Отчёт по первому домашнему заданию

Задача 1: написать автоэнкодер

Мне было скучно, поэтому с начала я решил совместить идею denoising и sparse autoencoderов. Для этого я взял простейшую модель denoising autoencoder-а, которая была приведена на семинаре, и навесил на неё l1-регуляризацию. Однако это оказалось не очень хорошей идеей.

Результаты на тесте тоже оказались хуже.

После этого я попробовал увеличить глубину простого denoising autoencoder-a.

Это график в log-log-scale.

Модели показывали схожее качество, причём более глубокий вариант учился сначала быстрее, но потом стал несколько хуже - скорее всего, из-за переобучения.

Model Train loss Test loss

Model	Train loss	Test loss
Deeper DAE	0.08134	0.04816
Even deeper DAE	0.0884	0.05229

Лучше себя показала модель Deeper DAE - с 8 denoising-блоками.

На тесте обе модели показывали результат лучше, чем на трейне.

Это навело на мысль, что наложенная регуляризация слишком сильная, и её можно ослабить.

Я уменьшил параметр Dropout-а с 0.3 до 0.2. После этого результаты снова улучшились:

Model	Train loss	Test loss
Deeper DAE, Dropout 0.3	0.08134	0.04816
Deeper DAE, Dropout 0.2	0.05714	0.03146

Наверное, любой нормальный человек пошел бы тут выкручивать дропаут ещё пониже, но я решил попробовать sparse autoencoder.

Видимо, удачно удалось подобрать коэффициент для 11-регуляризации - ошибка на трейне почти в три раза меньше.

Ошибка на тесте была равна 0.02 уже после 20 эпох, и ещё 40 эпох не поменяли ситуацию. Денойзинг автоэнкодеру удалось выйти на 0.03 только после 100 эпох.

Model	Train loss	Test loss
Deeper DAE, Dropout 0.2	0.05714	0.03146
Sparse AE	0.02008	0.2097

После этого я попробовал добавить слоёв в SAE, но прироста качества это не дало.

running_loss Deeper SAE - SAE 0.25 0.2 0.15 0.1 0.05 Step 0 0 100 200 300 400 Model **Train loss Test loss** SAE 0.02008 0.02097

По итогам моих экпериментов лучше всего работает sparse autoencoder небольшой глубины (9 блоков "свёртка-нормализация-активация" в энкодере и 8 - в декодере.)

0.03732

0.03040

Deeper SAE

Задача 2: написать классификатор, обучить его на MNIST, посчитать с его помощью FID

Классифицировать MNIST довольно легко - первая же свёрточная нейросеть, написанная от руки по стандартному шаблону (несколько свёрточных блоков и пара полносвязных слоёв с дропаутом между ними) выдаёт примерно 0.995 ассигасу на тесте.

Способ реализации FID взят с семинара.

Не знаю, что ещё можно написать в этом разделе.

Задача 3: попробовать честную классификацию, довести до нормального качества

Используя ту же архитектуру на Omniglot, можно получить ассuracy порядка 0.6 - 0.65.

Model	Train loss	Test accuracy
Naive Classifier	0.2055	0.62
Another Naive Classifier	0.2157	0.60
Corrected Naive Classifier	0.0941	0.65

Я не сохранял веса для классификатора на Омниглоте, поэтому тут есть два почти одинаковых графика для одной и той же модели.

Также сначала я не поставил активацию между полносвязными слоями.

Это сделало потери на тренировке больше, но результат классификации улучшился незначительно.

Задача 4: Обучить модель классификации на латентных представлениях

С обучением бустингов и лесов возникли проблемы, поэтому я решил попробовать полносвязные сети.

На этом графике можно видеть потери на тренировке у перцептронов с разным количеством блоков (в log-scale)

Я решил подобрать регуляризационную константу для перцептрона из двух блоков.

Однако почему-то чем сильнее была регуляризация, тем хуже были результаты на тесте.

Лучший результат, которого удалось достигнуть - примерно 0.45 ассигасу на тесте. Для этого я обучал перцептрон из двух блоков с l2 регуляризацией сначала с коэффициентом 0.0001, а затем с коэффициентом 0.00005.

Что касается бустингов и леса - ошибку в своих действиях я так и не нашёл. Нормализация, подбор параметров прироста практически не давали. Потом я подумал, что у меня слишком высокая размерность латентного пространства - т.к. я использовал Sparse Autoencoder, я оставил его довольно большим, размерности 1024. Однако снижение размерности до 128 и 32 тоже не помогло. Надеюсь, потом смогу разобраться, что сделал не так.