Applicant(s) Application No. 09/502,968- 09/688,114 DAVIS ET AL. Interview Summary Examiner Art Unit 1773 Kevin M Bernatz All participants (applicant, applicant's representative, PTO personnel): (1) Kevin Bernatz. (3)Pamela Curbelo. (4)Thomas Feist. (2) Steven Resan. Date of Interview: 17 January 2002. Type: a) Telephonic b) Video Conference c) Personal [copy given to: 1) applicant 2) applicant's representative] Exhibit shown or demonstration conducted: d) Yes If Yes, brief description: illustration of recording density and cost as a function of time (past, present and extrapolated future predictions of technology). Illustration of commercial substrates vs. applicants' invention. Claim(s) discussed: N/A. Identification of prior art discussed: Lazzari ('967), Sandstrom ('461) and Izu et al. ('583). Agreement with respect to the claims f) was reached. g) was not reached. h) \boxtimes N/A. Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: See Continuation Sheet . (A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.) i) It is not necessary for applicant to provide a separate record of the substance of the interview (if box is checked).

Unless the paragraph above has been checked. THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed. APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Examiner Note: You must sign this form unless it is an

Attachment to a signed Office action.

Examiner's signature, if required

Continuation of Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: Inventor presented brief description of current state of the art with regard to the areal recording density and cost of storage in the magnetic hard disk industry. Noted that as desired areal recording density increased, the size of the magnetic domains needed to decrease and as the cost decreased, the ease of production needed to increase. Inventor commented that hard disks manufactured out of rigid materials alone, such as aluminum or glass were known, but were incapable of being easily patterned, yet polymeric substrates were capable of being easily patterned by embossing. Invention is in part directed to a combination of these properties, allowing the formation of small magnetic domains and therefor a magnetic recording media capable of possessing high areal recording density. Examiners commented that the method of making such a substrate would be a separate invention and that using a known polymer for a new use is not a patentable invention. Both parties discussed merits of whether the smoothness or rigidity, including either modulus or thickness, might serve to better distinguish the invention from the prior art. Lazzari was noted to teach a rigid core coated by a polymeric layer, wherein the polymeric layer could apparently be embossed to form ridges and grooves containing the magnetic layer. Examiners recommended replacing the broad language "data storage layer" with language more specific to optical, magneto-optical or magnetic data storage, though cautioned against intended use language (i.e. a recommendation would be "An optical, magneto-optical or magnetic recording disk comprising ... an optical, magneto-optical or magnetic data storage layer..."). Both parties discussed the axial displacement, which is directly related to the ridigity and the Examiner asked applicants to provide the equation relating axial displacement to modulus and/or thickness if applicable. Finally, applicants agreed to submit a preliminary amendment for case 09/683,114 addressing these issues (a copy of this interview summary will be included with the first office action in the above mentioned case).