# Elliptic curves with complex multiplication (CM) and class field theory

Asimina S. Hamakiotes

University of Connecticut

Oct. 16 2023

#### Introduction

How do we build abelian extensions of number fields? Our goal:

#### Theorem

Let K be an imaginary quadratic field with ring of integers  $\mathcal{O}_K$ . Let E be an elliptic curve with  $\operatorname{End}(E) \cong \mathcal{O}_K$  and let  $\mathfrak{c} \subset \mathcal{O}_K$  be a nonzero ideal. Let h be a Weber function for E/K(j(E)). Then

- (1) K(j(E)) is the Hilbert class field of K,
- (2)  $K(j(E), E_{tors})$  is an abelian extension of K(j(E)),
- (3) K(j(E), h(E[c])) is the ray class field of K modulo c,
- (4)  $K(j(E), h(E_{tors}))$  is the maximal abelian extension of K.

## Background

Let K be a totally complex number field and let L be a finite abelian extension of K, i.e., L/K is Galois with abelian Galois group.

Let  $\mathcal{O}_K$  and  $\mathcal{O}_L$  be the rings of integers of K and L.

Let  $\mathfrak p$  be a prime of K unramified in L and  $\mathfrak P$  be a prime of L over  $\mathfrak p$ .



We have the homomorphism

$$\begin{split} \{\sigma \in \mathsf{Gal}(L/K) : \sigma(\mathfrak{P}) = \mathfrak{P}\} &\to \mathsf{Gal}((\mathcal{O}_L/\mathfrak{P})/(\mathcal{O}_K/\mathfrak{p})), \\ \sigma &\mapsto (\overline{x} \mapsto \overline{\sigma(x)}) \end{split}$$

where the Galois group of residue fields is cyclic, generated by the Frobenius automorphism  $x \mapsto x^{N(\mathfrak{p})}$  for  $x \in \mathcal{O}_L/\mathfrak{P}$ .

## Artin map

When  $\mathfrak p$  in K is unramified in L, there is a unique  $\sigma_{\mathfrak p} \in \operatorname{Gal}(L/K)$  which maps to the Frobenius of  $\mathfrak P$  over  $\mathfrak p$ , determined by the condition

$$\sigma_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \mod \mathfrak{P}$$
 for all  $x \in \mathcal{O}_L$ .

Let  $\mathfrak c$  be an integral ideal of K divisible by all primes that ramify in L/K and  $I(\mathfrak c)$  be the group of fractional ideals of K relatively prime to  $\mathfrak c$ .

The Artin map  $(\cdot, L/K): I(\mathfrak{c}) \to \mathsf{Gal}(L/K)$ , sends each  $\mathfrak{a} \in I(\mathfrak{c})$  to

$$(\mathfrak{a}, L/K) = \left(\prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}, L/K\right) := \prod_{\mathfrak{p}} \sigma_{\mathfrak{p}}^{n_{\mathfrak{p}}}.$$

In other words, each prime  $\mathfrak{p} \nmid \mathfrak{c}$  goes to  $\sigma_{\mathfrak{p}}$  and extend this multiplicatively. Note: the Artin map is surjective.

## Artin reciprocity and conductor

## Theorem (Artin Reciprocity)

Let L/K be a finite abelian extension of number fields. If an ideal  $\mathfrak{c} \subset \mathcal{O}_K$  is sufficiently divisible by the primes of K that ramify in L, then

$$((\alpha), L/K) = 1$$
 for all  $\alpha \in K^*$  satisfying  $\alpha \equiv 1 \mod \mathfrak{c}$ .

When  $\mathfrak{c}=\prod_{\mathfrak{p}}\mathfrak{p}^{e_{\mathfrak{p}}}$ , the condition " $\alpha\equiv 1$  mod  $\mathfrak{c}$ " means for each  $\mathfrak{p}\mid\mathfrak{c}$  that

$$\operatorname{ord}_{\mathfrak{p}}(\alpha-1)\geq e_{\mathfrak{p}}.$$

If the above is true for integral ideals  $\mathfrak{c}_1$  and  $\mathfrak{c}_2$ , then it also true for  $\mathfrak{c}_1+\mathfrak{c}_2$ . Therefore, there is a largest ideal  $\mathfrak{c}_{L/K}$  for which the above is true, and we call this ideal the *conductor* of the abelian extension L/K.

<u>Note:</u> all primes in K ramifying in L divide  $\mathfrak{c}_{L/K}$ .

# Principal fractional ideals

We define the group of principal fractional ideals that are 1 modulo  $\mathfrak c$  as

$$P(\mathfrak{c}) = \{(\alpha) : \alpha \in K^*, \alpha \equiv 1 \mod \mathfrak{c}\}.$$

Note: an ideal  $(\alpha)$  may be in  $P(\mathfrak{c})$  even if  $\alpha \not\equiv 1 \mod \mathfrak{c}$ , as long as there exists some unit  $u \in \mathcal{O}_K^*$  such that  $u\alpha \equiv 1 \mod \mathfrak{c}$ .

### Example

Let  $K = \mathbb{Q}$ , so  $\mathcal{O}_K = \mathbb{Z}$ . Consider

$$P((6)) = \{(\alpha) : \alpha \in \mathbb{Q}^*, \alpha \equiv 1 \mod 6\}.$$

Observe that

$$5 \not\equiv 1 \bmod 6$$
,

but  $(5) \in P((6))$ , because (5) = (-5) as ideals and

$$-5 \equiv 1 \mod 6$$
.

## Kernel of the Artin map

Artin reciprocity tells us that for appropriate  $\mathfrak{c}$ , the kernel of the Artin map contains  $P(\mathfrak{c})$ :

$$(\alpha) \in P(\mathfrak{c}_{L/K}) \Rightarrow ((\alpha), L/K) = 1.$$

Let  $\mathfrak{p}$  be a prime of K which is unramified in L. Then

 $\mathfrak p$  splits completely in  $L\Leftrightarrow$  the extension of residue fields has degree 1,  $\Leftrightarrow (\mathfrak p,L/K)=1.$ 

Thus, when  $\mathfrak{c}=\mathfrak{c}_{L/K}$ , the unramified prime ideals in the kernel of the Artin map on  $I(\mathfrak{c})$  are precisely the primes of K that split completely in L.

The kernel of the Artin map is  $N_c(L/K)P(c)$ , where

$$\textit{N}_{\text{c}}(\textit{L/K}) = \{\mathfrak{a} \subset \textit{K} : \mathfrak{a} = \textit{N}_{\textit{L/K}}(\mathfrak{A}) \text{ for some frac. ideal } \mathfrak{A} \text{ in } \textit{L}, \ \mathfrak{a} \in \textit{I}(\mathfrak{c})\}.$$

When  $\mathfrak{c}=(1)$ , the kernel of the Artin map is  $N_{(1)}(L/K)P((1))=P((1))$ , which is all principal fractional ideals.

# Ray class field definition

#### Definition

Let  $\mathfrak c$  be an integral ideal of K. The ray class field of K modulo  $\mathfrak c$  is a finite abelian extension  $K_{\mathfrak c}/K$  with the property that for any finite abelian extension L/K,

$$\mathfrak{c}_{L/K} \mid \mathfrak{c} \Rightarrow L \subset K_{\mathfrak{c}}.$$

Intuitively, the ray class field  $K_{\mathfrak{c}}$  is the "largest" abelian extension of conductor dividing  $\mathfrak{c}$  (the conductor need not be  $\mathfrak{c}$ ).

# Ray class field definition

When L/K is Galois, the set Spl(L/K) of primes in K that split in L has density 1/[L:K].

## Theorem (Bauer)

Let  $L_1$  and  $L_2$  be finite Galois extensions of a number field K. Then

$$L_1 \subset L_2 \iff \operatorname{\mathsf{Spl}}(L_2/K) \subset \operatorname{\mathsf{Spl}}(L_1/K).$$

In particular,  $L_1 = L_2$  if and only if  $Spl(L_1/K) = Spl(L_2/K)$ .

#### Proposition

The ray class field of K modulo  $\mathfrak{c}$ , denoted  $K_{\mathfrak{c}}$ , is the finite abelian extension of K such that

$$\mathsf{Spl}(K_{\mathfrak{c}}/K) = \{\mathfrak{p} = (\alpha) : \alpha \equiv 1 \bmod \mathfrak{c}\},\$$

where  $Spl(K_c/K)$  is the set of primes in K that split completely in  $K_c$ .

# Ray class field example

#### Example

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . We will show the ray class field of  $\mathbb{Q}(i)$  modulo  $(4) = (1+i)^4$  is  $\mathbb{Q}(i,\sqrt{2}) = \mathbb{Q}(\zeta_8)$ .

To prove this, we will check that for  $\mathfrak{p}\subset\mathcal{O}_K$  such that  $\mathfrak{p}\nmid (1+i)^4$ ,

$$\mathfrak{p} \in \mathsf{Spl}(\mathbb{Q}(i)_{(4)}/\mathbb{Q}(i)) \iff \mathfrak{p} = (\pi) \text{ such that } \pi \equiv 1 \bmod (1+i)^4.$$

 $\operatorname{Spl}(\mathbb{Q}(i)_{(4)}/\mathbb{Q}(i))$  includes all ideals (p) for prime  $p \in \mathbb{Z}^+$  such that  $p \equiv 3 \mod 4$ , since (p) = (-p) and  $-p \equiv 1 \mod 4$ .

A Gaussian prime  $(\pi)$  lying over a prime number that's 1 mod 4 might not have a generator that is 1 mod 4. For example,  $(\pi) = (1+2i)$ .

Note  $(\mathbb{Z}[i]/(1+i)^4)^* = \{\pm 1, \pm i, \pm 1 + 2i, 2 \pm i \mod (1+i)^4\}$ . Of these, only  $\{\pm 1, \pm i \mod (1+i)^4\}$  can contain generators of prime ideals that are 1 mod 4, so only 4/8 = 1/2 of Gaussian primes split in  $\mathbb{Q}(i, \sqrt{2})$ .

# Ray class field example

### Example (cont'd)

Since half the prime ideals in  $\mathbb{Z}[i]$  split completely in  $\mathbb{Q}(i)_{(4)}$ , the set of Gaussian primes that split in  $\mathbb{Q}(i)_{(4)}$  has density 1/2, so

$$\frac{1}{[\mathbb{Q}(i)_{(4)}:\mathbb{Q}(i)]} = \frac{1}{2} \quad \Longrightarrow \quad [\mathbb{Q}(i)_{(4)}:\mathbb{Q}(i)] = 2.$$

We want to show  $\mathbb{Q}(i)_{(4)} = \mathbb{Q}(i, \sqrt{2})$  is the correct quadratic extension.

Since  $\mathbb{Q}(i,\sqrt{2}) = \mathbb{Q}(i,\sqrt{i})$ , for odd prime  $(\pi)$  in  $\mathbb{Z}[i]$ , one can show

$$\pi \equiv 1 \mod (4) \implies (\pi) \text{ splits in } \mathbb{Q}(i, \sqrt{2}),$$
 $\iff x^2 - i \mod \pi \text{ splits},$ 
 $\iff N(\pi) \equiv 1 \mod 8.$ 

Thus, by Bauer's theorem,  $\mathbb{Q}(i,\sqrt{2})$  is the ray class field of  $\mathbb{Q}(i)_{(4)}$ .

# Hilbert class field definition

## Definition

The ray class field of K modulo (1) is the maximal abelian extension of K unramified at all primes in K. We call it the *Hilbert class field of* K and denote it by  $H = K_{(1)}$ .

#### Observe that

$$I((1)) = \{\text{all nonzero fractional ideals of } K\},\$$
  
 $P((1)) = \{\text{all nonzero principal ideals of } K\},\$ 

and  $I((1))/P((1)) \cong \mathcal{CL}(\mathcal{O}_K)$  by definition. Thus, the Artin map on I((1)) induces the following isomorphism

$$(\cdot,H/K): \mathcal{CL}(\mathcal{O}_K) o \mathsf{Gal}(H/K).$$

# Theorem (Dirichlet's Theorem on primes in arithmetic progression)

Let K be a number field and  $\mathfrak c$  an integral ideal of K. Then every ideal class in  $I(\mathfrak c)/P(\mathfrak c)$  contains infinitely many degree 1 primes of K.

# Hilbert class field example

## Example (Hilbert class field of $K = \mathbb{Q}(\sqrt{-5})$ )

Observe that  $K = \mathbb{Q}(\sqrt{-5})$  has class number 2, so the Hilbert class field H of K must be a degree 2 extension of K. In fact,  $H = \mathbb{Q}(\sqrt{-5}, i)$ .



- Only 2 and 5 ramify in  $\mathbb{Q}(\sqrt{-5})$  (disc = -20)
- Only 5 ramifies in  $\mathbb{Q}(\sqrt{5})$  (disc = 5)
- Only 2 ramifies in  $\mathbb{Q}(i)$  (disc = -4)

# Hilbert class field example

## Example (cont'd)

Since  $[\mathbb{Q}(\sqrt{-5},i):\mathbb{Q}]=4$ , we have that 4=efg, where e is the ramification index, f is the degree of the residue field, and g is the number of distinct prime factors.

Therefore, we conclude that the primes  $(2, 1 + \sqrt{-5})$  and  $(\sqrt{-5})$  are unramified in  $\mathbb{Q}(\sqrt{-5}, i)$ . Thus, it is the Hilbert class field of  $\mathbb{Q}(\sqrt{-5})$ .

# Hilbert class field

## Theorem (1)

Let  $K/\mathbb{Q}$  be an imaginary quadratic field with ring of integers  $\mathcal{O}_K$ , and let  $E/\mathbb{C}$  be an elliptic curve with  $\operatorname{End}(E) \cong \mathcal{O}_K$ . Then K(j(E)) is the Hilbert class field H of K.

#### Example

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q}$ :  $y^2 = x^3 - x$  (32.a3) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

By Theorem (1), the Hilbert class field of  $\mathbb{Q}(i)$  is

$$H = K(j(E)) = \mathbb{Q}(i)(1728) = \mathbb{Q}(i).$$

Also, observe that  $[K(j(E)) : K] = [\mathbb{Q}(i) : \mathbb{Q}(i)] = 1$ , which is the class number of K.

# Hilbert class field

#### Example

Let  $K = \mathbb{Q}(\sqrt{-5})$ , so  $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ .

Let  $\phi = \frac{1+\sqrt{5}}{2}$ , which has minimal polynomial  $x^2 - x - 1$ .

The elliptic curve  $E/\mathbb{Q}(\sqrt{5})$  given by (4096.1-k1)

$$y^2 = x^3 - \phi x^2 + (-\phi - 9)x - 6\phi - 15$$

has CM by  $\mathcal{O}_{K}$ , with  $j(E) = -565760\phi + 914880$ .

By Theorem (1), the Hilbert class field H of K is

$$K(j(E)) = \mathbb{Q}(\sqrt{-5})(-565760\phi + 914880) = \mathbb{Q}(\sqrt{-5}, \sqrt{5}) = \mathbb{Q}(i, \sqrt{-5}).$$

Indeed,  $H=\mathbb{Q}(i,\sqrt{-5})$  is the Hilbert class field of  $K=\mathbb{Q}(\sqrt{-5})$ .

Also, observe that  $[K(j(E)) : K] = [\mathbb{Q}(i, \sqrt{-5}) : \mathbb{Q}(\sqrt{-5})] = 2$ , which is the class number of K.

# Elliptic curves with complex multiplication

Let K be an imaginary quadratic field and let  $E/\mathbb{C}$  be an elliptic curve with complex multiplication by  $\mathcal{O}_K$ , i.e.,  $\operatorname{End}(E) \cong \mathcal{O}_K$ .

Then there is a lattice  $\Lambda\subset\mathbb{C}$  such that  $E(\mathbb{C})\cong\mathbb{C}/\Lambda\coloneqq E_\Lambda$  and

$$\operatorname{End}(E_{\Lambda}) = \{ \alpha \in \mathbb{C} : \alpha \Lambda \subset \Lambda \} = \mathcal{O}_{K}.$$

If  $\mathfrak a$  is a fractional ideal of  $\mathcal O_K$ , then  $\mathfrak a$  is a lattice in  $\mathbb C$  and we can form  $E_{\mathfrak a}:=\mathbb C/\mathfrak a$ , with

$$\mathsf{End}(E_{\mathfrak{a}}) \cong \{\alpha \in \mathbb{C} : \alpha \mathfrak{a} \subset \mathfrak{a}\} = \{\alpha \in K : \alpha \mathfrak{a} \subset \mathfrak{a}\} = \mathcal{O}_K.$$

#### Example

If E has CM by  $\mathbb{Z}[\sqrt{-5}]$ , then  $E_{\mathfrak{a}} \coloneqq \mathbb{C}/\mathfrak{a}$ , where  $\mathfrak{a}$  is an ideal in  $\mathbb{Z}[\sqrt{-5}]$  are all elliptic curves with CM by  $\mathbb{Z}[\sqrt{-5}]$ .

It turns out that  $E_{\mathfrak{a}\Lambda} \cong E_{\mathfrak{b}\Lambda} \iff \overline{\mathfrak{a}} = \overline{\mathfrak{b}} \text{ in } \mathfrak{CL}(\mathcal{O}_K)$ , so we can define  $\overline{\mathfrak{a}} * E_{\Lambda} = E_{\mathfrak{a}^{-1}\Lambda}.$ 

# Background

## Proposition

Let  $K/\mathbb{Q}$  be an imaginary quadratic field. There exists a homomorphism

$$F: \mathsf{Gal}(\bar{K}/K) 
ightarrow \mathfrak{CL}(\mathcal{O}_K)$$

uniquely characterized by the condition

$$E^{\sigma} = F(\sigma) * E \quad \text{for all } \sigma \in \mathsf{Gal}(\bar{K}/K) \text{ and all } E \in \mathcal{ELL}_{\overline{\mathbb{Q}}}(\mathcal{O}_K),$$

where for a lattice  $\Lambda$  with endomorphism ring  $\mathcal{O}_K$ , the \* action is

$$\mathfrak{a} * E_{\Lambda} = E_{\mathfrak{a}^{-1}\Lambda}.$$

The kernel of F is a finite quotient of  $\operatorname{Gal}(\bar{K}/K)$ , since any E will be defined over some finite extension L/K and  $F(\sigma) = [1]$  for  $\sigma \in \operatorname{Gal}(\bar{K}/L)$ . Since  $\operatorname{CL}(\mathcal{O}_K)$  is an abelian group, F factors through

$$F: \operatorname{\mathsf{Gal}}(\overline{K}/K) o \operatorname{\mathsf{Gal}}(K^{\operatorname{\mathsf{ab}}}/K) o \operatorname{\mathsf{CL}}(\mathcal{O}_K),$$

where  $K^{ab}$  is the maximal abelian extension of K.

**<u>Proof:</u>** Let L/K be the finite extension corresponding to the homomorphism

$$F: \mathsf{Gal}(\bar{K}/K) \to \mathfrak{CL}(\mathcal{O}_K),$$

by which we mean that L is the fixed field of the kernel of F. Then

$$\begin{aligned} \operatorname{\mathsf{Gal}}(\bar{K}/L) &= \ker F, \\ &= \{\sigma \in \operatorname{\mathsf{Gal}}(\bar{K}/K) : F(\sigma) = [1]\}, \\ &= \{\sigma \in \operatorname{\mathsf{Gal}}(\bar{K}/K) : F(\sigma) * E = E\}, \\ &= \{\sigma \in \operatorname{\mathsf{Gal}}(\bar{K}/K) : E^{\sigma} = E\}, \\ &= \{\sigma \in \operatorname{\mathsf{Gal}}(\bar{K}/K) : j(E^{\sigma}) = j(E)\}, \\ &= \{\sigma \in \operatorname{\mathsf{Gal}}(\bar{K}/K) : j(E)^{\sigma} = j(E)\}, \\ &= \operatorname{\mathsf{Gal}}(\bar{K}/K(j(E))). \end{aligned}$$

Therefore, L = K(j(E)).

Since  $Gal(\overline{K}/K)/\ker F = Gal(L/K)$  injects into  $\mathcal{CL}(\mathcal{O}_K)$ , L/K is an abelian extension. Thus, L = K(j(E)) is an abelian extension of K.

**<u>Proof cont'd:</u>** Let  $\mathfrak{c}_{L/K}$  be the conductor of L/K, and consider the composition of the Artin map with F,

$$I(\mathfrak{c}_{L/K}) \xrightarrow{(\cdot, L/K)} \operatorname{Gal}(L/K) \xrightarrow{F} \mathfrak{CL}(\mathcal{O}_K).$$

We want to show that this composition is just the natural projection of  $I(\mathfrak{c}_{L/K})$  onto  $\mathfrak{CL}(\mathcal{O}_K)$ , i.e.,

$$F((\mathfrak{a}, L/K)) = [\mathfrak{a}]$$
 for all  $\mathfrak{a} \in I(\mathfrak{c}_{L/K})$ .

## Proposition (1)

There is a finite set of rational primes  $S \subset \mathbb{Z}$  such that if  $p \notin S$  is a prime which splits in K, say  $p\mathcal{O}_K = \mathfrak{pp}'$ , then

$$F(\sigma_{\mathfrak{p}}) = [\mathfrak{p}] \in \mathfrak{CL}(\mathcal{O}_K).$$

**<u>Proof cont'd:</u>** Let  $\mathfrak{a} \in I(\mathfrak{c}_{L/K})$ , and let S be the finite set of primes described in Prop. (1).

From Dirichlet's theorem, there exists a degree 1 prime  $\mathfrak{p} \in I(\mathfrak{c}_{L/K})$  in the same class of  $I(\mathfrak{c}_{L/K})/P(\mathfrak{c}_{L/K})$  as  $\mathfrak{a}$  and not lying over a prime in S, i.e., there is an  $\alpha \in K^*$  satisfying

$$\alpha \equiv 1 \mod \mathfrak{c}_{L/K}$$
 and  $\mathfrak{a} = (\alpha)\mathfrak{p}$ .

Using the above, we can compute the following:

$$F((\mathfrak{a}, L/K)) = F(((\alpha)\mathfrak{p}, L/K)),$$

$$= F((\mathfrak{p}, L/K)),$$

$$= [\mathfrak{p}],$$

$$= [\mathfrak{a}].$$

Thus, we have shown that  $F((\mathfrak{a}, L/K)) = [\mathfrak{a}]$ , i.e., the composition of the Artin map and F is just the natural projection of  $I(\mathfrak{c}_{L/K})$  onto  $\mathfrak{CL}(\mathcal{O}_K)$ .

#### Proof cont'd: It follows that

$$F(((\alpha), L/K)) = 1$$
 for all principal ideals  $(\alpha) \in I(\mathfrak{c}_{L/K})$ ,

not just the principal ideals with a generator congruent to 1 modulo  $\mathfrak{c}_{L/K}$ . Recall that  $F: \operatorname{Gal}(L/K) \to \mathcal{CL}(\mathcal{O}_K)$  is injective. This implies that

$$((\alpha), L/K) = 1$$
 for all  $(\alpha) \in I(\mathfrak{c}_{L/K})$ .

But the conductor of L/K is the largest integral ideal  $\mathfrak c$  such that

$$\alpha \equiv 1 \mod \mathfrak{c} \implies ((\alpha), L/K) = 1.$$

Thus,  $\mathfrak{c}_{L/K}=(1)$ . The conductor is divisible by every prime that ramifies, and since  $\mathfrak{c}_{L/K}=(1)$ , L/K is everywhere unramified.

Therefore, L = K(j(E)) is contained in the Hilbert class field H of K.

**Proof cont'd:** On the other hand, the natural map

$$I(\mathfrak{c}_{L/K}) = I((1)) \to \mathfrak{CL}(\mathcal{O}_K)$$

is surjective, which implies that  $F: \operatorname{Gal}(L/K) \to \operatorname{\mathcal{CL}}(\mathcal{O}_K)$  is surjective. Therefore, F is an isomorphism. It follows that

$$[L:K] = \#\operatorname{Gal}(L/K) = \#\operatorname{CL}(\mathcal{O}_K) = \#\operatorname{Gal}(H/K) = [H:K].$$

Since we already showed that  $L \subset H$ , this proves that L = H.

Therefore, H = K(j(E)) is the Hilbert class field of K.

**Remark:** The equality above also proves that  $[K(j(E)) : K] = h_K$ , where  $h_K = \#\mathcal{CL}(\mathcal{O}_K)$ .

## Abelian extension of the Hilbert class field

## Theorem (2)

Let  $E/\mathbb{C}$  be an elliptic curve with CM by the ring of integers  $\mathcal{O}_K$  of the imaginary quadratic field K, and let

$$L = K(j(E), E_{tors})$$

be the field generated by the j-invariant of E and the coordinates of all of the torsion points of E. Then L is an abelian extension of K(j(E)).

**Rk 1:** In general, L will not be an abelian extension of K, only K(j(E)).

**Rk 2:** The extension  $\mathbb{Q}(j(E), E_{tors})/\mathbb{Q}(j(E))$  is never abelian. See "Elliptic curves with complex multiplication and abelian division fields" by H. and Lozano-Robledo.

# Abelian extension of K(j(E))

#### Example

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q}$ :  $y^2 = x^3 - x$  (32.a3) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

The 2-torsion points of E are

$$E[2] = \{0, (0, 0), (1, 0), (-1, 0)\},\$$

so the 2-division field of E is  $\mathbb{Q}(E[2])=\mathbb{Q}.$  By Theorem (2), we have that

$$K(j(E), E[2])/K(j(E)) = \mathbb{Q}(i)(1728)/\mathbb{Q}(i) = \mathbb{Q}(i)/\mathbb{Q}(i)$$

is an abelian extension.

# Abelian extension of K(j(E))

#### Example

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q} : y^2 = x^3 - x$  (32.a3) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

The 4-torsion points of E are

$$E[4] = \{\mathcal{O}, (0,0), (\pm 1,0), (i,\pm(1-i)), (-i,\pm(1+i)), (1+\sqrt{2},\pm(\sqrt{2}+2)), (1-\sqrt{2},\pm(\sqrt{2}-2)), (-1+\sqrt{2},\pm(2i-i\sqrt{2}), (-1-\sqrt{2},\pm(-2i-i\sqrt{2}))\},$$

so the 4-division field of E is  $\mathbb{Q}(E[4]) = \mathbb{Q}(i, \sqrt{2})$ .

A Magma computation shows that

$$K(j(E), E[4])/K(j(E)) = \mathbb{Q}(i)(1728, i, \sqrt{2})/\mathbb{Q}(i) = \mathbb{Q}(i, \sqrt{2})/\mathbb{Q}(i)$$

is an abelian extension, as we would expect by Theorem (2).

### Weber function

#### Definition

Let K be an imaginary quadratic field and let H be the Hilbert class field of K. Let E be an elliptic curve defined over H with CM by  $\mathcal{O}_K$ . Fix a (finite) map

$$h: E \to E / \operatorname{Aut}(E) \cong \mathbb{P}^1$$

also defined over H. We call h a Weber function for E/H.

If we take a Weierstrass equation for E of the form  $y^2 = x^3 + Ax + B$  with  $A, B \in H$ , then the following is a Weber function for E/H:

$$h(P) = h(x,y) = \begin{cases} x & \text{if } AB \neq 0 \ (j(E) \neq 0,1728), \\ x^2 & \text{if } B = 0 \ (j(E) = 1728), \\ x^3 & \text{if } A = 0 \ (j(E) = 0). \end{cases}$$

The Weber function h is essentially just an x-coordinate of the curve.

# Ray class field of K modulo $\mathfrak c$

Let K be an imaginary quadratic field. Recall that for any integral ideal  $\mathfrak c$  of  $\mathcal O_K$ , we define the group of  $\mathfrak c$ -torsion points of E to be

$$E[\mathfrak{c}] = \{ P \in E : [\gamma]P = 0 \text{ for all } \gamma \in \mathfrak{c} \}.$$

## Theorem (3)

Let K be an imaginary quadratic field, let E be an elliptic curve with CM by  $\mathcal{O}_K$ , and let  $h: E \to \mathbb{P}^1$  be a Weber function for E/H, where H is the Hilbert class field of K. Let  $\mathfrak{c}$  be an integral ideal of  $\mathcal{O}_K$ . Then the field

$$K(j(E), h(E[\mathfrak{c}]))$$

is the ray class field of K modulo ¢.

# Ray class field of K modulo $\mathfrak c$

### Example

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q}$ :  $y^2 = x^3 + x$  (64.a4) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

Observe that the 2-torsion points of E are

$$E[2] = {0, (0,0), (i,0), (-i,0)}.$$

Since j(E) = 1728, the Weber function gives us that  $h(x, y) = x^2$ , so h(0, 0) = 0,  $h(i, 0) = i^2 = -1$ , and  $h(-i, 0) = (-i)^2 = 1$ . Therefore,

$$K(j(E), h(E[2])) = \mathbb{Q}(i)(1728, 0, -1, 1) = \mathbb{Q}(i),$$

which confirms that the ray class field of  $\mathbb{Q}(i)$  modulo (2) is indeed  $\mathbb{Q}(i)$ .

# Ray class field of K modulo $\mathfrak c$

### Example (cont'd)

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q} : y^2 = x^3 + x$  (64.a4) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

Observe that the x-coordinates of the 4-torsion points of E are

$$x(E[4]) = \{0, \pm i, \pm 1, 1 \pm \sqrt{2}, -1 \pm \sqrt{2}\}.$$

Since j(E)=1728, the Weber function gives us that  $h(x(E[4]))=x^2$ , so the only non-rational values are  $h(1-\sqrt{2})=h(-1+\sqrt{2})=3-2\sqrt{2}$ , and  $h(-1-\sqrt{2})=h(1+\sqrt{2})=3+2\sqrt{2}$ . Therefore,

$$K(j(E), h(E[4])) = \mathbb{Q}(i)(1728, 3 \pm 2\sqrt{2}) = \mathbb{Q}(i, \sqrt{2}),$$

which confirms that the ray class field of  $\mathbb{Q}(i)$  modulo (4) is  $\mathbb{Q}(i,\sqrt{2})$ .

## Maximal abelian extension of K

## Theorem (4)

Let K be an imaginary quadratic field and let E be an elliptic curve with CM by  $\mathcal{O}_K$ . Then

$$K^{ab} = K(j(E), h(E_{tors})).$$

In particular, if  $j(E) \neq 0,1728$  and if we take an equation for E with coefficients in K(j(E)), then the maximal abelian extension of K is generated by j(E) and the x-coordinates of the torsion points of E.

It is not generally true that  $K(j(E), E_{tors})$  is an abelian extension of K. However, if K has class number 1 (so the j-invariants of these curves will be in  $\mathbb{Q}$ ), then

$$K^{ab} = K(h(E_{tors})) = K(E_{tors}).$$

## Maximal abelian extension of K

## Corollary

Let K be an imaginary quadratic field and let E be an elliptic curve with CM by  $\mathcal{O}_K$ . If K has class number 1, then  $K^{ab} = K(E_{tors})$ .

**<u>Proof:</u>** If K has class number 1, then  $j(E) \in \mathbb{Q}$ , so Theorem (4) says that

$$K^{\mathsf{ab}} = K(j(E), h(E_{\mathsf{tors}})) = K(h(E_{\mathsf{tors}})).$$

By Theorem (2), we know that

$$K(j(E), E_{tors}) = K(E_{tors})$$

is an abelian extension of K(j(E)) = K. By the definition of h, we know

$$K(h(E_{\mathsf{tors}})) \subset K(E_{\mathsf{tors}}).$$

By Theorem (4),  $K^{ab} = K(h(E_{tors}))$ , so it follows that

$$K(E_{\mathsf{tors}}) \subset K(h(E_{\mathsf{tors}})).$$

Thus, we conclude that if K has class number 1, then  $K^{ab} = K(E_{tors})$ .

Questions?

# Existence of Weil pairing consequence

Let K be an imaginary quadratic field with ring of integers  $\mathcal{O}_K$ . Let E be an elliptic curve with CM by  $\mathcal{O}_K$ . Let  $\zeta_N$  be a primitive  $N^{\text{th}}$  root of unity.

We know that  $K(\zeta_N)/K$  is an abelian extension. Therefore, it must be contained in  $K(j(E), h(E_{tors}))$ , the maximal abelian extension.

#### Theorem

There exist points  $S, T \in E[N]$  such that the Weil pairing  $e_N(S, T)$  is a primitive  $N^{th}$  root of unity.

By the Theorem, we can pick  $S, T \in E[N]$  such that  $e_N(S, T) = \zeta_N$ . The Weil pairing is Galois invariant, so if we act on  $e_N(S, T)$  by elements of  $Gal(\overline{K}/K(E[N]))$ , then we get

$$e_N(S,T)^\sigma=e_N(S^\sigma,T^\sigma)=e_N(S,T)=\zeta_N\quad\text{for all }\sigma\in\text{Gal}(\overline{K}/K(E[N])).$$

Thus,  $e_N(S, T) \in K(E[N])$ , so  $K(\zeta_N) \subset K(E[N])$ .

# Example of $K(\zeta_N) \subset K(E[N])$

Let  $K = \mathbb{Q}(i)$ , so  $\mathcal{O}_K = \mathbb{Z}[i]$ . The elliptic curve  $E/\mathbb{Q}: y^2 = x^3 - x$  (32.a3) has CM by  $\mathcal{O}_K$ , with j(E) = 1728.

Since K has class number 1,  $K^{ab} = K(h(E_{tors})) = K(E_{tors})$ , so all abelian extensions of K are contained in  $K(E_{tors})$ .

The x-coordinates of the 3-torsion points of E are

$$x(E[3]) = \left\{ \frac{\pm \sqrt{3 + 2\sqrt{3}}}{\sqrt{3}}, \frac{\pm i\sqrt{-3 + 2\sqrt{3}}}{\sqrt{3}} \right\}.$$

Since j(E) = 1728, the Weber function gives us that  $h(x(E[3])) = x^2$ , so

$$h\left(\frac{\pm\sqrt{3+2\sqrt{3}}}{\sqrt{3}}\right) = \frac{3+2\sqrt{3}}{3} \quad \text{and} \quad h\left(\frac{\pm i\sqrt{-3+2\sqrt{3}}}{\sqrt{3}}\right) = \frac{3-2\sqrt{3}}{3}.$$

Therefore,  $K(h(E[3])) = K(E[3]) = K(\sqrt{3}) = \mathbb{Q}(i)(\sqrt{3}) = \mathbb{Q}(i, \sqrt{-3})$ , so  $\zeta_3 \in \mathbb{Q}(i, \sqrt{-3})$  and of course  $\zeta_3 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$ .

#### Abelian extension of the Hilbert class field

Sketch of proof: Let  $L_m = K(j(E), E[m])$ . Since L is the compositum of all the  $L_m$ 's, it suffices to show that  $L_m$  is an abelian extension of K(j(E)).

•  $ho: \mathsf{Gal}(\bar{K}/K(j(E))) o \mathsf{Aut}(E[m])$  determined by the condition

$$\rho(\sigma)(T) = T^{\sigma}$$
 for all  $\sigma \in \mathsf{Gal}(\bar{K}/K(j(E)))$  and  $T \in E[m]$ .

• The elements  $\sigma \in Gal(L_m/K(j(E)))$  commute with elements of  $\mathcal{O}_K$  in their action on E[m]:

$$([\alpha]T)^{\sigma} = [\alpha](T^{\sigma})$$
 for all  $T \in E[m]$  and  $\alpha \in \mathcal{O}_K$ .

•  $\rho$  is a homomorphism from  $\operatorname{Gal}(\bar{K}/K(j(E)))$  to the group of  $\mathcal{O}_K/m\mathcal{O}_{K}$ -module automorphisms of E[m], and hence  $\rho$  induces

$$\phi: \mathsf{Gal}(L_m/K(j(E))) \hookrightarrow \mathsf{Aut}_{\mathcal{O}_K/m\mathcal{O}_K}(E[m]).$$

• E[m] is a free  $\mathcal{O}_K/m\mathcal{O}_K$ -module of rank 1, so

$$\operatorname{Aut}_{\mathcal{O}_K/m\mathcal{O}_K}(E[m]) \cong (\mathcal{O}_K/m\mathcal{O}_K)^*.$$