Éléments de Correction TD1

Exercice 1.

1. Spline d'interpolation des 3 points (0,0), (1,1), (2,0)

Calcul des
$$\sigma_i''$$
: $\sigma_0'' = 0$; $\sigma_2'' = 0$
 $4\sigma_1'' = 6(\sigma_2 - 2\sigma_1 + \sigma_0) = -12 \implies \sigma_1'' = -3$

Calcul des $\sigma_i^{\prime\prime\prime}$: $\sigma_0^{\prime\prime\prime} = -3$; $\sigma_1^{\prime\prime\prime} = 3$

Calcul des
$$\sigma_i'$$
: $\sigma_0' = 1 + \frac{3}{6} = 1, 5$; $\sigma_1' = -1 + 1 = 0$; $\sigma_2' = \sigma_1' + \sigma_1'' + \frac{\sigma_1'''}{2} = -1.5$

 $\begin{cases} \forall x \in] -\infty ..0] \;, & \sigma(x) = 1,5 \, x \\ \forall x \in [0 \,..1] \;, & \sigma(x) = 1,5 \, x - \frac{x^3}{2} \\ \forall x \in [1 \,..2] \;, & \sigma(x) = 1 - \frac{3(x-1)^2}{2} + \frac{(x-1)^3}{2} \\ \forall x \in [2 \,..+\infty[\;, \quad \sigma(x) = -\frac{3}{2}(x-2) \end{cases}$ On obtient donc :

 $\sigma,\,\sigma',\,\sigma'',\,\sigma'''$ $(\sigma:$ spline d'interpolation des 3 points) (échelle moitié pour $\sigma''')$

On a $\forall x \in [0..1]$, $\sigma''(x) = -3x$, et donc $\int_0^1 (\sigma''(x))^2 dx = \int_0^1 9x^2 dx = 3$. Comme par symétrie, on a $\int_0^2 (\sigma''(x))^2 dx = 2 \int_0^1 (\sigma''(x))^2 dx$, on a clairement $\int_0^2 (\sigma''(x))^2 dx = 6$, valeur effectivement inférieure à toutes les valeurs trouvées au § 3.5. On constate aussi que cette valeur est rès proche de la valeur obtenue pour la fonction $\sin(\frac{\pi}{r}/2)$. Comparez ces deux fonctions (valeurs des dérivées premières et secondes aux points d'interpolation, graphe comportant les deux fonctions sous python (ou matlab)).

Exercice 3.

1.

 $\sigma-s$ est clairement une fonction polynomiale de degré au plus 3 par morceaux, de nœuds $(x_i)_{i=0:n}$, \mathcal{C}^2 , de dérivée seconde nulle en x_0 et en x_n , comme différence de deux fonctions ayant ces propriétés. $\sigma-s$ est donc une spline cubique naturelle de nœuds $(x_i)_{i=0:n}$. De plus, on a évidemment $(\sigma-s)(x_i)=\sigma(x_i)-s(x_i)=\sigma_i-s_i$, de sorte que $\sigma-s$ interpole les points $(x_i,\sigma_i-s_i)_{i=0:n}$. De par l'unicité de la spline cubique naturelle d'interpolation de n points d'abscisses distincts, $\sigma-s$ est la spline cubique naturelle d'interpolation $(x_i,\sigma_i-s_i)_{i=0:n}$.

2. En appliquant le théorème ci-dessus et sachant que sigma(3)=-3/2. En effet, sigma est aussi la spline cubique naturelle d'interpolation de (0,0), (1,0), (2,0), et (3,-3/2).