

Teoria dos Grafos Conceitos Básicos

André Kawamoto

Grafo

- Matematicamente, um grafo é um par formado por 2 conjuntos:
 - Um conjunto finito de Vértices (V) Vertices
 - Um conjunto de Arestas (E) *Edges*
 - Cada aresta "e" é um par ordenado
 - e = (v, w), onde $v \in w \in E$
- G = {V,E}

Grafo

Exemplo

```
• G = {V, E}
```

•
$$V = \{1, 2, 3, 4\}$$

• $E = \{(1,2), (1,4), (2,3), (3,4), (2,4)\}$

Grafo Rotulado e Grafo Valorado

 Por questão de facilidade e para aplicar em diversas situações, é possível atribuir rótulos e/ou valores tanto para arestas quando para vértices

Adjacência entre Vértices

- Se existe uma aresta (v,w) no conjunto E, então os vértices v e w são adjacentes
- No exemplo, são adjacentes os vértices
 - 1 e 2
 - 2 e 3
 - 1 e 4
 - 2 e 4
 - 3 e 4

Adjacência entre Arestas

- Duas arestas são adjacentes se elas compartilham um vértice em comum
- No exemplo, quem são as arestas adjacentes?

Conceitos

- Um grafo em que E é um conjunto vazio é chamado vazio
- Um grafo em que V e E são conjuntos vazios é chamado nulo
- Um grafo com apenas 1 vértice é chamado trivial

Grafos Dirigidos/Orientados

- Em um grafo dirigido, o conjunto de arestas E representa uma relação binária em V
- Na prática, (u,v) é uma aresta diferente de (v, u)
- Graficamente, denotamos por uma aresta (u, v) como uma seta que parte do vértice u e incide no vértice v

Grafos Dirigidos/ Não Dirigidos

Grau de um Vértice

 O grau (Degree) de um vértice V – D(V) é o número de arestas nas quais V é um dos terminais em um grafo não orientado

Grau de um Vértice

- Um Nó que possui grau de saída = 0 é chamado de "Sorvedouro"
- Um nó que possui grau de entrada =
 0 é chamado de "Fonte"
- Um nó que possui tanto grau de entrada quanto grau de saída iguais a zero é chamado de nó isolado*

Em um Grafo Dirigido

- Grau de Saída:
 - Número de arestas que saem daquele vértice
- Grau de entrada:
 - Número de arestas que incidem naquele vértice
- Grau de um Vértice:
 - Soma do Grau de Entrada + Grau de Saída

Passeio, Caminho, Circuito

- Um passeio p entre dois vértices A e B é definido como uma sequência alternada de vértices e arestas
- P(A,B) = v0, e1, v1, e2, v2, ..., ek, vk
- Tal que
 - A = v0
 - B = vk
- Existe no mínimo 1 aresta
- Para 1<= i <= k, a aresta ei incide sobre vi-1 e vi

Exemplo de Passeio

property of the contract of th

- Um caminho é uma sequência de vértices tal que de cada um dos vértices existe uma aresta para o vértice seguinte.
- Um caminho simples em um grafo é aquele em que todos os seus vértices são distintos.
- O comprimento do caminho é o número de arestas que o caminho usa, contando-se arestas múltiplas vezes

No grafo de exemplo,

(1, 2, 5, 1, 2, 3) é um caminho com comprimento 5, (5, 2, 1) é um caminho simples de comprimento 2.

Caminho Euleriano e Hamiltoniano

- Caminho Euleriano
 - Usa cada aresta exatamente uma vez
- Caminho hamiltoniano
 - Visita cada vértice exatamente uma vez

Ciclo

- Ciclo (ou circuito)
- É um caminho que começa e termina no mesmo vértice
- Ciclo simples: todos os vértices aparecem 1 única vez, exceto o vértice inicial/final
- Ciclo Euleriano
- Ciclo Hamiltoniano

Conexo

 Se existe um caminho conectando qualquer par de vértices do grafo

Desconexo

 Se pelo menos 2 vértices não podem ser conectados por um caminho

Completo

 Se todos os vértices possuem arestas conectando com todos os outros vértices

Quantas arestas possui um grafo completo de ordem n?

 Ordem de um grafo = quantidade de vértices que ele possui

