

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

<p>In re Application of David V. Goeddel and Mike Rothe Serial No.: 08/446,915 Filed: 22 May 1995 For: Tumor Necrosis Factor Receptor - Associated Factors</p>	<p>Group Art Unit: 1812 Examiner: J. Ulm</p> <p>CERTIFICATE OF MAILING I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Assistant Commissioner of Patents, Washington, D.C. 20231 on</p> <p style="text-align: center;">October 3, 1997 Aida A. Miclat</p>
--	--

PETITION TO ACCEPT PHOTOGRAPH AS DRAWING**37 CFR §1.84(b)**

BOX ISSUE FEE

Assistant Commissioner of Patents
Washington, D.C. 20231

Sir:

1. Petition is hereby made to accept a photograph in this case.
2. Three (3) copies of the photograph of Figures 1, 2a, 2b, 3, 4, 5, 6a, 6b, 7, 8, 9, 15a, 15b, 16 and 17, are submitted herewith. It is submitted that photographs are the only medium by which to disclose certain aspects of the subject matter sought to be patented in this application.
3. The petition fee under 37 CFR 1.17(h) of \$130.00 is to be charged to Deposit Account No. 07-0630. Please charge any deficiency or credit any overpayment to Deposit Account No. 07-0630. A copy of this sheet is enclosed.

RECEIVED
OCT 06 1997
GROUP 1800

Respectfully submitted,
GENENTECH, INC.

Date: October 3, 1997
 By:
 Ginger Dreger
 Reg. No. 33,055

1 DNA Way
 So. San Francisco, CA 94080-4990
 Phone: (650) 225-3216
 Fax: (650) 952-9881

APPROVED FOR PUBLIC RELEASE
SUBCLASS 1
DRAFT

FIG. 4

FIG. 5

FIG. 2a

CT6
FIG. 2b

FIG. 3

5741667

Preimmune Anti-mTNF-R2
Preimmune Anti-mTNF-R2
Preimmune Anti-mTNF-R2
Preimmune Anti-mTNF-R2
NF- κ B Probe wt wt mt mt wt wt wt wt
Competitor - - - - mt mt AP-1

FIG. 1

	<u>293</u>	<u>293-hR2</u>
Competitor	- GST	- GST

FIG. 6a

FIG. 6b 88-

CT6

FIG. 7

	Cytoplasm			Total Membrane Extract		
GST	+	-	+	-	+	-
GST-hR2icd	-	+	-	+	-	+

FIG. 8

GST-hTNFR2icd
GST-hTNFR2icd(-37)

FIG. 9

1 CCGAGCCCCGCTCTGCCCAAGAACGCTACCGCCCAATGGAGCAGAAGGGGGCACAGATAACAGAAAGT
 74 GAGGCTCACAGATATTGAAGACCGTGACATAGGGTAGCCAATGACAGTGAGAAAGTGACATTACCAAG
 149 GCCACCCAGATATCCTGGAGGCCAGAACCTGGAGATTCCTCATCAGAAAGACCTCTGGCCACCTGAAACCC
 1 MetAlaSerSerSerAlaProASPGLIASngLUPheGlnPheGLYcysPROProAlaProCysGlnASPro
 224 AAGATGGCCCTCAGCTCAGCCCCGTGATGAAAACGAGTTCAATTGGTTGCCCCCTGCTCCCTGCCAGGGACCA
 25 SerGluProArgValLeuCysCysTrnAlaCysLeuSerGluAsnLeuArgAspAspGluAspArgIleCysPro
 299 TCGGAGCCCAGAGTTCTCTGCTGCACAGCCTGCTCTGAGAAGCTGAGAGATGATGAGGATCGGATCTGCT
 50 LYSYSARGAlaASPAsnLeuHisProValSerProValSerMetGluGlySerProLeuThrGlnGlyVal
 374 AAATGCGAGAGACAACCTCCATCTCTGTA
 75 AlagliuAlaGluIleMetCysProPheAlaGlyValGlyCysSerPhelysGlySerProGlnSerMetGluGlu
 449 GCTGAGGCTGAAATCATGTTGCCCCCTTGCAAGGGTTGCTGTTCTCAAGGGAGCCACAACTCCATGCAAGGAG
 100 HisGluAlaThrSerGlnSerSerHisLeuTyrlleuLavalavalleuLysGluTrpLysSerSerProGly
 524 CATGAGGCTACCTCCCAGTCCTCCACCTGTTACCTGCTGCTGCTGCTGCTTAAAGGAATGGAATCCTCACAGGC
 125 SerAsnLeuGlySerAlaProMetAlaLeuGluArgAsnLeuSerGluLeuSerGluLeuInLeuGlnAla
 599 TCCACCTAGGGCTGCAACCATGGCACTGGAGGGAAACCTGTCAGACCTTCAGGCACCTGTTGGAGGCG
 150 ThrglyAspLeuGluValAspCystYrArgAlaProCysCysGluSerGlyLugluleuAlaLeuGlnInHisLeu
 674 ACAGGGGACCTGGAGGTTAGACTGCTACCGGGCACCTGCTGAGAGCCAGGAAGAACTGGCCCTGCAGCACTTG
 175 ValLysGluLysLeuLeuAlaLagInLeuGluLysLeuArgValPheAlaAsnIleValAlaValLeuAsnLys
 749 GTGGAAGGAGAAGCTGCTGGCTCAGCTGGAGGAGAAGCTGCTGCTGCTGCT
 200 GluValGluAlaSerHisLeuAlaAlaSerIleHisGlnSerGlnLeuAspArgGluHisLeuLeuGlnHisLeu
 824 GAAGTGGAGGCTTCCCACCTGGCACTGGCCGCCCCATCCACAGAGCCAGTTGGACCGAGAACCTCCCTGAGC
 225 LeuGlyIleArgValValGlyIleUgGlnThrLeuLagInLysAspGlnValLeuLeuGlyLysLeuGlyIle
 899 TTGGAGCAGA6667GGGAATTACAGCAAACCCCTGGCTCAGGACTGGCAAGACTGGCTGAGCACAGT

APPROVED	O.G. FIG.	BY	CLAS S	SUBCLAS S	DRAFTSMAN
----------	-----------	----	--------	-----------	-----------

DRAFTSMAN	BY	CLASS	SUBCLASS	APPROVED	O.G. E.I.G.
-----------	----	-------	----------	----------	-------------

APPROVED	O.G. FIG.	B.V.	SUBCLASS	CLASS	DRAFTSMAN
----------	-----------	------	----------	-------	-----------

○ ○

FIG. 11a

285 IleValCysValLeuAsnArgGluValGluArgValAlaValThrAlaGluAlaCysSerArgGlnIleArgLeu
 900 ATTGTCTGGCTTGGAACCGTGAAAGTAGAGGGTAGCAGTGTAGCCGGCAGCACCGGCTA
 310 ASPGInASPLYSLLEGILAlaLeuSerAsnLysValGluGluLeuGluArgSerIleGlyLeuLysAspLeuAla
 975 GACCAGGACAAGATTGGGCCCTGAGTAACCAAGGTGCAACAGCTGGAGGGCATCGGCCCTCAAGGACCTGGCC
 335 MetAlaAspLeuGluGluLysValSerGluLeuGluValSerThrTyrAspGlyValPheIleTrpLysIleSer
 1050 ATGGCTGACCTGGAGCAGAGTCCTGGAGTTGGAAAGTATCCACCTTATGAGGGCTCTCATCTGGAGATCTCT
 360 AspPheThrArgLysArgGluAlaValAlaValAlaValAlaValAlaValAlaValAlaValAlaValAlaVal
 1125 GACTTCACCAGAACGGCTCAGGAAGCCGTGCTGGGGACACCGACTATCTCTCCCAGCCTCTCACACAAGC
 385 ArgTyrGlyTyrLysMetCysLeuArgValTyrLeuAsnGluAspGlyThrArgGlyArgProAlaSerProAla
 1200 AGATATGGCTACAAAGATGTTCTACGAGTCATCTGTTGAGTCAGGGCACTGGGCGGGGAACTCATCTGCTCT
 410 PhePheValValMetLysGlyProAsnAspAlaLeuLeuGluInTrpProPheAsnGluLysValThrHisLeuSer
 1275 TTCTTCGGGGTGTGAAAGCCCCAAATGATGTCIGTTGCACTGGCTTTAATCAGAAGGTAACATTGATGTTG
 435 LeuAspHisAsnAsnArgGluIleValIleAspAlaPheArgProAspValThrSerSerSerPheGlnArgPro
 1350 CTGGACCTAAACACGGGAGCATGTGATCGACGCATTTCAGGCCATGTCCTCCAGCAGG
 460 ValSerAspMetAsnIleAlaSerGlyCysProLeuPheCysProValSerLysMetGluAlaLysAsnSerTyr
 1425 GTCAAGTGACATGAACATGCCAGTGGCTGCCCTCTGTCCTGTCCTCAAGATGGAGCCAAGATTCCTA
 485 ValArgAspAspAlaIlePheIleLysAlaIleValAspLeuThrGlyLeu
 1500 GTGCGGGATGATGCGATCTTCATCAAAAGCTATGGGGACCTAACAGGACTCTAGCCACCCCTGCTAAAGATAGCA
 1575 GCTCAGTTGAGGAGCTGTCACATTAAGCCAGCCAGGCCCTGCCACACACGGGGGGCAGGCTGGTTAATGCTG
 1650 GGGAGGGCTCAGCCTAGAGCCAAATCACCATCACACAGAAAGGCGAGGAAGAACCTCCAGTGGCCTTCAGCTGG
 1725 CAAACTGGTGGACGGTCCACTTGAGCTCAAGGGCTGGGGAGGCCGCTGGGGAGCTGCTCAGCTTCCAAATAG
 1800 GAAAGCTCTGCTGCTCTGCTGGGGAGGGAGAGACCTGTTGGGTGCTCAGAAGGGCTCTCCAGA
 1875 GAGAGTCAGAGCTGAGGAGCAAGTGAATGGCTCCACCCATCTTGGAAAGAGGTAGCGGC
 1950 TACACAGGAGAGGATGCCCTGCGGCTGCGAGGTGAGCCAAAGAGAGAGCTCTGAGACATAGGCCACTGGAG
 2025 AAGGGCTTGCTGGGCTGCCAGGTGGCTGTGATGGGGAGAGTGAATTAAAGTGGAGATGATGTCAC
 2100 ACGACAAAAAAAAA

FIG. 11b

FIG. 12a

TRAF2	(mouse)	31	KYL C SAC C NVILRRPFOA Q C GHRY C SPF C LTSI	LSS	GPQNC <i>A</i> C TYE
COP1	(<i>A. thaliana</i>)	49	DLL C P <i>i</i> C MQI C DAFLT A C GBSF C ym C LITH	LRN	KSD C pc C SQH
EFP	(human)	10	ELSC C ICL C LEPFKEPVTT P C GHNFCGS C LNETWA VOG	SPY C po C RAV	
RAD-18	(<i>S. cerevisiae</i>)	25	LLR C H <i>i</i> C KDFFLKV C VPLT P C GHTFC C SL C IRRTH	LNN	QPN C pl C LFE
UVS-2	(<i>N. crassa</i>)	31	AFR C Hv C KDFYD P MLT S C nHt C CSL C IRR	LSV DSK	C pl C RAT
RAG-1	(human)	290	SIS C Q <i>i</i> C EHLAD P VET n C kHv C rv C ILRC	LKV	MGSY C ps C RYP
SS-A/Ro	(human)	13	EVT C P <i>i</i> C LDPFVEPVSTI E C GHSF C Qe C ISQV	GRK	GGSV C a C QR
RING1	(human)	16	ELM C P <i>i</i> C LDMIKNTM T TK C LERF C SD C IIVTA	LRS	GNKE C P <i>i</i> C RKK
RPT-1	(mouse)	12	EVT C P <i>i</i> C LELLKEPVSA D C nEsf C RAC C ITLNYESNNTDG G KN C P <i>v</i> C RVP		
RFP	(human)	13	ETTC P v C LOYFAEP P ML D C gE <i>H</i> N i C o C larcwgta	ETNV S C <i>P</i> C RET	
c-cbl	(human)	378	FQL C K <i>i</i> C AENDKDVKIE P C GHELM C ts C LTS WQESECQ	GSSG C pp C RE	
	consensus		X11-12	X10-16	
			---C-C-	---C-H-C-C-	---C-C---

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

FIG. 12b

TRAF2	(mouse)	157	CPKRSLS C QH C RAPCSHV DLEV H YE V C
		182	PKFPLT C DG C GKKKI PRET FQD H VR A C
DG17	(<i>D. discoideum</i>)	171	GGFKLVT C DF C KRDDIKKKELET H YK T C
TFIIIA	(<i>X. laevis</i>)	189	QD LAV C DV C NRKFRHKDYL RD H QK T H
XLCOF14	(<i>X. laevis</i>)	1	TGKYPFI C SE C GKSFM DKRYLK I H SN V H
XFIN	(<i>X. laevis</i>)	1225	TGEKPYT C TV C GKKFIDRSSVV K HS R T H
ZFY1/2	(mouse)	521	RKKFPHI C GE C GKGFRHPSALK K H IR V H
MFG2	(mouse)	293	SEEKPFE C EE C GKKFRTARHLVK H QR I H
RAD18	(<i>S. cerevisiae</i>)	183	PNEQMAQ C PI C QQFYPLKALEKT H L D E C
UVS-2	(<i>N. crassa</i>)	182	PDDGLVA C PI C LTRM KEQQVDR H L D T C

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

TRAF2 1 MAAASVTSPGSLELLQPGFSKTLGTRLEAKYLCACKNILRRPFQAQCG

TRAF2 51 HRYCSFCLTSILSSGPQNCAACVYEGLYEGISILESSSAFPDNAARREV

TRAF2 101 ESLPAVCPCNDGCTWKGTLKEYESCHEGLCPFLTECPACKGLVRLSEKEH
TRAF1 1 - MASS SAPDENEFQFGCPPA

TRAF2 151 HTEQECPKRSLS[COHQ]RAPCSHV[DE]EVHYEV[CPKFPL]TCDCG[GKKKIPRE]
TRAF1 20 PCQDPSEPRV[LCCTAC]LSENLRD[E]DRICPKCRAONLHPVSPG-SPLTQE

TRAF2 201 TFQDH[V]RACSKCRVL[C]RFHT[V]GCSEMVETENL[Q]HELQLRERH[ALL]SS
TRAF1 69 KVHSDV---AEAEIMCPFAGVGCSFKGSPOSMEHEATSQS[SH]LYLLAV

TRAF2 251 FLEAQASPGTLNQVGPELLOR- - - - - - - - - - - - - - - -
TRAF1 116 LKEWKSSPGSNLGSAPMALERNLSLQLQAAVEATGDLEVDCYRAPCCS

TRAF2 272 - - - - - - - CQILEQKIA[T]FENIVCVLNREVERVAVTAE[ACSROH]
TRAF1 166 QEELALQHLVKEKLLAQLEEKLRV[F]ANIVAVLNKEVEASHLALAASIHQS

TRAF2 308 RLDQQKIEALS[N]K[Q]Q[Q]LERSIGLKDLAMADLEQKVSELLEVSTY[DGVFI]WK
TRAF1 216 QLDREHLLSLEQRVVELQQT[Q]LAOKDQVLGKLEHSRLMEEASF[DGTFL]WK

TRAF2 358 ISDFTRKRQE[A]VAGRTPAI[SPAFYT]SRYGYKMC[L]RVYLNGDG[T]GRGTHL
TRAF1 266 ITNVTKRCHES[V]CGRTVSLFSPAFYTAKYGYKLCLRLYLN[G]DGSGKKTHL

TRAF2 408 SLFFVV[M]KG[P]NDALLQWPFNQKVTLMLLDHNNREHVIDAFRPDVTSSSFQ
TRAF1 316 SLFIVIMRG[EY]DALLPWPFRNKVTFMLLDONNREHAIDAFRPDLSASFQ

TRAF2 458 RPVS[DMN]IASGCPLFC[P]VSKMEAKNSYV[RD]DAIFIKAIVDLTGL
TRAF1 366 RPOSETNVASGCPLFFFPLSKLQSPKHA[YV]KDDTMFLKCIVDTSA

FIG. 13

FIG. 14a

FIG. 14b

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

FIG. 18a

FIG. 18b

FIG. 19a

FIG. 19b

TRAFF1 TRAF2

FIG. 15a

FIG. 15b

FIG. 16

FIG. 17

APPLICANT	ORGANIZATION	CLASS	SUBCLASS	DRUG CLASS
W.L. MARX	INC.			