Fundamental Algorithmic Techniques.

October 3, 2025

Outline

Divide & Conquer

Recurrence Relations

Master Theorem

Multiplying Square Matrices

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$

$$n ext{ operations } \forall i, j : c_{ij} = \sum_{k=0}^{n} a_{ik} \cdot b_{kj}.$$

Divide and conquer:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, \quad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}.$$
(4.4)

Decomposing with 8 sub-operations: $T(n) = 8T(n/2) + \Theta(1)$, so $T(n) = \Theta(n^3)$ (master theorem $c = 3 = log_2(8)$).

Strassen Algorithm

$$T(n) = 7T(n/2) + \Theta(1)$$
, so $T(n) = \Theta(n^{2.81})$

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

Result Blocks:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

Find Maximum: Divide and Conquer

Problem: Find the maximum element in an array of *n* numbers.

Approach:

■ **Divide**: Split into two halves

■ Conquer: Recursively find max

■ Combine: max(left, right)

Complexity:

$$T(n) = 2T(n/2) + cn$$

 $\Rightarrow \mathcal{O}(n)$

Sorting

Insertion sort:
$$T(n) = an^2 + bn + c$$
, $a, b c, \in \mathbb{N}$ So $T(N) = \mathcal{O}(n^2)$.

But can we do better? Yes, actually O(nlog(n)) with MergeSort and QuickSort.

Merge Sort

Recurrence Relation: Mathematical Description

Let T(n) be a recurrence relation defined for $n \ge 1$ by:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where:

- \blacksquare a \geq 1 is the number of subproblems in the recursion,
- b > 1 is the factor by which the input size is reduced in each subproblem,
- \blacksquare f(n) is the cost of dividing the problem and combining the results.

Recursive: Not always good!

Iterative vs Recursive Factorial: Complexity Comparison

	Iterative	Recursive
Time Complexity	O(n)	O(n)
Space Complexity	O(1)	O(n)
Stack Overflow?	No	Yes

```
function factorial_iter(n::Int)
    result = 1
    for i in 2:n
        result *= i
    end
    return result
end
function factorial_recu(n::Int)
    n <= 1 ? 1 : n * factorial(n - 1)
end</pre>
```

Factorial in Julia

Master Theorem

Asymptotic behavior of $T(n) = a \cdot T(\frac{n}{b}) + f(n)$: **critical exponent**: $c_{\text{crit}} = \log_b a$

- 1 Case 1 (Subproblem Dominated):
 - If $f(n) = O(n^c)$ where $c < c_{crit}$, then:

$$T(n) = \Theta(n^{\log_b a})$$

2 Case 2 (Balanced):

If $f(n) = \Theta(n^{c_{crit}})$, then:

$$T(n) = \Theta(n^{c_{\text{crit}}} \log n) = \Theta(n^{\log_b a} \log n)$$

3 Case 3 (Work Dominated):

If $f(n) = \Omega(n^c)$ where $c > c_{crit}$, and if the **regularity condition** holds:

af
$$\left(\frac{n}{h}\right) \leq kf(n)$$
 for constant $k < 1$ and all sufficiently large n ,

then:

$$T(n) = \Theta(f(n))$$

Master Theorem: Limitations & Examples

Limitations:

- T(n) not monotone, e.g. T(n) = sin(n)
- f(n) not polynomial, e.g. $f(n) = 2^n$
- a not a constant, e.g. a = 2n

Examples: verify!

- 1 $T(n) = 4T(\frac{n}{2}) + n$, \Rightarrow Case 1, Subproblem dominated, $T(n) = \Theta(n^2)$
- 2 $T(n) = 2T(\frac{n}{2}) + n$, \Rightarrow Case 2, Balanced, $T(n) = \Theta(n\log(n))$
- 3 $T(n) = 3T(\frac{n}{2}) + n^2$, \Rightarrow Case 3, Work dominated, $T(n) = \Theta(n^2)$
- 4 $T(n) = 2T(2n) + n\log(n)$, ⇒ trivially not applicable!

5
$$T(n) = T(n-1) + 1$$
,
 \Rightarrow Not applicable! $n-1 \neq n/b$, actually $T(n) = \Theta(n!)$

Master Theorem: Proof with Tree Approach

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- level 0: work f(n), a subproblems of size n/b
- ...
- level i: work $a^i \cdot f(n/b^i)$, a^i subproblems of size n/b^i stops when $i = log_b(n)$, and using $a \cdot log_b(n) = n \cdot log_b(a)$:

$$T(n) = \sum_{i=1}^{\log_b n} a^i \cdot f(n/b^i) + \Theta(n^{\log_b a}),$$

with work and leaf decomposition contributions.

...Study each 3 cases separately for the proof...

