PCT/JP 2004/015790

日本国特許月 JAPAN PATENT OFFICE

28.10.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年11月 7日

出 顯 番 号 Application Number: 特願2003-378552

[IP2003-378552]

REC'D 16 DEC 2004

出 願
Applicant(s):

IST. 10/C1:

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月 3日

A 17

【書類名】

特許願

【整理番号】

2900655397

【提出日】

平成15年11月 7日

【あて先】

特許庁長官殿

【国際特許分類】

H04B 7/26

【発明者】

【住所又は居所】

神奈川県横浜市港北区網島東四丁目3番1号 パナソニックモバ

イルコミュニケーションズ株式会社内

【氏名】

【特許出願人】

000005821

【識別番号】 【氏名又は名称】

松下電器産業株式会社

【代理人】

100105050

【識別番号】

【弁理士】

鷲田 公一

【氏名又は名称】 【手数料の表示】

【予納台帳番号】 041243

【納付金額】 【提出物件の目録】 21,000円 特許請求の範囲

【物件名】 【物件名】 【物件名】

明細書 1 図面 1

【物件名】 【包括委任状番号】

要約書 1 9700376

ページ:

【魯類名】特許請求の範囲

【請求項1】

変更可能な符号化率で送信データを符号化する符号化手段と、

複数の変調方式のうちいずれかの変調方式で変調する変調手段と、

所定の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的 に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が前 記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、前記レベル差が前 記変動幅を越える場合に、前回制御時に用いたMCSレベルに対するレベル差を前記変動 幅に制限したMCSレベルを決定し、決定したMCSレベルとなるように前記符号化手段 及び前記変調手段を制御する制御手段と、

を具備することを特徴とする無線通信装置。

【請求項2】

ドップラー周波数を検出する検出手段と、

検出されたドップラー周波数に応じて、前回制御時に用いられたMCSレベルに対する 変動幅を決定する決定手段と、

を具備し、

前記制御手段は、決定された変動幅でMCSレベルを決定することを特徴とする請求項 1 に記載の無線通信装置。

【請求項3】

前記決定手段は、ドップラー周波数が高い場合には変動幅を大きくし、ドップラー周波 数が小さい場合には変動幅を小さくすることを特徴とする請求項2に記載の無線通信装置

【請求項4】

所定の変動幅が予め定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的 に求めたMCSレベルと前回制御時に用いたMCSレベルとを比較し、そのレベル差が前 記変動幅内にある場合、暫定的に求めたMCSレベルに決定する一方、前記レベル差が前 記変動幅を越える場合に、前回制御時に用いたMCSレベルに対するレベル差を前記変動 幅に制限したMCSレベルを決定することを特徴とするMCS決定方法。

【書類名】明細書

【発明の名称】無線通信装置及びMCS決定方法

【技術分野】

[0001]

本発明は、AMC (Adaptive Modulation and Channel Coding) 創御を行う無線通信装 層及びMCS決定方法に関する。

【背景技術】

[0002]

後来、特許文献1に開示されているように、伝鐵路状態に応じて適応的に変調方式を決定し、決定した変調方式を用いて通信を行うことが広く知られている。

[0003]

また、無線通信の分野では、高速大容量な下りチャネルを複数の通信端末装置が共有し、基地局装置から通信端末装置にパケットを伝送する下り高速パケット伝送方式が開発されている。非特許文献1には、この下り高速パケット伝送方式であるHSDPA(High Speed Downlink Packet Access)における適応変復調・誤り訂正符号化とハイブリッドAROのスルーブット特性について記載されている。

[0004]

HSDPAでは情報伝送速度を向上させるために、伝搬路の状態に応じて変調方式及び 誤り訂正符号の符号化率を適応的に側御するAMC技術や、誤り訂正符号化と組み合わせ て効率的な再送を行うハイブリッドARQ(Automatic Repeat Request)技術、さらには 、伝搬路の状態に応じてデータを送信するユーザを高速に切り替えるスケジューリング技 術の適用が検討されている。

[0005]

AMCは、伝搬環境が良好なほど、高速な変調方式と符号化率の高い誤り訂正符号とを適用することにより伝送レートを向上させる。具体的には、通信端末装置が下り回線の伝搬路状態をフレーム毎に推定し、推定結果を基地局装置に通知することで、基地局装置はその推定結果に基づいて最適な変調方式と符号化率を決定し、パケット伝送を行う。なおその推定結果に基づいて最適な変調方式と符号化率を決定し、パケット伝送を行う。なおの推定結果には少化率の組み合わせをMCS(Modulation and Coding Scheme)といい、MCSにはレベルが付けられている。すなわち、低い多値数の変調方式と低い符号化率の組み合わせはMCSレベルが低く、高い多値数の変調方式と高い符号化率の組み合わせはMCSレベルが高い。MCSに用いられる変調方式は、例えば、QPSK、8PSK、16QAM、64QAMの4種類とし、符号化率は、例えば、レートマッチングを用いて1/3~1の間とする。

[0006]

AMCは、MCSレベルの決定及びその決定方法、さらに、回線品質の推定精度によって、スルーブット特性が影響を受ける。

【特許文献1】特開平7-250116号公報

[非特許文献 1] T. Asai, K. Higuchi, and M. Sawahashi "Experimental Evaluati ons on Throughput Performance of Adaptive Modulation and Channel Coding and Hybrid ARQ in HSDPA," TECHNICAL REPORT OF IEICE RCS2002-178(2002-10).

【発明の開示】

【祭明が解決しようとする課題】

[0007]

しかしながら、通信端末装置での回線品質の推定精度が低い場合、実際の回線品質を反映していないため、最適なMCSの選択が行えなくなり、スループットを向上させることができない。特に、回線品質を度が低いため、回線品質推定値の分割が大きい場合、選択されるMCSレベルが大きく変動することになり、基地局装置が通信端末装置で回線品質の推定結果を受信してからMCSを決定していては、制選延が生じてしまい、実際の回線品質を反映することができないので、回線品質に応じた最適なMCSを選択することができず、スループットを向上させることができない。

[0008]

本発明はかかる点に鑑みてなされたものであり、回線品質の推定精度が低いため、回線 品質推定値の分散が大きい場合でも、スループットを向上させる無線通信装置及びMCS 決定方法を提供することを目的とする。

【課題を解決するための手段】

[0 0 0 9]

本発明の無線通信装置は、変更可能な符号化率で送信データを符号化する符号化手段と 、複数の変調方式のうちいずれかの変調方式で変調する変調手段と、所定の変動幅が予め 定められ、回線品質に応じたMCSレベルを暫定的に求め、暫定的に求めたMCSレベル と前回制御時に用いたMCSレベルとを比較し、そのレベル差が前記変動幅内にある場合 、暫定的に求めたMCSレベルに決定する一方、前記レベル差が前記変動幅を越える場合 に、前回制御時に用いたMCSレベルに対するレベル差を前記変動幅に制限したMCSレ ベルを決定し、決定したMCSレベルとなるように前記符号化手段及び前記変調手段を制 御する制御手段と、を具備する構成を採る。

[0010]

この構成によれば、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルと のレベル差が所定の変動幅内であれば、暫定的に求めたMCSレベルに決定し、前配レベ ル差が所定の変動幅を越えれば、前回制御時に用いたMCSレベルに対するレベル差を所 定の変動幅に制限したMCSレベルを決定することにより、MCSレベルの変動を緩やか にすることができるので、回線品質の推定精度が低いため、回線品質推定値の分散が大き い場合でも、実際の回線品質に応じたMCSを用いることになるので、スループットを向 上させることができる。また、MCSレベルを迅速に決定することができるので、制御遅 延を減少させることができる。

[0011]

本発明の無線通信装置は、上記構成において、ドップラー周波数を検出する検出手段と 、検出されたドップラー周波数に応じて、前回制御時に用いられたMCSレベルに対する 変動幅を決定する決定手段と、を具備し、前記制御手段は、決定された変動幅でMCSレ ベルを決定する構成を採る。

[0012]

この構成によれば、ドップラー周波数に応じた変動幅でMCSレベルを決定することに より、フェージングの影響で回線品質の変動が大きい場合でも、回線品質の変動に追従す ることができるので、スループットを向上させることができる。

[0013]

本発明の無線通信装置は、上記構成において、前記決定手段が、ドップラー周波数が高 い場合には変動幅を大きくし、ドップラー周波数が小さい場合には変動幅を小さくする構 成を採る。

[0014]

この構成によれば、ドップラー周波数が高い場合にはフェージングが速いので、回線品 質の変動が大きいため、MCSレベルの変動幅を大きくすることにより、回線品質の変動 に追従することができ、ドップラー周波数が低い場合にはフェージングが遅いので、回線 品質の変動が小さいため、MCSレベルの変動幅を小さくすることにより、回線品質の推 定精度が低い場合でも、スループットを向上させることができる。

[0 0 1 5]

本発明のMCS決定方法は、所定の変動幅が予め定められ、回線品質に応じたMCSレ ベルを暫定的に求め、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルと を比較し、そのレベル差が前記変動幅内にある場合、暫定的に求めたMCSレベルに決定 する一方、前記レベル差が前記変動幅を越える場合に、前回制御時に用いたMCSレベル に対するレベル差を前記変動幅に制限したMCSレベルを決定するようにした。

[0016]

この方法によれば、暫定的に求めたMCSレベルと前回制御時に用いたMCSレベルと 出証特2004-3110506 のレベル差が所定の変動幅内であれば、暫定的に求めたMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時に用いたMCSレベルに対するレベル差を所 医の変動幅に制限したMCSレベルを決定することにより、MCSレベルの変動を緩やか にすることができるので、回線品質の推定精度が低いため、回線品質推定値の分散が大き い場合でも、実際の回線品質に応じたMCSを用いることになるので、スループットを向 上させることができる。また、MCSレベルを迅速に決定することができるので、側御遅 確を油火ンサムことができる。

【発明の効果】

[0017]

以上説明したように、本発明によれば、暫定的に求めたMCSレベルと前回制御時のMCSレベルとのレベル差が所定の変動幅内にあれば、暫定的に求めたMCSレベルを今回制御時のMCSレベルに決定し、前記レベル差が所定の変動幅を越えれば、前回制御時のMCSレベルに対するレベル差を所定の変動幅に制限したMCSレベルを今回制御時のMCSレベルに決定することにより、回線品質推定値の分散が大きい場合でも、スループットを向上させることができる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

[0019]

(実施の形態1)

図1は、本発明の実施の形態1に係る無線通信装置の構成を示すプロック図である。この図において、ターボ符号化器101は、送信アータをターボ符号化し、符号化後の信号をレートマッチング部103に出力する。

[0020]

MCS制御部102は、回線品質推定値であるSIR (Signal to Interference Ratio) 値に基づいてMCSの決定を行い、レートマッチング部103と変調部105を創御する。MCS制御部102の詳細については後述する。

[0021]

レートマッチング部103は、MCS制御部102で決定されたMCSとなるように、ターボ符号化器101から出力された信号にレートマッチ処理を行い、レートマッチ後の信号をインタリーバ104に出力する。インタリーバ104は、レートマッチング部103から出力された信号を所定のバターンに従って配列を並べ替え(インタリーブ)、インタリーブ後の信号を変調部105に出力する。なお、ターボ符号化器101及びレートマッチング部103は、符号化手段として機能する。

[0022]

変闘部 105は、MCS制御部 102の制御に従って、インタリーバ 104から出力された信号をQPSK、8PSK、16QAM、64QAMのいずれかで変調し、変調後の信号を送信処理部 106に出力する。送信処理部 106は、変調部 105から出力された信号に死定の送信処理を行い、アンテナ 107を介して通信相手に送信する。

[0023]

図2は、本発明の実施の形態1におけるMCS側御部102の内部構成を示すプロック図である。この図において、MCS(SIR)取得部201は、通信相手から通知されたSIR値に対応するMCSレベルをMCSテーブル202から取得する。このMCSレベルを暫定的なMCSレベル(MCS(SIR))とし、MCS(SIR)を大小比較部204に出力する。

[0024]

MCSテーブル202は、変調方式及び符号化率が組み合わされたテーブルを保持している。テーブルの具体例を図るに示す。図るは、本実施の形態1におけるMCSテーブルを示す図である。この図が示すように、変調方式と符号化率、さらにMCSレベルが対応付けられている。具体的には、MCSレベル=(変調方式、符号化率)で表すと、MCS

出証券2004-3110506

レベル1= (QPSK、1/2)、MCSレベル2=(8PSK、1/2)、MCSレベル3=(16QAM、1/2)、MCSレベル4=(64QAM、1/2)が対応付けられている。参考までに、各MCSレベルにおける1シンボル当たりのビット数は、MCSレベル1~4でそれぞれ、「1」、「1.5」、「2」、「3」となる。

[0025]

MCS (p) 記憶部203は、前回制御時に用いられたMCSレベル (MCS (p)) を記憶し、大小比較部204に出力する。

[0026]

大小比較部204は、MCS(SIR)取得部201から出力されたMCS(SIR)と、MCS(p)記憶部203から出力されたMCS(p)との大小比較を行い、比較結果をMCS決定部205に出力する。

[0027]

MCS決定部 205は、大小比較部 204から出力された比較結果に基づいて、MCS (p) に対して予め定められた変動幅に収まるMCSレベルを決定し、決定したMCSレベルに相当する変調方式及び符号化率をMCSテーブル 202から検索し、レートマッング部 103を変調部 105を制御する。なお、MCS決定部 205は、決定したMCSレベルをMCS (p) 記憶部 203に出力し、MCS (p) 記憶部 203は記憶していたMCS (p) を新たに決定されたMCSレベルに更新する。

[0028]

次に、MCS制御部102のMCS決定方法について説明する。図4は、MCS決定手順を示すフロー図である。この図において、ステップ(以下、「ST」と省略する)401では、MCS(SIR)取得部201が通信相手により求められたSIR値とST402では、取得したSIR値と所定の閾値S1、S2、S3(S1<S2S3)との閾値判定が行われ、MCSレベル(MCS(SIR))が求められる。具体的には、MCS(SIR)取得部201が取得したSIR値が閾値S1以下のとき、MCS(SIR)=1とし、SIR値が閾値S1より大きく、かつ、閾値S2以下のとき、MCS(SIR)=2とする。また、SIR値が閾値S2より大きく、かつ、閾値S3以下のとき、MCS(SIR)=3とし、SIR値が閾値S3より大きく、かつ、閾値S3以下のとき、MCS(SIR)=3とし、SIR値が閾値S3より大きいとき、MCS(SIR)=4とする。

[0029]

ST403では、大小比較部204において、ST402で求められたMCS(SIR)が前回のMCS制御時に用いられたMCSレベル(MCS(p))を越えるか否かが判定され、越える場合にはST404に移行し、ST404において、MCS決定部205は今回のMCS制御に用いるMCSレベルをMCS(p)より1つ上げ、MCS決定手順を終了する。MCS(SIR)がMCS(p)を越えない場合にはST405に移行する

[0030]

ST405では、大小比較部204において、MCS (SIR) がMCS (p) と等しいか否かが判定され、等しい場合にはST406に移行し、ST406において、MCS (決定部205は今回のMCS制御に用いるMCS(かかをMCS(p))と同じにし、MCS決定手順を終了する。MCS (SIR) がMCS (p) と等しくない場合、すなわち、MCS (SIR) がMCS (p) より小さい場合、ST407に移行し、ST407において、MCS決定部205は今回のMCS制御に用いるMCSレベルをMCS (p) より1つ下げ、MCS決定手順を終了する。

[0031]

このように、MCSを決定する際に、通信相手から通知されたSIR値に基づいて暫定的に求められたMCSレベル(MCS(SIR))と前回用いられたMCSレベル(MCS((p))との変動幅(レベル差)が±1以内に収まるように決定することにより、MCSレベルの変動を緩やかにすることができるため、回線品質の推定精度が低く、SIR値の分散が大きい場合でも、実際の回線品質の変動は小さいことが多いので、実際の回線品質の変動は小さいことが多いので、実際の回線品

質に応じたMCSを決定することになり、スループットを向上させることができる。

【0032】 上述したMCS決定方法によるシミュレーション結果を図5に示す。図5において、横軸はMCSレベルを示し、縦軸は各MCSレベルが決定された回数を示している。また、白技きのグラフは理想SIR値でMCS決定を行った場合を示し、網掛けのグラフはMCS(SIR)のみでMCS決定を行った場合(従来方法)を示し、さらに、黒塗りのグラフは変動幅に制約を設けた場合、すなわち、今回用いられるMCSレベルとの差を制御する場合を示している。

[0033]

ここで、例えば、MCSレベル2について見てみると、理想SIR値で決定された回数がおよそ300回であり、従来方法で決定された回数がおよそ200回となり、その差100回が誤判定されたものである。これに対し、変動幅に制約を設けた場合に決定された回数はおよそ250回であり、誤判定の回数を50回に低減している。他のMCSレベルについても同様であり、変動幅に制約を設けることにより、誤判定の回数を半減させることができる。

[0034]

このように、本実施の形態によれば、回線品質の推定精度が低く、回線品質推定値の分散が大きい場合でも、実際の回線品質の変動は小さいものと想定し、MCSレベルの変動幅を所定数以内に収めることにより、回線品質を考慮しつつもその影響を全て反映させず、また、回線品質の変動を緩やかにすることができるため、実際の回線品質に応じたMCSを決定することになり、スルーブットを向上させることができる。また、MCSレベルを迅速に決定することができる。

[0035]

なお、本実施の形態では、MCSレベルを4段階とし、MCSレベルの変動幅を±1に 制約した場合について説明したが、本発明はこれに限らず、任意に設定することができる

[0036]

また、MCS レベルの変動幅を ± 2 , ± 3 , …, などに制約する場合、MCS (SIR) とMCS (p) とのレベル差が制約した値以内に収まる場合、MCS (SIR) を今回、HUSMCS レベルに決定する。

[0 0 3 7]

(実施の形態2)

実施の形態1では、回線品質の変動が小さいものと想定し、MCS (SIR)とMCS (p)とのレベル差を所定の変動幅内に制限する場合について説明したが、本実施の形態では、フェージングの影響により回線品質の変動が大きい場合について説明する。

[0038]

図6は、本発明の実施の形態2に係る送信装置の構成を示すプロック図である。ただし、図6が図1と共通する部分は、図1と同一の符号を付し、その詳しい説明は省略する。

[0039]

f d検出部601は、ドップラー周波数(f d)を検出し、検出したf dを変動幅決定部602に通知する。

[0040]

変動幅決定部602は、fd検出部601から通知されたfdに基づいて、MCSの変 動幅を決定し、決定した変動幅をMCS制御部603に通知する。具体的には、fdが小 さい場合には変動幅を小さくし、fdが大きい場合には変動幅を大きくする。これは、f dが小さい場合はフェージングが遅いことを表しており、回線品質の変動は緩やかであり、 fdが大きい場合はフェージングが速いことを表しており、回線品質の変動は緩やかであり ることによる。

[0041]

MCS制御部603は、SIR値から暫定的に求められたMCSレベル(MCS(SI

R)) と前回の制御時に用いられたMCSレベル(MCS(n))との大小比較を行い。 比較結果に基づいて、MCS(p)に対して変動幅決定部602から通知された変動幅で 増加又は減少させることによりMCSを決定する。

[0042]

このように本実施の形態によれば、ドップラー周波数に応じたMCSの変動幅を決定し 、この変動幅で前回の制御時に用いられたMCSレベルより増加又は減少させることによ り、フェージングの影響で回線品質の変動が大きい場合でも、回線品質の変動に追従する ことができるので、スループットを向上させることができる。

[0043]

なお、上述した各実施の形態では、回線品質としてSIR値を用いて説明したが、本発 明はこれに限らず、SNR (Signal to Noise Ratio)、CQI (Channel Quality of In dicator) など、回線品質を表す指標であれば何でもよい。

【産業上の利用可能性】

[0044]

本願発明にかかる無線通信装置及びMCS制御方法は、前回制御時のMCSレベルと今 回制御時のMCSレベルとの差が所定の変動幅内に収まるようにMCSを決定することに より、回線品質推定値の分散が大きい場合でも、スループットを向上させるという効果を 有し、AMC制御を行う無線通信装置に適用することができる。

【図面の簡単な説明】

[0045]

- 【図1】 本発明の実施の形態1に係る無線通信装置の構成を示すプロック図
- 【図2】 本発明の実施の形態1におけるMCS制御部の内部構成を示すプロック図
- 【図3】本発明の実施の形態1におけるMCSテーブルを示す図
- 【図4】 MCS決定手順を示すフロー図
- 【図5】MCS決定方法によるシミュレーション結果
- 【図6】本発明の実施の形態2に係る送信装置の構成を示すブロック図 【符号の説明】

[0046]

- 101 ターボ符号化器
- 102、603 MCS制御部
- 103 レートマッチング部
- 104 インタリーバ
- 105 変調部
- 106 送信処理部
- 201 MCS (SIR) 取得部
- 202 MCSテーブル
- 203 MCS(p) 記憶部
- 204 大小比較部
- 205 MCS決定部
- 601 fd検出部
- 602 変動幅決定部

【書類名】図面【図1】

【図3】

1シンボル当りの ビット数	1.	1.5	2	ဇ
符号化率	R=1/2	R=1/2	R=1/2	R=1/2
変調方式	QPSK	8PSK	16QAM	64QAM
MCSレベル	-	2	က	4

[図5]

【要約】

【課題】 回線品質の推定精度が低いため、回線品質推定値の分散が大きい場合でも、スループットを向上させること。

【選択図】 図2

特願2003-378552

出願人履歴情報

識別番号

1.変更年月日 [変更理由]

住 所 氏 名

[000005821]

1990年 8月28日

新規登録

大阪府門真市大字門真1006番地

松下電器産業株式会社