EKT-816: Problem Set 2

There are 100 points available on this problem set, and it will be graded out of 80. That is, there are 20 bonus points available.

Due Date: Wednesday, March 20

Properties of OLS

- 1. Consider running a regression of some variable y on a vector of regressors x, where x has dimension $k \ge 1$.
- (a) Will the estimated residuals sum to zero if we do not include a constant in the regression? If not, what will $\sum_{i=1}^{n} \hat{e}_i$ be?

From now on you can assume that x contains a constant.

(b) We showed in class that the coefficient on a particular variable - say x_j - that you get from running a regression of y on x is numerically identical to the one you would get from regressing y on x_j^* , where x_j^* is the residual from a regression of x_j on $x_1, \ldots x_{j-1}, x_{j+1}, \ldots x_k$.

Now, consider regressing y^* on x_j^* , where y^* is the residual from a regression of y on $x_1, \ldots x_{j-1}, x_{j+1}, \ldots x_k$. Call the resulting coefficient estimate $\widetilde{\beta}_j$. What is the relationship between $\widehat{\beta}_j$ and $\widetilde{\beta}_j$? Can you explain why?

 $[2 \times 5 = 10 \text{ points}]$

More Data Manipulation in R

2. Do exercises 2-3 of section 13.4.6 of Wickham and Grolemund (2017).

 $[2 \times 5 = 10 \text{ points}]$

3. Do exercises 1-2 of section 13.5.1 of Wickham and Grolemund (2017).

 $[2 \times 5 = 10 \text{ points}]$

Specification Choice

Examples from Agricultural Economics

- 4. Recall the setup from class:
- y_i is output per acre on farm i
- x_{i1} is an index of soil quality
- x_{i2} is an index of weather quality
- x_{i3} is an index of pesticide use
- e_i is a measure of insect population density

We know that crop yields are determined as

$$y = x_1 \beta_1 + x_2 \beta_2 + x_3 \beta_3 + e$$

We are also given that x_1 , x_2 , and e are mutually independent with mean zero. Now, consider two different assumptions about how pesticide use is determined:

- model A: farmers ignore soil quality (or do not observe it), but they do observe the level of insect populations, and they set $x_3 = -e/\gamma + \eta$ where η is independent of all the x variables.
- model B: farmers set $x_3 = x_1 e/\gamma_2 + \varepsilon$, where ε is independent of the x variables.

You have access to data on y, x_1 , x_2 , and x_3 .

- (a) If model B generates the data, will a regression of crop yields on soil quality controlling for weather quality **and** pesticide use deliver a consistent estimate of β_1 ?
- (b) If model B generates the data, will a regression of crop yields on soil quality, controlling for weather quality but **not** pesticide use, deliver a consistent estimate of β_1 ? What interpretation can you give to the limiting value of $\widehat{\beta}_1$ in this scenario?

 $[2 \times 10 = 20 \text{ points}]$

Measurement Error

5. Suppose you have the following data generating process:

$$y = x_1 \beta_1 + x_2 \beta_2 + e$$

Here, e is independent of (x_1, x_2) , has mean zero and variance σ_e^2 . However, you do not observe x_2 but a mismeasured version of it:

$$z_2 = x_2 + u$$

where u is independent of (e, x_1, x_2) , has mean zero, and variance σ_u^2 .

- (a) If you were to run a regression of y on (x_1, z_2) , what would the limiting value of $\widehat{\beta}_2$ be?
- (b) Same question, but for $\hat{\beta}_1$. Which factors will tend to make the bias (if any) larger or smaller?

 $[2 \times 10 = 20 \text{ points}]$

Monte Carlo Simulations

6. Write an R script to simulate the sampling distribution of the sample mean for n = 10, 100, 1000, and 10000. Generate the underlying data as an iid sample $X_i \sim F$, where F is the distribution you described in Q.3 of problem set 1. Use B = 1000 draws from each distribution.

Display a table with the mean, standard deviation, skewness, and kurtosis of the sampling distribution for each n. Also display a plot of the density of \overline{X}_n for each n.

[20 points]

Robust Standard Errors

7. Clone github.com/vikjam/mostly-harmless-replication and replicate Figure 3.1.2 of *Mostly Harmless Econometrics*. Re-run the regression but use robust standard errors. Output your results to a properly formatted table (look up the package stargazer to do this).

[10 points]

References

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O'Reilly. https://r4ds.had.co.nz.