

Representando Relações

George Darmiton da Cunha Cavalcanti CIn - UFPE

• Uma das maneiras de representar relações é através de matrizes.

• Essa abordagem é interessante pois matrizes são uma forma apropriada de representar relações em programas de computador.

• Seja R uma relação de A em B

$$- A = \{a_1, a_2, ..., a_m\}$$

$$-B = \{b_1, b_2, ..., b_n\}$$

• R pode ser representada pela matriz $M_R = [m_{ij}]$

$$m_{ij} = \begin{cases} 1 & \text{se}\left(a_i, b_j\right) \in R \\ 0 & \text{se}\left(a_i, b_j\right) \notin R \end{cases}$$

Sejam $A = \{1,2,3\}$ e $B = \{1,2\}$. R é a relação de A para B contendo os pares ordenados (a,b) se $a \in A$, $b \in B$ e a > b.

Assim,
$$R = \{(2,1), (3,1), (3,2)\}$$

$$\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Analisando propriedades de relações

• A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades.

Para que uma relação seja reflexiva $m_{ii} = 1$. Ou seja, os elementos da diagonal principal devem ser iguais a 1.

Analisando propriedades de relações

Representação matricial de uma relação simétrica.

R é **simétrica** se e somente se $m_{ji} = 1$ sempre que $m_{ij} = 1$. E $m_{ji} = 0$ sempre que $m_{ij} = 0$.

Assim, R é simétrica se e somente se $M_R = (M_R)^T$.

Analisando propriedades de relações

Representação matricial de uma relação anti-simétrica.

R é **anti-imétrica** se e somente se $m_{ji} = 1$ e $i \neq j$ então que $m_{ij} = 0$. E $m_{ii} = 0$ e $i \neq j$ então $m_{ij} = 1$.

A relação R sobre um conjunto é representada pela matriz abaixo. R é reflexiva, simétrica e\ou transitiva?

 $M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Todos os elementos da diagonal principal são 1. R é reflexiva.

 $M_R = (M_R)^T$. R é simétrica.

R não é anti-simétrica.

Operações booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações.
- Sejam duas relações R_1 e R_2 , representadas por duas matrizes M_{R1} e M_{R2} , respectivamente.

$$M_{RI \cup R2} = M_{R1} \vee M_{R2} \qquad M_{RI \cap R2} = M_{R1} \wedge M_{R1}$$

Valor 1 quando M_{R1} ou M_{R2} for igual a 1.

Valor 1 quando M_{R1} e M_{R2} for igual a 1.

Sejam as relações R₁ e R₂ sobre o conjunto A representadas pelas matrizes:

$$\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Quais são as matrizes que representam $R_1 \cup R_2$ e $R_1 \cap R_2$?

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Composição de Relações

- Seja R uma relação de A em B e S uma relação de B em C.
- Suponha que A, B e C tenham m, n e p elementos, respectivamente.
- As matrizes de S°R, R e S são $M_{S\circ R} = [t_{ij}], M_R = [r_{ij}]$ e $M_S = [s_{ii}]$
- O par ordenado $(a_i,c_j) \in S \circ R$ se e somente se existir um elemento b_k de forma que $(a_i,b_k) \in R$ e $(b_k,c_j) \in S$.
- Assim, $t_{ij} = 1$ se e somente se $r_{ik} = s_{kj} = 1$ para algum k.

Encontre a composição das relações R e S, S°R, a partir das representações matriciais.

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Encontre a representação matricial da relação R².

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R^2} = \mathbf{M}_{R}^{[2]} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Representando Relações através de Grafos Direcionados

A relação representada pelo grafo possui os seguintes pares ordenados: (a,b), (a,d), (b,b), (b,d), (c,a), (c,b) e (d,b)

Representando Relações através de Grafos Direcionados

Reflexiva

- Existe um *loop* em cada um dos vértices

• Simétrica

 Para cada arco entre vértices distintos existe um arco na direção oposta

Anti-simétrica

 Não podem existir dois arcos em direções opostas entre dois arcos distintos

Transitiva

 Se existe um arco entre x e y e um arco entre y e z então existe um arco entre x e z.

Dada as relações abaixo, quais são reflexivas, simétricas, anti-simétricas e\ou transitivas?

- √ Reflexiva
- × Simétrica
- × Anti-simétrica
- × Transitiva

- × Reflexiva
- √ Simétrica
- × Anti-simétrica
- × Transitiva

Fecho de um relação

Fecho

- Seja R uma relação sobre um conjunto.
- R pode ou não possuir algumas propriedades P, tais como:
 - Reflexividade;
 - Simetria;
 - Transitividade.
- Uma relação S é o fecho de uma relação R com propriedade P se
 - S tem a propriedade P;
 - $-R\subseteq S$;
 - S é subconjunto de qualquer outra relação que inclua R e tenha a propriedade P.

Fecho Reflexivo

- A relação R={(1,1), (1,2), (2,1), (3,2)} sobre o conjunto A={1,2,3} não é reflexiva.
- É possível construir uma relação reflexiva contendo R que seja a menor possível?
- Isso pode ser feito adicionando (2,2) e (3,3) a R.
- Claramente, essa nova relação contém R e é reflexiva.
- É chamada de **fecho reflexivo** de R.

Qual é o **fecho reflexivo** de $R = \{(a,b) \mid a < b\}$, sobre o conjunto dos inteiros?

O fecho reflexivo de R é

$$\mathbf{R} \cup \Delta = \{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} < \mathbf{b}\} \cup \{(\mathbf{a}, \mathbf{a}) \mid \mathbf{a} \in \mathbf{Z}\}$$
$$= \{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \le \mathbf{b}\}$$

Fecho Simétrico

- A relação {(1,1), (1,2), (2,2),(2,3), (3,1), (3,2)} sobre {1,2,3} não é simétrica.
- Como é possível construir uma relação simétrica que seja a menor possível contendo R?
- É necessário inserir (2,1) e (1,3).
- Essa nova relação é o fecho simétrico de R.

Fecho Simétrico

• O feche simétrico de uma relação pode ser construído a partir da união da relação com sua inversa.

• Assim, $R \cup R^{-1}$ é o fecho simétrico de R.

• Sabendo que $R^{-1} = \{(b,a) \mid (a,b) \in R\}$

Qual é o fecho simétrico da relação R={(a,b) | a>b}, sobre o conjunto dos inteiros positivos?

O fecho simétrico da relação R é
$$R \cup R^{-1} = \{(a,b) \mid a > b\} \cup \{(b,a) \mid a > b\}$$

$$= \{(a,b) \mid a \neq b\}$$

Fecho Transitivo

- Suponha uma relação não transitiva
 - $-R = \{(1,3), (1,4), (2,1), (3,2)\}$ sobre $\{1,2,3,4\}$
- Ao inserir todos os pares (a,c), de forma que os (a,b) e (b,c) pertençam a R, tem-se uma relação transitiva?
- Os pares (a,c) são
 - -(1,2), (2,3), (2,4) e (3,1)
- Adicionando esses pares não será produzido uma relação transitiva.
 - Pois não contém o par (3,4)

Fecho Transitivo

Teorema

O fecho transitivo de uma relação R é igual a R*.

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Seja a relação $R=\{(a,a),(a,b),(b,c),(c,c)\}$ sobre o conjunto $A=\{a,b,c\}$. Encontre:

- a) Fecho reflexivo de R;
- b) Fecho simétrico de R;
- c) Fecho transitivo de R.
- a) $R \cup \{(b,b)\}$
- b) $R \cup \{(b,a), (c,b)\}$
- c) $R^2 = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$

$$R^3 = R^2 \circ R = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$$

$$R \cup R^2 \cup R^3 = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$$

Teorema

 Seja MR a matriz zero-um da relação R sobre um conjunto com n elementos.

• Assim, a matriz do fecho transitivo de R* é

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee \cdots \vee M_R^{[n]}$$

Encontre a matriz zero-um do fecho transitivo da relação R, sabendo que

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Pelo teorema anterior $\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}$

$$\mathbf{M}_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$