

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11agn 3x3 MIMO PCIe Mini Card

MODEL NUMBER: WPEA-127N

FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

REPORT NUMBER: 11U13957-2, Revision A

ISSUE DATE: DECEMBER 19, 2011

Prepared for

VARIAN MEDICAL SYSTEMS, INC. X-RAY PRODUCTS
1678 SOUTH PIONEER ROAD
SALT LAKE CITY, UT84104

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

DATE: DECEMBER 19, 2011 IC: 9909A-AR5BXB112

Revision History

Rev.	Issue Date	Revisions	Revised By
	11/08/11	Initial Issue	F. Ibrahim
A	12/19/11	Added MPE section	F. Ibrahim

TABLE OF CONTENTS

1.	ΑT	TTESTATION OF TEST RESULTS	6
2.	TE	EST METHODOLOGY	7
3.	FA	ACILITIES AND ACCREDITATION	7
4.	CA	CALIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	SAMPLE CALCULATION	7
	4.3.		
5.	EQ	QUIPMENT UNDER TEST	8
	5.1.		
	5.2.	MAXIMUM OUTPUT POWER	8
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
	5.4.		
	5.5.		
	5.6.		
	_		
6.	TE	EST AND MEASUREMENT EQUIPMENT	12
7.	ΑN	NTENNA PORT TEST RESULTS	13
	7.1.	802.11a 3TX MODE	
		.1.1. 26 dB and 99% BANDWIDTH	
		.1.1. OUTPUT POWER	
		.1.3. PEAK POWER SPECTRAL DENSITY	
		.1.4. PEAK EXCURSION	
	7.1	.1.5. CONDUCTED SPURIOUS EMISSIONS	44
		802.11n HT20 MCS0 3TX MODE	
		.2.1. 26 dB and 99% BANDWIDTH	
		.2.2. OUTPUT POWER	
		.2.4. PEAK POWER SPECTRAL DENSITY	
		.2.5. PEAK EXCURSION	75
		.2.6. CONDUCTED SPURIOUS EMISSIONS	
		. 802.11n HT20 MCS8 3TX MODE	
		.3.1. 26 dB and 99% BANDWIDTH	
		.3.3. AVERAGE POWER	
	7.3	.3.4. PEAK POWER SPECTRAL DENSITY	106
		.3.5. PEAK EXCURSION	
		.3.6. CONDUCTED SPURIOUS EMISSIONS	
	7.4.	802.11n HT20 MCS16 3TX MODE	132

7.4.1.	26 dB and 99% BANDWIDTH	
7.4.2.	OUTPUT POWER	
_		
_	PEAK EXCURSION	154
_		
7.5. 80		
7.5.1.		
_		
_		
	CONDITION OF THE CONDIT	186
_		
_		
7.6.6.		
77 80		
7.7.4.		
7.7.5.	PEAK EXCURSION	238
7.7.6.	CONDUCTED SPURIOUS EMISSIONS	243
D A DI A	TEN TEST DESILITS	251
	· · · · · · · · · · · · · · · · · · ·	
_		
		_
8.2.8.	802.11a 3TX MODE	273
8.2.9.	802.11n HT20 CDD MCS0 MODE	
8.2.10.		
8.2.11.		
8.3. W	ORST-CASE BELOW 1 GHz	294
	7.4.2. 7.4.3. 7.4.4. 7.4.5. 7.4.6. 7.5. 80 7.5.1. 7.5.2. 7.5.3. 7.5.4. 7.5.5. 7.6.2. 7.6.3. 7.6.4. 7.6.5. 7.6.6. 7.7.1. 7.7.2. 7.7.3. 7.7.4. 7.7.5. 7.7.6. RADIA 8.1. LII 8.2. TF MONO 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7. FRACT 8.2.8. 8.2.10. 8.2.11. 8.2.11. 8.2.11. 8.2.11. 8.2.11.	7.4.2. OUTPUT POWER 7.4.3. AVERAGE POWER SPECTRAL DENSITYLIMITS 7.4.5. PEAK POWER SPECTRAL DENSITYLIMITS 7.4.6. CONDUCTED SPURIOUS EMISSIONS 7.5. 802.11n HT40 MCS0 3TX MODE 7.5.1. 26 dB and 99% BANDWIDTH 7.5.2. OUTPUT POWER 7.5.3. AVERAGE POWER SPECTRAL DENSITY 7.5.5. PEAK EXCURSION 7.5.6. CONDUCTED SPURIOUS EMISSIONS 7.6. 802.11n HT40 MCS0 3TX MODE 7.6.1. 26 dB and 99% BANDWIDTH 7.6.2. OUTPUT POWER 7.6.3. AVERAGE POWER 7.6.4. PEAK POWER 7.6.5. PEAK EXCURSION 7.6.6. CONDUCTED SPURIOUS EMISSIONS 7.7. 802.11n HT40 MCS16 3TX MODE 7.7. 802.11n HT40 MCS16 3TX MODE 7.7. 802.11n HT40 MCS16 STX MODE 7.7. 802.11n HT40 MCS16 STX MODE 7.7. 802.11n HT40 MCS16 STX MODE 7.7. 802 SPECTRAL DENSITY 7.7. PEAK EXCURSION 7.7. BOWER SPECTRAL DENSITY 7.7. PEAK EXCURSION 7.7. 802.11n HT40 MCS16 STX MODE 8.2. TRANSMITTER ABOVE 1 GHZ MONOPOLE ANTENNA; 5dBi 8.2. TRANSMITTER ABOVE 1 GHZ MONOPOLE ANTENNA; 5dBi 8.2. BO2.11n HT20 MCS0 3TX MODE 8.2. 802.11n HT20 MCS16 3TX MODE 8.2. 802.11n HT40 MCS0 3TX MODE

9.	AC POWER LINE CONDUCTED EMISSIONS	300
10.	MAXIMUM PERMISSIBLE EXPOSURE	304
11	SETUP PHOTOS	308

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Varian Medial Systems, Inc. X-Ray Products

1678 South Pioneer Road Salt Lake City, UT 84104

EUT DESCRIPTION: 802.11agn 3x3 MIMO PCle Mini Card

MODEL: WPEA-127N

SERIAL NUMBER: 11735M1100680

DATE TESTED: SEPTEMBER 20 to OCTOBER 13, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CFR 47 Part 15 Subpart E Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 9 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

WILLIAM ZHUANG EMC ENGINEER

William Ihm

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/g/n 3x3 MIMO transceiver 3x3 module.

The radio module is manufactured by SparkLAN.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range Mode		Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a CDD	10.68	11.69
5180 - 5240	802.11n HT20 CDD MCS0	14.70	29.51
5180 - 5240	802.11n HT20 CDD MCS8	14.65	29.17
5180 - 5240	802.11n HT20 CDD MCS16	14.75	29.85
5190 - 5230	802.11n HT40 CDD MCS0	16.96	49.66
5190 - 5230	802.11n HT40 CDD MCS8	16.99	50.00
5190 - 5230	802.11n HT40 CDD MCS16	16.97	49.77

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The EUT can be used with the following antennas:

- Monopole Antenna with the following gains:
- 2.4 GHz band = 4 dBi
- 5.2 GHz band = 5 dBi
- 5.8 GHz band = 4.5 dBi
 - Fractal/stacked-patch Antenna with the following gains:
- 2.4 GHz band = -6 dBi
- 5.2 GHz band =3 dBi
- 5.8 GHz band = -1 dBi

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Atheros AR9300 Anwi Diagnostic Kernel.

The test utility software used during testing was Atheros Radio Test 2(ART2-GUI), rev.2.3.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power, radiated emissions below 1 GHz and power line conducted emissions were performed with the EUT set to transmit at the channel with highest output power.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The Monopole antenna was set to a fixed orientation which is the normal way it is oriented (vertical orientation).

The Fractal antenna was initially assessed in each of three axes of orientation (X, Y and Z) and it was found that the antenna in the Y orientation is worst-case orientation. See the setup photographs for an indication of the antennas orientations.

Worst-case data rates as provided by the client that were used for the testing are as follows:

2.4 GHz Band:

802.11g CDD 20M, 9 Mbps 802.11n HT20 1 Stream CDD, MCS0 802.11n HT20 2 Streams CDD, MCS8 802.11n HT20 3 Streams CDD, MCS16 802.11n HT40 1 Stream CDD, MCS0 802.11n HT40 2 Streams CDD, MCS8

802.11n HT40 3 Streams CDD, MCS16

5.2 GHz Band:

802.11a CDD 20M, 9 Mbps 802.11n HT20 1 Stream CDD, MCS0 802.11n HT20 2 Streams CDD, MCS8 802.11n HT20 3 Streams CDD, MCS16 802.11n HT40 1 Stream CDD, MCS0 802.11n HT40 2 Streams CDD, MCS8 802.11n HT40 3 Streams CDD, MCS16

5.8 GHz Band:

802.11a CDD 20M, 9 Mbps 802.11n HT20 1 Stream CDD, MCS0 802.11n HT20 2 Streams CDD, MCS8 802.11n HT20 3 Streams CDD, MCS16 802.11n HT40 1 Stream CDD, MCS0 802.11n HT40 2 Streams CDD, MCS8 802.11n HT40 3 Streams CDD, MCS16

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number				FCC ID		
Lantan	IDM	T40:	1.2 DV057	DaC		
Laptop	IBM	T43p	L3-BY957	DoC		
AC Adapter	IBM	08K8204	11S08K8204Z1Z6V3BW5ND	N/A		
Express Card Adapter	N/A	N/A	N/A	N/A		
MiniPCle Card Adapter	N/A	E204460	2000023185	N/A		
HDMI Cable	N/A	N/A	N/A	N/A		

I/O CABLES

	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical Ports	Type	Туре	Length			
1	AC	1	US 115V	Un-Shielded	1.5m			
2	DC	1	DC	Un-Shielded	1.5m			
3	HDMI	1	HDMI	Shielded	25cm			

TEST SETUP

The EUT is installed in a host laptop computer via a HDMI cable during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	12/17/10	12/17/12
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/30/10	08/30/12
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/10	07/16/12
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/10	06/29/12
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	01/29/10	07/29/12
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	06/29/10	06/14/12
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/14/10	01/27/12
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/27/11	01/27/12
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	07/14/10	8/2/2012
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/10	11/10/11
Reject Filter, 5.15-5.35 GHz	Micro-Tronics	BRC13190	N02680	CNR	CNR
Power Meter	HP	437B	CCS-154	07/29/11	10/29/12
Power Sensor, 18 GHz	HP	8481A	CCS-157	07/29/11	10/29/12

7. ANTENNA PORT TEST RESULTS

7.1. 802.11a 3TX MODE

7.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	annel Frequency 26 dB Bandwidth		99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	21.837	16.6900
Middle	5200	21.334	16.6605
High	5240	21.662	16.6903

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	21.974	16.7056
Middle	5200	21.300	16.6598
High	5240	21.421	16.7092

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5180	21.352	16.6729	
Middle	5200	21.574	16.6614	
High	5240	21.365	16.7030	

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1

26 dB and 99% BANDWIDTH

CHAIN 2

26 dB and 99% BANDWIDTH

CHAIN 3

26 dB and 99% BANDWIDTH

7.1.1. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

Antenna	10 Log	Effective	
Gain	(# Tx Chains)	Legacy Gain	
(dBi)	(dB)	(dBi)	
5	4.77	9.77	

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	21.974	17.42	9.77	13.22
Mid	5200	16.99	21.3	17.28	9.77	13.22
High	5240	16.99	21.365	17.30	9.77	13.22

Individual Chain Results

marriada enam resonts							
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	5.95	5.02	6.40	10.60	13.22	-2.62
Mid	5200	6.19	5.48	5.51	10.51	13.22	-2.71
High	5240	6.13	5.49	6.07	10.68	13.22	-2.54

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.1.2. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	5.83	5.10	6.20	10.50
Middle	5200	5.97	5.34	5.90	10.52
High	5240	5.90	5.30	5.75	10.43

7.1.3. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

Antenna	10 Log	Effective	
Gain	(# Tx Chains)	Legacy Gain	
(dBi)	(dB)	(dBi)	
5	4.77	9.77	

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 9.77 dBi, therefore the limit is 0.23 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-5.103	-5.879	-3.771	-0.06	0.23	-0.29
Middle	5200	-4.523	-5.301	-4.640	-0.04	0.23	-0.27
High	5240	-4.482	-4.959	-4.884	0.00	0.23	-0.23

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.1.4. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	11.31	13	-1.69
Middle	5200	9.38	13	-3.62
High	5240	10.81	13	-2.19

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.39	13	-2.61
Middle	5200	10.76	13	-2.24
High	5240	10.41	13	-2.59

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.39	13	-2.61
Middle	5200	10.76	13	-2.24
High	5240	10.41	13	-2.59

PEAK EXCURSION

PEAK EXCURSION

PEAK EXCURSION

7.1.5. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS

Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
37.082	-40.95	5.00	4.77	-31.18	-27.00
37.542	-40.62	5.00	4.77	-30.85	-27.00
36.962	-40.65	5.00	4.77	-30.88	-27.00

Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
36.782	-40.49	5.00	4.77	-30.72	-27.00
36.842	-40.20	5.00	4.77	-30.43	-27.00
36.942	-41.08	5.00	4.77	-31.31	-27.00

Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
36.842	-40.22	5.00	4.77	-30.45	-27.00
36.822	-40.77	5.00	4.77	-31.00	-27.00
37.202	-40.22	5.00	4.77	-30.45	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

7.2. 802.11n HT20 MCS0 3TX MODE

7.2.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.499	17.8904
Middle	5200	22.561	17.8391
High	5240	22.553	17.8353

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.598	17.8915
Middle	5200	22.690	17.8498
High	5240	22.594	17.8739

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.601	17.8936
Middle	5200	22.129	17.8462
High	5240	22.592	17.8703

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	22.499	17.52	5.00	16.99
Mid	5200	16.99	22.129	17.45	5.00	16.99
High	5240	16.99	22.553	17.53	5.00	16.99

Individual Chain Results

	The trade of the t							
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin	
		Power	Power	Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5180	9.62	9.25	10.16	14.46	16.99	-2.53	
Mid	5200	9.88	9.27	10.03	14.51	16.99	-2.48	
High	5240	10.21	9.50	10.04	14.70	16.99	-2.29	

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	9.50	8.95	10.00	14.28
Middle	5200	9.70	9.00	9.82	14.29
High	5240	9.90	9.30	9.60	14.38

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum effective antenna gain is 5 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.841	-1.350	-0.589	3.86	4.00	-0.14
Middle	5200	-0.488	-1.900	-0.694	3.79	4.00	-0.21
High	5240	-0.557	-1.643	-1.130	3.68	4.00	-0.32

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.2.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.35	13	-3.65
Middle	5200	10.26	13	-2.74
High	5240	10.41	13	-2.59

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.90	13	-3.10
Middle	5200	10.38	13	-2.62
High	5240	10.53	13	-2.47

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	11.18	13	-1.82
Middle	5200	11.36	13	-1.64
High	5240	9.96	13	-3.04

PEAK EXCURSION

PEAK EXCURSION

PEAK EXCURSION

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36.842	-37.76	5.00	4.77	-27.99	-27.00
Middle	36.842	-38.13	5.00	4.77	-28.36	-27.00
High	36.942	-40.04	5.00	4.77	-30.27	-27.00

Chain 2

Channel	Frequency	equency Analyzer Reading		Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36.842	-39.06	5.00	4.77	-29.29	-27.00
Middle	36.822	-39.30	5.00	4.77	-29.53	-27.00
High	36.962	-38.43	5.00	4.77	-28.66	-27.00

Chain 3

Channel	Frequency	iency Analyzer Reading		Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36.210	-38.21	5.00	4.77	-28.44	-27.00
Middle	36.882	-38.24	5.00	4.77	-28.47	-27.00
High	36.822	-38.19	5.00	4.77	-28.42	-27.00

CHAIN 1 SPURIOUS EMISSIONS

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

7.3. 802.11n HT20 MCS8 3TX MODE

7.3.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	21.897	17.8208
Middle	5200	21.946	17.8593
High	5240	22.131	17.8346

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.036	17.8649
Middle	5200	22.199	17.8133
High	5240	22.021	17.8637

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.176	17.8509
Middle	5200	22.114	17.8269
High	5240	22.000	17.8381

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

I imit

Channel	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	21.897	17.40	5.00	16.99
Mid	5200	16.99	21.946	17.41	5.00	16.99
High	5240	16.99	22.000	17.42	5.00	16.99

Individual Chain Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.84	9.29	10.42	14.65	16.99	-2.34
Mid	5200	9.77	9.24	10.36	14.59	16.99	-2.40
High	5240	10.03	9.57	9.91	14.61	16.99	-2.38

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1 Power (dBm)	Chain 2 Power (dBm)	Chain 3 Power (dBm)	Total Power (dBm)
Low	5180	9.60	9.00	10.20	14.40
Middle	5200	9.70	9.20	10.00	14.42
High	5240	9.90	9.40	9.60	14.41

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum effective antenna gain is 5 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.873	-1.829	-0.357	3.79	4.00	-0.21
Middle	5200	-0.803	-1.750	-0.743	3.70	4.00	-0.30
High	5240	-0.789	-1.691	-0.945	3.65	4.00	-0.35

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENDITY

CHAIN 3 POWER SPECTRAL DENSITY

7.3.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	quency Peak Excursion		Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.17	13	-2.83
Middle	5200	10.96	13	-2.04
High	5240	10.27	13	-2.73

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.38	13	-2.62
Middle	5200	10.41	13	-2.59
High	5240	10.24	13	-2.76

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.38	13	-2.62
Middle	5200	10.41	13	-2.59
High	5240	10.24	13	-2.76

PEAK EXCURSION

PEAK EXCURSION

PEAK EXCURSION

FAX: (510) 661-0888

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36.90	-47.45	5.00	4.77	-37.68	-27.00
Middle	36.87	-48.95	5.00	4.77	-39.18	-27.00
High	37.34	-48.46	5.00	4.77	-38.69	-27.00

Chain 2

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37.42	-48.43	5.00	4.77	-38.66	-27.00
Middle	36.92	-47.29	5.00	4.77	-37.52	-27.00
High	36.76	-47.75	5.00	4.77	-37.98	-27.00

Chain 3

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37.14	-48.42	5.00	4.77	-38.65	-27.00
Middle	36.87	-48.11	5.00	4.77	-38.34	-27.00
High	37.58	-47.58	5.00	4.77	-37.81	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

FCC ID: ZZ6-AR5BXB112

7.4. 802.11n HT20 MCS16 3TX MODE

7.4.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.063	17.8259
Middle	5200	22.567	17.8411
High	5240	22.092	17.8447

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.259	17.8363
Middle	5200	22.167	17.8523
High	5240	22.136	17.8333

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	22.038	17.8476
Middle	5200	22.590	17.8215
High	5240	22.005	17.8369

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.4.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	В	B 4 + 10 Log B		Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	22.038	17.43	5.00	16.99
Mid	5200	16.99	22.167	17.46	5.00	16.99
High	5240	16.99	22.005	17.43	5.00	16.99

Individual Chain Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.73	9.83	10.36	14.75	16.99	-2.24
Mid	5200	9.89	9.80	10.15	14.72	16.99	-2.27
High	5240	10.12	9.80	9.83	14.69	16.99	-2.30

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

This report shall not be reproduced except in full, without the written approval of UL CCS.

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	9.60	9.30	10.20	14.49
Middle	5200	9.50	9.40	9.90	14.38
High	5240	9.80	9.60	9.60	14.44

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

7.4.4. PEAK POWER SPECTRAL DENSITYLIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-1.004	-1.367	-0.424	3.86	4	-0.14
Middle	5200	-1.092	-1.347	-1.054	3.61	4	-0.39
High	5240	-0.950	-1.298	-1.254	3.61	4	-0.39

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.4.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.23	13	-3.77
Middle	5200	11.53	13	-1.47
High	5240	9.92	13	-3.08

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.05	13	-2.95
Middle	5200	9.72	13	-3.28
High	5240	10.70	13	-2.30

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.85	13	-2.15
Middle	5200	10.61	13	-2.39
High	5240	9.69	13	-3.31

PEAK EXCURSION

PEAK EXCURSION

PEAK EXCURSION

7.4.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37250	-47.16	5.00	4.77	-37.39	-27.00
Middle	37040	-45.97	5.00	4.77	-36.20	-27.00
High	36800	-47.35	5.00	4.77	-37.58	-27.00

Chain 1

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37110	47.82	5.00	4.77	57.59	-27.00
Middle	36970	-46.97	5.00	4.77	-37.20	-27.00
High	36890	-47.97	5.00	4.77	-38.20	-27.00

Chain 3

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37620	-48.00	5.00	4.77	-38.23	-27.00
Middle	36810	-47.04	5.00	4.77	-37.27	-27.00
High	37050	-48.13	5.00	4.77	-38.36	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

7.5. 802.11n HT40 MCS0 3TX MODE

7.5.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5190	43.026	36.5926
High	5230	43.418	36.4905

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	43.752	36.4881
High	5230	42.538	36.5748

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	43.423	36.4858
High	5230	42.734	36.5086

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.5.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	16.99	43.026	20.34	5.00	16.99
High	5230	16.99	42.538	20.29	5.00	16.99

Individual Chain Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	12.19	11.47	12.55	16.86	16.99	-0.13
High	5230	12.25	12.23	12.08	16.96	16.99	-0.03

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	12.10	11.30	12.40	16.73
High	5230	12.10	12.00	11.90	16.77

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

7.5.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.599	-2.631	-1.453	2.91	4	-1.09
High	5230	-1.365	-1.571	-1.376	3.33	4	-0.67

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.5.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.35	13	-3.65
High	5230	8.97	13	-4.03

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.96	13	-3.04
High	5230	9.97	13	-3.03

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.32	13	-3.68
High	5230	9.56	13	-3.44

7.5.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37640	-48.11	5.00	4.77	-38.34	-27.00
High	36910	-47.74	5.00	4.77	-37.97	-27.00

Chain 2

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37070	-47.66	5.00	4.77	-37.89	-27.00
High	36900	-47.72	5.00	4.77	-37.95	-27.00

Chain 3

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36940	-47.46	5.00	4.77	-37.69	-27.00
High	37350	-47.59	5.00	4.77	-37.82	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

7.6. 802.11n HT40 MCS8 3TX MODE

7.6.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	43.238	36.5451
High	5230	44.351	36.5816

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	43.117	36.5671
High	5230	43.146	36.5562

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	43.203	36.5174
High	5230	42.719	36.5524

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.6.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	16.99	43.117	20.35	5.00	16.99
High	5230	16.99	42.719	20.31	5.00	16.99

Individual Chain Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	12.15	11.47	12.69	16.90	16.99	-0.09
High	5230	12.19	12.23	12.24	16.99	16.99	0.00

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	12.00	11.30	12.60	16.77
High	5230	12.00	12.00	11.90	16.74

7.6.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.217	-2.251	-0.671	3.44	4	-0.56
High	5230	-1.454	-2.034	-1.501	3.12	4	-0.88

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.6.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.60	13	-2.40
High	5230	10.97	13	-2.03

CHAIN 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.21	13	-2.79
High	5230	10.20	13	-2.80

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.54	13	-2.46
High	5230	10.98	13	-2.02

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37330	-48.00	5.00	4.77	-38.23	-27.00
High	36810	-47.71	5.00	4.77	-37.94	-27.00

Chain 2

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36800	-47.93	5.00	4.77	-38.16	-27.00
High	37220	-47.93	5.00	4.77	-38.16	-27.00

Chain 3

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37000	-47.05	5.00	4.77	-37.28	-27.00
High	36800	-47.61	5.00	4.77	-37.84	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

7.7. 802.11n HT40 MCS16 3TX MODE

7.7.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

CHAIN 1

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	44.353	36.5816
High	5230	44.010	36.5907

CHAIN 2

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	44.558	36.5355
High	5230	43.620	36.5755

CHAIN 3

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	44.030	36.528
High	5230	43.885	36.575

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

26 dB and 99% BANDWIDTH

7.7.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Frequency	Fixed	B 4 + 10 Log B		Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	16.99	44.03	20.44	5.00	16.99
High	5230	16.99	43.620	20.40	5.00	16.99

Individual Chain Results

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	12.16	11.62	12.75	16.97	16.99	-0.02
High	5230	12.26	12.18	12.16	16.97	16.99	-0.02

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

CHAIN 1 OUTPUT POWER

CHAIN 2 OUTPUT POWER

CHAIN 3 OUTPUT POWER

7.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	12.00	11.35	12.50	16.75
High	5230	12.10	12.00	12.00	16.80

7.7.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PPSD	PPSD	PPSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.448	-2.594	-0.344	3.41	4	-0.59
High	5230	-1.212	-1.626	-1.327	3.39	4	-0.61

CHAIN 1 POWER SPECTRAL DENSITY

CHAIN 2 POWER SPECTRAL DENSITY

CHAIN 3 POWER SPECTRAL DENSITY

7.7.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

CHAIN 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.74	13	-3.26
High	5230	10.67	13	-2.33

CHAIN 2

Channel	Frequency Peak Excursion		Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.48	13	-3.52
High	5230	10.99	13	-2.01

CHAIN 3

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.66	13	-3.34
High	5230	9.54	13	-3.46

PEAK EXCURSION

PEAK EXCURSION

PEAK EXCURSION

7.7.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 3 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Chain 1

Channel	Frequency	Analyzer Reading	AG	10Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36880	-47.19	5.00	4.77	-37.42	-27.00
High	37300	-48.21	5.00	4.77	-38.44	-27.00

Chain 2

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	36960	-48.51	5.00	4.77	-38.74	-27.00
High	37460	-48.49	5.00	4.77	-38.72	-27.00

Chain 3

Channel	Frequency	Analyzer Reading	AG	Log (N)	Cond Spur Level	Limit
	(GHz)	(dBm)	(dBi)		(dBm)	(dBm)
Low	37700	-47.91	5.00	4.77	-38.14	-27.00
High	36920	-48.43	5.00	4.77	-38.66	-27.00

CHAIN 1 SPURIOUS EMISSIONS

CHAIN 2 SPURIOUS EMISSIONS

CHAIN 3 SPURIOUS EMISSIONS

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

TRANSMITTER ABOVE 1 GHz 8.2.

MONOPOLE ANTENNA; 5dBi

8.2.1. 802.11a 3TX MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/20/11 Project #: 11U13957 Company: Varian Card Access Test Target: FCC Class B

Mode Oper: Tx 5.2 GHz_11a CDD Mode

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch. 5	180 MH	z													
15.540	3.0	33.0	39.7	13.0	-31.9	0.0	0.0	53.7	74.0	-20.3	V	P	98.0	352.0	
15.540	3.0	21.1	39.7	13.0	-31.9	0.0	0.0	41.8	54.0	-12.2	V	A	98.0	352.0	
15.540	3.0	33.6	39.7	13.0	-31.9	0.0	0.0	54.3	74.0	-19.7	H	P	151.0	89.0	
15.540	3.0	21.1	39.7	13.0	-31.9	0.0	0.0	41.8	54.0	-12.2	H	A	151.0	89.0	
Mid Ch. 5	200 MH	z													
15.600	3.0	33.1	39.6	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	V	P	122.0	27.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	122.0	27.0	
15.600	3.0	32.8	39.6	13.0	-31.9	0.0	0.0	53.5	74.0	-20.5	H	P	98.0	146.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	98.0	146.0	
High Ch.	5240 MI	Iz												Ĭ	
15.720	3.0	32.7	39.4	13.1	-31.9	0.0	0.0	53.3	74.0	-20.7	V	P	105.0	14.0	
15.720	3.0	20.5	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	V	A	105.0	14.0	
15.720	3.0	32.8	39.4	13.1	-31.9	0.0	0.0	53.4	74.0	-20.6	H	P	102.0	208.0	
15.720	3.0	20.5	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	H	A	102.0	208.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

8.2.2. 802.11n HT20 MCS0 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957 Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS0 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit

CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5180 MH	z													
15.540	3.0	33.3	39.7	13.0	-31.9	0.0	0.0	54.0	74.0	-20.0	V	P	98.0	200.0	
15.540	3.0	20.9	39.7	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	98.0	200.0	
15.540	3.0	32.9	39.7	13.0	-31.9	0.0	0.0	53.7	74.0	-20.3	H	P	98.0	334.0	
15.540	3.0	21.0	39.7	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	H	A	98.0	334.0	
Mid Ch.	5200 MH	z													
15.600	3.0	33.0	39.6	13.0	-31.9	0.0	0.0	53.7	74.0	-20.3	V	P	149.0	220.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	149.0	220.0	
15.600	3.0	33.0	39.6	13.0	-31.9	0.0	0.0	53.7	74.0	-20.3	H	P	196.0	134.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	H	A	196.0	134.0	
High Ch.	5240 M	Ηz													
15.720	3.0	32.4	39.4	13.1	-31.9	0.0	0.0	53.0	74.0	-21.0	V	P	149.0	337.0	
15.720	3.0	20.4	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	V	A	149.0	337.0	
15.720	3.0	32.4	39.4	13.1	-31.9	0.0	0.0	53.0	74.0	-21.0	H	P	170.0	71.0	
15.720	3.0	20.4	39.4	13.1	-31.9	0.0	0.0	41.0	54.0	-13.0	H	A	170.0	71.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

8.2.3. 802.11n HT20 MCS8 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957

Company: Varian Card Access

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS8 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit

CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch. 5	180 MH	z													
15.540	3.0	33.6	39.7	13.0	-31.9	0.0	0.0	54.3	74.0	-19.7	V	P	98.0	246.0	
15.540	3.0	21.0	39.7	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	V	A	98.0	246.0	
15.540	3.0	33.5	39.7	13.0	-31.9	0.0	0.0	54.2	74.0	-19.8	H	P	99.0	362.0	
15.540	3.0	21.0	39.7	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	H	A	99.0	362.0	
Mid Ch. 52	200 MH	z												Ĭ	
15.600	3.0	33.5	39.6	13.0	-31.9	0.0	0.0	54.2	74.0	-19.8	V	P	131.0	338.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	V	A	131.0	338.0	
15.600	3.0	33.5	39.6	13.0	-31.9	0.0	0.0	54.1	74.0	-19.9	H	P	172.0	61.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	172.0	61.0	
High Ch.	5240 MI	Ιz													
15.720	3.0	32.5	39.4	13.1	-31.9	0.0	0.0	53.1	74.0	-20.9	V	P	132.0	73.0	
15.720	3.0	20.5	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	V	A	132.0	73.0	
15.720	3.0	32.4	39.4	13.1	-31.9	0.0	0.0	53.0	74.0	-21.0	H	P	102.0	70.0	
15.720	3.0	20.4	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	H	A	102.0	70.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

8.2.4. 802.11n HT20 MCS16 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957 Company: Varian Card Access

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS16 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch. 5	180 MH	z													
15.540	3.0	33.1	39.7	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	V	P	165.0	22.0	
15.540	3.0	21.0	39.7	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	V	A	165.0	22.0	
15.540	3.0	33.2	39.7	13.0	-31.9	0.0	0.0	53.9	74.0	-20.1	H	P	142.0	278.0	
15.540	3.0	21.0	39.7	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	H	A	142.0	278.0	
Mid Ch. 5	200 MH														
15.600	3.0	33.0	39.6	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	V	P	150.0	75.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	150.0	75.0	
15.600	3.0	33.9	39.6	13.0	-31.9	0.0	0.0	54.6	74.0	-19.4	H	P	98.0	257.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	98.0	257.0	
High Ch.	5240 MI	Ιz													
15.720	3.0	32.8	39.4	13.1	-31.9	0.0	0.0	53.4	74.0	-20.6	V	P	98.0	17.0	
15.720	3.0	20.5	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	V	A	98.0	17.0	
15.720	3.0	33.4	39.4	13.1	-31.9	0.0	0.0	54.0	74.0	-20.0	H	P	98.0	353.0	
15.720	3.0	20.5	39.4	13.1	-31.9	0.0	0.0	41.1	54.0	-12.9	H	A	98.0	353.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.5. 802.11n HT40 MCS0 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957 Company: Varian Card Access

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS0 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit

CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5190 MH	Ιz													
15.570	3.0	33.7	39.6	13.0	-31.9	0.0	0.0	54.4	74.0	-19.6	V	P	117.0	72.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	117.0	72.0	
15.570	3.0	33.6	39.6	13.0	-31.9	0.0	0.0	54.3	74.0	-19.7	H	P	106.0	133.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	106.0	133.0	
High Ch	ı. 5230 M	Hz													
15.690	3.0	34.6	39.5	13.0	-31.9	0.0	0.0	55.2	74.0	-18.8	V	P	137.0	249.0	
15.690	3.0	20.7	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.7	V	A	137.0	249.0	
15.690	3.0	32.8	39.5	13.0	-31.9	0.0	0.0	53.5	74.0	-20.5	H	P	138.0	350.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.7	H	A	138.0	350.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

8.2.6. 802.11n HT40 MCS8 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957 Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS8 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5190 MH	z													
15.570	3.0	33.2	39.6	13.0	-31.9	0.0	0.0	53.9	74.0	-20.1	V	P	98.0	37.0	
15.570	3.0	21.0	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	98.0	37.0	
15.570	3.0	33.7	39.6	13.0	-31.9	0.0	0.0	54.4	74.0	-19.6	H	P	98.0	37.0	
15.570	3.0	21.0	39.6	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	H	A	98.0	37.0	
High Ch.	. 5230 M	Ηz													
15.690	3.0	33.2	39.5	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	V	P	142.0	336.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.7	V	A	142.0	336.0	
15.690	3.0	33.1	39.5	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	H	P	98.0	178.0	
15.690	3.0	20.7	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.7	H	A	98.0	178.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

8.2.7. 802.11n HT40 MCS16 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957

Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS16 Mode

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5190 MH	z													
15.570	3.0	34.4	39.6	13.0	-31.9	0.0	0.0	55.1	74.0	-18.9	V	P	181.0	170.0	
15.570	3.0	21.0	39.6	13.0	-31.9	0.0	0.0	41.7	54.0	-12.4	V	A	181.0	170.0	
15.570	3.0	34.4	39.6	13.0	-31.9	0.0	0.0	55.1	74.0	-18.9	H	P	98.0	215.0	
15.570	3.0	21.0	39.6	13.0	-31.9	0.0	0.0	41.7	54.0	-12.3	H	A	98.0	215.0	
High Ch	. 5230 MI	Ιz													
15.690	3.0	32.5	39.5	13.0	-31.9	0.0	0.0	53.2	74.0	-20.8	V	P	185.0	219.0	
15.690	3.0	20.7	39.5	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	V	A	185.0	219.0	
15.690	3.0	34.0	39.5	13.0	-31.9	0.0	0.0	54.6	74.0	-19.4	H	P	158.0	23.0	
15.690	3.0	20.7	39.5	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	H	A	158.0	23.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

FRACTAL ANTENNA; 3dBi

8.2.8. 802.11a 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/23/11 Project #: 11U13957 Company: Varian Card Access Test Target: FCC Class B

Mode Oper: Tx 5.2 GHz_11a CDD Mode

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5180 MH	z													
15.540	3.0	33.8	39.7	13.0	-31.9	0.0	0.0	54.5	74.0	-19.5	V	P	98.0	84.0	
15.540	3.0	21.2	39.7	13.0	-31.9	0.0	0.0	41.9	54.0	-12.1	V	A	98.0	84.0	
15.540	3.0	33.6	39.7	13.0	-31.9	0.0	0.0	54.3	74.0	-19.7	H	P	190.0	232.0	
15.540	3.0	21.1	39.7	13.0	-31.9	0.0	0.0	41.8	54.0	-12.2	H	A	190.0	232.0	
Mid Ch.	5200 MH	Z					•••••								
15.600	3.0	33.3	39.6	13.0	-31.9	0.0	0.0	54.0	74.0	-20.0	H	P	0.0	38.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	H	A	0.0	38.0	
15.600	3.0	33.1	39.6	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	V	P	198.0	314.0	
15.600	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	V	A	198.0	314.0	
High Ch.	5240 MI	Ηz													
15.720	3.0	32.9	39.4	13.1	-31.9	0.0	0.0	53.5	74.0	-20.5	V	P	98.0	88.0	
15.720	3.0	20.4	39.4	13.1	-31.9	0.0	0.0	41.0	54.0	-13.0	V	A	98.0	88.0	
15.720	3.0	31.9	39.4	13.1	-31.9	0.0	0.0	52.5	74.0	-21.5	H	P	147.0	248.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	40.9	54.0	-13.1	H	A	147.0	248.0	

Note: No other emissions were detected above the system noise floor.

8.2.9. 802.11n HT20 CDD MCS0 MODE

DATE: DECEMBER 19, 2011 IC: 9909A-AR5BXB112

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957

Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS0 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch. 5	180 MH	z													
15.540	3.0	32.5	39.7	13.0	-31.9	0.0	0.0	53.2	74.0	-20.8	V	P	129.0	362.0	
15.540	3.0	20.8	39.7	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	V	A	129.0	362.0	
15.540	3.0	33.1	39.7	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	H	P	198.0	160.0	
15.540	3.0	20.8	39.7	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	H	A	198.0	160.0	
Mid Ch. 5	200 MH	Z													
15.600	3.0	32.9	39.6	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	H	P	176.0	206.0	
15.600	3.0	20.7	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	H	A	176.0	206.0	
15.600	3.0	33.2	39.6	13.0	-31.9	0.0	0.0	53.9	74.0	-20.1	V	P	172.0	59.0	
15.600	3.0	20.8	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	V	A	172.0	59.0	
High Ch.	5240 MI	Ηz													
15.720	3.0	32.9	39.4	13.1	-31.9	0.0	0.0	53.5	74.0	-20.5	V	P	120.0	115.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	40.9	54.0	-13.1	V	A	120.0	115.0	
15.720	3.0	32.8	39.4	13.1	-31.9	0.0	0.0	53.5	74.0	-20.5	H	P	108.0	146.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	41.0	54.0	-13.0	H	A	108.0	146.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.10. 802.11n HT20 MCS8 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957

Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS0 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch. 5	5180 MH	z													
15.540	3.0	32.5	39.7	13.0	-31.9	0.0	0.0	53.2	74.0	-20.8	V	P	129.0	362.0	
15.540	3.0	20.8	39.7	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	V	A	129.0	362.0	
15.540	3.0	33.1	39.7	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	H	P	198.0	160.0	
15.540	3.0	20.8	39.7	13.0		0.0	0.0	41.5	54.0	-12.5	H	A	198.0	160.0	
Mid Ch. 5	200 MH														
15.600	3.0	32.9	39.6	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	H	P	176.0	206.0	
15.600	3.0	20.7	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	H	A	176.0	206.0	
15.600	3.0	33.2	39.6	13.0	-31.9	0.0	0.0	53.9	74.0	-20.1	V	P	172.0	59.0	
15.600	3.0	20.8	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	V	A	172.0	59.0	
High Ch.	5240 MI	Ηz													
15.720	3.0	32.9	39.4	13.1	-31.9	0.0	0.0	53.5	74.0	-20.5	V	P	120.0	115.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	40.9	54.0	-13.1	V	A	120.0	115.0	
15.720	3.0	32.8	39.4	13.1	-31.9	0.0	0.0	53.5	74.0	-20.5	H	P	108.0	146.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	41.0	54.0	-13.0	H	A	108.0	146.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.11. 802.11n HT20 MCS16 3TX MODE

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957

Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT20 CDD MCS16 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5180 MH	z													
15.540	3.0	33.2	39.7	13.0	-31.9	0.0	0.0	53.9	74.0	-20.1	V	P	197.0	83.0	
15.540	3.0	20.8	39.7	13.0	-31.9	0.0	0.0	41.5	54.0	-12.5	V	A	197.0	83.0	
15.540	3.0	33.1	39.7	13.0	-31.9	0.0	0.0	53.8	74.0	-20.2	H	P	130.0	139.0	
15.540	3.0	20.9	39.7	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	130.0	139.0	
Mid Ch.	5200 MH	z													
15.600	3.0	34.1	39.6	13.0	-31.9	0.0	0.0	54.8	74.0	-19.2	H	P	122.0	194.0	
15.600	3.0	20.7	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	H	A	122.0	194.0	
15.600	3.0	33.8	39.6	13.0	-31.9	0.0	0.0	54.5	74.0	-19.5	V	P	189.0	320.0	
15.600	3.0	20.7	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	V	A	189.0	320.0	
High Ch.	5240 M	Iz													
15.720	3.0	32.4	39.4	13.1	-31.9	0.0	0.0	53.1	74.0	-21.0	V	P	98.0	105.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	40.9	54.0	-13.1	V	A	98.0	105.0	
15.720	3.0	33.4	39.4	13.1	-31.9	0.0	0.0	54.0	74.0	-20.0	H	P	178.0	187.0	
15.720	3.0	20.3	39.4	13.1	-31.9	0.0	0.0	41.0	54.0	-13.0	H	A	178.0	187.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

8.2.12. 802.11n HT40 MCS0 3TX MODE

DATE: DECEMBER 19, 2011

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957

Varian Card Access Company:

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS0 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	5190 MH	z													
15.570	3.0	32.8	39.6	13.0	-31.9	0.0	0.0	53.5	74.0	-20.5	V	P	108.0	221.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	108.0	221.0	
15.570	3.0	33.0	39.6	13.0	-31.9	0.0	0.0	53.7	74.0	-20.3	H	P	98.0	54.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	98.0	54.0	
High Ch.	5230 M	Ηz													
15.690	3.0	32.9	39.5	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	H	P	118.0	245.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.8	H	A	118.0	245.0	
15.690	3.0	33.0	39.5	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	V	P	182.0	249.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.2	54.0	-12.8	V	A	182.0	249.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.13. 802.11n HT40 MCS8 3TX MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957

Company: Varian Card Access

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS8 Mode

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit

CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch.	. 5190 MF	[z													
15.570	3.0	32.9	39.6	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	V	P	179.0	13.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	V	A	179.0	13.0	
15.570	3.0	33.9	39.6	13.0	-31.9	0.0	0.0	54.6	74.0	-19.4	H	P	103.0	27.0	
15.570	3.0	20.9	39.6	13.0	-31.9	0.0	0.0	41.6	54.0	-12.4	H	A	103.0	27.0	
High Ch	h. 5230 M	Hz													
15.690	3.0	32.8	39.5	13.0	-31.9	0.0	0.0	53.5	74.0	-20.5	H	P	145.0	56.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.2	54.0	-12.8	H	A	145.0	56.0	
15.690	3.0	32.3	39.5	13.0	-31.9	0.0	0.0	53.0	74.0	-21.0	V	P	151.0	333.0	
15.690	3.0	20.6	39.5	13.0	-31.9	0.0	0.0	41.3	54.0	-12.7	V	A	151.0	333.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

8.2.14. 802.11n HT40 MCS16 3TX MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATE: DECEMBER 19, 2011 IC: 9909A-AR5BXB112

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Date: Project #: 11U13957 Company: Varian Card Access

Test Target: FCC Class B
Mode Oper: Tx 5.2 GHz_HT40 CDD MCS16 Mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

																4
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes	Т
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree		
Low Ch.	5190 MH	z														1
15.570	3.0	32.7	39.6	13.0	-31.9	0.0	0.0	53.4	74.0	-20.6	V	P	157.0	249.0		П
15.570	3.0	20.7	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	V	A	157.0	249.0		П
15.570	3.0	32.9	39.6	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	H	P	174.0	312.0		Г
15.570	3.0	20.8	39.6	13.0	-31.9	0.0	0.0	41.4	54.0	-12.6	H	A	174.0	312.0		Т
High Ch	. 5230 M	Ηz														Т
15.690	3.0	33.3	39.5	13.0	-31.9	0.0	0.0	54.0	74.0	-20.0	H	P	177.0	153.0		Т
15.690	3.0	20.5	39.5	13.0	-31.9	0.0	0.0	41.1	54.0	-12.9	H	A	177.0	153.0		Т
15.690	3.0	33.0	39.5	13.0	-31.9	0.0	0.0	53.6	74.0	-20.4	V	P	185.0	230.0		ſ
15.690	3.0	20.5	39.5	13.0	-31.9	0.0	0.0	41.1	54.0	-12.9	V	A	185.0	230.0		ſ

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

WORST-CASE BELOW 1 GHz 8.3.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, FRACTAL ANTENNA)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, FRACTAL ANTENNA)

HORIZONTAL AND VERTICAL TABULAR DATA (FRACTAL ANTENNA)

Varian Inc.			ıle							
2.442GHz,1		T20MCS8								
w/Fractal A	Antenna									
Test Frequency (MHz)	Analyzer Reading (dBuV)	Detector Type	5m A Cable Factor (dB)	5m A T64 PreAmp Factor (dB)	5m A T122 Bilog Antenna Factor (dB)	Corrected Reading (dBuV)	CFR 47 Part 15 Class B 3m Limit (dBuV)	Margin to Limit (dBuV)	Height [cm]	Polarity (Deg)
Range 130	- 1000MHz									
55.1998	35.79	PK	0.8	-28.3	8.1	16.39	40	-23.61	300	Horz
71.4828	32.76	PK	0.9	-28.2	7.9	13.36	40	-26.64	200	Horz
119.944	35.24	PK	1.2	-28.2	13.6	21.84	43.5	-21.66	300	Horz
171.7006	46.43	PK	1.4	-28.1	10.7	30.43	43.5	-13.07	200	Horz
239.9341	49.4	PK	1.7	-28.1	11.8	34.8	46	-11.2	100	Horz
298.6691	48.9	PK	1.9	-28	13.4	36.2	46	-9.8	100	Horz
366.3209	41.85	PK	2.1	-27.9	14.4	30.45	46	-15.55	300	Horz
399.6623	38.42	PK	2.2	-27.8	14.9	27.72	46	-18.28	100	Horz
431.8405	37.31	PK	2.3	-27.8	15.5	27.31	46	-18.69	200	Horz
898.0376	31.09	PK	3.3	-27.4	21.9	28.89	46	-17.11	100	Horz
Range 230	- 1000MHz									
33.2954	39.2	PK	0.6	-28.3	18.7	30.2	40	-9.8	100	Vert
41.0492	34.51	PK	0.7	-28.3	13.2	20.11	40	-19.89	200	Vert
42.9876	35.69	PK	0.7	-28.3	12	20.09	40	-19.91	100	Vert
53.8429	40.65	PK	0.8	-28.3	8.2	21.35	40	-18.65	100	Vert
74.1966	41.3	PK	0.9	-28.2	7.7	21.7	40	-18.3	200	Vert
119.944	33.59	PK	1.2	-28.2	13.6	20.19	43.5	-23.31	100	Vert
171.7006	43.48	PK	1.4	-28.1	10.7	27.48	43.5	-16.02	100	Vert
624.1347	34.77	PK	2.8	-27.3	18.7	28.97	46	-17.03	100	Vert
836.3949	29.07	PK	3.2	-27.3	21.3	26.27	46	-19.73	100	Vert

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, MONOPOLE ANTENNA)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, MONOPOLE ANTENNA)

HORIZONTAL AND VERTICAL TABULAR DATA (MONOPOLE ANTENNA)

2.4 & 5.8GH			e							
2.442GHz,1	2.5dBm,HT	20MCS8								
w/Monopo	le Antenna	a								
Test Frequency (MHz)	Analyzer Reading (dBuV)	Detector Type	5m A Cable Factor (dB)	5m A T64 PreAmp Factor (dB)	5m A T122 Bilog Antenna Factor (dB)	Corrected Reading (dBuV)	CFR 47 Part 15 Class B 3m Limit (dBuV)	Margin to Limit (dBuV)	Height (cm)	Polarity (Deg)
Range 1 30 -										
85.8273	38.72	PK	1	-28.2	7.4	18.92	40	-21.08	200	Horz
119.944	36.18	PK	1.2	-28.2	13.6	22.78	43.5	-20.72	300	Horz
171.7006	40.4	PK	1.4	-28.1	10.7	24.4	43.5	-19.1	200	Horz
239.9341	49.03	PK	1.7	-28.1	11.8	34.43	46	-11.57	100	Horz
364.964	40.59	PK	2.1	-27.9	14.4	29.19	46	-16.81	200	Horz
398.1115	35.54	PK	2.2	-27.8	14.9	24.84	46	-21.16	100	Horz
925.5635	32.89	PK	3.4	-27.5	22	30.79	46	-15.21	100	Horz
Range 2 30 -	1000MHz	,								_
33.2954	43.22	PK	0.6	-28.3	18.7	34.22	40	-5.78	100	Vert
40.6615	38.43	PK	0.7	-28.3	13.5	24.33	40	-15.67	100	Vert
74.0028	43.42	PK	0.9	-28.2	7.8	23.92	40	-16.08	100	Vert
366.3209	36.22	PK	2.1	-27.9	14.4	24.82	46	-21.18	100	Vert
499.6863	41.35	PK	2.5	-27.7	16.7	32.85	46	-13.15	100	Vert
527.9876	37.85	PK	2.5	-27.6	17.2	29.95	46	-16.05	100	Vert
624.1347	34.01	PK	2.8	-27.3	18.7	28.21	46	-17.79	100	Vert
PK - Peak de	etector									

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 °	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

6 WORST EMISSIONS

25.70					I					
Class B Class B Class B Class B Class B Avg	<u> </u>									
Meter Reading Detector LISN Cable [dB] Cable	PROJECT #: 11U1	.3957								
Meter Reading Detector LISN Cable [dB] Cable	line 11 15 2004	11-								
Meter Reading Detector ISN Emission Cable [dB] dB[uVolts] Limit Margin Limit Lim	Line-L1 .15 - SOIV	П			Conducted		Class P		Class P	
Test Frequency Reading Detector [dB] Cable [dB] dB[uVolts] Umit Margin Umit Margin Limit Limit		Motor		LICNI						
Detector PK O O Seventrol Seve	Test Frequency		Detector	_		dR[uVolte]	`	Margin	_	Margin
34.68										
Description					<u> </u>		_		_	
31.01										
0.4965									_	
25.70	0.4965									
18.79	0.4965									
A.3395 33.89 PK 0 0 33.89 56.0 -22.11 46.0 -12.11	0.987				0				46.0	
A.3395	0.987	18.79	Av	0	0	18.79	56.0	-37.21	46.0	-27.21
15.8685 35.77 PK 0 0 35.77 60.0 -24.23 50.0 -14.23 15.8685 21.79 Av 0 0 21.79 60.0 -38.21 50.0 -28.21 15.8685 21.79 Av 0 0 21.79 60.0 -38.21 50.0 -28.21 16.8685 21.79 Av 0 0 21.79 60.0 -38.21 50.0 -28.21 16.8685 21.79 Av 0 0 21.79 60.0 -38.21 50.0 -28.21 16.8685 21.79 Av 0 0 58.31 60.0 -7.69 56.0 2.31 17.8685 33.77 Av 0 0 33.77 66.0 -32.23 56.0 -22.23 17.8685 33.77 Av 0 0 33.77 66.0 -32.23 56.0 -22.23 17.8685 21.79 Avg Detector Calle [dB] dB[uVolts] Limit Margin Limit Limit Margin Limit	4.3395	33.89	PK	0	0	33.89	56.0	-22.11	46.0	-12.11
15.8685 21.79	4.3395	22.60	Av	0	0	22.60	56.0	-33.40	46.0	-23.40
Class B Class B Class B Class B Avg Class B Cable [dB] dB[uVolts] Cable [dB] dB[uVolts] Cable [dB] Cable [da]	15.8685	35.77	PK	0	0	35.77	60.0	-24.23	50.0	-14.23
Meter Reading Detector LISN Emission Cable [dB] dB[uVolts] Limit Margin Limit Limit Margin Limit Margin Limit Limit Limit Limit Limit Margin Limit Li	15.8685	21.79	Av	0	0	21.79	60.0	-38.21	50.0	-28.21
Meter Reading Detector LISN Emission Cable [dB] dB[uVolts] Limit Margin Limit Limit Margin Limit Margin Limit Limit Limit Limit Limit Margin Limit Li										
Meter Reading Detector [dB] Cable [dB] dB[uVolts] Limit Margin Limit Margin Limit Margin Limit Margin Limit Margin Limit Margin Limit	Line-L2 .15 - 30M	Hz								
Test Frequency Reading Detector [dB] Cable [dB] dB[uVolts] Limit Margin Limit Margin 0.15 58.31 PK 0 0 58.31 66.0 -7.69 56.0 2.31 0.15 33.77 Av 0 0 33.77 66.0 -32.23 56.0 -22.23 0.222 47.14 PK 0 0 47.14 62.7 -15.56 52.7 -5.56 0.222 32.00 Av 0 0 32.00 62.7 -30.70 52.7 -20.70 0.5775 39.00 PK 0 0 39.00 56.0 -17.00 46.0 -7.00 0.5775 18.93 Av 0 0 35.96 56.0 -37.07 46.0 -27.07 0.9915 35.96 PK 0 0 35.96 56.0 -20.04 46.0 -10.04 4.4115 34.08 PK 0 0					Conducted		Class B		Class B	
0.15		Meter		LISN	Emission		QP		Avg	
0.15 33.77 Av 0 0 0 33.77 66.0 -32.23 56.0 -22.23 0.222 47.14 PK 0 0 0 47.14 62.7 -15.56 52.7 -5.56 0.222 32.00 Av 0 0 32.00 62.7 -30.70 52.7 -20.70 0.5775 39.00 PK 0 0 39.00 56.0 -17.00 46.0 -7.00 0.5775 18.93 Av 0 0 18.93 56.0 -37.07 46.0 -27.07 0.9915 35.96 PK 0 0 35.96 56.0 -20.04 46.0 -10.04 0.9915 19.16 Av 0 0 19.16 56.0 -36.84 46.0 -26.84 4.4115 34.08 PK 0 0 34.08 56.0 -21.92 46.0 -11.92 4.4115 23.94 Av 0 0 0 23.94 56.0 -32.06 46.0 -22.06 17.6055 36.79 PK 0 0 36.79 60.0 -23.21 50.0 -13.21 17.6055 23.05 Av 0 0 23.05 60.0 -36.95 50.0 -26.95 PK - Peak detector Up - Quasi-Peak detector LnAv - Linear Average detector CAV - Average detector CAV - CISPR RMS detection CRMS - CISPR RMS detection	Test Frequency	Reading	Detector	[4B]	Cable [4B]	dD[\/al+al	limit	Margin	limit	Margin
0.222 47.14 PK 0 0 47.14 62.7 -15.56 52.7 -5.56 0.222 32.00 Av 0 0 32.00 62.7 -30.70 52.7 -20.70 0.5775 39.00 PK 0 0 39.00 56.0 -17.00 46.0 -7.00 0.5775 18.93 Av 0 0 18.93 56.0 -37.07 46.0 -27.07 0.9915 35.96 PK 0 0 35.96 56.0 -20.04 46.0 -10.04 0.9915 19.16 Av 0 0 19.16 56.0 -36.84 46.0 -26.84 4.4115 34.08 PK 0 0 34.08 56.0 -21.92 46.0 -11.92 4.4115 23.94 Av 0 0 23.94 56.0 -32.06 46.0 -22.06 17.6055 36.79 PK 0 0 36.79 60.0 -23.21 50.0 -13.21 17.6055 23.05 Av<	10001101	iteduing	Detector	լսեյ	Cable [ub]	ablavoits	Lillit	iviaigiii	LIIIII	IVIAIGIII
0.222 32.00 Av 0 0 32.00 62.7 -30.70 52.7 -20.70 0.5775 39.00 PK 0 0 39.00 56.0 -17.00 46.0 -7.00 0.5775 18.93 Av 0 0 18.93 56.0 -37.07 46.0 -27.07 0.9915 35.96 PK 0 0 35.96 56.0 -20.04 46.0 -10.04 0.9915 19.16 Av 0 0 19.16 56.0 -36.84 46.0 -26.84 4.4115 34.08 PK 0 0 34.08 56.0 -21.92 46.0 -11.92 4.4115 23.94 Av 0 0 23.94 56.0 -32.06 46.0 -22.06 17.6055 36.79 PK 0 0 36.79 60.0 -23.21 50.0 -13.21 17.6055 23.05 Av 0 0 23.05 60.0 -36.95 50.0 -26.95 PK - Peak detector	0.15									
0.5775	. ,	58.31	PK	0	0	58.31	66.0	-7.69	56.0	2.31
18.93	0.15 0.15 0.222	58.31 33.77	PK Av	0	0	58.31 33.77	66.0 66.0	-7.69 -32.23	56.0 56.0	2.31
0.9915	0.15 0.15 0.222 0.222	58.31 33.77 47.14	PK Av PK	0 0 0	0 0 0 0	58.31 33.77 47.14	66.0 66.0 62.7 62.7	-7.69 -32.23 -15.56	56.0 56.0 52.7 52.7	2.31 -22.23 -5.56
0.9915	0.15 0.15 0.222 0.222 0.5775	58.31 33.77 47.14 32.00 39.00	PK Av PK Av	0 0 0 0	0 0 0 0	58.31 33.77 47.14 32.00 39.00	66.0 66.0 62.7 62.7 56.0	-7.69 -32.23 -15.56 -30.70 -17.00	56.0 56.0 52.7 52.7 46.0	2.31 -22.23 -5.56 -20.70 -7.00
4.4115	0.15 0.15 0.222 0.222 0.5775 0.5775	58.31 33.77 47.14 32.00 39.00 18.93	PK Av PK Av PK Av	0 0 0 0 0	0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93	66.0 66.0 62.7 62.7 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07	56.0 56.0 52.7 52.7 46.0 46.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07
4.4115	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915	58.31 33.77 47.14 32.00 39.00 18.93 35.96	PK AV PK AV PK AV PK AV	0 0 0 0 0 0	0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96	66.0 66.0 62.7 62.7 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04	56.0 56.0 52.7 52.7 46.0 46.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04
17.6055	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16	PK AV PK AV PK AV PK AV AV	0 0 0 0 0 0 0	0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16	66.0 66.0 62.7 62.7 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84	56.0 56.0 52.7 52.7 46.0 46.0 46.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84
17.6055	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08	PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08	66.0 66.0 62.7 62.7 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92
PK - Peak detector QP - Quasi-Peak detector LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94	PK AV PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94	66.0 66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06
QP - Quasi-Peak detector LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	PK AV PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
QP - Quasi-Peak detector LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	PK AV PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05	PK AV PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 17.6055	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05	PK AV PK AV PK AV PK AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
Av - Average detector CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 17.6055 PK - Peak detect	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05	PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
CAV - CISPR Average detector RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 17.6055 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05	PK AV PK AV PK AV PK AV PK AV PK AV AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
RMS - RMS detection CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 17.6055 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05	PK AV PK AV PK AV PK AV PK AV PK AV AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
CRMS - CISPR RMS detection	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 17.6055 PK - Peak detect QP - Quasi-Peak LnAv - Linear Average de	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05 or detector erage detector tector	PK AV PK AV PK AV PK AV PK AV PK AV AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera Av - Average de CAV - CISPR Ave	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05 or detector erage detector tector rage detector	PK AV PK AV PK AV PK AV PK AV PK AV AV PK AV PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21
Text File: LC3.TXT	0.15 0.15 0.222 0.222 0.5775 0.5775 0.9915 0.9915 4.4115 4.4115 17.6055 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera; Av - Average de CAV - CISPR Ave RMS - RMS detect	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05 or detector erage detector tector rage detector rage detector	PK AV	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	58.31 33.77 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79	66.0 62.7 62.7 56.0 56.0 56.0 56.0 56.0 56.0	-7.69 -32.23 -15.56 -30.70 -17.00 -37.07 -20.04 -36.84 -21.92 -32.06 -23.21	56.0 56.0 52.7 52.7 46.0 46.0 46.0 46.0 46.0 50.0	2.31 -22.23 -5.56 -20.70 -7.00 -27.07 -10.04 -26.84 -11.92 -22.06 -13.21

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300	6 6 6
1500–100,000			1/300	6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured or the potential for exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

DATE: DECEMBER 19, 2011

IC: 9909A-AR5BXB112

REPORT NO: 11U13957-2A DATE: DECEMBER 19, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

RESULTS

Multiple o	Multiple chain or colocated transmitters													
Band	Mode	Chain	Separation	Output	Antenna	EIRP	EIRP	IC Power	FCC Power					
		for	Distance	Power	Gain			Density	Density					
		MIMO	(m)	(dBm)	(dBi)	(dBm)	(W)	(W/m^2)	(mW/cm^2)					
5 GHz	WLAN	1		12.10	5.00	17.10	0.05							
5 GHz	WLAN	2		12.00	5.00	17.00	0.05							
5 GHz	WLAN	3		12.60	5.00	17.60	0.06							
	Combined	_	0.20				0.16	0.32	0.032					