

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Review Article

Graphitic C₃N₄ based noble-metal-free photocatalyst systems: A review

Dilshad Masih, Yuanyu Ma, Sohrab Rohani*

Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada

ARTICLE INFO

Article history:

Received 8 December 2016

Received in revised form 5 January 2017

Accepted 10 January 2017

Available online 26 January 2017

Keywords:

g-C₃N₄
Noble-metal-free
Nanomaterials
Photocatalysis

ABSTRACT

Many reviews are written on this interesting visible light active polymeric semiconductor material, the graphitic carbon nitride (g-C₃N₄). Yet the ever-expanding volume of the ongoing research on this materials has inspired us to compile this review, especially on its nanoscale architectures of noble-metal-free photocatalyst systems. From the viewpoint of sustainable development, an economical photocatalyst which is made up of abundant elements e.g. C and N has a good prospect for large scale applications. Stability of the photocatalyst material under the experimental conditions is essential for its repeated usage, however, many semiconductors sought for visible-light-driven reaction, particularly sulfides and nitrides are in a compromising situation. However, g-C₃N₄ has high chemical- and photo-stability besides its high activity under visible light irradiation. Furthermore, solely semiconductor materials have the intrinsic problem of recombination of photogenerated electron-hole pairs. To overcome this problem, loading of the semiconductor with a co-catalyst, usually a noble metal is a common practice for transfer of electron and thus avoiding the recombination. Development of a noble-metal-free photocatalyst systems is essentially important for sustainable applications. Hence, the construction of a hybrid composite structure is interesting in the separation of photogenerated charge carriers. Besides diminishing the rate of recombination, the heterostructures are constructed for harnessing a wider spectrum of sunlight. In contrast to bulk semiconductors, their nanoscale counterpart offers a larger number of active sites along with interesting electrical and optical properties. Importantly, construction of extensive junctions between nanomaterials greatly enhance the separation of charges and consequently improve their photocatalytic efficiency. Usually, the stability of materials is compromised with the reduction of size to nano level, however, g-C₃N₄ and its nanomaterials demonstrate exceptional recycling in photocatalytic testing. One of the most important interests in controlling nanoparticle size, shape and composition is to develop noble-metal-free photocatalyst systems. Here in this review, we have compiled research on all the various applications of noble-metal-free nanoscale photocatalyst systems based on g-C₃N₄. By the end, we conclude the research topic and put forward future perspectives for further developments in designing practicable photocatalyst systems.

© 2017 Elsevier B.V. All rights reserved.

Contents

1. Introduction	557
2. Photocatalysis over noble-metal-free g-C ₃ N ₄ based nanomaterials	558
2.1. Overall water splitting	558
2.2. H ₂ evolution reaction	558
2.2.1. Metal-free photocatalyst system	559
2.2.2. Binary hybrid system	560
2.2.3. Ternary and complex hybrid system	563
2.3. O ₂ evolution reaction	566

* Corresponding author.

E-mail addresses: dilshadmasih@yahoo.com (D. Masih), srohani@uwo.ca (S. Rohani).

2.4.	H ₂ O ₂ generation	567
2.5.	CO ₂ reduction	568
2.6.	N ₂ fixation.....	569
2.7.	Organic synthesis	570
2.8.	Degradation of organic pollutants	572
2.8.1.	Metal-free photocatalyst system	572
2.8.2.	Transition metal based system	572
2.8.3.	Post-transition metal based system	576
2.8.4.	Semimetal based systems.....	579
2.8.5.	Rare earth metals based system	579
2.9.	Biocide	580
2.10.	NO _x abatement	580
2.11.	Metal ion redox.....	582
3.	Conclusions and future perspectives.....	584
	Acknowledgements	584
	References	584

1. Introduction

Graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) is a polymeric layered material, structurally analogous to graphene [1]. In contrast to the pure C constituent of graphene, $\text{g-C}_3\text{N}_4$ is composed of C and N with some impurity of H, which all are abundant raw materials. Semiconducting properties of $\text{g-C}_3\text{N}_4$ also drastically distinguish it from graphene. The band gap of bulk $\text{g-C}_3\text{N}_4$ is ~ 2.7 eV, and it is a medium band gap semiconductor. Pertaining to its yellow color the optical absorption of $\text{g-C}_3\text{N}_4$ lies around 460 nm making it an interesting material for harvesting solar energy. Furthermore, the thermal and chemical stability of $\text{g-C}_3\text{N}_4$ in an aqueous suspension phase and under photocatalytic reaction condition makes it an interesting material [2].

This $\text{g-C}_3\text{N}_4$ is regarded as the oldest synthetic polymer first reported by Berzelius and Liebig in the year 1834 and named as 'melon' [1]. A flow sheet diagram is provided in Fig. 1 showing a summary of historic developments in understanding $\text{g-C}_3\text{N}_4$ and its application in photocatalysis. In 1922, Franklin found the empirical composition of 'melon' to be C_3N_4 . Next, Pauling and Sturdivant derived tri-s-triazine type structure of C_3N_4 in the year 1937. By 1940 it was known that this material 'melon' has a graphite structure as reported by Redemann and Lucas [2]. Photocatalysis received enormous attention after Fujishima and Honda reported photolysis of water on TiO_2 in 1972 [3]. A wide variety of materials, mainly inorganic semiconductors were evaluated for photocatalytic application. However, nobody paid attention to making use of $\text{g-C}_3\text{N}_4$ in photocatalysis until Wang et al. first reported in 2009 [4].

Since the pioneering photocatalytic studies by Wang et al. in 2009 [4,5], $\text{g-C}_3\text{N}_4$ has become the focus of research on photocatalytic materials. Lately, a comprehensive review article is presented by Ong et al. [2]. Besides some other relevant reviews, feature articles and perspectives on $\text{g-C}_3\text{N}_4$ are important to read [6–15]. A record of yearly publications on photoactive applications of $\text{g-C}_3\text{N}_4$ elucidates the magnitude of research interest in this material (Fig. 2). Wang et al. put forward this polymeric material essentially as a metal-free visible-light active photocatalyst [4]. An efficient overall water splitting ability using solar energy is considered a Holy Grail of photocatalysis. Once this is realized, a commercial scale production of green and renewable chemical fuel will become a viable process. There are several requirements for developing an efficient photocatalyst for water splitting under solar irradiation: (1) good properties for harvesting solar light, (2) a band gap of suitable energy with valence and conduction band appropriately positioned for the desired reactions, and (3) good stability of the photocatalyst under experimental conditions. In principal, this thermally and chemically stable polymeric semiconductor $\text{g-C}_3\text{N}_4$

fulfills the band gap requirement for harvesting solar energy with a band structure suitable for both water oxidation and reduction reactions. At present, there are a lot many ongoing efforts on the development of efficient and sustainable noble-metal-free photocatalyst systems.

Environmental pollution and sustainable supply of greener energy are two of the main global challenges of the current era. Considering the Sun as an almost inexhaustible and primary source of energy, lately, there are many interests in developing semiconductor materials for harvesting solar energy to produce cleaner fuels and resolve the environmental issues. Lately, visible light active photocatalysts are getting enormous attention for applications to environment and energy sectors. Production of green and renewable energy carrier, H_2 from water, reduction of CO_2 , synthesis of fine chemicals and remediation of environmental pollutants are the main explored reactions.

Polymeric $\text{g-C}_3\text{N}_4$ is a metal-free medium band gap *p*-type semiconductor with a reliable chemical and thermal stability. Furthermore, its versatile optical and electronic properties with a band gap ~ 2.7 eV make it an attractive candidate for harvesting solar energy. TiO_2 is the most popular photocatalyst material due to its robust reactivity, availability, and chemical stability, however, it absorbs only UV light that limits its application [16]. Among various photoactive applications, $\text{g-C}_3\text{N}_4$ have been widely employed as a visible light active photocatalyst for degradation of organic pollutants, H_2/O_2 evolution half reactions, complete water splitting, reduction of CO_2 and organic synthesis (Fig. 3). The semiconductor, $\text{g-C}_3\text{N}_4$ is composed of earth-abundant elements. However, the noble/precious metals which are mainly loaded as a co-catalyst e.g. Pt, to avoid the recombination of photogenerated electron-hole pairs are the costly constituents. A photocatalyst system is comprised of a semiconductor or a junction of semiconductors along with a sensitizer and/or a co-catalyst. Here in this review we will discuss $\text{g-C}_3\text{N}_4$ based photocatalyst systems which are altogether free from noble-metals and important for sustainable development.

Visible-light-driven photocatalyst systems are interesting for efficient harvesting of the solar spectrum. The band gap of pure $\text{g-C}_3\text{N}_4$ (~ 2.7 eV) corresponds to absorption of blue-light up to 450 nm, hence inactive towards major part of the solar radiation coming to the earth. Furthermore, this relatively large band gap of the pure $\text{g-C}_3\text{N}_4$ over-energizes the ideally required potential (1.23 eV) for the most desired water splitting reaction. Wang et al. applied various methods of doping [17,18], copolymerization [19,20], and dye sensitization [21] to modify $\text{g-C}_3\text{N}_4$ for an optimum utilization of solar spectrum for a specific photoactive reaction. Next, the development of a noble-metal-free or precious-metal-free photocatalyst system is important for making it sustainable.

Fig. 1. Historic developments on understanding g-C₃N₄ and photocatalysis over it.

Fig. 2. Year-by-year publications on photoactive properties of g-C₃N₄. Data from the Web of Science.

Fig. 3. Pie chart distribution of various photoactive applications of g-C₃N₄.

Intrinsically, g-C₃N₄ is a layered material in which C₃N₄ sheets are connected by Van der Waal forces. Hence single and a few layer sheets of g-C₃N₄ are obtained upon the breakdown of these weak forces. Nanoscale materials offer unique regime of catalysis in between homogeneous catalysis and heterogeneous catalysis. However, the stability of nanoscale materials is challenging and needs attention for the important recycling of the material. Furthermore, nanomaterials based photocatalysts are more effective with the greatly enhanced availability of active surface sites [22]. Wang et al. have done extensive research on the development of g-C₃N₄ based nanoscale materials for photocatalytic applications e.g. H₂ evolution [22–28], O₂ evolution [29,30], and CO₂ reduction [31].

In this review, we are summarizing g-C₃N₄ based nanomaterials for all the various noble-metal-free applications in photocatalysis.

2. Photocatalysis over noble-metal-free g-C₃N₄ based nanomaterials

2.1. Overall water splitting

To mimic the natural photosynthesis, a semiconductor-based photocatalytic water splitting into H₂ and O₂ has been the focus of many researchers. However, the bottleneck of overall water splitting is the formation of oxygen–oxygen bond that requires the transfer of four electrons in a single step. The separation of photocatalytically cogenerated H₂ and O₂ is yet another challenging task. There are only a few studies on overall water splitting over g-C₃N₄ based noble-metal-free photocatalyst systems and summarized here. However, a vast majority of researchers have studied the half reaction of water splitting, mainly for H₂ evolution only.

A composite structure of NiFe-layered double hydroxide and g-C₃N₄ was investigated for overall water splitting under visible light irradiation [32]. Remarkably, a high rate of production of H₂ (744 μmol h⁻¹ g⁻¹) and O₂ (443 μmol h⁻¹ g⁻¹) was found over optimized composite. A synergy in the composite of two layered materials as indicated by tuned-in band gap, quenching of photoluminescence (PL), and prolonged lifetime of charge carrier was assigned for this enhanced photocatalytic activity. However, the rate of evolution of both H₂ and O₂ was severely deteriorated with a repeated usage of the photocatalyst.

A composite structure comprising of carbon nanodots and g-C₃N₄ was fabricated by Liu et al. as a metal-free photocatalyst for overall water splitting [33]. An optimized nanocomposite demonstrated impressive performance and stability with a quantum efficiency of 16% under visible-light irradiation. The rate of H₂ (8.4 μmol h⁻¹) and O₂ (4.1 μmol h⁻¹) evolution was maintained in 200 runs of recycling use of the photocatalyst over 200 days. Contrary to the conventional belief of one-step four-electron process for photocatalytic water splitting, this study put forward a new hypothesis of two-step process; photocatalysis (two-electron) and chemical catalysis (two-electron). Carbon nanodots were recognized for extending the absorption of visible light in the nanocomposite and assigned a center for the chemical catalysis step.

2.2. H₂ evolution reaction

In contrast to overall water splitting, H₂ and/or O₂ evolution half reactions at the expense of a sacrificial reagent are widely studied via photocatalysis. An efficient production of H₂ gas from water over a suspended photocatalyst material using solar energy is considered an ideal reaction for the supply of green and renewable energy. Antonietti and Domen groups did the pioneering work on g-C₃N₄ towards the development of a stable, inexpensive and abundant photocatalyst material [4]. And since then, more than 150 papers on H₂ and/or O₂ evolution half reactions over g-C₃N₄

based materials have appeared in the journals. Only a couple of publications reported on both of the H₂ and O₂ evolution half reactions, under varying conditions. In fewer than 10 papers, research was attempted on O₂ evolution half reaction only. In comparison to overall water splitting and O₂ evolution half reaction, extensive research (more than 130 papers) has been carried out on H₂ evolution half reaction.

2.2.1. Metal-free photocatalyst system

From the beginning of the research on g-C₃N₄ as a photocatalyst, it became known that this material has a potential for H₂ evolution from water. The rate of H₂ evolution was varying from batch to batch, in the range of 0.1–4 μmol h⁻¹ under visible-light irradiation [4]. Under the experimental conditions, even a mesoporous structure of g-C₃N₄ remained inefficient for H₂ evolution from water, the rate of H₂ evolution reaction drastically increased with the loading of Pt onto g-C₃N₄.

To extend the research on sustainable metal-free g-C₃N₄ photocatalyst, Cui et al. synthesized various conjugated nanostructures via solution processing [34]. Physicochemical properties and bandgap size of the carbon nitride nanostructures were dependent upon synthesis conditions. Nanobelts with a moderate specific surface area (30 m² g⁻¹) and the band gap of 1.78 eV demonstrated the highest stability and rate of H₂ evolution (6.1 μmol h⁻¹) under visible light irradiation, amongst all the various conjugated carbon nitrides. Suryawanshi et al. investigated on the nanocomposite with nanotubes to understand the electronic and morphological changes in g-C₃N₄ [35]. Various concentrations of multiwall carbon nanotubes (MWCNT) were mixed with g-C₃N₄ for the synthesis of an all-carbon photocatalyst. A twofold increase in H₂ evolution activity was observed under visible-light irradiation for the optimized metal-free photocatalyst system, 0.5% MWCNT/g-C₃N₄.

Lately, further progress towards the development of a metal-free photocatalyst was made by functionalization of g-C₃N₄ with electron acceptor carbon nanoparticles derived from zeolitic imidazolate framework (ZIF). A metal-free bifunctional catalyst system of carbon nanoparticles decorated on g-C₃N₄ was reported recently by He et al. [36]. Precursors for both the carbon nanoparticles and the g-C₃N₄ were mixed together and treated in one-step at 650 °C under N₂ flow to obtain the composite photocatalyst. Carbon nanoparticle of about 60 nm size was in-situ derived from a zeolitic imidazolate framework during the thermal conversion of melamine into g-C₃N₄. A TEM image of the composite with encircled carbon nanoparticles grown on sheets of g-C₃N₄ is provided in Fig. 4A. Before photocatalytic testing, the composite was washed with HCl solution to remove the residual Zn, and to make sure it is an all-carbon system. In comparison with the pristine and Pt loaded g-C₃N₄, all the composites with various concentrations of carbon nanoparticles displayed better activity towards H₂ evolution (Fig. 4B). The rate of H₂ evolution over 1 wt.% carbon nanoparticle functionalized g-C₃N₄ (32.6 μmol h⁻¹) was 36 times higher than that of the pure g-C₃N₄ (0.9 μmol h⁻¹), under visible-light irradiation. Interestingly, under the experimental conditions this metal-free carbon composite performed 2.8 times better than 3% Pt loaded g-C₃N₄ (11.6 μmol h⁻¹). The PL spectra provided in the inset in Fig. 4B exhibited a small quenching upon loading of g-C₃N₄ with Pt metal. However, a significant decrease in the PL intensity was observed for the optimized composite with C nanoparticles, suggesting an improved efficiency for separation of charge carriers. This trend of the charge carrier dynamics was consistent with the photocatalytic activity. Besides the photocatalytic reduction of water, this g-C₃N₄ composite with C nanoparticles was functioning as an efficient electrocatalyst for hydrogen evolution reaction. Fang et al. prepared carbon dots (C-dots) modified g-C₃N₄ hybrid by a novel strategy using C-dots and dicyandiamide as starting materials [37]. The rate of H₂ evolution over the pure g-C₃N₄ was

Fig. 4. (A) TEM image of ZIF derived C nanoparticles grown on g-C₃N₄ sheets, and (B) Photocatalytic H₂ evolution rate of pure g-C₃N₄, 3 wt.% Pt/g-C₃N₄ and g-C₃N₄ composites with different amounts of ZIF derived C nanoparticles. Inset in (B) provides PL spectra.

Reproduced with permission from the Ref. [36]. Copyright (2016) Royal Society of Chemistry.

91 μmol g⁻¹ h⁻¹ that sharply increased by a factor of 2.4 times (218 μmol g⁻¹ h⁻¹) for the sample optimized with C-dots.

A simple process of acid treatment and sonication for the synthesis of few-layer nanosheets of g-C₃N₄ was put forward by Ma et al. [38]. In comparison with the bulk g-C₃N₄, the absorption edge showed a blue shift and the corresponding emission peak also shifted towards lower wavelength. Hence, the band gap was decreased. For the visible-light-induced H₂ evolution reaction, the results showed a comparable activity and rate (110.68 μmol g⁻¹ h⁻¹) over a few-layer nanosheet of g-C₃N₄. A further modification of nanosheets was made by Liang et al. through the development of a holey structure [39]. Thermal treatment of bulk g-C₃N₄ under NH₃ atmosphere converted it to holey nanosheets with self-modified carbon vacancies, and an enlarged band gap (2.95 eV). As expected for a porous structure, specific surface area of the holey nanosheets (196 m² g⁻¹) was higher than non-porous nanosheets (179 m² g⁻¹). In comparison to the photocatalysis over bulk g-C₃N₄, a good improvement in photocatalytic efficiency was demonstrated by the porous nanosheets. The rate

of H₂ production from water under visible-light irradiation was 20 times faster on the holey nanosheets of g-C₃N₄ (82.9 μmol h⁻¹) compared to that of the bulk material (4.2 μmol h⁻¹). Furthermore, the holey nanosheets were stable under the experimental conditions.

Xia et al. explored the spectral and electronic synergistic effects by integrating g-C₃N₄ nanosheets with carbon quantum dots (CQDs) via a one-step hydrothermal method [40]. XRD patterns and TEM images showed the presence of CQDs in the composite structure. DR-UV-vis spectra demonstrated extended absorption in the visible-to-near infrared (NIR) region. Besides H₂ evolution under UV and UV-vis light irradiations, this half-reaction by a metal-free photocatalyst was also realized under NIR-light for the first time. For a composite photocatalyst with optimized (10%) CQDs, the rate of H₂ production was slow, 6.76 μmol g⁻¹ h⁻¹ upon irradiation with a laser beam of NIR-light (808 nm). The rate of H₂ production was increased to 50.5 μmol g⁻¹ h⁻¹ under visible-light, and it was found the highest upon illumination with UV-vis, to 219.5 μmol g⁻¹ h⁻¹.

2.2.2. Binary hybrid system

While many researchers were focusing on modifications of g-C₃N₄ and loading it with noble metal nanoparticles for H₂ evolution from water, Hou et al. prepared layered nanojunctions of MoS₂ and mesoporous g-C₃N₄ for noble-metal-free catalysis [41]. The rate of H₂ production over the nanojunction increased first until loading 0.2 wt.% MoS₂ and then decreased with further loadings. On the other hand, for the Pt-loaded sample, the rate of H₂ production kept on increasing from 0.1 wt.% to 2.0 wt.%. For intermediate loadings of 0.5 wt.% of MoS₂ (20.6 μmol h⁻¹) and Pt (4.8 μmol h⁻¹) loaded samples, the rate of H₂ evolution on the noble-metal-free system was more than 4 times higher. The optimized system showed an apparent quantum yield of 2.1% at 420 nm. However, the cyclic runs for H₂ production over the optimized MoS₂ system showed deactivation. Yu et al. loaded nanoparticles of Ni(OH)₂ onto g-C₃N₄ by a simple precipitation method [42]. TEM analysis showed that some nanoparticles of Ni(OH)₂ in the range of 10–20 nm were deposited on the surface of g-C₃N₄ nanosheets. Visible-light-driven photocatalytic production of H₂ was enhanced with this low-cost Ni(OH)₂ co-catalyst. Among various forms of nickel, Ni(OH)₂ co-catalyst was found better for H₂ production, in comparison with pure Ni and NiO. Under the experimental conditions, the rate of H₂ production over the optimal Ni(OH)₂/g-C₃N₄ (7.6 μmol h⁻¹) photocatalyst was approaching that of a noble metal loaded g-C₃N₄ (8.2 μmol h⁻¹). For repeated use of photocatalyst, a decrease in the activity was noticed after the first run and then was maintained for H₂ production. The apparent quantum efficiency was 1.1% and after the second cycle, the H₂ production remained stable over the Ni(OH)₂-modified g-C₃N₄ system. The noble-metal-free system of 10–20 nm Ni(OH)₂ precipitated on g-C₃N₄ nanosheets showed comparable photocatalytic activity with Pt/g-C₃N₄.

In an effort to develop an understanding of a noble-metal-free photocatalyst, Bi et al. studied the changes in the surface band bending upon composite formation of g-C₃N₄ with Ni metal via a solvothermal method [43]. About 30 nm metallic Ni nanoparticle were loaded on g-C₃N₄ and characterized by XRD and TEM analysis. Mott-Schottky plots showed a deeper band bending for the optimized Ni/g-C₃N₄ composite, and demonstrated a higher efficiency in the separation of photogenerated electron-hole pairs. Under the experimental conditions, pure g-C₃N₄ without Ni co-catalyst was almost inactive. The rate of H₂ production steadily increased with Ni metal loading onto g-C₃N₄ and reached a maximum of 8.41 μmol h⁻¹ for about 10% Ni/g-C₃N₄ (under full light) which was comparable with that of the one modified with Ni(OH)₂, 7.6 μmol h⁻¹ (under visible light) [42]. Many researchers investigated Ni as a noble-metal alternate in learning from nature, as

nickel is found in the hydrogenase enzymes that regulate hydrogen in biological systems.

Lately, Kong et al. reported light-assisted rapid preparation of Ni-based robust photocatalyst, a magnetic composite of Ni/g-C₃N₄ [44]. Uniformly dispersed metallic Ni nanoparticles with diameters of 30–80 nm were photodeposited on the surface of g-C₃N₄. Under full light, an extremely high rate of H₂ evolution, 4318 μmol g⁻¹ h⁻¹ was obtained for the optimized system containing 7.4% Ni. The apparent quantum yield of H₂ at 400 nm was 2.01%, and the catalyst was durable after 48 h of recycling tests.

Another sulfur-based low-cost material, WS₂ was decorated onto g-C₃N₄ as a noble-metal-free co-catalyst. Akple et al. constructed a heterojunction between WS₂ loaded onto g-C₃N₄ through a gas-solid reaction under an inert atmosphere [45]. The composite structure was prepared by a gas-solid reaction under an inert atmosphere. The crystalline structures of both semiconductors in the composite were identified with TEM analysis (Fig. 5A & B) and XRD patterns (Fig. 5C). Under the experimental conditions, both g-C₃N₄ and WS₂ were individually inactive for the photocatalytic H₂ evolution from water. The rate of H₂ production over the optimized composite with a very small loading of WS₂ (nominal 0.01 wt.%) onto g-C₃N₄ was 101 μmol g⁻¹ h⁻¹ under visible-light irradiation, which was even better than that of the sample with the same amount of Pt co-catalyst (72 μmol g⁻¹ h⁻¹). As shown in Fig. 5D, the cyclic photocatalysis runs demonstrated a stable production of H₂ over this noble-metal-free WS₂/g-C₃N₄. Furthermore, the photoelectrochemical measurements confirmed the stability of the binary hybrid system.

Towards the development of a noble-metal-free photocatalyst for H₂ generation from water, Chen et al. designed a novel strategy to fabricate homogeneously distributed nanoparticles of C and N co-doped TiO₂ on ultrathin nanosheets of g-C₃N₄ by a simple one-pot solvothermal route [46]. As learned from the synergistic combination TiO₂/g-C₃N₄, a superior photocatalytic ability was expected for this composite pertaining to its improved optical, electrical and physicochemical properties. Under visible light illumination, the nanocomposite exhibited superior H₂ generation comparing with the individual components of the heterojunction. The rate of H₂ evolution over the optimized composite with 3 wt.% C and N co-doped TiO₂ reached to 39.2 μmol g⁻¹ h⁻¹ which was 10.9 and 21.3 times higher than the sole C,N-TiO₂ nanoparticles, and pure g-C₃N₄ nanosheets, respectively. Furthermore, the optimized catalyst remained stable in recycling tests. Liu et al. hydrothermally hybridized well dispersed 10–20 nm CdZnS with g-C₃N₄ nanosheets for visible-light-driven H₂ evolution and degradation of organic pollutants [47]. Over the optimized composite, the rate of H₂ evolution from water was 208 μmol h⁻¹ that showed a slight decrease in cyclic runs. Recently, ~25 nm size CoP nanoparticle modified g-C₃N₄ nanostructures were prepared by Yi et al. using a simple grinding of the precursors [48]. Visible-light-driven rate of H₂ generation over this noble-metal-free 0.25 wt.% CoP loaded g-C₃N₄ reached to ~475 μmol g⁻¹ h⁻¹. The rate was ~131 times higher than that of the pure g-C₃N₄ and even better comparing with the optimized Pt/g-C₃N₄. The noble-metal-free nanostructure demonstrated no loss of H₂ production activity in repeated runs.

Recently, Wang et al. prepared heterostructure of μ-oxo dimeric iron(III) porphyrin, (FeTPP)₂O and g-C₃N₄ through a solution phase chemical reaction [49]. Sole (FeTPP)₂O and its physical mixture with g-C₃N₄ were not active for photocatalytic H₂ production. Formation of heterostructure was sought to be important for a photocatalytic activity where (FeTPP)₂O acted not just as a photosensitizer, but also helped with separation of charges. Full UV-vis light irradiation stimulated the (FeTPP)₂O/g-C₃N₄ photocatalyst to produce H₂ at a rate of about 40 μmol h⁻¹. While under visible-light irradiation, the rate of H₂ production was 11 μmol h⁻¹ [49].

Fig. 5. (A) TEM and (B) HR-TEM image of $\text{g-C}_3\text{N}_4/\text{WS}_2$ (0.01%) sample, (C) XRD patterns of $\text{g-C}_3\text{N}_4$, WS_2 and various samples of $\text{g-C}_3\text{N}_4/\text{WS}_2$, and (D) Cyclic runs for the photocatalytic H_2 production on $\text{g-C}_3\text{N}_4/\text{WS}_2$ (0.01%) sample.

Reproduced with permission from the Ref. [45]. Copyright (2015) Elsevier.

Fig. 6. (A) Steady-state PL spectra for different components in H_2O , the concentrations are the same as those in photocatalytic reaction, (B) Photocatalytic H_2 evolution amount obtained from water reduction in the presence of different components, (C) Transient fluorescence decay for different components in H_2O , the concentrations are the same as those in photocatalytic reaction, and (D) Schematic illustration of the photocatalytic process for H_2 evolution.

Reproduced with permission from the Ref. [51]. Copyright (2013) Royal Society of Chemistry.

Next, studies on Ni-dimethylglyoxime (dmgH) based molecular catalyst combined with g-C₃N₄ were continued by Cao et al. in order to prepare a noble-metal-free photocatalyst system [50]. The particle size of the sub-microwires of Ni-dmgH was smaller (~230 nm) when grown in the presence of g-C₃N₄. A steady rate of H₂ generation (1.18 μmol h⁻¹) was found for the optimal coupling of Ni-dmgH with g-C₃N₄ and maintained in cycling tests. Abnormally a prolonged induction time period was noticed for the onset of the photocatalytic H₂ evolution reaction over Ni-dmgH/g-C₃N₄. Cobaloxime was also explored by Cao et al. as an organometallic co-catalyst to fabricate an economical and a noble-metal-free photocatalyst system [51]. The importance of the sacrificial reagent, triethanolamine (TEOA) was established by the spectroscopic investigations and observed in the photocatalytic production of H₂. Quenching of the PL intensity was noted with the construction of a hybrid system of cobaloxime and g-C₃N₄, and further enhanced in the presence of TEOA (Fig. 6A). None of the combinations was active except for g-C₃N₄ loaded with cobaloxime and in the presence of TEOA (Fig. 6B). After an early induction period, the steady-state rate of H₂ production was about 2.6 μmol h⁻¹. Transient fluorescence studies revealed the separation and transfer of photoexcited electrons from g-C₃N₄ to cobaloxime in the presence of TEOA (Fig. 6C). A schematic illustration of the role of cobaloxime and TEOA in the separation of photogenerated charges on g-C₃N₄ nanosheet, and thus the production of H₂ is given in Fig. 6D.

Hong et al. prepared a noble-metal-free, NiS loaded g-C₃N₄ binary system by a simple hydrothermal method [52]. Mesoporous g-C₃N₄ was prepared using SiO₂ nanosphere (12 nm) as a template and loaded with NiS nanoparticles by hydrothermal method. The optimized composite photocatalyst, ca. 1.25 wt.% NiS/g-C₃N₄ showed an efficient rate of H₂ evolution (48.2 μmol h⁻¹) upon visible-light irradiation which is around 70% that of the Pt/C₃N₄ under the same experimental conditions. Time course of H₂ production over NiS/g-C₃N₄ in the recycle study showed a gradual decrease in the activity. The apparent quantum efficiency of 1.9% was recorded at 440 nm.

Recently, Lu et al. also worked on the same system, NiS/g-C₃N₄, in an effort to develop a visible-light-driven noble-metal-free photocatalyst [53]. In contrast to the mesoporous g-C₃N₄ used by Hong et al. [52], a liquid phase exfoliated g-C₃N₄ nanosheets were decorated with the co-catalyst NiS by precipitation and hydrothermal method. The thickness of the exfoliated nanosheets of g-C₃N₄ was ~3 nm. In the composite structure, nanoparticles of NiS are well anchored onto g-C₃N₄ nanosheets as shown in the TEM images (Fig. 7A & B). As noticed in other Ni-based photocatalyst systems, an initial induction time period for the photocatalytic H₂ evolution reactions over NiS/g-C₃N₄ under visible-light irradiation. The production of H₂ over nanosheet g-C₃N₄ loaded with noble-metal-free co-catalyst, NiS was 25% less efficient than that with Pt (5.6 μmol h⁻¹). However, under the optimized experimental conditions when equating with Pt loaded g-C₃N₄ photocatalyst, the working efficiency of NiS/nanosheet g-C₃N₄ (75%) was better than NiS/mesoporous g-C₃N₄ (70%) composite. The rate of photocatalytic H₂ production was correlated with the wavelength it was exposed to, and the behavior was parallel to the optical absorbance properties (Fig. 7C). Comparing with bulk NiS/bulk g-C₃N₄ (1.6 μmol h⁻¹) composite, about 2.6 times enhancement in the rate of H₂ evolution was observed over NiS/nanosheet g-C₃N₄ (4.2 μmol h⁻¹). A relationship of bulk and nanosheet structure with the photocatalytic performance is illustrated in the schematic (Fig. 7D).

Raziq et al. synthesized B-doped g-C₃N₄ nanosheets and fabricated their composite with a nanocrystalline anatase TiO₂ [54]. TEM images showed that nanocrystalline TiO₂ with 5 nm diameter was well-dispersed on the surface of B-doped g-C₃N₄. All the various

photocatalytic applications of the nanocomposite, TiO₂/B-doped g-C₃N₄ in H₂ evolution, CO₂ reduction and degradation of environmental pollutants exhibited rather high activities compared to those of bare g-C₃N₄, under visible-light irradiation. In this co-catalyst-free system, B-induced surface state near the valence band top was suggested to trap holes and hence enhance the separation of charges. Under the experimental conditions, the photocatalytic H₂ production over bare g-C₃N₄ (0.52 μmol h⁻¹) was negligible. The rate of H₂ evolution increased 21 times with B-doping of the g-C₃N₄ (11 μmol h⁻¹). Comparing with bare g-C₃N₄, a very high 29 times enhancement of H₂ production was observed for the optimized nanocomposite of TiO₂/B-doped g-C₃N₄ (15 μmol h⁻¹). Though the overall rate of H₂ evolution over TiO₂/B-doped g-C₃N₄ was not good amongst similar TiO₂ based composite systems, this nanocomposite demonstrated a relatively great increase in efficiency when comparing with pristine g-C₃N₄.

A visible-light active, highly efficient and stable composite of Cd_{0.5}Zn_{0.5}S nanoparticles of smaller than 100 nm and g-C₃N₄ was prepared by the solvothermal method [55]. Without any co-catalyst, the hybrid heterojunction Cd_{0.5}Zn_{0.5}S/g-C₃N₄ photocatalyst demonstrated improved rate of H₂ production of 20.8 mL h⁻¹ as compared with 13.6 mL h⁻¹ that of the pure Cd_{0.5}Zn_{0.5}S. For the optimized system, the photocatalytic activity was maintained by over 95% in the cyclic production of H₂. In an effort to prepare a noble-metal-free photocatalyst, Liu et al. fabricated composites of Mn_{0.8}Cd_{0.2}S and g-C₃N₄ nanosheets by a facile hydrothermal method [56]. TEM analysis depicted 50 nm nanoparticles of multi-metal sulfide well-dispersed on the surface of g-C₃N₄. Under visible-light irradiation, the rate of H₂ production over pure Mn_{0.8}Cd_{0.2}S was 1.2 mmol h⁻¹ g⁻¹ that increased about 3.4 times after formation of its composite, Mn_{0.8}Cd_{0.2}S/g-C₃N₄ (4.0 mmol h⁻¹ g⁻¹). Cyclic runs for photocatalytic H₂ production over the optimized composite demonstrated its good stability under experimental conditions. Research on Cd-based sulfide composites of g-C₃N₄ was continued by Liu et al., and a mesoporous g-C₃N₄ was obtained by using a hard-template loaded with CdLa₂S₄ nanoparticles via a hydrothermal method [57]. TEM analysis showed an intimate interfacial contact between 50 nm spherical nanoparticles CdLa₂S₄ and nanosheets of g-C₃N₄. For the optimized composite of CdLa₂S₄/g-C₃N₄, the rate of H₂ evolution reached to 5.98 mmol h⁻¹ g⁻¹ under visible light irradiation, which was about 7.7 times higher than pure CdLa₂S₄ (0.77 mmol h⁻¹ g⁻¹). The apparent quantum efficiency of the optimized heterojunction was 7.1% at 420 nm.

Besides Cd-based sulfide materials, Liu et al. also reported on the noble-metal-free fabrication of g-C₃N₄ composite with another bimetallic sulfide via a facile hydrothermal method [58]. Hexagonal ZnIn₂S₄ was chosen for it has a layered structure similar to g-C₃N₄. Sheet-on-sheet nanocomposites of ZnIn₂S₄/g-C₃N₄ were prepared with various compositions, and optimal content of g-C₃N₄ was 40 wt.% for an efficient photocatalytic activity. The thickness of ZnIn₂S₄ sheets was about 10 nm. A gradual increase in photocatalytic activity was observed with increasing mass ratio of g-C₃N₄ onto ZnIn₂S₄ that started to decrease beyond 40 wt.% loading. An enhanced photocatalytic activity of the optimized nanocomposite was ascribed to efficient separation and transfer of charges at the interface between ZnIn₂S₄ and g-C₃N₄ rather than physico-chemical properties. Under visible-light irradiation, the rate of H₂ production over pure ZnIn₂S₄ was 500 μmol h⁻¹ g⁻¹ that increased about 1.91 times upon formation of its nanocomposite with g-C₃N₄ (953.5 μmol h⁻¹ g⁻¹). Cyclic photocatalytic runs demonstrated a stable production of H₂ over ZnIn₂S₄/g-C₃N₄ under visible-light illumination. However, comparing with ZnIn₂S₄/g-C₃N₄ the composites of Cd-based S materials with g-C₃N₄ were more efficient for the photocatalytic production of H₂. Interestingly, around the same time period Zhang et al. also reported on photocatalytic activity

Fig. 7. (A) TEM and (B) HR-TEM image of $\text{g-C}_3\text{N}_4/\text{NiS}$ sample, (C) Dependence of photocatalytic hydrogen production rate on the wavelengths and optical spectrum of the $\text{g-C}_3\text{N}_4/\text{NiS}-1.0$ sample, and (D) Schematic illustration of the visible light photocatalytic performance of NiS loaded on to bulk $\text{g-C}_3\text{N}_4$ and nanosheets of $\text{g-C}_3\text{N}_4$. Reproduced with permission from the Ref. [53]. Copyright (2015) Royal Society of Chemistry.

of sheet-on-sheet heterostructure of $\text{ZnIn}_2\text{S}_4/\text{g-C}_3\text{N}_4$ with various compositions [59]. TEM images of the heterostructure showed that 4–9 nm thick sheets of ZnIn_2S_4 were vertically grown onto the nanosheets of $\text{g-C}_3\text{N}_4$ and built a hierarchical structure. Similar to the method adopted by Liu et al. [58], ZnIn_2S_4 nanosheets were in-situ grown onto $\text{g-C}_3\text{N}_4$ nanosheets through a facile hydrothermal route. Contrary to the composite compositions studied by Liu et al. [58], when ZnIn_2S_4 was fixed while loading of $\text{g-C}_3\text{N}_4$ was varied from 0 to 50 wt.%, here in this study $\text{g-C}_3\text{N}_4$ was taken as a reference material and modified with various amounts of ZnIn_2S_4 , 0–20 wt.%. Under visible-light irradiation, the H_2 production rate for the optimized photocatalyst system with 15 wt.% ZnIn_2S_4 loaded onto $\text{g-C}_3\text{N}_4$ was $14.1 \mu\text{mol h}^{-1}$ which was very low compared to the one reported by Liu et al. ($953.5 \mu\text{mol h}^{-1} \text{g}^{-1}$) [58]. On the other hand, under the experimental conditions a relative improvement in the optimized photocatalytic system against the reference material ZnIn_2S_4 was reported at nearly 4 times and 1.91 times by Zhang et al. [59] and Liu et al. [58], respectively. Recycling photocatalytic tests demonstrated good stability for the production of H_2 over $\text{ZnIn}_2\text{S}_4/\text{g-C}_3\text{N}_4$ under visible-light irradiation. Regarding the enhancement of photocatalytic activity, in addition to the extended absorption of light by the composite structure of nanosheets, it was mainly attributed to efficient separation and transfer of charges at the interface between ZnIn_2S_4 and

$\text{g-C}_3\text{N}_4$. The optimum $\text{ZnIn}_2\text{S}_4/\text{g-C}_3\text{N}_4$ ratios found for photocatalytic H_2 production were quite different for both the research groups, specifically at 60/40 and at 15/85 by Liu et al. [58] and Zhang et al. [59], respectively.

In the search for an economically viable photocatalyst material, a noble-metal-free heterojunction of ZnS and $\text{g-C}_3\text{N}_4$ was constructed by Suyana et al. using a one-pot co-pyrolysis synthesis protocol [60]. TEM studies indicated 4–7 nm size ZnS nanoparticles in the composite. Transient spectroscopic and photocurrent measurements along with PL spectra revealed a reduction in recombination of charges in the $\text{ZnS}/\text{g-C}_3\text{N}_4$ composite. Under visible-light irradiation, an overall rate of H_2 production over the optimized composite 14 wt.% $\text{ZnS}/\text{g-C}_3\text{N}_4$ ($871 \mu\text{mol g}^{-1} \text{h}^{-1}$) was only about 25% higher than pure $\text{g-C}_3\text{N}_4$ ($670 \mu\text{mol g}^{-1} \text{h}^{-1}$). The heterojunction was active in dye degradation and organic synthesis too.

2.2.3. Ternary and complex hybrid system

A $\text{g-C}_3\text{N}_4$ based complex system comprising of earth-abundant elements, nickel, thiourea, and trimethylamine was in-situ constructed during the photocatalytic process [197]. This complex but low-cost photocatalyst system was highly efficient in the production of H_2 from water reduction. Under the solar light, the rate of H_2 production over this complex system was $51 \mu\text{mol h}^{-1}$, and that

was comparable with Pt co-catalyst loaded g-C₃N₄ (59 μmol h⁻¹). Amongst other transition metal (Fe, Cu, and Co) based complex systems, only Co based photocatalyst showed some activity, but less than half that of the Ni comprising catalyst.

A ternary nanocomposite of mesoporous g-C₃N₄, multi-walled carbon nanotubes (MWCNT), and a metal sulfide co-catalyst was prepared by Zhong et al. via sol-gel followed directing precipitation [61]. At first, a nanocomposite of 40–60 nm diameter MWCNT was constructed with mesoporous g-C₃N₄ which was prepared with SiO₂ (12 nm) hard template. Three sulfides of different transition metals (Cu, Co, and Ni) were investigated as a co-catalysts to replace the noble metal, Pt. TEM images showed nicely formed ternary hybrid structure, and other characterizations illustrated accordingly favorable optical, and electronic properties. Among the nanocomposites with the same co-catalyst loadings (3 wt.%), the one with NiS demonstrated the best photocatalytic activity under visible-light irradiation. TEM studies showed that 5–20 nm size fine nanoparticles of NiS were strongly coupled with the surface of the flakes of mesoporous g-C₃N₄. The average rate of H₂ production over the nanocomposite with NiS co-catalyst reached 378 μmol g⁻¹ h⁻¹, and that was 1.37 times and 12.2 times higher than with CoS and CuS co-catalysts, respectively. The amount of loading for the best performing NiS co-catalyst was optimized at 1 wt.%, and the corresponding rate of H₂ production reached to 521 μmol g⁻¹ h⁻¹ which was 148 times higher than that for the mpg-C₃N₄/MWCNT. A significant loss of H₂ production activity was observed in the second run. However photocatalytic activity in later cycle did not decrease drastically, and H₂ production became stable after three cycles. In search of a noble-metal-free photocatalyst, Yuan et al. loaded NiS co-catalyst onto heterojunction of CdS nanorods and g-C₃N₄ nanosheets via two-step wet chemistry method [62]. In-situ grown CdS nanorods of about 10 nm diameter and 100 nm length were uniformly distributed on the surface of g-C₃N₄ nanosheets. The size of NiS nanoparticles was ranging from 10 to 40 nm and HR-TEM exhibited clear lattice fringes of NiS and CdS on g-C₃N₄ nanosheets. The average rate of H₂ evolution under visible-light was increasing with the amount of the co-catalyst, and the optimized loading of NiS was 9 wt.%. Over the optimized nanocomposite, the rate of H₂ production reached to 2563 μmol g⁻¹ h⁻¹ that was 1582 times higher comparing with pure g-C₃N₄. In the repeated time courses for photocatalytic H₂ evolution, the decrease in activity was prominent after the first run and maintained in the next cycles.

Instead of a single co-catalyst, Wen et al. loaded dual co-catalyst comprising of NiS and carbon black onto g-C₃N₄ nanosheets to develop a noble-metal-free photocatalyst system [63]. A heterojunction was prepared from 30 to 60 nm sized NiS (1.5%) deposited on the surface of g-C₃N₄ and further decorated with 20–30 nm carbon black (0.5%) nanoparticles. The optimized ternary photocatalyst system exhibited a very high rate of H₂ evolution, 992 μmol g⁻¹ h⁻¹ which was higher than that of the binary composites, and with 3 wt.% Pt co-catalyst photocatalyst. This ternary composite showed a gradual loss of photoactivity in repeated cycles, typical of sulfide materials. Similarly, acetylene black decorated with Ni(OH)₂ was found a robust dual co-catalyst for an efficient photocatalytic activity of g-C₃N₄ under visible-light [64]. The nanoparticle of 20–50 nm acetylene black formed a chain-like structure on g-C₃N₄ and the composite was decorated with in-situ grown Ni(OH)₂ nanoparticles. The photocatalytic H₂ production efficiency of pure g-C₃N₄ (0.75 μmol g⁻¹ h⁻¹) was increased with the loading of acetylene black (2.4 μmol g⁻¹ h⁻¹). However, with loading a well-known Ni(OH)₂ co-catalyst for H₂ evolution reaction, a 100 fold increase in activity was observed comparing with pure g-C₃N₄. Next, a drastic increase in photocatalytic activity was observed when Ni(OH)₂ decorated acetylene black was used as

a dual co-catalyst. The rate of H₂ production over this ternary nanocomposite reached to 240 μmol g⁻¹ h⁻¹ with a 320 times increase in comparison with pristine g-C₃N₄. These studies demonstrated an important strategy of combining nano-carbons with other earth-abundant co-catalysts as replacement of noble metal materials.

For the development of a noble-metal-free photocatalyst, Mori et al. made use of two different types of graphitic carbon nitrides, bulk g-C₃N₄ and delaminated nanostructured g-C₃N₄ in understanding the effect of the nanostructure [65]. They designed a ternary composite with Ni complex and a visible-light-responsive organic dye, thiazole orange (TO; band gap 1.84 eV). For the nanostructured g-C₃N₄, the BET specific surface area (148 m² g⁻¹) and pore volume (0.43 cm³ g⁻¹) were about 15 and 10 times, respectively large than those of the bulk g-C₃N₄ and found effective in enhancing photocatalytic properties. The amounts of loadings of the active site of molecular level Ni co-catalyst species and the photosensitizer TO were optimized for H₂ production from aqueous solution and remained stable during the photocatalytic reaction. Ni K-edge X-ray absorption fine structure spectroscopy and TEM studies on both fresh and used materials demonstrated mononuclear species of Ni co-catalyst that remained stable during photocatalysis. Hence, molecular species of Ni, rather than the colloidal form, was responsible for the photocatalytic reaction. Over the bulk g-C₃N₄ based optimized system the rate of H₂ production was about 1.7 μmol h⁻¹ that increased more than three times upon changing it to nanoporous g-C₃N₄ (about 5.8 μmol h⁻¹) with a high specific surface area and porosity.

A facile thermal process was developed by Pany et al. for one-step N and S incorporation into TiO₂ and fabrication of its nanocomposite with g-C₃N₄ [66]. Nanoparticles of around 20 nm were observed in the TEM images consistent with the crystallite size calculated from XRD pattern by using Scherrer formula. This known synergistic combination of TiO₂/g-C₃N₄ was made more effective with the introduction of dopants, N and S. Furthermore, small crystallite size, phase pure anatase, and a high specific surface area were found effective for enhanced visible light absorption and separation of charges. In this complex system, the leftover of sulfate from the titania precursor was incorporated onto the N,S-TiO₂/g-C₃N₄ heterojunction and acted as a co-catalyst. For the optimized N,S-TiO₂/g-C₃N₄ system, the rate of photocatalytic H₂ production reached to 317 μmol h⁻¹, which was 2.5 times higher than pure g-C₃N₄. In comparison with simple TiO₂/g-C₃N₄ [67] (52.71 μmol h⁻¹) heterojunction, the overall rate of H₂ evolution was higher for this complex system, N,S-TiO₂/g-C₃N₄ (317 μmol h⁻¹). Furthermore, the N,S-TiO₂/g-C₃N₄ complex system demonstrated stable performance during repeated usage for H₂ evolution reaction.

Another TiO₂-based complex system was investigated by Jiang et al. towards the development of the noble-metal-free system [68]. A novel ternary composite of TiO₂–In₂O₃ with g-C₃N₄ was synthesized by a solvothermal method. The nanoparticles of TiO₂–In₂O₃ were densely and uniformly distributed on the surface of g-C₃N₄. As observed under TEM, the average diameter of the TiO₂/In₂O₃ nanoparticles loaded onto g-C₃N₄ was around 12 nm (Fig. 8A). BET specific surface area of the ternary composite reached to 90 m² g⁻¹. Photocatalytic H₂ evolution activity of pure and hybrid materials is depicted in Fig. 8B. An enhanced photocatalytic activity by the ternary composite was attributed to a low rate of recombination along with a high specific surface area. Under visible-light illumination from LED, the rate of H₂ production was 8.6 μmol h⁻¹ that was higher than binary hybrids, and 48 times higher than that of the pure g-C₃N₄.

A complex system of g-C₃N₄ co-sensitized with two dyes namely Eosin Y (EY) and Rose Bengal (RB), and loaded with in-situ grown Co(OH)₂ nanoparticle was developed for H₂ evolution under

Fig. 8. (A) TEM image of TiO₂-In₂O₃ nanoparticles decorated on g-C₃N₄, and (B) Photocatalytic H₂ evolution activity of pure materials, binary composites, and ternary composite.

Reproduced with permission from the Ref. [68]. Copyright (2015) Elsevier.

visible-light irradiation [69]. The average size of Co(OH)₂ nanoparticles in TEM image was 3 nm and in good agreement with the one calculated from the line width analysis of the diffraction peak using Scherrer equation. Absorption of the visible light was extended from 430 nm to 600 nm with the co-sensitization of a binary system, Co(OH)₂/g-C₃N₄. Under the reaction conditions, only a trace amount of H₂ was produced over Co(OH)₂/g-C₃N₄. Essentially no H₂ evolution was observed over the catalyst systems composed of dyes and g-C₃N₄ without Co(OH)₂ co-catalyst loading. With a synergistic effect of co-catalyst and sensitizers, an optimized rate of H₂ evolution (143.9 μmol h⁻¹) was obtained for the 30 wt.% Co loaded g-C₃N₄ co-sensitized with EY to RB molar ratio at unity, and operating at pH 9. Stable performance in repeated runs of H₂ evolution reaction and a profile of constant photocurrent ascribed sustainable use of this noble-metal-free system. In contrast to the approach of co-sensitization with two dyes, Hao et al. used only Eosin Y for photosensitization of g-C₃N₄ and modulated the selective transfer of photogenerated electrons on differently exposed facets of binary metal (Co and Mo) sulfide [70]. The Co_xMo_{1-x}S₂/g-C₃N₄ composite was prepared via a facile solvothermal method and the dye photosensitizer was added into the aqueous reaction mixture and used for H₂ evolution reaction. The binary metal sulfide coupled with g-C₃N₄ comprised of irregular nanoparticles of 50 nm to 200 nm aggregates. In comparison with a 30%Co/g-C₃N₄

ratio for an optimum photoactivity, a high amount of co-catalyst at 70%Co_xMo_{1-x}S₂/g-C₃N₄ was needed for the best H₂ production efficiency at pH 9 and under visible light irradiation. The EY sensitized pure g-C₃N₄ (2.2 μmol h⁻¹) showed a slight activity for H₂ production from an aqueous solution that increased to 29.3 μmol h⁻¹ and 78.4 μmol h⁻¹ with loading a single metal sulfide co-catalyst of CoS₂ and MoS₂, respectively. Next, with the co-loading of both the sulfides the complex system Co_xMo_{1-x}S₂/g-C₃N₄ demonstrated an enhanced rate of H₂ production, 176.5 μmol h⁻¹. Furthermore, the photocatalyst system showed a stable production of H₂ in repeated cycles.

An artificial Z-scheme photocatalytic system of ZnIn₂S₄/nanocarbon/g-C₃N₄ was developed for visible-light-driven H₂ production [71]. Nanocarbon sandwiched in between the heterojunction forming semiconductors was anticipated to act as a solid electron mediator. The rate of H₂ production on the nanocomposite photocatalyst system reached to 50.32 μmol h⁻¹ that was about 3.4 times higher comparing with ZnIn₂S₄, and pure g-C₃N₄ was almost inactive. Towards the development of a non-noble metal photocatalyst for H₂ production from water, Li et al. investigated dual synergetic effects from pyridine modification of g-C₃N₄ and loading with MoS₂ co-catalyst [72]. At first, a donor-acceptor system of pyridine modified g-C₃N₄ was synthesized from co-pyrolysis of 2,5-dibromopyridine and urea at 550 °C for 2 h. TEM analysis showed nanosized flower-like MoS₂ folded from nanosheets of ~2 nm was loaded onto the donor-acceptor system by a solvothermal method. Under visible-light irradiation, the optimized system with 3% MoS₂ showed an enhanced and stable rate of H₂ evolution, 25 μmol h⁻¹. For the MoS₂ co-catalyst loaded samples, the amount of H₂ produced over pyridine modified complex photocatalyst was 2.5 times higher than the pristine system.

CdS is an important material for visible-active photocatalysis but, suffers from photo-corrosion, so the construction of its composites is helpful in gaining stability. Recently, Cheng et al. used a low-temperature solid-state method to fabricate ternary nanocomposites of two metal sulfides, CdS and CuS with g-C₃N₄ [73]. The intimate connection between metal sulfides and g-C₃N₄ nanosheets was clearly observed in the high-resolution TEM to fabricate the triple heterojunction. TEM images of the nanocomposite showed nanosheets of g-C₃N₄ loaded with about 8 nm sized CdS nanoparticles closely adjacent to CuS nanoparticles (Fig. 9A & B). The size of CuS nanoparticles was smaller with reference to 8 nm size of CdS. The construction of the triple heterojunction was important for the accelerated separation of photoexcited charge carriers and their respective reactions are illustrated in the schematic diagram, Fig. 9C. In comparison with the pure materials and binary composites, this ternary composite demonstrated a remarkable enhancement in the photocatalytic activity. The optimized nanocomposite exhibited H₂ production rate of around 57.6 μmol h⁻¹ under visible light irradiation. The corresponding apparent quantum efficiency reached to 16.5% at 420 nm.

Lately, Zhang et al. reported on the design of ~7 nm Cu-Cu₂O well distributed g-C₃N₄ nanocomposite and sensitized with Erythrosin B for visible-light-driven H₂ production from water [74]. TEM analysis showed that ~7 nm nanoparticles of Cu-Cu₂O were well dispersed on the surface of g-C₃N₄. For the composite with 7 wt.% copper, the rate of H₂ reached to 400 μmol g⁻¹ h⁻¹ which was ~3 times higher compared with pure g-C₃N₄ (140 μmol g⁻¹ h⁻¹). Next, a significant improvement was observed with the dye sensitization and the rate reached to 5000 μmol g⁻¹ h⁻¹ but showed a slight decrease in recycling tests. Hou et al. used a combination of foaming-assisted electrospinning process and followed by a solution dipping process for fabrication of ternary hybrid nanofibers of TiO₂, WO₃, and g-C₃N₄ [75]. Thoroughly mesoporous ternary hybrid nanofibers of around 200 nm

Fig. 9. (A) TEM and (B) HR-TEM images of the as-prepared ternary composite of CdS/g-C₃N₄/CuS, (C) Inferential schematic mechanism proposed for the photocatalytic production of H₂ over the ternary nanocomposite under visible-light irradiation.

Reproduced with permission from the Ref. [73]. Copyright (2016) Elsevier.

diameter were synthesized in the process. This noble-metal-free hybrid yielded a high and stable visible-light-driven photocatalytic H₂ release at a rate of ~287 μmol h⁻¹ compared with the individual components. In comparison with pristine g-C₃N₄ and TiO₂ P25, the nanofiber composite showed better stability in consecutive photocatalytic cycles. All of these studies provide important strategies towards design and development of noble-metal-free efficient photocatalyst systems for sustainable harvesting of solar energy.

2.3. O₂ evolution reaction

In natural photosynthesis, water oxidation is a crucial step in a series of reactions required for the sunlight-light-driven conversion of CO₂ and H₂O into sugar. The water oxidation half-reaction is a key step and major bottleneck to control overall water splitting process as it requires transfer of four electrons [76]. In the two half reactions of water splitting, the oxidation is considered a complicated process for it involves the sluggish transfer of four electrons. A large scale application of the most active catalyst systems for water oxidation based on Ir and Ru are hindered because of the high cost and environmental issues [77,78]. Therefore, the development of low-cost catalyst systems is important for sustainable application of water splitting process.

For water splitting via separate H₂ and/or O₂ evolution half reactions, significant advances have been made with the development of H₂ evolution reaction, and only a few researchers have attempted on O₂ evolution reaction for it is a difficult step requiring transfer for four electrons [13,2]. In the photocatalytic reactions, AgNO₃ is usually used as a sacrificial reagent to trap electrons and leave holes for O₂ evolution half reaction of water splitting. Photocatalytic O₂ evolution from water is a key bottleneck for the conversion and storage of solar energy in the chemical form. A sluggish requirement for transfer of four-electrons and high activation energy barrier for oxygen–oxygen bond formation are the main difficulties with the development of a water oxidation catalyst for photocatalytic O₂ evolution half reaction.

The role of band gap engineering towards improved photocatalytic activity of g-C₃N₄ was investigated by its sulfur-mediated solid-state synthesis under N₂ flow [79]. Sulfur-doping of g-C₃N₄ helped in lowering of the valence band position and was ascribed to the enhanced photocatalytic activity of this metal-free system for water oxidation reaction. The material produced with sulfur-mediated approach depicted nanopores of 20–30 nm and a high specific surface area (60 m² g⁻¹) compared with bulk g-C₃N₄ (10 m² g⁻¹). For the reaction under the UV-vis light, the rate of O₂ evolution over the optimized material reached to 20.1 μmol h⁻¹ that was 4.2 times higher comparing with pure bulk g-C₃N₄.

Fig. 10. (A) HR-TEM images of the Co₃O₄ nanoparticles on sulfur-mediated synthesized g-C₃N₄ (CNS), (B) PL spectra of CNS, Co₃O₄, and nanohybrids with various amounts of Co₃O₄ loaded on CNS, (C) Visible light active O₂ evolution by CNS, CNS + 3 wt.% Co₃O₄ (physical mixture), and 3 wt.% Co₃O₄/CNS nanohybrid, and (D) Wavelength dependent O₂ evolution rate over 3 wt.% Co₃O₄/CNS nanohybrid. The inset in (D) is the O₂ evolution curve under visible light ($\lambda > 455$ nm).

Reproduced with permission from the Ref. [80]. Copyright (2012) Royal Society of Chemistry.

Next, Zhang et al. combined this g-C₃N₄ photocatalyst prepared via sulfur-mediated synthesis approach with nanoparticles of a water oxidation catalyst, Co₃O₄ [80]. As shown in Fig. 10A, the composite exhibited a well-constructed nanojunction structure of g-C₃N₄ with Co₃O₄ nanocrystals of ~3 nm diameter. A tight electronic and spatial interaction in the nanojunction structure was observed with an increased quenching of the PL intensity upon loadings of Co₃O₄ (Fig. 10B) and further confirmed by X-ray photoelectron spectroscopy studies. A synergistic effect was found upon the construction of a composite of Co₃O₄ nanoparticles and S-doped g-C₃N₄. The formation of nanojunctions was believed to promote the direct transfer of photogenerated holes to Co₃O₄. Under visible light, the nanojunction system with a well-constructed heterojunction demonstrated significantly enhanced O₂ evolution comparing with pure semiconductor and its physical mixture with Co₃O₄ (Fig. 10C). Loading of Co₃O₄ at 3 wt.% was found the optimum for water oxidation reaction. In comparison to O₂ production by the co-catalyst free material (2.8 μmol h⁻¹), the rate was significantly enhanced to 25.1 μmol h⁻¹ over this hybrid composite, under visible light irradiation. The rate of O₂ evolution was dependent on the optical absorption of the organic semiconductor material (Fig. 10D). This observation supports that the process of water

oxidation was initiated by photo-induced excitation of the polymeric semiconductor. For the optimized nanojunction structure, an apparent quantum efficiency of 1.1% was determined under illumination at 420 nm.

In search of a metal-free g-C₃N₄ based photooxidation catalyst, Chu et al. tuned the band structure of g-C₃N₄ by incorporating electron-deficient pyromellitic dianhydride monomer [81]. The TEM analysis showed interconnected particles for the polyimide composite with sizes of ~50 nm. Thus obtained polyimide depicted a lowering of valence band position (by 0.8 V) even more pronounced than that was observed with S-doping (by 0.2 V), and consequently demonstrated an enhanced capability for water oxidation. Under visible-light irradiation, the initial rate of O₂ production on polyimide was estimated to be 7.7 μmol h⁻¹ that was about an order of magnitude larger than that of pristine g-C₃N₄ (0.8 μmol h⁻¹), and almost double comparing with the rate over S-doped g-C₃N₄ (3.6 μmol h⁻¹).

2.4. H₂O₂ generation

Photocatalytic generation of H₂O₂ is important for its in-situ use in advanced oxidation process, and potential use as a fuel.

Furthermore its solubility in water and easy transport compared with H₂ makes it an interesting candidate as a solar fuel. Kofuji et al. constructed visible light active nanohybrids of g-C₃N₄ with aromatic diimide and graphene for reduction of O₂ to H₂O₂ [82]. Under visible light irradiation for 24 h, g-C₃N₄ modified with aromatic diimide produced 14 μmol of H₂O₂. While the optimized catalyst system including appropriate constituent of graphene generated double amount of H₂O₂ (29 μmol). Li et al. demonstrated the construction of a solid-gas interface of a Fenton reaction over g-C₃N₄ modified with hydroxyl and Fe³⁺ species [83]. These modifications played significant roles in photoactive production of H⁺ and Fe²⁺/Fe³⁺ pair formation, and therefore determined the rate of H₂O₂ generation. Pristine g-C₃N₄ was inactive for producing H₂O₂ while only hydroxyl modified sample generated about 3.4 μmol of H₂O₂. A highly enhanced amount of H₂O₂ generated in 1 h over the sample modified with hydroxyl and Fe³⁺ species was estimated to be 522 μmol.

2.5. CO₂ reduction

Photocatalytic conversion of CO₂ to value added chemicals is immensely important for that not only reduces the level of greenhouse gas but also helps meet the demand for the renewable fuels. In the late 1970s, Halmann, and Inoue et al. first reported the light-induced reduction of CO₂ [84,85]. Artificial photosynthesis over semiconductor materials for reduction of CO₂ into various chemicals is a highly sought after reaction to fulfill energy demands and mitigate climate changes. As the production of chemical fuels from CO₂ has been considered an ideal solution to simultaneously solve the issues with environment and energy. Therefore, many researchers have attempted various semiconductor materials for the photocatalytic conversion of CO₂.

Metal-free microstructures of g-C₃N₄ nano-flakes derived from different precursors were evaluated for photoreduction of CO₂, under visible-light irradiation. Mao et al. heat treated urea and melamine to modulate microstructure of the produced g-C₃N₄ [86]. A mesoporous structure of nano-flakes of around 5 nm for the g-C₃N₄ (obtained from urea) produced methanol and ethanol at rates of 6.28 μmol g⁻¹ h⁻¹ and 4.51 μmol g⁻¹ h⁻¹, respectively. On the other hand, a non-porous sample of g-C₃N₄ (obtained from melamine) produced ethanol only and at a lower rate, 3.64 μmol g⁻¹ h⁻¹. Hence, the mesoporous structure from nano-flakes demonstrated higher photoactivity for CO₂ reduction. Furthermore, alcohols were the only product obtained from the photoreduction of CO₂ on metal-free g-C₃N₄. The selectivity of CO₂ photoreduction products became more diverse with the research work reported by Niu et al. that used bulk g-C₃N₄ and its nanosheets of around 2 nm size as photocatalysts [87]. Under various experimental conditions, methane and acetaldehyde were the only product of CO₂ photoreduction. Bulk g-C₃N₄ (bandgap ~2.7 eV) produced CH₃CHO only while conversion over g-C₃N₄ nanosheets (bandgap ~2.9 eV) was selective to CH₄.

A further development was made by Ong et al. by the construction of hybrid nanostructure via a combined sonication-assisted and surface charge modification strategy [88]. A metal-free photocatalyst of 2D/2D hybrid heterostructure was prepared from protonated g-C₃N₄ and reduced graphene oxide (rGO). An intimate contact across the heterojunction interface was seen by the TEM and spectroscopic analysis. The optimized nanostructure with 15 wt.% rGO exhibited a considerably enhanced conversion of CO₂ (~14 μmol g_{cat}⁻¹) in the presence of water vapors into CH₄, under illumination from an energy-saving daylight bulb. The photochemical quantum yield was 0.56% which was 5.4 and 1.7 times higher compared with protonated g-C₃N₄ and 15 wt.% of rGO on bulk g-C₃N₄. The enhanced photocatalytic activity of the nanostructure was attributed to the intimately connected rGO for an effective

separation of photogenerated charges. Construction of Z-scheme photocatalysts has received much attention for CO₂ reduction, and an effective indirect Z-scheme of BiOI/g-C₃N₄ was synthesized by Wang et al. via a simple deposition method [89].

Shi et al. decorated nanosheets of g-C₃N₄ onto zirconium metal-organic framework (MOF; UiO-66) via a facile electrostatic self-assembly method [90]. TEM analysis of the nanocomposite showed ~4 nm thick nanosheets decorated onto MOF structure (Fig. 11A). BET surface area of the composite was around 1340 m² g⁻¹. The nanocomposite was highly active for the photocatalytic reduction of CO₂ to CO comparing with the g-C₃N₄ nanosheets alone and the composite prepared from bulk g-C₃N₄ (Fig. 11B). Photoluminescence spectra showed a significant quenching of the intensity indicating a better separation of photoexcited electron-hole pairs in the nanocomposite (Fig. 11C). This phenomenon was further confirmed with fluorescence lifetime measurements. Hence, transfer of photogenerated electrons from the nanosheets to the MOF was substantially suppressing the recombination of electron-hole pairs. Suitable potentials of the nanocomposite for CO₂ reduction and the proposed mechanism under visible light irradiation are depicted in Fig. 11D. Besides a strong adsorption capacity, an efficient separation of charge carriers was found important for this high activity of the nanocomposite. The rate of CO evolution over the optimized composite containing 10 wt.% g-C₃N₄ nanosheet was the highest, and yield reached to more than 3 times better than that of the nanosheets alone. A slight drop in the photocatalytic activity was seen during the recycling tests.

In an effort to develop noble-metal-free photocatalyst, Zhou et al. developed a series of g-C₃N₄ composites with nitrogen-doped TiO₂ by a simple pyrolysis process [91]. Formation of porous g-C₃N₄ and loading with nanoparticles were evidenced from N₂ sorption and microscopy studies. TEM analysis showed nanoparticles in the range of 20 nm to 40 nm dispersed on the surface of g-C₃N₄ nanosheets. Pertaining to its enhanced absorption of light and ease with the separation of charge carriers, the nanocomposite was highly active for CO₂ reduction selectively into CO. Under 12 h irradiation, about 15 μmol of CO was obtained which was four times higher compared with the commercial TiO₂ P25. Another similar nanocomposite system for CO₂ reduction was developed by Raziq et al. by combining nanosize TiO₂ and B-doping of g-C₃N₄ nanosheets [54]. The coupling of B-doped nanosheets of g-C₃N₄ with nanocrystalline TiO₂ for the construction of co-catalyst free nanojunctions was carried out by the facile calcination method. TEM analysis revealed finite ~5 nm diameter nanoparticles of TiO₂ well-dispersed on the surface of the organic semiconductor. The separation of photogenerated charges was improved after B-doping and further enhanced upon coupling with nanosized TiO₂. Upon B-doping of the g-C₃N₄ structure, the amount of CH₄ in 8 h photocatalytic reaction increased from ~7 μmol (pristine g-C₃N₄) to 68 μmol. The highest amount of CH₄, 106 μmol was observed over the nanocomposite. In contrast to the CO₂ reduction to CO over the nitrogen-doped TiO₂ composite observed by Zhou et al. [91], here in this study CH₄ was the main product. The rate of H₂ evolution was also similarly increased upon B-doping of g-C₃N₄ and further with the construction of heterojunction with TiO₂.

A simple impregnation strategy was adopted by He et al. for the synthesis of ZnO nanoparticle-functionalized g-C₃N₄ as shown in Fig. 12A [92]. TEM analysis showed a close coupling of ZnO nanoparticles onto the surface of g-C₃N₄. Electrochemical impedance spectra demonstrated efficient charge transfer between the components of the optimized nanocomposite (Fig. 12B). Comparing with a physical mixture of ZnO and g-C₃N₄ the presence of strong affinity between the two semiconductors in the composite was further confirmed by the X-ray photoelectron spectroscopy. The composite demonstrated a superior performance for

Fig. 11. (A) TEM and HR-TEM images of nanocomposite of Zr-MOF (UiO-66) and g-C₃N₄ nanosheet (CNNS), (B) Time course of CO evolution over bulk g-C₃N₄ (CN), CNNS, UiO-66/bulk CN, and UiO-66/CNNS photocatalysts, (C) PL spectra of CNNS and UiO-66/CNNS, and (D) Schematic of proposed photocatalytic reduction mechanism of CO₂ by the UiO-66/CNNS heterogeneous photocatalyst under visible light irradiation.

Reproduced with permission from the Ref. [90]. Copyright (2015) Wiley.

photocatalytic CO₂ reduction due to effective separation of charges at the interface (Fig. 12C). CO and methanol were the main reaction products from the photocatalytic reduction of CO₂. The optimized heterojunction with 6 wt.% ZnO demonstrated a CO₂ conversion rate of $\sim 46 \mu\text{mol h}^{-1} \text{g}_{\text{cat}}^{-1}$ that was 4.9 and 6.4 times higher than that of the pristine g-C₃N₄ and TiO₂ P25, respectively. A physical mixture of 6 wt.% ZnO with g-C₃N₄ (6ZC-PM) showed much less rate of CO₂ conversion and stressed the importance of good heterojunction between inorganic-organic semiconductors (Fig. 12C). However, the cyclic runs for the optimized catalyst showed a small decrease in the photoactivity.

Besides ZnO, He et al. also used ~ 50 nm sized nano-spherical SnO_{2-X} for the construction of a composite with g-C₃N₄ by simple calcination [93]. The conduction band position of SnO_{2-X} is closer to the valence band position of g-C₃N₄, therefore a direct Z-scheme type composite was formed upon coupling these semiconductors. The nanocomposite was highly efficient for reduction of CO₂ and for the degradation of organic pollutants, under visible light irradiation. Initially, the photocatalytic performance of the composite increased gradually with the SnO_{2-X} concentration and the optimized value was around 42 wt.%, and with further loading the activity was decreased. The photocatalytic CO₂ reduction on the optimized composite reached about $23 \mu\text{mol h}^{-1} \text{g}_{\text{cat}}^{-1}$ which

was 4.3 and 5 times higher than that of the pristine g-C₃N₄ and TiO₂ P25, respectively. In all the various photocatalyst employed in this study, CO was the main product from the reduction of CO₂. The performance of the SnO_{2-X}/g-C₃N₄ nanocomposite was inferior and remained at the half as compared with that of the ZnO/g-C₃N₄ [92]. These studies on noble-metal-free systems present interesting strategies towards the photocatalytic production of fuel from CO₂ and provide important feedback for future developments.

2.6. N₂ fixation

In nature, after photosynthesis, nitrogen fixation is the second most important chemical process and soil-dwelling bacteria are able to utilize N₂ from the air. Industrially, Haber–Bosch process for the catalytic synthesis of ammonia from hydrogen and nitrogen under high pressure and the temperature is the main artificial process for nitrogen fixation. The cost of raw material and the process has been pushing for alternate methods for nitrogen fixation. Since the first report on photocatalytic conversion of N₂, this process has been thought to be the best alternative to traditional techniques. The first study on photofixation was reported by Schrauzer et al. for conversion of N₂ to NH₃ over Fe-doped TiO₂ [94]. Recently, many researchers have attempted on the development of a low-cost and

Fig. 12. (A) TEM of a composite of 6 wt.% ZnO and g-C₃N₄ (6ZC), (B) Electrochemical impedance spectral changes in pure materials, a physical mixture of 6 wt.% ZnO and g-C₃N₄ (6ZC-PM) and 6ZC, and (C) Photocatalytic activities of g-C₃N₄, ZnO, P25, and composites of 2–8 wt.% ZnO with g-C₃N₄ (2–8ZC), and 6ZC-PM.

Reproduced with permission from the Ref. [92]. Copyright (2015) Elsevier.

visible-active photocatalyst materials for fixation of N₂. Hu et al. constructed a 2D/2D heterojunction between protonated g-C₃N₄ and reduced rGO [95]. By acid treatment, the electrostatic surface charge on g-C₃N₄ was modulated to make an effective interfacial contact with rGO, and furthermore, it converted the bulk structure to nanosheets. The rate of visible-light-driven generation of

NH₄⁺ over the optimized heterojunction with sufficient interfacial contact was 3.7 times higher compared with the hybrid structure prepared without surface charge modification. Furthermore, this layered hybrid was highly efficient in the photodegradation of organic pollutant and remained stable in repeated runs.

In another study on the artificial photo-fixation of N₂, Hu et al. prepared a novel heterojunction of ternary metal sulfide, ZnSnCdS with g-C₃N₄ by hydrothermal method [96]. The average size of multi-metal sulfide nanoparticles was in the range of 30–50 nm. An effective separation of photogenerated electron-hole pairs in the strongly coupled heterojunction was evidenced from the imaging and various spectroscopy techniques. High-resolution TEM images showed a tight coupling of irregularly shaped ZnSnCdS with sheet-like g-C₃N₄ which is favorable for the transfer of the photogenerated charges (Fig. 13). As shown in the optical spectra in Fig. 13C, the absorption edges of the heterojunctions were located between that of the pristine g-C₃N₄ and ZnSnCdS and further confirmed the electronic coupling. Because of the effective interfacial charge transfer, an outstanding N₂ photo-fixation was observed over the heterojunction, under visible light irradiation (Fig. 13D). Besides strong coupling of this ternary sulfide with g-C₃N₄ its deficiency in sulfur was found synergistic to provide active sites to absorb and activate N₂ molecules. Under visible light irradiation, the rate of generation of NH₄⁺ (7.543 mg L⁻¹ h⁻¹) over the optimized composite containing 80% ZnSnCdS was 33.2-folds and 1.6-folds greater comparing with the pristine g-C₃N₄ and pure ZnSnCdS. The nanocomposite was also efficient for photodegradation of rhodamine B (RhB), but the optimized concentration of ZnSnCdS was 20% only. The same research group also prepared a heterojunction of g-C₃N₄ with another ternary metal sulfide, ZnMoCdS [97]. TEM analysis of the composite showed ~50 nm nanoparticles of ZnMoCdS attached on the surface of g-C₃N₄. The optimized composite with only 20% of ZnMoCdS exhibited the highest rate of generation of NH₄⁺ (3.5 mg L⁻¹ h⁻¹) that was 13.5-folds and 1.75-fold greater than those of pristine g-C₃N₄ and the ZnMoCdS. In conclusion, compared with the Mo-based ternary metal sulfide composite the one prepared from Sn-based ternary metal sulfide demonstrated superior photocatalytic activity for nitrogen fixation.

2.7. Organic synthesis

Both catalytic oxidation and reduction are industrially important reactions for all the various organic synthesis. Wang et al. attempted earliest studies on g-C₃N₄ based materials for photocatalytic organic synthesis reactions [98–100]. Performing organic synthesis reactions in a controlled manner and under safe conditions is critically desired. Photocatalytic activation of O₂ or H₂O₂ for oxidation reaction and use of the in-situ generated H₂ for reduction reaction offer a safe and economical alternative to the industrial processes. Semiconductor materials based on g-C₃N₄ have been evaluated for both oxidation [13,101], and reduction types of reactions [60,102]. Here in this section, we will summarize some g-C₃N₄ based noble-metal-free photocatalytic systems employed for the organic synthesis.

Song et al. used g-C₃N₄, and further modified it with SnO₂ for evaluating photocatalytic esterification of benzaldehyde and various alcohols under visible light irradiation [103]. A slice-like morphology for the nanostructure of as-prepared g-C₃N₄ was observed under TEM. Production of various esters in the presence of H₂O₂ was enhanced under irradiation of visible light. Loading of SnO₂ further significantly promoted the photocatalytic ester formation reaction. Dark conversion of benzaldehyde and ethanol to ethyl benzoate was 24% that increased upon irradiation with light to 32% and further to 41% with the promotor SnO₂. Zhang et al. activated the metal-free g-C₃N₄ through reflux in acidic media,

Fig. 13. (A) TEM and (B) HR-TEM images of the ZnSnCdS loaded on g-C₃N₄ (20%), (C) UV-vis spectra of as-prepared materials with Tauc plots in the inset, and (D) Nitrogen photo-fixation performance of the as-prepared catalysts under visible light. The inset in (D) shows the photocatalytic stability of ZnSnCdS-CN(20%). Reproduced with permission from the Ref. [96]. Copyright (2016) American Chemical Society.

essentially changing the bulk to nanostructures [104]. The modified polymeric semiconductor was used for the selective aerobic oxidation of benzyl alcohol under visible light irradiation. Among all the acidified samples, the one treated with sulfuric acid gave 23% yield of benzaldehyde under 4 h irradiation of visible light which was 2.5 times higher comparing with pristine g-C₃N₄. The enhanced photocatalytic performance of acidified g-C₃N₄ was attributed to a larger specific surface area and enhanced surface chemical property of the nanoporous sheets of g-C₃N₄.

Shiravand et al. loaded nanoporous silica (LUS-1) with Fe-containing g-C₃N₄ by impregnation followed calcination method [105]. From XRD studies they proposed the formation of a nanoscale layer of g-C₃N₄ on the surface of LUS-1. A drastic enhancement in the hydroxylation of benzene to phenol in the presence of H₂O₂ was observed over the optimized nanostructure catalyst under sunlight. A maximum yield of phenol (16%) was exhibited by g-C₃N₄ with 20%Fe and loaded onto LUS-1. Ye et al. also worked on the selective production of phenol over similar catalyst system; nano-coating of Fe-containing g-C₃N₄ on titanium silicate zeolite (TS-1) [106]. Under visible light irradiation, more than 10% yield of phenol was observed over the optimized composite that was higher compar-

ing with pure materials. Under visible light, Fe-containing g-C₃N₄ loaded on LUS-1 showed a better yield of phenol ~16% comparing with the one loaded on TS-1 (10%).

Recently, Nasir Baig et al. worked on magnetic Fe species loaded onto g-C₃N₄ for a sustainable application in photocatalytic hydrogenation, under visible light irradiation [102]. TEM analysis showed that aggregates of nano-sized ferrite were loaded onto g-C₃N₄, Fe@g-C₃N₄. The nanocomposite systems were screened for the hydrogenation of styrene and with an optimized concentration of Fe (10%) the obtained yield was 98%. During the photocatalytic reaction at room temperature, hydrazine was used as a source of H₂. The magnetically separable nano-ferrite system was efficient for the photocatalytic hydrogenation of various alkenes and alkynes. TEM analysis showed that nano-ferrite remained stable during photocatalytic testing. Suyana et al. prepared a composite of g-C₃N₄ with ZnS by the one-pot synthetic approach [60]. TEM analysis showed 4–7 nm sized nanoparticles of ZnS in the nanocomposite. The optimized heterojunction with 14 wt.% ZnS demonstrated more than 90% photocatalytic reduction of *p*-nitrophenol to *p*-aminophenol, under 240 min illumination with sunlight. Sodium

sulfite was used as a hole scavenger during this photoreduction reaction of *p*-nitrophenol.

Dai et al. prepared a nanocomposite of CdS with g-C₃N₄ via a hydrothermal method [107]. TEM image depicted ~50 nm nanoparticles of CdS decorated on the surface of g-C₃N₄. In comparison with the individual components, the composite was highly efficient for visible light active selective oxidation of benzyl alcohol by holes to benzaldehyde and reduction of nitrobenzene by electrons to aniline. Under 4 h of illumination over the optimized system, the yield of benzaldehyde and nitrobenzene was 44.6% and 26.0%, respectively. A small decrease in photocatalytic activity was noticed in cycling tests. Zhang et al. prepared a nanocomposite from the decoration of in-situ prepared Ag₃PW₁₂O₄₀ onto g-C₃N₄ by stirring with precursors, at room temperature [108]. TEM analysis showed that uniform nanospheres (~5 nm) of Ag₃PW₁₂O₄₀ were anchored on g-C₃N₄ nanosheets. The nanocomposite was highly active for selective photocatalytic conversion of cyclooctene and cyclohexane without adding any oxidant at 60 °C. The photocatalytic oxidative conversion of cyclohexanone was 8.62% with more than 99% selectivity to cyclohexanone under near-UV irradiation. For cyclooctene, the conversion reached 41.2% with selectivity mainly to epoxycyclooctane (77.2%). This noble-metal-free system remained stable in the repeated cycles of photocatalytic oxidation reactions. These studies provide significant guidance in designing sustainable catalyst systems and appropriate reaction conditions for realizing light-induced catalytic oxidation and reduction reactions.

2.8. Degradation of organic pollutants

Degradation of organic pollutants in the environment over the semiconductor solids is an extensively explored reaction by heterogeneous photocatalysis [109]. Similarly, most of the studies on photocatalytic properties of g-C₃N₄ and its modified system also focused on environmental remediation reactions, usually using organic dyes as a model pollutant [2,12]. From a large volume of research papers on the topic of photocatalytic degradation of organic pollutants (Fig. 3), we provide here a summary of few from each of the different categories of materials and modifications. In line with the focus of this review, we will mainly discuss some noble-metal-free or precious-metal-free nanoscale photocatalyst systems.

2.8.1. Metal-free photocatalyst system

Development of metal-free photocatalyst materials is important for their sustainable application. Zhang et al. prepared carbon-rich g-C₃N₄ nanosheets by hydrothermal method [110]. In comparison with the pristine g-C₃N₄, the modified semiconductor showed a significantly enhanced photocatalytic degradation of 4-nitrophenol, under visible light irradiation. Oxygen functionalized g-C₃N₄ and co-doped with S and P was synthesized by hydrothermal post-treatment [111]. The modified material was highly active for visible-active photodegradation of RhB, methylene blue (MB), methyl orange (MO) and phenol under anoxic conditions. The highest RhB degradation constant, 0.026 min⁻¹ was 13 times higher comparing with the pristine g-C₃N₄. Dang et al. synthesized a core-shell heterojunction via a self-assembly process [112]. A spherical core of α-S was enwrapped with ultra-thin nanosheets of g-C₃N₄ for rapid charge transfer. The composite with 35% of g-C₃N₄ nanosheets demonstrated the highest photocatalytic degradation of RhB with 6.7 times faster rate compared with α-S.

Modification of g-C₃N₄ with carbon-based nanostructures has been attracting attention for an enhanced absorption of visible-to-IR and fast transfer of photogenerated carriers. Liao et al. fabricated graphene oxide (GO) modified g-C₃N₄ by the sonochemical approach [113]. This metal-free hybrid structure of nanosheets

showed efficient photocatalytic degradation of organic pollutants under visible light irradiation. The photodegradation of RhB and 2, 4-dichlorophenol over the hybrid structure was 3.8 and 2.1 times higher comparing with pristine g-C₃N₄. Another carbon-based material, multi-walled carbon nanotubes was combined with g-C₃N₄ nanosheets due to electrostatically-driven self-assembly with the hydrothermal method [114]. The visible-light-driven photodegradation of MB by the composite was 8.1 times of that of the g-C₃N₄ nanosheets. Bai et al. modified g-C₃N₄ with Fullerene (C₆₀) via a facile thermal treatment [115]. Photocatalytic degradation of MB and phenol was carried out under visible light irradiation. Comparing with bulk g-C₃N₄ the efficiency of the composite was 2.9 times and 4.0 times higher for phenol and MB, respectively. Sun et al. decorated glucose-derived carbon nanospheres onto g-C₃N₄ via a hydrothermal method [116]. For the degradation of phenol under simulated sunlight, the nanocomposite demonstrated 4.9 times higher efficiency compared with pristine g-C₃N₄.

2.8.2. Transition metal based system

Photodegradation of organic wastewater over semiconductor materials has received considerable attention to cope up with the environmental challenges. The mainly explored wide band gap semiconductor oxides TiO₂ and ZnO are not suitable for harvesting solar light. Among transition metal based g-C₃N₄ systems, modifications with titanium materials are most explored for an understandable combination of these two semiconductor photocatalysts of main interest. Chang et al. prepared composites of 10–20 nm TiO₂ nanoparticles with exfoliated nanosheets through a facile sol-gel method [117]. The hybrid structure was highly active for visible-light-driven degradation of RhB. The apparent reaction rate constant for the optimized composite was 2.4 and 7.0 times higher compared with bare TiO₂ and N-TiO₂, respectively. Zhu et al. used an in-situ calcination method for the synthesis of a composite of homogeneously embedded 20–30 nm TiO₂ P25 in the sheets of g-C₃N₄ [118]. For the optimized nanocomposite, the photodegradation efficiency was 3.3 times higher than that of the pure g-C₃N₄ under visible light. Thin films of g-C₃N₄ from melamine and ~14 nm TiO₂ nanoparticles were prepared by thermal heating in Ar atmosphere [119]. Visible-light-driven degradation of MB over the optimized hybrid was almost twice in comparison with pure TiO₂.

Ma et al. used a hard template, SiO₂ for preparing mesoporous g-C₃N₄, and loaded it with 5–10 nm sized nanoparticles of TiO₂ [120]. For the degradation of RhB under visible light irradiation, the optimized heterojunction demonstrated 1.6 times higher rate than that of the pure mesoporous g-C₃N₄. Zhou et al. prepared an irregularly agglomerated hybrid of 20–40 nm size from ball milling of TiO₂ and g-C₃N₄ [121]. Photocatalytic activity of the hybrid material was 3.0 and 1.3 times higher than those of the pure g-C₃N₄ and TiO₂, respectively. Li et al. optimized solvothermal conditions for seed-induced growth of 50 nm to 200 nm sized TiO₂ nanoparticles loaded onto nanosheets of g-C₃N₄ [122]. In comparison with direct-grown composite and pure g-C₃N₄ the seed-grown composites were highly efficient for degradation of MO and phenol under visible light irradiation. For the optimized seed-grown composite, the photodegradation rate constant for MO and phenol was 30 and 14 times higher than that of the pristine g-C₃N₄. Li et al. used a simple one-step calcination of H₂Ti₃O₇ and melamine precursors for the synthesis of Ti³⁺ self-doped TiO₂ heterojunction with g-C₃N₄ [123]. The photodegradation of MB was studied under a 30 W visible-light-emitting diode. The removal rate constant for the optimized composite reached 0.038 min⁻¹ which was 26.7 and 7.6 times higher compared with pure TiO₂ and g-C₃N₄, respectively. Lu et al. prepared a composite of Ti³⁺ containing TiO₂ rectangular nanosheets of 100 nm and g-C₃N₄ by hydrothermal-sonication assisted strategy [124]. The optimized composite was highly active

Fig. 14. (A) TEM image of TiO_2 and $\text{g-C}_3\text{N}_4$ hybrid structure, (B) HR-TEM of the hybrid, (C) Photocatalytic degradation of MB under UV irradiation, and (D) Photocatalytic degradation of MB under visible-light irradiation.

Reproduced with permission from the Ref. [125]. Copyright (2014) Elsevier.

for visible-light-driven photooxidation of RhB and photoreduction of Cr^{6+} .

Gu et al. developed a facile solvent evaporation method for hybridizing TiO_2 with dominant {001} facets with $\text{g-C}_3\text{N}_4$ [125]. The high-energy {001} facets calculated for the sheet-like anatase nanocrystals ($\sim 38 \times 6 \text{ nm}$) was about 76% for pure TiO_2 . The optimal amount of $\text{g-C}_3\text{N}_4$ in the heterojunction was around 5.3% as estimated by the thermogravimetric analysis. Well-defined boundaries of TiO_2 nanosheets displayed an obscure bulk configuration upon hybridization with $\text{g-C}_3\text{N}_4$ as studied by TEM (Fig. 14A). For the hybrid structure, the lattice spacing of 0.235 nm was seen in the HR-TEM that was assigned to the exposed {001} facet of TiO_2 (Fig. 14B). Furthermore, an outermost layer of about 0.37 nm in the HR-TEM was corresponding to a monolayer of $\text{g-C}_3\text{N}_4$ (ca. 0.325 nm). TEM and spectroscopic studies demonstrated a strong interfacial interaction between TiO_2 and $\text{g-C}_3\text{N}_4$. The photocatalytic activity of the heterojunction structure was evaluated for the degradation of MB, RhB, acridine orange, and 2,4-dichlorophenol under both UV and visible light irradiations (Fig. 14C & D). The optimized composite showed the highest photocatalytic degradation towards all the organic dyes illustrating the importance of heterojunction.

N-doping in TiO_2 is an important strategy in making it visible active photocatalyst, and further heterojunction with another suitable semiconductor is added advantage. Wang et al. used an in-situ

microwave-assisted approach for the synthesis of composites of $\sim 15 \text{ nm}$ spherical N- TiO_2 and $\text{g-C}_3\text{N}_4$ nanosheets [126]. H_2TiO_3 was used as a precursor for TiO_2 and $\text{NH}_3\text{-H}_2\text{O}$ as the N-doping source. The heterojunction was highly efficient for visible-light-driven photodegradation of RhB and MO. The rate of photodegradation of RhB over the optimize composite was 2 and 2.7 times higher than that of the pure $\text{g-C}_3\text{N}_4$ and N- TiO_2 . Li et al. constructed heterojunction between 10 and 30 nm N- TiO_2 nanoparticles and $\text{g-C}_3\text{N}_4$ nanosheets by direct co-calcination [127]. Visible-light-driven photodegradation of RhB over the optimized composite was 19 and 5.3 times higher compared with individual N- TiO_2 and $\text{g-C}_3\text{N}_4$, respectively. Recently, Sun et al. prepared an in-situ composite of N- TiO_2 nanoparticles of 30–50 nm and $\text{g-C}_3\text{N}_4$ from one-step calcination of TiN and melamine [128]. Under visible light irradiation, the efficiency of optimized composite towards photodegradation of MB was just 1.9 times greater than compared with N- TiO_2 . Kumar et al. prepared nanocomposite from N-doped SrTiO_3 nanoparticles of $\sim 50 \text{ nm}$ and $\text{g-C}_3\text{N}_4$ by a polymeric citrate and thermal exfoliation method [129]. The optimized nanocomposite (0.0558 min^{-1}) showed much higher photocatalytic degradation rate for RhB than that of the pure $\text{g-C}_3\text{N}_4$ (0.0113 min^{-1}), SrTiO_3 (0.0038 min^{-1}), and N-doped SrTiO_3 (0.0135 min^{-1}) under visible light.

There are a few studies on nanocomposites of $\text{g-C}_3\text{N}_4$ with Group V metals for the noble-metal-free photodegradation

reactions. Liu et al. prepared a heterojunction of ~5 nm sized spherical nanoparticles of V_2O_5 with lamellar $g\text{-}C_3N_4$ by simple one-pot synthesis [130]. Rhodamine B was almost completely removed over the optimized nanocomposite for 80 min illumination of visible light. And for the same time of illumination, pristine $g\text{-}C_3N_4$ and V_2O_5 showed less than 10% photodegradation efficiency. Kumar et al. prepared a hybrid nanocomposite of $NaTaO_3$ nanoparticles of ~43 nm with $g\text{-}C_3N_4$ by a facile ultrasonic dispersion method [131]. Under both UV-vis and visible light, the nanocomposite exhibited highly enhanced photodegradation of RhB compared with pure $g\text{-}C_3N_4$, $NaTaO_3$, and TiO_2 P25. Photodegradation efficiency was almost 100% in 90 min illumination of full light, however, it reached only ~90% under visible light only even for twofold time of illumination. Yong et al. also used ultrasonic-assisted method for fabrication of a similar nanocomposite of ~30 nm sized nanoparticles of $KTaO_3$ with $g\text{-}C_3N_4$ [132]. In comparison with pure materials, the optimized nanocomposite demonstrated enhanced photocatalytic degradation of RhB, under visible light irradiation.

For the development of a noble-metal-free photocatalyst, MoS_2 is emerging as an economical alternative co-catalyst. A nanocomposite of MoS_2 nanoparticles onto $g\text{-}C_3N_4$ nanosheets was fabricated by a low-temperature hydrothermal method [133]. The nanocomposite demonstrated much-enhanced photodegradation of MO under simulated solar light. Li et al. coupled nanosheets of MoS_2 with $g\text{-}C_3N_4$ via a facile ultrasonic method for constructing a visible light active photocatalyst [134]. The rate of photodegradation of RhB over the optimized heterostructure reached 0.301 min^{-1} which was 3.6 times higher compared with pure $g\text{-}C_3N_4$.

Li et al. used solvothermal method for the construction of heterojunction between irregular nanoparticles of Bi_2MoO_6 and $g\text{-}C_3N_4$ [135]. In comparison with pure Bi_2MoO_6 and $g\text{-}C_3N_4$ the optimized composite exhibited enhanced photodegradation efficiency for RhB and MB under visible light. After 70 min of irradiation, optimized heterojunction exhibited about 98% photodegradation of RhB while pure $g\text{-}C_3N_4$ or Bi_2MoO_6 showed less than 60% removal. Around the same time, Tian et al. also prepared heterojunction of Bi_2MoO_6 nanosheets with $g\text{-}C_3N_4$ via a solvothermal route [136]. The optimized composite was highly efficient for visible-light-driven degradation of MO and 2,4-dichlorophenol. The composite demonstrated more than 3 times faster photodegradation of MO compared with pure $g\text{-}C_3N_4$ or Bi_2MoO_6 . A ternary composite of MoS_2 nanosheets of ~5 nm thickness, graphene oxide and $g\text{-}C_3N_4$ was prepared using a facile sonochemical method for visible active photocatalysis [137]. The ternary composite exhibited enhanced photodegradation of RhB compared with binary composites and pure $g\text{-}C_3N_4$.

Visible-light-driven WO_3 (bandgap 2.7 eV) and its modified materials have many potential applications in photocatalysis. Huang et al. prepared composite of 100–200 nm sized nanoparticles of WO_3 with $g\text{-}C_3N_4$ by a calcination method for the fabrication of a visible light active photocatalyst [138]. The heterojunction exhibited an enhanced photodegradation efficiency for MB and 4-chlorophenol. The optimized composite showed 97% degradation of MB within 2 h and 43% degradation of 4-chlorophenol within 6 h. Under the same conditions, pure $g\text{-}C_3N_4$ reached only 81% degradation of MB and 3% degradation of 4-chlorophenol. Katsumata et al. prepared composite of WO_3 particles of 100–300 nm with $g\text{-}C_3N_4$ by mechanical mixing in an agate mortar [139]. The composite was used for visible-light-driven degradation of gas-phase acetaldehyde. A complete degradation was achieved on the optimized composite with the highest generation of CO_2 . Contrary to the other studies, Chen et al. illustrated on the formation of Z-scheme between ~30 nm WO_3 and $g\text{-}C_3N_4$ via ball milling and heat treatment [140]. The optimized Z-scheme photocatalyst was highly efficient for visible-light-driven degradation of MB and fuchsin. The

Fig. 15. (A) TEM image of the core–shell structure of $CuFe_2O_4@g\text{-}C_3N_4$ (2:1) hybrid, (B) HR-TEM of the hybrid clearly showing the core–shell structure, and (C) Separation of solid and solvent phases using an external magnet.

Reproduced with permission from the Ref. [147]. Copyright (2015) Elsevier.

rate constants for photodegradation of MB and fuchsin over the optimized composite were 4.8 times and 3.8 times higher than that of the pristine $g\text{-}C_3N_4$.

W-based multi-metal materials are important semiconductors for photocatalysis and their hybridization with $g\text{-}C_3N_4$ also shall be interesting. Wang et al. hybridized $ZnWO_4$ nanorods of $60 \times 30\text{ nm}$ by enwrapping with $g\text{-}C_3N_4$ via a facile chemisorption method

[141]. The optimized composite was highly efficient for the photodegradation of MB under both UV and visible light irradiations. Besides a dramatic enhancement of photocatalytic activity under visible light about 80% increase was observed under UV irradiation. Zhan et al. prepared films from the same type of composite and used it for degradation of phenol under UV irradiation [142]. The photodegradation efficiency of optimized composite was ~2 times of the pure $ZnWO_4$. Tian et al. prepared heterojunction of 50–100 nm sized $CdWO_4$ nanorods with $g-C_3N_4$ by a simple mixing and calcination method [143]. The optimized composite was highly active for photodegradation of RhB under visible light irradiation. Comparatively, the rate of reaction was 1.6 and 54.6 times higher than that of pure $g-C_3N_4$ and $CdWO_4$.

Fe-based materials are getting attention for photocatalysis, especially for their magnetic separation in sustainable applications. Vignesh et al. prepared a ~19 nm ternary magnetic nanocomposite from TiO_2 , $MnFe_2O_4$ and $g-C_3N_4$ via chemical impregnation method [144]. The optimized ternary composite was highly efficient for photodegradation of MO under simulated solar light. For 3 h illumination, $MnFe_2O_4/g-C_3N_4/TiO_2$ exhibited 99.3% degradation while binary composite, $MnFe_2O_4/g-C_3N_4$ (4.9%) and pure materials, $MnFe_2O_4$ (4.2%), $g-C_3N_4$ (43.7%), and TiO_2 (85.1%) showed inferior performance. Zhu et al. prepared a nanocomposite of highly dispersed Fe_3O_4 nanoparticles of 5–10 nm onto $g-C_3N_4$ by ultrasonic-assisted wet chemical method [145]. Magnetic conductive imprinted photocatalysts (MCIPs) were prepared from the nanocomposite support and organic template and functional monomer. MCIPs were employed for photodegradation of 2-mercaptopbenzothiazole (MBT) under visible light irradiation. The optimized MCIP exhibited highly enhanced (~85%) photodegradation of MBT in 60 min compared with pure $g-C_3N_4$ (40%). A simple impregnation method was used by Liu et al. for grafting 20–50 nm nanoclusters of Fe^{3+} species onto the surface of $g-C_3N_4$ [146]. Furthermore, a ternary composite was prepared with the addition of graphene for enhanced visible-light-driven degradation of MO. The photodegradation reaction rate constant of the optimized composite was 0.0276 min^{-1} which was about 2 and 11 times higher than that of the binary composite and pure $g-C_3N_4$.

A novel core–shell structure of magnetic $CuFe_2O_4@g-C_3N_4$ was fabricated through a self-assembly method by Yao et al. [147]. TEM image depicted that after hybridization the $CuFe_2O_4$ nanoparticles in the range of 50–60 nm were well interwoven among the $g-C_3N_4$ (Fig. 15A). Formation of core–shell structure was shown by the HR-TEM analysis, the $CuFe_2O_4$ nanoparticles were encapsulated within the films of $g-C_3N_4$ (Fig. 15B). The thickness of the $g-C_3N_4$ shell was in the range of 5–7 nm. In comparison with the pure semiconductors, the hybrid structure demonstrated an excellent photo-Fenton-like catalytic activity for the decolorization of an organic dye, Orange II. Magnetic $CuFe_2O_4@g-C_3N_4$ with 2:1 was found the best photocatalyst which decomposed ~98% of organic dye within 210 min of visible light irradiation. The physical separation of the composite from the solution with an external magnet is depicted in Fig. 15C which illustrated an easy recycling of the catalyst material.

Zhang et al. decorated nanoparticles of spinel $ZnFe_2O_4$ ($ZnFe$) on $g-C_3N_4$ (CN) sheets through a one-step solvothermal route [148]. Superior visible active photocatalytic properties of the nanocomposite were ascribed to the effective separation of photo-generated charges and to its high dispersion in water. An optimized heterojunction was obtained for the 160CN-ZnFe sample prepared from the Fe precursor to $g-C_3N_4$ ratio of 2:1. Fig. 16A revealed the distribution of optimized 5–6 nm nanoparticles of $ZnFe_2O_4$ attached to $g-C_3N_4$ sheets. The magnetic properties were effectively controlled by tuning the coverage and size of the spinel oxide (Fig. 16B). The optimized composite demonstrated an extremely high visible light photodegradation activity towards

MO and phenol comparing with individual semiconductors. The optimized composite demonstrated ~98% decomposition of MO in 180 min while the photocatalytic activity of pristine $g-C_3N_4$ (36%) and $ZnFe_2O_4$ (44%) was very low. Furthermore, a low photocatalytic activity of a physical mixture indicated the importance of well-connected interface between semiconductors. The curves for visible-light-driven degradation of phenol are depicted in Fig. 16C. The enhanced photocatalytic activity of the composite was ascribed to effective separation of electron-hole pairs on nanojunctions. Recyclability of the optimized catalyst for the degradation of MO showed a slight decrease in the activity (Fig. 16D).

ZnO is an important semiconductor but poorly responsive to visible light and suffers from high recombination of photogenerated charges. Fabrication of heterojunction between ZnO and $g-C_3N_4$ is interesting for their appropriate band potentials in enhancing separation of electron-hole pairs. Chen et al. used a facile solvothermal route for the fabrication of heterojunction between 10 and 30 nm sized nanospheres of ZnO and mesoporous $g-C_3N_4$ [149]. The composite structure was employed for photodegradation of MB under visible light and simulated solar irradiation and was found efficient. In comparison with pure $g-C_3N_4$ mesoporous the photocatalytic activity was 2.3 and 1.9 times higher under visible light and solar irradiation. Vignesh et al. used mesoporous ZnO nano-triangles of 50–60 nm size for construction of a nanocomposite with $g-C_3N_4$ nano-foils through a sonochemical impregnation method [150]. The heterojunction structure exhibited highly efficient degradation of RhB under solar light irradiation and remained stable in cycling tests. The optimized nanocomposite demonstrated 100% removal within 60 min that was faster than pure $g-C_3N_4$ and ZnO nano-triangles. In addition to ZnO , nanoparticles of multi-metal oxide, Zn_2SnO_4 was also coupled with $g-C_3N_4$ for enhanced visible-light-driven photoactivity. Zhang et al. synthesized the composite $Zn_2SnO_4/g-C_3N_4$ from heating a mixture of Zn_2SnO_4 and melamine [151]. Formation of heterojunction promoted the separation of photogenerated charges and thus enhanced the degradation of RhB under visible light irradiation. The reaction rate constant of 0.038 min^{-1} was exhibited by the optimized composite which was 3.2 and 38 times higher than the rates of pure $g-C_3N_4$ and Zn_2SnO_4 , respectively.

The synthesis of a novel ternary composite of ZnO nanoparticles, $g-C_3N_4$ and GO was systematically studied for enhanced visible-light-driven photocatalysis [152]. A schematic of the co-precipitation and calcination process employed for the synthesis of nanoparticles and composites is provided in Fig. 17A. The ternary composite with a spherical ZnO nanoparticles of 5–10 nm size evenly embedded in the porous $g-C_3N_4$ was obtained by this method as shown in the TEM image (Fig. 17B). A drastic quenching of photoluminescence intensity for the ternary composite indicated successful hybridization of the components. The optical spectra showed that absorption of the visible-light was significantly enhanced in the ternary composites (Fig. 17C). The optimum content of 50% $g-C_3N_4$ in the binary composite, $ZnO/g-C_3N_4$ exhibited effective hybridization and a high photocatalytic efficiency. However, performance of the ternary composite was two times faster than that of the $ZnO/g-C_3N_4$. The optimized ternary composite exhibited more than 99% degradation of MB in just 15 min under visible-light irradiation, and the photocatalytic activity was maintained in the repeated runs.

CdS and multi-metal sulfides with Cd are fascinating visible-light-driven photocatalyst materials, however their photo-corrosion under working conditions is a serious issue. Coupling of Cd-based sulfides with $g-C_3N_4$ is interesting for enhanced photocatalysis and stability of the system. CdS nanoparticles with 10–30 nm size were randomly distributed on $g-C_3N_4$ sheets via an in-situ precipitation-deposition method [153]. This novel inorganic-organic composite demonstrated high activity and

Fig. 16. (A) TEM image of $\text{g-C}_3\text{N}_4\text{-ZnFe}_2\text{O}_4$ (CN-ZnFe) composite, (B) Magnetization curves of the composites. Inset in (B) shows the composite with a stable, brown aqueous dispersion and easy separation by a magnet. (C) Photocatalytic degradation of phenol over pure $\text{g-C}_3\text{N}_4$ and the optimized composite, and (D) Cycling runs for the photocatalytic degradation of MO over the optimized nanocomposite under visible-light irradiation.

Reproduced with permission from the Ref. [148]. Copyright (2013) American Chemical Society.

stability for degradation of MO and 4-aminobenzoic acid under visible light irradiation. In comparison with pure $\text{g-C}_3\text{N}_4$ (and CdS) the photocatalytic activity was 20.5 (3.1) and 41.6 (2.7) times higher for the degradation of MO and 4-aminobenzoic acid, respectively.

Cui et al. used hydrothermal methods for the fabrication of heterojunction between ~ 30 nm $\text{Zn}_{0.8}\text{Cd}_{0.2}\text{S}$ and $\text{g-C}_3\text{N}_4$ [154]. The composites were prepared using various ratios of Zn/Cd and found highly active for degradation of RhB compared with pure $\text{g-C}_3\text{N}_4$ and $\text{Zn}_{1-x}\text{Cd}_x\text{S}$, under visible light. For 90 min of illumination, $\sim 98\%$ of the organic dye was removed over the optimized composite while only about 73% removed on an individual component, pure $\text{Zn}_{0.8}\text{Cd}_{0.2}\text{S}$. Lately, Tian et al. used the same multi-metal sulfide, $\text{Zn}_{0.8}\text{Cd}_{0.2}\text{S}$ with a uniform diameter of ~ 10 nm and constructed a heterojunction with P-doped $\text{g-C}_3\text{N}_4$ via ultrasonic-assisted in-situ precipitation method [155]. The composite was highly active for the removal of MB under simulated sunlight. Photocatalytic degradation efficiency of pure $\text{Zn}_{0.8}\text{Cd}_{0.2}\text{S}$, 56% increased to $\sim 64\%$ upon the construction of heterojunction with $\text{g-C}_3\text{N}_4$ and further increased to more than 93% with P-doped $\text{g-C}_3\text{N}_4$.

Reduced graphene oxide is known for a crucial role in the effective separation of photogenerated electron-hole pairs. Pawar et al. prepared a ternary composite of CdS, rGO, and $\text{g-C}_3\text{N}_4$ using a facile chemical method [156]. TEM and HR-TEM images of the ternary composite in Fig. 18A and B show the presence of rGO sheets and CdS nanoparticles of ~ 40 nm size attached to $\text{g-C}_3\text{N}_4$. As shown in magnified TEM, CdS nanoparticles were sporadically coated

onto $\text{g-C}_3\text{N}_4$ and rGO sheets. Spectroscopic characterizations further confirmed the construction of strong contacts in between the components of the composite for extended absorption of visible light and enhanced separation of photogenerated electron-hole pairs. Consequently, the ternary composite exhibited superior photodegradation of RhB and Congo red under both UV and visible light irradiations. The results for cyclic photodegradation of RhB showed a stable performance of the composite (Fig. 18C). A schematic of the composite for an improved photocatalytic performance which was attributed to a reduction in the recombination of electron-hole pairs as well as increased absorption is presented in Fig. 18D.

2.8.3. Post-transition metal based system

Post-transition metal based semiconductor nanomaterials mainly that of Bi, Sn, and In were coupled with $\text{g-C}_3\text{N}_4$ for the development of efficient photocatalyst systems. Ge et al. prepared 10–30 nm sized agglomerated nanocomposites of $\text{g-C}_3\text{N}_4$ and Bi_2WO_6 by calcination [157]. Photocatalytic activity of the heterostructure was evaluated by degradation of MO under visible light irradiation. For the optimized heterojunction, the rate of degradation was 0.0365 min^{-1} which was about 4 and 48 times higher than that of the pure $\text{g-C}_3\text{N}_4$ and Bi_2WO_6 , respectively. Liu et al. worked on the similar photocatalyst system of $\text{g-C}_3\text{N}_4$ and Bi_2WO_6 for the construction of a core-shell structure [158]. Uniform nanospheres of Bi_2WO_6 with an average size of 30–40 nm were coated with ultrathin nanosheets of $\text{g-C}_3\text{N}_4$ by ultrasonication-chemisorption method. The optimized composite

Fig. 17. (A) Formation mechanism for the nanostructures of ZnO and $g\text{-C}_3\text{N}_4$, (B) TEM image of ZnO loaded on $g\text{-C}_3\text{N}_4$, and (C) UV-vis spectra for the various nanostructures. Reproduced with permission from the Ref. [152]. Copyright (2015) Elsevier.

structure exhibited significantly enhanced degradation of MB, RhB, MO, and phenol, under visible light irradiation. The rate constant for MB degradation over the optimized core-shell structure reached as high as 0.0814 min^{-1} .

BiPO_4 , an oxoacid salt photocatalyst was also used for modifications with $g\text{-C}_3\text{N}_4$ for noble-metal-free reactions. Pan et al. coated BiPO_4 nanorods of 80 nm by 400 nm size with various levels of thickness of $g\text{-C}_3\text{N}_4$ from less than 5 nm to 30 nm via a facile ultrasonic dispersion method [159]. Self-assembled core-shell heterojunction was highly efficient for the degradation of MB under UV light irradiation. The optimized core-shell structure exhibited a very high rate constant of 0.4701 min^{-1} that was 2.5 and 4.5 times higher compared with that of the pure BiPO_4 and TiO_2 P25, respectively. Obregon et al. further modified BiPO_4 and $g\text{-C}_3\text{N}_4$ composite with the addition of TiO_2 [160]. The complex ternary heterostructure of $\sim 12 \text{ nm}$ TiO_2 and $70\text{--}90 \text{ nm}$ BiPO_4 with $g\text{-C}_3\text{N}_4$ was prepared by a simple impregnation method. The ternary composite with a cascade charge separation mechanism demonstrated enhanced degradation of organic pollutant, under solar-like irradiation. The

optimum rate for the degradation of phenol was 1.5 times higher with respect to pure TiO_2 .

Bismuth oxyhalides (BiOX) are interesting materials for their excellent electrical and optical properties resulting from their unique layered structure. Construction of heterojunctions of BiOX and $g\text{-C}_3\text{N}_4$ has resulted in enhanced photocatalytic properties under visible light irradiation. Yang et al. prepared heterojunctions by the in-situ growth of less than 50 nm thick nano-flakes of BiOBr on the surface of protonated $g\text{-C}_3\text{N}_4$ [161]. The nanocomposite was evaluated for the degradation of RhB under visible light irradiation. Photodegradation reaction rate constant for the optimized heterojunction reached to extremely high value of 0.3608 min^{-1} which was about 35 and 34 times higher compared with individual protonated $g\text{-C}_3\text{N}_4$ and BiOBr , respectively. Xia et al. constructed layered nanojunctions from in-situ grown ultrasmall 6 nm thick nanosheets of $\text{Bi}_4\text{O}_5\text{I}_2$ uniformly dispersed on ultrathin $g\text{-C}_3\text{N}_4$ via a facile solvothermal method in the presence of a reactable ionic liquid that provided iodide [162]. The nanostructure displayed much higher photocatalytic activity for the degradation

Fig. 18. (A) TEM image of ternary composite of CdS, rGO and g-C₃N₄, (B) TEM image showing CdS nanoparticles on g-C₃N₄ sheets, (C) Cycling runs for the photocatalytic degradation of an organic dye, RhB over the optimized nanocomposite under visible-light (bars with vertical red lines) and UV (bars with horizontal blue lines) irradiation, and (D) Scheme for electron-hole separation and transport towards visible-active degradation over the nanocomposite. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Reproduced with permission from the Ref. [156]. Copyright (2014) Royal Society of Chemistry.

of RhB and a colorless endocrine disrupting chemical bisphenol A, under visible light irradiation. Over the optimized nanostructure ~70% of RhB was effectively removed in 60 min while pure Bi₄O₅I₂ removed only 31%. And in 20 min, bisphenol A degradation efficiency of the layered nanojunction reached to 90% but only 35% was degraded on pristine Bi₄O₅I₂. Yuan et al. developed a complex ternary composite from two ternary bismuth compounds BiOI rounded sheets of 50–150 nm and BiOBr quadrate sheets of 200–500 nm with g-C₃N₄ by a facile solvothermal method [163]. The composite was highly efficient for visible-light-driven degradation of MB. The photodegradation rate constant over the optimized composite (0.0113 min^{-1}) was 2.5 and 3.2 times higher than that of pristine g-C₃N₄ and BiOI/BiOBr, respectively.

Like TiO₂ and ZnO, SnO₂ is a traditional wide band gap semiconductor activated by UV light only. Both conduction and valence band positions of SnO₂ are suitable for construction of effective heterojunction with g-C₃N₄. Yin et al. synthesized a nanocomposite of extremely fine 2–3 nm size nanoparticles of SnO₂ evenly dispersed on g-C₃N₄ by ultrasonication [164]. In comparison with pristine g-C₃N₄ and SnO₂, the optimized heterojunction was highly active for the degradation of MO under visible light. Chen et al. also worked on the same photocatalyst system, a heterojunction of SnO₂ and g-C₃N₄ [165]. Aggregated nanoparticles of SnO₂ were in-situ grown onto the surface of g-C₃N₄ nanosheets via a hydrothermal route. The nanocomposite was evaluated for photocatalytic degradation of MO under visible light irradiation. The optimum photodegradation efficiency of the heterojunction was 17 and 89 times higher compared with that of the pure g-C₃N₄ and SnO₂.

In₂S₃ (bandgap ~2.2 eV) is an *n*-type semiconductor which is widely used in harvesting solar energy. Therefore it is a good choice for modifying g-C₃N₄ towards its noble-metal-free photocatalytic applications. Xing et al. constructed g-C₃N₄ and In₂S₃ heterojunction via a hydrothermal method [166]. The nanocomposite structure exhibited higher photocatalytic activity than those of the pure g-C₃N₄ and In₂S₃. TEM image of g-C₃N₄ nanosheets decorated with In₂S₃ nanoparticles is presented in Fig. 19A indicating the formation of heterojunctions. Detailed investigations by TEM microscopy illustrated on the formation of an intimate interface between the semiconductors, which was favorable for the separation of photogenerated charge carriers. Optical spectra of the nanocomposites showed their good prospects for their photoactivity in the visible region. Consequently, the nanocomposite heterojunction exhibited higher efficiency for photodegradation of RhB, 96% degradation in just 30 min. The visible light active photocatalytic process is illustrated in the schematic (Fig. 19B). Photocatalytic activity of the heterojunction was higher than the bare materials and that of the physical mixture.

Li et al. used amorphous particles of this earth-abundant Al₂O₃ as an electron acceptor in the heterostructure with g-C₃N₄ [167]. A composite of amorphous Al₂O₃ with lots of defect sites was constructed with surface hydroxyl modified g-C₃N₄ through ultrasonic dispersion method. Photocatalytic properties of the composite were evaluated by degradation of RhB, under visible light irradiation. The reaction rate constant for the optimized composite with amorphous Al₂O₃ reached 0.0257 min^{-1} which was 9.2 times higher in comparison to the composite with γ-Al₂O₃. Furthermore,

Fig. 19. (A) TEM image of the In_2S_3 and $\text{g-C}_3\text{N}_4$ composite, and (B) Schematic illustration of the photocatalytic reaction process over the composite material. Reproduced with permission from the Ref. [166]. Copyright (2014) Elsevier.

the composite prepared via hydroxyl modified route was 3.8 times more efficient compared with the composite prepared without surface modification of $\text{g-C}_3\text{N}_4$. Hence, both surface modification of and use of amorphous Al_2O_3 was important for the construction of a visible-light-driven photocatalyst.

2.8.4. Semimetal based systems

A few researchers studied nanocomposites of $\text{g-C}_3\text{N}_4$ with semimetal materials for photocatalytic applications. Wang et al. coated spherical SiO_2 nanoparticles of less than 50 nm with in-situ grown $\text{g-C}_3\text{N}_4$ by calcination of melamine [168]. In comparison with pure $\text{g-C}_3\text{N}_4$, a high BET surface area and mesoporous structure of the composite was found important for photodegradation of RhB. The optimized composite structure showed 99.9% removal of organic dye after 90 min of visible light irradiation. The rate constant for optimized composite (0.051 min^{-1}) was 2.3 times higher compared with that of the pure $\text{g-C}_3\text{N}_4$. Lin et al. prepared similar type core-shell nanosphere for an enhanced visible-light-driven degradation of RhB [169]. Relatively large, 200–300 nm SiO_2 nanospheres derived from tetraethyl orthosilicate were coated with cyanamide and followed by heating in N_2 atmosphere. The optimized core-shell composite depicted more than 94% degradation of RhB which was ~3.5 times higher compared with pristine $\text{g-C}_3\text{N}_4$.

Antimony and boron modified $\text{g-C}_3\text{N}_4$ nanomaterials were also considered for photocatalytic applications. Wen et al. constructed a heterojunction between 45 nm sized HSbO_3 and $\text{g-C}_3\text{N}_4$ by heating in N_2 atmosphere [170]. The nanocomposite was highly efficient

for visible-light-driven degradation of RhB. The optimized heterojunction demonstrated almost complete removal of organic dye within 6 h while pure $\text{g-C}_3\text{N}_4$ showed less than 50% removal. Lately, Wang et al. synthesized heterostructure of sheaf-like Sb_2S_3 rods (100–500 nm) and ultrathin $\text{g-C}_3\text{N}_4$ sheets embedded with $\text{g-C}_3\text{N}_4$ quantum dots (less than 10 nm) [171]. The composite structure was active for photodegradation of MO under near-IR irradiation. The rate of degradation for the optimized composite was 0.0103 min^{-1} which was 2.6 times higher compared with pure Sb_2S_3 .

2.8.5. Rare earth metals based system

Modifications of $\text{g-C}_3\text{N}_4$ with rare earth metal based materials were studied for the construction of efficient photocatalyst systems. Among rare earth metals, Ce based photocatalysts are the most interesting candidates. Luo et al. prepared a nanocomposite of 10–20 nm nanoparticles of CeO_2 with P-doped $\text{g-C}_3\text{N}_4$ by facile mixing-calcination route [172]. The heterojunction was used for the degradation of MO under visible light irradiation. Photodegradation efficiency of the optimized composite with rate constant 0.011 min^{-1} was more than 12 and 5 times higher compared with that of the pure CeO_2 and P-doped $\text{g-C}_3\text{N}_4$, respectively. Wang et al. used ultrasonic-heat treatment method for construction of a ternary composite of CeO_2 nanorod, $\text{g-C}_3\text{N}_4$ and N-doped reduced graphene oxide [173]. Visible-light-driven rate for the degradation of RhB over the ternary composite (0.025 min^{-1}) was 2.1 fold higher than that of the binary composite of $\text{g-C}_3\text{N}_4$ and N-doped rGO.

Controllable synthesis of CeO_2 and $\text{g-C}_3\text{N}_4$ nanocomposite via a facile hydrothermal method was investigated by She et al. [174]. TEM image in Fig. 20A shows ultrafine 3–10 nm nanocubes of CeO_2 closely bonded with $\text{g-C}_3\text{N}_4$. XRD patterns depicted an increase in the intensity of CeO_2 peaks with an increase in its contents in the nanocomposite (Fig. 20B). Furthermore, changes in the diffraction peak positions further emphasized on the attachment between the two components of the composite. Photocatalytic degradation of MB under visible light was significantly improved over the nanocomposites with all the various ratios (Fig. 20C). The optimized nanocomposite with 5% CeO_2 demonstrated 99% efficiency in 3.5 h and showed a small decrease in recycling tests.

Many of the vanadates of rare earth metals are suitable semiconductors for fabrication of heterojunctions with $\text{g-C}_3\text{N}_4$ towards their visible-active photocatalytic applications. He et al. constructed a heterojunction between 50 nm sized nanoparticles of DyVO_4 and $\text{g-C}_3\text{N}_4$ by a milling and heating treatment method [175]. The composite was tested for visible-light-driven degradation of RhB and MB. The optimized heterojunction exhibited the highest rate (0.0365 min^{-1}) of rhodamine degradation which was 2.6 and 10.3 times higher compared with pure $\text{g-C}_3\text{N}_4$ and DyVO_4 , respectively. A composite of finely dispersed SmVO_4 nanoparticles of 30–60 nm on the surface of $\text{g-C}_3\text{N}_4$ was prepared by a simple mixing-calcination method [176]. The optimized heterostructure showed a significantly enhanced degradation of RhB under visible light irradiation. The rate of degradation for the optimized heterojunction reached to 0.0345 min^{-1} and that was 2.4 and 6.3 times higher than that of the pure $\text{g-C}_3\text{N}_4$ and SmVO_4 , respectively. He et al. used two polymorphs of LaVO_4 namely tetragonal (*t*) and monoclinic (*m*) with different optical properties for the construction of heterostructures with $\text{g-C}_3\text{N}_4$ by calcination method [177]. In the heterojunctions, particles of *t*- LaVO_4 appeared as $\sim 10 \times 50 \text{ nm}$ nanorods while relatively larger sized different shapes like rods, plates and spheres were seen for *m*- LaVO_4 in its composite. Both the LaVO_4 polymorphs were almost inactive for the degradation of RhB under visible light irradiation. However, highly efficient photodegradation of rhodamine was observed upon the construction of heterojunctions with $\text{g-C}_3\text{N}_4$.

He et al. synthesized composite of $\text{g-C}_3\text{N}_4$ with GdVO_4 by a milling and heating method [178]. Powder XRD patterns showed

Fig. 20. (A) TEM image of the nanocomposite of 10 wt.% CeO_2 with $\text{g-C}_3\text{N}_4$, (B) Powder XRD patterns of $\text{g-C}_3\text{N}_4$ and the nanocomposites with various amounts of CeO_2 , and (C) Photocatalytic degradation of an organic dye, MB over the as-prepared materials.

(Reproduced with permission from the Ref. [174]. Copyright (2015) Royal Society of Chemistry.)

two-phase composite in which diffraction peak intensity for GdVO_4 increased with its concentration and at the expense of that of $\text{g-C}_3\text{N}_4$ (Fig. 21A). An intimate connection between organic and inorganic semiconductors was seen in the TEM images (Fig. 21B) and confirmed with the quenching of PL intensity for the nanocomposites. Mainly dispersed GdVO_4 nanoparticles of 50 nm were present in the TEM image, although some small aggregates were also observed. Under visible light irradiation for 120 min, about 97% degradation of RhB was observed over the optimized nanocompos-

ite (10 wt.% GdVO_4) that showed stable performance in repeated cycles (Fig. 21C). The hybrid structure exhibited enhanced photocatalytic activity because of the synergistic effect of the two semiconductors in separation of electron-hole pairs. The band potentials of GdVO_4 (2.36 eV) are suitable for the construction of heterojunction with $\text{g-C}_3\text{N}_4$ and schematically represented in Fig. 21D and thereby improved the photo-oxidation efficiency.

2.9. Biocide

Visible-light-driven inactivation of bacteria over photocatalyst material is an important application towards environmental remediation. Among a wide variety of materials used for bacterial inactivation, most of the efficient photocatalysts are silver based materials which are unfavorable for green and sustainable application in disinfection. Therefore, development of a metal-free photocatalyst system is particularly interesting for biocide, and this polymeric metal-free semiconductor $\text{g-C}_3\text{N}_4$ is an interesting choice. Wang et al. introduced this ternary composite of $\text{g-C}_3\text{N}_4$ nanosheets and rGO wrapped on cyclooctasulfur (α -sulfur) [179]. The order of wrapping was important in directing the photocatalytic activity of the composite under visible light irradiation. In aerobic conditions, the composite $\text{g-C}_3\text{N}_4/\text{rGO}/\alpha$ -sulfur showed enhanced inactivation of bacteria. However, under anaerobic conditions, the composite rGO/ $\text{g-C}_3\text{N}_4/\alpha$ -sulfur was more active.

Microfiltration is widely used technology for purification of water. However, the size exclusion limitations in removing smaller size contaminants and inherent fouling of the membrane are challenges in microfiltration process. An integrated approach of microfiltration and visible-light-driven photocatalysis was studied by Zhao et al. [180]. A composite of $\text{g-C}_3\text{N}_4$ nanosheets and reduced graphene oxide was assembled on the surface of cellulose acetate, a commercial membrane. The integrated process was highly efficient for the removal of various organic contaminants and complete inactivation of bacteria from the surface water comparing with membrane filtration alone. Thurston et al. prepared photoactive antimicrobial films containing metal-free semiconductor, $\text{g-C}_3\text{N}_4$ nanosheets [181]. Visible-light-driven production of reactive oxygen species on $\text{g-C}_3\text{N}_4$ derived films indicated their potential for antimicrobial activity. The film containing nanosheets of $\text{g-C}_3\text{N}_4$ showed biocidal activity against both Gram negative and Gram positive bacteria under visible light irradiation.

2.10. NO_x abatement

Nitric oxide (NO) and nitrogen dioxide (NO₂) referred as NO_x, are air pollutants of high environmental concern for their link with acid rain and smog. Various techniques are assessed for NO_x abatement, however, economic feasibility and removal at low concentration are pending issues. Visible-light-driven photocatalytic decomposition of NO_x under sunlight irradiation or in the indoor artificial light presents as an attractive green technology that could purify air from a low concentration of pollutants at ambient conditions.

The research group of Fan Dong has extensively worked on photocatalytic NO_x abatement over $\text{g-C}_3\text{N}_4$ based materials. In the year 2013, they synthesized nanoarchitectures of $\text{g-C}_3\text{N}_4$ by pyrolysis of urea and used the material for photocatalytic removal of gaseous NO and aqueous RhB under visible light irradiation [182]. The intermediate and highly toxic, NO₂ was monitored in the deNO_x process. Photocatalytic activity of the as-prepared material improved with increased time of pyrolysis of urea, and maximum NO_x removal ratio was 32.1%. A critically very high BET specific surface area, $288 \text{ m}^2 \text{ g}^{-1}$ was recorded for the optimized nanosheets of $\text{g-C}_3\text{N}_4$ which produced the lowest level of NO₂ intermediate. The enhancement of deNO_x processes was correlated with

Fig. 21. (A) Powder XRD patterns of GdVO_4 , $\text{g-C}_3\text{N}_4$, and their nanocomposites, (B) TEM image of 10 wt.% GdVO_4 loaded on $\text{g-C}_3\text{N}_4$, (C) Cycling runs for the photocatalytic degradation of an organic dye, RhB over the optimized nanocomposite under visible-light irradiation, and (D) Scheme for electron-hole separation and transport at the interface of the nanocomposite.

Reproduced with permission from the Ref. [178]. Copyright (2013) Elsevier.

physicochemical properties of the photocatalyst. In another study, they prepared two types of metal-free $\text{g-C}_3\text{N}_4/\text{g-C}_3\text{N}_4$ heterojunctions from dicyandiamide, melamine and urea precursors [183]. However, no significant improvement was observed for NO removal. Yet another approach of high-temperature synthesis of metal-free $\text{g-C}_3\text{N}_4$ did not improve the NO removal. And for the nanosheets of $\text{g-C}_3\text{N}_4$ synthesized at 600°C , photocatalytic NO removal ratio was at 32.7% [184]. Porous nanosheets of $\text{g-C}_3\text{N}_4$ prepared from thiourea also showed similar performance and NO removal ratio was 33.5% [185]. Zhao et al. optimized the synthesis by altering the precursor mass and found that ‘less is better’ for the construction of a photocatalytically active $\text{g-C}_3\text{N}_4$ [186]. The optimized material exhibited a very high removal ratio of NO at 48.3%, but with a significant formation of NO_2 . In another approach, Wang et al. synthesized a honeycomb-like structure of $\text{g-C}_3\text{N}_4$ via thermal condensation of urea with the addition of water [187]. An enhanced removal ratio of NO (48%) was reached over the honeycomb structure and remained stable in repeated runs. Interestingly,

the formation of toxic intermediate, NO_2 was dramatically inhibited.

In order to improve electronic and photocatalytic properties, Ho et al. investigated on copolymerization induced C-doping for rolling-up the layer structure of $\text{g-C}_3\text{N}_4$ [188]. A schematic of the synthesis process and photocatalysis along with supporting TEM images is shown in Fig. 22A. In the tubular configuration, the band gap was narrowed from 2.7 eV (pure $\text{g-C}_3\text{N}_4$) to 2.4 eV which extended the absorption of the visible spectrum and enhanced the separation of charges. For the modified $\text{g-C}_3\text{N}_4$, a broadened (002) diffraction peak along with a down shift illustrated on the disturbed structure (Fig. 22B). Pertaining to the structural changes, a tuning of the electronic structure was examined with various spectroscopic techniques and theoretical calculations. A high photocatalytic activity compared with the pure structures further confirmed the importance of the modified $\text{g-C}_3\text{N}_4$ structure. Cyclic runs for an efficient photocatalytic removal of NO_x over the optimized catalyst are shown in Fig. 22C.

Fig. 22. (A) TEM images and the corresponding schematic representation of rolling-up of the layer structure of g-C₃N₄, (B) Powder XRD patterns for layered g-C₃N₄ after rolled-up structure, and (D) Photocatalytic removal of NO_x.

Reproduced with permission from the Ref. [188]. Copyright (2015) American Chemical Society.

Zhao et al. synthesized carbon self-doped g-C₃N₄ with soft-template of carbon foam which enhanced visible to near-IR absorption [189]. Photocatalytic NO removal ratio over the optimized material reached to 50.1% that was much higher comparing with pure g-C₃N₄ and other similar catalysts. The C-doped nanosheets showed a small decrease in repeated tests. As a further modification of g-C₃N₄, Dong et al. immobilized g-C₃N₄ on structured Al₂O₃ ceramic foam by a novel in-situ thermal approach [190]. The photocatalytic activity improved as the synthesis temperature increased from 450 °C to 600 °C and with the formation of nanoarchitecture. A highly enhanced NO removal ratio of 77.1% was observed over the optimized system. Furthermore, the photocatalyst demonstrated a stable performance in cycling runs.

Next, for enhanced separation of photogenerated charges Dong et al. constructed a metal-free isotype g-C₃N₄/g-C₃N₄ heterojunction from a molecular composite of urea and thiourea precursors [191]. The formation of a heterojunction between two types of nanosheets of g-C₃N₄ was described by TEM observations (Fig. 23A). The average thickness of g-C₃N₄ sheets derived from urea and thiourea was in the range of 20–40 nm (nanosized) and 400–800 nm (bulk structure), respectively. The band edge of the

heterojunction was in between the two types of the g-C₃N₄ samples and indicated their electronic coupling. An enhanced quenching of PL intensity as shown in Fig. 23B further supported the formation of heterojunction with a lower rate of recombination. A schematic illustration of enhanced absorption of visible light and efficient separation of photogenerated electron-pairs at the interface is provided in Fig. 23C. Furthermore, electrochemical analyses confirmed the findings from TEM and spectroscopic analyses and indicated good photocatalytic activity of the isotype heterojunction (Fig. 23D). Compared with pure g-C₃N₄ materials obtained from urea (31.7%) and thiourea (27.3%) the isotype heterojunction exhibited an enhanced removal ratio of NO at 47.6%, under visible light irradiation for 30 min.

2.11. Metal ion redox

In contrast to organic pollutants, inorganic metal ions are particularly problematic because they are not biodegradable but can accumulate in tissues and severely endanger the living organisms. Cr⁶⁺ is a common wastewater pollutant from leather tanning, electroplating, and mining industry. Because of carcinogenicity

Fig. 23. (A) TEM image of isotype heterojunction of $\text{g-C}_3\text{N}_4$, from urea (CN-U) and $\text{g-C}_3\text{N}_4$, from thiourea (CN-T), (B) Photoluminescence spectra for pure $\text{g-C}_3\text{N}_4$ samples of and their heterojunction, (C) Schematic illustration of separation of photogenerated electron-hole pairs at the heterojunction interface, and (D) Electrochemical impedance spectra of pure $\text{g-C}_3\text{N}_4$ samples of and their heterojunction.

Reproduced with permission from the Ref. [191]. Copyright (2015) American Chemical Society.

and mutagenicity related issues, its maximum concentrations in drinking water and discharged industrial wastewaters has been regulated. Reduction of Cr^{6+} to Cr^{3+} is an effect way of controlling its pollution. Uranium is a typical radioactive pollutant from nuclear industry which can cause serious health problems. The predominant oxidation state of uranium species in the ambient environment is the soluble U^{6+} and its reduction to insoluble U^{4+} oxide is an important approach for the elimination of radioactive pollution. Contrary to the desired reduction of Cr^{6+} and U^{6+} species, As^{3+} is highly toxic in its reduced state and oxidation to As^{5+} is helpful in lowering down the toxicity and ultimate removal. So a versatile photocatalyst system is required for controlling the fate of inorganic metal ions, and $\text{g-C}_3\text{N}_4$ is a good candidate.

Liu et al. synthesized a composite of $\text{g-C}_3\text{N}_4$ with ZnO via a deposition-precipitation followed thermal method [192]. TEM images showed nanoparticle size of the composite ($\sim 50 \text{ nm}$) and good contact between organic and inorganic semiconductors to achieve enhanced separation of photogenerated charges. The composite was employed for both photooxidation of RhB and photoreduction of Cr^{6+} under visible light irradiation. The rate constant for photoreduction of Cr^{6+} over the optimized composite (0.0142 min^{-1}) was five times higher compared with pure $\text{g-C}_3\text{N}_4$.

Photooxidation rate constant for RhB (0.0367 min^{-1}) was more than three times of the pristine $\text{g-C}_3\text{N}_4$ and higher comparing with photoreduction process. Sun et al. fabricated visible light active 3D flower-like heterostructure of $\text{g-C}_3\text{N}_4$ and SnS_2 nano-flakes via a solvothermal method [193]. Because of high separation of photogenerated charges, the optimized heterojunction showed about 99% photoreduction of toxic Cr^{6+} to Cr^{3+} within 50 min in neutral solution with reaction rate constant of $0.4582 \text{ mol}^{-1} \text{ dm}^3 \text{ min}^{-1}$. However, the photocatalytic activity slightly decreased in repeated cycles. Uniform size $\text{Zn}_{1-x}\text{Cd}_x\text{S}$ nanoparticles of 15 nm finely distributed on the surface of $\text{g-C}_3\text{N}_4$ sheets were prepared via a facile and template free in-situ precipitation method [194]. The nanocomposite was highly efficient for visible light active photooxidation of organic dyes and photoreduction of metal ions. Over the optimized photocatalyst system, quick reduction of about 99% Cr^{6+} to Cr^{3+} was observed in just 25 min of illumination.

Zang et al. hybridize brookite TiO_2 nanoparticles of approximately 40 nm size with $\text{g-C}_3\text{N}_4$ sheets via a facile calcination method [195]. The optimized brookite composite showed higher photocatalytic activity comparing with other types of TiO_2 , both anatase, and rutile. Visible-light-driven photooxidation of extremely toxic As^{3+} to relatively less toxic As^{5+} reached up to

55% at maximum in 180 min. In addition, comparing with pure materials the optimized composite demonstrated an enhanced photocatalytic degradation of MO. B-doped layered nanosheets of g-C₃N₄ containing nanosize pores were prepared by calcination [196]. The reaction time for the optimized photocatalytic reduction of aqueous UO₂²⁺ decreased from 50 min for g-C₃N₄ to 20 min for the B-doped g-C₃N₄. The rate constant for the optimized sample was 0.13 min⁻¹ which was 2.54 times higher than pure g-C₃N₄ and slightly decreased in recycling tests.

These studies summarized in this review demonstrate on the use of g-C₃N₄ based nanomaterials for photocatalytic applications. Especially, this database on noble-metal-free photocatalyst systems for all the various applications will be a useful guideline for sustainable developments.

3. Conclusions and future perspectives

In all the various photoactive applications, noble-metal-free nanoscale photocatalyst systems based on g-C₃N₄ demonstrated favorable results for its versatile applications. Especially, the good achievements in H₂ evolution reaction surpassing that of with the Pt co-catalyst are highly promising towards a sustainable production of green and renewable energy. Pertaining to the high stability of g-C₃N₄ and its nanocomposites under different conditions, it has gained attention for a number of organic synthesis reactions. Reduction of CO₂ is also successfully explored on some nanoscale combinations of g-C₃N₄. Some developments are also made towards the photocatalytic fixation of N₂. Photodegradation of various organic pollutants without H₂O₂ is successfully achieved on g-C₃N₄ based nanomaterials. Photocatalytic removal of NO_x has also shown a potential application of this polymeric semiconductor. Although interesting photocatalytic results are achieved on the noble-metal-free nanoscale materials but still there are many areas needing attention for further improvements. Indeed, a facile synthesis of materials is important but we should not overlook a better design of the nanoscale materials towards an enhanced photocatalytic performance. Innovative methods and computational help are required towards the fabrication of site-selective loading of nanoparticles for an enhanced efficient performance. In addition, greener synthesis strategies should be sought after for a sustainable synthesis of the photoactive nanomaterials. Furthermore, development of materials with magnetic properties for an easy separation are highly desired. For a true evaluation of the noble-metal-free systems, it requires making a fair comparison with the optimized loaded noble metal based reference photocatalyst. For most of the g-C₃N₄ hybrid systems with sulfur based materials, further modifications are required to overcome the long induction period in H₂ evolution reaction. Furthermore, the stability of metal sulfide hybrids remains an outstanding issue. Detailed characterizations of the spent catalysts, especially with TEM is needful to observe the evolution of the active site and their stability during photocatalytic testing. And last but not least, any secondary hazards from the nanoscale materials need a serious consideration before moving forward to their large-scale applications.

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada for the financial support to conduct this research work.

References

- [1] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and

- morphology and their use as metal-free catalysts, *J. Mater. Chem.* 18 (2008) 4893–4908, <http://dx.doi.org/10.1039/B800274F>.
- [2] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C₃N₄)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? *Chem. Rev.* (2016), <http://dx.doi.org/10.1021/acs.chemrev.6b00075>.
- [3] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, *Nature* 238 (1972) 37–38, <http://dx.doi.org/10.1038/238037a0>.
- [4] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, *Nat. Mater.* 8 (2009) 76–80, <http://dx.doi.org/10.1038/nmat2317>.
- [5] X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, *J. Am. Chem. Soc.* 131 (2009) 1680–1681, <http://dx.doi.org/10.1021/ja809307s>.
- [6] X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis, *ACS Catal.* 2 (2012) 1596–1606, <http://dx.doi.org/10.1021/cs300240x>.
- [7] S. Cao, J. Yu, g-C₃N₄-based photocatalysts for hydrogen generation, *J. Phys. Chem. Lett.* 5 (2014) 2101–2107, <http://dx.doi.org/10.1021/jz500546b>.
- [8] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C₃N₄) material: electronic structure, photocatalytic and photoelectronic properties, *J. Photochem. Photobiol. C Photochem. Rev.* 20 (2014) 33–50, <http://dx.doi.org/10.1016/j.jphotochemrev.2014.04.002>.
- [9] X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C₃N₄ nanosheets for photocatalytic applications, *J. Mater. Chem. A* 3 (2015) 23642–23652, <http://dx.doi.org/10.1039/C5TA07374J>.
- [10] Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis, *Angew. Chem. Int. Ed.* 54 (2015) 12868–12884, <http://dx.doi.org/10.1002/anie.201501788>.
- [11] S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C₃N₄ based low cost photocatalytic system: activity enhancement and emerging applications, *Catal. Sci. Technol.* 5 (2015) 5048–5061, <http://dx.doi.org/10.1039/C5CY00938C>.
- [12] Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review, *Nanoscale* 7 (2014) 15–37, <http://dx.doi.org/10.1039/C4NR03008G>.
- [13] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, *Adv. Mater.* 27 (2015) 2150–2176, <http://dx.doi.org/10.1002/adma.201500033>.
- [14] S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, A review on g-C₃N₄ for photocatalytic water splitting and CO₂ reduction, *Appl. Surf. Sci.* 358 (Part A) (2015) 15–27, <http://dx.doi.org/10.1016/j.apsusc.2015.08.173>.
- [15] G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C₃N₄) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation, *Appl. Catal. B Environ.* 198 (2016) 347–377, <http://dx.doi.org/10.1016/j.apcatb.2016.05.052>.
- [16] K. Nakata, A. Fujishima, TiO₂ photocatalysis: design and applications, *J. Photochem. Photobiol. C Photochem. Rev.* 13 (2012) 169–189, <http://dx.doi.org/10.1016/j.jphotochemrev.2012.06.001>.
- [17] X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material, *Adv. Mater.* 21 (2009) 1609–1612, <http://dx.doi.org/10.1002/adma.200802627>.
- [18] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C₃N₄-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, *J. Am. Chem. Soc.* 131 (2009) 11658–11659, <http://dx.doi.org/10.1021/ja903923s>.
- [19] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization, *Angew. Chem. Int. Ed.* 49 (2010) 441–444, <http://dx.doi.org/10.1002/anie.200903886>.
- [20] J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions, *Angew. Chem. Int. Ed.* 51 (2012) 10145–10149, <http://dx.doi.org/10.1002/anie.201205333>.
- [21] K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine, *Phys. Chem. Chem. Phys.* 12 (2010) 13020–13025, <http://dx.doi.org/10.1039/C0CP00611D>.
- [22] J. Zhang, M. Zhang, C. Yang, X. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface, *Adv. Mater.* 26 (2014) 4121–4126, <http://dx.doi.org/10.1002/adma.201400573>.
- [23] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, *Nat. Commun.* 3 (2012) 1139, <http://dx.doi.org/10.1038/ncomms2152>.
- [24] J. Zhang, F. Guo, X. Wang, An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures, *Adv. Funct. Mater.* 23 (2013) 3008–3014, <http://dx.doi.org/10.1002/adfm.201203287>.
- [25] Z. Lin, X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis, *Angew. Chem. Int. Ed.* 52 (2013) 1735–1738, <http://dx.doi.org/10.1002/anie.201209017>.
- [26] M. Zhang, X. Wang, Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen

- evolution, *Energy Environ. Sci.* 7 (2014) 1902–1906, <http://dx.doi.org/10.1039/C3EE44189J>.
- [27] G. Zhang, G. Li, X. Wang, Surface modification of carbon nitride polymers by core-shell nickel/nickel oxide cocatalysts for hydrogen evolution photocatalysis, *ChemCatChem* 7 (2015) 2864–2870, <http://dx.doi.org/10.1002/cctc.201500069>.
- [28] D. Zheng, G. Zhang, Y. Hou, X. Wang, Layering MoS₂ on soft hollow g-C₃N₄ nanostructures for photocatalytic hydrogen evolution, *Appl. Catal. Gen.* 521 (2016) 2–8, <http://dx.doi.org/10.1016/j.apcata.2015.10.037>.
- [29] G. Zhang, S. Zang, X. Wang, Layered Co(OH)₂ deposited polymeric carbon nitrides for photocatalytic water oxidation, *ACS Catal.* 5 (2015) 941–947, <http://dx.doi.org/10.1021/cs502002u>.
- [30] G. Zhang, S. Zang, L. Lin, Z.-A. Lan, G. Li, X. Wang, Ultrafine cobalt catalysts on covalent carbon nitride frameworks for oxygenic photosynthesis, *ACS Appl. Mater. Interfaces* 8 (2016) 2287–2296, <http://dx.doi.org/10.1021/acsmami.5b11167>.
- [31] J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Photocatalytic reduction of CO₂ by graphitic carbon nitride polymers derived from urea and barbituric acid, *Appl. Catal. B Environ.* 179 (2015) 1–8, <http://dx.doi.org/10.1016/j.apcatab.2015.05.005>.
- [32] S. Nayak, L. Mohapatra, K. Parida, Visible light-driven novel g-C₃N₄/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction, *J. Mater. Chem. A* 3 (2015) 18622–18635, <http://dx.doi.org/10.1039/C5TA00502B>.
- [33] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, *Science* 347 (2015) 970–974, <http://dx.doi.org/10.1126/science.aaa3145>.
- [34] Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis, *Angew. Chem. Int. Ed.* 51 (2012) 11814–11818, <http://dx.doi.org/10.1002/anie.201206534>.
- [35] A. Suryawanshi, P. Dhanasekaran, D. Mhamane, S. Kelkar, S. Patil, N. Gupta, S. Ogale, Doubling of photocatalytic H₂ evolution from g-C₃N₄ via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects, *Int. J. Hydrogen Energy* 37 (2012) 9584–9589, <http://dx.doi.org/10.1016/j.ijhydene.2012.03.123>.
- [36] F. He, G. Chen, Y. Zhou, Y. Yu, L. Li, S. Hao, B. Liu, ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for g-C₃N₄: construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution, *J. Mater. Chem. A* 4 (2016) 3822–3827, <http://dx.doi.org/10.1039/C6TA00497K>.
- [37] S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C₃N₄, *Appl. Catal. B Environ.* 185 (2016) 225–232, <http://dx.doi.org/10.1016/j.apcatab.2015.12.025>.
- [38] Y. Ma, E. Liu, X. Hu, C. Tang, J. Wan, J. Li, J. Fan, A simple process to prepare few-layer g-C₃N₄ nanosheets with enhanced photocatalytic activities, *Appl. Surf. Sci.* 358 (Part A) (2015) 246–251, <http://dx.doi.org/10.1016/j.apsusc.2015.08.174>.
- [39] Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, *Adv. Funct. Mater.* 25 (2015) 6885–6892, <http://dx.doi.org/10.1002/adfm.201503221>.
- [40] X. Xia, N. Deng, G. Cui, J. Xie, X. Shi, Y. Zhao, Q. Wang, W. Wang, B. Tang, NIR light induced H₂ evolution by a metal-free photocatalyst, *Chem. Commun.* 51 (2015) 10899–10902, <http://dx.doi.org/10.1039/C5CC02589C>.
- [41] Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis, *Angew. Chem. Int. Ed.* 52 (2013) 3621–3625, <http://dx.doi.org/10.1002/anie.20120294>.
- [42] J. Yu, S. Wang, B. Cheng, Z. Lin, F. Huang, Noble metal-free Ni(OH)₂-g-C₃N₄ composite photocatalyst with enhanced visible-light photocatalytic H₂-production activity, *Catal. Sci. Technol.* 3 (2013) 1782–1789, <http://dx.doi.org/10.1039/C3CY20878H>.
- [43] L. Bi, D. Xu, L. Zhang, Y. Lin, D. Wang, T. Xie, Metal Ni-loaded g-C₃N₄ for enhanced photocatalytic H₂ evolution activity: the change in surface band bending, *Phys. Chem. Chem. Phys.* 17 (2015) 29899–29905, <http://dx.doi.org/10.1039/C5CP0158D>.
- [44] L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang, N. Zhao, Light-assisted rapid preparation of a Ni/g-C₃N₄ magnetic composite for robust photocatalytic H₂ evolution from water, *J. Mater. Chem. A* 4 (2016) 9998–10007, <http://dx.doi.org/10.1039/C6TA03178A>.
- [45] M.S. Akpile, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H₂-production of g-C₃N₄/WS₂ composite heterostructures, *Appl. Surf. Sci.* 358 (Part A) (2015) 196–203, <http://dx.doi.org/10.1016/j.apsusc.2015.08.250>.
- [46] W. Chen, T.-Y. Liu, T. Huang, X.-H. Liu, G.-R. Duan, X.-J. Yang, S.-M. Chen, A novel yet simple strategy to fabricate visible light responsive C_xN-TiO₂/g-C₃N₄ heterostructures with significantly enhanced photocatalytic hydrogen generation, *RSC Adv.* 5 (2015) 101214–101220, <http://dx.doi.org/10.1039/C5RA18302B>.
- [47] H. Liu, Z. Jin, Z. Xu, Hybridization of Cd_{0.2}Zn_{0.8}S with g-C₃N₄ nanosheets: a visible-light-driven photocatalyst for H₂ evolution from water and degradation of organic pollutants, *Dalton Trans.* 44 (2015) 14368–14375, <http://dx.doi.org/10.1039/C5DT01364J>.
- [48] S.-S. Yi, J.-M. Yan, B.-R. Wulan, S.-J. Li, K.-H. Liu, Q. Jiang, Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation, *Appl. Catal. B Environ.* 200 (2017) 477–483, <http://dx.doi.org/10.1016/j.apcatab.2016.07.046>.
- [49] D.H. Wang, J.N. Pan, H.H. Li, J.J. Liu, Y.B. Wang, L.T. Kang, J.N. Yao, A pure organic heterostructure of μ -oxo dimeric iron(III) porphyrin and graphitic-C₃N₄ for solar H₂ reduction from water, *J. Mater. Chem. A* 4 (2015) 290–296, <http://dx.doi.org/10.1039/C5TA07278F>.
- [50] S.-W. Cao, Y.-P. Yuan, J. Barber, S.C.J. Loo, C. Xue, Noble-metal-free g-C₃N₄/Ni(dmgH)₂ composite for efficient photocatalytic hydrogen evolution under visible light irradiation, *Appl. Surf. Sci.* 319 (2014) 344–349, <http://dx.doi.org/10.1016/j.apsusc.2014.04.094>.
- [51] S.-W. Cao, X.-F. Liu, Y.-P. Yuan, Z.-Y. Zhang, J. Fang, S.C.J. Loo, J. Barber, T.C. Sum, C. Xue, Artificial photosynthetic hydrogen evolution over g-C₃N₄ nanosheets coupled with cobaloxime, *Phys. Chem. Chem. Phys.* 15 (2013) 18363–18366, <http://dx.doi.org/10.1039/C3CP53350F>.
- [52] J. Hong, Y. Wang, Y. Wang, W. Zhang, R. Xu, Noble-metal-free NiS/C₃N₄ for efficient photocatalytic hydrogen evolution from water, *ChemSusChem* 6 (2013), <http://dx.doi.org/10.1002/cssc.201301147>, 2200–2200.
- [53] Y. Lu, D. Chu, M. Zhu, Y. Du, P. Yang, Exfoliated carbon nitride nanosheets decorated with NiS as an efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution, *Phys. Chem. Chem. Phys.* 17 (2015) 17355–17361, <http://dx.doi.org/10.1039/C5CP01657F>.
- [54] F. Raziq, Y. Qu, X. Zhang, M. Humayun, J. Wu, A. Zada, H. Yu, X. Sun, L. Jing, Enhanced cocatalyst-Free visible-light activities for photocatalytic fuel production of g-C₃N₄ by trapping holes and transferring electrons, *J. Phys. Chem. C* 120 (2016) 98–107, <http://dx.doi.org/10.1021/acs.jpcc.5b10313>.
- [55] X. Wang, J. Chen, X. Guan, L. Guo, Enhanced efficiency and stability for visible light driven water splitting hydrogen production over Cd_{0.5}Zn_{0.5}S/g-C₃N₄ composite photocatalyst, *Int. J. Hydrogen Energy* 40 (2015) 7546–7552, <http://dx.doi.org/10.1016/j.ijhydene.2014.11.055>.
- [56] H. Liu, Z. Xu, Z. Zhang, D. Ao, Novel visible-light driven Mn_{0.8}Cd_{0.25}S/g-C₃N₄ composites: Preparation and efficient photocatalytic hydrogen production from water without noble metals, *Appl. Catal. Gen.* (n.d.). <http://dx.doi.org/10.1016/j.apcata.2015.08.026>.
- [57] H. Liu, Z. Xu, Z. Zhang, D. Ao, Highly efficient photocatalytic H₂ evolution from water over CdLa₂S₄/mesoporous g-C₃N₄ hybrids under visible light irradiation, *Appl. Catal. B Environ.* 192 (2016) 234–241, <http://dx.doi.org/10.1016/j.apcatab.2016.03.074>.
- [58] H. Liu, Z. Jin, Z. Xu, Z. Zhang, D. Ao, Fabrication of ZnIn₂S₄–g-C₃N₄ sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H₂-evolution and degradation of organic pollutants, *RSC Adv.* 5 (2015) 97951–97961, <http://dx.doi.org/10.1039/C5RA17028A>.
- [59] Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Hierarchical sheet-on-sheet ZnIn₂S₄/g-C₃N₄ heterostructure with highly efficient photocatalytic H₂ production based on photoinduced interfacial charge transfer, *Sci. Rep.* 6 (2016) 19221, <http://dx.doi.org/10.1038/srep19221>.
- [60] P. Suyana, K.R. Sneha, B.N. Nair, V. Karunakaran, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, A facile one pot synthetic approach for C₃N₄–ZnS composite interfaces as heterojunctions for sunlight-induced multifunctional photocatalytic applications, *RSC Adv.* 6 (2016) 17800–17809, <http://dx.doi.org/10.1039/C5RA27427C>.
- [61] Y. Zhong, J. Yuan, J. Wen, X. Li, Y. Xu, W. Liu, S. Zhang, Y. Fang, Earth-abundant NiS co-catalyst modified metal-free mpg-C₃N₄/CNT nanocomposites for highly efficient visible-light photocatalytic H₂ evolution, *Dalton Trans.* 44 (2015) 18260–18269, <http://dx.doi.org/10.1039/C5DT02693H>.
- [62] J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang, W. Liu, Enhanced photocatalytic H₂ evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C₃N₄ heterojunctions, *J. Mater. Chem. A* 3 (2015) 18244–18255, <http://dx.doi.org/10.1039/C5TA04573H>.
- [63] J. Wen, X. Li, H. Li, S. Ma, K. He, Y. Xu, Y. Fang, W. Liu, Q. Gao, Enhanced visible-light H₂ evolution of g-C₃N₄ photocatalysts via the synergistic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts, *Appl. Surf. Sci.* 358 (Part A) (2015) 204–212, <http://dx.doi.org/10.1016/j.apsusc.2015.08.244>.
- [64] G. Bi, J. Wen, X. Li, W. Liu, J. Xie, Y. Fang, W. Zhang, Efficient visible-light photocatalytic H₂ evolution over metal-free g-C₃N₄ co-modified with robust acetylene black and Ni(OH)₂ as dual co-catalysts, *RSC Adv.* 6 (2016) 31497–31506, <http://dx.doi.org/10.1039/C6RA03118H>.
- [65] K. Mori, T. Itoh, H. Kakudo, T. Iwamoto, Y. Masui, M. Onaka, H. Yamashita, Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water, *Phys. Chem. Chem. Phys.* 17 (2015) 24086–24091, <http://dx.doi.org/10.1039/C5CP04493F>.
- [66] S. Pany, K.M. Parida, A facile in situ approach to fabricate N,S-TiO₂/g-C₃N₄ nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution, *Phys. Chem. Chem. Phys.* 17 (2015) 8070–8077, <http://dx.doi.org/10.1039/C4CP05582A>.
- [67] J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C₃N₄/TiO₂ with enhanced photocatalytic activity for H₂ evolution by a simple method, *Int. J. Hydrogen Energy* 39 (2014) 6354–6363, <http://dx.doi.org/10.1016/j.ijhydene.2014.02.020>.
- [68] J. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, J. Xie, A new visible light active multifunctional ternary composite based on TiO₂-In₂O₃ nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic

- treatment of hazardous pollutant and H₂ evolution, *Appl. Catal. B Environ.* 170–171 (2015) 195–205, <http://dx.doi.org/10.1016/j.apcatb.2015.01.041>.
- [69] Z. Li, Y. Wu, G. Lu, Highly efficient hydrogen evolution over Co(OH)₂ nanoparticles modified g-C₃N₄ co-sensitized by Eosin Y and Rose Bengal under Visible Light Irradiation, *Appl. Catal. B Environ.* 188 (2016) 56–64, <http://dx.doi.org/10.1016/j.apcatb.2016.01.057>.
- [70] X. Hao, Z. Jin, S. Min, G. Lu, Modulating photogenerated electron transfer with selectively exposed Co-Mo facets on a novel amorphous g-C₃N₄/CoxMo1-xS₂ photocatalyst, *RSC Adv.* 6 (2016) 23709–23717, <http://dx.doi.org/10.1039/C5RA22102A>.
- [71] F. Shi, L. Chen, M. Chen, D. Jiang, A g-C₃N₄/nanocarbon/ZnIn₂S₄ nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator, *Chem. Commun.* 51 (2015) 17144–17147, <http://dx.doi.org/10.1039/C5CC05323D>.
- [72] M. Li, L. Zhang, X. Fan, M. Wu, Y. Du, M. Wang, Q. Kong, L. Zhang, J. Shi, Dual synergistic effects in MoS₂/pyridine-modified g-C₃N₄ composite for highly active and stable photocatalytic hydrogen evolution under visible light, *Appl. Catal. B Environ.* 190 (2016) 36–43, <http://dx.doi.org/10.1016/j.apcatb.2016.02.060>.
- [73] F. Cheng, H. Yin, Q. Xiang, Low-temperature solid-state preparation of ternary CdS/g-C₃N₄/CuS nanocomposites for enhanced visible-light photocatalytic H₂-production activity, *Appl. Surf. Sci.* (n.d.) <http://dx.doi.org/10.1016/j.apsusc.2016.06.169>.
- [74] P. Zhang, T. Wang, H. Zeng, Design of Cu-Cu₂O/g-C₃N₄ nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization, *Appl. Surf. Sci.* (n.d.) <http://dx.doi.org/10.1016/j.apsusc.2016.05.162>.
- [75] H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO₂/WO₃/g-C₃N₄ nanofibers for visible-light-driven hydrogen evolution, *J. Mater. Chem. A* 4 (2016) 6276–6281, <http://dx.doi.org/10.1039/C6TA02307>.
- [76] K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetically oxygen-evolving center, *Science* 303 (2004) 1831–1838, <http://dx.doi.org/10.1126/science.1093087>.
- [77] J.F. Hull, D. Balcells, J.D. Blakemore, C.D. Incarvito, O. Eisenstein, G.W. Brudvig, R.H. Crabtree, Highly active and robust Cp* iridium complexes for catalytic water oxidation, *J. Am. Chem. Soc.* 131 (2009) 8730–8731, <http://dx.doi.org/10.1021/ja901270f>.
- [78] L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II, *Nat. Chem.* 4 (2012) 418–423, <http://dx.doi.org/10.1038/nchem.1301>.
- [79] J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis, *Energy Environ. Sci.* 4 (2011) 675–678, <http://dx.doi.org/10.1039/C0EE00418A>.
- [80] J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements, *Chem. Sci.* 3 (2012) 443–446, <http://dx.doi.org/10.1039/C1SC00644D>.
- [81] S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property, *ACS Catal.* 3 (2013) 912–919, <http://dx.doi.org/10.1021/cs4000624>.
- [82] Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, Carbon nitride–aromatic diimide–graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency, *J. Am. Chem. Soc.* 138 (2016) 10019–10025, <http://dx.doi.org/10.1021/jacs.6b05806>.
- [83] Y. Li, S. Ouyang, H. Xu, X. Wang, Y. Bi, Y. Zhang, J. Ye, Constructing solid–gas-interfacial fenton reaction over Alkalinized-C₃N₄ photocatalyst to achieve apparent quantum yield of 49% at 420 nm, *J. Am. Chem. Soc.* 138 (2016) 13289–13297, <http://dx.doi.org/10.1021/jacs.6b07272>.
- [84] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, *Nature* 275 (1978) 115, <http://dx.doi.org/10.1038/275115a0>.
- [85] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, *Nature* 277 (1979) 637–638, <http://dx.doi.org/10.1038/277637a0>.
- [86] J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO₂ reduction under visible light, *Catal. Sci. Technol.* 3 (2013) 1253–1260, <http://dx.doi.org/10.1039/C3CY20822B>.
- [87] P. Niu, Y. Yang, J.C. Yu, G. Liu, H.-M. Cheng, Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C₃N₄ photocatalyst, *Chem. Commun.* 50 (2014) 10837–10840, <http://dx.doi.org/10.1039/C4CC03060E>.
- [88] W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C₃N₄) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C₃N₄ nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, *Nano Energy* 13 (2015) 757–770, <http://dx.doi.org/10.1016/j.nanoen.2015.03.014>.
- [89] J.-C. Wang, H.-C. Yao, Z.-Y. Fan, L. Zhang, J.-S. Wang, S.-Q. Zang, Z.-J. Li, Indirect Z-scheme BiOI/g-C₃N₄ photocatalysts with enhanced photoreduction CO₂ activity under visible light irradiation, *ACS Appl. Mater. Interfaces* 8 (2016) 3765–3775, <http://dx.doi.org/10.1021/acsmi.5b09901>.
- [90] L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO₂ reduction, *Adv. Funct. Mater.* 25 (2015) 5360–5367, <http://dx.doi.org/10.1002/adfm.201502253>.
- [91] S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Facile in situ synthesis of graphitic carbon nitride (g-C₃N₄)-N-TiO₂ heterojunction as an efficient photocatalyst for the selective photoreduction of CO₂ to CO, *Appl. Catal. B Environ.* 158–159 (2014) 20–29, <http://dx.doi.org/10.1016/j.apcatb.2014.03.037>.
- [92] Y. He, Y. Wang, L. Zhang, B. Teng, M. Fan, High-efficiency conversion of CO₂ to fuel over ZnO/g-C₃N₄ photocatalyst, *Appl. Catal. B Environ.* 168–169 (2015) 1–8, <http://dx.doi.org/10.1016/j.apcatb.2014.12.017>.
- [93] Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Z-scheme SnO₂-x/g-C₃N₄ composite as an efficient photocatalyst for dye degradation and photocatalytic CO₂ reduction, *Sol. Energy Mater. Sol. Cells* 137 (2015) 175–184, <http://dx.doi.org/10.1016/j.solmat.2015.01.037>.
- [94] G.N. Schrauzer, T.D. Guth, Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide, *J. Am. Chem. Soc.* 99 (1977) 7189–7193, <http://dx.doi.org/10.1021/ja00464a015>.
- [95] S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang, G. Wu, Construction of a 2D/2D g-C₃N₄/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process, *RSC Adv.* 6 (2016) 25695–25702, <http://dx.doi.org/10.1039/C5RA28123G>.
- [96] S. Hu, Y. Li, F. Li, Z. Fan, H. Ma, W. Li, X. Kang, Construction of g-C₃N₄/Zn_{0.11}Sn_{0.12}Cd_{0.88}S_{1.12} hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies, *ACS Sustain. Chem. Eng.* 4 (2016) 2269–2278, <http://dx.doi.org/10.1021/acssuschemeng.5b01742>.
- [97] Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao, H. Ma, F. Li, Preparation of g-C₃N₄/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment, *Dalton Trans.* 45 (2016) 3497–3505, <http://dx.doi.org/10.1039/C5DT04901F>.
- [98] F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, mpg-C₃N₄-catalyzed selective oxidation of alcohols using O₂ and visible light, *J. Am. Chem. Soc.* 132 (2010) 16299–16301, <http://dx.doi.org/10.1021/ja102866p>.
- [99] F. Su, S.C. Mathew, L. Möhlmann, M. Antonietti, X. Wang, S. Blechert, Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light, *Angew. Chem. Int. Ed.* 50 (2011) 657–660, <http://dx.doi.org/10.1002/anie.201004365>.
- [100] Y. Chen, J. Zhang, M. Zhang, X. Wang, Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light, *Chem. Sci.* 4 (2013) 3244–3248, <http://dx.doi.org/10.1039/C3SC51203G>.
- [101] Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, *Angew. Chem. Int. Ed.* 51 (2012) 68–89, <http://dx.doi.org/10.1002/anie.201101182>.
- [102] M.N. Nadagouda, R.B. Nasir Baig, R.S. Varma, S. Verma, Magnetic Fe@g-C₃N₄: a photoactive catalyst for the hydrogenation of alkenes and alkynes, *ACS Sustain. Chem. Eng.* (2016), <http://dx.doi.org/10.1021/acssuschemeng.5b01610>.
- [103] L. Song, S. Zhang, X. Wu, H. Tian, Q. Wei, Graphitic C₃N₄ photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation, *Ind. Eng. Chem. Res.* 51 (2012) 9510–9514, <http://dx.doi.org/10.1021/ie3010226>.
- [104] L. Zhang, D. Liu, J. Guan, X. Chen, X. Guo, F. Zhao, T. Hou, X. Mu, Metal-free g-C₃N₄ photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light, *Mater. Res. Bull.* 59 (2014) 84–92, <http://dx.doi.org/10.1016/j.materresbull.2014.06.021>.
- [105] G. SHIRAVAND, A. BADIEI, G.M. ZIARANI, M. JAFARABADI, M. HAMZEHLOO, Photocatalytic synthesis of phenol by direct hydroxylation of benzene by a modified nanoporous silica (LUS-1) under sunlight, *Chin. J. Catal.* 33 (2012) 1347–1353, [http://dx.doi.org/10.1016/S1872-2067\(11\)60422-1](http://dx.doi.org/10.1016/S1872-2067(11)60422-1).
- [106] X. Ye, Y. Cui, X. Qiu, X. Wang, Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation, *Appl. Catal. B Environ.* 152–153 (2014) 383–389, <http://dx.doi.org/10.1016/j.apcatb.2014.01.050>.
- [107] X. Dai, M. Xie, S. Meng, X. Fu, S. Chen, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C₃N₄ photocatalyst under visible light irradiation, *Appl. Catal. B Environ.* 158–159 (2014) 382–390, <http://dx.doi.org/10.1016/j.apcatb.2014.04.035>.
- [108] Y. Zhang, L. Hu, S. Zhao, N. Liu, L. Bai, J. Liu, H. Huang, Y. Liu, Z. Kang, Ag3PW12O40/C₃N₄ nanocomposites as an efficient photocatalyst for hydrocarbon selective oxidation, *RSC Adv.* 6 (2016) 60394–60399, <http://dx.doi.org/10.1039/C6RA09235G>.
- [109] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, *Chem. Rev.* 95 (1995) 69–96, <http://dx.doi.org/10.1021/cr00033a004>.
- [110] P. Zhang, X. Li, C. Shao, Y. Liu, Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis, *J. Mater. Chem. A* 3 (2015) 3281–3284, <http://dx.doi.org/10.1039/C5TA00202H>.

- [111] S. Hu, L. Ma, Y. Xie, F. Li, Z. Fan, F. Wang, Q. Wang, Y. Wang, X. Kang, G. Wu, Hydrothermal synthesis of oxygen functionalized S-P codoped g-C₃N₄ nanorods with outstanding visible light activity under anoxic conditions, Dalton Trans. 44 (2015) 20889–20897, <http://dx.doi.org/10.1039/C5DT04035C>.
- [112] X. Dang, X. Zhang, W. Zhang, X. Dong, G. Wang, C. Ma, X. Zhang, H. Ma, M. Xue, Ultra-thin C₃N₄ nanosheets for rapid charge transfer in the core–shell heterojunction of α-sulfur@C₃N₄ for superior metal-free photocatalysis under visible light, RSC Adv. 5 (2015) 15052–15058, <http://dx.doi.org/10.1039/C4RA14623A>.
- [113] G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified g-C₃N₄ hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem. 22 (2012) 2721–2726, <http://dx.doi.org/10.1039/C1JM13490F>.
- [114] Y. Xu, H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang, G. Cai, The CNT modified white C₃N₄ composite photocatalyst with enhanced visible-light response photoactivity, Dalton Trans. 42 (2013) 7604–7613, <http://dx.doi.org/10.1039/C3DT32871F>.
- [115] X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Enhanced oxidation ability of g-C₃N₄ photocatalyst via C60 modification, Appl. Catal. B Environ. 152–153 (2014) 262–270, <http://dx.doi.org/10.1016/j.apcatb.2014.01.046>.
- [116] H. Sun, G. Zhou, Y. Wang, A. Suvorova, S. Wang, A new metal-free carbon hybrid for enhanced photocatalysis, ACS Appl. Mater. Interfaces 6 (2014) 16745–16754, <http://dx.doi.org/10.1021/am503820h>.
- [117] F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Fabrication, characterization, and photocatalytic performance of exfoliated g-C₃N₄–TiO₂ hybrids, Appl. Surf. Sci. 311 (2014) 574–581, <http://dx.doi.org/10.1016/j.apsusc.2014.05.111>.
- [118] H. Zhu, D. Chen, D. Yue, Z. Wang, H. Ding, In-situ synthesis of g-C₃NTiO₂ composite with enhanced visible light photoactivity, J. Nanoparticle Res. 16 (2632) (2014) 4–25, <http://dx.doi.org/10.1007/s11051-014-2632-7>.
- [119] N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C₃N₄/TiO₂ films, J. Colloid Interface Sci. 417 (2014) 402–409, <http://dx.doi.org/10.1016/j.jcis.2013.11.072>.
- [120] S. Ma, J. Xue, Y. Zhou, Z. Zhang, Z. Cai, D. Zhu, S. Liang, Facile fabrication of a mpg-C₃N₄/TiO₂ heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation, RSC Adv. 5 (2015) 64976–64982, <http://dx.doi.org/10.1039/C5RA10447E>.
- [121] J. Zhou, M. Zhang, Y. Zhu, Photocatalytic enhancement of hybrid C₃N₄/TiO₂ prepared via ball milling method, Phys. Chem. Chem. Phys. 17 (2015) 3647–3652, <http://dx.doi.org/10.1039/C4CP05173D>.
- [122] Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, G. Cao, Seed-induced growing various TiO₂ nanostructures on g-C₃N₄ nanosheets with much enhanced photocatalytic activity under visible light, J. Hazard. Mater. 292 (2015) 79–89, <http://dx.doi.org/10.1016/j.jhazmat.2015.03.006>.
- [123] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, In-situ-reduced synthesis of Ti³⁺ self-doped TiO₂/g-C₃N₄ heterojunctions with high photocatalytic performance under LED light irradiation, ACS Appl. Mater. Interfaces 7 (2015) 9023–9030, <http://dx.doi.org/10.1021/am508050n>.
- [124] D. Lu, G. Zhang, Z. Wan, Visible-light-driven g-C₃N₄/Ti³⁺/TiO₂ photocatalyst co-exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction, Appl. Surf. Sci. 358 (Part A) (2015) 223–230, <http://dx.doi.org/10.1016/j.apsusc.2015.08.240>.
- [125] L. Gu, J. Wang, Z. Zou, X. Han, Graphitic-C₃N₄-hybridized TiO₂ nanosheets with reactive {0 0 1} facets to enhance the UV- and visible-light photocatalytic activity, J. Hazard. Mater. 268 (2014) 216–223, <http://dx.doi.org/10.1016/j.jhazmat.2014.01.021>.
- [126] X. Wang, W. Yang, F. Li, Y. Xue, R. Liu, Y. Hao, In situ microwave-assisted synthesis of porous N-TiO₂/g-C₃N₄ heterojunctions with enhanced visible-light photocatalytic properties, Ind. Eng. Chem. Res. 52 (2013) 17140–17150, <http://dx.doi.org/10.1021/ie402820v>.
- [127] W. Li, C. Li, B. Chen, X. Jiao, D. Chen, Facile synthesis of sheet-like N-TiO₂/g-C₃N₄ heterojunctions with highly enhanced and stable visible-light photocatalytic activities, RSC Adv. 5 (2015) 34281–34291, <http://dx.doi.org/10.1039/C5RA04100G>.
- [128] S. Sun, M. Sun, Y. Fang, Y. Wang, H. Wang, One-step in situ calcination synthesis of g-C₃N₄/N-TiO₂ hybrids with enhanced photoactivity, RSC Adv. 6 (2016) 13063–13071, <http://dx.doi.org/10.1039/C5RA26700E>.
- [129] S. Kumar, S. Tonda, A. Baruah, B. Kumar, V. Shanker, Synthesis of novel and stable g-C₃N₄/N-doped SrTiO₃ hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation, Dalton Trans. 43 (2014) 16105–16114, <http://dx.doi.org/10.1039/C5RA26700E>.
- [130] Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, One-pot synthesis of g-C₃N₄/V2O₅ composites for visible light-driven photocatalytic activity, Appl. Surf. Sci. 358 (Part A) (2015) 188–195, <http://dx.doi.org/10.1016/j.apsusc.2015.09.010>.
- [131] S. Kumar, B. Kumar, T. Surendar, V. Shanker, g-C₃N₄/NaTaO₃ organic–inorganic hybrid nanocomposite: high-performance and recyclable visible light driven photocatalyst, Mater. Res. Bull. 49 (2014) 310–318, <http://dx.doi.org/10.1016/j.materresbull.2013.09.013>.
- [132] Z. Yong, J. Ren, H. Hu, P. Li, S. Ouyang, H. Xu, D. Wang, Synthesis, characterization, and photocatalytic activity of g-C₃N₄/KTaO₃ composites under visible light irradiation, J. Nanomater. 2015 (2015) e821986, <http://dx.doi.org/10.1155/2015/821986>.
- [133] W. Peng, X. Li, Synthesis of MoS₂/g-C₃N₄ as a solar light-responsive photocatalyst for organic degradation, Catal. Commun. 49 (2014) 63–67, <http://dx.doi.org/10.1016/j.catcom.2014.02.008>.
- [134] Q. Li, N. Zhang, Y. Yang, G. Wang, D.H.L. Ng, High efficiency photocatalysis for pollutant degradation with MoS₂/C₃N₄ heterostructures, Langmuir 30 (2014) 8965–8972, <http://dx.doi.org/10.1021/la502033t>.
- [135] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Synthesis and characterization of g-C₃N₄/Bi₂MoO₆ heterojunctions with enhanced visible light photocatalytic activity, Appl. Catal. B Environ. 160–161 (2014) 89–97, <http://dx.doi.org/10.1016/j.apcatb.2014.05.019>.
- [136] Y. Tian, F. Cheng, X. Zhang, F. Yan, B. Zhou, Z. Chen, J. Liu, F. Xi, X. Dong, Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi₂MoO₆ heterojunctions, Powder Technol. 267 (2014) 126–133, <http://dx.doi.org/10.1016/j.powtec.2014.07.021>.
- [137] S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation, J. Colloid Interface Sci. 431 (2014) 42–49, <http://dx.doi.org/10.1016/j.jcis.2014.05.023>.
- [138] L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO₃/g-C₃N₄ composites with enhanced photocatalytic activity, Dalton Trans. 42 (2013) 8606–8616, <http://dx.doi.org/10.1039/C3DT00115F>.
- [139] K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, Preparation of graphitic carbon nitride (g-C₃N₄)/WO₃ composites and enhanced visible-light-driven photodegradation of acetaldehyde gas, J. Hazard. Mater. 260 (2013) 475–482, <http://dx.doi.org/10.1016/j.jhazmat.2013.05.058>.
- [140] S. Chen, Y. Hu, X. Jiang, S. Meng, X. Fu, Fabrication and characterization of novel Z-scheme photocatalyst WO₃/g-C₃N₄ with high efficient visible light photocatalytic activity, Mater. Chem. Phys. 149–150 (2015) 512–521, <http://dx.doi.org/10.1016/j.matchemphys.2014.11.001>.
- [141] Y. Wang, Z. Wang, S. Muhammad, J. He, Graphite-like C₃N₄ hybridized ZnWO₄ nanorods: synthesis and its enhanced photocatalysis in visible light, CrystEngComm 14 (2012) 5065–5070, <http://dx.doi.org/10.1039/C2CE25517K>.
- [142] S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, g-C₃N₄/ZnWO₄ films: preparation and its enhanced photocatalytic decomposition of phenol in UV, Appl. Surf. Sci. 358 (Part A) (2015) 328–335, <http://dx.doi.org/10.1016/j.apsusc.2015.07.180>.
- [143] N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO₄/g-C₃N₄ heterojunction with enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 358 (Part A) (2015) 343–349, <http://dx.doi.org/10.1016/j.apsusc.2015.07.154>.
- [144] K. Vignesh, A. Suganthi, B.-K. Min, M. Kang, Photocatalytic activity of magnetically recoverable MnFe204/g-C₃N₄/TiO₂ nanocomposite under simulated solar light irradiation, J. Mol. Catal. Chem. 395 (2014) 373–383, <http://dx.doi.org/10.1016/j.molcata.2014.08.040>.
- [145] Z. Zhu, Z. Lu, X. Zhao, Y. Yan, W. Shi, D. Wang, L. Yang, X. Lin, Z. Hua, Y. Liu, Surface imprinting of a g-C₃N₄ photocatalyst for enhanced photocatalytic activity and selectivity towards photodegradation of 2-mercaptobenzothiazole, RSC Adv. 5 (2015) 40726–40736, <http://dx.doi.org/10.1039/C5RA06209H>.
- [146] Q. Liu, Y. Guo, Z. Chen, Z. Zhang, X. Fang, Constructing a novel ternary Fe(III)/graphene/g-C₃N₄ composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect, Appl. Catal. B Environ. 183 (2016) 231–241, <http://dx.doi.org/10.1016/j.apcatb.2015.10.054>.
- [147] Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core–shell CuFe2O4@g-C₃N₄ hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater. 297 (2015) 224–233, <http://dx.doi.org/10.1016/j.jhazmat.2015.04.046>.
- [148] S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance, ACS Appl. Mater. Interfaces 5 (2013) 12735–12743, <http://dx.doi.org/10.1021/am404123z>.
- [149] D. Chen, K. Wang, T. Ren, H. Ding, Y. Zhu, Synthesis and characterization of the ZnO/mpg-C₃N₄ heterojunction photocatalyst with enhanced visible light photoactivity, Dalton Trans. 43 (2014) 13105–13114, <http://dx.doi.org/10.1039/C4DT01347F>.
- [150] K. Vignesh, S. Kang, B.S. Kwak, M. Kang, Meso-porous ZnO nano-triangles @ graphitic-C₃N₄ nano-foils: fabrication and Recyclable photocatalytic activity, Sep. Purif. Technol. 147 (2015) 257–265, <http://dx.doi.org/10.1016/j.seppur.2015.04.043>.
- [151] L. Zhang, X. Wang, Q. Nong, H. Lin, B. Teng, Y. Zhang, L. Zhao, T. Wu, Y. He, Enhanced visible-light photoactivity of g-C₃N₄ via Zn₂SnO₄ modification, Appl. Surf. Sci. 329 (2015) 143–149, <http://dx.doi.org/10.1016/j.apsusc.2014.12.154>.
- [152] W.-K. Jo, N. Clament Sagaya Selvam, Enhanced visible light-driven photocatalytic performance of ZnO–g-C₃N₄ coupled with graphene oxide as a novel ternary nanocomposite, J. Hazard. Mater. 299 (2015) 462–470, <http://dx.doi.org/10.1016/j.jhazmat.2015.07.042>.
- [153] J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C₃N₄–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A 1 (2013) 3083–3090, <http://dx.doi.org/10.1039/C2TA00672C>.

- [154] X. Cui, Y.F. Zheng, H.Y. Yin, X.C. Song, Novel C3N4/Zn1-xCdxS heterostructures with adjustment of the band gap and their visible light photocatalytic properties, *Phys. Chem. Chem. Phys.* 17 (2015) 29354–29362, <http://dx.doi.org/10.1039/C5CP05464H>.
- [155] W. Tian, N. Li, J. Zhou, A novel P-doped g-C3N4/Zn0.8Cd0.2S composite photocatalyst for degradation of methylene blue under simulated sunlight, *Appl. Surf. Sci.* 361 (2016) 251–258, <http://dx.doi.org/10.1016/j.apsusc.2015.11.157>.
- [156] R.C. Pawar, V. Khare, C.S. Lee, Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light, *Dalton Trans.* 43 (2014) 12514–12527, <http://dx.doi.org/10.1039/C4DT01278J>.
- [157] L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, *Appl. Catal. B Environ.* 108–109 (2011) 100–107, <http://dx.doi.org/10.1016/j.apcatb.2011.08.014>.
- [158] L. Liu, Y. Qi, J. Lu, S. Lin, W. An, J. Hu, Y. Liang, W. Cui, Dramatic activity of a Bi2WO6@g-C3N4 photocatalyst with a core@shell structure, *RSC Adv.* 5 (2015) 99339–99346, <http://dx.doi.org/10.1039/C5RA19929H>.
- [159] C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, *Adv. Funct. Mater.* 22 (2012) 1518–1524, <http://dx.doi.org/10.1002/adfm.201102306>.
- [160] S. Obregón, Y. Zhang, G. Colón, Cascade charge separation mechanism by ternary heterostructured BiPO4/TiO2/g-C3N4 photocatalyst, *Appl. Catal. B Environ.* 184 (2016) 96–103, <http://dx.doi.org/10.1016/j.apcatb.2015.11.027>.
- [161] Z. Yang, J. Li, F. Cheng, Z. Chen, X. Dong, BiOBr/protonated graphitic C3N4 heterojunctions: intimate interfaces by electrostatic interaction and enhanced photocatalytic activity, *J. Alloys Compd.* 634 (2015) 215–222, <http://dx.doi.org/10.1016/j.jallcom.2015.02.103>.
- [162] J. Xia, M. Ji, J. Di, B. Wang, S. Yin, Q. Zhang, M. He, H. Li, Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight, *Appl. Catal. B Environ.* 191 (2016) 235–245, <http://dx.doi.org/10.1016/j.apcatb.2016.02.058>.
- [163] D. Yuan, L. Huang, Y. Li, Y. Xu, H. Xu, S. Huang, J. Yan, M. He, H. Li, Synthesis and photocatalytic activity of g-C3N4/BiO1/BiOBr ternary composites, *RSC Adv.* 6 (2016) 41204–41213, <http://dx.doi.org/10.1039/C6RA05565F>.
- [164] R. Yin, Q. Luo, D. Wang, H. Sun, Y. Li, X. Li, J. An, SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity, *J. Mater. Sci.* 49 (2014) 6067–6073, <http://dx.doi.org/10.1007/s10853-014-8330-0>.
- [165] X. Chen, B. Zhou, S. Yang, H. Wu, Y. Wu, L. Wu, J. Pan, X. Xiong, In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity, *RSC Adv.* 5 (2015) 68953–68963, <http://dx.doi.org/10.1039/C5RA11801H>.
- [166] C. Xing, Z. Wu, D. Jiang, M. Chen, Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity, *J. Colloid Interface Sci.* 433 (2014) 9–15, <http://dx.doi.org/10.1016/j.jcis.2014.07.015>.
- [167] F. Li, Y. Zhao, Q. Wang, X. Wang, Y. Hao, R. Liu, D. Zhao, Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification, *J. Hazard. Mater.* 283 (2015) 371–381, <http://dx.doi.org/10.1016/j.jhazmat.2014.09.035>.
- [168] X. Wang, S. Wang, W. Hu, J. Cai, L. Zhang, L. Dong, L. Zhao, Y. He, Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst, *Mater. Lett.* 115 (2014) 53–56, <http://dx.doi.org/10.1016/j.matlet.2013.10.016>.
- [169] B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Facile fabrication of novel SiO2/g-C3N4 core-shell nanosphere photocatalysts with enhanced visible light activity, *Appl. Surf. Sci.* 357 (Part A) (2015) 346–355, <http://dx.doi.org/10.1016/j.apsusc.2015.09.041>.
- [170] C. Wen, H. Zhang, Q. Bo, T. Huang, Z. Lu, J. Lv, Y. Wang, Facile synthesis organic-inorganic heterojunctions of HSbO3/g-C3N4 as efficient visible-light-driven photocatalyst for organic degradation, *Chem. Eng. J.* 270 (2015) 405–410, <http://dx.doi.org/10.1016/j.cej.2015.01.082>.
- [171] H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. Xiong, G. Zeng, Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance, *Appl. Catal. B Environ.* 193 (2016) 36–46, <http://dx.doi.org/10.1016/j.apcatb.2016.03.075>.
- [172] J. Luo, X. Zhou, L. Ma, X. Xu, Enhancing visible-light photocatalytic activity of g-C3N4 by doping phosphorus and coupling with CeO2 for the degradation of methyl orange under visible light irradiation, *RSC Adv.* 5 (2015) 68728–68735, <http://dx.doi.org/10.1039/C5RA10848A>.
- [173] L. Wang, J. Ding, Y. Chai, Q. Liu, J. Ren, X. Liu, W.-L. Dai, CeO2 nanorod/g-C3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media, *Dalton Trans.* 44 (2015) 11223–11234, <http://dx.doi.org/10.1039/C5DT01479D>.
- [174] X. She, H. Xu, H. Wang, J. Xia, Y. Song, J. Yan, Y. Xu, Q. Zhang, D. Du, H. Li, Controllable synthesis of CeO2/g-C3N4 composites and their applications in the environment, *Dalton Trans.* 44 (2015) 7021–7031, <http://dx.doi.org/10.1039/C4DT03793F>.
- [175] Y. He, J. Cai, T. Li, Y. Wu, Y. Yi, M. Luo, L. Zhao, Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation, *Ind. Eng. Chem. Res.* 51 (2012) 14729–14737, <http://dx.doi.org/10.1021/ie301774e>.
- [176] T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Synthesis of g-C3N4/SnVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation, *Appl. Catal. B Environ.* 129 (2013) 255–263, <http://dx.doi.org/10.1016/j.apcatb.2012.09.031>.
- [177] Y. He, J. Cai, L. Zhang, X. Wang, H. Lin, B. Teng, L. Zhao, W. Weng, H. Wan, M. Fan, Comparing two new composite photocatalysts, t-LaVO4/g-C3N4 and m-LaVO4/g-C3N4, for their structures and performances, *Ind. Eng. Chem. Res.* 53 (2014) 5905–5915, <http://dx.doi.org/10.1021/ie4043856>.
- [178] Y. He, J. Cai, T. Li, Y. Wu, H. Lin, L. Zhao, M. Luo, Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation, *Chem. Eng. J.* 215–216 (2013) 721–730, <http://dx.doi.org/10.1016/j.cej.2012.11.074>.
- [179] W. Wang, J.C. Yu, D. Xia, P.K. Wong, Y. Li, Graphene and g-C3N4 nanosheets cowrapped elemental α -sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light, *Environ. Sci. Technol.* 47 (2013) 8724–8732, <http://dx.doi.org/10.1021/es4013504>.
- [180] H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, *Appl. Catal. B Environ.* 194 (2016) 134–140, <http://dx.doi.org/10.1016/j.apcatb.2016.04.042>.
- [181] J.H. Thurston, N.M. Hunter, K.A. Cornell, Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films, *RSC Adv.* 6 (2016) 42240–42248, <http://dx.doi.org/10.1039/C6RA05613J>.
- [182] F. Dong, Z. Wang, Y. Sun, W.-K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, *J. Colloid Interface Sci.* 401 (2013) 70–79, <http://dx.doi.org/10.1016/j.jcis.2013.03.034>.
- [183] F. Dong, Z. Ni, P. Li, Z. Wu, A general method for type I and type II g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalytic, *New J. Chem.* 39 (2015) 4737–4744, <http://dx.doi.org/10.1039/C5NJ00351B>.
- [184] F. Dong, M. Ou, Y. Jiang, S. Guo, Z. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification, *Ind. Eng. Chem. Res.* 53 (2014) 2318–2330, <http://dx.doi.org/10.1021/ie4038104>.
- [185] F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation, *Appl. Surf. Sci.* 358 (Part A) (2015) 393–403, <http://dx.doi.org/10.1016/j.apcatb.2015.04.034>.
- [186] Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.-K. Ho, Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity, less is better, *Sci. Rep.* 5 (2015) 14643, <http://dx.doi.org/10.1038/srep14643>.
- [187] Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity, *Nanoscale* 7 (2015) 2471–2479, <http://dx.doi.org/10.1039/C4NR05732E>.
- [188] W. Ho, Z. Zhang, W. Lin, S. Huang, X. Zhang, X. Wang, Y. Huang, Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4, *ACS Appl. Mater. Interfaces* 7 (2015) 5497–5505, <http://dx.doi.org/10.1021/am509213x>.
- [189] Z. Zhao, Y. Sun, F. Dong, Y. Zhang, H. Zhao, Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance, *RSC Adv.* 5 (2015) 39549–39556, <http://dx.doi.org/10.1039/C5RA03433G>.
- [190] F. Dong, Z. Wang, Y. Li, W.-K. Ho, S.C. Lee, Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification for real indoor illumination, *Environ. Sci. Technol.* 48 (2014) 10345–10353, <http://dx.doi.org/10.1021/es502290f>.
- [191] F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.-K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, *ACS Appl. Mater. Interfaces* 5 (2013) 11392–11401, <http://dx.doi.org/10.1021/am403653a>.
- [192] W. Liu, M. Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, *Chem. Eng. J.* 209 (2012) 386–393, <http://dx.doi.org/10.1016/j.cej.2012.08.033>.
- [193] M. Sun, Q. Yan, T. Yan, M. Li, D. Wei, Z. Wang, Q. Wei, B. Du, Facile fabrication of 3D flower-like heterostructured g-C3N4/SnS2 composite with efficient photocatalytic activity under visible light, *RSC Adv.* 4 (2014) 31019–31027, <http://dx.doi.org/10.1039/C4RA03843F>.
- [194] M. Sun, T. Yan, Q. Yan, H. Liu, Y. Zuo, Y. Zhang, B. Du, Novel visible-light driven g-C3N4/Zn0.25Cd0.75S composite photocatalyst for efficient degradation of dyes and reduction of Cr(VI) in water, *RSC Adv.* 4 (2014) 19980–19986, <http://dx.doi.org/10.1039/C4RA01439A>.
- [195] Y. Zang, L. Li, Y. Xu, Y. Zuo, G. Li, Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As³⁺ oxidation, MO degradation and water splitting for hydrogen evolution, *J. Mater. Chem. A* 2 (2014) 15774–15780, <http://dx.doi.org/10.1039/C4TA02082K>.
- [196] C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Boron doped g-C3N4 with enhanced photocatalytic UO2²⁺ reduction performance, *Appl. Surf. Sci.* 360 (Part B) (2016) 1016–1022, <http://dx.doi.org/10.1016/j.apsusc.2015.11.112>.
- [197] D. Wang, Y. Zhang, W. Chen, A novel nickel-thiourea-triethylamine complex adsorbed on graphitic C₃N₄ for low-cost solar hydrogen production, *Chem. Commun.* 50 (2014) 1754–1756, <http://dx.doi.org/10.1039/c3cc48141g>.