1

Assignment 4

EE24Btech11024 - G. Abhimanyu Koushik

1) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x - 1$ and $g: \mathbb{R} - \{-1, 1\} \to \mathbb{R}$ be defined as $g(x) = \frac{x^2}{x^2 - 1}$. Then the function $f \circ g$ is:						
				(Jun 2022)		
a) one-one but not ontob) onto but not one-one		c) both one-one and or d) neither one-one nor				
2) If the system of equations, then the ord	$5z = \beta$, has infinite	nitely many				
solutions, then the ordered pair (α, β) is equal to: (Jur						
a) $(1, -3)$	b) (-1,3)	c) (1,3)	d) $(-1, -3)$			
3) If $A = \sum_{n=1}^{\infty} \frac{1}{(3+(-1)^n)^n}$ and $B = \sum_{n=1}^{\infty} \frac{(-1)^n}{(3+(-1)^n)^n}$, then $\frac{A}{B}$ is equal to: (Jun 2022)						
a) $\frac{11}{9}$	b) 1	c) $-\frac{11}{9}$	d) $-\frac{11}{3}$			
4) $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$ is e	qual to:			(Jun 2022)		
a) $\frac{1}{3}$	b) 1/4	c) $\frac{1}{6}$	d) $\frac{1}{12}$			
5) Let $f(x) = \min\{1, 1 + x \sin x\}$, $0 \le x \le 2\pi$. If m is the number of points where f is not differentiable and n is the number of points where f is not continuous, then the ordered pair (m, n) is equal to (Jun 2022)						
a) (2,0)	b) (1,0)	c) (1,1)	d) (2, 1)			
6) Consider a cuboid of sides $2x$, $4x$ and $5x$ and a closed hemisphere of radius r . If the sum of their surface areas is constant k , then the ratio $x:r$, for which the sum of their volumes is maximum is (Jun 2022)						
a) 2:5	b) 19:45	c) 3:8	d) 19:15			
7) The area of region bounded by $y^2 = 8x$ and $y^2 = 16(3 - x)$ is equal to: (Jun 2022)						
a) $\frac{32}{3}$	b) $\frac{40}{3}$	c) 16	d) 19			
8) If $\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} dx = g(x) + c$, $g(1) = 0$, then $g(\frac{1}{2})$ is equal to: (Jun 2022)						

	a) $\log_e \left(\frac{\sqrt{3}-1}{\sqrt{3}+1} \right) + \frac{\pi}{3}$	b) $\log_e(\frac{\sqrt{3}+1}{\sqrt{3}-1}) + \frac{\pi}{3}$	c) $\log_e\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) - \frac{\pi}{3}$	d) $\log_e\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) - \frac{\pi}{6}$		
9)	If $y = y(x)$ is the solution $y = y(x)$ and $y = y(x)$ is the function $y = y(x)$.	on of the differential equat $(x) = x^2y(x) - e^x, x \in \mathbb{R}$ i	$ \sin x \frac{dy}{dx} + 2y = xe^x, y(1) = xe^x $	0 then the local maximum		
	varies of the function 2.	$(x) = x y(x) = 0$, $x \in \mathbb{R}^{2}$		(Jun 2022)		
	a) 1 – <i>e</i>	b) 0	c) $\frac{1}{2}$	d) $\frac{4}{e} - e$		
10) If the solution to the differential equation $\frac{dy}{dx} + e^x(x^2 - 2)y = (x^2 - 2x)(x^2 - 2)e^{2x}$ satisfies y (then the value of y (2) is						
	then the value of y (2)			(Jun 2022)		
	a) -1	b) 1	c) 0	d) <i>e</i>		
11) If m is the slope of a common tangent to curves $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and $x^2 + y^2 = 12$, then $12m^2$ is equal to: (Jun 2022)						
	a) 6	b) 9	c) 10	d) 12		
12) The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellip $x^2 + 2y^2 = 4$ is an ellipse with eccentricity:						
	x + 2y = 4 is an emp	se with eccentricity.		(Jun 2022)		
	a) $\frac{\sqrt{3}}{2}$	b) $\frac{1}{2\sqrt{2}}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{1}{2}$		
13) The normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{9} = 1$ at the point $(8, 3\sqrt{3})$ on it passes through the point: (Jun 2022)						
	a) $(15, -2\sqrt{3})$	b) $(9, 2\sqrt{3})$	c) $(-1, 9\sqrt{3})$	d) $(-1, 6\sqrt{3})$		
14) If the plane $2x + y - 5z = 0$ is rotated about its line of intersection with the plane $3x - y + 4z - 7 = 0$						
by an angle $\frac{\pi}{2}$, then the plane after the rotation passes through the point: (Jun 2022)						
	a) (2, -2, 0)	b) (-2, 2, 0)	c) (1,0,2)	d) (-1, 0, -2)		
15) If the lines $\mathbf{r} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (3\hat{j} - \hat{k})$ and $\mathbf{r} = (\alpha \hat{i} - \hat{j}) + \mu (2\hat{i} - 3\hat{k})$ are co-planar, then the distance of the plane containing these two lines from the point $(\alpha, 0, 0)$ is:						
of the plane containing these two lines from the point $(\alpha, 0, 0)$ is:						
	a) $\frac{2}{9}$	b) $\frac{2}{11}$	c) 4/11	d) 2		