Lesson 1.2: Introduction & Foundation

CSC450 - COMPUTER NETWORKS | WINTER 2019-20

DR. ANDREY TIMOFEYEV

OUTLINE

- Network core.
 - Packet switching.
 - Store-and-forward transmission.
 - Routing & forwarding.
- Performance.
 - Delay.
 - Processing delay.
 - Queueing delay.
 - Transmission delay.
 - Propagation delay.
 - Throughput.

NETWORK CORE

- Network core.
 - Mesh of interconnected routers.
- •Data can be moved through the network in two ways:
 - Circuit switching.
 - Packet switching.

PACKET SWITCHING

- •Hosts exchange messages with each other.
- Messages are broken down into packets.
 - Packet size = L bits.
- Packets travel through communication links and routers/switches.
- •Communication links pass packets at a transmission rate (throughput or bandwidth).
 - Transmission rate = R bits/sec.
- •Packet **transmission time** = *L/R* sec.
 - Time needed to transmit L-bit packet through communication link.

Message broken down into packets

PACKET SWITCHING: STORE-AND-FORWARD

- Store-and-forward transmission.
 - Switch/router must receive entire packet before it can transmit first bit onto outbound link.
 - Bits of a packet are stored ("buffered") by the switch/router.

PACKET SWITCHING: DELAY & PACKET LOSS

- Delay and packet loss.
 - If arrival rate to link exceeds transmission rate of link for a period of time:
 - Packets will queue and wait to be transmitted on link (queueing delay);
 - Packets will be dropped (packet loss) if memory (buffer) fills up.

PACKET SWITCHING: ROUTING & FORWARDING

- Routing & forwarding are the key network-core functions.
 - Routing determines source-destination route taken by packets.
 - Generates forwarding table.
 - Forwarding moves packets from router input link to appropriate router output link.

PACKET SWITCHING: RESOURCE SHARING (1)

- •Hosts share communication links using multiplexing/de-multiplexing process.
 - Time division multiplexing.
 - Frequency division multiplexing.
 - Statistical multiplexing.

Multiplexing data flows over single communication link

PACKET SWITCHING: RESOURCE SHARING (2)

•Statistical multiplexing:

- Cost-effective way for multiple hosts to share a communication link.
- Allows hosts to share the link over time.
- Data is transmitted based on demands of each host data flow.
- Assigns an upper limit for the size of data each host can send.

NETWORK PERFORMANCE

- Network performance is determined by following measures:
 - Delay (latency).
 - How long it takes a message to travel from one end of the network to another.
 - Round-trip time (RTT) is frequently used instead of one-way delay.
 - Throughput (bandwidth).
 - Amount of data per second that can be transferred by communication link.

DELAY

- •As a packet travels through the network it suffers from several types of delays:
 - Processing delay.
 - Queueing delay.
 - Transmission delay.
 - Propagation delay.
- •Total **nodal delay** (at single router) $d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop}$

PROCESSING DELAY

- •Processing delay time required to examine the packet's header and determine where to direct the packet.
 - In addition time needed to check for bit-level errors.
- •Typically in order of microseconds or less in high-speed routers.

QUEUEING DELAY (1)

- •Queueing delay time the packet has to wait in a queue until being transmitted onto the link.
 - The length depends on the number of earlier-arriving packets in the queue.
 - Empty queue = no queueing delay.
- Typically in order of microseconds to milliseconds.

QUEUEING DELAY (2)

- Queueing delay varies packet by packet.
 - Average delay, variance of delay, probability that delay exceeds specified value.
- •Queueing delay time depends on:
 - Rate at which traffic arrives at the queue;
 - Transmission rate of the link;
 - Nature of arriving traffic.
 - Periodical or at bursts.

QUEUEING DELAY: TRAFFIC INTENSITY

- Queueing delay is estimated by traffic intensity.
- •Traffic intensity = L*A/R.
 - L length of the packet (bits),
 - R transmission rate of the link (bits/sec),
 - A average rate at which packets arrive at the queue (packets/sec).

•If L*A/R > 1:

- Queueing delay approaches the total size of the queueing buffer.
 - Buffer is full => packet dropped by the router and is considered lost.

•If L*A/R <= 1:

- If traffic arrives periodically,
 - No queueing delay.
- If traffic arrives at bursts,
 - Significant average queueing delay, but less then the size of queueing buffer.

TRANSMISSION DELAY

- •Transmission delay time required to transmit (push) all of the packet's bits onto the link.
- •Calculated by L/R.
 - L length of the packet (bits), R transmission rate of the link (bits/sec).
- •Typically in order of microseconds to milliseconds.

PROPAGATION DELAY

- Propagation delay time required to propagate the bit from the beginning of the link to the router/host.
- •Calculated as D/S.
 - D distance between the routers, S propagation speed of link.
 - Propagation speed depends on the physical medium of the link.
 - In range of $2*10^8 3*10^8$ meters/sec.

TRANSMISSION DELAY VS. PROPAGATION DELAY

- •Transmission delay time required for the router to push out the packet.
 - Function of packet's length (L) and transmission rate (R) of the link.
 - Nothing to do with the distance (D) between routers/nodes.
- Propagation delay time it takes a bit to propagate from one router/host to next.
 - Function of the distance (D) between two routers and propagation speed (S) of the link.
 - Nothing to do with packet's length (L) and transmission rate (R) of the link.

•Total end-to-end delay $d_{end-end} = N(d_{proc} + d_{queue} + d_{trans} + d_{prop})$

THROUGHPUT (1)

- •Throughput number of bits per second that can be transmitted on the link.
- •For a simple **two-link** network, throughput = $min\{R_c, R_s\}$,
 - R transmission rate of the link.
- •For a network with **N links**, throughput = $min\{R_1, R_2, ..., R_n\}$
 - Transmission rate of bottleneck link.

THROUGHPUT (2)

- •Throughput depends on the transmission rates of the links over which the data flows.
 - Access network is a typical constraining factor for the throughput.

DELAY VS. THROUGHPUT

- •Relative importance of delay and throughput depends on the application.
- •Delay-bound:
 - Application is affected more by propagation delay than transmission delay.
 - Example: Client sends a 1-byte message to a server and receives a 1-byte message in return.
- •Throughput-bound:
 - Application is affected more by transmission delay than propagation delay.
 - Example: Digital library application that fetches a 25-Mbyte image.

SUMMARY

- Packet switching.
- Store-and-forward transmission.
- Queueing delay & packets loss.
- Routing & forwarding.
- Delay.
- •Throughput.
- Delay-bound vs. throughput-bound.