Natural Language Inference (and the representation of sentences) Computational Semantics 2021

Adam Ek

Plan

- Part 1: Natural Language Inference
- Part 2: Sentence embeddings and Natural Language Inference Models
- \rightarrow 15 min break \leftarrow
 - Part 3: Where are we?
 - Part 4: Moving forward?

Languages in this course

Natural Language Inference (1)

- The task of Natural Language Inference (NLI) is finding the relationship between two sentences
- A NLI example contains a premise (P) and a hypothesis (H)

Natural Language Inference (1)

- The task of Natural Language Inference (NLI) is finding the relationship between two sentences
- A NLI example contains a *premise* (P) and a *hypothesis* (H)
- The relations we are interested in are:
 - Entailment: the hypothesis is true given the premise
 - Contradiction: the hypothesis is false given the premise
 - Neutral: the hypothesis may be true given the premise

Natural Language Inference (2)

Natural Language Inference (2)

■ The task is to determine the relationship between H and P

Natural Language Inference (2)

- The task is to determine the relationship between H and P
- For example, what is the relationship of the H given P below:
- P A cat and a dog are playing hockey
- H1 Two pets are playing hockey
- H2 Two animals are playing hockey
- H3 Three animals are playing hockey

Natural Language Inference (3)

- Approaches
 - First-order logic, lambda calculus etc
 - Statistical and Neural methods

Natural Language Inference (3)

- Approaches
 - First-order logic, lambda calculus etc
 - Statistical and Neural methods
- "Tasks" needed to perform NLI (very broadly)
 - Common-sense knowledge
 - Syntactic understanding
 - Semantic understanding
 - How two sentences relate to each other

Neural NLI

- To tackle this problem with neural networks we will use sentence representations of the hypothesis and premise to determine which class the pair belongs to.
- Mainly then, we need to construct good sentence representations and combine them.

Sentence representations

We've seen one sentence representation already: the final hidden state

Sentence representations

We've seen one sentence representation already: the final hidden state

> What you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties Alexis Conneau German Kruszewski Guillaume Lample Facebook AI Research Facebook Al Research Facebook Al Research Université Le Mans germank@fb.com Sorbonne Universités aconneau@fb.com glample@fb.com Loïc Barrault Marco Baroni Université Le Mans Facebook AI Research loic.barrault@univ-lemans.fr mbaroni@fb.com

 Setup: Train models on different NLP tasks and investigate how well they predict linguistic properties

Sentence representations

We've seen one sentence representation already: the final hidden state

> What you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties Alexis Conneau German Kruszewski Guillaume Lample Facebook AI Research Facebook Al Research Facebook Al Research Université Le Mans germank@fb.com Sorbonne Universités aconneau@fb.com glample@fb.com Loïc Barrault Marco Baroni Université Le Mans Facebook AI Research loic.barrault@univ-lemans.fr mbaroni@fb.com

- Setup: Train models on different NLP tasks and investigate how well they predict linguistic properties
- Use the last hidden state or max pooling (similar to what we did in the Word2Vec lab)

Predicting linguistic properties

Task	SentLen	WC	TreeDepth	TopConst	BShift	Tense	SubjNum	ObjNum	SOMO	CoordInv
Baseline representations										
Majority vote	20.0	0.5	17.9	5.0	50.0	50.0	50.0	50.0	50.0	50.0
Hum. Eval.	100	100	84.0	84.0	98.0	85.0	88.0	86.5	81.2	85.0
Length	100	0.2	18.1	9.3	50.6	56.5	50.3	50.1	50.2	50.0
NB-uni-tfidf	22.7	97.8	24.1	41.9	49.5	77.7	68.9	64.0	38.0	50.5
NB-bi-tfidf	23.0	95.0	24.6	53.0	63.8	75.9	69.1	65.4	39.9	55.7
BoV-fastText	66.6	91.6	37.1	68.1	50.8	89.1	82.1	79.8	54.2	54.8
BiLSTM-last	encoder									
Untrained	36.7	43.8	28.5	76.3	49.8	84.9	84.7	74.7	51.1	64.3
AutoEncoder	99.3	23.3	35.6	78.2	62.0	84.3	84.7	82.1	49.9	65.1
NMT En-Fr	83.5	55.6	42.4	81.6	62.3	88.1	89.7	89.5	52.0	71.2
NMT En-De	83.8	53.1	42.1	81.8	60.6	88.6	89.3	87.3	51.5	71.3
NMT En-Fi	82.4	52.6	40.8	81.3	58.8	88.4	86.8	85.3	52.1	71.0
Seq2Tree	94.0	14.0	59.6	89.4	78.6	89.9	94.4	94.7	49.6	67.8
SkipThought	68.1	35.9	33.5	75.4	60.1	89.1	80.5	77.1	55.6	67.7
NLI	75.9	47.3	32.7	70.5	54.5	79.7	79.3	71.3	53.3	66.5
BiLSTM-max encoder										
Untrained	73.3	88.8	46.2	71.8	70.6	89.2	85.8	81.9	73.3	68.3
AutoEncoder	99.1	17.5	45.5	74.9	71.9	86.4	87.0	83.5	73.4	71.7
NMT En-Fr	80.1	58.3	51.7	81.9	73.7	89.5	90.3	89.1	73.2	75.4
NMT En-De	79.9	56.0	52.3	82.2	72.1	90.5	90.9	89.5	73.4	76.2
NMT En-Fi	78.5	58.3	50.9	82.5	71.7	90.0	90.3	88.0	73.2	75.4
Seq2Tree	93.3	10.3	63.8	89.6	82.1	90.9	95.1	95.1	73.2	71.9
SkipThought	66.0	35.7	44.6	72.5	73.8	90.3	85.0	80.6	73.6	71.0
NLI	71.7	87.3	41.6	70.5	65.1	86.7	80.7	80.3	62.1	66.8

 But for semantics (and NLI) we are interested in more than linguistic properties

- But for semantics (and NLI) we are interested in more than linguistic properties
- In particular, we hope that a model gives us representations that allow the model to predict how acceptable (or reasonable) humans consider sentences.

Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions

Adam Ek Jean-Phillipe Bernardy Shalom Lappin
Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
{adam.ek, jean-philippe.bernardy, shalom.lappin}@gu.se

Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions

Adam Ek Jean-Phillipe Bernardy Shalom Lappin
Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

{adam.ek, jean-philippe.bernardy, shalom.lappin}@gu.se

 We investigate if the probabilities a LM assign correlate with human judgments

$$SLOR_{M} = \frac{log(P_{M}(s)) - log(P_{U}(s))}{len(s)}$$

Can we really predict acceptability

In particular, we investigate whether semantic or syntactic information helps us:

Can we really predict acceptability

In particular, we investigate whether semantic or syntactic information helps us:

Table 2: Weighted Pearson correlation between prediction from different models on the SMOG1 dataset. * indicates that the tags have been shuffled.

	HUMAN	LSTM	+SYN	+SYN*	+SEM	+SEM*	+ВЕРТН	+DEPTH*
HUMAN	1.00							
LSTM	0.58	1.00						
+SYN	0.55	0.96	1.00					
+SYN*	0.39	0.76	0.75	1.00				
+SEM	0.54	0.81	0.78	0.61	1.00			
+SEM*	0.52	0.81	0.78	0.63	0.96	1.00		
+DEPTH	0.56	0.97	0.97	0.74	0.79	0.79	1.00	
+DEPTH*	0.46	0.87	0.85	0.73	0.72	0.72	0.86	1.00

Natural Language Inference for Neural Networks

A problem with neural networks is that we need a lot of data for systems to work well

Natural Language Inference for Neural Networks

- A problem with neural networks is that we need a lot of data for systems to work well
- Previous NLI datasets were small with carefully selected examples (FraCas), which made them unfit for neural networks (but excellent for evaluation)

Natural Language Inference for Neural Networks

In 2015, we got SNLI with 550k examples and in 2018 MNLI with 440k examples

A large annotated corpus for learning natural language inference

Samuel R. Bowman*†
sbowman@stanford.edu

Gabor Angeli^{†‡} angeli@stanford.edu

Christopher Potts*
cgpotts@stanford.edu

Christopher D. Manning*†‡
manning@stanford.edu

A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference

Adina Williams¹
adinawilliams@nyu.edu

Nikita Nangia²

Samuel R. Bowman^{1,2,3}

^{*}Stanford Linguistics †Stanford NLP Group ‡Stanford Computer Science

A general architecture for NLI problems was first proposed in the SNLI paper:

But what is a sentence representation...

If we use a LSTM to encode a sentence, we get one representation for each token:

But what is a sentence representation...

If we use a LSTM to encode a sentence, we get one representation for each token:

But what is a sentence representation...

If we use a LSTM to encode a sentence, we get one representation for each token:

■ to predict a class we need *one* embedding...

Compressing a sequence of token representations

■ To solve this issue, we can use some form of *pooling*:

In general, a neural network will produce one representation of the premise and one of the hypothesis.

- In general, a neural network will produce one representation of the premise and one of the hypothesis.
- But to predict in a neural net, we need one representation! So we have to combine them somehow.

- In general, a neural network will produce one representation of the premise and one of the hypothesis.
- But to predict in a neural net, we need one representation! So we have to combine them somehow.
- What we could do is concatenating the representations:

- In general, a neural network will produce one representation of the premise and one of the hypothesis.
- But to predict in a neural net, we need one representation! So we have to combine them somehow.
- What we could do is concatenating the representations:

But this has problems for example if the sentence is long.

Universal Sentence Representations from NLI

Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

Alexis Conneau Facebook AI Research aconneau@fb.com Douwe Kiela Facebook AI Research dkiela@fb.com Holger Schwenk Facebook AI Research schwenk@fb.com

Loïc Barrault LIUM, Université Le Mans loic.barrault@univ-lemans.fr Antoine Bordes Facebook AI Research abordes@fb.com

Universal Sentence Representations from NLI

Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

Alexis Conneau Facebook AI Research aconneau@fb.com Douwe Kiela Facebook AI Research dkiela@fb.com Holger Schwenk Facebook AI Research schwenk@fb.com

Loïc Barrault LIUM, Université Le Mans loic.barrault@univ-lemans.fr Antoine Bordes Facebook AI Research abordes@fb.com

Model		NLI		
Model	dim	dev	test	
LSTM	2048	81.9	80.7	
GRU	4096	82.4	81.8	
BiGRU-last	4096	81.3	80.9	
BiLSTM-Mean	4096	79.0	78.2	
Inner-attention	4096	82.3	82.5	
HConvNet	4096	83.7	83.4	
BiLSTM-Max	4096	85.0	<u>84.5</u>	

- Evaluate different model architectures on the same data
- This gives us a "estimation" of which architecture produce the best representations

A more advanced approach to NLI

 Instead of just concatenating H and P, we also consider the element-wise subtraction (vector contraction) and multiplication (vector scaling)

Figure 1: Generic NLI training scheme.

Combining sentences

Using attention

A Decomposable Attention Model for Natural Language Inference

Ankur P. Parikh	Oscar Täckström	Dipanjan Das	Jakob Uszkoreit
Google	Google	Google	Google
New York, NY	New York, NY	New York, NY	Mountain View, CA

{aparikh,oscart,dipanjand,uszkoreit}@google.com

Using attention

					а	cat	runs
				a			
A Decomposi	able Attention Model	for Natural Lang	uage Inference	animal			
Ankur P. Parikh Google	Oscar Täckström Google	Dipanjan Das Google	Jakob Uszkoreit Google	is			
New York, NY	New York, NY kh, oscart, dipanjan	New York, NY	Mountain View, CA	running			

Transformers for Natural Language Inference

We take the representation of both sentences, the CLS-token and use it to predict the relationship between the premise and hypothesis.

Transformers for Natural Language Inference

• Why don't we combine the representation of the premise and the hypothesis in the transformer?

Transformers for Natural Language Inference

- Why don't we combine the representation of the premise and the hypothesis in the transformer?
- In the transformer we consider both sentences *jointly*, i.e. the token representations are already conditioned on each other.

Next up...

Meta-overview

- We train some neural network to predict some classes over a large dataset
- But semantic problems (or tasks) usually contain complex reasoning involving commonsense knowledge
- To annotate datasets of NLI (and other NLU tasks) we use human labor

- We've seen fancy models of inference (BERT/LSTM)
- They appear to work well, getting over 80-90% accuracy on NLI datasets

- We've seen fancy models of inference (BERT/LSTM)
- They appear to work well, getting over 80-90% accuracy on NLI datasets
- They appear to be great! We've solved NLI!

- We've seen fancy models of inference (BERT/LSTM)
- They appear to work well, getting over 80-90% accuracy on NLI datasets
- They appear to be great! We've solved NLI!
- But people started to look at the predictions and noticed, we can't explain why the system does x, y or z

- We've seen fancy models of inference (BERT/LSTM)
- They appear to work well, getting over 80-90% accuracy on NLI datasets
- They appear to be great! We've solved NLI!
- But people started to look at the predictions and noticed, we can't explain why the system does x, y or z
- and people noted that "easy" examples were not solved by NLI systems, but they appear to solve more "difficult" examples

Hypothesis-only baseline

Hypothesis Only Baselines in Natural Language Inference

Adam Poliak¹ Jason Naradowsky¹ Aparajita Haldar¹,²
Rachel Rudinger¹ Benjamin Van Durme¹
¹Johns Hopkins University ²BITS Pilani, Goa Campus, India
{azpoliak,vandurme}@cs.jhu.edu {narad,ahaldar1,rudinger}@jhu.edu

What happens if we only consider the hypothesis?

Hypothesis-only baseline

Hypothesis Only Baselines in Natural Language Inference

Adam Poliak¹ Jason Naradowsky¹ Aparajita Haldar¹.²
Rachel Rudinger¹ Benjamin Van Durme¹
¹Johns Hopkins University ²BITS Pilani, Goa Campus, India
{azpoliak,vandurme}@cs.jhu.edu {narad,ahaldar1,rudinger}@jhu.edu

- What happens if we only consider the hypothesis?
- P None
- H The cats are playing
- Label Contradiction

Does considering just the hypothesis work?

Dataset	Hyp-Only	MAJ	$ \Delta $	$\Delta\%$	Hyp-Only	MAJ	$ \Delta $	$\Delta\%$	Baseline	SOTA
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3
MNLI-1	55.52	35.45	+20.07	+56.61	_	35.6			72.3	80.60
MNLI-2	55.18	35.22	+19.96	+56.67	-	36.5	-	-	72.1	83.21

Does considering just the hypothesis work?

		TE								
Dataset	Hyp-Only	MAJ	$ \Delta $	$\Delta\%$	Hyp-Only	MAJ	$ \Delta $	$\Delta\%$	Baseline	SOTA
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3
MNLI-1	55.52	35.45	+20.07	+56.61	_	35.6			72.3	80.60
MNLI-2	55.18	35.22	+19.96	+56.67	-	36.5	-	-	72.1	83.21

- The results show that it's possible to predict the relation based only on the hypothesis. But how does this make sense? (it shouldn't work at all)
- The hypothesis contain implicit signals that can be used to predict its class

Sensitivity to word-order

■ The success of the transformer models for NLU has been attributed to it's ability to model complex *syntactic and semantic dependencies* between words

Sensitivity to word-order

- The success of the transformer models for NLU has been attributed to it's ability to model complex syntactic and semantic dependencies between words
- We can test this by pre-training a transformer on permuted data, and test on several downstream tasks

Sensitivity to word-order

- The success of the transformer models for NLU has been attributed to it's ability to model complex syntactic and semantic dependencies between words
- We can test this by pre-training a transformer on permuted data, and test on several downstream tasks

Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little

Koustuv Sinha^{†‡} Robin Jia[†] Dieuwke Hupkes[†] Joelle Pineau^{†‡}

Adina Williams† Douwe Kiela†

† Facebook AI Research; † McGill University / Montreal Institute of Learning Algorithms {koustuvs,adinawilliams,dkiela}@fb.com

■ Setup: train RoBERTa (Liu et al. 2019) on a dataset containing sentence-permutations: permute *n*-grams of size 1, 2, 3, and 4

Setup: train RoBERTa (Liu et al. 2019) on a dataset containing sentence-permutations: permute n-grams of size 1, 2, 3, and 4

The cat is super tall and fancy \rightarrow The cat (super tall) is fancy

- Setup: train RoBERTa (Liu et al. 2019) on a dataset containing sentence-permutations: permute n-grams of size 1, 2, 3, and 4
 - The cat is super tall and fancy \rightarrow The cat (super tall) is fancy
- Evaluate on the GLUE benchmark

GLUE benchmark

 GLUE is a collection of datasets used to measure "success" in a variety of NLU tasks (including NLI)

Corpus	Train	Test	Task	Metrics	Domain
			Single-Se	entence Tasks	
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.
SST-2	67k	1.8k	sentiment	acc.	movie reviews
			Similarity and	l Paraphrase Tasks	
MRPC	3.7k	1.7k	paraphrase	acc./F1	news
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.
QQP	364k	391k	paraphrase	acc./F1	social QA questions
			Infere	ence Tasks	
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia
RTE	2.5k	3k	NLI	acc.	news, Wikipedia
WNLI	634	146	coreference/NLI	acc.	fiction books

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test sets shown in bold use labels that have never been made public in any form.

Setup: train RoBERTa (Liu et al. 2019) on a dataset containing sentence-permutations: permute *n*-grams of size 1, 2, 3, and 4

The cat is super tall and fancy \rightarrow The cat (super tall) is fancy

Evaluate on the GLUE benchmark

- So, pre-training on permuted data is possible and yield good results on downstream tasks, but how is this possible?
- For example in English, word order gives meaning rather than morphology (like Turkish)

- So, pre-training on permuted data is possible and yield good results on downstream tasks, but how is this possible?
- For example in English, word order gives meaning rather than morphology (like Turkish)
- The authors show that models use higher-order *distributional* statistics to construct meaning (simply put, the transformer puts the words in the right order)

- So, pre-training on permuted data is possible and yield good results on downstream tasks, but how is this possible?
- For example in English, word order gives meaning rather than morphology (like Turkish)
- The authors show that models use higher-order *distributional* statistics to construct meaning (simply put, the transformer puts the words in the right order)
- Consequently, it appears that transformers don't really consider the classical NLP pipeline (using human syntactic and semantic mechanisms)

- So, pre-training on permuted data is possible and yield good results on downstream tasks, but how is this possible?
- For example in English, word order gives meaning rather than morphology (like Turkish)
- The authors show that models use higher-order *distributional* statistics to construct meaning (simply put, the transformer puts the words in the right order)
- Consequently, it appears that transformers don't really consider the classical NLP pipeline (using human syntactic and semantic mechanisms)
- We need better evaluation datasets, that can't be solved by distributional statistics.

Let's replace some words!

■ What happens if we remove entire word-classes from the dataset?

Let's replace some words!

What happens if we remove entire word-classes from the dataset?

NLI Data Sanity Check: Assessing the Effect of Data Corruption on Model Performance

Aarne Talman*†, Marianna Apidianaki*, Stergios Chatzikyriakidis‡, Jörg Tiedemann*

*Department of Digital Humanities, University of Helsinki {name.surname}@helsinki.fi *Basement Al

Let's replace some words!

What happens if we remove entire word-classes from the dataset?

NLI Data Sanity Check: Assessing the Effect of Data Corruption on Model Performance

Aarne Talman*†, Marianna Apidianaki*, Stergios Chatzikyriakidis‡, Jörg Tiedemann*

*Department of Digital Humanities, University of Helsinki {name.surname}@helsinki.fi †Basement AI †CLASP, Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg {name.surname}@gu.se

Setup: Train a BERT model on a corrupted version of the dataset and test it

Data corruption

Contradiction	Premise He was hardly more than five feet, four inches, but carried himself with great dignity.	Hypothesis The man was 6 foot tall.
Entailment	Two plants died on the long journey and the third one found its way to Jamaica exactly how is still shrouded in mystery.	
Neutral	In a couple of days the wagon train would head on north to Tueson, but now the activity in the plaza was a mixture of market day and fiesta.	They were south of Tucson.

Table 1: Sentence pairs from a corrupted MNLI training dataset where nouns have been removed.

What happens :(

Data	CORRUPT-TRAIN	Δ	CORRUPT-TEST	Δ	CORRUPT-TRAIN AND TEST	Δ
MNLI-NUM	82.37%	-1.37	81.71%	-2.03	81.87%	-1.87
MNLI-CONJ	83.09%	-0.65	82.75%	-0.99	83.10%	-0.64
MNLI-ADV	80.21%	-3.53	72.41%	-11.33	75.69%	-8.05
MNLI-PRON	83.27%	-0.47	81.98%	-1.75	82.65%	-1.09
MNLI-ADJ	81.67%	-2.07	74.61%	-9.13	76.44%	-7.30
MNLI-DET	83.15%	-0.59	79.29%	-4.44	81.32%	-2.42
MNLI-VERB	81.40%	-2.34	73.96%	-9.78	76.30%	-7.44
MNLI-NOUN	80.72%	-3.02	69.80%	-13.94	73.38%	-10.35
MNLI-NOUN-PRON	79.74%	-4.00	68.41%	-15.33	72.14%	-11.60
NOUN+PRON+VERB	72.55%	-11.19	54.59%	-29.15	62.18%	-21.56
NOUN+ADV+VERB	67.58%	-16.16	62.58%	-21.16	67.58%	-16.16
NOUN+VERB	71.14%	-12.60	52.90%	-30.84	61.31%	-22.43
NOUN+VERB+ADJ	75.54%	-8.20	61.90%	-21.84	68.20%	-15.54
NOUN+VERB+ADV+ADJ	79.81%	-3.93	71.81%	-11.93	76.29%	-7.45

Table 2: Prediction accuracy (%) for the BERT-base model fine-tuned on CORRUPT-TRAIN and tested on the original MNLI-matched evaluation (dev) set (columns 2 and 3); fine-tuned on the original MNLI data and tested on CORRUPT-TEST; fine-tuned on CORRUPT-TRAIN and tested on CORRUPT-TEST (columns 6 and 7). The delta shows the difference in accuracy compared to the model fine-tuned on the original MNLI training set and evaluated on the MNLI-matched development set (83.74%).

The case of punctuation

How does Punctuation Affect Neural Models in Natural Language Inference

Adam Ek Jean-Philippe Bernardy Stergios Chatzikyriakidis
Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
{adam.ek, jean-philippe.bernardy, stergios.chatzikyriakidis}@gu.se

Is BERT and LSTM models for NLI sensitive to punctuation?

The case of punctuation

How does Punctuation Affect Neural Models in Natural Language Inference

Adam Ek Jean-Philippe Bernardy Stergios Chatzikyriakidis
Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
{adam.ek, jean-philippe.bernardy, stergios.chatzikyriakidis}@gu.se

- Is BERT and LSTM models for NLI sensitive to punctuation?
- LSTMs are very sensitive to any punctuations
- BERT doesn't care at all about punctuation

The case of punctuation

How does Punctuation Affect Neural Models in Natural Language Inference

Adam Ek Jean-Philippe Bernardy Stergios Chatzikyriakidis Centre for Linguistic Theory and Studies in Probability Department of Philosophy, Linguistics and Theory of Science University of Gothenburg

{adam.ek, jean-philippe.bernardy, stergios.chatzikyriakidis}@gu.se

- Is BERT and LSTM models for NLI sensitive to punctuation?
- LSTMs are very sensitive to any punctuations
- BERT doesn't care at all about punctuation

MODEL	TEST	MA	MM
BiLSTM _{orig}		.724	.723
$BiLSTM_p$	p	.723	.724
$BiLSTM_p$	$\neg p$.428	.414
$BiLSTM_{\neg p}$	$\neg p$.714	.727
$BiLSTM_{\neg p}$	p	.424	.430
$HBMP_{orig}$.729	.733
$HBMP_p$	p	.728	.729
$HBMP_{p}$	$\neg p$.430	.408
$HBMP_{\neg p}$	$\neg p$.729	.732
$HBMP_{\neg p}$	p	.436	.427
$BERT_{orig}$.833	.839
$BERT_p$	p	.835	.837
$BERT_p$	$\neg p$.816	.822
$BERT_{\neg p}$	$\neg p$.819	.820
$BERT_{\neg p}$	p	.830	.833

■ There are many ways to break NLI datasets and cast doubt on the performance of various "good" models

- There are many ways to break NLI datasets and cast doubt on the performance of various "good" models
- The issue arise (mainly) from *poorly* constructed datasets (SNLI/MNLI)

- There are many ways to break NLI datasets and cast doubt on the performance of various "good" models
- The issue arise (mainly) from poorly constructed datasets (SNLI/MNLI)
- These datasets are constructed from crowdsourcing

- There are many ways to break NLI datasets and cast doubt on the performance of various "good" models
- The issue arise (mainly) from poorly constructed datasets (SNLI/MNLI)
- These datasets are constructed from *crowdsourcing*
- Annotators have biases and use shortcuts when annotating (such as "give-away")

- There are many ways to break NLI datasets and cast doubt on the performance of various "good" models
- The issue arise (mainly) from poorly constructed datasets (SNLI/MNLI)
- These datasets are constructed from *crowdsourcing*
- Annotators have biases and use shortcuts when annotating (such as "give-away")
- Models exploit this!

Adversarial datasets

- One solution proposed to this problem is adversarial datasets
 E.g. ANLI
 (https://github.com/facebookresearch/anli)
- Humans generate a dataset with examples that fool the model

Adversarial datasets

- One solution proposed to this problem is adversarial datasets
 E.g. ANLI
 (https://github.com/facebookresearch/anli)
- Humans generate a dataset with examples that fool the model
- we then train and evaluate on this and construct new models that "solve" these adversarial examples

Is adversarial datasets the solution?

What Will it Take to Fix Benchmarking in Natural Language Understanding?

Samuel R. Bowman New York University bowman@nyu.edu George E. Dahl Google Research, Brain Team gdahl@google.com

 Quote: Evaluation for many natural language understanding (NLU) tasks is broken

 Large-scale evaluation and models trained on huge dataset deviate from classical linguistics

- Large-scale evaluation and models trained on huge dataset deviate from classical linguistics
 - Solutions tried so far: adversarial (ANLI) and out-of-domain test sets (MNLI)
 - But these methods inevitably obscure the models abilities

- Large-scale evaluation and models trained on huge dataset deviate from classical linguistics
 - Solutions tried so far: adversarial (ANLI) and out-of-domain test sets (MNLI)
 - But these methods inevitably obscure the models abilities
 - as examples are constructed to explicitly fool models, not represent actual inference problems
- Where do we go from here??? That's currently a work-in-progress:)
 - (i.e. a great time to get into NLP and NLU)