Smoothing Continued...

Manish Shrivastava

Notation: N_c = Frequency of frequency c

- N_c = the count of things we've seen c times
- Sam I am I am Sam I do not eat

I 3

sam 2

am 2

do 1

not 1

eat 1

$$N_1 = 3$$

$$N_2 = 2$$

$$N_3 = 1$$

Good-Turing smoothing intuition

- You are fishing (a scenario from Josh Goodman), and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
 - 1/18
- How likely is it that next species is new (i.e. catfish or bass)
 - Let's use our estimate of things-we-saw-once to estimate the new things.
 - 3/18 (because $N_1=3$)
- Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18
 - How to estimate?

Good Turing calculations

$$P_{GT}^*$$
 (things with zero frequency) = $\frac{N_1}{N}$ $c^* = \frac{(c+1)N_{c+1}}{N_c}$

- Unseen (bass or catfish)
 - c = 0:
 - MLE p = 0/18 = 0
 - P_{GT}^* (unseen) = $N_1/N = 3/18$

- Seen once (trout)
 - c = 1
 - MLE p = 1/18

Slides from Stanford CS12 P_{GT}^{*urse} (trout) = 2/3 / 18 = 1/27

Resulting Good-Turing numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

Count	Good Turing c*
С	
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Good-Turing smoothing

- The distribution of N_C has "gaps" for frequent objects
- The GT count for the most frequent word (e.g., "the") is undefined
- Still probabilities of object with same count are assumed equal
- Need another "smoothing"!
 - Many possible GT smoothers
 - Difficult in general case, hindered use of GT in practice

Good-Turing smoothing

- Another example ("Prosody", Gale 1995)
 - Typical for linguistic data
 - Uncertainties in N_C vary greatly with c

frequency	frequency of frequency
1	120
2	40
3	24
4	13
5	15
6	5
7	11
8	2
9	2
10	1
11	0
12	3

Good-Turing smoothing

- Another representation of the same data
 - Too "granular" due to integer counts

Church and Gate (1991)

- Bi-gram smoothing based on unigram frequencies
 - A type of back-off
- Bi-grams are bucketed into N bins based on jii
 - "joint if independent"
 - Logarithmic bins, typically 3 per decade
- For a bi-gram *xy*:

$$jii = Ne(p(x))e(p(y))$$

- Basic estimator is used within each bin
 - Good-Turing, Held-off, Deleted Estimate, or other (?)

Church and Gale (1991)

- Single bin
 - j = 33, jii=1.4
 - Averaged around zeros (right)
 - Hastie and Shirey. A variable bandwidth kernel smoother. AT&T Technical report, 1988.
 - AP Wire, 4.4x10⁷ words

Church and Gale (1991)

- Overall, the smoothing algorithm is complicated
- Shown to work well on large corpora [Chen, Goodman 1996]
- Defined for bigrams, generalization is ambiguous
- Unigram probabilities are estimated using MLE, other methods are possible

Simple Good-Turing (SGT)

- By Gale (1995)
- Simple linear interpolation between log(r) and log(Nr)

$$\log(N_r) = a + b \log(r)$$

- a and b are fit by linear regression
- Turing estimates are used for smaller r, linear estimates "kick in" once they become "significantly different"

Simple Good-Turing (SGT)

 Again, "Prosody" data from Gale (1995)

- Good-Turing (left)
- Good-Turing with zero averaging (right)

Simple Good-Turing (SGT)

- The author claimed that SGT is not only very simple but very accurate too
- The claim is based on Monte Carlo simulation, using Zipfian distribution

INT VOI

- Constant discounting (Ney, Essen, Kneser, 1994)
- From AP Wire:
 - Looks like the difference is ~0.75 between
 MLE and GT for most objects

Count	Good Turing c*
С	
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Absolute Discounting

• Save ourselves some time and just subtract 0.75 (or some d)!

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w)$$
• But should we really just use the regular unigram P(w)? unigram

- Better estimate for probabilities of lower-order unigrams!
 - Shannon game: I can't see without my reading________
 - "Francisco" is more common than "glasses"
 - ... but "Francisco" always follows "San"

Francisco

alasses

- Instead of P(w): "How likely is w"
- P_{continuation}(w): "How likely is w to appear as a novel continuation?
 - For each word, count the number of bigram types it completes
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) \propto \left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|$$

How many times does w appear as a novel continuation:

$$P_{CONTINUATION}(w) \propto |\{w_{i-1} : c(w_{i-1}, w) > 0\}|$$

Normalized by the total number of word bigram types

$$|\{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\}|$$

$$P_{CONTINUATION}(w) = \frac{\left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|}{\left| \{ (w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0 \} \right|}$$

• Alternative metaphor: The number of # of word types seen to precede w $|\{w_{i-1}:c(w_{i-1},w)>0\}|$

normalized by the # of words preceding all words:

$$P_{CONTINUATION}(w) = \frac{\left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|}{\sum \left| \{ w'_{i-1} : c(w'_{i-1}, w') > 0 \} \right|}$$

 A frequent word (Francisco) occurring in only one context (San) will have a low continuation probability

Kneser-Ney Smoothing
$$P_{KN}(w_i \mid w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda(w_{i-1})P_{CONTINUATION}(w_i)$$

λ is a normalizing constant; the probability mass we've discounted

$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} \big| \{ w : c(w_{i-1}, w) > 0 \} \big|$$
The number of word types that can

the normalized discount

follow w_{i-1}

- = # of word types we discounted
- = # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive formulation

$$P_{KN}(w_i \mid w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{c_{KN}(w_{i-n+1}^{i-1})} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_i \mid w_{i-n+2}^{i-1})$$

$$c_{KN}(\bullet) = \begin{cases} count(\bullet) & \text{for the highest order} \\ continuation count(\bullet) & \text{for lower order} \end{cases}$$

Continuation count = Number of unique single word contexts for •

Witten-Bell Smoothing

• Intuition:

- An unseen n-gram is one that just did not occur yet
- When it does happen, it will be its first occurrence
- So give to unseen n-grams the probability of seeing a new n-gram

Witten-Bell – Unigram Case

- N: number of tokens
- T: number of types (diff. observed words) can be different than V (number of words in dictionary)

Prob. of unseen unigrams

$$p_i^* = rac{T}{Z(T+N)}$$

$$Z = \sum_{i:c_i=0} 1$$

Prob. of **seen** unigrams

$$p_i^* = \frac{c_i}{N+T}$$

Witten-Bell – bigram case

Prob. of **unseen** unigrams

$$p^*(w_i|w_x) = \frac{T(w_x)}{Z(w_x)(N(w_x) + T(w_x))}$$

Prob. of **seen** unigrams

$$p^*(w_i|w_x) = \frac{c(w_x, w_i)}{N(w_x) + T(w_x)}$$

Witten-Bell Example

• The original counts were –

	Ι	want	to	eat	Chine	food	lunch		N(w)	T(w)	Z(w)
					se				seen bigram	seen bigram	unseen
									tokens	types	bigram types
I	8	1087	0	13	0	0	0		3437	95	1521
want	3	0	786	0	6	8	6		1215	76	1540
to	3	0	10	860	3	0	12		3256	130	1486
eat	0	0	2	0	19	2	52		938	124	1492
Chinese	2	0	0	0	0	120	1		213	20	1592
food	19	0	17	0	0	0	0		1506	82	534
lunch (W)= nutr	iber 8f	differ	ent <u>s</u> e	en bigr	ams ty	rpes St	art	ing with 459	45	1571

• We have a vocabulary of 1616 words, so we can compute

$$Z(w)$$
= number of unseen bigrams types starting with w
 $Z(w) = 1616 - T(w)$

• N(w) = number of bigrams tokens starting with w

Witten-Bell Example

• WB smoothed probabilities:

	I	want	to	eat	Chinese	food	lunch	 Total
I	.0022 (7.78/3437)	.3078	.000002	.0037	.000002	.000002	.000002	1
want	.00230	.00004	.6088	.00004	.0047	.0062	.0047	1
to	.00009	.00003	.0030	.2540	.00009	.00003	.0038	1
eat	.00008	.00008	.0021	.00008	.0179	.0019	.0490	1
Chinese	.00812	.00005	.00005	.00005	.00005	.5150	.0042	1
food	.0120	.00004	.0107	.00004	.00004	.00004	.00004	1
lunch	.0079	.00006	.00006	.00006	.00006	.0020	.00006	1

Practical issue: Huge web-scale n-grams

- How to deal with, e.g., Google N-gram corpus
- Pruning
 - Only store N-grams with count > threshold.
 - Remove singletons of higher-order n-grams

Huge web-scale n-grams

Efficiency

- Efficient data structures
 - e.g. tries

https://en.wikipedia.org/wiki/Trie

- Store words as indexes, not strings
- Quantize probabilities (4-8 bits instead of 8-byte float)