ON TWO-DIMENSIONAL TEMPERATURE MODELING

Joel S. Kvitky

Any views expressed in this paper are those of the author. They shoul! not be interpreted as reflecting the views of The Rand Corporation or the official opinion or policy of any of its governmental or private research sponsors. Papers are reproduced by The Rand Corporation as a courtesy to members of its staff.

PREFACE

This paper is intended to provide the theoretical and practical framework for a two-dimensional temperature model. The motivation for this study is provided by the existence, at Rand, of a general two-dimensional flow-reaction simulation model developed by J.

Leendertse and E. Gritton. The vertically integrated mass balance equations of the simulation model are discussed and shown to apply to temperature modeling. Terms contributing to the total heat flux across the water surface are described and approximated by empirical relations which, in turn, are integrated into the temperature model through an equilibrium temperature and heat exchange coefficient. The sensitivity of these parameters to the meteorological variables is discussed in the context of a preliminary calculation. Tables are given for the heat exchange coefficient and equilibrium temperature. Finally, expressions are derived for the relative isobaric slope as a function of chlorinity and temperature.

Although this paper is primarily a review, the approach of Edinger and Geyer is modified for the case when data is averaged over periods of less than a day. The following advantages of the E-G approach appear to remain:

- (1) Additional arrays to compute the surface heat exchange at each grid point are not required (although it may be necessary to divide the bay into large subregions with different T and K).
- (2) The method is readily adaptable to long term calculations.

Sections 3 and 4 of this report (on computation of absorbed radiation) were included to emphasize the need for further research. The empirical formulations discussed are essentially useless in the development of a temperature model, but improved verions of these equations could be quite valuable in tapping the model's predictive capacities.

CONTENTS

Preface	iii
Section I.	
II.	Heat Exchange Coefficients and Equilibrium
	Temperature
III.	Net Isolation
IV.	Long-Wave Radiation
v.	Evaporation
VI.	Convective Heat Exchange 16
VII.	Preliminary Calculations
Appendix	K
Α.	
	Isobaric Slopes
В.	Modified Dewpoint Temperature 50
Referenc	ces

I. THE HEAT TRANSFER EQUATION

It is desired to exploit as far as possible the similarity between the heat and mass transfer equations. The former may be written:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x} \begin{pmatrix} uT \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} vT \end{pmatrix} + \frac{\partial}{\partial z} \begin{pmatrix} wT \end{pmatrix} = \frac{\partial}{\partial x} \left(K_{x} \frac{\partial T}{\partial x} \right)
+ \frac{\partial}{\partial y} \left(K_{y} \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial T}{\partial z} \right) + \frac{S_{Q}}{\rho C_{p}} ,$$
(1.1)

where ρ = density of water, assumed constant at 62.4 lb-ft⁻³, K_x, K_y, K_z = thermal eddy diffusivity, C_z = specific heat of water taken as 4.1 Joul-g⁻¹ °C⁻¹ = .98 Btu-lb⁻¹ °F¹ (assumed constant although it may vary as much as 1% due to salinity and temperature distributions in the bays under consideration, and far more in some estuaries), S_Q = local heat source and sink.

Next, introduce the following distributions and vertically averaged variables:

$$\overline{T} = \frac{1}{H} \int_{-h}^{\zeta} T dz = \frac{1}{H} \langle T \rangle , \qquad (1.2)$$

$$T(z) = \overline{T} [1 + \varepsilon_T (z)] , \qquad (1.3)$$

$$u = U [1 - \varepsilon_u(z)]$$
, etc. (1.4)

The <u>exact</u> vertically integrated continuity equation is (1)

$$\frac{\partial \zeta}{\partial \mathbf{t}} + \vec{\nabla} \cdot \left\langle \vec{V} \right\rangle = 0 \text{, where } \vec{V} = (\mathbf{u}, \mathbf{v}) \text{ and } \vec{\nabla} = \left(\frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{y}}\right)$$
(1.5)

and the boundary conditions on the free surface and on the bottom are

$$\mathbf{w}_{\zeta} = \frac{\partial \zeta}{\partial \mathbf{t}} + \vec{V}_{\zeta}, \ \vec{\nabla}_{\zeta}, \ \mathbf{w}_{-\mathbf{h}} = -\frac{\partial \mathbf{h}}{\partial \mathbf{t}} + \vec{V}_{-\mathbf{h}}, \ \vec{\nabla}_{\mathbf{h}}.$$
 (1.6)

Vertically integrating (1.1) and substituting equations (1.5 - 1.6), we obtain

$$Q_{T}/\rho C_{p} + \left\langle \frac{\partial}{\partial x} \left(K_{x} \frac{\partial T}{\partial x} \right) \right\rangle + \left\langle \frac{\partial}{\partial y} \left(K_{y} \frac{\partial T}{\partial y} \right) \right\rangle + \left\langle \frac{\partial}{\partial z} \left(K_{x} \frac{\partial T}{\partial z} \right) \right\rangle$$

$$= \left[\frac{\partial}{\partial t} \left\langle T \right\rangle - T_{\zeta} \frac{\partial \zeta}{\partial t} - T_{-h} \frac{\partial h}{\partial t} \right] + \left[\vec{\nabla} \cdot \left\langle \vec{V} T \right\rangle - T_{\zeta} \vec{V}_{\zeta} \cdot \vec{\nabla}_{\zeta} - T_{-h} \vec{V}_{-h} \cdot \vec{\nabla}_{h} \right]$$

$$+ \left[\vec{\nabla}_{\zeta} T_{\zeta} - \vec{\nabla}_{-h} T_{-h} \right] = \frac{\partial}{\partial t} \left\langle T \right\rangle + \vec{\nabla} \cdot \left\langle \vec{V} T \right\rangle$$

$$(1.7)$$

Here, Q_T is the net heat flux into the vertical water column through the surface and bottom. In terms of the quantities α_{uT} , and α_{vT} first introduced by Leendertse, where (2)

$$\alpha_{\text{uT}} = \frac{1}{H} \left\langle 1 + \epsilon_{\text{u}} (z) \epsilon_{\text{T}} (z) \right\rangle$$
, etc., (1.8)

the right hand side becomes

RHS =
$$\frac{\partial}{\partial t} (H\overline{T}) + \frac{\partial}{\partial x} (H\alpha _{uT} \overline{T} U) + \frac{\partial}{\partial y} (H \alpha _{vT} \overline{T} V)$$
 (1.9)

If T is uniformly distributed over the pertical, then $\alpha=1$. This assumption is adopted throughout this paper, but the general equation may be the subject of future investigations. The vertically integrated diffusion terms are discussed by Leendertse for the case of the mass balance equation. The same analysis is assumed to apply here.

II. HEAT EXCHANGE COEFFICIENTS AND EQUILIBRIUM TEMPERATURE

The Leendertse-Gritton general mass-balance model for n reacting constituents is described by the matrix equation

$$\frac{\partial (H\overline{P})}{\partial z} + \frac{\partial (HU\overline{P})}{\partial x} + \frac{\partial (HV\overline{P})}{\partial y} - \frac{\partial}{\partial x} (HD \times \frac{\partial \overline{P}}{\partial x})$$

$$-\frac{\partial}{\partial y} (HD \times \frac{\partial \overline{P}}{\partial y}) + [K] H\overline{P} + H\overline{S} = 0$$
(2.1)

where [K] = reaction matrix, and \overline{S} = source or sink vector.

For DO-BOD reactions, the K-matrix and \overline{S} are written in the form

$$[K] = \begin{bmatrix} K_{11} & H & 0 \\ K_{21} & K_{22} \end{bmatrix}$$
 (2.2)

$$\overline{S} = \begin{pmatrix} -K_{11} & C_{sat} & /H \\ 0 & & & \end{pmatrix}$$
 (2.3)

This suggests an analogy with the linear heat exchange model of Edinger and Geyer, where $K/\rho C_p$ replaces K_{11} and the equilibrium temperature replaces $C_{\rm sat}$. Here K is the heat exchange coefficient. (4-7) K_{21} has no counterpart in the E-G model but can be utilized to describe the temperature dependence of processes such as reaeration. For computational and theoretical convenience, therefore, we shall employ the following expression for heat transported across the surface:

$$Q_{T} = (T_{eq} - T)K \tag{2.4}$$

The remainder of this section will be devoted to deriving expressions for K and T_{eq} in terms of meteorological variables.

The energy budget equation is

$$Q_{T} = (Q_{net} + Q_{anet}) - (Q_{br} + Q_{c} + Q_{e})$$
 (2.5)

where

 $Q_{\rm net}$ = net solar radiation $Q_{\rm anet}$ = atmospheric radiation $Q_{\rm br}$ = long-wave back radiation $Q_{\rm c}$ = convection heat exchange $Q_{\rm c}$ = rate of heat transport due to evaporation

The details of the energy budget terms will be discussed in later sections. Our concern here is with the dependence on water surface temperature. In particular, while $(Q_{net} + Q_{anet})$ is independent of T_s , the other terms may be written as follows:

$$Q_{br} = D (T_0 + T_s)^4$$

$$Q_e = \rho (L_0 - L_1 T_s) (e_s - e_a)f$$

$$Q_c = \rho B(L_0 - L_1 T_s) (T_s - T_a)f$$
(2.6)

where e_s , e_a are the saturation vapor pressure at T_s and the ambient vapor pressure in inches Hg, respectively;

$$\rho = \text{water density, D} = .1661 \times 10^{-8} \text{ Btu hr}^{-1} \text{ ft}^{-2} \, ^{\circ}\text{R}^{-4}$$

$$T_0 = 460 \, ^{\circ}\text{F}$$

$$L_0 = 1093.2 \, \text{Btu/lb.}$$

$$L_1 = .57 \, \text{Btu/lb.}^{-\circ}\text{F} ,$$

and f, B are meteorological variables.

Whereas (2.4) implies that, without advection, T instantaneously decays toward T with decay time C $_{\rm p}$ H/K, it is clear from (2.6) that considerable complexities are buried in K and T $_{\rm eq}$. Specifically, K is not independent of T $_{\rm S}$, and T $_{\rm eq}$ is the solution of a transcendental equation.

Furthermore, T_s appears in (2.6) rather than the vertically averaged temperature, T_s . Even in supposedly well-mixed cases, it may not be a good approximation to replace T_s with T_s . Measurements of the vertical temperature distribution may be needed to settle this question (and the related matter of determining α_{uT} and α_{vt}). (6)

Substituting equations (2.6) into (2.4) we obtain

$$Q_{T} = (Q_{net} + Q_{anet}) - D (T_{0} + T_{s})^{4}$$

$$- \rho (L_{0} - L_{1} T_{s}) (e_{s} - e_{a})f - \rho B (L_{0} - L_{1} T_{s}) (T_{s} - T_{a})f$$

$$= K (T_{eq} - T)$$
(2.7)

We shall assume that $T_s = T$. Then T_{eq} is defined by the equation

$$(Q_{\text{net}} + Q_{\text{anet}}) - D (T_{0} + T_{\text{eq}})^{4}$$

$$- (L_{0} - L_{1} T_{\text{eq}}) \left[(e_{\text{eq}} - e_{a}) + B (T_{\text{eq}} - T_{a}) \right] \rho f$$

$$= G(T_{\text{eq}}) = 0$$
(2.8)

which says that T is the surface temperature (= vertically averaged temperature) at which the heat transported across the surface is zero.

Edinger and Geyer do not solve (2.8) directly. Rather, they first linearize the back scattering term and then assume the relation $(e_{eq} - e_a) / (T_{eq} - T_d) = (e_s - e_a) / (T_s - T_d)$. The latter relation is not a bad approximation if temperatures are averaged over a day or more, so that T_{eq} and T_s are nearly equal. For our purposes, it is a very poor approximation which introduces an unwanted T_s dependence into T_{eq} , and thereby necessitates computation of T_{eq} at each grid point. Our approach is to find T_{eq} numerically by Newton's method. This is quite effective since $G(T_{eq})$ is a monotonically decreasing function which can be expressed analytically if the saturation vapor pressure at T_{eq} is evaluated with the Lamoreaux exponential approximation. One may obtain the initial value of T_{eq} for the iteration from the previous time step. The Lamoreaux approximation is given by

$$e(T) = 6.4129 \times 10^6 \exp(-\frac{7482.6}{398.362 + T})$$
 (2.9)

which, when combined with equation (2.8), yields the iteration formula:

$$T_{eq}' = T_{eq} - G(T_{eq})/G'(T_{eq})$$
 (2.10a)

where $G(T_{eq})$ is given by equation (2.8) and

$$G'(T_{eq}) = -4D(T_0 + T_{eq})^3 + L_1 \rho f \left[(e_{eq} - e_a) + B(T_{eq} - T_a) \right]$$

$$- f \rho (L_0 - L_1 T_{eq}) \left[B + e_{eq} \left\{ \frac{7482.6}{(398.362 + T_{eq})^2} \right\} \right]$$
(2.10b)

The procedure outlined above is quite efficient. If the equilibrium temperature is computed hourly so that it changes only a couple of degrees at each time step, no more than two iterations are required to update $T_{\rm eq}$.

Since the equilibrium temperature will characteristically pass through the water temperature, T, twice daily on its roughly sinusoidal path, it is evident that equation (2.7) is not well suited for direct calculation of K (i.e. the coefficient of K might be zero).

Alternatively, one may subtract (2.8) from (2.7) setting $L_0 - L_1^T s = constant = 1050$, to obtain:

$$D \left[\left(T_{0} + T_{eq} \right)^{4} - \left(T_{0} + T \right)^{4} \right] + 1050 \rho f \left[\left(\epsilon_{eq} - e \right) + B \left(T_{eq} - T \right) \right]$$

$$= K \left(T_{eq} - T \right) = K \left[\left(T_{eq} + T_{0} \right) - \left(T_{0} + T \right) \right]$$
(2.11)

or,

$$K = D \left[\left(T_0 + T_{eq} \right)^3 + \left(T_0 + T_{eq} \right)^2 \left(T_0 + T \right) + \left(T_0 + T_{eq} \right) \right]$$

$$\left(T_0 + T \right)^2 + \left(T_0 + T \right)^3 + 1050 \rho f \left(R + \left[\left(e_{eq} - e_T \right) \right] \right)$$

$$\left(T_{eq} - T \right) \left(T_{eq} - T \right) \left(T_{eq} - T \right) \left(T_{eq} - T \right) \right)$$
(2.12)

The term (e $_{\rm eq}$ - e $_{\rm T}$) / (T $_{\rm eq}$ - T) may cause trouble when (T $_{\rm eq}$ - T) is near zero, but for $|{\rm T}_{\rm eq}$ - T| <10°F it will be sufficiently accurate to use the relation

$$(e_{eq} - e_{T}) / (T_{eq} - T) \approx \frac{\partial e}{\partial T} \left(\frac{T + T_{eq}}{2}\right) = \left[\frac{173.004}{796.724 + T + T_{eq}}\right]^{2} e^{\left(\frac{T}{2} + T_{eq}\right)}$$
 (2.13)

Since K depends on T, it would seem necessary to calculate it at each grid point. In section VII we see that K is not very sensitive to T, so that usually one value of K vill suffice for the whole bay.

The linear approximation to equation (2.11) devised by Edinger and Geyer amounts to replacing the first bracket by 4PT_0^{-3} , and the factor $(e_{eq} - e_{T}) / (T_{eq} - T)$ by $(e_{s} - e_{a}) / (T_{s} - T_{d})$. Neither assumption is very good for T averaged over less than a day.

If our working hypothesis, that $T=T_s$, turns out to be untenable we need merely replace T by T_s in (2.7), (2.11-2.12), and employ measured values of T_s . It may also be possible to set $T_s=T[1+\epsilon_T(\zeta)]$, where $\epsilon_T(z)$ is the vertical temperature distribution.

Before describing the general features of $T_{\rm eq}$ and K, including sensitivities to fluctuations in the various terms of the energy budget, the next few sections will be devoted to calculating contributions to the total surface heat transport.

We note in passing that an alternative scheme to that of Edinger and Geyer would be to use equation (2.7) for the heat flux Q_T and insert it directly into equation (1.7). This would require computation of Q_T at each grid point. The evaluation of K and $T_{\rm eq}$ is more complex than that of Q_T , but the former does not require new spatial arrays. A further advantage of the E-G scheme is that average values of K and $T_{\rm eq}$ obtained from short term representative periods (e.g. tidal cycle) can be used in long term calculations since these values characterize the entire waterbody, whereas Q_T is a local variable. In addition, $T_{\rm eq}$ possesses natural periodicity which is amenable to Fourier representation.

III. NET INSOLATION

The solar radiation on a horizontal surface at sea level is primarily a function of solar altitude, cloud cover and cloud height. The solar altitude can be obtained from the date, the hour and the latitude. In particular, we have

$$\sin \alpha = \sin \phi \sin \delta + \cos \delta \cos \phi \cos \beta$$
 (3.1)

where ϕ = latitude, δ = solar declination, and β = local hour angle (LHA). The local hour angle is given in radians by

$$\beta = \frac{\pi}{180} \text{ (Greenwich hour angle - longitude)}$$

=
$$\frac{\pi}{12}$$
 (Local standard time + No. Time Zones to Greenwich

- longitude/15 -
$$\Delta$$
 - 12) (3.2)

Approximate values for Δ and δ are tabulated in Table 1. ^(9,10)

The total incident solar radiation may be obtained from the following empirical formula based on Raphael's curves: (11)

$$Q_s = 329 \sin \left\{ \left[1.05076 \alpha - 5.049 + \omega (15 - \alpha)^2 \right] \right\},$$

when $\sin \alpha > 0$;

$$Q_s = 0$$
, when $\sin \alpha \le 0$;

$$x = 0$$
, when $\sin \alpha \ge 0.26$;

$$_{\omega}$$
 = .02244, when 0 < sin α < 0.26. (3.3)

 $Q_{\rm S}$ as given by (3.3) gives sufficiently accurate values for clear skies. For cloudy skies these values must be modified by an appropriate factor. The cloud factor given by Raphael and based on the work of Fritz is (1 - .0071 C²), where C is expressed in tenths of sky covered. Comparison with available data reveals that this factor, when combined with $Q_{\rm S}$ above, produces accurate results for mean monthly solar radiation. The negative bias observed by Anderson for Mosby's factor does not appear here. However, as pointed out

Table 1

Date		Δ (min)	<u>δ</u> (deg)
Jan	1	+ 3	-23.06
	11	+ 8	-21.90
	21	+11	-20.04
Feb	1	+14	-17.28
	11	+14	-14.23
	21	+14	-10.78
Mar	1	+13	- 7.83
	11	+10	- 3.96
	21	+ 8	01
Apr	1	+ 4	+ 4.30
	11	+ 1	+ 8.08
	21	- 1	+11.64
May	1	- 3	+14.88
	11	- 4	+17.72
	21	- 4	+20.06
Jun	1	- 2	+21.97
	11	- 1	+23.04
	21	+ 1	+23.44
Jul	1	+ 4	+23.16
	11	+ 5	+22.20
	21	+ 6	+20.60
Aug	1	+ 6	+18.19
	11	+ 5	+15.47
	21	+ 3	+12.33
Sep	1	0	+ 8.52
	11	- ′.	+ 4.80
	21	- 7	+ .96
0ct	1	-10	- 2.94
	11	-13	- 6.78
	21	-15	-10.47
Nov	1	-16	-14.23
	11	-16	-17.25
	21	-14	-19.78
Dec	1	-11	-21.71
	11	- 7	-22.95
	21	- 2	-23.29

by Anderson, large deviations may occur for <u>daily</u> solar radiation unless this factor is further refined to include variations due to cloud height. It is essential to accumulate an extensive record comprising hourly pyranometer measurements and cloud cover and cloud height readings. Although many workers would prefer to utilize field data rather than to concern themselves with the intracacies of cloud attenuation, the latter option may lead to greater flexibility and predictive capability due to the existence of long term meteorological records suitable for statistical analysis. The following empirical formula for insolation on a cloudy day should be regarded as tentative:

$$Q_i = (1 - 0.0071 c^2) Q_g$$
 (3.4)

The reflectivity of the water surface, R, is defined by

$$R = Q_{refl}/Q_i \tag{3.5a}$$

and

$$Q_{\text{net}} = Q_{i} (1 - R)$$
 (3.5b)

where Q_{net} is the net solar radiation entering the water after reflection at the surface. R is principally a function of solar altitude, type and amount of cloudiness, and atmospheric turbidity. Turbidity has been shown to be relatively unimportant except in notably extreme cases. Anderson has given the following general empirical formula for reflectivity:

$$R = a\alpha^b , (3.6)$$

where α is solar altitude, as before, and a and b are experimentally determined parameters related to the amount and height of clouds. If the cloud dependency of a and b is ignored, errors of order 5% or less are incurred in the total daily Q_i . To avoid accumulation of error in computations for periods of a week or longer, the following empirical formula, based on Anderson's curves, may be used:

$$-b = 1.1073 \log_{10}(N/D)$$
 (3.7a)

$$a = 1/2 (N/10^b + D/10^{1.9031b})$$
 (3.7b)

where

$$N = (.2004 \text{ f}_c + .2341 \text{ f}_s + .2006 \text{ f}_b + .1172 \text{ f}_o)$$
 (3.7c)

$$D = (.04040 F_c + .03115 F_s + .04877 F_b + .04694 F_o)$$
 (3.7d)

and F_c , F_s , F_b , F_o are the frequencies respectively for clear skies (C=0), scattered clouds (C=1-5), broken clouds (C=6-9), and overcast (C=10). To avoid infinite reflectivities, set R equal to its value at 5° when $0 \le \alpha \le 5$ °.

In summary, the net solar radiation entering the water after reflection at the surface is given by equation (3.4-3.6), i.e.

$$Q_{\text{net}} = (1 = 0.0071 \text{ C}^2) (1 - a\alpha^b) Q_s$$
 (3.8)

where a and b are given by equation (3.7) and Q_s by equation (3.3)

IV. LONG-WAVE RADIATION

Two ways for obtaining the net atmospheric radiation will be discussed. One is direct measurement. The other is through an empirical formulation promulgated by Anderson. (12)

Atmospheric radiation can be measured by subtracting pyranometer (shortwave) readings from pyradiometer (long and short wave) readings. As pointed out below, good measurements are prudent before acceptance of any empirical scheme.

Not all factors determining the atmospheric radiation are known or quantitatively understood. The primary ones, undoubtedly, are the total moisture content of the atmosphere and the temperature of the constituent water vapor. Any attempt to by-pass these factors by using local vapor pressures and ambient temperatures is doomed to partial failure. In particular, Anderson's study revealed that a 5% to 10% error is inherent in such efforts.

Anderson assumes that the atmosphere acts like a "gray body" of variable "grayness", obeying a modified Stefan-Boltzmann law:

$$Q_a = \beta \sigma (T_0 + T_a)^4$$
 (4.1)

where σ = Stefan-Boltzmann constant = .1712x19⁻⁸Btu hr⁻¹ft²⁰R⁻⁴ and τ = atmospheric moisture factor = a + b e_a. (4.2)

The parameters a and b are given by the following formulas:

$$a = .740 + .025 \text{ C } \exp(-.0584\text{h})$$
 (4.3a)

$$b = .164 - .018 C \exp(-.060h)$$
 (4.3b)

where C is the cloud cover in tenths of sky covered, and h is the cloud height in thousands of feet $(1.6 + h + \infty)$.

The partial success of Anderson's approach hinges on the approximate correlation between local vapor pressure and total moisture content of the atmosphere. Unfortunately, any parameter fit reflecting this relationship must be restricted to use in locations which have similar air mass characteristics. Failure to determine parameters locally may, therefore, introduce bias of unpredictable

magnitude, in addition to the random error of order 10% already present.

In summary, Anderson's equations (4.1 - 4.2) may be used with reasonable accuracy provided they are calibrated by adjusting the numerical constants in a and b for each new location.

The long-wave radiation reflected from the water surface is approximately 3% of the impinging atmospheric radiation for the normal range of water temperatures. Therefore we may write

$$Q_{anet} = 0.97 Q_a$$
 (4.4)

The water body itself radiates like a gray body of emissivity 0.97 provided no film (e.g. oil slick) is present. This value is essentially independent of salinity. Therefore,

$$Q_{\rm br} = 0.97 \, \sigma \, \left(T_0 + T_{\rm s}\right)^4$$
 (4.5)

so that D = (.97) $(.1712 \times 10^{-8}) = .1661 \times 10^{-8}$ Btu hr⁻¹ft⁻² o_R⁻⁴.

V. EVAPORATION

The results of evaporation studies to date are not conclusive. (1,12-14) Anderson's exhaustive Lake Hefner investigation produced an empirical equation of the form

$$Q_e = (L_0 - L_1 T_s) (e_s - e_a) \rho f$$
 Btu ft⁻² hr⁻¹ (5.1)

where

$$f = M W \qquad ft \ hr^{-1} \ in-Hg^{-1} \tag{5.2}$$

and W = wind speed (m.p.h.) at a specified height, $H_{\rm W}$, above the water surface; M = empirical constant; $e_{\rm S}$ = saturation vapor pressure (in-Hg) at the water surface temperature; and $e_{\rm a}$ = ambient vapor pressure of unmodified air (i.e. unmodified by passage over the waterbody).

Using equation (2.9), e_s is given by

$$e_{s} = e(T_{s}) \tag{5.3}$$

while e_a is obtained either from

$$e_a = e(T_d) \tag{5.4}$$

where T_{d} is the dew point, or from

$$e_a = e(T_{wh}) - P(T_a - T_{wh}) (3.59 \times 10^{-4} + 2.34 \times 10^{-7} T_{wh})$$
 (5.5)

where T_{wb} = wet bulb temperature, T_a = air temperature or dry bulb temperature, and P = atmospheric pressure in-Hg.

Anderson found that $M = 2.08 \times 10^{-4} \, \mathrm{ft \ hr}^{-1} \, \mathrm{in} - \mathrm{Hg}^{-1}$. In addition, the Lake Hefner work appeared to support the theoretical efforts (15,16) of Sverdrup and Sutton. Later studies contradicted these theories, however, and there presently exists no reliable formula derived from either continuous or discontinuous mixing concepts. All that has survived the series of investigations conducted by the USCS is an empirical correlation between M and the size of the waterbody for the case when $H_W = 2$ meters: (13)

$$M = \frac{.000397}{A^{0.05}} \text{ ft hr}^{-1} \text{ in Hg}^{-1} . \tag{5.6}$$

[Note: to convert M in (in day $^{-1}$ m $_b$ $^{-1}$) to M in (ft hr $^{-1}$ in-Hg $^{-1}$) multiply by .11759.] Here, A is the area of the waterbody in acres. The standard error of (5.6) is given as 16%.

The reasons for the above correlation are clear in a qualitative sense. First, there is a downwind decrease in evaporation rates. Generally, this will decrease M for increasing area, and, in addition, introduce a fetch dependence into M.

Secondly, the wind profiles depend on the size of the waterbody. With increasing fetch, the wind shear resulting from surface drag decreases. For example, if the wind speed at 8 meters were the same for a large and small lake, then at 2 meters the wind speed over the large lake would be greater. As a result, if one wishes to use wind measurements made near the water surface (e.g. at 2 meters) one must compensate by using a smaller M for larger water surface areas.

Since (5.6) gives only a fair approximation to these effects even for regularly shaped lakes, this equation should be applied to geometrically complex estuaries with some trepidation. It is quite likely that for Tampa Bay evaporation rates depend in a complicated fashion on location in the bay and on wind direction, as well as on wind speed.

Two final points should be made regarding the use of equation (5.6). This equation applies only if the anemometer readings are taken in mid-bay. Also, it applies only to measurements at 2 meters, a height chosen to minimize the effects of atmospheric instability. If some measurements are made at different heights, the wind speed input must be adjusted accordingly. For example, the wind speed at 4 meters is approximately 6% greater than at 2 meters for a 50,000 acre bay. If a wide range of heights are used, detailed knowledge of the wind profile may be required to obtain the appropriate correction factors.

VI. CONVECTIVE HEAT EXCHANGE

There is no easy way to measure the convective heat transport nor any reliable way to calculate it. Consequently, one must rely, however reluctantly, on a 45-year-old prescription due to Bowen: (12,17,18)

$$Q_c = B(T_a - T_s) / (e_a - e_s) Q_e$$
 (6.1)

where

$$B = 3.39 \times 10^{-4} P \text{ in. Hg.}^{\circ} F^{-1}$$
 (6.2)

and P = atmospheric pressure in inches Hg.

The physical content of (6.1) is essentially that the evaporation eddy diffusivity the eddy conductivity are equal.

Generally, one can ignore conduction in comparison with convection in much the same fashion as one ignores the contribution of molecular diffusion to evaporation (perhaps unless a strong thermal gradient increases free convection to a significant degree). One further assumes that the effects of spray on evaporation and the effects of radiative transfer (in moist air above the water) on conduction are negligible.

The equality of eddy coefficients has been questioned for some time and several researchers have modified the Bowen constant in instances where unstable atmospheric conditions prevail. The magnitude of deviation is thoroughly speculative, however, especially for large lapse rates associated with high temperature outfalls. (5) Even the careful work of Anderson did not reveal a patterned response for B to unstable conditions. Consequently, we shall adopt (6.1) and (6.2) without change.

VII. PRELIMINARY CALCULATIONS

In order to get a feeling for the equilibrium temperature and heat exchange coefficient, we shall calculate T_{eq} and K for a typical August day in Tampa, Florida. A useful heuristic tool for discussing the response to T_{eq} and K is the one-dimensional model of Duttweiler. (4) He considers the non-advective heat equation

$$\frac{h\partial T}{\partial t} = k(T_{eq} - T) \tag{7.1}$$

with T_{eq} expressed in a Fourier series and k a constant. Taking

$$T_{eq}(t) = T_{in} + T_{i} \sin(2\pi vt + \phi)$$
 (7.2)

where T_m = time average value of T_{eq} , T_i = amplitude of variation of T_{eq} , ν = frequency, and ϕ = phase angle, he obtains

$$T(t) = T_{m} + T_{i} \left[1 + (2\pi vh/k)^{2} \right]^{-1/2} \sin(2\pi vt + \phi - \alpha)$$
 (7.3)
+ F(0) exp(-kt/h)

where $\nu=\tan^{-1}(2\pi\nu h/k)$, $0<\alpha<\pi/2$, and F(0) is a transient depending on initial conditions. Assuming that the model makes sense qualitatively, we find for a period of 24 hours (= $1/\nu$) with $k=.3x10^{-4}$ ft/sec and h=10ft that the amplitude variation of the equilibrium temperature is about 25 times the amplitude variation of the water temperature. Also, since $\alpha \approx \pi/2$ for short periods like a day, one finds that the maximum water temperature lags $\alpha/2\pi\nu=6$ hrs. behind the maximum equilibrium temperature.

An important consequence of these remarks is that the daily periodicity of T can be ignored insofar as K is concerned. This follows because K is essentially a function of $(T+T_{\rm eq})$ and the variation of T is negligible compared to that of $T_{\rm eq}$. Of course, we must also consider the effect of spatial differences in T, particularly in the region near a high temperature outfall where K might be higher than in the rest of the bay.

Before dealing with this question, we calculate K and T $_{\mbox{\footnotesize eq}}$ from the following data:

Average Meteorological Input

Solar declination = 14°N

Maximum solar altitude = 76°

Cloud cover = 6 tenths (C=6)

Cloud height = 7800 ft (h=7.8)

Cloud cover frequencies: $F_c = 1.3\%$, $F_s = 23\%$, $F_b = 51.1\%$, $F_c = 24.4\%$

Wind speed, W = 9m.p.h.

Max (min) air temperature, $T_a = 90/74^{\circ}$

Vapor pressure = .819 in Hg

Dew point temperature, $T_d = 73^{\circ}F$

Bowen constant, B = .0102 in Hg °F⁻¹

Water temperature, $T = 83^{\circ}F$

From equations (3.8) and (4.4) one obtains the maximum and minimum radiation flux:

$$(Q_{\text{net}} + Q_{\text{anet}}) = 365.5/123 \text{ Btu ft}^{-2} \text{ hr}^{-1} = \text{max/min}$$
. (7.4)

Substituting the radiation flux and the meteorological variables into equations (2.8) and (2.10), we obtain $T_{\rm eq}$ (max) = 103.6°F after three iterations (beginning with a default value of 120°F) and $T_{\rm eq}$ (min) = 71.4°F after two iterations (beginning with 70°F). Therefore, the max and min equilibrium temperatures for the entire bay are 103.6 and 71.4 respectively. From equation (2.12), the corresponding max and min values of the heat coefficient K are 9.23 and 6.68 Btu ft⁻² hr⁻¹ °F⁻¹. These yield values .419x10⁻⁴ and .303x10⁻⁴ ft/sec for $K_{11} = K/\rho C_{\rm p}$.

Nearly all the difference in K between the maximum and minimum temperatures is due to the increased evaporation associated with the increased vapor pressure at the higher temperature. Very little change in K is caused by augmented back radiation. For the typical meteorological conditions considered, the percentage variation in K per degree temperature variation is approximately $\Delta K/(K\Delta T) = 1\%/(8\%T)$. This value

declines to a minimum of 1/3% $^{\circ}F^{-1}$ when evaporation is zero, at which point it is due to back radiation alone.

The previous remarks apply to variation of either T_{eq} or T. It appears therefore that high temperature outfalls would generate substantial deviation (10-20%) in K. Fortunately, most of this deviation is of no consequence. In particular, as stated by Edinger and Pritchard, (6) surface cooling is of relatively little importance in the initial and intermediate mixing zones. Only a small fraction of the discharged heat is dissipated into the atmosphere within the region where the temperature excess is 20% or more of the initial temperature excess. For example, if the water near the outfall is 20°F higher than the average for the waterbody (the temperature difference is usually smaller), most cooling occurs in water which has been diluted to less than 4° above average. Thus, in the area of principal concern K is less than 4% above its average for the bay. This discrepancy is probably less than errors involved in evaluating evaporation and conduction. The percentage variation in K per m.p.h. wind speed variation is $\Delta K/K\Delta W = 100/W$ for typical evaporation rates. Therefore, if W is measured at 10 m.p.h. with 1/2 m.p.h. precision, then K is known with 5% accuracy. Values are given for the heat exchange coefficient and equilibrium temperature in tables 2 and 3 respectively. Note that equilibrium temperatures above the boiling point of water occur frequently for W=0. This may be taken to signify that molecular diffusion becomes important in those instances. One should therefore set W equal to some small value (e.g. take $W_{min} = .4 \text{ m.p.h.}$) to account effectively for free convection.

Table 2

Heat exchange coefficient in Btu per hour per square foot per degree Fahrenheit as a function of water temperature =T, equilibrium temperature =E, and wind speed =W.

Mass transfer coefficient is M = .000231 corresponding to wind measurements at 2 meters in waterbody of 50,000 acres.

WATER TEMPERATURE = 55.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W=30
Eq Temp									
40.0	.87	1.72	2.58	3.44	4.29	6.00	7.72	9.43	11.14
45.0	.88	1.78	2.67	3.57	4.47	6.26	8.05	9.85	11.64
50.0	.89	1.83	2.77	3.71	4.65	6.53	8.41	10.29	12.17
55.0	•91	1.89	2.88	3.87	4.85	6.82	8.80	10.77	12.74
60.0	.92	1.96	2.99	4,03	5.06	7.14	9.21	11.28	13.35
65.0	.93	2.02	3.11	4.20	5.29	7。4 7	9.65	11.82	14.00
70.0	.95	2.09	3.24	4.38	5.53	7.82	10.11	12.40	14.70
75.0	.96	2.17	3.37	4.58	5.79	8.20	10.61	13.02	15.44
80.0	.98	2.26	3.55	4.84	6.13	8.71	11.29	13.86	16.44
85.0	.99	2.36	3.72	5.09	6.46	9.19	11.93	14.66	17.39
90.0	1.00	2.46	3.91	5.36	6.81	9.72	12.62	15.53	18.43
95.0	1.02	2,56	4.11	5.65	7.20	10.29	13.38	16.47	19.56
100.0	1.03	2.68	4。32	5.97	7.62	10.91	14.20	17.49	20.78
105.0	1.05	2.80	4.56	6.31	8.07	11.58	15.09	18.60	22.11
110.0	1.06	2.94	4.81	6.68	8.56	12.31	16.05	19.80	23.55
115.0	1.08	3.08	5.08	7.09	9.09	13.09	17.10	21.10	25.11
120.0	1.09	3.24	5.38	7.52	9.66	13.94	18.23	22.51	26.79
125.0	1.11	3.40	5.69	7.99	10.28	14.86	19.44	24.03	28.61
130.0	1.13	3.58	6.03	8.49	10.94	15.85	20.76	25.67	30.58

Table 2 (continued)

WATER TEMPERATURE = 60.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W=30
Eq Temp									
40.0	.88	1.78	2.67	3.57	4.47	6.26	8.05	9.85	11.64
45.0	. 89	1.83	2.77	3.71	4.65	6.53	8.41	10.29	12.17
50.0	.91	1.89	2.88	3.87	4.85	6.82	8.80	10.77	12.74
55.0	•92	1.96	2.99	4.03	5.06	7.14	9.21	11.28	13.35
60.0	.93	2.02	3.11	4.20	5.29	7.47	9.65	11.82	14.00
65.0	.95	2.09	3.24	4.38	5.53	7.82	10.11	12.40	14.70
70.0	•96	2.17	3.37	4.58	5.79	8.20	10.61	13.02	15.44
75.0	.98	2.25	3.52	4.79	6.06	8.60	11.14	13.69	16.23
80.0	.99	2.33	3.67	5.01	6.35	9.03	11.71	14.39	17.07
85.0	1.00	2.44	3.87	5.30	6.74	9.60	12.47	15.33	18.20
90.0	1.02	2.54	4.06	5.58	7.10	10.15	13.19	16.23	19.28
95.0	1.03	2.65	4.27	5.89	7.50	10.74	13.97	17.21	20.44
100.0	1.05	2.77	4.49	6.21	7.93	11.38	14.82	18.26	21.71
105.0	1.06	2.90	4.73	6.57	8.40	12.07	15.74	19.41	23.08
110.0	1.08	3.04	4.99	6.95	8.91	12.82	16.74	20.65	24.57
115.0	1.09	3.18	5.27	7.36	9.45	13.63	17.81	21.99	26.17
120.0	1.11	3.34	5.58	7.81	10.04	14.51	18.98	23.44	27.91
125.0	1.12	3.51	5.90	8.29	10.68	15.45	20.23	25.01	29.79
130.0	1.14	3.70	6.25	8.81	11.36	16.47	21.59	26.70	31.81

WATER TEMPERATURE = 65.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W= 30
Eq Temp									
40.0	.89	1.85	2.80	3.75	4.71	6.€1	8.52	10.42	12.33
45.0	.91	1.89	2.88	3.87	4.85	6.82	8.80	10.77	12.74
50.0	.92	1.96	2.99	4.03	5.06	7.14	9.21	11.28	13.35
55.0	.93	2.02	3.11	4.20	5.29	7.47	9.65	11.82	14.00
60.0	.95	2.09	3.24	4.38	5.53	7.82	10.11	12.40	14.70
65.0	.96	2.17	3.37	4.58	5.79	ಕ.20	10.61	13.02	15.44
70.0	.98	2.25	3.52	4.79	6.06	8.60	11.14	13.68	16.23
75.0	.99	2.33	3.67	5.01	6.35	9.03	11.71	14.39	17.07
80.0	1.00	2.42	3.83	5.24	6.66	9.48	12.31	15.14	17.96
85.0	1.02	2.51	4.00	5.49	6.98	9.97	12.95	15.93	18.92
90.0	1.03	2.63	4.23	5.82	7.42	10.61	13.80	17.00	20.19
95.0	1.05	2.74	4.44	6.13	7.83	11.22	14.61	18.01	21.40
100.0	1.06	2.87	4.67	6.47	8.28	11.89	15.49	19.10	22.71
105.0	1.08	3.00	4.92	6.84	8.76	12.60	16.44	20.29	24.13
110.0	1.09	3.14	5.19	7.23	9.28	13.38	17.47	21.57	25.66
115.0	1,11	3,29	5.48	7.66	9.85	14.21	18.58	22.95	27.32
120.0	1.12	3.46	5.79	8.12	10.45	15.12	19.78	24.45	29.11
125.0	1.14	3.63	6.12	8.61	11.11	16.09	21.07	26.06	31.04
130.0	1.16	3.82	6.48	9.15	11.81	17.14	22.47	27.80	33.12

Table 2 (continued)

WATER TEMPERATURE = 70.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W=30
Eq Temp									
40.0	.91	1.91	2.92	3.93	4.93	6.94	8.95	10.97	12.98
45.0	.92	1.97	3.02	4.07	5.12	7.22	9.32	11.42	13.52
50.0	.93	2.02	3.11	4.20	5.29	7.47	9,65	11.82	14.00
55.0	.95	2.09	3.24	4.38	5.53	7.82	10.11	12.40	14.70
60.0	•96	2.17	3,37	4.58	5.79	8.20	10.61	13.02	15.44
65.0	.98	2.25	3.52	4.79	6.06	8.60	11.14	13.68	16.23
70.0	.99	2.33	3.67	5.01	6.35	9.03	11.71	14.39	17.07
75.0	1.00	2.42	3.83	5.24	6 66	9.48	12.31	15.14	17.96
80.0	1.02	2.51	4.00	5.49	6.98	9.97	12.95	15.93	18.92
85.0	1.03	2.61	4.18	5.76	7.33	10.48	13.63	16.78	19.93
90.0	1.05	2.71	4.37	6.04	7.70	11.02	14.35	17.68	21.00
95.0	1.06	2.84	4.62	6.40	8.18	11.75	15.31	18.87	22.43
100.0	1.08	2.97	4.86	6.75	8.65	12.43	16.22	20.00	23.79
105.0	1.09	3.11	5.12	7.13	9.15	13.17	17.20	21.23	25.25
110.0	1.11	3.25	5.40	7.54	9.68	13.97	18.26	22.55	26.84
115.0	1.12	3.41	5.69	7.98	10.27	14.84	19.41	23.98	28.55
120.0	1.14	3.58	6.01	8.45	10.89	15.77	20.64	25.52	30.40
125.0	1.15	3.76	6.36	8.96	11.57	16.77	21.98	27.18	32.39
130.0	1.17	3.95	6.73	9.51	12.29	17.85	23.41	28.97	34.53

WATER TEMPERATURE = 75.0 DEGREES FAHRENHEIT

	M=0	W=2.5	W=5.0	W=7.5	W= 10	W=15	W=20	W=25	W=30
Eq Temp									
40.0	.92	1.99	3.05	4.11	5.18	7.31	9.43	11.56	13.69
45.0	.93	2.05	3.16	4.27	5.38	7.60	9.82	12.04	14.27
50.0	•95	2.11	3.27	4.43	5,60	7.92	10.24	12.57	14.89
55,0	•96	2.17	3.37	4.58	5.79	8.20	10.61	13.02	15.44
50.c	.98	2.25	3.52	4.79	6.06	8.60	11.14	13.69	16.23
65.0	.99	2.33	3.67	5.01	6.35	9.03	11.71	14.39	17.07
70.0	1,00	2.42	3.83	5.24	6.66	9.48	12.31	15.14	17.96
75.0	1.02	2.51	4.00	5.49	6.98	9.97	12.95	15.93	18.92
80.0	1.03	2.61	4.18	5.76	7.33	10.48	13.63	16.78	19.93
85.0	1.05	2.71	4.37	6.04	7.70	11.02	14.35	17.68	21.00
90.0	1.06	2.82	4.57	6.33	8.09	11.60	15.12	18.63	22.14
95.0	1.08	2.93	u.79	6.65	8.50	12.21	15.93	19.64	23.35
100.0	1.09	3.08	5.07	7.06	9.04	13.02	17.00	20.97	24.95
105.0	1.11	3.22	5.33	7.45	9.56	13.79	18.01	22.24	26.47
110.0	1.12	3.37	5.62	7.87	10.12	14.61	19.11	23.61	28.11
115.0	1.14	3.53	5.93	8.32	10.72	15.51	20.30	25.08	29.87
120.0	1.15	3.71	6.26	8.81	11.36	16.47	21.57	26.67	31.78
125.0	1.17	3.89	6.61	9.33	12.06	17.50	22.94	28.39	33.83
130.0	1.19	4.09	6.99	9.90	12.80	18.61	24.42	30.23	36.04

Table 2 (continued)

WATER TEMPERATURE = 80.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W= 30
Eq Temp									
40.0	.94	2.06	3.19	4.32	5.45	7.70	9.96	1. 12	14.47
45.0	•95	2.13	3.30	4.48	5.66	8.01	10.37	12.72	15.08
50.0	.96	2.19	3.42	4.65	5.88	8.35	10.81	13.27	15.73
55.0	.98	2.26	3.55	4.84	6.13	8.71	11.29	13,86	16.44
60.0	.99	2.33	3.67	5.01	6.35	9.03	11.71	14.39	17.07
65.0	1.00	2.42	3.83	5.24	6.66	9.48	12.31	15.14	17.96
70.0	1.02	2.51	4.00	5.49	6.98	9.97	12.95	15.93	18.92
75.0	1.03	2.61	4.18	5.76	7.33	10.48	13.63	16.78	19.93
80.0	1.05	2.71	4.37	6.04	7.70	11.02	14.35	17.68	21.00
85.0	1.06	2.82	4.57	6.33	8.09	11.60	15.12	18,63	22.14
90.0	1.08	2.93	4.79	6.64	8.50	12.21	15.93	19,64	23.35
95.0	1.09	3.05	5.01	6.98	8.94	12.86	16.79	20.71	24.64
100.0	1.11	3.18	5.25	7.33	9.40	13.55	17.70	21.84	25.99
105.0	1.12	3.34	5.56	7.78	10.01	14.45	18.89	23.33	27.77
110.0	1.14	3.50	5.86	8.22	10.58	15.30	20.02	24.75	29.47
115.0	1.15	3.66	6.18	8.69	11.20	16.22	21.25	26.27	31.29
120.0	1.17	3.84	6.52	9.19	11.87	17.21	22.56	27.91	33,26
125.0	1.18	4.03	6.88	9.73	12.58	18.28	23.98	29.68	35.37
130.0	1.20	4.24	7.27	10.31	13.35	19.42	25.50	31.57	37.65

WATER TEMPERATURE = 85.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W=10	W=15	W=20	W=25	W= 30
Eq Temp									
40.0	.95	2.15	3.35	4.54	5.74	8.14	10.53	12.93	15.33
45.0	•96	2.21	3.46	4.71	5.96	8.46	10.96	13.46	15.96
50.0	.98	2.28	3.59	4.89	6.20	8.81	11.42	14.04	16.65
55.0	.99	2.36	3.72	5.09	6.46	9.19	11.93	14.66	17.39
60.0	1.00	2.44	3.87	5.30	6.74	9.60	12.47	15.33	18.20
65.0	1.02	2.51	4.00	5.49	6.98	9.97	12.95	15.93	18.92
70.0	1.03	2.61	4.18	5.76	7.33	10.48	13.63	16.78	19.93
75.0	1.05	2.71	4.37	6.04	7.70	11.02	14.35	17,68	21.00
80.0	1.06	2.82	4.57	6.33	8.09	11.60	15,12	18.63	22.14
85.0	1.08	2.93	4.79	6.64	8.50	12.21	15.93	19.64	23.35
90.0	1.09	3.05	5.01	6.98	8.94	12.86	16.79	20.71	24.63
95.0	1.11	3.18	5.25	7.33	9.40	13.55	17.70	21.84	25.99
100.0	1.12	3.31	5.51	7.70	9.89	14.27	18.66	23.04	27.43
105.0	1.14	3.45	5.77	8.09	10.41	15.04	19.68	24.31	28,95
110.0	1.15	3.63	6.11	8.60	11.08	16.04	21.00	25.97	30.93
115.0	1.17	3.81	6.44	9.08	11.72	16.99	22.27	27.54	32.82
120.0	1.18	3,99	6.79	9.60	12.40	18.01	23,62	29.24	34.85
125.0	1.20	4.19	7.17	10.16	13.14	19.11	25.08	31.05	37.03
130.0	1.22	4.40	7.57	10.75	13.93	20.29	26.65	33.01	39.37

Table 2 (continued)

WATER TEMPERATURE = 90.0 DEGREES FAHRENHEIT

	W=0	W=2.5	W=5.0	W=7.5	W= 10	W=15	W=20	W=25	W=30
Eq Temp	•								
40.0	.96	2.24	3.51	4.79	6.06	8.61	11.16	13.71	16.26
45.0	.98	2.31	3.64	4.96	6.29	8.95	11.61	14.27	16.93
50.0	•99	2.38	3.77	E.15	6.54	9.32	12.10	14.87	17.65
55.0	1.00	2.46	3.91	5.36	6.81	9.72	12.62	15.53	18.43
60.0	1.02	2.54	4.06	5.58	7.10	10.15	13,19	16.23	19.28
65.0	1.03	2.63	4.23	5.82	7.42	10.61	13.80	17.00	20.19
70.0	1.05	2.71	4.37	6.04	7.70	11.02	14.35	17.68	21.00
75.0	1.06	2.82	4.57	6.33	8°ū3	11.60	15.12	18,63	22.14
80.0	1.08	2.93	4.79	6.64	8.50	12.21	15.93	19.64	23.35
85.0	1.09	3.05	5.01	6.98	8.94	12.86	16.79	20.71	24.63
90.0	1.11	3.18	5.25	7.33	9.40	13.55	17.70	21.84	25.99
95.0	1.12	3.31	5.51	7.70	9.89	14.27	18.66	23.04	27.43
100.0	1.14	3.45	5.77	8.09	10.41	15.04	19.68	24.31	28.95
105.0	1.15	3.60	6.05	8.50	10.95	15.85	20.75	25,65	30.55
110.0	1,17	3.76	6.35	8.94	11.53	16.71	21.89	27.07	32.25
115.0	1.18	3.96	6.73	9.50	12.27	17.82	23.36	28.91	34.45
120.0	1.20	4.14	7.09	10.04	12.98	18.87	24.76	30.65	36.55
125.0	1.22	4.35	7.48	10.61	13.74	20.00	26.27	32.53	38.79
130.0	1.23	4.56	7.89	11.23	14.56	21.22	27.88	34.54	41.21

W#30

W=25

% *A

W=25

V=15

¥= 10

Sign

DEWPOINT TEMPERATURE = R = 25.0 AIR TEMPERATURE = T = 25.0

Equilibrium temperature as a function of net solar and atmospheric radiation [Q(net) + Q(anet)], dewpoint temperature (R), V* [air temperature (T) - dewpoint temperature (R)], and wind speed (W).

Mass transfer coefficient (N) corresponds to 50,000 acre waterbody with measurements at 2 maters above surface (M may be adjunted by modifying W input by appropriate factor). All temperatures are in degrees fahrenheit, heat flux in Btu per square foot per hour, wind speed in M.p.h., pressure in inches Hg.

									2		>1 1	77.	77.1	
								0.0	8.5	18.8	21.2	22.3	22.9	23.3
Equilibrium temperature as	Sperat un	•	function of net solar and	of net	solar	P q		100.0	35,3	28.0	27.5	26.0	26.4	26.2
atmospheric radiation [Qine	distion [•	t) + Q(anet)], dewpoint	t).	wpoint			120.0	58.5	36.2	33.3	31.1	29.0	29.0
temperature (R), Vz [air te	(a) -V - (mparatura (T) - dewpoint	(T) - 4	empoint			140.0	78.8	46.4	38.8	35.2	33.1	31.7
temperature (R)], and wind	DJ. and		1peed (#).					160.0	97.1	53.9	¥3,8	39.0	36.2	34,3
Mass transfer coefficient (coefficie	mt (H)	M) corresponds to 50,000	ande to	50,000			180.0	113.8	9.09	48.6	42.7	39.2	8.8
acre waterbody with measurements at 2 meters above	with sea	16 LETERON	ts at 2	T C	100			200.0	129.1	66.7	53.0	46.2	42.0	39.3
surface (M may be addusted by modifying W input by	De ad	ted by	modify!	T A Y	but by			220.0	143.3	72.2	57.1	49.5	8.44	41.6
appropriate factor). All temperatures are in degrees	ctor). A	VII temb	aratures		degra	=		240.0	156.5	77.3	61.0	52.6	*7.	13.9
Fahrenheit, heat flux in Btu ner source fnot ner hour.	at flux i	A STATE OF	T. BOULD	1	4	} =		260.0	169.0	82.0	54,6	55.6	50.0	1,94
	, , , ,	4 1 1 1 1			2	-				1			2 2	
wind appear in M.p.n., pressure in inches Mg.			Jul ut	. J.				200	9	8				7
									8.181	2.0	1106	61.1		2
								320.0	202.5	94.1	74.2	63.7	57.0	52.3
								340.0	212.6	97.5	77.1	66.2	59.1	54.2
								360.0	222.3	100.8	79.B	68.5	61.7	26.0
								380.0	231.6	103.9	20	70.8	63.7	S.7.
														5
								0.00	C.047	5.05		K.2.	100	50
								£20°0	249.1	109.6	87.2	75.0	67.0	61.3
								0.044	257.4	112,3	3 .5	77.0	68.8	62.8
								460.0	265.4	114.8	91.6	78.9	70.5	64.5
	DEWPOINT TE		MPERATURE	# #	■ 30.0					DEMPOTIF	DENPOTHT TEMPERATURE		æ =	8 0
	AIR	AIR TEMPER	ERATURE .	7 = 2	20.0					AIR	AIR TEMPERATURE =	TUME = 1	8	30.0
3	3	1	,	,	2	2	,,		2	5	Wa 10	We 15	¥=20	Va 25
	:	2			7	2	3	ö		·	:	:	:	:
80.0	15.6	17.3	18.0	18.5	18.7	16.9	19.1	8	6.5	22.2	25,3	26.6	27.4	27.8
_		23.8	22.8	22.2	21.8	21.5	21.3	100.0	35,3	32.0	31.2	80.0	30.7	30.6
-		29.9	27.3	25.7	24.7	24.0	23.5	120.0	58.5	6.04	8	35.0	33,9	33.2
		35.6	31.5	29.2	27.6	26.5	25.7	140.0	78.8	# B. B	42.0	38.0	37.0	35.8
		0.0	35.6	32.5	30.4	28.9	27.8	160.0	97.1	0.	6.9	#2.5	39.9	38.3
-		# S.	39.4	35.6	33.0	31.2	29.8	180.0	113.8	62.6	51.4	9.0	42.8	\$0.0
		\$0.4	43.1	38.6	35.6	33.4	31.8	200.0	129.1	68.5	55.6	£6.3	45.5	42.9
		54.7	46.6	41.5	38.1	35.6	33.7	220.0	143,3	73.9	59.5	52.4	48.1	45.2
		58.7	# 3.8	##.3	£0.5	37.7	35.6	240.0	156.5	78.8	63.2	55.4	50.6	47.3
		62.5	53.0	17.0	\$2.8	39.8	37.5	260.0	169.0	83°¢	66.7	58.3	53.0	# 6 #
280.0 180.8		66.0	55.9	50,	45.1	#1.8	39.2	280.0	160.6	97.6	0.0	60.9	55.3	51.4
		69.3	58.7	32.0	47.2	#3.7	41.0	300.0	191.9	91.5	73,1	63.5	57.5	53.4
		72.5	61.4	54.3	£6.3	45.6	42.7	320.0	202.5	95.1	% 0.9	66.0	59.7	55.2
		75.4	64.0	56.6	51.3	47.4	£ . 3	340.0	212.6	97.6	78.0	69.4	61.7	57.1
360.0 222.3	6.66	78.3	66.5	58.8	53,3	19.2	46.0	360.0	222.3	101.8	61.4	70.6	63.7	58.8
231.	_	6.08	68.8	8.09	55.2	50.9	47.5	380.0	231.6	104.8	83.9	72.0	65.6	60.5
		83.5	71.0	62.9	57.0	52.5	1.64	400.0	240.5	107.7	86.3	74.9	67.4	52.2
		85.9	73.2	8.46	£.		9	\$20°0	249.1	110.5	9.0	76.9	69.2	63.8
		88.2	75.3	66.7	80.5	4.5.7	2	0.044	257.4	113.1	90.	78.8	70.9	65.3
265	1.41		77.3		3 5		25.0	0.00	265.4	115.5	92.9	200	72.6	6.99
•	•	•	•	•	;	?		,)))	<u>;</u>	<u>;</u>	<u>;</u>	,

DEMPOINT TEMPERATURE = R = 45.0 AIR TEMPERATURE = T = 45.0	Ms0 Ms5 Ws10 Ms15 Ws20 Ws25 Ws30 Ws35	33.0 38.0 40.0 41.2 41.9 42.4	35,3 41,7 43,1 43,6 43,9 44,1 44,3	58.5 29.6 27.8 27.0 26.6 26.3 26.1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.00 00°, 25°, 20°, 25°, 10°, 10°, 10°, 10°, 10°, 10°, 10°, 10	113.8 69.0 60.3 56.2 53.9 52.k 51.3	129.1 74.3 63.9 59.0 56.2 54.3 52.9	143,3 79,2 67,3 61,7 55,3 56,1 54,5	240.0 156.5 83.7 70.6 64.2 60.4 57.9 56.1 54.7	169.0 67.9 73.6 66.7 62.5 59.6 57.0	190.5 91.5 /0.3 03.0 04.4 02.0 4.9.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	202.5 98.8 81.9 73.3 68.1 64.5 61.9	212.6 102.0 84.3 75.4 69.8 66.0 63.3	222.3 105.1 86.7 77.4 71.5 67.5 64.6	231,6 107,9 89,0 79,3 73,2 69,0 65,9	240.5 110.6 91.1 81.1 74.8 70.4 67.1	249.1 113.2 93.2 82.9 76.3 71.8 68.4	0.00 1.01 0.11 0.00 2.00 1.011 4.702 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000	000, 4.4. 5.00 Z.00 Z.00 Z.00 Z.00 Z.00 Z.00 Z.0	DEWPOINT TEMPERATURE = R = 50.0	AIR TEMPERATURE = T = 50.0	Ma0 Was Wall Wals Wall Wals Wall Wall	37.0 42.4 44.7 45.9 46.7 47.2	35,3 45,3 47,2 48,0 48,5 48,7 48,9	58.5 52.8 51.7 51.2 50.9 50.8 50.6	78,8 59,6 55,8 54,2 53,3 52,7 52,3	150,0 97,1 65,7 59,8 57,1 55,6 54,6 53,9 53,4 to	129.1 76.4 66.9 62.4 59.9 58.2 57.0	143.3 81.2 70.1 64.9 61.9 59.9 58.5	156.5 85.5 73.2 67.3 63.9 61.6 59.9	190.0 53.3 79.5 71.8 67.5 54.8 62.7	191,9 96,9 81,5 73,9 69,4 66,3 64,0	202,5 100,2 84,0 76,0 71,1 67,8 65,3	212,6 103,3 86,4 77,9 72,7 69,2 66,6	222.3 106.3 88.6 79.8 74.3 70.6 67.9	231,6 109,1 90,8 81,6 75,9 72,0 69,1	240.5 111.7 42.9 66.4 //.4 /5.0 10.0 0 10 0 10 0 10 0 10 0 10 0 10 0	257. t. 116.7 96.9 86.7 80.3 75.8 72.6	265.4 119.0 98.7 88.3 81.7 77.1 73.7
CEMPOINT TEMPERATURE = R = 35.0 AIR TEMPERATURE = T = 35.0	W=0 W=5 W=10 W=15 W=25 W=30 W=35	25.7 29.4 31.0 31.4 32.5 32.8	35.3 35.1 35.1 35.2 35.0 35.0 35.0	58.5 43,7 40,4 38,9 38,1 37,5 37,1	78,8 51,4 85,3 82,6 41,0 99,9 99,2	29.73 #23.00 #3.00 #23.	100 1 100 1 100 1 100 100 100 100 100 1	143.3 75.6 62.1 55.4 51.4 48.8 46.8	156.5 80.4 65.6	169.0 84.8 68.9 61.0 56.1 52.8 50.3	180.8 88.9 72.1 63.5 58.3 54.6 52.0	77.0 58.6 60.8 56.5 53.6	212.6 99.7 80.6 70.6 64.3 60.0 56.8	222.3 102.8 83.1 72.8 66.2 61.7 58.3	231.6 105.8 85.5 74,9 68.1 63.3 59.7	240.5 108.6 87.9 76.9 69.8 64.8 61.1	3 90.1 78.8 71.5 66.4 62.5	257.4 113.9 92.2 80.6 73.2 67.9 63.9	265.4 116.3 94.3 82.4 74.8 69.3 65.2			M=0 W=5 M=10 M=15 W=20 W=25 W=30 W=35		0,75 1,75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	58.5 46.6 44.0 42.9 42.3 41.9 41.6	78.8 54.0 48.7 46.4 45.0 44.1 43.5	97.1	113.d 50./ 57.2 52.7 50.1 48.4 47.2	143.3 77.3 64.7 58.5 54.9 52.4 50.7	156,5 82.0 68.0 61.2 57.1 54.3 52.3	169.0 66.3 71.2 63.8 59.2 56.2 53.8	1911.9 94.0 77.1 58.6 54.3 59.7 57.0	97.5 79.8 70.8 65.2 61.4 58.5	212.6 100.8 82.4 73.0 67.1 63.0 60.0	222.3 103.9 04.9 75.0 60.8 64.6 61.4	106.8 87.2 77.0 70.6 66.1 62.8 6	240,5 109,6 89,5 78,9 72,3 67,6 64,1	249,1 112,2 91,6 80,8 73,9 69,0	#40.0 265.# 117.2 95.7 ##.3 77.0 71.8 67.9 64.9

DEMPOINT TEMPERATURE = R = 55.0 AIR TEMPERATURE = T = 55.0	Web Web Web Web Web Web Web Web		8.5 #1.0 #7.0 #9.4 50.7	35.3 48.9 51.5 52.5 53.1 53.4 53.7	300 1000 1000 1000 1000 1000 1000 1000	50. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		129.1 78.7 69.9 66.0 63.7 69.9 61.1	143.3 63.2 73.0 68.3 65.6 63.8 62.5	156.5 87.5 75.9 70.6 67.4 65.3 63.8	169.0 91.4 78.7 72.7 69.2 66.8 65.1	95.0 61.3 74.8 70.9 68.3 66.4	191.9 98.4 83.8 76.8 72.5 69.7 67.7	202.5 101.7 86.2 78.7 74.1 71.1 68.9	212.6 104.7 88.5 80.5 75.7 72.4 70.1	222.3 107.6 90.7 82.3 77.2 73.7 71.2	231.6 110.3 92.8 84.0 78.7 75.0 72.4	112.9 94.6 85.7 80.1 76.3 73.5	249.1 115.4 96.7 87.3 81.5 77.5 74.6	117.8 98.6 88.9 82.9 78.7 75.6	265.4 1.0.0 100.4 90.4 84.2 79.8 76.7	DEWPOINT TEMPERATURE = R = 60.0		SCHR OCHS STAR OFFE CHROSEN SAME OFFE	8.5 45.3 51.7 54.2 55.6 56.4 57.0	35.3 52.8 55.8 57.1 57.7 58.2 58.5	58.5 59.5 59.8 59.9 59.9	78.8 65.7 63.4 62.4 61.9 61.5 62.5		129.1 81.1 73.1 69.6 67.5 66.2 65.3	85.5 76.0 71.8 69.3 67.7 66.6	156.5 89.5 78.8 73.9 71.0 69.1 67.8	169.0 93.3 61.4 75.9 72.7 70.5 69.0	180.8 96.8 83.9 77.8 74.3 71.9 70.2	191.9 100.1 86.3 79.7 75.8 73.2 71.4	202.5 103.2 dB.6 B1.5 77.3 74.5 72.5	100.2 90.7 83.3 /8.8 /5.8 73.6	222.3 109.0 92.8 85.0 80.2 77.0 74.7 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	240.5 114.2 96.8 88.2 82.9 70.4 76.8	116.6 98.6 89.7 84.2 80.5 77.2	257.4 118.9 100.4 91.2 85.5 A1.6 78 A	101.1 100.0 \$1.4 60.5 61.6 76.6 101.	9.21 1.28 9.00 1.26 2.201 1.124 1.501
TURE = R = 65.0 RE = T = 65.0	We15 Mm20 Wm25 Mm30 Wm35	٠	59.1 60.5 61.4 61.9 62.4	62.3 63.0 63.3		68-1 67-5 67-1	4-68 0.08	71.5 70.4 69.6	73.1 71.7 70.7	74.7 73.0 71.9	76.3 74.3 73.0	77.8 75.6 74.1	79.2 76.8 75.1	80.6 78.0 76.2	62.0 79.2 77.2	83.3 80.4 78.2	Pt. 6 11.5 79.2	85.9 82.6 80.2	07.1 63.6 01.1	88.3 84.7 62.1	89.5 85.7 83.0	«		We15 W/20 We25 We30 We35	65.5 66.3 66.9	67.3 67.8 68.2	69.0 69.2 69.3	70.6 /0.6 /0.3	75.1 74.0 73.3 72.6 72.4	75.6 74.6 73.9	77.1 75.8 74.9	78.5 77.0 76.0	80.0 78.2 77.0	0.07 70.0	02.7 50.5 /9.0			87.7 Bb.9 82.8		90-1 96-9 84-6	91.2 87.9 65.4	92.3 86.8 86.3	
DEWPOINT TEMPERATURE =	MEO NES METO ME		8.5 49.7 56.5	30.4 30.0		97.1 74.9 70.5	113.6	129.1 83.6 76.4	67.6 79.2	156.5 91.7 81.8	169.0 95.3 04.2	180.6 98.7 86.6	191.9 101.9 88.9	:02.5 10m.9 91.0	212.6 107.8 93.1	222.3 110.5 95.1	231.6 113.1 97.0	240.5 115.6 98.9	249.1 117.9 100.7	257.4 120.2 102.4	265.# 122.3 104.0	DEWPOLKT TEMPERATURE	AIR TEMPERATURE	Was Water Water	0.5 54.3 61.4	35.3 60.9 64.9	58.5 66.9 68.2	76.8 72.4 71.4	180.0 113.8 82.0 77.2 75	129.1 86.3 79.9	143.3 80.3 82.4	156.5 94.0 et.9	169.0 97.5 87.2	180.8 100.7 88.4	191.9 103.8 91.0	202.5 106.7 93.6	9 CR C CROT 9:777	5.75 1.511 8.522 2.45 A.114 A.155	240.5 117.0 101.1	249.1 119.3 102.8	257.8 121.5 108.5	265.4 123.6 106.1	

		DEWPOII AIR	DEVPOLIT TEMERATURE =	POINT TEMPERATURE =	K 1	65.0 85.0						DEWPOIN	DEWPOINT TEMPERATURE AIR TEMPERATURE =	POINT TEMPERATURE = R AIR TEMPERATURE = T =	* R * 75.0 T * 75.0	000		
,	0	× ×	100	V=15	¥=20	W=25	¥=30	V=35			9	M#S	W=10	We15	W=20	¥=25	W=30	N=35
. S	4	9	7 92	70.0	4	ă	2	2	-	, a	•	9	,		20.5	4	9.7	73.4
100.0	35,3	7	78.2	1	62.0	2.6	3.0	23.2	•	900	35.3	65.2	9.69	71.3	72.1	72.7	73.1	73.3
120.0	50.5	79.1	17.	83.8	53.3	63.6	13.	3	. •	120.0	50.5	70.8	72.6	73.4	73.7	7.0	74.1	74.3
340.0	78.8	83.6	£	S: 3	Š		7.3	-		140.0	70.8	76.0	75.6	75.4	75,3	75.2	75.2	75.2
160.0	97.1	87.8	9.90	1.98	92.0	18.7	9.5	15.5		160.0	97.1	80.7	78.3	77.3	9.92	76.5	76.2	76.1
180.0	113.0	91.6	= :	17.7	1.1	7.9	* · ·	2.5		180.0	113.8	85.1	80.9	79.2	78.3	77.7	77.3	77.0
200.0	129.1	93.2	91.0	2.5		7.7	7.5	66.9	•	200.0	129.1	69.1	80. 8. 8. 8.	81.0	19.7	90.08	70.3	78.7
240.0	156.5	101.	95.0	92.2	9	9.6	2	1	•	0.045	156.5	3	88.1	B# .5	82.5	81.1	90.2	79.5
260.0	169.0	5	8.9	93.6	91.7	90.5	20.7	20.0	•••	260.0	169.0	8.66	90.3	96.1	83.8	82.2	81.2	80°t
200.0	180.8	107.7	98.1	e. 8	95.8	91.4	%	19.7		280.0	180.8	102.9	92.4	87.7	.85.1	83.3	82.1	81.2
300.0	191.9	110.4	100.5	2	93.6	92.3	91.2	30°	••	300.0	191,9	105.9	₹	89.3	86.3	# . # . # . # . # . # . # . # . # . # .	63.0	62.0
320.0	202.5	113.0	102.3	9.7	8	93.2	91.9	200		320.0	202.5	108.7	30	8	87.5	82°¢	83.9	82.8
340.0	212.6	113.4	103.9		95.9	3	92.7	91.7	•	0.04	212.6	111.3	98.2	92.2	68.7	86.4 20	B .	83.5
0.00	222.3	11/1	103.0	1001			7	92.3		360.0	222.3	113.9	0.00	200		*	900	
9000	231.6	120.0	107.1	101.3		6		93.0	•	0.000	231.5	116.3	101.6	200	2.6	* 0		9
3	2 2	7.77	5	107		P 5		2	-	0.00	0.0	116	207	2.5	7.6	•		9.00
0.04	7.63.7	7.4.5	110:1	200		? •	, ,		-	0.00	7.63.7	122	1001	0 0	7.0	2.00		
	43/64	2.077	777	3	3		2 2				107	7.53				7.10		, ,
	******	7.87			9.101		2		-		• 607	1.631	7.001	1	?	:		
		DEWPOTE	DEMPOTER TEMPERATURE	PATTRE		0.00						DEUPOTN	DEUPOTUT TEMPER THRE	F.TIRE .	*	0		
		AIR	AIR TEMPERATURE	TURE .		0.06						AIR	AIR TEMPERATURE =	TURE = 1	T = 80.0	0		
	2	ŞeA	Wello	V=25	W=20	W=25	Ve30	V=35			0	VaS	Well	Wals	W=20	W=25	W=30	W#35
8							}	•	•		•		.		:			
0.0	.5	78.2	1.1	1	15.7	9.98	17.1	17.5		80.0	8.5	64.0		74.1	75.5	76.4	77.0	17.4
100.0	35.3	79.1	: \$	96.0	8	2.5	17.9	88.2		100.0	35,3	69.7		76.1	77.0	9.77	78.0	78.3
120.0	28. 5	93.8	96.5	17.6	2		.,	88.9	- 7	120.0	58.5	74.9		78.0	78.5	78.8	79.0	79.1
140.0	78.8	17.7		2	6.0	2.0	20.5	9.6		140.0	78.8	79.7		79.9	9.6	79.9	79.9	79.9
160.0	97.1	2 2	8 6	3 8	20.0	8 6	0 0 0	8 8	•	160.0	97.1	# 6 * 6		61.7	61.3		00 4 00 4	8 5
200.0	129.1	8.5		93.4	7	92.2	6	91.6		200.0	129.1	92.1		85.1	83.9	83.2	82.7	82.
220.0	143.3	101.7	96.	3	93.7	93.0	95.6	92.2		220.0	143,3	95.7		96.7	85.2	84.3	83.6	63.1
240.0	156.5	19.7	98.7	20.1	9. 46	93.9	93.3	92.9		240.0	156.5	0.66		88.3	86.5	85,3	84.5	83.9
260.0	169.0	107.6	100	97.4	95.0	94.7	0.3 8	93.5		260.0	169.0	102.2		80.0	67.7	ğ.	85.4	84.7
280.0	7007	110.3	102.2		2 5	95.0		 3	- •	280.0	180.8	105.2		51.0	50 C	E	200	# ·
200	18.5	116.3	207)	. .			- *	0.00	200	100		ž	5 -	9 0		4 0
0.046	212.6	117.7	107.0	102.3	8	7.5	2	55.0	. •14	340.0	212.6	113.3		95.5	92.3	90.2	88.7	87.6
360.0	222.3	119.9	106.5	103.5	100.6	98.8	27.5	96		360.0	222.3	115.8		8.96	93.3	91.1	89.5	80.3
360.0	231.6	122.1	110.0	104.6	101.5	99.5	90.1	97.1		380.0	231.6	118.1		98.1	3.76	92.0	90.3	8
*00.0	240,5	124.2	111.4	105.7	102.4	100.3	99.0	97.7	_	0.00	240.5	120.4		99.3	95.4	92.9	91.0	9.6
*20.0	249.1	126.2	112.0	106.0	103.3	101.0	3 .	98.2	-	\$2C.0	249.1	122.5	107.5	100.5	#°96	93.7	91.8	8
0.03	257.4	128.1	116.1	107.8	7	101.6	100	86	-	0.0	257.4	124.6		101.7	97.8	9.36	92.5	91.0
0.00	203.4	130.0	113.3	108.8	103.0	102.5	100.7	P. 66	•	0.09	202.	170.0		102.9	*	¥.05	2.5	94.0

	_	
:		
	שונעו	
	Ξ	
	Ē	
,	_	
		į
	000	
	C	
	Ć	
,	_	
1	-	۱
	9	L
4	_	•
	2	
	٥	
	۲-	

DEWPOINT TEMPERATURE = R = 20.0 AIR TEMPERATURE = T = 30.0	W=0 W=5 W=10 W=15 W=20 W=25 W=30 W=35	8.5 19.9 22.5 23.6 24.3 24.7 25.0	35.3 29.9 20.7 28.1 27.0 27.5 27.4	50.5 39.0 34.4 32.3 31.1	78.8 47.2 39.8 36.3 34.3 33.0 32.0	97.1 54.5 44.8 40.1 37.4 35.5 34.2	113,8 61.2 kg.k k3.7 k0.3 38.0 36.k	129.1 67.2 53.8 47.1 43.1 40.4 38.5	143.3 72.7 57.9 50.4 45.8 42.7 40.5	156.5 77.8 61.7 53.5 40.4 45.0 42.5	169.0 82.4 65.2 56.4 50.9 h7.1 h4.4	180.8 86.7 68.6 59.2 53.3 49.2 46.2	191.9 90.7 71.8 61.9 55.6 51,2 48.0	202.5 94.4 74.8 64.4 57.8 53.2 49.8	212.6 97.9 77.6 66.8 59.9 55.1 51.5	222.3 101.1 80.3 69.2 62.0 56.9 53.1	231.6 104.2 82.9 71.4 63.9 58,7 54,7	240.5 107.1 65.3 73.5 65.9 60.4 56.3	249.1 109.9 87.7 75.6 67.7 62.0 57.8	257.4 112.5 89.9 77.6 69.5 63.7 59.3	265.4 115.0 92.0 79.5 71.2 65.2	ec.	AIR TEMPERATURE = T = 35.0	Web Wes West West West West West	8.5 23.0 26.2 27.6 28.4 28.9 29.3 29.5	35.3 32.7 32.1 31.9 31.7 31.6 31.5		\$ 46 C CC 4 C4 C C4 4 C4 4 C4 4 C4 7 CC	113.8 63.0 52.0 46.6 40.6 61.5 40.1	129.1 68.9 56.2 50.0 46.3 43.8 42.0	145.3 74.2 60.1 53.1 48.9 46.0 43.9	156.5 79.2 63.0 56.1 51.3 48.1 45.8	169.0 63.7 67.2 58.9 53.7 50.2 47.6	180.6 87.9 70.5 61.6 56.0 52.2 89.4 10.0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	7*70 7**C 7*80 7**D 0**C/ 0*76 8*767	212.6 mm.m 70.2 60.9 62.3 57.7 54.3	222.3 102.0 81.8 71.1 64.3 59.5 55.9	231.6 105.1 84.3 73.3 66.2 61.2 57.4	240.5 107.9 86.7 75.3 68.0 62.8 58.9	249.1 110.7 89.0 77.3 69.8 64.4 60.3	257.4 113.2 91.1 79.2 71.5 65.9 61.8	265.4 115.7 \$3.2 B1.1 73.1 67.4 63.1
	å	0.00	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	280.0	300.0	320.0	9.04	360.0	380.0	*00	420.0	0.044	#60°0				\$ 0.0	100.0	120.0		180.0	200	220.0	240.0	260.0	2000		360.0	360.0	380.0	0.00	420.0	# #0.0	460.0
DEWPOINT TEMPERATURE = R = 95.0 AIR TEMPERATURE = T = 95.0	10 We15 We20 We25 We30 We35	.9 89.5 90 8 91.7 92.2	91.0 92.0 92.5 92.9	92.4 93.0 93.4 93.7	93.8 94.1 94.3 34.4	95.2 95.1 95.1 95.1	96.5 96.1 95.9 95.8	97.8 97.1 96.7 96.5	0.66	100.2 99.1 98.3 97.8	101.4 100.0 99.1 98.4	102.6 100.9 99.8 99.1	103.7 101.8 100.6 99.7	104.9 102.7 101.3 100.4	106.0 103.6 102.0 101.0	107.0 104.4 102.8 101.6	108.1 105.3 103.5 102.2	109.1 106.1 104.2 102.8	110.1 106.9 10%.8 1	111.1 107.7 105.5 104.0	.2 112.0 108.5 106.2 104.5																					
POINT TEMPERATUR AIR TEMPERATURE	S W=10	96		88.0 91.2									15.5 107.2						28.3 115.7	_	118																					
5	Nac WeS							_	•	_	_	_	_	_	212.6 120	_	•	~	_	~	~																					

_
$\overline{}$
℧
Ü
9
n
-
u
C
0
ũ
ತ
_
\sim
a
ā
Д
<u>_</u>
- "

JRE = R = #0.0	15 Wa20 Wa25 Wa30 Wa35		6151 4150 4250	0.64 5.84 5.84	80.74 W.84 1.04	51.5 50.4 #9.6	53.9 52.3 51.2	0 56.1 54.2 52.9 51.9	58.3 56.1 54.5	60.4 57.9 56.0	62.4 59.6 57.5	64° 4 61° 39° 0	00.2 62.4 60.3	66.1 64.3 61.W	2.50 060 03.2	71.5 67.5 64.5	73.2 68.9 65.8	74.7 70.3 67.1	76.3 71.7 68.3	77.0 73.1 69.5	79.2 74.4 70.7			5 We20 We25 We30 We35		45.4 46.2 46.7	#8.0 #8.3 #8.5	50.5 50.3 50.2	52.9 52.3 51.9	55.2 54.2 53.5	57.4 50.0 30.1	04.00 07.00 00.00 64.64 40.4 48.7	63.5 61.2 59.6	65.4 62.8 61.0	67.3 64.4 62.4	69.1 66.0 63.7	70.8 67.4 65.0	72.5 68.9 66.3	74.1 70.3 67.5	75.6 71.7 68.8	77.1 73.0 70.0	8 78.6 74.3 71.1 68.7	60.0 75.6 72.3	81.4 76.8 73.4
DEWPOINT TEMPERATURE AIR TEMPERATURE =	W=10 W=15	;		7.7	52.2	56.3	60.2	63.9 50.0	67.3	70.5	73.6	76.5	79.2		r. E :	100		91.1	93.2	95.2	97.1	DEWPOINT TEMPERATURE	AIR TEMPERATURE =	Ve10 Ve15				51.3	55.5	\$0.4°	1.69	0 0 0 0	72.9	75.9	78.6	61.3	83.8	86.2	86.5	90.6	92.7	9e 84.e	96.7	98.6
DEVPO	W=0 W=S		0.00	5.00 th.				129.1 74.3		5.5 63.7			**************************************	•	2.6 102.0							DEMPO	AI	N=0		0.5 36.6				7.1 65.5														
	\$.						200.0 129									380.0 231							\$																		420.0 249.1		
	W=35							7.3																W=35																		62.8		
	W=25 W=30			36.2 37.6				7.2 45.6		51.3 49.2		55.1 52.5			7.76 *.00						69.7 65.6	_		W=25 W=30						46.6 45.7				56.4 54.2							67.8 64.3			_
* X * 30.0	V=20 V																				_	. R = 35.0	T5.0	W=20 W																_		74.0 89		
	W=15	,		36.5	£3.1	9.9	1.6.	52.9	55.9	58.7	• • • •		8 9		2 .	1.5	73.7	7.7.7	79.1	90.0	82.7			Ve15		35.8	39.6	#3.2	¥6.6	6.0	2	58.7	61.4	3	99	66.7	71.0	73.1	75.2	77.2	79.1	6.0	12.7	*. *
DEMPOINT TEMPERATURE *	W=10	•	200	6.0	45.8	50.4	54.7	58,7	62.4	99	5.6		,	7.8/	200		90.00		8	92.	94.5	DEVPOINT TEMPERATURE	AIR TEMPERATURE .	W=10		33.9	39.3	£ 8 . 3	0.64	53.3	•	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	68.2	71.	78.8	77.3	90.0	82.5	65.0	87.3	3.6	7.16	93.8	95.8
DEWPOI	S=A	,	7.07	3	51.7	50.7	6.49	70.6	75.8	9 9	200	1.6	F. 75	2	7.	103	100	108.8	111.5	114.0	116.4	DEVIPOI	AIA	8=8		29.5	38.6	#6.8	\$	9.	8 5	77.5	15.1	99	90.4	94.1	97.6	100.9	104.0	106.9	109.7	112,3	114.8	117.2
	9	•		58.5	78.8	97.1	113.8	129.1	143.3	156.5	169.0	180.0	191.9	207	212.6	227.3	231.6	240.5	249.1	257.4	265.4			2		8.5	35,3	58.5	78.8	97.1	113.	147.1	156.5	169.0	180.8	191.9	202.5	212.6	222.3	231.6	240.5	249.1	257.	265.
		<u>.</u> 8		120.0	140.0	160.0	180.0	200.0	220.0	2.000	260.0	200.0	300.0	320,0	300	0.005	0.086	000	#20°0	0.044	*60.0				ě	8	100.0	120.0	1.0.0	160.0	2000	2000	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	0.00	\$20°0	0.0	#e0.0

DEVPOINT TEMPERATURE = R = 50.0 AIR TEMPERATURE = T = 60.0	W=0 W=5 W=10 W=15 W=20 W=25 W=30 W=35	Q# MD_0 M_S &0.3 &6.2 &M_6 &0.9 SO.7 S1.2 S1.6	35,3 48,3 50,7 51,7 52,3 52,6 52,9	58.5 55.5 54.9 54.7 54.6 54.5 54.4	78.8 62.0 58.9 57.6 56.8 56.3 56.0	67.9 62.6 60.3 59.0 58.1 57.5	113.8 73.4 66.1 62.9 61.0 59.8 59.0	129.1 78.3 69.4 65.3 63.0 61.5 60.4	143,3 82,9 72,5 67,7 64,9 63,1 61,8	240.0 136.5 87.1 75.5 70.0 66.8 64.7 63.2 52.0	C-10 7-00 0-00 7-7/ 7-8/ 0-78 0-807	98.2 83.4 76.3 72.0	202.5 101.4 05.8 70.2 73.6 70.5 68.3	212.6 104.5 88.1 80.1 75.2 71.9 69.5	222.3 107.4 90.3 81.9 76.7 73.2 70.6	231,6 110,1 92,4 83,6 78,2 74,5 71,8	240,5 112,7 94,5 85,3 79,6 75,8 72,9	249.1 115.2 96.4 86.9 81.0 77.0 74.0	98.3 68.5 62.4 78.2 75.1	265.4 119.9 100.1 90.0 63.7 79.4 76.1	DEWPOINT TEMPERATURE = R = 55.0 AIR TEMPERATURE = T = 65.0	Stad Other Stad Stad Other San One	50.5 53.0 54.4 55.2 55.8	35,3 51.8 54.7 55.9 56.6 57.0 57.3	58,5 58,7 58,7 58,7 58,7 58,7 58,7	78.8 64.9 62.4 61.4 60.8 60.4 60.2	75.7 69.2 66.4 64.7	129.1 80.5 72.3 68.7 66.6 65.2 64.3	143.3 84.9 75.3 70.9 68.4 66.7 65.6	156.5 89.0 78.1 73.0 70.1 68.2	180.8 96.4 83.3 77.1 73.4 71.0 69.3	191,9 99,7 65,7 79,0 75,0 72,3 70,4	202.5 102.8 88.0 80.8 76.5 73.7 71.6	212,6 105,8 90,2 82,6 78,0 74,9 72,7	108.6 92.3 84.3 79.5	231.6 111.3 94.3 86.0 80.9 77.4 74.9	67.6 52.2 78.6 76.0	00// 00%/ 0000 1000 0000 1007 1006/	120.9 101.7 90.1 BK.1 B2.0 79.0	000, 0000 1000 1000 1000 10000 10000
DEMPOINT TEMPERATUME = R = 60.0 AIR TEMPERATUME = T = 70.0	Was was wall was was was was	57.5 58.9 59.8 60.4	35.3 55.5 58.9 60.3 61.0 61.4	58.5 62.0 62.6 62.8 63.0 63.1 63.1	78.8 67.9 66.1 65.3 64.9 64.6 64.4	97.1 73.3 69.4 67.7 66.7 66.1	113.0 78.2 72.5 69.9 68.5 67.6 67.0	129.1 82.8 75.4 72.1 70.2 69.0 68.2	87.0 78.2 74.2 71.9 70.4 58.4	240.0 130.0 41.0 40.4 70.2 70.0 71.4 70.0 04.7	4.00 1.00	101.3 88.0 81.8 78.1 75.7 73.9	202.5 104.4 90.2 83.5 79.6 76.9 75.0	107.3 92.3 85.2 81.0 78.1 76.1	222.3 110.0 94.4 86.8 82.3 79.3 77.1	231.6 112.6 96.3 #8.4 83.6 80.4 78.1	240,5 115,1 98,2 89,9 84,9 81,5 79,1	117.5 100.0 91.4 86.2 82.6	257.4 119.8 101.7 92.9 87.4 83.7 81.0	265.4 122.0 103.4 94.3 88.6 84.8 81.9	DEWPOINT TEMPERATURE = R = 65.0 AIR TEMPERATURE = T = 75.0	Men Mes West West Mest Mest Mest Mest	52.6 59.5 62.2 63.6 64.4 65.0	35,3 59,3 63,1 64,6 65,5 66.0 66,3	58.5 65.5 66.6 67.0 67.3 67.4		80.9 75.8 73.6 72.4	129.1 85.3 78.6 75.8 78.0 73.0 72.2	143.3 89.3 81.2 77.6 75.6 74.3 73.3	240.0 196.5 93.1 88.7 79.5 77.1 79.5 74.4 73.0 36.5 66.5 86.4 85.3 78.6 76.3 76.5 78.5	180.8 92.9 88.3 83.0 80.0 77.9 76.5	191.9 103.1 90.5 84.7 81.4 79.1 77.5	202.5 106.0 92.6 86.4 82.7 80.3 78.5	212.6 108.8 04.6 68.0 64.0 81.4 79.5	222.3 111.5 96.6 89.5 85.3 82.5	231.6 114.0 98.4 91.0 86.5 83.6 81.4	240,5 116,5 100,2 92,4 87,8 86,6 82,3 3			

$\overline{}$
ם
ued
- i
~
ini
ب
ont
0
U
0
\sim
a
Ä
م
Ĺ

		UEVPO IA	OEVPOINT TEMERATURE =	POINT TEMPERATURE =	# ·	70.0						DEWPOIN' AIR'	DEWPOINT TEMPERATURE = AIR TEMPERATURE =		* R * 80.0 T * 90.0	0.0		
	9	8.2	107	Ve15	W=20	We25	N=30	W=35			0=7	¥=5	N=10	W#15	W=20	W#25	N=30	¥#35
8									•	•								i
90.0	 	57.0	 3	3		69.1	69.7	70.2	•			66.3	73.7	76.4	77.8	78.7	79.3	79.7
100.0	35.3	63.3	67.5	69.1	70.0	70.5	70.9	71.2	10		35.3		76.5	78.3	. 6	79.8	200	200
120.0	50.5	69.1	70.7	71.3	71.7	£.	72.0	72.1	7		20.5		79.2	80.2	200	91.0	7.6	61.0
1.0.0	78.8		73.7	13.4	73.3	73.2	73.1	73.1			9.4		20.00	6.10	0.79	200	7.70	7.70
160.0	97.1	78.2	76.6	75.5		2.5	78.2	74.0			97.1			63.7	200	200	200	62.4
180.0	113.8	53.7	79.3	1	76.4	75.7	75.3	73.0			113.6		000	60.0		, ,		200
200.0	129.1	67.9	6.1	6.0	6.2	2.0	76.3	75.9	200		129-1			9 4	87.1	86.2 86.2	. S. E.	5
220.0	143.3	91.7	3		2	78.2	2.5	2	77		143.5				8	67.	86.5	85.9
2000	2	P		2 4	2		,	9 4	96	260.0	169.0	103.4	95.1	91.5	89.5	88.2	97.3	9.98
700						2	9	-	(180.8		97.0	92.9	9.06	89.1	98.1	87.4
		101	1 6		2	82.7		20.0	i é		191.9		98.8	6.46	91.7	90.1	6.88	88.1
	200		25.5	2	4		2.2	0.5	e e		202.5		100.6	95.7	92.8	91.0	89.7	88.7
	24.2			8	2	4			ă e		212.6		102.3	97.0	93.9	91.9	90.5	89.
	222.3		5	2		2	1	12.6	Š		222.3		194.0	98.2	6.46	92.8	91.2	90.1
	231.6	115.6	100.7	93.7	2	9	-	7.5	800		231.6		105.6	99.5	96.0	93.6	92.0	90.8
	200	117.0	102.1	5.1	90.7	1,	15.7	3	3		240.5		107.1	100.7	97.0	94.5	92.7	91.4
200	240			9	5	1	36.5		22		249.1		108.7	101.9	97.9	95,3	93.5	92.1
9	257.4		105.7	7.7	2	13.7	17.	15.6	**************************************		257.4		110.1	103.1	98.9	96.2	94.2	92.7
0.09	265	124.4	107.2	6	3	9006	8	2	9		265.4		111.6	104.2	6.66	97.0	6*6	93,3
		DEMPOTE	DEMPOTIET TEMPERATURE	RATURE	*	75.0						DEWPOIN	DEMPOINT TEMPERATURE	RATURE	æ	5.0		
		AIR	AIR TEMPERATURE .	NTURE .		85.0						AIR	AIR TEMPERATURE =	TURE :	T = 95.0	•		
	989	582	0147	We15	V=20	W=25	1830	We35			N=0	N=5	V=10	V=15	¥≈20	W=25	N=30	W=35
ě	•	1	1	1	1	:			8	_								
0.08	6.5	61.6	68.9	71.6	73.0	73.9	74.5	7.9	•	0.0	8.5	71.2	78.6	81.3	82.7	83.5	4	3
100.0	35.3	67.5	72.0	73.7	7.0	75.2	75.5	15.8	10	0.0	35.3	75.2	81.2	83.0	2 3	9	82.0	85.3
120.0	58.5	72.9	74.9	75.7	76.1	76.4	76.6	76.7		0.0		000	83.7	6.7	60.0	900	8 . d	200
1.00	78.8	7.	77.7	4.6	4.	7.6	4.6	4.6	# 4	2 9	# · ·	7.00	0 0	, c		7	2.0	2 4
160.0	97.1	22.	200	2	18.5	R 0	78.0	7 0	94		113.8	0.69	200	4 6	6.08	88	88	88
200-0	120	9		83.1		11.0	5.06	80.1	20	0.0	129.1	96.5	92.5	6.06	90.0	89.5	89.1	88.8
220.0	143.3	3	17.6	5	63.2	82.1	81.4	600	22	0.0	143.3	99.8	94.6	92.4	91.2	4.06	69.6	50.5
240.0	156.5	1.16	89.8	1.9	¥.	83.2	82.4	81.7	200	0	156.5	103.0	96.5	89.	92.3	91.3	٠. چ	90.5
260.0	169.0	101.0	91.9	•	15.7	1	63.3	82.5	28	0.0	169.0	105.9	E . 86	100		92.2		90.0
200.0	180.1	104.0	3	29	87.0	65.3	2.5	63.	200	0 0	180.8	108.7	1001		* *	43.0	7.75	
300.0	191.9	106.9	95.0	0.10	2.5			:	3 6		200	113.0	103.5	0	90	9	93.6	92.8
320.0	202.5	109.7	- 1	7.7.6	2 8	? .	6 . A		1) A	9 0	212.6	116.3	105.2	100.2	97.4	95.6	64.3	93.4
	222.3		101	,	3	2	2.5	9	98	0.00	222.3	118.6	106.7	101.4	₩.86	#°96	95.1	0.46
3.00.0	231.6	117.2	103.1	8	92.7	90.	1	67	96	0.0	231.6	120.9	108.2	102.6	4.66	97.2	95.7	9.46
*00	240.5	119.5	104.7	97.6	93.6	91.1	88.2	7.78	0.8	#00°0	240.5	123.0	109.7	103.7	100.3	0.86	96.4	95.2
420.0	249.1	121.7	106.3	99.1	:	92.0	66.6	?		#20°0	249.1	125.1	111.2	104.9	101.2	8 00	97.1	95.8
0.04	257.4	123.0	107.	100.3	92.8	92.9	2.			0.0	257.4	127.0	112.6	2000	10701	33.0	0 4 0 7	0.00
0.09	265.4	125.0	109.3	101.5	8.9	F. 68	91.5	42.0	•	0.00	****	170.3	11000	70.01	7.55		1	•

ATURE = R = 20.0 URE = T = 40.0	We15 We20 We25 We30 We35	30.7 40.9 40.8	0 CF 0 CF C	37.0 36.1 35.5 35.0 34.7	30.1 37.9 57.2	#1.9 #0.3	44.7 42.7 41.2	47.3 44.9 43.2	49.8 47.0 45.0	56.9 52.3 49.1 46.9 45.1	54.6 51.1 48.6	56.8 53.1 50.4	59.0 55.0 52.0	61.1 56.6 53.7	58.6	65.0 60.3 56.8	66.9 62.0 58.3	68.7 63.6 59.7	70.4 65.1 61.2	72.1 66.7 62.5	60.1	ATURE - R = 25.0		Wals Walo Wals Wald Wals		33.6 34.2 34.6	36.6 36.7 36.7	39.6 39.1 38.8	42.4 41.5 40.8	47.3 45.2 43.7 42.7 k2.0		52.7 50.1 MB.2		57.2 54.0 51.6	59.4 55.8 53.3	61.4 57.6 54.9	63.4 59.4 56.4	65.3	67.2 62.7 59.4	3	70.7 65.8 62.2	67,3	2.00 68.00 67.00	75.6 70.2 66.2
DEWPOINT TEMPERATURE =	W=5 W=10	28.0 27.8	33.6			*8.5	52.9	57.0	3	64,5	67.9	71.1	7,1	77.0	79.7	82.3			3.	91.5	93.6	DEVPOLIT TEMPERATURE	AIR TEMPERATURE =	W=5 W=10			36.5	41.7	9.9	59.2 51.1		63.0	66.5	69.8	72.9	75.6	78.6	11.2	7.2		2			9.6
ä	0.8	5.5																240.5 10		257.4 11:				0.0		6.5				27.1						191.9					240.5			
	į	, S	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	200.0	300.0	320.0	340.0	360.0	380.0	0000	#20°0	0.044	460.0				8	80.0	100.0	123.0	140.0	160.0	0.00	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	0.00	\$20.0		100°C
	30 W=35	**************************************			.3 91.4					5° 46° 6°					.3 97.5						.1 100.8			30 W#35						7 96.7											1 103.2		13 104.2	
	S W=30	0.68													5 98.3			•		1 101.5				S W=30								98.6									-		105.1	
100.0	0 V=25					2 92.1					3 96.3					_	9 100.9	-		# 103°1		95.0	105.0	0 W=25			6 94.2							1,10.5						5 104.8			100.6	
ec #	M=20	m. m.e								96.3					101.1				104.6			•	-	W=20			93.6			7.96			_					104.9		106.5			106.9	10%
DEWPOINT TEMPERATURE = T	W=15	86.2											101		•				• •	109.	110.0	DEVPOINT TEMPERATURE	AIR TEMPERATURE .	V=15								_		102.6										113.1
TENERS	V=10	83.6	85.9	88.2	90°	92.4	*.	36.4	98.2	100.0	101.7	103.4	105.0	106.6	108.1	109.6	111.1	112,5	113.8	115.1	116.4	DIT TEN	TOUT	W=10		88.6	90.7	95.8	*	96.7		102.0	103.7	105.3	106.9	108.4	109.8	111.3	112.7	114.0	115.3	116.6	117.9	119.1
DEVPOI	¥=\$	76.1	0	15.1	89.2	92.9	96. 4	99.7	102.9	105.8	108.6	111.3	113.8	116.2	118.6	22	122.9	125.0	126.9	128.8	130.7	DENPOI	AIR	N=S		81.2	85.5	60.5	93.2	96.7	200	106.0	100.0	111.5	114.0	116.4	118.7	120.9	123.1	125.1	127.1	129.0	130	132.6
	0	9.5	35.3	58.5	78.8	97.1	113.0	129.1	143.3	156.5	169.0	180.8	191.9	202.5	212.6	222.3	231.6	240.5	249.1	257.4	265.4			Ou A		8.5	35.3	58. 5	78.8	97.1		163.3	156.5	169.0	180.	191.9	202.5	212.6	222.3	231.6	240.5	269.1	257.4	265.
	į	, 8	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	200.0	300.0	320.0	340.0	360.0	380.0	0000	\$20.0	0.0	0.094				8	0.08	100.0	120.0	140.0	160.0	900	220.0	240.0	260.0	280.0	300.0	320.0	3.0.0	360.0	380.0	0.00	#20°0	0.0	*60.0

		DEMPOLI	POINT TEMPERATUR	DEVPOINT TEMPERATURE	e :	8.00					DENFOL	POINT TEMPERATUR	SWPOINT TENTERATURE	* •	0.0		
	į	ž ,			·		2	į		į	¥			<u>.</u> }		1	į
į									ł	2	0			2			Ì
, 8	5.5	30.0	34.5	36.4	37.4	30.1	36.6	36.9	c 00	8.5	36.5	41.9	***	#5.#	2	1.3	17.
100.0	35.3	39.1	33.	2.0	9	*0°	3 3	••••••••••••••••••••••••••••••••••••••	100.0	35.3		46.7	47.5	0.0	£8.2	* 0 *	3
120.0	58.5	47.2	;	43.8	#3°5	¥2.8	42.5	42.3	120.0	58.5	52.4	51.2	50.7	\$6.5 \$	50.3	3.	3
1.0.0	7.	S. 3.	*.6*	47.2	45.9	\$2.0	**	0.4	140.0	78.	59.2	55.4	53.0	52.8	52.2	51.1	51.
160.0	97.1	61.2	53.	\$.05	*.	47.2		#2°6	160.0	97.1	65.4	59.4	56.7	55.1	 3	53.4	52.5
100.0	113.8	67.2	57.8	53.5	80°9	49. 5	0. #	17.1	180.0	113.0	71.1	63.1	20.4	57.3	56.0	55.0	54.
200.0	129.1	72.7	61.6	*. %	53,3	51.2		4. .7	200.0	129.1	76.2	66.5	62.1	59.5	57.8	56.6	55.7
220.0	143.3	1.11	65.2	59.5	55.6	53.2	51.5	20.3	220.0	143.3	80.9	69.8	•. \$	61.5	59.5	58.1	57.0
240.0	156.5	62.3	61. 6	61.8	57.8	55.1	53.1	51.6	240.0	156.5	82.3	72.9	67.0	63.5	61.2	59.5	28. 3
260.0	169.0	9.9	71.7	4. 3	59.9	S.	3	53.0	0.092	169.0	*. 6	18.1	69.3	65.4	62.8	6.0g	59.
280.0	190.	90.6	74.7	3	61.9	51.6	 8	24.4	280.0	180.8	93.2	71.6	71.5	67.2	3	62.3	3
300.0	181.9	e.	7.5	69.1	63.9	3	57.7	55.8	300.0	191.9	16.7	11.2	73.6	69.0	65.6	63.7	2.1
320.0	202.5	97.8	20	71.3	65.8	62.0	28.5	57.1	320.0	202.5	100.0	5.7	75.7	70.7	67.4	65.0	5.
340.0	212.6	101.1	13.1	73.5	67.6	63.6	9.9	20.4	0.046	212.6	103.2	1.90	77.6	72.4	66.1	3	3
360.0	122.3	19.	15.2	75.5	4.69	65.2	62.0	59.6	0.098	222.3	106.1	* :	79.5	7.0	70.3	67.5	65.1
380.0	231.6	10.0	87.6	77.5	71.1	66.7	63.4	60.0	380.0	231.6	108.9	90.6	£.3	75.6	71.6	61.7	3
0.00	2.0°.5	109.6	8.68	79.	72.8	69.2	64.7	62.1	0.00*	240.5	111.6	92.7	13.7	77.1	73.0	69	57.
*20.0	249.1	112.4	91.9	11.2	74.8	69.6	6.0	63.3	#20°0	249.1	114.2	7.46	:	78.6	74.3	71.1	66.0
0.004	157.4	114.9	о. В	63.0	75.9	71.0	67.3	4.49	0.044	257.4	116.6	96.7	86.5	0.0	75.5	72.2	69
*60.0	265.4	117.3	96.0	4 .7	77.4	72.3	68.5	65.5	0.034	265.4	118.9	98.5	8	17.4	76.8	73.3	70.7
		DEVIPOIN	T 1200	DEVPOINT TEXPERATURE	~	35.0					DEMPOL	112.00	DEVPOLINT TEMPERATURE	~	* #5.0		
		AIR	AIR TEMPERATURE	ATURE =	-	55.0					AIR	AIR TEMPERATURE	ATURE .		65.0		
	2	Ş	2	Me 1.5	1	We25	0849	56.35		2	50	2	Ve15	¥=20	We25	081	W=35
8	•	•	1	1	•		}	3	8) :	•	•	ì	:	:	:	:
0.08	8.5	33.2	38.2		41.4		42.6	42.9	0.00	9.5	9	45.8	46.2	*.6*	50.2	50.	51.2
100.0	35.3	41.9	43.2		4.4.		s. ≢	9.I	100.0	35.3	.0	50.3	51.3	51.9	52.2	52.4	52.6
120.0	20. 5	#8°	.8.		¥6.8		46. 3	*6.2	120.0	50.5	55.2	3. 3.	S. 3	3	 2	54.0	8.0
1.0.0	78.8	86.8	\$2.4		¥9°3		48.1	1.7	140.0	78.8	61.8	28.6	57.2	\$. \$.	55.9	92.6	4.55
160.0	97.1	63.2	56.5		51.8		6	19.2	160.0	97.1	67.7	62.3	5.05 0.05	26.6	57.7	57.1	3
180.0	113	7.4	2 1		,		6.46	200	0.001	113	2 .	0		3 5	7		
220.0	5.5	79.3	67.5	61.1	58.5	26.3	5.7	53.5	220.0	143.3	82.7	72.3	67.4	5	62.8	61.4	60
240.0	156.5	83.8	70.7		9.09		56.3	54.9	240,0	156.5	96.9	75.2	69.7	66.5	5	62.8	61.7
260.0	169.0	98.0	73.7		62.6	59.8	57.8	56.3	260.0	169.0	90.9	78.0	71.9	66.3	62.9	£.1	62.1
280.0	180.8	91.9	76.6		į		59.2	57.6	280.0	180.8	9.46	6	7.0	0.0	67.4	65.4	5
300.0	191.9	95.5	79.4		9		6	58.E	300.0	191.9	98	13.2	9.0	7.7	:	2	65.1
320.0	202.5	5 96	8 2.0		68.2		62.1	60.1	320.0	202.5	101	9.0	78.0	73.3	2 2	6.7	3
0.0	212.6	102.1			0	2:	2	61.3	0.046	112.6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.2	2		27.0	69.2	2
360.0	222.3	105.1	9		7.5			62.5	360.0	222.3	107.2	8		5.5	72.	20.	
380.0	231.6	100.0	189		73.5		2	63.7	0.000	231.6	110.0	92.3		7.05	74.2	71.5	
2000	2 6	113.	21.6	7.10	7 4	7.00	0 / 0 V		0.00	240.3	115.0	: 3			78.7	73.7	5 5
0.0	7.4.7	1150	7.50	2 1	10.1			67.0	000	74.6	11001	7. 5		3 5	ţ	74.8	72.
9	36.5	118.1	97.2	2		76.5	6.02	200	0-09#	265.4	119.8			83.5	79.1	75.9	73.
									*****)				•

$\overline{}$,
P	•
61	
nu	
⊏	
¥	
con	
ົດ	
ŏ	
$\overline{}$	٠,
_	
m	•
a	
_	•
Ω.	
୍ଟ	

IENPOINT TEMPERATURE = R = 60.0 AIR TEMPERATURE = T = 60.0 W=0 W=5 W=10 W=15 W=20 W=25 W=30 W=35	9.5 51.2 56.0 60.7 62.1 63.0	50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	78.8 70.0 68.6 68.0 67.7 67.5 67.4	113.6 80.0 74.7 72.4 71.2 70.4 69.6	120.1 00.5 77.5 76.5 72.8 71.7 70.9	143.3 48.6 40.2 76.5 74.4 73.0 72.1	96.0 85.2 80.8 77.4 75.6 74.9	180.8 99.3 87.5 82.1 78.9 76.8 75.3	191.9 102.5 69.7 69.6 90.8 76.0 76.4	202,5 105,5 91,9 85,5 81,7 79,2 77,4	212.6 108.8 98.9 47.1 68.0 90.8 78.4 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	231.6 113.6 97.8 90.2 85.6 82.6 90.4	240,5 116,0 99,6 91,6 86,9 83,6 61,3	249.1 118.4 101.3 93.1 88.1 84.7 82.2	257.4 120.6 103.0 94.5 89.2 85.7 83.1	265.4 122.8 104.7 95.8 90.4 96.7 84.0	DENFOUNT TEMPERATURE = R = 65.0 AIR PERESANUE = T = 65.0	į	ASIM CYCH AVER CYCH AVER COM COM	8.5 55.3 62.3 65.0 66.5 67.3 67.9	62.0 65.0 67.4 60.3 60.8 60.1	58.5 67.7 69.1 69.7 70.0 70.2 70.3		129.1 86.9 80.6 77.9 76.4 75.4 74.8	143.3 90.8 63.1 79.8 77.9 76.7 75.8	156.5 94.5 65.5 61.6 79.9 77.9 76.8		141.9 104.2 42.1 BC.6 43.4 K1.2 79.8	202.5 107.1 94.2 88.2 84.7 82.4 80.8	212.6 109.9 96.1 89.7 96.0 63.5 81.7	222.3 112.5 90.0 91.2 67.2 64.5 62.6	231.6 115.0 99.8 92.7 88.4 85.6 UB.5	240.5 117.4 101.6 94.1 99.6 96.6 94.4	249.1 119.6 103.3 95.4 90.7 87.5 65.3	#40.0 257.4 121.8 104.9 96.7 51.8 56.5 96.1 84.3 60.1 64.3 60.0 265.4 123.9 106.5 96.0 92.9 80.5 67.0 65.1	
DEVPOINT TEMPERATURE = R = 50.0 AIR TEMPERATURE = T = 70.0 W=0 W=5 W=10 W=15 W=20 W=25 W=30 W=35	40.0 6.5 43.6 49.8 52.3 53.6 54.4 55.0 55.4 60.0 34.1 4.10 44.0 44.9 44.4	58.5 58.1 58.0 58.0 58.0 58.0	78.8 64.4 61.8 60.7 60.1 59.7 59.5	113.8 75.3 68.7 65.7 64.1 63.0 62.2	80.1 71.8 68.1 66.0 64.6 63.6	143,3 46,5 74,8 70,3 67,8 66,1 64,9	169.0 92.5	180.8 96.1 82.8 76.6 72.9 70.4 68.7	191.9 99.4 85.3 78.5 74.5 71.8 69.8	202.5 102.6 87.6 80.4 76.0 73.1 71.0	105.0 89.0 82.2 77.5 74.4 72.1	231.6 111.1 94.0 85.5 80.4 76.9 74.4	240.5 113,7 95,9 87,2 81,8 78,1 75,4	249.1 116.1 97.8 88.7 63.1 79.3 76.5	118.4 99.7 90.3 84.4 80.4 77.5	265.4 120.7 101.4 91.7 85.7 81.5 78.5	DEMPOINT TEMPERATURE = R = 55.0		COMPAND OF STREET OF STREET STREET STREET	6.5 47.3 53.8 56.4 57.8 58.7	35,3 54,6 57,9 59,2 59,9 60,3 60,7	58.5 61.2 61.6 61.8 61.9 62.0 62.0	180.0 113.8 77.6 71.6 69.0 67.6 66.6 66.0 65.5	129.1 62.2 74.6 71.3 69.3 68.1 67.2	143,3 66,5 77.4 73.4 71.0 69,5 68.4	156.5 90.5 80.1 75.4 72.7 70.9 69.6	169.0 94.2 U2.7 77.4 74.3 72.3 70.8	000/ 000/ 000/ 1000 1000 1000 1000 1000	202.5 104.0 89.7 82.9 78.8 76.1 74.2	212,6 106,9 91,8 84,6 80,2 77,3 75,2	109.7 93.8 86.2 81.6 78.5 76.3	231.6 112.3 95.8 87.8 83.0 79.7 77.3	240.5 114.8 97.7 89.3 64.3 60.8 78.3	249.1 117.2 99.5 90.8 85.5 81.9 79.3	440.0 257.4 119.5 101.3 92.3 86.8 83.0 80.3 78.2 460.0 265.4 121.7 103.0 93.7 88.0 84.1 81.2 79.0	

	H#35	11.9	12.7	13.4	2.5	e E	15.7	¥.	17.1	1 .	80. 5	2	6.6	9.0	91.2	91.9	92.5	93.1	93.0	*.	95.0			W=35		86.5	87.2	6.79	11. 0	68.3	2	9.0	2		9776	93.2	1			3	2	97.4		8 5:5	
	¥=30	11.5	15.4	13.3	 2	92.0	9 2.8	16.7	87.5	<i>*</i> .	2.	6. 6	2.	91.5	92.2	93.0	93.7	*. \$	95.1	95.8	96.5			W=30		199	96.9	1.7	99.5	80. 3	90.1	2 3	91.0	22.	7.0			2 0	9	27.3	98	9.84	8	:	
•••	W=25	6.0	93.0	13.1	 1	12.1	2 :3	7.	 	1.6	%	2	91.0	12.7	93.6	4. 8	95.3	96.1	96.9	97.7	98.5	0.	0	W=25		65.5	86.5	97.5	88.5	*.	e :	11.2	92.1	0.68	? ;	7. 3				;	5.6	00.3	0.10	101.7	
# # # #0.0	W=20	0.0	17.7	12.7	°. 1	85.3	8 .5	1.1		8 11	91.2	92.3	93.4	s.	95.5	% 	97.5	98.5	4.66	8.3	101.3	180 m ×	AIR TEMPERATURE = T = 105.0	¥=20		7.3	6.58	87.2	88.3	89.5	8	91.6	92.0	#3.4		9.6				8	01.7	•	•	6	
יי שעדער די שעד	W=15			12.2																_	-	ATURE .	URE 1	V=15																٠	• • •			108.2	
POINT TEMPERATURE ALR TEMPERATURE	¥=10			61.2													•	•	•	•	•	TEMPER	EMPERAT	W#10												101.5	٠								
EMPODIT TEMERATURE AIR TEMPERATURE #	X=2					17.3		6. 5														DEWPOINT TEMPERATURE	AIR T	S = 3		73.2		82.6								108.7								126.6	
A	0=3			58.5																	_	A	1	0=1		6.5										180.6					240.5			265.4 1	
																								*																				•	
	ŧ	8	100.0	120.0	1.00	160.0	180.0	8 8	220.0	240.0	2 2 2 2	280.0	300	320.0	3.0.0	360.0	360.0	9	#20°0	0.0	0.094				ë	0.0	100.0	120.0	140.0	160	9	200	77077	200			200	9	98	980	9	\$20.0	9	160	
	W=35	72.0	73.0	7.7	75.6	76.5	¥.	78.2	7.5	6.6	10.7	81.5	12.3	13.1	13.0	•	12.4	199	16.1	17.6				Ne.35	:	7.3		2	79.9	7.	H.5	12.3	3.1	: ::	9	2.5		2			2	200	9	91.6	
	00	72.6	73.5	7.0	75.6	76.6		78.7	7. 9.	8 9	H. 5	1 5.4	13.3	~ ≛	1.5	15.9	5.	17.6	:	20.5	8			M=30		76.9	,	78.9	79.9	80.	11.7	82.6	3.5	:	2	1.0				,	6.0	91.7	22.5	93.2	
70.0	W=25	71.8	73.1		75.6	76.9	70.1	2 .5	*.0	11.5	12.6	3.6		85.7	7.	7.7	. .	3.6	8 5	91.4	92.3	75.0	95.0	W=25	i i	76.3	-	78.7	2	61.0	12.1	13.1		2 20		7.7		8			92.8	93.7	3	95.3	
.	W-20	70.9	72.6	74.2	75.7	7.7	78.7	1.0	81.5	12.8	: :	#. 20	9.9		2	? 8	91.3	92.4	93.5	\$. \$	95.6	•		W=20		75.b	,		79.0	H.2	9.2	63.6	12.1	9	9.				7		95.4	8	17.6	9.3	
MATURE .	V*15	69.5	71.7	73.6	75.8	7.7	۶. د	#. #.	53.1	• •	8 .5	• :	9.6	۲. ۲.	92.5	93.9	95.3	96.6	97.9	99.1	***			W-15		78.0	4	7	2	97.6	13.3	92.0	9.9	2.5		91.2					98.3	100.5	101.7	102.9	
POINT TEMPERATURE = T	¥*10	66.4	70.0	73.0	75.9	78.7	11.3	3.	19	:	90.6	92.7	3	8	91.5	100.3	102.0	103.7	105.3	106.9	108.4	TEMPE	AIR TENEFERATURE	V=10		71.3		77.1	79.8	2.3		::2		# ·	25.0	95.5			102.7	104.3	105.9	107.5	109.0	110.4	
DENPOINT TENPERATURE *	X=5	59.5	65.6	71.2	76.3	 	85.3	*.6	93.1	7.96	100.0	103,1	106.0	108.8								DEVPOTIT TEMPERATURE	AIA	Š		63.9	9	*	79.6	#. #	18.2	92.0	92.6	66	102.2	105.2								178.6	
	9	5.6	35.3	56.5	78.8	97.1	113.0	29.1	145.3	\$6.5		100.0		202.5					_	_	265.4			0		2.4	*	50.5	78.1	97.1	113.8	129.1	183.3			9.0									
	į	9					_			~	_		300.0			360.0	380.0		#20°0 2							9	2	120.0	140.0			200.0		240.0								\$20.0		. ~	

_	
τ	J
Pa	j
-	3
2	
	į
4	4
2	
- (1
Č	
ú	
_	۰
~	
(
•	•
_	
5	_
•	۲
	•

	W=35		9	,				7.7.	52.7	7	55.	16.7	50.0	59.3	30.5	61.7	62.9	64.1	65.2	66.3	67.4	68.5				W=35		17.3		50.3	51.8	53.2	7	55.9	57.2	20.0	59.7	61.0	62.2	63.3	5	65.6	66.7	67.8	66.	5.0	70.0
	¥=30		20.5					2 :	9 0	55.2	26.	58.2	59.7	61.1	62.5	63.8	65.2	66.4	67.7	61.9	70.1	71.3				W=30		46.9		\$0.4	52.1	53.7	55.3	%	P .	28.7	61.1	62.5	63.0	65.2	3	67.7	65.5	70.1	2.5	72.	73.5
20	W#25		42.7				1010	100	20.0	3	58.5	60,2	61.9	63.5	65.1	9.99	66.1	69.5	70.9	72.2	73.6	76.9	,	5.0	65.0	W#25		#9	*8. 5	50.5	52.5	\$. **	26.2	25.0	28.7	9.19	9	3	3	67.6	69	5	7:0	73.7		75.7	76.9
T = 60.0	# =20		0 7 1				200		20.0	28.0	61.0	63.0	65.0	66.8	68.6	70.3	72.0	73.7	75.2	76.0	78.2	79.7	ı	* R * 35.0		V=20		15.7	46. 2	50.7	53.1	55°#	57.6	59.7	61.7	63.7	65.6	67.4	2.5	6.0	72.6	7.2	75.7	2.2	7.	8	81.5
	W=15		0					900	9.0	62.3	64.8	67.2	\$3. \$3.	71.7	73.8	75.8	77.8	79.7	11.5	83.2	5	86.6	!			W=15		*	47.8	51.0	9. 3	56.9	29.6	62.3	3	67.2	69	7,1,7	73.	75.	F	79.7	H .S	2.5	o.	9.9	 E
DEVPOINT TEMPERATURE =	¥=10		38.7	2		2 6 7 6 7				67.0	2.0	7.0	76.9	3.6	82.2	84.7	67.0	60	17.	93.5	95.5	97.4		DEVPOTIET TEMPERATURE	AIR TEHPERATURE .	V=10		#2.2	#7.0	51.5	55.7	59.6	63.3	66.7	200	73.1	76.0	78.	1.	83.9	6.3		10.7	\$ 2.	Z.	96.	9.6
DEWPODE	S=A		33.7		7.00	•	200	*	/**/	79.5	o. ₹	66.2	95.0	95.7	99.1	102.2	105,3	108.1	110.0	113.4	115.9	118.2		DEVPOTE	AIR	K=S		36.7	45.1	52.6	59.4	65.6	71.2	70.3		4.0	5.0	83.3	2	100.1	103,3	106.2	109.0	111.7	114.2	116.6	119.0
	0		e ;	200			7.5	113.8	129.1	143.3	156.5	169.0	180.8	101.9	202.5	212.6	222.3	231.6	240.5	249.1	257.4	265.4	•			9		6.5	35.3	58.5	78.8	97.1	113.8	129.1	143.3	26.5	169.0	180.6	191.9	202.5	212.6	222.3	231.6	240.5	249.1	257.4	265.4
					120.0										320.0		360.0										å	0.08	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	280.0	300.0	320.0	3.0.0	360.0	360.0	0.004	420.0	0.044	0.09¥
	W=35		36.1	7° / 7	1	***	100		#6.3	#7.9	#.G#	80.9	52.3	53.7	55.1	\$6.1	57.7	59.0	60.2	61.5	62.6	63.6				¥=35		39.6	*1. 5	*3. 2	-: 1	**9*	0.0	#9.5	51.0	52.₩	53.6	55.2	56.5	57.8	59.1	60.3	61.5	62.7	63.9	65.0	66. 1
	V=30		35.0	7	2	1	?		47.5	48.2	50.9	52.6	Z. 3	55.8	57.3	58.8	200	61.6	63.0	3	65.6	6.99				W=30		39.5	41.5	#3.#	45.3	17.1	;	9. 9.	52.2	53.	25.	 	2.	59.9	61.3	62.7	3	65.3	3	67.8	69,1
20.0	W=25		35.4		2	7 1		•	6	51.1	53.0	3	56.7	58.5	60.2	61.9	63.5	65.0	9.99	68.0	69.5	70.9		25.0	55.0	W#25		39.0	41.4	43.6	45.0	7	50.0	\$2.0	53.9	22.	57.6	59.3	61.0	62.6	3	65.7	67.2	68.7	70.1	71.5	72.8
∝ .	¥=20		8	,	3	?	7.0		51.7	53.6	55.9	58.1	3	62.2	3	0.99	67.9	69.6	71.3	73.0	74.6	76.2		~		20		38.4	41.2	0.4	46.7	49.2	51.6	0°	26.3	4. 8.	60. S	62.5	3	3	68.2	6.69	71.6	73.3	2	76.4	۲. د.
DEWPOINT TEMPERATURE = AIR TEMPERATURE =	F =15		33.0	•	7				2.0	57.4	60.1	62.7	65.2	67.6	69.8	72.	74.2	76.2	70.2	0	81.9	83.6		DEVPOSINT TEMPERATURE	ATURE .	W=15		37.3	11.0	9.4	47.9	51.1	54.1	57.0	28.	62.	5 3	67.3	9	77.9		76.0	7.9	19.8	97.0	83.4	19.1
NT TENE	V=10		32.0	2	7			700	00	63.7	67.1	70.	73.4	76.3	79.1	11.7	F .2	9.98	6.9	91.0	93.1	95.1		CH TENY	AIR TEMPERATURE	¥=10		35.4	*0°	45.5	8	#. #5	50.k	62.2	65.7	69,0	72.2	75.1	78.0	90.0	83.	9.6	17.9	90.1	92.2	e :	99.2
DEWPOI	N=S		27.9	7.7				60.0	71.5	76.7	81.4	85.7	8.	93.5	97.1	100.4	103.5	106.4	109.2	111.9	114.4	116.8		DEMPOI	AIR	N=S		30.8	39.7	17.	55.1	61.6	67.6	73.1		12.7	96.9	606	9	86	2.5	104.	107.3	110.0	112,6	115,1	117.5
	0	i		7			7.6	113.6	129.1	143.3	156.5	169.0	180.8	191.9	202.5	212.6	222.3	231.6	240.5	289.1	257.4	265.4				0=4		. .5	35,3	58.5	78.8	97.1	113.0	139	143.3	156.5	169.0	100 i	191.9	202.5	212.6	222.3	231.6	2.0	249.1	257.4	265.4
		•	0.0	0.00			200	900	2002	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	0.00	420.0	0.044	0.09#					ŧ	0.0	100.0	120.0	1*0.0	160.0	180.0	200,0	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	0.00	#20°0	0.0	

$\widehat{}$
ied
inu
ü
con
J
3
1e
ab
Ĥ

	W=35	75.3	76.2	7.1	7.0	78.8	7	8	11.3	15.1	22.0	2	•	15.2	82.9	2	5	•	2	2	2			¥=35		3.6	0	11,2	2.0	2		1.5	15.1	96.6	2	9	:	2	8	0	41.0	25	42.6	63.3
	06	74.9	75.9	77.0	78.0	7.0	٠. ۲	•• ••	 	2.7	2	s:	 	1	2.0	2		2	?	27.0	17.1			W=30		79.2	100	11.1	2		2	15.5	*	17.3	0. 2	=	E	8	91.2	9. F	92.7	4.0	-: \$: :
•	W=25	74.3	75.6	76.0	7.0	79.1	2.0		2.5	83.6	I	8 5.6	 2	2	Z	2	S.		92.3	23.1	• \$	5.0	•	W=25		78.6	۲ :	• 8	2	: 2 :		2	17.1	:	7.	8	3	11.1	42.7	9.0		92°0	7	%
100,	№ 20	73.4	75.0	7.5	78.0	5	2 2	2. 2	2.5	: :	• •	: E	. .	E	\$ \$	91.9	• •	• •	19.1	7	7.1	= R = 75.0	105	V=20		77.7	7. 7.	8		? :		2	H.2	? E	8	91.7	15.1	63.0	I	6.6	5	9.0	:	: :
POINT TEMPERATUR = R = 70.0 AIR TEMPERATUR = T = 100.0	F =15	72.0	7	76.1	78.0	۶. د.	1.1	7.2	12.1	.	? ?	: :	 	72.7	: #	95.5	Z	 Z	3.	\$.00T	101.7	RATURE	200	¥=15		76.3	78.2	2.0	#	2		:	:	#. #	2.5	4.2	92.6	2	3		2001	101.0	0.50	1.40
TEME	¥=10	69.3	72.4	75.3	78.1	7.	13.2	85.6	5	1.0	92.2	 2	2 :3		: :	9.10	63.3	e. 3	106.5	. 0.90	.00.5	TEMPE	AIR TEMPERATURE .	W=10		73.6	4.5	2.2	7.1	S 1		2	93.0	95.0	: :	: :	s. 0	102.3	8			108.6	•	•
DEVPOINT TEMPERATURE =	\$ 1	62.0	67.1	73.2	78.1	12.7	: :	9	s.	97.8	191.2	5 5									125.9	DENTO DIT TEMPERATURE	AIR 1	\$1		6. 2	7.7	76.7	4.	5.7		2	100.2		106.1			114.2				123.3		
-	į			56.5										202.5							•	_		9			15.3			97.1														
	_																							_																				
	ł	, 8	100	120.0	140.0	36.0	180.0	200.0	28	240.0	3 60.0	280.0	300.0	320.0	3	360.0	3000	8	¥20°0	9	9				8	8	100.0	120.0	2.0	9 9	2	220	240.0	200	280.0	8	22	9	200	9	9	22	9	3
	V=35	0.7		69.1	0.1		2.1	9.0	0.4	6.4	2.5	6.7	7.6	**	e.a	0.1	6.0	1.7	2.5	9.9	1.1			F=35		71.1	2.1	73.0	0.4	74.0	••			D.0	0.1	•••	1.7	2.5	3.3	£-4		2.6	5.3	7.0
	A 08-A			69.0			72.4 7			75.7 7														¥ 08-4			-					78.2 7										17.2		
_	W=25 W		67.4 67				73.0 72																	V=25 W		-	-			75.3											_	_	_	_
90°0			_																			- 65.0	95.0			~	.		~	r (~ r				_		_	_	0	~	.	.	s	.
#E = #	S W=20			4 68.7																		35		5 W=2		5	2	72	*	2 !	- :	2	=	2	1	\$	2	2	E	2	2	~		
DEWPOINT TEMPERATURE =	V=15	_	9																		97.3	DENPODIT TEMPERATURE	AIR TENDERATURE	W=15		67.8				76.3									-			2	ż	Ė
12 TO	V*10	61.0	9					79.6											•	104.3	105.9		1 1 1 1 1 1 1 1 1 1	V=10		65.1	68.4	71.5	2.5			20.5						97.6	2	101.2	102.	\$	106.1	107.
DEMPO	*	54.0	909	66.6	72.1	77.2	11.8	1.98	90.1	93.0	97.3	100.6	103.7	106.6	109.4	112.0	114.5	116.9	119.2	121.4	123.5	DEN	AI	S=#		57.9	2.7	69.1	75.1	9.6		92.2	95.6	91.2	102.3	105.3	106.2	110.9	113.	115.9	110.2	120.5	122.6	124.7
	2	5.5	35.3	58.5	78.8	97.1	113.8	129.1	143.3	156.5	169.0	180.8	191.9	202.5	212.6	222.3	231.6	240.5	249.1	257.4	265.4			9		6.5	35,3	50° 5		97.1	113.	143.3	156.5	169.0	100.0	191.9	202.5	212.6	222.3	231.6	20.5	249.1	257.4	265.4
	•	. e	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	200.0	300.0	320.0	340.0	360.0	380.0	0.00	*20°0	0.044	0.03*				8	0.04	100.0	120.0	140.0	160.0	180	220.0	240.0	260.0	290.0	300.0	320.0	340.0	360.0	380.0	0.00	*20.0	0.04 1	0.03*

R # 35.0 T # 75.0 ME = R = 30.0 DEWPOINT TEMPERATURE * REWPOLINT TEMPERATURE = 55555 6575 - R = 25.0 T = 65.0 DENPOJICT TEMPERATURE = R = 20,0 AIR TEMPERATURE = T = 60.0 DEVICINT TEMPERATURE .

DEMPOINT TEMPERATURE " R = 50.0 AIR TEMPERATURE " T = 90.0	Wa0 We5 We10 We15 We20 We25 We30 We35			1970 0770 0770 0770 0770 / OC	78.8 68.9 67.2 66.5 66.1 65.9 65.7 65.6	74.2 70.4 68.8 68.0 67.4 67.0	79.0 73.5 71.1 69.7 68.8 68.2	83.6 76.3 73.2 71.4 70.2 69.4	87.7 79.1 75.2 73.0 71.6 70.6	91.6 61.7 77.2 74.6 72.9 71.7	95.2 84.2 79.1 76.2 74.2 72.9	98.6 86.5 80.9 77.6 75.5 74.0	101.9 88.8 62.7 79.1 76.7 75.0	104.9 91.0 St. 80.5 77.9 76.1	107.7 93.0 86.0 81.9 79.1 77.1	110.5 95.0 87.6 83.2 80.3 78.1	113.1 97.0 69.2 fts.5 81.4 79.1	115,5 98,8 90,7 85,8 82,5 80,1	117.9 100.6 92.2 87.0 83.5 81.0	120.1 102.3 93.6 86.2 84,6 82.0	122.3 104.0 95.0 69.4 85.6 82.9		air temerature = t = 95.0	We) Wes Well Wels Well Wels Well Well		53,0 60,0 62,7 64,1 64,9 65,5	59,6 63,6 65,1 65.9 66,5 66.8	65.9 67.0 67.5 67.8 67.9 68.0	71.4 70.2 69.8 69.5 69.8 69.2	1000 1000 1700 1700 1001 1004 1004 1004	129.1 83.5 78.9 78.0 74.4 73.4 72.1 72.1	89.6 31.5 78.0 76.0 74.7 75.8	93.3 84.0 79.8 77.5 75.9 74.8	96.0 86.4 61.6 76.9 77.1 75.9	100.2 48.6 43.4 80.3 78.3 76.9	103.3 90.0 65.1 61.7 79.5 77.9	106.2 92.9 86.7 83.1 80.6 78.9	109.0 94.9 66.3 69.4 61.8 79.9		174.2 V6.7 V1.3 U0.9 U6.9 U1.8	/***	1911 103.0 85.5 80.5 87.0 88.6	123.0 104.0 105.0	1070 2000 7000 BARR 70770 BARRA
		no.			140.0																										200.0													
	W#30 W#35				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			W=30 W=35							66.3 65.6													
80.0	0 W=25		o. 3.	9000	9 0 0 0		62.6	£.5	65.7	67.2	68.7	70.1	71.5	72.8	74.1	75.4	76.6	77.8	19.0	60.1	61.3		85.0	V=25		7 57.5	59.3	9	62.6		87.2	68.6	70.0	71.	72.7	74.0	75.3	76.6	77.	70.9	80.1	81.2	62.3	• • • •
RATURE . R	Vals Waz		51.8 53.			6 6 6	65.4 63.7			72.2 69.		76.3 72.6						86.9 81.			91.5 85.5		•	Val 5 Va2		55,3 56,7				65.8 64.8		72.6 70.2				80.4 76.6		63.9 79.5			_	90.3	91.0 86.2	
DEVPOINT TEMPERATURE =	W#10			9.00					745											99.5	-	DEVPOSTIT TEMPERATURE	AIR TEMPERATURE	CTHA						67.7								91.1		95,3		•	1000.	D*701
DEVT	N=0 N=5				0°10 0'50	4 4 4	13.6 75.1	29.1 79.9		56.5 88.5				202.5 102.4							265.4 120.6	DEVIC	V	NaO Vas		6.5 46.3	35.3 53.7	8.5 60.4		7.1			156.5 90.0					212.6 106.6			240.5 124.5		•	121.
	>	.	•				•			-	_										*60.0 26!			ž	8	0.08				2000			240.0 154					340.0 212					257	

DEWPOINT TEMPERATURE = R = 20.0 AIR TEMPERATURE = T = 70.0	MEQ MES MES WELD WELS WEZS WESS WESS	35.3 40.5 42.7 43.9 44.6 45.2	35.3 43.8 45.4 46.2 46.5 46.8 47.0	120,0 58.5 51.4 50.0 49.4 49.1 48.9 48.7 48.6	70.8 58.3 54.3 52.5 51.5 50.9 50.4	97.1 64.6 58.3 55.5 53.9 52.8 52.1	113.6 70.3 62.1 58.3 56.1 54.7 53.7	129.1 75.5 65.6 61.0 58.3 56.5 55.3		156.5 84.7 72.1 66.0 62.4 60.0 54.3	9'80 /'TO 5'80 5'80 D'C/ 5'80 D'SOT	180.8 92.7 77.9 70.6 66.2 65.5 61.2	191.9 96.3 80.5 72.8 58.1 54.9 52.5	202.5 95.0 63.1 74.8 69.8 66.4 63.9	212.6 102.8 85.5 76.8 71.5 67.9 55.2	222.3 105.7 87.8 78.8 73.1 69.3 66.5	231.6 108.6 90.0 80.6 74.7 70.7 67.7	240,5 111,3 92,2 82,4 76,3 72,1 68.9	249.1 113.8 94.2 84.1 77.8 73.4 70.1	257.4 116.3 96.2 85.8 79.2 74.7 71.3	265.4 118.6 98.0 87.4 80.7 75.9 72.4	DEMPOSINT TEMPERATURE = R = 25.0	•	N=0 N=5 N=10 N=15 N=20 N=30 N=35		8.5 97.9 £3.5 £5.8 £7.0 £7.8 £8.9	0.00 a.ve v. es. 1.04 v. es. 1.04 v. es. 1.00 v. es. 1	7°7' 20'5 27'5 27'5 27'5 27'0 27'6 27'3 27'3 27'3 27'3 27'3 27'3 27'3 27'3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	113. a 11. a 04.2 00.1 36.1 3.13.	17.00 01.00 01.00 0.00 0.00 0.00 0.00 0.	415.0 CH	150.3 60.0 76.7 70.3 66.5 64.0 62.2	180.8 93.7 79.4 72.5 68.3 65.6 63.6	191.9 97.2 82.0 74.6 70.1 67.1 64.9	202.5 100.5 84.5 76.6 71.8 68.5 66.2	340 0 212 6 103.6 86.8 78.5 73.4 69.9 67.4 65.5	717.0 100.0 100.0 100.1 100.1 100.0	222.3 106.6 89.1 80.4 75.0 71.3 08.0	231.6 109.4 91.3 82.2 76.5 72.7 69.8	240,5 112,0 93,3 63,9 78,0 74,0 71,0	249.1 114.5 95.3 65.6 79.5 75.2 72.1
	30 W=35																							10 We35														83.8					
	W=30			7.7	72.	73.8	75.0	76.0	7.0	78.0	79.0	0.0	80.9	61.9	12.1	83.7	9.4	4			87.9			06.90	}	73.3	74.8	75.4	76.5	77.5	78.5	79.	•	81.3	82.3	? :		6 ·	82.8	90.0	87.5	28.3	1.60
- 60.0 100.0	W=25 W=30			3 71.5 71.7	0 72.9 72.8	5 74.2 73.8	1 75.4 75.0	6 76.6 76.0	0 77.9 77.0	4 79.0 78.0	8 80.2 79.0	1 61.3 60.0	4 82.4 80.9	7 83.5 61.9	9 84.5 82.0	1 05.5 83.7	3 86.5 84.6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			90.4 87.9	= 65.0	105.0	0 We25 We30	}	8 72.7 73.3	4 74.0 74.4	0 75.3 75.4	5 76.5 76.5	0 77.7 77.5	4 78.9 78.5	8 80.0 79.4	2 81.1 80.4	5 82.2 81.3	83,3 82,3	7.00		6. 10 m. 10	6 67.4 85.8	9.98 4.98 6	9 89.3 67.5	0 90.2 34.3	1 91.2 89.1
* •	W-20 W-25 W-30	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		71.3 71.5 71.7	73-0 72-9 72-8	78.5 78.2 73.8	76.1 75.4 75.0	77.6 76.6 76.0	79.0 77.9 77.0	80.4 79.0 78.0	61.8 60. 2 79.0	83.1 81.3 60.0	B4.1 82.1 80.9	85.7 83.5 61.9	6.9 BA.5 B2.8	AB.1 05.5 63.7	80.30 86.55 84.68	4 7 4 8 4 E			93.6 90.4 87.9	*	-	W=20 W=25 W=30		72.8 72.7 73.3	73.4 74.0 74.8	75.0 75.3 75.M	76.5 76.5 76.5	78.0 77.7 77.5	79.4 78.9 78.5	80.8 80.0 79.8	82.2 81.1 80.4	83.5 82.2 81.3		200 200	100 min 100 min		89.6 87.4 85.8	90.8 88.4 86.6	1 91.9 89.3 67.5	1 93.0 90.2 28.3	94.1 91.2 89.1
* •	W=15 W=20 W=25 W=30	4 44 4 4 4		71.0 71.3 71.5 71.7	73.1 73.0 72.9 72.8	75.2 74.5 74.2 73.9	77.1 76.1 75.4 75.0	79.0 77.6 76.6 76.0	80.8 79.0 TT.9 TT.0	82.6 80.4 79.0 78.0	84.3 61.8 80.2 79.0	66.0 83.1 81.3 60.0	87.6 M.t 82.t 80.9	89.1 85.7 83.5 61.9	90.6 .6.9 84.5 82.8	92.1 88.1 85.5 83.7	93.5 89.3 86.5 84.6				96.8 93.8 90.4 87.9	*	-	Wa15 We20 We25 We30		70.4 71.8 72.7 73.3	72.5 73.4 74.0 74.4	74.6 75.0 75.3 75.4	76.6 76.5 76.5 76.5	78.5 78.0 77.7 77.5	80.3 79.4 78.9 78.5	62.1 80.8 80.0 79.W	63.8 82.2 81.1 80.4	65.5 83.5 82.2 81.3	67.1 U. 83.3 82.3	200 - 100 1 04 1 00 1	1000 1000 1000 TOO	91.6 88.5 86.4 84.9	93.1 89.6 87.4 85.8	94.5 90.8 88.4 86.6	95.8 91.9 89.3 87.5	97.1 93.0 90.2 28.3	98.4 94.1 91.2 89.1
* •	W-20 W-25 W-30			76.4 71.0 71.3 71.5 71.7	73.4 73.1 73.0 72.9 72.8	76.3 75.2 74.5 74.2 73.8	79.0 77.1 76.1 75.4 75.0	01.6 79.0 77.6 76.6 76.0	PA.1 80.8 79.0 77.9 77.0	86.4 82.6 80.4 79.0 78.0	88.7 84.3 61.8 80.2 79.0	90.9 66.0 83.1 81.3 60.0	92.9 87.6 84.4 82.4 80.9	94.2 89.1 85.7 83.5 81.9	96.9 90.6 .6.9 BA.5 B2.8	98.7 92.1 98.1 85.5 83.7	100.5 93.5 89.3 86.5 84.6	102.2 QM.9 40.5 A7 5 A5 H	100 D D D D D D D D D D D D D D D D D D		107.1 96.8 93.6 90.4 87.9	*	-	W=20 W=25 W=30		70.4 71.8 72.7 73.3	70,8 72,5 73,4 74,0 74,4	73.8 74.6 75.0 75.3 75.4	76,7 76,6 76,5 76,5 76,5	78.4 78.5 78.0 77.7 77.5	82,0 80,3 79.4 78,9 78,5	84,4 62.1 80.8 80.0 79.8	86.0 63.0 82.2 81.1 80.4	85.5 83.5 82.2 81.3	91,2 67.1 64.6 83.3 82.3		T-00 0-00 0-/0 7-06 7-06	97.1 91.6 88.5 86.4 84.9	99,0 93,1 89,6 87,4 85,8	100,7 94,5 90,8 88,4 86,6	102.5 95.8 91.9 89.3 87.5	97.1 93.0 90.2 28.3	98.4 94.1 91.2 89.1
« •	W=15 W=20 W=25 W=30	4 44 4 4 4		76.4 71.0 71.3 71.5 71.7	73.4 73.1 73.0 72.9 72.8	76.3 75.2 74.5 74.2 73.8	79.0 77.1 76.1 75.4 75.0	01.6 79.0 77.6 76.6 76.0	PA.1 80.8 79.0 77.9 77.0	86.4 82.6 80.4 79.0 78.0	88.7 84.3 61.8 80.2 79.0	90.9 66.0 83.1 81.3 60.0	92.9 87.6 84.4 82.4 80.9	94.2 89.1 85.7 83.5 81.9	96.9 90.6 .6.9 BA.5 B2.8	98.7 92.1 88.1 85.5 83.7	100.5 93.5 89.3 86.5 84.6	102.2 QM.9 40.5 A7 5 A5 H	100 D D D D D D D D D D D D D D D D D D		96.8 93.8 90.4 87.9	رو • ۳	•	Wa15 We20 We25 We30		70.4 71.8 72.7 73.3	70,8 72,5 73,4 74,0 74,4	74.6 75.0 75.3 75.4	76,7 76,6 76,5 76,5 76,5	78.4 78.5 78.0 77.7 77.5	82,0 80,3 79.4 78,9 78,5	84,4 82.1 80.8 80.0 79.8	86.8 63.8 82.2 81.1 80.4	89,0 85.5 83.5 82.2 81.3	91,2 67.1 64.6 83.3 82.3	200 - 100 1 04 1 00 1	T-00 0-00 0-/0 7-06 7-06	97.1 91.6 88.5 86.4 84.9	93.1 89.6 87.4 85.8	100,7 94,5 90,8 88,4 86,6	102.5 95.8 91.9 89.3 87.5	104.1 97.1 93.0 90.2 28.3	105,7 98,4 94,1 91,2 89,1
* •	Wall Wels We20 We25 We30			76.4 71.0 71.3 71.5 71.7	74.1 73.4 73.1 73.0 72.9 72.8	76.3 75.2 74.5 74.2 73.8	83.5 79.0 77.1 76.1 75.4 75.0	87.7 81.6 79.0 77.6 76.6 76.0	91.5 84.1 80.8 79.0 77.9 77.0	95,2 86,4 82,6 80,4 79,0 78,0	98.6 88.7 84.3 61.8 80.2 79.0	101.8 90.9 66.0 83.1 61.3 60.0	104.8 92.9 87.6 04.4 82.4 80.9	107.7 94.0 89.1 85.7 83.5 61.9	110.4 96.9 90.6 .6.9 Bh.5 R2.8	98.7 92.1 98.1 85.5 83.7	115.4 100.5 93.5 89.3 86.5 84.6	117.8 102.9 QM.Q QD.K 87.8 BK B	100 D D D D D D D D D D D D D D D D D D		124.3 107.1 96.8 93.6 90.4 87.9	*	-	Well We15 We20 We25 We30		60.4 67,7 70.4 71.8 72,7 73,3	66.4 70.8 72.5 73.4 74.0 74.4	73.8 74.6 75.0 75.3 75.4	77.0 76,7 76,6 76,5 76,5 76,5	81.6 78.4 78.5 78.0 TT.7 7.5	85.9 82,0 80.3 79.4 78.9 78.5	84,4 62.1 80.8 80.0 79.8	93.6 86.8 63.8 82.2 81.1 60.4	97.1 69,0 85.5 83.5 82.2 81.3	100.4 91,2 87.1 84.8 83,3 82,3		The second of the second	109.2 97.1 91.6 88.5 86.4 84.9	111.9 99.0 93.1 89.6 67.4 85.8	114,4 100,7 94,5 90,8 88,4 86,6	116.8 102.5 95.8 91.9 89.3 87.5	119.1 104.1 97.1 93.0 90.2 28.3	171.3 105.7 98.4 94.1 91.2 89.1

DEMPOINT TEMPERATURE = R = 40.0 AIR TEMPERATURE = T = 90.0	Mac Wall Mals Wall Wall Wall Wall	55.3 56.6 57.5 58.1	35.9 53.6 56.8 58.1 58.8 59.2	58.5 60.3 60.6 60.8 60.9 60.9 60.9	78.8 66.4 64.2 63.3 62.8 62.5 62.3	97.1 71.9 67.6 65.8 64.8 64.1 63.6	113.8 77.0 70.8 68.1 66.6 69.6 69.0	129.1 81.6 73.9 70.4 68.4 67.1 36.2	6*/0 0*80 1*0/ 6*7/ 1*0/ 0*60 9*9FT	260.0 169.0 93.7 162.0 76.6 73.4 71.4 69.9 56.6	180.8 97.2 84.5 78.5 75.0 72.7 71.0	191.9 100.5 86.8 80.4 76.6 74.0 72.2	202.5 103.6 89.1 82.2 78.0 75.3 73.3	212.6 106.5 91.2 83.9 79.5 76.5 74.4	222.3 109.3 93.3 65.6 80.9 77.7 75.4	231.6 112.0 95.3 87.2 82.2 78.9 76.5	240.5 114.5 97.2 88.7 83.6 80.1 77.5	99.1 90.3 84.9 61.2 76.5	257.4 119.2 100.8 91.7 86.1 82.3 79.5	265.4 121.4 102.6 93.2 87.4 63.4 80.5		AIR TEMPERATURE = T = 95.0	Web Wes West West West West West West	8.5 49.3 56.0 58.6 60.0 60.9 61.4	35,3 56.4 59.9 61.3 62.0 62.5 62.8	58.5 62.8 63.5 63.8 64.0 64.1 64.1		180.0 113.8 78.8 70.8 55.4 68.5 67.9 67.5	129.1 63.4 76.1 72.9 71.1 69.9 69.1	148,3 87,6 78,9 75,0 72,8 71,3 70,3	150.0 41.0 41.0 70.9 74.3 72.7 71.5	180.6 98.5 (%) 80.7 77.4 75.2 (%)	191.9 101.7 88.6 82.5 78.9 76.5 4.8	304.8 90.8 84.2 80.3 77.7 75.8	212.6 107.6 92.9 85.8 81.7 78.9 76.9	222.3 110.4 94.9 67.4 63.0 60.0 77.9	231.6 112.9 96.8 %0 84.3 81.1 78.9	240.5 115.4 98.7 90.5 85.6 82.2 79.8	249.1 117.8 100.4 92.0 86.8 83.5 80.6	73/4 120.1 102.2 93.4 86.0 86.4 81.7 26.4 422.3 46.8 94.8 96.3 95.4 92.5	0.50 0.00 5.00 0.00 0.00 5.00 5.00 5.00
DEMPOINT TEMPERATURE = R = 30.0 AIR TEMPERATURE = T = 30.0	N=0 W=5 N=10 W=15 W=20 W=35 W=35	MA. 9 50.2 51.0 51.5	35.3 44.5 51.0 52.0 52.6 52.9 53.1	58.5 55.7 55.2 55.0 54.9 54.8 54.7	78.8 62.2 59.1 57.8 57.1 56.6 56.3	97.1 68.1 62.8 60.5 59.2 58.4 57.8	113.8 73.5 66.3 63.1 61.3 60.1 59.2	129.1 78.5 69.6 65.6 63.2 61.7 60.7	0.70 0.00 7.00 W. O.	240,0 156,0 67.2 78.4 72.4 68.8 66.4 64.7 63.4	180.8 94.8 81.0 74.4 70.5 67.9 66.0	191.9 98.3 83.6 76.4 72.2 69.3 67.3	202.5 101.5 86.0 78.4 73.8 70.7 68.5	212.6 104.5 88.2 80.2 75.4 72.1 69.7	222.3 107.4 90.4 82.0 76.9 73.4 70.8	231.6 110.2 92.5 83.8 78.4 74.7 72.0	240.5 112.8 94.6 85.4 79.8 75.9 73.1	249.1 115.3 96.5 67.1 61.2 77.2 74.2	257. # 117.6 98.4 66.6 62.6 78.4 75.3	265.4 119.9 100.2 90.2 83.9 79.5 76.3	•	DEMPONDI ILRELANICAL F R # 55.0 AIR TEMPERATURE # T # #5.0	N=0 N=5 N=10 N=15 N=20 N=25 N=30 N=35	8.5 ±3,4 ±9,6 52.0 53,4 54,2 54,8	35,3 51.0 53,9 55.0 55.6 56.0 56.3	58.5 58.0 57.9 57.8 57.8 57.8 57.8	78.8 64.2 61.7 60.5 59.9 56.5 59.4	160.0 97.1 70.0 65.2 63.1 61.4 61.4 60.1 60.4	129.1 80.0 71.7 67.9 65.8 64.4 63.4	143,3 64,4 74,7 70,2 67,6 65,9 64,7	156.5 68.6 77.5 72.4 69.4 67.4 66.0	180.8 96.0 82.7 76.4 72.7 70.3 68.5	191.9 99.4 85.2 78.4 74.3 71.6 69.7	202.5 102.5 67.5 80.2 75.9 73.0 70.9	212.6 105.5 89.7 82.0 77.% 7%.3 72.0	222.3 108.4 91.8 63.8 78.6 75.5 73.1	231,6 111.0 93.9 85.4 80.3 75.8 74.2	240.5 113.6 95.9 87.1 81.7 78.0 75.3	249.1 116.1 97.8 38.6 83.0 79.1 70.3	• •	265.4 170.6 101.3 Wire 65.0 61.4 /6.4

R = 50.0	100.0
•	-
DEWPOINT TEMPERATURE	AIR TEMPERATURE =

H=35	65.3	99	67.5	68.5	9.69	70.6	71.6	72.5	73.5	74.4	75.3	76.2	77.1	78.0	78.9	79.7	80.5	81.3	82.1	82.9
30 F	6.49	66.2	67.4	68.6	69.8	71.0	72.1	73.2	74.3	75.4	76.4	77.4	78.4	79.4	9 0.	81.3	82.2	83.1	0.49	6.78
N=25	64.3	65.8	67.3	68.7	70.1	71.5	72.8	74.1	75.4	76.6	77.8	79.0	 8	61.3	8 2.4	83.5	s: ₹	85.5	9.9	87.5
0Z=A	63.4	65.3	67.3	6.19	30.6	72.3	73.9	75.5	77.0	78.4	79.9	11.3	82.6	63.8	65.2	8 6.5	17.7	88.9	0.0	91.2
K=15	62.0	64.5	6.99	69.3	71.4	73.5	75.5	77.5	79.4	11.2	83.0	9.48	86.3	87.9	4.68	6.06	92.4	93.8	95.1	5.98
2	59.3	63.0	66.5	69.7	72.8	75.7	78.5	81.1	83.6	96.0	88.3	90.5	95.6	94.6	96.5	96.4	100.2	101.9	103.6	105.2
S	52.4	59.3	65.4	71.0	76.1	•. 00	65.3	19.5	93.0	96.6	6.66	103.0	106.0	108.8	111.5	114.0	116.4	118.7	121.0	123.1
0 3	9.5	35.3	50.5	78.8	97.1	113.8	129.1	143.3	156.5	169.0	180.8	191.9	202.5	212.6	222.3	231.6	240.5	249.1	257.4	265.1
<u>.</u>	96	0.001	0.021	0.0	0.091	180.0	200.00	220.0	2.00	260.0	290.0	0.000	320.0	0.0	960.0	0.08	0.00	120.0	0.0	0.09

DEMPOINT TEMPERATURE * R * 55.0 AIR TEMPERATURE * T * 105.0

		AIR		TEMPERATURE .	T = 105.0	0.0		
	3	N.S	W=10	W=15	W=20	W#25	N=30	W=35
•								
90.0	8.5	55.7	62.8	65.5	67.0	67.8	6.8.4	9.89
100.0	35.3	62.2	66.3	67.9	68.7	69.3	69.6	6.69
120.0	58.5	68.1	69.5	70.1	4.02	9.02	70.6	6.02
140.0	78.8	73.4	72.6	72.3	72.1	72.0	71.9	71.9
160.0	97.1	78.4	75.5	74.4	73.7	73.3	73.0	72.8
180.0	113.8	82.9	78.3	76.4	75.3	74.6	74.1	73.8
200.0	129.1	87.1	6.0	78.3	16.8	75.8	75.2	74.7
220.0	143.3	91.0	4.69	100	78.3	17.1	76.2	75.6
240.0	156.5	94.7	82.8	81.9	۲.	78.3	77.2	76.5
260.0	169.0	98.1	88.1	83.6	81.1	79.4	78.2	77.4
280.0	180.0	101.4	90.3	85.3	82.4	9.08	79.2	78.2
300.0	191.9	104.4	92.4	86.9	83.8	81.7	8	79.1
320.0	202.5	107.3	4.46	80.5	65.0	85.8	81.1	79.9
340.0	212.6	110.0	¥.96	90.0	86.3	83.8	82.1	80.7
360.0	222.3	112.6	98.2	91.5	87.5	84.9	83.0	81.6
380.0	231.6	115.1	100.0	92.9	88.7	85.9	83.9	82.4
0.00	240.5	117.5	101.8	94.3	8.	6.98	84.7	83.1
\$20°0	249.1	119.8	103.5	95.7	91.0	87.9	85.6	83.9
0.04	257.4	122.0	105.1	97.0	92.1	88.8	86.5	i
100.0	265.4	124.1	106.7	98.3	93.2	88	87.3	85.4

Appendix A

TEMPERATURE DEPENDENCE OF RELATIVE ISOBARIC SLOPES

To include relative isobaric slopes in the vertically averaged momentum equations, replace the terms $\frac{2\partial \xi}{\partial x}$, and $\frac{g\partial \xi}{\partial y}$ by the expanded terms $g(\partial \xi/\partial x + \langle i_{x,p,\xi} \rangle_h)$ and $g(\partial \xi/\partial y + \langle i_{y,p,\xi} \rangle_h)$ respectively. Pritchard gives the following expression for the vertically averaged isobaric slope: (19)

$$\langle i_{x,p,\xi} \rangle_h = 1/2 H \frac{1}{\rho} \frac{\partial \rho}{\partial x} = \frac{H}{2\rho} \frac{\partial \rho}{\partial s} \frac{\partial s}{\partial x}$$
 (A1)

where ρ = vertically averaged density, and s = vertically averaged salinity. In terms of the specific volume defined by α = 1/ ρ , this becomes

$$i_h = (H/2) (\partial s/\partial x) (-\frac{1}{\alpha} \frac{\partial \alpha}{\partial s})$$
 (A2)

The quantity $(-\frac{1}{\alpha}\frac{\partial\alpha}{\partial s})$ is the coefficient of saline contraction and may be obtained according to Eckart from the Tumlirz equation of state given by (20)

$$(p + p_0) (\alpha - \alpha_0) = \lambda$$
 (A3)

where T is in °C and

$$\lambda = 1779.5 + 11.25T - .0745T^2 - (3.80 + .01T)s$$
, $\alpha_{o} = .6980$, $P_{o} = 5890 + 38T - .375 T^2 + 3s$, $P = total pressure (in atmospheres)$,

 α = specific volume in ml/gm .

For H < 100 m we can ignore p compared to p_0 . For example, at 10 meters depth, p/p_0 is less than 10^{-3} . Since the empirical formula is accurate only to about 1%, our approximation is well justified. Evaluation of the saline contraction is now straightforward and the result is:

$$i_{x,h} = \frac{3.8 + .01T + 3 (\lambda/p_0)}{\lambda + \alpha_0 p_0} (H/2) (\partial s/\partial x) .$$
 (A4)

A similar result applies for x replaced by y.

If data is given in terms of chlorinity, one must use the following equation relating salinity and chlorinity (both in parts per thousand): (17)

$$s = .03 + 1.8050 \text{ C1}$$
 (A5)

Chlorinity is defined as the chlorine equivalent in parts per thousand of all precipitated halides. Equation (A5) does not apply to estuaries whose constituents are altered by significant fresh water flow.

Let s' and Cl' denote the salinity and chlorinity, respectively, espressed in g/liter sea water. Then

and

$$s' = .03p + 1.805 \text{ C1'}$$

$$= \frac{.03}{\alpha_0 + \lambda/p_0} + 1.805 \text{ C1'}$$
(A7)

In terms of s', $i_{x,h}$ becomes

$$i_{x,h} = (H/2) (\partial s'/\partial x) (-\frac{1}{\alpha} \frac{\partial \alpha}{\partial s'})$$
 (A8)

We also obtain

$$-\frac{1}{\alpha}\frac{\partial \alpha}{\partial s}, = \frac{-1}{\alpha(\partial s^{\dagger}/\partial \alpha)} = \frac{-1}{\frac{\partial s}{\partial \alpha} - \frac{s}{\alpha}} = \frac{1}{\frac{\gamma_s}{\partial \alpha} + s^{\dagger}}$$
(A9)

and

$$\partial s'/\partial x = .03(\partial_0/\partial x) + 1.805(\partial C1'/\partial x)$$
. (Al0a)

In (AlOa) the first term on the right hand side is roughly 10^5 times smaller than the second term, so we can write approximately

$$\partial s'/\partial x = 1.805(\partial C1'/\partial x)$$
 (A10b)

In terms of chlorinity, the isobaric slope is given by

$$i_{x,h} = 1.805(H/2) \left\{ (\partial C1'/\partial x) / \left[1.805 C1' + \frac{.03}{\frac{\lambda}{p_o} + \alpha_o} + \frac{p_o}{3.8 + .01T + \frac{3\lambda}{p_o}} \right] \right\}$$
(A11)

where s appearing in the definitions of λ and \boldsymbol{p}_O is given by

$$s = .03 + 1.805 \frac{C1'}{1.02} = .03 + 1.770 C1'$$
 (A12)

In (A12) we have used the value $\rho=1.02$, which is correct within 1% for the range of temperature and salinity under consideration. Errors of order 1% in s will produce errors of order only .001% in λ and r_c . Similar arguments lead us to drop the term $.03(\alpha_o + \lambda/p_o)^{-1}$ in (A11).

Temperature gradients will also contribute to the relative isobaric slope. For example, (Al) is modified according to

$$i_{x,h} = (H/2) \left(\frac{1\partial \rho}{\rho \partial s} \frac{\partial s}{\partial x} + \frac{1\partial \rho}{\rho \partial T} \frac{\partial T}{\partial x} \right).$$
 (A13)

The coefficient of thermal expansion is not given as accurately by our equation of state as is the saline contraction. However, this is compensated by the smaller magnitude of the former effect.

From (A3) we find

$$\frac{1}{\rho} \frac{\partial \rho}{\partial T} = -\frac{1}{\alpha} \frac{\partial \alpha}{\partial T} = -\frac{1}{\alpha} \left[\frac{\partial}{\partial T} (\lambda/P_0) \right]$$

$$= \frac{(\lambda/P_0) (\partial P_0/\partial T) - (\partial \lambda/\partial T)}{\lambda + \alpha_0 P_0}$$

$$= \frac{(\lambda/P_0) (38 - .750T) - (11.25 - .149T - .018 C1')}{\lambda + \alpha_0 P_0}$$

Finally, the relative isobaric slope as a function of chlorinity (in g/liter), temperature (°C), the corresponding gradients, and depth is given by

$$i_{x,h} = (H/2) \left[\frac{1}{\rho} \frac{\partial \rho}{\partial C1'} \frac{\partial C1'}{\partial x} + \frac{1}{\rho} \frac{\partial \rho}{\partial T} \frac{\partial T}{\partial x} \right]$$

$$= 1.805(H/2) \frac{\partial C1'/\partial x}{\partial x^2 + \frac{1}{\rho} \frac{\partial \rho}{\partial T} \frac{\partial T}{\partial x}}$$

$$= 1.805(H/2) \frac{\partial C1'/\partial x}{\partial x^2 + \frac{1}{\rho} \frac{\partial \rho}{\partial x}}$$

$$+ (H/2) (\partial T/\partial x) \cdot \frac{(\lambda/\rho_0)(38 - .750T) - (11.25 - .149T - .918 C1')}{\lambda + \alpha_0 \rho_0}$$

where λ , p_0 , and α_0 are defined in (A3) and the value of s used to evaluate λ and p_0 is given by (A12)

Equation (A16) may be used for machine computation when large salinity or temperature gradients make it desirable to employ local values of the saline contraction or thermal expansion coefficient. In most cases it will be better to use averaged values for the coefficients over the entire field. Typical numerical results for thermal and chlorinity coefficients are 2×10^{-4} and 1.3×10^{-3} respectively.

Table A

Table of Z(T,C) where Z is the coefficient of chlorinity contraction as a function of centigrade temperature and chlorinity in grams per liter.

		T=10	T=15	T=20	T=25	T=30
Chlorinity	in $g/1$					
10.000		1.350-03	1.335-03	1.324-03	1.317-03	1.315-03
10.250		1.349-03	1.334-03	1.323-03	1.317-03	1.314-03
10.500		1.348-03	1.333-03	1.322-03	1.316-03	1.313-03
10.750		1.347-03	1.332-03	1.321-03	1.315-03	1.312-03
11.000		1.346-03	1.331-03	1.320-03	1.314-03	1.311-03
11.250		1.345-03	1.330-03	1.319-03	1.313-03	1.310-03
11.500		1.344-03	1.329-03	1.318-03	1.312-03	1.309-03
11.750		1.343-03	1.328-03	1.317-03	1.311-03	1.308-03
12.000		1.342-03	1.327-03	1.316-03	1.310-03	1.307-03
12.250		1.341-03	1.326-03	1.315-03	1.309-03	1.306-03
12.500		1.340-03	1.325-03	1.314-03	1.308-03	1.305-03
12.750		1.339-03	1.324-03	1.313-03	1.307-03	1.305-03
13.000		1.338-03	1.323-03	1.313-03	1.306-03	1.304-03
13.250		1.337-03	1.322-03	1.312-03	1.305-03	1.303-03
13.500		1.336-03	1.321-03	1.311-03	1.304-03	1.302-03
13.750		1.335-03	1.320-03	1.310-03	1.303-03	1.301-03
14.000		1.334-03	1.319-03	1.309-03	1.302-03	1.300-03
14.250		1.333-03	1.318-03	1.308-03	1.301-03	1.299-03
14.500		1.332-03	1.317-03	1.307-03	1.301-03	1,298-03
14.750		1.331-03	1.316-03	1.306-03	1.300-03	1.297-03
15.000		1.330-03	1.315-03	1.305-03	1.299-03	1,296-03
15.250		1.329-03	1.314-03	1.304-03	1.298-03	1.295-03
15.500		1.328-03	1.313-03	1.303-03	1.297-03	1.294-03
15.750		1.327-03	1.312-03	1.302-03	1.296-03	1.294-03
16.000		1.326-03	1.312-03	1.301-03	1.295-03	1.293-03
16.250		1.325-03	1.311-03	1.300-03	1.294-03	1.292-03
16.500		1.324-03	1.310-03	1.299-03	1.293-03	1.291-03
16.750		1.323-03	1.309-03	1.298-03	1.292-03	1.290-03
17.000		1.322-03	1.308-03	1.297-03	1.291-03	1.289-03
17.250		1.321-03	1.307-03	1.297-03	1.290-03	1.288-03
17.500		1.320-03	1.306-03	1.296-03	1.289-03	1.287-03
17.750		1.319-03	1.305-03	1.295-03	1.289-03	1.286-03
18.000		1.318-03	1.304-03	1.294-03	1.288-03	1.285-03
18.250		1.317-03	1.303-03	1.293-03	1.287-03	1.284-03
18.500		1.316-03	1.302-03	1.292-03	1.286-03	1.284-03
18.750		1.315-03	1.301-03	1.291-03	1.285-03	1.283-03
19.000		1.315-03	1.300-03	1.290-03	1.284-03	1.282-03
19.250		1.314-03	1.299-03	1.289-03	1.283-03	1.281-03
19.500		1.313-03	1.298-03	1.288-03	1.282-03	1.280-03
19.750		1.312-03	1.297-03	1.287-03	1.281-03	1.279-03
20.000		1.311-03	1.296-03	1.286-03	1.280-03	1,278-03

Appendix B

MODIFIED DEWPOINT TEMPERATURE

Rather than regard T_{eq} as a function of Q = absorbed radiation, W, T_a and T_d we can take advantage of the following procedure which considerably simplifies interpolation in the tables. The air temperature and dewpoint temperature enter the equation for T_{eq} only in the term $(e_{eq} - e_a + BT_{eq} - BT_a)$ where, as before, $e_a = e(T_d)$. Let us define a "modified dewpoint temperature," (21) J, according to

$$e_{eq} - e_a + B(T_{eq} - T_a) = e_{eq} - e(J) + B(T_{eq} - J)$$
 (B1)

or,

$$e(J) = BJ = e_a + BT_a$$
 (B2)

The modified dewpoint J may be found by Newton's method and tabulated as a function of T_a and T_d . The equilibrium temperature may then be found as a function of J, W and Q. In particular,

$$T_{eq} (T_a, T_d, W, Q) = T_{eq} (J, J, W, Q)$$
 (B3)

so that we need only the first section (where V = 0 and T = R) of Table 3.

J is tabulated in Table B as a function of T_a and $V = T_a - T_d$.

Table B

Table of modified dewpoint temperature J(T,R) as a function of air temperature T and V= [air temperature - dewpoint temperature], all in degrees Fahrenheit.

Τ=	V=0	V= 5	V=10	V=15	V=20	V=25	V=30	V=40	V=50	V=60
0.	.0	8	-1.4	-1.9	-2.3	-2.6	-2.8	-3.2	-3.4	-3.5
5.	5.1	4.2	3.4	2.8	2.3	1.9	1.6	1.2	-3.4	
10.	10.1	9.0	8.1	7.4	6.8	6.3	5.9	5.4		8.
15.	15.1	13.9	12.8	11.9	11.2	10.7	10.2	9.5	5.1	4.9
20.	20.1	18.7	17.5	16.5	15.6	14.9	14.4	13.6	9.1	8.9
25.	25.1	23.5	22.1	20.9	20.0	19.2	18.5		13.1	12.8
30.	30.2	28.3	26.7	25.4	24.2	23.3	22,6	17.5	16.9	16.6
35.	35.2	33.1	31.3	29.8	28.5	27.4	26.5	21.4	20.7	20.2
40.	40.2	37.9	35.9	34.2	32.7	31.5		25.2	24.3	23.8
45.	45.2	42.7	40.5	38.6	37.0	35.6	30.5	28.9	27.9	27.2
50.	50.0	47.5	45.1	43.0	41.2		34.4	32.6	31.4	30.6
55.	55.0	52.3	49.7	47.4		39.6	38.3	36.2	34.8	33.8
60.	60.0	56.9	54.3	51.8	45.4	43.6	42.1	39.8	38.1	37.0
55.	65.0	61.7	58.8		49.6	47.7	46.0	43.3	41.4	40.1
70.	70.0	66.6	63.4	56.3	53.9	51.7	49.9	46.9	44.7	43.2
75.	75.0	71.4		60.6	58.1	55.8	53.8	50.4	48.0	46.2
80.	80.0	76.3	68.1	65.0	62.3	59.9	57.7	54.0	51.3	49.3
85.	85.0		72.8	69.6	66.6	63.9	61.7	57.6	54.5	52.3
90.	90.0	81.1	77.5	74.1	71.0	68.1	65.5	61.3	57.9	55.3
95.		86.0	82.3	78.7	75.4	72.4	69.6	65.0	61.2	58.3
	95.0	90.9	87.0	83.4	79.9	76.7	73.7	68.8	64.6	61.4
100.	100.0	95.8	91.8	88.0	84.4	81.1	77.9	72.4	68.1	64.5
105.	105.0	100.7	96.6	92.7	89.0	85.5	82.2	76.3	71.6	67.7
110.	110.0	105.7	101.5	97.4	93.6	89.9	86.5	80.3	75.1	71.0

REFERENCES

- Leendertse, J. J., "Aspects of a Computational Model for Long-Period Water-Wave Propagation," The Rand Corporation, RM-5294-PR, 1967.
- 2. Leendertse, J. J., "A Water-Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas: Volume I, Principles of Computation," The Rand Corporation, RM-6230-RC, 1970.
- 3. Leendertse, J. J., and E. C. Gritton, "A Water-Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas: Volume II, Computational Procedures," The Rand Corporation, R-708-NYC, 1971.
- 4. Edinger, J. E., J. C. Geyer, and D. W. Duttweiler, "The Response of Water Temperatures to Meteorological Conditions," Water Resources Research, 4, No. 5 (1968).
- 5. Edinger, J. E., and G. E. Harbeck, Jr., "The Cooling of Riverside Thermal-Power Plants, Discussion," <u>Engineering Aspects of Thermal Pollution</u>, Vanderbilt University Press, 1969.
- 6. Edinger, J. E., "Estuarine Temperature Distributions," <u>Estuarine Modeling: An Assessment</u>, Water Quality Office Environmental Protection Agency, 1971.
- 7. Edinger, J. E., and J. C. Geyer, "Analyzing Steam Electric Power Plant Discharges," Proc. ASCE, 94, SA4 (1968).
- 8. Callaway, J. R., K. V. Byram and G. R. Ditsworth, "Mathematical Model of the Columbia River from the Pacific Ocean to Bonneville Dam," U.S. Dept. of Interior, FWPCA, Pacific Northwest Water Lab., 1969.
- 9. Forsythe, W. E., <u>Smithsonian Physical Tables</u>, Smithsonian Institute, Washington, D. C., 1954.
- The Nautical Almanac, U.S. Government Printing Office, Washington, D. C., 1969.
- 11. Raphael, J. M., "Prediction of Temperature in Rivers and Reservoirs," Proc. ASCE, 88, PO4 (1962).
- 12. Anderson, E. R., et. al., <u>Water-Loss Investigations: Lake Hefner Studies, Technical Report</u>, <u>USGS Professional Paper 269</u>, U.S. Government Printing Office, Washington, D. C., 1954.

- 13. Harbeck, G. E., "Field Technique for Measuring Reservoir Evaporation, Mass Transfer Theory," USGS Professional Paper 272-E, U.S. Government Printing Office, Washington, D. C., 1962.
- 14. Parker, F. L., and P. A. Krenkel, "Thermal Pollution: Status of the Art," Report No. 3, Department of Environmental and Water Resources Engineering, Vanderbilt University, 1969.
- 15. Sutton, O. G., "The Application to Micrometeorology of the Theory of Turbulent Flow over Rough Surfaces," Royal Meteorological Society Quarterly Journal, 75, No. 326 (1949).
- 16. Sverdrup, H. U., "Evaporation from the Oceans," Compendium of Meteorology.
- 17. Neumann, G., and W. Pierson, Jr., <u>Principles of Physical Oceanography</u>, Prentice-Hall, 1966.
- 18. Jacobs, W. C., "Large Scale Aspects of Energy Transformations over the Ocean," <u>Compendium of Meteorology</u>, American Meteorological Society, 1951.
- 19. Pritchard, D. W., "Two-dimensional Models," <u>Estuarine Modeling:</u>
 An Assessment, Water Quality Office Environmental Protection Agency, 1971.
- 20. Fofonoff, N. P., "Physical Properties of Sea Water," <u>The Sea</u>, Vol. I, ed. M. N. Hill, Interscience, 1962.
- 21. Brady, D. K., W. L. Graves, and J. C. Geyer, "Surface Heat Exchange at Power Plant Cooling Lakes," Edison Electric Institute, 1969.