

WEINER 10/616537 05/22/2006 Page 1

=> file reg
FILE 'REGISTRY' ENTERED AT 12:11:14 ON 22 MAY 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 19 MAY 2006 HIGHEST RN 885029-44-7
DICTIONARY FILE UPDATES: 19 MAY 2006 HIGHEST RN 885029-44-7

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 6, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

*
* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added, *
* effective March 20, 2005. A new display format, IDERL, is now *
* available and contains the CA role and document type information. *
*

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> file hcaplu
FILE 'HCAPLU' ENTERED AT 12:11:18 ON 22 MAY 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 22 May 2006 VOL 144 ISS 22
FILE LAST UPDATED: 19 May 2006 (20060519/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> d que
L2      20 SEA FILE=REGISTRY ABB=ON (110-86-1/BI OR 119-65-3/BI OR
          120-72-9/BI OR 120-73-0/BI OR 131714-35-7/BI OR 1333-74-0/BI
          OR 25232-42-2/BI OR 25233-30-1/BI OR 25823-41-0/BI OR 288-13-1/
          BI OR 288-32-4/BI OR 32109-42-5/BI OR 50641-39-9/BI OR
          7664-38-2/BI OR 7664-93-9/BI OR 7732-18-5/BI OR 7782-44-7/BI
          OR 9002-98-6/BI OR 9003-47-8/BI OR 91-22-5/BI)
L4      8 SEA FILE=REGISTRY ABB=ON L2 AND PMS/CI
L5      2 SEA FILE=REGISTRY ABB=ON L4 AND BENZIMID?
L6      6 SEA FILE=REGISTRY ABB=ON L4 NOT L5
L9      270 SEA FILE=REGISTRY ABB=ON 1409.114.5/RID
L10     103 SEA FILE=REGISTRY ABB=ON L9 AND PMS/CI
L11     12 SEA FILE=REGISTRY ABB=ON L2 NOT L4
L12     7 SEA FILE=REGISTRY ABB=ON L11 AND 1-2/NR
L20     79 SEA FILE=HCAPLUS ABB=ON L5
L21     22338 SEA FILE=HCAPLUS ABB=ON L6
L22     4 SEA FILE=HCAPLUS ABB=ON L20 AND L21
L23     110325 SEA FILE=REGISTRY ABB=ON 333.401.37/RID
L24     1405 SEA FILE=REGISTRY ABB=ON L23 AND PMS/CI
L25     1391 SEA FILE=HCAPLUS ABB=ON L24
L26     19 SEA FILE=HCAPLUS ABB=ON L21 AND L25
L27     20 SEA FILE=HCAPLUS ABB=ON L22 OR L26
L30     125 SEA FILE=HCAPLUS ABB=ON L10
L31     0 SEA FILE=HCAPLUS ABB=ON L21 AND L30
L32     16178 SEA FILE=HCAPLUS ABB=ON L12/D
L33     4 SEA FILE=HCAPLUS ABB=ON L30 AND L32
L34     18 SEA FILE=HCAPLUS ABB=ON L25 AND L32
L36     36 SEA FILE=HCAPLUS ABB=ON L27 OR L31 OR L33 OR L34
L37     11 SEA FILE=HCAPLUS ABB=ON L36 AND ELECTROCHEM?/SC, SX
L40     385 SEA FILE=HCAPLUS ABB=ON ?BENZIMIDAZ? AND L32
L41     111 SEA FILE=HCAPLUS ABB=ON ?BENZIMIDAZ? AND L21
L42     486 SEA FILE=HCAPLUS ABB=ON L40 OR L41
L43     34 SEA FILE=HCAPLUS ABB=ON L42 AND ELECTROCHEMICAL?/SC
L44     24 SEA FILE=HCAPLUS ABB=ON L43 AND ELECTROLYT?
L45     14 SEA FILE=HCAPLUS ABB=ON L43 AND PROTON?
L46     25 SEA FILE=HCAPLUS ABB=ON L44 OR L45
L47     7 SEA FILE=HCAPLUS ABB=ON L46 AND SOLID?
L48     15 SEA FILE=HCAPLUS ABB=ON L37 OR L47
```

```
=> d 148 bib abs ind hitstr 1-15
```

```
L48 ANSWER 1 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN
AN 2006:97642 HCAPLUS
DN 144:174272
TI Fuel cell systems/stacks, their MEA with high durability under
non-humidification condition, and manufacture thereof
IN Nakafuji, Kunihiro; Muneuchi, Atsuo
PA Sanyo Electric Co., Ltd., Japan; Samsung Electronics Co., Ltd.; Samsung
SDI Co., Ltd.
SO Jpn. Kokai Tokkyo Koho, 10 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1
```

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

PI JP 2006032276 A2 20060202 JP 2004-213077 20040721
 CN 1765992 A 20060503 CN 2005-10084797 20050721

PRAI JP 2004-213077 A 20040721

AB Dissolving basic polymers and strong acids in solvents, volatilizing the solvents to form solids, grinding the solids into powders, mixing them with fluororesins and rolling into sheets, and drying to give electrolyte membranes of title MEA. The electrolytic layers consist of basic polymers (e.g., powders with volume-average diameter 10-100 µm) and strong acids.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

ST fuel cell MEA nonhumidification condition durability; doped polybenzimidazole electrolyte durability fuel cell; PTFE bonded strong acid basic polymer PEFC

IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinolines
 Polyquinoxalines
 Polythiazoles
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

IT Fluoropolymers, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (binders; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

IT Fuel cells
 (polymer electrolyte; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

IT 110-86-1D, Pyridine, polymers 129-00-0D, Pyrene, tetraaza, polymers 288-32-4D, Imidazole, polymers 288-42-6D, Oxazole, polymers 289-06-5D, Thiadiazole, polymers 289-95-2, Pyrimidine 1337-81-1D, Vinylpyridine, polymers 29383-23-1D, Vinylimidazole, polymers
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

IT 9002-84-0, Polytetrafluoroethylene
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (binders, electrolyte layers; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

IT 110-86-1D, Pyridine, polymers 288-32-4D, Imidazole, polymers
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing fluoropolymer-bonded and acid-doped polymer electrolytes and showing good durability under non-humidifying condition)

RN 110-86-1 HCAPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

L48 ANSWER 2 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN
 AN 2005:812448 HCAPLUS
 DN 143:349813
 TI Hybrid materials approach in the design of electrodes and electrolytes for energy storage and conversion
 AU Cuentas-Gallegos, Karina; Lira-Cantu, Monica; Casan-Pastor, Nieves; Asensio, Juan A.; Gomez-Romero, Pedro
 CS Materials Science Institute of Barcelona (CSIC), Bellaterra, 08193, Spain
 SO Materials Research Society Symposium Proceedings (2005), Volume Date 2004, 847(Organic/Inorganic Hybrid Materials-2004), 431-438
 CODEN: MRSPDH; ISSN: 0272-9172
 PB Materials Research Society
 DT Journal; General Review
 LA English
 AB A review. The integration of electro-ionically active inorg. species in polymer matrixes allows for the design of either electrode or electrolyte materials depending on the conducting or insulating properties of the polymer used. Conducting polymers can be used as the basis for a variety of hybrid electrode systems, whereas other polymers such as polybenzimidazoles were used as electrolyte membranes by themselves or in combination with inorg. solid acids. The authors will discuss the general approach of hybrid design with this in mind and specifically the authors will describe the recent results on the use of polyoxometalate-containing hybrids in energy storage and conversion devices. In this respect the authors have worked in the laboratory on electrochem. supercapacitors and fuel cells but emphasis should be made on the broader potential fields of application of this type of materials.
 CC 52-0 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST review hybrid inorg org polymer electrolyte electrode supercapacitor; fuel cell electrode polymer electrolyte phosphoric hetero polyacid review
 IT Electric current-potential relationship
 (c;cyclic voltammetry of electrodes; hybrid materials approach in design of electrodes and electrolytes for energy storage and conversion)
 IT Heteropoly acids
 RL: DEV (Device component use); USES (Uses)
 (composites with conducting polymers; hybrid materials approach in

- design of electrodes and **electrolytes** for energy storage and conversion)
- IT Membranes, nonbiological
(elec. conductive; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT Conducting polymers
Electrodes
Fuel cells
Hybrid organic-inorganic materials
Polymer **electrolytes**
(hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT Cyclic voltammetry
(of assembled electrodes; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT Electric capacitance
(of assembled supercapacitor; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT Capacitors
(super-; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 25233-30-1P, Polyaniline
RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(blend with phosphomolybdic acid; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 1314-56-3, Phosphorus oxide (P₂O₅), uses
RL: DEV (Device component use); USES (Uses)
(composite with poly(3,4-benzimidazole), phosphoric acid-doped; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 32109-42-5P, Poly(2,5-benzimidazole)
RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(composite with polyphosphoric acid, phosphoric acid-doped; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 12026-57-2, Phosphomolybdic acid (H₃PMo₁₂O₄₀)
RL: DEV (Device component use); USES (Uses)
(composites with polyaniline; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 7440-06-4, Platinum, uses 7782-42-5, Graphite, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(electrode base; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 66796-30-3, Nafion 117
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)
- IT 7664-38-2, Phosphoric acid, uses
RL: DEV (Device component use); USES (Uses)
(hybrid membranes doped with; hybrid materials approach in design of electrodes and **electrolytes** for energy storage and conversion)

IT 25233-30-1P, Polyaniline

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
 (blend with phosphomolybdic acid; hybrid materials approach in design of electrodes and electrolytes for energy storage and conversion)

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IT 32109-42-5P, Poly(2,5-benzimidazole)

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
 (composite with polyphosphoric acid, phosphoric acid-doped; hybrid materials approach in design of electrodes and electrolytes for energy storage and conversion)

RN 32109-42-5 HCAPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RE.CNT 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L48 ANSWER 3 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2005:599554 HCAPLUS

DN 143:117990

TI Additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells

AU Kato, T.; Fujimoto, M.; Kado, T.; Sakaguchi, S.; Kosugi, D.; Shiratuchi, R.; Takashima, W.; Kaneto, K.; Hayase, S.

CS Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, 808-0196, Japan

SO Journal of the Electrochemical Society (2005), 152(6), A1105-A1108
 CODEN: JESOAN; ISSN: 0013-4651

PB Electrochemical Society

DT Journal

LA English

AB Dye-sensitized solar cells (DSCs) are solidified with gelators containing poly(vinylpyridine) and 1,2,4,5-tetra(bromomethyl)benzene. The photoconversion efficiencies are improved by new additives. LiI and

t-butylpyridine are commonly added in electrolytes for increasing short-circuit current (Jsc) and open-circuit voltage (Voc). These additives inhibit the gel electrolyte precursors from solidifying. New additives, combinations of HOAc, and Me pyrimidine or Me benzimidazole, do not inhibit the solidification and are effective for increasing both Jsc and Voc. These mechanisms are discussed in terms of electron diffusion coeffs., I-3 diffusion coeffs., and charge-transfer resistance between counter electrodes and gel electrolytes.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST Section cross-reference(s): 76
 dye sensitized solar cell gel electrolyte additive
 IT Photoelectrochemical cells
 (additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells)
 IT Electrolytes
 (electrolyte additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells)
 IT 64-19-7, Acetic acid, uses 91-22-5, Quinoline, uses 109-06-8, 2-Methyl pyridine 30304-58-6, Methyl benzimidazole 55133-63-6, Methyl pyrimidine
 RL: MOA (Modifier or additive use); USES (Uses)
 (additive for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells)
 IT 13463-67-7, Titanium oxide (TiO₂), uses 15442-91-8D, poly(vinylpyridine) crosslinked with
 RL: DEV (Device component use); USES (Uses)
 (additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells with)
 IT 7553-56-2, Iodine, uses 9003-47-8D, Poly(vinylpyridine), crosslinked with bromomethyl benzene
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte precursor containing; additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells with)
 IT 119171-18-5
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte precursor; additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells with)
 IT 9003-47-8D, Poly(vinylpyridine), crosslinked with bromomethyl benzene
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte precursor containing; additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells with)

RN 9003-47-8 HCAPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1- CH=CH₂

RE.CNT 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L48 ANSWER 4 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN
 AN 2005:260353 HCAPLUS
 DN 142:339054
 TI Phosphonic-acid grafted hybrid inorganic-organic proton electrolyte membranes for fuel cells
 IN Li, Siwen; Lui, Meilin; Hase, Kohei; Nakanishi, Masatsugu; Li, Wen; Ukai, Junzo
 PA Toyota Technical Center Usa, Inc., USA; Georgia Tech Research Corporation
 SO PCT Int. Appl., 45 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005027240	A2	20050324	WO 2004-US29741	20040913
	WO 2005027240	A3	20060309		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
PRAI	US 2005113547	A1	20050526	US 2004-938268	20040910
	US 2003-502178P	P	20030911		
	US 2003-511836P	P	20031016		
	US 2004-938268	A	20040910		
AB	A proton conducting polymer is formed by the copolyrn. of a plurality of compds., including a silicon compound comprising an organic chain, and a compound including at least one acid group. The polymer comprises a hybrid organic inorg. matrix having acid groups linked through a linking group. The linking group may include one or more electron withdrawing groups. The electron withdrawing group may be a halogen.				
IC	ICM H01M				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
	Section cross-reference(s): 38				
ST	phosphonic acid grafted hybrid inorg org membrane fuel cell				
IT	Fuel cell electrolytes				
	Polymer networks				

(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT Polyamides, uses
Polybenzimidazoles
Polyurethanes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT Polycarbosilanes
RL: TEM (Technical or engineered material use); USES (Uses)
(polyamine-; phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT Polyamines
RL: TEM (Technical or engineered material use); USES (Uses)
(polycarbosilane-; phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT Fuel cells
(polymer electrolyte; phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT Ionic conductivity
(proton; phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT 757-44-8, Diethoxyphosphoryl ethyltriethoxysilane
RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT 848646-81-1P 848646-83-3P 848646-84-4P 848646-86-6P 848646-87-7P
848646-89-9P 848647-03-0P
RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT 88684-13-3P 848646-78-6P 848646-79-7P 848646-80-0P
RL: SPN (Synthetic preparation); PREP (Preparation)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT 9002-98-6 9003-05-8, Polyacrylamide 28212-50-2,
Poly(bis(trifluoroethoxy)phosphazene) 32109-42-5,
Poly(2,5-benzimidazole)
RL: TEM (Technical or engineered material use); USES (Uses)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

IT 9002-98-6 32109-42-5, Poly(2,5-benzimidazole)
RL: TEM (Technical or engineered material use); USES (Uses)
(phosphonic-acid grafted hybrid inorg.-organic proton electrolyte membranes for fuel cells)

RN 9002-98-6 HCAPLUS
CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 32109-42-5 HCAPLUS
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

L48 ANSWER 5 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2005:14471 HCAPLUS

DN 142:97496

TI Preparation of polymer electrolyte membranes with high durability

IN Miyake, Naoto; Wakizoe, Masanobu; Honda, Eiji

PA Asahi Kasei Kabushiki Kaisha, Japan

SO PCT Int. Appl., 101 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005000949	A1	20050106	WO 2004-JP9220	20040623
	WO 2005000949	C2	20050707		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
	CA 2527871	AA	20050106	CA 2004-2527871	20040623
	US 2005053822	A1	20050310	US 2004-874246	20040624
PRAI	JP 2003-184226	A	20030627		
	JP 2003-326230	A	20030918		
	WO 2004-JP9220	W	20040623		
AB	Title membranes comprise (A) fluoropolymer electrolytes having an ion-exchange group and (B) basic polymers, wherein a part of the component A and a part of the component B are chemical bonded with each other if desired. A membrane electrode assembly wherein the polymer electrolyte membrane is tightly held between an anode and a cathode and a solid polymer fuel cell using the membrane electrode assembly are further disclosed. Thus, 5% Nafion solution and di-Me acetamide were heated at 120° for 1 h and evaporated to give 1.5% polymer solution, 100.0 g of which was mixed with 16.3 g 1% poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] di-Me acetamide solution, 97.1 g 5% Nafion solution was added therein, cast onto a dish, dried at 60° for 1 h and 80° for 1 h, and heated at 160° for 1 h to give a polymer electrolyte membrane with haze 0.6%,				

ion exchange capacity 0.77 meq, and good durability when fabricated into a fuel cell.

IC ICM C08J005-22
 ICS C08L027-12; C08K005-3447; H01B001-06; H01M008-02; H01M008-10
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

ST polymer electrolyte membrane durability prepns; Nafion polyphenylenebenzimidazole blend polymer electrolyte prepns

IT Fluoropolymers, uses
 RL: DEV (Device component use); IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PREP (Preparation); PROC (Process); USES (Uses)
 (blend with basic polymers; preparation of polymer electrolyte membranes with high durability)

IT Polyanilines
Polybenzimidazoles
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (blend with fluoropolymer electrolyte; preparation of polymer electrolyte membranes with high durability)

IT Polyoxyalkylenes, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (fluorine- and sulfo-containing, ionomers, blend with basic polymers; preparation of polymer electrolyte membranes with high durability)

IT Polymer blends
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (fluoropolymer-basic polymer blends; preparation of polymer electrolyte membranes with high durability)

IT Fuel cells
 Membranes, nonbiological
 (polymer electrolyte; preparation of polymer electrolyte membranes with high durability)

IT Fluoropolymers, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (polyoxyalkylene-, sulfo-containing, ionomers, blend with basic polymers; preparation of polymer electrolyte membranes with high durability)

IT Ionomers
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (polyoxyalkylenes, fluorine- and sulfo-containing, blend with basic polymers; preparation of polymer electrolyte membranes with high durability)

IT Polymer electrolytes
 (preparation of polymer electrolyte membranes with high durability)

IT Ionic conductors
 (protonic; preparation of polymer electrolyte membranes with high durability)

IT 26101-19-9

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (assumed monomers, blend with fluoropolymer **electrolyte**,
 preparation of polymer **electrolyte** membranes with high durability)

IT 69462-70-0DP, hydrolyzed
 RL: DEV (Device component use); IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PREP (Preparation); PROC (Process); USES (Uses)
 (blend with basic polymer; preparation of polymer **electrolyte**
 membranes with high durability)

IT 9002-98-6, P 70 9003-47-8, Polyvinyl pyridine
 25734-65-0
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (blend with fluoropolymer **electrolyte**; preparation of polymer **electrolyte** membranes with high durability)

IT 9002-98-6, P 70 9003-47-8, Polyvinyl pyridine
 25734-65-0
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (blend with fluoropolymer **electrolyte**; preparation of polymer **electrolyte** membranes with high durability)

RN 9002-98-6 HCAPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 9003-47-8 HCAPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
CMF C7 H7 N
CCI IDSD1- CH=CH₂

RN 25734-65-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RE.CNT 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L48 ANSWER 6 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2004:117315 HCAPLUS

DN 140:149157

TI An electrode for an electrochemical cell like a secondary battery and an electric double layer capacitor

IN Nobuta, Tomoki; Nishiyama, Toshihiko; Kamisuki, Hiroyuki; Kaneko, Shinako; Kuroasaki, Masato; Nakagawa, Yuji; Mitani, Masaya

PA NEC Tokin Corporation, Japan

SO Eur. Pat. Appl., 20 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1388906	A2	20040211	EP 2003-16458	20030722
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2004127920	A2	20040422	JP 2003-198660	20030717
	JP 3701952	B2	20051005		
	CN 1481042	A	20040310	CN 2003-152651	20030804
	US 2004029003	A1	20040212	US 2003-634607	20030805
	HK 1060654	A1	20051125	HK 2004-102952	20040427

PRAI JP 2002-227160 A 20020805

AB This invention provides an electrode for an electrochem. cell in which an active material in an electrode material is a proton-conducting compound, wherein the electrode material comprises a nitrogen-containing heterocyclic compound or a polymer having a unit containing a nitrogen-containing heterocyclic moiety.

IC ICM H01M004-60

ICS H01M004-02

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 27, 38, 72, 76

ST battery electrode nitrogen contg heterocyclic compd; elec double layer capacitor electrode nitrogen contg heterocyclic compd

IT Capacitors
 (double layer; electrode for electrochem. cell like secondary battery and elec. double layer capacitor)

IT Battery cathodes

Battery electrodes

Capacitor electrodes

Secondary batteries

(electrode for electrochem. cell like secondary battery and elec.
double layer capacitor)

IT Carbon black, uses
 Fluoropolymers, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (electrode for electrochem. cell like secondary battery and elec.
double layer capacitor)

IT Heterocyclic compounds
 RL: DEV (Device component use); USES (Uses)
 (nitrogen; electrode for electrochem. cell like secondary battery and
elec. double layer capacitor)

IT Heterocyclic compounds
 RL: DEV (Device component use); USES (Uses)
 (polymers, nitrogen-containing; electrode for electrochem. cell like
secondary battery and elec. double layer capacitor)

IT Polyquinoxalines
 RL: DEV (Device component use); USES (Uses)
 (polyphenylquinoxalines; electrode for electrochem. cell like secondary
battery and elec. double layer capacitor)

IT 51-17-2, Benzimidazole 51-17-2D, Benzimidazole, derivative 288-13-1,
 Pyrazole 288-13-1D, Pyrazole, derivative 288-32-4, Imidazole, uses
 288-32-4D, Imidazole, derivative 288-88-0, 1H-1,2,4-Triazole
 670-96-2, 2-Phenylimidazole 20154-03-4, 3-Trifluoromethylpyrazole
 25232-42-2, Polyvinylimidazole 37306-44-8, Triazole
 37306-44-8D, Triazole, derivative 420784-28-7, 1H-Indole trimer
 652968-46-2 652968-47-3 652968-48-4
 RL: DEV (Device component use); USES (Uses)
 (electrode for electrochem. cell like secondary battery and elec.
double layer capacitor)

IT 24937-79-9, Polyfluorovinylidene
 RL: MOA (Modifier or additive use); USES (Uses)
 (electrode for electrochem. cell like secondary battery and elec.
double layer capacitor)

IT 7440-44-0, Carbon, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (vapor-grown; electrode for electrochem. cell like secondary battery
and elec. double layer capacitor)

IT 288-13-1D, Pyrazole, derivative 288-32-4D, Imidazole, derivative
 25232-42-2, Polyvinylimidazole 652968-48-4
 RL: DEV (Device component use); USES (Uses)
 (electrode for electrochem. cell like secondary battery and elec.
double layer capacitor)

RN 288-13-1 HCPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 25232-42-2 HCAPLUS

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

RN 652968-48-4 HCAPLUS

CN Poly[(3-phenyl-7,2-quinoxalinediyl)-1,4-phenylene(3-phenyl-2,7-quinoxalinediyl)-1H-benzimidazole-5,2-diyl-1,4-phenylene-1H-benzimidazole-2,5-diyl] (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

L48 ANSWER 7 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2004:117171 HCAPLUS

DN 140:165009

TI Proton-conductive polyazole membranes containing phosphonic acid group-containing polymers and their application in fuel cells

IN Calundann, Gordon; Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 32 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235358	A1	20040212	DE 2002-10235358	20020802
	CA 2494330	AA	20040219	CA 2003-2494330	20030731
	WO 2004015802	A1	20040219	WO 2003-EP8461	20030731
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	EP 1527493	A1	20050504	EP 2003-784120	20030731
	EP 1527493	B1	20060104		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	CN 1675790	A	20050928	CN 2003-818584	20030731
	JP 2005534784	T2	20051117	JP 2004-526830	20030731
	AT 315278	E	20060215	AT 2003-784120	20030731
	US 2005244694	A1	20051103	US 2005-522839	20050606

PRAI DE 2002-10235358 A 20020802
WO 2003-EP8461 W 20030731

AB The present invention concerns proton-conductive polymer membranes phosphonic acid group-containing polymers, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals, or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in . vinyl-containing phosphonic acids to form a solution and/or a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole, (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing phosphonic acids existing in the layer from step (C).

IC ICM C08J005-22
ICS H01M008-02; B01D071-58

CC 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 52

ST proton conductive polyazole membrane fuel cell; vinyl phosphonic acid polymer contg polyazole membrane

IT Polymerization
(cyclopolyrn.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing phosphonic acids in manufacture of proton-containing membranes)

IT Polymerization
(of vinyl compds. having phosphonic acids in presence of polyazoles in manufacture of proton conductive membranes for fuel cells)

IT Vinyl compounds, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers, phosphonic acid-containing; proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT Sulfonic acids, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers; proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT Fuel cell electrodes
Fuel cell separators
Ionic conductors
Polyelectrolytes
(proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT Polybenzimidazoles
Polybenzothiazoles
Polybenzoxazoles
Polyoxadiazoles
Polyquinoxalines
RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT Polymer blends
RL: TEM (Technical or engineered material use); USES (Uses) (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT Polymers, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (sulfo-containing; proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT 13598-36-2DP, Phosphonic acid, vinyl group-containing, polymers
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for fuel cells)

IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers 289-95-2DP, Pyrimidine, polymers 25734-65-0P 27233-57-4P 28576-59-2P 32075-68-6P 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P 55861-56-8P 56713-21-4P 82370-43-2P, Polyimidazole 96926-85-1P 111404-83-2P 111404-85-4P 132937-69-0P 240799-37-5P 268567-69-7P 368871-22-1P 471256-97-0P

471256-98-1P 471256-99-2P 471257-00-8P
 471257-01-9P 471257-02-0P 472960-34-2P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM
 (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing phosphonic acid-containing
 vinyl polymers for fuel cells)

IT 110-86-1DP, Pyridine, polymers 25734-65-0P

27233-57-4P 28576-59-2P 32075-68-6P

32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 96926-85-1P

111404-83-2P 132937-69-0P 240799-37-5P

268567-69-7P 471256-97-0P 471256-98-1P

471256-99-2P 471257-00-8P 471257-01-9P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM
 (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing phosphonic acid-containing
 vinyl polymers for fuel cells)

RN 110-86-1 HCPLUS

CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RN 27233-57-4 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 28576-59-2 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 32109-42-5 HCAPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 96926-85-1 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA INDEX NAME)

RN 111404-83-2 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 471256-97-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

L48 ANSWER 8 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2004:117170 HCAPLUS

DN 140:165008

TI Proton-conductive polyazole membranes containing polymers having phosphonic acid and sulfonic acid groups and their application in fuel cells

IN Galundann, Gordon; Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 32 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235357	A1	20040212	DE 2002-10235357	20020802
	CA 2494530	AA	20040219	CA 2003-2494530	20030731
	WO 2004015803	A1	20040219	WO 2003-EP8462	20030731
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	EP 1527494	A1	20050504	EP 2003-784121	20030731
	EP 1527494	B1	20051228		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	JP 2005534785	T2	20051117	JP 2004-526831	20030731
	AT 314735	E	20060115	AT 2003-784121	20030731
	US 2005244695	A1	20051103	US 2005-523373	20050323
PRAI	DE 2002-10235356	A	20020802		
	DE 2002-10235357	A	20020802		
	WO 2003-EP8462	W	20030731		

AB The present invention concerns proton-conductive polymer membranes containing polymers having sulfonic acid and phosphonic acid groups, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals , or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in mixts. containing vinyl-containing sulfonic acids and vinyl-containing phosphonic acids to form a solution and/or

a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole; (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing sulfonic acids and vinyl-containing phosphonic acids existing in the layer from step (C).

IC ICM C08J005-22

ICS C08L079-00; H01M008-02; B01D071-58

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 52

ST proton conductive polyazole membrane fuel cell; vinyl sulfonic acid phosphonic acid polymer contg polyazole membrane

IT Polymerization
 (cyclopolyrn.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing sulfonic acids and vinyl-containing phosphonic acids in manufacture of proton-containing membranes)

IT Polymerization
 (of phosphonic acid-containing vinyl compds. and sulfonic acid-containing vinyl compds. in presence of polyazoles in manufacture of proton conductive membranes for fuel cells)

IT Vinyl compounds, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers, sulfonic acid- and phosphonic acid-containing; proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Sulfonic acids, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers; proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Fuel cell electrodes
 Fuel cell separators
 Ionic conductors
 Polyelectrolytes
 (proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinoxalines
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polymer blends
 RL: TEM (Technical or engineered material use); USES (Uses) (proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polymers, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (sulfo-containing; proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT 13598-36-2DP, Phosphonic acid, vinyl group-containing, polymers
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers 289-95-2DP, Pyrimidine, polymers 25734-65-0P 27233-57-4P 28576-59-2P 32075-68-6P 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P 55861-56-8P 56713-21-4P 82370-43-2P, Polyimidazole 96926-85-1P 111404-83-2P 111404-85-4P 132937-69-0P 240799-37-5P 268567-69-7P 368871-22-1P 471256-97-0P 471256-98-1P 471256-99-2P 471257-00-8P 471257-01-9P 471257-02-0P 472960-34-2P
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM

(Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing vinyl polymers having
 phosphonic acid and sulfonic acid groups for fuel cells)

IT 110-86-1DP, Pyridine, polymers 25734-65-0P
 27233-57-4P 28576-59-2P 32075-68-6P
 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 96926-85-1P
 111404-83-2P 132937-69-0P 240799-37-5P
 268567-69-7P 471256-97-0P 471256-98-1P
 471256-99-2P 471257-00-8P 471257-01-9P
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM
 (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing vinyl polymers having
 phosphonic acid and sulfonic acid groups for fuel cells)

RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX
 NAME)

RN 27233-57-4 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene]
 (9CI) (CA INDEX NAME)

RN 28576-59-2 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX
 NAME)

RN 32075-68-6 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 32109-42-5 HCAPLUS
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME).

RN 96926-85-1 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA INDEX NAME)

RN 111404-83-2 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCPLUS
CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCPLUS
CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCPLUS
CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 471256-97-0 HCPLUS
CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

L48 ANSWER 9 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2004:117169 HCAPLUS

DN 140:165007

TI Proton-conductive polymer membrane based on sulfonic acid-containing polymers and their application in fuel cells

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 31 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235356	A1	20040212	DE 2002-10235356	20020802
	CA 2494530	AA	20040219	CA 2003-2494530	20030731
	WO 2004015803	A1	20040219	WO 2003-EP8462	20030731

W: BR, CA, CN, JP, KR, MX, US
 RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IT, LU, MC, NL, PT, RO, SE, SI, SK, TR

EP 1527494 A1 20050504 EP 2003-784121 20030731

EP 1527494 B1 20051228

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK

AT 314735 E 20060115 AT 2003-784121 20030731

US 2005244695 A1 20051103 US 2005-523373 20050323

PRAI DE 2002-10235356 A 20020802

DE 2002-10235357 A 20020802

WO 2003-EP8462 W 20030731

AB The present invention concerns proton-conductive polymer membranes containing sulfonic acid-containing polymers, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals, or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in a vinyl-containing sulfonic acid to form a solution and/or a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole, (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing sulfonic acid existing in the layer from step (C).

IC ICM C08J005-22

ICS C08L079-06; H01M008-02; B01D071-58

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 52

ST proton conductive polyazole membrane fuel cell; vinyl sulfonic acid polymer contg polyazole membrane

IT Polymerization

(cyclopolymer.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing sulfonic acids in manufacture of proton-conducting

membranes for fuel cells)

IT Polymerization
(of vinyl containing sulfonic acids in presence of polyazoles in manufacture of proton conductive membranes for fuel cells)

IT Vinyl compounds, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers, sulfo-containing; proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT Sulfonic acids, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers; proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT Fuel cell electrodes
Fuel cell separators
Ionic conductors
Polyelectrolytes
(proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT Polybenzimidazoles
Polybenzothiazoles
Polybenzoxazoles
Polyoxadiazoles
Polyquinoxalines
RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT Polymer blends
RL: TEM (Technical or engineered material use); USES (Uses)
(proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT Polymers, uses
RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (sulfo-containing; proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers 289-95-2DP, Pyrimidine, polymers 25734-65-0P 27233-57-4P
28576-59-2P 32075-68-6P 32109-42-5P,
Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P 55861-56-8P 56713-21-4P
82370-43-2P, Polyimidazole 96926-85-1P 111404-83-2P
111404-85-4P 132937-69-0P 240799-37-5P
268567-69-7P 368871-22-1P 471256-97-0P
471256-98-1P 471256-99-2P 471257-00-8P
471257-01-9P 471257-02-0P 472960-34-2P
RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT 110-86-1DP, Pyridine, polymers 25734-65-0P
27233-57-4P 28576-59-2P 32075-68-6P
32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 96926-85-1P
111404-83-2P 132937-69-0P 240799-37-5P
268567-69-7P 471256-97-0P 471256-98-1P
471256-99-2P 471257-00-8P 471257-01-9P
RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM

(Technical or engineered material use); PREP (Preparation); USES (Uses)
(proton-conductive polyazole membranes containing sulfonic acid-containing
vinyl polymers for fuel cells)

RN 110-86-1 HCAPLUS

CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RN 27233-57-4 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 28576-59-2 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 32109-42-5 HCPLUS
CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 96926-85-1 HCPLUS
CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyi) (9CI) (CA INDEX NAME)

RN 111404-83-2 HCPLUS
CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyi] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCPLUS
CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyi) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 471256-97-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

L48 ANSWER 10 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2004:36785 HCAPLUS

DN 140:96885

Applicants

TI Proton conductive solid polymer electrolyte
for electrochemical cell

IN Komiya, Teruaki

PA Honda Giken Kabushiki Kaisha, Japan

SO Eur. Pat. Appl., 14 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1381107	A2	20040114	EP 2003-254383	20030710
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2004047232	A2	20040212	JP 2002-201718	20020710
	US 2004013925	A1	20040122	US 2003-616537	20030709

PRAI JP 2002-201718 A 20020710

AB A material such as imidazole (nitrogen-containing heterocyclic compound), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole number of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liquid such as phosphoric acid and sulfuric acid to prepare a proton conductive solid polymer electrolyte.

IC ICM H01M010-40

ICS H01M006-18; C08G073-18

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 72

ST electrochem cell proton conductive solid polymer electrolyte; fuel cell proton conductive solid polymer electrolyte; electrolyzer proton conductive solid polymer electrolyte

IT Azines

RL: DEV (Device component use); USES (Uses)
(diazine; proton conductive solid polymer electrolyte for electrochem. cell)

IT Heterocyclic compounds

RL: DEV (Device component use); USES (Uses)
(nitrogen; proton conductive solid polymer electrolyte for electrochem. cell)

IT Electrochemical cells

Electrolytic cells

Fuel cell electrolytes

Solid electrolytes

(proton conductive solid polymer electrolyte for electrochem. cell)

IT Polybenzimidazoles

RL: DEV (Device component use); USES (Uses)
(proton conductive solid polymer electrolyte for electrochem. cell)

IT Ionic conductivity

(proton; proton conductive solid polymer electrolyte for electrochem. cell)

IT Fuel cells

(solid electrolyte; proton conductive solid polymer electrolyte for electrochem. cell)

IT 7732-18-5, Water, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical

process); PROC (Process)
 (electrolysis; proton conductive solid polymer
 electrolyte for electrochem. cell)

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
 IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1,
 Pyrazole 288-32-4, Imidazole, uses 9002-98-6 9003-47-8
 , Polyvinylpyridine 25232-42-2, Polyvinylimidazole
 25233-30-1 25823-41-0, Poly(1-vinylpyrazole)
 32109-42-5, Poly(1H-benzimidazole-2,5-diyl)
 50641-39-9 131714-35-7
 RL: DEV (Device component use); USES (Uses)
 (proton conductive solid polymer
 electrolyte for electrochem. cell)

IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (proton conductive solid polymer
 electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation 7782-44-7P, Oxygen, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (proton conductive solid polymer
 electrolyte for electrochem. cell)

IT 9002-98-6 9003-47-8, Polyvinylpyridine
 25232-42-2, Polyvinylimidazole 25233-30-1
 25823-41-0, Poly(1-vinylpyrazole) 32109-42-5, Poly(1H-
 benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
 RL: DEV (Device component use); USES (Uses)
 (proton conductive solid polymer
 electrolyte for electrochem. cell)

RN 9002-98-6 HCAPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 9003-47-8 HCAPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
CMF C7 H7 N
CCI IDS

D1- CH=CH₂

RN 25232-42-2 HCPLUS

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 25823-41-0 HCPLUS

CN 1H-Pyrazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 20173-98-2

CMF C5 H6 N2

RN 32109-42-5 HCPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 50641-39-9 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylphenylene) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 131714-35-7 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)phenylene] (9CI)
 (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L48 ANSWER 11 OF 15 HCPLUS COPYRIGHT 2006 ACS on STN

AN 2003:550635 HCPLUS

DN 139:119902

TI Polymer electrolyte fuel cells employing conducting redox polymers as electrode catalysts

IN Abe, Masao; Ishibashi, Kuniaki

PA Nitto Denko Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

PI JP 2003203641 A2 20030718 JP 2001-401949 20011228

PRAI JP 2001-401949 20011228

AB The fuel cell employs a conducting redox polymer as an electrode catalyst, and a proton-exchange electrolyte membrane made of a hydrocarbon polymer having (hetero atom-containing framework and) acid groups. The fuel cell shows high electromotive force and high discharge d., and can be economically manufactured by employing the hydrocarbyl polymer electrolytes.

IC ICM H01M004-90

ICS H01M004-92; H01M008-10

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 67, 76

ST fuel cell electrode redox catalyst conducting polymer; doped conducting polymer redox catalyst fuel cell electrode; sulfonated polymer fuel cell proton exchange electrolyte; polyaniline conductive polymer fuel cell electrode catalyst; polypyridine conductive polymer fuel cell electrode catalyst; polyindole conductive polymer fuel cell electrode catalyst; Polyphenylquinoxaline conductive polymer fuel cell electrode catalyst

IT Fuel cell electrodes
 (conducting polymer redox catalysts in; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

- IT Redox reaction catalysts
(conducting polymers; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Phenolic resins, uses
RL: CAT (Catalyst use); DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(novolak, phenolsulfonic acid-based, dopant, in conducting redox polymers; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Doping
(of conducting redox polymer; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Fuel cell electrolytes
(polymer; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Polyquinoxalines
RL: CAT (Catalyst use); DEV (Device component use); USES (Uses)
(polyphenylquinoxalines, redox catalysts in electrodes; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Polyanilines
RL: CAT (Catalyst use); DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
(polyvinylsulfonic acid-doped, redox catalysts in electrodes; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Conducting polymers
(redox catalysts, in electrodes; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Fuel cells
(solid **electrolyte**, polymer **electrolyte**; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT Polybenzimidazoles
RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
(sulfonated, **proton-exchange electrolytes**; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT 26101-52-0, Polyvinylsulfonic acid 50973-35-8, Formaldehyde-phenolsulfonic acid copolymer
RL: CAT (Catalyst use); DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(dopant, in polyaniline redox catalysts in electrodes; polymer **electrolyte** fuel cells containing conducting redox polymer as electrode catalyst and **proton-exchange electrolyte** made of hydrocarbyl polymer having acid groups)
- IT 7664-93-9, Sulfuric acid, uses

RL: CAT (Catalyst use); DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
 (dopant, in polyindole redox catalysts in electrodes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

IT 82451-55-6P, Polyindole
 RL: CAT (Catalyst use); DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (doped, redox catalysts in electrodes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

IT 25233-30-1P, Polyaniline
 RL: CAT (Catalyst use); DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (polyvinylsulfonic acid-doped, redox catalysts in electrodes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

IT 9003-31-0DP, Polyisoprene, sulfonated 9003-70-7DP, Divinylbenzene-styrene copolymer, sulfonated 76067-46-4P
 RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (proton-exchange electrolytes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

IT 25013-01-8, Polypyridine
 RL: CAT (Catalyst use); DEV (Device component use); USES (Uses)
 (redox catalysts in electrodes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

IT 25233-30-1P, Polyaniline
 RL: CAT (Catalyst use); DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (polyvinylsulfonic acid-doped, redox catalysts in electrodes; polymer electrolyte fuel cells containing conducting redox polymer as electrode catalyst and proton-exchange electrolyte made of hydrocarbyl polymer having acid groups)

RN 25233-30-1 HCAPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

L48 ANSWER 12 OF 15 HCAPLUS COPYRIGHT 2006 ACS on STN
 AN 1998:640445 HCAPLUS
 DN 129:262791

TI Electrochemical cell having polymer blend electrolyte
 IN Li, Changming; Lian, Ke Keryn; Wu, Han; Chason, Marc
 PA Motorola Inc., USA
 SO PCT Int. Appl., 16 pp.
 CODEN: PIXXD2

X

DT Patent
 LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9842037	A1	19980924	WO 1998-US5123	19980316

W: CA, CN, JP, KR, MX
 RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

PRAI US 1997-820465 A 19970317

AB An electrochem. cell, a battery or a capacitor, is provided with 1st and 2nd electrodes, and a solid polymer electrolyte disposed between them. The electrodes may either be of the same or different materials and may be fabricated from Ru, Ir, Co, W, V, Fe, Mo, Hf, Ni, Ag, and/or Zn. The solid polymer electrolyte is in intimate contact with both the anode and the cathode, and is made from a homogeneous polymer blend of ≥2 polymers which are all ion conducting, and containing doped or dispersed an electrolyte-active species.

IC ICM H01M006-18

ICS H01M008-10; H01G009-025

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

ST electrochem cell polymer blend electrolyte; battery polymer blend electrolyte; capacitor polymer blend electrolyte

IT Epoxy resins, uses

Polyurethanes, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (acrylates; electrochem. cell having polymer blend electrolyte)

IT Polymer blends

RL: DEV (Device component use); USES (Uses)
 (electrochem. cell having electrolyte of)

IT Phenolic resins, uses

Polyamides, uses

Polybenzimidazoles

Polyimides, uses

Polyoxyalkylenes, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (electrochem. cell having polymer blend electrolyte)

IT Capacitors

Electrochemical cells
 (having polymer blend electrolyte)

IT Battery electrolytes

(polymer blend)

IT Ionomers

RL: TEM (Technical or engineered material use); USES (Uses)
 (polyoxyalkylenes, fluorine- and sulfo-containing; electrochem. cell having polymer blend electrolyte)

IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6 9003-01-4,

Poly(acrylic acid) 9003-05-8, Polyacrylamide 9003-35-4,

Formaldehyde-phenol copolymer 9003-39-8, Poly(vinylpyrrolidone)

9003-47-8, Poly(vinylpyridine) 24981-14-4, Poly(vinylfluoride)

25249-16-5, Poly(2-hydroxyethyl methacrylate) 25322-68-3, Polyethylene

glycol 25585-49-3

RL: TEM (Technical or engineered material use); USES (Uses)
(electrochem. cell having polymer blend electrolyte)

IT 7439-88-5, Iridium, uses 7439-89-6, Iron, uses 7439-92-1, Lead, uses
7439-96-5, Manganese, uses 7439-98-7, Molybdenum, uses 7440-02-0,
Nickel, uses 7440-18-8, Ruthenium, uses 7440-22-4, Silver, uses
7440-33-7, Tungsten, uses 7440-48-4, Cobalt, uses 7440-58-6, Hafnium,
uses 7440-62-2, Vanadium, uses 7440-66-6, Zinc, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(electrochem.-cell electrodes)

IT 9002-98-6 9003-47-8, Poly(vinylpyridine)
RL: TEM (Technical or engineered material use); USES (Uses)
(electrochem. cell having polymer blend electrolyte)

RN 9002-98-6 HCPLUS

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 9003-47-8 HCPLUS
CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
CMF C7 H7 N
CCI IDS

D1—CH=CH₂

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L48 ANSWER 13 OF 15 HCPLUS COPYRIGHT 2006 ACS on STN X
AN 1998:421134 HCPLUS
DN 129:61705
TI Bipolar electrochemical charge storage devices and their fabrication
IN Li, Changming; Jung, Richard H.; Nerz, John
PA Motorola, Inc., USA
SO U.S., 9 pp.
CODEN: USXXAM
DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5768090 WO 9825282 W: JP	A A1	19980616 19980611	US 1996-755876 WO 1997-US21838	19961202 19971126
PRAI	US 1996-755876	A	19961202		
AB	An electrochem. capacitor cell is provided with 1st and 2nd electrodes, and a solid polymer electrolyte is disposed between them. The electrodes may be either the same or different materials and may be fabricated from Ru, Ir, Co, W, V, Fe, Mo, Hf, Ni, Ag, Zn, and combinations thereof. The solid polymer electrolyte is in intimate contact with both electrodes, and is made from a polymeric support structure having an electrolyte active species dispersed in it. Also a method of fabricating a bipolar electrochem. charge storage device by assembling at least the 1st and 2nd bipolar subassemblies together with the 2nd layer of electrode active material for the 1st bipolar subassembly in direct contact with the 1st layer of electrode active material for the 2nd bipolar subassembly without a current collector disposed between them is described.				
IC	ICM H01G009-00				
INCL	361523000				
CC	76-10 (Electric Phenomena) Section cross-reference(s): 38, 52, 72				
ST	bipolar electrochem charge storage device manuf; polymer electrolyte electrochem capacitor manuf				
IT	Polyurethanes, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (acrylated; fabrication of bipolar electrochem. charge storage devices containing)				
IT	Epoxy resins, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (acrylates; fabrication of bipolar electrochem. charge storage devices containing)				
IT	Capacitors (electrochem.; fabrication of bipolar electrochem. charge storage devices)				
IT	Phenolic resins, processes Polybenzimidazoles Polyoxyalkylenes, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (fabrication of bipolar electrochem. charge storage devices containing)				
IT	Electrolytes (fabrication of bipolar electrochem. charge storage devices having polymer electrolytes)				
IT	Polymers, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (fabrication of bipolar electrochem. charge storage devices having polymer electrolytes)				
IT	Polyoxyalkylenes, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (fluorine- and sulfo-containing, ionomers; fabrication of bipolar electrochem. charge storage devices containing)				
IT	Polyoxyalkylenes, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)				

(fluorine-containing, sulfo-containing, ionomers; fabrication of bipolar electrochem. charge storage devices containing)

IT Fluoropolymers, processes
Fluoropolymers, processes
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(polyoxyalkylene-, sulfo-containing, ionomers; fabrication of bipolar electrochem. charge storage devices containing)

IT Ionomers
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(polyoxyalkylenes, fluorine- and sulfo-containing; fabrication of bipolar electrochem. charge storage devices containing)

IT 1310-58-3, Potassium hydroxide, processes 1310-65-2, Lithium hydroxide (LiOH) 1310-73-2, Sodium hydroxide (NaOH), processes 7439-88-5, Iridium, processes 7439-89-6, Iron, processes 7439-98-7, Molybdenum, processes 7440-02-0, Nickel, processes 7440-18-8, Ruthenium, processes 7440-22-4, Silver, processes 7440-33-7, Tungsten, processes 7440-48-4, Cobalt, processes 7440-58-6, Hafnium, processes 7440-62-2, Vanadium, processes 7440-66-6, Zinc, processes 7647-01-0, Hydrogen chloride, processes 7664-38-2, Phosphoric acid, processes 7664-93-9, Sulfuric acid, processes 7697-37-2, Nitric acid, processes 9002-89-5, Polyvinyl alcohol 9002-98-6 9003-01-4, Polyacrylic acid 9003-05-8, Polyacrylamide 9003-06-9, Acrylamide-acrylic acid copolymer 9003-35-4, Phenol-formaldehyde copolymer 9003-39-8, Poly(vinyl pyrrolidone) 9003-47-8, Poly(vinyl pyridine) 12036-10-1, Ruthenium oxide (RuO₂) 24981-14-4, Poly(vinyl fluoride) 25249-16-5, Poly(2-hydroxyethyl methacrylate) 25322-68-3, Polyethylene glycol 28390-30-9 29011-20-9 85885-77-4, Cerium hydroxide (CeOH)
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(fabrication of bipolar electrochem. charge storage devices containing)

IT 9002-98-6 9003-47-8, Poly(vinyl pyridine)
29011-20-9
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(fabrication of bipolar electrochem. charge storage devices containing)

RN 9002-98-6 HCPLUS
CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 9003-47-8 HCPLUS
CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
CMF C7 H7 N
CCI IDS

D1- CH=CH₂

RN 29011-20-9 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl[1,1'-biphenyl]-3,3'-diyl) (9CI)
 (CA INDEX NAME)

Formula I

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT.

L48 ANSWER 14 OF 15 HCPLUS COPYRIGHT 2006 ACS on STN
 AN 1998:221042 HCPLUS
 DN 128:244948
 TI Preparation of acid-doped polymer films as electrolytes in fuel cells
 IN Sansone, Michael J.; Onorato, Frank J.; French, Stuart M.; Marikar, Faruq
 PA Hoechst Celanese Corp., USA; Sansone, Michael J.; Onorato, Frank J.;
 French, Stuart M.; Marikar, Faruq
 SO PCT Int. Appl., 20 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9814505	A1	<u>19980409</u>	WO 1997-US17790	19970929
	W: AU, BR, CA, CN, JP, KP, KR, MX, US RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	CA 2266101	AA	19980409	CA 1997-2266101	19970929
	AU 9748939	A1	19980424	AU 1997-48939	19970929
	BR 9712247	A	19990824	BR 1997-12247	19970929
	EP 954544	A1	19991110	EP 1997-911615	19970929
	EP 954544	B1	20020327		
	R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, LU, NL, SE, PT, IE, FI				
	JP 2001517254	T2	20011002	JP 1998-516869	19970929
	AT 215107	E	20020415	AT 1997-911615	19970929
	ES 2175369	T3	20021116	ES 1997-911615	19970929
	TW 402616	B	20000821	TW 1997-86114314	19971001
	KR 2000048799	A	20000725	KR 1999-702790	19990331
PRAI	US 1996-27169P	P	19961001		
	WO 1997-US17790	W	19970929		
AB	The acid-doped polymer membranes such as polybenzimidazole are prepared by coagulating a polymeric dope solution in a liquid coagulation bath (containing solvent and/or nonsolvent); submerging the resulting membrane into a				

nonsolvent bath to remove any residual solvent; placing the membrane into an acid solution, wherein the pores are filled with the acid solution; and drying the membrane to remove residual nonsolvent which collapses the porous structure entrapping the acid and forming a dense film. An alternative method involves coagulating a polymer solution directly into an acid/solvent/nonsolvent mixture to produce a porous membrane which imbibes the acid solution and dried. Thus, a dope solution containing 10 g poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and 90 g dimethylacetamide was coagulated in water to form a membrane, which was soaked in a 85% of phosphoric acid aq solution at 23° for 2 min, and dried to give a dense film containing 52% acid.

- IC ICM C08J005-22
 ICS H01M008-10
 CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 52, 76
 ST acid doped polybenzimidazole electrolyte fuel cell; polyphenylene benzimidazole doped film fuel cell; phosphoric acid doped polyphenylene benzimidazole film
 IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinoxalines
 Polythiazoles
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in fuel cells)
 IT Electrolytic cells
 (membrane; preparation of acid-doped polymer films for)
 IT Fuel cell electrolytes
 Fuel cells
 (preparation of acid-doped polymer films as electrolytes in fuel cells)
 IT 110-86-1D, Pyridine, derivs., polymers, uses 288-32-4D,
 Imidazole, derivs., polymers 289-95-2D, Pyrimidine, derivs., polymers
 9042-50-6 25734-65-0 26101-19-9, 3,3'-Diaminobenzidine-
 isophthalic acid copolymer
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in fuel cells)
 IT 7664-38-2, Phosphoric acid, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polybenzimidazole doped with; preparation of acid-doped polymer films as electrolytes in fuel cells)
 IT 75-75-2, Methanesulfonic acid 7664-93-9, Sulfuric acid, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polymers doped with; preparation of acid-doped polymer films as electrolytes in fuel cells)
 IT 110-86-1D, Pyridine, derivs., polymers, uses 288-32-4D,
 Imidazole, derivs., polymers 25734-65-0
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in fuel cells)
 RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 25734-65-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L48 ANSWER 15 OF 15 HCPLUS COPYRIGHT 2006 ACS on STN

AN 1992:618623 HCPLUS

DN 117:218623

TI Manufacture of graphite films with flexibility and toughness

IN Ebara, Jun; Nishiki, Naomi; Nakamura, Katsuyuki; Murakami, Mutsuaki

PA Matsushita Electric Industrial Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04149012	A2	19920522	JP 1990-273994	19901011
	JP 3041933	B2	20000515		

PRAI JP 1990-273994 19901011

AB The graphite films, useful for electrodes, heating elements, and gaskets, are manufactured by alternately laminating polymer films and graphite films (as separators) for preventing contact between the polymer films, and heat treating at $\geq 2400^\circ$. Optionally, the laminate is wound on graphite-type C cylinder, and heat treated at 2400° . The polymer films (thickness $\leq 400 \mu\text{m}$) are polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, aromatic polyimides, aromatic polyamide, polyphenylenebisimidazole, polyphenylenebenzobisimidazole, polythiazole, polythiazole and/or poly-para-phenylenevinylene. Thus, graphite films having tensile strength 518 kg/cm² were manufactured from poly-para-phenylene-1,3,4-oxadiazole films

(thickness 200 μm) by the process.

IC ICM C01B031-04
 ICS C04B035-54
 CC 57-8 (Ceramics)
 Section cross-reference(s): 49, 72, 76

ST graphite film flexibility toughness; electrode gasket graphite film; heating element graphite film

IT Polybenzoxazoles
 RL: USES (Uses)
 (graphite films from, with flexibility and toughness, for heating element)

IT Electrodes
 Gaskets
 (graphite, with flexibility and toughness, manufacture of)

IT Polyamides, uses
 Polyimides, uses
 RL: USES (Uses)
 (aromatic, graphite films from, with flexibility and toughness, for heating element)

IT Polymers, uses
 RL: USES (Uses)
 (polybenzothiazoles, graphite films from, with flexibility and toughness, for heating element)

IT Polymers, uses
 RL: USES (Uses)
 (polyoxadiazoles, graphite films from, with flexibility and toughness, for heating element)

IT Polymers, uses
 RL: USES (Uses)
 (polythiazoles, graphite films from, with flexibility and toughness, for heating element)

IT 7782-42-5P, Graphite, preparation
 RL: PREP (Preparation)
 (films, with flexibility and toughness, manufacture of, for electrodes and heating elements and gaskets)

IT 95-16-9D, Benzothiazole, derivs., polymers 273-53-0, Benzoxazole 288-47-1D, Thiazole, derivs., polymers 288-99-3D, 1,3,4-Oxadiazole, derivs., polymer 25036-53-7 26009-24-5, Poly(1,4-phenylene-1,2-ethenediyl) 26023-46-1 50641-39-9, Poly(phenylenebenzimidazole) 90940-20-8 131714-35-7 143204-28-8
 RL: USES (Uses)
 (graphite films from, with flexibility and toughness, for heating element)

IT 50641-39-9, Poly(phenylenebenzimidazole) 131714-35-7
 RL: USES (Uses)
 (graphite films from, with flexibility and toughness, for heating element)

RN 50641-39-9 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylphenylene) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 131714-35-7 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)phenylene] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

=> => d que

L2 20 SEA FILE=REGISTRY ABB=ON (110-86-1/BI OR 119-65-3/BI OR
 120-72-9/BI OR 120-73-0/BI OR 131714-35-7/BI OR 1333-74-0/BI
 OR 25232-42-2/BI OR 25233-30-1/BI OR 25823-41-0/BI OR 288-13-1/
 BI OR 288-32-4/BI OR 32109-42-5/BI OR 50641-39-9/BI OR
 7664-38-2/BI OR 7664-93-9/BI OR 7732-18-5/BI OR 7782-44-7/BI
 OR 9002-98-6/BI OR 9003-47-8/BI OR 91-22-5/BI)
L4 8 SEA FILE=REGISTRY ABB=ON L2 AND PMS/CI
L5 2 SEA FILE=REGISTRY ABB=ON L4 AND BENZIMID?
L6 6 SEA FILE=REGISTRY ABB=ON L4 NOT L5
L9 270 SEA FILE=REGISTRY ABB=ON 1409.114.5/RID
L10 103 SEA FILE=REGISTRY ABB=ON L9 AND PMS/CI
L11 12 SEA FILE=REGISTRY ABB=ON L2 NOT L4
L12 7 SEA FILE=REGISTRY ABB=ON L11 AND 1-2/NR
L20 79 SEA FILE=HCAPLUS ABB=ON L5
L21 22338 SEA FILE=HCAPLUS ABB=ON L6
L22 4 SEA FILE=HCAPLUS ABB=ON L20 AND L21
L23 110325 SEA FILE=REGISTRY ABB=ON 333.401.37/RID
L24 1405 SEA FILE=REGISTRY ABB=ON L23 AND PMS/CI
L25 1391 SEA FILE=HCAPLUS ABB=ON L24
L26 19 SEA FILE=HCAPLUS ABB=ON L21 AND L25
L27 20 SEA FILE=HCAPLUS ABB=ON L22 OR L26
L30 125 SEA FILE=HCAPLUS ABB=ON L10
L31 0 SEA FILE=HCAPLUS ABB=ON L21 AND L30
L32 16178 SEA FILE=HCAPLUS ABB=ON L12/D
L33 4 SEA FILE=HCAPLUS ABB=ON L30 AND L32
L34 18 SEA FILE=HCAPLUS ABB=ON L25 AND L32
L36 36 SEA FILE=HCAPLUS ABB=ON L27 OR L31 OR L33 OR L34
L37 11 SEA FILE=HCAPLUS ABB=ON L36 AND ELECTROCHEM?/SC, SX
L40 385 SEA FILE=HCAPLUS ABB=ON ?BENZIMIDAZ? AND L32
L41 111 SEA FILE=HCAPLUS ABB=ON ?BENZIMIDAZ? AND L21
L42 486 SEA FILE=HCAPLUS ABB=ON L40 OR L41
L43 34 SEA FILE=HCAPLUS ABB=ON L42 AND ELECTROCHEMICAL?/SC
L44 24 SEA FILE=HCAPLUS ABB=ON L43 AND ELECTROLYT?
L45 14 SEA FILE=HCAPLUS ABB=ON L43 AND PROTON?
L46 25 SEA FILE=HCAPLUS ABB=ON L44 OR L45
L47 7 SEA FILE=HCAPLUS ABB=ON L46 AND SOLID?
L48 15 SEA FILE=HCAPLUS ABB=ON L37 OR L47
L49 91966 SEA FILE=HCAPLUS ABB=ON L12
L50 7 SEA FILE=HCAPLUS ABB=ON L49 AND L20
L51 35 SEA FILE=HCAPLUS ABB=ON L49 AND L25
L52 35 SEA FILE=HCAPLUS ABB=ON L50 OR L51
L53 2438 SEA FILE=HCAPLUS ABB=ON L49 AND ?BENZIMIDAZ?
L54 55 SEA FILE=HCAPLUS ABB=ON L53 AND ELECTROLYT?
L55 85 SEA FILE=HCAPLUS ABB=ON L52 OR L54
L56 16 SEA FILE=HCAPLUS ABB=ON L55 AND ELECTROCHEMICAL?/SC
L57 27 SEA FILE=HCAPLUS ABB=ON L48 OR L56
L58 12 SEA FILE=HCAPLUS ABB=ON L57 NOT L48

=> d 158 bib abs ind hitstr 1-12

L58 ANSWER 1 OF 12 HCAPLUS COPYRIGHT 2006 ACS on STN
AN 2006:367267 HCAPLUS
DN 144:373163
TI Substituted nitrogen heterocycles as proton carriers for water-free proton
exchange membranes for fuel cells
IN Goddard, William A.; Deng, Wei-Qiao; Molinero, Valeria
PA California Institute of Technology, USA
SO U.S. Pat. Appl. Publ., 16 pp.
CODEN: USXXCO

DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2006083976	A1	20060420	US 2005-148766	20050608
PRAI	US 2004-578034P	P	20040609		
AB	A fuel cell is provided comprising an anode, a cathode, a catalyst, and a polymer electrolyte membrane comprising a heterocyclic compound with a nitrogen heteroatom and at least one electron-withdrawing substituent. The fuel cell operates at temps. above about 100°., preferably above about 150°. The heterocyclic compound is preferably a substituted imidazole or benzimidazole, most preferably a fluorinated imidazole. The heterocyclic compound is preferably liquid at the fuel cell operating temperature. The catalyst preferably contains platinum. The polymer electrolyte membrane preferably has a conductivity of 10-2 S/cm ² or higher. For efficient fuel cell operation the catalyst should not be poisoned to an undue degree by the heterocyclic compound, and so the binding energy of the heterocyclic compound to the catalyst should be low.				
INCL	429033000; 521027000				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
ST	Section cross-reference(s): 27				
IT	fuel cell proton exchange membrane substituted nitrogen heterocycle				
IT	Catalysts (electrocatalysts; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Polyoxyalkylenes, uses RL: DEV (Device component use); USES (Uses) (fluorine- and sulfo-containing, ionomers; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Heterocyclic compounds RL: DEV (Device component use); USES (Uses) (nitrogen; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Fluoropolymers, uses RL: DEV (Device component use); USES (Uses) (polyoxyalkylene-, sulfo-containing, ionomers; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Ionomers RL: DEV (Device component use); USES (Uses) (polyoxyalkylenes, fluorine- and sulfo-containing; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Fuel cells (proton exchange membrane; substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	Fuel cell electrolytes (substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	7440-06-4, Platinum, uses 7440-18-8, Ruthenium, uses RL: CAT (Catalyst use); USES (Uses) (substituted nitrogen heterocycles as proton carriers for water-free proton exchange membranes for fuel cells)				
IT	51-17-2D, Benzimidazole, substituted 288-32-4D, Imidazole, substituted RL: DEV (Device component use); USES (Uses) (substituted nitrogen heterocycles as proton carriers for water-free				

proton exchange membranes for fuel cells)

IT 630-08-0, Carbon monoxide, miscellaneous
 RL: MSC (Miscellaneous)
 (substituted nitrogen heterocycles as proton carriers for water-free
 proton exchange membranes for fuel cells)

IT 7440-44-0, Carbon, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (substituted nitrogen heterocycles as proton carriers for water-free
 proton exchange membranes for fuel cells)

IT 288-32-4D, Imidazole, substituted
 RL: DEV (Device component use); USES (Uses)
 (substituted nitrogen heterocycles as proton carriers for water-free
 proton exchange membranes for fuel cells)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

L58 ANSWER 2 OF 12 HCAPLUS COPYRIGHT 2006 ACS on STN
 AN 2006:97621 HCAPLUS
 DN 144:174271
 TI Fuel cell systems/stacks showing stable open-circuit voltage and cell resistance, their membrane-electrode assemblies (MEA), and manufacture thereof
 IN Nakafuji, Kunihiro; Muneuchi, Atsuo
 PA Sanyo Electric Co., Ltd., Japan; Samsung Electronics Co., Ltd.; Samsung SDI Co., Ltd.
 SO Jpn. Kokai Tokkyo Koho, 12 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI JP 2006032275	A2	20060202	JP 2004-213072	20040721
CN 1725538	A	20060125	CN 2005-10084796	20050721
PRAI JP 2004-213072	A	20040721		

AB Mixing carbon powders and binders by wet process, rolling the mixts. and drying to form carbon sheets, and arranging them between electrolytic membranes and anodes and/or cathodes to give the MEA. The electrolytic layers consist of basic polymers (e.g., powders with volume-average diameter 10-100 µm) and strong acids. Fuel cell systems employing the MEA show stable open-circuit voltage and cell resistance under non humidification condition.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

ST fuel cell MEA carbon interlayer electrolyte retaining; gas barrier carbon interlayer fuel cell MEA; strong acid basic polymer electrolyte fuel cell

IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles

Polyquinolines
 Polyquinoxalines
 Polythiazoles
 RL: DEV (Device component use); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT Fluoropolymers, uses
 RL: DEV (Device component use); USES (Uses)
 (binders; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT Fuel cells
 (polymer electrolyte; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT 110-86-1D, Pyridine, polymers 129-00-0D, Pyrene, tetraza, polymers 288-32-4D, Imidazole, polymers 288-42-6D, Oxazole, polymers 289-06-5D, Thiadiazole, polymers 289-95-2, Pyrimidine 1337-81-1D, Vinylpyridine, polymers 29383-23-1D, Vinylimidazole, polymers
 RL: DEV (Device component use); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT 9002-84-0, Polytetrafluoroethylene
 RL: DEV (Device component use); USES (Uses)
 (binders, electrolytic layers; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
 RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
 (dopants, electrolyte layers; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT 7440-44-0, Carbon, uses
 RL: DEV (Device component use); USES (Uses)
 (powders; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

IT 110-86-1D, Pyridine, polymers 288-32-4D, Imidazole, polymers
 RL: DEV (Device component use); USES (Uses)
 (acid-doped, electrolyte layers; PEFC employing carbon interlayer-formed MEA and having stable open-circuit voltage and cell resistance)

RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

L58 ANSWER 3 OF 12 HCAPLUS COPYRIGHT 2006 ACS on STN
 AN 2006:20401 HCAPLUS
 DN 144:91179
 TI Solid polymer **electrolyte**, electrode for fuel cell, and the fuel cell

IN Aihara, Yuichi
 PA Samsung Yokohama Research Institute, Japan
 SO PCT Int. Appl., 19 pp.
 CODEN: PIXXD2

DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2006001083	A1	20060105	WO 2004-JP9494	20040629
		W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW:	AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM	

PRAI WO 2004-JP9494 20040629

AB The solid polymer **electrolyte** comprises an acid and a polymer of an iminoimidazolidinedione compound. The electrode contains an electrode substance and the above solid polymer **electrolyte**. The fuel cell has an **electrolyte** membrane between a pair of electrodes; where a part or whole part of the **electrolyte** membrane contains the above solid polymer **electrolyte**.

IC ICM H01M008-02

ICS H01M008-10; H01B001-06; H01M004-86

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)

ST fuel cell electrode solid polymer **electrolyte**
iminoimidazolidinedione compd

IT Fuel cell electrodes

Fuel cell **electrolytes**

Fuel cells

(polymer **electrolytes** containing iminoimidazolidinedione compound polymers for fuel cells)

IT 81139-34-6 154204-01-0 872523-82-5

RL: DEV (Device component use); USES (Uses)

(polymer **electrolytes** containing iminoimidazolidinedione compound polymers for fuel cells)

IT 51-17-2, Benzimidazole 120-72-9, Indole, uses

120-73-0, Purine 288-32-4, Imidazol, uses

RL: MOA (Modifier or additive use); USES (Uses)

(polymer **electrolytes** containing iminoimidazolidinedione compound

polymers for fuel cells)
IT 120-72-9, Indole, uses 120-73-0, Purine 288-32-4
, Imidazol, uses
RL: MOA (Modifier or additive use); USES (Uses)
(polymer electrolytes containing iminoimidazolidinedione compound
polymers for fuel cells)
RN 120-72-9 HCAPLUS
CN 1H-Indole (9CI) (CA INDEX NAME)

RN 120-73-0 HCAPLUS
CN 1H-Purine (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
CN 1H-Imidazole (9CI) (CA INDEX NAME)

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L58 ANSWER 4 OF 12 HCAPLUS COPYRIGHT 2006 ACS on STN
AN 2005:1206832 HCAPLUS
DN 143:424619
TI Water-free proton conductors for fuel cells on the basis of imidazole and
benzimidazole
AU Hinz, Susanne
CS Germany
SO (2005) No pp., given, <http://www.meind.de/search.py?261376> Avail.:
Metadata on Internet Documents, Order No. 261376
From: Metadata Internet Doc. [Ger. Diss.] 2005, (D1031-2), No pp. given
DT Dissertation
LA German
AB Unavailable
CC 52-2 (Electrochemical, Radiational, and Thermal Energy
Technology)
Section cross-reference(s): 76
ST fuel cell electrolyte proton conductor benzimidazole
imidazole
IT Ionic conductors
(protonic; water-free proton conductors for fuel cells based on

imidazole and benzimidazole)

IT Fuel cell electrolytes
Fuel cells
(water-free proton conductors for fuel cells based on imidazole and benzimidazole)

IT 51-17-2, Benzimidazole 288-32-4, Imidazole, uses
RL: DEV (Device component use); USES (Uses)
(water-free proton conductors for fuel cells based on imidazole and benzimidazole)

IT 288-32-4, Imidazole, uses
RL: DEV (Device component use); USES (Uses)
(water-free proton conductors for fuel cells based on imidazole and benzimidazole)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

L58 ANSWER 5 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN

AN 2005:822804 HCPLUS

DN 143:196912

TI Proton-conducting electrolyte material for fuel cell

IN Saito, Toshiya; Hase, Kohei

PA Toyota Motor Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2005222890	A2	20050818	JP 2004-32103	20040209
	CA 2527705	AA	20050818	CA 2005-2527705	20050118
	WO 2005076398	A1	20050818	WO 2005-JP817	20050118
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
PRAI	JP 2004-32103	A	20040209		
	WO 2005-JP817	W	20050118		
AB	The claimed electrolyte material consists of (a) Bronsted acid and (b) base having an unshared electron pair, where the base has ≥ 1 of group satisfying nos. of constituent atoms other than H ≤ 3 . The base may be selected from derivs. of imidazole, pyrazole, triazole, pyridine, pyrazine, pyrimidine, and pyridazine. The material provides high proton conductivity under humidification-free condition.				
IC	ICM H01M008-02				

ICS H01M008-10
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST proton conducting electrolyte Bronsted acid imidazole deriv fuel cell
 IT Fuel cell electrolytes
 (proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)
 IT Bronsted acids
 RL: TEM (Technical or engineered material use); USES (Uses)
 (proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)
 IT Ionic conductors
 (protonic; proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)
 IT 51-17-2, Benzimidazole 75-75-2, Methanesulfonic acid
 103-74-2, 2-(2-Hydroxyethyl)pyridine 104-15-4, p-Toluenesulfonic acid,
 uses 288-13-1D, Pyrazole, derivs. 288-88-0D,
 1H-1,2,4-Triazole, derivs. 289-80-5D, Pyridazine, derivs. 289-95-2D,
 Pyrimidine, derivs. 290-37-9D, Pyrazine, derivs. 616-47-7,
 1-Methylimidazole 693-98-1, 2-Methylimidazole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)
 IT 288-13-1D, Pyrazole, derivs.
 RL: TEM (Technical or engineered material use); USES (Uses)
 (proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)
 RN 288-13-1 HCPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

L58 ANSWER 6 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN
 AN 2005:696488 HCPLUS

DN 143:196828

TI Gel electrolyte and electrode for fuel cell

IN Aihara, Yuichi

PA Japan

SO U.S. Pat. Appl. Publ., 7 pp.
 CODEN: USXXCO

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2005170252	A1	20050804	US 2005-37231	<u>20050119</u>
	JP 2005209379	A2	20050804	JP 2004-11869	<u>20040120</u>

PRAI JP 2004-11869 A 20040120
 KR 2004-73362 A 20040914

AB A gel electrolyte can have high proton conductivity even at conditions of no humidity and high temps. and can have increased mech. strength. The gel electrolyte can include an acid and a matrix polymer capable of being swollen by the acid. The matrix polymer can be a polyparabanic

acid or a derivative thereof.

IC ICM H01M008-10
 ICS H01M010-40; H01M004-86

INCL 429303000; 429314000; 429042000; 429033000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST fuel cell electrode gel electrolyte polymer

IT Fuel cell electrodes
 Fuel cell electrolytes
 (gel electrolyte and electrode for fuel cell)

IT Polyparabanic acids
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte and electrode for fuel cell)

IT 51-17-2, Benzimidazole 101-60-0D, Porphyrin, derivs.
 109-97-7D, Pyrrole, derivs. 110-86-1D, Pyridine, derivs.
 120-73-0, Purine 288-13-1, Pyrazole 288-32-4,
 Imidazole, uses 289-95-2D, Pyrimidine, derivs. 290-37-9D, Pyrazine,
 derivs. 574-93-6D, Phthalocyanine, derivs.
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte and electrode for fuel cell)

IT 28550-63-2P 28555-74-0P 31626-60-5P 35297-16-6P 37725-18-1P
 54351-47-2P 113587-56-7P 113587-62-5P 861927-58-4P 861927-59-5P
 861927-60-8P 861927-61-9P
 RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (gel electrolyte and electrode for fuel cell)

IT 7664-38-2, Phosphoric acid, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (gel electrolyte and electrode for fuel cell)

IT 110-86-1D, Pyridine, derivs. 120-73-0, Purine
 288-13-1, Pyrazole 288-32-4, Imidazole, uses
 RL: DEV (Device component use); USES (Uses)
 (gel electrolyte and electrode for fuel cell)

RN 110-86-1 HCPLUS

CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 120-73-0 HCPLUS
 CN 1H-Purine (9CI) (CA INDEX NAME)

RN 288-13-1 HCPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

L58 ANSWER 7 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN
 AN 2005:695899 HCPLUS
 DN 143:196811
 TI Gel **electrolytes** showing high proton conductivity and mechanical strength, fuel cell electrodes containing them, and fuel cells
 IN Aihara, Yuichi
 PA Samsung SDI Co., Ltd., S. Korea
 SO Jpn. Kokai Tokkyo Koho, 12 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 2

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005209379	A2	20050804	JP 2004-11869	20040120
US 2005170252	A1	20050804	US 2005-37231	20050119

PRAI JP 2004-11869 A 20040120
 KR 2004-73362 A 20040914

AB The gel **electrolytes** contain acids and acid-swelling matrix polymers comprising polyparabanic acids. The fuel cells using the electrodes and **electrolyte** membranes containing the gel **electrolytes** show high proton conductivity at high temperature under nonhumidified condition.

IC ICM H01M008-02
 ICS C08K003-32; C08K005-34; C08L079-04; H01B001-06; H01M008-10
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

ST acid doped polyparabanic acid **electrolyte** fuel cell; fuel cell electrode acid doped polyparabanic acid; proton conductor acid doped polyparabanic acid

IT Conducting polymers
 Fuel cell electrodes
 Fuel cell **electrolytes**
 (gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte** membranes)

IT Porphyrins
 RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses)
 (gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte** membranes)

IT Polyparabanic acids

RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (phosphoric acid-doped; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT Polyparabanic acids
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polyether-, phosphoric acid-doped; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT Fuel cells
 (polymer **electrolyte**; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT Polyethers, uses
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polyparabanic acid-, phosphoric acid-doped; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT Ionic conductors
 (protonic; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT 7664-38-2, Phosphoric acid, uses
 RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses) (dopant; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT 51-17-2, Benzimidazole 109-97-7, Pyrrole 110-86-1,
 Pyridine, uses 120-73-0, Purine 288-13-1, Pyrazole 288-32-4, Imidazole, uses 289-95-2, Pyrimidine 290-37-9,
 Pyrazine 574-93-6, Phthalocyanine
 RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses) (gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT 28550-63-2P, Diphenylmethane diisocyanate-hydrocyanic acid copolymer 28555-74-0P 31626-60-5P 35297-16-6P 37725-18-1P, Diphenylmethane diisocyanate-hydrocyanic acid copolymer, sru 54351-47-2P, Hydrocyanic acid-2,4-TDI copolymer, sru 113587-56-7P 113587-62-5P 861927-58-4P 861927-59-5P 861927-60-8P 861927-61-9P
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (phosphoric acid-doped; gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

IT 110-86-1, Pyridine, uses 120-73-0, Purine 288-13-1, Pyrazole 288-32-4, Imidazole, uses
 RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses) (gel **electrolytes** showing high proton conductivity and mech. strength for fuel cell electrodes and **electrolyte membranes**)

RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 120-73-0 HCPLUS
 CN 1H-Purine (9CI) (CA INDEX NAME)

RN 288-13-1 HCPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

L58 ANSWER 8 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN
 AN 2005:546330 HCPLUS
 DN 143:81095
 TI Imidazolium solid polymer electrolytes and fuel cells
 IN Fujibayashi, Nobuki
 PA Samsung SDI Co., Ltd., S. Korea
 SO Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2005166598	A2	20050623	JP 2003-407443	20031205
PRAI	JP 2003-407443		20031205		
OS	MARPAT 143:81095				
GI					

AB The title **electrolytes** providing high ionic conductivity in 100-300° in relative humidity below 50% comprise a polymer, amine derivative cations, and anions. The amine derivative cations include 2-imidazolium derivs. (I: R1 = C1+ alkyl), pyridinium derivs., 1,2,3-imidazolium (II: R2-4 = H, C1+ alkyl, but not simultaneously H), pyridinium derivs. (III: R5 = C1+ alkyl), and/or quaternary ammonium derivs. (IV: R6-9 = C1+ alkyl). The anions may include AlCl4-, Al3Cl8-, Al2Cl7-, PF6-, BF4-, CF3SO3-, (CF3SO2)2N-, and/or (CF3SO2)3C-. The polymer may include polytetrafluoroethylene, polyether ether ketone, polybenzimidazole, polybenzoxazole, and/or polybenzothiazole. The electrolyte composition gives sufficient proton conductivity and makes the fuel cells operable in sufficient output power in 100-300° in relative humidity below 50%.

IC ICM H01M008-02

ICS H01B001-06; H01M008-10

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)

Section cross-reference(s): 28

ST imidazolium solid polymer **electrolyte** fuel cell proton cond humidity; pyridinium solid polymer **electrolyte** fuel cell proton cond humidity; quaternary ammonium solid polymer **electrolyte** fuel cell proton cond

IT Pyridinium compounds

Quaternary ammonium compounds, uses

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(**electrolyte** composition for fuel cells; imidazolium solid polymer **electrolytes** and fuel cells)

IT Fuel cell **electrolytes**

(imidazolium and solid polymer; imidazolium solid polymer **electrolytes** and fuel cells)

IT Onium compounds

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(imidazolium compds., **electrolyte** composition for fuel cells;
imidazolium solid polymer **electrolytes** and fuel cells)

IT Fuel cells

Ionic conductivity

(imidazolium solid polymer **electrolytes** and fuel cells)

IT Fluoropolymers, uses

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(imidazolium solid polymer **electrolytes** and fuel cells)

IT Polyketones

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(polyether-, solid polymer **electrolyte** composition, for fuel
cells; imidazolium solid polymer **electrolytes** and fuel cells)

IT Polyethers, uses

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(polyketone-, solid polymer **electrolyte** composition, for fuel
cells; imidazolium solid polymer **electrolytes** and fuel cells)

IT Humidity

(relative; imidazolium solid polymer electrolytes and fuel cells)

- IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
 (solid polymer electrolyte composition, for fuel cells;
 imidazolium solid polymer electrolytes and fuel cells)
- IT Polymer electrolytes
 (solid polymer with imidazolium cations; imidazolium solid polymer electrolytes and fuel cells)
- IT 288-32-4, Imidazole, uses 693-98-1, 2-Methylimidazole
 9002-84-0D, Polytetrafluoroethylene, reformed with sulfonic acid derivs.
 82113-65-3 145022-44-2, 1-Ethyl-3-methylimidazolium
 trifluoromethanesulfonate 551952-12-6
 RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
 (solid polymer electrolyte composition, for fuel cells;
 imidazolium solid polymer electrolytes and fuel cells)
- IT 288-32-4, Imidazole, uses
 RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
 (solid polymer electrolyte composition, for fuel cells;
 imidazolium solid polymer electrolytes and fuel cells)
- RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

ANSWER 9 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN				
AN	2003:875559 HCPLUS			
DN	139:367552			
TI	Multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating			
IN	Uensal, Oemer; Kiefer, Joachim			
PA	Celanese Ventures GmbH, Germany; Pemeas GmbH			
SO	PCT Int. Appl., 49 pp. CODEN: PIXXD2			
DT	Patent			
LA	German			
FAN.CNT 1				
	PATENT NO.	KIND	DATE	APPLICATION NO.
PI	WO 2003092090	A2	20031106	WO 2003-EP4117
	WO 2003092090	A3	20050120	
		W:	BR, CA, CN, JP, KR, MX, US	
		RW:	AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR	
	DE 10218368	A1	20031106	DE 2002-10218368
	DE 10218367	A1	20031113	DE 2002-10218367
	CA 2483015	AA	20031106	CA 2003-2483015
	EP 1518282	A2	20050330	EP 2003-718780
		R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK	
	CN 1650463	A	20050803	CN 2003-809351
				20030422

US 2005181254	A1	20050818	US 2003-512264	<u>20030422</u>
JP 2005527948	T2	20050915	JP 2004-500346	20030422

PRAI DE 2002-10218367 A 20020425
DE 2002-10218368 A 20020425
WO 2003-EP4117 W 20030422

AB Proton-conducting multi-layered **electrolyte** membranes for fuel cells are characterized by at least one mineral acid-doped or mineral acid-containing flat surfaces and a barrier layer for the other layer, which, together, make up a membrane electrode assembly. Preferred mineral acids include H₃PO₄, H₂SO₄, and polyphosphoric acids. The barrier layer, which preferably consists of a cation exchanger with cation-exchange capacity <0.9 meq/g and a proton conductivity <0.06 S/cm, has a thickness of 10-30 µm (preferably <10 µm). The flat surfaces of the membrane consist of a basic polymer (or a basic polymer integrated with a second polymer or an inert support), selected from polyimidazoles, **polybenzimidazoles**, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, polypyridines, polypyrimidines, or poly(tetraazapyrrenes). Such multilayer **electrolyte** membranes prevents mineral acid from being washed out and reduces the overvoltage on the cathode.

IC ICM H01M
CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
Section cross-reference(s): 38

ST multilayered **electrolyte** electrode membrane fuel cell; basic polymer **electrolyte** electrode membrane fuel cell; **polybenzimidazole** **electrolyte** electrode membrane fuel cell

IT Polyporphoric acids
RL: TEM (Technical or engineered material use); USES (Uses)
(membrane assembly containing; multilayered **electrolyte-electrode** membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT **Polybenzimidazoles**
Polybenzothiazoles
Polybenzoxazoles
Polyoxadiazoles
Polyquinoxalines
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(membranes; multilayered **electrolyte-electrode** membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT Fuel cell electrodes
Fuel cell **electrolytes**
Fuel cell separators
(multilayered **electrolyte-electrode** membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT Polysulfones, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polyether-, membranes; multilayered **electrolyte-electrode** membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT Polyketones
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polyether-, sulfonated, membranes; multilayered **electrolyte**-electrode membrane assemblies containing mineral acids, basic polymers,

and a cation exchange-type barrier coating)

IT Polyethers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (polyketone-, sulfonated, membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT Polyethers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (polysulfone-, membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (membrane assembly containing; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT 620168-47-0, Ultrason E 7020P
 RL: DEV (Device component use); USES (Uses)
 (membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT 110-86-1D, Pyridine, derivs., polymers 288-13-1D,
 Pyrazole, derivs., polymers 288-88-0D, 1H-1,2,4-Triazole, derivs.,
 polymers 289-06-5D, Thiadiazole, derivs., polymers 289-95-2D,
 Pyrimidine, derivs., polymers 7258-75-5D, Pyrimido[4,5,6-gh]perimidine,
 1,6-dihydro-, derivs., polymers 27380-27-4D, Pek, sulfonated
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT 110-86-1D, Pyridine, derivs., polymers 288-13-1D,
 Pyrazole, derivs., polymers
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 288-13-1 HCPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

L58 ANSWER 10 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN
 AN 2003:454898 HCPLUS
 DN 139:39126
 TI Nonaqueous electrolytes for lithium primary and secondary batteries

IN Barbarich, Thomas J.
 PA Yardney Technical Products, Inc., USA
 SO U.S. Pat. Appl. Publ., 15 pp.
 CODEN: USXXCO

DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003108800	A1	20030612	US 2002-289784	20021107
	US 6852446	B2	20050208		
PRAI	US 2001-347083P	P	20011109		

OS MARPAT 139:39126

AB A nonaq. elec. current producing electrochem. cell is provided comprising an anode and a cathode, an ionically permeable separator interposed between the anode and the cathode, and a nonaq. **electrolyte**, the **electrolyte** comprising an ionically conducting salt in a nonaq. medium, the ionically conducting salt corresponding to the formula: $M+(Z^*(J^*)^j(X^*)^x)^-$, wherein: M is a lithium atom, Z^* is an anion group containing two or more Lewis basic sites and comprising less than 50 atoms not including hydrogen atoms, J^* independently each occurrence is a Lewis acid coordinated to at least one Lewis basic site of Z^* , and optionally two or more such J^* groups may be joined together in a moiety having multiple Lewis acidic functionality, X^* independently each occurrence is selected from the group consisting of H, C1-4 alkyl, alkoxide, halide and mixts. thereof, j is an integer from 2 to 12, and x is an integer from 0 to 4.

IC ICM H01M010-40

ICS H01M004-58; H01M004-60

INCL 429324000; 429231950; 429231400; 429213000; 429303000; 429307000; 429338000; 429342000; 429332000; 429333000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST lithium battery nonaq electrolyte

IT Polymers, uses

RL: DEV (Device component use); USES (Uses)
 (gels; nonaq. electrolytes for lithium primary and secondary batteries)

IT Chalcogenides

Oxides (inorganic), uses

RL: DEV (Device component use); USES (Uses)
 (lithiated; nonaq. electrolytes for lithium primary and secondary batteries)

IT Primary batteries

Secondary batteries

(lithium; nonaq. electrolytes for lithium primary and secondary batteries)

IT Glass, uses

RL: DEV (Device component use); USES (Uses)
 (membrane; nonaq. electrolytes for lithium primary and secondary batteries)

IT Battery electrolytes

Ionic conductivity

Polar solvents

(nonaq. electrolytes for lithium primary and secondary

batteries)

IT Esters, uses
Ethers, uses
Lactones
Nitriles, uses
Polyanilines
Sulfones
Transition metal chalcogenides
Transition metal oxides
RL: DEV (Device component use); USES (Uses)
(nonaq. electrolytes for lithium primary and secondary batteries)

IT Disulfides
RL: DEV (Device component use); USES (Uses)
(organic, redox polymers; nonaq. electrolytes for lithium primary and secondary batteries)

IT Transition metal compounds
RL: DEV (Device component use); USES (Uses)
(oxysulfides; nonaq. electrolytes for lithium primary and secondary batteries)

IT Lithium alloy, base
RL: DEV (Device component use); USES (Uses)
(nonaq. electrolytes for lithium primary and secondary batteries)

IT 7440-44-0, Carbon, uses
RL: DEV (Device component use); USES (Uses)
(mesocarbon microbeads; nonaq. electrolytes for lithium primary and secondary batteries)

IT 57-12-5, Cyanide, uses 60-29-7, Diethyl ether, uses 96-48-0,
 γ -Butyrolactone 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 120-73-0D, Purine, derivs.
504-66-5D, Dicyanamide, derivs. 616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate 646-06-0, Dioxolane 7439-93-2, Lithium, uses 7439-93-2D, Lithium, intercalation compound 14343-69-2, Azide 17655-31-1, Amide 17997-24-9D, Methanetricarbonitrile, ion(1-), derivs.
25233-30-1, Polyaniline 25948-29-2, Carbon disulfide homopolymer 28737-40-8D, Squarate ion(2-), derivs. 32178-55-5D,
Benzimidazolide, derivs. 34512-21-5D, derivs. 36954-03-7D,
Imidazole anion, derivs. 39448-96-9, Graphite lithium 51719-91-6D, derivs. 64544-32-7D, derivs. 68146-66-7D, derivs. 81425-01-6D, derivs. 217309-42-7, Copper lithium nickel oxide Cu0.2LiNi0.8O2
261356-47-2D, Borate(1-), tetrakis(cyano- κ C)-, derivs. 519040-72-3
527685-88-7 527685-89-8 527685-90-1 527685-91-2 527685-92-3
527685-93-4 527685-94-5 527685-95-6 527685-96-7 527685-98-9
527686-01-7 527686-04-0 527686-06-2 527686-08-4 541502-73-2D,
derivs. 541502-74-3D, derivs.
RL: DEV (Device component use); USES (Uses)
(nonaq. electrolytes for lithium primary and secondary batteries)

IT 55986-39-5P, Lithium imidazolide 148505-26-4P 464194-97-6P
519040-73-4P 519040-74-5P 519040-75-6P 527685-86-5P 527685-87-6P
527686-13-1P 527686-16-4P
RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(nonaq. electrolytes for lithium primary and secondary batteries)

IT 9002-88-4, Polyethylene
RL: DEV (Device component use); USES (Uses)
(separator; nonaq. electrolytes for lithium primary and

secondary batteries)

IT 120-73-0D, Purine, derivs.
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary
 batteries)

RN 120-73-0 HCAPLUS
 CN 1H-Purine (9CI) (CA INDEX NAME)

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L58 ANSWER 11 OF 12 HCAPLUS COPYRIGHT 2006 ACS on STN

AN 2002:575465 HCAPLUS

DN 137:143037

TI Method for preparing thin fiber-structured polymer web

IN Lee, Wha Seop; Jo, Seong Mu; Chun, Suk Won; Choi, Sung Won

PA S. Korea

SO U.S. Pat. Appl. Publ., 8 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2002100725	A1	20020801	US 2001-14550	20011214
	KR 2002063020	A	20020801	KR 2001-3685	20010126
	JP 2002249966	A2	20020906	JP 2001-382608	20011217
	CN 1367276	A	20020904	CN 2002-102522	20020125

PRAI KR 2001-3685 A 20010126

AB Disclosed is a method for preparing a thin fiber-structured polymer web suitable for a high-speed and large-scale production using electrospinning. The method uses an electrospinning process to spin a solution containing a polymer in a volatile solvent to obtain a thin fiber-structured polymer web on a collector, in which case the temperature of the polymer solution is in the

range of from 40° to the b.p. of the solvent. The porous, thin fiber-structured polymer web thus obtained is applicable to the isolation layer or the electrolytic layer for lithium-ion secondary battery, lithium-metal secondary battery or sulfur-based secondary battery, the isolation layer for fuel cells, filter, and so forth.

IC ICM B01D039-08

INCL 210503000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 37, 47

ST battery electrolyte layer fiber structured polymer web; sulfur based secondary battery fiber structured polymer web; lithium secondary battery fiber structured polymer web; fuel cell fiber structured polymer web; filter fiber structured polymer web

IT Polyamide fibers, uses

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (aramid; method for preparing thin fiber-structured polymer web)

IT Polyesters, uses
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
(aromatic; method for preparing thin fiber-structured polymer web)

IT Secondary batteries
(lithium; method for preparing thin fiber-structured polymer web)

IT Battery electrolytes
Coal tar pitch
Filters
Fuel cells
Petroleum pitch
Secondary batteries
Sensors
(method for preparing thin fiber-structured polymer web)

IT Carbonaceous materials (technological products)
Coke
RL: DEV (Device component use); USES (Uses)
(method for preparing thin fiber-structured polymer web)

IT Biopolymers
Collagens, uses
Fluoropolymers, uses
Polyanilines
Polybenzimidazoles
Polyesters, uses
Polyoxyalkylenes, uses
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
(method for preparing thin fiber-structured polymer web)

IT Polyoxymethylenes, uses
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
(polyoxyalkylene-; method for preparing thin fiber-structured polymer web)

IT Polyoxyalkylenes, uses
Polyoxyalkylenes, uses
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
(polyoxymethylene-; method for preparing thin fiber-structured polymer web)

IT Fibers
RL: PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
(spinning, electro-; method for preparing thin fiber-structured polymer web)

IT Polymers, uses
Synthetic polymeric fibers, uses
RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(webs; method for preparing thin fiber-structured polymer web)

IT Lithium alloy, base
RL: DEV (Device component use); USES (Uses)
(method for preparing thin fiber-structured polymer web)

IT 7440-44-0, Carbon, uses
RL: DEV (Device component use); USES (Uses)
(hard; method for preparing thin fiber-structured polymer web)

IT 1314-62-1, Vanadia, uses 1332-29-2, Tin oxide 7439-93-2, Lithium, uses 7439-93-2D, Lithium, compound 7782-42-5, Graphite, uses 12017-96-8, Chromium lithium oxide crlio₂ 12022-46-7, Iron lithium oxide felio₂ 12031-65-1, Lithium nickel oxide linio₂ 12037-42-2, Vanadium oxide v6o₁₃ 12057-17-9, Lithium manganese oxide limn₂o₄ 12057-19-1, Lithium titanium oxide litio₂ 12162-87-7, Lithium vanadium oxide livo₂ 12169-03-8,

Lithium yttrium oxide liyo₂ 12190-79-3, Cobalt lithium oxide colio₂
 12209-15-3, Lithium scandium oxide lisco₂ 13568-36-0, Lithium nickel
 vanadium oxide linivo₄ 162004-08-2, Cobalt lithium nickel oxide colinio₂
 210767-01-4, Lithium manganese oxide limn₂o₂
 RL: DEV (Device component use); USES (Uses)
 (method for preparing thin fiber-structured polymer web)

IT 9002-86-2, Polyvinyl chloride 9002-88-4, Polyethylene 9002-89-5,
 Polyvinyl alcohol 9002-98-6, PolyAziridine 9003-20-7, Polyvinyl
 acetate 9003-55-8, Butadiene-styrene copolymer 9004-34-6, Cellulose,
 uses 9004-35-7, Cellulose acetate 9004-36-8 9011-08-9 9011-14-7,
 Pmma 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer
 24937-16-4, Nylon 12 24937-79-9, Pvdf 24980-34-5, Ethylene sulfide
 polymer 24980-41-4, Caprolactone homopolymer 25014-41-9,
 Polyacrylonitrile 25038-59-9, Polyethylene terephthalate, uses
 25085-53-4, Isotactic polypropylene 25086-89-9, Vinyl acetate-vinyl
 pyrrolidone copolymer 25233-30-1, Polyaniline 25322-69-4,
 Polypropylene oxide 25569-53-3, Poly(ethylene succinate) 25749-57-9
 26063-00-3, Polyhydroxybutyrate) 26100-51-6, Polylactic acid
 26124-68-5, Polyglycolic acid 27083-66-5, Poly(propylene fumarate)
 34346-01-5, Glycolic acid-DL-lactic acid copolymer 50327-22-5
 98973-15-0, Poly(bis-(2-(2-methoxy-ethoxyethoxy))phosphazene
 136511-06-3, Meep
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (method for preparing thin fiber-structured polymer web)

IT 56-23-5, Carbon tetrachloride, uses 60-29-7, Diethyl ether, uses
 64-17-5, Ethanol, uses 64-19-7, Acetic acid, uses 67-56-1, Methanol,
 uses 67-63-0, Isopropanol, uses 67-64-1, Acetone, uses 67-66-3,
 Chloroform, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses 71-43-2,
 Benzene, uses 75-05-8, Acetonitrile, uses 75-09-2, Methylene chloride,
 uses 80-73-9, 1,3-Dimethyl-2-imidazolidinone 96-47-9,
 2-Methyltetrahydrofuran 96-48-0, Butyrolactone 96-49-1, Ethylene
 carbonate 100-51-6, Benzyl alcohol, uses 105-58-8, Diethyl carbonate
 107-31-3, Methyl formate 108-32-7, Propylene carbonate 108-88-3,
 Toluene, uses 108-94-1, Cyclohexanone, uses 108-95-2, Phenol, uses
 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 110-82-7,
 Cyclohexane, uses 110-86-1, Pyridine, uses 123-91-1,
 1,4-Dioxane, uses 126-33-0, Sulfolane 127-19-5, n,n-Dimethylacetamide
 554-12-1, Methyl propionate 616-38-6, Dimethyl carbonate 623-53-0,
 Ethyl methyl carbonate 646-06-0, 1,3-Dioxolane 872-50-4,
 1-Methyl-2-pyrrolidone, uses 4437-85-8, Butylene carbonate 7529-22-8,
 n-Methylmorpholine-n-oxide 7732-18-5, Water, uses 19836-78-3,
 3-Methyloxazolidin-2-one 25323-89-1, Trichloroethane 62309-51-7,
 Propanol
 RL: TEM (Technical or engineered material use); USES (Uses)
 (method for preparing thin fiber-structured polymer web)

IT 25322-68-3
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (polyoxymethylene-; method for preparing thin fiber-structured polymer
 web)

IT 110-86-1, Pyridine, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (method for preparing thin fiber-structured polymer web)

RN 110-86-1 HCPLUS
 CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L58 ANSWER 12 OF 12 HCPLUS COPYRIGHT 2006 ACS on STN
AN 2002:171004 HCPLUS
DN 137:127444
TI Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells
AU Schechter, Alex; Savinell, Robert F.
CS E.B. Yeager Center for Electrochemical Sciences, Case Western Reserve University, Cleveland, OH, 44106-7217, USA
SO Solid State Ionics (2002), 147(1,2), 181-187
CODEN: SSIOD3; ISSN: 0167-2738
PB Elsevier Science B.V.
DT Journal
LA English
AB Imidazole and 1-Me imidazole (Me-Im) were used as additives in polybenzimidazole (PBI) equilibrated with phosphoric acid (PA), a system shown to be a high-temperature proton-conducting polymer electrolyte. The influence of different concns. of this additive on the conductivity of these membranes was measured by a four-probe conductivity measurement, at temps. in the range of 80-200 °C, under various humidity conditions. Correlation was found between the conductivity of liquid solns. of concentrated phosphoric acid and that of H₃PO₄ in the PBI membranes.
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST imidazole phosphoric acid doped polybenzimidazole membrane electrolyte fuel cell; Me imidazole phosphoric acid doped polybenzimidazole electrolyte fuel cell
IT Fuel cell electrolytes
Fuel cell separators
(imidazole and 1-Me imidazole in phosphoric acid doped polybenzimidazole membrane as electrolyte for fuel cells)
IT Ionic conductivity
(membranes; imidazole and 1-Me imidazole in phosphoric acid doped polybenzimidazole membrane as electrolyte for fuel cells)
IT Polybenzimidazoles
RL: DEV (Device component use); USES (Uses)
(polymer electrolyte; imidazole and 1-Me imidazole in phosphoric acid doped polybenzimidazole membrane as electrolyte for fuel cells)
IT 288-32-4, Imidazole, uses 616-47-7, 1-Methyl imidazole
7664-38-2, Phosphoric acid, uses
RL: MOA (Modifier or additive use); USES (Uses)
(imidazole and 1-Me imidazole in phosphoric acid doped polybenzimidazole membrane as electrolyte for fuel cells)
IT 288-32-4, Imidazole, uses
RL: MOA (Modifier or additive use); USES (Uses)
(imidazole and 1-Me imidazole in phosphoric acid doped polybenzimidazole membrane as electrolyte for fuel cells)

WEINER 10/616537 05/22/2006 Page 70

RN 288-32-4 HCAPLUS
CN 1H-Imidazole (9CI) (CA INDEX NAME)

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=>

Caution: A net charge appears to be present

