cleaning.R

rmadh

2020-03-05

```
#Top Songs Analysis
#importing dataset top10s and copying it to test data
data <- read.csv("C:/Users/rmadh/OneDrive/Desktop/Lecture Notes/MVA/Top-Songs</pre>
-Analysis-master/top10s.csv", header = TRUE)
View(data)
#Data Cleaning
#Adding column Rank which will denote rank of a song based on it popularity.
# popularity from 90 - 100 is Rank 10 and so on
for(x in 1:length(data$pop)){
  if(data[x,15] \leftarrow 100 \&\& data[x,15] \rightarrow 80){
    data[x,16] = 5
  }else if(data[x,15] < 80 && data[x,15] >= 60){
    data[x,16] = 4
  }else if(data[x,15] < 60 && data[x,15] >= 40){
    data[x, 16] = 3
  }else if(data[x,15] < 40 && data[x,15] >= 20){
    data[x,16] = 2
  }else if(data[x,15] < 20 && data[x,15] >= 0){
    data[x,16] = 1
  }
}
data$pop <- NULL</pre>
dim(data)
## [1] 603 15
#removing values with 0 BPM and duration as 0 seconds
data_clean <- data[-c(433),]</pre>
names(data_clean)[15]<- "rating"</pre>
View(data_clean)
#checking the ranges for all columns
dim(data_clean)
## [1] 602 15
```

```
library(plyr)
library(ggplot2)

#Finding top genre for 3 years
year1 = data_clean[data_clean$year == 2010,]
gen1 = count(year1$top.genre)
barplot(gen1$freq, names.arg = gen1$x,main = 'Top Genres for 2010',xlab = 'Ge
nre',ylab = 'No. of songs')
```

Top Genres for 2010


```
year2 = data_clean[data_clean$year == 2015,]
gen2 = count(year2$top.genre)
barplot(gen2$freq, names.arg = gen2$x,main = 'Top Genres for 2015',xlab = 'Ge
nre',ylab = 'No. of songs')
```

Top Genres for 2015


```
year3 = data_clean[data_clean$year == 2019,]
gen3 = count(year3$top.genre)
barplot(gen3$freq, names.arg = gen3$x,main = 'Top Genres for 2019',xlab = 'Ge
nre',ylab = 'No. of songs')
```

Top Genres for 2019

#Histogram view of audio properties
hist(data_clean\$bpm, breaks=12,col="blue",xlab="BPM")

Histogram of data_clean\$bpm

Histogram of data_clean\$nrgy

hist(data_clean\$dnce, breaks=12,col="blue",xlab="Danceability")

Histogram of data_clean\$dnce

Histogram of data_clean\$live

hist(data_clean\$val, breaks=12,col="blue",xlab="valence")

Histogram of data_clean\$val

Histogram of data_clean\$acous

hist(data_clean\$spch, breaks=12,col="blue",xlab="Speechibility")

Histogram of data_clean\$spch


```
#Line chart for popularity and Duration
ggplot(data_clean) +geom_line(aes(x = dur, y = rating, color = "blue"))
```



```
# T-Test on dataset columns Duration and rating
t.test(data_clean$dur,data_clean$rating, var.equal = TRUE, paired=FALSE)
##
   Two Sample t-test
##
##
## data: data_clean$dur and data_clean$rating
## t = 158.71, df = 1202, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 218.0532 223.5116
## sample estimates:
## mean of x mean of y
## 224.611296
                3.828904
#Comparing relation between two top genre from 2010 to 2019.
star5 = data_clean[which(data_clean$rating==5),]
with(star5,t.test(dnce[top.genre=="dance pop"],dnce[top.genre=="pop"],var.equ
al=TRUE))
##
##
   Two Sample t-test
##
```

```
## data: dnce[top.genre == "dance pop"] and dnce[top.genre == "pop"]
## t = -1.0029, df = 40, p-value = 0.3219
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -13.676389
                4,604961
## sample estimates:
## mean of x mean of y
## 67.03571 71.57143
with(star5,t.test(nrgy[top.genre=="dance pop"],nrgy[top.genre=="pop"],var.equ
al=TRUE))
##
   Two Sample t-test
##
## data: nrgy[top.genre == "dance pop"] and nrgy[top.genre == "pop"]
## t = 1.7587, df = 40, p-value = 0.08629
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.433565 20.647851
## sample estimates:
## mean of x mean of y
## 66.67857 57.07143
with(star5, t.test(bpm[top.genre=="dance pop"], bpm[top.genre=="pop"], var.equal
=TRUE))
##
## Two Sample t-test
## data: bpm[top.genre == "dance pop"] and bpm[top.genre == "pop"]
## t = 2.1881, df = 40, p-value = 0.03456
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     1.147886 28.923542
## sample estimates:
## mean of x mean of v
## 119.3929 104.3571
with(star5, t.test(val[top.genre=="dance pop"], val[top.genre=="pop"], var.equal
=TRUE))
##
  Two Sample t-test
## data: val[top.genre == "dance pop"] and val[top.genre == "pop"]
## t = -1.4541, df = 40, p-value = 0.1537
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -27.825938
                 4.540224
## sample estimates:
```

```
## mean of x mean of y
## 48.78571 60.42857
#-----PCA-----
#Splitting the rating column in 2 groups as we need 2 levels for t test
#and var test (f test) calculation, so rating 1 has ratings in range 1 to 3
#and rating 5 has ratings in range from 4 to 5.
#A new column v16 stores this new rating value which is used for above mentio
ned tests
for(y in 1:length(data clean$rating)){
 if(data clean[y,15] \rightarrow= 1 & data clean[y,15] <= 3){
   data_clean[y, 16] = 1
 }else{
   data_clean[y, 16] = 5
 }
}
View(data clean)
#We are selecting audio properties to check if any correlation
#exist between them and does that affect the rating energy, danceability, val
ence, acoustics
#and speechability is observed.
aud_prop_cor = cor(data_clean[c(7,8,11,13,14)])
              nrgy
                          dnce
                                     val
                                               acous
                                                            spch
## nrgy 1.0000000 0.16685024 0.4102908 -0.5625564 0.10711812
## dnce 0.1668502 1.00000000 0.5049296 -0.2413363 -0.02922118
## val
         0.4102908 0.50492963 1.0000000 -0.2486811 0.12284677
## acous -0.5625564 -0.24133632 -0.2486811 1.0000000 0.00246410
## spch
         0.1071181 -0.02922118 0.1228468 0.0024641 1.00000000
# Correlation is low but danceability and valence are closely related
# Calculating PCA for the cleaned data
data_pca = prcomp(aud_prop_cor,scale. = TRUE)
data pca
## Standard deviations (1, .., p=5):
## [1] 1.4439153 1.0176814 1.0011165 0.7365874 0.5784789
##
## Rotation (n x k) = (5 \times 5):
                           PC2
                                      PC3
                                                 PC4
                                                             PC5
                PC1
## nrgy -0.53106816 0.3018103 -0.3408606 -0.3818033 -0.60408400
## dnce -0.43372652 -0.5131816 0.3929811 0.4823965 -0.40172805
## val -0.52681796 -0.1571937 0.3907000 -0.5388521 0.50472255
## acous 0.49239464 -0.1382874 0.5100046 -0.5094188 -0.46777338
## spch -0.09928882 0.7757074 0.5626977 0.2676767 -0.01184546
summary(data pca)
```

```
## Importance of components:
##
                           PC1
                                 PC2
                                        PC3
                                               PC4
                                                       PC5
                         1.444 1.0177 1.0011 0.7366 0.57848
## Standard deviation
## Proportion of Variance 0.417 0.2071 0.2004 0.1085 0.06693
## Cumulative Proportion 0.417 0.6241 0.8246 0.9331 1.00000
data_pca$x
               PC1
                            PC2
                                                     PC4
                                                                  PC5
##
                                        PC3
      -1.168320396 -0.435362099 -0.039151263 -1.271456683 -0.2412041809
## 1
## 2
      -1.317131044 1.378217388 1.385378953 -0.136793273 -1.1308962645
      ## 3
      -1.602879141 -0.305790987 -0.636065986 -0.552231502 -0.2164379874
## 4
## 5
      -0.445434523 -0.041214120 -1.082152129 0.039428584 -0.4127259666
data_pca1 = cbind(data.frame(data_clean$V16),data_pca$x)
data_pca1
##
                                          PC2
      data_clean.V16
                              PC1
                                                       PC3
                                                                   PC4
## 1
                   5 -1.168320396 -0.435362099 -0.039151263 -1.271456683
## 2
                   5 -1.317131044 1.378217388 1.385378953 -0.136793273
## 3
                   5 -1.432924832 0.285364744 0.704262305 -0.036255619
## 4
                   5 -1.602879141 -0.305790987 -0.636065986 -0.552231502
## 5
                   5 -0.445434523 -0.041214120 -1.082152129 0.039428584
##
                PC5
## 1
      -0.2412041809
## 2
      -1.1308962645
## 3
      -0.3415971627
## 4
      -0.2164379874
## 5
      -0.4127259666
var.test(PC3~data clean$V16,data=data pca1)
##
## F test to compare two variances
##
## data: PC3 by data_clean$V16
## F = 1.022, num df = 146, denom df = 454, p-value = 0.8534
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7915999 1.3436023
## sample estimates:
## ratio of variances
##
            1.021978
```

```
#t.test(PC1~data clean$V16.data=data pca)
#t.test(PC2~data clean$V16,data=data pca)
t.test(PC3~data_clean$V16,data=data_pca1)
##
##
   Welch Two Sample t-test
##
## data: PC3 by data clean$V16
## t = -0.065215, df = 245.03, p-value = 0.9481
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##
  -0.1945103 0.1820429
## sample estimates:
## mean in group 1 mean in group 5
##
     -0.004711502
                     0.001522178
#Taking out all numerical values
data_clean_num = data_clean[c(7,8,11,13,14)]
#scaling the data and finding generalized euclidean distance
scale data = scale(data clean num)
scale_data
##
                        dnce
             nrgy
                                     val
                                              acous
                                                           spch
## 1
       1.13355998 0.19831789
                                         0.22549588 -0.58122490
                              1.23201789
## 2
       1.37861002 0.79675083 0.52143129
                                         0.46609943
                                                     1.95619892
## 3
       0.82724742 0.87155495
                              0.83231293 -0.20759050
                                                     0.75426132
## 4
       1.31734751 0.42273025
                              0.83231293 -0.68879760 -0.58122490
## 5
       0.82724742 -0.02609446 -0.41121364 -0.59255618 -0.58122490
## 6
       0.94977244 0.64714260
                              0.07731466 -0.49631476
                                                     0.75426132
## 7
                              1.32084122 -0.68879760 0.08651821
       0.45967236 0.79675083
## 8
       0.33714734 -0.92374387 -0.63327195 -0.35195263 -0.58122490
## 9
      -2.05209058 -1.22296034 -1.69915187 2.87213490 -0.71477352
                              0.38819630 -0.06322837 -0.58122490
## 10
       0.09209730 1.09596730
## 11
       1.01103496 -0.17570269 -0.23356699 -0.54443547 -0.71477352
## 12
       0.76598491 -0.17570269 -0.18915532 0.89918581 -0.58122490
## 13
       0.70472240 0.94635907
                              0.47701962
                                         0.17737517 -0.44767628
## 14
       0.76598491 1.39518377
                              0.83231293 -0.64067689 -0.58122490
## 15
       0.82724742 -1.52217681
                             1.14319457 -0.64067689 4.89426861
## 16
       0.27588483 1.02116318 -0.85533027 0.27361659 -0.71477352
## 17
      -0.58179032 0.57233848
                              1.36525288 -0.44819405 -0.71477352
## 18
       0.64345989 1.32037965 -0.36680197 -0.35195263 -0.18057903
## 19
       0.58219738 -0.10089858 -0.67768362 -0.68879760 -0.44767628
## 20
      -0.58179032 1.39518377
                              1.05437124 -0.64067689 0.22006683
## 21
      -0.45926530 1.17077142 -0.54444863 -0.68879760 -0.18057903
## 22
      -0.15295275 -1.52217681 -0.32239031 -0.64067689 -0.44767628
## 23
      ## 24
       0.64345989
                  ## 25
       1.50113504 -0.84893975 0.56584295
                                         0.56234085 -0.44767628
## 26
       0.76598491 -1.22296034 0.96554792 -0.68879760 -0.58122490
```

```
## 27
       1.19482249 -0.25050681 1.58731120 -0.59255618 -0.44767628
## 28
       1.43987253 0.04870966 0.92113625 -0.59255618 0.08651821
## 29
       0.58219738 0.57233848 0.29937297 -0.59255618 -0.58122490
## 30
       ## 31
       1.13355998 0.27312201 1.36525288 -0.64067689 -0.04703041
## 32
## 33
       0.82724742 0.79675083 -0.01150867 -0.30383192 0.48716408
## 34
      -1.13315292 -0.32531093 -0.50003696 0.17737517
## attr(,"scaled:center")
##
       nrgy
                 dnce
                           val
                                   acous
                                             spch
## 70.496678 64.348837 52.259136 14.313953
                                        8.352159
## attr(,"scaled:scale")
               dnce
                        val
      nrgy
                               acous
                                         spch
## 16.32320 13.36825 22.51661 20.78107
                                      7.48791
dist_data = dist(scale_data,method ="euclidean")
dist data
##
                       2
                                 3
                                          4
                                                    5
                                                              6
                                                                       7
              1
## 2
      2.7238786
## 3
      1.6364372 1.5181422
## 4
      1.0391513 2.8306534 1.5673945
## 5
      1.8744619 3.0676005 2.0697475 1.4132454
      1.9680181 1.6656587 0.8477956 1.6050133 1.5810459
## 6
## 7
      1.4498102 2.5125676 1.0280117 1.2490151 2.0657549 1.5138922
## 8
      2.3887337 3.5335273 2.7231597 2.2439226 1.0738587 2.2698659 2.7116449
      5.2709288 5.8054311 5.5433444 5.7591492 4.8377453 5.4008163 5.7298214
## 9
## 10
      1.6388458 2.9122336 1.6100963 1.5946983 1.6488519 1.7334315 1.3898511
      1.7068897 3.1314652 2.1302944 1.2754313 0.3284352 1.7140169 2.0805673
## 11
## 12
      1.6578885 2.9072310 2.2698846 2.0560183 1.5168190 2.1243361 2.5074200
      1.1548335 2.5180265 1.3189746 1.2425057 1.5363158 1.4858857 1.3528067
## 13
## 14
      1.5740453 2.9143700 1.4996758 1.1189201 1.8900949 1.7227100 1.0671484
      5.8131836 3.9906419 4.8118420 5.8397649 5.8853880 4.7976619 5.3535852
## 15
## 16
      2.4062116 3.2144952 2.3588443 2.2880084 1.5382065 2.0529735 2.5274831
      1.8899108 3.5462081 2.1389007 1.9972124 2.3532995 2.4840378 1.3553362
## 17
## 18
      2.1329345 2.6150756 1.6024559 1.7238785 1.4377587 1.2802664 1.8278156
      2.2122972 3.1607479 2.2275590 1.7642442 0.4046592 1.6572275 2.2583738
## 19
## 20
      2.4080691 2.9537138 1.6678765 2.2904332 2.6072480 2.0411011 1.2385167
## 60
## 61
## 62
## 63
## 64
## 65
## 66
## 67
## 68
## 69
## 70
## 71
```

```
## 72
## 73
## 74
## 75
## 76
## 77
## 78
## 79
  [ reached getOption("max.print") -- omitted 435 rows ]
#As we have a column of rating which classifies the songs from 1-5. We can as
sume that K = 5
(kmeans5 <- kmeans(scale_data,5,nstart = 20))</pre>
## K-means clustering with 5 clusters of sizes 224, 106, 176, 45, 51
##
## Cluster means:
##
                        dnce
                                      val
                                                acous
                                                               spch
            nrgy
## 1 0.6412719 0.4674791 0.8616563 -0.3302553 -0.19011822
## 2 -0.7667337 0.7995736 -0.1619218 -0.1553841 -0.07852773
## 3 0.1951297 -0.6708549 -0.7695350 -0.2753970 -0.28074050
## 4 0.1601668 -0.2538314
                              0.3595754 0.2586457
                                                       2.87323279
## 5 -2.0376759 -1.1760244 -1.1096088 2.4956611 -0.56813190
##
## Clustering vector:
##
     1
          2
              3
                   4
                       5
                                7
                                     8
                                         9
                                            10
                                                 11
                                                     12
                                                                            17
                                                                                     1
                            6
                                                          13
                                                              14
                                                                   15
                                                                       16
                                                                                18
9
   20
##
     1
          4
              1
                   1
                       3
                            1
                                1
                                     3
                                         5
                                              1
                                                  3
                                                      3
                                                           1
                                                                1
                                                                    4
                                                                        2
                                                                             1
                                                                                 1
3
    2
##
   21
                 24
                      25
                          26
                               27
                                   28
                                        29
                                             30
                                                 31
                                                     32
                                                          33
                                                                                     3
         22
             23
                                                               34
                                                                   35
                                                                       36
                                                                            37
                                                                                38
9
   40
##
     2
          3
              1
                   1
                       1
                            1
                                1
                                     1
                                         1
                                              2
                                                  1
                                                      1
                                                           1
                                                                4
                                                                    3
                                                                         1
                                                                             5
                                                                                 1
1
    3
##
   41
        42
             43
                 44
                      45
                          46
                               47
                                   48
                                        49
                                             50
                                                 51
                                                     52
                                                          53
                                                               54
                                                                   55
                                                                       56
                                                                            57
                                                                                 58
                                                                                     5
9
   60
##
     4
          2
              3
                   1
                       5
                            1
                                1
                                     1
                                              1
                                                  1
                                                      5
                                                           5
                                                                1
                                                                    3
                                                                        1
                                                                                 1
                                         4
                                                                             1
1
    2
##
    61
         62
                 64
                               67
                                   68
                                        69
                                            70
                                                 71
                                                     72
                                                          73
                                                              74
                                                                   75
                                                                            77
                                                                                78
                                                                                     7
             63
                      65
                          66
                                                                       76
9
   80
##
                   3
                       3
                            3
                                2
                                         1
                                              1
                                                  2
     1
          1
              3
                                     1
                                                      1
                                                           1
                                                                1
                                                                    3
                                                                        4
                                                                             3
                                                                                 1
2
    2
                                                                                     9
##
    81
         82
             83
                 84
                      85
                          86
                               87
                                   88
                                        89
                                             90
                                                 91
                                                     92
                                                          93
                                                              94
                                                                   95
                                                                       96
                                                                            97
                                                                                98
9 100
                                3
                                     5
##
     1
          3
              1
                   3
                       1
                            1
                                         3
                                              1
                                                  1
                                                      1
                                                           1
                                                                1
                                                                    5
                                                                             5
2
    1
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 11
9 120
##
     4
          1
              1
                   4
                       3
                            1
                                3
                                     1
                                         1
                                              2
                                                  2
                                                      1
                                                           3
                                                                1
                                                                    1
                                                                         2
                                                                             1
                                                                                 1
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 13
```

```
9 140
             3
                 2
                     1
                          2
## 3
         1
                              1
                                  3
                                      1
                                          1
                                              1
                                                   1
                                                       3
                                                           3
                                                               1
                                                                   1
                                                                        1
                                                                            3
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 15
9 160
##
   3
             2
                          3
                              3
                                  1
                                      5
                                          3
                                              1
                                                   3
                                                       1
         3
                                                           1
                                                               3
                                                                    3
                                                                        3
2
    1
##
## Within cluster sum of squares by cluster:
## [1] 336.7368 217.3462 303.3063 197.3781 193.3288
## (between_SS / total_SS = 58.5 %)
##
## Available components:
##
## [1] "cluster"
                       "centers"
                                      "totss"
                                                      "withinss"
                                                                      "tot.withi
## [6] "betweenss"
                       "size"
                                      "iter"
                                                      "ifault"
kmeans5
## K-means clustering with 5 clusters of sizes 224, 106, 176, 45, 51
##
## Cluster means:
                      dnce
                                   val
                                            acous
                                                          spch
           nrgy
## 1 0.6412719 0.4674791 0.8616563 -0.3302553 -0.19011822
## 2 -0.7667337 0.7995736 -0.1619218 -0.1553841 -0.07852773
## 3 0.1951297 -0.6708549 -0.7695350 -0.2753970 -0.28074050
## 4 0.1601668 -0.2538314 0.3595754 0.2586457 2.87323279
## 5 -2.0376759 -1.1760244 -1.1096088 2.4956611 -0.56813190
##
## Clustering vector:
##
     1
         2
             3
                      5
                          6
                              7
                                  8
                                      9
                                         10
                                              11
                                                  12
                                                      13
                                                          14
                                                              15
                                                                  16
                                                                       17
                                                                           18
9
  20
                                      5
##
     1
         4
             1
                 1
                      3
                          1
                              1
                                  3
                                           1
                                               3
                                                   3
                                                       1
                                                           1
                                                               4
                                                                    2
                                                                        1
                                                                            1
3
    2
                                         30
##
   21
        22
            23
                24
                    25
                         26
                             27
                                 28
                                     29
                                              31
                                                  32
                                                      33
                                                          34
                                                              35
                                                                   36
                                                                       37
                                                                           38
                                                                               3
9
  40
##
    2
         3
             1
                 1
                      1
                          1
                              1
                                  1
                                      1
                                           2
                                               1
                                                   1
                                                       1
                                                           4
                                                               3
                                                                   1
                                                                        5
                                                                            1
1
    3
                                                                               5
##
   41
        42
            43
                44
                    45
                         46
                             47
                                 48
                                     49
                                         50
                                              51
                                                  52
                                                      53
                                                          54
                                                              55
                                                                   56
                                                                       57
                                                                           58
9
   60
         2
             3
                                                   5
                                                       5
##
    4
                 1
                      5
                          1
                              1
                                  1
                                          1
                                               1
                                                           1
                                                               3
                                                                   1
                                                                        1
                                                                            1
                                      4
1
    2
##
                                         70
                                                                               7
  61
        62
           63
                64
                    65
                         66
                             67
                                 68
                                     69
                                              71
                                                  72
                                                      73
                                                          74
                                                              75
                                                                  76
                                                                       77
                                                                           78
9
  80
##
             3
                 3
                      3
                          3
                              2
     1
         1
                                  1
                                      1
                                          1
                                               2
                                                   1
                                                       1
                                                           1
                                                               3
                                                                    4
                                                                        3
                                                                            1
2
    2
## 81
        82
           83
                84
                    85
                         86
                             87
                                 88
                                     89
                                         90
                                              91
                                                  92
                                                      93
                                                          94
                                                              95
                                                                  96
                                                                       97
9 100
## 1 3 1 3 1 1 3 5 3 1 1 1 1 5 4
                                                                        5
```

```
2 1
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 11
9 120
##
   4
                                          2
                                              2
                                                       3
                                                                           1
         1
             1
                 4
                     3
                         1
                              3
                                  1
                                      1
                                                  1
                                                           1
                                                               1
                                                                   2
    1
1
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 13
9 140
##
## Within cluster sum of squares by cluster:
## [1] 336.7368 217.3462 303.3063 197.3781 193.3288
## (between_SS / total_SS = 58.5 %)
##
## Available components:
##
## [1] "cluster"
                       "centers"
                                      "totss"
                                                      "withinss"
                                                                     "tot.withi
nss"
                                      "iter"
                                                      "ifault"
## [6] "betweenss"
                      "size"
library(ggplot2)
kmeans5$cluster <- as.factor(kmeans5$cluster)</pre>
ggplot(data_clean_num, aes(dnce,val,color = kmeans5$cluster)) + geom_point()
```


ggplot(data_clean_num, aes(nrgy,val,color = kmeans5\$cluster)) + geom_point()

ggplot(data_clean_num, aes(nrgy,dnce,color = kmeans5\$cluster)) + geom_point()

kmeans5**\$**size

```
## [1] 224 106 176 45 51
#To validate our assumption we took the help of the nbclust function to find
optimal no. of clusters
library(NbClust)
nb_clust = NbClust(data_clean_num, distance="euclidean", method = 'kmeans')
```


*** : The Hubert index is a graphical method of determining the number of
clusters.
In the plot of Hubert index, we seek a significant knee th
at corresponds to a
significant increase of the value of the measure i.e the s
ignificant peak in Hubert
index second differences plot.
##


```
## *** : The D index is a graphical method of determining the number of clust
ers.
##
                  In the plot of D index, we seek a significant knee (the si
gnificant peak in Dindex
                  second differences plot) that corresponds to a significant
increase of the value of
##
                  the measure.
##
## ********************
## * Among all indices:
## * 6 proposed 2 as the best number of clusters
## * 13 proposed 3 as the best number of clusters
## * 1 proposed 7 as the best number of clusters
## * 1 proposed 10 as the best number of clusters
## * 1 proposed 13 as the best number of clusters
## * 1 proposed 14 as the best number of clusters
##
##
                     ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 3
##
nb_clust
```

шш фа	11							
## \$A. ##	ll.index KL	СН	Hartigan	CCC	Scott	Marriot	TrCovW	Т
raceW	K.L	CIT	nai cigan	CCC	50000	110111100	11 COW	•
## 2	0.6566	294.1695	278.8921	38.8293	3091.213	2.655594e+25	18945387440	580
752.9								
## 3	12.2434	354.3072	86.8032	35.6981	3859.559	1.667418e+25	6769059795	396
467.0	0 0001		- 4 400 -	24 222	4040 046	4 400004 05		246
## 4	0.8921	298.8687	/1.180/	36.333/	4218.346	1.633376e+25	5675880069	346
285.5 ## 5	1 2556	268.1786	E7 /012	24 0222	1521 OG1	1.508574e+25	4549079185	200
451.2	1.2550	200.1700	37.4013	34.3222	4334.001	1.3003/46+23	4343073163	303
## 6	0.8257	246.2382	52.8810	33,9192	4761.104	1.491807e+25	3625268843	282
307.4								
## 7	2.6016	231.8289	26.9968	33.4130	4951.100	1.480946e+25	2769864703	259
300.6								
## 8	1.0319	211.2276	34.1323	32.0636	5062.802	1.606717e+25	2580254660	248
046.1								
## 9	3.9593	199.3747	24.1545	31.4793	5255.879	1.475553e+25	2132325227	234
567.4 ## 10	0 1270	186.8090	22 02/17	20 6615	E27E //61	1.493485e+25	1912586374	225
386.8	0.12/0	100.0090	33.3347	30.0013	33/3.401	1.4934636723	1912360374	223
## 11	9.0068	180.8530	19.7266	30.5906	5523.029	1.414255e+25	1903663532	213
167.6	2,000				55251025			
## 12	0.0869	171.4024	33.3160	29.9571	5649.976	1.363086e+25	1811327964	206
282.3								
## 13	2.2771	168.4813	23.9604	30.1924	5778.992	1.291137e+25	1551426335	195
256.6								
## 14	1.3389	163.4130	21.1317	34.3777	5875.120	1.276420e+25	1397944036	187
624.0 ## 15	0.0053	158.4335	10 7020	24 2755	E070 06E	1.251483e+25	1250071004	101
## 15 115.1	0.9955	150.4555	10.7028	34,2/33	5970.005	1.2514656+25	1258871094	101
##	Friedmar	n Ruhin	Cindex	DB Si	lhouette	Duda Pseudo	ot2 Beale F	Ratk
owsky			CINGCX	55 51	211000000	Bada . Sead	Jeane .	tu cit
## 2	84.5402	14.0498	0.2656 1	.4003	0.3518	0.8061 80.3	538 0.7512	0
.3199								
## 3		5 20.5804	0.2317 1	.1729	0.3200	1.5172 -151.6	981 -1.0631	0
.3311								
## 4	110.5763	3 23.5628	0.2524 1	.4071	0.2432	1.1898 -41.1	539 -0.4969	0
.3028	112 700	26 2675	0 2270 1	2250	0 2472 1	1.0026 -0.4	242 0 0000	0
.2803		2 20.30/3	0.23/0 1	. 3339	0.24/2	1.0026 -0.4	342 -0.0080	О
		9 28.9027	0.2490 1	.4294	0.2122	1.6023 -87.9	566 -1.1673	0
.2674			J J U I				2.20,5	J
		31.4671	0.2450 1	.3213	0.2230	1.3023 -14.3	928 -0.7108	0
.2564								
		1 32.8949	0.2424 1	.3892	0.2160	1.6201 -88.0	353 -1.1885	0
.2457								
	154.4269	34.7851	0.2310 1	.3657	0.1999	1.2011 -17.2	464 -0.5185	0
.2390	162 0266	26 2020	0 2250 1	1251	0 1000	1 6257 44 2	AE2 1 2021	щ
## 10	102.8365	30.2020	U.2250 I	.433I	מידאפט י	1.6357 -44.3	000 -1.2021	#

```
# $All.CriticalValues
      CritValue Duda CritValue PseudoT2 Fvalue Beale
## 2
               0.7826
                                   92.7817
                                                  0.5852
## 3
               0.7612
                                  139.6301
                                                  1.0000
## 4
               0.7469
                                   87.4204
                                                  1.0000
## 5
               0.7439
                                   58.5210
                                                  1.0000
## 6
               0.7102
                                   95,4866
                                                  1.0000
## 7
               0.6025
                                   40.9127
                                                  1.0000
## 8
               0.7083
                                                  1.0000
                                   94.7267
## 9
               0.6836
                                   47.6729
                                                  1.0000
## 10
               0.6729
                                   55.4136
                                                  1.0000
                                                  1.0000
                                   46.5028
## 11
               0.6642
## 12
               0.6528
                                   70.2005
                                                  1.0000
## 13
               0.6616
                                   75.2030
                                                  1.0000
## 14
               0.6602
                                   51.4755
                                                  1.0000
## 15
               0.6573
                                   47.9622
                                                  1.0000
##
## $Best.nc
                                                      CCC
##
                          KL
                                    CH Hartigan
                                                             Scott
                                                                         Marriot
## Number clusters 3.0000
                               3.0000
                                         3.0000 2.0000
                                                            3.0000 3.000000e+00
                    12.2434 354.3072 192.0889 38.8293 768.3461 9.541344e+24
## Value Index
##
                          TrCovW
                                    TraceW Friedman
                                                        Rubin Cindex
ette
## Number clusters
                                       3.0
                                              7.0000
                                                       3.0000 10.000 3.0000
0000
## Value Index
                    12176327645 134104.4 14.2044 -3.5482 0.225 1.1729
                                                                                  0.
3518
##
                       Duda PseudoT2 Beale Ratkowsky
                                                             Ball PtBiserial Frey
## Number clusters 2.0000
                              2.0000 2.0000
                                                 3.0000
                                                               3.0
                                                                       3.0000
                                                                                  1
## Value Index
                    0.8061 80.3538 0.7512
                                                 0.3311 158220.8
                                                                       0.5354
                                                                                 NA
##
                                 Dunn Hubert SDindex Dindex
                    McClain
                                                                  SDbw
## Number clusters 2.0000 13.0000
                                            0 3.0000
                                                            0 14.0000
## Value Index
                      0.4221 0.0523
                                            0
                                               0.1106
                                                            0 0.2508
##
## $Best.partition
                       5
##
     1
         2
              3
                           6
                               7
                                    8
                                        9
                                            10
                                                11
                                                    12
                                                         13
                                                             14
                                                                  15
                                                                      16
                                                                           17
                                                                               18
                                                                                   1
9
   20
##
     1
         1
              1
                  1
                       2
                           1
                               1
                                    2
                                        3
                                             1
                                                 2
                                                      2
                                                          1
                                                              1
                                                                   1
                                                                       2
                                                                            1
                                                                                2
2
    1
##
    21
        22
             23
                 24
                      25
                          26
                              27
                                   28
                                       29
                                            30
                                                     32
                                                                               38
                                                                                   3
                                                31
                                                         33
                                                             34
                                                                  35
                                                                      36
                                                                           37
9
   40
##
     2
          2
              1
                  1
                       1
                           1
                               1
                                    1
                                        1
                                             2
                                                 1
                                                      1
                                                          1
                                                               2
                                                                   2
                                                                       1
                                                                            3
                                                                                1
1
    2
                                                                                   5
##
   41
        42
             43
                 44
                      45
                          46
                              47
                                   48
                                       49
                                            50
                                                51
                                                     52
                                                         53
                                                                  55
                                                                           57
                                                                               58
                                                             54
                                                                      56
9
   60
##
     1
          2
              2
                  1
                       3
                           1
                               1
                                    1
                                        1
                                             1
                                                 2
                                                      3
                                                          3
                                                              1
                                                                   2
                                                                       2
                                                                            1
                                                                                1
1
    2
##
    61
        62
             63
                 64
                      65
                          66
                              67
                                   68
                                       69
                                            70
                                                71
                                                    72
                                                         73
                                                             74
                                                                  75
                                                                      76
                                                                           77
                                                                               78
                                                                                   7
9
   80
     1
         1
              2
                  2
                       2
                           2
                               2
                                    1
                                        1
                                             1
                                                 2
                                                      1
                                                          1
                                                              1
                                                                   2
                                                                            2
                                                                                1
                                                                       1
```

```
# for 3 clusters
(kmeans3 <- kmeans(scale data,3,nstart = 10))</pre>
## K-means clustering with 3 clusters of sizes 57, 313, 232
##
## Cluster means:
##
             nrgy
                         dnce
                                      val
                                                 acous
                                                               spch
## 1 -1.98115504 -1.0116715 -1.0205105
                                           2.4550888 -0.37270161
## 2 0.35084822 0.5649298 0.7334154 -0.2569411 0.10102509
## 3 0.01340666 -0.5136109 -0.7387497 -0.2565409 -0.04472785
##
## Clustering vector:
                                7
##
     1
          2
              3
                  4
                       5
                           6
                                    8
                                        9
                                            10
                                                11
                                                     12
                                                         13
                                                              14
                                                                  15
                                                                       16
                                                                           17
                                                                               18
9
   20
                  2
                           2
                                2
                                             2
                                                                                 2
##
     2
          2
              2
                       3
                                    3
                                        1
                                                 3
                                                      3
                                                          2
                                                               2
                                                                   2
                                                                        3
                                                                            2
3
##
                      25
                          26
                               27
                                   28
                                        29
                                            30
                                                31
                                                     32
                                                         33
                                                              34
                                                                       36
                                                                                    3
   21
        22
             23
                 24
                                                                  35
                                                                           37
                                                                                38
9
   40
##
     2
         3
              2
                  2
                       2
                           2
                                2
                                    2
                                        2
                                             2
                                                 2
                                                      2
                                                          2
                                                               3
                                                                   3
                                                                        2
                                                                            1
                                                                                 2
2
    3
                                                51
##
   41
        42
             43
                 44
                      45
                          46
                               47
                                   48
                                       49
                                            50
                                                     52
                                                         53
                                                              54
                                                                  55
                                                                       56
                                                                           57
                                                                                58
                                                                                    5
9
   60
                           2
                                2
                                    2
                                                 2
##
     2
         3
              3
                  2
                       1
                                        3
                                             2
                                                      1
                                                          1
                                                               2
                                                                   3
                                                                        2
                                                                            2
                                                                                 2
2
    3
                                            70
                                                     72
##
   61
             63
                 64
                      65
                          66
                               67
                                   68
                                       69
                                                71
                                                         73
                                                              74
                                                                  75
                                                                       76
                                                                           77
9
   80
##
     2
         2
              3
                  3
                       3
                           3
                                3
                                    2
                                        2
                                             2
                                                 3
                                                      2
                                                          2
                                                               2
                                                                   3
                                                                        2
                                                                            3
                                                                                 2
3
    2
## 81
        82
            83
                 84
                      85
                          86
                              87
                                   88
                                       89
                                            90
                                                91
                                                     92
                                                         93
                                                              94
                                                                  95
                                                                       96
                                                                           97
                                                                               98
9 100
              2
                       2
##
     2
          3
                  3
                           2
                                3
                                    1
                                         3
                                             2
                                                 2
                                                      2
                                                          2
                                                               2
                                                                   1
                                                                        3
                                                                            1
                                                                                 2
2
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 11
9 120
##
   3
         2
              2
                  2
                       3
                           2
                                3
                                    2
                                        2
                                             2
                                                 2
                                                      2
                                                          3
                                                               2
                                                                   2
                                                                        2
                                                                            2
                                                                                 2
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 13
9 140
##
  3
         2
              3
                       2
                           2
                                2
                                    3
                                        2
                                             2
                                                 2
                                                      2
                                                          3
                                                                   2
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 15
9 160
   3
              2
                                    2
                                                 2
                                                          2
                                                                                 2
##
         3
                  3
                       3
                           3
                                3
                                         1
                                             3
                                                      3
                                                               2
                                                                   3
                                                                        3
                                                                            3
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 17
9 180
##
          2
                  2
                       2
                           2
                                2
                                    3
                                        3
                                             2
                                                 3
                                                      2
    2
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 19
9 200
```

```
## 3 2 3 3 3 2 1 3 3 3 2 3 1 3 3 2 3
## Within cluster sum of squares by cluster:
## [1] 277.5808 846.0713 654.2098
## (between_SS / total_SS = 40.8 %)
##
## Available components:
## [1] "cluster"
                      "centers"
                                      "totss"
                                                      "withinss"
                                                                      "tot.withi
nss"
                                                      "ifault"
## [6] "betweenss"
                       "size"
                                      "iter"
kmeans3
## K-means clustering with 3 clusters of sizes 57, 313, 232
## Cluster means:
##
                        dnce
                                    val
            nrgy
                                              acous
## 1 -1.98115504 -1.0116715 -1.0205105
                                        2.4550888 -0.37270161
## 2 0.35084822 0.5649298 0.7334154 -0.2569411 0.10102509
## 3 0.01340666 -0.5136109 -0.7387497 -0.2565409 -0.04472785
##
## Clustering vector:
##
    1
         2
             3
                          6
                              7
                                  8
                                      9
                                         10
                                              11
                                                  12
                                                      13
                                                          14
                                                              15
                                                                   16
                                                                       17
                                                                           18
9
  20
##
    2
         2
             2
                 2
                      3
                          2
                              2
                                  3
                                      1
                                          2
                                               3
                                                   3
                                                       2
                                                           2
                                                               2
                                                                    3
                                                                        2
                                                                            2
3
    2
##
                                                  32
   21
        22
            23
                24
                    25
                         26
                             27
                                 28
                                     29
                                         30
                                              31
                                                      33
                                                          34
                                                              35
                                                                   36
                                                                       37
                                                                           38
                                                                               3
9
  40
##
    2
         3
             2
                 2
                      2
                          2
                              2
                                  2
                                      2
                                          2
                                               2
                                                   2
                                                       2
                                                           3
                                                                3
                                                                    2
                                                                        1
                                                                            2
2
    3
##
   41
        42
            43
                44
                    45
                         46
                             47
                                 48
                                     49
                                          50
                                              51
                                                  52
                                                      53
                                                          54
                                                               55
                                                                   56
                                                                       57
9
   60
##
    2
         3
             3
                 2
                     1
                          2
                              2
                                  2
                                      3
                                          2
                                               2
                                                               3
                                                                    2
                                                                        2
                                                                            2
                                                   1
                                                       1
                                                           2
2
    3
##
                                         70
                                              71
                                                  72
   61
        62
            63
                64
                    65
                         66
                             67
                                 68
                                     69
                                                      73
                                                          74
                                                              75
                                                                  76
                                                                       77
                                                                           78
                                                                               7
9
  80
##
    2
         2
             3
                 3
                     3
                          3
                              3
                                  2
                                      2
                                          2
                                               3
                                                   2
                                                       2
                                                           2
                                                               3
                                                                    2
                                                                        3
                                                                            2
3
    2
## 81
        82
            83
                84
                    85
                         86
                             87
                                 88
                                     89
                                         90
                                              91
                                                  92
                                                      93
                                                          94
                                                               95
                                                                   96
                                                                       97
9 100
   2
         3
             2
                 3
                     2
                          2
                                      3
                                          2
                                               2
                                                   2
                                                       2
                                                                            2
##
                              3
                                  1
                                                           2
                                                               1
                                                                    3
                                                                        1
2
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 11
9 120
## 3
         2
             2
                          2
                                  2
                                      2
                                          2
                                               2
                                                   2
                 2
                     3
                              3
                                                       3
                                                           2
                                                               2
                                                                    2
                                                                        2
                                                                            2
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 13
9 140
##
   3
         2
             3
                     2
                          2
                              2
                                  3
                                      2
                                          2
                                               2
                                                   2
                                                       3
                                                           3
2 2
```

```
## Within cluster sum of squares by cluster:
## [1] 277.5808 846.0713 654.2098
## (between_SS / total_SS = 40.8 %)
##
## Available components:
##
## [1] "cluster"
                                                      "withinss"
                                                                     "tot.withi
                      "centers"
                                      "totss"
nss"
                                                      "ifault"
## [6] "betweenss"
                      "size"
                                      "iter"
kmeans3$cluster <- as.factor(kmeans3$cluster)</pre>
ggplot(data_clean, aes(nrgy,val,color = kmeans3$cluster)) + geom_point()
```


ggplot(data_clean, aes(dnce,val,color = kmeans3\$cluster)) + geom_point()

ggplot(data_clean, aes(dnce,nrgy,color = kmeans3\$cluster)) + geom_point()

ggplot(data_clean, aes(dnce,acous,color = kmeans3\$cluster)) + geom_point()

kmeans3\$withinss

[1] 277.5808 846.0713 654.2098

kmeans3**\$**size

[1] 57 313 232

Conclusion

Based on the above visualizations we can conclude that we can cluster our dat a based on audio properties in 3 clusters.

Cluster 1: High acousticness, Low danceability, energy, valence

Cluster 2: Low acousticness, high danceability, energy, valence

Cluster 3: Low acousticness, moderate danceability, energy, valence