物理实验报告纸 \$SUSTech

日新自强

学号: xxxxxxxx 姓名: Z同学 日期: 202x.x.xx 实验室: xxxx 星期 一

■ 上午 □下午

实验名称

线性与非线性元件伏安特性的测量

实验目的

熟练使用电学实验仪器,掌握电流、电压、电阻的测量原理和方法:

- 1. 理解制流电路与分压电路原理, 掌握恒压源与恒流源的使用;
- 2. 测量小灯泡的伏安特性曲线, 分析电流表内接法和外接法的差异;
- 3. 测量发光二极管、稳压二极管的伏安特性曲线, 计算发光波长并分析特性差异。

实验原理

- 1. 制流电路,如图 1,通过调节滑动变阻器控制总电流;
- 2. 分压电路,如图 2,通过滑动变阻器分压,实现负载电压连续调节;
- 3. 电流表内接法,如图 3,电流表串联于待测元件,电压表并联于元件和电流表的组合,适于测 量大电阻;
- 4. 电流表外接法,如图 4,电压表直接并联于待测元件,电流表串联于整体电路,适于测量小电

图 3. 电流表内接法

图 4. 电流表外接法

- 5. 恒压源, 即稳压电源, 理想内阻趋近于零, 在额定输出电压范围内, 负载改变时, 输出电流发 生相应变化,输出电压维持恒定不变;
- 6. 恒流源, 即稳流电源, 理想内阻为无穷大, 在额定输出电压范围内, 负载改变时, 输出电压发 生相应变化,输出电流维持恒定不变;
- 7. 发光二极管阈值电压与波长关系为

$$eU_D = h\frac{c}{\lambda} \Rightarrow \lambda = \frac{hc}{eU_D}$$

其中,

光速 $c \approx 2.998 \times 10^8 m/s$, 元电荷 $e \approx 1.602 \times 10^{-19} C$, 普朗克常数 $h \approx 6.626 \times 10^{-34} J \cdot s$ 。

实验仪器

恒压源、恒流源、指针毫安表、数字万用表、钨丝小灯泡、绿/蓝色发光二极管、稳压二极管、导线。

实验内容

1. 测量钨丝小灯泡的伏安特性曲线

使用稳压源,分别按电流表内接法和外接法连接电路,在 0-7.000V 范围内,以0.500V为步长,逐渐增大电压,记录钨丝小灯泡的对应电流值。

2. 测量发光二极管的伏安特性曲线

使用恒流源,按电流表外接法连接电路,逐步增大电流,分别记录绿色、蓝色发光二极管的对应正向电压值。

3. 测量稳压二极管的伏安特性曲线

使用恒流源,按电流表外接法连接电路,逐步增大电流,确保电流值不超过50mA,分别记录 稳压二极管对应的正向和反向电压值。

数据记录

1. 钨丝小灯泡

	电流表内接法		电流表外接法	
输入电压U/V	电压U _{in} /V	电流I _{in} /mA	电压 $\mathbf{U_{out}}/\mathbf{V}$	电流I _{out} /mA
0.5	0.496	21	0.266	20
1.0	0.996	29	0.678	28
1.5	1.491	35	1.107	35
2.0	1.987	41	1.54	40
2.5	2.487	47	1.978	46
3.0	2.985	52	2.419	52
3.5	3.485	57	2.866	57
4.0	3.985	62	3.314	62
4.5	4.468	66	3.765	66
5.0	4.983	70	4.218	70
5.5	5.453	74	4.673	74
6.0	5.952	79	5.128	78
6.5	6.482	83	5.588	82
7.0	6.983	87	6.046	86

2. 发光二极管

I/mA	U_+/V	${f U}/{f V}$
1	0.751	2.378
2	0.769	2.614
4	0.79	2.858
6	0.801	3.024
8	0.811	3.138
10	0.818	3.226
15	0.832	3.394
20	0.843	3.499
25	0.852	3.581
30	0.86	3.642

3. 稳压二极管

I/mA	U_+/V	U/V
1	0.751	2.378
2	0.769	2.614
4	0.79	2.858
6	0.801	3.024
8	0.811	3.138
10	0.818	3.226
15	0.832	3.394
20	0.843	3.499
25	0.852	3.581
30	0.86	3.642
35	0.867	3.691
40	0.873	3.731
45	0.879	3.765
50	0.885	3.794

数据处理

1. 钨丝小灯泡的伏安特性曲线(图 5)

图 5. 钨丝小灯泡的伏安特性曲线

可见外接法曲线在内接法曲线上方,即相同电压下,内接法电流 $I_{\rm in}$ 小于外接法电流 $I_{\rm out}$,原因为:

$$\begin{split} I_{\text{in}} = \frac{V}{R_b + R_A}, I_{\text{out}} = \frac{V}{R_b} + \frac{V}{R_V} = \frac{R_b + R_V}{R_b R_V} V \\ \Rightarrow \frac{I_{\text{in}}}{I_{\text{out}}} = \frac{R_b R_V}{(R_b + R_A)(R_b + R_V)} = \frac{R_b R_V}{R_b^2 + R_b R_A + R_b R_V + R_A R_V} = 1 - \frac{R_b^2 + R_b R_A + R_a R_V}{R_b^2 + R_b R_A + R_b R_V + R_A R_V} \\ \Rightarrow \frac{I_{\text{in}}}{I_{\text{out}}} < 1 \\ \Rightarrow I_{\text{in}} < I_{\text{out}} \end{split}$$

图 6. 发光二极管的伏安特性曲线

由拟合结果得, $U_{Dg} \approx 2.792V, U_{Db} \approx 3.159V$,故两种发光二极管的发光波长分别为

$$\lambda_g = \frac{hc}{eU_{Dg}} \approx \frac{6.626 \times 10^{-34} \times 2.998 \times 10^8}{1.602 \times 10^{-19} \times 2.792} m \approx 4.441 \times 10^{-7} m$$

$$\lambda_b = \frac{hc}{eU_{Db}} \approx \frac{6.626 \times 10^{-34} \times 2.998 \times 10^8}{1.602 \times 10^{-19} \times 3.159} m \approx 3.925 \times 10^{-7} m$$

3. 稳压二极管的伏安特性曲线(图 7)

图 7. 稳压二极管的伏安特性曲线

误差分析

- 1. 恒压源、指针毫安表、数字万用表精度有限;
- 2. 电流热效应使实验用元件温度变化, 电阻改变;
- 3. 实验电路导线有电阻, 理论分析中忽略未计;
- 4. 发光二极管发射光线并非单色光, 理论分析中忽略未计。

实验结论

- 1. 实验绘制的钨丝小灯泡的伏安特性曲线说明,钨丝小灯泡为非线性元件,且电流表内接法和外接法因内阻影响测量结果;
- 2. 实验绘制的发光二极管的伏安特性曲线说明,发光二极管发光后近似线性元件,且阈值电压与理论符合较好;
- 3. 实验绘制的稳压二极管的伏安特性曲线说明,稳压二极管为非线性元件,反向电阻明显大于正向电阻。

思考题

- 1. 相似: 随着电压增大, 当电压较小时, 电流缓慢增长, 当电压超过阈值电压后, 电流急剧上升, 最终趋于线性。
- 2. 原因: 电压到达阈值前, 二极管中PN结内建电场抑制载流子迁移; 超过阈值后, 结电场被抵消, 电流呈指数增长; 电压继续增大, 二极管保持导通状态, 电流呈线性增长。
- 3. 不同: 阈值电压不同, 即曲线线性部分横截距不同。
- 4. 原因: 两种光波长不同,相同光强携带能量不同,蓝光波长较短,相同光强下能量更高,需要更大的阈值电压。