IT214 - DBMS IRCTC Management System

Popatiya Harsh Nitinkumar - 202201463 Valambhiya Anuj Kantibhai - 202201481 Chaudhari Jemini Shaileshbhai - 202201521

17th April, 2024

INDEX

1.	Entity-Relationship Diagram (ERD)	 2
2.	Relational Schema	 3
3.	Minimal FDs	 4
4.	BCNF Proofs	5

ERD

Relational Schema

Minimal FDs Set:-

- class_id → {nos_sl, nos_1a, nos_2a, nos_3a, nos_gen, noc_sl, noc_1a, noc_2a, noc_3a, noc_gen}
- fare_id → {bf_1a, bf_2a, bf_3a, bf_sl, bf_gen, fpk_1a, fpk_2a, fpk_3a, fpk_sl, fpk_gen}
- zone_no → {zone_name, zone_code}
- station_code → {station_name, station_address, no_of_platforms, no_of_waiting_rooms, zone_no, food_court_avail, atm_avail, parking_avail, cloak_room_avail}
- emp_id → {emp_fname, emp_mname, emp_lname, emp_post,
 station_code, emp_dept, emp_gender, emp_phno, emp_email}
- user_name → {passwd, fname, mname, lname, email, gender, dob, contact_no, address}
- transaction_id → {p_time, amt_paid, upi_id, user_name}
- Route_id → {route_name, total_dist, origin_stn, destn_stn}
- Sub_route_id → {next_stn, cur_stn, curstn_plt, total_dist_till_nxt, cur_st_dept, nxt_st_arrivlt, route_id}
- train_no → {train_name, total_distance, origin_time, dstn_time, no_of_stops, train_type, runs_on_days, pantry_avail, class_id, route_id, fare_id}
- (train_no, train_date) → {loco_id, tc_id}
- pnr_no → {from_stn, to_stn, quota, opt_for_food, travel_date, cnf_status, transaction_id, train_no}
- passenger_id → {passenger_name, seat_no, passenger_dob, passenger_gender, pnr_no}
- (seat_id, sub_route_id) → {coach_type, coach_number, seat_number}
- (travel_date, seat_id, sub_route_id) → {is_booked, passenger_id}

BCNF Proofs:

1. 'train_class' relation:

- Attributes:
 - train_class {class_id, nos_sl, nos_1a, nos_2a, nos_3a, nos_gen, noc_sl, noc_1a, noc_2a, noc_3a, noc_gen}
- Functional Dependency:
 - class_id → {nos_sl, nos_1a, nos_2a, nos_3a, nos_gen, noc_sl, noc_1a, noc_2a, noc_3a, noc_gen}

Let X = class id

 X^+ = {class_id, nos_sl, nos_1a, nos_2a, nos_3a, nos_gen, noc_sl, noc_1a, noc_2a, noc_3a, noc_gen}

Primary key: class_id

The left side of all FDs in the minimal set of FDs for the relation 'train_class' is class_id, which is the primary key of this relation. Therefore, "train_class" is in **BCNF**.

2. 'train_fare' relation:

- Attributes:
 - train_fare {fare_id,bf_1a, bf_2a, bf_3a, bf_sl, bf_gen, fpk_1a, fpk_2a, fpk_3a, fpk_sl, fpk_gen}
- Functional Dependency:
 - o fare_id → {bf_1a, bf_2a, bf_3a, bf_sl, bf_gen, fpk_1a, fpk_2a, fpk_3a, fpk_sl, fpk_gen}

Let X = fare_id

 X^+ = {fare_id, bf_1a, bf_2a, bf_3a, bf_sl, bf_gen, fpk_1a, fpk_2a, fpk_3a, fpk_sl, fpk_gen}

Primary key: fare_id

The left side of all FDs in the minimal set of FDs for the relation 'train_fare' is fare_id, which is the primary key of this relation. Therefore, "train_fare" is in **BCNF**.

3. 'zones' relation:

- Attributes:
 - zones {zone_no, zone_name, zone_code}
- Functional Dependency:
 - o zone_no → {zone_name, zone_code}

Let X = zone_no

X⁺ = {zone_no, zone_name, zone_code}

Primary key: zone_no

The left side of all FDs in the minimal set of FDs for the relation 'zones' is zone_no, which is the primary key of this relation. Therefore, "zones" is in **BCNF**.

4. 'station' relation:

- Attributes:
 - station {station_code, station_name, station_address, no_of_platforms, no_of_waiting_rooms, zone_no, food_court_avail, atm_avail, parking_avail, cloak_room_avail}
- Functional Dependency:
 - station_code → {station_name, station_address, no_of_platforms, no_of_waiting_rooms, zone_no, food_court_avail, atm_avail, parking_avail, cloak_room_avail}

Let X = station_code

X⁺ = {station_code, station_name, station_address, no_of_platforms, no_of_waiting_rooms, zone_no, food_court_avail, atm_avail, parking_avail, cloak_room_avail}

Primary key: station_code

The left side of all FDs in the minimal set of FDs for the relation 'station' is station_code, which is the primary key of this relation. Therefore, "station" is in **BCNF**.

5. 'employees' relation:

- Attributes:
 - employees {emp_id, emp_fname, emp_mname, emp_lname, emp_post, station_code, emp_dept, emp_gender, emp_phno, emp_email}
- Functional Dependency:
 - emp_id → {emp_fname, emp_mname, emp_lname, emp_post, station_code, emp_dept, emp_gender, emp_phno, emp_email}

Let X = emp_id

X⁺ = {emp_id, emp_fname, emp_mname, emp_lname, emp_post, station_code, emp_dept, emp_gender, emp_phno, emp_email}

Primary key: emp_id

The left side of all FDs in the minimal set of FDs for the relation 'employees' is emp_id, which is the primary key of this relation. Therefore, "employees" is in **BCNF**.

6. 'users' relation:

- Attributes:
 - users {user_name, passwd, fname, mname, lname, email, gender, dob, contact_no, address}
- Functional Dependency:
 - user_name → {passwd, fname, mname, lname, email, gender, dob, contact_no, address}

Let X = user_name

 X^+ = {user_name, passwd, fname, mname, lname, email, gender, dob, contact_no, address}

Primary key: user_name

The left side of all FDs in the minimal set of FDs for the relation 'users' is user_name, which is the primary key of this relation. Therefore, "users" is in BCNF.

7. 'payment' relation:

- Attributes:
 - payment {transaction_id, p_time, amt_paid, upi_id, user_name}
- Functional Dependency:
 - o transaction_id → {p_time, amt_paid, upi_id, user_name}

Let X = transaction_id

X⁺ = {transaction_id, p_time, amt_paid, upi_id, user_name}

Primary key: transaction_id

The left side of all FDs in the minimal set of FDs for the relation 'payment' is transaction_id, which is the primary key of this relation. Therefore, "payment" is in **BCNF**.

8. 'route' relation:

- Attributes:
 - route {route_id, route_name, total_dist, origin_stn, destn_stn}
- Functional Dependency:
 - o route_id → {route_name, total_dist, origin_stn, destn_stn}

Let X = route_id

X⁺ = {route_id, route_name, total_dist, origin_stn, destn_stn}

Primary key: route_id

The left side of all FDs in the minimal set of FDs for the relation 'route' is Route_id, which is the primary key of this relation. Therefore, "route" is in **BCNF**.

9. 'route_details' relation:

- Attributes:
 - route_details {sub_route_id, next_stn, cur_stn, curstn_plt, total_dist_till_nxt, cur_st_dept, nxt_st_arrivlt, route_id}
- Functional Dependency:
 - sub_route_id → {next_stn, cur_stn, curstn_plt, total_dist_till_nxt, cur_st_dept, nxt_st_arrivlt, route_id}

Let X = sub route id

X⁺ = {sub_route_id, next_stn, cur_stn, curstn_plt, total_dist_till_nxt, cur_st_dept, nxt_st_arrivlt, route_id}

Primary key: sub_route_id

The left side of all FDs in the minimal set of FDs for the relation 'route_details' is Sub_route_id, which is the primary key of this relation. Therefore, "route_details" is in **BCNF**.

10. 'train' relation:

- Attributes:
 - train {train_no, train_name, total_distance, origin_time, dstn_time, no_of_stops, train_type, runs_on_days, pantry_avail, class_id, route_id, fare_id}
- Functional Dependency:
 - train_no → {train_name, total_distance, origin_time, dstn_time, no_of_stops, train_type, runs_on_days, pantry_avail, class_id, route_id, fare_id}

Let X = train no

X⁺ = {train_no, train_name, total_distance, origin_time, dstn_time, no_of_stops, train_type, runs_on_days, pantry_avail, class_id, route_id, fare_id}

Primary key: train_no

The left side of all FDs in the minimal set of FDs for the relation 'train' is train_no, which is the primary key of this relation. Therefore, "train" is in **BCNF**.

11. 'train_staff_logs' relation:

- Attributes:
 - train_staff_logs {(train_no, train_date), loco_id, tc_id}
- Functional Dependency:
 - o (train_no, train_date) → {loco_id, tc_id}

Let X = (train_no, train_date)

X⁺ = {(train_no, train_date), loco_id, tc_id}

Primary key: (train_no, train_date)

The left side of all FDs in the minimal set of FDs for the relation 'train_staff_logs' is (train_no, train_date), which is the primary key of this relation. Therefore, "(train_staff_logs)" is in **BCNF**.

12. 'ticket' relation:

- Attributes:
 - ticket{pnr_no, from_stn, to_stn, quota, opt_for_food, travel_date, cnf_status, transaction_id, train_no}
- Functional Dependency:
 - pnr_no → {from_stn, to_stn, quota, opt_for_food, travel_date, cnf_status, transaction_id, train_no}

Let X = pnr_no

X⁺ = {pnr_no, from_stn, to_stn, quota, opt_for_food, travel_date, cnf_status, transaction_id, train_no}

Primary key: pnr_no

The left side of all FDs in the minimal set of FDs for the relation 'ticket' is pnr_no, which is the primary key of this relation. Therefore, "ticket" is in **BCNF**.

13. 'passenger_details' relation:

- Attributes:
 - passenger_details {passenger_id, passenger_name, seat_no, passenger_dob, passenger_gender, pnr_no}
- Functional Dependency:
 - passenger_id → {passenger_name, seat_no, passenger_dob, passenger_gender, pnr_no}

Let X = passenger_id

X⁺ = {passenger_id, passenger_name, seat_no, passenger_dob, passenger_gender, pnr_no}

Primary key: passenger_id

The left side of all FDs in the minimal set of FDs for the relation 'passenger_details' is passenger_id, which is the primary key of this relation. Therefore, "passenger_details" is in **BCNF**.

14. 'seat_matrix' relation:

- Attributes:
 - seat_matrix {(seat_id, sub_route_id), coach_type, coach_number, seat_number}
- Functional Dependency:
 - (seat_id, sub_route_id) → {coach_type, coach_number, seat_number}

Let X = (seat_id, sub_route_id)

X⁺ = {(seat_id, sub_route_id), coach_type, coach_number, seat_number}

Primary key: (seat_id, sub_route_id)

The left side of all FDs in the minimal set of FDs for the relation 'seat_matrix' is (seat_id, sub_route_id), which is the primary key of this relation. Therefore, "(seat_matrix)" is in **BCNF**.

15. 'seat_train_logs' relation:

- Attributes:
 - seat_train_logs {(travel_date, seat_id, sub_route_id), is_booked, passenger_id}
- Functional Dependency:
 - (travel_date, seat_id, sub_route_id) → {is_booked, passenger_id}

Let X = (travel_date, seat_id, sub_route_id)

X⁺ = {(travel_date, seat_id, sub_route_id), is_booked, passenger_id}

Primary key: (travel_date, seat_id, sub_route_id)

The left side of all FDs in the minimal set of FDs for the relation 'seat_train_logs' is (travel_date, seat_id, sub_route_id), which is the primary key of this relation. Therefore, "(seat_train_logs)" is in **BCNF**.