Model Development

Objective:

Minimizing Transportation Cost while ensuring **equity** in vaccine distribution

Assumption:

- Single period cold chain model
- Geographical equity
- Available vaccines are less than the demand
- Distribution centers have unlimited capacity

Model Development

Minimize

$$\sum_{i\in I}\sum_{j\in J}c_{ij}w_{ij}$$

Subject to,

$$S_{i} \geq \sum_{j \in J} w_{ij} \qquad \forall i \in I$$

$$\sum_{i \in I} w_{ij} - U_{j} \geq 0 \quad \forall j \in J$$

$$\sum_{i \in I} w_{ij} - h_{j} = 0 \quad \forall j \in J$$

$$\left| \frac{h_{j}}{D_{j}} - \frac{h_{k}}{D_{k}} \right| \leq e \qquad \forall j \in J, \ \forall k \in J, k \neq j$$

$$h_{j}, w_{ij} \geq 0 \qquad \forall i \in I, \ \forall j \in J$$

Notation:

Sets:

I : Set of DC locations*J* : Set of VC locations

Parameters:

 D_i : Demand of customer

 c_{ij} : Cost to transport 1 unit from DC at i to VC at j

 d_{ik} : Cost to transport 1 unit from VC at j to VC at k, where $k \in J$

 S_i : Total supply at DC at i

 U_j : Capacity of DC at j

e: Equity parameter

r: Maximum distance within which transshipment is allowed

Decision variables:

 w_{ij} = The number of units shipped from DC at i to VC at j

 h_j = The number of units (customers) served from VC at j