Command sequence in the main file

- 1. Create 1D transient reactive transport class object: my_RT_trans
- 2. Create 1D transient transport class object: my_tpt_trans
- 3. Create chemistry class object: my_chem
- 4. Write path to databases (including backslash or front slash depending on your OS)
- 5. Write path to input files for problem to be solved
- 6. Choose option for transport: either compute or read mixing ratios.

If option=0 (ie. compute mixing ratios):

- Read transport data: my_tpt_trans calls subroutine initialise_transport_1D_transient_RT
- Allocate transport arrays: my_tpt_trans calls subroutines allocate_arrays_PDE_1D and allocate_conc
- Compute mixing ratios: my_tpt_trans calls subroutine compute_mixing_ratios_Delta_t_homog
- Set transport attribute in reactive transport object: my_RT_trans calls set_transport_trans
- Read integration method for chemical reactions and set its attribute: my_RT_trans calls set_int_method_chem_reacts

If option=1 (ie. read mixing ratios):

- Set transport attribute in reactive transport object: my_RT_trans calls set_transport_trans
- Read time discretisation: my_RT_trans calls read_time_discretisation
- Read transport data to apply WMA: my_RT_trans calls read_transport_data_WMA
- 7. Read chemistry: my_chem calls read_chemistry
- 8. Call reactive mixing solver: there will be different solvers depending on the model for activity coefficients (ideal or not) and the WMA method (lumped or consistent): my_chem will call
 - If lumped and ideal: solve_reactive_mixing_ideal_lump
 - If consistent and ideal: solve_reactive_mixing_ideal_cons
 - If lumped and non-ideal: solve_reactive_mixing_lump
 - If consistent and non-ideal: solve_reactive_mixing_cons
- 9. Set chemistry attribute in reactive transport object: my_RT_trans calls set_chemistry
- 10. Write data and results: my_RT_trans calls write_RT_1D