Chapter 12

Vectors and the Geometry of Space

12.1 Two and Three Dimensional Space

Definition 1. Let \mathbb{R} be the collection of real numbers, let \mathbb{R}^2 be the collection of all **ordered** pairs of real numbers, and let \mathbb{R}^3 be the collection of all **ordered triples** of real numbers.

 \mathbb{R} is known as the real line, \mathbb{R}^2 is known as the real plane or the xy-plane, and \mathbb{R}^3 is known as real (3D) space or xyz-space.

Definition 2. The distance between two points $P=(x_1,y_1)$ and $Q=(x_2,y_2)$ in \mathbb{R}^2 is given by the formula

 $d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The distance between two points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ in \mathbb{R}^3 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Problem 3. Plot and find the distance between the following pairs of points:

$$d(P,Q) = \sqrt{(3+2)^2 + (-6-6)^2}$$

$$= \sqrt{5^2 + 17^2}$$

$$= \sqrt{75 + 144}$$

$$= \sqrt{169}$$

$$d(\ell, Q) = \sqrt{(8-4)^2 + (-2-2)^2 + (7-4)^2}$$

$$= \sqrt{4^2 + 4^2 + 6^2}$$

$$= \sqrt{68}$$

$$= \sqrt{2517}$$

Definition 4. Simple lines in \mathbb{R}^2 are given by the relations x = a, and y = b for real numbers a, b.

Simple planes in \mathbb{R}^3 are given by the relations $x=a,\,y=b,\,z=c$ for real numbers a,b,c.

Definition 5. A circle in \mathbb{R}^2 is the set of all points a fixed distance (called its radius) from a fixed point (called its center). For a center (a, b) and radius r, the equation for a circle is

$$(x-a)^2 + (y-b)^2 = r^2$$

A sphere in \mathbb{R}^3 is the set of all points a fixed distance (called its radius) from a fixed point (called its center). For a center (a, b, c) and radius r, the equation for a sphere is

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Question 6. Sketch the following curves and surfaces.

- x = 3 in the xy-plane and xyz-space.
- y = -1 in the xy-plane and xyz-space.
- z = 0 in xyz-space.
- $(x-2)^2 + (y+1)^2 = 9$ in the xy-plane.
- $x^2 + y^2 + z^2 = 4$ in xyz-space.
- $x^2 + (y-1)^2 + z^2 = 1$ in xyz-space.

R² x=3 in R³

(certer (0,1,0) radius 1

Suggested Homework: Section 12.1 numbers 4, 6, 7, 8, 10, 11, 12, 14, 15, 16

12.2 Vectors

Definition 7 (Vector). A vector $\vec{\mathbf{v}}$ is a mathematical object that stores a magnitude (a nonnegative real number often thought of as length) and direction. Two vectors are equal if and only if they have the same magnitude and direction.

Definition 8. The zero vector $\vec{0}$ has zero magnitude and no direction. (This is the only vector without a direction.)

Definition 9. For a given point P = (a, b) in \mathbb{R}^2 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b \rangle$: the vector from the origin (0, 0) to the point P = (a, b).

For a given point P = (a, b, c) in \mathbb{R}^3 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b, c \rangle$: the vector from the origin (0, 0, 0) to the point P = (a, b, c).

Theorem 10. Two vectors are equal if and only if they share the same magnitude and direction as a common position vector.

Definition 11. Since all vectors are equal to some position vector $\langle a, b \rangle$ or $\langle a, b, c \rangle$, we usually define vectors by a position vector written in this **component form**. Since the component form of a vector stores the same information as a point, we will use both interchangeably, that is, $\langle a, b \rangle = (a, b) \in \mathbb{R}^2$ and $\langle a, b, c \rangle = (a, b, c) \in \mathbb{R}^3$ (although we usually sketch them differently).

Problem 12. Plot the following points and position vectors.

- (1,3) and (1,3) in the xy-plane.
- (-2,5) and $\langle -2,5\rangle$ in the xy-plane.
- (1,1,-3) and (1,1,-3) in xyz-space.

Definition 13. Let $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$. Then the vector with initial point P and terminal point Q is defined as

$$\overrightarrow{\mathbf{PQ}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Problem 14. Plot and sketch the points P, Q and the vector \overrightarrow{PQ} for each.

- P = (1,3), Q = (-3,6) in the xy-plane
- P = (3, 1), Q = (0, -2) in the xy-plane
- P = (1, 1, 1), Q = (-3, -1, 3) in xyz-space
- P = (-2, 0, 3), Q = (1, 3, -3) in xyz-space

Definition 15. The magnitude $|\vec{\mathbf{v}}|$ of a vector $\vec{\mathbf{v}}$ in \mathbb{R}^2 or \mathbb{R}^3 is the distance between its initial and terminal points.

Theorem 16. The magnitude of $\vec{\mathbf{v}} = \langle a, b \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2}$$

The magnitude of $\vec{\mathbf{v}} = \langle a, b, c \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2 + c^2}$$

Problem 17. Evaluate the magnitude of the following vectors:

•
$$|\langle 5, 5 \rangle| = \sqrt{25+25} = 5\sqrt{2}$$

• $|\langle -4, 3 \rangle| = \sqrt{16+9} = 5$
• $|\langle 12, -5 \rangle| = \sqrt{144+25} = \sqrt{169} = 13$
• $|\langle 3, 1, -2 \rangle| = \sqrt{9+1+4} = \sqrt{14}$

•
$$|\langle 4, -2, -4 \rangle| = \sqrt{||6+4||6||} = \sqrt{36} = 6$$

• $|\langle 8, 0, -6 \rangle| = \sqrt{||6+4||6||} = \sqrt{36} = \sqrt{0}$

12.2.1Basic Vector Operations

Definition 18. Vector addition is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$$

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Definition 19. A scalar is simply a real number by itself (as opposed to a vector of real numbers).

Definition 20. Scalar multiplication of a vector is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3 :

$$k\vec{\mathbf{u}} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$
$$k\vec{\mathbf{u}} = k\langle u_1, u_2, u_3 \rangle = \langle ku_1, ku_2, ku_3 \rangle$$

Problem 21. Sketch the following vectors

- $\vec{\mathbf{u}} = \langle 1, -3 \rangle$, $\vec{\mathbf{v}} = \langle 3, 1 \rangle$ and $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ in the *xy*-plane.

Definition 22. A vector $\vec{\mathbf{v}}$ is a unit vector if $|\vec{\mathbf{v}}| = 1$.

Theorem 23. For any non-zero vector $\vec{\mathbf{v}}$, the vector

$$\frac{1}{|\vec{\mathbf{v}}|}\vec{\mathbf{v}} = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$$

is a unit vector.

Definition 24. The direction of a vector $\vec{\mathbf{v}}$ is the unit vector $\frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$.

Theorem 25. Any vector $\vec{\mathbf{v}}$ is the scalar product of its magnitude and direction:

$$ec{\mathbf{v}} = |ec{\mathbf{v}}| rac{ec{\mathbf{v}}}{|ec{\mathbf{v}}|}$$

Problem 26. Write the following vectors as the scalar product of their magnitude and

Magnitudes
(5,5) - 312 (5/2,5/2

Magnitudes
(-4,3) = 5 (-4,3)

•
$$\langle 4, -2, -4 \rangle = 6 \left\langle \frac{4}{6}, -\frac{2}{6}, \frac{4}{6} \right\rangle = 6 \left\langle \frac{2}{3}, -\frac{1}{3}, \frac{2}{3} \right\rangle$$

•
$$\langle 8, 0, -6 \rangle = |0 \langle \frac{9}{5}, 0, -\frac{6}{5} \rangle = |0 \langle \frac{4}{5}, 0, -\frac{3}{5} \rangle$$

Definition 27. The standard unit vectors in \mathbb{R}^2 are $\hat{\mathbf{i}} = \langle 1, 0 \rangle$ and $\hat{\mathbf{j}} = \langle 0, 1 \rangle$, and any vector in \mathbb{R}^2 can be expressed in standard unit vector form:

$$\langle a, b \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$$

The standard unit vectors in \mathbb{R}^3 are $\hat{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\hat{\mathbf{j}} = \langle 0, 1, 0 \rangle$, and $\hat{\mathbf{k}} = \langle 0, 0, 1 \rangle$, and any vector in \mathbb{R}^3 can be expressed in standard unit vector form:

$$\langle a, b, c \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

Note 28. Since the xy-plane is the plane z=0 in xyz-space, we say the points (a,b)=(a, b, 0) and vectors $\langle a, b \rangle = \langle a, b, 0 \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + 0\hat{\mathbf{k}}$ are equal.

Suggested Homework: Section 12.2 numbers 3, 5, 13, 14, 15, 19, 21, 24, 26