	STABEL : PARTIAL ASSIGNMENT SOLUTIONS
	P7 Q3
8	A 95% confidence interval for the "true" popularity of carclicable A is given by (.413,.51)
	We got this as
	- Horantage points: width of a confidence
11	cut the stated level of significance.
9	An appreximate 95% Cl for B to the purameter
	Of C 15em (8) CLUST 15
11	whose \$\alpha = 0.05 and \$\langle 1.5 the value \$\second{\alpha}\$ is the value \$\second{\alpha}\$ if \$\famble \conv[0]\$ if \$\alpha \conv[0]\$ is the value \$\second{\alpha}\$
	For $\alpha = 0.05$, $21-\alpha p = 1.96$. The previous question (Dart(a)) let us write
	Solving far n,
	Q(1-3) O.47 x 0.53
1	(0,04/2/2/2) (0,04/1.96) ²
1	
	205=
1	
7	

c) for a sample with
$$\theta = 0.47$$
, we need the wint to not contain 0.50. Using the previous formula for M.

O 47 x 0.53 = 1063.27

O 47 x 0.53 = 1063.27

8 would need (expordants

2 ~ N(0,1)

t2(8)=

VIT C

$$() \sim \chi_{\kappa} \qquad f_{\nu}(u) = \frac{1}{2^{\kappa/2} \lceil (\kappa/2) \rceil} u \qquad e^{\kappa/2 - 1} - u/2$$

Therefore variables:
$$f(v) = \left| \frac{dv}{dv} \right| f_{u}(u)$$

$$= \frac{\langle x_1 \rangle_1 \langle x_2 \rangle}{\langle x_2 \rangle_1 \langle x_2 \rangle} \left(\langle x_1 \rangle_1 \langle x_2 \rangle_2 \langle x_2 \rangle_2 \langle x_2 \rangle_2 \left(\langle x_1 \rangle_1 \rangle_1 \rangle_2 \langle x_2 \rangle_$$

A8Q1

a) if
$$(x) = \theta_{1}(1-\theta)$$

$$L(\theta) = \theta_{2x}(1-\theta)$$

$$L(\theta) = \theta_{2x}(1-\theta)$$

$$L(\theta) = \sum_{x}(1-\theta)$$

$$L(\theta) = \sum_{x}(1-\theta)$$

$$S(e) = \frac{9}{3} = \frac{9}{3}$$

$$J(\theta) = -\partial S/\partial \theta = \Theta^{2} + \frac{1-8^{2}}{(1-6)^{2}}$$

$$= N\left(\frac{x}{\theta^{2}} + \frac{1-x}{(1-6)^{2}}\right)$$

$$T(\theta) = EJ(\theta) = N\left(\frac{1}{\Theta} + \frac{1}{1-\Theta}\right) \left(E(X) = \Theta\right)$$

$$\Rightarrow Var(\hat{o}) \approx \frac{\hat{o}(1-\hat{c})}{n}.$$

1

H

$$= (0.82 - \sqrt{0.82 \times 0.18} | .06 | 0.82 + \sqrt{0.82 \times 0.18} | .06 | 0.82 + \sqrt{0.82 \times 0.18} | .06$$

9999

A

e)
$$E(x) = \frac{\theta_{0}}{\lambda}$$
, $Var(X) = \frac{\theta_{0}}{12}$, $SD(X) = \sqrt{12}$
From lecture 2, M_0M estimator of θ is $\theta = 2\overline{X}$
 $E(\theta) = 2E(\overline{X}) = \theta_{0}$
 $Var(\delta) = 4Var(\overline{X}) = \frac{4}{12} \times \frac{\theta_{0}}{\lambda} = \frac{\theta_{0}^{2}}{3\pi}$
 $SD(\theta) = \theta_{0}/\sqrt{3\pi}$.
 $SD(\theta) = \theta_{0}/\sqrt{3\pi}$.
 CLT for \overline{X} : $\overline{X} = E(\overline{X})$ when $N(Q_{1})$
 $\Rightarrow 2\overline{X} = \theta$ with $A(Q_{2})$.
 $A = 2\overline{X} = \theta$ with $A(Q_{2})$.
 $A = 2\overline{X} = \theta$ with $A(Q_{2})$ $A(Q_{2})$.
 $A = 2\overline{X} = \theta$ with $A(Q_{2})$ $A(Q_{2})$.

$$\Rightarrow P(X/0, < x) = P(X < 0, x) = \frac{0,x}{0} = x$$

which is recognized as the CDF of a unif (0,1) rundom X/60 ~ Unif(0)1) Hence Variable.

=
$$\times$$
, as every $P(\frac{X_1}{6}, c_X) = X$ and they are independent.

which is recognited as the CDF of a Beta(n,1) Km/60~ Beta(11,1) Hence vandon variabli

c) The distribution function of
$$x_{m}/\theta_{0}$$
 is
$$P(x_{m}/\theta_{0} < x) = F(x) = x^{n} \quad 0 < x < 1$$

$$= P(\frac{1}{2} \times \frac{1}{2} \times$$

$$F(1) - F(1/q) = 1 - 2$$

$$F(1) - F(1/q) = 1 - 2$$

$$F(1/q) = 2 - 1/n$$

$$F(1/q) = 2 - 1/n$$

$$\Rightarrow$$
 (13.35, 18.01)

MUL possible arrower and

also normally B, is another linear combinethion of normal random Variables, so is agrain normal. We can get it men and variance: 4. ~ N(Po+B, K, 02) []= (K-X) Var (Y; -V) Siz, (Ki-K) · O $= \beta_1(x_i - \bar{x})$ $= \sigma^2 + \sigma^2 / n - 2 \cos(y_i, \varphi)$ $cov(V_i, \overline{V}) = \frac{1}{n} \overline{\lambda}_{j=1}^n cov(V_i, \overline{Y}) = \sigma^2$ $Var(V_i, -\overline{V}) = \sigma^2$ 1 = Bo + B, X + E ~ N(Bo+B, X, O2/n) randon variable. Hence V; - y is $\sum_{i=1}^{n} (x_i - \overline{x}) E(y_i - \overline{y})$ $\sum_{i=1}^{n} (x_i - \hat{x}) \beta_i(x_i - \hat{x})$ Sin (x, -x)2 スパインン $\sum_{i=1}^{n} (x_i - x_i)^{i}$ 江(太大) 3+ X18+08 = $\sum_{i=1}^{n} (\lambda_i - \overline{\chi})(\gamma_i - \overline{\varphi})$ $\sim N(\beta_{\rm h})$ Var(4; - i isclistibled, with Zin (xi-x) 11 Var (13,) -M AROS Note <u>m</u> 8

	7 (2)	ceed of	guestion is NOT " are their ma	Le particular valve?". We we had to is - just the	CY = YY = Y	t) with Lither;	ER, SO Q = RX XR = RX	6 \ x x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Under both, there are quantities to wheel.	Ho, we just have Xi, ~ N(Lo, 52), directly yields the result.	we have $k_{ij} \sim N(k_{ij}, \sigma^2)$ so how Over j' for fixed i is	$(x) = \frac{1}{10^{-1}} \int_{\mathbb{R}^{n}} (X_{ij}) = C \times e^{Kp} \left(\frac{1}{20^{-2}} \sum_{j=1}^{n} (X_{ij} - X_{ij}) \right)$		
4002		Hs K gays,	have equal me	equal to some	Ho: K. "	WS H, Fit with	a) Earl Ly & R	b) Do = { le } x	c) Composite, Under be estimated.	d) Uncley	togete! I Under H, we the likelihood			

T'11 do e) Xij ~ N (Aw, or) a N(Ko, GZ) Also, unsurprisingly, that his only appears Landa let the L: (Mi) = (XRXP (= 50 = 5)=1 (kj-ki) = inel the MLE by differentioning likelihood is obtained as Lo 1 nk independent you to)-11,=, Li(ki) = (xexp(= 20=2 as constant with him. dable sum confuse nx 2:=, 2;=, Xi 4. 0 h 2.5 %. 1 so the State that - 1 = 2 = (Kj - Kj) results from the Observation ME IS terms the likelihood

(· X · / X) a grantile Sin X exp Cxexp <u>`</u> Mr din Do 03 -2 Keg / = Log/ =

5~N(0,1)) - (1- \$ [dr +2, qr)]), and its COF Sofisfies I(x) is strictly increasing and knocked above by - \$ (-d/n +21-2/2) \$ (dun + 2,-92) - \$ (dun +2,-92) \$(d/n-2,-ye) P(d/M-Z1-a/2 < Z < d/M + Z1-a/2 - (D(d/M + Z1-a/2) - D(d/M-Z1-a/2) 1 - (1 - 1) 1 \$(x) 8 g 12 1-\$(dn +2,-42, \$ (-d/n +21-a/2) guestions, normed dist is symmetric, - \$(x) = y(dn, x) slictes. b)c). In bother there dur-sa 7(d,n,x)=1-- X = y(-d,n,a)= a) See lecture 10 \$ -x S

- (D (#2,-a/2)

e) y(0,n, x

8