

DNA Motif search using Genetic Algorithms

Hura Viktor

Madmar Mounir

Darkaoui Mohamed

Co-regulation

- > Gene 1 Promoter
 CAAAACCCTCAAATACATTTTAGAAACACAATTTCAGGATATAAAAAGTTAAATTCATCTAGTTATACAA
- > Gene 2 Promoter
 TCTTTTCTGAATCTGTATAAAAACTTTTATTCTGTAGATGGTGGCTGTAGGAATCTGTCACACAGCATGA
- > Gene 3 Promoter
 CCACGTGGTTAGTGGCAACCTGGTGACCCCCCTTCCTGTGATTTTTATAAAAAGAGCAGCCGGCATCGTT
- > Gene 4 Promoter
 GGAGAGTGTTTATAAAAAGATGACTACAGTCAAACCAGGTACAGGATTCACACTCAGGGAACACGTGTGG
- > Gene 5 Promoter
 TCACCATCAAACCTGAATCAAGGCAATGAGCAGGTATAAAAAGCCTGGATAAGGAAACCAAGGCAATGAG

DNA Motif

All genes that have the motif in their sequence will be regulated by the same transcription factor.

Often this means that they will have similar expression patterns.

Degeneracy

- > Gene 1 Promoter
 CAAAACCCTCAAATACATTTTAGAAACACAATTTCAGGATATTAAAAGTTAAAATTCATCTAGTTATACAA
- > Gene 2 Promoter
 TCTTTTCTGAATCTGAATAAATACTTTTATTCTGTAGATGGTGGCTGTAGGAATCTGTCACACAGCATGA
- > Gene 3 Promoter
 CCACGTGGTTAGTGGCAACCTGGTGACCCCCCTTCCTGTGATTTTTACAAATAGAGCAGCCGGCATCGTT
- > Gene 4 Promoter
 GGAGAGTGTTTTTAAGAAGATGACTACAGTCAAACCAGGTACAGGATTCACACTCAGGGAACACGTGTGG
- > Gene 5 Promoter
 TCACCATCAAACCTGAATCAAGGCAATGAGCAGGTATACATAGCCTGGATAAGGAAACCAAGGCAATGAG

In many cases, the DNA signal is not absolute but some error tolerance is allowed.

How do we represent the (common) motif sequence? How do we decide what is a match and what isn't?

Gibbs motif sampling Optimize starting from a random start in n-1 sequences

- > Gene 1 Promoter CAAAACCCTCAAATACATTTTAGAAACACAATTTCAGGATATTAAAAGTTAAATTCATCTAGTTATACAA
- > Gene 2 Promoter TCTTTTCTGAATCTGAATAAATACTTTTATTCTGTAGATGGTGGCTGTAGGAATCTGTCACACACCAGCATGA
- > Gene 3 Promoter CCACGTGGTTAGTGGCAACCTGGTGACCCCCCTTCCTGTGATTTTTACAAATAGAGCAGCCGGCATCGTT
- > Gene 4 Promoter GGAGAGTGTTTTTAAGAAGATGACTACAGTCAAACCAGGTACAGGATTCACACTCAGGGAACACGTGTGG
- > Gene 5 Promoter TCACCATCAAACCTGAATCAAGGCAATGAGCAGGTATACATAGCCTGGATAAGGAAACCAAGGCAATGAG

Find best match in left out sequence

Calculate on n-1 instances

Recursion until optimum is reached

Consensus sequence

Known instances but unknown motif

Known instances

TATTAAAA AATAAATA TACAAATA TTTAAGAA TATACATA

Motif

TATAAATA

List the most frequent base at each position

TATAAAAA CAAAACCCTCAAATACATTTTAGAAACACAATTTCAGGATATTAAAAAGTTAAAATTCATCTAGTTATACAA

TATAAAAA
TCTTTTCTGAATCAAAAATACTTTTATTCTGTAGATGGTGGCTGTAGGAATCTGTCACACAGCAA

TATAAAAA CCACGTGGTTAGTGGCAACCTGGTGACCCCCCTTCCTGTGATTTTTTACAAATAGAGCAGCCGGGTT

Motif

Genome [] = list of letters

Example

Genome [] = ['A', 'C', 'G', 'C', 'A', 'T']

Mutation

Motif

Genome [] = ['A', 'G', 'G', 'C', 'A', 'T']

Each gene has a {mutationRate} % chance to mutate

Crossover

P1

P2

Midpoint(random) = 2

Child

Genome [] = ['A', 'C', 'T', 'A', 'A', 'G']

TATAAAAA 7/8 CAAAACCCTCAAATACATTTTAGAAACACAATTTCAGGATATTAAAAGTTAAATTCATCTAGTTATACAA

TATAAAAA 6/8
TCTTTTCTGAATCAATAAATACTTTTATTCTGTAGATGGTGGCTGTAGGAATCTGTCACACAGCAA

TATAAAAA 6/8
CCACGTGGTTAGTGGCAACCTGGTGACCCCCCTTCCTGTGATTTTTACAAATAGAGCAGCCGGGTT

Next Generation

Genetic Algorithm	population	${f elite}$	tournament	mutation rate
#1	16	1	2	2%
#2	32	1	2	2%
#3	64	1	3	2%
#4	128	1	3	2%
#5	256	1	6	2%

TATTAAAA AATAAATA TACAAATA TTTAAGAA TATACATA

TATTAAAA 1.61 AATAAATA 2.23 TACAAATA 2.23 TTTAAGAA 3.29 TATACATA 2.23

Table 2: Results with less sequences and lower sequence length.

Sequences:	10
Sequence length:	50
Motif length:	10
Tests:	50

Algorithm	Average motif score	Average search time (s)
Gibbs sampling	9.04288	0.01282
Genetic Algorithm #1	9.32464	0.28475
Genetic Algorithm #2	9.20012	0.50256
Genetic Algorithm #3	9.07553	0.77744
Genetic Algorithm #4	9.10533	1.42294
Genetic Algorithm #5	8.99614	1.77420

Table 3: Results with more sequences and higher sequence length.

Sequences:	50
Sequence length:	400
Motif length:	10
Tests:	50*

Algorithm	Average motif score	Average search time (s)
Gibbs sampling	5.14713	0.42961
Genetic Algorithm #1	4.37700	9.53665
Genetic Algorithm #2	4.29795	13.16963
Genetic Algorithm #3	4.17668	16.94488
Genetic Algorithm #4	4.09512	40.12148
Genetic Algorithm #5	3.89320	50.84550

Table 4: Results with bigger motif length.

Sequences:	50
Sequence length:	400
Motif length:	20
Tests:	10

Algorithm	Average motif score	Average search time (s)
Gibbs sampling	11,86501005	0,49003258
Genetic Algorithm #1	10,84175872	35,8983025
Genetic Algorithm #2	9,726592314	51,09821664

Table 5: Results with UCSC Cat sequences.

UCSC-Cat

Sequences:	50
Sequence length	5000
Motif length	20
Tests	10

	Average motif score	Average search time (s)
Gibbs sampling	13.20885	10.62160
Genetic Algorithm #2	14.39913	823.04195

Conclusies

