

UNIVERSIDAD NACIONAL DE COLOMBIA

Sede Bogotá

Departamento de Matemáticas

2029662 ANÁLISIS ARMÓNICO

LISTA DE EJERCICIOS 3

Prof.: **Ricardo Pastrán** 7 de mayo de 2025

1. Pruebe que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo. Dada $\Psi \in \mathcal{S}'(\mathbb{R}^n)$ y $\alpha \in \mathbb{N}^n$ multi-índice, pruebe que:

i.
$$\widehat{\partial^{\alpha}\Psi} = (2\pi i)^{|\alpha|} \xi^{\alpha} \widehat{\Psi};$$

ii.
$$(-2\pi i)^{|\alpha|} \widehat{x^{\alpha}\Psi} = \partial^{\alpha} \widehat{\Psi};$$

iii.
$$(\widehat{\Psi})^{\vee} = \Psi = (\widecheck{\Psi})^{\wedge};$$

iv.
$$\mathcal{F}^4 = Id$$
.

2. Pruebe la siguiente extensión en $\mathcal{S}'(\mathbb{R})$ de la fórmula $\left(e^{-\lambda\pi|x|^2}\right)^{\hat{}}(\xi) = \lambda^{-\frac{n}{2}}e^{-\pi\frac{|\xi|^2}{\lambda}}$, probada en la primera lista de ejercicios:

$$\left(e^{-\lambda|x|^2}\right)^{\hat{}}(\xi) = \left(\frac{\pi}{\lambda}\right)^{\frac{n}{2}} e^{-\pi^2 \frac{|\xi|^2}{\lambda}}$$

donde $\sqrt{\lambda}$ es definida como la rama con Re $\lambda > 0$. Use un argumento de continuación analítica. Pruebe que la fórmula también vale en $\mathcal{S}'(\mathbb{R})$ cuando Re $\lambda = 0$ y $\lambda \neq 0$.

3. [Transformada de Fourier de $|x|^{-\alpha}$, $0 < \alpha < n$] Pruebe la fórmula

$$\int_0^{+\infty} e^{-\pi\delta|x|^2} \delta^{\beta-1} d\delta = \frac{c_{\beta}}{|x|^{2\beta}}, \text{ para todo } \beta > 0.$$

Deduzca que existe una constante $c_{n,\alpha}$ tal que

$$\left(\frac{1}{|x|^{\alpha}}\right)^{\hat{}}(\xi) = c_{n,\alpha} |\xi|^{n-\alpha}$$
, para todo $\alpha \in (0,n)$, en $\mathcal{S}'(\mathbb{R}^n)$.

4. [Espacios de Lorentz]

Sea $f:\mathbb{R}^n\longrightarrow\mathbb{C}$ una función medible. Para $\alpha\geqslant 0$, se define la función de distribución de f por

$$\lambda_f(\alpha) = m(\{x \in \mathbb{R}^n : |f(x)| > \alpha\}).$$

- i. Pruebe que λ_f es una función no creciente y continua a derecha.
- ii. Definimos $f^*: (0, +\infty) \longrightarrow [0, +\infty), t \mapsto \inf\{s > 0 : \lambda_f(s) \leq t\}$. Pruebe que f^* es una función no creciente y continua a derecha.
- iii. Pruebe que $\lambda_f = \lambda_{f^*}$.
- iv. Para $1 \leq p, q \leq \infty$, se define el espacio de Lorentz $L^{p,q}(\mathbb{R}^n)$ como el conjunto de las funciones medibles satisfaciendo $\|f\|_{p,q} < \infty$, donde

$$||f||_{p,q} = \left(\frac{q}{p} \int_0^{+\infty} (t^{1/p} f^*(t))^q \frac{dt}{t}\right)^{1/q}, \text{ si } 1 \leq p, q < \infty,$$

у

$$||f||_{p,\infty} = \sup_{t>0} t^{1/p} f^*(t), \text{ si } 1 \le p \le \infty.$$

Pruebe que

$$\|f\|_{p,p}=\|f^*\|_p=\|f\|_p, \text{ para todo } 1\leqslant p\leqslant \infty.$$

- 5. Considere la función $f_a(x) = \frac{x}{a x^2}$.
 - i. Si $a \ge 0$, pruebe que la función valor principal de $f_a(x)$,

v.p.
$$\frac{x}{a-x^2}(\varphi) = \lim_{\epsilon \downarrow 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} \frac{x}{a-x^2} \varphi(x) dx$$
,

con $\varphi \in \mathcal{S}(\mathbb{R})$ define una distribución temperada. Más todavía, pruebe que si

$$\widehat{f}_a(\xi) = \lim_{\epsilon \downarrow 0} \int_{\epsilon < |a-x^2| < 1/\epsilon} e^{-2\pi i x \cdot \xi} \frac{x}{a - x^2} \varphi(x) dx,$$

entonces $\|\widehat{f}_a\|_{\infty} \leq M$, donde la constante M es independiente de a.

ii. Muestre que (i.) también vale si a < 0.