1001513 – Aprendizado de Máquina 2 Turma A – 2022/2 Prof. Murilo Naldi

Agradecimentos

- Pessoas que colaboraram com a produção deste material: Diego Silva, Ricardo Cerri, Moacir Ponti
- Intel IA Academcy

Classificação *flat*

Todos os problemas até aqui eram de classificação plana

- Todos os rótulos estão em um mesmo nível / não há hierarquia

Considera subconjuntos de rótulos de modo a formar taxonomias

 Lembrem do REFICOFAGE - O Rei Ficou Claramente Orgulhoso da Família do Genro Escolhido rss

Relação "IS-A"

Dado um conjunto parcialmente ordenado (C, \prec):

- Existe um único elemento superior "R" que é a raiz
- $\forall c_i$, c_j ∈ C, se c_i < c_j então c_j < c_i é falso
- \forall c_i ∈ C, c_i < c_i é falso
- $\forall c_i$, c_j , $c_k \in C$, $c_i < c_j$ e $c_j < c_k$ implica $c_i < c_k$

Critérios

Classificação hierárquica segue três critérios:

- Tipo de estrutura de hierárquica
- Quão profundo a classificação é feita
- Como a estrutura hierárquica é explorada

Critérios

Classificação hierárquica segue três critérios:

- Tipo de estrutura de hierárquica
- Quão profundo a classificação é feita
- Como a estrutura hierárquica é explorada

Tipo de estrutura hierárquica - árvore

Tipo de estrutura - Direct Acyclic Graph (DAG)

Critérios

Classificação hierárquica segue três critérios:

- Tipo de estrutura de hierárquica
- Quão profundo a classificação é feita
- Como a estrutura hierárquica é explorada

Classificação hierárquica - conceitos

Profundidade

- Posso estar satisfeito em parar no rock, ou no metal, ou no death metal, ou no brutal death metal, ou... vocês entenderam
- Rotulação parcial

Em alguns casos, só o nó **folha** me interessa

- ex: classificação de espécies
- Rotulação completa

Classificação hierárquica - parcial ou completa?

Um algoritmo pode prever usando apenas classes representadas por nós folha:

- Mandatory Leaf-Node Prediction (MLNP)

Ou usando classes denotadas por qualquer nó interno ou folha dentro da hierarquia

- Non-Mandatory Leaf-Node Prediction (NMLNP)

Classificação hierárquica - parcial ou completa?

Pode ser multirrótulo

- Caso haja mais de um caminho possível na hierarquia
- E cada rótulo pode estar na folha ou não (parcial vs. completa)

Pode ser multirrótulo

- Caso haja mais de um caminho possível na hierarquia
- E cada rótulo pode estar na folha ou não (parcial vs. completa)

Vamos começar pelo "fácil"

- Árvore, monorrótulo e completa

Critérios

Classificação hierárquica segue três critérios:

- Tipo de estrutura de hierárquica
- Quão profundo a classificação é feita
- Como a estrutura hierárquica é explorada

Explorando estrutura

Três métodos são mais conhecidos:

- Classificadores planos
- Abordagem global (big-bang)
- Abordagem local (*top-down*)

Explorando a estrutura

Classificação Plana (Flat)

- Consiste em ignorar completamente a hierarquia de classes
 - Prevê apenas classes nos nós folha
 - Solução indireta para o problema hierárquico:
 - Quando um classe folha é atribuída a um exemplo, também herda todas as classes ancestrais (lembre-se de que assumimos uma hierarquia de classes "IS-A")
- Desvantagens:
 - Um classificador para um grande número de classes
 - Não faz classificação parcial

Plana

Classificador multiclasse

Explorando a estrutura

Método Global (ou Big-Bang)

- Modelo único para toda a hierarquia
 - Geralmente o modelo é menor que a soma de modelos locais
 - Mas necessita de maior poder computacional
- Pode usar dependência na classificação, uma vez que existe relação explícita entre classes de diferentes níveis
- Contudo, perde capacidade de especialização
 - Pode usar um único algoritmo/modelo

Global

Classificador multiclasse

Explorando a estrutura

Método Local (ou *Top-Down*)

- Um classificador local para cada "parte" da hierarquia
 - O objetivo é usar informações locais sobre as classes para melhorar o resultado
 - Cada classificador é especializado, podendo inclusive ser treinado com diferentes algoritmos
- Teste consiste em começar pelas classes mais genéricas
 - E descer para as mais especializadas
 - Erro é propagado...

Explorando a estrutura

Método Local (ou *Top-Down*)

- Métodos locais diferem-se em relação ao número e tipo de classificador utilizados:
 - Um-por-nó
 - Um-por-pai
 - Um-por-nível
- E, portanto, são diferentes no treinamento

Local com um classificador por nó

Classificadores binários

Local com um classificador por nó pai

Classificadores multiclasse

Local com um classificador por nível

Classificadores multiclasse

Ampliando

- Fase de teste/produção
 - Estratégia top-down
- Caso permita-se classificação parcial, podemos usar a confiança do modelo
- A Confiança também pode ser usada para o caso de multirrótulo

Problemas/dificuldades

- Abordagens locais
 - Caminho na árvore
 - se errar em um nível...
 - onde parar?
 - Multirrótulo
 - Problemas da abordagem por nível
- Abordagem global
 - Perda da característica hierárquica
 - Muitas classes

Precisão e revocação hierárquicas

$$P_{H} = \frac{|Ancestral(c_{p}) \cap Ancestral(c_{v})|}{|Ancestral(c_{p})|}$$

$$R_H = \frac{|Ancestral(c_p) \cap Ancestral(c_v)|}{|Ancestral(c_v)|}$$

É isso

