tcpdump and wireshark Day 22/365

Summary of the command line options

Command	Explanation
tcpdump -i INTERFACE	Captures packets on a specific network interface
tcpdump -w FILE	Writes captured packets to a file
tcpdump -r FILE	Reads captured packets from a file
tcpdump -c COUNT	Captures a specific number of packets
tcpdump -n	Don't resolve IP addresses
tcpdump -nn	Don't resolve IP addresses and don't resolve protocol numbers
tcpdump -v	Verbose display; verbosity can be increased with -vv and -vvv

Consider the following examples:

- tcpdump -i eth0 -c 50 -v captures and displays 50 packets by listening on the eth0 interface, which is a wired Ethernet, and displays them verbosely.
- tcpdump -i wlo1 -w data.pcap captures packets by listening on the wlo1 interface (the WiFi interface) and writes the packets to data.pcap. It will continue till the user interrupts the capture by pressing CTRL-C.
- tcpdump -i any -nn captures packets on all interfaces and displays them on screen without domain name or protocol resolution.

Command	Explanation
tcpdump host IP or tcpdump host HOSTNAME	Filters packets by IP address or hostname
tcpdump src host IP or	Filters packets by a specific source host
tcpdump dst host IP	Filters packets by a specific destination host
tcpdump port PORT_NUMBER	Filters packets by port number
tcpdump src port PORT_NUMBER	Filters packets by the specified source port number
tcpdump dst port PORT_NUMBER	Filters packets by the specified destination port number
tcpdump PROTOCOL	Filters packets by protocol; examples include ip, ip6, and icmp

Consider the following examples:

- tcpdump -i any tcp port 22 listens on all interfaces and captures tcp packets to or from port 22, i.e., SSH traffic.
- tcpdump -i wlo1 udp port 123 listens on the WiFi network card and filters udp traffic to port 123, the Network Time Protocol (NTP).
- tcpdump -i eth0 host example.com and tcp port 443 -w https.pcap will listen on eth0, the wired Ethernet interface and filter traffic exchanged with example.com that uses tcp and port 443. In other words, this command is filtering HTTPS traffic related to example.com.

You can use tcp[tcpflags] to refer to the TCP flags field. The following TCP flags are available to compare with:

- tcp-syn TCP SYN (Synchronize)
- tcp-ack TCP ACK (Acknowledge)
- tcp-fin TCP FIN (Finish)
- tcp-rst TCP RST (Reset)
- tcp-push TCP Push

Based on the above, we can write:

- [tcpdump "tcp[tcpflags] == tcp-syn"] to capture TCP packets with only the SYN (Synchronize) flag set, while all the other flags are unset.
- tcpdump "tcp[tcpflags] & tcp-syn != 0" to capture TCP packets with at least the SYN
 (Synchronize) flag set.
- tcpdump "tcp[tcpflags] & (tcp-syn|tcp-ack) != 0" to capture TCP packets with at least the SYN (Synchronize) or ACK (Acknowledge) flags set.

Command	Explanation
tcpdump -q	Quick and quite: brief packet information
tcpdump -e	Include MAC addresses
tcpdump -A	Print packets as ASCII encoding
tcpdump -xx	Display packets in hexadecimal format
tcpdump -X	Show packets in both hexadecimal and ASCII formats

Wireshark

A traffic analyser tool Purposes for its use:

- Detecting and troubleshooting network problems, such as network load failure points and congestion.
- Detecting security anomalies, such as rogue hosts, abnormal port usage, and suspicious traffic.
- Investigating and learning protocol details, such as response codes and payload data.

it is not a Intrusion Detection System, it only allows analysts to discover and investigate the packets in depth, it does not modify them.

Packets description follow the OSI Model

```
> Frame 27: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)
> Ethernet II, Src: fe:ff:20:00:01:00 (fe:ff:20:00:01:00), Dst: Xerox_00:00:00 (00:00:01:00:00:00)
> Internet Protocol Version 4, Src: 216.239.59.99, Dst: 145.254.160.237
> Transmission Control Protocol, Src Port: 80, Dst Port: 3371, Seq: 778787098, Ack: 918692089, Len: 160
> [2 Reassembled TCP Segments (1590 bytes): #26(1430), #27(160)]
> Hypertext Transfer Protocol
> Line-based text data: text/html (3 lines)
```