Section 3.3 – Double Integrals in Polar Coordinates

Integrals in Polar Coordinates

If f is continuous throughout R, this sum will approach a limit as Δr and $\Delta \theta$ go to zero. The limit is called the double integral of f over R.

$$\lim_{n \to \infty} S_n = \iint_R f(r, \theta) \ dA$$

However, the area of a wedge-shaped sector of a circle having radius r and angle θ is

$$A = \frac{1}{2}\theta \cdot r^2$$

Inner radius:
$$\frac{1}{2} \left(r_k - \frac{\Delta r}{2} \right)^2 \cdot \Delta \theta$$

outer radius:
$$\frac{1}{2} \left(r_k + \frac{\Delta r}{2} \right)^2 \cdot \Delta \theta$$

$$\Delta A_{k} = \begin{pmatrix} area \ of \\ large \ sector \end{pmatrix} - \begin{pmatrix} area \ of \\ small \ sector \end{pmatrix}$$

Leads to the formula:
$$\Delta A_k = r_k \Delta r \Delta \theta$$

Find the limits of integration for integrating $f(r,\theta)$ over the region R that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1.

Solution

The sketch of the region:

From the graph, we can find the r - *limits of integration*. A typical ray from the origin enters R where r = 1 and leaves where $r = 1 + \cos \theta$

 θ - *limits of integration*: The rays from the origin that intersects R run from $\theta = -\frac{\pi}{2}$ to $\theta = \frac{\pi}{2}$. The integral is

$$\int_{-\pi^2}^{\pi/2} \int_{1}^{1+\cos\theta} f(r,\theta) r \, dr \, d\theta$$

Area in Polar Coordinates

The area of a closed and bounded region R in the polar coordinate plane is

$$A = \iint_{R} r \ dr \ d\theta$$

Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$

Solution

From the graph, we can determine the lemniscate limits of integration, and the total area is 4 times the first-quadrant portion, since it has a form of symmetry.

$$A = 4 \int_0^{\pi/4} \int_0^{\sqrt{4}\cos 2\theta} r dr d\theta$$

$$= 4 \int_0^{\pi/4} \left[\frac{r^2}{2} \right]_0^{\sqrt{4}\cos 2\theta} d\theta$$

$$= 4 \int_0^{\pi/4} (2\cos 2\theta) d\theta$$

$$= 4 \int_0^{\pi/4} \cos 2\theta d(2\theta)$$

$$= 4 \sin 2\theta \Big|_0^{\pi/4}$$

$$= 4 \sin \frac{\pi}{2}$$

$$= 4 \quad unit^2$$

Changing Cartesian Integrals into Polar Integrals

$$\iint_{R} f(x,y) dxdy = \iint_{G} f(r\cos\theta, r\sin\theta) r drd\theta$$

Example

Evaluate
$$\iint_{R} e^{x^2 + y^2} dy dx$$

Where R is the semicircular region bounded by the x-axis and the curve $y = \sqrt{1 - x^2}$

Solution

$$\iint_{R} e^{x^{2}+y^{2}} dy dx = \int_{0}^{\pi} \int_{0}^{1} e^{r^{2}} r dr d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi} \int_{0}^{1} e^{r^{2}} d(r^{2}) d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi} \left[e^{r^{2}} \right]_{0}^{1} d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi} (e-1) d\theta$$

$$= \frac{1}{2} (e-1) \theta \Big|_{0}^{\pi}$$

$$= \frac{\pi}{2} (e-1)$$

Evaluate the integral
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \left(x^2 + y^2\right) dy dx$$

Solution

Since: $0 \le x \le 1 \rightarrow interior \ of \ x^2 + y^2 = 1 \ and \ in \ QI$

Let:
$$r^2 = x^2 + y^2$$
 with $0 \le r \le 1$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \left(x^{2} + y^{2}\right) dy dx = \int_{0}^{\pi/2} \int_{0}^{1} \left(r^{2}\right) r dr d\theta$$

$$= \int_{0}^{\pi/2} \left[\frac{1}{4}r^{4}\right]_{0}^{1} d\theta$$

$$= \frac{1}{4} \int_{0}^{\pi/2} d\theta$$

$$= \frac{1}{4} \theta \Big|_{0}^{\pi/2}$$

$$= \frac{\pi}{8}$$

o Or we can use the integral table to solve it

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \left(x^{2} + y^{2}\right) dy dx = \int_{0}^{1} \left[x^{2} \sqrt{1-x^{2}} + \frac{1}{3} \left(1 - x^{2}\right)^{3}\right] dx$$

Find the volume of the solid region bounded above by the paraboloid $z = 9 - x^2 - y^2$ and below by the unit circle in the xy-plane.

Solution

The region of integration R is the unit circle: $x^2 + y^2 = 1 \rightarrow r = 1, 0 \le \theta \le 2\pi$

$$Volume = \int_{0}^{2\pi} \int_{0}^{1} (9 - r^{2}) r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (9r - r^{3}) dr d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{9}{2} r^{2} - \frac{1}{4} r^{4} \right]_{0}^{1} d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{9}{2} - \frac{1}{4} \right) d\theta$$

$$= \frac{17}{4} \int_{0}^{2\pi} d\theta$$

$$= \frac{17}{4} \theta \Big|_{0}^{2\pi}$$

$$= \frac{17\pi}{2} \quad unit^{3} \Big|$$

Example

Using the polar integration, find the area of the region *R* in the *xy*-plane enclosed by the circle $x^2 + y^2 = 4$, above the line y = 1, and below the line $y = \sqrt{3}x$.

Solution

The $y = \sqrt{3}x$ has a slope of $\sqrt{3} = \tan \theta \implies \theta = \frac{\pi}{3}$

Line y = 1 intersects $x^2 + y^2 = 4$ when $x^2 + 1 = 4 \rightarrow x = \sqrt{3}$.

A line from origin to $(\sqrt{3}, 1)$ has a slope of

$$\frac{1}{\sqrt{3}} = \tan \theta \to \underline{\theta} = \frac{\pi}{6}$$

$$\therefore \quad \boxed{\frac{\pi}{6} \le \theta \le \frac{\pi}{3}}$$

The polar coordinate r varies from the horizontal line y = 1 to the circle $x^2 + y^2 = 4$.

Substituting $r \sin \theta$ for y: $y = 1 \rightarrow r \sin \theta = 1 \Rightarrow |\underline{r}| = \frac{1}{\sin \theta} = |\underline{csc}|\theta|$ and the radius of the circle is 2.

$$\therefore \quad \boxed{\csc\theta \le r \le 2}$$

$$Area = \int_{\pi/6}^{\pi/3} \int_{\csc \theta}^{2} r dr d\theta$$

$$= \int_{\pi/6}^{\pi/3} \left[\frac{1}{2} r^{2} \right]_{\csc \theta}^{2} d\theta$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/3} \left(4 - \csc^{2} \theta \right) d\theta$$

$$= \frac{1}{2} \left[4\theta + \cot \theta \right]_{\pi/6}^{\pi/3}$$

$$= \frac{1}{2} \left[\frac{4\pi}{3} + \frac{1}{\sqrt{3}} - \left(\frac{4\pi}{6} + \sqrt{3} \right) \right]$$

$$= \frac{1}{2} \left(\frac{2\pi}{3} + \frac{\sqrt{3}}{3} - \sqrt{3} \right)$$

$$= \frac{1}{2} \left(\frac{2\pi - 2\sqrt{3}}{3} \right)$$

$$= \frac{\pi - \sqrt{3}}{3} \quad unit^{2}$$

Exercises Section 3.3 – Double Integrals in Polar Coordinates

Change the Cartesian integral into an equivalent polar integral. Then integrate the polar integral

1.
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$$

$$5. \int_{-1}^{0} \int_{-\sqrt{1-x^2}}^{0} \frac{2}{1+\sqrt{x^2+y^2}} dy dx$$

$$2. \int_0^1 \int_0^{\sqrt{1-y^2}} \left(x^2 + y^2 \right) dx dy$$

6.
$$\int_0^{\ln 2} \int_0^{\sqrt{(\ln 2)^2 - y^2}} e^{\sqrt{x^2 + y^2}} dx dy$$

$$3. \quad \int_{-a}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} dy dx$$

7.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln(x^2 + y^2 + 1) dx dy$$

$$4. \qquad \int_0^6 \int_0^y x dx dy$$

8.
$$\int_{1}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{1}{\left(x^2+y^2\right)^2} dy dx$$

- **9.** Find the area of the region cut from the first quadrant by the curve $r = 2(2 \sin 2\theta)^{1/2}$
- 10. Find the area of the region lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1
- 11. Find the area enclosed by one leaf of the rose $r = 12\cos 3\theta$
- 12. Find the area of the region common to the interiors of the cardioids $r = 1 + \cos\theta$ and $r = 1 \cos\theta$

13. Integrate
$$f(x,y) = \frac{\ln(x^2 + y^2)}{\sqrt{x^2 + y^2}}$$
 over the region $1 \le x^2 + y^2 \le e$

14. Evaluate the integral
$$\int_0^\infty \int_0^\infty \frac{1}{\left(1+x^2+y^2\right)^2} dx dy$$

15. The region enclosed by the lemniscates $r^2 = 2\cos 2\theta$ is the base of a solid right cylinder whose top is bounded by the sphere $z = \sqrt{2 - r^2}$. Find the cylinder's volume.