

Centrality and Prestige

Some nodes are more important than others

But what it means to be "important" depends on the context: exchange, spread of information, brokerage opportunities, etc.

Centrality measures give us a way to quantify the different ways that a node can be important

Centrality and Prestige

Today:

- Tour through a variety of centrality measures:
 - Degree
 - Betweenness
 - Closeness
 - Eigenvector
- Look at how centrality is distributed: centralization
- Centrality on a directed network: prestige

First notion: the person with the most connections is most important

Normalize by the maximum possible (N-1)

$$C_d(v_i) = \frac{1}{N-1}d_i$$

$$C_d(v_i) = \frac{1}{N-1}d_i$$

 Degree centrality makes sense when sheer number of contacts is important:

- Number of supporters
- Number of confidants
- Audience size
- Number of trading partners
- Number of direct reports

 Clearly, there are some contexts where degree isn't exactly what we mean by "centrality"

- Suppose we are interested in who gets access to information?
- Or who can broker between different groups?

Second notion: the person in the middle of the action is most central

 Person with the highest closeness centrality has the shortest distance to the other nodes, on average

$$C_C(v_i) = \frac{(N-1)}{\sum_{v_j \in G} d(v_i, v_j)}$$

$$C_C(v_i) = \frac{(N-1)}{\sum_{v_j \in G} d(v_i, v_j)}$$

 Closeness centrality makes sense whenever direct access is important

- Access to information
- Opinion formation
- Spread of disease
- Adoption of new technology

- Third notion: people you have to go through are most central
 - For each pair of nodes in the network, what fraction of shortest paths go through the node?

Fraction of geodesics going through the node
$$C_B(v_i) = \underbrace{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}_{\text{Traction of geodesics}} \text{going through the node}$$
 Normalization (number of pairs of nodes)

where g_{jk} is the number of geodesics between j and k and $g_{jk}(v_i)$ is the number that go through i

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

- A and E are not on any shortest paths
- B and D are both on 3 shortest paths
- C is on 4 shortest paths
- There are (N-1)(N-2)/2 = 6 total paths

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

$$0 \quad \frac{\frac{1}{2}}{\sqrt{2}} \quad \frac{\frac{2}{3}}{\sqrt{2}} \quad \frac{1}{2} \quad 0$$

$$A \quad B \quad C \quad D \quad E$$

- A and E are not on any shortest paths
- B and D are both on 3 shortest paths
- C is on 4 shortest paths
- There are (N-1)(N-2)/2 = 6 total paths

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

Start with unnormalized centrality

(remember to account for multiple paths)

$$C_B(v_i) = \frac{\sum_{j < k} \frac{g_{jk}(v_i)}{g_{jk}}}{(N-1)(N-2)/2}$$

Then normalize

 Betweenness centrality make sense when you gain from bridging between different groups

- Brokering between groups
- Control of information
- Innovation
- Collaboration

Eigenvector Centrality

- Fourth notion: you are more important if you're connected to important people
- For example:
 - a small twitter account followed by someone with a large audience
 - a entrepreneur who knows Jack Dorsey
 - a senator's barber
- This is harder to calculate (I would not make you calculate it on an exam)

Eigenvector Centrality

Such a centrality measure must satisfy: $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$

the sum of the centralities of you neighbors

- leading eigenvalue of the matrix A
 - A node's eigenvector centrality is proportional to the centrality of it's neighbors
 - A node can have higher eigenvector centrality because:
 - They have more connections
 - They have more important connections

Network Centralization

 Centralization: a measure of how centrality is distributed in the network

→An attempt to quantify how centralized the network is as a whole

Difference between a node's centrality and the maximum centrality in the network

$$C_D\left(G\right) = \frac{\sum_{v_i \in G} \left[C_D\left(v^*\right) - C_D\left(v_i\right)\right]}{\left(N - 1\right)}$$
Normalization

$$C_D(G) = \frac{\sum_{v_i \in G} [C_D(v^*) - C_D(v_i)]}{(N-1)}$$

$$C_D\left(G\right) = \frac{4}{5}$$

$$C_C(G) = \frac{\sum_{v_i \in G} [C_C(v^*) - C_C(v_i)]}{(N-1)}$$

 $\frac{2}{3}$

$$C_C\left(G\right) = \frac{4}{9}$$

 $C_C\left(G\right) = 0$

$$C_B(G) = \frac{\sum_{v_i \in G} [C_B(v^*) - C_B(v_i)]}{(N-1)}$$

 $C_B\left(G\right)=1$

Centralization tells us about how influence is spread across the network

Example: Financial Trading Networks

High centralization: one node dominates the network

Low centralization: trades are more evenly distributed

example & graphics: Adamic lecture

Comparing Centrality Measures

The three are clearly related, but they each get at something slightly different

- Centrality in directed networks is called "prestige"
- This is sometimes a fine name:
 - admiration or trust
 - influence
 - friendship
 - trade
- But depending on the type of link, it might be misleading:
 - money lending
 - giving advice
 - hatred or distrust
- →Lesson: Context matters! Always consider the interpretation of a measure in a particular context

- In-degree
 - A website that is linked to often has high prestige
 - A person who is frequently nominated for a reward has high prestige

- Closeness Analogue: Proximity
 - Uses shortest directed path length: directed geodesic
 - Considers only nodes that can reach the selected node
 Number of nodes

$$C_C\left(v_i\right) = \frac{\sum_{v_j \in G_i} d\left(v_i, v_j\right)}{\sum_{v_j \in G_i} d\left(v_i, v_j\right)}$$
 Nodes that can reach i

A note on directed geodesics:

- You need to follow the arrows when tracing a path through the network
- The shortest directed path may not be the geodesic on the related undirected network
- The directed geodesic from j to k may be shorter than the directed geodesic from k to j

- Influence range
 - The influence range is what fraction of the nodes in the network can reach you via directed paths

 Directed Betweenness: Almost exactly the same as betweenness, but with directed geodesics and normalized in a directed way

Number of directed

$$C_B\left(v_i\right) = \frac{1}{\left(N-1\right)\left(N-2\right)} \sum_{j,k} \frac{g_{jk}\left(v_i\right)}{g_{jk}} \text{ Total number of directed geodesics between j and k}$$

Summing up...

There are lots of ways for a node to be "central" to a network

- Degree
- Closeness
- Betweenness
- etc!
- Different types of centrality are relevant in different contexts.
- Which is most interesting is a judgment call!