Contents

_	0	\sim	\sim	0	0	0	0	0	\sim	
	\circ	U	\circ	C						

1	Euclidean Space	. 2
	1.a Euclidean Space - Cont.	
	1.b Theorem	
	1.c Theorem - Proof	

1 Euclidean Space

Euclidean Space - Cont.

Definition

For eaach positive integer k, let \mathbb{R}^k be the set of all ordered k —tuples, $\boldsymbol{x}=(x_1,x_2,...,x_k)$, where $x_1,x_2,...,x_k$ are real numbers, called coordinates of \boldsymbol{x} .

• The elements of \mathbb{R}^k is called points, or vectors, especially when k > 1.

If $y = (y_1, y_2, ..., y_k)$ and if α is a real number

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_k + y_k)$$
$$\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, ..., x_n)$$

- These two operations satisfy the commutative, associative and distributive laws.
- That makes \mathbb{R}^k into a vector space over real field.
- The zero element of \mathbb{R}^k is the point $\mathbf{0} = (0, 0, ..., 0)$ (origin)

Euclidean Space - Cont. (ii)

Definition (Inner Product)

$$\boldsymbol{x}\cdot\boldsymbol{y}=\sum_{i=1}^k x_iy_i=x_1y_1+x_2y_2+\ldots+x_ky_k$$

Definition (Norm)

$$|x| = (x \cdot x)^{rac{1}{2}} = \left(\sum_{i=1}^k x_i^2
ight)^{rac{1}{2}}$$

This structure is called Euclidean k —space.

Theorem

Theorem

Suppose $x, y, z \in \mathbb{R}^k$, and α is real. Then

- 1. $|x| \ge 0$
- 2. |x| = 0 if and only if x = 0.
- $3. |\alpha \boldsymbol{x}| = |\alpha||\boldsymbol{x}|$
- $4. |x \cdot y| \le |x||y|$
- 5. $|x + y| \le |x| + |y|$
- 6. $|x + y| \le |x y| + |y z|$

Theorem - Proof

1. $|x| \ge 0$

$$|oldsymbol{x}| = (oldsymbol{x} \cdot oldsymbol{x})^{rac{1}{2}} = \left(\sum_{i=1}^k x_i^2
ight)^{rac{1}{2}}$$

$$|x|^2 = \sum_{i=1}^k x_i^2 \ge 0$$
 for any x

Theorem - Proof (ii)

2. |x| = 0 if and only if x = 0

$$|\pmb{x}| = (\pmb{x} \cdot \pmb{x})^{\frac{1}{2}} = \left(\sum_{i=1}^k x_i^2\right)^{\frac{1}{2}} = 0$$

$$\sum_{i=0}^k x_i^2 = 0$$

$$x_1^2 + x_2^2 + \ldots + x_k^2 = 0$$
 so $x_i = 0$ for all $i \in \{1, \ldots, k\}$
$$\pmb{x} = 0$$

Theorem - Proof (iii)

3. $|\alpha \boldsymbol{x}| = |\alpha||\boldsymbol{x}|$

$$\begin{split} |\alpha| \ x| &= |\alpha| \left(\sum_{i=1}^k x_i^2 \right)^{\frac{1}{2}} \\ &= (\alpha^2)^{\frac{1}{2}} \left(\sum_{i=1}^k x_i^2 \right)^{\frac{1}{2}} \\ &= \left(\alpha^2 \sum_{i=1}^k x_i^2 \right)^{\frac{1}{2}} \\ &= \left(\sum_{i=1}^k \alpha^2 x_i^2 \right)^{\frac{1}{2}} = \left(\sum_{i=1}^k (\alpha x_i)^2 \right)^{\frac{1}{2}} = |\alpha x| \end{split}$$

Theorem - Proof (iv)

5.
$$|x+y| \leq |x| + |y|$$

$$|x + y|^2 = (x + y) \cdot (x + y)$$
$$= x \cdot x + 2x \cdot y + y \cdot y$$
$$= |x|^2 + 2x \cdot y + |y|^2$$

Consider,
$$2x \cdot y \le |2x \cdot y| = 2 |x \cdot y| \le 2|x||y|$$

$$|x + y|^2 \le |x|^2 + 2|x||y| + |y|^2$$

= $(|x| + |y|)^2$

Theorem - Proof (v)

6.
$$|x+y| \le |x| + |y|$$

Theorem - Proof (vi)

••••••

7.
$$|x+y| \leq |x-y| + |y-z|$$