The Andrew & Erna Viterbi Faculty of Electrical Engineering

מעבדות בהנדסת חשמל 1,1ח' <u>044160 - 044151</u>

<u>ניסוי ניפוי תקלות בחומרה Debug</u>

ניסוי: ניפוי תקלות בחומרה (DEBUG)

<u>מהלך הניסוי במעבדה</u>

- 1. לימוד מודרך של הנתח הלוגי SignalTAP בעזרת מכונת RANDOM
- 2. בנית ממשק למקלדת ובדיקתו באמצעות ה- SignalTAP
 - 1. ניפוי תקלה דגימת מכונת המצבים
 - 3. שמוש בעורך הזכרון ISMCE
- 1. מטלה: תכן עם מקלדת הדלקה/כיבוי לד באמצעות מקש
 - 4. פרוייקט סכמת מלבנים

הנתח הלוגי – DEBUG

שימוש במשאבי הרכיב המתוכנת:Signal Tap

- המערכת המקורית מורכבת מ- N מודולים

קומפילציה של המערכת המקורית מפרטת: את ניצול משאבי הרכיב ע"י המערכת: Total Logic Elemnts - (TLEs) Total memory bits - (TMBs)

קומפילציה של המערכת המקורית עם ה- Signal Tap לאחר קונפיגורציה, מפרטת את ניצול משאבי הרכיב ע"י המערכת + Signal Tap :

Total Logic Elemnts - (TLEt)

Total memory bits - (TMBt)

מאחר וה Signal Tap משתמש במשאבי הרכיב מתקיים:

TLEs < TLEt .1

עומק הזיכרון שנבחר X מספר קווי האותות + TMBs = TMBt 2

הנתח הלוגי – DEBUG

Signal Tap <u>הקלטת דגימות</u>

- קובעים את הקונפיגורציה של ה S.T. של ה
 - והמעגל הנבדק S.T. -נטענים ל- FPGA
- האותות שנבחרו נדגמים ונרשמים בזיכרון מעגלי
- כאשר מתקיימים תנאי הדרבון זהו סימן לעצירת הדגימות.
- המשך הדגימה מתאפשר בהתאם לחלוקת הזיכרון ועומק הזיכרון עד לעצירה סופית

לימוד מודרך של הנתח הלוגי – DEBUG

<u>קונפיגורציה בסיסית של Signal Tap</u>

Device configuration

- הגדרת הכרטיס
- הקובץ לצריבה

____ Signal configuration

- שעון הדגימה -
 - עומק זיכרון -
- חלוקת הזיכרון Pre\post\center
- 12\88, 88\12,50\50

לימוד מודרך של הנתח הלוגי (המשך) — DEBUG

מעגל HW_Debug – מכונת ANDOM

detect 0 dataa[7..0] count8 datab∏=0 down counte MAXCOUNT sload data[7..0] COUNT[7..0] q[7..0] > clock regout DFF data[7..0] clk clock q[7..0] enable vrise inst1 resetN dout KEY0 inst resetN clk din

400

300

500

600

700

dout

100

200

יינעל מספר key0 **פעולה:** בלחיצה על לחצן אקראי בתחום 255 – 0 במוצא המעגל

- הפעולות שלהלן מתבצעות בצורה
 מחזורית
- מונה count8 סופר כלפי מטה
- Detect0 מזהה 0 ביציאת המונה ושולח אות load למונה
- במצב load אות השעון clk אות hoad במצב 255) maxcount
- vrise לחיצה על הלחצן עליה בכניסת
- vrise גוזרת את העליה בכניסה ומפיקה פולס למשך מחזור שעון אחד
 - regout את (enab) הפולס מאפשר
 - במצב enab באות השעון regout ננעל מצב המונה האקראי

דיאגרמת זמנים של גוזר סינכרוני

עליה בכניסת הגוזר (din) מפיקה אות ברוחב מחזור שעון אחד ביציאה (dout)

לימוד מודרך של הנתח הלוגי (המשך) — DEBUG

באמצעות מכונת RANDOM

<u>שלבי העבודה עם הנתח הלוגי</u>

- Setup Tab קונפיגורציה של הנתח הלוגי•
 - שעון הדגימה
 - עומק זיכרון –
- (12\88, 88\12,50\50) Pre\post\center חלוקת הזיכרון ל
 - קביעת האותות המוקלטים
 - קביעת תנאי הדרבון
 - קומפילציה של הפרויקט •
 - צריבה מתוך חלון הנתח הלוגי
 - הגדרת הכרטיס –
 - עדכון הקובץ לצריבה –
- הפעלת הפרויקט על הכרטיס דרך הנתח הלוגי (RUN ו- AUTO RUN)•

RANDOM

לימוד מודרך של הנתח הלוגי (המשך) — DEBUG

באמצעות מכונת RANDOM

שימוש ב – Trigger הכולל כמה תנאים

- יהיה גדול מ 128, ניתן להוסיף תנאי שני, למשל שהמונה COUNT יהיה גדול מ 128, לתנאי הדרבון הראשון (עלייה באות pulse)
 - Insert Value -דרך חלון ה- COUNT יניתן לתת ערך ל

דוגמה של תוצאה עם שני תנאי דרבון 🦠

הפסקה בעבודה – השלמת דו"ח

• הסטודנטים ישלימו סעיפים בדו"ח

םמשק למקלדת – DEBUG

<u>פעולת המקלדת:</u> בהפעלת מקש מקבלים 1-3 מילים באופן טורי (kbd_dat) עם שעון סנכרון (kbd_clk)

<u>תפקיד הממשק:</u> לפשט את הזיהוי של המקש שהופעל ולציין אם המקש נלחץ או שוחרר <u>איפיון הממשק:</u>

<u>בהקשה על מקש</u> כלשהו במקלדת נקבל ביציאת הממשק:

- 1. קוד המקש בצורה מקבילית (8 סיביות)
- 2. ציון אם זהו מקש ישן או חדש (סיבית אחת)
- 3. אות סנכרון המציין אם המקש נלחץ (make) או שוחרר (break) בלחיצה רצופה (repeat) נקבל אות make בלחיצה רצופה

של לוח המקשים – DEBUG

מקשי המקלדת והקודים שלהם

KEYBOARD – לוח המקשים – DEBUG

<u>הערה חשובה: ודאו שהמקש NUMLOCK אינו לחוץ. אחרת, הוא יגרום לשליחת הקוד</u> 12H לפני שליחת קוד המקש הנלחץ.

לכל מקש קוד של 8 סיביות

טווח הקודים הנורמלי: H – 83H – 00H

קוד שחרור: F0H

קוד מורחב EOH :extended code

בהפעלת מקש (down arrow) אפשריות אחת מ-4 הסדרות הבאות:

Extended code	Normal code	לחיצה/שחרור	
E0H, 72H	72H	לחיצת מקש	
E0H, F0H, 72H	F0H, 72H	שחרור מקש	

הממשק למקלדת – DEBUG

<u>הממשק למקלדת – דיאגרמת מלבנים</u>

<u>תאור היחידות:</u>

- 1. וועביר את רמת הכניסה ליציאה, רק אם הכניסה הייתה KBD_CLK מסנן רעשים על קו
 - .2 יציבה במשך מספר פולסי שעון (clk) שנקבעו מראש.
 - ממיר את parity מקבל טורית את המידע הנשלח על קו KBD_DAT. בודק את תקינות ה parity, ממיר את byterec .3 המידע למקבילי ומודיע ל-byterec שהתקבלה מילה חדשה (din_new)
- מוציא את קוד המקש (ללא קוד שחרור או קוד סוג המקש), סיבית המציינת את סוג המקש (קוד byterec .3 רגיל/מורחב) ואות סינכרון המציין אם מדובר בלחיצה (make) או שחרור (break).

הממשק למקלדת – DEBUG

הממשק למקלדת – המעגל הנתון

לניפוי תקלה SignalTAP - שימוש ב DEBUG

<u>הצעדים לניפוי התקלה</u>

בעבודת ההכנה שקיבלתם ישנה <u>תקלה</u>

Node		Data Enable	Trigger Enable	Trigger Conditions	
Туре	Alias	Name	21	21	1 Basic AND ▼
Ē		KBD_CLK	V	V	8
ic		KBD_DAT	V	V	\
-		⊕ d_bitrec[70]	V	V	XXh
Ş		bitrec:inst5 newdata	V	V	8
Ş		bitrec:inst5 present_state.chkdata	V	V	33
4		bitrec:inst5 present_state.high.clk	V	V	8
J		bitrec:inst5 present_state.idle	V	V	2
Ş		bitrec:inst5 present_state.low_clk	V	V	8
\		⊕ bitrec:inst5 count[30]	V	V	Xh

כדי לגלות מה התקלה צריך:

- לדגום ל- SignalTAP מכונת המצבים
 - לבדוק את התנהגותהמערכת התקולה
- להסיק מסקנה לגבי התקלהולתקנה
 - להפעיל את המערכת •

המתוקנת

<u>הערה</u>: עובדים עם שעון איטי כדי להגדיל

את כמות הדגימות שאפשר להקליט

שמשק למקלדת - סופי – DEBUG

בדיקת הממשק למקלדת המתוקן

- לבנות את המערכת הסופית של ממשק המקלדת
- Center-Trigger -ו make בדיקה עם תנאי דרבון
 - Post-Trigger -ו break בדיקה עם תנאי דרבון •

$$mem = bits * T_{KBD_CLK} * f_{sample}$$
 א חשוב עומק הזכרון הנדרש: •

Symbol KBD • ממשק המקלדת הסופי

הפסקה בעבודה – השלמת דו"ח

• הסטודנטים ישלימו סעיפים בדו"ח

הדלקה/כיבוי לד עייי מקש – DEBUG

<u>המטרה:</u> לחיצה על מקש מסויים תדליק/תכבה לד על הכרטיס הדלקה/כיבוי יתבצעו עם הלחיצה; הלד יישאר במצב קבוע גם בלחיצה ממושכת

- יש להשתמש בממשק למקלדת וברכיב שנכתב בעבודת ההכנה
- שים לב: בלחיצה ממושכת על מקש נוצר פולס make על כל קוד מקש שנשלח מהמקלדת

ורך הזכרון, ה- DEBUG – עורך הזכרון, ה

<u>(In-System Memory Content Editor) ISMCE קריאה ושינוי תוכן זיכרון באמצעות</u>

מתבצע באמצעות רכיב pm_constant שמאפשר גישה לזכרון

Write Data to In-System Memory

FF :מידע חדש שעדיין לא בזיכרון

ISMCE - שימוש ב – DEBUG

המטרה: להשתמש בעורך הזכרון, ה- ISMCE, על מנת לשנות דרכו את המקש אותו רוצים להפעיל לכיבוי/הדלקה של הלד (ללא קומפילציה אחרי כל שינוי)

מה לעשות:

- י התאם את המעגל כך שהקבוע שיגיע מרכיב גמיש LPM_CONSTANT
 - שנה את מספר המקש המפעיל את
 הלד באמצעות ה- ISMCE

פרוייקט

- דיון בסכמת המלבנים
- יצירת רשימה של מכלולים עיקריים
 - תכנון סדר העבודה

סיום והגשת דוייח

לשמור את הקובץ ב- PDF ולהגיש במודל

