Программирование микроконтроллеров STM32

Таймеры общего назначения. Часть 2

Таймер общего назначения (ТІМ2)

- 32 битный счетчик
- 4 входных канала для захвата сигнала
- 4 выходных канала для сигнала по сравнению
- Генерация ШИМ сигнала
- Поддержка каскадного соединения нескольких таймеров
- Генерирование прерывания
- Поддержка энкодера

Инкрементальный энкодер

credits: wikipedia

Инкрементальный энкодер

credits: wikipedia

Инкрементальный энкодер

- ТІМх_СН1 <- Выход А энкодера
- ТІМх_СН2 <- Выход В энкодера
- DIR бит регистра TIMx_CR1 -> направление вращения энкодера
- ТІМх_СNТ тактируется от энкодера
- Пороговое значение для счетчика хранится в TIMx_ARR

Энкодер и таймер. Инициализация

- Инициализация входов в GPIO (альт. функция, подтяжка на землю)
- Включение тактирования таймера
- Включение режима энкодера [SMCR]
 - LL_TIM_SetEncoderMode(TIMx, LL_TIM_ENCODERMODE_X4_TI12)
- Настройка полярности выхода с мультиплексора TlxFPx [CCER]
 - LL_TIM_IC_SetPolarity(TIMx, Channel,

```
LL_TIM_IC_POLARITY_FALLING)
```

- Настройка регистра предзагрузки
 - LL_TIM_SetAutoReload
- Включение таймера

Энкодер и таймер. Опрос

- LL_TIM_GetCounterMode(TIMx) [CR1]
- LL_TIM_GetCounter(TIMx) [CNT]

Режим по сравнению, ШИМ и таймеры

Режим по сравнению (output compare mode)

Режим по сравнению

Режим по сравнению. Инициализация

- Инициализация выхода GPIO (альт. функция)
- Включение тактирования таймера
- Установка предделителя -> LL_TIM_SetPrescaler [PSC]
- Уст. регистра предзагрузки -> LL_TIM_SetAutoReload [ARR]
- Уст. значения для сравнения -> LL_TIM_OC_SetCompareCHx [CCRx]
- Включение канала -> LL_TIM_CC_EnableChannel [CCER]
- Полярность выхода -> LL_TIM_OC_SetPolarity [CCER]
- Режим выхода -> LL_TIM_OC_SetMode [CCMR]
 - LL_TIM_OCMODE_TOGGLE
- Включение прерывания -> LL_TIM_EnableIT_CC1 [DIER]
- Включение счетчика -> LL_TIM_EnableCounter [CR1]
- Настройка NVIC

Широтно-импульсная модуляция (Pulse-width modulation)

ШИМ и таймер

- Частота ШИМа (pwm frequency) -> регистр предзагрузки ARR
- Скважность ШИМа (duty cycle) -> регистр по сравнению ССRх
- Два режима ШИМ
 - о ШИМ 1
 - upcounting mode: выход активен пока CNT < CCR1, в противном случае неактивен
 - downcounting mode: выход неактивен пока CNT > CCR1, в противном случае активен
 - ШИМ 2:
 - upcounting mode: выход неактивен пока CNT < CCR1, в противном случае активен
 - downcounting mode: выход активен пока CNT > CCR1, в противном случае неактивен

ШИМ. Выравнивание по краю (edge-aligned)

ARR=8, PWM 1
upcounting (DIR=0)
"1": CNT < CCR1
"0: CNT >= CCR1

ШИМ. Выравнивание по центру (center-aligned)

ARR=8, Режим PWM 1: сначала upcounting, потом downcounting

ШИМ. Инициализация

- Режим выхода -> LL_TIM_OC_SetMode [CCMR]
 - LL_TIM_OCMODE_PWM1/2
- Режим счетчика -> LL_TIM_SetCounterMode [CR1]
 - LL_TIM_COUNTERMODE_UP [DIR]
 - LL_TIM_COUNTERMODE_DOWN [DIR]
 - LL_TIM_COUNTERMODE_CENTER_UP [CMS]
 - LL_TIM_COUNTERMODE_CENTER_DOWN [CMS]
 - LL_TIM_COUNTERMODE_CENTER_UP_DOWN [CMS]

ШИМ. Пример расчета

- PWM 1, upcounting
- f_{тім} = 48 МГц
- PSC = $479 -> f_{CNT} = 1 M \Gamma \mu$
- ARR = 999 -> f_{PWM} = 1 КГц
- CCR1 = 499 -> D = 50%
- CCR2 = 99 -> D = 10%

Репозиторий

https://github.com/edosedgar/stm32f0_ARM