On Equivalence of Parameterized Inapproximability of k-median, k-max-coverage, and 2-CSP

Karthik C. S. (Rutgers University)

Joint Work with

Euiwoong Lee (University of Michigan)

Pasin Manurangsi (Google Thailand)

2-CSP k-max-coverage k-median

• Input: Graph G = (V, E) and constraints:

$$\mathscr{C} = \{C_e \subseteq \Sigma \times \Sigma\}_{e \in E}$$

• Output: Assignment $\sigma:V\to\Sigma$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

• Input: Graph G = (V, E) and constraints:

$$\mathscr{C} = \{C_e \subseteq \Sigma \times \Sigma\}_{e \in E}$$

• Output: Assignment $\sigma:V\to \Sigma$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

k-max-coverage

k-median

- Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k
- Output: S_{i_1}, \ldots, S_{i_k} maximizing:

$$\left| \bigcup_{j \in [k]} S_{i_j} \right|$$

• Input: Graph G = (V, E) and constraints:

$$\mathscr{C} = \{C_e \subseteq \Sigma \times \Sigma\}_{e \in E}$$

• Output: Assignment $\sigma:V\to \Sigma$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

k-max-coverage

- Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k
- Output: S_{i_1}, \ldots, S_{i_k} maximizing:

$$\bigcup_{j \in [k]} S_{i_j}$$

k-median

- Input: Clients C, Facilities F, distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$, and integer k
- Output: $f_1, ..., f_k \in F$ minimizing:

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i)$$

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Output: Assignment $\sigma:[k] \to [n]$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

k-max-coverage

- Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k
- Output: S_{i_1}, \ldots, S_{i_k} maximizing:

$$\bigcup_{j \in [k]} S_{i_j}$$

k-median

- Input: Clients C, Facilities F, distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$ and integer k
- Output: $f_1, ..., f_k \in F$ minimizing:

$$\sum_{i \in C} \min_{i \in [k]} \Delta(c, f_i)$$

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Output: Assignment $\sigma:[k] \to [n]$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

W[1]-complete

k-max-coverage

- Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k
- Output: S_{i_1}, \ldots, S_{i_k} maximizing:

$$\left| \bigcup_{j \in [k]} S_{i_j} \right|$$

W[2]-complete

k-median

- Input: Clients C, Facilities F, distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$ and integer k
- Output: $f_1, ..., f_k \in F$ minimizing:

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i)$$

W[2]-complete

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Output: Assignment $\sigma:[k] \to [n]$ maximizing:

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right]$$

W[1]-complete

k-max-coverage

- Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k
- Output: S_{i_1}, \ldots, S_{i_k} maximizing:

$$\left| \bigcup_{j \in [k]} S_{i_j} \right|$$

W[2]-complete

k-median

- Input: Clients C, Facilities F, distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$ and integer k
- Output: $f_1, ..., f_k \in F$ minimizing:

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i)$$

W[2]-complete

What about FPT Approximation?

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Completeness: $\exists \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] \ge c$$

• Soundness: $\forall \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] < s$$

k-max-coverage

- Input: $S_1, ..., S_m \subseteq [n]$, and integer k Input: Clients C, Facilities F,
- . Completeness: $\exists S_{i_1},...,S_{i_k}$

$$\frac{\left| \bigcup_{j \in [k]} S_{i_j} \right|}{n} \geq c$$

• Soundness: $\forall S_{i_1}, ..., S_{i_k}$

$$\frac{\left|\bigcup_{j\in[k]}S_{i_j}\right|}{n}< s$$

k-median

- Input: Clients C, Facilities F, distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$
- Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

$$\sum_{i \in [k]} \min_{i \in [k]} \Delta(c, f_i) > s$$

2-CSP

k-max-coverage

k-median

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Completeness: $\exists \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] \ge c$$

• Soundness: $\forall \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] < s$$

• Input: $S_1, \ldots, S_m \subseteq [n]$, and integer k • Input: Clients C, Facilities F,

For c=1, s=1, we get exact versions
But we are interested when c=1
and s is bounded away from 1

$$\frac{1}{n} \geq c$$

• Soundness: $\forall S_{i_1}, ..., S_{i_k}$

$$\frac{\left|\bigcup_{j\in[k]}S_{i_j}\right|}{n} < s$$

In the Cliente C Familities I

distance $\Delta: C \times F \to \mathbb{R}_{\geq 0}$

Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

$$\sum_{i \in C} \min_{i \in [k]} \Delta(c, f_i) > s$$

2-CSP

k-max-coverage

k-median

distance $\Delta: C \times F \to \mathbb{R}_{>0}$

• Input: Graph G = ([k], E) and constraints:

$$\mathscr{C} = \{C_e \subseteq [n] \times [n]\}_{e \in E}$$

• Completeness: $\exists \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] \ge c$$

• Soundness: $\forall \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] < s$$

• Input: $S_1, ..., S_m \subseteq [n]$, and integer k • Input: Clients C, Facilities F,

For c=1, s=1, we get exact versions
But we are interested when c=1
and s is bounded away from 1

Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

. Soundne

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) > s$$

k-max-coverage

k-median

- Input: Graph G = ([k], F) and Parameterized
 - Inapproximability

Hypothesis

[Lokshtanov-Ramanujan-Saurabh-Zehavi'17]

• Input: $S_1, ..., S_m \subseteq [n]$, and integer k • Input: Clients C, Facilities F,

distance $\Delta: C \times F \to \mathbb{R}_{>0}$

For c=1, s=1, we get exact versions But we are interested when c=1 and s is bounded away from 1

Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

• Soundness: $\forall \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E}\left[\left(\sigma(u),\sigma(v)\right)\in C_{(u,v)}\right]< s$$

. Soundn

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) > s$$

k-max-coverage

- Input: Graph G = ([k] F)Parameterized
 - Inapproximability Hypothesis
- (PIH) [Lokshtanov-Ramanujan-Saurabh-Zehavi'17]
- Soundness: $\forall \sigma : [k] \rightarrow [n]$

$$\Pr_{(u,v)\sim E} \left[(\sigma(u), \sigma(v)) \in C_{(u,v)} \right] < s$$

Input: $S_1, ..., S_m \subseteq [n]$, and integer k • Input: Clients C, Facilities F,

For c=1, s=1, we get exact versions But we are interested when c=1

and s is bounded away from 1

distance $\Delta: C \times F \to \mathbb{R}_{>0}$

Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

. Soundn

$$\sum_{i \in [k]} \min_{i \in [k]} \Delta(c, f_i) > s$$

• Input: Graph G = ([k] F)Parameterized

Inapproximability Hypothesis

(PIH) [Lokshtanov-Ramanujan-Saurabh-Zehavi'17]

• Soundness: $\forall \sigma : [k] \rightarrow [n]$

[Guruswami-Lin-Ren-Sun-Wu'24]

k-max-coverage

Input: $S_1, ..., S_m \subseteq [n]$, and integer k • Input: Clients C, Facilities F,

distance $\Delta: C \times F \to \mathbb{R}_{>0}$

For c=1, s=1, we get exact versions But we are interested when c=1 and s is bounded away from 1

Completeness: $\exists f_1, ..., f_k \in F$

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) \le c$$

I don't know

$$\sum_{c \in C} \min_{i \in [k]} \Delta(c, f_i) > s$$

2-CSP

k-max-coverage k-median

Parameterized
Inapproximability
Hypothesis
(PIH)
[Lokshtanov-Ramanujan-

Saurabh-Zehavi'17]

Can we prove PIH?

ETH >> PIH

[Guruswami-Lin-Ren-Sun-Wu'24]

2-CSP

k-max-coverage k-median

Parameterized
Inapproximability
Hypothesis
(PIH)
[Lokshtanov-Ramanujan-

Saurabh-Zehavi'17]

Can we prove PIH?

ETH→PIH

[Guruswami-Lin-Ren-Sun-Wu'24]

Can we prove parameterized inapproximability of k-max-coverage circumventing PIH?

2-CSP

k-max-coverage k-median

[Guruswami-Lin-Ren-Sun-Wu'24]

Can we prove PIH?

Can we prove parameterized inapproximability of k-max-coverage circumventing PIH?

Once apon a time...

Once apon a time...

Once apon a time...


```
While exact k-max-coverage is W[2]-complete, approximating it to any 1 - \frac{1}{F(k)} factor is W[1]-complete.
```

```
While exact k-max-coverage is W[2]-complete, approximating it to any 1 - \frac{1}{F(k)} factor is W[1]-complete.
```

If approximating k-max-coverage to $1-\varepsilon$ factor is W[1]-complete, then PIH is true.

```
While exact k-max-coverage is W[2]-complete, approximating it to any 1 - \frac{1}{F(k)} factor is W[1]-complete.
```

If approximating k-max-coverage to $1-\varepsilon$ factor is W[1]-complete, then PIH is true.

If approximating k-median to $1+\varepsilon$ factor is W[1]-complete, then PIH is true.

While exact k-max-coverage is W[2]-complete, approximating it to any $1-\frac{1}{F(k)}$ factor is W[1]-complete.

FPT Reductions

If approximating k-max-coverage to $1-\varepsilon$ factor is W[1]-complete, then PIH is true.

If approximating k-median to $1+\varepsilon$ factor is W[1]-complete, then PIH is true.

While exact k-max-coverage is W[2]-complete, approximating it to any $1-\frac{1}{F(k)}$ factor is W[1]-complete.

FPT Reductions

If approximating k-max-coverage

to $1 - \varepsilon$ factor is W[1]-complete, then PIH is true.

If approximating k-median to $1+\varepsilon$ factor is W[1]-complete, then PIH is true.

Approximating k-max-coverage to $1 - \varepsilon$ factor is W[1]-hard, \Longrightarrow Approximating k-max-coverage to $1 - \frac{1}{e} + o(1)$ factor is W[1]-hard

Gap Amplification

Step 1

Step 2

Step 3

 $(\tau, (1-\delta) \cdot \tau)$ k-max-coverage on universe [n]

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

au' and arepsilon are functions of δ

Step 1

 $(\tau, (1-\delta) \cdot \tau)$ k-max-coverage on universe n

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

au' and arepsilon are functions of δ

Step 2

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

 $(c, (1 - \varepsilon) \cdot c)$ Valued 2-CSP

$$c = O_k(\tau')$$

Step 3

Step 1

 $(\tau, (1-\delta) \cdot \tau)$ k-max-coverage on universe [n]

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

au' and arepsilon are functions of δ

Step 2

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

 $(c, (1 - \varepsilon) \cdot c)$ Valued 2-CSP

$$c = O_k(\tau')$$

Step 3

 $(c, (1 - \varepsilon) \cdot c)$ Valued 2-CSP

$$\left(1,1-\frac{\varepsilon}{2}\right)$$
 2-CSP

Step 1

$$(\tau, (1-\delta) \cdot \tau)$$
 k-max-coverage on universe $[n]$

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_{\delta}(k \log n)$

au' and arepsilon are functions of δ

Randomly hash [n] to universe of size $O_{\delta}(k\log n)$

Step 2

 $(\tau', (1-\varepsilon) \cdot \tau') \text{ k-max-coverage}$ on universe of size $O_\delta(k \log n)$

 $(c, (1 - \varepsilon) \cdot c)$ Valued 2-CSP

$$c = O_k(\tau')$$

Partition Universe to U_1 $\dot{\mathbf{U}}$ \cdots $\dot{\mathbf{U}}$ U_M where $|U_i| = \frac{\log n}{\log k}$

Variable x_i is assigned $f: U_i \to [k]$ Variable y_i is assigned input set S_i

Constraints between x_i and y_j measure fraction of U_i mapped to j and covered by S_j

Step 3

$$(c, (1 - \varepsilon) \cdot c)$$
 Valued 2-CSP

Values of a constraint can take one of $1 + \frac{\log n}{\log k}$ entries

There are at most $\binom{k}{2}$

constraints, so we can enumerate all possibilities

```
While exact k-max-coverage is W[2]-complete, approximating it to any 1 - \frac{1}{F(k)} factor is W[1]-complete.
```

If approximating k-max-coverage to $1-\varepsilon$ factor is W[1]-complete, then PIH is true.

If approximating k-median to $1+\varepsilon$ factor is W[1]-complete, then PIH is true.

While exact k-max-coverage is W[2]-complete, approximating it to any $1-\frac{1}{F(k)}$ factor is W[1]-complete.

If approximating k-max-coverage to $1-\varepsilon$ factor is W[1]-complete, then PIH is true.

If approximating k-median to $1+\varepsilon$ factor is W[1]-complete, then PIH is true.

[**K**-Laekhanukit-Manurangsi'19]

Adjusting parameters in prior works

[Cohen-Addad-Gupta-Kumar-Lee-Li'19]

Thank you for engaging!