2. Data Wrangling / Data Pre-processing:

2.1 Data Sources:

I am using the dataset provided by the Seattle Police Department (SPD) and recorded by the Seattle Department of Transportation (SDOT)(made available to me by Coursera). It contains all the collision records and was updated weekly. This dataset contains a total of 1,94,673 records and 37 attributes. To get detailed the detailed information and the metadata of this dataset, you can contact SDOT Traffic Management Division, Traffic Records Group.

2.2 Data Cleaning & Features Selection:

There were a lot of problems with the existing dataset. To start with, there were a lot of missing values and they were represented in 2 forms (i.e. NaN values, string values with 'Unknown' Label).

Example: ROADCOND attribute has 5012 missing values (NaN Type), but it also has 15078 values with 'Unknown' label.

n [9]:	df.ROADCOND.	value_cour	nts().to_frame()
ıt[9]:		ROADCOND	
	Dry	124510	
	Wet	47474	
	Unknown	15078	
	Ice	1209	
	Snow/Slush	1004	
	Other	132	
	Standing Water	115	
	Sand/Mud/Dirt	75	
	Oil	64	
0]:	df.ROADCOND.	ısnull().s	sum()
]:	5012		

Same was the case for all other attributes. So, the first step I took was to convert all the missing values into NaN type so that it will be easy for me while modelling the dataset. Also, I renamed 'X' and 'Y' attribute to 'LONGITUDE' and 'LATITUDE' respectively to make it more meaningful.

After fixing these problems, now it was time for Dimensionality Reduction. There were a lot of attributes which needs to be removed from data frame like,

- Handling attributes which were giving the same information repeatedly.
- Handling attributes which have a significant amount of missing data.

Attribute like 'LOCATION' is redundant because this information is already available to us in the form of latitude and longitude. So 'LOCATION' needs to be dropped. Same was the case for the following attributes: SEVERITYCODE.1, SEVERITYDESC, PEDCOUNT, PEDCYLCOUNT, INCDATE, JUNCTIONTYPE, EXCEPTRSNDESC, SDOT_COLDESC. Hence all these attributes have been dropped.

If an attribute has a lot of missing data, it can create a bias in the model. In this project, I have neglected all those attributes where missing value is more than 40%. Following are the attributes that I dropped:

• PEDROWNOTGRNT, missing value: 97.6%

SPEEDING, missing value: 95.2%

• INATTENTIONIND, missing value: 84.7%

INTKEY, missing value: 66.5%

• EXCEPTRSNCODE, missing value: 56.43%

• SDOTCOLNUM, missing value: 43.7%

Features

Now LATITUDE & LONGITUDE has 2.7 % missing value. Although I can use imputer to predict the missing values, it is very complicated. These missing values can't be imputed by simple SK Learn Imputer. This is a geographical data and needs a geography-specific library to predict these missing values. But, the missing values % is very small, I decided to drop those missing values.

	LATITUDE	Distinct	23839	Mean	47.61954252	1
	Real number ($\mathbb{R}_{\geq 0}$)	Distinct (%)	12.6%	Minimum	47.49557292	and lake
	MISSING	Missing	5334	Maximum	47.73414158	
		Missing (%)	2.7%	Zeros	0	The The The The The
		Infinite	0	Zeros (%)	0.0%	
		Infinite (%)	0.0%	Memory size	1.5 MiB	
L(LONGITUDE	Distinct	23563	Mean	-122.3305184	d.
	Real number (\mathbb{R})	Distinct (%)	12.4%	Minimum	-122.4190911	
MISS	MISSING	Missing	5334	Maximum	-122.2389494	hhd
		Missing (%)	2.7%	Zeros	0	,18218 ,1828 ,1828 ,1828
		Infinite	0	Zeros (%)	0.0%	
		Infinite (%)	0.0%	Memory	1.5 MiB	

Now there are some attributes which have NO impact on our target variable (i.e. SEVERITYCODE). They are simply post-crash details recorded by the department. These attributes are not responsible to cause any crash and hence are not appropriate in predicting the severity of crashes. Such attributes are:

- OBJECT ID
- INCKEY
- COLDETKEY
- REPORTNO
- STATUS
- SDOT COLCODE
- ST COLCODE
- SEGLANEKEY
- CROSSWALKKEY

I decided to drop all these attributes.

Handling Missing Values in remaining attributes

a. ADDRTYPE

As 65% of crashes happened in Block, there is a high chance that the remaining 1% (missing values) also happened at Block. Therefore, I replaced NaN values by a label value 'Block'.

b. LIGHTCOND

Around 60% of accidents happened during daylight, the probability of those missing values being 'Daylight' is high. Hence, I replaced NaN values with the label "Daylight".

c. ROADCOND

In 64% of accidents, the condition of the road was 'Dry'. Hence I decided to replace the NaN values with label "Dry".

d. WEATHER

Common Values	Overview	Chart		
Value			Count	Frequency (%)
Clear			111135	57.1%
Raining			33145	17.0%
Overcast			27714	14.2%
Snowing			907	0.5%
Other			832	0.4%
Fog/Smog/Smoke			569	0.3%
Sleet/Hail/Freezin	g Rain		113	0.1%
Blowing Sand/Dirt			56	< 0.1%
Severe Crosswind	ı		25	< 0.1%
Partly Cloudy			5	< 0.1%
(Missing)			20172	10.4%

Around 57% of the cases happened during a clear day. Hence, I replaced NaN values with label 'Clear'.