

Databases

Software Development OPBSW20FD1

Bernadette Besenhofer berb@ucl.dk

Communication

Talk to me:)

Email me at: berb@ucl.dk

Messages on *itslearning* might be answered with delay

Check the plan on itslearning

Check the message board on itslearning (before lessons)!

Today

Agenda

- Intro
- Relational Data Model
- Database Design
- Entity-Relationship Diagrams

Intro - Databases and DBMS

DATA - Working with Data

Problems

- 1. Size
- 2. Ease of updating
- 3. Accuracy
- 4. Security
- 5. Redundancy
- 6. Importance

Solutions

- 1. Scalable
- 2. Accessible
- 3. Accurate
- 4. Secure
- 5. Consistent
- 6. Permanent

What is a ...

Database

A database is a collection of related information that is organized so that it can be easily accessed, managed and updated.

Database Management System (DBMS)

A database management system (DBMS) is a computerized system that enables users to create and maintain a database.

For example MySQL, PostgreSQL, MS SQL Server, Oracle, ...

Database Management System

DBMS provide functionality for:

- Data definition
- Update
- Retrieval
- Administration

When and why to use a Database

Advantages

- Can store very large numbers of records efficiently
- It is very quick and easy to find information
- It is easy to add new data and to edit or delete old data
- Data can be searched and sorted easily
- Data can be used in different applications
- More than one person can access the same database at the same time - multi-access
- Security

Disadvantages

- Database systems are complex, difficult, and time-consuming to design
- Substantial hardware and software start-up costs
- Damage to database affects all applications using it
- Extensive conversion costs in moving from a file-based system to a database system
- Initial training required for all programmers and users

History of Databases

1960s - DBMS emerged

1970 - E. F. Codd published first article on introducing the relational model

1980s - Structured Query Language (SQL) became the standard query language.

1990s - Internet led to exponential growth of the database industry

Late 2000s - Rise of unstructured 'NoSQL' databases

Database Types

- Hierarchical databases
 (Data is organized into a tree-like structure, similar to file system)
- Relational databases
 (Data structured to recognize relations between stored items of information - most used type)
- Object-oriented databases
 (Information is represented in the form of objects as used in object-oriented programming)
- NoSQL databases

Data Interchange - XML

XML

https://developer.mozilla.org/en-US/docs/XML Introduction

- Stands for Extensible Markup Language
- Author of the document defines the markup elements
- Markup language used to create documents of hierarchical structure
- Used for sharing structured information between systems, apps, people, ...
- Optional use of schema/validation

```
<students>
  <student>
   <name>John</name> <age>23</age> <city>Agra</city>
 </student>
  <student>
   <name>Steve</name> <age>28</age> <city>Delhi</city>
 </student>
  <student>
   <name>Peter</name> <age>32</age> <city>Chennai</city>
 </student>
 <student>
   <name>Chaitanya</name> <age>28</age> <city>Bangalore</city>
  </student>
</students>
```

Data Interchange - JSON

JSON

http://json.org/

- Stands for JavaScript Object Notation
- Lightweight data-interchange format
- "Self-describing" and easy to understand
- Language independent

DBMS Popularity Ranking

359 systems in ranking, August 2020

Rank					Score		
Aug 2020	Jul 2020	Aug 2019	DBMS	Database Model		Jul 2020	Aug 2019
1.	1.	1.	Oracle	Relational, Multi-model 🔃	1355.16	+14.90	+15.68
2.	2.	2.	MySQL [1	Relational, Multi-model 🔃	1261.57	-6.93	+7.89
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🔃	1075.87	+16.15	-17.30
4.	4.	4.	PostgreSQL [1]	Relational, Multi-model 🔃	536.77	+9.76	+55.43
5.	5.	5.	MongoDB ■	Document, Multi-model 🚺	443.56	+0.08	+38.99
6.	6.	6.	IBM Db2 □	Relational, Multi-model 🔃	162.45	-0.72	-10.50
7.	1 8.	1 8.	Redis 🖽	Key-value, Multi-model 🚺	152.87	+2.83	+8.79
8.	4 7.	4 7.	Elasticsearch 🚹	Search engine, Multi-model 🔃	152.32	+0.73	+3.23
9.	9.	↑ 11.	SQLite	Relational	126.82	-0.64	+4.10
10.	1 1.	4 9.	Microsoft Access	Relational	119.86	+3.32	-15.47

http://db-engines.com/en/ranking

Relational Model

Relational Data Model

Relational data model is the primary data model, which is used widely around the world for data storage and processing.

Relational Database organizes data in tables (or *relation*).

A database **schema** is a description of a database.

A **table** is made up of rows and columns.

A **row** is also called a record (or *tuple*).

A **column** is also called a field (or *attribute*).

Relational Model was proposed by E.F. Codd to model data in the form of relations or tables.

Table (Relation / object)

Start	Destination	Departs	Arrives	
London	Manchester	10:15	11:45	
Cambridge	Newcastle	9:30	13:55	Row (record o
Lands End	John O'Groats	4:15	23:50	tuple)
Chester	Liverpool	15:45	16:30	
Penzance	Bristol	11:40	18:00	
	<u>†</u>			7

Column (field / attribute)

Data value (Field value)

Relational Database Structure

Relationships are defined between tables, to indicate how data is connect.

The types of relationships include:

- 1. one-to-many
- 2. many-to-many
- 3. one-to-one

SQL (Structured Query Language) was developed to work with relational databases.

Example World DB

Table Country

Code	Name	Continent	Region	SurfaceAr
ABW	Aruba	North America	Caribbean	193.00
AFG	Afghanistan	Asia	Southern and Centra	652090.0
AGO	Angola	Africa	Central Africa	1246700.
AIA	Anguilla	North America	Caribbean	96.00
ALB	Albania	Europe	Southern Europe	28748.00

Table City

ID	Name	CountryCode	District	Pop
1	Kabul	AFG	Kabol	178
2	Qandahar	AFG	Qandahar	237
3	Herat	AFG	Herat	186
4	Mazar-e-Sharif	AFG	Balkh	127
5	Amsterdam	NLD	Noord-Holland	731

Table CountryLanguage

CountryCode	Language	IsOfficial	Percentage
ABW	Dutch	Т	5.3
ABW	English	F	9.5
ABW	Papiamento	F	76.7
ABW	Spanish	F	7.4
AFG	Balochi	F	0.9
AFG	Dari	Т	32.1

World DB - ER Diagram

Primary Key

- Uniquely identify each record of a table
- Must have unique value
- Can not contain NULL values
- ONE primary key per table
- A field or combination of fields
- Can be natural key (occurs in data) or surrogate key (generated by system)

Code	Name	Continent	Region
DJI	Djibouti	Africa	Eastern Afri
DMA	Dominica	North America	Caribbean
DNK	Denmark	Europe	Nordic Cour
DOM	Dominican Republic	North America	Caribbean
DZA	Algeria	Africa	Northern Afr
ECU	Ecuador	South America	South Amer
EGY	Egypt	Africa	Northern Afr
ERI	Eritrea	Africa	Eastern Afri
ESH	Western Sahara	Africa	Northern Afr
		_	

Foreign Key

- Establishes and enforces a link between data in two tables
- Refers to the primary key in another table

The Primary Key from the One-Table becomes Foreign Key in the Many-Table!

Т	Table Country					
	Code	Name	Continent	Region		
	DJI	Djibouti	Africa	Eastern Afri		
	DMA	Dominica	North America	Caribbean		
\triangleright	DNK \	Denmark	Europe	Nordic Cour		
	DOM \	Dominican Republic	North America	Caribbean		
	DZA	Algeria	Africa	Northern Afr		
	ECU	Ecuador	South America	South Amer		
	EGY	Egypt	Africa	Northern Afr		
	ERI	Eritrea	Africa	Eastern Afri		
	ESH	Western Sahara	Africa	Northern Afr		
			_			

Table	City		
ID	Name	CountryCo	de District
3315	København	DNK	Københa
3316	Århus	DNK	Århus
3317	Odense	DNK	Fyn
3318	Aalborg	DNK	Nordjylla
3319	Frederiksberg	DNK	Frederik

Designing a Database Data Modelling

Good Database Design

What?

- Eliminate data redundancy
- Ensure consistent data
- Save only data that is needed

Why?

- Simplify data extraction
- Faster execution
- Reduces changes in later development cycle

Database Design Process

Requirements Analysis (Step 1)

Obtain and analyse your data needs

- Analyze the organization
- Define any problems, possibilities or constraints
- Define the objectives
- Agree on the scope

RESULT: Concisely written set of users' requirements

Data Modelling (Step 2)

A data model—a collection of concepts that can be used to describe the structure of a database

Define your (Relational) Data Model

- 1. entities
- 2. attributes and
- 3. relationships

Entities are basically people, places, or things you want to keep information about.

E.g library system may have the book, library and borrower entities.

Attributes describe details of the entity E.g. Book entity has a title, page count, isbn attributes

Relationship describes how to entities are related to each other E.g. A book is published by a publisher

Three Types (Steps) of Data Modelling

Conceptual data model

Author writes Book

Logical data model

Physical data model

Three Types of Data Modelling

- Conceptual data model
 overview of what should be included (High-level)
- Logical data model more detailed than the conceptual data model, contains attributes, but doesn't contain data types
- Physical data model the most detailed type of models. Its exact makeup depends on which database management system is used (Low-level)

Feature	Conceptual	Logical	Physical
Entity names	х	х	
Entity relationships	х	х	
Attributes		х	
Primary keys		х	х
Foreign keys		х	х
Table names			х
Column names			х
Column data types			х

ER Diagram (using Crow's Foot Notation)

Entity Relationship Diagram (ERD or ER Diagram)

An Entity Relationship Diagram is a type of flowchart that illustrates how "entities" such as people, objects or concepts relate to each other within a system.

They are used to model and design <u>relational</u> databases.

- Entity is thing or object in the real world (e.g. instructor, student)
- Attributes are used to describe entities (e.g. name, id)
- Relationship is an association between entities (e.g. instructor <u>advises</u> students)

Different notations to display ERD

Relationships

Cardinality indicates the **number** of times an entity can be connected to another (=participation).

One

Many

O Zero (=Optional)

Is the relationship mandatory or optional?

(i.e., "Can entity A exist without entity B?"; Must have / May have)

One-to-One Relationship (1:1)

One-to-one relationship between person and birth info

Maximum cardinalities

- A person has **one** BirthInfo entry
- Specific BirthInfo record belongs to **one** person

One-to-One relationship

mandatory or optional relationship)

- A person **MUST** have BirthInfo entry
- Specific BirthInfo record MUST belong to one person

Relationship between Person and BirthInfo is **mandatory**. Relationship between BirthInfo and Person is **mandatory**.

Examples 1:1

Person - LoginDetails

Customer - ContactInfo

One-to-Many Relationship (1:N)

One-to-many relationship between person and passport

- A person can own **many** passports
- A passport is owned by one specific person

- A person MUST own at least one passport (one or more)
- A passport MUST be owned by a person (Passport is always associated with specific person)

Relationship between Person and Passport is **mandatory**. Relationship between Passport and Person is **mandatory**.

Examples 1:N

Customer - Order

Company - Department

Many-to-Many Relationship (M:N)

Many-to-many relationship between an instructor and a student

- A student takes **many** course
- A course is taken by **many** students

- A student MUST take at least one course (one or more)
- A course MAY be taken by a student (zero to many)

N:M relationship only displayed in logical data model, DBMS can't store this relationship and need to be broken up with a junction/binding table

Examples M:N

Order - Product

Employee - Project

Examples

ER Diagram Modelling Rules

Relationship	ER Diagram
One-to-one	PK from one of the tables becomes FK in the other table. Doesn't matter which table holds the FK.
One-to-many	PK from the one-table becomes FK in the many-table.
Many-to-many	N:M relationship only displayed in logical data model. In physical data model, relationship needs to be broken into two 1:N relationships. Create new table (= junction/binding table)

schema = table PK = primary key FK = foreign key The Primary Key from the One-Table becomes Foreign Key in the Many-Table!

Data modelling - basic design rules

A well-designed table is one that:

- seeks to minimize <u>redundant</u> data (same info kept in two different tables)
- represents a <u>single subject</u>
- has a <u>primary key</u> (a field or set of fields whose values will uniquely identify each record in the table)
- does not contain multi-part fields (e.g., "UCL, Seebladsgade, Odense C")
- does not contain multi-valued fields (e.g., an Author field shouldn't hold values of the form "Jensen, Holst, Andersen")
- does not contain repeated groups (e.g. using Author1, Author2, Author3)
- does not contain fields that rely on other fields (e.g. store DOB not Age)

Task 1.1: Data Modelling

Draw the ER-Diagrams (logical) for the following:

- 1. A person can have multiple emails addresses and multiple phone numbers
- 2. A book can be written by multiple authors but only published by one publishing company
- 3. A blog post is written by one user and can have multiple comments
- 4. A charity project on a fundraising website can have many donations by many donors.

Task 1.2: Pet Hospital

HEALTH HISTORY REPORT

<u>PET ID</u> 246	PET NAME ROVER	PET TYPE DOG	PET AGE 12	OWNER WILL JENSEN	VISIT DATE 13 JAN 2015 27 MAR 2015 02 APR 2015	PROCEDURE RABIES VACCINATION EXAMINE and TREAT WOUND HEART WORM TEST
298	SPOT	DOG	2	TERRY KIM	21 JAN 2015 10 MAR 2015	TETANUS VACCINATION HEART WORM TEST
341	MORRIS	CAT	4	WILL JENSEN	23 JAN 2014 13 JAN 2015	RABIES VACCINATION RABIES VACCINATION
519	TWEEDY	BIRD	2	TERRY KIM	30 APR 2015 30 APR 2015	ANNUAL CHECK UP EYE WASH

Task 1.2: Pet Hospital

- Analyse (write down requirements)
 e.g. A pet has one owner, an owner can have many pets, ...
- 2. Create a ER Diagram (logical data model)

Task 1.3: SQL queries

Try to solve the following queries.

Do this task on your own.

It will show me the class level.

Handin queries as .sql file (plain text file)

- 1. -- Show all films that have a length of more than 180 minutes
- 2. -- Show actors that have a first name of 'Bob' or 'Fred'
- 3. -- Show all film titles that contain the word 'mad'
- 4. -- Count how many 'PG' rated films there are
- 5. -- Show films with the highest rental rate. Display 10 only and the highest rates first.
- 6. -- How many days has it been since the film with id 1 has been updated
- 7. -- Show how many films there are per rating
- 8. -- Show customer email, street and postal code
- 9. -- How much do I have to pay, if I rent all films in the category 'Horror'
- 10. -- Write an SQL query yourself (as complex or simple as you like :)

Homework with Handin

Task 1.2: ER-Diagram Pet Hospital

Task 1.3: SQL Queries (sakilaDB)

You need:

- MS SQL server running locally (see info next slide)
- Add 'sakila' demo database
 (Download and installation info on itslearning)

Counselling today 12:15 - 14:00

I will be available in this room.

Email me, if you want counselling during this time via Zoom.

> **Handin** on itslearning

Prep for next class

Read the following guides:

CREATE DATABASE

https://www.sqlservertutorial.net/sql-server-basics/sql-server-create-database/

CREATE TABLE

https://www.sqlservertutorial.net/sql-server-basics/sql-server-create-table/

INSERT INTO

https://www.sqlservertutorial.net/sql-server-basics/sql-server-insert/

Data Types

https://www.sqlservertutorial.net/sql-server-basics/sql-server-data-types/

Installing MS SQL Server

- Install MS SQL Server 2019 (Developer version)
 https://www.microsoft.com/en-us/sql-server/sql-server-downloads
- Install SQL Server Management Studio (SSMS)
 Download SQL Server Management Studio or use button on dialog box after Install 1
- 3. Open SSMS and connect to your SQL Server

Custom

Basic install.

Select Custom installation type

installation type is detailed and

Download Media

Download SOL Server setup files

Select an installation type:

>> Tutorial on how to install ...

https://www.linkedin.com/learning/microsoft-sql-server-2019-essential-training/install-sql-server-developer-edition