PART I (40 marks)

Answer all questions.

Question	1.
----------	----

(i)	Whe	n electric dipole of moment \overrightarrow{p} is placed in a uniform field \overrightarrow{E} ,					
(1)		periences a torque of					
	A	$\overrightarrow{p}.\overrightarrow{E}$.					
		_					
	В	$\overrightarrow{p} imes \overrightarrow{E}$.					
	C	$\overrightarrow{E}.\overrightarrow{p}$.					
	D	zero.					
Answ	/er:						
(ii)	Electromagnetic waves are produced by						
	A	a static charge.					
	В	a neutral particle.					
	C	an accelerated charge.					
	D	a uniformly moving charge.					
Answ	/er:						
(iii)		e radius of the second electron orbit in hydrogen atom is r, then					
	the r	adius of the third orbit will be					
	A	r/3.					
	В	2.25 r.					
	C	3 r.					
	D	9 r.					

[10]

(iv)	Pair-	production means								
	A	ionization of the neutral atom.								
	В	ejection of electrons from a metal.								
	C	ejection of neutrons from a nucleus.								
	D	annihilation of a γ -ray into an electron and a positron.								
Answ	er:									
(v)	A po	sitively charged particle enters a uniform magnetic field with a uniform								
	veloc	city. Suppose it makes an angle other than 90° and 0° with the direction of								
	the fi	eld, then the path of the particle in the field will be								
	A	helical.								
	В	circular.								
	C	parabolic.								
	D	straight line.								
Answ	er:									
(vi)	If a power of 100W is supplied across a potential difference of 200V,									
	the c	urrent flowing through the circuit will be								
	A	0.5A.								
	В	1A.								
	C	2A.								
	D	20A.								
Answ	er:									
(vii)	The e	earth's magnetic field always has a horizontal component <i>EXCEPT</i> at								
	A	the poles.								
	В	the equator.								
	C	the magnetic axis.								
	D	both the equator and poles.								
Answ	er:									

.....

(viii) The refractive index of glass with respect to air is 1.5 and that of water is 1.33. The critical angle for glass and water pair will be

A 45°.

B 60°.

C 63°.

D 90°.

Answer:

(ix) The binding energy per nucleon is plotted as a function of atomic mass number. Compared to the other elements, the curve for helium nucleus will have a sharp maximum. This indicates that helium

A is very stable.

B is radioactive.

C fuses very easily.

D fissions very easily.

Answer:

(x) The forward biased characteristics of p-n junction diode is illustrated by:

A I.

B II.

C III.

D II and III.

Answer:

(b) Match each item of Column A with the most appropriate item of Column B. Rewrite the correct pairs by writing the number and the corresponding alphabet in the spaces provided. For example, (i) - (xi)

[4]

Column A	Column B
(a) α-scattering	i. ktanθ
(b) Gauss theorem	ii fusion
(c) Nuclear reactor	iii. μ _o i
(d) Constructive interference	iv. nucleus
(e) Half life (f) Ampere's circuital law	v. $\frac{q}{\varepsilon_0}$
(g) Huygen's principle	vi. 0.693
(h) Tangent galvanometer	λ
	vii. $n\lambda$
	viii. wave front
	ix. $(2n-1)\lambda$
	x. E/A
	xi. fission

																											• • • • •	
																											••••	
																											••••	
																											• • • • •	
																											••••	
																											••••	
																											••••	
																											••••	
																											••••	
 •••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	 	 • • •	 •••	 	• • •	 	••••	

(c)	Choo provi	se the correct word/s given in the brackets and write them in the space ded.	[6]
	(i)	Two magnetic fields in tangent law are to each other	
		and its concept is used in magnetometer.	
		(deflection/parallel /vibration/perpendicular)	
	(ii)	method is used to determine the speed of light and its	
		nine digit value is ms ⁻¹ .	
		(Thomson's/299793458/299792458/Michelson's)	
	(iii)	The potential of collector plate relative to emitter plate	
		at which the photoelectric current becomes is called	
		'stopping potential'. (positive/negative/zero/maximum)	
	(iv)	LED is a biased p-n junction and	
		is used to convert a.c. to d.c. (amplifier/rectifier/reverse/forward)	
	(v)	A current loop behaves like a dipole having that face	
		as through which the current appears to be flowing	
		anticlockwise. (north pole/electric/magnetic/south pole)	
	(vi)	Secondary rainbow is produced due to total internal	
		reflection and the inner most colour in primary rainbow is	
		(red/violet/single/double)	
(d)	Write	True or False and give reasons for the false statements.	[4]
	(i)	The capacitance of a conductor is the ratio of the current given to the rise in	
		potential of the conductor.	
	•••••		••
	(ii)	The phenomenon of polarization proves the transverse nature of light.	
			••
			••

	Collector current is equal to the sum of base current and emitter current.
•••••	
(iv)	The difference between the combined mass of all nucleons and the mass of
	nucleus is a.m.u
	er the following questions.
(i)	How does the process of electric conduction in gases differ from electric conduction in metals?
	electric conduction in metals?
• • • • • •	
•••••	

	(b)	Define energy bands in solids.	[1]
	•••••		
 (iii)		l metallic conductors follow Ohm's law? Give a reason to support	•••
	•	answer.	[2]
		can the intensity and penetrating power of X-rays be controlled?	[2]
	•••••		
(v)		much energy will be created if 1.0 g of matter is destroyed completely?	[2]

Do photons have mass? Give a justification to support your answer.	[2]
	••
A 200 turns coil of self inductance 20 mH carries a current of 4 mA.	••
Find the magnetic flux linked with each turn of the coil.	[2]
Draw a ray diagram of a refracting astronomical telescope when the final image is formed at infinity.	[2]
	A 200 turns coil of self inductance 20 mH carries a current of 4 mA. Find the magnetic flux linked with each turn of the coil. Draw a ray diagram of a refracting astronomical telescope when the final

PART II SECTION A (28 marks)

Answer any **four** questions.

Ques	stion 2.							
(a)	State any two properties of magnetic field lines.	[2]						
		•••						
		•••						
(b)	A train is moving with a uniform speed from north to south. Will any potential							
	difference be induced between the ends of its axle? Support your answer with							
	a reason.	[2]						
		•••						
		•••						
		•••						
(c)	Two point charges of 3×10^{-8} C and -2×10^{-8} C are located 15cm apart.							

At what point on the line is the electric potential zero?

Question 3.

(a) On moving away from a point charge, the electric field due to the charge decreases.

This is also true for a small electric dipole. Does the electric field decrease at the same rate in both cases? Give the relation between electric field (E) and distance (r). [2]

(b) Find the expressions for the resistance of a conductor and the resistivity of a material. [4]

(c)	A sta	ationary charge experiences no magnetic Lorentz force. Why?	[1]								
Ques	stion 4.										
(a)	Expl	ain the meaning of,	[2]								
	(i)	quantization of charge.									
	(ii)	conservation of charge.									
	•••••										
	•••••										
	•••••										
	•••••										
(b)	A transformer cannot work on d.c. Why?										

Question 5. (a) What is Seebeck effect? How does the thermo-emf vary with the temperature of the hot junction? [3] (b) Using Biot-Savart's law, derive an expression for magnetic field intensity produced at a point due to the current flowing through a long straight conductor. [4]

Quest	tion 6.	
(a)	Why do electric lines of force never intersect each other?	[2]
		•
(b)	Can a current carrying loop rotate in a uniform magnetic field? Give reasons to	
	support your answer.	[2]
		•
(c)	A 80 Ω resistor is connected to 240 V-55 Hz a.c. supply. Find the rms value of	
	current in the circuit and the net power consumed for a complete cycle.	[3]

Quest	ion 7.	
(a)	Explain the working of a suspended type moving coil galvanometer.	[3]
(b)	Obtain the balanced condition of a Wheatstone bridge.	[3]

(c)	What is meant by the angle of dip?	[1]
	SECTION B (18 marks) Answer any three questions.	
Ques	stion 8.	
(a)	Derive an expression for the angular width of the central maximum of the pattern with the help of a diagram.	e diffraction [3]
	EC/11A/2016 Page 1 pyright Reserved	17 of 32

	C/11A/2016 Page 18 of 3 yright Reserved	32
		·····
(a)	What is meant by band spectrum?	[1]
Quest	ion 9.	
		•••••
		•••••
		•••••
		•••••
(b)	What are the advantages of a reflecting telescope over refracting telescope?	[3]

(b)	Does a ray of light passing through the optical centre of lens suffer deviation?			
	Justify your answer.		[2]	
(c)	How are infra-red rays and X-rays prod	uced?	[2]	
			•••••	
(d)	What is the magnifying power of a simp	ple microscope made of convex lens of focal		
	length f=10 cm with the final image at i	nfinity?	[1]	
Onesi	tion 10.			
(a)		active interference and destructive interference	e. [3]	
	Constructive interference	Destructive interference		

BHSE	C/11A/2016	Page 20 of 32
(b)	Derive lens maker's formula for a thin lens.	
(1.)		

Question 11.

(a) In a Young's double slit experiment, interference fringes were produced on a screen placed at 1.5 m from the two slits, 0.2 mm apart and illuminated by light of $6300\,\mathrm{\mathring{A}}$. Find the fringe width.

(b) Explain briefly how the illuminating powers of two sources of light are compared

using Bunsen's grease spot photometer.

[2]

[2]

(c)	(i)	Write down the condition for achromatism for thin lenses in contact.	[1]
	(ii)	Write down the relation between the angle of emergence and the angle of deviati	
		of a light ray passing through a prism.	[1]
			••
		SECTION C (14 marks) Answer any two questions.	
Quest	tion 12		
(a)		two uses of radio isotopes.	[2]
			••
	•••••		
	•••••		
(b)	Obtai	in the expression of momentum of photon.	[3]

	CC/11A/2016 pyright Reserved	Page 23 of 32	
			•
			•
(a)	A transistor is a temperature-sensitive device. Explain.		[2]
Ones	stion 13.		•
(d)	Define depletion region for a p-n junction diode.		[1]
			•
(c)	Explain energy generation in nuclear fusion reaction.		[1]

BHSE	EC/11A/2016 Page 24 of 32	
		••••
	fission reaction. Why?	[2]
(a)	Compared to other particles, neutrons are considered as ideal particles for nuclear	
Ques	stion 14.	
		••••
		••••
	when they come near?	[2]
(c)	Distinguish between the nature of positron and electron. What interaction takes place	
	in a tube maintained at 12.5kV.	[3]
(b)	Calculate the maximum frequency and minimum wave length of X-rays produced	

© Copyright Reserved

(b)	Draw a circuit diagram of a full wave rectifier using p-n junction diodes and show its input and output wave forms.

Rutherford's model of an atom	Bohr's model of an atom	
Write down the expression for Compt	on shift.	
The second was compression for compression	011 D11110	

[PHYSICAL CONSTANTS]

Planck's constant	$h = 6.63 \times 10^{-34} \text{J.s}$
Electron charge	$e = 1.6 \times 10^{-19} \mathrm{C}$
1 electron volt	$1eV = 1.6 \times 10^{-19} J$
Speed of electromagnetic wave	$c = 3 \times 10^8 \text{ ms}^{-1}$
Energy equivalent of	1u = 931 MeV
Mass of an electron	$M_e = 9.1 \times 10^{-31} \text{ kg}$
	$\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$
	$\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$
	$\pi = 3.14$

for ROUGH WORK

for ROUGH WORK

for ROUGH WORK
