Using unsupervised learning in search of new physics

•••

Sakarias Garcia de Presno Frette

Outline

- Motivation for the project
- Machine learning phenomenology
- Implementation
- Results
- Topics for discussion

Using auto encoder for anomaly detection with ATLAS open data

- Attempt to see if the auto encoder can learn, without copying, to reconstruct sm processes and filter out new physics
- Test against new physics models

Motivation for BSM searches

- Success of the standard model
- Why BSM searches
 - No dark matter candidate
 - Gravity

https://www.quantumdiaries.org/2014/03/14/the-standard-model-a-beautiful-but-flawed-theory/

Model independent vs model dependent searches

- Bias
- Semi-unsupervised vs unsupervised
- Auto encoder

Source: https://twitter.com/athena_schools/status/1063013435779223553

Anomaly detection

- Point anomalies
- Contextual anomalies
- Collective anomalies

Auto Encoders

- Reconstruction, not copying
- Hyper parameters

Source: https://lilianweng.github.io/posts/2018-08-12-vae/

The data sets

- Background samples
- Signals
 - Supersymmetric models
 - Vector boson candidate
 - Randall-Sundrum Graviton
 - Dark matter candidate
- Training, validation and test data sets

Process	Unique "channelNumber"	Generator, hadronisation	Additional information
Top-quark production			
$t\bar{t}$ +jets	410000	Powheg-Box v2 [68] + Pythia 8 [69]	only 1ℓ and 2ℓ decays of $t\bar{t}$ -system
single (anti)top t-channel	(410012) 410011	Powheg-Box v1 + Pythia 6 [70]	
single (anti)top Wt-channel	(410014) 410013	Powheg-Box v2 + Pythia 6	
single (anti)top s-channel	(410026) 410025	Powheg-Box v2 + Pythia 6	
W/Z (+ jets) production			
$Z \rightarrow ee, \mu\mu, \tau\tau$	361106 - 361108	Powheg-Box v2 + Pythia 8	LO accuracy up to $N_{jets} = 1$
$W \rightarrow e\nu$, $\mu\nu$, $\tau\nu$	361100 - 361105	Powheg-Box v2 + Pythia 8	LO accuracy up to $N_{\text{jets}} = 1$
$W \rightarrow e\nu$, $\mu\nu$, $\tau\nu$ + jets	364156 - 364197	Sherpa 2.2 [71]	LO accuracy up to 3-jets final states
$Z \rightarrow ee, \mu\mu, \tau\tau + jets$	364100 - 364141	Sherpa 2.2	LO accuracy up to 3-jets final states
Diboson production			
WW	363359, 363360	Sherpa 2.2	$qq'\ell\nu$ final states
WW	363492	Sherpa 2.2	$\ell\nu\ell'\nu'$ final states
ZZ	363356	Sherpa 2.2	$qq'\ell^+\ell^-$ final states
ZZ	363490	Sherpa 2.2	$\ell^{+}\ell^{-}\ell^{'}+\ell^{'}$ final states
WZ	363358	Sherpa 2.2	$qq'\ell^+\ell^-$ final states
WZ	363489	Sherpa 2.2	$\ell \nu q q'$ final states
WZ	363491	Sherpa 2.2	$\ell \nu \ell^+ \ell^-$ final states
WZ	363493	Sherpa 2.2	$\ell\nu\nu\nu'$ final states
SM Higgs production ($m_{\rm H} = 125~{ m GeV}$)			
$ggF, H \rightarrow WW$	345324	Powheg-Box v2 + Pythia 8	$\ell\nu\ell'\nu'$ final states
$VBF, H \rightarrow WW$	345323	Powheg-Box v2 + Pythia 8	$\ell\nu\ell'\nu'$ final states
ggF, $H \rightarrow ZZ$	345060	Powheg-Box v2 + Pythia 8	$\ell^{+}\ell^{-}\ell^{'}+\ell^{'}$ final states
VBF, $H \rightarrow ZZ$	344235	Powheg-Box v2 + Pythia 8	$\ell^+\ell^-\ell^{'}+\ell^{'}$ final states
$ZH, H \rightarrow ZZ$	341947	Pythia 8	$\ell^{+}\ell^{-}\ell^{'}+\ell^{'}$ final states
WH, H o ZZ	341964	Рутніа 8	$\ell^{+}\ell^{-}\ell^{'}+\ell^{'}$ final states
ggF, $H \rightarrow \gamma \gamma$	343981	Powheg-Box v2 + Pythia 8	
VBF, $H \rightarrow \gamma \gamma$	345041	Powheg-Box v2 + Pythia 8	
$WH(ZH), H \rightarrow \gamma \gamma$	345318, 345319	Powheg-Box v2 + Pythia 8	
$t\bar{t}H, \dot{H} \rightarrow \gamma\gamma$	341081	aMC@NLO $[72]$ + Pythia 8	

source: http://opendata.atlas.cern/release/2020/documentation/datasets/mc.html

source: https://algotrading101.com/learn/train-test-split/

Training of the model

- Scaling
- Padding of features
- Tuning and training (Keras-Tuner, hyperband)

```
Output exceeds the size limit. Open the full output data in a text editor
Trial 24 Complete [00h 00m 46s]
val mse: 0.015464218333363533
Best val mse So Far: 0.015463903546333313
Total elapsed time: 00h 15m 25s
Search: Running Trial #25
          |Best Value So Far |Hyperparameter
                     |Kernel rea
                     |Atc reg
                     Inum of neurons1
linear
                     |num of neurons2
                     Inum of neurons3
          |leakyrelu
                     |lat num
linear
                     14 act
                     |num of neurons5
                     Inum of neurons6
          |leakyrelu
                     |num of neurons7
Epoch 10/15
```


Results

Small autoencoder

Standard scaling

Topics for discussion

- Extended gridsearch
 - More hyper parameters
 - More computation time required
 - Better sampling for more accurate representation of sm processes
- Reevaluating the metric for learning (weighted reconstruction error per feature)
- Rethinking construction of higher level features

Conclusion