UNIST Department of Mechanical Engineering

MEN 573: Advanced Control Systems I

Spring, **2016**

Homework #3 Assigned: Saturday, March 26, 2016

Due: Monday, April 4, 2016 (in class)

Problem 1.

A second order system is described by

$$\frac{dx_1(t)}{dt} = x_2(t)$$

$$\frac{dx_2(t)}{dt} = -4x_1(t) - 5x_2(t) + u(t)$$

$$y(t) = 2x_1(t) + x_2(t)$$

$$x_1(0) = x_{1o}, x_2(0) = x_{2o}$$
(1)

- (a) Find an expression the between $Y(s) = \mathcal{L}\{y(t)\}\$ and $\{U(s) = \mathcal{L}\{u(t)\}, x_{10}, x_{20}\}\$ in the Laplace transform domain.
- (b) Determine the pole(s) and zero(s) of the input output transfer function

$$G(s) = \frac{Y(s)}{U(s)}.$$

- (c) Show that when $u(t) = e^{zt}$, where z is a zero of the transfer function G(s), it is possible to attain y(t) = 0 by properly selecting the initial conditions of the state variables $(x_{1o}$ and $x_{2o})$. This implies that plant zeros block the transmission of certain input signals to the output. Find explicit expressions for such initial conditions.
- (d) Matlab exercises:
 - (i) Learn how to use the matlab commands: ss, tf and, zpk.
 - (ii) Create a matlab state space object of the system described in Eq. (1) using the ss command.
 - (iii) Obtain the transfer function G(s) in (b) using the tf command.
 - (iv) Obtain the poles and zeros of the transfer function G(s) in (b) using the zpk command.

Problem 2.

A discrete time system is described by the following input/output transfer function

$$G(z) = \frac{z^2 + z}{z^3 - 2.6z^2 + 2.24z - 0.64}$$
 (2)

(Note that: 1 - 2.6 + 2.24 - 0.64 = 0)

- (a) Obtain the difference equation relating the input u(k) and the output y(k).
- (b) Obtain the following state space representations of G(z): (i) the controllable canonical form, (ii) the observable canonical form and (iii) the Jordan canonical form.

Problem 3.

LTI Single-Input, Single-Output (SISO) discrete time system is given by

$$x(k+1) = A x(k) + b u(k) y(k) = c x(k) + d u(k) (3)$$

Defining $U(z) = \mathcal{Z}\{u(k)\}$ and $Y(z) = \mathcal{Z}\{y(k)\}$ as the Z-transforms of u(k) and y(k) respectively, we can define the discrete time pulse transfer function G(z) by

$$G(z) = Y(z)/U(z) = c(zI - A)^{-1}b + d.$$

The response y(k) for $k = 0, 1, 2, \cdots$ is shown in Fig. 1, when the input is given by

$$u(k) = 1$$
 for all $k \ge 0$

and the initial condition is at the origin (x(0) = 0).

- (a) Determine an expression for y(k), for $k \ge 1$, in terms of the constants: m_0 , m_1 and p shown in Fig. 1, where 0 .
- (b) Determine an expression for the rational transfer function G(z) in terms of the constants: m_0 , m_1 and p.
- (c) Determine the order of the system (i.e. the dimension of the state vector x(k)) and the value of the constant d in (3).
- (d) Determine the observable canonical state space realization for this system.

Figure 1: Unit step forced response of G(z)

Problem 4.

Sketched in Fig. 2 is a model of a vehicle suspension. m_b represents the mass of the vehicle body, m_t represents the lump mass of the tire and suspension, k_s and b_s are the spring constant and dashpot coefficient of the suspension, respectively, and k_t represents the tire stiffness. Differential equations to describe the motion are

$$m_b \frac{dv_b}{dt} = f_s + b_s [v_t - v_b]$$

$$\frac{df_s}{dt} = k_s [v_t - v_b]$$

$$m_b \frac{dv_t}{dt} = -f_s - b_s [v_t - v_b] + f_t$$

$$\frac{df_t}{dt} = k_t [u - v_t]$$
(4)

where v_b and v_t are the vertical velocities of the body and of the unsprung mass, respectively, f_s and f_t are the forces stored in the spring and the tire, respectively, and u is the (vertical velocity) excitation from the road. Model parameter values are given as follows: $m_b = 240$ kg, $m_t = 36$ kg, $b_s = 1000$ Ns/m, $k_s = 16,000$ N/m and $k_t = 160,000$ N/m. Assume that the system input is the road vertical velocity, u(t), and the output is the vehicle vertical velocity, $v_b(t)$.

Matlab exercises:

- (a) Create a matlab state space object of the system described in Eq. (4) using the ss command. I will call this object ss_sus.
- (b) Obtain the transfer function $G(s) = \frac{V_b(s)}{U(s)}$ using the tf command.
- (c) Obtain the poles and zeros of the transfer function G(s) using the zpk command.
- (d) Plot the unit step response of G(s) using the step command.
- (e) Plot the frequency response of G(s) using the bode command.
- (f) Obtain the canonical modal state space realization using the command canon(ss_sus,'modal'), and understand what this commands does.

Figure 2: Tire model