Lizards	Lizards	Lizards	Lizards	Reptiles	Reptiles	Reptiles	Reptiles	Reptiles	Poikilotherms	Poikilotherms Poikilotherms	Taxon	
R_{s}	$R_{\rm s}$	$R_{\rm s}$	$R_{\rm s}$	R	R	$R_{\rm s}$	$R_{\rm s}$	R	$R_{\rm s}$	R_s	Independent variable	
$T_{\rm b}$ =37°C	$T_{\rm b}$ =30°C	$T_{\rm b}$ =30°C	$T_b=20^{\circ}C$			$T_{\rm b}$ =30°C	$T_{\rm b}$ =20°C	$T_{\rm b}=18^{\circ}{\rm C}$	$\exp(0.051\pm0.0033) T_{\rm b}$	$T_{\rm b}$ =20°C $T_{\rm b}$ =20°C	Conditions	
0.001-1		0.001-7	0.001-1			. 0.001-100	0.001-100	0.01-100	$T_{\rm b} = 1 \times 10^{-3} - 30$	$1 \times 10^{-6} - 100$ $1 \times 10^{-3} - 30$	Range of W	
24		24	13			44	73	11	729	33	No. of No. spp.	
Bennett & Dawson (1976)	Bartholomew &	Bennett & Dawson (1976)	Bennett & Dawson	Zotin & Konoplev	Zotin & Konoplev	Bennett & Dawson	Bennett & Dawson	(1963) Kayser & Heusner	Robinson et al.	Hemmingsen (1960) Robinson et al.	Reference	
0.68	0.378	0.41	0.13	0.94	0.41	0.32	0.14	0.086	0.071	0.14 0.20	Intercept at W=1 kg, a (Watts)	Standardized relation
0.82±0.018	0.821±0.018	0.83±0.010	0.80±0.018	0.77	0.74±0.015	0.77±0.0075	0.80±0.0075	0.728±0.034	0.76±0.0084	0.751±0.015 0.76	Slope $b\pm S_b$	d relation
0.67		0.73	0.64		0.83	0.69			0.59		r ² S _{xy}	

Scanned with CamScanner

Lu	Lui	Te	Tro	An	Tu	Sn.	Sn	Sn	Xa Va	×	744 Ta	I	A
Lunged salamanders	Lungless salamanders	Temperate salamanders	Temperate salamanders Tropical salamanders	Amphibians	Turtles	Snakes Turtles	Snakes	Snakes	Xanthusids Varanids	nthueide	Taxon		Appendix IIIb. (cont.)
$R_{\rm s}$	R_s		$R_{\rm s}$		$R_{\rm s}$	R_s	R_s	$R_{\rm s}$	R, R,	P	Independent variable		cont.)
$T_{\rm b}$ =15°C	$T_{\rm b} = 15^{\circ} \rm C$	$T_{\rm b}=15^{\circ}{\rm C}$	$T_b = 5^{\circ}C$	}		$T_{\rm b}$ =20°C	$T_{\rm b}$ =30°C	$T_{\rm b}$ =20°C	$T_{\rm b} = 35^{\circ}{\rm C}$ $T_{\rm b} = 30^{\circ}{\rm C}$	T = 25°C	Conditions		
					0.003-0.86	0.350-22.5	0.007-20	0.007-20	0.016-4.4		Range of W (kg)		
66	37	83	26		24	10	13	35			×		
		13 12	40			15			10	10	No. of spp.		
Whitford & Hutchinson (1967)	Whitford &	Feder (1976)	Feder (1976)	Zotin & Konoplev (1978)	Kayser & Heusner	Dmi'el (1972) Bennett & Dawson (1976)	Bennett & Dawson (1976)	Bennett & Dawson	Mautz (1979) Bartholomew &	Mantz (1979)	Reference		
0.227	0.0968	0.059	0.00724	0.296	0.212	0.455	0.202	0.137	0.83	0.24	Intercept at W=1 kg, a (Watts)	Standardized relation	
0.856	0.72	0.823±0.012	0.622 ± 0.014 0.837 ± 0.026	0.77	0.86±0.032	0.60 ± 0.036 0.86 ± 0.025	0.71±0.035	0.77±0.03	0.88±0.03 0.62±0.024	0.79±0.033	Slope $b\pm S_b$	d relation	
	0.004	0.935	0.929			0.72	0.83	0.64			r2 S _{xy}		

Scanned with CamScanner

	542																
Insects	Insects	Amphioxi	Cyclostomes	Sturgeons	Cyprinids	Salmon	Salmonids	Freshwater fishes Marine fishes		Teleosts	Teleosts	Teleosts	Fishes	Frogs	Frogs	Tropical salamanders Frogs	
R	R	R	R	R,	R _s	$R_{\rm s}$	R	R R		R	R	R _s	R	R	R	7	
				$T_a = 20^{\circ}C$	$T_{\rm a} = 20^{\circ}{\rm C}$	$T_{\rm a}=15^{\circ}{\rm C}$	$T_a=20$ °C					$T_{\rm a}$ = 20°C $T_{\rm a}$ = 25°C	$T_{\rm a}$ =20°C	$T_{\rm b}$ =25°C	$T_{\rm b}$ =15°C	$T_b = 25^{\circ}\text{C}$ $T_b = 5^{\circ}\text{C}$	7 12600
	,			2×10 ⁻⁵ -10	1×10 ⁻⁵ -1	0.003-1.5	· 1×10 ⁻⁴ -1	2×10 ⁻⁵ -10				$2 \times 10^{-5} - 10$ $0.01 - 0.05$	2×10 ⁻⁵ -10			0.0005-0.030	
47				33	33		31	266 123				364 119	369			26	
(1978) Kayser & Heusner (1964)	Zotin & Konoplev	Zotin & Konoplev	Zotin & Konoplev	Winberg (1960)	Winberg (1960)	1 Brett (1965)	Winberg (1960)	Winberg (1960) Winberg (1960)	(1978)	(1978) Zotin & Konoplev	(1964) Zotin & Konoplev	Winberg (1960) Kayser & Heusner	(1968) Winberg (1960)	(1968) Hutchinson et al.	(1968) Hutchinson et al.	5 Feder (1976) Hutchinson et al.	
0.283	0.600	0.854	0.494	0.14	0.47	0.163	0.53	0.446 0.420		0.273	0.447	0.428	0.386	0.394	0.139	0.123 0.0142	0 135
0.62±0.08	0.76	0.91	0.81	0.80	0.80±0.044	0.775	0.76±0.032	0.81 ± 0.014 0.79 ± 0.014		0.77	0.81	0.70±0.01	0.78±0.096	0.71	0.71	0.813±0.030 0.891 0.71	0 802+0 0005
				0.99			0.95									0.891	

Scanned with CamScanner

I. Units and useful conversions

Appendix Ia. Approximate conversions (the equivalents listed here are not exact; they are determined empirically)

```
\begin{aligned} 1 & \text{ kg dry mass} &= 3\text{--}10 \, \text{ kg wet mass} \\ 1 & \text{ kg dry mass} &= 22 \times 10^6 \, \text{J} \\ 1 & \text{ kg wet mass} &= 7 \times 10^6 \, \text{J} \\ 1 & \text{ kg fat} &= 40 \times 10^6 \, \text{J} \\ \end{aligned} Tissue density = 1 kg liter<sup>-1</sup> 1 & \text{ kg wet mass} &= 1 \times 10^{15} \, \mu \text{m}^3 \\ 1 & \text{ kg dry mass} &= 0.4 \, \text{ kg carbon} \\ 1 & \text{ ml } O_2 &= 20.1 \, \text{J} \end{aligned}
```

Appendix Ib. Exact conversions (the equivalents listed here are determined by definition)

```
Acceleration
                                                                                   Pressure (force per unit area)
                    1 \,\mathrm{m \, s^{-2}} = 0.102 \,\mathrm{G}
                 9.8 \,\mathrm{m \, s^{-2}} = 1 \,\mathrm{G}
                                                                                                    1 Pascal = 1 \text{ kg m}^{-1} \text{ s}^{-2}
                                                                                                                   = 1 \, \text{N m}^{-2}
Force (mass × acceleration)
                                                                                                                    =9.87 \times 10^{-6} atm
                 1 \text{ Newton} = 1 \text{ kg m s}^{-2}
                                                                                                                   = 1.0 \times 10^{-5} \, \text{bar}
                                    = 0.102 \,\mathrm{kg} force
                                                                                                                    = 7.501 \, torr
                                   = 1 \times 10^5 \, \mathrm{dynes}
                                                                                                                   = 7.501 \, \text{mm Hg}
Work and energy (force × distance)
                                                                                                                   = 0.102 \,\mathrm{mm}\,\mathrm{H}_2\mathrm{0}
                1 \text{ Joule} = 1 \text{ kg m}^2 \text{ s}^{-2}
                                                                                    Volume
                              =1 \text{Nm}
                                                                                                    1 \text{ m}^3 = 1 \times 10^3 \text{ liters}
                              = 0.239 \, \text{cal}
                                                                                                            =1\times10^6\,\mathrm{cm}^3
                              = 1 \times 10^7 \,\mathrm{ergs}
                                                                                                            = 1 \times 10^{18} \, \mu \text{m}^3
Power (energy per unit time)
                                                                                   Mass
                     1 Watt = 1 \text{ kg m}^2 \text{ s}^{-3}
                                                                                                    1 \,\mathrm{kg} = 1 \times 10^{-3} \,\mathrm{ton}
                                    =1 \mathrm{J s}^{-1}
              1 \,\mathrm{ml}\,\mathrm{O}_2\,\mathrm{s}^{-1} = 0.0446\,\mathrm{mMol}\,\mathrm{O}_2\,\mathrm{s}^{-1}
                                   = 1.43 \,\mathrm{mg} \,\mathrm{O}_2 \,\mathrm{s}^{-1}
```

Note: A bewildering variety of units have been used in allometric relations. To facilitate comparisons, all relations in Appendixes II-X have been standardized by expressing W in kilograms of fresh mass and by expressing Y in comparable units when possible. This standardization involves a number of conversions.