

ColNet: Embedding the Semantics of Web Tables for Column Type Prediction

Jiaoyan Chen, *Ernesto Jiménez-Ruiz*, Ian Horrocks, Charles Sutton The Thirty-Third AAAI Conference on Artificial Intelligence (**AAAI-19**)

Preliminaries

What is an ontology?

- Introduces vocabulary relevant to a domain
 - Anatomy

(*) Borrowed from Ian Horrocks' slides: Ontologies and the Semantic Web: The Story So Far. April 2010

What is an ontology?

- Specifies meaning (semantics) of terms
 - Heart is a muscular organ that is part of the circulatory system

(*) Borrowed from Ian Horrocks' slides: Ontologies and the Semantic Web: The Story So Far. April 2010

What is an ontology?

- Specifies meaning (semantics) of terms
 - Heart is a muscular organ that is part of the circulatory system
- Formalised using suitable logic
 - Heart SUBCLASSOF
 MuscularOrgan AND (isPartOf SOME CirculatorySystem)

 $(^\star)$ Borrowed from Ian Horrocks' slides: **Ontologies and the Semantic Web: The Story So Far.** April 2010

What ontologies are good for?

- Independence of logical/physical schema: domain model
- Vocabulary closer to domain experts: more user-friendly
- Incomplete and semi-structured data: flexibility
- Integration of heterogeneous sources: unified view

What is a Knowledge Graph (KG)?

 "Large network of entities, their semantic types, properties and relationships between entities." (JWS Special Issue on Knowledge Graphs)

What is a Knowledge Graph (KG)?

- "Large network of entities, their semantic types, properties and relationships between entities." (JWS Special Issue on Knowledge Graphs)
- (Light) Knowledge Base: with a (light) terminology (ontology) and assertions (data)
- Nicer name than RDF graph (Resource Description Framework)
- Examples: Google Knowledge Graph, DBpedia (KG version of Wikipedia)

Overview: Role of Semantics in AIDA

Semantics for Data Analytics

 The lack of semantics and context in datasets hinders the application of data analysis tools to, for example, identify errors like wrong values.

Semantics for Data Analytics

- The lack of semantics and context in datasets hinders the application of data analysis tools to, for example, identify errors like wrong values.
- Ontologies model the domain of application (e.g., expected cardinalities, relationships, accepted range of values for a *temperature* sensor).
- Rules to identify potential missing data (e.g., a person must have a name).

Semantics for Data Analytics

- The lack of semantics and context in datasets hinders the application of data analysis tools to, for example, identify errors like wrong values.
- Ontologies model the domain of application (e.g., expected cardinalities, relationships, accepted range of values for a *temperature* sensor).
- Rules to identify potential missing data (e.g., a person must have a name).
- Ontologies and rules to validate new learned knowledge.
- Use of a shared **semantic store** among data analysis tools (**Semantics-aware Al assistants**)

Adding semantics to Tabular Data

- Assigning a semantic type (e.g., a KG class) to an (entity) column
- Matching a cell to a KG entity
- Assigning a KG property to the relationship between two columns

(*) We assume the existence of a (possibly incomplete) **Knowledge Graph (KG)** relevant to the domain.

Adding semantics to Tabular Data

- Assigning a semantic type (e.g., a KG class) to an (entity) column
- Matching a cell to a KG entity
- Assigning a KG property to the relationship between two columns

(*) We assume the existence of a (possibly incomplete) **Knowledge Graph (KG)** relevant to the domain.

Adding semantics to Tabular Data

(*) Adapted from Efthymiou et al. Matching Web Tables with Knowledge Base Entities: From Entity Lookups to Entity Embeddings. ISWC 2017

Contribution of Semantics in Data Wrangling Challenges

- Data parsing, e.g. converting csv's or tables.
- (+++)Data dictionary: basic types and semantic types.
- -(++)Data integration from multiple sources (foreign key discovery).
- -(++)*Entity resolution*: duplication and record linkage.
- Format variability: e.g. for dates and names.
- (+)Structural variability in the data.
- (++)Identifying and repairing missing data.
- (+) Anomaly detection and repair.
- (+++)**Metadata/contextual information**. (Semantic) data governance.

ColNet: Embedding the Semantics of Web Tables for Column Type Prediction

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Charles Sutton The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Introduction

Challenges in Column Type Prediction

- Multiple and hierarchical classes
- Identifying a fine-grained class (dbo:BasketballPlayer VS dbo:Athlete VS dbo:Person)
- Column cells may have few or even empty KG entity correspondences, which is referred to as knowledge gap
- Disambiguation, e.g., "Virgin" as "Mary" or as "Virgin Media"

Methods

ColNet in a Nutshell

- utilizes Convolutional Neural Networks (CNNs), semantic embeddings and Knowledge Graphs.
- does not assume the existence of table metadata
- learns both cell level and column level semantics
- automatically trains prediction models relying on a Knowledge Graph
- uses transfer learning to address the knowledge gap
- outperforms state-of-the-art approaches when column entities are scarce

Samples and embeddings

- The CNNs expect a matrix as input.
- Semantic embeddings: low-dimensional (vector space) representation of words.
- (Positive and negative) samples as a stack of word vectors
- In training, samples are automatically labelled with a KG class.

Input: Matrix of a Synthetic Column x(e)

ΔΔΔI 2019

Training in ColNet

ColNet trains a CNN for each (candidate) KG class.

- 1. **pre-trains** the CNN with (general) samples from the KG,
- 2. **fine tunes** the CNN with (particular) samples from the table column.

Pre-training: (general) samples from the Knowledge Graph

- We use members/entities of the class in the KG
 - For example (DBPedia): "dbr:Apple_Inc", "dbr:Microsoft",
 "dbr:Google", "dbr:Amazon.com" and "dbr:Alibaba Group" are
 members of the class "dbo:Company".

Pre-training: (general) samples from the Knowledge Graph

- We use members/entities of the class in the KG
 - For example (DBPedia): "dbr:Apple_Inc", "dbr:Microsoft",
 "dbr:Google", "dbr:Amazon.com" and "dbr:Alibaba Group" are members of the class "dbo:Company".
- A sample (or synthetic column) is built by grouping a specific number of entities.
 - For example "dbr:Amazon" and "dbr:Alibaba Group" would form a sample of size 2 for the class "dbo:Company".
 - Matrix representation (stack of the word vectors): v("Amazon") ⊕
 v("Alibaba") ⊕ v("Group")
- The size of the sample is one of our hyper-parameters.

Fine-Tuning: (particular) samples from table column

- KG Look-up: Lexical index based on entity labels
 - * Cells → KG entity
 - * e.g., Apple → "dbr:Apple",
 "dbr:Apple Inc"

Column 2	X
----------	---

Apple MS Google

Fine-Tuning: (particular) samples from table column

- KG Look-up: Lexical index based on entity labels
 - * Cells → KG entity
 - * e.g., Apple → "dbr:Apple",
 "dbr:Apple Inc"
- KG Query:
 - * Entity → KG classes
 - * e.g., "dbr:Apple" \rightarrow "dbo:Fruit"
 - * e.g., "dbr:Apple_Inc" \rightarrow "dbo:Company"

Column X

Apple MS Google

Fine-Tuning: (particular) samples from table column

- KG Look-up: Lexical index based on entity labels
 - * Cells → KG entity
 - * e.g., Apple → "dbr:Apple", "dbr:Apple Inc"
- KG Query:
 - * Entity → KG classes
 - * e.g., "dbr:Apple" → "dbo:Fruit"
 - * e.g., "dbr:Apple Inc" \rightarrow "dbo:Company"

Column X **Apple** MS

Google

Sample generation: segments of the column that are "dbo:Company".

Negative samples for a KG class (training)

- Balanced positive and negative samples
- Source of (general) negative samples:
 - * Exploits non members (especially from disjoint classes)

Negative samples for a KG class (training)

- Balanced positive and negative samples
- Source of (general) negative samples:
 - * Exploits non members (especially from disjoint classes)
- Source of (particular) negative samples:
 - * Entities that are disjoint with the KG class and appear together in the column
 - * e.g., members of "dbo:Fruit" like "dbr:Apple"

Training with transfer learning in ColNet

- Recall two steps CNN training: pre-training and fine-tuning
- Benefits:
 - Pre-training: deals with the shortage of particular samples: knowledge gap or short columns
 - Fine-tuning: Bridge the data distribution gap between KG entities and table cells
- [Impact analysis in the evaluation]

Prediction in ColNet

- Prediction samples are composed by segments of the column
- In our example: ("Apple", "MS", "Google") as column.
 - e.g. size 1: v("Apple").
 - e.g. size 2: v("Apple") ⊕ v("Google").
 - e.g. size 3: v("Apple") ⊕ v("Google") ⊕ v("MS").

Prediction in ColNet

- Prediction samples are composed by segments of the column
- In our example: ("Apple", "MS", "Google") as column.
 - e.g. size 1: v("Apple").
 - e.g. size 2: v("Apple") ⊕ v("Google").
 - e.g. size 3: v("Apple") ⊕ v("Google") ⊕ v("MS").
- Benefit of the sample size: learn inter-cell correlations (locality features) by CNN
 - Expected prediction: "dbo:Company"
 - Prediction cell by cell: score from 0.33 to 0.66
 - Prediction score considering the correlation between cells \approx 1.0
 - [Impact analysis in the evaluation]

Evaluation

Evaluation setting: data

- DBPedia as the KG
- Word embedding: Word2vec model trained with the latest dump of Wikipedia pages
- T2Dv2 (tables from the Web) and Limaye (tables from Wikipedia pages) datasets
- Limaye dataset more challenging in terms of knowledge gap

Name	Columns	Avg. Cells	Different "Best" ("Okay") Classes
T2Dv2	411	124	56 (35)
Limaye	428	23	21 (24)

Evaluation setting: ground truth and baselines

Evaluation models

 Strict (best hit only) and tolerant (compatible hits) evaluation models

Baselines

- DBPedia Lookup + Vote
- T2K Match [Ritze et al. WIMS'15]
- Efthymiou + Vote [Efthymiou et al. ISWC'17]
- Other state of the art systems not available

Our methods: ColNet and ColNet_{Ensemble}

ColNet Ensemble

 $-s^c$: ensemble score for class c

$$s^c = egin{cases} v^c, & ext{if } v^c \geq \sigma_1 ext{ or } v^c < \sigma_2 \ p^c, & ext{otherwise} \end{cases}$$

- $-v^c$: voting score computed as the rate of cells linked to the class c.
- $-p^c$: average of the scores predicted by the CNNs for each synthetic column (prediction sample).

ColNet Ensemble

 $-s^c$: ensemble score for class c

$$s^c = egin{cases} v^c, & ext{if } v^c \geq \sigma_1 ext{ or } v^c < \sigma_2 \ p^c, & ext{otherwise} \end{cases}$$

- $-v^c$: voting score computed as the rate of cells linked to the class c.
- $-p^c$: average of the scores predicted by the CNNs for each synthetic column (prediction sample).
- Benefits:
 - Classes voted by the majority of cells typically have high precision.
 - The CNN-based prediction model focuses on the cases where there is ambiguity in the matched entities or a significant knowledge gap.

Overall Results on Limaye

Precision (P), Recall (R), F1 score (F)

Models	Methods	PK Columns			
Models	Methods	Р	R	F	
	ColNet _{Ensemble}	0.796	0.799	0.798	
	ColNet	0.763	0.820	0.791	
Tolerant	Lookup-Vote	0.732	0.660	0.694	
	T2K Match	0.560	0.408	0.472	
	Efthymiou17-Vote	0.759	0.414	0.536	
Strict	ColNet _{Ensemble}	0.602	0.639	0.620	
	ColNet	0.576	0.619	0.597	
	Lookup-Vote	0.571	0.447	0.501	
	T2K Match	0.453	0.330	0.382	
	Efthymiou17-Vote	0.626	0.357	0.454	

Prediction impact

- ColNet_{Ensemble} and ColNet > Lookup-Vote
- Improvement of recall

Ensemble impact

- ColNet_{Ensemble} > ColNet
 - Improvement of precision

Comparison with the state-of-the-art

- ColNet_{Ensemble} and ColNet > T2K Match
- ColNet_{Ensemble} and ColNet has competitive precision as Efthymiou17-Vote, but much higher recall and F1 score

Overall Results on T2Dv2

Precision (P), Recall (R), F1 score (F)

Models	Methods	All Columns			PK Columns		
iviodeis	ivietilous	Р	R	F	Р	R	F
Tolerant	ColNet _{Ensemble}	0.917	0.909	0.913	0.967	0.985	0.976
	ColNet	0.845	0.896	0.870	0.927	0.960	0.943
	Lookup-Vote	0.909	0.865	0.886	0.965	0.960	0.962
	T2K Match	0.664	0.773	0.715	0.738	0.895	0.809
Strict	ColNet _{Ensemble}	0.853	0.846	0.849	0.941	0.958	0.949
	ColNet	0.765	0.811	0.787	0.868	0.898	0.882
	Lookup-Vote	0.862	0.821	0.841	0.946	0.941	0.943
	T2K Match	0.624	0.727	0.671	0.729	0.884	0.799

- Prediction impact
- Ensemble impact
- Knowledge gap impact
 - Limaye is harder than T2Dv2
 - Limaye has shorter columns in average, which causes larger knowledge gap
 - Improvements of ColNet_{Ensemble} and ColNet on Limaye are more significant, since ColNet deals with the knowledge gap

Impact of synthetic column size on CNNs

The testing performance of CNNs on Truly Matched (TM) classes [left] and Falsely Matched (FM) classes [right] for types of columns: Place, Person, Species & Organization. AUC: area under ROC curve,

AS: average score

Impact of transfer learning and the knowledge gap on CNNs

- The testing performance of CNNs of TM classes [above] and FM classes [below]
 - under different knowledge gaps
 - with and without transfer learning
 - four types of columns: Place, Person,
 Species and Organization
- The knowledge gap is simulated by randomly selecting a ratio of particular entities for training. The lower ratio, the larger gap.

Future Work

Future work

- Learning stronger table locality features (contextual semantics)
- Use ColNet as the basis for other Web table to KG matching tasks
- Application of ColNet in the data science pipeline as an Al assistant
 - Communication with ptype and DataDiff
- Iterative creation of a shared KG: general knowledge, output from AI assistants, semantic data governance, etc.
- Proposal of a Semantic Web Challenge on Tabular Data to Knowledge Graph Matching

Questions?

Main contacts:
Jiaoyan Chen (jiaoyan.chen@cs.ox.ac.uk)
Ernesto Jimenez Ruiz (ejimenez-ruiz@turing.ac.uk)

Sources, datasets, paper and slide:

https://github.com/alan-turing-institute/SemAIDA/

The Alan Turing Institute

