GEOSPATIAL HABITAT ASSESSMENT TOOLKIT

Version 0.015

June 20, 2012

Case study: Salamander

· Area of interest: South Fork Catawba R. basin

Habitat: NLCD evergreen forest patches > 5 HA

Step 1: Creating habitat patches

- a) Isolate habitat from NLCD (all evergreen pixels)
- b) Group contiguous habitat cells into patches
- c) Remove patches smaller than 5 HA

2006 NLCD

Evergreen pixels

Evergreen patches > 5HA n = 458

Step 2: Calculate patch geometry

- Patch area
- Patch core area (edge = 60m)

ShapeIndex

- Core:Area ratio
- Shape index

ape mu					_	34	7	
PatchID	166				, «	. 4	F.	
PatchArea_HA	7				- -	فراوي	•	
CoreArea_HA	2				8 P	44		
CoreAreaRatio	0.2841			,F		-		
ShapeIndex	0.75047		4	4 .	, N	7 A	- 4	
	PatchID	175			40	\$	4	
	PatchArea_HA	35		1	LANA.	•	7	
	CoreArea_HA	18			1	_	Jan.	
	CoreAreaRatio	0.5302			1	-4		
	cl 1	0.00454						

Step 2: Calculate patch geometry

Patch Area (HA)

Minimum: 5.0 Maximum: 436

Sum: 6034

Mean: 13.17

St Dev: 22.78

Core Area (HA)

Minimum: 0

Maximum: 280

Sum: 2106

Mean: 4.6

St Dev: 14.3

Core Area Index

Minimum: 0

Maximum: 0.706

Mean: 0.257

St Dev: 0.125

Shape Index

Minimum: 0.243

Maximum: 0.934

Mean: 0.710

St Dev: 0.118

Step 3: Calculate patch connectivity

- a) Create an edge list (Euclidean or Cost distance)
 - Create cost raster if using the cost distance approach
- b) Draw edges/least cost paths between patches
- c) Summarize graph to determine **connectivity distance**:
 - Plot graph diameter at threshold distance intervals
- d) Calculate centrality metrics:
 - Degree (number of patches within the distance threshold)
 - Betweenness (frequency in least cost paths among patch pairs)
 - Closeness (avg. distance to neighbors relative to other patches)
- e) Calculate **connected habitat area**:
 - Total area within the distance threshold
 - Inverse distance weighted area set to d_{0.01} at distance threshold

- Euclidean distance method:
 - Measures straight-line distance between patch centroids
 - Very fast and does not require data on travel costs
 - Hope to improve by measuring distances between patch edges

- Cost distance method:
 - Requires a travel cost raster (information on resistances)
 - Takes significantly longer to calculate, but potentially more precise

Step 3c: Summarize graph

Threshold = 5 km; Diameter = 20; # Components = 1

Step 3c: Summarize graph

 Calculate graph diameter & number of components across a set interval of connectivity thresholds

Graph Summary TXT					
	Distance	NComps	Diameter		
	500	431	851		
	1000	251	7874		
	1500	113	32895		
	2000	59	34604		
	2500	28	104867		
	3000	9	84514		
	3500	2	87165		
	4000	1	85987		
	4500	1	84682		
┢	5000	1	83088		
	5500	1	82844		
	6000	1	82559		

Step 3d: Centrality metrics

Degree centrality:
 # patches within connectivity threshold to a given patch

Step 3d: Centrality metrics

• <u>Betweenness centrality</u>: Frequency a patch is found in the LCP between other patches

Step 3d: Centrality metrics

Closeness centrality:
 Avg. distance to neighbors relative to other patches

Step 3e: Connected habitat area

Connected area (HA):
 Total patch area within the connectivity threshold (3 km)

Step 3e: Connected habitat area

Probably connected area:
 Inverse distance weighted area within connectivity threshold (3 km)

Step 4: Creating a patch composite

 Allows viewing of multiple attributes Large & connected, but not central Red: PATCHAREA_HA Green: CONNECTEDAREA Blue: BETWEENNESS Betweenness

Central, but small

& not connected

Small, non-central,

but lots connected

Step 4: Creating a patch composite

Allows viewing of multiple attributes

Step 5: Compute a weighted overlay

Still to come

- Connectivity to protected areas
 - Euclidean/cost distance to nearest protected area
 - Centrality metrics to connectivity areas (degree, betweennes, closeness)
- Patch ranking on threat
 - Identify areas of urbanization from 2006-2001 NLCD difference
 - Calculate focal mean of urbanization (% urbanization within 3 km)
- Joining of patch rankings with other services:
 - Water quality (upstream impairments; downstream intakes)
 - Recreation (service area/travel time to patch)
- Connectivity speed/accuracy improvements
 - Patch to patch Euclidean distance (vs. centroid-centroid)

Conclusion: Salamander

- High priority patches are identified based on:
 - Area/core area/shape
 - Centrality
 - Proximity to other areas
- But no metric on saving certain portfolio of patches.
 - Benefit of nabbing two sub-optimal patches over taking the best.
- No mechanism when patch exceeds the area one can conserve.

Case: Flying Squirrel

Habitat: Deciduous forest

Squirrel patches

Habitat: Deciduous forest

Min patch size: 5 HA

Squirrel patch size/shape

Patch Area

Minimum: 5.04 Maximum: 22492 Sum: 69208 Mean: 85.65 St Dev: 813.83

Core: Area Ratio

Minimum: 0 Maximum: 0.737

Mean: 0.320 St Dev: 0.142

80 60 40 20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Core Area

Minimum: 0

Maximum: 16571 Sum: 39854 Mean: 49.32

St Dev: 593.56

Shape Index

Minimum: 0.050 Maximum: 0.952 Mean: 0.604 St Dev: 0.178

Patch connectivity

Gra	Graph Summary TXT					
	Distance	NComps	Diameter			
	500	744	1614			
	1000	267	14503			
	1500	61	50475			
	2000	16	75907			
	2500	4	82253			
	3000	3	79453			
	3500	2	81836			
	4000	2	81237			
	4500	2	80894			
	5000	2	80219			
	5500	2	79394			
	6000	1	84390			
	eenn	4	00764			

Patch centrality

Degree centrality

Patch centrality

Patch centrality

Patch connected area

Patch connected area

 Likely connected habitat (Distance wtd.) idwArea 490 - 611 612 - 733 734 - 855

Sub-patches

Sub-patches

Patches overlaid with planning units (NHD catchments)

since many patches are much larger than that which is

likely to be protected

at one time.

 Each pixel retains info on which catchment and which patch it overlays

ub Patches							
	Rowid	VALUE *	COUNT	CATCHMENTS	PATCHES		
Þ	0	1	1360	1773675	1		
	1	2	584	1773676	2		
	2	3	310	1773693	3		
	3	4	93	1773676	4		
	4	5	12	1773674	2		

Sub-patches

- Prioritize sub-patches based on:
 - Total <u>habitat area</u> and/or <u>core habitat</u> area it includes
 - Total habitat area and/or core habitat area it "touches"
 - Area wtd. mean <u>core:area ratio</u> and/or <u>shape index</u> of patches
 - Connectivity to patches in neighboring planning units

Challenges:

- Connectivity is useful only if connected patches are conserved.
 - Raise "conservation score" when connected patches are protected

Sub-patch connectivity

Graph Summary TXT				
	Distance	NComps	Diameter	
	500	1148	9	
	1000	275	54	
	1500	33	83	
	2000	2	45	
	2500	1	42	
	3000	1	34	

Assembling the data layers

Assembling the data layers

Patch geometry

Patch context

