In the first stage of the mass spectrometer, with $\mathbf{E}=E_0\hat{z}$ (pointing upward) and $\mathbf{B}=B_0\hat{x}$ (pointing out of the page), which particles travel through in a straight line?

- A. All particles regardless of speed
- B. Particles with speed B_0/E_0
- C. Particles with speed E_0/B_0
- D. Can't tell without knowing q and/or m

You may assume all particles move exclusively in the +y direction.

Can we use the same mass spectrometer set up for negatively and positively charged particles? That is, will our set up distinguish between particles of a given mass and differently-signed charges?

A. Yes

B. No

If we place a physical filter (i.e., a piece of metal with a thin slot that is a bit larger than the beam width to avoid diffraction) at the end of the first stage, which particles (assume they are all positively charged) hit the upper-part of the filter? Which hit the lower part?

- A. Fast moving particles hit the upper part; slow ones hit the lower part
- B. Slow moving particles hit the upper part; fast ones hit the lower part
- C. It's not possible to tell without q and/or m

For our velocity selector where $\mathbf{E}=E_0\hat{z}$ and $\mathbf{B}=B_0\hat{x}$ and we start particles from rest, we end up with the following **coupled** equations of motion,

$$m\dot{v}_y = qv_z B_0$$

$$m\dot{v}_z = qE_0 - qv_y B_0$$

How might we solve them for y(t) and z(t)?

- A. Just integrate the equations of motion
- B. Guess the general solution
- C. Take the time derivative of one and plug into the other
- D. Give up???