Math 2060 Class notes Spring 2021

Peter Westerbaan

Last updated: February 6, 2021

Table Of Contents

13.1: Vectors and the Geometry of Space	1
13.2: Vectors in Three Dimensions	6
13.3: Dot Products	13
13.4: Cross Products	18
13.5: Lines and Planes in Space	24
13.6: Cylinders and Quadric Surfaces	31
14.1: Vector-Valued Functions	39
14.2: Calculus of Vector-Valued Functions	44
14.3: Motion in Space	49
14.4: Length of Curves	54
14.5: Curvature and Normal Vectors:	5 8
15.1: Graphs and Level Curves	72
15.2: Limits and Continuity	80
15.3: Partial Derivatives	86

13.1: Vectors and the Geometry of Space

Definition.

- Vectors
 - Have a direction and magnitude,
 - vector \overrightarrow{PQ} has a tail at P and a head at Q,
 - Can be denoted as \mathbf{u} or \vec{u} ,
 - Equal vectors have the same direction and magnitude (not necessarily the same position)

- Scalars are quantities with magnitude but no direction (e.g. mass, temperature, price, time, etc.)
- **Zero vector**, denoted **0** or $\vec{0}$, has length 0 and no direction

Scalar-vector multiplication:

- Denoted $c\mathbf{v}$ or $c\vec{v}$,
- length of vector multiplied by |c|,
- $c\mathbf{v}$ has the same direction as \mathbf{v} if c > 0, and has the opposite direction as \mathbf{v} if c < 0, (what if c = 0?)
- \mathbf{u} and \mathbf{v} are parallel if $\mathbf{u} = c\mathbf{v}$. (what vectors are parallel to $\mathbf{0}$?)

Vector Addition and Subtraction:

Given two vectors \mathbf{u} and \mathbf{v} , their sum, $\mathbf{u} + \mathbf{v}$, can be represented by the parallelogram (triangle) rule: place the tail of \mathbf{v} at the head of \mathbf{u}

The difference, denoted $\mathbf{u} - \mathbf{v}$, is the sum of $\mathbf{u} + (-\mathbf{v})$:

Vector Components:

A vector \mathbf{v} whose tail is at the origin (0,0) and head is at (v_1, v_2) is a **position vector** (in **standard position**) and is denoted $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x-and y-components of \mathbf{v} .

Vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal if and only if $u_1 = v_1$ and $u_2 = v_2$.

Magnitude:

Given points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$, denoted $|\overrightarrow{PQ}|$, is the distance between points P and Q.

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The magnitude of position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}|$. (How do $|\overrightarrow{PQ}|$ and $|\overrightarrow{QP}|$ relate to each other?)

Note: The norm, denoted $\|\mathbf{u}\|$ or $\|\mathbf{u}\|_2$, is equivalent to the magnitude of a vector.

Equation of a Circle:

Definition.

A **circle** centered at (a, b) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 = r^2.$$

A **disk** centered at (a, b) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 \le r^2$$
.

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^2)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2 \rangle$, and $\mathbf{v} = \langle v_1, v_2 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle$$

Scalar multiplication

Example. Let $\mathbf{u} = \langle 1, 2 \rangle$, $\mathbf{v} = \langle -2, 3 \rangle$, c = 2, and d = 3. Find the following:

$$\mathbf{u} + \mathbf{v}$$

 $c\mathbf{u}$

$$c\mathbf{u} + d\mathbf{v}$$

 $\mathbf{u} - c\mathbf{v}$

Definition.

A unit vector is any vector with length 1.

In \mathbb{R}^2 , the **coordinate unit vectors** are $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

Example. Let $\mathbf{u} = \langle -7, 3 \rangle$. Find two unit vectors parallel to \mathbf{u} . Find another vector parallel to \mathbf{u} with a magnitude of 2.

Properties of Vector Operations:

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 Commutative property of addition

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 Associative property of addition

3.
$$\mathbf{v} + \mathbf{0} = \mathbf{v}$$
 Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$
 Additive inverse

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 Distributive property 1

6.
$$(a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$
 Distributive property 2

7.
$$0\mathbf{v} = \mathbf{0}$$
 Multiplication by zero scalar

8.
$$c\mathbf{0} = \mathbf{0}$$
 Multiplication by zero vector

9.
$$1\mathbf{v} = \mathbf{v}$$
 Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$
 Associative property of scalar multiplication

13.2: Vectors in Three Dimensions

The xyz- Coordinate System:

The three-dimensional coordinate system is created by adding the z-axis, which is perpendicular to both the x-axis and the y-axis. When looking at the xy-plane, the positive direction of the z-axis protrudes towards the viewer. This can also be shown using the right-hand rule (Figure 13.25 from Briggs):

Definition.

This three-dimensional coordinate system is broken up into eight **octants**, which are separated by

- the xy-plane (z = 0),
- the xz-plane (y = 0), and
- the yz-plane (x = 0).

The **origin** is the location where all three axes intersect.

Equations of Simple Planes:

Planes in three-dimensions are analogous to lines in two-dimensions. Below, we see the yz-plane, the xz-plane, and the xy-plane, along with planes that are parallel where x, y, and z are fixed respectively:

Example (Parallel planes). Determine the equation of the plane parallel to the xz-plane passing through the point (2, -3, 7).

Distances in xyz-Space:

Recall that in \mathbb{R}^2 , for some vector \overrightarrow{PR} , the distance formula is given by

$$|PR| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

where (x_1, y_1) and (x_2, y_2) represent the points P and R respectively. This idea can be further extended into \mathbb{R}^3 by considering the two sides of the triangle formed by the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$:

Distance Formula in xyz-Space

The **distance** between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

The **midpoint** between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is found by averaging the x-, y-, and z-coordinates:

Midpoint
$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

Magnitude and Unit Vectors:

Definition.

The **magnitude** (or **length**) of the vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ is the distance from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$:

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

In \mathbb{R}^3 , the coordinate unit vectors are $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$.

Example. Consider P(-1,4,3) and Q(3,5,7). Find

- $\bullet \quad \left| \overrightarrow{PQ} \right|$
- The midpoint between P and Q
- Two unit vectors parallel to \overrightarrow{PQ}

Equation of a Sphere:

Definition.

A **sphere** centered at (a, b, c) with radius r is the set of points satisfying the equation

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}.$$

A ball centered at (a, b, c) with radius r is the set of points satisfying the inequality

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} \le r^{2}.$$

Example. Consider P(-1,4,3) and Q(3,5,7). Find the equation of the sphere centered at the midpoint passing through P and Q

Example. What is the geometry of the intersection between $x^2 + y^2 + z^2 = 50$ and z = 1?

Example. Rewrite the following equation into the standard form of a sphere:

$$x^2 + y^2 + z^2 - 2x + 6y - 8z = -1$$

Spring 2021

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^3)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2, cu_3 \rangle$$

Scalar multiplication

Properties of Vector Operations:

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1.
$$u + v = v + u$$

Commutative property of addition

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Associative property of addition

3.
$$v + 0 = v$$

Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

Additive inverse

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

Distributive property 1

$$6. (a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$

Distributive property 2

7.
$$0\mathbf{v} = \mathbf{0}$$

Multiplication by zero scalar

8.
$$c$$
0 = **0**

Multiplication by zero vector

9.
$$1\mathbf{v} = \mathbf{v}$$

Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$

Associative property of scalar multiplication

13.3: Dot Products

Definition. (Dot Product)

Given two nonzero vectors **u** and **v** in two or three dimensions, their **dot product** is

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta,$$

where θ is the angle between \mathbf{u} and \mathbf{v} with $0 \le \theta \le \pi$. If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = 0$, and θ is undefined.

A physical example of the dot product is the amount of work done when a force is applied at an angle θ as shown in figure 13.43:

Note: The result of the dot product is a scalar!

Definition. (Orthogonal Vectors)

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

- **u** and **v** are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\mathbf{u} \cdot \mathbf{v} = \pm |\mathbf{u}||\mathbf{v}|$.
- **u** and **v** are perpendicular $(\theta = \frac{\pi}{2})$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example. Given $|\mathbf{u}| = 2$ and $|\mathbf{v}| = \sqrt{3}$, compute $\mathbf{u} \cdot \mathbf{v}$ when

$$\bullet \quad \theta = \frac{\pi}{4}$$

$$\bullet \ \theta = \frac{\pi}{3}$$

$$\bullet \quad \theta = \frac{5\pi}{6}$$

Theorem 31.1: Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$,

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$

Example. Given vectors $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, \sqrt{3}, 0 \rangle$, compute $\mathbf{u} \cdot \mathbf{v}$ and find θ .

Properties of Dot Products

Theorem 13.2: Properties of the Dot Product

Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

Commutative property

2. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$

Associative property

3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Distributive property

Orthogonal Projections

Given vectors \mathbf{u} and \mathbf{v} , the projection of \mathbf{u} onto \mathbf{v} produces a vector parallel to \mathbf{v} using the "shadow" of \mathbf{u} cast onto \mathbf{v} .

Definition. ((Orthogonal) Projection of u onto v)

The orthogonal projection of u onto \mathbf{v} , denoted $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$, where $\mathbf{v} \neq \mathbf{0}$, is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \underbrace{|\mathbf{u}| \cos \theta}_{\text{length}} \underbrace{\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)}_{\text{direction}}.$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \operatorname{scal}_{\mathbf{v}} \mathbf{u} \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v},$$

where the scalar component of u in the direction of v is

$$\operatorname{scal}_{\mathbf{v}} \mathbf{u} = |\mathbf{u}| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.$$

Example. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{scal}_{\mathbf{v}} \mathbf{u}$ for the following:

•
$$\mathbf{u} = \langle 1, 1 \rangle, \, \mathbf{v} = \langle -2, 1 \rangle$$

•
$$\mathbf{u} = \langle 7, 1, 7 \rangle, \mathbf{v} = \langle 5, 7, 0 \rangle$$

Applications of Dot Products

Definition. (Work)

Let a constant force F be applied to an object, producing a displacement d. If the angle between **F** and **d** is θ , then the **work** done by the force is

$$W = |\mathbf{F}||\mathbf{d}|\cos\theta = \mathbf{F} \cdot \mathbf{d}$$

Example. A force $\mathbf{F} = \langle 3, 3, 2 \rangle$ (in newtons) moves an object along a line segment from P(1,1,0) to Q(6,6,0) (in meters). What is the work done by the force?

Components of a Force:

Example. A 10-lb block rests on a plane that is inclined at 30° above the horizontal. Find the components of the gravitational force parallel to and normal (perpendicular) to the plane.

13.4: Cross Products

Definition. (Cross Product)

Given two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , the **cross product** $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta,$$

where $0 \le \theta \le \pi$ is the angle between **u** and **v**.

The direction of $\mathbf{u} \times \mathbf{v}$ is given by the **right-hand rule**:

When you put your the vectors tail to tail and let the fingers of your right hand curl from \mathbf{u} to \mathbf{v} , the direction of $\mathbf{u} \times \mathbf{v}$ is the direction of your thumb, orthogonal to both \mathbf{u} and \mathbf{v} (Figure 13.56).

When $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, the direction of $\mathbf{u} \times \mathbf{v}$ is undefined.

Theorem 13.3: Geometry of the Cross Product

Let **u** and **v** be two nonzero vectors in \mathbb{R}^3 .

- 1. The vectors **u** and **v** are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- 2. If **u** and **v** are two sides of a parallelogram, then the area of the parallelogram is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta$$

Example. Consider the vectors $\mathbf{u} = \langle 2, 0, 0 \rangle$ and $\mathbf{v} = \langle \sqrt{3}, 3, 0 \rangle$. The angle between these vectors is $\theta = \frac{\pi}{3}$. Find the area of the parallelogram formed by these vectors.

Theorem 13.4: Properties of the Cross Product Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be nonzero vectors in \mathbb{R}^3 , and let a and b be scalars.

1.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$
 Anticommutative property

2.
$$(a\mathbf{u}) \times (b\mathbf{v}) = ab(\mathbf{u} \times \mathbf{v})$$
 Associative property

3.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$
 Distributive property

4.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$
 Distributive property

Theorem 13.5: Cross Products of Coordinate Unit Vectors

$$egin{aligned} m{i} imes m{j} &= -(m{j} imes m{i}) = m{k} \ m{k} imes m{i} &= -(m{k} imes m{j}) = m{i} \ m{k} imes m{i} &= -(m{k} imes m{j}) = m{k} \ m{k} = m{k} imes m{k} = m{0} \end{aligned}$$

Using the unit vectors, we can compute $\mathbf{u} \times \mathbf{v}$:

$$\mathbf{u} \times \mathbf{v} = (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k})$$

$$= u_1 v_1 \underbrace{(\mathbf{i} \times \mathbf{i})}_{0} + u_1 v_2 \underbrace{(\mathbf{i} \times \mathbf{j})}_{\mathbf{k}} + u_1 v_3 \underbrace{(\mathbf{i} \times \mathbf{k})}_{-\mathbf{j}}$$

$$+ u_2 v_1 \underbrace{(\mathbf{j} \times \mathbf{i})}_{-\mathbf{k}} + u_2 v_2 \underbrace{(\mathbf{j} \times \mathbf{j})}_{0} + u_2 v_3 \underbrace{(\mathbf{j} \times \mathbf{k})}_{\mathbf{i}}$$

$$+ u_3 v_1 \underbrace{(\mathbf{k} \times \mathbf{i})}_{\mathbf{j}} + u_3 v_2 \underbrace{(\mathbf{k} \times \mathbf{j})}_{-\mathbf{i}} + u_3 v_3 \underbrace{(\mathbf{k} \times \mathbf{k})}_{0}$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

Theorem 13.6: Evaluating the Cross Product

Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then

$$\mathbf{u} imes \mathbf{v} = egin{bmatrix} m{i} & m{j} & m{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{bmatrix} = egin{bmatrix} u_2 & u_3 \ v_2 & v_3 \ \end{bmatrix} m{i} - egin{bmatrix} u_1 & u_3 \ v_1 & v_3 \ \end{bmatrix} m{j} + egin{bmatrix} u_1 & u_2 \ v_1 & v_2 \ \end{bmatrix} m{k}$$

Note:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2)\mathbf{i} - (u_1v_3 - u_3v_1)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}$$

Alternative approach:

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} & \mathbf{j} \\ u_1 & u_2 & u_3 & u_1 & u_2 \\ v_1 & v_2 & v_3 & v_1 & v_2 \end{vmatrix}$$

Example. Compute $\mathbf{u} \times \mathbf{v}$ for $\mathbf{u} = \langle 3, 5, 4 \rangle$ and $\mathbf{v} = \langle 1, -1, 9 \rangle$.

Example. Consider the vectors $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$ and $\mathbf{v} = \langle -\sqrt{3}, 1, 0 \rangle$. From the unit circle, we know the angle between these two vectors is $\theta = \frac{2\pi}{3}$. Use the definition of the cross product to show this.

Example. Find the area of the triangle formed by $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle 3, -1, 1 \rangle$.

Example. Given a force \mathbf{F} applied to a point P at the head of the vector $\mathbf{r} = \overrightarrow{OP}$, the **torque** produced at point O is given by $\tau = \mathbf{r} \times \mathbf{F}$ with magnitude

$$|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}|\sin\theta.$$

Now suppose a force of 20N is applied to a wrench attached to a bolt in a direction perpendicular to the bolt. Which produces more torque: applying the force at an angle of 60° on a wrench that is 0.15m long or applying the force at an angle of 135° on a wrench that is 0.25m long?

13.5: Lines and Planes in Space

Equation of a Line:

Recall the equation of a line in \mathbb{R}^2 :

$$y = mx + b$$

where b is the intercept and m is the slope. This idea can be extended into higher dimensions:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Here, \mathbf{r}_0 is a fixed point, and \mathbf{v} is the position vector that is parallel to the line \mathbf{r} .

Equation of a Line

A vector equation of the line passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, or

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle, \quad \text{for} \quad -\infty < t < \infty$$

Equivalently, the corresponding parametric equations of the line are

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, for $-\infty < t < \infty$

Example. Find the vector equation and parametric equation of the line that

• goes through the points P(-1, -2, 1) and Q(-4, -5, -3) where t = 0 corresponds to P,

• goes through the point P(1, -3, -3) and is parallel to the vector $\mathbf{r} = \langle -4, 1, -1 \rangle$,

• goes through the point P(-2, 5, -2) and is perpendicular to the lines x = 3 - 4t, y = 2 - 3t, z = -1 - t, and x = -2 + 0t, y = 2 - t, z = 3t, where t = 0 corresponds to P.

Distance from a Point to a Line:

Given a point Q and a line ℓ , the shortest distance to the line is the length of $\overrightarrow{QQ'}$.

From the definition of the cross product, we have

$$\left|\mathbf{v} \times \overrightarrow{PQ}\right| = \left|\mathbf{v}\right| \underbrace{\left|\overrightarrow{PQ}\right| \sin \theta}_{d} = \left|\mathbf{v}\right| d$$

From here, solving for d gives us the following:

Distance Between a Point and a Line

The distance d between the point Q and the $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ is

$$d = \frac{\left| \mathbf{v} \times \overline{PQ} \right|}{\left| \mathbf{v} \right|},$$

where P is any point on the line and \mathbf{v} is a vector parallel to the line.

Example. Find the distance from the point Q(-4, -1, -3) and the line x = -5 - 5t, y = -5 + t, z = -1 + 4t. (*Hint:* Let P be the point at t = 0)

Equations of Planes:

In \mathbb{R}^2 , two distinct points determine a line.

In \mathbb{R}^3 , three noncollinear points determine a unique plane. Alternatively, a plane is uniquely determined by a point and a vector that is orthogonal to the plane.

Definition. (Plane in \mathbb{R}^3)

Given a fixed point P_0 and a nonzero **normal vector n**, the set of points P in \mathbb{R}^3 for which $\overrightarrow{P_0P}$ is orthogonal to **n** is called a **plane**.

Consider the normal vector $\mathbf{n} = \langle a, b, c \rangle$ at the point $P_0(x_0, y_0, z_0)$, and any point P(x,y,z) on the plane. Since **n** is orthogonal to the plane, it is also orthogonal to the vector $\overrightarrow{P_0P}$, which is also in the plane. Thus,

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

General Equation of a Plane in \mathbb{R}^3

The plane passing through the point $P_0(x_0, y_0, z_0)$ with a nonzero normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 or $ax + by + cz = d$,

where $d = ax_0 + by_0 + cz_0$.

Example. Find the equation of the plane that

• goes through the point P(-2, 5, 0) and is parallel to the plane x - 5y - 5z = 1,

• goes through the points P(5,-2,1), Q(5,1,3) and R(1,-5,-2)

• that is parallel to the vectors $\langle 4, -2, -3 \rangle$ and $\langle 3, 2, 3 \rangle$, passing through the point P(-2, -2, 5).

Example. Find the location where the line $\langle -3, 1, 4 \rangle + t \langle -1, -4, 2 \rangle$ and the plane 2x - 2y - 4z = 5 intersect.

Definition. (Parallel and Orthogonal Planes)

Two distinct planes are **parallel** if their respective normal vectors are parallel (that is, the normal vectors are scaling multiples of each other). Two planes are **orthogonal** if their respective normal vectors are orthogonal (that is, the dot product of the normal vectors is *zero*).

Example. Find the line of intersection between the planes 3x - y + 4z = -4 and x + 3y - 2z = 0.

Spring 2021

13.5: Lines and Planes in Space 30 Math 2060 C	Class notes
Example. Find the smallest angle between planes $3x - y + 4z = -4$ and $x + 3y - 4z = -4$	2z = 0.

13.6: Cylinders and Quadric Surfaces

Cylinders and Traces:

When talking about three-dimensional surfaces, a *cylinder* refers to a surface that is parallel to a line. When considering surfaces that is parallel to one of the coordinate axes, that the associated variable is missing (e.g. $3y^2 + z^2 = 8$ is parallel to the x-axis).

Definition. (Trace)

A **trace** of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace (Figure 13.80).

Example. Roughly sketch the following functions:

1.
$$x^2 + 4y^2 = 16$$

$$2. x - \sin(z) = 0$$

Quadric Surfaces:

Quadric surfaces are described by the general quadratic (second-degree) equation in three variables,

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

Where the coefficients A, \ldots, J and not all zero. To sketch quadric surfaces, keep the following ideas in mind:

- 1. **Intercepts** Determine the points, if any, where the surface intersects the coordinate axes. To find these intercepts, set x, y, and z equal to zero in pairs in the equation of the surface, and solve for the third coordinate.
- 2. **Traces** Finding traces of the surface helps visualize the surface. Setting x, y, and z equal to zero in pairs gives the planes parallel in that pair's plane.
- 3. Completing the figure Sketch some traces in parallel planes, then draw smooth curves that pass through the traces to fill out the surface.

Example (An ellipsoid). The surface defined by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Graph a = 3, b = 4 and c = 5.

Example (An elliptic parabaloid). The surface defined by the equation $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. Graph the elliptic paraboloid with a = 4 and b = 2.

Spring 2021

Example (A hyperboloid of one sheet).

Graph the surface defined by the equation $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$.

Spring 2021

Example (A hyperboloid of two $-16x^2 - 4y^2 + z^2 + 64x - 80 = 0$.	sheets).	Graph	the	surface	defined	by th	ne equation
13.6: Cylinders and Quadric Surfaces		35				Math S	2060 Class notes

Example (Elliptic cones). Graph the surface defined by the equation $\frac{y^2}{4} + z^2 = 4x^2$.

Example (A hyperbolic paraboloid).

Graph the surface defined by the equation $z = x^2 - \frac{y^2}{4}$.

Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	y
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	z y
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.	x, y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.	y
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	X y

14.1: Vector-Valued Functions

Vector-valued functions are functions of the form $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, where x(t), y(t), and z(t) are parametric equations dependent on t.

Curves in Space

Consider

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k},$$

where f, g, and h are defined for $a \le t \le b$. The **domain** of \mathbf{r} is the largest set of t for which all of f, g, and h are defined.

Example. What plane does the curve $\mathbf{r}(t) = t\mathbf{i} + 6t^3\mathbf{k}$ lie?

Example (Lines as vector-valued functions). Find a vector function for the line that passes through the points P(5, 2, -4) and Q(5, 5, -2). What about the line segment that connects P and Q?

Example. Find the domain of

$$\mathbf{r}(t) = \sqrt{16 - t^2} \mathbf{i} + \sqrt{t} \mathbf{j} + \frac{4}{\sqrt{3+t}} \mathbf{k}$$

Example. Find the point P on

$$\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + 2t \mathbf{k},$$

closest to $P_0(4, 17, 10)$. What is the distance between P and P_0 ?

Orientation of Curves

- A unparameterized curve is a smooth curve C with no specified direction and the tangent vector can be drawn in two directions.
- A parameterized curve is a smooth curve C described by a function $\mathbf{r}(t)$ for $a \le t \le b$ and has a direction referred to as its **orientation**.
- The *positive* orientation is the direction of the curve generated when t increases from a to b.
- The tangent vector of a parameterized curve points in the positive orientation of the curve.

Example. Graph the curve described by the equation

$$\mathbf{r}(t) = 4\cos(t)\mathbf{i} + \sin(t)\mathbf{j} + \frac{t}{2\pi}\mathbf{k},$$

where $0 \le t \le 2\pi$. Indicate the positive orientation of this curve.

Limits and Continuity for Vector-Valued Functions

The properties of limits extend to vector-valued functions naturally. In particular, for $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, if

$$\lim_{t \to a} f(t) = L_1, \qquad \lim_{t \to a} g(t) = L_2, \qquad \lim_{t \to a} h(t) = L_3$$

then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle = \left\langle L_1, L_2, L_3 \right\rangle.$$

Definition. (Limit of a Vector-Valued Function)

A vector-valued function \mathbf{r} approaches the limit \mathbf{L} as t approaches a, written $\lim_{t\to a} \mathbf{r}(t) = \mathbf{L}$, provided $\lim_{t\to a} |\mathbf{r}(t) - \mathbf{L}| = 0$.

A function $\mathbf{r}(t)$ is **continuous** at t = a, provided $\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$.

Example. Evaluate the following limits:

$$\lim_{t \to \pi} \left(\cos(t) \boldsymbol{i} - 7 \sin\left(-\frac{t}{2}\right) \boldsymbol{j} + \frac{t}{\pi} \boldsymbol{k} \right)$$

$$\lim_{t\to\infty} \left(\frac{t}{t-3} \boldsymbol{i} + \frac{40}{1+19e^{-t}} \boldsymbol{j} + \frac{1}{2t} \boldsymbol{k} \right)$$

14.2: Calculus of Vector-Valued Functions

Definition. (Derivative and Tangent Vector)

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions on (a, b). Then \mathbf{r} has a **derivative** (or is **differentiable**) on (a, b) and

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}.$$

Provided $\mathbf{r}'(t) \neq \mathbf{0}$, $\mathbf{r}'(t)$ is a **tangent vector** at the point corresponding to $\mathbf{r}(t)$.

Example. For the following functions below, find $\mathbf{r}'(t)$

a)
$$\mathbf{r}(t) = \left\langle e^{-t^2}, \log_2(t-4), \sin(t) \right\rangle$$

b)
$$\mathbf{r}(t) = 3\mathbf{i} - 2\tan(t)\mathbf{j} + e^t\mathbf{k}$$

Example. For $\mathbf{r}(t) = \langle 3t, \sec(2t), \cos(t) \rangle$ compute $\mathbf{r}'(t)$ at $t = \frac{\pi}{4}$.

Definition. (Unit Tangent Vector)

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be a smooth parameterized curve, for $a \le t \le b$. The **unit tangent vector** for a particular value of t is

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}.$$

Example. For $\mathbf{r}(t) = \langle 3\sin(t), -2\cos(2t), 3\cos(t) \rangle$, find the unit tangent vector.

Example. For $\mathbf{r}(t) = \langle \sin(6t), 3t, \cos(3t) \rangle$, compute $\mathbf{T}(\frac{\pi}{3})$.

45

Derivative Rules

Let \mathbf{u} and \mathbf{v} be differentiable vector-valued functions, and let f be a differentiable scalar-valued function, all at a point t. Let \mathbf{c} be a constant vector. The following rules apply.

1.
$$\frac{d}{dt}(\mathbf{c}) = \mathbf{0}$$
 Constant Rule

2.
$$\frac{d}{dt}(\mathbf{u}(t) + \mathbf{v}(t)) = \mathbf{u}'(t) + \mathbf{v}'(t)$$
 Sum Rule

3.
$$\frac{d}{dt}(f(t)\mathbf{u}(t)) = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$
 Product Rule

4.
$$\frac{d}{dt}(\mathbf{u}(f(t))) = \mathbf{u}'(f(t))f'(t)$$
 Chain Rule

5.
$$\frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$
 Dot Product Rule

6.
$$\frac{d}{dt}(\mathbf{u}(t) \times \mathbf{v}(t)) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$
 Cross Product Rule

Example. Given $\mathbf{u}(t) = \langle 4t^2, 1, 3t \rangle$ and $\mathbf{v}(t) = \langle e^{-2t}, -2e^t, e^t \rangle$, find $\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)]$.

Definition. (Indefinite Integral of a Vector-Valued Function)

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be a vector function, and let

 $\mathbf{R}(t) = F(t)\mathbf{i} + G(t)\mathbf{j} + H(t)\mathbf{k}$, where F, G, and H are antiderivatives of f, g, and h, respectively. The **indefinate integral** of \mathbf{r} is

$$\int \mathbf{r}(t) dt = \mathbf{R}(t) + \mathbf{C},$$

where \mathbf{C} is an arbitrary constant vector. Alternatively, in component form,

$$\int \langle f(t), g(t), h(t) \rangle dt = \langle F(t), G(t), H(t) \rangle + \langle C_1, C_2, C_3 \rangle.$$

Example. Find $\mathbf{r}(t)$ such that $\mathbf{r}'(t) = \left\langle \frac{t}{t^2+1}, t^2 e^{-t^3}, \frac{-2t}{\sqrt{t^2+16}} \right\rangle$ and $\mathbf{r}(0) = \left\langle 3, \frac{5}{3}, -5 \right\rangle$.

Definition. (Definite Integral of a Vector-Valued Function)

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are integrable on the interval [a, b]. The **definite integral** of \mathbf{r} on [a, b] is

$$\int_a^b \mathbf{r}(t) dt = \left(\int_a^b f(t) dt \right) \mathbf{i} + \left(\int_a^b g(t) dt \right) \mathbf{j} + \left(\int_a^b h(t) dt \right) \mathbf{k}$$

Example. $\int_{-\pi}^{\pi} \langle \sin(t), \cos(t), 8t \rangle dt$

14.3: Motion in Space

Definition.

Let the **position** of an object moving in three-dimensional space be given by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $t \geq 0$. The **velocity** of the object is

$$\mathbf{v}(t) = \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

The **speed** of the object is the scalar function

$$|\mathbf{v}(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$$

The **acceleration** of the object is $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

Example. Given $\mathbf{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$ for $0 \le t \le 2\pi$, find the velocity, speed, and acceleration.

Circular motion: At all times $\mathbf{a}(t) = -\mathbf{r}(t)$ and $\mathbf{v}(t)$ is orthogonal to $\mathbf{r}(t)$ and $\mathbf{a}(t)$.

Theorem 14.2: Motion with constant |r|

Let \mathbf{r} describe a path on which $|\mathbf{r}|$ is constant (motion on a circle or sphere centered at the origin). Then $\mathbf{r} \cdot \mathbf{v} = 0$, which means the position vector and the velocity vector are orthogonal at all times for which the functions are defined.

Example (Path on a sphere). Consider

$$\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle, \text{ for } 0 \le t \le 2\pi.$$

a) Show that an object with this trajectory moves on a sphere and find the radius.

b) Find the velocity and speed of the above trajectory.

c) Show that $\mathbf{r}(t) = \langle 5\cos(t), 5\sin(t), 5\sin(2t) \rangle$ does not lie on a sphere. How could this function be modified so that it does lie on a sphere?

Example. Given $\mathbf{a}(t) = \langle \cos(t), 4\sin(t) \rangle$, with an initial velocity $\langle \mathbf{u}_0, \mathbf{v}_0 \rangle = \langle 0, 4 \rangle$ and an initial position $\langle x_0, y_0 \rangle = \langle 5, 0 \rangle$ where $t \geq 0$, find the velocity and position vector.

Summary: Two-Dimensional Motion in a Gravitational Field

Consider an object moving in a plane with a horizontal x-axis and a vertical y-axis, subject only to the force of gravity. Given the initial velocity $\mathbf{v}(0) = \langle u_0, v_0 \rangle$ and the initial position $\mathbf{r}(0) = \langle x_0, y_0 \rangle$, the velocity of the object, for $t \geq 0$, is

$$\mathbf{v}(t) = \langle x'(t), y'(t) \rangle = \langle u_0, -gt + v_0 \rangle$$

and the position is

$$\mathbf{r}(t) = \langle x(t), y(t) \rangle = \left\langle u_0 t + x_0, -\frac{1}{2} g t^2 + v_0 t + y_0 \right\rangle.$$

Example. Consider a ball with an initial position of $\langle x_0, y_0 \rangle = \langle 0, 0 \rangle$ m and an initial velocity of $\langle u_0, v_0 \rangle = \langle 25, 4 \rangle$ m/s.

a) Find the position and velocity of the ball while it is in the air

Summary: Two-Dimensional Motion

Assume an object traveling over horizontal ground, acted on only by the gravitational force, has an initial position $\langle x_0, y_0 \rangle = \langle 0, 0 \rangle$ and initial velocity $\langle u_0, v_0 \rangle = \langle |\mathbf{v}_0| \cos \alpha, |\mathbf{v}_0| \sin \alpha \rangle$. The trajectory, which is a segment of a parabola, has the following properties.

time of flight =
$$T = \frac{2|\mathbf{v}_0| \sin \alpha}{g}$$

range = $\frac{|\mathbf{v}_0|^2 \sin (2\alpha)}{g}$
maximum height = $y\left(\frac{T}{2}\right) = \frac{(|\mathbf{v}_0| \sin \alpha)^2}{2g}$

Example. Consider a ball with an initial position of $\langle x_0, y_0 \rangle = \langle 0, 0 \rangle$ m and an initial velocity of $\langle u_0, v_0 \rangle = \langle 25, 4 \rangle$ m/s. Assuming the ground is flat and level:

b) How long is the ball in the air?

c) How far does the ball travel horizontally?

d) What is the maximum height that the ball reaches?

14.4: Length of Curves

Definition. (Arc Length for Vector Functions)

Consider the parameterized curve $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f', g', and h' are continuous, and the curve is traversed once for $a \leq t \leq b$. The **arc length** of the curve between (f(a), g(a), h(a)) and (f(b), g(b), h(b)) is

$$L = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2} + h'(t)^{2}} dt = \int_{a}^{b} |\mathbf{r}'(t)| dt.$$

Example (Flight of an eagle). Suppose an eagle rises at a rate of 100 vertical ft/min on a helical path given by

$$\mathbf{r}(t) = \langle 250\cos(t), 250\sin(t), 100t \rangle$$

where \mathbf{r} is measured in feet and t is measured in minutes. How far does it travel in 10 minutes?

Example. Suppose a particle has a trajectory given by

$$\mathbf{r}(t) = \langle 10\cos(3t), \, 10\sin(3t) \rangle$$

where $0 \le t \le \pi$. How far does this particle travel?

Example. Find the length of the curve

$$\mathbf{r}(t) = \left\langle 3t^2 - 5, 4t^2 + 5 \right\rangle$$

where $0 \le t \le 1$.

Example. Find the length of $\mathbf{r}(t) = \left\langle t^2, \frac{(4t+1)^{\frac{3}{2}}}{6} \right\rangle$ where $0 \le t \le 6$.

Example. Find the length of $\mathbf{r}(t) = \langle 2\sqrt{2}, \sin(t), \cos(t) \rangle$ where $0 \le t \le 5$.

Theorem 14.3: Arc Length as a Function of a Parameter

Let $\mathbf{r}(t)$ describe a smooth curve, for $t \geq a$. The arc length is given by

$$s(t) = \int_{a}^{t} |\mathbf{v}(u)| \, du,$$

where $|\mathbf{v}| = |\mathbf{r}'|$. Equivalently, $\frac{ds}{dt} = |\mathbf{v}(t)|$. If $|\mathbf{v}(t)| = 1$, for all $t \ge a$, then the parameter t corresponds to arc length.

Example. For the following functions, determine if $\mathbf{r}(t)$ uses arc length as a parameter. If not, find a description that uses arc length as a parameter.

a)
$$\mathbf{r}(t) = \langle -4t + 1, 3t - 1 \rangle, 0 \le t \le 4.$$

b)
$$\mathbf{r}(t) = \left\langle \frac{1}{\sqrt{10}} \cos(t), \frac{3}{\sqrt{10}} \cos(t), \sin(t) \right\rangle, 0 \le t \le 2\pi.$$

14.5: Curvature and Normal Vectors:

There are two ways to change the velocity, or in other words, to accelerate:

- change in speed
- change in direction

The change in direction is referred to as *curvature*. Recall that if we have a smooth curve $\mathbf{r}(t)$, the unit tangent vector is

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}$$

Specifically, curvature of the curve is the magnitude of the rate at which T changes with respect to arc length.

Definition. (Curvature)

Let **r** describe a smooth parameterized curve. If s denotes arc length and $\mathbf{T} = \mathbf{r}'/|\mathbf{r}'|$ is the unit tangent vector, the **curvature** is $\kappa(s) = \left|\frac{d\mathbf{T}}{ds}\right|$.

Theorem 14.4: Curvature Formula

Let $\mathbf{r}(t)$ describe a smooth parameterized curve, where t is any parameter. If $\mathbf{v} = \mathbf{r}'$ is the velocity and \mathbf{T} is the unit tangent vector, then the curvature is

$$\kappa(t) = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}.$$

- \bullet κ is a non-negative scalar-valued function
- Curvature of zero corresponds to a straight line
- A relatively flat curve has a small curvature
- A tight curve has a larger curvature

Example. Consider the line

$$\mathbf{r}(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$$
, for $-\infty < t < \infty$.

Compute κ .

Example. Consider the circle

$$\mathbf{r}(t) = \langle R\cos(t), R\sin(t) \rangle$$

for $0 \le t \le 2\pi$, where R > 0. Show that $\kappa = 1/R$.

Example. Consider the curve

$$\mathbf{r}(t) = \left\langle 2\cos(t), \, 2\sin(t), \, \sqrt{5}t \right\rangle$$

Compute κ .

An Alternative Curvature Formula:

Consider a smooth function $\mathbf{r}(t)$ with non-zero velocity $\mathbf{v}(t) = \mathbf{r}'(t)$ and non-zero acceleration $\mathbf{a}(t) = \mathbf{v}'(t)$.

$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{v} = |\mathbf{v}| \mathbf{T}.$$

Thus

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt}[|\mathbf{v}|\mathbf{T}] = \frac{d}{dt}[|\mathbf{v}|]\mathbf{T} + |\mathbf{v}|\frac{d\mathbf{T}}{dt}.$$

Now we form $\mathbf{v} \times \mathbf{a}$:

$$\mathbf{v} \times \mathbf{a} = |\mathbf{v}| \mathbf{T} \times \left(\frac{d}{dt}[|\mathbf{v}|] \mathbf{T} + |\mathbf{v}| \frac{d\mathbf{T}}{dt}\right)$$
$$= \underbrace{|\mathbf{v}| \mathbf{T} \times \frac{d}{dt}[|\mathbf{v}|] \mathbf{T}}_{\mathbf{0}} + |\mathbf{v}| \mathbf{T} \times |\mathbf{v}| \frac{d\mathbf{T}}{dt}$$

Since T is a unit vector, T and dT/dt are orthogonal (Theorem 14.2). Thus

$$|\mathbf{v} \times \mathbf{a}| = \left| |\mathbf{v}| \mathbf{T} \times |\mathbf{v}| \frac{d\mathbf{T}}{dt} \right| = |\mathbf{v}| \underbrace{|\mathbf{T}|}_{1} \left| |\mathbf{v}| \frac{d\mathbf{T}}{dt} \right| \underbrace{\sin \theta}_{1} = |\mathbf{v}|^{2} \left| \frac{d\mathbf{T}}{dt} \right|$$

Now, using Theorem 14.4, where $\left| \frac{d\mathbf{T}}{dt} \right| = \kappa |\mathbf{v}|$, we have

$$|\mathbf{v} \times \mathbf{a}| = |\mathbf{v}|^2 \left| \frac{d\mathbf{T}}{dt} \right| = |\mathbf{v}|^2 \kappa |\mathbf{v}| = \kappa |\mathbf{v}|^3.$$

Theorem 14.5: Alternative Curvature Formula

Let \mathbf{r} be the position of an object moving on a smooth curve. The **curvature** at a point on the curve is

$$\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3},$$

where $\mathbf{v} = \mathbf{r}'$ is the velocity and $\mathbf{a} = \mathbf{v}'$ is the acceleration.

Example. Consider the curve

$$\mathbf{r}(t) = \langle -16\cos(t), \, 16\sin(t), \, 0 \rangle.$$

Compute the curvature κ using both methods.

Principal Unit Normal Vector

Curvature indicates how quickly a curve turns. The principal unit normal vector determines the *direction* in which a curve turns.

Definition. (Principal Unit Normal Vector)

Let **r** describe a smooth curve parameterized by arc length. The **principal unit normal vector** at a point P on the curve at which $\kappa \neq 0$ is

$$\mathbf{N}(s) = \frac{d\mathbf{T}/ds}{|d\mathbf{T}/ds|} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}.$$

For other parameters, we use the equivalent formula

$$\mathbf{N}(t) = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|},$$

evaluated at the value of t corresponding to P.

Theorem 14.6: Properties of the Principal Unit Normal Vector

Let \mathbf{r} describe a smooth parameterized curve with unit tangent vector \mathbf{T} and principal unit normal vector \mathbf{N} .

- 1. **T** and **N** are orthogonal at all points of the curve; that is, $\mathbf{T} \cdot \mathbf{N} = 0$ at all points where **N** is defined.
- 2. The principal unit normal vector points to the inside of the curve in the direction that the curve is turning.

14.5. Curvature and Normal Vectors:	64		Math 2060 Class notes
the principal time normal vector 14. Ver	$\lim_{y \to 1} \mathbf{I} = \mathbf{I} - \mathbf{I} $		'•
the principal unit normal vector N . Ver	$\operatorname{rify} \mathbf{T} - \mathbf{N} - 1$	and $\mathbf{T} \cdot \mathbf{N} = 0$)
Example. For the curve $\mathbf{r}(t) = \langle a \cos(t) \rangle$), $a\sin(t)$, bt , find	the unit tange	ent vector \mathbf{T} and

Components of the Acceleration

Recall that the change in velocity, or acceleration, of an object can change in *speed* (in the direction of **T**) and in *direction* (in the direction of **N**). $\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} \Longrightarrow \mathbf{v} = \mathbf{T}|\mathbf{v}| = \mathbf{T}\frac{ds}{dt}$.

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(\mathbf{T} \frac{ds}{dt} \right)$$

$$= \frac{d\mathbf{T}}{dt} \frac{ds}{dt} + \mathbf{T} \frac{d^2s}{dt^2}$$

$$= \underbrace{\frac{d\mathbf{T}}{ds}}_{\kappa \mathbf{N}} \underbrace{\frac{ds}{dt}}_{|\mathbf{v}|} \underbrace{\frac{ds}{dt}}_{|\mathbf{v}|} + \mathbf{T} \frac{d^2s}{dt^2}$$

$$= \kappa |\mathbf{v}|^2 \mathbf{N} + \frac{d^2s}{dt^2} \mathbf{T}.$$

Theorem 14.7: Tangential and Normal Components of the Acceleration

The acceleration vector of an object moving in space along a smooth curve has the following representation in terms of its **tangential component** a_T (in the direction of **T**) and its **normal component** a_N (in the direction of **N**):

$$\mathbf{a} = a_N \mathbf{N} + a_T \mathbf{T},$$

where
$$a_N = \kappa |\mathbf{v}|^2 = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|}$$
 and $a_T = \frac{d^2s}{dt^2}$.

Example. Consider the function

$$\mathbf{r}(t) = \langle -2t + 2, -2t + 3, -2t + 2 \rangle.$$

Find the tangential and normal components of the acceleration.

Example. Find the components of the acceleration on the circular trajectory

$$\mathbf{r}(t) = \langle R\cos(\omega t), R\sin(\omega t) \rangle.$$

Example. The driver of a car follows the parabolic trajectory $\mathbf{r}(t) = \langle t, t^2 \rangle$, for $-2 \leq t \leq 2$, through a sharp bend. Find the tangential and normal components of the acceleration of the car.

The Binormal Vector and Torsion

On a smooth parameterized curve C, \mathbf{T} and \mathbf{N} determine a plane called the *osculating* plane.

The coordinate system defined by these vectors is called the **TNB frame**. The rate at which the curve C twists out of the plane is the rate at which **B** changes as we move along C, which is $\frac{d\mathbf{B}}{ds}$.

$$\frac{d\mathbf{B}}{ds} = \frac{d}{ds}(\mathbf{T} \times \mathbf{N}) = \underbrace{\frac{d\mathbf{T}}{ds} \times \mathbf{N}}_{\mathbf{0}} + \mathbf{T} \times \frac{d\mathbf{N}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds}$$

 $\frac{d\mathbf{B}}{ds}$ is:

- orthogonal to both **T** and $\frac{d\mathbf{N}}{ds}$,
- orthogonal to **B** (Theorem 14.2),
- parallel with **N**.

Since $\frac{d\mathbf{B}}{ds}$ is parallel to \mathbf{N} , we write

$$\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$$

where τ is the *torsion* (the negative sign is conventional). We can solve for τ via the dot product:

$$\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = -\tau \underbrace{\mathbf{N} \cdot \mathbf{N}}_{1} \implies \frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = -\tau$$

Definition. (Unit Binormal Vector and Torsion)

Let C be a smooth parameterized curve with unit tangent and principal unit normal vectors \mathbf{T} and \mathbf{N} , respectively. Then at each point of the curve at which the curvature is nonzero, the **unit binomial vector** is

$$\mathbf{B} = \mathbf{T} \times \mathbf{N},$$

and the **torsion** is

$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}$$

Example. Consider the circle C defined by

$$\mathbf{r}(t) = \langle R\cos(t), R\sin(t) \rangle, \text{ for } 0 \le t \le 2\pi, \text{ with } R > 0.$$

Find the unit binormal vector \mathbf{B} and determine the torsion.

Example. Compute the torsion of the helix

$$\mathbf{r}(t) = \langle a\cos(t), a\sin(t), bt \rangle$$
, for $t \ge 0$, and $b > 0$.

Summary: Formula for Curves in Space

Position function:
$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$$

Velocity:
$$\mathbf{v} = \mathbf{r}'$$

Acceleration:
$$\mathbf{a} = \mathbf{v}'$$

Unit tangent vector:
$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|}$$

Principal unit normal vector:
$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}$$
 (provided $d\mathbf{T}/dt \neq \mathbf{0}$)

Curvature:
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right| = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$$

Components of acceleration:
$$\mathbf{a} = a_N \mathbf{N} + a_T \mathbf{T}$$
, where

$$a_N = \kappa |\mathbf{v}|^2 = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|} \text{ and } a_T = \frac{d^2s}{dt^2} = \frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{v}}$$

Unit binormal vector:
$$\mathbf{B} = \mathbf{T} \times \mathbf{N} = \frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}$$

Torsion:
$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = \frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{a}'}{|\mathbf{v} \times \mathbf{a}|^2} = \frac{(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''}{|\mathbf{r}' \times \mathbf{r}''|^2}$$

15.1: Graphs and Level Curves

In the previous chapter, we considered functions of the form

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle,$$

which have one independent variable t and three dependent variables f(t), g(t), and h(t). In this chapter, we consider functions of the form

$$x_{n+1} = f(x_1, x_2, \dots, x_n),$$

where we have multiple independent variables x_1, x_2, \ldots, x_n and one single dependent variable x_{n+1} . We begin with functions of two variables:

$$z = f(x, y).$$

Definition. (Function, Domain, and Range with 2 Independent Variables) A function z = f(x, y) assigns to each point (x, y) in a set D in \mathbb{R}^2 a unique real number z in a subset of \mathbb{R} . The set D is the **domain** of f. The **range** of f is the set of real numbers z that are assumed as the points (x, y) vary over the domain.

Example. Find the domain of the following functions:

$$f(x,y) = \frac{1}{xy+2}$$

$$g(x,y) = \sqrt{108 - 3x^2 - 3y^2}$$

$$h(x,y) = \log_2(x^3 - y^{1/3})$$
 $j(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 16}}$

Example. Roughly graph the following functions:

$$f(x,y) = -4x + 3y - 10$$

$$g(x,y) = x^2 + y^2 + 4$$

$$h(x,y) = \sqrt{4 + x^2 + y^2}$$

Level Curves:

A **contour curve** is formed by tracing a three-dimensional surface at a constant height. A **level curve** is formed when a contour curve is projected to the *xy*-plane.

Example. Find the level curves of the following functions:

$$f(x,y) = y - x^2 - 1$$

$$g(x,y) = e^{-x^2 - y^2}$$

$$h(x,y) = x^2 + y^2$$

Applications of Functions of Two Variables:

Example. A probability function of two variables: Suppose on a particular day, the fraction of students on campus infected with COVID-19 is r, where $0 \le r \le 1$. If you have n random (possibly repeated) encounters with students during the day, the probability of meeting at least one infected person is $p(n,r) = 1 - (1-r)^n$.

Functions of More than Two Variables:

Number of Independent Variables	Explicit Form	Implicit Form	Graph Resides In
1	y=f(x)	F(x,y)=0	$\mathbb{R}^2(xy - \text{plane})$
2	z = f(x, y)	F(x,y,z)=0	$\mathbb{R}^3(xyz - \text{space})$
3	w = f(x, y, z)	F(x,y,z,w) = 0	\mathbb{R}^4
n	$x_{n+1} = f(x_1, x_2, \dots, x_n)$	$F(x_1, x_2, \dots, x_n, x_{n+1}) = 0$	\mathbb{R}^{n+1}

Definition. (Function, Domain, and Range with n Independent Variables) The function $x_{n+1} = f(x_1, x_2, ..., x_n)$ assigns a unique real number x_{n+1} to each point $(x_1, x_2, ..., x_n)$ in a set D in \mathbb{R}^4 . The set D is the **domain** of f. The **range** is the set of real numbers x_{n+1} that are assumed as the points $(x_1, x_2, ..., x_n)$ vary over the domain.

Example. Find the domain of the following functions:

$$f(x, y, z) = 4xyz - 2xz + 5yz$$

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 9}$$

Graphs of Functions of More Than Two Variables:

The idea of level curves can be extended to **level surfaces**. Level surfaces can be used to represent functions of three variables:

15.2: Limits and Continuity

Definition. (Limit of a Function of Two Variables)

The function f has the **limit** L as P(x,y) approaches $P_0(a,b)$, written

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{P\to P_0} f(x,y) = L,$$

if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x,y) - L| < \varepsilon$$

whenever (x, y) is in the domain of f and

$$0 < |PP_0| = \sqrt{(x-a)^2 + (y-b)^2} < \delta.$$

Note: For functions with 1 independent variable, $|x-a| < \delta$ represents an open interval on a number line. Recall that these limits only exist if the same value is approached from two directions.

For functions with 2 independent variables, $|PP_0| < \delta$ represents an open disk (open ball). Here, the limit only exists if the same value is approached from all directions.

Theorem 15.1: Limits of Constant and Linear Functions

Let a, b, and c be real numbers.

1. Constant function
$$f(x,y) = c$$
: $\lim_{(x,y)\to(a,b)} c = c$

2. Linear function
$$f(x,y) = x$$
:
$$\lim_{(x,y)\to(a,b)} x = a$$

3. Linear function
$$f(x,y) = y$$
:
$$\lim_{(x,y)\to(a,b)} y = b$$

Theorem 15.2: Limit Laws for Functions of Two Variables

Let L and M be real numbers and suppose $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and

 $\lim_{(x,y)\to(a,b)} g(x,y) = M$. Assume c is constant, and n>0 is an integer.

1. Sum
$$\lim_{(x,y)\to(a,b)} (f(x,y) + g(x,y)) = L + M$$

2. Difference
$$\lim_{(x,y)\to(a,b)} (f(x,y)-g(x,y)) = L-M$$

3. Constant multiple
$$\lim_{(x,y)\to(a,b)} cf(x,y) = cL$$

4. Product
$$\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = LM$$

5. Quotient
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}, \quad \text{provided } M \neq 0$$

6. **Power**
$$\lim_{(x,y)\to(a,b)} (f(x,y))^n = L^n$$

7. Root
$$\lim_{(x,y)\to(a,b)} (f(x,y))^{1/n} = L^{1/n}$$
, when $L > 0$ if n is even.

Example. Evaluate the following limits:

$$\lim_{(x,y)\to(4,11)} 570 \qquad \qquad \lim_{(x,y)\to(2,8)} \left(3x^2y + \sqrt{xy}\right)$$

$$\lim_{(x,y)\to(0,\pi)} \frac{\sin(xy) + \cos(xy)}{7y} \qquad \qquad \lim_{(x,y)\to(\frac{1}{3},-1)} \frac{9x^2 - y}{3x + y}$$

Definition. (Interior and Boundary Points)

Let R be a region in \mathbb{R}^2 . An **interior point** P of R lies entirely within R, which means it is possible to find a disk centered at P that contains only points of R.

A boundary point Q of R lies on the edge of R in the sense that every disk centered at Q contains at least one point in R and at least one point not in R.

Definition. (Open and Closed Sets)

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

Example. Identify which regions are open sets and which are closed sets.

$$\{(x,y): x^2 + y^2 < 9\}$$

$$\{(x,y): |x| \le 1, |y| \le 1\}$$

$$\{(x,y): x \neq 0, -1 \leq y \leq 3\}$$

$$\{(x,y): x+y<2\}$$

A limit at a boundary point $P_0(a, b)$ of a function's domain can exist, provided f(x, y) approaches the same value as (x, y) approaches (a, b) along all paths that lie in the domain.

Example.
$$f(x,y) = \frac{x^2 - y^2}{x - y}$$

Example. Evaluate the following limits

$$\lim_{(x,y)\to(0,\pi)}\frac{\sin(xy)+\cos(xy)}{7y}$$

$$\lim_{(x,y)\to(-3,-15)} \frac{y^2 - 5xy}{y - 5x}$$

$$\lim_{(x,y)\to(0,0)}\frac{x+2y}{x-2y}$$

$$\lim_{(x,y)\to(1,-1)} \frac{y^5}{(x-1)^{30}+y^5}$$

Procedure: Two-Path Test for Nonexistence of Limits

If f(x,y) approaches two different values as (x,y) approaches (a,b) along two different paths in the domain of f, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

84

Definition. (Continuity)

The function f is continuous at the point (a, b) provided

- 1. f is defined at (a, b)
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, and
- 3. $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$

Example. Determine if f(x,y) is continuous at (0,0)

$$f(x,y) = \begin{cases} \frac{3xy^2}{x^2 + y^4}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

Theorem 15.3: Continuity of Composite Functions

If u = g(x, y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then the composite function z = f(g(x, y)) is continuous at (a, b).

Example. Determine the points at which the following functions are continous:

$$f(x,y) = \ln(x^2 + y^2 + 4)$$
 $q(x,y) = e^{x/y}$

15.3: Partial Derivatives

Recall that for functions with one independent variable, say y = f(x), the derivative measures the change in y with respect to x. For functions with multiple independent variables, we compute derivatives with respect to each variable.

Definition. (Partial Derivatives)

The partial derivative of f with respect to x at the point (a,b) is

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$

The partial derivative of f with respect to y at the point (a,b) is

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h},$$

provided these limits exist.

When evaluating a partial derivative at a point (a, b), we denote this

$$\left. \frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial x} \right|_{(a,b)} = f_x(a,b) \text{ and } \left. \frac{\partial f}{\partial y}(a,b) = \frac{\partial f}{\partial y} \right|_{(a,b)} = f_y(a,b)$$

Example. For the following functions, find the first partial derivatives. If a point is provided, evaluate the partial derivatives.

$$f(x,y) = x^8 + 3y^9 + 8$$

$$g(x,y) = 6x^5y^2 + 2x^3y + 5$$

$$h(s,t) = \frac{s-t}{4s+t}$$
 at $(s,t) = (2,-3)$

$$k(x,y) = \tan^{-1}(3x^2y^2)$$
 at $(x,y) = (1,1)$

$$\ell(w,v) = \int_{v}^{w} g(u) \, du$$

Higher-Order Partial Derivatives:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} \qquad (f_x)_x = f_{xx} \qquad \text{``d squared } f \ dx \text{ squared or } f - x - x\text{''}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} \qquad (f_y)_y = f_{yy} \qquad \text{``d squared } f \ dy \text{ squared or } f - y - y\text{''}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} \qquad (f_y)_x = f_{yx} \qquad \text{``} f - y - x\text{''}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} \qquad (f_x)_y = f_{xy} \qquad \text{``} f - x - y\text{''}$$

The order of differentiation is important when finding **mixed partial derivatives** f_{xy} and f_{yx} .

Example. Find the four 2nd-order partial derivatives of the following functions

$$z = 4ye^{3x}$$

$$f(x,y) = \sin^2(x^3y)$$

Theorem 15.4: (Clairut) Equality of Mixed Partial Derivatives Assume f is defined on an open set D of \mathbb{R}^2 , and that f_{xy} and f_{yx} are continuous throughout D. Then $f_{xy} = f_{yx}$ at all points of D.

Note: Clairut's theorem also extends to higher order derivatives of f.

Example. Ideal Gas Law: The pressure P, volume V, and temperature T of an ideal gas are related by the equation PV = kT, where k > 0 is a constant depending on the amount of gas.

Determine the rate of change of the pressure with respect to the volume

Determine the rate of change of the pressure with respect to the temperature

Definition. (Differentiability)

The function z = f(x, y) is **differentiable at** (a, b) provided $f_x(a, b)$ and $f_y(a, b)$ exist and the change $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$ equals

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y = \varepsilon_1 \Delta x + \varepsilon_2 \Delta y,$$

where for fixed a and b, ε_1 and ε_2 are functions that depend only on Δx and δy , with $(\varepsilon_1, \varepsilon_2) \to (0, 0)$ as $(\Delta x, \Delta y) \to (0, 0)$. A function is **differentiable** on an open set R if it is differentiable at every point of R.

Theorem 15.5: Conditions for Differentiability

Suppose the function f has partial derivatives f_x and f_y defined on an open set containing (a, b), with f_x and f_y continuous at (a, b). Then f is differentiable at (a, b).

Theorem 15.6: Differentiable Implies Continuous

If a function f is differentiable at (a, b), then it is continuous at (a, b).

Example. Why is the function

$$f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

not continuous at (x, y) = (0, 0)?