A Flushing Attack on the DNS Cache

Bind9 vs. Knot Resolver

Presented by **Tomer Yihya** and **Or Asheri** on 29.09.2024

Background on the Problem

Bind9 Resolver

- Common/Uncommon: widely used, one of the most common DNS resolvers.
- **How it Works:** Receives a query, checks the cache and returns a valid response if it exists, otherwise it queries external DNS servers and caches the response.
- Immunity/Vulnerabilities: exposed to attacks like cache poisoning, cache flush attacks, and DNS amplification attacks.

Knot Resolver

- Common/Uncommon: Less common but gaining popularity due to advanced features.
- **How it Works:** Similar query process but with advanced caching mechanisms, DNSSEC validation, and customizable policies using Lua scripting.
- **Immunity/Vulnerabilities:** Highly reliable with advanced security features like sophisticated caching strategies, strict DNSSEC enforcement, and custom policy capabilities that mitigate various attacks.

Goals and Objectives

1 Purpose

To examine the functionality of Knot Resolver and assess its immunity to flushing attacks.

2 Scope
Knot Resolver's immunity to NS and A cache flushing attacks.

3 Examples

Compare NS and A Cache Flush attacks on Bind9 and Knot Resolver.

Project Plan

- Reproduction of the attacks on Bind9.
- Build docker image with Knot resolver.
- Examine Knot Resolver and trying to attack it.
- Taking traffic captures.
- Extracting the data to a CSV from the cache of Knot after the cache flush attacks.
- Examine the Cache contents of each attack (A,NS), the responses, and gathering conclusions.

Knot Resolver Features

Feature	Bind9	Knot
Implementation	Traditional caching	Advanced caching with metadata
Flexibility	Limited customization	Custom Lua scripting
Performance	Vulnerable under attack	Efficient resource usage
Use Cases	General DNS resolution	High customization and security

Research insights

Summary of findings

- Bind9 is vulnerable to cache flushing attacks due to its traditional storage mechanisms.
- **Knot Resolver** remains resistant to NS flush attack attacks thanks to its **advanced features**.

Knot resolver defenses

- Lua scripting provide flexibility for efficient cache management.
- Rate limiting and anomaly detection.
- Strict **DNSSEC validation** maintains the integrity and security of cached responses.
- Advanced caching strategies prevent excessive NS and A records from overwhelming the cache.

Knot Configuration (Kresd.conf)

```
-- Load useful modules
modules = {
               -- Load /etc/hosts and allow custom root hints
  'hints',
               -- User-defined forwarding/routing policies
  'policy',
  'stats',
               -- Statistics module
-- Set root hints for the resolver using the hints.root() function
hints.root({'127.0.0.2'}) -- Root authoritative server
-- Define policy rules for specific TLDs
policy.add(policy.suffix(policy.STUB({'127.0.0.100'}), { todname('fun.lan') }))
policy.add(policy.suffix(policy.STUB({'127.0.0.200'}), { todname('home.lan') }))
-- Optionally, add a global policy to forward all other queries to the root server
policy.add(policy.all(policy.STUB({'127.0.0.2'})))
-- Cache size
cache.open(10 * MB, '/var/cache/knot-resolver/cache.lmdb')
-- Listen on loopback interface
net.listen('127.0.0.1', 53)
-- Logging
log = {
    'stdout', 'debug' } -- Log to stdout at debug level
-- Control interface
control = { socket = '/run/knot-resolver/control.sock' }
-- Disable DNSSEC (if necessary)
-- trust anchors.remove('.')
```

We configured Knot with the auth servers we are using to perform the attack.

In addition, we configured the resolver's cache in a specific path (cache.lmdb) with 10 Mbs size.

We added logging, all the rest configured as default.

Dump cache to CSV script

```
퀒 dump_cache_to_csv.py > ...
      import 1mdb
      import pandas as pd
      import os
     # Path to your LMDB file (assuming it's in the same directory as the script)
      current dir = os.path.dirname(os.path.abspath( file ))
      lmdb path = os.path.join(current dir, 'cache.lmdb')
      # Open the LMDB environment
      env = lmdb.open(lmdb_path, readonly=True)
      # Initialize an empty list to store the data
      data = []
      # Read the data from the LMDB file
      with env.begin() as txn:
         cursor = txn.cursor()
         for key, value in cursor:
             # Decode key (assuming keys are strings)
             decoded key = key.decode('utf-8', errors='ignore')
             # Convert value to a hexadecimal string or handle it as binary
             hex value = value.hex()
             data.append((decoded key, hex value))
      # Convert the data to a pandas DataFrame
      df = pd.DataFrame(data, columns=['Key', 'Value'])
      # Write the DataFrame to a CSV file with escape character
      df.to csv('output.csv', index=False, escapechar='\\')
      # Write the DataFrame to an Excel file
      # df.to excel('output.xlsx', index=False)
      print("Data has been successfully exported to 'output.csv'")
```

Since the cache is in "cache.lmdb/data.mdb" and there is no app to open it and observe,

we wrote a script to dump the data into a CSV file.

NS CacheFlushAttack /Knot

Dig response

```
oot@612e0d275b27:/env# dig attack99.home.lan
 ; Truncated, retrying in TCP mode.
 <>>> DiG 9.18.21 <<>> attack99.home.lan
  qlobal options: +cmd
  Got answer:
  ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30856
  flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1900, ADDITIONAL: 1
  OPT PSEUDOSECTION:
 EDNS: version: 0, flags:; udp: 1232
  QUESTION SECTION:
 attack99.home.lan.
                               IN
  AUTHORITY SECTION:
ttack99.home.lan.
                                                auth596.fun.lan.
                       8600
                               IN
                                        NS
attack99.home.lan.
                                                auth597.fun.lan.
                        8600
                               IN
                                        NS
attack99.home.lan.
                       8600
                               IN
                                        NS
                                                auth598.fun.lan.
                                                auth599.fun.lan.
attack99.home.lan.
                        8600
                                        NS
                               IN
                                                auth600.fun.lan.
ttack99.home.lan.
                        8600
                                        NS
                               IN
                                       NS
                                                auth601.fun.lan.
ttack99.home.lan.
                       8600
                                                auth602.fun.lan.
attack99.home.lan.
                       8600
                               IN
                                        NS
attack99.home.lan.
                       8600
                               IN
                                        NS
                                                auth603.fun.lan.
attack99.home.lan.
                       8600
                               IN
                                        NS
                                                auth604.fun.lan.
attack99.home.lan.
                               IN
                                                auth605.fun.lan.
                       8600
                                        NS
attack99.home.lan.
                       8600
                               IN
                                       NS
                                                auth606.fun.lan.
                                               auth607.fun.lan.
attack99.home.lan.
                       8600
                               IN
                                        NS
                                                auth608.fun.lan.
attack99.home.lan.
                        8600
                               IN
                                        NS
attack99.home.lan.
                                                auth609.fun.lan.
                        8600
                                IN
                                        NS
```

The cache.

Key	Value						
E	01000000	b897ec660	500000051	004b00ab8	388500000	100010000	000200000
E0	b897ec66	050000005	100510019	0008500000	010000000	100010000	300001000
S	1E+46	6					
Si	03000000	0010000000	000000015	7f0000000	000000000	00000	
VERS	700)					
	b897ec66	6050000005	1005f0078	2b8500000	100000001	00010d5f7	4612d3461
lanhomeattack0EI	a198ec66	6050000005	1008fa667	728500000	10000076c	:000107617	747461636
00002198000a0761757468373437c034	lc00c00020	0001000021	98000a076	317574683	73438c034	c00c00020	001000021
000b086175746831343730c034c00c00	0020001000	002198000b	086175746	883134373	1c034c00c	000200010	000219800
lanhomeattack99EII	6399ec66	6050000005	10090a632	318500000	010000076	c00010861	747461636
0100002198000a0761757468373437c0)35c00c00(0200010000	2198000a0	76175746	3373438c0	35c00c000	200010000
98000b086175746831343730c035c00d	:000200010	0000219800	0b0861757	46831343	731c035c0	0c0002000	100002198
netroot-serversaEI		60500000005					
netroot-serversaE	b897ec66	30500000005	1005200c1	f98500000	100000001	000101610	0c726f6f74

Permanent keys in the cache regardless of the queries.

Seems Knot is immune to the attack, We will see a proof in the next slide.

Script we wrote to create a zonefile which we use to analyze the cache key:value insertions.

```
with open('NSCacheFlush_zone_file.txt', 'w') as f:
    DOMAINS_NUM = 16

    for i in range(1, DOMAINS_NUM):
        for j in range(2**i):
            print(f'attack{i} 3600 IN NS auth{j}.fun.lan.', file=f)
```

We crafted it to generate NS Records number as a exponential function of the domain number.

(we made a barrier at domain num = 16, since NSD refused to load a larger number of RR set per domain).

After extraction of the Cache's content, and ordering it by number of RRs per domain in the Zonefile.

Key	NS RRs	Value Size	Value
lanhomeattack0EI(2^0)	1	206	824002670500000051005b0028e3850300010000000100010761747461636b3004686f6d65036c
lanhomeattack1E ^I (2 ¹)	2	162	864002670500000051004500fc00850000010000000100010761747461636b3104686f6d65036c6
lanhomeattack2E ^{II} (2 ²)	4	242	8a4002670500000051006d001df6850000010000000300010761747461636b3204686f6d65036c6
lanhomeattack3EI (2^3)	8	402	8f400267050000005100bd0003c1850000010000000700010761747461636b3304686f6d65036c6
lanhomeattack4E ^[] (2 ⁴)	16	734	9240026705000000510063016d95850000010000000f00010761747461636b3404686f6d65036c6
lanhomeattack5EI (2^5)	32	1406	95400267050000005100b302e628850000010000001f00010761747461636b3504686f6d65036c6
lanhomeattack6EI (2^6)	64	2750	984002670500000051005305825e850000010000003f00010761747461636b3604686f6d65036c6
lanhomeattack7E ^{II} (2^7)	128	5494	9b400267050000005100af0a1d10850000010000007f00010761747461636b3704686f6d65036c6
lanhomeattack8EI (2^8)	256	11126	08410267050000005100af15586c85000001000000ff00010761747461636b3804686f6d65036c61
lanhomeattack9EI (2^9)	512	22390	a4400267050000005100af2b222585000001000001ff00010761747461636b3904686f6d65036c61
lanhomeattack10EI (2^10)	1024	32759	a8400267050000005100c8570c6085000001000003ff00010861747461636b313004686f6d65036
lanhomeattack11E (2^11)	2048	32759	0f410267050000005100c8b395e485000001000007ff00010861747461636b313104686f6d65036c
,			

NS CacheFlushAttack /Knot

Graph of the presented in the previous slide

Conclusions in the next slide.

Query response For a domain which Isn't in the zone file. (Attack20)

```
root@612e0d275b27:/env# dig attack20.home.lan

; <<>> DiG 9.18.21 <<>> attack20.home.lan

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 35757

;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 1232

;; QUESTION SECTION:

; attack20.home.lan. IN A

;; AUTHORITY SECTION:

home.lan. 86400 IN SOA ps1.home.lan. admin.home.lan. 3311010299 28800 7200 864000 86400
```

Query response For a domain which exists in the zone file. (attack 8).

```
<<>> DiG 9.18.21 <<>> attack8.home.lan
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42186
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 255, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;attack8.home.lan.
                        IN A
;; AUTHORITY SECTION:
                            IN NS auth152.fun.lan.
attack8.home.lan.
                    3600
attack8.home.lan.
                            IN NS auth153.fun.lan.
                    3600
attack8.home.lan.
                                   auth154.fun.lan.
                    3600
attack8.home.lan.
                            IN NS auth155.fun.lan.
                    3600
```

- 1. from 1 to 8 number of RRs per domain, we can see the value size is remain approximately constant.
 - 2. from 16 to 1024 RRs per domain, we see an increasing by factor 2 gradient in the amount of bytes In the values which were inserted to the cache.
 - 3. from 1024 to 2048 number of RRs per domain, we see that the value size in bytes has remained 32759.

 Therefor we believe it's the upper bound of the value size.
 - 4. for 4096 NS Records and beyond, the dig response status is "Servfail" (shown in the next slide) and the key:value pair doesn't enter the cache.

Query response for domain with 4096 NS record names.

The answer is the same for higher number of RR names per domain.

```
root@612e0d275b27:/env# dig attack12.home.lan
: <<>> DiG 9.18.21 <<>> attack12.home.lan
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 8039
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;attack12.home.lan.
                        IN A
;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
;; WHEN: Sun Oct 06 07:49:39 UTC 2024
;; MSG SIZE rcvd: 46
```

NS CacheFlushAttack / Knot

Malicious Queries Attack rate: 10000 qps

```
Statistics:
 Queries sent:
                       999999
 Queries completed:
                       926246
 Queries lost:
                       73753
 Response codes:
                       NOERROR 6622 (0.71%), SERVFAIL 45974 (4.96%), NXDOMAIN 873650 (94.32%)
 Reconnection(s):
 Run time (s):
                       136.337502
 Maximum throughput:
                       10008.000000 qps
 Lost at that point:
                       0.00%
```

Benign Queries Rate: 100 qps

```
Statistics:
 Queries sent:
                        9999
 Queries completed:
                        9281
 Queries lost:
                        718
 Response codes:
                       NOERROR 9281 (100.00%)
 Reconnection(s):
 Run time (s):
                        130.020002
 Maximum throughput:
                        100.000000 gps
 Lost at that point:
                        0.00%
```

We can see that the flooding with malicious requests didn't manage to cause DoS.

NS CacheFlushAttack / Knot

We have also checked Knot resolver cache after running the resperf experiment.

^	D	V	U	L	1	U	11	1	
Key	Value								
Sild	04000000	030000000	000000015	7f0000000	000000000	0000			
SI	04000000	030000000	000000015	7f0000000	000000000	0000			
VERS	700								
lanfunbenign8472EII	8f80f6660	500000051	008300fc3	185000001	000100020	0030a6265	6e69676e	383437320	3667
lanfunbenign8477EI	8f80f6660	500000051	008300001	285000001	00010002	00030a626	56e69676e	383437370	0366
lanfunbenign8481EI	8f80f6660	500000051	008300802	c85000001	00010002	00030a626	56e69676e	383438310	0366
lanfunbenign8491EII	8f80f6660	500000051	008300063	385000001	00010002	00030a626	56e69676e	383439310	0366
lanfunbenign8497EI	8f80f6660	500000051	008300901	f85000001	000100020	0030a6265	6e69676e	383439370	3667
lanfunbenign8502EII	8f80f6660	500000051	008300ec1	385000001	00010002	00030a626	56e69676e	383530320	0366
lanfunbenign8503EI	8f80f6660	500000051	0083002b5	385000001	00010002	00030a626	56e69676e	383530330	0366
lanfunbenign8504EI	8f80f6660	500000051	0083005ac	d85000001	00010002	00030a626	56e69676e	383530340	0366
lanfunbenign8505EI	8f80f6660	500000051	0083007dd	b85000001	00010002	00030a626	56e69676e	383530350	0366
lanfunbenign8506EI	8f80f6660	500000051	00830010b	785000001	00010002	00030a626	56e69676e	383530360	0366
lanfunbenign8507EI	8f80f6660	500000051	00830020c	885000001	00010002	00030a626	56e69676e	383530370	0366
lanfunbenign8508EI	8f80f6660	500000051	0083002fa	485000001	000100020	0030a6265	6e69676e	383530380	3667
lanfunbenign8509EII	8f80f6660	500000051	008300af58	885000001	000100020	0030a6265	6e69676e	383530390	3667
lanfunbenign8510EI	8f80f6660	500000051	0083008d2	385000001	00010002	00030a626	56e69676e	38353130	0366

• • •

lanhomeattack26271EII	9080f6660500000051005f00ffcb850300010000000100010b61747461636b32363237
lanhomeattack26272EII	9080f6660500000051005f004d86850300010000000100010b61747461636b3236323
lanhomeattack26273EII	9080f6660500000051005f00e579850300010000000100010b61747461636b3236323
lanhomeattack26274EI	9080f6660500000051005f004902850300010000000100010b61747461636b3236323
lanhomeattack26275EII	9080f6660500000051005f001fa885030001000000100010b61747461636b3236323
lanhomeattack26276EII	9080f6660500000051005f00fef7850300010000000100010b61747461636b32363237
lanhomeattack26277EII	9080f6660500000051005f00c532850300010000000100010b61747461636b3236323
lanhomeattack26278EII	9080f6660500000051005f00d8f885030001000000100010b61747461636b3236323
lanhomeattack26279EII	9080f6660500000051005f0088d4850300010000000100010b61747461636b3236323
lanhomeattack26280EI	9080f6660500000051005f00ae0c850300010000000100010b61747461636b3236323
lanhomeattack26281EI	9080f6660500000051005f00b012850300010000000100010b61747461636b3236323
lanhomeattack26282EI	9080f6660500000051005f00f466850300010000000100010b61747461636b3236323
lanhomeattack26283EII	9080f6660500000051005f006ebe850300010000000100010b61747461636b3236323
lanhomeattack26284EII	9080f6660500000051005f00c694850300010000000100010b61747461636b3236323

Seems the LRU policy works as expected, as values insertion and eviction takes place without issues.

We assume that its due the fact that Knot Keeps only 1 key:value pair per query.

Statistics:

NS CacheFlushAttack /Bind vs. Knot

Bind

Dig response

```
oot@e55a9d18506b:/env# dig attack0.home.lan
<>>> DiG 9.18.21 <<>> attack0.home.lan
 global options: +cmd
 Got answer:
 ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 60124
 flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
 OPT PSEUDOSECTION:
EDNS: version: 0, flags:; udp: 1232
COOKIE: 0e53cf4bd0d6397f01000000066f69b1376b0b4fdb37c32cc (good)
 QUESTION SECTION:
attack0.home.lan.
                              IN
 Query time: 23 msec
 SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
 WHEN: Fri Sep 27 11:46:27 UTC 2024
 MSG SIZE rcvd: 73
```

Knot

```
@612e0d275b27:/env# dig attack99.home.lan
 Truncated, retrying in TCP mode.
<<>> DiG 9.18.21 <<>> attack99.home.lan
global options: +cmd
 Got answer:
 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30856
flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1900, ADDITIONAL: 1
 OPT PSEUDOSECTION:
EDNS: version: 0, flags:; udp: 1232
QUESTION SECTION:
attack99.home.lan.
                             IN
 AUTHORITY SECTION:
tack99.home.lan.
                      8600
                             IN
                                             auth596.fun.lan.
tack99.home.lan.
                      8600
                             IN
                                             auth597.fun.lan.
```

Resperf results

```
Queries sent: 9999
Queries completed: 9672
Queries lost: 327
Response codes: NOERROR 2018 (20.86%), SERVFAIL 7654 (79.14%)
Reconnection(s): 0
Run time (s): 100.000785
Maximum throughput: 154.000000 qps
Lost at that point: 0.00%
```

```
Statistics:
 Queries sent:
                        9999
 Queries completed:
                        9281
 Queries lost:
                        718
 Response codes:
                       NOERROR 9281 (100.00%)
 Reconnection(s):
 Run time (s):
                        130.020002
 Maximum throughput:
                        100.000000 qps
 Lost at that point:
                        0.00%
```

Snippets and Insights A CacheFlushAttack

We have written a script which will generate 2048 different A records for each of 100 domains and integrated it in a designated zonefile.

To test if a resolver immunity to the attack, we implemented an A records zonefile - then loaded it using nsd into nsd_attack_home directory and made the experiments.

A CacheFlushAttack / Bind

Dig response.

```
root@9fbfd7b484c8:/env# dig attack0.home.lan
  Truncated, retrying in TCP mode.
 <>>> DiG 9.18.21 <<>> attack0.home.lan
  global options: +cmd
  Got answer:
  ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33783
  flags: gr rd ra; QUERY: 1, ANSWER: 2048, AUTHORITY: 0, ADDITIONAL: 1
  OPT PSEUDOSECTION:
 EDNS: version: 0, flags:; udp: 1232
 COOKIE: 6553423e2cc01ca00100000066f5d14a8cb56c02c30c284d (good)
  QUESTION SECTION:
 attack@.home.lan.
                              IN
  ANSWER SECTION:
attack0.home.lan.
                       3600
                              IN
                                              127.0.3.162
attack0.home.lan.
                       3600
                              IN
                                              127.0.1.245
attack0.home.lan.
                       3600
                              IN
                                              127.0.7.74
attack0.home.lan.
                       3600
                              IN
                                              127.0.3.167
attack0.home.lan.
                       3600
                                              127.0.7.10
attack0.home.lan.
                       3600
                              IN
                                              127.0.1.125
attack0.home.lan.
                       3600
                              IN
                                              127.0.2.250
attack0.home.lan.
                       3600
                              IN
                                              127.0.3.136
attack0.home.lan.
                                              127.0.3.42
                       3600
                              IN
attack0.home.lan.
                              IN
                                      A
                                              127.0.1.227
                       3600
attack0.home.lan.
                       3600
                              IN
                                              127.0.7.172
attack0.home.lan.
                       3600
                              IN
                                              127.0.4.155
attack0.home.lan.
                       3600
                                              127.0.0.170
                              IN
attack0.home.lan.
                       3600
                              IN
                                              127.0.3.207
```

The cache.

```
Start view _default
Cache dump of view '_default' (cache _default)
using a 0 second stale ttl
DATE 20240909144439
authanswer
                             IN NS a.root-servers.net.
answer
                      3424
                             \-NS
                                    ;-$NXRRSET
 . SOA root-servers.net. a.root-servers.net. 2011010203 28800 7200 864000 86400
authauthority
                                     ns1.home.lan.
ome.lan.
                     86224 NS
                      86224 NS
                                     ns2.home.lan.
 authanswer
ttack0.home.lan.
                      3424
                                     127.0.0.0
                      3424
                                     127.0.0.1
                      3424
                                     127.0.0.2
                      3424
                                     127.0.0.3
                      3424
                                     127.0.0.4
                                     127.0.0.5
                      3424
                      3424
                                     127.0.0.6
                      3424
                                     127.0.0.7
                      3424
                                     127.0.0.8
                      3424
                                     127.0.0.9
                                     127.0.0.10
                      3424
                      3424
                                     127.0.0.11
                      3424
                                     127.0.0.12
                      3424
                                     127.0.0.13
                      3424
                                     127.0.0.14
                                     127.0.0.15
```

Seems Bind is vulnerable to A cache flush attack as well, We will see a proof in the next slide.

A CacheFlushAttack / Bind

Malicious Queries
Attack rate: 10000 qps

```
Statistics:
 Queries sent:
                       250676
 Queries completed:
                       158878
 Queries lost:
                       91798
 Response codes:
                       NOERROR 20 (0.01%), SERVFAIL 99502 (62.63%), NXDOMAIN 59356 (37.36%)
 Reconnection(s):
 Run time (s):
                       69.042792
 Maximum throughput:
                       10066.000000 qps
 Lost at that point:
                       0.00%
```

Benign Queries Rate: 100 qps

```
Queries sent: 9999
Queries completed: 9999
Queries lost: 0
Response codes: NOERROR 1436 (14.36%), SERVFAIL 8563 (85.64%)
Reconnection(s): 0
Run time (s): 100.000422
Maximum throughput: 100.000000 qps
Lost at that point: 0.00%
```

We can see that the flooding with malicious requests has indeed resulted with DoS, as in NS cache flush attack.

A CacheFlushAttack / Knot

Dig response

```
ot@a10daf5e9123:/env# dig attack42.home.lan
  Truncated, retrying in TCP mode.
 <>>> DiG 9.18.21 <<>> attack42.home.lan
  global options: +cmd
  Got answer:
  ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63790
  flags: qr rd ra; QUERY: 1, ANSWER: 2048, AUTHORITY: 0, ADDITIONAL
 OPT PSEUDOSECTION:
 EDNS: version: 0, flags:; udp: 1232
 QUESTION SECTION:
 attack42.home.lan.
  ANSWER SECTION:
attack42.home.lan.
                       3600
                                                127.0.0.31
ttack42.home.lan.
                       3600
                               IN
                                                127.0.0.32
ttack42.home.lan.
                       3600
                               IN
                                                127.0.0.33
attack42.home.lan.
                                                127.0.0.34
attack42.home.lan.
                               IN
                                                127.0.0.35
attack42.home.lan.
                       3600
                                                127.0.0.36
attack42.home.lan.
                       3600
                                                127.0.0.37
                               IN
ttack42.home.lan.
                                                127.0.0.38
```

The cache after 2 queries.

Key	Value
E	01000000fe8bec660500000051004b00f3a18500000100010000002000002000100
S	01000000000000000000005356d3da000000000000000
SI	0200000010000000000000ea7f00000000000000000000
VERS	
lanhomeattack0EI	f392ec6605000000510065809755850000010800000200020761747461636b30046
03fcc00c0001000100000e1000047f00	003fdc00c0001000100000e1000047f0003fec00c0001000100000e1000047f0003ffc00c0
00047f0007fcc00c0001000100000e10	000047f0007fdc00c0001000100000e1000047f0007fec00c0001000100000e1000047f00i
lanhomeattack42EII	de94ec66050000005100668025fb850000010800000200020861747461636b34320
0003fcc00c0001000100000e1000047	f0003fdc00c0001000100000e1000047f0003fec00c000100010000e1000047f0003ffc00
1000047f0007fcc00c00010001000006	e1000047f0007fdc00c0001000100000e1000047f0007fec00c0001000100000e1000047f0
netroot-serversaEI	fe8bec660500000051004c000aaa8500000100010001000101610c726f6f742d7365
netroot-serversaE	fe8bec660500000051005200700a85000001000000100101610c726f6f742d7365

Seems Knot is immune to the attack, We will see a proof in the next slide.

A CacheFlushAttack / Knot

Malicious Queries Attack rate: 10000 qps

```
Statistics:
                       134656
 Queries sent:
 Queries completed:
                       111426
 Queries lost:
                       23230
 Response codes:
                       NOERROR 2419 (2.17%), SERVFAIL 2232 (2.00%), NXDOMAIN 106775 (95.83%)
 Reconnection(s):
                       58.574537
 Run time (s):
 Maximum throughput:
                       10018.000000 qps
                       0.00%
 Lost at that point:
```

Benign Queries Rate: 100 qps

```
Queries sent: 9999
Queries completed: 9813
Queries lost: 186
Response codes: NOERROR 9813 (100.00%)
Reconnection(s): 0
Run time (s): 100.000076
Maximum throughput: 244.000000 qps
Lost at that point: 0.00%
```

We can see that the flooding with malicious requests didn't damage the responses as it did while using Bind.

Conclusion

In contrast to Bind which keeps all the results from each query in its benign cache, Knot keeps results in only one pair of Key:Value.

Therefor, seems to be immune to the cache flush attacks.

Results, documentation and reproduction.

All resources and findings are in Github

DNS_CacheFlushAttack_workshop (github.com)

Thank you for listening!