

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : G01N 21/35	A1	(11) International Publication Number: WO 93/11424 (43)-International Publication Date: 10 June 1993 (10.06.93)
(21) International Application Number: PCT/US92/10401		(81) Designated States: CA, HU, JP, KR, RO, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 3 December 1992 (03.12.92)		
(30) Priority data: 801,983 3 December 1991 (03.12.91) US		Published With international search report.
(71) Applicant: LOCKHEED SANDERS, INC. [US/US]; 65 Spit Brook Road, P.O. Box 868, Nashua, NH 03061-0868 (US).		
(72) Inventors: SPADE, Gerald, L.; 15 Monza Road, Nashua, NH 03060 (US). LABITT, Bruce, D.; 46 Concord Street, Nashua, NH 03060 (US).		
(74) Agents: CORBER, Billy, G. et al.; Lockheed Corporation, 4500 Park Granada Boulevard, Calabasas, CA 91399-0430 (US).		

BEST AVAILABLE COPY

(54) Title: INFRARED CHEMICAL VAPOR DETECTOR AND METHOD

(57) Abstract

The invention relates to the remote infrared radiometric detection of chemical vapors (20). Air quality and substance control concerns present a need for more efficient ways of detecting the presence of select chemical vapors (20) in the atmosphere. A method and apparatus for such a detector includes elements for filtering (26, 34) collected infrared energy over a filter bandwidth by bandpass filtering only a fractional bandwidth of the filter bandwidth at any one time and repeatedly scanning the filter bandwidth with the passed fractional bandwidth. Also included are elements for measuring infrared energy (32) passed by the bandpass filtering thereby producing an output signal and for repeatedly nulling (40) the output signal in relation to the repeated scanning of the filter bandwidth. The invention is applicable to air monitoring including pollution control, chemical detection and the detection of any substances which provide telltale chemical vapors (20).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brasil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republie of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TC	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam

-1-

1

2 INFRARED CHEMICAL VAPOR DETECTOR AND METHOD

3

Background of the Invention

4

Field of the Invention

5

The present invention generally relates to the
6 identification of chemical vapors by means of infrared
7 (IR) radiation emission and absorption and particularly
8 to the performance of such detection at a location
9 remote from the vapors detected.

10

Statement of the Prior Art

11

Increasing concern for various aspects of our
12 environmental quality has generated a need in our
13 technical capability for the convenient and remote
14 detection of various substances which might take the
15 form of vapors present in air. Various existing
16 systems range in nature from laser photoacoustic
17 detection to differential absorption Lidar, to
18 fluorescence or luminescence spectroscopy, and to
19 thermal infrared emission imaging. Unfortunately, all
20 of these methods are very expensive high-technology
21 systems requiring complex operation and extensive
22 signal processing. All, except thermal imaging,
23 require active illumination which beacon their
24 presence. These factors tend to enforce substantial
25 limits on the nature and frequency of the use of the
26 respective methods. Understandably, there is,
27 therefore, a need for such detection equipment and

BEST AVAILABLE COPY

-2-

1 methods which are less expensive, easier to operate and
2 simpler in nature to provide faster detection results.

SUMMARY OF THE INVENTION

4 In one form, the present invention provides an
5 infrared radiometer, comprising means for collecting
6 infrared energy, means for filtering the collected
7 energy over a filter bandwidth including filter means
8 for bandpassing only a fractional bandwidth of the
9 filter bandwidth at any one time and means for
10 repeatedly scanning the filter bandwidth with the
11 passed fractional bandwidth, means for measuring
12 infrared energy passed by the filter means and for
13 producing an output signal in response thereto, and
14 means for repeatedly nulling the output signal in
15 relation to the repeated scanning of the filter
16 bandwidth.

17 In another form, the present invention provides
18 an apparatus for detecting the presence of substance
19 vapors having known infrared spectral characteristics
20 against a background having contrasting infrared
21 spectral characteristics relative to the known infrared
22 characteristics of the substance vapors, comprising
23 means for collecting infrared energy emissions from the
24 background and any vapors present between the
25 background and the means for collecting, means for
26 measuring the infrared energy levels collected both in
27 a first plurality of wavelength bands known to contain

-3-

1 infrared characteristics of the substance vapors and in
2 a second plurality of wavelength bands known to contain
3 infrared characteristics of the background, and means
4 for comparing the infrared energy levels measured in
5 the first and second plurality of bands for determining
6 the presence of substance vapors based upon the
7 relative infrared energy levels measured in the first
8 and second plurality of bands.

9 In one form, the method of the present invention
10 provides for collecting infrared energy, filtering the
11 collected energy over a filter bandwidth including
12 bandpass filtering only a fractional bandwidth of the
13 filter bandwidth at any one time and repeatedly
14 scanning the filter bandwidth with the passed
15 fractional bandwidth, measuring infrared energy passed
16 by the bandpass filtering producing an output signal in
17 response thereto, and repeatedly nulling the output
18 signal in relation to the repeated scanning of the
19 filter bandwidth.

20 In another form, the present invention covers a
21 method for detecting the presence of substance vapors
22 having known infrared spectral characteristics against
23 a background having contrasting infrared spectral
24 characteristics relative to the known infrared
25 characteristics of the substance vapors, comprising the
26 steps of collecting infrared energy emissions from the
27 background and any vapors present against the

-4-

1 background, measuring the infrared energy levels
2 collected both in a first plurality of wavelength bands
3 known to contain characteristics of the substance
4 vapors and in a second plurality of wavelength bands
5 known to contain characteristics of the background, and
6 comparing the infrared energy levels measured in the
7 first and second plurality of bands for determining the
8 presence of substance vapors based upon the relative
9 infrared energy levels measured in the first and second
10 plurality of bands.

11 BRIEF DESCRIPTION OF THE DRAWINGS

12 The present invention is illustratively
13 described in reference to the accompanying drawings in
14 which:

15 Fig. 1 is a representational diagram of a remote
16 detection environment in which the present invention is
17 intended to operate;

18 Fig. 2 is a schematic block diagram of a vapor
19 detection apparatus constructed in accordance with one
20 embodiment of the present invention;

21 Fig. 3 is an infrared spectral diagram of an
22 infrared filter designed to function in accordance with
23 the embodiment of Fig. 2; and

24 Fig. 4 is a flow chart of signal processing
25 performed by the apparatus of Fig. 2.

-5-

1 DETAILED DESCRIPTION OF THE DRAWINGS

2 Fig. 1 shows a typical infrared (IR) detection
3 environment 10 in which the apparatus and method of the
4 present invention are intended to operate. The
5 environment 10 generally includes a background 14
6 having measurable infrared emission/absorption/
7 reflection characteristics, and a non-imaging infrared
8 detector 16. Detector 16 is aimed in the direction of
9 arrow 18 toward the background 14 to detect for the
10 possible presence of selectable chemical vapors 20 as
11 may pass in the area 12 between the background 14 and
12 the detector 16. Area 12 may also include normal
13 atmospheric air 12 capable of sustaining human and
14 other forms of life. More specifically, the background
15 14 is selected so that it has a different temperature
16 from the vapors being detected. This contrast may
17 alternatively include the detection of warm vapors
18 against a cool background or the detection of cool
19 vapors against a warm background. The contrast
20 provides the basis for a detectable infrared
21 difference. The background 14 either may be man-made
22 such as a surface or wall, or may be opportunistically
23 selected such as a hillside or sky. Background 14 does
24 not have to have a stable temperature, so long as its
25 temperature generally contrasts that of vapors 20.

26 Fig. 2 shows a schematic block diagram of an
27 apparatus 19 constructed in accordance with one

-6-

1 embodiment of the present invention and capable of
2 performing the detection of selectable chemical vapors
3 such as 20 in the environment 10 of Fig. 1. Apparatus
4 generally includes the detector 16 of Fig. 1 and a
5 processor section 21.

6 The detector 16 is directed so that infrared
7 energy emanating from the background 14 traverses
8 through the chemical vapors 20 and is collected by the
9 aperture of an objective lens 24. The chemical vapors
10 20 selectively absorb or radiate IR energy in
11 accordance with their own unique IR characteristics and
12 in response to the relative differential temperature
13 between the background 14, the vapors 20 and any air or
14 gasses present in the testing environment. The IR
15 energy collected by the objective lens 24 passes
16 through a rotating, continuously varying infrared
17 spectral bandpass filter 26, a slit 28 and a field lens
18 30. The field lens 30 collects the energy onto an IR
19 detector 32. The filter 26 is rotated at a fixed rate
20 with motor 34 and causes the detector 32 to see
21 repeated scans of infrared wavelengths. In other
22 words, the functioning of the apparatus described thus
23 far produces an IR spectral radiometer.

24 This IR spectral radiometer may be constructed
25 to cover any partial bandwidth of the IR spectrum which
26 is of interest. This design aspect depends primarily
27 upon the rotating filter 26.

-7-

1 Filter 26 is circular and allows the passage
2 therethrough of a continuously varying wavelength of IR
3 energy. The wavelength varies in accordance with the
4 rotational angle of the filter over a predetermined
5 filter bandwidth. In one embodiment, the wavelength
6 varies continuously from (6) to (11.4) microns, both
7 increasing and decreasing the passed wavelength so that
8 the (6) to (11.4) micron filter bandwidth is scanned a
9 total of four (4) times in one rotation of the filter.
10 Each scan of the bandwidth may also be thought of as a
11 frame.

12 The IR energy passed at any point around the
13 filter is only a fractional bandwidth of the overall
14 filter bandwidth. In the above example, this
15 fractional bandwidth is (0.2) microns.

16 By selection of the filter 26, the filter
17 bandwidth of a detector may be tailored so that the
18 detection apparatus may be dedicated for the long term
19 monitoring of either a single vapor or a group of
20 vapors having sufficiently proximate IR
21 characteristics.

22 The IR energy level that impinges on the
23 detector 32 is detected or measured causing the
24 detector 32 to produce an output signal which is
25 amplified by a preamplifier 36 and an amplifier 38.
26 The amplified output signal from amplifier 38 is then
27 coupled to the processor section 21 which may be

-8-

1 constructed either integral with or separate from
2 detector 16.

3 The output signal from amplifier 38, which
4 corresponds to the IR energy detected is then chopped
5 or nulled by a null circuit 40. Null circuit 40 causes
6 the signal from amplifier 38 to be shorted to ground
7 between each bandwidth scan of filter 26. This
8 prevents scan to scan propagation of 1/f noise by
9 producing a deep signal null between successive scans.
10 In the example described above, where the filter
11 bandwidth is scanned a total of four times during each
12 rotation of the filter 26, it is possible to use one or
13 more of the filter bandwidth scans produced per
14 rotation and to null the signal during the unused scans
15 or between adjacent scans. It may also be said that
16 the output signal is nulled at the same rate that the
17 filter bandwidth is scanned. Nulling the signal just
18 prior to the scan enables a stable starting point for
19 the output signal, and nulling the signal after the end
20 of the scan reduces the unpredictable response caused
21 by 1/f noise. Synchronization of this nulling is
22 described below.

23 This reduction of 1/f noise enables improved
24 performance for the entire detection apparatus. Where
25 conventional approaches might use a lower scan rate and
26 a separate high frequency modulator to limit the 1/f
27 noise effect, this variation of the present invention

-9-

1 allows a higher scan rate, providing more data for more
2 accurate signal processing.

3 The resultant signal out of null circuit 40 is
4 buffered by a buffer amplifier 42 and filtered by a low
5 pass filter 44. The filtered analog signal is sampled
6 by a sample and hold circuit 46 and converted to a
7 digital format by an analog to digital (A/D) converter
8 48. A digital signal processor 50 processes the
9 digitally formatted data using an algorithm described
10 below and outputs the results to a display 52.

11 The sample and hold circuit 46 and null circuit
12 40 are synchronized to the circular filter 26 by means
13 of a phase-locked loop 54. This synchronization
14 enables effective nulling and identification, for
15 processing purposes of the filter position and
16 therefore the IR wavelength of each sample taken. Any
17 other suitable means may alternatively be used for
18 synchronizing the nulling and/or the sampling to the
19 wavelength position of filter 26. An example, in the
20 form of a reflecting detector 55, is optionally shown.
21 Such a detector may be made to respond either directly
22 to the filter or otherwise to the motor 24 drive shaft.

23 The analog data is over sampled, by sample and
24 hold circuit 46, at a rate which is nominally ten times
25 the rate of change of filter 26. In the example given,
26 the filter bandwidth extends from (6.0) to (11.4)
27 microns for a total of (5.4) microns, and the

-10-

1 fractional bandwidth passed by filter 26 at any point
2 in time is (0.2) microns. The sampling is controlled
3 to produce a sample every (0.02) micron of wavelength
4 change and therefore produces a total of (270) samples
5 per scan of the bandwidth. It is these (270) samples
6 produced by every scan of the bandwidth that are
7 digitized and used by the processor 50.

8 The system thus far described repeatedly scans
9 the IR spectrum of interest to enable detection of
10 differences in the measured IR energy at selected
11 wavelengths, caused by the presence of various
12 substance vapors contrasted against the background.
13 This detection of differences is performed with the
14 signal processing described below.

15 Processor 50 processes the digitized samples in
16 accordance with the flow chart 60 of Fig. 3.
17 Generally, Filter Calculation step 62 uses the samples
18 to calculate (54) separate filter values evenly spaced
19 across the scanned filter bandwidth. These filter
20 values are taken by the Filter Correction step 64 and
21 individually corrected for the transfer function of the
22 detector 16. The adjusted filter values are then
23 adjusted by subtraction of an estimated background
24 temperature by the Background Subtraction step 66.
25 With the background temperature subtracted, the filter
26 values are then integrated for a multiplicity of filter
27 bandwidth scans by Integration step 68 for the purpose

-11-

1 of removing noise.. Once data for a sufficient number
2 of scans is accumulated, the integrated filter values
3 are then tested for the known IR spectral
4 characteristics of the compounds of interest by
5 Detection step 70. The individual steps of flow chart
6 60 are discussed below in greater detail.

7 For each rotation of filter 26, Filter
8 Calculation step 62 takes the (270) samples and forms
9 (54) overlapping spectral bandpass filters that are the
10 average of ten samples and are separated by five
11 samples. The oversampling rate of 10 is nominal, and
12 generally the number of samples may be any suitable
13 multiple of the filter bandwidth (5.4) divided by the
14 fractional pass bandwidth (0.2) for purposes of
15 computational ease. Fig. 4 shows an example of sample
16 grouping which may be used to calculate a set of narrow
17 band filter values. Each of the points in the left
18 hand column represents a sample value from A/D
19 converter 48. Each of the actual wavelength values
20 appearing in the right hand column represents the
21 center wavelength of a narrow band filter value. The
22 wavelength of each of the samples in the left hand
23 column may be read or interpolated from the values
24 appearing in the right hand column.

25 Each of the narrow band filter values is
26 calculated by summing (or averaging) the ten (10)
27 nearest sample values. This means that the (6.1)

-12-

1 micron filter value is calculated by summing the values
2 for samples (6.0) through (6.2); the (6.2) filter value
3 is summed from samples (6.1) through (6.3); and so on.

4 This method produces (54) narrow band filter
5 values over the bandwidth of filter 26. Each narrow
6 band filter is (0.2) microns wide, which corresponds to
7 the bandpass characteristics of filter 26, and each
8 narrow band filter is separated from adjacent filters
9 by (0.1) microns. Because of this relationship, the
10 samples included in the computation of each filter
11 value represent potential infrared energy passed by the
12 filter with the wavelength of the respective filter
13 value.

14 The Filter Correction step 62 next corrects each
15 calculated filter value for the system transfer
16 function at each wavelength by multiplying each filter
17 value by a unique coefficient determined by system
18 calibration.

19 The Background Subtraction step 66 next uses the
20 filter values to calculate the level of an estimated or
21 equivalent background temperature across the filter
22 bandwidth and subtracts the calculated temperature
23 level from each of the filter values. The background
24 temperature may be calculated by any suitable method.
25 In one method, "clear" filter values are determined
26 either by just looking at wavelengths not affected by
27 the compound of interest or by otherwise examining the

-13-

1 filter values. From these "clear" filter values, a
2 temperature value for all filters is estimated by
3 minimizing a mean square error criteria to find an
4 equivalent blackbody temperature which best fits the
5 measured values in the "clear" filters. The estimated
6 temperature value in all filters is subtracted from the
7 measured signal in all filters to normalize the data.

8 This normalization, including estimation, is
9 performed every frame or scan of the filter bandwidth
10 and is the basis for detecting the substance vapors 20
11 against the contrasting background 14. The equivalent
12 blackbody temperature, which is determined, is the
13 background temperature against which the vapors 20 are
14 contrasted. In the instance where cold vapors are
15 detected against a warm background, subtracting the
16 background temperature results in a negative number at
17 the wavelengths of interest. Other negative numbers
18 are also generated due to noise in the measurements.
19 The resulting values, both negative and positive, are
20 then used by the Integration step 68.

21 The Integration step 68 accumulates data for
22 successive frames or full filter bandwidth scans. This
23 may be done for either a fixed number of scans or in
24 response to one or more accumulated filter values.
25 Noise signals in the measurements are eliminated by
26 this integration or accumulation. If there is an IR
27 signal, other than noise, present at any wavelength

-14-

1 within the scan bandwidth, the signal will integrate to
2 its final value.

3 The integrated residual filter values are then
4 passed to Detection step 70. Detection of compounds of
5 interest may be accomplished by any suitable means. In
6 one means, a microprocessor may be used to logically
7 and mathematically examine the filter values, comparing
8 them against known "footprints" or IR spectral
9 characteristics of the compound of interest. This
10 approach affords programmability of the system for the
11 detection of one or more of a variety of substances
12 thereby reducing adaptation costs for each different
13 application. This programmability even extends to
14 substance concentration and temperature. In an
15 alternative detection approach, a neural network
16 device/processor can be used to make the
17 classification/detection decision. Such an approach
18 would be used for detecting a large variety of
19 substances.

20 Again this detection process is intended to find
21 differences between the IR energy measured at
22 wavelengths having known spectral characteristics for
23 the substances of interest. These detected differences
24 may be either positive or negative depending upon the
25 relative temperature differences between the background
26 and the vapors to be detected.

-15-

1 After detection, any desirable information may
2 be passed to the display 52. This might include the
3 substance name, concentration, temperature, etc. or
4 something as simple as an indicator signal that a
5 specific substance is present or has exceeded a
6 specific concentration level. This data can also be
7 transmitted for distant monitoring, collection,
8 analysis, etc.

9 CONCLUSION

10 The present invention provides a unique
11 apparatus and method which is readily adaptable for the
12 detection of a wide variety of substances in gaseous
13 form. The present invention may be applied to any
14 situation in which a contrasting IR background is
15 available and against which a gaseous volume may be
16 monitored. The invention thereby provides remote
17 monitoring which affords an extremely wide range of
18 applications along with inexpensive, convenient and
19 fast testing of an infinite number of potential sources
20 of gasses or vapors. Potential applications include
21 the monitoring of border crossings for the detection of
22 substances which must be declared or which may not be
23 legally imported, methane monitoring in mining
24 operations and the outdoor monitoring of combustion
25 products, to name just a few. The ready
26 programmability of the apparatus combines the low
27 production cost of uniformity with the convenient

-16-

1 modification for most applications. Cost savings and
2 simple operation enhance distribution and use. The
3 specific IR radiometer and method provided share these
4 advantages and also represent an advancement in system
5 performance. Error producing system noise is reduced
6 and unstable IR background energy is tolerated.

7 The embodiments described above are intended to
8 be taken in an illustrative and not a limiting sense.
9 Various modifications and changes may be made to the
10 above embodiments by persons skilled in the art without
11 departing from the scope of the present invention as
12 defined in the appended claims.

-17-

1 **WHAT IS CLAIMED IS:**

2 1. An infrared radiometer, comprising:
3 means for collecting infrared energy;
4 means for filtering the collected energy over a
5 filter bandwidth including filter means for bandpassing
6 only a fractional bandwidth of the filter bandwidth at
7 any one time and means for repeatedly scanning the
8 filter bandwidth with the passed fractional bandwidth;
9 means for measuring infrared energy passed by
10 the filter means and for producing an output signal in
11 response thereto; and
12 means for repeatedly nulling the output signal
13 in relation to the repeated scanning of the filter
14 bandwidth.

15
16 2. The infrared radiometer of claim 1, further
17 comprising means for synchronizing the means for
18 repeatedly scanning with the means for repeatedly
19 nulling for causing the output signal to be nulled
20 between repeated scans of the filter bandwidth.

21
22 3. The infrared radiometer of claim 1, further
23 comprising means for synchronizing the means for
24 repeatedly scanning with the means for repeatedly
25 nulling for causing the output signal to be nulled and
26 the filter bandwidth to be scanned at an identical
27 rate.

-18-

1

2 4. The infrared radiometer of claim 1, wherein the
3 filter means has a bandpass wavelength which varies
4 over the filter bandwidth and further wherein the
5 fractional bandwidth of the filter means is
6 substantially constant over the filter bandwidth.

7

8 5. The infrared radiometer of claim 4, wherein the
9 bandpass wavelength of the filter means varies in
10 accordance with position on the filter means.

11

12 6. The infrared radiometer of claim 5, wherein the
13 filter means is circular having a bandpass wavelength
14 which varies with rotational position of the filter
15 means and further wherein the means for filtering
16 further includes means for rotating the filter means in
17 relation to the means for nulling the output signal.

18

19 7. The infrared radiometer of claim 4, further
20 comprising means for sampling the output signal a
21 predetermined number of times for each scan of the
22 filter bandwidth which predetermined number is a
23 multiple of the filter bandwidth divided by the
24 fractional bandwidth.

25

26 8. The infrared radiometer of claim 7, further
27 comprising computational means for summing output

-19-

1. signal samples from the means for sampling into a
2 multiplicity of filter values each representing a
3 separate wavelength within the filter bandwidth.

4

5 9. The infrared radiometer of claim 8, wherein each
6 filter value has a bandwidth substantially equal to the
7 fractional bandwidth of the filter means.

8

9 10. The infrared radiometer of claim 9, wherein the
10 computational means includes means for grouping samples
11 for summing for each filter value around the separate
12 wavelength represented by the respective filter value.

13

14 11. The infrared radiometer of claim 10, wherein the
15 means for grouping is adapted to include in each filter
16 value those samples representing potential infrared
17 energy passed by the filter means with the wavelength
18 of the respective filter value.

19

20 12. A method for measuring infrared energy,
21 comprising the steps of:

22 collecting infrared energy;

23 filtering the collected energy over a filter
24 bandwidth including bandpass filtering only a
25 fractional bandwidth of the filter bandwidth at any one
26 time and repeatedly scanning the filter bandwidth with
27 the passed fractional bandwidth;

-20-

1 measuring infrared energy passed by the bandpass
2 filtering producing an output signal in response
3 thereto; and
4 repeatedly nulling the output signal in relation
5 to the repeated scanning of the filter bandwidth.

6

7 13. The method of claim 12, further comprising the
8 step of synchronizing the scanning of the filter
9 bandwidth with the repeated nulling of the output
10 signal for causing the output signal to be nulled
11 between repeated scans of the filter bandwidth.

12

13 14. The method of claim 12, wherein the bandpass
14 filtering has a bandpass wavelength which varies over
15 the filter bandwidth and further wherein the fractional
16 bandwidth of the bandpass filtering is substantially
17 constant over the filter bandwidth.

18

19 15. The method of claim 14, wherein the bandpass
20 filtering is performed with a circular filter having a
21 bandpass wavelength which varies with rotational
22 position of the filter and further wherein the step of
23 bandpass filtering further includes rotating the filter
24 in relation to the means for nulling the output signal.

25

26 16. The method of claim 14, further comprising
27 sampling the output signal a predetermined number of

-21-

1 times for each scan of the filter bandwidth which
2 predetermined number is a multiple of the filter
3 bandwidth divided by the fractional bandwidth.

4

5 17. The method of claim 16, further comprising
6 summing output signal samples from the sampling step
7 into a multiplicity of filter values each representing
8 a separate wavelength within the filter bandwidth.

9

10 18. The method of claim 17, wherein each filter
11 value has a bandwidth substantially equal to the
12 fractional bandwidth used for the bandpass filtering.

13

14 19. The method of claim 18, wherein the step of
15 summing includes grouping samples for summing for each
16 filter value around the separate wavelength represented
17 by the respective filter value.

18

19 20. The method of claim 19, wherein the step of
20 grouping includes into each filter value those samples
21 representing potential infrared energy passed by the
22 filter means with the wavelength of the respective
23 filter value.

1/2

FIG. 2

FIG. 1

FIG. 4

SAMPLE POINTS FILTER VALUES

FIG. 3

INTERNATIONAL SEARCH REPORT

PCT/US92/10401

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :G01N 21/35
 US CL :250/338.5, 339, 351, 343

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 250/338.5, 339, 351, 343

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US,A, 3,663,106 (Minami et al.) 16 May 1972 See Col. 1, line 18, Col. 2, line 39 & Claim 1.	1-20
A	US,A, 3,843,258 (Shupe) 22 October 1974 See the entire document.	1 & 12
Y	US,A, 4,427,306 (Adamson) 24 January 1984 See Col. 3, line 46, Col. 4, line 33, Figure 1.	1-20
Y	US,A, 4,725,733 (Horman) 16 February 1988 See Col. 4, line 62, Col. 5, line 42, Figure 1.	1-20

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be part of particular relevance	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	&	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

13 JANUARY 1993

Date of mailing of the international search report

17 FEB 1993

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231

Authorized officer *Drew A. Dunn*

Facsimile No. NOT APPLICABLE

DREW A. DUNN

Telephone No. (703) 308-4865

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/10401

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	US,A, 5,075,550 (Miller) 24 December 1991 See Col. 3, line 4-50, Figure 1.	1-20

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/10401

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS (Automated Patent System)

S (Infrared or Infra(w)Red) And:

Energy (SA) Bandwidth?

(Nuu or Nulling)(10A)(Output?(SA)Signal).

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)