STAT333 Applied Probability Notes Summary

Professor Pengfei Li Summarized by Iris Jiang

Spring 2019

Contents

T	Introduction					
	1.1	Distributions				
	1.2	Indicator rv				
	1.3	Useful Relationships				
2	Waiting Time RVs					
	2.1	Classification of T_E				
	2.2	Notes				
3	Conditional Expectation 5					
	3.1	Joint RVs				
	3.2					
	3.3	<u>.</u>				
	3.4	Probability by Conditioning				
	3.5	Variance by Conditioning				
		3.5.1 Finding $Var(X Y)$				
		3.5.2 Finding Expectation and Variance for Compound Random Variable				
4	Probability Generating Function 8					
	4.1	Generating Function				
		4.1.1 Properties of Generating Function				
	4.2	Probability Generating Function				
		4.2.1 Properties of PGF				
		4.2.2 pgf of distributions				
	4.3	Simple Random Walk				
		4.3.1 Notations				
		4.3.2 Properties for $T_{0,k}$				
		4.3.3 Properties for $G_{0,k}(s)$				
		4.3.4 Classify $T_{0,k}$				
5	Discrete Markov Process 13					
	5.1	Definition and Notations				
	5.2	Property				
	5.3					
	5.4					
		5.4.1 n-step Transition Probs and Matrix				
	5.5	Classification of States				
		5.5.1 Classification by $T_{i,i}$				

		5.5.2	Classification by $\lambda_{i,i}$	15	
		5.5.3	Period of State	15	
		5.5.4	Methods to Classify State i Based on $\underline{\mathbf{P}}$	15	
		5.5.5	Theorems about Class		
		5.5.6	Stationary Distribution	16	
		5.5.7	Positive Recurrent States	16	
6	Poisson Process				
	6.1	Expon	ential Process	17	
			n Process		
7	Continuous Markov Process				
7.1 Generator Matrix		Genera	ator Matrix	19	
	7.2 Stationary Distribution		nary Distribution	19	
	7.3	7.3 Calculating L_i and E_{ij}		19	
	7.4			19	
		7.4.1	Generator Matrix in Birth-Death Process	20	
		7.4.2	Stationary Distribution	20	

Introduction

1.1 Distributions

Bernoulli trials

Definition

- 1. Each trial has 2 outcomes: "s" (success) or "f" (failure)
- 2. All trials are independent
- 3. Probability of "s" (P(s)) on each trail are the same

Notation: p = P(success), q = 1 - p = P(failure)

Bernoulli Random Variables: $\sim Bernoulli(p)$, p is the probability of success

Let
$$I_i = \begin{cases} 1 & \text{if "s" appears on the } i^{th} \text{ trail} \\ 0 & \text{otherwise} \end{cases}$$

Then, $P(I_i = 1) = p \& P(I_i = 0) = q$, where $I_1, I_2, ..., I_n$ are a sequence of i.i.d. (independent identically distributed) Bernoulli rvs

Formulas: $X \sim Bernoulli(p)$

- P(X = 0) = 1 p and P(X = 1) = q
- \bullet E(X) = p
- Var(X) = p(1-p)
- pgf = 1 p + ps

Binomial rvs

Notation: $\sim Bin(n, p)$

Range: $x = \{0, 1, 2, ..., n\}$ x = number of "s" in n Bernoulli trials

Formulas: $X \sim Bin(n, p)$

•
$$P(X = k) = \binom{n}{k} P^k (1-p)^n - k, \ k = 0, 1, ..., n$$

- E(X) = np
- Var(X) = np(1-p)

•
$$pgf = (1 - p + ps)^n$$

Results:

1.
$$x = \sum_{i=1}^{n} I_i$$

2. If $x_1 \sim Bin(n_1, p)$ $x_2 \sim Bin(n_2, p)$, and x_1, x_2 are independent, then $x_1 + x_2 \sim Bin(n_1 + n_2, p)$

Geometric rvs

Geometric rv is a waiting time rv.

Definition

x = number of trails to get first "s" in the sequence of Bernoulli trials

Range: $x = \{1, 2, ...\}$ Formulas: $X \sim Geo(p)$

•
$$P(X = k) = p(1 - p)^{k-1}, k = 1, 2, ...$$

•
$$E(X) = \frac{1}{p}$$

•
$$Var(X) = \frac{1-p}{p^2}$$

•
$$pgf = \frac{ps}{1 - (1 - p)s}$$

Property: no-memory property

$$P(x > n + m | x > m) = P(x > n) = P(\underbrace{x - m}_{Remaining\ Time} > n \mid \underbrace{x > m}_{at\ time\ m,\ we\ do\ not\ observe\ "s"})$$

The property tells us given that we do not observe the event "s", the remaining time $\sim Geo(p)$

1.2 Indicator rv

Definition

For a given event A, we define $I_A = \begin{cases} 1 & \text{if A occurs} \\ 0 & \text{otherwise} \end{cases}$

Properties

1.
$$E(I_A) = P(I_A = 1) = P(A) = p$$

2.
$$Var(I_A) = P(I_A = 1)P(I_A = 0) = pq$$

3.
$$E(I^2) = E(I)$$

1.3 Useful Relationships

•
$$P(E \cap F) = P(F|E)P(E)$$

•
$$Var(X) = E(X^2) - [E(X)]^2$$

 $E(X^2) = Var(X) + [E(X)]^2$

- Cov(X,Y) = E(XY) E(X)E(Y)If X and Y are independent, then Cov(X,Y) = 0 or E(XY) = E(X)E(Y)
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y)

Waiting Time RVs

2.1 Classification of T_E

- 1. If $P(T_E < \infty) < 1 \Rightarrow T_E$ is improper
- 2. If $P(T_E < \infty) = 1 \Rightarrow T_E$ is proper
 - (a) If $E(T_E) = \infty \Rightarrow T_E$ is null proper
 - (b) If $E(T_E) < \infty \Rightarrow T_E$ is short proper

Comments

- 1. If T_E is improper $\Rightarrow E(T_E) = \infty$
- 2. If $E(T_E) < \infty \Rightarrow T_E$ is short proper. (We do not need to verify $P(T_E < \infty) = 1$)

2.2 Notes

Denote R as the remaining time for event X, then R and X follow the same distribution and we have E(X) = E(R) and $E(X^2) = E(R^2)$

Conditional Expectation

3.1 Joint RVs

pmf and pdf

•

$$f_X(x) = \begin{cases} \sum_{y} f_{X|Y}(x|y) \\ \int_{-\infty}^{\infty} f_{X|Y}(x|y) dy \end{cases}$$

•

$$f_Y(y) = \begin{cases} \sum_x f_{X|Y}(x|y) & \text{Discrete RV} \\ \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx & \text{Continuous RV} \end{cases}$$

Discrete RV Continuous RV

Property

- 1. If X&Y are independent, then g(x)&h(y) are independent
- 2. If X&Y are independent, then E[g(x)h(y)] = E[g(x)]E[h(y)]

3.2 Conditional Expectation

Conditional Distribution

For a given y, the conditional pmf/pdf for X given Y = y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}, f_Y(y) > 0$$

Conditional Expectation

• The conditional expectation of x given Y = y is

$$E(X|Y=y) = \begin{cases} \sum_{x} x \times f_{X|Y}(x|y) & \text{Discrete RV} \\ \int_{-\infty}^{\infty} x \times f_{X|Y}(x|y) dx & \text{Continuous RV} \end{cases}$$

• The conditional expectation of g(x) given Y = y is

$$E[g(x)|Y=y] = \begin{cases} \sum_{x} g(x) \times f_{X|Y}(x|y) & \text{Discrete RV} \\ \int_{-\infty}^{\infty} g(x) \times f_{X|Y}(x|y) dx & \text{Continuous RV} \end{cases}$$

Properties

- 1. Conditional expectation has all properties of normal expectations
- 2. Substitution Rule

$$E[x \times \underbrace{g(Y)}_{random \ variable} | Y = y] = E(x \times \underbrace{g(y)}_{constant} | Y = y) = g(y)E(X|Y = y)$$

In general:
$$E[\underbrace{h(X,Y)}_{function\ of X\&Y}|Y=y] = E[\underbrace{h(X,y)}_{function\ of X\ only}|Y=y]$$

3. Independence Property If X&Y are independent then

$$f_{X|Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = f_X(x)$$

$$\Rightarrow E(X|Y=y) = E(x) \text{ and } E[g(x)|Y=y] = E[g(x)]$$

3.3 Expectation by Conditioning

Double Expectation Theorem

$$E(X) = E[E(X|Y)]$$

Step 1. What is E(X|Y)

- (a) E(X|Y) is a random variable; and depends on Y
- (b) given Y = y, the function of g(Y): g(y) = E(X|Y = y)

Step 2. How to get E(X|Y=y)

- (a) Figure out g(y) = E(X|Y = y), by definition or properties
- (b) E(X|Y) = g(Y)

Step 3. How to apply E(X) = E[E(X|Y)]

$$E(X) = E[E(X|Y)] = E[g(Y)]$$

$$= \begin{cases} \sum_{y} gy \times f_Y(y) \\ \int_{-\infty}^{\infty} gy \times f_Y(y) dy \end{cases} = \begin{cases} \sum_{y} E(X|Y=y) \times f_Y(y) & \text{discrete case} \\ \int_{-\infty}^{\infty} E(X|Y=y) \times f_Y(y) dy & \text{continuous case} \end{cases}$$

3.4 Probability by Conditioning

$$P(A) = \begin{cases} \sum_{y} P(A|Y=y) f_Y(y) & \text{discrete Y} \\ \int_{-\infty}^{\infty} P(A|Y=y) f_Y(y) dy & \text{continuous Y} \end{cases}$$

3.5 Variance by Conditioning

Method 1. By definition,

$$Var(X) = E(X^2) - [E(X)]^2$$

= $E(X^2|Y) - [E(X|Y)]^2$

Method 2. Conditional Variance Formula

$$Var(X|Y = y) = E(X^{2}|Y = y) - [E(X|Y = y)]^{2}$$

3.5.1 Finding Var(X|Y)

Two Steps

Step 1. Find h(y) = Var(X|Y = y)

Step 2. Apply h(y) to Y get Var(X|Y) = h(Y)

Note. If X and Y are independent, Var(X|Y = y) = Var(X)

Theorem.

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

3.5.2 Finding Expectation and Variance for Compound Random Variable

Definition. Suppose $X_1, ..., X_n$ are a sequence of iid rvs. N_i is a rv only takes non-negative integers. Further $N, X_1, ..., X_n$ are independent. Then

$$W = \sum_{i=1}^{N} X_i$$

is called a compound rv. (If N = 0, then W = 0)

Theorem.

$$E(W) = E(N) \times E(X_1)$$

$$Var(W) = E(N) * Var(X_1) + Var(N) \times [E(X_1)]^2$$

Probability Generating Function

4.1 Generating Function

$$A(s) = a_0 + a_1 s + a_2 s^2 + \dots = \sum_{n=0}^{\infty} a_n s^n$$

4.1.1 Properties of Generating Function

1. Summation

$$C(s) = A(s) \pm B(s) = \sum_{n=0}^{\infty} (a_n \pm b_n) s^n$$
$$c_n = a_n \pm b_n$$
$$R(C) = \min(R(A), R(B))$$

2. Product

$$C(s) = A(s) \times B(s) = \sum_{n=0}^{\infty} c_n s^n$$

$$(\sum_{n=0}^{\infty} a_n s^n) (\sum_{n=0}^{\infty} b_n s^n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} s^n$$

$$c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

$$R(c) = \min(R(A), R(b))$$

4.2 Probability Generating Function

$$G_X(s) = \sum_{n=0}^{\infty} p_n s^n = \sum_{n=0}^{\infty} P(X=n) s^n$$

If x is a proper random variable, then $\begin{cases} P(x=\infty)=0 \\ P(x<\infty)=1 \end{cases}$, then

$$G_X(s) = \sum_{n=0}^{\infty} P(X=n)s^n = E[s^X]$$

4.2.1 Properties of PGF

1. pgf helps to find $\{p_n = P(X = n)\}_{n=0}^{\infty}$

(a)

$$\begin{cases} p_0 = G_X(0) \\ p_n = \frac{G_X^{(n)}(0)}{n!} \end{cases}$$

- (b) Use properties of gfs to recover $\{p_n\}_{n=0}^{\infty}$
- 2. pgf helps up to classify random variable

Note.

$$P(X < \infty) = \sum_{n=0}^{\infty} P(X = n) = \sum_{n=0}^{\infty} p_n = G_X(1)$$

$$\begin{cases} G_X(1) = 1 & \Rightarrow \text{ X is proper} \\ G_X(1) < 1 & \Rightarrow \text{ X is improper} \\ G_X(1) > 1 & \Rightarrow \text{ you did something wrong} \end{cases}$$

3. If X is proper, then

$$E(X) = G'_X(1)$$

$$Var(X) = \underbrace{G''_X(1) + G'_X(1)}_{E(X^2)} - [G'_X(1)]^2$$

4. Uniqueness Theorem

Two random variables X and Y have the same distribution if and only if

$$G_X(s) = G_Y(s)$$

5. Independence Property

Suppose X_1 and X_2 are non-negative random variable with the ranges $\{0,1,2,...\} \cup \{\infty\}$. Further, X_1 and X_2 are independent. Then

$$G_{X_1+X_2} = G_{X_1}(s) \times G_{X_2}(s)$$

Note that if X_1 and X_2 are proper, then $G_{X_1+X_2}(s)=E[s^{X_1+X_2}]$

4.2.2 pgf of distributions

1. pgd for indicate rv I_A

$$s_A^I = \begin{cases} s^1 & I_A = 1, P(I_A = 1) = p \\ s^0 & I_A = 0, P(I_A = 0) = p \end{cases}$$

$$E[s^{I_A}] = s^1 \times p + s^0 \times q = ps + q$$

$$\Rightarrow G_{I_A}(s) = ps + q$$

$$R_{I_A} = \infty$$

2. $X \sim Bin(n, p)$

$$G_X(s) = G_{\sum_{i=1}^n I_i}(s) = \prod_{i=1}^n \underbrace{G_{I_i}(s)}_{ps+q} = (ps+q)^n$$
$$R_X = \infty$$

3. $X \sim Geo(p)$

$$G_X(s) = E[s^X] = \sum_{n=1}^{\infty} P(X=n) \times s^n =$$

$$R_X = \frac{1}{1-p}$$

4. $X \sim NegBin(r, p)$

$$G_X(s) = G_{\sum_{i=1}^n X_i}(s) = \prod_{i=1}^r G_{X_i}(s) = \left(\frac{ps}{1 - (1 - p)s}\right)^r$$

$$R_X = \frac{1}{1 - p}$$

5. $X \sim Pois(\lambda)$

$$G_X(s) = E(s^X) = \sum_{n=0}^{\infty} P(X=n)s^n = \sum_{n=0}^{\infty} \frac{\lambda^n e^{-n}}{n!} s^n = \underbrace{\sum_{n=0}^{\infty} \frac{(\lambda s)^n}{n!}}_{e^{\lambda s}} e^{-\lambda} = e^{\lambda s - \lambda}$$

$$R_X = \infty$$

4.3 Simple Random Walk

Definition. Let X_0 be the starting point of the process $(X_0 = 0)$ and X_n be the position of the process after n steps. Then $\{X_n\}_{n=0}^{\infty}$ is called a simple (ordinary) random walk

4.3.1 Notations

• $\lambda_{0,0}$: the event that returning to 0, given the process starting with 0

• $\lambda_{0,k}$: the event that visiting to k, given the process starting with 0

• $T_{0,k}$: waiting time for observing the first $\lambda_{0,k} = \min\{n \geq 1, X_n = k | X_0 = 0\}$

•
$$G_{0,0}(s) = \sum_{n=0}^{\infty} P(T_{0,0} = n) s^n$$

•
$$G_{0,0}(s) = \sum_{n=0}^{\infty} P(T_{0,k} = n) s^n$$

4.3.2 Properties for $T_{0,k}$

1. For positive integer k

$$T_{0,k} = T_{0,1} + T_{1,2} + \dots + T_{k-1,k}$$

= $\sum_{i=1}^{k} T_{i-1,i}$

 $T_{i,j}$ = waiting time for visiting j, starting from i= $min\{n \ge 1, X_n = j | X_0 = i\}$

$$G_{0,k}(s) = [G_{0,1}(s)]^k$$

for k > 0

4.3.3 Properties for $G_{0,k}(s)$

$$G_{0,k}(s) = \sum_{n=0}^{\infty} P(T_{0,k})s^n$$

1.

$$G_{0,0}(s) = 1 - \sqrt{1 - 4pqs^2}$$

2.

$$G_{0,1}(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2qs}$$

3. k > 0

$$G_{0,k}(s) = [G_{0,1}(s)]^k = \left[\frac{1 - \sqrt{1 - 4pqs^2}}{2qs}\right]^k$$

4.

$$G_{0,-1}(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$$

5. For k < 0

$$G_{0,k}(s) = [G_{0,-1}(s)]^{|k|} = \left[\frac{1 - \sqrt{1 - 4pqs^2}}{2ps}\right]^{|k|}$$

4.3.4 Classify $T_{0,k}$

For ordinary random walk:

$$P(T_{0,k} < \infty) = G_{0,k}(1)$$

 $E(T_{0,k}) = G'_{0,k}(1)$

For $\lambda_{0,k}, k > 0$

1.
$$P(T_{0,k} < \infty) = 1$$
 and $E(T_{0,k}) = \frac{k}{p-q}$ if $p > q$ (short proper)

2.
$$P(T_{0,k} < \infty) = 1$$
 and $E(T_{0,k}) = \infty$ if $p = q = \frac{1}{2}$ (null proper)

3.
$$P(T_{0,k} < \infty) = (\frac{p}{q})^k < 1$$
 and $E(T_{0,k}) = \infty$ if $p < q$ (improper)

For $\lambda_{0,k}, k < 0$

1.
$$P(T_{0,k} < \infty) = 1$$
 and $E(T_{0,k}) = \frac{|k|}{p-q}$ if $p > q$ (short proper)

2.
$$P(T_{0,k} < \infty) = 1$$
 and $E(T_{0,k}) = \infty$ if $p = q = \frac{1}{2}$ (null proper)

3.
$$P(T_{0,k} < \infty) = (\frac{q}{p})^|k| < 1$$
 and $E(T_{0,k}) = \infty$ if $p < q$ (improper)

Discrete Markov Process

5.1 Definition and Notations

Suppose we have a sequence of rvs $\{X_n\}_{n=0}^{\infty}$

- *n* is called **time have**
- $\{X_n\}_{n=0}^{\infty}$ is called **stochastic process**
- state space is all possible values of $\{X_n\}_{n=0}^{\infty}$; notation: S
- For $i \in S$, we call i state i

Definition. $\{X_n\}_{n=0}^{\infty}$ is called a **discrete Markov process** (Markov chain) if

- 1. state space S is discrete or countable
- 2. $P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_1 = i_1, X_0 = i_0) = P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i), denoted by <math>p_{ij}$

5.2 Property

1. Markov Property

Given the current information (X_n) , the future (X_{n+1}) does not depend on the history $(X_{n-1}, X_{n-2}, ..., X_0)$

2. Time Homogeneous Property

Conditional probs so not depend on starting time, they only depend on step size

5.3 One-Step Transition Probs and Matrix

Definition. Let

$$p\underbrace{i}_{current \ state} \underbrace{j}_{future \ state} = P(X_1 = j | X_0 = i) = P(X_{n+1} = j | X_n = i)$$

called one-step transition prob from state i to state j

$$\underline{P} = \begin{array}{c}
\text{column: future state} \\
\vdots & \vdots & \vdots \\
\text{state} & \vdots & \vdots \\
\vdots & \vdots$$

 $i \in S, j \in S$ **Property**

- 1. $p_{ij} \ge 0$
- 2. $\sum_{j \in S} p_{ij} = 1$, sum of each row = 1

5.4 Chapman-Kolmogorov Equations

5.4.1 n-step Transition Probs and Matrix

Notations.

$$P_{ij}^{(n)} = P(X_n = j | X_0 = i) = P(X_{n+m} = j | X_m = i)$$

$$\underline{P}^{(n)} = (p_{ij}^{(n)})_{i \in S, j \in S} \text{ and } \underline{P}^{(1)} = \underline{P}$$

$$\pi_i^{(0)} = P(X_0 = i), i \in S$$

$$\pi_j^{(n)} = P(X_n = j), j \in S$$

$$\underline{\pi}^{(0)} = (\pi_i^{(0)}) = (P(X_0 = i))_{i \in S}$$

$$\Rightarrow \text{row vector/distribution of } X_0$$

$$\underline{\pi}^{(n)} = (\pi_j^{(0)}) = (P(X_n = j))_{j \in S}$$

$$\Rightarrow \text{row vector/distribution of } X_n$$

CK-Equations

Theorem 1. CK-equation 1 - n-step transition matrix

Pointwise Form:

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{(ik)}^{(n)} p_{kj}^{(m)}$$

Matrix Form:

$$\underline{\underline{P}}^{(n)} = \underline{\underline{P}}^n$$

Theorem 2. CK-equation 2 - n-step transition probs

Pointwise Form:

$$\pi_j^{(n)} = P(X_n = j) = \sum_{i \in S} \pi_i^{(0)} p_{ij}^{(n)}$$

Matrix Form:

$$\underline{\underline{\pi}}^{(n)} = \underline{\underline{\pi}}^{(0)} \, \underline{\underline{P}}^n$$

5.5 Classification of States

Method:

- 1. $\lambda_{i,i} = \text{returning state } i, \text{ given } X_0 = i$
- 2. $T_{i,i}$ = waiting time to observe first $\lambda_{i,i} = min\{n \ge 1, X_n = i | X_0 = i\}$

5.5.1 Classification by $T_{i,i}$

- 1. we call state i **transient** if $T_{i,i}$ is improper, i.e., $P(T_{i,i} < \infty) < 1$
- 2. we call state i null recurrent if $T_{i,i}$ is null proper, i.e., $P(T_{i,i} < \infty) = 1$ and $E(T_{i,i}) = \infty$
- 3. we call state *i* **positive recurrent** if $T_{i,i}$ is short proper, i.e., $P(T_{i,i} < \infty) = 1$ and $E(T_{i,i}) < \infty$

5.5.2 Classification by $\lambda_{i,i}$

recurrent: on average, we can observe $\lambda_{i,i}$ infinite number of times **transient**: on average, we can observe $\lambda_{i,i}$ finite number of times

5.5.3 Period of State

Definition. Period of state i is defined as $d = \gcd\{n|p_{ii}^{(n)} > 0 \ \& \ n \ge 1\}$

- 1. If d=1, state i is called a periodic $p_{ii}^{(n)}>0$ for all $n\geq 1$ or $\exists N$ such that $p_{ii}^{(n)}>0$ when $n\geq N$
- 2. If d > 1, state i is called periodic we only have $p_{ii}^{(nd)} > 0$; for other steps $p_{ii}^{(n)} = 0$

5.5.4 Methods to Classify State i Based on \underline{P}

Definition. If a Markov process only has one class, then it is called *irreducible*

5.5.5 Theorems about Class

Theorem 1. Let C be a class in Markov process, then

- (a) All states in C have same period
- (b) All states in C have same classification

Theorem 2. Period of a special class

Let C be a class, If $\exists i \in C$, such that $p_{ii} > 0$, then all states have period 1

Definition. A class C is said to be **closed** if it is impossible to leave the class. i.e., $\forall i \in C$, $j \notin C$, then $p_{ij} = 0$

Definition. A class C is said to be **open** if it is possible to leave the class. i.e., $\forall i \in C$, $j \notin C$, then $p_{ij} > 0$

- Theorem 3. (a) All states in open class are transient
 - (b) If C is closed and has finite number of states, then all states are positive recurrent

5.5.6 Stationary Distribution

$$\underline{\underline{\pi}} \ \underline{\underline{P}} = \underline{\underline{\pi}} \text{ and } \pi_i \ge 0, \sum_{i \in S} \pi_i = 1$$

1. if
$$\underline{\underline{\pi}}^{(n)} = \underline{\underline{\pi}}$$
, then $\underline{\underline{\pi}}^{(n+1)} = \underline{\underline{\pi}}^{(n+2)} = \dots = \underline{\underline{\pi}}$

Theorem. An irreducible Markov process has stationary distribution if and only if all states are positive recurrent, and then in this case

$$E(T_{i,i}) = \frac{1}{\pi_i}$$

5.5.7 Positive Recurrent States

Two ways to say if the states in a class are positive recurrent:

- 1. irreducible and finite number of states \Rightarrow positive recurrent
- 2. $\underline{\underline{\pi}}$ exists and is unique \Rightarrow positive recurrent (this is the only way to find $E(T_{i,i})$)

Poisson Process

6.1 Exponential Process

1. probability density function

$$f(x) = \begin{cases} \lambda e^{-\lambda} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

2. tail probability

$$P(X > t) = e^{-\lambda t}$$

t > 0

3.

$$E(x) = \frac{1}{\lambda}$$
 and $Var(x) = \frac{1}{\lambda^2}$

4. No-memory Property

$$P(X > t + s | x > s) = P(X > t)$$

5. Alarm clock lemma If $X_i \sim exp(\lambda_i)$, i = 1, ..., n $X_1, ..., X_n$ are independent, then

(a)

$$min(X_1,...,X_n) \sim exp(\sum_{i=1}^n \lambda_i)$$

(b)

$$P(X_i = min(X_1, ..., X_n)) = \frac{\lambda_i}{\sum_{k=1}^n \lambda_k}$$

6. If $X_1, X_2, ... \sim exp(\lambda)$, $N \sim Geo(p)$, $0 , <math>X_i$'s and N are independent, then $\sum_{i=1}^{N} X_i \sim exp(\lambda p)$

6.2 Poisson Process

Definition. A counting process $X(t), t \geq 0$ is a Possion Process with rate λ if

1.
$$x(0) = 0$$

2. If
$$0 \le s_1 < s_2 \le t_1 < t_2$$
, then $X(t_2) - X(t_1)$ and $X(s_2) - X(s_1)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ are independent $X(t_1, t_2)$ are independent $X(t_1, t_2)$ and $X(t_2) - X(t_1)$ and $X(t_1, t_2)$ are independent $X(t_1, t_2)$ a

3.
$$X(t+s) - X(s) \sim Pois(\lambda t)$$

Property. 1. In a small interval, we can only observe 0 or 1 event

- 2. $T_1,...,T_i \sim exp(\lambda)$, T_i is waiting time for the i-th event
- 3. Suppose 0 < s < t, then $X(s)|X(t) = n \sim Bin(n, \frac{s}{t})$
- 4. Suppose X(t) = number of events in (0,t] and follows Poisson Process with rate λ , further events can be classified into 2 types

type
$$I: prob = p$$

type $II: prob = q = 1 - p$
and all events are independent. Let
 $X_i(t) = number \ of \ type \ I \ events \ in \ (0, t]$
 $X_i(t) = number \ of \ type \ II \ events \ in \ (0, t]$

Then

- (a) $X_1(t) \sim Pois(\lambda pt)$
- (b) X)₂(t) $\sim Pois(\lambda qt)$
- (c) $X_1(t)$ and $X_2(t)$ are independent

Continuous Markov Process

7.1 Generator Matrix

$$\underline{\underline{R}} = \begin{array}{ccc}
\text{row:} & \ddots & \cdots & \ddots \\
\text{current} & \vdots & r_{ij} & \vdots \\
\text{state} & \cdots & \cdots & \cdots
\end{array} = \underline{\underline{P}}'(0)$$

7.2 Stationary Distribution

$$\frac{\underline{\pi}}{\sum_{i \in S}} \frac{\underline{R}}{\pi_i} = \underline{0}$$

$$\sum_{i \in S} \pi_i = 1$$

7.3 Calculating L_i and E_{ij}

 L_i = waiting time for process to stay in state i before jumping to other states

 $= min\{t \ge 0, X(t) \ne i | X(0) = i\}$

 $E_{ij} = P(\text{jump to state } i \mid \text{process leaves state } i)$

Note $E_{ii} = 0$

Property. 1. $L_i \sim exp(-r_{ii})$

2.
$$E_{ij} = \frac{r_{ij}}{-r_{ii}} = \frac{r_{ij}}{|r_{ii}|} \text{ for } i \neq j$$

7.4 Birth-Death Process

Definition. The continuous time Markov Process $\{X(t), t \geq 0\}$ is a birth-death process if

1. At each jump, the process can either

$$i \rightarrow egin{cases} i+1 \ jump \ up \ by \ 1 \ unit \ [birth] \\ i-1 \ jump \ down \ by \ 1 \ unit \ [death] \end{cases}$$

2. when
$$X(t) = i$$

$$L_{Bi} = waiting time for a birth \sim exp(\overbrace{\lambda_i}^{birth rate})$$

 $L_{Di} = waiting time for a death \sim exp(\underbrace{\mu_i}_{death rate})$

Also, $\mu_0 = 0$ and $L_i = min(L_{Bi}, L_{Di}) \sim exp(\lambda_i + \mu_i)$

7.4.1 Generator Matrix in Birth-Death Process

$$F_{ii} = -(\lambda_i + \mu_i)$$

$$E_{i,i+1} = \frac{\lambda_i}{\lambda_i + \mu_i}$$

$$E_{i,i-1} = \frac{\mu_i}{\lambda_i + \mu_i}$$

$$E_{i,j} = 0 \text{ for } |i-j| \ge 2$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad \cdots$$

$$1 \qquad 0 \qquad 0 \qquad 0 \qquad \cdots$$

$$1 \qquad 0 \qquad \lambda_0 \qquad 0 \qquad 0 \qquad \cdots$$

$$\frac{1}{\mu_1} \qquad -(\lambda_1 + \mu_1) \qquad -\lambda_1 \qquad 0 \qquad \cdots$$

$$0 \qquad \mu_2 \qquad -(\lambda_2 + \mu_2) \qquad -\lambda_2 \qquad \cdots$$

$$0 \qquad 0 \qquad \mu_3 \qquad -(\lambda_3 + \mu_3) \qquad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

7.4.2 Stationary Distribution

$$\pi_j = \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j} \pi_0, \ j \ge 1$$

$$\pi_0 = \frac{1}{1 + \sum_{j=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j}}$$

Check:

1. If
$$\sum_{j=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j} = \infty$$
, then
$$\pi_0 = 0 \text{ and } \pi_{j,j \geq 1} = 0$$

$$\Rightarrow \underline{\pi} \text{ does not exist}$$

2. If
$$\sum_{j=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j} < \infty$$
, then

$$\pi_0 = \frac{1}{1 + \sum_{j=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j}} \text{ and } \pi_j = \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j} \pi_0$$