Species Distribution Modeling using R and QGIS

Please Download and Unzip to your Documents Folder:

https://github.com/patchdynamics/SDM-Lesson/archive/v.2.zip

(Also please install package rgdal in R)

The Goal

The Process

- 1. Download Occurrence Data
- 2. Clean/QA Occurrence Data
- 3. Assemble Predictor GIS Layers
- 4. Create 'Training Data' Subset
- 5. Fit A Model (Logistic Regression or MaxEnt)
- 6. Visualize and Analyze Results

Preparation of data is the most time consuming, and tedious, part of the process.

Fitting a model is the fun part and involves creativity

An Easy Dataset for Learning: BioClim

But many others exist and might be more useful

Raster Datasets

BIO1 = Annual Mean Temperature

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO₃ = Isothermality (BIO₂/BIO₇) (* 100)

BIO₄ = Temperature Seasonality (standard deviation *100)

BIO₅ = Max Temperature of Warmest Month

BIO6 = Min Temperature of Coldest Month

BIO7 = Temperature Annual Range (BIO5-BIO6)

BIO8 = Mean Temperature of Wettest Quarter

BIO9 = Mean Temperature of Driest Quarter

BIO10 = Mean Temperature of Warmest Quarter

BIO11 = Mean Temperature of Coldest Quarter

BIO12 = Annual Precipitation

BIO13 = Precipitation of Wettest Month

BIO14 = Precipitation of Driest Month

BIO₁₅ = Precipitation Seasonality (Coefficient of Variation)

BIO16 = Precipitation of Wettest Quarter

BIO17 = Precipitation of Driest Quarter

BIO18 = Precipitation of Warmest Quarter

BIO19 = Precipitation of Coldest Quarter

Raster Data Review

Which Model is More Reasonable?

Red Tree Vole *Arborimus longicaudus*

Comparing Modeling Methods

Climate Envelope (bioclim)

Custom GLM

MaxEnt