Tom I 1970

УЛК 629.78.015: 531.55: 523.3

ПРИБЛИЖЕННЫЙ СИНТЕЗ ОПТИМАЛЬНЫХ ТРАЕКТОРИЙ ЗЕМЛЯ—ЛУНА—ЗЕМЛЯ С ВЫХОДОМ НА ОРБИТУ ИСКУССТВЕННОГО СПУТНИКА ЛУНЫ

В. А. Ильин. Н. А. Истомин

Рассматривается приближенный метод синтеза оптимальных траекто-

рий орбита ИСЗ — орбита ИСЛ — атмосфера Земли.
Показано, что расчет геоцентрических участков движения проводится независимо от расчета селеносферического участка движения с помощью методики, разработанной ранее для расчета траекторий облета Луны. Определение параметров селеносферического участка сводится к решению задачи о построении гиперболы, проходящей через заданную точку на орбите ИСЛ и имеющей на сфере действия Луны заданный вектор ско-

Лля случая круговой орбиты ИСЛ получено аналитическое решение задачи об оптимальном одноимпульсном выходе на орбиту ИСЛ или сходе с нее. Для эллиптической орбиты ИСЛ малого эксцентриситета получено приближенное решение той же задачи в виде первого члена разложения решения по степеням эксцентриситета. Для круговой орбиты ИСЛ решена

задача оптимизации ее высоты.

Установлены правила пересчета ориентации в пространстве орбиты ИСЛ и селеносферической гиперболы, которые обеспечивают инвариантность движения аппарата по новой оптимальной гиперболе относительно новой орбиты ИСЛ при замене геоцентрического маршрута перелета с безапогейного на апогейный и, наоборот, при отображении геоцентрической траектории относительно плоскости орбиты Луны и при обращении направления движения по траектории.

1. ПОСТАНОВКА ЗАДАЧИ И СХЕМА ЕЕ РЕШЕНИЯ

Рассмотрим следующую задачу. При старте с заданной орбиты ИСЗ (точка θ) космический аппарат выходит на заданную орбиту ИСЛ (от точки 1 до точки 2) с минимальным импульсным приращением скорости в точке 2 (фиг. 1). После пребывания на орбите ИСЛ в течение заданного времени t_{23} аппарат сходит с нее (от точки 3 до точки 4) с минимальным импульсным приращением скорости и совершает перелет к Земле с входом в ее атмосферу (точка 5) и последующей посадкой в

заданном районе поверхности Земли.

Конечную орбиту ИСЛ, с которой аппарат стартует к Земле, можно считать заданной, например, при непродолжительном пребывании аппарата на орбите ИСЛ, при отсутствии управления эволюцией орбиты ИСЛ в случае длительного пребывания аппарата на орбите ИСЛ, при наложении ограничений на конечную орбиту ИСЛ, обусловленных условиями возврата к Земле. Полагая в дальнейшем, что конечная орбита ИСЛ задана, будем рассматривать траектории выхода на орбиту ИСЛ 012 и схода с орбиты ИСЛ 345 независимо друг от друга. Поставленная задача может быть решена с помощью методики сфер действия [1], [2];

при этом задача сводится к численному решению достаточно сложной системы конечных трансцендентных соотношений при наличии ограничений.

Сделаем следующие предположения:

1) воздействие Луны на аппарат ограничивается пределами ее сферы действия;

2) при расчете геоцентрических участков радиус сферы действия

Луны реф полагается нулевым;

3) при расчете селеносферических участков движения 12 и 34 орбита Луны заменяется круговой орбитой с постоянными элементами; соот-

Фиг. 1

ветствующие векторы орбитальной скорости Луны \overrightarrow{V}_{π} считаются неизменными:

4) активные участки при старте с орбит ИСЗ и ИСЛ и при выходе на орбиту ИСЛ заменяются импульсным приращением скорости.

Первые три предположения позволяют для приближенного решения указанных задач воспользоваться общей схемой синтеза траекторий облета Луны, изложенной в [3]. Расчет геоцентрических участков перелетов Земля—Луна и Луна—Земля проводится независимо от расчета селеносферического участка движения и в соответствии с методикой работы [3] сводится к выполняемым независимо друг от друга построению плоскостей перелетов Земля—Луна и Луна—Земля и расчету параметров дуг конических сечений перелетов в найденных плоскостях.

Геоцентрические радиус-векторы Луны и аппарата задаем с помощью обычной системы элементов: модуля радиус-вектора r, наклонения плоскости орбиты к плоскости экватора i, долготы восходящего узла Ω и аргумента широты u. Имеем для Луны \overrightarrow{r}_{n} (r_{n} , i_{n} , Ω_{n} , u_{n}), для аппарата в момент старта с орбиты ИСЗ

 $\overrightarrow{r_0}(r_0, i_{01}, \Omega_{01}, u_0)$, в момент подлета к сфере действия Луны $\overset{
ightarrow}{r_1}(r_1,\ i_{01},\ \Omega_{01},\ u_1)$, в момент вылета из сферы действия $\overset{
ightarrow}{r_4}(r_4,i_{45},\Omega_{45},u_4)$, в момент прохождения условного перигея $\vec{r}_5 = \vec{r}_{\rm II}(r_{\rm II}, i_{45}, Q_{45}, u_5)$. Обозначим через а угол между плоскостью орбиты Луны и плоскостью перелета; α равен углу между $\vec{V}_{\rm J}$ и трансверсальной компонентой вектора геоцентрической скорости аппарата $\overrightarrow{U_t}$ в точках 1 или 4; $\alpha>0$, если кратчайший поворот от $\overrightarrow{U_t}$ к $\overrightarrow{V_{\pi}}$ виден в направлении от Земли к Луне происходящим против часовой стрелки.

Задавая i_{π} , u_{π} , i_{45} , направление движения аппарата по отношению к полюсам Земли, характеризуемое величиной sgn $\cos u_4$, и угловую дальность перелета Луна—Земля $\Delta \eta_{45}$, можно, исходя из равенства $\vec{r}_4 = \vec{r}_{\pi}$, найти u_4 , u_5 , α_4 и географическую широту условного перигея φ_{Π} . Аналогично, задавая i_{Π} , u_{Π} , i_{01} , sgn $\cos u_1$, найдем u_1 и α_1 , исходя из равенства $\overrightarrow{r_1} = \overrightarrow{r_n}$. Величина u_0 и широта точки старта с орбиты ИСЗ фо находятся после определения параметров кеплеровой дуги перелета Земля—Луна.

Траектория перелета Луна—Земля представляет собой дугу

конического сечения в определенной выше плоскости с перигейным радиус-вектором $\vec{r}_{ ext{n}}$, проходящую через радиус-вектор $\vec{r}_{ ext{n}}$;

 $(\vec{r}_{\text{II}}, \vec{r}_{\text{I}}) = \Delta \eta_{45}$. Фокальный параметр p_{45} и эксцентриситет e_{45} этого перелета определяются по формулам

$$p_{45} = r_{\text{II}} \frac{1 - \cos \Delta \eta_{45}}{r_{\text{II}} - \cos \Delta \eta_{45}}, \qquad e_{45} = \frac{p_{45}}{r_{\text{II}}} - 1.$$

Задавая $\Delta\eta_{45}$, r_5 и r_{7} , можно определить все динамические параметры перелета Луна—Земля.

Траекторию перелета Земля—Луна рассматриваем как дугу конического сечения в соответствующей плоскости, соединяющую точки с радиус-векторами \vec{r}_0 и \vec{r}_n . Считаем, что старт в сторону Луны происходит с круговой орбиты ИСЗ радиусом r_0 с заданной величиной импульса скорости $\Delta U_{
m o}$. Тогда

$$\Delta U_0^2 = U_0^2 + U_{\oplus 1}^2 - 2U_{\oplus 1} U_{0t}, \qquad (1.1)$$

где U_0 , $U_{0\,t}$ — геоцентрическая скорость аппарата и ее трансверсаль-

ная компонента в начальной точке; $U_{\oplus 1} = \sqrt{\frac{K_{\oplus}}{r_0}}$ — первая космическая скорость на расстоянии r_0 от центра Земли, K_{\oplus} — гравитационная постоянная Земли. Соотношение (1.1) вследствие интегралов энергии, момента количества движения и равенства $U^2 = U_r^2 + U_t^2$, где U, U_r — геоцентрическая скорость аппарата и ее радиальная компонента, задает связь между двумя из трех величин U, U_r и U_t . Для определения дуги перелета Земля—Луна необходимо задать еще одно условие, например, задать продолжительность этого перелета. В дальнейшем считаем, что задачи определения перелетов Земля—Луна и Луна—Земля решены, в результате чего определены векторы геоцентрической скорости аппарата в точках входа $\vec{U_1}$ и выхода $\vec{U_4}$ на селеносфере.

2. ДВИЖЕНИЕ АППАРАТА В СФЕРЕ ДЕЙСТВИЯ ЛУНЫ

В качестве основной селеноцентрической системы координат рассматриваем правую прямоугольную систему x_c y_c z_c (см. фиг. 1): ось + x_c является продолжением геоцентрического радиус-вектора центра Луны \vec{r}_n , ось + y_c направлена по вектору \vec{V}_n . Введем также систему сферических координат: долготу $0 \leqslant \lambda \leqslant 360^\circ$, отсчитываемую от вектора — x_c в плоскости x_c y_c против часовой стрелки, если смотреть с оси + z_c ; широту — $90^\circ \leqslant \varphi \leqslant 90^\circ$, отсчитываемую от плоскости x_c y_c , sgn $\varphi = \text{sgn } z_c$ и радиальное расстояние ρ .

Фиг. 2

В проекциях на оси $x_{\rm c}$, $y_{\rm c}$, $z_{\rm c}$ векторы селеноцентрической скорости аппарата в точках I и $4 \ \vec{V}_{\rm c\phi} = \vec{U} - \vec{V}_{\rm J}$ имеют компоненты

$$\vec{V}_{c\phi} = \{ U_r, \ U_t \cos \alpha - V_{\pi}, \ U_t \sin \alpha \}; \tag{2.1}$$

здесь всегда $U_t > 0$, а $U_1 > 0$, $U_4 < 0$ для геоцентрического маршрута A, не содержащего апогея, $U_1 < 0$, $U_4 > 0$ для геоцентрического маршрута C, содержащего апогей.

Орбиту ИСЛ задаем фокальным параметром p_c , эксцентриситетом e_c и правой тройкой ортогональных ортов \vec{j}_{Π} , \vec{j}_{y} , \vec{j}_{n} ; \vec{j}_{Π} направлен в перицентр орбиты, \vec{j}_{n} направлен по нормали к орбите так, что с его конца движение по орбите видно происходящим против часовой стрелки.

Рассмотрим для определенности выход на орбиту ИСЛ (фиг. 2). Обозначим через $\vec{\rho}$ радиус-вектор, направленный в точку выхода на орбите ИСЛ, и через β — угол между векторами $\vec{\rho}$ и $\vec{V}_{c\phi}$, $0 \leqslant \beta \leqslant \pi$.

Орт, нормальный к плоскости гиперболы, зададим в виде

$$\vec{i}_n = \pm \frac{[\vec{\rho}^{\circ}, \ \vec{V}_{c\phi}^{\circ}]}{\sin \beta} , \qquad (2.2)$$

тде $\vec{\rho}^{\circ} = \frac{\vec{\rho}}{|\vec{\rho}|}$, $\vec{V}_{c\varphi}^{\circ} = \frac{\vec{V}_{c\varphi}}{|\vec{V}_{c\varphi}|}$. Вектор \vec{i}_n направим так, чтобы с его конца движение по гиперболе было видно происходящим против часовой стрелки. Для бесперицентрического маршрута A выхода на орбиту ИСЛ в (2.2) всегда берется "+", для перицентрических же маршрутов B возможен поворот от $\vec{\rho}$ к $\vec{V}_{c\varphi}$ на угол β как в направлении движения по гиперболе, так и против него. В первом случае в (2.2) берем "+" и соответствующий маршрут обозначаем через B^+ , во втором случае в (2.2) берем "—" и соответствующий маршрут обозначаем через B^- .

Орт $\vec{i}_{\text{п}}$, направленный в перицентр гиперболы, представим в виде

$$\vec{i}_{\Pi} = \vec{\mu} \vec{\rho}^{\circ} + \vec{V}_{c \Phi}^{\circ} , \qquad (2.3)$$

где

$$\mu = \frac{\cos \eta - \cos \beta \cos (\eta + \beta)}{\sin^2 \beta} , \qquad (2.4)$$

$$v = \frac{\cos(\eta + \beta) - \cos\beta\cos\eta}{\sin^2\beta}.$$
 (2.5)

В (2.4) и (2.5) через η обозначена истинная аномалия вектора $\vec{\rho}$ в плоскости гиперболы, знак "+" перед β соответствует маршрутам A и B^+ , знак "-" — маршруту B^- . Орт $\vec{i_y}$, дополняющий систему до правой, равен $\vec{i_y} = [\vec{i_n}, \vec{i_U}]$.

Аналогично поступаем в случае схода с орбиты ИСЛ. Поскольку сход с орбиты ИСЛ можно рассматривать как результат обращения движения для выхода, имеем $\vec{V}_{\text{сф 4}} = -\vec{V}_{\text{сф 1}}$ и

$$\beta_{84} = \pi - \beta_{12}. \tag{2.6}$$

В этом случае μ не меняет, а ν меняет знак, что компенсирует изменение знака $\vec{V}_{c\phi}$ в (2.3), поскольку \vec{i}_{n} в обоих случаях один и тот же.

Как следует из второго и третьего предположений (см. разд. 1), задача определения селеносферического движения аппарата сводится к построению гиперболы по заданному свободному вектору $\overrightarrow{V}_{\text{сф}}$ на сфере действия Луны и вектору $\overrightarrow{\rho}$. Учитывая, что для всех практически интересных орбит ИСЛ $\frac{\rho_{\text{сф}}}{\rho}\gg 1$, можно по-

ложить $\frac{\rho_{c\varphi}}{\rho}=\infty$, т. е. приближенно считать, что в окрестности сферы действия движение аппарата происходит по асимптоте гиперболы. Решение задачи о построении планетоцентрической гиперболы по векторам ρ и $V_{c\varphi}$ ($\rho_{c\varphi}=\infty$) приведено в [4].

При указанном предположении гиперболу можно также рассматривать как перелет между. векторами р1 и р2 (выход на орбиту ИСЛ) с заданной угловой дальностью $\pi+\beta$ или ρ_3 и ρ_4 (сход с орбиты ИСЛ) с угловой дальностью β или $2\pi-\beta$. В этом случае имеем связь между фокальным параметром p и эксцентриситетом eгиперболы, даваемую соотношением (21) из [5] при $n = \frac{\rho_{c\phi}}{\rho} = \infty$:

$$e^2 = 2 \frac{1 \pm \cos \beta}{\sin^2 \beta} - 2 \frac{1 \pm \cos \beta}{\sin^2 \beta} \frac{p}{\rho} + \frac{1}{\sin^2 \beta} \left(\frac{p}{\rho}\right)^2. \tag{2.7}$$

Поскольку известна большая полуось гиперболы $rac{K_{\Pi}}{V_{
m c\phi}^2 - 2rac{K_{\Pi}}{
ho_{
m c\phi}}}$, где K_{Π} — гравитационная постоянная Луны, имеем

также

$$e^2 = \frac{p}{a} + 1, (2.8)$$

Исключая e^2 из (2.7) и (2.8), получим

$$\sqrt{\frac{p}{\rho}} = \sqrt{\frac{1}{4} \frac{\rho}{a} \sin^2 \beta + 1 \pm \cos \beta} \pm \frac{1}{2} \sqrt{\frac{\rho}{a}} \sin \beta. \quad (2.9)$$

В (2.7) и (2.9) и в дальнейшем верхний знак перед соя в соответствует выходу на орбиту ИСЛ, нижний знак — сходу с орбиты ИСЛ Ісм. (2.6)]. Знак "+" перед вторым радикалом соответствует перелетам по маршрутам A, B^+ , знак "—" — перелетам по маршруту B^- .

Как указал В. С. Вождаев (для случая схода с орбиты), это же соотношение может быть получено и с использованием формулы

$$\sin \delta = \frac{1}{e} \,, \tag{2.10}$$

где δ — угол между векторами $\vec{V}_{c\varphi}$ и \vec{i}_y [6]. В [3] показано, что формула (2.10) справедлива с точностью до величин порядка $\left(\frac{\rho}{\rho_{c \varphi}}\right)^2$, откуда следует и весьма высокая точность соотношения (2.9).

Перелеты A и B^+ при изменении β непрерывно переходят друг в друга. Граничным между этими перелетами является перелет, пересекающий орбиту ИСЛ в перицентре гиперболы. Обозначая соответствующее граничное значение β через $\overline{\beta}$, имеем

$$\cos \overline{\beta} = \pm \frac{1}{1 + \frac{\rho}{a}} \,. \tag{2.11}$$

В случае выхода на орбиту ИСЛ при $\beta < \bar{\beta}$ реализуются маршруты B^+ и B^- , а при $\beta > \overline{\beta}$ — маршруты A и B^- . В случае схода с орбиты ИСЛ при $\beta < \overline{\beta}$ реализуются маршруты A и B^- , а при $\beta > \overline{\beta}$ маршруты B^+ и B^- .

Соотношения (2.2) — (2.5), (2.8) и (2.9) полностью решают задачу определения параметров селеносферического движения аппарата. Заметим, что приведенные результаты дают приближенное решение задачи синтеза траекторий орбита ИСЗ — поверхность Луны, поверхность Луны — атмосфера Земли в случае замены активного участка при посадке на поверхность Луны или при старте с нее импульсом тяги.

Обозначим через \vec{V} вектор скорости аппарата на гиперболе и через \vec{v} — вектор скорости аппарата на орбите ИСЛ в точке выхода на орбиту или схода с нее. Вектор импульса скорости в этой точке равен $\Delta \vec{V} = \pm (\vec{v} - \vec{V})$, откуда

$$\Delta V^{2} = v^{2} + V^{2} - 2(v_{r} V_{r} + v_{t} V_{t} \cos \gamma); \qquad (2.12)$$

здесь v_r , V_r — радиальные компоненты векторов \vec{v} и \vec{V} ; v_t , V_t — трансверсальные компоненты этих же векторов (в соответствующих плоскостях); γ — угол между плоскостями орбиты ИСЛ и гиперболы ($\gamma > 0$, если кратчайший поворот от V_t к v_t в направлении вектора $\vec{\rho}$ виден происходящим против часовой стрелки).

Чтобы исключить траектории с чрезмерно большими импульсами скорости, ограничимся рассмотрением только случая $\cos\gamma > 0$.

На основании (2.2) имеем

$$\cos \gamma = \pm \frac{\vec{\rho}^{\circ}, \vec{V}_{c\phi}, \vec{j}_{n}}{\sin \beta}. \tag{2.13}$$

Используя (2.12), (2.13), (2.9), интеграл энергии и соотношения

$$V_t = \frac{\sqrt{K_{\Pi} p}}{\rho}$$
, $V_r = e \sin \eta \frac{\sqrt{K_{\Pi}}}{p}$, $v_t = \frac{\sqrt{K_{\Pi} p_c}}{\rho}$, $v_r = e_c \sin \vartheta \sqrt{\frac{K_{\Pi}}{p_c}}$,

где 8 — истинная аномалия в плоскости орбиты ИСЛ, получим

$$\frac{\Delta V^{2}}{K_{\pi}/p_{c}} = 3 + x + e_{c}^{2} + 4e_{c}\cos\vartheta - 2e_{c}\sin\vartheta e\sin\eta \sqrt{\frac{p_{c}}{p}} - \frac{p_{c}}{\rho} \left[\sqrt{x + \frac{4p_{c}}{\rho(1 + \cos\beta)}} \pm \sqrt{x}\right] |\vec{p}^{\circ}, \vec{V}_{c\phi}^{\circ}, \vec{j}_{n}\rangle|, \qquad (2.14)$$

где $x = \frac{p_c}{a}$.

При фиксированных параметрах орбиты ИСЛ и векторе $\vec{V}_{\text{сф}}$ ΔV является функцией радиус-вектора $\vec{\rho}$ точки на орбите ИСЛ и как периодическая функция ϑ достигает минимума. При решении задачи определения оптимальной точки на орбите ИСЛ, доставляющей $\min \Delta V$, в качестве независимой переменной вместо ϑ удобно взять β (см. ниже разд. 3).

Обозначим направляющие косинусы $\vec{V}_{c\phi}$ относительно осей \vec{j}_{π} , \vec{j}_{y} , \vec{j}_{n} через l, m, n. Тогда $\cos \beta = (\vec{\rho}^{\circ}, \vec{V}_{c\phi}^{\circ}) = l \cos \vartheta + m \sin \vartheta$,

 $(\vec{\rho}^\circ,\ \vec{V}^\circ_{\mathrm{c}\varphi},\ \vec{j}_n)=m\cos\vartheta-l\sin\vartheta.$ Обозначим $l^2+m^2=1-n^2=\sigma,\ 0\leqslant\sigma\leqslant 1$ и введем угол $\tau;\ \sin\tau=rac{l}{\sqrt{\sigma}},\ \cos\tau=rac{m}{\sqrt{\sigma}}.$ Тогда

$$\cos \beta = V^{\overline{\sigma}} \sin (\theta + \tau),
(\overrightarrow{\rho}^{\circ}, \overrightarrow{V}_{c\phi}^{\circ}, \overrightarrow{J}_{n}) = V^{\overline{\sigma}} \cos (\theta + \tau),$$
(2.15)

откуда

$$|\vec{\rho}^{\circ}, \vec{V}_{c\phi}, \vec{f}_{n}\rangle| = \sqrt{\sigma - \cos^{2}\beta}$$
 (2.16)

При заданном значении β переход к θ производится с помощью (2.15) и соотношения $\cos{(\theta+\tau)}=\pm\sqrt{1-\frac{\cos^2{\beta}}{\sigma}}$, где, согласно (2.2), знак "+" берется для маршрутов A, B^+ , знак "—" — для маршрута B^- .

3. ОПТИМАЛЬНЫЙ ВЫХОД НА ОРБИТУ ИСЛ И СХОД С ОРБИТЫ ИСЛ

В случае круговой орбиты ИСЛ $e_{\rm c}\equiv 0,\; \rho=p_{\rm c}$ и из (2.14) и (2.16) получаем

$$\overline{\Delta V^2} = \frac{\Delta V^2}{\frac{K_{\pi}}{a}} = \frac{1}{x} \left[3 + x - 2 \left(\sqrt{\frac{x}{4} + \frac{1}{1 + \cos \beta}} \pm \frac{1}{2} \sqrt{x} \right) \sqrt{\sigma - \cos^2 \beta} \right]. \quad (3.1)$$

При заданных a, ρ или $x=\frac{\rho}{a}$ и σ найдем на орбите ИСЛ точку, в которой достигается $\min \Delta V$. Освобождаясь в получаемом из (3.1) равенстве $\frac{\partial \Delta \overline{V^2}}{\partial \cos \beta}=0$ от иррациональностей, приведем его к виду

$$x = -\frac{(\cos^2 \beta \mp 2 \cos \beta + \sigma)^2}{\mp \cos \beta (\sigma \mp \cos \beta) (1 \mp \cos \beta)^2}.$$
 (3.2)

Заметим, что (3.2) является относительно $\cos \beta$ алгебраическим уравнением четвертой степени. Из (3.2) и численных расчетов делаем следующий вывод (фиг. 3):

1) поскольку x>0 только в промежутках $0<\cos\beta<\sigma$ для выхода на орбиту ИСЛ и $\sigma<\cos\beta<0$ для схода с орбиты ИСЛ, то значения $\cos\beta_{\rm opt}$ заключены в этих промежутках, меньших допустимого диапазона $\cos\beta$ [см. (2.16)]:

$$0 < |\cos \beta_{\text{opt}}| < \sigma \leqslant \sqrt{\sigma};$$

2) $x \to +\infty$ при $\cos \beta \to 0$ и $|\cos \beta| \to \sigma$;

3)
$$x = 0$$
 при $\pm \cos \beta = 1 - \sqrt{1 - \alpha} \leqslant \sigma$, (3.3) причем каждое из этих значений $\cos \beta$ является двукратным корнем числителя (3.2):

4) непосредственно анализируя (3.1) при х $\to +\infty$ и х $\to 0$, можно показать, что значения $0 < |\cos \beta_{\rm opt}| < 1 - \sqrt{1-\sigma}$ характеризуют

оптимальный перелет по маршрутам A, B^+ , а значения $1-\sqrt{1-\sigma} < |\cos \beta_{\rm opt}| < \sigma$ характеризуют оптимальный перелет по маршруту B^- ; 5) для ветви A, B^+ при любом \times (см. ниже)

$$|\cos \beta(x, \sigma)| \leq |\cos \overline{\beta}(x, \sigma = 1)|$$
.

Отсюда и из сказанного в разд. 2 следует, что в составе оптимальных перелетов нет перелетов B^+ . Поскольку, как это видно из (3.1), min $\overline{\Delta V}(A,B^+)\leqslant \min\overline{\Delta V}(B^-)$, то глобальный min $\overline{\Delta V}$ достигается на дуге гиперболы A, не содержащей перицентра. Дуга гиперболы B^- , содержащая перицентр, дает локальный min $\overline{\Delta V}$.

Фиг. 3

Результаты расчета зависимостей $\mathbf{x} = \mathbf{x} (\cos \beta, \sigma)$ по (3.2) и минимального импульса $\overline{\Delta V} = \Delta V / \sqrt{\frac{K_{\rm J}}{a}} (\mathbf{x}, \sigma)$ по (3.1) с учетом (3.2) приведены на фиг. 4 и 5.

При перелете в плоскости орбиты ИСЛ $\sigma=1$, и из (3.2) получаем $\cos\beta_{\rm opt}=\cos\bar{\beta}=\pm\frac{1}{1+\varkappa}$. Таким образом, в плоском случае оптимальным является выход на орбиту ИСЛ или сход с нее в перицентре гиперболы.

Хотя решение уравнения (3.2) относительно $\cos \beta$ при заданных о и х может быть получено одним из регулярных методов, например, методом Феррари, вследствие громоздкости выражений для корней практический интерес представляет получение простых приближенных решений этого уравнения.

Поскольку $\cos \beta_{\text{opt}}(A) \to 0$, $\cos \beta_{\text{opt}}(B^-) \to \sigma$ при $\varkappa \to +\infty$ и любом σ , имеем из (3.2) приближенное решение при $\varkappa \gg 1$:

$$\cos \beta_{\text{opt}}(A) = \pm \frac{\sigma}{\kappa} \left[1 - \frac{3 - 2\sigma}{\kappa} + 0 \left(\frac{1}{\kappa^2} \right) \right],$$

$$\cos \beta_{\text{opt}}(B^-) = \pm \sigma \left[1 - \frac{\sigma}{\kappa} + 0 \left(\frac{1}{\kappa^2} \right) \right].$$
(3.4)

Фиг. 4

Полагая в (3.2) $\cos \beta_{opt} = \cos \beta_{opt}^* + \Delta \cos \beta$, где $|\cos \beta_{opt}^*|$ равен (3.3), получим с точностью до членов второго порядка малости приближенное решение при х \ll 1:

$$\pm \Delta \cos \beta = \pm \frac{1}{2} \sqrt{\kappa} \left[\left(1 - \sqrt{1 - \sigma} \right) \left(\sqrt{1 - \sigma} - 1 + \sigma \right) \right]^{\frac{1}{2}}.$$

В правой части знак "+" соответствует маршруту A, знак "-"-маршруту B^- . Поскольку $\mathbf{x} = \frac{\rho}{a} \approx \frac{V_{\mathrm{c}\varphi}^2}{v^2}$ и отсюда $\mathbf{x}_{\min} \approx 0,24$, практическое значение этого случая невелико.

Для эллиптической орбиты ИСЛ найдем при заданных a, $p_{\rm c}$ или $x=\frac{p_{\rm c}}{a}$, σ , $e_{\rm c}$ и τ точку на орбите ИСЛ, доставляющую min ΔV .

В этом случае соотношение $\frac{\partial \Delta V^3}{\partial \cos \beta} = 0$, получаемое из (2.14), настолько сложно, что делает практически невозможным получение для $\cos \beta_{\rm opt}$ соотношений, аналогичных найденным для круговой орбиты ИСЛ. Что касается численного определения $\cos \beta_{\rm opt}$, то здесь

предпочтительнее искать $\min_{\{\cos\beta\}} \Delta V^2$, используя (2.14). Поэтому огра-

ничимся рассмотрением орбит малой эллиптичности $e_{\rm c} \ll 1$. Считая известным решением $\cos \beta_{\rm opt}$ при $e_{\rm c} = 0$, можно получить приближенное решение для эллиптической орбиты в виде ряда по степеням $e_{\rm c}$, в котором вследствие чрезвычайной громоздкости коэффициентов этого ряда практически можно вычислить лишь второй член.

Фиг. 5

Если дополнительно предположить, что плоскость гиперболы близка к плоскости орбиты ИСЛ, и положить $\sigma=1-\Delta\sigma$, $\Delta\sigma=n^2$, $\cos\beta_{\rm opt}=\cos\overline{\beta}+\Delta\cos\beta$, то с точностью до малых второго порядка для маршрута A получаем

$$\Delta \cos \beta = + f_{\sigma} \Delta \sigma + (f_{e_{\sigma}}^{l} l + f_{e_{\sigma}}^{m} m) e_{c}, \qquad (3.5)$$

где $l^2 + m^2 = 1$;

$$f_{\sigma} = \frac{2 + \kappa}{\kappa (1 + \kappa)}; \qquad (3.6)$$

$$f_{e_c}^t = \frac{x}{(1+x)^3} \left[1 - 2 \frac{(2+x)^2}{1+x} \left(\sqrt{2+x} - 1 \right) \right];$$
 (3.7)

$$f_{e_{c}}^{m} = \frac{\sqrt{(2+x)x}}{(1+x)^{3}} \left[x + 2\frac{2+x}{1+x} \left(\sqrt{2+x} - 1 \right) \right]. \tag{3.8}$$

В (3.5) верхние знаки относятся к случаю выхода на орбиту, а нижние — к случаю схода с орбиты (см. разд. 5). Графики функций f_{σ} , $f_{e_{c}}^{l}$, $f_{e_{c}}^{m}$ приведены на фиг. 6. Как показывает сравнение с точными расчетами, (3.5) дает достаточно хорошие результаты до значений $\Delta \sigma \approx 0.3$, $e_{c} \approx 0.3$ (при x > 1.5). При этом $\cos \beta$ определяется с ошибкой $\sim 10\%$, а ΔV — на порядок точнее.

Фиг. 6

4. НЕКОТОРЫЕ ЗАДАЧИ ОПТИМИЗАЦИИ ПАРАМЕТРОВ КРУГОВОЙ ОРБИТЫ ИСЛ

Рассмотрим выражение $\Delta \overline{V}$ (х, σ) [см. (3.1)] при $\cos \beta = \cos \beta_{\rm opt}$ (х, σ). Считаем, что $\kappa = \frac{\rho}{a}$ изменяется при изменении ρ . Можно показать, что в случае маршрута A существует $\kappa_{\rm opt}$, при котором достигается $\min \Delta \overline{V}$; в случае же маршрута B^- величина $\Delta \overline{V}$ монотонно уменьшается с ростом κ (см. фиг. 5). Раскладывая с помощью (3.4) $\frac{\partial \Delta \overline{V^2}}{\partial \kappa}$ в ряд при $\kappa \gg 1$ и приравнивая в этом разложении сумму первых трех членов нулю, получим для приближенного определения κ соотношение

$$\frac{\partial \Delta \overline{V}^2}{\partial x} \approx -\frac{1}{x^2} \left[3 - \sqrt{x} \sqrt{\sigma} \left(1 + \frac{3}{x} \right) \right] = 0, \tag{4.1}$$

которое определяет \varkappa_{opt} только при $\sigma \ll \frac{3}{4}$. Чтобы избавиться от этого дефекта, заменим (4.1) соотношением

$$3 - \sqrt{\pi} \sqrt{\sigma} \left(1 + \frac{A}{\pi} \right) = 0, \tag{4.2}$$

где A определим из условия, чтобы зависимость $\sigma\left(\mathbf{x}_{opt}\right)$ достигала максимума $\sigma=1$.

В этом случае $A = \frac{9}{4}$ и

$$\alpha_{\rm opt} \approx \frac{9}{4} \frac{(1+\sqrt[4]{1-\sigma})^2}{\sigma} \,. \tag{4.3}$$

Формула (4.3) дает хорошую сходимость $\kappa_{\rm opt}$ с точным значением (ошибка не превышает 20%) и очень хорошее совпадение соответствующих величин $\Delta \overline{V}$ (что следует из фиг. 5).

Суммируя выражения (3.1) для случаев выхода на орбиту и схода с нее при неизменной высоте орбиты, получим для суммарной характеристической ско-

рости *ΔV* выражение

$$\Delta V = \sqrt{\frac{K_{\Pi}}{a_{B}}} \, \overline{\Delta V}_{B}(x_{B}, \sigma_{B}, \cos \beta_{B}) + \sqrt{\frac{K_{\Pi}}{a_{CX}}} \, \Delta \overline{V}_{CX}(x_{CX}, \sigma_{CX}, \cos \beta_{CX}), \tag{4.4}$$

где индексы "в" и "сх" означают выход и сход соответственно; $z_{B}=rac{
ho}{a_{B}}$;

 $\mathbf{x}_{\mathrm{cx}} = \frac{\rho}{a_{\mathrm{cx}}}$; $\cos \beta_{\mathrm{B}} = \cos \beta_{\mathrm{opt}} (\mathbf{x}_{\mathrm{B}}, \mathbf{c}_{\mathrm{B}})$; $\cos \beta_{\mathrm{cx}} = \cos \beta_{\mathrm{opt}} (\mathbf{x}_{\mathrm{cx}}, \mathbf{c}_{\mathrm{cx}})$. Требуется при заданных $a_{\mathrm{B}}, a_{\mathrm{cx}}, \sigma_{\mathrm{B}}, \sigma_{\mathrm{cx}}$ определить оптимальную высоту круговой орбиты ρ_{opt} или $\mathbf{x}_{\mathrm{B} \, \mathrm{opt}}$, доставляющую $\min \Delta V$ (4.4). Можно показать, что для маршрутов A выхода и схода существует $\mathbf{x}_{\mathrm{B} \, \mathrm{opt}}$, а для маршрутов B^- значение ΔV монотонно убывает с ростом \mathbf{x}_{B} . Далее рассматривается селеносферическое движение только по маршрутам A, доставляющим глобальный $\min \Delta V$.

Чтобы получить приближенное выражение для $x_{\rm B \; opt}$, воспользуемся для $\frac{\partial \; (\Delta \overline{V}^{\; 2}_{\rm B})}{\partial x_{\rm B}}$ и $\frac{\partial \; (\Delta \overline{V}^{\; 2}_{\rm cx})}{\partial x_{\rm cx}}$ по аналогии с (4.2) приближенным соотношением

$$\frac{\partial \left(\Delta \overline{V}^{2}\right)}{\partial x} \approx -\frac{1}{x^{2}} \left[3 - V \overline{x} V \overline{\sigma} \left(1 + \frac{B}{x} \right) \right], \tag{4.5}$$

где В — одна и та же постоянная для выхода и схода.

Пользуясь тем, что $\Delta \overline{V}$ (x, $\sigma = \text{const}$) $\approx \text{const}$ в широком диапазоне значений x (см. фиг. 5), и учитывая (4.5), получим из $\frac{\partial \Delta \overline{V}}{\partial x_B} = 0$

$$V_{\overline{\alpha_{B \text{ opt}}}} \approx \frac{3(\xi + \sqrt{\overline{a}}) + \sqrt{9(\xi + \sqrt{\overline{a}})^{2} - 4B(\xi \sqrt{\sigma_{B}} + \sqrt{\sigma_{cx}})(\xi \sqrt{\sigma_{B}} + \overline{a}\sqrt{\sigma_{cx}})}{2(\xi \sqrt{\sigma_{B}} + \sqrt{\sigma_{cx}})}, (4.6)$$

гле

$$\overline{a} = \frac{a_{\text{cx}}}{a_{\text{B}}}, \quad \xi = \frac{\Delta \overline{V}_{\text{cx}} \left(x_{\text{cx}}, \sigma_{\text{cx}}\right)}{\Delta \overline{V}_{\text{B}} \left(x_{\text{B}}, \sigma_{\text{B}}\right)}. \tag{4.7}$$

Величину B определим по аналогии с A: потребуем, чтобы при $\sigma_B = \sigma_{CX} = 1$ подкоренное выражение в (4.6) обращалось в нуль. Тогда

$$B = \frac{9}{4} \frac{(\xi + \sqrt{\bar{a}})}{(1 + \xi)(\xi + \bar{a})}.$$
 (4.8)

Соотношения (4.6) — (4.8) удобно использовать для итерационного определения $x_{\text{в орt}}$, причем в начале итерационного процесса целесообразно положить $\xi=1$ (см. фиг. 5). Сравнение значений $x_{\text{в орt}}$, определенных по формуле (4.6), с точными значениями $x_{\text{в орt}}$ и соответствующих им значений ΔV показывает, что практически при всех \overline{a} , $\sigma_{\text{в и }}$ и $\sigma_{\text{сх}}$ достаточно двух—трех итераций. Ввиду крайней пологости функции $\Delta V(x_{\text{в}})$ для определения $\Delta V(x_{\text{в орt}})$ с тремя первыми значащими цифрами достаточно посчитать эту функцию для значения $x_{\text{в орt}}$, вычисленного по (4.6) при $\xi=1$; в этом случае наибольшее различие между $x_{\text{в орt}}$ и $x_{\text{в ($\xi=1$)}}$ не превышает \sim 20%.

Рассмотрим некоторые задачи оптимизации ориентации круговой орбиты ИСЛ в пространстве и продолжительности пребывания на ней. В (3.1) и (4.4) полагаем $\cos \beta = \cos \beta_{\rm opt}$ (x, σ). Величину х считаем либо заданной, либо оптимальной.

Считаем заданными $\overrightarrow{V}_{c \varphi 1}$, $\overrightarrow{V}_{c \varphi 4}$, $a_{\rm B}$ и $a_{\rm C}$. При указанных условиях в (3.1) $\frac{d\Delta V}{d\sigma} = \frac{\partial \Delta V}{\partial \sigma} < 0$, в (4.4) $\frac{\partial \Delta V}{\partial \sigma_{\rm B}} < 0$ и $\frac{\partial \Delta V}{\partial \sigma_{\rm C}} < 0$, т. е. ΔV уменьшается с ростом

 Γ усть продолжительность пребывания на орбите ИСЛ t_{23} мала. В этом случае можно полагать $t_{23}=0$ и считать орбиту ИСЛ в момент выхода на нее и схода с нее одной и той же. Если выбрать

$$\vec{j}_n = \frac{[\vec{V}_{c^{\perp}1}, \vec{V}_{c\phi 4}]}{|[\vec{V}_{c\phi 1}, \vec{V}_{c\phi 4}]|}, \tag{4.9}$$

то для такой орбиты имеем выход и сход в плоскости орбиты, $\sigma_B = \sigma_{CX} = 1$, и реализуется $min min \Delta V$. $\{\sigma_{B}, \sigma_{CX}\}$

Если продолжительность пребывания на орбите ИСЛ достаточно велика, то за счет перемещения Луны по орбите и эволюции орбиты ИСЛ ее расположение относительно мгновенной системы осей $x_{\rm c}\,y_{\rm c}\,z_{\rm c}$ и форма существенно меняются. Предположим, что эволюцией орбиты можно пренебречь, т. е. орбита остается круговой, высота орбиты не меняется, расположение орбиты относительно системы осей $x_{\rm c}\,y_{\rm c}\,z_{\rm c}$ меняется только за счет перемещения Луны по орбите на угол ψ (см. фиг. 1). Если t_{23} задана, то, зная $\overrightarrow{V}_{c \varphi 1}$ и $\overrightarrow{V}_{c \varphi 4}$, в соответствии с (4.9) для любой t_{23} можно выбрать ориентацию орбиты ИСЛ, обеспечи-

вающую плоский выход и сход. Пусть задана ориентация орбиты ИСЛ в момент выхода на нее в системе координат $x_{c_1}y_{c_1}z_{c_1}$ ортом $\overrightarrow{j_n}\{j_{nx},j_{ny},j_{nz}\}$ (см. фиг. 1). Определим продолжительность пребывания на орбите ИСЛ t_{23} , обеспечивающую $\min \Delta V$. Пусть

вектор $\overrightarrow{V}_{c\phi}^{\bullet}$ в системе координат $x_{c4}y_{c4}z_{c4}$ имеет компоненты $\overrightarrow{V}_{c\phi}^{\bullet}$ 4 $\{f,g,h\}$. Тогда в момент схода

$$\begin{cases}
\sigma_{\text{cx}} = 1 - n_4^2, \\
n_4 = (\vec{V}_{\text{c} + 4}^{\circ}, \vec{J}_n) = b + c \cos \psi + d \sin \psi,
\end{cases} (4.10)$$

где $b = j_{nz}h$, $c = j_{nx}f + j_{ny}g$, $d = j_{ny}f - j_{nx}g$.

Из (4.10) следует, что $\max \sigma_{\text{сx}} \to \min |n_4|$. Если $j_{nz}^2 + h^2 < 1$, то $\min |n_4| = 0$ и существуют два оптимальных угла ψ_{opt} , определяемых из соотношения

$$\sin(\psi_{\text{opt}} + \chi) = -\frac{b}{\sqrt{c^2 + d^2}},$$

где

$$\sin\chi = \frac{c}{\sqrt{c^2 + d^2}}, \quad \cos\chi = \frac{d}{\sqrt{c^2 + d^2}}.$$

Если же $f_{nz}^2 + h^2 \gg 1$, то min $\lfloor n_4 \rfloor$ достигается для b>0 при $\psi_{\mathrm{opt}} = \frac{3}{2}\pi - \chi$, для b < 0 при $\psi_{\text{opt}} = \frac{\pi}{2} - \chi$.

Аналогично может быть решена задача об оптимальной продолжительности пребывания на орбите ИСЛ при заданной ориентации орбиты в момент схода с нее.

5. ИНВАРИАНТНОСТЬ ХАРАКТЕРИСТИК СЕЛЕНОСФЕРИЧЕСКОГО ДВИЖЕНИЯ АППАРАТА

При переходе с безапогейного маршрута A на апогейный C(или наоборот) в (2.1) меняет знак только первая компонента U_r . Изменим ориентацию орбиты ИСЛ и селеносферической гиперболы так, чтобы относительно новой орбиты ИСЛ движение аппарата по оптимальной гиперболе оставалось неизменным. Из (2.9) следует, что для неизменности параметров гиперболы не должен меняться

 $\cos \beta$; для этого первая компонента $\vec{\rho}^{\circ}$ должна изменить знак. Но тогда из (2.3) — (2.5), вследствие неизменности $\vec{\nu}$ и $\vec{\nu}$, следует, что направляющие косинусы ортов \vec{i}_{Π} , \vec{i}_{ν} , \vec{i}_{n} относительно системы осей $x_{c}y_{c}z_{c}$ меняются следующим образом: $\vec{i}_{\Pi}(-++)$, $\vec{i}_{\nu}(-++)$, $\vec{i}_{n}(+--)$. Здесь и в дальнейшем знаком "+" обозначены неизменные элементы векторов, а знаком "—"— элементы, меняющие знак.

Из неизменности $\cos \gamma$ [см. (2.13)] и ΔV [см. (2.14)] следует, что векторы \vec{j}_Π , \vec{j}_y , \vec{j}_n в осях $x_{\rm c}y_{\rm c}z_{\rm c}$ должны иметь вид \vec{j}_Π (— + +), \vec{j}_y (— + +), \vec{j}_n (+ — —). Новый вектор $\vec{V}_{\rm c\phi}$ в осях \vec{j}_Π , \vec{j}_y , \vec{j}_n имеет при этом следующие компоненты: $\vec{V}_{\rm c\phi}$ (+ + —).

При указанной замене ортов $\vec{i}_{\Pi} \ \vec{i}_{y} \ \vec{i}_{n}$ и $\vec{j}_{\Pi} \ \vec{j}_{y} \ \vec{j}_{n}$ все параметры, характеризующие движение аппарата в плоскости селеносферической гиперболы, и углы ϑ и τ остаются неизменными. У векторов $\vec{i}_{\Pi}, \ \vec{i}_{y}, \ \vec{j}_{\Pi}, \ \vec{j}_{y}$ и $\vec{\rho}_{1}$ или $\vec{\rho}_{4}$ селеноцентрическая долгота λ заменяется на $\pi - \lambda$. У векторов $\vec{i}_{n}, \ \vec{j}_{n}$ селеноцентрические долгота λ и широта φ заменяются соответственно на $2\pi - \lambda$ и $-\varphi$.

Отметим, что указанное свойство следует из снесения векторов \vec{U}_1 , \vec{U}_4 со сферы действия Луны в центр Луны, поэтому при учете конечности размеров сферы действия Луны [1], [2] оно выполняется лишь приближенно.

При отображении геоцентрической траектории относительно плоскости орбиты Луны у $\vec{V}_{c\phi}$ (2.1) меняет знак только третья компонента $U_t \sin \alpha$. Решением поставленной выше задачи является следующий выбор ортов ориентации гиперболы и орбиты ИСЛ и векторов $\vec{\rho}_1$, $\vec{\rho}_4$ в системе $x_c y_c z_c$: $\vec{i}_{\Pi}(++-)$, $\vec{i}_y(++-)$, $\vec{i}_n(--+)$, $\vec{j}_{\Pi}(++-)$, $\vec{j}_y(++-)$, $\vec{j}_n(--+)$, $\vec{\rho}_1$ или $\vec{\rho}_4(++-)$. У векторов \vec{i}_{Π} , \vec{i}_y , \vec{j}_y и $\vec{\rho}$ заменяется $\vec{\phi}$ на $-\vec{\phi}$; у векторов \vec{i}_n , \vec{j}_n заменяется $\vec{\lambda}$ на $\pi + \lambda$. Новый вектор $\vec{V}_{c\phi}$ в осях \vec{j}_{Π} , \vec{j}_y , \vec{j}_n имеет компоненты $\vec{V}_{c\phi}$ (++-).

При изменении направления движения по орбите ИСЛ или при переходе от выхода к сходу (или наоборот) $\vec{V}_{c\phi}$ и соз β меняют знаки. Для неизменности параметров оптимальной гиперболы необходимо следующее изменение ортов ее ориентации и орбиты ИСЛ в системе $x_c y_c z_c$: $\vec{i}_{\rm II}(+++)$, $\vec{i}_y(---)$, $\vec{i}_n(---)$, $\vec{j}_n(+++)$, $\vec{i}_y(----)$, $\vec{j}_n(----)$. Радиус-вектор $\vec{\rho}$ точки выхода или схода остается неизменным; ϑ и τ заменяются соответственно на $-\vartheta$ и $-\tau$. При изменении знака селеноцентрического вектора параметры λ и φ заменяются соответственно на $\pi + \lambda$ и $-\varphi$. Новый вектор $\vec{V}_{c\phi}$ в осях $\vec{j}_{\rm II}$ \vec{j}_y \vec{j}_n имеет компоненты $\vec{V}_{c\phi}^{\circ}(-++)$.

В заключение заметим, что соотношения (2.14) или (3.1) при подстановке в них $\cos \beta_{\rm opt}$ дают явную зависимость $\min \Delta V(a,\sigma,\tau)$ от $\vec{V}_{\rm c\phi}$, что может быть использовано для определения дуги перелета Земля — Луна или Луна — Земля из условия $\min \Delta V$. В част-

ности, из этого условия совместно с (1.1) можно определить оптимальный перелет Земля - Луна.

Результаты настоящей работы, касающиеся оптимизации движения аппарата в пределах сферы действия, могут быть использованы для расчета оптимального планетоцентрического движения при условии, что движение на гелиоцентрических участках определено независимо от планетоцентрического. Соотношения (2.14) и (3.1) при $\cos \beta = \cos \beta_{\text{opt}}$ могут быть использованы для оптимизации межпланетных перелетов с выходом на произвольно ориентированные орбиты ИС планет аналогично тому, как это сделано в [5] для случая совпадения плоскости орбиты ИС с плоскостью, содержащей планетоцентрические скорости аппарата на сфере действия планеты.

ЛИТЕРАТУРА

1. Егоров В. А. О траекториях возврата от Луны к Земле. «Космические исследования», т. V, вып. 4, 484-493, 1967.

2. Егоров В. А. О влиянии разброса начальных данных на траектории возврата от Луны к Земле. «Космические исследования», т. VII,

вып. 1, 3-17, 1969.

3. Ильин В. А. Синтез траекторий близкого облета Луны с возвращением в атмосферу Земли. Журнал вычислительной математики и математич. физики, т. 7, № 2, 367—388, 1967.
4. Бэттин Р. Наведение в космосе. М., «Машиностроение», 1966.

5. Ильин В. А. К расчету траекторий перелета космических аппаратов между компланарными круговыми орбитами в ньютонианском гравитационном поле. «Космические исследования», т. II, вып. 5, 698-712, 1964.

6. В ождаев В. С. Доклад на III Чтениях, посвященных разработке научного наследия К. Э. Циолковского. Калуга, сентябрь 1968 г.