## De la combinatoire aux graphes (HLIN201) – L1

Rappels: ensemble, relation binaire, fonction, application

Sèverine Bérard

Université de Montpellier

2e semestre 2017-18

### Objectifs du cours

- Comprendre / Abstraire
- Raisonner
- Prouver

Tout en apprenant des concepts fondamentaux d'informatique

## Des notions importantes sur les ensembles

#### L'ensemble des parties $\mathcal{P}(E)$

- C'est l'ensemble contenant tous les sous-ensembles de E, c'est donc un ensemble d'ensembles
- $\emptyset$  et E appartiennent à  $\mathcal{P}(E)$
- Pour un ensemble fini de petite taille on peut énoncer  $\mathcal{P}(E)$  en extension  $Ex: E = \{a, b, c\}, \mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \{a, b, c\}\}$
- Si E contient n éléments, alors  $\mathcal{P}(E)$  en contient  $2^n$

## Des notions importantes sur les ensembles

#### Le produit cartésien $E \times F$

- $E \times F = \{(x, y) | x \in E \text{ et } y \in F\}$
- C'est l'ensemble des couples dont le premier élément appartient à E et le second à F, l'ordre est important!
- Si *E* contient *n* éléments et *F* en contient m,  $E \times F$  en contient n \* m
- $Ex : E = \{a, b, c\}, F = \{1, 2\},\ E \times F = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$
- Le produit cartésien se généralise à une famille finie d'ensembles :  $E_1 \times E_2 \times \ldots \times E_n = \{(e_1, e_2, \ldots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \ldots, e_n \in E_n\}$   $(e_1, e_2, \ldots, e_n)$  est appelé un n-uplet. Autre notation souvent utilisée :  $E^m$  pour  $E \times E \times \ldots \times E$  m fois.

## Des notions importantes sur les ensembles

#### Partition d'un ensemble

- Des parties d'un ensemble  $E: A_1, \ldots, A_n$  réalisent une partition de E:
  - $\bullet$  si chaque partie  $A_i$  est non vide
  - ② si pour chaque couple de parties  $(A_i, A_j)$ ,  $i \neq j$ ,  $A_i$  et  $A_j$  sont disjointes
  - **3** et si la réunion de toutes les parties :  $A_1 \cup ... \cup A_n = E$ .
- Ex: soient  $E = \{a, b, c, d, e, f, g, h\}$ ,  $A_1 = \{a, b, c, d\}$ ,  $A_2 = \{e, f, g, h\}$ ,  $A_3 = \{d, e, f, g, h\}$ ,  $A_4 = \{a, c, e\}$ ,  $A_5 = \{b, d\}$ ,  $A_6 = \{f, g, h\}$ 
  - $\{A_1, A_2\}$  et  $\{A_4, A_5, A_6\}$  sont des partitions de E
  - $\{A_1, A_3\}$  et  $\{A_1, A_6\}$  ne sont pas des partitions de E

#### Les relations binaires

#### Définition informelle

- Une relation binaire d'un ensemble E vers un ensemble F c'est la mise en correspondance d'éléments de E avec des éléments de F
- On parle de couples d'éléments en relation, les premiers éléments des couples venant de E, les seconds de F, l'ordre est important!
- Les relations binaires sont des sous-ensembles de produits cartésiens
- $Ex: E = \{a, b, c\}, F = \{1, 2\}, \text{ on définit une relation binaire } \mathcal{R}_1 \text{ de } E \text{ vers } F: \mathcal{R}_1 = \{(a, 1), (b, 1), (b, 2), (c, 2)\}$ 
  - On a bien  $\mathcal{R}_1 \subseteq E \times F$

# Les fonctions et les applications sont des relations binaires particulières



## Exemples



## Application injective, surjective, bijective

## Propriétés selon la nature de l'application

| Injective                                                | Bijective                                    | Surjective                                            |
|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|
| 2 éléments de X distincts ont 2 images distinctes        |                                              | 2 éléments de X distincts peuvent avoir la même image |
| un élément de Y n'a<br>pas forcément d'anté-<br>cédent   | tout élément de Y à au moins un antécédent   |                                                       |
| tout élément de Y a au plus un antécédent (cà-d. 0 ou 1) | tout élément de Y a exactement un antécédent | tout élément de Y a au moins un antécédent            |

#### **Attention**

Une application peut être ni injective, ni surjective, ni bijective