## フレームハード性が優れた冷間型用鋼

# 特長

#### ■フレームハードがし易い。

フレーム加熱後、空冷で十分な表面硬さと硬化深さが得られます。また、適性焼入れ温度範囲が広く、 過熱組織(結晶粒の粗大化)が生じにくい。

- ■被削性が優れています。
  - 適正な球状化焼なましを施こしているので、良好な 被削性を有しています。
- ■耐摩耗性が優れています。
  - 高い硬さが均一に得られるので、SKS系型用鋼と 同等の耐摩耗性を示します。
- ■使用中の割れ、欠けが生じにくい。 SKS、SKD系型用鋼に比べ、優れた靭性を有して います。
- ■肉盛溶接による金型の改修、補修がし易い。 溶接性の向上を狙い合金設計したので、肉盛溶接 による割れが生じにくい。

# 熱処理条件

■フレームハードニングの場合(薄板(厚さ1mm以下)の打抜き切刃に適用)

| 作業環境 | 明るさが一定に保たれる室内であることが必要。                     |
|------|--------------------------------------------|
| 加熱温度 | 明るい赤色になるまで加熱し(950℃目標)、順次、加熱領域を移動させる。(下図参照) |
| 冷却方法 | 空気中放冷。                                     |
| 焼戻し  | 必要としない。(150~200℃焼戻しを行えば靭性向上)               |

#### ■バーナーおよびガス圧力の標準

| 溶接用バーナーの場合 | 酸素圧力    | 0.098 MPa |  |
|------------|---------|-----------|--|
| (#100~300) | アセチレン圧力 | 0.017 MPa |  |
| 溶断用バーナーの場合 | 酸素圧力    | 0.490 MPa |  |
| (#1~2)     | アセチレン圧力 | 0.049 MPa |  |

#### ■フレームハードニングの方法



#### ■総焼入れの場合(主として曲げ型、絞り型に適用)

### 焼入れ



#### 焼戻し



品質特性