Analysis III

April 2, 2024

No class Thursday, April 04.

Makeup class (tentatively) on Friday, April 12 at 10:30.

Discussion sections on Fridays (tentatively) at 11:40.

Topological Vector Spaces

Definition: Vector Spaces

V over a field \mathbb{F} (\mathbb{R} or \mathbb{C}).

Definition: Topological Spaces

 (X, τ) where $\tau \subseteq \mathcal{P}(X)$ satisfying

1. $\emptyset, X \in \tau$

2. $A, B \in \tau \implies A \cap B \in \tau$

3. $A_{\omega} \in \tau \implies \bigcup_{\omega} A_{\omega} \in \tau$

Recall: $A \in \tau \iff A \text{ open } \iff X \setminus A \text{ closed.}$

 $A^{\circ} = \bigcup_{\substack{U \subseteq A \ U \text{ open}}} U$ the set of interior points of A.

 $\overline{A} = \bigcap_{\substack{F \supseteq A \\ \text{closed}}} F \supseteq A$ the closure of A.

A' limit points of A.

Compact sets.

Locally compact sets.

Recall: X is Hausdorff iff $\forall x, y \in X$, $\exists U, V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition: Bases for Topological Spaces

Definition: Let (X, τ) be a topological space. $\sigma \subseteq \tau$ is called a base for topology τ if $\forall x \in X$, $\forall U \in \tau$, $x \in U$, $\exists W \in \sigma$ such that $x \in W \subseteq U$.

Proposition

 $\sigma \subseteq \tau$ is a base for τ if and only if every $U \in \tau$ is the union of certain sets taken from σ .

$$(*) \quad \tau = \left\{ \bigcup_{\omega \in \Omega} W_{\omega} : \{W_{\omega}\}_{\omega \in \Omega} \subseteq \sigma, \Omega \right\}$$

Proof

(⇐=) ✓

 (\Longrightarrow) Take $U \in \tau$ and let $x \in U$, \leadsto find $W_x \in \sigma$, $x \in W_x \subseteq U$.

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} W_x \subseteq U$$

1

Therefore $\bigcup_{x \in U} W_x = U$.

Proposition

If σ is a base for some topology τ on X, then

- 1. $\forall x \in X$, $\exists W \in \sigma$ such that $x \in W$.
- 2. $\forall U, V \in \sigma$, $\forall x \in U \cap V$, $\exists W \in \sigma$ such that $x \in W \subseteq U \cap V$.

Conversely, if $\sigma \in \mathcal{P}(X)$ ($\emptyset \notin \sigma$) satisfies (1) and (2), then σ is the base for a topology τ (and τ is given by (*)). Note that $U, V \in \tau \implies U \cap V \in \tau$ (requires (2)). If $U = \bigcup U_{\alpha}$ and $V = \bigcup V_{\beta}$, then $U \cap V = \bigcup_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) = \bigcup_{\alpha,\beta} \bigcup_{x \in U} W_{\alpha,\beta,x}$.

Example: Metric Spaces

(X, d) is a metric space if $d: X \times X \to [0, +\infty)$ satisfies

- 1. d(x, y) = 0 if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition: Epsilon Neighborhoods

$$B_{\varepsilon}(x) = \{ y \in x \, : \, d(x,y) < \varepsilon \}$$

 $A \subseteq X$ is open if and only if $\forall x \in A$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$. $x \in B_{\varepsilon}(x)$. $\tau = \text{set of all open sets.}$

$$\sigma_1 = \{B_{\varepsilon}(x) : x \in X, ; \varepsilon > 0\}$$

is a base for the topology τ .

$$\sigma_2 = \left\{ B_{1/n}(x) : x \in X, \ n \in \mathbb{N} \right\}$$

is also a base for τ .

Definition: Direct Product - Product Topology

Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Consider $X = X_1 \times X_2$. The product topology τ on X is given by the base

$$\sigma = \{U_1 \times U_2 : U_1 \in \tau_1, \ U_2 \in \tau_2\}$$

More explicitly,

$$\tau = \left\{ \bigcup_{\omega} U_{1,\omega} \times U_{2,\omega} : U_{i,\omega} \in \tau_i \right\}$$

 $(X_{\omega}, \tau_{\omega})$ topological spaces $(\omega \in \Omega)$

$$X = \prod_{\omega \in \Omega} = \{(x_{\omega})_{\omega \in \Omega} : x_{\omega} \in X_{\omega}\}$$

Formally, $f \cong (x_{\omega})_{\omega \in \Omega}$, $x_{\omega} = f(\omega)$, $f : \Omega \to \bigcup_{\omega \in \Omega} X_{\omega}$ such that $f(\omega) \in X_{\omega}$. $[x \neq \emptyset \longleftarrow X_{\omega} \neq \emptyset \text{ axiom of choice}]$

$$\sigma = \left\{ \prod_{\omega \in \Omega} U_{\omega} : U_{\omega} \in \tau_{\omega} \text{ and all but finitely many } U_{\omega} = X_{\omega} \right\}$$

Definition: Subspace Topology

Given (X, τ) and $Y \subseteq X$, then (Y, τ_Y) is also a topological space where

$$\tau_Y \{ U \cap Y : U \in \tau \}$$

Definition: Local Bases for Topological Spaces

A collection $\gamma \subseteq \tau$ is called a local base at $x \in X$ if

- 1. $\forall U \in \tau, x \in U, \exists W \in \gamma \text{ such that } x \in W \subseteq U.$
- 2. $\forall W \in \gamma, x \in W$

Example

Let (X, d) be a metric space.

$$\gamma_x = \{B_{\varepsilon}(x) : \varepsilon > 0\}$$

is a local base at x. Similarly,

$$\tilde{\gamma}_x = \left\{ B_{1/n} : n \in \mathbb{N} \right\}$$

is a countable local base.

Proposition

If γ_x ($x \in X$) are local bases for τ at X, then

$$\sigma = \bigcup_{x \in X} \gamma_x$$

is a bse for τ .

Proposition

 $\{\gamma_x\}_{x\in X}$ are local bases at x for some topology τ if and only if

- 1. $\forall x \in X$, γ_x is a non-empty collection of subsets containing x.
- 2. If $U \in \gamma_x$, $V \in \gamma_y$, and $z \in U \cap V$, then $\exists W \in \gamma_z$ such that $z \in W \subseteq U \cap V$.

Definition: Topological Vector Spaces

Suppose V is a vector space over $\mathbb{F} = \mathbb{R}$, \mathbb{C} and let τ be a topology on V. Then V is a topological vector space (TVS) if

- 1. $\forall x \in V$, $\{x\}$ is closed.
- 2. The functions f, g (i.e. algebraic operations) are continuous.

$$f: V \times V \to V, f(x, y) = x + y$$

 $g: \mathbb{F} \times V \to V, g(\lambda, x) = \lambda \cdot x$

Notation

For $A_1, A_2 \subseteq V$ and $B \subseteq \mathbb{F}$,

$$A_1 + A_2 = \{ a_1 + a_2 : a_1 \in A_1, a_2 \in A_2 \}$$

$$a + A_1 = \{ a + \alpha : \alpha \in A \}$$

$$B \cdot A = \{ \beta \cdot a : \beta \in B, a \in A \}$$

$$\alpha \cdot A = \{ \alpha \cdot a : a \in A \}$$

Lemma

Let V be a TVS. Then

- 1. $\forall x, y \in V$, \forall open $U_{x+y} \ni x + y$, \exists open $U_x \ni x$, open $U_y \ni y$ such that $U_x + U_y \subseteq U_{x+y}$.
- 2. $\forall x \in V, \ \alpha \in \mathbb{F}, \ \forall \ \text{open} \ U_{\alpha x} \ni \alpha x, \ \exists \ \text{open} \ U_x \ni x, \ U_\alpha \ni \alpha \ \text{such that} \ U_\alpha \cdot U_x \subseteq U_{\alpha x}.$

Proof of 1

Given $x, y \in X$, $x + y \in U_{x+y}$ open.

$$f(x, y) = x + y \in U_{x+y}$$

and $(x, y) \in f^{-1}(U_{x+y})$ open. In the product topology

$$(x,y) \in U_x \times U_y \subseteq f^{-1}(U_{x+y})$$

which implies $x \in U_x$ and $y \in U_y$, both open, and $U_x + U_y \le U_{x+y}$.