

|           | FAM114A2 | RNF20   | NOL10   | HAUS6   | CPPED1  | ACER3   | ACER3   |
|-----------|----------|---------|---------|---------|---------|---------|---------|
| CSM115061 | 6.32987  | 7.96496 | 7.79692 | 4.40904 | 8.42627 | 7.18535 | 6.14987 |
| GSM115062 | 6.70648  | 8.10416 | 7.62097 | 4.89053 | 8.79704 | 6.86707 | 5.60573 |
| CSM115063 | 6.96342  | 8.20729 | 7.84963 | 5.01553 | 8.31353 | 7.48224 | 6.44482 |
| CSM115064 | 6.70648  | 8.24981 | 7.69327 | 5.13721 | 8.64346 | 8.00825 | 6.96838 |
| CSM115065 | 7.65958  | 8.92002 | 8.16916 | 5.96959 | 8.89742 | 8.1957  | 7.41619 |
| CSM115066 | 7.57973  | 8.81423 | 8.09997 | 6.15961 | 8.81846 | 8.18607 | 7.43742 |
| CSM115067 | 6.61016  | 8.02588 | 7.3402  | 4.71896 | 8.22403 | 8.06229 | 7.02589 |
| GSM115068 | 6.97368  | 8.83162 | 7.63945 | 5.17843 | 8.4475  | 8.23283 | 7.65563 |
| GSM115069 | 6.74944  | 8.58843 | 7.50808 | 4.82275 | 8.49804 | 8.11841 | 7.3771  |
| GSM115070 | 6.29895  | 8.16635 | 7.87113 | 4.32141 | 7.7719  | 6.66789 | 5.29641 |
| CSM115071 | 6.14449  | 8.01832 | 7.62978 | 3.92688 | 7.5319  | 7.0351  | 5.48401 |
| GSM115072 | 6.43854  | 8.09891 | 8.0752  | 4.33687 | 7.91538 | 6.78031 | 5.69808 |
| CSM115073 | 6.70648  | 8.09316 | 7.65406 | 4.9222  | 8.97477 | 6.96544 | 6.05961 |
| GSM115074 | 6.50252  | 8.3742  | 7.46079 | 5.15525 | 8.80994 | 7.16648 | 6.30934 |
| CSM115075 | 6.7622   | 8.64804 | 7.68013 | 4.85529 | 8.70325 | 6.64742 | 5.60776 |

CIFAR-10 32\*32 = 1024 Gene expressions 60,000+





Visualization with labels

Visualization without labels

- PCA is good for dimension reduction
- But it is a linear algorithm
  - It cannot represent complex relationship between features



- A collection of N high-dimensional objects are given  $(x_1, x_2, ....., x_n)$
- · Build a map in which distances between points reflect similarities in the data



# Converting the high-D Euclidean distance into conditional probabilities that represents similarities



Move points around to minimize the Kullback-Leibler divergence between P and Q

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

- if p = q then log(1) = 0
- Penalize when p != q
  - Large p modeled by small q: Big penalty
  - Small p modeled by large q: Small penalty
- Hence, SNE preserve the local similarity structure of the data

#### Move points around to minimize the Kullback-Leibler divergence between P and Q

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

$$\frac{dC}{dy_i} = 2\sum_j \underbrace{(y_i - y_j)}_{\text{Spring}} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})$$



# Visualization of MNIST using SNE



### Visualization of MNIST using SNE



### Student's t-distributed SNE



· As a result, dissimilar objects are allowed to be modeled far apart

### **Cost Function**

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Gradient of *C* with respect to *yi* 

$$\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ij} - q_{ij}) (y_i - y_j) \left(1 + \|y_i - y_j\|^2\right)^{-1}$$
+ve/-ve
Always +ve
(closer *yi,yj* get higher weight)

### Visualization of MNIST Using t-SNE





## **Example Datasets**



### Limitations!

- Not for dimensionality reduction, only for visualization!
- Less successful if data has very high intrinsic dimensionality
  - First reduce dimension using any non-linear model (e.g. autoencoder)
- Cost function is not convex
  - Carefully choose optimization parameters