CITS2211 Assignment 1

Baasil Siddiqui

Question 1

a)
$$P \vee (Q \vee \neg P)$$

The statement is a tautology because if P is true then so is $P \vee (Q \vee \neg P)$ if P is false $Q \vee \neg P$ is true and thus, $P \vee (Q \vee \neg P)$ is true

b)
$$(P \land \neg P) \lor \neg Q$$

$$P \wedge \neg P = F$$
 (by contradiction)
 $(P \wedge \neg P) \vee \neg Q = \neg Q$ (by absorption)

The proposition is a contingent because it depends on the truth value of Q

c)
$$Q \rightarrow (P \land \neg Q)$$

if Q is true then, $(P \land \neg Q)$ is false, making the proposition false, and if Q is false the proposition is true The proposition is a contingent because it depends on the truth value of Q

Question 2

$$P \vee \neg (P \vee \neg Q) \equiv P \vee \neg Q$$

$1. P \lor \neg (P \lor \neg Q)$	Premise
$2. P \lor (\neg P \land Q)$	1, Demorgan's laws
$3. (P \lor \neg P) \land (P \lor Q)$	2, distributivity
4. T ∧ (P ∨ Q)	3, excluded middle
5. P ∨ Q	4, absorption

5. P
$$\vee$$
 Q $Q.E.D.$

Question 3

 $\forall x \; \exists n \; (x \leq n \leq x + 5 \; \land \; (\exists a \; \exists b \; (a \neq n) \; \land \; (a \neq 1) \; \land \; (b \neq n) \; \land \; (b \neq 1) \; \land \; (a \times b = n))$

Question 4

let N(x, y) be "x is a neighbour of y"

a) Anna has no neighbours

$$\neg(\exists\,x.N(x,\,a))$$

b) Ben has two neighbours

$$\exists x \exists y (N(x, b) \land N(y, b) \land x \neq y \land \forall z (N(z, b) \rightarrow (z = x \lor z = y)))$$

c) If somebody is a neighbour of Ben, Ben is also a neighbour of that person

$$\forall x (N(x, b) \rightarrow N(b, x))$$

d) Except for Anna, everyone is the neighbour of someone

$$\forall x (x \neq a \rightarrow \exists y (N(x, y)))$$

Question 5

a) $\frac{P}{P}$

 $P \equiv P$ by rule of identity hence, the inference rule is sound

 $\mathrm{b)} \ \frac{P}{P \leftrightarrow Q}$

if Q if false, the axiom is true but the conclusion is false Hence, the inference rule is unsound

c) $\frac{P \leftrightarrow Q}{P}$

if P and Q are false, the axiom is true but the conclusion is false Hence, the inference rule is unsound

 $\mathrm{d})\;\frac{P\;Q}{P\vee Q}$

From the premise P we can infer P \vee Q by disjunction introduction rule Hence, the inference rule is sound

e)
$$\frac{P \to Q \neg \neg P}{Q}$$

1. ¬¬P	Premise
$2. P \rightarrow Q$	Premise
3. P	1, double negation
4. Q	3, 2, Demorgan's laws

Hence the rule is sound

Question 6

$$\forall x. (\neg\ Q(x)\ \lor\ P(x))\ \lor\ \exists\ x(Q(x)\ \lor\ (P(x)\ \land\ R(x))) \to \exists x. R(x)$$

1. $\forall x (\neg Q(x) \land P(x))$	premise
2. $\exists x (Q(x) \lor (P(x) \land R(x)))$	premise
3. $Q(a) \vee (P(a) \wedge R(a))$	2, Exist elimination
$4. \ \neg Q(a) \land P(a)$	1, Forall elimination
$5. \neg Q(a)$	4, conjunction elimination
6. $\neg Q(a) \rightarrow (P(a) \land R(a))$	3, implication law
7. $P(a) \wedge R(a)$	5, 6, Modus ponens
8. R(a)	7, conjunction elimination
9. $\exists x.R(x)$	8, Exists introduction
0at(a)	o, Linds introduction

Question 7

Assume that the difference beetween a squidgy and a non-squidgy number multiplied by 2 produces a squidgy number

let k be a non-squidgy number and l be a squidgy number If l is a squidgy number there exists integers p and q such that $1=\frac{p}{q}$

$$\left(\frac{p}{q} - k\right) * 2 = \frac{p\prime}{q\prime}$$

where p' and q' are integers (by our assumption that the result is a squidgy number)

$$k = \frac{2pq\prime - p\prime q}{2q\prime q}$$

By arithmetic

2pq' - p'q and 2q'q are integers

k can be represented in the form of $\frac{a}{b}$ where a and b are integers, therefore, we have a contradiction as k is a non-squidgy number yet can be represented as a fraction with integers as numerator and denominator. Our assumption that the result is a squidgy number must be false.

Therefore, the result of multiplying the difference between a squidgy and a non-squidgy number by 2 is a non-squidgy number

Q.E.D.

Question 8

this is a bidirection proof so firstly, we prove that if x is odd then 5x-1 is even, and then secondly, prove that if 5x-1 is even then x is odd.

first direction: if x is odd then 5x-1 is even

let x be an arbitary odd integer then x is of the form 2k-1 where k is an integer

$$x = 2k - 1$$

 $5x = 10k - 5$ (multiplying both sides by 5)
 $5x - 1 = 10k - 6$ (substracting 1 from both sides)
 $= 2(5k - 3)$ (factoring out 2)
 $= 2n$ (where n = 5k-3)

which is an odd number.

therefore, for any odd integer x, 5x -1 is an even integer

second direction: if 5x-1 is an even integer then x is an odd integer

The contrapositive of the statement is if x is not an odd integer then 5x-1 is not an even integer
We need to prove that if x is an even integer then 5x-1 is an odd integer

let x be an arbitary even integer then x is of the form 2n where n is an integer

$$x = 2n$$

 $5x = 10n$ (multiplying both sides by 5)
 $5x - 1 = 10n - 1$ (substracting 1 from both sides)
 $= 2(5n) - 1$ (factoring out 2)
 $= 2k - 1$ (where k is 5n)

Hence, 5x - 1 is of the form 2k - 1 which is an odd number therefore, for any even integer x, 5x - 1 is an odd integer

Conclusion

therefore, we have proved that if x is odd, then 5x-1 is even and if 5x-1 is even then x is odd.

It follows that x is odd if and only if 5x-1 is even

Question 9

Skill issue

Question 10

Base cases:

in the formula a, $A(\phi) = 1$ and $B(\phi) = 0$ in the formula baa, $A(\phi) = 2$ and $B(\phi) = 1$

hence, $A(\phi) \geq 2B(\phi)$ holds for the base cases

Inductive case $\psi a \phi$:

by the inductive Hypothesis, we can assume that $A(\psi) \geq 2B(\psi)$ and $A(\phi) \geq 2B(\phi)$

$$A(\psi a\phi) = 1 + A(\psi) + A(\phi)$$

$$\geq 1 + 2B(\psi) + 2B(\phi)$$

$$= 1 + 2B(\psi a\phi)$$

$$= 1 + 2B(\psi a\phi)$$

$$\geq 2B(\psi a\phi)$$

Inductive case $aba\psi$:

by the inductive Hypothesis, we can assume that $A(\psi) \geq 2B(\psi)$

$$A(aba\psi) = 2 + A(\psi)$$

$$\geq 2 + 2B(\psi)$$

$$= 2B(aba) + 2B(\psi) \text{ (since 2B(aba) = 2)}$$

$$= 2B(aba\psi)$$

Question 11

- (i) $(A B C) \cup (B \cap C)$
- (ii) $(A \cup B \cup C)$ $((A \cap B) \cup (A \cap C) \cup (B \cap C))$

Question 12

(a) Definition: R is reflexive iff $\forall x \in X, R(x, x)$

I will disprove the given proposition with a counter-example:

let $X = \{1, 2, 3, 4\}$

Suppose $R = \{(1, 2)(2, 3)(3, 4)(4, 4)\}$ and $S = \{(2, 1)(3, 2)(4, 3)(4, 4)\}$

then $T = \{(1, 1)(2, 2)(3, 3)(4, 4)(3, 4)(4, 3)\}$

Here, R and S are not reflexive since $(1, 1) \notin R$ and $(1, 1) \notin S$

but T is reflexive

(b) Definition: R is reflexive iff $\forall x \in X, R(x, x)$

For any arbitary element x in set X,

 $(x, x) \in R$ and $(x, x) \in S$ (by defination of reflexive relations)

(x, x) belongs to T as well (by definition of T)

we have proved that for any arbitary element x in X, $(x, x) \in T$

Therefore, if R and S are reflexive then so is T.

Q.E.D.

(c) Definition: $\forall a, b \in A.((a, b) \in R \to (b, a) \in R$

I will disprove the given proposition with a counter-example:

Suppose $R = \{(1, 2)(2, 1)(3, 4)(4, 3)(1, 3)(3, 1)\}$ and $S = \{(5, 6)(6, 5)(4, 3)(3, 4)\}$

Then $T = \{(3, 3)(4, 4)(1, 4)\}$

here, R and S are symmetric

but T is not symmetric because $(1, 4) \in T$ but $(4, 1) \notin T$