Neutrino Interaction in matter

Pipeline

- Quasi-Elastic (QE) Scattering: the interaction's resolving power is insufficient to probe the internal structure of the nucleon. The neutrino elastically scatters off the nucleon, changing its type but leaving it intact. (v_µ+ n→µ₋+ p)
- Resonant (RES) Pion Production: momentum transfer becomes large enough to excite the target nucleon into a short-lived baryonic resonance, such as the Δ(1232), that quickly decays (ν_μ+ p→μ₋+ Δ → μ₋+ p+ π)
- Deep Inelastic Scattering (DIS) ≈5 GeV: the fourmomentum squared transferred by the virtual boson, Q₂, is large enough that the interaction resolves the quarks and gluons inside the nucleon

Material of Cube; scinitllator?

Pipeline

- 10 planned modules: 20 layers of 50x50 of 1 ×1 ×1 cm optically isolated plastic scintillator cubes (voxels).
- The scintillator material: follows the composition used for its predecessor, the SuperFGD
 - Polystyrene base doped with 1.5% p-terphenyl (PTP) as a primary fluor and 0.01% POPOP as a secondary wavelength shifter.
- After production: reflective layer on the surface, by chemical etching, forming a 50–80 µm thick white
 microporous polystyrene coating.
- 1.5 mm orthogonal holes for Wavelength-Shifting (WLS) fiber:
 - Ensure an optimal light yield of approximately 30 photoelectrons per Minimum Ionizing Particle (MIP) for a single 1-meter-long WLS fiber