Act8 Pruebas de hipótesis

Luis Maximiliano López Ramírez

2024-08-23

Enlatados

Instrucciones

Resuelve el problema "Enlatados". Muestra tu procedimiento siguiendo los 4 pasos de las pruebas de hipótesis Elabora un gráfico que muestre la regla de decisión y el punto donde queda el estadístico de prueba. Concluye en el contexto del problema.

Problema

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1: Establecer hipótesis H0 y H1

- H_0 : $\mu = 11.7$
- $H_1: \mu \neq 11.7$

¿Cómo se distribuye \bar{X}

- X se distribuye como una Normal
- n < 30
- No conocemos sigma (Debido a esto se usará t student y no z)

Entonces la distribución muestral es una t de Student

Paso 2: Definir la regla de decisión

Nivel de confianza es de 0.98 Nivel de significancia es de 0.02

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera

```
n = 21 alfa = 0.02
```

```
t_f = qt(alfa/2, n - 1)
cat("t_f =", t_f)
## t_f = -2.527977
```

Regla de decisión

Rechazo H_0 si:

- $|t_e| > 2.53$
- valor p < 0.02

Paso 3: Analizar resultados

- t_e : Número de desviaciones al que \bar{x} se encuentra lejos de mu = 11.7
- Valor p: Probabilidad de ontener lo que obtuve en la muestra o un valor más extremo

Estadístico de Prueba

```
X = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4,
11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)

xb = mean(X)
s = sd(X)
miu = 11.7

te = (xb-miu)/(s/sqrt(n))
cat("te =", te)

## te = -2.068884

valorp = 2*pt(te, n - 1) #Debido a que la prueba es de colas
cat("Valor p =", valorp)

## Valor p = 0.0517299
```

Más fácil: Para hacer el análisis del resultado

```
t.test(X, mu=11.7, alternative="two.sided", conf.level = 0.98)

##

## One Sample t-test

##

## data: X

## t = -2.0689, df = 20, p-value = 0.05173

## alternative hypothesis: true mean is not equal to 11.7

## 98 percent confidence interval:

## 11.22388 11.74755

## sample estimates:

## mean of x

## 11.48571
```

Paso 4: Conclusión

Comparar: Regla de decisión vs Análisis del resultado

Rechazo H_0 si:

- $|t_e| = 2.07 < 2.53$ -> No se rechaza H_0
- valor p = 0.05 > 0.02 -> No se rechaza H_0

En el contexto: Las latas de durazno tienen el peso requerido

Gráfico

```
# Se grafica una secuencia de números para x que abarque 4 desviaciones
estándar alrededor de la media (se ejemplifica con la t de student) con
su respectivo valor de y:
sigma = sqrt((n-1)/(n-3))
x=seq(-4*sigma, 4*sigma, 0.01)
y=dt(x,n-1)
plot(x,y,type="1",col="blue",xlab="",ylab="",ylim=c(-
0.1,0.4), frame.plot=FALSE, xaxt="n", yaxt="n", main="Región de rechazo
(distribución t de Student, gl=20)")
# Para indicar la zona de rechazo (se ejemplifica con dos colas) y la
media (para la t de Student la miu = 0):
abline(v=t f,col="red",lty=5)
abline(v=-1*t_f,col="red",lty=5)
abline(h=0)
abline(v=0, col="blue",pch=19)
# Para dibujar el estadístico de prueba, insertar un punto o una recta
punteada de diferente color a la zona de rechazo, para insertar un punto:
points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl=2

La decisión de Fowle Marketing Research, Inc.

Instrucciones

Resuelve el problema "Enlatados". Muestra tu procedimiento siguiendo los 4 pasos de las pruebas de hipótesis Elabora un gráfico que muestre la regla de decisión y el punto donde queda el estadístico de prueba. Concluye en el contexto del problema.

Problema

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Paso 1: Establecer hipótesis H0 y H1

• H_0 : $\mu = 15$

• $H_1: \mu > 15$

¿Cómo se distribuye \bar{X}

- X se distribuye como una Normal
- n < 30
- No conocemos sigma (Debido a esto se usará z y t student)

Entonces la distribución muestral es una z

Paso 2: Definir la regla de decisión

Nivel de confianza es de 0.93 Nivel de significancia es de 0.07

```
# Datos
tiempos <- c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12,
12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22,
18, 23)

# Parámetros
mu_0 <- 15  # Hipótesis nula
sigma <- 4  # Desviación estándar poblacional
n <- length(tiempos)
media_muestra <- mean(tiempos)

# Valor crítico para una prueba de una cola con α = 0.07
z_critico <- qnorm(1 - 0.07)
cat("z_critico =", z_critico, "\n")
## z_critico = 1.475791</pre>
```

Regla de decisión

Rechazo H_0 si:

- z > 1.48
- valor p < 0.07

Paso 3: Analizar resultados

```
# Estadístico de prueba z
z <- (media_muestra - mu_0) / (sigma / sqrt(n))
cat("Estadístico z =", z, "\n")
## Estadístico z = 2.95804

# Cálculo del valor p
valor_p <- 1 - pnorm(z)
cat("Valor p =", valor_p, "\n")
## Valor p = 0.00154801</pre>
```

```
if (z > z critico) {
  conclusion <- "Rechazamos la hipótesis nula. Existe evidencia
suficiente para justificar la tarifa adicional."
} else {
  conclusion <- "No rechazamos la hipótesis nula. No existe evidencia
suficiente para justificar la tarifa adicional."
conclusion
## [1] "Rechazamos la hipótesis nula. Existe evidencia suficiente para
justificar la tarifa adicional."
if (valor_p < 0.07) {
  conclusion p <- "Rechazamos la hipótesis nula. El valor p es menor que
0.07, por lo que existe evidencia suficiente para justificar la tarifa
adicional."
} else {
  conclusion_p <- "No rechazamos la hipótesis nula. El valor p es mayor o
igual a 0.07, por lo que no existe evidencia suficiente para justificar
la tarifa adicional."
conclusion_p
## [1] "Rechazamos la hipótesis nula. El valor p es menor que 0.07, por
lo que existe evidencia suficiente para justificar la tarifa adicional."
```

Comparar: Regla de decisión vs Análisis del resultado

Rechazo H_0 si:

- $z_e = 2.95 > 1.48 -> \text{Se rechaza } H_0$
- valor p = 0.001 < 0.07 -> Se rechaza H_0

En el contexto: Se justifica la tarifa adicional.

Gráfico

```
# Gráfico de la distribución normal estándar
x <- seq(-3, 4, length=1000)
y <- dnorm(x)

plot(x, y, type="l", lwd=2, col="blue", main="Regla de Decisión para z",
ylab="Densidad", xlab="z")
abline(v=z_critico, col="red", lwd=2)
text(z_critico, 0.1, round(z_critico, 2), pos=4, col="red")
abline(v=z, col="green", lwd=2)
text(z, 0.2, round(z, 2), pos=4, col="green")</pre>
```

Regla de Decisión para z

