Indirect Communication

From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design

Edition 5, © Addison-Wesley 2012

- Group Communication
- Publish-Subscribe
- Message Queues
- Share Memory

Objectives

• To understand the key concepts of group communications, publish-subscribe systems, message queue, tuple and distributed share memory

Indirect communication

- Indirect communication: communication through an intermediary with no direct coupling between the sender and the receiver(s).
 - Space uncoupling: the sender does not know or need to know the identity of the receiver(s), and vice versa
 - Time uncoupling: the sender and receiver(s) can have independent lifetimes
- It is often used in distributed systems where change is anticipated
- Its main disadvantage is the performance overhead introduced by the added level of indirection and it is more difficult to manage

Space and time coupling in distributed systems

	Time-coupled	Time-uncoupled
Space coupling	Properties: Communication directed towards a given receiver or receivers; receiver(s) must exist at that moment in time Examples: Message passing, remote invocation (see Chapters 4 and 5)	Properties: Communication directed towards a given receiver or receivers; sender(s) and receiver(s) can have independent lifetimes Examples: See Exercise 15.3
Space uncoupling	Properties: Sender does not need to know the identity of the receiver(s); receiver(s) must exist at that moment in time Examples: IP multicast (see Chapter 4)	Properties: Sender does not need to know the identity of the receiver(s); sender(s) and receiver(s) can have independent lifetimes Examples: Most indirect communication paradigms covered in this chapter

Group communication

- It offers a service whereby a message is sent to a group and then this message is delivered to all members of the group
- The sender is not aware of the identities of the receivers
- Group communication represents an abstraction over multicast communication adding significant extra value in terms of managing group membership, detecting failures and providing reliability and ordering guarantees
- Areas of applications:
 - Reliable dissemination of information to a large numbers of clients
 - Support for collaborative applications
 - Support for a range of fault-tolerance strategies
 - Support for system monitoring and management,

The programming model

- The central concept is that of a group with associated group membership, whereby processes may join or leave the group
- Processes can then send a message to this group and have it propagated to all members of the group with certain guarantees in terms of reliability and ordering
- The essential feature of group communication is that a process issues only one multicast operation to send a message to each of a group of processes

Open and closed groups

Implementation issues

- Reliability and ordering in multicast
 - Integrity: the message received is the same as the one sent, and no messages are delivered twice
 - Validity: guarantees that a message sent will eventually be delivered
 - Agreement: if the message is delivered to one process, then it is delivered to all processes in the group.
- Group communication services offer ordered multicast:
 - FIFO ordering
 - Causal ordering
 - Total ordering

Group membership management

Implementation issues

- Main tasks:
 - Providing an interface for group membership changes
 - Failure detection
 - Notifying members of group membership changes
 - Performing group address expansion. it can decide consistently where to deliver any given message, even though the membership may be changing during delivery.
- Group communication is most effective in small-scale and static systems and does not operate as well in larger-scale environments or environments with a high degree of volatility

Publish-subscribe systems

- Also referred to as distributed event-based systems
- Publisher publish structured events to an event service
- Subscribers express interest in particular events through subscriptions which can be arbitrary patterns over the structured events
- Applications:
 - Financial information systems
 - Other areas with live feeds of real-time data
 - Support for cooperative working, where a number of participants need to be informed of events of shared interest
 - Support for ubiquitous computing
 - A broad set of monitoring applications

The publish-subscribe paradigm

Example: Dealing room system

Implementation issues

- The task of a publish-subscribe system is to ensure that events are delivered efficiently to all subscribers that have filters defined that match the event
- Subscription filter model:
 - Channel-based
 - Topic-based
 - Content-based
 - Type-based
- Centralized versus distributed implementations

A network of brokers (Centralized)

The architecture of publish-subscribe systems

Example publish-subscribe systems

System (and further reading)	Subscription model	Distribution model	Event routing
CORBA Event Service (Chapter 8)	Channel-based	Centralized	-
TIB Rendezvouz [Oki et al. 1993]	Topic-based	Distributed	Ffiltering
Scribe [Castro et al. 2002b]	Topic-based	Peer-to-peer (DHT)	Rendezvous
TERA [Baldoni et al. 2007]	Topic-based	Peer-to-peer	Informed gossip
Siena [Carzaniga et al. 2001]	Content-based	Distributed	Filtering
Gryphon [www.research.ibm.com]	Content-based	Distributed	Filtering
Hermes [Pietzuch and Bacon 2002]	Topic- and content-based	Distributed	Rendezvous and filtering
MEDYM [Cao and Singh 2005]	Content-based	Distributed	Flooding
Meghdoot [Gupta et al. 2004]	Content-based	Peer-to-peer	Rendezvous
Structure-less CBR [Baldoni et al. 2005]	Content-based	Peer-to-peer	Informed gossip

Message queues

- Message queues provide a point-to-point service using the concept of a message queue as an indirection
- The main use of such products is to achieve Enterprise Application Integration
- They are also extensively used as the basis for commercial transaction processing systems

The message queue paradigm

The distributed shared memory abstraction

Shared memory approaches

- Distributed shared memory (DSM) is an abstraction used for sharing data between computers that do not share physical memory
- Processes access DSM by reads and updates to what appears to be ordinary memory within their address space
- It is as though the processes access a single shared memory, but in fact the physical memory is distributed
- DSM is primarily a tool for parallel applications or for any distributed application or group of applications in which individual shared data items can be accessed directly
- DSM is in general less appropriate in client-server systems, where clients normally view server-held resources as abstract data and access them by request

Tuple space communication

- processes communicate indirectly by placing tuples in a tuple space, from which other processes can read or remove them
- Tuples consist of a sequence of one or more typed data fields such as <"fred", 1958>, <"sid", 1964> and <4, 9.8, "Yes">
- Operations
 - Write
 - Read
 - Take
- Tuples are immutable

The tuple space abstraction

Summary of indirect communication styles

	Groups	Publish- subscribe systems	Message queues	DSM	Tuple spaces
Space- uncoupled	Yes	Yes	Yes	Yes	Yes
Time-uncoupled	Possible	Possible	Yes	Yes	Yes
Style of service	Communication- based	Communication- based	Communication- based	State-based	State-based
Communication pattern	1-to-many	1-to-many	1-to-1	1-to-many	1-1 or 1-to-many
Main intent	Reliable distributed computing	Information dissemination or EAI; mobile and ubiquitous systems	Information dissemination or EAI; commercial transaction processing	Parallel and distributed computation	Parallel and distributed computation; mobile and ubiquitous systems
Scalability	Limited	Possible	Possible	Limited	Limited
Associative	No	Content-based publish-subscribe only	No	No	Yes