

A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation

Jian Liang[♠], Yunbo Wang[△], Dapeng Hu[♠], Ran He[◊], Jiashi Feng[♠]

- ▲ Learning and Vision Lab, National University of Singapore (NUS)
- ^{\(\Delta\)} Wangxuan Institute of Computer Technology, Peking University
- ♦ Institute of Automation, Chinese Academy of Sciences (CASIA)

European Conference on Computer Vision (ECCV), 2020

Outline

Background

2 Method

Experiments

Problem Definition

- ullet Deep learning across domains with different label spaces $\mathcal{C}_s \supset \mathcal{C}_t$
- ullet Positive transfer across domains in **shared** label space $\mathcal{P}_{\mathcal{C}_t}
 eq \mathcal{Q}_{\mathcal{C}_t}$
- Negative transfer across domains in outlier label space

Figure 1: Test data and training data comes from different distributions!

Preliminary: Domain Adversarial Learning

Figure 2: The framework of DANN.

$$\min_{\theta_f, \theta_g} \max_{\theta_d} \mathcal{L}_{cls}(\theta_f, \theta_g) + \lambda \, \mathcal{L}_{adv}(\theta_f, \theta_d),$$

$$\mathcal{L}_{adv}(\theta_f, \theta_d) = \frac{1}{n_s} \sum_{i=1}^{n_s} \log[D(F(x_i^s))] + \frac{1}{n_t} \sum_{j=1}^{n_t} \log[1 - D(F(x_j^t))],$$

$$\mathcal{L}_{cls}(\theta_f, \theta_g) = \frac{1}{n_s} \sum_{i=1}^{n_s} l_{ce}(G(F(x_i^s)), y_i^s).$$
(1)

Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." In Proc. ICML, 2015.

4 / 18

Preliminary: Partial Adversarial Domain Adaptation

Lessons:

- 1. How to promote positive transfer across domains in **shared** label space?
- Promote domain alignment between shared classes across domains and ignore the outlier classes $C_s \setminus C_t$ in the source domain **during alignment**.

- 2. Is the discriminative information contained in the source outlier classes $C_s \setminus C_t$ useful for domain adaptation?
- No, ignore the outlier classes $C_s \setminus C_t$ in the source domain during the training of source classifier.

^{*} Cao, Zhangjie, et al. "Partial adversarial domain adaptation." In Proc. ECCV, 2018.

Preliminary: Partial Adversarial Domain Adaptation

Figure 3: A closed-set domain adaptation problem.

Ideally, if we can correctly infer the label space of the target domain, the challenging partial domain adaptation problem would turn out to be a vanilla closed-set domain adaptation problem.

6/18

^{*} Cao, Zhangjie, et al. "Partial adversarial domain adaptation." In Proc. ECCV, 2018.

Outline

2 Method

7 / 18

Domain Adversarial Learning Revisited

Baseline method: Entropy-regularized DANN (E-DANN)

Figure 4: The framework of the baseline method E-DANN.

- conditional entropy minimization
- ✓ not all samples are equally important during alignment
- weighted source classification loss (filtering out source outlier classes)

Overview

- 1. Balanced Adversarial Alignment (BAA)
- 2. Adaptive Uncertainty Suppression (AUS)

Figure 5: The framework of the proposed method BA³US for partial domain adaptation.

1. Balanced Adversarial Alignment (BAA)

(b) previous source re-weighting scheme

Figure 6: An illustrating example of different schemes towards distribution alignment in PDA where the source contains one source outlier class. **Red: source distributions, black: target distributions**, *dashed: adapted distributions*.

1. Balanced Adversarial Alignment (BAA)

Figure 7: An illustrating example of different schemes towards distribution alignment in PDA where the source contains one source outlier class. Red: source distributions, black: target

adapted source
 adapted target

distributions, dashed: adapted distributions.

2. Adaptive Uncertainty Suppression (AUS)

Previous DA methods focus on strengthening the **feature transferability** by developing various domain alignment strategies, but they mostly ignore the **feature discriminability** in the source domain and simply employ the conventional cross-entropy loss.

Figure 8: Mitigating the effects of **uncertainty propagation** from source. [blue: source, red: target, gray: adversarial alignment.]

2. Adaptive Uncertainty Suppression (AUS)

Confidence-weighted complement entropy

✓ maximize the entropy of incorrect classes

$$\mathcal{L}_{wce}(\theta_f, \theta_g) = \frac{\beta}{n_s \log(K - 1)} \sum_{i=1}^{n_s} l_{wce}(G(F(x_i^s)), y_i^s),$$
where $l_{wce}(\hat{y}, y) = (1 - \hat{y}_a)^{\xi} \sum_{j \neq a} \frac{\hat{y}_j}{1 - \hat{y}_a} \log(\frac{\hat{y}_j}{1 - \hat{y}_a}),$
(2)

^{*} Chen, Hao-Yun, et al. "Complement Objective Training." In Proc. ICLR, 2019.

Outline

Background

2 Method

3 Experiments

Results on Office-Home

Table 1: Accuracy (%) on Office-Home dataset for partial domain adaptation via ResNet-50. The best in **bold red**; the second best in *italic blue*. [65-classes] \rightarrow 25-classes]

Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg.
ResNet-50	46.33	67.51	75.87	59.14	59.94	62.73	58.22	41.79	74.88	67.40	48.18	74.17	61.35
ADDA (CVPR2017)	45.23	68.79	79.21	64.56	60.01	68.29	57.56	38.89	77.45	70.28	45.23	78.32	62.82
CDAN (NeurIPS2018)	47.52	65.91	75.65	57.07	54.12	63.42	59.60	44.30	72.39	66.02	49.91	72.80	60.73
IWAN (CVPR2018)	53.94	54.45	78.12	61.31	47.95	63.32	54.17	52.02	81.28	76.46	56.75	82.90	63.56
SAN (CVPR2018)	44.42	68.68	74.60	67.49	64.99	77.80	59.78	44.72	80.07	72.18	50.21	78.66	65.30
PADA (ECCV2018)	51.95	67.00	78.74	52.16	53.78	59.03	52.61	43.22	78.79	73.73	56.60	77.09	62.06
ETN (CVPR2019)	59.24	77.03	79.54	62.92	65.73	75.01	68.29	55.37	84.37	75.72	57.66	84.54	70.45
SAFN (ICCV2019)	58.93	76.25	81.42	70.43	72.97	77.78	72.36	55.34	80.40	75.81	60.42	79.92	71.83
DRCN (TPAMI2020)	54.00	76.40	83.00	62.10	64.50	71.00	70.80	49.80	80.50	77.50	59.10	79.90	69.00
$RTNet_{adv}$ (CVPR2020)	63.20	80.10	80.70	66.70	69.30	77.20	71.60	53.90	84.60	77.40	57.90	85.50	72.30
MCC (ECCV2020)	57.50	82.00	86.40	70.70	70.60	78.20	76.50	61.70	86.50	82.00	64.50	84.00	75.10
E-DANN	54.05	74.12	84.06	67.06	64.95	75.15	71.29	53.09	83.42	76.00	58.17	81.53	70.24
Ours (w/ BAA)	56.20	79.55	86.21	70.86	69.94	81.06	72.51	57.91	86.47	77.10	59.34	83.64	73.40
Ours (BA ³ US)	60.62	83.16	88.39	71.75	72.79	83.40	75.45	61.59	86.53	79.25	62.80	86.05	75.98

ECCV 2020, Online Aug 23-28

Liang et al. (NUS)

Results on Office31 and ImageNet-Caltech

Table 2: Accuracy (%) on **Office31** and **ImageNet-Caltech** for *partial domain adaptation* via ResNet-50. The best in **bold red**; the second best in *italic blue*.

Method			ImageNet-Caltech							
ciriou	$A \rightarrow D$	$A\toW$	$D \to A$	$D\toW$	$W \rightarrow A$	$W \rightarrow D$	Avg.	$I \rightarrow C$	$C \to I$	Avg.
ResNet-50	83.44 _{±1.12}	75.59 _{±1.09}	83.92 _{±0.95}	96.27 _{±0.85}	84.97 _{±0.86}	98.09 _{±0.74}	87.05	69.69 _{±0.78}	71.29 _{±0.74}	70.49
ADDA (CVPR2017)	83.41 _{±0.17}	$75.67_{\pm0.17}$	$83.62_{\pm0.14}$	$95.38_{\pm0.23}$	84.25 _{±0.13}	99.85±0.12	87.03	$71.82_{\pm0.45}$	$69.32_{\pm0.41}$	70.57
CDAN (NeurIPS2018)	$77.07 {\scriptstyle \pm 0.90}$	$80.51_{\pm 1.20}$	$93.58 {\scriptstyle \pm 0.07}$	$98.98_{\pm0.00}$	$91.65_{\pm0.00}$	$98.09 {\scriptstyle \pm 0.00}$	89.98	$72.45{\scriptstyle \pm 0.07}$	$72.02 {\scriptstyle \pm 0.13}$	72.24
IWAN (CVPR2018)	90.45 _{±0.36}	89.15 _{±0.37}	95.62±0.29	99.32±0.32	94.26 _{±0.25}	99.36 _{±0.24}	94.69	78.06±0.40	73.33 _{±0.46}	75.70
SAN (CVPR2018)	$94.27_{\pm0.28}$	$93.90 {\scriptstyle \pm 0.45}$	$94.15_{\pm0.36}$	99.32 ± 0.52	$88.73_{\pm0.44}$	$99.36_{\pm0.12}$	94.96	$77.75_{\pm0.36}$	$75.26_{\pm0.42}$	76.51
PADA (ECCV2018)	$82.17 {\scriptstyle \pm 0.37}$	$86.54 {\scriptstyle \pm 0.31}$	$92.69 {\scriptstyle \pm 0.29}$	99.32 ± 0.45	95.41 _{±0.33}	$\textcolor{red}{\textbf{100.0}} \scriptstyle{\pm 0.00}$	92.69	$75.03 {\scriptstyle \pm 0.36}$	$70.48 {\scriptstyle \pm 0.44}$	72.76
DRCN (TPAMI2020)	86.00	88.05	95.60	100.0	95.80	100.0	94.30	75.30	78.90	77.10
ETN (CVPR2019)	95.03 _{±0.22}	$94.52_{\pm0.20}$	96.21 _{±0.27}	100.0 _{±0.00}	94.64 _{±0.24}	100.0 _{±0.00}	96.73	83.23 _{±0.24}	$74.93_{\pm0.44}$	79.08
$RTNet_{adv}$ (CVPR2020)	97.60 ±0.10	96.20 ±0.30	$92.30 {\scriptstyle \pm 0.10}$	$100.0_{\pm 0.00}$	$95.40_{\pm0.10}$	$100.0_{\pm 0.00}$	96.90	-	-	-
E-DANN	92.36 _{±0.00}	93.22 _{±0.00}	94.61 _{±0.05}	100.0 _{±0.00}	94.71 _{±0.05}	98.73 _{±0.00}	95.60	78.31 _{±0.81}	77.69 _{±0.25}	78.00
Ours (w/ BAA)				100.0 _{±0.00}						
Ours (BA ³ US)				100.0 _{±0.00}						

Parameter Sensitivity

$$\mathcal{L}_{wce}(\theta_f, \theta_g) = \frac{\beta}{n_s \log(K - 1)} \sum_{i=1}^{n_s} l_{wce}(G(F(x_i^s)), y_i^s),$$
 where
$$l_{wce}(\hat{y}, y) = (1 - \hat{y}_a)^{\xi} \sum_{j \neq a} \frac{\hat{y}_j}{1 - \hat{y}_a} \log(\frac{\hat{y}_j}{1 - \hat{y}_a}),$$

Parameters: trade-off parameter β and weight-controlling parameter ξ

Table 3: Sensitivity of parameter ξ .

Avg. (%)	0.0	0.1	0.3	0.5	0.7	0.9	1.0
Office-Home	75.32	75.88	76.28	76.10	76.10	75.81	75.98
Office31	97.68	97.71	97.65	97.67	97.64	97.84	97.81

Table 4: Sensitivity of parameter β .

Avg. (%)	0.0	0.1	0.5	1.0	5.0	10.0
Office-Home Office31				75.98 96.63		

Summary

- To be balanced, augmentation along with selection is effective.
- Uncertainty suppression in the source domain is critical for adaptation.
- State-of-the-art results on partial domain adaptation benchmarks.
 - ★ Code is available at https://github.com/tim-learn/BA3US/.

 If you require any further information, feel free to contact me.

 Email: liangjian92@gmail.com

