Leçon 214 : Théorème d'inversion locale, théorème des ofnctions implicites. Exemples et applications en analyse et géométrie

!!!Mettre les énoncés en dimension finie si les applications ne sont qu'en dimension finie!!!

Développements :

Surjectivité de l'exponentielle Théorème des extrema liés

Bibliographie:

Lafontaine, Rouvière, OA, (Gourdon)

Plan

Définition 1 (Rouv p .54 ou Laf p.21). Difféomorphisme

Remarque 2 (Laf p.21). Dans ce cas la différentielle est une bijection. On va voir que la réciproque n'est pas vraie, (vraie seulement localement)

1 Théorème d'inversion locale

1.1 Enoncé

Théorème 3 (Rouv p.188). TIL + dessin

Contre-exemple 4 (Rouv ex 63). La ccl est uniquement locale

Contre-exemple 5 (Rouv ex 63). L'hypothèse C^1 est nécessaire

Théorème 6 (Rouv p. 190). Thm d'inversion globale

Remarque 7. Plus difficile à utiliser que le théorème d'inversion locale car il faut vérifier l'injectivité

Théorème 8 (Rouv p.191). Hadamard-Lévy??(thm difficile)

1.2 Applications

1.2.1 Montrer qu'un ensemble est ouvert

Proposition 9. Exp est un diffeo local au voisinage de 0

Théorème 10. Surjectivité de l'exponentielle

1.2.2 Immersion, submersion

Définition 11 (Laf p.26). Immersion

Théorème 12 (Laf p. 25 et Rouv ex 73). Immersion à difféo près +dessin

Remarque 13 (Laf p.25). Existence d'un inverse à gauche

Définition 14 (Laf p.26). Submersion

Théorème 15 (Laf p. 26 et Rouv ex 72). Submersion à difféo près +dessin

Remarque 16 (Laf p.26). Existence d'un inverse à droite

Application 17 (Rouv ex 72). [A travailler!] Equation aux dérivées partielles

Théorème 18 (Laf ex 10 ou Rouv ex 74). Thm du rang cst

1.2.3 Réduction des formes quadratiques

Proposition 19 (Rouv ex 66). Réduction des formes quadratiques

Théorème 20 (Rouv ex 114). Lemme de Morse

2 Théorème des fonctions implicites

2.1 Enoncé

Théorème 21 (Rouv p.192). TFI + dessin

Exemple 22 (Rouv p.193). cercle

Proposition 23 (Rouv p.194). Différentielle de la fonction implicite

Exemple 24 (Rouv p.194). cercle (suite)

Exemple 25 (OA p.11). Racine k-ème d'une matrice

2.2 Applications

2.2.1 Equation paramétrique et tangente

Application 26 (Rouv ex 76). Folium de Descartes

2.2.2 Polynômes et équations

Application 27 (OA p.11). Régularité d'une racine simple d'un polynôme

Application 28 (Rouv ex 78). [Peut être un peu long...] Polynomes et discriminant

Application 29 (Rouv ex 79). Asymptotique des racines d'un polynômes

Application 30 (Rouv ex 81). Montrer que des solutions obtenues par thm de points fixes sont C^{∞}

2.2.3 Extrema liés

Théorème 31 (OA p.20). Théorème des extrema liés

Application 32 (Gour ex 4 p.319). Inégalité arithmético-géométrique

Application 33 (OA p.21). Diagonalisation des endomorphismes symétriques

Application 34 (OA p.35). $SO_n(\mathbb{R})$

3 Sous variétés

3.1 Définitions équivalentes

Définition 35 (Laf p.27). Sous variété avec un difféo +dessin

Théorème 36 (Laf p.28). Définitions équivalentes d'une sous variété

Exemple 37 (Laf p.30 et Rouv ex 94+p.199). [avec submersion] Sphère, SL_n , groupe orthogonal

Exemple 38 (Cours K.Beauchard). les 4 définition sappliquées à la parabole $y=x^2$, ou la sphère

Contre-exemple 39 (Laf p.31 et Rouv ex 88). Le cône de révolution n'est pas une sous-variété.

Autres c-ex Ex 88 Rouv

3.2 Espaces tangents

Définition 40 (Laf p.32). Vecteur tangent

Proposition 41 (Laf p.33). L'ens des vecteurs tangents forment un ev

Définition 42 (Laf p.33). Espace tangent

Théorème 43 (Laf p.33 ou Rouv p.201). Définitions équivalentes de l'espace tangent

Remarque 44. Autre démo du thm des extrema liés

Exemple 45 (Rouv ex 94). Espace tangent de SL_n et O_n

Exemple 46 (Laf p.34). Equation du plan tangent pour une surface de \mathbb{R}^3