# **Assignment 5: Integer Programming Problem**

# **Question #1:**



See the R Markdown file "sspenc12\_5 RMD" for details on the RStudio details for the solution. The critical path (longest path) found via the lpSolveAPI package is shown below (where a "1" means that the path is chosen):

```
arc.names
                 "1"
 [1,] "X12"
                 "0"
     "X13"
 [3,] "X24"
                 "0"
                 "1"
     "X25"
     "X35"
                 "0"
                 "0"
      "X46"
      "X47"
                 "0"
                 "1"
      "X57"
                 "0"
      "X58"
                 "0"
[10,] "X69"
                 "1"
      "X79"
Γ12,7 "X89"
                 "0"
```

The total time for the objective function using this path is 17 time units.

#### Problem #2:

### **Decision Variables:**

 $X_i$  – Where X is the number (in 1000's) of stock *i* that is purchased for the portfolio (*i* = 1:8) (1 = S1, 2 = S2, 3 = S3, 4 = H1, 5 = H2, 6 = H3, 7 = C1, 8 = C2)

## **Objective Function:**

Maximize the return, Z, from both growth and dividends.

Return for each stock is based off of the following calculation:

X<sub>i</sub>\*(Growth Rate\*Price Per Share + Expected Dividend)

Maximize 
$$Z = 4*X_1 + 6.5*X_2 + 5.9*X_3 + 5.4*X_4 + 5.15*X_5 + 10*X_6 + 8.4*X_7 + 6.25*X_8$$

## **Subject to Constraints:**

**Total Investment:** 

$$40*X_1 + 50*X_2 + 80*X_3 + 60*X_4 + 45*X_5 + 60*X_6 + 30*X_7 + 25*X_8 \le 2,500$$

Diversification:

$$40*X_1 + 50*X_2 + 80*X_3 \le 1,000$$

$$60*X_4 + 45*X_5 + 60*X_6 \le 1,000$$

$$30*X_7 + 25*X_8 \le 1,000$$

Minimum Investment:

 $40*X_1 \ge 100$ 

 $50*X_2 \ge 100$ 

 $80*X_3 \ge 100$ 

 $60*X_4 \ge 100$ 

 $45*X_5 \ge 100$ 

 $60*X_6 \ge 100$ 

 $30*X_7 \ge 100$ 

 $25*X_8 \ge 100$ 

And:

 $X_i$  are integers (i = 1:8)

1) The maximum return on the portfolio would be \$477,400 (which correlates to a 19.10% ROI) The investment strategy would be as follows:

```
Stock S1: 3,000 shares ($120,000 total)
Stock S2: 5,000 shares ($250,000 total)
Stock S3: 2,000 shares ($160,000 total)
Stock H1: 2,000 shares ($120,000 total)
Stock H2: 3,000 shares ($135,000 total)
Stock H3: 12,000 shares ($720,000 total)
Stock C1: 29,000 shares ($870,000 total)
Stock C2: 5,000 shares ($125,000 total)
```

Screenshot of the integer programming model is shown below (see R Markdown file for additional details of the code).

| Model name | e:  |     |     |     |      |     |     |      |    |      |
|------------|-----|-----|-----|-----|------|-----|-----|------|----|------|
|            | C1  | C2  | С3  | C4  | C5   | C6  | C7  | C8   |    |      |
| Maximize   | 4   | 6.5 | 5.9 | 5.4 | 5.15 | 10  | 8.4 | 6.25 |    |      |
| R1         | 40  | 50  | 80  | 60  | 45   | 60  | 30  | 25   | <= | 2500 |
| R2         | 40  | 50  | 80  | 0   | 0    | 0   | 0   | 0    | <= | 1000 |
| R3         | 0   | 0   | 0   | 60  | 45   | 60  | 0   | 0    | <= | 1000 |
| R4         | 0   | 0   | 0   | 0   | 0    | 0   | 30  | 25   | <= | 1000 |
| R5         | 40  | 0   | 0   | 0   | 0    | 0   | 0   | 0    | >= | 100  |
| R6         | 0   | 50  | 0   | 0   | 0    | 0   | 0   | 0    | >= | 100  |
| R7         | 0   | 0   | 80  | 0   | 0    | 0   | 0   | 0    | >= | 100  |
| R8         | 0   | 0   | 0   | 60  | 0    | 0   | 0   | 0    | >= | 100  |
| R9         | 0   | 0   | 0   | 0   | 45   | 0   | 0   | 0    | >= | 100  |
| R10        | 0   | 0   | 0   | 0   | 0    | 60  | 0   | 0    | >= | 100  |
| R11        | 0   | 0   | 0   | 0   | 0    | 0   | 30  | 0    | >= | 100  |
| R12        | 0   | 0   | 0   | 0   | 0    | 0   | 0   | 25   | >= | 100  |
| Kind       | Std | Std | Std | Std | Std  | Std | Std | Std  |    |      |
| Type       | Int | Int | Int | Int | Int  | Int | Int | Int  |    |      |
| Upper      | Inf | Inf | Inf | Inf | Inf  | Inf | Inf | Inf  |    |      |
| Lower      | 0   | 0   | 0   | 0   | 0    | 0   | 0   | 0    |    |      |

```
[1] 0
[1] 477.4
[1] 3 5 2 2 3 12 29 5
```

2) The maximum return on the portfolio with no integer restriction would be \$487,152.80 (which correlates to a 19.50% ROI) This means there is a 0.4% increase in ROI by removing the integer restriction. The investment strategy would be as follows:

```
Stock S1: 2,500 shares ($100,000 total) – (This is a -16.7% change from Part 1) Stock S2: 6,000 shares ($300,000 total) – (This is a 20% change from Part 1) Stock S3: 1,250 shares ($100,000 total) – (This is a -37.5% change from Part 1) Stock H1: 1,667 shares ($100,020 total) – (This is a -16.7% change from Part 1) Stock H2: 2,222 shares ($99,990 total) – (This is a -25.9% change from Part 1) Stock H3: 13,333 shares ($799,980 total) – (This is a 11.1% change from Part 1) Stock C1: 30,000 shares ($900,000 total) – (This is a 3.5% change from Part 1) Stock C2: 4,000 shares ($100,000 total) – (This is a -20% change from Part 1)
```

Screenshot of the updated linear model is shown below (see R Markdown file for additional details on the coding).

| Model name: |      |      |      |      |      |      |      |      |    |      |
|-------------|------|------|------|------|------|------|------|------|----|------|
|             | C1   | C2   | C3   | C4   | C5   | C6   | C7   | C8   |    |      |
| Maximize    | 4    | 6.5  | 5.9  | 5.4  | 5.15 | 10   | 8.4  | 6.25 |    |      |
| R1          | 40   | 50   | 80   | 60   | 45   | 60   | 30   | 25   | <= | 2500 |
| R2          | 40   | 50   | 80   | 0    | 0    | 0    | 0    | 0    | <= | 1000 |
| R3          | 0    | 0    | 0    | 60   | 45   | 60   | 0    | 0    | <= | 1000 |
| R4          | 0    | 0    | 0    | 0    | 0    | 0    | 30   | 25   | <= | 1000 |
| R5          | 40   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | >= | 100  |
| R6          | 0    | 50   | 0    | 0    | 0    | 0    | 0    | 0    | >= | 100  |
| R7          | 0    | 0    | 80   | 0    | 0    | 0    | 0    | 0    | >= | 100  |
| R8          | 0    | 0    | 0    | 60   | 0    | 0    | 0    | 0    | >= | 100  |
| R9          | 0    | 0    | 0    | 0    | 45   | 0    | 0    | 0    | >= | 100  |
| R10         | 0    | 0    | 0    | 0    | 0    | 60   | 0    | 0    | >= | 100  |
| R11         | 0    | 0    | 0    | 0    | 0    | 0    | 30   | 0    | >= | 100  |
| R12         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 25   | >= | 100  |
| Kind        | Std  |    |      |
| Type        | Real |    |      |
| Upper       | Inf  |    |      |
| Lower       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |    |      |

```
[1] 0

[1] 487.1528

[1] 2.500000 6.000000 1.250000 1.666667 2.222222 13.333333 30.000000 4.000000
```