IWML 2018

Semi-supervised cluster invariant constraint for network representation learning

Anasua Mitra

Collaborators: Priyesh Vijayan & Dr. Balaraman Ravindran (Indian Institute of Technology Madras)

Indian Institute of Technology Guwahati
July 2018

Network Representation Learning

Network representation learning aims to learn a low dimensional representation of graph structure.

Q. How to learn more informative node representation for graphs?

$$f: n \to U_v \subseteq \mathbb{R}^m$$

Paradigms for NRL:

- Factorization
- Random walk
- Deep learning

- Graph kernels
- Generative models
- Hybrid models

Experiment Setting

Relational Classification setup

- G = (V, E, Y)
- N = L + UL
- $V = \{V_1, V_2, ..., V_N\}$ $E \in \mathbb{R}^{N \times N}$
- $Y \in \mathbb{R}^{q \times N}$
- $C = \{c_1, c_2, ..., c_q\}$
- Relational Learning is challenging when given networked data has link sparsity and/ or label sparsity.

<u>Assumption:</u> Network exhibits Homophily.

Applicable to non-attributed, (un)-directed, (un)-weighted graphs.

Community vs Clusterability

Sources of information for non-attributed graphs:

- Local structure
- Global structures, i.e., communities, clusters
- Labels

Community detection is a form of clustering to discover modular structures in graph data.

Clustering is a more general concept which groups entities together based on certain criteria. No notion of prior connectedness among entities is assumed.

(a) Citation-based cluster

(b) Citation-based cluster

(c) Flow-based cluster

Some useful local invariance assumptions

Embedding invariance: $\sum_{i,j} e_{ij} \parallel u_i - u_j \parallel^2 = U^T \Delta U$

<u>Label invariance:</u> $\sum_{i,j} e_{ij} || f(u_i) - f(u_j) ||^2 = f^T \Delta f$

 $\Delta = D - E$, Graph Laplacian

Smoothness assumption in local neighborhood.

Semi-supervised learning leverages both labeled and unlabeled data for prediction.

 $A \in R^{N\times N}$, N = L + UL.

Graph based SSL assumes Label Invariance.

$$\sum_{i=1 \text{ to } L} loss (y_i, f(u_i)) + \lambda (\sum_{i,j} e_{ij} || f(u_i) - f(u_j) ||^2)$$

$$= \sum_{i=1 \text{ to } L} loss (y_i, f(u_i)) + \lambda (f^T \Delta f)$$

Important factorization based baselines

Deep-walk as matrix factorization (MFDW)

- $\min_{M,I,I} \alpha(S U^T.M)^2 + \lambda(U^2 + M^2)$
- Prior information in use: Local neighborhood.

$$S_{i,j} = \log \frac{e_i(A + A^2 + A^3 + \dots + A^t)_j}{t}$$

MFDW + Label Matrix Factorization/ Max-Margin Loss

- $\min_{M,U} \alpha(S U^T.M)^2 + \theta(W * |Y Q.U|)^2 + \lambda(U^2 + M^2 + Q^2)$
- Prior information in use: Local neighborhood, label info.

Our assumption of invariance for node clusterability

Label guided cluster invariance to capture global structure:

Similar points (nodes belonging to same clusters) tend to have the same labels.

$$\sum_{i,j} e'_{ij} \parallel h(u_i) - h(u_j) \parallel^2 = H \Delta H^T$$

 $\Delta = D - E'$, Graph Laplacian $E' = (W*Y)^T(W*Y)$, train-label similarity graph/ matrix

Flow of supervision knowledge from labeled nodes to unlabeled nodes irrespective of their positions in graph!

Incorporating semi-supervised clusterability constraint in NRL setup.

SS-NMF Framework

$$L_1 = \min_{M,U} \|S - U^T M\|^2 : M \ge 0, U \ge 0$$

$$L_2 = \min_{Q,U} \|W \odot (Y - QU)\|^2 : Q \ge 0, U \ge 0$$

$$L_{3} = \min_{H,C,U} \beta \|H - CU\|^{2} + \phi Tr\{H\mathcal{L}(\hat{E})H^{T}\} + \zeta \|HH^{T} - I\|^{2}$$

$$L = \alpha L_1 + \theta L_2 + L_3 + \lambda (L2_{reg}) : M, U, Q, C, H \ge 0$$

Algorithm SS-NMF

Input S, Y, W, H

Output M, U, C, Q, H

Algorithm

- 1: Initialize M, U, C, Q, H randomly
- 2: repeat
- 3: Update M, C, Q, H, U respectively using derived update equations
- 4: until convergence

Inference

- 5: compute approximated Y' = Q.U
- 6: for each unlabeled node i do
- $\sqrt{7}$: q' = argmax_i(Y' $\frac{T}{ij}$)

Components of competing algorithms

Factorization baselines	Network info	Label info	Well-separated clusters	Label smoothness	Semi-supervised/ clustering	Misc.
MFDW	$\alpha \ S - U^T M\ ^2$					
MMDW	$\alpha \ S - U^T M\ ^2$	Max-margin loss				
MFDWL	$\alpha \ S - U^T M\ ^2$	$\theta \ W \odot (Y - QU) \ ^2$				
MF-Planetoid	$\alpha \ S - U^T M\ ^2$	$\theta \ W \odot (Y - QU) \ ^2$		$\phi Tr\{U\mathcal{L}(E)U^T\}$		
MNMF	$\alpha \ S - M'U'^T\ ^2$		$\zeta \ H'^T H' - I\ ^2$		$\beta \ H' - U'C^T\ ^2$	$\gamma Tr\{H'^TBH'\}$
MNMFL	$\alpha \ S - M'U'^T\ ^2$	$\theta \ W \odot (Y - QU'^T) \ ^2$	$\zeta \ H'^T H' - I\ ^2$		$\beta \ H' - U'C^T\ ^2$	$\gamma Tr\{H'^TBH'\}$
SS-NMF	$\alpha \ S - U^T M\ ^2$	$\theta \ W \odot (Y - QU) \ ^2$	$\zeta \ HH^T - I\ ^2$	$\phi Tr\{H\mathcal{L}(E)H^T\}$	$\beta \ H - CU\ ^2$	

References:

Perozzi et al., "Deepwalk: Online learning of social representations." KDD 2014.

Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin deepwalk: Discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016).

Yang et al., "Revisiting Semi-Supervised Learning with Graph Embeddings." ICML 2016.

Wang, Xiao, et al. "Community Preserving Network Embedding." AAAI. 2017.

Experiment Results > Node Classification

	Semi-supervised (N/ LR Method)					LR Method					
N vs LR	Matrix Factorization Approaches							RW Based Approaches			
Train: 10%	Proposed	SoA	Propo	osed Baseline Var	riants	SoA		SoA	SoA		
Datasets	SS-NMF	MMDW	MFDWL	MF-Planetoid	MNMFL	MNMF	MFDW	DW	N2V		
Cora	77.56	68.27	70.30	76.47	73.43	74.50	74.44	74.79	74.99		
Citeseer	55.59	47.38	49.27	55.54	50.09	54.37	53.43	52.72	54.19		
Wiki	57.74	50.81	56.10	56.19	54.14	56.36	55.50	55.75	56.03		
Washington	56.73	40.79	50.19	52.40	52.60	57.60	53.70	49.52	50.00		
Wisconsin	53.14	30.78	45.21	52.72	48.03	48.03	40.71	38.91	43.10		
Texas	55.86	47.10	53.13	55.38	55.27	55.15	55.03	55.15	55.15		
Cornell	44.63	38.73	36.89	40.95	40.45	43.84	37.20	22.60	25.42		
PPI	14.94	13.85	13.26	14.25	13.96	17.22	16.05	16.20	16.88		
Blogcatalog	28.17	18.59	27.16	27.31	27.57	28.32	27.88	34.92	35.16		
Rank	1.88	8.44	7.	3.55	5.55	2.88	5.55	5.55	4.55		
Score	1.1262	10.9094	5.8864	2.5861	4.3281	2.1236	4.5065	5.9937	4.842		
LR vs LR	SS-NMF	MMDW	MFDWL	MF-Planetoid	MNMFL	MNMF	MFDW	DW	N2V		
Rank	1.44	4.88	6.	3.44	3.66	4.77	8.11	7.	5.66		
Score	0.7739	2.9083	3.4598	1.6377	1.982	2.3559	4.7388	6.226	5.0743		

Experiment Results > Node Clustering

		Semi-supervised (N/ LR Method)						LR Method			
	N vs LR		Matrix Factorization Approaches						RW Based Approache		
	Train: 50%	Proposed	SoA	Proposed Baseline Variants			SoA		SoA	SoA	
		SS-NMF	MMDW	MFDWL MF-Planetoid MNMFL			MNMF	MFDW	DW	N2V	
Purity	Rank	1.1429	6.2857	5.2857	2.	2.8571	4.8571	8.5714	7.5714	6.4286	
	Score	0.2728	11.9328	9.629	2.9642	7.0497	9.9101	16.6532	14.1462	12.8244	
NMI/ ONMI	Rank	1.2222	6.3333	4.7778	2.6667	3.1111	4.8889	8.	7.8889	6.1111	
	Score	0.0258	17.0103	12.4661	4.1336	7.0906	13.3816	20.077	20.2128	19.2078	
Omega Index	PPI	6.49	4.43	4.12	6.14	5.81	5.20	3.37	6.25	6.90	
	Blogcatalog	4.64	3.67	3.99	4.30	4.07	3.82	2.71	2.06	3.19	

Experiment Results > Ablation Study

Q. How each component of our proposed equation influences node representations?

- We have incrementally built our model to understand this.

```
MFDW: \min_{M,U} \alpha(S - U^T.M)^2
```

MFDWL :
$$\min_{M,U,Q} \alpha(S - U^T.M)^2 + \theta(W * |Y - Q.U|)^2$$

MF-Planetoid :
$$\min_{M,U,Q} \alpha(S - U^T.M)^2 + \theta(W * |Y - Q.U|)^2 + \phi Tr\{U.L(E').U^T\}$$

$$SS-NMF: \ min_{M,U,C,Q,H} \ \alpha(S-U^T.M)^2 + \theta(W * |Y-Q.U|)^2 + \varphi Tr\{\ H.L(E').H^T\} + \beta \parallel H-C.U\parallel^2 + \xi \parallel HH^T-I\parallel^2 + \beta \parallel H-C.U\parallel^2 + \xi \parallel HH^T-I\parallel^2 + \xi \parallel HH^T-I +$$

Experiment Results > Prior Analysis

Q. How each cluster related term contributes in learning cluster membership matrix?

$$\min_{M,U,C,Q,H} \alpha (S-U^T.M)^2 + \theta (W*|Y-Q.U|)^2 + \beta \parallel H-C.U \parallel^2 + \phi Tr\{H.L(E').H^T\} + \xi \parallel HH^T-I \parallel^2 + \lambda (L2_{reg}) + \delta (H^T-I)^2 + \delta (H^T-I)^$$

β	ф	ξ	Meaning
0	0	0	(FFF) : no cluster H learning
1	0	0	(TFF) : cluster H indirectly learns from U
1	1	0	(TTF) : cluster H directly learns from CPM
1	0	1	(TFT) : cluster H learns from U and orthogonality constraint
1	1	1	(TTT) : original setup

Experiment Results > Parameter Sensitivity

Varying number of clusters

Experiment Results > t-SNE Plots

Thank you!

References

Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701–710. ACM(2014). URL: https://dl.acm.org/citation.cfm?id=2623732.

Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864. ACM (2016). URL: https://dl.acm.org/citation.cfm?id=2939754.

Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin deepwalk: Discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016).

URL: http://www.thunlp.org/~tcc/publications/ijcai2016 mmdw.pdf .

Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861 (2016).

URL: http://proceedings.mlr.press/v48/yanga16.pdf .

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017).

URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14589/13763.