Ph.D. Qualifying Exam, Real Analysis Spring 2016, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Suppose (X,\mathcal{B},μ) is a measure space. If $\mu(X)<\infty$, are there any inclusions among the spaces $L^1(X,\mu),\ L^2(X,\mu),\ L^\infty(X,\mu)$? (List any inclusions you can, and provide a proof for these.) If $\mu(X)=\infty$, but μ is σ -finite, can the *reverse* of these inclusions hold? (Give an example or provide a proof to the contrary.)
 - **b.** Suppose E_k , $k=1,2,\ldots$, are measurable subsets of \mathbb{R}^n with $\sum_k \mu(E_k) < \infty$, where μ is the Lebesgue measure. Show that almost all x lie in E_k for finitely many k, i.e. that

$$\mu\{x: x \in E_k \text{ for infinitely many } k\} = 0.$$

(Make sure that you show the measurability of any set whose measure you use.)

- 2 Prove that a weakly convergent sequence $x_n \in \ell^1$ also converges strongly.
- 3 Recall that for $s \geq 0$ the Sobolev space $H^s(\mathbb{R}^n)$ consists of $u \in L^2(\mathbb{R}^n)$ with

$$\int (1+|\xi|^2)^s |(\mathcal{F}u)(\xi)|^2 d\xi < \infty,$$

where \mathcal{F} is the Fourier transform. Let $R: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^{n-1})$ denote the restriction map $(Ru)(x') = u(x',0), \ x' \in \mathbb{R}^{n-1}$. Show that for s>1/2, R has a unique continuous extension to a map $R: H^s(\mathbb{R}^n) \to H^{s-1/2}(\mathbb{R}^{n-1})$.

- 4 Let $\mathbb{T}^n = (\mathbb{R}/(2\pi\mathbb{Z}))^n$ be the *n*-torus, and let $\mathcal{D}'(\mathbb{T}^n)$ denote the set of distributions on the torus.
 - **a.** For $\phi \in C^{\infty}(\mathbb{T}^{n+m})$ let $\phi_x(y) = \phi(y,x)$, $(y,x) \in \mathbb{T}^n \times \mathbb{T}^m$, so $\phi_x \in C^{\infty}(\mathbb{T}^n)$. Show that if $u \in \mathcal{D}'(\mathbb{T}^n)$ and $\phi \in C^{\infty}(\mathbb{T}^{n+m})$ then the function $f: \mathbb{T}^m \to \mathbb{C}$ defined by $f(x) = u(\phi_x)$ is C^{∞} .
 - **b.** For $\phi \in C(\mathbb{T}^m; C^{\infty}(\mathbb{T}^n))$ (i.e. $x \mapsto \phi_x$ is continuous as a map $\mathbb{T}^m \to C^{\infty}(\mathbb{T}^n)$) show that $\int_{\mathbb{T}^m} u(\phi_x) \, dx = u(\int_{\mathbb{T}^m} \phi_x \, dx)$.
- Suppose that w is a measurable function on \mathbb{R}^n which is finite and strictly positive almost everywhere. Suppose that K is a measurable function on \mathbb{R}^{2n} such that

$$\int_{\mathbb{R}^n} |K(x,y)| w(y) \, dy \le Aw(x), \qquad \int_{\mathbb{R}^n} |K(x,y)| w(x) \, dx \le Aw(y)$$

for almost every x, and for almost every y, respectively. Prove that the integral operator

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy$$

is bounded on $L^2(\mathbb{R}^n)$ with $||T|| \leq A$.

Ph.D. Qualifying Exam, Real Analysis

Spring 2016, part II

Do all five problems. Write your solution for each problem in a separate blue book.

1

- **a.** Suppose that Y is a normed complex vector space with norm $\|.\|$, and $\lambda:Y\to\mathbb{C}$ is linear but is not continuous. Show that $N=\lambda^{-1}(\{0\})$ is dense in Y.
- **b.** Show that ℓ^2 has an orthonormal basis $\{x_n\}$, where each x_n actually lies in ℓ^1 , and has the property that if we list the components of each x_n as $x_n^{(k)}$, then $\sum_{k=1}^{\infty} x_n^{(k)} = 0$.
- Suppose that $1 , <math>f, f_n \in L^p([0,1])$, $n \in \mathbb{N}$, $||f_n||_{L^p} \le 1$ for all n, and $f_n \to f$ almost everywhere. Show that $f_n \to f$ weakly and $||f||_{L^p} \le 1$.

3

- **a.** Give an example of Hilbert spaces X,Y and an operator $A\in\mathcal{L}(X,Y)$ such that $\mathrm{Ran}A$ is not closed.
- **b.** Show that if X, Y are Hilbert spaces, $A \in \mathcal{L}(X, Y)$, and RanA is closed then RanA* is closed (where $A^* \in \mathcal{L}(Y, X)$ is the Hilbert space adjoint). (Hint: reduce to the case when A is invertible.)
- **c.** Show that if there exists C > 0 such that for all $y \in Y$, $||y||_Y \le C||A^*y||_X$ then A is surjective. Is the conclusion still true if only A^* injective is assumed? (Give a proof or provide a counterexample.)
- 4 Let $\mathcal{S}(\mathbb{R}^n)$, resp. $\mathcal{S}'(\mathbb{R}^n)$, denote the set of Schwartz functions, resp. tempered distributions, on \mathbb{R}^n .
 - **a.** Suppose that $f \in \mathcal{S}'(\mathbb{R})$, $\psi_0 \in \mathcal{S}(\mathbb{R})$ with $\int_{\mathbb{R}} \psi_0(x) dx \neq 0$, and $a \in \mathbb{R}$. Show that there is a unique $u \in \mathcal{S}'(\mathbb{R})$ such that u' = f and $u(\psi_0) = a$.
 - **b.** For $\epsilon > 0$, $k \in \mathbb{N}^+$, define $u_{\pm,\epsilon} : \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ by $u_{\pm,\epsilon}(\phi) = \int_{\mathbb{R}} (x \pm i\epsilon)^{-k} \phi(x) \, dx$, $\phi \in \mathcal{S}(\mathbb{R})$. Show that for all $\epsilon > 0$, $u_{\pm,\epsilon} \in \mathcal{S}'(\mathbb{R})$, and that there exist $u_{\pm} \in \mathcal{S}'(\mathbb{R})$ such that for all $\phi \in \mathcal{S}(\mathbb{R})$, $u_{\pm,\epsilon}(\phi) \to u_{\pm}(\phi)$ as $\epsilon \to 0$, and compute $u_+ u_-$.
- 5 Let $\phi : \mathbb{R} \to \mathbb{C}$ be 2π -periodic and Hölder continuous with exponent α . Let $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(x) e^{-inx} dx$ denote the n-th Fourier coefficient of ϕ .
 - **a.** Show that there exists C > 0 such that

$$\sum_{n=-\infty}^{\infty} (1 - \cos(nh)) |c_n|^2 = \frac{1}{4\pi} \int_{-\pi}^{\pi} |\phi(x+h) - \phi(x)|^2 \le C|h|^{2\alpha}$$

for each $h \in \mathbb{R}$.

b. Suppose now that $\alpha > \frac{1}{2}$. Show that $\sum_{n=-\infty}^{\infty} |c_n| < \infty$.