Vector-like quarks of the Nelson-Barr mechanism

Celso C. Nishi 1

Universidade Federal do ABC Santo André, SP, Brazil

CFTP - Lisbon May 2021

The Ozma problem

Martin Gardner '64

vol.1, Chap.51, (lectures '64)
Project Tuva (Microsoft)

Human: My heart is in the left side of my chest.

Alien: Left side?

CP is violated

Solution (among many): the decay is more frequent to the positron (e⁺)

$$\frac{\Gamma(\textit{K}_{\textit{L}} \rightarrow \pi^{-}\textit{e}^{+}\nu_{\textit{e}}) - \Gamma(\textit{K}_{\textit{L}} \rightarrow \pi^{+}\textit{e}^{-}\bar{\nu}_{\textit{e}})}{\Gamma(\textit{K}_{\textit{L}} \rightarrow \pi^{-}\textit{e}^{+}\nu_{\textit{e}}) + \Gamma(\textit{K}_{\textit{L}} \rightarrow \pi^{+}\textit{e}^{-}\bar{\nu}_{\textit{e}})} = 0.33\%$$

Fitch and Cronin, '64

Origin in SM: complex Yukawa (qqh) couplings with one irremovable phase

$$V_{
m CKM} \sim \left(egin{array}{ccc} 0.97 & 0.23 & _{0.003\,e^{-i\delta}} \ 0.23 & 0.97 & _{0.04} \ _{0.009} & _{0.04} & 0.99 \end{array}
ight)$$

Kobayashi, Maskawa, '73

2 Nobel '08

$$\textit{J} \approx \lambda^{6}\textit{A}^{2}\eta \sim 3\times 10^{-5}$$

one CP odd $\eta = 0.37$ is not small

The strong CP problem

- Source of CP breaking in the SM: $\bar{\theta} G \cdot \tilde{G} \sim E_a \cdot B_a$
- Experimentally $\bar{\theta} \lesssim 10^{-10}$ from neutron EDM
- Theoretically $\bar{\theta}$ has two contributions: quark Yukawa + QCD
- Both could be oder one, e.g., $\delta_{\text{CKM}} \sim 66^{\circ}$, $\theta_{QCD} \in [0, 2\pi)$.
- Strong CP problem: Why $\bar{\theta}$ is so small?
- Technical naturalness does not apply: CP is violated in Nature.
- However, if small, radiatively stable (7 loop β in the SM).

The strong CP problem

How to solve it?

- 1. Massless *u* quark (disfavored by lattice)
- 2. Promote $\bar{\theta}$ to a field $a(x)/f \to QCD$ potential $\to \langle \bar{\theta} \rangle \approx 0 + axion$
- 3. CP or P is a symmetry which is only spontaneously broken

The strong CP problem

- 3. CP or P is a symmetry which is only spontaneously broken
 - Since P or CP is only spontaneously broken, $\theta_{\text{OCD}} = 0$
 - P is a symmetry → Left-right models

Beg, Tsao, '78; Mohapatra, Senjanovic, '78,...

- CP is a symmetry
 - Nelson-Barr mechanism

Nelson,'84; Barr,'84

Others

Nelson-Barr mechanism

• Arranges $\bar{\theta}=$ 0 at tree level, i.e., the contribution from quark Yukawa vanishes

$$ar{ heta}_{ extit{tree}} = heta_{ ext{QCD}} + \operatorname{arg} \det Y_d + \operatorname{arg} \det Y_u$$

- Large δ_{CKM} should be generated
- Radiative corrections are calculable and should be tiny
- Not necessarily

Dine, Draper, JHEP, 1506.05433

The Barr criterion

SM with additional heavy VLQs (real representation) for which

Barr, PRL '84

- 1. Vevs that break the SM gauge group cannot break CP and they only connect the usual quark fields.
- Vevs that break CP spontaneously cannot break the SM gauge group and they can only appear connecting SM quark fields with the additional VLQs.

Within the SM gauge group

- From 2, CP breaking scalars must be SM singlets
- Then, VLQs can only be SM copies: $B_{L,R}$, $T_{L,R}$, $Q_{L,R}$

among 7 possible

• Doublet VLQs typically induce too large $\bar{\theta}$

Vecchi, JHEP'17

- One H does not break CP
- With only singlet VLQs $B_{L,R}$, $T_{L,R}$, a \mathbb{Z}_2 is definable and sufficient

Bento-Branco-Parada model

Simplest implementation of NB

Bento, Branco, Parada, PLB'91

- Only one Z₂ odd down-type VLQ B_L, B_R
- Only one \mathbb{Z}_2 odd complex scalar singlet S

$$\begin{split} -\mathcal{L} &= \bar{q}_{iL} \mathcal{Y}_{ij}^{\ d} H d_{jR} + \bar{q}_{iL} \mathcal{Y}_{ij}^{\ u} \tilde{H} u_{jR} \\ &+ \bar{\mathbf{B}}_{L} (f_{j} \mathbf{S} + f_{j}^{\prime} \mathbf{S}^{*}) d_{jR} + \bar{\mathbf{B}}_{L} \mathcal{M}^{B} \mathbf{B}_{R} + h.c., \end{split}$$

All couplings real.

 $\bar{q}_L H B_R$ is forbidden

CP and \mathbb{Z}_2 broken by $\langle S \rangle = v_S e^{i\alpha}$.

$$\langle (f_j S + f_i' S^*) \rangle = \mathcal{M}_i^{Bd}$$
 is an effective complex mass

Bento-Branco-Parada model

The 4×4 down quark mass matrix is

$$\mathcal{M}^{d+B} = \begin{pmatrix} v \mathcal{Y}^d / \sqrt{2} & 0 \\ \hline \mathcal{M}^{Bd} & \mathcal{M}^B \end{pmatrix} = \begin{pmatrix} \text{real} & 0 \\ \hline \text{complex} & \text{real} \end{pmatrix}$$

Barr criterion:
$$\det \left(\begin{array}{c|c} real & 0 \\ \hline complex & real \end{array} \right) = real$$

So $\bar{\theta}=0$ at tree-level

Coincidence $\mathscr{M}^{\mathit{Bd}} \sim \mathscr{M}^{\mathit{B}}$ necessary for CPV

Bento-Branco-Parada model

But it arises at 1-loop

Dine, Draper, JHEP'15

So
$$\delta ar{ heta} \sim rac{f^2 \lambda_{HS}}{16\pi^2}$$

f transmit the SCPV to the SM λ_{HS} Higgs portal

Model with non-conventional CP

Cherchiglia, Nishi, JHEP 1903 (2019) 040

We can improve on BBP by using a nonconventional CP

CP4 in 3HDM, Ivanov, Silva, PRD'16

- Two VQLs B₁, B₂ (more fields), one scalar S
- $\delta \bar{\theta}$ vanishes at one-loop!
- No ad hoc Z₂ is needed (embedded)
- 2-loop estimate:

$$\delta \bar{\theta} \sim \frac{f^4 \lambda}{(16\pi^2)^2}$$

Less suppression on the Yukawa f needed

Vector-like quarks of Nelson-Barr type

Cherchiglia, Nishi, JHEP'20

- If we find VLQs, how do we know it is related to the origin of CPV?
- The scalars that break CP needs to be much heavier to suppress mixing with H and then suppress 1-loop $\bar{\theta}$
- Only vector-like quarks (VLQs) at the TeV scale
- Consequences?

Vector-like quarks of Nelson-Barr type

VLQs of Nelson-Barr type (NB-VLQs) arise as

$$\begin{split} -\mathcal{L} &= \bar{q}_{iL} \mathcal{Y}_{ij}^{\ d} H d_{jR} + \bar{q}_{iL} \mathcal{Y}_{ij}^{\ u} \tilde{H} u_{jR} \\ &+ \bar{B}_{rL} \mathcal{M}_{rj}^{\ Bd} d_{jR} + \bar{B}_{rL} \mathcal{M}_{rs}^{\ B} B_{sR} + h.c., \end{split}$$

Down-type singlet NB-VLQ

Only \mathcal{M}^{Bd} is complex \implies soft breaking of CP

From parameter counting, one less parameters is needed compared to the generic VLQ.

For $n_B = 1$:

	# of param.	# of CP-odd
SM	3+3+3+1=10	1
generic VLQ	16	3
NB-VLQ	15	1

Generic Vector-like quarks

- Only 7 irreps with renormalizable mixing with SM quarks (only 3 are copies)
- We consider B_L, B_R copies of b_R
- The VLQs mix with the SM quarks: (d_L, s_L, b_L, B_L)
- The CKM matrix is no longer unitary but $heta_{
 m mix} \sim m_{
 m SM}/M_{
 m VLQ}$

• Flavor changing neutral currents (FCNC) are generically induced

Constraints on generic flavor structure

$\Delta F = 2$ observables

0	D	1 - T-1// - 4)	D	/A 4 T-10	01
Operator		V in TeV ($c_{NP} = 1$)	Bounds on c_{NP} ($\Lambda = 1 \text{ TeV}$)		Observables
	Re	lm	Re	lm	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	Δm_K ; ϵ_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	Δm_D ; $ q/p $, ϕ_D
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	Δm_D ; $ q/p $, ϕ_D
$(\bar{b}_{\rm L}\gamma^{\mu}d_{\rm L})^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^{3}	3.9×10^{-7}	1.9×10^{-7}	Δm_{B_d} ; $S_{\psi K_S}$
$(\bar{b}_{L}\gamma^{\mu}s_{L})^2$	1.4×10^{2}	2.5×10^{2}	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^{2}	8.3×10^{2}	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

Isidori, 1302.0661

Silvestrini, Valli, PLB'19, 1812.10913

For a generic flavor structure, new physics is restricted to lie $\Lambda_{NP} \gtrsim 100 \, \text{TeV}.$

With CPV (K
$$^0-\bar{K}^0),\,\Lambda_{NP}\gtrsim 10^5\,\text{TeV}.$$

To be compatible with $\Delta F=2$ observables with $\Lambda_{NP}\sim 1~{\rm TeV},$

$$|c_{ij}|\lesssim |V_{3i}^*V_{3j}|^2.$$

8

For down type NB-VLQ, mass matrix of size $3 + n_B$

Real basis:
$$\mathcal{M}^{d+B} = \begin{pmatrix} v \mathcal{Y}^d / \sqrt{2} & 0 \\ \hline \mathcal{M}^{Bd} & \mathcal{M}^B \end{pmatrix}$$
Generic basis: $M^{d+B} = \begin{pmatrix} v Y^d / \sqrt{2} & v Y^B / \sqrt{2} \\ \hline 0 & M^B \end{pmatrix}$

by unitary transformation on righthanded fields (d_{iR}, B_R)

For $n_B = 1$

One Generic VLQ: 16 parameters

v.s.

One NB-VLQ: 15 parameters

In leading seesaw $Y^d Y^{d\dagger}$ should attain SM values

$$V_{\rm CKM} {
m diag}(y_d^2,y_s^2,y_b^2)V_{\rm CKM}^\dagger$$

So the CP phase in the CKM should come from the complex part in

$$Y^{d}Y^{d\dagger} = \mathscr{Y}^{d}\left(\mathbb{1}_{3} - \mathbf{ww}^{\dagger}\right)\mathscr{Y}^{d\mathsf{T}}$$

$$\mathbf{W} = \mathscr{M}^{Bd^{\dagger}} M^{B^{\dagger}-1} \gtrsim 0.9$$

NB-VLQs cannot decouple

Correlations ⇒ implications to flavor strucuture

Cherchiglia, Nishi, JHEP'20

For $n_B = 1$, we can solve explicitly for

$$\mathscr{Y}^d = \operatorname{Re}^{1/2}(Y^d Y^{d\dagger})\mathcal{O}..$$

SM quark hierarchy

$$V_{iB} pprox rac{V}{\sqrt{2}M_B}Y_i^B$$
 are hierarchical

 $M_B = 1.4 \,\mathrm{TeV}$

$$R_b = \Gamma(Z \to bb)/\Gamma(Z \to \text{hadrons})$$

Largely flavor safe

VLQ of Nelson-Barr type: flavor constraints

Finer details require a global fit. We consider

- $|V_{ij}|$, Δm_{B_d} , Δm_{B_s}
- $B_s \to \mu \bar{\mu}, \, \epsilon_K, \, S_{\psi K_S}$
- $R_b, \, \epsilon'/\epsilon, \, K_L
 ightarrow \mu ar{\mu}$

Cherchiglia, De Conto, Nishi, 2103.04798

VLQ of Nelson-Barr type: flavor constraints

Cherchiglia, De Conto, Nishi, 2103.04798

 $M_B = 1.4 \,\mathrm{TeV}$

19

Conclusions

- CP may be a symmetry of nature after all (spontaneously broken)
- Nelson-Barr mechanism may solve the strong CP problem and requires VLQs to transmit the CPV to the SM
- Even the simplest NB implementation has consequences to flavor
- NB-VLQs need one less parameter
- For one NB-VLQ, only one CP odd quantity and the model is largely flavor safe because V_{iB} are hierarchical

More details

A. L. Cherchiglia, G. De Conto and C. C. Nishi, "Flavor constraints for a Vector-like quark of Nelson-Barr type," 2103.04798 [hep-ph].

A. L. Cherchiglia and C. C. Nishi, "Consequences of vector-like quarks of Nelson-Barr type," JHEP **2008** (2020) 104 [2004.11318 [hep-ph]].

A. L. Cherchiglia and C. C. Nishi, "Solving the strong CP problem with non-conventional CP," JHEP **1903** (2019) 040 [1901.02024 [hep-ph]].

Thank you!

VLQ of Nelson-Barr type: flavor constraints

Irreducible contriutions to $\bar{\theta}$

There are *irreducible* contributions to $\bar{\theta}$ arising from the NB-VLQs.

The non-decoupling contribution arises first at 3-loops.

They are relevant for $n_B \ge 2$ and practically excludes $n_T \ge 2$.

Valenti, Vecchi, 2105.09122

Irreducible contriutions to $\bar{\theta}$

Valenti, Vecchi, 2105.09122

