Algoritmos e Estrutura de Dados - II

Estrutura de Dados Espaciais

Rodolfo Labiapari Mansur Guimarães

rodolfolabiapari@decom.ufop.br – Lattes: http://goo.gl/MZv4Dc
Departamento de Computação – Instituto de Ciências Exatas e Biológicas (ICEB)
Universidade Federal de Ouro Preto (UFOP)
Ouro Preto - MG – Brasil

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Dados Escalares

Definição de Dado Escalar

Na matemática, na informática, e na física, uma **grandeza escalar** é definida quando precisamos de **um valor numérico** associado a **uma unidade de medida para caracterizar alguma grandeza**.

Dados Escalares

Definição de Dado Escalar

Na matemática, na informática, e na física, uma **grandeza escalar** é definida quando precisamos de **um valor numérico** associado a **uma unidade de medida para caracterizar alguma grandeza**.

- Qual a população de Ouro Preto? Cerca de 74 mil habitantes.
- Quantos alunos a UFOP possui? Corpo Discente, são 9.658 alunos na graduação, sendo 3.363 na modalidade à distância. Na pós-graduação, são 434 alunos no mestrado, 121 no doutorado e 500 na especialização.

Dados Escalares

Inscrição	Nota	Estado	Cidade	Curso
00467354	47,8	MG	VICOSA	ADMINISTRACAO
00085820	52,0	MG	UBERLANDIA	DIREITO
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL
00403068	08,0	MG	VARGINHA	ENGENHARIA QUIMICA
00130230	36,3	MG	UBERABA	MEDICINA VETERINARIA

- Com esses dados, é possível responder:
 - Qual a média das notas dos alunos que moram na proximidade de Uberlândia?
 - Quais os alunos que moram numa distância maior à 300km da capital do estado?

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Dados Espaciais

Inscrição	Nota	Estado	Cidade	Curso	Latitude	Longitude
00467354	47,8	MG	VICOSA	ADMINISTRACAO	-20.7548659	-42.8785788
00085820	52,0	MG	UBERLANDIA	DIREITO	-18.9146078	-48.2753801
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL	-21.4261129	-45.9481612
00403068	08,0	MG	VARGINHA	ENGENHARIA QUIMICA	-21.5560521	-45.4368421
00130230	36,3	MG	UBERABA	MEDICINA VETERINARIA	-19.7473748	-47.9391625

- Com esses dados, é possível responder anteriores:
 - Qual a média das notas dos alunos que moram na proximidade de Uberlândia?
 - Quais os alunos que moram numa distância maior à 300km da capital do estado?

Relações entre dados e espaço

- Localização:
 - Existe uma cidade chamada "São Paulo"?
 - Existe uma cidade em -23.5505199, -46.6333094?
- Vizinhança:
 - Qual a cidade mais próxima à São Paulo?
- Extensão:
 - Qual o perímetro de São Paulo?
 - Qual a área de São Paulo?

Aproximadamente 1.270.000 resultados (0,47 segundos)

tinder

Ilison, 26

LIGUE SOMENTE OS PONTOS IMPARES E DESCUBRA COM QUE BRINQUEDO O CEBOLINHA ESTA' SE DIVERTINDO!

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- 🕘 Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Introdução à Banco de Dados

Conceito

Banco de dados é uma coleção de dados relacionados, projetados para uma finalidade específica.

Introdução à Banco de Dados

Conceito

Banco de dados é uma coleção de dados relacionados, projetados para uma finalidade específica.

Exemplo de Banco de Dados:

Inscrição	Nota	Estado	Cidade	Curso
00467354	47,8	MG	VICOSA	ADMINISTRACAO
00085820	52,0	MG	UBERLANDIA	DIREITO
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL
00403068	08,0	MG	VARGINHA	ENGENHARIA QUIMICA
00130230	36,3	MG	UBERABA	MEDICINA VETERINARIA

Aplicações de um Banco de Dados Comum

- Bancos: depósito ou retirada de fundos da conta bancária;
- Hotéis: reservas de quartervas de quartos;
- Empresas aéreas: compra e reserva de passagens;
- Bibliotecas: consulta ao acervo;
- Supermercados: identificação dos produtos comprados, controle do estoque;
- Lojas virtuais: clientes e produtos vendidos pelo site;
- Redes sociais: fotografias, postagens, curtidas, localização.

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

SGBD e BDG

- Para gerência desses dados, utiliza-se softwares chamados Sistemas Gerenciadores de Banco de Dados (SGBDs).
 - São exemplos de programas desse tipo: PostgreSQL, MySQL, Access e Oracle.
- Requisito fundamental hoje nos SGBDs:
 - Manipulação dos dados espaciais.
- Banco de Dados Geográficos (BDG)¹, possui o diferencial de suportar dados geométri em suas tabelas.
- Possibilita a realização de cálculos como áreas, distâncias e centróides, além de realizar a geração de buffers (zona de influência) e outras operações entre as geometrias.

¹Também são chamados de **Banco de Dados Espaciais (BDE)**.

SGBD e BDG

- Ao construir um Banco de Dados Geográficos será possível realizar consultas tais como:
 - Que cidades são vizinhas ao município de Ouro Preto?
 - Que municípios são cortados pela BR-040?"
 - Que distância entre a comunidade rural x e a escola mais próxima?"

Aplicações de um Banco de Dados Geográfico

- Por exemplo os softwares:
 - Sistema de Informação Geográfica (Cartografia);
 - CAD (Computer-Aided Design);
 - 3 Robótica;
 - Bancos tradicionais na qual um registro com k atributos corresponde a um ponto no espaço k-d onde d é a dimensão;
 - 5 Banco temporal, onde o tempo pode ser considerado uma dimensão a mais;
- Fazendo processamentos como:
 - Medir distâncias, perímetro, áreas;
 - 2 Calcular a conectividade e o caminho mais curto entre dois pontos;
 - 3 Analisar pontos e linhas dentro de um polígono;
 - 4 Realizar buscar por região (intervalo);
 - 5 etc.

Outras Aplicações

Fora da área de geoprocessamento, QuadTree pode ser usado em:

- Fotografias e imagens;
 - Algoritmos de compressão de imagens;
 - Correção de deformações em fotos como olhos avermelhados;
 - Rotação de imagens.
- Medicina:
 - Ecografias, identificando tumores pela cor na imagem.
- Video-chamadas:
 - 1 Trasmitindo somente o que foi alterado na imagem.
- Jogos:
 - Detecção de colisão.

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Representação de Dados Vetoriais

- Pelo menos 1 par de coordenadas
- Representados por pontos, linhas (arcos e demais elementos lineares) ou polígonos (áreas), etc.

- Possíveis representações:
 - Pontos: localização de crimes ou ocorrências de doenças;
 - Linhas representação traçado de rios e semelhantes;
 - Polígonos lotes de uma guadra até continentes.

Representação de Dados Matricial

Figura 1: Raster (Contorno).

- Cruzamento dos atributos das linhas e colunas:
 - Cada célula possui uma informação.
- Observe que a Figura da direita tem melhor resolução espacial.

Raster / Image Vector Grassland Marsh **Real World**

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Tabela Hash

Não atende às consultas de intervalos.

Árvores Binárias e *n*-árias

■ Trata apenas uma dimensão, ou seja uma outra representação de vetor.

Id	Local	X (Leste)	Y (Norte)
1	Newcastle Museum	14	58
2	Waterworld	31	65
3	Gladstone Pottery Museum	74	23
4	Trentham Gardens	20	00
5	New Victoria Theater	18	55
6	Beswick Pottery	66	25
7	Coalport Pottery	54	36
8	Spode Pottery	37	43
9	Minton Pottery	36	39
10	Royal Doulton Pottery	31	87
. 11	City Museum	41	62
12	Westport Lake	17	92
13	Ford Green Hall	53	99
14	Park Hall Country Park	86	44

Id	Local	X (Leste)	Y (Norte)
1	Newcastle Museum	14	58
2	Waterworld	31	65
3	Gladstone Pottery Museum	74	23
4	Trentham Gardens	20	00
5	New Victoria Theater	18	55
6	Beswick Pottery	66	25
7	Coalport Pottery	54	36
8	Spode Pottery	37	43
9	Minton Pottery	36	39
10	Royal Doulton Pottery	31	87
. 11	City Museum	41	62
12	Westport Lake	17	92
13	Ford Green Hall	53	99
14	Park Hall Country Park	86	44

Quais os dados do no intervalo (20, 20) e (40, 50)?

Consulta Linear de Intervalo

Id	Local	X (Leste)	Y (Norte
1	Newcastle Museum	14	58
2	Waterworld	31	65
3	Gladstone Pottery Museum	74	23
4	Trentham Gardens	20	00
5	New Victoria Theater	18	55
6	Beswick Pottery	66	25
7	Coalport Pottery	54	36
8	Spode Pottery	37	43
9	Minton Pottery	36	39
10	Royal Doulton Pottery	31	87
- 11	City Museum	41	62
12	Westport Lake	17	92
13	Ford Green Hall	53	99
14	Park Hall Country Park	86	44

```
Algorithm 1: Interval Search - \mathcal{O}(n)
 while Existe registros à Examinar do
     Lê o próximo Registro:
     if Verifica se x está na faixa then
         if Verifica se y está na faixa then
4
             Recupera o Registro
         end
6
     end
8 end
```

Sumário

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Propriedades Gerais da QuadTree

- Técnica bastante simples;
- Extensão multidimensional da árvore de busca binária;
- O índice é representado como uma árvore quaternária
 - O espaço de busca é decomposto em quadrantes
 - Nas quais são nomeados por: Noroeste, Nordeste, Sudeste e Sudoeste.
 - Pontos são armazenados em nós internos;
 - Para n pontos, espera-se uma altura de $O(\log n)$;
 - Acelera o acesso a dados num plano 2 dimensões;

Estruturas de Dados Básicas

```
struct PQNo {
     PQNo *filhos[4];
     int x;
     int y;
};
```


Algoritmo de Busca

Algorithm 2: Point Search - $\mathcal{O}(\log_4 n)$ // Inicia-se pela raiz if O Ponto é o procurado? then 2 | Retorna o Ponto encontrado; 3 else if O Ponto atual é NULL? then 4 | Retorna Não encontrado; 5 else 6 | Localiza o quadrante;

Inicia-se novamente a busca:

Algorithm 3: Quadrant Search - $\mathcal{O}(1)$

- if $x <= x_atual \ e \ y >= y_atual \ then$ Noroeste:
- \mathbf{z} else if x>x atual $\mathbf{e}\,y>=y$ atual then
- 4 Nordeste;
- 5 else if $x <= x_atual$ e $y < y_atual$ then
- 6 Sudoeste;
- 7 else if x > x_atual e y < y_atual then
- 8 Sudeste;
- 9 end

8 end

NO (-,+)	NE (+,+)		
SO (-,-)	SE (+,-)		

NO (-,+)	NE (+,+)		
SO (-,-)	SE (+,-)		

NO (-,+)	NE (+,+)		
SO (-,-)	SE (+,-)		

NO (-,+)	NE (+,+)		
SO (-,-)	SE (+,-)		

$$(35,40)$$
, $(50,10)$, $(60,75)$, $(80,65)$, $(85,15)$, $(05,45)$, $(25,35)$, $(90,05)$

NO (-,+)	NE (+,+)		
SO (-,-)	SE (+,-)		

$$(35,40)$$
, $(50,10)$, $(60,75)$, $(80,65)$, $(85,15)$, $(05,45)$, $(25,35)$, $(90,05)$

NO (-,+)	NE (+,+)
SO (-,-)	SE (+,-)

$$(35,40)$$
, $(50,10)$, $(60,75)$, $(80,65)$, $(85,15)$, $(05,45)$, $(25,35)$, $(90,05)$

NO (-,+)	NE (+,+)
SO (-,-)	SE (+,-)

$$(35,40)$$
, $(50,10)$, $(60,75)$, $(80,65)$, $(85,15)$, $(05,45)$, $(25,35)$, $(90,05)$

NO (-,+)	NE (+,+)
SO (-,-)	SE (+,-)

$$(35,40)$$
, $(50,10)$, $(60,75)$, $(80,65)$, $(85,15)$, $(05,45)$, $(25,35)$, $(90,05)$

Algorithm 4: Interval Search - $\mathcal{O}(\log_4 n)$ // Inicia-se pela raiz 1 if $x_Baixo \le x \in x \le x_Alto \ e y_Baixo \le y \in y \le y_Alto \ then$ Adiciona o ponto ao vetor de pontos: 3 end 4 if $x_Baixo \le x$ e $y_Baixo \le y$ then Sudoeste: 6 end 7 if $x_Baixo \le x e y \le y_Alto$ then Noroeste: 8 9 end o if x > x_Alto e y_Baixo $\leq x$ then Sudeste: 2 end 3 if x > x_Alto e $y \le y$ _Alto then Nordeste: 4 5 end

(35,40), (50,10), (60,75), (80,65), (85,15), (05,45), (25,35), (90,05)

Registro em C

```
int retorna_quadrante(PQNo *p, PQNo *r)
        if (p->x < r->x)
                if (p->y < r->y)
                         return SO;
                else
                         return SE:
        else
                if (p->y < r->y)
                         return NO;
        else
                         return NE:
```

Insere na Point QuadTree em C

```
PQNo *PtInsere(PQNo **raiz, PQNo *p) {
       PQNo *f. *r: int a:
       // Arvore esta vazia, então insere
       if (*raiz == NULL) { *raiz = p; return p; }
       // Desce na árvore até encontrar um quad. vazio ou um ponto iqual
       r = *raiz:
       while((r != NULL) && !(r->x == p->x && r->y == p->y)) {
               f = r:
                                            // Guarda o pai
               q = retorna_quadrante(p, r); // Descobre o quadrante
               r = r->filhos[q]; // Define nova raiz
       // Verifica se já existe filho
       if (r == NULL) { f->filhos[q] = p; return p; }
       return NULL; // Caso já exista
```


0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1
0	0	0	0	1	1	1	1
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	0	1	1	1	1	0	0
0	0	1	1	1	0	0	0

Algorithm 5: Insertion PR-QuadTree

```
// Inicia-se pela raiz
1 if Se a raiz é nula then
     Cria-se a raiz:
     Insere Ponto no filho correspondente:
4 else if Se a posição está nula then
     Insere Ponto no local correspondente:
5
6 else if Se a página já possuir um Ponto na posição then
     Adicione o nó já situado numa nova sub-árvore desta raiz;
     Realize a verificação novamente com o nó a ser inserido:
9 end
```


Sumário

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Vantagens e Desvantagens

Vantagens:

- Possui estrutura mais enxuta e robusta que árvores binárias;
- Inserções não afetam a performance e por isso não necessitam de rebalanceamento.

Desvantagens:

- Se a imagem a ser compactada tiver muitas cores, a complexidade da árvore pode tornar o arquivo compactado maior que o original;
- Imagens complexas usam muito de CPU para gerar suas QuadTree;
- QuadTree funciona somente com imagens de 2 dimensões.
 - A R-Tree, por exemplo, trabalha com 4 dimensões.

Sumário

- Dados Escalares
- Dados Espaciais (Geográficos)
- Banco de Dados
 - Conceituação
 - Banco de Dados Espaciais
- Estruturas de Dados Espaciais
 - Representação de Dados Espacias
 - Estruturas Já Conhecidas
 - QuadTree
 - Vantagens e Desvantagens
 - Outras Estruturas de Dados Espaciais

Outras Estruturas de Dados Espaciais

- QuadTree;
- Grid;
- K-d-Tree;
- R-Tree.

Dúvidas, Sugestões ou Reclamações?

■ rodolfolabiapari@decom.ufop.br

https://www.guerrillamail.com/

Algoritmos e Estrutura de Dados - II

Estrutura de Dados Espaciais

Rodolfo Labiapari Mansur Guimarães

rodolfolabiapari@decom.ufop.br – Lattes: http://goo.gl/MZv4Dc
Departamento de Computação – Instituto de Ciências Exatas e Biológicas (ICEB)
Universidade Federal de Ouro Preto (UFOP)
Ouro Preto - MG – Brasil

Última Atualização: 1 de agosto de 2017