

Chapter 3

BOOLEAN ALGEBRA, LOGIC FUNCTIONS and LOGIC GATES

- Forms of variables
 - normal (x)
 - -complement(x')
- Forms of terms (variables x and y)
 - Minterms m_i (or standard product)

Maxterms M_i (or standard sum)

$$x+y$$
, $x+y'$, $x'+y$, $x'+y'$

Minterms and Maxterms for 3 variables

	MI		MI	NTERM MA		AXTERM
Х	у	Z	Term	Designation	Term	Designation
0	0	0		m0		MO
0	0	1		m1		M1
0	1	0		m2		M2
0	1	1		m3		M3
1	0	0		m4		M4
1	0	1		m5		M5
1	1	0		m6		M6
1	1	1		m7		M7

Minterms and Maxterms for 3 variables

	MI		INTERM	NTERM MA		
х	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m0		MO
0	0	1	x'y'z	m1		M1
0	1	0	x'yz'	m2		M2
0	1	1	x'yz	m3		M3
1	0	0	xy'z'	m4		M4
1	0	1	xy'z	m5		M5
1	1	0	xyz'	m6		M6
1	1	1	xyz	m7		M7

Minterms and Maxterms for 3 variables

	MINTERM		NTERM	MAXTERM		
х	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x'+y'+z'	M7

Forms of Boolean Functions

- Canonical Form
 - Sum of minterms
 - Product of maxterms

- Standard Form
 - Sum of products
 - Product of sums

Forms of Boolean Functions

Examples

- F(a,b,c) = abc' + a'bc'
- F(w,x,y,z) = (w+x'+y'+z)(x+y+z')
- F(x,y,z) = xz'+y
- F(a,b,c,d) = (a+b'+c+d)(a+b+c'+d')

Sum of Minterms

- Any Boolean function can be expressed as a sum of minterms
- "sum" means ORing the minterms that produces a 1 in the function
- Each minterm is obtained from an AND term of the *n* variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1.

Example - Truth Table

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example - Truth Table

$$= A'B'C + AB'C' + AB'C + ABC'$$

$$=\Sigma(1,4,5,6,7)$$

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = A(B+B') + B'C$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$=$$
 ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C

$$= A'B'C + AB'C' + AB'C + ABC' + ABC'$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$=$$
 A'B'C + AB'C' + AB'C + ABC' + ABC

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$= \Sigma(1, 4, 5, 6, 7)$$

Product of Maxterms

- Any Boolean function can be expressed as a product of maxterms
- "product" means ANDing the maxterms that produces a 0 in the function
- Each maxterm is obtained from an OR term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 1 and unprimed if a 0.

Example - Truth Table

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example - Truth Table

$$= (A+B+C)(A+B'+C) (A+B'+C')$$

$$=\Pi(0,2,3)$$

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = (A+B')(A+C)$$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$= (A+B'+C)(A+B'+C')(A+C+BB')$$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$= (A+B'+C)(A+B'+C')(A+C+BB')$$

$$= (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C)$$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$= (A+B'+C)(A+B'+C')(A+C+BB')$$

$$= (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C)$$

$$= (A+B+C)(A+B'+C)(A+B'+C')$$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$= (A+B'+C)(A+B'+C')(A+C+BB')$$

$$= (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C)$$

$$= (A+B+C)(A+B'+C)(A+B'+C')$$

$$= M_0 M_2 M_3$$

$$=\Pi(0,2,3)$$

Conversion between Canonical forms

• Consider the previous example: F = A + B'C $F(A,B,C) = \Sigma(1,4,5,6,7)$

This has a complement that can be expressed as:

 $F'(A,B,C) = \Sigma(0,2,3) = m_0 + m_2 + m_3$

Now, take the complement of F', we will obtain

$$F = (m_0 + m_2 + m_3)' = m_0' m_2' m_3' = M_0 M_2 M_3$$

= $\Pi(0,2,3)$

AND Gate

Inputs	Output
A B	Q
0 0	0
0 1	0
1 0	0
1 1	1

OR Gate

Inp	outs	Output
A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

Input	Output
Α	Q
0	1
1	0

Other Gates

- Why use?
 - -Saves cost
 - -Saves space
 - -Saves time

Other Gates

- Why use?
 - -Saves cost
 - -Saves space
 - -Saves time

- Types
 - -NAND gate
 - -NOR gate
 - $-\mathsf{XOR}$ gate
 - -XNOR gate

NAND Gate

Inputs	Output
A B	Q
0 0	1
0 1	1
1 0	1
1 1	0

NOR Gate

Inputs	Output
A B	Q
0 0	1
0 1	0
1 0	0
1 1	0

Exclusive-OR Gate

Truth Table

Inputs	Output
A B	Q
0 0	0
0 1	1
1 0	1
1 1	0

XNOR Gate

Truth Table

Inputs	Output
A B	Q
0 0	1
0 1	0
1 0	0
1 1	1

Digite Draw

Digital Logic gates

• Draw the logic diagram of the function F = A+B'C

B

Real Gates

- Logic gates are in integrated form
 - built within a solid piece of silicon called an IC (integrated circuit)

Several gates are included in a single plastic moulding

IC Families

- Transistor-Transistor Logic (TTL)
- Emitter Coupled Logic (ECL)
- Complementary Metal-Oxide-Semiconductor (CMOS)

Levels of IC

- Small-scaleIntegration
 - ICs with 1 to 10gates
- Medium-scale
 Integration
 - —ICs with 10 to 100 gates

- Large-scaleIntegration
 - ICs with 100 to1000s of gates
- Very large-scaleIntegration
 - ICs with 1000s to millions of gates