Chapter 11

Poisson regression

$$y \sim Po(\lambda),$$
 $\mathbb{E}[y] = \lambda,$
 $\mathbb{V}[y] = \lambda.$

- Counts (non negative integers) without upper limit
- One parameter, λ .
- Variance equal to mean.
- For large λ close to normal.

data sets

culture population		contact	total_tools		
1	Malekula		1100	low	13
2	Tikopia		1500	low	22
3	Santa	Cruz	3600	low	24
4		Yap	4791	high	43
5	Lau	ı Fiji	7400	high	33
6	Trobriand		8000	high	19
7		Chuuk	9200	high	40
8		Manus	13000	low	28
9		Tonga	17500	high	55
10	ŀ	Hawaii :	275000	low	71

Poisson model

$$tools_i \sim Po(\lambda_i)$$
 $g(\lambda_i) = \alpha + \log(population_i)\beta_p + contact_i\beta_c$
 $\alpha \sim N(0, 10)$
 $\beta_p \sim N(0, 10)$
 $\beta_c \sim N(0, 10)$

Back to: Poisson model, posterior fit

Posterior fit

Fitted simple_fit through stan then:

```
\begin{split} &\log \_pop.seq <-seq(from = 6, \ to = 13, \ length.out=100) \\ &samples <-extract(simple\_fit) \\ &lambda\_mat <-sapply (1: length (samplesSalpha), \ function (i) \{ \\ &return(exp(samplesSalpha[i] + log\_pop.seq * samplesSbeta\_p[i]) \} \\ &lambda\_mat\_c <- sapply (1: length (samplesSalpha), \ function (i) \{ \\ &return(exp(samplesSalpha[i] + log\_pop.seq * samplesSbeta\_p[i] + samplesSbeta\_c[i])) \\ &\}) \end{aligned}
```

Complete code in Rmarkwdown on homepage later this week.

Use the right scale

Height data

Figure: Height, and fitted normal distribution

Height data

• If we had the geneder of the person we could easily fit a model

$$y_{i} \sim N(\mu_{i}, \sigma_{i})$$

$$\mu_{i} = \alpha_{m} m_{i} + \alpha_{f} (1 - m_{i})$$

$$\sigma_{i} = \sigma_{m} m_{i} + \sigma_{f} (1 - m_{i})$$

$$\alpha_{m} \sim N(170, 100)$$

$$\alpha_{f} \sim N(170, 100)$$

$$\sigma_{f} \sim HC(0, 5)$$

$$\sigma_{m} \sim HC(0, 5)$$

The population density

• The density of the total population:

$$p(y) = p(y|m = 1)p(m = 1) + p(y|m = 0)p(m = 0)$$

Figure: Height, and fitted normal distribution using gender

Missing

• But if we don't have gender?

Missing

- But if we don't have gender?
- Lets pretend we have.

Missing

$$y_i \sim pN(\alpha_1, \sigma_1) + (1 - p)N(\alpha_2, \sigma_2)$$

 $\alpha_1 \sim N(170, 100)$
 $\alpha_2 \sim N(170, 100)$
 $\sigma_1 \sim HC(0, 5)$
 $\sigma_2 \sim HC(0, 5)$
 $p \sim U[0, 1]$.

Density for mixture

Figure: Height, and fitted normal distribution for the mixture distribution

Density for mixture

Figure: Height, and fitted normal distribution for the mixture distribution

Mixture for Classification

An alternative formulation is to use:

$$y_i \sim N(\alpha_{x_i}, \sigma_{x_i})$$

 $x_i \sim Bin(1, p)$
 $\alpha_0 \sim N(170, 100)$
 $\alpha_1 \sim N(170, 100)$
 $\sigma_0 \sim HC(0, 5)$
 $\sigma_1 \sim HC(0, 5)$
 $\rho \sim U[0, 1]$.

Mixture for Classification

- Better for interpretation.
- Not possible to fit in Stan. Can't handle discrete unobserved variables.

Rstan mixture

Posterior

Figure: Posterior distribution of the parameters

Mixture for Classification

Figure: Using Height to determine class

Definition Mixtures

- Distribution of a mixing distribution.
- General form of two dimensional mixture distribution

$$g(x) = p_1g_1(x) + (1 - p_1)g_2(x).$$

Car insurance, number of claims of past 5 years

first Poisson model

$$y_i \sim Po(\lambda_i)$$
 $g(\lambda_i) = lpha$
 $lpha \sim N(0, 10)$

first Poisson model

$$egin{aligned} y_i &\sim p\delta_0 + (1-p)Po(\lambda_i) \ g(\lambda_i) &= lpha \ lpha &\sim \mathcal{N}(0,10) \ p &\sim \mathit{U}[0,1] \end{aligned}$$

Including covariates

$$y_i \sim p\delta_0 + (1 - p)Po(\lambda_i)$$

$$g_1(\lambda_i) = \alpha + x\beta_x$$

$$g_2(p) = \alpha_0 + x\beta_x^0$$
...

β for p

Figure : Covariates for p_{Polyment} = 0.9 0.0 0.

β for λ

Figure : Covariates for λ_{B} , λ_{E} , λ_{E} , λ_{E} , λ_{E} , λ_{C} , λ_{C} , λ_{C} , λ_{C}

Height and Weight

Beyond one dimension

Multivariate Normal, X d—dimensional

$$p(X|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{0.5}} e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}$$

- Mean, $\mathbb{E}[X] = \mu$,
- Covariance, $\mathbb{C}[X] = \Sigma$.
- Conditional distribution are also normal.

Height and Weight

Advanced mixture

$$[height_i, log(weight_i)] \sim N(\mu_{m_i}, \Sigma_{m_i})$$

 $m_i \sim Bin(1, p)$

- Here μ_i is 2-d vector.
- Here Σ_i is 2x2 matrix.
- Complete model for m_i , $height_i$, $log(weight_i)$.
- To predict height given gender and weight, regression model.
- If we lost gender?

Height and Weight

Non linear regression

Figure: Height given log(weight)

Non linear regression

Figure: Height given log(weight)

Non linear regression

Figure: Height given log(weight)