

# OPTIVER-TRADING AT THE CLOSE

DIVYAMAN SINGH RAWAT

| Stock ID | Input             | sequence for target     | Target prediction at time K |                   |                                         |
|----------|-------------------|-------------------------|-----------------------------|-------------------|-----------------------------------------|
| 0        | Target at (K - N) | Target at $(K - N + 1)$ | <br>Target at (K - 2)       | Target at (K - 1) | Target prediction for stock ID 0 at K   |
| 1        | Target at (K - N) | Target at $(K - N + 1)$ | <br>Target at (K - 2)       | Target at (K - 1) | Target prediction for stock ID 1 at K   |
|          |                   |                         | <br>                        |                   |                                         |
| 199      | Target at (K - N) | Target at $(K - N + 1)$ | <br>Target at (K - 2)       | Target at (K - 1) | Target prediction for stock ID 199 at K |

| Stock ID | Input                 | Input sequence for target prediction at time ID K |     |                    | Target prediction at time K |                                             |
|----------|-----------------------|---------------------------------------------------|-----|--------------------|-----------------------------|---------------------------------------------|
| 0        | Target at (K - N)     | Target at (K - N + 1)                             |     | Target at (K - 2)  | Target at (K - 1)           | Target prediction for stock ID 0 at K       |
| 1        | Target at (K - N)     | Target at (K - N + 1)                             |     | Target at (K - 2)  | Target at (K - 1)           | Target prediction for stock ID 1 at K       |
|          |                       |                                                   |     |                    |                             |                                             |
| 199      | Target at (K - N)     | Target at (K - N + 1)                             |     | Target at (K - 2)  | Target at (K - 1)           | Target prediction for stock ID 199 at K     |
|          |                       |                                                   |     |                    | <u></u>                     |                                             |
|          |                       |                                                   |     |                    | 1                           |                                             |
| Stock ID | Input se              | equence for target pr                             | edi | ction at time ID ( | K+1)                        | Target prediction at time (K + 1)           |
| 0        | Target at (K - N + 1) | Target at (K - N + 2)                             |     | Target at (K - 1)  | Target at K                 | Target prediction for stock ID 0 at (K+1)   |
| 1        | Target at (K - N + 1) | Target at (K - N + 2)                             |     | Target at (K - 1)  | Target at K                 | Target prediction for stock ID 1 at (K+1)   |
|          |                       |                                                   |     |                    |                             |                                             |
| 199      | Target at (K - N + 1) | Target at (K - N + 2)                             |     | Target at (K - 1)  | Target at K                 | Target prediction for stock ID 199 at (K+1) |

| Stock ID | Input                   | sequence for target     | pre  | diction at time ID | K                 | Target prediction at time K                 |
|----------|-------------------------|-------------------------|------|--------------------|-------------------|---------------------------------------------|
| 0        | Target at (K - N)       | Target at $(K - N + 1)$ |      | Target at (K - 2)  | Target at (K - 1) | Target prediction for stock ID 0 at K       |
| 1        | Target at (K - N)       | Target at $(K - N + 1)$ |      | Target at (K - 2)  | Target at (K - 1) | Target prediction for stock ID 1 at K       |
|          |                         |                         |      |                    |                   |                                             |
| 199      | Target at (K - N)       | Target at $(K - N + 1)$ |      | Target at (K - 2)  | Target at (K - 1) | Target prediction for stock ID 199 at K     |
|          |                         |                         |      |                    |                   |                                             |
|          |                         |                         |      |                    | 1                 |                                             |
| Stock ID | Input se                | equence for target pr   | edi  | ction at time ID ( | K+1)              | Target prediction at time (K + 1)           |
| 0        | Target at $(K - N + 1)$ | Target at $(K - N + 2)$ |      | Target at (K - 1)  | Target at K       | Target prediction for stock ID 0 at (K+1)   |
| 1        | Target at (K - N + 1)   | Target at (K - N + 2)   |      | Target at (K - 1)  | Target at K       | Target prediction for stock ID 1 at (K+1)   |
|          |                         |                         |      |                    | •••               |                                             |
| 199      | Target at (K - N + 1)   | Target at $(K - N + 2)$ |      | Target at (K - 1)  | Target at K       | Target prediction for stock ID 199 at (K+1) |
|          |                         |                         |      |                    | <b>—</b>          |                                             |
|          |                         |                         |      |                    | 1                 |                                             |
| Stock ID | Input s                 | equence for target pr   | redi | ction at time ID ( | K+2)              | Target prediction at time (K + 2)           |
| 0        | Target at $(K - N + 2)$ | Target at (K - N + 1)   |      | Target at K        | Target at (K+1)   | Target prediction for stock ID 0 at (K+2)   |
| 1        | Target at (K - N + 2)   | Target at (K - N + 1)   |      | Target at K        | Target at (K+1)   | Target prediction for stock ID 1 at (K+2)   |
|          |                         |                         |      |                    |                   |                                             |
| 199      | Target at (K - N + 2)   | Target at (K - N + 1)   |      | Target at K        | Target at (K+1)   | Target prediction for stock ID 199 at (K+2) |
|          |                         |                         |      |                    | <b>—</b>          |                                             |
|          |                         |                         |      |                    | ₩                 |                                             |
|          |                         |                         |      |                    |                   |                                             |





• Condition 1: -The mean must be constant and not vary with time.

- Condition 1: -The mean must be constant and not vary with time.
- Condition 2: The variance must be constant and not vary with time.

- Condition 1: -The mean must be constant and not vary with time.
- Condition 2: The variance must be constant and not vary with time.
- Condition 3: -There must be no periodicity in the data.

**Check for conditions 1 and 2 (Constructing Samples)** 

| stock_id | time_id | target |
|----------|---------|--------|
| 0        | 0       | 3.54   |
| 0        | 1       | 2.91   |
| 0        | 2       | 6.6    |
| 0        | 3       | 0.45   |
| 0        | 4       | -3.4   |
| 0        | 5       | -5.4   |
| 0        |         |        |
| 0        |         |        |
| 0        | 26452   | -6.5   |
| 0        | 26453   | 2      |
| 0        | 26454   | 4.32   |
|          |         |        |
|          |         |        |

### CHECK FOR STATIONARITY - 5 Check for conditions 1 and 2 (Constructing Samples)

|          |         |        |                        |   | Windows  | ize=3   |        |                        |
|----------|---------|--------|------------------------|---|----------|---------|--------|------------------------|
| -11-11   |         |        |                        |   | stock_id | time_id | target |                        |
| stock_id | time_id | target |                        |   | 0        | 0       | 3.54   |                        |
| 0        | 0       | 3.54   |                        |   | 0        | 1       | 2.91   | 1 <sup>st</sup> Sample |
| 0        | 1       | 2.91   |                        |   | -        | 1       |        |                        |
| 0        | 2       | 6.6    |                        |   | 0        | 2       | 6.6    |                        |
| 0        | 3       | 0.45   |                        |   | 0        | 3       | 3.54   |                        |
| 0        |         |        | <br>Convert to samples | > | 0        | 4       | 2.91   | 2 <sup>nd</sup> Sample |
| U        | 4       | -3.4   |                        |   | 0        | 5       | 6.6    | 1                      |
| 0        | 5       | -5.4   |                        |   | 0        |         |        |                        |
| 0        |         |        |                        |   | 0        |         |        | 1                      |
| 0        |         |        |                        |   |          | 00450   | 0.5    | no colli               |
| ٥        | 26452   | -6.5   |                        |   | 0        | 26452   | -6.5   | 8818 <sup>th</sup>     |
| U        |         |        |                        |   | 0        | 26453   | 2      | Sample                 |
| 0        | 26453   | 2      |                        |   | 0        | 26454   | 4.32   |                        |
| 0        | 26454   | 4.32   |                        |   |          |         |        |                        |
|          |         |        |                        |   |          |         |        |                        |

#### **Check for conditions 1 and 2 (Constructing Samples)**

|          |            |        |   |                    |   | Windows  | ize=3   |        |                        |                   |             |            |   |           |               |             |
|----------|------------|--------|---|--------------------|---|----------|---------|--------|------------------------|-------------------|-------------|------------|---|-----------|---------------|-------------|
| and the  | Norway Lab |        |   |                    |   | stock id | time_id | target |                        |                   |             |            |   |           |               |             |
| stock_id | time_id    | target | _ |                    |   |          | 0       | 3.54   |                        |                   |             |            |   |           |               |             |
| 0        | 0          | 3.54   |   |                    |   | 0        | U       |        | 1 <sup>st</sup> Sample |                   |             |            |   |           |               |             |
| 0        | 1          | 2.91   |   |                    |   | 0        | 1       | 2.91   |                        |                   |             |            |   |           |               |             |
| 0        | 2          | 6.6    |   |                    |   | 0        | 2       | 6.6    |                        |                   |             |            |   |           |               |             |
| 0        | 2          |        |   |                    |   | 0        | 3       | 3.54   |                        |                   |             |            |   |           |               |             |
| 0        | 3          | 0.45   |   | Convert to samples | > | 0        | Δ       | 2.91   | 2 <sup>nd</sup> Sample | <br>Run ANOV      | A for the s | amales     | > | Run Leven | e test for ti | he samules  |
| 0        | 4          | -3.4   |   | Convert to sumptes | , | -        | -       |        | 2 Sample               | <br>III.III.AII O | Tion the s  | urripa c a |   | nun Leven | teat for th   | re auripres |
| 0        | 5          | -5.4   |   |                    |   | 0        | 5       | 6.6    |                        |                   |             |            |   |           |               |             |
| 0        | -          | -0.4   |   |                    |   | 0        |         |        |                        |                   |             |            |   |           |               |             |
| U        | ***        |        |   |                    |   | 0        |         |        |                        |                   |             |            |   |           |               |             |
| 0        |            |        |   |                    |   | 0        | 26452   | -6.5   | 8818 <sup>th</sup>     |                   |             |            |   |           |               |             |
| 0        | 26452      | -6.5   |   |                    |   | 0        | 26453   | 2      |                        |                   |             |            |   |           |               |             |
| 0        |            |        | - |                    |   | _        |         | _      | Sample                 |                   |             |            |   |           |               |             |
| U        | 26453      | 2      |   |                    |   | 0        | 26454   | 4.32   |                        |                   |             |            |   |           |               |             |
| 0        | 26454      | 4.32   |   |                    |   |          |         |        |                        |                   |             |            |   |           |               |             |
|          |            |        |   |                    |   |          |         |        |                        |                   |             |            |   |           |               |             |

#### LSTM MODEL - 1

#### **Constructing input sequence**

#### Lagged Target Values with High DirectCorrelation: -

| - Lag 1 |  |  |
|---------|--|--|
| - Lag 7 |  |  |

#### LSTM MODEL - 2

#### **Constructing input sequence**

#### Lagged Target Values with High DirectCorrelation: -

| - Lag 1 |  |  |
|---------|--|--|
| - Lag 7 |  |  |

| Lagged Target Va | Lagged Target Values with High Indirect Correlation: |  |  |  |  |  |  |  |  |
|------------------|------------------------------------------------------|--|--|--|--|--|--|--|--|
| - Lag 2          |                                                      |  |  |  |  |  |  |  |  |
| - Lag 3          |                                                      |  |  |  |  |  |  |  |  |
| - Lag 4          |                                                      |  |  |  |  |  |  |  |  |
| - Lag 5          |                                                      |  |  |  |  |  |  |  |  |
| - Lag 7          |                                                      |  |  |  |  |  |  |  |  |

#### LSTM MODEL - 3

#### **Constructing input sequence**

#### Lagged Target Values with High DirectCorrelation: -

| - Lag 1 |  |  |
|---------|--|--|
| - Lag 7 |  |  |

| Lagged Target Values with High Indirect Correlation: |  |  |  |  |  |  |  |  |
|------------------------------------------------------|--|--|--|--|--|--|--|--|
| - Lag 2                                              |  |  |  |  |  |  |  |  |
| - Lag 3                                              |  |  |  |  |  |  |  |  |
| - Lag 4                                              |  |  |  |  |  |  |  |  |
| - Lag 5                                              |  |  |  |  |  |  |  |  |
| - Lag 7                                              |  |  |  |  |  |  |  |  |

|   |              |              |              |              |              | Prediction for current Time ID |  |
|---|--------------|--------------|--------------|--------------|--------------|--------------------------------|--|
|   |              |              |              |              |              | Λ                              |  |
|   | Sequence     |              |              |              |              | 1                              |  |
| > | Lag 7 Target | Lag 5 Target | Lag 4 Target | Lag 3 Target | Lag 2 Target | Lag 1 Target                   |  |

# LSTM MODEL - 4 Testing

|       | time_id |       |       |       |       |       |
|-------|---------|-------|-------|-------|-------|-------|
| 26283 | 26285   | 26286 | 26287 | 26288 | 26289 | 26290 |

# LSTM MODEL - 5 Testing

|       | time_id |       |       |       |       |       |
|-------|---------|-------|-------|-------|-------|-------|
| 26283 | 26285   | 26286 | 26287 | 26288 | 26289 | 26290 |
| 26284 | 26286   | 26287 | 26288 | 26289 | 26290 | 26291 |
| 26285 | 26287   | 26288 | 26289 | 26290 | 26291 | 26292 |
| 26286 | 26288   | 26289 | 26290 | 26291 | 26292 | 26293 |
| 26287 | 26289   | 26290 | 26291 | 26292 | 26293 | 26294 |
| 26288 | 26290   | 26291 | 26292 | 26293 | 26294 | 26295 |
| 26289 | 26291   | 26292 | 26293 | 26294 | 26295 | 26296 |

## LSTM MODEL - 6 Testing

|       | time_id |       |       |       |       |       |
|-------|---------|-------|-------|-------|-------|-------|
| 26283 | 26285   | 26286 | 26287 | 26288 | 26289 | 26290 |
| 26284 | 26286   | 26287 | 26288 | 26289 | 26290 | 26291 |
| 26285 | 26287   | 26288 | 26289 | 26290 | 26291 | 26292 |
| 26286 | 26288   | 26289 | 26290 | 26291 | 26292 | 26293 |
| 26287 | 26289   | 26290 | 26291 | 26292 | 26293 | 26294 |
| 26288 | 26290   | 26291 | 26292 | 26293 | 26294 | 26295 |
| 26289 | 26291   | 26292 | 26293 | 26294 | 26295 | 26296 |
| 26290 | 26292   | 26293 | 26294 | 26295 | 26296 | 26297 |
| 26291 | 26293   | 26294 | 26295 | 26296 | 26297 | 26298 |
|       |         |       |       |       |       |       |

#### OBSERVATIONS & CONCLUSIONS - 1

- The MAD achieved on the test data is an improvement over the MAD achieved by the winning team on the Kaggle competition.
- Further experimentation needed:-
  - Alternative models
  - Additional features

#### OBSERVATIONS & CONCLUSIONS - 2

- The MAD achieved on the test data is an improvement over the MAD achieved by the winning team on the Kaggle competition.
- Further experimentation needed:-
  - Alternative models
  - Additional features

Version 2 of the project planned soon.



#### CONTACT ME

**E-mail** divyamans@gmail.com

Linked-In <a href="https://www.linkedin.com/in/divyaman-rawat/">https://www.linkedin.com/in/divyaman-rawat/</a>

**Project Github: -** <a href="https://github.com/DivNewBeg/Optiver-trading-at-close">https://github.com/DivNewBeg/Optiver-trading-at-close</a>

