Лабораторная работа 3.2.4 и 3.2.5. Свободные и вынужденные колебания в электрическом контуре

Солодилов Михаил, Б01-306 23 октября 2024 г.

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре.

Оборудование: осциллограф, генератор сигналов, магазин сопротивлений, магазин емкостей, магазин индуктивности, соединительная коробка с шунтирующей емкостью, соединительные провода.

Установка

Рис. 1: Схема электрической цепи

В цепи используется катушка постоянной индуктивности L=100 мГн, переменной емкости C и сопротивления R. Колебания напряжения наблюдаются на осциллографе, подключенном параллельно конденсатору. Также используется дополнительная емкость C_1 , на которую изначально поступает сигнал генератора. Она нужна для снижения выходного импеданса генератора, чтобы он не сильно влиял на общий импеданс контура.

При исследовании свободных колебаний будем подавать на контур периодические импульсы, а в случае вынужденных колебаний — синусоидальный сигнал.

Ход работы и измерения

1. Период колебаний при установленной 0 емкости на магазине емкостей $T_0=68,0$ мкс. $T_0=2\pi\sqrt{LC_0}\longrightarrow C_0=\frac{T^2}{4\pi^2L}=1,14\cdot 10^{-9}\approx 1$ нФ

$$T_0 = 2\pi \sqrt{LC_0} \longrightarrow C_0 = \frac{T^2}{4\pi^2L} = 1,14\cdot 10^{-9} \approx 1 \; {
m H}$$
Ф

Будем увеличивать емкость контура и сравнивать экспериментальную величину периода с вычисленной теоретически:

$C+C_0$, н Φ	T_{exp} , MKC	T_{th} , MKC
2	92,8	88,9
3	112	108,8
4	128	125,7
5	144	140,5
6	156	153,9
7	170	166,2
8	181	177,7
9	192	188,5
10	202	198,7

Таблица 1: Экспериментальные и теоретические значения периодов колебаний

Наибольший вклад в погрешность вносит точность наших измерений. Что касается графика, угол наклона $\alpha = 1,0001 \pm 0,0014$.

2. Подберем и установим значение C^* так, чтобы частота собственных колебаний была $u_0 = 6.5 \text{ к}$ Гц. $C^* = \frac{1}{4\pi^2 \nu_0^2 L} \approx 6 \text{ н}$ Ф. Рассчитаем теоретически критическое сопротивление контура $R_{cr} = 2\sqrt{\frac{L}{C}} = 8170$ Ом. Измеряем логарифмических декремент затухания по соседним максимумам при различных внешних сопротивлениях $(0,05R_{cr}-0,2R_{cr})$:

Здесь мы приняли $R_L=35$ Ом приблизительно. Построим график зависимости $\frac{1}{\theta^2}=$ $f(\frac{1}{R^2})$. Так как

$$\theta = \ln\left(\frac{U_k}{U_{k+1}}\right) = \gamma T = \gamma \frac{2\pi}{\omega_1}$$
$$\theta^2 = \gamma^2 \frac{4\pi^2}{\omega_1^2} = \gamma^2 \frac{4\pi^2}{\omega_0^2 - \gamma^2}$$

$R_{\rm BH}$, Om	$R = R_{\text{BH}} + R_L$, OM	$\theta = \ln \frac{U_k}{U_{k+1}}$	$Q = \frac{\pi}{\theta}$
408	443	0,36	8,68
735,1	770,1	0,89	3,52
1061,9	1096,9	1,11	2,84
1388,6	1423,6	1,69	1,86
1715,3	1740,3	2,89	1,09

Таблица 2: Декремент затухания свободных колебаний

$$\frac{1}{\theta^2} = \frac{1}{4\pi^2} \left(\frac{\omega_0^2}{\gamma^2} - 1 \right) = \frac{1}{4\pi^2} \left(\frac{4L}{CR^2} - 1 \right)$$

то зависимость должна получиться линейной:

$$\frac{1}{\theta^2} = \frac{1}{R^2} \frac{L}{C\pi^2} - \frac{1}{4\pi^2}$$

Прямая построена по 4-м точкам: всем, кроме предпоследней, её убрали из рассмотрения, так как она плохо ложиться на прямую. Коэффициент $k=(1,6001\pm0,0082)\cdot10^6$. Найдем $R_{cr}=2\pi\sqrt{k}=(7947\pm40)$ Ом.

3. Рассчет добротности по спирали на фазовой плоскости. В помощью осциллографа получаем портрет колебаний на фазовой плоскости (в режиме XY), определяем декремент затухания по соседним пересечениям оси X.

R, Om	U_k , дел	U_{k+1} , дел	θ	Q
443	7,9	5,5	0,36	8,68
1740,3	2,88	0,16	2,89	1,09

Таблица 3: Определение добротности по фазовой плоскости

4. Рассчитаем теоретическое значение добротности через параметры контура

$$Q = \frac{\pi}{\theta} = \frac{\pi}{\gamma T} = \frac{\pi}{\frac{R}{2L}\frac{2\pi}{\omega_1}} = \frac{L}{R}\omega_1 = \frac{L}{R}\sqrt{\omega_0^2 - \gamma^2} = \frac{L}{R}\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} = \frac{1}{2}\sqrt{\frac{4L}{CR^2} - 1}$$

При параметрах L=100 мГн, C=6 нФ имеем:

- 1. $R_1 = 443 \text{ Om } Q_1 = 9,20$
- 2. $R_2 = 1668$ Ом $Q_2 = 2,40$

5. Измерение АЧХ и ФЧХ вынужденных колебаний.

Установим на генераторе синусоидальный сигнал и будем наблюдать картину вынужденных колебаний. Занесем в таблицу полученные данные и построим графики в координатах $\frac{U}{U_0} = \frac{\nu}{\nu_0}$

и кГи	2U P	$\Lambda + MRO$	Λ Α σ
ν , к Γ ц	$2U_0, B$	Δt , MKC	$\Delta \phi, \cdot \pi$
5,7	17	72,4	0,83
5,9	23,2	64,4	0,76
6,1	32,4	56,4	0,69
6,3	41,6	44,0	0,55
6,5	42,8	30,0	0,39
6,7	36,0	19,2	0,26
6,9	29,2	13,2	0,18
7,1	23,6	8,8	0,12
7,3	20,0	7,2	0,10
7,5	17,2	5,0	0,07

ν , Гц	$2U_0, B$	Δt , MKC	$\Delta \phi, \cdot \pi$
4,6	12,8	71	0,65
9,0	9,04	4,4	0,08
13,4	6,48	1,0	0,03
17,7	5,84	0,1	0,003
22,1	5,52	0	0
26,5	5,36	0	0
30,9	5,28	0	0
35,2	5,20	0	0
39,6	5,20	0	0
44,0	5,12	0	0

Таблица 4: АЧХ и ФЧХ для $R_1 = 443~{\rm Om}$ и $R_2 = 1740~{\rm Om}$

R, Om	$\frac{2\Delta\Omega}{\omega_0}$	Q
443	0,12	8,33
1740	1,93	0,51

Таблица 5: Определение добротности по графику АЧХ

Определим добротность по графику АЧХ. $Q=\frac{\omega_0}{2\Delta\Omega}$, где $2\Delta\Omega$ - ширина резонансной кривой на уровне $U=\frac{U_0}{\sqrt{2}}$ Рассчитаем добротность по ФЧХ.(ровно в $\frac{\pi}{4}$ не сможем измерить ввиду недостатка

точек и смещения резонанса). Примерные результаты:

R, Om	$\frac{\Delta\omega}{\omega_0}$	Q
443	0,12	8,33
1740	0	0

Таблица 6: Определение добротности по графику ФЧХ

Добротность для $R=1740~\mathrm{Om}$ оценить невозможно в виду недостатка точек.

6. Итоговая таблица:

R, Om	f(L,C,R)	$f(\theta)$	Фаз. спираль	АЧХ	ФЧХ
443	$9,22 \pm 0,10$	$8,68 \pm 0,41$	$8,68 \pm 0,86$	$8,33 \pm 0,69$	$8,33 \pm 0,76$
	(1%)	(5%)	(10%)	(8%)	(9%)
1740	$2,35 \pm 0,01$	$1,09 \pm 0,11$	$1,09 \pm 0,13$	$0,51 \pm 0,06$	0
	(0,4%)	(10%)	(12%)	(12%)	()

Вывод

В данной лабораторной работе мы исследовали свободные и вынужденные колебания в электрическом контуре и различными способами находили его добротность. Самый точный способ, конечно же, теоретический. Затем достаточно эффективен способ вычисления через декремент затухания. Фазовая спираль даёт высокую погрешность, поэтому это не очень надежный способ вычисления добротности. Способы вычисления через АЧХ и ФЧХ хороши, если есть специальная программа, позволяющая вычислять ширину резонансной кривой, и хорошо снятые данные (с этим тоже возникли проблемы). При нашей оценке у $R_2 = 1740$ Ом, данные были сняты некачественно и ориентироваться на них сложно.