SEMESTRÁLNÍ PRÁCE

KET/MET

MALEJ LORD 4. 6. 2015

1. Zadání

Stanovení opakovatelnosti a reprodukovatelnosti měřícího systému

- 1. Proveďte řízený experiment pro určení opakovatelnosti a reprodukovatelnosti měřícího systému pro kontrolu odporů. Měřicím systémem je multimetr s kabeláží, odpor v přípravku / mimo přípravek a obsluha.
- 2. Proveďte vyhodnocení opakovatelnosti a reprodukovatelnosti měřícího systému v tabulkovém procesoru a rozhodněte, zda je měřící systém přijatelný či nikoliv.
- 3. Analyzujte výsledky a určete vlivy na systém měření.

Určení nejistoty

4. Z naměřených hodnot určete nejistoty typu A, nejistoty typu B a určete celkovou a rozšířenou nejistotu měřen

2. Teoretický úvod

Systém měření

Jedná se o soubor operací, postupů,software, měřidel a dalšího vybavení. U ideálního systému měření

Ideální systém měření

Ideální systém měření produkuje jen "správná" měření. Každá naměřená hodnota odpovídá etalonu.

Reálný systém měření

Kvalita systému měření se určuje podle dat produkovaných v čase. V reálném systému měření se vyskytují chyby měření.

Nejistoty měření

Nejistota měření je údaj o variabilitě naměřených hodnot. Nejistoty máme dvojího druhu nejistotu řešenou způsobem A a nejistotu řešenou způsobem B. Z nejistoty řešené způsobem A a z nejistoty řešené způsobem B můžeme určit kombinovanou nejistotu.

Nejistota typu A - jedná se o směrodatnou odchylku výběrových průměrů. Výpočet určuje variabilitu změřených výsledků. Stanovuje se statistickými metodami z opakovaných měření. Je zapotřebí opakovatelné měření, ne jen odečet hodnot. Mírou nejistoty je výběrová směrodatná odchylka. Je způsobená náhodnými chybami.

Pokud provedeme míň jak 10 – 20 měření, upravuje se výsledek na počet opakování měření:

$$u_{AX} = s(\overline{X}) = \sqrt{\frac{s^2(X_i)}{n}} = \sqrt{\frac{1}{n.(n-1)} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

$$u_A(X) = k_s \cdot s(\overline{X})$$

Jestliže je počet opakování menší než 10, upravuje se výsledek měření následovně:

Počet měření	9	8	7	6	5	4	3	2
Koeficient ks	1,2	1,2	1,3	1,3	1,4	1,7	3,2	7

Nejistota typu B - řeší přítomnost okolních vlivů, které mohli ovlivnit měření, a vyvozuje variabilitu těchto vlivů. Stanovuje se analýzou naměřených hodnot, které vycházejí z racionálních úsudků. Je tedy způsobena známými a odhadnutelnými vlivy jako jsou například chyby způsobeny chybou přístrojů, chybou obsluhy, změnou teploty, nedokonalosti použité metody a měřících prostředků a další. Pro výpočet nejistoty typu B je zapotřebí nejdříve provést analýzu všech vlivů, které můžou na měření působit. Zjišťujeme dílčí nejistoty od jednotlivých dílčích zdrojů.

Obecně se odhad provádí následovně:

Nejprve odhadneme maximální možnou odchylku od nominální hodnoty veličiny příslušející zdroji nejistoty (obsluha, měřidlo a další.) Dále se posoudí průběh pravděpodobnostní odchylky v intervalu a najde se nejvhodnější aproximace. Poté se dílčí nejistota typu B určí z maximální změny daného zdroje:

$$u_{Bi} = \pm \frac{\Delta_{Zi,MAX}}{\chi}$$

Koeficient χ je tabulková hodnota dle typu rozdělení ($\chi = 2$ pro normální rozdělení P = 95 %). Pokud jsou zdrojem nejistoty fyzikální vlivy s různými veličinami a jednotkami je zapotřebí určit převodně citlivostní koeficienty:

$$u_i = c_{Zi} \cdot u_{Bi}$$

Dále se stanoví převodový koeficienty ze závislosti:

$$c_{Zi} = \frac{\partial X}{\partial Z_i}$$

Celková nejistota typu B se stanový z dílčích nezávislých nejistot typu B:

$$u_B(X) = \sqrt{\sum_{i=1}^n c_{Zi}^2 . u_{Bi}^2} = \sqrt{\sum_{i=1}^n u_i^2}$$

Kombinovaná nejistota udává interval, kde se s pravděpodobností 68,27 % nachází hodnota (normální rozdělení je podmínkou):

$$u_C = \sqrt{u_A^2 + u_B^2}$$

Analýza systémů MSA

Touto analýzou se stanovuje velikost chyby v procesu měření a posuzuje se adekvátnost pro kontrolu řízení produktu a procesu. Je zaměřená na systém měření jako takový, ne na produkovaný výsledek. Tato analýza také rozhoduje o vhodnosti či nevhodnosti systému. Její využití je zejména v automobilovém průmyslu.

Základní charakteristiky

Opakovatelnost – míra rozptylu měření veličiny. Jedná se o variabilitu měření získaných jedním měřícím přístrojem, který byl použit několikrát stejným operátorem při měření identického znaku. Opakovatelnost zahrnuje jak veškerou variabilitu uvnitř zařízení tak veškerou variabilitu mimo zařízení například: prostředí, operátor, metoda a další.

Reprodukovatelnost

Hodnoty/ data v krátkém časovém úseku, na identickém objektu, pevně daným postupem, specifikovanou obsluhou, definovaném vybavení na definovaných místech.

Kritéria vyhodnocení přijatelnosti pro metodu opakovatelnosti a reprodukovatelnosti měřícího systému:

Celková variabilita TV (Total Variation) se spočte jako sumace rozptylů opakovatelnosti, reprodukovatelnosti a variability mezi vzorky procentuální vyjádření jednotlivých variabilit EV, AV, GRR a PV se provede vztažením k hodnotě TV.

V případě, že tato vypočtená hodnota GRR[%] je:

- menší než 10 % systém měření se obecně považuje za přijatelný
- mezi 10 30 % systém může být přijatelný podle důležitosti použití, nákladů vynaložených na měřící zařízení, nákladů

opravu atd.

• větší než 30 %-systém se považuje za nepřijatelný, veškeré úsilí se musí vynaložit na zlepšení systému

Tato kritéria hodnocení se používají ve všech metodách pro určení GRR.

3. Postup měření

Měřili jsme 10 vzorků rezistorů, nejprve bez pomocného přípravku, poté jsme všechny rezistory zasadili do pomocného přípravku, který měření ulehčoval. Měření provedli tři operátoři jak s pomocným přípravkem, tak bez přípravku. Hodnoty jednotlivých odporů jsme měřili pomocí Multimetru. Výsledné hodnoty jsme zaznamenávali do tabulky. Z naměřených hodnot jsem provedl výpočet opakovatelnosti, výpočet reprodukovatelnosti a nejistot měření.

4. Naměřené a vypočítané hodnoty

Tab. 1: Tabulka naměřených hodnot rezistorů bez pomocného přípravku

		R [k Ω]									
	opakování	1	2	3	4	5	6	7	8	9	10
	1	4,6779	4,6780	4,6774	4,6862	4,6838	4,6825	4,6842	4,6824	4,6826	4,6793
Operátor I	2	4,6780	4,6883	4,6778	4,6863	4,6838	4,6824	4,6842	4,6824	4,6827	4,6792
	3	4,6779	4,6883	4,6775	4,6863	4,6839	4,6806	4,6843	4,6825	4,6827	4,6793
R_{ik}		0,0001	0,0103	0,0004	0,0001	0,0001	0,0019	0,0001	0,0001	0,0001	0,0001
Xik		4,677933	4,684867	4,677567	4,686267	4,683833	4,681833	4,684233	4,682433	4,682667	4,679267
	1	4,6779	4,6883	4,6775	4,6863	4,6842	4,6806	4,6842	4,6824	4,6827	4,6792
Operátor II	2	4,6778	4,6919	4,6775	4,6868	4,6839	4,6806	4,6844	4,6832	4,6827	4,6792
	3	4,6779	4,6750	4,6772	4,6837	4,6837	4,6806	4,6842	4,6822	4,6827	4,6792
R_{ik}		0,0001	0,0169	0,0003	0,0031	0,0005	0,0000	0,0002	0,0010	0,0000	0,0000
X _{ik}		4,677867	4,685067	4,677400	4,685600	4,683933	4,680600	4,684267	4,682600	4,682700	4,679200
	1	4,6780	4,6883	4,6775	4,6863	4,6839	4,6805	4,6843	4,6824	4,6827	4,6794
Operátor III	2	4,6780	4,6884	4,6775	4,6884	4,6839	4,6807	4,6844	4,6825	4,6827	4,6794
	3	4,6780	4,6884	4,6775	4,6863	4,6839	4,6806	4,6844	4,6825	4,6817	4,6794
R_{ik}	· · · · · · · · · · · · · · · · · · ·	0,0000	0,0001	0,0000	0,0021	0,0000	0,0002	0,0001	0,0001	0,0010	0,0000
X _{ik}		4,678000	4,688367	4,677500	4,687000	4,683900	4,680600	4,684367	4,682467	4,682367	4,679400

Tab. 2: Tabulka naměřených hodnot rezistorů s pomocným přípravkem

		R [k Ω]									
	opakování	1	2	3	4	5	6	7	8	9	10
	1	4,6779	4,6884	4,6775	4,6863	4,6839	4,6806	4,6843	4,6825	4,6828	4,6794
Operátor I	2	4,6779	4,6884	4,6775	4,6863	4,6839	4,6806	4,6843	4,6824	4,6827	4,6793
	3	4,6780	4,6883	4,6773	4,6863	4,6839	4,6806	4,6843	4,6825	4,6827	4,6793
R_{il}		0,0001	0,0001	0,0002	0,0000	0,0000	0,0000	0,0000	0,0001	0,0001	0,0001
X_{ik}		4,677933	4,688367	4,677433	4,686300	4,683900	4,680600	4,684300	4,682467	4,682733	4,679333
	1	4,6779	4,6884	4,6775	4,6863	4,6838	4,6806	4,6843	4,6824	4,6827	4,6792
Operátor II	2	4,6779	4,6884	4,6775	4,6863	4,6839	4,6806	4,6844	4,6825	4,6828	4,6794
	3	4,6779	4,6884	4,6775	4,6884	4,6839	4,6806	4,6843	4,6824	4,6828	4,6894
R_{il}		0,0000	0,0000	0,0000	0,0001	0,0001	0,0000	0,0001	0,0001	0,0001	0,0102
X _{ik}		4,677900	4,688400	4,677500	4,687000	4,683867	4,680600	4,684333	4,682433	4,682767	4,682667
	1	4,6781	4,6883	4,6777	4,6862	4,6840	4,6807	4,6844	4,6825	4,6828	4,6794
Operátor III	2	4,6780	4,6884	4,6775	4,6864	4,6840	4,6807	4,6844	4,6825	4,6828	4,6794
111	3	4,6780	4,6884	4,6775	4,6864	4,6840	4,6806	4,6844	4,6825	4,6828	4,6794
R_{il}		0,0001	0,0001	0,0002	0,0002	0,0000	0,0001	0,0000	0,0000	0,0000	0,0000
X_{ik}		4,678033	4,688367	4,677567	4,686333	4,684000	4,680667	4,684400	4,682500	4,682800	4,679400

Opakovatelnost a reprodukovatelnost

Výsledky měření bez přípravku:

opakovatelnost - EV	0,0007680
reprodukovatelnost - AV	0,0002041
GRR	0,0007947
variabilita mezi vzorky - PV	0,0027685
celková variabilita - TV	0,0028803
procentní vyjádření variabilit - GRR%	27,5906481

Hodnota GRR% mezi 10-30% systém může být přijatelný podle důležitosti použití, nákladů vynaložených na měřící zařízení, nákladů na opravu atd.

Výsledky měření s přípravkem:

opakovatelnost - EV	0,0002383
reprodukovatelnost - AV	0,0002100
GRR	0,0003176
variabilita mezi vzorky - PV	0,0034221
celková variabilita - TV	0,0034369
procentní vyjádření variabilit - GRR%	9,2417844

Hodnota GRR% menší než 10 % pak se systém měření obecně považuje za přijatelný.

Nejistota měření

uA(x)	2,8284E-05
uB1	0,05517082
uB2	0,0005
uB(x)	0,05517309
uc(x)	0,05517309
U	0,11034619

Výpočet nejistoty měření

Průměr:

$$\bar{R} = \frac{1}{9} \sum R = \frac{1}{9} (4,6779 + 4,678 + 4,6779 + 4,6779 + 4,6778 + 4,6779 + 4,678 + 4,678 + 4,678) + 4,678 +$$

Nejistota typu A

$$u_{AX} = \sqrt{\frac{1}{n \cdot (n-1)} \sum (R_i - \bar{R}_i)^2}$$

$$u_{AX} = \sqrt{\frac{1}{9 * (9-1)} \cdot (4,6779 - 4,67793333)^2 + \dots + (R_n - 4,67793333)^2} = 0,00002357 \text{ k}\Omega$$

$$u_A(x) = k_s * u_{AX} = 1,2 * 0,00002887 = 0,000028284 k\Omega$$

Počet opakování byl menší než 10, proto jsem zvolil koeficient k_s = 1,2

Nejistota typu B

Vliv měřícího přístroje:

$$\Delta_{ZiMAX} = 0.01 \cdot \bar{R} + 3 \cdot 0.001 = 0.01 \cdot 4.6779333 + 3 \cdot 0.001 = 0.04977933$$

$$u_{B1} = \frac{\Delta_{ZiMAX}}{\sqrt{3}} = \frac{0.04967933}{\sqrt{3}} = 0.02874$$
 Pro rovnoměrné rozdělení : X = $\sqrt{2}$

Vliv obsluhy:

Chyba obsluhy stanovena na 0,001 k Ω

$$u_{B2}=\frac{\Delta_{ZiMAX}}{2}=\frac{0{,}001}{2}=0{,}0005~\mathrm{k}\Omega$$
 Pro normální rozdělení (P=95%): X = 2

Celková nejistota typu B:

$$u_B(X) = \sqrt{u_{B1}^2 + u_{B2}^2} = \sqrt{0.02874^2 + 0.0005^2} = 0.02874446 \text{ k}\Omega$$

Kombinovaná nejistota:

$$u_c(x) = \sqrt{u_A(x)^2 + u_B(x)^2} = \sqrt{0.000028284^2 + 0.02874446^2} = 0.02874447 \text{ k}\Omega$$

Rozšířená kombinovaná nejistota:

$$U(X) = k \cdot u_c(X) = 2 \cdot 0.028744 = 0.05748895 \text{k}\Omega$$

Koeficient rozšíření k = 2 ... skutečná hodnota je v daném intervalu s pravděpodobností P = 95%.

$$R = (4,67793 \pm 0,057489)$$
k Ω

5. Použité přístroje

Multimetr Měřící přípravek pro uchycení rezistoru

6. Závěr

Při prvním měření jsme zjišťovali elektrický odpor jednotlivých rezistorů způsobem přiložení měřících sond multimetru na vývody součástky. Sondy jsme tak u "nožiček" drželi pomocí prstů, tím jsme do měření jistě zanesli nepřesnosti s rozdílnou hodnotou. Vliv nepřesností se lišil dle operátora, vlhkosti prstů, síle stisku, aj. Vystřídali se tři operátoři u deseti stejných rezistorů. Každý operátor proces opakoval třikrát. Z naměřených hodnot jsem vypočítal opakovatelnost, reprodukovatelnost a variabilitu. Hodnota GRR% vyšla 27,59 %, systém tedy můžeme považovat za přijatelný, ovšem s přihlédnutím na důležitost použití, náklady vynaložených na měřící zařízení atd.

V druhé části úlohy jsme použili vyrobené přípravky, do kterých se rezistory upevnily. U zasazených rezistorů jsme poté celý proces opakovali (3 operátoři, každý opakoval měření třikrát s deseti rezistory). Tento způsob měření se ukázal jako mnohem pohodlnější, rychlejší a hlavně přesnější. Vypočítaná hodnota GRR% z naměřených hodnot vyšla 9,24 %, což dokazuje teorii o zanesených chybách při prvním měření vlivem různého úchopu rezistoru operátorem. Toto měření můžeme považovat za obecně přijatelné.

Rozšířená nejistota měření nám vyšla $R = (4,67793 \pm 0,057489) \text{k}\Omega$.