THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH4010 Functional Analysis 2021-22 Term 1

Solution to Homework 5

1. Let (x_n) be a sequence in an inner product space. Show that the conditions $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ imply $x_n \to x$.

Proof. Note that $||x - x_n||^2 = \langle x - x_n, x - x_n \rangle = ||x||^2 - 2\Re \langle x_n, x \rangle + ||x_n||^2$.

It follows from $\langle x_n, x \rangle \to \langle x, x \rangle$ that $\Re \langle x_n, x \rangle \to \Re \langle x, x \rangle = \langle x, x \rangle$ since $\Re \colon \mathbb{C} \to \mathbb{R}$ is continuous and $\langle x, x \rangle \geq 0$. Combining with with $||x_n|| \to ||x||$, we have

$$||x - x_n||^2 \to ||x||^2 - 2\langle x, x \rangle + ||x||^2 = 0$$
, as $n \to \infty$.

Thus $x_n \to x$ in $\|\cdot\|$.

2. Show that

$$X = \left\{ x = (x_n) \in \ell^2 \colon \sum_{n=1}^{\infty} \frac{x_n}{n} = 0 \right\}$$

is a closed subspace of ℓ^2 .

Proof. For $x = (x_n) \in \ell^2$, define

$$f(x) \coloneqq \sum_{n=1}^{\infty} \frac{x_n}{n}.$$

Write $y = (1/n)_{n=1}^{\infty}$. Note $||y||^2 = \sum_{n=1}^{\infty} 1/n^2 < \infty$. For $x \in \ell^2$, by Cauchy-Schwarz inequality, $|f(x)| = |\langle x, y \rangle| \le ||x||^2 ||y||^2 < \infty$.

Hence f is well-defined and continuous since f is readily checked to be linear. Thus X is a closed subspace as the kernel of a linear continuous functional.

3. (a) Prove that for every two subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}.$$

(b) Prove that for every two closed subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 \cap X_2)^{\perp} = \overline{X_1^{\perp} + X_2^{\perp}}.$$

Proof. (a) By $X_1, X_2 \subset (X_1 + X_2)$, we have $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp}, (X_2)^{\perp}$, thus $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp} \cap (X_2)^{\perp}$.

Let $x^* \in (X_1)^{\perp} \cap (X_2)^{\perp}$. Let $y \in X_1 + X_2$ and write $y = x_1 + x_2$ for some $x_1 \in X_1, x_2 \in X_2$. Then $\langle y, x^* \rangle = \langle x_1 + x_2, x^* \rangle = \langle x_1, x^* \rangle + \langle x_2, x^* \rangle = 0$. Hence $x^* \in (X_1 + X_2)^{\perp}$, thus $(X_1)^{\perp} \cap (X_2)^{\perp} \subset (X_1 + X_2)^{\perp}$. Together we have $(X_1 + X_2)^{\perp} = (X_1)^{\perp} \cap (X_2)^{\perp}$.

(b) Since X_1, X_2 are closed, we have $(X_i^{\perp})^{\perp} = X_i$, i = 1, 2. Then by applying (a) to X_1^{\perp}, X_2^{\perp} , we have

$$(X_1^{\perp} + X_2^{\perp})^{\perp} = (X_1^{\perp})^{\perp} \cap (X_2^{\perp})^{\perp} = X_1 \cap X_2.$$

Hence

$$\overline{X_1^{\perp} + X_2^{\perp}} = ((X_1^{\perp} + X_2^{\perp})^{\perp})^{\perp} = (X_1 \cap X_2)^{\perp}.$$

— THE END —