CSE 211: Discrete Mathematics

(Due: 24/12/19)

Homework #4

Instructor: Dr. Zafeirakis Zafeirakopoulos Name: Student Id:

Assistant: Gizem Süngü, Baak Karaka

Course Policy: Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- It is not a group homework. Do not share your answers to anyone in any circumstance. Any cheating means at least -100 for both sides.
- Do not take any information from Internet.
- No late homework will be accepted.
- For any questions about the homework, send an email to gizemsungu@gtu.edu.tr
- Submit your homework into Assignments/Homework4 directory of the CoCalc project CSE211-2019-2020.

Problem 1: Nonhomogeneous Linear Recurrence Relations

(15+15=30 points)

Consider the nonhomogeneous linear recurrence relation $a_n = 3a_{n-1} + 2^n$.

(a) Show that whether $a_n = -2^{n+1}$ is a solution of the given recurrence relation or not. Show your work step by step.

(Solution)

1) if
$$a_n = -2^{n+1}$$
 $a_{n-1} = -2^n$ 2) $-2^{n+1} = -3 \cdot 2^n + 2^n$ $-2^{n+1} = -2 \cdot 2^n$

 $3)-2^{n+1}=-2^{n+1}$ Yes $a_n=-2^{n+1}$ is a solution of the given recurrence relation.

(b) Find the solution with $a_0 = 1$.

For n = 0 $a_0 = c_1 - 2 = 1$

(Solution)

1)
$$a_n = a_n$$
 (h) $+ a_n$ (p)
2) For a_n (h)
 $a_n = 3a_{n-1}$ if we assume that $a_{n-1} = 1$ and $a_n = 1$ r = 3.1 => root
 $a_n = c_1.3^n + a_n$ (p)
3) For a_n (p)
if we assume that $a_n = A.2^n$
 $a_{n-1} = A.2^{n-1}$ if we put this equation to general relation we get;
 $A.2^n = 3.A.2^{n-1} + 2^n$
 $A = 3A/2 + 1$
 $A = -2$
 a_n (p) = -2.2ⁿ⁻¹
4) a_n (general) = $c_1.3^n - 2.2^{n-1}$

- Homework #4 2

$$c_1 = 3$$

5) $a_n (general) = 3.3^n - 2.2^{n-1} = 3^{n+1} - 2.2^{n-1}$

Problem 2: Linear Recurrence Relations

(35 points)

Find all solutions of the recurrence relation $a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3} + n4^n$ with $a_0 = -2$, $a_1 = 0$, and $a_2 = 5$.

(Solution)

```
1) This relation is nonhomogenous relation so relation have homogenous and partial part.
```

The fraction for formalises for the form
$$a_n$$
 $(g) = a_n$ $(h) + a_n$ (p)
 $2)a_n$ $(h) = 7a_{n-1} - 16a_{n-2} + 12a_{n-3}$
3) we assume that $a_{n-3} = 1$, $a_{n-2} = r$, $a_{n-1} = r^2$ and $a_n = r^3$
4) $r^3 = 7r^2 - 16r + 12$
 $r^3 - 7r^2 + 16r - 12 = 0$
 $(r-2)^2 \cdot (r-3) = 0$
 $r_1 = 3$, $r_2 = 2$ and $r_3 = 2$
5) a_n $(h) = c_1$ $3^n + c_2$ $2^n + c_3$ 2^n .n
6) For a_n (p)
we assume that a_n $(p) = (A \cdot n + B) \cdot 4^n$
 $a_{n-1} = (A \cdot (n-1) + B) \cdot 4^n - 1$

we assume that
$$a_n(p) = (A.n + B) \cdot 4^n$$

$$a_{n-2} = (A.(n-2) + B).4^{(n-2)}$$

$$a_{n-2} = (A.(n-2) + B).4(n-2)$$

$$a_{n-3} = (A.(n-3) + B) . 4^{(n-3)}$$

$$(A.n + B) .4^n = 7(A.(n-1) + B) .4^(n-1) -16(A.(n-2) + B) .4^(n-2) +12 (A.(n-3) + B) .4^(n-3) + n.4^n + n.4^$$

if we solve this equation we get that;

$$A = 16$$
 and $B = -80$

$$a_n(p) = (16.n - 80) .4^n$$

7)
$$a_n(g) = c_1 3^n + c_2 2^n + c_3 2^n \cdot n + (16 \cdot n - 80) \cdot 4^n$$

for
$$n=0$$

$$c_1 + c_2 - 80 = -2$$

for n=1

$$3.c_1 + 2.c_2 + 2.c_3 - 256 = 0$$

for n=2

$$9.c_1 + 4.c_2 + 8.c_3 - 768 = 5$$

if we calculate this three equation we find c_1 c_2 c_3

$$c_1 = 61 \ c_2 = 39/2 \ \text{and} \ c_3 = 17$$

$$8)a_n(g) = 61. \ 3^n + 39/2. \ 2^n + 17. \ 2^n.n + (16.n - 80) \ .4^n$$

Problem 3: Linear Homogeneous Recurrence Relations

(20+15 = 35 points)

Consider the linear homogeneous recurrence relation $a_n = 2a_{n-1} - 2a_{n-2}$.

(a) Find the characteristic roots of the recurrence relation.

(Solution)

1)if we assume that
$$a_{n-2}=1$$
 , $a_{n-1}=r$ and $a_n=r^2$ r^2 -2r $+2=0$

$$\Delta = b^2$$
 - 4.a.c

 $\Delta = -4$ so roots of the relation is complex numbers

$$\begin{array}{l} {\bf r} = -(-2) + \sqrt{\triangle} \ / \ 2.{\bf a} \\ r_1 = -(-2) + \sqrt{-4} \ / \ 2 = 1 + {\bf i} \\ r_2 = -(-2) - \sqrt{-4} \ / \ 2 = 1 - {\bf i} \end{array}$$

$$T_2 = -(-2) - \sqrt{-4} / 2 = 1$$

 $r_1 = 1 + i \text{ and } r_2 = 1 - i$

(b) Find the solution of the recurrence relation with $a_0 = 1$ and $a_1 = 2$.

(Solution)

- Homework #4

$$\begin{array}{l} a_n \ (h) = c_1 \ . \ (1+i)^{\ n} + c_2 \ . \ (1-i)^{\ n} \\ \text{for n=0} \\ 1 = c_1 + c_2 \\ \text{for n=1} \\ 2 = c_1 \ . \ (1+i) + c_2 \ . \ (1-i) \\ c_1 + c_2 + \mathrm{i.} (c_1 - c_2) = 2 \\ c_1 - c_2 = -\mathrm{i} \\ c_1 + c_2 = 1 \\ \end{array}$$

$$c_1 = \frac{1-i}{2} \text{ and } c_2 = \frac{1+i}{2} \text{ so}$$

$$a_n \ (h) = \frac{1-i}{2} \ . \ (1+i)^{\ n} + \frac{1+i}{2} \ . \ (1-i)^{\ n} \end{array}$$