LXe scintillation model

May 20, 2020

Objective

The goal is is build a scintillation model for LXe: $Y_a(t, \hat{\theta})$. $Y_a(t, \hat{\theta})$ is the probability to emit a photon at time t to the direction $\hat{\theta}$. The subscript a indicates the different type of interactions (γ, N, α) and maybe different energies in the same interaction type).

For that 4 measurements were made 2 with 57 Co (122 KeV γ s) and 2 with 137 Cs (662 KeV γ s). The 2 measurements with the same source were done with 90° rotation, one relative to the other.

Signal Reconstruction

To study the temporal structure of the photon emission a processing algorithm uses a template of the average SPE signal to reconstruct the temporal PE pattern in each event for each PMT separately. The output of this process is the number of PEs created in the PMT in each digitization point. These temporal patters are aligned by the first PE in each event.

SPE Calibration

Event Reconstruction Algorithm

Data Selection

The Dataset $D_{\nu ia}$

For each measurement a 3D table $(D_{\nu ia})$ is build. It holds the number of events in which n PEs were resolved at time i (after the first PE in the events) in PMT a.

A 3D array is build $(H_{\nu ia})$ using a scintillation model and PMT parameters and is fitted to $D_{\nu ia}$.

Scintillation Model

The probability that ν PEs were resolved at time window $[t_i - dt/2, t_i + dt/2]$ by PMT a, given that n photons were created at the event is

$$B_{\nu ian} = \text{Binom}(\nu | n, d\Omega_a Q_a dt Y_i)$$
 (1)

where $d\Omega_a$ and Q_a are the solid angle and the light detection efficiency of PMT a and Y_i is the probability to emit a photon at time window i.

Light detection efficiency is all the mechanisms which generates m PEs from n > m photons that hit the face of the PMT. This includes quantum efficiency, collection efficiency, double PE probability and more n > n and n > n a

Scintillation Model - Time Smearing

Each PMT has its temporal resolution (σ_a) and a delay (T_a) . This means that a PE that was created at time i has a probability to be resolved at time j. This probability is

$$P_{ij} = \frac{dt}{\sqrt{(2\pi)\sigma_a}} e^{-(t_j - t_i - T_a)^2 / 2\sigma_a^2}$$
(2)

Thus

$$Y_i \to Y_{ja} = \int_0^\infty Y_{t_i} \frac{dt}{\sqrt{(2\pi)\sigma_a}} e^{-(t_j - t_i - T_a)^2/2\sigma_a^2}$$
 (3)

Scintillation Model - Alignment by the First PE

The probability that PMT a will resolve $\nu > 0$ PEs at the same time window as the first PE in the event (this goes to $H_{\nu 0a}$), given that n photons were created at the event is

$$P_{\nu 0a} = \sum_{j} \prod_{k < j} \prod_{b} B_{0kbn} B_{\nu jan}. \tag{4}$$

To get the model for the 3D array the number of the photons per event needs to be averaged

$$H_{\nu 0a} = \sum_{j,n} \prod_{k < j} \prod_{b} B_{0kbn} B_{\nu jan} \operatorname{Poisson}(n|N)$$
 (5)

were N is the average number of photons created in the interaction.

Scintillation Model - Alignment by the First PE

The probability that PMT a will resolve ν PEs at time window i after the first PE in the event (this goes to $H_{\nu ia}$), given that n photons were created at the event is

$$P_{\nu ia} = \sum_{j} \prod_{k < j} \prod_{b} B_{0kbn} (1 - \prod_{b} B_{0jbn}) B_{\nu j + ian}.$$
 (6)

To get the model for the 3D array the number of the photons per event needs to be averaged

$$H_{\nu0a} = \sum_{j} \prod_{k < j} \prod_{b} B_{0kbn} (1 - \prod_{b} B_{0jbn}) B_{\nu j + ian} \text{Poisson}(n|N)$$
 (7)

were N is the average number of photons created in the interaction.

Scintillation Model

Take Y_i as a sum exponential decaying components

$$Y_a(t_j) = \sum_c \frac{F_c}{\tau_c} e^{-t_j/\tau_c} \quad (\sum_c F_c = 1)$$
 (8)

we will get

$$\int Y_a(t_j) \operatorname{Norm}(t_i | T_0 + t_j, \sigma_t) dt =$$

$$\sum_c \frac{F_c K_c}{\tau_c} e^{-t_i \tau_c} \left[1 - \operatorname{erf}\left(\frac{\sigma_t}{\sqrt{2}\tau_c} - \frac{t_i - T_0}{\sqrt{2}\sigma_t}\right) \right]$$
(9)

where K_c is a normalization factor

$$K = \left[1 - \operatorname{erf}\left(\frac{\sigma_t}{\sqrt{2}\tau} + \frac{T_0}{\sqrt{2}\sigma_t}\right) + e^{-\sigma_t^2/2\tau^2 - T_0/\tau} \left(1 + \operatorname{erf}\left(\frac{T}{\sqrt{2}\sigma_t}\right)\right)\right]^{-1}$$

Scintillation Model with $\delta(t)$

If we want to add a super fast component in the beginning of the model it is represented by

$$Y_a(t) = (1 - R_\delta) \sum_c \frac{F_c}{\tau_c} e^{-t/\tau_c} + R_\delta \delta(t), \tag{11}$$

So we need to add to equation 8 from the previous slide:

$$\frac{R_{\delta}}{\sqrt{2\pi}\sigma_t}e^{-(t-T_0)^2/(2\sigma_t^2)}\tag{12}$$

Scintillation Model - Alignment

Recall that we build a model for H_{ni} which holds the number of events in which n PEs were resolved at time t_i after the first resolved PE. Without the alignment problem, naively,

$$\tilde{H}_{ni} = N_{\text{events}} \text{Poisson} \left(n \middle| \lambda = Q N_a dt \int Y_a(t_j) \text{Norm}(t_i | T_0 + t_j, \sigma_t) dt \right)$$
(13)

 $[\]tilde{H}_{ni}$ is H_{ni} before the alignment. The naively comment states that we also need to account the uncertainty in the number of PEs resolved, i.e the probability to resolve n PEs where m where actually extracted. This is related to the width of the SPE area distribution and will be treated later.

Alignment for i > 0

The model \tilde{H}_{ni} tells us what is the probability that n PEs will be resolved at time t_i . So

$$H_{ni} = \sum_{j}$$
 [Non of the PMTs resolved a PE untill time t_j]×
[Some PMT resolved a PE (or more) at time t_j]×
 \tilde{H}_{ni+j}
(14)

Alignment for i > 0

[Non of the PMTs resolved a PE untill time
$$t_j$$
] =
$$\prod_{\text{all PMTs } k < j} \tilde{H}_{0k}^{\text{pmt}}$$
(15)

[Some PMT resolved a PE (or more) at time
$$t_j$$
] =
$$1 - \prod_{\text{pmt}} \tilde{H}_{0j}^{\text{pmt}} \tag{16}$$

The superscript pmt indicates the product on all PMTs (each pmt has a different model).

Alignment for i > 0

$$H_{ni} = \sum_{j} \prod_{\text{all PMTs}} \prod_{k < j} \tilde{H}_{0k}^{\text{pmt}} \left(1 - \prod_{\text{pmt}} \tilde{H}_{0j}^{\text{pmt}} \right) \tilde{H}_{ni+j}$$
 (17)

Alignment for i = 0, n > 0

In this case we dont need the middle term in the previous slide (which represents the probability that the first PE was resolved at time t_j), So for n > 0

$$H_{n0} = \sum_{j \text{ all PMTs}} \prod_{k < j} \tilde{H}_{0k}^{\text{pmt}} \tilde{H}_{nj}$$
 (18)

Alignment for i = 0, n = 0

Here we do need the middle term but we dont want to sum on the pmt of interest. So

$$H_{00}^{\text{pmt}_0} = \sum_{j} \prod_{\text{all PMTs}} \prod_{k < j} \tilde{H}_{0k}^{\text{pmt}} \left(1 - \prod_{\text{pmt} \neq \text{pmt}_0} \tilde{H}_{0j}^{\text{pmt}} \right) \tilde{H}_{0j}^{\text{pmt}_0}$$

$$\tag{19}$$

Event Simulation

the simulation creates the temporal structure of 10K events on two PMTs. Align the events by the first PE and finally creates a simulated 2D table for each PMT (S_{ni}) which holds the number of simulated events in which n PEs were created at time t_i after the first PE in the event. For each simulated event:

- ▶ A trigger time (t_{trig}) is randomly chosen from a normal distribution with mean 0 and variance σ_{trig}^2 . This trigger is common for all PMTs.
- ▶ For each PMT a total number of PEs in event (n) is randomly chosen out of a Poisson distribution with mean NQ.
- For each PMT the n PEs are grouped in two groups n_f, n_s (three groups with n_δ if we want to simulate a $\delta(t)$ pulse). The occupancy of each group chosen randomly from distribution with probabilities F, 1 F (and R^a_δ for the δ model).

Event Simulation

- ▶ For each PMT, nf times (t_f) are randomly chosen from an exponential distribution with decay constant τ_f , and ns times (t_s) are randomly chosen from an exponential distribution with decay constant τ_s .
- ▶ For each PMT we smear the two exponential component by shifting each sampled time $t_{f/s}^i \to \text{Normal}(\text{mean} = t_{trig} + T_0^a + t_{f/s}^i, \text{Var} = (\sigma_t)^2),$ where σ_t is the temporal uncertainty of the PMT.
- ► Find the minimal time over all PMTs (global for event) and roll all times back relative to this time.

First Look at Data

I ran the reconstruction algorithm on the ⁵⁷Co dataset with PMTs 7 and 8. In each event the two signals were aligned by the delay that was measured by the pulser data. After reconstruction the temporal pattern of the resolved PEs was aligned ones more relative to the first PE resolved (in PMT 7 or 8). The events in which the χ^2 of the reconstructed signal relative to the signal was too big were cut out. Also events with large baseline width were cut out. A range in the energy spectrum (number of resolved PEs) of each PMT was chosen and from these events a 2D table was made for each PMT (D_{ni}) which holds the number of events in which n PEs was resolved at time t_i after the first resolved PE.

First Look at Data

First Look at Fit

First of all we see that the model and the simulation gives the same results so we can assume that the analytical model models the process we think happens.

First Look at Fit

► Double exp model:

PMT	NQ	T_0 [ns]	σ_t [ns]	F	$\tau_f [\mathrm{ns}]$	τ_s [ns]
7	34	39.9	1.01	0.07	0.19	36.5
8	35	39.5	1.08	_	_	-

It seems that the fit needs a sub-nanosecond component, but a sub-nanosecond exponential with a nanosecond smearing is identical to a δ signal.

▶ $\delta(t)$ + Double exp model:

PMT	NQ	T_0 [ns]	σ_t [ns]	R	F	τ_f [ns]	τ_s [ns]
7	36	45.3	0.9	0.06	0.7	30	100
8	37	45.07	1.08	0.07	_	_	_

Here it is seems that the δ takes most of the fast component and the τ_f represents the slow component (notice the difference of F in the two models).

Constraints on σ_t and T_0

We can use the delay distribution from the pulser data to help the fit.

$$\text{Delay Distribution}^{ij} = a_{\text{delay}}^{ij} e^{-\frac{\left(\text{Delay} - (T_0^i - T_0^j)\right)^2}{2\left((\sigma_t^i)^2 + (\sigma_t^j)^2\right)}} \tag{20}$$

Constraints on NQ

We can use the number of PEs resolved in each event ("energy spectrum") to help the fit.

Total number of PEs in event resolved in a PMT =

$$N_{\text{events}} \text{Poisson} \left(PE | \lambda = \sum_{ni} nH_{ni} \right)$$
 (21)

► Double exp model:

PMT	NQ	T_0 [ns]	σ_t [ns]	F	$\tau_f [\mathrm{ns}]$	$\tau_s [\mathrm{ns}]$
7	34	40	1.01	0.07	0.2	36.5
8	35	39.5	1.08	_	_	_

 \blacktriangleright $\delta(t)$ + double exp model:

PMT	NQ	T_0 [ns]	σ_t [ns]	R	F	τ_f [ns]	$\tau_s [\mathrm{ns}]$
7	36	45.3	0.97	0.06	0.7	30	100
8	37	35.1	1.1	0.07	_	_	_

Dark Count Correction

The reconstruction algorithm some time reconstruct a PE where it should not be. The rate of this falls reconstructions is the dark count (f_{dc}) . The probability to have n > 0 dark PEs at a digi point is f_{dc}^n and the probability to have 0 dark PEs in a digi point is $1 - \frac{f_{dc}}{1 - f_{dc}}$. This parameter can be calibrated from the pulser data by applying the reconstruction algorithm out of the time window where the SPE is expected.

Dark Count Correction to the Model

$$\tilde{H}_{0i} \to \left(1 - \frac{f_{dc}}{1 - f_{dc}}\right) \tilde{H}_{0i}$$

$$\tilde{H}_{0i} \to \left(1 - \frac{f_{dc}}{1 - f_{dc}}\right) \tilde{H}_{ni} + \sum_{m=1}^{n} f_{dc}^{m} \tilde{H}_{n-mi}$$
(22)

This should be corrected before the alignment.

Dark Count Correction to the Simulation

For each digi point add a random number sampled with the probability

$$P(0) = 1 - \frac{1}{1 - f_{dc}}$$

$$P(n > 0) = f_{dc}^{n}$$
(23)

Correction due the SPE Area Resolution

When n PEs created at some time in the PMT there is some probability that $m \neq n$ PEs will be resolved. This is related to the SPE area resolution.

 μ_{pad} and σ_{pad} are the mean and width of the padestial distribution, σ_{spe} is the width of the SPE area distribution (around 1) and a_0 is some threshold area which under it the PE will not be resolved.

Correction to the Simulation due the SPE Area Resolution

For each non-dark PE assign an area chosen randomly from Normal (mean = $\mu_{pad} + 1$, $\sigma^2 = \sigma_{pad}^2 + \sigma_{spe}^2$).

- ▶ If the area $< a_0$ eraser this PE.
- ▶ If the a_0 <area < 1.5 leave the PE.
- ▶ If the n 0.5 <area < n + 0.5 PE $\rightarrow n$ PEs.

Correction to the Model due the SPE Area Resolution

Recall that \tilde{H}_{ni} is the number of times n PEs should be resolved at time t_i . $H_{ni} = \sum_m P_{nm} \tilde{H}_{mi}$ is the probability to resolve n PEs at time t_i , where P_{nm} is the probability to resolve n PEs from m real PEs.

▶ $P_{n0} = \delta_{n0}$ because the probability to resolve n PEs from 0 PEs is accounted by the dark count.

$$P_{0m} = \frac{1}{\sqrt{2\pi \left(\sigma_{pad}^2 + m\sigma_{spe}^2\right)}} \int_{-\infty}^{a_0} e^{-\frac{\left((x - (\mu_{pad} + m))^2}{2\left(\sigma_{pad}^2 + m\sigma_{spe}^2\right)}\right)} dx$$

$$P_{1m} = \frac{1}{\sqrt{2\pi(\sigma_{pad}^2 + m\sigma_{spe}^2)}} \int_{a_0}^{1.5} e^{-\frac{\left((x - (\mu_{pad} + m))^2\right)^2}{2\left(\sigma_{pad}^2 + m\sigma_{spe}^2\right)}} dx$$

$$P_{nm} = \frac{1}{\sqrt{2\pi(\sigma_{pad}^2 + m\sigma_{spe}^2)}} \int_{n-0.5}^{n+0.5} e^{-\frac{\left((x - (\mu_{pad} + m))^2 - \frac{1}{2(\sigma_{pad}^2 + m\sigma_{spe}^2)}\right)}} dx$$

The global fit prefers a more narrow area distribution than the actual pulser data.

model	F	$\tau_f [\mathrm{ns}]$	τ_s [ns]	
2 exp model	0.07	0.2	36	
$\delta(t)$ + 2 exp model	0.05	1.1	36	