

Note for Riemannian Surface

RIEMANNIAN SURFACE

EDITED BY NATSUME RYO

最后一次编译时间: 2024-09-08 22:31

Contents

1	黎曼	黎曼曲面		
	1.1	黎曼曲面的定义: 从解析延拓讲起	3	
		1.1.1 解析开拓	3	
		1.1.2 黎曼曲面	5	
	1.2	复分析回顾	7	
	1.3	黎曼曲面的更多例子	8	
	1.4	切向量与全纯切丛	12	
2	向量丛与上同调			
	2.1	<mark>向量丛</mark>	14	
	2.2	de Rham 上同调和 Dolboult 上同调	20	
	2.3	除子与线丛	22	
	2.4	层	23	
3	从 Riemann-Roch 定理谈起			
	3.1	Riemann-Roch 定理的叙述与初步证明 (尚不完整)	34	
	3.2	Laplace 算子与 Poisson 方程	36	
	3.3	Branched Covering Map	39	
	3.4	Riemann-Hurwitz 公式	41	
	3.5	射影嵌入定理	42	
	3.6	解方程 $\sqrt{-1}\bar{\partial}\partial u= ho$	44	
	3.7			

CONTENTS 2

这是笔者于 2024 年本科四年级下学期学习黎曼曲面的学习笔记。同时也是根据授课老师王嘉项老师的课堂板书整理的笔记.

我们假定读者拥有基础的复分析, 点集拓扑, 抽象代数, 微分流形知识. 如果读者熟练掌握同调代数, 这门课程中的上同调内容将会非常容易.

黎曼曲面

§1.1 黎曼曲面的定义: 从解析延拓讲起

在基础复变函数论中, 我们曾经接触一类多值函数 (如 $f=z^{1/2}$). 这类函数的特点是, 对于自变量的某些取值, 函数将给出多个取值.

在经典复分析中,我们采取的办法是寻找解析分支. 例如对于函数 $f=z^{1/2}$,只要任选一条从 0 出发的射线 γ ,就可以在 $\mathbb{C}\setminus\gamma$ 上定义解析函数 $z^{1/2}$. 如果选取 γ 是 x 正方向轴,则函数 f(z) 在 $\mathbb{C}\setminus\gamma$ 上可以给出一个解析分支:

$$f(re^{i2\pi t}) = \sqrt{r}e^{i\pi t}, 0 < t < 1$$

因此, 从某种意义上讲, 多值函数是若干个解析函数"粘起来"的结果. 这些解析函数都只在 $\mathbb C$ 的一个开域上有定义. 这启发我们从局部的角度来研究复函数.

§1.1.1 解析开拓

在本笔记中, 我们将统一使用记号 $\mathcal{O}(U)$ 表示开集 U 上的全纯 (解析) 函数.

Definition 1.1.1

设 D_1, D_2 是 \mathbb{C} 的两个开域且 $D_1 \cap D_2 \neq \emptyset$. 选取 $f \in \mathcal{O}(D_1), g \in \mathcal{O}(D_2)$. 若在 $U_1 \cap U_2 \perp f, g$ 满足 $f \equiv g$, 则成 (f, D_1) 和 (g, D_2) 互为对方的解析延拓.

类似的, 也可以在 $D_1 \cap D_2 = \emptyset$ 的情况下定义解析延拓. 若存在开集族 B_1, \ldots, B_N 使得 $B_1 = D_1, B_N = D_2$, 且存在 f_1, \ldots, f_N 使得 $f_i \in \mathcal{O}(B_i)$ 且 (f_i, B_i) 与 (f_{i+1}, B_{i+1}) 互为解析延拓, $f_1 = f, f_N = g$. 则称 (f, D_1) 与 (g, D_2) 互为解析延拓.

有时候我们希望解析延拓的方式"沿着"某根曲线 γ 前进. 此时, 只需要求 γ 与 D_1, D_2 相交, 且定义中的开集族 B_1, \ldots, B_N 是 γ 的一个开覆盖即可. 根据唯一性定理, 沿着同一根曲线的解析延拓是唯一的.

有了上述概念, 我们可以严格的定义多值解析函数.

Definition 1.1.2: 多值解析函数

设 $D \in \mathbb{C}$ 上的开域 (domain, 即道路连通的开集), $f(z) \in D$ 上的多值函数 (对于 z, f(z) 是一个非空点集). 若存在 $z_0 \in D, B_R(z_0)$ 以及在 $B_R(z_0)$ 上收敛的幂级数 $P_0(z)$ 满足:

- 1. P_0 在 D 中沿着以 z_0 为起点的任意曲线 γ 均可解析开拓.
- 2. 当 $z \in D$ 时, $f(z) = \{P(t) | P \to P_0$ 沿着D中连接 z_0, z 的某曲线的解析开拓 $\}$.

即 f(z) 可由定义在 $B_R(z_0)$ 上的 $P_0(z)$ 解析延拓得到. 此时, 称 f(z) 为 D 上的**多值解析函数**.

注意, 这里的关键在于任何一个点 p 处, 总存在一个小邻域 U 使得 f 在 U 上有单值解析分支. 因此对于 $z^{1/2}$ 而言,0 不是 $z^{1/2}$ 的解析点.(称为支点)

对于多值解析函数, 我们有如下的单值性定理 (Monodromy)

Theorem 1.1.1

设 f 是开域 $D \subset \mathbb{C}$ 上的多值解析函数. $z_0 \in D, w_0 \in f(z_0)$. 若 G 是 D 的一个单连通开集, 且 $z_0 \in G$, 则 G 上必定有单值解析分支 g(z) 使得 $g(z_0) = w_0$ 且 f(z) 可由定义在 G 上的 g(z) 解析延拓得到.

Proof. 互为解析延拓是等价关系, 因此 f 可由 $B_R(z_0)$ 处的幂级数 $P_0(z)$ 解析延拓得到. 若 $G = \mathbb{C}$, 则在 复平面上 P_0 均可延拓, 也即 $P_0(z)$ 的收敛半径是 ∞ . 从而自然存在一个单值解析分支.

若 $G \neq \mathbb{C}$, 则根据黎曼映照定理, 存在解析同构 $\varphi: G \to V(0,1)$. 从而 $P_0 \circ \varphi^{-1}$ 是 $V(0,\delta)(\delta$ 是某个正数) 上的解析函数. 幂级数展开:

$$P(z) = \sum_{n=0}^{\infty} \frac{(P_0 \circ \varphi^{-1})^{(n)}}{n!} z^n, 收敛半径r > 0$$

如果 P(z) 的收敛半径 $r \ge 1$, 则可定义 $g = P \circ \varphi$ 证毕. 事实上, 由于 P_0 在 G 上可解析开拓, 从而 P 在 V(0,1) 上也可解析开拓, 因此 $r \ge 1$ 成立.

通过上述讨论,我们不难发现局部研究解析函数的便利. 然而,局部研究清楚后,我们必须转入"整体"的性质.下面的讨论并不是黎曼曲面严格的定义,而是对"Unramified Riemann Surface"的讨论.

设 $U \in \mathbb{C}$ 的一个开域.

Definition 1.1.3: 解析函数芽

任取 $p \in U$, 考虑集合 $\{(f,V)|f \in \mathcal{O}(V), p \in V \subset U, V$ 是开集 $\}$. 定义该集合上的等价关系:

 $(f_1, V_1) \sim (f_2, V_2)$,若存在 $B_{\delta}(p) \subset V_1 \cap V_2$,使得在 $B_{\delta}(p)$ 有 $f_1 = f_2$

称上述集合商去该等价关系后得到的集合为 p 处的解析函数芽集. 用 [f,p] 表示 (f,D) 的等价类.

任何一个解析函数芽都意味着 p 处的一个开集合 U 以及 $f \in \mathcal{O}(U)$. 同时, 由定义不难验证, 也给出了 p 处的一个函数值 f(p).

Example 1.1.4

取 $D = C^*, p = 1.f(z) = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2n-1)!!}{2^n} (z-1)^n$. 不难验算,f 实际上是 $z^{1/2}$ 在 1 处的泰勒展开式.[f,1] 给出了 1 处的某种函数结构.

Definition 1.1.5: Unramified Riemann Surface

定义:

$$RS(U, f_0, p_0) := \{ [f, p] | p \in U, (f, B_{\delta}(p)) \text{可由}(f_0, B_{\delta}(p_0))$$
解析延拓得到 $\}$

给定该集合一个拓扑. 定义 $[f,D] := \{[f,p]| p \in D \subset U, (f,D)$ 可由 $(f_0,B_\delta(p_0))$ 在U中解析延拓得到 $\}$. 读者不难验证上述 [f,D] 给出的集族满足拓扑基的要求,我们定义 $RS(U,f_0,p_0)$ 的拓扑由上述拓扑基给出.

Example 1.1.6

设 $D = B_{1/2}(1).f(z) = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2n-1)!!}{2^n} (z-1)^n$. 从上面的例子,f 是 $z^{1/2}$ 在 1 附近的展开. 我们考虑 $RS(C^*, f, 1)$.

沿着曲线 $\gamma(t) = e^{i2\pi t}, 0 \le t \le 1$ 解析延拓 f(z).f(z) 变为:

$$g(z) = -1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2n-1)!!}{2^n} (z-1)^n$$

从而绕一圈后 $[f,D] \neq [g,D]$.

同理, 沿着曲线 $\gamma(t) = e^{i2\pi t}, 0 \le t \le 1$ 解析延拓 g(z), 一圈后我们将重新得到 f(z).

我们大致可以感受到 $RS(C^*, f, 1)$ 的结构. 形象地说, 这一个由两个面交错粘在一起的得到的东西. 接下来我们考虑一般意义下 RS 的拓扑性质.

Proposition 1.1.1

上述集合在上述拓扑下拥有的拓扑性质有:

- 1. 道路连通.
- 2. Hausdorff.
- 3. "局部维度"都是 2.

笔者相信这三个论题是很好的点集拓扑与复变函数习题, 因此不赘述证明.

Remark 1.1.1

除开拓扑上的观察, 我们还可以写出两个典范 (canonical) 的连续映射,

Projection $\pi: RS(U, f_0, p_0) \to U, [f, p] \mapsto p.$

Function $F: RS(U, f_0, p_0) \to \mathbb{C}, [f, p] \mapsto f(p)$

§1.1.2 黎曼曲面

我们现在严格的阐述黎曼曲面的定义. 在此之前, 我们做一个声明.

在之后的笔记中,我们将统一使用 $\sqrt{-1}$ 表示虚数单位.i, j 这样的字母容易与指标产生混淆.

Definition 1.1.7: 黎曼曲面

设 M 是具有可数拓扑基的 Hausdorff 空间. 若 M 上存在开覆盖 $\{U_{\alpha}\}_{\alpha\in\Gamma}$ 以及定义在每个开集 U_{α} 上的连续映射 $\varphi_{\alpha}:U_{\alpha}\to\mathbb{C}$ 满足:

- 1. $\varphi_{\alpha}(U_{\alpha})$ 是 \mathbb{C} 的开集, 且 φ_{α} 是给出 U_{α} 与 $\varphi_{\alpha}(U_{\alpha})$ 的同胚.
- 2. 若 $U_{\alpha} \cap U_{\beta} \neq \emptyset$, 则转移映射 (transition map) $\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ 是解析映射

则称 M 是一个黎曼曲面 (Riemann Surface). 同时, 称 $\{U_{\alpha}, \varphi_{\alpha}\}$ 是 M 上的地图册 (alts).

粗略的说,黎曼曲面就是用解析的转移映射将若干个 $\mathbb C$ 上的开集粘贴起来而得到的几何对象. 如果读者熟悉微分流形,会发现这里的定义与微分流形的定义几乎完全一致,只是这里我们要求 M 局部上与 $\mathbb C$ 上的某个开集同胚,而不是 $\mathbb R^n$.

Remark 1.1.2

定义中的 " $\mathbb C$ 的开集"不能替换为 $\mathbb C$. 因为 $\mathbb C$ 与 $\mathbb C$ 上的单连通开集不一定可以解析同构 (黎曼映照定理)

Remark 1.1.3

把 \mathbb{C} 改为 \mathbb{C}^n , 上述定义就变成了复流形的定义. 因而黎曼曲面实际上无非是一维的复流形.

我们给出若干黎曼曲面的例子,它们将贯穿整篇 note.

Example 1.1.8: 平凡的例子

ℂ中的开集.

Example 1.1.9: 二维球面 S^2 .

显然 S^2 满足黎曼曲面的拓扑要求.

为了得到地图册, 这里我们用最经典的球极投影. $S^2 = \{(x_1, x_2, x_3) | x_1^2 + x_2^2 + x_3^2 = 1\}$. 令 $U = S^2 \setminus \{(0,0,1)\}, V = S^2 \setminus \{(0,0,-1)\}$. 定义:

$$\varphi_U: U \to \mathbb{C}, (x_1, x_2, x_3) \mapsto \frac{x_1}{1 - x_3} + \sqrt{-1} \frac{x_2}{1 - x_3}$$

$$\varphi_V: V \to \mathbb{C}, (x_1, x_2, x_3) \mapsto \frac{x_1}{1 + x_3} + \sqrt{-1} \frac{x_2}{1 + x_3}$$

球极投影的讨论告诉我们 φ_U, φ_V 都是同胚. 再考虑转移映射 $\varphi_V \circ \varphi_U^{-1}$ 的解析性:

$$\varphi_V \circ \varphi_U^{-1} : \varphi_U(U \cap V) \to \varphi_V(U \cap V), z \mapsto w = \frac{1}{z}$$

因此 S^2 是一个黎曼曲面.

1.2. 复分析回顾 7

Example 1.1.10: 射影直线 ℙ¹

类似于实射影空间, 我们可以定义复的情况. 考虑集合 $\mathbb{C}^2\setminus\{0\}$, 我们定义等价关系 \sim :

$$z = (z_1, z_2) \sim w = (w_1, w_2) \Leftrightarrow \exists \lambda \in \mathbb{C}^*, z = \lambda w$$

即 z 和 w 在同一条复直线上.

定义 $\mathbb{P}^1 := \mathbb{C}^2 \setminus \{0\} / \sim$. 用 $[z_1, z_2]$ 表示 (z_1, z_2) 所处的等价类. 拓扑上, 我们使用商拓扑. 不难验证 \mathbb{P}^1 是具有可数拓扑基的 Hausdorff 空间.

接下来考虑地图卡. 令 $U = \{[z_1, z_2] | z_1 \neq 0\}, V = \{[z_1, z_2] | z_2 \neq 0\}.$ 定义 $\varphi_U : U \to \mathbb{C}, [z_1, z_2] \mapsto z_2/z_1, \varphi_V : V \to \mathbb{C}, [z_1, z_2] \mapsto z_1/z_2.$ 不难验算, 这是两个同胚的映射.

最后考虑转移映射. 在 $U \cap V$ 上, 转移映射可以写为: $z \mapsto 1/z$. 因此这是一个解析的映射.

细心的读者肯定发现了上述两个例子有着非常强的相同性. 事实上, S^2 和 \mathbb{P}^1 是同构的两个黎曼曲面. 当然, 我们首先要定义同构.

Definition 1.1.11: 全纯 (holomorphic) 映射

设 M,N 是两个黎曼曲面, $f:M\to N$ 是连续映射. 若对于任意 $x\in M$, 都存在 $x\in U_\alpha\subset M$, $f(x)\in V_\beta\subset N$ 满足:

$$\phi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(\hat{U}_{\alpha}) \to \phi_{\beta}(V_{\beta})$$

是全纯函数, 则称 f 是 M,N 之间的全纯映射. 其中 $\hat{U_{\alpha}}$ 表示使得上述映射有意义的 U_{α} 子集.

Definition 1.1.12: 双全纯 (biholomorphic) 映射

设 M,N 是黎曼曲面. 若存在全纯映射 $f:M\to N,g:N\to M$ 满足 $f\circ C=\mathrm{id}_N,g\circ f=\mathrm{id}_M$,则称 M,N 是**双全纯等价**的黎曼曲面,f,g 均为**双全纯映射**.

Example 1.1.13

 S^2 与 \mathbb{P}^1 是双全纯等价的黎曼曲面. 请读者尝试写出两者之间的双全纯映射.

§1.2 复分析回顾

回忆一个定义: 有理函数 $R(z) = \frac{\text{Polynomial}}{\text{Polynomial}}$. 有理函数是最简单的亚纯函数.

Proposition 1.2.1

复平面上的亚纯函数的极点一定是孤立的.

Proof. 反证法. 设 $\{z_i\}$ 是一列 f 的极点, 且拥有聚点 z_0 . 同时 z_0 也是 f 的极点.

取 $\delta > 0$ 使得 f(z) 在 $\{|z - z_0| < \delta\}$ 上不为 0(因为 $|f| \to +\infty$). 因此 1/f 在 $\{|z - z_0| < \delta\}$ 是全纯函数. 于是:

$$\frac{1}{f} = g(z)(z - z_0)^k, g(z_0) \neq 0$$

再适当缩小 δ , 使得 g 在 $\{|z-z_0|<\delta\}$ 上也不为 0. 于是 $\frac{1}{f}$ 在 $\{|z-z_0|<\delta\}$ 上仅有 z_0 一个零点, 矛盾于 z_i 都是 f 的极点!

Theorem 1.2.1

设 f 是亚纯函数. 若 ∞ 是 f 的可取奇点或者极点, 则 f(z) 必定为有理函数.

Proof. 根据上述命题, 存在 R > 0 使得 f 在 $\{R < |z| < \infty\}$ 上解析. 设 $\{z_1, \ldots, z_n\}$ 是 f 在 $\{|z| < R\}$ 的 极点 (孤立性保证有限), 阶数为 k_1, \ldots, k_n . 则:

$$f(z) = \sum_{l=1}^{k_j} \frac{C_j}{(z-z_j)^l} + P_j(z) = h_j(z) + P_j(z)$$
, 在 z_j 附近

由于 ∞ 是可去奇点或者极点, 则:

$$f(z) = \sum_{l=1}^{0} \frac{C_l}{z^l} + P(z), P(z)$$
是多项式 (可以为0)

令 $F = f - \sum_{j=1}^{N} h_j - g$, 则 F(z) 是 \mathbb{C} 上的有界整函数. 根据 Liouville 定理,F(z) 是常数. 因此 $f = \sum_{j=1}^{N} h_j + g$ 是有理函数.

Corollary 1.2.1

$$\operatorname{Aut}(\mathbb{C}) = \{az + b | a \in \mathbb{C}^*, b \in \mathbb{C}\}\$$

Proof. 延拓到 ∞. 则 ∞ 是极点或者可去奇点. 从而 f 是多项式. 由于 $f^{-1}(0)$ 唯一, 可知 f 是一次多项式.

Corollary 1.2.2

$$\operatorname{Aut}(\mathbb{C}_{\infty}) = \left\{ \frac{az+b}{cz+d} \middle| ad-bc = 1, a, b, c, d \in \mathbb{C} \right\}$$

Proof. 分式线性变换一定是 C_{∞} 的自同构. 又因为自同构 f 是有理函数, 从而 f 是多项式与多项式的比. 由 0 原像和 ∞ 原像唯一可得上下多项式均为一次.

§1.3 黎曼曲面的更多例子

本节我们讨论更多有意思的黎曼曲面.

黎曼环面

Definition 1.3.1: Lattice Group

任取 $w_1, w_2 \in \mathbb{C}^*$ 且实线性无关. 定义群:

$$\Lambda := \{ nw_1 + mw_2 | n, m \in \mathbb{Z} \}$$

群的运算是显而易见的.

 Λ 可以自然的平移作用在 \mathbb{C} 上. 我们考虑这个作用的商 C/Λ . 用 [z] 表示 z 的等价类.

从拓扑来说, C/λ 显然同胚于环面 T^2 . 从坐标卡来讲, 在局部上 C/λ 总是一个未折叠的 $\mathbb C$ 平面. 因此 C/Λ 是一个黎曼曲面.

Proposition 1.3.1

 \mathbb{C}/Λ 有全纯的自同构——平移. 即 $[z] \mapsto [z-z_0]$.

对于伸缩变换, C/Λ 并不能有良好的定义. 我们讨论的是两个黎曼环面的伸缩变换.

Proposition 1.3.2

存在全纯映射:

$$f: \mathbb{C}/\langle w_1, w_2 \rangle \to \mathbb{C}/\langle 1, w_2/w_1 \rangle, [z] \mapsto [z/w_1]$$

进一步的,f 是双全纯映射.

因此, 所有的黎曼环面都可以归结于一个上半平面的复数 z. 即总可以写为形式:

$$C/\langle 1, z \rangle, \operatorname{Im}(z) > 0$$

然而不同的 z 是否给出不同的黎曼环面呢? 答案是否定的.

Proposition 1.3.3

若 τ_1, τ_2 是两个处于上半平面的复数, 且 $C/\langle 1, \tau_1 \rangle \cong C/\langle 1, \tau_2 \rangle$, 则存在整数 a, b, c, d 满足 ad - bc = 1, 使得

$$\tau_2 = \frac{a\tau_1 + b}{c\tau_2 + d}$$

换句话说, 在相差一个 $PSL(2,\mathbb{Z})$ 的元素的意义下, 黎曼环面和上半平面有一一对应.

Proof. 注意到 $\mathbb{C} \to \mathbb{C}/\Lambda$ 是一个开的覆叠映射. 我们用一张图来表示这个结果.

假设同构映射是 f. 我们断言, 存在一个提升映射 F 使得下面的交换图成立, 并且 F(0) = 0, F 是双全纯映射.

$$\begin{array}{c|c}
\mathbb{C} & \longrightarrow & \mathbb{C} \\
 & \downarrow & & \downarrow \\
 & \downarrow & & \downarrow \\
 & \mathbb{C}/\langle 1, \tau_1 \rangle & \longrightarrow & \mathbb{C}/\langle 1, \tau_2 \rangle
\end{array}$$

如果断言成立, 则 $F = \gamma z, \gamma \in C^*$. 并且 F 把格点映射为格点, 从而 $\gamma = F(1) = a + b\tau_2, \gamma\tau_1 = F(\tau_1) = c + d\tau_2$. 于是:

$$\tau_1 = \frac{c + d\tau_2}{a + b\tau_2}$$

同理, τ_2 也可写为类似的 τ_1 的分式线性变换. 根据双全纯, 可知 a,b,c,d 必须满足 $ad-bc=\pm 1$. 根据 τ_1 和 τ_2 都是上半平面的点, 可知:

$$ad - bc = 1$$

因此我们只需要说明 F 的存在性. 根据平移变换, 不妨假设 f([0]) = [0]. 另一方面, 根据覆叠映射的提升性质, 在指定 F(0) = 0 的情况下, 存在唯一的 F 使得上述图交换. 从而 F 存在.

代数曲线

接下里的例子是代数曲线. 粗滤地说, 我们考虑二元多项式在 \mathbb{C}^2 中的零点. 在此之前, 我们需要先做一点理论性的准备.

Theorem 1.3.1: Implicit theorem

设 $\Omega \subset \mathbb{C}^2$ 是开域, $F(z,w) \in \mathcal{O}(\Omega)$ (即 F 对两个分量都是全纯的). 若 $F(z_0,w_0) = 0$, 且 $\frac{\partial F}{\partial w}(z_0,w_0) \neq 0$, 则存在包含 z_0 的开集 $U(z_0) \subset \mathbb{C}$, 和一个单变量解析映射 $w(z) \in \mathcal{O}(U(z_0))$, 满足 F(z,w(z)) = 0 在 $U(z_0)$ 恒成立.

Proof. 因为 $\frac{\partial F}{\partial w}(z_0, w_0) \neq 0$, 于是存在 $\delta > 0$ 使得 $\{|w - w_0| < \delta\}$ 内 $F(z_0, w)$ 仅有 w_0 一个零点 (重数为 1)

选取 $0 < \delta_0 < \delta$ 使得 $F(z_0, w) \neq 0, \forall \{|w-w_0| = \delta_0\}$. 再选取 $\epsilon > 0$ 使得在 $\{|z-z_0| < \epsilon\} \times \{|w-w_0| = \delta_0\}$ 上 $F(z, w) \neq 0$.

则对于每个固定的 $z \in \{|z - z_0| < \epsilon\}$, 有:

$$n(z) = \frac{1}{2\pi\sqrt{-1}} \int_{|w-w_0|=\delta_0} \frac{F_w(z,w)}{F(z,w)} dw = 1(根据连续性)$$

因此存在唯一的 w 与 z 对应, 且满足 F(z,w)=0. 记此 w 为 w(z). 余下的事情是验证 w(z) 的解析性. 解析性由下列引理保证.

Lemma 1.3.1

设 Γ 是闭曲线,D 是 Γ 内部. $f(z) \in \mathcal{O}(D) \cap C(\overline{D}).z_1,...,z_N$ 是 f(z) 在 D 中的零点,且阶数为 $k_1,...,k_N$.于是:

$$\sum_{j=1}^{N} k_j z_j = \frac{1}{2\pi\sqrt{-1}} \int_{\Gamma} z \cdot \frac{\frac{\partial f}{\partial z}}{f} dz$$

Proof. 先利用柯西定理, 在每个零点周围划一个圈. 如图

标号分别为 Γ_i 和 D_i . 在每个圈内部, 我们不妨假设 $f = (z - z_i)^{k_i} g_i(z)$

$$\frac{f'}{f} = \frac{k_j}{z - z_j} + \frac{g_j'}{g_j}$$

于是:

$$\frac{1}{2\pi\sqrt{-1}}\int_{\Gamma_j}z\frac{f'}{f}dz=k_jz_j(留数定理)$$

根据引理结论, 我们有:

$$w(z) = \frac{1}{2\pi\sqrt{-1}} \int_{|w-w_0|=\delta} w \frac{\frac{\partial F}{\partial w}}{F} dw$$

所以w是解析函数.

现在假设 P(z,w) 是二元不可约多项式.(不存在 g,h 使得 P=gh.)

Theorem 1.3.2

P(z,w) 如上. 则至多存在有限个 $z \in \mathbb{C}$ 使得:

$$P(z,w) = \frac{\partial P}{\partial w}(z,w) = 0$$
 $\hat{\pi}$ $\hat{\pi}$ $\hat{\pi}$ $\hat{\pi}$

Proof. 设 $P(z,w) = \sum_{j=0}^{n} a_j(z)w^j$. 因为 P 不可约, 则 a_j 没有公共因子。

设
$$\frac{\partial P}{\partial w} = \sum_{j=0}^{n} j a_j(z) w^{j-1} = \sum_{j=0}^{n-1} (j+1) a_{j+1}(z) w^j$$
. 于是存在 $A_1(z,w)$ 满足:

$$P(z,w) = A_1(z,w)\frac{\partial P}{\partial w}(z,w) + Q_1(z,w)\deg_{w_1}Q_1 < \deg_w\frac{\partial P}{\partial w}$$

存在多项式 $b_1(z)$ 满足:

$$b_1(z)\frac{\partial P}{\partial w} = A_2(z, w)Q_1(z, w) + Q_2(z, w)$$

•••

存在 $b_k(z)$ 满足:

$$b_k(z)Q_{k-1}(z,w) = A_{k+1}(z,w)Q_k(z,w) + Q_{k+1}(z,w), \deg_w Q_{k+1} < \deg_w Q_k$$

现假设 $\deg_w Q_{k+1}(z,w)=0$, 即 $Q_{k+1}(z,w)\in\mathbb{C}[z]$. 我们断言 $Q_{k+1}(z)\neq0$.

1.4. 切向量与全纯切丛 12

若不然,则 Q_k 的因子可整除 $Q_{k-1}, \ldots, Q_1, \frac{\partial P}{\partial w}, P$, 与不可约矛盾! 因而, 若 (z_0, w_0) 满足:

$$P = \frac{\partial P}{\partial w} = 0$$

则:

$$0 = Q_1(z_0, w_0) = \dots = Q_{k+1}(z_0)$$

由于 $Q_{k+1}(z)$ 的零点有限, 因而 (z_0, w_0) 也必定是有限的.

借助上述定理, 再结合 Implicit Theorem, 我们可以发现有趣的事实:

考虑集合 $\{(z,w)|P(z,w)=0\}$, 这个集合并不一定是黎曼曲面. 然而, 如果去掉有限个奇异点 (即使得方程:

$$P = \frac{\partial P}{\partial w} = 0$$

成立的点)后,集合就成为了一个黎曼曲面.

代数曲线是代数几何中重要的研究对象.

§1.4 切向量与全纯切丛

本节我们阐述黎曼曲面的切向量与全纯切丛. 如果读者已经学过复几何, 这部分可以略过.

切向量与切空间

由于我们定义黎曼曲面的方式是内蕴的 (即没有依靠把 M "塞进"一个欧氏空间), 因而我们也得内蕴的定义黎曼曲面的切向量与切空间.

一个比较自然的想法是, 既然黎曼曲面局部上与 C 的开集等同, 并且切空间与切向量看起来也只是局部的几何对象, 我们可以借助图卡来定义切空间与切向量. 不过这种办法会遇到定义与坐标选取是否有关的问题.

Definition 1.4.1

对于黎曼曲面 M 和 $p \in M, p$ 处的切向量定义一个为作用在 $C^{\infty}(\{p\})(\mathbb{D} p$ 处的光滑函数芽) 上的线性算子 V_p , 并且满足:

- 1. $\forall f \in C^{\infty}(M), V_p(f) \in \mathbb{R}$
- 2. $\forall f, g \in C^{\infty}(M), V_p(fg) = f(p)V_p(g) + V_p(f)g(p)$

所有满足上述条件的线性算子的集合记为 $T_p(M)$.

这里对切向量的定义与微分流形中切向量的定义完全一致,因此我们只罗列切向量的性质,省略掉这些性质的证明.读者请自行查阅微分流形的相关资料.

Proposition 1.4.1

 T_pM 是有限维实线性空间, 维数为 2(即 M 的实维数). 如果 p 处有局部坐标 $(U_{\alpha}, \varphi_{\alpha})$, 则 T_pM 有一

1.4. 切向量与全纯切丛

组基 $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$. 其中 x, y 是 φ_{α} 给出的实坐标, 并且 $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ 的定义为:

$$\frac{\partial}{\partial x}(f) = \frac{\partial f \circ \varphi_{\alpha}^{-1}}{\partial x}, \frac{\partial}{\partial y}(f) = \frac{\partial f \circ \varphi_{\alpha}^{-1}}{\partial y}$$

Proposition 1.4.2

设 T_pM 在两组局部坐标 $(U_\alpha, \varphi_\alpha), (U_\beta, \varphi_\beta)$ 下有两组对应的向量基. 则他们的变换公式为:

$$\begin{pmatrix} \frac{\partial}{\partial x_{\beta}} \\ \frac{\partial}{\partial y_{\beta}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x_{\alpha}}{\partial x_{\beta}} & \frac{\partial y_{\alpha}}{\partial x_{\beta}} \\ \frac{\partial x_{\alpha}}{\partial y_{\beta}} & \frac{\partial y_{\alpha}}{\partial y_{\beta}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x_{\alpha}} \\ \frac{\partial}{\partial y_{\alpha}} \end{pmatrix}$$

其中 x_{α}, y_{α} 是局部的坐标函数, 即 $x_{\alpha} = x \circ \varphi_{\alpha}, y_{\alpha} = y \circ \varphi_{\alpha}$.

Proposition 1.4.3: 切映射

考虑两个黎曼曲面的光滑映射 (定义与全纯映射类似) $f:M\to N.f$ 可以诱导 T_pM 与 $T_{f(p)}N$ 之间的 线性映射 df_p . 定义为:

$$\forall g \in C^{\infty}(\{f(p)\}), df_p(V_p)(g) = V_p(g \circ f)$$

 df_p 在坐标基的表达式为 (只写 x_α 的):

$$df_p \frac{\partial}{\partial x_\alpha} = \frac{\partial f^1}{\partial x_\alpha} \frac{\partial}{\partial x_\beta} + \frac{\partial f^2}{\partial x_\alpha} y_\beta$$

其中, f^1 和 f^2 是 f 在两个局部坐标下的分量形式.(如 $f^1 = x_\beta \circ f \circ \varphi_\alpha$)

切丛,复切丛

把 M 上所有的切空间并在一起, 用 TM 整体表示这个集合. 即:

$$TM = \bigcup_{p \in M} T_p M$$

不难证明,TM 是一个微分流形, 并且维数是 M 的两倍. 在我们这里的讨论中,TM 是一个 4 维的微分流形, 并且自然投射:

$$\pi:TM\to M, V_n\mapsto p$$

是一个光滑映射.

向量丛与上同调

§2.1 向量丛

向量丛是上章中切丛与全纯切丛的自然推广. 其核心想法是, 在 M 的每一个点处附加一个线性空间 (依据情况而定复, 实), 并且这样的附加与 M 的局部坐标有着强烈的关联.

向量丛是研究黎曼曲面的重要工具, 其伴随的概念如示性类, 上同调, 联络等是现代几何学的基础.

光滑 (复) 向量丛

Definition 2.1.1

设 M 是一个黎曼曲面. 一个 M 上的光滑 (复) 向量丛是指一个拓扑空间 E 和一个连续映射 $\pi: E \to M$, 满足如下性质:

- 1. $\forall x \in M, p$ 的原像集 $\pi^{-1}(x)$ 是一个线性空间 E_x , 称为 x 处 E 的纤维 (fiber)
- 2. 存在一个 M 的开覆盖 $\{U_i\}$ 满足: 对于每个 U_i , 都存在一个微分同胚 $\varphi_U: \pi^{-1}(U) \cong U \times \mathbb{C}^k$, 并且对于 $x \in U_i, \varphi_U(E_x) = \{x\} \times \mathbb{C}^k. \varphi_U$ 称为 E 的局部平凡化.
- 3. 考虑 $U_i \cap U_j \neq \emptyset$. 此时转移映射 (transition map) $\varphi_i \circ \varphi_j^{-1}$ 是从 $U_i \cap U_j$ 到 $GL(k,\mathbb{C})$ 的光滑映射. 其中,k 称为 E 的秩.

上述定义中的第三个条件说明, 对于 $\pi^{-1}(x)$ 中的同一个向量 v_x , 尽管在不同的平凡化下会有不同的 \mathbb{C}^k 坐标表示, 但是他们只相差一个 $\mathrm{GL}(k,\mathbb{C})$ 的矩阵. 这个矩阵只与 x 有关, 是 x 的光滑函数.

直观上,一个光滑 (复) 向量丛即是在黎曼曲面 M 上每个点都"长"出一个复向量空间,并且在局部上就是 $U \times \mathbb{C}^k$. 在整体上,向量丛却不一定是平凡的.

我们看几个向量丛的例子.

Example 2.1.2

对于黎曼曲面 $M,E = M \times \mathbb{C}^k$. 此时开覆盖即 M 本身, 因而可以不用考虑转移函数.

Example 2.1.3

黎曼曲面的复切丛 $T_{\mathbb{C}}M$ 是 M 上的光滑复向量丛. $\pi:T_{\mathbb{C}}M\to M$ 取典范的映射, 开覆盖取 M 的地图 册即可. 此时 $\pi^{-1}(U_{\alpha})=U_{\alpha}\times\mathbb{C}^{2}$, 基为 $\frac{\partial}{\partial x}$ 和 $\frac{\partial}{\partial y}$.

其中, 转移函数的定义为: 对于 $x \in U_{\alpha} \cap U_{\beta}$,

$$g_{\alpha\beta}(x) = \begin{pmatrix} \frac{\partial x_{\alpha}}{\partial x_{\beta}} & \frac{\partial y_{\alpha}}{\partial x_{\beta}} \\ \frac{\partial x_{\alpha}}{\partial y_{\beta}} & \frac{\partial y_{\alpha}}{\partial y_{\beta}} \end{pmatrix}$$

接下来把这个例子考虑的更"复"一些. 设:

$$\frac{\partial}{\partial z_{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} - \sqrt{-1} \frac{\partial}{\partial y_{\alpha}} \right)$$
$$\frac{\partial}{\partial \bar{z}_{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} + \sqrt{-1} \frac{\partial}{\partial y_{\alpha}} \right)$$

则 $\frac{\partial}{\partial z_{\alpha}}$ 和 $\frac{\partial}{\partial \bar{z}_{\alpha}}$ 都是 $T_{\mathbb{C}}M$ 中的向量. 同时, 也是 $T_{\mathbb{C}}M$ 的一组基. 在这种基下, 我们考虑转移函数的表达式.

做计算:

$$\frac{\partial}{\partial z_{\beta}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{\beta}} - \sqrt{-1} \frac{\partial}{\partial y_{\beta}} \right)
= \frac{1}{2} \left(\frac{\partial x_{\alpha}}{\partial x_{\beta}} \frac{\partial}{\partial x_{\alpha}} + \frac{\partial y_{\alpha}}{\partial x_{\beta}} \frac{\partial}{\partial y_{\alpha}} - \sqrt{-1} \frac{\partial x_{\alpha}}{\partial y_{\beta}} \frac{\partial}{\partial x_{\alpha}} - \sqrt{-1} \frac{\partial y_{\alpha}}{\partial y_{\beta}} \frac{\partial}{\partial y_{\alpha}} \right)$$

把 x_{α} 和 y_{α} 换成 z_{α} 和 \bar{z}_{α} , 我们最后能得到:

$$\frac{\partial}{\partial z_{\beta}} = \frac{1}{2} \left(\frac{\partial (x_{\alpha} + \sqrt{-1}y_{\alpha})}{\partial x_{\beta}} - \sqrt{-1} \frac{\partial (x_{\alpha} + \sqrt{-1}y_{\alpha})}{\partial y_{\beta}} \right) \frac{\partial}{\partial z_{\alpha}} + \frac{\partial \bar{z}_{\alpha}}{\partial z_{\beta}} \frac{\partial}{\partial \bar{z}_{\alpha}} = \frac{\partial z_{\alpha}}{\partial z_{\beta}} \frac{\partial}{\partial z_{\alpha}}$$

最后一个等号来源于全纯性. 即 $z_{\alpha}\circ z_{\beta}^{-1}$ 是全纯函数, 因而对 \bar{z}_{β} 求导是 0. 同样我们有:

$$\frac{\partial}{\partial \bar{z}_{\beta}} = \frac{\partial \bar{z}_{\alpha}}{\partial \bar{z}_{\beta}} \frac{\partial}{\partial \bar{z}_{\alpha}}$$

因此在这种坐标写法下,转移函数的表达式为:

$$x \mapsto \begin{pmatrix} \frac{\partial z_{\beta}}{\partial z_{\alpha}} & 0\\ 0 & \frac{\partial \bar{z}_{\beta}}{\partial \bar{z}_{\alpha}} \end{pmatrix}$$

这样的表达式启发我们, 或许 $T_{\mathbb{C}}M$ 本身可以分解为两个本质上互不相关的部分. 我们将在全纯向量丛继续讨论这个问题.

细心的读者可能已经意识到,我们对向量丛的直观理解里面蕴含了一个有意思的事实——向量丛本身的结构其实是由转移函数决定的.即局部平凡化加上重叠处的转移函数就给出了一个向量丛.

为此, 首先我们需要给出向量丛同构的定义.

Definition 2.1.4

给定 E, E' 作为 M 上的两个向量丛, 若存在光滑映射 $f: E \to E'$ 满足: $\pi'(f(x)) = \pi(x)$, 即 f 把 x 的 纤维映射到 x 的纤维, 且 $f|_{E_x}$ 是一个线性映射, 则称 f 是 E 到 E' 的线性映射. 若 f 限制在每个纤维上都是线性同构, 则称 E 和 E' 是同构的向量丛. 不区分同构的向量丛.

Proposition 2.1.1

设 M 是一个黎曼曲面, $\{U_i\}$ 是一个坐标覆盖. 对于每个 $U_i \cap U_j \neq \emptyset$ 的情况, 定义 $g_{ij}: U_i \cap U_j \rightarrow \operatorname{GL}(k,\mathbb{C})$. 若 $\{g_{ij}\}$ 作为函数族满足:

- $1. \ g_{ij}g_{ji}=1$
- 2. $g_{ij}g_{jk}g_{ki} = 1$

则存在唯一的复光滑向量丛 E, 其局部平凡化为 $\{U_i\}$, 且转移函数为 $\{g_{ii}\}$.

Proof. 定义 E 为如下空间:

$$E := \bigcup_i U_i \times \mathbb{C}^k / \sim, \not \exists \, \dot{\top}(x, u_i) \sim (y, v_j) \Leftrightarrow x = y, u_i = g_{ij}(x) v_j, (x, u_i) \in U_i, (y, v_j) \in U_j$$

用 [x,u] 表示 (x,u) 所在的等价类, 定义 $\pi: E \to M$

$$\pi:[x,u]\mapsto x$$

验证 E 是一个向量丛的工作留给读者. 关键是如何使用到命题中 g_{ij} 的限制条件.

接下来说明唯一性. 我们已经说明给定转移函数的情况下, 可以构造一个向量丛, 并且向量丛的转移函数就是给定的. 现在只需要说明给定向量丛, 用该向量丛的转移映射构造的向量丛与原来的向量丛同构. 实际上这也是很容易的, 我们同样留给读者证明.

上面的命题说明,转移映射实际上是向量丛的另一种等价定义. 由于转移映射本身是从 M 到矩阵的函数,因此这种定义方式更"本质". 我们会在之后的上同调讨论中更充分的意识到这一点.

最后我们介绍一些基础的概念.

Definition 2.1.5: 子丛, 商丛, 张量积与直和

设 $E \neq M$ 的向量丛. 称 $F \subset E \neq E$ 的一个子丛, 若 F 满足:

- 1. π_F 是光滑映射. 且 $\pi|_F$ 本身是光滑向量丛.
- 2. $\forall x \in M, F_x \subset E_x$ 是一个线性子空间.
- 3. F 是 E 的子流形.

不难验证, 若 F 拥有转移函数 $a_{\alpha\beta}$, 则 E 的转移函数可以写为:

$$\begin{pmatrix} a_{\alpha\beta} & * \\ 0 & c_{\alpha\beta} \end{pmatrix}$$

设 F 是 E 的子丛, 则可以定义商丛 E/F. 其限制在每个 x 上的纤维都是商空间 E_x/F_x . 转移函数为: $c_{\alpha\beta}$.

设 E,F 是两个 M 的向量丛. 可以定义 E,F 的张量积 $E\otimes F$. 其限制在每个纤维上 $E_x\otimes F_x$, 转移函数为 $g_{\alpha\beta}\otimes g'_{\alpha\beta}$.

设 E,F 是两个 M 的向量丛. 可以定义 E,F 的张量积 $E\oplus F$. 其限制在每个纤维上 $E_x\oplus F_x$,转移函数为 $\begin{pmatrix}g_{\alpha\beta}&0\\0&g_{\alpha\beta}'\end{pmatrix}$.

全纯向量丛

全纯向量丛是光滑向量丛的深化. 这里我们要求向量丛本身带上复的结构 (成为一个复流形), 并且与M 的交互中时刻保证全纯.

Definition 2.1.6: 复流形

设 M 是具有可数拓扑基的 Hausdorff 空间. 若 M 上存在开覆盖 $\{U_{\alpha}\}_{\alpha\in\Gamma}$ 以及定义在每个开集 U_{α} 上的连续映射 $\varphi_{\alpha}:U_{\alpha}\to\mathbb{C}^n$ 满足:

- 1. $\varphi_{\alpha}(U_{\alpha})$ 是 \mathbb{C}^n 的开集, 且 φ_{α} 是给出 U_{α} 与 $\varphi_{\alpha}(U_{\alpha})$ 的同胚.
- 2. 若 $U_{\alpha} \cap U_{\beta} \neq \emptyset$, 则转移映射 $\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ 是全纯映射.

则称 M 是一个复流形 (complex manifold). 同时, 称 $\{U_{\alpha}, \varphi_{\alpha}\}$ 是 M 上的地图册 (alts).

Definition 2.1.7: 全纯向量丛

称 $\pi: E \to M$ 是一个全纯向量丛, 若 E 是一个 k+1 维复流形, 且满足:

- 1. $\pi: E \to M$ 是全纯映射.
- 2. $\forall x \in M$, 存在邻域 *U* 和双全纯映射:

$$\varphi_U: \pi^{-1}(U) \to U \times \mathbb{C}^k, E_x \mapsto \{x\} \times \mathbb{C}^k$$

3. 转移映射是从 $U_i \cap U_j$ 到 $\mathrm{GL}(k,\mathbb{C})$ 的全纯映射.

同样, 我们可以只使用转移映射定义全纯向量丛. 这里我们对转移映射提的要求比光滑的时候提的要求只多了一条——必须是全纯的映射.

全纯向量丛之间的映射,全纯向量丛的子丛,直和,张量积与直和都与光滑时刻一致.因为这些运算都不会影响映射的全纯性.

Example 2.1.8: 全纯切丛

延续上一节的第二个例子. 我们定义:

$$T^{(1,0)}M := \langle \frac{\partial}{\partial z_{\alpha}} \rangle$$

显然 $T^{(1,0)}M$ 是 $T_{\mathbb{C}}M$ 的子丛, 并且转移函数为 $\frac{\partial x_{\alpha}}{\partial x_{\beta}}$. 由于全纯性, 转移函数是全纯的, 因而 $T^{(1,0)}M$ 是 全纯的向量丛.

我们称这个向量从是 M 的全纯切丛, 它的秩为 1.

Example 2.1.9: 余切空间与余切丛

我们知道, 黎曼曲面 M 是一个二维的实微分流形. 因此 M 具有实的余切空间与余切丛. 这里不再赘述 他们的详细定义.

现在把余切丛复化 $T^*_{\mathbb{C}}M:=T^*M\otimes\mathbb{C}$. 并且定义:

$$dz_{\alpha} := dx_{\alpha} + \sqrt{-1}dy_{\alpha}$$
$$d\bar{z}_{\alpha} := dx_{\alpha} - \sqrt{-1}dy_{\alpha}$$

不难验证:

$$\begin{split} dz_{\alpha}(\frac{\partial}{\partial z_{\alpha}}) &= d\bar{z}_{\alpha}(\frac{\partial}{\partial \bar{z}_{\alpha}}) = 1 \\ dz_{\alpha}(\frac{\partial}{\partial \bar{z}_{\alpha}}) &= d\bar{z}_{\alpha}(\frac{\partial}{\partial z_{\alpha}}) = 1 \end{split}$$

任意 $f \in \mathbb{C}^{\infty}(M, \mathbb{C})$, 有:

$$df = \frac{\partial f}{\partial z_{\alpha}} dz_{\alpha} + \frac{\partial f}{\partial \bar{z}_{\alpha}} d\bar{z}_{\alpha}$$

从上面的讨论不难看出, 若定义 $T^{*(1,0)}M=\langle dz_{\alpha}\rangle$, 则这个丛恰好是全纯切丛的对偶丛 (对偶丛的概念是容易想到的). 通过直接计算, 也可以得到 $T^{*(1,0)}M$ 的转移映射为 $g_{\alpha\beta}^*=\frac{\partial z_{\beta}}{\partial z_{\alpha}}^{-1}$.

因此 $T^{*(1,0)}M$ 也是一个全纯向量丛.

最后我们给出向量丛的一个重要定义以结束本节.

Definition 2.1.10

称 $s: M \to E$ 为光滑 (全纯) 向量丛 $\pi: E \to M$ 的光滑 (全纯) 截面 (section), 若 s 是一个光滑 (全纯) 的映射, 并且 $\pi \circ s = \mathrm{id}_M$.

对于全纯向量丛, 我们也考虑其光滑截面. 实际上, 不加说明的情况下, 我们的截面总是指光滑的截面.

截面的定义是简单的, 但是其存在性是很不平凡的问题. 我们这里没有办法过多阐述这个问题, 仅仅只能阐述这个概念.

Example 2.1.11: P¹ 的全纯线丛

我们考虑一个具体的例子. 对于黎曼曲面 \mathbb{P}^1 , 其拥有一个秩为 1 的全纯切丛 $T^{(1,0)}\mathbb{P}^1$.

考虑 \mathbb{P}^1 的地图册, 我们只需要给出一个 $U \cap V \to \mathbb{C}$ 的全纯函数, 即可表达出该全纯线丛. 设 $x \in U \cap V$, 则 $\varphi_{UV}(z) = 1/z$. 对该函数求导:

$$g_{UV} = -\frac{1}{z^2}$$

这确实是一个全纯函数 $(z \neq 0)$. 因此 \mathbb{P}^1 的全纯线丛由如上转移函数表示.

接下来我们考虑这个丛有没有全纯截面. 假设存在这个截面 s. 则 s 限制在 U 和 V 上分别为两个开集上的全纯函数 s_U 和 s_V . 并且根据转移映射, 在 V 上坐标为 z 的点 (在 U 上坐标为 1/z), 满足:

$$s_U(1/z) = -\frac{1}{z^2} s_V(z)$$

实际上, 令 $s_U = z, s_V = -z$, 上述关系即满足. 因此 $T^{(1,0)}M$ 存在全纯截面.

线丛

对于一个黎曼曲面 M, 线丛是指那些秩为 1 的向量丛. 一般用 L 表示线丛. 线丛在黎曼曲面中的研究占着非常重要的地位. 我们首先看一个定义.

Definition 2.1.12

记 $Pic(M) := \{\pi : L \to M | rkL = 1\}$, 即 Pic(M) 是所有全纯线丛的集合. 关于向量丛的张量积, 该集合构成一个群, 称为该黎曼曲面的 Picard 群.

该群的单位元是平凡丛, 该群的逆元是对偶丛.

Picard 群是黎曼曲面重要的一个概念. 例如:

Example 2.1.13

 $\operatorname{Pic}(\mathbb{P}^1) = \mathbb{Z}$

这个结论目前还无法证明. 但是如此简洁的结论至少揭示了 Pic(M) 的重要性.

考虑一个全纯线丛 $\pi:L\to M$. 记 $\Gamma_{\mathcal{O}}(L)$ 表示 L 所有的全纯截面. 显然该集合是 \mathbb{C} 上的线性空间. 于此同时, 我们有:

$$s_1 \in \Gamma_{\mathcal{O}}(L_1), s_2 \in \Gamma_{\mathcal{O}}(L_2) \Rightarrow s_1 \otimes s_2 \in \Gamma_{\mathcal{O}}(L_1 \otimes L_2)$$

§2.2 de Rham 上同调和 Dolboult 上同调

在微分流形中, 我们曾经接触过外微分算子 d. 其满足:

- 1. $d \circ d = 0$
- 2. $df = \frac{\partial f}{\partial x^i} dx^i$
- 3. $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{\deg \omega} \omega \wedge d\eta$

三条性质.

由第一条性质, 我们可以定义微分流形 M 的 de Rham 上同调群:

$$H^n_{\mathrm{dR}}(M;\mathbb{R}) = \frac{\ker d_{n+1}}{\mathrm{im} d_n}$$

由代数拓扑的一般性理论, 可以证明, $H^n_{\mathrm{dR}}(M;\mathbb{R})$ 与流形的微分结构无关, 只与流形的拓扑结构有关, 因此是拓扑不变量.

现在我们把问题转到一个黎曼曲面 M 上. 因为黎曼曲面带有自然的复结构, 因此我们的上同调可以考虑复数的版本.

外微分与外代数的复化,外代数的分次

称余切丛 $T_{\mathbb{C}}^*M$ 的截面为 1 阶微分形式. 类似的, 我们可以构造出 M 上 (0,1) 阶和 (1,0) 阶微分形式, 其分别为 $T^{*(1,0)}M$ 和 $T^{*(0,1)}M$ 的截面. 类似的, 可以定义 2 阶的微分形式, 以及 (0,2),(1,1),(2,0) 阶微分形式.

注: 在黎曼曲面中, 实际上只存在 (1,1) 阶的微分形式. 读者自证不难.

由于上述定义本质上只是把 T^*M 做了复化, 因此我们仍然可以定义外微分算子和外积. 其本质是实数情况的复线性延拓。

因此可以定义复值的 de Rham 上同调:

$$H^p_{\mathrm{dR}}(M,\mathbb{C}) := \frac{Z^p(M,\mathbb{C})}{d \bigwedge^{p-1}(M,\mathbb{C})}$$

显然我们有:

$$H^p_{\mathrm{dR}}(M,\mathbb{C}) = H^p_{\mathrm{dR}}(M,\mathbb{R}) \otimes \mathbb{C}$$

到目前为止都是简单的复线性延拓. 但接下来的事情会复杂一些. 回忆 $\bigwedge^p(M,\mathbb{C})$ 的定义, 我们有如下结果:

$$\bigwedge^p(M,\mathbb{C}) = \bigoplus_{i=0}^p (\wedge^i(T^{*(1,0)}M) \otimes \wedge^{p-i}(T^{*0,1}M)) = \bigoplus_{i=0}^p \wedge^{i,p-i}$$

因此我们尤为想要关注将

$$\bigwedge^p(M,\mathbb{C})$$

分次后, 外微分算子的变化.

Definition 2.2.1

定义两个算子 ∂ 和 $\bar{\partial}$:

$$\partial := \pi^{p+1,q} \circ d : \wedge^{p,q} \to \wedge^{p+1,q}$$
$$\bar{\partial} := \pi^{p,q+1} \circ d : \wedge^{p,q} \to \wedge^{p,q+1}$$

换句话说. ∂ 关注的是全纯分量的次数增加. $\bar{\partial}$ 关注的是反全纯分量的增加。

我们看一个实际的例子. 对于函数 $f \in \wedge^0(M; \mathbb{C})$. 这是一个光滑的复值函数. 因此:

$$df = \frac{\partial f}{\partial z_{\alpha}} dz_{\alpha} + \frac{\partial f}{\partial \bar{z}_{\alpha}} d\bar{z}_{\alpha}$$

不难发现, 第一个量是全纯的, 第二个量是反全纯的. 所以 $\frac{\partial f}{\partial z_{\alpha}}dz_{\alpha}=\partial f, \frac{\partial f}{\partial \bar{z}_{\alpha}}d\bar{z}_{\alpha}=\bar{\partial}f$. 也就是说 $df=\partial f+\bar{\partial}f$.

我们想要知道上述结果对一般的光滑截面 $s \in \wedge^{p,q}(M,\mathbb{C})$ 是否还对. 实际上, 对于黎曼曲面而言, 这是正确的. 通过分析 M 的实际维数, 读者自证不难.

Proposition 2.2.1

$$d = \partial + \bar{\partial}$$

Proposition 2.2.2

 ∂ 和 $\bar{\partial}$ 与拉回可交换.

Proof. 直接计算即可. 验证 0,1 阶, 然后验证同时满足莱布尼兹律.

Proposition 2.2.3

 $\partial^2=ar\partial^2=0$. 因而可以建立其对应的上同调. 我们用 $H^{p,q}_{ar\partial}(M)$ 表示上空间:

$$H^{p,q}_{\bar\partial}(M) = rac{Z^{p,q}}{\bar\partial\wedge^{p,q-1}}$$

下面这个定理的重要性等同于 Poincaré 定理 (d-Poincaré 引理).

Lemma 2.2.1: Ō-Poincaré 引理

对于可缩的区域 $\Delta, H_{\bar{\partial}}^{p,q}(\Delta) = 0$ 对于 $q \ge 1$ 恒成立. 这个命题对于复流形都是成立的.

Proof. 设 $\varphi = \sum_{|I|=p,|J|=q} \varphi_{IJ} dz^I \wedge d\bar{z}^J$

设 $\varphi_I := \sum_{|J|=q} \varphi_{IJ} dz^I d\bar{z}^J$. 根据 $\bar{\partial}$ 的定义不难看出 $\bar{\partial} \varphi_I = 0$ 也成立.

若上述命题对于 (0,q) 阶上同调成立, 即 $\varphi_I = \bar{\partial}\eta_I$, 则:

$$\varphi = \bar{\partial}(\sum_I dz^I \wedge \eta_I)$$

因而我们的问题转为证明 (0,q) 阶的上同调消灭.

2.3. 除子与线丛 22

先考虑 $H^{0,1}$ 的情况. 此时选取 $[\omega] \in H^{(0,1)}(\Delta)$, 不妨设 $\omega = f(z)d\bar{z}$. 其中 f 是光滑复值函数. 考虑 $\bar{\partial}fd\bar{z}$ 令:

$$g(z) := \frac{1}{2\pi\sqrt{-1}} \int_{\Delta} \frac{f(w)}{w - z} dw \wedge d\bar{w}$$

注意到这个积分奇异的地方在于 w=z 处. 下面这个技巧处理了这个问题

令 ρ 是光滑的函数, 且满足在 z 处的小邻域 $B_{\epsilon/2}(z)$ 内恒为 1, 在 $B_{\epsilon}(z)$ 外恒为 0. 这样的函数是存在的. 令 $f_1 = \rho f, f_2 = (1 - \rho)f$. 则:

$$g(z) := \frac{1}{2\pi\sqrt{-1}} \int_{\Delta} \frac{f_1(w)}{w - z} dw \wedge d\bar{w} + \frac{1}{2\pi\sqrt{-1}} \int_{\Delta} \frac{f_2(w)}{w - z} dw \wedge d\bar{w}$$

第二项积分失去了奇异性, 因此:

根据 Stokes 定理, 我们有:

$$\begin{split} \frac{1}{2\pi\sqrt{-1}}\int_{B}\frac{\partial f_{1}}{\partial \bar{w}}(w)\frac{dw\wedge d\bar{w}}{w-z} &= \lim_{\delta\to 0}\frac{1}{2\pi\sqrt{-1}}\int_{B\backslash B_{\delta}(z)}\frac{\partial f_{1}}{\partial \bar{w}}(w)\frac{dw\wedge d\bar{w}}{w-z}\\ &= \frac{1}{2\pi\sqrt{-1}}\lim_{\delta\to 0}\int_{\partial B_{\delta}(z)}\frac{f_{1}(w)}{w-z}dw\\ &= \frac{1}{2\pi}\int_{0}^{2\pi}f_{1}(z+\delta e^{\sqrt{-1}\theta})d\theta = f_{1}(z) \end{split}$$

因此 $\frac{\partial g}{\partial \bar{z}} = f_1(z) = f(z)$, 即 $\bar{\partial} g = \omega$.

对于 q>1 的情况, 我们考虑 $\alpha=\sum_I f_I d\bar{z}_I$. 设 k 是所有 I 中最大的整数, 从而对于 $i>k,d\bar{z}_i$ 不出现在 α 中. 于是把 α 写为:

$$\alpha = \alpha_1 \wedge d\bar{z}_k + \alpha_2$$

 $\bar{\partial}\alpha = \bar{\partial}\alpha_1 \wedge d\bar{z}_k + \bar{\partial}\alpha_2.$

对于含有 k 的 I, 定义 g_I

$$g_I(z_1, \dots, z_n) = \frac{1}{2\pi\sqrt{-1}} \int_{\Delta} \frac{f_I(z_1, \dots, z_{k-1}, w, z_{k+1}, \dots, z_n)}{w - z_k} dw \wedge d\bar{w}$$

同样的, 我们有: $\frac{\partial g_I}{\partial \bar{z_k}} = f_I$.

定义 $\gamma = (-1)^I \sum_{k \in I} g_I d\bar{z}_{I \setminus k}$ 从而 $\bar{\partial} \gamma(z) = -\alpha_1$. 注意到 $\alpha + \bar{\partial} \gamma$ 仍然是 $\bar{\partial}$ 闭的, 并且已经减少了一个可能的 $d\bar{z}_k$. 从而归纳下去, 即可得证.

§2.3 除子与线丛

本节我们论述除子的相关内容.

2.4. 层 23

§2.4 层

Motivation

Question1:Mittag-Leffler 问题

令 M 是一个黎曼面. P_1, \ldots, P_N 是 N 个点. 设:

$$f_j := \sum_{k=-1}^{-m_j} a_{kj} (z - z_j)^k$$

为 P_i 附近的一个 Laurent 技术的主项.

问: 是否存在整体的 $f \in \mu(M)$, 使得 f 限制在 $B_{\epsilon}(P_j)$ 为某个全纯函数加 f_j ? 或者说, 是否存在 $f \in \mu(M)$, 使得 $(f) + D \ge 0$?

Question2: 对于每个除子 $D \ge 0$,局部的, $D|_{U_{\alpha}}$ 均为某个全纯函数的零点. 问: 是否存在一个线丛 L 使得 $s \in \Gamma(L),(s) = D$. 即 $D|_{U_{\alpha}} = f_{\alpha}$. 是否存在 $(g_{\alpha\beta},U_{\alpha\beta})$ 使得 $f_{\alpha}/f_{\beta} = g_{\beta\alpha} \in \mathcal{O}^*(U_{\beta\alpha})$.

Question3:Cousin 问题

对于 \mathbb{C}^2 中的一条全纯曲线, 问是否存在 $f \in \mathcal{O}(\mathbb{C}^2)$ 使得 (f) 就是曲线.

预层

Definition 2.4.1

一个预层 \mathcal{F} 是指一个映射 \mathcal{F} :

$$\mathcal{F}: \mathrm{Open}(M) \to \mathrm{Abel}$$

称 F(U) 的元素为截面 (section)

并且对于开集之间的含入映射 $i_{UV}: U \to V$, 均诱导一个同态:

$$\rho_{VU}: F(V) \to F(U)$$

称 ρ_{VU} 为限制映射 (restriction)

且满足:

- 1. $\rho_{UU} = id$
- 2. $\rho_{UV} \cdot \rho_{VW} = \rho_{UW}$

学过范畴论的读者会注意到, 预层实际上就是一个从 M 的开集范畴到交换群范畴的一个反变函子.

Example 2.4.2: 函数层

 $\mathcal{O}: \mathrm{Open}(M) \to \mathrm{Abel}$ 定义为 $U \mapsto \mathcal{O}(U).\rho_{UV}$ 即函数的限制.

 $\mathcal{O}^*: \mathrm{Open}(M) \to \mathrm{Abel}$ 定义为 $\mathcal{O}^*(U)$ 即 U 上的非零全纯函数 (处处不为 0). 该群用乘法作为运算. 限制映射同样为函数的限制映射.

 $\mu^*: \mathrm{Open}(M) \to \mathrm{Abel}$ 定义为 $\mu^*(U)$ 即 U 上的非零亚纯函数 (不恒为 0). 限制映射同样为函数的限制映射.

Example 2.4.3

对于线丛 $\pi:L\to M$, 定义 $\mathcal{O}(L)$ 是 L 对应的预层. $\mathcal{O}(L)$ 将 U 映射为 U 上的全纯截面. 限制映射则为 s 作为映射的限制.

Example 2.4.4

 μ^*/\mathcal{O}^* : Open $(M) \to \text{Abel}$ 定义为 $\mu^*/\mathcal{O}^*(U)$ 即商群 $\mu^*(U)/\mathcal{O}^*(U)$. 限制映射同样为函数的限制映射.

层

Definition 2.4.5

称预层 \mathcal{F} 为一个层, 若 \mathcal{F} 满足: 对于任意开集 $U \subset M$, 且 U 有一个开覆盖 $\{U_i\}$

- 1. 若 $s \in F(U)$ 满足对于任意 U_i , 都有 $s|_{U_i} = 0$, 则 s = 0.
- 2. 若存在 $\{s_i\}$ 满足 $s_i \in \mathcal{F}(U_i)$ 且 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ 对于任意 $i \neq j$ 都成立, 则存在唯一的 $s \in \mathcal{U}$ 使得 $s|_{U_i} = s_i$.

上述两个条件被称为层公理. 是区分预层与层的重要条件. 之前讲的预层的例子都是层. 读者可以自己尝试验证.

现在我们考虑层之间的映射. 这一概念是层论的基础. 熟悉范畴论的读者可以意识到, 层之间的映射实际上是函子的自然变换.

Definition 2.4.6

 $\alpha: \mathcal{F} \to \mathcal{G}$ 作为层之间的映射满足: 对于每个 U, 都存在群同态 $\mathcal{F}(U) \to \mathcal{G}(U)$. 并且该映射对于限制同态是交换的.

Example 2.4.7

 $k: \mathbb{Z} \to \mathcal{O}$, 对于开集 U, k(U) 将整数 m 映射为 $\mathcal{O}(U)$ 上的函数 $2\pi\sqrt{-1}m$.

 $\exp: \mathcal{O} \to \mathcal{O}^*$. 对于开集 $U, \exp(U)$ 将函数 f 映射为 $\exp(f)$.

 $Quotient: \mu^* \to \mu^*/\mathcal{O}^*$. 映射办法就是把函数映射为对应的等价类.

Definition 2.4.8: 层映射的 ker 和 Im

对于层映射 α , 可以逐开集定义 ker:

$$\ker(\alpha) := \ker(\alpha_U)$$

然而 Im 不能逐点定义.(逐开集定义的并不能构成一个层, 不能拼接) 实际上我们定义为:

$$\operatorname{Im}(\alpha)(U) := \{ s \in \mathcal{G}(U) | \forall p \in U, \exists U(p) \subset U, s.t. s |_{U(p)} \in \operatorname{Im}\alpha_{U(p)} \}$$

也就是说, 整体上 Im(U) 中的元素不一定是 $\alpha(U)$ 像.

考虑 exp 映射, 我们用这个例子表明逐开集定义的预层不一定是层.

例如考虑开集 $\mathbb{C}\setminus\{0\}$, z 是 $\mathcal{O}^*(\mathbb{C}\setminus\{0\})$ 上的函数. 对于每个点 p 而言, 都存在小开集 U(p) 使得 z 限制在 U(p) 上时, 指数映射有原像. 但是整体而言, 并不存在这个原像.

因此直接逐开集定义, 会导致 z 无法在 $\mathbb{C} \setminus \{0\}$ 拼出来.

定义了 Im 和 ker, 自然就有正合列的定义 (Im=ker). 我们看两个例子:

Example 2.4.9

下面三个列都是正合列. 验证的工作留给读者.

$$1.0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0.$$

$$2.0 \rightarrow \mathcal{O}^* \rightarrow \mu^* \rightarrow \mu^*/\mathcal{O}^*$$
.

$$3.0 \to \mathbb{R} \to C^{\infty} \to \wedge^1 \dots$$

现在我们回到最开始的问题, 看一看层论能给我们提供什么思路.

对于 Mittag-Leffler 问题. 我们做如下的分析:

设 $\{U_{\alpha}\}$ 是 M 的一个开覆盖, 且 $U_j = B_j$ (即 P_j 被 U_j 包裹). 现在考虑关于这个开覆盖的单位分解 ρ_{α} . 同时, 对于每个 U_{α} , 定义函数:

$$f_{\alpha} \in \mathcal{O}(U_{\alpha}), P_j \notin U_{\alpha}$$

 $f_{\alpha} = f_j, P_j \in U_{\alpha}$

因此 $\sum_{\alpha \in \Lambda} \rho_{\alpha} f_{\alpha}$ 是 $M \setminus \{P_1, \dots, P_N\}$ 上的光滑函数. 我们考虑:

$$\varphi := \bar{\partial}(\sum \rho_{\alpha} f_{\alpha}) \in \Lambda^{0,1}(M)$$
, 因为奇异点附近都是全纯函数

若 $H^{0,1}_{\bar{\partial}}(M)=0$, 或者 $\varphi=[0]\in H^{0,1}_{\bar{\partial}}(M)$, 则我们有: $\varphi=\bar{\partial}h,h\in\mathbb{C}^\infty(M)$. 并且 $f:=\sum\rho_\alpha f_\alpha-h$ 是 M上的一个亚纯函数.

因此我们的问题转变成了对上同调群 $H_{\bar{\partial}}^{0,1}(M)$ 的研究. 这导引了我们对层上同调的研究. 上述的方法 被称为 Dolboult 方法, 即使用 Dolboult 上同调的办法解决 ML 问题.

现在我们换一个方法. 任取 M 的开覆盖 $U=\{U_{\alpha}\}_{\alpha\in A}$. 如上言, 对每个 α 指定一个 f_{α} .

记 $f_{\alpha\beta} := f_{\beta} - f_{\alpha} \in \mathcal{O}(U_{\alpha\beta})$. 如果我们能找到:

$$\{(g_{\alpha}, U_{\alpha})|g_{\alpha} \in \mathcal{O}(U_{\alpha})\}$$

使得 $f_{\alpha\beta} = g_{\alpha} - g_{\beta}$, 则令 $h_{\alpha} := f_{\alpha} + g_{\alpha}$, 则 h_{α} 可以拼凑出一个亚纯函数 f. 上述方法称为 Cěch 方法. 该方法的背景是层的 Cěch 上同调.

Cěch 上同调

现在我们清空一下大脑, 然后考虑一个具有开覆盖 U 的黎曼曲面 M. 定义如下两个集合:

$$C^{1}(\mathcal{U}, \mathcal{O}) := \{ (U_{\alpha\beta}, f_{\alpha\beta}) | f_{\alpha\beta} \in \mathcal{O}(U_{\alpha\beta}) \}$$

$$Z^{1}(\mathcal{U}, \mathcal{O}) := \{ (U_{\alpha\beta}, f_{\alpha\beta}) | f_{\alpha\beta} + f_{\beta\gamma} + f_{\gamma\alpha} = 0 \}$$

$$B^{1}(\mathcal{U}, \mathcal{O}) := \{ (U_{\alpha\beta}, f_{\alpha\beta}) | \exists q_{\alpha} \in \mathcal{O}(U_{\alpha}), f_{\alpha\beta} = q_{\alpha} - q_{\beta} \}$$

显然后两个是第一个集合的子集, 第三个集合是第二个集合的子集. 定义:

2.4. 层 26

Definition 2.4.10

开覆盖 U 的一阶 Cěch 上同调定义为:

$$H^1(\mathcal{U},\mathcal{O}) := Z^1(\mathcal{U},\mathcal{O})/B^1(\mathcal{U},\mathcal{O})$$

显而易见. 如果上述商群为 0, 则所有满足 $f_{\alpha\beta}+f_{\beta\gamma}+f_{\gamma\alpha}=0$ 的 $(U_{\alpha\beta},f_{\alpha\beta})$ 都拥有 (g_{α}) 的形式. 这就给出了我们想要的 g_{α} 构造.

一般的, 我们也可以定义高阶的上同调群. 正式的定义如下:

为了定义层的 Cěch 上同调, 我们要做如下操作.

1. 定义局部有限的"Good Cover".

Definition 2.4.11

设 M 是一个黎曼面. 称 $\mathcal{U} := \{U_{\alpha}\}$ 是一个局部有限的 "Good Cover", 若满足:

- (1) 任意 $U \in \mathcal{U}$, 都存在 N > 0 使得 $U \cap U_{\alpha_0} \cap \cdots \cap U_{\alpha_N} = \emptyset$.
- (2) 从开覆盖中任意取有限个开集, 他们的交集都是可缩的.

Example 2.4.12

对于 S^1 而言, 两个略微大于 180° 的弧即可. 对于 \mathbb{P}^1 而言, 则需要 6 个半圆.

考虑局部有限的 Good Cover 的理由: 层的上同调理论实际上很丰富.Cěch 上同调是一种抵达层上同调理论的方法, 但是缺点是与开覆盖有关. 如果是局部有限的 Good Cover, 我们有一个较好的结果:

Theorem 2.4.1: Leray

若 $\forall q \geq 1, \forall i_1, \ldots, i_p, p \geq 9$ 均有: $H^q(U_{i_0 i_1 \ldots i_q}, \mathcal{F}) = 0$ 成立, 则 $H^*(\mathcal{U}, \mathcal{F}) \cong H^*(M, \mathcal{F})$.

我们暂时不需要理解上述定理中较多的含义. 我们只需要知道, 在 U 可缩的时候, 上述定理成立, 从而我们抵达了层的上同调.

2. 定义高阶的 Cěch 上同调.

Definition 2.4.13: C^p 上链

对于给定的开覆盖 U 和给定的层 \mathcal{F} , 定义 $C^p(\mathcal{U},\mathcal{F}) := \bigoplus_{\alpha_0 \neq \dots \neq \alpha_p} \mathcal{F}(U_{\alpha_0,\dots,\alpha_p})$

例如,p=0 时, $C^0(\mathcal{U},\mathcal{F})=\bigoplus_{\alpha}F(U_{\alpha})$.

Definition 2.4.14

对于给定的开覆盖 U 和给定的层 \mathcal{F} , 定义 δ :

$$\delta: C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$$

$$\sigma \mapsto (\delta \sigma)_{\alpha_0 \dots \alpha_{p+1}} := \sum_{j=0}^{p+1} (-1)^j \sigma_{\alpha_0 \dots \hat{\alpha_j} \dots \alpha_{p+1}}$$

Example 2.4.15: \mathbb{P}^1

在球面 S^2 上, 取 good covering(共六个半球面). 同时, 考虑层 \mathcal{O}^* . 我们把 δ, C^0, C^1 的表达式的结果留给读者完成.

3. 层的同态诱导上链群之间的映射.

对于 $\alpha: \mathcal{F} \to \mathcal{G}, \alpha$ 自然诱导 $\alpha^*: C^p(\mathcal{U}, \mathcal{F}) \to C^p(\mathcal{U}, \mathcal{G})$, 使得交换图:

$$\begin{array}{cccc} C^0(\mathcal{U},\mathcal{F}) & \longrightarrow & C^1(\mathcal{U},\mathcal{F}) & \longrightarrow & C^2(\mathcal{U},\mathcal{F}) & \longrightarrow & \dots \\ & & & & & & & & & \\ \alpha^* \Big\downarrow & & & & \alpha^* \Big\downarrow & & & & & \\ C^0(\mathcal{U},\mathcal{G}) & \longrightarrow & C^1(\mathcal{U},\mathcal{G}) & \longrightarrow & C^2(\mathcal{U},\mathcal{G}) & \longrightarrow & \dots \end{array}$$

这个事实的成立是显然的. 因为 α^* 实际上继承于 $\mathcal{F}(U)$ 到 $\mathcal{G}(U)$ 的 $\alpha(U)$. 根据限制映射与 α 交换可知上述图标成立.

4. 定义 cocycle 和 coboundary

Definition 2.4.16

称 p-cochain σ 为 cocyle, 若 $\delta \sigma = 0$. 称 p-cochain σ 为 coboundary, 若 $\sigma = \delta \tau$.

Proposition 2.4.1

cocyle 是反对称的.

Proof.
$$(\delta\sigma)_{123} = \sigma_{12} - \sigma_{13} + \sigma_{23} = 0, (\delta\sigma)_{213} = \sigma_{21} - \sigma_{23} + \sigma_{13} = 0.$$
 于是 $\sigma_{12} + \sigma_{21} = 0.$

Proposition 2.4.2

 $\delta^2 = 0$.

Proof. 计算比较 tedious. 留给读者.

设 Z^p 是 p-cocyle 的全体, B^p 是 p-coboundary 全体.

Definition 2.4.17: Cěch 上同调

 $H^p(\mathcal{U},\mathcal{F}) := Z^p/B^p$.

到此, 我们完成了 Cěch 上同调的定义.

回顾商群的定义, 在商这个过程中, 以一阶为例, $\{(g_{\alpha\beta},U_{\alpha\beta})\} \sim \{(g'_{\alpha\beta},U_{\alpha\beta})\}$ 当且仅当:

$$g_{\alpha\beta} = \frac{f_{\alpha}}{f_{\beta}} g'_{\alpha\beta} \text{for} \{ f_{\alpha} \in \mathcal{O}^*(U_{\alpha}) \}$$

回忆层间的同态诱导链群之间的同态, 并且满足交换图. 从而根据同调代数知识, 我们有:

Proposition 2.4.3

层间的同态诱导 Cěch 上同调之间的群同态.

Leray 定理与 Leray 条件的验证

上述定义的上同调存在一个问题: 结果与开覆盖 U 有关. 我们希望定义出来的层上同调是一个与开覆盖无关的结果.

为了解决这个问题, 我们首先考虑, 如果 \mathcal{W} 是 \mathcal{U} 的一个加细. 此时, 实际上由限制映射可知, 对于每一种 $\tau:W_i\subset U_\alpha$,

$$H^p(\mathcal{U},\mathcal{F}) \to H^p(\mathcal{W},\mathcal{F})$$

存在一个自然的群同态,由限制映射诱导.

因此可以定义:

$$\rho_{\tau}^{\mathcal{U},\mathcal{W}}: H^p(\mathcal{U},\mathcal{F}) \to H^p(\mathcal{W},\mathcal{F})$$

用范畴论的角度来看, 如果我们把所有的开覆盖作为一个范畴, 用加细的方式表示两个开覆盖之间的映射, 则 ρ 给出了从上述范畴到 Cěch 上同调群的一个函子.

对这个函子取正向极限.

Definition 2.4.18

定义层 \mathcal{F} 的上同调为: $H^p(M,\mathcal{F}) := \varinjlim H^p(\mathcal{U},\mathcal{F})$. 极限的方式如上叙所示. 如果不使用范畴的语言:

$$H^p(M,\mathcal{F}) := \bigcup_{\mathcal{U}} H^p(\mathcal{U},\mathcal{F}) / \sim, \alpha \sim \beta \Leftrightarrow \exists B \supset \mathcal{U}, B \supset \mathcal{W}, \rho(\alpha) = \rho(\beta)$$

很明显,上述结果只是形式的给出了不依赖于开覆盖的定义. 但是实际上我们根本不可能用这个定义算出具体的上同调来. 因此下面的 Leray 定理是重要的.

Theorem 2.4.2

若 $\forall q \geq 1, \forall \alpha_0, \ldots, \alpha_p, p \geq 0$ 均有:

$$H^q(U_{\alpha_0...\alpha_n}, \mathcal{F}) = 0$$

则对于这样的开覆盖:

$$H^*(\mathcal{U},\mathcal{F}) = H^*(M,\mathcal{F})$$

我们不打算证明这个定理. 但这个定理告诉我们, 如果我们能够找到合适的开覆盖, 那么就能通过计算这个开覆盖的办法, 算出层自身的上同调.

下面我们讨论的都是具体的层.

Lemma 2.4.1

任意 \mathbb{C} 中的连通开集 Ω , 都有 $H^q(\Omega, \mathcal{O}) = 0, \forall q \geq 1$.

Proof. 可以使用定义来证明. 任取 Ω 的局部有限 Good Cover, 任取 $\{(f_{ij}, U_{ij})\} \in Z^1(\mathcal{U}, \mathcal{O})$.

任取单位分解 ρ_i , 以及紧集 $K_i \ll U_i$, 使得:

$$\begin{cases} \rho_i|_{K_i} \equiv 1, \rho_i|_{\mathbb{C}\setminus \bar{U}_i} \equiv 0\\ \sum_{i=1}^{\infty} \rho_i(x) \equiv 1 \end{cases}$$

则令 $h_j := \sum_{U_{k,i} \neq \emptyset} \rho_k f_{kj}$. 则 h_j 是 U_j 上的光滑函数. 且:

$$h_j - h_i = \sum_{kij \neq \emptyset} \rho_k f_{kj} - \sum_{lij \neq \emptyset} \rho_l f_{li} = (\sum_{lij \neq \emptyset} \rho_k) f_{ij} = f_{ij}$$

因而在 U_{ij} 上 $\bar{\partial}h_j = \bar{\partial}h_i$.

因而存在 $\omega \in \Lambda^{0,1}\Omega$ 使得 $w|_{U_i} = \bar{\partial} h_i$. 不妨设 $\omega = h_0 d\bar{z}$.

我们断言, 存在光滑函数 u 使得 $\bar{\partial}u = \omega$. 从而设 $f_i = h_i - u$. 则 $\bar{\partial}f_i = 0$. 于是 $f_i \in \mathcal{O}(U_i)$ 且 $f_i - f_j = f_{ij}$. 下面证明这个断言. 注意到, 如果 Ω 单连通, 则根据 $\bar{\partial}$ -Poincaré 引理, 断言自然成立. 这实际上已经说明了 \mathcal{O} 层是满足 leray 条件的层.

为了证明这个断言, 我们需要计算 $H_{\bar{a}}^{0,1}(\Omega)$. 我们需要一个分析学工具——Runge 逼近定理.

Lemma 2.4.2: Runge 逼近定理

设 K 是紧集,U 是开集, 且 $K \subset U \subset \mathbb{C}$. 则下面两个命题等价.

- (1) 设 $W \in U \setminus K$ 的任一连通分支, $\bar{W} \cap U$ 非紧. 则 W 触及到 U 的边界.
- (2) 任意 K 上的全纯函数 f, 都存在 $\{f_k\} \subset \mathcal{O}(U)$, 使得 f_n 一致收敛于 f.

现在构造 u. 取 $K_1 \subset K_2 \subset \cdots \subset K_n \subset \Omega$. 且满足:

- 1. $\bigcup_{i=1}^{\infty} K_i = \Omega.$
- 2. $\Omega \setminus K_i$ 任一连通分支 W 均有 $\bar{W} \cap \Omega$ 非紧.

令 ρ_i 是 Ω 的紧支光滑函数, 使得 $\rho_i|_{K_i}\equiv 1$. 再令 $\varphi_1=\rho_1, \varphi_j=\rho_j-\rho_{j-1}, j\geq 2$. 则 $\varphi_j|_{K_{j-1}}=0, \sum \varphi_i=1$.

注意到此时 $\varphi_i h_0 \in C_0^{\infty}(\mathbb{C}), \varphi_i f_0|_{K_{i-1}} = 0.$

令 u_i 为 $\frac{\partial u_i}{\partial \bar{z}} = \varphi_i h_0$ 的解. 存在性来源于 $\bar{\partial}$ -Poincaré 引理.

根据 Runge 逼近定理, 以及 $u_i \in \mathcal{O}(K_{i-1})$ 可知, 存在 $v_i \in \mathcal{O}(\Omega)$ 使得 $|v_i - u_i| < 2^{-i}$. 令 $u := \sum_{i=1}^{\infty} (u_i - v_i)$. 根据我们的假设,u 是一致收敛的, 因此可以逐项求导:

$$\frac{\partial u}{\partial \bar{z}} = \sum_{i=1}^{\infty} \varphi_i h_0 = h_0$$

因而对于微分形式 $h_0d\bar{z}$, 存在 $u:\bar{\partial}u=h_0d\bar{z}$. 从而 $H^1(\mathcal{U},\mathcal{O})=0$.

2.4. 层

考虑 $H^1(\Omega, \mathcal{O})$. 对于任何一个开覆盖, 总存在一个局部有限的 Good cover.(流形总是仿紧的). 所以:

$$H^1(\Omega, \mathcal{O}) = 0$$

这里我们不要求 Ω 单连通, 且 Ω 非紧. 由证明我们有:

$$H^1(\Omega, \mathcal{O}) = H^{0,1}_{\bar{\partial}}(\Omega) = 0$$

这是难能可贵的结论. 因为对于非紧的黎曼曲面, 等式的前两项不一定相等.

Corollary 2.4.1

 \mathcal{O} 满足 Leray 定理的要求. 从而 Ω 上 Mittag-Leffler 问题有解.

Lemma 2.4.3

任意全纯线丛 $\pi: L \to M$, 层 $\mathcal{O}(L)$ 配合上 M 上的局部有限 Good cover 满足 Leray 条件.

Proof. 以 q=1 为例. 我们仍然选取一个局部有限的 Good Cover \mathcal{U} . 并且 $U_j \subset \mathcal{U}$ 为开圆盘. 令 ψ_j 是 $\pi^{-1}(U_j)$ 的局部平凡化. 则:

$$s_j^0 := \psi_j^{-1}(z, 1)$$

是 $\mathcal{O}(L)(U_j)$ 中的元素. 但是 s_i^0 不能构成整体的截面, 因为可能不满足相容性转移映射.

因而对于 U_j 的全纯截面 s_j , 我们总有 $s_j = f \cdot s_j^0$. 于是诱导了一个同构: $H^1(U_j, \mathcal{O}(L)) \cong H^1(U_j, \mathcal{O})$.

Lemma 2.4.4

 $\mu^*,\mu^*/\mathcal{O}^*$ 和 \mathcal{O}^* 也满足 Leray 条件.

Proof. 只说明第一个. 选取开覆盖 A. 取 $\sigma = \{(f_{ij}, A_{ij}) | f_{ij} \in \mu^*(A_{ij})\}$ 且 $\delta \sigma = 0$.

在每个开集 $A_i \in A$ 上, A_{ij} 部分的零点与极点都是孤立点. 记录全体 f_{ij} 的零点极点为 N.

对 A 取加细得 U, 使得 U 分别为两部分. 一部分 U_1 为 $U\setminus N$ 的开覆盖, 且元素均为圆盘. 另一部分 U_2 为 U 中与 N 有交集的开集.

在 \mathcal{U}_1 上 f_{ij} 不为 0 也不奇异, 因此可取对数 $h_{ij} := \log f_{ij}$. 则 $\{(h_{ij}), U_{ij} | h_{ij} \in \mathcal{O}(U_{ij})\} \in Z^1(\mathcal{U}_1, \mathcal{O})$. 如法炮制, 可以得到 $h_i - h_j = h_{ij}$, 于是 $f_{ij} = e^{h_i}/e^{h_j}$, 也即 $H^1(\mathcal{U}_1, \mu^*) = 0$.(存疑? 此处好像没有证明完)

进一步讨论层上同调

1. 讨论 $H^1(M, \mathcal{O}^*)$.

对于 M 取局部有限 Good Cover. 则:

$$H^1(M, \mathcal{O}^*) \cong H^1(\mathcal{U}, \mathcal{O}^*) = \{ [g_{\alpha\beta}, U_{\alpha\beta}] | g_{\alpha\beta} g_{\beta\gamma} g_{\gamma\alpha} = 1 \}$$

回忆我们对线丛的讨论, 上述条件说明, 每个元素 $\sigma \in Z^1(\mathcal{U}, \mathcal{O}^*)$ 可以定义一个线丛, 以 σ 为转移函数. 如果 $\sigma_1 \sim \sigma_2$, 即两个元素同属 $H^1(\mathcal{U}, \mathcal{O}^*)$ 中的元素, 也即:

$$g_{\alpha\beta} = \frac{f_{\alpha}}{f_{\beta}} g'_{\alpha\beta}$$

则 σ_1 和 σ_2 对应的线丛是同构的. 实际上, 我们只需要定义:

$$\varphi: L_1 \to L_2, [z_{\alpha}, v] \mapsto [z_{\alpha}, v/f_{\alpha}]$$

即可.

因此, $H^1(M, \mathcal{O}^*)$ 中的任何一个元素都对应了一个线丛 L. 另一方面, 对于线丛 L, 自然可以用转移函数 定义 $H^1(M, \mathcal{O}^*)$ 中的元素. 不难验证这是一个一一对应. 于是:

Proposition 2.4.4

黎曼曲面 M 的 Picard 群 $Pic(M) \cong H^1(M, \mathcal{O}^*)$.

2. 讨论 $H^0(M, \mathcal{O}(L))$.

设 $\pi: L \to M$ 是全纯线丛, 转移函数为 $\{(g_{\alpha\beta}, U_{\alpha\beta})\}$. 不妨这是局部有限的 Good Cover. 于是根据同构有:

$$H^0(M, \mathcal{O}(L)) \cong H^0(\mathcal{U}, \mathcal{O}(L))$$

也即, 其中的元素为:

$$\{(s_{\alpha}, U_{\alpha})|s_{\alpha} = g_{\beta\alpha}s_{\beta}\}$$

因而上述元素给出了一个整体截面 $s: M \to L$. 从而 H^0 实际上是 M 的全体截面.

Corollary 2.4.2

 $H^0(M, \Lambda^{1,0}) := H^0(M, \mathcal{O}(K))$ 是全体的全纯 1-形式.

3. 讨论常数层 \mathbb{Z} 的层上同调和奇异上同调的关系. 事实上, 我们有:

$$H^p(M,\mathbb{Z}) \cong H^p_{\text{sing}}(M,\mathbb{Z})$$

Proof. 首先使用一个基本结论——任何黎曼曲面都是三角剖分 Γ .

设 α 是 Γ 的一个顶点, 记录 $St(\alpha)$ 为这样一个开集: 包含 α 的所有三角形的并的内部.

则 $\operatorname{St}(\alpha) \cap \operatorname{St}(\beta)$ 要么是空集, 要么是 (此时 $\alpha\beta$ 在一条边 E 上) 除掉 α 和 β 的两个三角形的并. 而三个这样的开集的交要么是空集, 要么只是一个三角形. 因此, $\{\operatorname{St}(\alpha)\}$ 是 M 的一个局部有限 Good CoverU.

定义 $\Phi: C^p(\mathcal{U}, \mathbb{Z}) \to C^p_{\text{sing}}(M)$. 其中 $\Phi(\sigma)$ 定义为:

$$\Phi(\sigma)(\Delta_{\alpha_0...\alpha_p}) = \sigma_{\alpha_0...\alpha_p}$$

因而我们定义了一个从 $C_p(M)$ 到 \mathbb{Z} 的同态.

断言, Ф 是一个同构, 并且与余边缘算子交换. 即:

$$C^{p}(\mathcal{U}, \mathbb{Z}) \xrightarrow{\Phi} C^{p}_{\text{sing}}(M)$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{\Phi}$$

$$C^{p+1}(\mathcal{U}, \mathbb{Z}) \xrightarrow{\Phi} C^{p+1}_{\text{sing}}(M)$$

则根据基本的抽象代数可知有上同调群的同构. 我们把断言的验证交给读者.

但是对于一般的情况,我们还要考虑任意的开覆盖.(我们没有验证 Leray 条件成立). 因此对于开覆盖 \mathcal{W} ,利用上述的三角剖分,取重心重分,可以给出一个更细致的,且为 \mathcal{W} 的三角剖分 Γ' . 构造 \mathcal{U}' 为类似的开覆盖,从而也有上同调群的同构.

因此取极限后 $H^p(M,\mathbb{Z}) = H^p(M)$.

层短正合列导引上同调群长正合列

熟悉同调代数的同学对于本小节的标题应该不陌生. 事实上, 我们要说明存在如下的结论.

Theorem 2.4.3

考虑黎曼曲面 M. 若存在层的短正合列:

$$0 \to \mathcal{E} \stackrel{\alpha}{\to} \mathcal{F} \stackrel{\beta}{\to} \mathcal{G} \to 0$$

则这个短正合列导引了一个群的长正合列:

$$0 \to H^0(M, \mathcal{E}) \xrightarrow{\alpha^*} H^0(M, \mathcal{F}) \xrightarrow{\beta^*} H^0(M, \mathcal{G}) \xrightarrow{\delta^*} H^1(M, \mathcal{E}) \xrightarrow{\alpha^*} H^1(M, \mathcal{F}) \xrightarrow{\beta^*} H^1(M, \mathcal{G}) \xrightarrow{\delta^*} \dots$$

其中 α^* 和 β^* 是诱导的映射. δ^* 的定义则在证明中给出.

Proof. 碍于篇幅限制, 我们不会详细阐述证明. 首先我们定义 δ^* . 称为余边缘算子. δ^* : $H^p(M,\mathcal{G}) \to H^{p+1}(M,\mathcal{E})$.

$$0 \longrightarrow C^{p}(\mathcal{U}, \mathcal{E}) \longrightarrow C^{p}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{p}(\mathcal{U}, \mathcal{G}) \longrightarrow 0$$

$$\downarrow^{\delta} \qquad \qquad \delta \downarrow \qquad \qquad \delta \downarrow$$

$$0 \longrightarrow C^{p+1}(\mathcal{U}, \mathcal{E}) \longrightarrow C^{p+1}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{p+1}(\mathcal{U}, \mathcal{G}) \longrightarrow 0$$

观察交换图. 我们选取 $\sigma \in Z^p(\mathcal{U}, \mathcal{G})$. 由追图可以得到, 存在 $\mu \in C^p(\mathcal{U}, \mathcal{E})$ 使得 $\alpha(\mu) = \delta \tau$, 而 τ 满足 $\beta(\tau) = \sigma$.

上述的 μ 的等价类唯一确定于 σ 在 H^p 中的等价类. 因此定义 $\delta^*([\sigma]) = [\mu]$. 接下来要做的事情是说明上述列正合. 我们留作感兴趣的读者作为练习.

用这个定理可以分析出许多事情. 我们考虑下面的正合列:

$$0 \to \mathcal{O}^* \to \mu^* \to \mu^*/\mathcal{O}^* \to 0$$

根据上面的定理, 余边缘算子写为:

$$\delta^*: H^0(M, \mu^*/\mathcal{O}^*) \to H^1(M, \mathcal{O}^*)$$

实际上这个映射给出了 M 的除子群到 Picard 群的自然映射. 我们需要说明三件事: $1.H^0$ 确实是除子群. 2. 除子群到 Picard 群有自然的映射. 3. 这个映射就是 δ^* .

对于 $H^0(M,\mu^*/\mathcal{O}^*)$ 中的元素, 容易发现其唯一决定了 M 上的若干个零点与极点. 因此这就是除子群. 考虑除子群中的元素 $\sum n_z[z]$. 我们需要构造一个线丛. 为此, 用 ($[f_\alpha],U_\alpha$) 表示这个除子. 则不难验证 ($f_\alpha/f_\beta,U_{\alpha\beta}$) 给出了一个转移映射. 并且得到的线丛在同构意义下唯一取决于 f_α 的等价类.

最后, 不难发现, 我们上述的操作过程正好契合于 δ^* 的一般构造. 因此 δ^* 是这个自然的映射. 在本节的最后, 我们回答开头提出的 Cousin 问题.

Theorem 2.4.4: Cousin

 \mathbb{C}^2 中的全纯曲线都是全纯函数的零点.

Proof. 设 \mathcal{U} 是 \mathbb{C}^2 的局部有限 Good Cover, 且任意 $U_j \in \mathcal{U}$, 若 $U_j \cap \mathbb{C}$ 不是空集. 则 $U_j = \mathbb{C} = (f_j), f_j \in \mathcal{O}(U_j)$.

因此问题转化为, 是否存在整体的 $f \in \mathcal{O}(\mathbb{C}^2)$, 使得 $f|_{U_i}/f_i \in \mathcal{O}(U_i)$.

记 $f_j/f_i := g_{ij} \in \mathcal{O}^*(U_{ji})$. 显然 (g_{ij}, U_{ij}) 是 $Z^1(\mathcal{U}, \mathcal{O}^*)$ 中的元素,从而给出了 $H^1(\mathcal{U}, \mathcal{O}^*)$ 中的元素. 另一方面,由长正合列:

$$0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$$

可知 $0 = H^1(\mathcal{U}, \mathcal{O}) \to H^1(\mathcal{U}, \mathcal{O}^*) \stackrel{\delta^*}{\to} H^2(\mathcal{U}, \mathbb{Z}) = 0$ 是一个正合列. 于是:

$$H^1(\mathcal{U}, \mathcal{O}^*) = 0$$

由此存在 (g_i, U_i) 使得 $g_i/g_i = g_{ij}$.

因而 $f_i/f_j = g_j/g_i$, 于是 $f := f_i \cdot g_i$ 是 \mathbb{C}^2 上的全纯函数.

De Rham 定理与 Dolbeaut 定理

Theorem 2.4.5: de Rham 定理

令 M 为黎曼面 (紧或非紧), 则:

$$H^p_{\mathrm{dR}}(M) \cong H^p(M, \mathbb{C}) (\cong H^p_{\mathrm{sing}}(M) \otimes \mathbb{C})$$

Proof. 考虑正合列:

$$0 \to \mathbb{C} \to C^{\infty} \stackrel{d}{\to} Z^1 \to 0$$
$$0 \to Z^1 \stackrel{i}{\to} \Lambda^1 \stackrel{d}{\to} Z^2 \to 0$$

其中 \mathbb{C} 是局部常数层. \mathbb{Z}^1 是 1 阶闭形式层, \mathbb{Z}^2 是 2 阶闭形式层.

由 Poincaré 引理可知,上述两个列都是正合列. 导引长正合列:

$$H^{p-1}(M, C^{\infty}) \to H^{p-1}(M, Z^1) \to H^p(M, \mathbb{C})$$

 $H^{p-2}(M, \Lambda^1) \to H^{p-2}(M, Z^2) \to H^{p-1}(M, Z^1)$

因为存在单位分解, 从而 $H^p(M, C^{\infty})$ 为 0. 同样的情况还有 Λ^p . 因此我们有:

$$H^{p}(M, \mathbb{C}) \cong H^{p-1}(M, Z^{1}) \cong \dots H^{1}(M, Z^{p-1})$$

考虑 $H^1(M, \mathbb{Z}^{p-1})$. 即:

$$H^0(M, \Lambda^{p-1}) \to H^0(M, Z^p) \to H^1(M, Z^{p-1}) \to 0$$

而 $H^0(M, \Lambda^{p-1})$ 即所有的 p-1 形式, $H^0(M, \mathbb{Z}^p)$ 即所有的 p 阶闭形式. 结合正合列:

$$H^1(M, \mathbb{Z}^{p-1}) \cong \operatorname{coker}(H^0(M, \Lambda^{p-1}) \to H^0(M, \mathbb{Z}^p)) = H^p(M, \mathbb{C})$$

从 Riemann-Roch 定理谈起

这章我们从 Riemann-Roch 定理开始,介绍一些更进阶的黎曼曲面内容.

§3.1 Riemann-Roch 定理的叙述与初步证明 (尚不完整)

Theorem 3.1.1: Riemann-Roch 定理

设 M 是一个紧的黎曼曲面,D 为 M 上任意一个除子. 则:

$$h^{0}(M, \mathcal{O}(D)) - h^{0}(M, \mathcal{O}(K-D)) = \deg D - q + 1$$

其中, $\mathcal{O}(D)$ 表示除子 D 给出的线丛.K 表示 M 的典范除子.

其中, h^0 表示对应上同调群的维数 (rank),g 表示 M 的亏格数 (由 2 维可定向紧曲面分类得到). 另 外, $g=H^{0,1}_{\bar{\partial}}(M)$.

证明分为几步. 我们先证明:

$$h^0(M, \mathcal{O}(D)) - h^1(M, \mathcal{O}(D)) = \deg D - H_{\bar{\partial}}^{0,1}(M) + 1$$

从而归结于计算 $H_{\bar{\partial}}^{0,1}(M)$ 和 $h^0(M, \mathcal{O}(K-D))$

假设 D 是有效除子, 即 D 的各分量系数均 ≥ 0 . 我们采用数学归纳法.

Step1: 设 D=0, 则 $H^0(M,\mathcal{O}(D))=\mathbb{C}, H^0(M,\mathcal{O}(K-D))=H^0(M,\mathcal{O}(K))=H^1(M,\mathcal{O})\cong H^{0,1}_{\bar{\partial}}(M)$. 而 $\deg D=0$. 于是:

$$h^{0}(M, \mathcal{O}(D)) - h^{1}(M, \mathcal{O}(D)) - \deg D = 1 - \dim H_{\bar{a}}^{0,1}(M)$$

Step2: 假设上述结果对于 $\deg D \geq 0$ 成立, $D \geq 0$. 则对于 $D_1 := D + p$, 任取 $p \in M$. 考虑短正合列:

$$0 \to \mathcal{O}(D) \to \mathcal{O}(D_1) \to \mathbb{C}_p \to 0$$

其中 $\mathcal{O}(D)(U) := \{f \in \mu(U) | (f) + D \ge 0\}$. 这是因为 $\mathcal{O}(D)(U)$ 是全体 D 生成的线丛的截面, 而若 $s_{\alpha} = s_{\beta} \frac{f_{\alpha}}{f_{\beta}}$, 则:

$$\frac{s_{\alpha}}{f_{\alpha}} = \frac{s_{\beta}}{f_{\beta}}$$

即我们构造了一个亚纯函数 $f \in \mu(U)$, 且 $((f) + D)_{\alpha} = (s_{\alpha}) \ge 0$. 这个结论显然对于任何除子都成立.

 \mathbb{C}_p 则是 p 处的局部层. 即若 U 包含 p, 则 $\mathbb{C}_p(U) = \mathbb{C}$. 反之则为 $0.\beta_U$ 则是求出亚纯函数 f 在 p 处的 N 阶系数, 其中 N 是 D_1 中 p 的系数.

正合性我们留作读者证明.

诱导长正合列:

$$0 \to H^0(\mathcal{U}, \mathcal{O}(D)) \to H^0(\mathcal{U}, \mathcal{O}(D+p)) \to H^0(\mathcal{U}, \mathbb{C}_p) \to H^1(\mathcal{U}, \mathcal{O}(D)) \to \dots$$

不难计算 $H^0(\mathcal{U}, \mathbb{C}_p) = \mathbb{C}$, 以及 $H^0(\mathcal{U}, \mathcal{O}(D+p)) \cong \operatorname{Im}\beta^* \oplus \operatorname{Im}i^*$. 也即:

$$\dim H^0(\mathcal{U}, \mathcal{O}(D+p)) = \dim H^0(\mathcal{U}, \mathcal{O}(D)) + 1$$

$$H^0(\mathcal{U}, \mathbb{C}_p) \to H^1(\mathcal{U}, \mathcal{O}(D)) \to H^1(\mathcal{U}, \mathcal{O}(D+p)) \to H^1(\mathcal{U}, \mathbb{C}_p) = 0$$

于是 $H^1(\mathcal{U}, \mathcal{O}(D)) \cong H^1(\mathcal{U}, \mathcal{O}(D+p))$. 从而:

$$h^{0}(\mathcal{U}, \mathcal{O}(D_{1})) - h^{1}(\mathcal{U}, \mathcal{O}(D_{1})) - \deg D_{1} = -h_{\bar{\partial}}^{0,1}(M) + 1$$

Step3: 对于一般的 D.(**这一段的 23 种情况都存在问题,笔者暂时没有想到修正的办法**) 分类讨论: 对于 $h^0(M, \mathcal{O}(D)) > 0$, 则存在 $f \in \mu^*(M)$ 使得:

$$(f) + D \ge 0$$

令 $D_0 := (f) + D$. 因为全局的亚纯函数不改变 D 对应的向量丛, 同时整体的度数为 0, 从而结果自然成立.(详见引理3.1.1)

若 $h^0(M, \mathcal{O}(D)) = 0, h^1(M, \mathcal{O}(D)) > 0$. 也即不存在这样的亚纯函数 f. 设 $D = D_1 - D_2$ 为两个有效除子的差.

若 $h^0(M,\mathcal{O}(D)) = 0, h^1(M,\mathcal{O}(D)) = 0$. 仍然 $D = D_1 - D_2$ 为两个有效除子的差. 利用短正合列

$$0 \to \mathcal{O}(D-p) \to \mathcal{O}(D) \to \mathbb{C}_p \to 0$$

可证明:

$$h^0(M, \mathcal{O}(D_1)) - h^0(M, \mathcal{O}(D_1 - p)) \le 1 \Rightarrow h^0(M, \mathcal{O}(D_1)) - h^0(M, \mathcal{O}(D_1 - D_2)) \le \deg D_2$$

因为 D_1 是有效除子, 从而:

$$\deg D_2 \geq \deg D_1 + 1 - h_{\bar{\partial}}^{0,1} \Rightarrow \deg D + 1 - h_{\bar{\partial}}^{0,1} \leq 0$$

类似的, 也可以证明:

$$0 = h^{1}(M, \mathcal{O}(D_{1} - D_{2})) \ge (实际上是等于)h^{1}(M, \mathcal{O}(D_{1})) = h^{0}(M, \mathcal{O}(D_{1})) - \deg D_{1} - 1 + h_{\bar{\partial}}^{0,1}(M)$$
$$\Rightarrow \deg D + 1 - h_{\bar{\partial}}^{0,1} = h^{0}(M, \mathcal{O}(D_{1})) - \deg D_{2}$$

Lemma 3.1.1: 整体亚纯函数

- 1. 对于任意黎曼曲面 M, 整体亚纯函数给出的除子 (f) 对应平凡的线丛.
- 2. 对于紧黎曼曲面 M, 整体亚纯函数给出的除子度数为 0.

Proof. 1. 长正合列:

$$\to H^0(M, \mu^*) \to H^0(M, \mu^*/\mathcal{O}^*) \to H^1(M, \mathcal{O}^*)$$

2. 参见第五页

§3.2 Laplace 算子与 Poisson 方程

证明 RR 定理的时候, 我们需要用到两个假设:

Proposition 3.2.1

对于紧致黎曼曲面 M:

- 1. $H^1_{\mathrm{dR}}(M,\mathbb{C}) \cong H^{1,0}_{\bar{\partial}}(M) \oplus H^{0,1}_{\bar{\partial}}(M)$
- 2. $H^0(M, \mathcal{O}(K-D)) \cong H^1(M, \mathcal{O}(D))$.

本节我们处理这两个假设. 首先阐明前置的一些知识.

Definition 3.2.1

对于 \mathbb{C} 的开域 Ω , 定义 Laplace 算子 Δ 为:

$$\Delta:=(\frac{\partial}{\partial x})^2+(\frac{\partial}{\partial y})^2$$

一个直接的推论是:

$$\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} = \frac{1}{4}\Delta, dz \wedge d\bar{z} = -2\sqrt{-1}dx \wedge dy$$

以及对于 $u:\Omega\to\mathbb{R}$

$$\sqrt{-1}\partial\bar{\partial}u = \sqrt{-1}\frac{\partial^2 u}{\partial z\partial\bar{z}}dz \wedge d\bar{z} = \frac{1}{2}\Delta u dx \wedge dy$$

不难看出, 如果 f 全纯, 则 f = u + iv 满足 $\Delta u = \Delta v = 0$. 另一方面, 不难使用计算验证:

Proposition 3.2.2

 $\sqrt{-1}\partial\bar{\partial}u$ 不依赖于全纯坐标卡的选取.

并且:

Proposition 3.2.3

算子 Δ_z 旋转对称, 即 $\Delta_z f(z) = \Delta f(e^{\sqrt{-1}\theta}z)$.

Proof. ∂ 和 $\bar{\partial}$ 所产生的系数相互抵消.

Proposition 3.2.4

单连通 $\Omega \subset \mathbb{C}$. 若 $\Delta u = 0$ 成立, 则存在 $v : \Omega \to \mathbb{R}$ 使得 $u + \sqrt{-1}v \in \mathcal{O}(\Omega)$. 称 v 是 u 的共轭调和函数.

Proof. 令 $w := -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$. 则 dw = 0. 因为 Ω 单连通, 所以存在 $\omega = dv$.

接下来我们描述本节的主定理. 证明放在

Theorem 3.2.1

设 M 是紧致连通黎曼面. $\rho \in \Lambda^2(M;\mathbb{R})$. 则方程 $\sqrt{-1}\partial\bar{\partial}u = \rho$ 有解当且仅当 $\int_M \rho = 0$ 成立. 解在加减常数的意义下唯一.

Corollary 3.2.1

令 M 是紧致连通黎曼曲面. 则:

- 1. $\sigma: H^{1,0}_{\bar{\partial}}(M) \to \overline{H^{0,1}_{\bar{\partial}}(M)}$ 是同构, 把 ω 映射为 $\bar{\omega}$
- 2. $\Phi: H^{1,0}_{\bar\partial}(M) \oplus H^{0,1}_{\bar\partial}(M) \to H^1_{\mathrm{dR}}(M,\mathbb{C})$ 是同构, 把 (ω,η) 映射为 $[\omega+\bar\eta]$.
- 3. $H^{1,1}_{\bar{\partial}}(M) \to H^2_{\mathrm{dR}}(M,\mathbb{C})$ 是同构.

Proof. 1. 不难验证 σ 良定义. 若 $\bar{w} = \bar{\eta}$, 则自然 $\omega = \eta$, 因此 σ 单射.

任取 $[\theta] \in H^{0,1}$, 我们需要证明存在 $\theta' \in [\theta]$ 使得 $\partial \theta = 0$, 以此用 $\bar{\theta'}$ 作为原像. 任取 $\theta \in [\theta]$, 则 $\theta - \theta' = \bar{\partial}u$. 于是:

$$\partial \theta - \theta' = \partial \bar{\partial} u$$

问题转化为, 任取 $\theta \in [\theta]$, 是否存在光滑函数 u 使得 $\sqrt{-1}\partial\bar{\partial}u = -\sqrt{-1}\partial\theta$. 根据主定理, 使用 Stoke 公式可以轻松得证.

2. 留作读者练习. 需要提醒的是, 任何一个 $\omega_0 \in [\omega] \in H^1_{\mathrm{dR}}(M,\mathbb{C})$ 都存在一个分解:

$$\omega_0 = \omega_1 + \omega_2 \in \wedge^{1,0} \oplus \wedge^{0,1}$$

3. 留作练习.

我们已经处理了第一个假设. 接下来我们考虑第二个. 实际上这个假设是黎曼曲面情况下的 Serre 对偶.

Theorem 3.2.2

紧致连通黎曼曲面 M 满足, 任意除子 D, 有:

$$H^0(M, \mathcal{O}(K-D)) \cong H^1(M, \mathcal{O}(D))$$

为了证明此结果, 我们首先需要做一些准备工作.

 $1.\mathcal{O}(K-D)$ 是什么?

对于除子 D, 可以定义 D 的一个全纯 1-形式层:

$$Z_{\bar{\partial}}^{1,0}(D)(U) := \{ w = f dz_U | f \in \mathcal{O}(U), (f) + D \ge 0 \}$$

限制映射为通常的限制.

上述定义的好处是下面的命题. 读者若仔细检查两边的定义, 这个命题是不困难的.

Proposition 3.2.5

单连通开域 $\Omega \subset \mathbb{C}$ 满足:

$$\mathcal{O}(K-D)(\Omega) \cong Z_{\bar{\partial}}^{1,0}(-D)(\Omega)$$

在单连通开集上的同构意味着上同调的同构:

Corollary 3.2.2

$$H^0(\mathcal{U},Z^{1,0}_{\bar\partial}(-D))\cong H^0(\mathcal{U},\mathcal{O}(K-D))$$

2. 定义对偶映射.

Definition 3.2.2

我们定义如下的对偶映射:

$$\begin{split} H^0(\mathcal{U}, Z_{\bar{\partial}}^{1,0}(-D)) \times H^1(\mathcal{U}, \mathcal{O}(D)) &\to H^1(\mathcal{U}, \mathcal{O}) \\ (\omega, [\sigma]) &\mapsto \{(\sigma_{\alpha\beta} \cdot \omega|_{U_{\alpha\beta}})\} \end{split}$$

不难验证, 因为要求 $(\omega) - D \ge 0$, 于是 $\sigma_{\alpha\beta}\omega$ 是全纯的函数. 由于 $H^1(\mathcal{U}, \mathcal{O}) \cong H^{1,0}_{\bar{\partial}}(M)$, 可以定义留数.

Definition 3.2.3

定义 Res : $H_{\bar{\partial}}^{1,0}(M) \to \mathbb{C}, \omega \mapsto \sum_{p \in (\omega)} \operatorname{Res}(\omega, p)$. 其中:

$$\operatorname{Res}(\omega, p) = \int_{\partial B_{\epsilon}(p)} \omega = a_{-1}$$

3. 对偶定理

Theorem 3.2.3

设 M 是连通紧致黎曼曲面. 则双线性映射:

$$H^{0}(\mathcal{U}, Z_{\bar{\partial}}^{1,0}(-D)) \times H^{1}(\mathcal{U}, \mathcal{O}(D)) \to \mathbb{C}$$
$$(\omega, [\sigma]) \mapsto \sum_{p} \operatorname{Res}_{p}(\sigma_{\alpha\beta} \cdot \omega|_{U_{\alpha\beta}})$$

诱导了一个同构,即对偶意义上的同构.

Proof. 使用数学归纳法.

若 D = 0, 则:

$$\begin{split} H^0(\mathcal{U}, Z_{\bar{\partial}}^{1,0}(0)) &= H_{\bar{\partial}}^{1,0}(M) \\ H^1(\mathcal{U}, \mathcal{O}(0))^* &\cong H_{\bar{\partial}}^{1,0}(M) \end{split}$$

笔注: 第一个同构是定义本身, 而第二个同构似乎之前没有提到过.

现在假设 $D \ge 0$, 且 $\deg D = k$ 时定理已经满足.

$$0 \to \mathcal{O}(D) \to \mathcal{O}(D+p) \to \mathbb{C}_p \to 0$$
$$0 \to \mathcal{O}(K-D-p) \to \mathcal{O}(K-D) \to \mathbb{C}_p \to 0$$

同样的诱导长正合列:

$$0 \to H^0(\mathcal{U}, \mathcal{O}(D)) \to H^0(\mathcal{U}, \mathcal{O}(D+p)) \to \mathbb{C} \to H^1(\mathcal{U}, \mathcal{O}(D)) \to H^1(\mathcal{U}, \mathcal{O}(D+p)) \to 0$$

根据层上同调的同构:

$$0 \to H^0(\mathcal{U}, Z_{\bar{\partial}}^{0,1}(D-K)) \to H^0(\mathcal{U}, Z_{\bar{\partial}}^{0,1}(D+p-K)) \to \mathbb{C} \to H^1(\mathcal{U}, Z_{\bar{\partial}}^{0,1}(D-K))$$
$$\to H^1(\mathcal{U}, Z_{\bar{\partial}}^{0,1}(D-K+p)) \to 0$$

同理也可以写出第二个正合列对应的长正合列.

把两个长正合列并接起来, 我们有交换图:

$$0 \longrightarrow [H^{1}(\mathcal{U}, \mathcal{O}(K-D))]^{*} \longrightarrow [H^{1}(\mathcal{U}, \mathcal{O}(K-D-p))]^{*} \longrightarrow \mathbb{C}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow H^{0}(\mathcal{U}, Z_{\bar{\partial}}^{1,0}(D-K)) \longrightarrow H^{0}(\mathcal{U}, Z_{\bar{\partial}}^{1,0}(D+p-K)) \longrightarrow \mathbb{C}$$

由追图可以 (或者称 5-引理) 可知推论成立. 从而命题在 $\deg D \ge 0$ 的时候成立.

笔记在这个地方缺失, 缺少对 $\deg D$ 一般情况的证明

§3.3 Branched Covering Map

本节我们只考虑紧致连通的黎曼面.

Covering Map

Branched Covering Map(分歧覆盖)

Definition 3.3.1

称 $f: M \to N$ 为分歧覆盖映射, 若 $\forall p \in M$, 存在开域 $U_p \subset M$ 满足 $f|_{U_p \setminus \{p\}}$ 为 $U_p \setminus \{p\}$ 与 $f(U_p) \setminus \{f(p)\}$ 间的有限覆盖映射.

在分歧映射的情况下, 如果 $f|_{U_n}$ 不是有限覆盖映射, 则称 p 是 f 的一个分歧点.

也即局部上 f 是有限覆盖映射, 但是要去除中心的点. 我们用下面的例子来说明撇除原点的好处.

Example 3.3.2

考虑函数 $f(z): \mathbb{P}^1 \to \mathbb{P}^1$. 在 \mathbb{P}^1 除去 0 和 ∞ , 把 z 映射到 z^k . 此时 0 和 ∞ 是 f 的分歧点.

再考虑 $f(z) = (z-1)^2(z-2).f(z)$ 在 z=1 附近和 z=2 附近产生分歧,1 和 2 是分歧点. 在 1 和 2 处,f 的叶数不同:1 处 f 的叶数是 2,2 处 f 的叶数是 1.

Definition 3.3.3: 重数 Multiplicity

令 $f: M \to N$ 是全纯映射. 任取 $p \in M$, 记 q = f(p). 取 $(U_p, \varphi_p), (V_q, \psi_q)$ 是局部坐标且把 p, q 都映射为 0 点.

局部展开 f, 我们有 $\psi_q \circ f \circ \varphi_p^{-1}(z) = z^k g(z)$, 且 $g(z) \in \mathcal{O}^*(U_p)$. 令 $\tilde{\varphi}_p : U_p \to \mathbb{C}$ 使得 $\tilde{\varphi}_p \circ \varphi_p^{-1}(z) = zg(z)^{1/k}$ (重新选取一个局部坐标), 则:

$$\psi_q \circ f \circ \tilde{\varphi}_p = z^k$$

称此时的 k 为 f 在 p 点处的**重数** (Multiplicity)

定义中 k_p 依赖于坐标选取. 但我们显然希望这是一个与坐标选取无关的量. 实际上, 我们有命题:

Proposition 3.3.1

f 在 p 点的重数不依赖于坐标的选取.

我们不给出这个命题的证明. 读者可以自行尝试, 假定另外一个局部坐标 φ_1 给出重数 l, 则会导出什么样的结果.

我们对重数进行初步的分析. 如果 $k_p = 1$, 则 f 在局部上是恒同, 也即 f 是局部的同胚. 如果 $k_p > 1$, 则 f 局部上的叶数即为 k_p . 并且 df 在 p 处退化,p 成为 f 的退化点.

利用下面这个引理, 我们给出映射度的概念.

Lemma 3.3.1

设 M,N 是紧致连通黎曼曲面. $f:M\to N$ 是全纯映射. 令 $P:=\{x\in M|df|_x=0\}, P^+=f^{-1}(f(P))$. 则 $f|_{M\backslash P^+}$ 是一个逆紧的局部同胚.

Proof. 根据微分流形的基本知识, 若 $df|_x \neq 0$, 则 f 在 x 处为一个局部微分同胚.

由于 MN 都是紧集,则 f 天生是逆紧的.

上述结果说明任何紧致黎曼曲面的映射均为若干支点 (映射的退化点) 外的 Covering Map.

Definition 3.3.4

对于映射 $f: M \to N$, 定义 f 的映射度为:

$$\deg_y(f) := \sum_{x \in f^{-1}(y)} k_x$$

其中 k_x 表示 f 在 x 处的重数.

Proposition 3.3.2

 $\deg_y f$ 与 y 的选取无关,从而映射度是映射本身固有的量.

Proof. 证明待补全, 讲义的证明存在问题把命题转化为局部的情况. 若 $M = N = \mathbb{C}$ 且 $f = z^k$, 则映射度为 k. 因为对于不为 0 的 $x,k_x = 1$. 而 $k_0 = k$.

一般情况下, 设 $\deg_u f = k$. 我们证明集合 $A = \{y \in N | \deg_u = k\}$ 是 N 上的既开又闭集.

Theorem 3.3.1

设 M 是连通的紧致黎曼曲面, 且亏格为 g.(闭曲面分类定理,M 总是可定向的). 则 M 上必存在一个至 多 g+1 叶的亚纯函数 $f:M\to\mathbb{P}^1$

Proof. 任取 $p \in M$, 设除子 D 为 (g+1)p. 利用 Riemann-Roch 定理:

$$h^{0}(M, \mathcal{O}(D)) = h^{0}(M, \mathcal{O}(K-D)) + 1 - g + g + 1 \ge 2$$

也就是说存在亚纯函数 f 使得 $(f) + D \ge 0$. 换言之 f 在 p 上的次数大于等于 -(g+1).

Remark 3.3.1

映射度实际上是拓扑量. 我们有结论:

$$f:M\to N$$

$$f_*: H_2(M, \mathbb{R}) \to H_2(N, \mathbb{R}), [M] \mapsto \deg(f)[M] = [N]$$

§3.4 Riemann-Hurwitz 公式

本节我们论述公式:

Theorem 3.4.1

假定 f 是黎曼曲面 M 到 N 的全纯映射, 且 M,N 都是紧致黎曼曲面. 则:

$$[K_M] \sim f^*[K_N] + [B]$$

其中 $B = \sum_{p \in M} (k_p - 1)p$.

这是一个除子的等式, 其中的其他记号我们将在下面论述.

首先, $[K_M]$ 表示这样一个除子——典范除子. 即一个对应线丛 K_M 的除子. $f^*[K_N]$ 表示把除子 $[K_N]$ 拉回到 M 上, 成为 M 的除子. 即 $f^*[q] = \sum_{p \in f^{-1}(q)} [p]$

Proof. 任取 $\omega_N \in H^0(N, K_N)$, 且 $(\omega_N) = K_N.f^*\omega_N$ 是 M 上的全纯 1-形式. 并且:

$$f^*\omega_N \sim K_M$$

我们只需要证明 $[f^*\omega] = f^*(\omega_N) + \sum_{p \in P^+} (k_p - 1)[p]$. 事实上, 考虑 $p \in P^+, \omega_N|_{V_{f(p)}} = a(w)dw$, 直接计算有:

$$f^*\omega|_{U_p} = a(f(z))f'(z)dz$$
$$= a(z^{k_p})k_pz^{k_p-1}dz$$

因此:

$$(f^*\omega|_{U_p}) = (a(w)dw)|_{U_p} + (k_p - 1)[p]$$

求和即可得到结果.

除子的等价意味着一些只取决于除子等价类的量的等式, 如度数:

3.5. 射影嵌入定理 42

Corollary 3.4.1

条件不变,

$$\deg([K_M]) = \deg[K_N] + \sum_{p \in P^+} (k_p - 1)$$

实际上, 一般的 Hurwitz 公式是关于欧拉示性数的等式. 这是因为我们可以从 $[K_M]$ 中得到 M 的欧拉示性数. $\chi_M = -\deg K_M$.

§3.5 射影嵌入定理

回忆: 对于 $M := \{(z, w) \in \mathbb{C}^2 | P(z, w) = 0\}$

结论 $-:M^+$ 是 M 的非奇异点集合, 则 M 是一个黎曼曲面.

如果我们把 z, w 视作 M 上函数, 则不难发现, 所谓 M_{sing} 是 z, w 共同的分歧点.

结论二: 若 P 是不可约多项式,则 M_{sing} 是有限点集合. 这个结论是一个代数的结果.

回到 M^+ . 不幸的是, M^+ 可能不再是紧致黎曼曲面. 但是 M 是紧集, 因此一个自然的想法是紧化.

但是拓扑的紧化必然会导致提问: 如何在保证解析结构的情况下紧化? 其次,P 不一定是齐次的, 因此 M 不能直接嵌入为 \mathbb{P}^1 的子集, 有没有办法可以把 P 齐次化呢?

保解析结构的紧化

类似于 \mathbb{P}^1 , 我们可以定义 N 维复射影空间:

$$\mathbb{P}^N := \mathbb{C}^{N+1} \setminus \{0\} / \sim$$

其中等价关系 \sim 为: (z^0,\ldots,z^{N+1}) \sim (w^0,\ldots,w^{N+1}) 当且仅当 $\exists \lambda \in \mathbb{C}^*$ 使得 $\lambda z = w$. \mathbb{P}^N 显然是紧致的, 并且有 Hopf 纤维:

$$S^1 \to S^{2N+1} \to \mathbb{P}^N$$

Proposition 3.5.1

 \mathbb{P}^N 的结构为 $\mathbb{P}^N = \mathbb{C}^N \cup \mathbb{P}^{N-1}$

从集合角度上来看上述并不难理解. 关键是解析结构上. 但解析结构的保持也是自然的. 对于曲线 $M\subset\mathbb{C}^2$:

$$\begin{split} \Phi: & M \to \mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{P}^1 \\ & (z,w) \mapsto [1:z:w] = [z^0,z^1,z^2] \end{split}$$

观察 $\Phi(M)$. 我们发现其由:

$$P(\frac{z^1}{z^0}, \frac{z^2}{z^0}) = 0$$

给出. 若 $P(z,w) = \sum_{i,j} a_{ij} z^i w^j$, 则 $\Phi(M)$ 由多项式:

$$\tilde{P}(z^0, z^1, z^2) = \sum_{i,j} a_{ij} (z^1)^j (z^2)^i (z^0)^{m-i-j}$$

定义. 这是一个齐次多项式!

因此我们可以把 M 视作 \mathbb{P}^2 的子集. 现在我们讨论一个 \mathbb{P}^N 的性质.

3.5. 射影嵌入定理 43

Proposition 3.5.2

 \mathbb{P}^N 的全纯自同构群为 $PGL_{N+1}(\mathbb{C})$.

Proof. 留作读者练习.

嵌入定理 (一)

Theorem 3.5.1

设连通黎曼曲面 M 的亏格为 g, 则可以全纯的嵌入 \mathbb{P}^{g+1} .(是比较粗糙的结果)

Proof. 若 g = 0, 则 $M \cong \mathbb{P}^1$. 不妨设 $g \geq 1$.

注意到 $\deg D < 0$ 可以推出 $h^0(M, \mathcal{O}(D)) = 0$. 因为全局的亚纯函数的总体 degree 总是 0, 而 f 存在则必须有 $(f) + D \ge 0$. 因此 f 不存在.

根据 Serre 对偶, 若 $\deg D > \deg K_M = 2(g_M - 1)$ **笔者注记: 什么时候讲的后者的大小**, 我们有:

$$H^{1}(M, \mathcal{O}(D)) = H^{0}(M, \mathcal{O}(K_{M} - D)) = 0$$

于是根据 Riemann-Roch 定理:

$$h^0(M, \mathcal{O}(D)) = 1 - g + (2g + 1) = g + 2$$

不妨设该同调群的向量基为: $\{f_0,\ldots,f_{q+1}\}$. 并且设:

$$\Phi: M \to \mathbb{P}(H^0(M, \mathcal{O}(D)))$$
$$p \mapsto [f_0(p), \dots, f_{g+1}(p)]$$

 Φ 显然是一个良定义的函数. 只要我们证明 Φ 是单的全纯函数,则完成了证明 (双射全纯函数一定是双全纯的).

为了证明单射, 任取 $p_1 \neq p_2$, 我们证明 $\Phi(p_1) \neq \Phi(p_2)$.

$$\Leftrightarrow D_1 = D - p_1, D_2 = D_1 - p_2 = D - p_1 - p_2.$$

则: $H^0(M, \mathcal{O}(D_2)) \subset H^0(M, \mathcal{O}(D_1)) \subset H^0(M, \mathcal{O}(D))$, 且 $h^0(M, \mathcal{O}(D_2)) = g$.

由于维数上显然的小于关系, 我们取不在 $H^0(M,\mathcal{O}(D_2))$ 的 $H^0(M,\mathcal{O}(D_1))$ 元 f. 即 $(f)+D-p_1\geq 0$ 但 $(f)+D-p_1-p_2$ 不再大于等于 0.

此时就会有 $f(p_1) = 0, f(p_2) \neq 0$. 用 f 拓展出一个基 $\{f_n\}$. 此处证明存疑. 既然选定了一组基就不能随意更换.

为了证明同胚, 我们只需要证明在每个点 p 处, 总存在 f_i 使得 $f_i'(z_p) \neq 0$. 实际上, 如上所言, 我们取出 $f \in H^0(M, \mathcal{O}(D-p)) \setminus H^0(M, \mathcal{O}(D-2p))$, 则 f(p) = 0 且 $f'(p) \neq 0$. 则:

$$f(p) = \sum_{i=0}^{N} a_i f_i(p)$$

可知, 存在 $f_i, f'_i(z_p) \neq 0$.

射影代数曲线

本节我们论述的是 Chow 定理的低维版本. 为了不受到良心的煎熬, 我们记录完整版本如下:

Theorem 3.5.2: Chow 定理

 \mathbb{P}^{N} 上的解析曲线是代数曲线, 解析映射是代数映射.

因此可以用代数几何的视角来研究复几何.

现在我们考虑低维的版本, 即考虑黎曼曲面.

来看一个例子.

设 $M = \mathbb{P}^1$. 坐标 $U_0 := \{[1,\xi]\} \cong \mathbb{C}$. 令 $z = \mathbb{P}^1 \to \mathbb{P}^1, \xi \mapsto \xi^n. f : \mathbb{P}^1 \to \mathbb{P}^1, \xi \mapsto \xi^m.\pi_i : \mathbb{P}^1 \setminus \{0,\infty\} \to \mathbb{P}^1 \setminus \{0,\infty\}, z \mapsto z^{i/n}$.

令 $P(w,z) := \prod_{i=1}^n (w - f(\pi_i(z)))$. 我们计算 P(w,z) 的表达式:

$$P(w,z) = \prod_{i=1}^{n} (w - z^{im/n})$$

= $w^{n} - w^{n-1} \sum_{i=1}^{n} z^{im/n} + \dots + (-1)^{n} z^{(n+1)m/2} = w^{n} - z^{m}$

Theorem 3.5.3

紧致连通黎曼曲面 $M.z \in \mu^*(M)$ 是一个 n 叶的亚纯函数, $f \in \mu^*(M)$ 是一个 m 叶的亚纯函数. 则必然存在 n+m 次的多项式使得 $f^n+\sigma_{n-1}(z)f^{n-1}+\cdots+\sigma_0(z)=0$

相交数与 Bezout 定理

§3.6 解方程
$$\sqrt{-1}\bar{\partial}\partial u = \rho$$
.

§3.7 单值化定理