されていた。

(実施例2-2)

シ樹脂で封じ有機EL表示装置を得た。

25 下記表 2 に示す組成で発光材料を溶媒に対して配合して三種の組成物 (インク組成物)を調製し、実施例 2-1 と同様にして、インクジェッ

10

15

20

25

30

35

40

45

50

ト装置を用い図 1 に示すようにポリイミドからなる土手 4 を有する基板 (TFT基板) 上に吐出した。吐出される領域(土手 4 で区画された領域)の大きさは 3 0 μ m \times 3 0 μ m 、ピッチ 7 0 μ m であり、吐出のピッチは 7 0 μ m とした。インクジェットのヘッドにおける目詰まり等を生じることなく良好に吐出がなされ、モザイク状に三種のインクが配列した基板を得ることができた。

表2

10

	発光材料	容媒
R (赤) インク	化合物 1 0.70g 化合物 2 0.2 g 化合物 5 0.1 g	ドデシルベンゼン100ml テトラリン 100ml
G (緑) インク	化合物 1 0.76g 化合物 2 0.2 g 化合物 4 0.04g	ドデシルベンゼン100ml テトラリン 100ml
B(骨)インク	化合物1 0.78g 化合物2 0.15g 化合物3 0.07g	ドデシルベンゼン100ml テトラリン 100ml

この基板を窒素雰囲気中、100℃のホットプレート上で熱処理し発 15 光層を形成した。得られた発光層の膜厚は0.08~0.1 μ mであっ た。更に発光層上に弗化リチウム(100 n m)、カルシウム(100 n m)、アルミニウム(150 n m)の順に蒸着し、得られた積層構造 をエポキシ樹脂で封じ有機EL表示装置を作成した。

各ITO透明電極 (ドット) に設けられたTFT素子を10ボルトで 20 駆動したところ、画素に所望の色 (当該画素に設けられた発光層に相当 する色)を表示するすることができた。また動画の表示も可能であった。 特に、Gインクを吐出した画素において、発光波長スペクトルの440 nmと530nmのピーク比を測定したところ (440nm/530nm)、1.0であり、視覚的には良好に緑色が表示されていた。

25 (実施例2-3)

実施例2-1と同様にして、まず上記表1に示す組成の三種の組成物

(インク組成物)を調製し、インクジェット装置を用い図1で示すようにポリイミドからなる土手4を有するTFT基板上に当該インクを吐出した。インクジェットヘッドにおいて良好に目詰まりを生じることなく、良好な吐出がなされた。

この基板を窒素雰囲気中、100 ℃のホットプレート上で1 分間熱処理し、すぐに減圧(水銀柱1 mmHg)にし、溶媒を除去して発光層を得た。得られた発光層の膜厚は $0.08\sim0.1$ μ mであった。更にこの上に弗化リチウム(100 n m)、カルシウム(100 n m)、アルミニウム(150 n m)の順に蒸着した。得られた積層構造をエポキシ樹脂で封じ有機EL表示装置を得た。

各ITO透明電極(ドット)に設けられたTFT素子を10ボルトで駆動したところ、画素に所望の色(当該画素に設けられた発光層に相当する色)を表示するすることができた。また動画の表示も可能であった。特に、Gインクを吐出した画素において、発光波長スペクトルの440nmと530nmのピーク比を測定したところ(440nm/530nm)、1.8であり、より良好な緑色が表示されていた。

(実施例2-4)

実施例1と同様にして、まず上記表1に示す組成の三種の組成物(インク組成物)を調製し、インクジェット装置を用い図1で示すようにポリイミドからなる上手4を有するTFT基板上に当該インクを吐出した。インクジェットヘッドにおいて良好に目詰まりを生じることなく、良好な吐出がなされた。

この基板を 2 気圧の 室素雰囲気巾、 150 でのホットプレート上で 1 分間熱処理し、すぐに減圧(水銀柱 1 mm H g)にして溶媒を除去した。得られた発光層の膜厚は 0. $08\sim0$. 1μ m であった。更にこの上に 弗化リチウム(100 n m)、カルシウム(100 n m)、アルミニウ

ム (150nm) の順に蒸着した。得られた積層構造をエポキシ樹脂で 封じ有機EL表示装置を得た。

25

10

各 I T O 透明電極 (ドット) に設けられたT F T 素子を 1 0 ボルトで 駆動したところ、画素に所望の色 (当該画素に設けられた発光材料層に 相当する色) を表示するすることができた。また動画の表示も可能であ

15

った。特に、Gインクを吐出した画素において、発光波長スペクトルの 440 n m > 530 n m のピーク比を測定したところ(440 n m > 530 n m)、2.0であり、より良好な緑色が表示されていた。

20

(実施例2-5)

25

10 上記表 2 - 2 に示す組成において、テトラリンに替えてシクロヘキシルベンゼン 1 0 0 m l を配合しその他は同様に発光材料を溶媒に対して配合して 3 種の組成物(インク組成物)を調製し、実施例 2 - 1 と同様にして、インクジェット装置を用い図 1 に示すようにポリイミドからなる土手 4 を有する T F T 基板)上に吐出した。吐出の間隔は 7 0 μ m で

30

15 あり、モザイク状に三種のインクが配列した基板を得た。

35

この基板を窒素雰囲気中、130℃のホットプレート上で熱処理した。 得られた発光材料層の膜厚は0.08~0.1μmであった。更に発光 材料層の上に弗化リチウム(100nm)、カルシウム(100nm)、 アルミニウム(150nm)の順に蒸着した。

40

20 各 I T O 透明電極 (ドット) に設けられたT F T 素子を 1 0 ボルトで 駆動したところ、画素に所望の色 (当該画素に設けられた発光層に相当 する色)を表示するすることができた。また動画の表示も可能であった。 (実施例 2 - 6)

45 .

実施例2-5と同様の組成で三種の組成物 (インク組成物) を調製し、 25 同実施例と同様にインクジェット装置を用い図1で示すようにポリイミ ドからなる土手4を有するTFT基板上に当該インクを吐出した。

10

15

20

25

30

35

40

45

この基板を 2 気圧の窒素雰囲気中、180 $\mathbb C$ のホットプレート上で 1 分間熱処理した後直ちに減圧($1\,\mathrm{mmHg}$)にし溶媒を除去し発光材料層を得た。得られた発光層の膜厚は $0.08\sim0.1\,\mu\,\mathrm{m}$ であった。 更にこの上に弗化リチウム($100\,\mathrm{nm}$)、カルシウム($100\,\mathrm{nm}$)、アルミニウム($150\,\mathrm{nm}$)の順に蒸着した。得られた積層構造の周囲

各ITO透明電極(ドット)に設けられたTFT素子を10ボルトで駆動したところ、画素に所望の色(当該画素に設けられた発光材料層に相当する色)を表示するすることができた。また動画の表示も可能であった。

をエポキシ樹脂で封じ有機EL表示装置を得た。

(比較例2-1)

下記表3に示す組成で発光材料を溶媒に対して配合しの組成物(R (赤)用インク組成物)を調製し、実施例2-1と同様にして、インクジェット装置を用い図1に示すようにポリイミドからなる土手4を有する基板(TFT基板)上に吐出を試みた。しかし、インクジェットヘッドにおいて目詰まりが生じ、基板上に発光層の形成を行うことができなかった。

表3

	発光材料	溶媒
R (赤)	化合物7 0.98g	キシレン 200ml
インク	化合物8 0.02g	İ

尚、本例で使用した発光材料である化合物7及び8は下記の構造を有する化合物である。

25

20

10

化合物8

15 [第3実施形態の実施例]

(実施例3-1)

まず組成物として、下記表4~9に示す処方で、機能材料(発光材料) としての高分子化合物を溶媒に配合して組成物1~6[各組成物につき、 R(赤)、G(緑)、B(青)の三種]を調製した。高分子化合物とし ては、第3実施形態に特に適合した機能材料である化合物1~化合物5 から選択して用いた。

•

表 4 (組成物1)

	高分子	化合物 (1%	wt/v)	容無		
R (赤)	化合物1	化合物2	化合物5	キシレン		
K (91-)	0.7 g	0.2g	0.1g	100 ml		
G (級)	化合物1	化合物2	化合物4	キシレン		
G (#K)	0.76g	0.20 g	0.04 g	100 ml		
B (育)	化合物1	化合物2	化合物3	キシレン		
5 (R)	0.78g	0.15 g	0.07g	100 ml		

表 5 (組成物 2)

		尚分子	化合物 (1%	wt/y)	. 裕姓		
Γ.	(赤)				メシチレン		
Ľ		0.7g	0.2g	0.1g	100 ml		
G	(総)	化合物1	化合物2	化合物4	メシチレン		
Ľ	(140)	0.76g	0.20 g	0.04 g	100 ml		
Ι,					メシチレン・		
Ľ		0.78 g	0.15 g	0.07 g	100 ml		

表 6 (組成物3)

	高分子化合物 (1%wt/v)			容媒
R (赤)	化合物1	化合物2 0.2g	化合物5	1、2, 3, 4-テトラメチルペンゼン 100 ml
	化合物1	化合物2	化合物4	1、2, 3, 4-テトラメチルペンゼン 100 ml
B (育)	化含物1 0.78 g	化合物2	化合物3	1、2. 3. 4-テトラメチルベンゼン

表7 (組成物4)

	高分子	化合物(1%	wc/V)	溶媒		
R (赤)		化 自物 2 0.2g		ジエテルペンゼン 30 ml	1、2. 3、4-アトフメナルベンゼン 70 ml	
G (級)	0.76 g	0.20 g	0.04 g		1、2, 3, 4-テトラメチルペンゼン 70 ml	
3 (常)			化合物 3 0.07 g	ジエチルペンゼン 30 ml	1、2. 3, 4-テトラメチルベンゼン 70 ml	

溶媒

シクロヘキシルペンゼン

シクロヘキシルベンゼン

1、2,3,4-テトラメチルベンゼン

20 ml

70 ml

70 ml

R (赤)

G (総)

メシチレン

メシチレン

60 ml

80 ml

5

表 8 (組成物5)

0.7 g

化合物1

高分子化合物 (1%wt/v) 化合物1 化合物2 化合物5

0.2g

化合物2

0.76 0.20 0.04 0

0.76g | 0.20g

化合物2

化合物1

0.1g

化合物4

化合物3

0.07 g

10

15

20

25

30

35

40

45

10

5

8 (育)			•	メシチレン	シクロヘキシルベンゼン	
#1 O			0.07 g	80 ·ml 20 ml		
表 9	(組成物		/ 1/)		按 媒	
	而分子化合物(1%wt/∀)					
R (赤)	化合物1	化合物2	化合物5	ドデシルベンゼン	1、2, 3, 4-テトラメチルペンゼン	
K (%)	0.7g	0.2g	0.1 g	30 ml	70 ml	
	化合物1	化合物2	化合物4	ドヂシルペンゼン	1、2、3、4-ナトラメチルペンゼン	

ドヂシルペンゼン

尚、組成物1~6に用いた溶媒の蒸気圧 (室温) は次の通りである。

キシレン

; 13.80

30 ml

メシチレン

; 1. 73

15 ·

1,2,3,4-テトラメチルヘンセン

; 0. 23

ジエチルベンゼン

; 0. 70

シクロヘキシルベンゼン: 0.193

ドデシルベンゼン

; 0. 0000125

上記組成物について、溶液安定性、吐出性及び相分離の評価を下記評 価基準に従ってそれぞれ行った。それらの評価結果を表10に示す。 20

溶液安定性;調製時から2日以上室温で放置したときに析出が見られ るか否か (濁度変化があるか否か) により評価した。尚、G、Bの組成 物については650nmにおける濁度変化、Rの組成物については70

Onmにおける濁度変化を見た。

〇: 濁度変化なし(透明溶液) 25

×:濁度変化あり(析出あり)

55

吐出性:ピエゾ駆動のインクジェットヘッド(エプソン社製MJ-9 30C)からの組成物(インク)液滴の飛行を観察した。

10

◎:極めて良い。

〇:良い(多少の飛行曲がりはあるが、パターンニングはできる)。

×:飛行曲がりやノズル詰まりが起こる。

15

相分離:R、G、Bの各色パターニング後、自然乾燥した膜のPL或いはEL発光スペクトルで評価した。

〇:化合物1由来の短波長スペクトルが観察されない。

20

×:化合物1由来の短波長スペクトルが観察される。

10

5

表10

25

30

		組成物	溶液安定性	吐出性	相分離
	比較品	1(R,G,B)	0	×	
		2(R,G,B)	0	0	0
		3(R,G,B)	0	0	0
	本発明品	4(R,G,B)	0	0	0
		5(R,G,B)	0	0	0
15		6(R,G,B)	0	<u> </u>	×
	·				

35

20 (実施例3-2)

なった。

40

基板形成

45

以下のようにして、図2 (A) に示す画素を有する基板を形成した。 TFT付きの基板11上に、ITO12、SiO213及びポリイミド 14をフォトリソグラフィー法によりパターン形成した。このSiO2 及びポリイミドはバンク(土手)となる部分である。このとき、SiO

₂には28μmφの円形の開口部を設け、更にその上のポリイミドには

但し、組成物6については、実施例2-1~2-6の条件と同様に、

吐出後、加熱処理又は加圧下での加熱処理により、相分離は、「〇」と

50

10

15

20

25

30

35

40

45

 32μ m ϕ の円形の開口部を設けることにより、これら両開口部からなる円形画素 15 を形成した。この画素ピッチ a は、 70.5μ m である。 S i O_2 及びポリイミドで仕切られた上記円形画素は、後述の有機 E L 材料を含有する吐出組成物をインクジェット方式によりパターンニング 塗布する部分となる。

基板のプラズマ処理

次に、円形画素が形成された上記基板に、図 2 (B) の矢印の方向にて、 O_2 及び CF_4 の連続大気圧プラズマ処理を行った。このプラズマ処理の条件は、次の通りである。即ち、大気圧下で、パワーを 300W、

10 電極-基板問距離を1 mmとした。また、 O_2 プラズマについては、 O_2 ガス流量を80 c c m、ヘリウムガス流量を10 l/min、テープル搬送速度を10 mm/sとし、 CF_4 プラズマについては、 CF_4 ガス流量を100 c c m、ヘリウムガス流量を10 l/min、テーブル搬送速度を5 mm/sとした。

15 インクジェット方式による正孔注入/輸送層の形成 表11に示す組成からなる組成物を、正孔注入/輸送層用のインク組 成物として調製した。

表11

材料	含有量(wt%)		
ポリエチレンジオキシチオフェン/	11.08		
ポリスチレンスルフォン酸混合液	11.08		
ポリスチレンスルフォン酸	1.44		
イソプロピルアルコール	10		
N-メチルピロリドン	27.48		
1、3ージメチルー2ーイミダンリジノン	50		

25

20

10

15

20

25

30

35

40

45

50

図2(C)に示すように、インクジェットヘッド(エプソン社製MJ-930Cヘッド)16から、上記の正孔注入/輸送層用のインク組成物17を20plで吐出し、各画素電極上にパターニング塗布を行った。塗布後、真空(1torr)中、室温、20分という条件で溶媒を除去し、その後、大気中、200℃(ホットプレート上)、10分の熱処理により、正孔注入/輸送層18を形成した(図2(D)参照)。得られた正孔注入/輸送層18の膜厚は、40nmであった。

インクジェット方式による発光層の形成

図3(E)及び(F)に示すように、インクジェットヘッド(エプソ 10 ン社製MJ-930Cヘッド)16から、発光層用組成物19として、 前記の実施例3-1で用いた表5の組成物2を20plで吐出し、B、 R、Gの順で各素電極上にパターニング塗布を行うことにより、各色の 発光層20を形成した(図3(G)参照)。発光層20を形成後、1T orr以下の減圧下、30分、60℃でホストベークを行った。

15 電極・封止工程

発光層を形成した後、弗化リチウム(厚み:2nm)、カルシウム(厚み:20nm)、及びアルミニウム(厚み:20nm)を蒸着で形成し、電極(陰極)21とした。最後に、エポキシ樹脂22で上記電極を封じ、カラー有機ELパネル10を作製した(図3(H)参照)。

20 (実施例3-3)

前記の実施例3-1で用いた表6の組成物3を用いて各色の発光層を 形成した以外は、前記の実施例3-2と同様の工程によりカラー有機E Lパネルを作製した。

(実施例3-4)

25 前記の実施例3-1で用いた表7の組成物4を用いて各色の発光層を 形成した以外は、前記の実施例3-2と同様の工程によりカラー有機E

しパネルを作製した。

(実施例3-5)

10

前記の実施例3-1で用いた表8の組成物5を用いて各色の光光層を 形成した以外は、前記の実施例3-2と同様の工程によりカラー有機E Lパネルを作製した。

15

産業上の利用可能性

20

以上のように、本発明の組成物は、従来の機能材料のパターン化の方 法であるフォトリソグラフィー法に代わるインクジェットプリンティン グ法に採用でき、機能材料として、非極性、あるいは極性の弱い材料や、

10 水との反応性のある材料を使用でき、吐出時の目詰まりを防ぎ、安定な 吐出を達成し、吐出中の内容物の析出、吐出後成膜時の相分離を防ぐこ とができるものである。

25

また、本発明の機能膜は、前記組成物を用いて形成された、均一、均質で、微細なものである。また、本発明の表示装置は、前記組成物を用いて形成された発光材料層を設けてなる、特に発光ディスプレイ用途に有用な優れた有機 E 1. 素子等の表示装置である。

30

15

また、本発明の表示装置の製造方法によれば、異なる機能を有する膜の配列を簡単に得ることが出来る。また必要部分に必要な量の材料を使うため、スピンコート法等による方法よりも材料を少なく出来る。

35

40

45

Claims

請求の範囲

	_
4	n

1. 1以上の置換基を有し、該置換基の炭素の総数が3以上のベンゼン 誘導体の少なくとも1種を含む溶媒と、機能材料とからなることを特徴とする組成物。

15

2. 前記ベンゼン誘導体の沸点が、200℃以上である請求の範囲第1 項記載の組成物。

3. 前記ベンゼン誘導体が、ドデシルベンゼンである請求の範囲第2項記載の組成物。

20

10 4. 前記ベンゼン誘導体の少なくとも1種を含む前記溶媒が、沸点140℃以上の他の溶媒を含有する請求の範囲第1~3項の何れかに記載の組成物。

25

前記ベンゼン誘導体が、ドデシルベンゼンであり、且つ前記の沸点
 140℃以上の他の溶媒が、シメン、テトラリン、クメン、デカリン、

30

15 ジュレン、シクロヘキシルベンゼン、ジヘキシルベンゼン、テトラメチルベンゼン及びジプチルベンゼンからなる群より選択される少なくとも 1種である請求の範囲第4項記載の組成物。

35

6. 前記ベンゼン誘導体の少なくとも1種を含む前記溶媒が、沸点180℃以上の他の溶媒を含有する請求の範囲第1~3項の何れかに記載の組成物。

40

20

7. 前記ベンゼン誘導体の蒸気圧 (室温) が、0. 10~10 mm H g である請求の範囲第1項記載の組成物。

45

8. 前記ベンゼン誘導体が、1,2,3,4ーテトラメチルベンゼンである請求の範囲第7項記載の組成物。

25 9. 前記ベンゼン誘導体が、蒸気圧 0. 10~0. 50 mm H g のベンゼン誘導体の少なくとも 1種と、蒸気圧 0. 50~10 mm H g のベン

ゼン誘導体の少なくとも1種との混合物である請求の範囲第7記載の組成物。

10

10. 前記の蒸気圧0. 10~0. 50mmHgのベンゼン誘導体が、 テトラメチルベンゼンである請求の範囲第9項記載の組成物。

15

5 11. 前記の蒸気圧0.10~0.50mmHgのベンゼン誘導体が、 シクロヘキシルベンゼンである請求の範囲第9項記載の組成物。

20

12. 前記の蒸気圧0. 50~10 mmHgのベンゼン誘導体が、ジエチルベンゼン及び/又はメシチレンである請求の範囲第9~11項の何れかに記載の組成物。

10 13. 前記機能材料が、有機EL材料である請求の範囲第1~12項の 何れかに記載の組成物。

25

14. 前記有機EL材料が、フルオレン系高分子誘導体の少なくとも1種である請求の範囲第13項の何れかに記載の組成物。

30

15. 前記フルオレン系高分子誘導体が、下記化合物 1 乃至 5 の化合物 15 である請求の範囲第 1 4 項記載の組成物。

35

20

25

40

45

化合物1

化合物2

化合物3

化合物4

化合物5

16. 前記機能材料が、シリカガラスの前駆体である請求の範囲第1~ 12項の何れかに記載の組成物。

10

17. 前記機能材料が、カラーフィルター用材料である請求の範囲第1 ~12項の何れかに記載の組成物。

5 18. インクジェット法に使用される、請求の範囲第1~17項の何れ かに記載の組成物。

15

19. 請求の範囲第1~18項の何れかに記載の組成物を基材上に供給 打ち分けた後、該基材を熱処理することを特徴とする膜の製造方法。

20

20. 前記組成物を吐出装置により基板上に吐出打ち分けた後、基板を

10 吐出時温度より高温に処理する請求の範囲第19項記載の膜の製造方法。

25

21. 高温処理の時、加圧しながら加熱する請求の範囲第20項記載の 膜の製造方法。

22. 高温処理後そのまま直ちに減圧にし、溶媒を除去する請求の範囲 第20又は21項記載の膜の製造方法。

30

15 23. 前記吐出装置が、インクジェットプリンティング装置である請求 の範囲第20~22項の何れかに記載の膜の製造方法。

35

24. 請求の範囲第1~18項の何れかに記載の組成物を用いて形成されたことを特徴とする機能素子。

25. 前記機能素子が、表示素子である請求の範囲第24項記載の機能 20 素子。

40

26. 前記表示素子は、第一及び第二の電極間に発光材料層を具備し、 該発光材料層が、前記組成物を用いて形成されてなる請求の範囲第25 項記載の機能素子。

45

27. 前記第一の電極と前記発光材料層との間に、正孔注入/輸送層を 25. 設けてなる請求の範囲第26項記載の機能素子。

20

28. 前記表示素子が、有機EL素子である請求の範囲第25~27項

の何れかに記載の機能素子。

10

29. 請求の範囲第26項記載の機能素子の製造方法であって、第一の 電極を有する基材上に、前記組成物を選択的に供給し発光材料層パター ンを形成し、続いて該発光材料層パターン上に第二の電極を形成するこ

とを特徴とする機能素子の製造方法。

15

30. 前記組成物を選択的に供給並びに熱処理し発光材料層パターンを 形成する請求の範囲第29項記載の機能素子の製造方法。

31. 前記熱処理を40~200℃の温度範囲で行う請求の範囲第30

20

項記載の機能素子の製造方法。

32. 前記熱処理を加圧下で行う請求の範囲第30又は31項記載の機 10 能素子の製造方法。

25

33、前記熱処理において、組成物が完全に乾燥する前に減圧する請求 の範囲第30~32項の何れかに記載の機能素子の製造方法。

34.第一の電極を有する前記基材上に、極性溶媒を含む溶液を用いて

30

インクジェット法により正孔注入/輸送層を形成した後、該正孔注入/ 15 輸送層上に、前記発光材料層パターンを形成し、有機EL素子を得る請 求の範囲第29~33項の何れかに記載の機能素子の製造方法。

35

35. 前記機能素子として、有機EL素子を得る請求の範囲第29~3 3項の何れかに記載の機能素子の製造方法。

40

45

20

25

30

35

40

45

50

39 補正書の請求の範囲

[2000年8月18日 (18.08.00) 国際事務局受理:出願当初の 請求の範囲1は補正された;他の請求の範囲は変更なし。(2頁)]

10 1. (補正後) 1以上の置換基を有し、該置換基の炭素の総数が3以上のでででである。 1. (補正後) 1以上の置換基を有し、該置換基の炭素の総数が3以上のででです。 1. (補正後) 1以上の置換基を含む溶媒と、有機EL材料、シリ

5 カガラスの前駆体、カラーフィルター用材料、導電性材料、及び半導体 材料からなる群より選択された機能材料とからなることを特徴とする組 成物。

2. 前記ペンゼン誘導体の沸点が、200℃以上である請求の範囲第1項記載の組成物。

10 3. 前記ペンゼン誘導体が、ドデシルペンゼンである請求の範囲第2項 記載の組成物。

4. 前記ペンゼン誘導体の少なくとも1種を含む前記溶媒が、沸点140℃以上の他の溶媒を含有する請求の範囲第1~3項の何れかに記載の組成物。

- 15 5.前記ペンゼン誘導体が、ドデシルペンゼンであり、且つ前記の沸点 140℃以上の他の溶媒が、シメン、テトラリン、クメン、デカリン、 ジュレン、シクロヘキシルペンゼン、ジヘキシルペンゼン、テトラメチ ルペンゼン及びジブチルペンゼンからなる群より選択される少なくとも 1種である請求の範囲第4項記載の組成物。
- 20 6. 前記ペンゼン誘導体の少なくとも1種を含む前記溶媒が、沸点180℃以上の他の溶媒を含有する請求の範囲第1~3項の何れかに記載の組成物。
 - 7. 前記ベンゼン誘導体の蒸気圧 (室温) が、0.10~10 mm H g である請求の範囲第1項記載の組成物。
- 25 8. 前記ベンゼン誘導体が、1,2,3,4ーテトラメチルベンゼンで ある請求の範囲第7項記載の組成物。

10

,0

15

20

25

30

35

40

45

50

9. 前記ペンゼン誘導体が、蒸気圧 0. 10~0.50mmHgのペンゼン誘導体の少なくとも1種と、蒸気圧 0.50~10mmHgのペンゼン誘導体の少なくとも1種との混合物である請求の範囲第7記載の組成物。

- 5 10.前記の蒸気圧0.10~0.50mmHgのペンゼン誘導体が、 テトラメチルペンゼンである請求の範囲第9項記載の組成物。
 - 11. 前記の蒸気圧 0. 10~0.50 mm H g のペンゼン誘導体が、シクロへキシルペンゼンである請求の範囲第9項記載の組成物。
 - 12. 前記の蒸気圧 0. 50~10 mm H g のペンゼン誘導体が、ジエ
- 10 チルベンゼン及び/又はメシチレンである請求の範囲第9~11項の何れかに記載の組成物。
 - 13. 前記機能材料が、有機EL材料である請求の範囲第1~12項の何れかに記載の組成物。
 - 14. 前記有機EL材料が、フルオレン系高分子誘導体の少なくとも1
- 15 種である請求の範囲第13項の何れかに記載の組成物。
 - 15. 前記フルオレン系高分子誘導体が、下記化合物1乃至5の化合物である請求の範囲第14項記載の組成物。

25

20

補正された用紙(条約第19条)

条約19条に基づく説明書

請求の範囲第1項は、本発明の組成物に用いられる機能材料が、有機 EL材料、シリカガラスの前駆体、カラーフィルター用材料、導電性材料、及び半導体材料からなる群より選択された機能材料であることを明確にした。

引用例は、特開昭 5 9 - 7 1 3 7 2 号公報、特開昭 6 4 - 1 6 8 8 0 号公報、特開平 6 - 9 9 1 0 号公報、特開平 1 1 - 5 4 2 7 2 号公報、文献「Japanese Journal of Applied Physics, Vol 30」、文献「有機 E L 素子とその工業化最前線」、特開平 5 - 2 2 4 0 0 8 号公報、及び 特開平 4 - 1 5 3 2 8 0 号公報に記載の発明である。

本発明の組成物は、従来の機能材料のパターン化の方法であるフォトリソグラフィー法に代わるインクジェットプリンティング法に採用でき、有機EL材料、シリカガラスの前駆体、カラーフィルター用材料、導電性材料、及び半導体材料からなる群より選択された機能材料として、非極性、あるいは極性の弱い材料や、水との反応性のある材料を使用でき、吐出時の日詰まりを防ぎ、安定な吐出を達成し、吐出中の内容物の析出、吐出後成膜時の相分離を防ぐことができるという効果を得たものである。本発明の組成物を用いれば、優れた機能膜、有機EL素子等の表示装置を提供することができる。

第1図

第2図

第3図

(F)

(G)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01962

						
A. CLASSIFICATION OF SUBJECT MATTER IPC C1 HOSB 33/14, HOSB 33/10, CO9D 11/00, C09K 11/06						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC Cl ⁷ H05B 33/00-33/28, C09D 11/00, B41M 5/00						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1940-1996 Toroku Jitsuyo Shinan Koho 1994-2000 Kokai Jitsuyo Shinan Koho 1971-2000 Jitsuyo Shinan Toroku Koho 1996-2000						
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN)					
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.			
X Y	JP, 59-71372, A (Oki Electric Industry Co., Ltd.), 23 April, 1984 (23.04.84), page 2, lower right column, line 11 to page 3, upper right column, line 1 (Family: none) 1-3 4-7,9,13-15, 18-20,23-31, 33-35					
X Y	JP, 64-16880, A (Fuji Photo Film Co., Ltd.), 20 January, 1989 (20.01.89), page 7, lower right column, line 11 to page 8, lower left column, line 2 (Family: none)					
Y A	JP, 6-9910, A (SEIKO EPSON CORPORATION), 18 January, 1994 (18.01.94), Full text (Family: none)		7,9 8,10-12			
Y A	JP, 11-54272, A (SEIKO EPSON CORPORATION), 26 February, 1999 (26.02.99), Full text (Family: none)		13-15,18-20,23 -31,33-35 21,22,32			
Y	<pre>Japanese Journal of Applied Physics, Vol.30, No.11B(1991) pp.L1941-L1943 "Blue Electroluminescent Diodes Utilizing Poly(alkylfuluorene)"</pre> 14-15					
Furthe	or documents are listed in the continuation of Box C.	See patent family annex.				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance considered to be of particular relevance the cities of the international filing with the application but cities and not in conflict with the application but cities considered to be of particular relevance and the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to be of particular relevance.			the application but cited to derlying the invention claimed invention cannot be			
date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone						
specia	cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such					
"P" docum	means "P" document published prior to the international filing date but later "&" document member of the same patent family					
than the priority date claimed Date of the actual completion of the international search 08 June, 2000 (08.06.00) Date of mailing of the international search 20 June, 2000 (20.06.00)						
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer						
Farsimile l	No.	Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP00/01962

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		···········
Y	"Yuki EL Soshi to sono Kogyoka Saizensen", NTS,(1998) pp.86-89	14-15
Y	JP, 5-224008, A (Toray Industries, Inc.), 03 September, 1993 (03.09.93), Full text (Family: none)	16-17
x	JP, 4-153280, A (SEIKO EPSON CORPORATION), 26 May, 1992 (26.05.92), Full text (Family: none)	1,18
A	<pre>JP, 59-64678, A (Nippon Telegr. & Teleph. Corp. <ntt>), 12 April, 1984 (12.04.84) (Family: none)</ntt></pre>	12
A	JP, 8-216500, A (Sony Corporation), 27 August, 1996 (27.08.96) (Family: none)	1

3 X | 9 5 2 9

特許庁審査官(権限のある職員)

今関 雅子

電話番号 03-3581-1101 内線 3371

機式PCT/ISA/210 (第2ページ) (1998年7月)

東京都千代田区霞が関三丁目4番3号

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

C(続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y A	JP、6-9910、A(セイコーエプソン株式会社) 18.1月.1994(18.01.94)全文(ファミリーなし)	7, 9 8, 10-12
Y A	JP, 11-54272, A (セイコーエプソン株式会社) 26.2月.1999(26.02.99)全文 (ファミリーなし)	13-15, 18-20, 23-31, 33-35 21, 22, 32
Y	Japanese Journal of Applied Physics, Vol. 30, No. 11B(1991) pp. L1941—L1943 "Blue Electroluminescent Diodes Utilizing Poly(alkylfuluorene)"	14-15
Y	「有機EL索子とその工業化最前線」,エヌ・ティー・エス, (1998) pp. 86-89	14-15
Y	」 JP, 5-224008, A (東レ株式会社) 3. 9月. 1993(03.09.93)全文(ファミリーなし)	16-17
х	JP, 4-153280, A (セイコーエプソン株式会社) 26.5月.1992(26.05.92)全文(ファミリーなし)	1, 18
А	JP, 59-64678, A (日本電信電話公社) 12.4月.1984(12.04.84) (ファミリーなし)	12
Λ	JP, 8-216500, A (ソニー株式会社) 27.8月.1996(27.08.96)(ファミリーなし)	1
		7

様式PCT/ISA/210 (第2ページの続き) (1998年7月)