$$x$$
 — виборогное пр-во — ин-во значений эксперимента B_x — σ — алгебра на x Р — неизвестное распределение на (x, B_x) Р ε Р — семей ство распределений (x, B_x, P) для 1 эксперимента

$$P_{x}(\beta) = P(x, X(x) \in \beta) = P(\beta)$$

 $X: \mathcal{X} \to \mathcal{X}$ - наблюдение

$$(x^{n}, \beta_{x^{n}}, P^{n})$$

$$x^{n} = x \times ... \times x$$

$$\beta_{x^{n}} = \sigma(\beta_{1} \times ... \times \beta_{n}, \beta_{i} \in \beta_{x})$$

$$P^{n} = \{P^{n}, P \in P\}$$

$$X_i:X^n\to X$$
 $X_i(x)=x_i$ $\forall x\in X^n$ — nedrogenue one i-oro exchep.

Виборка — вектор незав. один. распр. слуг. велигин

$$\mathcal{C} = \{0, +\infty\}$$

$$\mathcal{P} = \{ \mathbb{E}_{\times P}(\theta) \mid \theta > 0 \}$$

$$\mathcal{D} = \{0, 0\}$$

$$\mathcal{L}_{\times P}(\theta) \mid \theta > 0 \}$$

1) X,, _ X, ~ Exp(0) 0>0

 $P = \{ Bern(\theta) \mid 0 \in \theta \in L \}$ $\Theta = [0, L]$

Mpu mepor:

C	ho	ئ	5	pupodo				:			ι)	•	ų.	ນາ <i>ວ</i>	۲۲۷	лú		N	စရ	ĸø(} -	•			•	0	•			•	•			
۰	•	۰	٠	٠	۰	۰	۰	٠	۰	٠	راً و	۰	۲.	۰	0	۰	٠_	۰				۰	٠	٠	٠	۰	٠	۰	٠	۰	۰	۰	٠	
	0	۰		٠		۰	0	۰		۰	(په	۰	ьe	وير	2Ġ (ree	ų.	0	NO	ď	- D U	•				0	۰		٠		۰		٠	
		۰	٠			۰	۰			۰	•		۰			•	٠	٠	۰		۰	۰	۰			۰	۰	۰		۰	۰		٠	
	0						0				0							0								0								
•				٠		•				٠	0							٠			۰	۰					۰				۰			
		0	٠	٠		۰	٠			۰	•		۰		۰	۰	٠	٠		۰	•	٠	۰		٠	•	۰	۰		۰	۰	•	٠	
	0	•				•	۰			٠	0	۰			۰					۰	0	۰				•								
		•					0			٠	0					0	0	٠																
						۰	0																			0								
											0	۰														0								

$$\begin{cases}
E_{\theta} \times_{1} = \overline{X} \\
E_{\theta} \times_{2} = \overline{X^{2}}
\end{cases}$$

$$\begin{cases}
a = \overline{X} \\
a^{2} + a^{2} = \overline{X^{2}}
\end{cases}$$

$$\begin{cases}
a = \overline{X} \\
a^{2} + a^{2} = \overline{X^{2}}
\end{cases}$$

Численные вытисления интегралов

1 Merog прямоугольников

$$\int_{x_0}^{x_1} f(x) dx = \int_{x_0}^{x_1} f(x) dx$$
 $\int_{x_0}^{x_1} f(x) dx + \dots + \int_{x_{n-1}}^{n} f(x) dx$

 $f\left(\frac{\kappa_0+\kappa_1}{2}\right)\cdot\left(\kappa_1-\kappa_0\right)\qquad f\left(\frac{\kappa_{n-1}+\kappa_n}{2}\right)\left(\kappa_n-\kappa_{n-1}\right)$

$$f(x) = \frac{x_{i-1} + x_{i}}{2}$$

$$f(x) = f(r_{i}) + f'(r_{i}) (x - r_{i}) + \frac{1}{2} f''(z(x)) (x - r_{i})^{2}$$

$$z(x) \in [x_{i-1}; x_{i}]$$

$$x_{i}$$

$$\int_{x_{i-1}} f'(r_{i}) (x - r_{i}) dx = 0$$

$$x_{i-1}$$

$$gok_{-}60 \quad \text{ryr}$$

http://www.cleverstudents.ru/integral/method_of_rectangles.html

 $T. \qquad |I - \widehat{I}| \leq \underbrace{M \left(\beta - \alpha \right)^{2}}_{24 n^{2}} \qquad M = \max_{x \in [\alpha, \beta]} |f''(x)|$

Мегод Монте-Карло

$$p(|\bar{1} - \bar{1}| \le 3 |\bar{1}| \le 3 |\bar{1}| \ge 3$$

$$\rho(|\bar{1} - \bar{1}| \le 3) \sum_{N} 0.9973$$

Nyzure nparroyz upu bucokoù kpathoctu unterpamb

https://habr.com/ru/post/274975/