Assignment 3

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 From the following data, determine $\Delta_f H^0$ for diborane, $B_2 H_6(g)$, at 298 K:

 $\begin{array}{ll} (1) \ B_2H_6(g) + 3 \ O_2(g) {\longrightarrow} B_2O_3(s) + 3 \ H_2O(g) & \Delta_rH^0 = -1941 \ kJ \ mol^{-1} \\ (2) \ 2 \ B(s) + 3/2 \ O_2(g) {\longrightarrow} B_2O_3(s) & \Delta_rH^0 = -2368 \ kJ \ mol^{-1} \\ (3) \ H_2(g) + 1/2 \ O_2(g) {\longrightarrow} H_2O(g) & \Delta_rH^0 = -241.8 \ kJ \ mol^{-1} \end{array}$

Ques.2 The volume of a certain liquid varies with temperature as

 $V = V'\{0.77 + 3.7 \times 10^{-4}(T/K) + 1.52 \times 10^{-6}(T/K)^2\}$ where V' is its volume at 298 K. Calculate its expansion coefficient, α , at 310 K.

Ques.3 If U is a function of Temperature and volume, then prove $\left(\frac{\partial U}{\partial T}\right)_P = C_V + \Pi V \alpha$.

Where $\Pi = \left(\frac{\partial U}{\partial V}\right)_T$ and α is Thermal expansion coefficient.

Ques.4 Calculate the isothermal compressibility (β) and the expansion coefficient (α) of a van der Waals gas. Show, using Euler's chain relation, that $\beta TR = \alpha (Vm - b)$.

Ques.5 (a) Express $\left(\frac{\partial C_V}{\partial V}\right)_T$ as a second derivative of U and find its relation to $\left(\frac{\partial U}{\partial V}\right)_T$ and $\left(\frac{\partial C_P}{\partial P}\right)_T$ as a second derivative of H and find its relation to $\left(\frac{\partial H}{\partial P}\right)_T$. (b) From these relations show that $\left(\frac{\partial C_V}{\partial V}\right)_T = 0$ and $\left(\frac{\partial C_P}{\partial P}\right)_T = 0$ for a perfect gas.