It can be shown (and you may use these facts without proof) that \otimes is associative and that

$$(A \otimes B)(C \otimes D) = AC \otimes BD$$
$$(A \otimes B)^{\top} = A^{\top} \otimes B^{\top},$$

whenever AC and BD are well defined.

Given any $n \times n$ matrix X, let vec(X) be the vector in \mathbb{R}^{n^2} obtained by concatenating the rows of X.

(1) Prove that AX = Y iff

$$(A \otimes I_n)\operatorname{vec}(X) = \operatorname{vec}(Y)$$

and XA = Y iff

$$(I_n \otimes A^{\top}) \operatorname{vec}(X) = \operatorname{vec}(Y).$$

Deduce that AX + XA = Y iff

$$((A \otimes I_n) + (I_n \otimes A^{\top}))\operatorname{vec}(X) = \operatorname{vec}(Y).$$

In the case where n=2 and if we write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

check that

$$A \otimes I_2 + I_2 \otimes A^{\top} = egin{pmatrix} 2a & c & b & 0 \\ b & a+d & 0 & b \\ c & 0 & a+d & c \\ 0 & c & b & 2d \end{pmatrix}.$$

The problem is determine when the matrix $(A \otimes I_n) + (I_n \otimes A^{\top})$ is invertible.

Remark: The equation AX + XA = Y is a special case of the equation AX + XB = C (sometimes written AX - XB = C), called the *Sylvester equation*, where A is an $m \times m$ matrix, B is an $n \times n$ matrix, and X, C are $m \times n$ matrices; see Higham [91] (Appendix B).

(2) In the case where n=2, prove that

$$\det(A \otimes I_2 + I_2 \otimes A^{\top}) = 4(a+d)^2(ad-bc).$$

(3) Let A and B be any two $n \times n$ complex matrices. Use Schur factorizations $A = UT_1U^*$ and $B = VT_2V^*$ (where U and V are unitary and T_1, T_2 are upper-triangular) to prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and μ_1, \ldots, μ_n are the eigenvalues of B, then the scalars $\lambda_i \mu_i$ are the eigenvalues of $A \otimes B$, for $i, j = 1, \ldots, n$.

Hint. Check that $U \otimes V$ is unitary and that $T_1 \otimes T_2$ is upper triangular.