Algorithms & Data Structures 2018/19 Coursework

clvp22

December 26, 2018

Question 4.

(a)

Firstly we can say $x^3 + 3x + 2$ is $O(x^3)$ because there exists some k and C such that,

$$x^3 + 3x + 2 \le C \cdot x^3$$

for every $x \ge k$. (example; C = 6, k = 0)

So, $x^3 + 3x + 2$ is $O(x^3)$. And $2x^4$ is $O(x^3 + 3x + 2)$ if and only if $2x^4$ is $O(x^3)$. We now can assume there are some constants k and C such that,

$$2x^4 < C \cdot x^3$$

for every $x \geq k$.

So,

$$C \ge 2x$$

however, 2x grows monotonically for x > 0. This is a contradiction because then no constant value for C can be found for k > 0. Therefore $2x^4$ is not $O(x^3)$ and consequently not $O(x^3 + 3x + 2)$.

(b)

For $x \ge 2$, $1 \le \log x \le x \le x^2 \le x^3$.

So,

$$4x^3 + 2x^2 \cdot \log x + 1 \le 4x^3 + 2x^2 \cdot x + x^3 = 8x^3$$

for every $x \geq k$.

This inequality holds using k = 2 and C = 8 as a pair of witnesses,

$$4x^3 + 2x^2 \cdot \log x + 1 \le C \cdot x^3$$

for every $x \geq k$.

Therefore $4x^3 + 2x^2 \cdot \log x + 1$ is $O(x^3)$.

(c)

 $3x^2 + 7x + 1$ is $\omega(x \cdot \log x)$ if and only if $x \cdot \log x$ is $o(3x^2 + 7x + 1)$, which is,

$$\lim_{x \to \infty} \frac{C \cdot x \log x}{3x^2 + 7x + 1}$$

for every $x \geq k$.

For $x \ge 2$, $1 \le \log x \le x \le x^2$.

So $3x^2+7x+1$ grows faster than $x\cdot \log x$ so $\lim_{x\to\infty}\frac{C\cdot x\log x}{3x^2+7x+1}$ holds for k=2 and C=1. Therefore, $x\cdot \log x$ is $o(3x^2+7x+1)$, and consequently $3x^2+7x+1$ is $\omega(x\cdot \log x)$.

(d)

For $x \ge 2$, $\log x \le x \le x^2$.

So,

$$x^2 + 4x \ge x^2 = x \cdot x \ge x \cdot \log x$$

for every $x \geq k$.

This inequality holds using k=2 and C=1 as a pair of witnesses,

$$x^2 + 4x \ge C \cdot x \log x$$

Therefore $x^2 + 4x$ is $\Omega(x \cdot \log x)$.

(e)