

Relations Ex 1.1 Q2

We have, $A = \{a, b, c\}$

 $R_{1} = \{(a,a)(a,b)(a,c)(b,b)(b,c)(c,a)(c,b)(c,c)\}$

 R_1 is reflexive as $(a,a) \in R_1$, $(b,b) \in R_1 \otimes (c,c) \in R_1$

 R_1 is not symmetric as $(a,b) \in R_1$ but $(b,a) \in R_1$

 R_1 is not transitive as $(b,c) \in R_1$ and $(c,a) \in R_1$ but $(b,a) \notin R_1$

 $R_2 = \{(a,a)\}$

 R_2 is not reflexive as $(b,b) \notin R_2$

 $\it R_{\rm 2}$ is symmetric and transitive.

 $R_3 = \{(b,c)\}$

 R_3 is not reflexive as $(b,b) \notin R_3$

 R_3 is not symmetric

 R_3 is not transitive.

 $R_4 = \{(a,b)(b,c)(c,a)\}$

 R_4 is not reflexive on set A as $(a, a) \notin R_4$

 R_4 is not symmetric as $(a,b) \in R_4$ but $(b,a) \notin R_4$

 R_4 is not transitive as $(a,b) \in R_4$ and $(b,c) \in R_4$ but $(a,c) \notin R_4$

Relations Ex 1.1 Q3

$$\mathcal{R}_1 = \left\{ \left(x,y\right), x,y \in Q_0, x = \frac{1}{y} \right\}$$

Reflexivity: Let, $x \in Q_0$

$$\Rightarrow \qquad \varkappa \neq \frac{1}{\varkappa}$$

$$\Rightarrow \qquad \left(X,X\right) \in \mathcal{R}_{1}$$

 \therefore R_1 is not reflexive

Symmetric: Let, $(x,y) \in R_1$

$$\Rightarrow x = \frac{1}{y}$$

$$\Rightarrow$$
 $y = \frac{1}{x}$

$$\Rightarrow \qquad \big(y,x\big)\in R_1$$

Transitive: Let, $(x,y) \in R_1$ and $(y,z) \in R_1$

$$\Rightarrow$$
 $x = \frac{1}{y}$ and $y = \frac{1}{z}$

$$\Rightarrow x = z$$

$$\Rightarrow \qquad \left(X,Z\right) \notin R_{1}$$

 \therefore R_1 is not trasitive

Relations Ex 1.1 Q3(ii)

Reflexivity: Let, a ∈ z

$$\Rightarrow |a-a|=0 \le 5$$

$$\therefore \qquad (a,a) \in R_2 \Rightarrow R_2 \text{ is reflexive}$$

Symmetricity: Let, $(a,b) \in R_2$

$$\Rightarrow$$
 $|b,a| \in R_2 \Rightarrow R_2 \text{ is symmetric}$

Transitivity: Let, $(a,b) \in R_2$ and $(b,c) \in R_2$

$$\Rightarrow$$
 $|a-b| \le 5$ and $|b-c| \le 5$

$$\Rightarrow$$
 R_2 is not transitive

$$\begin{bmatrix} \therefore & \text{if } a = 15, b = 11, c = 7 \\ \Rightarrow & |15 - 11| \le 5 \text{ and } |11 - 7| \le 5 \end{bmatrix}$$
but $|15 - 7| \ge 5$

Relations Ex 1.1 Q4

(i) We have,
$$A = \{1, 2, 3\}$$
 and

$$R_1 = \{(1,1)(1,3)(3,1)(2,2)(2,1)(3,3)\}$$

$$(1,1),(2,2) \text{ and } (3,3) \in R_1$$

$$\therefore$$
 R_1 is not Reflexive

Now,

∴
$$(2,1) \in R_1$$
 but $(1,2) \notin R_1$

Again,

:
$$(2,1) \in R_1$$
 and $(1,3) \in R_1$ but $(2,3) \notin R_1$

(ii)
$$R_2 = \{(2, 2), (3, 1), (1, 3)\}$$

$$\therefore \qquad (1,1) \notin R_2$$

⇒ R2is not reflexive

Now,
$$(1,3) \in R_2$$

 $\Rightarrow (3,1) \in R_2$

 \Rightarrow R₂ is symmetric

Again,
$$(3,1) \in R_2$$
 and $(1,3) \in R_2$ but $(3,3) \notin R_1$

 \therefore R_2 is not transitive

(iii)
$$R_3 = \{(1,3)(3,3)\}$$

$$\therefore \qquad (1,1) \notin R_3$$

⇒ R3is not reflexive

Now,
$$(1,3) \in R_3$$
 but $(3,1) \in R_3$
 $\Rightarrow R_3$ is not symmetric

Again, It is clear that R3 is transitive

******** END *******