

CIFRAS DE BLOCO

Gerência e Segurança de Redes

Objetivos de Aprendizagem

Distinguir cifras de bloco e de fluxo

Apresentar o Data Encryption Standard

Agenda

- 1. Cifras de fluxo e de bloco
- 2. Cifra de Feistel
- 3. DES
- 4. Modos de Operação
- 5. Open SSL

Cifra de Fluxo

- Encripta um fluxo de dados digital bit a bit ou byte a byte
- O fluxo de chaves (ki) tem o tamanho do fluxo de bits de texto claro (pi)
- Para chaves aleatórias, a cifra é inquebrável (One Time Pad)
- Problema de compartilhamento de chaves

Cifra de Fluxo

- Geração de fluxo de bits feita via função algorítmica no emissor e receptor
- O algoritmo é afetado pela chave
- O fluxo de bits deve ser criptograficamente forte

Cifra de Bloco

- O texto claro é tratado como um todo ou em partes de tamanho fixo
- Blocos de 64 ou 128 bits
- Emissor e receptor compartilham uma chave simétrica

Cifra de Bloco

Cifra de Bloco Ideal

- Para blocos de n bits 2^n blocos possíveis
- Existem 2^n! mapeamentos possíveis

Mapeamento reversível			
Texto claro	Texto cifrado		
00	11		
01	10		
10	00		
11	01		

Mapeamento irreversível			
Texto claro	Texto cifrado		
00	11		
01	10		
10	01		
11	01		

Cifra de Bloco Ideal

- Cifra reversível
- Mapeamentos de encriptação e decriptação definidos por tabulação
- Exemplo, cifra de substituição com n = 4 bits

Cifra de Bloco Ideal

Texto claro	Texto cifrado		
0000	1110		
0001	0100		
0010	1101		
0011	0001		
0100	0010		
0101	1111		
0110	1011		
0111	1000		
1000	0011		
1001	1010		
1010	0110		
1011	1100		
1100	0101		
1101	1001		
1110	0000		
1111	0111		

Texto cifrado	Texto claro	
0000	1110	
0001	0011	
0010	0100	
0011	1000	
0100	0001	
0101	1100	
0110	1010	
0111	1111	
1000	0111	
1001	1101	
1010	1001	
1011	0110	
1100	1011	
1101	0010	
1110	0000	
1111	0101	

Fragilidades

- Para n pequeno a CFI equivale a cifra de substituição Sujeita a análise estatística da texto
- Considerando n suficientemente grande e uma substituição reversível, as características estatísticas do texto são mascaradas
- Porém, uma cifra de bloco com n suficiente grande é impraticável

Fragilidades

- O mapeamento coincide com a própria chave
- Para o exemplo com 4 bits é necessário uma chave de 4 bits x 16 linhas = 64 bits
- Regra geral:

Tamanho de bloco: n

Tabamnho da chave: $n \times (2^n)$

Cifra de Feistel

Cifra de Feistel

Conceito de uma cifra de produto, (execução de duas ou mais cifras simples em sequência) de tal forma que o resultado ou produto final seja criptograficamente mais forte do que qualquer uma das cifras componentes.

Cifra Feistel

 Cifra de bloco com chave de tamanho k bits + bloco de n bits

Transformações: 2^k

Cifra de bloco ideal

Transformações: 2ⁿ!

Alternância entre permutações e substituições,

Substituição

Cada elemento de texto claro ou grupo de elementos é substituído exclusivamente por um elemento ou grupo de elementos de texto cifrado correspondente.

Permutação

Uma sequência de elementos de texto claro é substituída por uma permutação dessa sequência. Ou seja, nenhum elemento é acrescentado, removido ou substituído na sequência, mas a ordem em que os elementos aparecem é modificada.

Difusão x Confusão

- A cifra de Feistel é uma aplicação prática de uma proposta de Claude Shannon para uma cifra de produto que alterne funções de confusão e difusão
- Difusão e confusão são os ingredientes básicos para qualquer sistema criptográfico para frustrar a criptoanálise estatística

Difusão

- Dissipa a estrutura estatística do texto
- Cada digíto do texto claro afeta vários dígitos do texto cifrado
- Seja uma mensagem M = m1 + m2 + m3 +
- Cada letra yn do texto cifrado é representado por

$$y_n = \left(\sum_{i=1}^k m_{n+i}\right) \bmod 26$$

Confusão

- Agrega complexidade ao relacionamento estatístico entre o texto claro e o texto cifrado
- Mesmo que o atacante tenha alguma ideia das estatísticas do texto a complexidade conferida pela confusão impede a dedução da chave

Cifra de Feistel

Entrada:

Bloco de texto claro com 2w bits Chave K Dividido em LEO (Left) e REO (Right)

Rodadas:

N rodadas A chave é alterada a cada rodada Permutação entre L e R

Saída:

LE1 e RE1 (alimentam a entrada próxima rodada)

Cifra de Feistel

Função (F): XOR

Parâmetros

Tamanho de bloco:

Maior segurança com blocos maiores Custo computacional Blocos de 64 bits são razoáveis

Tamanho de chave:

Maior segurança com chaves maiores Custo computacional

Número de rodadas:

Quanto mais rodadas maior segurança

Parâmetros

Algoritmo de subchave e F:

Dificulta a criptoanálise

Data Encryption Standard

- Criptografia mais utilizada antes do AES (2001)
- Adotado pelo NIST em 1977
- Reafirmado em 1994
- Substituído pelo Triple DES em 1999
- Triple DES substituído pelo AES em 2001

Data Encryption Standard

- Blocos de dados de 64 bits
- Chave de 56 bits
- 16 rodadas

Como utilizar cifras de bloco para um conjunto de dados maior do que o tamanho do bloco?

Modos de Operação

31

Modos de Operação

- Descrevem como aplicar os princípios de bloco a mensagens mais longas
- Existem diversos "modos" de operação

Electronic Codebook Mode (ECB)

Cipherblock Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

Electronic Codebook Mode

- ECB
- In ECB encryption, the forward cipher function is applied directly and independently to each block of the plaintext. The resulting sequence of output blocks is the ciphertext.
- In ECB encryption and ECB decryption, multiple forward cipher functions and inverse cipher functions can be computed in parallel
- Mensagens com tamanho múltiplo do tamanho do bloco
- Vulnerável a ataques, pois a mesma chave gera as mesmas cifras, sempre

Cipher Block Chaining Mode

- CBC
- so the forward cipher operations cannot be performed in parallel.
- In CBC decryption, however, the input blocks for the inverse cipher
- function, i.e., the ciphertext blocks, are immediately available, so that multiple inverse cipher
- operations can be performed in parallel
- Um dos mais usados

Cipher Feedback Mode

- CFB
- Similar ao CBC, porém utilizado apenas uma fração do bloco cifrado como entrada do próximo bloco
- Criptografia n\u00e3o pode ser realizada em paralelo, mas a decriptografia sim

Output Feedback Mode

- Similar ao CFB
- Pequena diferença no tratamento do vetor de inicialização
- Pode ser usado como cifra de fluxo
- Mais resistente a erros de transmissão

Counter Mode

- CTR
- Utiliza contadores ao invés de vetor de inicialização
- Pode criptografar e decriptografar em paralelo

Open SSL

38

Open SSL

The OpenSSL Project develops and maintains the OpenSSL software - a robust, commercial-grade, full-featured toolkit for general-purpose cryptography and secure communication.

Open SSL

- Kit de ferramentas de criptografia (SSL/TLS)
- Versão 3.2.1
- openssl version

openssl help

Cipher commands (see the `enc' command for more details)					
aes-128-cbc	aes-128-ecb	aes-192-cbc	aes-192-ecb		
aes-256-cbc	aes-256-ecb	aria-128-cbc	aria-128-cfb		
aria-128-cfb1	aria-128-cfb8	aria-128-ctr	aria-128-ecb		
aria-128-ofb	aria-192-cbc	aria-192-cfb	aria-192-cfb1		
aria-192-cfb8	aria-192-ctr	aria-192-ecb	aria-192-ofb		
aria-256-cbc	aria-256-cfb	aria-256-cfb1	aria-256-cfb8		
aria-256-ctr	aria-256-ecb	aria-256-ofb	base64		
bf	bf-cbc	bf-cfb	bf-ecb		
bf-ofb	camellia-128-cbc	camellia-128-ecb	camellia-192-cbc		
camellia-192-ecb	camellia-256-cbc	camellia-256-ecb	cast		
cast-cbc	cast5-cbc	cast5-cfb	cast5-ecb		
cast5-ofb	des	des-cbc	des-cfb		
des-ecb	des-ede	des-ede-cbc	des-ede-cfb		
des-ede-ofb	des-ede3	des-ede3-cbc	des-ede3-cfb		
des-ede3-ofb	des-ofb	des3	desx		
rc2	rc2-40-cbc	rc2-64-cbc	rc2-cbc		
rc2-cfb	rc2-ecb	rc2-ofb	rc4		
rc4-40	seed	seed-cbc	seed-cfb		
seed-ecb	seed-ofb	sm4-cbc	sm4-cfb		
sm4-ctr	sm4-ecb	sm4-ofb			

openssl enc

```
[macbookpro:~ roberto1$ openssl enc -base64 -in f.txt -out f.enc
[macbookpro:~ roberto1$ cat f.enc
bGluaGEgMQpsaW5oYSAyCmxpbmhhIDUKCg==
[macbookpro:~ roberto1$ cat f.txt
linha 1
linha 2
linha 5

[macbookpro:~ roberto1$ openssl enc -d -base64 -in f.enc
linha 1
linha 2
linha 2
linha 5

macbookpro:~ roberto1$
```

openssl enc -des

Referências

- https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecia/ lpublication800-38a.pdf
- https://www.openssl.org/
- https://www.feistyduck.com/library/opensslcookbook/online/
- https://wiki.openssl.org/index.php/Enc

Referências

Capítulo 3. Criptografia e Segurança de Redes. William Stallings. 6º. Edição. Editora Pearson.

FIM

Prof. José Roberto Bezerra

jbroberto@ifce.edu.br

IFCE – *Campus* Fortaleza