Soit n un entier supérieur ou égal à 1. $M_n(\mathbb{R})$ (resp. $M_n(\mathbb{C})$) désigne l'algèbre des matrices carrées à n lignes et n colonnes à coefficients dans \mathbb{R} (resp. \mathbb{C}). I_n désigne la matrice identité.

On rappelle que $M_n(\mathbb{C})$ est un \mathbb{C} -espace vectoriel normé muni de la norme

$$||(a_{ij})|| = \sup_{ij} |a_{ij}|.$$

Pour $p \geq 1$, $M_{n,p}(\mathbb{C})$ désigne le \mathbb{C} -espace vectoriel des matrices à coefficients complexes ayant n lignes et p colonnes. On identifiera $M_{n,1}(\mathbb{C})$ à \mathbb{C}^n . Pour $A \in M_{n,p}(\mathbb{C})$, tA désigne la matrice transposée de A, élément de $M_{p,n}(\mathbb{C})$.

 $GL_n(\mathbb{R})$ (resp. $GL_n(\mathbb{C})$) désigne le groupe des matrices inversibles de $M_n(\mathbb{R})$ (resp. $M_n(\mathbb{C})$).

 S_n désigne le sous-espace de $M_n(\mathbb{R})$ constitué des matrices symétriques réelles.

 S_n^+ désigne le sous-ensemble de S_n formé des matrices réelles symétriques à valeurs propres positives ou nulles.

 S_n^{++} est le sous-ensemble de S_n^+ formé des matrices symétriques réelles à valeurs propres strictement positives.

 $\mathbb{C}_n[X]$ (resp. $\mathbb{R}_n[X]$) est le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes (resp. le \mathbb{R} -espace vectoriel des polynômes à coefficients réels) de degré inférieur ou égal à n. On rappelle que $\mathbb{C}_n[X]$ est un espace vectoriel normé avec

$$\left|\left|\sum_{i=0}^{n} a_i X^i\right|\right| = \sup_{0 \le i \le n} \left|a_i\right| .$$

Pour A appartenant à $M_n(\mathbb{C})$, on désigne par χ_A le polynôme caractéristique de A: $\chi_A(X) = det(A - XI_n)$.

Pour A appartenant à $M_n(\mathbb{C})$, on désigne par $P_{m,A}$ le polynôme minimal de A. On rappelle que $P_{m,A}$ est le polynôme unitaire générateur de l'idéal I de $\mathbb{C}[X]$ défini par $I = \{P \in \mathbb{C}[X] \mid P(A) = 0\}$ et que $A \in M_n(\mathbb{C})$ est diagonalisable si et seulement si $P_{m,A}$ est à racines simples.

Pour $A \in M_n(\mathbb{C})$, on rappelle qu'il existe un couple unique $(D, N) \in (M_n(\mathbb{C}))^2$, où D est diagonalisable et N est nilpotente, vérifiant : DN = ND et A = D + N.

On rappelle que, si M appartient à $M_n(\mathbb{C})$, on note

$$exp(M) = \sum_{i=0}^{\infty} \frac{M^i}{i!},$$

et que si A et B appartiennent à $M_n(\mathbb{C})$ et vérifient AB = BA alors on a l'égalité : exp(A+B) = exp(A)exp(B).

Pour $A \in M_n(\mathbb{C})$, Spec(A) désigne l'ensemble des valeurs propres de A.

Pour $(a,b) \in \mathbb{R}^2$ et $z = a + ib \in \mathbb{C}$ on pose Im(z) = b.

On désigne par \mathfrak{S}_n le groupe des bijections de l'ensemble $\{1, 2, \ldots, n\}$.

Partie I

Soient A et B deux éléments de $M_n(\mathbb{C})$ et soit $\phi_{A,B}$ l'application de $M_n(\mathbb{C})$ dans $M_n(\mathbb{C})$ définie par $\phi_{A,B}(X) = AX + XB$.

- 1) Montrer que, si $X \in M_n(\mathbb{C})$, $Spec(X) = Spec(^tX)$.
- 2) Soit $b \in Spec(B)$, $a \in Spec(A)$. Montrer qu'il existe $(V, W) \in (\mathbb{C}^n \setminus \{0\})^2$ tel que ${}^tWB = b^tW$, AV = aV. Calculer $\phi_{A,B}(V^tW)$. Que peut-on en déduire pour l'application $\phi_{A,B}$?
 - a) Soient $0 \neq Y \in M_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$ tels que $\phi_{A,B}(Y) = \lambda Y$. Montrer que, pour tout $P \in \mathbb{C}_n[X]$, on a $P(A)Y = YP(\lambda I_n B)$. En utilisant une factorisation de $P_{m,A}$, montrer qu'il existe $a \in Spec(A)$ tel que $(\lambda a)I_n B$ ne soit pas inversible.
 - b) Déduire de ce qui précède que :

3)

6)

$$Spec(\phi_{A,B}) = Spec(A) + Spec(B).$$

- 4) Que peut-on dire de $Spec(\phi_{A,A})$ si A appartient à S_n^{++} ?
- a) Soit $X_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ pour $1 \le i \le n$, où 1 est situé à la $i^{\grave{e}me}$ ligne. Calculer $X_i^{\ t}X_j$

pour $1 \le i \le n$ et $1 \le j \le n$.

- b) Montrer que si A et B sont diagonalisables alors $\phi_{A,B}$ est diagonalisable.
- a) Déterminer le polynôme minimal de $\phi_{A,0}$ en fonction de celui de A ainsi que celui de $\phi_{0,B}$ en fonction de celui de B.
 - b) En déduire une nouvelle démonstration de la question I)5)b).
 - c) Soit $D = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & d_n \end{pmatrix}$ avec $d_i \neq d_j$ pour $i \neq j$. Trouver la dimension de $Ker\phi_{D-D}$.

Partie II

Soit h l'application de $M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ définie par $h(X) = X^2$.

1) Montrer que h est de classe C^1 et montrer que sa différentielle au point X est l'application $H \to XH + HX$.

- 2) On suppose dans cette question uniquement que $n \geq 2$ et on désigne par \tilde{h} l'application de $M_n(\mathbb{C})$ dans $M_n(\mathbb{C})$ définie par $\tilde{h}(X) = X^2$. Montrer que \tilde{h} n'est pas surjective. (On pourra construire et utiliser une matrice $X \in M_n(\mathbb{C})$ telle que $X^n = 0$, $X^{n-1} \neq 0$, en montrant qu'elle n'a pas d'antécédent par \tilde{h}).
- 3) Soit $X \in M_n(\mathbb{C})$ telle que $X^2 = I_n$. Montrer que X est diagonalisable sur \mathbb{C} et que X

est semblable à
$$X'=\begin{pmatrix} \epsilon_1 & 0 & 0 & \dots & 0 \\ 0 & \epsilon_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \epsilon_n \end{pmatrix}$$
 où $\epsilon_i=\pm 1,\quad i=1,...,n$. Le résultat

demeure-t-il pour $X \in M_n(\mathbb{R})$?

- 4) Soit G un sous-groupe de $GL_n(\mathbb{C})$ tel que pour tout g de G on ait $g^2 = I_n$.
 - a) Montrer que G est commutatif.
 - b) On désigne par Vect(G) le \mathbb{C} sous-espace vectoriel de $M_n(\mathbb{C})$ engendré par G.
 - i) Montrer qu'il existe (g_1, \ldots, g_p) appartenant à G^p tel que : $Vect(G) = Vect(\{g_1, \ldots, g_p\})$.
 - ii) Montrer qu'il existe $P \in GL_n(\mathbb{C})$ tel que pour tout g de G la matrice $P^{-1}gP$ soit diagonale.
 - c) Déduire du b) que G est fini et qu'il existe un entier $m \leq n$ tel que l'ordre de G soit 2^m .
- 5) Montrer que les groupes $GL_n(\mathbb{C})$ et $GL_m(\mathbb{C})$ sont isomorphes si et seulement si m=n. (On pourra supposer que n>m et qu'il existe un isomorphisme ϕ de $GL_n(\mathbb{C})$ sur $GL_m(\mathbb{C})$ et introduire un sous-groupe approprié de $GL_n(\mathbb{C})$).
- 6) Montrer le même résultat pour les groupes $GL_n(\mathbb{R})$ et $GL_m(\mathbb{R})$. Les groupes $GL_n(\mathbb{C})$ et $GL_m(\mathbb{R})$ sont-ils isomorphes ?

Partie III

On désigne par $U_n(\mathbb{C}_n[X])$ l'ensemble des polynômes unitaires de degré n à coefficients dans \mathbb{C} et soit s l'application de \mathbb{C}^n dans $U_n(\mathbb{C}_n[X])$ définie par :

$$s(\lambda_1,\ldots,\lambda_n)=\prod_{i=1}^n(X-\lambda_i).$$

- 1) Montrer que s est une application continue et surjective.
- 2) Soit $P \in U_n(\mathbb{C}_n[X])$ et $P = \sum_{i=0}^n a_i X^i$ avec $a_n = 1$. Montrer que si z est une racine de P dans \mathbb{C} on a : $|z| \le 1 + ||P||$. (on pourra envisager les deux cas $|z|^n \le 1$ et |z| > 1).
- 3) Montrer que l'application de $M_n(\mathbb{C})$ dans $U_n(\mathbb{C}_n[X])$ définie par $A \to (-1)^n \chi_A$ est continue.
- 4) Soit Ω un ouvert de \mathbb{C}^n et soit $(P_k)_{k\in\mathbb{N}}$ une suite de polynômes appartenant à $U_n(\mathbb{C}_n[X])\backslash s(\Omega)$ convergeant vers $P\in U_n(\mathbb{C}_n[X])$. Soit, pour tout entier naturel k, $(\lambda_{1,k},\ldots,\lambda_{n,k})$ tel que $s(\lambda_{1,k},\ldots,\lambda_{n,k})=P_k$.

- a) Montrer que, pour tout entier k et pour tout $\sigma \in \mathfrak{S}_n$, $(\lambda_{\sigma(1),k},\ldots,\lambda_{\sigma(n),k})$ n'appartient pas à Ω et qu'il existe $M \in \mathbb{R}$ tel que, pour tout i et tout k, $|\lambda_{i,k}| \leq M$.
- b) Déduire du a) que $P \notin s(\Omega)$.
- 5) Montrer que si ω est un ouvert non vide de $\mathbb C$, l'ensemble des matrices de $M_n(\mathbb C)$ dont toutes les valeurs propres appartiennent à ω est un ouvert non vide de $M_n(\mathbb C)$.
- 6) Soit \mathcal{U} l'ensemble des matrices de $M_n(\mathbb{C})$ dont toutes les valeurs propres λ vérifient $|Im(\lambda)| < \pi$.
 - a) Montrer que \mathcal{U} est un ouvert de $M_n(\mathbb{C})$.
 - b) Soit $\mathcal{N} = \{N \in M_n(\mathbb{C}), \exists p(N) \in \mathbb{N}, N^{p(N)} = 0\}$. On considère l'ensemble $\mathcal{L} = \{I_n + N, N \in \mathcal{N}\}$. Pour $v = I_n + N$ appartenant à \mathcal{L} on pose :

$$ln(v) = ln(I_n + N) = \sum_{q=1}^{p(N)-1} \frac{(-1)^{q+1} N^q}{q}.$$

- i) Montrer que si X appartient à \mathcal{N} , $exp(X) \in \mathcal{L}$.
- ii) Soient X appartenant à \mathcal{N} et f l'application de \mathbb{R} dans $M_n(\mathbb{C})$ définie par:

$$f(t) = ln(exp(tX)).$$

Montrer que f est dérivable, que f'(t) = X, puis que pour tout t réel f(t) = tX. (On pourra écrire $exp(tX) = I_n + Z(t)$).

- iii) En déduire que pour tout X appartenant à \mathcal{N} , ln(exp(X)) = X.
- c) Montrer que si D et D' appartiennent à \mathcal{U} , sont diagonalisables et telles que exp(D) = exp(D'), alors D = D'. (On pourra montrer que D et D' ont les mêmes sous-espaces propres).
- d) Montrer que exp est injective sur \mathcal{U} . (On pourra décomposer une matrice M de \mathcal{U} en la somme de deux éléments appropriés et utiliser III) 6)b)iii) et III) 6)c)).
- 7) Soit $\mathfrak D$ l'ensemble des matrices diagonalisables de $M_n(\mathbb C)$ et $\mathfrak D_1$ l'ensemble des matrices de $M_n(\mathbb C)$ ayant n valeurs propres distinctes.
 - a) Montrer que \mathfrak{D}_1 est un ouvert dense de $M_n(\mathbb{C})$ en utilisant 3) et 4).
 - b) Quel est l'intérieur de D?

8)

- c) Expliciter le polynôme caractéristique de $\phi_{A,0}$ en fonction de χ_A si A appartient à $M_n(\mathbb{C})$.
- d) L'application de $M_n(\mathbb{C})$ dans $\mathbb{C}_n[X]$ qui à A associe son polynôme minimal $P_{m,A}$ est-elle continue sur \mathfrak{D}_1 ? Est-elle continue sur $M_n(\mathbb{C})$?
- a) Soit P appartenant à $U_n(\mathbb{R}_n[X])$ (P est unitaire de degré n à coefficients réels). Montrer que P est scindé sur \mathbb{R} (ie a toutes ses racines réelles) si et seulement si pour tout z de \mathbb{C} on a : $|P(z)| \ge |Im(z)|^n$.
- b) On désigne par \mathfrak{D}' l'ensemble des matrices de $M_n(\mathbb{R})$ qui sont diagonalisables sur \mathbb{R} . Caractériser l'adhérence de \mathfrak{D}' dans $M_n(\mathbb{R})$.
- c) En déduire que \mathfrak{D}' n'est pas dense dans $M_n(\mathbb{R})$.

- 9) Soit $p \geq 1$ et q deux entiers naturels. On considère l'ensemble \mathcal{F} des matrices A appartenant à $M_p(\mathbb{C})$ et de rang strictement supérieur à q. Montrer que \mathcal{F} est un ouvert de $M_p(\mathbb{C})$.
- 10) Montrer que, pour tout A de $M_n(\mathbb{C})$, la dimension du \mathbb{C} espace vectoriel $Ker\phi_{A,-A}$ est supérieure ou égale à n.
- 11) En déduire que, si A appartient à $M_n(\mathbb{R})$, la dimension du \mathbb{R} -espace vectoriel $\{X \in M_n(\mathbb{R}), XA = AX\}$ est supérieure ou égale à n.
- 12) Soit ϕ l'application de S_n dans $M_n(\mathbb{R})$ définie par $\phi(X) = X^2$.
 - a) Montrer que $g = \phi_{|S_n^+}$ est injective.
 - b) A l'aide de III) 5), montrer que S_n^{++} est un ouvert de S_n . Montrer que $\phi_{|S_n^{++}}$ est un C^1 -difféomorphisme de S_n^{++} .