Factors Related To Fatal Police Shootings in US

*Team 2A*Cheng Chen | Jaya Nagesh | Mingwei Li |
Selma Sentissi El Idrissi | Shamika Kalwe

Executive Summary

Project Proposal: Examining the various factors that are related to police shootings in the US

Goal Description:

- To analyze and visualise relationships between the independent variables (like gender, location, arms, age etc.) and the shooting incident. We can also explore incidents at different granularities like city or state or the arm used.
- Identify correlation between independent variables (if any).
- To try and predict (using ML if possible) some dependent variables in the dataset based on the independent variables.
- Try and combine with other datasets to draw deeper conclusions, for e.g. Population dataset (new addition)

Motivation

- Police brutality has been a raising concern across the world and this dataset about US Police Shootings seemed like a good place to start and take a deep dive into factors related to these shootings
- Further we wanted to verify if racial discrimination that the police has been accused of is reflected in actual data
- This dataset had scope to bring in new datasets like population metrics that would aid in deeper analysis
- Also, the scope to implement ML models was wide for this dataset given the multiple variables in it

About the Data

> fatal-police-shootings-data.csv (486.61 KB) Column ✓ body cam... = Tim Elliot 2015-01-02 Shelton Not fleeing False 2015-01-02 Lewis Lee Aloha False attack Not fleeing False Lembke 2015-01-03 Wichita KS False John Paul shot and Not fleeing False Quintero Tasered

- Source: Kaggle
- Date range: 2-Jan-2015 16-Jun-2020
- 5416 rows, 14 columns
 - Contained null values
- Both categorical and numeric data
 - o data types string, date, boolean, integer
- Required moderate level of data cleaning prior to ML

Exploratory Questions

- What is the relationship between variables?
- Which state has the most deaths by a police officer?
- Which city has the most fatal shootings?
- What day has the highest deaths across the state level?
- What has been the timeline of these fatal shootings?
- How old are most of the victims?
- Did they flee at the time of shootings?
- What arms did the victims possess?
- What is the racial profile of the victims?

Correlation matrix plot

Exploratory Graphs

Note: The number for 2020 is only until June

Exploratory Graphs

Introduction to Storyline

1. Which State has the most Deaths by Fatal Police Shootings?

2. How old are most of the victims?

3. What were the most common arms possessed?

4. What was the Threat Level demonstrated by the victims?

5. What was the Flee method used by the victims?

6. How many victims showed Signs of Mental Illness?

Combining with Population dataset

Ethnicity population Density

Data Cleaning

- 1) Null values in armed, age, gender, race, flee
- Race → imputed with 'unknown'
- Flee, Armed*, Gender → imputed most frequent value
- Age → imputed mean

*Armed contained many categories - we kept top three categories (gun, knife, unarmed) and converted rest to 'other'

2) Remove irrelevant columns + create dummy variables! → final shape (5416, 19)

ML: Signs of Mental Illness

Gaussian Naiv	e Bayes meth	od		·
	precision	recall	f1-score	support
0 1	0.8724 0.3522	0.6672 0.6497	0.7561 0.4568	1271 354
accuracy macro avg weighted avg	0.6123 0.7591	0.6585 0.6634	0.6634 0.6065 0.6909	1625 1625 1625

Logistic Regr	ession metho	d		
	precision	recall	f1-score	support
0 1	0.7863 0.5500	0.9929 0.0311	0.8776 0.0588	1271 354
accuracy macro avg weighted avg	0.6681 0.7348	0.5120 0.7834	0.7834 0.4682 0.6992	1625 1625 1625

Feature Engineering, removing Race

Gaussian Naiv	e Bayes metho	od		
	precision	recall	f1-score	support
0 1	0.8310 0.3509	0.7773 0.4322	0.8033 0.3873	1271 354
accuracy macro avg weighted avg	0.5909 0.7264	0.6048 0.7022	0.7022 0.5953 0.7126	1625 1625 1625

Logistic Regr	ression method	d		
	precision	recall	f1-score	support
0 1	0.7835 0.7500	0.9992 0.0085	0.8783 0.0168	1271 354
accuracy macro avg weighted avg	0.7667 0.7762	0.5038 0.7834	0.7834 0.4475 0.6906	1625 1625 1625

ML: Race

Gaussian Naive Bayes method

labels: ['A', 'B', 'H', 'N', 'O', 'W', 'unknown'] and codes: [0, 1, 2, 3, 4, 5, 6]

	precision	recall	fl-score	support
0	0.02	0.96	0.03	27
1	0.33	0.01	0.02	383
2	0.16	0.03	0.04	280
3	0.00	0.00	0.00	18
4	0.00	0.00	0.00	12
5	1.00	0.00	0.00	759
6	0.12	0.04	0.06	146
accuracy			0.03	1625
macro avg	0.23	0.15	0.02	1625
weighted avg	0.58	0.03	0.02	1625

Feature Engineering, grouping least frequent values

Gaussian Naive Bayes method

labels: ['All Others', 'B', 'W'] and codes: [0, 1, 2]

	precision	recall	f1-score	support
0 1 2	0.37 0.38 0.53	0.25 0.36 0.65	0.30 0.37 0.59	483 383 759
accuracy macro avg weighted avg	0.43 0.45	0.42	0.47 0.42 0.45	1625 1625 1625

Logistic Regression method

labels: ['A', 'B', 'H', 'N', 'O', 'W', 'unknown'] and codes: [0, 1, 2, 3, 4, 5, 6]

	precision	recall	f1-score	support
0	0.00	0.00	0.00	27
1	0.42	0.30	0.35	383
2	0.00	0.00	0.00	280
3	0.00	0.00	0.00	18
4	0.00	0.00	0.00	12
5	0.51	0.90	0.65	759
6	0.00	0.00	0.00	146
accuracy			0.49	1625
macro avq	0.13	0.17	0.14	1625
weighted avg	0.34	0.49	0.39	1625

Logistic Regression method

labels: ['All Others', 'B', 'W'] and codes: [0, 1, 2]

	precision	recall	f1-score	support
0 1 2	0.47 0.45 0.52	0.16 0.28 0.84	0.23 0.35 0.64	483 383 759
accuracy macro avg weighted avg	0.48 0.49	0.43 0.51	0.51 0.41 0.45	1625 1625 1625

ML: Flee method

```
Gaussian Naive Bayes method
labels: ['Car', 'Foot', 'Not fleeing', 'Other'] and codes: [0, 1, 2, 3]
              precision
                           recall f1-score
                                              support
                   0.25
                             0.62
                                       0.35
                                                  289
           0
                   0.26
                             0.13
                                       0.17
                                                  221
                   0.80
                             0.54
                                       0.65
                                                 1066
                             0.04
                                       0.03
                   0.03
                                       0.48
                                                 1625
    accuracy
                                       0.30
                                                1625
                   0.33
                             0.33
   macro avq
                   0.60
                             0.48
                                       0.51
                                                 1625
weighted avg
```

Logistic Regres	ssion metho	od					
labels: ['Car',	'Foot',	'Not fleei	ng', 'Other	c'] and codes:	[0, 1,	2,	3]
Ī	precision	recall	f1-score	support			
0	1.00	0.00	0.00	289			
1	1.00	0.00	0.00	221			
2	0.66	1.00	0.79	1066			
3	1.00	0.00	0.00	49			
accuracy			0.66	1625			
macro avg	0.91	0.25	0.20	1625			
weighted avg	0.77	0.66	0.52	1625			

Feature Engineering

Random Forest	classifier	method			
labels: ['Car	', 'Foot',	'Not fleei	ng', 'Othe:	r'] and codes:	[0, 1, 2, 3]
	precision	recall	f1-score	support	
0	0.27	0.29	0.28	289	
1	0.23	0.29	0.26	221	
2	0.75	0.61	0.67	1066	
3	0.01	0.04	0.02	49	
accuracy			0.50	1625	
macro avg	0.31	0.31	0.31	1625	
weighted avg	0.57	0.50	0.53	1625	

Random Forest classifier method with reduced features labels: ['Car', 'Foot', 'Not fleeing', 'Other'] and codes: [0, 1, 2, 3] support precision recall f1-score 0.22 0.35 0.27 289 0.15 0.24 0.18 221 0.76 0.34 0.47 1066 0.02 0.16 0.04 49 0.32 1625 accuracy 0.29 0.24 1625 0.27 macro avq 0.56 0.38 weighted avg 0.32 1625

ML: Age

Linear regression model

```
Coefficients: [ 0.25575037 -1.84920101 -1.72157503 -4.23929447 1.02696981 -2.94600306 -1.85789835 -3.77667446 -2.7277103 3.46849395 6.15051486 1.09913004 -0.4055692 -0.86735236 -1.25676577 4.28709909 -1.25611337 -0.38608253], intercept 33.08

Residual sum of squares: 142.58

R-squared Score: 0.13
```

Remove dummy variables of race

Conclusion

- → California has the highest number of deaths so we set it as a base for our storyline and presented metrics related to it.
- → Population Density:
 - Alaska has the highest density of deaths across states.
 - Whites have the highest number of deaths in number. However, in proportion, the Black victims per million rate is more than twice the Whites'.
- Only model that was accurate enough was about mental Illness.

Restrictions and limitations faced

Limitation	Details and solution
Data	Our dataset had largely categorical data which had its limitations in terms of generating visualisations
ML	 Only one model gave decent results Most of the variables were imbalanced which led to poor performing models

Thank you for your attention!

Any Questions?