Mimamsa Number Theroy

Prameya

February 21, 2025

CONTENTS

1	Functions
	1.1 Reading
	1.2 Problems
2	Induction
	2.1 Reading
	2.2 Induction
	Division Algorithm
	3.1 Reading
	3.2 Problems

CHAPTER 1

FUNCTIONS

1.1 READING

• Sets and Functions (as previously assigned) to be done from Prameya-Vismaya.

1.2 PROBLEMS

Problem 1.2.1. Show that there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that

$$f(S) \neq S \tag{1.2.1}$$

for any proper non-empty subset S of $\mathbb{N}.$

CHAPTER 2

INDUCTION

2.1 READING

Following is the requisite reading.

- Read §1.1 from Burton's Elementary Number Theory (7th Edition).
- Why is mathematical induction a valid proof technique?
- Difference between strong and weak induction?

2.2 INDUCTION

Problem 2.2.1. Prove that $n! > n^2$ for every integer $n \ge 4$, whereas $n! > n^3$ for every integer $n \ge 6$.

Problem 2.2.2. Use mathematical induction to derive the following formula for all $n \ge 1$:

$$1(1!) + 2(2!) + 3(3!) + \cdots + n(n!) = (n+1)! - 1$$

Problem 2.2.3. a) Verify that for all $n \geq 1$,

$$2 \cdot 6 \cdot 10 \cdot 14 \cdot \dots \cdot (4n-2) = \frac{(2n)!}{n!}$$

b) Use part (a) to obtain the inequality $2^n(n!)^2 \leq (2n)$! for all $n \geq 1$.

Problem 2.2.4. Establish the Bernoulli inequality: If 1 + a > 0, then

$$(1+a)^n \ge 1 + na$$

for all $n \geq 1$.

Problem 2.2.5. For all $n \geq 1$, prove the following by mathematical induction:

a)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$
.

b)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$
.

Problem 2.2.6. Show that the expression $(2n)!/2^n n!$ is an integer for all $n \ge 0$.

Problem 2.2.7. Suppose that the numbers a_n are defined inductively by $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for all $n \ge 4$. Show that $a_n < 2^n$ for every positive integer n.

Problem 2.2.8. If the numbers a_n are defined by $a_1 = 11, a_2 = 21$, and $a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 3$, prove that

$$a_n = 5 \cdot 2^n + 1, \quad n \ge 1$$

CHAPTER 3

DIVISION ALGORITHM

3.1 READING

• Read §2.2 from Burton's *Elementary Number Theory* (7th Edition).

3.2 PROBLEMS

Problem 3.2.1. Prove that if a and b are integers, with b > 0, then there exist unique integers q and r satisfying a = qb + r, where $2b \le r < 3b$.

Problem 3.2.2. Show that any integer of the form 6k + 5 is also of the form 3j + 2, but not conversely.

Problem 3.2.3. Use the Division Algorithm to establish the following:

- a) The square of any integer is either of the form 3k or 3k + 1.
- b) The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8.
- c) The fourth power of any integer is either of the form 5k or 5k + 1.
- **Problem 3.2.4.** Prove that $3a^2 1$ is never a perfect square.
- **Problem 3.2.5.** For $n \ge 1$, prove that n(n+1)(2n+1)/6 is an integer.
- **Problem 3.2.6.** Show that the cube of any integer is of the form 7k or $7k \pm 1$.
- **Problem 3.2.7.** Prove that no integer in the following sequence is a perfect square:

Problem 3.2.8. Verify that if an integer is simultaneously a square and a cube (as is the case with $64 = 8^2 = 4^3$), then it must be either of the form 7k or 7k + 1.