Part IB Physics: Lent 2022

QUANTUM PHYSICS EXAMPLES II

Prof. C. Castelnovo

1. A particle of mass m is confined by the potential:

$$V(x) = 0$$
 $0 < x < a$
 $V(x) = V_0$ $a < x < 2a$
 $V(x) = \infty$ elsewhere

where $V_0 = 2\hbar^2\pi^2/ma^2$. If the particle's energy is $25\hbar^2\pi^2/8ma^2$, what is the probability of finding the particle in the interval 0 < x < a: (a) quantum mechanically; (b) classically?

2. A one-dimensional rectangular potential well of depth V_0 has width 2a. Show that there is one and only one bound state for a particle of mass m if

$$\frac{2ma^2V_0}{\hbar^2} < \frac{\pi^2}{4}$$

3. A particle is bound in a one-dimensional potential well:

$$V(x) = \infty$$
 $x < 0$
 $V(x) = -V < 0$ $0 < x < a$
 $V(x) = 0$ $x > a$

in the lowest energy state with total energy -V/4.

Show that the probability that the particle is outside the attractive part of the well is

$$\frac{9\sqrt{3}}{8\pi + 12\sqrt{3}}$$

4. For a one-dimensional harmonic oscillator oscillating with amplitude a, show that the probability of finding the particle in the interval x to x + dx is, according to classical mechanics,

$$P_{\rm cl}(x) dx = \frac{1}{\pi \sqrt{a^2 - x^2}} dx; \quad |x| < a$$

= 0 $|x| > a$.

With the aid of sketches compare this probability with the quantum mechanical one for the n=1 eigenstate with normalised eigenfunction

$$\psi_1(x) = \frac{\sqrt{2}}{\pi^{1/4}} \frac{x}{x_0^{3/2}} e^{-x^2/2x_0^2}$$

where $x_0 = \sqrt{\hbar/m\omega}$.

(Check the normalization of the classical distribution.)

5. Find, by inspecting the wave functions of a quantum simple harmonic oscillator, the energy eigenvalues of a particle of mass m moving in the potential:

$$V(x) = \infty$$
 $x \le 0$
 $V(x) = m\omega^2 x^2/2$ $x > 0$.

- **6.** Write a few brief notes on the *correspondence principle*, and discuss these with your supervisor.
- 7. Consider the following operations, which act on f(x) as described below, where c is a constant:
 - (a) cf(x) vertical scaling;
 - (b) f(x) + c vertical displacement;
 - (c) $f^2(x)$ squaring;
 - (d) df/dx differentiation;
 - (e) g(x)f(x) multiplication by a function;
 - (f) f(df/dx);
 - (g) d^2f/dx^2 double differentiation;
 - (h) f(cx) horizontal scaling;
 - (i) $\sin f(x)$;
 - (j) f(-x) inversion.

Which of these operations are linear?

What are the eigenfunctions of the operations that are linear? (Note: some may not be normalizable.)

8. Which of the following operators are Hermitian, given that \widehat{A} and \widehat{B} are Hermitian?

$$\widehat{A} + \widehat{B}$$
 $c\widehat{A}$ $\widehat{A}\widehat{B}$ $\widehat{A}\widehat{B} + \widehat{B}\widehat{A}$

Show that in one dimension, for functions that tend to zero as $x \to \pm \infty$, the operator d/dx is not Hermitian, but the operator $-i\hbar d/dx$ is Hermitian. Is the operator d^2/dx^2 Hermitian?

- **9.** Show that any non-Hermitian operator \widehat{A} can be written as a linear combination of two Hermitian operators.
- 10. Show that, in one dimension, the state functions e^{-x^2} , xe^{-x^2} and $(4x^2 1)e^{-x^2}$ are mutually orthogonal.
- 11. ϕ_1 and ϕ_2 are normalised eigenfunctions of observable A which are degenerate, and

hence not necessarily orthogonal. If $\langle \phi_1 | \phi_2 \rangle = c$ and c is real, find linear combinations of ϕ_1 and ϕ_2 which are normalised and orthogonal to: (a) ϕ_1 ; (b) $\phi_1 + \phi_2$.

- 12. A space-domain wave function $\psi(x)$ is shifted by x_0 to give a new wave function $\psi(x-x_0)$. Calculate the corresponding momentum-domain operator. Show that the momentum-domain wave function remains normalised even after the operator has been applied.
- 13. For a certain system, the observable A has eigenvalues ± 1 , with corresponding eigenfunctions u_+ and u_- . Another observable B also has eigenvalues ± 1 , but the corresponding eigenfunctions are:

$$v_{+} = (u_{+} + u_{-})/\sqrt{2}$$
 $v_{-} = (u_{+} - u_{-})/\sqrt{2}$

Show that $C \equiv A + B$ is an observable and find the possible results of a measurement of C.

Find the probability of obtaining each result when a measurement of C is performed on an atom in the state u_+ , and express the corresponding eigenstates w_{\pm} of the system immediately after the measurement in terms of u_+ and u_- .

14. By writing \hat{x} and \hat{p} in terms of the raising and lowering operators \hat{a}^{\dagger} and \hat{a} , prove that, for the n^{th} excited state of a one-dimensional harmonic oscillator, $\Delta x \Delta p = (n + \frac{1}{2})\hbar$.

ANSWERS:

- **1.** (a) 1/2; (b) 3/8.
- **5.** $E_n = \hbar\omega(2n + \frac{3}{2}), n = 0, 1, 2, 3, \dots$
- **7.** (a) any f(x); (d) $e^{\alpha x}$; (e) $\delta(x x_0)$; (g) $e^{\alpha x}$ or $\cos(kx + \phi)$; (h) constant or x^b ; (j) $f(x) = \pm f(-x)$.
- **8.** The following are Hermitian: $\widehat{A} + \widehat{B}$; $c\widehat{A}$ if c is real; $\widehat{A}\widehat{B}$ if $[\widehat{A}, \widehat{B}] = 0$; $\widehat{A}\widehat{B} + \widehat{B}\widehat{A}$; d^2/dx^2 .
- **11.** (a) $\frac{c\phi_1 \phi_2}{\sqrt{1 c^2}}$; (b) $\frac{\phi_1 \phi_2}{\sqrt{2(1 c)}}$.
- **15.** $C = \pm \sqrt{2}$, with probabilities $\frac{(2 \pm \sqrt{2})}{4}$. And $w_{\pm} = \sqrt{\frac{1}{2} \left(1 \pm \frac{1}{\sqrt{2}}\right)} u_{+} \pm \sqrt{\frac{1}{2} \left(1 \mp \frac{1}{\sqrt{2}}\right)} u_{-}$.