

Алгоритмы и структуры данных

Узнаем, что такое алгоритм. Изучим его свойства. Познакомимся с понятием алгоритмической сложности, сортировками, рекурсией и структурами данных

Регламент урока

- **/** Длительность
- 🙌 Регламент сдачи практических заданий
- 🩌 Когда и где будет доступна запись
- 🙌 🧼 Каналы коммуникации
- 🙌 🛮 Делаем ли перерыв?

Получите максимум от лекции

- Задавай вопросы.Для этого подними руку
- 🔕 Отключи микрофон

📝 🛚 Делай заметки

- Будь с нами! Отложи телефон, домашние дела, мессенджеры и возьми максимум для себя
- Будь готов отвечать на вопросы и выполнять задания
- 🚍 Запаркуем

Что будет на уроке сегодня

- Что такое алгоритм?
- 🖈 Свойства алгоритмов
- Алгоритмическая сложность
- Сортировки
- 🖈 Рекурсия
- 🖈 Структуры данных
- 🖈 Практическая часть

Что такое алгоритм?

Алгоритм — это заданный набор инструкций (шагов) для решения поставленной задачи.

Шаг алгоритма — это каждое отдельное действие алгоритма.

Применение:

Везде где требуется выполнять определённую последовательность действий (сортировка клиентов онлайнсервиса по сумме покупок за заданный период; расчёт траектории движения околоземного спутника и т. д.)

Свойства алгоритмов

- **Р** Дискретность
- Результативность
- Детерминированность
- Массовость
- **Понятность**
- Конечность

Виды алгоритмов

Линейный Начало Данные Действие 1 Действие 2 Конец

^{*} расчёт числа Фибоначчи, расчёт факториала числа, ** алгоритм Монте-Карло

Алгоритмическая сложность

Сложность алгоритмов обычно оценивают по времени выполнения...

Алгоритмическая сложность

Сложность алгоритмов обычно оценивают по времени выполнения или по используемой памяти.

Алгоритмическая сложность

Сложность алгоритмов обычно оценивают по времени выполнения или по используемой памяти.

Бинарный поиск (метод деления пополам, дихотомия) — классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины.

Алгоритм сортировки — это алгоритм для упорядочивания элементов в массиве.

Бинарный поиск

Бинарный поиск — это поиск в структурах данных.

Используется при нахождении приближённого решения уравнений (метод бисекции).

Применяется при нахождении экстремума функции.

Источник

Алгоритмическая сложность сортировок

Алгоритм	Структура данных	E	Временная сложно	ость	Вспомогательные данные	
		Лучшее	В среднем	В худшем	В худшем	
Быстрая сортировка	Массив	O(n log(n))	O(n log(n))	O(n^2)	O(n)	
Сортировка слиянием	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(n)	
Пирамидальная сортировка	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(1)	
Пузырьковая сортировка	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка вставками	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка выбором	Массив	O(n^2)	O(n^2)	O(n^2)	O(1)	
Блочная сортировка	Массив	O(n+k)	O(n+k)	O(n^2)	O(nk)	
Поразрядная сортировка	Массив	O(nk)	O(nk)	O(nk)	O(n+k)	

Рекурсия

Рекурсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя.

Примеры:

$$F_0=0, \quad F_1=1, \quad F_n=F_{n-1}+F_{n-2}$$
где $n\geqslant 2,\; n\in \mathbb{Z}.$

$$n! = \left\{egin{aligned} n \cdot (n-1)!, & n > 0 \ 1, & n = 0 \end{aligned}
ight.$$

$$e=2+rac{2}{2+rac{3}{3+rac{4}{4+\dots}}}=2+f(2)$$
, где $f(n)=rac{n}{n+f(n+1)}$

Структуры данных

В языке программирования Python всего 4 встроенных структуры данных:

- Список (list):
 list('abcd'), [1, 2, 'a', 'b'], [1, 23, 45, 6]
- Кортеж (tuple): tuple(), (), ('s',), 's'
- Словарь (dictionary):
 {}, {'a': 1, 'b': 2}, dict([(1, 1), (2, 4)])
- Набор или множество (set):set(), set('hello'), set([1, 2, 2, 3, 4, 5])

Алгоритмическая сложность операций

Структура данных		Сложность по памяти							
	В среднем				В худшем				В худшем
	Индексация	Поиск	Вставка	Удаление	Индексация	Поиск	Вставка	Удаление	
Обычный массив	O(1)	O(n)	-	-	O(1)	O(n)		-	O(n)
Динамический массив	O(1)	O(n)	O(n)	O(n)	O(1)	O(n)	O(n)	O(n)	O(n)
Односвязный список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	O(1)	O(n)
Двусвязный список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	O(1)	O(n)
Список с пропусками	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n log(n))
Хеш таблица		O(1)	0(1)	0(1)		O(n)	O(n)	O(n)	O(n)
Бинарное дерево поиска	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n)

Практическое задание

- 1. Реализуйте бинарный поиск
- 2. Реализуйте несколько алгоритмов сортировки и сравните их время работы на одних и тех же входных данных

Полезные ссылки/дополнительные материалы

- Оценка сложности алгоритмов, или Что такое O(log n)
- Сложности алгоритмов
- Асимптотика функций
- «Алгоритмы. Построение и анализ» Кормен Томас Х. и др.

Что мы сегодня узнали и чему научились

- 🧠 Что такое алгоритм
- Свойства алгоритмов
- 🧠 Алгоритмическая сложность
- Сортировки
- 🧠 Рекурсия
- 🧠 Структуры данных
- 🧠 Практическая часть

Вопросы?

Вопросы?

