Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning

Lanqing Li^{1,2*}, Hai Zhang^{3*}, Xinyu Zhang⁴, Shatong Zhu³, Yang Yu², Junqiao Zhao³, Pheng-Ann Heng²

之江实验室 ZHEJIANG LAB

Zhejiang Lab¹, The Chinese University of Hong Kong², Tongji University³, Stony Brook University⁴

Why Offline Meta-RL (OMRL)? Offline RL Meta-RL Safety Safety Cost Cost Adaptation Adaptation Generalization Generalization

Problem Setup

Context-based OMRL (COMRL) seeks an optimal universal policy conditioning on a task representation z^i for any task/MDP M^i :

$$\pi(\boldsymbol{a}|\boldsymbol{s}, \boldsymbol{z}^i) = \arg\max \sum_{t=0}^{H-1} \gamma^t \mathbb{E}_{\boldsymbol{s}_t \sim \mu_{\pi}^t(\boldsymbol{s}), \boldsymbol{a}_t \sim \pi}[R^i(\boldsymbol{s}_t, \boldsymbol{a}_t)], \forall M^i$$

Task Representation Learning in COMRL

Definition 1 Given an input context variable $X \in \mathcal{X}$ and its associated task/MDP random variable $M \in \mathcal{M}$, task representation learning in COMRL aims to find a sufficient statistics Z of X with respect M.

Pre-existing algorithms propose seemingly disconnected objectives for task representation learning in COMRL:

• FOCAL [ICLR 2021]

$$\mathcal{L}_{\text{FOCAL}} = \min_{\phi} \mathbb{E}_{i,j} \left\{ \mathbb{1}\{i = j\} || z^i - z^j ||_2^2 + \mathbb{1}\{i \neq j\} \frac{\beta}{||z^i - z^j||_2^n + \epsilon} \right\}$$

• CORRO [ICML 2022] $\mathcal{L}_{\text{CORRO}} = \min_{\phi} \mathbb{E}_{x,z} \left[-\log \left(\frac{h(x,z)}{\sum_{M^* \in \mathcal{M}} h(x^*,z)} \right) \right]$

CSRO [NeurIPS 2023]

 $\mathcal{L}_{\text{CSRO}} = \min_{\perp} \left\{ \mathcal{L}_{\text{FOCAL}} + \lambda \mathbb{E}_i \left[\log q_{\phi}(\boldsymbol{z}_i | \boldsymbol{s}_i, \boldsymbol{a}_i) - \mathbb{E}_j \left[\log q_{\phi}(\boldsymbol{z}_j | \boldsymbol{s}_i, \boldsymbol{a}_i) \right] \right] \right\}$

Challenges

Context shift of COMRL. Since the offline training data are static, the agent could encounter severe context shift in state-action distribution (left) or task distribution (right) at test time.

UNICORN: A Unified Framework

Decomposition of Input Data by Causality

Theorem 1 (Central Theorem). Let \equiv denote equality up to a constant, then

$$\frac{I(m{Z};m{X}_t|m{X}_b)}{ ext{primary causality}} \le I(m{Z};m{M}) \le I(m{Z};m{X}_t|m{X}_b) + I(m{Z};m{X}_b) = \underbrace{I(m{Z};m{X})}_{ ext{primary + lesser causality}}$$

holds up to a constant, where

1. $\mathcal{L}_{\text{FOCAL}} \equiv -I(\mathbf{Z}; \mathbf{X})$

2. $\mathcal{L}_{CORRO} \equiv -I(\mathbf{Z}; \mathbf{X}_t | \mathbf{X}_b)$

3. $\mathcal{L}_{CSRO} \ge -((1-\lambda)I(\mathbf{Z}; \mathbf{X}) + \lambda I(\mathbf{Z}; \mathbf{X}_t | \mathbf{X}_b))$.

Take-away Message

I(Z;M) provides a unified learning objective and is robust to context shift, by trading off the primary and lesser causalities of COMRL.

Results

The central theorem offers ample implementation choices for I(Z; M). This paper investigates 2 examples:

• Supervised UNICORN:

 $\mathcal{L}_{\text{UNICORN-SUP}} = -\mathbb{E}_{\boldsymbol{x}, \boldsymbol{z} \sim q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})} \left[\sum_{i=1}^{n_M} \mathbb{1}(M^i = M) \log p_{\boldsymbol{\theta}}(M^i|\boldsymbol{z}) \right]$

• Self-supervised UNICORN:

 $\mathcal{L}_{\text{UNICORN-SS}} = -\mathbb{E}_{x_t, x_b, z \sim q_{\phi}(z|x_t, x_b)} \left[\log p_{\theta}(x_t|z, x_b) \right] + \frac{\alpha}{1-\alpha} \mathcal{L}_{\text{FOCAL}}$

Experiments

The proposed implementations achieves **competitive** in-distribution performance and remarkable out-of-distribution generalization across a wide range of RL domains, OOD settings, data qualities and model architectures.

Table 2: Average testing returns of UNICORN against baselines on datasets collected by IID and OOD behavior policies. Each result is averaged by 6 random seeds. The best is bolded and the

Algorithm	HalfCheetah-Dir		HalfCheetah-Vel		Ant-Dir		Hopper-Param		Walker-Param		Reach	
Algorium	IID	OOD	IID	OOD	IID	OOD	IID	OOD	IID	OOD	IID	OOD
UNICORN-SS	1307±26	1296±24	-22±1	-94±5	267±14	236±18	316±6	304±11	419±44	407±46	2775±241	2604±183
UNICORN-SUP	1296±20	1130±76	-25±3	-91±5	250±4	239±16	312±4	302±12	322±28	312±39	2681±111	2641±140
CSRO	1180±228	458±253	-28±1	-102±5	276±19	233±12	310±6	301±10	310±58	279±65	2720±235	2801±182
CORRO	704±450	245±146	-37±3	-112±2	148±13	120±12	283±8	272±13	277±38	213±48	2468±175	2322±327
FOCAL	1186±272	861±253	-22±1	-97±2	217±29	173±24	302±4	297±13	308±98	286±91	2424±256	2316±303
Supervised	962±356	782±429	-24±1	-104±1	238±39	202±38	306±10	294±8	256±60	210±28	2489±248	2283±205
MACAW	1155±10	450±6	-56±2	-188±1	26±3	0±0	218±6	205±2	141±9	130±5	2431±157	1728±79
Prompt-DT	1176±40	-25±9	-118±66	-249±21	1±0	0±0	234±5	202±5	185±9	156±17	2165±85	1896±11

Table 3: UNICORN vs. baselines on Ant-Dir datasets of various qualities. Each result is aver-

Algorithm	Ran	dom	Med	lium	Expert		
Aigonum	IID	OOD	IID	OOD	IID	0	
UNICORN-SS	81±18	62±6	220±23	243±10	279±10	263	
UNICORN-SUP	75±15	60±5	140±11	126±32	247±15	229	
CSRO	2±3	0±1	166±10	198±17	252±39	202	
CORRO	1±1	0±0	8±5	-7±2	-4±10	-1	
FOCAL	67±26	44±10	171±84	187±86	229±42	246	
Supervised	65±6	47±12	149±50	110±80	249±33	215	
MACAW	3±1	0±0	28±2	1±1	88±43	1	
Prompt-DT	1±0	0±0	2±4	0±1	78±15	1	

aged by 6 random seeds. The best is bolded and HalfCheetah-Dir and Hopper-Param. Each result is averaged by 6 random seeds.

Algorithm	HalfChe	etah-Dir	Hopper-Param		
Aigorium	IID	OOD	IID	OOD	
UNICORN-SS	1307±26	1296±24	316±6	304±11	
UNICORN-SS-DT	1233±10	1186±43	304±4	291±4	
UNICORN-SUP-DT	1227±21	1065±57	308±6	297±2	
FOCAL-DT	1209±33	652±36	293±4	284±5	
Prompt-DT	1177±40	-25±9	234±5	203±5	

Code

