Esercizi di Topologia Algebrica

Gabriele Bozzola Matricola: 882709

Gennaio 2017

Esercizio 1.1.19 (iv)

Siano X e Y due spazi topologici, dico che X è omotopicamente equivalente a Y se esiste una funzione continua $f\colon X\to Y$ tale che esiste una funzione continua $g\colon Y\to X$ tale che $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, dove \sim indica la relazione di omotopia tra due applicazioni continue.

Devo mostrare che la relazione di omotopia tra due spazi topologici è una relazione di equivalenza, cioè, indicando anche questa relazione con \sim , soddisfa:

- 1. Riflessività: $X \sim X$
- 2. Simmetria: se $X \sim Y$ allora $Y \sim X$
- 3. Transitività: se $X \sim Y$ e $Y \sim Z$ allora $X \sim Z$

Ma:

- 1. Devo trovare una funzione continua $f\colon X\to X$ tale che esiste una seconda funzione continua $g\colon X\to X$ con $f\circ g\sim 1_X$ e $g\circ f\sim 1_X$. Una possibile scelta per queste funzioni è $f=g=1_X$ che è tale che $f\circ g=g\circ f=1_X\sim 1_X$ per la riflessività della relazione di omotopia tra funzioni.
- 2. Per ipotesi esiste una funzione continua $f\colon X\to Y$ tale che esiste una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, devo trovare una funzione continua $\phi\colon Y\to X$ tale che esiste una seconda funzione continua $\gamma\colon X\to Y$ con $\phi\circ\gamma\sim 1_X$ e $\gamma\circ\phi\sim 1_Y$ Una possibile scelta per queste funzioni è $\phi=f$ e $\gamma=g$, infatti queste sono funzioni continue con il giusto dominio e codominio e sono tali che $\phi\circ\gamma=g\circ f\sim 1_X$ e $\gamma\circ\phi=f\circ g\sim 1_Y$.

Per dimostrare il terzo punto è conveniente utilizzare un lemma:

Lemma 1. La relazione di omotopia tra funzioni si comporta bene rispetto alla composizione, cioè siano X,Y,W,Z spazi topologici, $f,g\colon X\to Y,\ h\colon W\to X$ e $k\colon Y\to Z$ mappe continue, allora $f\circ h\sim g\circ h$ e $k\circ f\sim h\circ g$.

Dimostrazione. Siccome $f \circ g$ significa che esiste una funzione continua $F \colon X \times I \to Y$ tale che:

$$F(x,0) = f(x)$$
$$F(x,1) = q(x)$$

Definisco $\phi = f \circ h$ e $\gamma = g \circ h$, vale che $\phi, \gamma \colon W \to Y$ sono funzioni continue perché composizioni di funzioni continue. Devo mostrare che:

$$\exists H : W \times I \to Y$$
 continua tale che $H(w,0) = \phi(w)$ e $H(w,1) = \gamma(w)$

Una possibile scelta per H è $H=F\circ (h,1_I)$, questa è continua perché composizione di funzioni continue, inoltre è tale che $H(w,0)=f\circ h(w)=\phi(w)$ e $H(w,1)=g\circ h(w)=\gamma(w)$, e quindi è l'omotopia cercata.

A questo punto:

3. Per ipotesi so che $X \sim Y$ e $Y \sim Z$, cioè so che:

$$\exists f_1 \colon X \to Y$$
 tale che $\exists g_1 \colon Y \to X$ tale che $f_1 \circ g_1 \sim 1_Y$ e $g_1 \circ f_1 \sim 1_X$ $\exists f_2 \colon Y \to Z$ tale che $\exists g_2 \colon Z \to Y$ tale che $f_2 \circ g_2 \sim 1_Z$ e $g_2 \circ f_2 \sim 1_Y$

Devo mostrare che:

$$\exists f_3 \colon X \to Z$$
 tale che $\exists g_2 \colon Z \to X$ tale che $f_3 \circ g_3 \sim 1_Z$ e $g_3 \circ f_3 \sim 1_X$

Una possibile scelta per f_3 e g_3 è $f_3=f_2\circ f_1$ e $g_3=g_1\circ g_2$. In questo modo ho $f_3\colon X\to Z$ e $g_3\colon Z\to X$, queste mappe sono continue perché sono composizione di funzioni continue. Perché questa sia una buona scelta deve essere $f_2\circ f_1\circ g_1\circ g_2\sim 1_Z$ e $g_1\circ g_2\circ f_2\circ f_1\sim 1_X$.

Nel primo caso devo mostrare che $f_2 \circ h \sim 1_Z$ con $h = f_1 \circ g_1 \circ g_2 \sim 1_Y \circ g_2 = g_2$ per il lemma 1, in quanto $f_1 \circ g_1 \sim 1_Y$ per ipotesi. Siccome $h \sim g_2$ e $f_2 \circ g_2 \sim 1_Z$ per il medesimo lemma $f_2 \circ h \sim 1_Z$. La seconda relazione è analoga.

Esercizio 1.1.19 (v)

Siano X,Y spazi topologici omotopicamente equivalenti quindi esiste una funzione continua $f\colon X\to Y$, detta relazione di omotopia tale che esista una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$. Sia $h\colon X\to Y$ una funzione continua con $h\sim f$, devo mostrare che h è una relazione di omotopia, cioè esiste una funzione continua $k\colon Y\to X$ tale che $h\circ k\sim 1_Y$ e $k\circ h\sim 1_X$. Una possibile scelta per questa funzione k è la funzione k stessa. Questa è continua e per il lemma 1 vale che $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ e $k\circ h\sim h$.

Esercizio 1.1.19 (vii)

Siano X,Y spazi topologici e $f\colon X\to X,\,g\colon Y\to Y$ funzioni continue tali che $f\circ g$ e $g\circ f$ siano equivalenze omotopiche, devo mostrare che questo implica che f e g stesse siano equivalenze omotopiche, cioè che:

$$\exists \phi \colon Y \to X \text{ continua tale che } f \circ \phi \sim 1_Y \text{ e } \phi \circ f \sim 1_X$$

$$\exists \gamma \colon X \to Y \text{ continua tale che } g \circ \gamma \sim 1_X \text{ e } \gamma \circ g \sim 1_Y$$

Siccome $f \circ g$ e $g \circ f$ sono equivalenze omotopiche vale che:

$$\exists h \colon Y \to Y \text{ continua tale che } f \circ g \circ h \sim 1_Y \text{ e } h \circ f \circ g \sim 1_Y$$

$$\exists k \colon X \to X \text{ continua tale che } g \circ f \circ k \sim 1_X \text{ e } k \circ g \circ f \sim 1_X$$

Affermo che $k\circ g\circ f\circ g\circ h\sim k\circ g$ questo è vero siccome $k\circ g\colon Y\to X$ è continua e siccome $f\circ g\circ h\sim 1_Y$ posso utilizzare il lemma 1. Ma per il medesimo lemma e per il fatto che $k\circ g\circ f\sim 1_X$ deriva che $g\circ h\sim k\circ g$.

Una possibile scelta per ϕ è $\phi=g\circ h$, infatti utilizzando il fatto che $f\circ g$ è equivalenza omotopica:

$$f \circ \phi = f \circ g \circ h \sim 1_Y$$

Inoltre utilizzando l'osservazione appena fatta e il lemma 1:

$$g \circ h \circ f \sim k \circ g \circ f \sim 1_X$$

Anche in questo caso ho utilizzato il fatto che $g\circ f$ è equivalenza omotopica. Si può utilizzare un ragionamento analogo per γ .

Esercizio 1.2.33 (v)

È dato l'omomorfismo:

$$f: \mathcal{S}^1 \times \mathcal{S}^1 \to \mathcal{S}^1 \times \mathcal{S}^1$$

 $(z_1, z_2) \mapsto (z_1 z_2, z_2)$

Sullo spazio $\mathcal{S}^1 \times \mathcal{S}^1$ ogni laccio è omotopo ad un laccio della forma:

$$\sigma \colon \Delta_1 \times \Delta_1 \to \mathcal{S}^1 \times \mathcal{S}^1$$
$$(s,t) \mapsto (e^{2\pi i n s}, e^{2\pi i m t})$$

Dove $\Delta_1 \simeq [0,1]$ è l'1-simplesso standard, e in cui sostanzialmente $n,m \in \mathbb{Z}$ contano il numero di avvolgimenti del laccio attorno alle due circonferenze, per questo il gruppo fondamentale è $\pi_1(S^1 \times S^1) \cong \mathbb{Z} \times \mathbb{Z}$.

Esercizio 1.2.33 (xii)

Per assurdo S^1 e S^n con $n \geq 2$ sono omotopicamente equivalenti, questo implica che i loro gruppi fondamentali sono isomorfi, indipendentemente dal punto base in quanto gli spazi sono connessi per archi. Ma $\pi_1(S^1) \cong \mathbb{Z}$, mentre $\pi_1(S^n) \cong 0$ per $n \geq 2$, quindi siccome i gruppi fondamentali non sono isomorfi gli spazi non possono essere omotopicamente equivalenti.

Esercizio 1.2.33 (xiii)

Per assurdo esiste una funzione continua $f: \mathbb{R}^2 \to \mathbb{R}^n$ con n > 2 che sia omeomorfismo. Tolgo un punto p da \mathbb{R}^2 , se f omeomorfismo anche la restrizione \tilde{f} di f su $\mathbb{R}^2 \setminus \{p\}$ è omeomorfismo. Ma $\mathbb{R}^2 \setminus \{p\} \simeq \mathbb{R} \times \mathcal{S}^1$, infatti una mappa che realizza esplicitamente questo omeomorfismo è, dopo aver portato p in 0 (una traslazione è un omeomorfismo):

$$\mathbb{R}^2 \setminus \{ p \} \to \mathbb{R} \times \mathcal{S}^1$$
$$\vec{x} \mapsto \left(||\vec{x}||, \frac{\vec{x}}{||\vec{x}||} \right)$$

Analogamente $\mathbb{R}^n \setminus \{f(p)\} \simeq \mathbb{R} \times \mathcal{S}^{n-1}$. Quindi siccome per ipotesi esiste un omeomorfismo tra \mathbb{R}^2 e \mathbb{R}^n allora $\mathbb{R} \times \mathcal{S}^1 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, e questo implica che i gruppi fondamentali sono isomorfi. Siccome il gruppo fondamentale di un prodotto è il prodotto dei gruppi fondamentali e vale che:

$$\pi_1(\mathbb{R}) = 0$$

$$\pi_1(\mathcal{S}^1) = \mathbb{Z}$$

$$\pi_1(\mathcal{S}^n) = 0$$

allora $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 0$, ma questi gruppi non sono isomorfi, e quindi ho trovato l'assurdo.

Esercizio 1.5.19 (vii)

Il gruppo fondamentale di uno spazio topologico X sul punto base $x_0 \in X$ è:

$$\pi_1(X, x_0) = \{ f : S^1 \to X \text{ continua} \mid f(1) = x_0 \} / \sim$$

Dove \sim è la relazione di equivalenza omotopica. Una funzione si dice omotopa a zero quando è omotopa ad una funzione costante.

Se il gruppo fondamentale è banale $\forall x_0 \in X$ singifica che il suo unico elemento è la classe di equivalenza del laccio costante [1], per cui considerata la generica funzione $g \colon \mathcal{S}^1 \to X$ continua, questa è necessariamente nella stessa classe di equivalenza di [1] in $\pi_1(X,g(1))$ e ciò singifica che è omotopa ad un cammino costante, quindi omotopa a zero.

Mostro il viceversa. Se tutte le funzioni $h \colon \mathcal{S}^1 \to X$ sono omotope a zero allora sono tutte equivalenti al laccio costante $C_{h(1)}$ e quindi il gruppo fondamentale $\pi_1(X, h(1))$ contiene

questa sola classe di equivalenza, ed è quindi banale. Questo vale $\forall x_0 \in X$, basta considerare una funzione tale che $h(1) = x_0$.

Esercizio 1.9 (21)

Sia:

$$q_1 \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \mapsto z^n$

Questa induce una mappa sul gruppo $H_1(S^1)$, il quale è noto essere gruppo libero generato di rango 1. Un suo generatore è dato dalla classe del simplesso singolare:

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Ma quindi:

$$q_1 \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto e^{2\pi i n t}$

E quindi $q_1(\sigma) = \sigma \star \sigma \star \sigma \cdots = \sigma^n$, cioè sui gruppi di omologia:

$$(q_1)_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $1 \mapsto n$

Per questo il grado della mappa è n. Sia:

$$q_2 \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \mapsto \bar{z}$

Dove \bar{z} indica il cammino inverso. Allora considerando lo stesso generatore:

$$q_2 \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

$$t \mapsto e^{2\pi i(1-t)} = e^{-2\pi it}$$

Quindi a livello di gruppi di omologia:

$$(q_2)_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $1 \mapsto -1$

E quindi il grado è -1.