

SEQUENCE LISTING

<110> Dyer, Cheryl J.
Du, Fengxing
Grosz, Michael D.
Byatt, John C.

<120> USE OF A SINGLE NUCLEOTIDE POLYMORPHISM IN THE CODING REGION OF
THE LEPTIN RECEPTOR GENE TO ENHANCE PORK PRODUCTION

<130> 11916.0058.00PC01

<150> US. 60/553,582
<151> 2004-03-16

<150> U.S. 60/493,158
<151> 2003-08-07

<160> 44

<170> PatentIn version 3.2

<210> 1
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 1
atgatgagggc agttgttgca a

21

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 2
ccttccctgc aatgttgtct

20

<210> 3
<211> 773
<212> DNA
<213> Sus scrofa

<400> 3
gtgggttaag gacctgatgt tgtcaactact atggctcgag tcactgctgg ggcatgagtt 60
tgatccctgg tcctggaaat tcacatgctg tgcatgtggc catatatata tgtatgtatg 120
tgtatatata tacactcaca tacatgtata tatatatatg tgagtgtata tatatatattta 180

tgatgtcaaa ttaatgggga aaataaaaatg tgaatttcta aaaaggggtg ctaaagagtg	240
gcattatctc taagggtata tgctccctct taagtataac actttggaca atgaaagagc	300
tttgtttag gcactgtttg agcaacttggaa aagttaaata attattgtt aagactgcat	360
gttttaatct tagataacttc ctatttatgt cttagtcaaa atgattaatt gctttctat	420
gtgtctttta aatgtcctaa cagaatttat ttatgtgata actgcatttgc acttggcata	480
tccaattact ccttggaaat ttaagttgtc ttgcattgcca ccaaatacaa catatgactt	540
cctcttgcct gctggaatct caaagaacac ttcaacttttgc aatggacatg atgaggcagt	600
tgttgaacg gaacttaatt caagtggtac ctacttatca aacttatctt ctaaaacaac	660
tttccactgt tgcttttggaa gtgaggaaga taaaaactgc tctgtacatg cagacaacat	720
tgcaaggaaag gcattttttt cagcagtaaa ttccttagtt tttcaacaaa cag	773

<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 4	
gcactgttttgc aatgttgc	20

<210> 5	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 5	
ccctccctgc aatgttgc	20

<210> 6	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 6	
ttcaacttttgc aatggacatg atgag	25

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 7
gtggaaagtt gttttagaag ataagtttga

30

<210> 8
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 8
tgttgaaacg gaactt

16

<210> 9
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 9
tgttgaaatg gaactta

17

<210> 10
<211> 421
<212> DNA
<213> Sus scrofa

<220>
<221> CDS
<222> (133) .. (420)

<220>
<221> misc_feature
<222> (299) .. (299)
<223> N = T or C

<220>
<221> misc_feature
<222> (310) .. (310)
<223> N = T or A

<220>
<221> misc_feature
<222> (311)..(311)
<223> N = T or C

<400> 10
gcactgttg agcacttgga aagttaaata attattgttg gagactgcat gttttaatct 60
tagataacttc ctattnatgt ctttgtcaaa atgattaatt gctttctat gtgtctttta 120
aatgtcctaa ca gaa ttt att tat gtg ata act gca ttt gac ttg gca tat 171
Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr
1 5 10
cca att act cct tgg aaa ttt aag ttg tct tgc atg cca cca aat aca 219
Pro Ile Thr Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr
15 20 25
aca tat gac ttc ctc ttg cct gct gga atc tca aag aac act tca act 267
Thr Tyr Asp Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr
30 35 40 45
ttg aat gga cat gat gag gca gtt gtt gaa ang gaa ctt aat nna agt 315
Leu Asn Gly His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser
50 55 60
ggc acc tac tta tca aac tta tct tct aaa aca act ttc cac tgt tgc 363
Gly Thr Tyr Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys
65 70 75
ttt tgg agt gag gaa gat aaa aac tgc tct gta cat gca gac aac att 411
Phe Trp Ser Glu Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile
80 85 90
gca ggg aag g 421
Ala Gly Lys
95

<210> 11
<211> 96
<212> PRT
<213> Sus scrofa

<220>
<221> misc_feature
<222> (56)..(56)
<223> The 'Xaa' at location 56 stands for Thr or Met.

<220>
<221> misc_feature
<222> (60)..(60)
<223> The 'Xaa' at location 60 stands for Ile or Ser.

<400> 11

Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr Pro Ile Thr

1

5

10

15

Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr Thr Tyr Asp
 20 25 30

Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr Leu Asn Gly
 35 40 45

His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser Gly Thr Tyr
 50 55 60

Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys Phe Trp Ser
 65 70 75 80

Glu Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile Ala Gly Lys
 85 90 95

<210> 12
<211> 4050
<212> DNA
<213> Sus scrofa

<400> 12
cttctctgaa gtaagatgac gtgtccaaag ttctctgtgg ctttgttaca ttggaaattt 60
atttatgtga taactgcatt tgacttggca tatccaatta ctccttggaa atttaagttg 120
tcttgcattgc caccaaatac aacatatgac ttccttgc ctgctggaat ctcaaagaac 180
acttcaactt tgaatggaca ttagtggaca gttgttggaaa cggactttaa tataagtgg 240
acctacttat caaaacttac ttctaaaaca actttccact gttgctttt gaggaggaa 300
gataaaaaact gctctgtaca tgcatgacaac attgcaggaa aggcatggat ttcagcagta 360
aattccttag tttttcaaca aacagggtgca aactggaaaca tacagtgcgtg gatgaaagag 420
gacttgaaat tattcatctg ttatatggag tcattatcta agaattcctt caagaattat 480
gacctttaaag ttcatctttt atatgttctg ctcgaagtgt tagaaggatc acctctgctc 540
ccccagaaaag gtagtttca gagcggtcaa tgcaactgca gtgctcgtga atgttgtgaa 600
tgccatgtgc ctgtgtcgcc agccaaactc aactacaccc ttcttatgtt tttgaaaatc 660
acatctggtg gagcagtttt tcactcacct ctcatgtcag ttcagcccat aaacgttgtg 720
aaggctgatc caccattagg tttgcataatg gaaatcacag acactggtaa tttaaagatt 780
tcttggtcca gcccaacact ggtaccattt caacttcaat atcaagtaaa atattcagag 840

aattctacaa caaatatgag agaagctgat gagatcgctc cagatacatc tctgcttgt	900
gacagtgtgc ttccgggtc ttcatatgag gttcaggtga gggcaagag actggatggc	960
ccaggaatct ggagtgactg gagcaccccc tttactttt ccacacaaga tgttatatac	1020
tttccaccta aaattctgac aagtgttggg tctaacattt ctttcactg catctataaa	1080
aatgagaaca agatcgtttc ctcaaaaaag attgttttgtt ggatgaattt agctgagaag	1140
attcctcaaa gtcagtatga ttttgtgggt gaccatgtta gcaaagtac ttttccaaat	1200
atgaatgcaa ccaaaccctcg aggaaagttc acctatgatg cagtgtactg ctgcaatgag	1260
cacgagtgcc accatcgcta tgctgagtta tatgtgattt atgtcaatat caatatatca	1320
tgtgaaactg atgggtactt aactaaaatg acttgcagat ggtcaaccaa tgcaatccaa	1380
tcacttgtgg gaagcacttt gcagttgagg tatcatagga gtgcctcta ctgttctgac	1440
gttccatctg tgcattccat atctgaaccc aaagattgcc agttgcagag agatggttt	1500
tatgaatgca tatttcagcc aatatttctg ctatctggct atacaatgtg gattagaata	1560
aatcaccctgt tgggttcaact tgattctcca ccaacatgtg tcattcctga ttccgtgggt	1620
aaaccgctgc ctccatccag tgtgaaagca gaaattactg caaaaattgg attactgaaa	1680
atatcttggg agaagccagt cttcccagag aataatcttc agttccagat tcgctatgg	1740
ttaagtggaa aagaagtaca gtggaagatc tatgaggtat atgacacacaaa gttaaaatcc	1800
accagtctcc cggtgccaga cctgtgtgca gtctatgctg tccaggtgcg ctgtaaaggagg	1860
ctagatggac tgggttattt gagtaattgg agtactccag cctacacagt tgtcacggat	1920
gtaaaagttc ctatcagagg acctgaattt tggagaataa ttaatgaaga tgccactaaa	1980
aaagagagga atatcactt gctctggaag cctctgatga aaaatgactc attgtgcagc	2040
gtgagaagtt atgtggtaa acatcatact tccccccatg gaacatggtc agaagatgtg	2100
ggaaaccaca cttaactcac ttcccttgg acagagcaag cacattctgt tacagttctg	2160
gccgtcaatt caattggtgc ttctccgca aattttaaatt taacattctc atggcccatg	2220
agcaaagtaa atatcgtgca gtcgctcagt gcttacccctt taaacacgcag ttgtgtgggt	2280
ctttcctggc tgcttcacc cagtgattac aatctgatgt attttattct tgagtggaaa	2340
attcttaatg aagaccatga aattaaatgg ctcagaatcc cttccctctgt taaaaagtat	2400
tatatccacg atcatttat tcctatttag aatatcaat tcagtcttta ccccatattc	2460
atggaaggag tggggaaacc gaagataatt aacagttca cccaaatgg tgaaaaacac	2520
cggaaatgatg caggctata tgtaattgtg ccaataatta tttccctttc aatcttattt	2580

cttggAACAT	tgttaatgtc	acaccaaAGA	atgaaaaAGC	tatTTGGGA	agatgttCCA	2640
aaccccAAGA	actgttcCTG	ggcacaAGGA	cttaatttTC	agaAGCCGGA	aacatttgAG	2700
catcttttTA	tcaAGCACAC	agaatcAGT	acatTTGGCC	ctttctttt	ggagcCTGAA	2760
accatttcAG	aagatATCAG	tgttgataCA	tcatggAAAA	ataaggatGA	gatggtgCCA	2820
ccaactacAG	tctctctACT	cttgacaACT	ccggacCTT	aaaAGAGTC	aatttgtATT	2880
agtgaccaAC	gcagcAGTGC	ccacttCTCT	gaggctGAGA	gcatggAGAT	aactcgTGAG	2940
gatgaaaATA	gaagacAGCC	ctctattAAA	tatGCCACCC	tgctcAGCAG	ccctaaATCA	3000
ggtgaaaACTG	agcaagAGCA	agaacttGTA	agtagcttGG	tcagcAGATG	cttctctAGC	3060
agcaattCCC	taccgaaAGA	gtctttCTCG	aatagctCAT	gggagatAGA	aaccaggCC	3120
tttttttATT	tatcagatCA	gcatccAAAT	atgacttCAC	cacacCTTC	cttctcAGAA	3180
ggattggatG	aacttatGAA	gtttgaggGA	aatttccccA	aagaacataA	tgacgaaAGG	3240
tctgtctATT	atttaggAGT	cacctcaATC	aaaaagAGAG	agagtGATGT	gttttgACT	3300
gatgagtCAA	gagtgcGGTG	cccattCCCA	gcccaCTGTT	tattcgCTGA	catcaAAATC	3360
ctccaggAGA	gctgttcACA	ccttGTAAGA	aataatttCA	attnnGAAAC	ttctggTCAG	3420
aagacttttG	tatcttACAT	gcctcaATT	caaacttGTT	caactcAGAC	tcagaAGATA	3480
atggaaaACA	agatgtATGA	cctaaccGTC	taaggTCATT	ccagaaACAT	ctcagattTA	3540
tgatggatG	agtcatatta	agggtAATAT	gttctacATG	gtgttccATA	gcagagAGAA	3600
aaaaatttGAG	tcaaatttGA	aatgacttC	aaaagtAAA	gagatctGTT	tgTCCACACT	3660
cagtaataCA	gaaaaaaaa	tgtgagAAAG	ccttcaAGAG	cctagtaATG	tagacctACT	3720
cttctaatGA	ttctcttaAC	cggtacAGT	gggaagtTCT	cgaatgcCtt	gtgtctAGCT	3780
agaaaacaAGC	ccaacaataAC	tagcgttttG	agcattaATC	tcatgtAGAA	agagctaATC	3840
catctgaATT	acacataCAT	ctgaaAGAAG	acttcAGACT	aacacttGtG	aaatgtAATG	3900
tcttcaAGAG	tgtgattGTT	ttatcttGAG	gtgtctttGT	tttacactAA	tttacacATA	3960
cacatatGCA	cacttGtATC	taataggCAT	cctgtacATT	gttaaatATA	tgtatgtACTT	4020
gtttttgtGC	taaaaaaaaa	aaaaaaaaaa				4050

<210> 13
 <211> 1025
 <212> DNA
 <213> Sus scrofa

<220>
 <221> misc_feature
 <222> (1)..(1025)
 <223> N = unknown

<400> 13		
tgcaagtgtga	cttgaagcat ttggcacatt gttcaaggatc acacaaggccc tatgggcaca	60
acttttaaac	ctaatttttat tatgatgccca accaaaggtag ctttgaatct ggcataatt	120
tgcagaggaa	gttttattttc ctttagcttt tgcgctgtta aaatgattac tcctgaggaa	180
atatgaccct	acatttggtta tttggaaaca gggagtcagt tttattggaa agggatgaga	240
ggggtagaa	aatgtcatg cttagggttt taaaacctta ttcttggtcc aggatcaccc	300
actgggttggg	gagtttcatc caagatgttt cactacttga gactaggctt aaaaataaaaa	360
ggctgtttct	attcctctgg tcaatatgtta gctcatctct aaacaggaac atagggtcc	420
aatangannn	ccccagtcctt gtagttaagt gtaccttaac ttttgcttc ttotttcttc	480
ttannagctt	taacttanna aatattgtca tcttggtaac cctgacnnat gatttatctt	540
catcaatctg	tttagacttg aagtcanngc tcaaattann ttctgnnnnt tcattnnngnn	600
cnnnnntngn	nnnnnnnnnnnn nnmagcttgt gtgccaattt nnnnnnnnnnn natgaantac	660
tcnnnnnnnn	nnnnnnnnnnnn nnngnnnaaa nnnnnnnnnnn nnnncnnncnn nnnnnnnnnnn	720
nnnnnnnnnn	nnnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	780
nnnnnnnnnn	nnnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	840
nnnnnnnnnn	nnncagnnt natgaannnn nnctanannn nnncnacttg gacctggggc	900
actattgtgg	tctcaggagt tctgttccca ggattcagga attcactaga gtgtacacag	960
agcatgacaa	aaccttgggc tgactggacc atttatcagt ttcttttcc tgggtttcta	1020
ggtcc		1025

<210> 14
 <211> 446
 <212> DNA
 <213> Sus scrofa

<220>
 <221> misc_feature
 <222> (1)..(446)
 <223> N = unknown

<400> 14		
caggaattcg	gcaccagaca taatgtatg ttttgaatgt tattaattta tataatctaac	60

atgcctgcc aatgggttg ttaaatttgt gtagaaagact ctgcctaaga gttgcgactt	120
ttctttaat gttttgtatc gtgtattata taacctgaac atcgcttaag agagacatac	180
accggccccc ccttgcgcagc gaggacagca gtgggtctgc cctacgcctt gtccgagttg	240
ctaataattcc tcaacccctt caccaaccgg tttggaaac aggattctca cgtagatac	300
gaaatggtct cgattgagct ttactttt tatagttcaa cagggtaga gagccatggg	360
acatggtttt acccctgttc tacccaaatc catatacatg cgnnggnnt taactggnnn	420
ctactataat tnnnnnntttt cnnnnt	446

<210> 15
<211> 770
<212> DNA
<213> Sus scrofa

<220>	
<221> misc_feature	
<222> (1)..(770)	
<223> N = unknown	
<400> 15	
caaggaagag aagctaaggc aagatttcaa aaacagaaaat ccaagaattc cagcaaacca	60
gggttagatt catagtacaa ggtctatgtat atatttgagc tacaagaagg ttttcttaggc	120
aacagaatat caaaagaggg gtaaaggccta catatcttca gtctaaaaaa tgaagttata	180
aaactcttag tgtcttaagc tatgtttca acagaccctc tgatatttgg aaaagcagag	240
gaaaatttgg aagcccaactg ttgcaatcaa caggagctac taaaatttta gtctattttt	300
ttcaactcta tcagttcttt tcttatactc aaatgattat cctggctatt aaataatctc	360
tttcctccct ccacacaccc gctgccagtg gactctcctt ttatataatt tacttttga	420
attcaagtct tctatatctt agtacaatgg caaaaaaaaac taagcttct aaggcaccca	480
agagttagaa ctttcattt cctacttcat atgcaagaaa ttttctctcc ctgttgcatac	540
ttcataagta atgattagca atggtaaat atcaaaaagag ctaacggtag actatatttt	600
aggcatggaa taatttccct taatagacat tatccagtag ccccccttta ttggcagnnn	660
atatgtnnnn ngnnnctcag tngatgccnn nnncnnnnnn tngtactgaa cgctacatat	720
gctattcttt nntatacant catanntatg nnnanncnnn actnacnnan	770

<210> 16
<211> 362

<212> DNA
 <213> Sus scrofa

<400> 16

gggaccgtca gtgtgaccaa atcagggcgc cagtgccagc cgtggaaattc ccaatatccc	60
cacacacaca ctttcaccgc cctccgtttc ccagaactga atggagggca ctcctattgc	120
cgcaacccag ggaatcagaa ggaagctccc tggtgcttca cttggatga gaactttaag	180
tccgacctgt gtgacatccc agcatgtgat tcaaaggatt ccaaagagaa gaataaaaatg	240
gaaatcctgt acatactggt gcccagtgtt gccatcccc tggccattgc cttactcttc	300
ttcttcatct gtgtctgtcg caataaccag aagtcgtcct caccggctgt ccagaggcaa	360
cc	362

<210> 17
 <211> 625
 <212> DNA
 <213> Sus scrofa

<400> 17

gtacacagat gtaaaaacac tttagtgttca cacgtttgat ttaaatattt acaaattttt	60
tcatttagtac attaaacacct tcgctttatt catcttaaat gtcttccagg agggtgactc	120
ccccccattag cgtgactcaa tacaaacttt gcaagtgggg ggaccacgga acccggaagt	180
ctactgctgt gcccgttcta tggcgaggca gctgttaactg gttacgaacc cgtgttggaa	240
atagtatttt gaaactttctt ggcagatttc ttacatcggtt attcaatatg agctgcgaat	300
catatgctcg tagttagaa aatgtcagga aaccctgagt gtgcctgctt tgtttgacaa	360
agctattttc gagtcatgtt ggaaggcaag ggcattccagc gcctggcatg gaggagaaga	420
gggttagccct gccccccacc ttcccagcct ttttctgaga tgttggtaat tcgggtcctag	480
atgacaagcg ctcaactctg aacaagagac ggccatctca caccgtctca attagtccag	540
gatgtgtgtc agggctgcga gaggtcggag aggaaatgcg gggaaacttgt tcacttcttg	600
ctcagtttgg atcaactgag ctgca	625

<210> 18
 <211> 22
 <212> DNA
 <213> Artificial Sequence
<220>
 <223> Synthetic nucleotide
<400> 18

ggcagctgta actggttacg aa

22

<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 19
tcgcagctca tattgaataa cgatgt

26

<210> 20
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 20
aagttccaaa tactcttcc

19

<210> 21
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 21
aagttccaaa tactatttc

19

<210> 22
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 22
cagaccctct gatatttggaa aaagca

26

<210> 23
<211> 33
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 23

gccaggataa tcatttgagt ataagaaaaag aac

33

<210> 24

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 24

acaggagcta ctaaaat

17

<210> 25

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 25

caggagctat taaaat

16

<210> 26

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 26

acattctaag acaaccgaaa tggca

25

<210> 27

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 27

ctagggatct atttttcaact tttgttaagtt catt

34

<210> 28

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 28

ataatttca taaagaccca ctaat

25

<210> 29

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 29

cataaaggcc cactaat

17

<210> 30

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 30

taaatgtctt ccaggagggt gactc

25

<210> 31

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 31

cacacatcct ggactaattg agacg

25

<210> 32

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 32

caagaattcc agcaaaccag gg

22

<210> 33
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 33
ctcttgggtg ccttagaaaag cttag

25

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 34
gggagtttca tccaaatgtt ttcac

25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 35
aaactgataaa atggtccagt cagcc

25

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 36
ttcccaatat cccccacacac

20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 37

gctgggatgt cacacaggc

20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 38
tgggaaacag gattctcacg

20

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 39
tggatttggg tagaacaggg

20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 40
cagcagccct aaatcaggtg

20

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 41
aggcctgggt ttcttatctcc

20

<210> 42
<211> 406
<212> DNA
<213> Sus scrofa

```

<220>
<221> misc_feature
<222> (103)..(103)
<223> N = T or G

<400> 42
tcataacaact ttgcagtggg gggaccacgg aacccggaag tctactgttg tgcccggttct      60
atggtgaggc agctgttaact ggttacgaac ccgtgttggaa aanagtattt ggaactttct      120
tggcagattt cttacatcgta tattcaatat gagctgcgaa tcatacgctc gtatgttagga      180
aaatgtcagg aaaccccggag tgtgcctgct ttgtttgaca aagctattt cgagtcgt      240
tgaaggcaa gggcatccag cgccctggcat ggaggagaag aggtagcccc tgccccccac      300
cttcccagcc ttttctgag atgttggtaa ttccggccta gatgacaagc gctcaactct      360
gaacaaggga cggccgtctc acaccgtctc aattagtcca ggatgt      406

<210> 43
<211> 395
<212> DNA
<213> Sus scrofa

<220>
<221> misc_feature
<222> (192)..(192)
<223> N = T or C

<400> 43
gatatatattt agctacagaa ggttttcttag gcaacagaat atcaaaagag gggtaaagcc      60
tacatatctt cagtcataaaa aatgaagtta taaaactctt agtgtcttaa gctatgtttt      120
caacagaccc tctgatattt ggaaaagcag aggaaaattt ggaagccccac tggtcaatc      180
aacaggagct antaaaattt tagtctattt ttcaactct atcagttctt ttcttataact      240
caaatgatta tcctggctat taaataatct ctccctccc tccacacacc cgctgccagt      300
ggactctccct ttatataattt ttacttttg aattcaagtc ttctatatct tagtacaatg      360
gccaaaaaaaaaa ctaagctttc taaggcaccc aagag      395

<210> 44
<211> 838
<212> DNA
<213> Sus scrofa

<400> 44
tctggtaat atgttagctca tctctaaaag gaacataggg ctccaatagg aggaccccg      60
tctttagtt aagtgtacct taacttttg cttttctttt cttcttagga gctttaactt      120

```

aggaaatcta tcatcttgg t aaccctgaca aatgatttat cttcatcaat ctgtttaaac	180
ttgaagtca g aggctcaa at tatttcgt ttttcataa agttcagatt ttgagagact	240
ggtagcagc ttgtgtgcc a attaaaggcc tttaaatgaa atactcaaaa ttctagattt	300
atcctaagtt taaaattgca aacctatact tcagctccac tctcccttca aattttctta	360
cagaacctct gcaaagatag ggagactatc tgaccatacc aaagtataaa acattctaag	420
acaaccgaaa tggcagataa ttttcataaa grcccactaa tctctagtca tatataagat	480
gaaatgaact tacaaaagtg aaaaatagat ccctagcaca ctgaccttaa aactgatcta	540
aatccatatac tcaataggcc agacttggag ttcccactat ggcacagtgg ttaaagaacc	600
cgactaggaa tcatcagggtt gcagggttcaa tccctggcct tgctcagtgg gttaagaatc	660
cagcattgct gtgagctgtg gtgttaggtcg cagacgtggc tcagattcca cgttgctgtg	720
gctctggcgt aggcgggagg ctacagctct gattagaccc ctcgccta atgccagggg	780
tgcagccccct cgccctaataat gccatgggtg cagccctaga aaagacaaaa aaaaaaaaaa	838