Anh-Dzung Doan

(+61)434581528 | dzungdoan6@gmail.com | Homepage

EDUCATION

Ph.D. in Computer Science

The University of Adelaide Mar. 2022 | SA, AU

B.Sc (Hons) in IT

Vietnam National University Sept. 2013 | HCMC, VN

AWARDS

IEEE RA-L Best Paper Award 2021.

Best Paper Award, DICTA 2019.

3rd place & Innovation award in NASA Space Robotics Challenge.

University of Adelaide International Wildcard Scholarship.

MENTORSHIP

I co-supervise four Ph.D. students

- Andrew Du *Topic*: Edge domain adaptation.
- Ryan Faulkner Topic: Diffusion models for LiDAR.
- Tam Nguyen *Topic*: Neuromorphic computing for robust fitting.
- Anh Vu Nguyen Topic: Active learning for streaming data.

SERVICES

Conference reviewer

ICRA, IROS, CVPR, ICCV, ECCV, ACCV, ACML, AAAI, DICTA.

Journal reviewer

RA-L, IJRR, TMM, NCAA, APSIPA, TETCI.

SKILLS

Programming

C/C++, Python MATLAB, Java SQL

Frameworks

Pytorch

Robot Operating System (ROS) Streamlit

Developer Tools

Eclipse, Pycharm, Visual Studio Git and Github

Libraries

Detectron2, Faiss, OpenCV, Gurobi COLMAP, Numpy, Matplotlib.

EXPERIENCE

AUSTRALIAN INSTITUTE FOR MACHINE LEARNING | Postdoctoral researcher July 2021 - Present | South Australia, Australia

- Our test-time adaptation method efficiently mitigates the domain disparity between simulated and real images, including visible and infrared modalities.
- Our "when to adapt" method reduces 50%-90% energy usage for continual domain adaptation while maintaining object detection performance.
- Our hybrid quantum-classical robust fitting method offers a global solution or an error bound—a practical improvement over randomised heuristics like RANSAC.

THE UNIVERSITY OF ADELAIDE | Casual academic staff

July 2019 - Aug. 2022 | South Australia, Australia

- Mentored 5 master students, resulting in one earning a full Ph.D. scholarship.
- TA in courses "Foundation of Computer Science" and "Programming MATLAB & C"

AUSTRALIAN INSTITUTE FOR MACHINE LEARNING | Ph.D. student

Mar. 2018 - July 2021 | South Australia, Australia

 Developed scalable algorithms for life-long visual place recognition, exhibiting a sub-linear space-time complexity, particularly effective for scenarios involving continuous accumulation of new data.

Won IEEE RA-L Best Paper Award 2021 and Best Paper Award in DICTA 2019.

- Developed G2D—an interactive software to collect data from Grand Theft Auto V.
 G2D has been widely adopted by robotics and computer vision researchers worldwide.
- Developed a localisation solution for The University of Adelaide team.
 Won 3rd place and an innovation award in the NASA Space Robotics Challenge.

NIANTIC | Research intern

June 2020 - Oct. 2020 | Remote

Developed a 3D map summarisation method (US patent pending).

TEMASEK LABORATORIES@SUTD | Research Assistant

Oct. 2014 - Sept. 2017 | Singapore

- Developed algorithms for on-device visual localisation.
- Our visual localisation system could be processed entirely on a mobile device.

MOBILE VISION | Co-founder

Aug. 2013 - July 2014 | Ho Chi Minh City, Vietnam

- Developed algorithms, back-end, and front-end architectures of the mobile application of fine-grained object recognition.
- Our software could be deployable on Android OS.

SELECTED PUBLICATIONS

- "Assessing Domain Gap for Continual Domain Adaptation in Object Detection"
 Computer Vision and Image Understanding (CVIU) 2024.
- "A Hybrid Quantum-Classical Algorithm for Robust Fitting" IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
- "HM⁴: Hidden Markov Model with Memory Management for Visual Place Recognition" IEEE Robotics and Automation Letters (RA-L) 2021.
- "Scalable Place Recognition Under Appearance Change for Autonomous Driving" IEEE/CVF International Conference on Computer Vision (ICCV) 2019 (Oral).
- "On-device Scalable Image-based Localization via Prioritized Cascade Search and Fast One-Many RANSAC"

IEEE Transactions on Image Processing (TIP) 2018.

• "Learning to Hash with Binary Deep Neural Network" European Conference on Computer Vision (ECCV) 2016.