<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Searching techniques: Linear and Binary</u> / <u>Week10 Coding</u>

Started on	Monday, 10 June 2024, 10:50 PM
State	Finished
Completed on	Monday, 10 June 2024, 10:58 PM
Time taken	8 mins 17 secs
Marks	4.00/5.00
Grade	80.00 out of 100.00

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Write a Python program for binary search.

For example:

Input	Result
1,2,3,5,8	False
3,5,9,45,42 42	True

Answer: (penalty regime: 0 %)

```
1 def x(a,b):
2
        a.sort()
3
        l,r=0,len(a)-1
4
        while l<=r:
5
            m=(1+r)//2
6 ₹
            if a[m]==b:
7
                return True
8 •
            elif a[m]<b:</pre>
9
                1=m+1
10
            else:
11
                r=m-1
        return False
12
13
    n=list(map(int,input().split(','
14
   t=int(input())
15
   result=x(n,t)
16 print(result)
   4
```

	Input	Expected	Got	
~	1,2,3,5,8 6	False	False	~
~	3,5,9,45,42 42	True	True	~
~	52,45,89,43,11 11	True	True	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

```
Question 2
Correct
Mark 1.00 out of 1.00
```

To find the frequency of numbers in a <u>list</u> and display in sorted order.

Constraints:

1<=n, arr[i]<=100

Input:

1 68 79 4 90 68 1 4 5

output:

12

4 2

5 1

68 2

79 1

90 1

For example:

Input				R	esult		
4	3	5	3	4	5	3	2
						4	2
						5	2

	Input	Expected	Got		
~	4 3 5 3 4 5	3 2	3 2	~	
		4 2	4 2		
		5 2	5 2		
		5 2	5 2		

	Input	Expected	Got	
~	12 4 4 4 2 3 5	2 1	2 1	~
		3 1	3 1	
		4 3	4 3	
		5 1	5 1	
		12 1	12 1	
~	5 4 5 4 6 5 7 3	3 1	3 1	~
		4 2	4 2	
		5 3	5 3	
		6 1	6 1	
		7 1	7 1	

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Question **3**Correct

Mark 1.00 out of 1.00

An <u>list</u> contains N numbers and you want to determine whether two of the numbers sum to a given number K. For example, if the input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number may be used twice.

Input Format

The first line contains a single integer n, the length of <u>list</u>

The second line contains n space-separated integers, <u>list[i]</u>.

The third line contains integer k.

Output Format

Print Yes or No.

Sample Input

7 0 1 2 4 6 5 3 1

Sample Output

Yes

For example:

Input	Result
5 8 9 12 15 3 11	Yes
6 2 9 21 32 43 43 1 4	No

	Input	Expected	Got	
~	5 8 9 12 15 3 11	Yes	Yes	~
~	6 2 9 21 32 43 43 1 4	No	No	~
~	6 13 42 31 4 8 9 17	Yes	Yes	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

Question ${f 4}$

Not answered

Mark 0.00 out of 1.00

Write a Python program to sort a <u>list</u> of elements using the merge sort algorithm.

For example:

Input	Result		
5	3 4 5 6 8		
6 5 4 3 8			

1	

```
Question 5
```

Correct

Mark 1.00 out of 1.00

Given an <u>list</u>, find peak element in it. A peak element is an element that is greater than its neighbors.

An element a[i] is a peak element if

```
A[i-1] \le A[i] > =a[i+1] for middle elements. [0 \le i \le n-1]
```

 $A[i-1] \le A[i]$ for last element [i=n-1]

A[i] > = A[i+1] for first element [i=0]

Input Format

The first line contains a single integer \boldsymbol{n} , the length of \boldsymbol{A} .

The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

891026

Sample Output

10 6

For example:

Input	Result
4	12 8
12 3 6 8	

```
1 def p(a):
        n=len(a)
2
3
        peaks=[]
4
        if a[0]>=a[1]:
            peaks.append(a[0])
5
6
            for i in range(1,n-1):
7
                if a[i-1]<=a[i]>=a[i-1]
8
                    peaks.append(a[i
9 •
        if a[n-1]>=a[n-2]:
10
            peaks.append(a[n-1])
11
            return peaks
   n=int(input())
12
13
    a=list(map(int,input().split()))
   peak_elements=p(a)
14
   print(*peak_elements)
```

		Input	Expected	Got	
~	/	7 15 7 10 8 9 4 6	15 10 9 6	15 10 9 6	~
~	/	4 12 3 6 8	12 8	12 8	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ Week10_MCQ

Jump to...

Sorting ►