Using Region Tests to Evaluate PAC Bounds

Thomas Walker

Imperial College London thomas.walker21@imperial.ac.uk

September 4, 2023

Notation and Definitions

- Feature space \mathcal{X} , a label space \mathcal{Y} to form data space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ on which unknown distribution \mathcal{D} is defined.
- Training data $S = \{(x_i, y_i)\}_{i=1}^m \overset{\text{i.i.d}}{\sim} \mathcal{D}^m$.
- Parameter space W indexing a hypothesis set $\mathcal{H} = \{h_{\mathbf{w}} : \mathbf{w} \in \mathcal{W}\}.$
 - The h_w are neural networks, with w being a vector of weights and biases.
- Loss function, $I: \mathcal{Y} \times \mathcal{Y} \rightarrow [0, C]$ quantifies performance of a hypothesis.

Notations and Definitions

Definition

The risk of a hypothesis is $R(\mathbf{w}) = \mathbb{E}_{(x,y) \sim \mathcal{D}} (I(h(x),y))$ and its empirical risk is $\hat{R}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} I(h_{\mathbf{w}}(x_i), y_i).$

Note that $\mathbb{E}_{\mathsf{S}\sim\mathcal{D}^m}\left(\hat{R}(\mathbf{w})\right)=R(\mathbf{w}).$

Remarks

- We don't know R(w).
- We train for low R̂(w).
- The generalization gap is $R(\mathbf{w}) \hat{R}(\mathbf{w})$.

Goal

Bound the generalization gap with high probability.

Bounds¹

Uniform Convergence Bounds

$$\left\|\mathbb{P}_{\mathcal{S}\sim\mathcal{D}^m}\left(\sup_{\mathbf{w}\in\mathcal{W}}\left|R(\mathbf{w})-\hat{R}(\mathbf{w})
ight|\leq\epsilon\left(rac{1}{\delta},rac{1}{m},\mathcal{W}
ight)
ight)\geq1-\delta.$$

Algorithmic-Dependent Bounds

$$\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m} \left(\left| R\left(A(S) \right) - \hat{R}\left(A(S) \right) \right| \leq \epsilon \left(\frac{1}{\delta}, \frac{1}{m}, A \right) \right) \geq 1 - \delta.$$

With equivalent expectation bounds.

¹Viallard, Germain, Habrard, and Morvant 2021.

Overview

Figure: A sketch depicting the motivation of the investigation

Assumption

Assumption

For a parameter ${\bf w}$ we can guarantee that $h_{\bf w}$ performs as expected on a region $\Delta\subset {\cal Z}$.

• For the 0-1 error this means $I_{\Delta}(\mathbf{w}) = 0$.

Questions

- How can we leverage this information to update our PAC bounds?
- How do these updates compare to increasing the size of the training data?

Leveraging the Assumption

We obtain information about the shape of $\mathcal D$ in the region Δ . Suppose we have a value for

$$p_{\Delta} = \mathbb{P}_{z \sim \mathcal{D}}(z \in \Delta) = \int_{z \in \Delta} \mathcal{D}(z) dz.$$

There are two potential improvements we can make to a PAC bound.

- 1. Tighten the bound, or
- 2. Improve the confidence with which the bound holds.

PAC Bound²

Theorem (PAC-Bound)

For a fixed $\mathbf{w} \in \mathcal{W}$, let $\delta \in (0,1)$ then it follows that

$$\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m} \left(R(\mathbf{w}) \leq \hat{R}(\mathbf{w}) + C \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2m}} \right) \geq 1 - \delta.$$

Approach

- 1. Rework the proof of the theorem with our added assumption.
- 2. Condition the probability with our added assumption.

²Alquier 2023.

Improving Bounds

Theorem

For $\mathbf{w} \in \mathcal{W}$ and $\delta \in (0,1)$ we have that

$$\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m} \left(R(\mathbf{w}) \leq \hat{R}(\mathbf{w}) + \mathit{CB}(m, p_\Delta, \delta) \middle| I_\Delta(\mathbf{w}) = 0 \right) \geq 1 - \delta$$

for

$$B(m, p_{\Delta}, \delta) = \sqrt{\frac{\log\left(\frac{(1-p_{\Delta})+\sqrt{(1-p_{\Delta})^2+4\delta^{\frac{1}{m}}p_{\Delta}}}{2\delta^{\frac{1}{m}}}\right)}{2}}$$

Remark

- With $p_{\Lambda} = 0$ we recover Theorem PAC-Bound.
- With $p_{\Delta} = 1$ we note that $B(m, p_{\Delta}, \delta) > 0$.

Theorem

For $\mathbf{w} \in \mathcal{W}$ and $\delta \in (0,1)$ we have that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(R(\mathbf{w}) \leq \hat{R}(\mathbf{w}) + C \sqrt{\frac{\log \left(\frac{1}{\delta}\right)}{2m}} \middle| I_{\Delta}(\mathbf{w}) = 0 \right)$$

$$\geq 1 - \left(\sum_{k=1}^m {m \choose k} \delta_k p_{\Delta}^{m-k} (1 - p_{\Delta})^k \right)$$

where

$$\delta_k = \frac{1}{\left(\frac{1}{\delta}\right)^{\frac{m^2}{k^2}}}.$$

Remark

- With $p_{\Delta} = 0$ we recover Theorem PAC-Bound.
- With $p_{\Delta} = 1$ we get full confidence in our bound.

PAC-Bayes Framework

Bayesian Machine Learning

- 1. A prior distribution π is defined on the parameter space.
- 2. A learning algorithm forms the updated posterior distribution ρ from the training data.
- 3. Infer a parameter from the posterior distribution to define a learned network.

Added Assumption

A subset of the parameter space, $\Omega \subset \mathcal{W}$, such that for $\mathbf{w} \in \Omega$ we have that $I_{\Delta}(\Omega) = 0$.

Conditioned PAC-Bayes Bound

Theorem

For all $\lambda > 0$, for all $\rho \in \mathcal{M}(\mathcal{W})$ and $\delta \in (0,1)$, conditioned on the fact that $I_{\wedge}(\Omega)$

$$R(\rho) \leq \hat{R}(\rho) + \frac{\log(B(\lambda, m, p_{\Delta}, p_{\Omega})) + \mathrm{KL}(\rho, \pi) + \log(\frac{1}{\delta})}{\lambda},$$

holds with probability greater than $1-\delta$ over sampled training sets S where

$$B(\lambda, m, p_{\Delta}, p_{\Omega}) = p_{\Omega} \left(p_{\Delta} + (1 - p_{\Delta}) \exp\left(\frac{\lambda^2 C^2}{8m^2}\right) \right)^m + (1 - p_{\Omega}) \exp\left(\frac{\lambda^2 C^2}{8m}\right).$$

The original theorem was taken from Catoni 2009.

Approximating p_{\wedge}

Using an independent random sample S_A we can form a confidence interval for p_{Δ} .

- 1. Let Z_i be random variable that $z_i \in S_A$ is in Δ .
 - 1.1 $Z_i \sim \text{Bern}(p_{\wedge})$.
- 2. Define the estimator \hat{p}_{Δ} .
- 3. Construct $1-\alpha$ one-sided Clopper-Pearson (exact) confidence interval

$$[q_B(\alpha, m_A\hat{p}_\Delta, m_A - m_A\hat{p}_\Delta + 1), 1].$$

Update our result accordingly

$$\mathbb{P}_{S \sim \mathcal{D}^m} \Big(R(\mathbf{w}) \leq \hat{R}(\mathbf{w}) + B \Big(q_B(\alpha, m_A \hat{p}_\Delta, m_A - m_A \hat{p}_\Delta + 1) \Big) \Big)$$

$$\geq 1 - (\delta + \alpha(1 - \delta)).$$

- Define discrete underlying distribution.
- Sample m points randomly.
 - m_A = ηm points to approximate p_Δ,
 - $m_E = \zeta(1-\eta)m$ points to determine empirical error, and
 - $m_T = (1 \zeta)(1 \eta)m$ points to train the network.
- 1. Train with cross-entropy loss.
- 2. Determine correctly classified points of the underlying distribution, C.
- 3. Sample C to determine Δ .
- 4. Approximate Δ using the determined segment.
- 5. Evaluate empirical 0-1 error on the m_E points.
- 6. Evaluate bound.

Bounds on MNIST

Comparison to Point Bounds

(a) 10000 samples to evaluate the point bound.

(b) 25000 samples to evaluate the point bound.

Uniform Bounds

Let

$$\mathcal{D}_{\Delta}(z) = \begin{cases} \frac{\mathcal{D}(z)}{\rho_{\Delta}} & z \in \Delta \\ 0 & \text{otherwise,} \end{cases} \quad \mathcal{D}_{\Delta'}(z) = \begin{cases} \frac{\mathcal{D}(z)}{1-\rho_{\Delta}} & z \in \Delta' \\ 0 & \text{otherwise.} \end{cases}$$

Then,

$$R(\mathbf{w}) = p_{\Delta}R_{\Delta}(\mathbf{w}) + (1 - p_{\Delta})R_{\Delta'}(\mathbf{w}). \tag{1}$$

for

$$R_{\Delta}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}_{\Delta}}(I_z(\mathbf{w})), \text{ and } R_{\Delta'}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}_{\Delta'}}(I_z(\mathbf{w})).$$

Proposition

With notation as above we have that,

$$\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m} \left((1 - p_{\Delta}) R_{\Delta'}(\mathbf{w}) \leq \hat{R}(\mathbf{w}) + B(\delta, m) - p_{\Delta} R_{\Delta}(\mathbf{w}) \right) \geq 1 - \delta,$$

for all $\mathbf{w} \in \mathcal{W}$ and $\delta \in (0,1)$.

Experiment Details

- 1. Obtain a sample of size m from our data space according to a discrete underlying distribution.
- 2. Partition the data set according to some parameter ξ .
 - 2.1 Use ξm data points to determine the region Δ .
 - ηξm points to approximate p_Δ.
 - $(1 \eta)\xi m$ points to train a network to determine the region Δ .
 - 2.2 $(1 \xi)m$ points to evaluate our bound.
 - $(1-\zeta)(1-\xi)m$ points to train the model.
 - $\zeta(1-\xi)m$ points to evaluate the empirical errors for the bound.

Results

Figure: Plot of the value $\hat{R}(\mathbf{w}) + B(\delta, \zeta(1-\xi)m) - p_L R_{\Delta}(\mathbf{w})$ for $\zeta = 0.3$, and $\xi \in \{0.3, 0.5, 0.7\}$.

Summary

Conclusions

- Bounds can be updated not only by increasing training data size but also by using regional certificates of model performance.
- Updating bounds with this information can break the uniformity of results.
- Improvements in bounds through conditioning on regional certificates of neural network performance to are not significant.

Future Work

- Understand how this could work with other techniques for optimizing PAC bounds, such as data-informed priors, and compression bounds.
- Investigate whether informed sampling is effective.

References

- Catoni, Olivier (Jan. 2009). "A PAC-Bayesian approach to adaptive classification". In.
- Viallard, Paul, Pascal Germain, Amaury Habrard, and Emilie Morvant (2021). A General Framework for the Disintegration of PAC-Bayesian Bounds.
- Alquier, Pierre (2023). User-friendly introduction to PAC-Bayes bounds.