Introduction to differential equations, initial value problems, non-uniqueness

MA221, Lecture 1

Roy Cardenas, Ph.D.

Stevens Institute of Technology, Fall 2024

What is a differential equation?

. Numerical equations are equations with numerical solutions $4 \times x^2 - 1 = 0 \dots \times = \pm 1$ · Functioner equations are equations with function solutions $(+(+)^2 - 1 = 0 - ... f(x) = + 1 f infinitely range$ Informally, a Diff Eq is a functional equations involving derivatives of the solution functions

What is a differential equation?

Ex:
$$f(x) + f(x) = 0$$
 and order linear

$$f(x) f(x) + \left[f'(x)\right]^{5} = f'(x) \text{ 4th order}$$

$$4 + \left[f'(x)\right]^{5} = g'(x) \text{ 4th order}$$

$$4 + \left[g''\right]^{5} = g'(x)$$

Classification of differential equations

• Classify by "type": ODE or PDE?

"partial"

solutions are multivariate

univariate

• Classify by "order": highest order derivative is...?

• Classify by "linearity": linear or non-linear?

What are some examples of differential equations?

Example:
$$y'=0$$
 has solution $y=C$; $C \in \mathbb{R}$

Ex: $y''=0$ has solution $y=mx+b$; $n,b \in \mathbb{R}$

What are some examples of differential equations?

Ex:
$$g'' + y = 0$$
. $y = A \sin x + B \cos x$

how do verify?

 $y' = A \cos x - B \sin x$
 $y'' = -A \sin x - B \cos x$
 $y'' + y = 0$.

What are some examples of differential equations?

Verifying (explicit) solutions

Example:
$$\frac{dy}{dx} = x\sqrt{y}$$
 has an explicit solution $y = \frac{1}{16}x^4$

(LHS) = $\frac{1}{4}x^2$
 $\frac{dy}{dx} = \frac{1}{4}x^3$

(PHS) = $x\sqrt{y} = x\sqrt{\frac{1}{16}x^4} = x(\frac{1}{4}x^2) = \frac{1}{4}x^3$

General solution $y = (\frac{x^2}{4} + C)^2$

Verifying (implicit) solutions

Example:
$$\frac{dy}{dx} = -\frac{x}{y}$$
 has an implicit solution $x^2 + y^2 = 1$

Use implicit differentiation on this

 $(RHS \text{ of } A)' = 0$
 $(RHS \text{ of } A)' = 2x + 2y \frac{dy}{dx} = 0$
 $(LHS \text{ of } A)' = 2x + 2y \frac{dy}{dx} = 0$
 $= \sum_{x=0}^{\infty} \frac{dy}{dx} = -\frac{x}{y}$
 $= \sum_{y=0}^{\infty} \frac{dy}{dx} = -\frac{x}{y}$

Initial value problems

Example: y'' + y = 0 subject to $y'\left(\frac{\pi}{2}\right) = y\left(\frac{\pi}{2}\right) = 1$ is an IVP. What is a solution to this IVP?

recall, general solution to A is
$$y = Asinx + Bcosx$$

$$|= y(\frac{\pi}{2}) = Asin(\frac{\pi}{2}) + Bcos(\frac{\pi}{2}) = A$$
Since $y' = Acosx - Bsinx$,
$$|= y'(\frac{\pi}{2}) = Acos(\frac{\pi}{2}) - Bsin(\frac{\pi}{2}) = -B$$

$$= 0$$

$$\Rightarrow y = sinx - cosx$$

Non-Uniqueness

While we expect a given differential equation to have multiple solutions ("a family of solutions"), it is also possible for an IVP to have more than one solution.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\sqrt{y} \quad \text{subject to} \quad y(0) = 0$$