Chapter 2

Magnetism and Magnetic Materials

韩伟 量子材料科学中心 2015年9月20日

上节课总结

本课程介绍自旋电子学基础知识以及其最新进展。

- 1) 介绍自旋电子学的基础知识,包括铁磁、反铁磁性、磁阻等。
- 2) 着重介绍自旋电子学的最近进展,包括自旋阀、自旋转移力矩、热自旋电子学、拓扑自旋、反铁磁自旋电子学等。

上节课总结

从宏观(指南针)到微观 (原子内部的电子自旋: Bohr Magneton)

自旋—量子数

自旋—利用自旋并操控自 旋

自旋—物理机制

上节课总结

提纲

1. Introduction to magnetism

2. How to induce magnetic moment

3. How to control magnetization

提纲

1. Introduction to magnetism

Introduction to Magnetism

- Magnetism of Electrons
- > Spin orbit Coupling
- Magnetism

Diamangetism, Paramagnetism, FM, AFM, Ferrimagnet, Half metallic

- Magnetic resonance
- Magnetic domains

Magnetism of Electrons

Orbital moment

Spin moment

Orbital moment

Bohr Atom

Bohr Model

Speed of the electron: *v* Period of rotation:

$$\tau = 2\pi r / v$$

The equivalent current:

$$I = -e/\tau$$

The magnetic moment:

$$m = IA = -\frac{1}{2}e\vec{r} \times \vec{v}$$

Angular momentum:

$$\vec{l} = m_{\rho} \vec{r} \times \vec{v}$$

The moment:

$$m = -\frac{e}{2m_e}\vec{l}$$

Orbital moment

Bohr Atom

The moment:

$$m = \left(-\frac{e}{2m_e}\right)^{-1}$$

gyromagnetic ratio

$$m_z = -\frac{e}{2m_e} m_l \hbar, m_l = 0, \pm 1, \pm 2, \dots$$

Orbital moment

Bohr Atom

Bohr Magneton:

Bohr Model

$$\mu_{B} = \frac{e\hbar}{2m_{e}}$$

$$1 \mu_B = 9.274 \times 10^{-24} \text{ A m}^2$$

Spin moment

Bohr Atom

The spin moment:

$$m = -\frac{e}{m_e}\vec{s}$$

$$m_z = -\frac{e}{m_e} m_s \hbar, m_s = \pm \frac{1}{2}$$

Magnetism of Electrons

Table 3.1. Properties of the electron

Mass	m_e	$9.109 \times 10^{-31} \text{ kg}$
Charge	-e	$-1.6022 \times 10^{-19} \text{ C}$
Spin quantum number	S	1/2
Spin angular momentum	$\frac{1}{2}\hbar$	$5.273 \times 10^{-34} \text{ J s}$
Spin g-factor	g	2.0023
Spin magnetic moment	m	$-9.285 \times 10^{-24} \text{ A m}^2$
Classical radius $\mu_0 e^2/4\pi m_e$	r_e	$2.818 \times 10^{-15} \text{ m}$

$$\gamma = -\frac{q}{2m}$$

For a free electron:

$$\gamma = -\frac{e}{2m_e}g_e = 1.760 \times 10^{11} \frac{rad}{s * T}$$

$$\gamma = -\frac{q}{2m}$$

For a nucleus:

$$\gamma_n = -\frac{e}{2m_p}g_n = g_n \mu_n/\hbar$$

Nucleus	$\gamma (10^6 \text{ rad s}^{-1} \text{ T}^{-1})$
¹ H	267.513
² H	41.065
³ He	-203.789
13 C	67.262
¹⁴ N	19.331
15 N	-27.116
¹⁷ O	-36.264
²⁹ Si	-53.190
31 P	108.291

 H_2O

Hund's Rule

- (1) First maximize S for the configuration.
- (2) Then maximize L consistent with S.
- (3) Finally couple L and S to form J: J = L S if the shell is less than half full, and J = L + S if the shell is more than half full. When the shell is exactly half full, L = 0 and J = S.

Fe³⁺
$$3d^5$$
 $\uparrow\uparrow\uparrow\uparrow\uparrow$ | oooooo
 $S = 5/2$ $L = 0$ $J = 5/2$
Ni²⁺ $3d^8$ $\uparrow\uparrow\uparrow\uparrow\uparrow$ | $\downarrow\downarrow\downarrow$ oo
 $S = 1$ $L = 3$ $J = 4$

Hund's Rule

Hund's Rule

Table 4.7. The 3 d ions. $\mathfrak{m}_{\it eff}$ is in units of $\mu_{\it B}$								
$3d^n$		S	L	J	g	$m_{eff} = g\sqrt{J(J+1)}$	$m_{eff} = g\sqrt{S(S+1)}$	$m_{e\!f\!f}^{e\!x\!p}$
1	Ti^{3+}, V^{4+}	1/2	2	3 2	<u>4</u> 5	1.55	1.73	1.7
2	Ti^{2+}, V^{3+}	1	3	2	2/3	1.63	2.83	2.8
3	V^{2+} , Cr^{3+}	$\frac{3}{2}$	3	$\frac{3}{2}$	<u>2</u> 5	0.78	3.87	3.8
4	Cr^{2+}, Mn^{3+}	2	2	0			4.90	4.9
5	Mn^{2+} , Fe^{3+}	$\frac{5}{2}$	0	$\frac{5}{2}$	2	5.92	5.92	5.9
6	Fe^{2+}, Co^{3+}	2	2	4	$\frac{3}{2}$	6.71	4.90	5.4
7	Co ²⁺ , Ni ³⁺	$\frac{3}{2}$	3	$\frac{9}{2}$	$\frac{4}{3}$	6.63	3.87	4.8

3d metals: magnetism mainly due to spin moment

Spin orbit coupling

4f metals: orbit moment is large

$$H_{SO} = \lambda \vec{l} * \vec{s}$$

$$J = L + S$$

Spin orbit coupling

Table 4.6. The 4 f ions. The paramagnetic moment \mathfrak{m}_{eff} and the saturation moment \mathfrak{m}_0 are in units of μ_B

$4f^n$		S	L	J	g	$m_0 = gJ$	$m_{eff} = g\sqrt{J(J+1)}$	$m_{\it eff}^{\it exp}$
1	Ce ³⁺	1/2	3	<u>5</u> 2	<u>6</u> 7	2.14	2.54	2.5
2	Pr ³⁺	1	5	4	4 5	3.20	3.58	3.5
3	Nd^{3+}	$\frac{3}{2}$	6	9 2	8	3.27	3.52	3.4
4	Pm ³⁺	2	6	4		2.40	2.68	
5	Sm^{3+}	5 2	5	$\frac{5}{2}$	3 5 2 7	0.71	0.85	1.7
6	Eu^{3+}	3	3	0	0	0	0	3.4
7	Gd^{3+}	7 2	0	7 2	2	7.0	7.94	8.9
8	Tb^{3+}	3	3	6	$\frac{3}{2}$	9.0	9.72	9.8
9	Dy ³⁺	<u>5</u>	5	15 2	4/3	10.0	10.65	10.6
10	Ho ³⁺	2	6	8	<u>5</u>	10.0	10.61	10.4
11	Er ³⁺	$\frac{3}{2}$	6	15 2	<u>6</u> 5	9.0	9.58	9.5
12	Tm^{3+}	1	5	6	7 6	7.0	7.56	7.6
13	Yb ³⁺	$\frac{1}{2}$	3	$\frac{7}{2}$	8 7	4.0	4.53	4.5

4f metals: magnetism described better by "J"

Diamagnetism

Curie's Law: localized electron

Diamagnetism

Paramagnetism

Curie's Law: localized electron

Curie-law paramagnetism

Curie's Law: localized electron

$$M = n\mu_B \tanh(\mu_B B/k_B T)$$

$$\chi = \mu_0 M / B = C / nT$$

$$C = n\mu_0 \mu_B^2 / k_B$$

300

200

Temperature, T(K)

FM and AFM

Curie-Weiss Law for FM

$$\chi = C / (T - \theta_p)$$

FM and AFM

Susceptibility

FM

Typical FM

	T_C	d	σ_s	M_s
	(K)	$(kg m^{-3})$	$(A m^2 kg^{-1})$	(kA m ⁻¹)
Fe	1044	7874	217	1710
Co	$1360(\varepsilon)$	8920	162(ε)	1440
Ni	628	8902	54.8	488

FM

The Slater - Pauling curve

Characterization of FM

Vibrating sample magnetometer

Sensitivity: 10⁻⁶ emu

Characterization of FM

SQUID Magnetometry

Characterization of FM

MOKE: Surface sensitive

metals at 830 nm (1.5 eV)					
	θ_K (°)		θ_K (°)		
Fe	-0.53	CoPd	-0.17		
FePt	-0.39	CoPt	-0.36		
FeCo	-0.60	Ni	-0.09		
Co	-0.36	PtMnSb	-1.3		

Typical AFM

Table	6.1. Som	e commoi	n antiferrom	agnets
	Structure	$T_N(K)$	$\theta_p(K)$	$\mu_0 M_{\alpha} (T)$
Cr	sdw	311		0.20
Mn	Complex	96	~ -2000	0.20
NiO	Néel	524	-1310	0.54
$\alpha \text{Fe}_2 \text{O}_3$	Canted	958	-2000	0.92
MnF_2	Néel	67	-80	0.78
FeMn	Néel	510		0.53
IrMn ₃	Néel	690		0.50

sdw - spin density wave; Néel - two collinear sublattices.

M vs. H loop

SAF: Synthetic antiferromagnets

Antiferromagnetic exchange coupling between two FM layers

SAF: Synthetic antiferromagnets

Baibich, et al, PRL (1988) Fert, Rev. Mod. Phys. (2007)

FM-Gd alloys

 Fe_3O_4

white: O²⁻, form a fcc sublattice (He, $2s^2$, $2p^4$) blue: A site, tetrahedral, Fe³⁺ only (Ar, $4s^2$, $3d \downarrow 5$) red: B site, octahedral, half Fe³⁺, half Fe²⁺

 $(Ar, 4s^2, 3d \uparrow^5, 3d \downarrow^{0.5})$

 Fe_3O_4

Blue: Fe³⁺

Red: Fe³⁺ and Fe²⁺

 $Fe^{3+}:5\mu_B$

 $Fe^{2+}:4\mu_{B}$

Total moment: $4\mu_B$ /Fe₃O₄

YIG: Gd₃Fe₅O₁₂

Half Metallic

Density of states

Coey & Venkatesan, JAP (2002)

Half Metallic

 $Cr0_2$

Coey & Venkatesan, JAP (2002)

$$\frac{d\widehat{m}}{dt} = -\gamma \widehat{m} \times \overrightarrow{H}_{eff} + \alpha \widehat{m} \times \frac{d\widehat{m}}{dt}$$

$$\gamma = \frac{g e}{2 m_e c}$$
 is gyromagnetic ratio

 α is the Gilbert damping

 $H_x e^{i\omega t}$ (rf): small perturbation

FMR

FMR system

T: 2 K - 300 K

B: 9T

Coplanar Waveguide

Metallic FM- Py (NiFe)

Zhao, et al, Scientific Reports (2016)

Semiconducting FM—Cr2Ge2Te6

Zhang, et al, JJAP (2016)

Insulating FM-- YIG

Antiferromagnetic resonance

Precessing Modes

$$\omega_0 = \gamma \mu_0 [H_a (H_a + 2H_{ex})]^{\frac{1}{2}}.$$

Magnetic domains

FM domains

Magnetic domains

Racetrack memory

Summary

- Magnetism of Electrons
- > Spin orbit Coupling
- > Magnetism

Diamangetism, Paramagnetism, FM, AFM, Ferrimagnet, Half metallic

- Magnetic resonance
- Magnetic domains

休息10分钟

提纲

1. Introduction to magnetism

2. How to induce magnetic moment

3. How to control magnetization

Review of last class

- Magnetism of Electrons
- > Spin orbit Coupling
- Magnetism

Diamangetism, Paramagnetism, FM, AFM, Ferrimagnet, Half metallic

- Magnetic resonance
- Magnetic domains

提纲

2. How to induce magnetic moment

1) Impurity doping

Mn impurity in GaMnAs

Low doping

High doping

MacDonald, et al, Nature Mater. (2005)

1) Impurity doping

MacDonald, et al, Nature Mater. (2005)

1) Impurity doping

p-d Zener mode

Dietl, et al, Science (2010)

2) Proximity effect

At the atomic level, when two atoms come into proximity, the highest energy, or valence, orbitals of the atoms change substantially and the electrons on the two atoms reorganize.

2) Proximity effect

2) Proximity effect

2) Proximity effect

Composition	Pt thickness (nm)	FM thickness (nm)	Magnetic moment $(\mu_{\rm B} \text{ per atom})$
Pt/Fe	1.8	9.8	0.2 ± 0.1^{a}
	3.4	9.2	0.6 ± 0.1^{a}
	5.9	9.8	0.6 ± 0.1^{a}
	20.0	9.8	0.6 ± 0.1^{a}
	3.4	9.2	0.43 ± 0.08^{b}
Pt/Ni ₃₃ Fe ₆₇	3.3	8.3	0.44 ± 0.10^{b}
Pt/Ni ₈₁ Fe ₁₉	3.3	9.8	0.22 ± 0.10^{b}
Pt/Ni	3.2	9.8	0.08 ± 0.08^{b}

Induce M in two Quantum Materials

Two Dirac Materials

Graphene

Induce M in two Quantum Materials

Two Dirac Materials

Topological Insulator

3D Topological insulator

Induce M in graphene

Why making graphene magnetic

PHYSICAL REVIEW B 83, 155447 (2011)

Quantum anomalous Hall effect in single-layer and bilayer graphene

Wang-Kong Tse,¹ Zhenhua Qiao,¹ Yugui Yao,^{1,2} A. H. MacDonald,¹ and Qian Niu^{1,3,*}

PHYSICAL REVIEW B 77, 115406 (2008)

Spin transport in proximity-induced ferromagnetic graphene

Håvard Haugen,* Daniel Huertas-Hernando, and Arne Brataas

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Induce M in graphene

How to make graphene magnetic

Yazyev and Helm, PRB (2007) Han, et al, Nature Nanotech (2014)

Vacancies Defects→ FM

Vacancies Defects→ PM

$$M = NgJ\mu_{\rm B} \left[\frac{2J}{2J+1} \operatorname{ctnh} \left(\frac{(2J+1)z}{2J} \right) - \frac{1}{2J} \operatorname{ctnh} \left(\frac{z}{2J} \right) \right]$$

Nair, et al, Nature Phy. (2012)

Vacancies Defects→ PM

Nair, et al, Nature Phy. (2012)

Question?

Ferromagnetic??

Paramagnetic ??

Using the spin current approach

Using the spin current approach

Magnetic moment could scatter pure spin current through exchange interaction:

$$\mathcal{H}_{ex} = A_{ex} \overrightarrow{S_e} \overrightarrow{S_M}$$

- Localized measurement
- Direct coupling of spin to magnetic moment

Using the spin current approach

- All measurements done in ultrahigh vacuum (UHV)
- Compare immediately before and after hydrogen doping

McCreary, et al, PRL (2012)

Using the spin current approach

At zero field

Due to exchange coupling, pure spin current is scattered by magnetic moment

Fewer spins at detector

Using the spin current approach

At high field

Question?

Ferromagnetic??

Paramagnetic > 15 K

下一节课: Sept. 27 th

1. Introduction to magnetism

2. How to induce magnetic moment

3. How to control magnetization

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

谢谢!