TP1 sur la dérivation

Laurent Garnier

14 décembre 2014

Table des matières

1	Fon	ction affine 1
	1.1	Captures d'écran
	1.2	Étapes de la construction
	1.3	Travail effectif
2	Fon	ctions trinômes 3
	2.1	Captures d'écran
	2.2	Étapes de la construction
	2.3	Travail effectif
3	Fone	ctions homographiques 5
	3.1	Captures d'écran
	3.2	Étapes de la construction
	3.3	Travail effectif
4	Fone	ctions racines carrées 6
	4.1	Captures d'écran
	4.2	Étapes de la construction
	4.3	Travail effectif
T	- 1- 1 -	1
1	abie	e des figures
	1	Graphe d'une fonction affine
	2	Construction de la tangente
	3	Tangente construite
	4	Incrémentation du curseur h
	5	Activation de la trace
	6	Nombre dérivé de f en a
	7	Graphe d'une fonction trinôme
	8	Graphe d'une fonction homographique
	9	Graphe d'une fonction racine carrée

1 Fonction affine

1.1 Captures d'écran

FIGURE 1 – Graphe d'une fonction affine

1.2 Étapes de la construction

Afin d'obtenir les objets à créer tels qu'ils sont représentés sur la figure 1; il faut suivre le plan cidessous :

- 1. Dans la barre de saisie écrire f(x) = 2 * x+1
- 2. Créer un curseur :
 - (a) a comprisentre -5 et 5.
 - (b) h compris entre -1 et 1 avec un incrément 1 de 0.01.
- 3. Dans la barre de saisie écrire :
 - (a) A = (a, f(a))
 - (b) B = (a+h, f(a+h))
 - (c) t = (f(a+h)-f(a))/h
 - (d) M = (h, t)
- 4. Tracer la
 - (a) sécante $(AB)^2$ à la courbe C_f .
 - (b) tangente en A^3 à la courbe C_f .
- 5. Cliquer-droit sur le point M et choisir d'activer la trace ⁴.

1.3 Travail effectif

Voici les consignes de cette 1ère partie du TP1 :

- 1. Pour a > 0 déplacer le curseur h et décrire ce que vous observez.
- 2. Pour a < 0 déplacer le curseur h et décrire ce que vous observez.
- 1. voir la figure 4
- 2. voir la figure 2
- 3. voir la figure 2
- 4. voir la figure 5

FIGURE 2 – Construction de la tangente

FIGURE 4 – Incrémentation du curseur h

- 3. Calculer (à LA MAIN) $t(h) = \frac{f(a+h)-f(a)}{h}$
- 4. Si c'est possible ⁵, calculer t(0) qu'on notera f'(a).
- 5. Afficher la fenêtre du tableur et enregistrer les valeurs de f'(a) en faisant varier a de -5 à 5 par pas de 1. On fera une colonne pour indiquer les valeurs de a (donc il y aura 11 lignes) et une colonne avec les valeurs de f'(a).
- 6. Créer une liste de points ⁶ avec la colonne des a et la colonne des f'(a).
- 7. Quelle fonction g pourrait-on créer afin que son graphe passe par chacun des points de la liste?

2 Fonctions trinômes

2.1 Captures d'écran

^{5.} On effectuera, le cas échéant, des simplifications

^{6.} voir la figure 6

FIGURE 5 – Activation de la trace

FIGURE 6 – Nombre dérivé de f en a

2.2 Étapes de la construction

Afin d'obtenir les objets à créer tels qu'ils sont représentés sur la figure 7; il faut suivre le plan cidessous :

- 1. Dans la barre de saisie écrire $f(x) = x^2$
- 2. Créer un curseur :
 - (a) a comprisentre -5 et 5.
 - (b) h compris entre -1 et 1 avec un incrément ⁷ de 0.01.
- 3. Dans la barre de saisie écrire :
 - (a) A = (a, f(a))
 - (b) B = (a+h, f(a+h))
 - (c) t = (f(a+h)-f(a))/h
 - (d) M = (h, t)
- 4. Tracer la
 - (a) sécante $(AB)^{8}$ à la courbe C_f .
 - (b) tangente en A^9 à la courbe C_f .
- 5. Cliquer-droit sur le point M et choisir d'activer la trace ¹⁰.

2.3 Travail effectif

Voici les consignes de cette 2^{ème} partie du TP1 :

- 1. Pour a>0 déplacer le curseur h et décrire ce que vous observez.
- 2. Pour a < 0 déplacer le curseur h et décrire ce que vous observez.
- 3. Calculer (à La Main) $t(h) = \frac{f(a+h) f(a)}{h}$
- 4. Si c'est possible ¹¹, calculer t(0) qu'on notera f'(a).
- 5. Afficher la fenêtre du tableur et enregistrer les valeurs de f'(a) en faisant varier a de -5 à 5 par pas de 1. On fera une colonne pour indiquer les valeurs de a (donc il y aura 11 lignes) et une colonne avec les valeurs de f'(a).

^{7.} voir la figure 4

^{8.} voir la figure 2

^{9.} voir la figure 2

^{10.} voir la figure 5

^{11.} On effectuera, le cas échéant, des simplifications

FIGURE 7 – Graphe d'une fonction trinôme

- 6. Créer une liste de points 12 avec la colonne des a et la colonne des f'(a).
- 7. Quelle fonction g pourrait-on créer afin que son graphe passe par chacun des points de la liste ?

3 Fonctions homographiques

3.1 Captures d'écran

FIGURE 8 – Graphe d'une fonction homographique

^{12.} voir la figure 6

3.2 Étapes de la construction

Afin d'obtenir les objets à créer tels qu'ils sont représentés sur la figure 8; il faut suivre le plan cidessous :

- 1. Dans la barre de saisie écrire f(x) = Fonction[1/x, 0, 10]
- 2. Créer un curseur :
 - (a) a comprisentre -5 et 5.
 - (b) h compris entre -1 et 1 avec un incrément 13 de 0.01.
- 3. Dans la barre de saisie écrire :
 - (a) A = (a, f(a))
 - (b) B = (a+h, f(a+h))
 - (c) t = (f(a+h)-f(a))/h
 - (d) M = (h, t)
- 4. Tracer la
 - (a) sécante $(AB)^{14}$ à la courbe C_f .
 - (b) tangente en A^{15} à la courbe C_f .
- 5. Cliquer-droit sur le point M et choisir d'activer la trace ¹⁶.

3.3 Travail effectif

Voici les consignes de cette 3^{ème} partie du TP1 :

- 1. Pour a > 0 déplacer le curseur h et décrire ce que vous observez.
- 2. Pour a < 0 déplacer le curseur h et décrire ce que vous observez.
- 3. Calculer (à LA MAIN) $t(h) = \frac{f(a+h) f(a)}{h}$
- 4. Si c'est possible ¹⁷, calculer t(0) qu'on notera f'(a).
- 5. Afficher la fenêtre du tableur et enregistrer les valeurs de f'(a) en faisant varier a de -5 à 5 par pas de 1. On fera une colonne pour indiquer les valeurs de a (donc il y aura 11 lignes) et une colonne avec les valeurs de f'(a).
- 6. Créer une liste de points 18 avec la colonne des a et la colonne des f'(a).
- 7. Quelle fonction g pourrait-on créer afin que son graphe passe par chacun des points de la liste?

4 Fonctions racines carrées

4.1 Captures d'écran

4.2 Étapes de la construction

Afin d'obtenir les objets à créer tels qu'ils sont représentés sur la figure 9; il faut suivre le plan cidessous :

- 1. Dans la barre de saisie écrire $f(x) = \sqrt{x}$
- 2. Créer un curseur :
 - (a) a comprisentre -5 et 5.

^{13.} voir la figure 4

^{14.} voir la figure 2

^{15.} voir la figure 2

^{16.} voir la figure 5

^{17.} On effectuera, le cas échéant, des simplifications

^{18.} voir la figure 6

FIGURE 9 – Graphe d'une fonction racine carrée

- (b) h compris entre -1 et 1 avec un incrément 19 de 0.01.
- 3. Dans la barre de saisie écrire :
 - (a) A = (a, f(a))
 - (b) B = (a+h, f(a+h))
 - (c) t = (f(a+h)-f(a))/h
 - (d) M = (h, t)
- 4. Tracer la
 - (a) sécante $(AB)^{20}$ à la courbe C_f .
 - (b) tangente en A^{21} à la courbe C_f .
- 5. Cliquer-droit sur le point M et choisir d'activer la trace ²².

4.3 Travail effectif

Voici les consignes de cette 4ème partie du TP1:

- 1. Pour a > 0 déplacer le curseur h et décrire ce que vous observez.
- 2. Pour a < 0 déplacer le curseur h et décrire ce que vous observez.
- 3. Calculer (à LA MAIN) $t(h) = \frac{f(a+h) f(a)}{h}$
- 4. Si c'est possible ²³, calculer t(0) qu'on notera f'(a).
- 5. Afficher la fenêtre du tableur et enregistrer les valeurs de f'(a) en faisant varier a de -5 à 5 par pas de 1. On fera une colonne pour indiquer les valeurs de a (donc il y aura 11 lignes) et une colonne avec les valeurs de f'(a).
- 6. Créer une liste de points 24 avec la colonne des a et la colonne des f'(a).
- 7. Quelle fonction g pourrait-on créer afin que son graphe passe par chacun des points de la liste ?

^{19.} voir la figure 4

^{20.} voir la figure 2

^{21.} voir la figure 2

^{22.} voir la figure 5

^{23.} On effectuera, le cas échéant, des simplifications

^{24.} voir la figure 6