Exponential Weights Algorithms for Online Learning

Yoav Freund

slides in

https://github.com/yoavfreund/2025-online-learning/blob/main/2.Hedge/talk2.handout.pdf

Exponential Weights Algorithms for Online Learning

Yoav Freund

- ► slides in https://github.com/yoavfreund/2025-online-learning/blob/main/2.Hedge/talk2.handout.pdf
- Paper: Freund, Schapire "A decision-theoretic generalization of on-line learning and an application to boosting"

Exponential Weights Algorithms for Online Learning

Yoav Freund

- ► slides in https://github.com/yoavfreund/2025-online-learning/blob/main/2.Hedge/talk2.handout.pdf
- ▶ Paper: Freund, Schapire "A decision-theoretic generalization of on-line learning and an application to boosting"
- ► In PLG: pages 12-25

Decision Theoretic Online learning Hedging vs. Halving Failure of Follow the leader

Decision Theoretic Online learning Hedging vs. Halving Failure of Follow the leader

Hedge(η)Algorithm

Decision Theoretic Online learning

Hedging vs. Halving Failure of Follow the leader

 $Hedge(\eta)$ Algorithm

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

Decision Theoretic Online learning

Hedging vs. Halving Failure of Follow the leader

 $Hedge(\eta)$ Algorithm

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

tuning η

Decision Theoretic Online learning

Hedging vs. Halving Failure of Follow the leader

$Hedge(\eta)$ Algorithm

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

tuning η

Lower Bounds

► AKA "Decision theoretic Online Learning" (DTOL)

- ► AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t · l_t

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t · l_t
- Goal: minimize total expected loss

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t · l_t
- ► Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome

- AKA "Decision theoretic Online Learning" (DTOL)
- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - ► Algorithm suffers **expected** loss $\mathbf{p}^t \cdot \ell_t$
- ► Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome
- Fits nicely in game theory

Like halving - we want to zoom into best action (expert).

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.

Hedging vs. Halving

- Like halving we want to zoom into best action (expert).
- ► Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.
- Modified Goal: minimize difference between expected total loss and minimal total loss of repeating one action.

$$\sum_{t=1}^{T} \mathbf{p}^{t} \cdot \ell_{t} - \min_{i} \left(\sum_{t=1}^{T} \ell_{i}^{t} \right)$$

Using hedge to generalize halving alg.

Suppose that there is no perfect expert.

- Suppose that there is no perfect expert.
- action i = use prediction of expert i

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - ► Experts make predictions $e_i^t \in \{0, 1\}$

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - \triangleright Experts make predictions $e_i^t \in \{0, 1\}$
 - Algorithm predicts 1 with probability $\sum_{i:e_i^t=1} p_i^t$.

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - \triangleright Experts make predictions $e_i^t \in \{0, 1\}$
 - Algorithm predicts 1 with probability $\sum_{i:e_i^t=1} p_i^t$.
 - outcome o_i^t is revealed. $\ell_i^t = 0$ if $e_i^t = o_i^t$, $\ell_i^t = 1$ otherwise.

expert1 loss expert1 cumul

expert2 loss expert2 cumul

FTL cumul

t=1

expert1 loss 0.5

expert1 cumul 0.5

expert2 loss 0.0

expert2 cumul 0.0

FTL cumul 0.0

$$t = 1 t = 2$$
expert1 loss 0.5 0.0
expert1 cumul 0.5 0.5
expert2 loss 0.0 1.0
expert2 cumul 0.0 1.0

expert1 loss expert1 cumul	t = 1 0.5 0.5	t = 2 0.0 0.5	<i>t</i> = 3 1.0 1.5
expert2 loss expert2 cumul	0.0	1.0 1.0	0.0 1.0
FTL cumul	0.0	1.0	2.0

Failure of Follow the leader

expert1 loss expert1 cumul	t = 1 0.5 0.5	t = 2 0.0 0.5	<i>t</i> = 3 1.0 1.5	t = 4 0.0 1.5
expert2 loss expert2 cumul	0.0	1.0 1.0	0.0 1.0	1.0 2.0
FTL cumul	0.0	1.0	2.0	3.0

Failure of Follow the leader

expert1 loss expert1 cumul	t = 1 0.5 0.5	t = 2 0.0 0.5	<i>t</i> = 3 1.0 1.5	t = 4 0.0 1.5	<i>t</i> = 5 1.0 2.5
expert2 loss expert2 cumul	0.0 0.0	1.0 1.0	0.0 1.0	1.0 2.0	0.0 2.0
FTL cumul	0.0	1.0	2.0	3.0	4.0

Failure of Follow the leader

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5	<i>t</i> = 6
expert1 loss	0.5	0.0	1.0	0.0	1.0	0.0
expert1 cumul	0.5	0.5	1.5	1.5	2.5	2.5
expert2 loss	0.0	1.0	0.0	1.0	0.0	1.0
expert2 cumul	0.0	1.0	1.0	2.0	2.0	3.0
FTL cumul	0.0	1.0	2.0	3.0	4.0	5.0

Failure of Follow the leader

						<i>t</i> = 6	
expert1 loss	0.5	0.0	1.0	0.0	1.0	0.0	1.0
expert1 cumul	0.5	0.5	1.5	1.5	2.5	2.5	3.5
expert2 loss	0.0	1.0	0.0	1.0	0.0	1.0	0.0
expert2 cumul	0.0	1.0	1.0	2.0	2.0	3.0	3.0
FTL cumul	0.0	1.0	2.0	3.0	4.0	5.0	6.0

Failure of Follow the leader

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$\mathbf{w}_i^t = \mathbf{w}_i^1 \mathbf{e}^{-\eta L_i^t}$$

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$\mathbf{w}_i^t = \mathbf{w}_i^1 \mathbf{e}^{-\eta L_i^t}$$

Note freedom to choose initial weight $(w_i^1) \sum_{i=1}^n w_i^1 = 1$.

▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t},$$

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t},$$

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- $ightharpoonup \eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = rac{w_i^t}{\sum_{i=1}^N w_i^t}, \;\; \mathbf{p}^t = rac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}$$

Giving an action high initial weight makes alg perform well if that action performs well.

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.
- As $\sum_{i=1}^{n} w_i^1 = 1$ increasing one weight implies decreasing some others.

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.
- As $\sum_{i=1}^{n} w_i^1 = 1$ increasing one weight implies decreasing some others.
- Plays a similar role to prior distribution in Bayesian algorithms.

Bound on the loss of $Hedge(\eta)$ Algorithm

Theorem (main theorem)

For any sequence of loss vectors ℓ_1, \dots, ℓ_T , and for any $i \in \{1, \dots, N\}$, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}.$$

Bound on the loss of $Hedge(\eta)$ Algorithm

Theorem (main theorem)

For any sequence of loss vectors ℓ_1, \dots, ℓ_T , and for any $i \in \{1, \dots, N\}$, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}.$$

Note effect of the limits $\eta \to 0$ and $\eta \to \infty$

Bound on the loss of $Hedge(\eta)$ Algorithm

Theorem (main theorem)

For any sequence of loss vectors ℓ_1, \dots, ℓ_T , and for any $i \in \{1, \dots, N\}$, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}.$$

- Note effect of the limits $\eta \to 0$ and $\eta \to \infty$
- Proof: by combining upper and lower bounds on $\sum_{i=1}^{N} w_i^{T+1}$

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$

Lemma (upper bound)

For any sequence of loss vectors ℓ_1, \ldots, ℓ_T we have

$$\ln\left(\sum_{i=1}^N w_i^{T+1}\right) \leq -(1-e^{-\eta})L_{\mathsf{Hedge}(\eta)}.$$

▶ If $a \ge 0$ then a' is convex.

- ▶ If $a \ge 0$ then a' is convex.
- For $r \in [0, 1]$, $a^r \le 1 (1 a)r$

- ▶ If $a \ge 0$ then a' is convex.
- For $r \in [0, 1]$, $a^r \le 1 (1 a)r$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}$$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}$$

$$\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)$$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}
\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \frac{\mathbf{w}^t}{\sum_{i=1}^{N} w_i^t} \cdot \ell_t \right)$$

Applying $\mathbf{a}^r \leq 1 - (1 - \mathbf{a})^r$ where $\mathbf{a} = \mathbf{e}^{-\eta}, \mathbf{r} = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}
\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \frac{\mathbf{w}^t}{\sum_{i=1}^{N} w_i^t} \cdot \ell_t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell_t \right)$$

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell_t\right)$$

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell_t\right)$$

▶ for
$$t = 1, ..., T$$

$$\sum_{i=1}^N w_i^{t+1} \leq \left(\sum_{i=1}^N w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell_t\right)$$

- ightharpoonup for $t = 1, \ldots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell_t)$$

$$\sum_{i=1}^N w_i^{t+1} \leq \left(\sum_{i=1}^N w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell_t\right)$$

- ightharpoonup for $t = 1, \ldots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell_t)$$

$$\sum_{i=1}^N w_i^{t+1} \leq \left(\sum_{i=1}^N w_i^t\right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell_t\right)$$

- ightharpoonup for $t = 1, \dots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell_t)$$

$$\leq \exp \left(-(1 - e^{-\eta}) \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell_t \right)$$

since
$$1+x \leq e^x$$
 for $x=-(1-e^{-\eta})$.

Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

For any
$$j = 1, \ldots, N$$
:

$$\sum_{i=1}^{N} w_i^{T+1} \ge w_j^{T+1} = w_j^{1} e^{-\eta L_j}$$

Combining Upper and Lower bounds

► Combining bounds on $\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right)$

$$\ln w_j^1 - \eta L_j \le \ln \sum_{i=1}^N w_i^{T+1} \le -(1 - e^{-\eta}) \sum_{t=1}^T \mathbf{p}^t \cdot \ell_t$$

Combining Upper and Lower bounds

► Combining bounds on $\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right)$

$$\ln w_j^1 - \eta L_j \le \ln \sum_{i=1}^N w_i^{T+1} \le -(1 - e^{-\eta}) \sum_{t=1}^T \mathbf{p}^t \cdot \ell_t$$

► Reversing signs, using $L_{\text{Hedge}(\eta)} = \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell_t$ and reorganizing we get

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}$$

How to Use Expert Advice

451

▶ Suppose $\min_i L_i \leq \tilde{L}$

- ► Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2\ln N}{\tilde{L}}}\right) pprox \sqrt{\frac{2\ln N}{\tilde{L}}}$$

- ▶ Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2\ln N}{\tilde{L}}}\right) \approx \sqrt{\frac{2\ln N}{\tilde{L}}}$$

▶ use uniform initial weights $\mathbf{w}^1 = \langle 1/N, \dots, 1/N \rangle$

- ► Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2\ln N}{\tilde{L}}}\right) \approx \sqrt{\frac{2\ln N}{\tilde{L}}}$$

- use uniform initial weights $\mathbf{w}^1 = \langle 1/N, \dots, 1/N \rangle$
- ▶ Then

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}} \leq \min_i L_i + \sqrt{2\tilde{L} \ln N} + \ln N$$

Exact tuning of η

Vilde(R)=R=in N

2.2 How to choose β

So far, we have analyzed $\mathbf{Hedge}(\beta)$ for a given choice of β , and we have proved reasonable bounds for any choice of β . In practice, we will often want to choose β so as to maximally exploit any prior knowledge we may have about the specific problem at hand.

The following lemma will be helpful for choosing β using the bounds derived above.

Lemma 4 Suppose $0 \le L \le \tilde{L}$ and $0 < R \le \tilde{R}$. Let $\beta = g(\tilde{L}/\tilde{R})$ where $g(z) = 1/(1 + \sqrt{2/z})$. Then

$$\frac{-L\ln\beta + R}{1 - \beta} \le L + \sqrt{2\tilde{L}\tilde{R}} + R.$$

Proof: (Sketch) It can be shown that $-\ln \beta \le (1-\beta^2)/(2\beta)$ for $\beta \in (0,1]$. Applying this approximation and the given choice of β yields the result.

Lemma 4 can be applied to any of the bounds above since all of these bounds have the form given in the lemma. For example, suppose we have N strategies, and we also know a prior bound \tilde{L} on the loss of the best strategy. Then, combining Equation (9) and Lemma 4, we have

$$L_{\mathbf{Hedge}(\beta)} \le \min_{i} L_i + \sqrt{2\tilde{L} \ln N} + \ln N$$
 (11)

Tuning η as a function of T

▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

Tuning η as a function of T

▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

per iteration we get:

$$\frac{L_{\mathsf{Hedge}(\eta)}}{T} \leq \min_i \frac{L_i}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$

How good is this bound?

Very good! There is a closely matching lower bound!

How good is this bound?

- Very good! There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

$$L_{S} - \min_{i} L_{i} \geq (1 - o(1))\sqrt{2T \ln N}$$

How good is this bound?

- Very good! There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

$$L_{S} - \min_{i} L_{i} \geq (1 - o(1))\sqrt{2T \ln N}$$

The adversarial strategy is random, extremely simple, and does not depend on the hedging strategy!

Adversary sets each loss ℓ_i^t indepedently at random to 0 or 1 with equal probabilities (1/2, 1/2).

- Adversary sets each loss ℓ_i^t indepedently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_S \approx T/2$.

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_S \approx T/2$.
- ► On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_{s} \approx T/2$.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$
- ► The difference L_S min_i L_i is due to unlearnable random fluctuations!

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_{s} \approx T/2$.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$
- ► The difference L_S min_i L_i is due to unlearnable random fluctuations!
- ▶ Detailed proof quite involved. See section 3.7 in PLG.

Summary

• Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq rac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

Summary

▶ Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq rac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

► Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

Summary

• Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq rac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

► Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

► A trivial random data, in which there is nothing to be learned forces any algorithm to suffer this total loss

201101 2001100

Some loose threads

Total Loss of best action usually scales linearly with time T, but we need to know the horizon T ahead of time to choose η correctly.

Some loose threads

- Total Loss of best action usually scales linearly with time T, but we need to know the horizon T ahead of time to choose η correctly.
- ▶ T is tight only when the loss of experts at each iteration is either 0 or 1. If the loss of the best expert is o(T) then we would like to have a tighter bound.

Some loose threads

- Total Loss of best action usually scales linearly with time T, but we need to know the horizon T ahead of time to choose η correctly.
- ▶ T is tight only when the loss of experts at each iteration is either 0 or 1. If the loss of the best expert is o(T) then we would like to have a tighter bound.
- Observing only the loss of chosen action the multi-armed bandit problem. Will get to that later in the course.

▶ Due thursday January 16, 2025

- ▶ Due thursday January 16, 2025
- Upload to gradescope, entry code: EV8RWE

- ► Due thursday January 16, 2025
- Upload to gradescope, entry code: EV8RWE
- From PLG.

- ▶ Due thursday January 16, 2025
- Upload to gradescope, entry code: EV8RWE
- From PLG.