

Additives solutions for Polyurethane

APAC Lanxess Virtual Day 2020

PLA AT team – Alex Zhang, Hongjie Zhou Shanghai, 2020.09.16

Lanxess BU PLA: Polyurethane Additives Portfolio

Disflamoll®/Levagard®/PHT4- Diol™/ Reofos®	Flame Retardants	- Lander
Stabaxol [®]	Hydrolysis Stabilizers	
Addolink [®]	Crosslinkers	
Addovate [®]	Emulsifiers & Foam Stabilizers	
Addocat [®]	Catalysts	

Disflamoll® / Levagard®

Flame retardants for flexible PU foam

Flame retardants for flexible PU foam

Disflamoll® 51092

- Butylated triphenyl phosphate
- Phosphorus content: 8,5 %
- Viscosity: 100 mPa·s (20°C/68°F)

- Phosphate ester blend
- Phosphorus content: 7,9 %
- Viscosity: 82 mPa·s (23°C/73°F)

- Phosphorus compound
- Phosphorus content: 9,0 %
- Viscosity: 6.500 mPa·s (23°C/73°F)

Flame retardants for flexible PU foam

Levagard® 2000

- Oligomeric alkyl phosphate ester
- Phosphorus content: 16,4 %
- Viscosity: 100 120 mPa·s (23°C/73°F)

- Oligomeric alkyl phosphate ester
- Phosphorus content: 12,8 %
- Viscosity: 100 160 mPa·s (23°C/73°F)

- Blend of phosphorus compounds
- Phosphorus content: 14,7 %
- Viscosity: 623 mPa·s (23°C/73°F)

Polyether foam Test formulation

Components	Amount [php]
Polyether polyol (OHZ 56)	100
Water	3,0
Amine catalyst	0,08
Tin catalyst	0,16
Stabilizer	1,0
Phosphorus flame retardant	6
TDI 80	40,9
Index	107

Polyether foam

- All foams were prepared on lab scale according to a standard procedure
- Flame retardant dosage was6 php in all foams

FR for PU - Dr. H. Tebbe - August 2020

Polyether foam Foam properties

Properties	Units	without FR	TDCP	D 51092	NH-1	TP 51114	L 2000	L 3000	L 3001
Density	kg/m ³ (pcf)	33.2 (2.1)	33.8 (2.1)	33.5 (2.1)	33.3 (2.1)	33.1 (2.1)	33.3 (2.1)	33.2 (2.1)	33.7 (2.1)
Cream time	S	13	15	14	13	15	14	14	13
Rise time	S	150	160	155	150	152	152	155	150
Air flow	mm w.c.	180	185	170	150	200	190	170	160
CLD 40%	kPa (psi)	4.0 (0.58)	3.4 (0.49)	3.3 (0.48)	3.5 (0.51)	3.4 (0.49)	3.2 (0.46)	3.4 (0.49)	3.8 (0.55)
Compression set (22h, 50%, 70°C)	%	6.1	6.8	6.3	6.7	6.6	8.1	4.3	3.5

Polyether foam Efficiency – FMVSS 302

Passing level [php]

FMVSS 302

 Passing level to achieve BR and SE classification was determined

Polyether foam Fogging B

Fogging B [mg]

Fogging B (DIN 75201)

- Fogging of foams containing 6 php flame retardant
- Fogging B after 16 hours at 100°C/212°F was determined gravimetrically

Polyether foam Odor – VDA 270

Odor rating

VDA 270

- Foams contain 6 php flame retardants
- VDA 270
 - Version 2:24 hours at 40°C
 - Version 3:2 hours at 80°C
- All foams pass the requirements of automotive industry

Levagard[®] / Disflamoll[®] / PHT4-Diol™

Flame retardants for rigid PU foam

Flame retardants for rigid PU foam

Levagard[®] PP

Tris(2-chlor-isopropyl) phosphate (TCPP)

Phosphorus content: 9,5 %

Clorine content: 32,5 %

Viscosity: 85 mPas (20°C/68°F)

$\begin{array}{c} CI \\ O \\ P \\ O \end{array}$

Levagard[®] TEP-Z

Triethyl phosphate (TEP)

Phosphorus content: 17,0 %

Viscosity: 2 mPas (20°C/68°F)

Levagard® DMPP

Dimethyl propyl phosphonate

Phosphorus content: 20,3 %

Viscosity: 2 mPas (20°C/68°F)

Flame retardants for rigid PU foam

Levagard® 4090 N

- N,N-bis-(2-hydroxylethyl) aminomethane phosphonic acid diethyl ester
- Phosphorus content: 12,1 %
- OH number: 400 500 mg KOH/g

O H O H

Disflamoll® DPK

- Cresyl diphenyl phosphate
- Phosphorus content: 9,1 %
- Viscosity: 46 mPas (20°C/68°F)

PHT4-Diol™

13

- Tetrabromophthalate diol
- Bromine content: 46 %
- Viscosity: 90.000 mPas (25°C/77°F)

Flame retardants for rigid PU foam New developments

Levagard® 2000

- Oligomeric alkyl phosphate ester
- Phosphorus content: 16,4 %
- Viscosity: 100 120 mPa·s (23°C/73°F)
- Density: 1,23 g/cm³ (23°C/73°F)
- Miscible with water

Levagard® 2100

- Organic phosphonate
- Phosphorus content: 18,4 %
- Viscosity: 25 40 mPa·s (23°C/73°F)
- Density: 1,18 g/cm³ (23°C/73°F)
- OH number: 300 330 mg KOH/g
- Miscible with water

Rigid PIR foam Test formulation

Components	Amount [php]	Amount [%]
Aromatic polyester polyol (OHZ 240)	100	27,8
Catalyst 1 (PMDETA)	0,25	0,1
Catalyst 2 (K-Acetate)	0,35	0,1
Catalyst 3 (K-Octoate)	1,9	0,5
Stabilizer	2,5	0,7
Water	0,5	0,1
n-Pentane	24,3	6.8
Phosphorus flame retardant	25	7,0
Isocyanate (polymeric MDI)	205	56,9
Index	300	

PIR formulation

- All foams were prepared on lab scale according to a standard procedure
- Amount of isocyanate was adjusted when a reactive flame retardant was used (index constant)
- Flame retardant dosage was 25 php in all foams

PIR foam Foam properties (25 php FR)

Properties	Units	no FR	ТСРР	TEP	L 2000	L 2100
Density	kg/cm ³ (pcf)	26.5 (1.65)	29.1 (1.82)	27.3 (1.70)	28.2 (1.76)	31.4 (1.96)
Cream time	S	15	15	13	15	12
Gel time	S	55	50	45	48	40
Open cell content	Vol-%	8.8	4.6	11.6	7.8	7.5
Thermal conductivity	mW/K m	21.8	21.9	20.8	21.4	20.9

PIR foam Compressive strength (EN 826)

Compressive strength [MPa]

PIR foam LOI values

PIR foam EN ISO 11925 – flame height

Flame height [mm]

Disflamoll® / Reofos®

Flame retardants for TPU

Flame retardants for thermoplastic polyurethane

Disflamoll® 51092

- Butylated triphenyl phosphate
- Phosphorus content: 8,5 %
- Viscosity: 100 mPa·s (20°C/68°F)

- Cresyl diphenyl phosphate
- Phosphorus content: 9,1 %
- Viscosity: 46 mPas (20°C/68°F)

Reofos[®] 50, 65, 95

- Isopropylated triphenyl phosphates
- Phosphorus content: 8,4 / 8,1 / 7,6 %
- Viscosity: 49 / 57 / 93 mPas (25°C)

Flame retardants for TPU Comparison in TPU (15% in polyether TPU)

Properties	Units	Without FR	Disflamoll DPK	Disflamoll 51092	Reofos 50	Reofos 95
Shore A	-	83	80	77	79	77
Shore D	-	35	29	28	28	28
Tensile strength	MPa	47,4	37,8	44,1	41,1	46,6
Elongation	%	572	659	630	680	641
Tg (DSC)	°C	-39,6	-45,1	-42,4	-43,1	-42,4
LOI	%	23,0	26,9	25,9	25,9	25,2
Fire rating (2 mm)	UL 94 V	-	V 2	V 2	V 2	V 2

Flame retardants for TPU LOI – Polyether-TPU

Flame retardants for thermoplastic polyurethane Product overview – Conclusions

Disflamoll® 51092

- Suitable for polyester and polyether based TPU
- Good flame retardant efficiency

- Suitable for polyester and polyether based TPU
- Good flame retardant efficiency

Reofos® 50

Disflamoll® DPK

- Suitable for polyester and polyether based TPU
- Good flame retardant efficiency
- Good plasticizing efficiency
- Suitable for polyester and polyether based TPU
- Good flame retardant efficiency
- Low volatility

Reofos® 95

Highly effective anti-hydrolysis stabilization for polyester PU and TPU

What is hydrolysis?

Mode of function

Carbodiimides react with carboxylic acids (e. g. COOH end groups in polyesters)

- Hydrolysis is an autocatalytic process accelerated by acids
- LANXESS carbodiimides react selectively as carboxylic acid scavengers
- Carbodiimides significantly slow down the degradation process
- Selectivity: COOH > NH₂ > OH >> H₂O

Carbodiimides:

Monomeric Type

$$R - N = C = N - R$$

Polymeric Type

$$\begin{array}{c}
R + \left\{ N = C = N - R \right\}_{n}
\end{array}$$

Sterical hindrance results in

- Thermal stability
- Long term hydrolysis protection
- Storage stability

Product range and recommended use

Product	Application	20	2-9/4-2		722020	2-14-2-W			
Active ingredients	PET	PBT	PLA	PU	PA	PU rubber	TPU	TPE-E	EVA
Stabaxol® I									
Stabaxol® I LF									
Stabaxol® L									
Stabaxol® P									
Stabaxol® P 100		•			•				
Stabaxol® P 110		_							
Stabaxol® P 200									
Masterbatches (standard	grades)								
Stabaxol® KE 7646									
Stabaxol® MB PET 3040									
Stabaxol® MB TPE 6030									
Stabaxol® MB TPE 6040								-	

PUBLIC PUBLIC

New development products

Stabaxol® L

Description

- Monomeric carbodiimide
- Liquid or solidified melt
- NCN-content: > 8 wt%

Application

- TPU- and cellular PU-elastomers, PET
- Injection molding, sealing, shoe systems
- PU hot/cold casting systems
- Rollers, automotive auxiliary springs

Properties

- Excellent hydrolysis protection in TPUelastomers, PET
- Very reactive acid scavenger even at low temperatures
- Reduced off-gassing and higher thermal stability in comparison to Stabaxol[®] I
- No labeling (based on the required toxdata for 100 tons REACh registration)

Application

LANXESS Energizing Chemistr

PET

Fibers, films, screens, filters

PBT

Sheathing for optical fibers, injection-molded articles for electrical/electronic applications

PLA

Automotive, electronics, appliances, construction, bath and office equipment

PA

Monofilaments, industrial injection moldings, tubes, containers

TPE-E

31

Cable sheathing, industrial injection moldings

PU

Cable sheathing (automotive), shoe systems, injection molding (electrical/electronic), sealings

PU

PU hot/cold casting systems (automotive auxiliary springs, Vulkollan® applications), ester flexible foam, rollers

PuRubber

Rollers, drive belts, membranes, seals

PUBLIC PUBLIC

Application as acid scavenger

Stabaxol® I - Potlife extension

Hydrolytic stability of TPU elastomers

Stabaxol® I /P / P200: Excellent performance (Compound)

Hydrolytic stability of TPU

Stabaxol® P 200 in combination with Disflamoll®

Addolink®

Crosslinkers for Polyurethane Applications

Addolink®: Typical Applications

Wheels & Rollers

Footwear

Mining Equipment

Dampening Elements

Printing Equipment

Pipeline Inspection

Addolink® crosslinkers are predominantly used in cast elastomers & TPU

HQEE*

Description

- Hydroquinone bis(2-hydroxyethyl)ether (HQEE)
- Melting point: min. 104 °C
- Water content: max. 0.1 %

Application

- Glycolic chain extender
- High performance hot cast elastomers with MDI-based prepolymers
- Especially useful for thermoplastic urethane elastomers (TPU)

- High purity product (≥ 99.2 %) with reduced amount of side products
- Very good mechanical & dynamical properties
- Good MbOCA** alternative with suitable MDI-based prepolymers

^{*} Available under different trade names

^{**} Sunset 22.11.2017. Extension of use in EU for a 4-year review period recommended by ECHA (as of 30.11.2017)

HQEE vs. 1,4-Butandiol (BDO)*

^{*} Used as chain extender in MDI / Ester TPU, Shore D 60: lower values are better

HQEE: Typical End-Applications

Rollers & Wheels

For high dynamic load capacity or high speed applications, e. g.: roller coaster, fork lift trucks etc.

Sealings

O-rings for high temperature and / or high pressure applications

Sporting Goods

Ski boots, wheels for roller-skates

Shoe Soles

Wear insert for high heels etc.

Addolink® 1604

Description

- Isobutyl 3,5-diamino-4-chlorobenzoate (CDABE)
- Melting point: approx. 88 °C
- Water content: max. 0.15 %

Application

- Amine chain extender
- High performance hot cast elastomers with TDI-based prepolymers
- Especially useful for large & intricately shaped parts, e. g. pipeline pigs

- Very good mechanical & dynamical properties
- Long pot life, favorable classification
- Good MbOCA* substitute

^{*} Sunset 22.11.2017. Extension of use in EU for a 4-year review period recommended by ECHA (as of 30.11.2017)

Addocat®

Catalysts for Polyurethane Applications

Addocat®: Complete Product & Application Overview

Addocat [®]	Rigid Foam				Flexible Foam			Elastomers			Continue	Adhesives	Special Characteristics	
	Slab	Panels	Spray Foam	Appliance & Pipe Insulation	Ester	Ether	Molded- Integral	Cast	Cellular	TPU	Coatings	& Sealants	Special Characteristics	
DB (BDMA)	•	•		•	•						•	•	Gelling co-catalyst, good emulsifier, improves flow and adhesion to facings, reduces friability in high-water formulations	
PP (Blend of tert. amines)		•		-	•				-		•	•	Balanced catalyst, improves flow	
SO (Tin(II) octoate)			•		•	•	•						Strong gelling catalyst for flexible foam	
10/9 (Tertiary amine)											•	•	Mild gelling catalyst for wood coatings	
105 (TEDA/DPG)	•	•	•	-		•	•		•		•	•	Strong multi-purpose gelling catalyst	
108 (BDMAEE/DPG)	•	•	•	-		•	•						Strong blowing catalyst, improves flow	
117 (DMP)	•	•		-	•								Gelling co-catalyst, good solubilizer	
118 (DMDEE)			•	-	•	•	•		•		•	•	Catalyst for 1K & spray foam, improves shelf-life	
1221VN (Blend of tert. amines)	•	•											Balanced rigid foam catalyst	
1656N (Blend of DBTL & TEA)	•												Used mainly in rigid slabstock	
1926 (Blend of DMCHA & polyol)	•	•		•									Improved metering compared to DMCHA	

Addocat® DB

Description

Benzyldimethylamine (BDMA)

Viscosity: 3 mPa-s

Water content: max. 0.15 %

Application

- Rigid foam: panels, slab, in-situ foam, esp. high-water formulations
- Flexible foam: sole catalyst in ester-based formulations
- Also used in cold-cast elastomers, EP and UPE resins etc.

- Cost-effective, moderate back-end biased universal co-catalyst
- Reduces friability, provides tough & elastic surface
- Very good emulsifier, improves flow & adhesion to facings

Addocat® PP

Description

Blend of tertiary amines

Viscosity: 3 mPa·s

Water content: max. 0.5 %

Application

- CASE: coatings based on aliphatic isocyanates, cellular elastomers*
- Flexible foam: ester-based formulations
- Rigid foam: panels, appliance & pipe insulation

- Moderate activity balanced amine catalyst
- Improves flow
- Water soluble

^{*} Addocat® PP is used together with Addovate® SM, Addovate® DD 1092 and suitable Stabaxol® grades in the production of NDI-based high performance microcellular elastomers

Addovate®

Silicon-free Emulsifiers & Foam Stabilizers for Polyurethane Applications

Addovate®: Typical Applications

Automotive upholstery

Textile lamination

Filters & sponges

Dampening elements

Packaging

Carpet underlay

Addovate® surfactants are predominantly used in ester flexible foam & cellular elastomers

Addovate®: Product and Application Overview*

		Function		Main Application							
Non-Ionic	Emulsifier	Stabilizer	Crosslinker	Tech Standard	nical Semi-rigid	Textile	Low Odor / Fogging	Cellular Elastomers			
Addovate® EM	+++	+		•		•	•				
Addovate® WM	+++			•	•						
Addovate® 3240	+++			•			•	•			
Ionic											
Addovate® DD 1092*	++							•			
Addovate® SM*	++	++	+	•	•			•			
Addovate® SV	++	++	+					•			
Addovate® TX	+	+++	+	•		•					

^{*} Used together with Addocat® PP and suitable Stabaxol® grades in the production of NDI-based high performance microcellular elastomers

Addovate® EM / TX

Description

- Addovate® EM: non-ionic emulsifier
- Addovate® TX: ionic emulsifier & foam stabilizer
- Often used together, but can be combined with other Addovate® grades

Application

- Textile grade ester foam, e. g. for textile lamination, paint rollers etc.
- Standard technical grade foam, e. g. sponges, packaging etc.
- Especially suitable for clickable foam

- Silicon-free, organic surfactants
- Very even cell size, no pin holes, excellent cell size control
- Less cutting loss due to a smaller edge zone

Addovate® WM / SM

Description

- Addovate® WM: non-ionic emulsifier
- Addovate[®] SM: ionic emulsifier & foam stabilizer
- Typically used together, but can be combined with other Addovates[®]

Application

- Standard & semi-rigid technical foam, e. g. filters, sealants, packaging
- Water-blown & crosslinked cellular elastomers* (machine casting)
- Addovate® SM can be substituted with SV for hand casting

- Silicon-free, organic surfactants
- Small, even cell size

^{*} Addovate® SM is used together with Addocat® PP, Addovate® DD 1092 and suitable Stabaxol® grades in the production of NDI-based high performance microcellular elastomers

Disclaimer

This information and our technical advice – whether verbal, in writing or by way of trials – is subject to change without notice and given in good faith but without warranty or guarantee, express or implied, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheets - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

Unless specified to the contrary, the values given have been established on standardized test specimens at room temperature. The figures should be regarded as guide values only and not as binding minimum values. Kindly note that the results refer exclusively to the specimens tested. Under certain conditions, the test results established can be affected to a considerable extent by the processing conditions and manufacturing process.

©2020 LANXESS. Addocat®, Addovate®, Addolink®, Adiprene®, Disflamoll®, Levagard®, PHT4-Diol™, Stabaxol®, Vibrathane®, LANXESS and the LANXESS Logo are trademarks of LANXESS Deutschland GmbH or its affiliates. All trademarks are registered in many countries in the world.

LANXESS Deutschland GmbH, D-50569 Köln

BU PLA (Polymer Additives)