

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Смирнова Анита Андреевна			
Группа	PK6-61			
Тип задания	Лабораторная работа			
Тема лабораторной работы	Многошаговые методы численного решения задачи Коши			
Студент		подпись, дата	Смирнова А.А. фамилия, и.о	
Преподаватель			Соколов П.А.	
		подпись, дата	фамилия, и.о.	
Преподаватель			Першин Ю.А.	
		подпись, дата	фамилия, и.о.	
Ополис				
Преподаватель		подпись, дата	фамилия, и.о Соколов П.А. фамилия, и.о. Першин Ю.А.	

Оглавление

Задание на лабораторную работу	
Цель выполнения лабораторной работы	5
Задачи, выполненные в процессе реализации лабораторной работы	5
Заключение	12
Список использованных источников	12

Задание на лабораторную работу

Многошаговые методы численного решения задачи Коши

При создании численных схем решения дифференциальных уравнений в частных производных дискретизация времени приводит к системе обыкновенных дифференциальных уравнений (ОДУ) с соответствующей задачей Коши. Численные методы решения таких систем можно разделить на одношаговые, использующие информацию только с предыдущего или только с последующего временного шага при нахождении решения на текущем шаге, и многошаговые, использующие информацию с нескольких итераций по времени. Многошаговые методы дополнительно требуют использования одношагового метода для проведения первых итераций, инициализирующих многошаговый метод. В этом задании мы используем метод Адамса—Башфорта 4-го порядка и инициализирующий его метод Рунге—Кутты 4-го порядка для нахождения решения нестационарного уравнения теплопроводности.

Дано нестационарное уравнение теплопроводности:

$$\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = f(x, y), (1)$$

где T=T(x,y,t) – температура в точке (x,y) в момент времени t ,

f(x, y) = 1 - функция тепловых источников, описывающая в данном случае равномерный нагрев. Рассматривается пространство

$$\Omega = \{(x,y) \text{ in } [0; 1] \times [0; 1]\},$$

однородные (т.е. нулевые) граничные условия: T(x,0,t) = T(0,y,t) = T(x,1,t) = T(1,y,t) = 0 и нулевые начальные условия T(x,y,0) = 0.

Требуется:

 Используя результаты лабораторной работы 3 (вариант 2), провести дискретизацию пространства с N = 18 узлами вдоль каждого направления и дискретизацию по времени с шагом Δt, используя метод Адамса—Башфорта 4-го порядка и метод Рунге—Кутты 4-го порядка. Например, для метода Адамса—Башфорта 4-го порядка результатом дискретизации должен быть итерационный метод вида:

$$T_{n+1} = T_n + \Delta t \sum_{k=1}^{4} (a_k A T_{n-k+1} + f(x, y)),$$
 (2)

где A и f(x,y) были выведены в лабораторной работе 3 (вариант 2).

- 2. Написать функцию ab4(), которая проводит одну итерацию метода Адамса—Башфорта 4-го порядка, используя решения системы ОДУ на трех предыдущих итерациях. Аргументы функции следует определить самостоятельно.
- 3. Написать функцию rk4(), которая проводит одну итерацию метода Рунге–Кутты, используя решение системы ОДУ на предыдущей итерации. Аргументы функции следует определить самостоятельно.
- 4. Написать функцию ode_solve(f, t_final, delta_t), которая находит решение ОДУ с правой частью, выраженной функцией f, до момента времени t_final с шагом по времени delta_t, используя метод Рунге–Кутты 4-го порядка для инициализации первых двух шагов и метод Адамса–Башфорта 4-го порядка для дальнейших итераций.
- 5. Проведя несколько вычислительных экспериментов с помощью функции ode_solve(), определить с точностью до порядка максимальное значение Δt , обозначаемое Δt_{max} , при котором решение заданного дифференциального уравнения является неустойчивым. Требуется продемонстрировать неустойчивость решения с помощью графика зависимости температуры, усредненной по области[0; 1]×[0; 1], от времени.
- 6. Используя Δt на порядок меньшее, чем $\Delta \, t_{max}$, построить:

- линии уровня функции T(x,y,t) для нескольких моментов времени, демонстрирующих сходимость решения;
- график зависимости температуры, усредненной по области [0; 1]×[0; 1], от времени.
- 7. Сравнить решение, к которому сходится численное решение заданного дифференциального уравнения, с решением, полученным в лабораторной работе 3 (вариант 2). Сравнив их дополнительно с решением, полученным при шаге Δt_{max} , сделать вывод об устойчивости решения и устойчивости метода.

Цель выполнения лабораторной работы

Реализовать и проанализировать многошаговый метод Адамса–Башфорта, сравнить результаты, получившиеся в лабораторной 3.

Задачи, выполненные в процессе реализации лабораторной работы

1. Уравнение, которое необходимо решить:

$$\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = f(x, y), (1)$$

$$\frac{\partial T}{\partial t} = -\left(-\frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2}\right) + f(x, y) (2)$$

Для решения задачи можно воспользоваться результатами лабораторной работы 3:

$$-\frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = -\frac{AT}{h^2} \quad (3)$$

$$A' = \frac{A}{h^2} \quad (4)$$

$$-\frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = -A'T \quad (5)$$

Тогда в (2) можно подставить (5):

$$\frac{\partial T}{\partial t} = A'T + f(x, y) (6)$$

Для уравнения (6) можно записать метод Адамса–Башфорта 4-го порядка:

$$T_{n+1} = T_n + \Delta t \sum_{j=1}^{4} a_j (A' T_{n-j+1} + f(x, y)), (7)$$

где коэффициенты a_i имеют вид:

$$a_j = \int_{0}^{1} \prod_{j \neq k} \frac{s+k-1}{k-j} ds, j = 1, ...p (8)$$

Из формулы (8) были выведены коэффициенты для метода Адамса—Башфорта 4-го порядка:

$$a_{1} = \int_{0}^{1} \prod_{j \neq k} \frac{s+k-1}{k-1} ds = \int_{0}^{1} \frac{s+2-1}{2-1} \cdot \frac{s+3-1}{3-1} \cdot \frac{s+4-1}{4-1} ds = \int_{0}^{1} \frac{(s+1)\cdot(s+2)\cdot(s+3)}{6} ds = \frac{55}{14}$$

$$a_{2} = \int_{0}^{1} \prod_{j \neq k} \frac{s+k-1}{k-2} ds = \int_{0}^{1} \frac{s+1-1}{1-2} \cdot \frac{s+3-1}{3-2} \cdot \frac{s+4-1}{4-2} ds = \int_{0}^{1} \frac{-s\cdot(s+2)\cdot(s+3)}{2} ds = -\frac{59}{14}$$

$$a_{3} = \int_{0}^{1} \prod_{j \neq k} \frac{s+k-1}{k-3} ds = \int_{0}^{1} \frac{s+1-1}{1-3} \cdot \frac{s+2-1}{2-3} \cdot \frac{s+4-1}{4-3} ds = \int_{0}^{1} \frac{s\cdot(s+1)\cdot(s+3)}{2} ds = \frac{37}{14}$$

$$a_{4} = \int_{0}^{1} \prod_{j \neq k} \frac{s+k-1}{k-4} ds = \int_{0}^{1} \frac{s+1-1}{1-4} \cdot \frac{s+2-1}{2-4} \cdot \frac{s+3-1}{3-4} ds = \int_{0}^{1} \frac{-s\cdot(s+1)\cdot(s+2)}{6} ds = -\frac{3}{8}$$

Метод Рунге-Кутты 4-го порядка можно сформулировать как:

$$T_{0} = \alpha_{0}(9)$$

$$k_{1} = \Delta t \cdot (A'T_{i} + f(x, y)) (10)$$

$$k_{2} = \Delta t \cdot (A'(T_{i} + \frac{1}{2}k_{1}) + f(x, y)) (11)$$

$$k_{3} = \Delta t \cdot (A'(T_{i} + \frac{1}{2}k_{2}) + f(x, y)) (12)$$

$$k_{4} = \Delta t \cdot (A'(T_{i} + k_{3}) + f(x, y)) (13)$$

$$T_{i+1} = T_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), i = 0, 1, ..., m - 1, (14)$$

- 2. С использованием формулы (17) была написана функция ab4(T, f, delta_t,
- і), которая проводит одну итерацию метода Адамса–Башфорта 4-го

порядка, используя решения системы ОДУ на трех предыдущих итерациях. Аргументы функции: номер итеррации і, значении фукции f, массив T, дельта по времени Δt .

- 3. Была написана функция $rk4(T_previous, f, delta_t)$, которая проводит одну итерацию метода Рунге–Кутты, используя решение системы ОДУ на предыдущей итерации. Аргументы функции: значении фукции f, значение температуры $T_previous$ на предыдущей итерации, дельта по времени Δt .
- 4. Была написана функция ode_solve(f, t_final, delta_t), которая находит решение ОДУ с правой частью, выраженной функцией f, до момента времени t_final c шагом по времени delta_t, используя метод Рунге–Кутты 4-го порядка для инициализации первых двух шагов и метод Адамса—Башфорта 4-го порядка для дальнейших итераций.
- 5. Было проведено несколько вычислительных экспериментов с помощью функции ode_solve(). Было определено, что максимальное значение Δt , обозначаемое Δt_{max} , при котором решение заданного дифференциального уравнения является неустойчивым, равно 10^{-3} . Неустойчивость решения демонстрирует график зависимости температуры, усредненной по области [0; 1]×[0; 1], от времени на рис. 1. Для вектора температур в каждый момент времени осуществлялось усреднение сложение всех значений в векторе, после этого деление полученной суммы на количество элементов. Для всех моментов времени из усредненных значений температуры был составлен новый вектор, где і-ый элемент является усредненной температурой в і-ый момент времени.

Рис. 1. График зависимости температуры, усредненной по области $[0;\,1]\times[0;\,1],\, \text{от времени,}\, \Delta t = \Delta\,t_{max} = 10^{-3}\;.$

- 6. Было использовано Δt на порядок меньшее, чем Δt_{max} , равное 10^{-4} .
 - Для такого Δt были построены графики линий уровня функции T(x,y,t) для нескольких моментов времени, демонстрирующих сходимость решения. На рис.2 4 изображены эти графики.

Рис. 2. Линии уровня функции T(x,y,t) в начальное время t=0.

Рис. 3. Линии уровня функции T(x,y,t) при $t=0.4 \cdot t_final$

Рис. 4. Линии уровня функции T(x,y,t) при $t=0.9 \cdot t$ _final

• Для Δt = 10⁻⁴ был построен график зависимости температуры, усредненной по области [0; 1]×[0; 1] от времени. График изображен на рис. 5. Усреднение осуществлялось также, как и для рис. 1.

Рис. 5. График зависимости температуры, усредненной по области $[0;\,1]\times[0;\,1]$, от времени, $\Delta t=10^{-4}$.

7. На рис. 6. изображены линии уровня решения, полученного при шаге Δt_{max} . На рис. 7 изображены результаты лабораторной 3. Из этих графиков можно сделать вывод, что при Δt_{max} решение заданного дифференциального уравнения является неустойчивым, но при $\Delta t < \Delta t_{max}$, результаты совпадают с результатами лабораторной 3.

Рис. 6. Линии уровня решения, полученного при шаге $\Delta \, t_{max}$.

Рис. 7. Линии уровня функции из лабораторной 3.

Заключение

Многошаговый метод Адамса—Башфорта не устойчив при любых Δt , но при подобранном в ходе эксперимента Δt дает устойчивое решение заданного дифференциального уравнения.

Список использованных источников

- 1. Першин А.Ю., Соколов А.П., Вычислительная математика, Лабораторные работ. Учебное пособие. Москва, 2018.
- 2. Першин А.Ю. Лекции по вычислительной математике. Москва, 2019, 143 с.