Let $D(A')_{+} = E'_{+} \cap D(A')$. Consider the condition

(2.9)
$$\overline{D(A')}_{+}^{\sigma(E',E)} = E'_{+}$$

(which is satisfied if the semigroup is positive). If (K) and (2.9) hold, then Kato's inequality holds in the strong form as well, whenever it makes sense; i.e.,

(2.10) Re((sign
$$\bar{f}$$
)Af) $\leq A|f|$ (whenever f , $|f| \in D(A)$).

Example 2.5. Kato's inequality in its classical form says the following (see Kato (1973) or [Reed-Simon (1975); X.27]).

Let $f \in L^1$ (\mathbb{R}^n) be such that the distributional Laplacian satisfies

Let $f \in L^1_{loc}(\mathbb{R}^n)$ be such that the distributional Laplacian satisfies $\Delta f \in L^1_{loc}(\mathbb{R}^n)$. Then the inequality

Re((sign
$$\bar{f}$$
) Δf) $\leq \Delta |f|$

holds in the sense of distributions; i.e.,

< \phi, Re((sign \(\tilde{f}) \Delta f) > \leq < \phi, \Delta f| > \) holds for all
0 \(\leq \phi \in \mathbb{C}_C^\infty(\mathbb{R}^n) \). Note that the closure of \(\Delta \) defined on \(\mathbb{C}_C^\infty(\mathbb{R}^n) \)
generates a strongly continuous positive semigroup on \(\mathbb{L}^p(\mathbb{R}^n) \)
(1 \(\leq p < \infty) \) (see Example 1.5.d and Example 4.7)).</pre>

We want to discuss the relation between the classical (distributional) inequality and our version given in Theorem 2.4.

Let
$$A = \sum_{\alpha \mid \alpha \mid \leq m} a_{\alpha} D^{\alpha}$$

be a differential operator, where $a_{\alpha} \in C_{c}^{\infty}(\mathbb{R}^{n})$. Here we let $D^{\alpha} = (\partial/\partial x_{1})^{\alpha}1$... $(\partial/\partial x_{n})^{\alpha}n$ for all multi-indices $\alpha = (\alpha_{1}, \ldots, \alpha_{n}) \in \mathbb{N}_{0}^{n}$ ($\mathbb{N}_{0} := \mathbb{N} \cup \{0\}$) of order $|\alpha| := \alpha_{1} + \ldots + \alpha_{n}$. We say that A satisfies Kato's inequality in the sense of distributions if

(K_A) Re<((sign
$$\bar{f}$$
) Af , ϕ > \leq <|f| , $A^*\phi$ >

for all $f \in C_C^\infty(\mathbb{R}^n)$, $0 \le \phi \in C_C^\infty(\mathbb{R}^n)$, where A^* denotes the formal adjoint of A.

Let now A be the generator of a positive semigroup $(\mathtt{T(t)})_{t\geq 0}$ on $\mathtt{E}:=\mathtt{L}^p(\mathbb{R}^n)$ $(1\leq p<\infty)$ or $\mathtt{C}_0(\mathbb{R}^n)$. Assume that there exists a core