Вариант 1

- 1. a) Оптимум равен 26, 3A + C или 2B + 2A.
 - б) Оптимум равен 26, 3A + C или 2B + 2A.
 - в)

$$\begin{cases} 5x_a + 8x_b + 11x_c \to \max \\ 3x_a + 5x_b + 7x_c \le 16 \\ x_a, x_b, x_c \in \{0, 1, 2, 3, \ldots\} \end{cases}$$

2. a) Оптимум — Convex(A, B), 94.

A	$b_1 =$	8	$b_2 =$	10	$b_3 =$	11
		1		2		1
$a_1 = 4$			2		2	
		4		3		8
$a_2 = 3$			3			
		1		7		6
$a_3 = 13$	8		5			
		3		6		4
$a_4 = 9$					9	
B	$b_1 =$	8	$b_2 =$	10	$b_3 =$	11
В	$b_1 =$	8	$b_2 =$	2	$b_3 =$	11
B $a_1 = 4$	$b_1 =$		$b_2 = 4$		$b_3 =$	
	$b_1 =$				$b_3 =$	
	$b_1 =$	1		2	$b_3 =$	1
$a_1 = 4$	$b_1 =$	1	4	2	$b_3 =$	1
$a_1 = 4$	b ₁ =	4	4	3	$b_3 = 2$	8
$a_1 = 4$ $a_2 = 3$		4	3	3		8

б) Систему можно записать в матричном виде Ax = b, где

в) Оптимум — Convex(C, D), 126.

A	$b_1 = 8$	$b_2 = 10$	$b_3 = 11$	
	1	2	1	
$a_1 = 4$			4	
	4	3	8	
$a_2 = 3$		3		
	∞	7	6	
$a_3 = 13$		7	6	
	3	6	4	
$a_4 = 9$	8		1	
В	$b_1 = 8$	$b_2 = 10$	$b_3 = 11$	
	1	2	1	
$a_1 = 4$		4		
	4	3	8	
$a_2 = 3$		3		
	∞	7	6	
$a_3 = 13$		3	10	
	3	6	4	
$a_4 = 9$	8		1	

3. a) 8,
$$A_1 \to A_2 \to A_4 \to A_7 \to A_8$$
 или $A_1 \to A_2 \to A_4 \to A_7 \to A_6 \to A_8$.

б) 4,
$$A_2 \to A_4 \to A_7$$

в) Матрица смежности M состоит только из 0 или 1:

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 4. а) Допустимое множество $\operatorname{Convex}(A,B,C), A=(-2,6), B=(2,4), C=(1,10),$ оптимум равен 48.
 - б) Оптимум 48, x = (0, 1, 0, 5).
 - в) $b_1 \le 9/2$ или $\Delta b_1 \le 3/2$.

		x_1	x_2	x_3	x_4	x_5	x_6	b
	x_2 x_3 x_5	7	1	0	5	0	-3	24
5.	x_3	1/2	0	1	1/2	0	-3/2	3/2
	x_5	0	0	0	-4	1	-4	3
	$\min z$	-1	0	0	-3	0	0	-5-z

Все решения: $x = (0, 24 + 3x_6, 3/2 + 3/2x_6, 0, 3 + 4x_6, x_6), x_6 \ge 0.$

6.

$$\begin{cases} 21x_1 + 6x_2 + 7x_3 + 7(a_4 - b_4) \to \max \\ 6x_1 + 2x_2 + 3x_3 + 2(a_4 - b_4) = 24 \\ x_1 + x_2 + x_3 + 5(a_4 - b_4) - x_5 = 12 \\ x_1, x_2, x_3, a_4, b_4, x_5 \ge 0 \end{cases}$$

7. а) Да, столбцы независимы:

$$\operatorname{col}_5 A = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$$

б) Нет, столбцы зависимы:

$$\operatorname{col}_{1} A = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \operatorname{col}_{3} A = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \quad \operatorname{col}_{5} A = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, \quad \operatorname{col}_{1} A + \operatorname{col}_{3} A = \operatorname{col}_{5} A$$

в) Нет, $x_5 = -1$, а должно быть $x_5 \ge 0$.

г) Да, столбцы независимы:

$$\operatorname{col}_{1} A = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \operatorname{col}_{3} A = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

Вариант 2

- 1. a) Оптимум равен 21, 2A + C или A + 2B.
 - б) Оптимум равен 21, 2A + C или A + 2B.

в)

$$\begin{cases} 5x_a + 8x_b + 11x_c \to \max \\ 3x_a + 5x_b + 7x_c \le 13 \\ x_a, x_b, x_c \in \{0, 1, 2, 3, \dots\} \end{cases}$$

2. a) Оптимум — Convex(A, B), 118.

,		(, ,,			
A	$b_1 =$	8	$b_2 = 10$		$b_3 = 11$	
		3		3		2
$a_1 = 4$			2		2	
		6		4		9
$a_2 = 3$			3			
		2		7		6
$a_3 = 13$	8		5			
		5		7		5
$a_4 = 9$					9	

B	$b_1 = 8$		$b_2 = 10$		$b_3 = 11$	
		3		3		2
$a_1 = 4$			4			
		6		4		9
$a_2 = 3$			3			
		2		7		6
$a_3 = 13$	8		3		2	
		5		7		5
$a_4 = 9$					9	

б) Систему можно записать в матричном виде Ax = b, где

в) Оптимум — Convex(A,B), 118, не изменяется.

A	$b_1 = 8$		$b_2 = 10$		$b_3 = 11$	
		3		3		2
$a_1 = 4$			2		2	
		6		4		∞
$a_2 = 3$			3			
		2		7		6
$a_3 = 13$	8		5			
		5		7		5
$a_4 = 9$					9	

B	$b_1 = 8$		$b_2 = 10$		$b_3 = 11$	
		3		3		2
$a_1 = 4$			4			
		6		4		∞
$a_2 = 3$			3			
		2		7		6
$a_3 = 13$	8		3		2	
		5		7		5
$a_4 = 9$					9	

- 3. a) 8, $A_1 o A_2 o A_4 o A_7 o A_8$ или $A_1 o A_2 o A_4 o A_7 o A_6 o A_8$.
 - б) 4, $A_2 \to A_4 \to A_7$
 - в) Матрица смежности M состоит только из 0 или 1:

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 4. а) Допустимое множество $\operatorname{Convex}(A,B,C), A=(-2,6), B=(2,4), C=(1,10),$ оптимум равен 48.
 - б) Оптимум 48, x = (5, 1, 0, 0).
 - в) $b_1 \le 9/2$ или $\Delta b_1 \le 3/2$.

		x_1	x_2	x_3	x_4	x_5	x_6	b
	x_2 x_3 x_5	1	7	0	5	-3	0	24
5.	x_3	0	1/2	1	1/2	-3/2	0	3/2
	x_5	0	0	0	-4	-4	1	3
								-5-z

Все решения: $x = (24 + 3x_5, 0, 3/2 + 3/2x_5, 0, x_5, 3 + 4x_5), x_5 \ge 0.$

6.

$$\begin{cases} 6(a_1-b_1) + 21x_2 + 7x_3 + 7x_4 \to \max \\ 2(a_1-b_1) + 6x_2 + 3x_3 + 2x_4 = 24 \\ a_1-b_1+x_2+x_3+5x_4-x_5 = 12 \\ a_1,b_1,x_2,x_3,x_4,x_5 \ge 0 \end{cases}$$

7. а) Да, столбцы независимы:

$$\operatorname{col}_5 A = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$$

б) Нет, столбцы зависимы:

$$\operatorname{col}_{1} A = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \operatorname{col}_{3} A = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \quad \operatorname{col}_{5} A = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, \quad \operatorname{col}_{1} A + \operatorname{col}_{3} A = \operatorname{col}_{5} A$$

- в) Нет, $x_5 = -1$, а должно быть $x_5 \ge 0$.
- г) Да, столбцы независимы:

$$\operatorname{col}_{1} A = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \operatorname{col}_{3} A = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$