CD4024BM/CD4024BC 7-Stage Ripple Carry Binary Counter

7-Stage Ripple Carry Binary Counter

General Description

The CD4024BM/CD4024BC is a 7-stage ripple-carry binary counter. Buffered outputs are externally available from stages 1 through 7. The counter is reset to its logical "0" stage by a logical "1" on the reset input. The counter is advanced one count on the negative transition of each

Features

3.0V to 15V ■ Wide supply voltage range

■ High noise immunity 0.45 V_{DD} (typ.)

Fan out of 2 driving 74L ■ Low power TTL or 1 driving 74LS compatibility

12 MHz (typ.) ■ High speed input pulse rate $V_{DD} - V_{SS} = 10V$

Order Number CD4024B

■ Fully static operation

Connection Diagram

TL/F/5957-1

Schematic Diagrams

Input Logic

Flip-flop logic (1 of 7 identical stages)

TL/F/5957-4

TI /F/5957-3

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Supply Voltage (V_{DD}) -0.5 to $\,\pm\,18\,\,V_{\hbox{\scriptsize DC}}$ Input Voltage (V_{IN}) -0.5 to $V_{\mbox{\scriptsize DD}} + 0.5 \ V_{\mbox{\scriptsize DC}}$ -65°C to +150°C Storage Temperature Range (T_S)

Power Dissipation (PD)

Dual-In-Line 700 mW Small Outline 500 mW Lead Temp. (Soldering, 10 sec.) (T_L) 260°C

Recommended Operating

Conditions (Note 2)

DC Supply Voltage (V_{DD}) + 3 to + 15 V_{DC} Input Voltage (V_{IN}) 0 to $V_{DD}\,V_{DC}$

Operating Temperature Range (T_A) CD4024BM

 $-55^{\circ}\text{C to } + 125^{\circ}\text{C}$ CD4024BC -40°C to $+85^{\circ}\text{C}$

DC Electrical Characteristics CD4024BM (Note 2)

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
- Cymbol	T dramotor	Conditions	Min	Max	Min	Тур	Max	Min	Max	
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		5 10 20		0.3 0.5 0.7	5 10 20		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$ I_{O} < 1 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.05 0.05 0.05		0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$ I_{O} < 1 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V
V _{IL}	Low Level Input Voltage	$\begin{array}{l} I_O \!<\! 1~\mu A \\ V_{DD} \!=\! 5V, V_O \!=\! 0.5V \text{ or } 4.5V \\ V_{DD} \!=\! 10V, V_O \!=\! 1.0V \text{ or } 9.0V \\ V_{DD} \!=\! 15V, V_O \!=\! 1.5V \text{ or } 13.5V \end{array}$		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$\begin{array}{l} I_O \!<\!1~\mu A \\ V_{DD}=5 V, V_O=0.5 V \text{ or } 4.5 V \\ V_{DD}=10 V, V_O=1.0 V \text{ or } 9.0 V \\ V_{DD}=15 V, V_O=1.5 V \text{ or } 13.5 V \end{array}$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V V
loL	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
ГОН	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.10 0.10		-10^{-5} 10^{-5}	-0.10 0.10		-1.0 1.0	μA μA

DC Electrical Characteristics CD4024BC (Note 2)

Symbol	Parameter	Conditions	-40°C		+ 25°C			+ 85°C		Units
			Min	Max	Min	Тур	Max	Min	Max	00
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$		20 40 60		0.3 0.5 0.7	20 40 80		150 300 600	μA μA
V _{OL}	Low Level Output Voltage	$V_{DD} = 15V$ $ I_{O} < 1 \mu A$		00		0.7	80		000	μΑ
		$V_{DD} = 5V$ $V_{DD} = 10V$		0.05 0.05		0 0	0.05 0.05		0.05 0.05	V V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	High Level Output Voltage	$ I_O < 1 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V

DC Electrical Characteristics CD4024BC (Note 2) (Continued)

Symbol	Parameter	Conditions	-4	−40°C		+ 25°C			+ 85°C	
		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
V _{IL}	Low Level Input Voltage	I _O <1 μA							4.5	
		$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		1.5 3.0		2 4	1.5 3.0		1.5 3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6	4.0		4.0	V
V _{IH}	High Level Input Voltage	$ I_O < 1 \mu A$ $ V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		V
I _{OL}	Low Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	High Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10-5	-0.30		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10-5	0.30		1.0	μΑ

AC Electrical Characteristics*

 $T_A=\,25^{\circ} C,\, C_L=\,50$ pF, $R_L=\,200$ k, t_r and $t_f=\,20$ ns unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		185	350	ns
	to Q1 Output	$V_{DD} = 10V$ $V_{DD} = 15V$		85 70	125 100	ns ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$ $V_{DD} = 10V$		100 50	200 100	ns ns
		$V_{DD} = 15V$		40	80	ns
t_{WL} , t_{WH}	Minimum Input Pulse Width	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		75 40 35	200 110 90	ns ns ns
t _{RCL} , t _{FCL}	Input Rise and Fall Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$			15 10 8	μs μs μs
f _{CL}	Maximum Input Pulse Frequency	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	1.5 4 5	5 12 15		MHz MHz MHz
t _{PHL}	Reset Propagation Delay Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		185 85 70	350 125 100	ns ns ns
t _{WH}	Reset Minimum Pulse Width	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		185 85 70	350 125 100	ns ns ns
C _{IN}	Input Capacitance (Note 4)	Any Input		5	7.5	pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: $I_{\mbox{\scriptsize OH}}$ and $I_{\mbox{\scriptsize OL}}$ are tested one output at a time.

Note 4: Capacitance is guaranteed by periodic tesing.

Ceramic Dual-In-Line Package (J) Order Number CD4024BMJ or CD402BCJ NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number CD4024BMN or CD402BCN
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408