Math 107-Lecture 13

Dr. Adam Larios

University of Nebraska-Lincoln

Announcements

• The deadline for passing the Gateway exam is Friday, February 22. The Gateway counts for 7% of the grade.

Polar coordinates - Review

Relations between Cartesian and polar coordinates:

For the cartesian equivalent (x, y) of the polar point (r, θ) we have

- $x = r \cos \theta$
- $y = r \sin \theta$
- $x^2 + y^2 = r^2$
- $\frac{y}{x} = \tan \theta$ [**Note:** You can not determine θ uniquely from this eq.; you also need to know in which quadrant you are].

Example: The circle of radius 10 centered at (0,0) is represented as

- $x^2 + y^2 = 100$ (in Cartesian coordinates)
- r = 10 (in polar coordinates).

Points in polar coordinates

Plot polar points (r, θ) given by $A = (1, \pi/4)$, $B = (2, -\pi/4)$, $C = (2, \pi/4 + \pi)$, $D = (4, -\pi/4)$

A. Larios (UNL)

Lecture 13

Clicker question #1

The curve $r=1-\cos\theta$ with $\theta\in[0,2\pi]$ best resembles

- a circle
- a banana
- a spiral
- a heart
- a star

Hint: Find first the intersection points of the curve with all axes; then take more points to better determine the shape.

The answer is ...

The cardioid $r=1-\cos\theta$ is represented graphically by

Areas in polar coordinates - 5 min. introduction

Recall: Ares of a sector of opening θ (in radians) and radius r is

$$A = \frac{\theta}{2\pi} \cdot \pi r^2 = \frac{r^2 \theta}{2}$$

For a curve $r = f(\theta)$, with $f(\theta) \ge 0$ the area of the sector of opening between θ_0 and θ_1 (above left shaded region) is

$$A = \frac{1}{2} \int_{\theta_0}^{\theta_1} [f(\theta)]^2 d\theta.$$

Examples for computing the area in polar coordinates

Example 1. The area of the quarter of the circle r=5 with $\theta\in[0,\frac{\pi}{2}]$ is given by

$$A = \frac{1}{2} \int_0^{\frac{\pi}{2}} 5^2 d\theta = 25 \frac{\pi}{4}.$$

Example 2. The area enclosed by the spiral $r = \theta$ with $\theta \in [0, \frac{\pi}{2}]$ is given by

$$A = \frac{1}{2} \int_0^{\frac{\pi}{2}} \theta^2 d\theta = \frac{\theta^3}{6} \Big|_0^{\frac{\pi}{2}} = \frac{\pi^3}{48.}$$

Clicker question #2

Find the area enclosed by the cardioid $r=1-\cos\theta$. Recall that $1+\cos(2\theta)$

- $\pi^2 \pi$
- \mathfrak{D} π^2
- **9** 3
- 0 3π
- $0 6\pi$

Wrapping up:

- For next time read section 8.4.
- The deadline for passing the Gateway is Friday, February 22. The Gateway counts for 7% of the grade.