Competition Highlights

Trevor Gale¹, Erich Elsen², Sara Hooker¹, Olivier Temam², Scott Gray³, Jongsoo Park⁴, Cliff Young¹, Utku Evci¹, Niki Parmar¹, Ashish Vaswani¹.

¹Google, ²DeepMind, ³OpenAl, ⁴Facebook

micronet-challenge.github.io

Regularization Tricks

The **KAIST AI** team finished 2nd in CIFAR-100 with no quantization. Their model used sparsity along with two tricks: *orthonormal regularization* and *adaptive label smoothing*.

Spectral Restricted Isometry Property Regularization¹

$$\sigma(W^TW - I) = \sup_{z \in R^{n}, z \neq 0} \left| \frac{\|Wz\|^2}{\|z\|^2} - 1 \right|$$

Team reported 6% top-1 accuracy gain after applying to all 1x1 convolutions in EfficientNet-like architecture.

Adaptive Label Smoothing

$$c_{i} = \begin{cases} 1 - \epsilon, & i = k \\ s(w_{i}, w_{k}) & \\ \sum_{j \neq k} exp |s(w_{j}, w_{k})|, & i \neq k \end{cases}$$

 $\mathbf{s}(\mathbf{x}, \mathbf{y})$ is cosine similarity, $\mathbf{w}_{\mathbf{i}}$ is weights from final fully-connected layer for class \mathbf{i} . Adapt label smoothing to take class correlation into account.

¹arxiv:1810.09102

Early Exiting

For CIFAR-100, the <u>OSI-AI</u> team introduced a mechanism for early exiting during inference. Able to terminate inference early on **30%** of examples.

If confidence of early exiting module exceeds threshold the remainder of the main network is not executed. OSI-AI finished 3rd for CIFAR-100.

Ternary Quantization

Used by a number of entries¹. Can be thought of as a sparse, binary neural network. For both image tasks, team <u>HHI-MAL</u> uses decomposition from <u>Trained Ternary Quantization</u> to further avoid multiplications:

Three weight values

$$+W_{p}$$
, 0 , $-W_{n}$

Sparse matmul for each nonzero

$$W_{p} \star \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}_{W_{p}} \begin{bmatrix} 3.2 \\ 0.7 \\ 1.4 \end{bmatrix} + W_{n} \star \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{W_{n}} \begin{bmatrix} 0.3 \\ 4.5 \\ 2.8 \end{bmatrix}$$

Only 2 multiplications required per output.

¹Entries <u>MSUNet-V3</u>, <u>HHI-MAL</u>, and <u>ProxylessNAS-TTQ</u>. <u>MB-PM Research</u> uses binary weights.

Adjustable Quantization

For ImageNet, the <u>Texas-EIC</u> team performed quantization aware training with learned channel-wise range and precision factors.

Achieved 75% top-1 with average of **2.94** bits and **4.87** bits for weights and activations respectively.

Complete Leaderboard

micronet-challenge.github.io/leaderboard