HO CHI MINH UNIVERSITY OF TECHNOLOGY

FACULTY OF COMPUTER SCIENCE AND ENGINEERING COURSE: LOGIC DESIGN WITH HDL (CO1025)

Logic Design Lab:

Weekly report - 1

Lecturer: Pham Quoc Cuong

Student: Phan Minh Toan - 1852798

Tran Nguyen Khoi - 1952797 Hua Vu Minh Hieu - 2052990 Nguyen Quang Khoi - 2153485

Ho Chi Minh, April 2022

Ho Chi Minh University of Technology Faculty of Computer Science and Engineering

Contents

1	Exercise 1	3
2	Exercise 2	4
3	Exercise 3	6
4	Exercise 4	7

Ho Chi Minh University of Technology Ho Chi Minh University of Issued Science and Engineering

List of Figures

1	Decoder 1 to 2 RTL Module
2	Multiplexer 2 to 1 RTL Module
3	Multiplexer 2 to 1 Testbench Waveform
4	Half Adder RTL Module
5	Full Adder Block
6	Full Adder RTL Module 6
7	Full Adder Testbench Waveform 6
8	4 Bit Ripple Carry Adder RTL Module
9	4 Bit Ripple Carry Adder RTL Module Testbench Waveform . 7
10	2 Bit Comparator RTL
11	4 Bit Comparator RTL
12	4 Bit Comparator Testbench Waveform

Listings

Figure 1: Decoder 1 to 2 RTL Module

Figure 2: Multiplexer 2 to 1 RTL Module

Ho Chi Minh University of Technology Faculty of Computer Science and Engineering

Figure 3: Multiplexer 2 to 1 Testbench Waveform

2 Exercise 2

Full Adder Module will be constructed by 2 Half Adder Module.

Figure 4: Half Adder RTL Module

Figure 5: Full Adder Block

Figure 6: Full Adder RTL Module

Figure 7: Full Adder Testbench Waveform

3 Exercise 3

The idea behind design a 4-bit Ripple Carry Adder is to have 4 1-bit full adders for the addition of each bit of 2 inputs orderly. Each bit of the sum will be the addition between bits of 2 inputs orderly.

Figure 8: 4 Bit Ripple Carry Adder RTL Module

Figure 9: 4 Bit Ripple Carry Adder RTL Module Testbench Waveform

4 Exercise 4

In the 2-bit Comparator Module, it will take 2 2-bit inputs to give out the value of greater, less than and equal between 2 inputs. If 1 in 3 outputs is active, the other two will be assigned to bit 0.

Figure 10: 2 Bit Comparator RTL

In the 4-bit Comparator Module, 2 2-bit Comparators will be used to compare the first 2 bits and the last 2 bits between 2 inputs. The Module will continue to process the output of the 2 sub modules to give out the final comparison of a 4 bit Comparator.

Figure 11: 4 Bit Comparator RTL

Weekly report 1 Academic year 2021 - 2022

Ho Chi Minh University of Technology Faculty of Computer Science and Engineering

Figure 12: 4 Bit Comparator Testbench Waveform