ECE 6200 Lecture Oct 28th

Blaine Swieder

28 October 2025

Definition 0.1. The zero-input response of (5.4) or the equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ is marginally stable or stable in the sense of Lyapunov, if every finite initial state of \mathbf{x}_0 excites a bounded response. It is asymptotically stable if every finite initial state excites a bounded response, which, in addition, approaches $\mathbf{0}$ and $t \to \infty$.

Theorem 0.1 (Theorems for Internal Stability). The following are Theorems for Internal Stability:

- 1. The equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ is marginally stable if and only if all eigenvalues of \mathbf{A} have zero or negative real parts and those with zero real parts are simple roots of the minimal polynomial of \mathbf{A} .
- 2. The equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ is asymptotically stable if and only if all eigenvalues of \mathbf{A} have negative real parts.

Remark. Every pole of the transfer matrix

$$\hat{\mathbf{G}}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

is an eigenvalue of A.

Remark. For LTI Systems, Internal Stability implies BIBO Stability, but the converse is not true. *Remark.* Notice that asymptotic stability is defined for the zero-input response, while BIBO stability is defined for zero-state response.

Marginal Stability is only used in the design of oscillators; however, for every other physical system is designed to be asymptotically stable / BIBO stable with some other considerations mentioned in later chapters.

0.1 Discrete-Time Case

Theorem 0.2. These apply in the discrete-time case:

- 1. The equation $\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k]$ is marginally stable if and only if all eigenvalues of \mathbf{A} have magnitudes less than or equal to 1 and those equal to 1 are simple roots of the minimal polynomial of \mathbf{A} .
- 2. The equation $\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k]$ is asymptotically stable if and only if eigenvalues of \mathbf{A} have magnitudes less than 1.