Assignment #2

Due Friday, 31 January 2025, at the start of class

Please read sections 1.1–1.4, 2.1–2.10, and Appendix A from the textbook.¹

Problem P7. Solve, by hand, the ODE boundary value problem

$$y'' + 2y' - 3y = 0$$
, $y(0) = \alpha$, $y(\tau) = \beta$,

for the solution y(t). Note that α, β, τ are the data of the problem, so the solution will have these parameters in it.

Problem P8. For λ a real number, solve, by hand, the ODE boundary value problem

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(1) = 0$,

for the solution y(t). For each λ , find *all* solutions. There will be some values of λ for which there are multiple solutions y(t); identify all of these exceptional λ values.

Problem P9. Suppose this table of data gives samples of a function Z(h):

This data may be fitted (regression) by a function $f(h) = Ch^p$ for some values C and p. Find the values of C and p by fitting a straight line to the *logarithms* of the data; in MATLAB you may use polyfit. Then graph the data and show the fitted line on the same axes, using MATLAB's loglog or similar.

Problem P10. Before doing this exercise, read and understand Example 1.2 in Section 1.2.

(a) Use the method of undetermined coefficients to set up a 5×5 linear system that determines the fourth-order centered finite difference approximation to u''(x) based on 5 equally-spaced points, namely

$$u''(x) = c_{-2}u(x-2h) + c_{-1}u(x-h) + c_{0}u(x) + c_{1}u(x+h) + c_{2}u(x+2h) + O(h^{4}).$$

In particular, expand u(x-2h), u(x-h), u(x+h), u(x+2h) in Taylor series. Then collect terms on the right side of the above equation to generate a square linear system Ac = g in unknowns $c_{-2}, c_{-1}, c_0, c_1, c_2$. This system will have numerical (constant) entries in the matrix A, but the entries of vector g will depend on h.

(b) Use MATLAB/etc. to solve the linear system from part **a)**. A recommended way to do this is to use h=1 in the vector g and solve the system numerically using the "backslash" method. Then write down the answer in a form like (1.11), inserting the correct power of h. Use h=0.5 to confirm that you have captured the correct powers. (Feel free to use LeVeque's fdstencil to check your work, but it is not required.)

¹R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007

Problem P11. In Section 2.4 the textbook uses finite differences to convert the boundary value problem u''(x) = f(x), $u(0) = \alpha$, $u(1) = \beta$ into matrix equation AU = F, with A and F given in (2.10). For any integer $m \ge 1$, this method is based on a grid with h = 1/(m+1) and $x_j = jh$. There are m unknowns U_1, U_2, \ldots, U_m , located at the interior nodes x_1, \ldots, x_m . Note that finite difference approximation D^2 from equation (1.13) is used for the u'' term. This problem asks you to generalize this scheme.

Assume q, x_L, x_R are real numbers with $x_L < x_R$. Similar to the method in Section 2.4, create a finite difference approximation for the problem

$$u''(x) + q u(x) = f(x), \quad u(x_L) = \alpha, \quad u(x_R) = \beta.$$

Use the same approximation D^2 for u''. Use the same grid indexing with m unknowns U_1, \ldots, U_m , and give the new formulas for x_j and the mesh width h. State, in detail, A and F in AU = F. (Note that entries of A will depend on q as well as h.) Check that, by choosing appropriate constants, you can reproduce formulas (2.10).