LECTURE

1

THE REAL NUMBERS: SOME BASIC CONCEPTS

The set of real numbers, denoted by \mathbb{R} , is a totally ordered field $(\mathbb{R}, +, \cdot, >)$

meaning that

- $(\mathbb{R}, +, \cdot)$ is a field, where 0 and 1 are the neutral elements of + and \cdot , respectively;
- \geq is an order relation on \mathbb{R} , i.e., a binary relation, which is reflexive, transitive and antisymmetric;
- \geq is total, i.e., $\forall x, y \in \mathbb{R}$ we have $x \geq y$ or $y \geq x$;
- \geq is compatible with +, i.e., $\forall x, y, z \in \mathbb{R}$ we have $x + z \geq y + z$ whenever $x \geq y$;
- \geq is compatible with \cdot , i.e., $\forall x, y \in \mathbb{R}$ s.t. $x \geq 0$ and $y \geq 0$, we have $xy \geq 0$.

As usual, we associate to \geq the inverse order relation \leq as well as the strict order relations > and <, defined for any $x, y \in \mathbb{R}$ by

$$x \le y \Leftrightarrow y \ge x;$$

 $x > y \Leftrightarrow x \ge y \text{ and } x \ne y;$
 $x < y \Leftrightarrow y > x.$

Proposition 1.1 We have $x^2 \ge 0$ for all $x \in \mathbb{R}$. Consequently, 1 > 0.

Definition 1.2 For any subset A of \mathbb{R} we introduce the following (possibly empty!) sets

$$lb(A) := \{ x \in \mathbb{R} \mid x \le a, \, \forall a \in A \};$$

$$ub(A) := \{ x \in \mathbb{R} \mid x \ge a, \, \forall a \in A \}.$$

A number $x \in \mathbb{R}$ is said to be a

- lower bound of A if $x \in lb(A)$;
- upper bound of A if $x \in ub(A)$;
- least element (or minimum) of A if $x \in A \cap lb(A)$;
- greatest element (or maximum) of A if $x \in A \cap ub(A)$.

Remark 1.3 Every set $A \subseteq \mathbb{R}$ has at most one least element and, if it exists, we denote it by min A. Similarly, A has at most one greatest element and, if it exists, we denote it by max A.

Definition 1.4 A subset A of \mathbb{R} is said to be

- bounded (from) below, if A has lower bounds, i.e., $lb(A) \neq \emptyset$;
- bounded (from) above, if A has upper bounds, i.e., $ub(A) \neq \emptyset$;
- bounded, if A is both bounded above and below;
- unbounded, if A is not bounded.

Remark 1.5 The empty set is bounded. More precisely, we have

$$lb(\emptyset) = ub(\emptyset) = \mathbb{R}.$$

Example 1.6 (i) $A = \{a \in \mathbb{R} \mid a \geq 2\}$: unbounded (since it is not bounded above), bounded below by any $v \leq 2$, min A = 2.

- (ii) $A = \{a \in \mathbb{R} \mid 0 < a < 1\}$: bounded (above by any $u \ge 1$, below by any $v \le 0$), no minimum, no maximum.
- (iii) $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$: bounded (above by any $u \ge 1$, below by any $v \le 0$), $\max A = 1$, no minimum.
- (iv) Every nonempty finite set has a minimum and a maximum.

Proposition 1.7 (Completeness Axiom) The totally ordered field of real numbers $(\mathbb{R}, +, \cdot, \geq)$ is complete, meaning that every nonempty set $A \subseteq \mathbb{R}$ that is bounded above has a least upper bound, denoted by $\sup A$ and called the supremum of A. In other words, we have

$$\sup A := \min(ub(A)).$$

Alternatively, every nonempty set $A \subseteq \mathbb{R}$ that is bounded below has a greatest lower bound, denoted by inf A and called the infimum of A. In other words,

$$\inf A := \max(lb(A)).$$

Example 1.8 (i) $A = \{a \in \mathbb{Z} \mid 2 \le a \le 3\}$: $\max A = \sup A = 3$, $\min A = \inf A = 2$. (ii); $A = \{a \in \mathbb{R} \mid 0 < a \le 1\}$: $\max A = \sup A = 1$, $\inf A = 0$, no minimum.

Remark 1.9 The Completeness Axiom is also known in the literature as the Supremum Property, since it shows that every nonempty subset of \mathbb{R} which is bounded above has a supremum in \mathbb{R} . Its counterpart shows that every nonempty subset of \mathbb{R} which is bounded below has an infimum in \mathbb{R} . Indeed, let $A \subseteq \mathbb{R}$, $A \neq \emptyset$, bounded below. Then the set $-A = \{-a \mid a \in A\}$ is nonempty and bounded above, so, by the Supremum Property, it has a supremum in \mathbb{R} . Thus we have $\inf A = -\sup(-A)$.

Remark 1.10 Let $A \subseteq \mathbb{R}$ be a nonempty set. If A has a greatest element (resp. a least element), then $\sup A = \max A$ (resp. $\inf A = \min A$). Conversely, if A is bounded above and $\sup A \in A$ (resp. A is bounded below and $\inf A \in A$), then $\sup A = \max A$ (resp. $\inf A = \min A$).

Definition 1.11 We attach to \mathbb{R} two elements $-\infty$ and $+\infty$ (or ∞) s.t.

$$\forall x \in \mathbb{R}, \ -\infty < x \ \ and \ \ x < +\infty.$$

The set $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ is called the extended real number system.

If a set $A \subseteq \mathbb{R}$ is not bounded above, we define $\sup A := +\infty$.

If a set $A \subseteq \mathbb{R}$ is not bounded below, we define $\inf A := -\infty$.

Also, we define $\sup \emptyset := -\infty$ and $\inf \emptyset := +\infty$ (see Remark 1.5!).

We denote by $\mathbb{N} := \{1, 2 := 1 + 1, 3 := 1 + 1 + 1, \dots\}$ the set of natural numbers.

Remark 1.12 \mathbb{N} is the smallest inductive subset of \mathbb{R} w.r.t. inclusion (a set $A \subseteq \mathbb{R}$ is said to be inductive if $1 \in A$ and $x+1 \in A$ whenever $x \in A$). We have $\min \mathbb{N} = 1$ and for every $n \in \mathbb{N}$, n < n+1 and $\{x \in \mathbb{N} \mid n < x < n+1\} = \emptyset$. Every nonempty subset of \mathbb{N} has a least element.

Proposition 1.13 (Principle of Mathematical Induction) Let $n_0 \in \mathbb{N}$ and let P(n) be a property defined for any number $n \in \mathbb{N}$, $n \ge n_0$. Suppose that the following two conditions hold:

- **I.** $P(n_0)$ is true;
- **II.** If P(k) is true for some $k \in \mathbb{N}$, $k \geq n_0$, then P(k+1) is also true. Then we have
 - **III.** P(n) is true, $\forall n \in \mathbb{N}, n \geq n_0$.

The following result is a consequence of the Completeness Axiom (Supremum Property).

Corollary 1.14 (Archimedean Property) The set of natural numbers \mathbb{N} is not bounded from above. In other words, for every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ s.t. n > x.

Proof. Suppose $x \ge n$, $\forall n \in \mathbb{N}$. Then \mathbb{N} is nonempty and bounded above by x, so, by Theorem 1.7, it has a supremum $u \in \mathbb{R}$. Since u-1 < u, u-1 cannot be an upper bound of \mathbb{N} . This means that $\exists m \in \mathbb{N}$ s.t. u-1 < m. Thus, $u < m+1 \in \mathbb{N}$, which is a contradiction to the fact that u is an upper bound of \mathbb{N} .

The sets of integer numbers and rational numbers are defined as

$$\mathbb{Z} := \{ m - n \mid m, n \in \mathbb{N} \};$$

$$\mathbb{Q} := \{ mn^{-1} \mid m \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Remarks 1.15 1. For every $x \in \mathbb{R}$ there is a unique $k \in \mathbb{Z}$ such that $k \leq x < k+1$; we denote this k by [x] or |x| and call it the integer part or floor of x.

- **2.** For every $n \in \mathbb{N}$ and $x \in \mathbb{R}$, $x \geq 0$, there exists a unique number $y \in \mathbb{R}$, $y \geq 0$ such that $x = y^n$ (when $n \geq 2$ we denote $y = \sqrt[n]{x}$).
 - **3.** We have $\sqrt{2} \notin \mathbb{Q}$. Therefore the set $\mathbb{R} \setminus \mathbb{Q}$ of the so-called irrational numbers is nonempty.

As a consequence of the Archimedean Property we obtain the following result:

Corollary 1.16 (Density of \mathbb{Q} in \mathbb{R}) For any real numbers $a, b \in \mathbb{R}$ such that a < b there exists $x \in \mathbb{Q}$ such that a < x < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. By the Archimedean Property (Corollary 1.14) we can find a number $n \in \mathbb{N}$ s.t. $n > \frac{1}{l}$, i.e.,

$$nb - 1 > na \tag{1.1}$$

Case 1: If $nb \in \mathbb{Z}$ then (1.1) shows that $a < \frac{nb-1}{n} < b$, hence $x := \frac{nb-1}{n} \in \mathbb{Q}$ satisfies the property n demand.

Case 2: If $nb \notin \mathbb{Z}$ then we consider the integer part of nb, namely m := |nb|. In this case we have

$$m < nb < m+1. \tag{1.2}$$

By (1.1) and (1.2) we deduce that m > nb - 1 > na hence na < m < nb. Thus, in this case the number $x := \frac{m}{n} \in \mathbb{Q}$ satisfies a < x < b.

Remark 1.17 $(\mathbb{Q}, +, \cdot, \geq)$ is a totally ordered field but, in contrast to $(\mathbb{R}, +, \cdot, \geq)$, it does not satisfy the Completeness Axiom. However, for every $x \in \mathbb{R}$ we have

$$\sup\{y \in \mathbb{Q} \mid y < x\} = x = \inf\{y \in \mathbb{Q} \mid y > x\};$$

$$\sup\{z \in \mathbb{R} \setminus \mathbb{Q} \mid z < x\} = x = \inf\{z \in \mathbb{R} \setminus \mathbb{Q} \mid z > x\}.$$

Next we present some properties which are of practical interest.

Proposition 1.18 If $A \subseteq B \subseteq \mathbb{R}$ are nonempty bounded sets, then

$$\inf B < \inf A < \sup A < \sup B$$
.

Proposition 1.19 If A and B are nonempty subsets of \mathbb{R} which are bounded above, then $A \cup B$ is bounded above and the following relations hold:

$$\sup(A \cup B) = \max\{\sup A, \sup B\};$$

$$\inf(A \cup B) = \min\{\inf A, \inf B\};$$

Proposition 1.20 For any nonempty subsets A and B of \mathbb{R} , we have

$$\sup(A+B) = \sup A + \sup B,$$

$$\inf(A+B) = \inf A + \inf B,$$

where $A + B := \{a + b \mid a \in A, b \in B\}.$

If $f: D \to \mathbb{R}$ is a function, defined on a nonempty set D, then it will be convenient to denote

$$\inf_{x \in D} f(x) := \inf f(D) \quad \text{ and } \quad \sup_{x \in D} f(x) := \sup f(D),$$

where $f(D) = \text{Im}(f) := \{f(x) \mid x \in D\}$ represents the function's image.

In particular, if $D = \mathbb{N}$, a function $f : \mathbb{N} \to \mathbb{R}$ represents a sequence $(x_n)_{n \in \mathbb{N}}$. In this case we will write

$$\inf_{n \in \mathbb{N}} x_n := \inf\{x_n \mid n \in \mathbb{N}\} \quad \text{and} \quad \sup_{n \in \mathbb{N}} x_n := \sup\{x_n \mid n \in \mathbb{N}\}.$$

The following result is another important consequence of the Completeness Axiom (Supremum Property).

Corollary 1.21 (Nested Interval Property) Consider a sequence of closed intervals $I_n = [a_n, b_n] \subseteq \mathbb{R}$, with $a_n < b_n$ for all $n \in \mathbb{N}$. If $I_n \supseteq I_{n+1}$ for all $n \in \mathbb{N}$, i.e.,

$$I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$$
 is a nested sequence of closed intervals,

then we have
$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$
 (i.e., $\exists x \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, x \in I_n$).

Proof. Let $A = \{a_k \mid k \in \mathbb{N}\}$. Then, $\forall n \in \mathbb{N}$, b_n is an upper bound of A. Hence A is nonempty and bounded above. By the Completeness Axiom (Proposition 1.7), we deduce that A has a supremum

in
$$\mathbb{R}$$
. Thus, $\forall n \in \mathbb{N}$, $a_n \leq \sup A \leq b_n$. This shows that $\sup A \in \bigcap_{n=1}^{\infty} I_n$

Definition 1.22 A set $V \subseteq \mathbb{R}$ is said to be

- a neighborhood of a number $x \in \mathbb{R}$, if there exists a real number $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon) \subseteq V$;
- a neighborhood of $-\infty$, if there exists a number $a \in \mathbb{R}$ such that $(-\infty, a) \subseteq V$;
- a neighborhood of $+\infty$, if there exists a number $a \in \mathbb{R}$ such that $(a, +\infty) \subseteq V$.

Proposition 1.23 Let $x \in \overline{\mathbb{R}}$. Then

- (i) if $x \in \mathbb{R}$ and $V \in \mathcal{V}(x)$, then $x \in V$.
- (ii) if $V \in \mathcal{V}(x)$ and $U \subseteq \mathbb{R}$ s.t. $V \subseteq U$, then $U \in \mathcal{V}(x)$.
- (iii) if $U, V \in \mathcal{V}(x)$, then $U \cap V \in \mathcal{V}(x)$.

Theorem 1.24 Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from below by $\alpha \in \mathbb{R}$. Then the following assertions are equivalent:

- $1^{\circ} \inf A = \alpha$.
- 2° For every real number $\beta > \alpha$ there exists $x \in A$ such that $x < \beta$.
- 3° For every real number $\varepsilon > 0$ we have $A \cap [\alpha, \alpha + \varepsilon) \neq \emptyset$.
- 4° For every $V \in \mathcal{V}(\alpha)$ we have $V \cap A \neq \emptyset$.

Corollary 1.25 Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from above by $\alpha \in \mathbb{R}$. Then the following assertions are equivalent:

- $1^{\circ} \sup A = \alpha$.
- 2° For every real number $\beta < \alpha$ there exists $x \in A$ such that $x > \beta$.
- 3° For every real number $\varepsilon > 0$ we have $A \cap (\alpha \varepsilon, \alpha] \neq \emptyset$.
- 4° For every $V \in \mathcal{V}(\alpha)$ we have $V \cap A \neq \emptyset$.

LECTURE

2

SEQUENCES OF REAL NUMBERS

Definition 2.1 By a sequence of real numbers (or sequence in \mathbb{R}) we mean any function of type $f: \mathbb{N} \to \mathbb{R}$. Denoting $x_n := f(n)$ for all $n \in \mathbb{N}$ we may use one of the following notations to represent the sequence f:

$$(x_n)_{n\in\mathbb{N}}, (x_n)_{n\geq 1}$$
 or simply (x_n) .

Remark 2.2 Any function $g: \mathbb{N} \cap [m, \infty) \to \mathbb{R}$ with $m \in \mathbb{Z}$ can be seen as a sequence, too. Indeed, g can be identified with $f: \mathbb{N} \to \mathbb{R}$, given by

$$f(n) := g(m+n-1), \ \forall n \in \mathbb{N}.$$

In this case instead of $(x_n)_{n\in\mathbb{N}}$, with $x_n := f(n)$ for all $n \in \mathbb{N}$, we write

$$(y_n)_{n\geq m}$$
, where $y_n:=g(n), \ \forall n\in\mathbb{Z}, \ n\geq m$.

Definition 2.3 A sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ is said to be bounded below (bounded above; bounded; unbounded) if the set $\{x_n \mid n \in \mathbb{N}\}$ is bounded below (bounded above; bounded; unbounded).

Remark 2.4 For any sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} we have:

```
(x_n)_{n\in\mathbb{N}} is bounded below \iff \exists a \in \mathbb{R} \text{ s.t. } x_n \geq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is bounded above \iff \exists a \in \mathbb{R} \text{ s.t. } x_n \leq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is bounded \iff \exists a \in \mathbb{R} \text{ s.t. } |x_n| \leq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is unbounded \iff \forall a \in \mathbb{R}, \ \exists n \in \mathbb{N} \text{ s.t. } |x_n| > a.
```

Definition 2.5 A sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} is called

- increasing if $x_{n+1} \ge x_n$, $\forall n \in \mathbb{N}$;
- decreasing if $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$;
- strictly increasing if $x_{n+1} > x_n$, $\forall n \in \mathbb{N}$;
- strictly decreasing if $x_{n+1} < x_n, \forall n \in \mathbb{N}$;
- monotonic (or monotone) if it is increasing or decreasing;
- strictly monotonic (or strictly monotone) if it is strictly increasing or strictly decreasing.

Remark 2.6 Every increasing sequence is bounded below. Similarly, every decreasing sequence is bounded above.

Definition 2.7 We say that a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ has a limit $(in \overline{\mathbb{R}})$ if there exists $\ell \in \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty; +\infty\}$ such that

$$\forall V \in \mathcal{V}(\ell), \ \exists n_V \in \mathbb{N} \ s.t. \ x_n \in V, \ \forall n \in \mathbb{N}, \ n \ge n_V.$$
 (2.1)

Remark 2.8 For any $\ell_1, \ell_2 \in \overline{\mathbb{R}}$, $\ell_1 \neq \ell_2$, there exist $V_1 \in \mathcal{V}(\ell_1)$ and $V_2 \in \mathcal{V}(\ell_2)$ s.t. $V_1 \cap V_2 = \emptyset$. Hence, whenever $(x_n)_{n \in \mathbb{N}}$ has a limit, there is a unique $\ell \in \overline{\mathbb{R}}$ satisfying (2.1).

Definition 2.9 If a sequence $(x_n)_{n\in\mathbb{N}}$ has a limit, then the unique $\ell\in\overline{\mathbb{R}}$ that satisfies (2.1) is called the limit of the sequence $(x_n)_{n\in\mathbb{N}}$. In this case we denote $\lim_{n\to\infty}x_n:=\ell$ or $x_n\to\ell$ and we say that $(x_n)_{n\in\mathbb{N}}$ tends to ℓ .

Proposition 2.10 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers that has a limit. We have

$$\lim_{n \to \infty} x_n = \ell \in \mathbb{R} \iff \forall \varepsilon > 0, \ \exists \ n_{\varepsilon} \in \mathbb{N} \ s.t. \ |x_n - \ell| < \varepsilon, \ \forall \ n \in \mathbb{N}, \ n \ge n_{\varepsilon};$$

$$\lim_{n \to \infty} x_n = -\infty \iff \forall \ a \in \mathbb{R}, \ \exists \ n_a \in \mathbb{N} \ s.t. \ x_n < a, \ \forall \ n \in \mathbb{N}, \ n \ge n_a;$$

$$\lim_{n \to \infty} x_n = +\infty \iff \forall \ a \in \mathbb{R}, \ \exists \ n_a \in \mathbb{N} \ s.t. \ x_n > a, \ \forall \ n \in \mathbb{N}, \ n \ge n_a.$$

Definition 2.11 A sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ is said to be

- convergent, if it has a finite limit, i.e., $\lim_{n\to\infty} x_n \in \mathbb{R}$; in this case we say that $(x_n)_{n\in\mathbb{N}}$ converges to the real number $\lim x_n$;
- divergent, if it is not convergent.

Proposition 2.12 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers and let $\ell\in\mathbb{R}$. The following assertions are equivalent:

- 1° The sequence $(x_n)_{n\in\mathbb{N}}$ converges to ℓ , i.e., $\lim_{n\to\infty} x_n = \ell$.
- 2° The sequence $(|x_n \ell|)_{n \in \mathbb{N}}$ converges to zero, i.e., $\lim_{n \to \infty} |x_n \ell| = 0$.
- 3° There exists a sequence $(a_n)_{n\in\mathbb{N}}$ of nonnegative real numbers satisfying the following two conditions:
 - (i) $|x_n \ell| \le a_n \text{ for all } n \in \mathbb{N};$
 - (ii) $(a_n)_{n\in\mathbb{N}}$ converges to zero, i.e., $\lim_{n\to\infty} a_n = 0$.

Corollary 2.13 Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences of real numbers. If $(a_n)_{n\in\mathbb{N}}$ is bounded and $\lim_{n\to\infty}b_n=0$, then $\lim_{n\to\infty}(a_n\cdot b_n)=0$.

Proposition 2.14 Let $(x_n), (y_n)$ be sequences in \mathbb{R} such that $\forall n \in \mathbb{N}, x_n \leq y_n$.

- (i) If (x_n) and (y_n) converge, then $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$.
- (ii) If $\lim_{n\to\infty} x_n = +\infty$, then $\lim_{n\to\infty} y_n = +\infty$.
- (iii) If $\lim_{n \to \infty} y_n = -\infty$, then $\lim_{n \to \infty} x_n = -\infty$.

Theorem 2.15 (Squeeze Theorem) Let $(x_n), (y_n), (z_n)$ be sequences in \mathbb{R} such that

$$x_n \le y_n \le z_n, \ \forall n \in \mathbb{N}.$$

Suppose that (x_n) and (z_n) are convergent and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \ell \in \mathbb{R}$. Then (y_n) is also convergent and $\lim_{n\to\infty} y_n = \ell$.

Corollary 2.16 (Cantor's Theorem on Nested Intervals) Consider a nested sequence of compact intervals, i.e.,

$$I_n := [a_n, b_n] \subseteq \mathbb{R}, \quad s.t. \quad a_n \le a_{n+1} < b_{n+1} \le b_n, \ \forall n \in \mathbb{N}.$$

If
$$\lim_{n\to\infty} (b_n - a_n) = 0$$
, then there exists $x \in \mathbb{R}$ such that $\bigcap_{n=1}^{\infty} I_n = \{x\}$.

Proposition 2.17 Every convergent sequence of real numbers is bounded.

Notice that there are bounded sequences that are not convergent.

Theorem 2.18 (Counterpart of the Weierstrass' Theorem) Let $(x_n)_{n\in\mathbb{N}}$ be a monotonic (i.e., increasing or decreasing) sequence of real numbers. The following assertions hold:

- $1^{\circ} (x_n)_{n \in \mathbb{N}}$ has a limit in \mathbb{R} .
- 2° If $(x_n)_{n\in\mathbb{N}}$ is increasing, then $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, hence
- (x_n) is convergent if and only if it is bounded above.
 - 2° If $(x_n)_{n\in\mathbb{N}}$ is decreasing, then $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n$, hence
- (x_n) is convergent if and only if it is bounded below.

$$y_n = c_{n,1}x_1 + c_{n,2}x_2 + \dots + c_{n,n}x_n, \ \forall n \in \mathbb{N}$$

Theorem 2.20 (Stolz-Cesàro) Let $(a_n), (b_n)$ be sequences in \mathbb{R} such that

- (i) (b_n) is strictly increasing and $\lim_{n\to\infty} b_n = +\infty$,
- (ii) $\lim_{n \to \infty} \frac{a_{n+1} a_n}{b_{n+1} b_n} = L \in \overline{\mathbb{R}}.$

Then
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
.

$$x_n := \frac{a_n - a_{n-1}}{b_n - b_{n-1}}, \ \forall n \in \mathbb{N} \quad \text{ and } \quad c_{n,k} := \frac{b_k - b_{k-1}}{b_n}, \ \forall k \in \{1, 2, ..., n\}.$$

Corollary 2.21 Let (x_n) be a sequence in \mathbb{R} . The following assertions hold:

1° If
$$\lim_{n\to\infty} x_n = \ell \in \overline{\mathbb{R}}$$
, then $\lim_{n\to\infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = \ell$.

- 2° If $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \ell \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = \ell$. 3° If $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} \sqrt[n]{x_n} = L$.

Definition 2.22 Let $(x_n)_{n\in\mathbb{N}}$ be a sequences of real numbers. A sequence $(y_k)_{k\in\mathbb{N}}$ is said to be a subsequence of $(x_n)_{n\in\mathbb{N}}$ if there exists a strictly increasing sequence $(n_k)_{k\in\mathbb{N}}$ of natural numbers (i.e., $n_k \in \mathbb{N}$ and $n_k < n_{k+1}$ for all $k \in \mathbb{N}$) such that

$$y_k = x_{n_k}, \ \forall k \in \mathbb{N}.$$

Proposition 2.23 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} that has a limit $x=\lim_{n\to\infty}x_n\in\overline{\mathbb{R}}$. Then any subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ has the same limit, i.e., $\lim_{k\to\infty}x_{n_k}=x$.

Theorem 2.24 (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.

Theorem 2.25 (Cauchy's criterion for convergence of sequences) For any sequence $(x_n)_{n\in\mathbb{N}}$ the following assertions are equivalent:

- $1^{\circ} (x_n)_{n \in \mathbb{N}}$ is convergent.
- 2° For every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, with $m \geq n_{\varepsilon}$ and $n \geq n_{\varepsilon}$, we have $|x_m x_n| < \varepsilon$.
- 3° For every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for any $n \in \mathbb{N}$ with $n \geq n_{\varepsilon}$ and any $p \in \mathbb{N}$ we have $|x_{n+p} x_n| < \varepsilon$.

Corollary 2.26 (Sufficient condition for convergence of sequences) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Assume that there is a sequence $(a_n)_{n\in\mathbb{N}}$ of nonnegative real numbers satisfying the following two conditions:

- $1^{\circ} |x_{n+p} x_n| \leq a_n \text{ for all } n, p \in \mathbb{N};$
- $2^{\circ} (a_n)_{n \in \mathbb{N}}$ converges to zero, i.e., $\lim_{n \to \infty} a_n = 0$.

Then the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent.

Limit Laws

$$x + \infty = \infty + x = \infty, \ \forall x \in \mathbb{R},$$

$$x + (-\infty) = (-\infty) + x = -\infty, \ \forall x \in \mathbb{R},$$

$$\infty + \infty = \infty, \ (-\infty) + (-\infty) = -\infty,$$

$$x \cdot \infty = \infty \cdot x = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ -\infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, & \text{if } x \in (0, \infty) \\ \infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty \cdot \infty = \infty, \quad (-\infty) \cdot (-\infty) = \infty, \quad \infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty,$$

$$\frac{x}{\infty} = \frac{x}{-\infty} = 0, \ \forall x \in \mathbb{R},$$

$$\frac{1}{0+} = \infty, \quad \frac{1}{0-} = -\infty,$$

$$x^{\infty} = \begin{cases} \infty, & \text{if } x \in (1, \infty) \\ 0, & \text{if } x \in (0, 1), \end{cases}$$

$$x^{-\infty} = \begin{cases} 0, & \text{if } x \in (1, \infty) \\ \infty, & \text{if } x \in (0, 1), \end{cases}$$

$$(\infty)^{x} = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ 0, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty^{\infty} = \infty, \quad \infty^{-\infty} = 0.$$

The following limits are undefined

$$\infty + (-\infty), \quad (-\infty) + \infty,
0 \cdot \infty, \quad \infty \cdot 0, \quad 0 \cdot (-\infty), \quad (-\infty) \cdot 0,
\frac{\infty}{\infty}, \quad \frac{-\infty}{-\infty}, \quad \frac{\infty}{-\infty}, \quad \frac{-\infty}{\infty},
1^{\infty}, \quad 0^{0}, \quad \infty^{0}, \quad 1^{-\infty}.$$

LECTURE

3

SERIES OF REAL NUMBERS. SERIES WITH NONNEGATIVE TERMS (I)

Definition 3.1 To any given sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers we attach another sequence, $(s_n)_{n\in\mathbb{N}}$, defined for all $n\in\mathbb{N}$ by

$$s_n := x_1 + x_2 + \ldots + x_n = \sum_{k=1}^n x_k$$
.

The couple $((x_n)_{n\in\mathbb{N}}, (s_n)_{n\in\mathbb{N}})$ is called series and it is denoted by

$$\sum_{n\geq 1} x_n.$$

For any $n \in \mathbb{N}$, the number s_n is called the partial sum of the series up to rank n. If the sequence $(s_n)_{n\in\mathbb{N}}$ of partial sums converges (resp. diverges), we say that the series $\sum_{n\geq 1} x_n$ is convergent (resp. divergent). If the sequence $(s_n)_{n\in\mathbb{N}}$ of partial sums has a limit we say that the series has a sum; in this case, the sum of the series is denoted by

$$\sum_{n=1}^{\infty} x_n := \lim_{n \to \infty} s_n .$$

Remark 3.2 If $(x_n)_{n\geq m}$ is a sequence of real numbers (where $m\in\mathbb{Z}$), then we consider a series of type

$$\sum_{n\geq m} x_n.$$

It is easy to check that, for any $p \in \mathbb{N}$, the series $\sum_{n \geq m} x_n$ has a sum (in $\overline{\mathbb{R}}$) if and only if the series

 $\sum_{n\geq m+p} x_n \text{ has a sum (in } \overline{\mathbb{R}}) \text{ and, in this case, we have}$

$$\sum_{n=m}^{\infty} x_n = x_m + x_{m+1} + \dots + x_{m+p-1} + \sum_{n=m+p}^{\infty} x_n.$$

Example 3.3 (The geometric series) For any number $q \in \mathbb{R}$, consider the so-called geometric series

$$\sum_{n\geq 0} q^n$$

where, by convention, $q^0 = 1$ even if q = 0. We distinguish three cases:

- If $q \in (-\infty, -1]$, then the geometric series has no sum, hence it is divergent;
- If $q \in (-1,1)$, i.e., |q| < 1, then the geometric series is convergent and has the sum

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q};$$

• If $q \in [1, \infty)$, then the geometric series has the sum $\sum_{n=0}^{\infty} q^n = +\infty$, hence it is divergent.

Indeed, the sequence of partial sums of the geometric series is given by

$$s_n := 1 + q + \ldots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & \text{if } q \neq 1, \\ n + 1, & \text{if } q = 1. \end{cases}$$

Therefore, if |q| < 1, then $\lim_{n \to \infty} s_n = \frac{1}{1-q}$. If $q \le -1$, the sequence (s_n) has no limit, hence it diverges. Finally, when $q \ge 1$, the sequence (s_n) diverges while $\lim_{n \to \infty} s_n = +\infty$.

Example 3.4 (The harmonic series) The so-called harmonic series

$$\sum_{n \ge 1} \frac{1}{n}$$

is divergent and has the sum

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Indeed, denoting the partial sums by $s_n := 1 + \frac{1}{2} + \ldots + \frac{1}{n}, \ \forall n \in \mathbb{N}$, we have

$$s_{2^n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^n}\right)$$
$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^n} + \dots + \frac{1}{2^n}\right) = 1 + \frac{n}{2}$$

hence $\sup_{n \in \mathbb{N}} s_n \ge \sup_{n \in \mathbb{N}} s_{2^n} = +\infty$. On the other hand, we have $s_n < s_{n+1}$ for all $n \in \mathbb{N}$.

By Theorem 2.18 (Weierstrass), we infer that $\lim s_n = +\infty$.

Example 3.5 (Euler's number as a sum of a series) The series

$$\sum_{n\geq 0} \frac{1}{n!}$$

is convergent and its sum is the Euler's number, i.e.,

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

Indeed, let $s_n := 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$, $n \in \mathbb{N}$. Recall that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ (see Exercise 3 of Seminar 2). By Newton's Binomial Formula,

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot \dots \cdot 1}{n!} \cdot \frac{1}{n^n}
= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \le s_n.$$

Now, consider an arbitrary given $n \in \mathbb{N}^*$. Then, for any $m \geq n$, we have

$$\left(1 + \frac{1}{m}\right)^{m} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{m}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{m}\right) \left(1 - \frac{2}{m}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{m}\right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{m}\right) \left(1 - \frac{2}{m}\right) \cdot \dots \cdot \left(1 - \frac{m-1}{m}\right) \\
\geq 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{m}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{m}\right) \left(1 - \frac{2}{m}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{m}\right).$$

Letting $m \to \infty$, we have that $e \ge s_n$. Thus, $\forall n \in \mathbb{N}^*$, $\left(1 + \frac{1}{n}\right)^n \le s_n \le e$. Letting $n \to \infty$, we obtain that $\lim_{n \to \infty} s_n = e$, so $\sum_{n \ge 1} \frac{1}{n!}$ is convergent and $\sum_{n=1}^{\infty} \frac{1}{n!} = e$.

Example 3.6 (Telescoping series) Given a sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers, we say that

$$\sum_{n\geq 1} (x_n - x_{n+1})$$

is a telescoping series. This series is convergent if and only if the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent. More precisely, we have

$$\sum_{n=1}^{\infty} (x_n - x_{n+1}) = x_1 - \lim_{n \to \infty} x_n.$$

For instance, consider the series

$$\sum_{n\geq 1} \frac{1}{n(n+1)}.$$

It is easily seen that

$$\frac{1}{n(n+1)} = \frac{n+1-1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, \ \forall n \in \mathbb{N},$$

hence we have a telescopic series. Denoting its partial sums by

$$s_n := \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)}, \ n \in \mathbb{N},$$

it follows that $s_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$.

Thus, $\lim_{n\to\infty} s_n = 1$, so $\sum_{n\geq 1} \frac{1}{n(n+1)}$ is convergent and its sum is

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Proposition 3.7 Let $\sum_{n\geq 1} x_n$ and $\sum_{n\geq 1} y_n$ be convergent series and let $c\in \mathbb{R}$. Then, the following assertions hold:

a) The series $\sum_{n\geq 1} (x_n + y_n)$ is convergent and

$$\sum_{n=1}^{\infty} (x_n + y_n) = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n.$$

b) The series $\sum_{n\geq 1} (c x_n)$ is convergent and

$$\sum_{n=1}^{\infty} (c x_n) = c \sum_{n=1}^{\infty} x_n.$$

Proposition 3.8 (The n^{th} Term Test – necessary condition for convergence) If a series of real numbers $\sum_{n\geq 1} x_n$ converges, then its general term converges to zero, i.e., $\lim_{n\to\infty} x_n = 0$.

Remark 3.9 The condition $\lim_{n\to\infty} x_n = 0$ is not sufficient for the convergence of a series $\sum_{n\geq 1} x_n$. For instance, the harmonic series is divergent while its general term converges to zero (see Example 3.4).

Corollary 3.10 (Sufficient conditions for divergence of series) A series $\sum_{n\geq 1} x_n$ is divergent whenever

- (i) the sequence (x_n) is divergent or
 - (ii) the sequence (x_n) converges and $\lim_{n\to\infty} x_n \neq 0$.

Theorem 3.11 (Cauchy's Criterion for convergence of series) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. The following assertions are equivalent:

- 1° The series $\sum_{n\geq 1} x_n$ is convergent.
- 2° For every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $|x_{n+1} + x_{n+2} + \cdots + x_{n+p}| < \varepsilon$ for all $n \in \mathbb{N}$ with $n \geq n_{\varepsilon}$ and $p \in \mathbb{N}$.

Corollary 3.12 (Sufficient condition for convergence of series) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Assume that there is a sequence $(a_n)_{n\in\mathbb{N}}$ of nonnegative real numbers satisfying the following two conditions:

- 1° $|x_{n+1} + x_{n+2} + \dots + x_{n+p}| \le a_n \text{ for all } n, p \in \mathbb{N};$
- $2^{\circ} (a_n)_{n \in \mathbb{N}}$ converges to zero, i.e., $\lim_{n \to \infty} a_n = 0$.

Then the series $\sum_{n\geq 1} x_n$ is convergent.

Series with nonnegative terms (I)

Lemma 3.13 (Convergence of series vs boundedness of their partial sums) Let $\sum_{n\geq 1} x_n$ be a series with nonnegative terms (i.e., $x_n \geq 0$ for all $n \in \mathbb{N}$) and let $(s_n)_{n\in\mathbb{N}}$ be the sequence of its partial sums. Then the series $\sum_{n\geq 1} x_n$ has a sum in $\mathbb{R} \cup \{+\infty\}$, namely

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n = \sup_{n \in \mathbb{N}} s_n.$$

Moreover, the following assertions are equivalent:

- 1° The series $\sum_{n\geq 1} x_n$ converges.
- 2° The sequence $(s_n)_{n\in\mathbb{N}}$ is bounded.

Proof. For any $n \in \mathbb{N}$ we have $x_{n+1} \geq 0$, hence $s_{n+1} = s_n + x_{n+1} \geq s_n$. Therefore the sequence (s_n) is increasing. By Theorem 2.18 (Weierstrass) it follows that (s_n) has a limit in $\overline{\mathbb{R}}$. More precisely, (s_n) is convergent if and only if it is bounded.

Remark 3.14 If a series $\sum_{n\geq 1} x_n$ is convergent, then (in view of Propositions 2.17 and 3.8) the sequence (s_n) must be bounded, but this condition is not equivalent to the convergence of $\sum_{n\geq 1} x_n$. For instance, consider the series

$$\sum_{n>1} (-1)^n.$$

The sequence of partial sums of this series is given by

$$s_n = \begin{cases} -1, & \text{if } n \text{ is odd,} \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

Obviously, the sequence (s_n) is bounded, but does not converge (because it possesses two subsequences converging to different limits). Therefore the series $\sum_{n>1} (-1)^n$ is divergent.

Theorem 3.15 (Cauchy's Condensation Criterion) Let $\sum_{n\geq 1} x_n$ be a series with nonnegative terms.

If the sequence $(x_n)_{n\in\mathbb{N}}$ is decreasing, then the following assertions are equivalent:

- 1° The given series, $\sum_{n>1} x_n$, converges.
- 2° The series $\sum_{n>0} 2^n \cdot x_{2^n}$ converges.

Example 3.16 (The generalized harmonic series) For every number $p \in \mathbb{R}$ consider the so-called generalized harmonic series

 $\sum_{n\geq 1} \frac{1}{n^p} \, .$

This series is convergent if and only if p > 1.

Indeed, denote $x_n := \frac{1}{n^p}$ for all $n \in \mathbb{N}$. If $p \leq 0$, then we clearly have $\lim_{n \to \infty} x_n \neq 0$, hence the series $\sum_{n \geq 1} x_n$ diverges according to Corollary 3.10. Assume now that p > 0. Then the sequence (x_n) is decreasing and has positive terms. In this case, according to Cauchy's condensation criterion, the series $\sum_{n \geq 1} x_n$ converges if and only if the series $\sum_{n \geq 0} 2^n \cdot x_{2^n}$ converges. The latter series actually

is a geometric series, since for every $n \in \mathbb{N} \cup \{0\}$ we have $2^n \cdot x_{2^n} = 2^n \cdot \frac{1}{2^{np}} = (2^{1-p})^n$. In view of Example 3.3 we deduce that the series $\sum_{n\geq 1} x_n$ converges if and only if $2^{1-p} < 1$, i.e., p > 1.

Remark 3.17 For p = 1 we recover the classical harmonic series (see Example 3.4), which is divergent and has the sum

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Actually, the generalized harmonic series has a sum in $\overline{\mathbb{R}}$ for every $p \in \mathbb{R}$. More precisely, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = +\infty \text{ if } p \in (-\infty, 1] \quad and \quad \sum_{n=1}^{\infty} \frac{1}{n^p} =: \zeta(p) \in (1, +\infty) \text{ if } p \in (1, +\infty)$$

where $\zeta:(1,\infty)\to(1,+\infty)$ represents the Riemann zeta function. Notice that ζ is strictly decreasing. In particular, for $p\in\{2,3,4\}$ we have

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \approx 1.645, \ \sum_{n=1}^{\infty} \frac{1}{n^3} \approx 1.202 \ (\textit{Ap\'ery's constant}), \ \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} \approx 1.082 \ .$$

Theorem 3.18 (Comparison Test) Let $\sum_{n\geq 1} x_n$ and $\sum_{n\geq 1} y_n$ be series with nonnegative terms. If there is $n_0 \in \mathbb{N}$ s.t.

$$x_n \leq y_n \text{ for all } n \geq n_0,$$

then the following assertions hold:

- (i) If $\sum_{n\geq 1}^{\infty} y_n$ is convergent, then $\sum_{n\geq 1} x_n$ is convergent. (ii) If $\sum_{n\geq 1} x_n$ is divergent, then $\sum_{n\geq 1} y_n$ is divergent.

$$s_n := x_1 + x_2 + \ldots + x_n$$
 and $\tilde{s}_n := y_1 + y_2 + \ldots + y_n, \ \forall n \in \mathbb{N}.$

Corollary 3.19 (Comparison Test in practical form) Let $\sum x_n$ be a series with nonnegative

terms and let $\sum y_n$ be a series with positive terms, such that the following limit exists:

$$\ell := \lim_{n \to \infty} \frac{x_n}{y_n} \in [0, +\infty) \cup \{+\infty\}.$$

The following assertions hold:

 1° If $\ell \in (0,+\infty)$, then the series $\sum_{n\geq 1} x_n$ and $\sum_{n\geq 1} y_n$ have the same nature, i.e., they are both convergent or both divergent.

 2° If $\ell = 0$, then

- a) If $\sum_{n>1} y_n$ converges, then $\sum_{n>1} x_n$ converges.
- b) If $\sum_{n=1}^{\infty} x_n$ diverges, then $\sum_{n=1}^{\infty} y_n$ diverges.

- 3° If $\ell = +\infty$, then
 a) If $\sum_{n=1}^{\infty} x_n$ converges, then $\sum_{n\geq 1} y_n$ converges.
 - b) If $\sum_{n=1}^{\infty} y_n$ diverges, then $\sum_{n=1}^{\infty} x_n$ diverges.

Example 3.20 Let $\sum_{n\geq 1} x_n$ be a series with positive terms and let $p \in \mathbb{R}$. Assume that the following limit exists

$$\ell := \lim_{n \to \infty} (n^p \cdot x_n) \in [0, \infty) \cup \{+\infty\}.$$

Applying the Comparison Test in practical form (Corollary 3.19) for the given series and the generalized harmonic series $\sum_{n\geq 1} y_n := \sum_{n\geq 1} \frac{1}{n^p}$, we deduce that (see Exercise 3.16): 1° If $0 \leq \ell < \infty$ and p > 1, then $\sum_{n\geq 1} x_n$ is convergent. 2° If $0 < \ell \leq \infty$ and $p \leq 1$, then $\sum_{n\geq 1} x_n$ is divergent.

Corollary 3.21 Let $\sum_{n\geq 1} x_n$ and $\sum_{n\geq 1} y_n$ be series with positive terms. If there is $n_0 \in \mathbb{N}$ s.t.

$$\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n} \text{ for all } n \ge n_0,$$

then the following assertions hold:

a) If $\sum y_n$ converges, then $\sum x_n$ converges.

b) If
$$\sum_{n>1}^{\infty} x_n$$
 diverges, then $\sum_{n>1}^{\infty} y_n$ diverges.

Example 3.22 The following series is divergent:

$$\sum_{n>1} (2-\sqrt{e}) \cdot (2-\sqrt[3]{e}) \cdot \dots \cdot (2-\sqrt[n]{e}).$$

Indeed, letting $y_n := (2 - \sqrt{e}) \cdot (2 - \sqrt[3]{e}) \cdot \ldots \cdot (2 - \sqrt[n]{e})$ and taking into account that $e < \left(1 + \frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$ (see Exercise 3 of Seminar 2), we infer

$$\frac{y_{n+1}}{y_n} = 2 - \sqrt[n+1]{e} > 1 - \frac{1}{n} = \frac{n-1}{n} = \frac{y_{n+1}}{y_n}$$

where $y_n := \frac{1}{n-1}$ for all $n \geq 2$. Since the harmonic series $\sum_{n \geq 0} y_n$ diverges, we deduce by Corollary 3.21 that the given series diverges, too.

Theorem 3.23 (d'Alembert's Ratio Test) Let $\sum_{n>1} x_n$ be a series with positive terms. Thefollowing assertions hold:

1° If $\exists q \in (0,1), \exists n_0 \in \mathbb{N} \text{ s.t. } \frac{x_{n+1}}{x_n} \leq q, \ \forall n \geq n_0, \text{ then } \sum_{n \geq 1} x_n \text{ is convergent.}$

2° If $\exists n_0 \in \mathbb{N} \text{ s.t. } \frac{x_{n+1}}{r} \geq 1, \ \forall n \geq n_0, \text{, then } \sum_{n \geq 1} x_n \text{ is divergent.}$

 3° If the following limit exists

$$D := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \in [0, +\infty) \cup \{+\infty\},$$

- a) If D < 1, then $\sum_{n \geq 1} x_n$ is convergent. b) If D > 1, then $\sum_{n \geq 1} x_n$ is divergent.

Example 3.24 The series $\sum_{n \in \mathbb{N}} \frac{(n!)^2}{(2n)!}$ is convergent. Indeed, since

$$D := \lim_{n \to \infty} \frac{[(n+1)!]^2}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2} = \lim_{n \to \infty} \frac{n+1}{2(2n+1)} = \frac{1}{4} < 1,$$

it follows by de Ratio Test (Theorem 3.23) that the given series is convergent.

Theorem 3.25 (Cauchy's Root Test) Let $\sum_{n\geq 1} x_n$ be a series with nonnegative terms.

- 1° If $\exists q \in [0,1), \exists n_0 \in \mathbb{N} \text{ s.t. } \sqrt[n]{x_n} \leq q, \ \forall n \geq n_0, \text{ then } \sum_{n \geq 1} x_n \text{ is convergent.}$
- 2° If $\exists n_0 \in \mathbb{N}$ s.t. $\sqrt[n]{x_n} \ge 1$, $\forall n \ge n_0$, then $\sum_{n \ge 1} x_n$ is divergent.
- 3° If the following limit exists

$$C = \lim_{n \to \infty} \sqrt[n]{x_n} \in [0, +\infty) \cup \{+\infty\},$$

then we have

- a) If C < 1, then $\sum_{n \geq 1} x_n$ is convergent. b) If C > 1, then $\sum_{n \geq 1} x_n$ is divergent.

Example 3.26 The series $\sum_{n\geq 1} \frac{n^p}{2^n}$ is convergent for every $p\in\mathbb{R}$. Indeed, since

$$C := \lim_{n \to \infty} \sqrt[n]{\frac{n^p}{2^n}} = \lim_{n \to \infty} \frac{(\sqrt[n]{n})^p}{2} = \frac{1}{2} < 1,$$

it follows by de Root Test (Theorem 3.25) that the given series is convergent.

LECTURE

4

SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

Series with nonnegative terms (II)

Theorem 4.1 (Kummer's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms.

1° If $\exists (c_n)_{n\in\mathbb{N}}$ in $(0,+\infty)$, $\exists r>0$ and $\exists n_0\in\mathbb{N}$, such that

$$c_n \frac{x_n}{x_{n+1}} - c_{n+1} \ge r, \ \forall n \in \mathbb{N}, \ n \ge n_0,$$

then the series $\sum_{n\geq 1} x_n$ is divergent.

 2° If $\exists (c_n)_{n\in\mathbb{N}}$ in $(0,+\infty)$ and $\exists n_0 \in \mathbb{N}$, such that

$$\sum_{n=1}^{n} \frac{1}{c_n} = +\infty \quad and \quad c_n \frac{x_n}{x_{n+1}} - c_{n+1} \le 0, \ \forall n \in \mathbb{N}, \ n \ge n_0,$$

then the series $\sum_{n\geq 1} x_n$ is divergent.

Proof. 1° Since $c_n x_n - c_{n+1} x_{n+1} \ge r x_{n+1}$, $\forall n \ge n_0$, it follows that for any $n \ge n_0 + 1$,

$$\sum_{k=n_0}^{n-1} (c_k x_k - c_{k+1} x_{k+1}) \ge r \sum_{k=n_0}^{n-1} x_{k+1}.$$

Denoting $s_n := x_1 + \ldots + x_n$, we deduce that $c_{n_0} x_{n_0} - c_n x_n \ge r (s_n - s_{n_0})$ and therefore

$$s_n \le s_{n_0} + \frac{1}{r} (c_{n_0} x_{n_0} - c_n x_n) \le s_{n_0} + \frac{c_{n_0} x_{n_0}}{r}.$$

Hence, the sequence of partial sums (s_n) is bounded, which means that the series $\sum_{n\geq 1} x_n$ is convergent

2° Since $c_n x_n < c_{n+1} x_{n+1}$, $\forall n > n_0$, we have $c_{n_0} x_{n_0} < c_n x_n$, $\forall n > n_0$. This yields

$$\frac{1}{c_n} \le \frac{1}{c_{n_0} x_{n_0}} x_n, \ \forall \ n \ge n_0.$$

Since the series $\sum_{n\geq 1} \frac{1}{c_n}$ is divergent, we conclude that the series $\sum_{n\geq 1} x_n$ is divergent as well, according

Theorem 4.2 (Raabe-Duhamel's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms.

1° If
$$\exists q > 1$$
, $\exists n_0 \in \mathbb{N}$ such that $n\left(\frac{x_n}{x_{n+1}} - 1\right) \geq q$, $\forall n \geq n_0$, then $\sum_{n \geq 1} x_n$ is convergent.

$$2^{\circ}$$
 If $\exists n_0 \in \mathbb{N}$ such that $n\left(\frac{x_n}{x_{n+1}}-1\right) \leq 1$, $\forall n \geq n_0$, then $\sum_{n\geq 1} x_n$ is divergent.

3° If the following limit exists

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) \in \overline{\mathbb{R}},$$

then we have

- a) If R > 1, $\sum_{n > 1} x_n$ is convergent.
- b) If R < 1, $\sum_{n>1} x_n$ is divergent.

Proof. Follows from Kummer's Test (Theorem 4.1) for $c_n := n$ for all $n \in \mathbb{N}$

Example 4.3 For any a > 0 consider the series

$$\sum_{n\geq 1} \frac{n!}{a(a+1)\cdot\ldots\cdot(a+n)}.$$

This series is convergent for a > 1 and divergent for $a \in (0,1]$.

Indeed, denoting $x_n := \frac{n!}{a(a+1) \cdot \ldots \cdot (a+n)}$, we have

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{a(a+1)\cdot\ldots\cdot(a+n+1)} \cdot \frac{a(a+1)\cdot\ldots\cdot(a+n)}{n!} = \frac{n+1}{a+n+1}.$$

Note that $D := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$, hence the Ratio Test is inconclusive. However,

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{a+n+1}{n+1} - 1 \right) = \lim_{n \to \infty} n \frac{a}{n+1} = a,$$

which allows us to conclude, by Raabe-Duhamel's Test, that the given series is convergent if a > 1 and divergent if $a \in (0,1)$.

Finally, for a = 1 the given series becomes $\sum_{n \ge 1} \frac{1}{n+1}$, which is divergent.

Theorem 4.4 (Bertrand's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms. If the following limits exists

$$B := \lim_{n \to \infty} (\ln n) \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right] \in \overline{\mathbb{R}},$$

then we have

a) If B > 1, then $\sum x_n$ is convergent.

b) If
$$B < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Proof. Follows from Kummer's Test (Theorem 4.1) for $c_n := n \cdot \ln n, n \in \mathbb{N}, n \geq 2$.

Example 4.5 The series
$$\sum_{n\geq 1} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2$$
 is divergent.

Indeed, denoting
$$x_n := \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 = \left[\frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot (2n)} \right]^2$$
 we have

$$\frac{x_{n+1}}{x_n} = \left(\frac{2n+1}{2n+2}\right)^2$$
 for all $n \in \mathbb{N}$. It is a simple exercise to check that

$$D := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1;$$

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left[\left(\frac{2n+2}{2n+1} \right)^2 - 1 \right] = \lim_{n \to \infty} \frac{4n^2 + 3n}{4n^2 + 4n + 1} = 1,$$

hence both the Ratio Test and the Raabe-Duhamel's Test are inconclusive.

On the other hand, we have

$$B := \lim_{n \to \infty} (\ln n) \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right] = \lim_{n \to \infty} (\ln n) \left(\frac{4n^2 + 3n}{4n^2 + 4n + 1} - 1 \right) = 0 < 1.$$

We conclude by Bertrand's Test that the given series is divergent.

Series with arbitrary terms

Theorem 4.6 (Abel-Dirichlet's Test) Let $\sum_{n\geq 1} x_n$ be a series of real numbers. Assume that there exist two sequences of real numbers, $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$, satisfying the following three conditions:

(i) $x_n = a_n \cdot b_n, \ \forall n \in \mathbb{N}.$

(ii) $\exists M > 0 \text{ s.t. } -M \leq A_n := a_1 + \dots + a_n \leq M, \ \forall n \in \mathbb{N}, \text{ i.e., the sequence } (A_n)_{n \in \mathbb{N}} \text{ is bounded.}$

(iii) The sequence $(b_n)_{n\in\mathbb{N}}$ is monotone and convergent to 0.

Then the series $\sum_{n>1} x_n$ is convergent.

Proof. Without loss of generality we can assume in (iii) that (b_n) is decreasing. We will prove that $\sum_{n\geq 1} x_n$ converges by using Cauchy's Criterion (Theorem 3.11)To this aim, consider an arbitrary $\varepsilon > 0$.

On the one hand, by (i), (ii) and the assumption that (b_n) is decreasing, we have

$$|x_{n+1} + x_{n+2} + \dots + x_{n+p}|$$

 $= |a_{n+1}b_{n+1} + a_{n+2}b_{n+2} + \dots + a_{n+p}b_{n+p}|$

$$= |(A_{n+1} - A_n) b_{n+1} + (A_{n+2} - A_{n+1}) b_{n+2} + \dots + (A_{n+p} - A_{n+p-1}) b_{n+p}|$$

$$= |-A_n b_{n+1} + A_{n+1} (b_{n+1} - b_{n+2}) + \dots + A_{n+p-1} (b_{n+p-1} - b_{n+p}) + A_{n+p} b_{n+p}|$$

$$\leq |-A_n| \cdot |b_{n+1}| + |A_{n+1}| \cdot |b_{n+1} - b_{n+2}| + \dots + |A_{n+p-1}| \cdot |b_{n+p-1} - b_{n+p}| + |A_{n+p}| \cdot |b_{n+p-1}| + |A_{n+p-1}| + |$$

$$= |A_n| \cdot b_{n+1} + |A_{n+1}| \cdot (b_{n+1} - b_{n+2}) + \dots + |A_{n+p-1}| \cdot (b_{n+p-1} - b_{n+p}) + |A_{n+p}| \cdot b_{n+p}$$

$$\leq M \left[b_{n+1} + (b_{n+1} - b_{n+2}) + (b_{n+2} - b_{n+3}) + \dots + (b_{n+p-1} - b_{n+p}) + b_{n+p} \right]$$

 $= 2Mb_{n+1}, \ \forall n, p \in \mathbb{N}.$

On the other hand, since $\lim_{n\to\infty} b_n = 0$ by (iii), there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$|b_n| < \frac{\varepsilon}{2M}, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}.$$

We conclude that $|x_{n+1} + x_{n+2} + \cdots + x_{n+p}| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}.$

Definition 4.7 A series $\sum_{n\geq 1} x_n$ is called alternating if either

$$x_1 \ge 0, x_2 \le 0, x_3 \ge 0, \dots (i.e., x_n = (-1)^{n+1} |x_n| \text{ for all } n \in \mathbb{N})$$

or

$$x_1 \le 0, x_2 \ge 0, x_3 \le 0, \dots (i.e., x_n = (-1)^n |x_n| \text{ for all } n \in \mathbb{N}).$$

Theorem 4.8 (Leibniz's Criterion for Alternating Series) Consider an alternating series $\sum_{n\geq 1} x_n$.

If the sequence $(|x_n|)_{n\in\mathbb{N}}$ is decreasing, then the following assertions are equivalent:

- 1° The series $\sum_{n\geq 1} x_n$ is convergent.
- 2° The sequence $(x_n)_{n\in\mathbb{N}}$ converges to 0.

Proof. Assume that $x_n = (-1)^{n+1}|x_n|$ for all $n \in \mathbb{N}$. Then the conclusion follows by Abel-Dirichlet's Test for $a_n := (-1)^{n+1}$ and $b_n := |x_n|$.

Definition 4.9 A series of real numbers $\sum_{n\geq 1} x_n$ is called absolutely convergent if the series $\sum_{n\geq 1} |x_n|$ is convergent.

Theorem 4.10 If a series of real numbers $\sum_{n\geq 1} x_n$ is absolutely convergent, then it is also convergent.

Proof. Let $\varepsilon > 0$. Since $\sum_{n \ge 1} |x_n|$ is convergent, there exists in view of the Cauchy's Criterion (Theorem

3.11) a number $n_{\varepsilon} \in \mathbb{N}$ such that

$$||x_{n+1}| + \dots + |x_{n+p}|| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}.$$

Noting that $|x_{n+1} + \dots + x_{n+p}| \le |x_{n+1}| + \dots + |x_{n+p}| = ||x_{n+1}| + \dots + |x_{n+p}||$, we infer

$$|x_{n+1} + \dots + x_{n+p}| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}.$$

By Cauchy's Criterion (Theorem 3.11)we conclude that $\sum_{n\geq 1} x_n$ is convergent

Definition 4.11 A series of real numbers $\sum_{n\geq 1} x_n$ is called semi-convergent (or conditionally convergent) if it is convergent but not absolutely convergent.

Remark 4.12 A series $\sum_{n\geq 1} x_n$ with nonnegative terms is absolutely convergent if and only if it is convergent.

Example 4.13 (The alternating generalized harmonic series) Let $p \in \mathbb{R}$. The so-called alternating generalized harmonic series

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^p}$$

is divergent for $p \in (-\infty, 0]$, semi-convergent for $p \in (0, 1]$ and absolutely convergent for $p \in (1, \infty)$. In particular, for p = 1 we get the alternating harmonic series, whose sum is

$$\sum_{n>1} \frac{(-1)^{n+1}}{n} = \ln 2.$$

Example 4.14 The series $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\sqrt{n}}$ is absolutely convergent.

Example 4.15 The series $\sum_{n\geq 1} (-1)^{n+1} \sin \frac{1}{n}$ is semi-convergent.

Example 4.16 The series $\sum_{n\geq 1} (-1)^{n+1} \frac{n}{n+1}$ is divergent.

Example 4.17 The series $\sum_{n\geq 1} \cos(n\pi)$ is divergent.

Theorem 4.18 (Cauchy) If a series $\sum_{n\geq 1} x_n$ is absolutely convergent, then for any bijection (permutation

 $\sigma: \mathbb{N} \to \mathbb{N}$ the series $\sum_{n\geq 1} x_{\sigma(n)}$ is absolutely convergent and its sum coincides with the sum of the

initial series, i.e.,
$$\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n=1}^{\infty} x_n.$$

Theorem 4.19 (Riemann) If a series $\sum_{n\geq 1} x_n$ is semi-convergent, then for every $s\in \overline{\mathbb{R}}$ there exists

a bijection $\sigma: \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} x_{\sigma(n)} = s$.

Example 4.20 Consider the alternating harmonic series (see Example 4.13), whose sum is

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots = \ln 2.$$

If we permute its terms by alternating p := 2 positive terms followed by q := 3 negative terms we obtain

$$1 + \frac{1}{3} - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} + \frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \frac{1}{10} - \frac{1}{12} + \dots = \sqrt{\frac{p}{q}} \ln 2$$

Indeed, consider the Euler's constant $\gamma:=\lim_{n\to\infty}\gamma_n$ (see Exercise 2 of Seminar 3), where $\gamma_n:=\frac{1}{n}+\ldots+\frac{1}{n}-\ln n$ for all $n\in\mathbb{N}$.

Denote by $(s_n)_{n\in\mathbb{N}}$ the sequence of partial sums of the permuted series. Then, for any $k\in\mathbb{N}$, we have

$$s_{5k} = \left(1 + \frac{1}{3} - \frac{1}{2} - \frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \frac{1}{10} - \frac{1}{12}\right) + \dots +$$

$$+ \left(\frac{1}{4k - 3} + \frac{1}{4k - 1} - \frac{1}{6k - 4} - \frac{1}{6k - 2} - \frac{1}{6k}\right)$$

$$= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{4k} - \ln 4k\right) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2k} - \ln 2k\right) -$$

$$- \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{3k} - \ln 3k\right) + \ln 4k - \frac{1}{2}\ln 2k - \frac{1}{2}\ln 3k$$

$$= \gamma_{4k} - \frac{1}{2}\gamma_{2k} - \frac{1}{2}\gamma_{3k} + \ln \frac{4k}{\sqrt{6k}},$$

hence

$$\lim_{k \to \infty} s_{5k} = \gamma - \frac{1}{2}\gamma - \frac{1}{2}\gamma + \ln \frac{4}{\sqrt{6}} = \sqrt{\frac{2}{3}} \ln 2.$$

On the other hand, we also have

$$\begin{split} s_{5k+1} &= s_{5k} + \frac{1}{4k+1}, \\ s_{5k+2} &= s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3}, \\ s_{5k+3} &= s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3} - \frac{1}{6k+2}, \\ s_{5k+4} &= s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3} - \frac{1}{6k+2} - \frac{1}{6k+4}, \end{split}$$

which show that $\lim_{k \to \infty} s_{5k} = \lim_{k \to \infty} s_{5k+1} = \lim_{k \to \infty} s_{5k+2} = \lim_{k \to \infty} s_{5k+3} = \lim_{k \to \infty} s_{5k+4}$.

We conclude that

$$\lim_{n \to \infty} s_n = \sqrt{\frac{2}{3}} \ln 2.$$