MATH 220 Midterm Review

UBC Undergraduate Math Society

Procedure

Introduction

Logic

Some number theory

Proof by induction

Limits

Negation

What happens after MATH 220?

UBC Math Undergraduate Society

Location: MATH ANNEX 1119

What we do: board games (we have oh so many board games), putnam practice, math circle, exam packs, louging around, and sometimes, math.

Instagram: ums.ubc

email:ums.ubc@gmail.com

https://discord.gg/E6AYdZC3

EXAM PACK SALE

20% Early bird discount*

COURSES

FIRST YEAR

100 102 104 180 184 101 103 105 152

SECOND YEAR

200 215 220 221

THIRD YEAR 307 316 317

300 302

Packs available only

in Legacy are in red.

STANDARD

\$ 2 0

LEGACY

\$15

Bundles*

CALCULUS BUNDLE

\$30

\$ 4 5

Any one of 100 102 104 180 184 $\it and$ one of 101 103 105.

THREE COURSE BUNDLE

Any three courses listed.

*EARLY BIRD DISCOUNT AND BUNDLES END NOV 26, 2021 DISCOUNT DOES NOT APPLY TO BUNDLES

Your instructor uki (she/they)

- 4th year biomedical engineering (bioinformatics), honors math minors
- cats

- why take MATH 220

Logic

*

P	Q	R	$(P \wedge Q) \implies R$	$(P \Longrightarrow R) \lor (Q \Longrightarrow R)$
\overline{T}	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

A Logic Puzzle

Select the probability of randomly choosing the correct answer for this question:

- a) 1/4
- b) 1/2
- c) 0
- d) 1/4

Number theory

*

Assume $a,b\in\mathbb{Z}$. Prove that if ax+by=1 for some $x,y\in\mathbb{Z}$, then $\gcd(a,b)=1$.

Assume $a, b \in \mathbb{Z}$ and p is prime. Using Bézout's identity from homework 1, prove that if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof by induction

*

Prove that,
$$\forall n \in \mathbb{N}$$
, $\sum_{k=1}^{n} k^3 = (\sum_{k=1}^{n} k)^2$.

Base Care

 $N=K$
 $N=K$

Prove, using induction, that $\forall n \in \mathbb{N}, 3 \mid (n^3 - n)$.

Theorem: A statement of the form $\forall n \in \mathbb{N}$; P(n)" is true if

- The statement P(1) is true, and,
- given $k \ge 1$, $P(1) \land P(2) \land P(3) \land ... \land P(k) \implies P(k+1)$.

This procedure is called the strong induction.

Use strong induction to prove the following statement: Suppose you begin with a pile of n stones $(n \ge 2)$ and split this pile into n separate piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have p and q stones in them, respectively, you compute pq. Show that no matter how you split the piles (eventually into n piles of one stone each), the sum of the products computed at each step equals $\frac{n(n-1)}{2}$.

The Rainbow Lemma

For any positive integer x with exactly n divisors, where n is even, we write $1 = d_1 < d_2 < \cdots < d_{n-1} < d_n = x$. d_i are distinct divisors of x for distinct $1 \le i \le n$. Prove that

$$x = d_1 d_n = d_2 d_{n-1} = d_3 d_{n-2} \cdot \cdot \cdot = d_{\frac{n}{2}} d_{\frac{n}{2}+1}.$$

Limits of sequences

Definition 6.4.2. Let (x_n) be a sequence of real numbers. We say that (x_n) has a *limit* $L \in \mathbb{R}$ when

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, (n > N) \implies (|x_n - L| < \varepsilon).$$

In this case we say that the sequence converges to L and write

$$x_n o L$$
 or $\lim_{n o \infty} x_n = L$.

If the sequence doesn't converge to any number L, we say that the sequence **diverges**.

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ converges to L if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |x_n - L| < \varepsilon.$$

Using the definition, prove that the sequence $(x_n)_{n\in\mathbb{N}}=((-1)^n+\frac{1}{n})_{n\in\mathbb{N}}$ does not converge to 0.

Let
$$a_n = \frac{2n^2 + n + 14}{2n^2 + 11}$$
. Show, using the definition of convergence, that $a_n \to 1$

$$2n^2 + n + 14 + 3 - 1 = 2n^2 + n + 14 = 2n^2 + 11 = 2n^2 +$$

Limits of functions

Definition 6.4.8. Let $a, L \in \mathbb{R}$ and let f be a real-valued function. We say that the *limit* of f as x approaches a is L when

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } (0 < |x - a| < \delta) \implies (|f(x) - L| < \varepsilon).$$

In this case we write

$$\lim_{x \to a} f(x) = L$$
 or sometimes $f(x) \xrightarrow[x \to a]{} L$

and say that f **converges** to L as x approaches a. We also sometimes say the limit of f as x goes to a is L, which we denote by

$$f(x) o L$$
 as $x o a$.

If f does not converge to any finite limit L as x approaches a, then we say that f **diverges** as x approaches a.

Limit Problem

Suppose a real-valued function f satisfies f(x) = f(x+1) for all $x \in \mathbb{R}$. Prove that f'(x) = f'(x+1) for all $x \in \mathbb{R}$ using $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

10. **[8 pts]** Suppose that $f: \mathbb{N} \to \mathbb{R}$ is a bounded function and that $\{a_n\}$ is a sequence that converges to 0. Prove that $\lim_{n\to\infty} f(n)a_n = 0$.

Negation

- Writing sentences in symbolic logic notations

```
"8 is even and 5 is prime"

"If a function f is differentiable everywhere then whenever x \in \mathbb{R} is a local maximum of f we have f'(x) = 0"
```

- Negating sentences

Function types

In this question, we are going to call a function, $f : \mathbb{R} \to \mathbb{R}$, $type\ A$, if $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $y \geq x$ and $|f(y)| \geq 1$. We also say that a function, g, is $type\ B$ if $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$, if $y \geq x$, then $|g(y)| \geq 1$.

Prove or find a counterexample for the following statements.

- a) If a function is type A, then it is type B.
- b) If a function is type B, then it is type A.

Feedback form