Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе №4

По дисциплине «Математическая статистика» (четвёртый семестр) Исследование распределения случайной величины

Студент:

Дениченко Александр Разинкин Александр Соколов Анатолий

Практик:

Милованович Екатерина Воиславовна

Санкт-Петербург 2024 г.

Цель работы:

На основании анализа опытных данных

4. Проверить статистическую гипотезу о виде закона распределения генеральной совокупности.

1 Интервальный ряд

По условию нам дано n = 100. k - число интервалов:

$$k = \sqrt{100} = 10$$

-0.499	1.683	2.247	1.444	-0.418	-2.977	-0.968	-0.308	-1.816	-0.446
1.627	1.555	0.310	-0.074	1.414	1.007	0.555	0.003	-2.789	0.005
-0.239	-1.050	1.991	-0.362	-0.847	0.884	0.759	-1.406	0.262	-0.206
-0.961	0.096	-0.119	-0.777	0.166	-0.405	-0.572	1.624	0.119	0.049
-0.152	0.251	-0.272	-0.250	-0.048	-2.619	1.158	0.139	0.332	0.926
0.350	0.033	0.478	0.637	-0.033	-0.319	0.570	-0.837	-0.413	-1.640
-0.795	-0.015	1.774	-1.568	0.302	-1.120	-0.917	-0.091	1.118	0.277
-0.622	-0.554	-0.470	0.700	-0.656	1.460	1.701	0.630	-0.700	-0.674
1.429	-1.163	-0.925	0.973	-0.052	0.409	-0.024	0.384	-0.350	0.203
-2.084	0.100	0.001	-0.070	0.773	1.132	-0.769	-0.609	1.816	1.307

Таблица 1: Данные

На уровне значимости $\alpha=0.05$ проверим гипотезу H_0 о нормальном распределении генеральной совокупности против конкурирующей гипотезы H_1 о том, что она так не распределена. Используем критерий согласия Пирсона:

$$\chi^2 = \sum \frac{(n_i - n_i')^2}{n_i'}$$

x_i^*	n_i	$x_i^* n_i$	$x_i^{*2}n_i$
-2,725	3	-8,175	22,277
-2,175	1	-2,175	4,731
-1,625	4	-6,5	10,5625
-1,075	9	-9,675	10,400625
-0,525	21	-11,025	5,788125
0,025	27	0,675	0,016875
0,575	14	8,05	4,62875
1,125	8	9	10,125
1,675	11	18,425	30,861875
2,225	2	4,45	9,90125
Суммы	100	3.05	109.29

Выборочное среднее:

$$\overline{X} = \frac{\sum x_i^* n_i}{n} = 0,0305$$

Выборочная дисперсия:

$$S^2 = \frac{\sum x_i^{*2} n_i}{n} - \overline{X}^2 = 1,092$$

Выборочное отклонение:

$$\sigma = \sqrt{S^2} = \sqrt{1,092} = 1,045$$

По причине большого объёма выборки его исправлением можно пренебречь. Теоретические частоты рассчитываются по формуле:

$$n_i' = \frac{h \cdot n}{\sigma} \cdot f(z_i)$$

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

Знакомая функция Гаусса

$$z_i = \frac{x_i^* - \overline{X}}{\sigma}$$

x_i^*	n_i	z_i	$f(z_i)$	n_i'
-2,725	3	-2,637	0,012	0,65
-2,175	1	-3,126	0,003	0,16
-1,625	4	-2,555	0,015	0,8
-1,075	9	-1,029	0,235	12,37
-0,525	21	-0,502	0,352	18,51
0,025	27	0,024	0,399	20,99
0,575	14	0,55	0,343	18,05
1,125	8	1,077	0,223	11,76
1,675	11	1,603	0,11	5,81
2,225	2	2,129	0,041	2,18

Следует объединить интервалы с малыми частотами.

n_i	n_i'
3	0,65
1	0,16
4	0,8
9	12,37
21	18,51
27	20,99
14	18,05
8	11,76
11	5,81
2	2,18

Таблица 2: До объединения

n_i	n_i'	$\frac{(n_i \!-\! n_i')^2}{n_i'}$
8	1,61	25,3615528
9	12,37	0,918100243
21	18,51	0,334959481
27	20,99	1,720824202
14	18,05	0,908725762
8	11,76	1,202176871
13	7,99	3,141439299
Сумма		33,58777865

Таблица 3: После объединения

$$\chi^2_{\rm kp} = 9.5$$

$$\chi^2_{\rm hags} \approx 33,58777865 > \chi^2_{\rm kp}$$

Вывод

На уровне значимости 0.05 гипотезу H_0 о нормальном распределении генеральной совокупности отвергаем.