Factorización A = LU

Nos preguntamos ¿Es única la factorización LU de A? ¿Siempre podrá hallarse la factorización LU de una matriz A no singular? La respuesta está vinculada a la condición $a_{kk}^{(k-1)} \neq 0$.

Teorema 1

Sea $A \in \mathbb{R}^{n \times n}$.

- a) Si las submatrices primeras principales formadas con las primeras k filas y k columnas, son no singulares, esto es $det(A(1:k,1:k)) \neq 0, k = 1:n$, entonces A admite factorización LU.
- b) Si la factorización LU existe y A es no singular, entonces la factorización LU con $l_{ii} = 1, i = 1, ..., n$ es única.

Factorización PA = LU

Idea

Si el pivote $a_{kk}^{k-1}=0$ se propone intercambiar la fila k con alguna de las i-ésimas filas, i>k tal que $a_{ik}\neq 0$, siguiendo algún criterio para seleccionar la j-ésima fila.

Este procedimiento se conoce como pivoteo de filas.

Factorización PA = LU

¿Cómo representar el intercambio de dos filas de una matriz A?

Definición 1

Se dice que $P \in \mathbb{R}^{n \times n}$ es una matriz permutación si se obtiene de la matriz identidad cambiando filas o columnas. Sea

$$I = [e_1 \ e_2 \ \cdots e_i \cdots e_j \cdots e_n],$$

la matriz

$$P_{ij} = [e_1 \ e_2 \ \cdots e_j \cdots e_i \cdots e_n].$$

es una matriz de permutación. Las matrices de permutación son ortogonales, esto es $P^T = P^{-1}$.

Factorización PA = LU

Propiedades 1

Sea A, $P \in \mathbb{R}^{n \times n}$, P_{ij} matriz permutación,

- PA produce el intercambio de las filas i y j de una matriz A.
- AP produce el intercambio de las columnas i y j de una matriz A.

Teorema 2

Sea $A \in \mathbb{R}^{n \times n}$ no singular, existe al menos una matriz de permutación P tal que PA pueda factorizarse como

$$PA = LU$$
.

Eliminación Gaussiana con pivoteo parcial (EGPP)

Sea $A \in \mathbb{R}^{n \times n}$ no singular, el sistema Ax = b puede resolverse con EGPP usando la factorización LU como sigue:

- \bigcirc Se factoriza PA = IU
- 3 Se resuelve LUx = Pb, en dos pasos
 - ightharpoonup Ly = Pb,
 - \triangleright Ux = y.

Ejemplo 1

Sea el sistema Ax = b,

$$\left[\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} -1 \\ 2 \end{array}\right].$$

Eliminación Gaussiana con pivoteo parcial (EGPP)

... continua ejemplo

A es no singular entonces el sistema tiene solución única. Sin embargo A no admite factorización LU, entonces se debe pivotear

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -1 \end{array}\right].$$

El sistema está bien condicionado $K_2(A) = K_2(PA) = 2.6180$ y la solución exacta es $x_{\star}^T = (1, 1)$.

¿Será estable el método de Eliminación Gaussiana (EG)?

Ejemplo 2

Consideremos el sistema $\tilde{A}x=b$ que se obtiene perturbando «ligeramente» el elemento a_{11} de la matriz del sistema del ejemplo 1

$$ilde{A} = \left[egin{array}{cc} \mu & -1 \ 1 & 1 \end{array}
ight].$$

La factorización LU de A puede completarse por EG como sigue:

$$\left[\begin{array}{cc} \mu & -1 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ \frac{1}{\mu} & 1 \end{array}\right] \left[\begin{array}{cc} \mu & -1 \\ 0 & \frac{1}{\mu} \end{array}\right].$$

Observación:

- Si μ es «muy pequeño», entonces $\frac{1}{\mu}$ es «muy grande».
- Se ha producido un «crecimiento» en los elementos de L y U muy importante.
- El multiplicador es $\frac{1}{\mu}$ es «muy grande».

...continua el ejemplo

Se resuelve el sistema $\tilde{A}x = b$ en dos pasos:

$$\left[\begin{array}{cc} 1 & 0 \\ \frac{1}{\mu} & 1 \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{c} -1 \\ 2 \end{array}\right].$$

$$\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{c} -1 \\ 2 + \frac{1}{\mu} \end{array}\right].$$

 $y_2=rac{1}{\mu}(2\mu+1)$, en aritmética finita si $2\mu<<\epsilon_M$, entonces $y_2=rac{1}{\mu}$. Luego se resuelve

$$\left[\begin{array}{cc} \mu & -1 \\ 0 & \frac{1}{\mu} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} -1 \\ \frac{1}{\mu} \end{array}\right],$$

... continua el ejemplo

y resulta $\tilde{x}^T = (0,1)$.

El residuo es $b - \tilde{A}\tilde{x} = (0,1)^T$ y $||r||_{\infty} = 1$, grande!!!!

Recordemos que $x_{\star}^{T}=(1,1)^{T}$ es la solución exacta de Ax=b y que $\tilde{x}^{T}=(0,1)$ es solución del sistema ligeramente perturabdo $\tilde{A}x=b$, sin embargo la distancia entre ambas soluciones es

$$\frac{\left\|\tilde{x}-x_{\star}\right\|_{\infty}}{\left\|x_{\star}\right\|_{\infty}}=1,$$

$$\left[\begin{array}{cc} 1 & 0 \\ \frac{1}{\mu} & 1 \end{array}\right] \left[\begin{array}{cc} \mu & -1 \\ 0 & \frac{1}{\mu} \end{array}\right] = \left[\begin{array}{cc} \mu & -1 \\ 1 & 0 \end{array}\right].$$

¿Cómo se explican estos resultados? **EG es inestable** ¿Cómo solucionar este problema?

Idea

- Controlar el crecimiento de los elementos en todos los pasos.
- Tratar que los multiplicadores sean en magnitud menor o igual que 1.
- Se permutan las filas de modo que el pivote sea el número de mayor magnitud de la columna.

... continua el ejemplo

Se resuelve el sistema del ejemplo (2) usando EGPP. Esto es $P\tilde{A}x = Pb$

$$\left[\begin{array}{cc} 1 & 1 \\ \mu & -1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -1 \end{array}\right].$$

La matriz de permutación es

$$P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

... continua el ejemplo

La factorización LU es

$$\left[\begin{array}{cc} 1 & 0 \\ \mu & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right].$$

Luego se resuelve el sistema en dos pasos:

$$\left[\begin{array}{cc} 1 & 0 \\ \mu & 1 \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -1 \end{array}\right],$$

y resulta $y^T = (2, -1 - 2\mu)$.

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -1 - 2\mu \end{array}\right],$$

y resulta $\tilde{x}^T = (1 - 2\mu, 1 + 2\mu)$.

... continua el ejemplo

Luego en aritmética finita:

$$\tilde{x} = \begin{bmatrix} 1 - 2\mu \\ 1 + 2\mu \end{bmatrix} \cong \begin{bmatrix} 1 \\ 1 \end{bmatrix} = x_{\star}.$$

¿Es estable EGPP?

Lamentablemente NO.

Se puede hacer pivoteo completo, esto es $PAQQ^Tx = Pb$ donde P y Q son matrices de permutación (ortogonales). Se puede demostrar que EGCP es más estable que EGPC, sin embargo es muy costoso y por lo tanto poco popular.

Esquema de Eliminación Gaussiana con pivoteo completo (EGPC)

- PAQz = Pb, $Q^Tx = z$
- LUz = Pb,
- Ly = Pb,
- Uz = y,
- $\bullet x = Qz.$

Recordemos que hay casos especiales en los que no es necesario usar pivoteo:

- Si $A \in \mathbb{R}^{n \times n}$ es diagonal dominante, esto es cualquiera sea $1 \le i \le n$ es $|a_{ii}| > \sum_{i} |a_{ij}|, |a_{ii}| > \sum_{i} |a_{ji}|.$
- Si $A \in \mathbb{R}^{n \times n}$ es definida positiva.

Algoritmo LU

Algoritmo 1

```
function A=factoriza(A)
n=size(A);
for k=1:n-1
  for i=k+1:n
    alpha=A(i,k)/A(k,k);
    for j=k+1:n
      A(i,j)=A(i,j)-alpha*A(k,j);
    end
    A(i,k)=alpha;
  end
end
```

Costo aritmético EG

Del algoritmo se deduce que en cada etapa «k» del algoritmo se realizan (n-k) cocientes para obtener los multiplicadores α , $(n-k)^2$ sumas y productos para calcular los $(n-k)^2$ elementos del bloque cuadrado que se marca en verde.

Costo aritmético EG

etapa	cocientes	sumas y productos
1	n-1	$2(n-1)^2$
2	n – 2	$2(n-2)^2$
÷	i	÷
n – 1	1	2
Total	$\frac{(n-1)n}{2}$	$\frac{2(n-1)(2n-1)n}{6}$

El costo total es aproximadamente $\frac{2}{3}n^3$, esto es $\mathcal{O}(n^3)$ operaciones. Por lo tanto es mayor costo al resolver un sistema de ecuaciones lineales corresponde a la factorización LU de PA.

Consideramciones de implementación de EGPP

- Como se observa en el algoritmo no se definen las matrices L y U sino que se «cargan» por encima o por debajo de la diagonal de A.
- No se utilizan matrices de pivoteo sino un vector de índices pivotales que contiene inicialmente en orden natural entre 1 y n IPVT = (1, 2, ..., n). Este vector de aplica luego a b.
- Para matrices especiales se utilizan los algoritmos especiales que tienen menor costo computacional. Si $A \in \mathbb{R}^{n \times n}$ es
 - definida positiva (Factorización de Cholesky)
 - tridiagonal (Método de Thomas) (ejercicio 10 del práctico).
 - ▶ una matriz en bloques (ejercicio 11 del práctico).