# Экспериментальное сравнение задач и моделей планирования биохимического производства.

 $B.\ B.\ \Pi \omega p \ni y,\ C.\ A.\ Tpenun$ kondratiukvitalik@gmail.com; s.trenin@gmail.com

Целью данной научной работы является комплексное исследование задачи оперативного планирования производства для биохимической промышленности. Исследуются различные постановки задачи составления оптимальных расписаний, учитывающие различные ограничения, приходящие из практики: особенности хранения промежуточных веществ, требования к работе производственных узлов и особенности подготовки станков, такие как наладка и очистка между запусками. Основной класс рассматриваемых математических моделей - смешанное целочисленное линейное программирование, что означает, что рассматриваемые задачи являются NP-трудными. Сложность заключается в том, что схожие задачи могут решаться одинаковыми методами с разной степенью эффективности, что негативно сказывается на процессе внедрения моделей в практику. Для решения этого вопроса проводится экспериментальный запуск моделей, разработанных для одной предметной области, в задачах из другой, интерпретация полученных результатов и предложение эвристик для ускорения алгоритмов.

Ключевые слова: planning; sheduling; MILP

DOI:

## 1 Введение

15

16

17

18

19

20

21

22

23

На сегодняшний день наблюдается высокая конкуренция в разных областях биохимического производства, а так же усложнение производственных процессов, увеличение числа этапов, количества оборудования и объемов продукции. Это неизбежно влечёт появление естественных требований к алгоритмам планирования: они должны быть масштабируемыми, работать за разумное время, находить качественные приближения к оптимальному расписанию и быть гибкими к изменению начальных условий. Основной объект исследования — это различные варианты постановки задачи создания расписания как задачи оптимизации, методы её решения и эвристики, учитывающие индивидуальные особенности задач. На данный момент широкое распространение получили модели смешнанного 10 целочисленного линейного программирования(ЦЛП), так как соответствующие задачи хо-11 рошо изучены и существуют алгоритмы для их решения. Однако временные затраты и 12 степень оптимальности найденных решений сильно зависят от количества переменных и 13 ограничений в модели, что делает процесс моделирования значимым для создания плана. 14

Большинство статей в данной области посвящены конкретным постановкам задач, приходящим из практики и созданию конкретных моделей для их решения. При этом задачи сходны друг другу, хоть и принадлежат разным предметным областям: фармацевтической, пищевой, химической и др. Это, в свою очередь, позволяет применять идеи, высказанные для решения одной задачи к решению другой. Применение имеющихся моделей и эвристик к задачам, для которых они не были разработаны изначально позволит перенять имеющийся опыт, а так же провести тонкую настройку модели под конкретную постановку, что должно привести к улучшению качества.

Некоторые авторы предлагают пути упрощения модели с целью ускорить процесс получения результата без значительной потери его качества. Примером подобной эвристики 37

38

61

25 является двухступенчатая схема, представленная в [1]. В работе проводится анализ других 26 способов упрощения модели и сравнительная оценка результатов.

## 27 2 Название раздела

Данный документ демонстрирует оформление статьи, подаваемой в электронную систему подачи статей http://jmlda.org/papers для публикации в журнале «Машинное обучение и анализ данных». Более подробные инструкции по стилевому файлу jmlda.sty и использованию издательской системы  $\mbox{LATEX } 2_{\mathcal{E}}$  находятся в документе authors-guide.pdf. Работу над статьёй удобно начинать с правки  $\mbox{TEX-}$ файла данного документа.

Oбращаем внимание, что данный документ должен быть сохранен в кодировке UTF-8 without BOM. Для смены кодировки рекомендуется пользоваться текстовыми редакторами Sublime Text или Notepad++.

#### 2.1 Название параграфа

Разделы и параграфы, за исключением списков литературы, нумеруются.

### **39** 3 Заключение

Желательно, чтобы этот раздел был, причём он не должен дословно повторять аннотацию. Обычно здесь отмечают, каких результатов удалось добиться, какие проблемы остались открытыми.

## **з Литература**

- International Journal of Production Research, 38:5, 1029-1051 doi: http://dx.doi.org/10.1080/002075400189004.
- [2] Georgios P. Georgiadis, Georgios M. Kopanos, Antonis Karkaris, Harris Ksafopoulos and Michael
  C. Georgiadis Optimal Production Scheduling in the Dairy Industries, 2019 Industrial &
  Engineering Chemistry Research 58 (16), 6537-6550 doi: http://dx.doi.org/10.1021/acs.
  iecr.8b05710.
- 51 [3] Georgiadis, Georgios P. and Elekidis, Apostolos P. and Georgiadis, Michael C. Optimization-52 Based Scheduling for the Process Industries: From Theory to Real-Life Industrial Applications, 53 2019 Industrial & Engineering Chemistry Research 58 (16), 6537-6550 doi: http://dx.doi.org/ 54 10.3390/pr7070438.
- Siqun Wang, Monique Guignard Hybridizing Discrete- and Continuous-Time Models For Batch
   Sizing and Scheduling Problems, 2006 Computers & Operations Research Volume 33, Issue 4
   doi: http://dx.doi.org/10.1016/j.cor.2004.11.013.
- <sup>58</sup> [5] Christos T. Maravelias and Ignacio E. Grossmann Minimization of the Makespan with a Discrete-<sup>59</sup> Time State-Task Network Formulation, 2003 Industrial & Engineering Chemistry Research <sup>60</sup> doi: http://dx.doi.org/10.1021/ie034053b.

Поступила в редакцию