

Lahore University of Management Sciences

EE361 - Feedback Control Systems EE361L - Feedback Control Laboratory

Spring 2014

Instructors	Abubakr Muhammad
	Momin Uppal
Room No.	9-351A
Office Hours	TBA
Email	abubakr@lums.edu.pk
Telephone	+92 (42) 3560-8132
Secretary/TA	TBA
TA Office Hours	TBA
Course URL (if any)	http://cyphynets.lums.edu.pk/index.php/EE-361

Course Basics				
Credit Hours	4 (3+1)			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	1hr-15min each
Recitation/Lab (per week)	Nbr of Lec(s) Per Week	1 (Lab)	Duration	2hr 30min
Tutorial (per week)	Nbr of Lec(s) Per Week	1	Duration	50 min

Course Distribution	
Core	Electrical Engineering
Elective	
Open for Student Category	
Close for Student Category	

COURSE DESCRIPTION

Design of linear feedback control systems for command-following, disturbance rejection, stability, and dynamic response specifications. Root-locus and frequency response design (Bode) techniques. Nyquist stability criterion. Design of dynamic compensators. State-space methods. Digitization and computer implementation issues. Integrated laboratory exercises on practical applications of control.

COURSE PREREC	QUISITE(S)
	EE-310. Signals and Systems.

COURSE OBJECT	TIVES
	Use of control for achieving desired behavior in unstable and uncertain systems.
•	Advantages and disadvantages of feedback in a system.
•	Open- and closed-loop control and their respective merits/demerits.
•	Stability and its relationship with feedback.
	Techniques of linear time-invariant (LTI) control system design.
	Pervasiveness of feedback and control in science & engineering.
	Systems engineering tools for solving complex problems.

Learning Outcor	mes
•	Model physical systems, sensors and actuators in various settings using the language of signals and systems. Identify state, measurement and control in a given problem. Design controllers for linear models of systems using MATLAB and SIMULINK. Implement digital controllers for various mechanical and electrical systems. Predict and test control system performance.

Lahore University of Management Sciences

Grading Breakup and Policy

Home Work: 8% Quiz(s): 7%

Midterm Examination: 30% Final Examination: 35 % Lab Performance: 20 %

Examination De	Examination Detail	
Midterm Exam	All Sections Combined Duration: 2 hrs Exam Specifications: Closed book, closed notes, help-sheet and calculators allowed	
Final Exam	All Sections Combined Duration: 3 hrs Exam Specifications: Closed book, closed notes, help-sheet and calculators allowed	

OURSE OVERVIEW			
Modules	Topics	Recommended Readings	Objectives/ Application
•	Review of signals and systems; Laplace transform; block diagrams.		
•	Mathematical modeling of physical systems; state space and transfer functions.		
•	Feedback as a fundamental concept; control specifications and dynamic reponse.		
•	PID controllers.		
•	Root locus design.		
•	Frequency response methods/ Nyquist criterion; Lead/Lag compensators.		

Textbook(s)/Supplementary Readings

The course will be taught from:

Feedback control of dynamical systems by Franklin, Powell and Emami-Naeni, Prentice Hall, 2006.

Other important references include

- 1) Feedback Systems: An Introduction for Scientists and Engineers by Karl Astrom and Richard Murray, Princeton University Press, 2008.
- 2) Signals and Systems by Alan V. Oppenheim, Alan S. Willsky with S. Hamid, 2nd edition, Prentice Hall, 1997.

Labs

Venue. Control Systems Lab, 3rd Floor SSE Bldg

Frequency. 3 hr, weekly sessions in groups of 3 students

Lab Topics.

Intro to SIMULINK and MATLAB toolboxes, motor position and speed control, control of thermal systems, control of inverted & magnetic pendulums, system identification techniques, digital controller synthesis, observer design, anti-windup, digital and analog control techniques.