Group 1 Final Project

Presented by Andrew, Mahmood, Sasha, Arc, Gerald, and Daniel

Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Offensive (Red) Team

Table of Contents

This document contains the following resources:

03 **Network Topology & Exploits Used Methods Used to Critical Vulnerabilities Avoiding Detect**

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.90

OS: Linux

Hostname: Kali

IPv4: 192.168.1.105

OS: Linux

Hostname: Capstone

IPv4: 192.168.1.110

OS: Linux

Hostname: Target1

IPv4: 192.168.1.100

OS: Linux

Hostname: ELK

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Weak password	User 'michael' password was 'michael'	This guessed password allowed us user access to the system via SSH
MySQL Database Access	Wordpress configuration php file has database credentials available to the user	Able to gain access to the database, and extract confidential data

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Wordpress pingback locator CVE-2013-0235	This module will scan for wordpress sites with the Pingback API enabled	By interfacing with the API an attacker can cause the wordpress site to port scan an external target and return result
Wordpress version 4.8.7	Insecure version	WordPress is prone to multiple vulnerabilities, unpatched version can be exploit
Wordpress pingback locator CVE-2013-0235	This module will scan for wordpress sites with the Pingback API enabled	By interfacing with the API an attacker can cause the wordpress site to port scan an external target and return result

Exploitation: Weak Password

- We used wpscan to find users and guessed the weak password that gave us SSH to the system.
- The exploit granted us access to Michael account, by navigate to htm dir we was able to find flag2 and by using the grep command in the same dir we was able to find flag.


```
michael@target1:/var/www$ ls
flag2.txt michael@target1:/var/www$ cat flag2.txt
flag2{fc3fd58dcdad9ab23faca6e9a36e581c}
michael@target1:/var/www$
```

Exploitation: [SQL Database]

- We were able to find the username and password for SQL database in the wp-confg.php file in plaintext.
- The exploit granted us mysql access and we use SELECT post_tittle to find flag3,4.

```
You have new mail in /var/mail/michael
michael@target1:~$ find /var/www/html/ -iname "wp-config.php"
/var/www/html/wordpress/wp-config.php
michael@target1:~$
```

```
/** MySQL database username */
define('DB_USER', 'root');

/** MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');

/** MySQL hostname */
```


Exploitation: [Privilege Escalation]

- The password hash of Steven was obtained from the SQL database and by crack the password using john the ripper we can access stevet account.
- Exploiting Steven Python's sudo privileges through a spawn shell gave us root access and allowed us to find flag 4.


```
root@Kali:~/Desktop# john --wordlist=/usr/share/wordlists/rockyou.txt wp_ha shes.txt
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$) 512/512 AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 OpenMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status
pink84 (user2)

$ Sudo python -c 'import pty;pty.spawn("/bin/bash")'
root@target1:/home/steven#
```


Avoiding Detection

Stealth Exploitation of [open port 22 and weak password]

Monitoring Overview

- An email alert, when someone logs in to the server via ssh, can be pretty useful to track who is actually using the server.
- Monitor SSH port for unauthorized access.
- Triggers when three attempts to access system over port 22.

Mitigating Detection

- SSH through different open port.
- We can use the reverse shell as alternative exploits.

Stealth Exploitation of [SQL Database]

Monitoring Overview

- Set alert for failed logins
- unauthorized attempts to access SQL database.
- Triggers when three attempts to access SQL database.

Mitigating Detection

- SQL Injection Attack.
- Using brute force on a SQL database with a password cracking tool.

Stealth Exploitation of [privilege Escalation]

Monitoring Overview

- Privilege Escalation Alert
- Monitor unauthorized root access
- Triggers when unauthorized sudo commands are executed

Mitigating Detection

- Kernel Exploit, vulnerabilities are discovered in the Linux kernel. Attackers can exploit these vulnerabilities to gain root access to a Linux system, and once the system is infected with the exploit, there is no way to defend against it Attackers go through the following steps:
 - 1. Learn about the vulnerabilities
 - 2. Develop or acquire exploit code
 - 3. Transfer the exploit onto the target
 - 4. Execute the exploit on the target

Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Defensive (Blue) Team

Table of Contents

This document contains the following resources:

Alert 1: Excessive HTTP Errors

WHEN count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE LAST 5 minutes

- Which metric does this alert monitor?
 Number of HTTP errors
- What is the threshold it fires at?
 When number grouped over top 5 is above 400 for the last 5 minutes

Alert 2: HTTP Request Size Monitor

WHEN sum() of http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute

- Which metric does this alert monitor?
 HTTP request size over all documents
- What is the threshold it fires at?
 When total is above 3500 bytes for the last 1 minute

Alert 3: CPU Usage Monitor

WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5

FOR THE LAST 5 minutes

- Which metric does this alert monitor?
 Total system CPU usage over all documents
- What is the threshold it fires at?
 When max is above 0.5% for the last 5 minutes

Hardening Against Weak Password on Target 1

Target 1 exhibited 3 vulnerabilities as follows:

1. An exposed WordPress configuration file

Change permission of the wp-config.php file so that only the owner can read it

```
Command: $ chmod 440 /var/www/html/wordpress/wp-config.php
```

2. Weak WordPress User passwords

Install a WordPress plugin to enforce strong passwords by users of WordPress

3. Weak SSH password

Remove ssh password authentication on the server and require public key login instead

```
Command: $nano /etc/ssh/sshd config
```

Then change 'PasswordAuthentication' to 'no'

Copy a user's public key from the workstation to the server

```
Command: $ ssh-copy-id michael@192.168.1.110
```

Hardening Against SQL Database Access on Target 1

- 1. Remove all anonymous accounts
- 2. Change default port mappings
- 3. Limit which hosts have access to MySQL
- 4. Do not run MySQL with root level privileges
- 5. Disable remote logins
- 6. Limit or Disable SHOW DATABASES command
- 7. Obfuscate the **root** account, change it to something else
- 8. Set the proper file permissions

Hardening Against Outdated Software on Target 1

Target 1 has Wordpress version 4.8.17 that should have been updated to latest version 5.7.2

- 1. With latest versions, vulnerable plugins and themes are fixed
- 2. Do not use nulled or free plugins and themes
- 3. Use Wordpress security plugins

Implementing Patches with Ansible

Playbook Overview

- 1. Make sure that **ansible** and **sshpass** are installed on the host where you are running the playbook.
- 2. Then edit the /etc/ansible/hosts file to add the IP address of the target machine. Edit /etc/ansible/ansible.cfg to add the remote user for the target machine ('vagrant')
- 3. Copy over the SSH public key for the user you are running the playbook as with the `ssh-copy-id user@192.168.1.110' command. Do this before running the playbook, otherwise you won't be able to do this later.

Then to address the exposed WordPress configuration file and weak SSH password we can run this playbook.

Implementing Patches with Ansible

- name: Harden SSH and WordPress config hosts: all become: true tasks: - name: Change permission of wp-config.php file: path: /var/www/html/wordpress/wp-config.php mode: 440 - name: Copy SSH key to target host authorized_key: user: michael state: present key: "{{ lookup('file', lookup('env','HOME') + '/.ssh/id_rsa.pub') }}" authorized_key: user: steven state: present key: "{{ lookup('file', lookup('env','HOME') + '/.ssh/id_rsa.pub') }}"

Implementing Patches with Ansible

```
- name: Disable SSH Password Authentication
lineinfile:
    dest=/etc/ssh/sshd_config
    regexp='^PasswordAuthentication'
    line="PasswordAuthentication no"
    state=present
    backup=yes
- name: restart ssh
    service:
    name: sshd
    state: restarted
```

Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Network Analysis

Table of Contents

This document contains the following resources:

Traffic Profile

Our analysis identified the following characteristics of the traffic on the network:

Feature	Value	Description	
Top Talkers (IP Addresses)	172.16.4.205: 51,364 (49%) 185.243.115.84: 30,344 (29%) 10.0.0.201: 19,503 (19%)	Machines that sent the most traffic.	
Most Common Protocols	UDP: 11,697 (11.2%) TCP: 92,280 (88.6%) ARP: 212 (0.2%)	Three most common protocols on the network.	
# of Unique IP Addresses	808	Count of observed IP addresses.	
Subnets	10.6.12.0/24 172.16.4.0/24	Observed subnet ranges.	
# of Malware Species	2	Number of malware binaries identified in traffic.	

Behavioral Analysis

Purpose of Traffic on the Network - Users were observed engaging in the following kinds of activity.

1. "Normal" Activity

YouTube, reading the news.

2. Suspicious Activity

For example: Sending malware, phishing. For example: accessing "mysocalledchaos.com"

http.req	uest.method == GET					\times
. ^	Time	Source	Destination	Protocol	Length Host	
373	5 52.723581500	172.16.4.205	166.62.111.64	HTTP	421 mysocalledchaos.com	
373	8 52.732235600	172.16.4.205	166.62.111.64	HTTP	422 mysocalledchaos.com	
374	2 52.781694300	172.16.4.205	166.62.111.64	HTTP	396 mysocalledchaos.com	
374	9 52.826170900	172.16.4.205	166.62.111.64	HTTP	415 mysocalledchaos.com	
375	1 52.837361300	172.16.4.205	166.62.111.64	HTTP	418 mysocalledchaos.com	
377	4 53.025662700	172.16.4.205	166.62.111.64	HTTP	434 mysocalledchaos.com	
	9 53.180818100	172.16.4.205	166.62.111.64	HTTP	405 mysocalledchaos.com	
	5 53.254852100	172.16.4.205	166.62.111.64	НТТР	417 mysocalledchaos.com	
	0 53.734051500	172.16.4.205	166.62.111.64	HTTP	412 mysocalledchaos.com	
	1 53.879972700	172.16.4.205	166.62.111.64	HTTP	405 mysocalledchaos.com	
	8 53.946863500	172.16.4.205	166.62.111.64	НТТР	383 mysocalledchaos.com	
	5 54.178831600	172.16.4.205	166.62.111.64	НТТР	391 mysocalledchaos.com	
	1 54.229417500	172.16.4.205	166.62.111.64	НТТР	398 mysocalledchaos.com	
	5 54.783242800	172.16.4.205	166.62.111.64	НТТР	400 mysocalledchaos.com	
	0 54.839034900	172.16.4.205	166.62.111.64	HTTP	398 mysocalledchaos.com	
70.00		172.16.4.205				
	2 54.862321100		166.62.111.64	HTTP	386 mysocalledchaos.com	
	2 55.059923500	172.16.4.205	166.62.111.64	HTTP	421 mysocalledchaos.com	
	7 55.115915000	172.16.4.205	166.62.111.64	HTTP	416 mysocalledchaos.com	
	3 55.469193200	172.16.4.205	166.62.111.64	HTTP	405 mysocalledchaos.com	
	6 55.669996100	172.16.4.205	166.62.111.64	HTTP	418 mysocalledchaos.com	
	8 55.692190800	172.16.4.205	166.62.111.64	HTTP	405 mysocalledchaos.com	
	1 55.717753500	172.16.4.205	166.62.111.64	HTTP	382 mysocalledchaos.com	
402	9 55.823627000	172.16.4.205	166.62.111.64	НТТР	377 mysocalledchaos.com	
403	0 55.829886300	172.16.4.205	166.62.111.64	HTTP	392 mysocalledchaos.com	
408	7 56.476710200	172.16.4.205	166.62.111.64	HTTP	404 mysocalledchaos.com	
410	6 56.579114200	172.16.4.205	166.62.111.64	HTTP	393 mysocalledchaos.com	
411	1 56.654054000	172.16.4.205	166.62.111.64	HTTP	397 mysocalledchaos.com	
411	6 56.685952700	172.16.4.205	166.62.111.64	HTTP	418 mysocalledchaos.com	
415	7 57.029663200	172.16.4.205	166.62.111.64	HTTP	417 mysocalledchaos.com	
419	9 57.578730100	172.16.4.205	166.62.111.64	HTTP	400 mysocalledchaos.com	
420	4 57.646312600	172.16.4.205	166.62.111.64	HTTP	416 mysocalledchaos.com	
420	9 57.672518600	172.16.4.205	166.62.111.64	HTTP	410 mysocalledchaos.com	
421	1 57.693891700	172.16.4.205	166.62.111.64	HTTP	416 mysocalledchaos.com	
421	8 57.741630700	172.16.4.205	166.62.111.64	HTTP	378 mysocalledchaos.com	
	8 57.909247900	172.16.4.205	172.217.4.163	HTTP	472 fonts.gstatic.com	
	8 58.355552600	172.16.4.205	172.217.4.163	HTTP	480 fonts.gstatic.com	
	1 58.466586100	172.16.4.205	172.217.4.163	HTTP	493 fonts.gstatic.com	
	5 58.486500600	172.16.4.205	166.62.111.64	HTTP	412 mysocalledchaos.com	
	4 58.609593900	172.16.4.205	166.62.111.64	НТТР	514 mysocalledchaos.com	
	6 58.630894900	172.16.4.205	166.62.111.64	НТТР	563 mysocalledchaos.com	
	4 59.165806400	172.16.4.205	166.62.111.64	HTTP	406 mysocalledchaos.com	
	7 59.179770400	172.16.4.205	166.62.111.64	HTTP	402 mysocalledchaos.com	
	6 59.442624700	172.16.4.205	166.62.111.64	HTTP	392 mysocalledchaos.com	
	5 59.969135400	172.16.4.205	166.62.111.64	HTTP	400 mysocalledchaos.com	
	0 62 545145600	172.10.4.203	100.02.111.04	UTTD	202 cocupa gravatan com	

Normal Behavior

Summarize the following:

Type of traffic observed:
 Protocol(s) used:TCP
 typical traffic, http traffic

54 443 → 49250 [FIN, ACK] Seq=78325 Ack=712 Win=64000 Len=0 5... 638.709351200 216.239.32.21 10.11.11.200 60 49212 → 443 [RST, ACK] Seq=1814 Ack=341425 Win=0 Len=0 151.101.50.208 TCP 5... 638.710305100 10.11.11.200 151.101.50.208 TCP 60 49201 → 443 [RST, ACK] Seq=1814 Ack=273469 Win=0 Len=0 5... 638.711256500 10.11.11.200 60 49266 → 443 [ACK] Seq=924 Ack=3439 Win=65792 Len=0 5... 638.712216500 10.11.11.200 108.177.10.157 TCP User activity: Three way 60 49267 → 443 [ACK] Seq=291 Ack=2858 Win=66304 Len=0 5... 638.713178000 10.11.11.200 108.177.10.157 TCP 60 49234 → 443 [ACK] Seq=894 Ack=3981 Win=65280 Len=0 108.177.103.157 TCP 5... 638.714132100 10.11.11.200 handshake - RST ACK FIN 60 49233 → 443 [ACK] Seq=293 Ack=2857 Win=66304 Len=0 108.177.103.157 TCP 5... 638.715092400 10.11.11.200 60 49251 → 443 [ACK] Seq=307 Ack=5938 Win=65792 Len=0 5... 638.716158000 10.11.11.200 216.239.32.21 60 49250 → 443 [ACK] Seq=712 Ack=78326 Win=65536 Len=0 5... 638.717018900 10.11.11.200 216.239.32.21 web surfing, 60 49260 → 443 [ACK] Seq=1063 Ack=7917 Win=65280 Len=0 5... 638.717972700 10.11.11.200 104.16.51.111 60 49255 → 443 [ACK] Seq=1328 Ack=7612 Win=65024 Len=0 104.18.70.113 5... 638.718931500 10.11.11.200 60 49261 → 443 [ACK] Seq=1728 Ack=3228 Win=66304 Len=0 5... 638.719891300 10.11.11.200 104.16.51.111 60 49229 → 443 [ACK] Seq=1917 Ack=82653 Win=65536 Len=0 5... 638.720865000 10.11.11.200 104.18.74.113

5... 638.696565900 10.11.11.200

5... 638.697525600 10.11.11.200

5... 638.698501700 10.11.11.200

5... 638.699464900 10.11.11.200

5... 638.700409600 10.11.11.200

5... 638.703105900 10.11.11.200

5... 638.704069400 10.11.11.200

5... 638.705880300 10.11.11.200

5... 638.704918000 104.19.199.151

5... 638.706745700 108.177.103.157

5... 638.707611000 108.177.103.157

5... 638.708473800 216.239.32.21

5... 638.721854600 10.11.11.200

5... 638.722794100 10.11.11.200

5... 638.723648700 13.33.255.110

5... 638.724520400 13.33.255.110

5... 638.701269600 108.177.10.157

5... 638.702131700 108.177.10.157

23.2.175.193

23.2.175.193

172.217.9.134

10.11.11.200

10.11.11.200

216.58.194.46

10.11.11.200

10.11.11.200

10.11.11.200

10.11.11.200

104.18.74.113

10.11.11.200

10.11.11.200

104.19.199.151 TCP

151.101.50.208 TCP

151.101.50.208 TCP

151.101.50.208 TCP

151.101.50.208 TCP

TCP

TCP

TCP

60 49238 → 443 [RST, ACK] Seq=736 Ack=4756 Win=0 Len=0

60 49239 → 443 [RST, ACK] Seq=736 Ack=4755 Win=0 Len=0

60 49210 → 443 [RST, ACK] Seq=1830 Ack=305820 Win=0 Len=0

60 49204 → 443 [RST, ACK] Seq=1862 Ack=261736 Win=0 Len=0

54 443 → 49266 [FIN, ACK] Seq=3438 Ack=924 Win=67072 Len=0

54 443 - 49267 [FIN, ACK] Seq=2857 Ack=291 Win=64000 Len=0

60 49203 → 443 [RST, ACK] Seq=1830 Ack=236030 Win=0 Len=0

54 443 → 49214 [FIN, ACK] Seq=9624 Ack=714 Win=31744 Len=0

60 49211 → 443 [RST, ACK] Seq=1814 Ack=192431 Win=0 Len=0

54 443 → 49234 [FIN, ACK] Seq=3980 Ack=894 Win=65280 Len=0

54 443 → 49233 [FIN, ACK] Seq=2856 Ack=293 Win=64000 Len=0

54 443 → 49251 [FIN, ACK] Seq=5937 Ack=307 Win=62976 Len=0

60 49230 → 443 [ACK] Seq=1805 Ack=538371 Win=496896 Len=0

54 443 → 49244 [FIN, ACK] Seq=14405 Ack=774 Win=32512 Len=0

60 49214 → 443 [ACK] Seq=714 Ack=9625 Win=65792 Len=0

54 443 → 49245 [ACK] Seq=5345 Ack=321 Win=31488 Len=0

60 49225 → 443 [ACK] Seq=2029 Ack=25028 Win=65024 Len=0

60 49226 → 80 [ACK] Seq=2 Ack=2 Win=66304 Len=0

Description of any interesting files:

[Malicious Behavior: June11.dll malware download

Wireshark search string: Ip.src == 10.6.12.203 && http.request.method == GET

- Domain name of the users' custom site:
 Wpad.Frank'n'Ted.com (windows proxy auto discovery)
- IP address of the Domain Controller (DC) of the AD network: 10.6.12.12
- Type of traffic observed : GET request was made by IP - 10.6.12.203 for a known malware file called "June11.dll"
- File was exported by us and posted to Virustotal.com
- Specific user activity (browsing, POST GET Etc): No other mentions of file June11.dll were found.
- Description of any interesting files: June11.dll is listed on virus total as a Trojan type malware with a HIGH threat level by 49 security vendors

June 11.dll Threat level: High 10 out of 10

49 security vendors have identified this file as a Trojan type malware

https://maltiverse.com > sample

june11.dll - Malicious Sample - Maltiverse

Jul 13, 2020 — june11.dll. Classification: malicious. Tags. Blacklist sightings. Description, Source, First Seen, Last Seen, Labels. Trojan.

https://app.any.run > tasks

june11.dll (MD5: 2545B15483165D00D1B6D63D9FD0821D)

Jun 11, 2021 — Interactive malware hunting service. Live testing of most type of threats in any environments. No installation and no waiting necessary.

Vulnerable Windows Machines

Infected machine

Information about the infected Windows machine:

Host name: Rotterdam-PC

IP address: 172.16.4.205

MAC address: (00:59:07:b0:63:a4)

 Username of the Windows user whose computer is infected:
 mattijs.devries

- IPs used in the infected traffic 172.16.4.205 and 172.16.4.4
- The Screenshot of this desktop
 was captured by isolating
 http traffic in PNG format.
 "Ctrl-Shift-O" allows wireshark
 view images.

[Torrent downloading]

Summary - The machines using torrents live in the range 10.0.0.0/24 and are clients of an AD domain.

- IP address 10.0.0.201 Belongs to Elmer Blanco
- MAC address: (00:16:17:18:66:c8)
- Windows username: elmer.blanco
- OS version: Windows NT 10.0
- The DC is associated with the domain dogoftheyear.net

- Specific user activity browsing: GET request of copyrighted Torrent file:
 Betty_Boop_Rythm_on_the_Reservation.avi.torrent
- Description of any interesting files: most of the torrent files are known to contain copyrighted material. ... If they find any trace of illegal torrent file downloads, or any copyrighted torrent file, the torrent users are liable to face legal consequences for their illegal actions over the internet.

