NOM: Hanon Ymous SCIPER: 000000 (anonymisation: #0000)

EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE POLITECNICO FEDERALE – LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Faculté Informatique et Communications Cours ICC aux sections MA et PH Chappelier J.-C.

INFORMATIQUE, CALCUL & COMMUNICATIONS

Sections MA & PH

Examen intermédiaire II

21 novembre 2014

SUJET 1

Instructions:

- Vous disposez d'une heure quinze minutes pour faire cet examen (15h15 16h30).
- L'examen est composé de 2 parties : un questionnaire à choix multiples, à 12 points, prévu sur 45 minutes, et une partie à questions ouvertes, à 8 points, prévue sur 30 minutes. Mais vous êtes libres de gérer votre temps comme bon vous semble.
- AUCUN DOCUMENT N'EST AUTORISÉ, NI AUCUN MATÉRIEL ÉLECTRONIQUE.
- Pour la première partie (questions à choix multiples), chaque question n'a qu'une seule réponse correcte parmi les quatre propositions.
 - Indiquez votre réponse en bas de **cette** page en cochant *clairement* <u>une</u> solution parmi les quatre proposées à chaque fois.
 - Aucune autre réponse ne sera considérée, et en cas de rature, ou de toute ambiguïté de réponse, nous compterons la réponse comme fausse.
 - (Vous êtes autorisés à dégrafer cette page)
- Pour la seconde partie, répondez directement sur la donnée, à la place libre prévue à cet effet. Vous pouvez également répondre aux exercices sur la page 6.
- Toutes les questions comptent pour la note finale.

Réponses aux quiz :

	A	В	С	D	
question 1:					1
question 2:					2
question 3:					3
question 4:					4
question 5:					5
question 6:					6

	A	В	С	D	
question 7:					7
question 8:					8
question 9:					9
question 10:					10
question 11:					11
question 12:					12

A STATE OF THE STA

PARTIE QUIZ

1 - Entropies [2 points]

Question 1) Suivant la définition vue en classe, quelle est, en bit, l'entropie du mot « ABABAB »?

A] 6

 \mathbf{B}] 1

 $\mathbf{C} \log_2(6)$

 \mathbf{D} 2

Question 2) Soient X un mot de longueur n et Y un mot de longueur m n'ayant aucune lettre en commun avec X.

Soient $p = \frac{n}{n+m}$ et $h(p) = p \log_2(\frac{1}{p}) + (1-p) \log_2(\frac{1}{1-p})$, c'est-à-dire l'entropie d'un mot qui serait par exemple constitué de n fois la lettre 'A' et m fois la lettre 'B' : « AA . . . ABBB . . . BB ».

Quelle est l'entropie du mot « XY », constitué du mot Y collé derrière le mot X?

A] h(p) + p H(X) + (1-p) H(Y)

C p H(X) + (1-p) H(Y)

B] h(p)

Dl h(p) + H(X) + H(Y)

2 – Signal échantilloné [1 point]

Question 3) On considère le signal X(t) suivant :

$$X(t) = 3\sin(6\pi t) + 4\sin(2\pi t)$$

Si l'on échantillone ce signal toutes les $0.\overline{33}$ s et que l'on cherche à le reconstruire à l'aide de la formule vue en cours, le signal résultant aura une amplitude de

A] 4

 \mathbf{B}

C] 0

D] 7

3 – Signal filtré puis échantillonné [2 points]

On considère le signal X(t) suivant :

$$X(t) = 7\sin(6\pi t + \frac{\pi}{4}) + 3\sin(2\pi t + \frac{\pi}{8}) + 2\sin(8\pi t + \frac{\pi}{6})$$

que l'on filtre avec un filtre passe-bas idéal de fréquence de coupure $f_c=2.75~\mathrm{Hz}$ pour obtenir un signal Y(t). On s'intéresse ensuite au signal Z(t) = X(t) - Y(t).

Question 4) On veut échantillonner Z(t) à une fréquence f_e . Quelle valeur de f_e (en Hz) <u>ne</u> permet pas une reconstruction parfaite (à l'aide de la formule de reconstruction vue en cours)?

A] 5.5

B] 8.5

C] 10

D] 9.5

Question 5) Finalement, on décide d'échantilloner Z(t) à une fréquence $f_e = 10$ Hz. Quel est le signal Z(t) obtenu après reconstruction (à l'aide de la formule de reconstruction vue en cours)?

A] $7 \sin(6 \pi t + \frac{\pi}{4}) + 3 \sin(2 \pi t + \frac{\pi}{8})$

C aucune des 3 autres propositions

C] aucune des 3 autres propositions

B] $7 \sin(6\pi t + \frac{\pi}{4}) + 2 \sin(8\pi t + \frac{\pi}{6})$ D] $3 \sin(2\pi t + \frac{\pi}{8}) + 2 \sin(8\pi t + \frac{\pi}{6})$

suite au dos 🖙

4 - Codes de Shannon-Fano [2 points]

On souhaite encoder, à l'aide d'un code de Shannon-Fano, cette célèbre phrase d'Albert Einstein : « La connaissance s'acquiert par l'expérience, tout le reste n'est que de l'information. ». Comme pour les exercices, on ignore ici la ponctuation et les majuscules ; ce qui fait 69 lettres en tout.

Pour vous aider voici le début de la table de codage :

e	n	a	t	i	r	s	c	l	О	u	p	q	d	f	m	x
12	7	6	6	5	5	5	4	4	4	3	2	2	1	1	1	1
000	001	010	0110	0111												

Question 6) Quelle est, en bits, la longueur du mot de code pour la lettre 'o'?

A] 3

B] 4

C] 5

D] 6

Question 7) La longueur moyenne du code est, en bits, environ de :

A]
$$3.72 \simeq (3 \times 25 + 4 \times 40 + 5 \times 2 + 6 \times 2)/69$$

B]
$$4.12 \simeq (3 \times 19 + 4 \times 31 + 5 \times 11 + 6 \times 8) / 69$$

C
$$3.81 \simeq (3 \times 25 + 4 \times 36 + 5 \times 4 + 6 \times 4)/69$$

D]
$$4.17 \simeq (3 \times 25 + 4 \times 11 + 5 \times 29 + 6 \times 4) /69$$

5 – Compression de données [2 points]

Question 8) Une société vend un algorithme de compression de données et prétend comprimer à 70% des textes dans une langue d'entropie 3 bit, constitués de lettres représentées au départ chacune sur 8 bits.

- A c'est impossible
- B c'est possible avec pertes mais pas sans perte
- C c'est possible sans perte mais pas avec pertes
- D c'est possible avec et sans pertes

Question 9) Cette même société prétend que son algorithme est sans perte, et publie des expériences le comparant aux l'algorithmes de Huffman et de Shannon-Fano.

Elle reporte quatre expériences en publiant à chaque fois (en bits) la longueur $L_{\rm SF}$ obtenue en utilisant l'algorithme de Shannon-Fano, la longueur $L_{\rm Hu}$ obtenue en utilisant l'algorithme de Huffman, la longueur $L_{\rm eux}$ obtenue en utilisant leur algorithme, et l'entropie H du texte utilisé.

Laquelle de ces expérience est possible (i.e. n'est <u>pas</u> fausse)?

A
$$L_{SF} = 7.3$$
, $L_{Hu} = 6.1$, $L_{eux} = 6.1$ et $H = 5.5$

B]
$$L_{SF} = 6.8$$
, $L_{Hu} = 5.5$, $L_{eux} = 6.5$ et $H = 6.1$

C]
$$L_{SF} = 7.3$$
, $L_{Hu} = 7.2$, $L_{eux} = 7.1$ et $H = 7$

D]
$$L_{SF} = 7.4$$
, $L_{Hu} = 7.4$, $L_{eux} = 7.4$ et $H = 7.2$

6 - Bande passante [1 point]

Nous vous rappelons que :

$$(\sin(x))^2 = \frac{1}{2} - \frac{1}{2}\cos(2x)$$

Question 10) Soit $f_1 > 2 > f_2 > 0$ et les signaux

$$X_{1}(t) = \left(\sin(2\pi f_{1} t + \frac{\pi}{12})\right)^{2}$$

$$X_{2}(t) = \sin(2\pi f_{1}^{2} t + \frac{\pi}{8})$$

$$X_{3}(t) = \left(\sin(2\pi f_{2} t + \frac{\pi}{4})\right)^{2}$$

$$X_{4}(t) = \sin(2\pi f_{2}^{2} t + \frac{\pi}{7})$$

Comment sont ordonnées leurs bandes passantes respectives B_1 , B_2 , B_3 et B_4 ?

A]
$$B_1 > B_2 > B_3 > B_4$$
 B] $B_2 > B_1 > B_3 > B_4$ **C**] $B_2 > B_1 > B_4 > B_3$ **D**] autrement

7 - Signal filtré [2 points]

Considérons le signal suivant :

$$X(t) = 3\sin(5\pi t + \frac{\pi}{3}) + 5\sin(9\pi t + \frac{\pi}{2}) + 1.5\sin(2\pi t).$$

Question 11) Après application d'un filtre à moyenne mobile avec $T_c = 0.67 \text{ s}$:

- A] la composante sinusoïdale d'amplitude 3 est beaucoup atténuée, alors que les deux autres ne le sont que un peu.
- B] la composante sinusoïdale d'amplitude 5 est beaucoup atténuée, alors que celle d'amplitude 1.5 est peu atténuée.
- C la composante sinusoïdale d'amplitude 1.5 est complètement annulée.
- D] l'amplitude des trois composantes sinusoïdales sont égales.

Question 12) Si le signal X(t) de départ était filtré par un filtre passe-bas idéal de fréquence de coupure 2 Hz, la bande passante du signal résultant serait :

(vous pouvez si nécessaire utiliser cette page pour $r\acute{e}pondre$ aux exercices ; mais ne l'utilisez pas comme brouillon s.v.p.)

PARTIE EXERCICES

8 - Compression d'une phrase [4 points]

On considère la phrase « ICC EXAAAAM » dont on ignore les blancs.

Question 13) Calculer son entropie en bit (au sens vu en cours). Donnez tout d'abord son expression sous la forme « $\log_2(5) + \frac{a}{10}$ » (a peut être négatif ou nul), puis une valeur approchée sachant que $\log_2(5) \simeq 2.3$.

Question 14) Coder la phrase considérée en utilisant un code de Shannon-Fano. Justifiez votre démarche en donnant l'arbre de codage de votre code.

Question 15) Quelle est la longueur moyenne par lettre du code construit à la question précédente?

Question 16) Commentez les résultats obtenus aux questions 13 et 15. Sont-ils raisonnables? Peut-on faire mieux?

suite au dos 🖙

9 - Que fait-on au juste? [4 points]

Considérez l'algorithme suivant :

Mystère

entrée : Une liste L non vide de nombres et un nombre entier x non nul sortie : ? ? ? $n \leftarrow \text{taille}(L)$ Si n < xsortir : L[1] (premier élément de L) $s \leftarrow 0$ Pour i de 1 à x $s \leftarrow s + L[i]$ Créer une liste M (de taille 1) contenant s/xPour i de x + 1 à x $s \leftarrow s - L[i - x]$ $s \leftarrow s + L[i]$ ajouter s/x à la liste Msortir : la liste M

Question 17) Que calcule cet algorithme?

Il **ne** s'agit **pas** ici de paraphraser l'algorithme mais bien de montrer *conceptuellement* ce qui est calculé par cet algorithme. Une formule mathématique explicite/développée peut suffire (mais *une* phrase en français aussi).

Question 18) On construit une liste M de taille m obtenue en appliquant l'algorithme précédent à la liste L de taille m = m + x - 1 telle que

$$L[i] = 3 \sin(2\pi i f_1 T_e) + 5 \sin(2\pi i f_2 T_e).$$

Pour $m \ge 100$, $x \ge 2$, $f_1 > 0$, $f_2 > 0$, différent de f_1 , $f_2 > 0$, tels que f_2 que f_2 que soit pas un nombre entier, est-il possible d'avoir une constante f_1 que (on ne vous demande rien sur f_2)

$$M[i] \simeq K \sin\left(2\pi \left(i + \frac{n-m}{2}\right) f_1 T_e\right)$$
?

Si oui, à quelle(s) condition(s) sur x, T_e , f_1 et f_2 ? Justifier votre réponse (faites un/des schéma(s)). (Nous ne vous demandons ici que des conditions suffisantes, pas des conditions nécessaires.)

