FPGA與財務模型研討會

Heston 模型的市場校正

昀騰金融科技

技術長

董夢雲 博士

dongmy@ms5.hinet.net

昀騰金融科技股份有限公司

技術長 金融博士、證券分析師

董夢雲 Andy Dong

TD: 50917111

Line/WeChat:andydong3137 E:andydong1209@gmail.com

https://github/andydong1209

M:(T)0988-065-751 (C)1508-919-2872

10647 台北市大安區辛亥路一段 50 號 4 樓

現職:國立台灣大學財務金融研究所兼任教授級專家

國立台灣科技大學財務金融研究所兼任助理教授

台灣金融研訓院 2020 年菁英講座

經歷:中國信託商業銀行交易室研發科主管

凱基證券風險管理部主管兼亞洲區風險管理主管

中華開發金控、工業銀行風險管理處處長

永豐金控、商業銀行風險管理處處長

永豐商業銀行結構商品開發部副總經理

學歷:國立台灣大學電機工程學系學士

國立中央大學財務管理學研究所博士

專業:證券暨投資分析人員合格(1996)

專長:風險管理理論與實務,資本配置與額度規劃、資產負債管理實務

外匯與利率結構商品評價實務,股權與債權及衍生商品評價實務

GPU 平行運算與結構商品系統開發, CUDA、OpenCL

CPU 平行運算與 ALM 系統開發,C#/C++/C、.Net Framework、SQL

人工智慧(Deep Learning)交易策略開發, Python、Keras、TensorFlow

主題一 Heston 模型介紹

- 一、古典資產模型
- 二、市場匯率行為
- 三、Heston 模型與解析解
- 四、避險參數
- 五、市場校準
- 六、實作案例
- 七、複雜結構商品範例

一、古典資產模型

- (一)Black-Scholes 對資產行為的假設
- ◆ Black-Scholes 模型之下股票價格變化的程序
 - ▶ 金融資產價格的假設是它遵行著所謂的擴散程序(diffusion process)

$$\frac{dS}{S} = \mu \cdot dt + \sigma \cdot dZ$$

- $\checkmark \frac{dS}{S} = \frac{S_{t+dt} S_t}{S_t} = \pm \frac{1}{2} \approx \frac{1}$
- ✓ dt =單位時間,
- ✓ μ=單位時間內預期金融資產的報酬率,
- ✓ σ=單位時間內預期金融資產的標準差。
- ◆ Z = 隨機變數,為平均數為零,變異數為 t 之常態分配, $Z \sim \Phi(0,t)$ 。
 - ▶ Z稱之為韋恩程序。
 - \triangleright dZ = 單位時間內, Z 的變動量, 為一期望值為零, 變異數為 <math>dt 之常態分配, $dZ \sim \Phi(0, dt)$ 。

(二)解析解

- 以 Plain Vanilla 之歐式外幣選擇權買、賣權為例,定價公式如下
 - ▶ 買權的買方,有權利在到期日 T 時,以 K 的價格,買入標的外匯資產 S,

$$C = Se^{-yT}N(d_1) - Ke^{-rT}N(d_2)$$
(1.1)

$$P = Ke^{-rT}N(-d_2) - Se^{-yT}N(-d_1)$$
(1.2)

$$d_1 = \frac{\ln(\frac{S}{K}) + (r - y + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

$$d_{2} = \frac{\ln(\frac{S}{K}) + (r - y - \frac{\sigma^{2}}{2})T}{\sigma\sqrt{T}} = d_{1} - \sigma\sqrt{T}$$

- ✓ N(x)表標準常態累積機率密度函數(CDF)在 x 的值。
- ✓ S= 即期匯率, K= 執行匯率, r= 本國貨幣資金成本,

- 例:考慮 6 個後月到期的外匯選擇權 USD Call/TWD Put,執行價格為\$33.5, 節
 - 目前外匯價格為\$33.55,美元利率為1.5%,台幣利率為2%,年波動性為6%。
 - ✓ 因此 S = 33.55,K = 33.5,r = 0.02, $r_f = 0.015$, $\sigma = 0.06$,T = 0.5。

$$d_1 = \frac{\ln(33.55/33.50) + (2\% - 1.5\% + \frac{6\%^2}{2}) \times 0.5}{6\%\sqrt{0.5}} = 0.1153$$

$$d_2 = d_1 - 6\% \sqrt{0.5} = 0.0729$$

- $C = \$33.55 \times Exp(-0.015 \times 0.5) \times N(0.1153) \$33.5 \times Exp(-0.02 \times 0.5) \times N(0.0729) = 0.6313$
- $P = $33.5 \times Exp(-0.02 \times 0.5) \times N(-0.0729) $33.55 \times Exp(-0.015 \times 0.5) \times N(-0.1153) = 0.4986$
- Call 的 Delta 為 0.5418, Put 的 Delta 為-0.4507。

The first method, based on work of Hastings [171], is one of several included in Abramowitz and Stegun [3]. For $x \geq 0$, it takes the form

$$\Phi(x) \approx 1 - \phi(x)(b_1t + b_2t^2 + b_3t^3 + b_4t^4 + b_5t^5), \quad t = \frac{1}{1 + px},$$

for constants b_i and p. The approximation extends to negative arguments through the identity $\Phi(-x) = 1 - \Phi(x)$. The necessary constants and an explicit algorithm for this approximation are given in Figure 2.14. According to Hastings [171, p.169], this method has a maximum absolute error less than 7.5×10^{-8} .

```
b_1 = 0.319381530 p = 0.2316419

b_2 = -0.356563782 c = \log(\sqrt{2\pi}) = 0.918938533204672

b_3 = 1.781477937
 b_4 = -1.821255978
 b_5 = 1.330274429
 Input: x
 Output: y, approximation to \Phi(x)
 a \leftarrow |x|
s \leftarrow ((((b_5 * t + b_4) * t + b_3) * t + b_2) * t + b_1) * t
y \leftarrow s * \exp(-0.5 * x * x - c)
 if (x > 0) y \leftarrow 1 - y
 return y;
```

Fig. 2.14. Hastings' [171] approximation to the cumulative normal distribution as modified in Abramowitz and Stegun [3].

```
v_1 = 1.253314137315500
                                     v_9 = 0.1231319632579329
v_2 = 0.6556795424187985
                                    v_{10} = 0.1097872825783083
v_3 = 0.4213692292880545
                                    v_{11} = 0.09902859647173193
v_4 = 0.3045902987101033
                                    v_{12} = 0.09017567550106468
v_5 = 0.2366523829135607
                                    v_{13} = 0.08276628650136917
v_6 = 0.1928081047153158
                                    v_{14} = 0.0764757610162485
v_7 = 0.1623776608968675
                                    v_{15} = 0.07106958053885211
v_8 = 0.1401041834530502
  c = \log(\sqrt{2\pi}) = 0.918938533204672
Input: x between -15 and 15
Output: y, approximation to \Phi(x).
j \leftarrow |\min(|x| + 0.5, 14)|
z \leftarrow j, \quad h \leftarrow |x| - z, \quad a \leftarrow v_{i+1}
b \leftarrow z * a - 1, q \leftarrow 1, s \leftarrow a + h * b
for i = 2, 4, 6, \dots, 24 - j
  a \leftarrow (a + z * b)/i
  b \leftarrow (b+z*a)/(i+1)
  q \leftarrow q * h * h
  s \leftarrow s + q * (a + h * b)
end
y = s * \exp(-0.5 * x * x - c)
if (x > 0) y \leftarrow 1 - y
return y
```

Fig. 2.15. Algorithm of Marsaglia et al. [251] to approximate the cumulative normal distribution.

◆ N(x)的近似多項式

```
public static class DStat
{
   public static double NormDist(double x)
      // The cumulative normal distribution function
      double z;
      if(x == 0)
          z = 0.5;
       else
       {
          double L, k;
          const double a1 = 0.31938153;
                                              const double a2 = -0.356563782;
          const double a3 = 1.781477937;
                                          const double a4 = -1.821255978;
          const double a5 = 1.330274429;
          L = Math.Abs(x);
          k = 1 / (1 + 0.2316419 * L);
          z = 1 - 1 / Math.Sqrt(2 * Math.PI) * Math.Exp(-L * L / 2) * (k * (a1 + k * (a2 + k * (a3 + k * (a4 + k * a5)))));
          if (x < 0)
              z = 1 - z;
       return z;
```

```
-8.47351093090
          2.50662823884
a_0 =
        -18.61500062529
                                     23.08336743743
a_1 =
       41.39119773534
                            b_2 =
                                    -21.06224101826
a_2 =
        -25.44106049637
                                      3.13082909833
a_3 =
c_0 = 0.3374754822726147
                            c_5 = 0.0003951896511919
c_1 = 0.9761690190917186
                            c_6 = 0.0000321767881768
c_2 = 0.1607979714918209
                            c_7 = 0.0000002888167364
c_3 = 0.0276438810333863
                            c_8 = 0.0000003960315187
c_4 = 0.0038405729373609
```

Fig. 2.12. Constants for approximations to inverse normal.

```
Input: u between 0 and 1

Output: x, approximation to \Phi^{-1}(u).

y \leftarrow u - 0.5

if |y| < 0.42

r \leftarrow y * y

x \leftarrow y * (((a_3 * r + a_2) * r + a_1) * r + a_0)/

(((((b_3 * r + b_2) * r + b_1) * r + b_0) * r + 1)

else

r \leftarrow u;

if (y > 0) r \leftarrow 1 - u

r \leftarrow \log(-\log(r))

x \leftarrow c_0 + r * (c_1 + r * (c_2 + r * (c_3 + r * (c_4 + r * (c_5 + r * (c_6 + r * (c_7 + r * c_8)))))))

if (y < 0) x \leftarrow -x

return x
```

Fig. 2.13. Beasley-Springer-Moro algorithm for approximating the inverse normal.

```
public static double N Inv(double x)
   //const double SQRT_TWO_PI = 2.506628274631;
   const double e_1 = -39.6968302866538;
                                                 const double e_2 = 220.946098424521;
   const double e_3 = -275.928510446969;
                                                 const double e_4 = 138.357751867269;
                                                 const double e_6 = 2.50662827745924;
   const double e 5 = -30.6647980661472;
   const double f_1 = -54.4760987982241;
                                                 const double f_2 = 161.585836858041;
   const double f_3 = -155.698979859887;
                                                 const double f_4 = 66.8013118877197;
   const double f_5 = -13.2806815528857;
   const double g_1 = -0.00778489400243029;
                                                 const double g_2 = -0.322396458041136;
   const double g 3 = -2.40075827716184;
                                                 const double g 4 = -2.54973253934373;
   const double g 5 = 4.37466414146497;
                                                 const double g 6 = 2.93816398269878;
   const double h 1 = 0.00778469570904146;
                                                 const double h 2 = 0.32246712907004;
   const double h_3 = 2.445134137143;
                                                 const double h 4 = 3.75440866190742;
   const double x 1 = 0.02425;
   const double x u = 0.97575;
   double z, r;
   // Lower region: 0 < x < x_1
   if (x < x_1)
       z = Math.Sqrt(-2.0 * Math.Log(x));
```

```
z = (((((g_1 * z + g_2) * z + g_3) * z + g_4) * z + g_5) * z + g_6) / ((((h_1 * z + h_2) * z + h_3) * z + h_4) * z + 1.0);
       }
       // Central region: x_l <= x <= x_u</pre>
       else if (x <= x_u)
          z = x - 0.5;
          r = z * z;
          z = (((((e_1*r + e_2)*r + e_3) * r + e_4) * r + e_5) * r + e_6) * z / (((((f_1*r + f_2)* r + f_3) * r + f_4) * r + f_5) * r + 1.0);
       }
       // Upper region. ( x_u < x < 1 )
       else
           z = Math.Sqrt(-2.0 * Math.Log(1.0 - x));
          z = -(((((g_1 * z + g_2) * z + g_3) * z + g_4) * z + g_5) * z + g_6) / ((((h_1 * z + h_2) * z + h_3) * z + h_4) * z + 1.0);
       }
       // Now |relative error | < 1.15e-9. One iteration of Halley's third
       // order zero finder gives full machine precision:
       //
       //r = (N(z) - x) * SQRT_TWO_PI * exp( 0.5 * z * z ); // f(z)/df(z)
       //z = r/(1+0.5*z*r);
       return z;
}
```

二、市場匯率行為

(一)外匯市場報價資訊

- ◆ 外匯選擇權市場的流動性很高,即使長天期的契約亦是如此,下面資訊可由市場取得。
 - ➤ At-The-Money, ATM, 的波動性,
 - ▶ 25 △ Call 與 Put 的 Risk Reversal, RR,
 - ➤ 25 △ Wings 的 Vega-Weighted Butterfly , VWB。
- ◆ 由上面資訊,我們可推導出三個基本的隱含波動性,
 - ▶ 使用這三個波動性,我們可建構出整個 Smile。
- ◆ 市場資訊可分別如下取得,
 - Currency Volatility Quote: Bloomberg: XOPT
 - ▶ 美元 LIBOR: RT: LIBOR01
 - ➤ NDF Swap Point: RT: TRADNDF

Currency Volatility Quote: Bloomberg: XOPT

XOPT

P167c CurncyOVDV

Currency Volatility Surface												
Sa	ave	Send	Download	l Opti	ons _ 3							
Currencies: USD-CNY Date: 5/ 7/08												
USD	Calls/Pu	uts Delt	as					Format: 1 RR/BF				
			Ca	lendar:	3 Weeke	nds		Side: 1 Bid/Ask				
EXP	ATM	(50D)	25D	RR	250	BF	10D					
	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask		
1W	2.050	4.155	-2.170	0.545	-0.930	1.175	-4.140	1.120	-0.625	1.475		
2W	2.360	3.980	-1.845	0.210	-0.645	0.965	-3.475	0.430	-0.255	1.355		
3W	2.570	3.970	-1.715	0.055	-0.525	0.870	-3.200	0.125	-0.100	1.295		
1M	3.245	3.745	-1.150	-0.520°	-0.070	0.425	-2.130	-0.985	0.365	0.865		
2M	3.480	3.980	-1.215	-0.590	-0.050	0.445	-2.260	-1.115	0.440	0.940		
3M	3.785	4.135	-1.160	-0.725	0.040	0.390	-2.135	-1.335	0.550	0.900		
4M	4.060	4.470	-1.295	-0.785	0.015	0.420	-2.320	-1.395	0.525	0.935		
6M	4.555	4.980	-1.465	-0.930	0.005	0.430	-2.455	-1.485	0.515	0.940		
9M	4.940	5.320	-1.510	-1.035	0.055	0.435	-2.580	-1.720	0.595	0.970		
1Y	5.420	5.720	-1.440	-1.060	0.110	0.410	-2.610	-1.930	0.665	0.965		
18M	5.790	6.255	-1.580	-1.000	0.045	0.505	-2.810	-1.755	0.685	1.150		
2Y	6.760	7.260	-1.770	-1.140	0.015	0.515	-3.025	-1.885	0.790	1.290		
5Y	7.870	9.620	-2.825	-0.625	-0.565	1.180	-4.905	-0.885	0.430	2.175		
	t	157.										
	. 5	57										
*Dofo	. T .t.		DD UC	n C-11	HCD Dec							

*Default RR = USD Call - USD Put

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000

Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2008 Bloomberg Finance L.P.

H169-403-0 07-May-2008 15:11:59

(二)Surface(USDJPY, 2007/7/11)

◆ 將不同時點的 Smile Curve 畫在同一立體圖上,形成一個曲面。

	0.083	0.104	0.125	0.146	0.167	0.188	0.208	0.229	0.250	0.271	0.292	0.313	0.333	0.354	0.375	0.396	0.417	0.438	0.458	0.479	0.500
116.28	0.095	0.094	0.094	0.093	0.092	0.091	0.091	0.090	0.089	0.089	0.088	0.087	0.087	0.086	0.085	0.085	0.084	0.084	0.083	0.083	0.082
116.89	0.099	0.096	0.094	0.092	0.091	0.090	0.089	0.089	0.088	0.087	0.086	0.085	0.085	0.084	0.083	0.083	0.082	0.082	0.081	0.081	0.080
117.50	0.099	0.095	0.093	0.091	0.090	0.089	0.088	0.087	0.086	0.085	0.084	0.084	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.079	0.079
118.11	0.097	0.093	0.091	0.089	0.088	0.087	0.086	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.080	0.079	0.079	0.078	0.078	0.077	0.077
118.72	0.093	0.090	0.088	0.087	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.079	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075
119.32	0.088	0.086	0.085	0.084	0.083	0.082	0.081	0.080	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073
119.93	0.083	0.082	0.081	0.080	0.079	0.079	0.078	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072
120.54	0.078	0.078	0.078	0.077	0.076	0.076	0.075	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.071	0.070	0.070
121.15	0.074	0.075	0.074	0.074	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069
121.76	0.071	0.071	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068
122.37	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
122.98	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
123.59	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.20	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.80	0.072	0.070	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
125.41	0.078	0.074	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.02	0.085	0.078	0.075	0.073	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.63	0.091	0.083	0.078	0.075	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066
127.24	0.093	0.085	0.080	0.077	0.074	0.072	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066
127.85	0.089	0.083	0.079	0.076	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066

三、Heston 模型與解析解

(一)資產價格行為

◆ Steven Heston(1993)提出下面模型,

$$dS_{t} = \mu S_{t} dt + \sqrt{V_{t}} S_{t} dW_{t}^{1}$$

$$dV_{t} = \kappa (\theta - V_{t}) dt + \sigma \sqrt{V_{t}} dW_{t}^{2}$$

$$dW_{t}^{1} dW_{t}^{2} = \rho \cdot dt$$

$$(3.1)$$

- ightharpoonup 其中 $\{S_t\}_{t\geq 0}$ 表價格過程, $\{V_t\}_{t\geq 0}$ 表波動性過程。
- ▶ 以P測度表示此真實世界下的機率測量。
- ightharpoons $\{W_t^1\}_{t\geq 0}$ 與 $\{W_t^2\}_{t\geq 0}$ 表真實世界中兩相關的布朗運動過程,相關係數為ho。
- ightarrow $\{V_t\}_{t\geq 0}$ 為一平方根均數回覆過程,長期平均為heta,回覆速率為 κ , σ 稱之為波動性之波動性。
- μ、ρ、θ、κ、σ均為常數。

◆ 在 Q 測度下, (3.1)、(3.2)、(3.3)式成為,

$$dS_t = rS_t dt + \sqrt{V_t} S_t dZ_t^1$$
(3.4)

$$dV_t = \kappa^* (\theta^* - V_t) dt + \sigma \sqrt{V_t} dZ_t^2$$
(3.5)

$$dZ_t^1 dZ_t^2 = \rho \cdot dt \tag{3.6}$$

- \triangleright $\sharp \psi , \kappa^* = \kappa + \lambda , \theta^* = \frac{\kappa \theta}{\kappa + \lambda} .$
- ▶ 由於我們所在意的為評價問題,因此所處理的測度為Q測度。
 - ✓ 後面的市場校準也是求得Q測度下的參數。
 - ✓ 參數 λ ,的數值並不是重要的,因為已經吸收在 κ *與 θ *中,沒有明白的出現在(3.4)、(3.5)、(3.6)。
- \triangleright 使用非線性最適化方法,校準出五個模型參數, V_0 、 κ^* 、 θ^* 、 ρ 、 σ 。
 - ✓ QunatLib、Intel MKL、IMSL、Centerspace NMath 程式庫皆有內建最適化模組。
 - ✓ Nelder-Mead 與 Levenberg-Marquardt 演算法是較為被採用的方法。
 - ✓ 此部分因只要執行一次, CPU 端程式執行即可。

(二)Vanilla Call 解析解

◆ 封閉解公式

▶ 對不發放股利的歐式買權, Heston 模型的封閉解為,

$$C(S_t, V_t, t, T) = S_t P_1 - K e^{-r(T-t)} P_2$$
(3.7)

$$P_{j}(x_{t}, V_{t}, T, K) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \text{Re}\left(\frac{e^{i\phi \ln(K)} f_{j}(x_{t}, V_{t}, T, \phi)}{i\phi}\right) d\phi \qquad (3.8)$$

$$x_t = \ln(S_t) , \tau = T - t ,$$

$$f_j(x_t, V_t, \tau, \phi) = \exp\{C(\tau, \phi) + D(\tau, \phi)V_t + i\phi x_t\}$$
(3.9)

$$C(\tau,\phi) = r\phi i \tau + \frac{a}{\sigma^2} \left[(b_j - \rho \sigma \phi i + d)\tau - 2\ln\left(\frac{1 - ge^{d\tau}}{1 - g}\right) \right]$$
(3.10)

$$D(\tau,\phi) = \frac{b_j - \rho \sigma \phi i}{\sigma^2} \left(\frac{1 - e^{d\tau}}{1 - g e^{d\tau}} \right) \tag{3.11}$$

$$g = \frac{b_j - \rho \sigma \phi i + d}{b_j - \rho \sigma \phi i - d} \tag{3.12}$$

$$d = \sqrt{(\rho \sigma \phi i - b_j) - \sigma^2 (2u_j \phi i - \phi^2)}$$
(3.13)

$$j = 1,2$$

✓ 其中

$$u_1 = \frac{1}{2}$$
, $u_2 = -\frac{1}{2}$

$$a = k * \theta * , b_1 = k * - \rho \sigma , b_2 = k *$$

(三)複數運算

◆ 前面(3.8)~(3.13)式中,涉及複數的運算,下面簡單摘要其規則。

$$z = x + iy$$
, $i = \sqrt{-1}$, $Re(z) = x$, $Im(z) = y$.
 $z = (x, y)$
 $z_1 = x_1 + iy_1 = (x_1, y_1)$, $z_2 = x_2 + iy_2 = (x_2, y_2)$

◆ 四則運算

$$z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2}) = (x_{1} + x_{2}, y_{1} + y_{2})$$

$$z_{1} - z_{2} = (x_{1} - x_{2}) + i(y_{1} - y_{2}) = (x_{1} - x_{2}, y_{1} - y_{2})$$

$$z_{1} \times z_{2} = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{1}y_{2} + x_{2}y_{1}) = (x_{1}x_{2} - y_{1}y_{2}, x_{1}y_{2} + x_{2}y_{1})$$

$$z_{1} / z_{2} = \frac{(x_{1} + iy_{1})}{(x_{2} + iy_{2})} \times \frac{(x_{2} - iy_{2})}{(x_{2} - iy_{2})} = \frac{(x_{1}x_{2} + y_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}} - i\frac{(x_{2}y_{1} - x_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}}$$

◆ 極座標、冪次與根

$$z = x + iy = r(\cos\theta + i\sin\theta) , r = \sqrt{x^2 + y^2} , \theta = \arctan\frac{y}{x} = \arg z ,$$

$$x = r\cos\theta , y = r\sin\theta ,$$

$$\overline{z} = x - iy , |z| = \sqrt{z\overline{z}} = r$$

$$z^n = r^n(\cos n\theta + i\sin n\theta)$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right) , k = 0,1,...,n-1$$

◆ 指數函數、尤拉公式與對數函數

$$z = x + iy = r(\cos\theta + i\sin\theta) , r = \sqrt{x^2 + y^2} , \theta = \arctan\frac{y}{x} = \arg z ,$$

$$\exp(z) = \exp(x + iy) = \exp(x) \cdot \exp(iy) = \exp(x) \cdot (\cos y + i\sin y)$$

$$\exp(i\theta) = \cos\theta + i\sin\theta$$

$$\ln(z) = \ln(x + iy) = \ln(r(\cos\theta + i\sin\theta)) = \ln(r) + i\theta$$

(四)數值積分 Gauss-Laguerre 求值法

- ◆ (3.8)式的計算涉及半無限區間的積分,可使用 Gauss-Laguerre 法計算,以加速計算效率,
 - > 令積分運算式如下式,

$$G = \int_{0}^{\infty} f(x) dx$$

▶ 令 n 點 Gauss-Laguerre 求值公式為

$$G = \int_{0}^{\infty} f(x)dx = \sum_{i=0}^{n-1} \lambda_{i} f(x_{i})$$
 (3.14)

ightarrow 其中 X_i 為下面 n 階 Laguerre 多項式的 n 個零點, λ_i 為求積係數。

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}) , \ 0 \le x \le +\infty$$
 (3.15)

▶ 當 n=5,5 階 Gauss-Laguerre 求積公式的結點為,

 $x_0 = 0.26355990$, $x_1 = 1.41340290$, $x_2 = 3.59642600$, $x_3 = 7.08580990$, $x_4 = 12.64080000$ \circ

▶ 相對應的求積係數為,

 $\lambda_0 = 0.6790941054 \;\;,\;\; \lambda_1 = 1.638487956 \;\;,\;\; \lambda_2 = 2.769426772 \;\;,\;\; \lambda_3 = 4.315944000 \;\;,\;\; \lambda_4 = 7.104896230 \;\;.$

(五)特徵函數

◆ (3.8)積分式中 Integrand 對 Phi 的作圖。

FIGURE 5.4 Convergence of Functions Used in Integration

◆ 在不同相關係數下(ρ=-0.5 , ρ=+0.5) , (3.7)式 Call 價格與 Black-Scholes 計算之 Call 價格的差距 , H_C-BS_C 。

FIGURE 5.8 Plots of Call Price Differences with Varying Correlation

四、避險參數

(一)Delta 與 Gamma

◆ 使用 Center Difference 的方法,以減少誤差。

$$\Delta = \frac{\partial C}{\partial S} = \frac{C(S+h) - C(S-h)}{2h} \tag{4.1}$$

$$\Gamma = \frac{\partial^2 C}{\partial S^2} \approx \frac{C(S+h) - 2C(S) + C(S-h)}{h^2}$$
(4.2)

- ▶ 使用同一組亂數可使估計誤差較小。
- C(S, σ, r, t, h), C(S-h), C(S+h), 三個值。

(二)Vega、Theta 與 Rho

◆ 類似差分,

$$Vega = \frac{\partial C}{\partial \sigma} = \frac{C(\sigma + h) - C(\sigma)}{h} \tag{4.3}$$

$$Theta = \frac{\partial C}{\partial t} = \frac{C(t-h) - C(t)}{h} \tag{4.4}$$

$$delta = \frac{\partial C}{\partial r} \approx \frac{C(r+h) - C(r)}{h} \tag{4.5}$$

- ➤ Theta 日數減少。
- C(S, σ, r, t, h), C(σ+h), C(t-h), C(r+h), 四個值。
- ▶ 全部六個值,便足夠了。

五、市場校準

(一)外匯市場報價資訊

- ◆ 外匯選擇權市場的流動性很高,即使長天期的契約亦是如此,下面資訊可由市場取得。
 - ➤ At-The-Money, ATM, 的波動性。
 - ▶ 25 △ Call 與 Put 的 Risk Reversal, RR。
 - ▶ 25 △ Wings 的 Vega-Weighted Butterfly, VWB。
- ◆ 由上面資訊,我們可推導出三個基本的隱含波動性,
 - ▶ 使用這三個波動性,我們可建構出整個 Smile。
- ◆ 市場資訊可分別如下取得,
 - Currency Volatility Quote: Bloomberg: XOPT
 - ▶ 美元 LIBOR: RT: LIBOR01
 - ➤ NDF Swap Point: RT: TRADNDF

Currency Volatility Quote: Bloomberg: XOPT

XOPT

P167c CurncyOVDV

,	Currency Volatility Surface											
S	ave	Send	Download	l Opti	ons _ 3	Bloomberg (E	loomberg (BGN) USDCNY					
Curr	encies:	USD-CNY		Date:	5/ 7/0	8	-		·			
USD	Calls/	Puts Dela	tas		Form	Format: 1 RR/BF						
			Ca	lendar:	3 Weeke	ends		Side: 1 Bid/Ask				
EXP	AT	M(50D)	25D	RR	250	BF	10D	10D) BF			
	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask		
1W	2.05	0 4.155	-2.170	0.545	-0.930	1.175	-4.140	1.120	-0.625	1.475		
2W	2.36	0 3.980	-1.845	0.210	-0.645	0.965	-3.475	0.430	-0.255	1.355		
3W	2.57	0 3.970	-1.715	0.055	-0.525	0.870	-3.200	0.125	-0.100	1.295		
1M	3.24	5 3.745	-1.150	-0.520	-0.070	0.425	-2.130	-0.985	0.365	0.865		
2M	3.48	0 3.980	-1.215	-0.590	-0.050	0.445	-2.260	-1.115	0.440	0.940		
3M	3.78	5 4.135	-1.160	-0.725	0.040	0.390	-2.135	-1.335	0.550	0.900		
4M	4.06	0 4.470	-1.295	-0.785	0.015	0.420	-2.320	-1.395	0.525	0.935		
6M	4.55	5 4.980	-1.465	-0.930	0.005	0.430	-2.455	-1.485	0.515	0.940		
9M	4.94	0 5.320	-1.510	-1.035	0.055	0.435	-2.580	-1.720	0.595	0.970		
1Y	5.42	0_5.720	-1.440	-1.060	0.110	0.410	-2.610	-1.930	0.665	0.965		
18M	5.79	0 6.255	-1.580	-1.000	0.045	0.505	-2.810	-1.755	0.685	1.150		
2Y	6.76	0 7.260	-1.770	-1.140	0.015	0.515	-3.025	-1.885	0.790	1.290		
5Y	7.87	0 9.620	-2.825	-0.625	-0.565	1.180	-4.905	-0.885	0.430	2.175		
	5.157.											
L		>1"/										

*Default RR = USD Call - USD Put

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000

Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2008 Bloomberg Finance L.P.

H169-403-0 07-May-2008 15:11:59

◆ 美元 LIBOR: RT: LIBOR01

BRITISH [06/05/		ASSOCIATION RATES AT 1	_,,,_,,_	TTLEMENT F	RATES A	LIBO lternative to <37 sclaimer <libordi< th=""><th>′50></th></libordi<>	′50>
						uide <bbamenu></bbamenu>	
	USD	j GBP	CAD	EUR	JPY	EUR 365	
0/N	2.36500	5.10000	3.02667	4.07750	SN 0.55625	4.13413	
1WK	2.58500	5.11938	3.09667	4.26250	0.59875	4.32170	
2WK	2.63000	5.24750	3.12500	4.30188	0.62000	4.36163	
1M0	2 67375	5.45000	3.21000	4.38625	0.67375	4.44717	
2M0	2.72375	5.67750	3.33000	4.68000	0.81656	4.74500	
3M0	2.75750	5.80563	3.38833	4.85563	0.92125	4.92307	
4M0	2.79125	5.80563	3.40000	4.86688	0.94406	4.93448	
5M0	2.83625	5.80500	3.40000	4.87313	0.96406	4.94081	
6M0	2.87625	5.80625	3.40500	4.88188	0.98375	4.94968	
	-			-			
7M0	2.89875	5.80625	3.43333	4.89063	1.00625	4.95856	
8M0	2.91813	5.80563	3.43667	4.90375	1.02625	4.97186	
9M0	2.94000	5.80438	3.45500	4.91563	1.04500	4.98390	
	1						
10M0	2.96375	5.80250	3.49333	4.92813	1.06438	4.99658	
11M0	2.99000	5.80188	3.51500	4.94375	1.08313	5.01241	
12M0	3.01500	5.80188	3.55000	4.95750	1.10375	5.02635	
		2.22200				- / 	
<0#LIB	ORSUPERRIO	CS> RICs for	above <0#L	IBORRICS>	Contributor	RICs	

♦ NDF Swap Point: RT: TRADNDF

Tradition Asia Ltd **TRADNDF** 15:18 07MAY08 SP01881 ASIAN NON-DELIVERABLE FORWARDS FWD TWD FWD CNY OUT PHP OUT INR OUT KRW USD/KRW USD/TWD USD/CNY USD/PHP USD/INR ***** / * * * * * * SP 30.495 6-9858 -- 42.39/42.40 41,16/41.17 ***** / * * * * * * -1W - 0.000/+0.0006.9800 /6.9850 42,42/42,45 41.19/41.22 ***** / * * * * * * 1M - 0.060/ - 0.0306.9700 /6.9750 42.54/42.59 41.32/41.37 ***** / * * * * * * $2M_{-}-0.140/-0.110$ 6.9370 /6.9420 42.66/42.71 41.39/41.44 ***** $3M_{-}-0.245/-0.215$ $6.9000 - \sqrt{6.9050}$ 42.79/42.84 41.43/41.48 ***** /***** (6.7670 /6.7<u>750</u> $6M_{-}0.455/-0.415$ 43.11/43.21 41.62/41.72 ***** / * * * * * * $9M'_{-}-0.680/-0.630$ 6.6150 /6.6250 43.44/43.54 41.74/41.84 ***** / * * * * * * 1Y ₇0.850/-0.800 _6.4680 /6.4730 43.72/43.82 41.89/41.99 CONTACT: DANNY / PAULINE TEL: 852-2521-2303 HKG DEALING : TRND SGP DEALING : TRSA

UBS Volatility Quote Page •

- ◆ 在外匯市場中,所謂 ATM 波動性,是指使 Straddle 策略為 0△的執行價格時的波動性。
 - ➤ Straddle 策略為 Call(K,T)+Put(K,T)。
 - ▶ 此 Straddle 策略因為 0 △ ,因此無需 Delta Hedge。
 - ▶ 由於 $\Delta_{\rm C} = -\Delta_{\rm P}$,因此有下面關係,

$$e^{-r_{f}T}\Phi\left(\frac{\ln\left(\frac{S_{0}}{K_{ATM}}\right) + \left(r_{d} - r_{f} + \frac{\sigma_{ATM}^{2}}{2}\right)T}{\sigma_{ATM}\sqrt{T}}\right) = e^{-r_{f}T}\Phi\left(-\frac{\ln\left(\frac{S_{0}}{K_{ATM}}\right) + \left(r_{d} - r_{f} + \frac{\sigma_{ATM}^{2}}{2}\right)T}{\sigma_{ATM}\sqrt{T}}\right)....(1.1)$$

- ✓ σ_{ATM} 為 ATM 的波動性, K_{ATM} 為 ATM 的執行價格。
- ✓ Φ為常態分配的累積機率密度函數。
- ▶ 由(1.1)可得,

$$K_{ATM} = S_0 e^{\left(r_d - r_f + \frac{1}{2}\sigma_{ATM}^2\right)T} \tag{1.2}$$

- ◆ RR 為同時買入一個 Call 與賣出一個 Put,兩者有對稱的△。
 - ightharpoons RR 通常以 $\sigma_{25\Delta c}$ 與 $\sigma_{25\Delta p}$ 的差額報價。因此,我們有下面關係,

$$\sigma_{RR} = \sigma_{25\Delta c} - \sigma_{25\Delta p} \tag{1.3}$$

- ◆ VWB 為賣出一個 ATM 的 Straddle,同時買入一個 25 △ 的 Strangle。
 - ▶ 為達到 Vega-weighted,前者的數量必需小於後者的數量。
 - ✓ 因為 Straddle 的 Vega 大於 Strangle 的 Vega。
 - ▶ VWB 的波動性關係可表示為,

$$\sigma_{VWB} = \frac{\sigma_{25\Delta c} + \sigma_{25\Delta p}}{2} - \sigma_{ATM} \tag{1.4}$$

◆ 由(1.3)與(1.4)式,可求得 $\sigma_{25\Delta_c}$ 與 $\sigma_{25\Delta_p}$ 這兩個隱含波動性如下,

$$\sigma_{25\Delta c} = \sigma_{ATM} + \sigma_{VWB} + \frac{1}{2}\sigma_{RR} \tag{1.5}$$

$$\sigma_{25\Delta p} = \sigma_{ATM} + \sigma_{VWB} - \frac{1}{2}\sigma_{RR} \tag{1.6}$$

◆ 利用(1.5)與(1.6)式,可求得 K_{25△c}如下式,

$$e^{-r_f T} \Phi \left(\frac{\ln \left(\frac{S_0}{K_{25\Delta c}} \right) + \left(r_d - r_f + \frac{\sigma_{25\Delta c}^2}{2} \right) T}{\sigma_{25\Delta c} \sqrt{T}} \right) = 0.25$$

$$K_{25\Delta c} = S_0 e^{-\alpha \sigma_{25\Delta c} \sqrt{T} + \left(r_d - r_f + \frac{1}{2}\sigma_{25\Delta c}^2\right)T}$$
(1.7)

$$\alpha = -\Phi^{-1} \left(\frac{1}{4} e^{r_f T} \right)$$

◆ K_{25△p}如下式,

$$-e^{-r_f T} \Phi \left(-\frac{\ln \left(\frac{S_0}{K_{25\Delta p}}\right) + \left(r_d - r_f + \frac{\sigma_{25\Delta p}^2}{2}\right)T}{\sigma_{25\Delta p} \sqrt{T}}\right) = -0.25$$

$$K_{25\Delta p} = S_0 e^{-\alpha \sigma_{25\Delta p} \sqrt{T} + \left(r_d - r_f + \frac{1}{2}\sigma_{25\Delta p}^2\right)T}$$
(1.8)

$$\alpha = -\Phi^{-1}\left(\frac{1}{4}e^{r_fT}\right)$$

 \blacktriangleright 通常我們有 $\alpha > 0$ 且 $K_{25\Delta p} < K_{ATM} < K_{25\Delta c}$ 。

(二)Smile Effect

◆ 波動性 v.s.執行價格(EURUSD, 2005/7/1)

EURUSD data as of 1 July 2005

$$T = 3m \ (= 94/365y)$$
 $S_0 = 1.205$
 $\sigma_{ATM} = 9.05\%$
 $\sigma_{RR} = -0.50\%$
 $\sigma_{VWB} = 0.13\%$
 \Rightarrow
 $\sigma_{50\Delta c} = 8.93\%$
 $\sigma_{25\Delta c} = 9.05\%$
 $\sigma_{25\Delta p} = 9.43\%$
 $K_{ATM} = 1.2148$
 $K_{25\Delta c} = 1.1767$
 $K_{25\Delta p} = 1.2521$
 0.104
 0.102
 0.102
 0.102
 0.103
 0.098
 0.098
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.099
 0.09

◆ 波動性 v.s.執行價格(USDJPY, 2007/7/11)

◆ 波動性 v.s.執行價格(USDJPY, 2007/7/11)

◆ 波動性 v.s.執行價格(USDJPY, 2007/7/11)

(三)Term Structure

◆ ATM Term Structure of Vol(USDJPY, 2007/7/11)

(四)Surface

◆ 將不同時點的 Smile Curve 畫在同一立體圖上,形成一個曲面。

	0.083	0.104	0.125	0.146	0.167	0.188	0.208	0.229	0.250	0.271	0.292	0.313	0.333	0.354	0.375	0.396	0.417	0.438	0.458	0.479	0.500
116.28	0.095	0.094	0.094	0.093	0.092	0.091	0.091	0.090	0.089	0.089	0.088	0.087	0.087	0.086	0.085	0.085	0.084	0.084	0.083	0.083	0.082
116.89	0.099	0.096	0.094	0.092	0.091	0.090	0.089	0.089	0.088	0.087	0.086	0.085	0.085	0.084	0.083	0.083	0.082	0.082	0.081	0.081	0.080
117.50	0.099	0.095	0.093	0.091	0.090	0.089	0.088	0.087	0.086	0.085	0.084	0.084	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.079	0.079
118.11	0.097	0.093	0.091	0.089	0.088	0.087	0.086	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.080	0.079	0.079	0.078	0.078	0.077	0.077
118.72	0.093	0.090	0.088	0.087	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.079	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075
119.32	0.088	0.086	0.085	0.084	0.083	0.082	0.081	0.080	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073
119.93	0.083	0.082	0.081	0.080	0.079	0.079	0.078	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072
120.54	0.078	0.078	0.078	0.077	0.076	0.076	0.075	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.071	0.070	0.070
121.15	0.074	0.075	0.074	0.074	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069
121.76	0.071	0.071	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068
122.37	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
122.98	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
123.59	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.20	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.80	0.072	0.070	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
125.41	0.078	0.074	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.02	0.085	0.078	0.075	0.073	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.63	0.091	0.083	0.078	0.075	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066
127.24	0.093	0.085	0.080	0.077	0.074	0.072	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066
127.85	0.089	0.083	0.079	0.076	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066

(五)市場資料校準

- ◆ (1.3.4)、(1.3.5)、(1.3.6)式中隨機過程中的參數,必需使用市場參數估計之。
 - 由於市場上乃以 Black-Scholes 模型來報價,因此我們須先以 BS 模型計算選擇權的權利金, $BSC(S_t, K, T t, \sigma_M, r_t, y_t) = BSC(\sigma_M)$
 - ✓ $\sigma_{M}(K)$ 為市場上的波動性報價,為執行價格的函數。
 - ▶ 根據(1.3.7)式與(1.3.4)、(1.3.5)、(1.3.6)式,可知 Heston 模型的選擇權權利金可表示為, $HC(S_t, K, T t, V_t, r_t, y_t, \kappa^*, \theta^*, \sigma, \rho) = HC(V_t, \kappa^*, \theta^*, \sigma, \rho)$

設定下面目標函購,假設市場上有 n 個選擇權報價,以隨機過程中的參數為控制變數。

$$\min_{V_t,\kappa^*,\theta^*,\sigma,\rho} \left(\sum_{i=1}^n \left(BSC_i(\sigma_M) - HC_i(V_t,\kappa^*,\theta^*,\sigma,\rho) \right)^2 \right)$$
(1.10)

- ▶ 利用非線性最適化演算法,如 Powell 法,求得控制變數之最佳解。
- ▶ 可使用模擬退火法(Simulated Annealing),避免局部最佳解。

- ◆ 使用 2007/7/11 USD/JPY 市場資訊,
 - ➤ 1M、2M、3M、6M 四個時點。
 - ➤ 10D Call、25D Call、ATM、25D Put、10D Put 五個 Strikes。
 - ▶ 求得數值如下,

```
V_{t} = 0.0061126543 , \ \theta^{*} = 0.0072726465 , \ \sigma = 0.2639879042 , \kappa^{*} = 2.0675040055 , \ \rho = -0.5363162751 .
```

▶ 誤差值為 0.00787682644。

六、實作案例

(一)R 語言實作

◆ 使用 R 語言內建的函數與功能,來撰寫 Heston 模型的解析解相對容易,

▶ 主程式

```
setwd("D:\\FEMC\\RCode")
source("HestonPrice.R")
source("HestonProb.R")
# Option features
tau = 0.5; # Maturity
r = 0.03; # Risk free rate
q = 0.00; # Dividend yield
kappa = 5;  # Heston parameter : reversion speed
sigma = 0.5;  # Heston parameter : volatility of variance
rho = -0.8; # Heston parameter : correlation
theta = 0.05; # Heston parameter : reversion level
v0 = 0.05;  # Heston parameter : initial variance
lambda = 0;  # Heston parameter : risk preference
                # Expression for the characteristic function
Trap = 0;
                # 0 = Original Heston formulation
                # 1 = Albrecher et. al. formulation
```

▶ 副程式 # Heston (1993) price of a European option. # Uses the original formulation by Heston # Heston parameters: kappa = volatility mean reversion speed parameter theta = volatility mean reversion level parameter lambda = risk parameter = correlation between two Brownian motions rho sigma = volatility of variance v0 = initial variance # Option features. PutCall = 'C'all or 'P'ut K = strike price S = spot price r = risk free rate q = dividend yield T = maturity # Integration features L = lower limit U = upper limit num = integration increment HestonPrice = function(PutCall, kappa, theta, lambda, rho, sigma, T, K, S, r, q, v0, trap, Lphi, Uphi, num) # The integrals I1 = HestonProb(Lphi, Uphi, num, kappa, theta, lambda, rho, sigma,

```
T, K, S, r, q, v0, 1, trap);
I2 = HestonProb(Lphi, Uphi, num, kappa, theta, lambda, rho, sigma,
   T, K, S, r, q, v0, 2, trap);
# The probabilities P1 and P2
P1 = 1/2 + I1/pi;
P2 = 1/2 + I2/pi;
# The call price
HestonC = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;
# Output the option price
if (PutCall == 'C')
   y = HestonC;
else
   # The put price by put-call parity
   HestonP = HestonC - S*exp(-q*T) + K*exp(-r*T);
   y = HestonP;
return(y)
```

```
# Returns the risk neutral probabilities P1 and P2.
# integrand = integrand of Probability
# phi = integration variable
# Integration features
    Lphi = lower limit
    Uphi = upper limit
# Pnum = 1 or 2 (for the probabilities)
# Heston parameters:
    kappa = volatility mean reversion speed parameter
    theta = volatility mean reversion level parameter
    lambda = risk parameter
    rho = correlation between two Brownian motions
    sigma = volatility of variance
    v0
           = initial variance
# Option features.
    PutCall = 'C'all or 'P'ut
    K = strike price
    S = spot price
    r = risk free rate
    q = dividend yield
    Trap = 1 "Little Trap" formulation
           0 Original Heston formulation
HestonProb = function(Lphi, Uphi, num, kappa, theta, lambda, rho,
   sigma, tau, K, S, r, q, v0, Pnum, Trap)
   x = log(S);
   a = kappa * theta;
```

```
if (Pnum == 1)
   u = 0.5;
   b = kappa + lambda - rho * sigma;
else
   u = -0.5;
   b = kappa + lambda;
integrand = function(phi)
   Zi = complex(0, 1);
   d = sqrt((rho*sigma*phi*Zi - b)^2 - sigma^2*(2*u*phi*Zi - phi^2));
   g = (b - rho*sigma*phi*Zi + d) / (b - rho*sigma*phi*Zi - d);
   if (Trap==1) # "Little Heston Trap" formulation
      c = 1/g;
      D = (b - rho*sigma*Zi*phi - d)/sigma^2*((1-exp(-d*tau)))
         /(1-c*exp(-d*tau)));
      G = (1 - c*exp(-d*tau))/(1-c);
      C = (r-q)*Zi*phi*tau + a/sigma^2*((b - rho*sigma*Zi*phi - d)*tau
         -2*log(G));
   else
```

```
if (Trap==0) # Original Heston formulation.
         G = (1 - g*exp(d*tau))/(1-g);
         C = (r-q)*Zi*phi*tau + a/sigma^2*((b - rho*sigma*Zi*phi + d)*tau
            -2*log(G));
         D = (b - rho*sigma*Zi*phi + d)/sigma^2*((1-exp(d*tau)))
            /(1-g*exp(d*tau)));
   # The characteristic function.
   f = \exp(C + D*v0 + Zi*phi*x);
   # Return the real part of the integrand.
   integ = Re(exp(-Zi*phi*log(K))*f/Zi/phi);
   return(integ);
Total = integrate(f=integrand,lower=Lphi, upper=Uphi, subdivisions=num);
# Get value of the integrate function
ans = Total$value;
return(ans);
```

(二)C#語言實作

Most Simple Version

➤ \VS2015Prj\HestonPrice GaussLaguerre*.*

```
// Heston parameters
public struct HParam
   public double kappa;
                           // Mean reversion speed
                             // Mean reversion level
   public double theta;
   public double sigma;
                            // Volatility of variance
   public double v0;
                           // Initial variance
                        // Correlation
   public double rho;
   public double lambda;
                             // Risk parameter
// Settings for the option price calculation
public struct OpSet
   public double S;
                           // Spot price
   public double K;
                            // Strke price
   public double T;
                            // Maturity
   public double r;
                            // Risk free rate
   public double q;
                           // Dividend
   public string PutCall;  // "P"ut or "C"all
                            // 1="Little Trap" characteristic function; 2=Original Heston c.f.
   public int trap;
```

```
class HestonPriceGaussLaguerre
{
   static void Main(string[] args)
       // 32-point Gauss-Laguerre Abscissas and weights
       double[] x = new Double[32];
       double[] w = new Double[32];
       using(TextReader reader = File.OpenText("../../GaussLaguerre32.txt"))
       {
           for(int k=0;k<=31;k++)</pre>
               string text = reader.ReadLine();
              string[] bits = text.Split(' ');
              x[k] = double.Parse(bits[0]);
              w[k] = double.Parse(bits[1]);
       // Heston parameters
       HParam param = new HParam();
```

```
param.kappa = 1.5;
                      param.theta = 0.04;
                                          param.sigma = 0.3;
param.v0 = 0.05412;
                      param.rho = -0.9;
                                            param.lambda = 0.0;
// Option settings
OpSet settings = new OpSet();
settings.S = 101.52; settings.K = 100.0; settings.T = 0.15;
settings.r = 0.02; settings.q = 0.0; settings.PutCall = "C";
settings.trap = 1;
// The Heston price
HestonPrice HP = new HestonPrice();
double Price = HP.HestonPriceGaussLaguerre(param, settings, x, w);
Console.WriteLine("Heston price using 32-point Gauss Laguerre");
Console.WriteLine("-----");
Console.WriteLine("Option Flavor = {0,0:F5}", settings.PutCall);
Console.WriteLine("Strike Price = {0,0:0}" ,settings.K);
Console.WriteLine("Maturity = {0,0:F2}",settings.T);
Console.WriteLine("Price = {0,0:F4}",Price);
Console.WriteLine("-----"):
Console.WriteLine(" ");
```

```
class HestonPrice
   // Heston Integrand
   public double HestonProb(double phi, HParam param, OpSet settings, int Pnum)
      Complex i = new Complex(0.0,1.0);
                                                         // Imaginary unit
      double S = settings.S;
      double K = settings.K;
      double T = settings.T;
      double r = settings.r;
      double q = settings.q;
      double kappa = param.kappa;
      double theta = param.theta;
      double sigma = param.sigma;
      double v0 = param.v0;
      double rho = param.rho;
      double lambda = param.lambda;
      double x = Math.Log(S);
      double a = kappa*theta;
      int Trap = settings.trap;
      Complex b,u,d,g,c,D,G,C,f,integrand = new Complex();
       // Parameters "u" and "b" are different for P1 and P2
      if(Pnum==1)
          u = 0.5;
```

```
b = kappa + lambda - rho*sigma;
else
   u = -0.5;
   b = kappa + lambda;
d = Complex.Sqrt(Complex.Pow(rho*sigma*i*phi - b,2.0) - sigma*sigma*(2.0*u*i*phi - phi*phi));
q = (b - rho*sigma*i*phi + d) / (b - rho*sigma*i*phi - d);
if(Trap==1)
   // "Little Heston Trap" formulation
   c = 1.0/q;
   D = (b - rho*sigma*i*phi - d)/sigma/sigma*((1.0-Complex.Exp(-d*T)))/(1.0-c*Complex.Exp(-d*T)));
   G = (1.0 - c*Complex.Exp(-d*T))/(1-c);
   C = (r-q)*i*phi*T + a/sigma/sigma*((b - rho*sigma*i*phi - d)*T - 2.0*Complex.Log(G));
else
   // Original Heston formulation.
   G = (1.0 - g*Complex.Exp(d*T))/(1.0-g);
   C = (r-q)*i*phi*T + a/sigma/sigma*((b - rho*sigma*i*phi + d)*T - 2.0*Complex.Log(G));
   D = (b - rho*sigma*i*phi + d)/sigma/sigma*((1.0-Complex.Exp(d*T)))/(1.0-g*Complex.Exp(d*T)));
```

```
// The characteristic function.
   f = Complex.Exp(C + D*v0 + i*phi*x);
   // The integrand.
   integrand = Complex.Exp(-i*phi*Math.Log(K))*f/i/phi;
   // Return the real part of the integrand.
   return integrand.Real;
// Heston Price by Gauss-Laguerre Integration
public double HestonPriceGaussLaguerre(HParam param,OpSet settings,double[] x,double[] w)
   double[] int1 = new Double[32];
   double[] int2 = new Double[32];
   // Numerical integration
   for(int j=0;j<=31;j++)</pre>
      int1[j] = w[j] * HestonProb(x[j],param,settings,1);
      int2[j] = w[j] * HestonProb(x[j],param,settings,2);
   // Define P1 and P2
   double pi = Math.PI;
   double P1 = 0.5 + 1.0/pi*int1.Sum();
```

```
double P2 = 0.5 + 1.0/pi*int2.Sum();
// The call price
double S = settings.S;
double K = settings.K;
double T = settings.T;
double r = settings.r;
double q = settings.q;
string PutCall = settings.PutCall;
double HestonC = S*Math.Exp(-q*T)*P1 - K*Math.Exp(-r*T)*P2;
// The put price by put-call parity
double HestonP = HestonC - S*Math.Exp(-q*T) + K*Math.Exp(-r*T);
// Output the option price
if(PutCall == "C")
   return HestonC;
else
   return HestonP;
```

Consolidated Heston Model

\VS2015Prj\Analytic*.*

```
OpSet opSet = new OpSet();
HParam hParam = new HParam();
opSet.PutCall = "C";
opSet.S = Convert.ToDouble(textBox2.Text);
opSet.K = Convert.ToDouble(textBox3.Text);
opSet.T = Convert.ToDouble(textBox4.Text);
opSet.r = Convert.ToDouble(textBox5.Text);
opSet.q = Convert.ToDouble(textBox6.Text);
hParam.kappa = Convert.ToDouble(textBox7.Text);
hParam.theta = Convert.ToDouble(textBox8.Text);
hParam.sigma = Convert.ToDouble(textBox9.Text);
hParam.v0 = Convert.ToDouble(textBox10.Text);
hParam.rho = Convert.ToDouble(textBox11.Text);
hParam.lambda = Convert.ToDouble(textBox12.Text);
Stopwatch SW = new Stopwatch();
SW.Start();
//T01 GaussLaguerre.GaussLaguerre();
double C0 = T01_GaussLaguerre.GaussLaguerreConsolidated(opSet, hParam);
textBox13.Text = C0.ToString();
```

```
SW.Stop();
textBox21.Text = SW.ElapsedMilliseconds.ToString();

double dS = 0.005 * opSet.S;
opSet.S = opSet.S + dS;
double Cplus = T01_GaussLaguerre.GaussLaguerreConsolidated(opSet, hParam);
opSet.S = opSet.S - dS;
double Cminus = T01_GaussLaguerre.GaussLaguerreConsolidated(opSet, hParam);
double CDelta = (Cplus - Cminus) / (2 * dS);
textBox15.Text = CDelta.ToString();
```

```
public static double GaussLaguerreConsolidated(OpSet opSet, HParam hParam)
   // 32-point Gauss-Laguerre Abscissas and weights
   double[] x = new Double[32];
   double[] w = new Double[32];
   using (TextReader reader = File.OpenText("../../GaussLaguerre32.txt"))
       for (int k = 0; k <= 31; k++)
       {
          string text = reader.ReadLine();
          string[] bits = text.Split(' ');
          x[k] = double.Parse(bits[0]);
          w[k] = double.Parse(bits[1]);
       }
   HParam param = new HParam();
   param.kappa = hParam.kappa;
                                       // Heston Parameter: Mean reversion speed
   param.theta = hParam.theta;
                                        // Heston Parameter: Mean reversion level
   param.sigma = hParam.sigma;
                                       // Heston Parameter: Volatility of Variance
   param.v0 = hParam.v0;
                                        // Heston Parameter: Current Variance
                                        // Heston Parameter: Correlation
   param.rho = hParam.rho;
   param.lambda = 0.0;
                                        // Heston Parameter: Risk parameter
   OpSet settings = new OpSet();
   settings.S = opSet.S;
                                        // Spot Price
   settings.K = opSet.K;
                                        // Strike Price
```

```
// Heston Price by Gauss-Laguerre Integration
public double HestonPriceConsol(HParam param, OpSet settings, double[] x, double[] w)
{
   double[] int1 = new Double[32];
   // Numerical integration
   for (int j = 0; j <= 31; j++)
       int1[j] = w[j] * HestonProbConsol(x[j], param, settings);
   }
   // Define P1 and P2
   double pi = Math.PI;
   double I = int1.Sum();
   // The call price
   double S = settings.S;
   double K = settings.K;
   double r = settings.r;
   double q = settings.q;
   double T = settings.T;
   string PutCall = settings.PutCall;
   double HestonC = 0.5 * S * Math.Exp(-q * T) - 0.5 * K * Math.Exp(-r * T) + I / pi;
   // The put price by put-call parity
   double HestonP = HestonC - S * Math.Exp(-q * T) + K * Math.Exp(-r * T);
```

```
// Output the option price
   if (PutCall == "C")
       return HestonC;
   else
       return HestonP;
}
// Heston Integrand
public double HestonProbConsol(double phi, HParam param, OpSet settings)
   Complex i = new Complex(0.0, 1.0);
                                                       // Imaginary unit
   double S = settings.S;
   double K = settings.K;
   double T = settings.T;
   double r = settings.r;
   double q = settings.q;
   double kappa = param.kappa;
   double theta = param.theta;
   double sigma = param.sigma;
   double v0 = param.v0;
   double rho = param.rho;
   double lambda = param.lambda;
   double x = Math.Log(S);
   double a = kappa * theta;
   int Trap = settings.trap;
```

```
Complex b1, u1, d1, g1, c1, D1, G1, C1, f1, b2, u2, d2, g2, c2, D2, G2, C2, f2, integrand = new Complex();
// The first characteristic function
u1 = 0.5;
b1 = kappa + lambda - rho * sigma;
d1 = Complex.Sqrt(Complex.Pow(rho*sigma*i*phi-b1, 2) - sigma*sigma*(2.0*u1*i*phi-phi*phi));
g1 = (b1 - rho * sigma * i * phi + d1) / (b1 - rho * sigma * i * phi - d1);
if (Trap == 1)
{
   // "Little Heston Trap" formulation
   c1 = 1.0 / g1;
   D1 = (b1 - rho * sigma * i * phi - d1) / sigma / sigma
       * ((1.0 - Complex.Exp(-d1 * T)) / (1.0 - c1 * Complex.Exp(-d1 * T)));
   G1 = (1.0 - c1 * Complex.Exp(-d1 * T)) / (1.0 - c1);
   C1 = (r - q) * i * phi * T + a / sigma / sigma
       * ((b1 - rho * sigma * i * phi - d1) * T - 2.0 * Complex.Log(G1));
}
else
   // Original Heston formulation.
   G1 = (1.0 - g1 * Complex.Exp(d1 * T)) / (1.0 - g1);
   C1 = (r - q) * i * phi * T + a / sigma / sigma
       * ((b1 - rho * sigma * i * phi + d1) * T - 2.0 * Complex.Log(G1));
   D1 = (b1 - rho * sigma * i * phi + d1) / sigma / sigma
       * ((1.0 - Complex.Exp(d1 * T)) / (1.0 - g1 * Complex.Exp(d1 * T)));
```

```
f1 = Complex.Exp(C1 + D1 * v0 + i * phi * x);
// The second characteristic function
u2 = -0.5;
b2 = kappa + lambda;
d2 = Complex.Sqrt(Complex.Pow(rho * sigma * i * phi - b2, 2)
   - sigma * sigma * (2.0 * u2 * i * phi - phi * phi));
g2 = (b2 - rho * sigma * i * phi + d2) / (b2 - rho * sigma * i * phi - d2);
if (Trap == 1)
{
   // "Little Heston Trap" formulation
   c2 = 1.0 / g2;
   D2 = (b2 - rho * sigma * i * phi - d2) / sigma / sigma
       * ((1.0 - Complex.Exp(-d2 * T)) / (1.0 - c2 * Complex.Exp(-d2 * T)));
   G2 = (1.0 - c2 * Complex.Exp(-d2 * T)) / (1.0 - c2);
   C2 = (r - q) * i * phi * T + a / sigma / sigma
       * ((b2 - rho * sigma * i * phi - d2) * T - 2.0 * Complex.Log(G2));
}
else
   // Original Heston formulation.
   G2 = (1.0 - g2 * Complex.Exp(d2 * T)) / (1.0 - g2);
   C2 = (r - q) * i * phi * T + a / sigma / sigma
       * ((b2 - rho * sigma * i * phi + d2) * T - 2.0 * Complex.Log(G2));
   D2 = (b2 - rho * sigma * i * phi + d2) / sigma / sigma
       * ((1.0 - Complex.Exp(d2 * T)) / (1.0 - g2 * Complex.Exp(d2 * T)));
```

```
}
f2 = Complex.Exp(C2 + D2 * v0 + i * phi * x);

// The integrand.
integrand = Complex.Exp(-i * phi * Complex.Log(K)) / i / phi
     * (S * Complex.Exp(-q * T) * f1 - K * Complex.Exp(-r * T) * f2);

// Return the real part of the integrand.
return integrand.Real;
}
```

七、複雜結構商品範例

- ◆ 看空USDJPY匯率商品
 - > 沒有解析解
 - > 需要使用蒙地卡羅模擬法
 - ▶ 10條模擬路徑,每日一部
 - ▶ 要算 MTM 與 Greeks
 - ▶ 要計算風險並提列資本

USD 6M YES NO

Underlying	Bearish USD against JPY							
Tenor	6 Months							
Denomination	USD							
Yes Barrier	105.00 (continuous observation)							
No Barrier	110.00 (continuous observation)							
	If Yes Barrier is touched before No Barrier (continuously obs), client receives:							
	3.00% p.a.							
Client receives	If No Barrier is touched before Yes Barrier (continuously obs), client receives:							
	0.00%							
	If neither Yes nor No Barrier is touched (continuously obs), client receives:							
	0.00%							
Spot Ref.	USDJPY 108.00							

甲、價值變動分解

如果我們採用風險因子分解的架構,則需要對選擇權價值變動,進行分解。

- ▶ 衍生性金融商品其價格受到標的資產價格所影響,其風險來源即為標的資產。
 - ✓ 以選擇權為例,買權價格 C 為標的資產價格 S、波動性σ與時間 t 的函數

$$C = f(S, \sigma, t)$$

- ✓ 買權價格 C 可視為因變數,標的資產價格 S、波動性σ與時間 t 可視為自變數。
- 風險因子為標的資產價格 S、波動性 σ。
 - ✓ 實務上波動性 σ 是一個期限結構,不是一個定值。
 - ✓ 因此,波動性風險因子是各個時點的 σ + ∘

衍生商品價格的變動,可分解成白變數變動分量的相加。

➤ 根據 Ito's Lemma,

$$dC = \frac{\partial C}{\partial S}dS + \frac{1}{2}\frac{\partial^2 C}{\partial S^2}(dS)^2 + \frac{\partial C}{\partial \sigma}d\sigma + \frac{\partial C}{\partial t}dt$$