CS-174A Discussion 1A, Week 5

@ Instructor: Prof. Demetri Terzopoulos

@ TA: Yunqi Guo

@ https://github.com/luckiday/cs174a-1a-2021w (https://github.com/luckiday/cs174a-1a-2021w)

Logistics

- · Online midterm instructions
- Midterm scope: slides02 to slides06.

Last time

- Transformations: Pumpkin problem
- · Change of basis
- Tiny graphics demos

Next up

- · Assignment 2
- · Midterm review

Texture Mapping

• There are small surface details on real objects that need to be taken into account for better realism.

- To take these into account apply texture to our images to make the surfaces realistic
 - We can scan textures from real world or paint them
 - Store the texture as a 2D image
 - We map the texture to object space and then screen space

- · From screen to texture:
 - Inverse the transform (s_x, s_y) to get the world (x, y, z)
 - With (x, y, z):

$$u = \tan^{-1}(y/x), \quad v = z$$
$$s = 2u/\pi, \quad t = v$$

Reminder: $u = s\pi/2$, v = t

Surface parameters: $u = \theta$, v = z

Assignment 2

• Demo

Midterm Review

Q: What is the diff between affine combinations and convex combination of points?

Points and Vectors

Q: Parametric equations of line and triangle (barycentric coordinamtes)

A:

- Line: $P = \alpha_1 P_1 + \alpha_2 P_2$, and $\alpha_1 + \alpha_2 = 1$.
- Triangle:

Triangles

for $0 \le \alpha, \beta \le 1$, we get all points in triangle

A: Barycentric coordinates

Triangle is convex so any point inside can be represented as a convex sum

$$P(a1, a2, a3) = a1P + a2Q + a3R$$

where

$$a1 + a2 + a3 = 1, a_i \ge 0$$

The representation is called the barycentric coordinate representation of P.

Change of Basis and Model-view transformation

Viewing

Projection

· Orthographic projection matrix:

$$N = ST = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{l+r}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{b+t}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Perspective projection matrix:

$$P = NSH = \begin{pmatrix} \frac{n}{r} & 0 & 0 & 0\\ 0 & \frac{n}{t} & 0 & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Derivation

$$N = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

After perspective division, the point
$$(x, y, z, 1)$$
 goes to
$$x'' = -x/z, \quad y'' = -y/z, \quad z'' = -(a+b/z)$$

When z = f, z'' = -1; when z = n, z'' = 1.

Sample Questions

- 1. Q: Briefly describe what changes you would expect to see in the image with respect to the following changes in viewing parameters, all other params remaining unchanged:
 - A. Half-angle-of-view decreases
 - B. Aspect ratio increases
 - C. COI moves closer to eye point
 - D. Eye point moves away from COI
 - E. Top vector becomes upside down
 - F. Distance between hither and you increases

1. Answers:

- A. Half-angle-of-view decreases: objects will project larger on window and viewport, because camera is now capturing lesser volume of the scene while image size remains same
- B. Aspect ratio increases: AR increases implies viewport became wider or the height decreased; if angle did not change then some objects may be clipped off; the final image will definitely look wider
- C. COI moves closer to eye point: no change in image
- D. Eye point moves away from COI: a different image will be grabbed because the location of eye changed
- E. Top vector becomes upside down: image will rotate 180
- F. Distance between hither and you increases: depending on which direction H and Y moves, more or less objects will be included in the view volume
- 2. Prove that the perspective projection of a 3D point (x, y, z) onto the plane z = d is given by $(\frac{x}{z}d, \frac{y}{z}d, d)$
- Given this pumpkin at (1,1), do the following:

