Sardar Vallabhbhai National Institute of Technology, Surat **Computer Science and Engineering Department** B Tech III(CSE) - Sixth Semester (+) 15/1 CS324 - Natural Language Processing

End Semester Examination, May 2022

Time: 12.00pm to 3.00 pm

Date: 05-05-2022

Marks: 100

. Write regular expressions for the set of all strings with two consecutive repeated words (e.g.,

[8 Marks]

"Humbert Humbert" and "the the" but not "the bug" or "the big bug").

Give examples of one noun and one verb in the above figure, and find Two exceptions to the rules. Eg. verbj: detect accepts -ive but it becomes a noun, not an adjective

Q2 Answer any Four.

[40 Marks]

Compute minimum edit distances, figure out whether drive is closer to brief or to divers and what the edit distance is using 1-insertion, 1-deletion, 2-substitution costs.

(b). Consider the mini-corpus as below:

<s> I am working as a Data scientist in my company</s>

<s> My company provides lots of benefits </s>

<s> As a Data scientist there is tremendous growth in my company. </s>

Compute the Bigram probability of sentence "Working as a Data Scientist benefits my growth in company"

Transition probability matrix

	Winter	Summer	Monsoon
< \$>	0.4	0.2	0.4
Winter	0.6	0.3	0.1
Summer	0.4	0.4	0.2
Monsoon	0.1	0.4	0.5

Emission probability matrix

	Cold	Hot	Rain -	
Winter	0.8	0.1	0.10	
Summer	0.10	0.7	0.2	
Monsoon	0.10	0.2	0.70	

The above said matrix consists of emission probability values represented as bi(ot). bi(ot) is the probability of an observation of generated from a state bi. For example, $P(Cold \mid Winter) = 0.8$, $P(Rain \mid Monsoon) = 0.70$ etc. π = [π 1, π 2, ..., π N] = set of prior probabilities = [0.6, 0.3, 0.1]. Here, the values refer to the probabilities P(Winter) = 0.6, P(Summer) = 0.3, and P(Monsoon) = 0.1. What would be the state sequence for observation (Hot Rain) ? Do the calculations using Vertribi algorithm.

d. Use the below tagset to tag each word in the following sentences. You may ignore punctuation.

1. Nobody ever takes the newspapers she sells

2. Cam sitting in Jenny's restaurant putting on the dessert, which Pam very fond of.

RP	Tag	Description	Example	Tag	Description	Example
	CC	Coordin, Conjunction	and, but, or	SYM	Symbol	+,%, &
	CD	Cardinal number	one, two, three	TO	"to"	to
	DT	Determiner	a, the	UH	Interjection	ah, oops
	EX	Existential 'there'	there	VB	Verb, base form	
	FW	Foreign word	mea culpa	VBD		eal
	IN	Preposition/sub-conj	of, in, by	VBG	Verb, past tense	ate
	JJ	Adjective	yellow	VBN	Verb, gerund	eating
	JJR	Adj., comparative	bigger	VBP	Verb, past participle	
	JJS	Adj., superlative	wildest		Verb, non-3sg pres	eat
	LS	List item marker	1, 2, One	VBZ	Verb, 3sg pres	eats
	MD	Modal	can should	WDT	Wh-determiner	which, tho
	NN	Noun, sing. or mass	llama	WP	Wh-pronoun	what, who
INS C	NNS	Noun, plural	llamas	WP\$	Possessive wh-	whose
	NNP	Proper noun, singular	IBM	WRB	Wh-adverb	how, wher
	NNPS	Proper noun, plural		S	Dollar sign	5
	PDT	Predeterminer	Carolinas	#	Pound sign	#
	POS	Possessive ending	all, both		Left quote	or "
	PRP		3		Right quote	or "
	PRPS	Personal pronoun	I, you, he	(Left parenthesis	1.6.4.
	RB	Possessive pronoun Adverb	your, one's)	Right parenthesis	1.). 1. >
			quickly, never		Commu	
	RBR	Adverb, comparative	faster	4	Sentence-final punc	1.7
	RBS RP	Adverb, superlative Particle	fastest	Son Bullion	Mid-sentence punc	

e. Consider the dataset. Using Naïve Bayes Model, Decide whether a person with Medium Income would be able to buy a laptop or not. Do all the calculations.

	(441)	medo -	1
P	(Ry	medi)
	lep		

P(hs

	meome	Buys Computer
0	/ High	No
1	Low	Yes
2	Medium	No
3	, Medium	Yes
4	Low	No
5	/ High	Yes
6	Low	Yes
7	· Medium	Yes
8	, High	No
9	Low	No
10	Low	Yes .
11	, High	No
12	, Medium	Yes
13	· Medium	Yes .

Q3 (1) Explain the difference between coreference resolution and pronominal anaphora resolution with an example.

[12 Marks]

[18 Marks]

- 2. Which Discourse relation is present in the below sentences.
 - a. John was from Kansas. He lived on the Kansas prairies.
 - b. Ram was stuck in the rain. He caught cold.
- 3. What is Rule based Machine translation? What problems are faced during it? List down benefits of Phrase-based SMT.

Define the notation: Constituency with examples of Constituent Phrases. Justify the existence of

what is parsing in the syntax analysis phase. Use the following grammar to parse the sentence "book the flight" using a top down approach.

⇒ S	Grammar → NP VP		Det	Lexicon → the a that this		He is a bo	١
S S NP NP NP NP Nominal	→ Aux NP VP → VP → Pronoun → Proper-Noun → Det Nominal → Noun	*	Noun Verb Pronoun Proper-Noun Aux Prep	→ book flight meal → book include pre → I he she me → Houston NWA → does → from to on thre	efer		
Nominal Nominal VP VP VP VP PP	→ Nominal Noun → Nominal PP → Verb → Verb NP → VP PP → Prep NP	Hr V	b Not start	NP (NIL)	Nour	NP Det Nour	

Explain Probabilistic Context Free Grammar(PCFG). Find out the probability for the given sentence "astronomers saw stars with ears" using a simple PCFG.

[8 Marks]

Discuss Semantic Analysis Phase of Natural Language Processing. Explain Distributional semantics method and compute similarities between the following target words using simple vector products for the given word space.

- 1. automobile . car
- 2. automobile . soccer
- 3. automobile . football
- 4. car.soccer
- 5. car . football

6. soccer . football

	wheel	transport	passenger	tournament	London	goal	match
automobile	1	1	1	0	0	0	0
car	1	2	1	0	1	0	0
soccer	0	0	0	1	1	1	1
football	0	0	1	1	1	2	1

Define Inside and Outside Probabilities for Probabilistic Context Free Grammars. Consider the sentence "The gunman sprayed the building with bullets", and define inside probability $\alpha_{NP}(4,5)$ and outside probability for $\beta_{NP}(4,5)$. Calculate inside probability for $\beta_{NN}(5,5)$. [Assume the rule: NN \rightarrow building (0.5)]

[6 Marks]

List out Dynamic Programming Parsing methods. Consider the given grammar, convert into Chomsky Normal Form and generate possible parse trees using CKY Parser method for the sentence "Book the flight through Houston".

[8 Marks]

	Grammar		Lexicon
S	\rightarrow NP VP $S \rightarrow X_1 \vee P$	Det	→ the a that this
-5	-AUX NP VP X1 - AUX NP	Noun	→ book flight meal
S	→VP S→VPPP	Verb	→ book include prefer
NP	→ Pronoun—	Pronoun	→ I he she me
NP	→ Proper-Noun	Proper-Noun	→ Houston NWA
NP	→ Det Nominal	Aux	→ does
Nominal	-Noun- Lork / & flight -	Prep	→ from to on through
Nominal	→ Nominal Noun		
Nominal	→ Nominal PP		
VP	-verb - and book include	1 prefer	
VP	→ Verb NP ✓		an (NG) NB
VP	→ VP PP ✓		
PP	→ Prep NP		
	verb 2		pet Nominay (PP)
		homis	X .
	book the	Q.	the Prep Proper
	5	rice	119
1/0	VP PP	,5	, Charles
VP -	/\ /	VP \	tura (Houston)
NO	op vin mp ()		/
121	1 tab	book	Page 4 of 4