Table of Contents

	J
Part 1: No trust constrains	1
Part 2: Trust less than 20 for each engine	6
Part 3: Trust less than 15	

In this problem we will be searching for the most optimal rocket trace, where there will be the smallest fuel amount burned and the rocket reach all points.

```
clear all;
close all;
% import data for the excersice from outter file
run thrusters data.m
```

Part 1: No trust constrains

```
cvx_solver('sdpt3');
cvx_begin
variables engine1_power(K-1) engine2_power(K-1) force_vector_x(K) force_vector_y(K)
minimize (sum(enginel_power)+sum(engine2_power))
subject to
    % where rocket starts
    points_x(1) == 0;
    points y(1) == 0;
    % rocket wasn't moving on the start
    velocity x(1) == 0;
    velocity_y(1) == 0;
    points_x(k1) == w1(1);
    points_y(k1) == w1(2);
    points_x(k2) == w2(1);
    points_y(k2) == w2(2);
    points x(k3) == w3(1);
    points_y(k3) == w3(2);
    points_x(k4) == w4(1);
    points_y(k4) == w4(2);
    % engine power must be grather than 0!
    engine1_power >= 0; engine2_power >= 0;
    % bounds of the trajecory
```

```
abs(points_x) <= pmax; abs(points_y) <= pmax;</pre>
         for k=1:K-1
           % Rocket model
           force_vector_x(k) == cos(theta1)*engine1_power(k) +
  cos(theta2)*engine2_power(k) + 0;
            force_vector_y(k) == sin(theta1)*engine1_power(k) +
  sin(theta2)*engine2_power(k) - m*g;
           velocity_x(k+1) == (1-alpha)*velocity_x(k) + (h/a)
m)*force_vector_x(k);
           velocity_y(k+1) == (1-alpha) * velocity_y(k) + (h/alpha) * velocity_y(k) + (h/alpha)
m)*force vector y(k);
           points x(k+1) == points x(k) + h*velocity x(k);
           points_y(k+1) == points_y(k) + h*velocity_y(k);
          end
cvx_end
total_fuel_consumption = (sum(enginel_power)+sum(engine2_power));
disp('Found minimal fuel consumption: ')
disp(total_fuel_consumption)
% draw the waypoints and rocket trajectory
figure(1);
hold on;
axis equal;
grid on;
title("Rocket trajectory");
xlim([-pmax-1 pmax+1]);
ylim([-pmax-1 pmax+1]);
xlabel("x coordinate");
ylabel("z coordinate");
point1 = plot(w1(1), w1(2), 'ro');
point2 = plot(w2(1), w2(2), 'r*');
point3 = plot(w3(1), w3(2), 'rs');
point4 = plot(w4(1), w4(2), 'rd');
point_start = plot(points_x(1), points_y(1), 'black*');
rocket_trajectory = plot(points_x, points_y, '-black');
legend([point1 point2 point3 point4 point_start
  rocket_trajectory], 'waypoint 1', 'waypoint 2', 'waypoint 3', 'waypoint
  4', 'starting point', 'rocket trajecotry', 'Location', 'southwest');
hold off;
% draw plot of enigines trust over the time
figure(2);
hold on; grid on;
title('Rocket engines forces');
engine1 = plot(engine1_power, 'black-');
engine2 = plot(engine2_power, 'red-');
legend([engine1 engine2], 'engine 1', 'engine
  2','Location','Northwest');
```

```
hold off
% Draw plot of the X and Y position
figure(3);
hold on; grid on;
title('X and Y changes over time');
points_x = plot (points_x, 'black-');
points y = plot(points y, 'red-');
legend([points_x points_y],'X axis displacement','Y axis
displacement','Location','Southwest');
hold off
Calling SDPT3 4.0: 800 variables, 408 equality constraints
_____
num. of constraints = 408
dim. of socp var = 400, num. of socp blk = 200
dim. of linear var = 398
dim. of free var = 2 *** convert ublk to lblk
*******************
  SDPT3: Infeasible path-following algorithms
********************
version predcorr gam expon scale_data
   NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj
cputime
.____
0/0.000/0.000/9.4e+01/3.1e+01/5.9e+06/ 1.459619e+05 0.000000e+00/
0:0:00/ chol 1 1
1/0.588/0.122/3.9e+01/2.8e+01/2.6e+06/6.248028e+04 -7.286643e+03/
0:0:00/ chol 1 1
2/0.886/1.000/4.4e+00/2.5e-01/3.5e+05/ 1.038611e+04 -4.445138e+04/
 0:0:00 | chol 1 1
 3/0.877/1.000/5.4e-01/7.5e-02/6.3e+04/ 2.349045e+03 -3.169547e+04/
 0:0:00/ chol 1 1
 4/0.750/0.794/1.3e-01/2.1e-02/2.1e+04/ 1.484675e+03 -1.495913e+04/
 0:0:00 | chol 1 1
 5/0.758/0.904/3.2e-02/2.7e-03/8.1e+03/ 1.239459e+03 -6.014713e+03/
 0:0:01/ chol 1 1
 6|0.788|0.972|6.9e-03|6.6e-03|2.9e+03| 1.148724e+03 -1.661217e+03|
 0:0:01/ chol 1 1
7/0.997/0.880/2.1e-05/2.2e-03/4.5e+02/ 1.090408e+03 6.412857e+02/
0:0:01/ chol 1 2
8|0.961|0.944|8.6e-07|1.3e-04|1.8e+02| 1.065187e+03 8.824841e+02|
0:0:01/ chol 2 2
 9|0.941|0.936|2.8e-07|8.6e-06|3.0e+01| 1.057253e+03 1.027106e+03|
0:0:01/ chol 1 1
10/1.000/0.741/1.0e-07/2.3e-06/1.2e+01/ 1.056206e+03 1.044692e+03/
 0:0:01/ chol 2 2
11/1.000/0.950/2.5e-08/1.4e-07/4.4e+00/ 1.055632e+03 1.051257e+03/
0:0:01/ chol 1 1
12/0.951/0.872/1.2e-08/2.5e-08/1.0e+00/ 1.055405e+03 1.054366e+03/
0:0:01/ chol 2 1
```

```
13/0.980/0.982/4.6e-09/3.5e-09/1.9e-02/ 1.055345e+03 1.055326e+03/
0:0:01/ chol 1 1
14/0.989/0.989/9.2e-10/1.8e-08/2.7e-04/ 1.055344e+03 1.055344e+03/
0:0:01 chol 2 2
15/0.991/0.989/1.3e-11/1.3e-09/5.4e-06/ 1.055344e+03 1.055344e+03/
0:0:01
 stop: max(relative gap, infeasibilities) < 1.49e-08</pre>
______
number of iterations = 15
primal objective value = 1.05534376e+03
dual objective value = 1.05534375e+03
gap := trace(XZ) = 5.42e-06
                   = 2.57e-09
relative gap
actual relative gap = 2.12e-09
rel. primal infeas (scaled problem) = 1.31e-11
rel. dual " " = 1.26e-09
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " = 0.00e+00
norm(X), norm(y), norm(Z) = 2.5e+02, 1.2e+02, 4.9e+00
norm(A), norm(b), norm(C) = 1.8e+02, 1.1e+02, 1.5e+01
Total CPU time (secs) = 0.61
CPU time per iteration = 0.04
termination code = 0
DIMACS: 3.6e-11 0.0e+00 9.5e-09 0.0e+00 2.1e-09 2.6e-09
Status: Solved
Optimal value (cvx_optval): +1055.34
Found minimal fuel consumption:
  1.0553e+03
```


Part 2: Trust less than 20 for each engine

```
cvx_solver('sdpt3');
cvx begin
variables engine1_power(K-1) engine2_power(K-1) force_vector_x(K) force_vector_y(K)
minimize (sum(engine1_power)+sum(engine2_power))
subject to
    % where rocket starts
    points_x(1) == 0;
    points y(1) == 0;
    % rocket wasn't moving on the start
    velocity_x(1) == 0;
    velocity_y(1) == 0;
    points_x(k1) == w1(1);
    points_y(k1) == w1(2);
    points_x(k2) == w2(1);
    points_y(k2) == w2(2);
    points x(k3) == w3(1);
    points_y(k3) == w3(2);
    points_x(k4) == w4(1);
    points_y(k4) == w4(2);
```

```
% engine power must be grather than 0!
    engine1_power >= 0; engine2_power >= 0;
    engine1_power < 20; engine2_power < 20;</pre>
    % bounds of the trajecory
    abs(points_x) <= pmax; abs(points_y) <= pmax;</pre>
    for k=1:K-1
     % Rocket model
     force_vector_x(k) == cos(theta1)*engine1_power(k) +
 cos(theta2)*engine2_power(k) + 0;
     force_vector_y(k) == sin(theta1)*engine1_power(k) +
 sin(theta2)*engine2 power(k) - m*q;
     velocity_x(k+1) = (1-alpha) * velocity_x(k) + (h/a)
m)*force_vector_x(k);
     velocity_y(k+1) == (1-alpha) *velocity_y(k) + (h/
m)*force_vector_y(k);
     points_x(k+1) == points_x(k) + h*velocity_x(k);
     points_y(k+1) == points_y(k) + h*velocity_y(k);
    end
cvx_end
total_fuel_consumption = (sum(enginel_power)+sum(engine2_power));
disp('Found minimal fuel consumption: ')
disp(total_fuel_consumption)
% draw the waypoints and rocket trajectory
figure(4);
hold on;
axis equal;
grid on;
title("Rocket trajectory");
xlim([-pmax-1 pmax+1]);
ylim([-pmax-1 pmax+1]);
xlabel("x coordinate");
ylabel("z coordinate");
point1 = plot(w1(1), w1(2) ,'ro');
point2 = plot(w2(1), w2(2), 'r*');
point3 = plot(w3(1), w3(2), 'rs');
point4 = plot(w4(1), w4(2), 'rd');
point_start = plot(points_x(1), points_y(1), 'black*');
rocket trajectory = plot(points x, points y, '-black');
legend([point1 point2 point3 point4 point_start
rocket_trajectory], 'waypoint 1', 'waypoint 2', 'waypoint 3', 'waypoint
 4', 'starting point', 'rocket trajecotry', 'Location', 'southwest');
hold off;
% draw plot of enigines trust over the time
figure(5);
hold on; grid on;
```

```
title('Rocket engines forces');
engine1 = plot(engine1 power, 'black-');
engine2 = plot(engine2_power, 'red-');
legend([engine1 engine2], 'engine 1', 'engine
 2', 'Location', 'Northwest');
hold off
% Draw plot of the X and Y position
figure(6);
hold on; grid on;
title('X and Y changes over time');
points_x = plot (points_x, 'black-');
points y = plot(points y, 'red-');
legend([points_x points_y],'X axis displacement','Y axis
displacement', 'Location', 'Southwest');
hold off
Warning: The use of strict inequalities in CVX is strongly
discouraged,
   because solvers treat them as non-strict inequalities. Please
   consider using "<=" instead.
Warning: The use of strict inequalities in CVX is strongly
discouraged,
   because solvers treat them as non-strict inequalities. Please
   consider using "<=" instead.
Calling SDPT3 4.0: 998 variables, 606 equality constraints
num. of constraints = 606
dim. of socp var = 400, num. of socp blk = 200
dim. of linear var = 596
dim. of free var = 2 *** convert ublk to lblk
********************
  SDPT3: Infeasible path-following algorithms
version predcorr gam expon scale_data
   NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj
cputime
-----
 0/0.000/0.000/9.3e+01/4.3e+01/1.3e+07/ 1.786164e+05 0.000000e+00/
 0:0:00| spchol 1 1
 1/0.872/1.000/1.2e+01/5.0e-01/2.0e+06/ 2.376211e+04 -1.281282e+05/
 0:0:00| spchol 1 1
 2|0.938|1.000|7.3e-01|1.5e-01|2.1e+05| 2.561084e+03 -1.072436e+05|
 0:0:00| spchol 1 1
 3/0.718/0.998/2.1e-01/1.5e-02/6.1e+04/ 1.555192e+03 -4.199545e+04/
 0:0:00| spchol 1 1
 4/0.687/0.778/6.5e-02/4.5e-03/2.0e+04/ 1.274367e+03 -1.547453e+04/
 0:0:00 | spchol 1 1
```

```
5/0.489/0.736/3.3e-02/1.4e-02/1.1e+04/ 1.204352e+03 -7.994095e+03/
 0:0:00/ spchol 1 1
 6|0.756|0.527|8.1e-03|1.4e-02|6.9e+03| 1.138706e+03 -5.355988e+03|
 0:0:00 | spchol 1 1
7/0.761/0.457/1.9e-03/9.0e-03/4.6e+03/1.113686e+03 -3.392635e+03/
 0:0:00| spchol 1 1
 8|1.000|0.957|2.8e-07|7.7e-04|5.9e+02| 1.092380e+03 5.070567e+02|
 0:0:00| spchol 2 2
9|1.000|0.950|8.5e-08|3.9e-05|2.2e+02| 1.068731e+03 8.494662e+02|
0:0:00| spchol 2 2
10/1.000/0.940/1.1e-07/2.3e-06/4.2e+01/ 1.061178e+03 1.018998e+03/
0:0:00| spchol 2 2
11/0.718/0.941/5.1e-08/1.6e-07/2.0e+01/ 1.059604e+03 1.039687e+03/
0:0:00| spchol 2 2
12/0.906/0.847/1.4e-08/3.7e-08/8.7e+00/ 1.058483e+03 1.049811e+03/
0:0:00| spchol 2 2
13/0.171/0.434/9.6e-09/2.4e-08/8.0e+00/ 1.058120e+03 1.050078e+03/
0:0:00| spchol 2 2
14|0.886|0.604|2.7e-09|1.2e-08|4.4e+00| 1.057683e+03 1.053313e+03|
0:0:00/ spchol 2 2
15/1.000/0.952/4.5e-10/1.4e-09/2.2e+00/ 1.057451e+03 1.055234e+03/
0:0:00| spchol 1 1
16|1.000|0.901|1.5e-11|3.4e-10|5.7e-01| 1.057237e+03 1.056665e+03|
0:0:00 | spchol 1 1
17/0.927/0.983/8.1e-12/7.1e-11/1.4e-02/ 1.057174e+03 1.057160e+03/
0:0:00 | spchol 1 1
18/0.983/0.982/1.6e-11/2.1e-10/2.9e-04/ 1.057170e+03 1.057169e+03/
0:0:00/ spchol 1 1
19|0.989|0.989|8.0e-12|2.1e-11|6.1e-06| 1.057170e+03 1.057170e+03|
0:0:00/
 stop: max(relative gap, infeasibilities) < 1.49e-08</pre>
_____
number of iterations = 19
primal objective value = 1.05716958e+03
dual objective value = 1.05716957e+03
gap := trace(XZ) = 6.14e-06
relative gap
                   = 2.90e-09
actual relative gap = 2.62e-09
rel. primal infeas (scaled problem) = 8.03e-12
rel. dual " " = 2.09e-11
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " = 0.00e+00
norm(X), norm(y), norm(Z) = 2.7e+02, 1.2e+02, 5.2e+00
norm(A), norm(b), norm(C) = 1.8e+02, 3.0e+02, 1.5e+01
Total CPU time (secs) = 0.25
CPU time per iteration = 0.01
termination code = 0
DIMACS: 6.0e-11 0.0e+00 1.6e-10 0.0e+00 2.6e-09 2.9e-09
______
Status: Solved
Optimal value (cvx_optval): +1057.17
```

Found minimal fuel consumption: 1.0572e+03

Part 3: Trust less than 15

```
cvx_solver('sdpt3');
cvx_begin
variables engine1_power(K-1) engine2_power(K-1) force_vector_x(K) force_vector_y(K
minimize (sum(enginel_power)+sum(engine2_power))
           % where rocket starts
          points_x(1) == 0;
          points_y(1) == 0;
           % rocket wasn't moving on the start
          velocity x(1) == 0;
          velocity_y(1) == 0;
          points_x(k1) == w1(1);
          points_y(k1) == w1(2);
          points x(k2) == w2(1);
          points_y(k2) == w2(2);
          points_x(k3) == w3(1);
          points_y(k3) == w3(2);
          points_x(k4) == w4(1);
          points_y(k4) == w4(2);
           % engine power must be grather than 0!
           engine1_power >= 0; engine2_power >= 0;
           engine1_power < 15; engine2_power < 15;</pre>
           % bounds of the trajecory
           abs(points_x) <= pmax; abs(points_y) <= pmax;</pre>
          for k=1:K-1
             % Rocket model
             force_vector_x(k) == cos(theta1)*engine1_power(k) +
   cos(theta2)*engine2 power(k) + 0;
              force_vector_y(k) == sin(theta1)*engine1_power(k) +
   sin(theta2)*engine2_power(k) - m*g;
             velocity_x(k+1) == (1-alpha)*velocity_x(k) + (h/alpha)*velocity_x(k) + (h/alpha)*velocity_x(k)
m)*force_vector_x(k);
             velocity_y(k+1) == (1-alpha) *velocity_y(k) + (h/
m)*force_vector_y(k);
             points x(k+1) == points x(k) + h*velocity x(k);
             points_y(k+1) == points_y(k) + h*velocity_y(k);
           end
cvx_end
total_fuel_consumption = (sum(enginel_power)+sum(engine2_power));
disp('Found minimal fuel consumption: ')
disp(total_fuel_consumption)
```

```
% In that case, the result should be false because we can't find it
for
% this constrains (less than 15)
Warning: The use of strict inequalities in CVX is strongly
discouraged,
   because solvers treat them as non-strict inequalities. Please
   consider using "<=" instead.
Warning: The use of strict inequalities in CVX is strongly
discouraged,
   because solvers treat them as non-strict inequalities. Please
   consider using "<=" instead.
Calling SDPT3 4.0: 998 variables, 606 equality constraints
______
num. of constraints = 606
dim. of socp var = 400, num. of socp blk = 200
dim. of linear var = 596
dim. of free var = 2 *** convert ublk to lblk
******************
  SDPT3: Infeasible path-following algorithms
********************
version predcorr gam expon scale_data
  NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj
cputime
_____
 0|0.000|0.000|1.2e+02|4.3e+01|1.3e+07| 1.786164e+05 0.000000e+00|
0:0:00| spchol 1 1
 1/0.849/1.000/1.8e+01/5.0e-01/2.4e+06/ 2.785466e+04 -1.058592e+05/
0:0:00| spchol 1 1
2/0.946/1.000/9.7e-01/1.5e-01/2.1e+05/ 2.606972e+03 -9.452570e+04/
 0:0:00| spchol 1 1
 3/0.709/1.000/2.8e-01/1.5e-02/7.0e+04/ 1.573383e+03 -4.636439e+04/
0:0:00| spchol 1 1
 4|0.591|0.761|1.2e-01|4.7e-03|2.9e+04| 1.317431e+03 -2.107729e+04|
 0:0:00| spchol 1 1
 5/0.376/0.706/7.2e-02/1.7e-03/1.8e+04/ 1.248321e+03 -1.290063e+04/
 0:0:00 | spchol 1 1
 6 | 0.530 | 0.475 | 3.4e-02 | 1.5e-02 | 1.3e+04 | 1.183609e+03 -9.722901e+03 |
 0:0:00| spchol 1 1
 7|0.342|0.833|2.2e-02|9.4e-03|8.3e+03| 1.162200e+03 -4.797431e+03|
0:0:00/ spchol 2 2
 8|0.236|0.501|1.7e-02|9.2e-03|7.4e+03| 1.150760e+03 -3.088114e+03|
 0:0:00 | spchol 2 2
 9/0.355/0.580/1.1e-02/7.3e-03/5.6e+03/ 1.136231e+03 1.326401e+03/
 0:0:00| spchol 2 2
10/0.170/0.052/9.1e-03/9.1e-03/4.8e+03/ 1.131223e+03 6.309853e+03/
 0:0:00 | spchol 2 2
11/0.037/0.905/8.8e-03/2.7e-03/6.5e+04/ 1.130272e+03 2.423033e+06/
```

0:0:00| spchol 2 3

```
12/0.381/0.382/5.5e-03/3.4e-03/7.8e+08/ 1.196691e+03 1.175159e+09/
 0:0:00/ spchol 3 3
13/0.001/0.933/5.4e-03/1.3e-03/4.6e+09/ 1.111708e+03 6.798526e+09/
0:0:00| spchol 2 2
14/0.232/0.932/4.2e-03/1.2e-03/1.2e+10/ 1.187193e+03 3.965130e+10/
 0:0:00/ spchol 2 2
15/0.208/0.918/3.3e-03/1.9e-03/2.0e+10/ 1.151780e+03 7.457735e+11/
 0:0:00/ spchol 3 2
16/0.782/0.902/8.6e-04/1.6e+00/1.5e+15/ 1.105180e+03 9.219602e+14/
 0:0:00| spchol 3 3
17/0.001/0.905/8.6e-04/3.8e+00/3.7e+15/ 1.181947e+03 2.227928e+15/
0:0:00| spchol 2 2
18/0.201/0.905/6.9e-04/1.2e+01/6.4e+15/ 1.103024e+03 5.157799e+15/
 0:0:00| spchol 2 2
19/0.389/0.835/4.2e-04/4.6e+01/5.7e+15/ 1.138442e+03 1.721931e+16/
 0:0:00| spchol 2 2
20|0.176|0.918|3.5e-04|9.2e+02|2.0e+16| 1.138697e+03 3.374393e+17|
0:0:00/
 sqlp stop: primal problem is suspected of being infeasible
_____
number of iterations = 20
residual of primal infeasibility
certificate (y,Z) = 4.13e-14
reldist to infeas. <= 6.31e-18
Total CPU time (secs) = 0.22
CPU time per iteration = 0.01
termination code = 1
DIMACS: 2.0e-03 0.0e+00 7.0e+03 0.0e+00 -1.0e+00 6.0e-02
Status: Infeasible
Optimal value (cvx_optval): +Inf
Found minimal fuel consumption:
```

Published with MATLAB® R2017b

NaN