Parcial I - Lenguajes 2007

1. Pruebe que $L(G)=\{w\in (a+b)^*: |w|_a=|w|_b+2\}$ con G dada por:

 $S \rightarrow AA$

 $C \rightarrow aB/bA/\epsilon$

 $A \rightarrow aC/bAA$

 $B \rightarrow bC/aBB$

(Si en la prueba por inducción hay casos similares no es necesario probarlos a todos.)

- Verdadero o Falso, justifique.
 - (a) Sea $G = (V, \Sigma, P, S)$. Sea $G' = (V, \Sigma, P', S)$ donde $P' = P \cup \{S \to \varepsilon\}$. Entonces $L(G') = L(G) \cup \{\varepsilon\}$.
 - (b) Todo lenguaje libre de contexto se puede generar con una gramática que solo posee una variable.
 - (c) Si $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ es un autómata a pila y $w\in\Sigma^*$ es tal que

$$(q_0, w, Z_0) \vdash (p_1, w_1, \gamma_1) \vdash \cdots \vdash (p_n, w_n, \gamma_n) \vdash (q, \varepsilon, \gamma_{n+1})$$

con $q \notin F$, entonces $w \notin L(M)$.

- (d) Sea $f: D \to \omega$, con $D \subseteq \omega$. Entonces $Dom(f \circ f) = Dom(f)$.
- (e) Sea $G=(V,\{a,b\},P,S)$ tal que para cada $V\to\alpha\in P$ se tiene $|\alpha|_a=|\alpha|_b$. Entonces $L(G)\subseteq\{w\in(a+b)^*:|w|_a=|w|_b\}$.