$\begin{array}{c} {\tt Math~4301~Mathematical~Analysis~I} \\ {\underline{\tt Lecture~1}} \end{array}$

Topic: Ordered Fields

- Natural Numbers
- The natural numbers (or positive integers) is the set

 $\mathbb{N} = \{1, 2, \ldots\}.$

• Non-negative integers is the set

 $\mathcal{N} = \{0, 1, 2, ...\}.$

• The main property of the non-negative integers is:

Principle of Mathematical Induction

If $S \subseteq \mathcal{N}$ and $0 \in S$ and $(k+1) \in \mathcal{S}$ whenever $k \in S$, then $S = \mathcal{N}$.

• An ordering relation \leq on a set S is called *well-order* if every non-empty subset A of S has a smallest element.

Proposition \mathcal{N} is well-ordered by the relation \leq .

That is, \mathcal{N} has the well-ordering property:

If S is nonempty subset of \mathcal{N} , then there exist a smallest element in S; i.e. there is an $s_0 \in S$, such that, for all $x \in S$,

$$s_0 \leq x$$
.

Proof. We prove the statement by reductio ad impossibile.

- Suppose that $S \subseteq \mathcal{N}$ has no smallest element.
- Define $T = \mathcal{N} \backslash S$
- Since $0 \in \mathcal{N}$ is the smallest element of S and $S \subset \mathcal{N}$, it follows

 $0 \not \in S$

• Let

$$T_0 = \{ n \in \mathcal{N} : \{0, 1, 2, ..., n\} \subseteq T \}.$$

• Since $0 \notin S$, $0 \in T$, so

$$\{0\} \subseteq T$$
.

- Hence $0 \in T_0$.
- Suppose that $k \in T_0$, then

$$\{0, 1, 2, ..., k\} \subseteq T.$$

• If $(k+1) \notin T$, then

$$(k+1) \in S$$
.

• Since

$$\{0,1,2,...,k\} \subset \mathcal{N} \backslash S = T, \text{ thus}$$

$$S \subset \mathcal{N} \backslash \{0,1,2,...,k\} = \{k+1,k+2,...\}.$$

• It follows

$$(k+1) = \min S,$$

a contradiction.

• Therefore,

$$(k+1) \in T$$

 \bullet Since

$$\{0, 1, 2, ..., k\} \subseteq T$$

it follows that

$$\{0, 1, 2, ..., k, k+1\} \subseteq T$$

• Thus, by the definition of T_0

$$(k+1) \in T_0$$
.

• Consequently, T_0 satisfies **PMI**.

• Hence

$$T_0 = \mathcal{N}$$
,

so $T = \mathcal{N}$, and

• Therefore,

$$T = \mathcal{N} \backslash S = \mathcal{N},$$

so

$$S = \emptyset$$
.

A contradiction. This finishes our proof. ■

• Remark One shows that the Well-Ordering Property of \mathcal{N} implies the Principle of Mathematical Induction (PMI).

Example We show that, for all $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j^{2} = \frac{1}{6} n (n+1) (2n+1).$$

applying the \mathbf{PMI}

Proof Let

$$S = \left\{ n \in \mathbb{N} : \sum_{j=1}^{n} j^{2} = \frac{1}{6} n (n+1) (2n+1) \right\}.$$

• Since

$$1 = \sum_{i=1}^{1} j^2 = \frac{1}{6} 1 \cdot (1+1) (2 \cdot 1 + 1) = 1$$

is true,

$$1 \in S$$
.

• Moreover, if $k \in S$, then

$$\sum_{j=1}^{k} j^2 = \frac{1}{6}k(k+1)(2k+1)$$

• Therefore,

$$\begin{split} \sum_{j=1}^{k+1} j^2 &= \sum_{j=1}^k j^2 + (k+1)^2 = \frac{1}{6} k \left(k+1 \right) \left(2k+1 \right) + \left(k+1 \right)^2 \\ &= \frac{1}{6} \left(k \left(2k+1 \right) + 6 \left(k+1 \right) \right) \left(k+1 \right) \\ &= \frac{1}{6} \left(2k^2 + 7k + 6 \right) \left(k+1 \right) \\ &= \frac{1}{6} \left(k+1 \right) \left(k+2 \right) \left(2k+3 \right), \end{split}$$

thus

$$(k+1) \in S$$
,

so by PMI,

$$S = \mathbb{N}$$
.

• That is, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} j^{2} = \frac{1}{6} n (n+1) (2n+1).$$

Integers

• The set of integers is defined by

$$\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$$

Proposition Let $S \subseteq \mathbb{Z}$ and assume that $0 \in S$ and

$$(k+1), (k-1) \in S$$

whenever $k \in S$, then

$$S = \mathbb{Z}$$
.

Ordered Fields

• A set F with two binary operations

$$\begin{array}{ccc} + & : & \mathbb{F} \times \mathbb{F} \to \mathbb{F}, \\ & : & \mathbb{F} \times \mathbb{F} \to \mathbb{F} \end{array}$$

(called addition and multiplication) and relation \leq (called order) is called an ordered field, if the following properties are satisfied:

• Axioms of a commutative field

a) Addition axioms: Addition $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ (we write +(a,b) = a+b) satisfies properties:

a1) For all $x, y, z \in \mathbb{F}$,

$$x + (y+z) = (x+y) + z$$

a2) For all $x, y \in \mathbb{F}$,

$$x + y = y + x$$

a3) There is $0 \in \mathbb{F}$, such that, for all $x \in \mathbb{F}$,

$$x + 0 = x$$

a4) For each $x \in \mathbb{F}$, there is $-x \in \mathbb{F}$, such that

$$x + (-x) = 0$$

- b) Multiplication axioms: Multiplication $\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ (we write $\cdot (a, b) = a \cdot b$) satisfies properties:
- b1) For all $x, y, z \in \mathbb{F}$,

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

b2) For all $x, y \in \mathbb{F}$,

$$x \cdot y = y \cdot x$$

b3) There is $1 \in \mathbb{F}$, $1 \neq 0$, such that, for all $x \in \mathbb{F}$,

$$x \cdot 1 = x$$

b4) For each $x \in \mathbb{F}$, $x \neq 0$, there is $x^{-1} \in \mathbb{F}$, such that

$$x \cdot x^{-1} = 1$$

- c) Distributivity Law
- c1) For all $x, y, z \in \mathbb{F}$,

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

- Order Axioms: The order \leq on \mathbb{F} satisfies properties:
- d1) For all $x \in \mathbb{F}$,

$$x \leq x$$

d2) For all $x, y \in \mathbb{F}$, if $x \leq y$ and $y \leq x$ then

$$x = y$$

d3) For all $x, y, z \in \mathbb{F}$, if $x \leq y$ and $y \leq z$ then

$$x \leq z$$

d4) For all $x, y \in \mathbb{F}$,

$$x \le y$$
 or $y \le x$

d5) For all $x, y, z \in \mathbb{F}$, if $x \leq y$ then

$$x + z \le y + z$$

d6) For all $x, y \in \mathbb{F}$, if $0 \le x$ and $0 \le y$, then

$$0 \le xy$$

• Define the relation < on \mathbb{F} , by setting

$$x < y$$
 iff $x \le y$ and $x \ne y$.

• Analogously, define

$$x \ge y \text{ iff } y \le x$$

and

$$x > y$$
 iff $y < x$.

Proposition For all $x, y \in \mathbb{F}$, x < y or x = y or x > y.

Proof Exercise.

Proposition For all $x, y, z \in \mathbb{F}$, the following properties hold:

1. i) If for all $x \in \mathbb{F}$,

$$x + y = x$$
 then $y = 0$;

ii) If for all $x \in \mathbb{F}$,

$$x \cdot y = x$$
 then $y = 1$.

- **Proof** We prove i) and ii) is left as an exercise.
- By *a*3)

$$y = 0 + y$$

• By our assumption,

$$0 + y = 0$$
,

so by a2)

$$y = 0 + y$$
$$= y + 0 = 0$$

• Therefore,

$$y = 0$$
.

Remark In particular, we showed that 0 is unique neutral element of \mathbb{F} for the addition.

- 2. i) If x + y = 0, then y = -x;
 - ii) If $x \cdot y = 1$ then $y = x^{-1}$.
- **Proof** We prove **i**) and **ii**) is left as an exercise.
- We see that by properties a3) and a4) that

$$y = 0 + y = (-x + x) + y$$

= $-x + (x + y)$

• By assumption x + y = 0 and by a3), so

$$y = 0 + y = (-x + x) + y$$

= $-x + (x + y) = -x + 0$

so y = -x.

- 3. i) If x + y = x + z then y = z;
 - ii) If $x + z \le y + z$, then $x \le y$.

- **Proof** We prove i) and ii) is left as an exercise.
- Indeed,

$$y = 0 + y = (-x + x) + y$$

= $-x + (x + y) = -x + (x + z)$
= $(-x + x) + z = 0 + z = z$,

so y = z.

- 4. i) If xy = xz and $x \neq 0$, then y = z;
 - ii) If $xy \le xz$ and x > 0 then $y \le z$.
- $5. \ 0 \cdot x = 0$
- **Proof** Indeed, we see that

$$0 \cdot x = (0+0) \cdot x$$
$$= 0 \cdot x + 0 \cdot x$$

• Since

$$0 \cdot x + 0 = 0 \cdot x + 0 \cdot x$$

by the previous property

$$0 \cdot x = 0.$$

- 6. If $x \cdot y = 0$ then x = 0 or y = 0
- 7. -(-x) = x
- 8. $-x = (-1) \cdot x$
- 9. If $x \neq 0$, then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.
- 10. If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$ and $(xy)^{-1} = x^{-1}y^{-1}$
- 11. If $x \leq 0$ then $0 \leq -x$
- 12. 0 < 1
- 13. If $x \leq y$ then $-y \leq -x$
- 14. $-xy = (-x) \cdot y = x \cdot (-y)$
- 15. i) If $x \le y$ and $0 \le z$, then $xz \le yz$;
 - ii) If $x \leq y$ and $z \leq 0$, then $yz \leq xz$
- 16. i) If $x \leq 0$ and $y \leq 0$ then $xy \geq 0$;
 - ii) If $x \leq 0$ and $y \geq 0$, then $xy \leq 0$
- 17. For all $x \in \mathbb{F}$, $x^2 \ge 0$
 - Exercise Let \mathbb{F} be an ordered field. Show that, for all $x, y \in \mathbb{F}$
- 1. $xy \le \frac{1}{2} (x^2 + y^2)$

- 2. $x^2 y^2 = (x y)(x + y)$
- 3. If $0 \le x < y$ then $x^2 < y^2$
- For $x \in \mathbb{F}$, define

$$|x| = \begin{cases} x & if \quad x \ge 0 \\ -x & if \quad x < 0 \end{cases}$$

and we call it the absolute value of x.

Proposition Let $x, y \in \mathbb{F}$, then

- 1. $|x| \ge 0$
- 2. |x| = 0 iff x = 0
- 3. $|xy| = |x| \cdot |y|$
- 4. $x \le |x|$
- 5. $|x+y| \le |x| + |y|$
- 6. $||x| |y|| \le |x y|$

Proof. For 1):

• Let $x \in \mathbb{F}$, then

$$x < 0 \text{ or } x = 0 \text{ or } x > 0.$$

• If $x \ge 0$, then

$$|x| = x \ge 0.$$

• If x < 0, then -x > 0, so

$$|x| = -x > 0.$$

• Therefore, for all $x \in \mathbb{F}$, $|x| \ge 0$.

This finishes our proof. ■

Proof. For 2):

• If x = 0, then $x \ge 0$, so

$$|0| = 0.$$

- Conversely, suppose that $x \neq 0$.
- Then either

$$x < 0 \text{ or } x > 0.$$

• Therefore, if x < 0,

$$|x| = -x > 0$$

and if x > 0,

$$|x| = x > 0$$

• Hence,

$$|x| > 0$$
.

- \bullet We showed that:
 - if $x \neq 0$ then $|x| \neq 0$,

so we showed the *contrapositive*, i.e.

if
$$|x| = 0$$
 then $x = 0$.

This finishes our proof. ■

Proof. For 3):

• If $x, y \ge 0$, then

$$xy \ge 0$$
,

SO

$$|xy| = xy = |x| |y|.$$

• If x > 0 and y < 0, then

and

$$|xy| = -xy$$

= $(-1)xy$
= $x((-1)y)$
= $x(-y) = |x||y|$.

- Analogously, if x < 0 and y > 0.
- If x = 0 or y = 0, then

$$xy = 0$$

so |xy| = 0.

• Therefore,

$$|x||y| = 0,$$

 \mathbf{so}

$$|xy| = |x| |y|.$$

• Finally, if x < 0 and y < 0, then

$$xy > 0$$
,

so

$$|xy| = xy = (-x)(-y) = |x||y|$$

This finishes our proof. \blacksquare

Proof. For 4):

• Indeed, if $x \ge 0$, then

$$|x| = x$$
, so $x \le |x|$.

• If x < 0, then

$$|x| = -x > 0$$
, so $x < 0 < -x = |x|$, thus $x < |x|$.

 \bullet Therefore, for all x,

$$x \leq |x|$$
.

This finishes our proof.

- **Proof.** For 5):
 - We first show that, for all $x, y \in \mathbb{F}$,

$$|x| \le y \text{ iff } -y \le x \le y.$$

- We assume that $|x| \leq y$.
- Since $x \in \mathbb{F}$,

$$x < 0$$
 or $x = 0$ or $0 \le x$.

• Assume that x < 0, then

$$-x = |x| \le y,$$

so $-y \le x$, thus

$$-y \le x \le |x| \le y,$$

• Thus

$$-y \le x \le y$$
.

• If $x \ge 0$, then

$$0 \le x = |x| \le y,$$

so $0 \le y$.

• Hence $-y \le 0$ and

$$-y \le 0 \le x = |x| \le y,$$

so

$$-y \le x \le y$$
.

• Assume that

 $-y \le x \le y$.

• Since $x \in \mathbb{F}$

x < 0 or x = 0 or x > 0.

• If $x \ge 0$, then

$$|x| = x \le y,$$

so

$$|x| \leq y$$
.

• If x < 0, then

-x > 0.

• Since $-y \le x$,

 $-x \le y$,

and

$$|x| = -x \le y.$$

• This shows that

$$|x| \le y$$
 iff $-y \le x \le y$.

• We now observe that

$$\underbrace{\frac{|x+y|}{|z|}}_{|z|} \leq \underbrace{\frac{|x|+|y|}{a}}_{a}$$

$$-\underbrace{\left(\underbrace{|x|+|y|}_{a}\right)}_{z} \leq \underbrace{x+y}_{z} \leq \underbrace{\left(\underbrace{|x|+|y|}_{a}\right)}_{a}.$$

• Since, for all $x, y \in \mathbb{F}$,

$$\begin{array}{lcl} -\left|x\right| & \leq & x \leq \left|x\right| \text{ and} \\ -\left|y\right| & \leq & y \leq \left|y\right| \end{array}$$

since $-|x| \le x$ then

$$-|x| - |y| \le x - |y| \le x + y \le |x| + |y|$$

so

$$-(|x|+|y|) \le x+y \le |x|+|y|$$
.

This finishes our proof. \blacksquare **Proof.** For 6):

• Since

$$|x| = |x - y + y|$$

$$\leq |x - y| + |y|,$$

it follows that

$$|x| - |y| \le |x - y|$$

• Since

$$|y| = |y - x + x|$$

$$\leq |x - y| + |x|,$$

it follows that

$$-(|x| - |y|) \le |x - y|, \text{ so}$$

 $-|x - y| \le |x| - |y|$

• Therefore,

$$-|x-y| \le |x| - |y| \le |x-y|$$

• Hence

$$||x| - |y|| \le |x - y|.$$

This finishes our proof. ■

• Field of Rational Numbers

• The set of all rational numbers is defined as

$$\mathbb{Q} = \left\{ \frac{m}{n} : n, m \in \mathbb{Z}, \ n \neq 0 \right\}.$$

- ullet One checks that $\mathbb Q$ with + and \cdot defined in a familiar way satisfies all properties of an ordered field.
- \bullet One of the main property of $\mathbb Q$ is:

Proposition \mathbb{Q} is dense in itself. That is,

for all $x, y \in \mathbb{Q}$, if x < y, then there is $z \in \mathbb{Q}$, such that

$$x < z < y$$
.

Proof. Let $x, y \in \mathbb{Q}$, and assume that x < y.

• Define

$$z = \frac{1}{2} \left(x + y \right).$$

• Since $x, y \in \mathbb{Q}$,

$$x + y \in \mathbb{Q}$$

and since $\frac{1}{2} \in \mathbb{Q}$,

$$z = \frac{1}{2} (x + y) \in \mathbb{Q}.$$

• We show that

$$x < z < y$$
.

• We see that

$$x < y$$
, so $x + x < y + x$
 $x < y$, so $x + y < y + y$
 $y + x = x + y$,
 $2x = x + x < x + y < y + y = 2y$, so
 $2x < x + y < 2y$.

• Since $\frac{1}{2} > 0$,

$$\frac{2x}{2} < \frac{1}{2}\left(x+y\right) < \frac{2y}{2}$$

• Consequently,

$$x < z < y$$
.

This finishes our proof. ■

• **Proposition** \mathbb{Q} is countable.

Proof. Let $n \in \mathbb{N}$ and define

$$A_n = \left\{ \frac{m}{n} : m \in \mathbb{Z} \right\} \subset \mathbb{Q}.$$

• We see that

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} A_n.$$

• Since each A_n is countable, by theorem \mathbb{Q} is countable as a countable union of countable sets.

This finishes our proof. ■

• **Proposition** (Archimedean Property) If $x \in \mathbb{Q}$, then there is $n \in \mathbb{Z}$, such that

$$x < n$$
.

Proof. Let $x \in \mathbb{Q}$.

• If $x \leq 0$, then take $n = 1 \in \mathbb{Z}$ and

$$x \le 0 < 1 = n$$
,

• Hence, there is $n \in \mathbb{Z}$, such that

$$x < n$$
.

- Assume that x > 0.
- If $x \in \mathbb{Z}$, then

$$n=x+1\in\mathbb{Z}$$

and

$$x = x + 0 < x + 1 = n$$
.

- Therefore, assume that $x \notin \mathbb{Z}$.
- Since $x \in \mathbb{Q}$, $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and $p \ge 1$ and q > 1.
- Let n = 2p.
- Since 1 < 2,

and since

$$1 < q$$
,

multiplying by 2p gives

$$2p < 2pq = nq.$$

• Therefore,

$$p < 2p < nq$$
, so

$$p < nq$$
.

• Since q > 1 > 0, consequently

$$\frac{p}{q}<\frac{nq}{q}=n.$$

• We showed that, for

$$x = \frac{p}{q},$$

there is an integer n, such that

$$x < n$$
.

This finishes our proof. \blacksquare

• Proposition Let F be an order field.

The following conditions are equivalent:

1. If $x \in \mathbb{F}$, then there is $n \in \mathbb{Z}$, such that

x < n.

2. If $x, y \in \mathbb{F}$ and 0 < x < y then there is an integer n, such that

y < nx

3. If $x \in \mathbb{F}$ and x > 0, then there is an integer n > 0, such that

 $0 < \frac{1}{n} < x.$

Proof. We show that $1) \rightarrow 2$.

• Let

0 < x < y

• Since x > 0, in particular $x \neq 0$,

 $\frac{1}{x} \in \mathbb{F}.$

- Consider $\frac{y}{x} \in \mathbb{F}$.
- By 1), there is $n \in \mathbb{Z}$, such that

 $\frac{y}{x} < n$

• Since x > 0,

y < nx.

• We show that $2) \rightarrow 3$).

Assume that x > 0.

• If 0 < x < 1, then by 2), there is $n \in \mathbb{N}$, such that

1 < nx

so

 $0 < \frac{1}{n} < x.$

- If $x \ge 1$, take n > 1.
- Then $\frac{1}{n} < 1 \le x$, so

 $0 < \frac{1}{n} < x.$

• Finally, we show that $3) \rightarrow 1$).

Let $x \in \mathbb{F}$ and assume that $x \leq 0$.

• Since 0 < 1 in \mathbb{F} ,

 $x \le 0 < 1$,

we take n=1.

- Assume that x > 0.
- Thus

$$0<\frac{1}{x},$$

so there is $n \in \mathbb{N}$, such that

$$0 < \frac{1}{n} < \frac{1}{x},$$

• Hence

$$x < n$$
.

This finishes our proof. ■

• Completeness

Definition Let \mathbb{F} be an ordered field and $S \subseteq \mathbb{F}$.

A number $M \in \mathbb{F}$ is called an upper bound for S if for all $x \in S$,

$$x \leq M$$
.

A number $\beta \in \mathbb{F}$ is called the least upper bound (or supremum) for S if

- i) β is an upper bound of S, and
- ii) if β' is an upper bound for S, then

$$\beta \leq \beta'$$
.

• The least upper bound for S (if exists) is denoted by $\sup S$, i.e.

$$\beta = \sup S$$
.

ullet If S is not bounded above, then we say that $\sup S$ is infinite and we write

$$\sup S = +\infty.$$

• We also note that if $S = \emptyset$, then it makes sense to define

$$\sup S = -\infty.$$

- ullet Analogously, we define a lower bound of S and the greatest lower bound denoted by $\inf S$ provided it exists.
- By conventions

$$\inf S = \left\{ \begin{array}{ll} -\infty & \text{if} & S \text{ is not bounded below} \\ +\infty & \text{if} & S = \emptyset. \end{array} \right.$$

Proposition Let $S \subseteq \mathbb{F}$, then

$$\beta = \sup S$$

iff

i) β is an upper bound of S, i.e. for all $x \in S$,

$$x \leq \beta$$
,

and

ii) $\beta - \epsilon$ is not an upper bound of S, for any $\epsilon > 0$

(that is, no number smaller than β is an upper bound of S), i.e.

For all $\epsilon > 0$, there is $x \in S$, such that,

$$\beta - \epsilon < x$$
.

Proof. We show that

$$\beta = \sup S$$

iff β satisfies both **i**) and **ii**).

- Assume that $\beta = \sup S$.
- Since for all $x \in S$,

$$x \leq \beta$$
,

 β is an upper bound for S, so **i**) holds.

- Let $\epsilon > 0$.
- Since β is the least upper bound,

$$\beta - \epsilon < \beta$$

is not an upper bound for S, so there is

$$x \in S$$
,

such that

$$\beta - \epsilon$$

so ii) also holds.

- Assume that β satisfies both **i**) and **ii**).
- Since β satisfies i), for all $x \in S$,

$$x \leq \beta$$
.

- Therefore, β is an upper bound of S.
- We need to show that β is the least upper bound of S.
- Suppose that β' is an upper bound of S and assume that

$$\beta' < \beta$$
.

- Let $\epsilon = (\beta \beta') > 0$.
- By ii) there is $x \in S$, such that

$$\beta - \epsilon < x$$
.

• Therefore,

$$\beta' = \beta - (\beta - \beta')$$

$$= \beta - \epsilon$$

$$< x$$

so β' is not an upper bound of S. Contradiction.

• It follows that

$$\beta \leq \beta'$$
.

• Therefore,

$$\beta = \sup S$$
.

This finishes our proof. ■

• The least upper bound property (LUB)

Every nonempty and bounded above subset $S \subseteq \mathbb{F}$ has the least upper bound, that is, There is $\beta \in \mathbb{F}$, such that

$$\beta = \sup S$$
.

Definition An ordered field \mathbb{F} is called *complete* it satisfies the least upper bound property. **Proposition** Every complete ordered field \mathbb{F} is Archimedean.

Proof. We prove this statement by reductio ad impossibile.

• Assume that, there is

 $\alpha \in \mathbb{F}$,

such that for all $n \in \mathbb{N}$,

 $n \leq \alpha$.

- Let $S = \mathbb{N}$.
- Since $1 \in \mathbb{N}$, $S \neq \emptyset$.
- Since, for all $n \in \mathbb{N}$,

 $n \leq \alpha$,

S is bounded.

ullet Since $\mathbb F$ is complete, S has the least upper bound and let

$$\beta = \sup S \in \mathbb{F}.$$

- Take $\epsilon = 1$.
- By Proposition, there is

 $n \in S$,

such that,

$$\beta - \epsilon = \beta - 1 < n.$$

• Since \mathbb{F} is an ordered field,

$$\beta = (\beta - 1) + 1$$

< n+1

• Since $n \in \mathbb{N}$ and \mathbb{N} satisfies **PMI**,

$$(n+1) \in \mathbb{N}$$
.

• We see that, there is

$$(n+1) \in S$$
,

such that

$$\beta < n+1$$

- Therefore, β is not an upper bound of S.
- Contradiction since we assumed that

$$\beta = \sup S.$$

• It follows that:

For every $x \in \mathbb{F}$, there is $n \in \mathbb{N}$, such that $x \leq n$.

• Therefore, F has Archimedean property.

This finishes our proof. ■

• **Theorem** There exists a unique (up to an isomorphism of ordered fields) a complete ordered field called the *field of real numbers* and we denote it by \mathbb{R} .

Proof. See any textbook with a construction of \mathbb{R} .

• Exercise Let

$$S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \subset \mathbb{R}.$$

Show that $\inf S = 0 = \epsilon$.

• We use the following result

Let $S \subseteq F$ be nonempty and bounded below.

Then $\alpha = \inf S$ iff

- i) $\forall x \in S, \ \alpha \leq x, \ and$
- $ii) \ \forall \epsilon > 0, \ \exists x \in S \ni x < \alpha + \epsilon.$
- Since n > 0, for all $n \in \mathbb{N}$

$$\frac{1}{n} > 0.$$

• It follows that

$$0 \le x$$
, for all $x \in S$, so i) is true.

- Let $\epsilon > 0$ be given.
- Since \mathbb{R} is complete, as we showed, \mathbb{R} is Archimedean.
- Since $\epsilon \in \mathbb{R}$ and $\epsilon > 0$, by the Archimedean property of \mathbb{R} , there is $n \in \mathbb{N}$, such that

$$\underbrace{x = \frac{1}{n}}_{\in S} < \epsilon = 0 + \epsilon$$

so ii) holds.

• It follows from the proposition that

$$\begin{array}{rcl} 0 & = & \inf S \\ & = & \inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}. \end{array}$$

Exercise Let a < b and

$$S = (a, b) = \{x \in \mathbb{R} : a < x < b\}.$$

Show that

$$b = \sup S$$
.

• Indeed, for every $x \in S$,

$$x \leq b$$
,

so b is an upper bound of S.

- We show that b is the least upper bound for S, i.e.
- $b \epsilon$ is not an upper bound of S, for any $\epsilon > 0$.
- Let $x = \max \left\{ b \frac{\epsilon}{2}, \frac{a+b}{2} \right\}$.
- Since a < b

$$a = \frac{a+a}{2}$$

$$< \frac{a+b}{2}$$

$$< \frac{b+b}{2}$$

$$= b,$$

it follows that

$$\frac{a+b}{2} \in S.$$

• Therefore,

$$a < \frac{a+b}{2}$$

$$\leq \max\left\{b - \frac{\epsilon}{2}, \frac{a+b}{2}\right\}$$

$$= x$$

and since

$$b - \frac{\epsilon}{2} < b$$

and

$$\frac{a+b}{2} < b,$$

• We see that

$$x = \max\left\{b - \frac{\epsilon}{2}, \frac{a+b}{2}\right\}$$

ullet It follows that

$$a < x < b$$
, so $x \in S$.

• Since

$$\begin{array}{rcl} b-\epsilon & < & b-\frac{\epsilon}{2} \\ & \leq & \max\left\{b-\frac{\epsilon}{2},\frac{a+b}{2}\right\} \\ & = & x, \end{array}$$

 $\bullet\,$ it follows that

$$b - \epsilon < x$$

and since $x \in S$,

$$b - \epsilon$$

is not an upper bound of S.

- It follows that,
- b is the least upper bound of S.
- \bullet Hence

$$b = \sup S$$
.

Exercise Let a < b and $S = (a, b) = \{x \in \mathbb{R} : a < x < b\}.$

Show that

$$a = \inf S$$
.

Exercise Suppose that $A\subseteq B\subseteq \mathbb{R},\ A\neq\emptyset$ and B is bounded.

Show that

$$\inf B \le \inf A \le \sup A \le \sup B$$