SPI SLAVE WITH SINGLE PORT RAM

Digital Design Course

SPI Slave with Single Port RAM

 Create Tcl file to create the vivado project and run the full design flow on Vivado using the Tcl file

```
runted

reate_project_SPI_Project_C:/Users/MALAK/Desktop/Digital_Design_Course/SPI_Slave_with_Single_Port_RAM_Project -part xc7a35ticpg236-1L -force

add_files_SPI_Wrapper.v_SPI_Slave.v_RAM.v_SPI_constraints.xdc

synth_design_-rtl_-top_SPI_Wrapper > elab.log

write_schematic_elaborated_schematic.pdf -format pdf -force

launch_runs_synth_1 > synth.log

wait_on_run synth_1

poen_run synth_1

write_schematic synthesized_schematic.pdf -format pdf -force

write_verilog_-force_SPI_netlist.v

launch_runs_impl_1 -to_step_write_bitstream

wait_on_run_impl_1

open_run_impl_1

open_run_impl_1

connect_hw_server
```

Window shown after running run.tcl:

 Create an XDC file where the rst_n, SS_n & MOSI are connected to 3 switches, and the MISO to a led.

```
create clock -add -name sys clk pin -period 10.00 -waveform {0 5} [get ports clk]
## Switches
set_property -dict { PACKAGE_PIN V17
                                   IOSTANDARD LVCMOS33 } [get_ports {rst_n}]
set_property -dict { PACKAGE_PIN V16
                                   IOSTANDARD LVCMOS33 } [get_ports {SS_n}]
                                   IOSTANDARD LVCMOS33 } [get_ports {MOSI}]
set_property -dict { PACKAGE_PIN W16
## LEDs
set_property -dict { PACKAGE_PIN U16
                                   IOSTANDARD LVCMOS33 } [get_ports {MISO}]
## Configuration options, can be used for all designs
set_property CONFIG_VOLTAGE 3.3 [current_design]
set_property CFGBVS VCCO [current_design]
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]
set_property CONFIG_MODE SPIx4 [current_design]
```

SPI Wrapper elaborated schematic:

SPI Wrapper synthesized schematic:

 Snippets from the waveforms captured from QuestaSim for the design with inputs assigned values and output values visible.

Using Master_self_checking_tb (DoFile2):

```
module Master_solf_checking_tb ();

parameter IDLE = 3'b600;
parameter GNC_OPD - 3'b601;
parameter MEDD - 3'b601;
parameter MEDD - 3'b601;
parameter MEDD_ADD - 3'b610;
parameter REDD_ADD - 3'b6100;
parameter REDD_ADD - 3'b
```

```
initial begin
    rst_n = 1;
#100;
     end
// write address (8 bits)
repeat(8) begin
@(negedge clk)
MOSI = $frandom;
write_address_expected = {write_address_expected,MOSI};
             // SS_n = 0 to tell the SPI Slave that
g(negedge clk) SS_n = 0;
// 0: write operation, 01: write data
repeat(2) begin
g(negedge clk);
MOSI = 0;
end
g(negedge clk) MOSI = 1;
              // write data (8 bits)
repeat(8) begin
@(negedge clk)
MOSI = Srandom;
write_data_expected = {write_data_expected,MOSI};
              f'/S_n = 1 to end communication from master side (common between both operations) g(negedge clk) S_n = 1;
             //
// Read address should be same as write address (so we can do self-checking)
// SS_m = 0 to tell the SPI Slave that the master will begin communication
@(negedge clk) SS_m = 0;
// l: read operation, 10: read address
repeat(2) begin
@(negedge clk);
MOSI = 1;
              end
@(negedge clk) MOSI = 0;
// read address (δ bits)
             // Famo more or
k = 0;
repeat(0) begin
@(negedge clk) MOSI = write_address_expected[7-k];
k = k*l;
              // SS_n = 1 to end communication from master side
@(negedge clk) SS_n = 1;
            // SS_n = 0 to tell the SPI Slave that the master will begin communication (common between both operations)
// I: read operation, 11: read data
repeat(3) begin
@(negedge clk);
MOSI = 1;
end
            // ---- Need 8 extra cycles for dummy data + 1 cycle for memory retrieval ---- repeat(9) \theta(negedge clk) MOSI - $random;
            // Self-Checking
k = 0;
repeat(8) begin
@(negedge clk) MOSI = $random;
iffwrite data_expected[8-K] !== MISO_dut) begin
$display("Error in SPI");
$stop;
end
```

Write address operation (starting from one clk cycle for SS_n = 0):

Write data operation (starting from one clk cyle for SS_n = 0):

Evidence data was written to memory in address 47:

Read address operation: (starting from one clk cyle for SS_n = 0):

Read data operation: (starting from one clk cyle for SS_n = 0) (8 dummy cycles shown):

Data is output on MISO port and then SS_n is raised:

Do file for self-checking testbench:

```
DoFile2

1 vlib work

2 vlog SPI_Wrapper.v Master_self_checking_tb.v

3 vsim -voptargs=+acc work.Master_self_checking_tb

4 add wave *

5 run -all

6 #quit -sim
```

Do file for more randomized testbench that would be found next page:

```
DoFile

1 vlib work
2 vlog SPI_Wrapper.v Master_tb.v
3 vsim -voptargs=+acc work.Master_tb
4 add wave *
5 run -all
6 #quit -sim
```

Master_tb, that is not self-checking but tries random operation orders:

```
| module Auster_tw ();
| parameter DEE = 31600; | parameter DEE = 31600
```

Wave simulations

Write address operation and then another write address operation:

Write data operation and then another write data operation:

Evidence that data was written to memory:

SS_n is raised and then master begins the second write data operation:

Evidence that write data was changed:

Write address operation and then write data operation:

SS_n is raised and then master begins the write data operation:

Write address in decimal:

Evidence that write data was changed:

→ [135]	8b11001010																									0010111	0
A [12/I]	0%A4									_		_		_													
Now	275530 ns	368	8 ns	369) ns	369	2 ns	369	i ins	369	i 96 ns	369	ii iii ns	370	10 ns	370	2 ns	370	4 ns	370	6 ns	370	8 ns	371) ns	3712	ns
Owner 1	3503 pe																										

Write data operation and then write address operation:

SS_n is raised and then master begins the write address operation:

Partial screenshot of memory initially:

Partial screenshot after randomized write operations:

mem	8'b110111018'b	11110111 10000	000 01000000 00	110010 000010
+ [255]	8'b11011101	11110111		
+-4 [254]	8'b10001111	10000000		
+ [253]	8'601110100	01000000		
+ [252]	8'b00110010	00110010		
+ [251]	8'b11011001	00001000		
+ [250]	8'b10110111	10110111		
+ [249]	8'b01100000	01000101		
±- /> [248]	8'b10001100	11111101		
±- - [247]	8'b01101001	00001110		
+ - / [246]	8'b01100011	01000010		
+ [245]	8'b00000010	01010000		
<u>+</u>	8'b00110011	10111001		
±- /> [243]	8'b10110011	00010000		
<u>+</u>	8'b10110001	00001101		
- [241]	8'b01001000	00010010		
<u>+</u>	8'b 10000 10 1	00011111		
+ /> [239]	8'b00110000	11111011		
+	8'b00101110	00110001		
+	8'b 100 1 1000	00011100		
	8'b11011101	01011110		
÷-🥠 [235]	8'b11011011			
	8'b11101111			
<u>+</u> > [233]	8'b00100011	11100111		
+	8'b11100011	11001100		
<u>+</u> -🥠 [231]	8'b 100 1 1000	00011011		
±- /> [230]	8'b11010010	11100010		
÷-🧇 [229]	8'b10111000	00000011		
<u>+</u> -4> [228]	8'b00000110	10000111		
	8'b 100 1000 1	01111000		
±- /> [226]	8'b11010101			
±- 4 [225]	8'b00110110	10111010		
No	w 275530 ns	69056 ns	69058 ns	69060 ns

Read address operation and then another read address operation:

SS_n is raised and then master begins the second read address operation:

Read address operation and then read data operation:

The previous read address operation was followed by this read data operation:

SS_n is raised and then master begins the read data operation: (8 cycles of dummy data after which RAM returns tx_valid as raised)

Tx_Data is output on MISO:

Evidence that tx_data is the data in the read address:

Read data operation and then read address operation:

The previous read data operation was followed by this read address operation:

Read data operation and then another read data operation:

Read data operation 1 (8 cycles of dummy data after which RAM returns tx_valid as raised)

Tx_Data is output on MISO:

Evidence that tx_data is the data in the read address:

Then there is a for loop that generates random order of operations between the 4 operations. This can be observed on the wave simulation when running Master_tb.

 The SPI slave implementation is done using FSM, we shall try out three different encoding (gray, one_hot or seq) using the following vivado attribute in your Verilog code

2) Synthesis snippets for each encoding

```
(* fsm_encoding = "sequential" *)
reg [2:0] cs,ns;
```

· Schematic after the elaboration & synthesis

• Synthesis report showing the encoding used

```
34 | INFO: [Synth 8-5534] Detected attribute (* fsm_encoding = "sequential" *)
```

State	New Encoding	Previous Encoding
IDLE	1 000	1 000
CHK_CMD	001	001
WRITE	010	010
READ_ADD	011	011
READ_DATA	100	100

Timing report snippet

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.315 ns	Worst Hold Slack (WHS):	0.142 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4222	Total Number of Endpoints:	4222	Total Number of Endpoints:	2119

• Snippet of the critical path highlighted in the schematic

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock
Path 1	6.315	3	4	69	dut/rx_data_reg(8)/C	my_ram/mem_reg(10)(0)/CE	3.303	1.027	2.276	10.0	sys_dk_pin	sys_clk_pin
4 Path 2	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin
4 Path 3	6.315	3	4	69	dut/rx_data_reg(8)/C	my_ram/mem_reg[10][2]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin
Path 4	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][3]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_dk_pin
Path 5	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][4]/CE	3.303	1.027	2.276	10.0	sys_dk_pin	sys_clk_pin
Path 6	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][5]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin
4 Path 7	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][6]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin
Path 8	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg(10)[7]/CE	3.303	1.027	2.276	10.0	sys_dk_pin	sys_clk_pin
Path 9	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][0]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin
Path 10	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin	sys_clk_pin

3) Implementation snippets for each encoding

Utilization report

Name	1 Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
∨ N SPI_Wrapper	871	2118	272	136	811	871	18	5	1
dut (SPI_Slave)	42	30	0	0	25	42	10	0	0
I my_ram (RAM)	829	2088	272	136	796	829	8	0	0

Resource	Utilization	Available	Utilization %
LUT	871	20800	4.19
FF	2118	41600	5.09
10	5	106	4.72

Timing report snippet

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.895 ns	Worst Hold Slack (WHS):	0.163 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4222	Total Number of Endpoints:	4222	Total Number of Endpoints:	2119

4) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration, synthesis, implementation and a successful bitstream generation.

2) Synthesis snippets for each encoding

```
(* fsm_encoding = "one_hot" *)
reg [2:0] cs,ns;
```

· Schematic after the elaboration & synthesis

Synthesis report showing the encoding used

```
34 INFO: [Synth 8-5534] Detected attribute (* fsm_encoding = "one_hot" *)
```

State	New Encodi	ng Previous	Encoding
IDLE	1 000	01	000
CHK_CMD	1 000	10	001
WRITE	001	00	010
READ_ADD	010	00	011
READ_DATA	100	00	100

Timing report snippet

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.315 ns	Worst Hold Slack (WHS):	0.139 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4226	Total Number of Endpoints:	4226	Total Number of Endpoints:	2122

All user specified timing constraints are met.

· Snippet of the critical path highlighted in the schematic

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][0]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 2	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 3	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][2]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 4	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][3]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 5	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][4]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 6	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][5]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 7	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][6]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 8	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][7]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 9	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][0]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 10	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin

3) Implementation snippets for each encoding

• Utilization report

Name	1 Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
∨ N SPI_Wrapper	869	2121	272	136	816	869	20	5	1
dut (SPI_Slave)	40	33	0	0	24	40	11	0	0
my_ram (RAM)	829	2088	272	136	803	829	8	0	0

Resource	Utilization	Available	Utilization %	
LUT	869	20800	4.18	
FF	2121	41600	5.10	
Ю	5	106	4.72	

Timing report snippet

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.530 ns	Worst Hold Slack (WHS):	0.155 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4226	Total Number of Endpoints:	4226	Total Number of Endpoints:	2122

All user specified timing constraints are met.

4) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration, synthesis, implementation and a successful bitstream generation.

2) Synthesis snippets for each encoding

```
(* fsm_encoding = "gray" *)
reg [2:0] cs,ns;
```

· Schematic after the elaboration & synthesis

· Synthesis report showing the encoding used

34 | INFO: [Synth 8-5534] Detected attribute (* fsm_encoding = "gray" *)

State	New Encoding	Previous E	ncoding
IDLE	1 000	 	000
CHK_CMD	001	I	001
WRITE	011	I	010
READ_ADD	010	I	011
READ_DATA	111	I	100

Timing report snippet

All user specified timing constraints are met.

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.315 ns	Worst Hold Slack (WHS):	0.142 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4223	Total Number of Endpoints:	4223	Total Number of Endpoints:	2120

Snippet of the critical path highlighted in the schematic

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][0]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 2	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 3	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][2]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 4	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][3]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 5	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][4]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 6	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][5]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 7	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][6]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 8	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[10][7]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 9	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][0]/CE	3.303	1.027	2.276	10.0	sys_clk_pin
Path 10	6.315	3	4	69	dut/rx_data_reg[8]/C	my_ram/mem_reg[11][1]/CE	3.303	1.027	2.276	10.0	sys_clk_pin

3) Implementation snippets for each encoding

Utilization report

Name	1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Bonded IOB (106)	BUFGCTRL (32)
√ N SPI_Wrapper		873	2119	272	136	5	1
dut (SPI_Slave)		44	31	0	0	0	0
my_ram (RAM)		829	2088	272	136	0	0

Resource	Utilization	Available	Utilization %
LUT	873	20800	4.20
FF	2119	41600	5.09
Ю	5	106	4.72

Timing report snippet

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2.851 ns	Worst Hold Slack (WHS):	0.215 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4223	Total Number of Endpoints:	4223	Total Number of Endpoints:	2120

All user specified timing constraints are met.

4) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration, synthesis, implementation and a successful bitstream generation.

 We wish to operate at the highest frequency possible and so you shall choose the encoding based on the best timing report that gives the high setup slack after implementation.

(Copied timing reports here for ease of comparison)

Highest setup slack is observed to be in the case of using gray encoding.

After choosing the best encoding, add a debug core such that all internals (MISO, MOSI, SS_n, rst_n & clk) can be analyzed and then generate a bitstream file

Schematic after added debug core:

