# AdvancedCommunicationCoding Theory

Liping Du 杜利平

Department of Communication, School of Computer & Communication Engineering, USTB

### • • About the course

#### o Time:

- 08:00~09:35, Wed,
- 08:00~09:35, Fri,

#### o Instructor:

- Liping Du(杜利平)
- lpdu200@163.com

### • • About the course

- required course
- o Textbook:
  - Khalid Sayood, Introduction to data compression, Morgan Kaufman, 5th Edition, 2018.

#### o Grading:

- Attendance:20%
- Assignment: 20%
- Presentation:30%
- Report:30%

### • • About the course

#### o Content:

- Introduction
- Lossless Compression
- Huffman Coding
- Arithmetic Coding
- Dictionary Coding

### • • Introduction

- Data compression
  - Data compression is the art or science of representing information in a compact form
  - some examples
    - Long-distance call
    - Digital TV
    - DVD
    - mp3 player



- More and more of the information that we generate and use is in digital formin the form of numbers represented by bytes of data
- the explosive growth of data that needs to be transmitted and stored
- We need develop better transmission and storage technologies.

## How does compression work?

#### Exploit statistical redundancy

- -Take advantage of repeated parts (redundancy/patterns) in the source
- -Describe frequently occurring events efficiently
- -Lossless coding: only statistical redundancy

#### Introduce acceptable deviations

-Omit information that the humans cannot perceive

visible light; infrared ray; ultraviolet rays infrasonic frequency; ultrasonic requency;

- -Match the signal resolution (in space, time, amplitude) to the application
- -Lossy coding: exploit both perceptual and statistical redundancy

# How does compression work?

- Statistical structure/redundancy
  - Morse code
  - Braille code
- perceptual limitations of humans
  - By discarding irrelevant information
  - MP3

#### Morse code

Samuel Morse

Letters sent by telegraph are encoded with dots and dashes



More frequently occurring characters, shorter sequence







2×3 arrays of dots are used to represent text Each character differ from each other by the position and number of dots in the array.

#### Compression techniques



- Compression algorithm
  - Take an input x and generate a representation x<sub>c</sub>
- Reconstruction algorithm

11

 Operate on the compressed representation x<sub>c</sub> to generate the reconstruction y

### Compression techniques

 Based on the requirements of reconstruction

### Measures of performance

Lossless compression

- Compression ratioRate
- Distortion
- Fidelity and quality

Lossy compression

### Measure of performance

#### Compression ratio

Suppose we store an image.
Before compression, the size is 256 × 256 pixels,
1byte/pixel
After compression, 16,384bytes

Compression ratio? 4:1

### Measure of performance

#### Rate

 The average number of bits required to represent a single sample

Suppose we store an image.

Before compression, the total size is  $256 \times 256$  pixels(samples) After compression, 16,384bytes

Assume 8bits per byte, rate? 2

### Measure of performance

#### Distortion

- In lossy compression, the reconstruction differs from the original data.
- The difference between the original and the reconstruction is called the distortion.
  - the mean squared error (MSE),
  - signal-to-noise ratio (SNR),
  - decibels (abbreviated to dB),
  - peak-signal-to-noise-ratio (PSNR)

### • • Measure of performance

- Fidelity and quality
  - Often used to measure the difference between the reconstruction and the original
  - Rely more on the human who see or listen
  - perceptual difference

### • • Example

#### Suppose we have the following sequence generated by a source

abbarrayaranbarraybranb f arb f aarb f aaarbaway

| Total 8 | 3 sym | bols. |
|---------|-------|-------|
|---------|-------|-------|

If we use binary code to represent the symbols, what's the rate? 3 Now, if we use the code shown in Table 1.1, sequence length is 106 bits for 41 symbols. What's the new rate? 2.58 And compression ratio? 1.16: 1

| TABLE 1.1 | A code with codewore | İs |
|-----------|----------------------|----|
|           | of varying length.   |    |

| а | 1     |
|---|-------|
| В | 001   |
| b | 01100 |
| f | 0100  |
| n | 0111  |
| r | 000   |
| w | 01101 |
| y | 0101  |



- The development of data compression algorithms can be divided into two phases:
  - Modeling: extract information about any redundancy that exist in the data and describe the redundancy in the form of a model
  - Coding: encode the model and the residual between the data and the model

### Modeling and coding

- o Ex.1.2.1
  - $S_n = 9,11,11,11,14,13,15,17,16,17,20,21$

Before compression, rate?  $2^5=32$ 

Modeling:  $\hat{S}n = n + 8$ , 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Residual=  $Sn - \hat{S}n$ , 0, 1, 0, -1, 1, -1, 0, 1, -1, -1, 1

|    | -1 | 00 |
|----|----|----|
|    | 0  | 01 |
| 20 | 1  | 10 |

Rate?  $2^2 = 4$ 

### Modeling and coding

#### o Ex.1.2.2

•  $S_n = 27,28,29,28,26,27,29,28,30,32,34,36,38$ 

Before compression, rate?  $2^6=64$ 

Modeling:  $\hat{S}1 = 0$ ;  $\hat{S}_n = S_{n-1}$  for n > 10, 27,28, 29, 28, 26, 27, 29, 28, 30, 32,34,36

Residual=  $Sn - \hat{S}n$ , 27, 1, 1, -1, -2, 1, 2, -1,2, 2, 2, 2,2

Rate?  $2^{5}=32$ 

#### Modeling and coding

#### How can we make a good model



describe the redundancy/pattern/repeated parts as closer as possible