Summarized Model Development Pipeline for Bankruptcy Prediction

1. Choosing the Initial Models

- Decision: Use Logistic Regression, Random Forest, XGBoost; avoid unsupervised clustering.
 - Logistic Regression for interpretable baseline.
 - Random Forest for non-linear interactions and robustness.
 - o XGBoost for high predictive power on noisy data.
 - Supervised models leverage available labels for risk probabilities.

2. Data Pre-processing

- **Decision**: Scale for LR, minimal scaling for trees, One-Hot Encode categorical, use Pipeline.
 - Scaling ensures LR stability.
 - Trees need no scaling to preserve data.
 - One-Hot Encoding maintains interpretability.
 - o Pipeline prevents train/test transformation mismatch.

3. Handling Class Imbalance

- **Decision**: Use SMOTE, class weight for LR, Stratified CV.
 - SMOTE boosts recall for rare bankrupt cases.
 - o class weight reduces compute needs for LR.
 - Stratified CV maintains class ratios.
 - Avoids leakage by applying SMOTE to training only.

4. Outlier Detection & Treatment

- **Decision**: Retain informative outliers, remove errors, Winsorize if needed, document removals.
 - Outliers may signal bankruptcy.
 - Errors (e.g., negative totals) harm model accuracy.
 - Winsorizing handles extreme sensor errors.
 - Documentation ensures transparency for audits.

5. Addressing Sampling Bias / PSI

- **Decision**: Monitor PSI, investigate if > 0.2, resample if needed.
 - PSI detects distribution shifts.
 - High PSI signals unreliable evaluation.
 - o Resampling corrects biased data collection.
 - Ensures robust model performance.

6. Data Normalization

- Decision: Scale for LR, skip for trees, use ColumnTransformer, avoid double-scaling.
 - Scaling improves LR coefficient stability.
 - Trees are scale-invariant, preserving distributions.
 - ColumnTransformer applies scaling selectively.
 - o Prevents train/test mismatch.

7. Testing for Normality

- Decision: Log-transform skewed ratios for LR, skip for trees, apply selectively.
 - Reduces skew for LR stability.
 - Trees unaffected by non-normality.
 - Selective transforms avoid unnecessary processing.
 - o Improves LR calibration without overfitting.

8. Dimensionality Reduction (PCA)

- **Decision**: Avoid PCA by default, use only if overfitting persists.
 - Preserves feature explainability for finance.
 - o Reduces overfitting risk in high dimensions.
 - PCA harms interpretability critical for audits.
 - Used only as experimental fallback.

9. Feature Engineering Choices

 Decision: Focus on financial ratios, prioritize domain-driven features, ensure SHAP compatibility.

- Ratios are highly predictive.
- o Domain-driven features align with finance logic.
- Limits arbitrary features to avoid overfitting.
- SHAP ensures interpretable explanations.

10. Testing & Addressing Multicollinearity

- **Decision**: Use VIF, drop redundant features, consider PCA/L1 if needed.
 - VIF > 10 flags multicollinearity issues.
 - Redundant features distort LR coefficients.
 - o Removal speeds up training, reduces noise.
 - PCA/L1 as fallback remedies.

11. Feature Selection Methods

- **Decision**: Correlation filtering, L1 for LR, SHAP for trees, prioritize domain features.
 - Drops highly correlated features (r > 0.9).
 - L1 shrinks irrelevant LR coefficients.
 - SHAP identifies low-impact tree features.
 - Domain features reduce overfitting risk.

12. Hyperparameter Tuning Methods

- **Decision**: RandomizedSearchCV for trees, GridSearchCV for LR, align with compute budget.
 - RandomizedSearchCV efficiently explores tree parameters.
 - o GridSearchCV suits LR's smaller parameter space.
 - Compute alignment prevents resource waste.
 - CV variance detects overfitting.

13. Cross-Validation Strategy

- **Decision**: Use StratifiedKFold (k=5), shuffle, nested CV if compute allows.
 - StratifiedKFold preserves class balance.
 - Shuffling avoids order bias.

- Nested CV ensures robust tuning.
- Variance analysis ensures model stability.

14. Evaluation Metrics Selection

- **Decision**: Use ROC-AUC, Precision-Recall AUC, F1-score, Brier Score.
 - o ROC-AUC evaluates overall ranking.
 - o Precision-Recall AUC focuses on rare bankrupt cases.
 - F1-score balances precision and recall.
 - Brier Score checks probability calibration.

15. Evaluating Drift & Model Degradation

- **Decision**: Monitor PSI, retrain if > 0.2, track performance metrics.
 - PSI detects data drift over time.
 - o Retraining addresses macroeconomic shifts.
 - o Performance drop flags model issues.
 - o Proactive monitoring ensures reliability.

16. Interpreting Model Results & Explainability

- **Decision**: Use SHAP, present top-K features, concise explanations.
 - SHAP provides clear local/global insights.
 - o Top-K features meet audit needs.
 - Concise explanations aid decision-making.
 - Works for both linear and tree models.

17. Deployment & Retraining Decisions

- **Decision**: Retrain based on PSI > 0.2 or metric drops, use model registry, human-in-loop.
 - PSI/metric drops signal model degradation.
 - Registry tracks model versions, parameters.
 - o Human oversight ensures reliable deployment.
 - Automation speeds up alerts.