Robust autonomous landing of fixed-wing UAVs in wind

Tobias Fridén

Half time report

14/11 - 2019

Problem description

Research questions:

- 1. How can sampling-based motion planning techniques be used to generate landing sequences for fixed-wing UAVs?
- 2. How can safe landings be guaranteed when taking wind effects into account?

Scope

Figure 1: Components of a general autonomous system

Kinematic model

$$\dot{p}_{N} = V_{a} \cos \psi + W \cos \psi_{w}$$
 (1)

$$\dot{p}_{E} = V_{a} \sin \psi + W \sin \psi_{w}$$
 (2)

$$\dot{\psi} = \frac{g}{V_{a}} \tan \phi$$
 (3)

$$\dot{\phi} = f_{\phi}(\phi - \phi^{c}) \tag{4}$$

Straight path following in wind

Figure 2: Coordinate frame for straight path following

Straight path following in wind (contd)

$$\dot{d} \equiv \dot{p}_{E,s} = V_a \sin(\psi - \psi_s) + W \sin(\psi_w - \psi_s)$$

$$\dot{\psi} = \frac{g}{V_a} \tan \phi$$
(5)

d pprox 0, $\dot{d} pprox 0$ means that $V_a \sin(\psi - \psi_s) + W \sin(\psi_w - \psi_s) = 0$ so

$$\psi_{wca} \equiv -\arcsin\left(\frac{W}{V_s}\sin(\psi_w - \psi_s)\right) + \psi_s \tag{7}$$

Trajectory following control law

Figure 3: L_1 controller logic

Trajectory following control law (contd)

$$\mathbf{v} = V_a \begin{bmatrix} \cos \psi \\ \sin \psi \end{bmatrix} + W \begin{bmatrix} \cos \psi_w \\ \sin \psi_w \end{bmatrix}$$
(8)
$$a^c = 2 \frac{V^2}{L_1} \sin \eta, \quad V = \|\mathbf{v}\|$$
(9)
$$\phi^c = \tan^{-1}(a^c/g)$$
(10)

State and action set definitions

$$x = (p_N, p_E, \psi)$$
 (11)
 $u = (p_{N,g}, p_{E,g})$ (12)

Closed loop system

$$\dot{\psi} = \frac{a^c(x, u)}{V_a} \tag{13}$$

Physical constraint: $\dot{\psi} \leq \dot{\psi}_{max} \Rightarrow$

$$\underline{\dot{\psi}}(x,u) = \begin{cases} a^c(x,u)/V_a & |a^c(x,u)/V_a| \le \dot{\psi}_{max} \\ \operatorname{sgn}(a^c(x,u)/V_a)\dot{\psi}_{max} & \text{otherwise} \end{cases}$$
(14)

Closed loop system (contd)

$$\dot{x} = f(x, u) = \begin{bmatrix} V_a \cos \psi + W \cos \psi_w \\ V_a \sin \psi + W \sin \psi_w \\ \dot{\psi}(x, u) \end{bmatrix}$$
(15)

Motion primitives

- lacktriangle Different motion primitives for different wind direction $\psi_{\it w}$
- ▶ Different motion primitives for different wind speeds *W*

Motion primitives (contd)

Constraints on final course instead of heading where course is defined as

$$\psi_c(x) = \tan^{-1}\left(\frac{V_a \sin \psi + W \sin \psi_w}{V_a \cos \psi + W \cos \psi_w}\right) \tag{16}$$

Optimal control problem

$$\min_{x(t),u,T} J = |d(x(T),u)|^2 + |\psi_c(x(T)) - \psi_d|^2 + \int_0^T V_a dt$$
(17a)
subject to
$$\psi(0) = \psi_{wca}$$

$$\psi_c(x(0)) = 0, \quad |\psi_c(x(T)) - \psi_d| \le \Delta \psi_{min}$$
(17c)
$$\dot{x} = f(x(t),u)$$

$$x(t) \in \mathcal{X}$$

$$u \in \mathcal{U}$$
(17e)

Optimal control problem (contd)

Figure 4: J for $V_a=14$ m/s, W=5 m/s, $\psi_w=0^\circ$, $\psi_d=90^\circ$

Optimal control problem (contd)

Derivative free optimization methods

$$\min_{x \in \mathbb{R}^n} \qquad f: x \to \mathbb{R} \qquad \qquad (18a)$$
 subject to $\qquad x \in \mathcal{X}_{feasible} \qquad \qquad (18b)$

Mesh-Adaptive Direct Search (MADS)

Resulting primitives

Figure 5: Motion primitives for different wind directions, $W=5~\mathrm{m/s}$

Heuristic function

- States defined in inertial frame
- Cost is distance travelled by UAV in air-relative frame
- Not equal to inertial frame distance if $W \neq 0$

Cost for straight line paths

Assuming that $\psi_i = \psi_f = \psi_{wca}$:

$$V_{\parallel} = \cos \psi_{s} (V_{a} \cos \psi_{wca} + W \cos \psi_{w}) + \sin \psi_{s} (V_{a} \sin \psi_{wca} + W \sin \psi_{w})$$

$$(19)$$

$$s_{A} = \frac{V_{a}}{V_{\parallel}} || \boldsymbol{p}_{i+1} - \boldsymbol{p}_{i} ||$$

$$(20)$$

Cost for arbitrary initial and final heading

- ightharpoonup Dubin's path if W=0
- ▶ No analytical solution if $W \neq 0$
- Numerical solutions exist but computationally expensive

Heuristic Look-Up Table

- ▶ Entries for different values of ψ_i from 0° to 180°
- ▶ Different W require new HLUT
- Generated with Dijkstra's Algorithm using motion primitives

Heuristic Look-Up Table (contd)

Figure 6: Projection of queries on HLUT

Heuristic Look-Up Table (contd)

Figure 7: HLUT for $\psi_f = 0^\circ$

Landing sequences

Figure 8: Landing sequence definition

Landing sequences (contd)

- lacktriangle Approach: Descend at rate \dot{h} given by $m{p}_A$ and $m{p}_L$
- Flare: When below altitude h_{flare} , begin descending at fixed rate \dot{h}_{flare}
- ▶ Has to enter landing area A above altitude h_A

Optimal landing sequence

Objectives:

- 1. Land as closely to the center of ${\mathcal A}$ as possible
- 2. Land against the wind if possible

Optimal landing sequence (contd)

Figure 9: Variables to determine optimal landing sequence

Optimal landing sequence (contd)

Divided into two steps:

- 1. Determine ψ_L
- 2. Determine $R_a = \| \boldsymbol{p}_A \boldsymbol{p}_2 \|$ and $R_I = \| \boldsymbol{p}_L \boldsymbol{p}_2 \|$

Determining approach direction

$$V_{L}(\psi) = \cos \psi (V_{a} \cos \psi_{wca} + W \cos \psi_{w}) + \sin \psi (V_{a} \sin \psi_{wca} + W \sin \psi_{w})$$
(21)

$$R_{min}(\psi) = V_{L}(\psi) \frac{h_{A} - h_{flare}}{\dot{h}_{max}}$$
(22)

$$R_{flare}(\psi) = V_{L}(\psi) \frac{h_{flare}}{\dot{h}_{flare}}$$
(23)

Determining approach direction (contd)

 $L(\psi)$: Line from ${m p_1}$ in direction $\psi+180^\circ$ with length K for some $K\geq 0$

$$\{\psi_{L}\}_{feas} = \{\psi : (R(\psi) \ge R_{min}(\psi) + R_{flare}(\psi)) \cap (L(\psi) \notin \mathcal{X}_{obst})\}$$

$$\psi_{L,opt} = \underset{\psi \in \{\psi_{L}\}_{feas}}{\arg \min} R(\psi)$$
(25)

Determining approach parameters

$$\dot{h} = f(R_a, R_l) \tag{26}$$

$$h(R) = h_0 - R \frac{\dot{h}}{V_L} \tag{27}$$

$$R_c = ||\boldsymbol{p}_1 - \boldsymbol{p}_2|| \tag{28}$$

Determining approach parameters (contd)

Constraints:

$$h(R_a - 2R_c) \ge h_A \tag{29}$$

$$h(R_a - R_{flare} - R_I) = h_{flare} \tag{30}$$

Determining approach parameters (contd)

$$\min_{R_{a},R_{I}} J = R_{a}^{2} + \lambda |R_{c} - R_{I}|^{2}$$
subject to
$$R_{a}, R_{I} \ge 0$$

$$\dot{h}(R_{a}, R_{I}) \le \dot{h}_{max}$$
(29)
(30)

System overview

Figure 10: System overview

Results

Figure 11: Resulting landing procedures for different wind directions, $W=5~\mathrm{m/s}$

Results (contd)

Figure 12: Resulting landing procedures for different wind directions, $W=5~\mathrm{m/s}$

Possible improvements

- Extend formulation to handle varying winds with the same motion primitive set/HLUT
- Investigate admissibility of heuristic (especially projection)
- Handle wind variations in landing sequence generation
- Estimate wind mean and variance online from measurements