

Odds and ends

Format preserving encryption

Encrypting credit card numbers

Credit card format: bbbb bbnn nnnn nnnc (≈ 42 bits)

Goal: end-to-end encryption

Intermediate processors expect to see a credit card number

⇒ encrypted credit card should look like a credit card

Format preserving encryption (FPE)

```
This segment: given 0 < s \le 2^n, build a PRP on \{0,...,s-1\}
from a secure PRF F: K \times \{0,1\}^n \longrightarrow \{0,1\}^n (e.g. AES)
```

Then to encrypt a credit card number: (s = total # credit cards)

- 1. map given CC# to {0,...,s-1}
- 2. apply PRP to get an output in {0,...,s-1}
- 3. map output back a to CC#

Step 1: from $\{0,1\}^n$ to $\{0,1\}^t$ (t<n)

Want PRP on $\{0,...,s-1\}$. Let t be such that $2^{t-1} < s \le 2^t$.

Method: Luby-Rackoff with F': $K \times \{0,1\}^{t/2} \longrightarrow \{0,1\}^{t/2}$ (truncate F)

(better to use 7 rounds a la Patarin, Crypto'03)

Step 2: from $\{0,1\}^t$ to $\{0,...,s-1\}$

```
Given PRP (E,D): K \times \{0,1\}^t \to \{0,1\}^t we build (E',D'): K \times \{0,...,s-1\} \to \{0,...,s-1\}
```

E'(k, x): on input $x \in \{0,...,s-1\}$ do:

 $y \leftarrow x$; do { $y \leftarrow E(k, y)$ } until $y \in \{0,...,s-1\}$; output y

Expected # iterations:

Security

Step 2 is tight: $\forall A \exists B: PRP_{adv}[A,E] = PRP_{adv}[B,E']$

Intuition: \forall sets $Y \subseteq X$, applying the transformation to a random perm. $\pi: X \longrightarrow X$ gives a random perm. $\pi': Y \longrightarrow Y$

Step 1: same security as Luby-Rackoff construction (actually using analysis of Patarin, Crypto'03)

note: no integrity

Further reading

- Cryptographic Extraction and Key Derivation: The HKDF Scheme.
 H. Krawczyk, Crypto 2010
- Deterministic Authenticated-Encryption:

 A Provable-Security Treatment of the Keywrap Problem.
 P. Rogaway, T. Shrimption, Eurocrypt 2006
- A Parallelizable Enciphering Mode. S. Halevi, P. Rogaway, CT-RSA 2004
- Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. P. Rogaway, Asiacrypt 2004
- How to Encipher Messages on a Small Domain:
 Deterministic Encryption and the Thorp Shuffle.
 - B. Morris, P. Rogaway, T. Stegers, Crypto 2009

End of Segment