Name:
MATH E-156 MATHEMATICAL STATISTICS
Assignment 9

- 1. Assume that X, Y, and W are independent normal random variables with means 3, 4, and 5, respectively. Suppose also that each of these random variables has standard deviation 7. Use X, Y, and W to construct
 - (a) a chi-squared random variable with 3 degrees of freedom, χ_3^2

(b) a t random variable with 2 degrees of freedom, t_2

2. Let $U \sim \chi_n^2$. Find E[U].

3. Assume that $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$. Show that the sample variance, $S^2 \doteq \frac{1}{n-1} \sum_{k=1}^n \left(X_k - \bar{X} \right)^2$, is an unbiased estimator of σ^2 , that is, $E[S^2] = \sigma^2$.

4. Let $X \sim \text{Normal}(\mu, \sigma^2)$. Find the moment generating function (mgf) of X.

- 5. Use moment generating functions to show that
 - (a) $X \sim \text{Normal}(\mu, \sigma^2) \implies aX + b \sim \text{Normal}(a\mu + b, a^2\sigma^2)$

(b) $X_i \stackrel{\text{iid}}{\sim} \text{Normal}(\mu_i, \sigma_i^2), i = 1, 2 \implies X_1 + X_2 \sim \text{Normal}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

- 6. Let N, μ , σ^2 be a population size, population mean, and population variance, respectively. Assuming simple random sampling (SRS), let n, \bar{X} , S^2 be a sample size, sample mean, and sample variance, respectively. Assuming n < N, identify whether the given quantity is random
 - (a) *N*
 - (b) n
 - (c) μ
 - (d) σ
 - (e) \bar{X}
 - (f) S^2
 - (g) $1.96 \frac{\sigma}{\sqrt{n}}$
 - (h) $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$
 - (i) $\frac{\bar{X}-\mu}{S/\sqrt{n}}$

- 7. Consider a population consisting of N=3 values: -2,0,2. A simple random sample (SRS) of size n=2 is drawn from the population.
 - (a) List all possible values \bar{X} can take and specify corresponding probabilities.

(b) Using the distribution of \bar{X} you obtained in (a), compute $E[\bar{X}]$ and $\text{Var}(\bar{X})$.

(c) Calculate the population mean μ and population variance σ^2 . Compare μ and σ^2/n with the results you obtained in (b). Discuss.

8. We know that in the case of simple random sampling (SRS) from a population of size N, $\operatorname{Var}(X_i) = \sigma^2$ for all i and $\operatorname{Cov}(X_i, X_j) = -\frac{\sigma^2}{N-1}$ for $i \neq j$, where σ^2 denotes the population variance. Use these results to prove that

$$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right).$$