Example: From node A to D

From above diagram

- We defined no. of nodes as 5
- We defined cost matrix as follows:

	а	b	С	d	е
а	0	3	99	99	6
b	3	0	1	99	2
С	99	1	0	2	99
d	99	99	2	0	4
е	6	2	99	4	0

• We defined matrix for interface as follows:

	а	b	С	d	е
а	99	1	99	99	0
b	0	99	1	99	2
С	99	0	99	1	99
d	99	99	0	99	1
е	0	1	99	2	99

Put input (source): a

It shows shortest path from a to all nodes

$$a - a = 0$$

$$a - b = 3$$

$$a - b - c = 4$$

$$a-b-c-d=6$$

$$a - b - e = 5$$

• Put input (destination): d

It shows routing table for path a -> d

Source	Interface	Next Hope	Cost
А	1	В	3
В	1	С	4
С	1	D	6

- Explanation for routing and forwarding table:
 - o First starting node is a, so it will check neighbors of node a.
 - Neighbors of node a are b and e but cost of a-b is less than cost of a-e so next node will be b and interface for path a-b is 1
 - Now neighbors of node b are a, c, and e. Cost from b-c is less than other path so next node will be c and interface for path b-c is 1
 - Again it will check the path from node c, shortest path from node c is c-d and interface for path c-d is 1. At the end node d is destination.
- Final path is a 1 b 1 c 1 d and total cost is 6