Redes de Computadores

Introdução

Aula 01

A regra é clara...

- □ Avaliação proporcional a carga teórica e prática
 - Duas provas teóricas (P1 e P2)
 - Média do Laboratório (relatórios + verificações individuais de aproveitamento)

$$M\acute{e}dia_Final = \frac{\left(P_1 + P_2 + M_{lab}\right)}{3}$$

- □ Critério de aprovação
 - Média igual ou superior a SEIS na parte teórica AND média igual ou superior a SEIS na parte prática

- Atenção para o AND lógico!!! Não há "saldo de gol" de uma parte da disciplina a outra.
- 75% de presença

Apresentação

□ INF01154 – Redes de Computadores – Turmas A/B

■ Plano de ensino conforme resolução CEPE 11/2013 (90 horas, 6 CRE)

Prof. Alexandre CARISSIMI (asc at inf.ufrgs.br) Parte teórica (4 CRE)

Prof. VALTER Roesler (roesler at inf.ufrgs.br) Parte prática (2 CRE)

Objetivos da disciplina

Instituto de Informática - UFRGS A. Carissimi -9-août-13

Instituto de Informática - UFRGS A. Carissimi-9-août-13

■ Proporcionar conhecimento sobre a estruturação, funcionamento e serviços de redes locais e de longa distância, em especial, a Internet.

Redes de Computadores 2

A regra é clara... (ainda)

□ Conceitos (após critério de aprovação)

■ Conceito A: média ≥ 9.0

■ Conceito D: média < 6.0

■ Conceito B: 7.5 ≤ média < 9.0</p>

■ Conceito FF: falta de frequência

■ Conceito C: 6.0 ≤ média < 7.5</p>

□ Recuperação

- Apenas da parte teórica: substitui a pior nota entre a prova P₁ e P₂
 - Todo conteúdo programático da disciplina
- Casos particulares: conforme normas da UFRGS

Datas das provas

Prova 1: 02 de outubro de 2013

Prova 2: 04 de dezembro de 2013

Prova de recuperação: 11 de dezembro de 2013

Datas sagradas! Não se mexe nelas.

Redes de Computadores Redes de Computadores

Para concluir... e iniciar a parte interessante

Bibliografia

- Tanenbaum, A.; Wethreall, D. <u>Redes de Computadores</u> (5ª edição), Editora Pearson Education, 2011. (possível usar as edições anteriores 3 e 4)
- Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>. Série Livros Didáticos. Bookman 2009.
- Kurose, J.F.; Ross, K.W. <u>Redes de Computadores e a Internet: uma abordagem top-down.</u>
 5ª edição. Addison-Wesley. São Paulo. 2010
- □ Material adicional: http://moodle.inf.ufrgs.br
 - Senha para cadastro: *redes2013*

Slides no moodle não são substitutos dos livros textos da disciplina e estão sujeitos a erros.

Redes de Computadores

5

Introdução

□ Comunicação de dados

- Comunicação = compartilhamento de informações
 - Local
 - Remoto: *tel*ecomunicações (*tele*, do grego, significa longe, distante)
- Dados: informação apresentada em uma forma convencionada entre duas ou mais partes
- □ Portanto, comunicação de dados é troca de informações entre dispositivos através de um meio físico de comunicação
- □ Sistema de comunicação: hardware + software

Redes de Computadores

Componentes de um sistema de comunicação

- Mensagem
 - Informação a ser transmitida (dados)
- □ Transmissor
 - Dispositivo que envia a mensagem
- □ Receptor
 - Dispositivo que recebe a mensagem
- □ Meio
 - Caminho físico por onde viaja uma mensagem originada no transmissor e dirigida ao receptor
- □ Protocolo
 - Conjunto de regras que governam a comunicação de dados.

Representação de dados

- Dados são caracteres, números, vídeo, som ou uma combinação desses
 - Exemplos
 - Caracteres: representado por um sequência de bits de acordo com um código (e.g.: ASCII, ASCII extendido, unicode, iso etc)
 - Numérica: padrão de bits oriundo da conversão decimal para binário e de um formato (e.g.: ponto flutuante, inteiro, double, big e little endian etc)
 - Imagem: conjunto de pixels que oferecem resolução e palete de cores e são mapeados em bits

Instituto de Informática - UFRGS A. Carissimi -9-août-13

Instituto de Informática - UFRGS A. Carissimi -9-août-13

Redes de Computadores

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -9-août-13

Redes de computadores

- □ Conjunto de dispositivos (nós) conectados por um meio de comunicação (link ou enlace)
- □ Caracterizadas por:
 - Tipo de conexão
 - Ponto a ponto ou multiponto
 - Topologia de interconexão
 - Barramento, malha completa, malha, anel e estrela
 - Distância geográfica
 - PAN, LAN, MAN, WAN
 - P=personal, L=local, M=metropolitan, W=wide, A=area, N=network

Redes de Computadores

Blocos funcionais de um sistema de comunicação

Fonte de Codificador Codificador Transmissor Informação de Fonte de Canal bit/s Origem Engenharia Informática (Telecomunicações, Engenharia de -Ruído (Ciência da Computação, Teoria de Destino Decodificador Decodificador Receptor de Receptor Informação de Fonte de Canal bit/s

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -9-août-13

10

Protocolos e padrões

- □ Protocolo: conjunto de regras que governam a comunicação de dados
- □ Padrões:
 - Criação e manutenção de mercados abertos
 - Interoperabilidade de dados
 - Tecnologia de telecomunicações
- □ 2 tipos:
 - De facto: padrões não aprovados por um corpo ou comitê organizador
 - De Jure: padrões reconhecidos por um comitê organizador

Modelo de referência OSI (MR-OSI)

- □ Reference Model Open System Interconnection (RM-OSI)
- □ Padrão para organização de arquitetura de protocolos que chegou muito tarde!!
- □ Atraso gerou outras soluções (sistemas abertos)
 - Netware (Novell), Appletalk (apple), DECNET (DEC), etc
 - TCP/IP se tornou um padrão de facto

Instituto de Informática - UFRGS A. Carissimi-9-ago-13

11

Redes de Computadores

Redes de Computadores

12

Instituto de Informática - UFRGS A. Carissimi-9-août-13

Instituto de Informática - UFRGS A. Carissimi -9-août-13

As camadas OSI

□ Aplicação	7	Aplicação
□ Apresentação	6	Apresentação
□ Sessão		
□ Transporte	5	Sessão
□ Rede	4	Transporte
□ Enlace		
□ Físico	3	Rede
	2	Enlace
	1	Físico

Redes de Computadores

Nível físico

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Responsável pela transmissão da informação sobre o meio físico	7	Aplicação
São definidos:	6	Apresentação
 Características físicas das interfaces e dos meios (ex. conectores, pinagem, semântica de sinais de controle etc) 	5	Sessão
 Representação dos dados: codificação dos dados em sinais elétricos ou ópticos 	4	Transporte
 Taxa de transmissão (9600bps, 10Mbps, etc) Tipo de Transmissão (Banda base, larga) 	3	Rede
 Sincronização de bits (delimitação do que é um bit) Exemplo: 	2	Enlace
■ RS-232, X-21, RS-485 , Ethernet	1	Físico

Redes de Computadores 14

Nível de Enlace

Transformar o canal de comunicação em uma linha
livre de erros de transmissão

- □ Funções específicas são:
 - Enquadramento: agrupamento de um conjunto de bits em uma unidade gerenciável (quadros) para transmissão e/ou recepção.
 - Endereçamento físico: define o transmissor e/ou o receptor de um quadro específico
 - Controle de fluxo: cadencia o volume de dados enviados do transmissor ao receptor
 - Controle de erro: mecanismos de detecção de erros, de perdas e retransmissão de dados
 - Disciplina acesso ao meio físico em redes de difusão (broadcast)

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace
1	Físico

13

15

Nível de Rede

Realiza a entrega de dados ao seu destino	7	Aplicação
 Duas funções essenciais: Definição de uma rede lógica: cria uma independência em relação as tecnologias empregas para transmissão 	6	Apresentação
e interconexão entre sistemas	5	Sessão
 Roteamento: determina como os pacotes acham o caminho até seu destino 	4	Transporte
■ Trata dos problemas de congestionamento e de conversão de endereços entre sub-redes diferentes	3	Rede
□ Exemplos:■ IP, ISSO-8473, X25	2	Enlace
	1	Físico

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Redes de Computadores 16

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Nível de Transporte

Camada fim-a-fim	7	Aplicação
 Comunicação entre entidades de um mesmo nível nos sistemas finais 	6	Apresentação
Funções específicas incluem:		
 Aceitar dados da camada superior e repassar a camada de rede, segmentado-a, se necessário. 	5	Sessão
■ Tipo de serviço: confiável ou não	4	Transporte
 Confiabilidade=informação chegar no destino sem erros, perdas, duplicação e na ordem da emissão 	3	Rede
Evenning:		

Redes de Computadores

Nível de Sessão

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Camada controladora de diálogo entre processos dos
sistemas finais

- □ Estabelece, mantém e sincroniza a interação entre sistemas de computação
- □ Funções específicas incluem:
 - Controle de diálogo: permite que dois sistemas finais iniciem uma comunicação em modo half ou full-duplex
 - Adiciona pontos de verificação e sincronização para retomar procedimentos
 - e.g: facilidades para recuperação de falhas como o que é feito no programa aplicativo wget para tratar ftp interrompido

Aplicação

Apresentação

Transporte

Sessão

Rede

Enlace

Físico

18

Nível de Apresentação

■ TCP, UDP, SPX, ISO8072

3	Oferece uma independência as aplicações quanto a representação interna de dados	7	
_	Tratamento da sintaxe e da semântica dos dados trocados entres dois sistemas	6	
_	Tarefas específicas:	5	
	 Conversão de formatos de dados (ASCII, Unicode, big ou little endian) em uma seqüência de bits em um formato universal (e.g. eXternal Data Representation - XDR) 	4	
	 Compressão de dados: objetivo de reduzir a qtde. de bits a serem transmitidos 	3	
	Criptografia: oferecer segurança aos dados transmitidos	2	

Aplicação	
Apresentação	
Sessão	
Transporte	
Rede	
Enlace	
Físico	

Enlace

Físico

17

Nível de Aplicação

Redes de Computadores

	Permitir a usuários finais (processos ou pessoas)	
	acessar a rede	
_	Os samisas de antisação as usuário, same nor eve	

- Os serviços de aplicação ao usuário, como por exemplo:

 Tormina virtual para accesa romato (talact seb ricaria.)
- Termina virtual para acesso remoto (telnet, ssh, rlogin, ...)
 - Correio eletrônico (smtp, pop, imap, ...)
 - Web (http)
- Transferência de arquivos (scp, ftp, rcp, ...)
- Compartilhamento de arquivos e recursos (ex: smb, cifs)
- etc...

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace
1	Físico

Redes de Computadores 19 Redes de Computadores 20

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

MR-OSI versus TCP/IP

TCP/IP OSI Aplicação Aplicação Aplicação 6 6 Apresentação 5 Sessão TCP/UDP Transporte IΡ Rede **Enlace** Acesso Interface de rede **Físico** Físico

Classificação de redes por extensão geográfica

□ Personal Area Networks (PAN)

- Interligação de dispositivos e acessórias de forma fácil
- Curtissima distância (unidades de metros)
- Comunicação sem fio (canais de rádio freqüência, bluetooth, infra-vermelho)

□ Local Area Networks (LAN)

Instituto de Informática - UFRGS A. Carissimi -9-août-13

21

23

- Automação de escritórios, de fábricas e integração de múltiplos serviços
- Área de cobertura de dezenas a centenas de metros
- Comunicação com cabos (Ethernet, por exemplo) ou sem fio (Wireless LAN) como IEEE 802.11

Redes de Computadores 22

Classificação de redes por extensão geográfica (cont.)

□ Metropolitan Area Networks (MAN)

- Interconectar redes a provedores de acesso (ISP Internet Service Provider)
- Distância medida em unidades e dezenas de quilometros
- Comunicação com cabos (IEEE 802.6, FDDI, ADSL, cable modem,...) ou sem fio (IEEE 802.16 ou WiMAX, IEEE 802.20)

□ Wide Area Networks (WAN)

- Objetivo é permitir comunicações de longa distância
- Distância medida em centenas e milhares de quilometros
- Infra-estrutura de concessionárias de telecomunicações (satélites e fibras óticas)

Classificação de redes por extensão geográfica (cont.)

Redes de Computadores 24

Instituto de Informática - UFRGS A. Carissimi-9-août-13

Instituto de Informática - UFRGS A. Carissimi -9-ago-13

Redes de Computadores

A rede lógica

- □ Visão que os usuários tem de uma rede independentemente da interconexão física dos equipamentos
 - A Internet é um exemplo clássico
- □ Também aplicavável para conjuntos de recursos, tais como espaço em disco, impressoras e aplicativos
 - Exemplos:
 - NetWare (Novell), Domínios (Microsoft), Samba (linux), NFS (Sun), etc.

Redes de Computadores

25

27

Organizações de padronização

- □ ISO (International Standards Organization)
 - Inclui ANSI (US), BSI (Reino Unido), AFNOR (França), DIN (Alemanha) e outros
- □ ITU (International Telecommunication Union)
 - Antigo CCITT (Comité Consultatif International Télégrafique et Téléphonique)
 - 3 setores: R (rádio), T (telecom), D (development)
- □ IEEE (Institut of Electrical and Electronics Engineers)
- □ Eletronics Industries Association (EIA)
- □ Internet Society
 - Internet Architecture Board (IAB)

26 Redes de Computadores

Quem é quem no mundo em telecomunicações

- □ ITU (International Telecommunication Union)
- □ Três setores:R (rádio), T (telecom), D (development)
- □ ITU-T é a responsável pela sistemas telefônicos e comunicação de dados
 - Antigo CCITT (Comité Consultatif International Télégrafique et Téléphonique)

Quem é quem no mundo em Internet

- □ Internet possui seus próprios standards
- □ Internet Society
- □ Três organizações responsáveis pela criação e publicação de standards
 - Internet Architecture Board (IAB)
 - Internet Engineering Task Force (IETF)
 - Internet Engineering Steering Group (IESG)

Instituto de Informática - UFRGS A. Carissimi-9-août-13

Instituto de Informática - UFRGS A. Carissimi -9-août-13

Redes de Computadores

Leituras adicionais

- □ Tanenbaum, A.; Wethreall, D. <u>Redes de Computadores</u> (5ª edição), Editora Pearson Education, 2011.
 - Capítulo 1
- □ Carissimi, A.; Rochol, J; Granville, L.Z; *Redes de Computadores*. Série Livros Didáticos. Bookman 2009.
 - Capítulo 1 (seções 1.1, 1.4, 1.6 e 1.7)
- □ Kurose, J.F.; Ross, K.W. Redes de Computadores e a Internet: uma abordagem top-down. 5ª edição. Addison-Wesley. São Paulo. 2010.
 - Capítulo 1 (seções 1.1, 1.5 e 1.7)

