AMENDMENTS TO THE SPECIFICATION

Please amend paragraph [00048] as follows:

The following Example 1 is provided to further illustrate the above-described workings of the present invention:

FIG.2 shows a set of trajectories selected from a large subject group. In this example, 123 K trajectories are selected and though they are not all shown, they all adhere to the general form of those enumerated as 22, 24, 26 and 28. Each of these trajectories is one of the $F^{k}(t)$ functions described above. Next, each trajectory is fitted into a series having the mathematical form of $F^k(t) \approx \sum_{i=0}^{J} f_j^k P_j(t)$. In this example, a function $P_j(t) = (t/50)^J$ is used as the expansion function and J is set to 6, both for illustrative purposes only. Thus, with J equal to 6, there are seven terms (0-6) in the series, resulting in a large set of f_j^k , as there are six Js seven values of j for each value of k and there are $\frac{123}{K}$ individuals or values of k in the sample. Thus, there are $\frac{123}{K}$ values of f_i^k for each value of [[J]] j. These values are the samples of f_j that are used to determine the distribution of each f_j . Using these samples, distribution of the f_j^k is obtained using various implementations of the well known Maximum Likelihood technique. The samples of the distribution for each of the seven f_i , f_0 to f_6 are shown histogrammatically in each of FIGS. 3-9A, respectively. FIGS. 3-9A, thus show the number of samples of f_j^k in each bin where each f_j with the following range (along the horizontal axis) is divided from the smallest to the largest value of the samples of f_j^k into 20 bins: f_0 ranges from -28.4 to 54.1, f_1 ranges from -1059.6 to 224.1, f_2 ranges from 1107.3 to 5278.1, f_3 ranges from 1055.7 to 2214.7.1, f_4 ranges from 2076 to 9895, f_5 ranges from -4353.9 to 913.6, and f_6 ranges from -152.3 to 725.6.