70. Exercise 1:

◎ [酸改一个最大层 验概率 d+(x)

②计算出一个x391临

多计算条件风险 概率 Pe. 2. $\frac{2}{2}$ \frac

Encimen AD	Analyse en Com	posantes Principales	
	ACP et C	(exsification i 解题进程)	
O 成 X , b) 及 X	$ X = \begin{bmatrix} -4 & -2 \\ -3 & -1 \\ -1 & 0 \\ 2 & 0 \\ 2 & 1 \\ 4 & 2 \end{bmatrix} $	$ \begin{array}{c} \overline{X} = \begin{bmatrix} \frac{1}{6}(-4-3-1+2+2+4), \frac{1}{6} \\ = \begin{bmatrix} 0, 0 \end{bmatrix} \end{array} $	1-)-1+0+0+1+))
€ KYXc	$X_c = X - \overline{X} = X$	(•	
© À. E. Colcul (a matrice de variance -covariance E	$\Sigma = \frac{1}{n} X_c^T X_c =$	1 [-4-3-1224]	$ \begin{bmatrix} -4 & -2 \\ -3 & -1 \\ -1 & 0 \\ 2 & 0 \\ 2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 50 & 21 \\ 21 & 10 \end{bmatrix} $
O T & 10 g Le premier vecteur principale.	· 写入	$6 \Sigma - \lambda I_{ol} = 50 - \lambda ^{2}$ $\sqrt{\lambda} \sqrt{\lambda} \sqrt{\lambda} \sqrt{\lambda} \sqrt{\lambda} \sqrt{\lambda} \sqrt{\lambda} 50 - \lambda ^{2}$ $= 59$, $\lambda_{ol} = 1$ eteur principal est associé l	λ
	龙	$\begin{bmatrix} 50 - 57 & 21 \\ 21 & 10 - 57 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$	
		3/7	-/x/+0
⑤计算相应的主动等		mposante principale:	
la assepsante principale sorre	espondonte	Xc · V1 = [-4 -2] · [1 -3 -1 -1 0 2 0 2 1 4 2	$ \begin{bmatrix} -34/7 & a & -34 \\ -24/7 & b & -24 \\ 17/7 & c & -7 \\ 24/7 & e & 17 \\ 34/7 & f & gap & $
の方文、Ciogsification 磁型域は Seuil、 平行放 k	の書 dist (短篇)	20/7. 我们对特所有数据。 ************************************	表 1 秋行) 可行 出り、「題表: - dist a > b = 10 < 和 , 其宅不満及 - C, = {a, b}
			State De NC C . = { e. d. }

Examen. A.D. (最小之来法) Moindres corrès 人的变革的现象值 人自安美的观察值 杨建一元四月方楼: Modèle : y= Po+Pix W (X20, Po=y=7)则为真线的微矩 例为直线的新考(Ax) 为拟合海马观测值 阿豫着为教小时,护 对机构打造 含的纸点数译的。 ex, 4,2 绿谷的有点的淡卷. 上遊門的自方性的可以為成隊多水多数月的方指于人人人戶、 f(x, b) = 5 bx \$x(x) <2> 课件的方法: 由于拟合植和观察值的误差必须饰故的所有点的观察使与拟合值 耐考, 阁此要未和。图S来表示误差网中平方和,则有: Sipo, Bi) = [(yi - yi) = [(yi - B - B, Xi) pour <1> S. (Po, P) 计算最小值。 Sefk, K=1,3,3...a) = } (y; - \(\psi_1 \psi_1 \x) - \beta_2 \quad \(\psi_1 \x) - \beta_3 \quad \x) \] <2> 为了证与(户,户,)取得最心值,将与(户,户,分别对户,和户,利局等数,并多 空间第20. 联立到错。 导数为口时取最大阵*、一般来讲, $\begin{cases} \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \\ \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \end{cases}$ $\begin{cases} \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \\ \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \end{cases}$ $\begin{cases} \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \\ \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \end{cases}$ $\begin{cases} \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \\ \frac{\partial S}{\partial \beta_{i}} = \frac{\partial S}{\partial \beta_{i}} (y_{i} - \beta_{0} - \beta_{i} x_{i})^{2} = [0] \end{cases}$ $\begin{cases} P_{i} = \frac{n}{N} \sum_{i=1}^{N} A_{i} y_{i} - \frac{n}{N} y_{i} - \frac{$ 其中,为=点点Xi, y=元之yi, 分别是明朝在x和少洲超话。

世間, 我们需要求出发酵品 [Po] 以解出网门框线以及 Sifo, fi) 講用 课符 20 Morralres carrés c c To n°2) >> - Poutie 2.

To Enercice 3.

- 1. :: fet) = cw/t-1/+ bt' 中有2个未知数, fco)=1, fc4)=3, fc2)=7
 :. 7-能石角足》至一的 a. b II.
- 2. $\hat{y} \not = \hat{y} \not= \hat{$
- 3、对多分别对户。户、成偏号、

$$\hat{y} = \beta_0 + \beta_1 x$$

如何合理地计算误差呢?

Answer:

拟合值和观察值的误差必须体现出所有点的观察值和拟合值的差,因此需要进行求和。 因为数据散落在回归直线的上下两侧,为了防止正负误差相互抵消,因此将误差进行平方 后再求和。

也就是说当 $\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$ 最小时,曲线是最佳的估计,用S来表示误差的平方和,则有:

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

为了让 $S(\beta_0,\beta_1)$ 取得最小值,将 $S(\beta_0,\beta_1)$ 分别对 β_0 和 β_1 求偏导数,并令它们为0,联立可得:

$$\begin{cases} \frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$

上面的这个公式称为正规方程组(Normal Equations),它的解为

$$\begin{cases} \beta_1 = \frac{n\sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} \\ \beta_0 = \bar{y} - \beta_1 \bar{x} \end{cases} \quad \text{where} \quad \begin{cases} \beta_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} \\ \beta_0 = \bar{y} - \beta_1 \bar{x} \end{cases}$$

其中 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, 分别是观测值x和y的均值

Toxonen. A.D.							(加)	rec C.	indire	de	Crimi)	
神教机态:	信息		Entr.	py):	n		i) log P	(X = i)					
	表化	有数	ze l	l'anoli	ice .	Gini) :							
							中一个陌				易的極	4	
							n D Pirt			,			
		7	19.	Pii	表示	英中的7	将本屬	茅订	闭极	1			
D'indiae de Cini associté à base d'appentison	it # 1	展结.	E, A	J Gu	ini s	h Ja:	n E Pit	1-pi):	1 x11-	1) + 1 × (1-7) =	1.7	
0 Les indices de Gim	订算	60 AZ	Civi	7h	权:								
associé à chaque variable.		Ti"	Ciel	" 		Ciel	Dus	/	Von	Freque	ney	Pa	
(2)到出在岁野情况下各个颜明的情况	1					oler uvert	2		t	2		1/1	
Jest Want July						uie	1		2	3		3/6	
ED IT & Cim The.	\$"(rel"	柳湖	EMP	Gim	指数数	= e Cimi	猪发					
分類的行為 E Pi Gini(次数1、次数2)							0,1)+ 3				, , , ,	,	
= E Pi · (1-P, 1/2)	$=\frac{2}{6}\times$	11-	12-0) +	1/6 ×	(1-0-	12)+3/1	1-137-	(3)] =	0 -+ 0 -+	5 × 7 3	= 9	
大阪 外交之		Ti	. Teny	révoti	we"	\$ 3	Températi	we	Oui	Non	F		P
							chand		2	1	3		3/6
		5"	cantin	not an	, 'AH	1/2 mrs Cris	froid	: (Gini	塔卷、	2	3		3/6
							$\frac{3}{6}$		-13,]	+ 3 ×[1	-13) - (3)	2,3	
							= 4						

> Gini - température = ; m Gini - vent = ;

Gini - température = 7 (max, \$2153 \$ 7576)

5.1/21 3, 7343 AB: b > (A+E)B: b+2 [A b] BSVD: [A+AA 6+A6] $\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} V_A & V_b \end{bmatrix} \begin{bmatrix} \mathcal{E}_A \\ \mathcal{E}_b \end{bmatrix}$ 最小之条法、解决数据拟分, 直线 V:WX+b为爱拟名出的结果 3. 与京府值y 足离时总部. 如一:政义上阿最小值 发现上对日本编号: 指写图成,似阳线 (本大=2[w(えx; -nx+)+nxy-をxy] 12 15 [(Wx; + b) - y;) 13 34 = 0 > W = = (x; -x) cy; -y) = 2 \[\int wx; + \sum_{6.0} - \sum_{yi} \] 0 E (x; -x) $\frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \Rightarrow nx = \sum_{i=1}^{n} x_i$ 0 1 Grein to: 2 [10 nx + nb - ny] /主義数:0、限アコル(Wx+b-ず):0 15 6= y-wx 0 接着对心形容多: DL DE [(WX + b) - y:] = \(\int 2 \(\omega \tau_1 + b - y_1) \(X \) |