Zadanie 1. Liczby Fibonacciego

Liczby Fibonacciego są definiowane w następujący sposób:

```
F1 = 1,

F2 = 1,

Fn = F(n - 1) + F(n - 2) dla n = 3, 4, ...
```

Rekurencyjny algorytm, który służy do obliczania wartości Fn dla dowolnego n ≥ 1, można zapisać następująco:

```
funkcja F(n)
```

```
jeśli n=1 lub n=2

wynikiem jest 1

w przeciwnym razie

wynikiem jest F(n-1) + F(n-2)
```

- a) Zapisz w wybranej przez siebie notacji (w języku programowania lub w pseudokodzie) algorytm iteracyjny, który służy do obliczania wartości liczby Fn dla dowolnego n ≥ 1.
 Algorytm nie może używać tablic.
- Aby obliczyć F45, wywołano najpierw funkcję iteracyjną, a potem rekurencyjną. Okazało się, że czas trwania obliczeń realizowanych przez funkcję rekurencyjną był długi, podczas gdy funkcja iteracyjna prawie natychmiast podała wynik. Uzasadnij długi czas działania funkcji rekurencyjnej.

Zadanie 2. Rekurencja

Dana jest dodatnia liczba całkowita n oraz uporządkowana rosnąco tablica różnych liczb całkowitych T[1..n]. Przeanalizuj następującą funkcję rekurencyjną, której parametrami są liczby całkowite x, p, k, przy czym $1 \le p \le k \le n$.

```
Rek(x, p, k)

jeżeli p < k

s ← (p + k) div 2

jeżeli T[s] ≥ x

wynikiem jest Rek(x, p, s)

w przeciwnym razie wynikiem jest Rek(x, s + 1, k)

w przeciwnym razie

jeżeli T[p] = x

wynikiem jest p

w przeciwnym razie

wynikiem jest -1
```

Uwaga: div jest operatorem oznaczającym część całkowitą z dzielenia.

- a) Podaj największą i najmniejszą możliwą liczbę wywołań funkcji Rek w wyniku wywołania Rek(2019, 6, 14) dla n = 17 i pewnej, uporządkowanej rosnąco tablicy T[1..17] różnych liczb całkowitych. Uwaga: Pierwsze wywołanie funkcji Rek(2019, 6, 14) włączamy do ogólnej liczby wywołań.
- b) Podaj, jakie będą wartości parametrów przekazywanych do funkcji Rek w kolejnych jej wywołaniach dla n = 11, tablicy $T = \begin{bmatrix} 1, 5, 8, 10, 12, 14, 19, 20, 23, 30, 38 \end{bmatrix}$ oraz pierwszego wywołania Rek(37, 1, 11).
- c) Złożoność czasowa algorytmu opisanego funkcją Rek dla parametrów x = 1, p = 1, k = n jest
 - a. sześcienna.
 - b. kwadratowa.
 - c. liniowa.
 - d. logarytmiczna.

Zadanie 3. Szyfr kolumnowy

Szyfrowanie kolumnowe jest jedną z metod szyfrowania przestawieniowego, polegającego na zmianie kolejności znaków w szyfrowanym tekście. W tej metodzie jest wykorzystywana tabela o dodatniej liczbie wierszy równej k. Liczba k jest nazywana kluczem. Wiersze i kolumny tabeli są numerowane liczbami naturalnymi, począwszy od 1. Znaki tekstu, który ma być zaszyfrowany, wpisujemy do kolejnych kolumn tabeli, zaczynając od jej lewego górnego rogu. W kolumnach nieparzystych znaki wpisujemy od góry do dołu, a w parzystych od dołu do góry. Puste miejsca w ostatniej rozpoczętej kolumnie wypełniamy znakiem "" oznaczającym spację. Następnie odczytujemy kolejne wiersze od góry do dołu (każdy z nich od lewej do prawej), w wyniku czego uzyskujemy szyfrogram.

Przykład: dla klucza k=3 i tekstu MATURA Z INFORMATYKI budujemy tabelę:

М	Α	-	F	0	Υ	K
Α	R	Z	N	R	T	1
Т	U	_	I	M	Α	_

i otrzymujemy szyfrogram MA_FOYKARZNRTITU_IMA_.

a) W wybranym przez siebie języku programowania, w pseudokodzie lub w postaci listy kroków, napisz algorytm deszyfrujący tekst, który został zakodowany szyfrem kolumnowym.

Specyfikacja:

Dane:

k - klucz, liczba całkowita większa od 0

n – liczba znaków w tekście zaszyfrowanym, n jest wielokrotnością k

S[1..n] - ciąg znaków (tekst do odszyfrowania)

Wynik:

T[1..n] – ciąg znaków (tekst odszyfrowany)

Zadanie 4. Liczby czworacze

Liczby czworacze to liczby pierwsze, które mają postać: p, p + 2, p + 6, p + 8, a p jest pewną liczbą pierwszą. Zatem są to pary liczb bliźniaczych w najbliższym możliwym sąsiedztwie. Można zauważyć przy tym, że określenie "liczby czworacze" w odniesieniu do liczb postaci p, p + 2, p + 4, p + 6 nie miałoby sensu, ponieważ z trzech (a tym bardziej z czterech) kolejnych liczb nieparzystych co najmniej jedna jest podzielna przez 3.

Jedną z metod znajdowania liczb pierwszych jest sito Eratostenesa. Eratostenesowi z Cyreny przypisano stworzenie algorytmu wyznaczania liczb pierwszych z zadanego przedziału [2, n].

Algorytm Eratostenesa polega na wykreślaniu kolejnych wielokrotności liczb pierwszych, a pierwszą wykreśloną jest liczba 2.

- 1. W kroku pierwszym ze zbioru liczb naturalnych z przedziału [2, n] wybieramy najmniejszą, czyli 2, i wykreślamy wszystkie jej wielokrotności większe od niej samej, to jest 4, 6, 8...
- 2. W kroku drugim z pozostałych liczb wybieramy najmniejszą niewykreśloną liczbę (3) i usuwamy wszystkie jej wielokrotności większe od niej samej 6, 9, 12...
- 3. W kolejnych krokach postępujemy według tej samej procedury dla liczb: 5, 7, 11... k, dla k<=n.
 - a) Niech A będzie tablicą wartości logicznych indeksowaną liczbami całkowitymi od 1 do 200 000, początkowo wypełnioną wartościami true. Napisz specyfikację i algorytm, który metodą sita Eratostenesa oznaczy wszystkie liczby pierwsze (true) i złożone (false).
 - b) Dla tablicy utworzonej w punkcie a napisz algorytm (w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który wyznaczy liczby czworacze.