Introduction to Machine Learning

Gradient Boosting with Trees 1

Learning goals

- Examples for GB with trees
- Understand relationship between model structure and interaction depth

GRADIENT BOOSTING WITH TREES

Trees are most popular BLs in GB.

Reminder: advantages of trees

- No problems with categorical features.
- No problems with outliers in feature values.
- No problems with missing values.
- No problems with monotone transformations of features.
- Trees (and stumps!) can be fitted quickly, even for large *n*.
- Trees have a simple, built-in type of variable selection.

GB with trees inherits these, and strongly improves predictive power.

Simulation setting:

- Given: one feature *x* and one numeric target variable *y* of 50 observations.
- x is uniformly distributed between 0 and 10.
- y depends on x as follows: $y^{(i)} = \sin(x^{(i)}) + \epsilon^{(i)}$ with $\epsilon^{(i)} \sim \mathcal{N}(0, 0.01)$, $\forall i \in \{1, \dots, 50\}$.

Aim: we want to fit a gradient boosting model to the data by using stumps as base learners.

Since we are facing a regression problem, we use *L*2 loss.

 $x^{(i)}$

0.03

0.03

0.07

9.69

50

 $v^{(i)}$

0.16

-0.06

0.09

-0.08

0.20

0.20

0.20

Iteration 0: initialization by optimal constant (mean) prediction $\hat{f}^{[0](i)}(x) = \bar{y} \approx 0.2$.

0.0

2.5

1.0	• •			• ;
0.5	:		:	
> 0.0	•	•	,	•
-0.5		•	•	
-1.0		•	:	

5.0

7.5

10.0

Iteration 1: (1) Calculate pseudo-residuals $\tilde{r}^{[m](i)}$ and (2) fit a regression stump $b^{[m]}$.

i	x ⁽ⁱ⁾	y ⁽ⁱ⁾	$\hat{f}^{[0]}$	$\tilde{r}^{[1](i)}$	$\hat{b}^{[1](i)}$
1	0.03	0.16	0.20	-0.04	-0.17
2	0.03	-0.06	0.20	-0.25	-0.17
3	0.07	0.09	0.20	-0.11	-0.17
:	:	:	:	:	:
50	9.69	-0.08	0.20	-0.27	0.33

(3) Update model by $\hat{t}^{[1]}(x) = \hat{t}^{[0]}(x) + \hat{b}^{[1]}$.

Repeat step (1) to (3):

Repeat step (1) to (3):

Repeat step (1) to (3):

This website shows on various 3D examples how tree depth and number of iterations influence the model fit of a GBM with trees.

Model structure directly influenced by depth of $b^{[m]}(\mathbf{x})$.

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha^{[m]} b^{[m]}(\mathbf{x})$$

Remember how we can write trees as additive model over paths to leafs.

With stumps (depth = 1), $f(\mathbf{x})$ is additive model (GAM) without interactions:

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^p f_i(x_i)$$

$$f(\mathbf{x}) = f_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j \neq k} f_{j,k}(x_j, x_k)$$

with f_0 being a constant intercept.

Simulation setting:

- Features x_1 and x_2 and numeric y; with n = 500
- x_1 and x_2 are uniformly distributed between -1 and 1

•
$$y^{(i)} = x_1^{(i)} - x_2^{(i)} + 5\cos(5x_2^{(i)}) \cdot x_1^{(i)} + \epsilon^{(i)}$$
 with $\epsilon^{(i)} \sim \mathcal{N}(0, 1)$

• We fit 2 GB models, with tree depth 1 and 2, respectively.

GBM with interaction depth of 1 (GAM)

No interactions are modelled: Marginal effects of x_1 and x_2 add up to joint effect (plus the constant intercept $\hat{f}_0 = -0.07$).

$$\begin{split} \hat{f}(-0.999, -0.998) \\ &= \hat{f}_0 + \hat{f}_1(-0.999) + \hat{f}_2(-0.998) \\ &= -0.07 + 0.3 + 0.96 = 1.19 \end{split}$$

GBM with interaction depth of 2

Interactions between x_1 and x_2 are modelled: Marginal effects of x_1 and x_2 do NOT add up to joint effect due to interaction effects.

