28) Matching Methods in Practice

Vitor Kamada

April 2018

1 / 19

Reference

Imbens (2015). Matching Methods in Practice. Journal of Human Resources, Vol 50:2, pp. 373-419

Assessing Overlap: Normalized Differences in Average Covariates

$$\Delta_{X,k} = \frac{\bar{X}_{t,k} - \bar{X}_{c,k}}{\sqrt{\frac{(S_{X,t,k}^2 + S_{X,c,k}^2)}{2}}}$$

$$t_{X,k} = rac{ar{X}_{t,k} - ar{X}_{c,k}}{\sqrt{rac{S_{X,t,k}^2}{N_t} + rac{S_{X,c,k}^2}{N_c}}}$$

Vitor Kamada ECO 7100 Econometrics I April 2018 3 / 19

Summary Statistics for Experimental Lalonde Data

	Experimental Controls ($N_c = 260$)		Trainees $(N_t = 185)$			
Covariate	Mean	(Standard Deviation)	Mean	(Standard Deviation)	<i>t</i> -stat	nor-dif
Black	0.83	(0.38)	0.84	(0.36)	0.5	0.04
Hispanic	0.11	(0.31)	0.06	(0.24)	-1.9	-0.17
Age	25.05	(7.06)	25.82	(7.16)	1.1	0.11
Married	0.15	(0.36)	0.19	(0.39)	1.0	0.09
No degree	0.83	(0.37)	0.71	(0.46)	-3.1	-0.30
Education	10.09	(1.61)	10.35	(1.97)	1.4	0.14
E'74	2.11	(5.69)	2.10	(4.89)	-0.0	-0.00
U'74	0.75	(0.43)	0.71	(0.46)	-1.0	-0.09
E'75	1.27	(3.10)	1.53	(3.22)	0.9	0.08
U'75	0.68	(0.47)	0.60	(0.49)	-1.8	-0.18

Vitor Kamada ECO 7100 Econometrics I April 2018 4 / 19

Estimated Parameters of Propensity Score for the Lalonde Experimental Data

Variable	Estimated	(Standard Error)
Intercept	-3.48	(0.10)
Preselected linear terms		
Earn '74	0.03	(0.05)
Unemployed '74	-0.24	(0.39)
Earn '75	0.06	(0.05)
Unemployed '75	-3.48	(1.65)
Additional linear terms		
No degree	7.33	(4.25)
Hispanic	-0.65	(0.39)
Education	0.29	(0.37)
Second-order terms		
No degree × education	-0.67	(0.35)
Earn '74 × no degree	-0.13	(0.06)
Unemployed '75 \times education	0.30	(0.16)

Vitor Kamada ECO 7100 Econometrics I April 2018 5 / 19

Sample Sizes for Subsamples with the Propensity Score between α and $1-\alpha$ ($\alpha=0.1299$)

	$ Low \\ e(x) < \alpha $	$ \text{Middle} \\ \alpha \le e(X) \le 1 - \alpha $	$\begin{array}{c} \text{High} \\ 1 - \alpha < e(X) \end{array}$	All
Controls	4	256	0	260
Treated	1	182	2	185
All	5	438	2	445

Propensity Score: Blocking with Regression

$$[0,1]$$
 into J intervals $[b_{j-1},b_j)$

$$\min_{\alpha,\tau,\beta} \sum_{i=1}^{N} B_i(j) [Y_i - \alpha - \tau W_i - \beta' X_i]^2$$

$$au_{block,treat}(Y, W, X) = \sum_{j=1}^{J} \frac{N_{tj}}{N_t} \hat{\tau}_j$$

4□ > 4□ > 4 = > 4 = > = 90

Vitor Kamada ECO 7100 Econometrics I April 2018

Simple Matching using Mahalanobis Metric

$$||x, x'|| = (x - x')' \hat{\Omega}_X^{-1} (x - x')$$

$$\hat{Y}_i(0) = \left\{ egin{array}{ll} Y_i^{obs} & \textit{if} & W_i = 0 \\ Y_{m(i)} & \textit{if} & W_i = 1 \end{array}
ight. \quad \hat{Y}_i(1) = \left\{ egin{array}{ll} Y_{m(i)} & \textit{if} & W_i = 0 \\ Y_i^{obs} & \textit{if} & W_i = 1 \end{array}
ight.$$

$$\hat{X}_i(0) = \left\{ \begin{array}{ccc} X_i & \text{if} & W_i = 0 \\ X_{m(i)} & \text{if} & W_i = 1 \end{array} \right. \quad \hat{X}_i(1) = \left\{ \begin{array}{ccc} X_{m(i)} & \text{if} & W_i = 0 \\ X_i & \text{if} & W_i = 1 \end{array} \right.$$

$$\hat{ au}_{sm} = \frac{1}{N} \sum_{i=1}^{N} [\hat{Y}_i(1) - \hat{Y}_i(0)]$$

Vitor Kamada ECO 7100 Econometrics I April 2018 8 / 19

Bias-Adjusted Matching Estimator [Abadie and Imbens (2006, 2010)]

$$\hat{Y}_{i}(0) = \alpha_{c} + \beta_{c}\hat{X}_{i}(0) + \epsilon_{ci}$$

$$\hat{Y}_{i}(1) = \alpha_{t} + \beta_{t}\hat{X}_{i}(1) + \epsilon_{ti}$$

$$\hat{Y}_{i}^{adj}(0) = \begin{cases} Y_{i}^{obs} & \text{if } W_{i} = 0 \\ \hat{Y}_{i}(0) + \hat{\beta}_{c}(X_{i}X_{l(i)}) & \text{if } W_{i} = 1 \end{cases}$$

$$\hat{Y}_{i}^{adj}(1) = \begin{cases} \hat{Y}_{i}(1) + \hat{\beta}_{t}(X_{i}X_{l(i)}) & \text{if } W_{i} = 0 \\ Y_{i}^{obs} & \text{if } W_{i} = 1 \end{cases}$$

$$\hat{ au}_{adj} = \frac{1}{N} \sum_{i=1}^{N} \left[\hat{Y}_i^{adj}(1) - \hat{Y}_i^{adj}(0) \right]$$

Vitor Kamada ECO 7100 Econometrics I April 2018 9 / 19

Assessing Unconfoundedness: Estimates of Average Treatment Effects for Pseudo Outcomes

	В	locking	Matching		
Pseudo Outcome	Estimated	(Standard Error)	Estimated	(Standard Error)	
Earn '75 (Earn '74 + Earn'75)/2	0.22 0.03	(0.22) (0.36)	0.03 -0.08	(0.27) (0.41)	

Subclasses for the Experimental Lalonde data

	p-score		Number of	Number of	Average p-score		D:00	
Subclasss	Minimum	Maximum	Controls	Treated	Controls	Treated	Average Difference in p-score	<i>t</i> -stat
1	0.07	0.38	152	67	0.32	0.33	0.01	0.8
2	0.38	0.49	52	42	0.42	0.42	0.01	1.0
3	0.49	0.85	52	73	0.56	0.58	0.02	1.4

$$E[e(x)|W=1]=0.45$$

$$E[e(x)|W=0]=0.39$$

11 / 19

Vitor Kamada ECO 7100 Econometrics I April 2018

Experimental Lalonde Data: Estimates of Average Treatment Effects

	Full Sample			Sample	
Covariate	1 Block	Match	1 Block	2 Blocks	3 Blocks
Number	1.79 (0.67)	2.21 (0.82)	1.69 (0.66)	1.49 (0.68)	1.48 (0.68)
Few	1.74 (0.67)	2.15 (0.82)	1.60 (0.66)	1.54 (0.66)	1.52 (0.68)
All	1.67 (0.64)	2.11 (0.82)	1.56 (0.65)	1.56 (0.64)	1.46 (0.65)

Summary Statistics for Nonexperimental Lalonde Data

	CPS Controls $(N_c = 15,992)$		Traine	es $(N_t = 185)$		
Covariate	Mean	(Standard Deviation)	Mean	(Standard Deviation)	<i>t</i> -stat	nor-dif
Black	0.07	(0.26)	0.84	(0.36)	28.6	2.43
Hispanic	0.07	(0.26)	0.06	(0.24)	-0.7	-0.05
Age	33.23	(11.05)	25.82	(7.16)	-13.9	-0.80
Married	0.71	(0.45)	0.19	(0.39)	-18.0	-1.23
No degree	0.30	(0.46)	0.71	(0.46)	12.2	0.90
Education	12.03	(2.87)	10.35	(2.01)	-11.2	-0.68
E'74	14.02	(9.57)	2.10	(4.89)	-32.5	-1.57
U'74	0.12	(0.32)	0.71	(0.46)	17.5	1.49
E'75	13.65	(9.27)	1.53	(3.22)	-48.9	-1.75
U'75	0.11	(0.31)	0.60	(0.49)	13.6	1.19

Estimated Parameters of Propensity Score for the Lalonde Nonexperimental (CPS) Data

Variable	Estimated	(Standard Error)
Intercept	-16.20	(0.69)
Preselected linear terms		
Earn '74	0.41	(0.11)
Unemployed '74	0.42	(0.41)
Earn '75	-0.33	(0.06)
Unemployed '75	-2.44	(0.77)
Additional linear terms		
Black	4.00	(0.26)
Married	-1.84	(0.30)
No degree	1.60	(0.22)
Hispanic	1.61	(0.41)
Age	0.73	(0.09)
Second-order terms		
$Age \times age$	-0.007	(0.002)
Unemployed '74 × unemployed '75	3.41	(0.85)
Earn '74 × age	-0.013	(0.004)
Earn '75 × married	0.15	(0.06)
Unemployed '74 × earn '75	0.22	(0.09)

Normalized Differences Before and After Matching for Nonexperimental Lalonde Data

	Full Sample nor-dif	Matched Sample nor-dif	Ratio of nor-dif
Black	2.43	0.00	0.00
Hispanic	-0.05	0.00	-0.00
Age	-0.80	-0.15	0.19
Married	-1.23	-0.28	0.22
No degree	0.90	0.25	0.28
Education	-0.68	-0.18	0.26
E'74	-1.57	-0.03	0.02
U'74	1.49	0.02	0.02
E'75	-1.75	-0.07	0.04
U'75	1.19	0.02	0.02

Estimated Parameters of Propensity Score for the Matched Lalonde Nonexperimental (CPS) Data

Variable	Estimated	(Standard Error)
Intercept	-0.15	(0.11)
Preselected linear terms		
Earn '74	0.03	(0.04)
Unemployed '74	-0.00	(0.42)
Earn '75	-0.06	(0.05)
Unemployed '75	0.26	(0.36)
Additional linear terms		
Married	-0.52	(0.55)
No degree	0.26	(0.26)
Second-order terms		
Unemployed '75 × married	-1.24	(0.55)
Married × no degree	1.10	(0.55)

Vitor Kamada ECO 7100 Econometrics I April 2018 16 / 19

Assessing Unconfoundedness for the Nonexperimental Lalonde Data: Estimates of Average Treatment Effects for Pseudo Outcomes

	Blocking		Matching		
Pseudo Outcome	Estimated	(Standard Error)	Estimated	(Standard Error)	
Earn '75 (Earn '74 + earn '75)/2	-1.22 -6.13	(0.25) (0.49)	-1.24 -6.37	(0.30) (0.67)	

17 / 19

Subclasses for the nonexperimental Lalonde data

	p-score		N. 1 C		Average p-score		D:00	
Subclass	Minimum	Maximum	Number of Controls	Number of Treated	Controls	Treated	Difference in Average <i>p</i> -score	t-stat
1	0.00	0.37	31	7	0.20	0.25	0.05	1.75
2	0.37	0.43	5	7	0.39	0.40	0.00	0.39
3	0.43	0.46	26	22	0.44	0.44	0.00	0.18
4	0.46	0.53	36	36	0.50	0.50	0.00	0.51
5	0.53	1.00	87	113	0.57	0.58	0.01	1.14

$$E[e(x)|W=1]=0.53$$

$$E[e(x)|W=0]=0.47$$

Vitor Kamada ECO 7100 Econometrics I April 2018 18 / 19

Nonexperimental Lalonde Data: Estimates of Average Treatment Effects

Covariate	Full Sample		Trimmed Sample			
	1 Block	Match	1 Block	2 Blocks	4 Blocks	Match
Number	-8.50 (0.58)	1.72 (0.90)	1.72 (0.74)	1.81 (0.75)	1.79 (0.76)	1.98 (0.85)
Few	0.69	1.73	1.81	1.80	2.10	1.98
All	(0.59) 1.07 (0.55)	(0.90) 1.81 (0.90)	(0.73) 1.97 (0.66)	(0.73) 1.90 (0.67)	(0.75) 1.93 (0.70)	(0.85) 2.06 (0.85)