Reminders

- ☐ HW 4 is posted and is due on Monday, October 14
- Quiz 1 regrade requests will go through Canvas (I'll add that tonight)

Office Hours:

Posted here and on the Canvas homepage.

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

- □ After the next 2 classes students should be able to:
 - □ Differentiate between:
 - Saturated vapor, superheated vapor
 - Partial pressure, vapor pressure, saturation pressure
 - Use the Antoine Equation to calculate P^{sat} for a pure species
 - Use Raoult's law for a system with one single condensable (or vaporizable) species

Multi-Phase Systems involve more than one phase of matter

EvaporatorsDewatering or concentration of solids

DistillationConverts liquid to vapor

CondenserConverts a vapor to a liquid

Multi-Phase Systems

 Most thermally driven separation processes rely on liquid-vapor systems

Tools from chemistry class

Phase Diagram:

- Steam tables
- Cox charts
- □ Antoine Equation

Reminders

- HW 4 is due on Monday, October 14
- Quiz 1 regrade requests will go through Canvas

Announcements

- □ HW 5A will be posted before October 14 and is due Oct 23 (Wed after fall break)
- HW 5B will be posted by October 18 and will be due October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

- After the next 2 classes students should be able to:
 - Differentiate between:
 - Saturated vapor, superheated vapor
 - Partial pressure, vapor pressure, saturation pressure
 - Use the Antoine Equation to calculate Psat for a pure species
 - Use Raoult's law for a system with one single condensable (or vaporizable) species

Previously in ECHE 260...

Raoult's Law

- No chemical reactions
- Vapor-liquid equilibrium
- Liquid phase behaves ideally
- Vapor phase behaves ideally

- No chemical reactions
- Vapor-liquid equilibrium
- Liquid phase behaves ideally
- Vapor phase behaves ideally

Reminders

- Quiz 1 regrade requests will go through Canvas
- HW 5A is posted and is due Oct 23 (Wed after fall break)
- HW 5B will be posted by October 18 and will be due October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)

Announcements

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

- After the next 2 classes students should be able to:
 - Differentiate between:
 - Saturated vapor, superheated vapor
 - Partial pressure, vapor pressure, saturation pressure
 - Use the Antoine Equation to calculate Psat for a pure species
 - Use Raoult's law for a system with one single condensable (or vaporizable) species

Previously in ECHE 260...

Raoult's Law

- No chemical reactions
- Vapor-liquid equilibrium
- Liquid phase behaves ideally
- Vapor phase behaves ideally

- No chemical reactions
- Vapor-liquid equilibrium
- Liquid phase behaves ideally
- Vapor phase behaves ideally

Reminders

- Quiz 1 regrade requests will go through Canvas
- HW 5A is posted and is due Oct 23 (Wed after fall break)
- HW 5B will be posted by October 18 and will be due October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)
- □ Exam on Material Balances is November 8 (cumulative units 1-5)

Announcements

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Is the next month looking stressful or busy?

- Prioritize your needs!
- How much is that 2 points on the homework worth?
 - 4% on the assignment
 - 0.4% on your homework grade for the class
 - 0.08% of your final grade in the course
- One of your quizzes gets dropped
- One HW gets dropped

- After today's class students should be able to:
 - Calculate dew point or bubble point for a VLE system with multiple condensable or vaporizable components
 - Use Raoult's law to calculate any of these quantities for a VLE system with multiple condensable or vaporizable components:
 - T, P, xi, yi

Also, why do we care?

- Most ChemE separations are based on VLE!
 - Problem: Need to separate 2 species from each other but they are in the same phase
 - Solution: Manipulate T and P so one species changes phase

Consumer products

Production of Styrofoam precursors

• Imagine the reactor effluent of the benzene → ethylbenzene reactor.

If we want to separate benzene and ethyl benzene—how do we do it?

- BP of benzene is 80.1°C
- BP of ethylbenzene is 136°C

- How do we predict the composition of the vapor phase?
- How do we manipulate T and P to give us a vapor phase enriched in one species?

Txy Diagrams

Txy Diagram: Benzene and Ethylbenzene at 1 atm

Txy Diagrams

Txy Diagram: Benzene and Ethylbenzene at 1 atm

Txy Diagrams

Txy Diagram: Benzene and Ethylbenzene at 1 atm

Reminders

- HW 5A is due Oct 23 (Wed after fall break)
- HW 5B will be posted today and will be due October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)
- □ Exam on Material Balances is November 8 (cumulative units 1-5)

Announcements

No office hours over fall break, but feel free to email me with specific questions

Week of October 20

Day	Time	Location	Personnel
Monday			
Tuesday			
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

- After today's class students should be able to:
 - Calculate dew point or bubble point for a VLE system with multiple condensable or vaporizable components
 - Use Raoult's law to calculate any of these quantities for a VLE system with multiple condensable or vaporizable components:
 - T, P, xi, yi