DAFTAR ISI

DAFTAR ISI	i
DAFTAR TABEL	ii
DAFTAR GAMBAR	ii
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Luaran yang Diharapkan	2
1.5 Kegunaan	2
BAB 2. TINJAUAN PUSTAKA	3
2.1 Nano Komposit	3
2.2 Carbon Nanotubes	3
2.3 CNT Sebagai Filler Pada PMNCs	4
2.4 State of the Art	4
BAB 3. METODE RISET	5
3.1 Tahapan Riset	5
3.1.1 Perendaman Karet Gelang dengan Hexana.	6
3.1.2 Perendaman Karet Gelang ke Dalam Larutan Dispersi CNT	6
3.1.3 Pengeringan komposit RB/CNT.	6
3.1.4 Pengeringan komposit RB/CNT. Karakterisasi RB/CNT	6
3.1.5 Pengujian pada Komposit RB/CNT	6
3.2 Indikator Capaian	7
3.3 Teknik Pengumpulan Data	7
3.4 Teknik Analisis Data	7
BAB 4. BIAYA DAN JADWAL KEGIATAN	7
4.1 Anggaran Biaya	7
4.2 Jadwal Kegiatan	8
DAFTAR PUSTAKA	9
LAMPIRAN	11
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	21
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	23
Lampiran 4. Surat Pernyataan Ketua Pelaksana	24

DAFTAR TABEL

Tabel 2.1 Klasifikasi Nanokomposit Berdasarkan Matrixnya	3
Tabel 2.2 State of the Art	5
Tabel 3.1 Indikator Terukur pada Tahapan	
Tabel 4.1 Anggaran Biaya	7
Tabel 4.2 Jadwal Kegiatan	
DAFTAR GAMBAR	
Gambar 2.1 Ilustrasi SWCNT and MWCNT	4
Gambar 3.1 Diagram Alir Riset	6

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Perangkat elektronik bersifat *stretchable* (dapat ditarik tanpa mengalami kerusakan) mulai banyak dilirik oleh para peneliti dari seluruh dunia karena potensinya untuk diaplikasikan pada bidang-bidang seperti perangkat elektronik *epidermal* (perangkat elektronik pada kulit), teknik biomedis, monitoring kesehatan, dan *human—machine* interfaces (penghubung interaksi antara manusia dan mesin)(Zhao et al., 2019). Mark*et al*at elektronik *stretchable* diperkirakan akan mengalami peningkatan CAGR (*Compound Annual Growth Rate*) sebesar 25,29%, diperkirakan nilai market dari alat elektronik stretchable akan mencapai 2981,2 juta USD pada tahun 2026 (Market Research Future, 2020). Berdasarkan pertumbuhan nanomaterial dan teknologi fabrikasinya selama beberapa tahun terakhir, pengembangan dari elektronik *stretchable* telah mencapai kemajuan dan dianggap sebagai perangkat elektronik generasi selanjutnya. Hal tersebut karena Alat elektronik tersebut dapat memperbaiki sifat perangkat elektronik tradisional yang kaku dimana mengalami deformasi saat dilengkungkan atau ditarik (Zhao et al., 2019).

Secara umum konduktor yang digunakan pada perangkat *stretchable* merupakan komposit. Komposit tersebut tersusun dari matriks elastomer (matriks berupa polimer elastis) yang bersifat *non-conductive* dengan pengisi atau *filler* yang bersifat konduktor (Yun et al., 2021). Pada saat ini, perangkat elektronik *stretchable* masih banyak menggunakan konduktor *stretchable* dengan *filler* logam cair seperti gallium. Akan tetapi, konduktor berbasis logam cair cinderung mahal dan proses pembuatannya memerlukan teknologi yang tinggi (Tavakoli et al., 2017 dan Yun et al., 2021). Salah satu alternatif dari penyelesaian masalah dalam pembuatan konduktor stretchable yaitu dengan memanfaatkan karet gelang atau *rubber band* (RB) sebagai matriks dan *carbon nanotubes* (CNT) sebagai *filler*.

Karet gelang di indonesia pada umumnya hanya dimanfaatkan sebagai pengikat bungkus makanan dan sebagian besar bahan bakunya yang berupa karet alam masih diekspor ke negara lain seperti China dan Amerika Serikat. Hal ini sangat disayangkan karena Indonesia merupakan salah satu negara produsen karet alam terbesar di dunia dengan produksi karet kering sebesar 3,33 juta ton (Badan Pusat Statistik Indonesia, 2019). Dengan kelimpahan bahan baku karet gelang konvensional yaitu berupa karet alam, pemanfaatan karet gelang tersebut merupakan suatu keunggulan bagi Indonesia. Disisi lain, CNT memiliki sifat elektrik dan mekanik yang lebih baik dari pada karbon hitam sehingga dapat digunakan untuk meningkatkan sifat dari matrix. (Brigandi et al., 2017 dan Song et al., 2020)

(Chen et al., 2019) telah mengembangkan konduktor *stretchable* bersifat hidrofobik dengan menggunakan karet gelang sebagai matriks, karbon hitam konduktif berukuran nano (*conductive carbon black nano*) sebagai *filler* dan penambahan *polydimethylsiloxane* (PDMS) sebagai pelapis hidrofobik dengan

metode pencampuran. Dari percobaan tersebut, konduktor yang dibuat putus pada pemanjangan 980% dan mempunyai nilai konduktivitas sebesar 1.14 ×10 S/m. Riset Chen et al., (2019) menunjukkan bahwa waktu sonikasi karet gelang dan karbon hitam yang optimum yaitu sekitar 20 menit. Akan tetapi, pada pembuatan konduktor stretchable berbasis CNT belum ditemukan waktu sonikasi yang optimal (Chen et al., 2019; Song et al., 2020; Wang et al., 2018). Tahap sonikasi menjadi faktor penentu terjadinya distribusi dan dispersi yang homogen dari filler pada matriks polimer. Tahap ini dapat meminimalisir terbentuknya gumpalan atau aglomerasi dari filler. Berdasarkan hal tersebut, maka riset ini bertujuan menghasilkan konduktor stretchable berbasis karet gelang dan CNT sebagai filler untuk meningkatkan sifat mekanik, elektrik dan hidrofobik dengan variasi waktu sonikasi.

1.2 Rumusan Masalah

Rumusan masalah riset ini yaitu bagaimana pengaruh waktu sonikasi CNT terhadap peningkatan sifat hidrofobik, kekuatan tarik dan konduktivitas listrik pada konduktor *stretchable* berbasis karet gelang?

1.3 Tujuan

Tujuan yang ingin dicapai dalam riset ini yaitu sebagai berikut:

- 1. Memperoleh konduktor *stretchable* berbasis komposit karet gelang dan CNT.
- 2. Memperoleh waktu sonikasi yang optimal dalam peningkatan sifat hidrofobik, kekuatan tarik dan konduktivitas listrik pada konduktor *stretchable* berbasis karet gelang dan CNT.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari riset ini, yaitu:

- 1. Laporan kemajuan
- 2. Laporan akhir
- 3. Artikel ilmiah terkait riset

1.5 Kegunaan

Kegunaan dari riset ini adalah:

- 1. Meningkatkan pemanfaatan karet gelang dan pengolahan kar*et al*am di Indonesia.
- 2. Memperoleh terobosan baru berupa konduktor *stretchable* dengan bahan yang mudah untuk didapatkan dan dengan metode yang sederhana.
- 3. Memperoleh teknologi optimum berupa waktu sonikasi dalam pembuatan konduktor *stretchable* berbasis karet gelang dan CNT.
- 4. Memberikan sumbangsih terhadap pengembangan ilmu pengetahuan dan teknologi yang dapat dimanfaatkan pada industri keelektronikan.

BAB 2. TINJAUAN PUSTAKA

2.1 Nano Komposit

Nanokomposit merupakan material yang tersusun dari beberapa komponen dimana satu, dua atau tiga penyusunnya memiliki dimensi yang berada pada skala nanometer (nm) yaitu berukuran 10⁻⁹ m. Dimensi material yang berada pada skala nanometer dapat menciptakan interaksi antar komponen yang sangat penting dalam peningkatan sifat dari material. Dengan ukuran nanometer, sinergitas antar komponen dapat tercapai. Nanokomposit terdiri dari *filler* atau pengisi sebagai penguat dari matriks. *Filler* dapat berupa partikel nano, serat nano dan *nanoclay* (berbentuk layer) (Mikličanin et al., 2020).Nanokomposit dapat diklasifikasikan berdasarkan matrix penyusunnya menjadi tiga kategori yaitu *Ceramic Matrix Nanocomposites* (CMNCs), *Metal Matrix Nanocomposites* (MMNCs) dan *Polymer Matrix Nanocomposites* (PMNCs). Tabel 2.1 menunjukkan matrix penyusun dan contoh nanokompositnya.

Tabel 2.1 Klasifikasi Nanokomposit Berdasarkan Matrixnya

Matrix	Contoh
Logam (Metal)	Fe-Cr/Al ₂ O ₃ , Ni/Al ₂ O ₃ , Co/Cr, Fe/MgO, Al/CNT, Mg/CNT
Keramik (Ceramic)	Al ₂ O ₃ /SiO ₂ , SiO ₂ /Ni, Al ₂ O ₃ /TiO ₂ , Al ₂ O ₃ /SiC, Al ₂ O ₃ /CNT
Polimer (Polymer)	Thermoplastic/thermoset polymer/layered sili-cates, polyester/TiO ₂ , polymer/CNT.

2.2 Carbon Nanotubes

Carbon nanotubes (CNTs) merupakan serat karbon berukuran tipis dengan diameter berukuran nanodan panjang berukuran mikro. Carbon nanotubes (CNT) pertamakali ditemukan oleh Sumio Iijima pada tahun 1991 dan semenjak saat itu, CNT telah digunakan dalam berbagai aplikasi. Secara umum, CNT terdiri dari graphene atau grafit yang berbentuk silinder yang berstruktur planar-heksagonal dan tersusun dari atom karbon pada kisi sarang lebahnya CNT dapat diklasifikasi menjadi multi-walled carbon nanotubes (MWCNTs) atau single-walled carbon nanotubes (SWCNTs) yang ditunjukkan pada Gambar 2.1. Perbedaan pengklasifikasian tersebut diakibatkan oleh metode pembuatan CNT (Oliveira et al., 2019). CNT dapat diaplikasikan ke berbagai sektor mulai dari alat eletronik, aplikasi medis, perangkat energi dan komposit.

Gambar 2.1 Ilustrasi SWCNT and MWCNT

(Sumber: Oliveira et al, 2018)

2.3 CNT Sebagai Filler Pada PMNCs

Polymer Matrix Nanomposite pertama yang menggunakan filler berupa carbon nanotubes dilakukan oleh Ajayan et al pada tahun 1994. Penggunaan filler tersebut dilakukan guna untuk meningkatkan sifat mekanik, listrik, dan termal pada polimer. CNT memiliki kombinasi dari sifat mekanik, elektrik, dan termal yang baik. Hal tersebut membuat CNT menjadi pilihan yang sangat baik untuk menggantikan atau melengkapi nanofillers konvensional untuk pembuatan nanokomposit polimer multifungsi. Beberapa CNT memiliki sifat yang lebih kuat dari baja, lebih ringan dari aluminium, dan lebih konduktif dari tembaga. Akan tetapi, CNT merupakan salah satu filler yang sulit terdispersi dalam matrix polimer. merupakan suatu bahan yang bersifat sangat hidrofobik yang menyebabkannya tidak larut dalam air bahkan pelarut apapun (Kumar et al., 2013). Masalah yang mungkin timbul yaitu terbentuknya aglomerat dalam pelarut hidrofilik maupun pada matrix. Selain dari sifat CNT yang hidrofobik, aglomerat juga dapat terbentuk akibat adanya impuritas atau pengotor seperti karbon amorf atau nanopartikel logam sebagai residu dari sintesis CNT (Oliveira et al., 2019 dan Sanginario et al., 2017) Untuk itu perlu pemrosesan yang baik sehingga dapat meningkatkan interaksi antarmuka CNT baik pada matrix.

2.4 State of the Art

Topik utama dari riset ini adalah pembuatan konduktror *stretchable* dengan matriks berupa karet gelang dan CNT sebagai *filler*. Proses pembuatan konduktor *stretchable* tersebut menitikberatkan pada lamanya proses pencampuran antara matriks dan filler dalam hal ini yaitu waktu sonikasi. Beberapa riset terdahulu yang dapat mendukung pengembangan riset ini dirangkum pada Tabel 2.2.

Tabel 2.2 State of the Art

Penulis	Bahan Baku	Hasil
Boland et al., (2014)	Matriks: Karet gelang Filler: Graphene	Terjadi kenaikan konduktivitas listrik (10 ⁻³ S/m – 0,1 S/m) pada perendaman selama 15 menit hingga 48 jam. Terjadi penurunan perpanjangan putus pada penambahan graphene yaitu dari 1100% hingga 500%
Darabi et al., (2015)	Matriks: Permen karet Filler: MWCNT	MWCNT terdispersi dengan baik pada permen karet. Konduktor memiliki nilai konduktivitas listrik hingga 3 S/m dengan modulus young sebesar 1,3 MPa.
(Wang et al., 2018)	Matriks: Karet gelang Filler: Amidogen- functionalized CNT	Konduktivitas listrik yaitu sekitar 0,042 S/m dengan perpanjangan putus pada 920%.
Chen et al., (2019)	Matriks: Karet Gelang Filler: Carbon Black Nanoparticle (CBNP)	Terjadi kenaikan konduktivitas listrik, kekuatan tarik, dan sifat hidrofobik seiring dengan penambahan waktu sonikasi. Konduktivitas listrik tidak terlalu bertambah pada waktu sonikasi 20 hingga 40 menit. Penambahan PDMS meningkatkan sifat hidrofobik dan kekuatan tarik
Song et al., (2020)	Matriks: Karet Silikon Filler: CNT dan Conductive Carbon Black (CCB)	Penambahan CCB dapat menyembunyikan agromerasi CNT. Kekuatan Tarik mencapai 4,5 MPa dengan perpanjangan putus pada 211%. Nilai konduktivitas listrik dapat mencapai 248.8 S/m
Riset ini	Matriks: Karet gelang Filler: MWCNT	Riset yang akan dilakukan

BAB 3. METODE RISET

3.1 Tahapan Riset

Langkah-langkah riset dilakukan mengikuti diagram alir riset seperti yang ditunjukkan pada Gambar 3.1, yang secara garis besar terdiri dari proses penyusunan kolom absorpsi, proses absorpsi dan regenerasi, pengujian sampel, pengolahan data, dan analisis. Adapun penjelasan tahap riset dijelaskan pada sub bab 3.1.1 hingga 3.1.5.

Gambar 3.1 Diagram Alir Riset

3.1.1 Perendaman Karet Gelang dengan Hexana.

Karet gelang akan direndam dengan menggunakan hexana selama 12 jam. Setelah direndam, lalu karet gelang ditiriskan.

3.1.2 Perendaman Karet Gelang ke Dalam Larutan Dispersi CNT.

Larutan dispersi CNT dibuat dengan menambahkan 50 ml *deionized water* dengan 50 ml etanol dan selanjutnya dilakukan ultrasonikasi selama 20 menit. Setelah itu, karet gelang yang telah ditiriskan akan direndam kembali ke larutan dispersi CNT dan dilakukan ultrasonikasi kembali selama 20 menit (RB/CNT20), 40 menit (RB/CNT40), dan 60 menit (RB/CNT60).

3.1.3 Pengeringan komposit RB/CNT.

Komposit RB/CNT akan dibersihkan dengan menggunakan *deionized water* dan dikeringkan di dalam oven pada suhu 60°C selama 1 jam

3.1.4 Pengeringan komposit RB/CNT. Karakterisasi RB/CNT

Dilakukan untuk melihat morfologi dari RB/CNT berupa pendistribusian CNT pada matriks serta aglomerasi yang terbentuk.

3.1.5 Pengujian pada Komposit RB/CNT

Uji yang dilakukan yaitu uji kebasahan, uji mekanik berupa uji tarik dan uji elektrik beruupa uji resistansi. Uji kebasahan dilakukan untuk mengidentifikasi sifat hidrofobik dari RB/CNT. Uji Tarik dilakukan untuk mengidentifikasi kekuatan tarik dari RB/CNT. Uji resistansi dilakukan untuk mengidentifikasi kelayakan

RB/CNT digunakan sebagai konduktor. Hasil dari uji-uji tersebut akan dibandingkan dengan control berupa karet gelang dan variasi-variasi yang dibuat olehg variabel bebas.

3.2 Indikator Capaian

Tahapan riset berupa jenis karakterisasi pengujian yang akan dilakukan beserta dengan indikator terukur dan luaran dari tahapan riset tersebut yang ditunjukkan pada Tabel 3.1.

Indikator Luaran **Tahapan** Karakterisasi SEM Pendistribusian CNT Morfologi dari RB/CNT Uji Kebasahan Sudut kontak tetesan air Sifat hidrofobik RB/CNT Uji Tarik Grafik tegangan dan Kekuatan tarik RB/CNT regangan Uji Resistansi Nilai resistansi Sifat penghantar listrik CNT

Tabel 3.1 Indikator Terukur pada Tahapan

3.3 Teknik Pengumpulan Data

Teknik pengumpulan data yaitu berupa karakterisasi dari sampel. Sampel yang telah terbentuk nantinya akan diuji dengan beberapa pengujian yaitu seperti uji SEM, tarik, listrik, dan kebasahan. Pengujian tersebut dilakukan dengan menggunakan alat tertentu dan dengan bantuan teknisi. Data yang dikumpulkan pada uji SEM yanitu berbentuk gambar dan pada uji tarik, listrik, dan kebasahan data yang dikumpulkan berbentuk angka.

3.4 Teknik Analisis Data

Teknik analisis data yang digunakan yaitu berupa perhitungan dan pengamatan. Untuk uji tarik dan listrik akan dilakukan perhitungan untuk menentukan nilai kekuatan tarik dan konduktivitas listrik. Pada uji SEM dan kebasahan dilakukan pengamatan dari sampel. Pada uji SEM akan dilakukan pengamatan terhadap kedispersian CNT. Pada uji kebasahan akan dilakukan pengamatan terhadap sudut kontak dari tetesan air.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya pada riset ini ditunjukkan pada Tabel 4.1.

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
	Bahan habis pakai	Belmawa	3340000
1		Perguruan Tinggi	500000
1		Instansi Lain (jika	
		ada)	-

Tabel 4.1 Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
		Belmawa	2110000
2	Sewa dan jasa	Perguruan Tinggi	-
	Sewa dan jasa	Instansi Lain (jika	
		ada)	-
		Belmawa	350000
3	Transportasi lokal	Perguruan Tinggi	-
3	Transportasi iokai	Instansi Lain (jika	
		ada)	_
		Belmawa	700000
4	Lain-lain	Perguruan Tinggi	-
4	Lam-iam	Instansi Lain (jika	
		ada)	_
	Jumlah	1	7000000
		Belmawa	6500000
	Dalam Constant Dana	Perguruan Tinggi	500000
	Rekap Sumber Dana	Instansi Lain (jika	
		ada)	_
		Jumlah	7000000

4.2 Jadwal Kegiatan

Jadwal kegiatan pada riset ini yaitu ditunjukkan pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan			Penanggung Jawab	
110	Jems Kegiatan	1	1 2 3 4		4	
1	Studi Literatur					Insan Sekar Kinanti
2	Persiapan alat dan					Zahra Zahirabudi
	bahan					Darayani
3	Proses pengujian					Muhammad Tesar
						Pamungkas
4	Pengolahan data dan					Muhammad Tesar
	analisis					Pamungkas
5	Pembuatan laporan					Muhammad Tesar
	akhir					Pamungkas

DAFTAR PUSTAKA

- Badan Pusat Statistik Indonesia. 2019. *Statistik Karet Indonesia 2019*. URL: https://www.bps.go.id/publication/2020/11/30/bbe0914bad45c64c87c005fb/s tatistik-karet-indonesia-2019.html. Diakses tanggal 12 September 2021
- Boland, C. S., Khan, U., Backes, C., O'Neill, A., McCauley, J., Duane, S., Shanker, R., Liu, Y., Jurewicz, I., Dalton, A. B., & Coleman, J. N. 2014. Sensitive, highstrain, high-rate bodily motion sensors based on graphene-rubber composites. *ACS Nano*, 8(9), 8819–8830. https://doi.org/10.1021/nn503454h
- Brigandi, P. J., Cogen, J. M., Reffner, J. R., Wolf, C. A., & Pearson, R. A. 2017. Influence of carbon black and carbon nanotubes on the conductivity, morphology, and rheology of conductive ternary polymer blends. *Polymer Engineering and Science*, *57*(12), 1329–1339.
- Chen, Y., Wang, L., Wu, Z., Luo, J., Li, B., Huang, X., Xue, H., & Gao, J. 2019. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. *Composites Part B: Engineering*, 176.
- Darabi, M. A., Khosrozadeh, A., Wang, Q., & Xing, M. 2015. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane. *ACS Applied Materials and Interfaces*, 7(47), 26195–26205.
- Kumar, S., Kushwaha, S., Ghoshal, S., Rai, A. K., & Singh, S. 2013. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. In *Article Brazilian Journal of Pharmaceutical Sciences* (Vol. 49, Issue 4).
- Market Research Future. 2020. Stretchable Electronics Market Research Report: By Component (Electroactive Polymer, Stretchable Batteries, Stretchable Conductor, Photovoltaics, Stretchable Circuit), By Applications (Consumer Electronics, Automotive, Aerospace & Defense, Healthcare and others), Region (North America, Europe, Asia-Pacific, Rest of the World) Forecast till 2027. URL: https://www.marketresearchfuture.com/reports/stretchable-electronics-market-5826. Diakses tanggal 10 September 2021
- Oliveira, Amanda, Augusto Gonçalves Beatrice, & Cesar. 2019. Polymer Nanocomposites with Different Types of Nanofiller. In *Nanocomposites Recent Evolutions*. IntechOpen.
- Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A., & Hajlovac, M. 2020. Nanocomposites: a brief review. *Health and Technology*, *10*(1), 51–59.
- Sanginario, A., Miccoli, B., & Demarchi, D. (2017). Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. In *Biosensors* (Vol. 7, Issue 1). MDPI. https://doi.org/10.3390/bios7010009
- Song, P., Song, J., & Zhang, Y. 2020. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. *Composites Part B: Engineering*, 191.

- Tavakoli, M., Rocha, R., Osorio, L., Almeida, M., de Almeida, A., Ramachandran, V., Tabatabai, A., Lu, T., & Majidi, C. 2017. Carbon doped PDMS: Conductance stability over time and implications for additive manufacturing of stretchable electronics. *Journal of Micromechanics and Microengineering*, 27(3).
- Wang, Y., Jia, Y., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C., & Shen, C. 2018. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. *Journal of Materials Chemistry C*, 6(30), 8160–8170.
- Yun, G., Tang, S.-Y., Lu, H., Zhang, S., Dickey, M. D., & Li, W. 2021. Hybrid-Filler Stretchable Conductive Composites: From Fabrication to Application. *Small Science*, 1(6), 2000080.
- Zhao, Y., Kim, A., Wan, G., & Tee, B. C. K. 2019. Design and applications of stretchable and self-healable conductors for soft electronics. In *Nano Convergence* (Vol. 6, Issue 1). Korea Nano Technology Research Society.

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping

A. Biodata Ketua

A. Identitas Diri

Nama Lengkap	Muhammad Tesar Pamungkas
Jenis Kelamin	Laki-laki
Program Studi	Teknik Kimia
NIM	1806199234
Tempat dan Tanggal Lahir	Palembang, 31 Oktober 2000
Alamat e-mail	muhammad.tesar@ui.ac.id
No. Telepon/HP	081380498986
	Jenis Kelamin Program Studi NIM Tempat dan Tanggal Lahir Alamat e-mail

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Sahabat TIS	WaPJ Danus	Taman Margasatwa Ragunan, 2019
2	UCIL Fest	PJ Sponsorship	FTUI, 2019
3	Ikatan Mahasiswa Teknik Kimia (IMTK)	Staff Penelitian dan Pengembangan	FTUI, 2019
4.	Engineer Corperation (E-Corp)	Staff Human Resource Development FTUI, 20	
5	Technique Informal School	Staff Penelitian dan Pengembangan FTUI, 2	
6	Technique Informal School	Badan Pengurus Harian Pengajaran	FTUI, 2020

C. Penghargaan yang Pernah Diterima

Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
-	-	-
	Jenis Penghargaan	Jenis Penghargaan Pihak Pemberi Penghargaan -

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 15 Maret 2022

Ketua,

(Muhammad Tesar Pamungkas)

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Insan Sekar Kinanti
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1906300492
5.	Tempat dan Tanggal Lahir	Jakarta, 9 Januari 2003
6.	Alamat e-mail	Kinantiinsansekar@gmail.com
7.	No. Telepon/HP	089655331969

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMTK FTUI 2021	Kepala Bidang IPTEK	FTUI 2021
2	-	-	-
3	-	-	-

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 PKM PM	OIM FTUI	2021
2	Juara 1 PKM GFK	OIM UI	2020
3	Juara 2 PKM GFK	OIM FTUI	2020
4	Juara 3 Inovasi Produk	SBE UI SC	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 10 Maret 2022 Anggota Tim,

(Insan Sekar Kinanti)

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Zahra Zahirabudi Darayani
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1906307454
5.	Tempat dan Tanggal Lahir	Jakarta, 16 Februari 2021
6.	Alamat e-mail	Zahra.zahirabudi@ui.ac.id
7.	No. Telepon/HP	085782225510

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Technique Informal School (TIS)	Kepala Bidang Kesekretariatan	2021 – FTUI
2	UI Innovation War	Kepala Divisi Competition	2021 – UI
3	Ikatan Mahasiswa Teknik Kimia (IMTK)	Staff Bidang Peneliatan dan Pengembangan	2020 – FTUI
4	Society of Petroleum Engineer (SPE)	Staff Bidang Education	2020 – UI
5	The Society for Biological Engineering (SBE)	Staff Bidang Human Resource and Development	2020 – UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 10 Maret 2022 Anggota Tim,

(Zahra Zahirabudi D.)

C. Biodata Dosen Pendamping

A. Identitas Diri

1.	Nama Lengkap	Dr. Ir. Praswasti Pembangun Dyah Kencana Wulan, M.T.
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Fakultas Teknik Universitas Indonesia
4.	NIM	0006056810
5.	Tempat dan Tanggal Lahir	Jakarta, 6 Mei 1968
6.	Email	wulan@che.ui.ac.id
7.	Nomor Telepon/HP	081310761476

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Teknik Kimia	Universitas Indonesia	1991
2	Magister (S2)	Teknik Kimia	Universitas Indonesia	1996
3	Doktor (S3)	Teknik Kimia	Universitas Indonesia	2011

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No.	Mata Kuliah	Wajib/Pilihan	SKS
1.	Teknik Reaksi Kimia I	Wajib	3
2.	Chemical Reaction Engineering 2	Wajib	3
3.	Termodinamika Teknik Kimia	Wajib	4
4.	Termodinamika Teknik Kimia Lanjut	Wajib	3
5.	Peristiwa Perpindahan	Wajib	3
6.	Manajemen Proyek Industri	Wajib	3
7.	Mekanika Fluida dalam Bioproses	Wajib	3
8.	Mata Kuliah Pengembangan Kepribadian Terpádu A	Wajib	6
9.	Mata Kuliah Pengembangan Kepribadian Terpadu B	Wajib	6

Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Produksi Hidrogen dan Nanotube secara Simultan melalui Proses Dekomposisi Metana Dalam Reaktor	RISTEK Insentif	2008- 2010
	Katalis Terstruktur Skala Pilot		
2.	Pengembangan Hidrogen Sebagai Sumber Energi Masa Depan	Hibah Pasca-DIKTI	2009- 2011
3.	Development Of Carbon Foam-	OSAKA Gas	2009-
	Supported Nickel Catalyst For The	Foundation Of	2010
	Production Of CO2-Free Hydrogen	International	
	And Nanocarbon Via	Culture Exchange	
	Thermocatalytic Methane		
	Decomposition		
4.	Studi Kinetika Reaksi Dekomposisi	Hibah Mahasiswa	2009
	Metana Dalam Menghasilkan	Doktor-DIKTI	
	Hidrogen dan CNT		
5.	Pemanfaatan Limbah Kulit Buah	PHKI FTUI	2012
	Pisang Dengan Campuran Minyak		
	Mineral Untuk Produksi Karbon		
	Nanotube Dengan Menggunakan		
	Metode Pirolisis		
6.	Rekayasa Carbonnanotube Sebagai	Riset Madya UI	2012
	Modifikator Matriks Komposit		
	Dalam Pembuatan Papan Komposit		
	Berbasis Limbah Perkebunan Sebagai		
	Upaya Mengurangi Penebangan Kayu		
	Hutan		
7.	Development Of Carbon Nanotubes	OSAKA GAS	2012
	From Waste Polyethylene		
	Terephthalate Plastics To Solve		
	Environmental Problems		
8.	Pengembangan Sistem Produksi	Riset	2013
	Hidrogen Dan Aligned Carbon	Pengembangan	
	Nanotube (ACNT) Pada Substrat	IPTEK DIKTI	
	Bentuk Bola Dalam Reaktor CVD		
	Melalui Proses Dekomposisi Metana		2011
9.	Rekayasa TiO2 Nanotubes pada	Hibah PUPT Riset	2014
	Permukaan Ti6Al4V Sebagai Bahan	Multidisiplin UI	
	Implan Gigi Anti Bakteri		

No.	Judul Penelitian	Penyandang Dana	Tahun
10.	Daur Ulang Limbah Plastik Menjadi	Hibah	2015-
	Carbon Nanotubes Sebagai Alternatif	Penelitian	2016
	Teknologi Hijau Dalam Mengatasi	Unggulan	
	Masalah Lingkungan	Perguruan Tinggi	
11.	Modifikasi Carbon Nanotube	Hibah Fundamental	2017
	Material Alternatif Sistem	Restekdikti	
	Penghantaran Obat Baru Untuk		
	Terapi Anti Kanker		
12.	Aplikasi Teknologi Oxidative Heat	Hibah Publikasi	2017
	Treatment pada Stainless Steel (SS)	Internasional	
	Sebagai Substrat Katalitik Efektif	Terindeks Untuk	
	Media Pertumbuhan Carbon	Tugas Akhir	
	Nanotube	Mahasiswa	
		Universitas	
		Indonesia (Pitta)	2018
13.	Optimalisasi Sintesis Carbon	Hibah Publikasi	2018
	Nanotube Sebagai Material Adi	Internasional	
	dengan Berbagai Sumber Karbon	Terindeks Untuk	
	pada Media Pertumbuhan Katalitik	Tugas Akhir	
	Stainless Steel	Mahasiswa	
		Universitas	
		Indonesia (Pitta) Hibah Fundamental	2018
14.	Modifikasi Carbon Nanotube Sebagai	Ristekdikti	2010
	Material Alternatif Sistem	RISIEKUIKU	
	Penghantaran Obat Baru Untuk		
	Terapi Anti Kanker	Hibah Pengabdian	2018
15.	Pengembangan Digitalisasi Dan	Masyarakat UI	2010
	Konsep Berwawasan Budaya Sebagai	Wiasyarakat Or	
	Upaya Penyelamatan Aset Bangunan		
	Bersejarah Di Kota Depok	Hibah Fundamental	2019
16.	Modifikasi Carbon Nanotube Sebagai	Ristekdikti	
	Material Alternatif Sistem	Kistekuiku	
	Penghantaran Obat Baru Untuk		
	Terapi Anti Kanker	РІТТА В	2019
17.	Optimalisasi Produksi dan	Filliab	
	Fungsionalisasi Carbon Nanotubes		
	sebagai Sistem Penghantar Obat	PITTA QQ	2019
18.	Pengembangan Sistem Produksi	FILLY	
	Carbon Nanotubes Sebagai Material		
	Masa Depan		

Pengabdian Kepada Masyarakat

No.	Jenis Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1.	Jasa Feasibility Study Pengadaan dan Penyaluran Gas untuk PLTGU Priok, Indonesia Power	LEMTEK UI	2012
2.	Pengembangan Teknologi Bahan Bakar Gas Untuk Kendaraan Bermotor Di Indonesia, ESDM		2012
3.	FEED Pengembagan Jargas Prabumulih dan Jambi	PTC untuk Pertagas Niaga	2014
4.	Penyusunan TOR FEED Ethanol Plant, Pelatihan Plant Design dan Simulasi Proses Kimia serta Pendampingan	PI-NVBD-PIMR Pertamina	2014
5.	Penyusunan DEDC Biodiesel	Kemenristekdi	2016
6.	Jasa Konsultasi Penyusunan Dokumen FS dan Bid Doc Pengadaan Infrastruktur LNG Untuk Pembangkit Tenaga Listrik di Bangka, Belitung, Pontianak, dan Nias	PT PLN (Persero)	2016
7.	Penyusunan Standar Industri Hijau Untuk Industri Hilir Kelapa Sawit Untuk Pangan, Industri Perlengkapan Rumah Tangga Dari Keramik, Industri Batik, Industri Kertas Budaya, Industri Biskuit	Kemenperin	2017- sekarang
8.	Pelatihan Manajemen Proyek Industri	PT POS Energi Indonesia	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan program kreativitas mahasiswa-gagasan tertulis.

Depok, 24 Maret 2022

Dosen Pendamping,

(Dr. Ir. Praswasti Pembangun

Dyah Kencana Wulan, M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Total (Rp)
1	Belanja Bahan			
	Gelas beaker 500 ml	3 buah	45,000	135,000
	Gelas beaker 250 ml	3 buah	30,000	90,000
	Gelas Ukur 100 ml	3 meter	30,000	90,000
	Kaca Arloji	1 buah	20,000	20,000
	Spatula	1 buah	15,000	15,000
	Multimeter	1 Buah	100,000	100,000
	Karet Gelang	1 bungkus	150,000	150,000
	MWCNT	1 kotak (50 gram)	3,000,000	3,000,000
	Hexana	1 L	70,000	70,000
	Etanol	1 L	80,000	80,000
	Deionized Water	3 L	30,000	90,000
SUB T	OTAL			3,840,000
2	Belanja Sewa			
	Karakterisasi SEM	4 sampel	350,000	1,400,000
	Uji Tarik	3 sampel	120,000	360,000
	Penggunaan fasilitas laboratorium	1 Bulan	350,000	350,000
SUB T	OTAL			2,110,000
3	Perjalanan Loka	ા		
	Perjalanan ke Tempat Pengujian (Balai Riset Karet Bogor)	2 Kali	75,000	150,000
	Perjalanan membeli alat dan bahan	4 Kali	50,000	200,000
SUB T	OTAL			350000

No	Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Total (Rp)		
4	Lain-lain					
	Rapid test antigen sebagai syarat masuk laboratorium	3 kali	100,000	300,000		
	Biaya pemakaian pulsa dan berlangganan internet	3 bulan	100,000	300,000		
	Fotokopi dan print	1 periode	100,000	100,000		
SUB TOTAL				700,000		
GRAN	GRAND TOTAL 7,000,000					
	GRAND TOTAL (Terbilang Tujuh Juta Rupiah)					

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/	Uraian Tugas
	NIIVI	Stuai	IIIIu	minggu)	
1	Muhamma d Tesar Pamungka s/ 18061992 34	Teknik Kimia	Teknik	25	 Melakukan koordinasi antar anggota Mempersiapkan alat dan bahan Melakukan variasi percobaan berupa sonikasi karet gelang dan larutan dispersi CNT Melakukan karakterisasi SEM dan uji resistansi Membuat laporan dan analisis percobaan
2	Insan Sekar Kinanti/ 19063004 92	Teknik Kimia	Teknik	20	 Mempersiapkan alat dan bahan Melakukan perendaman karet gelang Melakukan uji kebasahan Membuat Laporan dan analisis percobaan
3	Zahra Zahirabudi Darayani / 19063074 54	Teknik Kimia	Teknik	20	 Mempersiapkan alat dan bahan Membuat larutan dispersi CNT Melakukan uji tarik Membuat Laporan dan analisis percobaan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Muhammad Tesar Pamungkas
Nomor Induk Mahasiswa	:	1806199234
Program Studi	:	Teknik Kimia
Nama Dosen Pendamping	:	Dr. Ir. Praswasti Pembangun Dyah Kencana Wulan, M.T.
Perguruan Tinggi	:	Universitas Indonesia

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul **Pemanfaatan Karet Gelang sebagai Konduktor** *Stretchable* **dengan Penambahan** *Carbon Nanotubes* yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Depok, 20 Maret 2022

Yang menyatakan,

(Muhammad Tesar Pamungkas)

NIM.1806199234