SevenBridges

Next Generation Sequencing Technologies

Why Sequence the Genome?

What are the benefits of genome sequencing?

Refresher

Central Dogma of Molecular Biology

(proposed by Francis Crick):

DNA Replication: The process by which DNA makes an identical copy of itself.

Transcription: The synthesis of RNA using DNA as a template.

Translation: The synthesis of proteins using the information encoded in mRNA.

Refresher

Sequencing

- What does "sequencing" mean?
- Why sequence?
- Why sequence DNA and RNA?

Why sequence DNA?

BRCA1 and BRCA2 genes (BReast CAncer susceptibility genes) code for proteins that block cell growth when cell is damaged

Do we need computers?

- Human genome is 3 billion bps long
- How many GoT books is that?
 - 3.000 letters per page
 - 1.000 pages per book
- It would take 1.000 GoT books (stack 50m high) to write down a single human genome sequence
- Impossible to analyze manually

The Birth of Sequencing Technologies

The discovery of DNA polymerase, modified nucleotides and the Chain termination method

Crucial Concept: DNA Replication

- 1956 Arthur Kornberg et. al. (New York University)
 - discovered the DNA Polymerase
 - And that polymerase facilitates DNA synthesis
 - zipper molecule

DNA Replication

PCR Primers

DNA Replication

PCR: Polymerase Chain Reaction

- DNA Polymerase Chain Reaction (PCR) chemistry based on thermo cycling; acute and repeated i.e. cyclic temperature fluctuations for denaturation and hybridization of complementary strands of DNA
- Taq Polymerase Thermus Aquaticus
 - Not human polymerase
 - Taq is more temperature resistant to high denaturation temperatures of thermocycler

Thermus Aquaticus

© 2017 Seven Bridges sevenbridges.com

PCR: Polymerase Chain Reaction

PCR: Polymerase Chain Reaction

© 2017 Seven Bridges sevenbridges.com

Sanger sequencing

- Also known as chain termination sequencing and sequencing by capillary electrophoresis
- Developed by Frederick Sanger in the late 1970s
- Played a crucial role in DNA sequencing projects, including the Human Genome Project

Sanger sequencing

Sanger sequencing example

ACTAGCTATGATCGAT

Sanger sequencing

Gel Electrophoresis

Gel Electrophoresis (Creating a DNA Profile)

© 2017 Seven Bridges sevenbridges.com

Sanger sequencing

Sanger sequencing

Sequencing Trends

Figure 1: Sequencing Cost and Data Output Since 2000—The dramatic rise of data output and concurrent falling cost of sequencing since 2000. The Y-axes on both sides of the graph are logarithmic.

The Birth of Next Generation Sequencing Technologies

DNA polymerase in the sequencing by synthesis approach

lumina®

Illumina Library Prep

TruSeq PCR Free

Illumina library prep

Illumina flow cell

Illumina flow cell

Cluster Amplification

Illumina sequencing

Illumina sequencing: Paired ends

Figure 4: Paired-End Sequencing and Alignment—Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.

Recording called bases or reads

The FASTQ file format

Image processing

- Sequencing produces high-resolution TIFF images
- 100 tiles per lane, 8 lanes per flow cell, 100 cycles
- 4 images (A,G,C,T) per tile per cycle = 320,000 images
- Each TIFF image ~ 7Mb = 2,240,000 Mb of data (2.24TB)

Base calling - uses cluster intensities and noise estimate to output the sequence of bases read from each cluster, along with a confidence level for each base.

Phred Scoring

Quality score interpretation

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1000	99.9%		
40	1 in 10000	99.99%		
50	1 in 100000	99.999%		

Materials from Wikepedia

ASCII Base + 33 encoding

ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger											
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58:	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

© 2017 Seven Bridges sevenbridges.co

FASTQ file format

FASTQ - Analysis

Per Base Sequence Quality

Other NGS Technologies

Nanopore sequencing

SMRT/ZMV Sequencing

Oxford Nanopore MinION

MinION in Space Video

© 2017 Seven Bridges sevenbridges.com

© 2016 Seven Bridges sevenbridges.co

<u>Rosalind</u>

Counting DNA Nucleotides

Transcribing DNA into RNA

Complementing a Strand of DNA

Parsing FASTQ file assignment:

- Count the number of reads
- Calculate average read quality
- Calculate per base average quality
- Create histogram of average read quality
- Create histogram of read quality per base

© 2017 Seven Bridges sevenbridges.co

Resources

- Useful Genetics, https://www.youtube.com/channel/UCtXCrx28msMBQ-vFUIOIReA
- Codecademy, http://www.codeacademy.com
- Illumina inc., https://www.youtube.com/channel/UCxWMU29FF4klG8YmQf6Zv0q
- AWS https://aws.amazon.com/documentation/ec2/
- Ion Torrent sequencing, Thermo Fisher Sci., Life Tech., https://www.youtube.com/user/LifeTechnologiesCorp
- Oxford Nanopore, https://www.youtube.com/channel/UC5yMIYjHSqFfZ37LYq-dziq
- PacBio, https://www.youtube.com/user/PacificBiosciences
- IPython, virtualenv, virtualenvwrapper
- Jupyter Notebook
- nbviewer, http://nbviewer.ipython.org/
- Sequencing, <u>http://mol-biol4masters.masters.grkraj.org/html/Genetic_Engineering5A-DNA_Synthesis_&_Sequencing.htm</u>