Lambda Calculus

Lambda Calculus

Some Facts
Definition
Free and Bound Variables
Substitutions
Arithmetic
Addition
Multiplication

Some Facts

- 1. The λ calculus consists of a single transformation rule (variable substitution) and a single function definition scheme.
- 2. The λ calculus is universal that any computable function can be expressed and evaluated using this formalism.
- 3. The λ calculus is equivalent to Turing Machine. But the λ calculus cares more about the transformation rules and does not care about the actual machine implementation.

Definition

Here we give some definition used in λ calculus.

Name (Variable): A name is an identifier which can be any of the letters a, b, c, \ldots

Expression: The central concept in λ calculus. An expression is defined recursively as follows:

```
[expression] := [name] | [function] | [application] 
[function] := \lambda [name].[expression] 
[application] := [expression][expression]
```

Note: The expression can be surrounded with parenthesis with same rule in basic math.

Function: Function is defined in this form:

```
[function] := \lambda [name].[expression]
```

The name after the λ is the identifier of the argument of this function. The expression after the point is called the body of the definition.

Function can be applied to expressions. Here is an example:

$$(\lambda x. x)y = [y/x]x = y \tag{1}$$

[y/x] is used to indicate that all occurrences of x are substituted by y in the expression to the right.

Remark: The names of the arguments in function definitions do not carry any meaning, they just "placeholders". Therefore:

$$(\lambda z. z) \equiv (\lambda y. y) \equiv (\lambda t. t) \equiv (\lambda u. u) \equiv \cdots$$
 (2)

Free and Bound Variables

In λ calculus all names are local to definitions.

Bound variables: In the function λx . x we say that x is bound because its occurrence in the body of the definition is preceded by λx .

Free variables: A name not preceded by a λ is called a free variable.

For example:

In the expression

$$(\lambda x. xy) \tag{3}$$

the variable x is bound and y is free.

In the expression

$$(\lambda x. x)(\lambda y. yx) \tag{4}$$

the x in the body of the first expression is bound to the first λ . The y in the body of the second expression is bound to the second λ and x is free. The x in the second expression is independent of the x in the first expression.

Formally Definition of Free Variable: We say a variable [name] is free in an expression if one of the following three cases holds:

- [name] is free in [name]
- [name] is free in λ [name1].[expression] if [name] \neq [name1] and [name] free in [expression].
- [name] is free in E_1E_2 if [name] is free in E_1 or if it is free in E_2 .

Formally Definition of Bound Variable: A variable [name] is bound if one of two cases holds:

- [name] is bound in λ [name1].[expression] if [name] = [name1] or [name] is bound in [expression]
- [name] is bound in E_1E_2 if [name] is bound in E_1 or if it is bound in E_2 .

Note: The same identifier can occur free and bound in the same expression. For example: In the expression

$$(\lambda x. xy)(\lambda y. y) \tag{5}$$

The first y is free in the left subexpression but bound in the right subexpression. It occurs therefore free as well as bound in the whole expression. (interesting...)

Substitutions

The more confusing part of standard λ calculus is that we do not give names to functions, i.e. functions are anonymous. Any time we want to apply a function, we write the whole function definition and then precede to evaluate it.

To simplify the notation, we will give function a name. For example, the identity function $(\lambda x. x)$ can be denoted with I. We have:

$$II = (\lambda x. x)(\lambda x. x) = (\lambda x. x)(\lambda y. y)$$
$$= [\lambda y. y/x]x = \lambda y. y = I$$

Rename of mixed bound and free variable

Here is a problem: We should be very careful when performing substitutions to avoid mixing up free occurrences of an identifier with bound ones. For example, in the expression

$$(\lambda x. (\lambda y. xy))y \tag{6}$$

If we do substitution directly, we will get:

$$\lambda y. yy$$
 (7)

Here we mix up these two independent variable y. Simple by renaming the bound y to t we obtain:

$$(\lambda x. (\lambda t. xt))t = \lambda t. yt \tag{8}$$

Therefore, if the function λx . [expression] is applied to E, we substitute all **free** occurrences of x in [expression] with E. If the substitution would bring a free variable of E in an expression where the variable with same name occurs bound, we rename the bound one before performing the substitution.

example

Note that two x bounded by different λx is different. In substitution we only do substitution for the outer x.

$$\begin{aligned} (\lambda x. \, (\lambda y. \, (x(\lambda x. \, xy))))y &=_{\text{rename bound y}} \, (\lambda x. \, (\lambda t. \, (x(\lambda x. \, xt))))y \\ &= [y/x](\lambda t. \, (x(\lambda x. \, xt))) \\ &=_{\text{note two different x}} \, (\lambda t. \, (t(\lambda x. \, xt))) \end{aligned}$$

Arithmetic

Numbers can be defined in lambda calculus starting from zero. We define zero as

$$\lambda s. (\lambda z. z)$$
 (9)

Or we can abbreviate such expressions with more than one argument as:

$$s(z) = \lambda sz. z \tag{10}$$

Then all natural numbers can be defined as

$$egin{aligned} 1 &= \lambda sz.\,s(z) \ 2 &= \lambda sz.\,s(s(z)) \ 3 &= \lambda sz.\,s(s(s(z))) \ \ldots \end{aligned}$$

Then the successor function can be defined as

$$S = \lambda wyx. y(wyx) \tag{11}$$

The successor function applied to our representation for zero yields

$$S0 = (\lambda wyx. y(wyx))(\lambda sz. z)$$

$$= (\lambda yx. y((\lambda sz. z)yx))$$

$$= \lambda yx. y((\lambda z. z)x)$$

$$= \lambda yx. y(x) = 1$$

Similarly we have

$$S1 = (\lambda wyx. y(wyx))(\lambda sz. s(z))$$

$$= (\lambda yx. y((\lambda sz. s(z))yx))$$

$$= \lambda yx. y((\lambda z. y(z))x)$$

$$= \lambda yx. y(y(x)) = 2$$

Addition

If we want to add say n and m, we just apply the successor function n times to m

Let us try the following in order to compute 2 + 3:

$$2S3 = (\lambda sz. s(sz))(\lambda wyx. y(wyx))(\lambda uv. u(u(uv)))$$

$$= (\lambda sz. s(sz))S3$$

$$= (\lambda z. S(Sz))3$$

$$= S(S3)$$

$$= 5$$

Note. 对于丘奇数 n,本身的含义是传入一个函数 s 和一个变量 z,将 z 递归地作用在此 z 上 n 次,这一点在上面的 2S3 上有非常直观的体现,即对于丘奇数2,令s=S 和 z=3,有

$$2S3 = \lambda sz. s(s(z))S3 = S(S(3)) = 5$$
 (12)

Multiplication

The multiplication of two numbers \boldsymbol{x} and \boldsymbol{y} can be computed using the following function:

$$\lambda xyz. x(yz) \tag{13}$$

The product of 2 by 2 is then:

\$\$
1 (\lambda xyz.x(yz))22 = (\lambda z.2(2z)) = 4

\$\$
$$(\lambda xyz. x(yz))22 = (\lambda z.2(2z)) = 4$$
 (1) $(\lambda xyz. x(yz))22 = (\lambda z.2(2z)) = 4$ (14)