ML LAB 9

Implement Support Vector Machine algorithm for classification in a given business environment and comment on its efficiency and performance.

Support Vector Machine Tutorial Using Python Sklearn

```
In [1]: import pandas as pd
    from sklearn.datasets import load_iris
    iris = load_iris()
```

In [6]: df = pd.DataFrame(iris.data,columns=iris.feature_names)
 df.head()

Out[6]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

```
In [8]: df['target'] = iris.target
    df.head()
```

Out[8]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

In [9]: df[df.target==1].head()

Out[9]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	50	7.0	3.2	4.7	1.4	1
	51	6.4	3.2	4.5	1.5	1
	52	6.9	3.1	4.9	1.5	1
	53	5.5	2.3	4.0	1.3	1
	54	6.5	2.8	4.6	1.5	1

In [10]: df[df.target==2].head()

Out[10]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	100	6.3	3.3	6.0	2.5	2
	101	5.8	2.7	5.1	1.9	2
	102	7.1	3.0	5.9	2.1	2
	103	6.3	2.9	5.6	1.8	2
	104	6.5	3.0	5.8	2.2	2

```
In [11]: df['flower_name'] =df.target.apply(lambda x: iris.target_names[x])
    df.head()
```

Out[11]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa

```
In [13]: df[45:55]
```

Out[13]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	45	4.8	3.0	1.4	0.3	0	setosa
	46	5.1	3.8	1.6	0.2	0	setosa
	47	4.6	3.2	1.4	0.2	0	setosa
	48	5.3	3.7	1.5	0.2	0	setosa
	49	5.0	3.3	1.4	0.2	0	setosa
	50	7.0	3.2	4.7	1.4	1	versicolor
	51	6.4	3.2	4.5	1.5	1	versicolor
	52	6.9	3.1	4.9	1.5	1	versicolor
	53	5.5	2.3	4.0	1.3	1	versicolor
	54	6.5	2.8	4.6	1.5	1	versicolor

```
In [15]: df0 = df[:50]
    df1 = df[50:100]
    df2 = df[100:]
```

```
In [14]: import matplotlib.pyplot as plt
%matplotlib inline
```

Sepal length vs Sepal Width (Setosa vs Versicolor)

```
In [17]: plt.xlabel('Sepal Length')
    plt.ylabel('Sepal Width')
    plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marke
    plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker
```

Out[17]: <matplotlib.collections.PathCollection at 0x1f1b16976a0>

Petal length vs Pepal Width (Setosa vs Versicolor)

```
In [18]: plt.xlabel('Petal Length')
   plt.ylabel('Petal Width')
   plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marke
   plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker
```

Out[18]: <matplotlib.collections.PathCollection at 0x1f1b2018390>

Train Using Support Vector Machine (SVM)

```
In [49]: from sklearn.model selection import train test split
In [50]:
         X = df.drop(['target','flower_name'], axis='columns')
         y = df.target
In [51]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
In [52]: len(X train)
Out[52]: 120
In [53]: len(X_test)
Out[53]: 30
In [75]:
         from sklearn.svm import SVC
         model = SVC()
In [76]: | model.fit(X_train, y_train)
Out[76]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
           max iter=-1, probability=False, random state=None, shrinking=True,
           tol=0.001, verbose=False)
        model.score(X_test, y_test)
Out[77]: 0.93333333333333333
```

```
In [78]: model.predict([[4.8,3.0,1.5,0.3]])
Out[78]: array([0])
```

Tune parameters

1. Regularization (C)

```
In [97]: model_C = SVC(C=1)
  model_C.fit(X_train, y_train)
  model_C.score(X_test, y_test)
```

Out[97]: 0.93333333333333333

```
In [106]: model_C = SVC(C=10)
  model_C.fit(X_train, y_train)
  model_C.score(X_test, y_test)
```

Out[106]: 0.9666666666666667

2. Gamma

```
In [103]: model_g = SVC(gamma=10)
    model_g.fit(X_train, y_train)
    model_g.score(X_test, y_test)
```

Out[103]: 0.900000000000000002

3. Kernel

Exercise

Train SVM classifier using sklearn digits dataset (i.e. from sklearn.datasets import load_digits) and then,

- 1. Measure accuracy of your model using different kernels such as rbf and linear.
- 2. Tune your model further using regularization and gamma parameters and try to come up with highest accurancy score
- 3. Use 80% of samples as training data size