# Determinism and termination in the semantics of the Céu programming language

January 26, 2017

## 1 The original formulation

The semantics discussed in this section follows as much as possible the original semantics of Céu presented in [?]. Any deviations from original definitions are duly noted in the text.

#### 1.1 Abstract syntax

The abstract syntax of Céu programs is given by the following grammar:

```
p \in P := skip
                                       do nothing
        v := a
                                       assignment
                                       await event
        | await(e) |
         | emit(e) |
                                       emit event
         | break
                                       break innermost loop
         | if b then p_1 else p_2 |
                                       conditional
                                       sequence
         | p_1; p_2 |
         | loop p_1 |
                                       repetition
         |p_1| and p_2
                                       par/and
         |p_1 \text{ or } p_2|
                                       par/or
         | fin p_1 |
                                       finalization
         | @awaiting(e, n)
                                       awaiting e since reaction n
         | @emitting(e, n)
                                       emitting e on stack level n
         |p_1@loop p_2|
                                       unwinded loop
```

where  $n \in N$  is an integer,  $v \in V$  is a memory location (variable) identifier,  $e \in E$  is an event identifier,  $a \in A$  is an arithmetic expression,  $b \in B$  is a boolean expression, and  $p, p_1, p_2 \in P$  are programs. We assume the usual structure for arithmetic and boolean expressions, and omit their definition.

#### 1.2 The reaction inner-step relation

The *state* of a Céu program within a reaction is represented by a stack of events  $\alpha = e_1 e_2 \dots e_n \in E^*$  together with a memory map  $m: v \to N \in \mathcal{M}$ . A *configuration* 

is a 4-tuple  $\langle p, \alpha, m, n \rangle \in \Delta$  that represents the situation of program p waiting to be evaluated in state  $\langle \alpha, m \rangle$  and reaction n. Given an initial configuration, each small-step within a program reaction is determined by the reaction-inner-step relation  $\to \in \Delta \times \Delta$  such that  $\langle p, \alpha, m, n \rangle \to \langle p', \alpha', m', n \rangle$  iff a reaction inner-step of program p in state  $\langle \alpha, m \rangle$  and reaction number n evaluates to a modified program p' and a modified state  $\langle \alpha', m' \rangle$  in the same reaction (n). Since relation  $\to$  can only relate configurations with the same n, we shall write  $\langle p, \alpha, m \rangle \xrightarrow{n} \langle p', \alpha', m' \rangle$  for  $\langle p, \alpha, m, n \rangle \to \langle p', \alpha', m', n \rangle$ .

Relation  $\rightarrow$  is defined inductively with the help of the auxiliary functions *eval*, *blocked*, and *clear*. The *eval* function evaluates arithmetic or boolean expressions on a given memory; we omit its definition and assume that such evaluation is deterministic and always terminates. The *blocked* function is a predicate that determines if all trails of a program p are blocked on a given event stack and reaction number. And the *clear* function extracts the body of fin blocks from a given program.

**Definition 1.1.** Function *blocked*:  $P \times E^* \times N \rightarrow \{0, 1\}$  is defined inductively as follows.

```
blocked(v \coloneqq a, e\alpha, n) = 0
blocked(\operatorname{await}(e'), e\alpha, n) = 0
blocked(\operatorname{emit}(e'), e\alpha, n) = 0
blocked(\operatorname{break}, e\alpha, n) = 0
blocked(\operatorname{if} v \operatorname{then} p_1 \operatorname{else} p_2, e\alpha, n) = 0
blocked(p_1; p_2, e\alpha, n) = blocked(p_1, e\alpha, n)
blocked(\operatorname{loop} p, e\alpha, n) = 0
blocked(p_1 \operatorname{and} p_2, e\alpha, n) = blocked(p_1, e\alpha, n) \cdot blocked(p_2, e\alpha, n)
blocked(p_1 \operatorname{or} p_2, e\alpha, n) = blocked(p_1, e\alpha, n) \cdot blocked(p_2, e\alpha, n)
blocked(\operatorname{fin} p_1, e\alpha, n) = 0
blocked(\operatorname{@awaiting}(e', n'), e\alpha, n) = \begin{cases} 1 & \text{if } e \neq e' \text{ or } n = n' \\ 0 & \text{otherwise} \end{cases}
blocked(\operatorname{@emitting}(n'), e\alpha, n) = \begin{cases} 1 & \text{if } |e\alpha| \neq n' \\ 0 & \text{otherwise} \end{cases}
blocked(p_1 \operatorname{@loop} p_2, e\alpha, n) = blocked(p_1, e\alpha, n)
```

**Definition 1.2.** Function *clear*:  $P \rightarrow P$  is defined inductively as follows.

$$clear(v \coloneqq a) = \text{skip}$$
 $clear(\text{await}(e')) = \text{skip}$ 
 $clear(\text{emit}(e')) = \text{skip}$ 
 $clear(\text{break}) = \text{skip}$ 
 $clear(\text{break}) = \text{skip}$ 
 $clear(\text{if } v \text{ then } p_1 \text{ else } p_2) = \text{skip}$ 
 $clear(p_1; p_2) = clear(p_1); clear(p_2)$ 
 $clear(\text{loop } p) = clear(p)$ 
 $clear(p_1 \text{ and } p_2) = clear(p_1); clear(p_2)$ 
 $clear(p_1 \text{ or } p_2) = clear(p_1); clear(p_2)$ 
 $clear(\text{fin } p) = p$ 
 $clear(\text{@awaiting}(e', n')) = \text{skip}$ 
 $clear(\text{@emitting}(n')) = \text{skip}$ 
 $clear(p_1 \text{@loop } p_2) = clear(p_1)$ 

**Definition 1.3** (Reaction inner-step). Relation  $\rightarrow \subseteq \Delta \times \Delta$  is defined inductively as follows.

Await and emit

$$(1.1) \qquad \langle \mathsf{await}(e), \alpha, m \rangle \xrightarrow{n} \langle \mathsf{@awaiting}(e, n'), \alpha, m \rangle \quad \text{with } n' = n + 1$$

(1.2) 
$$\langle \text{@awaiting}(e, n'), e\alpha, m \rangle \xrightarrow{n} \langle \text{skip}, e\alpha, m \rangle$$
 if  $n' \leq n$ 

$$(1.3) \qquad \langle \mathsf{emit}(e), \alpha, m \rangle \xrightarrow{n} \langle \mathsf{@emitting}(n'), e\alpha, m \rangle \quad \text{with } n' = |\alpha|$$

$$(1.4) \qquad \langle \text{@emitting}(n'), \alpha, m \rangle \xrightarrow{n} \langle \text{skip}, \alpha, m \rangle \qquad \text{if } n' = |\alpha|$$

**Conditionals** 

(1.5) 
$$\langle \text{if } b \text{ then } p_1 \text{ else } p_2, \alpha, m \rangle \xrightarrow{n} \langle p_1, \alpha, m \rangle \text{ if } eval(b, m) = 1$$

(1.6) 
$$\langle \text{if } b \text{ then } p_1 \text{ else } p_2, \alpha, m \rangle \xrightarrow{n} \langle p_2, \alpha, m \rangle \text{ if } eval(b, m) = 0$$

Sequences

$$(1.7) \langle v := a; p, \alpha, m \rangle \xrightarrow{n} \langle p, \alpha, m' \rangle \text{with } m' = m[v/eval(a)]$$

(1.8) 
$$\langle \text{break}; p, \alpha, m \rangle \xrightarrow{n} \langle \text{break}, \alpha, m \rangle$$

$$(1.9) \qquad \frac{\langle p_1, \alpha, m \rangle \xrightarrow{n} \langle p'_1, \alpha', m' \rangle}{\langle p_1; p_2, \alpha, m \rangle \xrightarrow{n} \langle p'_1; p_2, \alpha', m' \rangle} \quad \text{if } p_1 \neq v \coloneqq a, \text{break}$$

Loops

$$(1.10) \qquad \langle \mathsf{loop}\,p,\alpha,m\rangle \xrightarrow{n} \langle p\,\mathsf{@loop}\,p,\alpha,m\rangle$$

$$(1.11) \quad \langle v := a \, @loop \, p, \alpha, m \rangle \xrightarrow{n} \langle loop \, p, \alpha, m' \rangle \qquad \text{with } m' = m[v/eval(a)]$$

(1.12) 
$$\langle \text{break @loop } p, \alpha, m \rangle \xrightarrow{n} \langle \text{skip}, \alpha, m \rangle$$

$$(1.13) \qquad \frac{\langle p_1, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p'_1, \alpha', m' \rangle}{\langle p_1 @ loop \ p_2, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p'_1 @ loop \ p_2, \alpha', m' \rangle} \quad \text{if } p_1 \neq v \coloneqq a, \text{break}$$

Par/and

$$(1.14) \quad \langle v := a \text{ and } p, \alpha, m \rangle \xrightarrow{n} \langle p, \alpha, m' \rangle \qquad \text{with } m' = m[v/eval(a)]$$

$$(1.15) \quad \langle p \text{ and } v := a, \alpha, m \rangle \xrightarrow{n} \langle p, \alpha, m' \rangle \qquad \text{with } m' = m[v/eval(a)]$$

(1.16) 
$$\langle \text{break and } p, \alpha, m \rangle \xrightarrow{n} \langle p'; \text{break}, \alpha, m \rangle$$
 if  $p \neq v := a$ , with  $p' = clear(p)$ 

(1.17) 
$$\langle p \text{ and break}, \alpha, m \rangle \xrightarrow{n} \langle p'; \text{break}, \alpha, m \rangle$$
 if  $blocked(p, \alpha, n) = 1$ , with  $p' = clear(p)$ 

$$(1.18) \quad \frac{\langle p_1, \alpha, m \rangle \xrightarrow{n} \langle p'_1, \alpha', m' \rangle}{\langle p_1 \text{ and } p_2, \alpha, m \rangle \xrightarrow{n} \langle p'_1 \text{ and } p_2, \alpha', m' \rangle} \quad \text{if } blocked(p_1, \alpha, n) = 0 \\ \text{and } p_1 \neq v \coloneqq a, \text{break}$$

$$(1.19) \quad \frac{\langle p_2,\alpha,m\rangle \xrightarrow{n} \langle p_2',\alpha',m'\rangle}{\langle p_1 \text{ and } p_2,\alpha,m\rangle \xrightarrow{n} \langle p_1 \text{ and } p_2',\alpha',m'\rangle} \quad \text{if } blocked(p_1,\alpha,n)=1 \\ \text{and } p_2 \neq v \coloneqq a, \text{break}$$

Par/or

(1.20) 
$$\langle v := a \text{ or } p, \alpha, m \rangle \xrightarrow{n} \langle p', \alpha, m' \rangle$$
 with  $m' = m[v/eval(a)]$  and  $p' = clear(p)$ 

(1.21) 
$$\langle p \text{ or } v := a, \alpha, m \rangle \xrightarrow{n} \langle p', \alpha, m' \rangle$$
 if  $blocked(p, \alpha, n) = 1$ , with  $m' = m[v/eval(a)]$  and  $p' = clear(p)$ 

(1.22) 
$$\langle \operatorname{break} \operatorname{or} p, \alpha, m \rangle \xrightarrow{n} \langle p'; \operatorname{break}, \alpha, m \rangle$$
 with  $p' = \operatorname{clear}(p)$ 

(1.23) 
$$\langle p \text{ or break}, \alpha, m \rangle \xrightarrow{n} \langle p'; \text{break}, \alpha, m \rangle$$
 if  $blocked(p, \alpha, n) = 1$ , with  $p' = clear(p)$ 

$$(1.24) \quad \frac{\langle p_1, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p'_1, \alpha', m' \rangle}{\langle p_1 \text{ or } p_2, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p'_1 \text{ or } p_2, \alpha', m' \rangle} \quad \text{if } blocked(p_1, \alpha, n) = 0 \\ \text{and } p_1 \neq v \coloneqq a, \text{break}$$

$$(1.25) \quad \frac{\langle p_2, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p'_2, \alpha', m' \rangle}{\langle p_1 \text{ or } p_2, \alpha, m \rangle \stackrel{n}{\rightarrow} \langle p_1 \text{ or } p'_2, \alpha', m' \rangle} \quad \text{if } blocked(p_1, \alpha, n) = 1 \\ \text{and } p_2 \neq v \coloneqq a, \text{break}$$

The next theorem establishes that the reaction inner-step relation is deterministic, i.e., that it is in fact a *partial* function.

**Theorem 1.4** (Determinism of the inner-step relation). For all p,  $p_1$ ,  $p_2 \in P$ ,  $\alpha$ ,  $\alpha_1$ ,  $\alpha_2 \in E^*$ , m,  $m_1$ ,  $m_2 \in \mathcal{M}$ , and  $n \in N$ ,

if 
$$\langle p, \alpha, m \rangle \xrightarrow{n} \langle p_1, \alpha_1, m_1 \rangle$$
 and  $\langle p, \alpha, m \rangle \xrightarrow{n} \langle p_2, \alpha_2, m_2 \rangle$ ,  
then  $\langle p_1, \alpha_1, m_1 \rangle = \langle p_2, \alpha_2, m_2 \rangle$ .

*Proof.* By induction on the structure of derivations. Suppose

$$d_1 \Vdash \langle p, \alpha, m \rangle \xrightarrow{n} \langle p_1, \alpha_1, m_1 \rangle$$
 and  $d_2 \Vdash \langle p, \alpha, m \rangle \xrightarrow{n} \langle p_2, \alpha_2, m_2 \rangle$ ,

for some derivations  $d_1$  and  $d_2$ . Then there are ten possibilities depending on the structure of p. (Note that p cannot be equal to skip, v := a, or break, as there are no rules to evaluate such programs.)

[Case 1] p = await(e), for some  $e \in E$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.1), and as such,  $p_1 = p_2 = \text{@awaiting}(e, n')$  with n' = n + 1, and  $\alpha_1 = \alpha_2 = \alpha$  and  $m_1 = m_2 = m$ .

[Case 2] p = @awaiting(e, n'), for some  $e \in E$  and  $n' \in N$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.2), with  $n' \le n$ . Thus  $p_1 = p_2 = \text{skip}$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and  $m_1 = m_2 = m$ .

[Case 3] p = emit(e), for some  $e \in E$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.3), and as such,  $p_1 = p2 = \text{@emitting}(n')$  with  $n' = |\alpha|$ , and  $\alpha_1 = \alpha_2 = e\alpha$  and  $m_1 = m_2 = m$ .

[Case 4] p = @emitting(e, n'), for some  $e \in E$  and  $n' \in N$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.4) with  $n' = |\alpha|$ . Thus  $p_1 = p_2 = \text{skip}$ ,  $\alpha_1 = \alpha_2 = \alpha$  and  $m_1 = m_2 = m$ .

[Case 5] p = if b then p' else p'', for some  $b \in B$  and p',  $p'' \in P$ .

[Case 5.1] eval(b, m) = 1. Then  $d_1$  and  $d_2$  are instances of axiom (1.5), and as such,  $p_1 = p_2 = p'$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and  $m_1 = m_2 = m$ .

[Case 5.2] eval(b, m) = 0. Then  $d_1$  and  $d_2$  are instances of axiom (1.6), and as such,  $p_1 = p_2 = p''$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and  $m_1 = m_2 = m$ .

[Case 6] p = p'; p'', for some p',  $p'' \in P$ .

[Case 6.1] p' = v := a, for some  $v \in V$  and  $a \in A$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.7), and as such,  $p_1 = p_2 = p''$ ,  $\alpha_1 = \alpha_2 = \alpha$  and, as *eval* is a total function,  $m_1 = m_2 = m[v/eval(a)]$ .

[Case 6.2] p' = break. Then  $d_1$  and  $d_2$  are instances of axiom (1.8), and as such,  $p_1 = p_2 = p'$ ,  $\alpha_1 = \alpha_2 = \alpha$  and  $m_1 = m_2 = m$ .

[Case 6.3]  $p' \neq v := a$ , break. Then  $d_1$  and  $d_2$  are instances of rule (1.9). Thus there are derivations  $d'_1$  and  $d'_2$  such that

$$d'_1 \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p'_1, \alpha_1, m_1 \rangle$$
 and  $d'_2 \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p'_2, \alpha_2, m_2 \rangle$ ,

for some  $p'_1$ ,  $p'_2 \in P$ . Since  $d'_1 < d_1$  and  $d'_2 < d_2$ , by induction hypothesis,  $\alpha_1 = \alpha_2$ ,  $m_1 = m_2$ , and  $p'_1 = p'_2$ , which implies

$$p_1 = p_1'; p'' = p_2'; p'' = p_2.$$

[Case 7] p = loop p', for some  $p' \in P$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.10), and as such,  $p_1 = p_2 = p'$  @loop p',  $\alpha_1 = \alpha_2 = \alpha$ , and  $m_1 = m_2 = m$ .

[Case 8] p = p' @loop p'', for some p',  $p'' \in P$ .

[Case 8.1] p = v := a @loop p', for some  $a \in A$ ,  $v \in V$ , and  $p' \in P$ . Then  $d_1$  and  $d_2$  are instances of (1.11), and as such,  $p_1 = p_2 = loop p'$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and as eval is a total function,  $m_1 = m_2 = m[v/eval(a)]$ .

[Case 8.2] p = break @loop p', for some  $p' \in P$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.12), and as such,  $p_1 = p_2 = \text{skip}$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and  $m_1 = m_2 = m$ .

[Case 8.3] p = p' @loop p'', for some p',  $p'' \in P$  such that  $p' \neq v := a$ , break. Then  $d_1$  and  $d_2$  are instances of rule (1.13). Thus there are derivations  $d'_1$  and  $d'_2$  such that

$$d_1' \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p_1', \alpha_1, m_1 \rangle$$
 and  $d_2' \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p_2', \alpha_2, m_2 \rangle$ ,

for some  $p'_1$ ,  $p'_2 \in P$ . Since  $d'_1 < d_1$  and  $d'_2 < d_2$ , by induction hypothesis,  $\alpha_1 = \alpha$ ,  $m_1 = m_2$ , and  $p'_1 = p'_2$ , which implies

$$p_1 = p_1'$$
 @loop  $p'' = p_2'$  @loop  $p'' = p_2$ .

[Case 9] p = p' and p'', for some p',  $p'' \in P$ .

[Case 9.1] p = v := a and p', for some  $v \in V$ ,  $a \in A$  and  $p' \in P$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.14), and as such,  $p_1 = p_2 = p'$ ,  $\alpha_1 = \alpha_2 = \alpha$ , and as such, as *eval* is a total function,  $m_1 = m_2 = m[v/eval(a)]$ .

[Case 9.2] p = p' and v := a, for some  $v \in V$ ,  $a \in A$  and  $p' \in P$ . Similar to Case 9.1.

[Case 9.3] p = break and p', for some  $p' \in P$ . Then  $d_1$  and  $d_2$  are instances of axiom (1.16), and as such,  $\alpha_1 = \alpha_2 = \alpha$ ,  $m_1 = m_2 = m$ , and as *clear* is a total function,  $p_1 = p_2 = clear(p')$ ; break.

[Case 9.4] p = p' and break, for some  $p' \in P$ . Then either blocked(p') = 0 or blocked(p') = 1. If blocked(p') = 0 then this case becomes Case 9.5. Otherwise, if blocked(p') = 1, then  $d_1$  and  $d_2$  are instances of axiom (1.17), and as such,  $\alpha_1 = \alpha_2 = \alpha$ ,  $m_1 = m_2 = m$ , and as clear is a total function,  $p_1 = p_2 = clear(p')$ ; break.

[Case 9.5] p = p' and p'', for some p' and p''. Then there are two possibilities. If blocked(p') = 0 then  $d_1$  and  $d_2$  are instances of (1.18). Thus there are derivations  $d'_1$  and  $d'_2$  such that

$$d'_1 \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p'_1, \alpha_1, m_1 \rangle$$
 and  $d'_2 \Vdash \langle p', \alpha, m \rangle \xrightarrow{n} \langle p'_2, \alpha_2, m_2 \rangle$ ,

for some  $p'_1$ ,  $p'_2 \in P$ . Since  $d'_1 < d_1$  and  $d'_2 < d_2$ , by induction hypothesis,  $\alpha_1 = \alpha_2$ ,  $m_1 = m_2$ , and  $p'_1 = p'_2$ , which implies

$$p_1 = (p'_1 \text{ and } p'') = (p'_2 \text{ and } p'') = p_2.$$

If, however, blocked(p') = 1, then  $d_1$  and  $d_2$  are instances of (1.19). Thus there are derivations  $d_1''$  and  $d_2''$  such that

$$d_1'' \Vdash \langle p'', \alpha, m \rangle \xrightarrow{n} \langle p_1'', \alpha_1, m_1 \rangle$$
 and  $d_2'' \Vdash \langle p'', \alpha, m \rangle \xrightarrow{n} \langle p_2'', \alpha_2, m_2 \rangle$ ,

for some  $p_1''$ ,  $p_2'' \in P$ . Since  $d_1'' < d_1$  and  $d_2'' < d_2$ , by induction hypothesis,  $\alpha_1 = \alpha_2$ ,  $m_1 = m_2$ , and  $p_1'' = p_2''$ , which implies

$$p_1 = (p' \text{ and } p_1'') = (p' \text{ and } p_2'') = p_2.$$

[Case 10] p = p' or p'', for some p',  $p'' \in P$ . [TODO: Similar to Case 9 (we hope).]

The next lemma establishes that given a program either it is possible to advance it by an inner-step or all its trails are blocked, but not both.

**Lemma 1.5.** For all  $p \in P$ ,  $\alpha \in E^*$ ,  $m \in \mathcal{M}$ , and  $n \in N$ , if  $p \neq skip$ ,  $v \coloneqq a$ , break then either

$$\exists \delta \in \Delta(\langle p, \alpha, m \rangle \xrightarrow{n} \delta) \quad or \quad blocked(p, \alpha, n) = 1,$$

but not both.

*Proof.* [TODO: By induction on the structure of programs.]

#### 1.3 The reaction outer-step relation

From the previous inner-step relation we define an outer-step relation  $(\Rightarrow)$  that when necessary pops the event stack advances blocked programs. [TODO: Improve this description.]

**Definition 1.6** (Reaction outer-step).

(1.26) 
$$\frac{\langle p, \alpha, m \rangle \xrightarrow{n} \langle p', \alpha', m' \rangle}{\langle p, \alpha, m \rangle \xrightarrow{n} \langle p', \alpha', m' \rangle} \text{ if } blocked(p, \alpha, n) = 0$$

$$(1.27) \langle p, e\alpha, m \rangle \stackrel{n}{\Rightarrow} \langle p, \alpha, m \rangle \text{if } blocked(p, \alpha, n) = 1$$

**Theorem 1.7** (Determinism of the outer-step relation). For all p,  $p_1$ ,  $p_2 \in P$ ,  $\alpha$ ,  $\alpha_1$ ,  $\alpha_2 \in E^*$ , m,  $m_1$ ,  $m_2 \in \mathcal{M}$ , and  $n \in N$ ,

if 
$$\langle p, \alpha, m \rangle \stackrel{n}{\Rightarrow} \langle p_1, \alpha_1, m_1 \rangle$$
 and  $\langle p, \alpha, m \rangle \stackrel{n}{\Rightarrow} \langle p_2, \alpha_2, m_2 \rangle$ ,  
then  $\langle p_1, \alpha_1, m_1 \rangle = \langle p_2, \alpha_2, m_2 \rangle$ .

*Proof.* [TODO: By induction on the structure of derivations.]

**Theorem 1.8** (Termination of the outer-step relation). For all  $p \in P$ ,  $\alpha \in E$ , and  $m \in M$ , if  $p \neq skip$ ,  $v \coloneqq a$ , break then

$$\exists \delta \in \Delta(\langle p, \alpha, m \rangle \stackrel{n}{\Rightarrow} \delta).$$

*Proof.* [TODO: Directly from Lemma 1.5.]

### 1.4 The reaction relation

From the outer-step relation we define the reaction relation, which computes a full program reaction.

[TODO: Definition ( $\stackrel{*}{\Rightarrow}$ ), determinism, and termination].