Thus we get a contradiction. Hence the argument

EXAMPLE 2.64 Prove that the following premises are inconsistent:

(a)
$$P \rightarrow (Q \rightarrow R), S \rightarrow (Q \land \neg R), P \land S$$

(b)
$$P \to Q$$
, $Q \lor R \to S$, $S \to \neg P$, $P \land \neg R$.

Solution:

(a) 1. $P \rightarrow (Q \rightarrow R)$ Premise (i) 2. $\neg P \lor (Q \rightarrow R)$ Line 1 and $I_{12}(iii)$

3. $P \wedge S$ Premise (iii)

Line 3 and simplification Lines 2, 4 and DS 5. $Q \rightarrow R$ Line 3 and simplification 6. S Premise (ii) 7. $S \rightarrow (Q \land \neg R)$ Lines 6, 7 and MP 8. $Q \land \neg R$ Line 8 and simplification 9. Q Lines 5, 9 and MP 10. R Line 8 and simplification 11. $\neg R$ Lines 10, 11 12. $R \land \neg R$ Line 12 13. F

Hence the given premises are inconsistent.

Premise (i) 1. $P \rightarrow Q$ Premise (iv) 2. $P \land \neg R$ Line 2 and simplification 3. P Lines 1, 3 and MP Line 2 and simplification 4. Q $5. \neg R$ Premise (ii) 6. $Q \vee R \rightarrow S$ Premise (iii) 7. $S \rightarrow \neg P$ Lines 6, 7 and HS 8. $Q \lor R \to \neg P$ Lines 3, 8 and MT 9. $\neg (Q \lor R)$ Line 9 and De Morgan's law 10. $\neg Q \land \neg R$ Line 10 and simplification Lines 4, 11 and conjunction 11. $\neg Q$ 12. $Q \land \neg Q$ Line 12

13. **F** Hence the given premises are inconsistent.

Test the validity of the following argument: If the advertisement is successful, then the sales of the product will go up. Either the advertisement **EXAMPLE 2.65** is successful or the production of the product will be stopped. The sales of the product will not go up. Therefore the production of the product will be stopped.

Solution: Let

A be "The advertisement is successful"

P be "The sales of the product will go up"

S be "The production of the product will be stopped".

Then the premises are

(i)
$$A \rightarrow P$$
 (ii) $A \lor S$ (iii) $\neg P$

The conclusion is S.

Premise (i) 1. $A \rightarrow P$ Line 1 and I_{14} 2. $\neg P \rightarrow \neg A$ Premise (iii) $3. \neg P$ Lines 2, 3 and MP $4. \neg A$ Premise (ii) Line 4, 5 and DS 5. $A \vee S$ 6. S

Hence the argument is valid.

EXAMPLE 2.70 Show that from

(i)
$$\exists x (F(x) \land G(x)) \rightarrow \forall y (M(y) \rightarrow N(y))$$

(ii)
$$\exists y [M(y) \land \neg N(y)]$$

the conclusion $\forall x \ (F(x) \rightarrow \neg G(x))$ follows.

Solution: The argument is as follows:

Fion: The argument is as follows:

1.
$$\exists y (M(y) \land \neg N(y))$$

Premise (ii)

Line 1 and EI

1.
$$\exists y (M(y) \land \neg N(y))$$
 Line 1 and E1
2. $M(c) \land \neg N(c)$ Line 2 and De Morgan's law

3.
$$\neg (\neg M(c) \lor N(c))$$
 Line 3 and I_{12} (vi)

4.
$$\neg (M(c) \rightarrow N(c))$$
 Line 4 and EG
5. $\exists y (\neg (M(y) \rightarrow N(y))$ Line 5 and I_{18}

6.
$$\neg (\forall y (M(y) \rightarrow N(y)))$$
 Premise (i)

7.
$$\exists x (F(x) \land G(x)) \rightarrow \forall y (M(y) \rightarrow N(y))$$
 Premise (1)
Lines 6, 7 and MT

8.
$$\neg (\exists x (F(x) \land G(x))$$

9. $\forall x (\neg (F(x) \land G(x)))$
Line 8 and I_{17}
Line 9 and UI

9.
$$\forall x \ (\neg (F(x) \land G(x)))$$
 Line 9 and UI
10. $\neg (F(c) \land G(c))$ Line 10 and De Morgan's law

11.
$$\neg (F(c)) \lor \neg (G(c))$$

Line 10 and $F(c)$

12. $F(c) \to \neg G(c)$

Line 11 and $F(c)$

12.
$$F(c) \rightarrow \neg G(c)$$

13. $\forall x (F(x) \rightarrow \neg G(x))$ Line 12 and UG

Hence the conclusion is valid.

EXAMPLE 2.71 Prove that $\forall x (S(x) \rightarrow \neg P(x))$ follows from $\forall x (P(x) \rightarrow Q(x))$ and $\forall x (S(x) \rightarrow \neg P(x))$ $\neg Q(x)$).

Solution: We assume S(x) as an additional premise.

1.
$$\forall x (P(x) \rightarrow Q(x))$$
 Premise (i)

2.
$$\forall x (S(x) \rightarrow \neg Q(x))$$
 Premise (ii)

3.
$$S(c) \rightarrow \neg Q(c)$$
 Line 2 and UI

4.
$$S(c)$$
 Additional premise

5.
$$\neg Q(c)$$
 Lines 3, 4 and MP

6.
$$P(c) \rightarrow Q(c)$$
 Line 1 and UI

7.
$$\neg P(c)$$
 Line 6 and MT

8.
$$S(c) \rightarrow \neg P(c)$$
 Lines 4, 7 and CP (RI_{10})

9.
$$\forall x (S(x) \rightarrow \neg P(x))$$
 Line 8 and US

EXAMPLE 2.78 Test the validity of the following argument:

$$\frac{\forall x \ \forall y \ A(x,y)}{\exists x \ \forall y \ [A(x,y) \to B(y,x)]}$$
$$\therefore \exists z \ \forall y \ B(y,z)$$

Solution:

1.
$$\exists x \ \forall y \ [A(x,y) \to B(y,x)]$$

2.
$$\forall y [A(x, y) \rightarrow B(y, x)]$$

3.
$$\forall x \ \forall y \ A(x,y)$$

4.
$$\forall y A(x, y)$$

5.
$$A(x, y)$$

$$6. \ A(x,y) \to B(y,x)$$

7.
$$B(y, x)$$

8.
$$\forall y B(y, x)$$

9.
$$\exists z \ \forall y \ B(y, z)$$

Hence the argument is valid.

Premise (ii)

Line 1 and UI

Premise (i)

Line 3 and UI

Line 4 and UI

Line 2 and UI

Lines 5, 6 and MP

Line 7 and UG

Line 8, EG