Spécification détaillée – Stratégie de Market-Making en trois versions

1. Contexte et objectifs

Nous souhaitons déployer un moteur de market-making systématique qui évolue en trois étapes :

- **V1 :** capturer le spread sans parti pris directionnel en appliquant le modèle d'Avellaneda & Stoikov (2008).
- **V1.5** : accroître la rentabilité via un signal micro-alpha (Order-Flow Imbalance) et un pilotage dynamique de l'inventaire.
- **V2 :** confier la décision de cotation à un agent d'apprentissage par renforcement profond (Soft-Actor-Critic) muni de garde-fous « risk-first ».

Toutes les versions reposent sur un carnet **Binance** reconstruit localement à partir des flux WebSocket *depth* et *aggTrade*.

2. Fondements théoriques (exposé complet)

2.1 Modèle d'Avellaneda & Stoikov (2008)

Hypothèses structurelles

- Le mid-price suit une diffusion géométrique sans drift à très court terme : $dS_t = \sigma \, dW_t$.
- Les ordres « prenants » (market orders) frappant nos quotes suivent deux processus de Poisson indépendants : $N_t^{\mathrm{bid}},N_t^{\mathrm{ask}}$, dont les intensités décroissent exponentiellement avec l'écart au mid : $\lambda_{\mathrm{bid}}(\delta)=A\,e^{-k\delta}, \qquad \lambda_{\mathrm{ask}}(\delta)=A\,e^{-k\delta}. \ A$ > 0 traduit l'activité générale, k > 0 la sensibilité des preneurs au prix.
- L'inventaire q_t évolue par pas discrets ± 1 à chaque exécution. Le teneur de marché supporte un **coût quadratique d'inventaire** paramétré par γ .

Formulation de contrôle\ On maximise l'espérance de la valeur terminale des avoirs moins une pénalité d'inventaire : $\max_{\delta_a, \delta_b} \mathbb{E} \big[X_T + q_T S_T - \frac{\gamma}{2} q_T^2 \big]$, avec X_t le cash et T l'horizon de liquidation.

HJB et solution fermée\ La résolution de l'équation de Hamilton–Jacobi–Bellman, après linéarisation (hypothèse de séparation des variables), conduit aux quotes optimales :

\$\$ \begin{aligned} \text{Reservation price } & $r_t = S_t - \gamma \ q_t \ \sigma^2 \ (T-t), \ \delta_{!} &= \frac{1}{\gamma}, \ \ln \frac{1+\gamma}{k \cdot \beta}, \ S_{!} &= r_t - \delta_{!} - \gamma \ q_t \ \sigma^2 \ (T-t), \ P_{\hat{s}} &= r_t + \delta_{!} - \gamma \ q_t \ \sigma^2 \ (T-t), \ P_{\hat{s}} &= r_t + \delta_{!} - \gamma \ q_t \ \sigma^2 \ (T-t), \ P_{\hat{s}} &= r_t + \delta_{!} &= r_t$

Le **spread théorique** $2\delta_*$ ne dépend que de γ et k , tandis que le **déplacement** du centre dépend du produit $q_t\sigma^2$: plus l'inventaire est éloigné de 0 ou la volatilité élevée, plus on se fait « payer » pour accepter le risque.

Interprétation économique : le teneur de marché exige un surplus (le spread) pour compenser le risque d'exécution adverse, et il décale ses prix pour attirer les ordres qui réduisent sa position nette.

2.2 Micro-alpha haute fréquence (Order-Flow Imbalance)

 $\begin{array}{l} \textbf{Concept}: \text{l'OFI mesure, sur une fenêtre courte } \Delta \text{ , la différence normalisée entre volumes agressifs} \\ \text{côté achat et côté vente}: \text{OFI}_t(\Delta) = \frac{\sum_{i \in \text{BUY}} v_i - \sum_{j \in \text{SELL}} v_j}{\sum_{i \in \text{BUY}} v_i + \sum_{j \in \text{SELL}} v_j}. \end{array}$

Résultats empiriques

- Sur crypto, futures FX et actions à haute liquidité, la corrélation OFI → prochain tick est statistiquement significative jusqu'à 2-3 s.
- La distribution est leptokurtique; on applique donc un **clamp** (p. ex. ±3 écarts-types) pour éviter les extrêmes.
- Dans 55–60 % des cas, le signe de l'OFI prédit la direction immédiate du mid-price.

2.3 Modèle d'impact linéaire de Kyle (1985) et extension multivariée

Kyle univarié : un trader informé, un bruit de trading et un teneur de marché fixent les prix. L'équilibre Nash conduit à un impact linéaire $\Delta S=\Lambda \ v$ où $\Lambda=\sigma/\beta$.

Extension multi-actifs : l'impact devient matrice SPD Λ . Estimation empirique : $\Lambda = \arg\min_{\Lambda} \|\mathbf{r} - \Lambda\mathbf{v}\|^2$. La contrainte SPD garantit l'absence d'arbitrage.

2.4 Apprentissage par renforcement profond appliqué au MM

Cadre MDP: états (prix relatifs, inventaire, volatilité, signaux, profondeur L5, temps), actions (offsets \pm N ticks), récompense (PnL – $\lambda |q|^2$).

SAC : politique gaussienne, replay buffer, entropie α auto-tuned, risques de **distribution shift** et nécessité de garde-fous.

2.5 Ingestion temps-réel du carnet Binance

Flux: depth@100ms , aggTrade , snapshot REST.

Synchronisation: snapshot \rightarrow buffer diff \rightarrow appliquer U/u \rightarrow resnapshot 30 min.

Architecture : listener WS, ring buffer, moteur carnet, worker snapshot, publisher interne, métriques Prometheus.

Tolérance pannes: heartbeat, CRC, resnapshot sur mismatch, horloge PTP.

3. Version V1-α — Avellaneda-Stoikov avec décalage OFI

3.1 Contexte et principe général

La version V1-α sert de **socle conceptuel**: elle applique le modèle d'Avellaneda & Stoikov (2008) et **ajoute un décalage minimal du centre** fondé sur le signal Order-Flow Imbalance (OFI). L'objectif reste de capturer le spread sans complexifier la gestion du risque inventaire. & Stoikov (2008) pour fixer deux quotes symétriques autour d'un prix de réserve. L'objectif est de **capturer le spread affiché** tout en gardant l'inventaire proche de zéro, sans chercher d'alpha directionnel.

3.2 Flux d'entrée indispensables

Catégorie	Variables	Description	Cadence recommandée
Prix	Mid-price	Moyenne best bid / best ask du carnet local	≤ 50 ms
Volatilité	σ_{t}	EWMA 100 observations (ajustée every tick)	continu
Inventaire	qt	Position nette en unités de base	mise à jour sur fill
Horloge	t	Timestamp UNIX μs	continu
Paramètres	γ, k, T	Aversion, liquidité, horizon	reload à chaud possible

3.3 Cadre décisionnel

- 1. **Coût d'inventaire** : le teneur paie une pénalité quadratique y q².
- 2. **Flux preneur** : intensité décroissante $\lambda(\delta)=A$ e^{-k\delta} ; k mesure l'élasticité de la demande.
- 3. **Optimisation analytique**: maximisation de l'espérance d'utilité $\Rightarrow \land$ *Prix de réserve*: $r_t = S_t \gamma \ q_t \ \sigma_t^2 \ (T t) \land \textit{Écart optimal unique}: \delta^* = (1/\gamma) \ 1n(1+\gamma/k) \land \text{Les quotes}$ sont donc **équidistantes** du prix de réserve et leur écart ne dépend pas de l'inventaire.

3.3bis Décalage OFI minimal

Afin d'ajouter un premier edge directionnel, on décale simplement le centre des quotes :

- Plage de β_{-} of i : bornée à ± 1 tick pour ne pas transformer la stratégie en preneuse.
- Aucun changement du spread : on conserve | spread = 2 δ* | issu d'Avellaneda-Stoikov.
- Pas de skew d'inventaire : le prix de réserve reste la seule composante qui gère le risque.

3.4 Paramétrage et calibration

Paramètre	Sens économique	Méthode d'estimation	Ordre de grandeur (BTC-USDT)
k	Courbe de profondeur effective	Régression log-linéaire : P(fill) vs écart	0.4 → 1.2 ticks
У	Averse au risque d'inventaire	Grid-search : maximiser Sharpe sous RMS q	1e-4 → 5e-4
T	Délai de liquidation cible	60 → 300 s selon la taille	typ. 120 s

Astuce pratique : déduire d'abord $\lfloor k \rfloor$ sur données historiques (probabilité d'exécution), puis balayer $\lfloor \gamma \rfloor$ pour tracer PnL vs RMS q. Choisir le couple qui offre le meilleur ratio retour/risque avant frais.

3.5 Boucle opérationnelle en temps réel

Observation \rightarrow Décision \rightarrow Cotation \rightarrow Mise à jour :

- 1. Mesurer S_t , σ_t , q_t .
- 2. Calculer r_t et δ^* .
- 3. Publier bid = $r_t \delta^*$, ask = $r_t + \delta^*$.
- 4. À chaque exécution : mettre à jour $|q_t|$, cash et latence ; retourner en 1.

3.6 Contrôles de risque

- Limite inventaire $|q_t| \le q_{max}$ (déterminé par capital et volatilité).
- Spread adaptatif : $\overline{si} \left[\sigma_t \right] \uparrow > factor 2$, multiplier $\left[\delta^* \right]$ par 1.5.
- Kill-switch latence : si ACK > 300 ms (P99) → retirer quotes et réévaluer.

3.7 Métriques de performance

KPI	Interprétation	Seuils cibles
Spread capturé (%)	Part du spread affiché réellement perçue	≥ 70 %
RMS inventaire	Volatilité de la position nette	≤ 0.4 q_max
Fill ratio	Exec / quotes	≥5%
Cancel ratio	Quotes annulées / totales	≤ 70 %
Latence send→ACK (P99)	Robustesse infrastructure	≤ 300 ms

3.8 Plan de validation

- 1. **Back-test hors-ligne** : relecture tick-by-tick 7 jours, mêmes paramètres.
- 2. **Stress test**: volatilité ×2, liquidité ÷2, latence réseau 200 ms.
- 3. Paper-trade testnet: comparer PnL net fees, vérifier respect des limites.
- 4. Critères: PnL > 0, KPI conformes, aucun dépassement inventaire.

4. Version 1.5 — AS enrichi : OFI + Depth Imbalance + vol-scaled spread

4.1 Contexte et objectif

Cette version intermédiaire vise à **booster la rentabilité** sans complexité excessive avant le passage au RL. Elle s'appuie sur :

- 1. **OFI** (Order-Flow Imbalance) déjà présent en V1-α.
- 2. **Depth Imbalance (DI)**: asymétrie de profondeur entre le bid et l'ask.
- 3. Spread dynamique proportionnel à la volatilité instantanée.
- 4. **Quote ageing** : cadence de rafraîchissement calée sur l'évolution des signaux.

4.2 Flux d'entrée supplémentaires

Catégorie	Variables	Description	Fenêtre / cadence
Profondeur top-N	depth_bid_L1-L5, depth_ask_L1-L5	Somme des tailles visibles sur 5 niveaux	≤ 100 ms
Depth Imbalance	DI_raw	<pre>(depth_bid - depth_ask)/(depth_bid + depth_ask)</pre>	Recalcul à chaque update depth
DI filtré	DI_t	Z-score, clamp $\pm 3 \sigma$, EMA 3 obs	identique OFI
Volatilité courte	σ_t	EWMA 100 ticks	continu

4.3 Construction du signal DI

- 1. **Aggregation**: volumes L1-L5 bid et ask.
- 2. **Normalisation**: ratio volumique pour obtenir DI_raw.
- 3. **Clamp & lissage**: $\pm 3 \sigma$ puis EMA 3 observations.
- 4. **Test de pertinence** : corrélation DI → Δ tick, p-value < 0.05.

4.4 Mécanique de cotation améliorée

```
centre_t = r_t + κ_inv·q_t + β_ofi·OFI_t + β_di·DI_t
spread_t = base_spread + κ_vol·σ_t + κ_inv·|q_t|
```

- centre_t : prix de réserve AS déplacé par l'inventaire et deux signaux de flux (OFI, DI).
- **spread_t** : part fixe $(2 \delta^*)$ + élargissement linéaire à la fois de la volatilité (κ _vol) et du risque d'inventaire (κ _inv).

4.5 Quote ageing et refresh

- Cancel/replace toute quote qui :
- reste vivante > **750 ms**;
- ou si le **signe** de OFI ou DI bascule.

4.6 Calibration des paramètres

Paramètre	Sens	Méthode	Valeur initiale (BTC)
β_ofi	$OFI \rightarrow ticks$	Régression Ridge	0.3 tick/u
β_di	DI → ticks	Grid-search sur Sharpe	0.2 tick/u
κ_inv	Pénalité inventaire centre & spread	Optimiser RMS q	0.1 tick/lot
к_vol	Sensibilité volatilité	Régression spread vs σ	1.2

4.7 Contrôles de risque spécifiques

- Clamp offset global: $|\kappa_{inv} + \beta_{ofi} + \beta_{inv} + \beta_{ofi} +$
- **Spread plancher**: spread_t ≥ 2 ticks pour éviter exécutions gratuites.
- Latency guard : quote ageing 750 ms et ACK P99 \leq 300 ms.

4.8 Indicateurs de performance cibles

KPI	Objectif V1.5+	Gain vs V1-α
PnL / trade	+30 %	↑
Spread capturé	≥ 78 %	+8 pts
RMS inventaire	≤ 0.35 q_max	-
Hit ratio OFI + DI	≥ 60 %	n/a
Cancel ratio	≤ 70 %	idem

4.9 Procédure de validation

- 1. **Back-test A/B** 14 j : V1-α vs V1.5+.
- 2. Out-sample 7 j : vérifier robustesse paramètres.
- 3. **Paper-trade** testnet: latence, fill, ageing.
- 4. **Canary** 1 % : PnL ≥ baseline + latence ok.
- 5. KPI review hebdo et ajustement $[\beta_ofi]$, $[\beta_di]$, $[\kappa_vol]$.

5. Version 2 — Agent RL Soft-Actor-Critic (SAC) amélioré

5.1 Contexte et objectif

Cette version délègue la décision de cotation à un agent SAC **enrichi**: état plus riche, fonction de récompense multi-objectif et double critic afin de mieux gérer le compromis rentabilité / risque / latence.

5.2 Espace d'observation

Catégorie	Variables principales (normalisées)	Pourquoi ?
Prix & dérivés	Δmid 50 ms, Δmid 250 ms, log-retours cumulés	Momentum immédiat

Catégorie	Variables principales (normalisées)	Pourquoi ?
Flux d'ordres	OFI 1s & 3s, compteurs aggTrade	Prévoir direction tick
Carnet (depth)	Profondeurs L1-L5 bid & ask, pente, Depth Imbalance (DI)	Pression liquidité et asymétrie
Volatilité	σ EWMA 1 s & 10 s (vol-scaled)	Adapter spread
Position	Inventaire q et position queue (rang dans la profondeur)	Gestion risque & priorité
Temps	Time-to-close, minute intra-heure	Patterns saisonniers

Dimensions typiques: 50–70 features après concaténation.

5.3 Espace d'action (toutes les 50-100 ms)

- Centre shift $\Delta c : -5 \rightarrow +5$ ticks.
- Log-spread Δ s (exponentiel): $-1 \rightarrow +1$.
- Refresh booléen ρ : 0 = laisse vivre, 1 = cancel/replace.

5.4 Récompense multi-objectif & double critic

reward = ΔPnL -
$$\lambda_q$$
 · q² - λ_c · cancel - λ_l · latency

- **ΔPnL** : mark-to-mid variation sur le pas.
- λ_q: pénalité inventaire (contrôle RMS q).
- **λ_c**: coût d'annulation (discipline d'ordres).
- λ_I: coût latence (ms excédant budget).

Le réseau actor est entraîné à maximiser ce reward, tandis que nous utilisons deux critics :

- 1. Critic-mean: estime l'espérance du retour (standard SAC).
- 2. Critic-var : estime la **variance** cumulée du PnL afin de stabiliser le Sharpe (objectif auxiliaire : minimiser la variance).

5.5 Pipeline d'entraînement hors-ligne

- 1. 60 j de tick-data (side-bandit) \rightarrow buffer 1–2 M transitions.
- 2. Réseaux 2 × 256 ReLU ; entropie α auto-tuned.
- 3. Loss totale = Loss_mean + $\eta \cdot Loss_var$ ($\eta \simeq 0.1$).
- 4. Curriculum: actions bornées ±2 ticks puis élargies à ±5.
- 5. Early-stop : reward moyen saturant \leq 0.3 σ sur 50 k steps.

5.6 Safety layer (identique, renforcé)

- Clamp $|\Delta c| \le 3$ ticks & spread final \ge min.
- Δ offset step-to-step ≤ 2 ticks.
- Quote ageing \geq 500 ms.
- $|q| > q_max \rightarrow$ forcer réduction.
- ACK P99 > 300 ms → fallback V1.5.

5.7 Déploiement progressif

Phase	Expo max	Durée	Promotion	Recul
Paper-trade	0 %	5 j	Latence & reward OK	-
Canary	1 %	3 j	PnL > 0 & KPI conformes	DD > 2 σ
Ramp-up	5 % → 25 %	+1 j/palier	PnL ≥ V1.5 & RMS q stable	KPI hors bornes
Prod	100 %	_	Revue mensuelle	guard-rail

5.8 Indicateurs de succès

KPI	Cible vs V1.5
PnL net / trade	≥ +15 %
RMS inventaire	≤ 60 % V1
Sharpe ajusté var	+20 %
Latence quote→ACK (P99)	≤ 300 ms
Cancel ratio	≤ 70 %

5.9 Plan de validation

- 1. Back-test V1.5 vs V2 sur même historique.
- 2. Shadow-mode 48 h en prod (V2 virtuel).
- 3. Canary réel selon § 5.7.
- 4. Stress tests : $\sigma \times 2$, depth ÷2, latence +200 ms.
- 5. KPI daily first week, then weekly.

6. Tests & validation

Un même **processus multi-étapes** s'applique aux trois versions, avec des exigences de plus en plus strictes.

6.1 Back-test hors-ligne

Étape	Objectif	Détails	Seuils de succès
Relecture tick-by-tick (≥ 14 j)	Vérifier logique de cotation et calculs PnL	Side-bandit : on ne pousse pas nos quotes dans l'historique	PnL ≥ 0, RMS q ≤ 0.4 q_max
Grid-search	Trouver (γ, k, β, κ)	Maximiser Sharpe sous contrainte inventaire	Sharpe 1 décile
params	optimaux		> baseline
Stress scénarios	Robustesse vol/	Rejouer les pires journées	PnL reste positif,
σ×2, depth÷2	liquidité		drawdown < 2 σ

6.2 Paper-trade (testnet ou « shadow-mode »)

Focus	Métriques suivies	Durée min
Latence infra	send→ACK P99, TTL snapshot	≥ 48 h
Discipline ordres	Cancel ratio, ageing effectif	
Cohérence signaux	Drift OFI/DI vs prod live	

6.3 Canary en prod (1 % du capital)

- Durée : 3 jours minimum.
- Promotion si : PnL net \geq 0 et KPI latence / inventaire conformes.
- Recul (fallback version précédente) si : drawdown > 2 σ baseline ou ACK P99 > 300 ms.

6.4 Ramp-up progressif

Palier	Exposition max	Condition passage	
P1	5 %	PnL ≥ 0, RMS q conforme 24 h	
P2	10 %	idem + cancel ratio ≤ 70 %	
Р3	25 %	Sharpe 7 j ≥ baseline	
P4	100 %	Revue mensuelle risk & ops	

6.5 Tests de stress en ligne

- 1. **Spike volatilité** : σ 1 min> 3 × σ 10 min \rightarrow spread multiplié ×1.5.
- 2. **Dégradation réseau** : RTT > 200 ms → monitoring fallback.
- 3. **Anomalie carnet** : depth L1 < seuil \rightarrow suspendre cotation.

6.6 Calendrier de revue KPI

- Quotidien première semaine live : PnL, latence, inventaire RMS, cancels.
- **Hebdomadaire** ensuite : Sharpe, drawdown, hit ratio α -signals.
- **Mensuel** : revue complète risk/compliance et recalibration éventuelle.

6.7 Critères de rollback

Tout dépassement persistant (>15 min) d'un garde-fou inventaire, latence ou cancel ratio déclenche le fallback automatique vers la version antérieure, suivi d'une analyse post-mortem.

7. Glossaire

Terme	Définition opérationnelle	Importance dans l'algo
Mid-price	Moyenne du meilleur bid et ask visibles ($best_bid + best_ask$ /2)	Point neutre pour calculer prix de réserve et PnL mark-to-mid

Terme	Définition opérationnelle	Importance dans l'algo
Spread capturé	Différence entre le prix d'exécution et le mid-price au moment de la cotation	Mesure l'efficacité du market-maker à « prendre » le spread
OFI (Order-Flow Imbalance)	Ratio $(vol_buy\ -\ vol_sell)/(vol_buy\ +\ vol_sell)$ sur une fenêtre courte (0,5–3 s)	Micro-alpha directionnel dans V1-α, V1.5 et V2
Depth Imbalance (DI)	Asymétrie de profondeur L1-L5 : $(depth_bid - \\ depth_ask)/(depth_bid + \\ depth_ask)$	Signal secondaire de pression de carnet (V1.5, V2)
RMS inventaire	Racine carrée de la moyenne des carrés de la position nette sur une période	Indicateur clé de risque ; contraint par λ_q ou κ_i inv
Canary	Exposition très limitée (\approx 1 %) utilisée pour tester une version en prod réelle	Permet rollback rapide si KPI dégradés
CRC (Cyclic Redundancy Check)	Contrôle d'intégrité du snapshot Binance pour vérifier la cohérence du carnet local	Déclenche resynchronisation si mismatch
Quote ageing	Durée max pendant laquelle une quote reste active avant cancel / replace	Limite l'exposition latence et protège contre stale quotes
Safety layer	Ensemble de règles déterministes filtrant les actions du RL	Garantit la conformité latence, inventaire, spread
Position queue	Rang de la quote dans la profondeur au niveau de prix où elle est postée	Influence la probabilité d'exécution et la latence de remplissage