Intro

- Robust failure prediction can prevent downtime in many contexts.
- Modern hard-drives periodically measure and report usage and health statistics (called SMART metrics).
- This project looks at whether hard-drive failure can be predicted ahead of time based on these metrics.

Backblaze Hard Drive Data

- Backblaze has been publishing failure data for hard drives in their datacenters since 2014.
- For each drive, they record values of SMART metrics once per day along with whether the drive failed that day.
- There are ~20 different drive models and a total of 187 metrics, only a subset of which are available for a given drive model.
- We focus on 2021 data for one drive model (ST4000DM000).
 - After removing features with no or constant data, there are 22 SMART metrics for this drive model.
 - There are 18,611 drives and a total of 324 failures

https://www.backblaze.com/b2/hard-drive-test-data.html

Modeling Approach

- Problem Definition: Predict whether a given drive will fail in the next 7 days.
- Feature Selection: Use all 22 available features.
- Model type: Train a gradient-boosted decision tree model (xgboost).
- **Data sampling:** Use the latest 90 days for each drive. Use all failed drives + as many (324) randomly selected healthy drives. => 59,320 rows of data, 3.9% of which belongs to the positive class.
- Data splits: 90/10 train/val split.
- Accounting for Class Imbalance: Weight the failure rows by the inverse of their relative frequency:

$$failed\ rows\ weight\ scale = \frac{number\ of\ healthy\ rows}{number\ of\ failed\ rows}$$

Feature Distributions

Feature: Target Mutual Information

First Run with Default Parameters

n_est=100, lr=0.3, ESR=None, gamma=0.0, max_depth=3 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0.0, reg_lambda=0.0

Increase max_depth and add more trees

n_est=300, lr=0.3, ESR=None, gamma=0.0, max_depth=6 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0.0, reg_lambda=0.0

Add gamma

n_est=300, Ir=0.3, ESR=None, gamma=0.05, max_depth=6 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0.0, reg_lambda=0.0

Add L1 regularization

n_est=300, lr=0.3, ESR=None, gamma=0.0, max_depth=6 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0.5, reg_lambda=0.0

Add L2 regularization

n_est=300, Ir=0.3, ESR=None, gamma=0.0, max_depth=6 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0.0, reg_lambda=0.5

Hyperparameter Exploration: Grid Search

Hyperparameter Values Explored

eta (learning_rate)	0.2, 0.3, 0.4
num_boost_round (n_estimators)	default_num_boost_round × default_eta/eta × default_max_depth/max_depth
max_depth	6, 9
gamma	0.0, 0.1, 0.03, 0.05
reg_alpha (L1)	0.0, 0.5, 1.0, 1.5
reg_lambda (L2)	0.0, 0.5, 1.0, 1.5
Total Combinations	<mark>384</mark>

Fixed Parameters

objective	binary::logistic	
default_eta	0.3	
default_num_boost_round	300	
default_max_depth	6	
subsample	1	
colsample_by*	1	
min_child_weight	1	
Early_stopping	None	

Hyperparameter Exploration: Results

Hyperparameter Exploration: Best HP Values

	Best F1-Score & Best Precision	Best Recall
eta (learning_rate)	0.4	0.2
num_boost_round (n_estimators)	225	450
max_depth	6	6
gamma	0	0.03
reg_alpha (L1)	0	1
reg_lambda (L2)	0	1.5
VAL. RECALL	92.5%	94.7%
VAL. PRECISION	92.5%	88.1%
VAL. F1-Score	0.925	0.913

Final Model: Training + Precision-Recall Curve

n_est=225, lr=0.4, ESR=None, gamma=0, max_depth=6 subsmpl=1.0, colssmpl_tree=1.0, reg_alpha=0, reg_lambda=0

Final Model: Feature Importance

