Julián D. Osorio Carrillo

Asignación 04

juosorioca@unal.edu.co

1. Demostrar los teoremas dados.

Definition 0.1 (Homomorfismo). Un homomorfismo de grupos G y H es una aplicación $f: G \longrightarrow H$ tal que para cualesquiera $a, b \in G$ se cumple:

$$f(a \cdot b) = f(a) \times f(b)$$

Corollary 0.0.1. $\Theta(1_G) = 1_H$

Demostración. En H se tiene que,

$$\Theta(1_G)=\Theta(1_G\cdot 1_G)=\Theta(1_G)\times \Theta(1_G)$$
, definición homomorfismo
$$\Theta(1_G)=\Theta(1_G)\times \Theta(1_G)$$

$$\Theta(1_G)^{-1}\times \Theta(1_G)=\Theta(1_G)\times \Theta(1_G)\times \Theta(1_G)^{-1}$$

$$1_H=\Theta(1_G)\times 1_H$$

$$\Theta(1_G)=1_H$$

Corollary 0.0.2. $\Theta(a)^{-1} = \Theta(a^{-1})$

Demostración. Sea $a \in G$ cualquiera, tales que,

$$\Theta(a) \times \Theta(a^{-1}) = \Theta(a \cdot a^{-1}) = \Theta(1) = 1$$

Y como el inverso de un grupo es único para cada $\Theta(a) \in H$, entonces para el inverso de $\Theta(a)$ se tiene que $\Theta(a^{-1}) = \Theta(a)^{-1}$.

Estos colorarios nos ayudaran a demostrar el teorema en cuestión.

Theorem 0.1. Si $\Theta: G \longrightarrow H$ es homomorfismo, entonces $Img(\Theta)$ es subgrupo de H.

Demostración. Para que $Img(\Theta)$ hace falta que cumpla la definición de grupo. $Img(\Theta)$ es cerrado:

Sea $a, b \in G$, como G es grupo, $a \cdot b = c \in G$, tales que,

$$\Theta(a) \times \Theta(b) = \Theta(c) \in Img(\Theta)$$
, Por definición de imagen

 $Img(\Theta)$ tiene elemento neutro:

Como G es grupo, $1_G \in G$, tales que,

 $\Theta(1_G) = 1_H \in Img(\Theta)$, Por definición de imagen y corolario

Existe un inverso para cada $a \in Img(\Theta)$: Sea $a \in G$, como G es grupo, $a^{-1} \in G$, tales que para $\Theta(a)$,

$$\Theta(a^{-1}) = \Theta(a)^{-1} \in Img(\Theta)\,$$
, Por definición de imagen y corolario

Adicionalmente como $Img(\Theta)$ hereda la operación binaria \times de H que es grupo, se cumple asociatividad por definición de grupo.

Así pues, $Img(\Theta)$ es subgrupo de H.

Theorem 0.2. Si $\Theta: G \longrightarrow H$ es homomorfismo, entonces $Kernel(\Theta)$ es subgrupo de H.

Demostración. Veamos que $Kernel(\Theta)$ es subgrupo de G. Sea $a, b \in Kernel(\Theta)$ cualesquiera. Por definición de Kernel, $\Theta(a) = 1_H = \Theta(b)$, dado lo anterior visto:

$$\Theta(a\cdot b^{-1})=\Theta(a)\times\Theta(b^{-1})$$
, Por definición de homomorfismo
$$=\Theta(a)\times\Theta(b)^{-1}$$
, Por corolario
$$=1_H\times 1_H=1_H$$

De modo que $ab^{-1} \in Kernel(\Theta)$.

Sabemos que un subconjunto S de G es subgrupo, si y solo si, cada que $a,b \in S$ implica que $ab^{-1} \in S$. Así pues, $Kernel(\Theta)$ es subgrupo de G.

Theorem 0.3. Sea $X \subset G$. Existe subgrupo S tales que $X \subseteq S$.

Demostración. Equivale a decir que al tener un conjunto $X \subset G$, existe subgrupo S tales que $X \subset S$, donde para T cualquier otro subgrupo que contiene a X; $S \subseteq T$.

Siendo S subconjunto que contiene a X, en cualquier caso, es posible definir el subgrupo $T \equiv G$, tales que por definición de subgrupo $X \subseteq T$, fuera de ello, al ser X subconjunto de G, se tendrá de igual forma $X \subset T$.