DC to AC converters

Diego Trapero

Table of contents

1	DC to AC converters	2
	1.1 Full bridge circuit	2
2	Square wave control	3
3	Phase shift control	3
4	PWM control	3
	4.1 Unipolar control	3
	4.2 Bipolar control	3
5	Triphasic inverters	3
6	Inverter amplitudes tables	4

1 DC to AC converters

1.1 Full bridge circuit

Direct polarization of the load. $\mathrm{S}1$ and $\mathrm{S}4$

$$v_{AB}=V_i$$

Inverse polarization of the load. S2 and S3

$$v_{AB} = -V_i$$

Grounding. S1 and S3 OR S2 and S4 $\,$

$$v_{AB} = 0$$

Shorting the source. The two switches of a branch cannot be closed at the same time because it would short the source. That's the reason why same-branch switch control signals have to be complementary:

$$S1 = \bar{S3}$$

$$S2 = \bar{S4}$$

- 2 Square wave control
- 3 Phase shift control
- 4 PWM control
- 4.1 Unipolar control
- 4.2 Bipolar control
- 5 Triphasic inverters

6 Inverter amplitudes tables

PWM Sinusoidal Unipolar. Normalized amplitudes, V_n/V_{DC}

m_a	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
n = 1	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
n=2mf+-1	0.10	0.19	0.27	0.33	0.36	0.37	0.35	0.31	0.25	0.18
n=2mf+-3	0.00	0.00	0.01	0.02	0.04	0.07	0.10	0.14	0.18	0.21

PWM Sinusoidal Bipolar. Normalized amplitudes, V_n/V_{max}

m_a	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
n = 1	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
n = mf	1.27	1.24	1.20	1.15	1.08	1.01	0.92	0.82	0.71	0.60
n = mf + -2	0.00	0.02	0.03	0.06	0.09	0.13	0.17	0.22	0.27	0.32

PWM Sinusoidal Triphasic. Normalized amplitudes, V_n/V_{DC} (line tension)

$\overline{m_a}$	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
n = 1	0.087	0.173	0.260	0.346	0.433	0.520	0.606	0.693	0.779	0.866
n=mf+-2	0.003	0.013	0.030	0.053	0.801	0.114	0.150	0.190	0.232	0.275
n=2mf+-1	0.086	0.165	0.232	0.282	0.313	0.321	0.307	0.272	0.221	0.157

Fourier series table

Function	Fourier Series
1 2 3 4	$\frac{4}{\pi} \left(\frac{\sin\left(t\right)}{1} + \frac{\sin\left(3t\right)}{3} + \frac{\sin\left(5t\right)}{5} + \dots \right)$
1 2 3 4	$\frac{4}{\pi} \left(\frac{\sin(t)\cos(\beta)}{1} + \frac{\sin(3t)\cos(3\beta)}{3} + \frac{\sin(5t)\cos(5\beta)}{5} + \dots \right)$
# 2# 3# 4#	$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\sin(t)}{1 \cdot 3} + \frac{\sin(2t)}{3 \cdot 5} + \frac{\sin(3t)}{5 \cdot 7} + \dots \right)$