Отчет по лабораторной работе № 5 «Основы PL/SQL»			
дата	Оценка	Бонус за	подпись
	(max 5)	сложность	

Цели работы:

Изучение операторов PL/SQL

Задачи работы:

- создание ненаименованных блоков
- создание функци
- создание процедур
- создание пакетов
- создание триггеров

Задание повышенной сложности (бонус за сложность – 5 баллов):

- выполнение триггеров – фильтров входных данных строкового типа

 Краткий конспект теоретической части (ответы на контрольные вопросы)

 Определение «функции»

 Определение «процедуры»

 Определение «пакета»

 Определение «триггера»

 Структура ненаименнованного PL/SQL блока

PL/SQL — язык Oracle четвертого поколения, объединяющий структурированные элементы процедурного языка программирования с языком SQL, разработанный специально для организации вычислений в среде клиент/сервер.

Свойства:

- Он позволяет передать на сервер программный блок PL/SQL, содержащий логику приложения, как оператор SQL, одним запросом.
- Используя PL/SQL, можно значительно уменьшить объем обработки в клиентской части приложения и нагрузку на сеть. Например, может понадобиться выполнить различные наборы операторов SQL в зависимости от результата некоторого запроса. Запрос, последующие операторы SQL и операторы условного управления могут быть включены в один блок PL/SQL и пересланы серверу за одно обращение к сети.
- Вся логика приложений делится на клиентскую и серверную части. Серверная часть может быть реализована в виде функций, хранимых процедур и пакетов.

Базовые элементы:

Ненаименнованные блоки

Законченный логический блок, реализованный на PL/SQL, выполняемый в терминальном режиме, без возможности обращения к нему из других модулей.

Наименованные блоки:

Функции. Часть логики приложения ориентированной на выполнение конкретного комплекса операций на сервере, результат которых возвращается в виде значения функции. Откомпилированные функции и их исходные тексты содержатся в базе данных.

Хранимые процедуры. Часть логики приложения, особенно нуждающаяся в доступе к базе данных, может храниться там, где она обрабатывается (на сервере). Хранимые процедуры не возвращают значения результата, обеспечивают удобный и эффективный механизм безопасности. Откомпилированные хранимые процедуры и их исходные тексты содержатся в базе данных.

Пакеты. Часть логики приложений: функций и процедур, предназначенных для решения задач в рамках одного модуля (подсистемы) АИС.

Триггеры базы данных. Можно использовать триггеры, чтобы организовать сложный контроль целостности, выполнять протоколирование (аудит) и другие функции безопасности, реализовать в приложениях выдачу предупреждений и мониторинг.

Декларативная целостность. Ограничения активизируются сервером всякий раз, когда записи вставляются, обновляются или удаляются. В дополнение к ограничениям ссылочной целостности, которые проверяют соответствие первичного и внешнего ключей, можно также накладывать ограничения на значения, содержащиеся в столбцах таблицы.

Принципы разработки ненаименованных PL/SQL блоков

Программы на PL/SQL имеют блочную структуру:

DECLARE

-- объявления переменных, констант, типов данных, курсоров, функций и процедур.

BEGIN

-- выполняемый код

EXCEPTION

-- обработка исключений

END;

Пример 1:

Вывести в выходной поток SQL+ строковую переменную «HELLO WORLD»

```
SET SERVEROUTPUT ON -- определяет вывод SQL*Plus всю информацию -- возвращаемую сервером.

BEGIN

DBMS_OUTPUT.enable; -- включение механизма вывода DBMS_OUTPUT.put_line('HELLO WORLD'); -- печать строки END;

/ -- указание к выполнению блока PL/SQL
```

Вклейте результат работы программы в SQL+

HELLO WORLD

PL/SQL procedure successfully completed.

Пример 2:

Пример: Разработать ненаименованный PL/SQL блок, вычисляющий площадь круга и длину окружности.

```
DACLARE
PI CONSTANT REAL := 3.141519265359;

LOKR REAL;

SKRG REAL;

RADIUS REAL := &RADIUS; -- указывает на необходимость ввода перем.

BEGIN

LOKR := PI * RADIUS * 2.0;

SKRG := PI *RADIUS ** 2;

DBMS_OUTPUT.put_line('Paguyc = ' || to_char(RADIUS)|| ', длина окружности =' || to_char(LOKR) || ', площадь круга =' || to_char(SKRG));

END;
/
```

```
Вклейте результат работы программы в SQL+
```

```
Радиус = 1, ДЛИНА ОКРУЖНОСТИ =6.283038530718, ПЛОЩАДЬ КРУГА =3.141519265359
```

PL/SQL procedure successfully completed.

Управляющие структуры PL/SQL

Для управления работой PL/SQL блоков используются условные операторы и циклы.

Условные операторы: IF-THEN-ELSE

Синтаксис:

```
IF логическое выражение 1 THEN операторы 1; [ELSIF логическое выражение 2 THEN операторы 1;] ...... ELSE операторы N; END IF;
```

IF-THEN-ELSE

Работа с пиклами

Пример 5:

Модифицировать пример, используя различные варианты задания циклов

```
DATE;
        radius REAL := &radius;
3
4 V BEGIN
        dt := current_timestamp;
                                                                PL/SQL procedure successfully completed.
6 🗸
        LOOP
7
            radius := radius + 1;
8 🗸
            dbms_output.put_line(to_char(2 * 3.14 *(radius))
                                                                12.56 время +0000000 00:00:00.725332000
                                || 'время
9
                                                                18.84 время +000000 00:00:00.725487000
10
                                || to_char(
                                                                25.12 время +000000 00:00:00.725498000
                (current_timestamp - dt)
11
               ,'ss'
12
                                                                31.4 время +000000 00:00:00.725505000
13
            ));
                                                                37.68 время +000000 00:00:00.725511000
            IF radius > 5 THEN
14 🗸
15
            END IF;
16
        END LOOP;
17
18
    END;
19
```


Пример 6:

Приведите собственный пример обработки исключительных ситуаций

```
Prompt Обработка исключительных
ситуаций
DECLARE
x real := &x;
n integer := 0;
BEGIN
      dbms output.enable;
      dbms output.put line('Значения
функции');
      dbms output.put line('abs
(x) = ' \mid | to \ char(ABS(x)) ;
n := n+1;
      dbms output.put line('ceil
(x)='||to char(ceil(x));
n := n+1;
exception
when others then begin
    dbms output.put line('ERRORS');
     if n=0 then
      dbms output.put line('Ошибка в
функции ABS(x)');
  end:
END; /
```

```
DECLARE
   degree INTEGER := &degree;
BEGIN
   IF degree IN ( 1
                 ,2
                 ,3
                 ,4 ) THEN
       RAISE invalid_number;
   END IF;
EXCEPTION
   WHEN invalid number THEN
       dbms_output.put_line('оценка слишком мала');
       ROLLBACK;
END;
 PL/SQL procedure successfully completed.
 оценка слишком мала
```

Библиотечные функции в Oracle

Числовые функции

тисловые функ		
Функция	Возвращаемое значение	
ABS(n)	Абсолютное значение величины <i>п</i> .	
CEIL(n)	Наименьшее целое, большее или равное п,	
COS(n)	Косинус n (угла, выраженного в радианах).	
COSH(n)	Гиперболический косинус п.	
EXP(n)	е в степени п.	
FLOOR(n)	Наибольшее целое, меньшее или рапное <i>n</i> .	
LN(n)	Натуральный логарифм n, где n>0.	
LOG(m,n)	Логарифм n по основанию <i>m</i> .	
MOD(m,n)	Остаток от деления m на n .	
POWER(m,n)	<i>т в</i> степени <i>п</i> .	
(ND(n[,m]) n, округленное до m позиций после десятичной точки. По		
	умолчанию m равно нулю.	
SIGN(n)	Если n<0,-1;если n=0, 0; если n>0, 1.,	
SIN(n)	Синус п (угла, выраженного в радианах).	
SINH(n)	Гиперболический синус.	
SQRT(n)	Квадратный корень от n, если n<0, возвращает значение NULL.	
TAN(n)	Тангенс n (угла, выраженного в радианах).	
TANH(n)	Гиперболический тангенс <i>n</i> .	
$\overline{TRUNC(n[,m])}$	n, усеченное до m позиций после от десятичной точки. По	
	умолчанию m равно нулю.	

	Пример 7: Приведите пример использования библиотечной функции данного типа
DECLARE degree INTEGER := °ree BEGIN	
<pre>dbms_output.put_line(ceil(deg END;</pre>	ree));
/I	4
	PL/SQL procedure successfully completed.

Символьные функции, возвращающие символьные значения:

Функция 1	Возвращаемое значение
CHR(n)	Символ с кодом п.
CONCAT(char1,char2)	Конкатенация символьных строк charl и char2.
INITCAP(char)	Символьная строка char, первые буквы всех слов в которой
	преобразованы в прописные.
LOWER(char)	Символьная строка <i>char</i> , осе буквы которой преобразованы D
,	строчные.
LPAD(char1.n [,char2])	Символьная строка <i>chur1</i> , которая дополняется слева
27	последовательностью символов из <i>char2</i> так, чтобы общая
	длина строки стала равна n . Значение $chur2$ по умолчанию -"
	(один пробел). Если часть многобайтового символа не поме-
	щается в добавляемой строке, то конец строки заполняется
	пробелами.
LTRIM(char[,set])	Символьная строка <i>char</i> , в которой удалены все символы от
	начала вплоть до первого символа, которого нет в строке set.
	Значение set по умолчанию - " (один пробел).
NLS_INITCAP(char[,nls_sort])	Символьная строка <i>char</i> , в которой первые буквы всех слов
	преобразованы в прописные. Параметр nls_sort определяет
	последовательность сортировки.
NLS_LOWER(char[,nls_sort])	Символьная строка <i>char</i> , все буквы которой преобразованы в
	строчные. Параметр tils-sort определяет последовательность
	сортировки.
NLS_UPPER(char[,nls_sort])	Символьная строка <i>char</i> , все буквы которой преобразованы в
	прописные. Параметр nts_sort определяет последовательность
	сортировки.
REPLACE(char, search_string	Символьная строка <i>char</i> , в которой все фрагменты
[,replacement_string])	search_string заменены на replacement_string. Если параметр
	replacement_string не определен, все фрагменты search-string
	удаляются.
RPAD(char1 [,char2])	Символьная строка <i>charl</i> , которая дополнена справа
	последовательностью символов из <i>chur2</i> так, что общая длина
	строки равна п. Если часть многобайтового символа не
	помещается в добавляемой строке, то конец строки
	заполняется пробелами.
RTRIM(char[,set])	Символьная строка <i>char</i> , в которой удалены все символы
	справа вплоть до первого символа, которого нет в строке set.
	Значение параметра <i>set</i> по умолчанию - 1 (один пробел).
SOUNDEX(char)	Символьная строка, содержащая фонетическое представление
	для <i>char</i> , на английском языке.
SUBSTR(char, m[,n])	Фрагмент символьной строки <i>char</i> , начинающийся с символа
	m, длиной n символов (до конца строки, если параметр n не
	указан).
SUBSTRB(char, m[,n])	Фрагмент символьной строки <i>char</i> , начинающийся с символа
	m, длиной л байтов (до конца строки, если параметр n не
	указан).
TRANSLATE(char, from, to)	Символьная строка <i>char</i> , в которой все символы,
	встречающиеся в строке from, заменены на соответствующие
	символы из <i>to</i> .
UPPER(char)	Символьная строка <i>char</i> , в которой все буквы преобразованы в
	прописные.

Символьные функции, возвращающие числовые значения

Функция	Возвращаемое значение
ASCII(char)	Возвращает десятичный код первого символа строки <i>char</i> в кодировке, принятой в базе данных. (Код ASCII в системах, использующих кодировку ASCII). Возвращает значение первого байта многобайтового символа.
INSTR(charl.char2[,n[,m]])	Позиция первого символа m-ого фрагмента строки <i>charl</i> , совпадающего со строкой <i>char2</i> , начиная с n-ого символа. По умолчанию n u m равны 1. Номер символа отсчитывается от первого символа строки <i>charl</i> , даже когда $n > 1$.
INSTRB(charl.char2[,n[,m]])	Позиция первого символа m - o г o фрагмента строки c har l , совпадающего со строкой c har l 2, начиная с m -ого байта. По умолчанию n и m равны 1. Номер байта отсчитывается от первого символа строки c har l , даже когда n > 1.
LENGTH(char)	Длина строки <i>char</i> в символах.
LENGTHB(char)	Длина строки <i>char</i> в байтах.
NLSSORT(char1,char2[,n[,m]])	Зависящее от национального языка значение, используемое при сортировке строки <i>char</i> .

При	Пример 9: Приведите пример использования библиотечной функции данного типа	
BEGIN dbms_output.put_line(length('text with some secret wor like password etc'));	ds PL/SQL procedure successfully completed.	
END;	45	

Групповые функции

Функция	Возвращаемое значение
AVG([DISTINCT ALL]n)	Среднее значение от п, нулевые значения
	опускаются.
COUNT([ALL]*)	Число строк, извлекаемых в запросе или подзапросе.
COUNT(IDISTINCT ALL)	Число строк, для которых е <i>хрг</i> принимает не пустое
expr)	значение.
MAX([D1STINCT ALL]	Максимальное значение выражения expr.
expr)	
MIN((DISTINCT ALL)	Минимальное значение выражения expr.
expr)	
STDDEV([DISTINCT ALL	Стандартное отклонение величины л, нулевые
] n)	значения опускаются.
SUM([DISTINCT ALL] n)	Сумма значений п
VARIANCE([DIST1NCTI	Дисперсия величины <i>п</i> , нулевые значения
ALL]n)	опускаются.

Функции работы с датами

Функция	Возвращаемое значение
ADD-MONTHS (d,n)	Дата d плюс n месяцев.
LAST-DAY (d)	Последнее число месяца, указанного в d
MONTHS-BETWEEN (d1, d2)	Число месяцев между датами d1 и d2.
NEW-TIME (d, a, b)	Дата и время в часовом поясе а, соответствующие дате и времени в часовом поясе b, при этом d,а и b значения типа CHAR, определяющие часовые пояса.
NEW-DAY (d, char)	Дата первого после даты (/дня недели, название которого записано в $c1и$ г.
SYSDATE	Текущая дата и время.

Усечение и округление дат

Функция	Возвращаемое значение
ROUND(d [,fmt])	Дата d, округленная до единиц, указанных в форматной
	маске.
TRUNC(d [,fmt])	Дата d, усеченная по форматной маске fmt.

SELECT trunc(Пример 10: Приведите пример использования библиотечной функции данного типа		
sysdate		TRUNC(SYSDATE)	
) FROM dual;	1	22.04.25	-

Форматные маски дат для функций ROUND и TRUNC.

В таблице перечислены форматные маски, которые можно использовать в функциях ROUND и TRUNC. По умолчанию используется форматная маска "DD".

Форматная маска	Возвращаемое значение	
СС или SCC	Первый день столетия	
SYYYY или YYYY или YYY или YY	Первый день года (округляется до 1 июля)	
или Y или YEAR или SYEAR		
Q	Первый день квартала (округляется до 16 числа	
	второго месяца квартала)	
MONTH или MON или MM или RM	Первый день месяца (округляется до 16 числа)	
WW или IW	Тот же день недели, что и первый день текущего года	
W	Тот же день недели, что и первый день текущего	
	месяца	
DDD или DDD или J	День	
DAY или DY или D	Первый день недели	
HH HH12 HH24	Час	
MI	Минута	

Форматные маски дат в TO_CHAR и TO_DATE.

Элементы форматной маски даты перечислены в приведенной ниже таблице. Любую комбинацию этих элементов можно использовать как аргумент fmt функций TO_CHAR или TO_DATE. По умолчанию fmt paseн 'DD-MON-YY'.

Элемент формата	Возвращаемое значение	
SCC или CC	Столетие; если указано 'S' то перед датами до нашей эры ставится '-'.	
ҮҮҮҮ или ЅҮҮҮҮ	Год; если указано 'S' то перед датами до нашей эры ставится '-'.	
	YYY или YY или Y] Последние 3, 2, или1 цифра года.	
IYYY	4 цифры года по стандарту ISO.	
	IYY или IY или I] Последние 3, 2, или1 цифра года по стандарту ISO.	
Y,YYY	Год с запятой в указанной позиции.	
SYEAR или YEAR	Год, записанный словами, а не цифрами; если указано 'S' то перед	
	датами до нашей эры ставится '-'.	
RR	Последние 2 цифры года; для указания года в других столетиях.	
BC или AD	ВС- до нашей эры(до н.э.); AD – нашей эры	
В.С. или А.Д.	В.С до нашей эры(до н.э.); А.Д. – нашей эры	
Q	Квартал (1, 2, 3, 4;JAN-MAR=1).	
MM	Месяц(01-12; JAN=1).	
RM	Нумерация месяцев римскими цифрами(I-XII; JAN=I).	
MONTH	Название месяца, дополненное пробелами до 9-ти символов.	
MON	Сокращенное название месяца.	
WW или W	Неделя года (1-52) или месяца (1-5).	
IW	Неделя года (1-52 или 1-53) по стандарту ISO.	
DDD или DD или D	День года (1-366) или месяца (1-31) или недели (1-7).	
DAY	Название дня, дополненное пробелами до 9-ти символов.	
DY	Сокращенное название дня.	
J	Дата юлианского календаря; число дней, считая с первого января 4712	
	года до н.э.	
АМ или РМ	АМ –до полудня РМ- после полудня	
А.М. или Р.М.	А.Мдо полудня Р.М после полудня	
НН или НН12	Час дня (1-12).	
HH24	Час дня (0-23).	
MI	Минута (0-59)	
SS или SSSSS	Секунда (0-59) или количество секунд после полуночи (0-86399).	
-/,.;:	Знаки пунктуации.	
"текст"	Текст воспроизводится в возвращенном значении.	

	Пример 11: Приведите пример использования форматных масок	
1 V SELECT to_char(2 sysdate		TO_CHAR(SYSDATE, 'DD.MM.YYYYHH24:MI:SS')
<pre>3 ,'dd.mm.yyyy hh24:mi:ss 4</pre>	1	22.04.2025 18:45:20

Префиксы и суффиксы элементов формата даты

К элементам формата даты можно добавлять следующие префиксы:

FM	"Режим заполнения" подавляет заполнение
	пробелами, когда стоит перед MONTH или DAY
FX	"Точный формат". Этот модификатор задает точное
	соответствие символьного аргумента и форматной
	маски даты в функции TO_DATE.

К элементам формата даты можно добавлять следующие суффиксы:

TH	Порядковый номер ("DDTH" для "4TH").
SP	Номер, записанный словами ("DDSP" для "FOUR").
SPTH и THSP	Порядковый номер, записанный словами ("DDSPTH"
	для "FOURTH").

Прописные и строчные буквы в элементах формата даты.

Следующие строки задают вывод прописными буквами, вывод прописными буквами только начальных букв слов, или вывод строчными буквами.

Прописные	Прописная начальная	Строчные
DAY	Day	.day
DY	Dy	.dy
MONTH	Month	.month
MON	Mon	.mon
YEAR	Year	.year
AM	Am	.am
PM	Pm	.pm
A.M.	A.m.	a.m.
P.M.	P.m.	p.m.

Если к элементу формата даты добавляется префикс или суффикс, то регистр (прописные, строчные буквы) определяется элементом формата, а не префиксом или суффиксом. Например, 'ddTH' задает "04th" а не "04TH".

```
Пример 12:
Приведите пример использования префиксов и суффиксов

1 

SELECT to_char(
2 sysdate
3 ,'dd.mmfx, day - hh24fm:mifm:ssfx'
4 

)

FROM dual;

То_char(sysdate,'dd.mmfx,day-hh24fm:mifm:ssfx')

1 22.04, вторник - 18:51:59
```

Функции преобразования

Функция	Возвращаемое значение	
CHARTOROWID(char)	Char преобразуется из типа данных CHAR в тип данных	
	OWID	
CONVERT(char, dest_char_set	Преобразует символьную строку из набора символов	
[,source_char_set])	urce_char_set в набор символов dest_char_set	
HEXTORAW (char)	Преобразует значение char, содержащее	
	шестнадцатиричные цифры, в значение типа RAW	
RAWTOHEX (raw)	Преобразует raw в символьное значение,	
	содержащее его шестнадцатиричный эквивалент	
ROWIDTOCHAR (rowid)	Преобразует значение типа ROWID в значение типа CHA	
TO_CHAR (expr [,fmt	Преобразует значение expr типа DATE или NUMBER в	
[,'nls_num_fmt']])	значение типа CHAR по формату форматной маски	
	fmt. Если fmt отсутствует, значения типа DATE	
	преобразуются по формату, заданному по умолчанию,	
	и значения типа NUMBER- в значение типа CHAR с	
	шириной, достаточной для того, чтобы вместить все	
	значащие цифры. Значение 'nls_num_fmt' определяет	
	связанные с языком форматные маски. В Trusted	
	ORACLE преобразует значения MLS или MLS_LABEL	
	в значение типа VARCHAR2	
TO_DATE (char[,fmt	Преобразует char в значение типа DATE с помощью	
[,'nls_lang']])	форматной маски fmt. Если fmt опускается,	
	используется форматная маска для даты, принятая по	
	умолчанию 'nls_lang' задает язык, используемый в	
	названиях месяцев и дней	
TO_MULTI_BYTE (char)	Преобразует однобайтовые символы, имеющие	
	многобайтовые эквиваленты, в соответствующие	
TO MUMPED () I C (многобайтовые символы	
TO_NUMBER (char [,fmt	Преобразует char, содержащее число в формате,	
[,'nls_lang']])	указанном параметром fmt, в значение типа NUMBER.	
	'nls_lang' задает язык, определяющий символы валют и	
TO CINCLE DVTE (.L.)	числовые разделители	
TO_SINGLE_BYTE (char)	Преобразует многобайтовые символы, имеющие	
	однобайтовые эквиваленты, в соответствующие	
	однобайтовые символы	

	Пример 12: Приведите пример использования функций преобразования		
SELECT TO_DATE('22.02.20 FROM dual;	025')		
		TO_DATE('22.02.2025')	
	1	22.02.25	

Элементы формата числа для ТО_СНАР

В следующей таблице перечислены элементы формата числа. Комбинацию этих элементов можно использовать как аргумент fint функции TO_CHAR.

Элемент	Пример	Описание
формата		
9	'999'	Количество девяток указывает число возвращаемых значащих цифр.
0	'0999'	Добавляет нули перед числом.
\$	'\$9999'	Добавляет знак доллара перед числом.
В	'B9999'	Заменяет нулевые значения пробелами.
Ml	'99999MI'	Возвращает знак '-' после отрицательных значении.
S	S9999	Возвращает знак '+' для положительных значений и знак '-' для отрицательных значений в указанную позицию.
PR	'9999PR'	Возвращает отрицательные значения в <угловых скобках>.
D	99D99	Возвращает символ, представляющий десятичную точку, в указанную позицию.
С	9G999	Возвращает символ разделения цифр на группы в указанную позицию.
С	C999	Возвращает международной знак валюты в указанную позицию.
L	L999	Возвращает знак местной валюты в указанную позицию.
,	'9,999'	Возвращает запятую в указанную позицию.
	'99.99'	Возвращает точку в указанную позицию.
V	'999V99'	Умножает значение на 10^n , где n количество девяток после 'V'.
EEEE	'9.999EEE E'	Возвращает значение в нормализованной форме. В <i>fnu</i> должно быть ровно четыре буквы 'E'.
RN или rn	RN	Возвращает римские цифры прописными или строчными буквами (целое число в диапазоне от 1 до 3999).
DATE	'DATE'	Возвращает значение, преобразованное из даты юлианского календаря в формат 'MM/DD/YY'.

SELECT to_char(extract(YEAR FROM current_date) ,'FMRM') roman_year 1 MMXXV
) roman_year
FROM dual;

Другие функции

Функция	Возвращаемое значение
DECODE (expr, search1, return1,	Если expr равно search, возвращается
[search2, return2,][default])	соответствующий результат return. Если
	совпадающей пары не найдено, возвращается
	default.
DUMP(expr[, return_format [,	Expr во внутреннем формате Oracle
art_position[, length]]])	
GREATEST(expr[, expr])	Наибольшее значение ехрг
LEAST(expr[, expr])	Наименьшее значение ехрг
NVL(expr1, expr2)	Возвращает expr2, если expr1 имеет пустое
	значение, в противном случае возвращает expr1.
UID	Целое число, которое уникально идентифицирует
	текущего пользователя.
USER	Имя текущего пользователя ORACLE.
USERENV(option)	Возвращает информацию о текущем сеансе.
	Аргументы помещаются в одиночных кавычках.
	Аргументы: ENTRYID, SESSIONSID, TERMINAL,
	LANGUAGE или LABEL.
VSIZE(expr)	Длина в байтах внутреннего представления для
	expr.

НАИМЕНОВАННЫЕ PL/SQL БЛОКИ

Создание функции:

Создание процедуры

Пример 16:

Разработать процедуру, вычисляющую площадь круга и длину окружности

```
Prompt формируем отчет по
всем объектам созд. за
промежуток времени
create or replace procedure
prot user is
db date:=&db;
de date:=&de;
a char(20); b char(20); c
date; e date;
begin
  select
substr(object name, 1, 20)
substr(object type,1,20)
            type obj,
created, last ddl time
 into a,b,c,e
 from user objects
 where last ddl time>=db
and
  last ddl time<=de;</pre>
end;/
```

```
CREATE OR REPLACE PROCEDURE krug_params (
    radius IN REAL
    ,s     OUT REAL
    ,l     OUT REAL
) IS
BEGIN
    s := 3.14 * ( radius ** 2 );
    s := 2 * 3.14 * radius;
END:
```

Создание пакета

END calc;

Создание триггера

AS

Пример 18:

NEW

Разработать триггеры для всех таблиц вашей схемы, обеспечивающих автоматическую вставку уникального значения поля ID.

new

```
CREATE TABLE test1 (
   id NUMBER
                                              SQL> insert into test1 values(0,'111');
    ,data VARCHAR(255)
);
                                               1 row inserted.
                                              SQL> select * from test1;
CREATE SEQUENCE test1_seq;
                                                  ID DATA
CREATE OR REPLACE TRIGGER test1_trig BEFORE
   INSERT ON test1
                                                   2 111
   FOR EACH ROW
                                                   4 111
BEGIN
                                                   6 111
   SELECT test1_seq.NEXTVAL
                                                  8 111
     INTO :new.id
                                                 10 111
     FROM dual;
END;
```

Создание констрейтов

Пример 19:

Разработать констрейты для всех связей таблиц вашей инфологической модели (см сем 1), обеспечивающих ссылочную целостность данных.

```
ALTER TABLE abonents

ADD CONSTRAINT

C_abonents_ab_kateg

FOREIGN KEY (ab_kateg)

REFERENCES

list_kategs(lk_id);

ALTER TABLE telefons

ADD CONSTRAINT

C_telefons_tel_ab_num

FOREIGN KEY (tel_ab_num)

REFERENCES

abonents(ab_num);
```

```
ALTER TABLE defect ADD (

CONSTRAINT c_comp_fk FOREIGN KEY ( comp_id )

REFERENCES components
);

ALTER TABLE products ADD (

CONSTRAINT c_empl_id FOREIGN KEY ( prds_empl_id )

REFERENCES employees
);

ALTER TABLE products ADD (

CONSTRAINT c_docs_id FOREIGN KEY ( prds_docs_id )

REFERENCES documentation
);
```

Пример 20:

Проверить корректную работу созданных констрейтов

```
prompt Неправильная вставка данных при констрейтах

insert into telefons (tel_num, tel_ab_num) values('12345',1);

prompt Правильная вставка данных при констрейтах

insert into telefons (tel_num, tel_ab_num) values('12345', null);
insert into telefons (tel_num, tel_ab_num) values('12345', null);
commit;
```

```
VINSERT INTO defect (

dfct_date
,dfct_type
,dfct_desc
,dfct_name
,dfct_id

VINSERT INTO defect (

dfct_type
,desc
,ftype'
,'type'
,'desc'
,'name'
,666 );

ORA-02291: нарушено ограничение
целостности (c_comp_fk) - исходный ключ
не найден https://docs.oracle.com/error-
help/db/ora-02291/
```

Контрольные вопросы

- 1. Принципы разработки ненаименованных PL/SQL блоков
- 2. Принципы разработки и использования наименованных PL/SQL блоков.