Intertemporal Choice

Jubo Yan

Division of Economics, Nanyang Technological University ${\it yanjubo@ntu.edu.sg}$

January 27, 2024

Overview

- Budget Constraint
- Comparative Statics
- Inflation
- 4 Implications of Present Value

Motivation

- People often receive income in "lumps" (e.g., monthly salary) but spending usually happens over a period of time
- How is a lump of income spread over a period of time?
 - saving now for consumption later (e.g., the following month)
 - borrowing now against income to be received later (e.g., at the end of the month)

Present and Future Values

- We will assume there are two periods, 1 and 2. Let *r* denote the interest rate per period
 - if r = 0.1, then \$100 saved at the start of period 1 becomes \$110 at the start of period 2
- The value next period of \$1 saved now is the future value of that dollar
 - given an interest rate r the future value one period from now of m is FV = (1+r)m

Present and Future Values

- Would you pay \$1 to obtain \$1 at the start of next period?
 - you can save your \$1 now so you will have (1+r) > 1 at the start of next period
- The amount of money that needs to be saved now to obtain \$1 at the start of the next period is the present value of \$1
 - $m(1+r) = 1 \Longrightarrow m = \frac{1}{1+r}$
 - the present value of \$m available at the start of next period is $PV = \frac{m}{1+r}$
- If r=0.1, the most you should pay now for \$1 available next period is $PV=\frac{1}{1+0.1}=\$0.91$

- We use subscripts to denote different periods (i.e., 1 for period 1 and 2 for period 2)
 - m_1 and m_2 are incomes received; c_1 and c_2 are consumptions made; p_1 and p_2 are prices
- Given (m_1, m_2) and (p_1, p_2) , what is the most preferred intertemporal consumption bundel (c_1, c_2) ?
 - intertemporal budget constraint?
 - intertemporal preference?
- For simplicity, we first assume $p_1 = p_2 = 1$

- Suppose consumer does not save or borrow
 - $c_1 = m_1$ and $c_2 = m_2$
- Now suppose consumer saves all income in period 1 and only consumes in period 2
 - $c_1 = 0$ and $c_2 = m_2 + (1+r)m_1$
- Now suppose consumer spends everything in period 1 by borrowing against m_2
 - $c_1 = m_1 + \frac{m_2}{1+r}$ and $c_2 = 0$

• Suppose c_1 units are consumed in period 1. This costs c_1 and leaves $m_1 - c_1$ saved. Period 2 consumption will then be

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

 $c_1 + \frac{c_2}{1+r} = m_1 + \frac{m_2}{1+r}$

• Now we add prices p_1 and p_2 back

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

Budget Constraint

- Comparative Statics
- Inflation

4 Implications of Present Value

Borrower and Lender

Interest Rate Change

- Similar to the case of consumption with endowment, we can also learn something about how the choice of being a borrower or a lender changes as the interest rate changes
- When interest rate decreases
 - ullet lender o lender: welfare decreasing
 - lender → borrower: uncertain
 - borrower → borrower: welfare increasing
- When interest rate increases
 - ullet borrower o borrower: welfare decreasing
 - borrower → lender: uncertain
 - lender \rightarrow lender: welfare increasing

Interest Rate Change

If a person is a lender and the interest rate rises, he or she will remain a lender. Increasing the interest rate pivots the budget line around the endowment to a steeper position; revealed preference implies that the new consumption bundle must lie to the left of the endowment.

A borrower is made worse off by an increase in the interest rate. When the interest rate facing a borrower increases and the consumer chooses to remain a borrower, he or she is certainly worse off.

Intertemporal Slutsky Equation

- The use of Slutsky equation is also similar to the case of consumption with endowment
- Write the intetemporal budget constraint in terms of future value

$$p_1c_1 + p_2c_2 = m_1(1+r) + m_2$$
 with $p_1 = 1 + r, p_2 = 1$

• Increasing the interest rate r is equivalent to an increase in period 1 price p_1

$$\frac{\Delta c_1^t}{\Delta p_1} = \underbrace{\frac{\Delta c_1^s}{\Delta p_1}}_{-} + \underbrace{\frac{(m_1 - c_1)}{\log er}}_{\text{lender: } +} \underbrace{\frac{\Delta c_1^m}{\Delta m}}_{\text{inferior: } -}$$

Budget Constraint

- Comparative Statics
- Inflation

4 Implications of Present Value

Price Inflation

- Define the inflation rate by π where $p_1(1+\pi)=p_2$
 - $\pi=0.2$ means 20% inflation while $\pi=1$ means 100% inflation
- ullet For simplicity, assume that $p_1=1$ so that $p_2=1+\pi$

$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$
 $c_2 = -\frac{1+r}{1+\pi}c_1 + \frac{1}{1+\pi}((1+r)m_1 + m_2)$

Real Interest Rate

With inflation, the slope of the intertemporal budget line is

$$-rac{1+r}{1+\pi}=-(1+\sum_{\substack{ ext{real interest rate}}}
ho =rac{r-\pi}{1+\pi}$$

• For small π ($\pi \to 0$), $\rho \to r - \pi$

Inflation Rate Change

 $\boldsymbol{c_1}$

Inflation Rate Change

Inflation Rate Change

Budget Constraint

- Comparative Statics
- Inflation

Implications of Present Value

Securities

- A financial security is a financial instrument that promises to deliver an income stream
 - a security pays m_1 at end of year 1, m_2 at end of year 2, and m_3 at end of year 3
- How should the security be priced?
- Calculate the PV of m_1 , m_2 , and m_3
 - $\frac{m_1}{1+r}$, $\frac{m_2}{(1+r)^2}$, and $\frac{m_3}{(1+r)^3}$
 - the PV of the security is the sum of the three PVs

Bonds

- A bond is a special type of security that pays a fixed amount \$x\$ for T years (its maturity date) and then pays its face value \$F
- How should the bond be priced?
- Applying the calculation of security payment

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \ldots + \frac{x}{(1+r)^T} + \frac{F}{(1+r)^T}$$

Consols

- \triangleright
- A consol (or perpetuity) is a bond which never terminates, paying \$x
 per period forever
- How should the consol be priced?
- The present value can be calculated by applying the calculation of security payment

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \dots + \frac{x}{(1+r)^t} + \dots$$
$$= \frac{1}{1+r} \left[x + \frac{x}{1+r} + \frac{x}{(1+r)^2} + \dots \right]$$
$$= \frac{1}{1+r} \left[x + PV \right]$$

• Hence $PV = \frac{x}{r}$