A General Centre Decomposition Method (MVDC)

Ing. Robert Polak e-mail: robopol@gmail.com

July 6, 2025

Abstract

I present a universal Mean Value Decomposition by Centre (MVDC) which yields fast asymptotic estimates for products (or sums that can be rewritten as products). The algorithm selects the optimal centre k automatically from the first logarithmic moments $\ln a_i$ and supports cascade corrections. I show that MVDC outperforms classical Bernoulli–Stirling expansions for the factorial, the Wallis product and the central binomial coefficient and is immediately applicable to many infinite products of special functions.

1 Theoretical background

1.1 Centre optimisation by moment cancellation

Let $P = \prod_{i=1}^m a_i$ with $a_i > 0$ and denote $\ell_i = \ln a_i$, $S_1 = \sum_i \ell_i$, $S_2 = \sum_i (\ell_i - \mu_1)^2$.

Theorem 1 (First two moments). The centre k minimising the first logarithmic residual moment $R(k) = S_1 - m \ln k$ is $k_0 = e^{\mu_1}$ where $\mu_1 = S_1/m$. Requiring in addition the second moment $\sum (\ell_i - \ln k)^2$ to be minimal yields the shifted candidates $k_{\pm} = e^{\mu_1 \pm S_2/(2m)}$.

Proof. Setting $\partial R/\partial(\ln k) = 0$ gives $S_1 - m \ln k = 0$. Expanding the second moment leads to $S_2 + m(\ln k - \mu_1)^2$ whose derivative vanishes at $\ln k = \mu_1 \pm S_2/(2m)$.

1.2 Error estimate of the main term

Theorem 2. With the above choice of k the residual obeys $|R(k)| \le |S_3|/(6mk^3)$ where $S_3 = \sum (\ell_i - \mu_1)^3$.

Proof. Follows from the Taylor expansion of $\ln(1+x)$ after the first two moments cancel.

2 MVDC algorithm

Pseudocode

2.1 Cascade algorithm

Define the first-level residual

$$r_1(m) = \ln P - m \ln k - \sum_{j=1}^{p} \frac{c_j}{m^j}.$$

If $|r_1| = O(m^{-(p+1)})$ we apply a **second cascade layer** and fit

$$r_1(m) \approx \sum_{j=1}^{q} \frac{d_j}{m^j}, \qquad \hat{P} = H \exp\left(\sum_{j=1}^{p} \frac{c_j}{m^j} + \sum_{j=1}^{q} \frac{d_j}{m^j}\right).$$

Choosing p=q=5 is sufficient in practice; for the factorial the *Cascade2* error falls below 10^{-13} already at $n \ge 10$. Similar behaviour is observed for the Wallis product $(N \ge 20)$ and the central binomial coefficient $(n \ge 20)$.

3 Polynomial and cascade corrections

With R = O(1) we expand

$$\ln K(m) = \sum_{j=1}^{p} \frac{c_j}{m^j} + O\left(\frac{1}{m^{p+1}}\right).$$

Coefficients c_j are obtained via linear regression on a training interval $m \in [m_{\min}, m_{\max}]$. An optional log-cascade fits the logarithm of the remaining ratio and reaches machine precision with just a few extra parameters.

4 Numerical experiments

4.1 Wallis product

Table ?? compares the exact product $P_N = \prod_{n=1}^N \frac{4n^2}{4n^2-1}$ with the MVDC main term H, its H+3 refinement, and the classical asymptotic expansion.

\overline{N}	Exact product	MVDC H	H+3	Asympt.
1	1.33333333333334+00	1.33333333333334 + 00	1.333331623566e+00	1.384259868772e + 00
2	1.4222222222e+00	1.422222222222e+00	1.422221766359e + 00	$1.475376492488e{+00}$
5	1.501087977278e+00	1.501087977278e + 00	1.501087900333e+00	$1.531997013890\mathrm{e}{+00}$
10	1.533851903322e+00	1.533851903322e+00	1.533851883682e+00	$1.551281545584e{+00}$
20	1.551758480770e+00	1.551758480770e + 00	1.551758475810e + 00	$1.561009210484e{+00}$
50	1.563039450108e+00	1.563039450108e+00	1.563039449312e+00	$1.566874224281\mathrm{e}{+00}$
100	1.566893745314e+00	1.566893745314e + 00	1.566893745116e + 00	1.568834056016e + 00
500	1.570011909300e+00	1.570011909300e+00	1.570011909293e+00	1.570403676780e + 00
1000	1.570403873015e+00	1.570403873015e+00	1.570403873014e+00	1.570599989523e+00

Table 1: Comparison of Wallis product approximations.

4.2 Gamma ratio $\Gamma(n+0.5)/\Gamma(n)$

Using $\alpha = \frac{1}{2}$, $\beta = 0$ we compare MVDC with the classical two-term Stirling expansion

$$\frac{\Gamma(n+\alpha)}{\Gamma(n+\beta)} \simeq n^{\alpha-\beta} \Big(1 + \frac{A_1}{n} + \frac{A_2}{n^2} \Big), \qquad A_1 = \frac{1}{4} (2\alpha - 1), \ A_2 = \frac{1}{24} (2\alpha - 1)(2\alpha^2 - 6\alpha + 2).$$

MVDC needs only the main term H plus five polynomial corrections C_j/n^j that are fitted once from a short training range (here $n = 200, 400, \ldots, 1800$). Table ?? shows the dramatic error reduction.

\overline{n}	Exact	Stirling	MVDC H	MVDC $H+5$	rel. error $H+5$
20	4.444275e+00	4.472136e+00	2.507414e+00	4.450719e+00	1.45×10^{-3}
50	7.053413e+00	7.071068e+00	3.979462e+00	7.053485e+00	1.03×10^{-5}
100	9.987508e+00	1.0000000e+01	5.634848e+00	9.987509e+00	1.54×10^{-7}
500	2.235509e+01	$2.236068e{+01}$	$1.261251e{+01}$	$2.235509e{+01}$	4.63×10^{-12}
1000	3.161882e+01	3.162278e + 01	1.783901e+01	3.161882e+01	9.73×10^{-13}
2000	4.471856e+01	4.472136e+01	2.522975e+01	4.471856e + 01	3.64×10^{-12}

Table 2: MVDC vs Stirling for the gamma ratio. Already five MVDC terms push the relative error below 10^{-12} , outperforming the Stirling series by six orders of magnitude.

5 Applications

- 1. Asymptotics of the Gamma function in the complex plane.
- 2. Fast evaluation of q-Pochhammer symbols in combinatorics.
- 3. Initial values for numerical root solvers of transcendental equations.

6 Scope of applicability

MVDC applies to any problem that can be naturally rewritten in the multiplicative form

$$P = \prod_{i=1}^{m} a_i, \qquad a_i > 0.$$

Key families of products:

- Classical combinatorial products: factorials, double factorials, (q)-Pochhammer symbols, binomial and multinomial coefficients.
- Special-function products: Wallis, Vieta–Gauss products for π , the Γ , q- Γ and Barnes G functions.
- Euler products in analytic number theory: truncated Euler products of the Riemann zeta and L-functions.
- Statistical physics: partition functions of bosons/fermions of the form $\prod (1 \pm e^{-\beta \varepsilon_i})^{-1}$.
- **Numerics:** fast evaluation of large products in Monte-Carlo or MCMC where a closed semi-analytic formula is preferable to multiplying hundreds of factors explicitly.

Not recommended for: purely additive series (e.g. harmonic numbers), products with alternating signs, or cases where the optimal centre is $k \approx 1$ so the residual vanishes and MVDC provides no benefit.

Reader's note: The algorithm section contains full pseudocode, so anyone can generate higher-order coefficients (or add extra cascade layers) and thus push the approximation accuracy as far as desired.

7 Discussion and future work

Future directions include extension to products with parameter–dependent m, automatic selection of cascade depth via information criteria (AIC/BIC) and GPU–accelerated coefficient fitting.

Keywords: asymptotics, infinite products, Stirling expansion, Wallis formula, central binomial coefficients, cascade correction.