Tema colectivă 5

Fie A, I multimi (Bi)ie I o familie de multimi

Demonstrație:

$$=)(a,b) \in (A \times Bi_{k}) \subseteq U(A \times Bi) \bigcirc$$

=)
$$(a,b) \in A \times (UBi)$$
 ②
$$i \in I$$

$$0 + 0 =) A \times (UBi) = U (A \times Bi)$$

$$i \in I$$

* cas special
$$I = \emptyset$$

U $Bi = \emptyset = A \times (UBi) = \emptyset / = A \times (UBi) = U (A \times Bi)$

ie \emptyset

U $(A \times Bi) = \emptyset \Rightarrow$

if \emptyset

•
$$(UBi) \times A = U(Bi \times A)$$

"
$$\underline{c}$$
"
 \underline{c} "
 \underline{c} "
 \underline{c} "
 \underline{c} "
 \underline{c}
 \underline{d}
 \underline{c}
 \underline{d}
 $\underline{$

$$(U + (U + Bi) \times A = U (Bi \times A)$$

Usi =
$$\phi$$
 => $(UBi) \times A = \phi$ | => $(UBi) \times A = U(Bi \times A)$.
 $U \in \phi$ $(Bi \times A) = \phi$ $(UBi) \times A = U(Bi \times A)$.

2).
$$A \times (A B c) = A (A \times B c)$$
 $i \in I$

"
$$C$$
" $(a,b) \in A \times (n Bi) z =) \int_{i \in I} a \in A$
 $b \in n Bi = b \in Bi, \forall i \in I$
 $i \in I$

"2" $(a,b) \in \bigcap (A \times Bi) (=) (a,b) \in A \times Bi, \forall * i \in I <=) (\forall i \in I) (a \in A \land i)$ $B \in Bi) (=) a \in A \land i (\forall i \in I) (b \in Bi) (=) a \in A \land ib \in \bigcap Bi (=) (a,b) \in A \times (\bigcap Bi) (i)$ $C = A \times (\bigcap Bi) (ii)$

$$(\hat{U} + (\hat{W} =) A \times (\bigcap_{i \in I} Bc) = \bigcap_{i \in I} (A \times Bc)$$

* us special
$$I = \emptyset$$
 $A \times (\Lambda Bi) = \emptyset$
 $A \times (\Lambda$

•
$$(\bigcap_{i \in I} B_c) \times A = \bigcap_{i \in I} (B_i \times A)$$

"=" (A,b) = (ABi) xA ==) |a = ABi = 1 = Bi + i = I ==)

(b = A

 $c=)(a,b) \in Bi \times A, \forall c \in I \leftarrow (a,b) \in \bigcap_{i \in I} (Bi \times A)$

"2" $(a,b) \in \mathcal{D}(B(xA) \angle =) (a,b) \in B(xA), \forall i \in I \angle =) (\forall i \in I) (a \in Bi \Rightarrow i \in I)$ beA) <=> (+ieI)(aeBi) or beA <=> a ∈ N Bi or b ∈ A <=>(a,b)∈(nBi)A

A WE splead
$$L=\emptyset$$

$$\bigcap_{i \in \emptyset} Bi = \emptyset = \emptyset \quad (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$

$$\bigcap_{i \in \emptyset} (\bigcap_{i \in \emptyset} Bi) \times A = \emptyset$$