Graphics Programming Course Notes

Felipe Balbi

April 22, 2020

Contents

Week 1	
Welcome to graphics programming	
Getting started on the module	
Using transformations	
Object Oriented Programming in Javascript (OOP)	
Week 2	
Using vectors	
Vector addition and subtraction	
Vector scaling	
Calculating magnitude and normalising	
Acceleration 101	

Week 1

Key Concepts

- explain how transformations work
- describe how classes work
- use transformations to program a basic solar system

Welcome to graphics programming

We will use p5. js and the brackets.io editor.

Getting started on the module

Download the emptyExample.zip file from the link provided.

Basically, it's a follow-along coding session. A good remark is to refer to the documentation whenever we have doubts.

Using transformations

A p5.js sketch is made out of a canvas whose pixels can be addressed much like on a graph paper.

We can use scale(), translate(), and rotate() to apply transformations to the canvas. The functions push() and pop() let us create a *sandbox* of where transformations and styles will be applied.

Object Oriented Programming in Javascript (OOP)

Using the class keyword, we can define classes in JavaScript.

Week 2

Key Concepts

- describe how vectors work
- apply vector arithmetic
- implement simple systems that use vectors

Using vectors

Vectors have a direction and a magnitude. The p5.js library has a vector class for us to use.

Instead of calculating and updating each component of position, velocity, acceleration, friction, we can use vectors to raise the level of abstraction.

We can create a new vector with createVector() function.

Vector addition and subtraction

To add two vectors, we use the add() function which is part of the vector. Similarly for subtraction, we use the sub() function.

For example:

```
function draw() {
vec = createVector(width / 2, height / 2);
vec2 = p5.Vector.random2D();

vec.add(vec2);
v2.sub(vec);
}
```

Vector scaling

To scale a vector, we can multiply or divide the vector by a scaler. We can achieve this with mult() and div() functions.

Calculating magnitude and normalising

We can get the magnitude with mag(). We can normalize a vector with normalize().

Acceleration 101

Acceleration is the rate of change of velocity of an object over time. Velocity is the rate of change of the location of an object over time.

When we want to update location based on velocity in p5.j5 we use:

location.add(velocity)

Similarly, when we want to update velocity based on acceleration, we use:

velocity.add(acceleration)