# Linear Systems Singular Value Decomposition

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

#### Matrices are basis dependent

Linear transformations represented as matrices depend on the choice of basis. For example, if  $\mathbf{A}:\mathbb{R}^n\to\mathbb{R}^n$  represents a linear transformation in the standard basis, then the same transformation in a basis V is given by,

## ${f V}^{-1}{f A}{f V}$ : Similarity transformation

▶ In fact, for specific a choice of basis, it is possible to have the simplest possible representation for a linear transformation  $\longrightarrow$  Eigen decomposition. When a matrix  $\mathbf{A}$  has n eigenpairs  $\{(\lambda_i, \mathbf{x}_i)\}_{i=1}^n$ , with linearly independent eigenvectors, we have

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

▶ What about rectangular matrices  $\mathbf{A} \in \mathbb{R}^{n \times m}$ ? Can we talk about "similar" matrices in this case?

# Matrix equivalence

- Consider a linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$ , such that  $\mathbf{y} = T(\mathbf{x})$ , where  $\mathbf{x} \in \mathbb{R}^n$  and  $\mathbf{y} \in \mathbb{R}^m$ . T can be represented as a matrix  $\mathbf{A}$ , such that  $\mathbf{y} = \mathbf{A}\mathbf{x}$ .
- ▶ Exact entries of **A** will depend on the choice of basis for both the input and the output spaces. Let us assume that the matrix **A** is the representation when the standard basis is used for the input and output spaces.
- ▶ If a different set of basis are chosen for the input and output spaces, namely  $V = \{\mathbf{v}_i\}_{i=1}^n \ (\mathbf{v}_i \in \mathbb{R}^n)$  and  $W = \{\mathbf{w}_i\}_{i=1}^m \ (\mathbf{w}_i \in \mathbb{R}^m)$ . Then the corresponding matrix representation for the linear transformation T is,

$$\mathbf{A}_{VW} = \mathbf{W}^{-1} \mathbf{A} \mathbf{V}$$

where, the  $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$  and  $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_m \end{bmatrix}$ .

ightharpoonup A and  $A_{VW}$  are called equivalent matrices.

- Eigen-decomposition provided a way to do this for a square matrix with full rank.  $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$ . When  $\mathbf{A}$  is symmetric,  $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$ .
- ► For rectangular and rank-deficient matrices, we can do this using *singular value decomposition*.
- ► Consider a matrix  $\mathbf{A} \in \mathbb{R}^{n \times m}$  with  $rank(\mathbf{A}) = r$ .

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op} = egin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} egin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^{ op}$$

where,  $\mathbf{U} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}_n$ ;  $\mathbf{V} \in \mathbb{R}^{m \times m}$ ,  $\mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_m$ ; and  $\mathbf{D} = \operatorname{diag}(\sigma_1 \dots \sigma_r)$ .

- ightharpoonup Columns U are eigenvectors of  $\mathbf{A}^{\top}\mathbf{A}$ , forming an orthonormal basis for  $\mathbb{R}^m$ .
- ightharpoonup Columns  $\mathbf{V}$  are eigenvectors of  $\mathbf{A}\mathbf{A}^{\top}$ , forming an orthonormal basis for  $\mathbb{R}^n$ .
- $\bullet$   $\sigma_i^2 = \lambda_i$ , where  $\lambda_i$ s are the eigenvalues of  $\mathbf{A}^{\top} \mathbf{A}$  and  $\mathbf{A} \mathbf{A}^{\top}$ .

▶ For **A**,

$$C(\mathbf{A}) = span \{\hat{\mathbf{u}}_1 \dots \hat{\mathbf{u}}_r\} \quad N(\mathbf{A}^\top) = span \{\hat{\mathbf{u}}_{r+1} \dots \hat{\mathbf{u}}_m\}$$

$$C(\mathbf{A}^\top) = span \{\hat{\mathbf{v}}_1 \dots \hat{\mathbf{v}}_r\} \quad N(\mathbf{A}) = span \{\hat{\mathbf{v}}_{r+1} \dots \hat{\mathbf{v}}_n\}$$

where, the  $\hat{\mathbf{u}}_i$ s and the  $\hat{\mathbf{v}}_i$ s are any orthonormal basis for  $\mathbb{R}^m$  and  $\mathbb{R}^n$ , respectively.

$$\hat{\mathbf{U}}_{cs} = \begin{bmatrix} \hat{\mathbf{u}}_1 \dots \hat{\mathbf{u}}_r \end{bmatrix}, \ \hat{\mathbf{U}}_{lns} = \begin{bmatrix} \hat{\mathbf{u}}_{r+1} \dots \hat{\mathbf{u}}_m \end{bmatrix}, \ \hat{\mathbf{V}}_{rs} = \begin{bmatrix} \hat{\mathbf{v}}_1 \dots \hat{\mathbf{v}}_r \end{bmatrix}, \ \hat{\mathbf{V}}_{ns} = \begin{bmatrix} \hat{\mathbf{v}}_{r+1} \dots \hat{\mathbf{v}}_n \end{bmatrix}$$

Now, A can be written as,

$$\mathbf{A} = egin{bmatrix} \hat{\mathbf{U}}_{cs} & \hat{\mathbf{U}}_{lns} \end{bmatrix} egin{bmatrix} \mathbf{R} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \hat{\mathbf{V}}_{rs}^ op \ \hat{\mathbf{V}}_{rs}^ op \end{bmatrix}$$

where,  $\mathbf{R} \in \mathbb{R}^{r \times r}$ .

It can be shown that two orthogonal matrices P and Q can be chosen, such that

$$\mathbf{A} = egin{bmatrix} \hat{\mathbf{U}}_{cs} & \hat{\mathbf{U}}_{lns} \end{bmatrix} \mathbf{P} egin{bmatrix} \mathbf{D} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{Q}^ op egin{bmatrix} \hat{\mathbf{V}}_{rs}^ op \ \hat{\mathbf{V}}_{rs}^ op \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op = egin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} egin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots \mathbf{v}_n \end{bmatrix}^ op$$

- ▶ Orthonormal basis for  $C(\mathbf{A}) \rightarrow \{\mathbf{u}_1 \dots \mathbf{u}_r\}$ .
- ightharpoonup Orthonormal basis for  $N\left(\mathbf{A}^{\top}\right) \to \{\mathbf{u}_{r+1} \dots \mathbf{u}_m\}$ .
- ightharpoonup Orthonormal basis for  $C\left(\mathbf{A}^{\top}\right) \to \{\mathbf{v}_1 \dots \mathbf{v}_r\}$ .
- ightharpoonup Orthonormal basis for  $N\left(\mathbf{A}\right) 
  ightarrow \left\{\mathbf{v}_{r+1} \ldots \mathbf{v}_{n}\right\}$ .

$$\mathbf{D} = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r \end{bmatrix}, \ \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0.$$

▶ Reduced SVD: 
$$\mathbf{A} = \begin{bmatrix} \mathbf{u}_1 \dots \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_r^\top \end{bmatrix}$$



Find the SVD of 
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

Find the SVD of 
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$$
.

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op = egin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} egin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots \mathbf{v}_n \end{bmatrix}^ op$$

SVD allows us to obtain low rank approximation of the given matrix A, which has lots of applications in signal processing and data analysis.

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\top} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\top} + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\top}, \quad rank (\mathbf{A}) = r$$

where,  $\mathbf{u}_i \mathbf{v}_i^{\top}$  are rank one matrices.

We can obtain a matrix of rank k < r by setting  $\sigma_i = 0, \forall k < i \le r$ .

$$\mathbf{A}_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^\top$$

SVD gives the best possible low rank approximations in terms of the distance between  ${\bf A}$  and  ${\bf A}_k$ .

$$\min_{rank(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$$

$$\min_{rank(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_F = \|\mathbf{A} - \mathbf{A}_k\|_F = \left(\sum_{i=k+1}^r \sigma_i^2\right)^{1/2}$$