Pesquisa Operacional e Programação Linear

Curso: Elementos de Pesquisa Operacional e de Simulação

Prof. Neemias Martins

neemias.silva@puc-campinas.edu.br

PUC Campinas

Pesquisa Operacional

O que é Pesquisa Operacional

- A Pesquisa Operacional é um método científico de tomada de decisões.
- Surgiu durante as duas guerras mundiais a partir de estudos feitos por equipes interdisciplinares para otimizar operações militares.
- É usada em diversos setores hoje em dia (indústria, logística, finanças, saúde, etc) para otimizar processos; maximizar lucros, eficiência; minimizar custos, tempo, etc.

Etapas de um estudo em Pesquisa Operacional

1. Formulação do problema

 Definir os objetivos, as limitações técnicas do problema e uma medida de eficiência para o sistema.

2. Modelagem do sistema

Traduzir o problema em equações e inequações matemáticas.

3. Cálculo da solução

- Resolução do modelo matemático
- Análise da sensibilidade da solução ótima aos parâmetros iniciais

Etapas de um estudo em Pesquisa Operacional

4. Validação do modelo

- Comparar as soluções obtidas pelo modelo com dados históricos do problema.
- Se o desvio verificado n\u00e3o for aceit\u00e1vel, o modelo deve ser reformulado ou descartado.
- Estabelecer controles para os parâmetros do problema de modo a tornar o modelo aceitável.

5. Implementação e acompanhamento

 Descrição dos resultados obtidos em forma de instruções operacionais inteligíveis, evitando o uso da linguagem técnica do modelo.

Programação linear

Programação Linear

- A programação linear é uma das técnicas mais utilizadas na abordagem de problemas em Pesquisa Operacional.
- Vantagens: modelagem de simples entendimento e disponibilidade de técnica de solução programável em computador.
- É muito usado em sistemas estruturados, como os de produção, controle de estoques, finanças, etc.
- O modelo matemático de programação linear é composto por uma função linear que descreve o objetivo; e de restrições técnicas representadas por inequações lineares.

Exemplo

- Variáveis controladas ou variáveis de decisão: x_1 e x_2 .
- Função **objetivo**. Queremos <u>maximizar o lucro</u> expresso por

$$2x_1 + 3x_2$$
.

Restrições:

$$\begin{cases} 4x_1 + 3x_2 \le 10 \\ 6x_1 - x_2 \ge 20 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Problema 1 - Plano de Produção

Certa empresa fabrica dois produtos P_1 e P_2 . O lucro unitário do produto P_1 é de P_2 fuero en lucro unitário de P_2 é de P_2 fuero en lucro unitário de P_2 fuero en lucro unitário de P_2 fuero en lucro en lucro unitário de P_2 fuero en lucro en lucro

1. Variáveis de decisão:

 x_1 é a quantidade anual a produzir de P_1 ,

 x_2 é a quantidade anual a produzir de P_2 .

2. Objetivo:

Maximizar o lucro. O Lucro total é dado por:

$$L = 1000 \cdot x_1 + 1800 \cdot x_2$$

3. Restrições:

- $x_1, x_2 \ge 0$ (não-negatividade)
- Disponibilidade de horas para a produção: 1200h
- Horas ocupadas com a produção: $20 \cdot x_1 + 30 \cdot x_2$.

Então $20x_1 + 30x_2 \le 1200$.

Demanda dos produtos:

$$x_1 \le 40$$

$$x_2 \le 30.$$

Resumo do modelo: maximizar $L = 1000x_1 + 1800x_2$ sujeito a

$$\begin{cases} 20x_1 + 30x_2 \le 1200 \\ 0 \le x_1 \le 40 \\ 0 \le x_2 \le 30 \end{cases}$$

Problema 2 - Dieta

Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas de 36 unidades por dia. Uma pessoa tem disponível carne ovos para se alimentar. Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de carne custa R\$3,00 e cada unidade de ovo custa R\$2,50. Qual a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com o menor custo possível?

1. Variáveis de decisão:

 x_1 : quantidade de carne por dia

 x_2 : quantidade de ovos por dia.

2. Objetivo:

Queremos minimizar o custo $C = 3x_1 + 2,50x_2$.

3. Restrições:

- $x_1, x_2 \ge 0$
- Necessidade mínima de vitaminas: 32
- Total de vitaminas: $4x_1 + 8x_2$
- Restrição: $4x_1 + 8x_2 \ge 32$.

- Necessidade mínima de proteínas: 36
- Total de proteínas: $6x_1 + 6x_2$
- Restrição: $6x_1 + 6x_2 \ge 36$.

Resumo do modelo. minimizar $C=3x_1+2,5x_2$ sujeito a

$$\begin{cases} 4x_1 + 8x_2 \ge 32 \\ 6x_1 + 6x_2 \ge 36 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Problema 3 - Exercício

Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar uma unidade de cinto. Sabendo-se que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de R\$5 e o do cinto é de R\$2, pede: o modelo do sistema de produção do sapateiro, se o objetivo é maximizar seu lucro por hora.

```
x_1: número de sapatos / hora
```

 x_2 : número de cintos / hora

max. Lucro $L = 5x_1 + 2x_2$ sujeito a

$$\begin{cases} 10x_1 + 12x_2 \le 60 \\ 2x_1 + 1x_2 \le 6 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Problema 4 - Produção

Uma empresa após um processo de racionalização de produção, ficou com disponibilidade de 3 recursos produtivos R_1 , R_2 e R_3 . Um estudo sobre o uso desses recursos indicou a possibilidade de se fabricar 2 produtos: P_1 e P_2 . Verificou-se que que P_1 daria um lucro de P_3 120,00 por unidade e P_3 R\$ 150,00 por unidade. O departamento de produção forneceu a seguinte tabela de uso de recursos.

Produto	R_1 por unidade	R_2 por unidade	R ₃ por unidade
P_1	2	3	5
P_2	4	2	3
Disp. mensal	100	90	120

Defina o modelo que forneça a produção mensal de P_1 e P_2 mais lucrativa.

1. Variáveis de decisão.

 x_i : quantidade de a produzir de P_i , com i = 1, 2.

2. Objetivo.

maximizar o lucro: $L = 120x_1 + 150x_2$

3. Restrições.

$$\begin{cases} 2x_1 + 4x_2 \le 100 \\ 3x_1 + 2x_2 \le 90 \\ 5x_1 + 3x_2 \le 120 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Problema 5 - Transporte

Uma empresa produz bicicletas em três fábricas nas cidades C_1 , C_2 e C_3 . Sua capacidade de produção é de 1000, 2100 e 1500 bicicletas por mês, respectivamente. Quatro clientes, A, B, C e D, de quatro locais diferentes estão demandando 800, 1100, 900 e 1300 bicicletas, respectivamente, todo mês.

A tabela a seguir mostra os custos unitários de transporte de uma bicicleta de uma determinada cidade para um determinado cliente, que pode depender da distância entre eles. Formule um modelo para encontrar o frete de custo mínimo.

	A	В	C	D
C_1	10	8	10	13
C_2	19	6	15	16
C_3	14	8	9	6

1. Variáveis de decisão:

 x_{ij} : número de bicicletas transportadas mensalmente da cidade C_i para o cliente j, com i=1,2,3 e j=A,B,C,D.

2. Objetivo:

Minimizar os custos de transporte:

$$C = 10x_{1A} + 8x_{1B} + 10x_{1C} + 13x_{1D} + +19x_{2A} + 6x_{2B} + 15x_{2C} + 16x_{2D} + 14x_{3A} + 8x_{3B} + 9x_{3C} + 6x_{3D}.$$

3. Restrições:

• $x_{ij} \ge 0$ para cada i = 1, 2, 3 e j = A, B, C, D.

Capacidade de produção:

$$x_{1A} + x_{1B} + x_{1C} + x_{1D} \le 1000$$

$$x_{2A} + x_{2B} + x_{2C} + x_{2D} \le 2100$$

$$x_{3A} + x_{3B} + x_{3C} + x_{3D} \le 1500$$

Demanda dos clientes:

$$\begin{aligned} x_{1A} + x_{2A} + x_{3A} &\geq 800 \\ x_{1B} + x_{2B} + x_{3B} &\geq 1100 \\ x_{1C} + x_{2C} + x_{3C} &\geq 900 \\ x_{1D} + x_{2D} + x_{3D} &\geq 1300. \end{aligned}$$

Bons estudos!