Threads

Threads

- Overview
- Multithreading Models
- Threading Issues
- Operating System Examples

Objectives

- To introduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems
- To discuss the APIs for the Pthreads, Windows, and Java thread libraries
- To examine issues related to multithreaded programming
- To cover operating system support for threads in Windows and Linux

Motivation

- Most modern applications are multithreaded
- Threads run within application
- Multiple tasks with the application can be implemented by separate threads
 - Update display
 - Fetch data
 - Spell checking
 - Answer a network request
- Process creation is heavy-weight while thread creation is light-weight
- Can simplify code, increase efficiency
- Kernels are generally multithreaded

Multithreaded Server Architecture

Benefits

- Responsiveness may allow continued execution if part of process is blocked, especially important for user interfaces
- Resource Sharing threads share resources of process, easier than shared memory or message passing
- Economy cheaper than process creation, thread switching lower overhead than context switching
- Scalability process can take advantage of multiprocessor architectures

Multicore Programming

- Multicore or multiprocessor systems putting pressure on programmers, challenges include:
 - Dividing activities
 - Balance
 - Data splitting
 - Data dependency
 - Testing and debugging
- Parallelism implies a system can perform more than one task simultaneously
- Concurrency supports more than one task making progress
 - Single processor / core, scheduler providing concurrency

Multicore Programming (Cont.)

- Types of parallelism
 - Data parallelism distributes subsets of the same data across multiple cores, same operation on each
 - Task parallelism distributing threads across cores, each thread performing unique operation
- As # of threads grows, so does architectural support for threading
 - CPUs have cores as well as hardware threads
 - Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per core

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

Single and Multithreaded Processes

single-threaded process

multithreaded process

Figure 4.1 Threads and Processes [ANDE97]

User Threads and Kernel Threads

- User threads management done by user-level threads library
- Three primary thread libraries:
 - POSIX Pthreads
 - Windows threads
 - Java threads
- Kernel threads Supported by the Kernel
- Examples virtually all general purpose operating systems, including:
 - Windows
 - Solaris
 - Linux
 - Tru64 UNIX
 - Mac OS X

User-Level Threads (ULT)

- Thread management done by user-level threads library
- The kernel is not aware of the existence of threads.
- All thread management is done by the application by using a thread library.
- Thread switching does not require kernel mode privileges.
- Scheduling is application specific.

Implementing Threads in User Space

ULT Idea

- Thread management done by user-level threads library.
- Threads library contains code for:
 - creating and destroying threads.
 - passing messages and data between threads.
 - scheduling thread execution.
 - saving and restoring thread contexts.
- Three primary thread libraries:
 - POSIX Pthreads
 - Win32 threads
 - Java threads

POSIX Pthreads

- A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization.
- May be provided either as ULT or KLT.
- API specifies behavior of the thread library, implementation is up to development of the library.
- Common in UNIX operating systems (Solaris, Linux, Mac OS X).

Some of the Pthreads function calls

Thread call	Description
Pthread_create	Create a new thread
Pthread_exit	Terminate the calling thread
Pthread_join	Wait for a specific thread to exit
Pthread_yield	Release the CPU to let another thread run
Pthread_attr_init	Create and initialize a thread's attribute structure
Pthread_attr_destroy	Remove a thread's attribute structure

Kernel-Level Threads (KLT)

- All thread management is done by kernel.
- No thread library but an API to the kernel thread facility.
- Kernel maintains context information for the process and the threads.
- Switching between threads requires the kernel.
- Scheduling on a thread basis.

Implementing Threads in the Kernel

KLT Idea

- Threads supported by the Kernel.
- **Examples**:
 - Windows 2000/XP
 - OS/2
 - Linux
 - Solaris
 - Tru64 UNIX
 - Mac OS X

Linux Threads

- Linux refers to them as tasks rather than threads.
- Thread creation is done through clone() system call.
- clone() allows a child task to share the address space of the parent task (process).
- This sharing of the address space allows the cloned child task to behave much like a separate thread.

Hybrid ULT/KLT Approaches

- Thread creation done in the user space.
- Bulk of scheduling and synchronization of threads done in the user space.
- The programmer may adjust the number of KLTs.
- May combine the best of both approaches.
- Example is Solaris prior to version 9.

Hybrid Implementation

Multiple user threads on a kernel thread User space Kernel Kernel Kernel thread space

Multiplexing user-level threads onto kernel-level threads.

ULT, KLT and Combined Approaches

User-level thread

Multithreading Models

- Many-to-One
- One-to-One
- Many-to-Many
- Two level model

Relationship between Threads and Processes

Threads:Processes	Description	Example Systems
1:1	Each thread of execution is a unique process with its own address space and resources.	Traditional UNIX implementations
M:1	A process defines an address space and dynamic resource ownership. Multiple threads may be created and executed within that process.	Windows NT, Solaris, Linux, OS/2, OS/390, MACH
1:M	A thread may migrate from one process environment to another. This allows a thread to be easily moved among distinct systems.	Ra (Clouds), Emerald
M:N	Combines attributes of M:1 and 1:M cases.	TRIX

Many-to-One

- Many user-level threads mapped to single kernel thread
- One thread blocking causes all to block
- Multiple threads may not run in parallel on muticore system because only one may be in kernel at a time
- Few systems currently use this model
- Examples:
 - Solaris Green Threads
 - GNU Portable Threads

One-to-One

- Each user-level thread maps to kernel thread
- Creating a user-level thread creates a kernel thread
- More concurrency than many-to-one
- Number of threads per process sometimes restricted due to overhead
- Examples
 - Windows
 - Linux
 - Solaris 9 and later

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Solaris prior to version 9
- Windows with the ThreadFiber package

Two-level Model

- Similar to M:M, except that it allows a user thread to be
 bound to kernel thread
- Examples
 - IRIX
 - HP-UX
 - Tru64 UNIX
 - Solaris 8 and earlier

Thread Libraries

- Thread library provides programmer with API for creating and managing threads
- Two primary ways of implementing
 - Library entirely in user space
 - Kernel-level library supported by the OS

Threading Issues

- Semantics of fork() and exec() system calls
- Signal handling
 - Synchronous and asynchronous
- Thread cancellation of target thread
 - Asynchronous or deferred
- Thread-local storage
- Scheduler Activations

Semantics of fork() and exec()

- Does fork () duplicate only the calling thread or all threads?
 - Some UNIXes have two versions of fork
- exec() usually works as normal replace the running process including all threads

Signal Handling

- Signals are used in UNIX systems to notify a process that a particular event has occurred.
- A signal handler is used to process signals
 - 1. Signal is generated by particular event
 - 2. Signal is delivered to a process
 - 3. Signal is handled by one of two signal handlers:
 - default
 - user-defined
- Every signal has default handler that kernel runs when handling signal
 - User-defined signal handler can override default
 - For single-threaded, signal delivered to process

Signal Handling (Cont.)

- Where should a signal be delivered for multi-threaded?
 - Deliver the signal to the thread to which the signal applies
 - Deliver the signal to every thread in the process
 - Deliver the signal to certain threads in the process
 - Assign a specific thread to receive all signals for the process

Thread Cancellation

- Terminating a thread before it has finished
- Thread to be canceled is target thread
- Two general approaches:
 - Asynchronous cancellation terminates the target thread immediately
 - Deferred cancellation allows the target thread to periodically check if it should be cancelled
- Pthread code to create and cancel a thread:

```
pthread_t tid;

/* create the thread */
pthread_create(&tid, 0, worker, NULL);

...

/* cancel the thread */
pthread_cancel(tid);
```

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual cancellation depends on thread state

Mode	State	Type
Off	Disabled	_
Deferred	Enabled	Deferred
Asynchronous	Enabled	Asynchronous

- If thread has cancellation disabled, cancellation remains pending until thread enables it
- Default type is deferred
 - Cancellation only occurs when thread reaches cancellation point
 - | l.e. pthread_testcancel()
 - Then cleanup handler is invoked
- On Linux systems, thread cancellation is handled through signals

Thread-Local Storage

- Thread-local storage (TLS) allows each thread to have its own copy of data
- Useful when you do not have control over the thread creation process (i.e., when using a thread pool)
- Different from local variables
 - Local variables visible only during single function invocation
 - TLS visible across function invocations
- Similar to static data
 - TLS is unique to each thread

Scheduler Activations

- Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application
- Scheduler Activation is a mechanism that allows information to flow back and forth between the multithreading application libraries and the kernel.
- Scheduler activations provide upcalls a communication mechanism from the kernel to the upcall handler in the thread library
- Up-Call from Kernel Information about CPU availability, I/O done status, etc. is conveyed to the user level libraries.
- Library Informs Kernel User level libraries inform the kernel about thread creation/deletion.
- Typically use an intermediate data structure between user and kernel threads – lightweight process (LWP)
 - Appears to be a virtual processor on which process can schedule user thread to run
 - Each LWP attached to kernel thread
- This communication allows an application to maintain the correct number kernel threads

Role of Scheduler Activations

Avoiding Effects of Blocking

Kernel threads

Scheduler Activations

Resuming Blocked Thread

4: preempt

5: resume

Operating System Examples

- Windows Threads
- Linux Threads

Windows Threads

- Windows implements the Windows API primary API for Win 98, Win NT, Win 2000, Win XP, and Win 7
- Implements the one-to-one mapping, kernel-level
- Each thread contains
 - A thread id
 - Register set representing state of processor
 - Separate user and kernel stacks for when thread runs in user mode or kernel mode
 - Private data storage area used by run-time libraries and dynamic link libraries (DLLs)
- The register set, stacks, and private storage area are known as the context of the thread

Windows Threads (Cont.)

- The primary data structures of a thread include:
 - ETHREAD (executive thread block) includes pointer to process to which thread belongs and to KTHREAD, in kernel space
 - KTHREAD (kernel thread block) scheduling and synchronization info, kernel-mode stack, pointer to TEB, in kernel space
 - TEB (thread environment block) thread id, user-mode stack, thread-local storage, in user space

Windows Threads Data Structures

Linux Threads

- Linux refers to them as *tasks* rather than *threads*
- Thread creation is done through clone() system call
- clone() allows a child task to share the address space of the parent task (process)
 - Flags control behavior

flag	meaning	
CLONE_FS	File-system information is shared.	
CLONE_VM	The same memory space is shared.	
CLONE_SIGHAND	Signal handlers are shared.	
CLONE_FILES	The set of open files is shared.	

struct task_struct points to process data structures (shared or unique)

Summary – Fill sub topics

Overview

Multithreading Models

Threading Issues

Operating System Examples