## Fondements statistiques de l'apprentissage automatique

Chapitre 3 : Sélection de modèle en régression linéaire multiple

On approche les  $(x_i, y_i)$  à

l'aide de polynomes de degrés  $K: y_i = \beta_0 + \sum_{k=1}^K (\beta_k x_i^k) + \varepsilon$ . Les résultats après estimation des  $\beta_k$  et le coefficient de détermination  $R^2$  sont donnés ci-dessous pour K = 1, 3, 5, 10.



Phénomène du <u>sur-apprentissage</u>!

FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.1 Introduction

On modélise souvent un problème de régression comme trouver la fonction f qui minimise le bruit  $\epsilon_i$  sur n échantillons d'apprentissage  $(x_i, y_i)$ :

$$y_i = f(x_i) + \epsilon_i \,,$$

où f est une fonction inconnue et  $\epsilon_i$  suit une loi Normale de moyenne nulle et d'écart type  $\sigma$ . Le but de la regression est alors de trouver une fonction  $\hat{f}$  qui approxime au mieux f. Ceci se fait en fixant d'abord un modèle (linéaire, polynôme, arbre de décision, réseau de neurones, ...) puis en apprenant ses q paramètres à partir de ce que l'on connait, c'est à dire les  $(x_i, y_i)$ . Le problème qui émerge naturellement est le suivant : Comment simultanément estimer f au mieux et tenir le moins possible compte du bruit  $\epsilon$  sachant que les deux sont inconnus ? C'est la question clé du compromis biais-variance.



$$\mathbb{E}\left[(y-\hat{f}(x))^2\right] = \underbrace{\mathbb{E}\left[\hat{f}(x)-f(x)\right]^2}_{biais[\hat{f}(x)]} + \underbrace{\mathbb{E}\left[\hat{f}(x)^2\right] - \mathbb{E}\left[\hat{f}(x)\right]^2}_{variance[\hat{f}(x)]} + \sigma^2 \qquad (3.1)$$

- Le terme de biais  $\mathbb{E}[\hat{f}(x) f(x)]^2$  représente à quel point le modèle  $\hat{f}$  approxime la fonction inconnue f.
- Le terme de variance  $\mathbb{E}[\hat{f}(x)^2] \mathbb{E}[\hat{f}(x)]^2 = Var[\hat{f}(x)]$  représent le niveau de variabilité de  $\hat{f}$ , sans tenir compte de f.
- Le terme  $\sigma^2$  représente enfin le niveau de bruit dans les données  $(x_i, y_i)$ , qui tout comme f est inconnu.

Pour une MSE (i.e.  $\mathbb{E}[(y-\hat{f}(x))^2]$ ) donnée, un  $\hat{f}$  représentera alors un compromis entre qualité d'approximation de f au niveau des observations  $\{x_i\}_{i=1,\dots,n}$  et sa stabilité. Une trop grande qualité d'approximation au niveau des observations impliquera alors des fonctions  $\hat{f}$  instables et ainsi moins généralisables en dehors des  $\{x_i\}_{i=1,\dots,n}$  (sur-apprentissage). A contrario, des fonctions  $\hat{f}$  trop stables captureront mal les relations entre les  $x_i$  et les  $y_i$  et auront de même un faible pouvoir prédictif.



## **FS-AA -** chapitre 3 : Sélection de modèle → 3.1 Introduction

Plus formellement, on minimise l'esperance empirique de  $(y - \hat{f}(x))^2$  sur les  $(x_i, y_i)$ , c'est à dire l'erreur au carré moyenne (Mean Squared Error – MSE). Elle peut être décomposée sous cette forme :

$$\mathbb{E}\left[(y-\hat{f}(x))^2\right] = \underbrace{\mathbb{E}\left[\hat{f}(x)-f(x)\right]^2}_{biais[\hat{f}(x)]} + \underbrace{\mathbb{E}\left[\hat{f}(x)^2\right]-\mathbb{E}\left[\hat{f}(x)\right]^2}_{variance[\hat{f}(x)]} + \sigma^2$$
(3.1)

- Le terme de biais  $\mathbb{E}[\hat{f}(x) f(x)]^2$  représente à quel point le modèle  $\hat{f}$  approxime la fonction inconnue f.
- Le terme de variance  $\mathbb{E}[\hat{f}(x)^2] \mathbb{E}[\hat{f}(x)]^2 = Var[\hat{f}(x)]$  représent le niveau de variabilité de  $\hat{f}$ , sans tenir compte de f.
- Le terme  $\sigma^2$  représente enfin le niveau de bruit dans les données  $(x_i, y_i)$ , qui tout comme f est inconnu.

Trouver un bon compromis entre biais et variance pourra se faire en réduisant explicitement la dimension d'un modèle (Section 3.2) ou en régularisant l'estimation des paramètres d'un modèle (Section 3.3).



FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.2 Sélection de modèle par sélection de variables

Considérons un modèle linéaire  $\mathcal{M}$  à q variables  $\mathbf{X}^{(j)}$ ,  $j=1,\ldots,q$ . Dans ce modèle q < p et chaque  $\mathbf{X}^{(j)}$  correspond à une des p variables observées  $\mathbf{X}^k$ ,  $k=1,\ldots,p$ . Ce modèle s'écrit :

$$\begin{vmatrix}
A_{84} \\
A_{2} \\
A_{2}
\end{vmatrix} = \begin{vmatrix}
A_{1} & A_{1} & A_{2} & A_{2} \\
A_{2} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{1} & A_{2} & A_{2} \\
A_{2} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{2} & A_{2} & A_{2}
\\
A_{3} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{2} & A_{2}
\\
A_{3} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{2} & A_{2}
\\
A_{3} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{2} & A_{2}
\\
A_{3} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{2} & A_{2}
\\
A_{3} & A_{2} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{3} & A_{2} & A_{3}
\\
A_{4} & A_{2}
\end{vmatrix} + \begin{vmatrix}
A_{2} & A_{3} & A_{4}
\\
A_{3} & A_{4} & A_{4}
\end{vmatrix} + \begin{vmatrix}
A_{4} & A_{4} & A_{4}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} & A_{5}
\\
A_{5} & A_{5}
\end{vmatrix} + \begin{vmatrix}
A_{5} &$$

La selection de modèle consiste à la fois à choisir les meilleur variables explicatives des  $y_i$  et à estimer les paramètres  $\beta_i$  optimaux. Nous développons dans cette section plusieurs critères de sélection de modèle.

## FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.2 Sélection de modèle par sélection de variables

Considérons un modèle linéaire  $\mathcal{M}$  à q variables  $\mathbf{X}^{(j)}$ ,  $j=1,\ldots,q$ . Dans ce modèle q < p et chaque  $\mathbf{X}^{(j)}$  correspond à une des p variables observées  $\mathbf{X}^k$ ,  $k=1,\ldots,p$ . Ce modèle s'écrit :

La selection de modèle consiste à la fois à choisir les meilleur variables explicatives des  $y_i$  et à estimer les paramètres  $\beta_i$  optimaux. Nous développons dans cette section plusieurs critères de sélection de modèle.

#### Critère $C_p$ de Mallows

On rappelle que la somme des carrés des résidus  $SSE = ||\mathbf{Y} - \widehat{\mathbf{Y}}||^2 = ||e||^2$ . On dénote alors la mean square error :

$$MSE = \frac{SSE}{n - p - 1} \,,$$

où n-p-1 est le nombre de degrés de liberté du modèle compet à p variables et n observations.

L'indicateur proposé par Mallows en 1973 pour evaluer la qualité d'un modèle donné  $\mathcal M$  à q variables est alors

$$C_p = (n - (q+1)) \frac{MSE_M}{MSE} - (n - 2(q+1))$$

où  $MSE_{\mathcal{M}}$  est la MSE calculée pour le modèle  $\mathcal{M}$ .

Il est alors d'usage de rechercher un modèle qui minimise le  $C_p$ . Ceci revient à considérer que le "vrai" modèle complet est moins fiable qu'un modèle réduit donc biaisé mais d'estimation plus précise. A qualité de modèle constant  $MSE_{\mathcal{M}}/MSE$ , plus q est faible, plus  $C_p$  est faible. Par contre si l'erreur du modèle  $\mathcal{M}$  augmente à q fixé,  $C_p$  augmente. Voila ci-dessous l'évolution de  $C_p$  en fonction de K dans l'exemple introductif du chapitre. Ici, le meilleur modèle contient q=3 variables.



FS-AA - chapitre 3 : Sélection de modèle  $\rightarrow$  3.2 Sélection de modèle par sélection de variables

Considérons un modèle linéaire  $\mathcal{M}$  à q variables  $\mathbf{X}^{(j)}$ ,  $j=1,\ldots,q$ . Dans ce modèle q < p et chaque  $\mathbf{X}^{(j)}$  correspond à une des p variables observées  $\mathbf{X}^k$ ,  $k = 1, \ldots, p$ . Ce modèle s'écrit :

critère 
$$C_p$$
 de Mallows. Le critère BIC (Bayesian Information Criterium) est une extension d'AIC dans lequel le terme de pénalité est plus important. Le PRESS (somme des erreurs quadratiques) de Allen (1974) est l'introduction historique de la validation croisée ou leave-one-out (loo). Ces critères peuvent être résumés par :

$$- \underline{AIC} : AIC(\mathcal{M}) = n \log MSE_{\mathcal{M}} + 2(q+1) \\
- \underline{BIC} : AIC(\mathcal{M}) = n \log (MSE_{\mathcal{M}}) + \log (n)(q+1) \\
- \underline{PRESS} : \text{On désigne par } \widehat{y_{(-i)j}} \text{ la prévision de } y_j \text{ calculée sans tenir compte de la ième observation lors de l'estimation des paramètres alors :} \\
PRESS = \sum_{i=1}^{n} (y_i - \widehat{y_{(-i)i}})^2 \text{ et permettent de comparer les capacités prédictives de différents modèles.}$$

La selection de modèle consiste à la fois à choisir les meilleur variables explicatives des  $y_i$  et à estimer les paramètres  $\beta_i$  optimaux. Nous développons dans cette section plusieurs critères de sélection de modèle.

### Critères AIC, BIC et PRESS

Dans le cas du modèle linéaire, et si la variance des observations est supposée connue, le critère AIC (Akaïke's Information criterium) est équivalent au critère  $C_p$  de Mallows. Le critère BIC (Bayesian Information Criterium) est une

- $PRESS = \sum_{i=1}^{n} (y_i \widehat{y_{(-i)i}})^2$

et permettent de comparer les capacités prédictives de différents modèles.

FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.2 Sélection de modèle par sélection de variables

Considérons un modèle linéaire  $\mathcal{M}$  à q variables  $\mathbf{X}^{(j)}$ ,  $j=1,\ldots,q$ . Dans ce modèle q < p et chaque  $\mathbf{X}^{(j)}$  correspond à une des p variables observées  $\mathbf{X}^k$ ,  $k=1,\ldots,p$ . Ce modèle s'écrit :

La selection de modèle consiste à la fois à choisir les meilleur variables explicatives des  $y_i$  et à estimer les paramètres  $\beta_i$  optimaux. Nous développons dans cette section plusieurs critères de sélection de modèle.

#### Algorithmes de sélection de variables

Dans le cas général les variables ne sont pas pré-ordonnées par importance. C'est d'ailleurs le cas le plus courant en pratique! Lorsque p est grand, il n'est pas raisonnable d'explorer les  $2^p$  modèles possibles afin de sélectionner le meilleur au sens de l'un des critères ci-dessus. Différentes stratégies existent pour explorer efficacement les modèles possibles. Elles doivent être choisies en fonction de l'objectif recherché, de la valeur de p et des moyens de calcul disponibles. Deux types d'algorithmes sont résumés ci-dessous par ordre croissant de temps de calcul nécessaire, c'est-à-dire par nombre croissant de modèles considérés explorés parmi les  $2^p$  et ainsi par capacité croissante d'optimalité.

**Sélection (forward)** A l'état initial q=1 et toutes les p variables sont testées. La variable qui permet de réduire au mieux le critère du modèle obtenu est selectionnée, on la dénote (1). On teste alors si une des p-1 variables restantes améliore la qualité du modèle avec q=2 et (1) déjà sélectionné... et ainsi de suite. La procédure s'arrête lorsque toutes les variables sont introduites ou lorsque le critère ne décroît plus.

Elimination (backward) L'algorithme démarre cette fois du modèle complet. À chaque étape, la variable dont l'élimination conduit la valeur du critère la plus faible est supprimée. La procédure s'arrête lorsque la valeur du critère ne décroît plus.

Mixte (stepwise) Cet algorithme introduit une étape d'élimination de variable après chaque étape de sélection afin de retirer du modèle d'éventuels variables qui seraient devenues moins indispensables du fait de la présence de celles nouvellement introduites.

FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.3 Sélection de modèle par régularisation

Les méthodes de régression régularisée sont à utiliser quand le probleme est mal conditioné, et typiquement quand le nombre d'observations n est plus petit que la dimension des observations p. Ce cas est très courant en pratique, par exemple quand chaque observation coute cher a obtenir mais est en très grande dimension, comme c'est le cas en génomique ou dans de nombreuses applications industrielles.

## 3.3.1 Régression ridge

#### Modèle et estimation

L'estimateur ridge est défini par un critère des moindres carrés, avec une pénalité de type  $\mathbb{L}^2$  par :

$$\widehat{eta}_{ridge} = rgmin_{eta \in \mathbb{R}^{p+1}} \left( \sum_{i=1}^n (Y_i - \sum_{j=0}^p X_i^{(j)} eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2 
ight)$$

où  $\lambda$  est un paramètre positif. Notez que le paramètre  $\beta_0$  n'est pas pénalisé.

En supposant X et Y centrés, l'estimateur ridge est obtenu en résolvant les équations normales qui s'expriment sous la forme :

$$\mathbf{X}'\mathbf{Y} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_p)\beta$$

Conduisant à :

$$\widehat{\beta}_{ridge} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}'\mathbf{Y}$$

La solution est donc explicite et linéaire en Y. Remarquons alors que :

- $\mathbf{X}'\mathbf{X}$  est une matrice symétrique positive, *i.e.* pour tout vecteur  $\mathbf{u}$  de  $\mathbb{R}^p : \mathbf{u}'(\mathbf{X}'\mathbf{X})\mathbf{u} \geq 0$ . Il en résulte que pour tout  $\lambda > 0$ ,  $\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_p$  est inversible.
- La constante  $\beta_0$  n'intervient pas dans la pénalité, sinon, le choix de l'origine pour  $\mathbf{Y}$  aurait une influence sur l'estimation de l'ensemble des paramètres. Alors :  $\widehat{\beta_0} = \overline{\mathbf{Y}}$ ; ajouter une constante à  $\mathbf{Y}$  ne modifie pas les  $\widehat{\beta_j}$  pour  $j \geq 1$ .

## 3.3.1 Régression ridge

## Modèle et estimation

L'estimateur ridge est défini par un critère des moindres carrés, avec une pénalité

de type  $\mathbb{L}^2$  par :

$$\widehat{\beta}_{ridge} = \underset{\beta \in \mathbb{R}}{\operatorname{arg}}$$

où λ est un paramètre po En supposant **X** et **Y** équations normales qui s'e

#### Conduisant à :

La solution est donc expli

—  $\mathbf{X}'\mathbf{X}$  est une matr  $\mathbb{R}^p : \mathbf{u}'(\mathbf{X}'\mathbf{X})\mathbf{u} \geq \mathbf{u}'(\mathbf{X}'\mathbf{X})\mathbf{u} \geq \mathbf{u}'(\mathbf{X}'\mathbf{X})\mathbf{u}$  inversible.

La constante  $\beta_0$  n'

gine pour  $\mathbf{Y}$  aurait une influence sur l'estimation de l'ensemble des paramètres. Alors :  $\widehat{\beta_0} = \overline{\mathbf{Y}}$ ; ajouter une constante à  $\mathbf{Y}$  ne modifie pas les  $\widehat{\beta_j}$  pour  $j \geq 1$ .

## Remarque

La figure ci-dessous montre quelques résultats obtenus par la méthode ridge en fonction de la valeur de la pénalité  $\lambda$  sur l'exemple de la régression polynomiale (toujours pour pouvoir représenter les résultats dans un graphique 2D mais le principe est le même dans le cas linéaire multiple).





## 3.3.2 Régression LASSO

La régression ridge permet de contourner les problèmes de colinéarité même en présence d'un nombre important de variables explicatives ou prédicteurs (p > n). La principale faiblesse de cette méthode est cependant liée à la difficulté d'interprétation. Sans sélection, toutes les variables sont concernées dans le modèle : elles ont une valeur non-nulle et on ne peut pas se ramener au problème posé au début de Section 3.2.

Pour comprendre l'équivalence entre sélectionner explictement des variables, comme dans Section [3.2], et sélectionner des variables en ne considérant que les  $|\beta_i| > 0$ , imaginons que l'on ai 4 variables  $\{1, 2, 3, 4\}$  et que les deux variables sélectionnées soient (1) = 1 et (2) = 3. Alors on a :

$$\begin{pmatrix}
1 & \chi_{1}^{(1)} & \chi_{2}^{(2)} \\
1 & \chi_{1}^{(4)} & \chi_{2}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
1 & \chi_{1}^{(4)} & \chi_{1}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \beta_{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \beta_{3} \\
0
\end{pmatrix} = \begin{pmatrix}
1 & \chi_{1}^{4} & \chi_{1}^{2} & \chi_{1}^{3} & \chi_{1}^{4} \\
1 & \chi_{1}^{4} & \chi_{1}^{2} & \chi_{1}^{3} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{(1)} & \chi_{1}^{(2)} & \chi_{1}^{2} & \chi_{1}^{2} & \chi_{2}^{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{1}^{2} & \chi_{1}^{4} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{1}^{4} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{2}^{4} & \chi_{2}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{2}^{4} & \chi_{1}^{4} & \chi_{1}^{4} & \chi_{1}^{4} & \chi_{2}^{4} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \chi_{m}^{4} & \chi_{1}^{2} & \chi_{1}^{4} & \chi_{$$

D'autres approches par pénalisation permettent une sélection, c'est le cas de la régression Lasso.

## 3.3.2 Régression LASSO

#### Modèle et estimation

La méthode Lasso (Tibshirani, 1996) correspond à la minimisation d'un critère des moindres carrés avec une pénalité de type  $L_1$  (et non  $L_2$  comme dans la régression ridge). Soit  $||\beta||_1 = \sum_{j=1}^p |\beta_j|$ .

L'estimateur Lasso de  $\beta$  dans le modèle  $\mathbf{Y} = \tilde{\mathbf{X}}\tilde{\beta} + \epsilon$  est alors défini par :

$$\widehat{\beta}_{LASSO} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p+1}} \left( \sum_{i=1}^{n} (Y_i - \sum_{j=0}^{p} X_i^{(j)} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right)$$

où  $\lambda$  est un paramètre positif. On peut montrer que ceci équivaut au problème de minimisation suivant

$$\widehat{eta}_{LASSO} = \mathop{rg\min}_{eta \in \mathbb{R}^p} ||\mathbf{Y} - \mathbf{X}eta||^2$$

pour un t convenablement choisi. Comme dans le cas de la régression ridge, le paramètre  $\lambda$  est un paramètre de régularisation :

- Si  $\lambda = 0$ , on retrouve l'estimateur des moindres carrés.
- Si  $\lambda$  tend vers l'infini, on annule tous les  $\hat{\beta}_j$ ,  $j = 1, \ldots, p$ .

La solution obtenue est dite parcimonieuse (sparse en anglais), car elle comporte des coefficients nuls.

$$\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_m \end{pmatrix} = \begin{pmatrix}
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 & x_1 & \dots & x_n \\
1 & x_1 &$$

#### 3.3.3 Régression Elastic Net

La méthode Elastic Net permet de combiner la régression ridge et la régression Lasso, en introduisant les deux types de pénalités simultanément.

Le critère à minimiser est :

$$\widehat{\beta}_{E.N.} = \underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} \left( \sum_{i=1}^{n} (Y_i - \sum_{j=0}^{p} X_i^{(j)} \beta_j)^2 + \lambda \left( \alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right) \right)$$

Considérons la formule générique optimisée dans la section précédente :

$$\widehat{eta} = \operatorname*{arg\,min}_{eta \in \mathbb{R}^{p+1}} \left( \sum_{i=1}^n (Y_i - \sum_{j=0}^p X_i^{(j)} eta_j)^2 + \lambda R(eta_1, \dots, eta_p) \right)$$

où R est la fonction de pénalisation de  $\beta$  qui regularise le problème d'optimisation.

Trois méthodes de validation croisée (cross-validation) pour valider le choix du paramètre  $\lambda$  et éventuellement de  $\alpha$  sont largement utilisées en apprentissage automatique (pas seulement en regression linéaire).

# 3.4.1 Subdivision des observations en deux ensembles de données

La méthode élémentaire est de subdiviser les n observations en deux sous ensembles d'observations :

- Les données d'apprentissage.
- les données de validation.

Les données seront idéalement séparées de maniere aléatoire, par exemple  $i = 1, \ldots, n_1$  pour les données d'apprentissage et  $i = n_1 + 1, \ldots, n$  pour les données de validation.



## FS-AA - chapitre 3 : Sélection de modèle ightarrow 3.4 Validation croisée

## **3.4.2** K-folds

Afin de quantifier la stabilité de l'estimation des  $\beta_j$  en fonction des données il est intéressant de reproduire plusieurs fois le test de séparation de données en jeu d'apprentissage et jeu d'estimation.

La méthode la plus simple est celle dite des K-folds. Elle consiste à subdiviser les n observations  $(Y_i, \mathbf{X_i})$  en K jeux de données de taille similaires  $\delta_k$ , i.e. avec  $\delta_k$  proche de n/K. Pour simplifier les notations, on suppose ici que  $\delta_k = n/K$  est entier.

La méthode d'apprentissage-validation decrite dans la sous-section précedente est alors effectuée K fois, avec pour l'itération k:

- Les données d'apprentissage  $(Y_i, \mathbf{X_i})$ ,  $i = 1, \ldots, (k-1)\delta_k, k\delta_k + 1, \ldots, n$  sont utilisées pour estimer les  $\beta_i^k$ .
- Les données de validation  $(Y_i, \mathbf{X}_i)$ ,  $i = (k-1)\delta_k + 1, \dots, k\delta_k$ . sont utilisées pour calculer  $e_{split}^k$ .

K>1 estimation de l'erreur  $e^k_{split}$  et des paramètres  $\beta^k_j$  sont alors effectués. Ceci permet d'en mesurer l'erreur de manière plus robuste qu'avec K=1. De plus cela permet de quantifier la variabilité sur l'estimation des  $\beta_j$ : On peut simplement en calculer leur moyenne et écart type. Si une stratégie de sélection de modèle a été effectuée, on peut aussi étudier quels sont les  $\beta_j$  systématiquement sélectionnés et quels sont ceux qui le sont moins.





## puis



puis



**FS-AA - chapitre 3 : Sélection de modèle** → **3.4 Validation croisée** 

### 3.4.3 Leave-one-out

La méthode de validation croisée dite Leave-one-out est extremement populaire en apprentissage automatique et est équivalent aux K-folds avec K=n. A chaque itération, l'apprentissage est effectué en enlevant une observation du jeu de données et la validation est faite sur cette observation. Cette méthode est plus lente que les K-folds en particulier quand n est grand, mais est la plus robuste et recommandée quand n est petit.



## puis



puis

:

puis

