

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- Sammensatte funksjoner
 - Sammensatte funksjoner og kjerneregelen
 - Differensialer og deriverte

2 Derivasjon av et produkt

3 Derivasjon av en kvotient

■ Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til $g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2$.

- Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til $g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2$.
- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.

- Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til $g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2$.
- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.
- \blacksquare Å dele opp i sammensatt funksjon gjør at vi kan regne ut f(x) i to steg.

Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til $g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2.$

- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.
- \blacksquare Å dele opp i sammensatt funksjon gjør at vi kan regne ut f(x) i to steg.
- Først regner vi ut $u = 2x^2$, så regner vi ut $g = u^2 + 3u$.

Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til $g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2.$

- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.
- \blacksquare Å dele opp i sammensatt funksjon gjør at vi kan regne ut f(x) i to steg.
- Først regner vi ut $u = 2x^2$, så regner vi ut $g = u^2 + 3u$.
- Vi kaller u(x) for kjernen til sammensetningen.

Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til

$$g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2.$$

- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.
- \blacksquare Å dele opp i sammensatt funksjon gjør at vi kan regne ut f(x) i to steg.
- Først regner vi ut $u = 2x^2$, så regner vi ut $g = u^2 + 3u$.
- Vi kaller u(x) for kjernen til sammensetningen.
- Vi kan også ha funksjoner som består av flere sammensetninger.

Hvis vi har $g(u) = u^2 + 3u$ og $u(x) = 2x^2$ kan vi sette sammen funksjonene til

$$g(u(x)) = (u(x))^2 + 3 \cdot u(x) = (2x^2)^2 + 3 \cdot 2x^2 = 4x^4 + 6x^2.$$

- Vi skriver g(u) for å hinte om at vi planlegger sette inn u(x) i g, men vi kunne ha skrevet g(x) også.
- \blacksquare Å dele opp i sammensatt funksjon gjør at vi kan regne ut f(x) i to steg.
- Først regner vi ut $u = 2x^2$, så regner vi ut $g = u^2 + 3u$.
- Vi kaller u(x) for kjernen til sammensetningen.
- Vi kan også ha funksjoner som består av flere sammensetninger.
- Om $f(x) = \frac{1}{\sqrt{x^2+1}}$ kan vi skrive

$$f(x) = g(u(v(x)))$$
 $g(u) = \frac{1}{u}$ $u(v) = \sqrt{v}$ $v(x) = x^2 + 1$.

■ Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.
- Vi kan skrive $f(x) = \sqrt{x^2 + 1}$ som en sammensatt funksjon.

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.
- Vi kan skrive $f(x) = \sqrt{x^2 + 1}$ som en sammensatt funksjon.
- Vi velger $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$. Vi får da f(x) = g(u(x)).

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.
- Vi kan skrive $f(x) = \sqrt{x^2 + 1}$ som en sammensatt funksjon.
- Vi velger $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$. Vi får da f(x) = g(u(x)).
- Vi kan finne både g'(u) og u'(x), og vil kombinere dem til f'(x).

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.
- Vi kan skrive $f(x) = \sqrt{x^2 + 1}$ som en sammensatt funksjon.
- Vi velger $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$. Vi får da f(x) = g(u(x)).
- Vi kan finne både g'(u) og u'(x), og vil kombinere dem til f'(x).
- Det viser seg at det riktige er å gange.

- Vi kan derivere funksjonen \sqrt{x} og funksjonen $x^2 + 1$.
- Men vi kan ikke (ennå) derivere $\sqrt{x^2 + 1}$.
- Vi kan skrive $f(x) = \sqrt{x^2 + 1}$ som en sammensatt funksjon.
- Vi velger $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$. Vi får da f(x) = g(u(x)).
- Vi kan finne både g'(u) og u'(x), og vil kombinere dem til f'(x).
- Det viser seg at det riktige er å gange.

Regel (Kjerneregelen)

Om vi kan skrive f(x) = g(u(x)) har vi

$$f'(x) = g'(u) \cdot u'(x).$$

Oppgave

Oppgave

Finn den deriverte til $f(x) = \sqrt{x^2 + 1}$.

■ Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x)$$

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = \frac{1}{2\sqrt{u}} \cdot 2x$$

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = \frac{1}{2\sqrt{u}} \cdot 2x$$
$$= \frac{2x}{2\sqrt{x^2 + 1}}$$

Oppgave

- Vi skriver $g(u) = \sqrt{u}$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = \frac{1}{2\sqrt{u}}$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = \frac{1}{2\sqrt{u}} \cdot 2x$$

= $\frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$

Oppgave

Oppgave

Finn den deriverte til $f(x) = (x^2 + 1)^3$.

■ Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x)$$

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = 3u^2 \cdot 2x$$

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = 3u^2 \cdot 2x$$

= 3(x^2 + 1)^2 \cdot 2x

Oppgave

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = 3u^2 \cdot 2x$$

= $3(x^2 + 1)^2 \cdot 2x = 6x(x^2 + 1)^2$

Oppgave

Finn den deriverte til $f(x) = (x^2 + 1)^3$.

- Vi setter $g(u) = u^3$ og $u(x) = x^2 + 1$.
- Vi får da $g'(u) = 3u^2$ og u'(x) = 2x.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = 3u^2 \cdot 2x$$

= $3(x^2 + 1)^2 \cdot 2x = 6x(x^2 + 1)^2$

Her kunne vi også regnet ut

$$f(x) = (x^2 + 1)^3 = x^6 + 3x^4 + 3x^2 + 1$$

og så fått $f'(x) = 6x^5 + 12x^3 + 6x$, men det er mer arbeid.

Oppgave

Finn den deriverte til $f(x) = \frac{1}{x^3 + 2x}$.

Oppgave

Finn den deriverte til $f(x) = \frac{1}{x^3 + 2x}$.

■ Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.

Oppgave

Finn den deriverte til $f(x) = \frac{1}{x^3 + 2x}$.

- Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.

Oppgave

- Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

Oppgave

- Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x)$$

Oppgave

- Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2$$

Oppgave

- Vi setter $g(u) = \frac{1}{u}$ og $u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2 = -\frac{3x^2}{(x^3 + 2x)^2}$$

Oppgave

- Vi setter $g(u) = \frac{1}{u} \text{ og } u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2 = -\frac{3x^2}{(x^3 + 2x)^2}$$
$$= -\frac{3x^2}{(x(x^2 + 2))^2}$$

Oppgave

- Vi setter $g(u) = \frac{1}{u} \text{ og } u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2 = -\frac{3x^2}{(x^3 + 2x)^2}$$
$$= -\frac{3x^2}{(x(x^2 + 2))^2} = -\frac{3x^2}{x^2(x^2 + 2)^2}$$

Oppgave

- Vi setter $g(u) = \frac{1}{u} \text{ og } u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2 = -\frac{3x^2}{(x^3 + 2x)^2}$$
$$= -\frac{3x^2}{(x(x^2 + 2))^2} = -\frac{3x^2}{x^2(x^2 + 2)^2}$$

Oppgave

- Vi setter $g(u) = \frac{1}{u} \text{ og } u(x) = x^3 + 2x$.
- Vi får da $g'(u) = -\frac{1}{u^2}$ og $u'(x) = 3x^2 + 2$.
- Fra kjerneregelen får vi derfor

$$f'(x) = g'(u) \cdot u'(x) = -\frac{1}{u^2} \cdot 3x^2 = -\frac{3x^2}{(x^3 + 2x)^2}$$
$$= -\frac{3x^2}{(x(x^2 + 2))^2} = -\frac{3x^2}{x^2(x^2 + 2)^2} = -\frac{3}{(x^2 + 2)^2}$$

Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- **Eksempel:** Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = \left(\sqrt{x-1}\right)'$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = \left(\sqrt{x-1}\right)' = \left(\sqrt{u}\right)' \cdot u'$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = \left(\sqrt{x-1}\right)' = \left(\sqrt{u}\right)' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- **Eksempel:** Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

Det neste steget er at vi ikke gidder skrive opp u heller.

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp u heller.
- Vi må fremdeles huske å gange med u'.

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp u heller.
- Vi må fremdeles huske å gange med u'.
- Eksempel: Deriverer $f(x) = \sqrt{x-1}$:

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp u heller.
- Vi må fremdeles huske å gange med u'.
- Eksempel: Deriverer $f(x) = \sqrt{x-1}$:

$$f'(x) = \left(\sqrt{x-1}\right)'$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp u heller.
- Vi må fremdeles huske å gange med u'.
- Eksempel: Deriverer $f(x) = \sqrt{x-1}$:

$$f'(x) = \left(\sqrt{x-1}\right)' = \frac{1}{2\sqrt{x-1}} \cdot (x-1)'$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp u heller.
- Vi må fremdeles huske å gange med u'.
- Eksempel: Deriverer $f(x) = \sqrt{x-1}$:

$$f'(x) = \left(\sqrt{x-1}\right)' = \frac{1}{2\sqrt{x-1}} \cdot (x-1)' = \frac{1}{2\sqrt{x-1}} \cdot 1$$

- Når vi blir bedre på å bruke kjerneregelen, slipper vi å skrive så mye.
- Det første steget er at vi ikke lenger gidder skrive opp g(u).
- Eksempel: Deriverer $f(x) = \sqrt{x-1} = \sqrt{u}$:

$$f'(x) = (\sqrt{x-1})' = (\sqrt{u})' \cdot u' = \frac{1}{2\sqrt{u}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

- Det neste steget er at vi ikke gidder skrive opp *u* heller.
- Vi må fremdeles huske å gange med u'.
- Eksempel: Deriverer $f(x) = \sqrt{x-1}$:

$$f'(x) = \left(\sqrt{x-1}\right)' = \frac{1}{2\sqrt{x-1}} \cdot (x-1)' = \frac{1}{2\sqrt{x-1}} \cdot 1 = \frac{1}{2\sqrt{x-1}}.$$

28. juli 2020

Oppgave

Deriver
$$f(x) = \frac{1}{x+1} + \sqrt{x^2 - 2}$$
.

Oppgave

Deriver
$$f(x) = \frac{1}{x+1} + \sqrt{x^2 - 2}$$
.

$$f'(x) = \left(\frac{1}{x+1} + \sqrt{x^2-2}\right)'$$

Oppgave

Deriver
$$f(x) = \frac{1}{x+1} + \sqrt{x^2 - 2}$$
.

$$f'(x) = \left(\frac{1}{x+1} + \sqrt{x^2-2}\right)' = \left(\frac{1}{x+1}\right)' + \left(\sqrt{x^2-2}\right)'$$

Oppgave

Deriver
$$f(x) = \frac{1}{x+1} + \sqrt{x^2 - 2}$$
.

$$f'(x) = \left(\frac{1}{x+1} + \sqrt{x^2 - 2}\right)' = \left(\frac{1}{x+1}\right)' + \left(\sqrt{x^2 - 2}\right)'$$
$$= -\frac{1}{(x+1)^2} \cdot (x+1)' + \frac{1}{2\sqrt{x^2 - 2}} \cdot \left(x^2 - 2\right)'$$

Oppgave

Deriver
$$f(x) = \frac{1}{x+1} + \sqrt{x^2 - 2}$$
.

$$f'(x) = \left(\frac{1}{x+1} + \sqrt{x^2 - 2}\right)' = \left(\frac{1}{x+1}\right)' + \left(\sqrt{x^2 - 2}\right)'$$

$$= -\frac{1}{(x+1)^2} \cdot (x+1)' + \frac{1}{2\sqrt{x^2 - 2}} \cdot \left(x^2 - 2\right)'$$

$$= -\frac{1}{(x+1)^2} + \frac{x}{\sqrt{x^2 - 2}}$$

Sammensatte funksjoner

- 1 Sammensatte funksjoner
 - Sammensatte funksjoner og kjerneregelen
 - Differensialer og deriverte

2 Derivasjon av et produkt

3 Derivasjon av en kvotient

■ Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- Her er df og dx differensialer.

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- \blacksquare Her er df og dx differensialer.
 - Differensialet dx betyr «en uendelig liten endring i x.»

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- \blacksquare Her er df og dx differensialer.
 - Differensialet dx betyr «en uendelig liten endring i x.»
 - Differensialet df betyr «en uendelig liten endring i f.»

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- Her er df og dx differensialer.
 - Differensialet dx betyr «en uendelig liten endring i x.»
 - Differensialet df betyr «en uendelig liten endring i f.»
- Siden den deriverte er vekstfarten til grafen, får vi da at

$$df = f'(x) dx$$
.

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- Her er df og dx differensialer.
 - Differensialet dx betyr «en uendelig liten endring i x.»
 - Differensialet df betyr «en uendelig liten endring i f.»
- Siden den deriverte er vekstfarten til grafen, får vi da at

$$df = f'(x) dx$$
.

Dersom vi gjør en uendelig liten endring i x må vi gange med vekstfarten for å finne endringen i f.

- Vi kan også skrive deriverte som $\frac{df}{dx}$ i stedet for f'(x).
- Her er df og dx differensialer.
 - Differensialet dx betyr «en uendelig liten endring i x.»
 - Differensialet df betyr «en uendelig liten endring i f.»
- Siden den deriverte er vekstfarten til grafen, får vi da at

$$df = f'(x) dx$$
.

- Dersom vi gjør en uendelig liten endring i x må vi gange med vekstfarten for å finne endringen i f.
- Om vi deler begge sider på dx ser vi at vi får

$$\frac{\mathrm{d}f}{\mathrm{d}x}=f'(x).$$

Differensialer og tilnærming

Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

Oppgave

Om f(3) = 5 og f'(3) = 9, hva blir f(3,0001)?

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

Oppgave

Om f(3) = 5 og f'(3) = 9, hva blir f(3,0001)?

Vi bruker dx = 0.0001 i formelen og får

$$df = f'(x) dx = 9 \cdot 0,0001 = 0,0009.$$

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

Oppgave

Om f(3) = 5 og f'(3) = 9, hva blir f(3,0001)?

■ Vi bruker dx = 0,0001 i formelen og får

$$df = f'(x) dx = 9 \cdot 0,0001 = 0,0009.$$

Endringen i f er derfor 0,0009.

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

Oppgave

Om f(3) = 5 og f'(3) = 9, hva blir f(3,0001)?

■ Vi bruker dx = 0,0001 i formelen og får

$$df = f'(x) dx = 9 \cdot 0,0001 = 0,0009.$$

- Endringen i f er derfor 0,0009.
- Den nye verdien til f er derfor 5 + 0,0009 = 5,0009.

- Siden dx er uendelig liten, stemmer ikke formelen df = f'(x) dx for vanlige tall.
- Men om tallene er veldig små får vi en god tilnærming.

Oppgave

Om f(3) = 5 og f'(3) = 9, hva blir f(3,0001)?

■ Vi bruker dx = 0,0001 i formelen og får

$$df = f'(x) dx = 9 \cdot 0,0001 = 0,0009.$$

- Endringen i f er derfor 0,0009.
- Den nye verdien til f er derfor 5 + 0,0009 = 5,0009.
- Jeg brukte $f(x) = \frac{x^3}{3} 4$ for å finne tallene, som gir meg at det ekte svaret er $f(3,0001) = 5,000\,900\,03$.

Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.
- Om vi deriverer u med hensyn på x får vi $\frac{du}{dx} = 2x$.

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.
- Om vi deriverer u med hensyn på x får vi $\frac{du}{dx} = 2x$.
- Fra kjerneregelen får vi da

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.
- Om vi deriverer u med hensyn på x får vi $\frac{du}{dx} = 2x$.
- Fra kjerneregelen får vi da

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

■ Vi kan huske kjerneregelen ved at vi kan stryke d*u*-ene mot hverandre i produktet:

$$\frac{dy}{du} \cdot \frac{du}{dx}$$

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.
- Om vi deriverer u med hensyn på x får vi $\frac{du}{dx} = 2x$.
- Fra kjerneregelen får vi da

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

■ Vi kan huske kjerneregelen ved at vi kan stryke d*u*-ene mot hverandre i produktet:

$$\frac{dy}{du} \cdot \frac{du}{dx}$$

- Om en funksjon er gitt ved $y = \sqrt{x^2 + 1}$ kan vi definere $u = x^2 + 1$.
- Vi får da $y = \sqrt{u}$.
- Om vi deriverer y med hensyn på u får vi $\frac{dy}{du} = \frac{1}{2\sqrt{u}}$.
- Om vi deriverer u med hensyn på x får vi $\frac{du}{dx} = 2x$.
- Fra kjerneregelen får vi da

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

■ Vi kan huske kjerneregelen ved at vi kan stryke d*u*-ene mot hverandre i produktet:

$$\frac{\mathrm{d}y}{\mathrm{d}u}\cdot\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}x}.$$

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET