		Maths
Today.	's Agenda:-	Combinatori Cs
		w t
• Cou	dular Arithmetic Introduction Int pairs whose sum mod m is 0	
	oduction to GCD	
	perties of GCD	
• Dele	ete One	

Remainder = Dividend - greatest multiple of divisor <=dividend

$$30 + 7 = 30 - 28 = 2$$

$$61 + 5 = 30 - 60 = 1$$

$$-7 + 1 \cdot 3 = 3 - 7 - (-9) = 2$$

$$-80 + 7 = 30 - (-35) = 5$$

$$-1 + 3$$

$$-2 + 7 = 5$$

Rules of Medulaer anithemetic \Rightarrow to $2m-2$) (a+b) y , $m \Rightarrow$ (a y , $m + b y$, m) y , m $a=q$, $b=8$, $m=5$	
LHS	RHS
(Q+b) 11.M	(av.m + bv.m) v.m
(9+8) 11.5	(91.5+87.5) 1.5
(17) 1.5	=> (4+3) 1.5
=> 2	2> 7.532

2) $(a * b) \cdot / m \rightarrow (a$	1.m * b~.m) 1.m		
3) (q+m) 1/1 m ->			
	_ · · · _ · ·		
(ar.m+mr.m) r.m			
(a,, m + 0), w => (a, m), w => a, m			
(91.44.40) 1.44(2)	(a 4. m) m -3 a 1. m		
4) (a=h) + (a	M		
4) (a-b) v, m => (a v, m - b v, m + m) v, m			
Q = 10, b = 8	RH8		
	(101.9 - 84.9) 1.9		
=> 21.9	=> (1-8+9)-1.9		
=> 2_	24-92 2		
	<u>~</u>		
5) 0 ^b //m = (a/	(m) 1/m		
(a*a*a*aa)	· · ·		
() (, w =>		
P	(a.1.m + a.m - a.m 1.m		
	P		

$$\frac{15 \cdot 1 \cdot 15}{2} = \frac{15 \cdot 15}{2} =$$

Oues) Green is away elements.

That pairs (i,5) s.t.,

(aux[i]+ aux[j]) v.m=0. i!=1.

M= 6.

Brule Force Approach:

Two for loops.

Checking all pains.

T.C -> 0 cm2)

(if so things are there no of

CONTICT: ~ {6,7,5,11,19,20,9,15,14,13,12,23	
[M = 6]	
01234362891011	
aux [12] 16: 20155123321053	
momaindes Jreq 2(2-1) => 1 9+0+1+1=> 11 pains,	
0 -> @ 9+0+1+1 >> 11 Pains,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	
given outros & M,	
toshnap <in>, in1> hm;</in>	
-> Insert all eleub in h Map.	
Ls ame C:2 w	
C = 0',	
x = trm roz; Roix of o.	
$C = C + \frac{x + (x-i)}{x}$	
2	

$C = C + x * (x-i)$ $x = \mu m \left[\frac{3}{2} \right]$ $i = 0.05$		
3		
$\frac{2 \rightarrow 3}{M=2}$ $\frac{2}{M=2}$ $\frac{2}{M=2}$ $\frac{2}{M=2}$		
C= C+ tm (i] * tm (m-i); tm (2) * tm (5]		
T.C-3 O(m+m).		
Care-1, N=100 Care-5 N=10		
8.C-> a(L)		
Break 10:39 bw - 10:38 bw 7.C+ 0 (win(u' w))		

```
9 cd (a, b) = 9 cd (a.b, b)
gcd(24,16)= gcd(8,16)= gcd(8,16)-~~0
      9 cd (a, b) = 9 cd (b, a.v.b) = (Imp One)
9 cd (24, 16) = 9 cd (16,8) = gcd (8,0) => 8,
3 cg ( in's1) = 3 cg ( 51' 11) = 3 cg ( 111' x) = 3 cg ( 4' 0) = ) +
gcd(3,5)= gcd(5,3)=gcd(3,2)=gcd(2,1)
                                    300(1,0)=1.
    ima god (a, b) &
         (1 (b==0) & orderer a 3
        1. (9.1.6 '9) pos umpon
                   T.C > 0(10g (mox (a,b))
                           bebasn ton C
       hiven an array, calculate get of
Ques
          entire array.
```

cos = aux 70-2;		
for (i=1; i < m; i+1 }		
000 = 9cd(000,000(;3)		
(, C3 (1) (19 11 00 and)		

Ques) biven aux , delete one element, s.t.,

ged of semaning elevels obecome

8 cd

24 16 18 30 15}

2

Bowle force

mx (mx log mor coentis)

delete an auti? elemet, coloulate g col of remaining dents & get aucuel mag.

int delete One (int[] aum, int m) {

Pfgcd [m];

Stado

Stado [m];

Ous = More (Pfgcd [m-2], bfgcd(i]);

for (i=1); i < n-1; i+1) {

// deleting : the element

left = Pfgcd [i-1];

right = bfgcd [i-1];

val = gcd (left, right);

ous = More (one, val);

	3
	suetuen aus;
3	
1 3	T.C+ O (mlog mox (aum))
	7.C-3 0 (m)

