Plan

- Basic Feasible Solution (BFS)
- Non degenerate BFS
- Degenerate BFS
- Simplex Algorithm

• Consider LPP(P) Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$, (*) where rank(A) = m.

• If (P) is of the form:

If (P) is of the form:
 Max or Min c^Tx
 subject to A_{m×n}x ≤ b_{m×1}, x ≥ 0,

If (P) is of the form:
 Max or Min c^Tx
 subject to A_{m×n}x ≤ b_{m×1}, x ≥ 0,
 we add some nonnegative variables and transform the set of constraints as,

• If (P) is of the form:

Max or Min $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A_{m \times n}\mathbf{x} \leq \mathbf{b}_{m \times 1}$, $\mathbf{x} \geq \mathbf{0}$,

we add some nonnegative variables and transform the set of constraints as,

$$A_{m\times n}\mathbf{x} + \mathbf{s}_{m\times 1} = [A:I]\begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} = \mathbf{b}_{m\times 1}, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{s} \geq \mathbf{0}.$$

• If (P) is of the form: Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}_{m \times n} \mathbf{x} \leq \mathbf{b}_{m \times 1}, \mathbf{x} \geq \mathbf{0}$,

we add some nonnegative variables and transform the set of constraints as.

$$A_{m\times n}\mathbf{x}+\mathbf{s}_{m\times 1}=[A:I]\left[egin{array}{c}\mathbf{x}\\\mathbf{s}\end{array}
ight]=\mathbf{b}_{m\times 1},\,\mathbf{x}\geq\mathbf{0},\,\mathbf{s}\geq\mathbf{0}.$$

• If suppose we are given a problem of the type:

• If (P) is of the form:

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} \leq \mathbf{b}_{m \times 1}$, $\mathbf{x} \geq \mathbf{0}$, we add some nonnegative variables and transform the set of constraints as.

$$A_{m \times n} \mathbf{x} + \mathbf{s}_{m \times 1} = [A : I] \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} = \mathbf{b}_{m \times 1}, \, \mathbf{x} \ge \mathbf{0}, \, \mathbf{s} \ge \mathbf{0}.$$

• If suppose we are given a problem of the type: Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{k \times n} \mathbf{x} = \mathbf{b}_{k \times 1}$, $\mathbf{x} \ge \mathbf{0}$, where k > rank(A) = m.

• If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent

• If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away appropriately k - m rows of A and the corresponding components of \mathbf{b} to get an equivalent system of equations of the form (*), such that rank(A) = m.

- If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away appropriately k m rows of A and the corresponding components of \mathbf{b} to get an equivalent system of equations of the form (*), such that rank(A) = m.
- An x ∈ Fea(P) is called a basic feasible solution (BFS)
 of the LPP if the columns of the matrix A corresponding to
 the nonzero components of x are LI.

- If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away appropriately k m rows of A and the corresponding components of \mathbf{b} to get an equivalent system of equations of the form (*), such that rank(A) = m.
- An x ∈ Fea(P) is called a basic feasible solution (BFS)
 of the LPP if the columns of the matrix A corresponding to
 the nonzero components of x are LI.
- An x satisfying Ax = b, such that the columns corresponding to the nonzero components are LI, is called a basic solution of the LPP.

- If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away appropriately k m rows of A and the corresponding components of \mathbf{b} to get an equivalent system of equations of the form (*), such that rank(A) = m.
- An x ∈ Fea(P) is called a basic feasible solution (BFS)
 of the LPP if the columns of the matrix A corresponding to
 the nonzero components of x are LI.
- An x satisfying Ax = b, such that the columns corresponding to the nonzero components are LI, is called a basic solution of the LPP.
- So a basic solution may not be a non negative vector, hence need not be a feasible solution of the LPP.

- If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away appropriately k m rows of A and the corresponding components of \mathbf{b} to get an equivalent system of equations of the form (*), such that rank(A) = m.
- An x ∈ Fea(P) is called a basic feasible solution (BFS)
 of the LPP if the columns of the matrix A corresponding to
 the nonzero components of x are LI.
- An x satisfying Ax = b, such that the columns corresponding to the nonzero components are LI, is called a basic solution of the LPP.
- So a basic solution may not be a non negative vector, hence need not be a feasible solution of the LPP.
- A basic feasible solution of a LPP of the form (1), can have at most m strictly positive components (rank(A) = m).

Example 1: Consider the LPP (P)
 Max or Min c^Tx
 subject to A_{2×3}x = b_{2×1}, x ≥ 0

• Example 1: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

• Example 1: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

• Clearly rank(A) = 2.

- Example 1: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}$, $\mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Clearly rank(A) = 2.
- $\mathbf{x} = [1, 1, 0]^T$ is a **BFS** of (P) since it satisfies the conditions

- Example 1: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Clearly rank(A) = 2.
- $\mathbf{x} = [1, 1, 0]^T$ is a **BFS** of (P) since it satisfies the conditions $A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}, \ \mathbf{x} \geq \mathbf{0}$

- Example 1: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [1,1,0]^T is a BFS of (P) since it satisfies the conditions
 A_{2×3}x = b_{2×1}, x ≥ 0
 and the columns of A corresponding to the positive
 components of x are

- Example 1: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [1, 1, 0]^T is a BFS of (P) since it satisfies the conditions
 A_{2×3}x = b_{2×1}, x ≥ 0
 and the columns of A corresponding to the positive components of x are
 [1, 1]^T, [2, 1]^T, is LI.

• $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies

• $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \ \mathbf{x} \geq \mathbf{0}$.

• $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \geq \mathbf{0}$. But $\mathbf{x} = [2, 1, 1]^T$ is not a **BFS** x = [2, 1, 1]^T is a **feasible** solution of (P) since it satisfies A_{2×3}x = b_{2×1}, x ≥ 0.
 But x = [2, 1, 1]^T is not a BFS
 Since the columns of A corresponding to the positive components of x are

• $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \ \mathbf{x} \geq \mathbf{0}$. But $\mathbf{x} = [2, 1, 1]^T$ is not a **BFS** Since the columns of A corresponding to the **positive** components of \mathbf{x} are $[1, 1]^T, [2, 1]^T, [-1, -1]^T$ is **LD**.

- x = [2,1,1]^T is a feasible solution of (P) since it satisfies A_{2×3}x = b_{2×1}, x ≥ 0.
 But x = [2,1,1]^T is not a BFS
 Since the columns of A corresponding to the positive components of x are [1,1]^T, [2,1]^T, [-1,-1]^T is LD.
- $\mathbf{x} = [0, 1, -1]^T$ is a basic solution of (P).

- x = [2,1,1]^T is a feasible solution of (P) since it satisfies A_{2×3}x = b_{2×1}, x ≥ 0.
 But x = [2,1,1]^T is not a BFS
 Since the columns of A corresponding to the positive components of x are [1,1]^T, [2,1]^T, [-1,-1]^T is LD.
- $\mathbf{x} = [0, 1, -1]^T$ is a **basic solution** of (P). It satisfies $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}$.

- x = [2,1,1]^T is a feasible solution of (P) since it satisfies A_{2×3}x = b_{2×1}, x ≥ 0.
 But x = [2,1,1]^T is not a BFS
 Since the columns of A corresponding to the positive components of x are [1,1]^T, [2,1]^T, [-1,-1]^T is LD.
- $\mathbf{x} = [0, 1, -1]^T$ is a **basic solution** of (P). It satisfies $A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}$. The columns of A corresponding to the nonzero components of \mathbf{x} are $[2, 1]^T, [-1, -1]^T$, is **LI**.

- $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies $A_{2\times 3}$ **x** = **b**_{2×1}, **x** > **0**. But $x = [2, 1, 1]^T$ is not a **BFS** Since the columns of A corresponding to the positive components of x are $[1,1]^T$, $[2,1]^T$, $[-1,-1]^T$ is **LD**.
- $\mathbf{x} = [0, 1, -1]^T$ is a basic solution of (P). It satisfies $A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}$. The columns of A corresponding to the nonzero components of x are $[2,1]^T$, $[-1,-1]^T$, is **LI**. But **x** is **not** a **BFS**, **x** is not a feasible solution of (P).

 A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.

A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of **x** are x_1, \ldots, x_m ,

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of **x** are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$,

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of **x** are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m ,

Non degenerate BFS

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of \mathbf{x} are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m , where $\tilde{\mathbf{a}}_i$ is the *i*th column of A.

Non degenerate BFS

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of \mathbf{x} are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m , where $\tilde{\mathbf{a}}_i$ is the *i*th column of A.
- $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ with columns $\tilde{\mathbf{a}}_i, i = 1, \dots, m$, of A is called **the basis matrix** corresponding to \mathbf{x} .

Non degenerate BFS

- A basic feasible solution is called a non degenerate BFS if it has exactly m positive components.
 Otherwise it is said to be a degenerate BFS.
- If x is a non degenerate BFS, then the columns of A corresponding to the nonzero (positive) components of x form a basis of R^m.
- If the positive components of \mathbf{x} are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m , where $\tilde{\mathbf{a}}_i$ is the *i*th column of A.
- $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ with columns $\tilde{\mathbf{a}}_i, i = 1, \dots, m$, of A is called **the basis matrix** corresponding to \mathbf{x} .
- The variables x_1, \ldots, x_m are called **basic variables**, and $x_{m+1} = x_{m+2} = \ldots = x_n = 0$, are called **non basic variables** of the **BFS x**.

• If **x** is a **degenerate** BFS, and if the columns of *A* corresponding to the nonzero components of **x** are $\tilde{\mathbf{a}}_1, \ldots, \tilde{\mathbf{a}}_k, \ k < m$,

• If **x** is a **degenerate** BFS, and if the columns of *A* corresponding to the nonzero components of **x** are $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k, k < m$, then consider (m-k) LI columns of *A*, such that these (m-k) columns of *A* together with $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k$, form a basis of \mathbb{R}^m .

- If **x** is a **degenerate** BFS, and if the columns of *A* corresponding to the **nonzero** components of **x** are $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k, k < m$, then consider (m-k) LI columns of *A*, such that these (m-k) columns of *A* together with $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k$, form a basis of \mathbb{R}^m .
- $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ is called **a** basis matrix corresponding to **x**.

- If **x** is a **degenerate** BFS, and if the columns of *A* corresponding to the **nonzero** components of **x** are $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k, k < m$, then consider (m-k) LI columns of *A*, such that these (m-k) columns of *A* together with $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k$, form a basis of \mathbb{R}^m .
- $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ is called **a** basis matrix corresponding to **x**.
- The components x_1, \ldots, x_m of **x** are called **basic variables** corresponding to **x** and the basis matrix *B*.

- If **x** is a **degenerate** BFS, and if the columns of *A* corresponding to the **nonzero** components of **x** are $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k, k < m$, then consider (m-k) LI columns of *A*, such that these (m-k) columns of *A* together with $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k$, form a basis of \mathbb{R}^m .
- $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ is called **a** basis matrix corresponding to **x**.
- The components x_1, \ldots, x_m of **x** are called **basic variables** corresponding to **x** and the basis matrix B.
- The components $x_{m+1} = ... = x_n = 0$ are **nonbasic** variables corresponding to **x** and the basis matrix *B*.

Example 2: Consider the LPP (P)
 Max or Min c^Tx
 subject to A_{2×3}x = b_{2×1}, x ≥ 0

• Example 2: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• Example 2: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• Clearly rank(A) = 2.

- Example 2: Consider the LPP (P) Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0,1,1]^T is a non degenerate BFS of (P) since it satisfies the conditions

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0, 1, 1]^T is a non degenerate BFS of (P) since it satisfies the conditions

$$A_{m\times n}\mathbf{x}=\mathbf{b}_{m\times 1},\,\mathbf{x}\geq\mathbf{0}$$

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0,1,1]^T is a non degenerate BFS of (P) since it satisfies the conditions

satisfies the conditions
$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \ge \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0,1,1]^T is a non degenerate BFS of (P) since it satisfies the conditions

satisfies the conditions
$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \mathbf{x} \ge \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are $[2, 1]^T, [-1, 0]^T$, is LI.

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0,1,1]^T is a non degenerate BFS of (P) since it satisfies the conditions

$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \ge \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are $[2,1]^T, [-1,0]^T$, is LI.

Also the number of positive components of \mathbf{x} is equal to 2 = rank(A).

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [0, 1, 1]^T is a non degenerate BFS of (P) since it satisfies the conditions

$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \ge \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are $[2, 1]^T, [-1, 0]^T$, is LI.

Also the number of positive components of \mathbf{x} is equal to 2 = rank(A).

 The basis matrix for this x is unique upto a permutation of the columns.

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \ge \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- $\mathbf{x} = [0, 1, 1]^T$ is a non degenerate **BFS** of (P) since it satisfies the conditions

$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \ge \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are $[2,1]^T, [-1,0]^T$, is LI.

Also the number of positive components of \mathbf{x} is equal to 2 = rank(A).

- The basis matrix for this x is unique upto a permutation of the columns.
 - x_2 , x_3 are basic variables and x_1 is non basic.

• $\mathbf{x} = [1, 0, 0]^T$ is also a BFS of (P) since it satisfies

• $\mathbf{x} = [1, 0, 0]^T$ is also a BFS of (P) since it satisfies $A_{2\times 3}\mathbf{x} = \mathbf{b}_{3\times 1}, \ \mathbf{x} \geq \mathbf{0},$

• $\mathbf{x} = [1, 0, 0]^T$ is also a BFS of (P) since it satisfies $A_{2\times3}\mathbf{x} = \mathbf{b}_{3\times1}, \mathbf{x} \geq \mathbf{0}$, the columns of A corresponding to the positive components of \mathbf{x} is

x = [1,0,0]^T is also a BFS of (P) since it satisfies A_{2×3}x = b_{3×1}, x ≥ 0, the columns of A corresponding to the positive components of x is [1,1]^T, is LI.

- x = [1,0,0]^T is also a BFS of (P) since it satisfies A_{2×3}x = b_{3×1}, x ≥ 0, the columns of A corresponding to the positive components of x is [1,1]^T, is LI.
- x is a degenerate BFS since the number of positive components of x is strictly less 2.

- x = [1,0,0]^T is also a BFS of (P) since it satisfies A_{2×3}x = b_{3×1}, x ≥ 0, the columns of A corresponding to the positive components of x is [1,1]^T, is LI.
- x is a degenerate BFS since the number of positive components of x is strictly less 2.
- There are two different basis matrices B for x.
 (i) B with columns [1, 1]^T, [2, 1]^T, basic variables x₁, x₂.

4 D > 4 P > 4 B > 4 B > B 9 Q P

- x = [1,0,0]^T is also a BFS of (P) since it satisfies A_{2×3}x = b_{3×1}, x ≥ 0, the columns of A corresponding to the positive components of x is [1,1]^T, is LI.
- x is a degenerate BFS since the number of positive components of x is strictly less 2.
- There are two different basis matrices B for \mathbf{x} .
 - (i) B with columns $[1, 1]^T$, $[2, 1]^T$, basic variables x_1, x_2 .
 - (ii) B' with columns $[1, 1]^T$, $[-1, 0]^T$, basic variables x_1, x_3 .

Depending on the choice of the (m - k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B,

Depending on the choice of the (m - k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$,

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- BFS x is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1}\mathbf{b}_{m\times 1} \\ \mathbf{0}_{(n-m)\times 1} \end{bmatrix}$.

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- BFS x is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1} \mathbf{b}_{m \times 1} \\ \mathbf{0}_{(n-m) \times 1} \end{bmatrix}$.
- Corresponding to BFS x

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- BFS x is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1} \mathbf{b}_{m \times 1} \\ \mathbf{0}_{(n-m) \times 1} \end{bmatrix}$.
- Corresponding to **BFS x** $\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}_B^T B^{-1} \mathbf{b}$,

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- BFS x is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1}\mathbf{b}_{m\times 1} \\ \mathbf{0}_{(n-m)\times 1} \end{bmatrix}$.
- Corresponding to BFS x
 c^Tx = c_B^Tx_B = c_B^TB⁻¹b,
 where, c_B^T are the components of c^T corresponding to the basic variables.

- Depending on the choice of the (m k) columns of A which are added, the same degenerate BFS x will correspond to different basis matrices B, and will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- **BFS x** is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1}\mathbf{b}_{m\times 1} \\ \mathbf{0}_{(n-m)\times 1} \end{bmatrix}$.
- Corresponding to **BFS x** $\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}_B^T B^{-1} \mathbf{b}$, where, \mathbf{c}_B^T are the components of \mathbf{c}^T corresponding to the basic variables.
- If LPP (P) is the diet problem, (with ≥ inequalities changed to equalities in the original problem),
 then x gives the quantities of the food products F_j,
 j = 1,...,n in the diet.

• The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \ldots, x_m of \mathbf{x} , are the ones which are included in the diet in the quantities x_i .

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \ldots, x_m of \mathbf{x} , are the ones which are included in the diet in the quantities x_j .
- The other food products corresponding to the nonbasic variables of x (they have zero values) are not consumed.

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \ldots, x_m of \mathbf{x} , are the ones which are included in the diet in the quantities x_j .
- The other food products corresponding to the nonbasic variables of x (they have zero values) are not consumed.
- Let us assume that (P*) has atleast one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*).

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \ldots, x_m of \mathbf{x} , are the ones which are included in the diet in the quantities x_j .
- The other food products corresponding to the nonbasic variables of x (they have zero values) are not consumed.
- Let us assume that (P*) has atleast one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*).
- Let $B = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ be **a** (or **the**) basis matrix corresponding to **x**.

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \dots, x_m of **x**, are the ones which are included in the diet in the quantities x_i .
- The other food products corresponding to the nonbasic variables of **x** (they have zero values) are **not** consumed.
- Let us assume that (P*) has atleast one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*).
- Let $B = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ be **a** (or **the**) basis matrix corresponding to x.
- For all k = 1, 2, ..., n, let

$$\tilde{\mathbf{a}}_{k} = \sum_{i=1}^{m} u_{ik} \tilde{\mathbf{a}}_{i} = [\tilde{\mathbf{a}}_{1} \dots \tilde{\mathbf{a}}_{m}] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix}$$
 for some real u_{ik} 's, $i = 1, \dots, m, k = 1, \dots, n$,

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \dots, x_m of **x**, are the ones which are included in the diet in the quantities x_i .
- The other food products corresponding to the nonbasic variables of **x** (they have zero values) are **not** consumed.
- Let us assume that (P*) has atleast one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*).
- Let $B = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ be **a** (or **the**) basis matrix corresponding to x.
- For all k = 1, 2, ..., n, let

$$\tilde{\mathbf{a}}_k = \sum_{i=1}^m u_{ik} \tilde{\mathbf{a}}_i = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix}$$
 for some real u_{ik} 's, $i = 1, \dots, m, k = 1, \dots, n$,

for some real
$$u_{ik}$$
's, $i = 1, ..., m$, $k = 1, ..., n$,

Then
$$\begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = B^{-1}\tilde{\mathbf{a}}_k \text{ for all } k = 1, 2, ..., n.$$

• In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume (u_{1k} amount of F_1)+ (u_{2k} amount of F_2)+...+ (u_{mk} amount of F_m).

- In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume (u_{1k} amount of F_1)+ (u_{2k} amount of F_2)+...+ (u_{mk} amount of F_m).
- Let z_k be the value of unit amount of F_k , if we include **only** F_i , i = 1, ..., m in the diet.

- In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume (u_{1k} amount of F_1)+ (u_{2k} amount of F_2)+...+ (u_{mk} amount of F_m).
- Let z_k be the value of unit amount of F_k , if we include **only** F_i , i = 1, ..., m in the diet.

• Then
$$z_k = u_{1k}c_1 + u_{2k}c_2 + \ldots + u_{mk}c_m = \sum_{i=1}^m u_{ik}c_i$$

$$= [c_1, \ldots, c_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k.$$

- In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume (u_{1k} amount of F_1)+ (u_{2k} amount of F_2)+...+ (u_{mk} amount of F_m).
- Let z_k be the value of unit amount of F_k , if we include **only** F_i , i = 1, ..., m in the diet.

• Then
$$z_k = u_{1k}c_1 + u_{2k}c_2 + \ldots + u_{mk}c_m = \sum_{i=1}^m u_{ik}c_i$$

$$= [c_1, \ldots, c_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k.$$

• For all k = 1, ..., m, note that $z_k = c_k$.

- In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume (u_{1k} amount of F_1)+ (u_{2k} amount of F_2)+...+ (u_{mk} amount of F_m).
- Let z_k be the value of unit amount of F_k , if we include **only** F_i , i = 1, ..., m in the diet.

• Then
$$z_k = u_{1k}c_1 + u_{2k}c_2 + \ldots + u_{mk}c_m = \sum_{i=1}^m u_{ik}c_i$$

$$= [c_1, \ldots, c_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k.$$

- For all k = 1, ..., m, note that $z_k = c_k$.
- If $z_k > c_k$ then look for a better solution.

ullet the simplex table corresponding to BFS ${f x}$ is given by

	0		0		c_s-z_s	••	$c_k - z_k$	
	$B^{-1}\tilde{\mathbf{a}}_1$		$B^{-1}\tilde{\mathbf{a}}_m$		$B^{-1}\tilde{\mathbf{a}}_{s}$		$B^{-1}\tilde{\mathbf{a}}_k$	 $B^{-1}\mathbf{b}$
			0		U _{1s}		<i>u</i> _{1<i>k</i>}	 <i>X</i> ₁
$ ilde{\mathbf{a}}_2$	0		0		u_{2s}		u_{2k}	 <i>X</i> ₂
:	0	••	0		÷		÷	 ÷
$\tilde{\mathbf{a}}_r$	÷	••	:		u_{rs}		u_{rk}	 X _r
÷	:		:		:		:	 :
$ ilde{\mathbf{a}}_m$	0				Ums		u_{mk}	 Xm

• Case 1: $c_k - z_k < 0$ for atleast one $k, k = m + 1, \dots, n$.

• Case 1: $c_k - z_k < 0$ for at least one k, k = m + 1, ..., n. Let $c_s - z_s = min\{c_k - z_k : c_k - z_k < 0, k = m + 1, ..., n\}$. • Case 1: $c_k - z_k < 0$ for atleast one k, k = m + 1, ..., n. Let $c_s - z_s = min\{c_k - z_k : c_k - z_k < 0, k = m + 1, ..., n\}$. Simplex algorithm says that, include x_s in the diet or make x_s a basic variable. Case 1: c_k - z_k < 0 for atleast one k, k = m + 1,..., n.
 Let c_s - z_s = min{c_k - z_k : c_k - z_k < 0, k = m + 1,..., n}.
 Simplex algorithm says that, include x_s in the diet or make x_s a basic variable.
 Column ã_s will be included in the basis matrix.

- Case 1: c_k z_k < 0 for atleast one k, k = m + 1,..., n.
 Let c_s z_s = min{c_k z_k : c_k z_k < 0, k = m + 1,..., n}.
 Simplex algorithm says that, include x_s in the diet or make x_s a basic variable.
 Column ã_s will be included in the basis matrix.
- If there exists, s, l, such that for both s, l, $c_s z_s = c_l z_l = min\{c_k z_k : c_k z_k < 0, k = m+1, \ldots, n\}$,

- Case 1: c_k z_k < 0 for atleast one k, k = m + 1,..., n.
 Let c_s z_s = min{c_k z_k : c_k z_k < 0, k = m + 1,..., n}.
 Simplex algorithm says that, include x_s in the diet or make x_s a basic variable.
 Column ã_s will be included in the basis matrix.
- If there exists, s, l, such that for both s, l, $c_s z_s = c_l z_l = min\{c_k z_k : c_k z_k < 0, \ k = m+1, \ldots, n\}$, then include any **one** of these food products in the diet(as a basic variable).

- Case 1: c_k z_k < 0 for atleast one k, k = m + 1,..., n.
 Let c_s z_s = min{c_k z_k : c_k z_k < 0, k = m + 1,..., n}.
 Simplex algorithm says that, include x_s in the diet or make x_s a basic variable.
 Column ã_s will be included in the basis matrix.
- If there exists, s, I, such that for both s, I,
 c_s z_s = c_I z_I = min{c_k z_k : c_k z_k < 0, k = m+1,...,n},
 then include any one of these food products in the diet(as a basic variable).
- Let \mathbf{x}' be the new feasible solution given by $x'_i = x_i u_{is}x'_s$ for i = 1, ..., m,

- Case 1: c_k z_k < 0 for atleast one k, k = m + 1,..., n.
 Let c_s z_s = min{c_k z_k : c_k z_k < 0, k = m + 1,..., n}.
 Simplex algorithm says that, include x_s in the diet or make x_s a basic variable.
 Column ã_s will be included in the basis matrix.
- If there exists, s, I, such that for both s, I,
 c_s z_s = c_I z_I = min{c_k z_k : c_k z_k < 0, k = m+1,...,n},
 then include any one of these food products in the diet(as a basic variable).
- Let \mathbf{x}' be the new feasible solution given by $x_i' = x_i u_{is}x_s'$ for i = 1, ..., m, $x_s' \ge 0$ and $x_i' = 0$ for i = m + 1, ..., n, $i \ne s$.

• If \mathbf{x}' is feasible for the LPP, then $x'_s \ge 0$ is such that $x'_i \ge 0$ for all i = 1, ..., m.

- If \mathbf{x}' is feasible for the LPP, then $x'_s \geq 0$ is such that $x'_i \geq 0$ for all i = 1, ..., m.
- If $u_{is} \leq 0$, for some $i = 1, \ldots, m$,

- If \mathbf{x}' is feasible for the LPP, then $x'_s \ge 0$ is such that $x'_i \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.

- If \mathbf{x}' is feasible for the LPP, then $x_s' \ge 0$ is such that $x_i' \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_s \ge 0$, $x'_i \ge 0$ for that i.
- If $u_{is} > 0$ for some $i = 1, \ldots, m$,

- If \mathbf{x}' is feasible for the LPP, then $x_s' \ge 0$ is such that $x_i' \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{U_{is}}$.

- If \mathbf{x}' is feasible for the LPP, then $x'_s \ge 0$ is such that $x'_i \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{U_{is}}$.
- Case 1a: For atleast one i = 1, ..., m, $u_{is} > 0$ (where s is as defined in Case 1).

- If \mathbf{x}' is feasible for the LPP, then $\mathbf{x}'_s \geq 0$ is such that $\mathbf{x}'_i \geq 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{u_{is}}$.
- Case 1a: For atleast one i = 1, ..., m, $u_{is} > 0$ (where s is as defined in Case 1). Let $\frac{x_r}{u_{in}} = min\{\frac{x_i}{u_{i:}} : u_{is} > 0\}$.

- If \mathbf{x}' is feasible for the LPP, then $\mathbf{x}'_s \geq 0$ is such that $\mathbf{x}'_i \geq 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{u_{is}}$.
- Case 1a: For atleast one i = 1, ..., m, $u_{is} > 0$ (where s is as defined in Case 1). Let $\frac{x_r}{t_{tr}} = min\{\frac{x_i}{t_{ts}} : u_{is} > 0\}$.
- $\frac{\chi_r}{U_{re}}$ is called the **minimum ratio**.

- If \mathbf{x}' is feasible for the LPP, then $x'_s \ge 0$ is such that $x'_i \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{u_{is}}$.
- Case 1a: For atleast one i = 1, ..., m, $u_{is} > 0$ (where s is as defined in Case 1). Let $\frac{x_r}{l_{les}} = min\{\frac{x_i}{l_{les}} : u_{is} > 0\}$.
- $\frac{\chi_r}{U_{re}}$ is called the **minimum ratio**.
- $\bullet \ \mathbf{X}' \geq \mathbf{0} \Rightarrow X_{\mathcal{S}}' \leq \frac{X_{\mathcal{F}}}{U_{\mathcal{F}S}}.$

- If \mathbf{x}' is feasible for the LPP, then $x'_s \ge 0$ is such that $x'_i \ge 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- If $u_{is} > 0$ for some i = 1, ..., m, $x'_{s} \geq 0$, should be such that $x'_{s} \leq \frac{x_{i}}{u_{is}}$.
- Case 1a: For atleast one i = 1, ..., m, $u_{is} > 0$ (where s is as defined in Case 1). Let $\frac{x_r}{l_{les}} = min\{\frac{x_i}{l_{les}} : u_{is} > 0\}$.
- $\frac{\chi_r}{U_{re}}$ is called the **minimum ratio**.
- $\bullet \ \mathbf{X}' \geq \mathbf{0} \Rightarrow \mathbf{X}'_{S} \leq \frac{\mathbf{X}_{r}}{\mathbf{U}_{rs}}.$
- Also Ax' = b which implies $x' \in Fea(LPP)$.

 \bullet $\mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$

 $\bullet \mathbf{c}^{T}\mathbf{x}' = \sum_{i=1}^{m} c_{i}x'_{i} + c_{s}x'_{s} \\
= \mathbf{c}^{T}\mathbf{x} + x'_{s}(c_{s} - z_{s}),$

 $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s - z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}.$

- $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}.$
- \bullet $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$,

- $\bullet \mathbf{c}^{\mathsf{T}}\mathbf{x}' = \sum_{i=1}^{m} c_{i}x'_{i} + c_{s}x'_{s}$ $= \mathbf{c}^{\mathsf{T}}\mathbf{x} + x'_{s}(c_{s} z_{s}),$ $\Rightarrow \mathbf{c}^{\mathsf{T}}\mathbf{x}' < \mathbf{c}^{\mathsf{T}}\mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{U_{rc}} > 0$.

- $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{u_n} > 0$.
- Let $x'_s = \frac{x_r}{u_{rs}}$.

- $\bullet \mathbf{c}^{\mathsf{T}}\mathbf{x}' = \sum_{i=1}^{m} c_{i}x'_{i} + c_{s}x'_{s} \\
 = \mathbf{c}^{\mathsf{T}}\mathbf{x} + x'_{s}(c_{s} z_{s}), \\
 \Rightarrow \mathbf{c}^{\mathsf{T}}\mathbf{x}' < \mathbf{c}^{\mathsf{T}}\mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{u_n} > 0$.
- Let $x_s' = \frac{x_r}{u_{rs}}$.
- Then $x'_r = x_r u_{rs} \frac{x_r}{U_{rs}} = 0$

- $\bullet \mathbf{c}^{\mathsf{T}}\mathbf{x}' = \sum_{i=1}^{m} c_{i}x'_{i} + c_{s}x'_{s}$ $= \mathbf{c}^{\mathsf{T}}\mathbf{x} + x'_{s}(c_{s} z_{s}),$ $\Rightarrow \mathbf{c}^{\mathsf{T}}\mathbf{x}' \leq \mathbf{c}^{\mathsf{T}}\mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{u_n} > 0$.
- Let $x'_s = \frac{x_r}{u_{rs}}$.
- Then $x'_r = x_r u_{rs} \frac{x_r}{u_{rs}} = 0$
- x_s is called the **entering variable**,

- $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' \leq \mathbf{c}^T \mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{u_m} > 0$.
- Let $x'_s = \frac{x_r}{u_{rs}}$.
- Then $x'_r = x_r u_{rs} \frac{x_r}{u_{rs}} = 0$
- x_s is called the entering variable, and x_r is called a leaving variable.

- $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' \leq \mathbf{c}^T \mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{U_{rs}} > 0$.
- Let $X'_{S} = \frac{X_{r}}{U_{rS}}$.
- Then $x'_r = x_r u_{rs} \frac{x_r}{u_{rs}} = 0$
- x_s is called the entering variable, and x_r is called a leaving variable.
- If there exists $r, t \in \{m+1, \ldots, n\}$ $\frac{x_r}{u_{rs}} = \frac{x_t}{u_{ls}} = min\{\frac{x_i}{u_{ls}} : u_{ls} > 0\},$ then take any **one** of r, t as the **leaving variable**.

• x' is a **BFS** of the LPP.

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $\mathbf{B}' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$

•
$$\tilde{\mathbf{a}}_k = \sum_{i=1, i \neq r}^m (u_{ik} - \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s \frac{u_{rk}}{u_{rs}}$$
.

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all k = 1, ..., n, the new u_{ik} 's are given by,

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{is}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{is}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{ik}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.
- $\mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s(\frac{x_r}{u_{rs}})$

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{ik}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.
- $\mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s(\frac{x_r}{u_{rs}})$
- If z'_k denotes the new values of z_k then

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{is}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.
- $\mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s(\frac{x_r}{u_{rs}})$
- If z'_k denotes the new values of z_k then

$$Z_k' = Z_k + \frac{(c_s - z_s)}{u_{rs}} u_{rk}$$

- x' is a BFS of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m].$
- $\bullet \ \tilde{\mathbf{a}}_{k} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_{i} + \tilde{\mathbf{a}}_{s} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$, the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{is}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.
- $\mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s(\frac{x_r}{u_{rs}})$
- If z'_k denotes the new values of z_k then

$$z'_k = z_k + \frac{(c_s - z_s)}{u_{rs}} u_{rk}$$

and $c_k - z'_k = (c_k - z_k) - \frac{(c_s - z_s)}{u_{rs}} u_{rk}$.

 The simplex table corresponding to the new BFS x' is given by

 The simplex table corresponding to the new BFS x' is given by

 The entry u_{rs} of the previous table which is made 1 (by dividing) in this table is called the pivot element. • Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_s \geq \mathbf{0}$,

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$, $\Rightarrow \mathbf{x}' \in Fea(LPP)$ for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$.

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$, $\Rightarrow \mathbf{x}' \in Fea(LPP)$ for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$.
- Since $\mathbf{c}^T \mathbf{x}' = \mathbf{c}^T \mathbf{x} + x_s'(c_s z_s), (c_s z_s) < 0.$

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$, $\Rightarrow \mathbf{x}' \in Fea(LPP)$ for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$.
- Since $\mathbf{c}^T \mathbf{x}' = \mathbf{c}^T \mathbf{x} + x_s'(c_s z_s), (c_s z_s) < 0$. So given any $M \in \mathbb{R}$, by taking x_s' sufficiently large we can make $\mathbf{c}^T \mathbf{x}'$ smaller than M.

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$, $\Rightarrow \mathbf{x}' \in Fea(LPP)$ for all $\mathbf{x}'_{\mathbf{s}} \geq \mathbf{0}$.
- Since c^Tx' = c^Tx + x'_s(c_s z_s), (c_s z_s) < 0.
 So given any M∈ R, by taking x'_s sufficiently large we can make c^Tx' smaller than M.
 So the LPP does not have an optimal solution.

• $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$

- $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$
- If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of S,

- $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$
- If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of S, where the entry $\mathbf{1}$ in the above vector is at the \mathbf{s} th position.

- $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq 0, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$
- If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of S, where the entry $\mathbf{1}$ in the above vector is at the \mathbf{s} th position.

• If **d** is as above then $\mathbf{c}^T \mathbf{d} < 0$.

- $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq 0, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$
- If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_{s} \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of *S*, where the entry **1** in the above vector is at the **s** th position.

- If d is as above then $\mathbf{c}^T \mathbf{d} < \mathbf{0}$.
- Case 2:(Optimality Condition) (sufficient condition) $c_k z_k \ge 0$ for all k = 1, ..., n.

- $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$ is the set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \}$
- If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

$$\mathbf{J} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of *S*, where the entry **1** in the above vector is at the *s* th position.

- If d is as above then $\mathbf{c}^{\mathsf{T}}\mathbf{d} < 0$.
- Case 2:(Optimality Condition) (sufficient condition) $c_k z_k \ge 0$ for all k = 1, ..., n. Then **x** is optimal for the LPP.

Max $\mathbf{c}^T \mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

Max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one $k, k = m+1, \ldots, n$.

Max $\mathbf{c}^T \mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s - z_s = \max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s - z_s = \max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Case 1/a:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$
 and for at least one $i, u_{is} > 0$.

Max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s - z_s = \max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Case 1'a:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$
 and for at least one i , $u_{is} > 0$.

Case 1'b:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$

and for all $i, u_{is} \le 0$.

Max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s - z_s = \max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Case 1/a:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$
 and for at least one i , $u_{is} > 0$.

Case 1'b:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$

and for all $i, u_{is} < 0$.

• Case 2': (Optimality condition (sufficient condition)) $c_k - z_k \le 0$ for all k = 1, ..., n.

Max $\mathbf{c}^T \mathbf{x}$ subject to

$$A_{m \times n} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \quad rank(A) = m$$

• Case 1': $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s - z_s = \max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Case 1/a:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m+1,...,n\},$$
 and for atleast one $i, u_{is} > 0$.

Case 1'b:

$$c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, \ k = m + 1, ..., n\},$$

and for all $i, u_{is} < 0$.

- Case 2': (Optimality condition (sufficient condition)) $c_k z_k \le 0$ for all k = 1, ..., n.
- The above optimality conditions (for max and min problems) are sufficient but not necessary for an optimal solution.

• Consider the Problem (P): Min $x_1 + x_2$ subject to

• Consider the Problem (P): Min $x_1 + x_2$ subject to $-x_1 + 2x_2 \le 4$

• Consider the Problem (P): Min $x_1 + x_2$ subject to

$$-x_1 + 2x_2 \le 4 \\ -x_1 + x_2 \le 1$$

• Consider the Problem (P): Min $x_1 + x_2$ subject to $-x_1 + 2x_2 \le 4$

$$\begin{aligned} & -x_1 + x_2 \leq 1 \\ & x_1 \geq 0, x_2 \geq 0. \end{aligned}$$

• Consider the Problem (P): Min $x_1 + x_2$ subject to $-x_1 + 2x_2 < 4$

$$-x_1 + x_2 \le 1$$
$$x_1 > 0, x_2 > 0.$$

The simplex table corresponding to the BFS with basic variables x_2 and s_1 is given by:

$c_j - z_j$	2	0	0	-1	
	<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>s</i> ₂	B^{-1} b
<i>X</i> ₂	-1	1	0	1	1
s_1	1	0	1	-2	1

• Consider the Problem (P): Min $x_1 + x_2$ subject to $-x_1 + 2x_2 < 4$

$$-x_1 + x_2 \le 1$$

$$x_1 > 0, x_2 > 0.$$

The simplex table corresponding to the BFS with basic variables x_2 and s_1 is given by:

$c_j - z_j$	2	0	0	-1	
	<i>X</i> ₁	<i>X</i> ₂	S ₁	s ₂	B^{-1} b
<i>X</i> ₂	-1	1	0	1	1
s_1	1	0	1	-2	1

The entering variable is s_2 and the leaving variable is x_2 for the next BFS.

• Consider the Problem (P): Min $x_1 + x_2$ subject to

$$-x_1 + 2x_2 \le 4$$

$$-x_1 + x_2 \le 1$$

$$x_1 > 0, x_2 > 0.$$

The simplex table corresponding to the BFS with basic variables x_2 and s_1 is given by:

The entering variable is s_2 and the leaving variable is x_2 for the next BFS.

	$c_j - z_j$	1	1	0	0	
_		<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>S</i> ₂	B^{-1} b
	s ₂	-1	1	0	1	1
	s_1	-1	2	1	0	4

Note that the above table is optimal.

$$x_1 - 2x_2$$

$c_j - z_j$	<u>-1</u>	0	0	2	
	<i>X</i> ₁	<i>X</i> ₂	s_1	<i>S</i> ₂	B^{-1} b
<i>X</i> ₂	-1	1	0	1	1
s_1	1	0	1	-2	1

$$x_1 - 2x_2$$

	$c_j - z_j$	<u>-1</u>	0	0	2	
•		<i>X</i> ₁	<i>X</i> ₂	s_1	<i>S</i> ₂	B^{-1} b
	<i>X</i> ₂	-1	1	0	1	1
	s_1	1	0	1	-2	1

The entering variable is x_1 and the leaving variable is s_1 for the next BFS.

$$x_1 - 2x_2$$

$c_j - z_j$	–1	0	0	2	
	<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>S</i> ₂	B^{-1} b
<i>X</i> ₂	-1	1	0	1	1
s_1	1	0	1	-2	1

The entering variable is x_1 and the leaving variable is s_1 for the next BFS.

Then the next table is

$$x_1 - 2x_2$$

$c_j - z_j$	-1	0	0	2	
	<i>X</i> ₁	<i>X</i> ₂	S ₁	<i>S</i> ₂	B^{-1} b
<i>X</i> ₂	-1	1	0	1	1
s_1	1	0	1	-2	1

The entering variable is x_1 and the leaving variable is s_1 for the next BFS.

Then the next table is

$c_j - z_j$	0	0	1	0	
	<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>S</i> ₂	B^{-1} b
<i>X</i> ₂	0	1	1	-1	3
<i>X</i> ₁	1	0	1	-2	2

The above table is optimal.