AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) An arrangement of differential pairs of wires that
2	carry differential signals across a semiconductor chip, comprising:
3	a set of parallel tracks on the semiconductor chip that are used to route the
4	differential pairs of wires;
5	wherein each differential pair of wires includes a true wire and a
6	complement wire that carry corresponding true and complement signals;
7	wherein the differential pairs of wires are non-adjacent, so that each true
8	wire is separated from its corresponding complement wire by at least one
9	intervening wire in the set of parallel tracks, thereby reducing coupling
10	capacitance between corresponding true and complement wires; and
11	one or more twisting structures, wherein a twisting structure twists a
12	differential pair of wires so that the corresponding true and complement wires are
13	interchanged within the set of parallel tracks, and wherein the one or more
14	twisting structures are arranged so that substantially zero net differential coupling
15	capacitance exists for each differential pair of wires.
16	wherein the set of parallel tracks includes a possibly repeating pattern of
17	six adjacent tracks, including a first track, which is adjacent to a second track,
18	which is adjacent to a third track, which is adjacent to a fourth track, which is
19	adjacent to a fifth track, which is adjacent to a sixth track;

20	wherein the differential pairs of wires include a first differential pair, A
21	and \overline{A} , a second differential pair, B and \overline{B} , and a third differential pair, C and
22	$\overline{\underline{C}}$;
23	wherein A starts in the first track, B starts in the second track, \overline{A} starts in
24	the third track, C starts in the fourth track, \overline{B} starts in the fifth track and \overline{C} starts
25	in the sixth track; and
26	wherein a first twisting structure causes A and \overline{A} to interchange, so that
27	$\underline{\overline{A}}$ is in the first track, B is in the second track, A is in the third track, C is in the
28	fourth track, \overline{B} is in the fifth track and \overline{C} is in the sixth track.
1	2-6 (Canceled).
1	7. (Currently amended) The arrangement of claim 1-claim 6, wherein the
2	first twisting structure is located approximately one half of the way down the set
3	of parallel tracks.
1 2 3	8. (Currently amended) The arrangement of <u>claim 1</u> -claim 6, wherein the first twisting structure is located more than one half of the way down the set of parallel tracks.
1	9-11 (Canceled).
1	12. (Original) The arrangement of claim 1,
2	wherein the set of parallel tracks are located within the same metal layer in
3	the semiconductor chip; and

4	wherein the one or more twisting structures use at least one other metal
5	layer to interchange signals between tracks.
1	13. (Currently amended) A method for arranging differential pairs of wires
2	to carry differential signals across a semiconductor chip, wherein each differential
3	pair of wires includes a true wire and a complement wire that carry corresponding
4	true and complement signals, the method comprising:
5	defining a set of parallel tracks on the semiconductor chip, which are used
6	to route the differential pairs of wires;
7	mapping differential pairs of wires to tracks so that the differential pairs of
8	wires are non-adjacent, which means that each true wire is separated from its
9	corresponding complement wire by at least one intervening wire in the set of
10	parallel tracks, thereby reducing coupling capacitance between corresponding true
11	and complement wires; and
12	locating one or more twisting structures, wherein a twisting structure
13	twists a differential pair of wires so that the corresponding true and complement
14	wires are interchanged within the set of parallel tracks, wherein the one or more
15	twisting structures are located so that substantially zero net differential coupling
16	capacitance exists for each differential pair of wires,
17	wherein the set of parallel tracks includes a possibly repeating pattern of
18	six adjacent tracks, including a first track, which is adjacent to a second track,
19	which is adjacent to a third track, which is adjacent to a fourth track, which is
20	adjacent to a fifth track, which is adjacent to a sixth track;
21	wherein the differential pairs of wires include a first differential pair, A
22	and \overline{A} , a second differential pair, B and \overline{B} , and a third differential pair, C and

24	wherein A starts in the first track, B starts in the second track, A starts in
25	the third track, C starts in the fourth track, \overline{B} starts in the fifth track and \overline{C} starts
26	in the sixth track; and
27	wherein a first twisting structure causes A and \overline{A} to interchange, so that
28	\overline{A} is in the first track, B is in the second track, A is in the third track, C is in the
29	fourth track, \overline{B} is in the fifth track and \overline{C} is in the sixth track.
1	14-24 (Canceled).
1	25. (New) The method of claim 13, wherein the first twisting structure is
2	located approximately one half of the way down the set of parallel tracks.
1	26. (New) The method of claim 13, wherein the first twisting structure is
2	located more than one half of the way down the set of parallel tracks.
1	27. (New) The method of claim 13,
2	wherein the set of parallel tracks are located within the same metal layer in
3	the semiconductor chip; and
4	wherein the one or more twisting structures use at least one other metal
5	layer to interchange signals between tracks.