CHEMISTRY

Higher Level

Wednesday 17 November 1999 (morning)

D.		2
FA	per	3
-		-

I hour 15 minutes

Candidate name:	Candidate category & number:						

This examination paper consists of 6 Options.

The maximum mark for each option is 25.

The maximum mark for this paper is 50.

INSTRUCTIONS TO CANDIDATES

Write your candidate name and number in the boxes above.

Do NOT open this examination paper until instructed to do so.

C

Answer all of the questions from TWO of the options in the spaces provided.

At the end of the examination, complete box B below with the letters of the options answered.

OPTION	SANSWERED

EXAMINER	TEAM LEADER
/25	/25
/25	/25
TOTAL	TOTAL
/50	/50

IB	CA
4	/25
	/25
TOTA	L
	/50

EXAMINATION MATERIALS

Required:

Calculator

Chemistry Data Booklet

A simple translating dictionary for gandidates not working in their own language networking in the net

Option C – Human Biochemistry

C1.	The structures of vitamin A (retinol) and vitamin C (ascorbic acid) are given in Table 21 of the Data Booklet.								
	(a)	Name two functional groups which are present in retinol.							

	(b)	By referring to the structures, classify vitamin A and vitamin C as water or fat soluble and account for the difference on the molecular level.							
	*								
	(c)	State one physical symptom of each of vitamin A and vitamin C deficiency. State the common name given to vitamin C deficiency.							

C2. (a)	List the three major functions of fats in the body. Write a general formula for a fat or an oil and describe the structural similarity between the two. State how the molecular structures of a fat and an oil differ and explain why one is a solid at room temperature and the other a									
	liquid.	[8								

	·									
(b)	0.014 moles of a particular oil was found to react exactly with 14.2 g of iodine. Calculate the number of moles of iodine that reacted and state what can be deduced about the structure of the oil from this information.	[3]								
	.,									

C3. The two graphs below illustrate how the concentration of substrate and the temperature can both affect the rate of enzyme-catalysed reactions:

Rate of reaction / mg of point of the product formed per minute of the product formed per minute of the product formed per minute of the product of the prod

Graph of rate of reaction against substrate concentration

Graph of rate of reaction against temperature

(a) Explain why the rate of reaction:

(i)	initially increases as the substrate concentration increases.							
(ii)	remains constant after a certain substrate concentration has been reached.							

(iii) increases as the temperature increases from 0° C to 40° C.

(iv) falls to zero at temperatures above 57° C.

(b) Apart from substrate concentration and temperature, state two other factors which affect the rate of enzyme catalysed reactions.

Option D - Environmental Chemistry

71.	Carbon dioxide is perhaps the best known greenhouse gas. What is the greenhouse effect? Identify one other greenhouse gas and explain how these gases contribute to this effect. Explain how particulates can counteract this effect.	
		, a

D2.	(a)	Apart from removing disease-causing agents, state two types of impurities which are removed during the treatment of fresh water for drinking purposes.
	(b)	Describe the primary, secondary and tertiary stages of sewage treatment. State the pollutants removed at each stage, discuss the effectiveness of each stage of sewage treatment and state why there is an increasing need for tertiary treatment.

D3.	The two oxygen-oxygen bonds in ozone are of equal length. Draw two Lewis structures to account for this fact, and use these to explain the dependence of the dissociation of oxygen and ozone on the wavelength of light.
	pollutants. Explain with the aid of equations how the primary pollutants produce ozone. Describe the role of sunlight in this process.


	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[6]

### Option E – Chemical Industries

E1. For each of the classes of manufactured chemicals listed below, name one of the chemi- give an example of its use.								nica	ıls	and									
	Exa	Example:																	
		Acids:	Sulphuric	acid i	s used	in the	e man	ufact	ure c	of det	erge	nts.							
															67				
	(a)	Alloys:										• • •		• • •	 				9
													٠	• • •	 				į.
	(b)	Polymers:													 				
	(c)	Chloro-alk	ali product	s:											 				

[3

E2. The graph below (not to scale) indicates the variation of  $K_c$  with temperature for an industrial process:



(a) Based on the graph, explain whether the reaction is exothermic or endothermic.

(b) Industrially, this process is carried out at 750 K. Explain why it is not carried out at a much higher or much lower temperature. State how a catalyst could increase the rate of this reaction at 750 K.

Е3.	Catalytic cracking is one of the processes that takes place in an oil refinery. Explain the purpose of this process and state why it is important. Write a balanced equation using molecular formulas to represent a typical example of the process. In addition to a catalyst, state what other condition is necessary for the process. Identify an appropriate catalyst and outline a mechanism for the	
	reaction.	[10
	***************************************	
	***************************************	
E4.	n-type and p-type semiconductors can be produced by adding very small amounts of different elements to highly purified silicon. In each case identify an element that could be added to produce each type of semiconductor and describe how it achieves its purpose.	[4

### Option F - Fuels and Energy

F1.	(a)	Des	scribe how coal and oil were formed.		[2
	(b)		o possible reactions of coal are given below wi	th their associated enthalpy changes per	
			$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ $C(s) + 2H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3OH(l)$	$\Delta H = -111 \text{ kJ}$ $\Delta H = -239 \text{ kJ}$	
		(i)	From this information, calculate the heat of rea	action for:	
			$CO(g) + 2H_2(g) \rightarrow CH_3OF$	H(1)	[2]
1					
		(ii)	Give a balanced equation for the complete com-	abustion of methanol.	[1]
		(iii)	Use information provided in Table 2 of the Data required to raise the temperature of 500 kg of w		[1]
		(iv)	Use information provided in Table 13 of the methanol that must be burnt completely to produce		[2]
				**********	
			************************		

F2.	(a)	²³⁴ Pa decays by beta emission. Give a balanced equation for the nuclear reaction.	[1
	(b)	The half-life of ²³⁴ Pa is approximately 70 s. What fraction of a sample's initial activity will be present after 350 s?	[]
F3.	List and	three possible stages at which radioactive materials might escape from a nuclear power plant, two ways in which such escapes might be prevented.	[5
		***************************************	
F4.	(a)	Explain why the actual mass of a nucleus is slightly less than the sum of the masses of its protons and neutrons.	[1]
		***************************************	
		***************************************	

### (Question F4 continued)

	(b)	Given the following relative isotopic masses, calculate the energy evolved when one gram of undergoes the following reaction:	[4
		$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{144}_{56}Ba + ^{90}_{36}Kr + 2^{1}_{0}n$	
		$^{235}_{92}$ U = 235.0439; $^{144}_{56}$ Ba = 143.8810; $^{90}_{36}$ Kr = 89.9470; $^{1}_{0}$ n = 1.0087	
			ti.
		***************************************	
		***************************************	
5.	(a)	State the trend in the neutron to proton ratio for stable nuclei with increasing atomic number, and give a reason for this behaviour.	[3]
		***************************************	
	(b)	Explain why elements above atomic number 83 with mass number 209 do not exist as stable isotopes.	[1]
	4		
		***************************************	
	(c)	If a radionuclide has a lower n to p ratio than for a stable nuclei, give a balanced nuclear equation to represent what happens.	[1]

# Option G - Modern Analytical Chemistry

G1. Consider the ¹H NMR (nuclear magnetic resonance) spectrum that you would expect from methyl propanoate, shown below:

(a) Hydrogen atoms within a molecule can exist in different chemical environments. How many different types of hydrogen atoms are there in the molecule?

(b) Use Table 19 of the Data Booklet and the structure of the molecule to complete the following table about the nature of the spectrum you would expect. (Note, you may not need all of the available spaces.)

Type of Hydrogen	Chemical shift ppm	Area under peak(s) (area for one H atom = 1)	Splitting (singlet, doublet etc.)
1			
2	cesses in Testing	1 10 10 10 10 10 10	
3			
4			
5			

#### (Question G1 continued)

(c) Methyl propanoate has a number of isomers. For each of the following isomers state one difference in the ¹H NMR spectrum that would allow you to distinguish it from methyl propanoate.

[3]

[2]

(i) ethyl ethanoate



difference: ......

(ii) propyl methanoate



difference: ......

.....

(iii) butanoic acid



difference: ...... difference:

(iv) Identify which one of the four isomers can be distinguished from the other three using infra-red spectroscopy, and describe how its spectrum would differ.

G2.	Chromatography is a very powerful tool in each of the following situations. State which chromatographic technique could be used to solve each problem. Describe briefly how the technique could be carried out and the results interpreted:					
	(a)	It is suspected that the colouring matter used to dye a food product is a mixture, one component of which may be a banned substance. A pure sample of the banned substance is available. You may use a labelled diagram to help if you wish.				
		***************************************				
		***************************************				
		.,				
		***************************************				
		***************************************				
		***************************************				
		***************************************				
(	b)	It is believed that an organic liquid may contain traces of ethanol. The quantity of ethanol, if any, is to be determined.	1			
		***************************************				
		**************************************				

# Option H - Further Organic Chemistry

	geometric isomers, cis-A and trans-A, each containing two methyl groups.  Give the structural formulas of the two geometric isomers.	12
(a)	Give the structural formulas of the two geometric isomers.	[2]
(b)	When hydrogen gas is added to the cis-isomer, a racemic mixture of an alkanoic acid $B$ is obtained. The same racemic mixture is also obtained when hydrogen gas is added to the trans-isomer. Write the equation for the hydrogenation of cis-A or trans-A isomer to form $B$ .	[1]
(c)	Name B.	[1]
(d)	Explain what is meant by a racemic mixture.	[1]
(e)	Under certain conditions, the racemic mixture could be separated into two optically active enantiomers, $C$ and $D$ . Give the structural formulas of the enantiomers $C$ and $D$ .	[2]
(f)	Describe the similarities and the difference in the physical properties of enantiomers.	[2]

H2. (a)	With reference to Table 16 in the Data Booklet, rank the following compounds in order of increasing acid strength (weakest one first). Explain the order on the molecular level:	[4]
	ethanol, phenol, 4-nitrophenol	
(b)	Compare the acidity of ethanol to that of water and account for the difference.	[2]

		CH ₃ H	
нз.	(a)	For the addition of bromine to C , name and outline the mechanism of the	
		CH ₃ CH ₃	
		reaction.	[4]
	(b)	When hydrogen bromide reacts with the alkene in (a) above, there are two possible products. Give the structural formulas of the two products.	[2]
	(c)	Give the structures of the two carbocations (carbonium ions) which could, in theory, be formed at the first stage of the reaction with HBr. Identify the major product and explain	
		why it is formed in the larger amount.	[4]
		***************************************	
		***************************************	