1

Skidbacken

 $\mathbf{2}$

Zacharias Brohn*

Luleå tekniska universitet 971 87 Luleå, Sverige

3

17 september 2024

4 5

6

Sammanfattning

I denna rapport ska jag beskriva och förklara uppgifter angående en given funktion på en kurva

7 1 Introduktion

8 Rapporten kommer lösa och beskriva uppgifter kring en skidbacke som har fallhöjden 500

9 meter. Här ser du den grafiskt ritad:

 $\bf 11~$ Grafen är ritad med ett samband mellan y (höjden i km.) och x (längden i km.) som kan

12 srivas som:

13
$$y = 0, 5e^{-x^2}$$
 där $0 \le x \le 2, 5$

14

10

^{*}email: zacbro-8@student.ltu.se

15 2 The angle of a slope

16 First we solve:

17

- Determine the angle at which the curve of the function is inclined at the point
- 19 x = 0, 8.

20

- 21 To do this, we first need to calculate the derivative $\left(\frac{dy}{dx}\right)$ of the function, which will give
- 22 us the slope of the tangent line at that point. From the slope, we can then calculate
- 23 the angle using the arctangent function. Because the function involves an exponential
- **24** expression, we will use the **chain rule**:

25 2.1 Splitting the function

- **26** The function $y = 0, 5e^{-x^2}$ can be viewed as a composition of two functions:
- The outer function $f(u) = 0, 5e^u$, where $u = -x^2$.
- The inner function $g(x) = -x^2$.
- 29 According to the chain rule, the derivative of the composite function is:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

30 2.2 Step 1: Derivative of the Outer Function

- 31 First, we differentiate the outer function $y = 0, 5e^u$ with respect to u. The derivative of
- 32 e^u with respect to u is simply e^u , and since there is a constant 0,5 in front, we have:

$$\frac{dy}{du} = 0,5e^u \tag{1}$$

33 2.3 Step 2: Derivative of the Inner Function

- 34 Next, we differentiate the inner function $u = -x^2$ with respect to x using the basic power
- **35** rule differentiation:

$$\frac{du}{dx} = \frac{d}{dx} \left(-x^2 \right) = -2x \tag{2}$$

36 2.4 Step 3: Applying the Chain Rule

37 Now, we apply the chain rule by multiplying the results from Step 1 and Step 2:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 0, 5e^{-x^2} \cdot (-2x) \tag{3}$$

38 And by simplifying this expression we get:

$$\frac{dy}{dx} = -x \cdot e^{-x^2} \tag{4}$$

39 Thus we have the derivative of y.

40 2.5 Finding the Slope at x = 0.8

- 41 Now that we have the general expression for the derivative, we can calculate the slope of
- 42 the curve at the point x. Substituting x = 0.8 into the derivative as well as simplifying:

$$y'(0,8) = -0.8 \cdot e^{-(0.8)^{2}}$$

$$= -0.8 \cdot e^{-(0.64)}$$

$$\approx -0.8 \cdot 0.5272 \approx -0.42$$
(5)

43 So the answer is that the slope of the tangent line at x = 0, 8 is approximately -0, 42.

44 3 Second derivative

- **45** Here our task is:
- 46
- 47 Find an equation where the angle is the steepest using this function:

$$y = 0, 5e^{-ax^2}$$

- 48 Where a is a constant and x is in the range $0 \le x \le 2, 5$. The second derivative will tell
- 49 us how the slope of the curve is changing and will let us analyze the concavity of the
- **50** function. But first, we need to calculate the first derivative y'.

51 3.1 First Derivative

- 52 Just like earlier we will make use of the chain rule for this, so, again:
- The outer function is $f(u) = 0.5e^u$, where $u = -ax^2$
- The inner function is $g(x) = -ax^2$.
- 55 The outer function's derivative with respect to u is, once again, e^u , so we have:

$$\frac{dy}{du} = 0,5e^u \tag{6}$$

And the inner function's derivative with respect to x using the power rule, we get:

$$\frac{du}{dx} = \frac{d}{dx} \left(-ax^2 \right)$$

$$= -2ax$$
(7)

57 Now we can apply the chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
= 0, 5e^{-ax^2} \cdot (-2ax)$$
(8)

58 Now that we have the first derivative, we can simplify it:

$$y' = 0, 5e^{-ax^2} \cdot (-2ax)$$
$$= -ax \cdot e^{-ax^2}$$

59 3.2 Finding the Second Derivative

60 Finally we can work toward finding the Second Derivative $\frac{d^2y}{dx^2}$. To do this we can use the **61 product rule** and, once again, the **chain rule**.

62 The Product Rule

63 The product rule states:

$$\frac{d}{dx}(u(x) \cdot v(x)) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

64 And in our case:

65 • u(x) = -ax

66 • $v(x) = e^{-ax^2}$

67 Of which we need to find the derivative for both:

$$u'(x) = -as$$

$$v'(x) = e^{-ax^2} \cdot (-2ax)$$

$$= -2axe^{-ax^2}$$
(9)

68 Now we need to apply the product rule:

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} (u(x) \cdot v(x))
= u'(x) \cdot v(x) + u(x) \cdot v'(x)
= (-a) \cdot e^{-ax^{2}} + (-ax) \cdot (-2axe^{-ax^{2}})$$
(10)

69 4 Och ännu nästa (del-) uppgift...

70 5 Diskussion [och slutsatser]

71 Sammanfatta vad som avhandlats i rapporten, vad du kommit fram till, och sätt det i 72 sitt sammanhang.

73 Referenser

- 74 [1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The Late Companion.
 75 Addison-Wesley, Reading, Massachusetts, 1993.
- 76 [2] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905.