NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 9

- 1. For each of the following linear system Ax = b,
 - (i) Show that the system is inconsistent;
 - (ii) Find a least squares solution x' to the system. Is there a unique least squares solution or infinitely many?
 - (iii) Compute the least squares error, defined as ||b Ax'||. If there are infinitely many least squares solution and x'_1 , x'_2 are any two of them, would the least squares error $||b Ax'_1||$ and $||b Ax'_2||$ be the same?

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.

(b)
$$\mathbf{A} = \begin{pmatrix} 3 & 2 & -1 \\ 1 & -4 & 3 \\ 1 & 10 & -7 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.$$

2. For each of the following, compute the orthogonal projection of u onto the subspace spanned by v_1, \dots, v_k .

(a)
$$\mathbf{u} = (1, -6, 1), \mathbf{v_1} = (-1, 2, 1), \mathbf{v_2} = (2, 2, 4).$$

(b)
$$\boldsymbol{u} = (6, 12, 3, 6), \, \boldsymbol{v_1} = (1, 1, 0, 0), \, \boldsymbol{v_2} = (1, 0, 1, 0), \, \boldsymbol{v_3} = (3, 1, 1, 1).$$

3. A series of experiments were performed to investigate the relationship between two physical quantities x and y. The results of the experiments are shown in the table below.

x	0	1	2	3
y	3	2	4	4

- (a) Find a least squares solution $\mathbf{x} = (\hat{a}, \hat{b})$ if it is believed that x and y are related linearly, that is, y = ax + b.
- (b) Find a least squares solution $\mathbf{x} = (\hat{a}, \hat{b}, \hat{c})$ if it is believed that x and y are related by the quadratic polynomial $y = ax^2 + bx + c$.
- (c) Which model (linear or quadratic) would produce a smaller least squares error?

4. Prove that if A has linearly independent column vectors, and if b is orthogonal to the column space of A, then the least squares solution of Ax = b is x = 0.

5. (QR-factorisation) Let
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\mathbf{u_1} = (1, 1, 1, 0)^T$, $\mathbf{u_2} = (-1, 0, -1, 0)^T$, $\mathbf{u_3} = (-1, 0, 0, -1)^T$.

- (a) Use Gram-Schmidt Process to transform $\{u_1, u_2, u_3\}$ into an orthonormal basis $\{w_1, w_2, w_3\}$ for the column space of A. (Do not change the order of u_1, u_2, u_3 when applying the Gram-Schmidt Process.)
- (b) Write each of u_1, u_2, u_3 as a linear combination of w_1, w_2, w_3 .
- (c) Hence or otherwise, write $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is a 4×3 matrix with orthonormal columns and \mathbf{R} is a 3×3 upper triangular matrix with positive entries along its diagonal.

Remark: QR-factorisation is widely used in computer algorithms for various computations concerning matrices.