Examen Final Libre

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{C} la elipse con focos $F_1(9,2)$ y $F_2(-3,2)$, que pasa por P(-2,0).
 - a) Dar la ecuación cartesiana de C y determinar en qué puntos corta al eje x.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje x en los mismos puntos que \mathcal{C} y su vértice coincide con el centro de \mathcal{C} . Determinar el foco de \mathcal{P} .
 - c) Dar la expresión segmentaria de la tangente de \mathcal{C} en el punto P.
 - d) Graficar \mathcal{C} , \mathcal{P} , los focos, la directriz de \mathcal{P} y la tangente.
- 2. π_1 y π_2 son dos planos perpendiculares, tales que π_1 contiene la recta r_1 : t(-1, 1, -1) + (1, 0, 1) y π_2 contiene tanto a r_1 como a r_2 : $\frac{x-1}{2} = y + 2 = z$.
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar las trazas, y los vectores normales \mathbf{n}_1 y \mathbf{n}_2 .
- 3. Dar una ecuación del plano π_3 perpendicular a π_1 y π_2 del ejercicio anterior, y que pase por P(2,0,1).
- 4. a) Dar la ecuación de la cuádrica S con centro $C(x_0, 2, 1)$, que pasa por P(0, 0, 1), y su traza con el plano $\pi: z=2$ es la cónica $C: 3x^2-2y^2-6x+8y-6=0$.
 - b) Determinar el tipo de cuádrica, su centro, e indicar si tiene simetría respecto de algún plano coordenado. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 5. Determinar el área de la región pintada en gris. Justificar.

6. Considere la siguiente la superficie de revolución $S: x + y^2 + z^2 - x^3 = 0$.

- a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
- b) Determinar el volumen del sólido limitado por S para $x \leq 0$.
- c) Graficar la superficie y la curva \mathcal{C} .

7. Sea la siguiente superficie $S: 2(\cos^2 \varphi - \sin^2 \varphi) + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{2\cos \theta}{r\sin^2 \theta}$ (coordenadas esféricas: θ es el ángulo polar, y φ el azimut).

- a) Determinar el tipo de cuádrica y una expresión cartesiana.
- b) Indicar si S tiene centro, y en tal caso, expresarlo en coordenadas cilíndricas.
- c) Graficar la superficie y su traza con el plano xz.

Justificar todas las respuestas.

Hojas entregadas:

Firma: