Topics in Model-Assisted Point and Variance Estimation in Clustered Samples

Ву

Timothy Kennel

Federal Committee on Statistical Methodology Research Conference THURSDAY, DECEMBER 3, 2015

Outline

- 1. Improved Variance Estimators for Generalized Regression Estimators in Cluster Samples
- 2. Multivariate Logistic-Assisted Estimators of Totals from Clustered Survey Samples in the presence of Complete Auxiliary Information
- Design-based Inference Assisted by Generalized Linear Models for Cluster Samples

Population

Sample Leverages

Estimator

Generalized Regression Estimator (GREG)

•
$$\hat{t}_y^{gr} = \sum_{\in U} \hat{y}_k + \sum_{\in S} d_k (y_k - \hat{y}_k)$$

•
$$var_M(\hat{t}_y^{gr}) = \sum_{e \ s} \boldsymbol{g}_i^T \boldsymbol{\Pi}_i^{-1} \psi_i \boldsymbol{\Pi}_i^{-1} \boldsymbol{g}_i$$

Sandwich Variance Estimators

•
$$v_R = \sum_{i \in S} \boldsymbol{g}_i^T \boldsymbol{\Pi}_i^{-1} \boldsymbol{r}_i \boldsymbol{r}_i^T \boldsymbol{\Pi}_i^{-1} \boldsymbol{g}_i$$

•
$$v_D = \sum_{i \in S} \boldsymbol{g}_i^T \boldsymbol{\Pi}_i^{-1} (\boldsymbol{I}_n - \boldsymbol{H}_{ii})^{-1} \boldsymbol{r}_i \boldsymbol{r}_i^T \boldsymbol{\Pi}_i^{-1} \boldsymbol{g}_i$$

•
$$v_J = \sum_{i \in S} g_i^T \Pi_i^{-1} (I_n - H_{ii})^{-1} r_i r_i^T (I_n - H_{ii})^{-1} \Pi_i^{-1} g_i$$

Confidence Interval Coverage

Estimator	Lower	Middle	Upper
Empirical	3.9	95.3	0.8
v_R	18.3	77.2	4.5
v_D	10.8	87.0	2.2
v_J	4.9	94.1	1.0

Conclusion of Leverage Adjusted Variance Estimators

- Small samples
 - Confidence interval coverage is closer to nominal value.
 - Central tendency (median) is closer to true value.
 - Extreme estimates are possible.
 - More variable.
- Large samples
 - Confidence interval coverage is closer to nominal value.
 - Conservative estimates.
 - Asymptotically unbiased.

Design-based Inference Assisted by Generalized Linear Models for Clustered Samples in the Presence of Complete Auxiliary Information

Example of a Binary Response from the 2000 Tract Level Planning Database

Estimators

•
$$\hat{t}_y^{\pi} = \sum_{\in S} d_k y_k$$

•
$$\hat{t}_{y}^{pr} = \sum_{\in U} \hat{\mu}_{k}$$

$$\bullet \ \hat{t}_y^{gr} = \sum_{\in U} \hat{y}_k + \sum_{\in S} d_k (y_k - \hat{y}_k) \qquad \bullet \ \hat{t}_y^{pe\widehat{M}} = \widehat{M} \sum_{\in S} p_k^{pe} y_k$$

•
$$\hat{t}_y^{gd} = \sum_{\in U} \hat{\mu}_k + \sum_{\in S} d_k (y_k \mu_k^-)$$

•
$$\hat{t}_y^{mc} = \sum_{\in S} w_k^{mc} y_k$$

•
$$\hat{t}_y^{peM} = M \sum_{\in S} p_k^{pe} y_k$$

•
$$\hat{t}_y^{pe\widehat{M}} = \widehat{M} \sum_{e} p_k^{pe} y_k$$

Box Plot of Logistic-Assisted Estimators of Renters in Large Samples

Results

- Calibrated estimators are asymptotically unbiased.
- Use canonical ink or calibrated estimators.
- Clear variance reductions of \hat{t}_y^{gd} , \hat{t}_y^{mc} , and \hat{t}_y^{peM} over established estimators.
- GLM-assisted estimators require complete data.
- Estimators could be unstable in small samples.
- Performance of variance estimators depends on the sample design and sample size.

Contact

- Timothy Kennel
 - Email: Timothy.L.Kennel@census.gov