2006, *110*, 18091–18092 Published on Web 08/24/2006

Intermolecular Interaction in TeO₂ Crystal

Svyatoslav P. Gabuda and Svetlana G. Kozlova*

Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, Russia Received: July 2, 2006; In Final Form: August 11, 2006

It is shown that the abnormal long-range Te-Te intermolecular interaction in TeO_2 crystals may be related to the tunneling of electrons from the $5s^2$ active lone pairs of Te^{4+} ions and their partial delocalization on neighboring Te^{4+} .

Dioxides of p-elements TeO₂ and SeO₂ are characterized by abnormally high melting temperatures for molecular crystals $(T_{\rm m}=1005~{\rm K}~{\rm and}~T_{\rm m}=613~{\rm K}).$ These properties have much in common with ionic crystals such as TiO_2 ($T_m = 2143$ K) and SnO_2 ($T_m = 1900$ K). However, a lattice of the paratellurite α -TeO₂ (space group $P4_12_12$; a = 4.812 Å; c = 7.615 Å; Z =4^{1,2}) is constructed from isolated corner molecules of TeO₂ $(D(\text{Te-O}) = 1.903 \text{ Å and } \angle(O_1 - \text{Te-O}_1) = 102.0^\circ)$, and in this respect, $\alpha\text{-TeO}_2$ exhibits features of the molecular crystal. According to the ¹²⁵Te NMR data, the Te atoms of the nearestneighbor molecules are connected by unusual intermolecular interactions ("bonds") Te-Te (D(Te-Te) = 4.07 Å, Figure 1³). It was noted that these bonds may be responsible for the high melting temperatures and for the abnormally big anisotropy of acoustic properties of the paratellurite. In particular, the speeds of the shift elastic waves decrease by up to 0.6 km/s in directions [110] and [110] (the directions closest to the orientation of Te-Te bonds), whereas these speeds achieve values of 4.2 and 2.1 km/s in the [100] and [001] directions, respectively.⁴

The distorted structure of TeO_2 molecules is attributable to vibronic coupling, in parallel with pyramidal structures of AX_3 molecules (A = P, As, Bi; X = F, Cl, Br, I) which were investigated by the density functional theory (DFT) method.^{5,6} However, these structural arrangements are obtainable from geometry molecular optimization by the second-order local Möller–Plesset method (LMP2).⁷

In the present work, we investigate the structure of TeO₂ molecules by the ab initio restricted Hartree—Fock (RHF) and LMP2 methods.^{8–10} The optimization of molecular geometry was carried out for the molecule TeO₂ and also, for comparison, for the isoelectronic three-nuclear molecules SeO₂, and SO₂ and O₃ (with melting temperatures of 197.5 and 81 K, respectively). The starting geometry was chosen as linear for all of the molecules. All calculations were carried out by the program Jaguar 5.5.¹¹ The atomic basis 6-31G(p,d) was used for O and S,¹² and the quasi-relativistic basis Lavcp,¹³ for the heavy atoms Te and Se.

The result from RHF and RHF+LMP2 calculations is the detection of the instability of the linear configuration of MO_2 molecules (Table 1). Accounting for electron correlations leads to substantial changes in the geometry of all molecules. The

Figure 1. Arrangement of the TeO₂ molecules and the Te—Te bonds in the (001) plane of α-TeO₂ crystal. The vertical coordinates of Te atoms are indicated in percents of c_0 period. The arrows mirror the orientations of lobes of Ψ_{LP}(Te) functions.

TABLE 1: Calculated Energies (Δ) and Geometry Parameters of MO₂ (M = O, S, Se, Te) Molecules (Bond Lengths (D) Are in \mathring{A} , and Bond Angles (\angle) Are in Degrees)

	O_3	SO_2	SeO_2	TeO_2
$D_{\text{start}}(M-O)$	1.1	1.2	1.4	1.8
$\angle (O-M-O)^{\circ}_{start}$	180	180	180	180
$D_{\text{RHF}}(M-O)$	1.204	1.414	1.570	1.718
$D_{\text{RHF}+\text{LMP2}}(M-O)$	1.305	1.481	1.656	1.801
$D_{\rm exp}({\rm M-O})^{14}$	1.278	1.43	1.607^{a}	1.90
$\angle (O-M-O)_{RHF}$	118.9	118.9	114.5	112.8
\angle (O-M-O) _{RHF+LMP2}	118.4	119.5	116.2	114.0
$\angle (O-M-O)_{exp}^{14}$	116.8	119.5	114^{a}	102.0
Δ_{RHF} , hr^b	-0.289	-0.466	-0.321	-0.316
$\Delta_{\text{RHF+LMP2}}$, hr ^b	-0.223	-0.653	-0.555	-0.471

 a In the vapor phase. 15 b $\Delta = E + ZPE - \Sigma$, where E is the total energy of the MO₂ molecules, ZPE is the zero-point energy of the MO₂ molecules, and Σ is the sum of the total energies of the M⁰ and 2O⁰ atoms

linear molecules MO_2 transform into C_1 (averaged $C_{2\nu}$) configurations with geometrical parameters close to the experimental data in both the crystal and gas phases. It is important that the distortions of the molecules MO_2 are accompanied by the transition of the lone pairs ns^2 of the central ions M^{4+} into mixed s-p states. We had studied the electronic structure of MO_2 molecules using NBO analysis. ¹⁶ It was found that

substantial changes take place in the state of ns^2 lone pairs of M^{4+} ions in the distorted molecules MO_2 :

$$\begin{split} &\Psi_{\rm LP}({\rm Te}[5{\rm s}^2]) = 0.8798 \; \psi(5{\rm s}) - 0.4744 \; \psi(5{\rm p}_x) + ... \; ; \\ &\Psi_{\rm LP}({\rm Se}[4{\rm s}^2]) = 0.8627 \; \psi(4{\rm s}) - 0.5047 \; \psi(4{\rm p}_x) + ... \; ; \\ &\Psi_{\rm LP}({\rm S}[3{\rm s}^2]) = 0.8301 \; \psi(3{\rm s}) - 0.5524 \; \psi(3{\rm p}_x) + ... \; ; \\ &\Psi_{\rm LP}({\rm O}[2{\rm s}^2]) = 0.7292 \; \psi(2{\rm s}) - 0.6834 \psi(2{\rm p}_x) + ... \; ; \end{split}$$

where Ψ_{LP} is the mixed state wave function of the ns² lone pair and ψ (ns) and ψ (np) are atomic wave functions. The x axis is oriented along the C_2 symmetry axis of the MO₂ molecule; dots mean omitted inputs of other excited states ψ [(n+1)s], ψ [(n+1)p], etc.

Thus, the empirical data discussed earlier^{16,17} about the spatial distribution of the electron density of stereoactive lone pairs of molecules receive a quantitative confirmation. However, the physical nature of the long-range Te—Te intermolecular interaction, stabilizing the "loose" structure (Figure 1), is not clear.

One possible explanation of that phenomenon may be related to the finite probability of tunneling of electrons through the potential barrier providing the localization of lone pairs of M⁴⁺ ions. A similar explanation was offered for the occurrence of abnormal electronic transitions, $2_{3/2} \rightarrow 6s_{1/2}$, in the fine structure of X-ray absorption edge (XANES) in α -PbO, β -PbO, and Bi₂O₃. ¹⁸ These transitions should not be observed for completely filled states with wave function Ψ_{LP} . In crystaline TeO₂, similar transitions $(2_{3/2} \rightarrow 5s_{1/2})$ in the fine structure of X-ray absorption edge were found.19 It is worth mentioning that electrostatic forces from electronic pairs and O²⁻ ions in MO₂ molecules reduce the height of this barrier and increase the probability of tunneling of lone pair electrons along the bisector of the MO₂ molecule. The calculated effective charges on atoms of oxygen in MO₂ molecules are -1.07e in TeO₂, -0.94e in SeO₂, -0.89ein SO₂, and -0.16e on terminal atoms in O₃ (results of the NBO analysis). Thus, one can expect that tunneling-related partial delocalization of the lone pairs of M⁴⁺ ions on the central atoms of neighboring MO₂ molecules is highest for TeO₂.

The influence of tunneling of lone pairs on intermolecular interaction can be estimated as follows. Because of the finite transparency of the potential barrier providing localization of lone pairs, tunnel splitting of the energy state corresponding to a mixed wave function, $\Psi_{\rm LP}$, takes place. The value of the splitting (ΔE) may qualitatively characterize the energy of the resulting intermolecular interaction, and its order is determined from the ratio $\Delta E \sim k(h^2/{\rm m}D^2)$, where k is the factor of relative transparency of the barrier, h is Planck's constant, and ${\bf m}$ is the electron mass. 20 Using $k \approx 0.1$, estimated from NMR data for TeO₂, 3 one finds $\Delta E \sim 1.5$ eV, which exceeds the typical energy of van der Waals interactions but is less than the energy of covalent interactions.

Acknowledgment. This work was supported by the RFBR (Grant No. 05-03-32263).

References and Notes

- (1) Lindqvist, O. Acta Chem. Scand. 1968, 22 (3), 977.
- (2) Leciejevich, J. Z. Kristallogr. 1961, 116, 345.
- (3) Gabuda, S. P.; Kozlova, S. G.; Lapina, O. B.; Terskikh, V. V. Chem. Phys. Lett. 1997, 282, 245.
- (4) Auld, B. A. Acoustic fields and waves in solids; Wiley: New York, 1973; Vols. 1 and 2.
 - (5) Atanasov, M.; Reinen, D. J. Phys. Chem. A 2001, 105, 5450.
 - (6) Atanasov, M.; Reinen, D. J. Am. Chem. Soc. 2002, 124, 6693.
- (7) Kozlova, S. G.; Gabuda, S. P.; Blinc, R. Chem. Phys. Lett. 2003, 376, 364.
 - (8) Pulay, P.; Saebo, S. Theor. Chim. Acta 1986, 69, 357.
 - (9) Saebo, S.; Pulay, P. J. Chem. Phys. 1988, 88, 1884.
- (10) Runeberg, N.; Schutz, M.; Werner, H. J. J. Chem. Phys. 1999, 110, 7210.
 - (11) Jaguar 5.5; Schodinger, Inc.: Portland, OR, 1991-2003.
 - (12) Hariharan, P. C.; Pople, P. C. Theor. Chim. Acta 1973, 28, 213.
 - (13) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
- (14) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, U.K., 1986.
- (15) Meyer, E. M.; Voigt B.; Morelle, A.; Smith, J. J. J. Mol. Spectrosc. **1970**, *34*, 179.
- (16) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. *NBO 4.0*; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 1996.
- (17) Gillespie, R. J. *Molecular Geometry*; Van Nostrand Reinhold Co.: New York, 1972.
- (18) Gabuda, S. P.; Kozlova, S. G.; Érenburg, S. B.; Bausk, N. V.; Davidovich, R. L.; Zyryanov, V. V.; Yukhin, Yu. M. *JETP Lett.* **2002**, *76* (1), 50.
- (19) Charton, P.; Gengembre, L.; Armand, P. Solid State Commun. 2002, 168, 175.
- (20) Flugge, S. Practical Quantum Mechanics I (Task 19); Springer: