

Aircraft Mechanics II

(Course Code: AE 305/305M/717)

Department of Aerospace Engineering Indian Institute of Technology Bombay Instructor: Shashi Ranjan Kumar

February 19, 2021

Tutorial 3

TA: Rohit Nanavati

Assume that the sea-level air density is 1.225 kg/m^3 .

1. Consider the wing-body alone configuration of a general aviation airplane with the following properties-

$$C_{mac_{wh}} = -0.04$$
, $h_{ac_{wh}} = 0.25$, $C_{L\alpha_{wh}} = 4.5/rad$, $h_{CG} = 0.4$.

The zero lift angle of attack for the positively cambered wing is given as $\alpha_0 = -2^{\circ}$. Answer the following:

- (a) Determine the trim angle of attack for the aircraft.
- (b) What will be the trim angle of attack if the CG of the airplane is shifted ahead of the AC to $h_{CG} = 0.1$? Determine the stability of the airplane in this new trim condition.
- (c) What should be the $C_{mac_{wb}}$ if the airplane is required to trim at $\alpha_{trim} = 5^{\circ}$ for the new location of the CG at $h_{CG} = 0.1$?
- 2. Figure 1 shows the variation of the moment coefficient around CG with respect to α . It can be seen that the aircraft trims at $\alpha=5^{\circ}$, for which the CG is located at 0.25 the chord length along with a static margin of 15 percent. The airplane is required to change the trim angle to $\alpha=10^{\circ}$ by changing the CG location. Find the new CG location and corresponding static margin of the airplane.

Figure 1: C_M vs. α curve for a general aviation airplane

- 3. Elevator hinge moment is given by the expression $H_e = 0.5 \rho V^2 S_e c_e C_{he}$, where S_e is the elevator area behind hinge, c_e is the corresponding chord length and C_{he} is the hinge moment coefficient. This is the moment that a pilot needs to overcome using stick force F_s and the stick arm length l_s . The relation between the stick force and the hinge moment is defined by $F_s = GH_e$. The proportionality factor $G = \delta e/(l_s \delta_s)$, known as the gear ratio, is a function of the elevator deflection δe , stick arm length l_s and angular displacement of the stick about its own hinge point, δ_s . A pilot pulls a 0.75 m long stick towards himself ($\delta_s = 5^{\circ}$) to create an elevator up deflection of -15° . Determine the hinge moment if the stick force applied by the pilot is 2N.
- 4. The elevator control force to trim a particular airplane at a speed of 154 m/s is zero. Using the following data estimate the force required to change the trim speed to 159 m/s. Assume that $C_{L_{\delta_e}} = 0$.

Geometric Data:

$$G = 0.0118^{\circ}/m$$
, $S_e = 3.72 \ m^2$, $c_e = 0.61m$, $\bar{V}_H = 0.56$, $h_{CG} = 0.38$, wing loading = 2395 Pa

Aerodynamic Data:

$$\frac{\partial C_{h_e}}{\partial \delta_e} = -0.005/deg, \ a_e = 0.025/deg,$$
 Free elevator neutral point, $h_n' = 0.45$

AE 305/305M/717 End