```
In [1]: import os
         import pandas as pd
         import numpy as np
         import matplotlib as plt
         import datetime as dt
         import seaborn as sns
In [2]: import import ipynb
         import matplotlib.pyplot as plt1
In [3]: | %matplotlib inline
         import sklearn
 In [4]: | from sklearn.model selection import train test split
         from sklearn.tree import DecisionTreeClassifier
         from sklearn import tree
         from sklearn.metrics import accuracy score
         from sklearn.metrics import confusion matrix
In [5]: from sklearn.ensemble import RandomForestClassifier
In [6]: import statsmodels.api as sm
In [7]: from sklearn.neighbors import KNeighborsClassifier
In [8]: #SETTING WORKING DIRECTORY
         os.chdir("E:/data science and machine learning/santander/python file")
In [9]: os.getcwd()
Out[9]: 'E:\\data science and machine learning\\santander\\python file'
In [10]: | #GETTING THE FILE FROM HDD
         sdf=pd.read_csv("train.csv",sep=',')
In [11]: | type(sdf)
Out[11]: pandas.core.frame.DataFrame
In [12]: | sdf.columns
Out[12]: Index(['ID_code', 'target', 'var_0', 'var_1', 'var_2', 'var_3', 'var_4',
                 'var_5', 'var_6', 'var_7',
                 'var_190', 'var_191', 'var_192', 'var_193', 'var_194', 'var_195',
                'var_196', 'var_197', 'var_198', 'var_199'],
               dtype='object', length=202)
```

In [13]: sdf.dtypes

Out[13]:	ID_code	object
	target	int64
	var_0	float64
	var_1	float64
	var_2	float64
	var_3	float64
	var_4	float64
	var_5	float64
	var_5 var_6	
		float64
	var_7	float64
	var_8	float64
	var_9	float64
	var_10	float64
	var_11	float64
	var_12	float64
	var_13	float64
	var_14	float64
	var_15	float64
	var_16	float64
	_ var_17	float64
	_ var_18	float64
	var 19	float64
	var 20	float64
	var 21	float64
	var_21 var_22	float64
	var 23	float64
	—	
	var_24	float64
	var_25	float64
	var_26	float64
	var_27	float64
	var_170	float64
	var_171	float64
	var_172	float64
	var_173	float64
	var_174	float64
	var_175	float64
	var_176	float64
	var_177	float64
	var 178	float64
	var 179	float64
	var 180	float64
	var 181	float64
	var 182	float64
	var 183	float64
	var 184	float64
	var 185	float64
	_	float64
	var_186 var 187	float64
	_	
	var_188	float64
	var_189	float64
	var_190	float64
	var_191	float64
	var_192	float64
	var_193	float64
	var_194	float64
	var_195	float64

var_196 float64
var_197 float64
var_198 float64
var_199 float64
Length: 202, dtype: object

In [14]: missing_val=pd.DataFrame(sdf.isnull().sum())

In [15]: missing_val

Out[15]:

	0
ID_code	0
target	0
var_0	0
var_1	0
var_2	0
var_3	0
var_4	0
var_5	0
var_6	0
var_7	0
var_8	0
var_9	0
var_10	0
var_11	0
var_12	0
var_13	0
var_14	0
var_15	0
var_16	0
var_17	0
var_18	0
var_19	0
var_20	0
var_21	0
var_22	0
var_23	0
var_24	0
var_25	0
var_26	0
var_27	0
var_170	0
var_171	0
var_172	0
var_173	0

0

0

var_174

var_178

var_181

var_179 0 var_180 0

var_175 0var_176 0var_177 0

```
var_182 0
            var_183 0
            var_184 0
            var_185 0
            var_186 0
            var_187 0
            var_188 0
            var_189 0
            var_190 0
            var_191 0
            var_192 0
            var_193 0
            var_194 0
            var_195 0
            var_196 0
            var_197 0
            var_198 0
            var_199 0
           202 rows × 1 columns
In [16]: del sdf['ID_code']
In [17]: | sdf.columns
Out[17]: Index(['target', 'var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'var_
           6',
                   'var_7', 'var_8',
                   'var_190', 'var_191', 'var_192', 'var_193', 'var_194', 'var_195', 'var_196', 'var_197', 'var_198', 'var_199'],
                  dtype='object', length=201)
```



```
In [25]: plt1.boxplot(sdf['var 5'])
Out[25]: {'whiskers': [<matplotlib.lines.Line2D at 0x23da7d91668>,
           <matplotlib.lines.Line2D at 0x23da7d919b0>],
           'caps': [<matplotlib.lines.Line2D at 0x23da7d91cf8>,
           <matplotlib.lines.Line2D at 0x23da7886080>],
           'boxes': [<matplotlib.lines.Line2D at 0x23da7d91518>],
           'medians': [<matplotlib.lines.Line2D at 0x23da78863c8>],
           'fliers': [<matplotlib.lines.Line2D at 0x23da7886710>],
           'means': []}
            10
            0
           -10
           -20
           -30
In [26]: plt1.boxplot(sdf['var 34'])
Out[26]: {'whiskers': [<matplotlib.lines.Line2D at 0x23da8b51ac8>,
            <matplotlib.lines.Line2D at 0x23da8b51e10>],
           'caps': [<matplotlib.lines.Line2D at 0x23da8b47198>,
            <matplotlib.lines.Line2D at 0x23da8b474e0>],
           'boxes': [<matplotlib.lines.Line2D at 0x23da8b51978>],
           'medians': [<matplotlib.lines.Line2D at 0x23da8b47828>],
           'fliers': [<matplotlib.lines.Line2D at 0x23da8b47b70>],
           'means': []}
           13.0
          12.5
          12.0
          11.5
          11.0
          10.5
           10.0
```


5

```
In [21]: #FEATURE SELECTION
    sdf_corr=sdf.loc[:,cnames1]

    f,ax=plt1.subplots(figsize=(7,5))
    corr=sdf_corr.corr()
    ax = sns.heatmap(corr)
```



```
In [19]: #Checking NORMALIZATION
    plt1.hist(sdf['var_0'],bins='auto')
```

```
Out[19]: (array([2.000e+00, 1.000e+00, 0.000e+00, 2.000e+00, 1.000e+00, 3.000e+00,
                 6.000e+00, 5.000e+00, 1.000e+01, 7.000e+00, 1.000e+01, 1.600e+01,
                 1.500e+01, 2.500e+01, 3.600e+01, 3.700e+01, 4.900e+01, 5.700e+01,
                 5.200e+01, 8.000e+01, 1.080e+02, 1.400e+02, 1.640e+02, 1.990e+02,
                 2.260e+02, 2.630e+02, 3.140e+02, 3.630e+02, 4.390e+02, 4.550e+02,
                 5.460e+02, 6.020e+02, 6.910e+02, 8.250e+02, 8.720e+02, 1.026e+03,
                 1.062e+03, 1.212e+03, 1.280e+03, 1.496e+03, 1.614e+03, 1.712e+03,
                 1.834e+03, 2.010e+03, 2.145e+03, 2.195e+03, 2.445e+03, 2.437e+03,
                 2.689e+03, 2.875e+03, 2.846e+03, 3.001e+03, 3.157e+03, 3.129e+03,
                 3.330e+03, 3.327e+03, 3.389e+03, 3.379e+03, 3.473e+03, 3.570e+03,
                 3.482e+03, 3.604e+03, 3.494e+03, 3.640e+03, 3.714e+03, 3.696e+03,
                 3.524e+03, 3.625e+03, 3.545e+03, 3.488e+03, 3.532e+03, 3.475e+03,
                 3.466e+03, 3.326e+03, 3.447e+03, 3.286e+03, 3.311e+03, 3.124e+03,
                 3.195e+03, 3.073e+03, 3.016e+03, 3.054e+03, 3.169e+03, 3.162e+03,
                 3.347e+03, 3.097e+03, 2.963e+03, 2.880e+03, 2.509e+03, 2.413e+03,
                 2.222e+03, 2.121e+03, 2.125e+03, 1.967e+03, 1.754e+03, 1.718e+03,
                 1.597e+03, 1.425e+03, 1.365e+03, 1.222e+03, 1.169e+03, 1.082e+03,
                 1.015e+03, 9.470e+02, 8.940e+02, 8.340e+02, 7.900e+02, 7.610e+02,
                 6.770e+02, 6.490e+02, 6.720e+02, 6.040e+02, 5.470e+02, 5.030e+02,
                 4.640e+02, 4.560e+02, 5.240e+02, 4.550e+02, 4.670e+02, 4.540e+02,
                 4.480e+02, 3.930e+02, 4.420e+02, 3.820e+02, 3.220e+02, 2.650e+02,
                 1.970e+02, 8.100e+01, 4.200e+01, 2.100e+01, 8.000e+00, 3.000e+00,
                 1.000e+00, 1.000e+00, 1.000e+00, 2.000e+00]),
          array([ 0.4084
                               0.55477206,
                                            0.70114412,
                                                         0.84751618,
                                                                       0.99388824,
                  1.14026029,
                               1.28663235,
                                            1.43300441,
                                                         1.57937647,
                                                                      1.72574853,
                               2.01849265,
                  1.87212059,
                                            2.16486471,
                                                         2.31123676,
                                                                      2.45760882,
                               2.75035294, 2.896725 ,
                  2.60398088,
                                                         3.04309706,
                                                                      3.18946912,
                                            3.62858529,
                  3.33584118,
                               3.48221324,
                                                         3.77495735,
                                                                      3.92132941,
                  4.06770147,
                               4.21407353,
                                           4.36044559,
                                                         4.50681765,
                                                                      4.65318971,
                  4.79956176,
                               4.94593382,
                                            5.09230588,
                                                         5.23867794,
                                                                      5.38505
                  5.53142206,
                               5.67779412, 5.82416618,
                                                         5.97053824,
                                                                      6.11691029,
                  6.26328235,
                               6.40965441, 6.55602647,
                                                         6.70239853,
                                                                       6.84877059,
                  6.99514265,
                               7.14151471,
                                            7.28788676,
                                                         7.43425882,
                                                                      7.58063088,
                               7.873375 ,
                  7.72700294,
                                            8.01974706,
                                                         8.16611912,
                                                                      8.31249118,
                  8.45886324,
                               8.60523529,
                                            8.75160735,
                                                         8.89797941,
                                                                      9.04435147,
                  9.19072353,
                               9.33709559,
                                            9.48346765,
                                                         9.62983971,
                                                                      9.77621176,
                                                                   , 10.50807206,
                  9.92258382, 10.06895588, 10.21532794, 10.3617
                 10.65444412, 10.80081618, 10.94718824, 11.09356029, 11.23993235,
                 11.38630441, 11.53267647, 11.67904853, 11.82542059, 11.97179265,
                 12.11816471, 12.26453676, 12.41090882, 12.55728088, 12.70365294,
                 12.850025 , 12.99639706, 13.14276912, 13.28914118, 13.43551324,
                 13.58188529, 13.72825735, 13.87462941, 14.02100147, 14.16737353,
                 14.31374559, 14.46011765, 14.60648971, 14.75286176, 14.89923382,
                                                     , 15.48472206, 15.63109412,
                 15.04560588, 15.19197794, 15.33835
                 15.77746618, 15.92383824, 16.07021029, 16.21658235, 16.36295441,
                 16.50932647, 16.65569853, 16.80207059, 16.94844265, 17.09481471,
                 17.24118676, 17.38755882, 17.53393088, 17.68030294, 17.826675
                 17.97304706, 18.11941912, 18.26579118, 18.41216324, 18.55853529,
                 18.70490735, 18.85127941, 18.99765147, 19.14402353, 19.29039559,
                 19.43676765, 19.58313971, 19.72951176, 19.87588382, 20.02225588,
                 20.16862794, 20.315
                                         1),
          <a list of 136 Patch objects>)
```


In [35]: plt1.hist(sdf['var_1'],bins='auto')

```
Out[35]: (array([1.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 3.000e+00, 4.000e+00,
                  2.000e+00, 3.000e+00, 7.000e+00, 6.000e+00, 1.000e+01, 1.400e+01,
                  3.200e+01, 3.700e+01, 3.500e+01, 5.000e+01, 6.400e+01, 9.000e+01,
                  1.080e+02, 1.520e+02, 1.670e+02, 2.390e+02, 3.430e+02, 3.450e+02,
                  4.110e+02, 5.070e+02, 6.510e+02, 7.570e+02, 8.130e+02, 9.460e+02,
                  1.095e+03, 1.238e+03, 1.427e+03, 1.569e+03, 1.685e+03, 1.770e+03,
                  1.920e+03, 2.147e+03, 2.249e+03, 2.363e+03, 2.547e+03, 2.613e+03,
                  2.689e+03, 2.825e+03, 2.812e+03, 2.902e+03, 2.883e+03, 2.995e+03,
                  3.087e+03, 3.012e+03, 3.131e+03, 3.047e+03, 3.106e+03, 3.187e+03,
                  3.174e+03, 3.302e+03, 3.269e+03, 3.431e+03, 3.385e+03, 3.474e+03,
                  3.529e+03, 3.586e+03, 3.586e+03, 3.540e+03, 3.532e+03, 3.626e+03,
                  3.462e+03, 3.528e+03, 3.626e+03, 3.615e+03, 3.576e+03, 3.453e+03,
                  3.551e+03, 3.500e+03, 3.474e+03, 3.447e+03, 3.524e+03, 3.326e+03,
                  3.302e+03, 3.179e+03, 3.209e+03, 3.053e+03, 2.988e+03, 2.753e+03,
                  2.754e+03, 2.634e+03, 2.578e+03, 2.329e+03, 2.118e+03, 2.007e+03,
                  1.863e+03, 1.753e+03, 1.634e+03, 1.467e+03, 1.308e+03, 1.197e+03,
                  1.056e+03, 9.590e+02, 8.780e+02, 8.130e+02, 6.940e+02, 6.850e+02,
                  5.910e+02, 5.700e+02, 5.400e+02, 4.890e+02, 3.850e+02, 4.250e+02,
                  4.290e+02, 5.490e+02, 6.380e+02, 3.920e+02, 1.210e+02, 2.300e+01,
                  6.000e+00, 7.000e+00, 3.000e+00, 3.000e+00, 0.000e+00, 0.000e+00,
                  2.000e+00, 3.000e+00]),
          array([-15.0434
                              , -14.8350377 , -14.62667541, -14.41831311,
                  -14.20995082, -14.00158852, -13.79322623, -13.58486393,
                  -13.37650164, -13.16813934, -12.95977705, -12.75141475,
                  -12.54305246, -12.33469016, -12.12632787, -11.91796557,
                  -11.70960328, -11.50124098, -11.29287869, -11.08451639,
                  -10.8761541 , -10.6677918 , -10.45942951, -10.25106721,
                                 -9.83434262,
                                               -9.62598033,
                  -10.04270492,
                                                              -9.41761803,
                                 -9.00089344,
                                                              -8.58416885,
                   -9.20925574,
                                               -8.79253115,
                   -8.37580656,
                                 -8.16744426,
                                               -7.95908197,
                                                              -7.75071967,
                   -7.54235738,
                                 -7.33399508,
                                               -7.12563279,
                                                              -6.91727049,
                                               -6.29218361,
                   -6.7089082 ,
                                 -6.5005459 ,
                                                              -6.08382131,
                   -5.87545902,
                                 -5.66709672,
                                               -5.45873443,
                                                              -5.25037213,
                   -5.04200984,
                                 -4.83364754,
                                                -4.62528525,
                                                              -4.41692295,
                   -4.20856066,
                                 -4.00019836,
                                                -3.79183607,
                                                              -3.58347377,
                   -3.37511148,
                                 -3.16674918,
                                               -2.95838689,
                                                              -2.75002459,
                   -2.5416623 ,
                                 -2.3333
                                                -2.1249377 ,
                                                              -1.91657541,
                   -1.70821311,
                                 -1.49985082,
                                                -1.29148852,
                                                              -1.08312623,
                   -0.87476393,
                                 -0.66640164,
                                                -0.45803934,
                                                              -0.24967705,
                   -0.04131475,
                                  0.16704754,
                                                 0.37540984,
                                                               0.58377213,
                    0.79213443,
                                  1.00049672,
                                                 1.20885902,
                                                               1.41722131,
                    1.62558361,
                                  1.8339459 ,
                                                 2.0423082 ,
                                                               2.25067049,
                    2.45903279,
                                  2.66739508,
                                                 2.87575738,
                                                               3.08411967,
                    3.29248197,
                                  3.50084426,
                                                 3.70920656,
                                                               3.91756885,
                    4.12593115,
                                  4.33429344,
                                                 4.54265574,
                                                               4.75101803,
                    4.95938033,
                                  5.16774262,
                                                 5.37610492,
                                                               5.58446721,
                    5.79282951,
                                  6.0011918 ,
                                                 6.2095541 ,
                                                               6.41791639,
                                  6.83464098,
                    6.62627869,
                                                 7.04300328,
                                                               7.25136557,
                    7.45972787,
                                  7.66809016,
                                                 7.87645246,
                                                               8.08481475,
                    8.29317705,
                                  8.50153934,
                                                 8.70990164,
                                                               8.91826393,
                    9.12662623,
                                  9.33498852,
                                                 9.54335082,
                                                               9.75171311,
                                               10.3768
                    9.96007541,
                                 10.1684377 ,
                                                           ]),
          <a list of 122 Patch objects>)
```



```
In [20]: plt1.hist(sdf['var_2'],bins='auto')
plt1.hist(sdf['var_3'],bins='auto')
```

```
Out[20]: (array([3.000e+00, 0.000e+00, 3.000e+00, 3.000e+00, 0.000e+00, 3.000e+00,
                 7.000e+00, 5.000e+00, 1.000e+01, 9.000e+00, 1.100e+01, 2.700e+01,
                 3.300e+01, 4.100e+01, 3.900e+01, 6.200e+01, 9.600e+01, 9.000e+01,
                 1.120e+02, 1.550e+02, 2.180e+02, 2.580e+02, 3.290e+02, 3.390e+02,
                 4.340e+02, 4.780e+02, 6.260e+02, 6.940e+02, 8.020e+02, 8.890e+02,
                 1.072e+03, 1.137e+03, 1.324e+03, 1.410e+03, 1.550e+03, 1.666e+03,
                 1.843e+03, 1.957e+03, 2.037e+03, 2.223e+03, 2.237e+03, 2.396e+03,
                 2.448e+03, 2.544e+03, 2.649e+03, 2.838e+03, 2.783e+03, 2.851e+03,
                 2.902e+03, 3.042e+03, 3.079e+03, 3.241e+03, 3.155e+03, 3.242e+03,
                 3.237e+03, 3.266e+03, 3.375e+03, 3.370e+03, 3.345e+03, 3.437e+03,
                 3.359e+03, 3.423e+03, 3.389e+03, 3.463e+03, 3.507e+03, 3.553e+03,
                 3.470e+03, 3.494e+03, 3.616e+03, 3.473e+03, 3.529e+03, 3.467e+03,
                 3.620e+03, 3.539e+03, 3.533e+03, 3.537e+03, 3.412e+03, 3.551e+03,
                 3.474e+03, 3.267e+03, 3.265e+03, 3.185e+03, 3.015e+03, 3.036e+03,
                 2.878e+03, 2.867e+03, 2.684e+03, 2.567e+03, 2.377e+03, 2.184e+03,
                 2.055e+03, 1.965e+03, 1.820e+03, 1.635e+03, 1.517e+03, 1.277e+03,
                 1.213e+03, 1.159e+03, 9.770e+02, 9.010e+02, 8.110e+02, 7.500e+02,
                 6.350e+02, 6.180e+02, 5.450e+02, 4.630e+02, 4.250e+02, 3.730e+02,
                 3.230e+02, 2.700e+02, 2.300e+02, 1.990e+02, 1.690e+02, 1.400e+02,
                 9.700e+01, 6.700e+01, 7.700e+01, 3.900e+01, 3.500e+01, 1.000e+01,
                 1.500e+01, 1.100e+01, 5.000e+00, 5.000e+00, 1.000e+00, 2.000e+00]),
          array([-0.0402
                                             0.16977619,
                                0.0647881 ,
                                                          0.27476429, 0.37975238,
                                             0.69471667,
                  0.48474048,
                                0.58972857,
                                                          0.79970476,
                                                                       0.90469286,
                  1.00968095,
                               1.11466905,
                                             1.21965714,
                                                          1.32464524,
                                                                       1.42963333,
                               1.63960952,
                                             1.74459762,
                                                          1.84958571,
                                                                       1.95457381,
                  1.53462143,
                  2.0595619 ,
                               2.16455
                                             2.2695381 ,
                                                          2.37452619,
                                                                       2.47951429,
                  2.58450238,
                               2.68949048,
                                             2.79447857,
                                                          2.89946667,
                                                                       3.00445476,
                                             3.31941905,
                  3.10944286,
                               3.21443095,
                                                          3.42440714,
                                                                       3.52939524,
                  3.63438333,
                               3.73937143,
                                             3.84435952,
                                                          3.94934762,
                                                                       4.05433571,
                  4.15932381,
                               4.2643119 ,
                                             4.3693
                                                          4.4742881 ,
                                                                       4.57927619,
                  4.68426429,
                               4.78925238,
                                            4.89424048,
                                                          4.99922857,
                                                                       5.10421667,
                  5.20920476,
                               5.31419286,
                                             5.41918095,
                                                          5.52416905,
                                                                       5.62915714,
                  5.73414524,
                               5.83913333,
                                            5.94412143,
                                                          6.04910952,
                                                                       6.15409762,
                  6.25908571,
                               6.36407381,
                                             6.4690619 ,
                                                          6.57405
                                                                       6.6790381 ,
                  6.78402619,
                               6.88901429,
                                             6.99400238,
                                                          7.09899048,
                                                                       7.20397857,
                  7.30896667,
                               7.41395476,
                                            7.51894286,
                                                          7.62393095,
                                                                       7.72891905,
                  7.83390714,
                               7.93889524,
                                             8.04388333,
                                                          8.14887143,
                                                                       8.25385952,
                                                          8.6738119 ,
                                            8.56882381,
                  8.35884762,
                               8.46383571,
                                                                       8.7788
                  8.8837881 ,
                               8.98877619,
                                             9.09376429,
                                                          9.19875238,
                                                                       9.30374048,
                                             9.61870476,
                  9.40872857,
                               9.51371667,
                                                          9.72369286,
                                                                       9.82868095,
                  9.93366905, 10.03865714, 10.14364524, 10.24863333, 10.35362143,
                 10.45860952, 10.56359762, 10.66858571, 10.77357381, 10.8785619,
                 10.98355
                            , 11.0885381 , 11.19352619, 11.29851429, 11.40350238,
                 11.50849048, 11.61347857, 11.71846667, 11.82345476, 11.92844286,
                 12.03343095, 12.13841905, 12.24340714, 12.34839524, 12.45338333,
                 12.55837143, 12.66335952, 12.76834762, 12.87333571, 12.97832381,
                 13.0833119 , 13.1883
                                          ]),
          <a list of 126 Patch objects>)
```


In [37]: plt1.hist(sdf['var_5'],bins='auto')

```
Out[37]: (array([1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.000e+00, 0.000e+00,
                 1.000e+00, 1.000e+00, 2.000e+00, 0.000e+00, 2.000e+00, 2.000e+00,
                 3.000e+00, 3.000e+00, 9.000e+00, 1.500e+01, 1.800e+01, 2.900e+01,
                 6.200e+01, 5.600e+01, 8.600e+01, 1.170e+02, 1.250e+02, 1.940e+02,
                 2.200e+02, 2.800e+02, 3.320e+02, 4.710e+02, 5.630e+02, 6.570e+02,
                 7.730e+02, 8.820e+02, 1.058e+03, 1.181e+03, 1.404e+03, 1.464e+03,
                 1.685e+03, 1.925e+03, 1.979e+03, 2.184e+03, 2.322e+03, 2.386e+03,
                 2.469e+03, 2.614e+03, 2.674e+03, 2.768e+03, 2.738e+03, 2.901e+03,
                 2.870e+03, 2.952e+03, 2.856e+03, 2.980e+03, 3.008e+03, 3.026e+03,
                 3.094e+03, 3.067e+03, 3.065e+03, 3.223e+03, 3.180e+03, 3.189e+03,
                 3.362e+03, 3.407e+03, 3.356e+03, 3.337e+03, 3.364e+03, 3.374e+03,
                 3.430e+03, 3.361e+03, 3.451e+03, 3.462e+03, 3.529e+03, 3.545e+03,
                 3.475e+03, 3.514e+03, 3.614e+03, 3.615e+03, 3.711e+03, 3.673e+03,
                 3.683e+03, 3.652e+03, 3.700e+03, 3.641e+03, 3.626e+03, 3.448e+03,
                 3.383e+03, 3.305e+03, 3.159e+03, 2.950e+03, 2.945e+03, 2.604e+03,
                 2.368e+03, 2.157e+03, 1.922e+03, 1.715e+03, 1.557e+03, 1.355e+03,
                 1.186e+03, 1.039e+03, 9.140e+02, 7.700e+02, 6.780e+02, 6.640e+02,
                 5.920e+02, 5.590e+02, 5.060e+02, 5.770e+02, 5.720e+02, 5.280e+02,
                 5.150e+02, 5.130e+02, 3.920e+02, 3.210e+02, 2.650e+02, 2.070e+02,
                 1.170e+02, 8.000e+01, 4.200e+01, 2.200e+01, 1.400e+01, 5.000e+00,
                 5.000e+00]),
                             , -32.1509124 , -31.73922479, -31.32753719,
          array([-32.5626
                 -30.91584959, -30.50416198, -30.09247438, -29.68078678,
                 -29.26909917, -28.85741157, -28.44572397, -28.03403636,
                 -27.62234876, -27.21066116, -26.79897355, -26.38728595,
                 -25.97559835, -25.56391074, -25.15222314, -24.74053554,
                 -24.32884793, -23.91716033, -23.50547273, -23.09378512,
                 -22.68209752, -22.27040992, -21.85872231, -21.44703471,
                 -21.03534711, -20.6236595 , -20.2119719 , -19.8002843 ,
                 -19.38859669, -18.97690909, -18.56522149, -18.15353388,
                 -17.74184628, -17.33015868, -16.91847107, -16.50678347,
                 -16.09509587, -15.68340826, -15.27172066, -14.86003306,
                  -14.44834545, -14.03665785, -13.62497025, -13.21328264,
                 -12.80159504, -12.38990744, -11.97821983, -11.56653223,
                  -11.15484463, -10.74315702, -10.33146942,
                                                             -9.91978182,
                  -9.50809421,
                                -9.09640661,
                                              -8.68471901,
                                                             -8.2730314 ,
                  -7.8613438 ,
                                -7.4496562 ,
                                              -7.0379686 ,
                                                             -6.62628099,
                   -6.21459339,
                                -5.80290579,
                                                             -4.97953058,
                                               -5.39121818,
                   -4.56784298,
                                -4.15615537,
                                               -3.74446777,
                                                             -3.33278017,
                   -2.92109256,
                                -2.50940496,
                                               -2.09771736,
                                                             -1.68602975,
                  -1.27434215,
                                -0.86265455,
                                               -0.45096694,
                                                             -0.03927934,
                   0.37240826,
                                 0.78409587,
                                                1.19578347,
                                                              1.60747107,
                   2.01915868,
                                 2.43084628,
                                                2.84253388,
                                                              3.25422149,
                   3.66590909,
                                 4.07759669,
                                                4.4892843,
                                                              4.9009719,
                   5.3126595 ,
                                  5.72434711,
                                                6.13603471,
                                                              6.54772231,
                   6.95940992,
                                 7.37109752,
                                                7.78278512,
                                                              8.19447273,
                                 9.01784793,
                                                9.42953554,
                   8.60616033,
                                                              9.84122314,
                                 10.66459835,
                  10.25291074,
                                               11.07628595,
                                                             11.48797355,
                  11.89966116,
                                 12.31134876,
                                               12.72303636,
                                                             13.13472397,
                  13.54641157,
                                13.95809917,
                                               14.36978678,
                                                             14.78147438,
                  15.19316198,
                                15.60484959,
                                               16.01653719,
                                                             16.42822479,
                  16.8399124 ,
                                 17.2516
                                            1),
          <a list of 121 Patch objects>)
```



```
In [21]:
         #SAMPLING
         #converting the target variable to string(Yes/No)
         sdf['target']=sdf['target'].replace(1,'Yes')
         sdf['target']=sdf['target'].replace(0,'No')
         len(sdf.columns)
Out[21]: 201
In [22]: | #divide data into train & test
         x=sdf.values[:,1:201]
         y=sdf.values[:,0]
         Х
Out[22]: array([[8.9255, -6.7863, 11.9081, ..., 8.5635, 12.7803, -1.0914],
                [11.5006, -4.1473, 13.8588, ..., 8.7889, 18.35599999999999,
                 1.9518],
                [8.6093, -2.7457, 12.0805, ..., 8.2675, 14.7222, 0.3965],
                [11.2232, -5.0518, 10.5127, ..., 8.7155, 13.8329, 4.1995],
                [9.7148, -8.6098, 13.6104, ..., 10.0342, 15.5289, -13.9001],
                [10.8762, -5.7105, 12.1183, ..., 8.1857, 12.1284, 0.1385]],
               dtype=object)
In [23]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [24]:
         #DECISION TREE
         dt=tree.DecisionTreeClassifier(criterion='entropy').fit(x train,y train)
In [25]: #predict new test case
         y_pred=dt.predict(x_test)
In [28]: #http://webgraphviz.com/
         dotfile=open("pt.dot",'w')
```

```
In [29]:
          df=tree.export_graphviz(dt,out_file=dotfile,feature_names=sdf.columns)
          ValueError
                                                     Traceback (most recent call last)
          <ipython-input-29-f3c71448b0eb> in <module>
          ---> 2 df=tree.export graphviz(dt,out file=dotfile,feature names=sdf.columns
          )
          ~\Anaconda3\lib\site-packages\sklearn\tree\export.py in export graphviz(decis
          ion_tree, out_file, max_depth, feature_names, class_names, label, filled, lea
          ves parallel, impurity, node ids, proportion, rotate, rounded, special charac
          ters, precision)
              425
                                                    "does not match number of features,
           %d"
              426
                                                    % (len(feature names),
          --> 427
                                                       decision_tree.n_features_))
              428
              429
                           # The depth of each node for plotting with 'leaf' option
          ValueError: Length of feature_names, 201 does not match number of features, 2
          00
 In [26]: accuracy_score(y_test,y_pred)*100
 Out[26]: 83.48166666666667
 In [27]: #build confusion matrix
          CM=confusion matrix(y test,y pred)
 In [28]:
          CM=pd.crosstab(y test,y pred)
          CM
 Out[28]:
            col_0
                        Yes
                    No
           row_0
              No 48851 5036
             Yes
                  4875 1238
In [128]:
          #let us save TP, TN, FP, FN
 In [29]:
          TN=CM.iloc[0,0]
          FN=CM.iloc[1,0]
          TP=CM.iloc[1,1]
          FP=CM.iloc[0,1]
 In [30]: Accuracy=((TP+TN)*100)/(TP+TN+FP+FN)
          Accuracy#=83.57
 Out[30]: 83.48166666666667
```

```
In [33]: FN
Out[33]: 4898
In [31]: FNR=FN*100/(FN+TP)
         FNR#=81.14
Out[31]: 79.74807786684116
         FPR=FP*100/(FP+TN)
In [32]:
         FPR#=9.18
Out[32]: 9.345482212778592
In [33]: Recall=TP*100/(TP+FN)
         Recall#=18.85
Out[33]: 20.251922133158843
In [34]:
         Specificity=TN*100/(TN+FP)
         Specificity#=90.81
Out[34]: 90.65451778722141
In [39]: Precision=TP*100/(TP+FP)
         Precision#=18.67
Out[39]: 19.73222824354479
In [40]: | #LOGISTIC REGRESSION
         sdf logit=pd.DataFrame(sdf)
In [41]: type(sdf_logit)
Out[41]: pandas.core.frame.DataFrame
         Sample_Index=np.random.rand(len(sdf_logit))<0.8</pre>
In [42]:
         train=sdf_logit[Sample_Index]
In [43]:
In [44]:
         test=sdf_logit[~Sample_Index]
         len(test)
Out[44]: 40023
In [45]: train_cols=train.columns[1:201]
```

In [46]: logit=sm.Logit(train['target'],train[train_cols]).fit()

```
ValueError
                                          Traceback (most recent call last)
<ipython-input-46-80d8ab4507a0> in <module>
----> 1 logit=sm.Logit(train['target'],train[train cols]).fit()
~\Anaconda3\lib\site-packages\statsmodels\discrete\discrete model.py in ini
t (self, endog, exog, **kwargs)
    416
    417
            def __init__(self, endog, exog, **kwargs):
                super(BinaryModel, self).__init__(endog, exog, **kwargs)
--> 418
                if (not issubclass(self.__class__, MultinomialModel) and
    419
    420
                        not np.all((self.endog >= 0) & (self.endog <= 1))):</pre>
~\Anaconda3\lib\site-packages\statsmodels\discrete\discrete model.py in ini
t__(self, endog, exog, **kwargs)
    169
    170
            def init (self, endog, exog, **kwargs):
--> 171
                super(DiscreteModel, self).__init__(endog, exog, **kwargs)
    172
                self.raise on perfect prediction = True
    173
~\Anaconda3\lib\site-packages\statsmodels\base\model.py in init (self, end
og, exog, **kwargs)
    210
            def __init__(self, endog, exog=None, **kwargs):
    211
--> 212
                super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
    213
                self.initialize()
    214
~\Anaconda3\lib\site-packages\statsmodels\base\model.py in init (self, end
og, exog, **kwargs)
     62
                hasconst = kwargs.pop('hasconst', None)
     63
                self.data = self._handle_data(endog, exog, missing, hasconst,
---> 64
                                              **kwargs)
                self.k constant = self.data.k_constant
     65
     66
                self.exog = self.data.exog
~\Anaconda3\lib\site-packages\statsmodels\base\model.py in handle data(self,
endog, exog, missing, hasconst, **kwargs)
     85
            def handle data(self, endog, exog, missing, hasconst, **kwargs):
     86
---> 87
                data = handle data(endog, exog, missing, hasconst, **kwargs)
     88
                # kwargs arrays could have changed, easier to just attach her
e
     89
                for key in kwargs:
~\Anaconda3\lib\site-packages\statsmodels\base\data.py in handle data(endog,
 exog, missing, hasconst, **kwargs)
            klass = handle_data_class_factory(endog, exog)
    631
    632
            return klass(endog, exog=exog, missing=missing, hasconst=hascons
t,
--> 633
                         **kwargs)
~\Anaconda3\lib\site-packages\statsmodels\base\data.py in init (self, endo
g, exog, missing, hasconst, **kwargs)
     74
                    self.orig endog = endog
     75
                    self.orig_exog = exog
```

```
---> 76
                    self.endog, self.exog = self._convert_endog_exog(endog, e
xog)
     77
                # this has side-effects, attaches k constant and const idx
     78
~\Anaconda3\lib\site-packages\statsmodels\base\data.py in _convert_endog_exog
(self, endog, exog)
    472
                exog = exog if exog is None else np.asarray(exog)
    473
                if endog.dtype == object or exog is not None and exog.dtype =
= object:
--> 474
                    raise ValueError("Pandas data cast to numpy dtype of obje
ct. "
    475
                                     "Check input data with np.asarray(dat
a).")
    476
                return super(PandasData, self)._convert_endog_exog(endog, exo
g)
```

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

In [165]: logit.summary()

Out[165]: Logit Regression Results

Dep. Varial	ble:	tarç	get No. (Observa	tions:	159907
Мо	del:	Lo	git	Df Resid	duals:	159707
Method:		MI	LE	Df N	199	
Da	ate: Mon,	22 Jul 20	19 P s	seudo R	-squ.:	0.2923
Tir	me:	19:49:	38 Lo	g-Likeli	hood:	-36847.
converg	ed:	Tr	ue	LL	Null:	-52065.
				LLR p-	value:	0.000
	coef	std err	z	P> z	[0.025	0.975]
var_0	0.0569	0.003	18.122	0.000	0.051	0.063
var_1	0.0417	0.002	17.485	0.000	0.037	0.046
var_2	0.0686	0.004	19.015	0.000	0.062	0.076
var_3	0.0146	0.005	3.082	0.002	0.005	0.024
var_4	0.0286	0.006	4.807	0.000	0.017	0.040
var_5	0.0129	0.001	10.461	0.000	0.010	0.015
var_6	0.2635	0.011	23.830	0.000	0.242	0.285
var_7	0.0012	0.003	0.417	0.676	-0.004	0.007
var_8	0.0174	0.003	5.965	0.000	0.012	0.023
var_9	-0.1087	0.008	-13.986	0.000	-0.124	-0.093
var_10	0.0006	0.002	0.316	0.752	-0.003	0.004
var_11	0.0127	0.002	7.825	0.000	0.009	0.016
var_12	-1.1141	0.050	-22.310	0.000	-1.212	-1.016
var_13	-0.0385	0.002	-18.587	0.000	-0.043	-0.034
var_14	-0.0080	0.004	-1.863	0.063	-0.016	0.000
var_15	0.1397	0.023	5.951	0.000	0.094	0.186
var_16	0.0095	0.004	2.517	0.012	0.002	0.017
var_17	-0.0004	0.001	-0.277	0.782	-0.003	0.002
var_18	0.0179	0.001	14.590	0.000	0.016	0.020
var_19	0.0037	0.001	3.057	0.002	0.001	0.006
var_20	-0.0118	0.002	-7.152	0.000	-0.015	-0.009
var_21	-0.0229	0.001	-19.354	0.000	-0.025	-0.021
var_22	0.0716	0.003	21.310	0.000	0.065	0.078
var_23	-0.1765	0.018	-9.567	0.000	-0.213	-0.140
var_24	0.0285	0.003	11.170	0.000	0.024	0.034
var_25	0.1794	0.034	5.320	0.000	0.113	0.246
var_26	0.0331	0.002	20.528	0.000	0.030	0.036

var_27	-0.0041	0.006	-0.636	0.525	-0.017	0.008
var_28	-0.0981	0.012	-7.933	0.000	-0.122	-0.074
var_29	0.0110	0.004	2.970	0.003	0.004	0.018
var_30	-0.0010	0.001	-0.828	0.408	-0.003	0.001
var_31	-0.0428	0.005	-9.502	0.000	-0.052	-0.034
var_32	0.0404	0.004	10.814	0.000	0.033	0.048
var_33	-0.0351	0.002	-15.592	0.000	-0.040	-0.031
var_34	-0.3194	0.018	-17.881	0.000	-0.354	-0.284
var_35	0.0236	0.002	12.659	0.000	0.020	0.027
var_36	-0.0420	0.003	-13.554	0.000	-0.048	-0.036
var_37	0.0123	0.004	2.853	0.004	0.004	0.021
var_38	0.0008	0.002	0.332	0.740	-0.004	0.005
var_39	-0.0006	0.002	-0.249	0.804	-0.005	0.004
var_40	0.0208	0.001	17.856	0.000	0.018	0.023
var_41	-4.916e-05	0.002	-0.030	0.976	-0.003	0.003
var_42	-0.0436	0.014	-3.138	0.002	-0.071	-0.016
var_43	-0.2852	0.031	-9.138	0.000	-0.346	-0.224
var_44	-0.0297	0.002	-18.512	0.000	-0.033	-0.027
var_45	-0.0031	0.000	-6.798	0.000	-0.004	-0.002
var_46	0.0056	0.003	1.662	0.097	-0.001	0.012
var_47	0.0037	0.001	3.987	0.000	0.002	0.005
var_48	0.0097	0.001	11.383	0.000	0.008	0.011
var_49	0.0123	0.001	9.987	0.000	0.010	0.015
var_50	-0.0636	0.014	-4.556	0.000	-0.091	-0.036
var_51	0.0095	0.001	8.106	0.000	0.007	0.012
var_52	0.0196	0.002	10.092	0.000	0.016	0.023
var_53	0.2859	0.013	22.704	0.000	0.261	0.311
var_54	-0.0064	0.001	-5.534	0.000	-0.009	-0.004
var_55	0.0111	0.002	6.521	0.000	0.008	0.014
var_56	-0.0325	0.003	-11.955	0.000	-0.038	-0.027
var_57	-0.0695	0.012	-5.703	0.000	-0.093	-0.046
var_58	-0.0184	0.002	-8.173	0.000	-0.023	-0.014
var_59	-0.0417	0.011	-3.668	0.000	-0.064	-0.019
var_60	0.0053	0.002	2.330	0.020	0.001	0.010
var_61	0.0025	0.001	3.011	0.003	0.001	0.004
var_62	0.0271	0.005	5.696	0.000	0.018	0.036
var_63	-0.0169	0.003	-5.443	0.000	-0.023	-0.011

var_64	-0.0280	0.007	-4.298	0.000	-0.041	-0.015
var_65	0.0077	0.003	2.994	0.003	0.003	0.013
var_66	0.0672	0.009	7.796	0.000	0.050	0.084
var_67	0.0195	0.001	14.865	0.000	0.017	0.022
var_68	6.1138	0.304	20.124	0.000	5.518	6.709
var_69	0.0058	0.002	2.370	0.018	0.001	0.011
var_70	0.0073	0.001	8.957	0.000	0.006	0.009
var_71	0.4152	0.036	11.442	0.000	0.344	0.486
var_72	-0.0093	0.002	-3.768	0.000	-0.014	-0.004
var_73	-0.0032	0.001	-2.459	0.014	-0.006	-0.001
var_74	0.0046	0.001	6.613	0.000	0.003	0.006
var_75	-0.0207	0.002	-13.013	0.000	-0.024	-0.018
var_76	-0.0262	0.001	-21.725	0.000	-0.029	-0.024
var_77	-0.0140	0.003	-5.468	0.000	-0.019	-0.009
var_78	0.0831	0.005	17.061	0.000	0.074	0.093
var_79	0.0099	0.007	1.338	0.181	-0.005	0.024
var_80	-0.0244	0.001	-19.089	0.000	-0.027	-0.022
var_81	-0.1118	0.004	-27.188	0.000	-0.120	-0.104
var_82	0.0084	0.001	7.379	0.000	0.006	0.011
var_83	-0.0075	0.001	-6.468	0.000	-0.010	-0.005
var_84	0.0060	0.002	3.832	0.000	0.003	0.009
var_85	-0.0162	0.002	-6.526	0.000	-0.021	-0.011
var_86	-0.0173	0.001	-14.048	0.000	-0.020	-0.015
var_87	-0.0214	0.002	-12.477	0.000	-0.025	-0.018
var_88	-0.0216	0.004	-5.581	0.000	-0.029	-0.014
var_89	0.0396	0.003	14.657	0.000	0.034	0.045
var_90	0.0071	0.001	9.646	0.000	0.006	0.009
var_91	0.8871	0.063	14.056	0.000	0.763	1.011
var_92	-0.0359	0.002	-15.510	0.000	-0.040	-0.031
var_93	-0.1982	0.018	-11.269	0.000	-0.233	-0.164
var_94	0.0599	0.003	17.214	0.000	0.053	0.067
var_95	0.2026	0.015	13.127	0.000	0.172	0.233
var_96	0.0017	0.001	1.459	0.144	-0.001	0.004
var_97	0.0037	0.001	4.830	0.000	0.002	0.005
var_98	-0.0212	0.014	-1.573	0.116	-0.048	0.005
var_99	0.1104	0.005	21.404	0.000	0.100	0.121
var_100	0.0010	0.001	0.914	0.360	-0.001	0.003

var_101	-0.0068	0.002	-3.490	0.000	-0.011	-0.003
var_102	-0.0076	0.001	-6.820	0.000	-0.010	-0.005
var_103	-0.0361	0.052	-0.691	0.490	-0.139	0.066
var_104	-0.0472	0.005	-9.578	0.000	-0.057	-0.038
var_105	0.0908	0.011	8.052	0.000	0.069	0.113
var_106	0.0554	0.005	10.863	0.000	0.045	0.065
var_107	-0.0186	0.001	-14.548	0.000	-0.021	-0.016
var_108	-0.8158	0.056	-14.637	0.000	-0.925	-0.707
var_109	-0.0349	0.002	-15.751	0.000	-0.039	-0.031
var_110	0.0535	0.003	21.398	0.000	0.049	0.058
var_111	0.0804	0.009	9.029	0.000	0.063	0.098
var_112	0.0534	0.006	8.724	0.000	0.041	0.065
var_113	-0.0109	0.002	-5.003	0.000	-0.015	-0.007
var_114	-0.0876	0.010	-8.954	0.000	-0.107	-0.068
var_115	-0.0635	0.004	-17.290	0.000	-0.071	-0.056
var_116	-0.0502	0.006	-8.564	0.000	-0.062	-0.039
var_117	0.0010	0.001	1.344	0.179	-0.000	0.002
var_118	0.0159	0.001	14.452	0.000	0.014	0.018
var_119	0.0221	0.002	9.581	0.000	0.018	0.027
var_120	-0.0027	0.001	-3.357	0.001	-0.004	-0.001
var_121	-0.0763	0.006	-13.414	0.000	-0.087	-0.065
var_122	-0.0275	0.002	-14.744	0.000	-0.031	-0.024
var_123	-0.0207	0.002	-13.279	0.000	-0.024	-0.018
var_124	0.0067	0.004	1.896	0.058	-0.000	0.014
var_125	0.3149	0.030	10.411	0.000	0.256	0.374
var_126	0.0191	0.012	1.535	0.125	-0.005	0.044
var_127	-0.0409	0.003	-13.307	0.000	-0.047	-0.035
var_128	0.0262	0.003	8.782	0.000	0.020	0.032
var_129	-0.0051	0.002	-2.163	0.031	-0.010	-0.000
var_130	0.1339	0.012	11.570	0.000	0.111	0.157
var_131	-0.2107	0.021	-9.971	0.000	-0.252	-0.169
var_132	-0.0597	0.007	-8.987	0.000	-0.073	-0.047
var_133	0.4742	0.025	18.602	0.000	0.424	0.524
var_134	0.0098	0.002	6.267	0.000	0.007	0.013
var_135	0.0100	0.001	7.879	0.000	0.008	0.012
var_136	-0.0013	0.001	-1.402	0.161	-0.003	0.001
var_137	0.0106	0.001	9.732	0.000	0.008	0.013

var_138	0.0125	0.002	5.857	0.000	0.008	0.017
var_139	-0.0304	0.001	-24.385	0.000	-0.033	-0.028
var_140	0.0121	0.002	6.122	0.000	0.008	0.016
var_141	-0.0161	0.001	-11.167	0.000	-0.019	-0.013
var_142	-0.0119	0.002	-6.969	0.000	-0.015	-0.009
var_143	-0.0150	0.003	-4.553	0.000	-0.021	-0.009
var_144	0.0824	0.010	7.859	0.000	0.062	0.103
var_145	0.0263	0.002	10.608	0.000	0.021	0.031
var_146	-0.0815	0.004	-21.531	0.000	-0.089	-0.074
var_147	0.0164	0.001	12.603	0.000	0.014	0.019
var_148	-0.8567	0.048	-17.793	0.000	-0.951	-0.762
var_149	-0.0140	0.001	-15.005	0.000	-0.016	-0.012
var_150	-0.0391	0.004	-9.961	0.000	-0.047	-0.031
var_151	0.0242	0.002	9.981	0.000	0.019	0.029
var_152	-0.0101	0.003	-3.157	0.002	-0.016	-0.004
var_153	-0.0074	0.005	-1.535	0.125	-0.017	0.002
var_154	-0.0294	0.002	-15.136	0.000	-0.033	-0.026
var_155	0.0222	0.002	13.292	0.000	0.019	0.025
var_156	-0.0675	0.010	-6.661	0.000	-0.087	-0.048
var_157	0.0179	0.002	10.356	0.000	0.014	0.021
var_158	-0.0015	0.001	-1.236	0.216	-0.004	0.001
var_159	0.0126	0.002	5.375	0.000	0.008	0.017
var_160	-0.0012	0.001	-1.333	0.183	-0.003	0.001
var_161	0.0566	0.044	1.274	0.203	-0.031	0.144
var_162	0.0739	0.007	10.872	0.000	0.061	0.087
var_163	0.0197	0.002	10.828	0.000	0.016	0.023
var_164	0.0235	0.002	13.199	0.000	0.020	0.027
var_165	-0.0362	0.002	-18.870	0.000	-0.040	-0.032
var_166	-0.4848	0.026	-18.658	0.000	-0.536	-0.434
var_167	0.0122	0.001	9.878	0.000	0.010	0.015
var_168	0.0145	0.003	4.675	0.000	0.008	0.021
var_169	-0.4099	0.026	-15.634	0.000	-0.461	-0.359
var_170	0.0380	0.002	17.473	0.000	0.034	0.042
var_171	0.0083	0.002	4.585	0.000	0.005	0.012
var_172	-0.0145	0.001	-13.028	0.000	-0.017	-0.012
var_173	0.0238	0.002	14.590	0.000	0.021	0.027
var_174	-0.0270	0.001	-20.061	0.000	-0.030	-0.024

var_175	0.0283	0.003	8.520	0.000	0.022	0.035
var_176	0.0039	0.001	3.017	0.003	0.001	0.006
var_177	-0.0492	0.004	-13.290	0.000	-0.056	-0.042
var_178	-0.0075	0.001	-6.621	0.000	-0.010	-0.005
var_179	0.0598	0.003	17.663	0.000	0.053	0.066
var_180	0.0208	0.002	11.323	0.000	0.017	0.024
var_181	0.0415	0.007	5.887	0.000	0.028	0.055
var_182	-0.0038	0.001	-3.510	0.000	-0.006	-0.002
var_183	-0.0046	0.002	-2.130	0.033	-0.009	-0.000
var_184	0.0173	0.001	16.736	0.000	0.015	0.019
var_185	0.0008	0.002	0.367	0.713	-0.003	0.005
var_186	-0.0305	0.003	-10.039	0.000	-0.036	-0.025
var_187	0.0049	0.001	5.827	0.000	0.003	0.007
var_188	-0.0295	0.002	-12.050	0.000	-0.034	-0.025
var_189	0.0227	0.010	2.286	0.022	0.003	0.042
var_190	0.0392	0.002	18.493	0.000	0.035	0.043
var_191	0.0509	0.003	16.072	0.000	0.045	0.057
var_192	-0.0962	0.007	-14.573	0.000	-0.109	-0.083
var_193	-0.0149	0.002	-6.117	0.000	-0.020	-0.010
var_194	-0.0181	0.003	-5.871	0.000	-0.024	-0.012
var_195	0.0683	0.007	10.125	0.000	0.055	0.081
var_196	0.0145	0.002	8.145	0.000	0.011	0.018
var_197	-0.1264	0.010	-12.058	0.000	-0.147	-0.106
var_198	-0.0572	0.003	-18.047	0.000	-0.063	-0.051
var_199	0.0075	0.001	8.019	0.000	0.006	0.009

In [166]: | test['Actual_prob']=logit.predict(test[train_cols])

C:\Users\user\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a $\mathsf{DataFrame}$.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

"""Entry point for launching an IPython kernel.

```
In [169]:
           test['ActualVal']=1
           test.loc[test.Actual prob<0.5, 'ActualVal']=0
           C:\Users\user\Anaconda3\lib\site-packages\ipykernel launcher.py:1: SettingWit
           hCopyWarning:
           A value is trying to be set on a copy of a slice from a DataFrame.
           Try using .loc[row indexer,col indexer] = value instead
           See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
           able/indexing.html#indexing-view-versus-copy
             """Entry point for launching an IPython kernel.
           C:\Users\user\Anaconda3\lib\site-packages\pandas\core\indexing.py:543: Settin
           gWithCopyWarning:
           A value is trying to be set on a copy of a slice from a DataFrame.
           Try using .loc[row indexer,col indexer] = value instead
           See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
           able/indexing.html#indexing-view-versus-copy
             self.obj[item] = s
In [170]:
           test.head()
Out[170]:
                                                                                             var_
               target
                        var_0
                               var_1
                                       var_2
                                             var_3
                                                      var_4
                                                             var_5
                                                                    var_6
                                                                            var_7
                                                                                    var_8
             2
                   0
                       8.6093 -2.7457 12.0805 7.8928
                                                    10.5825
                                                            -9.0837
                                                                   6.9427
                                                                          14.6155
                                                                                  -4.9193
                                                                                              1.6
             3
                      11.0604
                             -2.1518
                                      8.9522 7.1957
                                                    12.5846
                                                           -1.8361
                                                                   5.8428
                                                                          14.9250
                                                                                  -5.8609
                                                                                              0.7
            13
                      16.3699
                              1.5934
                                     16.7395 7.3330
                                                    12.1450
                                                            5.9004 4.8222
                                                                          20.9729
                                                                                   1.1064
                                                                                              4.3
            16
                       5.0615
                              0.2689
                                     15.1325 3.6587
                                                    13.5276
                                                            -6.5477 5.2757
                                                                                   2.5569
                                                                                              0.5
                                                                           9.8710
                       4.4090 -0.7863 15.1828 8.0631
            19
                                                    11.2831 -0.7356 6.3801
                                                                          16.0218
                                                                                   2.4621
                                                                                              2.5
           5 rows × 203 columns
           CM=pd.crosstab(test['target'],test['ActualVal'])
In [171]:
In [172]:
           CM
Out[172]:
            ActualVal
                              1
                         0
               target
                  0
                     35529
                            494
                      2942 1128
In [173]:
           TN=CM.iloc[0,0]
           FN=CM.iloc[1,0]
           TP=CM.iloc[1,1]
           FP=CM.iloc[0,1]
```

```
In [174]:
          Accuracy=((TP+TN)*100)/(TP+TN+FP+FN)
           #Accuracy=91.42
Out[174]: 91.42992542339061
In [175]: FNR=FN*100/(FN+TP)
           FNR#=72.28
Out[175]: 72.28501228501229
In [176]: FPR=FP*100/(FP+TN)
          #FPR=1.37
Out[176]: 1.3713460844460483
In [178]: Recall=TP*100/(TP+FN)
           #Recall=27.71
Out[178]: 27.714987714987714
In [179]:
          Specificity=TN*100/(TN+FP)
           #Specificity=98.63
Out[179]: 98.62865391555395
In [180]:
          Precision=TP*100/(TP+FP)
           Precision#=9.76
Out[180]: 69.54377311960542
  In [ ]:
In [194]: from sklearn import metrics
           fpr,tpr,_=metrics.roc_curve(test['target'],test['ActualVal'])
In [196]:
          plt1.plot(fpr,tpr)
           plt1.show()
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
                        0.2
                                0.4
                                        0.6
                                                 0.8
                                                         1.0
                0.0
```

```
In [76]:
         auc=np.trapz(tpr,fpr)
          #auc=0.631
                                                     Traceback (most recent call last)
         <ipython-input-76-c348a34830c8> in <module>
          ----> 1 auc=np.trapz(tpr,fpr)
                2 #auc=0.631
         NameError: name 'tpr' is not defined
In [75]: x_train
Out[75]: array([[10.9498, 4.2601, 4.7294, ..., 8.6465, 18.0604, 1.18],
                 [12.765, -6.5636, 12.8731, ..., 8.697000000000001, 12.5575,
                  -0.2376],
                 [12.9363, -9.9686, 6.7736, ..., 9.9644, 13.6574, 5.7519],
                 [6.3436, -4.4653, 6.3046, ..., 7.7537, 13.0901, -1.6363],
                 [6.5696, 5.2355, 9.7173, \ldots, 9.7726, 16.9061, 3.6166],
                 [9.5376, -1.729, 5.9327, ..., 8.1401, 11.6016, 12.228]],
                dtype=object)
In [47]: #NAive Bayes
          from sklearn.naive_bayes import GaussianNB
In [48]: #Naive Bayes Implementation
          NB_model=GaussianNB().fit(x_train,y_train)
In [49]: | #predict test class
          NB Predictions=NB model.predict(x test)
In [50]:
         #Build Confusion Matrix
          CM=pd.crosstab(y test,NB Predictions)
In [51]:
         CM
Out[51]:
           col_0
                   No
                       Yes
          row_0
             No 53099
                       865
            Yes
                 3812 2224
         TN=CM.iloc[0,0]
In [52]:
          FN=CM.iloc[1,0]
          TP=CM.iloc[1,1]
          FP=CM.iloc[0,1]
```

```
In [53]: | Accuracy=((TP+TN)*100)/(TP+TN+FP+FN)
         Accuracy#=92.205
Out[53]: 92.205
In [54]: FNR=FN*100/(FN+TP)
         FNR#=63.15
Out[54]: 63.154406891981445
In [56]: FPR=FP*100/(FP+TN)
         FPR#=1.60
Out[56]: 1.6029204654955156
In [57]: Recall=TP*100/(TP+FN)
         Recall#=36.84
Out[57]: 36.845593108018555
In [58]: Specificity=TN*100/(TN+FP)
         Specificity#=98.39
Out[58]: 98.39707953450448
In [59]: Precision=TP*100/(TP+FP)
         Precision#=71.99
Out[59]: 71.99741016510197
In [61]: #GETTING THE TEST FILE FROM HDD
         sdf1=pd.read_csv("test.csv",sep=',')
In [63]: sdf1.columns
Out[63]: Index(['ID_code', 'var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5',
                 'var_6', 'var_7', 'var_8',
                 'var_190', 'var_191', 'var_192', 'var_193', 'var_194', 'var_195',
                 'var_196', 'var_197', 'var_198', 'var_199'],
               dtype='object', length=201)
In [64]: missing val=pd.DataFrame(sdf1.isnull().sum())
```

In [65]: missing_val

Out[65]:

	0
ID_code	0
var_0	0
var_1	0
var_2	0
var_3	0
var_4	0
var_5	0
var_6	0
var_7	0
var_8	0
var_9	0
var_10	0
var_11	0
var_12	0
var_13	0
var_14	0
var_15	0
var_16	0
var_17	0
var_18	0
var_19	0
var_20	0
var_21	0
var_22	0
var_23	0
var_24	0
var_25	0
var_26	0
var_27	0
var_28	0
var_170	0
var_171	0
var_172	0
var_173	0

0

0

var_174

var_175 0
var_176 0
var_177 0
var_178 0
var_179 0
var_180 0

```
var_181
           var_182 0
           var_183 0
           var_184 0
          var_185 0
          var_186 0
           var_187 0
          var_188 0
           var_189 0
          var_190 0
          var_191 0
          var_192 0
          var_193 0
           var_194 0
          var_195 0
           var_196 0
           var_197 0
          var_198 0
          var_199 0
          201 rows × 1 columns
In [66]: del sdf1['ID code']
In [67]: | sdf1.columns
Out[67]: Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'var_6', 'var_
          7',
                 'var_8', 'var_9',
                 'var_190', 'var_191', 'var_192', 'var_193', 'var_194', 'var_195',
                 'var_196', 'var_197', 'var_198', 'var_199'],
                dtype='object', length=200)
```

```
In [68]: #predict test class
    NB_Predictions=NB_model.predict(sdf1)

In [70]: NB_Predictions
Out[70]: array(['No', 'No', 'No', 'No', 'No', 'No'], dtype='<U3')

In [71]: NB_Predictions=pd.DataFrame(NB_Predictions)

In [74]: sdf_final=pd.concat([sdf1.reset_index(drop=True),NB_Predictions],axis=1)</pre>
```

In [76]: sdf_final

Out[76]:

	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	var_8	var_9
0	11.0656	7.7798	12.9536	9.4292	11.4327	-2.3805	5.8493	18.2675	2.1337	8.8100
1	8.5304	1.2543	11.3047	5.1858	9.1974	-4.0117	6.0196	18.6316	-4.4131	5.9739
2	5.4827	-10.3581	10.1407	7.0479	10.2628	9.8052	4.8950	20.2537	1.5233	8.3442
3	8.5374	-1.3222	12.0220	6.5749	8.8458	3.1744	4.9397	20.5660	3.3755	7.4578
4	11.7058	-0.1327	14.1295	7.7506	9.1035	-8.5848	6.8595	10.6048	2.9890	7.1437
5	5.9862	-2.2913	8.6058	7.0685	14.2465	-8.6761	4.2467	14.7632	1.8790	7.2842
6	8.4624	-6.1065	7.3603	8.2627	12.0104	-7.2073	4.1670	13.0809	-4.3004	6.3181
7	17.3035	-2.4212	13.3989	8.3998	11.0777	9.6449	5.9596	17.8477	-4.8068	7.4643
8	6.9856	0.8402	13.7161	4.7749	8.6784	-13.7607	4.3386	14.5843	2.5883	7.2215
9	10.3811	-6.9348	14.6690	9.0941	11.9058	-10.8018	3.4508	20.2816	-1.4112	6.7401
10	8.3431	-4.1427	9.1985	9.8229	11.2494	2.9678	5.5184	15.6290	2.8032	8.9513
11	10.6137	-2.1898	8.9090	3.8014	13.8602	-5.9802	5.5515	15.4716	-0.1714	7.6178
12	12.7465	-4.9467	15.5490	6.4580	13.7572	-25.5371	4.4893	15.1682	3.1754	7.5722
13	11.7836	1.9979	10.3347	7.8857	13.1020	5.0167	4.9548	23.6527	3.5911	5.8546
14	7.0360	1.6797	9.3865	3.2605	10.7569	-8.0802	4.7885	15.0583	0.6459	4.8661
15	14.8595	-4.5378	13.6483	5.6480	9.9144	1.5190	5.0358	13.4524	-2.5419	9.4450
16	14.1732	-5.1490	9.7591	3.7316	10.3700	-21.9202	7.7130	18.8749	0.4680	7.8453
17	9.0936	-8.7414	17.1160	6.0126	9.2144	-3.6761	4.6477	20.1053	1.7687	7.9974
18	15.7875	0.1671	10.7782	3.8521	9.1190	11.0196	6.1113	18.4368	-1.0728	7.0586
19	13.3874	1.0716	8.8767	7.8374	11.6404	6.2512	4.8837	18.2178	4.3871	9.5648
20	8.0259	-4.6740	8.6431	2.2198	11.4555	-14.0227	6.9192	17.8559	0.4283	6.5548
21	14.3356	0.2317	9.5604	5.7603	10.3184	-6.4721	4.6898	13.7783	1.8342	9.2284
22	10.4255	-6.1758	12.4846	7.9845	9.7032	-14.5969	4.4173	19.3606	-0.5899	6.9213
23	12.3322	-6.3835	7.2471	5.0403	10.0875	-1.5252	5.8230	17.9494	-3.8454	6.2356
24	14.1844	-9.1044	9.7453	9.2638	9.3302	2.6818	5.4711	18.5414	2.2065	8.3338
25	10.0029	0.2530	7.5335	6.9343	11.6866	-6.5147	6.7327	19.8941	-6.6497	8.0114
26	6.9056	-4.8626	11.8932	5.3693	11.2551	-18.9716	5.5991	18.9809	5.5612	7.8337
27	8.7562	-3.0647	11.7990	9.2162	10.9847	-22.4902	4.2991	13.9800	3.3233	7.7593
28	9.7243	-1.5151	11.5582	5.7360	12.1907	6.9664	4.4125	17.4770	-3.9683	7.5912
29	13.2430	1.2738	10.4245	3.1863	11.4951	-1.4755	5.1005	17.1687	1.7115	9.1463
199970	12.7260	-1.6706	12.3598	9.1114	10.1868	-9.5857	5.3494	23.6362	2.0626	6.2033
199971	9.4700	-6.7655	12.6591	9.1842	11.8260	0.0264	5.0633	20.7034	2.4171	8.2646
199972	13.3243	1.0870	8.4555	3.6929	11.2423	1.3986	4.4765	19.1021	-2.6573	8.6612
199973	14.2830	-1.8421	11.3664	8.5772	8.8645	-13.8986	4.1603	19.4591	5.6445	9.2011

	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	var_8	var_9
199974	4.5171	-5.2068	7.6007	8.1426	10.4433	-17.2322	4.4205	20.3407	-1.0196	5.6569
199975	13.4796	2.7000	10.9653	9.1581	13.2959	-3.0995	5.1483	20.9766	1.2932	7.6743
199976	12.6337	-6.9793	9.8703	9.9180	10.8092	2.5809	6.7764	18.3443	4.1498	7.8825
199977	10.8078	-4.6108	9.0021	9.8910	12.4514	-3.7566	4.2958	19.9677	0.8806	8.2828
199978	9.9317	-2.2815	11.1707	5.6826	12.7396	-4.0659	6.2569	12.7697	-2.1645	8.9019
199979	10.5933	-1.2672	13.6817	6.3789	12.8649	-5.4964	6.4800	13.5986	4.0315	8.8308
199980	13.4136	5.3912	9.6202	8.5025	12.0951	11.3431	5.8323	12.1429	-3.1511	6.6322
199981	7.9218	-5.7464	11.4171	6.7972	11.6260	-8.7730	5.4601	12.1401	5.1918	8.2214
199982	7.2189	1.6606	10.4651	4.4382	10.5562	-5.2083	4.7197	10.7883	-8.1002	7.6637
199983	11.8527	5.4321	12.7268	10.2392	12.4740	-14.6939	6.6544	14.1274	-0.4182	8.7811
199984	12.7445	-6.1135	9.9046	7.5790	14.8852	4.5083	6.3353	21.5936	-4.0102	8.5375
199985	14.8983	2.1302	7.4747	7.1744	11.8252	13.1758	5.1614	13.7914	-4.8184	6.5496
199986	19.2884	-2.8384	11.9149	6.6611	12.3112	12.9244	5.6492	16.0449	5.3597	8.2981
199987	11.2942	3.6321	15.3300	6.6904	10.9223	-5.6537	6.0221	11.7757	-0.5163	8.9841
199988	6.4535	-2.1707	10.7623	8.1571	7.9365	4.6091	4.9564	11.4483	2.8938	6.5602
199989	9.0436	-3.0491	10.8737	7.8789	11.0275	-10.1812	6.1978	16.4603	4.4421	9.1971
199990	5.5416	1.7340	9.6938	5.0126	11.3049	-15.9906	5.0937	17.7960	-3.1050	6.9197
199991	8.7935	-4.0646	9.9480	8.6947	11.0497	-0.5129	5.6410	21.5338	5.6578	5.3441
199992	16.4229	-5.0254	13.1385	5.4599	13.1347	-2.6212	4.7829	14.7163	0.0779	8.9048
199993	14.6764	-8.1066	7.1167	2.4138	10.3845	-11.9327	4.7563	16.0455	0.4510	8.7944
199994	8.2964	-2.3119	11.2139	9.1357	8.5339	4.0350	5.7000	11.0102	4.9089	8.3779
199995	13.1678	1.0136	10.4333	6.7997	8.5974	-4.1641	4.8579	14.7625	-2.7239	6.9937
199996	9.7171	-9.1462	7.3443	9.1421	12.8936	3.0191	5.6888	18.8862	5.0915	6.3545
199997	11.6360	2.2769	11.2074	7.7649	12.6796	11.3224	5.3883	18.3794	1.6603	5.7341
199998	13.5745	-0.5134	13.6584	7.4855	11.2241	-11.3037	4.1959	16.8280	5.3208	8.9032
199999	10.4664	1.8070	10.2277	6.0654	10.0258	1.0789	4.8879	14.4892	-0.5902	7.8362

200000 rows × 201 columns

```
In [77]: #Writing the final dataset into HDD
    sdf_final.to_csv("santander_final.csv",index=False)
In [ ]:
```