§1 Cyclic Groups

§1.1 Cyclic Subgroup

```
Let g \in (G, \circ). Notation: \langle g \rangle = \{g^n : n \in \mathbb{Z}\}
Let g \in (G, +). Notation: \langle g \rangle = \{ng : n \in \mathbb{Z}\}
```

§1.2 Examples

```
5 \in \mathbb{Z}. < 5 >= \{\dots, -10, -5, 0, 5, \dots\}
2 \in \mathbb{Z}. < 2 >= \{\text{even integers}\}
5 \in \mathbb{Z}_{10}. < 5 >= \{0, 5\}
6 \in \mathbb{Z}_{10}. < 6 >= \{6, 2, 8, 4, 0\}
2 \in \mathbb{Z}_{10}. < 2 >= \{2, 4, 6, 8, 0\}
3 \in \mathbb{Z}_{10}. < 3 >= \{3, 6, 9, 2, 5, 8, 1, 4, 7, 0\}
```

Note: $\langle 1 \rangle = \langle 3 \rangle = \langle 7 \rangle = \mathbb{Z}_{10}$. These capture the whole group.

Theorem 4.3 - Let G be a group. Let $x \in G$, then < x > is a subgroup of G. Another way of thinking about it: < x > is the smallest subgroup containing x.

Definition / Notation: $\langle x \rangle$ is the cyclic subgroup generated by x. If $G = \langle x \rangle$, then G is a cyclic group and x is a generator of G.

Detecting whether or not a subset is a subgroup.

Criteria

- (0) Identity element.
- (1) Inverse of each element is inside.
- (2) Two elements inside, their product is inside.

§1.3 Proof

- (0) $x^0 \in \langle x \rangle$ so $e \in \langle x \rangle$.
- (1) If $g \in \langle x \rangle$ then $g = x^m$ for some $m \in \mathbb{Z}$. $g^{-1} = x^{-m}$ because $x^{-m} * x^m = x^0 = e$. Therefore $g^{-1} \in \langle x \rangle$
- (2) Let $g, k \in \langle x \rangle$, then $g = x^m$ and $k = x^n$ for some $m, n \in \mathbb{Z}$ so $g \circ h = x^m \circ x^n = x^{m+n} \in \langle x \rangle$.

Note: Finite groups are really complicated.

The <u>order</u> of x in G equals the smallest n > 0 such that $x^n = e$. If $x^n \neq e$ for all n > 0 we declare x in G to have infinite order.

Definition / Notation: |x| represents the order of x.

§1.4 Examples

```
In \mathbb{Z}_{10}: |5| = 2, |3| = 10, |0| = 1
```

3 in \mathbb{Z} has infinite order. All x in Z have infinite order except the identity element.

$$2 \in \mathbb{R}^*$$
. $\langle 2 \rangle = \{2^n : n \in \mathbb{Z}\} = \{\dots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, \dots\}$. Infinite order.

Theorem 4.9 - Every cyclic group is abelian (commutative).

§1.5 Proof

Suppose $G = \langle x \rangle$. For each $g, k \in G$ there exist $m, n \in \mathbb{Z}$ such that $g = x^m$ and $k = x^n$ $g \circ k = x^m * x^n = x^{m+n} = x^{n+m} = x^n + x^m = k \circ q$

§1.6 Practice

 \mathbb{Q}_8 . Quaternians. I'm not sure what the "8" is for.

Note to self: Groups are not necessarily commutative, but cyclic groups are always commutative. Review: Abelian.

§1.7 The group of units modulo n

```
U_n = \{m : 1 \le m < n, \gcd(m, n) = 1\}
```

Binary operation: Multiply elements of U_n by computing remainder of xy modulo n.

§1.8 Examples

```
U_{10} = \{1, 3, 7, 9\}
```

Cayley Table: Can't make the table fast enough. Notes: each element appears once per row.

Changin to U_{15} :

```
U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}
U_{8} = \{1, 3, 5, 7\}
<1>=\{1\}
<3>=\{1, 3\}
<5>=\{1, 5\}
<7>=\{1, 7\}
```

 U_8 is not cyclic. It is commutative because the cayley table is symmetric across y = -x. Remember: U_n is abelian because xy mod n equals yx mod n ((because multiplication in integers is commutative)).

$$U_3=\{1,2\}$$
. Is it cyclic. Yes because $<2>$ generates it. $<2>=\{1,2\}$ $U_4=\{1,3\}=<3>$ $U_5=\{1,2,3,4\}=<2>=\{1,2,4,3\}=\{2^0,2^1,2^2,2^3\}$