Convexity

xuascaler

May 25, 2025

1. The Minkowski Functional

Let X be a vector space and $A \subset X$ be convex set containing 0. Moreover, we assume tha A is absorbing, i.e. $\forall x \in X$, we can find t > 0 large s.t. $x \in tA$.

Definition. The **Minkowski Functional** μ_A associated to A is the function $\mu_A: X \to R$ defined by

$$\mu_A = \inf\{t > 0 : x \in tA\}$$

Remark.

- 1. It is not a linear functional in the sense we will define later.
- 2. Since A is absorbing, $0 \in A$.
- 3. Since A is convex, we have: if $x \in tA$, t > 0 and s > t, then $x \in sA$.

Proof. if
$$x=ty$$
 for some $y\in A$, then $x=s(\frac{t}{s}y+\frac{s-t}{s}0)$. A is convex, $0\in A,y\in A\Rightarrow \frac{t}{s}y+\frac{s-t}{s}0\in A,$ so $x\in sA$.

4.
$$\{x \in X \mid \mu_A(x) < 1\} \subset A \subset \{x \in X \mid \mu_A(x) \le 1\}$$

Proof.

- if $\mu_A(x) < 1$, then $\exists \epsilon > 0$ s.t. $\mu_A(x) \le 1 \epsilon$. so $x \in (1 \frac{\epsilon}{2})A$
- if $x \in A$, then by definition, $\mu_A(x) \leq 1$.

Property. if $A \subset X$ is convex and absorbing, then

- 1. $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$
- 2. $\forall t \geq 0, \mu_A(tx) = t\mu_A(x)$
- 3. if A is also balanced, then μ_A is a semi-norm.

Proof.

- 1. for any $\epsilon > 0$, let $t = \mu_A(x) + \epsilon$, $s = \mu_A(y) + \epsilon$. then $\frac{x}{t} \in A$, $\frac{y}{s} \in A$. By Convexity, $\frac{x+y}{s+t} = \frac{t}{s+t} \frac{x}{t} + \frac{s}{s+t} \frac{y}{s} \in A$, By definition, $\forall \epsilon > s, \mu_A(x+y) \le s + t = \mu_A(x) + \mu_A(y) + 2\epsilon$, so $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$.
- 2. By definition, $\forall t>0, \mu_A(tx)=\inf\{s>0\mid tx\in sA\}=\inf\{s>0\mid x\in \frac{s}{t}A\}=t\inf\{\frac{s}{t}>0\mid x\in \frac{s}{t}A\}=t\mu_A(x)$
- 3. By definition, A is balanced $\Leftrightarrow \forall |\alpha| \leq 1, \alpha A \subset A$ In particular, $\forall |\alpha| = 1, \alpha A = A$, because $\alpha = -1, -A \subset A, A \subset -A$. Now $\forall \alpha \neq 0$, we get $\mu_A(\alpha x) = \inf\{t > 0 \mid \alpha x \in tA\} = \inf\{t > 0 \mid x \in \frac{t}{\alpha}A\} = \inf\{t > 0 \mid x \in \frac{t}{|\alpha|}A\} = |\alpha|\inf\{\frac{t}{|\alpha|} > 0 \mid x \in \frac{t}{|\alpha|}A\} = |\alpha|\mu_A(x)$

As we have seen last time, any Frechét space is locally convex, and the topology is induced by a complete translation-invariant metric d. By using Minkowski functional on can prove the converse.