2006 год. Вариант А

1А. По медной трубе диаметром d=10 см и длиной L=20 м из реактора выводятся ультрахолодные нейтроны. Их движение по трубе с шероховатыми стенками носит характер одномерной диффузии. Оценить, во сколько раз возрастёт поток нейтронов по трубе с гладкими стенками с зеркальным отражением нейтронов. Столкновениями между нейтронами пренебречь.

2А. Расширение одного моля азота (N_2) в процессе Джоуля—Томсона производится от описываемого уравнением Ван-дер-Ваальса начального состояния с температурой $T_0=3T_{\rm Kp}$ ($T_{\rm Kp}$ — критическая температура газа) до сильно разреженного, в котором газ можно считать идеальным. Найти начальный объём V_0 и конечную температуру газа, соответствующие его максимально возможному охлаждению. Теплоёмкость C_V не зависит от температуры. Критические параметры: $T_{\rm Kp}=126~{\rm K},$ $V_{\rm Kp}=114~{\rm cm}^3/{\rm моль}.$

3А. В цилиндрической центрифуге радиусом $r_0=25$ см, вращающейся с угловой скоростью $\omega=250$ с $^{-1}$, находится водный раствор двух белков с молярными массами $\mu_1=20\cdot 10^3$ г/моль и $\mu_2=25\cdot 10^3$ г/моль. Полные массы белков в смеси и их плотности ($\rho=1,1$ г/см 3) одинаковы. Найти отношение концентраций белков у стенки центрифуги. Температура раствора T=300 К, плотность воды $\rho_0=1$ г/см 3 , распределение молекул по высоте не учитывать.

 ${\bf 4A.}$ В некотором диапазоне температур T и объёмов V свободная энергия F изучаемой системы описывается соотношением

$$F = AT(1 - \ln T) - RT \ln V - TS_0,$$

где A и S_0 — константы. Доказать, что веществом системы является идеальный газ и выяснить физический смысл константы A.

5А. Упругие свойства углеродной нанотрубки (англ. — buckytube) описываются моделью, в которой она представляет собой тонкостенный цилиндр из вещества с модулем Юнга алмаза $E=10^{12}$ Па. Определить относительную среднеквадратичную флуктуацию радиуса трубки, если его равновесное значение r=0,45 нм, толщина стенки $\Delta=0,1$ нм, а длина l=10 нм. Температура T=300 K, форма трубки при флуктуациях не меняется.

2006 год. Вариант Б

1Б. Оценить отношение скоростей испарения двух одинаковых капель воды радиусом R=1 см, одна из которых находится в вакууме, а другая — в сухом воздухе. Длина свободного пробега молекул воды в воздухе $\lambda=10^{-5}$ см.

2Б. Расширение одного моля неона (Ne) в процессе Джоуля—Томсона производится от описываемого уравнением Ван-дер-Ваальса начального состояния с температурой $T_0 = T_{\text{инв}}/4$ ($T_{\text{инв}}$ — температура инверсии дифференциального эффекта) до сильно разреженного, в котором газ можно считать идеальным. Найти начальный объём V_0 и конечную температуру газа, соответствующие его максимально возможному охлаждению. Теплоёмкость C_V не зависит от температуры. Параметры уравнения Ван-дер-Ваальса: $a=0.02~\mathrm{H\cdot M^4/Monb^2},\ b=17~\mathrm{cm^3/Monb}.$

3Б. Смесь двух изотопов газообразного хлора $^{35}\mathrm{Cl}_2$ и $^{37}\mathrm{Cl}_2$ с исходным отношением концентраций $n(^{35}\mathrm{Cl}_2)/n(^{37}\mathrm{Cl}_2)=3,065$ находится в цилиндрической центрифуге. Линейная скорость на периферии вращающегося цилиндра $V=5\cdot 10^4$ см/с. Найти отношение концентраций изотопов у стенки центрифуги. Температура газа 300 K, распределение молекул по высоте не учитывать.

4Б. В некотором диапазоне температур T и давлений p термодинамический потенциал Гиббса G изучаемой системы описывается соотношением

$$G = AT(1 - \ln T) + RT \ln p - TS_0,$$

где A и S_0 — константы. Доказать, что веществом системы является идеальный газ и выяснить физический смысл константы A.

5Б. Упругие свойства молекулы фуллерена C_{60} (англ. — buckyball) описываются моделью, в которой она представляет собой тонкостенную сферу из вещества с модулем Юнга алмаза $E=10^{12}$ Па. Определить относительную среднеквадратичную флуктуацию радиуса фуллерена, если его равновесное значение r=0,36 нм, а толщина стенки $\Delta=0,1$ нм. Температура T=300 K, форма фуллерена при флуктуациях не меняется.

2007 год. Вариант А

1А. Идеальная тепловая машина работает между двумя резервуарами, один из которых первоначально содержит массу $m_1=1$ кг водяного пара при температуре $t_1=100\,^{\circ}\mathrm{C}$, а другой — массу $m_2=4$ кг льда при температуре $t_2=-25\,^{\circ}\mathrm{C}$. Машина перестаёт работать, когда в обоих сосудах оказывается вода при равной конечной температуре. Определить эту конечную температуру t_x и полное количество полученной работы A. В сосудах поддерживается нормальное давление. Теплоёмкость воды равна $c_1=4,18$ кДж/(кг·К), льда — $c_2=2,09$ кДж/(кг·К). Теплота испарения воды $\lambda=2,26\cdot10^3$ кДж/кг, теплота плавления льда q=335 кДж/кг.

2А. В тонкостенном сосуде с идеальным газом на очень короткое время открывается маленькое отверстие, через которое молекулы вылетают в вакуум и, пролетев достаточно большое расстояние, попадают в небольшой детектор. Максимальный поток частиц наблюдается на детекторе через время t_0 после открытия отверстия. Определите, во сколько раз потоки, наблюдаемые через времена $t_0/2$ и $2t_0$, отличаются от максимального потока. Распределение молекул в сосуде по скоростям — максвелловское.

3А. В результате изотермического всестороннего сжатия двух одинаковых стальных кубиков величина их относительной деформации $\varepsilon = \left| \frac{V - V_0}{V_0} \right|$ составила $\varepsilon_1 = 0.001$ и $\varepsilon_2 = 0.01$ соответственно. Найти, во сколько раз различаются отношения Q/W полученного количества теплоты Q к работе деформации W кубиков, если их температура одинакова. Полагать, что при сжатии давление пропорционально относительной деформации, а коэффициент объёмного теплового расширения и модуль всестороннего сжатия — постоянны.

4А. Оценить, во сколько раз изменится теплоёмкость при постоянном объёме C_V моля оксида азота NO при увеличении его температуры от $T_1=74~\mathrm{K}$ до $T_2=177~\mathrm{K}$. Характеристическая вращательная температура окиси азота $T_{\mathrm{вp}}=2,4~\mathrm{K}$, собственная частота колебаний атомов $\nu=5,64\cdot10^{13}~\mathrm{c}^{-1}$. Разность энергий между основным и первым возбуждённым электронными состояниями равна $\mathscr{E}=0,0155~\mathrm{эB}$, другие возбуждённые состояния не учитывать.

5А. Шарообразные частицы золота радиуса $a_1=2\cdot 10^{-8}$ см и шарообразные частицы соли NaCl радиуса $a_2=4\cdot 10^{-8}$ см испытывают броуновское движение в воде, имеющей температуру T=293 К. При сближении частиц в результате случайных блужданий на малое расстояние $R=8\cdot 10^{-8}$ см друг от друга частица золота и частица соли коагулируют (т.е. слипаются). Оценить полное число коагуляций частиц золота и соли в единице объёма в единицу времени, если концентрация золота и соли $n_1=n_2=5\cdot 10^{14}$ см $^{-3}$, а вероятность тройных, четверных и т.д. сближений частиц пренебрежимо мала. Вязкость воды $\eta=0.01$ дин·с/см 2 .

2007 год. Вариант Б

1Б. Идеальная тепловая машина работает между двумя резервуарами, один из которых первоначально содержит массу $m_1=1$ кг водяного пара при температуре $t_1=100$ °C, а другой — некоторую массу m_2 льда при температуре $t_2=-25$ °C. Машина перестаёт работать, когда в обоих сосудах оказывается вода при температуре t=37 °C. Определить массу m_2 льда и полное количество полученной работы A. В сосудах поддерживается нормальное давление. Теплоёмкость воды равна $c_1=4,18$ кДж/(кг·К), теплоёмкость льда $c_2=2,09$ кДж/(кг·К). Теплота испарения воды $\lambda=2,26\cdot10^3$ кДж/кг, теплота плавления льда q=335 кДж/кг.

2Б. В тонкостенном сосуде с идеальным газом на очень короткое время открывается маленькое отверстие, через которое молекулы вылетают в вакуум и, пройдя достаточно длинный путь, попадают в небольшой детектор. Время, через которое на детекторе регистрируется наибольший поток молекул, определяет некоторую эффективную скорость v_0 , с которой распространяется сгусток вылетевшего в вакуум газа. Определите отношение скорости v_0 к наивероятнейшей скорости молекул в сосуде, где распределение скоростей является максвелловским.

3Б. Два одинаковых упругих стержня изотермически растянули так, что их относительная деформация $\varepsilon=(l-l_0)/l_0$ составила $\varepsilon_1=0{,}001$ и $\varepsilon_2=0{,}01$ соответственно. Найти, во сколько раз различаются отношения Q/W полученного количества теплоты Q к работе деформации W стержней. Уравнение состояния стержней можно представить в виде:

$$\sigma = E\left(\frac{l}{l_0}(1 - \alpha T) - 1\right),\,$$

где σ — напряжение, E — модуль Юнга, α — коэффициент линейного теплового расширения, $\alpha T \ll$. Считать, что температура T стержней одинакова.

4В. Оценить, во сколько раз изменится теплоёмкость при постоянном давлении C_P моля молекул брома Br_2 при увеличении его температуры от $T_1=230~\mathrm{K}$ до $T_2=460~\mathrm{K}$. Характеристическая вращательная температура брома $T_{\mathrm{Bp}}=0.23~\mathrm{K}$, собственная частота колебаний атомов $\nu=9.7\cdot 10^{12}~\mathrm{c}^{-1}$. Разность энергий между основным и первым возбуждённым электронными состояниями равна $\mathscr{E}=0.45~\mathrm{эB}$, другие возбуждённые состояния не учитывать.

5Б. Шарообразные частицы оксида железа Fe_2O_3 радиуса $a_1=8\cdot 10^{-8}$ см и шарообразные частицы соли KCl радиуса $a_2=4\cdot 10^{-8}$ см испытывают броуновское движение в воде при температуре T=293 К. При сближении частиц в результате случайных блужданий на малое расстояние $R=18\cdot 10^{-8}$ см друг от друга частица Fe_2O_3 и частица KCl коагулируют (т.е. слипаются). Оценить полное число коагуляций частиц Fe_2O_3 и KCl в единице объёма в единицу времени, если концентрация оксида железа и соли $n_1=n_2=10^{14}$ см $^{-3}$, а вероятность тройных, четверных и т.д. сближений частиц пренебрежимо мала. Вязкость воды $\eta=0.01$ дин·с/см 2 .

2008 год. Вариант А

- **1А.** В летний день температура воздуха на улице, сначала равная 26 °C, повысилась на 5 °C. Считая кондиционер идеальной машиной (работающей между комнатой и улицей) определить, во сколько раз при этом изменились затраты энергии для поддержания температуры в комнате, равной 21 °C.
- **2А.** Определить разность теплоёмкостей $C_p C_v$ в точке инверсии для дифференциального эффекта Джоуля–Томсона произвольной термодинамической системы с объёмом V при давлении P. Температурный коэффициент давления равен β .
- **3А.** Температура ансамбля квантовых гармонических осцилляторов, собственная частота которых равна $\nu=10^{12}~{\rm c}^{-1}$, повысилась в 1,5 раза, при этом заселённость уровня с энергией $\varepsilon_{20}=20h\nu$ (h постоянная Планка) не изменилась. Определить начальную температуру ансамбля T_0 , если можно принять, что $h\nu\ll kT_0$.
- **4А.** В демонстрационном опыте тонкостенную пористую колбу объёмом $V=100~{\rm cm}^3$, заполненную азотом N_2 , помещают в сосуд значительно большего объёма с гелием Не, находящимся при том же давлении. Суммарная площадь поперечного сечения пор стенок колбы $F=0.01~{\rm cm}^2$, поперечные размеры пор меньше длины свободного пробега молекул. Считая процесс изотермическим при $T=300~{\rm K}$, найти, в какой момент времени давление в колбе будет максимальным.
- **5А.** На Юпитере атмосфера состоит из молекулярного водорода H_2 . Полагая водород идеальным газом и атмосферу адиабатической, определить ускорение свободного падения g, если на перепаде высоты H=2,1 км относительное изменение скорости звука $\left|\frac{a-a_0}{a_0}\right|=0,01$ (a_0 скорость звука на меньшей высоте). Температура на меньшей высоте $T_0=180$ К. Считать, что ускорение свободного падения g не зависит от высоты.

Указание. Адиабатической называется атмосфера, в которой порции газа, перемещаясь по вертикали без теплообмена, всё время остаются в механическом равновесии.

2008 год. Вариант Б

- **1Б.** В зимний день температура воздуха на улице, сначала равная -9 °C, понизилась ещё на 10 °C. Для обогрева комнаты используется тепловой насос, работающей между комнатой и улицей. Считая тепловой насос идеальной машиной, определить, во сколько раз при этом изменились затраты энергии для поддержания температуры в комнате, равной 21 °C.
- **2Б.** Определить разность теплоёмкостей C_p-C_v в точке инверсии для дифференциального эффекта Джоуля—Томсона произвольной термодинамической системы с объёмом V при температуре T. Изотермическая сжимаемость равна γ .
- **3Б.** Температура ансамбля квантовых гармонических осцилляторов, первоначально равная $T_0=1150~{\rm K}$, понизилась до $T_1=960~{\rm K}$, при этом заселённость уровня с энергией $\varepsilon_{14}=14h\nu$ (h постоянная Планка) не изменилась. Определить собственную частоту осцилляторов ν , если можно принять, что $h\nu\ll kT_1$.
- **4Б.** Тонкостенный бак объёма $V=100~{\rm дm}^3$, наполненный водородом ${\rm H_2}$, находится на планете, атмосфера которой состоит из углекислого газа ${\rm CO_2}$. В баке возникла щель площади $F=10^{-4}~{\rm cm}^2$, причём ширина щели оказалась меньше длины свободного пробега молекул. Считая процесс изотермическим при $T=280~{\rm K}$, найти, через какое время после образования щели давление в баке будет минимальным. Начальное давление водорода равно атмосферному.
- **5Б.** Атмосфера планеты Марс состоит из углекислого газа CO_2 . Считая углекислый газ идеальным и атмосферу адиабатической, оценить температуру у поверхности планеты T_0 , если скорость звука, измеренная на высоте $\mathrm{H}=9.8$ км, равна $\mathrm{a}=240~\mathrm{m/c}$. Ускорение свободного падения $g=3.72~\mathrm{m/c^2}$ и не зависит от высоты. Показатель адиабаты $\gamma=1.3$.

Указание. . Адиабатической называется атмосфера, в которой порции газа, перемещаясь по вертикали без теплообмена, всё время остаются в механическом равновесии.