Savitribai Phule Pune University Department of Scientific Computing M.Sc I (Semester I) 2019-2020

Subject: SC 104 Foundations Scientific Computing II

Final Exam

Ν	farks: 50	Calculators are allowed.	Time 3 hours
A	ttempt all		
1.	1. Draw the graph of function $ x+y =1$ on $\mathbb R$ axes.		
2.	Find $\lim_{x \to \pi/3} \frac{\sqrt{3} - \tan x}{\pi - 3x}$ OR $\lim_{x \to 3} \frac{x^4}{2x^2}$	$\frac{-81}{-5x-3}$	2 marks
3.	Show that the function defined by	$y f(x) = x $ is continuous on \mathbb{R} .	2 marks
4.	Find dy/dx for $x = 2(\theta - \sin \theta)$ a	and $y = 2(1 - \cos \theta)$ at $\theta = \pi/2$	2 marks
5.	Find dy/dx if $y = 2\cot(5x^2 + 3)$	or $y = \sec^2(4x + 7)$	2 marks
6.	Find dy/dx if $2y + 4xy - x^2y - y^2$	x + 2x = 0	3 marks
7.		d normal to the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ at $(1,1)$.	
	OR Find the intervals in which the f (a) strictly increasing (b) strictly	unction $f(x) = 4x^3 - 6x^2 - 72x + 30$ is decreasing.	3 marks
8.	Find maximum and minimum va	clues of the function $y = x^2 - 32\sqrt{x}$	4 marks
9.	Evaluate $\int \frac{(1+\log x)^2}{x}$ or $\int \frac{\sin x}{(1+\cos x)^2}$	$\frac{x}{x)^2}$	2 marks
10.	Evaluate $\int \frac{5x-2}{1+2x+3x^2} dx$ or $\int e^x \cdot s$	$\sin x dx$	4 marks
11.	Evaluate $\int \frac{5x}{(x+1)(x^2-4)} dx$		3 marks
12.	Find the area of the region in the line $y = x$, and the circle x^2 OR	e first quadrant enclosed by the $x - axis$, + $y^2 = 32$.	
		e first quadrant enclosed by the $x - axis$, = 1.	3 marks
13.	Using integration find the area of vertices are $(1,0),(1,3)$ and $(3,2)$	f region bounded by the triangle whose).	4 marks
14.	Solve the differential equation $x \frac{dy}{dx} - y = \sqrt{x^2 + y^2}$ or $x^2 \frac{dy}{dx} = x$	$x^2 - 2y^2 + xy$	$3~{ m marks}$
15.	Solve the differential equation as $\frac{dy}{dx} + 2y \tan x = \sin x$	and find the particular solution at $x = \pi/3$	$3~\mathrm{marks}$
16.	Examine the convergence of any	one series $\sum \frac{(n+1)}{2^n}$ or $\sum \frac{(n!)^2}{(2n)!}$	2 marks
17.	Check for absolute/conditional co	onvergence $\sum (-1)^{(n+1)} \frac{\tan^{-1} n}{n^2 + 1}$	3 marks
18.	Calculate the fourier series for the	ne function $y = \frac{x^2}{4}$ in $-\pi \le x \le \pi$	3 marks