Programming Problem 3:

The heuristic function that we used is:

h(n) -> number of misplaced tiles

We evaluate the heuristic function for each state at every level.

The algorithm we tried to implement for the problem 3 is as follows:

Begin:

- 1) Open_States = Initial State
- 2) Closed = []
- 3) While ([Open_State] is not null):
 - i) Remove the leftmost state from Open States; Let's call it X
 - ii) Evaluate X
 - iii) If (X is Goal State)
 - a) Check other elements in the Open_States list and evaluate them.
 - b) Return the path to X
 - iv) else
 - a) Generate Children of X
 - b) For each child of X, do the following based on the case
 - I) Case : (Child not in Open_States or Closed lists)
 Find the heuristic value of the child and add child to Open
 - II) Case : (Child is already in Open_States list but not in Closed)
 If the child was reached by shorter path, then give the
 state on Open_States the shorter path
 - III) Case: (Child is in Closed list)

 If the child was reached by a shorter path, then remove the child from Closed and add it to Open
 - v) Put X into Closed list
 - vi) Re-order the list Open_State by sorting based on the heuristic function

Following is our goal state:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16