¿Cuál es la complejidad del algoritmo de Edmonds-Karp?

Nicolás Cagliero

20 de junio de 2024

Teorema: el algoritmo Edmonds-Karp termina siempre con complejidad $O(n \cdot m^2)$

Demostración. E-K constituye una sucesión de caminos aumentantes, Cada uno de ellos encontrado usando BFS, que es O(m).

 \therefore Su complejidad es $O(m \cdot \#CaminosAumentante)$

 \therefore Solo debemos probar que, en E-K, $\#CA = O(n \cdot m)$

Definición: un lado es (o "se vuelve") crítico en un punto dado si es usado para construir el siguiente flujo en modo forward y se satura o en modo backward y se vacía.

¿Cuántas veces puede un lado volverse crítico?

Para calcular esto, veamos unas definiciones auxiliares:

1. dados vértices x, z se define, dado un flujo f en el network

$$d_f(x,z) = \begin{cases} 0, & \text{si } x = z \\ \infty, & \text{si no existe } f - CA \text{ desde } x \text{ a } z \end{cases}$$
 si existe

2. Sean $f_0, f_1, f_2, ...$ los flujos que se van obteniendo en E-K:

$$d_k(x) = d_{f_k}(s, x)$$

$$b_k(x) = d_{f_k}(x, t)$$

Prop: $d_k(x) \le d_{k+1}(x)$

Prop: $b_k(x) \le b_{k+1}(x)$

Sea \overrightarrow{xy} un lado que se vuelve crítico en el paso k, hay 2 casos:

- 1. se saturó
- 2. se vació
- Caso en el cual el lado saturó: es decir, $f_k(\overrightarrow{xy}) < c(\overrightarrow{xy})$ pero $f_{k+1}(\overrightarrow{xy}) = c(\overrightarrow{xy})$ ∴ para pasar de f_k a f_{k+1} usamos un $f_k - CA$ de la forma s...xy...tComo estamos usando E-K, ese camino es de longitud mínima ∴ $d_k(y) = d_k(x) + 1$ Supongamos que \overrightarrow{xy} se vuelve crítico otra vez en un paso j > k

- Se vació, i.e, usamos \overrightarrow{xy} backward en el paso j
- Se saturó

Como luego del paso k ya estaba saturado, para poder volverse a saturar debemos haberle devuelto el flujo en algún paso k < i < j

En cualquier caso, $\exists i : k < i \leq j$ tal que \overrightarrow{xy} se usa en forma backward, es decir, usamos un $f_i - CA$ de la forma $s...\overleftarrow{yx}...t$. Como E-K, este camino es de longitud mínima $\Rightarrow d_i(x) = d_i(y) + 1$

Entonces $d_j(t) \ge d_i(t)$

$$d_{i}(t) = d_{i}(x) + b_{i}(x)$$

$$d_{i}(t) = d_{i}(y) + 1 + b_{i}(x)$$

$$d_{i}(t) \ge d_{k}(y) + 1 + b_{k}(x)$$

$$d_{i}(t) \ge d_{k}(x) + 1 + 1 + b_{k}(x)$$

$$d_{i}(t) \ge d_{k}(t) + 2$$

- $\Rightarrow d_i(t) \ge d_k(t) + 2$ si \overrightarrow{xy} se satura en el paso k
- Caso en el cual se vació: la próxima vez que se vuelva crítico será porque se saturó, o bien, se vació de vuelta : antes debo haberlo llenado un poco. En cualquier caso: $\exists i: k < i \leq j$ tal que \overrightarrow{xy} se usa en forma forward, es decir, usamos un $f_i CA$ de la forma $s...\overrightarrow{xy}...t$. Como E-K, este camino es de longitud mínima. Luego $d_j(t) \geq d_i(t)$

$$d_{i}(t) = d_{i}(y) + b_{i}(y)$$

$$d_{i}(t) = d_{i}(x) + 1 + b_{i}(y)$$

$$d_{i}(t) \ge d_{k}(x) + 1 + b_{k}(y)$$

$$d_{i}(t) \ge d_{k}(y) + 1 + 1 + b_{k}(y)$$

$$d_{i}(t) \ge d_{k}(t) + 2$$

 $\Rightarrow d_j(t) \geq d_k(t) + 2$ si \overrightarrow{xy} se vacía en el paso k

Conclusión: $d_j(t) \ge d_k(t) + 2$ en ambos casos

Es decir, cuando un lado se vuelve crítico, para que pueda volver a ser crítico, la distancia entre s y t debe aumentar en al menos 2

Como la distancia entre puede variar entre 1 y $n-1 \Rightarrow$ un lado puede volverse crítico a lo sumo $O(\frac{n}{2}) = O(n)$ veces

Resumen:

- cada CA vuelve crítico al menos un lado
- cada lado se vuelve crítico a los sumpo O(n) veces
- \blacksquare hay m lados
- \Rightarrow hay $O(m \cdot n)$ caminos aumentantes.