PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05258703 A

(43) Date of publication of application: 08 . 10 . 93

(51) Int. CI

H01J 37/20 G03F 1/08 H01J 37/28

(21) Application number: 04124951

(22) Date of filing: 18 . 05 . 92

(30) Priority:

30 . 05 . 91 US 91 710351

(71) Applicant:

NIPPON K L EE KK

(72) Inventor:

DAN MEISUBAAGAA ARAN DEII BURODEII KAATO CHIYADOUITSUKU **ANIRU DESAI** HANSU DOOSU **DENISU ENJI** JIYON GURIIN **RARUFU JIYONSON** KURISU KAAKU MIN II RIN JIYON MATSUMAATORI **BARII BETSUKAA** JIYON GIBIRISUKO **REI POORU** MAIKU ROBINSON POORU SANDORANDO RICHIYAADO SHIMONZU **DEIBITSUDO II EE SUMISU** JIYON TEIRAA RII BENEKURASEN **DEIIN UORUTAASU** POORU UIITSUOREKU SAMU UONGU **EIPURIRU DEYUTSUTA SURENDORA RERE** KAAKUUTSUDO RAFU HENRII PIAASU PAASHII JIYATSUKU WAI JIYAU JIESHII RIN HOI ZA GIYUIEN IEN JIEN OYANGU TEIMOSUII ERU HATSUCHIESON

(54) ELECTRON BEAM INSPECTION METHOD AND SYSTEM THEREOF

(57) Abstract:

PURPOSE: To automate inspection of a conductive substrate such as an X-ray mask by providing a charged particle beam means for scanning the substrate, a means for detecting at least one kind of generated charged particle, and an x-y stage for supporting the substrate.

CONSTITUTION: A mask 57 to be inspected is loaded in an electron column 20 from a holder automatically positioned under the column 20 on an x-y stage 24, while being appropriately oriented, by a mask handier 34 controlled by a system computer 36. An operator, after coarse positioning by means of an optical alignment system 22, scans the mask 57 with an electron beam to observe an image on an image display 46 to store positioning related data in an alignment computer 21. Accordingly, succeeding positioning work can be automated. Defect processing is conducted based on data in a memory block 52 by a defect processor 56 connected to a post processor 58.

COPYRIGHT: (C)1993,JPO&Japio

2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-258703

(43)公開日 平成5年(1993)10月8日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H 0 1 J	37/20	D			
G03F	1/08	S	7369-2H		
H 0 1 J	37/28	Z			

審査請求 未請求 請求項の数35(全 23 頁)

(21)出願番号	特願平4-124951	(71)出願人	
(22)出顧日	平成4年(1992)5月18日		日本ケー・エル・エー株式会社 東京都立川市曙町1丁目31番11号 遠藤第 2ビル
(31)優先権主張番号	710351	(72)発明者	ダン・メイスパーガー
(32)優先日	1991年5月30日		アメリカ合衆国、カリフォルニア州
(33)優先権主張国	米国 (US)		95120、サンノゼ、モンタルパン・ドライ
			プ 1507
		(72)発明者	アラン・ディー・プロディー
			アメリカ合衆国、カリフォルニア州
			94303、パロ・アルト、パン・オーベン・
			サークル 998
		(74)代理人	弁理士 鈴江 武彦
			最終頁に続く

(54) 【発明の名称】 電子ピーム検査方法とそのシステム

(57)【要約】

【目的】X線マスクや同等の導電基板を荷電粒子を使用 して安価に且つ自動的に検査する方法と装置を提供する こと。

【構成】荷電粒子入射による基板表面からの二次粒子、後方散乱粒子と透過粒子の少なくとも一つを検出する。基板はステージに装填され、基板走査の間一次自由度を有する。基板表面の電場で二次粒子が加速される。荷電粒子ピームに対する基板位置を正確に測定できる。更に基板位置整合の為の光学アライメント手段、基板を含むチャンパーを排気して再加圧する真空制御手段が設けられている。真空制御手段は、他の基板の処理中に、ある基板を真空状態に保つ。真空制御手段は、検査されるべき複数基板を同時に排気し、第2基板検査中に少なくとも最初の或いは別の一枚の基板を真空から加圧して常圧に戻すことができる。検査装置には、基板パターンを別のパターンと比較する手段が設けられている。

【特許請求の範囲】

【請求項1】 基板表面に荷電粒子ビームを送りスキャ ンする荷電粒子ピーム手段と、

前配基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

前記基板を保持し、前記基板が前記荷電粒子ピームによ りスキャンされている間に、前記基板に少なくとも一自 由度の移動を可能とする連続的に移動可能なx-yステ 10 を具備することを特徴とする基板の自動検査のためのシ

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項2】 基板表面に荷電粒子ビームを送りスキャ ンする荷電粒子ピーム手段と、

前記基板表面に電場を生成して、前記基板の上面から発 生する二次荷電粒子を加速する電場形成手段と、

前記基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 20 を具備することを特徴とする基板の自動検査のためのシ

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項3】 偏向場を発生する手段を有する荷電粒子 光学コラムと、

基板の上面或いは底面から生じる、二次荷電粒子、後方 散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒子の うちの少なくとも一つの荷電粒子を検出する検出器手段 と、を具備し、

前配偏向場を発生する手段は、前配基板表面からの荷電 30 粒子を前記検出器手段の方に選択的に向けることを特徴 とする基板の自動検査のためのシステム。

【請求項4】 荷電粒子を基板表面に選択的に向ける荷 電粒子光学コラムと、

前記基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する半導体 検出器手段と、

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項5】 フィールドエミッション源を有し、荷電 粒子を基板表面に選択的に向ける荷電粒子光学コラム ٤.

前配基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項6】 荷電粒子を基板表面に選択的に向ける荷 50 荷電粒子光学コラムと、

電粒子光学コラムと、

前記基板の上面からの二次荷電粒子と、前記基板を透過 する透過荷電粒子とを検出する検出器手段と、

2

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項7】 荷電粒子を基板表面に選択的に向ける荷 電粒子光学コラムと、

前記基板の上面からの二次荷電粒子と後方散乱荷電粒子 とを検出する検出器手段と、

【請求項8】 基板表面に荷電粒子を送りスキャンする 荷電粒子ピーム手段と、

前記基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

前記荷電粒子ピーム手段の下に存在する前記基板を位置 整合させるアライメント手段と、

【請求項9】 基板表面に荷電粒子を送りスキャンする 荷電粒子ピーム手段と、

前記基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

少なくとも一つのエアロック手段を有し、第1基板の周 囲の圧力を変化させながら、同時に第2基板を検査する ための真空制御手段と、

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項10】 前記システムは、前記基板のパターン を第2のパターンと比較する比較手段を更に有すること を特徴とする請求項1に記載のシステム。

(a) 基板の位置を測定することによ 【請求項11】 り、荷電粒子ピームを前記基板上に正確に位置付けるス テップと、

- (b) ステップ(a) で測定された前記基板の所望位置 40 に前記荷電粒子ビームを偏向させるステップと、
 - (c) 前記基板表面の前記所望位置を前記荷電粒子ビー ムでスキャンするステップと、
 - (d) 前記ステップ(c) の結果として、前記基板の上 面と底面から生じる、二次荷電粒子、後方散乱荷電粒子 及び透過荷電粒子の3タイプの荷電粒子のうちの少なく とも一つの荷電粒子を検出するステップと、

を具備することを特徴とする荷質粒子を用いて基板を自 動検査する方法。

【請求項12】 荷電粒子を基板表面に選択的に向ける

--10---

前記基板の上面から生じる二次荷電粒子と後方散乱荷電 粒子、及び前記基板を透過する透過荷電粒子の3タイプ の荷電粒子のうちの少なくとも二つの荷電粒子を検出す る検出器手段と、

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項13】 基板表面に荷電粒子を送りスキャンす る荷電粒子ピーム手段と、

前記基板の上面或いは底面から生じる、二次荷電粒子、 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

複数の基板を検査する場合、前記複数の基板を真空排気 し、少なくとも前記複数の基板の一つの検査が行われた 後に、真空から常圧まで加圧させるための真空制御手段 ٤,

を具備することを特徴とする基板の自動検査のためのシ ステム。

前記偏向場を発生する手段は、互いに 【請求項14】 交差した磁気偏向場と電気偏向場を発生する手段を有す 20 ることを特徴とする請求項3に記載のシステム。

【請求項15】 前記荷電粒子光学コラムは、前記基板 からの二次荷電粒子を前記検出器手段の方に偏向するウ ィーンフィルタ手段を有することを特徴とする請求項3 に記載のシステム。

【請求項16】 基板表面に荷電粒子を選択的に向ける 荷電粒子光学コラムと、

前記基板の上面からの後方散乱荷電粒子と、前記基板を 透過する透過荷電粒子とを検出する検出器手段と、

を具備することを特徴とする基板の自動検査のためのシ 30 干渉計手段と、 ステム。

前記真空手段は、第1と第2基板の各 【請求項17】 々の圧力環境を独立に変化させ、同時に第3基板を検査 する2つのエアロック手段を有していることを特徴とす る請求項9に記載のシステム。

【請求項18】 前記基板のパターンを第2のパターン と比較する比較手段を更に有していることを特徴とする 請求項5に記載のシステム。

【請求項19】 前記アライメント手段は、前記基板を を特徴とする請求項8に記載のシステム。

【請求項20】 前記基板上の第1のパターンを前記基 板上の第2のパターンと比較する比較手段を更に有する ことを特徴とする請求項19に記載のシステム。

【請求項21】 前記アライメント手段は、検査される 基板の画像パターンを使用して、前記基板の位置整合を 自動的に実行することを特徴とする請求項19に記載の システム。

【請求項22】 前記アライメント手段は、検査される 基板を自動的に位置整合させる干渉計手段を有している 50 と、

ことを特徴とする請求項19に記載のシステム。

【請求項23】 検査すべき基板の像を予め保存するメ モリ手段を更に有し、

前記メモリ手段と通信する前記アライメント手段は、検 査される基板を自動的に位置整合させるために保存され た前記像を使用することを特徴とする請求項19に記載 のシステム。

【請求項24】 前記検出器の出力から、前記基板の欠 陥の性質と、前記基板の表面特徴とを決定する手段を更 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 10 に有していることを特徴とする請求項2に記載のシステ

> 【請求項25】 前記検出器の出力から、前記基板の欠 陥の性質と、前記基板の表面特徴とを決定する手段を更 に有していることを特徴とする請求項3に記載のシステ ٨.

> 【請求項26】 前記検出器の出力から、前記基板の欠 陥の性質と、前記基板の表面特徴とを決定する手段を更 に有していることを特徴とする請求項5に記載のシステ

【請求項27】 前記x-yステージの位置を決定する 干渉計手段を更に有していることを特徴とする請求項1 に記載のシステム。

【請求項28】 基板表面に荷電粒子ピームを送りスキ ャンする荷電粒子ビーム手段と、

前記基板の上面或いは底面から生じる、二次荷電粒子、 後方散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒 子のうちの少なくとも一つの荷電粒子を検出する検出器 手段と、

前記荷電粒子ピームに関する前記基板の位置を決定する

を具備することを特徴とする基板の自動検査のためのシ ステム。

【請求項29】 前記基板を保持し、前記基板が前記荷 電粒子ピームによりスキャンされている間に、前記基板 に少なくとも一自由度の移動を可能とする連続的に移動 可能なx-yステージを更に有することを特徴とする請 求項28に記載のシステム。

【請求項30】 前配基板に関して前配荷電粒子ピーム を移動させて、前記基板を前記荷電粒子ビームでスキャ 前記荷電粒子ピーム手段に自動的に位置整合させること 40 ンする機械的手段を更に有することを特徴とする請求項 28に記載のシステム。

> 【請求項31】 前配荷電粒子ビームを前配基板表面上 に偏向させて、前記基板を前記荷電粒子ビームでスキャ ンする偏向手段を更に有することを特徴とする請求項2 8に記載のシステム。

> 【請求項32】 基板の位置を測定することにより、荷 電粒子ビームを前記基板上に正確に位置付ける手段と、 前記位置付け手段により測定された結果を用いて前記基 板の所望位置に前記荷電粒子ピームを偏向させる手段

前記基板表面の前記所望位置を前記荷電粒子ビームでス キャンする手段と、

前記基板の上面と底面から生じる、二次荷電粒子、後方 散乱荷電粒子及び透過荷電粒子の3タイプの荷電粒子の うちの少なくとも一つの荷電粒子を検出する手段と、 を具備することを特徴とする荷電粒子を用いた基板自動

【請求項33】 ステップ(a)は、位置付けのために 基板上のパターンを検出することによってなされること を特徴とする請求項11に記載の方法。

【請求項34】 前記方法は、(e)前記基板の所望の 表面特性をメモリ手段に予め保存するステップを更に有

ステップ (a) は、前記基板の表面特性をステップ (a) で予め保存された特性と比較するステップ (f) を有する、

ことを特徴とする請求項11に記載の方法。

【請求項35】 ステップ(a)は干渉計によりなされ ることを特徴とする請求項11に記載の方法。

【発明の詳細な説明】

[0001]

検査システム。

【産業上の利用分野】本発明は、超小型電子回路の作成 に使用される種々の記述基板の自動検査に関し、特にX 線リソグラフィーに使用されるマスクの検査に関する。

[0002]

【従来の技術と発明が解決しようとする課題】適正な歩 留りを有する超小型電子回路の生産に必要な条件は、製 造プロセスで使用されるマスクに欠陥がないことであ る。過去12年間に多くのシステムが、光学マスクの自 動検査に対して開発され、特許されてきた。例えばU.S. P.4.247,203 号及び4.805,123 号を参照して下さい。こ れらのシステムでは、フォトマスク或いはレチクル上の 二つの隣接するダイ間を比較している。同様に、技術の 進展によってレティクル上のダイを検査するのにCAD (Computer Aided Design)のデータベースとダイとを比 較することによって達成する方法がもたらされた。U.S. P.4,926,487 を参照。しかしながら、X線マスクの欠陥 は可視或いは紫外スペクトルでは見えないので、この様 な光学システムは光学マスクに限定されている。更に光 あり、その回折限界によりもちろん光学リソグラフィー も制限されている。位相シフトマスク技術を用いても、 光学リソグラフィー技術では0.35ミクロン以下の線幅は 達成できず、X線リソグラフィーを用いるとそれよりも 小さな線幅を達成できることが予想されている。

【0003】X線マスクの検査として、走査型電子顕微 鏡技術が使用されることが期待されている。最近各会社 は従来の電子顕微鏡をX線マスク検査に使用することを 実験している。これらの実験において欠陥を検出するこ に時間がかかり、かつ非常に高度の熟練したオペレータ を必要とする。このような2つの観点からその様なシス テムを半導体製造に使用することは実際的でない。

б

【0004】本発明は、上記の課題を解決することを目 的とする。

[0005]

【課題を解決するための手段】本発明の好ましい実施例 によると、荷電粒子スキャンシステムと自動検査システ ムに対する方法と装置が開示されている。ある実施例に 10 は、基板の自動検査システムと方法が開示されていて、 前記システムは、基板表面に荷電粒子ピームを送ってス キャンする荷電粒子ピームコラムと、前記基板の上面或 いは底面からくる3種類の荷電粒子(即ち、2次荷電粒 子、後方散乱荷電粒子と透過荷電粒子)の少なくとも1 つを検出する検出手段と、前配基板を支持し、前配基板 が荷電粒子ピームによりスキャンされている間に基板に 少なくとも一自由度の運動を与えるように配置されたx - yステージと、を含んでいる。

【0006】第2の実施例には、基板の自動検査システ 20 ムと方法が開示されていて、前記システムは、基板表面 に荷電粒子ピームを送ってスキャンする荷電粒子ピーム 手段と、前記基板表面に電場を発生させて、前配二次荷 電粒子を加速する電場発生手段と、前記基板の上面或い は底面から発生する3種類の荷電粒子、即ち二次荷電粒 子、後方散乱荷電粒子または透過荷電粒子のうちの少な くとも一つを検出する検出器手段と、を含んでいる。

【0007】第3の実施例には、基板表面に荷電粒子を 方向付けする荷電粒子スキャンシステムと方法が開示さ れていて、前記システムは、互いに交差した磁場と電場 30 の偏向場を生成して前記基板の表面から発生する荷電粒 子を選択的に方向付けする手段を有する荷電粒子光学コ ラムと、前記基板の上面或いは底面から発生する3種類 の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子また は透過荷電粒子のうちの少なくとも一つを検出する検出 器手段と、を含んでいる。

【0008】第4の実施例には、基板表面に荷電粒子を 方向付けする荷電粒子スキャンシステムと方法が開示さ れていて、前配システムは、前配基板表面に荷電粒子を 選択的に方向付けする荷電粒子光学コラムと、前記基板 学検査は、基本的な回折限界によりその解像度に限界が 40 の上面或いは底面から発生する3種類の荷電粒子、即ち 二次荷電粒子、後方散乱荷電粒子または透過荷電粒子の うちの少なくとも一つを検出する半導体検出器手段と、 を含んでいる。

【0009】第5の実施例には、基板表面に荷電粒子を 方向付けする荷電粒子スキャンシステムと方法が開示さ れていて、前記システムは、場発生源を有していて、前 配基板の表面に荷電粒子を選択的に方向付けする荷電粒 子光学コラムと、前記基板の上面或いは底面から発生す る3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電 とに成功しているが、従来の電子顕微鏡を用いると検査 50 粒子または透過荷電粒子のうちの少なくとも一つを検出

する検出器手段と、を含んでいる。

【0010】第6の実施例には、基板表面に荷電粒子を 方向付けする荷電粒子スキャンシステムと方法が開示さ れていて、前記システムは、前記基板の表面に荷電粒子 を選択的に方向付けする荷電粒子光学コラムと、前記基 板の上面からの二次荷電粒子と、前記基板を透過する透 過荷電粒子とを検出する検出器手段と、を含んでいる。

【0011】第7の実施例には、基板表面に荷電粒子を 方向付けする荷電粒子スキャンシステムと方法が開示さ れていて、前記システムは、前記基板の表面に荷電粒子 10 を選択的に方向付けする荷電粒子光学コラムと、前記基 板の上面からの二次荷電粒子と後方散乱荷電粒子とを検 出する検出器手段と、を含んでいる。

【0012】第8の実施例には、基板の自動検査システムと方法が開示されていて、前配システムは、前配基板の表面に荷電粒子ピームを送ってスキャンする荷電粒子ピーム手段と、前配基板の上面或いは底面から発生する3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子または透過荷電粒子のうちの少なくとも一つを検出する検出器手段と、前配荷電粒子ピーム手段の下にある基20板を最初に位置整合させる光学的アライメント手段と、を含んでいる。

【0013】第9の実施例には、基板の自動検査システムと方法が開示されていて、前記システムは、前記基板の表面に荷電粒子ピームを送ってスキャンする荷電粒子ピーム手段と、前記基板の上面或いは底面から発生する3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子または透過荷電粒子のうちの少なくとも一つを検出する検出器手段と、同時に真空排気し、第2の基板の検査中に、最初或いは別の一枚の基板を真空から加圧にて常30圧に戻すための真空制御手段と、を含んでいる。

【0014】第10の実施例には、パターンが形成された基板の自動検査システムと方法が開示されていて、前記システムは、前記基板の表面に荷電粒子ピームを送ってスキャンする荷電粒子ピーム手段と、前記基板の上面或いは底面から発生する3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子または透過荷電粒子のうちの少なくとも一つを検出する検出器手段と、前記基板のパターンを第2のパターンと比較する比較手段と、を含む。

【0015】第11の実施例には、荷電粒子を用いて基板の検査を自動的に行う方法が開示されていて、その方法は、前配基板の位置を測定して、基板上に荷電粒子を正確に位置付けるステップと、前配基板の望ましい位置に荷電粒子を偏向せしめるステップと、前記基板の表面の前記望ましい位置を前記荷電粒子でスキャンするステップと、前記基板の上面或いは底面から発生する3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子または透過荷電粒子のうちの少なくとも一つを検出するステップと、を含む。

8

【0016】第12の実施例には、基板表面に荷電粒子を方向付けする荷電粒子スキャンシステムと方法が開示されていて、前記システムは、前記基板表面に荷電粒子を選択的に方向付ける荷電粒子光学コラムと、基板の上面からの後方散乱荷電粒子と、基板を通過する透過荷電粒子とを検出する検出器手段と、を含んでいる。

【0017】第13の実施例には、基板を自動的に検査するシステムと方法とが開示されていて、前記システムは、基板表面に荷電粒子ピームを送りスキャンする荷電粒子ピーム手段と、前記基板の上面或いは底面から発生する3種類の荷電粒子、即ち二次荷電粒子、後方散乱荷電粒子または透過荷電粒子のうちの少なくとも一つを検出する検出器手段と、検査の前に複数の基板を同時に排気し、その同じ基板を再び加圧し、その後に前記複数の基板のうちの少なくとも一つの検査を行う真空手段と、を含んでいる。

[0018]

【作用及び発明の効果】本発明は、製造現場のX線マスクや同様な導電基板を自動的に検査する荷電粒子ピームを用いた経済的に実現できる検査システムを提供する。以下の説明では電子ピームが使用されるが、同様の技術が他のタイプの荷電粒子ピームに適用でき、したがって以下に示される電子ピームだけに限定されるものではない。本発明は、X線マスク、電子ピーム近接マスクやステンシルマスクの検査に対して有用に使用されるが、ここに開示される技術は任意の導電物質の高速電子ピームイメージングに適用可能であり、更にマスクやウェハーの製造でフォトレジストを解光するための電子ピーム書込みに対しても有用である。

【0019】現在の走査型電子顕微鏡は、非常に遅いスキャンスピードを有し且つ通常の技能を越えたオペレーターの技能を必要とするので、経済的に実行可能な要求を満たすことはできない。

【0020】本発明の新規な特徴は、種々のタイプの欠陥を検出できるとともに、それらの欠陥を区別できる能力である。散乱電子、透過電子や二次電子を同時に検出でき且つそれらを区別できる本発明によれば、欠陥を即座に分類できる。例えば、X線マスク上の伝達検出器のみにより検出される欠陥は、たぶん吸収物質によって存む 在しないものとなる。二次電子検出器によっては検出されるが後方散乱電子検出器では検出されない欠陥は大部分有機粒子であり、後方散乱電子検出器により検出される欠陥は大きい原子量を有する汚染物質である。X線マスク上の有機汚染物質のようなある種の欠陥はウェハー上にプリントされないので、種々のタイプの欠陥を区別できる能力は本発明の重要な利点である。この様に本発明によれば、欠陥を検出できるだけでなく、それらの欠陥を区別できる。

【0021】このシステムは、半導体製造に適した多く 50 の技術を使用する。汚染物質が掻き回されるのを防止す

るために、真空排気スピードと真空から常圧に戻す加圧 スピードが制限され、気体の流れが層流の状態に保たれ る。時間を節約するために、これらの動作は他のサンプ ルのスキャンと同時になされる。生産的でない時間を更 に減じるために、6個の場発生源がタレット上に設けて ある。最後に、通常オペレーターにより操作される電子 ビームの主な調整は、コンピュータによりなされ、比較 的技能の低い者でもシステムを使用できる。

[0022]

【実施例】図1には本発明の検査システム10の全体の 10 プロック図が示されている。システム10では、X線マ スクや他の導電基板の自動検査装置が示されていて、そ のセンサーとして走査型電子顕微鏡が使用されている。

【0023】この検査システムは2つの動作モード、即 ちダイ・ダイとダイ・データベースとを有している。両 方のモードにおいて、欠陥は、マスクをスキャンするこ とにより導かれる電子ビーム像を基準と比較することに より検出される。ダイ・ダイ検査では、同じマスクの2 つのダイからの信号が互いに比較され、一方ダイ・デー からの信号が、ダイを作るのに使用されたデータベース からの信号と比較される。

【0024】検査されるマスク57はホルダーに保持さ れ、そのホルダーはマスクハンドラー34によってxyステージ24上の電子ピームコラム20の下に自動的 に位置付けられる。これはシステムコンピュータ36に よってマスクハンドラー34に命令を送ることによって 達成され、マスク57上のフラットやノッチ59(図2 及び3を参照)を自動的に検出してハンドラー34でマ スク57を適切に方向付けながら対象マスク57をカセ 30 ットから取り出す。マスクはそれからコラム20にロー ド(装填)される。次に、オペレーターは光学アライメ ント系22を通してマスクを直接観察しつつ、マスク上 の位置合わせ点を探し且つ確認(オペレータはマスク上 のある特徴あるパターンを使用してこの作業をして良 い。)する。これによって、ステージのx方向への移動 がマスク上の検査領域のx軸と実質的に平行になってい るのを見届ける。即ちマスク上ではこの様にして求めら れた領域が検査対象領域になる。これで粗いアライメン ト(位置合わせ作業)が終わる。

【0025】オペレータは続けて最終のアライメントを 行う。オペレーターは電子ピームにてマスクをスキャン (走査) し、画像ディスプレイ46に現れる像を観察す る。それからすべての位置合わせ関連データをアライメ ントコンピュータ21に保存する。このコンピュータ は、システムコンピュータ36と協調して作動し、x軸 とy軸に沿った実際の総合的なあるべきx、y動作を計 算する。これによってこの先オペレーターの位置合わせ 作業は同一マスクに関しては一切不要になる。マスクの 位置整合が正しくとれた時点で検査工程の初期条件は整 50 査はパターン62を前後に移動して行われる。パターン

ったことになる。

【0026】コラム20とその光学アライメントシステ ム22、アナログ偏向回路30と検出器32は、以下に 詳細に説明されるように、電子ピームをマスク57に入 射させ、二次電子、後方散乱電子及びマスク57を透過 する電子を検出する。上記作業の展開とデータの収集 は、勿論コラム制御コンピュータ42、ビデオフレーム パッファ44、画像捕獲(アクイジション)前置プロセ ッサ48、偏向コントローラ50、メモリプロック52 の支援があって初めてなされるのである。VMEパス、 即ちVME1、29はサプシステム間の通信リンクとし て機能する。

【0027】マスク57の検査期間におけるステージ2 4の位置と移動は、偏向コントローラ50、メモリプロ ック52とアライメントコンピュータ21の制御のもと で、ステージサーボ26と干渉計28とによって制御さ れる。

【0028】比較モードがダイ・データペースである場 合には、メモリプロック52と通信しているデータベー タベース検査では、電子顕微鏡から導かれる一つのダイ 20 スアダプター54は、期待されたダイフォーマットと等 価である信号源として使用される。

> 【0029】実際の欠陥処理は、ポストプロセッサ58 と結合している欠陥プロセッサ56によって、メモリブ ロック52のデータに基づきなされる。ポストプロセッ サ58と欠陥プロセッサ56間の通信は、バスVME2 31を介してなされる。

> 【0030】全体のシステムの動作は、イーサネットバ ス(Ethernet bus)に類似しているデータバス23を介し て他のプロックと通信を行いながら、システムコンピュ ータ36、ユーザキーボード40とコンピュータディス プレイ38によってなされる。エザーネットはゼロック ス会社の商標である。

【0031】次に、図2にはダイ・データベースモード での検査を行う本発明のスキャンパターンが示されてい る。ここではマスク57上に一つのダイ64が示されて いる。ダイ64内には検査すべき関心領域65或いは重 要領域が存在する。この領域はマスク57上に重要な情 報が記録されている領域である。ダイ64の検査をして いるときに、x軸方向のスキャン移動は移動ステージ2 40 4によりなされ、y軸方向の移動は図示されたスオーシ ュ (刈り幅) 60と同じ広さを有する各スオーシュ内に 電子ピームを偏向することによりなされる。検査スオー シュがダイ64の右側に達すると、ステージ24は全体 のスオーシュ幅以下でy方向に移動される。マスク57 のx-y座標系はステージ24とコラム20のx-y座 標系に正確に一致しないので、ステージ24の実際の移 動とコラム20のビーム偏向は、それぞれ、ダイ64の スキャンの間にxとy成分をもつ。

【0032】関心領域65を十分に検査するために、検

62によって示される各軌道は、図示されたスオーシュ 60の幅を有する隣接スオーシュとわずかに重なるスオ ーシュである。

【0033】ダイ・データベースモードでは、各スオー シュに対応する信号が、完璧ダイの対応するスオーシュ に対するデータベースアダプター54からのシミュレー ションされた信号と比較される。この処理は、次のダイ が検査される前に検査すべき関心領域65の各スオーシ ュに対して繰り返される。

【0034】図3はダイ・ダイ検査のスキャンパターン 10 を示していて、マスク57は左から右にダイ68、7 0、66を有している。この検査モードでは、図2に示 されたものと同様に、前後に移動されるスキャンパター ン63が使用されている。しかし、検査モードはダイ・ ダイモードであるので、ステージ24は、3個のダイが 各スオーシュに沿ってx軸方向に移動されるまでy方向 には進行されない。

【0035】このモードでは、ダイ68の第1パス(行 程)のデータはダイ70の第1パスのデータと比較する ダイ70とが比較されている同じときに、ダイ70のデ ータは、ダイ66の第1パスからのデータと比較するた めにメモリプロック52にストアされる。次に第2のパ スへ進む、即ちリターンすると、パスの順序は逆にな り、ダイ66の第2のパスからのデータはダイ70から のデータと比較するためにストアされ、ダイ70からの データはダイ68の第2のパスからのデータと比較する ためにストアされる。この検査と比較のパターンは、マ スク57の関心領域の全てを検査するに必要な回数ほど 繰り返される。

【0036】より詳細には、ダイ・ダイモードを使用し て、電子ピームがダイ68と70のスオーシュをスキャ ンすると、3種類の検出器からの信号33が取得前置プ ロセッサ48に送られ、メモリプロック52にストアす るためにデジタル信号に変換される。ダイ68、70か らのデータが欠陥プロセッサ56に同時に送られると、 2つのデータ間の重要な不一致が欠陥として指定され る。次に欠陥プロセッサ56からの欠陥データを蓄積し てポストプロセッサ53に送られ統合される。ポストプ 情報をシステムコンピュータ36がパス23を介して利 用可能な状態にする。

【0037】ダイ・データベース検査モードでは、シス テム10は上記と同様に動作するが、メモリプロック5 2が一つのダイからのデータを受信する点、欠陥プロセ ッサ56での比較のための参照データがデータベースア ダブター54によって提供される点が異なっている。

【0038】全てのマスクが検査されると、欠陥のリス トと共にその位置がコンピュータディスプレイ38に表 12

直しを開始できる。この命令に応答して、システム10 は各欠陥の周囲をスキャンし、オペレーター用にその像 をディスプレイ46上に表示する。

【0039】スキャン光学

あるキー要素とコラム20の特別な設計によって、殆ど 100倍以上の画像形成スピードが達成される。高速の 画像形成スピードを達成する際にまず真っ先に必要な条 件は、より高いビーム電流である。というのはS/N比 を考慮することが画像形成スピードにおける基本的制限 であるからである。本発明では、高輝度の熱放射場源 が、鋭角の非常に高いピーム強度と非常に高いピーム電 流を生成するのに使用されている。しかし、電子電流が 高いとクーロン相互反発作用が発生する。このことを解 決するために、高電場はカソードの近傍に形成され、ビ ーム系がまた急速に拡大される。コラムの設計には、そ の領域における電荷密度を上昇させる電子のクロスオー バーがないようにし、クーロン反発作用問題を少なくす るために大きな開口数が使用されている。

【0040】マスクを高速度、例えば100メガピクセ ためにメモリプロック52にストアされる。ダイ68と 20 ルでスキャンするための要求に対して、検出器は、二つ の連続するスキャンピクセルからの二次(リターン)電 子を一時的に分離することができる。このことは、各ピ クセルのドウェル時間に比較して、到着時間があまり広 がっていないことが要求されていることを意味する。各 ピクセルでの到着時間の広がりを少なくするために、電 子はターゲットを離れた後にすぐに加速される。検出器 での到着時間の広がりは結果として約1ナノ秒に維持さ れる。到着時間の広がりを更に少なくするために、逆バ イアスされた高周波ショットキーパリア検出器が、検出 30 されるべき各タイプの電子に対して用いられる。このシ ョットキー検出器は単に例として示されたのであって、 使用可能な他のタイプの半導体検出器を使用してもよ 41

【0041】電子光学

電子光学サプシステムは、走査型電子顕微鏡に機能的に は似ている。それには、スキャン電子ピームプローブ と、マスク表面の像形成に必要な二次電子、透過電子と 後方散乱電子検出索子が設けられている。検査の間、電 子ピームはある方向にスキャンされ、一方ステージはそ ロセッサは、欠陥のサイズや種々の特性を決定し、その 40 れに直角な方向に移動される。低電圧の二次電子、高工 ネルギーの透過電子或いは後方散乱電子のいずれかがビ デオ信号を生成するために使用され、その信号はデジタ ル化されて長短スオーシュ像の形でストアされる。高解 像度の自動化された欠陥検出への応用がユニークである ばかりでなく、この光学システムの新規な点は、検査に 必要な解像度で高速かつ低ノイズの像を得るのに使用さ れている新規な技術と従来の技術とを組み合わせている 点である。

【0042】ピームは、典型的には、非常に高速な5マ 示され、オペレーターはキーボード40によって欠陥見 50 イクロ秒周期ののこぎり波掃引を使用して、512ピク

セル ($18-100\mu$ m幅) のフィールドをスキャンする。偏向は歪みを発生することはなく、表面にほぼ垂直であり、従って画像特性はスキャンフィールドで一様である。

【0043】検出は効果的に行われ、プローブ中の各電 ダイオード117は電源1元により発生される二次電子の大部分が像形成に使用さ いる。検出器ダイオード1れる。検出システムのバンド幅は、短い走行時間効果に よりピクセルレイトに匹敵している。二次電子は共軸で サ48と関連する電子回路・電子コンポーネントである。向いていようとも、エッジ形状の正確な画像が得られ 10 ク125を介して送られる。 【0046】部分的に強明

【0044】図4は、光学システムの要素と、その機能 を理解するために必要な関連するある電源を示してい る。電子銃は、熱放射場カソード81、放射制御電極8 3とアノードアパーチャを有するアノード85とからな る。カソード81は、電源99によって-20KeVの ピーム電圧に保持されている。カソード81の表面の電 界強度に依存するエミッション電流は、カソード81の 電圧に関して負であるパイアス供給源91に接続された 電極83の電圧によってコントロールされている。カソ ード81は電流源93によって加熱される。カソード8 1の近くの磁気コンデンサレンズ95は電子ビームをコ リメートするために使用される。上部の偏向システム9 7は、アラインメント(位置整合)、スチグメーション (無非点収差) 及びプランキングのために使用される。 この光学系には更に、数個のホールからなるビーム制限 アパーチャ99が設けられている。ピーム100は一対 の静電気プレレンズ偏向器101、103によって偏向 され、ピームは対物レンズ104上の点の回りに収束さ れる。対物レンズ104は下部極片106、中間電極1 07と上部極片105とからなる。ビームは結局、マス ク57上を中心に遠隔操作されてスキャンされる。 殆ど 平行なピームが対物レンズ104によって再度収束さ れ、マスク57を照らす1x倍に拡大された像を形成す る。

【0045】二次電子イメージモードでは、二次電子が対物レンズ104を通って上の方に取り出される。ステージ24、マスク57と下部のレンズ極片106は電源111によって数百ポルトの負の電位にフローティングされていて、その結果二次電子は偏向器112と113を通る前にこのエネルギーに加速される。中間電極107は、電源115によってステージに関して正にパイアスされていて、マスクを離れるとすぐ電子を加速し、基板の欠陥領域から発生する二次電子を効率よく集中間電極107の組み合わせにより、二次電子検出器117への電子走行時間のムラが実質的に除去される。二次電子はレンズ104を通って再び後方に戻るので、帰還二次電子はウイーンフィルタとして機能する偏向器113、

14

で、リターンビームは検出器117のアノード118に接続された電源119により高エネルギー状態に再加速され、二次電子を増幅に充分なエネルギーレベルでショットキーパリア固体検出器117に衝突させる。検出器ダイオード117は電源121により逆バイアスされている。検出器ダイオード117からの増幅信号は前置増幅器122に送られ、そこからビデオ取得前置プロセッサ48と関連する電子回路とに、図1の信号33の二次電子コンボーネントである高電圧絶縁ファイバ光学リンク125を介して送られる。

【0046】部分的に透明な基板の検査を可能とするために、透過電子検出器129がステージ24の下に設けられている。透過電子はマスク57を高エネルギーで通過し、再加速を必要としない。上部素子123、中央素子124と下部素子127とからなる透過静電レンズが、透過電子ビームをショットキーパリア固体検出器129による検出に適した径に広げるために使用される。電極123はステージ24と同じ電位に保持され、一方電極124は電源114により0から-3KVに保持される。透過電子検出器129からの信号は増幅器133により増幅され、図1の信号33の透過電子コンポネントであるファイバ光学リンク135により伝送される。

【0047】光学システムはまた、一次電子とほぼ同じエネルギーレベルで基板表面を離れる後方散乱電子の収集を可能とするように設計されている。後方散乱電子検出器160は、一次電子がそれを通過できるホールを有している点を除いて検出器117に類似したショットキーパリアダイオード検出器である。後方散乱信号は前置増幅器162により増幅され、また前置プロセッサ4830に送られる。

【0048】図5は、コラム20内及びマスク57の下 の種々の電子ビーム通路(パス)の概略図である。電子 はフィールドエミッションカソード81から径方向に放 射され、非常に小さな輝点源から発生したように見え る。加速場とコンデンサレンズの磁場との結合した作用 の基で、ビームは平行ビームにコリメートされる。ガン アノードアパーチャ87は使用できない角度で放射され た電子を阻止し、一方残りのピームはピーム制限アパー チャ99に入射する。図4の上部偏向器97は最終のビ 40 ームが丸くなり、図4の素子105、106、107か らなる対物レンズの中心を通ることを保証するためにス チグメーションとアライメント用に使用される。図4の コンデンサレンズ95の中心は、カソード81と制限ア パーチャ99により規定された軸に機械的に一致してい る。偏向作用により、電子は示されたパスを通り、その 結果スキャンされ収束されたプローブ、即ち基板の衝突 点のピームは対物レンズ104から出てくる。

はレンズ104を通って再び後方に戻るので、帰還二次 【0049】スキャンピーム100の径とその電流は、 電子はウイーンフィルタとして機能する偏向器113、 数個のファクターにより決定される。放射源からの角エ 112によって検出器117の方に偏向される。ここ *50* ミッション(1.0mA/ステラジアン)と、最終アパーチャ

99により規定されるアパーチャ角は、ビーム電流を決 定する。プロープ径は両レンズの収差によって決定さ れ、両レンズは球面収差と色収差を小さくするために髙 励起 (フィールド幅/焦点距離) に対して設計されてい る。ビームの相互作用効果(個々のビーム電子間の反発 による統計的ぼけ)は、マスク57上のプローブサイズ の半分を占めるこのような高電流システムにおいて重要 である。これらの効果は、中間的クロスオーバーを避 け、40cmの短いピームパスを使用し、電子源及びマス ク57において比較的大きな半角のレンズを使用するこ 10 とにより小さくできる。所定のビームスポットを得るた めに、アパーチャ径は、最大可能電流を供給しながらこ れらの効果をバランスさせるように選択される。ピーム 源からのビームを拡大したり或いは縮小したりするため にレンズ強度を変化させることは可能であるが、この様 なシステムでは、スポットサイズがアパーチャを使用し てまず調整される。

【0050】図4のウイーンフィルタ偏向器113は、 高エネルギーのスキャンピーム100に殆ど影響を与え ないで、約100eVの二次電子ピーム167を偏向す る。ウイーンフィルタは、静電的8極偏向器112と4 極磁気偏向器113からなり、互いに直角に電場と磁場 をクロスするように配置されている。帰還二次電子は両 方の場によって側方に偏向される。しかしながら、一次 スキャン電子100は反対方向に移動しているので、ウ イーンフィルタが二次ピーム167を広角に偏向して も、ウイーンフィルタが一次スキャンピーム100にカ を及ぼさないようにこれらの場の強度を選択しなければ ならない。ウイーンフィルタと呼ばれているものは共軸 抽出に対して効果的に使用される。二次電子偏向器11 30 7のアノード118は、再加速の間にビーム167が固 体検出器117のコレクタに集められ収束されるような 形状をしている。

【0051】図5には、検出される透過電子と後方散乱電子のパスが示されている。後方散乱電子を検出するために、ウイーンフィルタ112、113のみがオフされ、従って、これらの電子は同じパスを通ってシステムの上方に進み、環状の後方散乱検出器160へ至る。透過電子は、マスク57と図4の電極システム123、124を通過し、透過電子検出器129の表面を満たすよ40うに広がった後、高エネルギーで検出器129に衝突する。

【0052】図6に示すように、制限されたカソード寿命に対する電子銃の寄与を少なくするために、電子銃構造は高電圧に浮いている6角形の回転タレット137上に設けられた6個のカソード/制御電極構成を含んでいる。各構成はアノード87上の位置に回転され、図4の適当な電源91、93と電気的接触を保ちながらその位置にロックされる。

【0053】図4の前置レンズ偏向器101、103か 50 ータと比較することである。欠陥プロセッサ56のルー

16

らなる静電的偏向システムは、高スピードの鋸波偏向電 圧によって駆動される非常に均一な場を必要とする。そ の構造は、モノリシックなセラミック/メタル構成であ り、エッチングされて20個の偏向プレートを形成して いる。4個のドライバが各2つのステージに対して必要 であって、ステージ24とマスク57の座標システムと マッチするように回転されるスキャンを達成する。

【0054】自動チューニングとセットアップが、オペレーターの操作を簡略化するために設けられている。レンズと偏向/スチグメーション素子と全ての高電圧制御源はDAC制御の下にあり、図1のようにコラム制御コンピュータ42にインターフェースされている。種々の場合に、特定の機能に対する偏向比と静電プレート電圧を調整するルーチンは、コラム制御コンピュータ42に内在していて、ガン制御とセットアップは、定格値に基づいていて、エミッション電流、アパーチャ電流と電源設定にたいするA/Dフィードパックを使用して適用可能なルーチンによって変更される。

【0055】ビームをセンターに位置付けるには、レン ズ電流が変化したときに偏向を除去する他の公知のルーチンに基づいてなされる。これらの操作は、2軸フレームスキャン機能によってイメージされる特定のテストサンプルを使用していて、それらはアラインメントと検査に必要な画像分析能力を利用する。焦点はマスクの高さの変化を補償するために自動的に維持され、一方スチグメイションが検査の前になされる。これらのルーチンは、取得前置プロセッサ48とそれに関連した電子回路を使用した、画像のコントラストと調和内容の解析に基づいている。

【0056】本発明では、光学系の定格動作状態は20 KeVのピームエネルギーを使用し、ピーム電流とスポットサイズの関係は、0.05μmでの300mAから0.2μmでの1,000mAまで変化する。スキャンスピードは、100メガピクセル/秒で画像形成される512ピクセルスキャンフィールドを使用して5マイクロ秒である。検出器117のダイオード電流増幅率は、5KeVでの約100から20KeVでの5000である。全体のシステムは、0.05μmスポットを使用する100メガピクセル/秒で約14%のエッジコントラスト以上のサンプルに対してこの動作状態領域以上を達成する。取得電子回路は、1以上のスキャンラインを集積化するために設けられ、低パンドで記録されるべき低コントラストの像と高解像度の像が得られる。

【0057】欠陥プロセッサ

ダイ・ダイ検査の場合には、欠陥プロセッサ56の機能は、ダイ68から導出された画像データをダイ70から 導出された画像データと比較することであり、ダイ・データベース検査の場合には、ダイ64から導出された画像データをデータベースアダプター54から得られるデータと比較することである。欠陥プロセッサ56のルー

チンと基本的構成は、米国特許第4,644,172 号に開示さ れた欠陥プロセッサと略同じである。米国特許第4,644、 172 号は、1987年2月17日に発行され、本出願の 出願人に譲渡された、サンドランド等による"自動ウェ ファ検査システムの電子制御"であり、欠陥を決定する のに3つのパラメータを使用している。一方、本発明の 4つのパラメータを使用している。

【0058】ダイ・ダイ検査或いはダイ・データベース 検査のどちらも、メモリプロック52から全てのデータ を得ていて、そのデータは各検出器に対してピクセル当 10 【0060】 たり6ピットの形式を使用している。欠陥プロセッサ5 6では、下記の4つのパラメータが2入力の各検出器の*

$$S_{X} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

% [0062] 【数2】

【数1】

従って傾きの大きさは [(S₁)² + (S₇)²]^{1/2} であり、方向は tan-1 (Sr /Sr) である。

【0061】曲率は以下のように定義される。

ж

$$c = \begin{pmatrix} a_{1}R_{-2,-2} & a_{1}2R_{-2,-1} & a_{1}3R_{-2,0} & a_{1}4R_{-2,1} & a_{1}5R_{-2,2} \\ a_{2}R_{-1,-2} & a_{2}2R_{-1,-1} & a_{2}3R_{-1,0} & a_{2}4R_{-1,1} & a_{2}5R_{-1,2} \\ a_{3}R_{0,-2} & a_{3}2R_{0,-1} & a_{3}3R_{0,0} & a_{3}4R_{0,1} & a_{3}5R_{0,1} \\ a_{4}R_{1,-2} & a_{4}2R_{1,-1} & a_{4}3R_{1,0} & a_{4}4R_{1,1} & a_{4}5R_{1,2} \\ a_{5}R_{2,-2} & a_{5}2R_{2,-1} & a_{5}3R_{2,0} & a_{5}4R_{2,1} & a_{5}5R_{2,2} \end{pmatrix}$$

ここで、係数 a1」は状況に依存して選択されるパラメー 夕の組であり、Rijは以下のように定義される

【数3】

$$R_{ij} = \begin{pmatrix} b_{||} & I_{-||,|} & b_{||} & b_{||} & I_{-||,|} & b_{||} & b_{||}$$

上述した方法で、量I, G, P, Cは画像の各ピクセル に対して定められる。ダイ68の所定のピクセルAに対 40 して、これらのパラメータはダイ70の対応するピクセ ルBのパラメータと比較され、更にピクセルBに隣接す る8個のピクセルのパラメータと比較される。もしもピ クセルBに隣接する各ピクセルに対して、少なくとも一 つのパラメータがピクセルAの同じパラメータと所定の 許容誤差以上の値だけ相違していると、ピクセルBは2 つのダイの欠陥と見做される。

【0065】同様にして、ダイ70の各ピクセルのパラ メータはダイ68の対応する隣接ピクセルのパラメータ ると見做される。

【0066】このアルゴリズムの物理的実行は、上述の 米国特許第4,644,172 号に開示されたパイプラインロジ ックでなされる。行列演算は、100 メガピクセル/秒の 速度で欠陥データを計算できるパイプライン計算システ ムに接続されたApplicationSpecific Integrated Circu it (ASIC)で実行される。

★ここで、I11は、画像のi番目の列とj番目の行におけ るピクセルのグレイスケール値であり、ai」とbiiは経

験的に得られるパラメータである。

【0067】偏向器コントローラ

ダイ・ダイモードでは、偏向器コントローラ50の機能 は、ダイ68の各スオーシュ60内の等距離グリッド点 に電子ピーム100を位置付けることである。この結 と比較され、その結果適当なピクセルが欠陥を有してい 50 果、検出器129、160、117の出力は、ダイ70

18

*各ピクセルに対して決定される。

 $Sy = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$

【0059】a. I:ピクセルのグレイスケール値

G: グレイスケールピクセルの傾きの絶対値

P: グレイスケール値の傾きの位相又は向き

C:局所的傾き関数の輪郭の曲率

グレイスケール値は、特定のピクセルに対するメモリブ ロック52の単なる値である。傾きの大きさと傾きの方 向は、まずxとyの通常の演算子成分を計算して得られ

の対応する位置における同じ検出器の出力と比較される。同様に、ダイ・データベースモードでは、データベースアダプター54から得られるシミュレートされた画像は、ダイからの検出器117の出力と比較される。偏向器コントローラ50は、図7と以下の説明に示されるように、ステージ24と電子ピーム100の位置を制御してこれを実行する。

【0068】スオーシュにおける第1のダイ1をスキャ ンする場合には、アライメントコンピュータ21の出力 はゼロに設定される。というのは、第1のダイの第1の 10 スオーシュをスキャンする期間には、ミスアライメント は存在しないからである。従って、この期間に、偏向器 コントローラ50はコラムコンピュータ42からのみ命 令を受ける。これらの命令と、x, y干渉計28から得 る位置データに基づいて、偏向器コントローラ50は、 ステージ24の望ましい移動を計算し、その対応する信 号をステージサーボ26に送ってステージ24を移動さ せる。偏向器コントローラ50は、同様にしてピーム1 00の所望の偏向を計算し、これらのデータをアナログ 偏向器回路30に送る。ステージ24が移動すると、そ 20 の位置はx-y干渉計28によって定常的にモニタさ れ、所望のステージ位置からの不一致が決定され、偏向 器コントローラ50によりステージサーボドライブ26 に帰還される誤差信号を生成するのに使用される。ステ ージ24の高慣性のため、これらの誤差信号はステージ 位置の高周波誤差を修正することはできない。x,y方 向の高周波誤差は、偏向器コントローラ50により計算 される電子ビーム100の偏向によって修正される。偏 向器コントローラ50はこれらの信号をデジタル形式で アナログ偏向回路30に送る。

【0069】ピーム100がダイ68をスキャンするとき、グレイスケール値はメモリブロック52にストアされている。電子ピーム100がダイ70をスキャンし始めるとすぐに、これらの値はまたメモリブロック52にストアされ、すぐにまた欠陥プロセッサ56とアライメントコンピュータ21に送られる。アライメントコンピュータ21では、ダイ68とダイ70からの2つのデータは、アライメント(位置整合)のために比較される。もしも位置整合していない場合には、位置整合修正信号が発生され偏向器コントローラ50に送られる。この位40置整合信号はパーニア調整(微調整)として使用され、マスク57の調整位置にピーム100を位置付ける。

【0070】ダイ・データベースモードでは、偏向器コントローラ50は、ダイ・ダイモードでの機能とほぼ同様に働くが、データベースアダプター54の出力がスオーシュの第1のダイから得られる入力画像に置き代わる点が相違している。

【0071】偏向器コントローラ50はまた、ステージ24の動き、スピードと方向と共に電子ピーム偏向のパラメータを計算し規定する。

20

【0072】アライメントコンピュータ

アライメントコンピュータの機能は、グレイスケール値 の形式で2つのデジタル画像を受けて、ピクセル距離の ずれの形式で、画像間の位置整合からのずれを決定する ことである。これらのアライメント計算の好ましい実施 例は、米国特許第4,805.123 号に開示されている。この 米国特許は1989年2月14日に発行され、本願と同 じ譲受人に譲渡されていて、Specht等による"Automati c Photomask and Reticle Inspection Method and Appa ratus Including Improved Defect Detector and Sub-S ystem"である。この好ましい実施例では、位置整合修正 信号51は全体の関心領域に亘って連続的に計算され る。または、マスク57上の少数の特定特徴点を選択 し、これらの特徴点でのみ位置整合のずれを計算しても よい。この場合、スキャンプロセスでアライメントは急 速には変化しないと仮定している。後者の場合には、フ ォースコンピュータ会社(Force Computer, Inc.)のモデ ルCPU 30ZBE のような単一ポードコンピュータが位置整 合 (アライメント) 計算を実行するために使用される。

【0073】アナログ偏向

アナログ偏向回路30は、図4の20極プレート101、103に対してアナログランプ機能を発生する。このサプシステムの動作は図9に示されている。偏向コントローラ50からのデジタル信号はスロープDAC230によりアナログ電圧に変換され、その出力はランプ発生器232に導かれる。ランプの振幅はDAC234を使用して可変にでき、一方オフセットはDAC236によりコントロールされる。サンプルホールド回路238、240は、それぞれ、ランプのスターととエンドを規定するために使用される。高電圧で低ノイズのドライバが波形を増幅し、ダイナミックレンジが±180Vのランプを発生する。このランプは偏向器プレート101、103に印加される。

【0074】メモリブロック

メモリブロック52は3個の同一なモジュールからなり、各モジュールは偏向器117、129、160の各タイプの異なる一つに対応している。図10に示すように、概念的にメモリブロック52の各モジュールは2つの先入れ先出方式(ファイフォ First In - First Out)メモリからなる。第1のファイフォはダイ68から得られる全体のスオーシュの各検出器に対応したグレイスケール値をストアし、一方、第2のファイフォはより短くて、ダイ70の数スキャンにのみ対応した各検出器に対するグレイスケール値をストアする。これら2つのファイフォからの出力は欠陥プロセッサ56とアライメントコンピュータ21に送られる。各ファイフォは100MIzの速度で動作し、検出器当り8ビットで各ピクセルのグレイスケール値をストアする。

【0075】メモリは、その入力レジスタ302に、各 50 種検出器に対する取得プリプロセッサ48から並列に送

られてくる8パイトを受け取る。シフトレジスタのよう に働く入力レジスタ302は、入力レジスタの8セクシ ョンが一杯になるまで、8パイトを右にシフトし、そし て他の8パイトを受けとる。入力レジスタの8セクショ ンが一杯になると、64パイトがメモリ303にクロッ クで送られる。

【0076】これを実行するのはDRAM303であ る。通常128メガバイトがシステムに使用される。

【0077】画像捕獲(アクイジション)前置プロセッ サ

画像補獲前置プリプロセッサ48は、各検出器117、 160、129からのアナログ信号を変換し、これらを 100MHz の速度で8ピット値にデジタル化し、メモリ プロック52に蓄積するために出力信号をリフォーマッ トする。

【0078】画像捕獲前置プロセッサ48は3個の同一 のモジュールからなり、その内の一つが図11に示され ている。各モジュールは対応する検出器からの出力を受 けとり、その出力をADC(A/D変換器)9により8 ーター11に送る。多重スキャンインテグレータ11の 目的は、ノイズを減少させるために同じピクセルからの グレイスケール値を平均化することである。この様な状 況下において、ピクセルは再びスキャンされ、例えば数 回再びサンプル化される。その得られた結果はそのピク セルの平均値である。この値はシフトレジスタ13に送 られる。そのシフトレジスタ13は、メモリプロック5 2に8パイトを並列に送る前にその8パイトをシリーズ に受けとる。

【0079】干渉計

ステージ24のxとyの位置は、Teletrac TIPS V のよ うなx-y干渉計28によってモニタされる。その位置 は28ビットに規定され、最下位ビットは約2.5 ナノメ ータに対応する。

【0080】システムコンピュータ

システム10の全体の制御はシステムコンピュータ36 によってなされ、システムコンピュータ36によりハウ スキーピングタスクを含めて種々のステップシーケンス が順序だってなされる。シーケンスの各イベントはプロ グラムされた時間に達成され、コンピュータ36のスル 40 ープットを最大にするために多数のコンフリクトしない シーケンスが同時になされる。

【0081】コンピュータ36により達成されるルーチ ンは、システムとユーザとの相互通信が、関連したマウ スやトラックボールポインティング装置を有するキーボ ード40か或いはリモートコンピュータでのデータ通信 によりなされるように設計されている。ローカル通信に 対しては、コンピュータディスプレイ38がシステムコ ンピュータ36からのグラフィックやテキストを表示す

【0082】システムコンピュータ36のルーチンは、 4つの通信タスクに組織化されている。

【0083】1. コラムコントロールコンピュータ4 2、ポストプロセッサ58、マスクハンドラー34との 全ての通信がなされるマスタータスク。このタスクはま た、レンズセッティング、真空圧、ピーム電流等のマシ ーン動作パラメータを記録しているシステムコンピュー タ上のファイルを保持している。

【0084】2. コンピュータディスプレイ38上のデ 10 ィスプレイを管理し、キーボード40とマウス入力を扱 **うユーザインターフェースタスク。このタスクは、デー** タファイルを変更したり、アクションを開始するために メッセージをシステムの他の部分に送ることによって、 ユーザキーボード40とマウス入力に応答する。

【0085】3. マスタタスクを介してコラムコントロ ールコンピュータ42へ画像取得スオーシュの記述を送 る検査タスク。

【0086】4、キーボード40からのコマンド入力を 受入れ可能なコマンド言語解釈タスク。このタスクはま ピットにデジタル化し、それを多重スキャンインテグレ 20 た、繰返し動作の自動スケジュールを可能とするタイマ ーを管理する。更に、このタスクは、全てのマシーン動 作とその動作が生じる時間とを記述しているテキストロ グファイルを生成しかつ更新する。このタスクは通常サ ーピスエンジニアによるマシーン制御にのみ使用され る。

> 【0087】システムコンピュータの例として、UNIX オペレーティングシステムのもとでランする Sun Micro systems SPARC プロセッサがある。UNIXは、AT&Tの登録 商標である。

【0088】コラムコントロールコンピュータ 30 コラムコントロールコンピュータ42は、オートフォー カスコンピュータ、真空コントロールコンピュータと偏 向指令コンピュータからなる。オートフォーカスコンピ ュータの機能と実行は、本願の標題"オートフォーカス システム"の節で説明され、真空システムについては、 標題"真空システム"の節でなされる。

【0089】 コラムコントロールコンピュータ42は、 システムコンピュータ36から指令を受ける。

【0090】 コラムコンピュータ42は、Force Comput er, Inc. によって作られている CPU30ZBEのような 6803 0ベースの単一ボードコンピュータで実行される。

【0091】ポストプロセッサ

ポストプロセッサ58は、欠陥プロセッサ56から、各 タイプの検出器に対するあらゆる欠陥ピクセルを示すマ ップを受信する。ポストプロセッサ58はこれらのマッ プを結び付け、各欠陥のサイズと位置を決定し、これら を欠陥のタイプに分類する。これらのデータはシステム コンピュータ36に利用可能である。実際には、ポスト プロセッサは、Force Computer, Inc. によって作られて 50 いる CPU30ZBEのような 68030ペースの単一ポードコン

ピュータとして実行される。

【0092】ビデオフレームバッファ

ピデオフレームパッファ44は、商業的に入手可能なビ デオフレームメモリであり、ピクセル当たり12ピット で、480x512 ピクセルの記憶容量を有している。適切な フレームパッファは Image Technology Inc. のモデル F G100V である。ビデオフレームバッファは1秒間に30 回、画像ディスプレイをリフレッシュする。

【0093】画像ディスプレイ

画像ディスプレイ46は、SONYモデル PVM 1342Qのよう な、商業的に入手可能なカラーモニタである。擬似色カ ラー技術が、オペレータによる画像の評価のために使用 されている。そのような技術は白黒画像の異なるグレイ シェイド(白に近い灰色か黒に近い灰色かの尺度)値に 異なる色を割り当てる。

【0094】 データペースアダプター

データベースアダプター54は、ダイにパターンを形成 するために使用されるCAD(Computer Aided Design) データを基にして、各ピクセルに対応するグレイスケー は、データベースアダプターへの入力は、集積回路のパ ターン形成に使用されるフォーマットのデジタル磁気テ ープである。これらのデジタルデータは、画像捕獲前置 プロセッサ48の出力と同じフォーマットで、スオーシ ュに組織されたピクセルデータの流れに変換される。そ のようなデータベースアダプターは、米国特許第4,926, 489号に既に開示されている。米国特許第4,926,489 号 は、1990年5月15日に発行され、本出願と同じ譲受人 に譲渡されたDanielson 等による"Reticle Inspection System"である。

【0095】マスクハンドラー

マスクハンドラー34の機能は、カセットからマスク5 7を自動的に取出して、それをマスクホルダーに適切な 方向に向けて置くことである。これは、半導体産業にお いてウェファを輸送し操作するのに通常使用されている ウェファハンドラーに類似のロボット装置である。マス クハンドラーの第1の機能は、図2と図3のフラット5 9の方向を決定することである。マスクハンドラー34 は、マスクの回転中心に関して径方向に向いたリニアC DDセンサーで光学的にフラットを検知する。マスクが 40 回転すると、イメージセンサの出力はデジタル形式に変 換され、Force Computer Inc. の CPU 30ZBEのような単 ーポードコンピュータにストアされる。コンピュータは フラット59の位置を決定する。そしてマスクは適切な 方向に回転され、自動的にマスクハンドラーに位置決め される。マスクを有するマスクホルダーは、図8の負荷 エレベータ210に載せられる。ハンドラーの全ての動 作はシステムコンピュータ36により制御される。

【0096】ステージ

メントシステム22のもとでマスク57を移動させるこ とである。システムの複雑さを最小にするために、ステ ージ24は2自由度、つまりxとy方向の自由度のみを 有するように選ばれていた。即ち、ステージ24は、マ スク57のx-y面に垂直な方向に回転も移動もできな い。言い換えれば、ステージは、x、y或いは斜め方向 ヘ平行移動だけできる。この代わりに、電子ピームラス ターの回転は、任意のスキャンをピームの静電的偏向の 2成分に分解し、ステージを機械的サーポにより同様な 10 方法で移動することにより、電子的に達成される。対物 レンズはマスクの高さ方向の変化を補償するために充分 な範囲の可変焦点を有しているので、z軸方向の移動は 必要ない。

【0097】ステージ24は、直線性、直角性及び繰り 返し性において非常に精密に制御できる装置である。交 差したローラベアリングが使用されている。ステージは 真空状態でも使用でき、電子ピーム100と干渉しない ように非磁性体である。ステージはオープンフレームを 有しているので、透過電子ピーム108がその下の検出 ルとを生成する画像シミュレーターである。代表的に 20 器129に到達できる。オープンフレームはまた、載聞 プロセスにおいて下からマスク57をオープンフレーム 上に置くために使用される。

> 【0098】図示しない3位相プラシュレスリニアモー タが軸当り2個使用されて、最良のシステム機能を達成 るるようにステージ24を駆動していた。適切なリニア モータは、Anorad Inc. によって作られたAnoline モデ ル L1 と L2 である。

【0099】真空システム

真空システム全体はコラムコントロールコンピュータ4 30 2の制御下にある。システムの種々の場所に配置された 図示しない従来の圧力センサが圧力を測定し、その結果 をコラムコントロールコンピュータ42に報告する。こ のコンピュータが、スタート時、或いはマスクのローデ ィング及び非ローディング期間に、必要に応じて種々の パルプを時間制御する。後者のルーチンは、標題"ロー ディング動作"においてより詳しく説明する。真空状態 が電子ピーム動作に対して不適切であると、高電圧は自 動的にカットオフされ、電子源81がダメージを受ける のを防止している。この動作は、コンピュータ42、3 6と圧力センサとを組み合わせて実行されている。同時 に空気離隔弁145 (図6と図8) が、コラムの超髙真 空領域140の汚染を防止するために動作する。真空シ ステムの動作を以下に説明する。

【0100】電子銃の真空システムは、前もってベーキ ングされその後は何の操作もなく只維持されるように設 計された2段階の差動的に動作するポンプシステムであ る。約10-9トールの超高真空領域140はイオンポン プ139によって排気されて、ガンアノード開口87か ら離隔されている。約10~8トールの中間の真空領域1 ステージ24の機能は、電子ビーム100と光学アライ 50 41は、イオンポンプ149によって排気され、空気ガ

ン離隔弁145とアパーチャ機構99によりメイン真空 領域143から離隔されている。これらの真空素子は、 電子生成おいてフィールドエミッションに適した環境を 提供する。

【0101】下部コラム領域143の真空状態は、ター ポポンプ204によって維持され、と同時に検査チャン バー206の真空状態はターポポンプ208により提供 される。検査チャンパー206は、プレートによって下 部コラム領域143から離隔されており、このプレート には電子ピームが通れるような小さな孔が開けられてい 10 る。この様に真空領域206と143を離隔することに よって、検査すべき基板がかなりの蒸気圧を有するフォ トレジスト物質でコートされた場合にも、高真空状態を 維持することができる。

【0102】真空システムは2つのエアロック224、 226を有している。一方はマスク57を検査チャンパ 206に載置するために使用され、他方は検査終了後に マスク57を取り出すために使用される。両方のチャン パは各々、並列に配置されたパルプ212と214を介 クチャンパ224を低速で排気するために設けられ、一 方パルプ214は大きなオリフィスを有し大容積を排気 することができる。同様の構成がチャンパ226に対し ても設けられている。この2つの構成を設けた目的は、 荷電粒子が排気プロセスにおいて攪乱されるのを防止 し、かつチャンパを排気たり加圧するのに必要な時間を 少なくするためである。

【0103】以下に詳細に説明されるように、最初、マ スクがエアロック224に置かれると、低速パルプ21 2だけが開かれ、チャンバ内の流速は、エアロック領域 30 224の荷電粒子が攪乱されないように充分に低く維持 される。チャンパ内の圧力が低下して空気流が分子領 域、即ち荷電粒子がもはや攪乱されない領域に達する と、大きなパルプ214が開けられ、エアロック内に残 っている空気が急速に排気される。同様の2ステップ動 作が加圧プロセスでも使用される。

【0104】ロード (装填) 動作

以前に説明したように、マスク57はマスクハンドラー 34のアダプターとともに移動し、載置エレベーター2 状態にある。エアロック224を低速で排気できるパル プ212が開けられる。ロック224の圧力が分子流の 圧力に達すると、高容量のパルプ214が開けられ、残 りの空気が排気される。そしてゲートバルブ216が開 けられ、エレベーター210はパルプ216を通ってマ スク57を検査チャンパ206に押上げ、それをステー ジ24に載置する。マスク57の検査が終了すると、逆 プロセスが行われて、マスク57はマスクを収納するの に使用されているカセットに再び収められる。

【0105】この代わりに、マスクのカセットを同様の 50 【0112】本発明は、数種の動作モード及び典型的な

26

方法でチャンパに載置することもできる。マスクの集合 の各々が検査されると、マスクのカセットが除去され て、マスクの次のカセットに交換される。

【0106】更に、本発明のダブルロック配置による と、1つのチャンパー内であるマスクを検査しながら、 同時に第2のチャンパを使用して、第2のマスクを挿入 して加圧したり、或いは降圧して除去したりできる。

【0107】オートフォーカスシステム

電子ビーム100は、図4に示されたシステムの対物レ ンズ104の電流を変化させて収束される。マスク57 や他の基板は平坦ではなく、またステージ24の表面は コラム20の軸に完璧に垂直ではないので、最適な焦点 電流は関心領域を越えて変化する。この変化はx軸とy 軸方向の距離の関数として見た場合に小さいので、マス ク57上の数個の指定点で最適なフォーカス電流を決定 することは可能であり、これらの間の任意の点に対して 所望のフォーカス電流を補間することができる。

【0108】検査プロセスを準備し開始する際に、シス テムは指定点で最適なフォーカス電流を測定する。この して真空ポンプに接続されている。バルブ212はロッ 20 フォーカス・キャリブレーション・プロセスは、ビーム を指定点に位置付けし、それからマスク57の特徴エッ ジに垂直な直線に沿ってグレイスケール値を測定するス テップからなる。例えばフォーカス電流の10個の異な る値に対して、デジタル化されたグレイスケール値は、 図示しないハイパスフィルタで畳み込まれる。最良のフ ォーカス電流は、ハイパスフィルタからの出力のうちで 最大の値に対応した電流である。好ましい実施例では、 二次微分フィルタが使用され、この実施例では以下のよ うな畳こみ係数を有している。

> [0109] - 4 0 0 0 8 0 0 0 - 4最良の結果に対して、ハイパスフィルタの出力は平滑化 されるべきである。

【0110】フォーカスコンピュータはコラムコントロ ールコンピュータ42の一部である。フォーカス計算 は、畳み込み集積回路と数個のDSP素子からなる特別 な目的のハードウエアで実行される。

【0111】光学アライメントシステム

光学アライメントシステム22は、ダイが検査チャンパ に入った後に、ダイの粗いアライメントを視覚的に実行 10に搭載される。この時、エアロック224は大気圧 40 するために、オペレーターによって使用される。サプシ ステムは、真空チャンパへのウインドウと、ディスプレ イ46上にイメージを表示するために、CCDカメラ上 にマスクを投影するレンズとからなる。オペレーターは 2つのレンズのうちの一つを選択できる。本発明では、 これらは経験的に決定される。この二つのレンズのうち 一方は、マスクを見る倍率が0.46であり、他方はその倍 率が5.8 である。マスクからのフィルムでレンズの光学 面がコーティングされるのを防止するために、全てのレ ンズは真空の外に置かれている。

ルーチンと装置に沿って説明されたが、当業者なら、上 記記述と図面に示された内容から種々の変更して実施で きることはいうまでもない。

【図面の簡単な説明】

【図1】本発明のシステムの全体プロック図。

【図2】ダイ・データベース検査に対して本発明で使用 されているスキャンパターン図。

【図3】ダイ・ダイ検査に対して本発明で使用されてい るスキャンパターンのグラフ図。

【図4】電子光学コラムと収集システムの機能要素を示 10 32…検出器

【図5】図4に示された電子光学コラムと収集システム を通る一次電子、二次電子、後方散乱電子と透過電子の 行程を示す概略図。

【図6】マルチヘッド電子銃と真空系の概略図。

【図7】本発明の位置決め制御システムのブロック図。

【図8】本発明の真空システムの概略図。

【図9】本発明のアナログ偏向システムのプロック図。

【図10】図1に示された本発明のメモリのプロック

【図11】本発明の画像捕獲(アクイジション)前置プ ロセッサーのブロック図。

【符号の説明】

10…検査システム

20…電子ピームコラム

21…アライメントコンピュータ

22…光学アライメントシステム

23…データバス

24…x-yステージ

26…ステージサーボ

28…干涉計

29 ··· VME 1

30…アナログ偏向回路

31 ··· VME 2

3 3 …信号

34…マスクハンドラー

36…システムコンピュータ

38…コンピュータディスプレイ

40…ユーザキーボード

42…コラム制御コンピュータ

44…ピデオフレームパッファ

46…画像ディスプレイ

48…画像捕獲(アクイジション)前置プロセッサ

20 50…偏向コントローラ

52…メモリプロック

54…データベースアダプター

56…欠陥プロセッサ

57…マスク

58…ポストプロセッサ

[図2]

【図3】

【図1】 イメージーアナスメント 46 データベース 54 $\underline{\circ}$ VME 2 VME I 48 -29 42 56 S 52 28 コラムコントロールコンピュータ ポストプロセッサ アゲンフームバッファ 欠陥プロセッサ 7 10 西像加雅前置 プロセッサ ? イメイントン <u>館</u>回コントロ· ブ 一一十八 ラン Γ 40 イーサネット 33 34 Ю₂ 28 , 26 8/ 32 シスチムコンピュタ オーボーナ 8 アナログ館回 マスクハンドラ ステージサーボ 盂 Ħ 铉 +コンドュータディスプレイ 20 30 38 Ø :2 4 1 К IV. 1 П Þ ĸ 57~ 24~ 22 おいてなる。アントランドンドントランドントウント

【図4】

[図11]

【図8】 140 139 139 87 99. .149 هِ الله 145 143 206 204 24₂₁₆ 226 208 228 230-212 214 210 214 212 22,2 萷 段 ポンプ 窒 素 源 220 ポンプ

【図10】

フロントページの続き

- (72)発明者 カート・チャドウィック アメリカ合衆国、カリフォルニア州 95032、ロス・ガトス、ウッディッド・ビュー・ドライブ 220
- (72)発明者 アニル・デサイ アメリカ合衆国、カリフォルニア州 95131、サンノゼ、フォア・オークス・ド ライブ 1703
- (72)発明者 ハンス・ドース アメリカ合衆国、カリフォルニア州 95488、プレザントン、グラシア・コー ト・ノース 3602
- (72)発明者 デニス・エンジ アメリカ合衆国、カリフォルニア州 95127、サンノゼ、グリッドレイ・ストリ ート 951
- (72)発明者 ジョン・グリーン アメリカ合衆国、カリフォルニア州 95062、サンタ・クルス、メリル・ストリ ート 401

- (72)発明者 ラルフ・ジョンソン アメリカ合衆国、カリフォルニア州 95112、サンノゼ、エヌ・セカンド・スト リート 1124
- (72)発明者 クリス・カーク イギリス国、エイチピー9・アイエスアー ル、ウースター・ロード・ピーコンスフィ ールド・パックス 1
- (72)発明者 ミン イー・リン アメリカ合衆国、カリフォルニア州 94086、サニーペイル、ラスター・リー フ・ドライブ 815
- (72)発明者 ジョン・マッマートリ アメリカ合衆国、カリフォルニア州 94025、メンロ・パーク、コットン・スト リート 650
- (72)発明者 パリー・ベッカー アメリカ合衆国、カリフォルニア州 95008、キャンベル、ドット・アベニュー 51

- (72)発明者 ジョン・ギビリスコアメリカ合衆国、コロラド州 80303、ブールダー、ホワイト・プレイス 5484
- (72)発明者 レイ・ボール アメリカ合衆国、カリフォルニア州 94301、パロ・アルト、ウェイパレイ・ス トリート 1801
- (72)発明者 マイク・ロビンソン アメリカ合衆国、カリフォルニア州 95126、サンノゼ、ダナ・アベニュー 970
- (72)発明者 ポール・サンドランド アメリカ合衆国、オレゴン州 97478、マ ッカンパー・レーン・スプリングフィール ド 85510
- (72)発明者 リチャード・シモンズ アメリカ合衆国、カリフォルニア州 94022、ロス・アルトス、アルバレイド・ アベニュー 44
- (72)発明者 デイビッド・イー・エー・スミス アメリカ合衆国、カリフォルニア州 94403、サン・マテオ、キングリッジ・ド ライプ 4022
- (72)発明者 ジョン・テイラー アメリカ合衆国、カリフォルニア州 95119、サンノゼ、サン・イグナシオ・ア ベニュー 6431
- (72)発明者 リー・ベネクラセン アメリカ合衆国、カリフォルニア州 94546、カストロ・パレイ、パディング・ ロード 3445
- (72)発明者 ディーン・ウォルタース アメリカ合衆国、カリフォルニア州 94040、マウント・ピュー、ルピッチ・ド ライブ 3399
- (72)発明者 ポール・ウィーツォレク アメリカ合衆国、カリフォルニア州 95117、サンノゼ、トパーズ・ドライブ 1118

- (72)発明者 サム・ウォング アメリカ合衆国、カリフォルニア州 95148、サンノゼ、グレン・アーガス・ウ エイ 2488
- (72)発明者 エイブリル・デュッタ アメリカ合衆国、カリフォルニア州 95035、ミルピタス、パーク・グローブ・ ドライブ 1151
- (72)発明者 スレンドラ・レレ アメリカ合衆国、カリフォルニア州 95051、サンタ・クララ、フラネリー・ス トリート 626
- (72)発明者 カークウッド・ラフ アメリカ合衆国、カリフォルニア州 95112、サンノゼ、エス・フォーティーン ス・ストリート 264
- (72)発明者 ヘンリー・ピアース パーシー アメリカ合衆国、カリフォルニア州 95030、ロス・ガトス、スカイビュー・テ ラス 23415
- (72)発明者 ジャック・ワイ・ジャウ アメリカ合衆国、カリフォルニア州 94536、フレモント、パリントン・テラス 2721
- (72)発明者 ジェシー・リン アメリカ合衆国、カリフォルニア州 94088、サニーペイル、ピー・オー・ボッ クス 64055
- (72)発明者 ホイ・ザ・ギュイエン アメリカ合衆国、カリフォルニア州 95035、ミルピタス、コスティガン・サー クル 527
- (72)発明者 イェン ジェン・オヤング アメリカ合衆国、カリフォルニア州 95014、キュパティノ、クリークライン・ ドライブ 7868
- (72)発明者 ティモスィー・エル・ハッチェソン アメリカ合衆国、カリフォルニア州 95030、ロス・ガトス、ロックスペリ・レ ーン 535