Esssentials of Applied Data Analysis IPSA-USP Summer School 2018

Basic Mathematics Review

Leonardo Sangali Barone leonardo.barone@usp.br

jan/18

Basic Mathematics

Basic notions of algebra, notation and functions.

Basic Operations

Notation	Natural numbers	Examples
+	Addition	40 + 2 = 42
_	Subtraction	44 - 2 = 42
$*or \times$	Multiplication	6 * 7 = 42
÷	Division	$42 \div 7 = 6$
x^a	x to the power of a	$5^2 = 25; 10^4 = 10.000$
$\sqrt[n]{x}$	$nth ext{ of } x$	$\sqrt[2]{25} = 5; \sqrt[4]{10.000} = 10$

Summation and Product

Summation: $\sum_{i=1}^{n} x_i = x_1 + x_2 + ... + x_n$

Product:
$$\sum_{i=1}^{n} x_i = x_1 \times x_2 \times ... \times x_n$$

Example:
$$\begin{array}{c|c} \hline i & x_i \\ \hline 1 & 10 \\ \hline 2 & 15 \\ \hline 3 & 9 \\ \hline 4 & 2 \\ \hline 5 & 6 \\ \hline \end{array}$$

$$\sum_{i=1}^5 x_i = x_1 \times x_2 \times x_3 \times x_4 \times x_5 = 10 \times 15 \times 9 \times 2 \times 6 = 16200$$

Arithmetic Properties

Associative:

$$(a+b) + c = a + (b+c)$$

Commutative:

$$a+b=b+a$$

Distributive:

$$a(b+c) = ab + ac$$

Identities:

$$x + 0 = x$$

$$x \times 1 = x$$

Inverse:

$$(-x) + x = 0$$
$$x^{-1} \times x = \left(\frac{1}{x}\right) \times x = 1$$