Podsumowanie interpolacji i aproksymacji

Krystian Madej

1. Zadana funkcja

$$f(x) = e^{-k \sin(mx)}$$

$$k = m = 3$$

$$x \in [-2\pi, \pi]$$

2. Środowisko obliczeń

Obliczenia zostały wykonane przy pomocy języka **C++20** na systemie **Windows 11**, kompilacja 22631.3527, procesorze **64-bitowym** Intel Core i5-11400H 2.70GHz, kod kompilowany kompilatorem **MSVC** (wersja 19.39).

3. Użyte biblioteki i programy pomocnicze

Do utworzenia map cieplnych wykorzystano program GnuPlot.

Do instalacji bibliotek **C++** użyto menedźera pakietów **conan**, wersja 2.2.2.

Najważniejsze użyte biblioteki:

- <format> łatwe formatowanie tekstu
- <numbers> stałe matematyczne
- CvPlot tworzenie wykresów
- SymEngine obliczenia symboliczne
- <future> obiekty std::future oraz std::async
- <ranges> operacje na obiektach iterowalnych

4. Porównanie metod

4.1.1 Metody interpolacji

- Lagrange'a
- Newtona
- Hermite'a
- funckje sklejane

4.1.2 Metody aproksymacji

- średniokwadratowa wielomianami algebraiczynymi
- średniokwadratowa wielomianami trygonometrycznymi

4.2 Różnice między interpolacją a aproksymacją

- Interpolacja polega na znalezieniu funkcji przechodzącej przez wszystkie zadane węzły, aproksymacja ma na celu minimalizację błędu
- Interpolacja dążąc do uzyskania dokładnych wartości w węzłach, może źle przybliżać pozostałe części funkji, aproksymacja nie jest aż tak dokładna w tych węzłach, jednak zapewnia lepsze przybliżenie w ogóle danych

5. Porównanie interpolacji

5.1 Interpolacje Lagrange'a i Newtona

Interpolacja Lagrange'a polega na obliczeniu wielomianu:

$$P_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$$

gdzie:

$$L_k(x) = \prod_{i=0,\,i\neq k}^n \frac{x-x_i}{x_k-x_i}$$
; x_k - k-ty węzeł interpolacji

Interpolacja Newtona polega na obliczeniu wielomianu:

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \dots (x - x_{k-1})$$

gdzie

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_i] = f(x_i)}{f[x_0, x_1, \dots, x_{k-1}]}$$

5.1.1 Przykładowe wykresy

Wykres 2. Intepolacje metodami Lagrange'a i Newtona dla 13 węzłów równoodległych

Blad bezwzgledny interpolacji dla 13 wezlow jednorodnych

i Newtona dla 13 węzłów równoodległych

Wykres 4. Intepolacje metodami Lagrange'a i Newtona dla 13 węzłów Czebyszewa

Wykres 5. Błędy intepolacji metodami Lagrange'a i Newtona dla 13 węzłów Czebyszewa

Na pierwszych dwóch wykresach łatwo zauważyć efekt Runge'go, często występujący w interpolacji węzłami równoodległymi. Występuje on już od 9go stopnia wielomianu. Na kolejnych dwóch, intepolacja węzłami Czebyszewa jest dużo dokładniejsza od poprzedniej.

	Rodzaj węzłów		
	Równoodległe	Czebyszewa	
Max	140.7475903	15.2195915	
Suma kw.	1306283.424	43522.1047	

Tabela 1. Błędy intepolacji metodami Lagrange'a i Newtona dla 13 węzłów

5.1.2 Błędy dla wyższych stopni

Wykres 6. Intepolacje metodami Lagrange'a i Newtona dla 39 węzłów równoodległych

Wykres 7. Błędy intepolacji metodami Lagrange'a i Newtona dla 39 węzłów równoodległych

Wykres 8. Intepolacje metodami Lagrange'a i Newtona dla 39 węzłów Czebyszewa

Wykres 9. Błędy intepolacji metodami Lagrange'a i Newtona dla 39 węzłów Czebyszewa

Dla intepolacji 39 węzłami równoodległymi widać duży efekt Runge'go. Dla interpolacji węzłami Czebyszewa są widoczne błędy numeryczne. Pojawiły

	Rodzaj węzłów				
	Równoodległe Czebyszewa F		Równoodległe	Czebyszewa	
Interpolacja	Lagrange'a		Newtona		
Max	636633444.2	3.604860141	636633390	11.3999521	
Suma kw.	7.20702E+18 1202.80626		7.20702E+18	2011.47219	

Tabela 2. Błędy intepolacji metodami Lagrange'a i Newtona dla 39 węzłów

się w okolicach 35. stopnia wielomianu i z każdym kolejnym stopniem zwiększają się.

5.1.3 Najlepiej przybliżający wielomian.

Najlepiej przybliżający wielomian wyznaczyłem znajdując taki, którego błąd maksymalny i suma kwadratów błędów są najmniejsze. Tym wielomianem jest wielomian Lagrange'a z 289 węzłami Czebyszewa.

Wykres 10. Intepolacji metodą Lagrange'a dla 289 węzłów Czebyszewa

Wykres 11. Błędy intepolacji metodą Lagrange'a dla 289 węzłów Czebyszewa

Max	9.24E-14
Suma kw.	2.64E-25

Tabela 3. Błędy intepolacji metodą Lagrange'a dla 289 węzłów

5.1.4 Wnioski

Podczas korzystania z interpolacji metodą Lagrange'a największym problemem jest duża niedokładność dla węzłów równoodległych. Zmiana węzłów na węzły Czebyszewa znacząco eliminuje ten problem, jednak dalej jest podatna na błędy numeryczne dla dużych stopni wielomianów.

Intepolacja metodą Newtona dla niskich stopni daje niemal identyczne przybliżenie jak metoda Lagrange'a. Jednak jest bardziej podatna na błędy numeryczne, niezależnie od tego czy użyjemy węzłów równoodległych czy Czebyszewa.

Obie metody źle przybliżają ekstrema funkcji, gdy te znajdują się daleko od węzłów interpolacji.

5.2 Interpolacja Hermite'a

Interpolacja Hermite'a polega na wyznaczeniu wielomianu:

$$H_n(x) = \sum_{l=0}^n b_l p_l(x) = \sum_{i=0}^k \sum_{j=0}^{m_i - 1} b_{(s(i) + j)} P_{(s(i) + j)}(x)$$

gdzie

$$P_{(0)}(x) = 1$$

$$P_{(s(i)+j)}(x) = (x - x_0)^{m_0} (x - x_1)^{m_1} \dots (x - x_{i-1})^{m_{i-1}} (x - x_j)^{i}$$

$$i = 0, 1, \dots k \quad i = 0, 1, \dots, m_i - 1$$

 $b_{(s(i)+j)}$ obliczamy tworząc tablicę ilorazów różnicowych, podobną do tej z metody Newtona, tam gdzie nie możemy obliczyć ilorazów korzystamy z informacji o pochodnych.

5.2.1 Przykładowe wykresy

węzłów równoodległych

Wykres 13. Błędy intepolacji metodą Hermite'a dla 9 węzłów równoodległych

Wykres 14. Intepolacja metodą Hermite'a dla 9 węzłów Czebyszewa

Podobnie jak poprzednio widać efekt Runge'go dla węzłów równoodległych. Węzły Czebyszewa znajdują się dośc daleko od ekstremów, co powoduje niedokładność w ich przybliżaniu.

Wykres 15. Błędy intepolacji metodą Hermite'a dla 9 węzłów Czebyszewa

	Rodzaj węzłów		
	Równoodległe	Czebyszewa	
Max	492.5958018	20.89210877	
Suma kw.	198568025.5	684608.5127	

Tabela 4. Błędy intepolacji metodą Hermite'a dla 9 węzłów

5.2.2 Błędy numeryczne

Wykres 16. Intepolacja metodą Hermite'a dla 18 węzłów równoodległych

Wykres 17. Błędy intepolacji metodą Hermite'a dla 18 węzłów równoodległych

Wykres 18. Intepolacja metodą Hermite'a dla 18 węzłów Czebyszewa

9			٨	٨		— н	ermite'a
8					ļ -	T	
7				1			
6 -				+			
5 -							
4				+++-			
3 -	Λ			++-+-		A	
2		A	1-11		AA	H_A	
1 -	MAL		1-1-1		1	HAA	
0	WVV	VIN	VV	V	MI	VV	

Wykres 19. Błędy intepolacji metodą Hermite'a dla 18 węzłów Czebyszewa

	Rodzaj węzłów		
	Równoodległe	Czebyszewa	
Max	2848571.373	8.631265687	
Suma kw.	2.65321E+15	69222.32836	

Tabela 5. Błędy intepolacji metodą Hermite'a dla 18 węzłów

Tak samo jak poprzednio dla węzłow równoodległych widać efekt Runge'go (zwiększający się), natomiast dla węzłów Czebyszewa zaczynają pojawiać się błędy numeryczne.

5.2.3 Najlepiej przybliżający wielomian

Aby wyznaczyć najlepiej przybliżający wielomian należy znaleźć taki, dla którego błąd maksymalny jak i suma kwadratów błędów są najmniejsze. Tym wielomianem jest wielomian 19 stopnia, z węzłami Czebyszewa.

ntepolacja metodą Hermite'a dla 19 węzłów Czebyszewa

Wykres 19. Błędy intepolacji metodą Hermite'a dla 19 węzłów Czebyszewa

Max	6.939107243
Suma kw.	50291.76808

Tabela 6. Błędy intepolacji metodą Hermite'a dla 19 węzłów

5.2.4 Wnioski

Podobnie jak w przypadku metod Lagrange'a i Newtona otrzymujemy niedokładne przybliżenie dla węzłów równoodległych, pojawia się wtedy też efekt Runge'go.

Użycie węzłów Czebyszewa pozwala znacznie zwiększyć dokładnośc.

Dokładnie jak w metodzie Newtona, połączenie węzłów Czebyszewa z większymi stopniami wielomianów powoduje błędy numeryczne.

5.3 Porównanie błędów interpolacji metod Lagrange'a, Newtona i Hermite'a

5.3.1 Dla węzłów równoodległych

	Błąd maksymalny			Suma kwadratów błędów		
Liczba węzłów	Lagrange	Newton	Hermite	Lagrange	Newton	Hermite
3	19.98874234	19.98874234	24.61492034	54150.97286	54150.97286	858531.9962
4	19.08549057	19.08549057	29.0260187	49053.6982	49053.6982	1092433.439
5	20.03070218	20.03070218	20.29266626	55134.92639	55134.92639	553360.5684
6	19.15801012	19.15801012	105.845553	98225.00605	98225.00605	17947740.83
7	28.73691518	28.73691518	31.44664324	186540.6781	186540.6781	1183237.369
8	17.81115341	17.81115341	15.82839029	69810.1151	69810.1151	531885.9681
9	68.94547874	68.94547874	492.5958018	675202.5634	675202.5634	198568025.5
10	19.08549057	19.08549057	16.08352194	49053.6982	49053.6982	326735.3966
11	205.7916057	205.7916057	3187.587407	3678022.916	3678022.916	6284695118
20	2415.048753	2415.048753	11789410.71	239272857	239272856.9	3.99431E+16
30	725619.0027	725619.0137	2.99393E+11	1.29749E+13	1.29749E+13	1.52E+25
40	168751551.9	168751633.7	4.70045E+17	4.96177E+17	4.96177E+17	2.67E+36
50	31611721302	31611721302	6.32E+25	1.33E+22	1.33E+22	3.62E+52

Tabela 7. Zestawienie błędów interpolacji Lagrange'a, Newtona i Hermitea dla węzłów równoodległych

5.3.2 Dla węzłów Czebyszewa

	Błąd maksymalny			Suma kwadratów błędów		
Liczba węzłów	Lagrange	Newton	Hermite	Lagrange	Newton	Hermite
3	20.03515211	20.03515211	20.01380179	55908.92508	55908.92508	554973.5364
4	19.97112121	19.97112121	20.64143568	55249.80889	55249.80889	553029.5366
5	19.23157791	19.23157791	31.28637154	42696.37254	42696.37254	1663671.337
6	14.38623707	14.38623707	80.77905644	89478.81061	89478.81061	8497587.026
7	20.08609978	20.08609978	19.16952606	54266.96633	54266.96633	443767.9406
8	21.0179263	21.0179263	27.7939095	92942.83585	92942.83585	1352123.368
9	21.22745547	21.22745547	20.89210877	60873.91087	60873.91087	684608.5127
10	17.25380011	17.25380011	17.01339068	41450.85723	41450.85723	595056.7969
11	20.50293461	20.50293461	17.32202029	46624.31535	46624.31535	461160.2254
20	10.73337562	10.73337562	45.795387	19915.01086	19915.01086	92950.73789
30	6.165770445	6.165770445	6420873893	3290.52309	3290.520487	7.56269E+20
40	3.329726654	36.09420799	6.60414E+17	1080.436359	8876.007486	7.62E+36
50	1.485871167	146381.7756	3.20E+25	204.4993961	1.11921E+11	2.65E+52
60	0.482081397	5570426202	8.95E+32	23.05193855	1.46875E+20	1.39E+67
100	0.006855615	1.14E+25	3.50E+66	0.004581014	6.72E+50	1.05E+134
150	7.48E-06	2.86E+44	2.90E+117	5.27E-09	1.69E+89	5.24E+235
200	2.54E-09	1.05E+66	2.59E+167	8.37E-16	4.60E+132	inf

Tabela 8. Zestawienie błędów interpolacji Lagrange'a, Newtona i Hermitea dla węzłów Czebyszewa

6. Funkcje sklejane

6.1 Funkcja sklejana 2-go stopnia

Aby funkcja

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$
, $i = 1, ..., n - 1$

mogła być nazwana funkcją sklejaną 2-go stopnia, musi spełniać następujące warunki:

- 1. $s_i(x_i) = f(x_i) = y_i$
- 2. $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$
- 3. $s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$

Korzystając z tych warunków można wyznaczyć wzory jawne:

$$a_i = \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}, \quad i = 1, ..., n-1$$

$$b_i + b_{i-1} = 2 \frac{y_i - y_{i-1}}{x_i - x_{i-1}}, \quad i = 3, ..., n$$

nie znamy natomiast b_1 , dlatego należy przyjąć warunek brzegowy.

6.1.1 Natural spline/Free boundary

Warunek brzegowy dany wzorem:

$$s'(x_1) = s_1'(x_1) = 0$$

co oznacza, że:

$$b_1 = 0$$

6.1.2 Clamped boundary

Warunek brzegowy dany wzorem:

$$s'(x_1) = s'_1(x_1) = f'(x_1)$$

jeżeli dokładna wartość pochodnej w punkcie x_1 nie jest znana, można użyć przybliżenia:

$$b_1 = f'(x_1) \approx \frac{y_2 - y_1}{x_2 - x_1}$$

6.1.3 Przykładowe wykresy

Wykres 20. Intepolacja funkcjami sklejanymi 2-go stopnia dla 8 węzłów

Wykres 21. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 8 węzłów

	Natural Spline	Clamped Boundary
Max	26.34204628	24.36931626
Suma kw.	952574.6104	783292.0213

Tabela 9. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 8 wezłów

Widać, że warunek Clamped boundary zapewnia lepsze przybliżenie.

Wykres 22. Intepolacja funkcjami sklejanymi 2-go stopnia dla 16 węzłów

Wykres 23. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 16 węzłów

	Natural Spline	Clamped Boundary
Max	18.73276055	18.49759762
Suma kw.	422501.4998	415189.5582

Tabela 10. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 16 węzłów

Widać, że Clamped boundary dalej zapewnia lepsze przybliżenie, jednak różnica między przybliżeniami mocno zmalała.

Wykres 24. Intepolacja funkcjami sklejanymi 2-go stopnia dla 40 węzłów

Wykres 25. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 40 węzłów

	Natural Spline	Clamped Boundary
Max	3.062011035	3.277809742
Suma kw.	11264.34539	12060.50304

Tabela 11. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 40 wezłów

Dla 40 węzłow Natural spline ma mniejsze błędy od Clamped boundary.

Wykres 26. Intepolacja funkcjami sklejanymi 2-go stopnia dla 100 wezłów

Wykres 27. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 100 węzłów

	Natural Spline	Clamped Boundary
Max	0.239146758	0.096514894
Suma kw.	207.5097085	19.19331086

Tabela 12. Błędy intepolacji funkcjami sklejanymi 2-go stopnia dla 100 węzłów

Dla 100 węzłów Clamped boundary jest dokładniesze.

6.2 Funkcja sklejana 3-go stopnia

Aby funkcja

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, i \in [1, ..., n - 1]$$

mogła być nazwana funkcją sklejaną 3-go stopnia musi spełniać kilka warunków:

1.
$$s_i(x_i) = f(x_i) = y_i$$

2.
$$s_i(x_{i+1}) = s_{i+1}(x_{i+1})$$

3. 1.
$$s'_i(x_{i+1}) = s'_{i+1}(x_{i+1})$$

2. $s''_i(x_{i+1}) = s''_{i+1}(x_{i+1})$

Skoro $s_i(x)$ jest funkcją sześcienną, to $s_i''(x)$ jest funkcją liniową na przedziale $[x_i,x_{i+1}]$. Po przekształceniach otrzymujemy:

$$h_{i-1}\sigma_{i-1} + h_i\sigma_{i+1} + 2\sigma_i(h_i - h_{i-1}) = \Delta_i - \Delta_{i-1}$$
 $i = 2, ..., n-1$

gdzie

$$h_i = x_{i+1} - x_i$$

$$\sigma_i = \frac{s''(x_i)}{6}$$

$$\Delta_i = \frac{y_{i+1} - y_i}{h_i}$$

co daje n-2 równań i n niewiadomych, zatem potrzebujemy warunków brzegowych.

6.2.1 Natural spline/Free boundary

Warunek brzegowy dany wzorem:

$$s''(x_1) = s''(x_n) = 0$$

co daje:

$$\sigma_1 = \sigma_n = 0$$

Ostatecznie otrzymujemy układ równań:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

6.2.2 Clamped boundary

Warunek brzegowy dany wzorem:

$$s'(x_1) = f'(x_1)$$

$$s'(x_n) = f'(x_n)$$

Pochodne można przybliżyć ilorazami różnicowymi, co daje po przekształceniach układ równań:

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

6.2.3 Cubic spline

 $C_1(x)$ – funkcja sześcienna przez pierwsze 4 węzły

 $\mathcal{C}_n(x)$ – funkcja sześcienna przez ostatnie 4 węzły

$$s'''(x_1) = C_1''' \qquad s'''(x_n) = C_n'''$$

Stałe \mathcal{C}_1''' i \mathcal{C}_n''' mogą być wyznaczone bez znajomości $\mathcal{C}_1(x)$ i $\mathcal{C}_n(x)$.

Przybliżenie pierwszej pochodnej:

$$\Delta_{i} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}}$$

$$\Delta_{i}^{(2)} = \frac{\Delta_{i+1} - \Delta_{i}}{x_{i+2} - x_{i}}; \quad 2\Delta_{i}^{(2)} \approx f''$$

$$\Delta_{i}^{(3)} = \frac{\Delta_{i+1}^{(2)} - \Delta_{i}^{(2)}}{x_{i+3} - x_{i}}; \quad 6\Delta_{i}^{(3)} \approx f'''$$

co po przekształceniach daje:

$$-h_1\sigma_1 + h_1\sigma_2 = h_1^2\Delta_1^{(3)}$$

$$h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n = -h_{n-1}^2\Delta_{n-3}^{(3)}$$

Ostatecznie otrzymujemy układ równań:

$$\begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{bmatrix}$$

6.2.4 Przykładowe wykresy

Tabela 13. Błędy intepolacji funkcjami sklejanymi 3-go stopnia 14 węzłów

Cubic spline ma większe błędy dla 14 węzłów. Najmniejsze ma Clamped boundary.

Tabela 14. Błędy intepolacji funkcjami sklejanymi 3-go stopnia 30 wezłów

Dla 30 węzłów różnica między warunkami brzegowymi jest niewielka. Cubic spline osiąga najmniejsze błędy.

Tabela 15. Błędy intepolacji funkcjami sklejanymi 3-go stopnia 50 węzłów

Dla 50 węzłów występuje niewielki efekt Runge'go dla warunku Clamped boundary.

Tabela 16. Błędy intepolacji funkcjami sklejanymi 3-go stopnia 100 węzłów

Dla 100 węzłów efekt Runge'go dla Clamped boundary zwiększył się pod względem skali, leczy zmniejszył się pod względem wartości. Dokładności Cublic spline jest dużo większa od pozostałych warunków.

6.3 Porównanie funkcji sklejanych

	Stopień funkcji sklejanej				
	2		3		
Liczba węzłów	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline
4	19.08553683	19.08553683	19.08553683	19.08553683	19.08553683
5	20.42192532	20.20460213	20.05450125	20.06057742	20.04231485
6	20.63223183	21.84022545	19.37398615	19.42769936	19.20539405
7	43.43499292	38.74723748	21.40366394	21.51857975	21.12057221
8	26.34204628	24.36931626	18.22812553	18.27757548	18.10053349
9	50.4153828	49.90668463	19.36109594	19.19961539	19.82941122
10	19.08553683	19.08553683	19.08553683	19.08553683	19.08553683
11	45.53457295	45.38350431	14.65427736	14.75217803	14.39762589
12	24.6254838	24.42486362	11.05659583	11.05040885	11.07432617
13	27.57690855	27.35687934	12.33799815	12.3327028	12.35356665
14	18.65076798	18.42203057	9.48225263	9.487660822	9.892353648
15	19.85426524	19.62236612	13.7918198	13.79281784	13.78891798
16	18.73276055	18.49759762	13.20789322	13.18396859	13.27292369
17	22.22629396	21.99529537	9.578485896	9.576312013	9.577581031
18	25.98581118	26.2214841	10.17948778	10.17954486	10.1792656
19	72.23367861	72.47123184	4.331967872	4.312586766	4.402421264
20	20.56468574	20.80211019	8.324590456	8.32456486	8.324684649
30	14.57928888	14.80841386	2.461047548	2.461047571	2.461047508
40	3.062011035	3.277809742	1.231506232	1.231494139	1.231531534
50	1.584089885	1.384070413	0.301634945	0.301634229	0.301636447
100	0.239146758	0.096514894	0.034049041	0.047953825	0.015005783
200	0.106970335	0.020551387	0.008798925	0.013584552	0.000698865
300	0.070865502	0.009204826	0.003927496	0.006285137	0.00013006
400	0.05308873	0.005246896	0.002211326	0.003606226	4.09E-05
500	0.042451944	0.003392258	0.001414837	0.002334274	1.69E-05
600	0.03537146	0.002374351	0.000982991	0.001634613	8.17E-06
700	0.03031658	0.0017553	0.000721791	0.001207096	4.42E-06
800	0.026524691	0.001350079	0.000551089	0.000925591	2.58E-06
900	0.023577133	0.001071197	0.000436755	0.00073602	1.62E-06
1000	0.021218343	0.000870474	0.000353	0.000596485	1.05E-06
10000	0.002120776	8.96E-06	1.19E-06	2.05E-06	1.00E-10

Tabela 17. Błędy maksymalne intepolacji funkcjami sklejanymi 2-go i 3-go stopnia

		Stop	oień funkcji sklejanej		
	2		3		
Liczba węzłów	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline
4	490536.9822	490536.9822	490536.9822	490536.9822	490536.9822
5	551935.56	551283.0103	549424.0407	548795.3028	550704.9372
6	982601.9915	981257.731	953105.1304	949754.5306	967836.3576
7	3138104.114	2359849.071	1014942.377	956475.4973	1213501.991
8	952574.6104	783292.0213	426641.9776	405076.0435	497491.848
9	3791652.171	3693089.576	457527.5625	446769.4749	493867.9969
10	490536.9822	490536.9822	490536.9822	490536.9822	490536.9822
11	3874733.704	3839666.075	231657.3388	233836.1951	228550.7032
12	1051136.569	1027356.438	162435.0882	159967.0943	183691.9084
13	1276324.106	1247748.335	219177.2509	211343.2945	263472.7744
14	571758.7404	557573.3201	176699.2812	170713.207	207446.3512
15	437991.934	423880.2971	201777.0077	199052.3205	214290.1303
16	422501.4998	415189.5582	164182.7144	163465.2137	166982.4955
17	831238.8909	818117.4291	123324.7734	123310.8292	123318.7361
18	1297551.985	1329194.884	104714.8122	104530.7539	105795.8116
19	9296324.317	9382092.937	37621.34289	37143.58411	40065.96739
20	758916.7983	782309.6265	66991.57509	66521.14479	69334.83101
30	370045.3352	385762.9762	6297.494355	6303.969016	6289.861864
40	11264.34539	12060.50304	1004.749168	1007.807068	1000.360354
50	4303.004244	2983.731747	67.40718312	68.96825809	65.26259951
100	207.5097085	19.19331086	0.195292193	0.309109295	0.0845989
200	55.56030332	1.748034597	0.004014845	0.009325029	0.00018989
300	24.98335733	0.392531288	0.00051497	0.001308968	6.4849E-06
400	14.10332306	0.132264143	0.000121437	0.000321936	6.12E-07
500	9.038909919	0.056234402	3.96877E-05	0.000107853	9.93E-08
600	6.28105985	0.027796694	1.59264E-05	4.39969E-05	2.26E-08
700	4.616100187	0.015269284	7.3617E-06	2.05763E-05	6.50E-09
800	3.534747951	0.009068534	3.77348E-06	1.06401E-05	2.21E-09
900	2.793090959	0.005719208	2.09307E-06	5.94228E-06	8.55E-10
1000	2.262468336	0.003782899	1.23554E-06	3.52698E-06	3.66E-10
10000	0.022601516	4.04E-07	1.56E-12	4.66E-12	3.49E-18

Tabela 17. Sumy kwadratów błędów intepolacji funkcjami sklejanymi 2-go i 3-go stopnia

6.4 Wnioski

Dla każdego warunku brzegowego zwiększenie liczby węzłów powoduje wzrost dokładności.

Dla większości przybliżeń nie występuje efekt Runge'go. Wyjątkiem jest funkcja sklejana 3-go stopnia z warunkiem Clamped Boundary.

Dokładność różni się w zależności od przyjętego warunku brzegowego. Dla funkcji 2-go stopnia najlepszym okazał się Clamped Boundary, a dla funckji 3-go stopnia najlepszym był Cubic Spline.

Praktycznie zawsze interpolacja funkcjami 3-go stopnia była dokładniejsza od interpolacji funkcjami 2-go stopnia, niezależnie od warunku brzegowego.

7. Aproksymacja średniokwadratowa

7.1 Aproksymacja średniokwadratowa wielomianami algebraicznymi

Mając dane:

- n węzłów aproksymacji: $(x_i, F(x_i) = y_i)$, i = 0,1,...,n
- układ funckji bazowych: $\phi_j(x)$, j=0,1,...,m

Szukamy wielomianu uogólnionego w postaci:

$$f(x) = \sum_{j=0}^{m} a_j \, \phi_j(x)$$

czyli szukamy $\{a_j\}_{j=0}^m$, dla których:

$$min||F(x) - f(x)|| = min \sum_{i=0}^{n} w(x_i) \left[F(x_i) - \sum_{j=0}^{m} a_j \phi_j(x_i) \right]^2$$

gdzie:

$$\left[F(x_i) - \sum_{j=0}^m a_j \, \phi_j(x_i)\right]^2$$
 - odchylenie

$$w(x_i)$$
 - waga danego węzła, $w(x) \ge 0$

Przyjmując za funkcje bazowe jednomiany: $\phi_j(x) = x^j$, po przekształceniach otrzymujemy:

$$\sum_{j=0}^{m} \left(\sum_{i=0}^{n} w(x_i) x_i^{j+k} \right) a_j = \sum_{i=0}^{n} w(x_i) F(x_i) x_i^{k}$$

gdzie:

$$\sum_{i=0}^{n} w(x_i) x_i^{j+k} = g_{j,k}$$

$$\sum_{i=0}^{n} w(x_i) F(x_i) x_i^k = b_k$$

W postaci macierzowej:

$$\begin{bmatrix} \Sigma w_i & \Sigma w_i x_i & \Sigma w_i x_i^2 & \dots & \Sigma w_i x_i^m \\ \Sigma w_i x_i & \Sigma w_i x_i^2 & \Sigma w_i x_i^3 & \dots & \Sigma w_i x_i^{m+1} \\ \dots & \dots & \dots & \dots & \dots \\ \Sigma w_i x_i^m & \Sigma w_i x_i^{m+1} & \Sigma w_i x_i^{m+2} & \dots & \Sigma w_i x_i^{2m} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{bmatrix} = \begin{bmatrix} \Sigma w_i F_i \\ \Sigma w_i F_i x_i \\ \dots \\ \Sigma w_i F_i x_i^M \end{bmatrix}$$

Jeżeli x_0,x_1,\dots,x_n są różne i $m\leq n$ to $\det G\neq 0$ \longrightarrow układ ma jedno rozwiązanie.

7.1.1 Przykładowe wykresy

Wykres 34. Aproksymajcja średniokwadratowa wielomianami algebraicznymi dla 16 węzłów i 15 funckji bazowych

Wykres 35. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 16 węzłów i 15 funckji bazowych

Max	Suma kw.	
753.7192	15950082	

Tabela 17. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 16 węzłów i 15 funckji bazowych

Dla bliskich wartości liczby węzłów i funkcji bazowych aproksymacja jest niedokładna.

Wykres 36. Aproksymajcja średniokwadratowa wielomianami algebraicznymi dla 20 węzłów i 15 funckji bazowych

Wykres 37. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 20 węzłów i 15 funckji bazowych

Max	Suma kw.
42.64691	100119.4

Tabela 18. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 20 węzłów i 15 funckji bazowych

Zwiększenie liczby węzłow do 20 podniosło dokładność aproksymacji.

Wykres 38. Aproksymajcja średniokwadratowa wielomianami algebraicznymi dla 300 węzłów i 15 funckji bazowych

Wykres 39. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 15 węzłów i 20 funckji bazowych

Max	Suma kw.	
7.512816	9833.367	

Tabela 19. Błędy aproksymajcji średniokwadratowej wielomianami algebraicznymi dla 30 węzłów i 15 funckji bazowych

Ponowne zwiększenie liczby węzłow do 30 zwiększyło dokładność aproksymacji.

7.2 Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

Szukamy wielomianu uogólnionego w postaci:

$$f(x) = \sum_{j=0}^{m} a_j \, \phi_j(x)$$

Za ciąg funkcji bazowych przyjmujemy:

$$\{\phi_k(x)\}=1,\sin(x),\cos(x),\sin(2x),\cos(2x),\dots,\sin(mx),\cos(mx)$$

Aby wyznaczyć wielomian trygonometryczny korzystamy z wzorów powstałych na podstawie szeregu Fouriera.

$$a_k = \frac{2}{n} \sum_{i=0}^{n-1} F(x_i) \cos(kx_i)$$

$$b_k = \frac{2}{n} \sum_{i=0}^{n-1} F(x_i) \sin(kx_i)$$

$$f_m(x) = \frac{a_0}{2} + \sum_{k=1}^{m} (a_k \cos(kx) + b_k \sin(kx))$$

Gdzie $f_m(x)$ jest wielomianem aproksymującym stopnia m. Aby problem był dobrze uwarunkowany, liczba funkcji bazowych nie może przekraczać liczby węzłów:

$$2m + 1 \le n$$
$$m \le \frac{n - 1}{2}$$

7.2.1 Przykładowe wykresy

Wykres 40. Aproksymajcja średniokwadratowa wielomianami trygonometrycznymi dla 22 węzłów i 10 funckji bazowych

Wykres 41. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 22 węzłów i 10 funckji

Max	Suma kw.
7.218189	4336.754

Tabela 20. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 22 węzłów i 10 funckji bazowych

Wykres 40. Aproksymajcja średniokwadratowa wielomianami trygonometrycznymi dla 28 węzłów i 10 funckji bazowych

Wykres 41. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 28 węzłów i 10 funckji

Max	Suma kw.	
4.712705	2443.908	

Tabela 20. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 28 węzłów i 10 funckji bazowych

Podobnie jak w przypadku aproksymacji wielomianami algebraicznymi, zwiększenie liczby węzłów zwiększa dokładność aproksymacji.

Wykres 40. Aproksymajcja średniokwadratowa wielomianami trygonometrycznymi dla 75 węzłów i 10 funckji bazowych

Wykres 41. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 75 węzłów i 10 funckji

Max	Suma kw.
3.500304	1997.748

Tabela 20. Błędy aproksymajcji średniokwadratowej wielomianami trygonometrycznymi dla 75 węzłów i 10 funckji bazowych

Ponowne zwiększenie liczby węzłów zwiększa dokładność aproksymacji.

7.3 Porównanie wartości błędów

Wykres 42. Logartym naturalny maksymalnych błędów aproksymajcji średniokwadratowej wielomianami algebraicznymi

Wykres 43. Logartym naturalny maksymalnych błędów aproksymajcji średniokwadratowej wielomianami trygonometrycznymi

Jak łatwo zauważyć oba sposoby aproksymacji dają zbliżone przybliżenbia dla małej liczby funkcji bazowych. Jednak to aproksymacja wielomianami trygonometrycznymi okazuje się być lepsza dla większej ilości funkcji bazowych. Łatwo zauważyć że już dla ~10 funkcji bazowych zapewnia lepsze przybliżenie niż jakikolwiek wielomian algebraiczny. Najdokładniejsze jest dla ~20 stopnia wielomianu trygonometrycznego i dużej liczby węzłów.

Analogiczna sytuacja występuje przy porównywaniu sum błędów obu aproksymacji.

7.4 Wnioski

Aproksymowanie dla granicznie bliskich liczb funkcji bazowych i węzłów aproksymacji zawsze daje gorsze przybliżenie niż dla większej liczby węzłów aproksymacji.

Aproksymacja wielomianami trygonometrycznymi jest lepsza dla zadanej funkcji. Jest to spowodowane tym, iż ta funkcja jest ciągła i okresowa, podobnie jak szereg Fouriera, na którym ta aproksymacja się opiera.

8. Podsumowanie

Nie można jednoznacznie wskazać najlepszej metody przybliżania funkcji, niezależnie od własności funkcji przybliżanej.

Funkcje ciągłe i okresowe dobrze przybliża się wielomianami trygonometrycznymi.

Innymi dobrymi sposobami są metoda Lagrange'a z węzłami Czebyszewa i funkcja sklejana 3-go stopnia z warunkiem brzegowych Cubic Spline.

Metody Lagrange'a, Newtona i Hermite'a z węzłami równoodległymi są bardzo podatne na efekt Runge'go, przez co nie są najlepszym wyborem do interpolacji.