Phylodynamics of measurably evolving pathogens

Roman Biek (Roman.Biek@glasgow.ac.uk)

Institute of Biodiversity, Animal Health & Comparative Medicine

From trees to phylodynamics

REVIEW

Unifying the Epidemiological and Evolutionary
Dynamics of Pathogens

Bryan T. Grenfell, 1* Oliver G. Pybus, 2 Julia R. Gog, 1 James L. N. Wood, 3 Janet M. Daly, 3 Jenny A. Mumford, 3 Edward C. Holmes 2

Grenfell et al. 2004, Science

What can <u>phylogenetic patterns</u> reveal about the underlying population processes?

Volz et al. 2012, PLoS Comp Biol

Phylodynamics

Traditionally, strongly linked to rapidly evolving pathogens such as RNA viruses: **transmission** and **mutational events** on similar time scales

Increasingly changing in the genomic era, as more organisms become "measurably evolving"

Phylogenies at the centre of phylodynamic questions

Molecular clocks

e.g. "How long ago since two groups split?"

Selection

e.g. "Which genes or sites have undergone adaptive change?"

Ancestral state change

e.g. "Movement rate between population A and B?"

Demographic reconstruction

e.g. "How has population size changed through time?"

Structured host populations

Spatial structure

Multiple hosts

Estimating movement in discrete space: reconstructing ancestral states

Dispersal between two host populations

Global spread of H1N1 as inferred from phylogenetic data

Lemey et al 2009, PLoS Current Influenza

Global spread of H1N1

Discrete states don't need to be spatial

Movement between two host populations species

Cross-species transmission networks

Streicker et al. 2010, Science

Multi-host pathogens

Majority of emerging infectious diseases are caused by multi-host pathogens

Complex transmission dynamics that often involve wildlife, livestock and human populations

Bovine TB in badgers and cattle

Identification of infection reservoirs

Brucella abortus
in the Greater
Yellowstone
Ecosystem

Kamath et al. 2016, Nature Comm

Phylogenies at the centre of phylodynamic questions

Molecular clocks

e.g. "How long ago since two groups split?"

Selection

e.g. "Which genes or sites have undergone adaptive change?"

Ancestral state change

e.g. "Movement rate between population A and B?"

Demographic reconstruction

e.g. "How has population size changed through time?"

Coalescent theory

Rosenberg and Nordborg 2002, Nature Reviews Genetics

Going back in time, lineages randomly pick their parents

Coalescent event: when two lineages pick the same parent

Continues until all lineages coalesce at the most recent common ancestor

Coalescent theory

Rate of coalescence depends on

- 1. How many lineages are still left: more lineages = faster rate
- 2. The number of individuals in the population: fewer individuals means fewer parents to choose from = faster rate

Time between coalescent events depends on Pop size

Assumptions

- N>>n not more than one coalescent event in the same generation (diffusion approximation)
- No selection
- No recombination
- No population subdivision

Population size N

- Not the census population size but the effective population size (N_e)
- N_e = census size/ variance in the number of offspring
- For pathogen transmission, the estimate refers to the effective number of infections

Coalescence in changing populations

Can be extended to changing population sizes by rescaling coalescent times

Emerson 2001, Trends Ecol Evol

Combining clocks and demography

Rabies invasion history 1977-1999

Sampling scheme

Change in the number of infected raccoons

Close correspondence to observed data

Ideal study design rarely achievable

- Typical problems:
 - Opportunistic sampling
 - Variable surveillance effort (e.g. alternative host species)
 - Variation in detectability (e.g. asymptomatic infections)
 - Appropriate scale often not known in advance
- Many of these will result in certain degree of sampling bias
 - How can bias be minimised?
 - How much does it matter for a given research question?

Dealing with sampling bias

Type of inference	Potential for bias affecting results	Recommended practice
Molecular clock	Usually more robust	Sample evenly across time, maximise date range
Demographic inference (i.e. change in population size through time)	High	Define target population, sample evenly across space AND time
Ancestral states (e.g. cross species transmission	High	Sample evenly across space AND species AND time

Bovine TB in NZ cattle and wildlife

Bovine TB in NZ cattle and wildlife

Sampling changes conclusions

Matched sampling suggests rate of cross-species transmission the same in both directions

Original (i.e. biased) sampling suggests more transmission from wildlife to cattle

Sampling biases

- In most cases inevitable
- Rarely explored systematically
- Molecular clock models more robust
- Well-documented effects on demographic and diffusion models