МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № __5 по дисциплине «Методы машинного обучения»

Тема: «Линейные модели, SVM и деревья решений.»

ИСПОЛНИТЕЛЬ:	Егоров С.А.				
группа ИУ5-22М	ФИО				
	""2020 г.				
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е.</u>				
	подпись				
	" " 2020 г.				

Москва - 2020

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - о одну из линейных моделей;
 - o SVM;
 - о дерево решений.
- 5. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 6. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 7. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

Реализация задания

#Подлючаем данные data = pd.read_csv('SolarPrediction.csv', sep=",")												
	писок коло a.dtypes	нок с типам	и даннь	IX								
Data Time Radi Temp Pres Humi Wind Spee Time	e iation perature ssure idity dDirection	, ,	int obje obje float int float float obje obje	ect 664 664 664 664 664 664								
data	a.head()											
	UNIXTime		Data	Time	Radiation	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TimeSunRise	Time Sun Se
0	1475229326	9/29/2016 12:0	00:00 AM	23:55:26	1.21	48	30.46	59	177.39	5.62	06:13:00	18:13:00
1	1475229023	9/29/2016 12:0	00:00 AM	23:50:23	1.21	48	30.46	58	176.78	3.37	06:13:00	18:13:00
2	1475228726	9/29/2016 12:0	00:00 AM	23:45:26	1.23	48	30.46	57	158.75	3.37	06:13:00	18:13:0
3	1475228421	9/29/2016 12:0	00:00 AM	23:40:21	1.21	48	30.46	60	137.71	3.37	06:13:00	18:13:0
1	1475228124	9/29/2016 12:0	00:00 AM	23:35:24	1.17	48	30.46	62	104.95	5.62	06:13:00	18:13:0

Часть 1. Предварительная подготовка данных

Очевидно, что все эти временные характеристики в таком виде нам не особо интересны. Преобразуем все нечисловые столбцы в числовые. В целом колонка UNIXTime нам не интересна, дата скорее интереснее в виде дня в году. Время измерения может быть интересно в двух видах: просто секунды с полуночи, и время, нормализованное относительно рассвета и заката.

```
#Преобразуем временные колонки в соответствующий временной формат:
data["Time"] = (pd
                    .to datetime(data["UNIXTime"], unit="s", utc=True)
                    .dt.tz convert("Pacific/Honolulu")).dt.time
data["TimeSunRise"] = (pd
                       .to datetime(data["TimeSunRise"],
                                    infer datetime format=True)
                       .dt.time)
data["TimeSunSet"] = (pd
                      .to datetime(data["TimeSunSet"],
                                   infer datetime format=True)
                      .dt.time)
data = data.rename({"WindDirection(Degrees)": "WindDirection"},
                   axis=1)
def time to second(t):
    return ((datetime.combine(datetime.min, t) - datetime.min)
            .total seconds())
df = data.copy()
timeInSeconds = df["Time"].map(time_to_second)
sunrise = df["TimeSunRise"].map(time to second)
sunset = df["TimeSunSet"].map(time to second)
df["DayPart"] = (timeInSeconds - sunrise) / (sunset - sunrise)
df = df.drop(["UNIXTime", "Data", "Time",
              "TimeSunRise", "TimeSunSet"], axis=1)
df.head()
```

Результат преобразования данных:

	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	DayPart
0	1.21	48	30.46	59	177.39	5.62	1.475602
1	1.21	48	30.46	58	176.78	3.37	1.468588
2	1.23	48	30.46	57	158.75	3.37	1.461713
3	1.21	48	30.46	60	137.71	3.37	1.454653
4	1.17	48	30.46	62	104.95	5.62	1.447778

```
df.dtypes
Radiation
                 float64
Temperature
                  int64
Pressure
                 float64
Humidity
                  int64
WindDirection
                 float64
                 float64
Speed
DayPart
                 float64
dtype: object
df.shape
(32686, 7)
```

Проверим набор данных на наличие пустых значений:

```
# Проверим наличие пустых значений df.isnull().sum()

Radiation 0
Temperature 0
Pressure 0
Humidity 0
WindDirection 0
Speed 0
DayPart 0
dtype: int64
```

Часть 2. Разделение данных.

```
1 X = df.drop("Radiation", axis=1)
 2 y = df["Radiation"]
 3 print(X.head(), "\n")
 4 print(y.head())
   Temperature Pressure Humidity WindDirection Speed DayPart
                          59
                                    177.39 5.62 1.475602
0
                 30.46
           48
            48
                   30.46
                              58
                                          176.78 3.37 1.468588
1
                 30.46 57 158.75 3.37 1.468588
30.46 60 137.71 3.37 1.454653
30.46 62 104.95 5.62 1.447778
2
           48
           48
3
           48
4
   1.21
0
    1.21
1
    1.23
2
3
     1.21
4
    1.17
Name: Radiation, dtype: float64
 1 print(X.shape)
 print(y.shape)
(32686, 6)
(32686,)
 1 #Разделим выборку на тренировочкую и тестовую
 2 X_train, X_test, y_train, y_test = train_test_split(X, y,
                                test_size=0.25, random_state=346705925)
 4 print(X_train.shape)
 5 print(X_test.shape)
 6 print(y_train.shape)
 7 print(y_test.shape)
(24514, 6)
(8172, 6)
(24514,)
(8172,)
```

Часть 3. Обучение модели.

Линейная модель — Lasso

Видно, что данный метод без настройки гиперпараметров несколько хуже, чем метод К ближайших соседей.

SVM

```
#Попробуем метод NuSVR с гиперпараметром nu=0.5:
nusvr_05 = NuSVR(nu=0.5, gamma='scale')
nusvr_05.fit(X_train, y_train)

NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='scale', kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False)

1 test_model(nusvr_05)

mean_absolute_error: 172.92453188479877
median_absolute_error: 101.9877834943342
r2_score: 0.41677135378183905
```

SVM показал результаты хуже по средней абсолютной ошибке и коэффициенте детерминации. Однако медианная абсолютная ошибка меньше, чем у метода Lasso.

Дерево решений

Дерево решений показало хороший результат по сравнению с рассмотренными раньше методами.

Оценим структуру получившегося дерева решений:

```
26 #Оценим структуру получившегося дерева решений:
27 stat_tree(dt_none)

Всего узлов: 42969
Листовых узлов: 21485
Глубина дерева: 43
Минимальная глубина листьев дерева: 7
Средняя глубина листьев дерева: 20.743914358855015
```

Часть 4. Подбор гиперпараметра K

Линейная модель — Lasso

Подберём параметры, а потом проверим на тренировочном и тестовом наборе данных:

Видно, что метод Lasso здесь не особо хорошо справляется, и здесь, скорее всего, было бы достаточно обычной линейной регрессии (в которую сходится Lasso при alpha=0).

```
1  reg = LinearRegression()
2  reg.fit(X_train, y_train)
3  test_model(reg)

mean_absolute_error: 156.41472692069752
median_absolute_error: 122.7350926314856
r2_score: 0.5961416061536914
```

В целом получили примерно тот же результат. Очевидно, что проблема в том, что данный метод не может дать хороший результат для данной выборки.

SVM

Подберём параметры, а потом проверим на тренировочном и тестовом наборе данных:

Видно, что метод NuSVR справляется лучше, но не глобально. При этом также видно, получившееся оптимальное значение nu=0,5 является стандартным для данного алгоритма.

Дерево решений

Подберём параметры, а потом проверим на тренировочном и тестовом наборе данных:

Проведём дополнительное исследование в районе пика:

Получили, что глубину дерева необходимо ограничить 10 уровнями. Проверим этот результат:

```
reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)
```

mean_absolute_error: 49.19982366267469 median_absolute_error: 0.9458444902162735

r2_score: 0.8729318611050234

Вновь посмотрим статистику получившегося дерева решений.

stat_tree(reg)

Всего узлов: 1711 Листовых узлов: 856 Глубина дерева: 10

Минимальная глубина листьев дерева: 7

Средняя глубина листьев дерева: 9.850467289719626

В целом получили примерно тот же результат. Коэффициент детерминации оказался немного выше, тогда как абсолютные ошибки также стали немного выше. Видно, что дерево решений достигло своего предела.