IBM PROJECT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

DOMAIN - ARTIFICIAL INTELLIGENCE

SUBMITTED BY:

HEMANTH S (510419104034) DHANCHEZIAN S (510419104021) ARUN D (510419104013) ARUN N (510419104014)

Project Report Format

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
 - 7.1 Feature 1
 - 7.2 Feature 2
 - 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing
- 9. RESULTS
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX Source Code GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

- Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing.
- It is the capability of the computer to identify and understand handwritten digits or characters automatically.
- Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort.
- Hence, there comes a need for handwritten digit recognition in many real-time applications.
- MNIST data set is widely used for this recognition process and it has 70000 handwritten digits.
- We use Artificial neural networks to train these images and build a deep learning model.
- Web application is created where the user can upload an image of a handwritten digit.
- This image is analyzed by the model and the detected result is returned on to UI.

1.2 Purpose

- This manuscript aims to propose a novel neural network based framework for handwritten character recognition.
- The proposed neural network based framework, transforms the raw data set to a umPy array to achieve image flattening and feeds the same into a pixel vector before feeding it into the network.

2. LITERATURE SURVEY

2.1 Existing problem

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits

2.2 References

- 1. Ishani Patel, ViragJagtap and OmpriyaKale."A Survey on Feature Extraction Methods for Handwritten Digits Recognition", International Journal of Computer Applications, vol. 107, no. 12, pp. 11-17, 2014.
- 2. Viragkumar N. Jagtap, Shailendra K. Mishra,"Fast Efficient Artificial Neural Network for Handwritten Digit Recognition", International Journal of Computer Science and Information Technologies, vol. 52, no. 0975- 9646, pp. 2302-2306, 2014.
- 3. Saeed AL-Mansoori,"Intelligent Handwritten Digit Recognition using Artificial Neural Network", Int. Journal of Engineering Research and Applications, vol. 5, no. 5, pp. 46-51, 2015.

2.3 Problem Statement Definition

Handwritten digit recognition is very important as it will be very helpful to reduce human effort. As each individual has different handwritings for representing digits, the system should have a capability to identify every handwriting with maximum accuracy. Such a system will be useful to reduce human interventions in identification, as everything is being digitized. The main objective of this work is to ensure effective and reliable approaches for recognition of handwritten digits and make banking operations easier and error free. Handwriting recognition has gained a lot of attention in the field of pattern recognition and machine learning due to its application in various fields. Various techniques have been proposed to for digit recognition in handwriting recognition system.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to helps teams better understand their users. Creating an effecting solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Example:

Reference: https://www.mural.co/templates/empathy-map-canvas

3.2 Ideation & Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Reference: https://www.mural.co/templates/empathy-map-canvas

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

3.3 Proposed Solution.

S.	Parameter	Description
no 1	Problem Statement (Problem to be solved)	• To make the computer applications to recognize the human handwritten digits for the clear understanding.
2	Idea / Solution description	 It is the capability of a computer to identify the mortal handwritten numbers from different sources like images and papers. The system can get the input either using scanner or uploading the image. Then it compile the file and return the number as output.
3	Novelty / Uniqueness	 A perfect transcription would be able to distinguish known and unknown digits in a number. In handwritten number might include, among other things, a change in the writer, character properties, writing attributes. Instead of examining each element separately, we believe that an integrated agent capable of processing known characters and novelties concurrently is a superior technique.
4	Social Impact / Customer Satisfaction	 To reading postal code and bank check amounts, it is also useful for reading forms. As the system is being used in socially crowded places such as banks to check amounts, it should be fast and reliable.
5	Business Model (Revenue Model)	 It can be integrated with Postal system to identify and recognize the pin-code details easily. This system can be integrated with traffic surveillance cameras to recognize the vehicle's number plates for effective traffic management.
6	Scalability of the Solution	 It can able to recognize blurry image even in a noisy environment The system doesn't worry about the number of digits. It can able to process the number properly

3.4 Problem Solution fit.

Problem-Solution fit canvas 2.0

Project Title: A Novel Method For Handwritten Digit Recognition System

Team ID -PNT2022TMID29441

TEAM MEMBERS: HEMANTH S , DHANACHEZIAN S , ARUN N , ARUN D

1. CUSTOMER SEGMENT(S) The main customers for our project are: • Person who wants to recognize the Ś nandwritten digit.

• Person who deals with digit; in sector like

Schools, Bank, etc.

6. CUSTOMER

 It is not possible to give a accurate digit recogntion which are written by human all the time. Sometimes it will give an error.

It is hard to implement a machine to find a digit.

5. AVAILABLE SOLUTIONS

The solution is to recognize the numeral and Make notes on paper and a pen. As opposed to employing a system.

AS

2. JOBS-TO-BE-LONE / PROBLEMS

· Create a patform to facilitate Handwritten

- Digit Recognition.
- A platform to make it simpler to recognize the handwritten words.
- Make the recognizing complex words written by human simpler

9. PROBLEM ROOT CAUSE

What is the real reason that this problem exists? What is the back story behind the need to do this job? i.e. customers have to do it because of the change in regulations

In order to recognize handwritten numbers, we must overcome many obstacles. Due to varying writing habits and a lack of Optic character recognition. This tudy provides a thorough comparison of everal machine literacy and Jee, literacy approaches.

7. BEHAVIOUR

Finding the finest software to more quickly and accurately recognize digits

TR & EM

3. TRIGGERS

• It is necessary to make aware of this system is available among the people and make use of it.

• How to use this system efficiently

at most of the time.

4. EMOTIONS: BEFORE / AFTER

problem

TR

EM

10. YOUR SOLUTION

MNIST dataset

Fyou are working on an existing business, write over your access and check how much if this reality.

Fyou are working on a new business proposition, then keep it blank until you fill in the anyus and come up with a solution that fits within customer limitations, solves a

The Handwritten Digit Recognition System, which uses an image of a digit to identify the digit present in the image, offers a solution to this issue. To recognize handwritten numbers, a convolutional neural network model created using PyTorch was deployed to the 8. CHANNELS of BEHAVIOUR

· Use software that is accessible online.

SL

8.2 OFFLINE
What kind of actions do customers take offline? Extract offline channels from #7and use them for customer development

 Obtain current electronics and make sure they function. Extract online & offline CH of B

Before: Make sure the system works correctly

After. How to find a solution while facing a

AMALTAMA

СН

Extract online & offline CH of BE

4. REQUIREMENT ANALYSIS

4.1Functional requirement

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Input	GUI allows the user to input image by
		browsing the device storage
FR-2	Model	The MNIST dataset should be trained using
		CNN to
		create a trained model
FR-3	Prediction	The trained model has to be tested by using
		the test data provided by MNIST and the
		accuracy of the model should be above
		90%
FR-4	Evaluation	Ensure that the output produced by the model
		is
		Correct

4.2Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Can predict digits with accuracy. The
		model can be used in bank check
		processing, data entry etc
NFR-2	Security	It ensures security as the uploaded image is
		not
		stored in any database
NFR-3	Reliability	Can process confidential information
		without data leakage as the data is never
		stored in any database
NFR-4	Performance	Improvement in fast prediction. We use
		CNN
		algorithm for accurate prediction
NFR-5	Availability	Available for web and mobile browsers
NFR-6	Scalability	Helps many individuals with low time
		consumption and high accuracy

5. PROJECT DESIGN

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

- User configures credentials for the Watson Natural Language Understanding service and starts the app.
- 2. User selects data file to process and load.
- 3. Apache Tika extracts text from the data file.
- 4. Extracted text is passed to Watson NLU for enrichment.
- 5. Enriched data is visualized in the UI using the D3.js library.

5.2 Solution & Technical Architecture

5.3 User Stories:

User Type	Functional Requiremen t (Epic)	User Story Numbe r	User Story I Task	Acceptanc e criteria	Priorit y	Release
Customer (Web user)	Home	USN-1	In the Home Page, I can view the guidelines of how to use the website	I can view the guidelines	low	Sprint-1
	Dashboard	USN-2	As a user, I can see Home Page & Prediction Page	I can access the dashboard	Low	Sprint-2
	Choose Input	USN-3	In Prediction Page, I can upload an image of handwritte n digit for prediction	I can upload my input by browsing the device storage	Mediu m	Sprint-3
		USN-4	As a user, I can get an accuracy rate with the prediction	I can get different forms of output	High	Sprint-4

	Recognize	USN-5	As a user, I can see that the GUI processing the input using trained model	I can perform handwritten digit prediction	High	Sprint-1
	Prediction	USN-6	As a user, I can get accuracy rate by pressing the predict button	I can get the accuracy of the output	Mediu m	Sprint-1
Customer (Mobile user)	Home	USN-7	As a user, I can access application in mobile phone	I can access the dashboard with mobile	Mediu m	Sprint-1
	Recognize	USN-8	I can upload input and retrieve output with accuracy by using the mobile	I can upload input image and get output with a mobile device	High	Sprint-2
Transcriptio	Dre	LUSNI 1	Noise in	It uses	High	Sprint-1

Transcriptio n analyst	Pre Processing	USN-1	Noise in the digital handwritte n image can be reduced.	It uses noise filters.	High	Sprint-1
		USN-2	Blurred image can be modified.	Sobel filter can be used to sharpen the image.	High	Sprint-3

Feature Extraction	USN-3	How the features can be identified.	By extracting the foreground image from background image.	Low	Sprint-2
	USN-4	How shape edges can be detected.	Curves of the letters can be found.	Mediu m	Sprint-1
	USN-5	How words are recognized based on sizes.	By identifying the size of the word.	High	Sprint-3
Prediction	USN-6	How letters are predicted.	By comparing the features of each letter with the features of	High	Sprint-4
			actual letters.		

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Use the below template to create product backlog and sprint schedule

Sprint	Functional requirement	User story	User story/Task	Story points	Priority	Team Members
	(epic)	number				
sprint-1	Registration and login	USN-1	As a user, I can register for the applicationby entering my email & password	2	High	Arun D Arun N
Sprint-2	Upload image	USN-2	User can select the image from the localstorage	2	High	Dhanachezien S Arun D
Sprint-3	Predict number	USN-3	After uploading the image it will predict the respective image	2	High	Hemanth S Arun N
Sprint-4	Display	USN-4	The predicted digit will be displayed with accuracy	2	High	Hemanth S Arun D Arun N Dhanachezien s

6.2 Sprint Delivery Schedule

Spri nt	Tot al Story Points	Durati on	Spri nt Start Date	Spri nt End Date (Planned)	Story Points Completed (as on Planned End Date)	Spr int Release Date (Actual)
Sprin t-1	20	6 Days	26- Oct- 22	31-Oct-22	0	31-Oct-22
Sprin t-2	20	6 Days	02- Nov- 22	07-Nov-22	0	07-Nov-22
Sprin t-3	20	6 Days	08- Nov- 22	13-Nov-22	0	13-Nov-22
Sprin t-4	20	6 Days	14- Nov- 22	19-Nov-22	0	19-Nov-22

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

Feature 1 - Input data

Feature 2 - Output data

8. TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis Section

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Totals	6	1	4	3	14

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Totals	6	1	4	3	14

3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

9. RESULTS

9.1 Performance Metrics

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Fitting the Model- loss: 0.0254 val_loss: 0.1560	1
2.	Accuracy	Training Accuracy – 0.9957 Validation Accuracy -0.9797	

10. ADVANTAGES & DISADVANTAGES

- 1) Advantages
 - The main advantage is the ability to scan the digits accurately.
 - Anyone can able to utilize this resource
 - User friendly interface
 - Thus saves time and energy

2) Disadvantages

- Limited number of characters offered by it.
- It can be inaccurate.
- If the marks on the sheet are not dark enough, then it would be hard to read the data and generate a result.

11. CONCLUSION

- ❖ An implementation of Handwritten Digit Recognition using artificial intelligence has been implemented in this project.
- ❖ Additionally, some of the most widely used Machine Learning algorithms i.e. CNN using Tensorflowhave been trained and tested on the same data to draw a comparison as to why we require deep learning methods in critical applications like Handwritten Digit Recognition.
- ❖ By make use of this project we can able to identify the unproper handwritten digits in an effective way.
- ❖ These are very usefull in banking sectors to know the correct information from the client even which are not written clearly.

Chapter 12

12. FUTURE SCOPE

- Addition of a voice assistant
- Auto captcha scanning and auto filling
- Improve the security and authentication

13.APPENDIX

Source Code

i) Home.html

```
📢 File Edit Selection View Go Run Terminal Help
                                                                  home.html - Project - Visual Studio Code
   Ⅲ ...
0
0
         ofe
2
品
   10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
A
           <img id="loading" src="{{url_for('static',filename='images/loading.gif')}}">
8
Ln 1, Col 1 Spaces: 4 UTF-8 LF Django HTML @ Go Live 尽 🚨
                       ji 🥫 🔒 💘 刘
                                                        P Type here to search
```

ii) Predict.html

```
Edit Selection View Go Run Terminal Help
                                                                                          predict.html - Project - Visual Studio Code
                                                                                                                                                                                      ♦ home.html
♦ predict.html ×
♦ app.py
                                                                                                                                                                                                                 Ⅲ ...
templates > O predict.html
0
                          <iitle>Prediction | Handwritten Digit Recognition</fitle>
clink rel="stylesheet" href="{{url_for('static',filename='css/predict.css')}}" />
<link rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}" />
g
$
                         k href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-Zenh87qX5JnK2Jl0vW cmeta name="viewport" content="width-device-width, initial-scale=1.0" />
留
          10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
A
                               <h1>Prediction</h1>
                                  4
                                     <h1>Other Predictions</h1>
                                 hlother Predictions(/hl)
div class="other predictions">
{% for x in others %}
<div class="value">
<div (2,03)\{\nabla_0\}/\nabla_0\}
<div class="accuracy">\{\x.1\}\%\\/\div>
                                    {% endfor %}
8
633
                                                                                                                                                    Ln 1, Col 1 Tab Size: 4 UTF-8 LF Django HTML 🌳 Go Live 🛱 🕻
                                                                                                                                                           Ħ 🗎 🟦 📆 刘
     Type here to search
```

iii) App.py

Github link: https://github.com/IBM-EPBL/IBM-Project-50570-1660916642

Project Demo Link: https://photos.app.goo.gl/WjWGS2vnrjSnCYas6