Adatbázis rendszerek I. BSc

Féléves Feladat 2022. 12. 07.

Készítette:

Pogácsás Benedek Bsc Mérnökinformatikus FM4Z3B

Miskolc, 2022

Tartalomjegyzék

- ER modell
- Relációs Séma
- <u>Lekérdezések</u>

ER modell

A féléves beadandóm témájának egy rakomány szállító hajók adatbázisát választottam.

Relációs Séma

Lekérdezések

SelectFM4Z3B.txt

1. Kérdezze le a legfiatalabb kapitány hajójának márkáját!

• SQL parancs:

select márka from hajó where hajó_id = (select id from kapitány where születési dátum = (select MAX(születési dátum) from kapitány));

• Relációs algebra:

 $\pi_{\textit{márka}}\left(\sigma_{\textit{hajó}_id} = (\pi_{\textit{id}} \sigma_{\textit{születési}_dátum} = (\gamma_{\textit{MAX}}(születési_dátum) kapitány) \\ kapitány) \, hajó)$

• Eredmény:

2. Kérdezze le a magyar nemzetiségű kapitányok neveit!

• SQL parancs:

select id, név from kapitány where nemzetiség = 'magyar';

Relációs algebra:

π id, név σ nemzetiség = "magyar" kapitány

• <u>Eredmény:</u>

	id	név
•	1	Katona Ferenc
	11	Bodnár Áron
	NULL	NULL

3. Kérdezze le az átlag alatti súlyterheléssel rendelkező hajókat!

• SQL parancs:

select hajó_id, súlyterhelés from hajó where súlyterhelés < (select avg(súlyterhelés) from hajó);

• Relációs algebra:

 π hajó_id, súlyterhelés σ súlyterhelés <(γ AVG (súlyterhelés) hajó) hajó

• Eredmény:

	hajó_id	súlyterhelés
•	1	5400
	2	3200
	4	4600
	5	2100
	7	3900
	10	4900
	12	3300
	16	5300
	17	4700
	18	5200
	19	2900
	NULL	NULL

4. Kérdezze le az összes kikötő számát!

• SQL parancs:

select COUNT(ország) from kikötő_helység;

• Relációs algebra:

 $\gamma \, {\it count} \, ({\it ország}) \, kik\"{o}t\H{o}_helys\'{e}g$

• <u>Eredmény:</u>

	COUNT(ország)
•	15

5. Kérdezze le a textil termék típusú rakományok számát!

• SQL parancs:

select count(textil_termék) from rakomány_típus where textil_termék = 1;

• Relációs algebra:

 $\gamma \ \textit{COUNT} \ (\text{textil_term\'ek}) \ \sigma \ \textit{textil_term\'ek} = 1 \ \textit{rakom\'any_t\'ipus}$

• Eredmény:

	count(textil_termék)	
•	19	

6. Kérdezze le az 1970 előtt született kapitányok neveit és hogy mikor

születtek!

• SQL parancs:

select id, név, születési_dátum from kapitány where YEAR(születési_dátum) < 1970;

• Relációs algebra:

 $\pi_{\textit{id},\textit{n\'ev},\textit{sz\"ulet\'esi}_\textit{d\'atum}} \sigma_{\textit{sz\'uletesi}_\textit{datum} < 1970} kapit\acute{a}ny$

• Eredmény:

	id	név	születési_dátum
•	3	Fernando Oliveira	1969-07-21
	7	Alberto Siqueira Bosco	1961-09-01
	8	Kentaro Miura	1966-07-11
	12	Younes Al-Habib	1966-06-23
	19	Jesse Hood	1969-06-09
	NULL	NULL	NULL

7. Kérdezze le a K betűvel kezdődő kapitányok neveit!

• SQL parancs:

select id, név from kapitány where név like 'K%';

• Relációs algebra:

π id, név σ név LIKE "K%" kapitány

• <u>Eredmény:</u>

8. Kérdezze le az átlagnál hosszabb utak számát!

• SQL parancs:

 $select\ count(\acute{u}t_id)\ from\ \acute{u}t\ where\ \acute{u}t_hossz> \ (select\ avg(\acute{u}t_hossz)$ from $\acute{u}t$);

• Relációs algebra:

 $\pi_{\textit{COUNT}(\acute{\text{ut_id}})} \gamma_{\textit{COUNT}(\acute{\text{ut_id}})} \sigma_{\textit{\acute{\text{ut_hossz}}} > (\gamma_{\textit{AVG}(\acute{\text{ut_hossz}})} \acute{\textit{ut}}) \, \acute{\textit{ut}}$

• Eredmény:

9. Kérdezze le, hogy melyik kapitány ment a 10-es úton!

• SQL parancs:

select név from kapitány where id = (select hajó_id from hajó_út where út_id = 10);

• Relációs algebra:

 π név σ $id = (\pi haj \acute{o}_{id} \sigma \acute{u}t_{id} = 10 haj \acute{o}_{u}t) kapit \acute{a}ny$

• <u>Eredmény:</u>

10. <u>Kérdezze le azoknak a hajóknak az azonosítóját, amelyek</u> eltudnák vinni a 14-es hajó rakományát!

• SQL parancs:

select hajó_id from hajó where súlyterhelés > (select sum(súly) from rakomány where hajó id = 14);

• Relációs algebra:

 $\pi \; \textit{hajo}_\textit{id} \; \sigma \; \textit{súlyterhelés} > (\gamma \; \textit{SUM} \; (\textit{súly}) \; \sigma \; \textit{hajo}_\textit{id} = 14 \; \textit{rakomány}) \; \textit{hajo}$

• <u>Eredmény:</u>

	hajó_id
•	1
	3
	6
	8
	9
	10
	11
	13
	14
	15
	16
	17
	18
	20
	NULL