

MapReduce

- **Large scale computing for data mining**
- Challenges:
 - How to distribute computation?
 - Distributed/parallel programming is hard
- Map-reduce addresses all of the above
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to do something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

- Issue: Copying data over a network takes time
- Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Google's computational/data manipulation model
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - Map-Reduce

Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer:
 - Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

Distributed File System

- Chunk servers
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks
- Master node
 - a.k.a. Name Node in Hadoop's HDFS
 - Stores metadata about where files are stored
 - Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file
- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

 File too large for memory, but all <word, count> pairs fit in memory

Case 2:

- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map $(k, v) \rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v">*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
    for each word w in value:
        emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
        result = 0
        for each count v in values:
            result += v
        emit(key, result)
```

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Dealing with Failures

- Map worker failure
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker
- Reduce worker failure
 - Only in-progress tasks are reset to idle
 - Reduce task is restarted
- Master failure
 - MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- M map tasks, R reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
 - Because output is spread across R files

Task Granularity & Pipelining

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing

Process	Time>						
User Program	MapReduce()			wait			
Master		Assign tasks to worker machines					
Worker 1		Map 1	Мар 3				
Worker 2		Map 2					
Worker 3			Read 1.1	Read 1.3	Read 1.2	Redu	ice 1
Worker 4			Read 2.1		Read 2.2	Read 2.3	Reduce 2

Refinements: Backup Tasks

- Problem
- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things
- Solution
 - Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect
 - Dramatically shortens job completion time

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k, v_1) , (k, v_2) , ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v_1)) $\rightarrow v_2$
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

| Mop Talk | Mop Talk

Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):

• Much less data needs to be copied and shuffled!

Refinement: Partition Function

- Want to control how keys get partitioned
 - Inputs to map tasks are created by contiguous splits of input file
 - Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Problems Suited for Map-Reduce

Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host
- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms

Example: Language Model

- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents
- Very easy with MapReduce:
 - Map:
 - Extract (5-word sequence, count) from document
 - Reduce:
 - Combine the counts

Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В	
a ₁	b ₁	
a ₂	b ₁	D
a_3	b ₂	
a ₄	b_3	

R

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- 1. Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (Elapsed) computation cost analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

- For a map-reduce algorithm:
 - Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
 - Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost
- $= O(|R|+|S|+|R\bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit *s* on the amount of input or output that any one process can have. *s* **could be:**
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost

Pointers and Further Reading

Implementations

- Google
 - Not available outside Google
- Hadoop
 - An open-source implementation in Java
 - Uses HDFS for stable storage
 - Download: http://lucene.apache.org/hadoop/
- Aster Data
 - Cluster-optimized SQL Database that also implements MapReduce

Cloud Computing

- Ability to rent computing by the hour
 - Additional services e.g., persistent storage
- Amazon's "Elastic Compute Cloud" (EC2)
- Aster Data and Hadoop can both be run on EC2

Reading

- Jeffrey Dean and Sanjay Ghemawat:
 MapReduce: Simplified Data Processing on Large Clusters
 - https://research.google.com/archive/mapreduce-osdi04.pdf
- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System
 - https://research.google.com/archive/gfs.html

Resources

- Hadoop Wiki
 - Introduction
 - http://hadoop.apache.org/
 - https://wiki.apache.org/hadoop/DistributedLucene
 - http://www.sourceforge.net/projects/katta
 - http://www.mail-
 - archive.com/general@lucene.apache.org/msg00338.html
 - http://www.elasticsearch.org
 - Getting Started
 - Map/Reduce Overview
 - Eclipse Environment
- Javadoc

Resources

- Releases from Apache download mirrors
 - http://hadoop.apache.org/releases.html
- Nightly builds of source
 - https://people.apache.org/
- Source code from subversion
 - http://hadoop.apache.org/version_control.html

Further Reading

- Programming model inspired by functional language primitives
- Partitioning/shuffling similar to many large-scale sorting systems
 - NOW-Sort ['97]
- Re-execution for fault tolerance
 - BAD-FS ['04] and TACC ['97]
- Locality optimization has parallels with Active Disks/Diamond work
- Active Disks ['01], Diamond ['04]
- Backup tasks similar to Eager Scheduling in Charlotte system
 - Charlotte ['96]
- Dynamic load balancing solves similar problem as River's distributed queues
 - River ['99]