

Our country, our future

525/1

S6 CHEMISTRY

Exam 31

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions to candidates:

- Answer all questions in section A and six questions in section B
- All questions must be answered in the spaces provided.
- The periodic table with relative atomic masses will be provided.
- Illustrate your answers with equations where applicable.

SECTION A: Answer all questions in this section.

1. (a) Write balanced equations for the following nuclear changes. In each case identify particles X, Y and Z (1 mark)

(i)
$$\begin{array}{ccc}
2\text{Ki} & \longrightarrow & 2\text{At} + X \\
14 & & 13
\end{array}$$
Balanced equation

(ii)
$$\begin{array}{ccc} 235U + 1_n \longrightarrow 31_n + Y + & 148La \\ 92 & 0 & 0 & 57 \end{array}$$

Balanced equation:

(iii)
$$\alpha + \frac{54}{26} \text{Fe} \rightarrow Z + \frac{1}{1} \text{H}$$

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

Balanced equation

	(b) A radioisotope was found to have ¹ / ₈ th of acts original activity after 42 Calculate the half-life of the isotope.	days. (2 ½ marks)
2.	20cm ³ of a gaseous hydrocarbon Q was exploded with 150cm ³ of oxygen in e complete combustion, the volume of residual gas was found to be 110cm ³ . We concentrated potassium hydroxide was added to the residual gas, the volume r 30cm ³ . (a) Determine the molecular formula of Q	hen
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	(b) Write the structures and IUPAC names of all possible isomars of Q.	
		•••••
		•••••
	(c) Ozonolysis of Q leads to the formation of only one product. Write the m reaction between Q and alkaline potassium manganate (VII) solution.	echanism of
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

3.	Explain the following observations: (a) Both nitrogen and phosphorus belong to group (V) of the periodic table but nitrogen only from the chloride NCl ₃ whereas phosphorus forms PCl ₃ and PCl ₅
	(b) Hydrogen fluoride boils at 20° C whereas hydrogen chloride boils at -84° C.
4.	Name the reagents that can be used to distinguish between the following compounds. In each case state what would be observed of each compound is separately treated with the reagent. (a) CH ₃ COOH and CH ₃ COOCH ₃ (2 marks)
	Reagent(s)
	Observations

Reagent(s) Observation(s) 5 (a) State factors that can affect molar conductivity of an electrolyte. b) The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below. Electrolyte λ∞Scm²mol⁻¹at 25°C	Reagent(s)		
5 (a) State factors that can affect molar conductivity of an electrolyte. b) The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
5 (a) State factors that can affect molar conductivity of an electrolyte. b) The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			•••••
5 (a) State factors that can affect molar conductivity of an electrolyte. 5 (a) The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.	• • • • • • • • • • • • • • • • • • • •		
5 (a) State factors that can affect molar conductivity of an electrolyte. The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
5 (a) State factors that can affect molar conductivity of an electrolyte. The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
5 (a) State factors that can affect molar conductivity of an electrolyte. The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.	Observation(s)		
The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.	•••••		•••••
The molar conductivities at infinite dilution at 25°C for some electrolytes are g the table below.			
the table below.	5 (a) State factors that	can affect molar conductivity of an elec-	ctrolyte.
the table below.	••••		
the table below.			
the table below.	••••••		••••••
the table below.	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
the table below.			
the table below.	•••••		•••••
the table below.			
		ties at infinite dilution at 25°C for some	electrolytes are give
Electroryte \(\text{\circ} \sigma \sigma \sigma \sigma \text{circ} \)		$\lambda \text{ Sam}^2 \text{mol}^{-1} \text{ at } 25^0 \text{ C}$	
Sodium nitrate 122			
Nitric acid 421			
	Sodium ethanoate	91	
	Sodium ethanoate	91	

6 (a) Define the term bond energy.	(01 marks)
(b) Draw the structure and name the shape of phosphorus trich	nloride molecule (1 ½ marks)
(d) The heats of atomisation of phosphorus and chlorine are g \triangle Ha/kgmol $^{-1}$	iven below
$P(s) \longrightarrow P(g) +314$	
$Cl_2(g) \longrightarrow 2Cl(g) + 242$	
Calculate the average bond energy for $P - Cl$ bond. (The h -360 Kjml^{-1}	eat of formation of PCl ₃) is (2 ½ marks)
– 500 KJiii	(2 72 IIIai KS)
7. A gaseous hydride of silicon with a formula $Si_n H_{2n+n}$	diffuses through a narrow
hole in 27.8s. The same volume of carbon dioxide diffuses thridentical conditions in 32.6s.	ough the same hole under
(a) (i) Calculate the relative molecular mass of the hydride.	(1 ½ marks)
•	
	•••••
(ii) Determine the molecular formula of the hydride	(1 ½ marks)

b) Write equation for the presence of sodiumhyd		e hydride in a (ii) above w	vith water in tl (1 ½ m
			(1 /2 11
ne results below were obta ylmethanoate at 298K.	ined in an experim	ent to investigate the rate	of hydrolysis
[HCO ₂ CH ₃] /Mol dm ⁻³	[H ⁺] Moldm ⁻³	Initial rate X10 ³ /mol dm ⁻³ S ⁻¹	
0.50	1.00	0.56	-
2.00	1.00	2.24	
2.00	0.50	1.13	
a) Deduce the order of rea (i) Methlymethano		to	
(ii) Hydrogen ions			
b) (i) Calculate the overal			
b) (i) Calculate the overal			

(c) Calculate the rate constant, K for the reaction at 298k. State its units.
9. The figure below shows the PV against P plots for three gases, oxygen, nitrogen and carbon dioxide at 273 K.
A
C
$PV/atm m^{-3}$
A Ideal gas
P/atm
Identify giving reason(s) for your answer which gas is represented by each of the curves
A:
B:
C;
10.Complete the following organic reactions and write the accepted mechanisms (3 ½ marks) (a)
CH ₂ COCH ₃ NaHSO ₃

••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
(b) CH	aCHa C – CHa	$H^+/H_2\Omega$	
(0) C11	$_{3}\text{CH}_{2}\text{ C} = \text{CH}_{2}$	$\xrightarrow{\text{H}^+/\text{H}_2\text{O}}$	
	Н		
••••			
••••			
••••			
••••			
(c) CH	₃ CH ₂ CH ₂ Br	CH₃COO [−] Ag ⁺	(2 marks)
••••			•••••
••••			
••••			•••••
11.	W	·	(01
		ic configuration of manganese.	(01 marks)
(ii)		mon oxidation states exhibited by m	
	ions.		(1 ½ marks)
••••			
••••			
(b) Dra	aw the structure an	nd name the shape adopted by the ma	anganate (VII) ions (2 marks)

(c)	(c) The manganate (vii) ions are strongly oxidizing in both alkaline or acidic media. Write equations to show the oxidizing action							dia. Write
	(i) alka	line media					
	••••					• • • • • • • • • • • • • • • • • • • •		•••••
	(i	i) acid	ic media					
(d)	Curve	e a reason	why potassi	um mangana	te (Vu) is no		•	. (1 mark)
(e) Name one compound used to standardize the potassium manganate (vii) (½ mark)								
(0)	(e) 1-unite one compound used to summarize the potassion manighment (+2)							
12. The data in table below was obtained for the reaction: $A + H_2O \qquad \qquad H^+(cat) \qquad \qquad 2P$								
Time/N	· Lina	0	10	120	20	40	50	60
log 10[A		0 0 . 398	10 0.199	20 0 . 041	30 - 0 . 200	40 - 0 . 377	50 - 0 . 602	60 - 0 . 796
			₀ [A] against		0,200	9.577		marks)
(b) From the graph, determine the order of the reaction								
(b) Fro	m the	graph, det	termine the	order of the r	eaction			
(b) Fro	culate	:	tant for the		eaction			
	culate	:			eaction			
	culate	:			eaction			

	(ii) the half life of the reaction	
13.	Compound Y contains 71.05% silver, 7.89% carbon, th	ne rest being oxygen (vapour
	density of Y is 152)	
	(a) (i) Calculate the empirical formula of Y	(2 ½ marks)
	(ii) Determine the molecular formula of Y	(2 marks)

(b) In each case state what would be observed and write equation of reaction that took place when the following compounds are added to the aqueous solution of Y.

(1) aqueous potassium chromate:	(2 ½ marks)
Observation	
Equation	
(ii) Hot acidified potassium permanganate solution obs	
Observation:	, ,
Equation:	
1	
14. Write equations to show how each of the following org	ganic compounds can be
synthesized. In each case indicate the reagents and con	
(a) CH ₃ COOC ₂ H ₅ from ethanol	
(b) CH ₃ CONHCH ₂ CH ₃ from Bromomethane.	

(c) CH ₃ C≡ CH from C	(c) $CH_3C \equiv CH$ from $CH_2 = CH_2$						
15. (a) Define the term mola	15. (a) Define the term molar enthalpy of hydration (01 mark)						
The enthalphy of hydration of ions M^{2+} and standard electrode potentials E^{θ}/v for							
group(II) elements are	shown in th	ne table below	':				
lions	Be ²⁺	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺		
Enthalpy of hydration /		- 1930	- 1650	- 1480	- 136		
Kjmol ⁻¹							
Standard electrode potential	- 1.85	- 2.37	- 2.87	- 2.89	- 2.90		
E^{θ}/v							
(b) State giving reason	u(s) for your	anewar which	hion is:				
(i) the least reducing	1(3) 101 your	unswer wine	11 1011 13.				
(i) the least reasoning							
(ii) the least oxidizing							
(c) Explain							
(i) why the	e enthalpy o	f hydration of	the ions hav	e a negative v	alue		
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		
(ii) the tren	d in variatio	on of the enth	alpy of hydra	tion			
		••••••	• • • • • • • • • • • • • • • • • • • •	•••••			

16 Na	Si P	S and Cl	are some of the	elements in	period III	of the	neriodic t	ahle
IU. INA,	$\mathbf{p}_{\mathbf{I}}$	o and Cr	are some or an		periou III	or uic	periouic i	auic

(a) Write the formula of the hydride of each element.

Element	Formula of hydride
Na	
Si	
P	
S	
Cl	

(b) Compare the reactivity of the hydrides with water. In each of	case write equation of
reaction of any.	(6 ½ marks)
a) Distinguish between thermoplastics and thermosetting plastic	S

•••••	•••••			• • •
	•••••	• • • • • • • • • • • • • • • • • • • •		• • •
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	

(b) For each of the following polymers, write the structure(s) of the monomer(s) from which they were synthesized.

Polymer	Structure(s) of monomers
$ \begin{array}{c c} \hline $	
$+O-CO_2CH_2CH_2O$	

(c) A solution containing 1.00g of polyphenyl ethane in 100cm³ of benzene is found to have an osmotic pressure of 59 Pa at 27°C. Calculate the average relative molecular mass of polyphenylethene.

<u>End</u>