El Lema de Nakayama y algunas consecuencias

Índice

Re	eferencias	4
3	Subvariedades de codimensión 1	4
2	Algunos corolarios	2
1	El Lema de Nakayama	1

1 El Lema de Nakayama

El siguiente resultado es el Lema de Nakayama en una de sus versiones.

Teorema 1.1. Sea k un anillo conmutativo (con 1). Si M un k-módulo f.g. $y \mathfrak{a} \subset k$ es un ideal que verifican:

$$d \in 1 + \mathfrak{a}$$
 , $dM = 0 \Rightarrow M = 0$, (1)

entonces $\mathfrak{a} M = M$ implica M = 0.

Demostración. Si \mathfrak{a} y M verifican las hipótesis y $\mathfrak{a}M = M$, entonces, eligiendo generadores, $M = \langle m_1, \ldots, m_r \rangle$ y

$$m_i = a_i^j m_j$$

con $a_i^j \in \mathfrak{a}$. Si $A \in \mathsf{Mat}_{r \times r}(k)$ denota la matriz con coeficientes a_i^j e I la matriz identidad, en el anillo $\mathsf{Mat}_{r \times r}(k)$,

$$\operatorname{\mathsf{adj}}(I-A)\,(I-A)\,=\,\det(I-A)\,I$$

y, entonces $\det(I-A) m_i = 0$, para cada i. Si $d = \det(I-A)$, entonces $d \in 1 + \mathfrak{a}$ y cumple que dM = 0. Así, debe ser M = 0.

2 Algunos corolarios

El Teorema 1.1 tiene varias consecuencias importantes. En primer lugar, en una extensión finita de anillos $k \subset B$ (es decir, B es f.g. en tanto k-módulo), el ideal (en B) que se obtiene por extensión a partir de un ideal propio de k, también debe ser propio.

Corolario 2.1. Sea $k \subset B$ una extensión finita de anillos conmutativos (con 1). Si $\mathfrak{a} \subset k$ es un ideal tal que $\mathfrak{a} \neq k$, entonces $\mathfrak{a}^e := \mathfrak{a} B \neq B$.

Demostración. Si B=0, k=0 y no hay nada que probar. Supongamos, entonces, que $1 \neq 0$ $(1=1_B=1_k)$; en particular, $B\neq 0$ como k-módulo. Si $\mathfrak{a}\neq k$, $1\not\in \mathfrak{a}$. Si $d\in k$ y dB=0, con lo cual, d1=0 y, así, d=0. En particular, dado que $1\not\in \mathfrak{a}$, $d-1\not\in \mathfrak{a}$, tampoco. En definitiva, para todo $d\in k$,

$$d \notin 1 + \mathfrak{a} \quad \lor \quad dB \neq 0 \quad \lor \quad B = 0$$

que equivale a (1). Como $B \neq 0$ (mejor dicho, asumiendo $B \neq 0$), $\mathfrak{a} B \neq B$.

Corolario 2.2. Si todo elemento de $1 + \mathfrak{a}$ es invertible y M es un k-módulo f.g., $M' + \mathfrak{a} M = M$ implica M' = M.

Observación 2.3. Si M está dado y las operaciones de multiplicación por elementos de $1 + \mathfrak{a}$ son inyectivas, entonces $\mathfrak{a} M = M$ implica M = 0, por el Teorema 1.1.

Demostración. Veamos, primero el caso M'=0. En este caso, se asume que $\mathfrak{a} M=M$ y se debe probar que M=0. Pero, si todo elemento de $1+\mathfrak{a}$ es invertible, la condición (1) se verifica y $\mathfrak{a} M=M$ implica M=0. En general, se aplica el mismo razonamiento al cociente M/M'.

Corolario 2.4. Sea $\mathfrak{a} \subset k$ un ideal tal que todo elemento de $1 + \mathfrak{a}$ es invertible. Dado un k-módulo M, un subconjunto $\{m_1, \ldots, m_r\}$ genera M, si y sólo si genera $M/\mathfrak{a} M$.

Demostración. Si $\{m_1, \ldots, m_r\}$ genera M, genera el cociente. Recíprocamente, si el conjunto de clases de los elementos m_1, \ldots, m_r genera $M/\mathfrak{a} M$ y si $M' = \langle m_1, \ldots, m_r \rangle \subset M$, entonces $M' + \mathfrak{a} M = M$, con lo que, por el Corolario 2.2, M' = M.

Corolario 2.5 (Teorema de intersección de Krull). Si k es un anillo conmutativo noetheriano $y \mathfrak{a} \subset k$ es un ideal tal que todos los elementos de $1 + \mathfrak{a}$ son invertibles, entonces

$$\bigcap_{n\geq 1} \left(\mathfrak{a}^n + \mathfrak{b} \right) = \mathfrak{b} , \qquad (2)$$

para todo ideal $\mathfrak{b} \subset k$.

Demostración. Supongamos, primero, que $\mathfrak{b}=0$. Sea $M:=\bigcap_{n\geq 1}\mathfrak{a}^n$. Por el Teorema 1.1, o bien, por el Corolario 2.2, será suficiente probar que $\mathfrak{a}\,M=M$. La inclusión $\mathfrak{a}\,M\subset M$ es consecuencia de que M es ideal (módulo). En cuanto a la otra inclusión, todo elemento $x\in M$ se puede escribir de la siguiente manera: fijado un conjunto finito

de generadores de \mathfrak{a} , $\{a_1, \ldots, a_r\}$, para cada $x \in M$ y cada $n \geq 1$, existe un polinomio homogéneo $f \in k[T_1, \ldots, T_r]$ de grado n, tal que

$$x = f(a_1, \ldots, a_r) .$$

Sea $I \subset k[T_1, \ldots, T_r]$ el ideal generado por los polinomios homogéneos f tales que $f(a_1, \ldots, a_r) \in M$. Como k es noetheriano, $k[T_1, \ldots, T_r]$ también lo es (Teorema de la base de Hilbert) e I está generado por un conjunto finito de polinomios homogéneos, por ejemplo, $\{f_1, \ldots, f_s\}$. Sean $d_i := \operatorname{gr}(f_i)$ y sea $d \geq \max\{d_1, \ldots, d_s\}$. Dado $x \in M$, en particular, $x \in \mathfrak{a}^{d+1}$ y $x = f(a_1, \ldots, a_r)$ para cierto f homogéneo de grado d + 1. Si

$$f = \sum_{i} g_i f_i , \qquad (3)$$

con $g_i \in k[T_1, \ldots, T_r]$, separando por grados, los términos de grado distinto de d+1 se deben cancelar $(k[T_1, \ldots, T_r]$ es k-libre), con lo que, en la igualdad (3), se puede asumir, sin pérdida de generalidad, que cada g_i es homogéneo de grado $d+1-d_i$. Entonces,

$$x = \sum_{i=1}^{s} g_i(a_1, \ldots, a_r) f_i(a_1, \ldots, a_r).$$

Como $f_i \in I$, $f_i(a_1, \ldots, a_r) \in M$ y, como $d+1-d_i > 0$, $g_i(a_1, \ldots, a_r) \in \mathfrak{a}$. En definitiva, $x \in \mathfrak{a} M$.

En general, si $\mathfrak{a} \subset k$ y $M := \bigcap_{n>1} (\mathfrak{a}^n + \mathfrak{b})$,

$$\left(\frac{\mathfrak{a}+\mathfrak{b}}{\mathfrak{b}}\right)^n = \frac{\mathfrak{a}^n+\mathfrak{b}}{\mathfrak{b}} ,$$

en k/\mathfrak{b} . Entonces,

$$\frac{M+\mathfrak{b}}{\mathfrak{b}} = \bigcap_{n>1} \frac{\mathfrak{a}^n+\mathfrak{b}}{\mathfrak{b}} = \bigcap_{n>1} \left(\frac{\mathfrak{a}+\mathfrak{b}}{\mathfrak{b}}\right)^n.$$

La primera igualdad es consecuencia de que $k \to k/\mathfrak{b}$ es sobre y $\mathfrak{a}^n + \mathfrak{b} \supset \mathfrak{b}$, mientras que la segunda se debe a que $c(1+a) \in \mathfrak{b}$ implica $c \in \mathfrak{b}$, siempre que $a \in \mathfrak{a}$ y $c \in k$. \square

Observación 2.6. Se puede ver de la demostración que la condición de que todos los elementos de $1+\mathfrak{a}$ sean invertibles se puede debilitar un poco: la conclusión sigue siendo válida, si se asume que

$$(\forall c \in k) (\forall a \in \mathfrak{a}) (c (1+a) \in \mathfrak{b} \Rightarrow c \in \mathfrak{b})$$
(4)

En el caso en que $\mathfrak{b}=0$, esto quiere decir que $1+\mathfrak{a}$ no contiene divisores de cero.

3 Subvariedades de codimensión 1

Sea X una variedad y sea $C \subset X$ una subvariedad de codimensión 1. Supongamos que X es no singular en codimensión 1. Entonces C está dada por una ecuación local $\mathcal{I}_C(U) = \langle h \rangle \subset \mathcal{O}_X(U)$, en algún abierto $U \subset X$. Como X es irreducible, U también lo es y el anillo $\mathcal{O}_X(U)$ es un dominio íntegro. En particular, si $I := \mathcal{I}_C(U)$, 1 + I no contiene divisores de cero y, por el Corolario 2.5,

$$\bigcap_{n\geq 1} I^n = 0 .$$

En particular, si $f \in \mathcal{O}_X(U)$ no es cero, o bien $f \notin I$, o bien existe $n \geq 1$ tal que $f \in I^n \setminus I^{n+1}$. Dicho de otra manera, el conjunto

$$\{n \ge 1 : f \not\in I^n\}$$

no es vacío y, por buena ordenación, contiene un primer elemento.

Referencias

- [1] M. F. Atiyah and I. G. Macdonald. *Introduction to commutative algebra*. Reading, Mass.-Menlo Park, Calif.-London-Don Mills, Ont.: Addison-Wesley Publishing Company (1969). 1969.
- [2] I. R. Shafarevich. Basic Algebraic Geometry 1. Varieties in Projective Space. Translated from the Russian by Miles Reid. 3rd ed. Berlin: Springer, 2013.