Math 231 A. Worksheet 4.

1. Fill in the table.

Expression	Substitution	dx	Identity
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$dx = a\cos\theta d\theta$	$a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2 + x^2}$			
$\sqrt{x^2-a^2}$			

2. Evaluate the integrals using trigonometric substitution. State the necessary restriction on the angle θ .

(a)
$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx$$

(b)
$$\int \frac{1}{\sqrt{25+x^2}} \, dx$$

3. Evaluate $\int \frac{x^3}{\sqrt{x^2 - 9}} dx.$

Hint: Instead of trigonometric substitution, try substituting $u = \sqrt{x^2 - 9}$. This trick would also work on $\int \frac{x}{\sqrt{x^2 - 9}} dx$, but would not work on $\int \frac{x^2}{\sqrt{x^2 - 9}} dx$ or $\int \frac{x^4}{\sqrt{x^2 - 9}} dx$

4. Evaluate $\int \frac{1}{\sqrt{x^2 + 2x}} dx$. (Hint: Complete the square.)

5. Evaluate $\int (x-2)^3 \sqrt{5+4x-x^2} \, dx$.