Propriétés de base

2024-2025

Table des matières

1	Revêtements 1.1 Degré	1 1
2	Relèvement de chemins	2
3	Relèvement des homotopies	2
4	En pratique	3

1 Revêtements

Un revêtement de X est la donnée d'un ensemble F, et pour chaque $x \in X$ de l'existence d'un ouvert $x \in U \subset X$ d'un diagramme commutatif

$$U \times F \qquad \simeq \qquad p^{-1}U \longleftrightarrow \widetilde{X} \qquad \qquad \downarrow^p \qquad$$

tel que $x \in U$ dans Top où F est discret. Ducoup U **trivialise** le revêtement. Je note U_x un ouvert trivialisant qui contient x.

1.1 Degré

Le degré est donné par

$$\deg \colon X \to \mathbb{N} \cup \infty$$

via $\deg(x) := \#p^{-1}x$. Avec la topologie discrète sur \mathbb{N} le degré est continu. En général c'est localement constant ducoup et si X est connexe le degré est constant.

Remarque 1. La continuité c'est que pour x tel que $\deg(x) = n$ alors $U_x \subset \deg^{-1} n$. En fait $\deg^{-1} n = \bigcup_{\deg(y)=n} U_y$.

2 Relèvement de chemins

Étant donné $p: \tilde{X} \to X$ et $\gamma: I \to X$. Pour tout $t \in I$ on associe $U_t \subset X$ trivialisant avec $\gamma(t) \in U_t$. Ensuite $\bigcup_{t \in I} \gamma^{-1} U_t = I$ et par compacité et décomposition en composantes connexes, on a un recouvrement minimal

$$I = \bigcup_{k=0}^{n-1} I_k$$

où les I_k sont ouverts connexes par arcs. On pose $t_0=0$ et $t_n=1$, puis $t_k\in I_{k-1}\cap I_k$ pour $1\leq k\leq n-1$. Puis

$$\gamma_k := \gamma|_{I_k}$$

ensuite par déf $\gamma(I_k) \subset V_k$ est dans un ouvert trivialisant. Maintenant on peut tout construire : si $\gamma_0(0) = x_0$, à un choix $\tilde{x}_0 \in p^{-1}(x_0)$ on pose

$$p_0 := p^{-1} \colon V_0 \to \tilde{V}_0$$

c'est un homéomorphisme, puis $\tilde{\gamma}_0 := p_0(\gamma_0)$, ça lift uniquement γ sur $[0, t_1]$. Maintenant, en supposant que les γ_j sont liftés en $\tilde{\gamma}_j$ pour $0 \le j \le k-1$ on réitère avec $x_k = \gamma_{k-1}(t_k)$ et $\tilde{x}_k = p_{k-1}(\gamma_{k-1}(t_k))$. Alors γ_{k-1} et γ_k sont toujours composables dans le groupoide et le lift de γ est unique immédiatemment via les lifts locaux.

3 Relèvement des homotopies

On regarde une homotopie $f_t \colon Y \to X$ ou $F \colon Y \times I \to X$, on suppose qu'on a un lift $\tilde{F} \colon Y \times \{0\} \to \tilde{X}$. On construit pour tout $y \in Y$ un lift local unique $N \times I \to \tilde{X}$ de F avec $y \in N$. Pour ça : pour chaque $t \in I$, on pose U_t tel que $f_t(y) \in U_t$ est trivialisant, ensuite si on écrit

$$F^{-1}(U_t) = N_t \times J_t = \cup_{j \in J_t} N_t \times I_j$$

où I_j est un intervalle alors

$$I = \bigcup_{t \in I} F^{-1}(U_t) = \bigcup_{t \in I} \bigcup_{j \in J_t} N_t \times I_j$$

puis par compacité de I,

$$I = p_I(\bigcup_{i=1}^n N_{t_i} \times I_{t_i})$$

et même

$$I = p_I(\cup_{i=1}^n N \times I_{t_i})$$

avec $N = \bigcap_i N_{t_i}$. En plus $y \in p_Y(N \times I_{t_i})$ et

$$F(N \times I_{t_i}) \subset U_{t_i}$$

est trivialisant d'où les conditions qu'on voulait.

Maintenant le lift se construit exactement de la même manière que pour les chemins, avec la conditions initiales étant le lift $N \times \{0\}$ qu'on a déjà, et la condition de récurrence étant le lift de $N \times \{t_i\}$ qui est fournit via $p_i^{-1}F|_{N\times[t_{i-1},t_i]}(N\times\{t_i\})$ qui est supposée construite. Ici, $p_i\colon \tilde{U}_{t_i}\to U_{t_i}$ est choisie via $f_{t_{i-1}}(y)\in U_{t_i}$ et $p_{i-1}^{-1}(f_{t_{i-1}}(y))$

4 En pratique

Étant donné un revêtement pointé $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$, la condition initiale pour relever des chemins c'est le point base \tilde{x}_0 et pour relever des homotopies c'est un chemin base $p_*\gamma = f_0$.

L'unicité du chemin force le relèvement pointé. L'unicité d'homotopies force le chemin d'arrivée dès le point choisi.

C'est TRÈS rigide.