

ISSN 1230-3496, e-ISNN 2449-7487

Cena: 56,70 zł (w tym 5% VAT)

PRZEGLAD TELEKOMUNIKACYJNY WIADOMOŚCI TELEKOMUNIKACYJNE

Tele-Radio-Elektronika Informatyka

TELECOMMUNICATION REVIEW + TELECOMMUNICATION NEWS Tele-Radio-Electronics,

Information Technology

8-9'2015

TREŚĆ	STRONA PAGE	CONTENTS
A. R. Pach Krajowe Sympozjum Telekomunikacji i Teleinformatyki KSTiT 2015		A. R. Pach The National Symposium Telecommunications andTeleinformatics KSTiT 2015
Ramowy plan KSTiT 2015	676	General outline of Symposium programme
Spis referatów zamieszczonych na CD	677	Abstracts of the papers included on the CD
Referaty plenarne		Plenary addres
B. BELTER, Ł. ŁOPATOWSKI, M. GIERTYCH, W. BURAKOWSKI, H. TARASIUK, P. WIŚNIEWSKI, P. SCHAUER, K. GIERŁOWSKI, D. SAMOCIUK Rozlegte sieci badawcze dla testowania rozwiązań nowych generacji Internetu	681	B. BELTER, Ł. ŁOPATOWSKI, M. GIERTYCH, W. BURAKOWSKI, H. TARASIUK, P. WIŚNIEWSKI, P. SCHAUER, K. GIERŁOWSKI, D. SAMOCIUK Wide area research networks for testing solutions proposed for next generations of the Internet
K. WALKOWIAK, M. AIBIN Elastyczne sieci optyczne – nowa technika transmisji danych dla efektywnej realizacji usług chmurowych oraz sieci dystrybucji treści	691	K. WALKOWIAK, M. AIBIN Elastic optical networks – a new approach for effective provisioning of cloud computing and content-oriented services
T. GIERSZEWSKI Umyst kontra umyst – zagrożenia i metody walki ze złośliwym oprogramowaniem	698	T. GIERSZEWSKI Mind versus mind – malware threats and
P. PACYNA, P. BERESKI Statyczne i dynamiczne modele sieci	706	P. PACYNA, P. BERESKI Static and dynamic models of network
Referaty sesyjne		Selected papers
G. STĘPNIAK, Ł. MAKSYMIUK, J. SIUZDAK Wydajność zaawansowanych formatów modulacji w łączu wykorzystującym jako nadajniki diody oświetleniowe	711	G. STĘPNIAK, Ł. MAKSYMIUK, J. SIUZDAK Efficiency of Advanced Modulation Schemes in a Phosphorescent White LED Wireless Link
K. MYSLITSKI, J. RAK Metoda szybkiego wyznaczania par węzłowo-rozłącznych tras dla ochrony transmisji <i>unicast</i>	717	K. MYSLITSKI, J. RAK A method of fast computation of node-disjoint path pairs for
D. ŻELASKO, K. CETNAROWICZ, K. WAJDA Koncepcja trasowania ze zmiennym kosztem dla sieci o sterowaniu rozproszonym	724	D. ŻELASKO, K. CETNAROWICZ, K. WAJDA Concept of variable cost routing for distributed
K. RUSEK, Z. PAPIR Analiza pojemności bufora i skali czasu autokorelacji ruchu	730	K. RUSEK, Z. PAPIR Analysis of buffer capacity and time scale of traffic
M. KOWALCZYK Zastosowanie diod LED jako fotodetektorów w systemach transmisji VLC	733	M. KOWALCZYK Application of LEDs as photodetectors in VLC transmission systems
M. WĄGROWSKI, M. SIKORA, J. GOZDECKI, K. ŁOZIAK, W. LUDWIN, J. WSZOŁEK Analiza wymagań systemu akwizycji danych do monitorowania stanu poszycia statków powietrznych	738	M. WĄGROWSKI, M. SIKORA, J. GOZDECKI, K. ŁOZIAK, W. LUDWIN, J. WSZOŁEK Analysis of Data Aquisition Requirements for SHM System in Aircraft

Artykuły naukowe publikowane w PTiWT uzyskują 6 punktów (zgodnie z wykazem czasopism naukowych ogłoszonym w komunikacie Ministra Nauki i Szkolnictwa Wyższego z dnia 17 grudnia 2013 r.).

Artykuły naukowe publikowane w niniejszym zeszycie są recenzowane. Zeszyt wydany w wersji elektronicznej jako pierwotnej (referencyjnej)

00-950 Warszawa skrytka pocztowa 1004 ul. Ratuszowa 11 tel.: 022 818-09-18, 022 818-98-32

fax: 022 619-21-87

Internet: http://www.sigma-not.pl Prenumerata

e-mail: prenumerata@sigma-not.pl

Sekretariat e-mail: sekretariat@sigma-not.pl

Dział Reklamy i Marketingu e-mail: reklama@sigma-not.pl KOLEGIUM REDAKCYJNE

Redaktor naczelny: dr inż. BOGDAN ZBIERZCHOWSKI Honorowy redaktór naczelny: dr inż. KRYSTYN PLEWKO

Redaktorzy: mgr WITOLD GRABOŚ, prof. dr hab. inż. TADEUSZ ŁUBA, prof. dr inż. MARIAN ZIENTALSKI

Redaktor językowy: mgr HANNA WASIAK Redaktor statystyczny: dr inż. GRZEGORZ BOROWIK

Opracowanie graficzne: dr inż. PAWEŁ TOMASZEWICZ Redakcyjna strona internetowa: dr inż. MARIUSZ RAWSKI

Z-ca red. naczelnego: mgr HANNA WASIAK

RADA PROGRAMOWA

prof. dr hab. inż. Józef Modelski (przewodniczący), mgr inż. Krystyn Antczak, prof. dr hab. inż. Jerzy Czajkowski, prof. dr hab. inż. Andrzej Dobrogowski, dr inż. Andrzej Dulka, dr inż. Władysław Grabowski, mgr inż. Andrzej Grześkowiak, mgr inż. Bertrand Le Guern, prof. dr hab. inż. Stefan Hahn, prof. dr hab. inż. Andrzej Jajszczyk, inż. Stefan Kamiński, inż. Zdzisław Kleszcz, mgr inż. Krzysztof Kwiecień, mgr inż. Zbigniew Lange, prof. dr hab. inż. Józef Lubacz, dr inż. Janusz Morawski, dr inż. Andrzej Wilk, prof. dr hab. inż. Tadeusz Więckowski, prof. dr hab. inż. Józef Wożniak, płk dr inż. Mieczysław Żurawski

Redakcja: ul. Ratuszowa 11 (budynek Instytutu Tele- i Radiotechnicznego), VI piętro, pokój 637, tel. 22 670-08-20 (+ poczta glosowa),

tel./faks: 22 619-86-99. Przyjęcia interesantów w godz. 10–14. Adres do korespondencji: ul. Ratuszowa 11, 00-950 Warszawa 1, skrytka poczt. 1004

Czasopismo dostępne wyłącznie w prenumeracie

Artykułów niezamówionych redakcja nie zwraca.

Redakcja zastrzega sobie prawo dokonywania skrótów i poprawek w nadesłanych materiałach.

e: Studio DTP SIGMA-NOT, Ratuszowa 11, 00-950 Wa

Druk i oprawa: Drukarnia Sigma-NOT, www.sigma-not.pl

Zamówienia na ogłoszenia należy kierować pod adresem Redakcji (adres jak wyżej) lub Działu Reklamy i Marketingu Wydawnictwa SIGMA-NOT, ul. Ratuszowa 11, 00-950 Warszawa, tel. 22 827-43-65, fax 22 826-80-16. Za treść i wygląd graficzny ogłoszeń Redakcja nie bierze odpowiedzialności.

Niniejszy podwójny zeszyt (8-9'2015) naszego miesięcznika jest związany z XXXI Krajowym Sympozjum Telekomunikacji i Teleinformatyki KSTiT'2015. Odbywa się ono w Krakowie w dniach 16 – 18 września br.

Zeszyt zawiera całość materiałów konferencyjnych. Referaty plenarne oraz wybrane referaty sekcyjne są prezentowane w formie artykułów drukowanych, zaś pozostałe referaty są zamieszczone na płycie CD, stanowiącej integralną część Przeglądu Telekomunikacyjnego i Wiadomości Telekomunikacyjnych. Wszystkie artykuły i referaty są recenzowane. Obszerne informacje na temat konferencji znajdą Państwo w artykule wstępnym (II str. okładki), przygotowanym przez prof. Andrzeja Pacha – przewodniczącego Sympozium.

Komitet Programowy – recenzenci

Krzysztof Abramski, Politechnika Wrocławska

Błażej Adamczyk, Politechnika Ślaska

Marek Amanowicz, Wojskowa Akademia Techniczna

Piotr Arabas, NASK

Potr Bratoszewski, Politechnika Gdańska

Jarosław Bułat, AGH

Wojciech Burakowski, Politechnika Warszawska

Robert Chodorek, AGH Piotr Cholda, AGH

Andrzej Chydziński, Politechnika Śląska

Janusz Cichowski, Politechnika Gdańska

Tadeusz Czachórski, Instytut Informatyki Teoretycznej i Stosowanej PAN

Andrzej Czyżewski, Politechnika Gdańska Grzegorz Danilewicz, Politechnika Poznańska

Jacek Dańda, AGH

Andrzei Dabrowski. Politechnika Warszawska

Andrzej Dobrogowski, Politechnika Poznańska

Jerzy Domżał, AGH

Przemysław Dymarski, Politechnika Warszawska Piotr Gajewski, Wojskowa Akademia Techniczna

Mariusz Głabowski, Politechnika Poznańska

Andrzei Głowacz, AGH Ryszard Golański, AGH

Janusz Gozdecki, AGH Tomasz Grajek, Politechnika Poznańska

Michal Grega, AGH

Adam Grzech, Politechnika Wrocławska Piotr Hoffmann. Politechnika Gdańska

Andrzej Jajszczyk, AGH

Artur Janicki, Politechnika Warszawska

Lucjan Janowski, AGH

Mieczysław Jessa. Politechnika Poznańska Wojciech Kabaciński, Politechnika Poznańska Sylwester Kaczmarek, Politechnika Gdańska Andrzej Kasprzak, Politechnika Wrocławska Michal Kasznia. Politechnika Poznańska

Jacek Kołodziej, AGH

Jerzy Konorski, Politechnika Gdańska

Katarzyna Kosek-Szott, AGH Józef Kotus, Politechnika Gdańska

Jerzy Kubasik, Politechnika Poznańska Sławomir Kula. Politechnika Warszawska

Paweł Kułakowski, AGH Artur Lason, AGH

Wiesław Ludwin, AGH

Adam Łuczak, Politechnika Poznańska Sławomir Maćkowiak, Politechnika Poznańska Wojciech Mazurczyk, Politechnika Warszawska

Wojciech Molisz, Politechnika Gdańska Mariusz Mycek, Politechnika Warszawska

Marek Natkaniec, AGH Marcin Niemiec, AGH Andrzej Pach, AGH

Piotr Pacyna, AGH Zdzisław Papir, AGH

Andrzej Paszkiewicz, Politechnika Warszawska

Michał Pióro, Politechnika Warszawska

Mirosław Popis, WAT Grzegorz Różański, WAT Marek Sikora, AGH

Władysław Skarbek, Politechnika Warszawska

Rafał Stankiewicz, AGH

Maciej Stasiak, Politechnika Poznańska Maciej Szczodrak, Politechnika Gdańska

Krzysztof Szczypiorski, Politechnika Warszawska Piotr Szotkowski, Politechnika Warszawska

Szymon Szott, AGH

Paweł Szulakiewicz, Politechnika Poznańska

Andrzej Szymański, AGH

Jacek Świderski, Instytut Energetyki Instytut Badawczy Oddział

Gdańsk

Hubert Trzaska, Politechnika Wrocławska

Krzysztof Wajda, AGH

Krzysztof Walkowiak, Politechnika Wrocławska

Michał Wagrowski, AGH

Krzysztof Wesołowski, Politechnika Poznańska Tadeusz Więckowski, Politechnika Wrocławska Marian Wnuk, Wojskowa Akademia Techniczna

Józef Woźniak, Politechnika Gdańska

Robert Wójcik, AGH Jacek Wszołek, AGH Jacek Wszołek, AGH

Ryszard Zieliński, Politechnika Wrocławska

Tomasz Zieliński, AGH

M. DZIUBA, G. DANILEWICZ

Referaty sesji tematycznych zamieszczone na CD

Sesja 1: Architektury i protokoły komunikacyjne, cz. 1	M. DZIUBA, G. DANILEWICZ	
R. CHODOREK, A. CHODOREK Analiza protokołu MPTCP w sieciach heterogenicznych 747	Porównanie strategii realizacji połączeń rozgłoszeniowych w polach typu banyan	782
J. KLEBAN, J. WARCZYŃSKI	Sesja 2: Bezpieczeństwo sieci telekomunikacyjnych	
Stabilność trzysekcyjnego pola Closa typu MSM z algoryt-	i systemów teleinformatycznych, cz. 1	
mem MMLM 754	M. KRUCZKOWSKI	
M. DZIUBA, G. DANILEWICZ	System do wykrywania kampanii złośliwego oprogramowania	789
Nowa strategia realizacji połączeń rozgłoszeniowych	A. JANICKI	
w polach typu banyan 762	Systemy weryfikacji mówcy – rosnące wyzwania	798
K. WAJDA, G. RZYM, J. DOMŻAŁ, R. WÓJCIK	M. WINIARSKI, M. WAGROWSKI	
Ewolucja koncepcji sieci w kierunku sieci zorientowa-	Bezpieczeństwo i integralność danych w nowoczesnych	
nych na przepływy 774	sieciach komórkowych	805

M. JANISZEWSKI	realizowanych przy wykorzystaniu stykowych kart	
TRM-EAT – narzędzie oceny odporności na ataki i efektyw-	mikroprocesorowych	953
ności systemów zarządzania zaufaniem813	R. WICIK	
M. JANISZEWSKI	Analiza ataków na generatory ciągów klucza wykorzys-	
Simgroup Test – nowa metoda detekcji kooperacyjnych	tujące naprzemienne taktowanie rejestrów przesuwających	
ataków złośliwych węztów przeciwko systemom	ze sprzężeniem zwrotnym	960
zarządzania zaufaniem 822	M. KARWOWSKI	
Sesja 3: Komunikacja radiowa i sieci bezprzewodowe, cz. 1	Przegląd mechanizmów zapewniających prywatność	
K. CICHOŃ, H. BOGUCKA	w sieci Internet	967
Udział węzłów przekaźnikowych w oszczędności energety-	Sesja 7: Komunikacja radiowa i sieci bezprzewodowe,	cz. 2
cznej kooperacyjnej detekcji sygnałów	J. WSZOŁEK, M. SIKORA, W. LUDWIN, J. BORKOWSKI,	
J. MARTYNA	J. DAŃDA, M. WĄGROWSKI, J. GOZDECKI	
Effective power allocation for OFDM-based green	Zabezpieczanie na poziomie warstwy fizycznej	
cognitive radio networks with rate loss constraints 836	danych zakodowanych kodem korekcyjnym przed	
K. MALON, J. ŁOPATKA	podsłuchem w kanale radiowym	981
Dynamiczny dobór kanałów radiowych w kognity-	A. PIEPRZYCKI, W. LUDWIN	
wnych hierarchicznych sieciach bezprzewodowych 840	Weryfikacja wybranych metod automatycznego planowania	
J. CICHOWSKI, K. LISOWSKI, P. SZCZUKO, A. CZYŻEWSKI	sieci WLAN	986
Zdalny zintegrowany moduł nadzoru radiowo-wizyjnego 848	P. KRYSZKIEWICZ, H. BOGUCKA	
K. BAKOWSKI, M. RODZIEWICZ, P. SROKA	Synchronizacja dla systemu NC-OFDM odporna na wpływ	
Symulacja systemów radiokomunikacyjnych 4G/5G854	wąskopasmowego sygnatu interferującego – ocena jakości	
Sesja 4: Internet Rzeczy	w realizacji sprzętowej	991
	J. STAŃCZAK, M. BÚCZKOWSKI	
A. PRUSZKOWSKI	Rozszerzenie algorytmu przydziału zasobów o agregację	
Maszynowa generacja oprogramowania dla dwumikrokontrolerowych węztów Internetu Rzeczy 861	nośnych (CA)	998
P. KRAWIEC, M. GAJEWSKI, JORDI MONGAY BATALLA	Ł. MÁKSYMIUK, P. ZWIERKO	
	Optyczne bezprzewodowe łącze LED w sieci ethernet	1003
Metody identyfikacji i dostępu do obiektów i usług	Sesja 8: Sterowanie i zarządzanie sieciami	
w środowisku Internetu Rzeczy		
Prototyp systemu służącego do monitoringu jakości	K. WAJDA, R. STANKIEWICZ, G. RZYM, P. WYDRYCH,	4
sygnatów radiofonicznych zrealizowany za pomocą	Z. DULINSKI, R. ŁAPACZ, Ł. ŁOPATOWSKI, J. GUTKOWSK	
komunikacji maszyna-maszyna i urządzeń SoC	Implementacja nowych metod zarządzania ruchem danyc	
P. OBRYCKI, J. OBRYCKA, P. ZYCH, S. KULA	w sieciach nakładkowych oraz środowiskach chmurowych	1010
Smart energy meter connected with home area network 886	J. GRANAT, K. SIENKIEWICZ, W. SZYMAK	4000
G. DEBITA, J. SZUMEGA, A. PALKA, E. BARCZYŃSKI,	Sieci sterowane programowo w systemie IIP	1020
P. PHAM QUOC, M. JUŹWIAK	P. M. BIAŁOŃ Metada rozwiazuwania zadania k podzielnogo przepłuwu	
Analiza i charakterystyka mechanizmów zarządzania	Metoda rozwiązywania zadania <i>k</i> -podzielnego przepływu	
i konfiguracji inteligentnych urządzeń w sieci Internetu Rzeczy 893	wielotowarowego z ograniczeniami dolnymi na przepływ	1020
	w ścieżce oparta o randomizowane zaokrąglanie	1030
Sesja 5: Architektury i protokoły komunikacyjne, cz. 2	P. ZYCH, P. OBRYCKI, J. OBRYCKA, S. KULA, M. ZYCH Monitoring of XDSI customer premises equipment (CPE)	
P. PRUS, R. O. SCHOENEICH	type from digital subscriber line access multiplexer	
Zmniejszanie redundancji buforowanych wiadomości	(DSLAM) side	1040
z wykorzystaniem klastrowania węzłów w sieciach DTN899	J. DOMŻAŁ, R. WÓJCIK, K. WAJDA, G. RZYM	1040
M. KOWALEWSKI, A. PĘKALSKI	Sposoby ochrony ruchu wysokiego priorytetu	
Implementacja narzędzi współpracy inteligentnych	w sieciach zorientowanych na przepływy	1046
systemów transportowych (ITS)907		1040
R. RAJEWSKI	Sesja 9: Architektury i protokoły komunikacyjne, cz. 3	
Warunki nieblokowalności w wąskim sensie dla wielousługo-	A. BĄK, P. GAJOWNICZEK	
wego optycznego pola komutacyjnego typu log ₂ N-1	Odtwarzanie stanu protokołu TCP na podstawie pasywnych	
dla modelu pasma dyskretnego	pomiarów ruchu sieciowego	1053
M. KAWECKI, R. O. SCHOENEICH	W. GUMIŃSKI, T. GIERSZEWSKI	
Algorytm rutingu wykorzystujący mobilność węzłów	System dostępu zdalnego do rozproszonych laboratoriów	
w sieciach niespójnych DTN921	badawczych	1059
M. PIJANKA, G. RÓŻAŃSKI	K. KAROLEWICZ, A. BĘBEN	
Mobile MPLS-TP – wsparcie mobilności urządzeń końcowych	Metody realizacji usługi rejestru treści dla sieci ICN/CAN	1063
z wykorzystaniem kanałów OAM 928	M. ZAL	
Sesja 6: Bezpieczeństwo sieci telekomunikacyjnych	Redukcja zużycia energii elektrycznej w polach Closa	1073
i systemów teleinformatycznych, cz. 2	W. GRUSZCZYNSKI, P. ARABAS	
A. KOZAKIEWICZ, K. LASOTA	Wykorzystanie technik sieci społecznych w redukcji	1000
A. ROZANIEWICZ, R. LASOTA Adaptacja mechanizmu DRM do ochrony dokumentów	odejść klientów sieci telekomunikacyjnej	1082
• •	Sesja 10: Bezpieczeństwo sieci telekomunikacyjnych	
niepublicznych	i systemów teleinformatycznych, cz. 3	
M. BOROWSKI		
Szacowanie siły mechanizmów kryptograficznych	P. SZYNKIEWICZ, A. KOZAKIEWICZ	1000
zastosowanych w module kryptograficznym polskiej radiostacji programowalnej "Guarana"	System wytwarzania <i>off-line</i> sygnatur zagrożeń aktywnych S. SZWACZYK, K. WRONA, S. OUDKERK	1030
A. SITEK, Z. KOTULSKI	Implementation of Content-based Protection and Release	1000
Kontekstowe zarządzanie autoryzacją offline transakcji	in software defined networks	1099

A. FELKNER, A. KOZAKIEWICZ	A. KOZAKIEWICZ, T. PAŁKA, P. KIJEWSKI
Praktyczne zastosowanie języków zarządzania zaufaniem 1108	Wykrywanie adresów serwerów C&C botnetów w danych
W. FRĄCZEK, K. SZCZYPIORSKI	ze środowisk sandbox 1223
StegBlocks: metoda konstrukcji algorytmów steganografii	M. PILC
sieciowej odpornych na wykrywanie1118	Wptyw kanatu intruza na przepustowość klucza generowanego między węztami sieci radiowej 1232
B. CZAPLEWSKI, R. RYKACZEWSKI	D. JANKOWSKI, M. AMANOWICZ
Receiver-side fingerprinting method for color images based on a series of quaternion rotations1127	Wykrywanie działań nieuprawnionych w sieciach
•	definiowanych programowo
Sesja 11: Komunikacja radiowa i sieci bezprzewodowe, cz. 3	S. KAŹMIERCZAK, J. KUBASIK
J. ROMANIK, A. KRAŚNIEWSKI, E. GOLAN, S. KĄCIK	Deregulacja wybranych detalicznych rynków właściwych
Efektywność protokołu OLSR z mechanizmem oceny	w Polsce 1243
zasobów węztów i adaptacyjnym wyborem trasy1135	Sesja 15: Komunikacja radiowa i sieci bezprzewodowe, cz. 4
K. GIERŁOWSKI, M. HOEFT, W. GUMINSKI	A. KRAŚNIEWSKI
Laboratorium mobilnych technik bezprzewodowych 1141 W. SUŁEK	RESA-OLSR: mechanizm rutingu uwzględniający zasoby
Własności korekcyjne i efektywne kodowanie podklasy	węzłów mobilnych sieci <i>ad-hoc</i>
S-NB-IRA kodów LDPC1150	P. SROKA
P. DYMARSKI, P. ZYCH	Zastosowanie metody minimalizacji interferencji
Zmodyfikowane algorytmy dekodowania sfery w technice	z wykorzystaniem równowagi korelacyjnej w systemach
MIMO	bezprzewodowych 5G1253
J. GOZDECKI, K. ŁOZIAK, M. NATKANIEC	M. BEDNARCZYK
Samoorganizująca się, okazjonalna sieć bezprzewodowa	Gigabit WiFi – czy zmiany oznaczają "czas na zmianę"? 1263
z transmisją wieloetapową w zarządzaniu kryzysowym 1163	R. BRYS, K. ZUBEL, S. KĄCIK
Sesja 12: Kompatybilność elektromagnetyczna	Mechanizmy adaptacyjnej sieci <i>ad-hoc</i> wsparcia
	działań sieciocentrycznych – wyniki badań symulacyjnych 1269 K. GROCHLA, K. POŁYS
L. KACHEL, J. KELNER, M. LASKOWSKI Ocena poziomu zaburzeń radioelektrycznych generowanych	Dobór parametrów mechanizmu zwielokrotnienia
przez urządzenia elektroniczne w aspekcie wymagań	wykorzystania częstotliwości SFR w sieciach LTE1277
zawartych w normach europejskich i obronnych	Wynorzystania szęstetiwosor or rew stociacie Erz
R. PRZESMYCKI, M. WNUK	Sesja 16: Przetwarzanie i transmisja sygnałów, cz. 1
Cyfrowy interfejs graficzny HDMI w procesie infiltracji	M. WĄGROWSKI, M. SIKORA, J. GOZDECKI, K. ŁOZIAK,
elektromagnetycznej	W. LUDWIN, J. WSZOŁEK
R. PRZESMYCKI	Analysis of data aquisition requirements for SHM system
Możliwości zastosowania energii skierowanej do niszczenia	in aircraft (PTiWT, str. 738)
urządzeń informatycznych1178	K. CWALINA, P. RAJCHOWSKI
R. PRZESMYCKI, M. WNUK	Układ szerokopasmowego namiernika wykonanego w technologii radia programowalnego
Analiza cech dystynktywnych i koncepcja bazy danych	P. DYMARSKI, R. MARKIEWICZ
dla interfejsów sprzętowych urządzeń informatycznych	Hierarchiczny system zabezpieczania plików dźwiękowych 1287
w procesie ich identyfikacji na bazie emisji promieniowanej 1182	P. RAJCHOWSKI, K. CWALINA
L. KACHEL, J. KELNER, M. LASKOWSKI	Badanie i analiza algorytmów cyfrowego przetwarzania
Generacja zaburzeń radioelektrycznych w ruchomym	sygnałów w systemie nawigacji inercyjnej1296
zestyku ślizgowym1186	P. GARDZIŃSKI, Ł. KAMIŃSKI, K. KOWALAK,
Sesja 13: QoS, niezawodność i modelowanie sieci, cz. 1	S. MAĆKOWIAK
M. GŁABOWSKI, S. HANCZEWSKI, D. KMIECIK	Poprawa jakości modelu wokselowego na podstawie
Modelowanie mechanizmów równoważenia obciążenia	histogramów obrazów reprojekcji1302
w samooptymalizujących się sieciach komórkowych 4G1191	Sesja 17: QoS, niezawodność i modelowanie sieci, cz. 2
K. RUSEK, Z. PAPIR	J. KONORSKI, K. RYDZEWSKI
Analiza pojemności bufora i skali czasu autokorelacji ruchu	System reputacyjny z centralnym agentem i metrykami
(PTiWT, str. 730)	zaufania opartymi na poziomie świadczonych usług
D. ŽELASKO, K. CETNAROWICZ, K. WAJDA	sieciowych1307
Koncepcja trasowania ze zmiennym kosztem dla sieci	A. KALÍSZAN, S. HANCZEWSKI, M. STASIAK
o sterowaniu rozproszonym (PTiWT, str. 724)	Splotowy model systemu kolejkowego z dyscypliną
M. WIECZERZYCKI, M. LANDOWSKI, S. KACZMAREK	obsługi cFIFO1315
Benefits from breaking up with Linux native packet	M. SŁOMCZYŃSKI, M. SOBIERAJ
processing while using intel DPDK libraries1196	Środowisko pomiarowe do analizy ruchu w sieciach kablowych 1320
M. GŁĄBOWSKI, M. STASIAK Badania wielousługowych pól komutacyjnych z łączami	K. MYSLITSKI, J. RAK
przelewowymi i adaptacyjnymi mechanizmami progowymi 1203	Metoda szybkiego wyznaczania par węztowo-roztącznych
M. ZĄBKOWICZ, M. NATKANIEC, Ł. PRASNAL	tras dla ochrony transmisji <i>unicast</i> (PTiWT, str. 717)
Analiza symulacyjna sieci standardu IEEE 802.11aa	P. JAGLARZ, P. CHOŁDA
w zaszumionych kanałach transmisyjnych	Optymalizacja zielonych sieci szkieletowych odpornych
	na ryzyko
Sesja 14: Bezpieczeństwo sieci telekomunikacyjnych	Sesja 18: Usługi i aplikacje
i systemów teleinformatycznych, cz. 4	D. DUDA, T. PODLASEK, P. PYDA, A. STANCZAK
M. JAKUBSKI, M. NIEMIEC	Sprawność obsługi zgłoszeń w systemie INSIGMA
Algorytmy heurystyczne w systemach wykrywania	poprzez infrastrukturę dostępową o ograniczonej przepus-
zagrożeń sieciowych 1215	towości

J. ŚWIDERSKI		M. MICHALSKI, K. CIEŚLAK, M. POLAK	
Interoperacyjność komponentów systemów		Laboratoryjna sieć wirtualnych ruterów OSPF i BGP	1437
w inteligentnych sieciach elektroenergetycznych		K. PAROBCZAK, G. RÓŻAŃSKI, J. JARMAKIEWICZ,	
w świetle europejskich prac normalizacyjnych	1340	K. MAŚLANKA	
K. TUREK, R. O. SCHOENEICH		Autonomiczny mechanizm uwierzytelniania węztów	
Rozpoznawanie emocji twarzy z wykorzystaniem Active		sieci MANET osadzony w warstwie łącza danych	1442
Shape Models i Suport Vector Machine na platformie Android	1346	M. JAROCIŃSKI	
J. KLINK, T. TOPOLEWSKI, R. MISZTAK, T. GONTA, T. UHL		Model zasobów i funkcji sieci telekomunikacyjnej	1448
Stanowisko i metodyka pomiarowa do oceny jakości usługi		J. MARTYNA	
SMS w sieciach mobilnych	1350	Elliptic Curve Cryptography Systems and Their	
P. SUCHOMSKI, B. KOSTEK		Hardware Implementations in Wireless Ad Hoc	
Dopasowanie charakterystyki dynamiki dźwięku		and Sensor Networks	1454
do preferencji słuchowych użytkownika urządzeń mobilnych	1360	J. KOŁODZIEJ, J. STĘPIEŃ, R. GOLAŃSKI, J. GODEK,	
A. BIAŁKOWSKA, P. ŁUBKOWSKI		J. OSTROWSKI	
Implementacja i testowanie mobilnej aplikacji		Symulacyjne badania jakości przetwarzania modulacji	
	1365	delta z nierównomiernym próbkowaniem	1458
·		M. A. TUNIA	
Sesja 19: Sieci światłowodowe i optoelektronika		Kontekstowa usługa niezaprzeczalności oparta	
G. STĘPNIAK, Ł. MAKSYMIUK, J. SIUZDAK		o model adaptacyjnych usług bezpieczeństwa	1466
Wydajność zaawansowanych formatów modulacji		R. SURGIEWICZ, R. O. SCHOENEICH	
w łączu wykorzystującym jako nadajniki diody		Protokół rutingu oparty o własności społecznościowe	
oświetleniowe (PTiWT, str.	711)		1473
W. KABACIŃSKI, M. MICHALSKI		S. HANCZEWSKI, M. STASIAK, P. ZWIERZYKOWSKI	
Pole komutacyjne w węzłach elastycznych sieci optycznych		Model kolejkowy systemu dostępowego dla sieci pakietowej	1478
- warunki nieblokowalności	1370	J. BORKOWSKI, L. HUSIKYAN, J. WSZOŁEK	
P. ŁĄKA, Ł. MAKSYMIUK		Applicability of MIMO deployment in HSPA networks	1484
Wykorzystanie metod steganograficznych w warstwie		G. GÓRSKÍ	
fizycznej sieci optycznych	1379	System płatności mobilnych wykorzystujący biometryczną	
M. KOWALCZYK		identyfikację użytkowników oraz infrastrukturę	
Zastosowanie diod LED jako fotodetektorów w systemach		klucza publicznego	1489
transmisji VLC (PTiWT, str.	733)	M. JĘKOT	
Sesja 20: Przetwarzanie i transmisja sygnałów, cz. 2		Analiza porównawcza wykorzystania sprzętowych oraz	
J. BUŁAT, T. P. ZIELIŃSKI i inni			1496
"Zrób to sam": komputerowy odbiornik RTL-SDR		M. KOWAL, S. KUBAL, P. PIOTROWSKI, R. J. ZIELIŃSKI	
radia cyfrowego DAB+	120/	Koegzystencja systemu LTE 2600 MHz z systemami	
I. JAWORSKI, R. JUZEFOWYCZ, Z. ZAKRZEWSKI,	1304	radarowymi pracującymi powyżej 2700 MHz – potencjalne	
J. MAJEWSKI		zagrożenia	1505
Funkcja koherencji łącznie okresowo niestacjonarnych		A. WITENBERG, M. WALKOWIA	
	1206	Układ dwóch anten liniowych nad powierzchnią	
sygnatów losowych	1390	dielektryka pobudzany impulsem pola elektrycznego	1509
		H. GIERSZAL, J. RADZIULIS, P. BOJANOWSKI,	
J. KOŁODZIEJ, J. STĘPIEŃ Badania symulacyjne przetwarzania różnicowego		K. URBAŃSKA, R. RENK	
z adaptacją kroku kwantyzacji i częstotliwości próbkowania	1400	Audyt informatyczny jako procedura oceny poziomu	
J. KOŁODZIEJ, J. STĘPIEŃ, R. GOLAŃSKI,	1402	bezpieczeństwa infrastruktury IT	1514
		J. BIENIASZ, K. SKOWRON, M. TRZEPIŃSKI, M. RAWSKI,	
J. OSTROWSKI, J. GODEK		P. SAPIECHA, P. TOMASZEWICZ	
Filtracja antyaliasingowa w koderach delta z nierównomiernym próbkowaniem	1400	Realizacja sprzętowej jednostki akceleratora	
R. STUDAŃSKI, K. M. NOGA	1409	do generowania tęczowych tablic dla funkcji skrótu	1518
		A. KASZUBA, R. CHĘCIŃSKI, J. ŁOPATKA	
Przykłady odpowiedzi impulsowych kanału		Wielokanałowy detektor energii z wykorzystaniem	
radiokomunikacyjnego w miejskim środowisku	1111	filtru WOLA	1524
propagacyjnym	1414	D. SAMOCIUK	
Sesja plakatowa		Metody zapewniania bezpieczeństwa komunikacji	
K. M. BRZEZIŃSKI		pomiędzy przełącznikami i kontrolerami <i>OpenFlow</i>	1529
Zaufanie, niepewność, wydajność: uwikłane aspekty		R. CZAJA, M. M. LANDOWSKI, S. KACZMAREK	
testowania systemów ICT	1419	Keystone – proces autoryzacyjny systemu OpenStack	1537
Z. ZAKRZEWSKI		P. BIAŁCZAK, M. DĘBSKA	
Sensoryczna dystrybucyjna sieć RoF przystosowana		Botnetowe domeny DGA: klasyfikacja metod wykrycia	
do pracy w jednostkach opieki zdrowotnej	1429	na przykładzie najważniejszych rozwiązań	1545

Sebastian Szwaczyk Military University of Technology, Warsaw, Poland sebastian.szwaczyk@student.wat.edu.pl

Konrad Wrona NATO Communications and Information Agency, The Hague, Netherlands konrad.wrona@ncia.nato.int

Sander Oudkerk Agent Sierra Consulting Services, Amsterdam, Netherlands sander.oudkerk@agentsierra.nl

IMPLEMENTATION OF CONTENT-BASED PROTECTION AND RELEASE IN SOFTWARE-DEFINED NETWORKS

DOI: 10.15199/59.2015.8-9.57

Abstract: Future civilian and military communications and information systems require a new method for more dynamic and fine-grained control of access to information. A Content-based Protection and Release (CPR) model has been proposed to address the challenges introduced by future military operations. In this paper we present how the CPR concept can be applied to software-defined networks (SDN) in order to provide integrated protection of information in transit. In particular, we provide an indepth discussion of a proof-of-concept implementation of CPR enforcement in SDNs.

1. INTRODUCTION

An important current research and development topic in military and civilian communications and information systems (CIS) is the design of a new method for more dynamic and fine-grained control of access to information. Such a new approach must not only effectively support need-to-know and responsibility-to-share requirements in military operations, but also enable cross-layer enforcement of security policies. The enforced security policies should cover all three dimensions of security – confidentiality, integrity and availability. This is in strong contrast to the situation in a traditional military CIS environment, in which enforcement of security policies is focused mostly on confidentiality and access control mechanisms.

One of the proposals made to address the above requirements is the Content-based Protection and Release (CPR) model [1] developed by the NATO Communications and Information Agency, specifically to address the challenges related to implementation of Federated Mission Networking (FMN) [2] and future NATO operations. At the same time Protected Core Networking [3] (PCN) has been proposed as a paradigm for the implementation of a flexible and secure communication infrastructure for a federated military environment. Software-defined networks (SDN) [4] are emerging as a popular approach to network operation and management in the civilian domain. The SDN environment offers an opportunity for enforcement of much more dynamic and complex security policies at the network layer, making it very suitable for supporting both CPR and PCN. In this paper we show how the CPR concept can be applied to an SDN in order to provide

integrated protection of information in transit. In particular, we provide an in-depth discussion of a proof-of-concept implementation of CPR enforcement in SDN.

2. PATH CLASS APPROACH

2.1. Introduction

In order to support CPR and PCN in an SDN environment, it is necessary to configure the packet path in the SDN based on so-called link attributes (LA). Examples of possible LAs are available bandwidth, physical medium, network protection measures, etc. Our innovative approach is to derive the requirements for these LAs dynamically, based on the content properties of the transported data, by applying the CPR Policy. In this section we provide an overview of the Path Class (PC) approach, which allows this problem to be solved, and introduce CPR Link Requirements (CPR LR), the Enforcement Action Identifier (EAI), Possible Routes (PR) and the CPR Enforcement and Separation Service (CPRESS). Furthermore, we describe existing OpenFlow link attributes and explain how to add new attributes, which we call CPR LA. Finally, we describe how to incorporate the Enforcement Action Identifier (EAI) into the flow label of an IPv6 header.

2.2. CPR MODEL

Modern joint military missions rely on networkcentric operations. It has been observed that traditional access control models such as discretionary (DAC), mandatory (MAC), and role-based (RBAC) models are not always adequate in this environment [5]. The Attribute-Based Access Control (ABAC) model (see e.g. [6]) offers a powerful and unifying extension to these well-known models. Under ABAC, requesters are permitted or denied access to a resource based on the properties, called attributes, that may be associated with users, resources, and the context. Examples of attributes are: identity, role, and military rank of users; identifier and sensitivity of resources; and, for context, time of day and threat level. Under ABAC, suitably defined attributes can represent security labels, clearances and classifications (for encoding MAC), identities and access control lists (for DAC), and roles (for RBAC). In this sense, ABAC supplements traditional access control models rather than supplanting them [6]. Policies in

ABAC can be seen as conditions on the attribute values of the entities involved in an access decision or, in other words, they are Boolean functions that map the attribute values of the user u, the resource r, and the context c to true (permit) when u is entitled to have access to r in context c, and false (deny) otherwise. The model underlying CPR policies refines ABAC in two main respects. First, in addition to the attributes of users, resources, and the context, those of terminals are considered, i.e. the capabilities of the device through which a user is trying to access a resource. Examples of terminal attributes are the hardware model, the type of encryption used to locally store data and the type of connection to the terminal (e.g. SSL). Second, the CPR (access control) policies are structured in two distinct sub-policies: a release policy, taking into account user, resource, and contextual attributes, and a protection policy, taking into account resource, terminal, and contextual attributes. This enables separation of policy management roles and reflects the current procedures governmental within international and used organizations, e.g. NATO. For example, consider the situation in which a user wants to access NATO classified information. This requires, on the one hand, connecting to a network infrastructure used for processing NATO classified information. To do this, a terminal must satisfy a number of technical requirements related to hardware and software configuration that are precisely defined in NATO technical directives and guidance documents. On the other hand, the security policy governing user access to the documents stored in the network is defined in a separate set of directives and guidance documents. A user u can access a resource r with a terminal t by checking if (i) the attributes of u and r satisfy the release policy and (ii) those of r and t satisfy the protection policy. If checks (i) and (ii) are both positive, *permit* is returned, otherwise the result is *deny*.

2.3. The concept of the Path Class approach

The PC approach is a way to configure the path in an SDN to release protected data to the requester using information about the links in the SDN. To realize the PC approach we extend the CPR model by introducing additional attributes called *CPR Link Requirements* (*CPR LR*). These attributes can be explicitly included in the CPR policy or defined in the form of bridge

predicates [7]. CPR LR specify requirements that links in the SDN must fulfil in order to be used to transport protected data to the requester. Examples of CPR LA are confidentiality, availability and integrity. The enforcement mechanism used to make a decision to release data or not is called CPRESS. In order to integrate CPRESS with SDN we extend it with specific functionality, explained below. We call the extended version of CPRESS the SDN CPRESS.

Based on the current user and terminal attributes and comparing these attributes to the CPR Policy, the SDN CPRESS makes a decision to release data or not to the requester. If the decision is to release, then based on the CPR LR the SDN CPRESS produces a specific PC for that data. The PC is a category of allowed LA that must characterize the links that build a path in the SDN between the requester terminal and the server. The SDN CPRESS also must map this PC to the Enforcement Action Identifier (EAI). The EAI is a specific value included in the header of every packet carrying the protected data. This value is used by the controller to identify the specific PC and program specific flows on switches in the SDN. When a packet with an EAI is prepared the SDN CPRESS sends it to the first switch in the SDN. A summary of the function of the CPR SDN service is:

- 1. Based on CPR LR, produce a specific PC.
- 2. Map the PC to the EAI and put this identifier in a packet.
- 3. Send the packet with the EAI to the first switch in the SDN.

The process explained above is depicted in Figure 1:

- 1. The user using the terminal sends the request for the protected data.
- 2. The SDN CPRESS looks up the content properties of the requested data.
- 3. The SDN CPRESS contacts the Policy Administration Point (PAP) in order to obtain the CPR Policy.
- 4. If the SDN CPRESS decision is to release the data to the requester, the PC is produced based on the CPR LR from the CPR Policy.
- 5. The PC is mapped to the EAI and the SDN CPRESS puts this identifier in the packet.
- 6. The packet with the EAI is sent to the first switch in the SDN.

Figure 1. SDN CPRESS process

2.4. Transferring protected data through an SDN

The protected data to be transferred is contained in a packet stream. The first packet in the packet stream, which contains the EAI, is sent to the SDN by the SDN CPRESS. When the switch in the SDN receives this packet, it looks up the flow table to find the output port for the packet. If a matched flow entry does not exist, the switch sends the packet to the controller. The controller parses the packet and looks for the EAI. If the controller knows the Path Class identified by the EAI, it can produce, based on the EAI and the network topology, a set of possible routes (PR). PR are routes that fulfil the CPR LR that are produced based on the EAI. Otherwise the controller communicates with the SDN CPRESS to obtain the CPR LR that are mapped to the EAI. The SDN CPRESS extracts, based on the EAI, the CPR LR from the CPR Policy and sends them to the controller. If more than one possible route exists, the controller must choose one of them but must store all possible routes in order to be able to react quickly if the chosen route fails. Furthermore, the controller programs the flows on switches using the EAI, source and destination IP addresses, and source and destination TCP ports. With these 5 attributes we can uniquely identify every connection between the requester and the server. After flows are programmed, the controller returns the packet to the network and the switches forward the packet to the requester based on the flows programmed. When a switch receives the second packet in a packet stream, it forwards this packet based on the matched flow entry, and so on for all subsequent packets. The process of transferring the protected data through an SDN is depicted in Figure 2.

2.5. Sharing CRP LR between SDNs

A PCN environment may be composed of multiple SDNs (e.g. Protected Core Segments (PCN)). In such a case, the CPR LR that are produced in the first network

have to be shared with other networks included in the packet's path. When the controller in another network receives the packet with an EAI that it cannot map to the CPR LR, it has to ask the controller in the network where the EAI was created. Based on the CPR LR received from the controller in the originating network, other controllers can program flow on the switches.

2.6. EAI in a packet with protected data

The OpenFlow specification [8] lists mandatory fields that switches **must** support in the matching process. Every field describes the connection between hosts. If any change is made in any of these fields the connection between the hosts will be lost, so none of these fields can be used for any other purpose, including encoding EAI. However, OpenFlow also specifies optional fields that switches **should** support. Below is a short discussion of fields that are potentially useful for implementing the PC approach.

OFPXMT_OFB_VLAN_PCP = 7, VLAN priority: VLAN priority is used to prioritize different classes of traffic (voice, video, data, etc.). This field has 3 bits. If VLAN networks are used and QoS is not important, it is possible to use this field for the eight values of EAI.

OFPXMT_OFB_IP_DSCP = **8**, **IP DSCP** and **OFPXMT_OFB_IP_ECN** = **9**, **IP ECN**: These fields are used to support QoS in a network that uses the IPv4 protocol in the network layer. Since these fields are often not used, we can make use of this one byte for 256 values of EAI. Of course this means that we would lose the ability to use QoS.

OFPXMT_OFB_MPLS_TC = 35, MPLS TC: TC is a 3-bit field for implementing QoS. It is possible to use these bits for the EAI but of course we would then lose the ability to implement QoS.

Figure 2. Packet transmission from server through an SDN to end user

2.7. Link Attributes

In the OpenFlow 1.3.4 specification each port of each switch is described by the following structure:

```
/* Description of a port */
struct ofp_port {
uint32_t port_no;
uint8_t pad[4];
uint8 t hw addr[OFP ETH ALEN];
uint8 t pad2[2];
char name[OFP_MAX_PORT_NAME_LEN];
uint32_t config;
uint32_t state;
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised by the
port. */
uint32_t supported; /* Features supported by the port. */
uint32 t peer; /* Features advertised by peer. */
uint32_t curr_speed; /* Current port bitrate in kbps. */
uint32_t max_speed; /* Max port bitrate in kbps */
};
```

The fields most relevant to the PC approach are *curr*, *advertised*, *supported* and *peer*, because these fields describe the link mode (speed and duplexity), link type (copper or fibre), and link features (auto-negotiation and pause). These four variables store the LA for links connected to a specific switch port. To distinguish CPR link attributes from the attributes described by the OpenFlow specification we call these attributes **OF Link Attributes (OF LA)**. OF LA are listed in Section 2.8.

The port status is described using three flags:

```
OFPPS_LINK_DOWN = 1 << 0
OFPPS_BLOCKED = 1 << 1
OFPPS_LIVE = 1 << 2.
```

By sending the message from the controller to the switch we can configure the port:

```
OFPPC_PORT_DOWN = 1 << 0
OFPPC_NO_RECV = 1 << 2
OFPPC_NO_FWD = 1 << 5
OFPPC_NO_PACKET_IN = 1 << 6.
```

If one of these flags or OF LA is changed, the switch sends a PORT_STATUS message to the controller, giving one of three possible reasons:

```
OFPPR_ADD = 0
OFPPR_DELETE = 1
OFPPR_MODIFY = 2.
```

The controller can use the OFPMP_PORT_ DESCRIPTION request to obtain the description of all the standard ports of the OpenFlow switch.

2.8. Including CPR Link Attributes

It is impossible to add CPR LA without changing OpenFlow messages and the switch implementation. The OF LA available in the OFPMP_PORT_DESCRIPTION reply are:

```
OFPPF_10MB_HD = 1 << 0
OFPPF_10MB_FD = 1 << 1
OFPPF_100MB_HD = 1 << 2
OFPPF_100MB_FD = 1 << 3
OFPPF_1GB_HD = 1 << 4
```

```
OFPPF_1GB_FD = 1 << 5

OFPPF_10GB_FD = 1 << 6

OFPPF_40GB_FD = 1 << 7

OFPPF_100GB_FD = 1 << 8

OFPPF_1TB_FD = 1 << 9

OFPPF_OTHER = 1 << 10

OFPPF_COPPER = 1 << 11

OFPPF_FIBER = 1 << 12

OFPPF_AUTONEG = 1 << 13

OFPPF_PAUSE = 1 << 14

OFPPF_PAUSE_ASYM = 1 << 15.
```

The packet with these attributes is depicted in Figure 3.

```
V Current: 0x08220840

.0 = OFPPF_10MB_HD: False
.0 = OFPPF_10MB_FD: False
.0 = OFPPF_100MB_HD: False
.0 = OFPPF_100MB_HD: False
.0 = OFPPF_100MB_FD: False
.0 = OFPPF_10B_FD: False
.0 = OFPPF_16B_HD: False
.1 = OFPPF_16B_FD: False
.1 = OFPPF_10B_ED: True
.0 = OFPPF_10B_ED: True
.0 = OFPPF_10B_ED: False
.0 = OFPPF_10B_ED: False
.0 = OFPPF_10B_ED: False
.0 = OFPPF_10B_ED: False
.0 = OFPPF_1TB_FD: False
.0 = OFPPF_OTHER: False
.1 = OFPPF_OTHER: False
.0 = OFPPF_FIBER: False
.0 = OFPPF_AUTONEG: False
.0 = OFPPF_AUTONEG: False
.0 = OFPPF_PAUSE: False
```

Figure 3 Open Flow Link Attributes

Figure 3 shows that there are another two currently unused bytes (circled, tagged "Place for CPR LA"). We can declare new link attributes in these two bytes.

3. IMPLEMENTATION OF PATH CLASS APPROACH DEMONSTRATOR

3.1. Overview

This section describes how individual components of the demonstrator interact with each other. The following components are used to demonstrate the PC approach (depicted in Figure 4):

- A Python script, which describes the SDN topology.
- A Mininet instance with changed source code to invoke the Java program.
- A Java program, which creates the configuration file.
- A configuration file.
- An Open vSwitch with the modified source code for reading the ports' configurations from the configuration file.
- A controller with the CPRDemonstrator module.

The Python script describes the network topology. The easiest way to describe the network topology is to use the high-level application program interface (API) delivered with the Mininet. We assume that the user writing the Python script uses the Mininet API because it allows another program to create the configuration file. (The purpose and structure of the configuration file are explained in the next section.)

The standard version of the Mininet parses the Python script and based on that, it starts and connects switches. Starting switches means that the Mininet invokes commands that create virtual interfaces in the operating system and configures these interfaces. Also, the Mininet invokes the program that oversees the operation of the switches. The modified version of the Mininet, before starting to parse the Python script, invokes the Java program, which creates the configuration file. When the configuration file is created the Mininet parses the Python script and starts switches.

The Java program, which creates the configuration file, receives the path for the Python script from the Mininet. Based on this script the Java program creates the configuration file. This file is used by the switches to obtain link attributes for each port. Based on this file, the *curr* field of the structure presented in section 2.8 is populated.

If the configuration file is created successfully, the Mininet starts and connects switches based on the Python script. When each switch is started it reads the configuration for each port from the configuration file. When all ports are configured the switch tries to connect to the controller.

The Floodlight controller in OpenFlow version 1.3 listens for connections from the switches on port 6653. If both sides support OpenFlow v. 1.3, the connection is established and communication between the controller and the switch is available. The CPRDemonstator module is responsible for:

- Storing the topology of the network.
- Programming the flows on the switches based on the EAI (CPR LR) and LA.
- Reacting to events in the network (e.g. when a port goes down).
- Communicating with another CPRDemonstrator module to share the information about CPR LR.

Figure 4 Starting and configuring switches

Figure 4 illustrates the process of starting the switches and configuring them from the configuration file. We assume that the modified version of the Mininet is started and that the Python script exists. The process is as follows:

- 1. If the modified version of the Mininet was started, it invokes the Java program.
- 2. The Java program reads the Python script.
- 3. Based on the Python script the Java program creates the configuration file for the switches' ports.
- The Java program returns the exit code to the Mininet.
- 5. If the exit code indicates that the configuration file was created successfully the Mininet starts parsing the Python script.

- 6. Based on the Python script the Mininet creates and starts switches.
- 7. While switches are starting, when ports are opening, the configuration for each port is read from the configuration file.
- After configuration the switches are ready to communicate with the controller.

3.2. Transporting CPR Link Attributes

As mentioned above, in the OFPMP_PORT_DESCRIPTION reply there are two currently unused bytes. Figure 3 shows the location for the CPR LA. Our initial implementation supports three CPR LA: confidentiality, integrity and availability. Each CPR LA can take one of the following values: NONE, LOW, MEDIUM, or HIGH. Therefore only 2 bits are necessary to store each attribute and in the initial implementation 2 bytes are divided into 3 fields in the following way (see also Figure 6):

- 4 bits for availability
- 6 bits for integrity
- 6 bits for confidentiality

Only the 2 least significant bits of each field are used in the initial demonstrator – the other bits can be used for encoding more values for each attribute in the future. When the controller sends the OFPMP_PORT_DESCRIPTION request to the switch, the switch builds each port description based on the fields in the *ofputil_phy_port* structure. Figure 5 depicts the OFPMP_PORT_DESCRIPTION reply that contains the CPR LA.

Figure 5 OFPMP_PORT_DESCRIPTION reply with CPR LA

In Figure 5 the grey numbers in the last row describe the values of bits in hexadecimal notation. Figure 6 depicts the values in binary notation with divisions of bits for each CPR LA.

Figure 6 Binary values of the CPR LA

As explained earlier, currently only the two least significant bits are used to store the value of each CPR LA, so in the above examples these values are:

- Confidentiality = 10
- Integrity = 00
- Availability = 01.

The following mapping is used between the binary values and the CPR LA values:

- 00 = NONE
- 01 = LOW
- 10 = MEDIUM
- 11 = HIGH.

In the example depicted in Figure 6, the encoded values of the CPR LA are:

- Confidentiality = MEDIUM = 000010
- Integrity = NONE = 000000
- Availability = LOW = 0001.

The CPRDemonstrator module in the controller can interpret these values of the CPR LA in order to configure appropriate communication paths, as described in the following section.

3.3. The process of sharing protected data

This section describes the process of receiving a request, creating an EAI and sending a response to the requester. The process is depicted in Figure 7. Throughout the entire process we assume that user and terminal always fulfil the requirements to receive the protected data.

Figure 7 Send request, generate EAI and send response processes

The process is as follows:

- 1. The HOST program sends a User Datagram Protocol (UDP) request for a document stored at the server.
- 2. The switch sends a PACKET_IN message to the controller.
- 3. The controller checks the EAI. The EAI is equal to 0 so the controller calculates the shortest path and programs the flows on the switches. The controller sends a PACKET_OUT message to the switch that sent the PACKET_IN message.
- 4. The switches, based on the programmed flows, forward the request to the server.
- The Policy Enforcement Point (PEP) part of the server program receives the request, parses it and looks for the content properties of the document requested.
- 6. The PEP sends these content properties to the Policy Decision Point (PDP) part.
- 7. The PDP looks at the CPR Policy and retrieves the requirements for the links in the SDN.
- 8. The PDP creates the EAI and stores it in the EAI_LR_MAP file.
- 9. The PDP returns the EAI to the PEP.

- 10. The PEP creates a new packet with the value of the EAI in the Type of Service (TOS) field of the IPv4 header and the data from the requested document in the data field in the UDP header.
- 11. The PEP sends the packet to the SDN.
- The switch sends a PACKET_IN message to the controller.
- 13. The controller looks for the EAI. The EAI has a value different from 0 so based on the EAI the controller reads the CPR LR from the EAI_LR_MAP file. Based on these requirements the controller calculates the possible paths between the server and the host.
- 14. The controller programs the shortest of the possible paths on the switches.
- 15. The switches, based on the programmed flows, forward the response to the host.
- 16. After the end of transmission the controller deletes the EAI from the EAI_LR_MAP file so that the value can be used again for another EAI.

4. TESTS

4.1. Network topology

The test network topology described in the Python script is depicted in Figure 8. The LA described in the configuration file assume that all links in the network have:

Speed: 10Gb/sMedium: CopperPause: False

Auto-negotiation: FalsePause Asymmetric: False.

The links between the host and the switch have these CPR LA:

Confidentiality: HIGH (H)Integrity: HIGH (H)Availability: HIGH (H).

CPR LA for links between switches are depicted in Figure 8. For example the link between s2 and s3 has these CPR LA:

• Confidentiality: HIGH (H)

• Integrity: LOW (L)

• Availability: MEDIUM (M).

The addressing scheme used is:

- 10.0.0.1 to 10.0.0.8 for hosts h1 to h8
- 10.0.0.9 for the server.

Figure 8 Test network topology

4.2. Demonstrating the PC Approach

The first step in demonstrating the Path Class approach is to start the host and server programs on nodes emulated by the Mininet. The server program must be started on the same node as the one that is emulating s9. Once started, the server program listens for requests on port 50000 of the UDP. Next, the host program can be used to generate a request for a document.

Logs from the controller are shown in Figure 9. The first part describes the request. The controller received a PACKET_IN message from switch number 1. This is the switch connected to h1. Shown next is the h1 IP address as a source and the server IP address as a destination. When the controller receives the PACKET_IN message it gets the EAI value from the

request. The next line shows that the value of the EAI is equal to 0. If the EAI is 0, the controller used the Dijkstra algorithm [9] to obtain the shortest path. The next line shows the calculated and programmed path encoded using switch numbers.

The next part of the log shows the controller's reaction to the server response. First, one can see that the controller received the PACKET_IN message from switch number 9. This is the switch connected to the server. Next one sees the server IP address as a source and the h1 IP address as a destination. This time the EAI value in the message is equal to 1. This is the same value that is seen in the server terminal. In the next step the controller recovers the requirements for the EAI value. The listed LR are the same as the ones listed in the server terminal. Based on the source and destination IP addresses as well as the network topology, the controller

calculates all paths. From all paths the controller chooses only those paths that fulfil requirements. For the network topology depicted in Figure 8, one can see that only two paths from server to h1 fulfil the LR of H,H,H. The paths are s9-s5-s1 and s9-s6-s2-s1. From this set of possible paths, the controller choses the shortest one, which is programmed on the switches.

The controller programs flows on the switches with idle time equal to 10 seconds. After this time has lapsed the flows on the switches are removed and the switches send the FLOW_REMOVED message to the controller. The controller receives this message, knows that the transmission is complete and deletes the EAI value form the EAI_LR_MAP file. Thus the same EAI value can be used later for identifying other requirements.

```
PACKET IN message received from switch: 00:00:00:00:00:00:00:00:00:00
Source IP address: 10.0.0.1. Destination IP address: 10.0.0.9.
EAI = 0
It is request. Shortest path will be programmed.
Programmed path: [1, 5, 9]

PACKET IN message received from switch: 00:00:00:00:00:00:00:00:00
Source IP address: 10.0.0.9. Destination IP address: 10.0.0.1.
EAI = 1
Requirements for EAI = 1:
Bandwidth: 106B = D
Medium: COPPER
Autonegotiation: FALSE
Pause: FALSE
Pause: FALSE
Pause: FALSE
Pause Asymetric: FALSE
Confidentiality: HIGH
Integrity: HIGH
Availability: LOW
All paths between switch number: 9 and switch number: 1.
{0=[9, 8, 7, 4, 1], 1=[9, 8, 7, 4, 5, 1], 2=[9, 8, 7, 4, 5, 6, 3, 2, 1], Paths which fulfill requirements:
{0=[9, 6, 2, 1], 1=[9, 5, 1]}
Flows for EAI = 1 removed. We can use this EAI for another requirements.
```

Figure 9 Creating routes for request and response

4.3. Reacting to a PORT DOWN event

If during transmission one of the currently utilized links goes down, the controller deletes the flows that are associated with the paths that are using the broken link. When the switch receives the next packet in the stream it sends the PACKET_IN message to the controller and the controller re-calculates the possible paths for the data in this packet. Example logs from the controller console are shown in Figure 10.

```
PORT_DOWN in path: [1, 5, 9]. Flows on switches removed.
PORT DOWN in path: [9, 5, 1]. Flows on switches removed.
Topology updated.
PACKET_IN message received from switch: 00:00:00:00:00:00:00:09
Source IP address: 10.0.0.9. Destination IP address: 10.0.0.1. EAI = 1
Requirements for EAI = 1:
Bandwidth: 10GB FD
Medium: COPPER
Autonegotiation: FALSE
Pause: FALSE
Pause Asymetric: FALSE
Confidentiality: HIGH
Integrity: HIGH
Availability: LOW
All paths between switch number: 9 and switch number: 1. {0=[9, 8, 7, 4, 1], 1=[9, 8, 7, 4, 5, 1], 2=[9, 8, 7, 4, 5, 6, 3, 2, 1], Paths which fulfill requirements:
{0=[9, 6, 2, 1]}
Shortest path which fulfill requirements (programmed route):
[9, 6, 2, 1]
Topology updated.
Flows for EAI = 1 removed. We can use this EAI for another requirements.
```

Figure 10 Reacting to a PORT_DOWN event

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented how the Content-based Protection and Release (CPR) concept can be applied to an SDN in order to provide integrated protection of information in transit. In particular, we have provided an in-depth discussion of a proof-of-concept implementation of CPR enforcement in SDN. We have shown that it is feasible to effectively enforce CPR policies related to confidentiality, integrity and availability protection in the SDN environment. Including CPR support in SDN is in line with the NATO doctrine of in-depth security and can significantly improve security posture and mitigate possible risks in a federated mission networking environment.

The purpose of the demonstrator is to show how the CPR model can be applied to an OpenFlow SDN environment using the Path Class approach; it is not intended to provide a complete implementation, suitable for operational deployment. Therefore, our current implementation of the demonstrator is based on some simplifying assumptions:

- The user is always authorized to receive protected data.
- The functionality of the SDN CPRESS, PEP and PDP is implemented in one server program.
- Communication between the controller and the SDN CPRESS is performed via files, not via network sockets.
- Every SDN makes use of the same set of LA.
- The switches are configured via configuration files.
- The channel between switch and controller is not secured.

Possible future work on extending the demonstrator could start with addressing or removing the above assumptions. The most important extension would be to implement full support for enforcement of CPR policies. The current demonstrator is based on the assumption that attributes of the user and his terminal always fulfil the applicable CPR Policy and that CPRESS must enforce the relevant protection policy only in regard to the network path.

The SDN CPRESS, PEP and PDP are implemented in one server program. Although the developed software can be easily split into these 3 separate components, the integrated approach was taken in order to avoid potential problems with communication and thus to simplify the development tasks.

For demonstration purposes we do not implement an interface for communication between the controller and the SDN CPRESS; they communicate via a file, thus implying that the controller and the SDN CPRESS have to be on the same machine. Extending the demonstrator by implementing network communication between these elements would allow the controller and the SDN CPRESS to also be run in a real, and not only an emulated, SDN environment.

Currently communication between controllers is limited to exchanging the EAI value mapped to the LR, based on the assumption that every PCS uses the same set of LA. In a real system every PCS can have its own

LA (and/or LR), which are mapped to another set of content properties (CP). It is recommended that a mechanism be implemented that would allow controllers to negotiate LR if different LA are used in each network.

OpenFlow specifications specify only a few LA. For the PC approach these LA are not sufficient. Section 2.8 describes how we add new CPR LA to OpenFlow. The idea of extending the *current* field in the OFPMP_PORT_DESCRIPTION reply is promising, because current OF specification allows that to be done without any other modification to the protocol. However, this introduces the challenge of how switches can recognize the values for CPR LA. In our current solution switches are configured from the configuration file, so the administrator must specify the configuration for each port in the network. It is recommended that algorithms that allow switches to recognize CPR LR be investigated and implemented.

In order to obtain better performance of the controller, it is recommended that a more robust approach to reacting to events in the network be implemented. In the current demonstrator, when the controller detects that a path goes down it must repeat all calculations based on the next PACKET_IN message. For the sake of performance, it would be advantageous to calculate paths once and keep them updated, so that alternate path information is available to be instantly programmed if the current path goes down.

OpenFlow specification marks the use of the TLS protocol as optional. Therefore, both the Floodlight controller and the Open vSwitch do not support this protocol by default. Currently, the controller and switches communicate using the not-secure TCP and are vulnerable to several potential attacks [10]. Therefore, any operational implementation of our solution needs to implement communication using the TLS protocol.

REFERENCES

- [1] K. Wrona and S. Oudkerk, "Content-based Protection and Release Architecture for Future NATO Networks," in Proc. of the IEEE Military Communications Conference MILCOM, San Diego, CA, USA, 2013.
- [2] A. Domingo and H. Wietgrefe, "On the federation of information in coalition operations: Building single information domains out of multiple security domains," in Proc. of the IEEE Military Communications Conference MILCOM, San Diego, CA, USA, 2013.
- [3] G. Hallingstad and S. Oudkerk, "Protected core networking: An architectural approach to secure and flexible communications," IEEE Communications Magazine, vol. 46, no. 11, 2008.
- [4] D. Kreutz, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-Defined Networking: A Comprehensive Survey," Proceedings of the IEEE, vol. 103, no. 1, 2015.
- [5] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. "Access control policies and languages in open environments," in Secure Data Management in Decentralized Systems. Springer, 2007.
- [6] X. Jin, R. Krishnan, and R. Sandhu. "A Unified Attribute-Based Access Control Model Covering DAC,

- MAC and RBAC," in Proc. of the DBSec, number 7371 in LNCS, pages 41-55, 2012.
- [7] A. Armando, S. Oudkerk, S. Ranise, and K. Wrona, "Content-based Protection and Release for Access Control in NATO Operations," in Proc. of the 6th International Symposium on Foundations & Practice of Security (FPS). La Rochelle, France: Springer, 2013.
- [8] Open Networking Foundation, "OpenFlow Switch Specification", version 1.3.4, 2014.
- [9] Dijkstra, E. W., "A note on two problems in connexion with graphs," Numerische Mathematik 1: 269–271, 1959.
- [10] G. Pickett, "Abusing Software Defined Networks," in Proc. of the Black Hat Europe. Amsterdam, Netherlands, 2014.