SUPSI

Algorithm analysis

SUPSI Complexity analysis

How can we decide which algorithm is better?

- Measure execution time?
 - Store the value of the computer internal clock
 - Launch the algorithm and wait for its completion
 - Read the new value of the clock, compute the difference

How can we decide which algorithm is better?

- Measure execution time?
 - Store the value of the computer internal clock
 - Launch the algorithm and wait for its completion
 - Read the new value of the clock, compute the difference
- Problem: it depends on external factors
 - on the amount of data to be processed
 - on the other tasks the computer is running at the same time
 - on the hardware
 - on the programming language and compiler

Complexity analysis

SUPSI

Complexity analysis

5

Complexity analysis

- Instead of an empirical approach, base the analysis on the **structure** of the algorithm
- Measure the aspects that most critically affect its execution time
 - Number of <u>logical comparisons</u>
 - Number of <u>data assignments</u>
 - Number of <u>arithmetic operations</u>
- Example: the following structure contains 2n² additions (n*2n)

```
totalSum = 0 # Version 1
for i in range(n):
    rowSum[i] = 0
    for j in range( n ):
        rowSum[i] = rowSum[i] + matrix[i,j]
        totalSum = totalSum + matrix[i,j]
2n additions
```

SUPSI Complexity analysis

Can we improve the algorithm?

Moving one line out of the loop

```
totalSum = 0 # Version 2
for i in range(n):
    rowSum[i] = 0
    for j in range(n):
        rowSum[i] = rowSum[i] + matrix[i,j]
    totalSum = totalSum + rowSum[i]
n iterations

n additions
```

- We have a total of n*(n+1) additions
- For n large this is a <u>significative improvement</u>

A comparison of the two algorithms

n	2n ²	$n^2 + n$
10	200	110
100	20'000	10'100
1000	2'000'000	1'001'000
10000	200'000'000	100'010'000
100000	20'000'000'000	10'000'100'000

Big-O notation

- Computer scientists use the big-O notation which considers the order of magnitude rather than the number of individual operations
- Assume we have a function that expresses the number of steps required by an algorithm.
- Let's suppose that exists a function f(n) defined for n>=0 such that, for some constant c and m, $T(n) \le cf(n)$, for all sufficiently large values of $n \ge m$
- In such a case the algorithm is said to have a time-complexity of (or to execute in the order of) f(n)
- In other words, there is a positive integer m and a constant c (constant of proportionality) such that for all n ≥ m, T(n) ≤ cf(n).

Big-O notation

- O(f(n)) is the notation used to specify that an algorithms has a time complexity (or runs in the order) of f(n)
- Example 1

 - $T_1(n) = 2n^2$ With c=2 we have: $2n^2 \le 2n^2$
 - and therefore we get $O(n^2)$
- Example 2
 - $T_2(n) = n^2 + n$ T(n)
 - With c=2 we have $n^2 + n \le 2n^2$
 - and therefore we get again $O(n^2)$
- We chose c=2 as it was the smallest integer that satisfied the equation $T(n) \le cf(n)$ in both cases

c f(n)

c f(n)

Big-O notation

- The function $f(n) = n^2$ is not the only choice
- We could have chosen $f(n) = n^3$ or $f(n) = n^4 + \sqrt{n}$ or any other majorizing function
- $f(n) = n^2$ provides the the **tightest (lowest) upper bound** or limit for the run time of an algorithm
- The big-O notation indicates the algorithm's efficiency for large values of n

Constant of proportionality

- The constant c is crucial only if two algorithms have the same f(n)
- Example:
 - Algorithm L1 has growth rate n^2 , the time complexity is $O(n^2)$ with c=1
 - Algorithm L2 has growth rate 2n, the time complexity is O(n) with c=2
 - L1 is slower even if c is smaller!

\boldsymbol{n}	n^2	2n	
10	100	20	
100	10,000	200	
1000	1,000,000	2,000	
10000	100,000,000	20,000	
100000	10,000,000,000	200,000	

Constructing T(n)

- Let's evaluate an algorithm by evaluating every single operation performed
- Assume that each atomic operation executes in constant time
- The total number of time required to execute an algorithm is:
 - $T(n) = f_1(n) + f_2(n) + \dots + f_k(n)$

```
(b) for i in range( n ) :
...

for j in range( n ) :
...
```

Choosing the function f(n)

- The function f(n) to be used to compute the complexity is the **dominant term** within T(n)
- For instance:
 - If $T(n) = n^2 + \log_2 n + 3n$
 - The dominant term is n^2 because for $n \ge 3$ then
 - $n^2 + \log_2 n + 3n < n^2 + n^2 + n^2$
 - $n^2 + \log_2 n + 3n < 3n^2$
 - And the time complexity is $O(n^2)$
- Why dominant? Assume $T(n) = n^2 + 15n + 500$. if n is small, then 500 is the most important term, but as n increases n^2 will become the most relevant term

Classes of algorithms

$f(\cdot)$	Common name		
1	Constant		
$\log n$	Logarithmic		
n	Linear		
$n \log n$	Log-linear		
n^2	Quadratic		
n^3	Cubic		
2^n	Exponential		

Classes of algorithms

- The various classes are named on the basis of the big-O time complexity
- A **logarithmic** algorithm is an algorithm whose big-O time complexity is $O(\log_a n)$
 - In many computer science algorithms a=2
 - Logarithmic algorithms are very efficient as they grow less than n
- Polynomial algorithms have a time complexity expressed as:
 - $a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$
 - Their time complexity is expressed as $O(n^m)$
 - Most common cases are linear, quadratic and cubic
- Finally **exponential** algorithms with a time complexity $O(a^n)$ are the worst in terms of performance

SUPSI Complexity analysis

Evaluation of Python code

- Basic operations require constant time
- A basic operation is a statement or a function call whose execution time does not depend on the specific value of the data
- is a basic operation as it requires the same number of instruction on the CPU to be executed, irrespectively of the assigned value
- y=x z=x+y*6done = x > 0 and x < 100

are all basic operations, as well as the subscript operator

16

SUPSI

Complexity analysis

Linear time examples

• The assignment instruction y=ex1(n) requires constant time, but this does not include the time spent

within the function call ex1(n)

- In the function ex1:
 - The loop has $T(n) = n \cdot 1$
 - And we have complexity O(n)
 - The assignment and the return have constant time
- We focus on loops and repetitions
- In the function ex2:
 - There are two loops T(n) = n + n
 - But the complexity is still O(n)

```
def ex1( n ):
    total = 0
    for i in range( n ) :
        total += i
    return total
```

```
def ex2( n ):
    count = 0
    for i in range( n ) :
        count += 1
    for j in range( n ) :
        count += 1
    return count
```

Quadratic time examples

- The time required by the inner loop is $T_i(n) = n$
- The time required by the outer loop is $T_o(n) = n \cdot T_i(n) = n \cdot n = n^2$
- The time complexity is $O(n^2)$
- Not all nested loops are quadratic
 - The inner loop executes a constant number of times, it executes in constant time
 - The time complexity is O(n)

```
def ex3(n):
    count = 0
    for i in range(n):
        for j in range(n):
            count += 1
    return count
```

```
def ex4(n):
    count = 0
    for i in range(n):
        for j in range(25):
            count += 1
    return count
```

Quadratic time examples: a special case

- How many times do we execute the loop?
- Example: n=3
 - i=1; j=1,2
 - i=2; j=1,2,3
 - i=3; j=1,2,3,4
- In general $T(n) = n \cdot (n+1) = n^2 + n$
- So the complexity is $O(n^2)$

```
def ex5(n):
    count = 0
    for i in range(n):
        for j in range(i+1):
            count += 1
    return count
```

Logarithmic time examples

- In ex6 the loop variable *i* is cut in half at each iteration
- It follows an "exponential decay"
- The number of iterations required to get i==1 is $\lfloor \log_2 n \rfloor + 1$ (largest integer smaller than log2 +1)
- The function has therefore $O(\log n)$ complexity

In ex7 the inner loop is executed n times, but it calls the function ex6 which has a complexity log n, so we get $O(n \log n)$

```
def ex6(n):
    count = 0
    i = n
    while i >= 1:
        count += 1
        i = i // 2
    return count
```

```
def ex7(n):
    count = 0
    for i in range(n)
        count += ex6(n)
    return count
```

SUPSI

Complexity analysis 21

Different cases

- Some algorithms can have run times that are different orders of magnitude for different sets of inputs of the same size.
- These algorithms can be evaluated for their best, worst, and average cases.
- These algorithms usually have an event controlled loop or a switch statement

Example:

- If a list does not contain any negative number the algorithm scans all values (worst case)
- If a list has a negative number in the first position it runs in constant time (best case)
- The average case depends on the data we typically feed to the algorithm

```
def findNeg( intList ):
    n = len(intList)
    for i in range(n):
        if intList[i] < 0:
            return i
    return None</pre>
```

Evaluating the Python list

Analysing the performance of ADTs: the Python list

- ADTs are widely re-used
- Optimising their code and improving their efficiency has a great impact
- We start by analysing the Python List

List operation	Worst case
v = list()	O(1)
v = [0]*n	O(n)
v[i] = x	O(1)
v.append(x)	O(n)
v.extend(w)	O(n)
v.insert(x)	O(n)
v.pop()	O(n)
traversal	O(n)

SUPSI

Complexity analysis

List performance: traversal

```
sum = 0
for elem in myList:
    sum = sum+elem
```

An example of list traversal

```
sum = 0
for i in range(len(myList)):
    sum = sum + myList[i]
```

A possible implementation

It is obvious that the complete list traversal has a time complexity of O(n)

List performance: allocation

- List allocation means creating memory space to store all list elements
- There are two possibilities
 - Creation of an empty list:

```
temp = list()
```

- This happens in constant time
- Creation of a list on n elements, each one initialised to 0

```
valueList = [ 0 ] * n
```

The allocation is in constant time but the traversal takes linear time

SUPSI Complexity analysis 26

List performance: appending, extending, inserting

- Appending to a list
 - If there is space in the list, constant time
 - If the list is full, the space must be allocated and while the allocation is O(1), copying the old values in the new array takes O(n)
- Extending a list
 - The extend() operation adds the entire contents of a source list to the end of the destination list.
 - If the destination list has enough space, the cost is T(n)=n, but if new space must be allocated T(n)=n+n (worst case), but in both cases we have O(n)
- Inserting in a list
 - Inserting a new element can require shifting elements, which requires linear time, so O(n)

Amortised cost

SUPSI Complexity analysis 28

What does it mean amortised cost?

- If we append to a list and there is space, this happens in constant time.
- If there is no space, we must allocate it, this happens in linear time.
- How much space do we allocate? Just what is needed? Or a bit more?
- We can devise a strategy to expand the list in order to minimise future reallocations, thus reducing the cost.
- Let's consider the following code:

```
n=16
L = list()
for i in range(1, n+1):
    L.append(i)
```

- Let's suppose that each time the space is finished, the array is doubled in size
- Let's compute the time for each individual operation in the loop (aggregate method)

The aggregate method

- The array doubles the size when $i = 2^k + 1$ for $k \in N$
- s_i is the time required to store an item
- e_i is the time required to expand the array
- The total storage cost s_i is 16, the expansion cost e_i is 15
- For any n $s_i + e_i < 2n$
- Since there are a few append operations we distribute them across the n elements so the amortised cost is T(n) = 2n/n
- The amortised time complexity is O(1)

i	s_i	$ e_i $	Size	List Contents
1	1	_	1	
2	1	1	2	$oxed{1}$
3	1	2	4	
4	1	_	4	$\begin{array}{ c c c c c }\hline 1 & 2 & 3 & 4 \\\hline \end{array}$
5	1	4	8	
6	1	_	8	$oxed{1} \ \ 2 \ \ 3 \ \ \ 4 \ \ \ 5 \ \ \ 6 \ \ \ \ \ \ \ \ \ \ \ \$
7	1	_	8	$oxed{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}$
8	1	_	8	1 2 3 4 5 6 7 8
9	1	8	16	1 2 3 4 5 6 7 8 9
10	1	_	16	1 2 3 4 5 6 7 8 9 10
11	1	_	16	1 2 3 4 5 6 7 8 9 10 11
12	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12
13	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13
14	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14
15	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SUPSI Complexity analysis	i	$ s_i $	$ e_i $	Size	List Contents
	1	1	_	1	
The aggregate method		1	1	2	
		1	2	4	
The array doubles the size when	4	1	-	4	
$i = 2^k + 1$	5	1	4	8	
• s_i is the time required Warning! Amortize	d co	st i	is n	ot Av	verage Case Time
				•	puting an average over all possible
is 15	inputs and sometimes requires the use of statistics. Amortized analysis computes an average cost over a sequence of operations in which many of those operations are "cheap" and relatively few are "expensive" in terms of contributing to the overall time.				
• For any n $s_i + e_i$	10	I	-	16	1 2 3 4 5 6 7 8 9 10
 Since there are a few aspen operations we distribute them across the n elements 	11	1	_	16	1 2 3 4 5 6 7 8 9 10 11
so the amortised cost is $T(n) = 2n/n$	12	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12
 The time complexity is O(1) 	13	1	-	16	1 2 3 4 5 6 7 8 9 10 11 12 13
	14	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14
	15	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	_16	1	_	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Evaluating the Set ADT

Analysing the performance of ADTs: the Set ADT

Simple operations

SUPSI

- Creation and length can be performed in constant time
- __contains__ (used by in) performs a linear search (worst case O(n))
- add is O(n) since the element cannot be a duplicate and it must be searched for
- Operations on two sets
 - These methods all have two nested for, their time complexity will be O(n²)
- Set union: O(n²)
 - it requires three steps:
 - 1. Create the new set (constant time)
 - 2. Fill the new set with the element from the first set (linear time)
 - 3. Iterate over the elements of the second set to check whether they are in the first set

Set operation	Worst case
s = Set()	O(1)
len(s)	O(1)
x in s	O(n)
s.add(x)	O(n)
s.isSubsetOf(t)	O(n²)
s==t	O(n²)
s.union(t)	O(n²)
traversal	O(n)

Application: the sparse matrix

Complexity analysis

What is a sparse matrix?

- A sparse matrix is a matrix with k values with k << m*n
 (m number of rows, n number of columns)
- The Matrix ADT works well for general, non-sparse, matrices
- A sparse matrix may waste lots of memory space and operations are also inefficient (lots of zeros still being used in multiplications etc.)
- Can we devise a data structure which is more efficient for storing sparse matrices?

Complexity analysis

A list-based implementation

(i,j)	0	1	2	3	4	5	6	7
0	0	3	0	0	8	0	0	0
1	2	0	0	1	0	0	5	0
2	0	0	9	0	0	2	0	0
3	0	7	0	0	0	0	0	3
4	0	0	0	0	4	0	0	0

36

A list-based implementation of the SparseMatrix ADT: constructor

```
# Implementation of the Sparse Matrix
class SparseMatrix:
    # Create a sparse matrix of
    def __init__(self, numRows, numCols):
        self. numRows = numRows
        self. numCols = numCols
        self. elementList = list()
    # Return the number of rows
    def numRows(self):
        return self. numRows
    # Return the number of columns in
    def numCols(self):
        return self._numCols
```

```
# Storage class for holding the non-zero
matrix elements.
class _MatrixElement:
    def __init__(self, row, col, value):
        self.row = row
        self.col = col
        self.value = value
```

This is a list of MatrixElement

37

SparseMatrix ADT: setter

```
# Set the value of element (i, j) to the value s: x[i, j] = s
def __setitem (self, ndxTuple, scalar):
    ndx = self. findPosition(ndxTuple[0], ndxTuple[1])
    if ndx is not None: # if the element is found in the list.
        if scalar != 0.0:
            self. elementList[ndx].value=scalar
        else:
            self. elementList.pop(ndx) # remove the index
    else: # if the index is not already in the list.
        if scalar != 0.0:
            element = _MatrixElement(ndxTuple[0], ndxTuple[1], scalar)
            self. elementList.append(element)
```

SparseMatrix ADT: the findPosition helper method

SUPSI

SparseMatrix ADT: getter

```
# Return the value of element (i,i) of the matrix: x[i,i]

def ___getitem__(self, ndxTuple):
    ndx = self._findPosition(ndxTuple[0], ndxTuple[1])
    if ndx is not None:
        return self._elementList[ndx].value
    else:
        return 0
```

SparseMatrix ADT: addition

- The standard matrix summation iterates over two loops
- If the matrix is sparse, this O(n²) algorithm is inefficient

SparseMatrix ADT: an improved version for matrix addition

- Verify the size of the two matrices to ensure they are the same as required by matrix addition.
- Create a new SparseMatrix object with the same number of rows and columns as the other two.
- Duplicate the elements of the self matrix and store them in the new matrix.
- Iterate over the element list of the righthand side matrix (rhsMatrix) to add the non-zero values to the corresponding elements in the new matrix.

SUPSI Complexity analysis

SparseMatrix ADT: efficiency analysis

- We assume a square n x n matrix
- _findPosition()_: it performs a linear search over k << n² elements. The worst case run is O(k)
- _setitem()_ and _getitem()_ use _findPosition()_ and therefore they are both O(k)
- _add()_
 - Size verification and new matrix creation happen in constant time
 - Duplicating the entries of LHS requires k time as append has an amortised cost of O(1)
 - The second loop requires getting and setting the value (2k) and this is repeated for k elements: 2k² time
 - O(k²) is the worst case
- For the sum of two matrices if k= n² we would get a time complexity of O(n⁴)

A comparison of the time complexity of Matrix against SparseMatrix

Operation	Matrix	SparseMatrix
constructor	O(1)	O(1)
s.numRows()	O(1)	O(1)
s.numCols()	O(1)	O(1)
s.scaleBy()	O(n²)	O(k)
x=s[i,j]	O(1)	O(k)
s[i,j]=x	O(1)	O(k)
r=s+t	O(n²)	O(k²)

SUPSI Abstract Data Types 4

Hands-on activity (20 min)

- Take a look at the code of the Sparse Matrix class presented in the textbook and implement it in two Python files
 - testmatrix.py containing the main body that will test the Sparse Matrix
 - sparsematrix.py which contains the ADT interface and implementation
- Is important that you read the code that has been provided and you understand its content.
- BEWARE: there may be a few mistakes in the code of the book, fix them!