

A 2-ADIC CONTROL THEOREM FOR MODULAR CURVES

NARASIMHA KUMAR

ABSTRACT. We study the behaviour of ordinary parts of the homology modules of modular curves, associated to a decreasing sequence of congruence subgroups $\Gamma_1(N2^r)$ for $r \geq 2$, and prove a control theorem for these homology modules.

1. INTRODUCTION

Hida theory studies the modular curves associated to the following congruence subgroups, for primes $p \geq 5$ and $(p, N) = 1$,

$$\cdots \subset \Gamma_1(Np^r) \subset \cdots \subset \Gamma_1(Np). \quad (*)$$

Let Y_r denote the Riemann surface associated to the congruence subgroup $\Gamma_1(Np^r)$. One of the important results in Hida theory [3] is that the projective limit of ordinary parts of the homology modules, i.e., $W^{\text{ord}} := \varprojlim_r H_1(Y_r, \mathbb{Z}_p)^{\text{ord}}$, is a free Λ -module of finite rank and

$$W^{\text{ord}}/\mathfrak{a}_r W^{\text{ord}} = H_1(Y_r, \mathbb{Z}_p)^{\text{ord}}, \quad (**)$$

for all $r \geq 1$, where \mathfrak{a}_r denotes the augmentation ideal of $\mathbb{Z}[[1 + p^r \mathbb{Z}_p]]$ and $\Lambda = \mathbb{Z}_p[[1 + p \mathbb{Z}_p]]$. In [1], Emerton gave a proof of these results above for primes $p \geq 5$, using algebraic topology of the Riemann surfaces Y_r .

Emerton's proof for $p \geq 5$ holds for $p = 3$ with $N > 1$ verbatim, but for $p = 2$ we show that similar results hold only after passing to smaller congruence subgroups. Moreover, there is no restriction on N , i.e., N can be equal to 1 (unlike when $p = 3$) (cf. Theorem 5.2 in the text). As a consequence of these results, we proved control theorems for ordinary 2-adic families of modular forms, see [2]. Some amount of calculations will be omitted and the reader should refer to those in [1] for more details.

2. PRELIMINARIES

Throughout this note, let $p = 2$, $q = 4$, and $N \in \mathbb{N}$ such that $(p, N) = 1$. We look at the modular curves associated to the following congruence subgroups

$$\cdots \subset \Gamma_1(Np^r) \subset \cdots \subset \Gamma_1(Nq).$$

If we take the homology with \mathbb{Z} -coefficients of the tower of modular curves, we get a tower of finitely generated free abelian groups

$$\cdots \rightarrow \Gamma_1(Np^r)^{\text{ab}} \rightarrow \cdots \rightarrow \Gamma_1(Nq)^{\text{ab}}, \quad (2.1)$$

because for $r \geq 2$, $H_1(\Gamma_1(Np^r) \setminus \mathbb{H}, \mathbb{Z}) = \Gamma_1(Np^r)^{\text{ab}}$, where \mathbb{H} denotes the upper half-plane. To understand (2.1), we introduce the congruence subgroups for $r \geq 2$:

$$\Phi_r^2 = \Gamma_1(Nq) \cap \Gamma_0(p^r).$$

Clearly, we have $\Gamma_1(Np^r) \subset \Phi_r^2 \subset \Gamma_1(Nq)$ and $\Gamma_1(Np^r)$ is a normal subgroup of Φ_r^2 . For $r \geq 2$, we define $\Gamma_r := \text{Ker}(\mathbb{Z}_p^\times \rightarrow (\mathbb{Z}_p/p^r\mathbb{Z}_p)^\times)$, which is a subgroup of Γ_2 with index p^{r-2} . Set $\Gamma := \Gamma_2$.

We define a morphism of groups

$$\Phi_r^2 \xrightarrow{\eta_r} \Gamma/\Gamma_r$$

via the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow d \bmod \Gamma_r. \quad (2.2)$$

Lemma 2.1. *The map η_r is surjective.*

Proof. Given a $\bar{d} \in \Gamma/\Gamma_r$, we can take a lift d of \bar{d} of the form $1 + kqN$ for some $k \in \mathbb{Z}$, because for any $\alpha, \beta \in \Gamma$, $\alpha \equiv \beta \pmod{\Gamma_r}$ if and only if $\alpha - \beta \in p^r\mathbb{Z}_p$. Now, take c to be Np^r . Clearly $(c, d) = 1$, and hence there exists $a, b \in \mathbb{Z}$ such that $ad - bc = 1$. We see that $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Phi_r^2$ and $\eta_r(\alpha) = \bar{d}$. \square

Remark 2.2. *The restriction of η_r to $\Phi_r^2 \cap \Gamma^0(p)$, which we denote by $\text{Res}(\eta_r)$, is also surjective onto Γ/Γ_r . Moreover, we have the following commutative diagram*

$$\begin{array}{ccc} \Phi_{r+1}^2 & \xrightarrow{\eta_{r+1}} & \Gamma/\Gamma_{r+1} \\ \downarrow t^{-1}-t & & \downarrow \\ \Phi_r^2 \cap \Gamma^0(p) & \xrightarrow{\text{Res}(\eta_r)} & \Gamma/\Gamma_r, \end{array}$$

where the group $\Gamma^0(p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid b \equiv 0 \pmod{2} \right\}$ and $t = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$.

By Lemma 2.1, we have the following short exact sequence of groups

$$1 \rightarrow \Gamma_1(Np^r) \rightarrow \Phi_r^2 \xrightarrow{\eta_r} \Gamma/\Gamma_r \rightarrow 1.$$

The action of Φ_r^2 on $\Gamma_1(Np^r)$ by conjugation induces an action of $\Phi_r^2/\Gamma_1(Np^r) = \Gamma/\Gamma_r$ on $\Gamma_1(Np^r)^{\text{ab}}$. Thus Γ acts naturally on $\Gamma_1(Np^r)^{\text{ab}}$. The morphisms in the chain

$$\cdots \rightarrow \Gamma_1(Np^r)^{\text{ab}} \rightarrow \cdots \rightarrow \Gamma_1(Nq)^{\text{ab}}$$

are clearly Γ -equivariant.

If $r \geq s > 1$, we denote by Φ_r^s the subgroup of Φ_r^2 containing $\Gamma_1(Np^r)$ whose quotient by $\Gamma_1(Np^r)$ equals Γ_s/Γ_r , i.e., $\Phi_r^s := \Gamma_1(Np^s) \cap \Gamma_0(p^r)$. Moreover, we have

$$\Gamma_1(Np^r)^{\text{ab}} \rightarrow \Phi_r^{s \text{ ab}} \rightarrow \Gamma_s/\Gamma_r \rightarrow 1.$$

For any $s > 1$, let γ_s denote a topological generator of Γ_s . Then the augmentation ideal \mathfrak{a}_s of $\Lambda = \mathbb{Z}_p[[\Gamma]]$ is a principal ideal generated by $\gamma_s - 1$. Similarly, for $i > 0$, $\Gamma_{s+i} = \langle \gamma_s^{p^i} \rangle$ and $\mathfrak{a}_{s+i} = (\gamma_s^{p^i} - 1)$. Clearly, for any $r \geq s > 1$, the augmentation ideal of $\mathbb{Z}[\Gamma_s/\Gamma_r]$ is \mathfrak{a}_s , and

$$\mathfrak{a}_s \Gamma_1(Np^r)^{\text{ab}} = [\Phi_r^s, \Gamma_1(Np^r)] / [\Gamma_1(Np^r), \Gamma_1(Np^r)] \subset \Gamma_1(Np^r)^{\text{ab}},$$

and the last inclusion follows since $\Gamma_1(Np^r)$ is a normal subgroup of Φ_r^s . The extension

$$1 \rightarrow \Gamma_1(Np^r) / [\Phi_r^s, \Gamma_1(Np^r)] \rightarrow \Phi_r^s / [\Phi_r^s, \Gamma_1(Np^r)] \rightarrow \Gamma_s/\Gamma_r \rightarrow 1$$

is a central extension of a cyclic group, thus the middle group is abelian, implying that

$$[\Phi_r^s, \Phi_r^s] = [\Phi_r^s, \Gamma_1(Np^r)].$$

The equality holds because of $\Phi_r^s \supseteq \Gamma_1(Np^r)$ and the fact that the commutator subgroup of the group $\Phi_r^s / [\Phi_r^s, \Gamma_1(Np^r)]$ is trivial.

Remark 2.3. *The following diagram is commutative*

$$\begin{array}{ccc} \frac{\Phi_r^s \cap \Gamma^0(p)}{\Gamma_1(Np^r) \cap \Gamma^0(p)} & \xrightarrow{i} & \frac{\Phi_r^s}{\Gamma_1(Np^r)} \\ \searrow \sim & & \downarrow \sim \\ & & \frac{\Gamma_s}{\Gamma_r}. \end{array}$$

The diagonal map is an isomorphism, by Remark 2.2. Since Γ_s / Γ_r is finite, we see that the inclusion i is an isomorphism. This remark is useful in proving Lemma 3.6.

To prove Theorems 4.1 and 5.2, we need to understand the images of these morphisms

$$\Gamma_1(Np^r)^{\text{ab}} \rightarrow \Gamma_1(Np^s)^{\text{ab}}$$

in the chain of homology groups as in (2.1). Unfortunately, we do not have a good characterization these images for $r \geq s > 1$ in general, and so we cannot get a good description of the projective limit. This morphism can be factored as

$$\Gamma_1(Np^r)^{\text{ab}} \twoheadrightarrow \Gamma_1(Np^r)^{\text{ab}} / \mathfrak{a}_s \hookrightarrow \Phi_r^{s \text{ ab}} \longrightarrow \Gamma_1(Np^s)^{\text{ab}},$$

and the problem is that the second and third morphisms may not be isomorphisms, in general.

Hida observed that if one applies a certain projection operator arising from the Atkin U -operator to all these modules then they become isomorphisms, in which case we have a good control over the images of the morphisms in (2.1). So we now define the Atkin U -operator and study their properties.

3. HECKE OPERATORS

Suppose G, H are two subgroups of a group T , and $t \in T$ such that $[G : t^{-1}Ht \cap G] < \infty$. Then one has

$$G^{\text{ab}} \xrightarrow{V} (t^{-1}Ht \cap G)^{\text{ab}} \xrightarrow{\sim} (H \cap tGt^{-1})^{\text{ab}} \longrightarrow H^{\text{ab}},$$

where V is the transfer map, the isomorphism is given by conjugating with t , and the last morphism is induced by $H \cap tGt^{-1} \hookrightarrow H$. Taking the composition of all these we obtain a morphism

$$[t] : G^{\text{ab}} \rightarrow H^{\text{ab}},$$

the ‘‘Hecke operator’’ corresponding to t .

In our case, take $T = \text{GL}_2(\mathbb{Q})$, $G = H =$ a congruence subgroup of SL_2 of level divisible by p , and $t = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$. We denote the corresponding Hecke operator by U_2 . For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Phi_r^s$, we see that

$$t^{-1}At = \begin{pmatrix} a & bp \\ c/p & d \end{pmatrix} \quad \text{and} \quad tAt^{-1} = \begin{pmatrix} a & b/p \\ cp & d \end{pmatrix}.$$

Remark 3.1. *Observe that $(1, 1), (2, 2)$ -entries of A and of $t^{\pm 1}At^{\mp 1}$ are the same.*

It is easy to see that $t^{-1}\Phi_r^s t \cap \Phi_r^s = \Phi_r^s \cap \Gamma^0(p)$, $\Phi_r^s \cap t\Phi_r^s t^{-1} = \Phi_{r+1}^s$, where the group $\Gamma^0(p)$ is as in Remark 2.2. Thus, the Atkin U -operator (resp. U' -operator) is by definition the composition

$$\Phi_r^{s \text{ ab}} \xrightarrow{V} (\Phi_r^s \cap \Gamma^0(p))^{\text{ab}} \xrightarrow[t-t^{-1}]{\sim} \Phi_{r+1}^{s \text{ ab}} \longrightarrow \Phi_r^{s \text{ ab}}, \quad (3.1)$$

(resp., the composition of the first two of above morphisms).

Lemma 3.2. *Suppose that $r \geq s > 1, r' \geq s' > 1, r \geq r', s \geq s'$, so that $\Phi_r^s \subset \Phi_{r'}^{s'}$. Then the following diagram commutes*

$$\begin{array}{ccc} \Phi_r^{s \text{ ab}} & \longrightarrow & \Phi_{r'}^{s' \text{ ab}} \\ \downarrow U' & & \downarrow U' \\ \Phi_{r+1}^{s \text{ ab}} & \longrightarrow & \Phi_{r'+1}^{s' \text{ ab}}. \end{array}$$

Thus, the Atkin U -operator commutes with the morphism $\Phi_r^{s \text{ ab}} \rightarrow \Phi_{r'}^{s' \text{ ab}}$.

Proof. The proof is similar to the proof of [1, Lem. 3.1]. The final statement follows from (3.1), since the Atkin U -operator, by definition, is the composition of U' -operator and the morphism induced by the inclusion of groups $\Phi_{r+1}^s \subset \Phi_r^s$. \square

Corollary 3.3. *For $r \geq s > 1$, each $\Phi_r^{s \text{ ab}}$ is a $\mathbb{Z}[U]$ -module via the action of U and morphisms between these modules (arising from the inclusions) are morphisms of $\mathbb{Z}[U]$ -modules. Hence, the cokernels of these morphisms acquire a $\mathbb{Z}[U]$ -module structure.*

Suppose π denote the morphism $\pi : \Phi_r^{s \text{ ab}} \longrightarrow \Phi_{r-1}^{s \text{ ab}}$ and π' for the morphism $\pi' : \Phi_{r+1}^{s \text{ ab}} \longrightarrow \Phi_r^{s \text{ ab}}$. Then, by Lemma 3.2, we have

$$U' \circ \pi = \pi' \circ U' = U \in \text{End}_{\mathbb{Z}}(\Phi_r^{s \text{ ab}}). \quad (3.2)$$

By the definition of U' , we see that $\pi \circ U' = U \in \text{End}_{\mathbb{Z}}(\Phi_{r-1}^{s \text{ ab}})$.

By Corollary 3.3, the cokernel of the morphism $\Gamma_1(Np^r)^{\text{ab}} \rightarrow \Phi_r^{s \text{ ab}}$, for $r \geq s > 1$, is a $\mathbb{Z}[U]$ -module and this cokernel is isomorphic to the group Γ_s/Γ_r . Hence, the group Γ_s/Γ_r is a $\mathbb{Z}[U]$ -module. Observe that $\Phi_r^s = \Gamma_1(Np^r)$.

Lemma 3.4. *The operator U acts on Γ_s/Γ_r as multiplication by p .*

Proof. The operator U acts on Γ_s/Γ_r as a multiplication by p if and only if it acts on $\frac{\Phi_r^{s \text{ ab}}}{\Gamma_1(Np^r)^{\text{ab}}}$ as $\bar{A} \mapsto \bar{A}^p$. The operator U is the composition of the following morphisms:

$$\begin{array}{ccccccc} \frac{\Phi_r^{s \text{ ab}}}{\Gamma_1(Np^r)^{\text{ab}}} & \xrightarrow{V} & \frac{(\Phi_r^s \cap \Gamma^0(p))^{\text{ab}}}{(\Gamma_1(Np^r) \cap \Gamma^0(p))^{\text{ab}}} & \xrightarrow{t-t^{-1}} & \frac{\Phi_{r+1}^{s \text{ ab}}}{\Phi_{r+1}^{s \text{ ab}}} & \longrightarrow & \frac{\Phi_r^{s \text{ ab}}}{\Gamma_1(Np^r)^{\text{ab}}} \\ \bar{A} & \longmapsto & \bar{A}^p & \longmapsto & t\bar{A}^p t^{-1} & \longmapsto & t\bar{A}^p t^{-1}. \end{array} \quad (3.3)$$

Let $\{\alpha_i = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}\}_{i=0}^{p-1}$ be the coset representatives of the group $\Phi_r^s \cap \Gamma^0(p)$ in Φ_r^s . If we use these representatives to define the map in (3.3), then the transfer map looks like $\bar{A} \mapsto \bar{A}^p$. By Remark 3.1, $t\bar{A}^p t^{-1}$ and \bar{A}^p represent the same coset mod $\Gamma_1(Np^r)^{\text{ab}}$ and hence we are done. \square

We would like to define an action of Γ on $\Phi_r^{s \text{ ab}}$ and call it the nebentypus action. This can be done as follows: For $r \geq 2$, if $\bar{d} \in \Gamma/\Gamma_r$, then choose an element $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $\mathrm{SL}_2(\mathbb{Z})$ such that $p^{r+1} \mid c$ and $p \mid b$, i.e., $\alpha \in \Phi_{r+1}^2 \cap \Gamma^0(p)$. Such an α exists, because

$$\Phi_{r+1}^2 \cap \Gamma^0(p) \twoheadrightarrow \Gamma/\Gamma_{r+1} \twoheadrightarrow \Gamma/\Gamma_r.$$

The nebentypus action of d on $\Phi_r^{s \text{ ab}}$ is given by conjugation by α . This action is well-defined because if α_1 and α_2 denote two lifts of \bar{d} , then $\alpha_1^{-1}\alpha_2 \in \Gamma_1(Np^{r+1}) \cap \Gamma^0(p) \subseteq \Phi_r^s$ and hence for any element $x \in \Phi_r^s$, $\alpha_1^{-1}\alpha_2 x \alpha_2^{-1}\alpha_1 = x$ in $\Phi_r^{s \text{ ab}}$. Now we shall show that the actions of U and Γ commutes.

Lemma 3.5. *If $r \geq s > 1$, the actions of U and Γ commutes on $\Phi_r^{s \text{ ab}}$.*

Proof. Though the proof of this lemma is similar to the proof of [1, Lem. 3.5.], here we make some remarks in between, hence we briefly recall its proof. It is easy to see that $\alpha(\Phi_r^s \cap \Gamma^0(p))\alpha^{-1} = \Phi_r^s \cap \Gamma^0(p)$ for any $\alpha \in \Phi_{r+1}^1 \cap \Gamma^0(p)$, since $\alpha\Phi_r^s\alpha^{-1} \subseteq \Phi_r^s$. Look at the following commutative diagram

$$\begin{array}{ccc} \Phi_r^{s \text{ ab}} & \xrightarrow{\alpha - \alpha^{-1}} & \Phi_r^{s \text{ ab}} \\ \downarrow V & & \downarrow V \\ (\Phi_r^s \cap \Gamma^0(p))^{\text{ab}} & \xrightarrow{\alpha - \alpha^{-1}} & (\alpha(\Phi_r^s \cap \Gamma^0(p))\alpha^{-1})^{\text{ab}} = (\Phi_r^s \cap \Gamma^0(p))^{\text{ab}} \\ \downarrow t - t^{-1} & & \downarrow \alpha t \alpha^{-1}(-) \alpha t^{-1} \alpha^{-1} \\ \Phi_{r+1}^{s \text{ ab}} & \xrightarrow{\alpha - \alpha^{-1}} & (\alpha\Phi_{r+1}^s\alpha^{-1})^{\text{ab}} = \Phi_{r+1}^{s \text{ ab}} \\ \downarrow & & \downarrow \\ \Phi_r^{s \text{ ab}} & \xrightarrow{\alpha - \alpha^{-1}} & (\alpha\Phi_r^s\alpha^{-1})^{\text{ab}} = \Phi_r^{s \text{ ab}}. \end{array}$$

The top square in the diagram above commutes because if $\{\gamma_1, \dots, \gamma_q\}$ form a set coset representatives for the group $\Phi_r^s \cap \Gamma^0(p)$ in Φ_r^s , so is the set $\{\alpha\gamma_1\alpha^{-1}, \dots, \alpha\gamma_q\alpha^{-1}\}$. Observe that, this diagram commutes even if $\alpha \in \Phi_r^1 \cap \Gamma^0(p)$. The last square commutes by the functoriality of the transfer map.

We now prove the commutativity of the middle square, i.e., the map

$$\alpha t \alpha^{-1}(-) \alpha t^{-1} \alpha^{-1} : (\Phi_r^s \cap \Gamma^0(p))^{\text{ab}} \rightarrow \Phi_{r+1}^{s \text{ ab}} \quad (3.4)$$

is $t - t^{-1}$. If $g \in \Phi_r^s \cap \Gamma^0(p)$, then

$$\alpha t \alpha^{-1} g \alpha t^{-1} \alpha^{-1} = (\alpha t \alpha^{-1} t^{-1}) t g t^{-1} (\alpha t \alpha^{-1} t^{-1})^{-1}.$$

Since $\alpha t \alpha^{-1} t^{-1} \in \Gamma_1(Np^{r+1})$ for $\alpha \in \Phi_{r+1}^1 \cap \Gamma^0(p)$, we see that the conjugation by $\alpha t \alpha^{-1} t^{-1}$ induces identity on $\Phi_{r+1}^{s \text{ ab}}$ (because elements of $\Phi_{r+1}^{s \text{ ab}}$ do commute in $\Phi_{r+1}^{s \text{ ab}}$).

In the above diagram composition of the vertical morphisms on either side are the operator U and it commutes with the automorphism of Φ_r^s induced by conjugation by α , but we know Γ acts on Φ_r^s by conjugation by such elements α . \square

Observe that the inclusion $\Gamma_1(Np^r) \subseteq \Phi_r^s$ gives rise to the another transfer map

$$\Phi_r^{s \text{ ab}} \xrightarrow{V} \Gamma_1(Np^r)^{\text{ab}}$$

Lemma 3.6. *The transfer morphism $V : \Phi_r^{s \text{ ab}} \rightarrow \Gamma_1(Np^r)^{\text{ab}}$ commutes with the action of U on its source and target.*

Proof. It suffices to prove that the following diagram (in which V denotes the transfer maps between various abelianizations) commutes:

$$\begin{array}{ccc}
 \Phi_r^{s \text{ ab}} & \xrightarrow{V} & \Phi_r^{r \text{ ab}} \\
 \downarrow V & & \downarrow V \\
 (\Phi_r^s \cap \Gamma^0(p))^{\text{ab}} & \xrightarrow{V} & (\Phi_r^r \cap \Gamma^0(p))^{\text{ab}} \\
 \downarrow t-t^{-1} & & \downarrow t-t^{-1} \\
 \Phi_{r+1}^{s \text{ ab}} & \xrightarrow{V} & \Phi_{r+1}^{r \text{ ab}}.
 \end{array}$$

The top square in the diagram above commutes because of functoriality of the transfer map. The commutativity of the bottom square follows by the following calculation.

If $\sigma_d = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where d runs through coset representatives of Γ_r in Γ_s , forms a set of coset representatives for the group $\Gamma_1(Np^r) \cap \Gamma^0(p)$ in $\Phi_r^s \cap \Gamma^0(p)$, then so are $t\sigma_dt^{-1} = \begin{pmatrix} a & b/p \\ cp & d \end{pmatrix}$ for the group $\Gamma_1(Np^r)$ in Φ_r^s (by Remark 2.3). \square

In this section, we have defined the U -operators for the congruence subgroups $\{\Phi_r^s\}$ and proved that morphisms between these congruence subgroups respects the action of U and this action commutes with the action of Γ .

4. ORDINARY PARTS

Let A be a commutative finite \mathbb{Z}_p -algebra and U be a non-zero element of A . It is well-known that A factors as a product of local rings. Let A^{ord} denote the product of all those local rings of A in which the projection of U is a unit. This is a flat A -algebra.

Let M be any module in the abelian category of $\mathbb{Z}_p[X]$ -modules which are finitely generated as \mathbb{Z}_p -modules. In this case, we take A to be the image of $\mathbb{Z}_p[X]$ in $\text{End}_{\mathbb{Z}_p}(M)$, which is a finite \mathbb{Z}_p -algebra, and U to be the image of X . We define

$$M^{\text{ord}} := M \otimes_A A^{\text{ord}}$$

and call this the ordinary part of M . Observe that taking ordinary parts is an exact functor on our abelian category.

If we consider X to be the U -operator corresponding to the prime p , we may consider the ordinary part of the \mathbb{Z}_p -homology of the curve Y_r , i.e., the module $(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}$, which is a Γ -module by Lemma 3.5.

We have the following theorem for the prime $p = 2$, which is similar to Theorem 3.1 in [3] for $p \geq 5$ and for the congruence subgroups $\Gamma_1(Np^r)$ for $r \geq 1$.

Theorem 4.1. *If $r \geq s > 1$, then the morphism of abelian groups*

$$(\Gamma_1(Np^r) \otimes \mathbb{Z}_p)^{\text{ord}} / \mathfrak{a}_s \rightarrow (\Gamma_1(Np^s) \otimes \mathbb{Z}_p)^{\text{ord}}$$

is an isomorphism.

Proof. We shall show that

$$(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}} / \mathfrak{a}_s \xrightarrow{\sim} (\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}} \xrightarrow{\sim} (\Gamma_1(Np^s)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}. \quad (4.1)$$

If $\pi : \Phi_r^{s \text{ ab}} \rightarrow \Phi_{r-1}^{s \text{ ab}}$ is the morphism induced by the inclusion $\Phi_r^s \subset \Phi_{r-1}^s$, then

$$U' \circ \pi = U \in \text{End}(\Phi_r^{s \text{ ab}}), \quad \pi \circ U' = U \in \text{End}(\Phi_{r-1}^{s \text{ ab}}).$$

By Lemma 3.2, we have the following diagram

$$\begin{array}{ccc}
 \Phi_{r-1}^{s \text{ ab}} & \xrightarrow{\pi} & \Phi_{r-2}^{s \text{ ab}} \\
 \downarrow U' & \searrow U & \downarrow U' \\
 \Phi_r^{s \text{ ab}} & \xrightarrow{\pi} & \Phi_{r-1}^{s \text{ ab}} \\
 \downarrow U' & \searrow U & \downarrow U' \\
 \Phi_{r+1}^{s \text{ ab}} & \xrightarrow{\pi} & \Phi_r^{s \text{ ab}}.
 \end{array}$$

The existence of U' implies that upon tensoring over \mathbb{Z}_p and taking the ordinary parts π induces an isomorphism (and $U^{-1} \circ U'$ provides an inverse to π)

$$(\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}} = (\Phi_{r-1}^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}}.$$

By induction on r , we obtain the second isomorphism in (4.1), i.e.,

$$(\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}} = (\Phi_s^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}} = (\Gamma_1(Np^s)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}.$$

To prove the first isomorphism consider the short exact sequence

$$1 \rightarrow \Gamma_1(Np^r)^{\text{ab}}/\mathfrak{a}_s \rightarrow \Phi_r^{s \text{ ab}} \rightarrow (\Gamma_s/\Gamma_r) \rightarrow 1.$$

By tensoring this sequence with \mathbb{Z}_p and then taking the ordinary parts to obtain

$$1 \rightarrow (\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}/\mathfrak{a}_s \rightarrow (\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}} \rightarrow (\Gamma_s/\Gamma_r)^{\text{ord}} \rightarrow 1,$$

because \mathbb{Z}_p is flat as a \mathbb{Z} -module and ordinary parts preserves exactness. By Lemma 3.4, the operator U acts on Γ_s/Γ_r as multiplication by p and so is a nilpotent operator, as Γ_s/Γ_r is a p -torsion group. Thus $(\Gamma_s/\Gamma_r)^{\text{ord}} = 0$, and hence the Theorem follows. \square

5. IWASAWA MODULES

We have the following inverse system indexed by natural numbers $r \geq 2$,

$$\cdots \rightarrow \Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p \rightarrow \cdots \rightarrow \Gamma_1(Np^2)^{\text{ab}} \otimes \mathbb{Z}_p.$$

Define the Iwasawa module by

$$\mathbf{W} := \varprojlim_{r \geq 2} \Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p.$$

The profinite group Γ acts on the \mathbb{Z}_p -module $\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p$ through its finite quotient Γ/Γ_r . Thus the Iwasawa module \mathbf{W} becomes a module over the completed group algebra

$$\Lambda := \mathbb{Z}_p[[\Gamma]] = \varprojlim_{r \geq 2} \mathbb{Z}_p[\Gamma/\Gamma_r].$$

Though the Iwasawa module \mathbf{W} is difficult to understand, by Theorem 4.1, we can understand the ordinary part of \mathbf{W} very well. To make the statement clear, let us slightly abstract the situation.

Let $\{M_r\}_{r \geq 2}$ be a system of Λ -modules. Further, assume that each M_r is pointwise fixed by Γ_r and hence a module over $\Lambda/\mathfrak{a}_r\Lambda = \mathbb{Z}_p[\Gamma/\Gamma_r]$. For each $r \geq s \geq 2$, we have a map $M_r \rightarrow M_s$ such that it factors via

$$M_r/\mathfrak{a}_s M_r \rightarrow M_s.$$

Define $W := \varprojlim_{r \geq 2} M_r$. We have a collection of maps $W \rightarrow M_r$ for each $r \geq 2$ and they factor as

$$W/\mathfrak{a}_r W \rightarrow M_r.$$

Proposition 5.1. *Assume that each M_r is p -adically complete and for each $r \geq s \geq 2$, $M_r/\mathfrak{a}_s M_r \rightarrow M_s$ is an isomorphism. Then $W/\mathfrak{a}_s W \rightarrow M_s$ is an isomorphism.*

Proof. For $r \geq s \geq 2$, the maps $M_r \rightarrow M_s$ are surjective, and hence the canonical map from $W \rightarrow M_s$ is also surjective. We shall show that the kernel is $\mathfrak{a}_s W$.

Since each M_r is p -adically complete and is point-wise fixed by Γ_r , we have $M_r = \varprojlim_i M_r/\mathfrak{n}^i M_r$, where $\Gamma_r = \langle \gamma_r \rangle$ and $\mathfrak{n} = (\gamma_r - 1, p)$, i.e., each M_r is \mathfrak{n} -adically complete.

By induction on i , we get that $\gamma_s^{p^i} - 1/\gamma_s - 1 \in (\gamma_s - 1, p)^i$. In particular, we have $\gamma_2^{p^{r-2}} - 1/\gamma_2 - 1 \in \mathfrak{m} = (\gamma_2 - 1, p)$. Hence, $\mathfrak{m}^{p^{r-2}} \subseteq ((\gamma_2 - 1)^{p^{r-2}}, p) \subseteq \mathfrak{n} \subseteq \mathfrak{m} = (\mathfrak{a}_2, p)$. As a result, we see that each M_r is \mathfrak{m} -adically complete, since they are \mathfrak{n} -adically complete. Once we have that each M_r is \mathfrak{m} -adically complete, then proving the injectivity of the above map is quite similar to the proof of [1, Prop. 5.1]. \square

The following Theorem is an immediate consequence of the Proposition above.

Theorem 5.2. *For any $r \geq 2$, we have*

$$\mathbf{W}^{\text{ord}}/\mathfrak{a}_r \mathbf{W}^{\text{ord}} \cong (\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}$$

is the Γ_r -co-invariants of \mathbf{W}^{ord} .

Proof. This follows from Proposition 5.1 together with Theorem 4.1 \square

The above Theorem is a key ingredient for the proof of the Theorem 5.3. The Λ -module \mathbf{W}^{ord} is a compact Λ -module (under the projective limit of the p -adic topologies on each module $\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p$, which are free of finite rank over \mathbb{Z}_p , and also since \mathbf{W}^{ord} is a direct factor of \mathbf{W}).

Furthermore, Theorem 5.2 implies that the projective limit topology on \mathbf{W}^{ord} coincides with its \mathfrak{m} -adic topology (where $\mathfrak{m} = (\mathfrak{a}_2, p) \subset \Lambda$ denotes the maximal ideal of Λ), because the kernels of the projections $\Lambda \rightarrow \mathbb{Z}_p/p^r \mathbb{Z}_p[\Gamma/\Gamma_r]$ are co-final with the sequence of ideals \mathfrak{m}^r in Λ . Thus \mathbf{W}^{ord} is a Λ -module, compact in its \mathfrak{m} -adic topology such that

$$\mathbf{W}^{\text{ord}}/\mathfrak{m} = \mathbf{W}^{\text{ord}}/(\mathfrak{a}_2, p) = (\Gamma_1(Nq)^{\text{ab}} \otimes \mathbb{Z}_p/p)^{\text{ord}}$$

is a finite dimensional $\mathbb{Z}_p/p\mathbb{Z}_p$ -module, of dimension d (say). By Nakayama's lemma, we have that \mathbf{W}^{ord} is a finitely generated Λ -module with a minimal generating set has cardinality d . We have the following theorem for the prime $p = 2$, which is similar to the main theorem in [3] for $p \geq 5$.

Theorem 5.3 (Main Result). *The module \mathbf{W}^{ord} is free of finite rank over Λ , and its Λ -rank is equal to d .*

As a corollary, we see that, for $r \geq 2$, the \mathbb{Z}_p -rank of the free \mathbb{Z}_p -module $(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}$ is d . In particular, these \mathbb{Z}_p -ranks are independent of p^r in the level. Using this result, we have proved control theorems for ordinary 2-adic families of modular forms, see [2]. The classical versions of this theorem for $p = 2, 3$ do not seem to be explicitly available in the literature, though an adèlic version of it can be found in [4].

6. REFLEXIVITY RESULTS

To prove Theorem 5.3, it enough to show that \mathbf{W}^{ord} is a reflexive Λ -module [5]. We show this by considering the duality theory of the modules $(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}$ and showing that they are reflexive as $\mathbb{Z}_p[\Gamma/\Gamma_r]$ -modules. Now, we briefly recall the notion of reflexivity, and the necessary results. For more details, see [1, §6].

Suppose that R is a commutative ring, G is a finite group, and M is a left $R[G]$ -module. Let N be any R -module. Then $\text{Hom}_R(M, N)$ is a right $R[G]$ -module, via

$$(f * g)(x) := f(g^{-1}x).$$

Since the ring $R[G]$ is naturally a bi-module over itself, via the ring multiplication, $R[G] \otimes_R N$ is an $R[G]$ -bi-module, making $\text{Hom}_{R[G]}(M, R[G] \otimes_R N)$ a right $R[G]$ -module.

Lemma 6.1 ([1]). *There is a canonical isomorphism of right $R[G]$ -modules*

$$\text{Hom}_R(M, N) = \text{Hom}_{R[G]}(M, R[G] \otimes_R N).$$

In particular, when $N = R$, we see that M^* and $\text{Hom}_{R[G]}(M, R[G])$ are canonically isomorphic as right $R[G]$ -modules, where $M^* := \text{Hom}_R(M, R)$, the R -dual of M . The analogue of the above lemma for right $R[G]$ -modules is also true. Hence,

$$\text{Hom}_R(M^*, R) = \text{Hom}_{R[G]}(M^*, R[G]).$$

are canonically isomorphic as left $R[G]$ -modules.

By definition of M^* , there is a natural morphism of R -modules $M \rightarrow \text{Hom}_R(M^*, R)$, which is also a morphism of left $R[G]$ -modules. If this natural morphism of R -modules is an isomorphism, then we say that M is a reflexive R -module. Thus we have proved:

Lemma 6.2. *If M is a left $R[G]$ -module which is reflexive as an R -module, then M is reflexive as an $R[G]$ -module.*

The crux of this Lemma is that to check the reflexivity of $R[G]$ -module M over $R[G]$, it is enough to check it over R . Now we need to understand how to use the reflexivity results for modules over $\mathbb{Z}_p[\Gamma/\Gamma_r]$ to show the reflexivity of \mathbf{W}^{ord} as a Λ -module.

7. PROOF OF THEOREM 5.3

For $r \geq 2$, and $N \in \mathbb{N}$ such that $(p, N) = 1$. We define the cohomology of Y_r as

$$H^1(Y_r, \mathbb{Z}_p) := \text{Hom}_{\mathbb{Z}}(\Gamma_1(Np^r)^{\text{ab}}, \mathbb{Z}_p) = \text{Hom}_{\mathbb{Z}_p}(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p, \mathbb{Z}_p).$$

The ring Λ acts on $\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p$ through its quotient $\Lambda_r := \Lambda/\mathfrak{a}_r = \mathbb{Z}_p[\Gamma/\Gamma_r]$. More generally, if $r \geq s > 1$ then the ring Λ_s is equal to Λ_r/\mathfrak{a}_s , hence $\Lambda_r \twoheadrightarrow \Lambda_s$. Thus we get the following sequence of morphisms of Λ_r -modules

$$\begin{aligned} \text{Hom}_{\Lambda_r}(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p, \Lambda_r) &\rightarrow \text{Hom}_{\Lambda_r}(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p, \Lambda_r)/\mathfrak{a}_s \\ &\rightarrow \text{Hom}_{\Lambda_r}(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p, \Lambda_s) = \text{Hom}_{\Lambda_s}(\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p/\mathfrak{a}_s, \Lambda_s). \end{aligned}$$

If M is any $\mathbb{Z}_p[U]$ -module, which is finitely generated as a \mathbb{Z}_p -module, then so is the \mathbb{Z}_p -dual $M^* := \text{Hom}_{\mathbb{Z}_p}(M, \mathbb{Z}_p)$. Here M^* is a $\mathbb{Z}_p[U]$ -module via the dual action of U . Clearly $(M^*)^{\text{ord}} = (M^{\text{ord}})^*$, i.e., taking ordinary parts commutes with duals. Thus

we may take ordinary parts of the above diagram of homomorphisms to obtain a diagram

$$\begin{aligned} \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r) &\longrightarrow \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r)/\mathfrak{a}_s \\ &\longrightarrow \mathrm{Hom}_{\Lambda_s}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}/\mathfrak{a}_s, \Lambda_s). \end{aligned}$$

By Theorem 4.1, we have

$$\begin{aligned} \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r) &\longrightarrow \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r)/\mathfrak{a}_s \\ &\longrightarrow \mathrm{Hom}_{\Lambda_s}((\Gamma_1(Np^s)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_s). \end{aligned}$$

Lemma 7.1. *The morphism*

$$\mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r)/\mathfrak{a}_s \rightarrow \mathrm{Hom}_{\Lambda_s}((\Gamma_1(Np^s)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_s)$$

is an isomorphism.

Proof. By Lemma 3.6, we may restrict V to the ordinary parts to obtain a morphism

$$(\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}} \xrightarrow{V} (\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}.$$

Look at the following commutative diagram

$$\begin{array}{ccc} \mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) & \xrightarrow{\sim} & \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r) \\ \downarrow V^* & & \downarrow \\ \mathrm{Hom}_{\mathbb{Z}_p}((\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) & & \mathrm{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_r)/\mathfrak{a}_s \\ \downarrow \wr & & \downarrow \\ \mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^s)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) & \xrightarrow{\sim} & \mathrm{Hom}_{\Lambda_s}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}/\mathfrak{a}_s, \Lambda_s) \\ \downarrow \wr & & \downarrow \wr \\ \mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^s)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) & \xrightarrow{\sim} & \mathrm{Hom}_{\Lambda_s}((\Gamma_1(Np^s)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \Lambda_s) \end{array}$$

in which the two horizontal isomorphisms are those provided by Lemma 6.2, because $\Lambda_r = \mathbb{Z}_p[\Gamma/\Gamma_r]$. The first vertical map V^* is the dual morphism of V and the two vertical isomorphisms are a part of Theorem 4.1 and its proof.

Now to prove the Lemma, it suffices to prove that

$$\mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) \xrightarrow{V^*} \mathrm{Hom}_{\mathbb{Z}_p}((\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p) \quad (7.1)$$

is surjective and $\mathrm{kernel}(V^*) = \mathfrak{a}_s \mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p)^{\mathrm{ord}}, \mathbb{Z}_p)$.

Since V commutes with U and taking ordinary parts commutes with taking \mathbb{Z}_p -duals, the morphism in (7.1) is the ordinary part of the morphism

$$\mathrm{Hom}_{\mathbb{Z}_p}(\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p, \mathbb{Z}_p) \xrightarrow{V^*} \mathrm{Hom}_{\mathbb{Z}_p}(\Phi_r^{s \text{ ab}} \otimes \mathbb{Z}_p, \mathbb{Z}_p). \quad (7.2)$$

Now, it suffices to show that the morphism V^* in (7.2) is surjective with kernel equal to $\mathfrak{a}_s \mathrm{Hom}_{\mathbb{Z}_p}((\Gamma_1(Np^r)^{\mathrm{ab}} \otimes \mathbb{Z}_p), \mathbb{Z}_p)$, since taking ordinary parts is also exact and commutes with the action of Γ . But, this claim was proved in [1, §8] for torsion-free groups H and G such that $H \subseteq G$, instead of $\Gamma_1(Np^r) \subseteq \Phi_r^s$. Observe that, when $p = 2$ and $r \geq s \geq 2$, the groups $\Gamma_1(Nq)$ and Φ_r^s are torsion-free, since $\Gamma_1(M)$ is torsion free for all $M \geq 3$. \square

We now have all the information needed to prove Theorem 5.3. Consider the chain of Λ -modules

$$\cdots \longrightarrow \text{Hom}_{\Lambda_r}((\Phi_r^{r \text{ ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \Lambda_r) \longrightarrow \cdots \longrightarrow \text{Hom}_{\mathbb{Z}_p}((\Gamma_1(Nq)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \mathbb{Z}_p).$$

Lemma 7.2. *There is a canonical isomorphism*

$$\text{Hom}_{\Lambda}(\mathbf{W}^{\text{ord}}, \Lambda) = \varprojlim_r \text{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \Lambda_r).$$

Proof. We have the following canonical isomorphisms

$$\text{Hom}_{\Lambda}(\mathbf{W}^{\text{ord}}, \Lambda) = \varprojlim_r \text{Hom}_{\Lambda_r}(\mathbf{W}^{\text{ord}}/\mathfrak{a}_r, \Lambda_r) = \varprojlim_r \text{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \Lambda_r),$$

where the last isomorphism follows from the Theorem 5.2. \square

Proposition 7.3. *For $r > 1$, there is a canonical isomorphism*

$$\text{Hom}_{\Lambda}(\mathbf{W}^{\text{ord}}, \Lambda)/\mathfrak{a}_r = \text{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \Lambda_r).$$

Proof. The claim follows from Lemma 7.1, Lemma 7.2, and Lemma 5.1. \square

Theorem 7.4. *The module \mathbf{W}^{ord} is Λ -free.*

Proof. Since any finitely generated reflexive Λ -module is free, it suffices to show that \mathbf{W}^{ord} is a reflexive Λ -module. By Proposition 7.3 and Lemma 6.2, we have:

$$\begin{aligned} \text{Hom}_{\Lambda}(\text{Hom}_{\Lambda}(\mathbf{W}^{\text{ord}}, \Lambda), \Lambda) &= \varprojlim_r \text{Hom}_{\Lambda}(\text{Hom}_{\Lambda_r}(\mathbf{W}^{\text{ord}}, \Lambda)/\mathfrak{a}_r, \Lambda_r) \\ &= \varprojlim_r \text{Hom}_{\Lambda_r}(\text{Hom}_{\Lambda_r}((\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}}, \Lambda_r), \Lambda_r) \\ &= \varprojlim_r (\Gamma_1(Np^r)^{\text{ab}} \otimes \mathbb{Z}_p)^{\text{ord}} = \mathbf{W}^{\text{ord}}. \end{aligned}$$

\square

8. ACKNOWLEDGEMENTS

The author thanks Prof. M. Emerton for his encouragement to work out the details in [1] for the prime $p = 2$. These results turned out to be quite useful in [2].

REFERENCES

- [1] Emerton, Matthew. A new proof of a theorem of Hida. *Internat. Math. Res. Notices* 1999, no. 9, 453–472.
- [2] Ghate, Eknath; Kumar, Narasimha. Control theorems for ordinary 2-adic families of modular forms. To appear in the *Proceedings of the International Colloquium on Automorphic Representations and L-functions*, TIFR, 2012.
- [3] Hida, Haruzo. Galois representations into $\text{GL}_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms. *Invent. Math.* 85 (1986), no. 3, 545–613.
- [4] Hida, Haruzo. On p -adic Hecke algebras for GL_2 over totally real fields. *Ann. of Math.* (2) 128 (1988), no. 2, 295–384.
- [5] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay. *Cohomology of number fields*. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323. Springer-Verlag, Berlin, 2008.

E-mail address: narasimha.kumar@iith.ac.in

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD, ORDNANCE FACTORY ESTATE, YEDDUMAILARAM 502205, TELANGANA, INDIA.