Face Recognition using Eigenface, A Simple Example

Author:	Nik Mohamad Aizuddin bin Nik Azmi
Email:	nik-mohamad-aizuddin@yandex.com
Date Created:	2-May-2016
Last Modified:	4-May-2016

Version History					
Version	Date	Description			
0.9.0	4-May-2016	Completed draft.			

The size of face image used in this program is 92 pixels \times 112 pixels. But in this example, assume that the size of face image is 2 \times 2 pixels. We will find out who is the unknown face in the test dataset.

Training dataset

 $\mathsf{T}_1 = \begin{bmatrix} 3 & 1 \\ 9 & 5 \end{bmatrix}$

 $\mathsf{T}_2 = \begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$

 $\mathsf{T}_3 = \begin{bmatrix} 7 & 4 \\ 5 & 3 \end{bmatrix}$

Test dataset

 $F_1 = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$

STEP 1: Convert the training faces 2D-matrix into vector. The matrix $\hfill \Gamma$ will store these vectors.

$$\Gamma = \begin{bmatrix} T_1^\mathsf{T}, & T_2^\mathsf{T}, & T_3^\mathsf{T} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 7 \\ 1 & 1 & 4 \\ 9 & 5 & 5 \\ 5 & 2 & 3 \end{bmatrix}$$

STEP 2: Find $\ensuremath{\boxed{\psi}}$, the mean face from training dataset.

$$\Psi = \frac{1}{M} \sum_{n=1}^{M} \Gamma_n = \frac{1}{3} \begin{bmatrix} 3 \\ 1 \\ 9 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 7 \\ 4 \\ 5 \\ 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 12 \\ 6 \\ 19 \\ 10 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix}$$

STEP 3: Find $\boxed{\ \ \Phi_{\mathbf{i}}\ \ }$, the unique features of the training faces.

Using the following equation to find the unique features:

$$\Phi_i = \Gamma_i - \Psi$$

$$\Phi_1 = \Gamma_1 - \Psi = \begin{bmatrix} 3 \\ 1 \\ 9 \\ 5 \end{bmatrix} - \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 8/3 \\ 5/3 \end{bmatrix}$$

$$\Phi_2 = \Gamma_2 - \Psi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 2 \end{bmatrix} - \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ -4/3 \\ -4/3 \end{bmatrix}$$

$$\Phi_3 = \Gamma_3 - \Psi = \begin{bmatrix} 7 \\ 4 \\ 5 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -4/3 \\ -1/3 \end{bmatrix}$$

$$L = \Phi^{\mathsf{T}} \Phi$$

$$= \begin{bmatrix} -1 & -1 & 8/3 & 5/3 \\ -2 & -1 & -4/3 & -4/3 \\ 3 & 2 & -4/3 & -1/3 \end{bmatrix} \begin{bmatrix} -1 & -2 & 3 \\ -1 & -1 & 2 \\ 8/3 & -4/3 & -4/3 \\ 5/3 & -4/3 & -1/3 \end{bmatrix}$$

$$= \begin{bmatrix} 107/9 & -25/9 & -82/9 \\ -25/9 & 77/9 & -52/9 \\ -82/9 & -52/9 & 134/9 \end{bmatrix}$$

$$\det \left(\lambda \, \mathbf{I} - \mathbf{L} \right) \; = \; 0$$

$$\det \left(\lambda \, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 107/9 & -25/9 & -82/9 \\ -25/9 & 77/9 & -52/9 \\ -82/9 & -52/9 & 134/9 \end{bmatrix} \right) \; = \; 0$$

$$\det \left(\begin{bmatrix} \lambda - 107/9 & 25/9 & 82/9 \\ 25/9 & \lambda - 77/9 & 52/9 \\ 82/9 & 52/9 & \lambda - 134/9 \end{bmatrix} \right) \; = \; 0$$

$$\left(\lambda - 107/9 \right) [(\lambda - 77/9)(\lambda - 134/9) - (52/9)(52/9)] - 25/9 \left[(25/9)(\lambda - 134/9) - (52/9)(82/9) \right] + 25/9 \left[(25/9)(52/9) - (\lambda - 77/9)(82/9) \right] \; = \; 0$$

$$\left(\lambda - 107/9 \right) [\lambda^2 - 211/9 \, \lambda + 94] - 25/9 \left[25/9 \, \lambda - 94 \right] + 25/9 \left[25/9 \, \lambda - 94 \right] + 25/9 \left[25/9 \, \lambda - 94 \right] + 25/9 \left[-82/9 \, \lambda + 94 \right] = 0$$

$$\left(\lambda^3 - 211/9 \, \lambda^2 + 94 \, \lambda - 107/9 \, \lambda^2 + 22577/81 \, \lambda - 10058/9 \right) - (625/81 \, \lambda - 2350/9) + (-6724/81 \, \lambda + 7708/9) \; = \; 0$$

$$\left(\lambda^3 - 106/3 \, \lambda^2 + 30191/81 \, \lambda - 10058/9 \right) - (625/81 \, \lambda - 2350/9) + (-6724/81 \, \lambda + 7708/9) \; = \; 0$$

$$\lambda^3 - 106/3 \, \lambda^2 + 30191/81 \, \lambda - 625/81 \, \lambda - 6724/81 \, \lambda - 10058/9 + 2350/9 + 7708/9 \; = \; 0$$

$$\lambda^3 - 106/3 \, \lambda^2 + 30191/81 \, \lambda - 625/81 \, \lambda - 6724/81 \, \lambda - 10058/9 + 2350/9 + 7708/9 \; = \; 0$$

$$\lambda^3 - 106/3 \, \lambda^2 + 30191/81 \, \lambda - 625/81 \, \lambda - 6724/81 \, \lambda - 10058/9 + 2350/9 + 7708/9 \; = \; 0$$

$$\lambda^3 - 106/3 \, \lambda^2 + 282 \, \lambda + 0 \; = \; 0$$

 $\lambda_1 = 23.1540$ $\lambda_2 = 12.1793$ $\lambda_3 = 0$

STEP 6: Use Gaussian Elimination method to find $\fbox{\mbox{$V$}}$, the eigenvectors of the Matrix $\fbox{\mbox{$L$}}$.

$$B = \begin{bmatrix} \lambda I - L \end{bmatrix}$$

$$= \begin{bmatrix} \lambda - 107/9 & 25/9 & 82/9 \\ 25/9 & \lambda - 77/9 & 52/9 \\ 82/9 & 52/9 & \lambda - 134/9 \end{bmatrix}$$

To find the eigenvectors, we need to solve Bx=0 for every eigenvalues.

Case 1:
$$\lambda = 23.1540$$

	В>	· = 0
	$\begin{bmatrix} \lambda - 107/9 & 25/9 & 82/9 \\ 25/9 & \lambda - 77/9 & 52/9 \\ 82/9 & 52/9 & \lambda - 134/9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$ = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $
23.1540-107/9 25/9 82/9	$ \begin{bmatrix} 25/9 & 82/9 \\ 23.1540-77/9 & 52/9 \\ 52/9 & 23.1540-134/9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
	$\begin{bmatrix} 11.2651 & 25/9 & 82/9 \\ 25/9 & 14.5984 & 52/9 \\ 82/9 & 52/9 & 8.2651 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$ = \begin{bmatrix} \Theta \\ \Theta \\ \Theta \end{bmatrix} $
	[11.2651 25/9 25/9 14.5984 82/9 52/9	82/9 0 52/9 0 8.2651 0
	$ \begin{array}{c cccc} R_1/11.2651 & 0.2466 \\ \hline R_1/11.2651 & 25/9 & 14.5984 \\ 82/9 & 52/9 \\ \hline & 1 & 0.2466 \end{array} $	0.8088 0 52/9 0 8.2651 0
	$\frac{R_2 - 25/9R_1}{R_2 + R_3} = 0 13.9134$	0.8088 0 3.5311 0 8.2651 0 0.8088 0
	$\frac{R_3 - 82/9 R_1}{0} \begin{vmatrix} 0 & 13.9134 \\ 0 & 3.5310 \end{vmatrix}$	3.5311 0 0.8960 0 0.8088 0
	$\begin{array}{c c} R_2/13.9134 & 0 & 1 \\ 0 & 3.5310 \end{array}$	0.2538 0 0.8960 0 0.7462 0
	$ \begin{array}{c c} R_1 - 0.2466 R_2 & 0 & 1 \\ 0 & 3.5310 \end{array} $	0.2538 0 0.8960 0
		0.7462 0 0.2538 0 0.0002 0 0.7462 0
	$\frac{R_3/-0.0002}{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0.2538 0 1 0

$$\begin{array}{rcl} x_1 + 0.7462 \, x_3 & = & 0 \\ x_2 + 0.2538 \, x_3 & = & 0 \\ x_3 & = & 1 \\ \\ x_1 & = & -0.7462(1) \\ x_2 & = & -0.2538(1) \\ x_3 & = & 1 \\ \\ v_1 & = & \frac{1}{\max[x_1, x_2, x_3]} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\ & = & \frac{1}{1} \begin{bmatrix} -0.7462 \\ -0.2538 \\ 1 \end{bmatrix} \\ & = & \begin{bmatrix} -0.7462 \\ -0.2538 \\ 1 \end{bmatrix} \end{array}$$

Therefore, the eigenvector for eigenvalue

$$\lambda = 23.1540$$
 is

$$v_1 = \begin{bmatrix} -0.7462 \\ -0.2538 \\ 1.0000 \end{bmatrix}$$

Case 2: $\lambda = 12.1793$

```
Bx
                                                                0
                                               82/9 | X_1
                                                               [0]
                     \lambda - 107/9
                                   25/9
                                               52/9 | x<sub>2</sub>
                                                               0
                         25/9
                                \lambda - 77/9
                                         \lambda-134/9\|x_3
                                                               [0]
                         82/9
                                   52/9
                                               82/9 | X_1
                                                               0
12.1793-107/9
                            25/9
                                               52/9 | x<sub>2</sub>
           25/9
                   12.1793-77/9
                                                               0
                                   12.1793 - 134/9 | x_3
                                                               0
           82/9
                            52/9
                                               82/9 || X_1
                       0.2904
                                                               0
                                   25/9
                                               52/9 || x<sub>2</sub>
                         25/9
                                3.6237
                                                               0
                         82/9
                                   52/9 - 2.7096
                                                               [0]
                                  0.2904
                                                           82/9 0
                                              25/9
                                     25/9
                                                           52/9 0
                                            3.6237
                                             52/9 -2.7096 0
                                     82/9
                                                      31.3743 0
                                             9.5654
                          R<sub>1</sub>/0.2904 25/9
                                                           52/9 0
                                             3.6237
                                     82/9
                                             52/9 -2.7096 0
                                           9.5654
                                                      31.3743 0
                                    0 -22.9469 -81.3731
                                 82/9
                                              52/9 - 2.7096
                                                                0
                                   1
                                                      31.3743 0
                                          9.5654
                        R_3 - 82/9 R_1 | 0 -22.9469 -81.3731
                                                                0
                                   0 -81.3736
                                                 -288.5643
                                                               0
                                                       31.3743 0
                                          9.5654
                      R_2/-22.9469|0
                                                1
                                                        3.5461 0
                                     -81.3736
                                   0
                                                  -288.5643
                                                               0
                                   1
                                                0
                                                     -2.5456
                                                                0
                     R_1 - 9.5654R_2
                                   0
                                                1
                                                      3.5461 0
                                     -81.3736
                                                 -288.5643
                                                                0
                                                  0 - 2.5456
                                              1
                               R_3 + 81.3736 R_2 | 0
                                                  1
                                                      3.5461 0
                                              0
                                                  0 - 0.0054
                                                               0
                                                                0
                                                  0 - 2.5456
                                  R_3/-0.0054|0
                                                       3.5461 0
                                              0
                                                  0
                                                              1 0
```

$$\begin{array}{rcl} x_1 - 2.5456 \, x_3 & = & 0 \\ x_2 + 3.5461 \, x_3 & = & 0 \\ x_3 & = & 1 \\ \\ x_1 & = & 2.5456(1) \\ x_2 & = & -3.5461(1) \\ x_3 & = & 1 \\ \\ v_2 & = & \frac{1}{\max |x_1, x_2, x_3|} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\ & = & \frac{1}{3.5461} \begin{bmatrix} 2.5456 \\ -3.5461 \\ 1.0000 \end{bmatrix} \\ & = & \begin{bmatrix} 0.7179 \\ -1.0000 \\ 0.2820 \end{bmatrix} \end{array}$$

Therefore, the eigenvector for eigenvalue $\lambda=12.1793$ is

$$v_2 = \begin{bmatrix} 0.7179 \\ -1.0000 \\ 0.2820 \end{bmatrix}$$

Case 3:
$$\lambda = 0$$

Eigenvalue with value 0 or very near to 0 will produce a useless eigenvector, so this case is discarded.

Therefore, the eigenvector of Matrix \Box is:

$$V = \begin{bmatrix} -0.7462 & 0.7179 \\ -0.2538 & -1.0000 \\ 1.0000 & 0.2820 \end{bmatrix}$$

STEP 7: Find the Eigenface,

Using the following equation to find the Eigenface:

$$u_1 = \sum_{k=1}^{M} v_{1k} \Phi_k$$
 , where $M=3$, the number of training faces.

$$\begin{aligned} \mathbf{u_1} &= (-0.7462) \begin{bmatrix} -1 \\ -1 \\ 8/3 \\ 5/3 \end{bmatrix} + (-0.2538) \begin{bmatrix} -2 \\ -1 \\ -4/3 \\ -4/3 \end{bmatrix} + (1.0000) \begin{bmatrix} 3 \\ 2 \\ -4/3 \\ -1/3 \end{bmatrix} \\ &= \begin{bmatrix} 0.7462 \\ 0.7462 \\ -1.9899 \\ -1.2437 \end{bmatrix} + \begin{bmatrix} 0.5076 \\ 0.2538 \\ 0.3384 \\ 0.3384 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ -4/3 \\ -1/3 \end{bmatrix} \\ &= \begin{bmatrix} 4.2538 \\ 3.0000 \\ -2.9848 \\ -1.2386 \end{bmatrix}$$

$$\begin{aligned} \mathbf{u}_2 &= & (0.7179) \begin{bmatrix} -1 \\ -1 \\ 8/3 \\ 5/3 \end{bmatrix} + (-1.0000) \begin{bmatrix} -2 \\ -1 \\ -4/3 \\ -4/3 \end{bmatrix} + (0.2820) \begin{bmatrix} 3 \\ 2 \\ -4/3 \\ -1/3 \end{bmatrix} \\ &= \begin{bmatrix} -0.7179 \\ -0.7179 \\ 1.9144 \\ 1.1965 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 4/3 \\ 4/3 \end{bmatrix} + \begin{bmatrix} 0.8460 \\ 0.5640 \\ -0.3760 \\ -0.0940 \end{bmatrix} \\ &= \begin{bmatrix} 2.1281 \\ 0.8461 \\ 2.8717 \\ 2.4358 \end{bmatrix}$$

Therefore,
$$u = \begin{bmatrix} 4.2538 & 2.30000 & 0.0000 \\ -2.9848 & 2.00000 \\ -1.2386 & 2.00000 \end{bmatrix}$$

STEP 8: Find training weights $\Omega_{\mathbf{k}}$

 Ω_{k} .

Using the following equations to find the weight:

$$| \mathbf{w}_{k} = \mathbf{u}_{k}^{\mathsf{T}}(\Gamma - \Psi) |$$
,

where Γ is a face vector from training dataset.

Find the weights for training face 1:

Therefore,

$$\Omega_1^{\mathsf{T}} = [-17.2778, -14.6918]$$

Find the weights for training face 2:

$$\begin{split} \Omega_2^\mathsf{T} &= & [\mathsf{w}_1, \quad \mathsf{w}_2] \\ \mathsf{w}_1 &= & \mathsf{u}_1^\mathsf{T}(\Gamma_2 - \Psi) \\ &= & [4.2538, \quad 3.0000, \, -2.9848, \quad -1.2386] \begin{bmatrix} 2 \\ 1 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 19/3 \\ 2 \end{bmatrix} \\ = & [4.2538, \quad 3.0000, \, -2.9848, \quad -1.2386] \begin{bmatrix} -2 \\ -1 \\ -4/3 \\ -4/3 \end{bmatrix} \\ &= & -5.8764 \\ \mathsf{w}_2 &= & \mathsf{u}_2^\mathsf{T}(\Gamma_2 - \Psi) \\ &= & [2.1281, \quad 0.8461, \, -2.8717, \quad -2.4358] \begin{bmatrix} 2 \\ 1 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 19/3 \\ 2 \end{bmatrix} \\ = & [2.1281, \quad 0.8461, \, -2.8717, \quad -2.4358] \begin{bmatrix} -2 \\ -1 \\ -4/3 \\ -4/3 \end{bmatrix} \\ &= & 1.9744 \end{split}$$

Therefore,

$$\Omega_2^{\mathsf{T}} = [-5.8764, -1.9744]$$

Find the weights for training face 3:

Therefore,

$$\Omega_3^{\mathsf{T}} = [23.1540, 12.7174]$$

Thus, the weight for training faces in the training dataset is:

$$\Omega_{k} \ = \begin{bmatrix} -17.2778 & -5.8764 & 23.1540 \\ -14.6918 & -1.9744 & 12.7174 \end{bmatrix}$$

STEP 9: Find the weight of unknown face from the training dataset.

$$\begin{split} &\Omega^{\mathsf{T}} &= & [\mathsf{w}_1, \quad \mathsf{w}_2] \\ &\mathsf{w}_1 &= & \mathsf{u}_1^{\mathsf{T}}(\mathsf{F}_1 - \Psi) \\ &= & [4.2538, \quad 3.0000, \, -2.9848, \quad -1.2386] \begin{bmatrix} 3 \\ 2 \\ 6 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix} \\ &= & [4.2538, \quad 3.0000, \, -2.9848, \quad -1.2386] \begin{bmatrix} -1 \\ 0 \\ -1/3 \\ 2/3 \end{bmatrix} \\ &= & -4.0846 \\ &\mathsf{w}_2 &= & \mathsf{u}_2^{\mathsf{T}}(\mathsf{F}_1 - \Psi) \\ &= & [2.1281, \quad 0.8461, \, -2.8717, \quad -2.4358] \begin{bmatrix} 3 \\ 2 \\ 6 \\ 19/3 \\ 10/3 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 19/3 \\ 10/3 \end{bmatrix} \\ &= & [2.1281, \quad 0.8461, \, -2.8717, \quad -2.4358] \begin{bmatrix} -1 \\ 0 \\ -1/3 \\ 2/3 \end{bmatrix} \\ &= & -2.7947 \end{split}$$

Therefore,

$$\Omega^{\mathsf{T}} = [-4.0846, -2.7947]$$

Thus, the weight for unknown face in the test dataset is:

$$\Omega = \begin{bmatrix} -4.0846 \\ -2.7947 \end{bmatrix}$$

STEP 10: Recognize the unknown face from the test dataset.

To recognize an unknown face, we need to find the Euclidean Distance between training weights and unknown face weight.

Using the following Euclidean Distance equation:

$$\varepsilon_k^2 \ = \ \left\| (\Omega \! - \! \Omega_k) \right\|^2$$

Therefore, the unknown face belongs to face 2.

References

[1] Eigenfaces for recognition - Turk, Pentland - 1991