Multi-messenger Astrophysics: Neutron star merger ejecta estimation with kilonova light curve surrogates

DR. ATUL KEDIA

CCRG @ RIT

ATULKEDIA93@GMAIL.COM, ASKSMA@RIT.EDU

APS April meeting Multimessenger Astronomy II C13.5 | 4/15/2023

Collaborators: Marko Ristic, Richard O'Shaughnessy, Anjali Yelikar (RIT), Ryan Wollaeger, Chris Fontes, Eve Chase, Chris Fryer, Oleg Korobkin (LANL) Phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Res. 5, 013168 (2023) or phys. Rev. Rev. Phys. Rev. Res. 5, 013168 (2023) or <a href="https://pxx.ncbi.nlm.nih.gov/Phys. Rev. Rev. Phys. Rev. Rev. Phys. Rev. Phys. Rev. Rev. Phys. Rev. Rev. Phys. Phys. Rev. Phys. Phys. Rev. Phys. Phys. Rev. Phys. Phys. Phys. Phys. Phys. Phys. Phys. Phys. Phys. P

Runtime ~ 10mins

Index

- 1. Kilonova
- 2. Ejecta models
- 3. Surrogates
- 4. Parameter Estimation

Ejecta components corresponding to kilonova spectrum

EM v GW ejecta parameter tension

Kilonova ejecta morphologies

Rosswog, Korobkin, Ann. der Phys. 2022

Heinzel et al, MNRAS 2021

Ejecta profiles

TABLE I. Ejecta morphologies and compositions studied in this paper. The composition of the dynamical component is fixed at $Y_e = 0.04$. In terms of this notation, the previous investigation studied a TPwind2 outflow [32].

	Wind		
Name	Morphology	Y_e	Dynamical
TPwind1	Peanut	0.37	Torus
TSwind1	Spherical	0.37	Torus
TSwind2	Spherical	0.27	Torus

Mass [Mo]	Velocity [c]	
0.001, 0.003, 0.01, 0.03, 0.1	0.05, 0.15, 0.3	

225 + 225 (active learning sims) = 450 /\${Name}

Simulation setup

- •Radiative transfer software using tabulated binned opacities on **SuperNu**. (Wollaeger et al 2013, 2014)
- oComposition and radioactive heating from r-process elements, nucleosynthetic results from **WinNet**. (Winteler et al. 2012)
- Nuclear model
 - Heating rates (Korobkin et al.)
 - Thermalization model of (Barnes et al. (2016))
 - Atomic opacities (Fontes et at. 2020)
- •Reprocessing of light from one component to another.
- OActive learning to choose next set of models to reduce χ^2 error.

(Wollaeger et al 2013, 2014, 2018, 2021; Ristic et al, PhysRevResearch (2022))

Gaussian Process regression Surrogate models

(mdyn, vdyn, mwind, vwind) = (0.097, 0.198, 0.084, 0.298)TSwind2

Gaussian Process regression Surrogate models

0.0

500

1500

Wavelength (nm)

2000

(mdyn, vdyn, mwind, vwind) = (0.097, 0.198, 0.084, 0.298)TSwind2

Simulation data: https://zenodo.org/record/7335961#.ZAE4iXbMKslvi

GP Surrogate models : https://github.com/markoris/surrogate kne

16

32

Fit Light curves (to AT2017gfo)

GW v EM ejecta parameter estimate tension

Phys. Rev. Research 5, 013168 (2023)

Potential relief: More observations!

(also Updated Heating rates)

Fiducial (Black curve) : All updated

Simple-Heat (Red curve): heating rate formula non-local

(*mdyn*, *vdyn*, *mwind*, *vwind*) = (0.005, 0.2, 0.05, 0.05)

Bulla, MNRAS (2023) – POSSIS update

Ongoing work

- Upgrades to the binned Opacity (Fontes et al 2022)
- Heating rates new formulation (Rosswog and Korobkin 2022)
- Variable Ye along ejecta profiles.
- Third component to power the missing Blue peak cocoon shock cooling, or magnetar-like central engine activity. (motivated by the recent GRB211211A)
- Disk Wind simulations with vbhlight (Miller et al.)

GP Surrogate models : https://github.com/markoris/surrogate_kne

Talk by Marko Ristic: F13.00006 Sunday 9:30 AM

Extra slides