

Team Name: SIX_AVENGERS

PS ID: 1565

Target Detection by Optimizing Anomoly Detection in Hyperspectral image processing using AI / ML

TEAM DETAILS

				<u>sii</u> 2024
NAME / EMAIL	STREAM	YEAR	TECHNICAL SKILLS	ROLE IN SIH
VIGNESH N (LEAD)/ vigneshkilari13@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	AIML, SQL, PYTHON	MLOPS HARDWARE IMPLEMENTATION
SHAIK MUZAMIL REHAMAN/ rmuzamil856@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	JAVA DEVELOPER	FRONTEND DEVELOPMENT
SOUNDARYA D/ soundarya.d07@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	PYTHON FULLSTACK DEVELOPMENT	FRONTEND DEVELOPMENT
MOHAMED FAIZAAN/ 5zaanu@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	ETHICAL HACKING, NETWORKING & CYBERSECURITY	HARDWARE IMPLEMENTATION & SECURITY
RITHICK M/ rithick225@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	SOFTWARE DEVELOPMENT	DATA ANALYST & HARDWARE IMPLEMENTATION
SAKTHIVEL R malar13rajesh@gmail.com	COMPUTER SCIENCE AND ENGINEERING	IV YEAR	CYBERSECURITY AND HTML & CSS	DATA ANALYST & FRONT END

ABSTRACT

This project presents a hybrid pipeline for improving anomaly detection in hyperspectral imaging by integrating deep learning, unsupervised learning, and quantum-inspired models. It utilizes advanced preprocessing techniques, including dimensionality reduction and atmospheric correction, to enhance data quality. The solution employs a multi-branch ensemble model combining CNNs, Transformers, and quantum-classical autoencoders for robust anomaly detection. Real-time processing is enabled through GPU acceleration, with a user-friendly platform for visualization and explainable AI tools. This approach provides accurate and efficient detection of anomalies in complex hyperspectral datasets.

IDEA / SOLUTION

The solution offers a hybrid pipeline to improve anomaly detection in hyperspectral imaging, integrating deep learning, unsupervised learning, and quantum-inspired models.

• Data Acquisition & Pre processing:

Hyperspectral data from sensors (e.g., Hyperion) is cleaned using dimensionality reduction and atmospheric correction techniques.

• Hybrid Ensemble Model:

• Branch 1 (Deep Learning):

Combines CNNs for spatial features and Transformers for spectral relationships, supported by attention mechanisms for explainability.

• Branch 2 (Unsupervised Learning):

Autoencoders identify anomalies without labeled data.

• Branch 3 (Quantum Classical Autoencoder):

Detects anomalies through high reconstruction errors in the model

IDEA / SOLUTION (Contn...)

• Spectral Signature Matching:

Anomalies are matched with a spectral library to identify materials or targets.

• Post-Processing & Analysis:

Anomaly maps are refined using objectbased image analysis (OBIA) to reduce false positives.

• Hardware Implementation:

The solution supports real-time processing by leveraging GPU and FPGA acceleration, optimizing the deep learning and quantum-inspired models for fast and efficient anomaly detection.

• Visualization:

The system includes a user-friendly platform for visualizing results and providing insights via explainable AI tools.

RESEARCH PROPOSAL

TECH SPECS

PROGRAMMING LANGUAGE: PYTHON

LIBRARIES AND FRAMEWORKS:

NUMPY

MATPLOTLIB

TENSORFLOW

SCIPY

PYWAVELETS

SCIKIT-LEARN

GPU: NVIDIA JETSON NANO

NVIDIA GEFORCE RTX 3050

MINIMUM MEMORY & STORAGE: 2GB & 32 GB

DATA PIPELINE

PRE PROCESSING

Shape - Alignment & Loading data

Band Removal

— Radiometric & Atmoshpheric Corrections

Dimensional Reduction

- Denoising

Band Selection & Refinement

SNR Calculation

Ensemble Voting Classifier

RX Algorithm

- 1. Covarience
- 2. Threshold
- 3. Mask
- 4. Image Generation

ABOUT

The RX algorithm detects anomalies using covariance matrices, applying threshold-based masking for tasks like hyperspectral image generation and segmentation.

SRCR - ECEM

- 1. Cluster
- 2. L2 Normalization
- 3. Residuals
- 4. Anomaly Scores
- 5. Image generation

ABOUT

The <u>SRCR ECEM</u> mode uses clustering and L2 normalization to analyze residential data, calculate anomaly scores, and enhance image generation processes.

CNN + Transformer

- CNN
 - 1. Conv 2D layers
 - 3. Maxpooling layers
 - 4. Fully Connected layers
- Transformer
 - 1. Encoder

ABOUT

<u>CNN</u> uses Conv2D layers, max pooling, and fully connected layers for feature extraction, while the <u>Transformer</u> employs an encoder for capturing sequence-based dependencies.

HARDWARE

NVIDIA JETSON NANO

• RAM: 2 GB

• Storage SD: 64 GB

• Core: 128 NVIDIA Maxwell's

• ARM Arch: Quad-core Cortex A57

NVIDIA GEFORCE RTX 3050

PC HARDWARE

• RAM: 6 GB

• Storage: 512 GB

• Core: 2304 NVIDIA

• ARM Arch: NVIDIA Ampere

SMART INDIA HACKATHON 2024

INP SEND PENDING

FUTURE ENHANCEMENT

Hardware Acceleration:

Utilize GPUs, TPUs, or FPGAs to accelerate model inference and reduce processing times for real-time applications.

Benefit: Achieves faster detection rates suitable for large-scale deployment.

Integration with Live Camera Feeds:

Develop a pipeline to process real-time video feeds from cameras for dynamic anomaly detection.

Benefit: Enables live monitoring of environments such as industrial sites, surveillance, or medical imaging.

Automated Hyperparameter Tuning:

Implement automated hyperparameter optimization using frameworks like Optuna or Hyperopt to improve model performance.

REFERENCE

"Deep Learning for Hyperspectral Image Classification: An Overview" Link: https://www.researchgate.net/publication/332699763 Deep Learning for Hyperspectral Image Classification An Overview

"Quantum-Inspired Spectral-Spatial Pyramid Network for Hyperspectral Image Classification"

link: https://ieeexplore.ieee.org/document/10203069

"Anomaly Detection in Hyperspectral Images Using Unsupervised Learning" link: https://www.mdpi.com/2072-4292/14/9/1973

"Explaining Deep Neural Networks" link: https://arxiv.org/abs/2010.01496

"An Overview of Pre-processing Methods Available for Hyperspectral Imaging Applications"

link: https://www.sciencedirect.com/science/article/abs/pii/S00 26265X23007488

Thank you