GEOMOTER SCHRÖDINGE FOUNTIONS

- MAGNETIZATION VCCTOR
$$\vec{m}$$
: $\left[\begin{array}{c} m_1(x) \\ m_2(x) \end{array}\right] alk^3$

$$\left[\begin{array}{c} m_3(x) \\ m_3(x) \end{array}\right]$$

· STATIC CONFIGURATIONS DUNITY 1 ZE GROWY

- MANIFOLDS: MAPS BENEEN RIEMANNIAN
 - m' (., t): M (=1R2) N(= 82)
 - $(x,t)\in \mathbb{R}^3 \left\{ \overline{m}(x,t) \right\} = 1.$
 - · ENCREY: \(\left(\int \left(-, t \right) \right) = \frac{1}{2} \int \left[\frac{1}{n_i^2} \right]^2 dq

- E'(m) = Prosques & Sin = Diginal = Diginal = Diginal

DIEICHLET'S ENERGY?

DE GEONETRIC PAYSICA EVOUSTON PDE ANUSINE ROOM E:

- MCAT - ELOW

Of M = SM - VM. FM

ware map

SMEDINGER MAD I COMPUTE - HOW CRUSE

3. 调·一幅·各加

& MINIMIZE & (m) -> populatical material solitons

CONSIDER à CORAC DEVIATION ROM

A PURE PERROMABNETIC STATE

=> N = "Shyamican # 62?

e storeogeneric Prosection $y = \frac{m_1 + im_2}{n_1 + m_3}$ $\partial_y m^2 = \pm \int \partial_z m^2 \Leftrightarrow \left(\frac{\partial_y}{\partial_y} \pm i\partial_z\right) y = 0$ Courtly - Riemman

IF K=0, SCALINE
$m_3(x) = m(x)$ $m_3(x) = m(x)$
Bogolemon et al 34-7 in to: CHIRAL MAGNETIC SEURMIONS
CHIPAL MAGNETIC SPERMONS
EASY - PLANE ANISOTROPY
$j = deg \left(\overline{a}(x) \right) _{1 \times 1 = 12 \times 1} : 5 = 5'$
BEO -> a vorter configuration

PRESIDENT: INFINITE ENERGY.

DYNAMICS & SECULOSINOSO MASP WITH GIVEN

O CANAN - LIPSHIT?

WETH GIVEN

LIPSHIT?

LIPSHIT?

LIPSHIT?

CARREY

MARRIANIC MEAT FLOW

MANY SINGULAR POINTS, AY WHICH
NON - TRIVIAL MARMOTULC MAPS BUBBLE DAG

GOULVARIANT HEAT FLOW

h= 1: the solution is a

- Rubbling of a houmanic nop.

- DEPENDENT ON Are numbery

N>, 3: no blobby in finite fine,

Opposite stability

h=2 3 WERLARITIES CAN FORM

Sundoinger allops: below- Threshold:

ABOUT - TRUPERMOLD:

Basi Westerner , degree a equivalent solution

" SICKEMION
CHURAL MATENETIC SKIRMICUS
6 STABILLTY
O DYNAMICS
& EXISTENCE
o stenesographic prosection \ 9 = mi +iluz 1+ mz
2 Em (min) 2 4 SIVIPP + S(1-10)2)2
LE / Y (r) 21 MGINZBURG-LANGE
-> o voicite x paries have a conte
O PIETT PROW/ GRADIENT KLOW JARROME EQUIVARIANT
Covery mittal value pressen
PDE 1 COMPARISON CR.?
SCHROPINGER MAP
easy-plane vorte - parts