Differential Geometry and Topology Tutorial 1 2018/04/13

Т	he i	Lecturer
	110	иссынгег

 $Name_{-}$

Instructions. Please write down your answers in details.

1. Show that the signed curvature k_s of any regular planar curve $\gamma(t)$ is smooth. Use this to prove that the curvature k(t) is smooth if k(t) > 0 for any t. Given an example to show that k(t) may not be smooth if k(t) = 0 for some t.

2.

2.3.2 Describe all curves in \mathbb{R}^3 which have *constant* curvature $\kappa > 0$ and *constant* torsion τ .

3.

2.2.5 Let $\gamma(t)$ be a regular plane curve and let λ be a constant. The parallel curve γ^{λ} of γ is defined by

$$oldsymbol{\gamma}^{\lambda}(t) = oldsymbol{\gamma}(t) + \lambda \mathbf{n}_s(t).$$

Show that, if $\lambda \kappa_s(t) \neq 1$ for all values of t, then γ^{λ} is a regular curve and that its signed curvature is $\kappa_s/|1-\lambda \kappa_s|$.

4.

2.2.6 Another approach to the curvature of a unit-speed plane curve γ at a point $\gamma(s_0)$ is to look for the 'best approximating circle' at this point. We can then *define* the curvature of γ to be the reciprocal of the radius of this circle.

Carry out this programme by showing that the centre of the circle which passes through three nearby points $\gamma(s_0)$ and $\gamma(s_0 \pm \delta s)$ on γ approaches the point

$$\boldsymbol{\epsilon}(s_0) = \boldsymbol{\gamma}(s_0) + rac{1}{\kappa_s(s_0)} \mathbf{n}_s(s_0)$$

as δs tends to zero. The circle \mathcal{C} with centre $\epsilon(s_0)$ passing through $\gamma(s_0)$ is called the *osculating circle* to γ at the point $\gamma(s_0)$, and $\epsilon(s_0)$ is called the *centre of curvature* of γ at $\gamma(s_0)$. The radius of \mathcal{C} is $1/|\kappa_s(s_0)| = 1/\kappa(s_0)$, where κ is the curvature of γ – this is called the *radius of curvature* of γ at $\gamma(s_0)$.