

Digitalisation des rapports de maintenance aéronautique : <u>Business Case</u>

Projet inspiré de cas réels Airbus (Data opensource)

1. Introduction

Le présent document a pour objectif de démontrer la **pertinence**, **la faisabilité et la valeur ajoutée** du projet de digitalisation des rapports de maintenance aéronautique.

Ce projet s'inscrit dans la stratégie globale de modernisation des opérations de maintenance, visant à **renforcer la fiabilité des processus**, **réduire les coûts d'immobilisation** et **préparer l'intégration d'outils prédictifs**.

2. Contexte et justification

2.1. Contexte métier

La maintenance des aéronefs repose sur une documentation rigoureuse des anomalies et interventions.

Actuellement, ces informations sont consignées dans des rapports textuels non structurés, produits sur des supports variés (Word, Excel, e-mails, formulaires papier).

Cette hétérogénéité rend les données :

- difficilement exploitables pour l'analyse globale,
- sujettes à erreurs et omissions,
- et non adaptées à une logique de maintenance prédictive.

Les constructeurs et compagnies aériennes cherchent désormais à transformer ces flux d'informations en actifs digitaux structurés, afin d'anticiper les défaillances et d'améliorer la disponibilité opérationnelle des appareils.

3. Problématique métier

Comment valoriser les données issues des rapports de maintenance afin d'améliorer la traçabilité, la performance opérationnelle et la planification des interventions, tout en garantissant la conformité réglementaire ?

L'absence de structuration des données entraîne une perte de valeur significative :

- Temps de recherche long (jusqu'à 30 minutes par rapport).
- Difficulté à agréger les incidents similaires.
- Vision incomplète des pannes récurrentes.
- Limitation de la capacité prédictive.

4. Objectifs du projet

Type d'objectif	Description	Indicateur de succès
Métier	Structurer et centraliser les rapports de maintenance	100 % des rapports saisis dans l'outil digital
Opérationnel	Réduire le temps de traitement et d'analyse des incidents	-30 % de temps de saisie / analyse
Qualité	Garantir la conformité documentaire et la traçabilité	100 % des champs critiques normalisés
Stratégique	Favoriser une approche data-driven et prédictive	Base de données exploitable par modèle IA
Utilisateur	Simplifier la saisie et améliorer l'expérience technicien	Taux de satisfaction ≥ 8/10

5. Analyse de la situation actuelle (AS-IS)

5.1. Processus actuel

Saisie libre du rapport \to Transmission manuelle \to Consolidation Excel \to Analyse ponctuelle \to Archivage non structuré

5.2. Limites principales

- Données dispersées et hétérogènes.
- Absence d'historique exploitable.
- Retards dans la consolidation et le reporting.
- Manque de visibilité sur les tendances de pannes.

5.3. Conséquences observées

- Coûts de maintenance accrus.
- Faible capacité d'anticipation.
- Complexité de conformité aux audits (EASA / FAA).
- Temps d'immobilisation non optimisés.

6. Analyse de la situation cible (TO-BE)

Le futur processus repose sur une **digitalisation complète** de la chaîne de traitement des rapports :

Saisie	Centralisation	Analyses en	Tableaux de	Alerte
structurée →	automatique →	temps réel →	bord →	prédictive

Principales caractéristiques du modèle cible :

- Interface ergonomique pour les techniciens.
- Base de données unique et interopérable.
- Recherche multicritère et analyse instantanée.
- Reporting automatisé pour la direction maintenance.
- Préparation à l'intégration IA pour la prédiction des défaillances.

7. Analyse de la valeur et bénéfices attendus

Domaine [Description du bénéfice	Indicateur estimé
-----------	-------------------------	-------------------

Productivité	Diminution du temps de saisie et de recherche d'informations	-30 % de temps technicien
Maintenance	Réduction des immobilisations non planifiées	-15 % d'immobilisation moyenne
Qualité / Sécurité	Amélioration de la conformité documentaire	Zéro rapport incomplet
Data Management	Structuration et valorisation des données historiques	+100 % de données exploitables
Finance	Réduction des coûts de maintenance corrective	Économie estimée : 200 k€ / an (pour flotte de 100 avions)

8. Risques et dépendances

Risque	Туре	Probabilité	Impact	Mesure d'atténuation
Résistance au changement	Organisationnel	Moyenne	Élevé	Communication, accompagnement et formation
Qualité des données existantes	Technique	Élevée	Moyenne	Nettoyage et normalisation en amont
Retard dans le développement de la solution	Planning	Moyenne	Moyen	Suivi hebdomadaire et jalons intermédiaires
Non-conformité réglementaire	Réglementaire	Faible	Élevé	Validation du service qualité à chaque itération

9. Hypothèses clés

- Les rapports existants sont disponibles et peuvent être historisés.
- Les équipes techniques sont formées à l'usage de la nouvelle solution.
- L'infrastructure IT permet la centralisation sécurisée des données.
- Le sponsor valide le budget et les ressources dès la phase initiale.

10. Approches envisagées

Option	Description	Avantages	Inconvénients
Option 1 – Maintien du processus actuel	Aucun changement structurel	Zéro coût immédiat	Inefficacité persistante, aucune amélioration
Option 2 – Automatisation partielle (Excel + macros)	Structuration partielle des données existantes	Rapide à déployer	Faible évolutivité, maintenance manuelle
Option 3 – Déploiement d'une plateforme digitale dédiée	Outil web avec saisie guidée, base de données centralisée et reporting intégré	Transformation durable, vision globale, évolutivité IA	Investissement initial supérieur

→ Option recommandée : Option 3 – plateforme digitale complète

Raisons : meilleure fiabilité, évolutivité, ROI supérieur à moyen terme.

11. Analyse coûts / bénéfices (simplifiée)

Élément	Coût estimé (k€)	Gain estimé (k€)	Délai de ROI
Développement et intégration	150	_	_
Formation utilisateurs	20	_	_
Réduction du temps de saisie (1 200 h/an à 40 €/h)	_	48	3 ans
Réduction des immobilisations (15 % × 100 avions)	_	200	1 an
Amélioration conformité (réduction incidents documentaires)	_	30	2 ans
Total estimé	170 k€	278 k€	≈ 18 mois

12. Indicateurs de performance (KPI)

КРІ	Cible	Fréquence de mesure
Taux de saisie digitalisée	100 %	Hebdomadaire
Temps moyen de saisie	-30 %	Mensuelle
Taux de conformité rapport	100 %	Trimestrielle
Disponibilité flotte	+10 %	Semestrielle
Satisfaction utilisateur	≥ 8/10	Après déploiement

13. Conclusion et recommandation

Le projet de **digitalisation des rapports de maintenance** représente un levier majeur de transformation opérationnelle et stratégique.

L'investissement initial est compensé à court terme par une **réduction mesurable des coûts**, une **meilleure exploitation des données**, et une **hausse significative de la performance globale**.

Décision recommandée :

Validation de la mise en œuvre du projet pilote (12 semaines) avec extension à l'ensemble des sites de maintenance après 6 mois.