Homework Set 5

Jacob Bailey

March 2, 2020

1 Problem 1

Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are "eventually zero," that is, all sequences $(x_1, x_2, ...)$ such that $x_i \neq 0$ for only finitely many values of i. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the box and product topologies? Justify your answer.

2 Problem 2

Given sequences $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of real numbers with $a_i > 0$ for all i, define $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by the equation

$$h((x_1, x_2, \ldots)) = (a_{1x1} + b_1, a_{2x2} + b + 2, \ldots). \tag{1}$$

Show that if \mathbb{R}^{ω} is given the product topology, h is a homeomorphism of \mathbb{R}^{ω} and itself. What happens if \mathbb{R}^{ω} is given the box topology?

Proof. Let \mathbb{R}^{ω} have the product topology, and h be as defined aboved. If we know the sequences of a_i and b_i , we can define a function $h^{-1}((x_1, x_2, \ldots)) = ((x_1 - b_1)/a_1, (x_2 - b_2)/a_2, \ldots)$. Since all a_i are assumed to be greater than zero, and thus nonzero, h^{-1} is obviously continuous. Since h is similarly continuous, we have that it is a bijection with a continuous inverse between \mathbb{R}^{ω} and itself, i.e. a homeomorphism.

If we instead give \mathbb{R}^{ω} the box topology, the result is unchaged.

3 Problem 3

Prove that if (X, d) is a metric space and X has the topology induced by d, then $d: X \times X \to [0, \infty)$ is continuous, where $X \times X$ has the product topology.

Proof. Let X be a metric space, with d a metric, and let $X \times X$ have the product topology. Call the interval $A = [0, \infty)$, and let $U \subseteq A$ be an open subset. Then, $d^{-1}(U)$ is of the form $\bigcup_{x \in X} \{x\} \times V_x$, where $V_x \subseteq X$ is a an open subset of X whose points are less than $a \in U$ (and greater than 0) in distance from the point x. The union of each of these V_x is obviously X, as is the union of the $\{x\}$. $X \times X$ is open in the product topology. We have considered all of the open sets in A, as the point d = 0 cannot be in an open set (I've assumed the standard topology in \mathbb{R}). d is continuous.

4 Problem 4

Show that \mathbb{R}_l and the ordered square satisfy the first countability axiom. (This does not, of course, imply that they are metrizable).

Proof. Let $x \in \mathbb{R}_l$. Then, we construct a countable collection of neighborhoods of x as $V_n = [x - 1/n, x + 1/n), \forall n \in \mathbb{N}$. It is clear from the axiom of completeness (eq. the nested interval principle, the continuum hypothesis, etc) that for any neighborhood U of x we choose, we can always find an $n \in \mathbb{N}$ such that $\{V_i\}_{i\geq n}$ are all contained within U. An almost identical argument holds for the ordered square.

5 Problem 5

Show that the axiom of choice is equivalent to the statement that for any indexed family $\{A_{\alpha}\}_{{\alpha}\in J}$ of nonempty sets, with $J\neq\emptyset$, the Cartesian product $\prod_{{\alpha}\in J}A_{\alpha}$ is not empty.

Proof. First, we define the axiom of choice as the statement that "For every indexed family $A_{\alpha} \in J$ of nonempty sets, there exists an indexed family $x_{\alpha} \in J$ of elements such that $x_{\alpha} \in A_{\alpha}$ for every $\alpha \in J$."

Next, we let J be an index, such that $J \neq \emptyset$. Consider the Cartesian product $\prod_{\alpha \in J} A_{\alpha}$. By the axiom of choice above, we have that there exists a set of elements $(x_{\alpha})_{\alpha \in J}$, such that $x_{\alpha} \in A_{\alpha}$ for each α . Thus, the Cartesian product cannot be empty.

Note: The definition I use above for the axiom of choice can be found at https://en.wikipedia.org/wiki/Axiom_of_choice. It was significantly easier to use here than the version presented in Munkres' text.