Subject :- ADSAA Semester :- V

The Knuth-Morris-Pratt (KMP)Algorithm

Knuth-Morris and Pratt introduce a linear time algorithm for the string matching problem. A matching time of O (n) is achieved by avoiding comparison with an element of 'S' that have previously been involved in comparison with some element of the pattern 'p' to be matched. i.e., backtracking on the string 'S' never occurs

Components of KMP Algorithm:

- **1. The Prefix Function (\Pi):** The Prefix Function, Π for a pattern encapsulates knowledge about how the pattern matches against the shift of itself. This information can be used to avoid a useless shift of the pattern 'p.' In other words, this enables avoiding backtracking of the string 'S.'
- **2. The KMP Matcher:** With string 'S,' pattern 'p' and prefix function ' Π ' as inputs, find the occurrence of 'p' in 'S' and returns the number of shifts of 'p' after which occurrences are found.

The Prefix Function (Π)

Following pseudo code compute the prefix function, Π :

```
COMPUTE- PREFIX- FUNCTION (P)

1. m \leftarrow length [P] //'p' pattern to be matched

2. \Pi [1] \leftarrow 0

3. k \leftarrow 0

4. for q \leftarrow 2 to m

5. do while k > 0 and P [k + 1] \neq P [q]

6. do k \leftarrow \Pi [k]

7. If P [k + 1] = P [q]

8. then k \leftarrow k + 1

9. \Pi [q] \leftarrow k

10. Return \Pi
```

Running Time Analysis:

In the above pseudo code for calculating the prefix function, the for loop from step 4 to step 10 runs 'm' times. Step1 to Step3 take constant time. Hence the running time of computing prefix function is O (m).

Example: Compute Π for the pattern 'p' below:

Parshvanath Charitable Trust's A. P. SHAH INSTITUTE OF TECHNOLOGY, THANE (All Programs Accredited by NBA)

Department of Information Technology

Subject :- ADSAA Semester :- V

	Pi a h a h a c	c a	
--	----------------	-----	--

Solution:

Initially:
$$m = length [p] = 7$$

 $\Pi [1] = 0$
 $k = 0$

Parshvanath Charitable Trust's A. P. SHAH INSTITUTE OF TECHNOLOGY, THANE

(All Programs Accredited by NBA)

Department of Information Technology

Subject :- ADSAA Semester :- V

Step 1: q = 2, k = 0

 $\Pi[2] = 0$

q	1	2	3	4	5	6	7
р	a	b	a	b	a	C	a
π	0	0					

Step 2: q = 3, k = 0

 $\Pi[3] = 1$

q	1	2	3	4	5	6	7
р	a	b	a	b	a	C	a
π	0	0	1				

Step3: q = 4, k = 1

 $\Pi[4] = 2$

q	1	2	3	4	5	6	7
р	a	b	a	b	a	С	Α
π	0	0	1	2			

Parshvanath Charitable Trust's . P. SHAH INSTITUTE OF TECHNOLOGY, THANE

(All Programs Accredited by NBA)

Department of Information Technology

Subject :- ADSAA Semester :- V

Step4: q = 5, k = 2

 Π [5] = 3

q	1	2	3	4	5	6	7
d	a	b	a	b	a	C	a
π	0	0	1	2	3		

Step5: q = 6, k = 3

 Π [6] = 0

q	1	2	3	4	5	6	7
р	a	b	a	b	a	C	a
π	0	0	1	2	3	0	

Step6: q = 7, k = 1

 Π [7] = 1

q	1	2	3	4	5	6	7
р	a	b	a	b	a	C	a
π	0	0	1	2	3	0	1

After iteration 6 times, the prefix function computation is complete:

q	1	2	3	4	5	6	7
р	a	b	Α	b	a	C	a
π	0	0	1	2	3	0	1

The KMP Matcher:

The KMP Matcher with the pattern 'p,' the string 'S' and prefix function ' Π ' as input, finds a match of p in S. Following pseudo code compute the matching component of KMP algorithm:

KMP-MATCHER (T, P)

- 1. $n \leftarrow length [T]$
- 2. $m \leftarrow length [P]$
- 3. $\Pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION}$ (P)
- 4. $q \leftarrow 0$ // numbers of characters matched
- 5. for $i \leftarrow 1$ to n // scan S from left to right
- 6. do while q > 0 and $P [q + 1] \neq T [i]$
- 7. do q \leftarrow Π [q] // next character does not match

Parshvanath Charitable Trust's A. P. SHAH INSTITUTE OF TECHNOLOGY, THANE

Semester :- V

```
Subject:-ADSAA Set 8. If P [q + 1] = T [i] 9. then q \leftarrow q + 1 // next character matches 10. If q = m // is all of p matched? 11. then print "Pattern occurs with shift" i - m
```

Running Time Analysis:

The for loop beginning in step 5 runs 'n' times, i.e., as long as the length of the string 'S.' Since step 1 to step 4 take constant times, the running time is dominated by this for the loop. Thus running time of the matching function is O (n).

// look for the next match

Example: Given a string 'T' and pattern 'P' as follows:

Let us execute the KMP Algorithm to find whether 'P' occurs in 'T.'

For 'p' the prefix function, ? was computed previously and is as follows:

q	1	2	3	4	5	6	7
р	а	b	Α	b	а	С	a
π	0	0	1	2	3	0	1

Solution:

```
Initially: n = size of T = 15

m = size of P = 7
```


Parshvanath Charitable Trust's P. SHAH INSTITUTE OF TECHNOLOGY, THANE

(All Programs Accredited by NBA)

Department of Information Technology

Subject :- ADSAA Semester :- V

Step1: i=1, q=0

Comparing P [1] with T [1]

P [1] does not match with T [1]. 'p' will be shifted one position to the right.

Step2: i = 2, q = 0

Comparing P [1] with T [2]

P [1] matches T [2]. Since there is a match, p is not shifted.

Step 3: i = 3, q = 1

Comparing P [2] with T [3] P [2] doesn't match with T [3]

Backtracking on p, Comparing P [1] and T [3]

Step4: i = 4, q = 0

Comparing P [1] with T [4] P [1] doesn't match with T [4]

Step5: i = 5, q = 0

Parshvanath Charitable Trust's A. P. SHAH INSTITUTE OF TECHNOLOGY, THANE (All Programs Accredited by NBA)

Department of Information Technology

Parshvanath Charitable Trust's .. P. SHAH INSTITUTE OF TECHNOLOGY, THANE (All Programs Accredited by NBA)

Department of Information Technology

Pattern 'P' has been found to complexity occur in a string 'T.' The total number of shifts that took place for the match to be found is i-m = 13 - 7 = 6 shifts.