《数学分析 A2》第三次单元测

姓名 学号 成绩

2021年7月7日

- 1. 计算下列各题 (每题 10 分, 共 50 分):
 - (a) 设 Γ 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a, b > 0)$ 在第二象限中的部分, 计算 $\int_{\Gamma} xy \, ds$.
 - (b) Γ 是球面 $x^2+y^2+z^2=1$ 与平面 x+y+z=0 交成的圆周,从第一卦限看 Γ ,逆时针方向为正向。计算 $\int\limits_{\Gamma} dx+y\,dy$.
 - (c) Σ 为第一卦限中的球面 $x^2+y^2+z^2=a^2$, 计算 $\int\limits_{\Sigma}x^2d\sigma$.
 - (d) Σ 为椭球面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 的外侧,计算积分 $\iint\limits_{\Sigma}dydz+y\,dzdx+y^2dxdy.$
 - (e) 计算 $\int_{\Gamma} y \, dx + z \, dy + x \, dz$, 其中 Γ 是平面 x + y = 2 和球面 $x^2 + y^2 + z^2 = 2(x + y)$ 交成的圆周,从原点看去,顺时针方向是 Γ 的正向。
- 2. 设 $\mathbf{v} = (P, Q, R)$ 为向量场,各分量具有二阶连续偏导数,证明:

$$\nabla(\nabla \cdot \mathbf{v}) - \nabla \times (\nabla \times \mathbf{v}) = \Delta \mathbf{v},$$

其中 $\Delta \mathbf{v} = (\Delta P, \Delta Q, \Delta R)$. (10 分)

- 3. 证明向量场 $\mathbf{v} = ((2x+y+z)yz, (x+2y+z)zx, (x+y+2z)xy)$ 是有势场, 并求出它所有的势函数。(10 分)
- 4. 设在 \mathbb{R}^3 空间中光滑曲面 Σ 围成闭区域 Ω , 外法向 \mathbf{n} 指向 S 的 正侧。函数 u,v 在 Ω 上具有二阶的连续偏导数。证明 (a-d 每 题 5 分, e 题 10 分, 共 30 分)

(a)
$$\iiint_{\Omega} v\Delta u \, dx dy dz = -\iiint_{\Omega} \nabla u \cdot \nabla v dx dy dz + \int_{\Sigma} v \frac{\partial u}{\partial \mathbf{n}} d\sigma.$$

(b)
$$\iiint_{\Omega} (v\Delta u - u\Delta v) dx dy dz = \int_{\Sigma} \left(v \frac{\partial u}{\partial \mathbf{n}} - u \frac{\partial v}{\partial \mathbf{n}} \right) d\sigma.$$

- (c) u 在 Ω 中满足 $\Delta u=0$ (此时称 u 为 Ω 上的调和函数) 当 且仅当对于 Ω 中任意简单闭曲面 S 有 $\int_S \frac{\partial u}{\partial \mathbf{n}} d\sigma=0$.
- (d) 若 u 为 Ω 上的调和函数, 则 u 在 Ω 内部的值由它在 Σ 上的值唯一确定。
- (e) 若 u 为 Ω 上的调和函数, $(x_0, y_0, z_0) \in \Omega^{\circ}$, $B_r(x_0, y_0, z_0)$ 表示以 (x_0, y_0, z_0) 为球心, r > 0 为半径的球, 其包含在 Ω 中, 则有

$$u(x_0, y_0, z_0) = \frac{1}{4\pi r^2} \int_{\partial B_r(x_0, y_0, z_0)} u(x, y, z) d\sigma.$$