If (1-0)%, CI does not contain a_j , we can reject $H_0: \beta_j = a_j$ at 0% significance level.

Proof:

either
$$a_j > \hat{\beta}_j + c.se(\hat{\beta}_i)$$
 $\iff \frac{a_j - \hat{\beta}_j}{se(\hat{\beta}_j)} > c$

or $a_j < \hat{\beta}_j - c.se(\hat{\beta}_j)$
 $\iff \frac{a_j - \hat{\beta}_j}{se(\hat{\beta}_j)} < -c$
 $\iff \frac{a_j - \hat{\beta}_j}{se(\hat{\beta}_j)} < -c$