PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

Departamento de Ciencias de la Computación

Curso: IIC1253-Matemáticas Discretas

Semestre: 2022-1

Profesor: Cristián Riveros Jaeger

Tarea 1

Fecha de entrega: Jueves 24 de Marzo - 23:59:00

Nombre: Jorge De Goyeneche

Sección: 1

Pregunta 1.

Decimos que dos fórmulas proposicionales α y β son anti-lógicamente equivalentes si para toda valuación $v_1, ..., v_n$ se tiene que $\alpha(v_1, ..., v_n)$ es distinto de $\beta(v_1, ..., v_n)$.

a).

¿Es verdad que si α y β son anti-lógicamente equivalentes, entonces $\alpha \not\equiv \beta$? Demuestre o entregue un contraejemplo.

Respuesta:

Definimos $\alpha = \neg p \lor p$ y $\beta = \neg p \land p$. α es una tautología y β una contradicción. Viendo la tabla de verdad de ambas fórmulas proposicionales:

р	α	β
0	1	0
1	1	0

Para todas las valuaciones posibles α adquirirá el valor de 1 y β el de 0, por lo tanto son anti-lógicamente equivalentes. Como para todas las valuaciones, α y β son opuestos, no pueden ser lógicamente equivalentes, que por lo visto en clases, significa que posean el mismo comportamiento (valor) en las tablas de verdad, y por ende la afirmación es verdadera.

b).

¿Es verdad que si $\alpha \not\equiv \beta$, entonces α y β son anti-lógicamente equivalentes? Demuestre o entregue un contraejemplo.

Respuesta:

Definimos $\alpha = p \land q$ y $\beta = p \lor q$ como fórmulas proposicionales con un comportamiento ejemplificado en la siguiente tabla:

р	q	α	β
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Viendo todas las valuaciones posibles se puede ver que α y β no son lógicamente equivalentes ya que sus valores difieren en algunas filas de la tabla de valores de verdad y para serlo deben compartir el mismo valor.

Sin embargo, tampoco son anti-lógicamente equivalentes ya que en ciertas valuaciones sus valores coinciden. Por lo tanto, que $\alpha \not\equiv \beta$ no implica que α y β sean anti-lógicamente equivalentes y la afirmación es falsa.

c).

Demuestre que α y β son anti-lógicamente equivalentes si, y solo si, $(\alpha \iff \neg \beta)$ es tautología.

Respuesta:

 (\longrightarrow)

Que α y β sean anti-lógicamente equivalentes significa que para toda valuación $v_1, ..., v_n$:

$$\alpha(v_1, ..., v_n) = \neg \beta(v_1, ..., v_n)$$

O viceversa:

$$\neg \alpha(v_1, ..., v_n) = \beta(v_1, ..., v_n)$$

Esto se debe a que por definición la anti-equivalencia lógica hace opuestos los valores de verdad de ambas funciones proposicionales.

La expresión $\alpha \iff \beta$ tiene el siguiente comportamiento en las tablas de verdad analizando todos los posibles casos para las fórmulas proposicionales:

α'	β'	$\alpha' \iff \beta'$
0	0	1
0	1	0
1	0	0
1	1	1

Esto se puede entender como que adquiere el valor de 1 cuando ambos tienen valores iguales. Si cambiamos el β' por un $\neg\beta'$ en la expresión veremos el siguiente cambio:

α'	β'	$\alpha' \iff \neg \beta'$
0	0	0
0	1	1
1	0	1
1	1	0

En este caso la expresión adquiere valor verdadero siempre que sean opuestos los valores de ambas formulas proposicionales. A partir de esto podemos homologar el caso para las anti-equivalentes. Analizamos todas las combinaciones posibles de valores de α y β y su efecto en la expresión:

α	β	$\alpha \iff \neg \beta$
0	1	1
1	0	1

Como siempre $\alpha(v_1,...,v_n) \neq \beta(v_1,...,v_n)$ debido a su naturaleza anti-lógicamente equivalente, la expresión $(\alpha \iff \neg \beta)$ siempre será positiva y por ende una tautología.

 (\longleftarrow)

Si $(\alpha \iff \neg \beta)$ es una tautología, entonces los valores para cualquier valuación $v_1, ..., v_n$ de ambas formulas proposicionales involucradas deben diferir. Que difieran para cada valuación posible es inherentemente un comportamiento anti-lógicamente equivalente, y por ende si la expresión es una tautología, ambas formulas deben ser anti-lógicamente equivalentes.