# [86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

# Amplificador Emisor Común

- 1. Cálculo de parámetros de un Amplificador Emisor Común
- 2. Señales temporales y análisis de Distorsión
- 3. Diseño de un Amplificador Emisor Común

Hallar los parámetros del amplificador de la figura.

El amplificador está implementado utilizando un transistor TBJ con  $\beta$  = 200 y  $V_A$  = 40 V. La tensión de alimnetación es  $V_{CC}$  = 3.3 V y las resistencias de polarización son  $R_{B1}$  = 10 k $\Omega$ ;  $R_{B2}$  = 4.7 k $\Omega$  y  $R_C$  = 100  $\Omega$ .

¿Cuál es la señal a la salida del amplificador si se conecta a la entrada un fuente senoidal con valor pico  $v_s = 25 \text{ mV}$  con resistencia serie  $R_s = 1 \text{ k}\Omega$ ; y a la salida una resistencia de carga  $R_L = 10 \text{ k}\Omega$ ?

¿Cuáles son los parámetros del amplificador?



 $V_{CC}$ 

Parámetros del amplificador:  $A_{vo}$ ;  $R_{IN}$ ;  $R_{OUT}$ 

Estos parámetros son inherentes del amplificador y son independientes de lo sque se conecta a la entrada o la salida



Modelo general para cualquier amplificador de tensión

#### Parámetros del amplificador: A<sub>vo</sub>; R<sub>IN</sub>; R<sub>OUT</sub>



$$v_{out} = A_{vo} v_{in} \Rightarrow A_{vo} = \frac{v_{out}}{v_{in}}$$

$$V_{R_{IN}} = v_{in} = i_{in} R_{IN} \quad \Rightarrow \quad R_{IN} = \frac{v_{in}}{i_{in}}$$

$$V_{R_{OUT}} = v_{out} = i_{out} R_{OUT} \Rightarrow R_{OUT} = \frac{v_{out}}{i_{out}}$$

#### ...Volviendo a nuestro amplificador

Datos  $\beta = 200$ ;  $V_A = 40 \text{ V}$   $V_{CC} = 3.3 \text{ V}$ ;  $R_{B1} = 10 \text{ k}\Omega$   $R_{B2} = 4.7 \text{ k}\Omega$ ;  $R_C = 100 \Omega$   $V_S = 25 \text{ mV}$ ;  $R_S = 1 \text{ k}\Omega$  $R_L = 10 \text{ k}\Omega$ 

Resolver el circuito del amplificado es como cualquier circuito con TBJ.

- 1) Resolvemos el circuito de polarización
- 2) Hallamos el modelo de pequeña señal
- 3) Resolvemos el circuito de pequeña señal



#### Circuito de polarización

- 1) Marcamos las referencias.
- 2) Suponemos MAD y resolvemos el nodo de base.

$$I_{R1} = I_{BQ} + I_{R2} \Rightarrow I_{BQ} = I_{R1} - I_{R2} = \frac{V_{CC} - V_{BE(ON)}}{R_{B1}} - \frac{V_{BE(ON)}}{R_{B2}}$$

$$I_{BQ} = \frac{3.3 \text{ V} - 0.7 \text{ V}}{10 \text{ k} \Omega} - \frac{0.7 \text{ V}}{4.7 \text{ k} \Omega} = 111 \mu \text{ A}$$

3)Calculamos I<sub>Co</sub> y resolvemos la malla de salida.

$$I_{CQ} = \beta I_{BQ} = 22.2 \text{ mA} \Rightarrow V_{CEQ} = V_{CC} - V_{R_c}$$
  
 $V_{CEQ} = 3.3 \text{ V} - 100 \Omega 22.2 \text{ mA} = 1.08 \text{ V}$ 

4) Verificamos MAD y Efecto Early despreciable.

$$V_{CEQ} = 1.08 \text{ V} > V_{CE, sat} = 0.2 \text{ V}$$
  
 $1 + \frac{V_{CEQ} - V_{CE, sat}}{V_A} = 1 + \frac{1.08 \text{ V} - 0.2 \text{ V}}{40 \text{ V}} = 1.022 \approx 1$ 





#### Modelo de pequeña señal del transistor

El amplificador va a funciona en frecuencias medias.

Hallamos el modelo de pequeña señal para el transistor en **MAD** y para **bajas frecuencias**.

# $\begin{array}{lll} \mbox{Polarización} & \mbox{Datos} \\ \mbox{I}_{CQ} = 22.2 \, \mbox{mA} & \mbox{\beta} = 200; \, \mbox{V}_{A} = 40 \, \mbox{V} \\ \mbox{I}_{BQ} = 111 \, \mbox{$\mu$A} & \mbox{V}_{CC} = 3.3 \, \mbox{V}; \, \mbox{R}_{B1} = 10 \, \mbox{k}\Omega \\ \mbox{V}_{BEQ} = 0.7 \, \mbox{V} & \mbox{R}_{B2} = 4.7 \, \mbox{k}\Omega; \, \mbox{R}_{C} = 100 \, \Omega \\ \mbox{V}_{CEQ} = 1.08 \, \mbox{V} & \mbox{V}_{s} = 25 \, \mbox{mV}; \, \mbox{R}_{s} = 1 \, \mbox{k}\Omega \\ \mbox{R}_{I} = 10 \, \mbox{k}\Omega \end{array}$

$$g_{m} = \frac{\partial i_{C}}{\partial v_{BE}} \Big|_{Q} = \frac{I_{CQ}}{V_{th}} = \frac{22.2 \text{ mA}}{25.9 \text{ mV}} = 0.8576 \text{ S}$$

$$r_{\pi} = \left(\frac{\partial i_{B}}{\partial v_{BE}}\right)_{Q}^{-1} = \frac{V_{th}}{I_{BQ}} = \beta \frac{V_{th}}{I_{CQ}} = 200 \frac{25.9 \text{ mV}}{22.2 \text{ mA}} = 233.2 \Omega$$

$$r_{o} = \left(\frac{\partial i_{C}}{\partial v_{CE}}\right)_{Q}^{-1} = \frac{V_{A}}{I_{CQ}} = \frac{40 \text{ V}}{22.2 \text{ mA}} = 1.8 \text{ k} \Omega$$

#### Resolvemos el circuito de pequeña señal

Pasivamos fuente independientes.

Reemplazamos capacitores por cortocircuitos

MPS  $g_m = 0.8576 S$  $r_{-} = 233.2 \Omega$ 

 $r_o = 1.8 k\Omega$ 

Polarización  $I_{co} = 22.2 \text{ mA}$ 

 $\beta = 200; V_{\Lambda} = 40 \text{ V}$ 

**Datos** 

 $I_{BQ} = 111 \,\mu\text{A}$   $V_{CC} = 3.3 \,\text{V}; \, R_{B1} = 10 \,\text{k}\Omega$ 

 $V_{BEQ} = 0.7 V$   $R_{B2} = 4.7 k\Omega; R_{C} = 100 \Omega$ 

 $V_{CEQ} = 1.08 \text{ V}$   $v_s = 25 \text{ mV}; R_s = 1 \text{ k}\Omega$ 

 $R_1 = 10 k\Omega$ 



#### Resolvemos el circuito de pequeña señal

Pasivamos fuente independientes.

Reemplazamos capacitores por cortocircuitos

MPS  $g_{m} = 0.8576 \, S$  $r_{\pi} = 233.2 \Omega$ 

 $r_o = 1.8 k\Omega$ 

Polarización

 $I_{CO} = 22.2 \text{ mA}$   $\beta = 200; V_{\Delta} = 40 \text{ V}$  $I_{BQ} = 111 \,\mu\text{A}$   $V_{CC} = 3.3 \,\text{V}; \, R_{B1} = 10 \,\text{k}\Omega$ 

 $V_{BEQ} = 0.7 \text{ V}$   $R_{B2} = 4.7 \text{ k}\Omega; R_{C} = 100 \Omega$ 

 $V_{CEQ} = 1.08 \text{ V}$   $v_s = 25 \text{ mV}$ ;  $R_s = 1 \text{ k}\Omega$ 

 $R_1 = 10 k\Omega$ 

Reemplazamos el transistor por su modelo de pequeña señal



#### Calculamos A<sub>vo</sub>

$$A_{vo} = \frac{v_{out}}{v_{in}} = \frac{v_{ce}}{v_{be}}$$

Al imponer  $v_i$ , se enciende la fuente de corriente controlada. Esta corriente, circula por  $r_o$  y  $R_c$  en paralelo, dando lugar a la tensión  $v_{ce}$ .

$$v_{out} = v_{ce} = -g_m v_{be} (r_o || R_C)$$

$$A_{vo} = \frac{v_{out}}{v_{in}} = \frac{-g_m \ v_{be} (r_o || R_C)}{v_{be}} = -g_m (r_o || R_C)$$

$$A_{y_0} = 0.8576 \text{ S} (1.8 \text{ k}\Omega || 100 \Omega) = -81.25$$





#### Calculamos R<sub>IN</sub>

$$R_{IN} = \frac{v_{in}}{i_{in}}$$

Como R<sub>B1</sub>, R<sub>B2</sub> y r<sub>π</sub> están conectadas entre base y tierra, toda la corriente i, circula por ellas cuando se impone  $V_{in}$ .

$$v_{in}=i_{in}\left(R_{B1}||R_{B2}||r_{\pi}\right)$$

$$R_{IN} = \frac{i_{in} (R_{B1} || R_{B2} || r_{\pi})}{i_{.}}$$

 $R_{IN} = R_{B1} ||R_{B2}|| r_{\pi} = 10 \text{ k}\Omega ||4.7 \text{ k}\Omega ||233.2 \Omega = 217.35 \Omega$ 

**MPS**  $g_{m} = 0.8576 \, S$  $r_{-} = 233.2 \Omega$  $r_o = 1.8 \text{ k}\Omega$ 

#### Polarización

**Datos** 

$$I_{CQ} = 22.2 \text{ mA}$$
  $β = 200; V_A = 40 \text{ V}$ 
 $I_{BQ} = 111 \text{ μA}$   $V_{CC} = 3.3 \text{ V}; R_{B1} = 10 \text{ k}Ω$ 

$$V_{BEQ} = 0.7 \text{ V}$$
  $R_{B2} = 4.7 \text{ k}\Omega; R_{C} = 100 \Omega$   
 $V_{CEQ} = 1.08 \text{ V}$   $v_{c} = 25 \text{ mV}; R_{c} = 1 \text{ k}\Omega$ 

 $R_1 = 10 k\Omega$ 



### Calculamos R<sub>OUT</sub>

$$R_{OUT} = \frac{v_{out}}{i_{out}} \quad \text{con } v_{in} = 0$$

Al imponer  $v_{in} = v_{he} = 0$ ; estamos anulando la fuente de corriente controlada ya que  $g_m v_{be} = 0$ . Como R<sub>c</sub> y r<sub>o</sub> están conectadas entre colector y tierra, toda la corriente i<sub>out</sub> circula por ellas cuando se impone V<sub>out</sub>.

$$v_{out} = i_{out} (R_C || r_o)$$

$$R_{OUT} = \frac{i_{out} (R_C || r_o)}{i} = R_C || r_o = 100 \Omega || 1.8 \text{ k} \Omega = 94.74 \Omega$$

#### **MPS** Polarización $g_m = 0.8576 \, S$ $r_{-} = 233.2 \Omega$

 $r_o = 1.8 \text{ k}\Omega$ 

 $I_{co} = 22.2 \text{ mA}$   $\beta = 200; V_{A} = 40 \text{ V}$  $I_{BQ} = 111 \,\mu A$   $V_{CC} = 3.3 \,V; \,R_{B1} = 10 \,k\Omega$  $V_{BEQ} = 0.7 \text{ V}$   $R_{B2} = 4.7 \text{ k}\Omega; R_{C} = 100 \Omega$ 

**Datos** 

$$V_{BEQ} = 0.7 \text{ V}$$
 $R_{B2} = 4.7 \text{ k}\Omega$ ;  $R_{C} = 100 \text{ S}$ 
 $V_{CEQ} = 1.08 \text{ V}$ 
 $V_{s} = 25 \text{ mV}$ ;  $R_{s} = 1 \text{ k}\Omega$ 
 $R_{s} = 10 \text{ k}\Omega$ 



#### Resumen

 $A_{yo} = -81.25$ 

 $R_{IN} = 217.35 \ \Omega$ 

 $R_{OUT} = 94.74 \Omega$ 

#### MPS **Polarización** I<sub>cq</sub> = 22.2 mA Polarización $g_m = 0.8576 S$

 $V_{CEQ} = 1.08 V$ 

 $\beta = 200; V_{\Lambda} = 40 \text{ V}$ 

**Datos** 

 $I_{BQ} = 111 \, \mu A$   $V_{CC} = 3.3 \, V; \, R_{B1} = 10 \, k\Omega$ 

 $V_{BEQ} = 0.7 \text{ V}$   $R_{B2} = 4.7 \text{ k}\Omega; R_{C} = 100 \Omega$  $v_{s} = 25 \text{ mV}; R_{s} = 1 \text{ k}\Omega$ 

 $R_1 = 10 k\Omega$ 



 $r_{-} = 233.2 \Omega$ 

 $r_o = 1.8 k\Omega$ 

#### ¿Cuál es la señal a la salida?

$$v_s = 25 \text{ mV}$$
;  $R_s = 1 \text{ k}\Omega$ ;  $R_L = 10 \text{ k}\Omega$ 

- $V_i \neq V_s \Rightarrow V_{out} \neq A_{vo} V_s$
- $R_1 \rightarrow i_{out} \neq 0 \rightarrow afecta \ a \ v_{out}$

$$v_{in} = v_s \frac{R_{IN}}{R_{IN} + R_s} = 25 \text{ mV} \frac{217.35 \Omega}{217.35 \Omega + 1 \text{ k}\Omega} = 4.46 \text{ mV}$$

• Como  $i_{out} \neq 0 \rightarrow v_{out} \neq A_{vo} v_{in}$ 

$$v_{out} = A_{vo} v_{in} \frac{R_L}{R_{OUT} + R_L} \approx A_{vo} v_{in}$$

$$v_{out} = -81.25 \cdot 4.46 \text{ mV} \frac{10 \text{ k}\Omega}{97.74 \Omega + 10 \text{ k}\Omega} = 358.9 \text{ mV}$$

 Puedo definir la ganancia con señal

$$A_{vs} = \frac{v_{out}}{v_s} = \frac{v_{out}}{v_{in}} \frac{v_{in}}{v_s} \approx A_{vo} \frac{R_{IN}}{R_{IN} + R_s} = -14.4$$

## **MPS** $q_{m} = 0.8576 \, S$ $r_{-} = 233.2 \Omega$ $r_0 = 1.8 k\Omega$

#### Polarización

 $V_{CEO} = 1.08 \text{ V}$ 

$$I_{CQ} = 22.2 \text{ mA}$$
  $\beta = 200; V_A = 40 \text{ V}$   
 $I_{BQ} = 111 \text{ } \mu\text{A}$   $V_{CC} = 3.3 \text{ V}; R_{B1} = 10 \text{ } k\Omega$ 

**Datos** 

 $V_{BEQ} = 0.7 \text{ V}$   $R_{B2} = 4.7 \text{ k}\Omega; R_{C} = 100 \Omega$  $v_{c} = 25 \text{ mV}; R_{c} = 1 \text{ k}\Omega$ 

 $R_1 = 10 \text{ k}\Omega$ 

