PARALELNI SISTEMI

- 1. Projektovati četvorostepeni protočni sistem za izračunavanje elemenata niza C na osnovu izraza:
- $c_i = \frac{si\,ri(h_i e_i)(h_i + e_i)}{f_i^5 \frac{a_ib_i}{d_i} c_{i-1}f_i}, \ i=1,2,..., \ n; \ c_0=0. \ \text{Svaki PE u sistemu može da obavlja osnovne aritmetičke operacije i}$

naredbu NOP. Na raspolaganju su procesni elementi sa i bez lokalne memorije.

- a) Odrediti format mikronaredbe opisanog sistema
- Napisati mikroprogram, kao i sadržaj lokalnih memorija koji mu odgovara, za izračunavanje prva dva elementa niza C. Obratiti pažnju na optimalnost rešenja.
- 2. Koristeći CUDA tehnologiju, sastaviti program koji na osnovu matrice A_{NxN} kreira vektor B_N , gde je element B[i] jednak P-Q, gde je P broj pozitivnih elemenata i-te vrste matrice A, a Q broj negativnih elemenata i-te vrste matrice A. Zatim, sve elemente manje od nule i-te vrste matrice A, zameniti vrednošću B[i]. Maksimalno redukovati broj pristupa globalnoj memoriji. Obratiti pažnju na efikasnost paralelizacije. Omogućiti rad programa za matrice proizvoljne veličine.
- 3. a) Napisati MPI program koji realizuje množenje matrice A_{nxn} i vektora b_n, čime se dobija rezultujući vektor c_n. Matrica A i vektor b se inicijalizuju u master procesu. Broj procesa je p i uređeni su kao matrica qxq (q²=p). Matrica A je podeljena u blokove i master proces distribuira odgovarajuće blokove matrice A po procesima kao što je prikazano na slici 1. za n=8 i p=16. Vektor b je distriburan po procesima tako da proces P_i dobija elemente sa indeksima *i%q*, *i%q+q*, *i%q+2q*,, *i%q+n-q*. Predvideti da se slanje vrednosti bloka matrice A svakom procesu obavlja odjednom. Svaki proces (uključujući i master) obavlja odgovarajuća izračunavanja i učestvuje u generisanju rezultata koji se prikazuje u procesu koji sadrži minimum svih vrednosti u matrici A. Predvideti da se slanje blokova matrice A svakom procesu obavlja sa po jednom naredbom MPI_Send kojom se šalje samo 1 izvedeni tip podatka. Slanje blokova vektora b i generisanje rezultata implementirati korišćenjem grupnih operacija i funkcija za kreiranje novih komunikatora.

PO 804	a ₀₁ a ₀₅	a ₀₂ a ₀₆	a ₀₃ a ₀₇
a ₁₀ a ₁₄	a ₁₁ a ₁₅	a ₁₂ a ₁₆	a ₁₃ a ₁₇
P4	P5	P6	P7
P8	P9	P10	P11
P12	P13	a ₆₂ a ₆₆ P14 a ₇₂ a ₇₆	P15

Slika1.

- b) Slanje blokova matrice A svakom procesu implementirati korišćenjem grupnih operacija i funkcija za kreiranje novih komunikatora
- 4. a) Napisati deo MPI koda koji formira komunikator Cartesian topologije, koji omogućava da sadržaj promenljive x, u svakom procesu, pre i nakon poziva funkcije:

 MPI_Sendrecv_replace(&x, 1, MPI_INT, dest, 0, source,0,cartcomm, &st):

izgleda kao na prikazanom primeru komunikatora 3x4.

Vrednosti x pre:

0	1	2	3
1	2	3	4
2	3	4	5

Vrednosti x posle:

0	1	2	3
4	1	2	3
4	5	2	3

b) Napisati OpenMP kod koji sadrži sledeću petlju:

```
z=s;
for ( i = 0; i < N; i++ )
  for ( j = 0; j < N; j++ )
{
    A[j]+= B[z];
    z+=k;
}</pre>
```

i proučiti da li moguće izvršiti njenu paralelizaciju. Ako nije izvršiti njenu transformaciju tako da paralelizacija bude moguća. Vrednosti za promenljive s i k, kao i za elemente nizova A i B su inicijalizovane pre petlje. Nakon petlje treba prikazati vrednosti za elemente niza A i za promenljivu z, generisanim u okviru petlje. Testiranjem sekvencijalnog i paralelnog rešenja za proizvoljno N i proizvoljan broj niti, pokazati korektnost paralelizovanog koda.