# Canny

#### Bilinen en iyi kenar yakalama yöntemi

1. YUMUŞATMA: Görüntüyü Gaussian fonksiyonu ile yumuşat.

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$f_s(x,y) = G(x,y) \star f(x,y)$$

- 2. Gradientleri Bulma (Yatay  $(g_x)$  ve dikey  $(g_y)$ )
- 3. Gradient büyüklüğünü ve yönünü bul
- 4. KENAR İNCELTME AŞAMASI
- 5. EŞİKLEME AŞAMASI
- 6. KENAR BAĞLAMA AŞAMASI

1. ve 2. aşama

İlk iki aşama tek bir işlemle yapılabilir. Bunun için gaussian yumuşatma fonksiyonunun yatay ve dikey türevlerinin görüntüyle konvolüsyona tabi tutulması gerekir.



3. aşama

$$(S_x, S_y)$$
 Gradient Vector magnitude =  $\sqrt{(S_x^2 + S_y^2)}$  direction =  $\theta = \tan^{-1} \frac{S_y}{S_x}$ 





image

gradient magnitude

# Canny Kenar Yakalama Algoritması 4. aşama: Kenar İnceltme (suppression) Θ[i,j] açı değerlerini (a) şeklini kullanarak 4 sektör haline indirge.

- M[i,i]'deki her 3x3 pencereyi incele.
- Gradient yönüne bak (Gradient yönü kenara diktir). Eğer merkez değer bu yöndeki komşu değerlerin herhangi birinden küçükse o zaman merkez değeri sıfırla (M[i,j]=0). Örneğin (b) şeklinde gradient yönünün  $\alpha$  olduğu görülüyor, dolayısıyla gri bölgelerdeki magnitude değerlerinden herhangi biri merkezden büyükse pikselin magnitude değeri silinir.



(a)



#### Canny Kenar Yakalama Algoritması 4. aşama: Kenar Inceltme (suppression)



Kırmızı çizgiler kenara dik olan **gradient vektör yönlerini** göstermektedir. Bunun için ilk olarak θ açı matrisine bakılarak kırmızı çizgi yönü belirleniyor. Bu eksendeki M(i i) değerlerine bakılıyor. Merkezden büyük bir değer yakalanırsa niksel

#### Canny Kenar Yakalama Algoritması 4. aşama: Kenar Inceltme (suppression)

Yanlış kenarlar M<sub>thin</sub> kalabilir

 Gürültüden dolayı kenar inceltme aşaması birçok yanlış kenarı içerebilir.

5. aşama: Eşikleme

#### Klasik Eşikleme

- Bir eşik T uygulayarak yanlış kenar sayısını azalt
  - T den küçük tüm değerleri 0 yap
  - İyi bir T değeri seçmek çok zordur.
  - T çok küçük seçilirse yanlış kenarlar kalır (False Positives)
  - T büyük seçilirse doğru kenarlar silinebilir (False Negatives)

5. aşama: Eşikleme

#### Canny-Çift Eşik Kullanma

- Kenarı inceltilmiş görüntüde çift eşik kullan
  - $-T_2 = 2T_1$
  - Çıkışta iki imge elde edilir
  - T<sub>2</sub> sonucu güçlü kenarları içerir. Kenarlarda kopukluklar vardır.
  - $T_1$  sonucu zayıf kenar pikseli  $G_{T_1}(x,y) = M_{T_1}(x,y) \ge T_2$  sonucu zayıf kenarları içerir. Yanlış kenar sayısı çoktur.
  - $T_1$  ve  $T_2$  sonucu birleştirilir.  $(x, y) = M_{thin}(x, y) \ge T_1$

 $G_{T_1}$  içerisinden  $G_{T_2}$  yi temizlemek için ilk olarak aşağıdaki işlem yapılır:

$$G_{T_1}(x,y) = G_{T_1}(x,y) - G_{T_2}(x,y)$$

5. aşama: Eşikleme

İmge



Gradient Büyüklüğü (M)



Düşük Eşik  $(G_{T_1})$ 



Yüksek Eşik  $(G_{T_2})$ 



5. aşama: Eşikleme



- 6. aşama: Kenar Bağlama
  - 1.  $G_{T_2}$  daki ziyaret edilmeyen bir sonraki kenar pikseline p konumlan
  - 2. p nin 8 komşuluğunda olan  $G_{T_1}$  deki tüm zayıf pikselleri geçerli kenar pikseli olarak işaretle.
  - 3.  $G_{T_2}$  deki kesin kenarların tamamı bu şekilde ziyaret edildiyse 4. aşamaya geç, değilse 1. aşamaya geç.
  - 4.  $G_{T_1}$  deki geçerli kenar piksellerini 1, diğerlerini 0 olarak işaretle.
  - 5.  $G_{T_1}$  deki sıfır olmayan piksellerin tamamını  $G_{T_2}$  a ekle.
  - 6. Canny algoritmasının sonucu:  $G_{T_2}$



# Canny Örnek-1



a b c d

#### **FIGURE 10.25**

(a) Original image of size 834 × 1114 pixels, with intensity values scaled to the range [0, 1]. (b) Thresholded gradient of smoothed image. (c) Image obtained using the Marr-Hildreth algorithm. (d) Image obtained using the Canny algorithm. Note the significant improvement of the Canny image compared to the other two.

# Canny Örnek-2



a b c d

#### **FIGURE 10.26**

(a) Original head CT image of size 512 × 512 pixels, with intensity values scaled to the range [0, 1]. (b) Thresholded gradient of smoothed image. (c) Image obtained using the Marr-Hildreth algorithm. (d) Image obtained using the Canny algorithm. (Original image courtesy of Dr. David Ř. Pickens, Vanderbilt University.)