Shapes III

Setup

1: circle

```
Begin ["One' "] One'  \text{Defining r[u]}   \text{Defining r[u]}   \text{r[$\theta_{-}$] := $\{R \sin[\theta] + x_{0}, R \cos[\theta] + y_{0}\}$ }   \text{Tangent vector}   \text{t[$u_{-}$] := $r'[u] / \text{Norm}[r'[u]]$; }   \text{TraditionalForm@FullSimplify}[\text{t[u]}, $\{R > 0, u \in \text{Reals}\}]$ } \\  \{\cos(u), -\sin(u)\}   \text{Normal vector}   \text{n[$u_{-}$] := $t'[u] / \text{Norm}[t'[u]]$ }    \text{TraditionalForm@FullSimplify}[\text{n[u]}, $\{R > 0, u \in \text{Reals}\}]$ } \\  \{-\sin(u), -\cos(u)\}   \text{Visualization}
```


Curve length

 $1 = FullSimplify[Integrate[Norm[r'[u]], \{u, 0, 2\pi\}], \{R > 0\}]$

 $2\pi R$

End[]

One`

2: ellipse

Defining r[u]

 $r[\theta_{-}] := \{a \sin[\theta] + x_0, b \cos[\theta] + y_0\}$

Tangent vector

t[u_] := r'[u] / Norm[r'[u]];

 $\label{eq:total_total} TraditionalForm@FullSimplify[t[u], \left\{a > b > 0, \ u \in Reals\right\}]$

$$\left\{\frac{a\cos(u)}{\sqrt{|a\cos(u)|^2 + |b\sin(u)|^2}}, -\frac{b\sin(u)}{\sqrt{|a\cos(u)|^2 + |b\sin(u)|^2}}\right\}$$

Normal vector

$$\begin{split} &\text{n[u_]} := \text{t'[u]/Norm[t'[u]]} \\ &\text{TraditionalForm@FullSimplify[n[u], } \left\{ \text{a > b > 0, u \in Reals} \right\} \right] \\ &\left\{ -\frac{b \sin(u)}{\sqrt{a^2 \cos^2(u) + b^2 \sin^2(u)}}, -\frac{a \cos(u)}{\sqrt{a^2 \cos^2(u) + b^2 \sin^2(u)}} \right\} \end{split}$$

Visualization

case =
$$\{x_0 \to 1, y_0 \to .5, a \to 2, b \to 1.5\}$$
;

ParametricPlot[r[θ] /. case, { θ , 0, 2 π }]

Curve length

```
1 = \texttt{FullSimplify} \big[ \texttt{Integrate[Norm[r'[u]] /. case, \{u, 0, 2\pi\}], \left\{a > b > 0\right\}} \big]
11.0517
```

End[]

Two `

3: spiral

Visualization

Begin["Three`"]
Three`
Defining r[u]
$$r[u_{-}] := \{a E^{(b u)} Cos[u], a E^{(b u)} Sin[u]\}$$
\$Assumptions = $\{a > 0, b < 0, u \ge 0\}$;
Tangent vector

$$\begin{aligned} &\texttt{t[u_]} := \texttt{r'[u]} / \texttt{Norm[r'[u]]}; \\ &\texttt{TraditionalForm@FullSimplify[t[u]]} \\ &\Big\{ \frac{b\cos(u) - \sin(u)}{\sqrt{b^2 + 1}}, \, \frac{b\sin(u) + \cos(u)}{\sqrt{b^2 + 1}} \Big\} \end{aligned}$$

Normal vector

Visualization

case =
$$\{a \rightarrow 1, b \rightarrow -.3\}$$
;
ParametricPlot[r[θ] /. case, $\{\theta$, 0, 100}, PlotRange \rightarrow All]

Analysis

The parameter a seems to control the x-intercept of the starting point, while b controls how quickly the spiral converges.

Curve length

1 = Integrate[Norm[r'[u]] /. case,
$$\{u, 0, \infty\}$$
] 3.4801

End[]

Three`

4: 3D spiral

Setup

```
Begin["Four`"]
Four`
Defining r[u]
r[u] := \{a Cos[u], a Sin[u], bu\}
$Assumptions = \{a > 0, b > 0, u \ge 0\};
Tangent vector
t[u_] := r'[u] / Norm[r'[u]];
TraditionalForm@FullSimplify[t[u]]
\Big\{-\frac{a \sin(u)}{\sqrt{a^2+b^2}}, \, \frac{a \cos(u)}{\sqrt{a^2+b^2}}, \, \frac{b}{\sqrt{a^2+b^2}}\Big\}
```

Normal vector

Note that the normal vector shown here is actually one of many possible normal vectors. In 2d, it was one of the two perpendicular vectors available, but in 3D, a whole plane of perpendicular vectors are available.

```
n[u_] := t'[u] / Norm[t'[u]] /. case
TraditionalForm@FullSimplify[n[u]]
\{-1.\cos(u), -1.\sin(u), 0.\}
```

Visualization

case =
$$\{a \rightarrow 1, b \rightarrow -.3\}$$
;
ParametricPlot3D[r[θ] /. case, $\{\theta$, 0, 10 π }, PlotRange \rightarrow All]

Analysis

The parameter a seems to control the x-intercept of the starting point, while b controls how quickly the spiral converges.

Curve length

l = Integrate[Norm[r'[u]], {u, 0, 10
$$\pi$$
}]
l /. case
 $10 \sqrt{a^2 + b^2} \pi$
 32.7992

End[]

Four`

5: Boat hull

```
In[379]:= Begin["Five`"]
Out[379]= Five`
            Defining r[u]
 ln[380] = r[u] := \{u, Abs[u]^n - 1\}
            all a = \{n > 0, -1 < u < 1\};
            Tangent vector
 In[382]:= t[u_] := FullSimplify@Normalize[r'[u]];
            TraditionalForm@FullSimplify[t[u]]
            FullSimplify[%, u > 0]
Out[383]//TraditionalForm:
            \left\{ \frac{1}{\sqrt{n^2 (u^2)^{n-1} + 1}}, \frac{n \operatorname{sgn}(u) |u|^n}{\sqrt{n^2 (u^2)^n \operatorname{sgn}(u)^2 + u^2}} \right\}
Out[384]= \left\{ \frac{1}{\sqrt{1+n^2 u^{-2+2n}}}, \frac{n u^n}{\sqrt{u^2+n^2 u^{2n}}} \right\}
            Normal vector
  ln[385]:= norm[u] := Normalize[t'[u]] /. n \rightarrow 2
            TraditionalForm@FullSimplify[norm[u]]
            FullSimplify[%, u > 0]
Out[386]//TraditionalForm=
           \left\{ -\left( \left( 2 \ u \ \text{sgn}(u)^3 \ (u \ \text{Abs''}(u) + \text{sgn}(u)) \right) / \left( \sqrt{4 \ u^2 + 1} \ \left| \ \text{sgn}(u)^2 + | \ u \ | \ \text{Abs''}(u) \ | \ \right) \right), \ \frac{\text{sgn}\left( u \ \text{Abs''}(u) + \text{sgn}(u)^3 \right)}{\sqrt{4 \ u^2 + 1} \ \text{sgn}(u)} \right\}
Out[387]= \left\{-\frac{2 \text{ u Sign}[1 + \text{u Abs''}[u]]}{\sqrt{1 + 4 u^2}}, \frac{\text{Sign}[1 + \text{u Abs''}[u]]}{\sqrt{1 + 4 u^2}}\right\}
```

Visualization

ln[388]:= Manipulate[case = $\{n \rightarrow i\}$; ParametricPlot[r[u] /. case, {u, -1, 1}, PlotRange \rightarrow All], {i, 1, 10}]

Analysis

Curve length

In[389]:= $Manipulate[case = {n \rightarrow i};$ $2 * Integrate[Norm[r'[u]] /. case, {u, 0, 1}], {i, 1, 10}]$

 $ln[390]:= 1 = Integrate[Norm[r'[u]] /. case, {u, 0, 10 \pi}]$ 1 /. case

Out[390]= $10 \sqrt{2} \pi$

Out[391]= $10 \sqrt{2} \pi$

Underwater Hull

In[392]:= **End[]**

Out[392]= Five`

6: Linear Bézier

```
Begin["Six`"]
Seven`
```

Setup

```
r[u_{-}] := (1 - u) pts[[1]] + u pts[[2]]
Assumptions = \{u \in Reals\};
```

Plotting

```
case = pts \rightarrow {{1, 4}, {3, 5}}
Show[ParametricPlot[r[u] /. case, {u, 0, 1}], Graphics@Point[pts /. case]]
pts \rightarrow \{\{1, 4\}, \{3, 5\}\}
```


End[]

Seven`

7: Quadratic Bézier

```
Begin["Seven`"]
Eight`
```

```
r[u_{-}] := (1 - u)^2 pts[[1]] + 2 u (1 - u) pts[[2]] + u^2 pts[[3]]
Assumptions = \{u \in Reals\};
```

Plotting

```
case = pts \rightarrow {{2, 6}, {10, 5}, {1, -1}};
Show \Big[ Parametric Plot[r[u] /. case, \{u, 0, 1\}], Graphics@Point[pts /. case] \Big]
```


End[]

Eight`

8: Cubic Bézier

Begin["Eight`"]

Nine`

```
r[u_{-}] := (1-u)^{3} pts[[1]] + 3u(1-u)^{2} pts[[2]] + 3u^{2}(1-u) pts[[3]] + u^{3} pts[[4]]
Assumptions = \{u \in Reals\};
```

Plotting

```
case = pts \rightarrow {{0, 6}, {3, 5}, {1, -1}, {0, 10}}
Show[ParametricPlot[r[u] /. case, {u, 0, 1}], Graphics@Point[pts /. case]]
\texttt{pts} \to \{\, \{\, 0\,,\,\, 6\, \}\,,\,\, \{\, 3\,,\,\, 5\, \}\,,\,\, \{\, 1\,,\,\, -1\, \}\,,\,\, \{\, 0\,,\,\, 10\, \}\, \}
```


End[]

Nine`

9: Donut

```
Begin["Nine`"]
```

Nine`

```
r[u_, v_] :=
 (a + radius Cos[u]) Cos[v] ihat3 + (a + radius Cos[u]) Sin[v] jhat3 + radius Sin[u] khat3
Assumptions = \{radius < a, u \in Reals, v \in Reals, radius > 0\}
\{ radius < a, u \in Reals, v \in Reals, radius > 0 \}
```

Plotting

```
case = \{\text{radius} \rightarrow 6, a \rightarrow 14\}
ParametricPlot3D[r[u, v] /. case, \{u, 0, 2\pi\}, \{v, 0, 2\pi\}]
\{\text{radius} \rightarrow 6, a \rightarrow 14\}
```


Normal Vector

```
norm = FullSimplify@Normalize[D[r[u, v], u] *D[r[u, v], v]];
niceForm[norm]
\hat{i} (-cos(u)) cos(v) - \hat{j} cos(u) sin(v) - \hat{k} sin(u)
```

Surface Area

 $\label{traditionalForm@Integrate[Norm[D[r[u, v], u] \times D[r[u, v], v]], {u, 0, 2}$$ π}, {v, 0, 2}$$ π}]$ $4 \pi^2 a$ radius

End[]

Nine`

10: Spray

Begin["Ten`"]

Ten`

Setup

$$x = \frac{u L}{2};$$

$$z = v \left(\frac{16 H x^{4}}{L^{4}} - H\right);$$

$$y = \frac{4 W x^{2}}{2 L^{2}} - \frac{1}{2} W \sqrt{\frac{H + z}{H}};$$

$$r[u_{-}, v_{-}] := \{x, y, z\}$$
\$Assumptions = \{H > 0, L > 0, W > 0, u \in Reals, v \in Reals\}
$$\{H > 0, L > 0, W > 0, u \in Reals\}$$

Plotting

$$\label{eq:case} \begin{split} &\text{case} = \{\text{H} \rightarrow 3\,,\, \text{W} \rightarrow 6\,,\,\, \text{L} \rightarrow 10\} \\ &\text{ParametricPlot3D[r[u,\,v]/.\,case,} \,\, \{\text{u,-1,1}\}\,,\,\, \{\text{v,0,1}\}] \\ &\{\text{H} \rightarrow 3\,,\,\, \text{W} \rightarrow 6\,,\,\, \text{L} \rightarrow 10\,\} \end{split}$$

Normal Vector

Surface Area

 $integrand = FullSimplify@Norm[D[r[u, v], u] \times D[r[u, v], v]] \ /. \ case;$ result = Integrate[integrand, {u, -1, 1}, {v, 0, 1}] N@result

$$\int_{-1}^{1} -\frac{1}{8\sqrt{25+36\,u^{2}}} \, 3\, \left(-4\,\sqrt{3125+8100\,u^{2}+5184\,u^{4}} \right. \\ +4\,u^{2}\,\sqrt{\left(25+36\,u^{2}\right)}\, \left(25+100\,u^{4}+144\,u^{6}\right)} \, - \\ 25\, Log\left[225+288\,u^{2}+4\,\sqrt{3125+8100\,u^{2}+5184\,u^{4}} \, \right] + \\ 25\, Log\left[25+4\,u^{2}\,\left(50\,u^{2}+72\,u^{4}+\sqrt{\left(25+36\,u^{2}\right)\,\left(25+100\,u^{4}+144\,u^{6}\right)} \, \right) \, \right] \right) du$$

35.1718

End[]

Ten`