Connoy young CS 20 BTECK 11063 Algo anig 2 (mid letins)

1.	when selecting par final, we use median birding algorithms then becurring salls will change
	birding algolithm then becurring talls will
	change
	let the array he partitioned in the moret race
	tendrio ie.
	74-6
	evely to town
	after duriding at least (2(1) 1 2) elevents
	(-3/2)
	must be latiger than median 2 30 74 +6 on
	the other tide
	for large of the fartition would lask like
	3 n , 2n 10 (0
	10 (0 Of rall = 1+2+4+-+ 2 log 19(n) = 2 log 1017(n)+1 - 1
	= 2 Log 1017 (n) +1 -1
()	
	= 2 · 2 n logioln 2 -1
	≈ 2. n ^{1.94} -1 no. of talls

T(n)= n13. T(n13) +1 2. T(1) = T(2) = 1 let us take note.

The let us divide entire ego by so T(n) = T(n113) + 1 let 7(n) = P(n) : P(n) = P(n113) + 1 let n=2 = P(2 = P(2 =) + 1 let P(2k) = R(k) : R(k) = R(k) + 1 let k= 36 : R(36)= R(36-1) +1 let R(3") = S(") - S(") = S(") + 1 -: R(k) > R(k) + bon 6 ·· R(K) × a lop k : P(n) ~ log log n T(n) ~ In log(logn) $T(n) = O(\int n \log(\log n))$

	TOPICDATE
3.	· so the total no. of blocks with block tige 13 = [n] = ok
	Time to find median of all ghouff = O(n) we have [n] median
	we need to make remirine talls to all these ke groups in time to pind median for these - $T(\frac{n}{13})$
	no. of elements less than median = 7n -7
	26 ? greates ? 7n -14 26
	· T(n)=(T(n) + O(n) + T(15n)
	$T(n) = \int \int \left(\frac{n}{3} \right) + \frac{n}{3} \left(\frac{n}{3} \right) + O(n) - \frac{n}{3} \left(\frac{n}{3} \right)$
	$T(n) = \int T\left(\left[\begin{array}{c} n \\ 13 \end{array}\right]\right) + O(n) \qquad n > 13$
	0(n) n=13

	TOPICDATE
4.	finen 2 arrays A[1m], B[1m] alphabel: $40,1,23$ let us use the original Edit(i,j) with some modification
	if i=0, j intertions & the rost mould be j x 0.75 if j=0 i deletions & rost would be i x 0.3
	ModEdit (i,j) = $(i \times 0.75)$
	Mad Edit (i-1, j) +0.75 /Mad Edit (i-1,j-1) +0.5 A[i]-B[j] (ig A[i] + 8Lj] Mad Edit (i-1,j-1) else
	Moderate (i,j) = $i \times 0.75$ if $j=0$ $j \times 0.75$ if $i=0$ $rin (Moderate (i,i-1)+0.75$
	min MolEdit(i,j-1)+0.75 MolEdit(i-1,j)+0.75 else MolEdit(i-1,j-1)+0.5[A[i]-B[j] if A[i]+B[j]) MolEdit(i-1,j-1) MolEdit(i-1,j-1) else
	for substitution if characters are some then add dylone is Edit(i-1, j-1), if different then edit distance Edit(i-1, j-1) +0.5 [A [i] -B[j]] cost to edit

	TOPIC DATE
5.	· our algorithm would be to go through the entire
	our algorithm would be to go through the entire ourray to find the indies where I suits since all the Is are continuous, it would be
	surie all the Is are continuous, it would be
	buferable to go through the array. We may also use a linary search type
	about the metry to souther the
	algorithms lent the metric to compare the
	is that subarray
	· using the alione would still take more
	than O(n) time
	There can be an algorithm based on the
	total no of rases which can work in
	to varyare mould be required whose
	compulation time will always be
	O(n)
-	

-