Devoir maison

Exercice 1. I. On considère l'application $f: \mathbb{R}^2[X] \to \mathbb{R}^3[X]$ définie par

$$\forall P \in \mathbb{R}^2[X], \quad f(P) = (X+1)P$$

- 1. Montrer que f est linéaire
- 2. Déterminer l'image et le noyau de f. Cette application est-elle injective? surjective? bijective?
- 3. Calculer $f(1), f(X), f(X^2)$.
- 4. Ecrire la matrice A de f dans la base $\{1,X,X^2\}$ au départ et dans la base $\{1,X,X^2,X^3\}$ à l'arrivée.
- II. Soit $g: \mathbb{R}^3[X] \to \mathbb{R}^3$ définie par

$$\forall P \in \mathbb{R}^2[X], \quad g(P) = (P(1), P'(1), P''(1)).$$

- 1. Montrer que g est linéaire
- 2. Déterminer l'image et le noyau de g. Cette application est-elle injective? surjective? bijective?
- 3. Ecrire la matrice B de g dans la base $\{1,X,X^2,X^3\}$ au départ et dans la base canonique de \mathbb{R}^3 à l'arrivée.

III. On définit $h = g \circ f$.

Ecrire la matrice C de $g \circ f$ dans la base $\{1, X, X^2\}$ au départ et dans la base canonique de \mathbb{R}^3 à l'arrivée.

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (2x - z, 3y, x + 2y + z)$$

- 1. Ecrire la matrice de f dans la base canonique $\mathcal{E} = \{e_1, e_2, e_3\}$.
- 2. f est -elle injective? surjective? bijective?
- 3. On définit les vecteurs

$$b_1 = (1, 0, 1), \quad b_2 = (1, 1, 1) \quad b_3 = (-1, 1, 0).$$

- 4. Montrer que la famille $\mathcal{B} = \{b_1, b_2, b_3\}$ est une base.
- 5. Ecrire les matrices de passage $M_{\mathcal{B},\mathcal{E}}(id)$ et $M_{\mathcal{E},\mathcal{B}}(id)$ entre les bases \mathcal{E} et \mathcal{B} .
- 6. En déduire la matrice de f dans la base \mathcal{B} ainsi que la matrice de f dans la base \mathcal{B} au départ et \mathcal{E} à l'arrivée.

Exercice 3.

1. Déterminer le noyau et l'image de l'application linéaire f qui a pour matrice dans la base canonique de \mathbb{R}^3 la matrice

$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

2. Ces espaces sont-ils supplémentaires? f est-elle une projection? une symétrie?

Exercice 4. Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soit f un endomorphisme de E. On dit qu'un sous-espace vectoriel F est stable par f si

$$\forall x \in F, \quad f(x) \in F.$$

Soit p une projection. Montrer que l'on a $f \circ p = p \circ f$ si et seulement si le noyau et l'image de p sont stables par f.