EE-508: Hardware Foundations for Machine Learning Transformers – Part 3

University of Southern California

Ming Hsieh Department of Electrical and Computer Engineering

Instructors:
Arash Saifhashemi

Flash Attention

Motivation: Why Model Longer Sequences Efficiently?

- Unlocking Advanced Capabilities
 - Natural Language Processing (NLP): Understanding long documents like books or manuals requires maintaining extended context across thousands of tokens.

Understanding a story requires remembering distant context

Motivation: Why Model Longer Sequences Efficiently?

- Enhancing Perceptual Fidelity
 - Computer Vision: Modeling full-resolution images or videos enables richer, more accurate scene interpretation—especially with long spatial-temporal sequences

High-res input improves detail extraction and decision-making.

Motivation: Why Model Longer Sequences Efficiently?

- Enabling Emerging Applications
 - Time-series, Audio, Video, Medical Imaging: These domains produce massive sequences that benefit from efficient attention mechanisms—spanning millions of steps.

From top to bottom: ECG waveform, spectrogram, video frames

Sequential data across domains demands scalable attention.

Challenge: Scaling Transformers to Long Sequences is Costly

Quadratic Attention Complexity

- Standard self-attention computes attention scores for every pair of tokens.
- Complexity:

$$\mathcal{O}(n^2 \cdot d)$$

Memory Bottleneck

- Attention matrix size: n×n
- High memory use limits batch size and sequence length in practice.

Slow Inference and Training

- Every token attends to all others \rightarrow computation doesn't scale linearly.
- Especially problematic for sequences n>2,048

This requires:

- A lot of read and write from memory
- A high number of calculations

What is Dropout in Attention?

- **Dropout** is a regularization method that randomly disables parts of the network during training to prevent overfitting.
 - This forces the network to not rely too heavily on any specific connection.
 - At inference time, all elements are used (scaled appropriately).

In Attention Mechanism

- Dropout is applied after softmax on the attention matrix:
- Some attention weights are randomly set to zero.
- Forces the model to **distribute attention** more evenly.

$$A' = \operatorname{Dropout}(A) = A \odot M$$

 $M \sim \operatorname{Bernoulli}(p)$: a binary mask (1 with probability p, else 0)

⊙: element-wise multiplication

$$\mathbf{O} = ext{Dropout}\left(ext{Softmax}\left(rac{\mathbf{Q}\mathbf{K}^ op}{\sqrt{d_k}}
ight)
ight)\mathbf{V}$$

This requires:

- A lot of read and write from memory
- A high number of calculations

$$\mathbf{O} = ext{Dropout}\left(ext{Softmax}\left(ext{Mask}\left(rac{\mathbf{Q}\mathbf{K}^ op}{\sqrt{d_k}}
ight)
ight)
ight)\mathbf{V}^ op$$

Challenge: Scaling Transformers to Long Sequences is Costly

Quadratic Attention Complexity

- Standard self-attention computes attention scores for every pair of tokens.
- Complexity:

$$\mathcal{O}(n^2 \cdot d)$$

Memory Bottleneck

- Attention matrix size: n×n
- High memory use limits batch size and sequence length in practice.

Slow Inference and Training

- Every token attends to all others \rightarrow computation doesn't scale linearly.
- Especially problematic for sequences n>2,048

Background: Approximate Attention

Approximate attention: tradeoff quality for speed fewer FLOPs

Flash Attention

Is there a fast, memory-efficient, and exact attention algorithm?

Flash Attention

Performance Comparison

- Standard PyTorch: (GPT-2) Performs 4 separate memory-heavy operations.
- FlashAttention: Fuses them into one kernel.
- **Result**: Up to **5x speedup** on long sequences.

Note that Matmul does not consume too much time

Background: GPU Memory Model

The biggest cost is in moving data
Standard implementation requires repeated R/W from slow GPU memory

Read/Write of Attention Scores_{MatMul}

- A lot of read and write from memory
- A high number of calculations

Exactly How Are We Saving?

We want to compute:

$$\mathbf{O} = \operatorname{softmax}(\mathbf{Q}\mathbf{K}^{\top})\mathbf{V}$$

Traditional implementation (naive):

- 1.Compute $QK^T \rightarrow$ this is a full attention score matrix.
- 2. Store it in memory (often written to DRAM).
- 3.Apply softmax.
- 4. Multiply by V.

The attention matrix $\mathbf{Q}\mathbf{K}^{ op} \in \mathbb{R}^{N imes N}$

is never materialized (i.e. written back into HBM)

Feature	Standard Attention	FlashAttention	Savings
Attention matrix	Materialized in HBM	Never stored	Biggest win
K/V access	Multiple reads (backward, dropout)	Streamed once	Fewer HBM reads
Intermediate writes	Heavy	None (in SRAM only)	Saves bandwidth
Memory usage	O(N^2)	O(N)	Scalability

Why Write QK^T in Traditional Attention?

1.Modular Computation:

- 1. Traditional frameworks (like PyTorch, TensorFlow) compute $QK^T \rightarrow softmax \rightarrow multiply by V as$ **separate steps**.
- 2. Intermediate result (QK^T) must be **stored temporarily** to proceed to the next stage.

2.Memory Constraints:

- 1. QK^T is a large $\mathbf{n} \times \mathbf{n}$ matrix.
- 2. Too big to keep entirely in fast on-chip memory (registers/shared memory).
- 3. So it's offloaded to slower global memory (i.e., written to DRAM or GPU memory).

3.Backward Pass (Training):

1. QK^T may be needed for **gradients during backpropagation**, so it's stored to avoid recomputation.

FlashAttention fuses these steps to avoid the write entirely.

FlashAttention: Block-wise Attention in SRAM

Goal:

• Efficiently compute attention without materializing the full attention matrix or overloading HBM.

Looping Mechanism

Outer Loop (Red): Iterates over K/V blocks

• Inner Loop (Blue): Streams over Q rows

Step	Description Load blocks of Q, K, V from HBM → SRAM	
1. Сору		
2. Compute	Compute $\mathbf{Q}\mathbf{K}^{ op}$, softmax, and $\mathrm{softmax}(\mathbf{Q}\mathbf{K}^{ op})\mathbf{V}$ inside fast SRAM	
3. Accumulate	Combine block-wise softmax outputs using scaled sums	
4. Output	Final result $\mathbf{O} = \operatorname{Attention}(Q,K,V)$ streamed back to HBM	

Green: HBM

Orange: SRAM

- Avoids writing the full attention matrix to memory.
- Keeps all intermediate ops in SRAM.
- Enables attention on very long sequences with high speed and low memory usage.

How to Reduce HBM Reads/Writes: Compute by Blocks

Challenges:

- Softmax Normalization Without Full Input
 - Softmax requires access to the entire row to normalize values (i.e., compute exponentials and divide by the sum).
 - When processing in **blocks**, you don't have the whole row at once.
- Backward Pass Without Storing Attention Matrix
 - The standard method stores the full attention matrix from the forward pass for use during backpropagation.
 - But that matrix is **too large** to keep in SRAM or even HBM for long sequences.

Approaches

1.Tiling

- 1. Instead of computing attention all at once, **split it into blocks** (tiles).
- 2. Only load **one tile at a time** into fast GPU **SRAM**.
- 3. Perform computations (QK^T, softmax, etc.) block-by-block, reducing HBM traffic.

2.Recomputation

- 1. Instead of storing the huge attention matrix, recompute it during the backward pass.
- 2. This saves memory (important for long sequences) at the cost of **a bit more compute**.

FlashAttention smartly uses tiling + recomputation to:

- Minimize HBM reads/writes
- •Fit large attention computations into fast memory
- Enable scaling to very long sequences

Key Insight Behind FlashAttention

- Decomposing Large Softmax via Blocked Scaling
 - We can break softmax over a large matrix into smaller blocks with scaled softmax:

$$\operatorname{softmax}([A_1,A_2]) = [\alpha \operatorname{softmax}(A_1),\ \beta \operatorname{softmax}(A_2)]$$

$$lpha = rac{e^{m_1}}{e^{m_1} + e^{m_2}}, \quad eta = rac{e^{m_2}}{e^{m_1} + e^{m_2}}, \quad m_1 = \max A_1, \, m_2 = \max A_2$$

Key Insight Behind FlashAttention

Applied to Attention

- Each softmax is computed locally per block.
- Normalization is done globally via scaling.
- Enables block-wise computation that fits in SRAM, minimizing memory traffic.

$$\operatorname{softmax}([A_1,A_2]) = [\alpha \operatorname{softmax}(A_1),\ \beta \operatorname{softmax}(A_2)]$$

$$lpha = rac{e^{m_1}}{e^{m_1} + e^{m_2}}, \quad eta = rac{e^{m_2}}{e^{m_1} + e^{m_2}}, \quad m_1 = \max A_1, \, m_2 = \max A_2$$

$$\operatorname{softmax}([A_1,A_2])egin{bmatrix} V_1 \ V_2 \end{bmatrix} = lpha \operatorname{softmax}(A_1)V_1 + eta \operatorname{softmax}(A_2)V_2$$

Tiling Softmax

l: denominator

The denominator for row i is:

$$l_i = \sum_j \exp(A_{ij})$$

Tiling + Softmax Rescaling

Step 1: Compute Scores Block-by-Block

- Partition K to $K^{(1)}$, $K^{(2)}$
- Keys $K^{(1)}$, $K^{(2)}$ are stored in HBM.
- Compute score matrices (in SRAM):

$$S^{(1)} = Q(K^{(1)})^ op, \quad S^{(2)} = Q(K^{(2)})^ op$$

Tiling + Softmax Rescaling

Step 1: Compute Scores Block-by-Block

- Partition K to $K^{(1)}$, $K^{(2)}$
- Keys $K^{(1)}$, $K^{(2)}$ are stored in HBM.
- Compute score matrices (in SRAM):

$$S^{(1)} = Q(K^{(1)})^ op, \quad S^{(2)} = Q(K^{(2)})^ op$$

Step 2: Apply Softmax Locally

Accumulate denominator terms:

$$A^{(1)} = \exp(S^{(1)}), \quad A^{(2)} = \exp(S^{(2)})$$

$$l^{(1)} = \sum_i \exp(S_i^{(1)}), \quad l^{(2)} = l^{(1)} + \sum_i \exp(S_i^{(2)})$$

Tiling + Softmax Rescaling

Step 1: Compute Scores Block-by-Block

- Partition K to $K^{(1)}$, $K^{(2)}$
- Keys $K^{(1)}$, $K^{(2)}$ are stored in HBM.
- Compute score matrices (in SRAM):

$$S^{(1)} = Q(K^{(1)})^ op, \quad S^{(2)} = Q(K^{(2)})^ op$$

Step 2: Apply Softmax Locally

• Accumulate denominator terms:

$$A^{(1)} = \exp(S^{(1)}), \quad A^{(2)} = \exp(S^{(2)})$$

$$l^{(1)} = \sum_i \exp(S_i^{(1)}), \quad l^{(2)} = l^{(1)} + \sum_i \exp(S_i^{(2)})$$

Step 2: Compute Partial Outputs

• Locally compute: $O^{(1)}=rac{A^{(1)}}{I^{(1)}}V^{(1)}$

• Rescale using global denominator:

$$O = rac{l^{(1)}}{l^{(2)}} O^{(1)} + rac{A^{(2)}}{l^{(2)}} V^{(2)}$$

Tiling + Softmax Rescaling (Visual Representation)

Tiling + Softmax Rescaling (Summary)

1. Compute local scores:

$$S^{(1)} = Q(K^{(1)})^ op, \quad S^{(2)} = Q(K^{(2)})^ op$$

2. Apply local softmax approximation:

$$A^{(1)} = \exp(S^{(1)}), \quad A^{(2)} = \exp(S^{(2)})$$

3. Accumulate denominators:

$$l^{(1)} = \sum \exp(S^{(1)}), \quad l^{(2)} = l^{(1)} + \sum \exp(S^{(2)})$$

4. Compute and rescale outputs:

$$O^{(1)} = rac{A^{(1)}}{l^{(1)}} V^{(1)} \qquad \qquad O = rac{l^{(1)}}{l^{(2)}} O^{(1)} + rac{A^{(2)}}{l^{(2)}} V^{(2)}$$

- This fixes the softmax to act as if it was applied over the full $K^{(1)}$, $K^{(2)}$, even though we processed one block at a time.
 - Eliminates full attention matrix storage
 - Enables efficient long-sequence attention

Recomputation in Backward Pass (FlashAttention)

- What's the problem in standard attention?
 - During backpropagation, we need the attention again.
 - In standard attention, this large N×N matrix is **stored in HBM**, which is costly in memory.
- What does FlashAttention do instead?
 - Instead, it recomputes it during the backward pass from:
 - **Do not store** full A
 - Only store normalization vector l
 - Recompute A again (same Q and K, same result).
 - Since we stored I (normalizer for softmax), we can exactly reconstruct softmax(QK^T) in blocks.
 - Use this recomputed A to compute gradients.

FlashAttention trades a small compute increase for massive memory savings and speedup.

Attention	Standard	FlashAttention
GFLOPs	66.6	75.2 (个13%)
HBM reads/writes (GB)	40.3	4.4 (↓ 9x)
Runtime (ms)	41.7	7.3 (↓6x)

FlashAttention: 2-4x speedup, 10-20x memory reduction

- 2-4x speedup with no approximation
- 10-20x memory reduction memory linear in sequence length

GPT3: Faster Training, Longer Context, Better Model

FlashAttention speeds up GPT-3 training by 2x,	
increase context length by 4x, improving model quality	

Model	Val perplexity on the Pile (lower better)
GPT-1.3B, 2K context	5.45
GPT-1.3B, 8K context	5.24
GPT-2.7B, 2K context	5.02
GPT-2.7B, 8K context	4.87

- Longer context (enabled by FlashAttention) improves perplexity and model understanding.
- ChapterBreak is a benchmark task designed to evaluate a language model's ability to understand and retain long-range context especially over several thousand tokens.
 - Models trained with longer context (e.g., 8K tokens) perform significantly better on ChapterBreak.
 - This shows FlashAttention helps models retain more context, which boosts performance on long-sequence tasks.

FlashAttention-2 — More Speed, Simpler Design

FlashAttention (v1):

- Tiled attention in GPU SRAM
- Blockwise softmax with scaling
- No full attention matrix in HBM
- Fused softmax and matmul, but dropout and masking were separate kernels
- Better backward pass: recomputation without storing attention matrix
- Faster and more memoryefficient
- Enabled 8K+ token context training

- FlashAttention-2 (Additions Over FA-1):
 - Fully fused CUDA kernel: softmax + dropout + masking + matmul
 - Improved parallelism: better use across batch, heads, blocks
 - Results:
 - Up to 2× faster than FA-1
 - 5× faster than standard attention

FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, Christopher Ré arXiv:2307.08691 [cs.LG], July 2023

FlashAttention-3 — Additional Enhancements

New Additions Over FA-2:

- Sliding Window & Sparse Attention: restricts each token to attend only to a local window, improving efficiency while retaining useful context (used in models like Mistral)
- Multi-head parallelism using tensor cores
- 2-bit softmax (quantized exponentials)

Purpose:

- Built for modern long-sequence LLMs: Mistral, Yi, DeepSeek, etc.
- Efficient up to 128K+ tokens

FlashAttention-3: Faster Attention with Better Parallelism and Memory Efficiency

Tri Dao, Mohammad Shoeybi, Alexander G. Matveev, Dan Fu, Jim Gschwind, Bill Jia, Sharan Chetlur, Shoumik Palkar, Quynh Nguyen, Christopher Ré arXiv:2402.17764 [cs.LG], February 2024