МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИБ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Криптографические методы защиты информации» Тема: Изучение асимметричных протоколов и шифров

Студентка гр. 9363	Труханова В.А.
Преподаватель	Племянников А.К

Санкт-Петербург 2023

Цель работы:

Исследовать протокол Диффи-Хеллмана, шифр RSA и получить практические навыки работы с ними, в том числе с использованием приложения Cryptool 1 и 2.

Протокол Диффи-Хеллмана

7.1.1. Задание

- Запустите утилиту *Indiv. Procedures* \rightarrow *Protocols* \rightarrow *Diffie-Hellman demonstration*... и установите все опции информирования в ON;
 - Выполните последовательно все шаги протокола;
- Сохраните лог-файл протокола для отчета (пиктограмма с изображением ключа);
- Используйте полученный общий ключ для зашифровки и расшифровки произвольного сообщения. Шифр выберите самостоятельно.

7.1.2. Основные параметры и схема протокола

Протокол Диффи-Хеллмана является первым из опубликованных алгоритмов на основе открытых ключей. Обычно данный алгоритм называют обменом ключами по схеме Диффи-Хеллмана.

Цель схемы – обеспечить двум пользователям защищенную возможность получения симметричного секретного ключа.

Рисунок 1- Схема протокола Диффи-Хеллмана

Протокол Диффи–Хеллмана состоит из следующих операций (рис. 7.1):

- Устанавливаются открытые параметры p, g:
- а) p большое простое число порядка 300 десятичных цифр (1024 бит);
- б) g первообразный корень по модулю p.
- Каждая из сторон генерирует закрытый ключ большое число x и y соответственно.
 - На каждой стороне вычисляется открытый ключ:
 - a) $R_1 = g^x \mod p$,
 - б) $R_2 = g^y \mod p$.

Стороны обмениваются открытыми ключами и вычисляют общие данные K для создания симметричного ключа: $K = R_2^x \mod p = R_1^y \mod p$.

7.1.3. Демонстрация работы протокола

Публичные параметры автоматически генерируются генератором с длиной 56 бит:

p = 78774425755274699, g = 25044468145950442;

x = 58841441568987774, y = 58968417830920481.

На каждой стороне вычисляется открытый ключ:

 $R_1 = 72408097483342572, R_2 = 20337679304053212. \\$

И на последнем шаге генерируем симметричный ключ:

 $K = R_2^x \mod p = R_1^y \mod p = 563188396319348.$

Схема протокола, реализованная в Cryptool

Рисунок 2 – Окно «Diffie-Hellman demonstration»

Рисунок 3 – Лог-файл протокола Диффи-Хеллмана

7.1.4. Таблица соответствия демонстрации протокола и параметров протокола

Таблица 1. Соответствие параметров

Параметр протокола	Cryptool
Открытые параметры	p, g
Открытый ключ	R_1, R_2
Секрет (Закрытый ключ)	x, y
Общий секретный ключ	K

7.1.5.Исходный, зашифрованный и расшифрованный тексты

Для шифровки сообщения был использован шифр DES(ECB).

 $K = 563188396319348 = 02\ 00\ 37\ 84\ 4D\ E2\ 74$.

Результаты шифровки и дешифровки приведены на Рисунке 4.

Рисунок 4 – Результат шифровки и дешифровки

Шифр RSA

7.2.1. Задание

- ullet Запустите утилиту Indiv. Procedures ightarrow RSA Cryptisystem ightarrow RSA Demonstration...;
 - Задайте в качестве обрабатываемого сообщения своё Ф.И.О.;
 - Сгенерируйте открытый и закрытый ключи;
 - Зашифруйте сообщение. Сохраните скриншот результата;
 - Расшифруйте сообщение. Сохраните скриншот результата;
 - Убедитесь, что расшифрование произошло корректно;

7.2.2. Обобщенная схема протокола шифрования RSA

Алгоритм RSA представляет собой асимметричный блочный шифр, в котором блоки открытого и зашифрованного сообщений представляются целыми числами из диапазона от 0 до n-1 для блока размером \log_2 n бит.

Алгоритм шифрования RSA состоит из следующих операций:

- 1. Вычисление ключей:
- а) генерируются два больших простых числа p и q (держатся в секрете);
- б) вычисляется $n = p \times q$;
- в) выбирается произвольное число e (e < n), взаимно простого с φ (n) (функцией Эйлера);
 - г) вычисляется число d: $d \times e \equiv 1 \mod \varphi(n)$;
- д) числа (e, n) составляют открытый ключ, d закрытый ключ, p и q уничтожаются.
 - 2. Зашифрование:
 - а) открытый текст разбивается на блоки (числа) m_i : $m_i < n$;
 - б) каждый блок открытого текста преобразуется в шифротекст по формуле: $c_i = m_i^e \ mod \ n.$
 - 3. Расшифрование:
 - а) шифротекст представляется блоками (числами) c_i : $c_i < n$;
 - б) каждый блок шифротекста преобразуется в открытый текст по формуле:

$$m_i = c_i^d \bmod n.$$

Обобщенная схема шифра RSA представлена на рисунках 5.

Рисунок 5 – Обобщенная схема шифра RSA

7.2.3. Результат генерации ключей, зашифровки и расшифровки

Запущена утилита *RSA Demonstration* Диалоговое окно представлено на рисунке 6.

Рисунок 6 – Окно «RSA Demonstration»

На рисунке 7 представлен результат генерации ключей.

Рисунок 7 – Генерация ключей

С помощью данной утилиты было проведено зашифрование сообщения при заданных параметрах. Параметры и результат шифрования приведены на рисунке 8.

Рисунок 8 – Результат шифрования

На рисунке 9 представлен результат дешифрования текста.

Рисунок 9 – Результат дешифрования

Исследование шифра RSA

7.3.1. Задание

- Выбрать текст на английском языке (не менее 1000 знаков) и сохранить в файле формата *.txt;
- Сгенерировать пары ассиметричных RSA-ключей утилитой Digital $Signatures \rightarrow PKI \rightarrow Generate/Import Keys с различными длинами (4 варианта);$
- Зашифровать текст (примерно 1000 символов) различными открытыми ключами. Зафиксировать время зашифровки;
- Расшифровать текст различными закрытыми ключами.
 Зафиксировать время зашифровки;

• Проверить корректность расшифровки. Зафиксировать скриншоты результата.

7.3.2. Выбранный текст

На Рисунке 10 представлен текст на английском языке в формате .TXT. (Размер текста: 1115 символов)

Рисунок 10 – Исходный текст

7.3.3. Результаты генерации ключевых пар различной длины

Сгенерированы пары ассиметричных RSA-ключей утилитой *Digital* Signatures \rightarrow PKI \rightarrow Generate/Import Keys с различными длинами (512, 768, 1024, 2048 бит). Результаты представлены на рисунке 11-14.

Рисунок 12 – Генерация ключа длиной 768 бит

Рисунок 13 – Генерация ключа длиной 1024 бит

Рисунок 14 – Генерация ключа длиной 2048 бит

7.3.4. Шифровка и расшифровка текста ключами разной длины

Рисунок 15 — Результаты шифровки и расшифровки исходного текста (512)

Рисунок 16 – Результаты шифровки и расшифровки исходного текста (768)

Рисунок 14 — Результаты шифровки и расшифровки исходного текста (1024)

Рисунок 15 — Результаты шифровки и расшифровки исходного текста (2048)

7.3.5. Временные затраты на зашифровку и расшифровку

Таблица 2. Временные затраты

Длина ключа	Время на	Время на расшифровку, сек
	зашифровку, сек	
512	0.000	0.006
768	0.000	0.011
1024	0.000	0.014
2048	0.002	0.060

Атака «грубой силы» на RSA

7.4.1. Задание

- ullet Запустить утилиту Indiv. Procedures o RSA Cryptosystem o RSA Demonstration...;
 - Установите переключатель в режим «Choose two prime...»;
 - Выберите параметры p и q так, чтобы n = pq > 256;
 - Задайте открытый ключ e;
- Зашифруйте произвольное сообщение и передайте его вместе с *n* и *e* коллеге. В ответ получите аналогичные данные от коллеги;
- ullet Запустите утилиту *Indiv. Procedures* ightarrow *RSA Cryptosystem* ightarrow *RSA Demonstration*... и установите переключатель в режим «For data encryption...»;
 - Выполните факторизацию модуля n командой Factorize...;
- Используйте полученный результат для расшифровки сообщения полученного от коллеги. Проверьте корректность.

7.4.2. Исходные данные для атаки

От коллеги были получены следующие данные:

n = 299, e = 101.

Шифротекст:

076 # 101 # 116 # 039 # 115 # 032 # 103 # 111 # 032 # 098 # 097 # 107 # 101 # 032 # 115 # 111 # 109 # 101 # 032 # 115 # 117 # 103 # 097 # 114 # 032 # 099 # 111 # 111 # 107 # 105 # 101 # 115 # 033

020 # 173 # 116 # 026 # 046 # 288 # 155 # 076 # 288 # 128 # 067 # 074 # 173 # 288 # 046 # 076 # 148 # 173 # 288 # 046 # 234 # 155 # 067 # 160 # 288 # 112 # 076 # 076 # 074 # 261 # 173 # 046 # 245

7.4.2. Результат факторизации

Выполнена факторизация модуля п. Результат представлен на рисунке 16.

Рисунок 16 – Результат факторизации

7.4.3. Расшифрованное сообщение

Используя полученный результат была проведена расшифровка сообщения. Результат представлен на рисунке 17.

Demonstration		
RSA using the private a	and public key or using only the public ke	y
(p-1)(q-1) is the Eu	numbers p and q. The composite number N ler totient. The public key e is freely choser llated such that d = e^(-1) (mod phi(N)).	N = pq is the public RSA modulus, and phi(N) = n but must be coprime to the totient. The private
C For data encryptio and the public key		ed the public RSA parameters: the modulus N
Prime number entry—		
Prime number p	13	Generate prime numbers
Prime number q	23	
RSA parameters		
RSA modulus N	299	(public)
phi(N) = (p-1)(q-1)	264	(secret)
Public key e	101	
Private key d	149	Update parameters
RSA encryption using a	e / decryption using d [alphabet size: 256]-	
Input as C text	• numbers	Alphabet and number system options
Ciphertext coded in nu	imbers of base 10	
# 148 # 173 # 288 #	046 # 234 # 155 # 067 # 160 # 288 # 11:	2 # 076 # 076 # 074 # 261 # 173 # 046 # 245
Decryption into plainte	ext m[i] = c[i]^d (mod N)	
		# 097 # 107 # 101 # 032 # 115 # 111 # 109 #
Output tout from the d	ecryption (into segments of size 1; the symb	ad '#' is used as separator)
		te# #s#u#g#a#r# #c#o#o#k#
JE # 6 # (# # 5 # #	9	
Plaintext		
Plaintext Let's go bake some s	ugar cookies!	

Рисунок 17 – Результат расшифровки

Имитация атаки на гибридную криптосистему

Модель гибридной криптосистемы, асимметричная составляющая которой использует асимметричный шифр (например, RSA), представлена на рисунке 18.

Рисунок 18 – Модель гибридной криптосистемы

Шифрование в рамках модели осуществляется следующим образом:

- 1. Сообщение шифруется симметричным секретным ключом.
- 2. Секретный ключ шифруется открытым ключом получателя.
- 3. Зашифрованное сообщение и ключ объединяются в цифровой конверт, который отправляется получателю.
- 4. Получатель сначала расшифровывает секретный ключ своим закрытым ключом, а затем расшифровывает этим секретным ключом шифровку сообщения.

Цель атак – определить симметричный секретный ключ, зашифрованный открытым ключом криптосистемы.

Условия атаки:

- Нарушитель может перехватывать сообщения, адресованные серверу;
- Нарушитель может модифицировать сообщения и направлять их серверу;
 - Сервер не определяет, от кого был получен конверт;

• Нарушитель может классифицировать ответы сервера на ПРИНЯТО/ОТКЛОНЕНО, т.е. случаи успешной и неуспешной расшифровки (по распознаванию ключевого слова).

7.5.1. Задание

- Подготовьте текст передаваемого сообщения на английском с вашим именем в конце;
- Запустите утилиту Analysis \rightarrow Asymmetric Encr... \rightarrow Side-Channel attack on «Textbook RSA»...;
- Настройте сервер, указав в качестве ключевого слова ваше имя, используемое в конце текста;
 - Выполните последовательно все шаги протокола;
 - Сохраните лог-файлы участников протокола для отчета.

7.5.2. Описание цели атаки, модель злоумышленника, схема атакуемого протокола гибридного шифрования

Описание цели атаки:

Цель атаки – определить симметричный секретный ключ, зашифрованный открытым ключом криптосистемы, при условии, что:

- Нарушитель может перехватывать сообщения, адресованные серверу;
- Нарушитель может модифицировать сообщения и направлять их серверу;
- Нарушитель может классифицировать ответы сервера на ПРИНЯТО/ОТКЛОНЕНО.

На Рисунке 16 представлен исходный текст.

Рисунок 19 – Исходный текст

На Рисунках 20, 21 и 22 представлены лог-файлы участников протокола: Алисы, Боба и Труди соответственно. Action log:

- Alice has composed a message for Bob
- Alice chose a random session key
- Alice has encrypted the message symmetrically with the session key
- Alice encrypted the session key e
- Alice encrypted the session key with Bob's public RSA key
- Alice sent the hybrid encrypted file to Bob

Randomly chosen session key:

D7F31074CB98E8C1850FBF1218056B51

Рисунок 20 – Лог-файл Алисы

0K

Рисунок 21 – Лог-файл Боба

Current Status of Trudy X

Action log

- Trudy has intercepted the message Alice sent to Bob
- Trudy has isolated the encrypted session key from the message
- Trudy has created 130 modified session keys up to now
- 60 of 130 modified messages were successfully decrypted by Bob's server

Intercepted, encrypted session key:

08D8D48A6D6F3FD3A45AE7CCDD9E7EC68D73E87F97211A8FF9763DABA54AD65777F3E8D5C1391BF08B1

Modified and encrypted session keys:

Modified and encrypted session key (hexadecimal):

0EA3FA2D7FCF47D8BF55B4627AEA26872C293EE94969BC6515FA35ED60D7567C4E5B436261905ED...
C1CBE00562C90FBC4143FF316C31F2C98371F80A6E2C0E231847EA10B081A032CFDD24FC8D9BE81...
D959A4E80EA12B547223EF7C92E1E4512A622E25C47B5E65EE34C12FDED3CC751440AA157C18319...
D49E422DC12453D875B2350F7CCC1C8B44D741218D43CBD79C252CD2385AFC6DC4F9045114FDF1...
05E125D2A32265C6C63D8F9553DF797BA434672BB8A4BF944D6F066AF64617413110AD773070D94

Decrypted session key (calculated by Trudy, based on Bob's responses):

D7F31074CB98E8C1850FBF1218056B51

Message (calculated by Trudy using the decrypted session key):

Starting example for the CrypTool version family 1.x (CT1)

Remark

The successor versions of CT1 (called CT2, JCT and CT0) now offer a significantly wider range of functionality than CT1. In CT1 only errors will be corrected. Please use the newer versions of CrypTool little by

OK

Рисунок 22 – Лог-файл Труди

Рисунок 22 – Лог-файл атаки

Заключение

По итогу выполнения данной работы были сделаны следующие выводы:

1.При помощи протокола Диффи-Хеллмана стороны могут обмениваться данными по незащищенному каналу, так как в его основе используется математически-сложная задача дискретного логарифмирования. Также при помощи данного протокола можно создавать ключи для других шифров.

2.Алгоритм RSA — асимметричный блочный шифр (с длиной блока $\log_2 n$ бит). Принимающая сторона генерирует закрытый и открытый ключи, открытый ключ отправляется отправляющей стороне и используется для зашифрования сообщения, после шифровка отправляется принимающей стороне и при помощи закрытого ключа происходит расшифрование. С увеличением длины ключа данное время на зашифровку и на расшифровку возрастает.

На алгоритм RSA можно применить атаку грубой силы если факторизовать часть открытого ключа — модуль n, особенно если n небольшое число.

3.На гибридную модель можно провести атаку «сторонним каналом», основанную на том, что злоумышленник перехватывает цифровой конверт с зашифрованным сообщением и зашифрованным секретным Была проведена атака на гибридную модель, основанная на том, что злоумышленник цифровой зашифрованным перехватывает конверт сообщением c И зашифрованным секретным ключом. Модифицируя полученные данные и анализируя ответы сервера, можно побитово восстановить целиком секретный ключ. ключом. Модифицируя полученные данные и анализируя ответы сервера, можно побитово восстановить секретный ключ.