Computer Architecture

Chapter 5b. Memory System

Hyuk-Jun Lee, PhD

Dept. of Computer Science and Engineering Sogang University Seoul, Korea

Email: hyukjunl@sogang.ac.kr

Associative Caches

- Fully associative
 - Allow a given block to go in any cache entry
 - Requires all entries to be searched at once
 - Comparator per entry (expensive)
- *n*-way set associative
 - Each set contains n entries
 - Block number determines which set
 - (Block number) modulo (#Sets in cache)
 - Search all entries in a given set at once
 - n comparators (less expensive)

Associative Cache Example

Spectrum of Associativity

For a cache with 8 entries

One-way set associative (direct mapped)

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								
		1						

Eight-way set associative (fully associative)

Tag	Data														

Associativity Example

- Compare 4-block caches
 - Direct mapped, 2-way set associative, fully associative
 - Block access sequence: 0, 8, 0, 6, 8 % #
- Direct mapped

	pott	om
7)	2-	bites

Block	Cache	Hit/miss	Cache content after access					
address	index		0	1	2	3		
0	0	miss	Mem[0]					
8	0	miss	Mem[8]					
0	0	miss	Mem[0]					
6	2	miss	Mem[0]		Mem[6]			
8	0	miss	Mem[8]		Mem[6]			

Associativity Example

2-way set associative

0,8,0,6,8	20	2	2	0,0,	0,0,0
	170				

Block	Cache	Hit/miss	(nt after ac	ccess	
address	index		Set 0			√Set 1
0	0	miss	Mem[0]			
8	0	miss	Mem[0]	Mem[8]		
0	0	hit	Mem[0]	Mem[8]		
6	0	miss	Mem[0]	Mem[6]		
8	0	miss	Mem[8]	Mem[6]		

replacement policy: LRV

Fully associative

=) 7/2/ 2/24 dr32/21 3527 replace.

Block	Hit/miss	Cache content after access							
address									
0	miss	Mem[0]							
8	miss	Mem[0]	Mem[8]						
0	hit	Mem[0]	Mem[8]						
6	miss	Mem[0]	Mem[8]	Mem[6]					
8	hit	Mem[0]	Mem[8]	Mem[6]					

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing returns
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000
 - 1-way: 10.3%
 - 2-way: 8.6%
 - 4-way: 8.3%
 - -8-way: 8.1%

Set Associative Cache Organization

Replacement Policy

- Direct mapped: no choice
- Set associative

- non-lalles
- Prefer non-valid entry, if there is one
- Otherwise, choose among entries in the set
- Least-recently used (LRU)
 - Choose the one unused for the longest time
 - Simple for 2-way, manageable for 4-way, too hard beyond that
- Random
 - Gives approximately the same performance as LRU for high associativity

Multilevel Caches

- Primary cache attached to CPU
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

