ROYAUME DU MAROC Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Tétouan

المملكة المغربية
جامعة عبد المالك السعدي
كلية العلوم بتطوان
تطوان

TD 2 : Analyse en Composantes Principales - 2 Variables - Professeur : Harchli Fidae

Exercice 1 (Application du cours):

Deux systèmes d'exploitation sont notés de 0 à 20 exprimant une appréciation du produit élevée :

INDIVIDUS	WIN	MAC
A	10	2
В	20	4
C	16	6
D	15	8
E	5	18

- 1. Donner les éléments de cette ACP
- 2. Présenter les données sous forme de matrice que vous nommez M
- 3. Procéder au centrage de la matrice
- 4. Calculer la matrice de variance-covariance A
- 5. Calculer les valeurs et les vecteurs propres
- 6. Quel est le taux d'inertie du premier axe factoriel
- 7. Quel est le taux d'inertie du premier plan factoriel
- 8. Calculer les coordonnées F des individus dans le plan factoriel
- 9. Présenter ses coordonnées graphiquement
- 10. Interpréter les résultats obtenus

Exercice 2 (Python):

Considérons les notes (sur 40) obtenues par 5 étudiants (poids uniformes) dans 2 matières :

• X_1 : Analyse des Données

ullet X_2 : Statistique Descriptive

INDIVIDUS	X_1	X_2
1	18.9	21.9
2	19.3	22.8
3	20.1	25.8
4	21.4	27.9
5	22.4	30.3

On propose de traiter ces données par **l'ACP non normée**. Pour ce, répondez aux questions suivantes :

1. Calculer la matrice A de variance-covariance

2. En admettant que $A=\begin{pmatrix} 1.71 & 4.05 \\ 4.05 & 9.77 \end{pmatrix}$ calculer ses valeurs propres ainsi que ses vecteurs propres normés

3. Écrire les expressions des deux composantes principales F^1 et F^2 en fonction de Z_1 et Z_2 (où Z_1 et Z_2 les variables centrées respectivement de X_1 et X_2) et calculer la part de variance expliquée par chacune d'elles (seulement pour cette question, on présente le résultat à la troisième décimale).

4. Démontrer que les corrélations des variables Z_1 et Z_2 avec F^1 sont respectivement ≈ 0.993 et ≈ 0.9998

5. En déduire une signification de l'axe F^1

6. Calculer les coordonnées des étudiants dans le plan principal

7. Déterminer l'étudiant moyen? Justifier

8. Comment ont peut interpréter les étudiants 1 et 2 ? Justifier

9. Même question pour les étudiants 4 et 5

Exercice 3:

Une étude gastronomique a conduit à apprécier le service, la qualité et le prix de quatre restaurants. Pour cela, un expert a noté ces restaurants avec des notes allant de -3 à 3. Les résultats sont les suivants :

Restaurant	Service	Qualité	Prix
1	-2	3	-1
2	-1	1	0
3	2	-1	-1
4	1	-3	2

La matrice des variances-covariances est :

$$\mathbf{X} = \begin{pmatrix} \frac{5}{2} & -3 & \frac{1}{2} \\ -3 & 5 & -2 \\ \frac{1}{2} & -2 & \frac{3}{2} \end{pmatrix}$$

Et celle des corrélations (aux erreurs d'arrondi près) est : La matrice des corrélations (aux erreurs d'arrondi près) est :

$$\Gamma = \begin{pmatrix} 1 & -0.85 & 0.26 \\ -0.85 & 1 & -0.73 \\ 0.26 & -0.73 & 1 \end{pmatrix}.$$

- 1. Étude des valeurs propres :
 - (a) Vérifier que V admet une valeur propre $\lambda_3 = 0$.
 - (b) On donne $\lambda_1 = \frac{30.5}{4}$. En déduire λ_2 .
 - (c) Calculer les pourcentages d'inertie. Quelle est la dimension à retenir ?
- 2. (a) On donne, aux erreurs d'arrondi près, $v_1 = \begin{pmatrix} 0.5 \\ -0.8 \\ 0.3 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 0.65 \\ 0.11 \\ -0.75 \end{pmatrix}$. Calculer les composantes principales.
 - (b) Représenter les individus dans le plan principal (1,2).
- 3. (a) Déterminer les corrélations entre les variables et les composantes.
 - (b) Représenter les variables sur le cercle des corrélations dans le plan factoriel (1,2).
 - (c) Interpréter les résultats.

6

Exercice 4 (ACP à p variables):

Considérons la matrice suivante :

$$\mathbf{X} = \begin{bmatrix} 2 & 0 & 0 & 8 \\ 4 & 0 & 0 & 8 \\ 6 & 0 & 0 & 8 \\ 8 & 8 & 8 & 8 \end{bmatrix}$$

- 1. Centrer et réduire les données.
- 2. Calculer la matrice de covariance.
- 3. Déterminer les valeurs propres et les vecteurs propres.
- 4. Projeter les données sur les deux premières composantes principales.
- 5. Analyser la perte d'information si on conserve uniquement les deux premières composantes.
- 6. Appliquer l'ACP sur un jeu de données issu de la pratique (par exemple, le jeu Iris de la bibliothèque scikit-learn). Discuter des résultats obtenus.