Pb.	ealenlate the followed and reverse rusis tance
	offered. by a Si diode at It = 100mA +
	VR = 75V , VR = 60V 4 IR = 100 nA.
Olei	At Ip = 100mA, by Si VE = 0.7V
	poward runitane Br = VF - 0.7 - 72
	IF loomA. —
	At VR = 50 V , IR = 100 nA,
	Seure rigitance RR = VR 50V. 500Mr
	IR 100nA
	At VR = 75V , IR = 100 nA ,
	$R_{R} = \frac{75V}{10000} = \frac{750M_{A}}{10000}$

	I .		
Pb.	coloulati I	F for the diode ein	evil assuming
70.	dist the sel	took has VF = 0.7V	and Yo = 0
	2 1 1 5	enrut by taking	72 = 0.25 L
	Kiestensen	accura.	1.
	T		-> = 0.25L
	- IF RISIOA	11.5V - 10P	# 100
-1.5	- \$D	7 TONY 1	TO.1V
	1		
	7g=01.	Diode Suplaced	_ hoth Yd_
2018118		as VT = 0.7V	+ V _T
	(a)	(P)	(6)
	By applying 1	(VL to (6),	
	V- I X10	n - 0.7V = 0.	
	1.5V-0-7V	I = 80m8.	
	100	- F	

Applying KVL to (4) V-I=R1-I=10-07V =0	Date
1.5-0.7 = IF - 78mA	
Reduction in diode evolunt as	Priestance
encreals.	

	PNB
	Vo = I × 4.7 × 103 + 0.7 . Date
	= 1.237 X 10 x 4.7 X 10 +0.7
	= 6.5IV
5.	Calculate the value of diods current I in
	the circuit below.
	Mr. 4.7kz
	I V Si
	1.5V T \S:
gen	The equivalent circuit is
	M4.7hr Afflying KVL,
	1.5V = 1 1-07
	T-0.7 1.5V-07V-0.7-
	IX 47kx =0
	$I = \frac{1.5 - 1.4}{2} = 0.021 \text{ mA}.$
	4.7kr

	Rectifier circuits: Numericals.
١.	A linusoidal voltage of brok value 400 + frequency
	50 Hs is applied to a HWR without filter.
	2+ has a load R_ = 800,2 with Rg = 8,2.
	calculate a) peak, de and rins value of.
	load current
	b) De opp power
	e) Ac ilp power of
	d) Rectifier egueinneg.
Solu.	
	R_ = 8002, Rg = 852
	a) Peak value of the load evocent Im is
	Im = Vm = 40 RL+Rf = 800+8 = 49.500A
	Tac = Im _ 49.5mA 15.757mA.
	n , n
	Ims= Im = 49.5mA = 24.75mA.
	b) Dc power to load. Pac = Idc RL
	= (5.757×103)×800
	= 198:45 mN
	c) Ac ilp Power. Pac = Irmi (RL+Rx)
	= (24.75 mA)2(800+8)
	= 494.95mw.
	d) Effectionery $\eta = \frac{7ac}{Rc} = 198.45 m m$
	494.95 mw
	= 0.4009.
	What makes you happy? '/ \ \ \ = 40.09./. "

	Date
2.	An input to a HWR is 23 in 314t. It Rg=son
	and Re = 5002 determine,
	i) De load vollage ii) Rms Load vollage
	iii) Restification esseriency iv) de power delined
	to the load.
Solu.	given · Vag = Vm sin wt
	= 23 sin 314t.
	Ry = 502 Ri = 5002
	i) Vac = IdexRe.
	$\frac{1}{1} = \underline{Im} \underline{Im} = \underline{Vm} \frac{23}{50+500}$
	Rf + RL 50+500
	= 41.81mA
	. T. = 41.81mA = 13.31mA
	r. rac
	.: Vac = 13.31 m A x 5002 = 6.65 V
	ii) VRMU = Imms x RL
	- Vm
	Irms = Im , Im R+ RL
	= 23 41-81mt
	Irms = 41.81mA 550
	= 20.90mA
	= 20.40.1111
	: Vrm = 20,90mA x 5001
	= 10·45V
	(ii) D
	= (3.31 mA) X500
- /	
	= 88.57mW
	ili) $\eta = 0.406 = 36.91 \%$ What makes you happ)? + R4/R = 36.91 %
	What makes you happy?

3.1

Date

- 1	
	with capacita filter Date PNB
1.	Determine et rippe factor of a bridge rectifier
	using sa copaeitor titter. The load uled is
	2 kr while de off vg is 12V. Assume supply
	frequency of 50Hz and ideal diodes. The
	capacitar of 1004 F is used in the fiter
	evieuit.
Solu	,
	ideal diodes, C=100MF.
	1 - 1
	8= 43\$CRL 4 (3 x 50 x 2x 103 x 100 x 106
	=
	69.28 = 0.0144
	y. r = 1.44./
2	· Calculate the value of Capacitis C that has
	to be used for filter of a Bridge rueritier
	to get a ripple factor of 0.01 . The
	rutific supplies current to a load of akr
	while the supply frequency is 50HZ.
200	
	given 8=0.01 (1.1.), RL = 2kr, f=50Hz.
	82 453 + CR2 " (= 453 + RLXX
	C = 45 × 50 × 2× 103 × 0.01 6928.203
	· 0.0001443
	What makes you happy? = 144.34F
	# Hannel allege Days

3.	A circuit was a zone with Vz = 7.5 v . Find
	the diode current and max power dissipation
	in the absence of load.
	4 620 A Given: V = 20 V
	+ Y= 7.5 V
	Vs - 1 200 / 2 - 4 Rg = 620 -2.
	to find Pz with Re=0
Solu".	When $I_{g} = I_{g} + I_{g}$.
	line R_ = 0, IA = Te max.
	Applying KVL,
	V5 - I1 R8 -V2 = 0.
	Ro - 11×620 -7.5=0.

,	$I_{g} = I_{z} = 20V - 7.5V$ Date
	18 - 2 - = 20-16 mA
	·: Max zener eurrent Izmax = 20.16mA
	Sower dissipation en zuver is
	P= = T_ Vz
	= 20.16 mA × 7.5 V
	= 151.2 mw
Sec. 17(1)	

	Numericale.
1.	
	Calculate Ic & It 18 a transister that has
	&= 0.95 and IB = 1004A. Determine the value
Silu:	of B bor the transistor.
- ted.	yern x = 0.98 IB = 1004A.
	$I_{c} = I_{c} + I_{R}.$
	$I_c = \beta I_B$
	$\frac{\beta = 2}{1 - 2} = \frac{0.98}{1 - 0.98} = \frac{49}{1 - 0.98}$
	Ic = BIB => 49x100x10-6A = 49x10-3A
	= 4.9mn
	4 Ic = 4.9 x,10-3+100 x10-6
	= 5 m A
2.	Calculate of and B for Ic = 1 mA and IB = 2548
	Détermine the nue base ensuit to give
	Ic = 5mA.
Solu:	7 = Ic = 1mA = 40
	IB 254A
-	IE = IC+ IB = 1 mp + 254p = 1.025mA
-	2 1c = 1mA = 0.976
	IBnu = Ic = 5mp = 12549
	B 40 (43 M)

3. Determine B and IE for transister where

Scanned by CamScanner

	Date PNB
	IB = 504A and Ic = 3.65 mA.
Solu:	IB = 50 MA . I = 3.65mA - giron
	IE = IB + Ic > 50 4A + 3. (5 mA
	= 370mA
-	
	$\frac{3 - \pm c}{28} = \frac{3.65 \text{mN}}{50 \text{MA}} = \frac{13}{2}$
	18 504A <u>===</u>
4.	A transister has Ic=3mA and IE = 3.03mA.
	Find B of the transister used. Assuming
	no change in the back ewount, find the
	new collector everent when transister is
	replaced with a new one with 13 of 70.
Soler	
ZEUL	
	$\frac{T_{B} = T_{E} - T_{C}}{T_{B} = T_{C}}$
	= 0.03 mA = 304A.
	B = Ic = 3mA 100. IB 304A
	New collector everent cohen transistor is
	suplaced with B=70 is
	IC = BIB => 70×30×156
	Ic = 2.1mA

5.	Find Ic 4 In ba a transister with
	x=0.99 + IB = 20MA.
Solu:	given d= 0.99 In = 204A.
	WH I = BIO
	=
	1-4
	Scanned by CamScar

 $T_{c} = \frac{0.99}{1 - 0.99}$ = 1.98mA $T_{e} = T_{c} + T_{g} = (1.98 + 0.02) mA$ $T_{e} = \frac{2mB}{1 + \frac{2mB}$