Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 12

Aufgabe 12.1 (6 Punkte)

Die Menge $M \subseteq \mathbb{Z}^2$ sei wie folgt definiert:

- $\{(1,1),(1,2),(2,1)\}\subseteq M$
- Wenn $(m,n) \in M$, dann ist auch $(m+2,n) \in M$ und $(m,n+2) \in M$
- Keine anderen Elemente liegen in M.

Weiter sei die Menge M' definiert als

$$M' = \{(a, b) \mid a, b \in \mathbb{N}_+ \land a \bmod 2 \equiv 0 \land b \bmod 2 \equiv 0\}$$

Zeigen Sie: $M = \mathbb{N}_+ \times \mathbb{N}_+ \setminus M'$

Lösung 12.1

Um die Gleichheit zu zeigen, beweisen wir die Existenz der beiden Teilmengenrelationen.

- $M \subseteq \mathbb{N}_+ \times \mathbb{N}_+ \setminus M'$
 - **Induktionsanfang:** für alle atomaren Elemente $(a, b) \in \{(1, 1), (1, 2), (2, 1)\}$ ist die Eigenschaft $a \mod 2 \equiv 0 \land b \mod 2 \equiv 0\}$ nicht erfüllt $\sqrt{}$

Induktionsvoraussetzung:

Für ein beliebiges, aber festes Element (m, n) aus M gilt: $m \mod 2 \equiv 1 \lor n \mod 2 \equiv 1$.

Induktionsschluss: Es gilt zu zeigen, dass die Eigenschaft auch für (m + 2, n) und (m, n + 2) gilt (da dies die einzigen "Produktionen" weiterer Elemente aus M ist).

Nach IV ist ausgeschlossen, dass $m \mod 2 \equiv 0 \land n \mod 2 \equiv 0$ gilt

- $\Rightarrow (m+2,n)|(m+2) \mod 2 \equiv 1 \vee n \mod 2 \equiv 1$
- $\Leftrightarrow (m+2,n)|(m \bmod 2 + 2 \bmod 2) \equiv 1 \lor n \bmod 2 \equiv 1$
- $\Leftrightarrow (m+2,n)|m \mod 2 \equiv 1 \vee n \mod 2 \equiv 1$

zweite Möglichkeit der Produktion: $\Rightarrow (m, n+2)|m \mod 2 \equiv 1 \lor (n+2) \mod 2 \equiv 1$

- $\Leftrightarrow (m, n+2) | (m \mod 2 + 2 \mod 2) \equiv 1 \lor (n \mod 2 + 2 \mod 2) \equiv 1$
- $\Leftrightarrow (m, n+2) \mid m \mod 2 \equiv 1 \lor n \mod 2 \equiv 1$
- $\mathbb{N}_+ \times \mathbb{N}_+ \setminus M' \subseteq M$: Wir führen die Induktion für die einzelnen Elemente $(m,n) \in \mathbb{N}_+ \times \mathbb{N}_+ \setminus M'$ über deren Summe s=n+m.

Induktionsanfang: $(m+n) \in \{2,3\} \Rightarrow (m,n) \in \{(1,1),(1,2),(2,1)\}$, was gerade den atomaren Elementen entspricht. $\sqrt{}$

Induktionsvoraussetzung:

Für ein beliebiges, aber festes s=m+n, mit $m \mod 2 \equiv 1 \lor n \mod 2 \equiv 1$ gilt $(m,n) \in M$

Induktionsschluss: $s \to s+2$ 3 Möglichkeiten: (m+2, n), (m+1, n+1), (m, n+2)

Da nach IV $(m, n) \in \mathbb{N}_+ \times \mathbb{N}_+ \setminus M'$, kann $(m+1, n+1) \notin \mathbb{N}_+ \times \mathbb{N}_+ \setminus M'$, da sich die Parität von m und von n ändert.

Da nach IV
$$(m,n) \in M$$
 $\stackrel{nachKonstruktionsvorschrift}{\Rightarrow} (m+2,n) \in M$
Da nach IV $(m,n) \in M$ $\stackrel{nachKonstruktionsvorschrift}{\Rightarrow} (m,n+2) \in M$

Aufgabe 12.2 (6 Punkte)

Zu einem gegebenen Wort w sei $w = w_1 \cdot w_2$, mit $|w_1| = |w_2| = |w|/2$.

Geben Sie eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ an, die bei Eingabe eines Wortes $w \in \{a, b\}^+$ genau in die Mitte von w ein Zeichen | einfügt. Nach Abarbeitung von w steht links von | das Teilwort w_1 und rechts von | das Teilwort w_2 .

Sie können davon ausgehen, dass gilt: $|w| \mod 2 \equiv 0$. Was Ihre Turingmaschine für Eingabewörter ungerader Länge tut ist gleichgültig.

Lösung 12.2

200416								
	S	R	X_r	C	L	M	z_a	z_b
a	$(R, \bar{a}, 1)$	(R, a, 1)	$(C, \bar{a}, -1)$	(L,a,-1)	(L,a,-1)	_	_	_
b	$(R, \bar{b}, 1)$	(R, b, 1)	$(C, \bar{b}, -1)$	(L, b, -1)	(L, b, -1)	_	_	_
\bar{a}	_	$(X_r, \bar{a}, -1)$	_	(M, a, 1)	(S, a, 1)	$(z_a, , 1)$	$(z_a, a, 1)$	$(z_a, b, 1)$
$ar{b}$	_	$(X_r, \bar{b}, -1)$	_	(M, b, 1)	(S, b, 1)	$(z_b, , 1)$	$(z_b, a, 1)$	$(z_b, b, 1)$
	_	$(X_r, \square, -1)$	_	_	_	-	$(f_+, a, 1)$	$(f_+, b, 1)$

Aufgabe 12.3 (2+5 Punkte)

Gegeben sei die Sprache $L = \{w \in \{a, b\}^* \mid \exists u \in \{a, b\}^* : www = uu\}.$

- a) Geben Sie alle Wörter aus L mit Länge 4 an.
- b) Beschreiben Sie in eigenen Worten das schrittweise Vorgehen einer Turingmaschine, die bei Eingabe eines Wortes $w \in \{a, b\}^+$ genau dann in einem akzeptierenden Zustand hält, falls $w \in L$ gilt.

Hinweis: Sie können das Verhalten der Turingmaschine aus Aufgabe 12.2 benutzen, ohne dieses im Detail zu beschreiben.

Lösung 12.3

- a) abab, baba, aaaa, bbbb
- b) 1.) Die TM überprüft, ob $|w| \mod 2 \equiv 0$ gilt, indem das erste und letzte unmarkierte Zeichen immer paarweise markiert werden (ähnlich dem Verhalten der TM aus 12.2). Nur bei einer geraden Länge führt die TM ihre Berechnung fort.
 - 2.) Die TM setzt in die Mitte des Wortes ein Trennzeichen | (in 12.2 beschrieben) und läuft nach links bis zum Anfang von w
 - 3.) Lese das erste Zeichen i, markiere es und speichere es im Zustand z_i
 - 4.) Laufe weiter nach rechts bis zum ersten unmarkierten Zeichen nach
 - 5.) "Vergleiche" dieses Zeichen mit i. Bei Ungleichheit, gilt $w \notin L$ (Wechsel zu Fehlerzustand), bei Gleichheit wird das Zeichen markiert und nach links gelaufen bis |
 - 6.) Laufe weiter nach links bis ein markierten Zeichen auftaucht. Steht rechts davon |, so wechsle in den akzeptierenden Zustand. Ansonsten beginne von vorne ab 2.)