Instituto Tecnológico de Aeronáutica - ITA Inteligência Artificial para Robótica Móvel - CT-213 Aluno:

Relatório do Laboratório 12 - Deep Q-Learning

1. Breve Explicação em Alto Nível da Implementação

Para o ajuste da recompensa, seguiu-se as modificações propostas:

A implementação da rede neural por sua vez:

A implementação do Epsillon-greedy foi feita de forma análoga aos laboratórios anteriores.

2. Figuras Comprovando Funcionamento do Código

2.1. Sumário do Modelo

Model: "sequential"

=

Layer (type)	Output Shape	Param #	
==========	=========	:===========	========
dense (Dense)	(None, 24)	72	
dense_1 (Dense)	(None, 24)	600	
dense_2 (Dense)	(None, 3)	75	

Total params: 747 Trainable params: 747 Non-trainable params: 0

Loading weights from previous learning session.

2.2. Retorno ao Longo dos Episódios de Treinamento

2.3. Política Aprendida pelo DQN

2.4. Retorno de 30 Episódios Usando a Rede Neural Treinada

3. Discussão dos Resultados

Observa-se a possível randomicidade do algoritmo pela seleção do batch de experiências pelos ruídos no treinamento. É especialmente instável no início do treino, começando a estabilizar ao serem acertadas mais vezes a tarefa proposta.

Para a política montada, observa-se o desenho de conjuntos viáveis de ação que resolvem o problema, sendo interessante por descrever limitações físicas. Observa-se por fim que no fim a política treinada e presente no arquivo <mountain_car.h5> funcionou bem no espaço de teste.