CFL3d 初学者指南

注意: ICEM 导出时为双精度。设 cfl3d 输出。输出的边界条件为: no_slip wall; symmetry plane;1003 inflow/outflow

[1] 运行 plot3d_form_2_unform.exe 将 ICEM 输出的网格文件进行格式转换后使用。

[2] cfl3d.inp 输入文件, 更改

A. 输入输出文件名

B. 运行 vis.exe

运行时选择: multigrid number:2; 湍流模型: 5; 粘性方向: 4 得到两个文件:

1) vis 中为壁面位置的说明,001 为 block 的一侧为壁面,002 是两侧为壁面,000 是没有任何一侧为壁面。

将得到的结果拷贝替换到:

"NCG IEM IADVANCE IFORCE IVISC(I) IVISC(I) IVISC(K)" 下前 4 列的内容中。

然后更改后三列,IVISC(I) IVISC(J) IVISC(K), 改为 5: 湍流模型选择 5 sa 模型。

2) plot3d out.dat

查看它有多少行,将行数放到 NPLOT3D 下。为要输出的壁面 block 数。

然后将其所有内容粘贴到 PLOT3D OUTPUT:

GRID IPTYPE ISTART IEND IINC JSTART JEND JINC KSTART KEND KINC $\overline{\ \ }$ $_{\circ}$

[3]更改多重网格部分

MSEQ	MGFLAG	ICONSF	MTT	NGAM				
2	1	0	0	1				
ISSC EPSSSC(1) EPSSSC(2) EPSSSC(3) ISSR EPSSSR(1) EPSSSR(2) EPSSSR(3)								
0	0.3	0.3	0.3	0	0.3	0.3	0.3	
NCYC	MGLEVG	NEMGL	NITFO					
1000	2	0	0					
3000	3	0	0					
MIT1	MIT2	MIT3	MIT4	MIT5	MIT6	MIT7	MIT8	
1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	

注意最后两行,其行数与 MSEQ 下的数对应。

[4]更改前面部分

XMACH	ALPHA	BETA	REUE,MIL	TINF,DR	IALPH	IHSTRY	
0.8500	1.3220	0.0000	6.440000	460.00	1	0	
SREF	CREF	BREF	XMC	YMC	ZMC		
180.5000	6.0430	1.0000	35.8467	-0.6648	0.0000		
DT	IREST I	FLAGTS	FMAX	IUNST	CFLTAU		
-0.50	0	500	0 10.00	0	7.5000		
NGRID	NPLOT3D	NPRINT	NWREST	ICHK	I2D	NTSTEP	ITA
-339	189		0 1000	0	0	1	1

计算雷诺数:

根据高度计算各项空气参数,声速 a,已知 Ma=0.785; v=a*Ma=231.63;Re=rou*v*L/aita1; 则 Re/L= rou * v/aita1= v/aita2=5.6934*10⁶. 其中,aita1 的单位是 Ns/m2(Dynamic viscosity); aita2 的单位是 m2/s(Kinematic viscosity),最后得到的量纲为 1/m.

[5] 更改限制器

IFLIM 下面三列改为 4

- [5] cfl3d_mpi 并行使用的辅助文件,无需改动. chmod +x cfl3d_mpi 加可执行。
- [6] job2.sh 选择更改节点数:使用 Nodechoose.exe 计算得出