עבודה תורת המשחקים:

ברק בן אקון 318509056

שקד חן 207253220

תרגיל 1:

מטרת התרגיל היא להוכיח כי במשחק שני שחקנים סכום אפס קבוצת האסטרטגיות האופטימליות של כל שחקן היא קבוצה קמורה.

נניח שלשחקן 1 יש אפשרויות יהי $q=(q_1,q_2,...q_k)$ ו $p=(p_1,p_2,...,p_k)$ שני וקטורי אסטרטגיה k נניח שלשחקן 1 יש אפשרויות יהי $\alpha\in[0,1]$ יהי יהי $\alpha\in[0,1]$ יהי מעורבות של שחקן 1, לכל

:1 שאלה

צריך להוכיח שגם au הוא ווקטור הסתברויות מעורב.

שלב ראשון נרצה להבין מה זה אומר וקטור אסטרטגיה מעורבת,

. יש סיכוי p_i שהוא יקרה, i זה אומר שלכל מצב

$$\tau = (a \cdot p_1 + (1 - a) \cdot q_1, ..., a \cdot p_k + (1 - a) \cdot q_k$$

$$\tau = (a \cdot p_1 + ..., a \cdot p_k) + ((1 - a) \cdot q_1, ..., (1 - a) \cdot q_k)$$

$$\tau = a \cdot (p_1, ..., p_k) + (1 - a)(q_1, ..., q_k)$$

ידוע ש

$$\sum q_i = 1, \sum p_i = 1 \to \sum (ap_i + (1 - a)q_i) = 1$$

ולכן au הינו וקטור אסטרטגיות מעורבות.

ב

ב. הוכיחו כי לכל אסטרטגיה מעורבת של שחקן 2 מתקיים ב. $U(\tau,\sigma_2)=\alpha U(p,\sigma_2)+(1-\alpha)U(q,\sigma_2)$

$$\begin{split} U(\tau,\sigma_2) &= U(s_1,s_1) \cdot [a \cdot p_1 + (1-a) \cdot q_1] + \dots + U(s_k,s_k) \cdot [a \cdot p_k + (1-a) \cdot q_k] \\ U(\tau,\sigma_2) &= U(s_1,s_1) \cdot a \cdot p_1 + U(s_1,s_1) \cdot (1-a) \cdot q_1 + \dots \\ &+ U(s_k,s_k) \cdot a \cdot p_k + U(s_k,s_k) \cdot (1-a) \cdot q_k \end{split}$$

$$U(\tau, \sigma_2) = a \left[U(s_1, s_1) \cdot p_1 + \dots + U(s_k, s_k) \cdot p_k \right]$$

$$+(1-a)\cdot [U(s_1,s_1)\cdot q_1 + \dots + U(s_k,s_k)\cdot q_k]$$

$$U(\tau,\sigma_2) = a\cdot U(p,\sigma_2) + (1-a)\cdot U(q,\sigma_2)$$

٦.

p,q מבטיחה תשלום v אם $U(\sigma_1,\sigma_2) \geq v$ לכל σ_1 הוכיחו שאם σ_2 ג. נאמר שהאסטרטגיה σ_1 מבטיחה תשלום v גם σ_2 מבטיחה תשלום v גם σ_2 מבטיחה תשלום v

$$U(p, \sigma_2) \ge v, U(q, \sigma_2) \ge v$$

$$U(\tau, \sigma_2) = a \cdot U(p, \sigma_2) + (1 - a) \cdot U(q, \sigma_2)$$

$$U(\tau, \sigma_2) \ge a \cdot v + (1 - a) \cdot v$$

$$U(\tau, \sigma_2) \ge v$$

.т

ד. הסיקו כי אם au הן אסטרטגיות אופטימליות של שחקן 1, אז גם au היא אסטרטגיה אופטימלית של שחקן 1.

אם p , q הינם אסטרטגיות אופטימליות משמע

$$U(p) = U(q) = v$$

$$U(\tau, \sigma_2) = a \cdot U(p, \sigma_2) + (1 - a) \cdot U(q, \sigma_2)$$

$$U(\tau, \sigma_2) = a \cdot v + (1 - a) \cdot v$$

$$U(\tau, \sigma_2) = v$$

מכיוון שיש לו את אותו תוצאה אזי הוא גם אסטרטגיה אופטימלית.

<u>תרגיל 3:</u>

תהי \mathbf{s}_i פעולה נשלטת חזק של שחקן \mathbf{s}_i . האם ייתכן שיווי משקל מתואם שבו האסטרטגיה \mathbf{s}_i משוחקת בהסתברות חיובית? נמקו את תשובתכם

 S_i נחזור על ההגדרות, אסטרטגיה נשלטת חזק הינה אומרת שלכל מצב וקטור מצב

. ופעולה גדולה יותר, תוצאה y_i אשר פעולה x_i קיימת פעולה אשר נותנת

שזה אומר שתמיד שווה לבחור באסטרטגיה אחרת.

ולכן, לא יכול להיות שהיה קיים שווי משקל מתואם שבה s_i תהיה מכיוון שתמיד יהיה שווה לשחקן להחליף לאסטרטגיה השולטת חזק עליו.