# Crimes in San Francisco Neighborhood

Zhenyu Chen

#### Data Flow



<sup>1. &</sup>lt;a href="https://publicsafetydataportal.org/">https://publicsafetydataportal.org/</a>

<sup>2.</sup> Google Maps API

<sup>3.</sup> SF Opendata

#### Data Flow



- 1. <a href="https://publicsafetydataportal.org/">https://publicsafetydataportal.org/</a>
- 2. Google Maps API
- 3. SF Opendata

#### Introduction

- \* 1.8 Million Crime records from Jan 2003 to Jan 2017
- \* ~ 130k / year, ~ 350 / day
- \* 860k Population on 2015<sup>1</sup>
- \* 87 neighborhoods, 29 types Crime



Lots of Data!
Lots of Information!



# Crime and Neighborhood



### Non Negative Matrix Factorization





### Non Negative Matrix Factorization



- \* Find the ingredient by decompose to two matrix
- \* Optimize cost function | X WH|<sup>2</sup>
- \* Weight by inverse document frequency (0.5 + idf)\*X
- \* Elbow method



H



- \* Each crime appear in all class of pattern
- \* Each pattern emphasize on several type of crime
- \* Each neighborhood is linear combination of all patterns
- \* Crime types happen on similar area



Crime pattern 1:

Larceny / Theft
Assault
Other offenses
Warrants
Vandalism



Crime pattern 2:
Drug/Narcotic
Other offenses
Warrants
Assault



Crime pattern 3:
Other offenses
Missing person
Assault
Vandalism



Crime pattern 4:
Prostitution
Disorderly conduct
Other offenses



Crime pattern 5:
Vehicle theft
Burglary
Larceny/Theft
Vandalism

# Crime Maps



\* Cluster to most representing pattern

\* Color represent the class and severity of crime

#### General situation in SF





# Details in Neighborhood



Each neighborhood is linear combination of all crime pattern



#### Data Flow



- 1. <a href="https://publicsafetydataportal.org/">https://publicsafetydataportal.org/</a>
- 2. Google Maps API
- 3. SF Opendata

#### Crime prediction

- \* Predict crime type based on the assumption of crime will happen
- \* Location, time and neighborhood crime pattern as input feature
- \* Advantage of neural networks:
  - 1. non-linearity
  - 2. easy for multiple classification
  - 3. online learning ability and parallelization by GPU

#### Neural Networks



- \* Neuron: transfer input by activation function
- \* Logistic regression

#### Neural Networks



#### Neural Networks



#### Summary

- \* use non-negative matrix factorization
  - find the crime pattern in neighborhood
  - clustered neighborhoods
  - neighborhoods crime evolution
- \* predict crime type by neural networks

#### Future works

- \* Find a better way to weight low count but high impact crimes
- \* Build map into interactive fashion, easily to find details in neighborhood
- \* Looking for more related information (e.g. House Price, Weather, Personal)

#### Thank You!

