Titre: Générateurs des groupes linéaires et spéciaux linéaires

Recasages : 106,108,162 Thème : Algèbre linéaire Références : Perrin (p. 99)

<u>Théorème</u> 1. Soient k un corps, E un k-espace vectoriel de dimension n finie. Les transvections engendrent le groupe Sl(E). Les transvections et dilatations engendrent le groupe Gl(E).

On procède par récurrence sur $n = \dim_k(E)$: le cas n = 1 est vide. On considère $n \ge 2$, et on utilise alors le lemme suivant :

<u>Lemme</u> 2. Soient $x, y \in E \setminus \{0\}$, alors l'une des possibilités suivantes est réalisées :

- Il existe une transvection u telle que u(x) = y.
- Il existe un couple (u, v) de transvections telles que vu(x) = y.

 $D\acute{e}monstration$. On distingue deux cas, selon si x et y sont colinéaires.

Si x et y ne sont pas liés, on cherche u sous la forme $u = \tau(f, a) : t \mapsto t + f(t)a$ pour $f \in E^*$. On pose a = y - x et H un hyperplan contenant a et pas x (a et x ne sont pas colinéaires par hypothèse), on définit alors f(x) = 1 étendue par 0 sur H. La transvection $u = \tau(f, a)$ convient, en effet u(x) = x + f(x)(y - x) = y.

Si x et y sont liés, on choisit $z \neq 0$ dans un supplémentaire de Vect(x, y), et on applique deux fois le cas précédent : on trouve u et v deux transvections telles que u(x) = z et v(z) = y. \square

Considérons le résultat obtenu sur les espaces de dimension au plus n-1, et soit $u \in Gl(E)$, de déterminant $\lambda \in k^*$, prenant v une dilatation de rapport λ , on obtient $v^{-1}u \in Sl(E)$, donc il suffit de montrer que les transvections engendrent Sl(E).

Soient donc $u \in Sl(E)$ et $x \in E \setminus \{0\}$. On pose y = u(x), par le lemme, quitte à remplacer u par $v^{-1}u$ où v est une transvection telle que v(y) = x, on peut supposer que u(x) = x. On pose D = Vect(x), et on note $\pi : E \to E/D$ la projection canonique. Considérant F un supplémentaire de D dans E, on identifie F et E/D, u induit \tilde{u} un automorphisme de F, avec $\tilde{u} \in Sl(F) \simeq Sl(E/D)$. En effet, considérons e_2, \dots, e_n une base de F, la matrice de u dans la base (x, e_2, \dots, e_n) est donnée par

$$\begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$$

où M est la matrice de \widetilde{u} dans la base e_2, \dots, e_n , on a alors $1 = \det(u) = \det(M) = \det(\widetilde{u})$. Par hypothèse de récurrence, \widetilde{u} se décompose alors comme un produit de transvections de F, $\widetilde{u} = \widetilde{\tau}_1 \cdots \widetilde{\tau}_r$. On étend les $\widetilde{\tau}_i$ à E par l'identité sur D (il s'agit toujours de transvections par la caractérisation de ces dernières), on a alors $\tau_1 \cdots \tau_r(x) = x = u(x)$ et $(\tau_1 \cdots \tau_r)_{|F} = \widetilde{\tau}_1 \cdots \widetilde{\tau}_r = \widetilde{u} = u_{|F}$ d'où le résultat.