Analysis of Algorithms

Homework 6 - P vs NP

Abraham Murciano & Elad Harizy

January 18, 2021

Question 1

Part A

We are to prove that if the languages \mathcal{L}_1 and \mathcal{L}_2 are in P, meaning that there automata that can tell us whether a word is in the language or not in polynomial time (O(n * k)) for some constant k, then $\mathcal{L}_1 \cup \mathcal{L}_2 \in P$.

Since \mathcal{L}_1 and \mathcal{L}_2 can be decided in polynomial time, their union can also, as explained in Part B.

Part B

We are told that the languages \mathcal{L}_1 , \mathcal{L}_2 can be decided in polynomial time using algorithms A_1 , A_2 respectively, with running times $O(n^{k_1})$, $O(n^{k_2})$. To decide their union, one would have to decide each one individually, and decide their union based on their logical disjunction. Thus the complexity of deciding their union is $O(n^{k_1} + n^{k_2})$, or $O(n^{\max(k_1, k_2)})$, which is polynomial.

Question 2

Part A

We must prove that if $\mathcal{L} \in P$ then $\forall k \in \mathbb{N}, \mathcal{L}^k \in P$. Meaning that for any constant k, we can decide the concatenation of the language to itself k times, in polynomial time.

We will use a lemma which states that if $\mathcal{L}_1, \mathcal{L}_2 \in P$, then $\mathcal{L}_1\mathcal{L}_2 \in P$. (Proof omitted.)

We will prove this by induction.

For
$$k = 0, \mathcal{L}^k = \mathcal{L}^0 = \{\varepsilon\} \in P$$
.

Assume that for $k = n, \mathcal{L}^k = \mathcal{L}^n \in P$.

Then for k = n + 1, $\mathcal{L}^k = \mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$. However we know that both \wedge and \mathcal{L}^n are in P, so using our lemma, their concatenation, \mathcal{L}^{n+1} must be in P.

Part B

Given that algorithm A_1 decides \mathcal{L} in $O(n^c)$ time, we are to find the complexity of an algorithm A_2 which decides \mathcal{L}^k for some constant k.

To decide \mathcal{L}^2 , the complexity would be $O((n^c)^2)$, or $O(n^{2c})$. This is because after each character, we must check if the remainder of the input is also in \mathcal{L} . So if we repeat this process k times, the algorithm results in a complexity of $O(n^{kc})$.

Part C

Assuming $\mathcal{L} \in P$, and is decidable in $O(n^c)$, we are to suggest an algorithm that decides \mathcal{L}^* in polynomial time. We will use a dynamic programming approach to solve this. If $w = w_1 w_2 \dots w_n$ is a word, we shall denote by $w_{i,j}$ (when $i \leq j$) the substring of w which is $w_i w_{i+1} \dots w_j$.

We can decide that $w \in \mathcal{L}^*$ if and only if at least one of the following hold true.

- $w = \varepsilon$
- $w \in \mathcal{L}$
- $\exists uv = w$, such that $u \in \mathcal{L}^* \land v \in \mathcal{L}^*$

Using this we can compose the following algorithm.

```
function KLEENEINP(\mathcal{L}, w)

if w = \varepsilon then return True

if w \in \mathcal{L} then return True

for i from 1 to |w| do

if KLEENEINP(\mathcal{L}, w_{1,i}) \land KLEENEINP(\mathcal{L}, w_{i+1,|w|}) then

return True

return False
```

Assuming all results are stored in a table and are only computed once, there are $\frac{n^2}{2}$ different substrings $w_{i,j}$ for which the function is called. And each of those calls it checks if the substring it received is in \mathcal{L} , which takes $O(n^c)$ time. Thus the time complexity of this algorithm is at most $O(n^2 \cdot n^c) = O(n^{2c})$.

Question 3

Part A

We are to prove the transitivity of the relation \leq_p , which is the relation between two languages which indicates if the first language can be reduced to the second language in polynomial time.

If $\mathcal{L}_1 \leq_p \mathcal{L}_2$ then there exists some function $f: \Sigma^* \to \Sigma^*$ which can be computed in polynomial time such that $w \in \mathcal{L}_1 \Leftrightarrow f(w) \in \mathcal{L}_2$.

Similarly, if $\mathcal{L}_2 \leq_p \mathcal{L}_3$ then there exists some function $g: \Sigma^* \to \Sigma^*$ which can be computed in polynomial time such that $f(w) \in \mathcal{L}_2 \Leftrightarrow g(f(w)) \in \mathcal{L}_3$.

Thus there exists a function $h = g \circ f$ such that $w \in \mathcal{L}_1 \Leftrightarrow h(w) \in \mathcal{L}_3$. And since f and g are both polynomial, h, which takes the sum of the run times of f and g to run (as explained in part B), will also be polynomial. Therefore $\mathcal{L}_1 \leq_p \mathcal{L}_3$, so \leq_p is transitive.

Part B

We seek the running time of a reduction from \mathcal{L}_1 to \mathcal{L}_3 given that there is a reduction f from \mathcal{L}_1 to \mathcal{L}_2 that takes $O(n^a)$ time and a reduction g from \mathcal{L}_2 to \mathcal{L}_3 that takes $O(n^b)$ time.

In order to reduce from \mathcal{L}_1 to \mathcal{L}_3 , we must first for an input string w, f(w). Then we apply g to the output of the first reduction; in other words we calculate g(f(w)).

This involves applying each of the reductions f and g once. So the running time would be $O(n^a + n^b) = O(n^{\max(a,b)})$, which is polynomial.

Question 4

We are to prove or refute each of the following propositions.

- a. If $\mathcal{L}_1, \mathcal{L}_2 \in NPC$, then $\mathcal{L}_1 \leq_p \mathcal{L}_2$ and $\mathcal{L}_2 \leq_p \mathcal{L}_1$. This is true by definition of NP-complete. Without loss of generality, if $\mathcal{L}_1 \in NPC$ then $\forall \mathcal{L} \in NP, \mathcal{L} \leq_p \mathcal{L}_1$. And since \mathcal{L}_2 is also in NPC, $\mathcal{L}_2 \in NP$, so $\mathcal{L}_2 \leq_p \mathcal{L}_1$.
- b. If $\mathcal{L}_1, \mathcal{L}_2 \in P$, then $\mathcal{L}_1 \leq_p \mathcal{L}_2$ and $\mathcal{L}_2 \leq_p \mathcal{L}_1$.

This is false, and can be shown to be as such by a counter example. Suppose $\mathcal{L}_2 = \phi$. Choose any $w \in \mathcal{L}_1$. It cannot be true for any $f : \Sigma^* \to \Sigma^*$ that $f(w) \in \mathcal{L}_2$, since \mathcal{L}_2 is empty. Thus there cannot be any language that reduces to \mathcal{L}_2 .

c. If $\mathcal{L}_1 \in NP$ and \mathcal{L}_2 is NP-hard, then $\mathcal{L}_2 \leq_p \mathcal{L}_1$.

This proposition must be false. Since $\mathcal{L}_1 \in NP$, there must be a polynomial algorithm which given a solution, verifies that it is correct. So if $\mathcal{L}_2 \leq_p \mathcal{L}_1$, then in polynomial time we can convert a solution to the problem represented by \mathcal{L}_2 to an solution to the problem represented by \mathcal{L}_1 . Then we can verify that in polynomial time, and if it is verified for \mathcal{L}_1 , then the original solution would be verified for \mathcal{L}_2 , so $\mathcal{L}_2 \in NP$, so it cannot be NP-hard.

d. If $\mathcal{L} \in NP$, then $\overline{\mathcal{L}} \leq_p$ Tautology (where Tautology is the problem of determining whether a given Boolean formula is a tautology, which is co-NP-complete).

By definition of co-NP, if $\mathcal{L} \in NP$, then $\overline{\mathcal{L}} \in \text{co-}NP$. And since Tautology is co-NP-complete, every language in co-NP must be reducible to it. So $\overline{\mathcal{L}} \leq_p$ Tautology.

e. If \mathcal{L}_1 is NP-hard and $\mathcal{L}_2 \in NP$, then $\mathcal{L}_1 \cap \mathcal{L}_2 \in NP$.

We will disprove this claim by a counter-example. Suppose $\mathcal{L}_2 = \Sigma^*$. Therefore $\mathcal{L}_1 \cap \mathcal{L}_2 = \mathcal{L}_1 \in \mathit{NP}$. This contradicts the fact that \mathcal{L}_1 is NP -hard. So $\mathcal{L}_1 \cap \mathcal{L}_2 \notin \mathit{NP}$.