ESTGA-UA

# Proteção de Aplicações

Trabalho para Segurança Informática

Realizado por: Tiago Silva (Nº Mec. 87913)

Ano letivo 2019/2020 | 1º semestre

# 1 Índice

| Pr | Proteção de Aplicações0        |                                               |  |  |  |
|----|--------------------------------|-----------------------------------------------|--|--|--|
| 1  | Índi                           | Índice                                        |  |  |  |
| 2  | Intro                          |                                               |  |  |  |
| 3  | Arquitetura da Solução Pensada |                                               |  |  |  |
|    | 3.1                            | Iniciação do Autor                            |  |  |  |
|    | 3.2                            | Processamento do pedido de registo pelo Autor |  |  |  |
|    | 3.3                            | Iniciação da Biblioteca                       |  |  |  |
|    | 3.4                            | Efetuar um pedido de registo pela Biblioteca  |  |  |  |
|    | 3.5                            | Validação da licença por parte da Biblioteca  |  |  |  |
| 4  | Fun                            | cionalidades Implementadas 8                  |  |  |  |
| 5  | Defi                           | ciências10                                    |  |  |  |
| 6  | Fontes Utilizadas1             |                                               |  |  |  |

## 2 Introdução

O presente relatório foi elaborado como parte integrante do trabalho, associado à unidade curricular Segurança Informática, da Licenciatura em Tecnologias da Informação da Escola Superior de Tecnologia e Gestão de Águeda.

Neste trabalho foi proposto "desenvolver um sistema que permita distribuir aplicações de forma segura, garantindo que apenas são executadas pelos donos legítimos das mesmas."

O código da solução implementada encontra-se aqui: <a href="https://github.com/tiagomarquessilva/si">https://github.com/tiagomarquessilva/si</a>

O presente relatório descreve a solução implementada.

## 3 Arquitetura da Solução Pensada

Para a solução trabalhar de forma correta o Autor deve estar a correr antes da Biblioteca.

Existem nesta solução 3 pares de chaves assimétricas:

- Par de chaves geradas para o Autor (Ak+ e Ak-);
- Par de chaves geradas para a Biblioteca (Lk+ e Lk-);
- Par de chaves do cartão de cidadão, sendo que o certificado do mesmo é considerado a componente pública (Uc e Uk-);

#### 3.1 Iniciação do Autor



Figura 1 - Fluxograma da iniciação do autor

Neste fluxograma é descrita a iniciação do Autor. De destacar aqui a proteção com password da Ak-, pois as chaves privadas não devem ficar em claro.

#### 3.2 Processamento do pedido de registo pelo Autor



Neste fluxograma é descrito o processamento de um pedido de registo por parte do Autor. De destacar a:

- Validação do pedido de licença para garantir que é um utilizador real e para uma aplicação que esteja na base de dados:
- Assinatura da licença e sua cifra para garantir a integridade, autenticidade e confidencialidade;

Figura 2 - Fluxograma de processamento de um pedido de registo pelo Autor

### 3.3 Iniciação da Biblioteca



Figura 4 - Fluxograma de iniciação da biblioteca Biblioteca

Neste fluxograma é descrita a iniciação da Biblioteca. De destacar aqui a proteção com password da Lk-, pois as chaves privadas não devem ficar em claro.

### 3.4 Efetuar um pedido de registo pela Biblioteca



Figura 5 - Fluxograma de um pedido de registo da Biblioteca

Neste fluxograma é descrito o pedido de registo por parte da Biblioteca. De destacar a:

- Validação da chave pública garantindo que iremos cifrar com uma chave integra e autêntica;
- Assinatura do pedido de registo e posterior cifra garantido a sua autenticidade, integridade e confidencialidade;

#### 3.5 Validação da licença por parte da Biblioteca



Neste fluxograma é descrita a validação da licença pela Biblioteca. De destacar a:

- Validação da licença;
- Garantia de que a aplicação apenas corre se for o utilizador, máquina e aplicação corretas;

Figura 6 - Fluxograma de validação da licença pela Biblioteca

# 4 Funcionalidades Implementadas

Em seguida segue a tabela com as funcionalidades implementadas e funcionais

| Funcionalidade                                                                                                                                                            | Implementada | Funcional |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| Criação de um ficheiro com um pedido de licença que inclua a identificação do utilizador, dados sobre a plataforma para a execução da aplicação e dados sobre a aplicação | Sim          | Sim       |
| Proteção (integridade, confidencialidade, autenticação, não repudiação) do pedido de licença                                                                              | Sim          | Sim       |
| Validação do pedido de licença                                                                                                                                            | Sim          | Sim       |
| Emissão da licença, com todos os dados que garantam que apenas uma aplicação legitima pode ser executada no sistema autorizado e pelo utilizador autorizado               | Sim          | Sim       |
| Proteção (integridade, confidencialidade, autenticação, não repudiação) da licença emitida                                                                                | Sim          | Sim       |
| Validação do documento da li-<br>cença                                                                                                                                    | Sim          | Sim       |

| Proteção contra execução da aplicação noutro sistema         | Sim | Sim |
|--------------------------------------------------------------|-----|-----|
| Proteção contra a execução da aplicação por outro utilizador | Sim | Não |
| Proteção contra a alteração da aplicação                     | Sim | Sim |

## 5 Deficiências

A solução apresenta algumas deficiências tais como:

- Não se apresentam todas as mensagens de erro;
- Não se tratam todas as exceções;
- Supõe-se sempre que ao enviar um pedido de registo existirá sempre uma resposta;
- A password do Autor é guardada em memória;
- Não se valida a cadeia de certificados do certificado do cartão de cidadão;
- Não se emite um certificado para o Autor;
- Não se verifica se a aplicação corre numa máquina virtual;
- Não se consegue validar o utilizador atual, mesmo ele sendo o correto pois sempre que se tenta realizar a validação é lançada a exceção: *java.security.InvalidKeyException: Could not create RSA public key*.

## 6 Fontes Utilizadas

- https://docs.oracle.com/javase/tutorial/security/apisign/vstep4.html
- https://stackoverflow.com/questions/992019/java-256-bit-aes-password-based-encryption
- <a href="https://github.com/oshi/oshi/blob/master/oshi-demo/src/main/java/oshi/demo/Compute-rID.java">https://github.com/oshi/oshi/blob/master/oshi-demo/src/main/java/oshi/demo/Compute-rID.java</a>
- https://stackoverflow.com/questions/6358555/obtaining-public-key-from-certificate
- http://sweet.ua.pt/andre.zuquete/Aulas/Seguranca/14-15/docs/Ex6.pdf
- https://gist.github.com/itarato/abef95871756970a9dad