Использовать стандартную библиотеку (priorityqueue, set, TreeSet, и т. п.) не разрешается.

Задача А. Простое двоичное дерево поиска

Имя входного файла: bstsimple.in Имя выходного файла: bstsimple.out

Реализуйте просто двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- \bullet insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо
- \bullet exists x если ключ x есть в дереве выведите «true», если нет «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none» если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

bstsimple.in	bstsimple.out
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Задача В. Двоичное дерево поиска

Имя входного файла: bst.in Имя выходного файла: bst.out

Реализуйте двоичное дерево поиска. Вы должны реализовать именно то дерево, которое указано в вашем варианте.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 100000. В каждой строке находится одна из следующих операций:

- \bullet insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо
- ullet delete x- удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо
- ullet exists x- если ключ x есть в дереве выведите «true», если нет «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none» если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

bst.in	bst.out	
insert 2	true	
insert 5	false	
insert 3	5	
exists 2	3	
exists 4	none	
next 4	3	
prev 4		
delete 5		
next 4		
prev 4		

Задача С. Переместить в начало

Имя входного файла: movetofront.in Имя выходного файла: movetofront.out

Вам дан массив $a_1=1, a_2=2, \ldots, a_n=n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2,3,6,1,5,4, после операции (2,4) новый порядок будет 3,6,1,2,5,4. А после применения операции (3,4) порядок элементов в массиве будет 1,2,3,6,5,4.

Выведите порядок элементов в массиве после выполнения всех операций.

Формат входного файла

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходного файла

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

Пример

movetofront.in	movetofront.out
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	