2024-April-5-Shift-2

AI24BTECH11005 - Prajwal Naik

1) 60 words can be made using all the letters of the word BHBJO with or without meaning.

2) Let the $S = \{2, 4, 8, 16, \dots, 512\}$ be partioned into 3 sets , A,B,C with equal number of elements such that AUBUC = S, and $A \cap B = B \cap C = C \cap A = \phi$. The maximum

4) If the constant term in the expansion of $(\frac{3^{0.2}}{x} + \frac{2x}{5\frac{1}{3}})^{12}$, $x \neq 0$, $\alpha.2^8.3^{0.2}$, then 25α is equal

b) 693 c) 742

c) HBBJO

c) 1710

c) $\frac{4}{3}$ d) $\frac{2}{3}$

d) OBBHJ

d) 1640

d) 724

If these words are written as in a dictionary , then the 50^{th} word is:

b) JBBOH

number of such possible partitions of S is equal to

b) 1520

b) $\frac{8}{3}$

3) The area enclosed between the curves y = x |x| and y = x - |x| is :

a) OBBJH

a) 1680

a) 1

to:

a) 639

5) Consider three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , Let $\overrightarrow{a} = 2$, $\overrightarrow{b} = 3$ and $\overrightarrow{a} = \overrightarrow{b} \overrightarrow{X} \overrightarrow{c}$, $\alpha \in [0, \frac{\pi}{3}]$, is the angle between the vectors \overrightarrow{b} and \overrightarrow{c} , then the minimum value of $ \overrightarrow{c} - \overrightarrow{a} ^2$ is equal to:						
a) 124	b) 110	c) 105	d) 121			
6) Let $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx, m, n \ge 0$, If $\int_0^1 (1-x^10)^2 0 dx = a \beta(b,c)$, then $100(a+b+c)$ equals:						
a) 1021	b) 1120	c) 2012	d) 2120			
7) Let (α, β, γ) be the image of the point $(8, 5, 7)$ in the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}$, then $\alpha + \beta + \gamma$ is equal to :						
a) 18	b) 16	c) 20	d) 14			
8) For $x \ge 0$, the least value of K, for which $4^{1+x} + 4^{1-x}$, $\frac{k}{2}$, $16^x + 16^{-x}$, are three consecutive terms of an AP, is equal to						

d) 8

d) 1

11)) Let the circle $C_1: x^2+y^2-2(x+y)+1=0$, and C_2 be a circle having centre at $(-1,0)$ and radius 2. If the line of common chord of C_1 and C_2 intersects the y-axis at the point P, then the square of the distance of P from the centre C_1 is:						
	a) 6	b) 2	c) 4	d) 1			
12)	The differential equation of the family of circles passing through the origin and having centre at the line $y = x$ is:						
	a) $(x^2 - y^2 + 2xy)dx =$ b) $(x^2 + y^2 + 2xy)dx =$	$= (x^{2} - y^{2} - 2xy)dy$ = $(x^{2} + y^{2} - 2xy)dy$	c) $(x^2 + y^2 - 2xy)dx$ d) $(x^2 - y^2 + 2xy)dx$	$= (x^{2} + y^{+}2xy)dy$ = $(x^{2} - y^{2} + 2xy)dy$			
13) $f: [-1,2] \to R$, be given by $f(x) = 2x^2 + x + [x^2] - [x]$, The number of points, where f is not continuous is:							
	a) 19	b) 38	c) 57	d) 76			
14) let $f, g: R \to R$ be defined as : $f(x) = x - 1 $ and $g(x) = e^x$, when $x \ge 0$, $g(x) = x + 1$, $x \le 0$ Then $f(g(x))$ is							
	a) neither one-one nor ontob) both one-one and onto		c) one-one not onto d) onto but not one-one				
15) The coefficients a,b,c in the quadratic equation $ax^2 + bx + c = 0$ are from the set $\{1, 2, 3, 4, 5, 6\}$. If the probability of this equation having one root bigger than the other is p, then 216p is equal to:							
	a) 19	b) 38	c) 57	d) 76			

c) 16

c) $\frac{125\pi}{12}$

b) 10

b) $\frac{3}{2}$

10) Let $S_1 = \{z \in C : |z| \le 5\}, \ S_2 = \left\{z \in C : Im(\frac{z+1-\sqrt{3}i}{1-\sqrt{3}i})\right\}$

b) $\frac{125\pi}{6}$

9) $y(\theta) = \frac{2\cos\theta + \cos 2\theta}{\cos 3\theta + 4\cos 2\theta + 5\cos\theta + 2}$, then at $\theta = \frac{\pi}{2}$, y'' + y' + y is equal to :

a) 4

a) $\frac{1}{2}$

a) $\frac{125\pi}{24}$