

MM54HC174/MM74HC174 Hex D Flip-Flops with Clear

General Description

These edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flip-flops. They possess high noise immunity, low power, and speeds comparable to low power Schottky TTL circuits. This device contains 6 master-slave flip-flops with a common clock and common clear. Data on the D input having the specified setup and hold times is transferred to the Q output on the low to high transition of the CLOCK input. The CLEAR input when low, sets all outputs to a low state.

Each output can drive 10 low power Schottky TTL equivalent loads. The MM54HC174/MM74HC174 is functionally as well as pin compatible to the 54LS174/74LS174. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 μ A maximum
- Low quiescent current: 80 µA (74HC Series)
- Output drive: 10 LSTTL loads

Connection and Logic Diagrams

Order Number MM54HC174 or MM74HC174

Truth Table

(Each Flip-Flop)

	Outputs		
Clear	Clock	D	Q
L	Х	Х	L
Н	↑	Н	Н
Н	↑	L	L
Н	Ĺ	Х	Q_0

- H = High level (steady state)
- L = Low level (steady state)
- X = Don't Care
- Transition from low to high level
- Q₀ = The level of Q before the indicated steady state

input conditions were established.

TL/F/5318-2

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_{r},t_{f}) & V_{CC}\!=\!2.0V \\ & V_{CC}\!=\!4.5V \\ & V_{CC}\!=\!6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock or Clear to Output		16	30	ns
t _{REM}	Minimum Removal Time, Clear to Clock		-2	5	ns
t _S	Minimum Setup Time Data to Clock		10	20	ns
t _H	Minimum Hold Time Clock to Data		0	5	ns
t _W	Minimum Pulse Width Clock or Clear		10	16	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V		5 27 31	4 21 24	3 18 20	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock or Clear to Output		2.0V 4.5V 6.0V	55 18 16	165 33 28	206 41 35	248 49 42	ns ns ns
t _{REM}	Minimum Removal Time Clear to Clock		2.0V 4.5V 6.0V	1 1 1	5 5 5	5 5 5	5 5 5	ns ns ns
ts	Minimum Setup Time Data to Clock		2.0V 4.5V 6.0V	42 12 10	100 20 17	125 25 21	150 30 25	ns ns ns
t _H	Minimum Hold Time Clock to Data		2.0V 4.5V 6.0V	1 1 1	5 5 5	5 5 5	5 5 5	ns ns ns
t _W	Minimum Pulse Width Clock or Clear		2.0V 4.5V 6.0V	35 10 8	80 16 14	106 20 18	120 24 20	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		136				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408