/2,5 points

Nom:	Prénom :	
$(E,+,\cdot)$ désigne un \mathbb{K} -espace	e vectoriel.	
Questions de cours 1) Soit $\mathcal{F} = (u_1, \dots, u_n)$ une (a) Donner la définition ma	famille de n vecteurs de E . athématique de « \mathcal{F} est une famille liée ».	
		/2 points
(b) Définir le sev engendré	par \mathcal{F} .	
		/1 point
2) Qu'appelle-t-on scalaire?		
		/0.5 noint
3) Comment est défini le vect	teur nul de E , noté 0_E ?	/0.5 point
,		
		/1,5 points
Exercices		
,	nt-ils des \mathbb{R} -ev pour les lois usuelles? Justifier vos réponses. $\mathbb{R}^{\mathbb{N}} \mid u_0 + u_1 = 1\} \text{et} G = \{(x, y, z) \in \mathbb{R}^3 \mid -2y = z \text{ et } x = 3z\}.$	
$F = \{(u_n)_{n \in \mathbb{N}} \in$	$ u_0 + u_1 = 1 $ et $G = \{(x, y, z) \in \mathbb{R} \mid -2y = z \text{ et } x = 5z\}.$	
		/2,5 points
2) Soient $u = (-1, -1, 0), v =$	=(3,0,-3) et $w=(0,1,-6)$. w) est libre dans \mathbb{R}^3 , et en déduire son rang.	
Montrer que la famille (u, v, v)	w) est libre dans \mathbb{R}^3 , et en deduire son rang.	