MAT1320 LINEAR ALGEBRA EXERCISES VII

1911	
Name Surname:	Group No:
Student No:	Duration:
Department:	Date:
_ ·F·····	
Lecturer: Dr. Mustafa SARI	Signature:
Bootafor. Br. Massada Brita	Signature.

- 1. If $A = \begin{bmatrix} 2 & 323 & -1 \\ 1 & 466 & 1 \\ 2 & 889 & 1 \end{bmatrix}$ and det(A) = -480, then which of the followings is the solution of x_2 for the linear system of equations $A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$?

 a) 0 b) 480 + c c) -1 d) -480 + c 240

 Since M(A) = -460 + C, the system has a solution by Garer's method. Then,

by Carer's weethed Ther,

 $x_2 = \frac{\begin{vmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{vmatrix}} = \frac{-2}{-480} = \frac{1}{240}$

2) $A^{T} \times b \Rightarrow (A^{T})^{-1} A^{T} \times c (A^{T})^{-1} b \Rightarrow (A^{-1})^{T} b$

- 2. (A points) Let A be an invertible matrix and A^{-1} $\begin{bmatrix} 0 & 1 \\ 1 & -4 \end{bmatrix}$. If $b = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, then which of the followings is the solution of the linear system of equation $A^T x = b$?
 - (a) $x = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$ b) $x = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ c) $x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- d) $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ e) $x = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$

- 3. (B points) Let $A = \begin{bmatrix} \clubsuit & \diamondsuit & \heartsuit \\ \spadesuit & \bigstar & \Box \\ \triangle & \bullet & \blacksquare \end{bmatrix}$ with $det(A) \neq 0$. Which of the followings is the value $x_1 + x_2 + x_3$ for the solution of the linear system of equations $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \diamondsuit \\ \bigstar \end{bmatrix}$?

- $A^{T} \times 1 = b = 1 \qquad (A^{T})^{-1} \cdot A^{T} \cdot \lambda = (A^{T})^{-1} \cdot b$ $\Rightarrow \quad \lambda = (A^{-1})^{T} \cdot b$ $= \left(\begin{array}{cc} 4 & -5 \\ -3 & 4 \end{array}\right) \cdot \left(\begin{array}{c} 3 \\ 2 \end{array}\right)$ $=\begin{pmatrix} 2 \\ 5 \end{pmatrix}$
- 4. (C points) Let A be an invertible matrix and $A^{-1} = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}$. If $b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, then which of the followings

a)
$$x = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$
 b) $x = \begin{bmatrix} 6 \\ -7 \end{bmatrix}$ c) $x = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

$$x = \begin{bmatrix} 6 \\ -7 \end{bmatrix}$$

$$\begin{array}{c}
\hline
\text{c)} x = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

d)
$$x = \begin{bmatrix} 22\\17 \end{bmatrix}$$
 e) $x = \begin{bmatrix} 18\\23 \end{bmatrix}$