

Clustering high-dimensional data

Magnus Rattray and Alexis
Boukouvalas
Faculty of Biology, Medicine and
Health
University of Manchester

Fig. 1A of Guo et al. shows clusters of cells and genes

Popular approaches to clustering

- Agglomerative hierarchical clustering
 - Progressively merge closest items/groups
 - No need to define particular number of clusters
- K-means clustering
 - Identifies K groups of similar items
 - Maximizes within-group similarity
- Model-based clustering
 - Learn a model to best explain the data
 - Allows for soft probabilistic clustering
 - Bayesian methods to determine optimal K

Popular approaches to clustering

Many more - http://scikit-learn.org/stable/modules/clustering.html

Similarities and distances

- Many clustering algorithms require a quantity representing similarity or distance
- A common choice is the Euclidean distance
- This is the distance between two data vectors

$$X = [X_1, X_2, ..., X_D]$$
 and $Y = [Y_1, Y_2, ..., Y_D]$

Recall - data represented as vectors

 X_1 is value of feature 1, X_2 is value of feature 2 etc.

Euclidean distance between vectors

Euclidean distance

Given data vectors $X = [X_1, X_2, ..., X_D]$ and $Y = [Y_1, Y_2, ..., Y_D]$ the squared distance is:

$$D^{2}(X,Y) = (X_{1} - Y_{1})^{2} + (X_{2} - Y_{2})^{2} + \dots + (X_{D} - Y_{D})^{2}$$

The distance is the square root of that,

$$D(X,Y) = ||X - Y|| = \sqrt{\sum_{i=1}^{D} (X_i - Y_i)^2}$$

Be careful - some algorithms (e.g. k-means) use the squared distance

Agglomerative hierarchical clustering

- Very popular approach especially in biology
- Progressively merge closest data points or clusters of data points
- Requires definition of distance between clusters, e.g. Average Linkage is mean distance between items in each cluster

https://en.wikipedia.org/wiki/Hierarchical_clustering

Average linkage clustering - example

D(X ⁿ ,X ^m)	X¹	X ²	X ³	X ⁴
X ¹	-	3	2	8
X ²	3	-	3	8
X ³	2	3	-	5
X ⁴	8	8	5	-

$$D(X^{13}, X^2) = \frac{D(X^1, X^2) + D(X^3, X^2)}{2} = \frac{3+3}{2} = 3$$

$$D(X^{13}, X^4) = \frac{D(X^1, X^4) + D(X^3, X^4)}{2} = \frac{8+5}{2} = 6.5$$

	X ¹³	X ²	X ⁴
X^{13}	-	3	6.5
X^2	3	-	8
X^4	6.5	8	-

Average linkage clustering - example

	X ¹³	X ²	X ⁴
X ¹³	-	3	6.5
X^2	3	-	8
X ⁴	6.5	8	-

$$D(X^{123}, X^4) = \frac{D(X^1, X^4) + D(X^2, X^4) + D(X^3, X^4)}{3} = \frac{8 + 8 + 5}{3} = 7$$

	X ¹²³	X ⁴
X ¹²³	-	7
X ⁴	7	-

Many different versions

- Average linkage
 - Distance between clusters is average distance between items in each cluster
- Complete linkage
 - Distance between clusters is distance between furthest items in each cluster
- Single linkage
 - Distance between clusters is distance between closest items in each cluster
- Ward linkage
 - Choose splits to minimize sum of squared

K-means clustering

- Optimisation-based method
- Partition data into clusters k = 1...K
- Cluster centre $\mu_k = Mean_{n \in cluster(k)}(X^n)$
- Find centres which minimize objective: sum of within cluster squared distances to centres

$$E = \sum_{k=1}^{K} \sum_{n \in cluster(k)} D^{2}(X^{n}, \mu_{k})$$

K-means clustering: EM algorithm

Initialize – e.g. select K random points as centres μ_k lterate:

- 1) Identify closest centre for every data point
- 2) Assign points sharing same centre as a cluster, say $n \in cluster(k)$ for each n = 1...N
- 3) Compute mean of data in each cluster $m_k = Mean_{n \hat{1} \ cluster(k)}(X^n)$

Stop, when centres no longer change

K-means clustering: EM algorithm

Some nice online demos you can try

http://util.io/k-means

http://syskall.com/kmeans.js/

Assessing performance

- Sometimes we know the desired answer, e.g. where data classes are known
- It is useful to then assess the performance of different clustering algorithms, to better understand their properties
- Many metrics have been proposed:

http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

In the lab you will use the Adjusted Rand Index

https://en.wikipedia.org/wiki/Rand_index

Week 11 lab instructions

 Look through the Iris dataset worked example notebook (IrisClustering.ipynb)

Exercise 1: Use k-means clustering on the Guo *et al.* 64-cell stage data and use PCA to visualize the clustering

Exercise 2: reproduce the two hierarchical clusterings shown in Figures 1A of the paper

In each case assess the performance for different parameter choices