$$= A \oplus (A \oplus B)$$
 (教材例 1.7(2))
$$= A \oplus A$$
 (A \oplus B = A)
$$= \emptyset$$
 (教材例 1.7(5))

(4) 答: $A \cap B = A \cup B$ 当且仅当 A = B。

证明: 充分性。若 A = B,则:

$$A \cap B = A \cap A$$
 $(A = B)$ $= A$ $($ \mathbb{R} 等律 $)$ $= A \cup A$ $($ \mathbb{R} 等律 $)$ $(A = B)$

必要性。若 $A \cap B = A \cup B$,则:

$A = A \cup (A \cap B)$	(吸收律)
$=A\cup (A\cup B)$	$(A \cap B = A \cup B)$
$=(A\cup A)\cup B$	(结合律)
$=A\cup B$	(幂等律)
$=A\cup(B\cup B)$	(幂等律)
$=(A\cup B)\cup B$	(结合律)
$=(A\cap B)\cup B$	$(A \cap B = A \cup B)$
=B	(吸收律)

1.22

- (1) 即为引理 1.4 和引理 1.5。
- (2) 答: 不一定。令 $A = \{a\}, C = \{b\}, B = D = \{a,b\}, 则有 A \subset B \land C \subset D$,但 $A \cup B \not\subset C \cup D$ 。 又令 $A = C = \{a,b\}, B = \{a,b,c\}, D = \{a,b,d\}$,则有 $A \subset B \land C \subset D$,但 $A \cap B \not\subset C \cap D$

1.23

证明: 若不然,则存在 $x \in B \land x \notin C$ 或 $x \notin B \land x \in C$ 。不妨设 $x \in B \land x \notin C$,此时,若 $x \in A$ 则有 $x \notin A \oplus B$ 和 $x \in A \oplus C$,这与前提: $A \oplus B = A \oplus C$ 矛盾。若 $x \notin A$ 则有 $x \in A \oplus B$ 和 $x \notin A \oplus C$,这同样与前提: $A \oplus B = A \oplus C$ 矛盾。

对
$$x \notin B \land x \in C$$
 的情况亦有类似讨论。

1.24 先证: (A-B)-C=(A-C)-B。证明:

$$(A-B)-C = (A \cap \sim B) \cap \sim C$$
 (补交转换律)
= $A \cap (\sim B \cap \sim C)$ (结合律)
= $A \cap (\sim C \cap \sim B)$ (交换律)
= $((A \cap \sim C) \cap \sim B)$ (结合律)
= $(A-C)-B$ (补交转换律)