

- Stainless Steel with O-Ring Seal
- Pressure/Temperature Read-Out
- Digital Output (24-bit $\Delta\Sigma$ ADC)
- ASIC Calibrated
- Absolute, Sealed Gage
- 9mm Diameter

DESCRIPTION

The 89BSD is a 9mm diameter small profile, media compatible, piezoresistive silicon pressure sensor packaged in a 316L stainless steel housing. This low power 24-bit $\Delta\Sigma$ ADC digital output pressure sensor supports an I²C interface protocol and is designed for threaded o-ring mounting. A custom ASIC is used for temperature compensation and offset correction. The sensing package utilizes silicone oil to transfer pressure from the 316L stainless steel diaphragm to the sensing element. A flex cable allows the 89BSD to connect to a smaller connection terminal where size is of primary concern.

The 89BSD is designed for high performance, low pressure applications.

For a similar sensor with a plastic threaded fitting, refer to the LM pressure transducer.

FEATURES

- Threaded/Weldable
- I²C Interface
- Low Power: <1µA
- Standby Power: <0.15μΑ
- Supply Voltage: 1.8 to 3.6Vdc

APPLICATIONS

- Level Controls
- Tank Level Measurement
- Corrosive Fluids and Gas Measurement Systems
- Sealed Systems
- Manifold Pressure Measurement
- Barometric Pressure Measurement
- Dive Computers

BarS

STANDARD RANGES

Range	BarA
0 to 006	•
0 to 012	•
0 to 018	•
0 to 028	•
0 to 030	•

Intermediate pressure ranges available, contact factory

Distributed By:

75 Allen Street • Lexington, MA 02421 • USA www.servoflo.com • info@servoflo.com • 781-862-9572

PERFORMANCE SPECIFICATIONS

Supply Voltage: 3Vdc

Ambient Temperature: 25°C (unless	s otherwise spec	cified)			
PARAMETERS	MIN	TYP	MAX	UNITS	NOTES
ADC			24	bit	
Input Voltage Range	1.8		3.6	V	2
Supply Current		See Table 1		mA	
Pressure Resolution		See Table 3		%Span	3
Pressure Accuracy		±0.3		%Span	
Total Error Band		See Graph 1		%Span	
Conversion Time		See Table 2		ms	3
Long Term Stability		±0.2		%Span/yr	
Compensated Temperature	-20		+85	°C	
Temperature Resolution		See Table 3		°C	
Temperature Accuracy	-2		+2	°C	
Operating Temperature	-40		+85	°C	
Storage Temperature	-40		+125	°C	
Pressure Overload			2X	Rated	4
Pressure Burst			3X	Rated	5
Interface Type		I ² C			6
Media, Pressure Port	Liquids a	and gases compatible	with 316/316L	Stainless Steel	

Notes

- Coefficients must be read by microcontroller software and are to be used in a mathematical calculation for converting D1 and D2 into compensated pressure and temperature values. For calculation methods and coefficients, see application note APP-01006.
- 2. Output is not ratiometric to supply voltage.
- 3. Oversampling ratio: 256 / 512 / 1024 / 2048 / 4096. See Table 2.
- 2X or 400psi, whichever is less. The maximum pressure that can be applied without changing the transducer's performance or accuracy.
- 3X or 600psi, whichever is less. The maximum pressure that can be applied to a transducer without rupture of either the sensing element or transducer.
- 6. Output protocol is I²C only. CSB is tied to GND, setting I²C address: 11101111 EF

PARAMETERS	Symbol	Cond	litions	MIN	TYP	MAX	UNITS
	O y50.	OSR	4096	******	12.5	IIIAA	UNITS
		00.1	2048		6.3		
Supply Current	Ipp		1024		3.2 µA		μА
(1 Sample per second)			512		1.7		577
			256		0.9		
Peak Supply Current			ring ersion		1.4		mA
Standby Supply Current		@ 2	:5°C		0.02	0.14	μΑ
Fable 2: Analog Digital Convert	er (ADC)						
PARAMETERS	Symbol	Cond	litions	MIN	TYP	MAX	UNITS
		OSR	4096	7.40	8.22	9.04	
			2048	3.72	4.13	4.54	
Conversion Time	tc		1024	1.88	2.08	2.28	ms
			512	0.95	1.06	1.17	
			256	0.48	0.54	0.60	

Table 3: Typical Resolution

OSR	Typical Pressure Resolution (%Span)	Typical Temperature Resolution (°C)
4096	0.0015	0.002
2048	0.0025	0.003
1024	0.003	0.005
512	0.005	0.008
256	0.008	0.012

Graph 1:

DIMENSIONS

.30

DIMENSIONS ARE IN INCHES [MM]

(OR EQUVALENT) TO MATE WITH FPC CABLE

O-RING SEAL MOUNTING RECOMMENDATIONS FOR FITTING TYPES A & B

Pin 1 – VDD Pin 2 – GND Pin 3 – SDA Pin 4 – SCL

89BSD-XXXX-4, -5, -8

		TABLE 4	,	
FITTING TYPE	"A" DIM	"B" DIM	"C" DIM	"D" DIM
4	1/4-18 NPT	.82 [20.8]	5/8 [15.9] HEX	
5	1/4-19 BSP	.82 [20.8]	3/4 [19.0] HEX	N/A
8	1/8-27 NPT	.71 [18.0]	5/8 [15.9] HEX	
A	ND FITTING, THREA	DED CAPSULE, S	5/16-32 UNEF-3A	5/16-32 UNEF- 3B⊽.25
В	ND FITTING, NO TH	READ CAPSULE		ø .28⊽.25
	NOTE : FITTING ALL DI	TYPE '-4' AS: MS ARE FOR REI	SEMBLY SHOWN FA FERENCE ONLY	R LEFT

BLOCK DIAGRAM

RECOMMENDED WRENCH DIMENSIONS

ORDERING INFORMATION

NORTH AMERICA

Measurement Specialties 45738 Northport Loop West Fremont, CA 94538 Tel: 1-800-767-1888

Fax: 1-510-498-1578

Sales: pfg.cs.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd. 26 Rue des Dames 78340 Les Clayes-sous-Bois, France Tel: +33 (0) 130 79 33 00 Fax: +33 (0) 134 81 03 59

Sales: pfq.cs.emea@meas-spec.com

ASIA

Measurement Specialties (China), Ltd. No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China

Tel: +86 755 3330 5088 Fax: +86 755 3330 5099

Sales: pfg.cs.asia@meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.

measurement s P E CIALT I E SM

89BSD Calculation Method

FUNCTIONAL DESCRIPTION

GENERAL

The 89BSD consists of a piezoresistive sensor and a sensor interface IC. The main function of the sensor interface IC is to convert the uncompensated analogue output voltage from the piezoresistive pressure sensor to a 24-bit digital value, as well as providing a 24-bit digital value for the temperature of the sensor.

FACTORY CALIBRATION

Every module is individually factory calibrated at seven points of various temperature and pressures. As a result, 10 coefficients necessary to compensate for process variations and temperature variations are calculated and stored in the 128-bit PROM of each module. These bits partitioned into 7 pressure coefficients (C0 to C6) and 3 temperature (A0 to A2) which must be read by the microcontroller software and used in the program converting D1 and D2 into compensated pressure and temperature values.

I²C MODE

The external microcontroller clocks in the data through the input SCLK (Serial CLocK) and SDA (Serial DAta). The sensor responds on the same pin SDA which is bidirectional for the I²C bus interface. So this interface type uses only 2 signal lines and does not require a chip select, which can be favorable to reduce board space. In I²C-Mode the complement of the pin CSB (Chip Select) represents the LSB of the I²C address.

Address (7 bits)

CSB PIN 0

0x77 (1110111 b)

COMMANDS

The 89BSD has only five basic commands:

- 1 Reset
- Read PROM (128 bit of calibration words)
- D1 conversion
- 4. D2 conversion
- 5. Read ADC result (24 bit pressure / temperature)

Size of each command is 1 byte (8 bits) as described in the table below. After ADC read commands the device will return 24 bit result and after the PROM read 16bit result. The address of the PROM is embedded inside of the PROM read command using the a2, a1 and a0 bits.

	Com	mand	byte						hex valu
Bit number	0	1	2	3	4	5	6	7	
Bit name	PR M	COV		Тур	Ad2/ Os2	Ad1/ Os1	Ad0/ Os0	Stop	
Command									
Reset	0	0	0	1	1	1	1	0	0x1E
Convert D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convert D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convert D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convert D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convert D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convert D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convert D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convert D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convert D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convert D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
ADC Read	0	0	0	0	0	0	0	0	0x00
PROM Read	1	0	1	0	Ad2	Ad1	Ad0	0	0xA0 to 0xAE

Figure 1: Command structure

CONVERSION SEQUENCE

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. The chip select can be disabled during this time to communicate with other devices.

After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well.

Figure 3: ADC Read sequence

March 2014

measurement S P E CIALTIES M...

89BSD Calculation Method

PROM READ SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 8 addresses resulting in a total memory of 128 bit. Address 0 contains factory data and the setup, addresses 1-6 calibration coefficients and address 7 contains the serial code and CRC. The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first.

Figure 4: PROM Read sequence, address = 011 (Coefficient 3).

I²C INTERFACE

COMMANDS

Each I²C communication message starts with the start condition and it is ended with the stop condition. The 89BSD address is 111011Cx, where C is the complementary value of the pin CSB.

RESET SEQUENCE

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the 89BSD to function is to send several SCLKs followed by a reset sequence or to repeat power on reset.

Figure 5: I2C Reset Command

CONVERSION SEQUENCE

A conversion can be started by sending the command to 89BSD. When command is sent to the system it stays busy until conversion is done. When conversion is finished the data can be accessed by sending a Read command, when an acknowledge appears from the 89BSD 24 SCLK cycles may be sent to receive all result bits. Every 8 bit the system waits for an acknowledge signal.

Figure 8: I²C pressure response (D1) on 24 bit from 89BSD

PROM READ SEQUENCE

The PROM Read command consists of two parts. First command sets up the system into PROM read mode. The second part gets the data from the system.

Figure 9: I²C Command to read memory address= 011 (Coefficient 3)

Figure 10: I²C answer from 89BSD

CYCLIC REDUNDANCY CHECK (CRC)

89BSD contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented to check the data validity in memory. The application note AN520 describes in detail CRC-4 code used.

PRESSURE AND TEMPERATURE CALCULATION

Start

Maximum values for calculation results

PMN= 0 barA, PMAX=Product pressure
(e.g. for 89BSD-012BA, PMAX=12barA)

TMN=-20°C TMAX=85°C

/ariable	Banadation I Francisco	Recommended	Size	Va	lue	Example
totianic	Description Equation	Variable Type	(Bit)	Min	Max	Typical
C0	Bridge Offset	Signed int 16	14	-8192	8192	-5242
C1	Gain	Signed int 16	14	-8192	8192	4172
C2	Non-linearity 2 nd order	Signed int 16	10	-512	512	80
C3	Temperature coefficient, Bridge offset 1st order	Signed int 16	10	-512	512	-77
C4	Temperature coefficient, Bridge offset 2 nd order	Signed int 16	10	-512	512	67
C5	Temperature coefficient, Gain 1 ^a order	Signed int 16	10	-512	512	-210
C6	Temperature coefficient, Gain 2 nd order	Signed int 16	10	-512	512	222
A0	Temperature coefficient 1 of the temperature	Signed int 16	10	-512	512	-460
A1	Temperature coefficient 2 of the temperature	Signed int 16	10	-512	512	360
A2	Temperature coefficient 3 of the temperature	Signed int 16	10	-512	512	-190

Figure 11: Flow chart for pressure and temperature reading and software compensation.

MEMORY MAPPING [2]

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	C0 ₁₃	C0 ₁₂	C0 ₁₁	C0 ₁₀	C009	C0 ₀₅	C0 ₀₇	C0 ₀₆	C0 ₀₅	C0 ₀₄	C0 ₀₃	C0 ₀₂	C0 ₀₁	C000	C1 ₁₃	C
2	C1 ₁₁	C1 ₁₀	C1 ₀₉	C1 ₀₈	C1 ₀₇	C1 ₀₈	C1 ₀₅	C1 ₀₄	C1 ₀₃	C1 ₀₂	C1 ₀₁	C1 ₀₀	C2 ₀₉	C2 ₀₈	C2 ₀₇	С
3	C2 ₀₅	C2 ₀₄	C2 ₀₃	C2 ₀₂	C2 ₀₁	C2 ₀₀	C3 ₀₉	C3 ₀₈	C3 ₀₇	C3 ₀₆	C3 ₀₅	C3 ₀₄	C3 ₀₃	C3 ₀₂	C3 ₀₁	С
4	C4 ₀₉	C4 ₀₈	C4 ₀₇	C4 ₀₆	C4 ₀₅	C4 ₀₄	C4 ₀₃	C4 ₀₂	C4 ₀₁	C4 ₀₀	C5 ₀₉	C5 ₀₈	C5 ₀₇	C5 ₀₆	C5 ₀₅	С
5	C5 ₀₃	C5 ₀₂	C5 ₀₁	C5 ₀₀	C6 ₀₉	C6 ₀₈	C6 ₀₇	C6 ₀₆	C6 ₀₅	C6 ₀₄	C6 ₀₃	C6 ₀₂	C6 ₀₁	C6 ₀₀	A0 ₀₉	A
6	A0 ₀₇	A0 ₀₆	A0 ₀₅	A0 ₀₄	A0 ₀₃	A0 ₀₂	A0 ₀₁	A000	A1 ₀₉	A1 ₀₈	A1 ₀₇	A1 ₀₆	A1 ₀₅	A1 ₀₄	A1 ₀₃	A.

Figure 12: Memory mapping.

Q factor

Q factor for temperature Compensated pressure calculation					
Q0	9				
Q1	11				
Q2	9				
Q3	15				
Q4	15				
Q5	16				
Q6	16				

Notes

- [1] Maximal size of intermediate result during evaluation of variable [2] All coefficients are 2's complement format

APPLICATION CIRCUIT

The 89BSD is a circuit that is to be used in conjunction with a microcontroller and a 3V DC supply.

I²C protocol communication

Figure 13: Typical application circuit for I²C protocol communication