2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

1	Deterministic Finite Accepters (DFA)
2	Nondeterministic Finite Accepters (NFA)
3	Equivalence of DFA and NFA
4	Reduction of the Number of States in FA*

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

all the input is consumed

AND

the automaton is in a final state

Example

aa is accepted by the NFA:

because this computation accepts $\mathcal{A}\mathcal{A}$

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string:

All the input is consumed and the automaton is in a non-final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aga is rejected by the NFA:

All possible computations lead to rejection

Language accepted:

$$L = \{aa\}$$

Lambda(λ) Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aga is rejected

Language accepted:

$$L = \{aa\}$$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Remarks:

•The λ symbol never appears on the input tape

•Simple automata:

•NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

: a finite set of internal states

: a finite set of symbols called **input alphabet**

 $\delta: \mathsf{Q} \times (\Sigma \cup \{\lambda\}) \to 2^\mathsf{Q}$ called transition function : $\mathsf{Q} \times \Sigma \to \mathsf{Q}$ (DFA)

 q_0 : $q_0 \in Q$ is the initial state

F : F ⊆ is a set of final states

Difference Between DFA and NFA

 δ : Q x (Σ U { λ }) \rightarrow 2 Q

In NFA

- The range of δ is in the powerset $2^{\mathbb{Q}}$
- It allows λ as the second argument of δ
- The set δ (q_i, a) may be empty

Assume NFA wants to accept every string (try the best move)

Example 2.8

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10} *$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

Example 2.9

$$\delta * (q_1, a) = \{q_0, q_1, q_2\}$$

$$\delta * (q_2, \lambda) = \{q_0, q_1, q_2\}$$

$$\delta * (q_2, aa) = \{q_0, q_1, q_2\}$$

The length of a walk labeled a between q₁ and q₂ is 4

The Language of an NFA M

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\stackrel{\searrow}{\longrightarrow} \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \quad ab \in L(M)$$

$$\Longrightarrow \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \qquad abaa \in L(M)$$

$$\stackrel{>}{\longrightarrow} \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$\rightleftharpoons F$$

$$L(M) = \{ab\} * \{aa\} \cup \{ab\} *$$

Definition 2.6

The language L accepted by an NFA M is defined as the set of all accepted strings:

$$L(M) = \left\{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \phi \right\}$$

$$w \in L(M) \qquad \delta^*(q_0, w)$$

$$q_i \qquad q_k \in F$$

Why Nondeterminism?

- Many deterministic algorithms require that one make a choice at some stage (game-playing program, TSP, etc)
- Nondeterminism is sometimes helpful in solving problems easily

a

Why Nondeterminism?

 Nondeterminism is an effective mechanism for describing some complicated languages concisely.

Ex: S \rightarrow aSb | λ

More Examples

All strings that contain the substring 0101.

More Examples

All strings containing exactly 4 0s or an even number of 1s. (8 states)

Outline

Equivalence of Machines

Definition 2.7:

Two finite accepters M₁ and M₂ are said to be equivalent if

$$L(M_1) = L(M_2),$$

that is, if they both accept the same language.

Example of equivalent machines

$$L(M_1) = \{10\} *$$

DFA v.s. NFA

- Which one is more powerful?
- "More powerful" means
 - An automaton of one kind can achieve something that cannot be done by any automaton of the other kind
- Trivially, DFA is a restricted kind of NFA

NFAs and DFAs have the same computation power

We will prove:

 Languages accepted by NFAs
 —
 Regular Languages

Languages

accepted

by DFAs

90

Step 1

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Step 2

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

NFA to DFA: Remarks

We are given an NFA M

We want to convert it to an equivalent DFA M^{\prime}

With
$$L(M) = L(M')$$

If the NFA has states q_0, q_1, q_2, \dots

the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to DFA

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example 2.12

DFA
$$M'$$

$$\longrightarrow \{q_0\}$$

Procedure NFA to DFA

2. For every DFA's state $\{q_i,q_j,...,q_m\}$ Compute in the NFA

Add transition to DFA

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_i, q'_j, ..., q'_m\}$$

Example 2.12

DFA M'

Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example 2.12

Procedure NFA to DFA

3. For any DFA state $\{q_i, q_j, ..., q_m\}$

If some q_j is a final state in the NFA

Then, $\{q_i, q_j, ..., q_m\}$ is a final state in the DFA

M**NFA** \boldsymbol{a}

$$q_1 \in F$$

NFA M DFA M'

Theorem 2.2

Take NFA M

Apply procedure to obtain DFA M^{\prime}

Then M and M' are equivalent:

$$L(M) = L(M')$$

Proof

NFA M DFA M'

$$L(M) = L(M')$$

$$L(M) \subseteq L(M')$$
 and $L(M) \supseteq L(M')$

NFA M DFA M'

First we show: $L(M) \subseteq L(M')$

Take arbitrary:
$$w \in L(M)$$

We will prove:
$$w \in L(M')$$

$$M: - q_0$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M: -q_0 \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_f$$

We will show that if $w \in L(M)$

NFA M DFA M'

More generally, we will show that if $\inf M$: DFA

(arbitrary string) $v = a_1 a_2 \cdots a_n$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j \xrightarrow{a_n} q_m$$

$$M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_i,...\}} \underbrace{\{q_j,...\}}_{\{q_j,...\}} \underbrace{\{q_l,...\}}_{\{q_m,...\}}$$

Proof by induction on |v|

NFA M DFA M'

Induction Basis:

$$v = a_1$$

$$M: -q_0 \xrightarrow{a_1} q_i$$

$$M'$$
: q_0 q_i ...}

Induction hypothesis: $1 \le |v| \le k$

$$v = a_1 a_2 \cdots a_k$$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j -q_c \xrightarrow{a_k} q_d$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{q_c,...} \{q_c,...\}$$

Induction Step: |v| = k + 1

NFA M DFA M'

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: \xrightarrow{q_0} \xrightarrow{a_1} \xrightarrow{q_i} \xrightarrow{a_2} \xrightarrow{q_j} \xrightarrow{q_c} \xrightarrow{a_k} \xrightarrow{q_d}$$

$$M': \longrightarrow \underbrace{ \begin{array}{c} a_1 \\ \{q_0\} \end{array}}_{\{q_i,\ldots\}} \underbrace{ \begin{array}{c} a_2 \\ \{q_j,\ldots\} \end{array}}_{\{q_j,\ldots\}} \underbrace{ \begin{array}{c} a_k \\ \{q_c,\ldots\} \end{array}}_{\{q_d,\ldots\}} \underbrace{ \begin{array}{c} a_k \\ \{q_d,\ldots\} \end{array}}_{\{q_d,\ldots\}}$$

Induction Step: |v| = k + 1

NFA M DFA M'

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j \xrightarrow{a_k} q_d \xrightarrow{a_{k+1}} q_e$$

$$M': \longrightarrow \underbrace{a_1}_{\{q_0\}} \underbrace{a_2}_{\{q_i,\ldots\}} \underbrace{a_k}_{\{q_c,\ldots\}} \underbrace{a_{k+1}}_{\{q_c,\ldots\}} \underbrace{a_{k+1}}_{\{q_e,\ldots\}}$$

Therefore if

$$w \in L(M)$$

We have shown: $L(M) \subseteq L(M')$

We also need to show: $L(M) \supseteq L(M')$

(proof is similar)

NFAs accept the Regular Languages

Exercise 2.3.7

Any NFA can be converted

to an equivalent NFA

with a single final state

Example

In General

NFA

Equivalent NFA

Extreme Case

NFA without final state (it accepts φ)

Add a final state Without transitions

Outline

$$\delta(q_0, 0) = q_1$$

$$\delta(q_0, 1) = q_2$$

Definition 2.8

Two steps p and q of a DFA are called indistinguishable if

$$\delta^*(p, w) \in F \text{ implies } \delta^*(q, w) \in F,$$

And

$$\delta^*(p, w) \notin F \text{ implies } \delta^*(q, w) \notin F,$$

For all w $\in \Sigma^*$. If on the other hand, there exists some string w $\in \Sigma^*$ such that

$$\delta^*(p, w) \in F \text{ implies } \delta^*(q, w) \notin F,$$

Or vice versa, then the state p and q are said to be distinguishable by a string w.

$$\delta(q_0, 0) = q_1 \\ \delta(q_1, 0) = q_2$$

Thus q_0 and q_1 are distinguishable $\{q_0, q_1, q_3\} \rightarrow \{q_0\} \{q_1, q_3\}$

$$\delta(q_2, 0) = q_1$$

 $\delta(q_4, 0) = q_4$

Thus q_2 and q_4 are distinguishable $\{q_2, q_4\} \rightarrow \{q_2\} \{q_4\}$

Questions?