Resumo MM719

Kauê Orlando Pereira- RA: 200608

28 de Setembro de 2022

Conteúdo

1	Forma canônica de Jordan via decomposição primária 1.1 Subespaços cíclicos	2 4
2	Forma canônica de Jordan via espaços quocientes	18
3	Funcionais Lineares e Adjuntos	28
4	Formas Bilineares	32
5	Produtos Tensoriais	43
6	Decomposição de Jordan-Chevalley	73

1 Forma canônica de Jordan via decomposição primária

Dado $p \in \mathcal{P}(\mathbb{F})$ e $T \in End_{\mathbb{F}}(V)$, defina

$$V_p := \{ v \in V : p(T)v = 0 \}$$

e

$$\mathcal{A}_T = \{ p \in \mathcal{P}(\mathbb{F}) : p(T) \equiv 0 \}.$$

É de imediata verificação que o conjunto V_p acima é na realidade um subespaço de V. Afirmamos agora que se $\mathcal{A}_T = \neq \{0\}$, então \mathcal{A}_T é um ideal do anel de polinômios $\mathcal{P}(\mathbb{F})$. Com efeito, notemos que se $p, q \in \mathcal{A}_T$, então

$$(p-q)(T) = p(T) - q(T) \equiv 0.$$

Por outro lado, se $r \in \mathcal{P}(\mathbb{F})$ e $p \in \mathcal{A}_T$ segue que

$$p \cdot r(T) = r \cdot p(T) \equiv 0.$$

Agora, como $\mathcal{P}(\mathbb{F}) := \mathbb{F}[x]$ e \mathbb{F} é um corpo, tem-se que $\mathbb{F}[x]$ é um domínio euclidiano, portanto um domínio principal e assim, existe $m_T \in \mathcal{A}_T$ tal que

$$\mathcal{A}_T = \langle m_T \rangle$$
.

Exemplo 1.1. (Contraexemplo quando $dim(V) = \infty$) Suponha que $V = \mathcal{P}(\mathbb{F})$ e $T: V \to V$ é definido por

$$T: V \to V, \quad f(x) \mapsto xf(x)$$

então, tem-se que $A_T = \{0\}$. Com efeito, seja $p \in A_T$ onde

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

então, temos que

$$p(T)f(x) = a_0 f(x) + a_1 (T(f(x))) + ... + a_n (T^n(f(x)))$$

por outro lado

$$T^k(f(x)) = \underbrace{T \circ T \circ \dots \circ T}_{k}(f(x)) = x^k f(x)$$

e assim, segue que

$$p(T)(f(x)) = p(x) \cdot f(x)$$

como f é arbitrário, temos que $p \equiv 0$.

Observação: Se caso $A_T = \{0\}$, define-se $m_T \equiv 0$. Além disso, nesse caso, tem-se que

$$V = V_{m\pi}$$
.

Lema 1.2. Se $S \in End_{\mathbb{F}}(V)$ e além disso

$$ST = TS$$

então, $V_S := Ker(S)$ é T-invariante.

Demonstração. Basta notarmos que se $v \in V_S$ então

$$S(T(v)) = T(S(v)) = T(0) = 0.$$

Observação: O lema acima garante-nos que V_p é T-invariante para todo $p \in \mathcal{P}(\mathbb{F})$. Agora, notemos que se $p, q \in \mathcal{P}(\mathbb{F})$ então $V_p \subseteq V_{qp}$. Em particular, segue que

$$V_{p^k} \subseteq V_{p^{k+1}}, \quad k \ge 0.$$

Portanto

$$V_p^\infty = \bigcup_{k \geq 0} V_{p^k}$$

é um subespaço T-invariante. Ademais, caso p(x) = x - a por algum $a \in \mathbb{F}$, o subespaço V_p^{∞} é chamado de **autoespaço generalizado associado a** a.

O próximo resultado visa descrever o conjunto

$$\{p \in \mathcal{P}(\mathbb{F}) : V_p \neq 0\}.$$

Proposição 1.3. Se $A_T \neq 0$ e p é irredutível então, $V_p \neq 0$ se, e somente se, $p \mid m_T$.

Demonstração. Notemos inicialmente que se f e g são polinômios coprimos, então a restrição, $f(T)_{|V_g}$ é injetora. Com efeito, se (f,g)=1 existem $r,s\in\mathcal{P}(\mathbb{F})$ tais que

$$rf + sg = 1$$

implicando que se $x \in V_q$ e f(T)x = 0, então

$$x = r(T)f(T)x + s(T)g(T)x = 0.$$

Agora, podemos já demonstrar nosso resultado. Vamos começar mostrando a recíproca. Suponha que $m_T \mid p$ e $V_p = \{0\}$. Portanto, temos que para todo $u \in V \setminus \{0\}$

$$p(T)u \neq 0.$$

Agora, seja

$$f = \frac{m_T}{p}$$

e assim, temos que

$$0 = m_T(T)v = p(T)f(T)v$$
, para qualquer $v \in V$.

Por outro lado, se $f(T)v \neq 0$, tem-se que $p(T)(f(T)v) \neq 0$, portanto a igualdade acima só faz sentido se f(T)v = 0 para todo $v \in V$. Porém isso é um absurdo pela minimalidade do grau de m_T .

Agora, suponha que $V_p \neq \{0\}$ e p não divide m_T . Dessa forma, teríamos que $(p, m_T) = 1$ uma vez que p é irredutível. E assim, pela observação anterior, $m_T(T)$ restrito a V_p é injetor. Como $m_T(T) \equiv 0$, tem-se que $V_p = \{0\}$.

A proposição anterior contou-nos que para um polinômio irredutível ser tal que $V_p \neq 0$ deve-se necessariamente ter p como um fator de m_T .

Teorema 1.4. Se $dim(V) < \infty$, então $A_T \neq 0$.

Demonstração. A prova é imediata uma vez que se dim(V) = n, $dim(End_{\mathbb{F}}(V)) = n^2$ e portanto, o conjunto $T^0 = Id_V, T^1, ..., T^{n^2}$ é linearmente dependente. Logo, pode-se construir um polinômio f que anula T apenas escolhendo-se o menor índice m tal que a família $T^0, T^1, ..., T^m$ seja linearmente independente. E além disso mais uma vez por minimalidade tem-se que $f = m_T$.

1.1 Subespaços cíclicos

Dado $v \in V$, a sequência de vetores

$$v_0 = v, v_1 = T(v), v_2 = T^2(v), ..., v_k = T^k(v), ...$$

é chamada T-ciclo gerado por v e denotada por $\mathscr{C}_T^{\infty} = (v_i)_{i \geq 0}$.

O espaço $C_T(v)$ gerado pela família acima, é chamado de espaço T-cíclico gerado por v. Além disso, é claro que se $dim(V) < \infty$ há uma quantidade finita de vetores (diferentes) em \mathscr{C}_T^{∞} . Em outros termos, se $v \neq 0$, existe $m \geq 1$ mínimo tal que a família

$$v_0, v_1, ..., v_{m-1}$$

é linearmente independente. Portanto, existem constantes $a_0,...,a_{m-1} \in \mathbb{F}$ tais que

$$T^{m}(v) = v_{m} = \sum_{k=0}^{m-1} a_{k} v_{k} = \sum_{k=0}^{m-1} T^{k}(v)$$

o qual dá origem ao polinômio mônico que anula T(v)

$$m_{T,v} = x^m - \sum_{k=0}^{m-1} a_k x^k$$

chamado de polinômio mínimo de v com respeito a T. Além disso, como $V_{m_{T,v}}$ é T-invariante, segue que $C_T(v) \subseteq V_{m_{T,v}}$.

Proposição 1.5. Para todo $v \in V$, $m_{T,v} \mid m_T$.

Notemos que se $v_0, v_1, ..., v_{m-1}$ formar uma base de V, então $m_{T,v} = m_T$. Com efeito, basta mostrarmos que $m_T \mid m_{T,v}$. Para tal feito, é suficiente mostrar que $m_{T,v}(T)(T^j(v)) = 0$ para todo $1 \le j \le m-1$. Assim, notemos que

$$m_{T,v}(T)(T^{j}(v)) = T^{m}(T^{j}(v)) - \sum_{k=0}^{m-1} a_k T^{k}(T^{j}(v)) = T^{j}(T^{m}(v) - \sum_{k=0}^{m-1} T^{k}(v)) = T^{j}(0) = 0.$$

Mais adiante, vamos mostrar que sempre existe um vetor $v \in V$ satisfazendo $m_{T,v} = m_T$. Vamos relembrar rapidamente alguns resultados relacionados a soma direta.

Lema 1.6. Seja V um espaço de dimensão finita e $W_1, W_2, ..., W_m$ subespaços de V. Assim, se $W = W_1 + W_2 + ... + W_m$, as seguintes condições são equivalentes

- a) $W_1, ..., W_m$ são independentes
- b) Para cada j, com $2 \le j \le m$, tem-se que

$$W_i \cap (W_1 + W_2 + \dots + W_{i-1}) = \{0\}.$$

c) Se \mathcal{B}_i é base de W_i , a sequência $\mathcal{B} = (\mathcal{B}_1, ..., \mathcal{B}_m)$ é uma base de W.

Proposição 1.7. Se $p_1, p_2, ..., p_m$ são dois a dois relativamente primos, então a soma

$$V_{p_1}^{\infty} + V_{p_1}^{\infty}... + V_{p_m}^{\infty}$$

é direta.

Proposição 1.8. Sejam $f_1, f_2, ..., f_m \in \mathcal{P}(\mathbb{F})$ dois a dois relativamente primos. Então, se $f = f_1 f_2 ... f_m$, tem-se que

$$V_f = V_{f_1} \oplus V_{f_2} \oplus \ldots \oplus V_{f_m}$$

Demonstração. Vamos inicialmente demonstrar para o caso em que m=2. Segue da primeira linha pós a primeira observação que

$$V_{f_1} + V_{f_2} \subseteq V_f$$

e além disso, pelo resultado anterior, tal soma é direta. Precisamos mostrar agora que, dado $v \in V_f$, existem v_1, v_2 , com $v_1 \in V_{f_1}$ e $v_2 \in V_{f_2}$ tais que

$$v = v_1 + v_2.$$

Como $(f_1, f_2) = 1$, segue que existem $g_1, g_2 \in \mathcal{P}(\mathbb{F})$ tais que

$$g_1f_1 + g_2f_2 = 1.$$

Dessa forma, se $S = T_{|V_f}$ definimos

$$h_i = g_i f_i, \quad i \in \{1, 2\}$$

e além disso

$$P_j = h_j(S), \quad j \in \{1, 2\}.$$

Notemos agora que

$$f(S) = f(T_{|V_f}) = 0$$

e

$$P_1 + P_2 = Id_{V_f}.$$

Ademais, notemos que

 $P_1P_2(v) = g_1(S)f_1(S)g_2(S)f_2(S)(v) = 0 = g_2(S)f_2(S)g_1(S)f_1(S)(v)$, para todo $v \in V_f$ assim, segue em particular que $P_i^2 = P_i$, para $i \in \{1,2\}$. (cf. Hoffman and Kunze-Linear Algebra, pag 212).

Teorema 1.9. (Teorema da decomposição primária) Suponha que $dim(V) < \infty$ e sejam $p_1, p_2, ..., p_m$ fatores irredutíveis distintos de m_T em $\mathcal{P}(\mathbb{F})$. Se k_j é a multiplicidade de p_j em m_T , segue que

$$V=V_{p_1^{k_1}}\oplus V_{p_1^{k_2}}\oplus\ldots\oplus V_{p_m^{k_m}}$$

Demonstração. Basta tomar $f_j = p_j^{k_j}$ como na proposição acima.

Vamos agora trabalhar em direção a demonstrar o teorema da decomposição cíclica.

Proposição 1.10. Se $p \in \mathcal{P}(\mathbb{F})$ é irredutível e $dim(V_p) < \infty$, existem $l \geq 0$ e $v_1, ..., v_l \in V_p$ tais que $V_p = C_T(v_1) \oplus C_T(v_2) \oplus ... \oplus C_T(v_l)$.

A ideia da proposição acima é bastante simples, "quebrar" o espaço V_p como soma direta de "bons espaços", afim de podermos decompor em particular a transformação T em outras mais "fáceis "de se trabalhar. Por exemplo, suponha que $V=V_p,\ l=2$ e além disso que

$$dim(C_T(v_i)) = 2, \quad i \in \{1, 2\}.$$

Dessa forma, temos que existem constantes $\alpha_1, \alpha_2, \beta_1, \beta_2$ tais que

$$T^{2}(v_{1}) = \alpha_{1}v_{1} + \alpha_{2}T(v_{1})$$

е

$$T^{2}(v_{2}) = \beta_{1}v_{2} + \beta_{2}T(v_{2}).$$

Assim, a forma matricial A de T na base $\{v_1, T(v_1), v_2, T(v_2)\}$ é

$$A = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 \\ 1 & \alpha_2 & 0 & 0 \\ 0 & 0 & 0 & \beta_1 \\ 0 & 0 & 1 & \beta_2 \end{pmatrix}.$$

Lema 1.11. Se $p \in \mathcal{P}(\mathbb{F})$ é irredutível e $u, v \in V$ satisfazem

$$m_{T,v} = m_{T,u} = p$$

então exatamente uma das opções ocorre

$$i) C_T(u) = C_T(v)$$

ou

ii)
$$C_T(u) \cap C_T(v) = \{0\}.$$

Demonstração. Denotamos por $m_v := m_{T,v}$ e $m_u := m_{T,u}$. Vamos mostrar inicialmente que se f é um polinômio irredutível, então f é o polinômio minimal do operador $F = T_{|V_f}$. Seja m_F polinômio minimal de F. Como f(F)x = 0 para todo $x \in V_f$, temos que $m_F \mid f(F)$, porém f como irredutível, tem-se que $m_F = f$.

Agora, suponha que exista $x \in C_T(u) \cap C_T(v)$, vamos mostrar que $m_{T,x} = m_u$. Sabe-se que $m_u = m_F$, onde $F = T_{|V_{m_u}}$, resta-nos mostrar que $m_{T,x} \mid m_u$. Para isso, veja que se $x = a_0u + a_1T(u) + \ldots + T^{m-1}(u)$, então

$$m_u(T)x = \sum_{k=0}^{m-1} a_k m_u(T) T^k(u) = \sum_{k=0}^{m-1} a_k T^k m_u(T)(u) = 0$$

e consequentemente $x \in V_{m_u}$. Assim, como V_{m_u} é T-invariante, temos pela proposição 1.5 que $m_{T,x} \mid m_u$. E com isso, concluímos que $C_T(x) = C_T(u)$ e analogamente, $C_T(x) = C_T(v)$. \square

A demonstração da proposição acima pode ser encontrada na pagina 259 do livro de Adriano Moura.

Proposição 1.12. Se $p \in \mathcal{P}(\mathbb{F})$ é irredutível e $dim(V_p^{\infty})$ é finita, $deg(p) \mid dim(V_p^{\infty})$. Além disso

$$\frac{dim(V_p^{\infty})}{deg(p)} \ge min\{k : V_p^{\infty} = V_{p^k}\}.$$

Valendo a igualdade se, e somente se V_p^{∞} for T-cíclico.

Demonstração. Suponha que V_p^{∞} seja T-cíclico. Assim, existe $v \in V_p^{\infty}$ tal que $V_p^{\infty} = C_T(v)$. Ademais, seja m o menor número na qual a sequência V_{p^k} se estabiliza. Em outras palavras, m é o maior número no qual $V_{p^{m-1}} \neq V_{p^m}$. Seja além disso S a restrição de T a V_p^{∞} . Por minimalidade de m segue de imediato que $m_S = m_v = p^m$, e como

$$dim(V_p^{\infty}) = dim(C_T(v)) = \deg(m_v) = m \deg(p)$$

o resultado segue.

Agora, vamos proceder por indução em $n=dim(V_p^{\infty})$. É imediato o caso em que n=1. Suponha o resultado válido para n>1 e considere o enunciado da hipótese de indução

Se S é um operador num espaço W tal que $dim(W_p^\infty) < n$ (aqui estamos abusando da notação, mas na realidade seria $W_p^\infty = W_{p(S)}^\infty$) $\deg(p) \mid dim(W_p^\infty)$ e

$$\frac{dim(W_p^{\infty})}{deg(p)} \ge min\{k: W_p^{\infty} = W_{p^k}\}.$$

Suponha que m=1. Dessa forma, pode-se escrever V_p^∞ como soma direta de espaços T-cíclicos e portanto, como $\deg(p)$ divide cada espaço T-cíclico (pelo primeiro caso) temos que $\deg(p)\mid dim(V_p^\infty)$ e a desigualdade é imediata.

Suponha então que m>1 e considere $W:=V_{p^{m-1}}$ o qual é um subespaço T-invariante próprio e não trivial. Seja além disso, $S=T_{|W}$. Notando agora que

$$W_{p^m} = \{v \in V_{p^{m-1}} : p(S)v = 0\} = V_{p^{m-1}}$$

concluímos que

$$W = W_{p(S)}^{\infty} = V_{p^{m-1}}.$$

Assim, por hipótese de indução, temos que

$$deg(p) \mid dim(W)$$

 \mathbf{e}

$$\frac{dim(W)}{\deg(p)} \ge m - 1.$$

Por outro lado, como $Ker(p^{m-1}(T_{|V_p^\infty}))=V_{p^{m-1}}=W$ temos pelo teorema núcleo imagem que

$$\dim(V_p^{\infty}) = \dim(W) + \dim(Im(T_{|V_n^{\infty}})).$$

Assim, para concluir que $\deg(p) \mid \dim(V_p^\infty)$, precisamos mostrar que $\deg(p) \mid Im(T_{|V_p^\infty})$. Dado que $T_{|V_p^\infty} \circ T = T \circ T_{|V_p^\infty}$ em V_p^∞ pode-se mostrar que $Im(T_{|V_p^\infty})$. Ademais, tem-se que $Im(T_{|V_p^\infty}) \subseteq V_p^\infty$. Assim, da mesma forma como que no caso m=1, completa-se a demonstração.

Vamos agora falar um pouco sobre o polinômio característico. Seja n = dim(V) e $p_j^{k_j}$ os fatores primários de T. Dessa forma, temos que

$$\deg(m_T) = \sum_{j=1}^{m} k_j \deg(p_j) \le \sum_{j=1}^{m} \dim(V_{p_j^{k_j}}) = n$$

Defina

$$n_j = \frac{\dim(V_{p_j^{k_j}})}{\deg(p_j)} \ge k_j$$

e defina

$$c_T = \prod_j p_j^{n_j}$$

tal é chamado de polinômio característico de T. Por definição, $c_T \in \mathcal{A}_T$ e $\deg(c_T) = n$. Iremos mostrar mais adiante que na realidade tal definição é a mesma que a definição clássica de polinômio característico.

Observação: Para calcularmos cada k_i , pode-se analisar a sequência de núcleos

$$V_{p_j} \subseteq V_{p_j^2} \subseteq \ldots \subseteq V_{p_j^{n_j}} \ldots$$

Bases Cíclicas

Suponha que $m_v = (t - \mu)^m$ por algum $\mu \in \mathbb{F}$ e $m \in \mathbb{N}$. Nosso objetivo, será olhar mais de perto a restrição $S = T_{|C_T(v)}$. Pois bem, defina para cada $j \in \{0, 1, 2, ..., m-1\}$ os vetores

$$w_j := (T - \mu I)^j v$$

afirmamos que $w_0, w_1, ..., w_{m-1}$ constituem uma base de $C_T(v)$. Com efeito dado uma combinação linear igualada a zero, se aplicarmos j vezes o operador $(T - \mu I)$ a ambos os lados de tal combinação, terá necessariamente o primeiro coeficiente nulo, prosseguindo deste mesmo modo, mostra-se que na realidade todos os coeficiente devem ser nulos.

Agora notemos que

$$\mu w_j + w_{j+1} = \mu (T - \mu I)^j v + (T - \mu I)^{j+1} v = (T - \mu I)^j (\mu v + T(v) + \mu v)$$

ou seja

$$\mu w_j + w_{j+1} = (T - \mu I)^j (T(v)) = T((T - \mu I)^j)v) = T(w_j)$$

e portanto, para todo $j \in \{0, 1, 2, ..., m-1\}$ tem-se que

$$T(w_j) = \mu w_j + w_{j+1}$$

e com isso a matriz de S em tal base é dada por

$$S = J_m(\mu) := \begin{pmatrix} \mu & 0 & 0 & \dots & 0 \\ 1 & \mu & 0 & \dots & 0 \\ 0 & 1 & \mu & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \mu \end{pmatrix}$$

uma sequência de elementos na base de $C_T(v)$ como a estabelecida acima é chamada de um T-ciclo de Jordan de comprimento m. Uma base formada por uma união de T-ciclos é dita ser **uma base de Jordan**.

Se \mathcal{B} é uma base de Jordan de um operador T, segue que a matriz de T em tal base é uma matriz diagonal em blocos, onde cada bloco é da forma como descrito acima.

Teorema 1.13. (Teorema da Decomposição de Jordan) Existe uma base de Jordan com respeito a T para V se, e somente se, os fatores irredutíveis de m_T tem todos grau 1. Além disso, quaisquer duas bases de Jordan de V com respeito a T, a quantidade de T-ciclos de Jordan de comprimento k e autovalor λ coincidem quaisquer que sejam k e λ .

Observação: Se os espaços T-primários forem todos T-cíclicos basta escolhermos para cada espaço um gerador do mesmo e prosseguir como acima.

Devemos agora tentar resolver o problema para quando os espaços T-primário não forem T-cíclicos. E além disso, devemos também resolver o caso em que os fatores irredutíveis do polinômio minimal tenham grau maior do que 1. (e.g, $m_T = (x-1)(x-2)(x^2+3)$).

Teorema 1.14. (Teorema da Decomposição Cíclica) Existem $m \in \mathbb{Z}_{\geq 1}$ e $v_1, v_2, ..., v_m \in V \setminus \{0\}$ tais que

$$V = C_T(v_1) \oplus C_T(v_2) \oplus C_T(v_3) \oplus ... \oplus C_T(v_m)$$

e além disso

$$m_{v_{j+1}} \mid m_{v_j} \text{ para todo } j \in \{1, 2, ..., m-1\}.$$

Além disso, tal decomposição é única.

- Os polinômios m_{v_i} são chamados de fatores invariantes de T.
- (Matriz Companheira ou Matriz de Frobenius) Se $v, T(v), T^2(v), ..., T^{n-1}(v)$ são elementos da base de $C_T(v)$, então existem $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ tais que

$$m_v = x^n - \sum_{j=0}^{n-1} \alpha_j x^j$$

e portanto, segue que a matriz de $S = T_{|C_T(v)|}$ em tal base é dada por

$$[S]_{C_T} = \begin{pmatrix} 0 & 0 & 0 & \dots & \alpha_0 \\ 1 & 0 & 0 & \dots & \alpha_1 \\ 0 & 1 & 0 & \dots & \alpha_2 \\ 0 & 0 & 1 & \dots & \alpha_3 \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \alpha_{n-1} \end{pmatrix}$$

Uma base formada por conjuntos da forma acima \acute{e} chamada de uma base racional (ou de Frobenius) de V com respeito a T.

Corolário 1.15. $m_{v_1} = m_T$

Demonstração. Já sabemos que $m_{v_1} \mid m_T$. Precisamos então mostrar que $m_T \mid m_{v_1}$. Para isso, é suficiente mostrar que $m_{v_1}(T)v = 0$ para todo $v \in V$. Do teorema da decomposição cíclica tem-se que dado $v \in V$, existem únicos $w_1, ..., w_m$ com $w_i \in C_T(v_i)$ tais que

$$v = w_1 + \dots + w_m$$

portanto, basta mostrarmos que $m_{v_1}(T)w_j=0$ para todo $j\in\{1,2,...,m\}$. Porém isso é imediato do fato de que $m_{v_j}\mid m_{v_1}$ para todo $j\in\{1,2,...,m\}$.

Notemos que se T possui FCJ, seus autovalores distintos são λ_j , $1 \le j \le l$, e k_j é a soma soma dos tamanhos dos blocos com autovalor λ_j , temos que

$$c_T = \prod_{j=1}^l (x - \lambda_j)^{k_j}.$$

Definição 1.16. Um subespaço W T-invariante \acute{e} dito ser T-admissível se sempre que $f(T)v \in W$, para alqum $v \in V$ e $f \in \mathcal{P}(\mathbb{F})$, existe $\widehat{v} \in W$ tal que

$$f(T)v = f(T)\widehat{v}$$
.

Definição 1.17. Dado um espaço T-invariante W, o conjunto

$$\mathscr{C}_{T,v}(W) = \{ p \in \mathcal{P}(\mathbb{F}) : p(T)v \in W \}$$

é chamado o T-condutor de v em W. Não é difícil mostrar que existe único polinômio mônico c(v,W) que divide todo mundo em $\mathscr{C}_{T,v}$, pois este é um ideal de $\mathcal{P}(\mathbb{F})$ o qual é um PID. É imediato também que $m_v \mid c(v,W)$.

• Se $W \subseteq W'$, então $c(v, W) \mid c(v, W')$ e portanto, $c(v, W) \mid m_v$. Ademais, c(v, W) = 1 se $v \in W$.

Proposição 1.18. Sejam W um subespaço próprio de um espaço vetorial V de dimensão finita n, $e \ T \in End_{\mathbb{F}}(V)$. Se W é T-invariante $e \ T$ -admissível, então existe $x \in V$ tal que a soma $W + C_T(x)$ é direta, isto é

$$W \cap C_T(x) = \{0\}.$$

Demonstração. Seja $y \in V \setminus W$ e considere o T-condutor $\mathscr{C}_{T,y}$ e seu gerador c(y,W). Em particular

$$w := c(y, W) \in W$$
.

Dado que W é T-admissível, existe $\hat{y} \in W$ tal que

$$w = c(y, W)(T)y = c(y, W)(T)\hat{y}.$$

Agora, defina

$$x = y - \hat{y}$$

e seja $g \in \mathcal{P}(\mathbb{F})$ polinômio qualquer. Como $y - x \in W$, segue que $g(T)y \in W$ se, e somente se, $g(T)x \in W$, isto é, se, e somente se, c(x,W) = c(y,W), logo tem-se que $\mathcal{C}_{T,y} = \mathcal{C}_{T,x}$. Porém, c(x,W) = 0, e assim, $g(T)x \in W$ se, e somente se, g(T)x = 0, donde segue que $W \cap C_T(x) = \{0\}$ e além disso, $c(x,W) = m_x$.

Teorema 1.19. (Teorema da decomposição cíclica) Seja V um espaço vetorial de dimensão finita n e $T \in End_{\mathbb{F}}(V)$ e seja W_0 um subespaço próprio T-admissível de V. Então, existem $v_1, ..., v_r \in V$ tais que

a)

$$V = W_0 \oplus C_T(v_1) \oplus C_T(v_2) \oplus \cdots \oplus C_T(v_r)$$

b)

$$m_{v_r} \mid m_{v_{r-1}} \mid \cdots m_{v_1}$$
.

Ademais, $r \in \mathbb{Z}$, $m_{v_1}, ..., m_{v_r}$ são unicamente determinados por a),b) e pelo fato de que nenhum dos v_i 's é nulo.

Iremos demonstrar o teorema acima utilizando uma série de lemas. Em cada um, as hipóteses serão as mesmas de 1.19.

Lema 1.20. Existem vetores não nulos $w_1, ..., w_r \in V$ tais que

$$V = W_0 + C_T(w_1) + \cdots + C_T(w_r).$$

Além disso, definindo para cada $1 \le k \le r$

$$W_k = W_0 + C_T(w_1) + \cdots + C_T(w_k)$$

então o T-condutor $p_k(x) := c(w_k, W_{k-1})(x)$ tem a propriedade

$$\deg p_k = \max_{v \in V} \deg(c(v, W_{k-1})).$$

Demonstração. Dado $v \in V$, sabe-se que

$$c(v, W_0) \mid m_v \mid m_T \mid c_T$$

e em particular, $0 < \deg c(v, W_0) < \dim V$, dessa forma

$$0 < \max_{v \in V} \deg(v, W_0) \le \dim V$$

e portanto pelo hipótese do supremo, existe $w \in V$ tal que

$$\deg c(w, W_0) = \max_{v \in V} \deg c(v, W_0).$$

Ademais, $W_0 + C_T(w)$ é um subespaço T-invariante tal que

$$\dim(W_0 + C_T(w)) > \dim W.$$

Com isso, pode-se tomar $w_1 := w$ e neste caso $W_1 = W + C_T(w_1)$. Se $W_1 \subsetneq V$ então pode-se aplicar o processo acima com W_1 no lugar de W_0 e obter w_2 e W_2 como no enunciado, e assim por diante. Após $1 \leq k \leq \dim V$ construções

$$\deg(c(w_k,W_{k-1})) = \max_{v \in V} \deg(c(v,W_{k-1})).$$

Lema 1.21. Sejam $u_1, ..., u_r \in V$ os quais satisfazem as condições do lema 1.20. Fixando $1 \le k \le r$, seja $u \in V$ vetor qualquer $e f(x) := c(u, W_{k-1})(x)$. Se

$$f(T)u = u_0 + \sum_{j=1}^{k-1} g_i(T)u_j$$
, onde $g_j \in \mathcal{P}(\mathbb{F})$ e $u_j \in W_j$, para cada $1 \le j \le k-1$

 $ent \~ao$

$$f \mid g_j$$
, para cada $1 \leq j \leq k-1$

e além disso

$$u_0 = f(T)y_0$$
, onde $y_0 \in W_0$.

Demonstração. Se k=1, então como $f(T)u \in W_0$ e W_0 é T-admissível, segue que $u_0=f(T)u=f(T)y_0$, onde $y_0 \in W_0$. Agora, suponha que k>1. Pelo algoritmo da divisão de Euclides, segue que

$$g_j = fh_j + r_j$$
, com $r_j \equiv 0$ ou $\deg r_j < \deg f$ para cada $1 \le j \le k - 1$.

Defina

$$\gamma := u - \sum_{j=1}^{k-1} h_j(T) u_j.$$

Como W_{k-1} é T-invariante, $\gamma - u \in W_{k-1}$ e portanto

$$c(\gamma, W_{k-1})(T)u \in W_{k-1} \in c(u, W_{k-1})(T)\gamma \in W_{k-1}$$

donde tem-se que

$$c(\gamma, W_{k-1}) \mid c(u, W_{k-1}) \in c(u, W_{k-1}) \mid c(\gamma, W_{k-1})$$

e assim

$$c(\gamma, W_{k-1}) = c(u, W_{k-1}) = f(x).$$

Notemos também que

$$f(T)\gamma = f(T)u - \sum_{j=1}^{k-1} f(T)h(T)u_j = u_0 + \sum_{j=1}^{k-1} (g_j(T) - f(T)h_j(T))u_j$$

o qual é equivalente a

$$f(T)\gamma = u_0 + \sum_{j=1}^{k-1} r_j(T)u_j.$$

Suponha por absurdo que $r_a \neq 0$, para algum $1 \leq a \leq k-1$. Sem perda de generalidade pode-se supor que $1 \leq a \leq k-1$ é o maior índice no qual $r_a \neq 0$. Então, a escrita acima se torna

$$f(T)\gamma = u_0 + \sum_{j=1}^{a} r_j(T)u_j. \tag{1}$$

Seja $p(x) = c(\gamma, W_{a-1})$. Dado que

$$W_{a-1} \subseteq W_{k-1}$$

e portanto

$$c(\gamma, W_{k-1}) \mid p$$

logo, existe $g \in \mathcal{P}(\mathbb{F})$ tal que p = fg. Aplicando g(T) de ambos os lados de 1 obtemos

$$p(T)\gamma = g(T)f(T)\gamma = g(T)r_a(T)u_a + g(T)u_0 + \sum_{j=1}^{a-1} g(T)r_j(T)u_j$$

e assim, como $p(T)\gamma \in W_{a-1}$ e

$$g(T)u_0 + \sum_{j=1}^{a-1} g(T)r_j(T)u_j \in W_{a-1}$$

segue que

$$p(T)r_a(T)u_a \in W_{a-1}$$
.

Agora, notemos que

$$\deg(pr_a) \ge \deg(c(u_a, W_{a-1})) \stackrel{def}{=} \deg p_a$$

e pelo lema 1.20

$$\deg(pr_a) \ge \deg(c(\gamma, W_{a-1})) = \deg p = \deg(fg)$$

e portanto

$$\deg(r_a) \ge \deg(f)$$

o qual é um absurdo. Consequentemente

$$f \mid g_j$$
 para cada $1 \leq j \leq k-1$.

E assim, em particular por 1, segue que

$$f(T)\gamma = u_0 \in W_0$$

e como W_0 é T-admissível, existe $y_0 \in W_0$ tal que

$$u_0 = f(T)y_0.$$

O lema acima implica que cada um dos $W_1,...,W_r$ são T-admissíveis. De fato, seja $1 \le k \le r,\ h \in \mathcal{P}(\mathbb{F})$ e $u \in V$ tal que $h(T)u \in W_{k-1}$. Considere $f(x) = c(u,W_{k-1})$, então h = sf e além disso, pelo lema acima

$$f(T)u = f(T)w$$
, onde $w \in W_{k-1}$

e assim segue que

$$h(T)w = s(T)f(T)w = s(T)f(T)u = h(T)u.$$

Vamos então para a demonstração do teorema 1.19.

Demonstração. (Teorema da decomposição cíclica) Considere $w_1,...,w_r \in V$ vetores como no lema 1.20 e fixe $1 \le k \le r$. Fazendo $u = w_k$ e $f = p_k$ no lema 1.21 obtemos

$$p_k(T)w_k = p_k(T)y_0 + \sum_{j=1}^{k-1} p_k(T)h_j(T)w_j.$$

Agora, defina

$$v_k = w_k - y_0 - \sum_{j=1}^{k-1} h_j(T)w_j$$

como $w_k - v_k \in W_{k-1}$, segue que

$$c(v_k, W_{k-1}) = c(w_k, W_{k-1}) = p_k.$$

Suponha que $W_{k-1} \cap C_T(v_k) \neq \{0\}$, então existe $y \in W_{k-1}$ tal que $y = g(T)v_k$ e em particular, $g \in \mathscr{C}_{T,v_k}$, donde segue que $g = hp_k$ e portanto

$$y = g(T)v_k = h(T)p_k(T)v_k = 0.$$

Logo

$$W_{k-1} \cap C_T(v_k) = \{0\}.$$

Afirmamos que

$$W_1 = W_0 \oplus C_T(v_1).$$

De fato, já vimos que $W_0 \cap C_T(v_1) = \{0\}$, precisamos mostrar que

$$W_0 + C_T(v_1) = W_0 + C_T(w_1).$$

Já vimos que $w_1 - v_1 \in W_0$, logo, segue que $v_1 = (v_1 - w_1) + w_1$ e assim

$$W_0 + C_T(v_1) \subseteq W_0 + C_T(w_1).$$

A recíproca é análoga. Por indução mostra-se que para cada $1 \leq k \leq r$

$$W_k = W_0 \oplus C_T(v_1) \oplus ... \oplus C_T(v_k).$$

Notemos ainda que para cada $1 \le k \le r$, $p_k = c(v_k, W_{k-1}) = m_{v_k}$. De fato, como $m_{v_k}(T)v_k = 0 \in W_{k-1}$, segue que $p_k \mid m_{v_k}$. Reciprocamente, como $p_k(T)v_k = 0$, segue que $m_{v_k} \mid p_k$.

Por fim, precisamos mostrar que

$$m_{v_r} \mid m_{v_{r-1}} \mid \cdots m_{v_2} \mid m_{v_1}$$

ou equivalentemente que

$$p_r | p_{r-1} | \cdots p_2 | p_1.$$

Sabe-se que

$$v_1 - w_1 = w_0$$
, onde $w_0 \in W_0$

e assim

$$0 = p_2(T)v_2 = p_1(T)v_1 = p_1(T)(w_0) + p_1(T)w_1$$

e pelo lema 1.21 tem-se que $p_2 \mid p_1$. Procedendo desta mesma forma para os demais $k \in \{1, 2, ..., r\}$ concluí-se o resultado.

Precisamos mostrar agora a unicidade. Suponha que existam $w_1,...,w_s\in V$ e respectivos $g_1,...,g_s$ T-anuladores tais que

$$V = W_0 \oplus C_T(w_1) \oplus \cdots C_T(w_s)$$

e além disso

$$g_s \mid g_{s-1} \mid \cdots \mid g_2 \mid g_1$$
.

Precisamos mostrar que r = s e $p_1 = m_{v_1}, ..., p_r = m_{v_r}$. Denotemos por $S(V, W_0)$ o conjunto

$$C(V, W_0) = \{ f \in \mathcal{P}(\mathbb{F}) : f(T)(V) \subseteq W_0 \}.$$

Não é difícil ver que $C(V, W_0)$ é um ideal não nulo de $\mathcal{P}(\mathbb{F})$. A primeira afirmação é imediata pois $m_T \in C(V, W_0)$ e a segunda é verificada por contas canônicas. Vejamos agora que dado $w \in W$, pode-se escrever

$$w = w_0 + f_1(T)w_1 + \cdots + f_s(T)w_s$$

e assim

$$g_1(T)w = g_1(T)w_0 + g_1f_1(T)w_1 + \cdots + g_1(T)f_s(T)w_s.$$

Por outro lado, como cada $g_i \mid g_1$, tem-se em particular que $g_1(T)w_i = 0$ para cada $1 \le i \le s$ e portanto

$$q_1(T)w = q_1(T)w_0$$

donde segue que $g_1 \in C(V, W_0)$. Se $C(V, W) = \langle h \rangle$, então em particular $h(T)w_1 \in W_0$, logo $g_1 \mid h$, consequentemente, $g_1 = h$. Pelo mesmo argumento, $C(V, W_0) = \langle p_1 \rangle$, implicando então que $p_1 = g_1$ pois ambos são polinômios mônicos. Considere agora 3 fatos:

- 1) $f(T)(C_T(v)) = C_T(f(T)v)$
- 2) Se $V = V_1 \oplus \cdots V_k$, onde cada V_i é T-invariante, então

$$f(T)V = f(T)V_1 \oplus \cdots f(T)V_k$$
.

3) Sejam $v, w \in V$ tais que $m_v = m_w$. Então

$$m_{f(T)v} = m_{f(T)w}$$

e além disso

$$\dim C_T(f(T)v) = \dim C_T(f(T)w).$$

Iremos argumentar apenas na demonstração de 2) e 3) pois 1) é imediato da definição. Para 2), dado $v \in V$, escreva $v = v_1 + \cdots v_k$ e assim

$$f(T)v = f(T)v_1 + \cdots + f(T)v_k$$

logo segue que $f(T)V = f(T)V_1 + \cdots + f(T)V_k$. Por fim, dado $1 \le j \le k$, suponha que exista $y \in V$ tal que

$$y \in (f(T)V_1 + \cdots f(T)v_{j-1}) \cap f(T)V_j$$
.

Por um lado

$$y = f(T)v_i$$
, onde $v_i \in V_i$

e

$$y = f(T)x_1 + \dots + f(T)x_{j-1}$$

e assim como $f(T)y \in V_i$ tem-se que

$$f(T)x_i = 0$$
, para todo $1 \le i \le j-1$

donde segue que y=0. Seja g o T-anulador de f(T)v, então

$$q(T)f(T)v = 0$$

isto é, gf(T)v = 0 e portanto $m_v \mid gf$, ou seja, existe $h \in \mathcal{P}(\mathbb{F})$ tal que $gf = m_v h = m_w h$ e assim em particular g anula f(T)w, consequentemente $m_{f(T)w} \mid g$. Analogamente mostra-se que $g \mid m_{f(T)w}$.

Vamos agora proceder por indução para mostrar que r=s e $p_i=g_i$, para cada $2 \le i \le r$. Vamos mostrar que se $r \ge 2$, então $p_2=g_2$. Suponha então que $r \ge 2$. Dessa forma

$$\dim V > \dim W_0 + \dim C_T(v_1) = W_1.$$

Dado que $p_1 = g_1$, tem-se que

$$\dim C_T(v_1) = \dim C_T(w_1)$$

e assim

$$\dim V > \dim W_0 + \dim C_T(w_1).$$

Por conta da decomposição de V, de 1) e 2)

$$p_2(T)V = p_2(T)W_0 \oplus C_T(p_2(T)w_1) \oplus \cdots C_T(p_2(T)w_s)$$

e ademais, como $p_2(T)v_i = 0$, para cada $2 \le i \le r$, concluí-se que

$$p_2(T)V = p_2(T)W_0 \oplus C_T(p_2(T)v_1).$$

Por 3), sabemos que

$$\dim C_T(p_2(T)v_1) = \dim C_T(p_2(T)w_1)$$

logo, para cada $2 \le i \le r$

$$\dim C_T(p_2(T)w_i) = 0.$$

Em particular, $p_2(T)w_2 = 0$ e assim, $g_2 \mid p_2$. Analogamente mostra-se que $p_2 \mid g_2$. O resultado geral segue por indução.

Corolário 1.22. Se $T \in End_{\mathbb{F}}(V)$ é um operador linear num espaço vetorial de dimensão finita n, então qualquer subespaço W_0 de V o qual é T-admissível admite um complementar W'_0 T-admissível.

Demonstração. Se $W_0 = V$, tome $W_0' = \{0\}$. Caso contrário o resultado segue de imediato do teorema da decomposição cíclica.

Corolário 1.23. Seja V um espaço vetorial de dimensão finita n e $T \in End_{\mathbb{F}}(V)$. Então:

a) Existe um vetor $v \in V$ tal que

$$m_v = m_T$$
.

b) Existe $u \in V$ tal que $V = C_T(u)$ se, e somente se, $m_T = c_T$.

Demonstração. Se $V = \{0\}$ o resultado é imediato. Suponha que $V \neq \{0\}$ e tome $W_0 = \{0\}$, então pelo teorema da decomposição cíclica, existe $v_1, ..., v_r \in V$ tais que

$$V = C_T(v_1) \oplus \cdots C_T(v_r)$$

e além disso

$$m_{v_r} \mid m_{v_{r-1}} \mid \cdots m_{v_2} \mid m_{v_1}$$
.

Notemos que

$$m_{v_i}(T)v_i = 0$$
, para cada $2 \le i \le r$

e por outro lado, como $m_{v_i} \mid m_{v_1}$, pode-se escrever

$$m_{v_1} = h_i m_{v_i}$$
, para cada $2 \le i \le r$

em particular, $m_{v_1}(T)v_i = 0$, para todo $1 \le i \le r$ e assim, $m_{v_1} = m_T$.

b) Se existe $v \in V$ tal que $V = C_T(v)$, então $m_v = m_T$ e além disso

$$\deg m_T = \dim C_T(v) = \dim V = \deg c_T$$

e como $m_T \mid c_T$ e ambos são polinômios mônicos, concluí-se que $m_T = c_T$. Reciprocamente, se $v \in V$ é tal que $m_v = m_T = c_T$, então dim $C_T(v) = \dim V$, donde tem-se que $V = C_T(v)$. \square

Uma base formada pela união das bases cíclicas de um operador T num espaço vetorial de dimensão finita é chamada de base racional. Essencialmente, utiliza-se o teorema da decomposição primária e o teorema da decomposição cíclica, onde este último pode ser pensado como sendo um refinamento do da decomposição primária.

Teorema 1.24. (Teorema generalizado de Cayley-Hamilton) Sejam V espaço vetorial de dimensão finita n e $T \in End_{\mathbb{F}}(V)$. Então

- a) $m_T \mid c_T$
- b) c_T e m_T tem os mesmos fatores irredutíveis a menos de multiplicidades.
- c) Se

$$m_T = f_1^{r_1} \cdots f_k^{r_k}$$

 $ent\~ao$

$$c_T = f_1^{d_1} \cdots f_k^{d_k}$$

onde

$$d_i = \dim V_{f_i^{r_j}}, \ para \ cada \ j \in \{1, 2, ..., k\}.$$

Demonstração. Se $V=\{0\}$ não há nada para provar. Caso contrário, existem vetores $v_1,...,v_r\in V$ tais que

$$V = C_T(v_1) \oplus \cdots C_T(v_r)$$

além disso, como já vimos no corolário acima

$$m_{v_1}=m_T.$$

Agora, para cada $1 \le j \le r$ considere o operador restrição

$$\widetilde{T}_j := T_{|C_T(v_j)} : C_T(v_j) \to C_T(v_j).$$

Mais uma vez pelo corolário acima

$$m_{v_j} = m_{\widetilde{T}_i} = c_{\widetilde{T}_i} \quad , \ 1 \le j \le r.$$

Dessa forma, segue que

$$c_T = m_{v_1} \cdots m_{v_r}$$
.

Em particular $m_{v_1} \mid c_T$, isto é, $m_T \mid c_T$ o qual prova a). Com isso, concluí-se também que cada fator mônico irredutível que divide m_T deve também dividir c_T . Por outro lado, seja f_i um fator irredutível de c_T , então $f_i \mid m_{v_j}$, para algum $1 \le j \le r$, e assim

$$f_i \mid m_{v_j} \mid m_{v_1} = m_T$$

o qual prova b). Pelo teorema da decomposição primária, pode-se escrever

$$V = V_{f_1^{r_1}} \oplus \cdots \oplus V_{f_k^{r_k}}$$

e se para cada $1 \le i \le r$

$$T_i := T_{|V_{f_i^{r_i}}}: V_{f_i^{r_i}} \to V_{f_i^{r_i}}$$

então

$$m_{T_i} = f_i^{r_i}$$
, para $1 \le i \le k$.

Agora, pela parte b), c_{T_i} é da forma

$$c_{T_i} = f_i^{d_i}$$

e portanto

$$\dim V_{f_i^{r_i}} = d_i \deg f_i$$

isto é

$$d_i = \frac{\dim V_{f_i^{r_i}}}{\deg f_i}.$$

Consequentemente

$$c_T = f_1^{d_1} \cdots f_k^{d_k}.$$

- \bullet Os vetores $m_{v_1},...,m_{v_r}$ do teorema da decomposição cíclica são chamados de fatores invariantes.
 - Os vetores $f_1, ..., f_k$ do teorema acima são chamados de fatores irredutíveis.

Observação 1.25. Suponha que

$$m_T = f_1^{r_1} \cdots f_k^{r_k}$$
.

Sejam $S_1, S_2, ..., S_k$ subconjuntos linearmente independentes de $V_{f_1^{r_1}}, ..., V_{f_k^{r_k}}$ respectivamente. Então, afirmamos que

- 1) $S_i \cap S_j = \emptyset$.
- 2) $S_1 \cup \cdots S_j$ é linearmente independente, onde $j \leq k$.

A afirmação 1) é imediata, para 2) é suficiente ver que se $w_1 \in V_{f_1^{r_1}}, ..., w_k \in V_{f_k^{r_k}},$ então $\{w_1, ..., w_k\}$ são linearmente independentes. Se k = 1 o resultado é imediato, suponha que o resultado seja válido para k - 1 > 0, e assim aplicando $f_k r^k(T)$ a ambos os lados da combinação linear

$$\alpha_1 w_1 + \cdots + \alpha_k w_k$$

concluí-se que $\alpha_1 = \dots = \alpha_{k-1} = 0$ e portanto $\alpha_k = 0$.

Vamos agora definir o diagrama de pontos de cada polinômio irredutível do polinômio característico de um operador $T:V\to V$, onde V é um espaço vetorial de dimensão finita. Tal irá nos auxiliar na construção da forma canônica racional.

Antes porém iremos fazer um embasamento de algumas ideias. Seja $T:V\to V$ um operador linear num espaço de dimensão finita n, e f(t) um fator irredutível de c_T e V_{f^r} como no teorema da decomposição primária. Notemos que se g(t) é outro fator irredutível de V, então se V_{g^s} é o fator relacionado a g que aparece no teorema da decomposição primária, então

$$f(T)_{|V_{q^s}}:V_{g^s}\to V_{g^s}$$

é um isomorfismo. Considere U a restrição de f(T) à V_{f^r} . Então, existe $q \in \mathbb{Z}$ tal que $U^q = 0$. De fato, basta ver que se $q \geq r$, então para todo $x \in V_{f^r}$, $f(T)^q x = 0$. Portanto, o polinômio característico de U é da forma $c_U = x^m$, onde $m = \dim V_{f^r}$. Dessa forma, como iremos ver na próxima seção, V_{f^r} é o autoespaço generalizado associado a $\lambda = 0$ e assim, U tem uma forma canônica de Jordan.

Seja agora \mathcal{B} uma base racional para T (formada pela união de bases T-cíclicas como no teorema da decomposição cíclica). Além disso, sejam $\mathcal{B}_{v_1},...,\mathcal{B}_{v_k}$ as bases T-cíclicas que estão em V_{f^r} , isto é, $\mathcal{B}_{v_1} \cup \cdots \cup \mathcal{B}_{v_k}$ forma uma base de V_{f^r} . Considere \mathcal{B}_{v_j} e suponha que $m_{v_j} = f^{l_j}$, onde $l_j \in \mathbb{Z}$. Dessa forma, se $d = \deg f$, segue que

$$|\mathcal{B}_{v_j}| = \deg m_{v_j} = l_j d.$$

Considere γ_i o ciclo de autovetores generalizados de U, correspondentes a $\lambda = 0$, cujo vetor final é $T^i(v_j)$. Logo, pode-se escrever

$$\gamma_i = \{ f(T)^{l_j - 1}(T^i(v_j)), f(T)^{l_j - 2}(T^i(v_j)), \cdots, f(T)(T^i(v_j)), T^i(v_j) \}.$$

É claro que $\gamma_i \subseteq C_T(v_i)$, além disso, γ_i é um conjunto l.i. De fato, considere a combinação linear nula

$$\sum_{s=1}^{l_j} \alpha_s f(T)^{l_j - s} T^i(v_j) = 0$$

então, aplicando $f(T)^{l_j-1}$ a ambos os lados da igualdade acima concluí-se que

$$\alpha_{l_i} f(T)^{l_j - 1} T^i v_j = 0.$$

Por outro lado, como $f(t)^{l_j}$ e t^i são relativamente primos, segue que existem $h, g \in \mathcal{P}(\mathbb{F})$ tais que

$$1 = f(t)^{l_j} h(t) + g(t)t^i$$

e assim

$$I = f^{l_j}(T)h(T) + g(T)T^i$$

dessa forma, T^i restrito à $V_{f^{l_j}}$ é injetora e portanto, como $f^{l_j-1}v_j\neq 0$, segue que

$$T^i f(T)^{l_j - 1} v_i \neq 0$$

donde tem-se que

$$\alpha_{l_i} = 0.$$

Procedendo dessa forma, concluí-se que todos os outros coeficientes são nulos.

Lema 1.26. Com a mesma notação acima, defina

$$\mathcal{C}_j = \gamma_0 \cup \cdots \gamma_{d-1}$$

 $ent\~ao$

$$|\mathcal{C}_i| = l_i d$$

e além disso, C_i é uma base de $C_T(v_i)$.

A demonstração do teorema acima se faz utilizando vetores iniciais (basta aplicar em qualquer combinação linear nula $f(T)^{l_j-1}$). Posteriormente, utiliza o mesmo argumento acima, usando o fato de que $f(t)^{l_j}$ é relativamente primo com qualquer polinômio h(t) diferente de qualquer potência de f(t).

Observação 1.27. Como cada C_j , $1 \leq j \leq k$, é uma base de $C_{T(v_j)}$ concluí-se que $C = C_1 \cup \cdots \cup C_k$ é uma base de V_{f^r} e assim, por construção, esta é formada por autovetores generalizados de U e assim, C é base de Jordan.

2 Forma canônica de Jordan via espaços quocientes

Teorema 2.1. (Teorema de Cayley Hamilton) O polinômio característico de um operador $f: V \to V$ anula f.

Exemplo 2.2. Suponha que f seja um bloco de Jordan $J_r(\lambda)$. Então, \acute{e} imediato que o polinômio característico de f tem a forma $p_f(x) = (x - \lambda)^r$. Vamos calcular o seu polinômio minimal. Para isso, vamos usar o bloco auxiliar $J_r(0)$. Assim, temos que

$$J_r(\lambda) = \lambda I_r + J_r(0)$$

além disso, como

$$J_r(0) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

tem-se que para $1 \le k \le r-1$ temos que $J_r(0)^k$ é a matriz cujas k primeiras colunas são nulas e a "diagonal" começa a partir da k+1 coluna. Além disso, para $k \ge r$, tem-se que $J_r(0)^k = 0$. Isso implica que $(J_r(\lambda) - \lambda I_r)^k = 0 \Leftrightarrow J_r(0)^k = 0$. Suponha que o polinômio minimal $m_{J_r(\lambda)}$ seja da forma $m_{J_r(\lambda)}(x) = (x-\lambda)^p$, então tem-se que

$$0 = m_{J_r(\lambda)}(J_r(\lambda)) = (J_r(\lambda) - \lambda I_r)^p = J_r(0)^p$$

donde segue que p=r. Portanto, o polinômio minimal de um bloco de Jordan, é o polinômio característico deste bloco.

Vamos introduzir mais uma notação que já havíamos definido anteriormente apenas por questões de seguir a literatura clássica aqui, a saber o livro de Alexei Kostrikin- Linear Algebra and Geometry. Dado $f: V \to V$ e $\lambda \in \mathbb{F}$, define-se $I \equiv I_{dim(V)}$ e além disso

$$L(\lambda) = \{ v \in V : \exists r \in \mathbb{N} \quad , (f - \lambda I)^r v = 0 \}$$

Proposição 2.3. O conjunto $L(\lambda)$ definido acima é um subespaço vetorial de V. Além disso, $L(\lambda) \neq \{0\} \Leftrightarrow \lambda$ é um autovalor.

A próxima proposição é essencialmente o teorema da decomposição primária.

Proposição 2.4. (Teorema da Decomposição Primária) Suponha que $\lambda_1, \lambda_2, ..., \lambda_k$ são os autovalores do operador f. Então, tem-se que

$$L = L(\lambda_1) \oplus L(\lambda_2) \oplus ... \oplus L(\lambda_k).$$

A demonstração de tal teorema é exatamente a mesma feita anteriormente, por conta disso, não iremos fornecer outra demonstração. Sabe-se além disso que $f_{|L(\lambda_j)}$ induz um operador linear em $L(\lambda_j)$. Por essa razão, iremos nos concentrar aqui em demonstrar a existência de uma base de Jordan para um operador f com apenas um autovalor λ e $V = L(\lambda)$. Ademais, é suficiente supor que $\lambda = 0$. Com efeito, se existe uma base de Jordan para $(f - \lambda I)$, então imediatamente tem-se que f também está na forma de Jordan, uma vez que f apenas acrescenta f na diagonal da matriz da forma canônica de f and f .

Proposição 2.5. Seja f um operador linear nilpotente em um espaço vetorial de dimensão finita V. Então, f possui uma base de Jordan e além disso, a matriz de f em tal base \acute{e} uma combinação de blocos da forma $J_r(0)$.

Se já temos em mãos a base de Jordan de f, é interessante denotarmos tal pelo diagrama seguinte

o qual deve-se considerar o seguinte:

- Os pontos são os elementos da base
- \bullet As flechas indicam a ação de f
- A última linha é representada pelos autovetores de f, portando tais retornam 0 mediante a aplicação de f
- Os pontos de cada coluna representam os elementos da base do respectivo bloco de Jordan de f. Além disso, o espaço gerado por tais vetores é um espaço f-cíclico, o qual tem dimensão igual a quantidade de pontos na coluna.

Notemos também que se $\{e_1, e_2, ..., e_h\}$ é base de um desses espaços f-cíclicos e além disso tem-se a propriedade

$$f(e_i) = e_{i-1}, \quad f(e_1) = 0$$

então a matriz de g (f restrito ao espaço gerado pelos vetores acima) é dada por

$$g = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Vamos então demonstrar a proposição acima utilizando espaços quocientes.

Demonstração. Suponha que dim(V) = n. Para demonstrar a existência da base de Jordan, vamos proceder por indução em n.

Se n=1, então V é em particular um auto-espaço associado ao autovalor $\lambda=0$, portanto, nesse caso não há nada para demonstrar uma vez que nesse caso, $f\equiv 0$.

Suponha que o resultado seja válido para todo espaço vetorial de dimensão 1 < m < n. Ademais, se L_0 é o espaço dos autovetores de f (o qual tem dimensão > 0, uma vez que estamos supondo que \mathbb{F} é um corpo algebricamente fechado) considere o espaço vetorial quociente $W := V/L_0$ e notemos que

$$dim(W) = dim(V) - dim(L_0) = n - dim(L_0)$$

e assim, W é um espaço vetorial de dimensão estritamente menor que n e portanto, podemos aplicar a hipótese de indução sobre W. Antes porém, precisamos fazer uma "boa" escolha de operador linear para encontrarmos a base de Jordan, pois bem, para isso utilizamos o operador induzido por f, o qual é definido por

$$\overline{f}: W \to W, \quad x + L_0 \mapsto f(x) + W.$$

Logo, por hipótese de indução, \overline{f} tem uma base de Jordan. (Aqui estamos suponho que W não seja vazio, pois caso contrário $L=L_0$).

Para construir o diagrama de pontos de \overline{f} , basta levarmos o maior vetor de cada coluna como sendo o primeiro elemento de tal, o qual é denotado por $\overline{e_i} := e_i + L_0$, para $i \in \{1,2,...,m\}$ e posteriormente considerar as aplicações de \overline{f} de cima pra baixo. (Aqui, o natural m denota a quantidade de \overline{f} -ciclos). Vamos então agora construir o diagrama de pontos D de f. Para isso, vamos impor que a i-ésima coluna do diagrama D vai consistir de cima pra baixo dos vetores

$$e_i, f(e_i), f^2(e_i), ..., f^{h_i}(e_i)$$

respectivamente. (O número h_i é a quantidade de pontos na *i*-ésima coluna de \overline{D})

Como os vetores $\overline{f}^{h_i-1}(\overline{e_i}) \neq 0$ são tais que $\overline{f}^{h_i}(\overline{e_i}) = 0$, tem-se que $f^{h_i}(e_i) \in L_0$ e portanto, $f(f^{h_i}(e_i)) = 0$, ou seja, $f^{h_i+1}(e_i) = 0$.

Notemos agora que os vetores $\{f^{h_1}(e_1),...,f^{h_m}(e_m)\}$ são l.i. Com efeito

$$0 = \sum_{j=1}^{m} \alpha_j f^h(e_j)$$

se, e somente se,

$$0 = f\left(\sum_{j=1}^{m} \alpha_j f^{h_j - 1}(e_j)\right)$$

implicando que

$$\sum_{j=1}^{m} \alpha_j f^{h_j - 1}(e_j) \in L_0$$

e portanto

$$\sum_{j=1}^{m} \alpha_j \overline{f}^{h_j - 1}(e_j) = 0$$

ou seja, $\alpha_j = 0$ para todo $j \in \{1, 2, ..., m\}$ pois os vetores da última combinação são l.i.

Agora, estendemos $\{f^{h_1}(e_1), ..., f^{h_m}(e_m)\}$ até uma base de L_0 e com isso, formamos a última linha (de baixo) do diagrama de pontos D. (Claro, se for preciso acrescentar mais vetores ao conjunto acima afim de completar uma base de L_0 , então as colunas relacionadas a tais vetores são colunas unitárias).

Por fim, precisamos mostrar que de fato, os elementos de D formam uma base de V.

Primeiro vamos mostrar que tais elementos de fato geram V. Dado $v \in V$, $\overline{v} \in W$ e portanto existem $\alpha_{ij} \in \mathbb{F}$ tais que

$$\overline{v} = \sum_{i=1}^{m} \left(\sum_{j=0}^{h_i - 1} \alpha_{ij} f^j(e_i) \right)$$

portanto, como L_0 é f-invariante, segue que

$$v - \sum_{i=1}^{m} \left(\sum_{j=0}^{h_i - 1} \alpha_{ij} f^j(e_i) \right) \in L_0$$

e assim, se $\{f^{h_1}(e_1),...,f^{h_m}(e_m),x_{m+1},...,x_l\}$ é base de L_0 , temos que existem $\beta_1,...,\beta_l$ tais que

$$v - \sum_{i=1}^{m} \left(\sum_{j=0}^{h_i - 1} \alpha_{ij} f^j(e_i) \right) = \sum_{k=1}^{m} \beta_k f^{h_k}(e_m) + \sum_{k=m+1}^{l} \beta_k x_k$$

donde temos que

$$v = \sum_{i=1}^{m} \left(\sum_{j=0}^{h_i - 1} \alpha_{ij} f^j(e_i) \right) = \sum_{k=1}^{m} \beta_k f^{h_k}(e_m) + \sum_{k=m+1}^{l} \beta_k x_k$$

e portanto, os elementos de D geram V.

Para ver que os elementos todos de D são linearmente independentes, basta ver que se h é a última linha do diagrama de pontos, a aplicação do operador f^{h-1} em qualquer combinação linear dos vetores de D igualados a zero resulta numa combinação entre os elementos da base de L_0 igualados a zero. Repetindo esse processo um número finito de vezes observa-se que de fato, os elementos de D são l.i. O que completa a demonstração.

Observação: Suponha dado uma base de Jordan para o operador f. Então, a matriz de f nessa base é composta por blocos Jordan correspondentes a cada autovalor. Suponha que existam m colunas correspondentes ao autovalor λ e além disso, cada coluna tenha tamanho $h_i + 1$ ($1 \le i \le m$). Ademais, os vetores correspondentes a cada sub-bloco são dados em ordem crescente da esquerda para a direita por

$$e_1, (f - \lambda)(e_1), ..., (f - \lambda)^{h_1}(e_1)$$

$$e_2, (f - \lambda)(e_2), ..., (f - \lambda)^{h_2}(e_2)$$

.

$$e_m, (f - \lambda)(e_m), ..., (f - \lambda)^{h_m}(e_m).$$

Agora, seja L_{λ} o espaço gerado pelos vetores acima. Se $r = \max\{h_1, ..., h_m\}$, então segue que

$$(f-\lambda)^{r+1}(v)=0$$
, para todo $v\in L_{\lambda}$.

Portanto, temos que

$$L_{\lambda} \subset L(\lambda)$$
.

Agora, se $\lambda_1, ..., \lambda_k$ são os autovalores de f, por definição da base de Jordan, temos que

$$V = \bigoplus_{i=1}^{k} L_{\lambda_j}.$$

Por outro lado, pelo teorema da decomposição primária, segue que

$$V = \bigoplus_{i=1}^{k} L(\lambda_i)$$

logo, segue que $\dim(L_{\lambda_i}) = \dim(L(\lambda_i))$ e assim, $L_{\lambda_i} = L(\lambda_i)$. Isso significa que a soma das dimensões dos blocos de Jordan correspondentes a cada λ_i é independente da escolha da base, bem como seu espaço gerado.

Utilizando o argumento da observação acima, pode-se mostrar a unicidade da base de Jordan. (c.f página 63 Livro do Kostrikin) Ademais, nessa mesma demonstração, mostra-se que a primeira linha do diagrama de pontos (linha de baixo) gera o auto-espaço associado ao autovalor λ .

Teorema 2.6. Seja \mathbb{F} um corpo algebricamente fechado, V um espaço vetorial de dimensão finita sobre \mathbb{F} e $f: V \to V$ um operador linear. Então

- a) Existe uma base de Jordan para f.
- b) A matriz de Jordan J de f é única a menos de permutação de seus blocos.

Método para encontrar a forma canônica de Jordan de uma matriz: Seja f um operador linear em V e A a matriz de f em alguma base de V. Resumindo o que foi visto até aqui, para se encontrar a forma canônica de A podemos proceder da seguinte forma:

- Encontre o polinômio característico c_A de A bem como suas raízes
- Para cada raiz λ de c_A , construa o respectivo diagrama de pontos, o qual como vimos, é tal que a primeira linha (de baixo pra cima) tem tamanho dim $(Ker(A \lambda I))$, a segunda dim $(Ker(A \lambda I)^2)$ dim $(Ker(A \lambda I))$, e assim por diante. Isto é, se j > 1, a j-ésima linha tem tamanho l_j dado por

$$l_j = \dim(Ker(A - \lambda I)^j) - \dim(Ker(A - \lambda I)^{j-1}).$$

Calculo do polinômio minimal a partir da forma canônica de Jordan:

Já vimos no exemplo 2.2 que o polinômio minimal de $J_r(\lambda)$ é exatamente igual ao polinômio minimal deste bloco, isto é, $m_{J_r(\lambda)} = (x - \lambda)^r$. Agora, suponha que tenhamos m blocos associados ao autovalor λ , isto é,

$$J_{r_1}(\lambda),, J_{r_m}(\lambda)$$

são os blocos que Jordan que compõem o bloco associado a λ , isto é, a matriz de $f_{|L_{\lambda}}$. Suponha que $m_{L_{\lambda}} = (x - \lambda)^p$ e seja $r = max\{r_1, r_2, ..., r_m\}$. Vamos mostrar que $m_{L_{\lambda}} = (x - \lambda)^r$.

Seja $B = A_{|L_{\lambda}}$ e note que para todo $l \in L_{\lambda}$, $(B - \lambda I)^{r}(l) = 0$, consequentemente, temos que $(x - \lambda)^{p} \mid (x - \lambda)^{r}$ e portanto, $p \leq r$. Suponha por absurdo que p < r. Dessa forma, temos que existe $k \in \{1, 2, ..., m\}$ tal que

$$p < r_k$$

e portanto, não se pode ter $(B - \lambda I)^p(e_k) = 0$, porém isso é um absurdo. Concluímos então que p = r. Isto é

$$m_{L_{\lambda}} = (x - \lambda)^{\max\{r_1, \dots, r_m\}}.$$

Observação: Suponha que o diagrama de pontos de uma matriz A seja dado. Então, para escolhermos um vetor para iniciar o ciclo da primeira coluna do diagrama de pontos em geral procedemos da seguinte forma:

• Assumindo que o tamanho das colunas está em forma decrescente com tamanhos

$$h_1 + 1 \ge h_2 + 1 \ge \dots \ge h_p + 1$$

então escolha como o primeiro vetor e_1 , um vetor na base de $Ker((A - \lambda I)^{h_1})$ que não esteja em $Ker((A - \lambda I)^{h_1-1})$.

 \bullet Para a escolha do vetor e_2 que inicia a segunda coluna, escolha e_2 de forma que

$$e_2 \in Ker((A - \lambda I)^{h_2}) \setminus Ker((A - \lambda I)^{h_2 - 1})$$

e

 v^1, e_2 sejam l.i, onde v^1 é o último vetor da coluna e_1

• Continue o processo para os outros vetores

Exemplo 2.7. Considere a matriz A dada por

$$A = \begin{pmatrix} 2 & -4 & 2 & 2 \\ -2 & 0 & 1 & 3 \\ -2 & -2 & 3 & 3 \\ -2 & -6 & 3 & 7 \end{pmatrix}$$

vamos encontrar a forma canônica de Jordan de A, e uma base de Jordan de \mathbb{R}^4 associada a A.

Analisando det(A - xI) e aplicando processos de escalonamento, pode-se mostrar que

$$c_A(x) = (x-2)^2(x-4)^2$$
.

Assim, temos as seguintes possibilidades de polinômio minimal

- 1) $m_A(x) = (x-2)(x-4)$
- 2) $m_A(x) = (x-2)^2(x-4)$
- 3) $m_A(x) = (x-2)(x-4)^2$
- 4) $m_A(x) = c_A(x)$

Agora, analisando o operador (A-2I), concluímos que

$$Ker((A-2I)) = span\{(0,1,2,0),(2,1,0,2)\}$$

e

$$Ker((A-2I)^2) = span\{(0,1,2,0), (1,0,-1,1)\}.$$

Analogamente, para (A-4I), temos

$$Ker(A - 4I) = span\{(0, 1, 1, 1)\}$$

e

$$Ker((A-4I)^2) = span\{(1,0,0,1), (-1,1,1,0)\}.$$

Assim, o diagrama de pontos de $\lambda_1 = 2$ e $\lambda_2 = 4$ são dados respectivamente por

$$\lambda_1: \bullet \bullet$$

e

$$\lambda_2:$$

Consequentemente, a forma canônica de Jordan J_A de A, é dada por

$$J_A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

Com isso, concluímos que o polinômio minimal da matriz A, é dado pela terceira opção acima. Por fim, para selecionarmos uma base de Jordan para a matriz A, basta tomarmos uma base de Ker(A-2I) para o bloco correspondente a λ_1 e para λ_2 , podemos escolher $e_1 := (1,0,0,1)$ e assim, segue que

$$(A-4I)(e_1) = (0,1,1,1)$$

portanto

$$\mathcal{B}_J := \{(0,1,2,0), (2,1,0,2), e_1, (A-4I)(e_1)\}\$$

é uma base de Jordan para A.

EQ-1- 2001- Seja $V = \mathbb{C}^n$ com produto escalar usual e seja G um conjunto de transformações unitárias em V. Mostre que se as transformações de G comutam dois a dois, então existe uma base de V que diagonaliza simultaneamente os elementos de G.

Demonstração. Sem perda de generalidade podemos supor que exista $f \in G$ com pelo menos dois autovalores diferentes, pois caso contrário, todos os elementos em G seriam da forma $T = \mu I$ e assim, a base canônica $\{e_1, ..., e_n\}$ poderia ser escolhida como base simultânea de diagonalização.

Dado $f \in G$ com pelo menos dois autovalores diferentes, pelo teorema espectral, existe uma base \mathcal{B} ortogonal de V constituída por autovetores de f. Suponha que

$$\mathcal{B} = \{v_1, v_2, ..., v_n\}$$

seja tal base. O resultado é imediato se n=1. Vamos então supor que tal afirmação é válida para todo espaço de dimensão m < n, onde estamos assumindo que n > 1. Assim, se $\lambda_1, ..., \lambda_k$ são os autovalores de f e V_{λ_i} seu respectivo auto-espaço associado, temos que

$$V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_k}$$
.

Agora, notemos que se v_i é um autovalor associado a λ_i , então para qualquer $g \in G$

$$f(g(v_i)) = g(f(v_i)) = \lambda_i g(v_i)$$

ou seja, $g(v_i) \in V_{\lambda_i}$, implicando então que V_{λ_i} é g-invariante. Isto é, a restrição de g a V_{λ_i} é um operador linear.

Agora, precisamos mostrar que $g_{|V_{\lambda_i}}$ é diagonalizável em V_{λ_i} . Para isso, seja $\{u_1,...,u_p\}$ uma base de V_{λ_i} e complete tal até uma base de V, portanto, o operador g nessa base, tem a forma

$$[g] = \begin{pmatrix} [g_{|V_{\lambda_i}}] & \cdot \\ 0 & A \end{pmatrix}$$

consequentemente, como o polinômio minimal de g é invariante pela escolha de base, temos que

$$m_g(x) = m_{g_{|V_{\lambda_i}}}(x)p(x)$$

onde $p \in \mathbb{C}[x]$ é um outro polinômio. Consequentemente, como m_g se fatora em fatores irredutíveis de grau 1 (pois g é diagonalizável), temos que $m_{g_{\lambda_i}}$ também, donde concluímos que $g_{|V_{\lambda_i}}$ também é diagonalizável.

Assim, por hipótese de indução, segue que existe base $\mathcal{B}_i := \{l_{1,i}, ..., l_{p_i,i}\}$ de V_{λ_i} que diagonaliza simultaneamente todos os elementos de g. Por fim, se tomarmos a base

$$\mathcal{D} := \bigcup_{i=1}^k \mathcal{B}_i$$

concluímos que \mathcal{D} diagonaliza todos os elementos de g.

Na realidade, pode-se ainda encontrar uma base ortonormal. Com efeito, basta notarmos que se $u,v\in V_{\lambda_i}$, então

$$\langle v,u\rangle = \langle g(v),g(u)\rangle = \langle g_{|V_{\lambda_i}}(v),g_{|V_{\lambda_i}}(u)\rangle$$

portanto, $g_{|V_{\lambda_i}}$ é um operador unitário e assim, mais uma vez por hipótese de indução, as bases \mathcal{B}_i podem ser tomadas como bases de autovetores ortonormais. Agora, como auto-espaços de diferentes autovalores de transformações unitárias são mutualmente ortogonais, tem-se que os elementos de \mathcal{B}_i são ortogonais aos elementos de \mathcal{B}_j sempre que $i \neq j$, donde segue que \mathcal{B} é uma base ortonormal de V cujos autovetores são autovetores para toda transformação de G.

EQ-3-2001- Determine se a seguinte afirmação é verdadeira ou falsa: Afirmação:

Seja $A \in M_{17}(\mathbb{F})$ uma matriz nilpotente, tal que

$$\dim(Ker(A)) = 6$$
, $\dim(Ker(A^2)) = 10$, $\dim(Ker(A^3)) = 13$, $\dim(Ker(A^4)) = 15$

. Então, o polinômio minimal de A pode ser $m_A(x) = x^4$.

Demonstração. Notemos que se $k \in \mathbb{N}$ é o índice de nilpotência de A, então o polinômio minimal de A é exatamente x^k . Se $A^4 = 0$, teríamos que $\dim(Ker(A^4)) = 17$, o qual é um absurdo. Portanto, tem-se que x^4 não pode ser o polinômio minimal de A.

EQ-4-2019

Seja

$$T = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 1 & 0 & 3 \end{pmatrix} \in \mathbb{M}_4(\mathbb{R})$$

- a) Ache a correspondente decomposição primária de \mathbb{R}^4 e o polinômio minimal de T.
- b) Ache uma base de Jordan com respeito a T.
- c) Ache uma decomposição cíclica de \mathbb{R}^4 com respeito a T.
- d) Ache a forma racional de T

Demonstração. Usando a definição de polinômio característico, concluímos que

$$c_T(x) = (x-2)^4$$
.

Vamos calcular o diagrama de pontos de $\lambda = 2$.

$$\bullet \ Ker(T-2I) = Ker \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 1 & 0 & 3 \end{pmatrix} = Ker \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix} = Ker \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

portanto, temos que

$$Ker(T-2I) = span\{(1,1,0,0),(1,0,0,1)\}.$$

$$Ker((T-2I)^2) = span\{e_1, e_2, e_4\}.$$

Finalmente, chegamos que

$$Ker((T-2I)^3) = \mathbb{R}^4.$$

Dessa forma, concluímos que o diagrama de pontos de $\lambda=2$ é dado por

•

consequentemente, o polinômio minimal de T é dado por

$$m_T(x) = (x-2)^3$$

e a respectiva decomposição primária de \mathbb{R}^4 é

$$\mathbb{R}^4 = Ker((T-2I)^3).$$

Além disso, a forma canônica de Jordan $J_T(2)$ de T é

$$J_T(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Antes de prosseguirmos, note que se $v = e_1 + e_3$, então $(T - 2I)^2(v) \neq 0$. Agora, note que

$$T^{2}(v) = T((2,2,2-1)) = 5e_{1} + 8e_{2} + 4e_{3} - 3e_{4} = (5,8,4,-3)$$

 \mathbf{e}

$$T^3(v) = 14e_1 + 24e_2 + 8e_3 - 6e_4 = (14, 2, 8, -6).$$

Por outro lado

$$8v - 12T(v) + 6T^2(v) = T^3(v)$$

portanto, concluímos que $m_v = m_T$.

Escolha $v_1 := e_1 + e_3$ e $v_2 := (1, 1, 0, 0)$, então

$$\mathcal{B}_I := \{v_1, (T-2I)v_1, (T-2I)^2v_1, v_2\}$$

é uma base de Jordan de ${\cal T}$

Agora, seja $v_{1,1} := v_1 e v_{1,2} := v_2 e defina$

$$w_1 := v_{1,1}$$

e

$$w_2 = v_{1,2}$$

portanto, temos que

$$\mathbb{R}^4 = C_T(w_1) \oplus C_T(w_2)$$

é a decomposição cíclica de \mathbb{R}^4 com respeito a T. Além disso, sua forma racional é dada por

$$R_T = \begin{pmatrix} 0 & 0 & 8 & 0 \\ 1 & 0 & -12 & 0 \\ 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Exercício 5- P1 Francesco Matucci Suponha que $\mathbb{F}=\mathbb{Q}$ e seja V um espaço vetorial sobre \mathbb{F} de dimensão finita. Além disso, suponha que $T:V\to V$ seja umas transformação linear cujos fatores invariantes sejam os polinômios

$$f_1(t) = t^2(t^2+9)(t+4)^2$$
, $f_2(t) = t(t+4)^2$ e $f_3(t) = t+4$

- a) Encontre o polinômio mínimo e característico de T
- b) Encontre uma forma canônica de Jordan para T sobre \mathbb{C} .

Demonstração. a) Dado que $f_3 \mid f_2 \mid f_1$, concluímos que $m_T(t) = f_1(t)$. Além disso

$$c_T(t) = f_1(t)f_2(t)f_3(t) = t^3(t+4)^4(t^2+9).$$

b) Sobre \mathbb{C} , o polinômio c_T se decompõe da seguinte forma

$$c_T(t) = t^3(t+4)^5(t-3i)(t+3i)$$

e além disso

$$m_T(t) = t^2(t+4)^2(t-3i)(t+3i)$$

implicando que a decomposição primária correspondente é

$$V = V_{t^2} \oplus V_{(t+4)^2} \oplus V_{t-3i} \oplus V_{t+3i}.$$

Os blocos correspondentes a V_{t-3i} e V_{t+3i} são blocos unitários da forma (3i) e (-3i) respectivamente. Precisamos analisar $V_{(t+4)^2}$ e V_{t^2} .

Em V_{t^2} , a maior (primeira) coluna tem tamanho 2, portanto ou as outras tem tamanho 2 ou tamanho 1. Porém, dado que o o polinômio t tem grau 3 no polinômio característico, não se pode ter uma outra coluna de tamanho 2. Consequentemente, o diagrama de pontos de $\lambda = 0$ tem duas colunas, uma de tamanho 2 e a outra de tamanho 1.

Em $V_{(t+4)^2}$, a primeira coluna tem tamanho 2, e portanto, por conta dos fatores invariantes, as outras devem ter 2 pontos e 1 ponto respectivamente.

Dessa forma, dado que dim $(V_{t^2} \oplus V_{(t+4)^2}) = 3+5=8$ e dim(V)=10, concluímos que só existem mais dois blocos unitários, a saber, (3i) e (-3i). Assim, a forma canônica de Jordan é dada por

3 Funcionais Lineares e Adjuntos

Relembremos rapidamente aqui alguns principais resultados relacionado à funcionais lineares e adjuntos.

- $V^* := Hom_{\mathbb{F}}(V, \mathbb{F}).$
- Se $V = \mathbb{F}[x]$, e $\alpha \in \mathbb{F}$, então

$$\phi_{\alpha}: V \to \mathbb{F}, \quad p \mapsto p(\alpha)$$

é um funcional linear.

- O traço de uma matriz quadrada é um funcional linear.
- $\dim_{\mathbb{F}}(V) = \dim_{\mathbb{F}}(V^*)$

Seja V um espaço vetorial sobre o corpo \mathbb{F} , e seja $\mathcal{B} = \{e_1, ..., e_n\}$ uma base de V. Nosso objetivo será construir uma base \mathcal{B}^* de V^* que esteja relacionada a base \mathcal{B} . Para isso, para cada $j \in \{1, 2, ..., n\}$ defina

$$e^j: V \to \mathbb{F}, \quad e^j(e_k) = \delta_{jk}.$$

Com isso, temos bem definidos n funcionais lineares em V^*

$$e^1, e^2,, e^n$$
.

Notemos que se

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

então

$$e^{j}(v) = \alpha_{j}$$
, para todo $j \in \{1, 2, ..., n\}$.

Portanto, pode-se escrever

$$v = \sum_{i=1}^{n} e^{j}(v)e_{j}.$$

O significado crucial de lembrar aqui é que e^j aplicado em cada vetor $v \in V$, retorna a j-ésima coordenada deste com respeito a base \mathcal{B} .

Proposição 3.1. Com a notação acima, $\mathcal{B}^* := \{e^1, e^2, ..., e^n\}$ é uma base de V^* .

Demonstração. Seja $f \in V^*$, então f é caracterizado por seu valor nos vetores de uma base de V, em particular nos valores de \mathcal{B} . Assim, existem $c_1, ..., c_n \in \mathbb{F}$ tais que

$$f(e_i) = c_i$$
.

Assim, se

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

temos que

$$f(v) = \sum_{i=1}^{n} \alpha_i c_i = \sum_{i=1}^{n} c_i e^i(v)$$

consequentemente

$$f = \sum_{i=1}^{n} c_i e^i$$

implicando que de fato $f \in span\{e^1, ..., e^n\}$.

Por fim, sejam $\beta_1, \beta_2, ..., \beta_n \in \mathbb{F}$ tais que

$$\beta_1 e^1(v) + \dots + \beta_n e^n(v) = 0$$
, para todo $v \in V$.

Em particular, para $v = e_j$, implicando então que $\beta_j = 0$, para todo $j \in \{1, ..., n\}$.

Pode-se mostrar que os elementos $e^1, ..., e^n$ são únicos com a propriedade acima, dando origem então ao seguinte resultado:

Teorema 3.2. Seja V um espaço vetorial sobre um corpo \mathbb{F} e seja $\mathcal{B} = \{v_1, ..., v_n\}$ uma base de V. Então existe uma única base $\mathcal{B}^* = \{f_1, ..., f_n\}$ de V^* tal que $f_i(v_j) = \delta_{ij}$, para todos $i, j \in \{1, 2, ..., n\}$.

- A base $\mathcal{B}^* = \{e^1, ..., e^n\}$ definida acima, é chamada de a **base dual** a \mathcal{B} .
- Se $v \in V$, então as coordenadas de v com repeito a \mathcal{B} são exatamente os números

$$e^{1}(v), e^{2}(v),, e^{n}(v).$$

Por outro lado, dado $f \in V^*$, as coordenadas de f em relação a \mathcal{B}^* são precisamente os números

$$f(e_1), f(e_2), ..., f(e_n).$$

Exercício 6: Contra-exemplo Se V for um espaço vetorial de dimensão finita e $\mathcal{B} = \{e_i\}_{i \in I}$ for uma base de V, podemos também construir um conjunto $\mathcal{B}^* = \{e^i\}_{i \in I}$ tal que $e^i(e_j) = \delta_{ij}$, para $i, j \in I$. Tal conjunto será l.i, porém não será uma base de V.

Seja $V = \mathbb{R}[x]$ e seja $\mathcal{B} = \{1, x^j : j \geq 1\}$ base canônica de V. Considere $\mathcal{B}^* = \{f_i\}_{i=0}^{\infty}$ base construída como acima. Vamos ver que \mathcal{B}^* não gera todo V^* . Para cada $\alpha \in \mathbb{R} \setminus \{0\}$, considere o funcional

$$f_{\alpha}: V \to \mathbb{R}, \quad p(t) \mapsto p(\alpha).$$

Suponha que $f_{\alpha} \in span(\mathcal{B}^*)$. Então, existem constantes $c_1, ..., c_m \in \mathbb{F}$ e $m \in \mathbb{N}$ tal que

$$f_{\alpha}(p(t)) = \sum_{j=1}^{m} c_j f_j(p(t)).$$

Seja agora $e_{m+1}(x) := x^{m+1}$ elemento básico de \mathcal{B} , então segue que

$$\alpha^{m+1} = f_{\alpha}(e_{m+1}(x)) = 0$$

o que é um absurdo, dado que $\alpha \in \mathbb{R} \setminus \{0\}$.

Exercício 7: Flávio Coelho Seja V um espaço vetorial sobre \mathbb{K} e sejam $f, g \in V^*$. Suponha que h, definida por h(u) = f(u)g(u), para cada $u \in V$, também seja um funcional linear sobre V. Mostre que se $\mathbb{K} \neq \mathbb{Z}_2$, então f = 0 ou g = 0. O que acontece se $\mathbb{K} = \mathbb{Z}_2$?

Demonstração. Notemos que:

f(u)g(u) + f(v)g(v) = h(u+v) = f(u+v)g(u+v) = (f(u)+f(v))(g(u)+g(v)) = f(u)g(u) + f(u)g(v) + f(v)g(u) + f(v)g(v). Portanto, temos que

$$f(u)g(v) + f(v)g(u) = 0$$

em particular, se v = u, temos que

$$2f(u)g(u) = 0$$

como $\mathbb{K} \neq \mathbb{Z}_2$, segue que f(u) = 0 ou g(u) = 0, por arbitrariedade de $u \in V$, segue que $f \equiv 0$ ou $g \equiv 0$. Se $\mathbb{K} = \mathbb{Z}_2$, 2 = 0, portanto não se pode concluir que $f \equiv 0$ ou $g \equiv 0$.

Vamos relembrar agora um pouco sobre o espaço bidual.

Definição 3.3. Seja V um espaço vetorial sobre \mathbb{F} . O espaço bidual a V é definido por

$$V^{**} := (V^*)^*.$$

Agora, defina a função

$$\Phi: V \to V^{**}, v \mapsto \left(\Phi(v): V^* \to \mathbb{R}, \quad f \mapsto \Phi(v)(f) = f(v)\right)$$

Teorema 3.4. Se V é um espaço vetorial de dimensão finita, Φ definida acima é um isomorfismo.

Seja V espaço vetorial de dimensão finita e seja $\mathcal{C} = \{f_1, f_2, ..., f_n\}$ uma base de V^* . Vamos descrever os passos para construir uma base \mathcal{B} de V tal que $\mathcal{B}^* = \mathcal{C}$. Considere a base dual a \mathcal{C} , \mathcal{C}^* , dada por

$$\mathcal{C}^* = \{\phi_1, \phi_2, ..., \phi_n\} \subseteq V^{**}$$

tal que

$$\phi_i(f_i) = \delta_{ij}$$
.

Como Φ definida acima é um isomorfismo, segue que

$$\{\Phi^{-1}(\phi_1), \Phi^{-1}(\phi_2), ..., \Phi(\phi_n)\}$$

é uma base de V. Agora, para cada $i \in \{1, 2, ..., n\}$ defina

$$v_i := \Phi^{-1}(\phi_i).$$

E assim, por definição temos que

$$\Phi(v_i) = \phi_i = \phi_{v_i}.$$

Por fim, notemos que

$$f_i(v_i) = \phi_{v_i}(f_i) = \phi_i(f_i) = \delta_{ij}$$

implicando que de fato, $\mathcal{B} := \{v_1, ..., v_n\}$ é tal que

$$\mathcal{B}^* = \mathcal{C}$$
.

Exercício 8: Contra-exemplo Vamos dar um exemplo de um espaço vetorial V tal que este e seu dual V^{**} não são isomorfos. Tome $V = \mathbb{R}[x]$ e para cada $\alpha \in \mathbb{R}$, defina o funcional f_{α} por

$$f_{\alpha}(p(x)) = p(\alpha)$$

e considere a família de funcionais $\{f_{\alpha}\}_{{\alpha}\in\mathbb{R}}$. Afirmamos que tal família é linearmente independente. Com efeito, considere $\alpha_1,...,\alpha_n\in\mathbb{R}$ (elementos diferentes) e $c_1,...,c_n\in\mathbb{R}$ tais que

$$c_1 f_{\alpha_1}(p(x)) + \dots + c_n f_{\alpha_n}(p(x)) = 0$$
, para todo $p(x) \in V$

em particular, se $p(x) = (x - \alpha_2)(x - \alpha_3)...(x - \alpha_n)$ temos que

$$c_1(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)...(\alpha_1 - \alpha_n) = 0$$

implicando que $c_1 = 0$. Procedendo dessa forma, concluímos que $c_1 = c_2 = ... = c_n = 0$. Dessa forma, concluímos que a família $\{f_\alpha\}_{\alpha \in \mathbb{R}}$ é linearmente independente e pelo lema de Zorn, está contida em alguma base de V^* . Concluímos então que uma base de V^* não é enumerável. Assim, seja \mathcal{C} uma base arbitrária de V^* contendo a família descrita acima. Dessa forma, em particular, \mathcal{C}^* não pode ser enumerável, porém é um conjunto linearmente independente. Mais uma vez pelo argumento do lema de Zorn, V^{**} tem uma base não enumerável.

Com isso concluímos que V não pode ser isomorfo a V^{**} , uma vez que V possui uma base enumerável.

Exercício 8: Seja $V = \mathbb{M}_n(\mathbb{F})$ e $f \in V^*$ tal que

$$f(AB) = f(BA)$$
 para todos $A, B \in V$.

Mostre que existe $\lambda \in \mathbb{F}$ tal que $f(A) = \lambda tr(A)$.

Demonstração. Sejam \mathcal{B} base canônica e E_{ij} respectivas matrizes canônicas de V e lembremos que a i-ésima linha do produto $E_{ij}E_{kl}$ é obtida por multiplicar a por 1 a linha j de E_{kl} . Portanto, esta não será nula somente se j=k, neste caso o produto de ambas é E_{il} . Em outros termos, podemos escrever

$$E_{ij}E_{kl} = \delta_{ik}E_{il}$$
.

Em particular, se $i \neq l$, então

$$E_{ij}E_{il}=E_{il}$$

porém

$$E_{il}E_{il}=0.$$

Agora, seja

$$\mathcal{B}^* = \{ E^{ij} : (i, j) \in \{1, 2, ..., n\} \times \{1, 2, ..., n\} \}$$

base dual a \mathcal{B} . Sabe-se que

$$tr = \sum_{i=1}^{n} E^{ii}$$

e sejam $(\beta_{ij}) \subseteq \mathbb{F}$ tais que

$$f = \sum_{i,j} \beta_{ij} E^{ij}.$$

Dessa forma, dado que $E_{ij}E_{ji}=E_{ii}$ e $E_{ji}E_{ij}=E_{jj}$ e além disso pela propriedade de f, segue que

$$\beta_{ii} = \lambda$$
, para todos $i \in \{1, 2, ..., n\}$ e algum $\lambda \in \mathbb{F}$.

Agora, se $i \neq l$, pelas contas acima concluímos que

$$\beta_{il} = 0$$
, para todo $i \neq l$

implicando então que $f = \lambda tr$.

Hiperplanos Seja V um espaço vetorial sobre \mathbb{F} de dimensão $n \geq 1$. Se $W \subseteq V$ é um subespaço de dimensão n-1, dizemos que W é um hiperplano de V.

Proposição 3.5. O subespaço W é um hiperplano $\Leftrightarrow W$ tem a seguinte propriedade: Se W' é um subespaço de V tal que $W \subseteq W'$, então W = W'.

Se $f \in V^*$ é um funcional não nulo, então Ker(f) é um hiperplano em V. O próximo resultado nos diz que existe uma função sobrejetiva entre V^* e o conjunto dos hiperplanos em V, o qual iremos denotar por \mathcal{H} .

Teorema 3.6. Seja V um espaço vetorial não nulo de dimensão finita $n \ge 1$ sobre \mathbb{F} . Dado $H \subseteq V$ um hiperplano, existe um funcional não nulo $f \in V^*$ tal que

$$Ker(f) = H.$$

4 Formas Bilineares

Definição 4.1. Sejam V,W espaços vetoriais sobre o corpo \mathbb{F} . O mapa $B:V\times W\to \mathbb{F}$ é dito ser uma forma bilinear se para cada $x\in V,y\in W,\ B(x,\cdot)$ e $B(\cdot,y)$ são funcionais lineares. Além disso, dizemos que B é **simétrica** se

$$B(x,y) = B(y,x)$$
 para todo $(x,y) \in V \times W$

e antissimétrica se

$$B(x,y) = -B(y,x)$$
 para todo $(x,y) \in V \times W$.

Observação: Denota-se por $B_{\mathbb{F}}(V,W)$ o espaço das formas bilineares com valores em \mathbb{F} . Contudo, como vamos manter o corpo \mathbb{F} fixado por enquanto, tal conjunto será denotado apenas por B(V,W).

* Daqui em diante todos os espaços vetoriais que vamos trabalhar são de dimensão finita. Sejam $\mathcal{A} = \{v_1, ..., v_m\}$ e $\mathcal{B} = \{w_1, ..., w_n\}$ bases de V e W respectivamente. Dada $\phi \in B(V, W)$

$$[\phi]_{\mathcal{A},\mathcal{B}} = \left(\phi(v_i, w_j)\right)_{ij}.$$

Não é difícil ver que

$$\phi(v, w) = [v]_{\mathcal{A}}^t [\phi]_{\mathcal{A}, \mathcal{B}}[w]_{\mathcal{B}}, \quad \text{para todos } v \in V \text{ e } w \in W.$$

- Se dim(V) = m, dim(W) = n, então $B(V, W) \cong \mathbb{M}_{m,n}(\mathbb{F})$.
- Suponha que W=V e denote por B(V) o espaço B(V,V). Sejam \mathcal{B} e \mathcal{B}' bases de V. Então, pode-se mostrar também que se $[I]_{\mathcal{B}'\to\mathcal{B}}$ é a matriz mudança de base de \mathcal{B}' para \mathcal{B} , então para $\phi \in B(V)$

$$[\phi]_{\mathcal{B}} = ([I]_{\mathcal{B}' \to \mathcal{B}})^t [\phi]_{\mathcal{B}'} ([I]_{\mathcal{B}' \to \mathcal{B}}).$$

Agora, para $\phi \in B(V, W)$ defina

$$L_{\phi}: V \to W^*, \quad v \mapsto L_{\phi}(v) = \phi(v, \cdot)$$

е

$$R_{\phi}: W \to V^*, \quad w \mapsto R_{\phi}(w) = \phi(\cdot, w)$$

tais são transformações lineares e além disso, $Ker(L_{\phi})$ e $Ker(R_{\phi})$ são chamados de o radical à esquerda e à direita de ϕ respectivamente.

Se $\mathcal{A} = \{v_1, ..., v_m\}$ e $\mathcal{B} = \{w_1, ..., w_n\}$ e $\mathcal{A}^*, \mathcal{B}^*$ são as respectivas bases duais, pode-se mostrar que

$$[R_{\phi}]_{\mathcal{B}\to\mathcal{A}^*} = [\phi]_{\mathcal{A}\to\mathcal{B}}$$

e

$$[L_{\phi}]_{\mathcal{B}\to\mathcal{A}^*} = \left([R_{\phi}]_{\mathcal{B}\to\mathcal{A}^*}\right)^t.$$

• Das igualdades acima segue que

$$rank(R_{\phi}) = rank(L_{\phi}) = rank(\phi).$$

Terminar escrevendo a parte que está na pasta com nome (Propriedade dos radicais e bases hiperbólicas)

Bases ortogonais

Teorema 4.2. Se char(\mathbb{F}) $\neq 2$, $V \neq \{0\}$ e $0 \neq \phi \in B_s(V)$, existe base de V ortogonal com respeito $a \phi$.

Demonstração. Dado que ϕ não é alternada, segue que existe $v_1 \in V$ tal que $\phi(v_1, v_1) \neq 0$. Assim, como v_1 não é isotrópico, segue que $V_1 := span\{v_1\}$ é não degenerada e assim

$$V = V_1 \oplus V_1^{\perp}$$
.

Dado que $\phi_{|V_1^{\perp}}$ é simétrica, por indução, existe base ortogonal de V_1^{\perp} com respeito a $\phi_{|V_1^{\perp}}$. E assim, basta unirmos tal base com $\{v_1\}$ para se ter uma base de V ortogonal com respeito a ϕ .

Seja W um subespaço complementar a V^{\perp} e $\mathcal{B} = \{w_1, ..., w_p\}$ base ortogonal de W com respeito a ϕ .

Além disso, suponha que para todo $1 \le i \le p$, existam $a_i \in \mathbb{F}$ tal que

$$a_i^2 = \frac{1}{\phi(w_i, w_i)}$$

Portanto, tomando $v_i = w_i a_i$, segue que

$$\phi(v_i, v_i) = \phi(a_i v_i, a_i v_i) = a_i^2 \phi(w_i, w_i) = 1, \quad i \in \{1, 2, ..., p\}$$

e com isso, segue que $\mathcal{D} = \{v_1, ..., v_p\}$ é uma base de ϕ ortonormal com respeito a ϕ . Assim, se \mathcal{E} é base de V^{\perp} segue que

$$A = D \cup E$$

é uma base de V na qual a matriz de ϕ tem a forma

$$\begin{pmatrix} 0 & 0 \\ 0 & I_p \end{pmatrix}$$
.

Observação: Se ϕ é não degenerada, $V^{\perp} = \{0\}$ e portanto segue que \mathcal{A} é uma base ortonormal de ϕ .

Se caso $\mathbb{F} = \mathbb{R}$, pode existir $w \in V$ tal que $\phi(w, w) < 0$ e neste caso, pode-se escolher $a \in \mathbb{R}$ tal que

$$a^2 = \frac{-1}{\phi(w, w)}$$

e assim, se v = aw, segue que $\phi(v, v) = -1$. Com isso, concluímos que se $\mathbb{F} = \mathbb{R}$ e $p = rank(\phi)$, existe $k \in \{1, 2, ..., p\}$ e base $\mathcal{A} = \{v_1, ..., v_n\}$ de V tais que a matriz de ϕ nessa base tem a forma

$$\begin{pmatrix} I_k & 0 & 0 \\ 0 & I_{p-k} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Definição 4.3. Suponha que $\mathbb{F} \subseteq \mathbb{R}$. Dizemos que $\phi \in B_s(V)$ é semi-definida positiva se

$$\phi(v,v) \ge 0$$
, para todo $v \in V$

e positiva definida se

$$\phi(v,v) > 0$$
, para todo $v \in V \setminus \{0\}$.

- Se \mathcal{A} é uma base de ϕ , então ϕ é positiva definida \Leftrightarrow todos os autovalores de $[\phi]_{\mathcal{A}}$ são todos positivos. (Note que ainda estamos supondo $\phi \in B_s(V)$).
 - Notação: Escreve-se $\phi > 0$ se ϕ for positiva definida e $\phi < 0$ for negativa definida. Agora, definimos o **índice de negatividade** de ϕ por

$$\mathbf{i}(\phi) = \max\{\dim(W) : W \subseteq V, \quad \phi_{|W} < 0\}$$

note que $\mathbf{i}(\phi) \leq rank(\phi)$. De fato, basta ver que podem existir subespaços W de V nos quais $\phi_{|W} > 0$.

Definição 4.4. A assinatura de ϕ é definida como sendo

$$sign(\phi) := rank(\phi) - 2i(\phi).$$

Teorema 4.5. (Teorema da Inércia de Sylvester) Suponha que $\mathbb{F} \subseteq \mathbb{R}$ e sejam $\phi \in B_s(V)$ e $\mathcal{A} = \{v_1, ..., v_n\}$ base de V ortogonal com respeito a ϕ . Então

$$\mathbf{i}(\phi) = \Big| \{k : \phi(v_k, v_k) < 0\} \Big|.$$

Demonstração. Seja

$$k := \Big| \{k : \phi(v_k, v_k) < 0\} \Big|$$

então imediatamente segue que $k \leq p := rank(\phi)$. Além disso, com uma boa ordenação dos vetores da base, pode-se supor que $\phi(v_j,v_j)=0$ sempre que j>p e que $\phi(v_j,v_j)<0$ para $j\in\{1,2,...,k\}$. Agora, defina

$$W^- := span\{v_1, v_2, ..., v_k\}$$

 \mathbf{e}

$$W^+ := span\{v_{k+1}, ..., v_p\}.$$

Como a base é ortonormal, o valor de $\phi(v,v)$ depende somente de $\phi(v_j,v_j)$ para todo $j \in \{1,2,...,n\}$, portanto segue que $\phi_{|W^-} < 0$ e como $k = \dim(W^-)$, segue que $k \leq \mathbf{i}(\phi)$. Para se conseguir a outra desigualdade devemos mostrar que para todo subespaço W no qual $\phi_{|W} < 0$ tem-se $\dim(W) \leq k$.

Afirmação: Se $W \cap (V^{\perp} \oplus W^{+}) = 0$, então dim $(W) \leq k$.

Demonstração afirmação: É imediato que $V^{\perp} = span\{v_{p+1},....,v_n\}$ e que $V = W^{-} \oplus W^{+} \oplus V^{\perp}$ dessa forma, como por hipótese $W + (V^{\perp} \oplus W^{+})$ é soma direta, segue que

$$n \ge \dim(W) + \dim(V^{\perp}) + \dim(W^{+}) = \dim(W) + (n-p) + (p-k) = \dim(W) + n-k$$

implicando que $\dim(W) - k \le 0$, ou seja, $\dim(W) \le k$.

Com isso, para se concluir o resultado, basta mostrarmos que a afirmação acima é verificada. Seja $w \in W \cap (V^{\perp} \oplus W^{+})$ e escreva, $w = v + w^{+}, v \in V^{\perp}$ e $w^{+} \in W^{+}$. Portanto, segue que

$$\phi(w,w) = \phi(w^+,w^+) + 2\phi(w^+,v) + \phi(v,v) = \phi(w^+,w^+) \ge 0$$
e portanto, $w=0$ pois $\phi_{|W}<0$.

Algumas vezes o teorema acima vem enunciado no contexto das formas quadráticas, a quais em breve iremos revisar.

Lembremos que se \mathcal{A}, \mathcal{B} são duas bases de V, então

$$[\phi]_{\mathcal{B}} = ([I]_{\mathcal{A} \to \mathcal{B}})^t [\phi]_{\mathcal{A}} [I]_{\mathcal{A} \to \mathcal{B}}.$$

Disso segue que

- Uma matriz antissimétrica A com diagonal não nula, é congruente a uma matriz da forma do teorema de bases hiperbólicas. (A congruente a B significa que existe P invertível tal que $A = P^t B P$.)
- Se o corpo em questão é quadraticamente fechado e de característica diferente de 2, então toda matriz simétrica é congruente a matriz

$$\begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix}$$
.

Dica de como encontrar uma base ortogonal:

- 1°) Tomar um vetor não isotrópico $v_1 \in V$ e considerar $W_1 := span\{v_1\}^{\perp_{\phi}}$.
- $2^{\mathbf{0}}$) Seja $\phi_1 := \phi_{|W_1}$. Encontre um vetor $v_2 \in W_1$ não isotrópico e considere

$$W_2 := W_1 \cap span\{v_2\}^{\perp_{\phi}}$$

isto é, $W_2 = span\{v_2\}^{\perp_{\phi_1}}$.

 3^0) Repita os passos anteriores. Note que na k-ésima etapa, com $1 < k < \dim(V)$, encontramos $\{v_1, ..., v_{k-1}\}$ vetores ortogonais, agora escolha um vetor não isotrópico (com respeito a $\phi_{|W_{k-1}}$) e considere

$$W_k := W_{k-1} \cap span\{v_k\}^{\perp_{\phi}}.$$

isto é, $W_k = span\{v_k\}^{\perp_{\phi_{k-1}}}$.

Exemplo 10: Considere $V = \mathbb{R}^3$ e

$$[\phi]_{\mathcal{A}} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 1 & 4 \\ 1 & 4 & 2 \end{pmatrix}, \quad \text{onde } \mathcal{A} \text{ \'e a base can\^onica de } V.$$

Vamos encontrar uma base de V ortogonal com respeito a ϕ .

Dado que e_2 é não isotrópico, escolha $v_1 := e_2$. Agora, seja $W_1 = span\{v_1\}^{\perp}$, o qual por contas canônicas é o conjunto

$$W_1 = \{(x, y, z) \in V : y = x - 4z\} = span\{u, u'\}, \text{ onde } u = (1, 1, 0) \text{ e } u' = (0, -4, 1).$$

Agora, devemos analisar como será a forma matricial de $\phi_1 := \phi_{|W_1}$. Para isso, note que

$$\phi(u,u)=2$$

$$\phi(u, u') = 5$$

e

$$\phi(u', u') = -14.$$

Assim, segue que

$$[\phi_1]_{\{u,u'\}} = \begin{pmatrix} 2 & 5 \\ 5 & -14 \end{pmatrix}.$$

Assim, podemos escolher $v_2 := u$ e considerar $W_2 = span\{v_2\}^{\perp_{\phi_1}}$. Para encontrarmos W_2 basta lembrarmos que estamos em W, portanto, $\hat{v} = \alpha_1 u + \alpha_2 u' \in span\{v_2\}^{\phi_1}$ se, e somente se

$$\phi(\hat{v}, u) = 0$$

ou seja

$$\alpha_1 \phi(u, u) + \alpha_2 \phi(u', u) = 0$$

isto é

$$2\alpha_1 + 5\alpha_2 = 0$$

portanto, fazendo $\alpha_2 = (-2/5)\alpha_1$ segue que

$$\hat{v} = \alpha_1 u + (-2/5)\alpha_1 u' = \alpha_1 (u + (-2/5)u')$$

portanto, $W_2 = span\{v_2\}^{\perp} = span\{\hat{v}\}$, onde

$$\hat{v} = (1, \frac{13}{5}, \frac{-2}{5}).$$

Por fim, tome $v_3 := \hat{v}$ e note que

$$\phi(v_3, v_3) = \frac{-106}{25}.$$

Com isso, se $\mathcal{B} = \{v_1, v_2, v_3\}$ temos que

$$[\phi]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{-106}{25} \end{pmatrix}.$$

Daqui em diante, usaremos $\mathbb{F} = \mathbb{R}$ e iremos supor que dim(V) = n.

Definição 4.6. Uma função $f: V \to \mathbb{R}$ chama-se uma forma quadrática quando existe uma forma bilinear $\phi: V \times V \to \mathbb{R}$ tal que $f(v) = \phi(v, v)$, para todo $v \in V$.

• Na definição acima, não há perda de generalidade em se pedir que a forma bilinear ϕ seja simétrica. Com efeito, para $v,w\in V$ quaisquer, defina

$$\psi(v,w) = \frac{1}{2}(\phi(v,w) + \phi(w,v))$$

e com isso segue que

$$f(v) = \phi(v, v) = \frac{1}{2}(2\phi(v, v)) = \psi(v, v).$$

Lema 4.7. (Polarização) Se $\phi \in B_s(V)$, todos seus valores podem ser determinados a partir de $f(v) = \phi(v, v)$.

Demonstração. Note que

$$\frac{\phi(v+w,v+w) - \phi(v,v) - \phi(w,w)}{2} = \frac{1}{2}(2\phi(v,w)) = \phi(v,w)$$

isto é

$$\phi(v, w) = \frac{1}{2}(f(v + w) - f(v) - f(w)).$$

A expressão acima é conhecida como fórmula de polarização.

Teorema 4.8. Seja V um espaço vetorial real de dimensão finita provido de produto interno. Para cada forma bilinear $\phi: V \times V \to \mathbb{R}$ existe um único operador linear $T \in End_{\mathbb{R}}(V)$ tal que

$$\langle u, T(v) \rangle = \phi(u, v), \quad para \ todo \ (u, v) \in V \times V.$$

Além disso, ϕ é simétrica \Leftrightarrow T é simétrico.

O teorema acima fornece uma demonstração alternativa do teorema 4.2 para o caso em que $\mathbb{F} = \mathbb{R}$. Com efeito, se $\phi \in B_s(V)$ então segue que existe um operador simétrico T tal que

$$\langle u, T(v) \rangle = \phi(u, v).$$

Pelo teorema espectral, existe uma base ortonormal de V $\mathcal{A} = \{v_1, ..., v_n\}$ formada por autovetores de T. Além disso, é imediato que tal base seja ortonormal com respeito a ϕ . Uma importante observação, é que os autovalores de T se dizem autovalores de ϕ por conta da expressão de mudança de base de uma forma bilinear.

Mantendo fixados $\phi \in B_s(V)$, $f(v) = \phi(v, v)$ e a base ortonormal de V $\mathcal{A} = \{v_1, ..., v_n\}$ com respeito a ϕ , se $v = y_1v_1 + ... + y_nv_n$ então denotando por $\lambda_1 \leq \lambda_2 \leq \leq \lambda_n$ os autovalores de ϕ segue que

$$f(v) = \sum_{j=1}^{n} \lambda_j y_j^2.$$

Lema 4.9. O menor autovalor λ_1 e o maior autovalor λ_m são também o valor mínimo e valor máximo assumidos pela forma quadrática f entre os vetores unitários de V. Isto é, para todo vetor u com ||u|| = 1, segue que

$$\lambda_1 \leq f(u) \leq \lambda_2$$
.

Definição 4.10. O índice i(f) de uma forma quadrática f é a maior dimensão de um subespaço vetorial de V restrito ao qual a forma é negativa. (Análoga a definição do índice de uma forma bilinear).

O teorema da inércia de Sylvester aparece no contexto de formas quadráticas. (Na realidade ele é um caso particular do também chamado teorema da inércia de Sylvester visto acima, por isso o próximo resultado será chamado de Lei da inércia de Sylvester.).

Teorema 4.11. (Lei da Inércia de Sylvester) Se existir uma base $V = \{v_1, ..., v_n\}$ de V tal que para todo $v = \sum x_j v_j$ se tem

$$f(v) = -x_1^2 - x_2^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_r^2.$$

Então, a forma quadrática f tem índice i e posto r.

A maneira como encontramos a base acima é essencialmente discutida logo após o teorema 4.2.

Definição 4.12. Um conjunto $\Sigma \subseteq \mathbb{R}^n$ chama-se uma **quádrica central** quando existe uma forma quadrática $\phi : \mathbb{R}^n \to \mathbb{R}$ tal que Σ é definido pela equação $\phi(v) = 1$, $v \in \mathbb{R}^n$.

Transformações Ortogonais e Simpléticas

Sejam V, W espaços vetoriais sobre \mathbb{F} e $\phi \in B(V)$ e $\psi \in B(W)$. Diz-se que a transformação linear $T \in Hom_{\mathbb{F}}(V, W)$ é compatível com o par (ϕ, ψ) se

$$\psi(T(u), T(v)) = \phi(u, v)$$
, para todo par $(u, v) \in V \times V$.

• Se ϕ, ψ forem simétricas e não degeneradas, a transformação T acima é dita ser **ortogonal**. Se ambas ϕ, ψ forem alternadas, T é dita **simplética**.

Proposição 4.13. São equivalentes

- a) T é compatível com o par (ϕ, ψ)
- b) Para toda \mathcal{A} base de V, $[\phi]_{\mathcal{A}} = [\psi]_{T(\mathcal{A})}$.
- c) Existe uma base A de V tal que $[\phi]_A = [\psi]_{T(A)}$.

escrever resultados preliminares antes do lema e teorema principais da seção.

Lema 4.14. Suponha que char(\mathbb{F}) $\neq 2$. Seja $\phi \in B_s(V)$ não degenerada e suponha que $u, v \in V$ satisfaçam

$$\phi(u, u) = \phi(v, v) \neq 0.$$

Então, existe uma reflexão simples R tal que $R(v) \in \{-u, u\}$.

Demonstração. Defina

$$w_{\pm} = v \pm u$$

 \mathbf{e}

$$W_{\pm} = span\{w_{\pm}\}.$$

Suponha que $\phi(w_-, w_-) = \phi(w_+, w_+) = 0$. Então, por contas canônicas, chegaríamos que $\phi(u, u) = \pm \phi(u, v)$, implicando que $\phi(u, u) = 0$ absurdo. Além disso

$$\phi(w_-, w_+) = \phi(u - v, u + v) = \phi(u, u) - \phi(v, v) = 0.$$

Dessa forma, sem perda de generalidade pode-se supor que w_+ é não isotrópico e portanto, fica bem definida a reflexão $R_{W_+}^{\phi}$, a qual é tal que

$$R_{W_{+}}^{\phi}(w_{\pm}) = w_{\mp}$$

pois $w_- \in W_+^{\perp_\phi}$. Ademais, notemos que

$$R_{W_+}^{\phi}(v) = \frac{1}{2}(w_+ + w_-) = -u.$$

(Se w_- é não isotrópico, $R_{W_-}^{\phi}(v) = u$).

O próximo teorema mostra que existe uma relação biunívoca entre transformações ortogonais e reflexões simples. Mais precisamente ele nos diz que toda transformação ortogonal é produto de reflexões simples.

Teorema 4.15. Suponha que char(\mathbb{F}) $\neq 2$ e que $0 \neq \dim(V) < \infty$. Sejam $\phi \in B_s(V)$ não degenerada e $T \in End_{\mathbb{F}}(V)$. Então, T é ortogonal se, e somente se, T for uma composição de reflexões simples.

Demonstração. Vamos mostrar que se T é ortogonal, então T é produto de reflexões simples, usando indução em $n = \dim(V) \ge 1$. Se n = 1, então $V = span\{v\}$ para todo $0 \ne v \in V$ e portanto, existe $a \in \mathbb{F}$ tal que T(v) = av. Dado que $det(T) = \pm 1$, segue que $T = \pm I_d$. Notemos agora que

$$-I_d = R_V^{\phi}$$

е

$$I_d = (R_V^{\phi})^2$$

portanto para n=1 o resultado segue. Suponha que o resultado seja verdade para todo espaço de dimensão $1 \leq m < n$. Seja $u \in V$ um vetor não isotrópico. Fazendo v := T(u), pelo lema anterior, existe uma reflexão simples R satisfazendo $R(v) = \pm u$. Em particular, segue que $U = span\{u\}$ é $R \circ T$ -invariante e como $U^{\perp_{\phi}}$ é não degenerado (por conta dos radicais) segue que $U^{\perp_{\phi}}$ é também $(R \circ T)$ -invariante. Agora, seja

$$S:=(R\circ T)_{|U^{\perp_\phi}}.$$

Por hipótese de indução, existem $S_1,...,S_m$ reflexões simples em U^{\perp_ϕ} tais que

$$S = S_1 \circ S_2 \circ \dots \circ S_m$$
.

Nosso objetivo agora será definir operadores que estendem cada uma das reflexões acima, e mais ainda, precisamos construir tais de forma que sejam reflexões simples em V.

Para cada $j \in \{1, 2, ..., m\}$ seja R_j o único operador linear em V tal que

$$R_j(u) = u$$
 e $R_j(x) = S_j(x)$, para todo $x \in U^{\perp_{\phi}}$.

Além disso, defina

$$R_0 = \begin{cases} Id, & se \quad R(v) = u \\ R_U^{\phi}, & se \quad R(v) = -u \end{cases}.$$

Nosso objetivo será mostrar que cada um dos R_j acima é uma reflexão simples e que

$$T = R \circ R_0 \circ R_1 \circ \dots \circ R_m.$$

Notemos que

$$R_0(w) = w$$
, para todo $w \in U^{\perp_{\phi}}$

pois se R(v)=u a afirmação é óbvia, se R(v)=-u, então $R_0(w)=R_U^\phi(w)=w$. Portanto, em $U^{\perp_\phi},\ R\circ T$ coincide com $R_0\circ...\circ R_m$. Além disso, tais operadores coincidem em U também por conta da imposição de que $R_j(u)=u$ para todo $j\in\{1,2,...,m\}$. Dessa forma, dado que $V=U\oplus U^{\perp_\phi}$ e $R^{-1}=R$, tem-se que

$$T = R \circ R_0 \circ \dots \circ R_m$$
.

Agora, defina

$$\psi := \phi_{|U^{\perp_{\phi}} \times U^{\perp_{\phi}}}.$$

Para cada $j \in \{1, 2, ..., m\}$, seja $w_j \in U^{\perp_{\phi}}$ tal que

$$S_j = R_{W_j}^{\psi}$$
, onde $W_j = span\{w_j\}$.

Nosso objetivo será mostrar que $R_j = R_{W_j}^{\phi}$. Como $w_j \in U^{\perp_{\phi}}$ segue imediatamente que ambos operadores acima coincidem em U. Por outro lado, se $x \in U^{\perp_{\phi}}$, tem-se que

$$R_{W_j}^{\phi}(x) = x - 2\frac{\phi(x, w_j)}{\phi(w_j, w_j)} w_j = x - 2\frac{\psi(x, w_j)}{\phi(w_j, w_j)} = S_j(x) = R_j(x)$$

concluindo então que de fato, $R_j = R_{W_j}^{\perp_{\phi}}$.

Dica de como escrever qualquer transformação ortogonal como um produto de reflexões simples:

- 1°) Tome um vetor não isotrópico $u \in V$.
- 2º) Considerando os vetores

$$w_{\pm} = T(u) \pm u$$

escolha dentre eles aquele que não é isotrópico.

 3°) Se por exemplo o vetor não isotrópico de 2°) é w_{+} , então defina $W_{+} = span\{w_{+}\}$ e considere a reflexão simples

$$R_{W_{+}}^{\phi}(v) = v - 2\frac{\phi(v, w_{+})}{\phi(w_{+}, w_{+})}w_{+}$$

 4^0) Usando o processo de Gram-Schmidt por exemplo, encontre uma base ortogonal \mathcal{B}_+ de W_+^{\perp} e note que o operador $R_{W_+}^{\phi} \circ T$ em relação a base $\mathcal{B} := \{w_+\} \cup \mathcal{B}_+$ tem a forma

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & B_1 \end{pmatrix}$$

onde B_1 é uma matriz de tamanho $(n-1) \times (n-1)$.

- 5^0) Aplique o processo acima considerando agora o operador $S:=R_{W_+}^{\phi}\circ T$ e o espaço vetorial $U:=W_+^{\perp}$.
- 6°) Em alguma k-ésima etapa, obtém-se uma matriz formada por ± 1 em sua diagonal. Dessa forma, dada que tal matriz sempre pode ser escrita como um produto de reflexões simples, basta agora retornarmos para o operador ortogonal T via multiplicação de inversas de reflexões simples.

Antes de fazermos a demonstração do próximo exercício, é interessante relembrarmos alguns resultados sobre matrizes de Gram e algumas coisas sobre operadores auto-adjuntos.

Sejam \mathcal{A}, \mathcal{B} bases de V. Então recordemos que

$$\langle v, u \rangle = [u]_{\mathcal{B}}^* G_{\mathcal{B}}[v]_{\mathcal{B}}$$

e portanto, se $[I]^{\mathcal{A}}_{\mathcal{B}}$ é a matriz mudança de base de \mathcal{A} para \mathcal{B} segue que

$$[u]_{\mathcal{B}} = [I]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}}$$

 \mathbf{e}

$$[v]_{\mathcal{B}} = [I]_{\mathcal{B}}^{\mathcal{A}}[v]_{\mathcal{A}}$$

consequentemente

$$\langle v, u \rangle = ([I]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}})^* G_{\mathcal{A}}([I]_{\mathcal{B}}^{\mathcal{A}}[v]_{\mathcal{A}}) = [u]_{\mathcal{A}}^* ([I]_{\mathcal{B}}^{\mathcal{A}})^* G_{\mathcal{B}}[I]_{\mathcal{B}}^{\mathcal{A}}[v]_{\mathcal{A}}$$

implicando que

$$G_{\mathcal{A}} = ([I]_{\mathcal{B}}^{\mathcal{A}})^* G_{\mathcal{B}}[I]_{\mathcal{B}}^{\mathcal{A}} \qquad (\star).$$

Se o corpo em questão for $\mathbb{F} \subseteq \mathbb{R}$ por conta da simetria, a escrita do produto interno em termos da matriz de Gram e relativo a base \mathcal{A} se torna

$$\langle v, u \rangle = [v]_{\mathcal{A}}^t G_{\mathcal{A}}[u]_{\mathcal{A}} \qquad (\star \star).$$

Agora, suponha que em $V = \mathbb{R}^n$ tenhamos a seguinte igualdade

$$\langle T(v), u \rangle = \phi(v, u), \quad \text{para todo } (v, u) \in V \times V$$

onde ϕ é alguma forma bilinear simétrica. Dessa forma, se \mathcal{A} é base de V, segue de $(\star\star)$ que

$$[T(v)]_{\mathcal{A}}^t G_{\mathcal{A}}[u]_{\mathcal{A}} = [v]_{\mathcal{A}}^t [\phi]_{\mathcal{A}}[u]_{\mathcal{A}}.$$

Por outro lado tem-se que

$$[T(v)]_{\mathcal{A}} = [T]_{\mathcal{A}}^{\mathcal{A}}[v]_{\mathcal{A}}$$

donde temos que

$$[v]_{\mathcal{A}}^{t}([T]_{\mathcal{A}}^{\mathcal{A}})^{t}G_{\mathcal{A}}[u]_{\mathcal{A}} = [v]_{\mathcal{A}}^{t}[\phi]_{\mathcal{A}}[u]_{\mathcal{A}}$$

ou seja

$$[\phi]_{\mathcal{A}} = ([T]_{\mathcal{A}}^{\mathcal{A}})^t G_{\mathcal{A}}, \qquad (\star \star \star).$$

Segue imediato de $(\star\star\star)$ que se $[T]_{\mathcal{A}}^{\mathcal{A}}$ e $G_{\mathcal{A}}$ forem diagonais, então $[\phi]_{\mathcal{A}}$ será diagonal. Por fim, suponha que $\mathcal{A} = \{v_1, ..., v_n\}$ é uma base ortonormal de V (em relação ao produto interno usual). Dessa forma segue de imediato que se $v \in V$, então

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i.$$

Com isso, se T é um operador linear em V, segue direto da ultima igualdade que se

$$[T]_{\mathcal{A}}^{\mathcal{A}} = (a_{ij})_{ij}$$

então

$$a_{ij} = \langle T(v_i), v_i \rangle$$
 para cada $1 \leq i, j \leq n$.

EQ-11-2018: Considere a forma quadrática em \mathbb{R}^3 dada por

$$q(x, y, z) = 2(xy + xz + yz) - (x^2 + y^2 + z^2)$$

e seja ϕ uma forma bilinear simétrica tal que $q(v) = \phi(v, v)$. Considere também o operador linear T em \mathbb{R}^3 tal que $\langle T(e_i), e_j \rangle = \phi(e_i, e_j)$ para quaisquer $1 \leq i, j \leq 3$ sendo $\{e_1, e_2, e_3\}$ base canônica e $\langle \cdot, \cdot \rangle$ produto interno usual do \mathbb{R}^3 .

- a) Encontre base β de \mathbb{R}^3 tais que as matrizes de T e ϕ nestas bases sejam diagonais.
- b) Calcule a assinatura de ϕ .
- c) Dê exemplo de uma base de \mathbb{R}^3 tal que ϕ em tal base é diagonal mas T não é.

Demonstração. a) Dado que a base canônica $\alpha = \{e_1, e_2, e_3\}$ é ortonormal com relação ao produto interno usual, pelas observações feitas antes do exercício, segue que se $[T]^{\alpha}_{\alpha} = (a_{ij})$, então

$$a_{ij} = \langle T(e_j), e_i \rangle = \phi(e_j, e_i), \quad 1 \le i, j \le 3.$$

Vamos encontrar a matriz de ϕ em relação a base canônica. Para isso, veja que

$$q(x,y,z) = -x^2 - y^2 - z^2 + 2xy + 2xz + 2yz = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

donde segue que

$$[\phi]_{\alpha} = \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}.$$

Note que poderíamos obter a matriz de ϕ apenas utilizando a fórmula de polarização, embora este não seja o caminho mais rápido. Ademais, em relação a base canônica α , $[\phi]_{\alpha} = [T]_{\alpha}^{\alpha}$. Notemos também que uma base diagonal para T pode ser transformada numa base ortogonal em relação ao produto interno (ainda mantendo T diagonal base), donde segue que ϕ nessa base também será diagonal. Assim, dado que T é simétrica, vamos encontrar uma base que diagonalize T.

O polinômio característico de T é

$$c_T(x) = (3+x)^2(3-x)$$

portanto os autovalores de T são

 $\lambda_1 = -3$, com multiplicidade algébrica igual a 2

 $\lambda_2 = 3$, com multiplicidade algébrica igual a 1.

Fazendo as contas canônicas concluímos que

$$Ker(T+3I) = span\{(-1,1,0),(-1,0,1)\}$$

e que

$$Ker(T - 3I) = span\{(1, 1, 1)\}.$$

Portanto, se $\beta = \{(-1,1,0),(-1,0,1),(1,1,1)\}$ segue que a matriz de T é diagonal em relação a esta. Agora, considere $v_1 = (-1,1,0)$ e $v_2 = (-1,0,1)$. Aplicando Gram-Schmidt a tais, chegamos aos vetores $u_1 = v_1$ e

$$u_2 = v_2 - proj_{u_1}(v_2) = v_2 - \frac{\langle v_2, u_1 \rangle}{|u_1|^2} u_1 = (-1, 0, 1) - \frac{1}{2}(-1, 1, 0) = \left(\frac{-1}{2}, \frac{-1}{2}, 1\right).$$

Com isso, segue que em relação a base $\beta := \{u_1, u_2, (1, 1, 1)\}$, T e ϕ são diagonais. Mais precisamente

$$[\phi]_{\beta} = \begin{pmatrix} -6 & 0 & 0\\ 0 & -\frac{-9}{2} & 0\\ 0 & 0 & 9 \end{pmatrix}.$$

b) Dado que a base \mathcal{B} é uma base ortogonal de ϕ , pelo teorema de Sylvester segue que $\mathbf{i}(\phi) = 2$ e $rank(\phi) = 3$, implicando que

$$sign(\phi) = 3 - 2 \cdot 2 = -1.$$

c) Agora, vamos utilizar o método descrito para encontrar uma base ortogonal de ϕ e testar se a matriz de T em relação a esta é ou não diagonal.

Tome $v_1 = e_1$ e note que v_1 é não isotrópico com relação a ϕ . Considerando $span\{v_1\}$ segue que seu complemento ortogonal W_1 (em relação a ϕ) é dado por

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 : -x + 2y + 2z = 0\}$$

isto é

$$W_1 = span\{(2,1,0), (2,0,1)\}.$$

Agora, notemos que se u = (2, 1, 0) e u' = (2, 0, 1) então

$$\phi(u, u) = 3$$
, $\phi(u, u') = 6$, $\phi(u', u') = 3$.

Assim, podemos escolher $v_2 := u$ e notar que se $\hat{v} = \alpha_1 u + \alpha_2 u'$, então

$$\phi(\hat{v}, u) = 0 \Leftrightarrow \alpha_1 \phi(u, u) + \alpha_2 \phi(u, u') = 0$$

isto é

$$3\alpha_1 + 6\alpha_2 = 0$$

ou seja

$$\alpha_1 = -2\alpha_2$$
.

Portanto temos que

$$\hat{v} \in W_1 \cap span\{u\}^{\perp_{\phi}} \Leftrightarrow \hat{v} = -2\alpha_2 u + \alpha_2 u' = \alpha_2 (-2u + u') = \alpha_2 (-2, -2, 1)$$

concluindo então que

$$W_1 \cap span\{u\}^{\perp_{\phi}} = span\{(-2, -2, 1)\}.$$

Dessa forma, tomando $v_3 = (-2, -2, 1)$, a base

$$\gamma := \{v_1, v_2, v_3\}$$

é uma base ortogonal para ϕ . Agora, veja por exemplo que

$$T(-2, -2, 1) = (0, 0, -9) = 18v_1 - 18v_2 - 9v_3$$

implicando que a matriz de T em relação a γ não é diagonal.

Por fim, vejamos que

$$[\phi]_{\gamma} = \begin{pmatrix} -3 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & -9 \end{pmatrix}$$

mostrado mais uma vez que se fato $sign(\phi) = 3 - 2.2 = -1$.

5 Produtos Tensoriais

Propriedade universal do quociente: Relembremos a propriedade universal do quociente: Dado $T: V \to W \in Hom_{\mathbb{F}}(V, W)$, se U é um subespaço de V tal que $U \subseteq Ker(T)$, então existe um único mapa induzido

$$\widetilde{T}: V/U \to W$$

dado por T(v+U) = T(v).

Propriedade universal de bases: Sejam A um conjunto não vazio, \mathcal{V} o conjunto dos espaços vetoriais sobre \mathbb{F} , \mathcal{F} família de funções cujo domínio é A, e \mathcal{H} conjunto das transformações lineares. Dessa forma, se V_A é um espaço vetorial com base A, isto é, o conjunto de todas as combinações lineares formais de membros de A, então o par

$$(V_A, \mathbf{i}_A : A \to V_A)$$
, onde $\mathbf{i}_A(a) = a$, $a \in A$

é um par universal para $(\mathcal{F}, \mathcal{H})$. Isto é, para qualquer $g: A \to V_A$ em \mathcal{F} , existe uma única transformação linear $T_g: V_A \to V_A$ tal que $g = T_g \circ \mathbf{i}_A$.

Vamos agora mostrar a existência do produto tensorial. Nesse breve resumo iremos começar com a construção via o que é chamado de **método da coordenada livre**¹. Dado dois espaços vetoriais U, V sobre um corpo \mathbb{F} , seja

$$F_{U \times V} := \bigoplus_{(u,v) \in U \times V} M_{(u,v)}, \quad \text{ onde } M_{(u,v)} = \mathbb{F} \quad \text{ para todo } (u,v) \in U \times V.$$

Note que se $\iota_{(u,v)}: \mathbb{F} \to F_{U \times V}$ é a injeção canônica, então denotando por $e_{(u,v)}:=\iota_{(u,v)}(1)$, pode-se escrever qualquer elemento $v \in F_{U \times V}$ da forma

$$v = \sum_{i=1}^{m} a_i e_{(x_i, y_i)}.$$

Seja agora \mathcal{S} o subespaço de $F_{U\times V}$ gerado pelos vetores da forma

•
$$re_{(u,v)} + se_{(u',v)} - e_{(ru+su',v)}$$

е

•
$$re_{(u,v)} + se_{(u,v')} - e_{(u,rv+sv')}$$

onde $r, s \in \mathbb{F}$, $u, u' \in U$ e $v, v' \in V$.

Dessa forma, definimos o produto tensorial de U por V como sendo o espaço

$$U \otimes V := F_{U \times V}/\mathscr{S}$$
.

Veja que se fizemos um abuso de notação e identificarmos $e_{(u,v)}$ com (u,v), os elementos em $U \otimes V$ são da forma

$$\sum_{i \in I} r_i(u_i, v_i) + \mathscr{S}$$

¹O nome coordenada livre é em virtude de que tal construção não se utiliza uma base. Além disso, o nome é por conta de que esta se faz utilizando o que se conhece por módulo livre.

e além disso, em $U \otimes V$ temos

$$\sum_{i \in I} r_i(u_i, v_i) + \mathscr{S} = \sum_{i \in I} r_i \bigg((u_i, v_i) + \mathscr{S} \bigg).$$

Agora defina

$$u \otimes v := (u, v) + \mathscr{S}$$

e dessa forma, por conta da definição de $U\otimes V$, podemos escrever qualquer elemento x em $U\otimes V$ da seguinte maneira

$$x = \sum_{i \in I} u_i \otimes v_i.$$

Ademais, podemos definir

$$\otimes: U \times V \to U \otimes V, \quad \otimes(u, v) = u \otimes v$$

a qual é bilinear por conta da construção de $U \otimes V$.

Teorema 5.1. (Propriedade universal) Sejam V, U, W espaços vetoriais, dado qualquer função bilinear $f: U \times V \to W$, existe uma única transformação linear $\widetilde{f}: U \otimes V \to W$ tal que

$$\widetilde{f} \circ \otimes = f$$
.

Isto é, $\widetilde{f}(x \otimes y) = f(x,y)$ para qualquer par $(x,y) \in U \times V$.

Demonstração. Primeiramente devemos ter de forma bem solidificada as duas propriedades universais acima (i.e bases e quocientes). Dessa forma, se $\pi: F_{U\times V} \to U\otimes V$ é a projeção canônica e $\mathbf{i}_{U\times V}$ é a inclusão natural, isto é

$$\mathbf{i}_{U\times V}: U\otimes V\to F_{U\times V}, \quad (x,y)\mapsto e_{(x,y)}$$

então iremos nos apoiar no seguinte diagrama para a construção de \widetilde{f} .

É imediato por conta da definição de ⊗ que

$$\otimes = \pi \circ \mathbf{i}_{U \times V}.$$

Além disso, por conta da propriedade universal de bases existe um mapa $\sigma: F_{U\times V}:\to W$ tal que $\sigma\circ\mathbf{i}_{U\times V}=f$. Nosso objetivo então é construir um mapa \widetilde{f} tal que

$$\widetilde{f} \circ \pi \circ \mathbf{i}_{U \times V} = \sigma \circ \mathbf{i}_{U \times V} = f.$$

Não é difícil ver que o subespaço $\mathscr S$ da construção acima é tal que $\mathscr S\subseteq Ker(\sigma)$ e portanto pela propriedade universal de quocientes segue que existe um mapa linear induzido

$$\widetilde{f}: U \otimes V \to W \text{ tal que } \widetilde{f} \circ \pi = \sigma.$$

Dessa forma, concluímos que

$$\widetilde{f} \circ \otimes = \widetilde{f} \circ \pi \circ \mathbf{i}_{U \times V} = (\widetilde{f} \circ \pi) \circ \mathbf{i}_{U \times V} = \sigma \circ \mathbf{i}_{U \times V} = f.$$

Por fim, vamos verificar a unicidade de \widetilde{f} . Suponha que $g:U\otimes V\to W$ seja outro mapa linear que satisfaça as mesmas condições que \widetilde{f} . Em outras palavras, suponha que $g\circ\otimes=f$. Dessa forma, $\mu:=g\circ\pi$ satisfaz

$$\mu \circ \mathbf{i}_{U \times V} = g \circ \pi \circ \mathbf{i}_{U \times V} = g \circ \otimes = f$$

e portanto segue que

$$\sigma \circ \mathbf{i}_{U \times V} = \mu \circ \mathbf{i}_{U \times V}$$

e assim, temos por conta da unicidade de σ que $\sigma = \mu$. Consequentemente

$$g\circ\pi=\widetilde{f}\circ\pi$$

implicando que $g = \widetilde{f}$.

Construção alternativa via bases: Seja $\{v_i: i \in I\}$ base para V e $\{u_j: j \in J\}$ uma base para U. "inventando" o símbolo $v_i \otimes u_j$, considere o espaço vetorial T com base o conjunto

$${u_i \otimes v_j : i \in I, j \in J}.$$

Agora, defina a forma bilinear t nos elementos da base de $U \times V$ por $t(u_i, v_j) := u_i \otimes v_j$ e estenda por bilinearidade. Dessa forma, se $v = \sum_{i \in I_v} a_i v_i$ e $u = \sum_{j \in J_u} b_j u_j$, tem-se que

$$t(u,v) = \sum_{i \in J_u} \sum_{j \in I_v} b_i a_j t(u_i, v_j) = \sum_{(i,j) \in J_u \times I_v} b_i a_j u_i \otimes v_j.$$

Proposição 5.2. O par (T;t) com T e t como definidos acima, é um par universal para a propriedade descrita no teorema acima.

Demonstração. Dada $g: V \times U \to W$ uma função bilinear, a condição $g = \tau \circ t$, para uma função linear $\tau \in Hom_{\mathbb{F}}(T, W)$, equivale a $g(u, v) = \tau(u \otimes v)$. Por outro lado, g é unicamente determinada pelos elementos da base de $U \times V$ e assim segue que τ existe e é única.

Na primeira construção de produto tensorial construímos um par $(U \otimes V; \otimes)$ que é universal segundo a condição imposta no enunciado de 5.1, e além disso mostramos logo na seguida que existe um outro par (T;t) que satisfazem a mesma propriedade. Dessa forma, dado que $t \in S$ são bilineares concluí-se que deve existir um isomorfismo de espaços vetoriais $h: U \otimes V \to T$ tal que $h \circ t = S$.

Teorema 5.3. Sejam U, V e W espaços vetoriais sobre \mathbb{F} . Então se $B_{\mathbb{F}}(V, U; W)$ é o conjunto das formas bilineares $f: V \times U \to W$, então seque que

$$B_{\mathbb{F}}(V, U; W) \cong Hom_{\mathbb{F}}(V, Hom_{\mathbb{F}}(U, W)) \cong Hom_{\mathbb{F}}(V \otimes U, W).$$

Demonstração. Seja $f \in B_{\mathbb{F}}(V, U; W)$ e defina

$$\psi(f): V \to Hom_{\mathbb{F}}(U, W)$$

por

$$\psi(f)v = f(v, \cdot) \in Hom_{\mathbb{F}}(U, W).$$

Dessa forma, fica bem definido o mapa

$$\psi: B_{\mathbb{F}}(V, U; W) \to Hom_{\mathbb{F}}(V, Hom_{\mathbb{F}}(U, W)), \quad f \mapsto \phi(f).$$

Notemos agora que se $\alpha \in \mathbb{F}$ e $f, g \in B_{\mathbb{F}}(V, U; W)$ então

$$\psi(f+\alpha g)v=(f+\alpha g)(v,\cdot)=f(v,\cdot)+\alpha g(v,\cdot)=\psi(f)v+\alpha\psi(g)v,\quad \text{ para todo }v\in V$$

portanto concluímos que ψ é linear. Por outro lado, dado $g \in Hom_{\mathbb{F}}(V, Hom_{\mathbb{F}}(U, W))$, defina

$$\widehat{\psi}(g)(v,u) := b_g(v,u) = g(v)(u).$$

É imediato da definição que $\widehat{\psi}$ é bilinear e além disso note que

$$\psi \circ \widehat{\psi}(f)(v, u) = \psi(\widehat{\psi}(f)(v, u)) = \psi(b_f(v, u)) = \psi(b_f(v, u)) = b_f(v, u) = f(v)(u)$$

ou seja

$$\psi \circ \widehat{\psi}(f) = f$$
, para qualquer $f \in Hom_{\mathbb{F}}(V, Hom_{\mathbb{F}}(U, W))$

analogamente

$$\widehat{\psi} \circ \psi(g) = g$$
, para qualquer $g \in B_{\mathbb{F}}(V, U; W)$

e portanto temos que

$$B_{\mathbb{F}}(V, U; W) \cong Hom_{\mathbb{F}}(V, Hom_{\mathbb{F}}(U, W)).$$

Sabemos que para toda $f \in B_{\mathbb{F}}(V,U;W)$ existe única $\widetilde{f} \in Hom(V \otimes U;W)$ tal que $\widetilde{f} \circ \otimes = f$. Dessa forma, fica bem definido a função

$$\phi: B_{\mathbb{F}}(V, U; W) \to Hom_{\mathbb{F}}(V \otimes U; W), \quad f \mapsto \widetilde{f}.$$

Note que se $\alpha \in \mathbb{F}, \, f,g \in B_{\mathbb{F}}(V,U;W)$ então

 $(\widetilde{f} + \alpha \widetilde{g})(v \otimes u) = \widetilde{f}(v \otimes u) + \alpha \widetilde{g}(v \otimes u) = f(v, u) + \alpha g(v, u),$ para todo $(v, u) \in V \times U$ portanto por unicidade segue que

$$\phi(f + \alpha g) = \widetilde{f + \alpha g} = \widetilde{f} + \alpha \widetilde{g} = \phi(f) + \alpha \phi(g)$$

donde segue que ϕ é linear. A injetividade de ϕ é imediato pois se $\phi(f)=0$ então $f=\phi(f)\circ \otimes =0$. Além disso, dado $g\in Hom(V\otimes U;W)$ defina

$$g_1(v,u) := g(v \otimes u)$$

e assim segue por unicidade que $\phi(g_1) = g$, consequentemente ϕ é sobrejetora. Com isso concluímos que de fato, ϕ é um isomorfismo.

Observação: Segue da bilinearidade do produto tensorial que dado $v \in V$, $v \otimes 0 = v \otimes (0+0) = v \otimes 0 + v \otimes 0$ e assim segue que $v \otimes 0 = 0$.

Teorema 5.4. Sejam $v_1, ..., v_n$ vetores linearmente independentes em V e $u_1, ..., u_n$ vetores arbitrários em U. Então

$$\sum_{i=1}^{n} v_i \otimes u_i = 0 \Rightarrow u_i = 0, \quad para \ todo \ i \in \{1, 2, ..., n\}.$$

Em particular

$$v \otimes u = 0 \Rightarrow v = 0$$
 ou $u = 0$.

Demonstração. Dados $\alpha \in V^*$ e $\beta \in U^*$ defina

$$h: V \times U \to \mathbb{F}, \quad (v, u) \mapsto \alpha(v)\beta(u)$$

segue direto da definição que h é uma forma bilinear. Segue da propriedade universal que existe \tilde{h} tal que $\tilde{h}\circ\otimes=h$ e além disso

$$0 = \widetilde{h}(\sum_{i=1}^{n} v_i \otimes u_i) = \sum_{i=1}^{n} h(v_i \otimes u_i) = \sum_{i=1}^{n} h(v_i, u_i) = \sum_{i=1}^{n} \alpha(v_i)\beta(u_i).$$

Por outro lado, dado que $\mathcal{A} = \{v_1, ..., v_n\}$ são linearmente independentes considere $V_0 = span\{v_1, ..., v_n\}$ e seja $\mathcal{B} = \{v^1, ..., v^n\}$ base de V_0^* dual a \mathcal{A} . Dessa forma, dado $k \in \{1, 2, ..., n\}$ ponha $\alpha = v^k$ e assim temos que

$$0 = \sum_{i=1}^{n} v^{k}(v_{i})\beta(u_{i}) = \beta(u_{k}).$$

Dado que β é arbitrário segue que $u_k = 0$. Portanto, concluímos que

$$u_1 = u_2 = \dots = u_n = 0.$$

Teorema 5.5. Seja $A = \{v_i : i \in I\}$ base de V e $B = \{u_j : j \in J\}$ base de U, então

$$\mathcal{D} = \{ v_i \otimes u_j : i \in I, j \in J \}$$

 \acute{e} uma base de $V \otimes U$.

Corolário 5.6. Se V e U tiverem ambos dimensões finitas, digamos m, n respectivamente, então,

$$dim(V \otimes U) = dim(V)dim(U)$$

. O próximo resultado permite-nos definir o chamado de posto de um tensor.

Teorema 5.7. Cada $z \in V \otimes U$ tem uma expressão da forma

$$z = \sum_{i=1}^{n} x_i \otimes y_i$$

onde $\{x_1,...,x_n\}\subseteq V$ e $\{y_1,...,y_n\}\subseteq U$ são conjuntos linearmente independentes.

Demonstração. Sejam $\mathcal{A} = \{v_i : i \in I\}$ e $\mathcal{B} = \{u_j : j \in J\}$ bases de V e U respectivamente. Dessa forma, existe $m \in \mathbb{N}$ tal que z pode ser escrito da forma

$$z = \sum_{i=1}^{m} v_i \otimes y_i, \quad y_i \in U, \quad 1 \le i \le m.$$

Se o conjunto $\{y_1, ..., y_m\}$ é linearmente independente acabou. Caso contrário reindexando se necessário pode-se supor que

$$y_n = \sum_{j=1}^{n-1} \alpha_j y_j.$$

E portanto, tem-se que

$$z = \sum_{i=1}^{m} v_i \otimes y_i = \sum_{i=1}^{m-1} v_i \otimes y_i + \sum_{i=1}^{m-1} \alpha_i v_m \otimes y_i = \sum_{i=1}^{m-1} (v_i + \alpha_i v_m) \otimes y_i$$

e além disso não é difícil ver que os vetores $\{v_i + \alpha_i v_m : i \in \{1, 2, ..., m-1\}\}$ são linearmente independentes. Se os vetores $\{y_1, ..., y_{m-1}\}$ são linearmente independentes acabou, caso contrário repita mais uma vez esse processo.

A quantidade mínima de parcelas na escrita de um tensor z como acima é chamada de o **posto** de z e denotado por rank(z).

Lema 5.8. Sejam $m, p \in \mathbb{Z}_{\geq 0}$ $\alpha = \{v_1, ..., v_m\}, \quad \alpha' = \{v_1', ..., v_m'\}$ família de vetores em V e $\beta = \{w_1, ..., w_p\}, \quad \beta' = \{w_1', ..., w_p'\}$ famílias em U tais que

$$\sum_{j=1}^{m} v_{j} \otimes w_{j} = \sum_{i=1}^{p} v_{i}' \otimes w_{i}'$$

Se, α, α', β' são vetores l.i, então,

$$span(\beta) \subseteq span(\beta')$$
.

A prova do lema acima é feita por indução e pode ser encontrada na página 339 do livro de Adriano Moura.

Proposição 5.9. Sejam $\{v_1,...,v_n\}$ e $\{u_1,...,u_n\}$ duas famílias de vetores linearmente independentes tais que o elemento $z \in V \otimes U$ é escrito da forma

$$z = \sum_{i=1}^{n} v_i \otimes u_i.$$

Então seque que

$$rank(z) = n$$
.

Para a demonstração da proposição acima basta supor que $p=rank(z) \leq n$ e usar o lema 5.8.

Se $z \in V \otimes U$ é um tensor de posto 1, isto é, pode-se escrever z da forma $z = x \otimes y$, então z é dito ser um **tensor puro**.

Teorema 5.10. Existe uma única transformação linear $\Phi: V^* \otimes U \to Hom_{\mathbb{F}}(V,U)$ satisfazendo

$$\Phi(f \otimes u)(v) = f(v)u$$
 para quaisquer $v \in V, u \in U, f \in V^*$.

Além disso:

- a) Φ é injetora, ou seja $V^* \otimes U$ mergulha em $Hom_{\mathbb{F}}(V,U)$.
- b) Para todo $z \in V^* \otimes U$, $rank(\Phi(z)) = rank(z)$.
- c) $T \in Im(\Phi)$ se, e somente se, $rank(T) < \infty$.
- d) Φ é sobrejetora se, e somente se, $\dim(V) < \infty$ ou $\dim(U) < \infty$.

Demonstração. A existência de Φ se dá por conta da propriedade universal aplicada a função bilinear

$$g: V^* \times U \to Hom_{\mathbb{F}}(V, U), \quad (f, u) \mapsto g(f, u)v = f(v)u.$$

a) Agora, seja $z \in Ker(\Phi)$ e escolha uma expressão da forma

$$z = \sum_{i=1}^{m} f_j \otimes u_j$$

onde $\{f_1,...,f_m\}$ e $\{u_1,...,u_m\}$ são linearmente independentes. Se m>0 seja $v\in V$ tal que $f_1(v)\neq 0$, dessa forma segue que

$$0 = \sum_{j=1}^{m} f_j(v) u_j$$

contrariando o fato de $\{u_1, ..., u_m\}$ ser um conjunto l.i.

b) Dado $z \in V^* \otimes U$, escolha uma expressão para z como acima e seja $W' = span\{u_1, ..., u_m\}$. Da proposição 5.9 tem-se que $\dim(W') = rank(z)$. Por outro lado, $\Phi(z)$ é um mapa linear e portanto

$$rank(\Phi(z)) = \dim Im(\Phi(z))$$

dessa forma, basta mostrar que dim $Im(\Phi(z)) = \dim(W')$. Além disso, dado que $Im(\Phi(z)) \subseteq W'$, é suficiente mostrar que $w_j \in Im(\Phi(z))$ para todo $j \in \{1, 2, ..., m\}$. Note porém que por conta da observação feita após o teorema 3.4 (com uma leve modificação, considere o espaço $V_1 \subseteq V^*$ gerado pelos vetores $\{f_1, ..., f_m\}$) existem vetores $\{v_1, ..., v_m\}$ em V tais que $f_j(v_i) = \delta_{ij}$. E portanto tem-se que

$$\Phi(z)(v_i) = w_i$$

donde segue que $w_i \in Im(\Phi(z))$.

c) Seja \mathcal{F} o subespaço de $Hom_{\mathbb{F}}(V,U)$ das transformações lineares de posto finito. Segue do item b) que $Im(\Phi) \subseteq \mathcal{F}$. Por outro lado, se $T \in \mathcal{F}$ e rank(T) = m, tome $\{w_1,...,w_m\}$ base de Im(T) e considere $(e_i)_{i\in I}$ uma base de V. Dessa forma, para cada $j \in I$ podemos escrever

$$T(e_j) = \sum_{i=1}^{m} a_{ij} w_i, \quad a_{ij} \in \mathbb{F}, \quad i \in \{1, 2, ..., m\}$$

Agora, para cada $i \in \{1, 2, ...m\}$ e $j \in I$, defina o funcional

$$f_i: V \to \mathbb{F}, \quad v_k \mapsto 0, \quad se \quad k \neq j \text{ e} \quad v_j \mapsto a_{ij}$$

com isso, segue que

$$\Phi\left(\sum_{i=1}^{m} f_i \otimes w_i\right)(v_j) = T(v_j)$$

e portanto concluímos que

$$\Phi\bigg(\sum_{i=1}^m f_i \otimes w_i\bigg) = T$$

donde segue que $T \in Im(\Phi)$.

d) Notemos que para cada $T \in Hom_{\mathbb{F}}(V,U)$ tem-se

$$\dim(Im(T)) \le \{\dim(V), \dim(U)\}$$

dessa forma, se $\dim(V) < \infty$ ou $\dim(U) < \infty$ pela parte c) tem-se que $T \in Im(\Phi)$, e assim segue que Φ é sobrejetora. Supondo que $\dim(V) = \infty$ e $\dim(U) = \infty$, pode-se construir uma transformação linear T que não tem posto finito, e portanto não está em $Im(\Phi)$.

Em particular o conteúdo do teorema acima diz essencialmente que $V^* \otimes V$ pode ser identificado com o conjunto dos operadores lineares em V com posto finito. Além disso, no caso em que $\dim(V) < \infty$ e $\dim(U) < \infty$ pode-se explicitamente calcular o posto de um elemento de $V^* \otimes W$ via matrizes. De fato, sejam $\mathcal{A} = \{v_1, ..., v_n\}$ base de V, $\mathcal{B} = \{u_1, ..., u_m\}$ base de W e $\mathcal{A}^* = \{v^1, ..., v^n\}$ base de V^* dual a \mathcal{A} . Com isso note que

$$\Phi(v^k \otimes u_i)(v_i) = \delta_{ik} u_i$$

e portanto segue que

$$[\Phi(v^k \otimes u_j)]_{\mathcal{B}}^{\mathcal{A}} = E_{jk}$$

e assim, se A é a matriz de $T \in Hom_{\mathbb{F}}(V,U)$ em relação as bases acima temos que

$$\Phi\left(\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}v^{j}\otimes u_{i}\right)(v_{l}) = \sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}\Phi(v^{j}\otimes u_{i})(v_{l}) = \sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}v^{j}(v_{l})u_{i} = \sum_{i=1}^{m}a_{il}u_{i} = T(v_{l})$$

e portanto concluímos que

$$T = \Phi\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} v^{j} \otimes u_{i}\right)$$

donde segue em particular que

$$\dim(T) = \dim\left(\Phi\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}v^{j} \otimes u_{i}\right)\right)$$

Dessa forma, se $f \otimes u$ é um elemento em $V^* \otimes U$, então segue que o posto de $f \otimes u$ pode ser calculado encontrando-se o posto da corresponde T.

Teorema 5.11. Sejam V, U espaços vetoriais de dimensão finita sobre um corpo \mathbb{F} . Então seque que

$$(V \otimes U)^* \cong V^* \otimes U^*$$

onde é isomorfismo é dado pela transformação linear

$$\tau: V^* \otimes U^* \to (V \otimes U)^*, \quad \tau(f \otimes g)(v \otimes u) = f(v)g(u).$$

Nosso próximo passo será definir o produto tensorial de transformações lineares bem como derivar alguns resultados extremamente importantes. Antes porém relembremos um resultado elementar que será utilizado para mostrar uma propriedade envolvendo o núcleo do produto tensorial de transformações lineares.

Teorema 5.12. Uma função $f:A\to B$ tem uma inversa à direita se, e somente se, f é sobrejetora.

A demonstração do teorema acima é feita utilizando-se o axioma da escolha.

 \bullet Dado qualquer função $f:A\to B,$ a função $f:A\to f(A)$ é sobrejetora, portanto admite inversa à direita.

Sejam V_1, V_2, W_1, W_2 espaços vetoriais sobre um corpo \mathbb{F} , e T_1, T_2 transformações lineares em $Hom_{\mathbb{F}}(V_1, W_1)$ e $Hom_{\mathbb{F}}(V_2, W_2)$ respectivamente. Veja que a função

$$\varphi: V_1 \times V_2 \to W_1 \otimes W_2, \quad (v_1, v_2) \mapsto T_1(v_1) \otimes T_2(v_2)$$

é bilinear, portanto existe uma função linear induzida

$$\varphi_{T_1,T_2}:V_1\otimes V_2\to W_1\otimes W_2$$

tal que

$$\varphi_{T_1,T_2}(v_1 \otimes v_2) = T_1(v_1) \otimes T_2(v_2).$$

Agora, defina

$$\psi: Hom_{\mathbb{F}}(V_1, W_1) \times Hom_{\mathbb{F}}(V_2, W_2) \to Hom_{\mathbb{F}}(V_1 \otimes V_2, W_1 \otimes W_2), \quad (T_1, T_2) \mapsto \varphi_{T_1, T_2}$$

não é difícil ver que ψ é bilinear (veja que é suficiente verificar isso em elementos da forma $x\otimes y$), dessa forma mais uma vez existe uma função linear induzida

$$\widehat{\psi}: Hom_{\mathbb{F}}(V_1, W_1) \otimes Hom_{\mathbb{F}}(V_2, W_2) \to Hom_{\mathbb{F}}(V_1 \otimes V_2, W_1 \otimes W_2)$$

tal que

$$\widehat{S \otimes T} = \varphi_{T,S}.$$

Notação: Fazendo um abuso de notação, iremos denotar a função linear φ_{T_1,T_2} acima por $T_1 \otimes T_2$.

Baseado na notação acima, dados $T \in Hom_{\mathbb{F}}(V_1, W_1)$ e $S \in Hom_{\mathbb{F}}(V_2, W_2)$ temos

$$T \otimes S(v_1 \otimes v_2) = T(v_1) \otimes S(v_2)$$
, para quaisquer $v_1 \in V_1$ e $v_2 \in V_2$.

Ademais, $T \otimes S$ é dito ser o produto tensorial das transformações lineares T e S.

Produto de Kronecker: Sejam $A, B \in M_n(\mathbb{F})$, e considere $\{e_1, ..., e_n\}$ base canônica de \mathbb{F}^n . Dado que $\{e_i \otimes e_j : i, j \in \{1, 2, ..., n\}\}$ é uma base de $\mathbb{F}^n \otimes \mathbb{F}^n$, vamos encontrar uma expressão para em $A \otimes B$ em termos de tal base. Se $j \in \{1, 2, ..., n\}$ escreva

$$Ae_j = \sum_{i=1}^n a_{ij}e_i$$

e

$$Be_j = \sum_{i=1}^n b_{ij} e_i.$$

Agora, ordene os elementos da base de $\mathbb{F}^n \otimes \mathbb{F}^n$ da seguinte forma

$$\{e_1 \otimes e_1, e_1 \otimes e_2, e_1 \otimes e_3, \dots, e_n \otimes e_n\}$$

e observe que se $j, k \in \{1, 2, ..., n\}$, então

$$A \otimes B(e_i \otimes e_k) = Ae_j \otimes Be_k = \left(\sum_{i=1}^n a_{ij}e_i\right) \otimes Be_k = \sum_{i=1}^n a_{ij}(e_i \otimes Be_k) = \sum_{i,l} a_{ij}b_{lk}(e_i \otimes e_l).$$

Para-se ver uma expressão mais "amigável" para $A \otimes B$, escolha por exemplo a primeira linha e note que os primeiros n elementos da linha são $a_{11}b_{11}, a_{11}b_{12}, ..., a_{11}b_{1n}$. Da mesma maneira os n primeiros elementos da primeira coluna são $a_{11}b_{11}, a_{11}b_{21}, ..., a_{11}b_{n1}$. Procedendo com esse raciocínio, concluímos que $A \otimes B$ tem a forma

O produto tensorial $A \otimes B$ acima é chamado de produto de Kronecker das matrizes A, B.

Proposição 5.13. Sejam $T_1 \in Hom_{\mathbb{F}}(V_1, W_1)$ e $T_2 \in Hom_{\mathbb{F}}(V_2, W_2)$, então

- a) $Im(T_1 \otimes T_2) = Im(T_1) \otimes Im(T_2)$.
- b) Se $N_1 := Ker(T_1) \otimes V_2$ e $N_2 := V_1 \otimes Ker(T_2)$, então

$$Ker(T_1 \otimes T_2) = N_1 + N_2.$$

Demonstração. a) Se $z = T_1(v_1) \otimes T_2(v_2)$, então $z = T_1 \otimes T_2(v_1 \otimes v_2)$, e portanto segue que $Im(T_1) \otimes Im(T_2) \subseteq Im(T_1 \otimes T_2)$. A outra inclusão é imediata.

b) E claro que

$$N_i \subseteq Ker(T_1 \otimes T_2)$$
, para todo $j \in \{1, 2\}$

e portanto temos que

$$N_1 + N_2 \subseteq Ker(T_1 \otimes T_2).$$

Seja $\pi:V_1\otimes V_2\to V_1\otimes V_2/N_1+N_2$ a projeção canônica. O problema está resolvido se mostrarmos a existência de um mapa linear

$$f: Im(T_1) \otimes Im(T_2) \rightarrow V/N_1 + N_2$$

tal que $f \circ (T_1 \otimes T_2) = \pi$. De fato, note que

$$Ker(T_1 \otimes T_2) \subseteq Ker(f \circ (T_1 \otimes T_2)) = Ker(\pi) = N_1 + N_2.$$

Pelo teorema 5.12, existem h_1, h_2 inversas à direita para T_1 e T_2 respectivamente (claro, definidas em $Im(T_1)$ e $Im(T_2)$ respec.). Além disso, por verificação imediata tem-se que para cada $i \in \{1, 2\}$

$$h_i(T_i(v)) - v \in Ker(T_i).$$

Agora, defina

$$h: Im(T_1) \times Im(T_2) \to V_1 \otimes V_2/N_1 + N_2$$

por

$$h(v_1, v_2) = \pi(h_1(v_1) \otimes h_2(v_2)).$$

Se h for bilinear, pro conta da propriedade universal do produto tensorial, existe uma função linear f tal que $f \circ \otimes = h$. Afirmamos que f satisfaz $f \circ (T_1 \otimes T_2) = \pi$. Com efeito, pela igualdade acima, dados $v_1 \in V_1$ e $v_2 \in V_2$, existem $v_1' \in Ker(T_1)$ e $v_2' \in Ker(T_2)$ tais que

$$h_i(T_i(v_i)) = v_i + v_i', \quad i \in \{1, 2\}.$$

Dessa forma, segue que

$$f(T_1(v_1) \otimes T_2(v_2)) = \pi(h_1(T_1(v_1)) \otimes h_2(T_2(v_2))) = \pi((v_1 + v_1') \otimes (v_2 + v_2'))$$

e portanto segue que

$$f(T_1(v_1) \otimes T_2(v_2)) = \pi(v_1 \otimes v_2).$$

A demonstração de que h é linear é canônica e utiliza o fato de que h_i é linear módulo N_1+N_2 . Esta pode ser encontrada na página 349 do livro de Adriano Moura.

 \bullet Segue imediato da proposição acima que se T_1 e T_2 forem injetoras, então $T_1 \otimes T_2$ também é.

Proposição 5.14. A função ψ definida acima por $\psi(T_1, T_2) = T_1 \otimes T_2$ é injetora. Em outras palavras, $Hom_{\mathbb{F}}(V_1, W_1) \otimes Hom_{\mathbb{F}}(V_2, W_2)$ mergulha em $Hom_{\mathbb{F}}(V_1 \otimes V_2, W_1 \otimes W_2)$.

Demonstração. Se $\psi(T_1,T_2)\equiv 0$, então para quaisquer $v_1\in V_1$ e $v_2\in V_2$ segue que

$$T_1(v_1) \otimes T_2(v_2) = 0.$$

Se $T_2 \equiv 0$, então $T_1 \otimes T_2 \equiv 0$. Suponha então que exista \hat{v}_2 tal que $u := T_2(\hat{v}_2) \neq 0$, dessa forma segue que para qualquer $v \in V_1$

$$T_1(v) \otimes u = 0$$

e assim, pelo teorema 5.4 tem-se que $T_1(v) = 0$ e por arbitrariedade de $v \in V_1$ concluí-se que $T_1 \equiv 0$, donde $T_1 \otimes T_2 \equiv 0$.

• É imediato de 5.14 que se $\dim(V_1) < \infty, \dim(V_2) < \infty, \dim(W_1) < \infty$ e $\dim(W_2) < \infty$, então

$$Hom_{\mathbb{F}}(V_1, W_1) \otimes Hom_{\mathbb{F}}(V_2, W_2) \cong Hom_{\mathbb{F}}(V_1 \otimes V_2, W_1 \otimes W_2).$$

Para o próximo exemplo, vamos relembrar um resultado extremamente importante.

Resultado (\diamond): Sejam V um espaço vetorial sobre um corpo \mathbb{F} e $f_1, ..., f_m \in V^*$. Dessa forma, se

$$W := \bigcap_{i=1}^{m} Ker(f_i)$$

tem-se que

$$\dim(V/W) \le m$$
.

Demonstração. (\$\dightarrow\$) Basta ver que a função

$$\vartheta: V \to \mathbb{F}^m, \quad v \mapsto (f_1(v), ..., f_m(v))$$

é linear. Portanto, dado que $Ker(\vartheta)=W,$ segue pelo primeiro teorema do isomorfismo que $\dim(V/W)\leq m.$

• A respeito do **resultado** (\diamond), se $f_1, ..., f_m$ são linearmente independentes, então segue que existem $v_1, ..., v_m \in V$ tais que $f_i(v_i) = \delta_{ij}$ e assim segue que

 $\vartheta(v_i) = e_i$, onde e_i é o *i*-ésimo vetor da base canônica de \mathbb{F}^m , para todo $i \in \{1, 2, ..., m\}$.

Portanto, dado $x \in \mathbb{F}^m$, existem $a_1, ..., a_m \in \mathbb{F}$ tais que

$$x = \sum_{i=1}^{m} a_i e_i = \sum_{i=1}^{m} \vartheta(v_i) = \vartheta(z), \text{ onde } z = \sum_{i=1}^{m} a_i v_i$$

donde segue que ϑ é sobrejetora. Consequentemente, $\dim(V/W) = m$.

Exemplo 12:(Contraexemplo) Se um dos espaços do item anterior tiver dimensão infinita, não é mais verdade que $(T_1, T_2) \mapsto T_1 \otimes T_2$ é sempre sobrejetora. Com efeito, seja $V = \mathbb{R}[x]$ espaço vetorial dos polinômios de uma variável sobre \mathbb{R} (uma base por exemplo é $\{1, x, ..., x^k, ...\}$), e mantendo a notação da proposição anterior, defina

$$V_1 = V_2 = V \text{ e } W_1 = W_2 = \mathbb{R}.$$

Portanto, usando o isomorfismo $\mathbb{R}\otimes\mathbb{R}\cong\mathbb{R}$, podemos supor sem perda de generalidade que ψ é dada por

$$\psi: V^* \otimes V^* \to (V \otimes V)^*, \quad f \otimes g(v, u) \mapsto f(v)g(u).$$

Dado $\rho \in (V \otimes V)^*$, considere

$$N_o := \{ v \in V : h(v \otimes u) = 0 \quad para \quad todo \quad u \in V \}$$

subespaço de V. Suponha que $\rho \in Im(\psi)$, portanto existem $f_1,...,f_m,g_1,...,g_m \in V^*$ tais que

$$\rho = \sum_{i=1}^{m} f_i \otimes g_i.$$

E portanto, se

$$N := \bigcap_{i=1}^{m} Ker(f_i)$$

segue que $N \subseteq N_{\rho}$. Seja

 $\pi: V \to V/N_{\rho}$, projeção canônica

e note que

$$N \subseteq Ker(\pi) = N_{\rho}$$

e portanto, existe mapa linear induzido $\overline{\pi}:V/N\to V/N_{\rho}$, o qual é sobrejetor. Dessa forma, pelo **resultado**(\diamond) tem-se que

$$\dim(V/N_{\rho}) \le \dim(V/N) \le m$$

em particular, mostramos que

$$\dim(V/N_{\rho}) < \infty$$
, para todo $\rho \in Im(\psi)$.

Dessa forma, para mostrar que ψ não é sobrejetora, basta construir $\rho \in (V \otimes V)^*$ tal que $\dim(V/N_{\rho}) = \infty$. Para isso, seja $\mathcal{A} = \{v_i\}_{i \in I}$ uma base de V e se $\iota_i(v)$ é definido como sendo o mapa que envia v para a sua coordenada em relação a v_i , segue pela propriedade universal que existe $\rho \in (V \otimes V)^*$ tal que

$$\rho(v \otimes u) = \sum_{i \in I} \iota_i(v)\iota_i(u).$$

Portanto, concluímos que se $k \in I$

$$\rho(v \otimes v_k) = \iota_k(v)$$
, para todo $v \in V$.

Dessa forma, segue que se $v \in N_{\rho}$ então $\iota_k(v) = 0$ para todo $k \in I$ e assim, v = 0. Portanto temos que

$$\dim(V/N_{\rho}) = \dim(V) = \infty$$

e assim, segue que $\rho \notin Im(\psi)$.

Observação: De maneira análoga se constrói o produto tensorial de uma família $V_1, ..., V_k$ de espaços vetoriais, e além disso obtém-se os mesmos resultados acima.

Vamos agora falar sobre **espaços tensoriais**, e posteriormente definir a chamada de **álgebra tensorial** de um espaço vetorial V.

Seja V um espaço vetorial de dimensão finita sobre um corpo \mathbb{F} e considere p,q dois inteiros não negativos. Dessa forma, define-se o **espaços dos tensores** do tipo (p,q) como sendo o produto tensorial

$$T_q^p(V) := \underbrace{V \otimes V \otimes \ldots \otimes V}_p \otimes \underbrace{V^* \otimes V^* \otimes \ldots \otimes V^*}_q = V^{\otimes p} \otimes (V^*)^{\otimes q}$$

além disso, p é chamado de tipo contravariate e q é tipo covariante.

Dado que $V \cong V^{**}$ temos

$$T_q^p(V) = V^{\otimes p} \otimes (V^*)^{\otimes q} \cong ((V^*)^{\otimes p} \otimes V^{\otimes q})^* \cong Hom_{\mathbb{F}}((V^*)^{\times p} \times V^{\times q}; \mathbb{F})$$

onde na última igualdade utilizamos a generalização natural do teorema 5.3. Dessa forma, tensores do tipo (p,q) podem ser definidos via funcionais multilineares. Em outras palavras, cada $v_1 \otimes ... \otimes v_p \otimes f_1 \otimes ... \otimes f_q$ corresponde a um funcional multilinear

$$\varphi_{v_1 \otimes ... \otimes v_p \otimes f_1 \otimes ... \otimes f_q} : V^{\times p} \times (V^*)^{\times q} \to \mathbb{F}.$$

Por conta das propriedades vistas acima temos:

•
$$\dim(T_a^p(V)) = \dim(V)^{p+q}$$

e

•
$$T_q^p(V) \otimes T_r^s(V) = T_{q+r}^{p+s}(V)$$
.

 \bullet Tensores do tipo (p,0) são chamados de contravariantes. Por outro lado, os do tipo (0,q) são ditos covariantes.

Argumentar acima sobre a associatividade dos produtos tensoriais e além disso terminar de escrever a respeito da escolha de vetores ativos e funcionais ativos.

Agora, considere os espaços vetoriais contravariantes

$$T^p(V) = T_0^p(V) = V^{\otimes p}, \quad p > 0$$

definindo $T_0^0 = \mathbb{F}$, podemos formar a soma direta externa T(V) dada por

$$T(V) = \bigoplus_{p \ge 0} T^p(V).$$

O espaço vetorial T(V) por conta da identificação acima tem a propriedade de que

$$T^p(V) \otimes T^r(V) = T^{p+r}(V)$$
, para todos $p, r \ge 0$.

Dessa forma, T(V) é uma \mathbb{F} -álgebra e além disso chamada de **álgebra tensorial** sobre V.

Vamos relembrar algumas coisas sobre o grupo simétrico S_n . Uma permutação dos números $\{1, 2, ..., n\}$ é uma bijeção

$$\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}.$$

Se \circ é a composição usual de funções, o conjunto das permutações em $\{1, 2, ..., n\}$ junto com tal operação é um grupo, e além disso chamado de **grupo simétrico** S_n .

• Um r-ciclo em S_n é uma permutação σ da forma $(i_1, i_2, ..., i_r)$ a qual envia i_j para i_{j+1} sempre que $j \in \{1, 2, ..., r-1\}$ e $\sigma(i_r) = i_1$. Podemos representar graficamente da seguinte forma

$$\sigma: i_1 \longrightarrow i_2 \longrightarrow \dots \longrightarrow i_r \longrightarrow i_1.$$

 \bullet O 2-ciclo (i,j) é chamado de transposição. Agora, dado um r-ciclo $\sigma=(i_1,i_2,...,i_r)$ podemos escrever

$$\sigma = (i_1, ..., i_{r-1})(i_{r-1}, i_r) = (i_1, ..., i_{r-2})(i_{r-2}, i_{r-1})(i_{r-1}, i_r) = ...(i_1, i_2)(i_2, i_3)...(i_{r-1}, i_r).$$

- O resultado acima é mais geral: Qualquer permutação é um produto de transposições. Tal é em virtude do clássico resultado que diz que toda permutação ou é um cilo ou é um produto de ciclos disjuntos.
- O número de transposições que compõem uma permutação σ é chamado de sinal de σ e denotado por $\mathbf{sign}(\sigma)$.
- \bullet Dado uma função multilinear $f:V^n\to W$ define-se a ação de S_n em f da seguinte forma

$$\sigma \cdot f(x_1, ..., x_n) = f(x_{\sigma(1)}, ..., x_{\sigma(n)})$$

- Se $V^n := V^{\times n}$, então a função multilinear $f: V^n \to W$ é simétrica se, e somente se, para cada permutação $\sigma \in S_n$ tem-se $\sigma \cdot f = f$.
- Se $V^n := V^{\times n}$, então a função multilinear $f: V^n \to W$ é alternada se, e somente se, para cada permutação $\sigma \in S_n$ tem-se $\sigma \cdot f = \mathbf{sign}(\sigma)f$.

Vamos então agora falar um pouco da álgebra tensorial simétrica.

Note que para cada $\sigma \in S_p$ o mapa

$$f_{\sigma}(v_1,...,v_p) = v_{\sigma(1)} \otimes ... \otimes v_{\sigma(p)}$$

é bilinear e portanto pela propriedade universal existe um mapa linear λ_{σ} definido em $T^{p}(V)$ tal que

$$\lambda_{\sigma}(v_1 \otimes ... \otimes v_p) = v_{\sigma(1)} \otimes ... \otimes v_{\sigma(p)}.$$

- Dado que λ_{σ} leva base em base, segue que λ_{σ} é um isomorfismo em $T^{p}(V)$.
- Um tensor $t \in T^p(V)$ é simétrico se $\lambda_{\sigma}(t) = t$, para toda $\sigma \in S_p$.
- Veja que λ_{σ} permuta a posição das coordenadas e não os índices. Por exemplo, se p=3, $\sigma=(1,3)$ então se $\{e_1,e_2,e_3\}$ é base de V

$$\lambda_{\sigma}(e_3 \otimes e_1 \otimes e_2) = \lambda_{\sigma}(v_1 \otimes v_2 \otimes v_3) = v_3 \otimes v_2 \otimes v_1 = e_2 \otimes e_1 \otimes e_3.$$

Com isso defina

$$ST^p(V) = \{t \in T^p(V) : \lambda_{\sigma}(t) = t, \forall \sigma \in S_p\}.$$

• $ST^p(V)$ é um subespaço de $T^p(V)$.

terminar de escrever sobre a álgebra simétrica em característica 0.(Ver arquivo na "qualificações" com o nome "álgebra simétrica em char 0").

Vamos falar agora sobre a **álgebra exterior**. Iremos aqui utilizar a mesma construção que o livro do Kostrikin faz.

.....

Exame de Qualificação 2008: Algumas questões

Observação 5.15. Seja $A \in M_n(\mathbb{C})$ e considere sua transposta A^t . Vamos mostrar que A e A^t são semelhantes. Isto é, possuem as mesmas formas canônicas de Jordan. Dado que o polinômio minimal e característicos de A e A^t são os mesmos (a primeira afirmação segue do fato de que $(A^k)^t = (A^t)^k$ para todo $k \in \mathbb{N}$), é suficiente mostrar que se λ é um autovalor de A, então para todo $r \geq 1$

$$\dim(Ker(A - \lambda I)^r) = \dim(Ker(A^t - \lambda I)^r).$$

Sabe-se que o posto linha e posto coluna de uma matriz são os mesmos, portanto, seque que

$$\dim(Im(A - \lambda I)) = \dim(Im(A - \lambda I)^t).$$

Por outro lado $(A - \lambda I)^t = A^t - \lambda I$, e assim segue que

$$\dim(Im(A - \lambda I)) = \dim(Im(A^t - \lambda I))$$

donde segue que

$$\dim(Ker(A - \lambda I)) = \dim(Ker(A^t - \lambda I)).$$

Se r > 1, basta vermos que

$$(A - \lambda I)^r = (A^t - \lambda I)^r$$

e utilizarmos o mesmo argumento acima.

Questão 3- Responda se cada uma das afirmações abaixo é verdadeira ou falsa, justificando sua resposta.

a) Se $A \in \mathbb{M}_n(\mathbb{C})$, existe $P \in GL_n(\mathbb{C})$ tal que $PAP^{-1} = A^t$.

(Verdadeira) Sejam J_A e J_{A^t} formas canônicas de Jordan de A e A^t respectivamente. Pela observação 5.15 segue que $J_A = J_{A^t} = J$ e assim, existem matrizes $Q, R \in GL_n(\mathbb{C})$ tais que

$$A = RJR^{-1}$$
, e $A^t = QJQ^{-1}$

e portanto tem-se que

$$J = R^{-1}AR$$

donde segue que

$$A^t = Q(R^{-1}AR)Q^{-1}$$

consequentemente, se $P := QR^{-1}$, tem-se que

$$A^t = PAP^{-1}$$
.

b) Sejam A uma matriz $m \times n$ e B matriz $n \times m$. Se n < m, então necessariamente tem-se $\det(AB) = 0$.

(Verdadeira) Veja que A, B correspondem aos operadores lineares

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

 \mathbf{e}

$$S: \mathbb{R}^m \to \mathbb{R}^n$$

respectivamente. Dessa forma, podemos escrever

$$n = \dim(Ker(T)) + \dim(Im(T)), \quad e \quad m = \dim(Ker(S)) + \dim(Im(S))$$

além disso, tem-se

$$Ker(S) \subseteq Ker(TS)$$
, e $Im(TS) \subseteq Im(T)$.

Com isso, temos que

$$m = \dim(Ker(TS)) + \dim(Im(TS)) \le \dim(Ker(TS)) + \dim(Im(T))$$

consequentemente

$$0 < m - n \le \dim(Ker(TS)) - \dim(Ker(T))$$

ou seja

$$\dim(Ker(TS)) > \dim(Ker(T)) > 0.$$

Em particular, $Ker(TS) \neq \{0\}$ e assim, det(AB) = 0.

- c) (Feito em "Arquivo escrito".)
- d) A imagem de uma função bilinear sempre é um subespaço vetorial do seu contradomínio.

(Falsa) Seja $V = \mathbb{R}^2$ e considere

$$P: V^* \times V^* \to B(\mathbb{R}^2, \mathbb{R}), \quad P(f, g)(x, y) = f(x)g(y).$$

Não é difícil ver que $P(\cdot,\cdot)$ é bem definida e além disso bilinear. Considere $\{e^1,e^2\}$ base de V^* dual a base canônica $\{e_1,e_2\}$ de V. Além disso, veja que

$$P(e^1, e^1) = e^1 e^1, \quad e P(e^2, e^2) = e^2 e^2.$$

Vamos mostrar que o elemento $\varphi := e^1 e^1 + e^2 e^2 \notin Im(P)$. Suponha por absurdo que existam $f, g \in V^*$ tais que $P(f, g) = \varphi$. Dessa forma, teríamos

$$\varphi(v,u) = P(f,g)(v,u) = f(v)g(u),$$
 para todos $v,u \in V$.

Porém isso implicaria que

$$f(e_1)g(e_1) = 1$$
, $f(e_2)g(e_2) = 1$ e $f(e_1)g(e_2) = 0$

o qual é um absurdo pois teríamos $g(e_2) = 0$ e $g(e_2) = 1$.

Questão 9: Mostre que se $A \in M_n(\mathbb{C})$ é anti-hermitiana, então A é unitariamente diagonalizável e seus autovalores são puros imaginários.

Demonstração. Seja $T: \mathbb{C}^n \to \mathbb{C}^n$ operador tal que a matriz de T na base canônica de \mathbb{C}^n seja A. Considerando em \mathbb{C}^n produto interno usual, segue que a base canônica de \mathbb{C}^n , $\{e_1, ..., e_n\}$ é ortonormal e portanto, T^* (adjunto de T) é exatamente $A^* = -A$, donde segue que $T^* = -T$. Feito essa observação, vamos mostrar que os autovalores de T são todos imaginários puros. Seja $\lambda \in \mathbb{C}$ um autovalor de T e note que se $0 \neq v \in \mathbb{C}^n$ é um autovetor associado a λ , então

$$\lambda \langle v, v \rangle = \langle T(v), v \rangle = \langle v, T^{\star} \rangle = \langle v, -T(v) \rangle = \langle v, -\lambda v \rangle = -\overline{\lambda} \langle v, v \rangle$$

donde segue $\mathcal{R}_e(\lambda) = 0$, ou seja, λ é imaginário puro. Vamos agora utilizar indução para mostrar que T tem uma base ortonormal de autovetores. Se n = 1, o resultado é claro, pois se v é um autovetor de T, $\alpha = v/|v|$ é a base procurada.

Suponha o resultado válido para todo operador anti-hermitiano $S:\mathbb{C}^m\to\mathbb{C}^m$, com m< n. Dado λ autovalor de T e $v\in\mathbb{C}^n$ autovetor associado, considere

$$W := span_{\mathbb{C}}\{v\}$$

e W^{\perp} seu complemento ortogonal em \mathbb{C}^n . Notemos agora que se $w \in W^{\perp}$ então

$$\langle T(w), v \rangle = -\langle w, T(v) \rangle = -\lambda \langle w, v \rangle = 0$$

implicando então que W^{\perp} é T-invariante, ou seja, é bem definido e além disso hermitiano o operador $S = T_{|W^{\perp}}$, e assim por hipótese de indução existe uma base ortonormal de W^{\perp} $\{u_1,...,u_{n-1}\}$ formada por autovetores de S. Consequentemente, $\{v,u_1,...,u_{n-1}\}$ é a base procurada.

Relembrando transposta de transformações lineares:

Definição 5.16. (Anulador) Seja V um espaço vetorial sobre \mathbb{F} e seja $S \subseteq V$. O conjunto

$$\mathcal{S}^0 := \{ f \in V^* : f(s) = 0, \quad para \quad todo \quad s \in \mathcal{S} \}$$

 \acute{e} chamado de anulador de \mathcal{S} .

• S^0 é um subespaco vetorial de V^* .

Teorema 5.17. Sejam V espaço vetorial de dimensão finita sobre \mathbb{F} e $W\subseteq V$ subespaço vetorial. Então

$$\dim(V) = \dim(W) + \dim(W^0).$$

A demonstração do teorema acima é canônica, pois bastar tomar

$$\mathcal{A} = \{w_1, ..., w_k, w_{k+1}, ..., w_n\}$$

base de V cujos primeiros k elementos formam uma base de W. Agora, considere

$$\mathcal{A}^* = \{f_1, ..., f_n\}$$
 base de V^* dual a \mathcal{A} .

Dessa forma, é suficiente mostrar que $\{f_{k+1},...,f_n\}$ é uma base de W^0 , isto é, $\{f_{k+1},...,f_n\}$ gera W^0 (pois tal conjunto já é l.i.). Veja que esse resultado segue de imediato do fato de que para $f \in V^*$, os seus coeficientes em relação a \mathcal{A}^* , são $f(w_i)$ para todo $i \in \{1,2,...,n\}$.

Sejam U, V espaços vetoriais sobre um corpo \mathbb{F} e $T: U \to V \in End_{\mathbb{F}}(U, V)$. Agora, defina

$$T^t:V^*\to U^*$$

da seguinte forma

$$T^{t}(f)(u) = f(T(u)), \text{ para todo } f \in V^{*}, u \in U.$$

 \bullet Para cada $T\in End_{\mathbb{F}}(U,V),$ a transformação T^t definida acima é única e além disso é chamada de a transposta de T.

Teorema 5.18. Sejam V, W espaços vetoriais sobre \mathbb{F} , ambos de dimensão finita. Além disso, sejam \mathcal{B} base de V, \mathcal{B}^* base de V^* dual a \mathcal{B}, \mathcal{C} base de W e \mathcal{C}^* respectiva base dual de W^* . Então

$$([T]_{\mathcal{B}\to\mathcal{C}})^t = [T^t]_{\mathcal{C}^*\to\mathcal{B}^*}.$$

Corolário 5.19. Se A é uma matriz $m \times n$ sobre \mathbb{F} , então o posto coluna de A é igual ao posto linha de A.

Algumas observações a respeito da forma canônica de Jordan e forma canônica Racional.

Seja $T:V\to V$ um operador linear num espaço de dimensão finita n sobre um corpo \mathbb{F} . Suponha que o corpo em questão seja algebricamente fechado, portanto T admite forma de Jordan. Nesse ponto surge uma questão natural: A partir de uma base de Jordan, como encontrar uma base racional? E como fazer o processo inverso? Afim de enfatizar o processo prático, trabalharemos quando conveniente em dimensões baixas.

Suponha inicialmente que n=4 e que a forma canônica de Jordan de T seja

$$J = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

e o respectivo diagrama de pontos seja

$$\begin{array}{c} v_4: & \bullet \\ & \downarrow \\ v_3: \bullet \\ & \downarrow \\ v_2: & \bullet \\ & \downarrow \\ v_1: & \bullet \end{array}$$

Notemos também que o polinômio minimal de J é $m_J(x) = (x - \lambda)^4 = c_J(x)$ e além disso, $m_{v_4} = m_J$. Vejamos também que os elementos da base acima são

$$v_4$$
, $v_3 = (T - \lambda)v_4$, $v_2 = (T - \lambda I)^2 v_4$, $v_1 = (T - \lambda)^3 v_4$.

Analisando o último vetor, pode-se ver que

$$0 = (T - \lambda)^4 v_4 = T^3(v_4) - 3\lambda T^2(v_4) + 3\lambda^2 T(v_4) - \lambda^3 v_4$$

e assim segue que na base $\mathcal{B}_R := \{v_4, T(v_4), T^2(v_4), T^3(v_4)\}$ a matriz R de T em tal é

$$R = \begin{pmatrix} 0 & 0 & 0 & -\lambda^4 \\ 1 & 0 & 0 & 4\lambda^3 \\ 0 & 1 & 0 & -6\lambda^2 \\ 0 & 0 & 1 & 4\lambda \end{pmatrix}$$

ou seja, R é a matriz companheira de $m_{v_4}(x) = (x - \lambda)^4$ e portanto \mathcal{B}_R é uma base racional de T. Este processo pode ser feito para um bloco de Jordan de tamanho n, ou seja, toma-se o "maior vetor" da coluna do respectivo diagrama de pontos e a partir dele começa-se o ciclo. Em particular a forma racional será a matriz companheira de $(x - \lambda)^n$.

Vamos então para o caso geral donde a matriz de Jordan J de T é composta por blocos da seguinte forma

$$J = \begin{pmatrix} J_1(\lambda_1) & 0 & 0 & 0 & \dots & 0 \\ 0 & J_2(\lambda_1) & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & J_{m_k}(\lambda_k) \end{pmatrix}$$

onde $J_1(\lambda_j), J_2(\lambda_2), ..., J_{m_j}(\lambda_j)$ são os blocos de Jordan relacionados ao autovalor λ_j , para todo $j \in \{1, 2, ..., k\}$.

Sem perda de generalidade, podemos supor que $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ e considere também $m := \max\{m_j : j \in \{1, 2, ..., k\}\}$. Lembre-se que o diagrama de pontos para o conjunto de blocos de Jordan relacionado ao autovalor λ_j é da forma

Para um $j \in \{1, 2, ..., k\}$ fixado, denote por $v_{j,1}, ..., v_{j,m_j}$ os vetores que iniciam os T-ciclos de Jordan (como descrito no caso particular) para o autovalor λ_j . Pode-se supor também que

$$m_{v_{j,i}} \mid m_{v_{j,i-1}}, \quad i \in \{2, ..., m_j\}.$$

Agora, se $m_j < i \le m$, coloque $v_{j,i} = 0$ e defina também

$$v_i = v_{1,i} + v_{2,i} + \dots + v_{k,i}.$$

De forma intuitiva estamos fazendo assim:

Veja com essa definição, temos

$$V = \bigoplus_{p=1}^{m} C_T(v_p) \text{ com } m_{v_{p+1}} \mid m_{v_p}, \quad \text{ para todo } p \in \{1, 2, ..., m\}.$$

Vamos fazer a verificação para o caso em que J tem apenas 4 blocos. continuar...

3 1 1

Existência do produto exterior:

Uma das formas de se definir o produto exterior, é via a propriedade universal. Entretanto, embora a definição seja "rápida", precisa-se mostrar sua existência.

Definição da k-ésima potência exterior via a propriedade universal:

Se V espaço vetorial sobre um corpo \mathbb{F} , diz-se que o par (\land, U) formado por um espaço vetorial U e uma k-função multilinear alternada $\land: V \times ... \times V \to U$, é uma k-ésima potência exterior para V se: Dado $g: V \times ... \times V \to W$, k-função multilinear alternada, e W espaço vetorial, existe $f: U \to W$ linear tal que

$$f \circ \wedge = g$$
.

Resultado 5.20. (Existência de uma k-ésima potência exterior)

Seja V espaço vetorial sobre corpo \mathbb{F} , denote por

$$V^{\otimes k} := \underbrace{V \otimes V \otimes \ldots \otimes V}_k.$$

 $Em\ V^{\otimes k}$, considere o conjunto S formado pelos vetores homogêneos $v_1 \otimes ... \otimes v_k$, tais que existam $1 \leq i < j \leq n$ satisfazendo $v_i = v_j$. Assim, considere $N = \langle S \rangle_{\mathbb{F}}$, espaço vetorial gerado pelo conjunto S e o mapa natural

$$\pi: V^{\otimes k} \to V^{\otimes k}/N, \quad x \mapsto x + N.$$

Considerando o produto tensorial

$$\otimes: V \times ... \times V \to V^{\otimes k}, \quad (v_1, ..., v_k) \mapsto v_1 \otimes v_2 \otimes ... \otimes v_k$$

vamos mostrar que o mapa

$$\wedge: V \times ... \times V \to V^{\otimes k}/N, \quad \mathbf{v} \mapsto \pi \circ \otimes (\mathbf{v})$$

 \acute{e} uma k- \acute{e} sima potência exterior para V.

 \land é uma k-função multilinear alternada: Vamos verificar apenas que \land é alternada, pois a multilinearidade segue de imediato da definição. Suponha que $\mathbf{v} = (v_1, ..., v_k)$ é um vetor tal que $v_i = v_j$, para j > i. Dessa forma, segue que

$$\wedge(\mathbf{v}) = \pi \circ \otimes(\mathbf{v}) = v_1 \otimes \dots v_i \otimes \dots \otimes v_i \otimes \dots \otimes v_k + N = N = 0_{V \otimes k/N}$$

portanto temos que de fato, \wedge é alternada.

 \land satisfaz a propriedade universal descrita: Seja $g: V \times ... \times V \rightarrow W$ função multilinear alternada e $\{e_i\}_{i \in I}$ uma base de V e $\{w_{\alpha}\}_{{\alpha} \in \Lambda}$ base de W. Dado que elementos da forma

$$e_{i_1} \otimes e_{i_2} \otimes ... \otimes e_{i_k}, \quad i_1, ..., i_k \in I$$

formam uma base de $V^{\otimes k}$, defina

$$\widetilde{f}: V^{\otimes k} \to W, \quad \widetilde{f}(e_{i_1} \otimes ... \otimes e_{i_k}) = g(e_{i_1}, ..., e_{i_k})$$

e estenda \tilde{f} por linearidade. Por conta de g ser alternada e k-linear, segue que se $\mathbf{v} \in N$, então $f(\mathbf{v}) = 0$, consequentemente

$$N \subseteq Ker(\widetilde{f})$$

 $e\ assim,\ \widetilde{f}\ induz\ uma\ funç\~ao\ linear$

$$f: V^{\otimes k}/N \to W$$

 $\mathit{tal}\ \mathit{que}\ \mathit{f} \circ \pi = \widetilde{\mathit{f}}.\ \mathit{Por}\ \mathit{fim},\ \mathit{notemos}\ \mathit{que}$

$$f \circ \wedge = f \circ (\pi \circ \otimes) = (f \circ \pi) \circ \otimes = \widetilde{f} \circ \otimes = g$$

.....

Determinantes:

Notação: Denote por $V^{\times k} = \underbrace{V \times ... \times V}_{k}$.

Seja $\{e_1,...,e_n\}$ base canônica de \mathbb{F}^n . Dessa forma, dado que

$$\dim(\mathcal{A}_n(\mathbb{F}^n)) = \binom{n}{n} = 1$$

segue que

$$\mathcal{A}_n(\mathbb{F}^n) = span\{e_1 \wedge e_2 \wedge \dots \wedge e_n\}$$

portanto, por conta da propriedade universal, existe uma única forma alternada $e: V^{\times k} \to \mathbb{F}$ tal que

$$e(e_1, e_2..., e_n) = 1.$$

Agora, se A é uma matriz em $M_n(\mathbb{F})$ cujas colunas são $v_j = (a_{1j}, a_{2j}, ..., a_{nj})$, então definimos o determinante de A como sendo

$$\det(A) = \det[v_1, ..., v_n] := e(v_1, ..., v_n).$$

Resultado 5.21. Os vetores $v_1, ..., v_n \in \mathbb{F}^n$ são linearmente independentes se, e somente se, $\det[v_1, ..., v_n] \neq 0$.

Sejam agora V,W espaços vetoriais sobre o corpo $\mathbb F$ e $T:V\to W$ uma transformação linear. Para $k\ge 0$, defina

$$T^*: \mathcal{A}_r(V, \mathbb{F}) \to \mathcal{A}_r(W, \mathbb{F}), \quad \phi \mapsto T^*(\phi)$$

onde

$$T^*(\phi)(v_1,...,v_k) = \phi(T(v_1),...,T(v_k)).$$

• T^* é bem definida e linear.

Agora, se W = V e dim(V) = n, então existe $\delta(T) \in \mathbb{F}$ tal que

$$T^*(\phi) = \delta(T)\phi$$

pois dim $(A_n(V)) = 1$. A constante $\delta(T)$ é chamada de o **determinante** de T.

• Segue da definição de $\delta(T)$ que se $S:V\to V$ é outro operador linear

$$\delta(T \circ S) = \delta(T)\delta(S).$$

Teorema 5.22. Seja $T: V \to V$ um operador linear num espaço vetorial de dimensão finita n sobre um corpo \mathbb{F} . Se $\mathcal{B} = \{u_1, ..., u_n\}$ é uma base de V e $A = [T]_{\mathcal{B}}$, então

$$\delta(T) = \det(A) = \det(T).$$

A demonstração do teorema acima é canônica, e pode ser encontrada na página 37 do livro de análise volume 3-Elon Lima.

Agora, utilizando o fato de que $\det[e_1, ..., e_n] = 1$ e de que $\det(\cdot)$ é uma função k-linear alternada em suas colunas, segue que se $A = (a_{ij})_{ij}$, então

$$\det(A) = \sum_{\sigma \in S_n} sign(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{1,\sigma(n)}.$$

• Segue da última expressão de $\det(\cdot)$, que $\det(A) = \det(A^t)$, consequentemente, $\det(\cdot)$ é n-multilinear e alternada nas linhas de uma matriz.

Observação 5.23. Por conta da definição de $det(\cdot)$, segue que se $f: M_n(\mathbb{F}) \to \mathbb{F}$ é uma outra forma n-multilinear alternada nas colunas de uma matriz, então $f(A) = f(I_n) \det(A)$. De fato, veja que $f = \alpha e$ e portanto, $f(e_1, ..., e_n) = \alpha e(e_1, ..., e_n) = \alpha$, donde segue que se $v_1, ..., v_n$ são as colunas de uma matriz A

$$f(A) = f(v_1, ..., v_n) = \alpha e(v_1, ..., v_n) = f(I_n) \det(A)$$

Exercício: Se $A_1, ..., A_k$ são matrizes quadradas e B_{ij} tem tamanhos apropriados, mostre que se

então

$$\det(A) = \det(A_1) \det(A_2) \dots \det(A_k).$$

Demonstração. Por indução, é suficiente provar o resultado para matrizes da forma

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

onde $A \in M_r(\mathbb{F})$, $B \in M_{r \times n - r}(\mathbb{F})$, $0 \in M_{n - r, r}(\mathbb{F})$ e $C \in M_{n - r}(\mathbb{F})$. Fixe $B \in M_{r, n - r}(\mathbb{F})$ e defina

$$f: M_r(\mathbb{F}) \times M_{n-r}(\mathbb{F}) \to \mathbb{F}, \quad (A, B) \mapsto \det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}.$$

Por definição, segue que f é r-multilinear e alternada nas colunas de A e n-r-multilinear nas linhas de C. Em outras palavras, dado $B \in M_{n-r}(\mathbb{F})$, a função

$$q: M_r(\mathbb{F}) \to \mathbb{F}, \quad q(\cdot) = f(\cdot, B)$$

é uma forma n-multilinear alternada, e assim, pela observação 5.23 segue que

$$q(A) = \det(A)q(I_r)$$

ou seja

$$f(A,B) = g(A) = \det(A)f(I_r, B).$$

Analogamente a construção da função g, definimos h da seguinte forma

$$h: M_{n-r}(\mathbb{F}) \to \mathbb{F}, \quad h(\cdot) = f(I_r, \cdot)$$

e assim, mais uma vez utilizando a observação 5.23, segue que

$$f(A, B) = \det(A) f(I_r, B) = \det(A) h(B) = \det(A) \det(B) h(I_{n-r}) = \det(A) \det(B) f(I_r, I_{n-r}).$$

Escreva os elementos de $f(I_r, I_{n-r})$ como (δ_{ij}) e seja $\sigma \in S_n$ uma permutação que envia por exemplo i para j, com $i \neq j$. Por um lado, como $f(I_r, I_{n-r})$ é triangular, $\delta_{ij} = 0$ ou $\delta_{ji} = 0$. Dessa forma, o correspondente termo na soma do determinante é

$$\cdots \delta_{i\sigma(i)} \cdots \delta_{j\sigma(j)} \cdots = \cdots \delta_{ij} \cdots \delta_{ji} \cdots = 0$$

implicando então que todos os membros da soma $\sum_{\sigma} \delta_{1\sigma(1)}...\delta_{n\sigma(n)}$ são nulos, exceto quando $\sigma = 1 \in S_n$, donde segue que $f(I_r, I_{n-r}) = 1$, e assim

$$\det\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A)\det(B).$$

Agora, escrevendo a matriz do enunciado da forma

$$\begin{pmatrix} A & B \\ 0 & A_k \end{pmatrix}$$

onde

por hipótese de indução e pela primeira parte do exercício, segue que

Subespaços invariantes por um operador:

O próximo exercício fornece-nos uma expressão em soma direta para subespaços T-invariantes de operador linear $T:V\to V$ dado.

Exercício: Seja $T:V\to V$ um operador linear num espaço vetorial de dimensão finita V. Suponha que o polinômio minimal de T seja $m_T(x)=p_1^{r_1}...p_k^{r_k}$ e além disso

$$V = V_1 \oplus V_2 \oplus ... \oplus V_k$$

seja a decomposição primária de T. Mostre que se W é um subespaço T-invariante, então

$$W = (W \cap V_1) \oplus W \cap V_2 \oplus ... \oplus (W \cap V_k).$$

Demonstração. Se W é T invariante, então $m_S \mid m_T$, onde $S = T_{|W}$ e m_S é o polinômio minimal de W. Dessa forma, sem perda de generalidade, pode-se supor que

$$m_S(x) = p_1^{s_1} ... p_m^{s_m}$$
, onde $s_i \le r_i$ para todo $i \in \{1, 2, ..., m\}$ e $m \le k$.

Pelo teorema da decomposição primária aplicada a S, tem-se que

$$W = Ker(p_1^{s_1}(S)) \oplus ... \oplus Ker(p_m^{s_m}(S)).$$

Dado que para cada $j \in \{1, 2, ..., m\}$

$$Ker(p_j^{s_j}(S)) = W \cap Ker(p_j^{s_j}(T))$$

e além disso

$$Ker(p_j^{s_j}(T)) \subseteq Ker(p_j^{r_j}(T)) = V_j$$

tem-se que

$$W=Ker(p_1^{s_1}(S))\oplus ... \oplus Ker(p_m^{s_m}(S))=(W\cap Ker(p_1^{s_1}(T)))\oplus ... \oplus (W\cap Ker(p_m^{s_m}(T)))$$
e portanto

$$W=(W\cap Ker(p_1^{s_1}(T)))\oplus \ldots \oplus (W\cap Ker(p_m^{s_m}(T)))\subseteq (W\cap V_1)\oplus \ldots \oplus (W\cap V_k)\subseteq W$$
 donde segue que

$$W = (W \cap V_1) \oplus ... \oplus (W \cap V_k).$$

 \bullet Segue do exercício acima que se W é um subespaço T-invariante unidimensional, então

$$W \subseteq V_i$$
 por algum $j \in \{1, 2, ..., k\}$.

• Caso $\dim(W) = 2$, então ou existem $i, j \in \{1, 2..., k\}$ tais que

$$W = W \cap V_i \oplus W \cap V_i$$

e nesse caso $\dim(W \cap V_i) = \dim(W \cap V_i) = 1$, ou existe $p \in \{1, 2, ...k\}$ tal que

$$W \subseteq V_p$$
.

Baseado nesse exercício, se o espaço vetorial V tiver dimensão baixa (e.g $\dim(V) = 2, 3, 4$) então pode-se descrever completamente todos os subespaços T invariantes baseado apenas na decomposição primária de T.

Exame de Qualificação: Algumas questões

Exercício: Determine a veracidade da afirmação abaixo:

(Verdadeira) Se V é um espaço vetorial real de dimensão finita com produto interno e $T \in \mathcal{L}(V, V)$, então existe um operador linear auto-adjunto S tal que

$$S^2 = T^* \circ T.$$

Demonstração. Suponha que $n=\dim(V)$. Notemos que se $0\neq v\in V$ é um autovetor associado a um autovalor λ , então

$$\lambda \langle v, v \rangle = \langle T^* \circ T(v), v \rangle = \langle T(v), T(v) \rangle \ge 0$$

e portanto, todos os autovalores de $T^* \circ T$ são não negativos. Além disso

$$(T^* \circ T)^* = T^* \circ (T^*)^* = T^* \circ T$$

e portanto segue que $T^* \circ T$ é auto-adjunto. Dessa forma, existem $P \in GL_n(\mathbb{R})$ e uma matriz diagonal D, com elementos não negativos em sua diagonal, tais que

$$T^* \circ T = PDP^t$$
.

Escreva $D = diag(\lambda_1, ..., \lambda_n)$ e defina $E = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$. Dessa forma, tem-se que a matriz $S := PEP^t$ é auto-adjunta e além disso

$$T^* \circ T = S^2.$$

Exercício: Uma transformação linear $P: V \to V$ no espaço vetorial V é projeção se $P^2 = P$; uma transformação linear $S: V \to V$ em V é involução se $S^2 = I$, a identidade.

- a) Assumindo o corpo F tal que $1 \neq -1$, mostrar que P é projeção se, e somente se S = I 2P é uma involução.
- b) Mostrar que se P é uma projeção em V então existe uma base de V que consiste de autovetores de P. (A dimensão de V não precisa ser finita!)
- c) Seja $\dim(V) = \infty$. Para todo número natural k, mostrar que existem $P_1, ..., P_k$ projeções em V tais que $P_iP_j = P_jP_i$ para quaisquer $i \in j$.

Demonstração. a) Notemos que

$$S^2 = (I - 2P)(I - 2P) = I - 4P + 4P^2$$

logo, tem-se que $S^2 = I \Leftrightarrow P^2 = P$.

b) Se $P \equiv 0$ não há nada a provar. Caso contrário, existe $x \in V$ tal que $P(x) \neq 0$ e assim, se y = P(x) tem-se que P(y) = y, donde segue que y é um autovetor de P, associado ao autovalor $\lambda = 1$. Por outro lado, se v é um autovetor associado a $\lambda = 1$, tem-se que

$$v = P(v) = P(P(v))$$

donde segue que $v \in Im(P)$. Logo, concluímos que Im(P) é o auto-espaço associado a $\lambda = 1$. Por fim, para concluirmos esse item, basta verificarmos que $V = Im(P) \oplus Ker(P)$. Veja que se $v \in V$, então podemos escrever

$$v = P(v) + (v - P(v))$$

dado que P(v-P(v))=0, segue que $v\in Im(P)+Ker(P)$. Além disso, dado que se $v\in Im(P)$, então P(v)=v segue que $Im(P)\cap Ker(P)=\{0\}$ e assim concluímos que

$$V = Im(P) \oplus Ker(P)$$
.

c) Seja $\mathcal{A} = \{e_i\}_{i \in I}$ uma base de V indexada por um conjunto infinito. Dado $k \in \mathbb{N}$ escolha (usando o axioma da escolha) $e_1, ..., e_k$ vetores em \mathcal{A} . Se $U = span\{e_i : i \in I \setminus \{1, 2, ..., k\}\}$ e $V_i = span\{e_i\}$, para $j \in \{1, 2, ..., k\}$ tem-se que

$$V = V_1 \oplus V_2 \oplus ... \oplus U$$

dessa forma, dado $x \in V$, denotando por $x_1, ..., x_k$ as componentes de x que pertencem a $V_1, ..., V_k$ respectivamente, definimos para cada $i \in \{1, 2, ..., k\}$

$$P_i(x) = x_i$$

é imediato por definição que para cada $i \in \{1,2,...,k\}, P_i$ é linear. Além disso para cada $i \in \{1,2,...,k\}$

$$P_i^2(x) = P_i(x_i) = x_i = P_i(x)$$

e se $i \neq j$, então

$$P_i P_i(x) = P_i(x_i) = 0 = P_i(x_i) = P_i P_i(x).$$

Observação 5.24. (Projeção Ortogonal) Seja V um espaço vetorial de dimensão finita n munido de um produto interno $\langle \cdot, \cdot \rangle$ e U um subespaço de V, com dimensão m < n. Sabe-se que em relação a $\langle \cdot, \cdot \rangle$ pode-se escrever

$$V = U \oplus U^{\perp}$$

e assim, definimos o operador projeção ortogonal a U como sendo o operador

$$P_U: V \to V, \quad x + y \in U \oplus U^{\perp} \mapsto x \in U.$$

Segue por definição que $|P_U(v)| \leq |v|$, para todo $v \in V$, onde $|\cdot|$ é a norma induzida pelo produto interno $\langle \cdot, \cdot \rangle$. Sugestivamente, é interessante as vezes escrever qualquer elemento $v \in V$ como

$$v = P_U(v) + P_{U^{\perp}}(v).$$

Notemos também que se $u \in U$ é arbitrário, então

$$|v - P_U(v)|^2 \le |v - P_U(v)|^2 + |P_U(v) - u|^2$$

por outro lado, dado que $P_U(v) - u \in U$ e $v - P_U(v) \in U^{\perp}$, segue pela igualdade de Pitágoras que

$$|v - P_U(v)|^2 \le |(v - P_U(v)) + (P_U(v) - u)|^2 = |v - u|^2.$$

E portanto, concluímos que

$$|v - P_U(v)| \le |v - u|$$
 para todo $u \in U$.

Em particular

$$|v - P_U(v)| \le |v|.$$

Exercício: Seja V um espaço vetorial real com produto interno e sejam $a_1, a_2, ..., a_k \in V$, o determinante de Gram $\Gamma(a_1, a_2, ..., a_k)$ é o determinante da matriz $k \times k$ que tem na entrada (i, j) o produto interno (a_i, a_j) . (Denotaremos tal matriz por $G(a_1, ..., a_k)$).

- a) Mostrar que $\Gamma(a_1, a_2, ..., a_n) \ge 0$, com igualdade se, e somente se os vetores $a_1, ..., a_k$ são linearmente dependentes.
 - b) Mostrar que $\Gamma(a_1,...,a_k) \leq |a_1|^2 |a_2|^2 ... |a_k|^2$. Quais são os casos onde se tem igualdade?

Demonstração. a) Vamos verificar que $\Gamma(a_1,...,a_k) \geq 0$. Considere $V' = span\{a_1,...,a_k\}$ e $\mathcal{A} = \{e_1,...,e_r\}$ uma base ortonormal de V'. Escreva

$$a_i = \alpha_{1i}e_1 + \cdots + \alpha_{ri}e_r$$
, para cada $i = 1, 2, ..., k$.

Então, tem-se que

$$(a_i, a_j) = \sum_t \sum_s \alpha_{ti} \alpha_{sj}(e_t, e_s) = \sum_{t=1}^r \alpha_{ti} \alpha_{tj}$$

e assim, $G(a_1, ..., a_k) = C^T C$, onde

$$C = (\alpha_{ij})_{ij}$$

donde tem-se que

$$\Gamma(a_1, ..., a_k) = \det C^T C = \det(C)^2 \ge 0.$$

Se $a_1,...,a_k$ são l.d, sem perda de generalidade, podemos supor que existam $\alpha_2,...,\alpha_k \in \mathbb{R}$ tais que $a_1 = \sum_{i=k}^k \alpha_i a_i$ e portanto, se $l_1,...,l_k$ são as linhas de $G(a_1,...,a_k)$ tem-se que

$$l_1 = \alpha_2 l_2 + \alpha_3 l_3 + \dots + \alpha_k l_k$$

donde segue que $\Gamma(a_1,...,a_k)=0$. Por outro lado, suponha que $a_1,...,a_k$ sejam l.i. e além disso, $\Gamma(a_1,...,a_k)=0$. Dado que $\Gamma(a_1,...,a_k)=0$, pode-se mais uma vez sem perda de generalidade supor que existam $\beta_1,...,\beta_k\in\mathbb{R}$ tais que

$$l_1 = \beta_2 l_2 + \beta_3 l_3 + \dots + \beta_k l_k$$

donde segue que para cada $j \in \{1, 2, ..., k\}$

$$\left(a_1 - \sum_{i=2}^k \beta_i a_i, a_j\right) = 0.$$

Agora, seja $U := span\{a_1, ..., a_k\}$, então $G(a_1, ..., a_k)$ é a matriz de Gram do produto interno induzido em U e além disso pela última expressão tem-se que

$$\left(a_1 - \sum_{i=2}^k \beta_i a_i, u\right) = 0, \quad \text{para todo } u \in U$$

e assim segue que

$$a_1 = \sum_{i=2}^k \beta_i a_i$$

absurdo. Portanto, concluímos que $\Gamma(a_1,...,a_k) > 0$.

b) Se a_1 é ortogonal aos vetores $a_2, ..., a_k$, então

$$G(a_1, ..., a_k) = \begin{pmatrix} |a_1|^2 & 0\\ 0 & G(a_2, ..., a_k) \end{pmatrix}$$

e assim, segue que

$$\Gamma(a_1, ..., a_k) = |a_1|^2 \Gamma(a_2, ..., a_k).$$

Utilizando o mesmo raciocínio, se $a_1, ..., a_k$ são ortogonais, então $\Gamma(a_1, ..., a_k) = |a_1|^2 ... |a_k|^2$. Para o caso geral, vamos proceder por indução em k. Se k = 1 o resultado é imediato, se k = 2

$$\Gamma(a_1, a_2) = |a_1|^2 |a_2|^2 - (a_1, a_2)^2 \le |a_1|^2 |a_2|^2.$$

Suponha por indução que o resultado seja válido para k-1>0. Se $a_1,...,a_k$ são l.d o resultado é imediato, logo pode-se supor que estes são l.i, e assim, seja $V':=span\{a_1,...,a_k\}$ e $U=span\{a_2,...,a_k\}$. Em relação ao produto interno (\cdot,\cdot) pode-se escrever

$$V' = W \oplus W^{\perp}$$
.

Por outro lado, definindo $b_1 := a_1 - P_U(a_1)$, segue que

$$b_1 \perp a_j$$
, para todo $j \in \{2, ..., k\}$

e assim, tem-se que

 $\Gamma(a_1,...,a_k) = \Gamma(b_1 + P_U(a_1),...,a_k) = \Gamma(P_U(a_1),a_2,...,a_k) + \Gamma(b_1,a_2,...,a_k) = \Gamma(b_1,a_2,...,a_k)$ onde a última igualdade acima segue do fato de que $P_U(a_1) \in U$ e portanto

$$\Gamma(P_U(a_1), a_2, ..., a_k) = 0.$$

E assim, pela primeira parte do item b), tem-se que

$$\Gamma(a_1,...,a_k) = |b_1|^2 \Gamma(a_2,...,a_k)$$

e assim, utilizando o final da observação 5.24 e a hipótese de indução, concluímos que

$$\Gamma(a_1, ..., a_k) \le |a_1|^2 |a_2|^2 ... |a_k|^2$$
.

Exercício: Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear.

- a) Mostrar que T é uma involução (i.e $T^2=I$) se, e somente se, \mathbb{R}^n é uma soma direta de subespaços V_0 e V_1 tais que $T_{|V_0}=I$ e $T_{|V_1}=-I$.
 - b) Mostrar que existe uma base de \mathbb{R}^n que consiste de autovetores de T.
 - c) Demonstre que T é normal se, e somente se V_0 é ortogonal a V_1 .
- d) Sejam $T_1,...,T_k$ involuções distintas duas a duas, em \mathbb{R}^n tais que $T_iT_j=T_jT_i$ para quaisquer $i,j\in\{1,2,...,k\}$, Mostre que $k\leq 2^n$.

Demonstração. a) Suponha que T seja uma involução. Dessa forma, o polinômio característico de T é $c_T(x) = x^2 - 1 = (x - 1)(x + 1)$ e portanto seus autovalores são $\lambda = 1$ e $\mu = -1$. Além disso, o polinômio minimal de T deve ser igual a c_T , pois m_T possui as mesmas raízes que c_T . Dessa forma, tem-se pelo teorema da decomposição primária que

$$\mathbb{R}^n = Ker(T-I) \oplus Ker(T+I)$$

donde segue que se $V_0 := Ker(T-I)$ e $V_1 = Ker(T+I)$, então $T_{|V_0} = I$ e $T_{|V_1} = -I$. Reciprocamente, existe uma base α de \mathbb{R}^n na qual $[T]^2_{\alpha} = I$. Dessa forma, se β é a base canônica de \mathbb{R}^n existe $P \in GL_n(\mathbb{R})$ tal que

$$[T]_{\gamma} = P[T]_{\alpha}P^{-1}$$

e portanto

$$[T]_{\gamma}^2 = P[T]_{\alpha}^2 P^{-1} = PP^{-1} = I.$$

Dessa forma, concluímos que $T^2 = I$.

- b) Segue imediatamente do item anterior.
- c) Lembremos que se S é um operador normal, e λ é um autovetor de S, então $\overline{\lambda}$ é um autovetor de S^* .

Suponha que T seja normal, $v_0 \in V_0$ e $v_1 \in V_1$. Dessa forma, temos que $T(v_0) = v_0$ e $T(v_1) = -v_1$ e assim segue que

$$\langle T(v_0), v_1 \rangle = \langle v_0, T^*(v_1) \rangle = \langle v_0, v_1 \rangle.$$

Por outro lado

$$\langle T(v_0), v_1 \rangle = \langle -v_0, v_1 \rangle = -\langle v_0, v_1 \rangle$$

portanto tem-se que $\langle v_0, v_1 \rangle = 0$ e por arbitrariedade de $v_0 \in V_0$ e $v_1 \in V_1$, tem-se que V_0 é ortogonal a V_1 . A reciproca é imediata usando o mesmo argumento utilizado no final de a).

d) Veja que se $T_iT_j=T_jT_i$, então como cada T_i é diagonalizável, como ja visto em exercícios anteriores, existe uma base de V que diagonaliza todos os T_i , para $i \in \{1, 2, ..., k\}$. Portanto, precisamos contar de quantas formas podemos construir um operador com 1's e -1's em sua diagonal. Dessa forma, é suficiente contar a quantidade k de -1's, a qual é exatamente $\sum_{k=0}^{n} {n \choose k} = 2^n$, portanto concluímos que $k \leq 2^n$.

Exercício: Sejam V_1, V_2, V_3, V_4 espaços vetoriais de dimensão finita sobre \mathbb{R} e $R: V_1 \to V_2, S: V_2 \to V_3, T: V_3 \to V_4$ transformações lineares.

- a) Mostrar que $p(TS) = p(S) \dim(Im(S) \cap N(T))$.
- b) Mostrar que $p(TS) + p(SR) \le p(S) + p(TSR)$ (Desigualdade de Frobenius).

Aqui p(T) é o posto de T, Im(T) e N(T) são a imagem e o núcleo respectivamente.

Demonstração. a) Defina

$$\psi: Im(S) \to V_4$$

dada por $\psi(S(x)) = TS(x)$. Vejamos que ψ é linear. Com efeito, note que

$$\psi(S(x) + \alpha S(z)) = \psi(S(x + \alpha z)) = TS(x + \alpha z) = TS(x) + \alpha TS(z) = \psi(S(x)) + \alpha \psi(S(z))$$

para quaisquer $x, z \in V_2$ e $\alpha \in \mathbb{R}$. Além disso se $y \in Ker(\psi)$ segue que y = S(x) e TS(x) = 0, portanto concluímos que $Ker(\psi) = Im(S) \cap N(T)$. Dessa forma, pelo primeiro teorema do isomorfismo segue que

$$Im(S)/(Im(S) \cap N(T)) \cong Im(\psi)$$

e dado que $Im(\psi) = Im(TS)$ segue que

$$p(TS) = p(S) - \dim(Im(S) \cap N(T)).$$

b) Notemos que pela parte a) tem-se as igualdades

$$p(TSR) = p(SR) - \dim(Im(SR) \cap N(T))$$

$$p(TS) = p(S) - \dim(Im(S) \cap N(T)).$$

Por outro lado, $Im(SR) \subseteq Im(S)$ e portanto

$$p(TSR) > p(SR) - \dim(Im(S) \cap N(T))$$

isto é

$$p(TSR) + p(S) \ge p(SR) + p(S) - \dim(Im(S) \cap N(T)) = p(SR) + p(TS)$$

donde segue a desigualdade de Frobenius.

Exercício: Seja $A \in M_n(\mathbb{C})$ tal que $A^k = I$ para algum k natural e |tr(A)| = n. Então, A = I.

Demonstração. Dado que $A^k = I$, a forma de Jordan de A não pode ter blocos de ordem maior que 2, portanto tem-se que A é diagonalizável e além disso, seus autovalores são raízes da unidade. Dado que |tr(A)| = n, segue que os únicos autovalores de A são 1 e assim, pelo teorema da decomposição primária $\mathbb{C}^n = Ker(A - I)$, donde segue que A = I.

.....

Exame de qualificação álgebra linear-2021:

Exercício 1: Dada a seguinte matriz

$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Encontre a forma de Jordan de A e uma base de Jordan para a mesma.

Demonstração. Notemos que

$$c_A(x) = (x-2)^3(x-3)$$

portanto os autovalores de A são $\lambda_1 = 2$ e $\lambda_2 = 3$. Vejamos que

$$A - \lambda_1 I = \begin{pmatrix} 0 & 0 & 1 & -3 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

e portanto tem-se que $Ker(A - \lambda_1 I) = span\{e_1, e_2\}$. Além disso

$$(A - \lambda_1 I)^2 = \begin{pmatrix} 0 & 0 & 1 & -3 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & -3 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

e portanto segue que $Ker((A-\lambda_1I)^2)=span\{e_1,e_2,e_3\}$. Dado que $\dim(A-\lambda_2I)=1$, segue que $Ker((A-\lambda_1I)^3)=Ker((A-\lambda_1I)^2)$. Donde tem-se que o diagrama de pontos de $\lambda_1=2$ é

•

e assim, o polinômio minimal de A é $m_A = (x-2)^2(x-3)$. Dessa forma, a forma canônica de Jordan de A, J_A é

$$J_A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Por fim, notemos que

$$A - \lambda_2 I = \begin{pmatrix} -1 & 0 & 1 & -3 \\ 0 & -1 & 10 & 6 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

e assim, segue que $Ker(A-\lambda_2 I) = span\{(-3,6,0,1)\}$. Dessa forma, se $v_1 = (A-\lambda_1 I)v_2, v_2 = e_3$ e $v_3 = (-3,-6,0,1)$ tem-se que $\beta = \{v_1,v_2,v_3\}$ é uma base de Jordan de A.

Exercício 2: Seja V um espaço vetorial sobre \mathbb{Q} com $\dim_{\mathbb{Q}}(V) < \infty$ e seja $T: V \to V$ uma transformação linear tal que $T^2 = -I$. Suponha que V contenha um subespaço T-invariante W que seja próprio e não nulo.

- a) Ache o polinômio mínimo de T.
- b) Demonstre que a menor possível dimensão de tal espaço tem de ser 4.

Demonstração. a) Vejamos que $T^2 + I = 0$, portanto dado que $T \neq I$, e $x^2 + 1 \mid m_T$ segue do fato de $x^2 + 1$ ser irredutível em $\mathbb{Q}[x]$ que o polinômio minimal de T é $m_T(x) = x^2 + 1$.

b) Devemos mostrar que $\dim(V) \geq 4$. Dado que $m_T(x) = x^2 + 1$, necessariamente deve-se ter $c_T(x) = (t^2 + 1)^k$, por algum $k \in \mathbb{N}$. Se k = 1, então $\dim_{\mathbb{Q}}(W) = 1$, absurdo pois isso implicaria a existência de autovetores de T, o qual é um absurdo. Dessa forma, segue que $k \geq 2$ e portanto, $\deg(c_T) \geq 4$, donde segue que $\dim_{\mathbb{Q}}(V) \geq 4$.

O próximo exercício é uma ferramenta de extrema importância para calcular o posto de um tensor. Anteriormente, já o enunciamos como um imediato corolário de um lema anterior (a saber, lema 5.8), entretanto vamos refaze-lo de uma outra forma.

Exercício Auxiliar: Sejam V,W espaços vetoriais sobre um corpo \mathbb{F} . Lembrando que o posto de um vetor $u \in V \otimes W$ é o menor inteiro $m \geq 0$ tal que existem $v_1,...,v_m \in V$, $w_1,...,w_m \in W$ satisfazendo

$$u = \sum_{j=1}^{m} v_j \otimes w_j.$$

Mostre que se numa tal expressão tivermos $v_1, ..., v_m$ linearmente independentes, então o posto de u é a dimensão de $span\{w_1, ..., w_m\}$.

Demonstração. Se m=1, então é claro que se $u=v_1\otimes w_1$ então dim $span\{w_1\}=1=rank(u)$. Considere agora a hipótese de indução

 $\underline{H.I}~:$ Se $1 e <math display="inline">v_1',...,v_p' \in V$ são linearmente independentes e $w_1',...,w_p' \in W,$ então

$$rank(v_1'\otimes w_1'+...+v_p'\otimes w_p')=\dim span\{w_1',...,w_p'\}.$$

Seja então $v_1,...,v_m \in V$ vetores linearmente independentes e suponha que $w_1,...,w_m \in W$ sejam arbitrários. Se $w_1,...,w_m$ são linearmente independentes segue que $\{v_1 \otimes w_1,...,v_m \otimes w_m\}$ fazem partes de uma base de $V \otimes W$, e assim rank(u) = m. Agora, suponha sem perda de generalidade suponha que w_m seja l.d com $w_1,...,w_{m-1}$. Dessa forma, existem $a_1,...,a_{m-1} \in \mathbb{F}$ tal que

$$w_m = a_1 w_1 + \dots + a_{m-1} w_{m-1}$$

e assim, tem-se que

$$u = \sum_{i=1}^{m} v_i \otimes w_i = \sum_{j=1}^{m-1} (v_j + a_j v_m) \otimes w_j.$$

Além disso, não é difícil ver que $v_1 + a_1 v_m$, ..., $v_{m-1} + a_{m-1} v_m$ são linearmente independentes. Repetindo esse processo, chegamos a uma expressão de u da forma

$$u = \sum_{i=1}^{p} v_i' \otimes w_i$$

onde p < m e assim por hipótese de indução segue que

$$rank(u) = \dim span\{w_1, ..., w_n\} = \dim span\{w_1, ..., w_m\}.$$

- '**Exercício 5:** Sejam V_1, V_2, W_1, W_2 espaços vetoriais de dimensão finita sobre um corpo \mathbb{F} e $T_1: V_1 \to W_1$ e $T_2: V_2 \to W_2$ transformações lineares.
 - a) Dê um exemplo no qual

$$rank(T_1 \otimes T_2) \neq rank(T_1) + rank(T_2).$$

b) Mostre que

$$rank(T_1 \otimes T_2) = rank(T_1) \otimes rank(T_2).$$

Demonstração. Dado que existe uma correspondência biunívoca entre transformações lineares e matrizes, é suficiente provar o exercício para o produto de Kronecker.

a) Sejam

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

então tem-se que rank(A) = 1 e rank(B) = 2. Por outro lado

$$A \otimes B = \begin{pmatrix} 0_{2 \times 2} & I_2 \\ 0_{2 \times 2} & 0_{2 \times 2} \end{pmatrix}$$

consequentemente segue que

$$rank(A \otimes B) = 2 \neq rank(A) + rank(B).$$

b) Por definição, segue que se A, B, C, D são matrizes de tamanhos apropriados, então

$$(A \otimes B)(C \otimes D) = (AC \otimes BD).$$

Em particular, se A, B são invertíveis

$$(A \otimes B)(A^{-1} \otimes B^{-1}) = I.$$

Agora, por conta do algoritmo de escalonamento, existem matrizes invertíveis P_A, Q_A, P_B, Q_B e números inteiros $r, s \ge 0$ tais que

$$P_A A Q_A = E_r$$

e

$$P_BBQ_B = E_s$$

onde E_l é a matriz que é a identidade até a linha l e a matriz 0 nas restantes. Por fim, lembremos que se R,S são matrizes e R é invertível, então rank(RS) = rank(S) e rank(SR) = rank(S). Para ilustrar, provaremos a primeira igualdade. Veja que se $x \in Im(RS)$ então x = RS(v), donde segue que $S(v) = R^{-1}(x)$ e portanto se $y_1, ..., y_m$ formam uma base de Im(RS), $\{R^{-1}(y_1), ..., R^{-1}(y_m)\}$ é base de Im(S).

Com isso, tem-se que

$$rank(A\otimes B)=rank((P_A\otimes P_B)(A\otimes B)(Q_A\otimes Q_B))=rank((P_AAQ_A)\otimes (P_BBQ_B))$$
e portanto

$$rank(A \otimes B) = rank(E_r \otimes E_s) = rank(E_{rs}) = rs.$$

Exercício 7: Mostre que existe um único mapa linear

$$\Psi: V_1^* \otimes ... \otimes V_k^* \to (V_1 \otimes ... \otimes V_k)^*, \quad (f_1 \otimes ... \otimes f_k)(v_1 \otimes ... \otimes v_k) \mapsto \prod_{j=1}^k f_j(v_j).$$

Além disso, se $\dim(V_i) < \infty$ para todo $j \in \{1, 2, ..., k\}$, então Ψ é um isomorfismo.

Demonstração. Por indução, é suficiente mostrar o resultado para k=2. Dessa forma, defina

$$\psi: V_1^* \times V_2^* \to (V_1 \otimes V_2)^*, \quad (f_1, f_2)(v_1 \otimes v_2) \mapsto f_1(v_1)f_2(v_2)$$

então, ψ é linear e portanto pela propriedade universal, existe Ψ como no enunciado. Agora, suponha que $\dim(V_1) < \infty, \dim(V_2) < \infty$ e sejam $\{f_1, ..., f_n\}$ e $\{g_1, ..., g_m\}$ bases de V_1^* e V_2^* respectivamente. Seja

$$z = \sum_{i,j} a_{ij} f_i \otimes g_j$$

tal que $\Psi(z) = 0$. Isto é para todos $v_1 \in V_1$ e $v_2 \in V_2$

$$0 = \sum_{i,j} a_{ij} f_i(v_1) g_j(v_2) = \sum_{i} \left(\sum_{i} a_{ij} f_i(v_1) \right) g_j(v_2)$$

e portanto

$$0 = \sum_{i} a_{ij} f_i(v_1)$$
, para todo $j \in \{1, 2, ..., m\}$

donde segue que $a_{ij}=0$ para todo $i \in \{1,2,...,n\}$ e $j \in \{1,2,...,m\}$. Notemos também que dado que $\dim(V_1^* \otimes V_2^*) = \dim(V_1 \otimes V_2)^*$ tem-se que Ψ é um isomorfismo.

6 Decomposição de Jordan-Chevalley

Tal seção é basicamente uma generalização da forma de Jordan para corpos de quaisquer característica, porém algebricamente fechados. Daqui em diante, suponha \mathbb{K} um corpo de característica p, onde p pode ser tanto um primo $\neq 0$ ou p=0. Além disso, fixe um espaço vetorial V de dimensão k.

Definição 6.1. Dado $T \in End(V)$, diz-se que T é **semissimples** se as raízes do polinômio minimal m_T são todas distintas.

Observação 6.2. Se \mathbb{K} é um corpo de característica 0 e algebricamente fechado, então T é semissimples se, e somente se, T é diagonalizável.

Antes de prosseguirmos, relembremos o famoso teorema chinês do resto.

Teorema 6.3. (Teorema chinês dos restos) Sejam A um anel comutativo com unidade, e $I_1,...,I_m$ ideais em A. Então

a) A função

$$\phi: A \to A/I_1 \times A/I_2 \times \cdots A/I_m, \quad x \mapsto (x + I_1, x + I_2, ..., x + I_m)$$

'e~um~homomorfismo~de~m'odulos.

b) Caso os ideais $I_1, ..., I_m$ sejam mutuamente coprimos, isto é

$$I_i + I_j = A$$
, para quaisquer $i \neq j$

então o homomorfismo acima é sobrejetivo. Em outras palavras, o sistema

$$x \equiv a_1 \mod(I_1)$$

$$x \equiv a_2 \mod(I_2)$$

$$\cdots$$

$$\cdots$$

$$x \equiv a_m \mod(I_m)$$

possui uma solução.

Exemplo 6.4. Seja $A = \mathbb{K}[x]$. Como \mathbb{K} é um corpo, então A é um PID, e portanto, se $f, g \in \mathbb{K}[x]$ são relativamente primos, isto é, (f, g) = 1, então pelo teorema de Bezout

$$\langle f \rangle + \langle g \rangle = A$$

onde $\langle f \rangle = Af \ e \ \langle g \rangle = Ag$.

Teorema 6.5. Considere $T \in End(V)$.

a) Existem $T_s, T_n \in End(V)$ tais que T_s é semissimples, T_n é nilpotente e além disso

$$T = T_s + T_n$$
.

b) Existem polinômios $p, q \in \mathbb{K}[x]$ tais que p(0) = q(0) = 0 e

$$T_s = p(T), T_n = q(T).$$

Em particular, se $S \in End(V)$ é tal que TS = ST, então $T_sS = ST_s$ e $T_nS = ST_n$. c) Se $A \subseteq B \subseteq V$ são subespaços e $T \in Hom(B, A)$ então

$$T_s, T_n \in Hom(B, A)$$
.

Demonstração. Sejam $a_1, ..., a_k$ os autovalores distintos de c_T , com respectivas multiplicidades, $m_1, ..., m_k$. Então, como \mathbb{K} é algebricamente fechado, pode-se escrever

$$c_T = (x - a_1)^{m_1} \cdots (x - a_k)^{m_k}.$$

Além disso, sabe-se também que

$$V = V_1 \oplus V_2 \oplus \cdots V_k$$

onde

$$V_i = Ker((T - a_i I)^{m_i})$$
, para qualquer $i \in \{1, 2, ..., k\}$.

Suponha que nenhum dos autovalores acima seja nulo, então para qualquer $j \in \{1, 2, ..., k\}$, $((x-a_j)^{m_j}, x) = 1$, então pelo exemplo 6.4 e pelo teorema chinês do restos, existe uma solução para o sistema

$$y \equiv a_1 \mod((x - a_1)^{m_1})$$

$$y \equiv a_2 \mod((x - a_2)^{m_2})$$

$$\vdots$$

$$\vdots$$

$$y \equiv a_k \mod((x - a_k)^{m_k})$$

$$y \equiv 0 \mod(x)$$

tal solução iremos denotar por p(x). Caso um dos autovalores seja nulo, a última congruência se torna uma das outras acima.

Além disso, defina

$$q(x) = x - p(x).$$

Dado que $p(x) \equiv 0 \mod (x)$, segue em particular que $x \mid p(x)$ e portanto, p(0) = q(0) = 0. Agora, defina

$$T_s := p(T)$$
 e $T_n := q(T)$.

Por definição de T_s e T_n tais comutam com quaisquer endomorfismos. Notemos também que por definição de p(x), tem-se que para todo $j \in \{1, 2, ..., k\}, (p(T) - a_i I)$ tem a forma

$$p(T) - a_i I = r(T)((T - a_i I)^{m_j}).$$

Em particular

$$(p(T)-a_{j}I)_{|V_{i}}\equiv 0,$$
 para qualquer $i\in\{1,2,...,k\}$

donde tem-se que T_s age diagonalmente em V, implicando que T_s é semissimples. Por definição $T_n=T-T_s$, analisemos $T_n\mid_{V_i}$, onde $i\in\{1,2,...,k\}$. Vejamos que

$$T_n(v_i) = T(v_i) - T_s(v_i) = (a_i - a_i)v_i = 0$$

donde segue que T_n é nilpotente.