Outline of Presentation

- Introduction
- Transport tuning and selection
- Global resource management
- File system optimization
- Conclusions

Introduction

- Data transfers are part of life in HPC environments
 - Finite storage capacity
 - Transfer to cheaper tape storage
 - Back up existing data
 - Make room for new data
 - Transfer from tape storage to reprocess old data
 - Transfer between file systems to fix imbalances
 - Finite computational capacity
 - Transfer from off-site systems with cheaper pre-processing
 - Transfer to off-site systems for cheaper post-processing

Introduction (cont.)

- User transfer concerns
 - Ease to use, integrity, turnaround time
- Administrator and owner transfer concerns
 - Environment stability, cost effectiveness
- These items can conflict with each other
 - Easy to use tools or those ensuring integrity may not be fast
 - Easiest file structure may degrade tape performance
 - Fastest turnaround time may lead to resource exhaustion
- Takes HPC expert to reconcile conflicts
 - Understands and applies accepted best practices to achieve fast and efficient verified transfers without impact on stability

Goal

- Let scientists focus on science without wading through documentation on transfer best practices
 - Specify transfers in simplest, naive fashion
 - Source and destination
- Provide tool to perform transfer as if scientist were HPC expert
 - Choose appropriate tools and optimize for best performance
 - Fully utilize available resources without starving other users
 - Manage files appropriately by file system type to ensure efficient access by later and/or behind the scenes processes

Shift: Self-Healing Independent File Transfer

- Satisfies user requirements
 - Simple cp/scp syntax for local/remote transfers
 - End-to-end integrity via checksums and sanity checks
 - High speed via transport selection/tuning and automatic parallelization
- Satisfies administrator and owner requirements
 - Helps prevent resource exhaustion that leads to environment instability
 - Global throttling to allocate resources fairly
 - Load balancing to avoid highly loaded hosts
 - · Automatic striping to avoid imbalanced disk utilization
 - Helps prevent wasted resources that impact cost effectiveness
 - Allows easy utilization of idle resources
 - Reduces wasted CPU cycles during jobs due to inefficient disk I/O
 - Prevents issues leading to inefficient tape I/O

Shift: Self-Healing Independent File Transfer (cont.)

NASA

- Used in production at NASA's Advanced Supercomputing Facility for over 3.5 years
 - User transfers across local/LAN/WAN
 - Disaster recovery backups to/from remote organizations
 - Rebalancing entire multi-PB Lustre file systems
 - etc.
- Facilitated transfers of over 14 PB in past year
 - 8 PB local transfers
 - 4 PB LAN transfers
 - 2 PB WAN transfers
- "I used to hate archiving data now I almost look for a reason to archive something" —Shift user

Shift Interface

> shiftc --create-tar /nobackup/user1/dataset1 archive1:dataset1.tar
Shift id is 36

Detaching process (use --status option to monitor progress)

> shiftc --status

id	state	dirs	files	file size	date	run	rate
		sums	attrs	'		'	
	+	t	tt	++		tt	
34	error	0/0	23121/23121	39.5TB/39.5TB	10/02	2d14h32m5s	175MB/s
		46222/46242	23111/23121	79TB/79TB	10:26		
35	done	1/1	5131/5131	303GB/303GB	10/05	1m35s	3.19GB/s
		10262/10262	5132/5132	605GB/605GB	12:28		
36	run	24/24	26656/26656	1.78TB/1.78TB	10/06	2h48m37s	176MB/s
		15463/53312	10/26684	1.02TB/3.56TB	12:11	1h47m55s	

Shift Components

- Command-line client
 - Performs file operations and reports results to manager
- Command-line manager
 - Invoked by clients to track operations and parcel out work

Outline of Presentation

- Introduction
- Transport tuning and selection
- Global resource management
- File system optimization
- Conclusions

Transport Tuning and Selection

- Shift includes built-in local/remote transports and checksum capabilities
 - Fully functional out of the box
 - Perl-based equivalents of cp, sftp, fish, m(d5)sum
- Shift calls higher performance tools when available
 - bbcp, bbftp, gridftp, mcp, rsync, msum
 - Knows how to construct command-lines and parse output
- Tune transports for optimal performance
- Select transports based on transfer characteristics

Transport Tuning

- TCP-based transports
 - bbcp, bbftp, gridftp
 - Choose TCP window size
- Transports with internal parallelism
 - TCP streams (bbcp, bbftp, gridftp) or threads (mcp, msum)
 - Choose appropriate level of parallelism
- SSH-based transports
 - fish, rsync, sftp-perl
 - Choose fastest SSH cipher and MAC algorithm

TCP Window Size Tuning

- TCP window is amount of data sender or receiver willing to buffer while waiting for acknowledgment
- Optimal value is bandwidth delay product (BDP)
 - bandwidth * round-trip time
- Constrained by configured operating system limits
 - e.g. Linux net.core.[wr]mem_max
 - Single stream only achieves bandwidth if limit at least BDP

TCP Window Size Tuning (cont.)

- Shift determines latency using icmp/echo/syn ping
- Shift guesses bandwidth based on network type and client hardware if not given via --bandwidth
 - Bandwidth difficult to compute a priori
- Chooses window size up to operating system limit

Transport Parallelism Tuning

- Number of streams in TCP-based transports
 - Overcome improperly configured TCP window maximums
 - Overcome improperly specified TCP window
 - Overcome interference by cross traffic
- Number of threads in mcp and msum
 - Take advantage of excess resource capacity on one host

Transport Parallelism Tuning (cont.)

- Shift chooses streams based on bandwidth available beyond operating system window limit
- A minimum value can be configured for LAN/WAN to help overcome cross traffic

Transport Parallelism Tuning (cont.)

- Threads can be centrally configured on the manager
- High thread counts can induce high load on shared resources
 - Intentionally set lower than optimal at NAS due to high load on archive front-ends

SSH Cipher and MAC Algorithm Tuning

- SSH-based transports use SSH pipe to communicate
 - Performance directly correlated to SSH performance
- SSH does not expose TCP window settings
 - HPN SSH patches can be used for better window handling
- Main SSH tuning parameters available
 - Encryption algorithm
 - Message authentication code (MAC) algorithm

SSH Cipher and MAC Algorithm Tuning (cont.)

- Shift allows preferred cipher/mac order to be centrally configured
- Availability checked on client host before transfer

Transport Selection

- Different transports have different strengths and weaknesses
- Supporting multiple transports provides opportunity to vary transport across each batch of files within transfer

Transport Selection (cont.)

- Using a single transport does not achieve maximum performance
- Shift's support of multiple transports allows it to use the optimum transport for each batch of files

Transport Selection (cont.)

 Traditionally remote transports also perform well for local transfers

Transport Selection (cont.)

- Shift has configurable small file thresholds
 - Preferred local/LAN/WAN transports above/below
- Transport chosen using avg. size of each batch

Outline of Presentation

- Introduction
- Transport tuning and selection
- Global resource management
- File system optimization
- Conclusions

Global Resource Management

- Transfer parallelization
 - The only way to maximize performance in HPC environments is to use multiple resources at once
- Global throttling
 - If everyone tries to run at the maximum rate possible, everyone loses
- Load balancing
 - Avoid resource exhaustion on individual hosts

Transfer Parallelization

- Single host may have excess capacity
 - Transport does not have its own parallelism
 - Single client cannot fully utilize host's resources
- Full HPC environment may have excess capacity
 - Single system bottlenecks
 - Aggregate resources of many hosts
- Two complementary forms of parallelization
 - Multiple clients running on a single host
 - One or more clients running on multiple hosts

Transfer Parallelization (cont.)

- Shift derives file system equivalency from mount information to determine parallelization candidates
- Shift can automatically parallelize all transfers using centrally configured clients/hosts values
- Can trivially run across allocated compute nodes
 - e.g. --host-file=\$PBS_NODEFILE

Global Throttling

- Support transfers at full speed when excess capacity exists
- Prevent resource exhaustion when systems are busy

- Shift supports throttling limits on CPU %, disk usage, I/O rate, and network rate
 - Limits can be global, per user, per host, per file system
- Transfers directed to sleep until average reaches (transfer's fair share of) user's fair share of limit

Load Balancing

- Single host resource limitations impact maximum transfer speed of all processes on that host
- Less loaded hosts have more resources available for new transfers

Load Balancing (cont.)

- Shift load balances during host parallelization
 - Picks least loaded hosts when spawning clients
- Shift load balances during remote transfers
 - Remote host switched to least loaded
 - Overlap prevented between parallel clients

Outline of Presentation

- Introduction
- Transport tuning and selection
- Global resource management
- File system optimization
- Conclusions

File System Optimization

- Different file systems have different idiosyncrasies
 - Can impact performance, stability, and operating cost
 - Not always directly visible to users
- Tape optimization
 - File extents impact tape write speed
 - Sequential retrieval results in inefficient tape movement
- Tar creation/extraction
 - Tape I/O is inefficient with small files
- Lustre striping
 - Too few stripes creates later I/O inefficiencies

Tape Optimization

- Tape-backed file systems have limited parallelism due to large slow-moving physical components
- Inefficient access by one user can have major impact on all others
 - Large number of file extents degrades write speed
 - Sequential file retrieval inhibits minimization of internal tape movement

Tape Optimization (cont.)

- Shift can be configured to preallocate files below a given sparsity
 - Minimize extents for most common regular files
 - Minimize disk usage for large sparse files

Tape Optimization (cont.)

- Files automatically retrieved from tape if offline when accessed
- May be accessed in different order than stored on tape

- Shift automatically initiates a retrieval of all source files on SGI DMF file systems
- Retrieval initiated again for files in each batch in case files pushed offline before being transferred

Tar Creation/Extraction

- Users prefer archiving data in original hierarchy
 - Each file accessed as needed
- Small files impact stability
 - Not migrated below certain size so consume limited disk
 - Tape I/O is inefficient
- Normally use tar files
 - Tar is <u>very</u> slow (100 MB/s)
 - Must retrieve to view contents
 - No assurance of integrity
 - Retrieve entire tar for one file
 - May not have quota to create

Tar Creation/Extraction (cont.)

Shift has built-in tar creation/extraction

- Uses high performance transports and parallelism
- Automatic creation of index files to see contents
- Integrity verification of every file added/extracted
- Automatic split of tar files at configurable size
- Direct creation/extraction over network without use of quota

Lustre Striping

- Striping must be set before a file is first written
- Higher stripe count
 - More I/O bandwidth available for large files
 - More balanced distribution of large files over OSTs
- Lower stripe count
 - Less contention during metadata operations
 - Less wasted space for small files
- Striping can only be changed by copying file

Lustre Striping (cont.)

- Shift automatically stripes files according to size
 - Increases write performance during parallel transfers
 - Increases read performance during later job access
 - Reduces wasted CPU cycles due to I/O
- Preserves non-default striping when applicable

Conclusion

- Shift is an automated transfer tool that encapsulates HPC best practices to achieve better performance while preserving stability of HPC environments
 - Centralized configuration in manager component allows policies to be changed globally across all clients
 - New best practices can be incorporated transparently without user in the loop
- Shift is open source and available for download
 - http://shiftc.sourceforge.net
- Contact info
 - paul.kolano@nasa.gov
- Questions?