CatData HW3

Matthew Vanaman 03/11/19

A2.2, A2.5, A2.13, A2.21, A2.36. (3 points each)

A2.33 (5 points)

All code and work are shown in the appendix.

2.2

(a)

Answer:

Recoding this in a way that makes more sense to me. Will leave X and Y as they are:

- X(0 = no disease, 1 = disease)
- Y(0 = negative, 1 = positive)
- Sensitivity = $\pi_1 = P(Y = 1|X = 1)$ = probability positive diagnosis given disease
- Specificity = $1 \pi_2 = 1 P(Y = 1 | X = 0) = 1$ probability positive diagnosis given no disease

After subtracting away the probability of positive diagnosis given no disease, you are left with probability of negative diagnosis given no disease:

$$1 - P(Y = 1|X = 0) = P(Y = 0|X = 0)$$
 = probability negative diagnosis given no disease

Likewise, the "noise" of the test is captured by 1 - specificity. A good test would want to show that 1 - specificity yields a large probability as an effective test will have a large probability of correctly screening patients that do not have the disease.

(b)

Answer:

Answer:
$$P(X = 1|Y = 1) = \frac{P(Y = 1|X = 1)P(X = 1)}{P(Y = 1|X = 1)P(X = 1) + P(Y = 1|X = 0)P(X = 0)}$$

Work:

$$\frac{\pi_1\gamma}{[\pi_1\gamma+\pi_2(1-\gamma)]}=\frac{P(B|A)P(A)}{P(B)}=\text{Bayes' rule}$$

In the above equation, P(B) represents P(X=1), or the probability of having the disease. But this is an unknown value expressed as γ , we have to use a particular version of Bayes' rule that takes into account the conditional probabilities associated with P(B):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\widetilde{A})P(\widetilde{A})}.$$

Just replace with the problem's notation:

$$P(X = 1|Y = 1) = \frac{P(Y = 1|X = 1)P(X = 1)}{P(Y = 1|X = 1)P(X = 1) + P(Y = 1|X = 0)P(X = 0)}$$

(c)

Answer:

0.07

Work:

We need to solve for P(X = 1|Y = 1). Lay out the pieces:

- X(0 = no disease, 1 = disease.
- P(X=1) = 0.01.
- Y(0 = negative, 1 = positive.
- Sensitivity = $\pi_1 = P(Y = 1|X = 1) = 0.86$.
- Specificity = $1 \pi_2 = 1 P(Y = 1 | X = 0) = 0.88$
- If 1 P(Y = 1|X = 0) = 0.88, then P(Y = 1|X = 0) = 0.12.
- If P(X = 1) = 0.01, then P(X = 0) = 1 P(X = 1) = 0.99.

Plug and chug:

$$P(X = 1|Y = 1) = \frac{P(Y = 1|X = 1)P(X = 1)}{P(Y = 1|X = 1)P(X = 1) + P(Y = 1|X = 0)P(X = 0)},$$
$$= \frac{0.86 \times 0.01}{(0.86 \times 0.01) + (0.12 \times 0.99)},$$

= 0.07.

```
# calculations
(0.86 * 0.01) / ((0.86 * 0.01) + (0.12 * 0.99))
```

[1] 0.06750392