

MATEMÁTICAS DISCRETAS II CS1022

LISTA DE PROBLEMAS DEL CURSO

Ciclo académico: 2025-1

Capítulo 1: Inducción Matemática

DIFERENTES ESQUEMAS DE INDUCCIÓN MATEMÁTICA

Use inducción matemática para demostrar las proposiciones:

1. Sea *n* entero positivo, entonces

$$1+3+5+\cdots+(2n-1)=n^2$$
.

2. Sea *n* entero positivo, entonces

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}.$$

3. Sea *n* entero positivo, entonces

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \cdots + \frac{1}{(2n-1)\times (2n+1)} = \frac{n}{2n+1}.$$

4. Sea *n* entero positivo y *a* un número real distinto de 1, pruebe que

$$1 + a + a^2 + \dots + a^n = \frac{a^{n+1} - 1}{a - 1}.$$

- **5.** Demuestre que n(n+7) es par, para todo entero positivo n.
- **6.** Demuestre que $n^3 n$ es divisible por 6, para todo entero positivo n.
- 7. *a*) Demuestre que $6^n 1$ es divisible por 5, para todo entero positivo n.
 - b) Demuestre que $7^n 1$ es divisible por 6, para todo entero positivo n.
- **8.** Para $n \ge 4$:

$$n^2 < 2^n$$

9. Para $n \ge 10$:

$$n^3 \leq 2^n$$

10. Para $n \ge 3$:

$$n^3 < 3^n$$

11. Para $n \ge 1$:

$$a_1^2 + \dots + a_n^2 \ge \frac{(a_1 + \dots + a_n)^2}{n}$$

donde a_1, a_2, \ldots, a_n son números reales positivos cualesquiera.

- **12.** Sea A un conjunto finito y no vacío con n elementos. Demuestre que el número de elementos de P(A), el conjunto potencia de A, es 2^n .
- **13.** Para cada entero positivo n definimos $n! = 1 \cdot 2 \cdot \dots \cdot n$. Demuestre que $2^n \le n!$ para $n \ge 4$.
- **14.** Se considera la sucesión definida por $a_1 = 1$ y $a_n = a_{n-1} + n$ para $n \ge 2$.
 - *a*) Hacer uso del método de inducción para probar que: $a_n + a_{n-1} = n^2$ cualquiera que sea el entero $n \ge 2$.
 - b) Determinar la fórmula explícita del término general de la sucesión (a_n) .
- **15.** Pruebe que todo número entero mayor o igual a 14 se puede expresar como 3x + 8y, donde x y y son números enteros no negativos.
- **16.** Un cajero automático solo tiene billetes de 20 y 50 soles. Demuestre que es posible retirar cualquier cantidad de soles que es múltiplo de 10 y mayor que 30.
- 17. Sea la sucesión a_1, a_2, a_3, \ldots definida por $a_1 = 2$ y $a_n = 3a_{n-1} 2$. Demuestre que $a_n = 3^{n-1} + 1$ para todo entero positivo n.
- **18.** Sea la sucesión a_1, a_2, a_3, \ldots definida por $a_1 = 5$ y $a_n = 3a_{n-1} 2$. Demuestre que $a_n = 4 \cdot 3^{n-1} + 1$ para todo entero positivo n.
- **19.** Sea la sucesión b_1, b_2, b_3, \ldots definida por $b_1 = 1$, $b_2 = 3$ y $b_n = 2b_{n-1} b_{n-2}$. Demuestre que $b_n = 2n 1$ para todo entero positivo n.
- **20.** Sea la sucesión x_1, x_2, x_3, \ldots definida por $x_1 = 5$, $x_2 = 13$, $x_n = 5x_{n-1} 6x_{n-2}$. Pruebe que para todo n entero positivo se cumple que:

$$x_n = 2^n + 3^n$$

- **21.** Pruebe mediante inducción que $a_n < \left(\frac{7}{4}\right)^n \ \forall n \in \mathbb{Z}^+$, donde (a_n) es la sucesión definida por $\begin{cases} a_1 = 1, a_2 = 3 \\ a_n = a_{n-1} + a_{n-2}, \ \forall n \geq 3 \end{cases}$
- 22. La sucesión

es llamada sucesión de Fibonacci. Se define como la sucesión $(f_n)_{n\geq}$ mediante

$$f_1 = 1$$
, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$ para $n \ge 3$.

Muestre las siguientes propiedades:

a)
$$f_1 + f_3 + f_5 + \dots + f_{2n-1} = f_{2n}$$
 para todo $n \ge 1$

b)
$$f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$$
 para todo $n \ge 1$;

c)
$$f_2 + f_4 + \cdots + f_{2n} = f_{2n+1} - 1$$
 para todo $n \ge 1$;

d)
$$f_{n-1}f_{n+1} - f_n^2 = (-1)^n$$
 para todo $n \ge 1$.

e)
$$f_n \le 2^{n-1}$$
 para todo $n \ge 1$.

$$f)$$
 $f_n \ge \frac{1}{3} \cdot \left(\frac{3}{2}\right)^n$ para todo $n \ge 1$.

23. Se define la sucesión $(f_n)_{n\geq 1}$ mediante

$$f_1 = 1$$
, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$ para $n \ge 3$

Pruebe que $1 + 2^{2n} + 3^{2n} + 2((-1)^{f_n} + 1)$ es divisible por 7 para todo entero positivo n.

24. Dada la sucesión de números reales $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n'}$, probar que:

a)
$$H_{2^n} \leq 1 + n, \forall n \in \mathbb{N}$$
.

b)
$$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \forall n \in \mathbb{N}.$$

25. Demuestre que, para todo entero positivo n, se cumple que:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

26. Sea g_n una sucesión definida por $g_1 = 1$, $g_2 = 2$, $g_3 = 6$ y

$$g_n = (n^3 - 3n^2 + 2n)g_{n-3}$$
, para todo $n \ge 4$.

Demuestre que $g_n = n!$.