CS542200 Parallel Programming HW4: Blocked All-Pairs Shortest Paths

Josh Kao

National Tsing Hua University

2014/12/11

- 1 Problem Description
- 2 Input/Output Formats
- Working items
- 4 Grading
- 5 Reminder

All-Pairs Shorest Paths

Given an $N \times N$ matrix D = [d(i,j)] where d(i,j) represents the shortest-path distance from a vertex i to a vertex j. Let $D^{(k)} = [d^{(k)}(i,j)]$ be the result which all the intermediate vertices are in the set $\{1,2,\ldots,k\}$.

Floyed-Warshall Method

$$\begin{aligned} d^{(k)}(i,j) &= \\ & \text{weight of } (i,j) & \text{if } k = 0; \\ & \min(d^{(k-1)}(i,j), d^{(k-1)}(i,k) + d^{(k-1)}(k,j)) & \text{if } k \geq 1. \end{aligned}$$

The matrix $D^{(N)} = [d^{(N)}(i,j)] = D$ gives an answer to APSP problem.

FW Algorithm

Pseudo Code

```
\begin{array}{c|c} \text{for } k \leftarrow 1 \text{ to } N \text{ do} \\ & \text{for } i \leftarrow 1 \text{ to } N \text{ do} \\ & & \text{for } j \leftarrow 1 \text{ to } N \text{ do} \\ & & & d[i][j] \leftarrow min(d[i][j], d[i][k] + d[k][j]); \\ & \text{end} \\ & \text{end} \\ \end{array}
```

Parallel Strategy

ullet For each ${f k}$, calculate $d^{(k)}(i,j)$ in parallel

FW algorithm CUDA version

<u>B</u>ut

Q. How can we do APSP on multi-GPUs individually?

Blocked FW algorithm

- Partition matrix into $N/B \times N/B$ blocks of $B \times B$ submatrices.
- For intance, N = 6, B (Blocking Factor) = 2:

0	1	2	3	4	5
6	7				

Block	Block	Block
(1,1)	(1,2)	(1,3)
Block	Block	Block
(2,1)	(2,2)	(2,3)
Block	Block	Block
(3,1)	(3,2)	(3,3)

Figure: Divide a matrix by B = 2

Blocked FW algorithm

- 3 phases in each iteration
 - Phase 1: Self-dependent block
 - Phase 2: Pivot-row & Pivot-column blocks
 - Phase 3: Other blocks

Figure: Blocked algorithm in 1^{st} iteration

Blocked FW algorithm

- It will run N/B iterations
- In this example, it will run 6/2 = 3 iterations.
 - Phase 1: Green; Phase 2: Yellow; Phase 3: White

Figure: Blocked algorithm

- 1 Problem Description
- 2 Input/Output Formats
- Working items
- 4 Grading
- Reminder

Execution Format

- Your program has to be able to reading file, and generate output in another file.
- Your program accepts two input parameters.

Format

\$./{YOUR PROGRAM} {INPUT FILE} {OUTPUT FILE}

For instance,

[kjs1095@lsalab ~]\$./HW4_103065566_cuda.exe tiny_testcase output [kjs1095@lsalab ~]\$ diff -b output answer

Input Format

- ullet The test case begins with a line contains 2 integers $oldsymbol{\mathsf{N}}$ and $oldsymbol{\mathsf{M}}$
 - N : num of vertices ($1 \le N \le 6000$)
 - M : num of directed edges
- Each of the following M lines contains 3 integers S, T and D
 - S: source vertex id $(S \neq T)$
 - T: target vertex id
 - D: distance from **S** to **V** $(0 \le D \le 100)$

```
[kjs1095@lsalab ~]$ cat tiny_testcase
4 4
1 2 55
2 3 66
3 2 1
2 4 5
```

(a) Sample content of input

(b) Graph

Figure: Sample Input

Output Format

- ullet Show the shortest distance from i^{th} vertex to j^{th} vertex
- ullet If there is no path from i^{th} vertex to j^{th} vertex, output \emph{INF}

```
[kjs1095@lsalab ~]$ cat output
0 55 121 57
INF 0 66 5
INF 1 0 71
INF INF INF 0
```

Figure: Sample Output

- 1 Problem Description
- 2 Input/Output Formats
- Working items
- Grading
- 5 Reminder

Implementation

- Single GPU
- Multi GPU (MPI version)
- Multi GPU (OpenMP version)
- Makefile

Report

- Implementation
- Profiling results
- Experiments
 - Weak Scalability & Time Distribution
 - Blocking Factor
 - Compare three implementations
 - Others

Think of the trend of the figure and explain.

Experience/Conclusion

Example figures

(b) Bandwidth trend

Figure: Example figures of blocking factor experiment

- 1 Problem Description
- 2 Input/Output Formats
- Working items
- 4 Grading
- Reminder

Grading

- **1 4%** Lab2
- 2 [48%] Correctness
- **30%**] Report
- **10%**] Demo
- **5%**] Bonus

Total score = min((1)+(2)+(3)+(4)+(5), 100) For each detail, check out the document on iLMS.

- 1 Problem Description
- 2 Input/Output Formats
- Working items
- 4 Grading
- Reminder

Login to server

• **Host**: 140.114.91.176

• Account: Please refer to Account_Table.pdf

• Password: 1234userX [X=1 \sim 67] (Default)

It's recommended to use *passwd* to change your password.

How to run MPI version?

- Execute setting.sh for connecting other machines
 - \$. setting.sh
- Modify hostfile
 - ullet Choose machines from gpucluster0 \sim gpucluster3
- Modify Makefile
 - I used HW4_cuda_mpi.cu for example
 - You have to change it to your own file name.

Compile MPI version (Take HW4_cuda_mpi.cu for example)

\$ make HW4_cuda_mpi.exe

Run MPI version

\$ mpirun -np 2 -hostfile hostfile ./HW4_cuda_mpi.exe in1 out1

Reminder

- Upload HW4_{Student-ID}.zip to iLMS before 1/11(Sun) 23:59:59
 - HW4_{Student-ID}_cuda.cu
 - #W4_{Student-ID}_mpi.cu
 - HW4_{Student-ID}_openmp.cu
 - HW4_{Student-ID}_report.pdf
 - Makefile
- Please start your work ASAP and do not leave it until the last day!
- Late submission penalty policy please refer to syllabus.
- Asking questions on iLMS or through e-mail is also welcome!