Geometry of Drinfeld Modular Forms

Jesse Franklin

University of Vermont

Dartmouth-UVM Math Day, 2024

q - a power of an odd prime.

 ${\cal K}$ - the function field of some smooth, connected, projective curve over a field of characteristic q,

q - a power of an odd prime.

Classical Setting	Function Field
$\mathbb Z$	$A \stackrel{\mathit{def}}{=} \mathbb{F}_q[T]$

q - a power of an odd prime.

Classical Setting	Function Field
\mathbb{Z}	$\mathcal{A} \stackrel{def}{=} \mathbb{F}_q[T]$
$\mathbb Q$	$K\stackrel{def}{=} \mathit{Frac}(A) = \mathbb{F}_q(T)$

q - a power of an odd prime.

Classical Setting	Function Field
\mathbb{Z}	$A\stackrel{def}{=}\mathbb{F}_q[T]$
$\mathbb Q$	$K\stackrel{def}{=} \mathit{Frac}(A) = \mathbb{F}_q(T)$
\mathbb{R}	$\mathcal{K}_{\infty} \stackrel{def}{=} \mathbb{F}_q\left(\!\left(rac{1}{T} ight)\! ight)$

q - a power of an odd prime.

Classical Setting	Function Field
\mathbb{Z}	$A \stackrel{\mathit{def}}{=} \mathbb{F}_q[T]$
Q	$\mathcal{K} \stackrel{def}{=} \mathit{Frac}(A) = \mathbb{F}_q(\mathcal{T})$
\mathbb{R}	$egin{aligned} \mathcal{K}_{\infty} & \stackrel{def}{=} \mathbb{F}_q \ \mathcal{C} & \stackrel{def}{=} \widehat{\mathcal{K}_{\infty}} \end{aligned}$
\mathbb{C}	$C\stackrel{def}{=}\widehat{K_{\infty}}$

q - a power of an odd prime.

Classical Setting	Function Field
${\mathbb Z}$	$A\stackrel{def}{=}\mathbb{F}_q[T]$
$\mathbb Q$	$K\stackrel{def}{=} \mathit{Frac}(A) = \mathbb{F}_q(T)$
\mathbb{R}	$egin{aligned} \mathcal{K}_{\infty} & \stackrel{def}{=} \mathbb{F}_q\left(\!\left(rac{1}{T} ight)\! ight) \ \mathcal{C} & \stackrel{def}{=} \widehat{\mathcal{K}_{\infty}} \end{aligned}$
\mathbb{C}	$C\stackrel{def}{=}\widehat{K_{\infty}}$
$\mathcal{H}=\{ extstyle{a}+bi\in\mathbb{C}:b>0\}$	$\Omega\stackrel{def}{=}\mathit{C}-\mathit{K}_{\infty}$

q - a power of an odd prime.

Classical Setting		Function Field
\mathbb{Z}		$A\stackrel{def}{=}\mathbb{F}_q[T]$
$\mathbb Q$		$K\stackrel{def}{=} \mathit{Frac}(A) = \mathbb{F}_q(T)$
\mathbb{R}		$\mathcal{K}_{\infty} \stackrel{def}{=} \mathbb{F}_q\left(\!\left(rac{1}{T} ight)\! ight)$
$\mathbb C$		$C \stackrel{def}{=} \widehat{\overline{K_{\infty}}}$
$\mathcal{H} = \{a + bi \in \mathbb{C} : b > 0\}$		$\Omega\stackrel{def}{=} C-K_{\infty}$
$\mathrm{SL}_2(\mathbb{Z})\setminus \mathcal{H}$		$\operatorname{GL}_2(A)\setminus\Omega$
	$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) z = \frac{az+b}{cz+d}$	

 $\frac{\text{Elliptic Curves}}{\text{An elliptic curve}} \text{ is (analytically) a torus}/\mathbb{C},$

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$;

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$; or (algebraically) a curve defined by: $E: y^2 = x^3 + A(z)x + B(z)$

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$;

or (algebraically) a curve defined by:

$$E: y^2 = x^3 + A(z)x + B(z)$$

[Sil09, Figure 3.1]

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$;

or (algebraically) a curve defined by:

$$E: y^2 = x^3 + A(z)x + B(z)$$

[Sil09, Figure 3.1]

Drinfeld Modules

Consider the rank 2 lattice

$$\Lambda_z = \overline{\pi}(zA + A) \subset C.$$

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$; or (algebraically) a curve defined by:

 $E: y^2 = x^3 + A(z)x + B(z)$

Consider the rank 2 lattice $\Lambda_z = \overline{\pi}(zA + A) \subset C$. The associated **Drinfeld module of rank** 2 is given by

 $\varphi^{z}(T) = TX + g(z)X^{q} + \Delta(z)X^{q^{2}},$

Drinfeld Modules

[Sil09, Figure 3.1]

Elliptic Curves

An **elliptic curve** is (analytically) a torus/ \mathbb{C} , i.e. a lattice quotient $\mathbb{C}/(\mathbb{Z}z+\mathbb{Z})$ for $z\in\mathcal{H}$; or (algebraically) a curve defined by:

$$E: y^2 = x^3 + A(z)x + B(z)$$

[Sil09, Figure 3.1]

Drinfeld Modules

Consider the rank 2 lattice $\Lambda_z = \overline{\pi}(zA + A) \subset C$. The associated **Drinfeld module of rank** 2 is given by

$$\varphi^{z}(T) = TX + g(z)X^{q} + \Delta(z)X^{q^{2}},$$

the image of a ring homomorphism $\varphi^z:A\to C\{X^q\}$ where $C\{X^q\}$ is the non-commutative ring of \mathbb{F}_q -linear polynomials/C.

Moduli Problems

Let $\Gamma^1 \leq \mathrm{SL}_2(\mathbb{Z})$ and $\Gamma \leq \mathrm{GL}_2(A)$ be subgroups.

Moduli Problems

Let $\Gamma^1 \leq \operatorname{SL}_2(\mathbb{Z})$ and $\Gamma \leq \operatorname{GL}_2(A)$ be subgroups.

$$\left(\begin{array}{c} \text{quotient spaces} \\ \Gamma^1 \setminus \mathcal{H} \text{ (resp. } \Gamma \setminus \Omega) \end{array}\right) \overset{\text{classify}}{\leftrightarrow} \left(\begin{array}{c} \text{families of elliptic curves} \\ \text{(resp. Drinfeld modules of rank 2)} \\ \text{which have torsion info} \end{array}\right)$$

Moduli Problems

Let $\Gamma^1 \leq \operatorname{SL}_2(\mathbb{Z})$ and $\Gamma \leq \operatorname{GL}_2(A)$ be subgroups.

$$\left(\begin{array}{c} \text{quotient spaces} \\ \Gamma^1 \setminus \mathcal{H} \text{ (resp. } \Gamma \setminus \Omega) \end{array}\right) \overset{\text{classify}}{\leftrightarrow} \left(\begin{array}{c} \text{families of elliptic curves} \\ \text{(resp. Drinfeld modules of rank 2)} \\ \text{which have torsion info} \end{array}\right)$$

For example,

$$\Gamma_0(N) \stackrel{def}{:=} \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array} \right) : c \equiv 0 \pmod{N} \right\}$$

corresponds to the moduli space of

{ elliptic curves Drinfeld modules of rank 2

with an N-torsion subgroup.

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

<u>GAGA</u>

 \leftrightarrow

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

<u>GAGA</u>

 \leftrightarrow

Analytic Moduli Space

 $\Gamma \setminus \mathcal{H}^*$

Compact Riemann surface (orbifold)

Algebraic	Modular	Curve
	00	

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

<u>GAGA</u>

<u>GAG</u> ↔ Analytic Moduli Space

 $\Gamma \setminus \mathcal{H}^*$

Compact Riemann surface (orbifold)

Definition ([DS05, 1.1.2])

A map $f: \mathcal{H} \to \mathbb{C}$ is a **modular form of weight** $k \in \mathbb{Z}$ for $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ if

Algebraic	Modular	Curve
	000	

 \mathscr{X}_{Γ} Deligne-Mumford

(stacky) curve

<u>GAGA</u>

 \leftrightarrow

Analytic Moduli Space

 $\Gamma \setminus \mathcal{H}^*$

Compact Riemann surface (orbifold)

Definition ([DS05, $\overline{1.1.2}$])

A map $f: \mathcal{H} \to \mathbb{C}$ is a **modular form of weight** $k \in \mathbb{Z}$ for $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ if

1. f is holomorphic on $\mathcal H$ and at cusps of Γ ; and

Algebraic Modular Curve

 \mathscr{X}_{Γ}

Deligne-Mumford (stacky) curve

 $\frac{\mathsf{GAGA}}{\leftrightarrow}$

Analytic Moduli Space

 $\Gamma \setminus \mathcal{H}^*$

Compact Riemann surface (orbifold)

Definition ([DS05, 1.1.2])

A map $f: \mathcal{H} \to \mathbb{C}$ is a **modular form of weight** $k \in \mathbb{Z}$ for $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ if

- 1. f is holomorphic on $\mathcal H$ and at cusps of Γ ; and
- 2. $f(\gamma z) = (cz + d)^k f(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathcal{H}$.

Algebraic Modular Curve

 \mathcal{X}_{Γ} GAGA
Deligne-Mumford \leftrightarrow

 $\frac{\mathsf{Analytic}\;\mathsf{Moduli}\;\mathsf{Space}}{\Gamma\setminus\mathcal{H}^*}$

Compact Riemann surface (orbifold)

Definition ([DS05, 1.1.2])

(stacky) curve

A map $f: \mathcal{H} \to \mathbb{C}$ is a **modular form of weight** $k \in \mathbb{Z}$ for $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$ if

- 1. f is holomorphic on $\mathcal H$ and at cusps of Γ ; and
- 2. $f(\gamma z) = (cz + d)^k f(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathcal{H}$.

We know (e.g. [VZB22, Chapter 6])

$$M(\Gamma) \stackrel{\text{def}}{:=} \bigoplus_{k \geq 0} M_k(\Gamma) \stackrel{\sim}{\longrightarrow} \bigoplus_{k \geq 0} H^0(\mathscr{X}_{\Gamma}, \Omega^1_{\mathscr{X}_{\Gamma}}(\Delta)^{\otimes k/2}) \stackrel{\text{def}}{=:} R(\mathscr{X}_{\Gamma}, \Delta),$$
$$f \mapsto f dz^{\otimes k/2}$$

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

GAGA

 \leftrightarrow

Analytic Moduli Space

 $\Gamma \setminus \mathcal{H}^*$

Compact Riemann surface (orbifold)

Definition ([DS05, 1.1.2])

A map $f: \mathcal{H} \to \mathbb{C}$ is a modular form of weight $k \in \mathbb{Z}$ for $\Gamma < \mathrm{SL}_2(\mathbb{Z})$ if

1. f is holomorphic on \mathcal{H} and at cusps of Γ ; and

2.
$$f(\gamma z) = (cz + d)^k f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathcal{H}$.

We know (e.g. [VZB22, Chapter 6])

$$M(\Gamma) \stackrel{def}{:=} \bigoplus_{k \geq 0} M_k(\Gamma) \stackrel{\sim}{\longrightarrow} \bigoplus_{k \geq 0} H^0(\mathscr{X}_{\Gamma}, \Omega^1_{\mathscr{X}_{\Gamma}}(\Delta)^{\otimes k/2}) \stackrel{def}{=:} R(\mathscr{X}_{\Gamma}, \Delta),$$
$$f \mapsto fdz^{\otimes k/2}$$

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1,

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;
 - a log divisor is some $\Delta \in \widetilde{\mathsf{Div}}(\mathscr{X})$ a sum of distinct points of \mathscr{X}

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;
 - a log divisor is some $\Delta \in \mathring{\mathsf{Div}}(\mathscr{X})$ a sum of distinct points of \mathscr{X}
- 2. (Ample) Line Bundle
 - e.g. $K_{\mathscr{X}}\sim\Omega^1_{\mathscr{X}}$ or $K_{\mathscr{X}}+\Delta$

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;
 - a log divisor is some $\Delta \in \mathring{\mathsf{Div}}(\mathscr{X})$ a sum of distinct points of \mathscr{X}

2. (Ample) Line Bundle

- e.g. $K_{\mathscr{X}} \sim \Omega^1_{\mathscr{X}}$ or $K_{\mathscr{X}} + \Delta$
- gives an embedding of ${\mathscr X}$ in projective space

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;
 - a \log divisor is some $\Delta \in \mathsf{Div}(\mathscr{X})$ a sum of distinct points of \mathscr{X}
- 2. (Ample) Line Bundle
 - e.g. $\mathcal{K}_\mathscr{X} \sim \Omega^1_\mathscr{X}$ or $\mathcal{K}_\mathscr{X} + \Delta$
 - gives an embedding of ${\mathscr X}$ in projective space
- 3. Modular forms "=" Sections à la $(f \mapsto fdz^{\otimes k/2})$

- 1. (Log) Stacky Curve (\mathcal{X}, Δ) ([LRZ16, Def 2.1] and [VZB22, Ch 4])
 - a "nice" scheme $X/\overline{\mathbb{K}}$ of dimension 1, together with "fractional" (stacky) points $\frac{1}{e_1}P_1,\ldots,\frac{1}{e_r}P_r$ of X with $e_i\in\mathbb{Z}_{\geq 2}$;
 - a \log divisor is some $\Delta \in \mathsf{Div}(\mathscr{X})$ a sum of distinct points of \mathscr{X}
- 2. (Ample) Line Bundle
 - e.g. $K_{\mathscr{X}} \sim \Omega^1_{\mathscr{X}}$ or $K_{\mathscr{X}} + \Delta$
 - gives an embedding of ${\mathscr X}$ in projective space
- 3. Modular forms "=" Sections à la $(f \mapsto fdz^{\otimes k/2})$
- 4. GAGA equivalences of categories:

$$\left(\begin{array}{c}\mathsf{algebraic}\\\mathsf{curves}\;\mathsf{and}\;\mathsf{bundles}\end{array}\right)\overset{\cong}{\to}\left(\begin{array}{c}\mathsf{analytic}\\\mathsf{curves}\;\mathsf{and}\;\mathsf{bundles}\end{array}\right)$$

Drinfeld Modular Forms & Curves

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

Drinfeld Modular Forms & Curves

Algebraic Modular Curve

 \mathscr{X}_{Γ}

Deligne-Mumford (stacky) curve

 $\frac{\mathsf{rigid}\;(\mathsf{stacky})\;\mathsf{GAGA}}{\leftrightarrow}$

Drinfeld Modular Forms & Curves

Algebraic Modular Curve

 $\mathscr{X}_{\mathsf{\Gamma}}$

Deligne-Mumford (stacky) curve

 $\frac{\mathsf{rigid}\;(\mathsf{stacky})\;\mathsf{GAGA}}{\leftrightarrow}$

Analytic Moduli Space $\frac{\Gamma \setminus (\Omega \cup \mathbb{P}^1(K))}{\Gamma \text{ compact rigid analytic}}$ stack

Drinfeld Modular Forms & Curves

 \mathscr{X}_{Γ}

 $\frac{\mathsf{rigid}\;(\mathsf{stacky})\;\mathsf{GAGA}}{\leftrightarrow}$

Deligne-Mumford (stacky) curve

 $\frac{\text{Analytic Moduli Space}}{\Gamma \setminus (\Omega \cup \mathbb{P}^1(K))}$ compact rigid analyticstack

Definition ([Gek86, (3.1)])

Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup. A **modular form** of **weight** $k \in \mathbb{Z}_{\geq 0}$ and **type** $I \in \mathbb{Z}/((q-1)\mathbb{Z})$ is a holomorphic function $f : \Omega \to \mathcal{C}$ such that

Drinfeld Modular Forms & Curves

Algebraic Modular Curve
$$\mathscr{X}_{\Gamma}$$

Deligne-Mumford (stacky) curve

$$\frac{\mathsf{rigid}\; (\mathsf{stacky})\; \mathsf{GAGA}}{\leftrightarrow}$$

 $\frac{\text{Analytic Moduli Space}}{\Gamma \setminus (\Omega \cup \mathbb{P}^1(K))}$ compact rigid analyticstack

Definition ([Gek86, (3.1)])

Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup. A **modular form** of **weight** $k \in \mathbb{Z}_{\geq 0}$ and **type** $I \in \mathbb{Z}/((q-1)\mathbb{Z})$ is a holomorphic function $f : \Omega \to C$ such that

1. f is holomorphic on Ω and at the cusps of Γ ; and

Drinfeld Modular Forms & Curves

$$\mathscr{X}_{\Gamma}$$
Deligne-Mumford
(stacky) curve

$$\frac{\mathsf{rigid}\; (\mathsf{stacky})\; \mathsf{GAGA}}{\leftrightarrow}$$

$$\frac{\text{Analytic Moduli Space}}{\Gamma \setminus (\Omega \cup \mathbb{P}^1(K))}$$

$$\underset{\text{compact rigid analytic}}{\text{compact rigid analytic}}$$

Definition ([Gek86, (3.1)])

Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup. A **modular form** of **weight** $k \in \mathbb{Z}_{\geq 0}$ and **type** $I \in \mathbb{Z}/((q-1)\mathbb{Z})$ is a holomorphic function $f : \Omega \to C$ such that

- 1. f is holomorphic on Ω and at the cusps of Γ ; and
- 2. $f(\gamma z) = \det(\gamma)^{-l}(cz+d)^k f(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & b \end{pmatrix} \in \Gamma$.

```
Let q be odd;

Let \Gamma \leq \operatorname{GL}_2(A);

Let \Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}.
```

```
Let q be odd;

Let \Gamma \leq \operatorname{GL}_2(A);

Let \Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}.

Consider the cover of modular curves
```


Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compute the log canonical ring $R(\mathcal{X}_{\Gamma_2}, 2\Delta)$ we get the following result.

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^\times)^2 \}$. Consider the cover of modular curves

When we compute the log canonical ring $R(\mathcal{X}_{\Gamma_2}, 2\Delta)$ we get the following result.

Theorem ([Fra23, 6.1])

There is an isomorphism of graded rings

$$M(\Gamma_2) \cong R(\mathscr{X}_{\Gamma_2}, \Omega^1_{\mathscr{X}_{\Gamma_2}}(2\Delta)),$$

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^\times)^2 \}$. Consider the cover of modular curves

When we compute the log canonical ring $R(\mathscr{X}_{\Gamma_2}, 2\Delta)$ we get the following result.

Theorem ([Fra23, 6.1])

There is an isomorphism of graded rings

$$\textit{M}(\Gamma_2) \cong \textit{R}(\mathscr{X}_{\Gamma_2}, \Omega^1_{\mathscr{X}_{\Gamma_2}}(2\Delta)),$$

given by isomorphisms

$$M_{k,l}(\Gamma_2) \to H^0(\mathscr{X}_{\Gamma_2}, \Omega^1_{\mathscr{X}_{\Gamma_2}}(2\Delta)^{\otimes k/2})$$

of form $f \mapsto f(dz)^{\otimes k/2}$,

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compute the log canonical ring $R(\mathscr{X}_{\Gamma_2}, 2\Delta)$ we get the following result.

Theorem ([Fra23, 6.1])

There is an isomorphism of graded rings

$$M(\Gamma_2) \cong R(\mathscr{X}_{\Gamma_2}, \Omega^1_{\mathscr{X}_{\Gamma_2}}(2\Delta)),$$

given by isomorphisms

$$M_{k,l}(\Gamma_2) \to H^0(\mathscr{X}_{\Gamma_2}, \Omega^1_{\mathscr{X}_{\Gamma_2}}(2\Delta)^{\otimes k/2})$$

of form $f \mapsto f(dz)^{\otimes k/2}$, where $k \equiv 2l \pmod{q-1}$.

```
Let q be odd;

Let \Gamma \leq \operatorname{GL}_2(A);

Let \Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}.

Consider the cover of modular curves
```


Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ_2 we find the following.

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ_2 we find the following.

Theorem ([Fra23, 6.2])

We have $M(\Gamma) \cong M(\Gamma_2)$,

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ_2 we find the following.

Theorem ([Fra23, 6.2])

We have $M(\Gamma) \cong M(\Gamma_2)$, with

$$M_{k,l}(\Gamma_2) = M_{k,l_1}(\Gamma) \oplus M_{k,l_2}(\Gamma)$$

on each component,

Let q be odd; Let $\Gamma \leq \operatorname{GL}_2(A)$; Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ_2 we find the following.

Theorem ([Fra23, 6.2])

We have $M(\Gamma) \cong M(\Gamma_2)$, with

$$M_{k,l}(\Gamma_2) = M_{k,l_1}(\Gamma) \oplus M_{k,l_2}(\Gamma)$$

on each component, where l_1, l_2 are the solutions to $k \equiv 2l \pmod{q-1}$.

```
Let q be odd; \Gamma \leq \operatorname{GL}_2(A); \Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}. Suppose that \Gamma_1 \leq \Gamma' \leq \Gamma.
```

```
Let q be odd; \Gamma \leq \operatorname{GL}_2(A); \Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}. Suppose that \Gamma_1 \leq \Gamma' \leq \Gamma. Consider the cover of modular curves
```



```
Let q be odd; \Gamma \leq \operatorname{GL}_2(A); \Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}. Suppose that \Gamma_1 \leq \Gamma' \leq \Gamma. Consider the cover of modular curves
```


When we compare the modular forms for Γ and Γ' we find the following generalization of [Fra23, Theorem 6.2].

Let q be odd; $\Gamma \leq \operatorname{GL}_2(A)$; $\Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}$. Suppose that $\Gamma_1 \leq \Gamma' \leq \Gamma$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ' we find the following generalization of [Fra23, Theorem 6.2].

Theorem ([Fra23, 6.12])

We have $M(\Gamma) \cong M(\Gamma')$,

Let q be odd; $\Gamma \leq \operatorname{GL}_2(A)$; $\Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}$. Suppose that $\Gamma_1 \leq \Gamma' \leq \Gamma$. Consider the cover of modular curves

When we compare the modular forms for Γ and Γ' we find the following generalization of [Fra23, Theorem 6.2].

Theorem ([Fra23, 6.12])

We have $M(\Gamma) \cong M(\Gamma')$, and each component $M_{k,l}(\Gamma')$ is some direct sum of components $M_{k,l'}(\Gamma)$ for some nontrivial l'.

Conclusion

Thank you! Further details available at arXiv:2310.19623

References I

- Fred Diamond and Jerry Shurman, *A first course in modular forms*, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Jesse Franklin, *The geometry of Drinfeld modular forms*, 2023, https://arxiv.org/abs/2310.19623.
- Ernst-Ulrich Gekeler, *Drinfeld modular curves*, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338
- Aaron Landesman, Peter Ruhm, and Robin Zhang, *Spin canonical rings of log stacky curves*, Ann. Inst. Fourier (Grenoble) **66** (2016), no. 6, 2339–2383. MR 3580174
- Joseph H. Silverman, *The arithmetic of elliptic curves*, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094

References II

John Voight and David Zureick-Brown, *The canonical ring of a stacky curve*, Mem. Amer. Math. Soc. **277** (2022), no. 1362, v+144. MR 4403928