NOAO Observing Proposal

Date: May 14, 2019

Standard proposal

Panel: For office use.
Category: Star Clusters

Star and Planet Formation in a High-Radiation Environment

Abstract of Scientific Justification (will be made publicly available for accepted proposals):

We are studying the effects of stellar environment on protoplanetary disk evolution, with implications for planet formation theory. Our case study of one young cluster near cometary globule CG 30 suggests the Gum Nebula's high-radiation environment is eroding protoplanetary disks early; the fraction of stars with accreting disks is significantly less than the fractions in coeval, more quiescent star-forming regions (e.g. Taurus). We will examine 7 newly discovered clusters inside the Gum Nebula, all <450 pc away, to see if they also show evidence of early disk erosion. We can use CHIRON and Goodman to confirm stars' cluster membership using radial velocities and Li I 6708 signatures of youth, check directly for disk presence using ${\rm H}\alpha$ emission from accretion, and check indirectly for disk presence using stellar rotation speeds > 30 km s⁻¹. This study will additionally map stellar populations within the Gum Nebula and perhaps shed light on the nebula's as-yet mysterious origin.

Summary of observing runs requested for this project

Run	Telescope	Instrument	No. Nights	Moon	Optimal months	Accept. months
1	CT-1.5m-SVC	CHIRON	7.7	bright	Dec - Jan	Nov - Jan
2	SOAR	Goodman	6.9	bright	Dec - Jan	Nov - Jan
3						
4						
5						
6						

Scheduling constraints and non-usable dates (up to six lines).

We kindly request that if this proposal and the proposal by co-investigator Azmain Nisak titled "Confirmation of New Candidate Members in Young Open Clusters IC 2602 and IC 2391" are awarded Goodman time, that the runs be scheduled sequentially so that we can travel and observe together (we are both at the same institution).

NOAO Proposal Page 2 This box blank.

Investigators List the name, status, and current affiliation for all investigators. The status code of "P" should be used for all investigators with a Ph.D. or equivalent degree. For graduate students, use "T" if this proposal is a significant part of their thesis project, otherwise use "G".

PI: Alexandra Yep Status: T Affil.: Georgia State University

Physics and Astronomy, 25 Park Pl, Atlanta, GA 30303

Email: ayep@astro.gsu.edu Phone: 818-939-2313 FAX: _____

CoI: Russel White Status: P Affil.: Georgia State University CoI: Azmain Nisak Status: G Affil.: Georgia State University

Scientific Justification Be sure to include overall significance to astronomy. For standard proposals limit text to one page with figures, captions and references on no more than two additional pages.

Planets do not form in a vacuum. They aggregate in the protoplanetary disks of young stars. Stars do not form in a vacuum either. They compact inside clouds of gas and dust, often in the company of other stars (Lada & Lada 2003). Does such an environment affect star formation, and ultimately planet formation? As 90% of stars form in the company of other stars, including massive bright ones, it is important we understand their effects on each other.

We are studying young stars in the little-known Gum Nebula (Gum 1952), where hot O-type stars shine so fiercely they evaporate dense cloud cores into comet-like shapes. Near and even inside these so-called cometary globules, several stellar clusters have formed (Kim et al. 2005; Yep & White 2019, under review). Our case study of one young cluster near cometary globule CG 30 suggests the Gum Nebula's high-radiation environment is eroding protoplanetary disks early; the cluster's fraction of stars with accretion disks is significantly less than the fractions in coeval, more quiescent star-forming regions (e.g. Taurus) (Mohanty et al. 2005). Such disk dispersal could limit time available for planet formation.

To investigate this phenomenon more completely, we need a larger sample. Implementing a simple Python code we developed that visualizes Gaia DR2 proper motions and distances, we have discovered 7 other star clusters inside the Gum Nebula, each with between 15 and 347 candidate members. The fact that these clusters <450 pc away have heretofore evaded attention attests to how under-studied the Gum Nebula is.

Here we propose to obtain high-dispersion spectra of the complete sample of candidate cluster members brighter than V=14 with CHIRON and modest-dispersion spectra of the single-star sample 14 < V < 16 with Goodman. With these spectra we can measure spectral types, youth-indicating Li $\lambda 6708$ equivalent widths, and radial velocities to confirm cluster membership and probe the overall dynamics (expanding, contracting, or neither) of the Gum Nebula. We will then explore stars' disk properties directly with H α emission and continuum excess emission from accretion processes in the 5 youngest clusters (near CG 4, 3, 14, 30, and 22, see Fig. 1), and indirectly with stellar rotation speeds in the 3 older clusters (near CG 1, CG 17, and GDC 1). That is, because a protoplanetary disk slows a star's rotation more effectively than mere stellar winds, a star whose disk is dispersed early will theoretically retain a relatively fast rotation speed for its age, for as long as a few 100 Myr (Bouvier et al. 2014).

In summary, low accretion disk fractions and relatively fast rotation speeds may indicate early disk dispersal. We will elucidate the origin of the Gum Nebula and ascertain whether a high-radiation environment disrupts protoplanetary disks early, shortening their time available for forming planets and possibly leading to constraints on planet formation theory.

This work is done in conjunction with Azmain Nisak's study of the young clusters IC 2602 and IC 2391. We are both using CHIRON and Goodman to gather spectra of young and adolescent stars and are building a catalogue of CHIRON and Goodman spectral standards for public use.

References

Bouvier, J., S. P. Matt, S. Mohanty, et al. 2014, arXiv, 1309.7851v1 Gum, C. S. 1952, Observatory, 72, 151 Lada, J. C., & E. A. Lada. 2003, ARA&A, 41, 57 Kim, J. S., F. M. Walter, & S. J. Wolk. 2005, ApJ, 129, 1564 Mohanty, S., R. Jayawardhana, & G. Basri. 2005, ApJ, 626, 498 Yep, A. C., & R. J. White. 2019, ApJ, under review

Figure 1: Plotted are uncorrected Gaia DR2 color-magnitude diagrams of CG 30 and the 7 newly identified clusters in the Gum Nebula. Gold star symbols represent stars we have already observed with CHIRON. Magenta circles and blue diamonds represent unobserved single and binary stars, respectively, bright enough to observe with CHIRON. Salmon squares and sky blue triangles are unobserved single and binary stars, respectively, that can be observed with Goodman. Black dots are the remaining dimmer stars, possibly observable with Goodman but not yet considered in this proposal. The 4 Myr (dashed) and 1 Gyr (solid) isochrones are from Padova.

Figure 2: Shown are normalized $H\alpha$ line profiles vs. velocity. A broad emission line is associated with accretion from a protoplanetary disk (left, classical T Tauri Star). A thin emission line indicates possible chromospheric activity but no gaseous disk and no accretion (middle, weak-line T Tauri star). Absorption means no gaseous disk and no accretion (right, adolescent or main sequence star).

Experimental Design Describe your overall observational program. How will these observations contribute toward the accomplishment of the goals outlined in the science justification? If you've requested long-term status, justify why this is necessary for successful completion of the science. (limit text to one page)

All 8 clusters are in the Southern hemisphere and under 450 pc away, well suited to CHIRON and Goodman's location and aperture size. The wavelength ranges $\sim 4500-8500$ Å encompass atomic lines for judging spectral type and continuum excess, Li I $\lambda 6708$ for youth, H α for accretion, and the telluric A-band at 7600-7630 Å for calibration of the wavelength solution. CHIRON's resolving power of $R \approx 25,000$ and Goodman's $R \approx 10,000$ allow for a velocity resolution of 12 km s⁻¹ for brighter stars (V < 14) and 30 km s⁻¹ for dimmer stars, enough to obtain cross-correlation-derived radial and rotational velocity precisions of a few km s⁻¹. This is sufficient for evaluating cluster membership, average cluster motions, and rapid rotation (especially rapid rotation >30 km s⁻¹).

To confirm the success of our cluster member selection criteria, we secured a small allotment of CHIRON time through GSU's SMARTs involvement. This was used to observe the brightest subset in 3 clusters, focusing on A stars at the turn-off, giants, and a handful of F and G stars. Here we propose for a more complete assessment of the solar mass population. We will gather spectra of all 95 remaining single stars and ideally all 78 remaining binary stars within CHIRON's brightness capability (down to V = 14, 15 for the small distant cluster CG 4), and Goodman spectra of ideally all 93 single stars 14 < V < 16 in all 5 young clusters (near CG 4, 3, 14, 30, and 22).

Obtaining all stars V < 14 with CHIRON and all single young stars with 14 < V < 16 with Goodman will furnish us with a marvelously complete magnitude-limited census of Gum Nebula cluster members. If time does not allow for this, however, we will prioritize single stars with CHIRON, and CG 4, 14, 30, and 22 stars with Goodman.

Proprietary Period: 18 months

Use of Other Facilities or Resources (1) Describe how the proposed observations complement data from non-NOAO facilities. For each of these other facilities, indicate the nature of the observations (yours or those of others), and describe the importance of the observations proposed here in the context of the entire program. (2) Do you currently have a grant that would provide resources to support the data processing, analysis, and publication of the observations proposed here?"

We will buttress our current spectroscopic study of disk properties with archival infrared photometry from 2MASS, WISE, and Spitzer, which can measure dust-caused infrared excess in young as well as more evolved disks. This infrared excess data is especially important for stars in the 3 older clusters in our sample (near CG 1, CG 17, and GDC 1), whose stars are likely no longer emitting in $H\alpha$. We will gather infrared data on stars both young and old, all 946 if available.

Light curves from TESS could potentially provide direct stellar rotation period measurements in support of our spectroscopic measurements of stellar rotation speeds. As mentioned, relatively fast stellar rotation speeds, or short periods, could be associated with early loss of circumstellar disks.

Distances and proper motions from Gaia DR2 have tremendously furthered this project. Adding spectroscopically determined radial velocities will enable us, through average cluster motions, to track the dynamics of the mysterious Gum Nebula.

We do not currently have a grant dedicated to this thesis project but have applied to NASA's FINESST grant and Sigma Xi's Grants-In-Aid of Research.

Previous Use of NOAO Facilities List allocations of telescope time on facilities available through NOAO to the PI during the last 2 years for regular proposals, and at any time in the past for survey proposals (including participation of the PI as a Co-I on previous NOAO surveys), together with the current status of the data (cite publications where appropriate). Mark with an asterisk those allocations of time related to the current proposal. Please include original proposal semesters and ID numbers when available.

40 hr of CHIRON time* through the SMARTS Consortium, of which Georgia State University is a member. Spectra are reduced and prepared for stellar analysis. We are currently creating a normalization prescription that is optimized for cross-correlation analyses. We plan to publish initial results, including the discovery of the 7 new clusters, this fall.

Observing Run Details for Run 1: CT-1.5m-SVC/CHIRON

Technical Description Describe the observations to be made during this observing run. Justify the specific telescope, the number of nights, the instrument, and the lunar phase. List objects, coordinates, and magnitudes (or surface brightness, if appropriate) in the Target Tables section below (required for queue and Gemini runs).

Continuing our current setup carried out on SMARTS Consortium time, we will use CHIRON in fiber mode to collect one spectrum each of the remaining 95 V < 14 single stars (see Fig. 1, magenta circles) and 78 V < 14 binary stars (see Fig. 1, blue diamonds) in the 7 new clusters (the CG 30 cluster has no unobserved V < 14 members). Single stars (in Run 1 Target Tables 1 and 2) are simpler to analyze than binary stars (in Run 1 Target Tables 3 and 4) and so are prioritized, but ideally we will observe all remaining 173 V < 14 stars, both single and binary.

We are aiming for SNR 30-10, which should suffice to determine each star's spectral type, radial velocity, stellar rotational speed, continuum excess, $H\alpha$ emission, and Li absorption equivalent width. We limit exposure time for magnitudes V > 9.3 to 1200 s in the interest of surveying all single and binary stars in a timely manner. The long continuous exposure time introduces a small barycentric correction error, which should be negligible beside the few km s⁻¹ precision of our radial-velocity-calculating cross-correlation procedure.

Having previously employed the above setup to queue or acquire CHIRON spectra of 89 stars, with which we are very happy, we are confident the setup will serve our purposes well.

Target table ID key: 000: Spectral standards; 100: CG 1; 200: CG 4; 300: CG 3; 400: CG 14; 500: GDC 1; 600: CG 30; 700: CG 17; 800: CG 22.

Instrument Configuration

Fiber cable:

Corrector: n/a

Filters: n/a

Grating/grism: R2 Echelle Grating Multislit: no

Collimator: F = 600 mmOrder: n/a λ_{start} : 4150

Cross disperser: LF7 prism λ_{end} : 8800 Atmos. disp. corr.:

Slit: n/a

R.A. range of principal targets (hours): 7 to 9

Dec. range of principal targets (degrees): -55 to -34

Special Instrument Requirements Describe briefly any special or non-standard usage of instrumentation.

Obj							Exp.	# of	Lunar		
ID	Object	α	δ	Epoch	Mag.	Filter	time	exp.	days		Seeing Comment
100	CG1-000	7 3 33.833	-45 31 55.828	J2000	11.127		1200	1	14	\mathbf{spec}	1.0
101	CG1-001	7727.516	-47 23 0.081	J2000	10.176		1200	1	14	\mathbf{spec}	1.0
102	CG1-002	7 8 30.993	-45 48 39.18	J2000	13.597		1200	1	14	$\overline{\mathbf{spec}}$	1.0
103	CG1-003	$7\ 8\ 58.128$	-45 19 52.683	J2000	6.773		116	1	14	$\overline{\mathbf{spec}}$	1.0
104	CG1-004	7 9 57.789	-46 32 30.508	J2000	12.385		1200	1	14	spec	1.0
105	CG1-005	7 12 24.007	-45 22 46.627	J2000	12.398		1200	1	14	spec	1.0
106	CG1-006	7 12 26.782	-45 59 17.125	J2000	13.806		1200	1	14	spec	1.0
107	CG1-007	7 12 33.549	-44 34 7.641	J2000	13.954		1200	1	14	spec	1.0
108	CG1-008	7 13 33.705	-47 13 22.339	J2000	9.958		1200	1	14	spec	1.0
109	CG1-009	7 14 7.429	-46 28 54.932	J2000	13.417		1200	1	14	spec	1.0
110	CG1-010	7 14 20.301	-47 56 4.03	J2000	10.662		1200	1	14	spec	1.0
111	CG1-011	7 14 40.055	-46 20 52.815	J2000	10.575		1200	1	14	spec	1.0
112	CG1-012	7 16 20.919	-46 30 41.91	J2000	13.073		1200	1	14	spec	1.0
113			-45 20 38.234				1200	1	14	spec	1.0
			-46 41 55.496				1200	1	14	spec	1.0
			-46 14 16.894				391	1	14	spec	1.0
			-45 31 1.948				1200	1	14	spec	1.0
			-45 35 23.227				1200	1	14	spec	1.0
118			-46 15 12.607				1200	1	14	spec	1.0
119			-46 0 9.452	_	11.769		1200	1	14	spec	1.0
			-45 28 44.339				1200	1	14	spec	1.0
			-46 16 26.24				1200	1	14	spec	1.0
	CG1-022		-45 57 13.797				1200	1	14	spec	1.0
123			-47 2 27.48		12.514		1200	1	14	spec	1.0
		7 25 49.821			10.593		1200	1	14	spec	1.0
124 125			-44 49 30.2		10.001		1200 1200	1	14	spec	1.0
			-46 11 3.618				1200	1	14	-	1.0
			-46 11 44.926				1200 1200	1	$\frac{14}{14}$	spec	
			-45 30 37.668				1200 1200	1	$\frac{14}{14}$	spec	$1.0 \\ 1.0$
			-48 17 33.672				1200 1200	1	$\frac{14}{14}$	spec	
										spec	1.0
			-46 16 21.201 -47 23 6.101				$1200 \\ 1200$	$egin{array}{c} 1 \\ 1 \end{array}$	14	spec	1.0
									14	spec	1.0
			-46 45 20.103				1200	1	14	spec	1.0
			-48 29 13.12				1200	1	14	spec	1.0
			-47 0 46.638				109	1	14	spec	1.0
			-48 26 25.136 -46 37 19.002				1200	1	14	spec	1.0
				_			768	1	14	spec	1.0
			-46 37 18.836				1200	1	14	spec	1.0
			-46 51 27.782				36	1	14	spec	1.0
			-46 57 43.249				1200	1	14	spec	1.0
			-46 22 54.129				1200	1	14	spec	1.0
			-46 16 3.373				1200	1	14	$\operatorname{\mathbf{spec}}$	1.0
			-48 53 31.292				1200	1	14	\mathbf{spec}	1.0
			-46 19 36.238				486	1	14	spec	1.0
			-47 12 59.086				72	1	14	\mathbf{spec}	1.0
			-47 5 44.614				1200	1	14	spec	1.0
					10.387		1200	1	14	$\operatorname{\mathbf{spec}}$	1.0
			-48 41 7.152				573	1	14	$\operatorname{\mathbf{spec}}$	1.0
			-47 12 59.684				1200	1	14	$\operatorname{\mathbf{spec}}$	1.0
322	nCG3-022	$7\ 53\ 0.564$	-45 57 4.253	J2000	9.567		1200	1	14	$\operatorname{\mathbf{spec}}$	1.0

Obj							Exp.	# of	Lunar		
ID	Object	α	δ	Epoch	Mag.	Filter	time	exp.	days	\mathbf{Sky}	Seeing Comment
323	nCG3-023	7 53 24.675	-46 57 57.275	J2000	9.497		1200	1	14	\mathbf{spec}	1.0
$\bf 324$	nCG3-024	$7\ 54\ 22.37$	-46 47 9.995	J2000	10.407		1200	1	14	\mathbf{spec}	1.0
$\bf 325$	nCG3-025	$7\ 55\ 6.815$	-46 41 24.59	J2000	10.403		1200	1	14	\mathbf{spec}	1.0
326	nCG3-026	$7\ 56\ 24.23$	$-46\ 52\ 47.741$	J2000	10.570		1200	1	14	\mathbf{spec}	1.0
327			-46 35 35.84				140	1	14	\mathbf{spec}	1.0
328			-49 1 52.345		11.554		1200	1	14	\mathbf{spec}	1.0
329		8 2 15.524	-49 34 6.58		11.183		1200	1	14	\mathbf{spec}	1.0
			-46 14 17.39				1200	1	14	\mathbf{spec}	1.0
			-48 17 33.672				1200	1	14	spec	1.0
			-47 49 47.786				1200	1	14	\mathbf{spec}	1.0
	nCG14-002		-46 6 13.264				1200	1	14	\mathbf{spec}	1.0
			-49 1 12.143				595	1	14	\mathbf{spec}	1.0
				J2000			1200	1	14	\mathbf{spec}	1.0
			-49 58 36.663				59	1	14	\mathbf{spec}	1.0
		8 2 15.524	-49 34 6.58		11.183		1200	1	14	\mathbf{spec}	1.0
			-48 59 17.017				769	1	14	\mathbf{spec}	1.0
	nCG14-008		-50 5 19.879				1200	1	14	\mathbf{spec}	1.0
			-49 29 50.017		7.971		349	1	14	\mathbf{spec}	1.0
			-51 41 59.834				1200	1	14	\mathbf{spec}	1.0
			-48 31 11.88				1200	1	14	spec	1.0
			-49 42 11.505				1200	1	14	\mathbf{spec}	1.0
			-51 17 50.225				1200	1	14	\mathbf{spec}	1.0
			-50 53 33.952				1200	1	14	\mathbf{spec}	1.0
		8 27 1.494	-50 3 31.99	J2000			876	1	14	\mathbf{spec}	1.0
			-50 22 26.598		9.994		1200	1	14	\mathbf{spec}	1.0
	GDC1-007		-51 14 7.51	J2000			329	1	14	\mathbf{spec}	1.0
			-49 14 56.121				1200	1	14	spec	1.0
			-50 56 17.619				1200	1	14	\mathbf{spec}	1.0
			-51 24 48.711				1200	1	14	\mathbf{spec}	1.0
			-52 32 52.914				963	1	14	\mathbf{spec}	1.0
			-53 28 42.141				1169	1	14	spec	1.0
			-52 59 1.911				1200	1	14	\mathbf{spec}	1.0
			-50 15 0.253				886	1	14	\mathbf{spec}	1.0
			-53 4 17.413				91	1	14	spec	1.0
			-51 48 54.696				1200	1	14	\mathbf{spec}	1.0
		8 36 3.843	-51 6 9.832	J2000			1200	1	14	\mathbf{spec}	1.0
			-53 16 41.395				1200	1	14	\mathbf{spec}	1.0
			-51 38 22.042				1200	1	14	\mathbf{spec}	1.0
			-52 9 45.607				940	1	14	\mathbf{spec}	1.0
			-51 18 20.273				1200	1	14	\mathbf{spec}	1.0
			-51 56 51.345				1200	1	14	\mathbf{spec}	1.0
			-51 56 29.607				170	1	14	\mathbf{spec}	1.0
			-53 30 34.896				1200	1	14	\mathbf{spec}	1.0
			-54 7 54.085				1200	1	14	\mathbf{spec}	1.0
800	CG22-000	8 25 28.242	-35 31 26.914	J2000	13.925		1200	1	14	\mathbf{spec}	1.0

		·					,				
Obj							Exp.	# of	Lunar		
ID	\mathbf{Object}	α	δ	Epoch	Mag.	Filter	$_{ m time}$	exp.	$_{ m days}$	\mathbf{Sky}	Seeing Comment
126	CG1-026	7 11 1.622	-45 30 37.783	J2000	11.949		1200	1	14	spec	1.0
127	CG1-027		6 -47 40 28.099				1200	1	14	spec	1.0
128	CG1-028		9 -47 23 1.588				1200	1	14	spec	
129	CG1-029	7 15 6.742			11.991		1200	1	14	spec	
130	CG1-030		-47 27 48.057				1200	1	14	spec	1.0
131	CG1-031		8 -46 37 38.398				1200	1	14	spec	1.0
132	CG1-032		-45 32 1.533				1200	1	14	spec	1.0
133	CG1-033		-46 48 54.638				1200	1	14	spec	
134	CG1-034		-46 41 40.067				1200	1	14	spec	
135	CG1-035		3 -45 38 44.376				1200	1	14	spec	1.0
136	CG1-036	7 24 38.23	6 -45 42 49.198	J2000	12.430		1200	1	14	spec	1.0
137	CG1-037	7 26 29.82	5 -44 36 17.354	J2000	13.117		1200	1	14	spec	1.0
138	CG1-038		-45 27 50.619				1200	1	14	spec	1.0
139	CG1-039	7 31 13.022	2 -47 45 47.7	J2000	12.351		1200	1	14	spec	1.0
201	CG4-001	7 31 21.85	6 -46 57 43.938	J2000	14.334		1200	1	14	spec	1.0
202	CG4-002	7 31 29.638	8 -46 58 48.737	J2000	11.914		1200	1	14	spec	1.0
203	CG4-003	7 31 44.122	2 -47 0 1.135	J2000	11.113		1200	1	14	spec	1.0
331	nCG3-031	7 38 16.06	5 -46 6 20.326	J2000	11.649		1200	1	14	spec	1.0
$\bf 332$	nCG3-032	7 40 48.40	5 -46 38 19.131	J2000	11.934		1200	1	14	spec	1.0
333			7 -49 22 8.845				1200	1	14	spec	1.0
334	nCG3-034	7 47 36.97	7 -47 26 27.698	J2000	13.953		1200	1	14	spec	1.0
335	nCG3-035	7 49 30.82	4 -47 52 4.557	J2000	11.739		1200	1	14	spec	1.0
			4 -47 49 35.913				1200	1	14	spec	1.0
337	nCG3-037	7 50 10.100	6 -47 20 32.583	J2000	13.436		1200	1	14	spec	1.0
338	nCG3-038	7 50 29.119	9 -47 57 43.579	J2000	12.624		1200	1	14	spec	1.0
339	nCG3-039	7 51 31.25	7 -47 18 47.121	J2000	12.463		1200	1	14	spec	1.0
340			9 -47 15 7.657				1200	1	14	spec	1.0
341	nCG3-041	7 52 1.532	-48 50 8.024	J2000	11.914		1200	1	14	spec	1.0
342	nCG3-042	7 53 22.15	1 -47 13 29.6	J2000	11.072		1200	1	14	spec	1.0
343	nCG3-043	$7\ 54\ 2.64$	-48 21 36.465	J2000	12.082		1200	1	14	$\overline{\mathbf{spec}}$	1.0
344	nCG3-044	7 54 14.819	9 -46 26 0.302	J2000	13.282		1200	1	14	$\overline{\mathbf{spec}}$	1.0
345	nCG3-045	7 54 25.503	3 -46 51 13.443	J2000	13.195		1200	1	14	$\overline{\mathbf{spec}}$	1.0
346	nCG3-046	7 57 9.978	-47 31 27.082	J2000	10.984		1200	1	14	$\overline{\mathbf{spec}}$	1.0
347	nCG3-047	8 0 14.813	-47 46 49.023	J2000	9.424		1200	1	14	$\overline{\mathbf{spec}}$	1.0
348	nCG3-048	8 3 26.768	-45 59 37.398	J2000	13.540		1200	1	14	$\overline{\mathbf{spec}}$	1.0
410	nCG14-010	$7\ 42\ 5.614$	-48 40 17.305	J2000	11.302		1200	1	14	\mathbf{spec}	1.0
411	nCG14-011	$7\ 43\ 13.18$	-47 46 8.915	J2000	13.761		1200	1	14	\mathbf{spec}	1.0
412	nCG14-012	$7\ 43\ 13.18$	-47 46 8.915	J2000	13.761		1200	1	14	\mathbf{spec}	1.0
413	nCG14-013	$7\ 45\ 44.72$	-46 46 15.277	J2000	9.806		1200	1	14	\mathbf{spec}	1.0
414	nCG14-014	7 47 36.97	7 -47 26 27.698	J2000	13.953		1200	1	14	\mathbf{spec}	
415	nCG14-015	7 47 36.97	7 -47 26 27.698	J2000	13.953		1200	1	14	\mathbf{spec}	1.0
416	nCG14-016	7 52 28.122	2 -48 23 15.707	J2000	9.499		1200	1	14	\mathbf{spec}	1.0
417	nCG14-017	7 55 46.20	4 -47 12 48.35	J2000	12.186		1200	1	14	\mathbf{spec}	1.0
418	nCG14-018	7 58 16.922	2 -49 14 10.993	J2000	9.827		1200	1	14	\mathbf{spec}	1.0
419	nCG14-019	8 6 44.388	-48 16 7.55	J2000	10.925		1200	1	14	$\overline{\mathbf{spec}}$	1.0
514	GDC1-014	8 24 39.442	2 -52 15 9.175	J2000	13.240		$\boldsymbol{1200}$	1	14	$\overline{\mathbf{spec}}$	1.0
515	GDC1-015	8 25 2.394	-49 47 56.385	J2000	12.752		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
516	GDC1-016	8 29 22.19	4 -50 50 36.934	J2000	12.803		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
517	GDC1-017	8 30 16.39	5 -51 53 16.795	J2000	12.040		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
518	GDC1-018	8 30 18.49	-51 1 34.481	J2000	12.617		1200	1	14	\mathbf{spec}	1.0

Obj							Exp.	# of	Lunar		
ID	Object	α	δ	Epoch	Mag.	Filter	time	exp.	$_{ m days}$	\mathbf{Sky}	Seeing Comment
519	GDC1-019	8 30 19.027	-51 1 31.569	J2000	11.814		1200	1	14	\mathbf{spec}	1.0
520	GDC1-020	8 32 8.812	-51 31 11.42	J2000	13.769		1200	1	14	\mathbf{spec}	1.0
$\bf 521$	GDC1-021	$8\ 32\ 38.867$	-52 26 45.052	J2000	12.722		1200	1	14	\mathbf{spec}	1.0
$\bf 522$	GDC1-022	$8\ 35\ 16.281$	-51 56 16.634	J2000	12.712		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
523	GDC1-023	$8\ 36\ 18.919$	-52 32 3.871	J2000	11.545		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
$\bf 524$	GDC1-024	$8\ 37\ 39.254$	-52 40 13.375	J2000	11.039		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
712	nCG17-012	$8\ 29\ 24.895$	-50 39 48.333	J2000	12.002		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
713	nCG17-013	$8\ 29\ 47.461$	-50 4 51.102	J2000	13.706		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
714	nCG17-014	$8\ 29\ 56.582$	-51 11 45.559	J2000	13.243		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
715	nCG17-015	$\mathbf{8\ 32\ 46.412}$	-50 58 16.027	J2000	13.579		1200	1	14	\mathbf{spec}	1.0
716	nCG17-016	$\mathbf{8\ 33\ 49.682}$	-51 42 59.397	J2000	11.624		$\boldsymbol{1200}$	1	14	\mathbf{spec}	1.0
717	nCG17-017	$\mathbf{8\ 34\ 24.233}$	-53 48 19.3	J2000	12.482		1200	1	14	\mathbf{spec}	1.0
718	nCG17-018	$8\ 34\ 37.308$	-50 24 50.867	J2000	13.481		1200	1	14	\mathbf{spec}	1.0
719	nCG17-019	$8\ 35\ 15.266$	-50 54 25.256	J2000	10.463		1200	1	14	\mathbf{spec}	1.0
720	nCG17-020	8 36 49.68	-54 7 55.372	J2000	11.423		1200	1	14	\mathbf{spec}	1.0
$\bf 721$	nCG17-021	8 37 38.635	-51 0 3.119	J2000	12.970		1200	1	14	\mathbf{spec}	1.0
$\bf 722$	nCG17-022	8 37 58.817	-51 48 21.755	J2000	13.580		1200	1	14	\mathbf{spec}	1.0
723	nCG17-023	8 38 54.625	-51 42 7.678	J2000	9.452		1200	1	14	\mathbf{spec}	1.0
$\bf 724$	nCG17-024	8 39 17.889	-53 17 5.522	J2000	9.212		1095	1	14	\mathbf{spec}	1.0
725	nCG17-025	8 39 50.238	-51 32 24.372	J2000	12.047		1200	1	14	\mathbf{spec}	1.0
726	nCG17-026	8 39 51.735	-51 55 7.066	J2000	11.870		1200	1	14	\mathbf{spec}	1.0
727	nCG17-027	8 39 51.865	-51 46 7.17	J2000	11.843		1200	1	14	\mathbf{spec}	1.0
728	nCG17-028	8 39 51.993	-51 55 17.401	J2000	12.501		1200	1	14	\mathbf{spec}	1.0
729	nCG17-029	$8\ 40\ 29.78$	-51 32 10.601	J2000	13.504		1200	1	14	\mathbf{spec}	1.0
730	nCG17-030	8 44 11.494	-49 43 40.469	J2000	13.302		1200	1	14	\mathbf{spec}	1.0
			-51 48 28.028				1200	1	14	\mathbf{spec}	1.0
732	nCG17-032	8 49 15.073	-51 2 24.213	J2000	9.857		1200	1	14	\mathbf{spec}	1.0
801	CG22-001	8 28 47.518	-34 29 29.906	J2000	12.695		1200	1	14	\mathbf{spec}	1.0

Observing Run Details for Run 2: SOAR/Goodman

Technical Description Describe the observations to be made during this observing run. Justify the specific telescope, the number of nights, the instrument, and the lunar phase. List objects, coordinates, and magnitudes (or surface brightness, if appropriate) in the Target Tables section below (required for queue and Gemini runs).

We will use the red camera to obtain spectra of ideally all 93 single stars with 14 < V < 16 in all 5 young clusters, near CG 4, 3, 14, 30, and 22 (see Fig. 1, salmon squares). Single stars are simpler to analyze than binary stars, and young clusters are more likely to host stars with accretion disks, observable in H α emission. If time is short, we will focus on the clusters near CG 4, 14, 30, and 22 (in Run 2 Target Table 2) and save the large cluster near CG 3 (in Run 2 Target Table 3) for later.

We will use the 0.45" single slit, 2100 l/mm grating, 1x1 binning, readout speed 344 kHz, and exposure time capped at 2 x 1200 s for V > 14.3 for sufficient resolution $\sim 10,000$ and SNR 30 - 10. Because we are observing one star at a time, we will shorten the slit's region of interest to 2 arcminutes or less to save on readout time. We will use the fast acquisition camera GACAM to find our targets whenever possible, switching to pre-imaging only when a given target's crowded field requires. Having surveyed 2MASS images of the 89 targets previously acquired with CHIRON, we believe GACAM will suffice for most of our proposal's target acquisitions. We have calculated our Goodman time request based on 9/10 use of GACAM and 1/10 use of pre-imaging.

We will focus on the wavelength region 4500-8500 Å to mimic the satisfying range of CHIRON, which includes atomic lines for spectral type and continuum excess, Li I $\lambda6708$, H α , and the telluric A-band at 7600-7630 Å for calibration of the wavelength solution. Because the red camera suffers from a second-order-caused blue leak redward of 6000 Å, we will take continuum excess measurements (tending to manifest as extra blue light) within the 4500-6000 Å region to dodge blue degeneracy.

Using the same setup described above, we will acquire spectra of 18 bright spectral standards (in Run 2 Target Table 1) matching our already-assembled CHIRON catalogue. We include a red star HD 191849 of spectral type MoV, useful for correcting the blue leak. We will take one spectrum of the red star using the same setup as the other stars, and one more spectrum of the red star using the 2nd order blocking filter. We have also, as aforementioned, already taken CHIRON spectra of these same standards. CHIRON does not suffer from the nefarious blue leak. Therefore, comparisons between the Goodman and CHIRON standard spectra could enable us to measure the Goodman blue leak as a function of wavelength and remove the leak accordingly.

Instrument Configuration

Filters: 2nd order blocking filter Slit: 0.45" Fiber cable: n/a Grating/grism: 2100 l/mm Multislit: no Corrector: n/a

Order: λ_{start} : 4500 Collimator: F = 1200.15 mm Cross disperser: λ_{end} : 8500 Atmos. disp. corr.: no

R.A. range of principal targets (hours): 7 to 9

Dec. range of principal targets (degrees): -55 to -34

Special Instrument Requirements
mentation.

Describe briefly any special or non-standard usage of instru-

Target Table for Run 2: SOAR/Goodman

\mathbf{Obj}							Exp.	# of	Lunar		
ID	${f Object}$	α	δ	Epoch	Mag.	Filter	$_{ m time}$	exp.	\mathbf{days}	\mathbf{Sky}	Seeing
000	B9V-HD4622	00 48 01.06	-21 43 21.1	J2000	5.570		8	1	14	\mathbf{spec}	1.0
001	A1V-HD65900	$08\ 01\ 13.90$	$+04\ 52\ 47.5$	J2000	3.830		2	1	14	\mathbf{spec}	1.0
002	A3V-HD96568	$11\ 06\ 24.25$	-64 50 23.8	J2000	6.381		18	1	14	\mathbf{spec}	1.0
003	A4V-HD75171	$08\ 44\ 29.96$	-65 49 31.5	J2000	6.021		13	1	14	\mathbf{spec}	1.0
004	A6V-HD39060	$05\ 47\ 17.08$	-51 03 59.3	J2000	3.860		2	1	14	\mathbf{spec}	1.0
005	F1V-HD40136	$05\ 56\ 24.28$	-14 10 03.7	J2000	3.720		2	1	14	\mathbf{spec}	1.0
006	F6V-HD38393	$05\ 44\ 27.78$	-22 26 54.1	J2000	3.600		1	1	14	\mathbf{spec}	1.0
007	G0V-HD1388	$00\ 17\ 58.86$	-13 27 20.3	J2000	6.500		20	1	14	\mathbf{spec}	1.0
008	G3V-HD59967	$07 \ 30 \ 42.50$	-37 20 21.6	J2000	6.490		20	1	14	\mathbf{spec}	1.0
009	$\mathbf{G8.5V\text{-}HD10700}$	$01\ 44\ 04.08$	-15 56 14.9	J2000	3.500		1	1	14	\mathbf{spec}	1.0
010	K0V-HD26965	$04\ 15\ 16.32$	-7 39 10.3	J2000	4.430		3	1	14	\mathbf{spec}	1.0
011	K2V-GJ144	$03 \ 32 \ 55.85$	-9 27 29.6	J2000	3.730		2	1	14	\mathbf{spec}	1.0
012	K4V-GJ845A	$22\ 03\ 21.64$	$-56\ 47\ 09.5$	J2000	4.690		4	1	14	\mathbf{spec}	1.0
013	K7V-GJ185	$05\ 02\ 28.42$	-21 15 23.8	J2000	8.320		107	1	14	\mathbf{spec}	1.0
014	G7III-HD24160	$03\ 49\ 27.25$	-36 12 00.9	J2000	4.170		2	1	14	\mathbf{spec}	1.0
015	K0III-HD201381	$21\ 09\ 35.64$	-11 22 18.1	J2000	4.520		3	1	14	\mathbf{spec}	1.0
016	K2III-HD26846	$04\ 14\ 23.69$	-10 15 22.6	J2000	4.860		4	1	14	\mathbf{spec}	1.0
017	M0V-HD191849	$20\ 13\ 53.39$	-45 09 50.5	J2000	7.966		77	1	14	$\overline{\mathbf{spec}}$	1.0
018	M0V-HD191849	20 13 53.39	-45 09 50.5	J2000	7.966	2nd order blocking filter	100	1	14	spec	1.0

Target Table for Run 2: SOAR/Goodman

Obj ID	Object		α		δ	Epoch	Mag.	Filter	Exp. time	# of exp.	Lunar days		Seeing Comment
200	CG4-000	7 29	32.903	-46	11 3.618	J2000	14.318		1200	2	14	spec	1.0
201	CG4-001	7 31	36.683	-47	0 13.217	J2000	15.482		1200	2	14	$\overline{\operatorname{spec}}$	1.0
202	CG4-002	7 31	53.832	-47	32 25.139	J2000	15.859		$\boldsymbol{1200}$	2	14	\mathbf{spec}	1.0
203	CG4-003				58 48.016				1200	2	14	\mathbf{spec}	1.0
204	CG4-004				48 42.562				1072	2	14	\mathbf{spec}	1.0
	nCG14-000								1200	2	14	\mathbf{spec}	1.0
	nCG14-001								1200	${\color{red}2}\\{\color{red}2}$	14	spec	1.0
	nCG14-002 nCG14-003								$1200 \\ 1085$	$\frac{2}{2}$	$\frac{14}{14}$	spec	1.0 1.0
	nCG14-003								1200	$\frac{2}{2}$	$\frac{14}{14}$	spec spec	1.0
	nCG14-005								1200	2	14	spec	1.0
	nCG14-006								1000	f 2	14	spec	1.0
	nCG14-007						14.709		1200	2	14	spec	1.0
408	nCG14-008	7 52	27.982	-49	30 8.917	J2000	15.122		1200	2	14	spec	1.0
409	nCG14-009	7 53	16.777	-49	$10 \ 35.261$	J2000	14.945		${\bf 1200}$	2	14	$\operatorname{\mathbf{spec}}$	1.0
410	nCG14-010	7 53	54.617	-48	$12\ 29.64$	J2000	15.350		$\boldsymbol{1200}$	2	14	\mathbf{spec}	1.0
	nCG14-011								1200	2	14	\mathbf{spec}	1.0
	nCG14-012								1200	2	14	\mathbf{spec}	1.0
	nCG14-013								1200	2	14	\mathbf{spec}	1.0
	nCG14-014					_			1200	2	14	\mathbf{spec}	1.0
	nCG14-015								1200	2	14	spec	1.0
	nCG14-016 nCG14-017				50 54.89 7 7 37.19		14.983 14.592		$1200 \\ 1200$	${\color{red}2}\\{\color{red}2}$	$\frac{14}{14}$	spec spec	1.0 1.0
	nCG14-017								1200	2	$\frac{14}{14}$	spec	1.0
	nCG14-019								1200	2	14	spec	1.0
	nCG14-020								1200	f 2	14	spec	1.0
	nCG14-021								1200	2	14	spec	1.0
422	nCG14-022	8 4	34.314	-49	31 45.251	J2000	14.504		1200	2	14	spec	1.0
423	nCG14-023	86	34.494	-47	5 18.521	J2000	15.273		${\bf 1200}$	2	14	$\operatorname{\mathbf{spec}}$	1.0
424	nCG14-024	89	6.438	-48	43 28.275	J2000	15.636		1200	2	14	\mathbf{spec}	1.0
	nCG14-025								1200	2	14	\mathbf{spec}	1.0
	nCG14-026								1200	2	14	\mathbf{spec}	1.0
600					45 11.091				1200	2	14	\mathbf{spec}	1.0
601	CG30-001								1200	2	14	spec	1.0
800	CG22-000					_			923	${\color{red}2}\\{\color{red}2}$	$\frac{14}{14}$	spec	1.0
$\begin{array}{c} 801 \\ 802 \end{array}$	$\begin{array}{c} \text{CG22-001} \\ \text{CG22-002} \end{array}$								$1200 \\ 1200$	$\frac{2}{2}$	$\frac{14}{14}$	spec spec	1.0 1.0
803	CG22-002								1200	2	$\frac{14}{14}$	spec	1.0
804	CG22-004								1200	2	14	spec	1.0
805	CG22-005						15.934		1200	f 2	14	spec	1.0
806	CG22-006								926	2	14	spec	1.0
807	CG22-007								1200	2	14	spec	1.0
808	CG22-008	8 28	19.667	-33	$54 \ 36.631$	J2000	15.885		$\boldsymbol{1200}$	2	14	spec	1.0
809	CG22-009	8 28	41.031	-34	31 34.148	J2000	14.014		912	2	14	\mathbf{spec}	1.0
810	CG22-010	8 28	55.795	-34	24 9.867	J2000	15.995		1200	2	14	\mathbf{spec}	1.0

Target Table for Run 2: SOAR/Goodman

Obj Exp. # of Lunar ID Object α Epoch Mag. Filter time exp. days	\mathbf{Sky}	Seeing Comment
300 nCG3-000 7 36 19.189 -45 0 43.469 J2000 15.945 1200 2 14	spec	1.0
301 nCG3-001 7 37 38.316 -45 9 51.5 J2000 15.484 1200 2 14	spec	
302 nCG3-002 7 40 30.77 -45 26 2.885 J2000 15.670 1200 2 14	spec	
303 nCG3-003 7 40 51.098 -45 14 36.404 J2000 14.542 1200 2 14	spec	
304 nCG3-004 7 41 1.825 -47 42 50.297 J2000 15.275 1200 2 14	spec	
305 nCG3-005 7 42 46.213 -48 1 1.681 J2000 14.324 1200 2 14	spec	
306 nCG3-006 7 43 1.029 -47 18 15.583 J2000 15.781 1200 2 14	spec	
307 nCG3-007 7 44 2.944 -47 22 51.482 J2000 14.027 923 2 14	spec	
308 nCG3-008 7 44 4.396 -46 47 40.094 J2000 15.227 1200 2 14	spec	
309 nCG3-009 7 44 8.206 -47 43 33.667 J2000 15.779 1200 2 14	spec	
310 nCG3-010 7 44 25.64 -46 44 14.735 J2000 15.945 1200 2 14	spec	
311 nCG3-011 7 44 46.745 -48 42 43.606 J2000 15.447 1200 2 14	spec	
312 nCG3-012 7 44 55.144 -45 42 14.514 J2000 14.622 1200 2 14	spec	
313 nCG3-013 7 45 7.327 -46 7 12.256 J2000 15.178 1200 2 14	spec	
314 nCG3-014 7 45 10.504 -48 17 41.603 J2000 15.470 1200 2 14	spec	
315 nCG3-015 7 45 27.591 -45 39 30.25 J2000 15.544 1200 2 14	spec	
316 nCG3-016 7 45 54.209 -48 12 25.218 J2000 14.364 1200 2 14	-	
317 nCG3-017 7 46 56.143 -46 33 23.896 J2000 15.093 1200 2 14	spec	
	spec	
	spec	
319 nCG3-019 7 47 26.175 -46 53 53.892 J2000 14.838 1200 2 14	spec	
320 nCG3-020 7 48 0.091 -46 15 46.269 J2000 14.827 1200 2 14	spec	
321 nCG3-021 7 48 23.677 -45 51 37.321 J2000 15.519 1200 2 14	spec	
322 nCG3-022 7 48 56.954 -45 48 10.114 J2000 15.426 1200 2 14	spec	
323 nCG3-023 7 49 5.319 -46 15 51.646 J2000 14.883 1200 2 14	spec	
324 nCG3-024 7 49 13.991 -46 22 12.271 J2000 14.646 1200 2 14	\mathbf{spec}	
325 nCG3-025 7 49 22.398 -46 20 32.324 J2000 15.232 1200 2 14	\mathbf{spec}	
326 nCG3-026 7 49 30.236 -46 19 38.528 J2000 15.507 1200 2 14	\mathbf{spec}	
327 nCG3-027 7 49 34.842 -46 20 20.438 J2000 14.435 1200 2 14	\mathbf{spec}	1.0
328 nCG3-028 7 49 36.691 -45 48 43.898 J2000 14.677 1200 2 14	\mathbf{spec}	1.0
329 nCG3-029 7 49 42.56 -46 12 26.087 J2000 14.369 1200 2 14	\mathbf{spec}	1.0
330 nCG3-030 7 49 51.863 -46 19 45.58 J2000 15.558 1200 2 14	\mathbf{spec}	1.0
331 nCG3-031 7 50 0.774 -45 20 8.534 J2000 15.845 1200 2 14	\mathbf{spec}	1.0
332 nCG3-032 7 50 2.632 -45 31 10.654 J2000 14.545 1200 2 14	\mathbf{spec}	1.0
333 nCG3-033 7 51 18.702 -46 2 33.748 J2000 14.531 1200 2 14	\mathbf{spec}	1.0
334 nCG3-034 7 51 33.39 -45 37 20.577 J2000 15.172 1200 2 14	\mathbf{spec}	1.0
335 nCG3-035 7 51 53.867 -48 42 46.16 J2000 15.682 1200 2 14	\mathbf{spec}	1.0
336 nCG3-036 7 52 29.402 -46 34 56.975 J2000 14.654 1200 2 14	\mathbf{spec}	1.0
337 nCG3-037 7 52 34.338 -47 45 47.338 J2000 15.988 1200 2 14	\mathbf{spec}	1.0
338 nCG3-038 7 52 53.938 -47 27 37.592 J2000 15.238 1200 2 14	\mathbf{spec}	1.0
339 nCG3-039 7 54 47.324 -46 47 24.285 J2000 15.468 1200 2 14	$\operatorname{\mathbf{spec}}$	1.0
340 nCG3-040 7 54 48.991 -46 50 33.283 J2000 15.964 1200 2 14	spec	1.0
341 nCG3-041 7 55 19.354 -46 30 45.164 J2000 15.460 1200 2 14	spec	1.0
342 nCG3-042 7 56 5.147 -47 7 54.82 J2000 15.330 1200 2 14	spec	1.0
343 nCG3-043 7 56 8.42 -46 40 50.879 J2000 14.254 1137 2 14	spec	
344 nCG3-044 7 57 4.532 -46 35 42.273 J2000 14.920 1200 2 14	spec	
345 nCG3-045 7 57 23.295 -47 37 53.795 J2000 15.530 1200 2 14	spec	
346 nCG3-046 7 58 8.368 -44 35 18.392 J2000 15.175 1200 2 14	spec	
347 nCG3-047 7 58 32.851 -49 16 12.822 J2000 15.403 1200 2 14	spec	