Chapter-3 वनस्पति जगत

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.

शैवालों के वर्गीकरण का क्या आधार है?

उत्तर:

शैवालों का वर्गीकरण मुख्यतया उनमें उपस्थित वर्णक (pigments), फ्लेजिला (flagella), संगृहीत खाद्य पदार्थ (storage food product) और कोशिका भित्ति की रासायनिक संरचना (chemical structure of cell wall) के आधार पर किया जाता है।

प्रश्न 2.

लिवरवर्ट, मॉस, फर्न, जिम्नोस्पर्म तथा एन्जियोस्पर्म के जीवन चक्र में कहाँ और कब निम्नीकरण विभाजन (reduction division) होता है?

उत्तर:

लिवरवर्ट तथा मॉस में निम्नीकरण विभाजन कैप्सूल (capsule) की बीजाणु मातृ कोशा (spore mother cell) में होता है। फर्न में निम्नीकरण विभाजन स्पोरेन्जिया (sporangia) की बीजाणु मातृ कोशा (spore mother cell) में होता है। जिम्नोस्पर्म में निम्नीकरण विभाजन माइक्रोस्पोरेन्जियम (microsporangium) में माइक्रोस्पोर (परागकण) के निर्माण के समय तथा मेगास्पोरेन्जियम में मेगास्पोर (megaspore) के निर्माण के समय होता है। एन्जियोस्पर्म में निम्नीकरण विभाजन परागकोश (anther) की माइक्रोस्पोरेन्जियम तथा अण्डाशय (ovule) की मेगास्पोरेन्जियम में होता है।

प्रश्न 3.

पौधों के तीन वर्गों के नाम लिखिए जिनमें स्त्रीधानी (archaegonia) होती है। इनमें से किसी एक के जीवन-चक्र का संक्षिप्त वर्णन कीजिए

उत्तर:

ब्रायोफाइटा, टेरिडोफाइटा तथा जिम्नोस्पर्म वर्ग के पौधों में स्त्रीधानी पाई जाती है।

मॉस (ब्रायोफाइट पादप) को जीवन-चक्र

इसकी प्रमुख अवस्था युग्मकोभिद् (gametophyte) होती है। युग्मकोभिद् की दो अवस्थाएँ पाई जाती हैं

(ক)

शाखामय, हरे, तन्तुरूपी प्रोटोनीमा (protonema) :

का निर्माण अगुणित बीजाणुओं के अंकुरण से होता है। इस पर अनेक कलिकाएँ विकसित होती हैं जो वृद्धि करके पत्तीमय अवस्था का निर्माण करती हैं।

(ख)

पत्तीमय अवस्था पर नर तथा मादा जननांग समूह के रूप में बनते हैं। नर जननांग को पुंधानी (antheridium) तथा मादा जननांग को स्त्रीधानी (archegonium) कहते हैं। पुंधानी में द्विकशाभिक पुंमणु (antherozoids) तथा स्त्रीधानी में अण्डाणु (ovum) बनता है। निषेचन जल की उपस्थिति में होता है। पुमणु तथा अण्डाणु संलयन के फलस्वरूप द्विगुणित युग्मनज (oospore) बनाते हैं। युग्मनजे से वृद्धि तथा विभाजन द्वारा द्विगुणित बीजाणुउभिद् (sporophyte) का निर्माण होता है। यह युग्मकोभिद् पर अपूर्ण परजीवी होता है।

बीजाणुउभिद के तीन भाग होते हैं

- 1. पाद (foot)
- 2. सीटा (seta) तथा
- 3. सम्पुट (capsule)

चित्र-प्यूनेरिया (मॉस) के जीवन-चक्र का रेखाचित्र।

सम्पुट के बीजाणुकोष्ठ में स्थित द्विगुणित बीजाणु मातृ कोशिकाओं से अर्द्धसूत्री विभाजन द्वारा अगुणित बीजाणु (spores) बनते हैं।

सम्पुट के स्फुटन से बीजाणु मुक्त हो जाते हैं। बीजाणुओं का प्रकीर्णन वायु द्वारा होता है। अनुकूल परिस्थितियाँ मिलने पर बीजाणु अंकुरित होकर तन्तुरूपी, स्वपोषी प्रोटोनीमा (protonema) बनाते हैं।

प्रश्न 4.

निम्नलिखित की सूत्रगुणता (ploidy) बताइए मॉस की प्रथम तन्तुक कोशिका, द्विबीजपत्री के प्राथमिक भ्रूणपोष का केन्द्रक, मॉस की पत्तियों की कोशिका, फर्न के प्रोथैलस की कोशिकाएँ, मारकेंशिया की जेमा कोशिका, एकबीजपत्री की मेरिस्टेम कोशिका, लिवरवर्ट के अण्डाशय तथा फर्न के युग्मनज। उत्तर:

इनकी सूत्रग्णता निम्नवत् है

- 1. मॉस की प्रथम तन्तुक कोशिका अगुणित (Haploid-X)
- 2. द्विबीजपत्री के प्राथमिक भ्रूणपोष का केन्द्रक त्रिगुणित (Triploid-3X)
- 3. मॉस की पत्तियों की कोशिका अगुणित (Haploid-X)
- 4. फर्न के प्रोथैलस की कोशिकाएँ अग्णित (Haploid-X)
- 5. मारकेंशियां की जेमा कोशिका अग्णित (Haploid-X)
- 6. एकबीजपत्री की मेरिस्टेम कोशिका द्विग्णित (Diploid-2X)
- 7. लिवरवर्ट का अण्डाशय अग्णित (Haploid-X)
- 8. फर्न का युग्मनज द्विग्णित (Diploid-2X)

प्रश्न 5.

शैवाल तथा जिम्नोस्पर्म के आर्थिक महत्त्व पर टिप्पणी लिखिए।

उत्तर:

शैवाल का आर्थिक महत्त्व

1. भोजन के रूप में (Algae as Food):

पृथ्वी पर होने वाले प्रकाश संश्लेषण का 50% शैवालों द्वारा होता है। शैवाल कार्बोहाइड्रेट, खिनज तथा विटामिन्स से भरपूर होते हैं पोरफाइरा (Porphyra), एलेरिया (Alaria), अल्वा (Ulva),सारगासम (Sargassum), लेमिनेरिया (Luminaria) आदि खाद्य पदार्थ के रूप में प्रयोग किए जाते हैं क्लोरेला (Chlorella) में प्रचुर मात्रा में प्रोटीन्स तथा विटामिन्स पाए जाते हैं। इसे भविष्य के भोजन के रूप में पहचाना जा रहा है इससे हमारी बढ़ती जनसंख्या की खाद्य समस्या के हल होने की पूरी सम्भावना है

2. शैवाल व्यवसाय में (Algae in Industry) :

1. डायटम के जीवाश्म/मृत शरीर डायटोमेशियस मृदा (diatomaceous earth or Kiselghur) बनाते हैं। यह मृदा 1500°C ताप सहन कर लेती है। इसका उद्योगों में विविध प्रकार से उपयोग किया जाता है; जैसे–धातु प्रलेप, वार्निश, पॉलिश, दूथपेस्ट, ऊष्मारोधी सतह आदि।

- 2. कोन्ड्रस (Chondrus), यूक्यिमा (Eucheuma) आदि शैवालों से कैरागीनिन (carrageenin) प्राप्त होता है। इसका उपयोग शृंगार-प्रसाधनों, शैम्पू आदिबनाने में किया जाता है
- 3. एलेरिया (Alaria), लेमिनेरिया (Laminaria) आदि से एल्जिन (algin) प्राप्त होता है। इसका उपयोग अज्वलनशील फिल्मों, कृत्रिम रेशों आदि के निर्माण में किया जाता है यह शल्य चिकित्सा के समय रक्त प्रवाह रोकने में भी प्रयोग किया जाता है।
- 4. अनेक सम्द्री शैवालों से आयोडीन, ब्रोमीन आदि प्राप्त की जाती है।
- 5. क्लोरेला से प्रतिजैविक (antibiotic) क्लोरेलीन (Chlorellin) प्राप्त होती है। यह जीवाणुओं को नष्ट करती है। कारा (Chara) तथा नाइटेला (Nitella) शैवालों की उपस्थिति से जलाशय के मच्छर नष्ट होते हैं; अतः ये मलेरिया उन्मूलन में सहायक होते हैं
- 6. लाल शैवालों से एगार-एगार (agar-agar) प्राप्त होता है, इसका उपयोग कृत्रिम संवर्धन के लिए किया जाता है।

जिम्नोस्पर्म का आर्थिक महत्त्व

1. सजावट के लिए (Ornamental Plants) :

सोइकस, पाइनस, एरोकेरिया (Arqucurid), गिंगो (Ginkgo), थूजा (Thujq), क्रिप्टोमेरिया (Cryptomeria) आदि पौधों का उपयोग सजावट के लिए किया जाता है।

2. भोज्य पदार्थों के लिए (Plants of Food value) :

साइकस, जैमिया से साब्दाना (sago) प्राप्त होता है। चिलगोजा (Pinus gerardiana) के बीज खाए जाते हैं। नीटम (Gnetum), गिंगो (Ginkgo) व साइकस के बीजों को भोजन के रूप में प्रयोग किया जाता है।

3. फर्नीचर के लिए लकड़ी:

चीड़ (Pinus), देवदार (Cedrus), कैल (Pinus wallichiana), फर (Abies) से प्राप्त लकड़ी का उपयोग फर्नीचर तथा इमारती लकड़ी के रूप में किया जाता है।

4. औषधियाँ (Medicines) :

साइकस के बीज, छाल व गुरुबीजाणुपर्ण को पीसकर पुल्टिस बनाई जाती है। टेक्सस बेवफोलिया (Taxus brevfolia) से टेक्साल औषधि प्राप्त होती है। जिसका उपयोग कैन्सर में किया जाता है। थूजा (Thuja) की पत्तियों को उबालकर बुखार, खाँसी, गठिया रोग के निदान के लिए प्रयोग किया जाता है।

5. एबीस बालसेमिया (Abies balsamea) :

से कैनाडा बालसम, जूनिपेरस (Juniperus) से सिडार वुड ऑयल (cedar wood oil), पाइनस से तारपीन का तेल प्राप्त होता है।

प्रश्न 6.

जिम्नोस्पर्म तथा एन्जियोस्पर्म दोनों में बीज होते हैं फिर भी उनका वर्गीकरण अलग-अलग क्यों है? उत्तर:

जिम्नोस्पर्म तथा एन्जियोस्पर्म दोनों का वर्गीकरण अलग-अलग इसलिए किया जाता है क्योंकि जिम्नोस्पर्म में बीज नग्न (naked seeds) होते हैं, फल अनुपस्थित होते हैं, फूल अनुपस्थित होते हैं, भ्रूणपोष (endosperm) अगुणित (haploid) होता है तथा निषेचन से पहले बनता है। द्विनिषेचन (double fertilization) अनुपस्थित होता है। वर्तिकाग्र (stigma) अनुपस्थित होता है तथा स्त्रीधानी (archaegonia) पाई जाती है, जबिक एन्जियोस्पर्म के बीज फल से घिरे रहते हैं, फूल उपस्थित होते हैं, भ्रूणपोष त्रिगुणित (triploid) होता है तथा द्विनिषेचन के पश्चात् बनता है। वर्तिकाग्र (stigma) पाया जाता है। तथा स्त्रीधानी (archaegonia) नहीं पाई जाती है।

प्रश्न 7.

विषम बीजाणुकता क्या है? इसकी सार्थकता पर संक्षिप्त टिप्पणी लिखिए। इसके दो उदाहरण दीजिए। उत्तर:

एक पौधे में दो प्रकार के बीजाणुओं (छोटा माइक्रोस्पोर तथा बड़ा मेगास्पोर) की उपस्थिति विषम बीजाणुकता (heterospory) हलाती है। यह कुछ टेरिडोफाइट; जैसे-सिलेजीनेला (Seluginella), साल्वीनिया (Savinia), मालिया (Marsiled) आदि में तथा सभी जिम्नोस्पर्म व एन्जियोस्पर्म में पाई जाती है। विषम बीजाणुकता का विकास सर्वप्रथम टेरिडोफाइट में हुआ था। विषम बीजाणुकता बीज निर्माण प्रक्रिया की शुरूआत मानी जाती है जिसके फलस्वरूप बीज का विकास हुआ। विषम बीजाणुकता ने नर एवं मादा युग्मकोभिद् (male and female gametophyte) के विभेदने में सहायता की तथा मादा युग्मकोभिद् जो मेगास्पोरेन्जियम के अन्दर विकसित होता है कि उत्तरजीविता बढ़ाने में सहायता की। प्रश्न 8.

उदाहरण सहित निम्नलिखित शब्दावली का संक्षिप्त वर्णन कीजिए

- 1. प्रथम तन्त्
- 2. पुंधानी
- 3. स्त्रीधानी
- 4. द्विगुणितक
- 5. बीजाणुपर्ण तथा
- 6. समयुग्मकी

उत्तर:

1.प्रथम तन्तु (Protonema) :

यह हरी, अगुणित (haploid), प्रकाश-संश्लेषी, स्वतन्त्र प्रारम्भिक युग्मकोभिद् (gametophytic) संरचना है जो मॉस (ब्रायोफाइट) में पाई जाती है। यह बीजाणुओं (spores) के अंकुरण से बनती है तथा नये युग्मकोभिद पौधे का निर्माण करती है।

2. पुंधानी (Antheridium) :

यह बहुकोशिकीय, कवच युक्त (jacketed) नर जनन अंग (male sex organ) है जो ब्रायोफाइट व टेरिडोफाइट में पाया जाता है। पुंधानी में नर युग्मक (male gamete or antherozoids) बनते हैं।

3. स्त्रीधानी (Archaegonium) :

यह बहुकोशिकीय, फ्लास्क के समान मादा जनन अंग (female sex organ) है जो ब्रायोफाइट, टेरिडोफाइट तथा कुछ जिम्नोस्पर्म में पाई जाती है। यह ग्रीवा (neck) तथा अण्डधा (venter) में विभाजित होती है। इसमें एक अण्ड (egg) बनता है।

4. दविगुणितक (Diplontic) :

यह जीवन-चक्र का एक प्रकार है जिसमें पौधा द्विगुणित (2n) होता है तथा इस पर युग्मकीय अर्धसूत्री विभाजन (gametic meiosis) द्वारा अगुणित (haploid) युग्मक (gametes) बनते हैं। उदाहरण- फ्युकस, सारगासम।

5. बीजाणुपर्ण (Sporophyll) :

फर्न (टेरिडोफाइट) में बीजाणु (spores) बीजाणुधानियों (sporangia) में पाए जाते हैं। इन बीजाणुधानियों के समूह को सोरस (sorus) कहते हैं। ये पिच्छक या पत्ती (pinna or leaf) की नीचे की सतह (lower surface) पर मध्य शिरा (mid rib) के दोनों ओर दो पंक्तियों में शिराओं के सिरे पर लगी रहती हैं। इन सोराई धारण करने वाल पत्तियों को बीजाणुपर्ण (sporophyll) कहते हैं।

6. समयुग्मकी (Isogamy):

यह एक प्रकार का लैंगिक जनन है जिसमें संलयन करने वाले युग्मक (gametes) संरचना तथा कार्य में समान होते हैं।

उदाहरण :

- 1. यूलोथ्रिक्स (Ulothrs)
- 2. क्लेमाइडोमोनास(Chlamydomonas)
- 3. तथा एक्ट्रोकार्पस (Ectocarpus)

प्रश्न 9.

निम्नलिखित में अन्तर कीजिए लाल शैवाल तथा भूरे शैवाल

- 1. लिवरवर्ट तथा मॉस
- 2. समबीजाणुक तथा विषमबीजाणुक टेरिडोफाइट
- 3. युग्मक संलयन तथा त्रिसंलयन

उत्तर:

(i) लाल शैवाल तथा भूरे शैवाल में अन्तर

क्र॰ सं॰	🗼 🥫 साल शैवाल	भूरे शैवाल
1.	क्लोरोफिल a व d पाया जाता है।	क्लोरोफिल a व c पाया जाता है तथा फ्युकोजेन्धिन (fucoxanthin) पाया जाता है।
2.	फाइकोबिलिन (phycobilins) उपस्थित होता है।	फाइकोबिलिन अनुपस्थित होता है।
3.	संग्रहित भोजन फ्लोरीडियन स्टार्च (floredian starch) होता है।	संग्रहीत भोजन लेमिनेरिन (laminarin) होता है।
4.	चलबीजाणु (motile spores) अनुपस्थित होते हैं।	चलबीजाणु उपस्थित होते हैं।
•	उदाहरण-पोलीसिफोनिया (Polysiphonia),	उदाहरण-एक्टोकार्पस (Ectocarpus),
	पोरफायरा (Porphyra),	डिक्टयोटा (Dictyota),
	ग्रेसिलेरिया (Gracilaria),	लेमिनेरिया (Laminaria),
	जीलीडियम (Gelidium)।	सारगासम (Sargassum),
		फ्युकस (Fucus)

लिवरवर्ट तथा मॉस में अन्तर

क्र॰ सं॰	लिवरवर्ट 🔻 🔭	मॉस
1.	पादप शरीर, हरे, चपटे द्विपृष्ठधारी (dorsiventral) सूकाय (thallus) के रूप में होता है।	युग्मकोद्भिद् (gametophyte) दो अवस्थाओं में भिन्नित होता है— (i) प्रोटोनिमा—यह प्रारम्भिक, हरी, तन्तुमय रचना है जो बीजाणु के अंकुरण से बनती है।
		(ii) गेमिटोफोर-यह तना, पत्ती व मूलांग में विभाजित होता है।
2.	मूलांग (rhizoids) एककोशिकीय (unicellular) होते हैं।	मूलांग बहुकोशिकीय होते हैं।
3.	मूलांग प्रायः दो प्रकार के होते हैं– सपाट भिति वाले (smooth walled) तथा गुलीकीय (tuberculated)।	मूलांग शाखित (branched) होते हैं। इनमें तिरछे पट (oblique septa) होते हैं।
4.	सूकाय (thallus) के अधर तल पर शल्क (scale) होते हैं।	शल्क अनुपस्थित होते हैं।
5.	कैप्सूल (capsule) में इलेटर्स (elaters) पाए जाते हैं।	इलेटर्स अनुपस्थित होते हैं।
6.	पेरीस्टोम दाँत (peristome teeth) अनुपस्थित होते हैं।	पेरीस्टोम दाँत पाए जाते हैं।
7.	कॉल्युमेला (columella) प्रायः अनुपस्थित होता है।	कैप्सूल में कॉल्युमेला पाया जाता है।
8.	प्रोटोनीमा नहीं पाया जाता।	प्रोटोनीमा पाया जाता है।

(iii) समबीजाणुक तथा विषमबीजाणुक टेरिडोफाइट में अन्तर

क्र॰ सं॰	समबीजाणुक टेरिडोफाइट	विषमबीजाणुक टेरिडोफाइट
1.	सभी स्पोरेन्जिया (sporangia) समान होती हैं।	स्पोरेंजिया दो प्रकार की होती हैं— (i) माइक्रोस्पोरेन्जिया (Microsporangia) (ii) मेक्रोस्पोरेन्जिया (Macrosporangia)
2.	स्पोर (spore) एक ही प्रकार के होते हैं।	स्पोर दो प्रकार के होते हैं– बड़े मेगास्पोर (megaspore) तथा छोटे माइक्रोस्पोर (microspore)
3.	युग्मकोद्भिद् एक ही प्रकार का होता है।	गेमिटोफाइट दो प्रकार के होते हैं— नर युग्मकोद्भिद् (male gametophyte) तथा मादा
4.	कोई विकासीय महत्त्व नहीं दर्शाते। उदाहरण —टेरिस (Pteris), एडिएन्टम (Adiantum)।	युग्मकोद्भिद् (female gametophyte)। विकासीय महत्व दर्शाते हैं क्योंकि विषम बीजाणुकता, परागण (pollination) तथा बीज निर्माण (seed formation) के विकास की प्रथम अवस्था मानी जाती है।
		उदाहरण—सिलैजीनेला (Selaginella), सात्वीनिया (Salvinia), मार्सीलिया (Marsilea)

(vi) युग्मक संलयन तथा त्रिसंलयन में अन्तर

क्र॰ सं॰	युग्मक संलयन	त्रिसंलयन
1.	दोनों नर एवं मादा युग्मक (gametes) संलयन में भाग लेते हैं।	एक नर युग्मक (male gamete) तथा दो कायिक केन्द्रक (vegetative nuclei) संलयन में भाग लेते हैं।
2.	युग्मक संलयन द्वारा द्विगुणित जाइगोट (diploid zygote) बनता है।	त्रिसंलयन द्वारा त्रिगुणित एण्डोस्पर्म (triploid endosperm) बनता है।
3.	जाइगोट से भ्रूण निर्माण होता है।	एण्डोस्पर्म भोज्य पदार्थ के रूप में उपयोग होता है।

प्रश्न 10.

एकबीजपत्री को द्विबीजपत्री से किस प्रकार विभेदित करोगे?

उत्तर:

एकबीजपत्री व द्विबीजपत्री पौधे में अन्तर

क्र॰ सं॰	एकबीजपत्री पौधे	द्विबीजपत्री पौधे
1.	बीज में केवल एक बीजपत्र (cotyledon) होता है।	बीज में दो बीजपत्र होते हैं।
2.		पुष्प के भाग 5 या 4 के गुणन में पाए जाते हैं
	(trimerous)	(pentamerous or tetramerous)
3.	पत्तियों में समान्तर विन्यास (parallel venation)	पत्तियों में जातिकावत् विन्यास (reticulate
4.	पाया जाता है। प्राथमिक जड़ कम समय के लिए होती है। मूसला	venation) पाया जाता है। प्राथमिक जड़ लम्बे समय तक रहती है तथा मूल
	जड़ (tap root) अनुपस्थित होती है तथा झकड़ा जड़ (adventitious root) पाई जाती है।	तन्त्र का निर्माण करती है।
5.	संवहन पूल (vascular bundles) बिखरे हुए (scattered) पाए जाते हैं।	संवहन बण्डल एक घेरे (ring) में पाए जाते हैं।
6.	संवहन पूल बन्द प्रकार (closed vascular bundles) के पाए जाते हैं।	संवहन पूल खुले प्रकार (open vascular bundles) के पाए जाते हैं।
7.	कैम्बियम (cambium) अनुपस्थित होता है।	कैम्बियम उपस्थित होता है।
8.	द्वितीयक वृद्धि (secondary growth) नहीं पाई जाती।	द्वितीयक वृद्धि पाई जाती है।
9.	तने में ऊतक तन्त्र विभेदित नहीं होता।	तना एपिडर्मिस, कॉर्टेक्स एण्डोडर्मिस, पेरीसाइकल, पिथ आदि में विभेदित होता है।
10.	जड़ में पिथ हमेशा पाया जाता है।	जड़ में पिथ अनुपस्थित होता है या सूक्ष्म होता है।
11.	जड़ में संवहन बण्डल (vascular bundle) 8 से अधिक होते हैं।	जड़ में संवहन बण्डल,8 या कम होते हैं।

प्रश्न 11.

स्तम्भ । में दिए गए पादपों का स्तम्भ-॥ में दिए गए पादप वर्गों से मिलाने कीजिए

स्तम्भ-I (पादप)	स्तम्भ-II (वर्ग)
(a) क्लेमाइडोमोनास	(i) मॉस
(b) साइकस	(ii) टेरिडोफाइट
(c) सिलैजिनेला	(iii) शैवाल
(d) स्फेगनम	(iv) जिम्नोस्पर्म
उत्तर :	

- (a) (iii)
- **(b)** (iv)
- (c) (ii)
- **(d)** (i)

प्रश्न 12.

जिम्नोस्पर्म के महत्त्वपूर्ण अभिलक्षणों का वर्णन कीजिए।

उत्तर :

जिम्नोस्पर्म के महत्त्वपूर्ण अभिलक्षण ये सामान्यत: 'नग्नबीजी पौधे' कहलाते हैं। इनके मुख्य अभिलक्षण निम्नलिखित हैं

- 1. अधिकतर पौधे मरुद्भिदी, (xerophytic), काष्ठीय (woody), बहुवर्षीय (perennial) वृक्ष या झाड़ी होते हैं।
- 2. पत्तियाँ प्राय: दो प्रकार की होती हैं-शल्क पर्ण और सत्य पर्ण (scale leaves and foliage leaves) स्टोमेटो निचली सतह पर तथा गत में स्थित होते हैं।
- 3. तने में संवहन पूल (vascular bundles), संयुक्त (conjoint), कोलेटरल m(collateral) तथा खुले (open) होते हैं।
- 4. जाइलम (xylem) में वाहिकाओं (vessels) तथा फ्लोएम (phloem) में सह कोशिकाओं श(A) (companion cells) का अभाव होता है।
- 5. पौधे विषमबीजाणुक (heterosporous) होते हैं-लघुबीजाणु (microspores) तथा गुरुबीजाणु (megaspores)।
- 6. पुष्प शंकु (cones) कहलाते हैं। प्रायः नर और मादा शंकु अलग-अलग होते हैं। पौधे एकलिंगाश्रयी (monoecious) होते हैं। नर शंकु का निर्माण लघुबीजाणुपर्णो (micro SHOOT sporophylls) तथा मादा शंकु का निर्माण गुरुबीजाणुपर्णो से होता है।
- 7. नर युग्मकोभिद् (male gametophyte) अत्यन्त ह्रासित (reduced) होता है। परागनलिका (pollen tube) बनती है।
- 8. मादा युग्मकोभिद् (female gametophyte) एक गुरुबीजाणु (megaspore) से बनता है। यह बहुकोशिकीय (multicellular) होता है। यह पोषण के लिए पूर्णत: बीजाणुभि पर निर्भर करता है।
- 9. भ्रूणपोष अगुणित होता है। यह निषेचन से पहले बनता है।
- 10.इन पौधों में सामान्यतः वायु परागण (wind pollination) होता है।
- 11. प्राय: बहुभ्रूणता (polyembryony) पाई जाती है; किन्तु अंकुरण के समय केवल एक ही धूण विकसित होता है।
- 12. नग्न बीजाण्ड से निषेचन तथा परिवर्द्धन के बाद नग्न बीज बनाता है। फल (fruits) नहीं बनते।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1.

सभी शैवालों में पाया जाता है

- (क) पर्णहरित-a तथा पर्णहरित-b
- (ख) पर्णहरित-b तथा कैरोटीन्स
- (ग) पर्णहरित-a तथा कैरोटीन्स
- (घ) फाइकोबिलिन्स तथा कैरोटीन्स

उत्तर:

(क) पर्णहरित-a तथा पर्णहरित-b

प्रश्न 2.

निम्नलिखित में से कौन-सा शैवाल भूमि में वातावरण की नाइट्रोजन स्थिर करता है?

(क) ऐनाबीना

- (ख) यूलोथ्रिक्स
- (ग) स्पाइरोगायरा
- (घ) म्यूकर

उत्तर:

(क) ऐनाबीना

प्रश्न 3.

ऐसीटेबुलेरिया नामक शैवाल के प्रयोगों द्वारा केन्द्रक के महत्व को सर्वप्रथम बताया

- (क) वाट्सन ने
- (ख) हैमरलिंग ने
- (ग) नीरेनबर्ग ने
- (घ) रॉबर्ट ब्राउन ने

उत्तर:

(ख) हैमरलिंग ने

प्रश्न 4.

ऐसीटेबुलेरिया है एक

- (क) एककोशिकीय हरी शैवाल
- (ख) बहुकोशिकीय हरी शैवाल
- (ग) एककोशिकीय लाल शैवाल
- (घ) बहुकोशिकीय लाल शैवाल

उत्तर:

(क) एककोशिकीय हरी शैवाल

प्रश्न 5.

एल्सिनेट्स, एल्जिनिक अम्ल के लवण हैं जो कोशिका भित्ति में पाये जाते हैं।

- (क) रोडोफाइसी के सदस्यों में
- (ख) मिक्सोफाइसी के सदस्यों में
- (ग) फियोफायसी के सदस्यों में
- (घ) क्लोरोफाइसी के सदस्यों में

उत्तर:

(ग) फियोफायसी के सदस्यों में

प्रश्न 6.

निम्न में से कौन-सा ब्रायोफाइट मृतोपजीवी है?

(क) फ्यूनेरियो

- (ख) रिक्सिया (ग) बक्सबोमिया (घ) ये सभी उत्तर :
- (ग) बक्सबोमिया

प्रश्न 7.

टेरिडोफाइट्स.....भी कहलाते हैं

- (क) फैनेरोगैम्स
- (ख) वैस्कुलर क्रिप्टोगैम्स
- (ग) क्रिप्टोगैम्स
- (घ) एन्जिओस्पर्स

उत्तर:

(ख) वैस्कुलर क्रिप्टोगैम्स।

प्रश्न 8.

प्रवालाभ जड़े (coralloid roots) पायी जाती हैं

- (क) साइकस में
- (ख) फ्यूनेरिया में
- (ग) टेरिस में
- (घ) लाइकोपोडियम में

उत्तर :

(क) साइकस में

प्रश्न 9.

निम्नलिखित में से किसमें चूषक परीगनली पायी जाती है?

- (क) पाइनस में
- (ख) साइकस में
- (ग) हिबिस्कस में
- (घ) एलियम में

उत्तर:

(ख) साइकस में

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.

लाइकेन के दोनों घटकों का नाम लिखिए।

उत्तर:

- 4
 4
 5
 6
 7
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
- 2. शैवाल

प्रश्न 2.

चाय की पत्तियों पर लाल कि ह (Red rust) रोग किस कारण होता है? या एक परजीवी शैवाल का नाम लिखिए।

उत्तर:

सीफैल्यूरोस (Cephaluros) शैवाल से।

प्रश्न 3.

नाइट्रोजन का स्थिरीकरण करने वाले दो नीले-हरे शैवालों के नाम लिखिए। या किसी शैवाल का नाम लिखिए जो नाइट्रोजन स्थिरीकरण में भाग लेता है।

उत्तर:

नॉस्टॉक तथा ऐनाबीना।

प्रश्न 4.

उस एककोशिकीय शैवाल का नाम लिखिए जो प्रकाश संश्लेषण के अनुसन्धान में प्रयुक्त होता है। या किस शैवाल में प्रचुर मात्रा में प्रोटीन पाई जाती है?

उत्तर :

क्लोरेला (Chlorella)

प्रश्न 5.

एक शैवाल का नाम बताइए जिसमें सर्पिल हरितलवक होते हैं

उत्तर:

स्पाइरोगायरा

प्रश्न 6.

नीले-हरे शैवालों और जीवाणुओं में क्या समानताएँ हैं? या नीले-हरे शैवालों को सायनोबैक्टीरिया क्यों कहते हैं?

उत्तर:

नीले :

हरे शैवाल और जीवाणु दोनों ही मृदा में नाइट्रोजन का स्थिरीकरण करते हैं। नीले-हरे शैवालों में

क्लोरोफिल पाया जाता है जिसकी सहायता से वे प्रकाश संश्लेषण की क्रिया द्वारा अपना भोजन स्वयं बनाते हैं इसीलिए उन्हें सायनोबैक्टीरिया कहते हैं।

प्रश्न 7.

ब्रायोफाइटा के दो प्रमुख लक्षण लिखिए।

उत्तर :

- 1. इस समुदाय के अधिकांश पौधे हरे होते हैं तथा पृथ्वी पर नम एवं छायादार स्थानों पर उगते हैं। किन्तु इनमें निषेचन (fertilization) के लिए जल की आवश्यकता होती है, अत: इन्हें पादप जगत का उभयचर (amphibians of the plant kingdom) कहते हैं।
- 2. ये पौधे छोटे और थैलस की तरह (thalloid) होते हैं। कुछ उच्च श्रेणी के ब्रायोफाइट्स में वास्तविक (true) जड़े, तना तथा पत्तियाँ तो नहीं होतीं, परन्तु पौधे में तने तथा पत्ती के समान संरचनाएँ मिलती हैं। जड़ों के स्थान पर मूलांग (rhizoids) होते हैं। ये मूलांग पौधों को स्थिर रखने और भूमि से खनिज-लवण का अवशोषण करने में सहायक होते हैं।

प्रश्न 8.

फ्यूनेरिया के परिमुख में कितने दाँत पाये जाते हैं?

उत्तर:

32 दाँत पाये जाते हैं, जो दो कतारों में (प्रत्येक कतार में 16 दाँत) में व्यवस्थित होते हैं।

प्रश्न 9.

उस पौधे का नाम लिखिए जिसमें परिमुख (peristome) पाया जाता है।

उत्तर :

परिमुख (peristome) अनेक ब्रायोफाइट्स विशेषकर मॉस (mosses), जैसे-फ्यूनेरिया (Fundria) में पाया जाता हैं।

प्रश्न 10.

उस ब्रायोफाइट का नाम लिखिए जिसमें पाइरीनॉइड पाया जाता है।

उत्तर:

एन्थोसिरोस (Anthoceros)

प्रश्न 11.

किस टेरिडोफाइटा का उपयोग जैव उर्वरक के रूप में किया जाता है?

उत्तर:

जलीय टेरिडोफाइट ऐजोला (Azolla) का, क्योंकि इसमें नीला-हरा शैवाल ऐनग्बीना (Anabaena) पाया जाता है।

प्रश्न 12.

टेरिडोफाइटस में रम्भ (स्टील) की विचारधारा किसने प्रस्तुत की थी?

उत्तर:

वान टोघम (Van Tiegham) एवं इलिट (Doulit) ने।

प्रश्न 13.

टेरिडोफाइट्स के चार प्रमुख लक्षण लिखिए। उत्तर-टेरिडोफाइट्स के चार प्रमुख लक्षण निम्नवत् हैं

- 1. मुख्य पौधा बीजाणुभिद् (sporophyte) होता है जो प्रायः जड़, पत्ती तथा स्तम्भ में विभेदित रहता है।
- 2. ऊतक तन्त्र विकसित होता है, संवहन बण्डल उपस्थित, इनमें संवहन ऊतक (vascular tissue), जाइलम एवं फ्लोएम में भिन्नत होता है।
- 3. इसमें जाइलम में वाहिकाओं (vessels) तथा फ्लोएम में सह-कोशिकाओं (companion cells) का अभाव होता है।
- 4. द्वितीयक वृद्धि (secondary growth) अनुपस्थित, अपवाद स्वरूप आइसोइट्स (Isoetes) में दिवतीयक वृद्धि होती है।

प्रश्न 14.

किस पौधे से तारपीन का तेल प्राप्त किया जाता है? उसका नाम लिखिए।

उत्तर:

अनावृतबीजी पौधे पाइनस से।

प्रश्न 15.

बीरबल साहनी के योगदानों पर संक्षिप्त टिप्पणी लिखिए।

उत्तर:

प्रो॰ बीरबल साहनी विश्व के जाने-माने जीवाश्म वनस्पति विज्ञानी (palaeobotanist) थे। उन्हें भारतीय जीवाश्म वनस्पति विज्ञान का जनक (Father of Indian Palaeobotany) कहा जाता है। उनका विशेष योगदान जुरैसिक युग (Jurassic age) के अनावृतबीजी (gymnosperm) विशेषकर एक वर्ग पेण्टोजाइली (pentoxylae) पर शोध कार्य है। उनके प्रयत्नों से, सन् 1946 में विश्व मान्य 'बीरबल साहनी इन्स्टीट्यूट ऑफ पेलियोबॉटेनी' (Birbal Sahni Institute of Palaeobotany) लखनऊ की स्थापना हुई। पेलियोबॉटेनिकल सोसायटी ऑफ इण्डिया (Palaeobotanical Society of India) की स्थापना भी उनके ही विशिष्ट प्रयत्नों से हुई।

प्रश्न 16.

उस संरचना का नाम बताइए जो साइकस की पर्णिका में पाश्विशरा का कार्य करती है।

उत्तर:

संचरण ऊतक (transfusion tissue) जिसकी कोशिकाएँ अनुप्रस् रूप में लम्बी होती हैं।

प्रश्न 17.

अनावृतबीजी पौधों के चार प्रमुख लक्षण (विशेषताएँ) लिखिए। या अनावृतबीजी पौधों की दो प्रमुख विशेषताएँ लिखिए।

उत्तर:

अनावृतबीजी पौधों के चार प्रमुख लक्षण (विशेषताएँ) निम्नवत् हैं।

- 1. इस वर्ग के पौधे प्रायः बहुवर्षीय तथा काष्ठीय होते हैं।
- 2. ये मरुद्भिद् स्वभाव के होते हैं जिनमें रन्ध्र पत्ती में धंसे होते हैं तथा बाहयत्वचा पर उपत्वचा की परत चढ़ी रहती है।
- 3. भ्रूणपोष अगुणित होता है तथा इसका निर्माण निषेचन के पूर्व ही होता है।
- 4. युग्मकोभिद् पीढ़ी बहुत कम विकसित तथा बीजाणुभिद् पीढ़ी पर ही निर्भर होती है।

प्रश्न 18.

भारतीय जीवाश्म वनस्पति विज्ञान (पुरावनस्पति-विज्ञान) का जनक किसे कहा जाता है?

उत्तर:

प्रो॰ बीरबल साहनी को।

प्रश्न 19.

साइकस तथा फर्न की समानताओं की तुलना कीजिए।

उत्तर:

साइकस तथा फर्न में निम्नलिखित समानताएँ हैं

- 1. बीजाणुभिद् का जड़, तना व पत्ती में विभेदन
- 2. अनावृतबीजीयों के गण साइकेडेल्स के सदस्यों की संयुक्त पत्ती में फर्न की भाँति कुण्डलिन विन्यास (circinate venation)
- 3. संवहन ऊतक का विकास, दारु या जाइलम में वाहिनियाँ व पोषवाह या फ्लोएम में सह-कोशिकाएँ अनुपस्थित।
- 4. विषमबीजाणुकता (heterospory)
- 5. युग्मकोभिद् के आकार में हास।
- 6. बीजाणुभिद् की जटिलता में क्रमिक वृद्धि।

- 7. कुछ अनावृतबीजीयों गण साइकेडेल्स, गिंगोएल्स (order Cycadales, Ginkgoales) में बहुपक्ष्माभीय चलनशील पुंमणु (antherozoids)
- 8. निषेचन से पूर्व भ्रूणपोष का विकास।

प्रश्न 20.

उभयलिंगी पादप किसे कहते हैं? एक उदाहरण दीजिए।

उत्तर:

वे पादप जिनमें नर पुष्प एवं मादा पुष्प दोनों अलग-अलग एक ही पादप पर उपस्थित होते हैं, उभयलिंगी पादप कहलाते हैं।

उदाहरणार्थ :

1. सिड्स देवदार

लघु उत्तरीय प्रश्न

प्रश्न 1.

यूलोथिक्स और स्पाइरोगाइरा के लैगिक जनन की तुलना कीजिए। या राइजोपस तथा स्पाइरोगाइरा के लैगिक प्रजनन की तुलना कीजिए। या चित्रों की सहायता से यूलोथिक्स में लैगिक जनन का वर्णन कीजिए।

उत्तर:

यूलोथिक्स तथा स्पाइरोगाइरा के लैगिक जनन की तुलना

यूलोथिक्स (Ulothrix)

- होता है और संयुग्मन दो युग्मकों (gametes) के मध्य होता है।
- जनन समयुग्मकी (isogamous) होता है। नर तथा जनन असमयुग्मकी (anisogamous) होता है। नर मादा युग्मक आकारिकी रूप में एक जैसे होते हैं।
- में संयुग्मित होते हैं और युग्माणु (zygospores) बनाते हैं।
- युग्मकों में किसी प्रकार का लिंग मिन्नन (sex differentiation) नहीं दिखाई पड़ता।
- चूँिक जाइगोस्पोर अंकुरण के समय पहले चलबीजाण् (zoospores) बनाता है; अतः इसको प्रारम्भिक स्पोरोफाइट माना जा सकता है। इस प्रकार पीढ़ियों के एकान्तरण की प्रारम्भिक रूपरेखा दिखाई देती है।

स्पाइरोगाइरा (Spirogyra)

- लैंगिक जनन संयुग्मन (conjugation) के द्वारा → लैंगिक जनन संयुग्मन के द्वारा ही होता है, किन्तु संयुग्मन दो युग्मकधानियों (gametangia) के मध्य होता है।
 - युग्मकधानी चल तथा मादा युग्मकधानी अचल प्रकार की होती है।
- लैंगिक जनन में दो सीलिया वाले आइसोगैमीट्स जल > युग्मक यद्यपि आइसोगैमीट होते हैं किन्तु एक चल और दूसरा अचल होता है। चलयुग्मक (नर) संयुग्मन नलिका में होकर अचलयुग्मक (मादा) से मिलता है और युग्माणु (zygospore) बनाता है।
 - युग्मकों में लिंग भिन्नन दिखाई देता है। चलयुग्मक नर और अचलयुग्मक मादा की तरह है।
 - जाइगोस्पोर मिओसिस के बाद अंकुरित होकर एक ही पौधे को जन्म देता है, मिओसिस से प्राप्त चार केन्द्रकों में से तीन नष्ट हो जाते हैं। यहाँ पीढ़ियों के एकान्तरण का कोई निर्देश नहीं मिलता।

राइजोपस तथा स्पाइरोगाइरा के लैगिक जनन की तुलना

राइजोपस (Rhizopus)

- लैंगिक जनन संयुग्मन (conjugation) के द्वारा होता है।
- युग्मकधानी (gametangium) ही युग्मक (gamete) की तरह कार्य करती है और संकोशिकी (coenocytic) अर्थात् बहुत सारे केन्द्रकों वाली होती है।
- युग्मक आकार और व्यवहार में एक जैसे होते हैं, समयुग्मक (isogametes)। विषमजालिकता (heterothallism) सामान्यतः पायी जाती है। केवल एक ही जाति में समजालिकता (homothallism) मिलती है।
- युग्मक युग्मकधानियों के मध्य की भित्ति के नष्ट होने से मिलते हैं (plasmogamy)। केन्द्रक काफी देर से संयुक्त होते हैं अर्थात् केरिओगैमी (karyogamy) देर से होती है।
- जाइगोस्पोर (zygospore) मोटी भित्ति से ढका रहता है। यह संकोशिकी (coenocytic) होता है। यह विश्रामी होता है।
- जाइगोस्पोर के अंकुरण के समय ही कैरियोगैमी होती
 है तथा एक द्विगुणित केन्द्रक (2n) ही सक्रिय होता है,
 शेष नष्ट हो जाते हैं।
- केन्द्रक मिओसिस (meiosis) के द्वारा विभाजित होता है। + और – विभेद अलग-अलग हो जाते हैं।
 केवल एक ही केन्द्रक क्रियाशील होता है, शेष नष्ट हो जाते हैं।
- युग्माणु का एकमात्र अगुणित केन्द्रक भीतरी भित्ति के एक निलंका के रूप में बाहर निकलने से कोशिकाद्रव्य के साथ इसी में आ जाता है। बारम्बार विभाजित होने और जीवद्रव्य के नली अर्थात् प्राक्-कवक जाल (promycelium) के सिरे पर एकत्रित होने से एक संकोशिकी (coenocytic) बीजाणुधानी का निर्माण होता है।
- बीजाणुधानी में बीजाणु बनते हैं तथा ये बीजाणु अनुकूल परिस्थित में अंकुरित होकर कवकजाल बनाते हैं।

स्पाइरोगाइरा (Spirogyra)

- यहाँ भी लैंगिक जनन संयुग्मन के द्वारा ही होता है।
- एक युग्मकधानी में एक ही युग्मक बनता है जो एककेन्द्रकी (uninucleate) होता है।
- युग्मक आकार में तो एक-जैसे किन्तु एक अपनी धानी में अचल (non-motile) और दूसरा चल (motile) होता है। सामान्यतः विषमजालिकता जैसी क्रिया नहीं दिखाई देती। कुछ जातियों में तो पार्श्व संयुग्मन के द्वारा एक ही पौधे पर दोनों युग्मक बन जाते हैं।
- चल युग्मक संयुग्मन निका (conjugation tube) में होकर अचल युग्मक के पास पहुँचता है। कोशिकाद्रव्य के मिलने अर्थात् प्लैज्मोगैमी के साथ-साथ कैरिओगैमी भी हो जाती है।
- जाइगोस्पोर मोटी भित्ति से ढका रहता है, किन्तु इसमें एक ही द्विगुणित (2n) केन्द्रक होता है। यह विश्रामी होता है।
- जाइगोस्पोर में प्रारम्भ से ही एक द्विगुणित (2n)
 केन्द्रक होता है। अंकुरण के समय यही एकमात्र द्विगुणित केन्द्रक सक्रिय हो जाता है।
- केन्द्रक मिओसिस द्वारा विभाजित होता है। तीन केन्द्रक नष्ट हो जाते हैं और एक ही अगुणित केन्द्रक (n) क्रियाशील होता है।
- युग्माणु (zygospore) का अगुणित केन्द्रक विभाजित होता है और भीतरी भित्ति एक नली के रूप में निकल कर एक पौधा बना लेती है।
- यहाँ किसी प्रकार के बीजाणु नहीं बनते। युग्माणु से सीधा एक ही पौधा बनता है।

प्रश्न 2.

शैवाल तथा कवक में अन्तर बताइए।

उत्तर:

शैवाल तथा कवक में अन्तर

शैवाल (Algae)

- कोशिकाभित्ति सेल्यूलोज की बनी होती है।
- कोशिकाएँ (मृदूतक) प्रायः स्पष्ट होती हैं।
- इन पौधों में लवकों (plastids) में पर्णहरित (chlorophyll) तथा अन्य वर्णक पाये जाते हैं।
- ये स्वपोषी (autotrophic) होते हैं अर्थात् अपना भोजन प्रकाश संश्लेषण के द्वारा स्वयं बनाते हैं।
- संचित भोजन प्रायः मण्ड होता है।
- ये तीव्र प्रकाश में तेजी से वृद्धि करते हैं।
- निम्न श्रेणी के शैवालों में लैंगिक जनन में जनन अंग प्रायः नहीं बनते हैं। विकसित शैवालों में काफी जटिल जनन अंग पाये जाते हैं।

कवक (Fungi)

- कोशिकाभित्ति कवक सेल्यूलोज (fungal cellulose)
 अथवा काइटिन (chitin) की बनी होती है।
- कोशिकाएँ भिन्नित नहीं होती हैं। प्रायः एक ही जीवद्रव्य में अनेक केन्द्रक निलम्बित होते हैं अर्थात् संकोशिकीय (coenocytic) अवस्था मिलती है।
- लवक, पर्णहरित तथा इस प्रकार के अन्य वर्णक भी नहीं पाये जाते हैं।
- ये परपोषी (heterotrophic) होते हैं अर्थात् मृतजीवी (saprophytes), परजीवी (parasites), सहजीवी (symbionts) आदि हो सकते हैं।
- संचित भोजन मण्ड नहीं होता है। यह प्रायः
 ग्लाइकोजन, वसा या तेल के रूप में होता है।
- ये मन्द प्रकाश या अन्धकार में वृद्धि करते हैं।
- विभिन्न श्रेणियों में लैंगिक जनन अंग भिन्न-भिन्न प्रकार के होते हैं। कई बार अधिक विकसित कवकों में जनन अंग अस्पष्ट तथा लुप्त हो जाते हैं।

प्रश्न 3.

निम्नलिखित को ओसवाल्ड टिप्पों के वर्गीकरण के अनुसार वर्गीकृत कीजिए

- (i) यूलोथ्रिक्स
- (ii) राइजोपस
- (iii) साइकस
- (iv) गुड़हल (हिबिस्कस)
- (v) प्याज (एलियम)
- (vi) एलब्यूगो
- (vii) अरहर
- (viii) पाइनस
- (ix) आलू

उत्तर:

(i) यूलोथ्रिक्स

जगत (kingdom) – पादप (plantae)

उप-जगत (sub -kingdom) – थैलोफाइटा (thallophyta)

संघ (phylum) – क्लोरोफाइटा (chlorophyta)

वर्ग (class) – क्लोरोफाइसी (chlorophyceae)

क्रम (order) – यूलोट्राइकेल्स (ulotrichales)

उप-क्रम (sub-order) – यूलोट्राइकिनी (ulotrichineae)

कुल (family) – यूलोट्राइकेसी (ulotrichaceae)

वंश (genus) – यूलोथ्रिक्स (Ulothrix)

जाति (species) – जोनेटा (zonata)

(ii) राइजोपस

जगत व उप-जगत – यूलोथ्रिक्स के समान

संघ – यूमाइकोफाइटा (eumycophyta)

वर्ग – फाइकोमाइसीट्स (phycomycetes)

उप-वर्ग – जाइगोमाइसीट्स (zygomycetes)

क्रम – म्यूकोरेल्स (mucorales)

कुल – म्यूकोरेसी (mucoraceae)

वंश – राइजोपस (Rhizopus)

जाति – निग्रीकैन्स (nigricans)

(iii) साइकस

जगत – पादप (plantae)

उप-जगत – एम्ब्रयोफाइटा (embryophyta)

संघ – ट्रैकियोफाइटा (tracheophyta)

उप-संघ – टेरॉप्सिडा (pteropsida)

वर्ग – जिम्नोस्पर्मी (gymnospermae)

उप-वर्ग – साइकेडोफाइटी (cycadophytae)

क्रम – साइकेडेल्स (cycadales)

वंश - साइकस (Cycus)

(iv) गुड़हल

जगत से उप-संघ तक - साइकस के समान

वर्ग – एन्जियोस्पर्मी (angiospermae)

उप-वर्ग – डाइकॉटीलीडनी (dicotyledonae)

विभाग – पॉलीपिटेली (polypetalae)

श्रेणी – थैलेमीफ्लोरी (thalamiflorae)

क्रम – मालवेल्स (malvales)

क्ल – मालवेसी (malvaceae)

वंश – हिबिस्कस (Hibiscus)

जाति – रोजासिनेन्सिस (rosasinensis)

(v) प्याज

जगत -से उप-संघ तक – साइकस के समान

वर्ग – एन्जियोस्पर्मी (angiospermae)

उप-वर्ग – मोनोकॉटीलीडनी (monocotyledonae)

श्रेणी – कॉरोनेरी (coronarieae)

कुल – लिलिएसी (liliaceae)

वंश – एलियम (Allium)

जाति – सीपा (cepa)

(vi) एलब्यूगो

जगत – पादप (plantae)

उप-जगत – थैलोफाइटा (thallophyta)

संघ – यूमाइकोफाइटा (eumycophyta)

वर्ग – फाइकोमाइसिटीज (phycomycetes)

वंश – एलब्यूगो (Albugo) जाति – कैन्डिडा (candida)

(vii) अरहर

जगत – पादप (plantae)

उप-जगत – एम्ब्रयोफाइटा (embryophyta)

संघ – ट्रैकियोफाइटा (tracheophyta)

उप-संघ – टेरॉप्सिडा (pteropsida)

वर्ग – एन्जियोस्पर्मी (arigiospermae)

उप-वर्ग – डाइकॉटीलीडनी (dicotyledonae)

वंश – कजानस (Cajanus)

जाति – कजन (cajan)

(viii) पाइनस

जगत – पादप (plantae)

उप-जगत – एम्ब्रयोफाइटा (embryophyta)

संघ – ट्रैकियोफाइटा (tracheophyta)

उप-संघ – टेरॉप्सिडा (pteropsida)

वर्ग – जिम्नोस्पर्मी (gymnospermae)

उप-वर्ग – कोनिफेरोफाइटी (coniferophytae)

गण – कोनिफेरेल्स (Coniferales)

वंश - पाइनस (Pinus)

जाति – रॉक्सबर्थी (roxburghii)

(ix) आलू

जगत – पादप (plantae)

गण – सोलेनेल्स (solanales)

कुल – सोलेनेसी (solanaceae)

वंश – सोलेनम (Solanum)

जाति – ट्यूबेरोसम (tuberosum)

प्रश्न 4.

मॉस (फ्यूनेरिया) सम्पुटिका की अनुदैर्घ्य (ऊर्ध्व) काट का नामांकित चित्र बनाइए (वर्णन की आवश्यकता नहीं है) या फ्यूनेरिया के बीजाणुभिद् की अनुदैर्ध्य काट का एक नामांकित चित्र बनाइए। उत्तर:

मॉस (फ्यूनेरिया) सम्पृटिका (बीजाण्भिद)

OPERCULUM PERISTOME ANNULUS COLUMELLA OUTER WALL SPORES INNER WALL SHOPPODERMAL LAYER

APOPHYSIS

AIR SPACE

चित्र-मॉस (*फ्यूनेरिया*) के स्पोरोगोनियम के ऊपरी भाग सम्पुटिका (कैप्सूल) की अनुदैर्घ्य काट

प्रश्न 5. ब्रायोफाइट्स एवं टेरिडोफाइट्स में कोई चार अन्तर लिखिए।

उत्तर:

ब्रायोफाइट्स	टेरिडोफाइट्स
 मुख्य पादप शरीर युग्मकोद्भिद् एवं अगुणित होता 	 मुख्य पादप शरीर बीजाणुद्भिद् एवं द्विगुणित होता है।
है। • सत्य जड़ें और पत्तियाँ अनुपस्थित होती हैं। • संवहनीय ऊतक अनुपस्थित होते हैं। • स्त्रीधानियाँ लम्बी गर्दन वाली तथा कोशिकाओं की 6 खड़ी पंक्तियों वाली होती हैं।	 सत्य जड़ें और पत्तियाँ उपस्थित होती हैं। संवहनीय ऊतक उपस्थित होते हैं।

प्रश्न 6.

निम्नलिखित के केवल नामांकित चित्र बनाइए

- (क) साइकस के सूक्ष्मबीजाणुधानी की लम्ब काट
- (ख) साइकस के पत्रक (पर्णक) की अनुप्रस्थ काट
- (ग) साइकस के बीजाण्ड की अनुदैर्घ्य काट

उत्तर :

(क) साइकस के सूक्ष्मबीजाणुधानी की लम्ब काट

(ख)

साइकस के पत्रक (पर्णक) की अन्प्रस्थ काट

साइकस के बीजाण्ड की अनुदैर्घ्य काट

चित्र-साइकस के बीजाण्ड की अनुदैर्घ्य काट का रेखाचित्र

प्रश्न 7. साइकस की कोरैलॉइड जड़ की अनुप्रस्थ काट का नामांकित चित्र बनाइए। यह साइकस की सामान्य जड़ से किस प्रकार भिन्न है?

उत्तर:

साइकस की कोरैलॉइड जड़ की सामान्य जड़ से भिन्नता साइकस की कोरैलॉइड जड़ (coralloid root) सामान्य जड़ से निम्नलिखित विशेषताओं में भिन्न होती है

- 1. कोरैलॉइड जड़े वायवीय (aerial) होती हैं, जबिक सामान्य जड़े भूमिगत होती हैं।
- 2. कोरैलॉइड वल्कुट (cortex) बाहरी, मध्य तथा आन्तरिक वल्कुटों में विभक्त होता है जबिक सामान्य जड़ों में सम्पूर्ण वल्कुट एक ही होता है।
- 3. कोरेलॉइड जड़ का मध्य वल्कुट वास्तव में एक शैवालीय क्षेत्र (algal zone) होता है जिसके बड़े-बड़े अन्तराकोशिकीय स्थानों (intercellular spaces) में एनाबीना (Anabaed), नॉस्टॉक (Nostoc) आदि नीले-हरे शैवाल रहते हैं, जो सामान्य जड़ों में नहीं पाये जाते हैं। साइकस की कोरैलॉइड जड़ की अनुप्रस्थ काट

चित्र-साइकस की कोरैलॉइड जड़ की अनुप्रस्थ काट का कुछ भाग

दीर्घ उत्तरीय प्रश्न

प्रश्न 1. निम्नलिखित के आर्थिक महत्त्व का वर्णन कीजिए

- (क) कवक (फफ्द)
- (ख) टेरिडोफाइट्स

उत्तर

(क) कवकों का आर्थिक महत्त्व कवकों से निम्नलिखित लाभ हैं

1. भोज्य पदार्थों के रूप में (As food):

अनेक कवकों में प्रचुर मात्रा में प्रोटीन तथा विटामिन होते हैं अतः इन कवकों को भोजन के रूप में काम में लाया जा सकता है। उदाहरण-सब्जी। के रूप में (vegetables) कुकुरमुत्ते (mushrooms), गुच्छी (Morchella), लाइकोपरडॉन (Lycoperdon) आदि। खमीर (yeast) अनेक प्रकार से भोज्य पदार्थों को सुधारने, उनमें विटामिन इत्यादि की मात्रा बढ़ाने के लिए प्रयोग में लाया जाता है।

2 औषधि निर्माण में (In medicines) :

अनेक कवकों से अब प्रतिजैविक (antibiotics) प्राप्त किये जाते हैं। एण्टीबायोटिक्स का उपयोग प्रमुखतः जीवाणु रोगों (bacterial diseases) में कियाजाता है। उदाहरण-पेनिसिलिन (penicillin), पेनिसिलियम की जातियों (Penicillium notatum, p chrysogenum), अरगट (ergot) नामक औषधि क्लेविसेप्स परप्यूरिया (Claviceps purpurea) से प्राप्त की जाती है जो रुधिरस्राव (bleeding) रोकने के लिए (विशेषकर प्रसव के समय) प्रयोग में लायी जाती है।

3. उद्योगों में (In industry) :

कवकों से अनेक प्रकार के कार्बनिक अम्ल (organic acids); जैसे— ऑक्सेलिक, लैक्टिक, साइट्रिक अम्ल आदि तथा ऐल्कोहॉल्स' (alcohols), विकर (enzymes), विटामिन्स (vitamins) आदि रासायनिक पदार्थ बनाये जाते हैं जो अत्यन्त महत्त्वपूर्ण होते हैं।

उदाहरण :

यीस्ट के द्वारा शराबों का निर्माण।

$$C_6H_{12}O_6 \xrightarrow{zymase} 2C_2H_5OH + 2CO_2$$
गलकोज एथिल ऐल्कोहॉल

पौधों की वृद्धि के लिए जिबरेलिन्स (gibberellins) उपयोगी सिद्ध हुए हैं। ये जिबरेला फ्यूजीकोराई (Gibberella jugikordi) से तैयार किये जाते हैं। ऐस्पर्जिलस (Aspergillus) तथा पेनिसिलियम (Penicillium) आदि यीस्ट (yeast) के अतिरिक्त पनीर बनाने के काम आते हैं। बेकिंग (baking) उद्योग में यीस्ट अत्यन्त उपयोगी है। अनेक विकर (enzymes) तथा विटामिन्स (vitamins) को औद्योगिक निर्माण यीस्ट, एस्पर्जिलस, राइजोपस (Rhizopus), पेनिसिलियम आदि कवकों के द्वारा किया जाता है। कवक ऑडियम लैक्टिस (Oidium lactis) प्लास्टिक उद्योग में काम आता है।

4. मृदा उर्वरता बनाये रखने में (In maintenance of soil fertility) :

कवक जीवाणुओं की तरह प्राकृतिक अपमार्जक (natural scavengers) का कार्य करते हैं और इस प्रकार भूमि की उर्वरता बढ़ाते हैं। जल को रोकने की शक्ति, ह्यूमस (humus) बनाने में सहयोग, लवणों को। अवशोषित कर उन्हें रोके रखने की शक्ति भी भूमि में उत्पन्न करते हैं।

5. पौधों के पोषण में (In nutrition of plants) :

अनेक पौधों की जड़ों पर या उनके अन्दर कुछ कवक (fungi) रहते हैं। इन्हें क्रमशः एक्टोट्रॉफिक माइकोराइजा तथा एण्डोट्रॉफिक माइकोराइजी (ectotrophic and endotrophic mycorrhiza) कहते हैं। अनेक ऑरिकड्स (orchids), मोनोटोपा यूनीफ्लोरा (Monotropd uniflora), साराकोड्स (Sardcodes), पाइनस (Pinus), जैमिया (Zamia) आदि इसके उदाहरण हैं।

(ख)

टेरिडोफाइट्स का आर्थिक महत्त्व

टेरिडोफाइट्स से निम्नलिखित लाभ हैं

1. जैव उर्वरक के रूप में (As Biofertilizer):

एजोला के अन्दर एनाबीना ऐजोली (Anabdena gzotlae) नामक नीला-हरा शैवाल वास करता है। यह शैवाल स्वतन्त्र नाइट्रोजन को स्थिरीकरण करता है।

इस कारण से एजोला को धान आदि के खेतों में उर्वरक (fertilizer) के रूप में प्रयोग किया जाता है। यह पौधा तालाब की सतह पर अधिक वृद्धि करके मच्छर के लावीं को साँस लेने में अवरोध करता है।

2. सजावट के लिए (Ornamental Plants):

फर्न की विभिन्न जातियाँ घरों व बगीचों में सुन्दरता के लिए लगाई जाती हैं; जैसे-लाइकोपोडियम (ground pines) तथा सैलाजिनेला (spike mosses) आदि।

3. खाद्य पदार्थ के रूप में (As Food):

क्विलक्स (आइसोइट्स- Isoetes) के घनकन्द (corms), मनुष्यों, पालतू व जंगली जन्तुओं द्वारा खाए जाते हैं।

4. मनोरंजन हेतु (For Entertainment) :

सैलाजिनेला की कुछ मरुभिद् जातियों को पुनर्जीवनी पौधे (resurrection plant) कहा जाता है, इन्हें कौतुहल वश बाजार में बेचा जाता है। ये पौधे सूख जाने पर मुड़कर छोटी गेंद (balls) के रूप में बदल जाते हैं और पूर्णतया मृत प्रतीत होते हैं। पुन: जल में डाल दिए जाने पर पौधे तेजी से पूर्णतया खुलकर हरे हो जाते हैं।

5. जीवाश्म ईंधन का निर्माण (Formation of Fossil Fuel) :

टेरिडोफाइट्स जीवाश्म ईंधन (fossil fuel) के जमा होने में अत्यधिक महत्त्वपूर्ण हैं। आदि काल में ये विशाल हार्सटेल्स (giant horsetails), क्लब मॉस आदि दलदली वनस्पति (swampy vegetation) का प्रमुख अंश थे। दलदल धीरे-धीरे डूबने लगे और पौधों के विभिन्न भाग एकत्रित होते गए। जल में ऑक्सीजन के अभाव में इन पौधों को जीवाणु विघटित (decompose) नहीं कर पाए। इन परिस्थितियों के कारण कालान्तर में कोयले (coal) का निर्माण हुआ।

6. जीवनाशक के रूप में (As Pesticides) :

लाइकोपोडियम (Lycopodium) की अनेक जातियाँ नाइट्रोजनयुक्त रसायन (alkaloids) बनाती हैं। यह विष का कार्य करता है। अत: कुछ देशों में इसे जीवनाशक (pesticides) के रूप में प्रयोग किया जाता है। प्रश्न 2.

उपयुक्त नामांकित चित्रों के दवारा फर्न के जीवन चक्र का वर्णन कीजिए। मॉस के वयस्क पौधे की

समानता फर्न के जीवन चक्र की किस अवस्था से की जा सकती है? कारण सहित लिखिए। या पीढी एकान्तरण की परिभाषा लिखिए। नामांकित चित्रों की सहायता से इसे फर्न के जीवन चक्र के साथ स्पष्ट कीजिए।

उत्तर:

पीढी एकान्तरण

लैंगिक जनन (sexual reproduction) के समय जब दो युग्मकों (gametes) के संलयन (fusion) से युग्मज (Zygote) का निर्माण होता है तो एम्ब्रयोफाइटा (embryophyta) समूह के पोधों में यह सूत्री विभाजन के द्वारा एक बहुकोशिकीय (multicellular) स्पष्ट भ्रूण (embryo) का निर्माण करता है। यह भ्रूण एक द्विगुणित संरचना है तथा एक विशेष अवस्था है जो एक द्विगुणित पीढ़ी या सन्तति (diploid generation) का निर्माण करती है। इस पीढ़ी को बीजाणुभिद् (sporophyte) कहते हैं। बीजाणुभिद् बीजाणुओं (spores) द्वारा जननकरता है, जो अर्द्धसूत्री विभाजन (meiosis) के बाद बनते हैं और अगुणित (haploid) होते हैं। प्रत्येक बीजाणु अंकुरित होता है और सामान्य सूत्री विभाजनों द्वारा बहुकोशिकीय अवस्था अर्थात्यु गमकोभिद् (gametophyte) पीढ़ी का निर्माण करता है। इसी पीढ़ी से युग्मकों का निर्माण होता है। उपर्युक्त के अनुसार, एक एम्ब्रयोफाइटिक पौधे (embryophytic plant) में दो पीढ़ियाँ (generations), युग्मकोद्भिद् तथा बीजाणुभिद् एक जीवन चक्र (life cycle) को बनाती हैं। इस प्रकार युग्मकोभिद् पीढ़ी से बीजाणुभिद् पीढ़ी तथा बीजाणुभिद् पीढ़ी से युग्मकोभिद् पीढ़ी का एक के बाद एक आना पीढ़ियों का एकान्तरण (alternation of generations) कहलाता है।

एक फर्न, टेरिस या ड्रायोप्टेरिस का जीवन चक्र

विभाग ट्रैकियोफाइटा (tracheophyta) के उपविभाग टेरोफाइटा या फिलिकोफाइटा (pterophyta or filicophyta), वर्ग लेप्टोस्पोरैन्जियोप्सडा (leptosporangiopsida), गण फिलिकेल्स (filicales) के सदस्य सामान्यत: फर्न (fern) कहलाते हैं। इन पौधों के जीवन चक्र सामान्य रूप से समान प्रकार के होते हैं। यहाँ वर्णन प्रमुखतः ड्रायोप्टेरिस फिलिक्स मैस (Dryoteris filix mas) नामक पौधे के सन्दर्भ में है।

1. बीजाणुभिद् (Sporophyte) :

यह फर्न का मुख्य पौधा होता है। इसके तीन प्रमुख भाग होते हैं

- 1. प्रकन्द (rhizome), जो भूमि में तिरछा उगता है। इसका केवल अगला शीर्ष भाग ही भूमि से बाहर निकला रहता है।
- 2. प्रकन्द से निकलने वाली अनेक पत्तियाँ तथा
- 3. अपस्थानिक जड़े। फर्न के पौधे में पत्तियाँ विशेष रूप से काफी बड़ी सामान्यतः द्विपिच्छाकार संयुक्त (bipinnate compound) होती हैं और ये पौधे की प्रमुख पहचान हैं।

2. बीजाणुपर्ण (Sporophylls) :

कुछ सामान्य पत्तियाँ ही बीजाणुपर्ण (sporophylls) का कार्य करती हैं। इन पत्तियों के पर्णकों की निचली सतह पर अनेक बीजाणुधानियाँ (sporangia) समूहों के रूप में लगी रहती हैं। बीजाणुधानियों के समूहों को सोराई (sori) कहा जाता है।

3. सोरस तथा उसकी बीजाण्धानियाँ (Sorus and its sporangia):

प्रत्येक सोरस में कई बीजाणुधानियाँ होती हैं। प्रत्येक बीजाणुधानी की भित्ति एक कोशिका मोटी होती है तथा इसमें 12 से 16 तक बीजाणु मातृ कोशिकाएँ (spore mother cells) होती हैं। प्रत्येक बीजाणु मातृकोशिका (2n) से अर्द्धसूत्री विभाजन (meiosis) के द्वारा चार अगुणित (haploid=n) बीजाणुओं (spores) का निर्माण होता है। इस प्रकार फर्न का पौधा जो एक बीजाणुभिद् होता है, बीजाणुओं के द्वारा अलेंगिक जनन (asexual reproduction) करता है।

4. बीजाणुधानी का स्फुटन तथा बीजाणुओं का प्रकीर्णन (Dehiscence of sporangium and dispersal of spores) :

शुष्क अवस्थाओं में सोरस तथा बीजाणुधानी का स्फुटन एक विशेष प्रकार से होता है। इससे बीजाणु (spores) दूर तक छिटक जाते हैं तथा वायु में तैरतेहुए भूमि पर पहुँचकर अंकुरित होते हैं।

5. युग्मकोभिद् (Gametophyte) :

प्रत्येक बीजाणु अनुकूल अवस्थाओं में अंकुरित होकर एक नयी पीढ़ी को जन्म देता है। यह एक पूर्णतः स्वतन्त्रजीवी, पौधे की तरह की संरचना बनाता है। इसे प्रोथैलस (prothallus) कहते हैं। यही फर्न की प्रमुख युग्मकोभिद (gametophyte) अवस्था है।

6. प्रोथैलस (Prothallus) :

यह एक हरे रंग की चपटी, पतली, हृदयाकार (heart shaped) तथा शयान (prostrate) संरचना होती है और भूमि पर लेटी हुई दशा में बढ़ती है। इसका अग्र भाग चौड़ा होता है तथा इसके मध्य भाग में एक गर्त (notch) होता है जिसके दोनों ओर की पालियाँ एक-दूसरे को ढकने वाली (overlapping) होती हैं। प्रोथैलस के पश्च, संकरे सिरे के निचले भागे से मूलाभास (rhizoids) निकलते हैं। यह स्वपोषी (autotrophic) होता है।

7. जननांग (Reproductive organs) :

फर्न का प्रोथैलस एक उभयलिंगाश्रयी (monoecious) संरचना है अर्थात् एक ही प्रोथैलस पर नर तथा मादा जननांग बन जाते हैं यदयपि केवल परनिषेचन (cross fertilization) ही होता है। नर जननांग प्ंधानियाँ (antheridia) होती हैं तथा मादा जननांग

चित्र—फर्न (ड्रायोप्टेरिस) के जीवन चक्र की विभिन्न अवस्थाओं का चित्रीय निरूपण

स्त्रीधानियाँ (archegonia) होती हैं। जननांग प्रोथैलस के मध्य तथा पश्च भाग तक फैले अधिक मोटे (thick), गद्दी (cushion) के समान भाग पर बनते हैं। स्त्रीधानियाँ गर्त (notch) के आस-पास किन्तु पुंधानियाँ पश्च भाग में बनती हैं।

8. पुंधानी तथा नर युग्मक (Antheridium and male gametes) :

एक परिपक्व पुंधानी प्रोथैलस के तल से बाहर उभरी होती है। यह एक गोल, एककोशिका मोटी भित्ति वाली संरचना होती है। इसके अन्दर 20-50 तक नर युग्मक (male gametes) अर्थात् पुमणुओं (antherozoids) का निर्माण होता है। पुमणु एक सिंप्रग के समान कुण्डलित, बहुपक्ष्माभिकी (multicilliate) तथा सचल (motile) होते हैं। ये रसायन अनुचलित (chemotactic) होते हैं और जल में तैरकर स्त्रीधानी तक पहुँचते हैं।

9. स्त्रीधानी तथा मादा युग्मक (Archegonium and female gamete) :

एक परिपक्व स्त्रीधानी (archegonium) फ्लास्क के समान तिरछी गर्दन वाली संरचना होती है। इसकी गर्दन, चार ऊर्ध्व पंक्तियों में लगी कोशिकाओं से बनी होती है। इसके फूले हुये भाग अण्डधा (venter) का कोई अपना स्तर नहीं होता। यह प्रोथैलस में ही धंसी रहती है। इसकी गर्दन में ग्रीवा नाल कोशिका (neck

canal cell) एक ही, किन्तु द्विकेन्द्रकीय (binucleate) होती है। इसके अतिरिक्त एक अण्डधा नाल कोशिका (venter canal cell) तथा सबसे भीतरी फूले हुये भाग में एक अण्डाणु (oosphere) होता है। अण्डाणु ही अचल (non-motile) मादा युग्मक है।

10. निषेचन (Fertilization) :

निषेचन की क्रिया के लिए जल आवश्यक होता है। स्त्रीधानी के परिपक्व होने पर इसका मुँह खुल जाता है। इस समय मुंह पर उपस्थित कोशिकाएँ नष्ट हो जाती हैं, साथ ही ग्रीवा नाल कोशिका तथा अण्डधा नाल कोशिका नष्ट होकर श्लेष्मक बना लेती हैं। श्लेष्मक मुँह से भी बाहर निकलने लगता है जिसमें उपस्थित मैलिक अम्ल (malic acid) से आकर्षित होकर पुमणु जल में तैरते हुये स्त्रीधानी में घुस आते हैं। इनमें से एक अण्डाणु (oosphere) में प्रवेश कर इसे निषेचित (fertilize) करता है। इस प्रकार अण्डाणु से द्विगुणित (diploid = 2n) युग्मनज (zygote) बनता है। शीघ्र ही युग्मनज अपने चारों ओर एक मोटी भित्ति का निर्माण करता है और निषिक्ताण्ड (oospore) में बदल जाता है।

चित्र-फर्न के जीवन चक्र की विभिन्न अवस्थाओं का रेखाचित्रीय निरूपण तथा पीढ़ी एकान्तरण 11. भ्रूण तथा नये

बीजाणुभिद् का निर्माण (Formation of embryo and new sporophyte) :

निषिक्ताण्ड (oospore) सामान्य सूत्री विभाजनों (mitotic divisions) से बार-बार एक विशेष पैटर्न में विभाजित होता है तथा एक भ्रूण (embryo) का निर्माण करता है। एक प्रोथैलस पर यद्यपि कई स्त्रीधानियों में निषेचन तथा उससे आगे की अन्य क्रियाएँ हो सकती हैं, किन्तु सामान्यतः भ्रूण एक ही निर्मित हो पाता है। यही भ्रूण बढ़ते हुये अण्डधा द्वारा बनाये गये कैलिप्ट्रा (calyptra) को भी तोड़-फोड़ देता है। इसका एक भाग पाद की तरह प्रोथैलस से सम्बन्धित रहता है, किन्तु शीघ्र ही एक मूल कुछ दूरी तक प्रोथैलस के साथ बढ़कर बढ़ते हुये भ्रूण को मृदा में जमा देती है। उधर प्ररोह शीर्ष पर लगी प्राथमिक पत्ती प्रोथैलस के गर्त में से होकर ऊपर निकल आती है और हरी हो जाती है। शीर्ष अब प्रकन्द (rhizome) में बदल जाता है। इस प्रकार एक छोटा-सा नया बीजाण्भिद (new sporophyte) तैयार हो जाता है।

उपर्युक्त विवरण स्पष्ट करता है कि यहाँ पीढ़ियों को एकान्तरण दो स्पष्ट, स्वतन्त्रजीवी, स्वपोषी सन्तितयों अर्थात् प्रोथैलस (युग्मकोद्भिद्) तथा मुख्य पौधे (बीजाणुभिद्) के मध्य होता है मॉस का वयस्क पौधा (adult plant of moss) मॉस के जीवन चक्र की युग्मकोभिदी (gametophytic) पीढ़ी है। फर्न के जीवन चक्र में प्रमुख युग्मकोभिद् इसका प्रोथैलस (prothallus) होता है।

निम्नलिखित कारण इसे स्पष्ट करते हैं

- 1. दोनों की कोशिकाओं में ग्णसूत्रों की संख्या अग्णित (n) होती है।
- 2. दोनों का निर्माण बीजाणु (spore) के अंकुरण से बने सूत्राकार संरचनाओं पर होता है।
- 3. दोनों ही लैंगिक जनन के लिए नर तथा मादा जननांगों अर्थात् पुंधानियाँ व स्त्रीधानियाँ (antheridia and archegonia) तथा उनसे क्रमश: नर व मादा युग्मकों अर्थात् एन्थ्रोजोइड्स (antherozoids) व अण्डाणु (oosphere) का निर्माण करते हैं।
- 4. निषेचन के बाद दोनों के ऊपर नये बीजाण्भिदों (sporophytes) का निर्माण होता है।
- 5. निषेचन तथा बीजाणुभिद् के परिवर्द्धन की अवस्थाओं आदि में भी काफी समानता होती है। प्रश्न 3.

नामांकित चित्रों की सहायता से आवृतबीजी पौधों के जीवन चक्र का वर्णन कीजिए। या एक द्विबीजपत्री पौधे के जीवन चक्र का नामांकित रेखीय चित्र बनाइए।

उत्तर:

आवृतबीजी (द्विबीजपत्री) पौधे का जीवन चक्र एक आवृतबीजी पौधा एक अत्यधिक विकसित तथा जिटल शरीर वाला बीजाणुभिद् (sporophyte) होता है अर्थात् यह द्विगुणित (diploid = 2n) होता है। इसके जीवन चक्र की प्रमुख अवस्थाएँ

निम्नलिखित होती हैं

- 1. पौधे पर पुष्प (flowers) लगते हैं जिनमें लैंगिक अंग (sexual organs) क्रमशः नर तथा मादा पुंकेसर (stamens) और स्त्रीकेसर या अण्डप (carpels) होते हैं।
- 2. प्रत्येक पुंकेसर का जनन भाग विशेष अंग परागकोष (anther) होता है जिसके अन्दर विशेष कोशिकाओं द्विगुणित (diploid=2n) लघुबीजाणु मातृ कोशिकाओं (microspore mother cells) में अर्द्धसूत्री विभाजन (meiosis) के द्वारा अगुणित (haploid=n) लघुबीजाणुओं (microspores) का निर्माण होता है। लघुबीजाणु ही युग्मकोभिद् (gametophyte) की प्रथम अवस्था है
- 3. प्रत्येक स्त्रीकेसर या अण्डप (carpel) में अण्डाशय (ovary) के अन्दर बीजाण्ड (ovule) बनते हैं, जो इसकी गुरुबीजाणुधानियाँ (megasporangia) हैं।

- 4. बीजाण्ड के मुख्य भाग बीजाण्डकाय (nucellus) में एक बीजाणु मातृ कोशिका (megaspore mother cell) से चार गुरुबीजाणुओं (megaspores) का निर्माण होता है जो इसके मादा युग्मकोभिद् (female gametophyte) की प्रारम्भिक अवस्था है
- 5. प्रत्येक बीजाण्ड में बनने वाले चार गुरुबीजाणुओं में से केवल एक बढ़कर भ्रूणकोष (embryo sac) बनाता है। यही इसका मादा युग्मकोभिद् है जिसमें प्राय: केवल आठ केन्द्रक ही होते हैं, इनमें एक मादा युग्मक (female gamete) या अण्ड (ovum or egg cell) भी सम्मिलित है।
- 6. परिपक्व नर युग्मकोभिद् या परागकण केवल दो ही कोशिकाओं का बना होता है तथा इसी अवस्था में परागण के लिए यह परागकोष से बाहर निकलता है।
- 7. परागण (pollination) की क्रिया के द्वारा परागकण मादा अंग जायांग के वर्तिकाग्र पर किसी साधन से पहुँचते हैं और यहीं अंकुरित होकर पराग निलका (pollen tube) बनाते हैं। प्रत्येक पराग निलका के सिरे पर नर युग्मकोभिद् का वर्दी केन्द्रक या निलका केन्द्रक (tube nucleus) तथा थोड़ा जनन केन्द्रक (generative nucleus) होता है, जो बाद में पराग निलका में ही विभाजित होकर दो नर युग्मक (male gametes) बनाता है। पराग निलका वर्तिका से होती हुई अण्डाशय में तथा बाद में बीजाण्ड के अन्दर प्रवेश करके नर युग्मकों (male gametes) को भ्रूणकोष (embryo sac) के अन्दर पहुँचाती है।

चित्र-एक आवृतबीजी (द्विबीजपत्री) पौधे के जीवन चक्र की प्रमुख घटनाओं का चित्रीय निरूपण 8. दो नर युग्मकों में से, एक मादा युग्मक (अण्ड कोशिका) से संयुग्मित होता है तथा दूसरा नर युग्मक द्वितीयक केन्द्रक

(secondary nucleus) से संयुक्त होता है। इस प्रकार, इन पौधों में दिनिषेचन (double fertilization) की क्रिया होती है।

- 9. द्वितीयक केन्द्रक पहले ही दो ध्रुवीय केन्द्रकों के मिलने से बनता है; अत: द्विनिषेचन के अन्त में दौ भिन्न-भिन्न प्रकार के केन्द्रक बनते हैं-एक द्विगुणित (diploid=2n) अब भ्रूणीय कोशिका (embryonal cell) में उपस्थित तथा दूसरा प्रायः त्रिगुणित (triploid=3n) अर्थात् भ्रूणपोष केन्द्रक (endospermic nucleus) जो सम्पूर्ण भ्रूणकोष का प्रतिनिधित्व करने वाले जीवद्रव्य में स्थित होता है। 10. भ्रूणीय कोशिका (embryonal cell) से भ्रूण (embryo) का निर्माण होता है। भ्रूणपोषीय केन्द्रक (endospermic nucleus) भ्रूणकोष के जीवद्रव्य के साथ एक पोषक संरचना भ्रूणपोष (endosperm) का निर्माण करता है।
- 11. सम्पूर्ण बीजाण्ड भ्रूण और भ्रूणपोष के बनने से बीज में बदल जाता है, जबिक अण्डाशय फल (fruit) बनाता है। बीज के अन्दर भ्रूण नया बीजाणुभिद् (sporophyte) है; अतः ये जब भी अंकुरित होते हैं तो नये पौधे बनाते हैं।