Machine Learning: Exercises for Block III

Isabel Valera

Exercise 1: Lagrange Dual Problem

Consider the optimization problem with variable $x \in \mathbb{R}$ given in equation 1.

- i) State the dual problem and verify that it is a concave maximization problem.
- ii) Find the dual optimal value and dual optimal solution λ^* .
- iii) Does strong duality hold?

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$ (1)

Exercise 2: Inequality constraint

- i) Express the dual problem of the primal problem given in 2 with $c \neq 0$ in terms of the conjugate f^* .
- ii) Explain why the dual problem you give is convex. We do not assume f is convex.

minimize
$$c^{\top}x$$

subject to $f(x) \le 0$ (2)

Exercise 3: KKT conditions

- i) Derive the KKT conditions for the problem given in problem 3 with variable $X \in S^n$ (n dimensional symmetric) and domain S^n_{++} (symmetric positive-definite). $y \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ are given with $s^\top y = 1$.
- ii) Verify that the optimal solution is given by equation 4.

minimize
$$\operatorname{tr}(X) - \log \det X$$

subject to $Xs = y$ (3)

$$\boldsymbol{X}^* = \mathbb{I} + \boldsymbol{y} \boldsymbol{y}^\top - \frac{1}{\boldsymbol{s}^\top \boldsymbol{s}} \boldsymbol{s} \boldsymbol{s}^\top \tag{4}$$

Exercise 4: Estimating covariance and mean

We consider the problem of estimating the covariance matrix Σ and the mean μ of a Gaussian probability density function as given in equation 5 based on N independent samples $x_1, x_2, ..., x_N \in \mathbb{R}^n$.

- i) We first consider the estimation problem when there are no additional constrains on Σ and μ . Let $\hat{\mu}$ and $\hat{\Sigma}$ be the sample mean and covariance as defined in equations 6. Show that the log-likelihood function given in equation 7 can be expressed as in equation 8 and use this expression to show that if $\hat{\Sigma} \succ 0$ the ML estimates of Σ and μ are unique and given by the sample covariance and sample mean.
- ii) The log-likelihood function includes a convex term $(-\log \det \Sigma)$ so it is not obviously concave. Show that \mathcal{L} is concave, jointly in Σ and μ in the region defined by $\Sigma \leq 2\hat{\Sigma}$. This means we can use convex optimization to compute simultaneous ML estimates of Σ and μ , subject to convex constraints, as long as the constraints include $\Sigma \leq 2\hat{\Sigma}$, i.e. the estimate Σ must not exceed twice the unconstrained ML estimate.

$$p(\boldsymbol{x} \mid \boldsymbol{\Sigma}, \boldsymbol{\mu}) = (2\pi)^{-\frac{n}{2}} \det(\boldsymbol{\Sigma})^{\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
(5)

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x}_{k}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{k=1}^{N} (\boldsymbol{x} - \hat{\boldsymbol{\mu}}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}})^{\top}$$
(6)

$$\mathcal{L}(\boldsymbol{\Sigma}, \boldsymbol{\mu}) = -\frac{Nn}{2} \log(2\pi) - \frac{N}{2} \log \det \boldsymbol{\Sigma} - \frac{1}{2} \sum_{k=1}^{N} (\boldsymbol{x}_k - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_k - \boldsymbol{\mu})$$
(7)

$$\mathcal{L}(\boldsymbol{\Sigma}, \boldsymbol{\mu}) = \frac{N}{2} \left(-n \log(2\pi) - \log \det \boldsymbol{\Sigma} - \mathbf{tr}(\boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\Sigma}}) - (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}) \right)$$
(8)

Exercise 5: Estimating mean and variance

Consider a random variable $x \in \mathbb{R}$ with density p, which is normalized, i.e. has zero mean and unit variance. Consider a random variable $y = \frac{x+b}{a}$ obtained by an affine transformation of x, where a > 0. The random variable y has mean $\frac{b}{a}$ and variance $\frac{1}{a^2}$. As a and b vary over the non-negative real numbers \mathbb{R}_+ and the real numbers \mathbb{R} , respectively, we generate a family of densities obtained from p by scaling and shifting, uniquely parametrized by mean and variance.

- i) Show that if p is log-concave, then finding the ML estimate of a and b, given samples $y_1, ..., y_n$ of y is a convex problem.
- ii) As an example, work out an analytical solution for the ML estimates of a and b, assuming p is a normalized Laplacian density $p(x) = \exp(-2|x|)$.

Exercise 6: Robust linear classification

Consider the robust linear classification problem given in problem 9 where we seek an affine function $f(x) = \boldsymbol{w}^{\top} \boldsymbol{x} - b$ that separates the two sets of points $\{\boldsymbol{x}_1, ..., \boldsymbol{x}_N\}$ and $\{\boldsymbol{y}_1, ..., \boldsymbol{y}_M\}$. This means that $\boldsymbol{w}^{\top} \boldsymbol{x}_i - b > 0$ for i = 1, ..., N and $\boldsymbol{w}^{\top} \boldsymbol{y}_j - b < 0$ for j = 1, ..., M.

- i) Show that the optimal value t^* is positive if and only if the two sets of points can be linearly separated. When the two sets of points can be linearly separated, show that the inequality $||\boldsymbol{w}||_2 \leq 1$ is tight, i.e., we have $||\boldsymbol{w}^*||_2 = 1$ for the optimal \boldsymbol{w}^* .
- ii) Using the change of variables $\tilde{\boldsymbol{w}} = \frac{\boldsymbol{w}}{t}, \tilde{b} = \frac{b}{t}$, prove that problem 9 is equivalent to the quadratic program given in 10.

maximize
$$t$$

subject to $\boldsymbol{w}^{\top}\boldsymbol{x}_{i} - b \geq t, \ i = 1,...,N$
 $\boldsymbol{w}^{\top}\boldsymbol{y}_{i} - b \leq -t, \ i = 1,...,M$
 $||\boldsymbol{w}||_{2} \leq 1$ (9)

minimize
$$||\tilde{\boldsymbol{w}}||_2$$

subject to $\tilde{\boldsymbol{w}}^{\top} \boldsymbol{x}_i - \tilde{b} \ge 1, \ i = 1, ..., N$
 $\tilde{\boldsymbol{w}}^{\top} \boldsymbol{y}_i - \tilde{b} < -1, \ i = 1, ..., M$ (10)

Exercise 7: Linear discrimination and weight errors

Suppose we are given two sets of points $\{x_1,...,x_N\}$ and $\{y_1,...,y_M\}$ in \mathbb{R}^n that can be linearly separated. As in problem 9 we can find the affine function that discriminates the sets, and gives the largest gap in function values. We can also consider robustness with respect to changes in the weight vector \boldsymbol{w} . For a given \boldsymbol{w} and b for which $f(x) = \boldsymbol{w}^\top \boldsymbol{x} - b$ separates the two sets, we define the weight error margin as the norm of the smallest $\boldsymbol{u} \in \mathbb{R}^n$ such that the affine function $(\boldsymbol{w} + \boldsymbol{u})^\top \boldsymbol{x} - b$ no longer separates the two sets of points. In other words, the weight error margin is the maximum ρ such that $(\boldsymbol{w} + \boldsymbol{u})^\top \boldsymbol{x}_i \geq b$ for i = 1, ..., N and $(\boldsymbol{w} + \boldsymbol{u})^\top \boldsymbol{y}_j \leq b$ for j = 1, ..., M holds for all \boldsymbol{u} with $||\boldsymbol{u}||_2 \leq \rho$. Show how to find \boldsymbol{w} and b that maximize the weight error margin, subject to the normalization constraint $||\boldsymbol{w}||_2 \leq 1$.

References

[1] S. Boyd, S. P. Boyd, and L. Vandenberghe. *Convex optimization*. Cambridge university press, 2004.