Introduction to Machine Learning Homework 5b: SVM

Prof. Linda Sellie

1. In class we discussed the soft-margin SVM:

$$\min \frac{1}{2} w^T w + C \sum_{i=1}^n \xi_i$$

subject to
$$y_i(w^Tx_i + w_0) \ge 1 - \xi_i$$
, and $\xi_i \ge 0$

- (a) For a point x_i if $\xi_i = 0$, what do we know about the where x_i is wrt the margin. Is x_i correctly classified by the hyperplane?
- (b) For a point x_i if $0 < \xi_i \le 1$, what do we know about the where x_i is wrt the margin. Is x_i correctly classified by the hyperplane?
- (c) For a point x_i if $\xi_i > 1$, what do we know about the where x_i is wrt the margin. Is x_i correctly classified by the hyperplane?
- 2. Given the following points, plot the decision boundary when C=0.1 and C=10. You can use the code from https://jakevdp.github.io/PythonDataScienceHandbook/05.07-support-vector-machines.html to help you draw the decision boundary.

x_1	x_2	y
5	47	-1
14	5	1
47	-25	1
3	-4	-1
-2	16	-1
30	28	-1
27	-21	1
11	-24	1
29	-0	1
23	7	-1
-20	10	-1
44	-23	-1

3. For the following non linearly separable points, find a transformation to make them linearly separable. Using matplotlib to plot the points before and after your transformation.

(a)

y
-1
1
-1
1
-1
-1
1
1
-1
1
-1

(b)

x_1	y
1	-1
2	1
3	1
4	-1

- 4. For the points in question ??, if you remove (-0.08, 0.13), does the margin stay the same? Describe which points will not change the margin and which points might change the margin.
- 5. Given the following points:

x_1	x_2	y
1	1	-1
2	3	-1
2	2	-1
0	0	1
1	0	1
0	1	1

- Plot the 7 training points. Are they separable?
- Write the constraints for the constrained optimization problem to maximize the margin that separates the points
- Find the hyperplane which has the maximal margin and separates the points
- Identify the support vectors
- 6. Show that if $\phi(\mathbf{x}) = \phi([x_{i1}, x_{i2}]) = (1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, x_1^2, x_2^2, \sqrt{2}x_{i1}x_{i2})$ then $\phi(\mathbf{x})^T \phi(\mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x})^2$