#### 1 Estimativas

Determine ou estime a densidade de fluxo de calor P resultante entre duas placas paralelas separadas por uma distância L, tendo uma delas temperatura  $T_1$  e a outra  $T_2$ . O espaço entre as placas é preenchido com um gás monoatômico de densidade molar (eta) e massa molar M. Você pode usar as seguintes aproximações:

- (i) A densidade do gás é tão baixa que o livre caminho médio lambda>>L
- (ii)  $T_1 >> T_2$
- (iii) Quando uma partícula bate numa placa, ela adquire a temperatura dessa placa
- (iv) Você pode desprezar a radiação do corpo negro

### 2 Pressão de saturação

Deduza a equação de Clausius-Clapeyron. Trabalhe com um ciclo de Carnot infinitesimal em que o trabalho é realizado pelo vapor de água e que ambas as fontes quente e fria sã feitas de água, com temperaturas  $T_0$  e  $T_1$ , respectivamente.

### 3 Placas afirmativas

Uma superfície plana negra é mantida a uma temperatura elevada  $T_q$  é paralela a outra placa semelhante, mas a uma temperatura menor,  $T_f$ . Entre as placas há vácuo. A fim de diminuir o fluxo de radiação entre as placas, são introduzidas N placas termicamente isoladas entre as duas primeiras. Após certo tempo, o regime estacionário é alcançado. Por qual fator C o fluxo de energia é reduzido após a introdução das placas

## 4 Agulha no palheiro

Uma agulha de comprimento I é derrubada aleatoriamente sobre uma folha de papel com pautas paralelas espaçadas de uma distância I. Qual é a probabilidade de que a agulha cruze uma linha

# 5 Estados energéticos

Considere um sistema composto por N partículas que ocupam níveis discretos de energia  $E_1$ ,  $E_2$ ,  $E_3$  e assim por diante, possuindo assim uma energia total E. O objetivo desse problema é calcular o número de partículas  $N_i$  no estado energético  $E_i$  e a probabilidade de encontrar uma partícula nesse estado energético

a) Definimos a multiplicidade de um sistema como o número de maneiras na qual podemos arranjar ele. Sendo assim encontre a multiplicidade do nosso sistema.

Em um sistema grande (um elevado número de partículas), este tende a estar numa configuração em que a multiplicidade seja máxima, pois este é o estado mais provável. Portanto, nosso objetivo é maximizar a expressão encontrada acima. Para tal feito, iremos recorrer à técnica dos multiplicadores de Lagrange. Com ela nós conseguimos encontrar pontos de máximo ou mínimo de funções com restrições. Seja uma função f de n parâmetros  $x_i$  com g restrições homogêneas, temos a função:

$$\Gamma = f - \sum_{i} \lambda_{i} g_{i}$$

Que respeita:

$$\frac{\partial \Gamma}{\partial x_i} = 0$$

- b) Quais são as restrições do sistema?
- c) Maximizar a multiplicidade pode ser uma tarefa difícil, mesmo com os multiplicadores de Lagrange. Para contornar isso, maximize o logaritmo da multiplicidade.

Obs: ln(N!)=NlnN-N para N grande

d) Calcule assim a probabilidade de uma partícula estar no estado de energia E<sub>i</sub>

## **6 Efeito Schottky**

Vamos considerar um modelo simplificado de um gás ideal constituído por N partículas que podem ser encontradas em dois estados, com energias 0 ou E>0. Para especificar o estado microscópico desse sistema é necessário conhecimento do número de partículas em cada um dos estados energéticos. Considere o caso em que  $N_1$  partículas estão no estado de energia nula e  $N_2$  no estado de energia E.

- a) Considere que todas as partículas são idênticas e que a única forma de diferenciar cada uma é através de sua energia, determine o número de maneiras pelas quais é possível obter um estado como aquele descrito no texto, como função de N,  $N_1$  e  $N_2$
- b) Exprima o resultado obtido como função da energia total  $E_t$ = $E(N-N_1)$  do sistema, da energia E e do total de partículas na amostra
- c) A partir dos itens anteriores, determine

Quando trabalhamos com grandes populações, é comum utilizarmos aproximações que facilitem nossa análise. Uma dessas é a aproximação de Stirling:

- d) Utilize a aproximação de Stirling para escrever a densidade de entropia s=S/N em função da constante de Boltzmann, da energia E e da densidade de enrgia u=E/N do sistema.
- e) Calcule assim a temperatura do sistema em função de k, u, e E
- f) A partir dos resultados obtidos, faça um esboço do gráfico em função de u. Você observou algo de estranho?