

Chapter 1

GCSE Revision - Algebraic Proof and Algebra in Context

- 1. Use algebra to prove that the sum of three consecutive whole numbers is always divisible by 3.
- 2. Prove that $(2n+3)^2 (2n-3)^2$ is a multiple of 8 for all positive integer values of n.
- 3. The diagram shows a trapezium.

All the measurements are in centimetres.

The area of the trapezium is $351cm^2$.

(a) Show that
$$2x^2 + x - 351 = 0$$
. (2)

(b) Work out the value of
$$x$$
. (3)

4. Here are two triangles T_1 and T_2 .

The lengths of the sides are in centimetres.

The area of triangle $\mathbf{T_1}$ is equal to the area of triangle $\mathbf{T_2}$.

Work out the value of x, giving your answer in the form $a + \sqrt{b}$ where a and b are integers.

5. Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

Diagram **NOT** accurately drawn

ABCD is a square with a side length of 4x.

M is the midpoint of DC.

N is the point on AD where ND = x.

BMN is a right-angled triangle.

Find an expression, in terms of x, for the area of triangle BMN.

Give your expression in its simplest form.

 $\begin{array}{l} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

 $PQ = x \ cm$

 $PR = 2x \ cm$

Angle $QPR = 30^{\circ}$

The area of triangle $PQR = A \ cm^2$

Show that $x = \sqrt{2A}$.

8.

 $\begin{array}{l} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

In the diagram, all the measurements are in metres.

The perimeter of the triangle is 56 m.

The area of the triangle is $A \text{ m}^2$.

Work out the value of A.

The diagram shows a solid cone and a solid hemisphere.

The cone has a base of radius x cm and a height of h cm.

The hemisphere has a base of radius x cm.

The surface area of the cone is equal to the surface area of the hemisphere.

Find an expression for h in terms of x.

- 10. Umar thinks $(a+1)^2 = a^2 + 1$ for all values of a.
 - (a) Show that Umar is wrong.

(2)

(b) Here are two right-angled triangles.

All the measurements are in centimetres

Show that 2a + 2b + 1 = 2c. a, b and c cannot all be integers. (3)

(c) Explain why. (1)

11. The diagram below shows a large rectangle of length (2x + 6) cm and width x cm. A smaller rectangle of length x cm and width 3 cm is cut out and removed.

 $\begin{array}{l} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

The area of the shape that is left is $100~\rm cm^2$

(a) Show that
$$2x^2 + 3x - 100 = 0$$
. (3)

(b) Calculate the length of the smaller rectangle. Give your answer correct to 3 significant figures. (4)

ABC is a right-angled triangle.

All the measurements are in centimetres.

$$AB = x$$

$$BC = (x+2)$$

$$AC = (x+4)$$

(a) Show that
$$x^2 - 4x - 12 = 0$$
. (3)

(b) i. Solve
$$x^2 - 4x - 12 = 0$$

ii. Hence, write down the length of AC.

13. Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.

14. Prove that $n^2 + n + 1$ is always odd for all integers n.

15. Factorise $2t^2 + 5t + 2$. Hence explain why $2t^2 + 5t + 2$ can never be a prime number for any positive whole number value of t.

Chapter 2

GCSE Revision - Algebra (Excluding Geometric problems and proofs)

1. (a) Simplify $x^7 \times x^3$

(b) Simplify $(m^4)^3$

(c) Simplify $\frac{36af^8}{12a^5f^2}$

2. (a) Solve
$$\frac{4(8x-2)}{3x} = 10$$
 (3)

(b) Write as a single fraction in its simplest form
$$\frac{2}{y+3} - \frac{1}{y-6}$$

3. Solve the simultaneous equations

$$3x + 4y = 5$$

$$2x - 3y = 9$$

$$x = \dots$$

$$y = \dots$$

Total for Question 3 is 4 marks

4.

$$A = 4bc$$

$$A = 100$$

$$b = 2$$

(a) Work out the value of c. (2)

(b) Make
$$k$$
 the subject of the formula, $m = \sqrt{\frac{k+1}{4}}$. (3)

5. Solve
$$\frac{4x-1}{5} + \frac{x+4}{2} = 3$$
 (3)

 $x = \dots$

6. (a) Simplify
$$a^4 \times a^5$$
 (1)

(b) Simplify
$$\frac{45e^6f^8}{5ef^2}$$
 (2)

(c) Write down the value of
$$9^{\frac{1}{2}}$$
. (1)

7. Solve the simultaneous equations

(3)

$$x^2 + y^2 = 9$$

$$x + y = 2$$

Give your answers correct to 2 decimal places.

$$x = \dots y = \dots$$

8. Make p the subject of the formula $y = 3p^2 - 4$.

9. (a) Factorise
$$6 + 9x$$
. (1)

(b) Factorise
$$y^2 - 16$$
. (1)

(c) Factorise
$$2p^2 - p - 10$$
. (2)

10. Solve
$$\frac{2-y}{5} = 1$$
. (5)

$$y = \dots$$

- 11. The expression $x^2 8x + 21$ can be written in the form $(x a)^2 + b$ for all values of x.
 - (a) Find the value of a and the value of b. (3)

$$a = \dots$$
 $b = \dots$

The equation of a curve is y = f(x) where $f(x) = x^2 - 8x + 21$. The diagram shows part of a sketch of the graph of y = f(x).

The minimum point of the curve is M.

(b) Write down the coordinates of M. (1)

(------)

12. Simplify
$$\frac{4(x+5)}{x^2+2x-15}$$
. (2)

13. Solve the simultaneous equations

(4)

$$4x + 7y = 1$$

$$3x + 10y = 15$$

(a) Solve $2x^2 + 9x - 7 = 0$. Give your solutions correct to 3 significant figures. (3)

(b) Solve $\frac{2}{y^2} + \frac{9}{y} - 7 = 0$. Give your solutions correct to 3 significant figures. (2)

14. Simplify $\frac{x+1}{2} + \frac{x+3}{3}$. (3)

- 15. (a) i. Factorise $2t^2 + 5t + 2$.
 - ii. t is a positive whole number.

The expression $2t^2 + 5t + 2$ can never have a value that is a prime number.

Explain why. (3)

16. Make t the subject of the formula

(4)

$$p = \frac{3 - 2t}{4 + t}$$

- 17. Solve $\frac{5(2x+1)^2}{4x+5} = 5x-1$. (5)
- 18. Solve the equations

(4)

$$3x + 5y = 19$$

$$4x - 2y = -18$$

 $x = \dots$

y =

19. Solve the equation $5x^2 + 8x - 6 = 0$. Give each solution correct to 2 decimal places. (3)

20. (a) On the number line below, show the inequality -2 < y < 3.

(1)

(2)

(2)

(b) Here is an inequality, in x, shown on a number line.

Write down the inequality.

- (c) Solve the inequality 4t 5 > 9.
- 21. (a) Factorise fully $2x^2 4xy$. (2)
 - (b) Factorise $p^2 6p + 8$. (2)
 - (c) Simplify $\frac{(x+2)^2}{x+2}$. (1)
 - (d) Simplify $2a^2b \times 3a^3b$. (2)

22. Solve $3x^2 - 4x - 2 = 0$ Give your solutions correct to 3 significant figures. (3)

23. Make t the subject of the formula 2(d-t) = 4t + 7. (3)

 $t = \dots$

24. (a) Simplify fully $\frac{x^2 + 3x - 4}{2x^2 - 5x + 3}$. (3)

(b) Write $\frac{4}{x+2} + \frac{3}{x-2}$ as a single fraction in its simplest form. (3)

25. (a) Factorise $x^2 + px + qx + pq$. (2)

(b) Factorise $m^2 - 4$. (1)

(c) Write as a single fraction in its simplest form $\frac{2}{x-4} - \frac{1}{x+3}$. (3)

26. Find the exact solutions of
$$x + \frac{3}{x} = 7$$
. (3)

27. $-2 \le n < 5$, n is an integer.

(a) Write down all the possible values of
$$n$$
. (2)

(b) Solve the inequality
$$4x + 1 > 11$$
. (2)

28. Simplify
$$(2n^3)^4$$
. (2)

29. (a) Factorise
$$2x^2 - 9x + 4$$
. (2)

Hence, or otherwise,

(b) Solve
$$2x^2 - 9x + 4 = (2x - 1)^2$$

$$30. \ y = p - 2qx^2$$

$$p = -10, \quad q = 3, \quad x = -5$$

(a) Work out the value of
$$y$$
.

(2)

(b) Rearrange
$$y = p - 2qx^2$$
 to make x the subject of the formula. (3)

31. The diagram shows the graph of $y = x^2 - 5x - 3$

(a) Use the graph to find estimates for the solutions of. (3)

i.
$$x^2 - 5x - 3 = 0$$
.

ii.
$$x^2 - 5x - 3 = 6$$
.

(b) Use the graph to find estimates for the solutions of the simultaneous equations (3)

$$y = x2 - 5x - 3$$

$$y = x - 4$$

32. The table shows six expressions. n is a positive integer.

(a) From the table, write the expression whose value is (2)

- i. always even.
- ii. always a multiple of 3.

(b) From the table, write the expression which is a factor of $4n^2 - 1$. (1)

33. Solve the equation $\frac{x}{2} - \frac{2}{x+1} = 1$. (4)

34. Make
$$k$$
 the subject of the formula $t = \frac{k}{k-2}$. (4)

35. (a) Simplify completely
$$\frac{12xy^3}{3x^2y^3}$$
. (2)

36. (a) Expand and simplify
$$(2x + 4y)(4x - 5y)$$
. (2)

(b) Simplify fully
$$\frac{(x+10)^5}{(x+10)^4}$$
. (1)

(c) Simplify fully
$$\frac{x^2 - 25}{x^2 + 7x + 10}$$
 (3)

(d) For all values of
$$x$$
, $x^2 + 6x - 2 = (x + p)^2 + q$. Find the value of p and the value of q .

$$p = \dots, q = \dots$$

37. Make v the subject of the formula $t = \frac{v}{5} + 2$. (2)

 $v = \dots$