

You Choose, We Do It

St. JOSEPH'S COLLEGE OF ENGINEERING

(An Autonomous Institution)

St. Joseph's Group of Institutions
Jeppiaar Educational Trust
OMR, Chennai - 119.

B.TECH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING REGULATION – 2021 CHOICE BASED CREDIT SYSTEM I - VIII SEMESTERS CURRICULA AND SYLLABI

You Choose, We Do It

St. JOSEPH'S COLLEGE OF ENGINEERING

(An Autonomous Institution)

St. Joseph's Group of Institutions Jeppiaar Educational Trust

OMR, Chennai - 119.

B.TECH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING REGULATION - 2021 CHOICE BASED CREDIT SYSTEM I TO VIII SEMESTERS CURRICULAM AND COMPARISION

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO-1:** To demonstrate technical skills, competency in fundamentals of Mathematics, Programming and Artificial Intelligence in modelling, designing and conducting of experiments to provide solutions for industry's complex technological problems.
- **PEO-2:** To enrich graduates with creativity that applies the concepts of Machine Learning to create, build and deploy solutions for various business problems
- **PEO-3:** To build graduates with potential and ability to engage in continuous professional development and life-long learning.
- **PEO-4:** To train graduates to work in multi-disciplinary teams with superior work ethics and build innovative solutions to serve the needs of the society.
- **PEO-5:** To enable graduates to research, design and implement AI/ML products and services with effective Communication and Entrepreneurial Skills.

PROGRAM OUTCOMES POs:

Engineering Graduates will be able to:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate

- consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSO)

PSO-1: Graduates should be able to acquire and apply practical competency with engineering knowledge in the field of artificial intelligence for efficient design of intelligent systems of varying complexity.

PSO-2: Graduates should be able to contribute constructive ideas and innovative Machine learning solutions for multi-disciplinary problems

PSO-3: Graduates should be able to build systems by applying AI/ML methods, techniques and tools for solving engineering problems.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

AbroadrelationbetweentheProgrammeobjectiveandtheoutcomesisgiveninthefollowingtable

PROGRAMME EDUCATIONAL					PRC	GRA	MME	OUT	CON	/IES		
OBJECTIVES	A	В	С	D	E	F	G	Н	ı	J	K	L
1	3	2										
2	3	2	1	1								1
3			3									3
4			2		1	2	2	1				
5				3		1		1	1	2	2	1

MAPPING OF PROGRAM SPECIFIC OBJECTIVES WITH PROGRAMME OUTCOMES

Abroad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAM SPECIFIC						OGRAI UTCOM						
OBJECTIVES	Α	В	С	D	E	F	G	Н	I	J	K	L
1	3											
2		2	3			1						
3	1		2	1	2		1		1	1	1	

Contribution 1: Reasonable 2: Significant 3: Strong

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

YEAR	SEM	COURSE TITLE		F	PRO	GR	AM	OU	TC	OME	ES (PO	s)		F	PSO	s
. = \	J_111		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Communicative English								1	1	1		1	1	1	1
		Engineering Mathematics - I	1	1	1						1				1	1	1
		Engineering Physics	1	1	1										1	1	1
		Engineering Chemistry	1	1	1										1	1	1
	ı	Problem Solving and Python Programming	1	1	1										1	1	1
		Engineering Graphics	1	1	1		1			1	1	1		1	1	1	1
		Python Programming Laboratory	1	1	1		1			1	1	1		1	1	1	1
		Physics and Chemistry Laboratory	1	1	1					1	1	1			1	1	1
I		Professional English								1	1	1		1	1	1	1
		Linear Algebra	1	1	1						1				1	1	1
		Physics for Information Science	1	1	1										1	1	1
		Environmental Science and Engineering	1	1	1				1	1	1	1		1	1	1	1
	II	Basic Electrical, Electronics and Measurement Engineering	1	1	1										1	1	1
		Programming in C	1	1	1					1	1	1		1	1	1	1
		Engineering Practice Laboratory	1	1	1	1	1	1		1	1	1		1	1	1	1
		Programming in C Laboratory	1	1	1					1	1	1		1	1	1	1

YEAR	SEM	COURSE TITLE		F	PRO	GR	AM	OU	TC	OME	ES (POs	s)		F	SO	S
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Probability and Bayesian Analysis	1	1	1	1					1	1		1	1	✓	1
		Data Structures	1	1	1	1	1	1							1	1	1
		Introduction to Artificial Intelligence	1	1	1	1	1					1	1	1	1	✓	1
		Data Foundation	1	1	1	1	1					1	1	1	1	1	1
	III	Object Oriented Software Engineering (Lab Integrated)	1	1	1		1			1	1	1		1	1	✓	1
		Optimization for Machine Learning	1	1	1	1					1	1		1	1	1	1
		Data Structures Laboratory using Python	1	1	√	✓					1	1	1	1	✓	✓	1
II		Artificial Intelligence Laboratory	1	1	1	1	1			1	1	1		1	1	1	1
		Professional Skills Laboratory		1		1					1	1			1	1	1
		Discrete Mathematics and Graph Theory	1	1	1	1								1	1	/	✓
		Design and Analysis of Algorithms	1	1	1	1	1				1		1	1	1	1	1
		Operating Systems	1	1	1	1	1					1	1	1	1	1	1
	IV	Database Design and Management (Lab Integrated)	1	1	1	1	1					1	1	1	1	✓	✓
		Foundations to Machine Learning	1	1	1	1	✓	1	1			1	1	1	1	1	1
		Statistics for Machine Learning	1	1	1	1	1					1	1	1	1	1	1
		Operating Systems Laboratory	1	1	1	1	1					1	1	1	1	1	1
		Machine Learning Laboratory	1	1	1	1	1			1		1	1	1	1	1	1

YEAR	SEM	COURSE TITLE PROGRAM OUTCOMES (POs) PSOS									S						
	0		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Reinforcement Learning	1	1	\	√	\				1	1	✓	1	1	1	1
		Advanced Artificial Intelligence Systems	1	1	√	✓	/				1	1	1	1	1	1	1
		Nature Inspired Computing Techniques	1	1	1	√								1	1	1	1
	V	Web programming(Lab Integrated)	1	1	1		1				1		1	1	1	1	1
III		Applied Reinforcement Laboratory	1	1	/	1	1			/	1	1		1	1	1	1
		Advanced Artificial Intelligence Laboratory	1	1	>	>	>			>	1	1		1	1	1	1
		Deep Learning	1	1	1	<						1	✓	1	1	1	1
		Autonomous Mobile Robot		1								1	✓	1	1	1	1
	VI	Probabilistic Graphical Models	1	1	1	1	1					1	1	1	1	1	1
	VI	Big Data Analytics	1	1	1	1	1	1	1				1	1	1	1	1
		Deep Learning Laboratory	1	1	1	1	1	1			1	1	1	1	1	1	1
		Socially relevant Project	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Statistical Natural Language Processing	1	1	1	1	1			1				1	1	1	1
		Formal Languages and Automata Theory	1	1	1	1	1			1		1	1	1	1	1	1
	VII	Image Processing and Vision Techniques	1	1	1	/								1	1	1	1
IV		Machine Intelligence for Network Sciences	1	1	1	1	1							1	1	1	1
		Natural Language Processing Laboratory	1	1	1	1	1			1	1	1		1	1	1	1
		Capstone Project-Phase1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	VIII	Capstone Project-Phase2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

MAPPING OF PROFESSIONAL ELECTIVES

YEAR	SEM	dvanced Databases				P	SO	S									
ILAN	SLIVI	COOKSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Advanced Databases	1	1	1	1	1					1	1	1	/	1	1
		Semantic Web	1	1	1	1	1					1	1	1	1	1	1
	V	Advanced Data Structures	1	1	1	1	1	1							1	1	1
		Logic Programming	1	1	1	1	1			1				1	1	1	1
		Application Of Machine Learning In Industries	1	1	1	✓	1			1				1	1	1	1
III		Green Computing	1	√	1						1			>	\	\	1
		Game Programming	1	√	1	1								\	✓	1	1
	VI	Game Theory	1	1	1	1								1	1	1	1
		Parallel And Distributed Computing	1	1	1	1	1			1	1	1	1	>	1	1	1
		Case Based Reasoning	1	1	1	1							1	1	✓	1	1
		Al for Clinical Information System	1	√	1	\	1					1	1	✓	1	1	1
		Al In Healthcare	1	1	1	1	1					1	1	✓	1	1	1
		Data Mining And Predictive Modelling	1	1	1	1	1		1			1	1	1	1	1	1
		Virtualization Techniques	1	1	1	1	1					1	1	✓	1	1	1
	VII	Augmented & Virtual Reality	1	1	1	1					1	1	1	1	1	1	1
	V	Genetic Algorithm	1	1	1	1	1			1		1	1	√	1	1	1
		Speech Processing	1	1	1					1	1	1			1	1	1
		Advanced Optimization Techniques		1	1	1									1	1	1
		Intelligent Transport Systems	1	√	1	✓					1	1	✓	1	\	√	1
IV		Advanced Bio-Inspired Artificial Intelligence Techniques	1	1	1	1									1	1	1
		Video Analytics	1	1	1	1	1			✓	✓	✓	1	1	1	√	1
		Block chain Architecture Design	1	1	1	1					1	1			/	1	1
		Microsoft Bots Framework	1	1	1	1								1	1	√	1
		Business Intelligence	1	1	1	1						1	1	1	1	√	1
	VIII	Supply Chain Management		1	1	1									1	1	1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Internet of Everything	1	1	1	1	1					1	1	✓	1	1	1
		Human Robot Interaction	1	1	1	1	1			1				✓	1	1	1
		Agile Software Development	1	1	1	1						1	1	1	1	1	1
		Brain Computer Interface	1	1	1	1								✓	1	1	1
		Cognitive Systems	1	1	✓	✓	1					1	1	✓	√	1	1

SEMESTER - I

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	Г	Т	Р	С
		THEO	RY					
1	HS1101	Communicative English (Common for all branches of B.E. /B. Tech Programmes)	HSMC	3	3	0	0	3
2	MA1102	Engineering Mathematics – I (Common for all branches of B.E. /B. Tech Programmes)	BSC	4	4	0	0	4
3	PH1103	Engineering Physics (Common for all branches of B.E. /B. Tech Programmes)	BSC	3	3	0	0	3
4	CY1104	Engineering Chemistry (Common for all branches of B.E. /B. Tech Programmes)	BSC	3	3	0	0	3
5	GE1105	Problem Solving and Python Programming (Common for all branches of B.E. /B. Tech Programmes)	ESC	4	3	1	0	3
6	GE1106	Engineering Graphics (Common for all branches of B.E. /B. Tech Programmes)	ESC	5	1	0	4	4
		PRACTIO	CALS					
7	GE1107	Python Programming Laboratory (Common for all branches of B.E. /B. Tech Programmes)	ESC	4	0	0	4	2
8	BS1108	Physics and Chemistry Laboratory (Common for all branches of B.E. /B. Tech Programmes)	BSC	4	0	0	4	2
		Total		30	17	1	12	24

SEMESTER - II

S.N o	COURSE CODE	COURSE TITLE	CATEGOR Y	CONTACT PERIODS	L	Т	Р	С
		THEOR	RY					
1	HS1201	Professional English (Common for all branches of B.E. /B. Tech Programmes)	HSMC	3	3	0	0	3
2	MA1251	Linear Algebra (Common to Al-DS)	BSC	4	4	0	0	4
3	PH1252	Physics for Information Science (Common to CSE, AI-DS & IT)	BSC	3	3	0	0	3
4	GE1204	Environmental Science and Engineering (Common for all branches of B.E. /B. Tech Programmes)	HSMC	3	3	0	0	3
5	BE1251	Basic Electrical Electronics and Measurement Engineering (Common to CSE, AI-DS & IT)	ESC	3	3	0	0	3
6	CS1206	Programming C (Common to CSE, AI-DS & IT)	PCC	4	3	1	0	3
		PRACTIC	ALS					
7	GE1207	Engineering Practices Laboratory (Common for all branches of B.E. /B. Tech Programmes)	ESC	4	0	0	4	2
8	CS1208	Programming in C Laboratory (Common to CSE, AI-DS & IT)	PCC	4	0	0	4	2
		Total		28	19	1	8	23

SEMESTER - III

S.No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
		ТН	EORY		•			
1	MA1354	Probability and Bayesian Inference	BSC	4	4	0	0	4
2	CS1302	Data Structures (Common to CSE, AI-DS & IT)	PCC	4	3	1	0	3
3	DS1303	Introduction to Artificial Intelligence (Common to AI-DS)	PCC	3	3	0	0	3
4	ML1301	Data Foundation	PCC	3	3	0	0	3
5	ML1302	Object Oriented Software Engineering (Lab Integrated)	PCC	5	3	0	2	4
6	ML 1303	Optimization for Machine Learning	PCC	3	3	0	0	3
		PRA	CTICAL					
7	DS1307	Data Structures Laboratory using Python (Common to Al-DS)	PCC	4	0	0	4	2
8	DS1308	Artificial Intelligence Laboratory (Common to Al-DS)	PCC	4	0	0	4	2
9	HS1310	Professional Skills Laboratory (Common to IT)	HSMC	2	0	0	2	1
		Total		32	19	1	12	25

SEMESTER - IV

SI. No	COURS E CODE	COURSE TITLE	CATEGOR Y	CONTAC T PERIODS	L	Т	Р	С
		THEC	DRY					
1	MA1454	Discrete Mathematics and Graph Theory	BSC	4	4	0	0	4
2	CS1401	Design and Analysis of Algorithm (Common to CSE, Al-DS & IT)	PCC	3	3	0	0	3
3	CS1402	Operating Systems (Common to CSE, Al-DS & IT)	PCC	3	3	0	0	3
4	CS1403	Database Design and Management (Lab Integrated) (Common to CSE, AI-DS & IT)	PCC	5	3	0	2	4
5	ML1401	Foundations of Machine Learning (Common to Al-DS & IT)	PCC	3	3	0	0	3
6	ML1402	Statistics for Machine Learning	PCC	3	3	0	0	3
		PRAC1	ΓICAL					
7	CS1407	Operating Systems Laboratory (Common to CSE & IT)	PCC	4	0	0	4	2
8	ML1408	Machine Learning Laboratory (Common to Al-DS & IT)	PCC	4	0	0	4	2
		Total		29	19	0	10	24

SEMESTER - V

SI. No.	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
		THE	EORY					
1	ML1501	Reinforcement Learning	PCC	4	3	1	0	3
2	DS1502	Advanced Artificial Intelligence Systems (Common to Al-DS)	PCC	4	3	1	0	3
3	ML1502	Nature Inspired Computing Techniques	PCC	4	3	1	0	3
4	ML1503	Web programming (Lab Integrated)	PCC	5	3	0	2	4
5		Open Elective-I	OEC	3	3	0	0	3
6		Professional Elective - I	PEC	3	3	0	0	3
		PRAC	CTICAL					
7	ML1507	Applied Reinforcement Laboratory	PCC	4	0	0	4	2
8	DS1508	Advanced Artificial Intelligence Laboratory (Common to AI-DS)	PCC	4	0	0	4	2
		Total		31	18	3	10	23
10		Value Added Course	Audit Course	Two	Week	s		1

SEMESTER - VI

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
		THEC	PRY					
1	ML1601	Deep Learning	PCC	4	3	1	0	3
2	ML1602	Autonomous Mobile Robot	PCC	4	3	1	0	3
3	ML1603	Probabilistic Graphical Models	PCC	4	3	1	0	3
4	ML1604	Big Data Analytics	PCC	4	3	1	0	3
5		Open Elective-II	OEC	3	3	0	0	3
6		Professional Elective-II	PEC	3	3	0	0	3
	,	PRACT	ICAL					
7	ML1607	Deep Learning Laboratory	PCC	4	0	0	4	2
8	ML1608	Socially relevant Project	EEC	4	0	0	4	2
		Total		31	18	3	10	22
9		Audit Course (Optional)	AC					

SEMESTER - VII

SI. No.	COURS E CODE	COURSE TITLE	CATEGOR Y	CONTACT PERIODS	L	т	Р	С			
		THE	ORY								
1	1 ML1701 Statistical Natural Language Processing PCC 4 3 1 0 3										
2	ML1702	Formal Languages and Automata Theory	PCC	4	4	0	0	4			
3	ML1703	Image Processing and Vision Techniques	PCC	4	3	1	0	3			
4	ML1704	Machine Intelligence for Network Sciences	PCC	4	3	1	0	3			
5		Professional Elective-III	PEC	3	3	0	0	3			
6		Professional Elective-IV	PEC	3	3	0	0	3			
		PRACT	TICALS								
7	ML1707	Natural Language Processing Laboratory	PCC	4	0	0	4	2			
8	ML1708	Capstone Project-Phase1	EEC	4	0	0	4	2			
	Total			30	18	4	8	23			

SEMESTER - VIII

SI. No.	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
		ті	HEORY					
1		Professional Elective-V	PEC	3	3	0	0	3
2		Professional Elective-VI	PEC	3	3	0	0	3
		PRA	CTICALS					
3	ML1807	Capstone Project-Phase2	EEC	20	0	0	20	10
	Total				6	0	20	16

Total Credits: 180

HUMANITICS SCIENCE AND MANAGEMENT COURSES (HSMC)

S.No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	HS1101	Communicative English	HSMC	3	3	0	0	3
2	HS1201	Professional English	HSMC	3	3	0	0	3
3	GE1204	Environmental Science and Engineering	HSMC	3	3	0	0	3
4	HS1310	Professional Skills Laboratory	HSMC	2	0	0	2	1

BASIC SCIENCE COURSES (BSC)

S.No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	MA1102	Engineering Mathematics - I	BSC	4	4	0	0	4
2	PH1103	Engineering Physics	BSC	3	3	0	0	3
3	CY1104	Engineering Chemistry	BSC	3	3	0	0	3
4	BS1108	Physics and Chemistry Laboratory	BSC	4	0	0	4	2
5	MA1251	Linear Algebra	BSC	4	4	0	0	4
6	PH1252	Physics for Information Science	BSC	3	3	0	0	3
7	MA1354	Probability and Bayesian Inference	BSC	4	4	0	0	4
8	MA1454	Discrete Mathematics and Graph Theory	BSC	4	4	0	0	4

ENGINEERING SCIENCE COURSES (ESC)

S.No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	C
1	GE1105	Problem Solving and Python Programming	ESC	4	3	1	0	3
2	GE1106	Engineering Graphics	ESC	5	1	0	4	4
3	GE1107	Python Programming Laboratory	ESC	4	0	0	4	2
4	BE1205	Basic Electrical and Electronics Engineering	ESC	3	3	0	0	3
5	GE1207	Engineering Practice Lab	ESC	4	0	0	4	2

PROFESSIONAL CORE COURSES (PCC)

S.No	COURS E CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CS1206	Programming in C	PCC	4	3	1	0	3
2	CS1208	Programming in C Lab	PCC	4	0	0	4	2
3	CS1302	Data Structures	PCC	4	3	1	0	3
4	DS1303	Introduction to Artificial Intelligence	PCC	3	3	0	0	3
5	ML1301	Data Foundation	PCC	3	3	0	0	3
6	ML1302	Object Oriented Software Engineering (Lab Integrated)	PCC	5	3	0	2	4
7	ML 1303	Optimization for Machine Learning	PCC	3	3	0	0	3
8	DS1307	Data Structures Laboratory using Python	PCC	4	0	0	4	2
9	DS1308	Artificial Intelligence Laboratory	PCC	4	0	0	4	2
10	CS1401	Design and Analysis of Algorithms	PCC	3	3	0	0	3
11	CS1402	Operating Systems	PCC	3	3	0	0	3
12	CS1403	Database Design and Management (Lab Integrated)	PCC	5	3	0	2	4
13	ML1401	Foundations to Machine Learning	PCC	3	3	0	0	3
14	ML1402	Statistics for Machine Learning	PCC	3	3	0	0	3
15	CS1407	Operating Systems Laboratory	PCC	4	0	0	4	2
16	DS1408	Machine Learning Laboratory	PCC	4	0	0	4	2
17	ML1501	Reinforcement Learning	PCC	4	3	1	0	3
18	DS1502	Advanced Artificial Intelligence Systems	PCC	4	3	1	0	3
19	ML1502	Nature Inspired Computing Techniques	PCC	4	3	1	0	3
20	ML1503	Web programming(Lab Integrated)	PCC	5	3	0	2	4
21	ML1507	Applied Reinforcement Laboratory	PCC	4	0	0	4	2

22	DS1508	Advanced Artificial Intelligence Laboratory	PCC	4	0	0	4	2
23	ML1601	Deep Learning	PCC	4	3	1	0	3
24	ML1602	Autonomous Mobile Robot	PCC	4	3	1	0	3
25	ML1603	Probabilistic Graphical Models	PCC	4	3	1	0	3
26	ML1604	Big Data Analytics	PCC	4	3	1	0	3
27	ML1607	Deep Learning Laboratory	PCC	4	0	0	4	2
28	IT1701	Statistical Natural Language Processing	PCC	4	3	1	0	3
29	ML1701	Formal Languages and Automata Theory	PCC	4	4	0	0	4
30	ML1702	Content Based Image And Video Retrieval	PCC	4	3	1	0	3
31	ML1703	Machine Intelligence for Network Sciences	PCC	4	3	1	0	3
32	ML1707	Natural Language Processing Laboratory	PCC	4	0	0	4	2

PROFESSIONAL ELECTIVE COURSES (PEC) PROFESSIONAL ELECTIVE – I (V)

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ML1511	Advanced Databases	PEC	3	3	0	0	3
2	ML1512	Semantic Web	PEC	3	3	0	0	3
3	ML1513	Advanced Data Structures	PEC	3	3	0	0	3
4	ML1514	Logic Programming	PEC	3	3	0	0	3
5	ML1515	Application Of Machine Learning In Industries	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - II (SEMESTER VI)

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ML1611	Green Computing	PEC	3	3	0	0	3
2	ML1612	Game Programming	PEC	3	3	0	0	3
3	ML1613	Game Theory	PEC	3	3	0	0	3
4	ML1614	Parallel And Distributed Computing	PEC	3	3	0	0	3
5	ML1615	Case Based Reasoning	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - III (SEMESTER VII)

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ML1711	Al for Clinical Information System	PEC	3	3	0	0	3
2	ML1712	Al In Healthcare	PEC	3	3	0	0	3
3	ML1713	Data Mining And Predictive Modelling	PEC	3	3	0	0	3
4	CS1712	Virtualization Techniques	PEC	3	3	0	0	3
5	IT1715	Augmented & Virtual Reality	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - IV (SEMESTER VII)

SI. No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	C
1	ML1721	Genetic Algorithm	PEC	3	3	0	0	3
2	ML1722	Speech Processing	PEC	3	3	0	0	3
3	ML1723	Advanced Optimization Techniques	PEC	3	3	0	0	3
4	ML1724	Intelligent Transport Systems	PEC	3	3	0	0	3
5	ML1725	Advanced Bio-Inspired Artificial Intelligence Techniques	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - V (SEMESTER VIII)

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ML1811	Video Analytics	PEC	3	3	0	0	3
2	ML1812	Block chain Architecture Design	PEC	3	3	0	0	3
3	ML1813	Microsoft Bots Framework	PEC	3	3	0	0	3
4	ML1814	Business Intelligence	PEC	3	3	0	0	3
5	MG1815	Supply Chain Management	PEC	3	3	0	0	3

PROFESSIONAL ELECTIVE - VI (SEMESTER VIII)

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ML1821	Internet of Everything	PEC	3	3	0	0	3
2	ML1822	Human Robot Interaction	PEC	3	3	0	0	3
3	ML1823	Agile Software Development	PEC	3	3	0	0	3
4	ML1824	Brain Computer Interface	PEC	3	3	0	0	3
5	DS1821	Cognitive Systems	PEC	3	3	0	0	3

OPEN ELECTIVE COURSES - I & II

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	OBT101	Industrial Biotechnology	OEC	3	3	0	0	3
2	OBT104	Biosensors	OEC	3	3	0	0	3
3	OBT105	Introduction To Nanoscience And Nanotechnology	OEC	3	3	0	0	3
4	OCE102	Introduction To Geographic Information System	OEC	3	3	0	0	3
5	OCH101	Hospital Management	OEC	3	3	0	0	3
6	OEC103	Basics of Embedded Systems and IoT	OEC	3	3	0	0	3
7	OEE101	Basic Circuit Theory	OEC	3	3	0	0	3
8	OEE103	Introduction To Renewable Energy Systems	OEC	3	3	0	0	3
9	OEI102	Robotics	OEC	3	3	0	0	3
10	OMB101	Total Quality Management	OEC	3	3	0	0	3
11	OME104	Industrial Safety Engineering	OEC	3	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.No	COURS E CODE	COURSE TITLE	CATEGOR Y	CONTACT PERIODS	L	Т	Р	С
1	ML1608	Socially relevant Project	EEC	4	0	0	4	2
2	ML1708	Capstone Project-Phase1	EEC	4	0	0	4	2
3	ML1807	Capstone Project-Phase2	EEC	20	0	0	20	10

AUDIT COURSES (AC)

SI. No.	Course Code	Subject Name	Category	Contact Periods	L	T	P	С
1	AD1001	Constitution of India	AC	2	2	0	0	0
2	AD1002	Value Education	AC	2	2	0	0	0
3	AD1003	Pedagogy Studies	AC	2	2	0	0	0
4	AD1004	Stress Management by Yoga	AC	2	2	0	0	0
5	AD1005	Personality Development Through Life EnlightenmentSkills	AC	2	2	0	0	0
6	AD1006	Unnat Bharat Abhiyan	AC	2	2	0	0	0
7	AD1007	Essence of Indian Knowledge Tradition	AC	2	2	0	0	0
8	AD1008	Sanga Tamil Literature Appreciation	AC	2	2	0	0	0

^{*} Registration for any of these courses is optional to students

CREDIT SUMMARY

	ı	II	III	IV	V	VI	VII	VIII	Total	PERCENTAGE OF CREDIT
нѕмс	3	6	1						10	5.56
BSC	12	7	4	4					27	15.00
ESC	9	5							14	7.77
PCC		5	20	20	17	14	15		91	50.55
PEC					3	3	6	6	18	10.00
OEC					3	3			6	3.33
EEC						2	2	10	14	7.78
Total	24	23	25	24	23	22	23	16	180	100

You Choose, We Do It

St. JOSEPH'S COLLEGE OF ENGINEERING

(An Autonomous Institution)

St. Joseph's Group of Institutions
Jeppiaar Educational Trust
OMR, Chennai - 119.

B.TECH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

REGULATION - 2021

CHOICE BASED CREDIT SYSTEM

I - VIII SEMESTERS SYLLABUS

HS1101	COMMUNICATIVE ENGLISH	L	Т	Р	С
	(Common for all Branches of B.E. /B. Tech Programmes)	3	0	0	3

OBJECTIVES

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills.

UNIT I	SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS		9			
opinions - Writi formal and informal exchanging per development—vo	alreading—findingkey information in a given text — shifting facts from ing -autobiographical writing - developing hints. Listening- short texts- short rmal conversations. Speaking- basics in speaking - introducing oneself - rsonal information- speaking on given topics & situations Language pices-Wh- Questions- asking and answering-yes or no questions—parts abulary development prefixes- suffixes- articles - Polite Expressions.	C	01			
LINIT	CENTERAL READING AND ERFE WRITING					
	GENERAL READING AND FREE WRITING		9			
conversations; paragraph writin some sugges extensivespeed askingandansw	narratives and descriptions from newspapers (including dialogues and Reading Comprehension Texts with varied question types - Writing - ng- topic sentence- main ideas- free writing, short narrative descriptions using sted vocabulary and structures Listening-longtexts-TEDtalks-choncurrentaffairsand discussionsSpeaking-describingasimpleprocess-vering questions - Language development - prepositions, clauses. elopment- guessing meanings of words in context -useofsequencewords.	C	02			
UNIT III	GRAMMAR AND LANGUAGE DEVELOPMENT		9			
criticalanalysise rearrangement for comprehens opinions. Langu	ort texts and longer passages (close reading)&makinga ofthegiventextWriting—typesofparagraphandwriting essays — of jumbled sentences. Listening: Listening to ted talks and long speeches sion. Speaking- roleplays - asking about routine actions and expressing uage development- degrees of comparison- pronouns- Direct vs. Indirect cabulary development — idioms and phrases- cause&effectexpressions,	C	03			
UNIT IV	READING AND LANGUAGE DEVELOPMENT		9			
Writing- letter writing, informal or personal letters-e-mails-conventions of personal email-Listening: Listening comprehension (IELTS, TOEFL and others). Speaking -Speakingabout						

friends/places/hobbies - Language development- Tenses- simple present-simple past- present continuous and past continuous- conditionals – if, unless, in case, when and others Vocabulary development- synonyms-antonyms- Single word substitutes- Collocations.

UNIT V EXTENDED WRITING

9

Reading: Reading for comparisons and contrast and other deeper levels of meaning –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-Listening - popular speeches and presentations - Speaking- impromptu speeches&debatesLanguage development-modal verbs- present/ past perfect tense - Vocabulary development-Phrasal verbs- fixed and semi-fixed expressions.

CO₅

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Board of Editors. Using English A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020
- 2. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015.
- 3. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCE BOOKS

- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. Cengage Learning ,USA: 2007
- 3. Redston, Chris &Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- 6. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. .

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- CO2 Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- CO3 Read different genres of texts adopting various reading strategies.
- CO4 | Listen/view and comprehend different spoken discourses/excerpts in different accents
- CO5 Identify topics and formulate questions for productive inquiry

MAPPING OF COS WITH POS AND PSOS

COs				PRO	OGRA	M OL	JTCO	MES	(POs)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	1	1	-	-	-	-	-	-	2	3	-	-	2	-	2	
CO2	-	1	-	2	-	-	-	-	-	3	-	-	2	-	2	
CO3	-	2	-	3	-	-	-	-	-	2	-	-	2	-	1	
CO4	-	-	-	-	-	-	-	-	2	2	-	-	2	-	2	
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	-	2	

MA1102	ENGINEERING MATHEMATICS –I	L	T	Р	С
	(COMMON FOR ALL BRANCHES OF B.E. /B. TECH	4	0	0	4
	PROGRAMMES)				

OBJECTIVES

- The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus.
- The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions.
- Matrix algebra is one of the powerful tools to handle practical problems arising in the field of engineering.
- This is a foundation course of single variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

Eigenvalues and Eigenvectors – Cayley-H Reduction of a quadratic form to canonic quadratic forms UNIT II CALCULUS OF ONE VARI	s - Differentiation rules - Interval of increasing and	CO1
Eigenvalues and Eigenvectors – Cayley-H Reduction of a quadratic form to canonic quadratic forms UNIT II CALCULUS OF ONE VARI Limit of a function - Continuity - Derivatives decreasing functions – Maxima and Minima	Hamilton theorem – Diagonalization of matrices – al form by orthogonal transformation – Nature of ABLE S - Differentiation rules – Interval of increasing and	CO1
Reduction of a quadratic form to canonic quadratic forms UNIT II CALCULUS OF ONE VARI Limit of a function - Continuity - Derivatives decreasing functions – Maxima and Minima	ABLE s - Differentiation rules – Interval of increasing and	12
quadratic forms UNIT II CALCULUS OF ONE VARI Limit of a function - Continuity - Derivatives decreasing functions – Maxima and Minima	ABLE s - Differentiation rules – Interval of increasing and	12
UNIT II CALCULUS OF ONE VARI Limit of a function - Continuity - Derivatives decreasing functions – Maxima and Minima	s - Differentiation rules - Interval of increasing and	
Limit of a function - Continuity - Derivatives decreasing functions - Maxima and Minima	s - Differentiation rules - Interval of increasing and	
Limit of a function - Continuity - Derivatives decreasing functions – Maxima and Minima	s - Differentiation rules - Interval of increasing and	
decreasing functions – Maxima and Minima		CO2
	- Intervals of concavity and convexity.	
LIMIT III CALCIII LIS OF SEVERAL		
CALCULUS OF SEVERAL	VARIABLES	12
Partial differentiation – Homogeneous fur	nctions and Euler's theorem – Total derivative –	
Change of variables – Jacobians – Partial	differentiation of implicit functions – Taylor's series	
for functions of two variables – Maxima and	d minima of functions of two variables – Lagrange's	CO3
method of undetermined multipliers.		
UNIT IV INTEGRAL CALCULUS		12
		'2
•	on rule - Techniques of Integration - Integration by	
parts, Trigonometric integrals, Trigonometr	ic substitutions, Integration of rational functions by	CO4
partial fraction, Integration of irrational funct	ions - Improper integrals.	
UNIT V MULTIPLE INTEGRALS		12
Double integrals – Change of order of integrals	egration – Double integrals in polar coordinates –	
3	e of variables from Cartesian to polar in double	CO5
integrals-Triple integrals – Volume of solids		
	TOTAL : 60 PER	RIODS

TEXT BOOKS

- 1. Grewal B.S., Higher Engineering MathematicsII, Khanna Publishers, New Delhi, 43rd Edition, 2014
- 2. James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 7.4 and 7.8].

REFERENCE BOOKS

- 1. Anton, H. Bivens, I and Davis, S. "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., —Advanced Engineering MathematicsII, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan. Engineering Mathematics I, McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

UPON COMPLETION OF THE COURSE, STUDENTS WILL BE ABLE TO

- CO1 Have a clear idea of matrix algebra pertaining Eigen values and Eigenvectors in addition dealing with quadratic forms.
- CO2 Understand the concept of limit of a function and apply the same to deal with continuity and derivative of a given function. Apply differentiation to solve maxima and minima problems, which are related to real world problems.
- CO3 Have the idea of extension of a function of one variable to several variables. Multivariable functions of real variables are inevitable in engineering.
- CO4 Understand the concept of integration through fundamental theorem of calculus. Also acquire skills to evaluate the integrals using the techniques of substitution, partial fraction and integration by parts along with the knowledge of improper integrals.
- CO5 Do double and triple integration so that they can handle integrals of higher order which are applied in engineering field.

MAPPING OF COS WITH POS AND PSOS

cos				PRO	GRA	M OL	JTCO	MES	(POS)				RAM SPECIFIC OMES (PSOS)		
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	3	3	1	2	3	-	-	3	2	3	3	3	3	2	
CO2	3	3	3	2	2	1	-	-	-	-	1	2	3	3	2	
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	3	2	
CO4	3	3	3	2	2	1	-	-	-	-	1	2	2	3	1	
CO5	3	3	3	2	1	1	-	-	-	-	1	2	2	3	1	

PH1103	ENGINEERING PHYSICS	L	Р	Т	С
	(Common for all branches of B.E. /B. Tech Programmes)	3	0	0	3

OBJECTIVES

To make the students conversant with

- Elastic properties of materials and various moduli of elasticity.
- Principles of laser and fiber optics and its various technological applications.
- Thermal conduction in solids, heat exchangers and its applications in various devices.
- Quantum concepts to explain black body radiation, Compton effect and matter waves.
- Various crystal structures, Miller indices and crystal growth techniques.

PROPERTIESOF MATTER **UNIT I** Elasticity - Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength - torsional stress and deformations - twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment - cantilever: theory and experiment - uniform CO1 and non-uniform bending: theory and experiment - Practical applications of modulus of elasticity- I shaped girders - stress due to bending in beams. LASER ANDFIBER OPTICS UNIT II 9 Lasers: population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) - Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction - Industrial and medical applications of Laser- Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) -CO₂ losses associated with optical fibers - Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. **UNIT III** THERMAL PHYSICS 9 Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity -Rectilinear flow of heat- conduction through compound media (series and parallel)-CO₃ Lee's disc method: theory and experiment - Radial flow of heat- thermal insulation applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. UNIT IV **QUANTUMPHYSICS** 9 Black body radiation - Planck's theory (derivation) - Compton effect: theory and experimental verification - wave particle duality - electron diffraction - concept of wave function and its physical significance - Schrödinger's wave equation - time independent and time dependent co4 equations - particle in a one-dimensional rigid box - Electron microscope- tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. **UNIT V CRYSTAL PHYSICS** 9 Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal CO₅

systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques-Epitaxial growth-Applications of Single crystal (Qualitative).

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press,2017.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2012.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India,2013.

REFERENCE BOOKS

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.
- 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman,2014.

COURSE OUTCOMES

Upon completion of the course, the students will gain knowledge on

004	The elastic property and stress strain diagram, determination of rigidity modulus by torsional									
CO1	pendulum and Young's modulus by various methods.									
	Principle of laser, Einstein's coefficients of laser action, semiconductor laser and its									
CO2	applications, optical fibers and their applications in sensors and communication system.									
	The heat transfer through solids and the determination of thermal conductivity in a bad									
CO3	conductor by Lee's disc method and radial flow of heat.									
	The quantum concepts and its use to explain black body radiation, Compton effect and wave									
CO4	equation for matter waves, tunnelling electron microscopy and its applications.									
CO5	The importance of various crystal structures, Miller indices and various growth techniques.									

MAPPING OF COS WITH POS AND PSOS

COs					PROGRAM SPECIFIC OUCOMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	2	3
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3	3

CY1104	ENGINEERING CHEMISTRY	L P	T	C				
	(Common for all branches of B.E. /B. Tech Programmes)	3 0	0	3				
OBJECTIVES								
To make the	student conversant with the							
 Princip 	es of water characterization and treatment for industrial purposes.							
 Princip 	es and applications of surface chemistry and catalysis.							
Phase	rule and various types of alloys							
 Various 	types of fuels, applications and combustion							
 Conver 	tional and non-conventional energy sources and energy storage device							
UNIT I	WATER AND ITS TREATMENT		$\overline{}$					
	rater – Types – Expression of hardness – Units – Estimation of hard	lness h	V					
	 Numerical problems on EDTA method – Boiler troubles (scale and 		-					
	lement, boiler corrosion, priming and foaming) - Treatment of boiler feed		1	O 1				
Internal treatm	ent (carbonate, phosphate, colloidal, sodium aluminate and calgon conditi	ioning)	ا ∪	, U				
External treatn	nent – Ion exchange process, Zeolite process – Desalination of brackish w	vater b	У					
reverse Osmo:								
UNIT II	SURFACE CHEMISTRY AND CATALYSIS			(
	istry: Types of adsorption - Adsorption of gases on solids - Adsorption of							
from solutions	– Adsorption isotherms – Freundlich's adsorption isotherm – Lar	_						
adsorption isotherm - Kinetics of uni-molecular surface reactions - Adsorption in								
•	·	•		02				
chromatograph	y – Applications of adsorption in pollution abatement using PAC.		_					
chromatograph Catalysis: Ca	y – Applications of adsorption in pollution abatement using PAC. alyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor	_	d					
chromatograph Catalysis: Ca catalytic promo	ny – Applications of adsorption in pollution abatement using PAC. calyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor oters – Industrial applications of catalysts – Catalytic convertor – Auto ca	_	d					
chromatograph Catalysis: Ca catalytic promo Enzyme cataly	y – Applications of adsorption in pollution abatement using PAC. calyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor oters – Industrial applications of catalysts – Catalytic convertor – Auto ca- sis – Michaelis-Menten equation.	_	d					
chromatograph Catalysis: Ca catalytic promo Enzyme cataly UNIT III	ny – Applications of adsorption in pollution abatement using PAC. alyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor oters – Industrial applications of catalysts – Catalytic convertor – Auto ca- sis – Michaelis-Menten equation. PHASE RULE AND ALLOYS	ıtalysis	d	- ;				
chromatograph Catalysis: Ca catalytic prome Enzyme cataly UNIT III Phase rule: In	ny – Applications of adsorption in pollution abatement using PAC. calyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor of ters – Industrial applications of catalysts – Catalytic convertor – Auto casis – Michaelis-Menten equation. PHASE RULE AND ALLOYS troduction – Definition of terms with examples – One component system	talysis – Wate	d	•				
chromatograph Catalysis: Catalytic prome Enzyme cataly UNIT III Phase rule: In system — Rec	ny – Applications of adsorption in pollution abatement using PAC. alyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor oters – Industrial applications of catalysts – Catalytic convertor – Auto casis – Michaelis-Menten equation. PHASE RULE AND ALLOYS troduction – Definition of terms with examples – One component system duced phase rule – Thermal analysis and cooling curves – Two cor	talysis – Wate	d	•				
chromatograph Catalysis: Ca catalytic prome Enzyme cataly UNIT III Phase rule: In system - Rec systems - Lea	ny – Applications of adsorption in pollution abatement using PAC. calyst – Types of catalysis – Criteria – Contact theory – Catalytic poisor of ters – Industrial applications of catalysts – Catalytic convertor – Auto casis – Michaelis-Menten equation. PHASE RULE AND ALLOYS troduction – Definition of terms with examples – One component system	– Wate	d 	03				

effect of alloying elements - Nichrome, Alnico, Stainless steel (18/8) - Heat treatment of steel -Non-ferrous alloys - Brass and bronze.

9

FUELS AND COMBUSTION UNIT IV

Fuels: Introduction - classification of fuels - Comparison of solid, liquid, gaseous fuels - Coal -Analysis of coal (proximate and ultimate) - Carbonization - Manufacture of metallurgical coke (Otto Hoffmann method) - Petroleum - Cracking - Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) - Knocking - Octane number - Diesel oil - Cetane number - Compressed natural gas (CNG) - Liquefied petroleum gases (LPG) - Power alcohol and CO4

Combustion of fuels: Introduction - Calorific value - Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method.

NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES **UNIT V**

9

Nuclear energy - Fission and fusion reactions - Differences - Chain reactions - Nuclear reactors - Classification of reactors - Light water nuclear reactor for power generation -Breeder reactor - Solar energy conversion - Solar cells - Wind energy - Fuel cells - Hydrogenoxygen fuel cell.

CO₅

Batteries - Types of batteries - Alkaline batteries - Lead-acid, Nickel-cadmium and Lithium batteries.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed., Dhanpat Rai Pub. Co., New Delhi, (2015).
- 2. S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2020).

- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. New Delhi, (2018).
- 4. P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd., Chennai, (2009).

REFERENCE BOOKS

- 1. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015).
- 5. A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media, New Delhi., (2010).
- 6. A. Sheik Mideen, Engineering Chemistry, Airwalk Publications, Chennai (2018)

COURSE OUTCOMES

Upon completion of the course, the students should be

Opon	completion of the course, the students should be
CO1	Able to understand impurities in industrial water, boiler troubles, internal and external treatment
	methods of purifying water.
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherms, application of
CO2	adsorption for pollution abatement, catalysis and enzyme kinetics.
CO3	Able to recognize significance of alloying, functions of alloying elements and types of alloys,
003	uses of alloys, phase rule, reduced phase and its applications in alloying.
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be
CO4	able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.
	Able to understand conventional, non-conventional energy sources, nuclear fission and fusion,
CO5	power generation by nuclear reactor, wind, solar energy and preparation, uses of various
	batteries.

	MAPPING OF COs WITH POS AND PSOS														
COs					PROGRAM SPECIFIC OUCOMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2	1
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2	2
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
(Common for all branches of B.E. /B. Tech Programmes) 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 3								
To know the basics of algorithmic problem solving									
To write simple python programs									
To develop python program by using control structures and functions									
To use python predefined data structures To write file based program									
To write file based program									
UNIT I ALGORITHMIC PROBLEM SOLVING	9								
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation	,								
(pseudo code, flow chart, programming language), algorithmic problem solving, Basic									
algorithms, flowcharts and pseudocode for sequential, decision processing and iterative	CO1								
processing strategies, Illustrative problems: find minimum in a list, insert a card in a list of									
sorted cards, guess an integer number in a range, Towers of Hanoi.									
UNIT II INTRODUCTION TO PYTHON	9								
Python Introduction, Technical Strength of Python, Python interpreter and interactive mode;									
Introduction to colab, pycharm and jupyter idle(s), values and types: int, float, boolean, string,									
and list; Built-in data types, variables, Literals, Constants, statements, Operators; Assignment,	CO2								
Arithmetic, Relational, Logical, Bitwise operators and their precedence, , expressions, tuple									
assignment; Accepting input from Console, printing statements, Simple 'Python' programs.									
UNIT III CONTROL FLOW, FUNCTIONS AND STRINGS	9								
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained									
conditional (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue,									
and else; Modules and Functions, function definition and use, flow of execution, parameters									
and arguments; local and global scope, return values, function composition, recursion; Strings:	CO3								
string slices, immutability, string functions and methods, string module; Illustrative programs:									
square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.									
UNIT IV LISTS, TUPLES, DICTIONARIES	9								
Lists: Defining list and list slicing, list operations, list slices, list methods, list loop, List									
Manipulation, mutability, aliasing, cloning lists, list parameters; Lists as arrays, Tuples: tuple									
assignment, tuple as return value, Tuple Manipulation; Dictionaries: operations and methods;	CO4								
advanced list processing – list comprehension; Illustrative programs: selection sort, insertion	004								
sort, mergesort, histogram.									
UNIT V FILES, MODULES, PACKAGES	9								
riles and exception. Concept of riles, Text riles, rile opening in various modes and closing of t									
Files and exception: Concept of Files, Text Files; File opening in various modes and closing of a file, Format Operators, Reading from a file, Writing onto a file, File functions-open(), close(),									
	CO5								
a file, Format Operators, Reading from a file, Writing onto a file, File functions-open(), close(),	CO5								
a file, Format Operators, Reading from a file, Writing onto a file, File functions-open(), close(), read(), readline(), readlines(),write(), writelines(),tell(),seek(), Command Line arguments.	CO5								

PROBLEM SOLVING AND PYTHON PROGRAMMING

GE1105

P C

TEXT BOOKS

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

REFERENCE BOOKS

- 1. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, —Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,, 2015.
- 4. Kenneth A. Lambert, —Fundamentals of Python: First ProgramsII, CENGAGE Learning, 2012.
- 5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop algorithmic solutions to simple computational problems
CO2	Develop simple console application in python
CO3	Develop python program by applying control structure and decompose program into functions.
CO4	Represent compound data using python lists, tuples, and dictionaries.
CO5	Read and write data from/to files in Python.

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	-	2	-	-	2	3	2	-	2	2	1	1
CO2	3	3	3	-	2	-	-	2	3	2	-	2	2	1	1
CO3	3	3	3	-	2	-	-	2	3	2	-	2	1	2	2
CO4	3	3	3	-	2	-	-	2	3	2	-	2	1	2	2
CO5	3	3	3	-	2	-	-	2	3	2	-	2	1	2	1

GE1106 ENGINEERING GRAPHICS L T	P C
Common for all branches of B.E. /B. Tech Programmes) 1 0	4 4
To develop in students, graphic skills for communication of concepts, ideas and des Engineering products To suppose the state of a science of standards related to to sharing latentia standards.	sign of
 To expose them to existing national standards related to technical drawings. 	
CONCEPTS AND CONVENTIONS (Not for Examination)	1
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and	
dimensioning.	
UNIT I PLANE CURVES AND FREEHAND SKETCHING	7+12
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects	CO1
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE	6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.	CO2
UNIT III PROJECTION OF SOLIDS	5+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.	CO3
UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT	5+12
OFSURFACES	
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.	CO4
UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS	6+12
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.	CO5
TOTAL : 45 PER	RIODS
 Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Ch Twenty Ninth Edition 2016 Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) L 2011. 	
REFERENCE BOOKS 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, Edition, 2019.	53rd
2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Pub	lishing
Company Limited, New Delhi, 2008.	
 Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bang 2018. 	galore,

- 4. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the fundamentals and standards of Engineering graphics
CO2	Perform freehand sketching of basic geometrical constructions and multiple views of objects
CO3	Understand the concept of orthographic projections of lines and plane surfaces
CO4	Draw the projections of section of solids and development of surfaces
CO5	Visualize and to project isometric and perspective sections of simple solids

MAPPING OF COS WITH POS AND PSOS

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1	1	-	1	3	3	2	3	1	1	1
CO2	3	1	2	2	1	1	-	-	3	3	2	3	1	1	1
CO3	3	1	1	3	1	1	-	-	3	3	2	3	1	1	1
CO4	3	1	1	3	1	1	-	-	3	3	2	3	1	1	1
CO5	3	1	2	3	1	1	-	-	3	3	2	3	1	1	1

GE1107	PYTHON PROGRAMMING LABORATORY	L	Т	Р	С
	(Common for all branches of B.E. /B. Tech Programmes)	0	0	4	2

OBJECTIVES

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, and dictionaries.
- Read and write data from/to files in Python.

LIST OF EXPERIMENTS

- Write an algorithm, draw flowchart illustrating mail merge concept.
 Write an algorithm, draw flowchart and write pseudo code for a real life or scientific or technical problems
- 3. Scientific problem solving using decision making and looping.

CO1

- Armstrong number, palindrome of a number, Perfect number.
- 4. Simple programming for one dimensional and two dimensional arrays.
 - Transpose, addition, multiplication, scalar, determinant of a matrix
- 5. Program to explore string functions and recursive functions.
- 6. Utilizing 'Functions' in Python
 - Find mean, median, mode for the given set of numbers in a list.
 - Write a function dups to find all duplicates in the list.

CO2

- Write a function unique to find all the unique elements of a list.
- Write function to compute gcd, lcm of two numbers.
- 7. Demonstrate the use of Dictionaries and tuples with sample programs.
- 8. Implement Searching Operations: Linear and Binary Search.
- 9. To sort the 'n' numbers using: Selection, Merge sort and Insertion Sort.
- 10. Find the most frequent words in a text of file using command line arguments.

11. Demonstrate Exceptions in Python.

_____ CO3

12. Applications: Implementing GUI using turtle, pygame.

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Python 3 interpreter for Windows/Linux

REFERENCE BOOKS

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.
- 2. Shroff "Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.
- 3. David M.Baezly "Python Essential Reference". Addison-Wesley Professional; Fourth edition, 2009.

4. David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013)

WEB REFERENCES

1. http://www.edx.org

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop simple console applications through python with control structure and functions
CO2	Use python built in data structures like lists, tuples, and dictionaries for representing compound
	data.

CO3 Read and write data from/to files in Python and applications of python.

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	-	2	-	-	2	3	2	-	2	2	-	-
CO2	3	3	3	-	2	-	-	2	3	2	-	2	2	1	1
CO3	3	3	3	-	2	-	-	2	3	2	-	2	2	-	1

BS1108	PHYSICS AND CHEMISTRY LABORATORY	L	T	Р	С
	(Common for all branches of B.E. /B. Tech Programmes)	0	0	4	2
	·				

The students will be trained to perform experiments to study the following.

- The Properties ofMatter
- The Optical properties , Characteristics of Lasers & Optical Fibre
- Electrical & Thermal properties of Materials
- Enable the students to enhance accuracy in experimentalmeasurements.
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric analysis
- Instrumental method of analysis such as potentiometry, conductometry and pHmetry

LIST O	F EXPERIMENTS - PHYSICS	
	(A minimum of 5 experiments to be performed from the given list) Determination of Young's modulus of the material of the given beam by Non-uniform bending method.	CO1
2.	Determination of rigidity modulus of the material of the given wire using torsion pendulum.	CO1
3.	Determination of wavelength of mercury spectra using Spectrometer and grating.	CO2
4.	Determination of dispersive power of prism using Spectrometer. (a) Determination of wavelength and particle size using a laser.	CO2
	(b) Determination of numerical aperture and acceptance angle of an optical fibre.	CO2
6.	(c) Determination of width of the groove of compact disc using laser. Determination of Young's modulus of the material of the given beam by uniform bending method.	CO1
7. 8.	Determination of energy band gap of the semiconductor. Determination of coefficient of thermal conductivity of the given bad	CO2 CO2
	conductor using Lee's disc. DNSTRATION EXPERIMENT	
1.	Determination of thickness of a thin sheet / wire – Air wedge method	CO1
LIST O	F EXPERIMENTS - CHEMISTRY	
(A	minimum of 6 experiments to be performed from the given list)	
1.	Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample.	CO5
2.	Determination of total, temporary & permanent hardness of water by EDTA method.	CO5
3. 4.	Determination of DO content of water sample by Winkler's method. Determination of chloride content of water sample by argentometric method.	CO5 CO3
5.	Estimation of copper content of the given solution by lodometry.	CO3
6.	Determination of strength of given hydrochloric acid using pH meter.	CO3
7.	Determination of strength of acids in a mixture of acids using conductivity meter.	CO4
8.	Estimation of iron content of the given solution using potentiometer.	CO4
9.	Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.	CO4
	Conductometric titration of strong acid vs strong base. DNSTRATION EXPERIMENTS	CO4
DEIVIC 1.		CO3
'.	(1,10- Phenanthroline / thiocyanate method).	
2.		CO5

COURSE OUTCOMES

CO2

Upon completion of the course, the students should be

Able to understand the concept about the basic properties of matter like stress, strain and types of moduli.

Able to understand the procedure to estimate the amount of dissolved oxygen present in the

Able to understand the procedure to estimate the amount of dissolved oxygen present in the water.

Able to understand the concept of optics like reflection, refraction, diffraction by using spectrometer grating.

Able to understand the concept about measuring the conductance of strong acid and strong base and mixture of acids by using conductivity meter.

Able to understand the thermal properties of solids and to calculate thermal conductivity of a bad conductor.

Able to understand the principle and procedure involved in the amount of chloride present in the given sample of water.

Able to understand the concept of microscope and its applications in determining the moduli.

Able to understand the concept of determining the emf values by using potentiometer.

Able to calculate the particle size of poly crystalline solids.

Able to understand the concept of determining the pH value and strength of a given acid sample by using pH meter.

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUCOMES			
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P0							PO12	PSO1	PSO2	PSO3							
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2	2			
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2	2			
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	2	1			
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	2				
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	1	1			

HS1201	PROFESSIONAL ENGLISH	L	Т	Р	С
	(Common for all branches of B.E. /B. Tech Programmes)	3	0	0	3
OBJECTIVE	3				
techr Foste Deve Strer	lop strategies and skills to enhance their ability to read and comprehend enology texts. For their ability to write convincing job applications and effective reports. For their speaking skills to make technical presentations, participate in group their listening skill which will help them comprehend lectures and sof specialization.	up d	liscu	ussio	ons.
UNIT I	READING AND STUDY SKILLS				9
three or four Reading: Pra graphs- Voo homophone	ening Comprehension of a discussion on a technical topic of common int participants (real life as well as online videos)Speaking – describing a particle in chunking and speed reading - Paragraphing- Writing- interpreting abulary Development: Important foreign expressions in Use, homes, homographs - easily confused words Language Developments.	oroc g cha ony	ess- arts, ms,	c	:01
UNIT II	READING AND STUDY SKILLS				9
three or four Reading: Pra	ening Comprehension of a discussion on a technical topic of common int participants (real life as well as online videos)Speaking – describing a patice in chunking and speed reading - Paragraphing- Writing- interpreting abulary Development: Important foreign expressions in Use, hom	oroc	ess- arts,	. _	:02

UNIT III TECHNICAL WRITING AND GRAMMAR

9

Listening-listening to conversation-effective use of words and their sound aspects, stress, intonation & pronunciation- Speaking – mechanics of presentations -Reading: Reading longer texts for detailed understanding. (GRE/IELTS practice tests); Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words-Informal vocabulary and formal substitutes-Misspelled words. Language Development-embedded sentences and Ellipsis.

homophones, homographs – easily confused words Language Development- impersonal

CO3

UNIT IV REPORT WRITING

passive voice, numerical adjectives.

9

Listening – Model debates & documentaries and making notes. Speaking– expressing agreement/disagreement, assertiveness in expressing opinions-Reading: Technical reports, advertisements and minutes of meeting - Writing- email etiquette- job application – cover letter –Résumé preparation(via email and hard copy)- analytical essays and issue based essays--Vocabulary Development- finding suitable synonyms-paraphrasing- Language Development- clauses- if conditionals.

CO4

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS

9

Listening: Extensive Listening. (radio plays, rendering of poems, audio books and others) Speaking –participating in a group discussion - Reading: Extensive Reading (short stories, novels, poetry and others) – Writing reports- minutes of a meeting- accident and survey-Writing a letter/ sending an email to the Editor - cause and effect sentences -Vocabulary Development- verbal analogies. Language Development- reported speech.

CO5

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2020.
- 2. Barun K Mitra, Effective Technical Communication Oxford University Press: 2006.
- 3. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016.

REFERENCE BOOKS

1. Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and

Practice. Oxford University Press: New Delhi,2014.

- 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad,2015
- 3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014.
- 4. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- 5. Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage Learning, USA: 2007.
- 6. Caroline Meyer & Bringi dev, Communicating for Results Oxford University Press: 2021.
- 7. Aruna Koneru, Professional Speaking Skills, Oxford University Press :2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Speak clearly, confidently, comprehensibly, and communicate with one or many listeners
	using appropriate communicative strategies.
CO2	Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide
	vocabulary range, organizing their ideas logically on a topic.
CO3	Read different genres of texts adopting various reading strategies.
CO4	Listen/view and comprehend different spoken discourses/excerpts in different accents
CO5	Identify topics and formulate questions for productive inquiry

COs		PROGRAM OUTCOMES (POs)													ECIFIC PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	-	1	2	3	-	-	-	-	3	
CO2	-	1	-	2	-	-	-	-	-	3	-	-	-	-	-	
CO3	-	2	-	3	-	-	-	-	1	2	-	-	3	-	1	
CO4	-	-	-	-	1	-	-	-	2	2	-	-	1 - 2			
CO5	-	2	1	1	2	-	2	-	-	3	-	-	2	-	1	

MA1251	LINEAR ALGEBRA	L	Т	Р	С
	(Common to AI-DS)	4	0	0	4

- To test the consistency and solve the system of linear equations
- To find the basis and dimension of vector space
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors
- To find orthonormal basis of inner product space and find least square approximation
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

UNIT I	MATRICES AND SYSTEM OF LINEAR EQUATIONS	12				
Matrices - Re	ow echelon form - Rank - System of linear equations - Consistency - Gauss	CO1				
elimination m	ethod - Gauss Jordon method.	COI				
UNIT II	VECTOR SPACES	12				
Vector spaces	s, Subspaces, Linear combinations, Linear independence and linear dependence,	CO2				
Bases and dimensions.						
UNIT III	LINEAR TRANSFORMATION	12				
Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem -						
Matrix repres	sentation of linear transformation - Eigenvalues and eigenvectors of linear	CO3				
transformation	n.					
UNIT IV	INNER PRODUCT SPACES	12				
INNER produ	ct and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt	CO4				
orthonormaliz	ation process - Least square approximation	CO4				
UNIT V	EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION	12				
Eigen value F	Eigen value Problems: Power method, Jacobi rotation method - Singular value decomposition -					
QR decompos	sition.	CO5				
	TOTAL : 45 PER	IODS				

TEXT BOOKS

- 1. Friedberg S.H, Insel A.J. and Spence L, Linear Algebra, Fifth edition, Pearson, 2018
- 2. Burden R. and Faires J.D. Numerical Analysis, tenth edition, Brooks/Cole, 2015.
- 3. Strang G, Linear algebra for everyone, Wellesley Cambridge press, 2020.

REFERENCE BOOKS

- 1. Seymour Libschutz and Marc Lipson, Linear Algebra, Sixth edition, McGraw Hill Education India private limited, New Delhi, 2017.
- 2. Iyengar S.R.K. and Jain R.K., Numerical Methods, Third edition, New age international publications, 2012.
- 3. Kumaresan S, Linear Algebra A geometric approach, Prentice Hall of India, New Delhi, Reprint, 2010.
- 4. Sundarapandian V, Numerical Linear Algebra, Prentice Hall of India, New Delhi, 2008.
- 5. Bernard Kolman and David R. Hill, Introductory Linear Algebra, Pearson Educations, New Delhi, First Reprint, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Test the consistency and solve the system of linear equations										
CO2	Find the basis and dimension of vector space										
CO3	Obtain the matrix of linear transformation and its eigenvalues and eigenvectors										
CO4	Find orthonormal basis of inner product space and find least square approximation										
CO5	Determine eigen values of a matrix using numerical techniques and perform matrix										
	decomposition										

	MAPPING OF COs WITH POs AND PSOs															
COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	3	3	2	-	-	1	1	3	3	3	3	
CO2	3	3	2	3	2	2	1	-	-	-	-	2	2	2	2	
CO3	3	2	2	2	2	1	1	-	-	-	-	1	2	2	2	
CO4	3	3	3	2	2	2	1	-	-	-	-	1	2	2	2	
CO5	3	3	3	2	2	2	1	-	-	1	-	1	2	3	3	

PH1252	PHYSICS FOR INFORMATION SCIENCE	L	Р	T	С
	(Common to CSE, AI-DS & IT)	3	0	0	3

To make the student

- To acquire knowledge on the electron transport properties
- To understand the essential principles of semiconductor device
- To have the necessary understanding in optical properties of materials.
- To grasp the principles of magnetic materials and its applications.
- To understand the basics of Nano-electronic devices.

Electron in periodic potential - Energy bands in solids - Electron effective mass - concept of hole - Applications of low resistive and high resistive materials. UNIT II SEMICONDUCTOR PHYSICS Intrinsic semiconductors - Energy band diagram - direct and indirect band gap semiconductors - carrier concentration in intrinsic semiconductors - extrinsic semiconductors - carrier concentration in intrinsic semiconductors - extrinsic semiconductors - carrier concentration in n-type & p-type semiconductors - variation of carrier concentration with temperature - variation of Fermi level with temperature and impurity concentration - carrier transport in semiconductors - Hall effect and devices - Ohmic contacts - Schottky diode - Semiconducting polymers. UNIT III MAGNETIC PROPERTIES OF MATERIALS Magnetism in materials - magnetic dipole moment - magnetic permeability and susceptibility - Microscopic classification of magnetic materials : diamagnetism - paramagnetism - ferromagnetism - antiferromagnetism - ferrimagnetism - Curie temperature - Domain Theory - M versus H behaviour - Hard and soft magnetic materials - examples and uses - Magnetic principle in computer data storage - Magnetic hard disc - Spintronics - GMR Sensor (Giant Magnetoresistance) - TMR (Tunnel Magnetoresistance) UNIT IV OPTICAL PROPERTIES OF MATERIALS Classification of optical materials - carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes - Optical data storage techniques- Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Car	INIT I ELECTRICAL PROPERTIES OF MATERIALS	9
Intrinsic semiconductors - Energy band diagram - direct and indirect band gap semiconductors - carrier concentration in intrinsic semiconductors - carrier concentration in intrinsic semiconductors - extrinsic semiconductors - carrier concentration in n-type & p-type semiconductors - variation of carrier concentration with temperature - variation of Fermi level with temperature and impurity concentration - carrier transport in semiconductors - Hall effect and devices - Ohmic contacts — Schottky diode - Semiconducting polymers. UNIT III MAGNETIC PROPERTIES OF MATERIALS Magnetism in materials - magnetic dipole moment - magnetic permeability and susceptibility - Microscopic classification of magnetic materials : diamagnetism - paramagnetism - ferromagnetism - antiferromagnetism - ferrimagnetism - Curie temperature - Domain Theory - M versus H behaviour - Hard and soft magnetic materials - examples and uses - Magnetic principle in computer data storage - Magnetic hard disc - Spintronics - GMR Sensor (Giant Magnetoresistance) - TMR (Tunnel Magnetoresistance) UNIT IV OPTICAL PROPERTIES OF MATERIALS Classification of optical materials - carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes - Optical data storage techniques- Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in hree dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy state Electron in periodic potential - Energy bands in solids - Electron effective mass - concept of h	n a s - CO1
semiconductors - carrier concentration in intrinsic semiconductors - extrinsic semiconductors - carrier concentration in n-type & p-type semiconductors - variation of carrier concentration with temperature - variation of Fermi level with temperature and impurity concentration - carrier transport in semiconductors - Hall effect and devices - Ohmic contacts - Schottky diode - Semiconducting polymers. UNIT III		9
Magnetism in materials - magnetic dipole moment - magnetic permeability and susceptibility - Microscopic classification of magnetic materials : diamagnetism - paramagnetism - ferromagnetism - antiferromagnetism - ferrimagnetism - Curie temperature - Domain Theory - M versus H behaviour - Hard and soft magnetic materials - examples and uses - Magnetic principle in computer data storage - Magnetic hard disc - Spintronics - GMR Sensor (Giant Magnetoresistance) - TMR (Tunnel Magnetoresistance) UNIT IV OPTICAL PROPERTIES OF MATERIALS Classification of optical materials - carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes -Optical data storage techniques- Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	emiconductors - carrier concentration in intrinsic semiconductors - extrinsic semiconductors carrier concentration in n-type & p-type semiconductors - variation of carrier concentration with temperature - variation of Fermi level with temperature and impurity concentration - carrier ransport in semiconductors - Hall effect and devices - Ohmic contacts - Schottky diode	th er CO2
Microscopic classification of magnetic materials: diamagnetism - paramagnetism - ferromagnetism - antiferromagnetism - ferrimagnetism - Curie temperature - Domain Theory - M versus H behaviour - Hard and soft magnetic materials - examples and uses - Magnetic principle in computer data storage - Magnetic hard disc - Spintronics - GMR Sensor (Giant Magnetoresistance) - TMR (Tunnel Magnetoresistance) UNIT IV OPTICAL PROPERTIES OF MATERIALS Classification of optical materials - carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes - Optical data storage techniques - Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	JNIT III MAGNETIC PROPERTIES OF MATERIALS	9
Classification of optical materials - carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes - Optical data storage techniques- Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	Aicroscopic classification of magnetic materials : diamagnetism - paramagnetism erromagnetism - antiferromagnetism - ferrimagnetism - Curie temperature - Domain Theory A versus H behaviour - Hard and soft magnetic materials - examples and uses - Magnet or inciple in computer data storage - Magnetic hard disc - Spintronics - GMR Sensor (Gia	- ic CO3
Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes - Avalanche Photodiodes - Optical data storage techniques- Holography - applications. UNIT V NANO DEVICES Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	INIT IV OPTICAL PROPERTIES OF MATERIALS	9
Electron density in bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and applications - Material Processing by chemical vapour deposition and Laser ablation method -	Absorption emission and scattering of light in metals, insulators and semiconductors (conceptuly) - photo current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photodiodes Avalanche Photodiodes -Optical data storage techniques- Holography - applications.	ts
Quantum structures - Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron transistor - Quantum dot laser - Ballistic transport - Carbon nanotubes: properties and coapplications - Material Processing by chemical vapour deposition and Laser ablation method -	JNIT V NANO DEVICES	9
Graphene: properties and applications.	Quantum structures - Density of states in quantum well, quantum wire and quantum of tructure - Band gap of nanomaterials - Tunneling: single electron phenomena and single electron ranotubes: properties a	dot gle and CO5
TOTAL : 45 PERIO	ΤΟΤΔΙ · 45 Ε	FRIODS

TEXT BOOKS

- 1. Jasprit Singh, Semiconductor Devices: Basic Principles, Wiley 2012.
- 2. Donald Neaman, Dhrubes Biswas, Semiconductor Physics and Devices (SIE), 4th Edition, 2017
- 3. Salivahanan, S., Rajalakshmi, A., Karthie, S., Rajesh, N.P., "Physics for Electronics Engineering and Information Science", McGraw Hill Education (India) Private Limited, 2018.
- 4. Kasap, S.O. Principles of Electronic Materials and Devices, McGraw-Hill Education, 2007.
- 5. Kittel, C. Introduction to Solid State Physics, Wiley, 2005.

REFERENCE BOOKS

- 1. Garcia, N. & Damask, A. —Physics for Computer Science Students. Springer-Verlag, 2012.
- 2. Hanson, G.W. —Fundamentals of Nanoelectronics, Pearson Education, 2009.
- 3. Rogers, B., Adams, J. & Pennathur, S. —Nanotechnology: Understanding small systems, CRC press, 2014

COURSE OUTCOMES

Upon completion of the course, the students will be able to

- CO1 Gain knowledge on classical and quantum electron theories and energy band structures.
- CO2 | Acquire knowledge on basics of semiconductor physics and its applications in various devices.
- CO3 Get knowledge on magnetic properties of materials and their applications in data storage.
- CO4 Have the necessary understanding on the functioning of optical materials for Optoelectronics.
- CO5 Understand the basics of quantum structures and their applications in nano electronic devices.

COs		PROGRAM OUTCOMES (POs)													ECIFIC S
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO3	
CO1	3	3	3	2	2	1	2	1	1	1	2	1	3	2	2
CO2	3	3	1	1	3	1	1	1	2	2	2	1	2	2	3
CO3	3	3	1	1	2	2	1	1	1	1	1	2	2	2	2
CO4	3	3	3	2	2	1	1	1	2	2	1	3	3	3	3
CO5	3	3	3	2	3	1	1	1	2	1	2	3	3 3 3		

GE1204	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	Р	Т	С
	(Common for all branches of B.E. /B. Tech Programmes)	3	0	0	3
To apple envision To fir enviror To sturmanage	dy the inter relationship between living organisms and environment. preciate the importance of environment by assessing its impact on the on the surrounding environment, its functions and its value. Indicate and implement scientific, technological, economic and political namental problems. Indicate the integrated themes and biodiversity, natural resources, pollution contents. Indicate the description of the earth and the dynamic processes and understand the features of the earth and the dynamic processes.	al s ontro	olution	ons d wa	to
UNIT I	ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY				11
Individual in E ecosystem – chains, food features, structures, estual Biodiversity – Consumptive global, national Threats to bioprotection act	ope and importance of environment – Need for public awareness – invironmental protection – Concept of an ecosystem – Structure and function Producers, consumers and decomposers – Energy flow in the ecosystem webs and ecological pyramids – Ecological succession – Types, characture and function of forest, grass land, desert and aquatic (ponds, lake tries) ecosystem. Definition – Genetic, species and ecosystem diversity – Value of biodiuse, productive use, social, ethical, aesthetic and option values – Biodical and local levels – India as a mega diversity nation – Hot spots of biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts and forest conservation act – Endangered and endemic species – Conselln-situ and ex-situ conservation of biodiversity.	tion m – ractes, r liver ivers diver	of an Fooderisti iversessity and sity a	n d c s, - C	: O1
UNIT II	ENVIRONMENTAL POLLUTION				9
Definition – C (c) Soil pollut hazards – Soil wastes – Prob studies – Disa	Causes, effects and control measures of: (a) Air pollution (b) Water tion (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) lid waste management: causes, effects and control measures of municiplems of e-waste – Role of an individual in prevention of pollution – Pollutiaster management – Floods, earthquake, cyclone, tsunami and landslides polluted site – Urban / Rural / Industrial / Agricultural.	Nuc pal : ion c	clear solid case	C	02
UNIT III	NATURAL RESOURCES				9
extraction, mir and overutilization benefits and pextracting and - Changes capesticide prob needs - Rene Case studies landslides, so resources - E	rces: Uses and over-exploitation – Deforestation – Case studies – ning, dams and their effects on forests and tribal people – Water resource ation of surface and ground water, floods, drought, conflicts over water foroblems – Mineral resources: Uses and exploitation – Environmental elevation water leads by agriculture and overgrazing – Effects of modern agriculture: follows, water logging, salinity – Case studies – Energy resources: Growing ewable and non renewable energy sources – Use of alternate energy so – Land resources: Land as a resource – Land degradation, man fill erosion and desertification – Role of an individual in conservation of Equitable use of resources for sustainable lifestyles – Field study of local vironmental assets – River / Forest / Grassland / Hill / Mountain.	es – – Da effectoroble ertility g en ource indure indure	Use ams: ts of ems zer- ergy es - uced tural	С	:O3
UNIT IV	SOCIAL ISSUES AND THE ENVIRONMENT				8
conservation, of people; its	inable to sustainable development – Urban problems related to energy rain water harvesting, watershed management – Resettlement and reha problems and concerns, case studies – Role of non-governmental organ I ethics – Issues and possible solutions – Climate change – Global wa	bilita izati	ation on –	С	:04

Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

8

Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies

CO5

TOTAL : 45 PERIODS

TEXT BOOKS

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
- 2. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004).
- 3. Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", Airwalk Publications, Chennai, (2018).

REFERENCE BOOKS

- 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).
- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hyderabad, (2015).
- 3. G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt. Ltd, Delhi, (2014).
- 4. R. Rajagopalan, 'Environmental Studies From Crisis to Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik, C.P. Kaushik, "Perspectives in Environmental Studies", New Age International Pvt. Ltd, New Delhi, (2004).
- 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

COURSE OUTCOMES

Upon completion of the course, the students should be able

- CO1 To obtain knowledge about environment, ecosystems and biodiversity.
- CO2 To take measures to control environmental pollution.
- CO3 To gain knowledge about natural resources and energy sources.
- To find and implement scientific, technological, economic and political solutions to the environmental problems.
- CO5 To understand the impact of environment on human population and human health.

COs					PROGRAM SPECIFIC OUCOMES										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO3	
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1	2
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1	2
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2	3

BE1251	BASIC ELECTRICAL, ELECTRONICS AND MEASUREMENT ENGINEERING	L	Т	Р	С
	(Common to CSE, AI-DS & IT)	3	0	0	3

- To learn the fundamental laws, network theorems and analyse the electric circuits.
- To study the basic principles of electrical machines and their performance.
- To study the fundamentals of power systems.
- To learn the characteristics of various electron devices and Op Amp integrated circuit.
- To understand the principle and operation of measuring instruments and transducers.

UNIT I ELECTRIC CIRCUITS ANALYSIS

9

Ohms Law, Kirchhoff's Law-Instantaneous power - Series and parallel circuit: analysis of resistive, capacitive and inductive network, star delta conversion, Nodal analysis and mesh analysis. Network theorems: Thevenin's theorem, Norton's theorem, superposition theorem and maximum power transfer theorem. Three phase ac supply –Instantaneous power, Reactive power and apparent power.

CO1

UNIT II ELECTRICAL MACHINES

9

DC and AC ROTATING MACHINES: Types, Construction, principle, EMF and torque equation, application, Speed Control. Basics of Stepper Motor and Brushless DC motors. Transformers-Introduction, types and construction, working principle of Ideal transformer, EMF equation, All day efficiency calculation.

CO2

UNIT III FUNDAMENTALS OF POWER SYSTEM

9

Structure of power system. Sources of electrical energy – Non-renewable, Renewable-Storage systems: Batteries-Ni-Cd, Pb -Acid and Li-ion, SOC (State of Charge), DOD (Depth of Discharge)Characteristics. Utilization of electrical power - DC and AC load applications. - Electric circuit Protection-need for earthing, fuses and circuit breakers.

CO3

UNIT IV ELECTRON DEVICES AND INTEGRATED CIRCUITS

9

PN Junction-VI Characteristics of Diode, Zener diode, Rectifiers, Zener voltage regulator. Transistor configurations – CE amplifier - RC and LC oscillators. Op Amps – Basic characteristics and its applications.

CO4

UNIT V MEASURING INSTRUMENTS AND TRANSDUCERS

9

Characteristic of measurement-errors in measurement – Principle and working of indicting instrument- Moving Coil meter, Moving Iron meter, Energy meter and watt meter, Cathode Ray Oscilloscope — Transducers, thermo-electric, RTD, Strain gauge, LVDT, LDR, and piezoelectric transducer.

CO5

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. D.P. Kotharti and I.J Nagarath, Basic Electrical and Electronics Engineering, Mc Graw Hill, fourth Edition, 2019
- 2. M.S. Sukhija and T.K. Nagsarkar, Basic Electrical and Electronic Engineering, Oxford, 2016.

REFERENCE BOOKS

- S.B. Lal Seksena and Kaustuv Dasgupta, Fundaments of Electrical Engineering, Cambridge, 2016
- 2. B.L Theraja, Fundamentals of Electrical Engineering and Electronics. S.Chand & Co, 2008.
- 3. S.K.Sahdev, Basic of Electrical Engineering, Pearson, 2015
- 4. John Bird, —Electrical and Electronic Principles and Technologyll, Fourth Edition, Elsevier, sixth edition, 2017.
- 5. Mittle, Mittal, Basic Electrical Engineering 11, 2nd Edition, Tata McGraw-Hill Edition, 2016.
- 6. C.L.Wadhwa, —Generation, Distribution and Utilisation of Electrical Energyll, New Age international pvt.ltd.,2003

COUR	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Ability to learn the fundamental laws, theorems of electrical circuits and to analyze them
CO2	Ability to understand the basic construction and operating principle of dc and ac machines.
CO3	Ability to understand the electrical power generation, energy storage and utilization of electric
	power.
CO4	Ability to understand the characteristics of various electronic devices and Op Amp integrated
	circuit
CO5	Ability to understand the principles and operation of measuring instruments and transducers.

COs				PR	OGRA	O MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	1	1	1	2	3	2	1	2	3	1	2	
CO2	3	3	3	3	1	1	1	2	3	2	1	2	3	1	2	
CO3	3	3	3	3	1	1	1	2	3	2	1	2	3	1	2	
CO4	3	3	3	3	1	1	1	3	3	3	1	3	3	1	3	
CO5	3	3	3	3	1	1	1	2	3	2	1	2	3	1	2	

CS1206	PROGRAMMING IN C	L	Т	Р	С
	(Common to CSE, AI-DS & IT)	3	1	0	3

- To develop C Programs using basic programming constructs
- To develop C programs using arrays, strings and functions
- To develop applications in C using pointers
- To develop applications in C using structures and union
- To develop applications using sequential and random-access fileprocessing.

UNIT I	BASICS OF C PROGRAMMING		9
	C: History of C; Compiler Vs. Interpreter, Structure of a C Program, Library and	1	
Linking, Compi	ling a C Program; Basic data types, Modifying the basic data types, Variables:	1	
Type qualifiers	s, Storage class specifiers; Constants: Enumeration Constants; Keywords;	ı	
Operators: Pre	cedence and Associativity; Expressions: Order of evaluation, Type conversion in	C	01
expression, Ca	asts; Input/Output statements; Assignment statements, Selection statements;	1	
	ments; Jump statements; Expression statements; Pre-processor directives:	1	
Compilation pro	ocess	1	
UNIT II	ARRAYS, STRINGS AND FUNCTIONS		9
Introduction to	Arrays: Declaration, Initialization, Single dimensional array, Two dimensional		
	fanipulations; String operations: length, compare, concatenate, copy; Functions:	C	02
	f a function, Function Arguments, Built-in functions, return statement, Recursion	1	
UNIT III	POINTERS		9
Pointers: Decl	aring and defining pointers, Pointer operators, Pointer expression; Pointer		
Assignment, F	Pointer Conversions, Pointer arithmetic, Pointer Comparisons; Pointers and	_	О3
Arrays: Array	of pointers; Multiple Indirection; Pointers to function; Problems with Pointers;	C	US
	sing: Pass by value, Pass by reference.	1	
,			
UNIT IV	STRUCTURES AND UNIONS		9
Structure: Acce	essing Structure members, Structure Assignments; Nested structures; Pointer		
	; Array of structures; Passing Structures to Functions: Passing structure member	_	~ 4
	Passing entire structure to functions; Arrays in Structures; Self-referential	C	04
structures; Dyn	amic memory allocation; typedef statement,, Union and Enumeration	1	
UNIT V	FILE PROCESSING		9
File System Ba	asics: File Pointer, Opening and Closing a File; Reading and Writing Character;		
Working with S	String: fputs() and fgets(); rewind(); ferror(); fread() and fwrite(); Erasing files;	_	O 5
	ocessing: Sequential access; Random access: fprintf() and fscanf(), fseek() and	U	U
	nd line arguments.	ı	
	TOTAL : 45 PER	lO	DS
TEXT BOOKS			

TEXT BOOKS

- 1. Herbert Schildt, C The Complete Reference, Fourth Edition, McGraw-Hill.
- 2. Reema Thareja, "Programming in C", Oxford University Press, Second Edition, 2016.
- 3. Kernighan, B.W and Ritchie, D.M, -The C Programming languagel, Second Edition, Pearson Education, 2006.

REFERENCE BOOKS

- 1. Paul Deitel and Harvey Deitel,-C HowtoPrograml,Seventh edition,Pearson Publication
- 2. Juneja, B.L andAnitaSeth,-Programmingin Cl,CENGAGELearning India pvt.Ltd.,2011.
- 3. Pradip Dey, Manas Ghosh, Fundamentals of Computing and Programming in C, First Edition, Oxford University Press, 2009.
- 4. Anita Goel and Ajay Mittal, -Computer Fundamentals and Programming in C, Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 5. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C",McGraw-Hill Education,1996.

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Develop simple applications in C using basic constructs. CO2 Design and implement applications using arrays, strings and functions. CO3 Develop and implement applications in C using pointers. CO4 Develop applications in C usingstructures and union. CO5 Design applications using sequential and random-access fileprocessing.

COs				PR	OGRA	O MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	
CO2	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	
CO3	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	
CO4	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	
CO5	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	

GE 1207	ENGINEERING PRACTICES LAB L P	T	С
	(00000000000000000000000000000000000000	4	2
DBJECTIVE			
	ovide exposure to the students with hands on experience on various basic engineerices in Civil, Mechanical, Electrical and Electronics Engineering	ng	
IST OF EX	PERIMENTS		
	CIVIL & MECHANICAL)		
I CIVII	ENGINEERING PRACTICE 13		
Build	dings:		
(a)	Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.		
Plum	nbing Works:		
(a)	Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.		
(b)	Study of pipe connections requirements for pumps and turbines.		_
(c) (d)	Preparation of plumbing line sketches for water supply and sewage works. Hands-on-exercise:	C	0
. ,	Basic pipe connections - Mixed pipe material connection - Pipe connections		
	with different joining components.		
•	Demonstration of plumbing requirements of high-rise buildings. entry using Power Tools only:		
(a)	Study of the joints in roofs, doors, windows and furniture.		
(b)	Hands-on-exercise:		
II MEC	Wood work, joints by sawing, planing and cutting. HANICAL ENGINEERING PRACTICE 18		
(a) (b) Shee (a) (c) Mack (a) (b) Dem (a) (b)	Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding. Gas welding practice c Machining: Simple Turning and Taper turning Drilling Practice et Metal Work: Forming & Bending: Model making – Trays and funnels. Different type of joints. nine assembly practice: Study of centrifugal pump Study of air conditioner onstration on: Smithy operations, upsetting, swaging, setting down and bending. Example –Exercise – Production of hexagonal headed bolt. Foundry operations like mould preparation for gear and step cone pulley. Fitting – Exercises – Preparation of square fitting and V – fitting models.	С	:O
	ELECTRICAL & ELECTRONICS)		
	CTRICAL ENGINEERING PRACTICE 13		
1.	Residential house wiring using switches, fuse, indicator, lamp and energy meter.		
2.	Fluorescent lamp wiring.	C	0
3.	Stair case wiring		
4.	Measurement of electrical quantities – voltage, current, power & power factor in		

5. 6.	37 3 3 1	cc
	LECTRONICS ENGINEERING PRACTICE 16	
1.	Study of electronic components and equipments – Resistor, colour of measurement of AC signal parameter (peak-peak, rms period, frequency)	
	CR.	<u> </u>
2.		CC
3.		
4.	purpose PCB. Measurement of ripple factor of HWR and FWR.	
		60 PERIOD
IST OF	EQUIPMENT FOR A BATCH OF 30 STUDENTS	Quanti
SI.No.	Description of Equipment	require
	CIVIL	require
		1
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes,	15 sets
2.	flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench)	15 Nos
3.	Standard woodworking tools 15 Sets.	15 Nos
4.	Models of industrial trusses, door joints, furniture joints	5 each
	Power Tools:	o caon
	(a) Rotary Hammer	
	(b) Demolition Hammer	
5.	(c) Circular Saw	2 Nos
	(d) Planer	
	(e) Hand Drilling Machine	
	(f) Jigsaw	
	MECHANICAL	
1.	Arc welding transformer with cables and holders.	5 Nos
2.	Welding booth with exhaust facility.	5 Nos
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets
4.	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos
5.	Centre lathe.	2 Nos
6.	Hearth furnace, anvil and smithy tools.	2 Sets
7. 8.	Moulding table, foundry tools. Power Tool: Angle Grinder.	2 Sets 2 Nos
9.	Study-purpose items: centrifugal pump, air-conditioner.	1 each
<u>J.</u>	Ottady-purpose items. centinagai pairip, air-conditioner.	i cacii
	ELECTRICAL	
1.	Assorted electrical components for house wiring.	15 Sets
2.	Electrical measuring instruments.	10 Sets
3.	Study purpose items: Iron box, fan and regulator, emergency lamp.	1 each
4.	Megger (250V/500V).	1 No.
_	Power Tools:	
5.	(a) Range Finder	2 Nos
	(b) Digital Live-wire detector	
	ELECTRONICS	
1.	Soldering guns 10 Nos.	10 Nos

3.	Small PCBs.	10 Nos.
4.	Multimeters	10 Nos.
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Fabricate carpentry components and pipe connections including plumbing works. Use welding equipments to join the structures.
- CO2 Carry out the basic machining operations Make the models using sheet metal works
- CO3 | Carry out basic home electrical works and appliances.
- CO4 Measure the electrical quantities
- CO5 | Elaborate on the components, gates, soldering practices

CO-				PRC	GRA	M OL	JTCO	MES	(POs)	1			PROGRAM SPECIFIC OUTCOMES (PSOs)				
COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	1	3	-	-	3	-	-	-	-	-	3	3	3	3		
CO2	3	2	3	-	-	3	-	-	-	-	-	3	3	3	3		
CO3	3	1	2	-	-	2	-	-	-	-	-	3	3	3	3		
C04	3	1	3	-	-	3	-	-	-	-	-	3	3	3	3		
C05	3	2	2	-	-	2	-	-	-	-	-	3	2	2	2		

CS1208	PROGRAMMING IN C LABORATORY	L	Т	Р	С
	(Common to CSE, AI-DS & IT)	0	0	4	2

- To develop programs in C using basicconstructs.
- To develop applications in C using strings, pointers, functions, structures.
- To develop applications in C using fileprocessing

LIST OF EXPERIMENTS

LIST OF EXPERIMENTS	
 C programming using simple statements and expressions. 	
2. Scientific problem-solving using decision making and looping.	
3. Generating different patterns using multiple control statements.	CO1
 Problems solving using one dimensional array. 	
Mathematical problem solving using two dimensional arrays.	
Solving problems using string functions.	
7. Solving problems with user defined functions.	CO2
8. Solving problems using recursive function.	COZ
Solving problems with dynamic memory allocation.	
10. Realtime application using structures and unions.	
11. Realtime problem solving using sequential and random-access file.	CO3

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

12. Solving problems with command line argument.

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

REFERENCE BOOKS

- 1. Problem Solving and Program Design in C, 4th edition, by jeri R. Hanly and Elli B.Koffman.
- 2. Reema Thareja, "Programming in C", Oxford University Press, Second Edition, 2016.
- 3. Programming in C by Pradip Dey, Manas Ghosh 2nd edition Oxford University Press. E.Balaguruswamy, Programming in ANSI C 5th Edition McGraw-Hill.
- 4. A first book of ANSI C by Gray J.Brosin 3rd edition Cengagedelmer Learning India P.Ltd.
- 5. AL Kelly, Iraphol, Programming in C,4th edition Addison-Wesley Professional.
- 1. Brain W.Kernighan & Dennis Ritchie, C Programming Language, 2nd edition, PHI.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Develop C programs for simple applications making use of basic constructs.
 CO2 Develop C programs involving string, functions, recursion, pointers, and structures.
- CO3 Design applications using sequential and random-access fileprocessing.

COs				PR	OGRA	O MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2		
CO2	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2		
CO3	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2		

MA1354	PROBABILITY AND BAYESIAN INFERENCE	L	Т	Р	С
		4	0	О	4

- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in engineering applications.
- To acquaint the knowledge of testing of hypothesis for small and large samples, which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I	PROBABILITY AND RANDOM VARIABLES	12
Probability – T	The axioms of probability - Conditional probability - Baye's theorem - Discrete	
andcontinuous	random variables - Moments - Moment generating functions - Binomial,	CO1
Poisson, Geon	netric, Uniform, Exponential and Normal distributions.	
UNIT II	TWO - DIMENSIONAL RANDOM VARIABLES	12
Joint distribution	ons - Marginal and conditional distributions - Covariance - Correlation and	-
	n - Central limit theorem (for independent and identically distributed random	CO2
variables).	,	
,		
UNIT III	RANDOM PROCESSES	12
Classification -	- Stationary process - Markov process - Poisson process - Discrete parameter	CO3
Markov chain -	- Chapman Kolmogorov equations – Limiting distributions.	COS
UNIT IV	TESTING OF HYPOTHESIS	12
Sampling distr	ibutions - Estimation of parameters - Statistical hypothesis - Large sample tests	-
based on Norr	nal distribution for single mean and difference of means -Tests based on t, Chi-	004
square and F	distributions for mean, variance and proportion - Contingency table (test for	CO4
independent) -	- Goodness of fit.	
UNIT V	BAYESIAN INFERENCE	12
Bayesian Infer	ence for Discrete random variables - Bayesian Inference for Continous random	
variables - Ba	yesian Inference for Binomial proportions - Comparing Bayesian and Frequentist	CO ₅
inferences for	proportion.	

TOTAL: 60 PERIODS

TEXT BOOKS

- 1. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2017.
- 2. Ibe, O.C., —Fundamentals of Applied Probability and Random Processes", Elsevier, 2nd Indian Reprint, 2014.
- 3. Bolstad, W. M., Curran, J. M. Introduction to Bayesian Statistics. : Wiley. (Unit V Chapter 6, 7, 8 and 9), Wiley, 2016

REFERENCE BOOKS

- 1. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2017.
- 2. Yates, R.D. and Goodman. D. J., "Probability and Stochastic Processes", 2nd Edition, Wiley India Pvt. Ltd., Bangalore, 2014.
- 3. Papoulis, A. and Unnikrishnapillai, S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2017.

- 4. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 4thEdition,Elsevier, 2009.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2008.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 The course gives exposure to random variables and well-founded knowledge of standard distributions which can describe real life phenomena.
- CO2 The course paves ideas to handle situations involving more than one random variable and functions of random variables.
- CO3 The course gives an understanding and characterizes phenomena which evolve with respect to time in a probabilistic manner and modelling the real life phenomena.
- CO4 Students will gain the knowledge on Large Samples and Samples. These concepts are very useful in biological, economical and social experiments and all kinds of generalizations based on information about a smaller sample and larger samples. Apply the appropriate test in the problems related with sampling.
- CO5 Students will be able to do design of experiments, carry them out, and analyze the data.

COs				PR	OGRA	AM O	UTCC	MES	PROGRAM OUTCOMES (POs)														
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3								
CO1	3	3	2	3	2	1	-	-	-	-	1	1	3	2	1								
CO2	3	3	2	2	2	1	-	-	-	-	1	1	3	2	1								
CO3	3	2	2	1	1	1	-	-	-	-	1	1	3	2	1								
CO4	3	3	2	3	3	2	1	-	-	-	2	2	3	2	1								
CO5	3	3	2	3	2	2	1	-	-	-	1	2	2	1	1								

CS1302	DATA STRUCTURES	L	Т	Р	С
	(Common to CSE, AI-DS & IT)	3	1	0	3

- To understand the concepts of ADTs.
- ❖ To learn linear data structures like lists, stacks, and queues.
- ❖ To learn Non-linear tree data structures.
- To apply Graph structures
- To understand sorting, searching and hashing algorithms

UNIT I	LINEAR DATA STRUCTURES – LIST	9
Abstract Data	Types (ADTs) - List ADT - array-based implementation - linked list	
implementatio	n — singly linked lists- circularly linked lists- doubly-linked lists – applications of	CO 1
lists -Polynom	nial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).	
UNIT II	LINEAR DATA STRUCTURES – STACKS, QUEUES	,
Stack ADT – 0	Dperations – Applications – Evaluating arithmetic expressions- Conversion of Infix	
to postfix expr	ession – Queue ADT – Operations – Circular Queue – Priority Queue – deQueue	CO2
applications	of queues.	
UNIT III	NON LINEAR DATA STRUCTURES – TREES	9
Tree ADT - t	ree traversals - Binary Tree ADT - expression trees - applications of trees -	
binary search	tree ADT -Threaded Binary Trees- AVL Trees - B-Tree - B+ Tree - Heap -	CO
Applications o	f heap.	
UNIT IV	NON LINEAR DATA STRUCTURES – GRAPHS	9
Definition - R	epresentation of Graph – Types of graph – Breadth-first traversal – Depth-first	
traversal - To	ppological Sort - Bi-connectivity - Cut vertex - Euler circuits - Applications of	CO
graphs.		
UNIT V	SEARCHING, SORTING AND HASHING TECHNIQUES	9
Searching- Li	near Search - Binary Search. Sorting - Bubble sort - Selection sort - Insertion	
sort - Shell	sort - Radix sort. Hashing- Hash Functions - Separate Chaining - Open	COS

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Mark Allen Weiss, —Data Structures and Algorithm Analysis in CII, 2nd Edition, Pearson Education,1997.
- 2. Reema Thareja, —Data Structures Using CII, Second Edition, Oxford University Press, 2011.
- 3. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, Data Structures and Algorithms in Python, Wiley, 2013.
- 4. Bradley N. Miller, David L. Ranum, "Problem Solving with Algorithms and Data Structures using Python", Second Edition, 2013.
- 5. Rance D. Necaise, Data Structures and Algorithms Using Python, John Wiley & Sons, 2011.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Implement abstract data types for linear data structures.
CO2	Apply the different linear data structures to problem solutions.
CO3	Implement abstract data types for non-linear data structures.
CO4	Apply Graph data structure for the real world problems.
	Critically analyze the various sorting, searching algorithms and hash functions that result in a
CO5	collision free scenario for data storage and retrieval.

COs					ECIFIC PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3
CO2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3
CO3	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3
CO4	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3
CO5	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3

DS1303	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	L	Т	Р	С
	Common to AI & DS	3	0	0	3
OBJECTIVES					
 To impa 	art basic knowledge about Artificial Intelligence				
To lear	n the methods of solving problems using Artificial Intelligence				
To lear	n to represent knowledge in solving Alproblems				

To understand the concept of Planning in various situations

•	To understand	the application	of AI namely	/ Expert Systems
---	---------------	-----------------	--------------	------------------

UNIT I	INTRODUCTION		9
	efinition - Foundation and History of AI - Future of Artificial Intelligence -	C	01
Intelligent Age	nts- Environments - Structure of Agents - Typical Intelligent Agents		J 1
UNIT II	PROBLEM SOLVING METHODS		9
	ng Methods - Search Strategies- Uninformed - Informed - Heuristics - Local		
	thms and Optimization Problems - Searching with Partial Observations -	C	02
	tisfaction Problems - Constraint Propagation - Backtracking Search - Game		
Playing – Optir	nal Decisions in Games – Alpha - Beta Pruning	<u></u>	
UNIT III	KNOWLEDGE REPRESENTATION		9
	edicate Logic – Prolog Programming – Unification – Forward Chaining-Backward		
	solution – Knowledge Representation - Ontological Engineering-Categories and	C	03
	e and Event Calculus - Mental Events and Mental Objects - Reasoning Systems		
for categories -	- Reasoning with Default Information	<u></u>	
UNIT IV	PLANNING		9
	oduction – Planning Problem – Planning with State Space Search - Partial Order		
	nstruction and Use of Planning Graphs - Conditional Planning - Continuous	C	04
Planning – Mul	ti Agent Planning	<u> </u>	
UNIT V	EXPERT SYSTEMS		9
Expert system	s - Architecture of expert systems, Roles of expert systems - Knowledge		
Acquisition – N	Meta knowledge, Heuristics. Typical expert systems – MYCIN, DART, XOON,	C	O 5
Expert systems	s shells.		

TEXT BOOKS

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third Edition, 2009.
- 2. Dan W. Patterson Introduction to Artificial Intelligence and Expert Systems, PHI, New Delhi, 2006.

REFERENCE BOOKS

- 1. M. Tim Jones Artificial Intelligence: A Systems Approach(Computer Science), Jonesand Bartlett Publishers, Inc.; First Edition, 2008.
- 2. Nils J. Nilsson The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 3. I. Bratko Prolog: Programming for Artificial Intelligence, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- 4. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of the course, students will be able to

С	:01	Implement basic Al Algorithms
С	202	Use appropriate search algorithms to solve AI based problems
С	:O3	Represent a problem using first order and predicatelogic
С	04	Design a simple agent system with associated planning technique.
С	O5	Apply AI techniques to real-world problems to develop expert system

COs				PR	OGRA	AM O	UTCO	MES	(POs	5)				RAM SP COMES(I	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	-	-	1	2	2	3	3	3	3
CO2	3	3	3	3	3	2	-	-	1	2	2	3	3	3	3
CO3	3	3	3	3	3	2	-	-	1	2	2	3	3	3	3
CO4	3	3	3	3	3	2	-	-	2	2	2	3	3	3	3
CO5	3	3	3	3	3	2	-	-	2	2	2	3	3	3	3

OBJECTIVES • To acquire knowledge on Data science and its Foundations. • To explore about the various data process and evaluation methods. • To understand distinct analysis tools and practice ethical decision and actions. UNIT I INTRODUCTION Overview of Data: Definition - Types of data - Quantitative and Qualitative (Nominal, Ordinal, Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata - Types of metadata - Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source - Web Scrapping- Basic Concepts of Data Warehouse and Data Mining - Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition - Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) - Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL. UNIT IV Data Analysis and Visualization	co
To acquire knowledge on Data science and its Foundations. To explore about the various data process and evaluation methods. To understand distinct analysis tools and practice ethical decision and actions. INTRODUCTION	СО
To explore about the various data process and evaluation methods. To understand distinct analysis tools and practice ethical decision and actions. INTRODUCTION Overview of Data: Definition - Types of data - Quantitative and Qualitative (Nominal, Ordinal, Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata - Types of metadata - Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source - Web Scrapping- Basic Concepts of Data Warehouse and Data Mining - Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition - Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) - Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
● To understand distinct analysis tools and practice ethical decision and actions. UNIT I INTRODUCTION Overview of Data: Definition - Types of data — Quantitative and Qualitative (Nominal, Ordinal, Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata — Types of metadata — Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source — Web Scrapping- Basic Concepts of Data Warehouse and Data Mining — Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition — Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) — Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics — stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model — Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
UNIT I INTRODUCTION Overview of Data: Definition - Types of data - Quantitative and Qualitative (Nominal, Ordinal, Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata - Types of metadata - Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source - Web Scrapping- Basic Concepts of Data Warehouse and Data Mining - Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition - Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) - Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Overview of Data: Definition - Types of data — Quantitative and Qualitative (Nominal, Ordinal, Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata — Types of metadata — Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source — Web Scrapping- Basic Concepts of Data Warehouse and Data Mining — Distributed File System Data Process Overview	СО
Discrete and Continuous) Big Data: Structured, Unstructured and semi-structured - Metadata: Concepts of metadata – Types of metadata – Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source – Web Scrapping- Basic Concepts of Data Warehouse and Data Mining – Distributed File System Data Process Overview	СО
Concepts of metadata – Types of metadata – Uses Data Source: Enterprise Data Source, Social Media Data Source, Public Data Source – Web Scrapping- Basic Concepts of Data Warehouse and Data Mining – Distributed File System Data Process Overview	СО
Social Media Data Source, Public Data Source – Web Scrapping- Basic Concepts of Data Warehouse and Data Mining – Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition – Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) – Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Warehouse and Data Mining – Distributed File System UNIT II Data Process Overview Defining Goals- Data Acquisition – Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) – Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
UNIT II Data Process Overview Defining Goals- Data Acquisition – Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) – Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Defining Goals- Data Acquisition – Sources of acquiring the data - Data preprocessing-Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) – Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) - Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
Imputation of Missing values - Data cleaning - Data Reduction, Data Transformation and Data Discretization. Exploratory Data Analysis (EDA) - Philosophy of EDA - The Data Science Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
Process. Significance of EDA in data science - Basic tools (plots, graphs and summary statistics) of EDA. UNIT III DATA ORGANIZATION Data Structures: Basics - stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model - Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
UNIT III DATA ORGANIZATION Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
Data Structures: Basics – stack, Queue, Linked List, Tree, Graph - Data Organizational Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	
Models-Centralized Model-Embedded Model- Hybrid Model-The Three-Layered structure-Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Centre of Excellence Model – Roles and Responsibilities- Data GovernanceData Privacy-Data Quality- Data Extraction-Extraction and ETL(Extract,Load,Transform)-Types- Physical -Logical-Data extraction with SQL.	СО
Data extraction with SQL.	
UNIT IV Data Analysis and Visualization	<u> </u>
Data Analysis and Visualization	
Spreadsheets: Data Manipulations- Sort, filter, remove duplicates-text and math functions-pivot	
table-lookup functions-Data visualizations for quantitative and qualitative data- charts-Excel	
Modelling- forecast models using advanced lookup and data validation tools. Tableau: Creating	CO
Visualizations in Tableau-Data hierarchies, filters, groups, sets, calculated fields-Map based	
visualizations-Build interactive dashboards-Data Stories.	
UNIT V ETHICS AND RECENT TRENDS	
Data and Business Insights- Data Science Engineering: - Need of Data Science - Ethics -	00
Doing good data science – Natural Language Processing – Machine Learning Model- Valuing Data privacy – Getting informed consent - The Five Cs – Diversity – Inclusion – Future Trends	CO
TOTAL: 45 PER	SIOD
TEXT BOOKS	(IOD
Introducing Data Science, Davy Cielen, Arno D. B. Meysman, Mohamed Ali, Manni	
Publications Co., 1st edition,2016.	nina
2. 2. Ethics and Data Science, D J Patil, Hilary Mason, Mike Loukides, O' Reilly, 1st	ning
edition, 2018	ning
Salusti, 2010	ning
	ning
	ning
REFERENCE BOOKS	
REFERENCE BOOKS 1. Introduction to Machine Learning with Python-A Guide for Data Scientists, by Andrea Mueller, Sarah Guido,O'Reilly; 1st edition, October 2016.	

2. Getting Started with Tableau 2019.2 (Second Edition), Tristan Guillevin, Packt Publishing; 2nd

edition June, 2019

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Explore the fundamental concepts of Data science CO2 Understand Data Science Process and Tools of EDA CO3 Address how Organizational structure's influence efficiency and effectiveness. CO4 Analyse and Validate data using Spreadsheets and Tableau. CO5 Think through the ethics incorporating privacy, data sharing and decision-making and Build

MAPPING OF COS WITH POS AND PSOS

interactive dashboards for Business

COs				PR	OGRA	O MA	UTCO	MES	(POs)				RAM SP OMES (
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	1	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO5	3	3	3	3	2	-	-	1	-	2	2	2	3	3	2

	Lab Integrated				
		3	0	2	4
program Inherita • Design and sports • To program	e the necessity for Object Oriented Programming paradigm of mming and become familiar with the fundamental concepts in OOP like ance and Polymorphism an object-oriented system, GUI components and multithreaded processe ecifications ovide a Strong foundation for advanced programming using Omming Concepts.	endes a	caps s pe	ulati r nee	on, eds
UNIT I	JAVA FUNDAMENTALS-OBJECTS, CLASSES AND INTERFACES			Ç	9+6
History of Jav Operators and Objects - Impl - Abstract Cla - Object: The C LAB COMPOI Create differer and Co and co abstract Create method having rectang parame 'super(Language types and paradigms — Object Oriented Programming Covariant - Java buzzwords- JVM architecture — Data Types and Literals in Control Statements in Java - ArrayList - Strings and StringBuffer - Workementing Classes - Static Variables and Methods — Packages - Nested ass- Interfaces — Local and Anonymous Classes — Inheritance — Extending Cosmic Superclass — Wrapper classes — Object Cloning. NENT: an abstract class Shape with a abstract method area() to find the not shapes and a instance variable radius. Extends the Shape class by one class with appropriate members and methods to find the volume of ne. Write a driver class ShapeDemo with main method in JAVA to impler attion and display the volume of the shapes. a class named 'Rectangle' with two data members 'length' and 'breadth' as to print the area and perimeter of the rectangle respectively. Its corparameters for length and breadth is used to initialize length and breadtyle. Let class 'Square' inherit the 'Rectangle' class with its constructor heter for its side (suppose s) calling the constructor of its parent of s,s)'. Print the area and perimeter of a rectangle and a square. And rectangle to print the area of 10 squares.	in J king Class Class are Cylin cylin and nstru th of navirlass	ava- with ssess class a of nder nder t the I two uctor f the as as	C	O 1
UNIT II	EXCEPTION, IO STREAMS AND CONCURRENT PROGRAMMING			Ć	9+6
Exceptions – Streams- Thre Priorities - Syr LAB COMPOI Write a	Indling - The Exception Hierarchy – Keywords – Checked and unduser defined Exceptions - Input/Output Streams- Byte Streams, Ceads – Multithreaded Programming – Thread Creation – Life Cycle – Inchronization of Threads. NENT: Java program to count the number of characters, count, sentences, parabaces in a file	hara Th	acter read		O 2
 Deduce Each the will find Maximum finding 	e a Java program to perform the following tasks using three different nread will be responsible for its own task only. Among these three thre the average number of the input numbers, one will be responsible for finum number from the input array of numbers, and one will be responsible Minimum number from the input array of numbers.	ads ding	one the		
UNIT III	PLANNING & SCHEDULING	_	_	9	9+6
Introduction to	Software Engineering - Software Development process models	- /	Agile	С	О3

OBJECT ORIENTED SOFTWARE ENGINEERING

ML1302

Development - Software Requirements Specification, Software prototyping - Software project planning - Scope - Resources - Software Estimation - Empirical Estimation Models - Planning - Risk Management - Software Project Scheduling - Object Oriented Estimation & Scheduling. LAB COMPONENT:

To Perform Software Requirement Specification of the specified problem and draw a flow chart

- 1. Health Care
- 2. Airlines
- 3. Education

UNIT IV

ANALYSIS AND DESIGN

9+6

Analysis Modeling - Data Modeling - Functional Modeling & Information Flow - Behavioral Modeling-Structured Analysis - Object Oriented Analysis - Domain Analysis-Object oriented Analysis process - Object Relationship Model - Object Behaviour Model, Design modelling with UML. Design Concepts & Principles - Design Process - Design Concepts - Modular Design - Design Effective Modularity - Introduction to Software Architecture - Data Design - Transform Mapping - Transaction Mapping - Object Oriented Design - System design process - Object design process - Design Patterns

LAB COMPONENT:

CO₄

- Understanding different actors and use-cases in detail of the specified problem statement and draw it using StarUML
- To draw the structural view diagram: Class diagram of specified problem statement using StarUML
- To draw the Behavioral View diagram: State Chart diagram and Activity diagram, using StarUML
- To draw Component and Deployment diagram using StarUML

UNIT V

IMPLEMENTATION, TESTING AND MAINTENANCE

9+6

Top - Down, Bottom-Up, object oriented product Implementation & Integration. Software Testing methods-White Box, Basis Path-Control Structure - Black Box - Unit Testing - Integration testing - Validation & System testing - Testing Tools –JUNIT testing- Software Maintenance & Reengineering.

LAB COMPONENT:

Implement the system as per the detailed design

CO₅

- Write the test cases and create test plan document for the given system.
- Study of any Open Source Testing tool(Example Testlink)
- Study of Web testing tool(Example Selenium)
- Study of Bug tracking tool (Example bugzilla)
- Study of any Test Management tool (Example Testdirector)

PRACTICALS: 30 PERIODS

THEORY: 45 PERIODS
TOTAL: 75 PERIODS

TEXT BOOKS

- 1. Cay S. Horstmann, "Core Java SE 9 for the Impatient", 2nd Edition, Addison-Wesley, 2017.
- 2. Roger. S. Pressman and Bruce R. Maxim, "Software Engineering A Practitioner's Approach", seventh Edition, McGraw Hill, 2015.
- 3. Ian Sommerville, "Software Engineering", eighth edition, Pearson Education, New Delhi, 2011.
- 4. Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition), Pearson Education, 2008.

REFERENCE BOOKS

- 1. Herbert schildt, "The complete reference", 11th Edition, Tata Mc Graw Hill, New Delhi. 2018
- 2. C Xavier, "Java Programming A Practical Approach", Tata McGraw-Hill Edition, 2011. Grady Booch, James Rumbaugh, Ivar Jacobson "the Unified Modeling Language User Guide" Addison Wesley, 1999. 4. Ali Bahrami, "Object Oriented Systems Development" 1st Edition, The McGraw-Hill Company, 1999.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the fundamental ideas behind the object oriented approach to programming.
CO2	A modern coverage of concurrent programming that focuses on high-level synchronization
	Constructs.
CO3	Understand software development process models

CO4 Perform overall design using various UML diagrams

CO5 Recognize the knowledge about testing methods and comparison of various testing techniques

				IV		140 0		3 4411		3 AIL	7130	3			
600				PR	OGRA	O MA	UTCO	MES	(POs)				RAM SP UCOME	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	-	-	1	1	1	1	2	1	1
CO2	1	1	1	1	1	1	-	-	1	1	1	1	2	1	1
CO3	1	2	2	1	1	1	-	-	2	1	2	1	1	1	1
CO4	1	2	2	1	2	1	1	1	2	1	2	1	1	1	1
CO5	1	1	1	1	2	-	1	1	2	1	2	1	1	1	1

ML1303	OPTIMIZATION FOR MACHINE LEARNING L T		C
OR IECTIVE		0	[3
To covTo lea	rer the core concepts of continuous optimization rn about unconstrained and constrained optimization problems.		
UNIT I	BJECTIVES To cover the core concepts of continuous optimization To learn about unconstrained and constrained optimization problems. To learn methods and algorithms for both convex and non-convex optimization settings with introduction to OPTIMIZATION To learn apout unconstrained and constrained optimization problems. To learn methods and algorithms for both convex and non-convex optimization settings with introduction to OPTIMIZATION To learn methods and algorithms for both convex and non-convex optimization settings with introduction. Convex optimization - Least-squares problem - Linear programming - Role of dimization, convex optimization - Local and global optimization - Convexity, Examples NIT II CONVEX SETS AND FUNCTIONS International Convex sets - Operations that preserve convexity - Generalized inequalities - Separating hyper-plane theorem - Convex functions - Basic properties and examples - Conjugate function, conjugate sets. NIT III CONVEX OPTIMIZATION PROBLEMS Edinition and examples - Optimization problems - Convex optimization - Linear optimizati		
Mathematical	optimization - Least-squares problem - Linear programming - Role of		
optimization,	Convex optimization - Non-linear optimization - Local and global optimization -	С	0
Convexity, Ex	amples		
I INIT II	CONVEY SETS AND FUNCTIONS		
	·		_
		C	O
Conjugate fur	iction, conjugate sets.		
UNIT III	CONVEX OPTIMIZATION PROBLEMS		
Definition and	examples - Optimization problems - Convex optimization - Linear optimization -		
Quadratic op	timization problems - Geometric programming - Semi-definite programming -	С	0
Generalized in	nequality constraints - Vector optimization .		
UNIT IV	DUALITY		
Duality theory	y - Lagrange dual function - Lagrange dual problem – Geometric Interpretation -		<u></u>
• •		С	:C
		1	
UNIT V			
Unconstraine	d minimization: Descent methods -Gradient descent method - Steepest descent	C	O
method - Nev	• To cover the core concepts of continuous optimization • To learn about unconstrained and constrained optimization problems. • To learn methods and algorithms for both convex and non-convex optimization settings NIT I INTRODUCTION TO OPTIMIZATION 9 athematical optimization - Least-squares problem - Linear programming - Role of optimization, Convex optimization - Non-linear optimization - Local and global optimization - Optimization, Convex optimization - Non-linear optimization - Local and global optimization - Optimization, Convex optimization - Non-linear optimization - Local and global optimization - Optimization, Convex sets - Operations that preserve convexity - Generalized inequalities - Optimization optimization in the programming in the optimization optimization optimization, conjugate sets. NIT III CONVEX OPTIMIZATION PROBLEMS 9 affinition and examples - Optimization problems - Convex optimization - Linear optimization - Understand Distriction optimization problems - Geometric programming - Semi-definite programming - CO3 eneralized inequality constraints - Vector optimization . NIT IV DUALITY 9 uality theory - Lagrange dual function - Lagrange dual problem - Geometric Interpretation - Leak and strong duality - Saddle point interpretation - Interpretation of dual variables - KKT optimization of optimization: Descent methods - Gradient descent method - Steepest descent optimization in Newton methods - Convergence Analysis. CO5		
	TOTAL : 45 PEI	RIO	D
TEXT BOOK	3		
1. Guang	hui Lan, Lectures on Optimization - Methods for Machine Learning, 2019.		

 Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press 2004.

REFERENCE BOOKS

- 1. Dimitri P. Bertsekas, Convex Analysis and Optimization, Athena-Scientific, 2003
- 2. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2003
- 3. Aharon Ben-Tal and Arkadi Nemirovski, Lectures on Modern Convex Optimization, 2001.
- 4. E.K.P Chong and S.H.Zak, An Introduction to Optimization, 2013.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Know basic terminology and concepts in convex optimization.
- CO2 Understand the foundations of classic continuous optimization problems, in particular identifying convexity, smoothness, feasible region, and dual reformulation.
- CO3 Design and analyze optimization algorithms for convex optimization problems.
- CO4 Use duality and decomposition for parallelization of optimization algorithms.
- CO5 Solve standard convex optimization problems arising in various scientific and engineering applications.

COs				PR	OGR/	AM O	UTCO	MES	(POs	3)				RAM SP OMES (
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	-	1	-	-	-	2	1	1	1	1	1	1
CO2	2	-	2	-	1	-	-	-	2	1	1	1	1	1	1
CO3	2	1	2	1	1	1	-	-	2	1	1	2	2	2	2
CO4	2	1	2	1	1	1	-	-	2	1	1	2	2	2	2
CO5	2	2	2	2	1	1	-	1	2	2	2	2	2	2	2

DS1307	DATA STRUCTURE LABORATORY USING PYTHON	L	T	P	C
	Common for AI-DS	0	0	4	2
OBJECTIVE	S				
To intr	roduce the concepts of primitive data structures.				
To unc	lerstand the process in linear and non-linear data structures.				
❖ To inti	roduce the concepts of sorting, searching and hashing.				
LIST OF EXI	PERIMENTS				
1. IMPLI	MENTATION OF LIST				
Write Python p	programs to				
a)					
b)	Array implementation of Queue ADTs.				
2. LIST AD	T .				
Array	implementation of List ADT.			_ (CO1
3. IMPLEME	ENTATION OF STACK AND QUEUE				
Write Python p	programs to				
a)	Design and implement Single Linked List.				
b)	Design and implement Stack and its operations using List.				
c)	Design and implement Queue and its operations using List.				
4. APPLICA	TIONS OF LINEAR DATA STRUCTURE				
Write Python p	programs for the following:				
a)	Design and implement polynomial ADT using list				
b)	Uses Stack operations to convert infix expression into postfix expression	i.			
c)	Uses Stack operations for evaluating the postfix expression.			_ (CO2
5. APPLICA	TIONS OF TREE				
	Write a Python program to Design and implement binary tree.				
b)	Traverse the above binary tree recursively in pre-order, post-order & in-o	rde	r.		
6. IMPLEME	ENTATION OF TREE				
Write a Pythor	program to Design and implement binary search tree.				
7. IMPLEME	ENTATION OF ADVANCED TREE				
•	Design and Implement AVL tree using Templates.			C	CO3
b)	Design and Implement heap tree using Templates.				
	ENTATION OF SHORTEST PATH ALGORITHMS				
•	programs for the following:				03
•	Design and Implement Dijkstra's algorithm				
b)	Design and Implement Floyd Warshall algorithm.			+	
	ENTATION OF MINIMUM SPANNING TREE				
•	programs for the following: Design and Implement Kruskal's algorithm.				
a) b)	Design and Implement Prim's algorithm.				
,	TRAVERSAL & APPLICATIONS			\dashv	
	programs to implement the following algorithms:				
•	Depth first search.				
b)	Breadth first search.				

c) Toplogical Sorting.

11. SORTING &SEARCHING AND HASH TABLE IMPLEMENTATION

- a) Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order.
 - i. Insertion sort
 - ii. Selection sort
 - iii. Quick sort
 - iv. Merge sort
- b) Write Python programs for implement linear search and binary search.
- c) Write Python programs for implement Hashing any two collision techniques

TOTAL: 60 PERIODS

REFERENCE BOOKS

1. Rance D. Necaise, Data Structures and Algorithms Using Python, Willy Student Edition, 2016.

WEB REFERENCES

- 1. https://cloudacademy.com/lab/python-lab-1/
- 2. https://www.python.org/downloads/

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Write functions to implement linear and non-linear data structure operations
CO2	Suggest appropriate linear / non-linear data structure operations for solving a given problem
CO3	Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	1	1	-	-	2	2	2	3	3	3	3	2		
CO2	3	3	3	1	1	-	-	2	2	2	3	3	3	3	2		
CO3	3	3	3	1	1	-	ı	2	2	2	3	3	3	3	2		

DS130	8 ARTIFICIAL INTELLIGENCE LABORATORY	L	Т	Р	С
	Common to AI & DS	0	0	4	2
	To get familiarized with the structure of agents To solve simple toy world problems To understand and develop solutions through search strategies. To develop solutions for constraint satisfaction problems. To increase the knowledge about real-world problems and how to plan and act i and to get familiarized with expert systems	n th	e rea	al wo	orld
LIST O	F EXPERIMENTS				
2.	Developed a simple reflex agent program in Python for the vacuum-cleane problem. This particular world has just two locations: squares A and B. The agent perceives which square it is in and whether there is dirt in the square choose to move left, move right, suck up the dirt, or do nothing. Solve the 8-puzzle problem, which consists of a 3×3 board with eight number and a blank space. A tile adjacent to the blank space can slide into the space objective is to reach a specified goal state as given below. Find minimum nusteps required to reach the goal. 1	vace. It	tiles The er of	C	O 1
5. 6.	Write a Python program for a path search problem to find a path from point A to using A* Search Algorithm. Using Hill Climbing Search Algorithm, find the solution for a Travelling Sa Problem, which has to find the shortest route from a starting location and bac starting location after visiting all the other cities. Given an undirected graph and a number m, determine if the graph can be down with at most m colours such that no two adjacent vertices of the graph are colous the same color. Here coloring of a graph means the assignment of colors to all vertices of the cryptarithmetic puzzle SEND+MORE=MONEY using a Python progradigits that replace letters to make a mathematical statement true. Each letter problem represents one digit (0–9). No two letters can represent the same digit. Letter repeats, it means a digit repeats in the solution. Write a Python program to solve Sudoko. Given an initial 9x9 grid of cells of numbers between 1 and 9 or blanks, all blanks must be filled with numbers. Sudoko if you find all values such that every row, column, and 3x3 subsquare of the numbers 1–9, each with a single occurrence.	ales colored rerticam. er in Wh	man ured with ces. Find the en a	c	O2
	A job shop consists of a set of distinct machines that process jobs. Each job is of tasks that require use of particular machines for known durations, and which completed in specified order. Implement the job shop scheduling problem to sthe jobs on the machines to minimize the time necessary to process all jobs. Demonstrate the use of MYCIN: a medical expert system. Implement a small of an expert system; which defines a few contexts, parameters, and rules, and a rudimentary user interface to collect data about an infection in order to determidentity of the infecting organism.	mus sche exar ores	st be dule mple ents	C	О3

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Python 3 Interpreter for Windows/Linux 30 Nos.

REFERENCE BOOKS

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third Edition, 2009.
- 2. Dan W. Patterson Introduction to Artificial Intelligence and Expert Systems, PHI, New Delhi, 2006.

WEB REFERENCES

- 1. https://www.tutorialspoint.com/artificial_intelligence_with_python/index.htm
- 2. https://www.edureka.co/blog/artificial-intelligence-with-python/

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Familiarized with the structure of agents, implement simple agents and develop solutions for simple toy world problems.
- CO2 Implement and develop solutions for problems through different search strategies. Identify constraints of problems and develop solutions for constraint satisfaction problems.
- CO3 Approach a real world problem, develop a plan and then solve those problems and use expert systems.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	1	1	1	1	2	2	2	3	3	3	3		
CO2	3	3	3	3	1	1	1	1	2	2	2	3	3	3	3		
CO3	3	3	3	3	2	1	1	1	2	2	2	3	3	3	3		

HS1310	PROFESSIONAL SKILLSLAB		Γ	P	C
OBJECTIVES	(Common to IT)) ()	2	1
EnhandOrientMake t	ce the Employability and Career Skills of students the students towards grooming as a professional hem Employable Graduates their confidence and help them attend interviews successfully.				
LIST OF EXPI	EDIMENTS				
UNIT I	ENIMIEN 13				6
Introduction to as a profession presentation; (audience duri	Soft Skills- Hard skills & soft skills - employability and career Skills—Ground with values—Making an Oral Presentation—Planning and preparing a Organizing the presentation to suit the audience and context; Connecting wing presentation; Projecting a positive image while speaking; Emphalanguage-General awareness of Current Affairs.	moo vith t	del he	C	01
UNIT II					6
Self-Introduction topic – answer Presentation - language dyr presentation;	on-organizing the material - Introducing oneself to the audience – introducering questions – individual presentation practice— Making a Power - Structure and format; Covering elements of an effective presentation namics. Making an Oral Presentation—Planning and preparing a Organizing the presentation to suit the audience and context; Connecting wing presentation; Projecting a positive image while speaking; Emphalanguage	r Po ; Bo moo vith t	oint ody del the		02
UNIT III					6
Introduction to dynamics - bra dynamics of a	Group Discussion— Participating in group discussions – understanding ainstorming the topic — questioning and clarifying –GD strategies- Structua GD; Techniques of effective participation in group discussion; Prepartion; Accepting others' views / ideas; Arguing against others' views or ideas	ire a	nd for	C	03
UNIT IV					6
Basics of publ microphone. (public speakin telephone/skyl process; How	ic speaking; Preparing for a speech; Features of a good speech; Speaking Famous speeches may be played as model speeches for learning the g). Interview etiquette – dress code – body language – attending job interpe interview -one to one interview &panel interview –Job Interviews: purporto prepare for an interview; Language and style to be used in an interview; lestions and how to answer them.	art view se a	of s- nd		04
					_
networking pr	differences between groups and teams- managing time managing of sofessionally- respecting social protocols understanding career managed ong- term career plan making career changes	eme	nt-		05 DC
	TOTAL :	<u>30</u>	rei	KIU	טט
LIST OF EQU One Server	IPMENT FOR A BATCH OF 30 STUDENTS				
30 Desktop Co	omputers				
One Hand Mik					
One LCD Pro	JECIOI				
2. E. Su	BOOKS ield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015 resh Kumar et al. Communication for Professional Success. Orien abad, 2015	ıt B	lacl	KSW	an

- 3. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014
- 4. S. Hariharanetal. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students,. OrientBalckSwan: Hyderabad, 2016.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 | Make effective presentations
- CO2 | Participate confidently in Group Discussions
- CO3 Attend job interviews and be successful in them.
- CO4 Develop adequate Soft Skills required for the workplace
- CO5 Develop their speaking skills to enable them speak fluently in real contexts

COs				PR	OGRA	AM O	UTCO	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	-	1	-	-	-	-	-	1	2	3	-	-	2	1	2	
CO2	-	1	-	2	-	-	-	-	-	3	-	-	1	-	2	
CO3	-	2	-	3	-	-	-	-	1	2	-	-	-	-	2	
CO4	-	-	-	-	1	-	-	-	2	2	-	-	-	-	2	
CO5	-	2	1	1	2	-	2	1	-	3	-	-	1	2	2	

MA1454 DISCRETE MATHEMATICS & GRAPH THEORY C **OBJECTIVES** To introduce Mathematical Logic, Inference Theory and proof methods. To provide fundamental principles on combinatorial counting techniques. To Demonstrate an understanding of relations and functions Be familiar with the most fundamental Graph Theory topics and results UNIT I LOGIC AND PROOFS 12 Propositional Logic - Propositional Equivalences - Normal Forms - Predicates and Quantifiers - Nested Quantifiers - Rules of Inference - Introduction to Proofs - Proof Methods and **CO1** Strategy. UNIT II **COMBINATORICS** 12 Mathematical Induction - Strong Induction and Well Ordering - The Basics of Counting - The Pigeonhole Principle - Permutations and Combinations - Recurrence Relations - Generating CO₂ Functions - Solving Linear Recurrence Relations Using Generating Functions- Inclusion -Exclusion – Principle and Its Applications. **SETS AND FUNCTIONS** 12 Set -Relations on sets - Types of relations and their properties - Partitions - Equivalence relations – Partial ordering – Poset – Hasse diagram. Functions: Characteristic function of a set CO₃ - Hashing functions - Recursive functions - Permutation functions. UNIT IV **GRAPHS** 12 Graphs - Introduction - Isomorphism - Sub graphs - Walks, Paths, Circuits - Connectedness -CO₄ Components – Euler graphs – Hamiltonian paths and circuits **UNIT V TREES** 12 Trees - Properties of trees - Distance and centers in tree - Rooted and binary trees. -CO₅ Spanning and Minimal spanning trees. **TOTAL: 60 PERIODS TEXT BOOKS** 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw Hill Pub.

- Co.Ltd., Seventh Edition, Special Indian Edition, New Delhi, 2011.
- 2. Ralph. P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", Pearson Education, Fifth Edition, New Delhi, 2014.
- 3. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.

REFERENCE BOOKS

- 1. Seymour Lipschutz and Mark Lipson," Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., Third Edition, New Delhi, 2013.
- 2. Thomas Koshy," Discrete Mathematics with Applications", Elsevier Publications, Boston, 2004.
- 3. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.
- 4. Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.
- 5. Liu C.L., "Elements of Discrete Mathematics", Mc Graw Hill, 1985.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Construct proofs by using direct proof, proof by contraposition, proof by contradiction. Construct mathematical arguments using logical connectives and quantifiers and verify the correctness of an argument using propositions. Logic helps in arriving inferences for any problem.
- Solve problems such as permutation and combination and in generating functions. Prove mathematical theorems using mathematical induction. Demonstrate basic counting principles, compute and interpret the meaning in the context of the particular application. Helps to apply the combinatorial techniques in Algorithms and Data structure for analysis and design.
- CO3 Specify and manipulate basic mathematical objects such as sets, functions, and relations verify simple mathematical properties.
- CO4 Apply the graph theory concepts in data structures, data mining, image segmentation and in clustering
- CO5 Analyze trees and spanning trees, Minimal Spanning Trees which are helpful in analysis of algorithms, compilation of algebraic expressions, theoretical models of computation.

COs				PR	OGR/	AM O	UTCC	MES	(POs	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1								PO12	PSO1	PSO2	PSO3				
CO1	3	3	2	2	1	1	1	0	0	1	1	2	2	1	1	
CO2	3	3	2	2	1	1	1	0	0	1	1	2	2	1	1	
CO3	3	3	2	2	1	1	1	0	0	1	1	2	2	1	1	
CO4	3	3	2	2	1	1	1	0	0	1	1	2	2	1	1	
CO5	2	2	2	2	1	1	1	0	0	1	1	2	2	1	1	

CS1401	S1401 DESIGN AND ANALYSIS OF ALGORITHMS L T P										
	Common to CSE, IT & AI-DS	3	0	0	3						
OBJECTIVES			•								
To learn	about the process of problem solving										
❖ To be c	onversant with algorithms for common problems.										
To anal	yse the algorithms for time/space complexity.										
To learn	n to write algorithms for a given problem using different design paradigms	3.									
To under	erstand computational complexity of problems										
UNIT I	FUNDAMENTALS				9						
The Role of	Algorithms in Computing – Algorithms – Designing Algorithms – A	naly	sing								
Algorithms – It	erative Algorithms - Step Count - Operation Count - Recursive Algo	rithm	ns –		01						
Recurrence Ed	uations – Substitution Method – Recursion Tree Method – Master The	eore	m –		01						
Proof – Asymp	totic Notations – Growth of Functions.										
UNIT II	DIVIDE AND CONQUER & DYNAMIC PROGRAMMING				9						
Divide-and-Cor	nquer – Merge Sort – Quicksort – Dynamic Programming – Matri	x Cł	nain								
Multiplication –	Elements of Dynamic Programming – Longest Common Subsequence -	– Ba	sics	С	02						
of String – Strir	ng Edit Problem										
UNIT III	GREEDY APPROACH AND MATRIX OPERATIONS				9						
Elements of T	he Greedy Strategy – Huffman Code – Task Scheduling Problem –	Act	ivity								
Selection - S	et Cover and Vertex Cover – Transform and Conquer Approach -	- Ma	atrix	C	О3						
Operations – S	solving Systems of Linear Equations – LUP Decomposition – Matrix Inve	erse	and	"	00						
Determinant of	a Matrix										
UNIT IV	LINEAR PROGRAMMING				9						
Linear Progran	nming – Problem Formulation – Diet Problem – Voting Problem – Stand	lard	and								
Slack Forms	of Linear Programming Problems – Initial Basic Feasible Solution –	Sim	plex	С	04						
Algorithm – Du	•										
UNIT V	COMPUTATIONAL COMPLEXITY				9						
Understanding	of Computational Complexity - NP-Hard - NP-Completeness - Redu	cibili	ty –								
Cook's Theore	em – NP-Completeness Proofs – Probabilistic Analysis and Rand	domi	ized	С	O5						
Algorithms – Q	uicksort – Approximation Algorithms – Set Cover and Vertex Cover										
	TOTAL	: 45	PE	RIO	DS						
TEXT BOOKS											
1. Thomas	s H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,	"Intro	oduc	tion	to						
Algorith	ms", Third Edition, McGraw Hill, 2009.										
2. S. Sridh	nar, "Design and Analysis of Algorithms", Oxford University Press, 2015.										
REFEREN	CE BOOKS										
	S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 20										
	Sedgewick, Kevin Wayne, "Algorithms", Fourth Edition, Pearson Education										
	E. Knuth, "Art of Computer Programming, Volume I - Fundamental Alg	yorith	nms'	′, Th	nırd						
	Addison Wesley, 1997.										
COURSE C	DUTCOMES										

Up	oon completion of the course, students will be able to
CO1	Ability to analyze the performance of algorithms
CO2	Design and implement problems using algorithmic design techniques such as divide and
	conquer and Dynamic programming
CO3	Ability to understand the design techniques such as Greedy approach and Transform and
	conquer approach
CO4	Ability to understand the iterative design techniques
CO5	Understand the variations among tractable and intractable problems

COs				PR	OGRA	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2	
CO2	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2	
CO3	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2	
CO4	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2	
CO5	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2	

OF ENATING OF OTELLING	_	•	•				
(Common to CSE, AI-DS & IT)	3 (С	0	3			
OBJECTIVES							
To understand the basic concepts and functions of operating systems.							
 To understand Processes and Threads 							
To analyze Scheduling algorithms.							
To understand the concept of Deadlocks.							
To analyze various memory management schemes.							
To understand I/O management and File systems.							
❖ To be familiar with the basics of Linux system and Mobile OS like iOS and Androi	id						
UNIT I OPERATING SYSTEM OVERVIEW				9			
Computer System Overview-Basic Elements, Instruction Execution, Interrupts, N	Mem	ory					
Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organ		•					
Operating system overview-objectives and functions, Evolution of Operating St			C	01			
Computer System Organization Operating System Structure and Operations- System	•						
System Programs, OS Generation and System Boot.		,					
UNIT II PROCESS MANAGEMENT				9			
Processes – Process Concept, Process Scheduling, Operations on Processes, Inter-p	oroce	ess					
Communication; CPU Scheduling - Scheduling criteria, Scheduling algorithms, M							
processor scheduling; Threads- Overview, Multithreading models, Threading issues; F	-						
Synchronization – The critical-section problem, Semaphores, Classical problems of							
synchronization, Monitors; Deadlock – System model, Deadlock characterization, Meth				02			
handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Re							
from deadlock.							
UNIT III STORAGE MANAGEMENT				9			
Main Memory – Background, Swapping, Contiguous Memory Allocation, I	Pagi	ng,					
Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples; Virtual N	vlem:	ory					
 Background, Demand Paging, Need for Page Replacement, Page Replacement Alg 		-	C	О3			
Allocation, Thrashing; Allocating Kernel Memory, OS Examples.	,	,					
UNIT IV FILE SYSTEMS AND I/O SYSTEMS				9			
Mass Storage system - Overview of Mass Storage Structure, Disk Structure, Disk Sch	edul	ing					
and Management, swap space management; File-System Interface - File concept,		_					
methods, Directory Structure, Directory organization, File Sharing and Protection; File Sharing and Protection;			_				
Implementation- File System Structure, Directory implementation, Allocation Methods	•		C	04			
Space Management, Efficiency and Performance, Recovery; I/O Systems - I/O Hai							
Application I/O interface, Kernel I/O subsystem, Streams, Performance.							
UNIT V CASE STUDY				9			
Linux System - Design Principles, Kernel Modules, Process Management, Scheduling, N	Mem	ory					
Management, Input-Output Management, File System, Inter-process Communication;	Mok	oile					
OS - iOS and Android - Architecture and SDK Framework, Media Layer, Services Layer	er, Co	ore	C	05			
OS Layer, File System.							
TOTAL	: 45	PEI	RIO	DS			
TEXT BOOKS							
1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, —Operating Syst	tem	Cor	ncer	ots			
9th Edition, John Wiley and Sons Inc., 2012.				,			
our Edition, committed and como mo., 2012.							

OPERATING SYSTEMS

CS1402

ТР

С

REFERENCE BOOKS

- 1. RamazElmasri, A. Gil Carrick, David Levine, —Operating Systems A Spiral Approachll, Tata McGraw Hill Edition, 2010.
- 2. William Stallings, "Operating Systems Internals and Design Principles", 7 th Edition, Prentice Hall, 2011.
- 3. AchyutS.Godbole, AtulKahate, —Operating Systemsll, McGraw Hill Education, 2016.
- 4. Andrew S. Tanenbaum, —Modern Operating Systems II, 4th Edition, Pearson Education, 2014.
- 5. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education
- 6. Daniel P Bovet and Marco Cesati, —Understanding the Linux kernell, 3rd edition, O'Reilly, 2005.
- 7. Neil Smyth, —iPhone iOS 4 Development Essentials Xcodell, Fourth Edition, Payload media, 2011.
- 8. http://nptel.ac.in/.
- 9. William Stallings, Operating Systems: Internals and Design Principles, Pearson, 9 th Edition (2018).

COURSE OUTCOMES

Upon completion of the course, students will be able to

	1 '
CO1	Analyze various scheduling algorithms.
CO2	Understand deadlock, prevention and avoidance algorithms.
CO3	Compare and contrast various memory management schemes.
CO4	Understand the functionality of file systems.
CO5	Perform administrative tasks on Linux Servers and Compare iOS and Android

COs				PR	OGRA	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	

 ◆ To learn the fundamentals of data models, ER diagrams and to study SQL and relation database design. ◆ To familiarize relational model with Relational Database design and Normal Forms. ◆ To understand the fundamental concepts of transaction processing- concurren control techniques and recovery procedures. ◆ To understand the implementation techniques by learning file organization and Que Optimization. ◆ To understand the concepts of distributed databases, Object Oriented databases and XN databases 	CS1403	DATABASE DESIGN AND MANAGEMENT (Lab Integrated) L T	Р	C
 To learn the fundamentals of data models, ER diagrams and to study SQL and relation database design. To familiarize relational model with Relational Database design and Normal Forms. To understand the fundamental concepts of transaction processing- concurren control techniques and recovery procedures. To understand the implementation techniques by learning file organization and Que Optimization. To understand the concepts of distributed databases, Object Oriented databases and XN databases UNIT I INTRODUCTION TO RELATIONAL DATABASES Purpose of Database System – Views of data – Data Models – Database System Architecture Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features Lab Component Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.) UNIT II ER MODEL AND RELATIONAL DATABASE DESIGN 		(55111111111111111111111111111111111111	2	4
 database design. To familiarize relational model with Relational Database design and Normal Forms. To understand the fundamental concepts of transaction processing- concurren control techniques and recovery procedures. To understand the implementation techniques by learning file organization and Que Optimization. To understand the concepts of distributed databases, Object Oriented databases and XM databases INTRODUCTION TO RELATIONAL DATABASES Purpose of Database System – Views of data – Data Models – Database System Architecture Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping-Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features Lab Component Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.) UNIT II ER MODEL AND RELATIONAL DATABASE DESIGN 				
Purpose of Database System – Views of data – Data Models – Database System Architecture Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features Lab Component • Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins • Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. • Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.)	datable To fa To control To u Optin	pase design. miliarize relational model with Relational Database design and Normal Forms. understand the fundamental concepts of transaction processing- concept techniques and recovery procedures. understand the implementation techniques by learning file organization and nization. nderstand the concepts of distributed databases, Object Oriented databases a	curre Qı	enc uer
Purpose of Database System – Views of data – Data Models – Database System Architecture Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features Lab Component Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.)	datar	ases		
Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features Lab Component Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.)	UNIT I	INTRODUCTION TO RELATIONAL DATABASES	9	+ 6
	Entity-Relation Introduction fundamentals Lab Compo Data upda: - Sim Queri HAVI - Conc	onship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—to relational databases – Relational Model – Keys – Relational Algebra – SQL s – Advanced SQL features nent Definition Commands, Data Manipulation Commands for inserting, deleting, ting and retrieving Tables and Transaction Control statements .Database Querying apple queries, Nested queries, Sub queries and Joins ies using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, NG and Creation and dropping of Views, Synonyms, Sequences. eptual Designing using ER Diagrams (Identifying entities, attributes, keys and	С	01

fundamentals – Advanced SQL features	
 Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements .Database Querying – Simple queries, Nested queries, Sub queries and Joins Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views, Synonyms, Sequences. Conceptual Designing using ER Diagrams (Identifying entities, attributes, keys and relationships between entities, cardinalities, generalization, specialization etc.) 	CO1
UNIT II ER MODEL AND RELATIONAL DATABASE DESIGN	9+6
Embedded SQL- Dynamic SQL - Functional Dependencies - Non-loss Decomposition - First, Second, Third Normal Forms, Dependency Preservation - Boyce/Codd Normal Form - Multivalued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form Lab Component Simple Embedded SQL Program to demonstrate the concepts. Database Design using normalization and Implementation for any application.	CO2
UNIT III TRANSACTIONS	9 + 6
Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency Control – Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transaction Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery. Lab Component Usage of Transaction control language commands like commit, rollback and save point. Develop Programs using BEFORE and AFTER Triggers for INSERT, DELETE and UPDATE statements	соз
UNIT IV IMPLEMENTATION TECHNIQUES	9 + 6
RAID – File Organization – Organization of Records in Files – Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing. Query Processing Overview – Algorithms for SELECT and JOIN operations – Query optimization using Heuristics and Cost Estimation. Lab Component Implementation of B tree and B+ Tree. Develop programs to demonstrate hashing techniques.	CO4
UNIT V ADVANCED TOPICS	9 + 6
Distributed Databases: Architecture, Data Storage, Data Fragmentation - Replication and Allocation Techniques for Distributed Database Design. Distributed Databases: Architecture,	CO5

Data Storage, Transaction Processing – Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL - XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery.

Lab Component

- Database Connectivity with Front End Tools
- Case Study using real life database applications.

PRACTICALS: 30 PERIODS THEORY: 45 PERIODS TOTAL: 75 PERIODS

TEXT BOOKS

- 1. Ramez Elmasri and Shamkant B. Navathe; Fundamentals of Database Systems, Pearson, Seventh Edition. Global Edition.2016
- 2. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", fifth Edition McGraw-Hill
- 3. Vlad Vlasceanu, Wendy A. Neu, Andy Oram, Sam Alapati, An Introduction to Cloud Databases, O'Reilly Media, Inc., 2019 ISBN: 9781492044840.

REFERENCE BOOKS

- 1. C.J.Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2004.
- 2. Guy Harrison, Next Generation Databases: NoSQL, NewSQL, and Big Data, Apress, 2015.
- 3. https://dzone.com/articles/deep-dive-newsql-databases

COURSE OUTCOMES

Upon completion of the course, students will be able to

- Map ER model to Relational model to perform database design effectively
- CO2 Write queries using normalization criteria and optimize queries
- CO3 Design the Query Processor and Transaction Processor
- CO4 Learn different database concepts like distributed databases, spatial databases and mobile databases.
- CO5 Apply security concepts to databases, review cloud databases, streaming and graph databases.

COs				PR	OGR/	AM O	UTCC	MES	(POs	3)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3	
CO2	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3	
CO3	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3	
CO4	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3	
CO5	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3	

ML1401	FOUNDATIONS OF MACHINE LEARNING	L	T	P	C
	Common for IT, AI-DS & CSE	3	0	0	3

OBJECTIVES

- To understand the basic concepts of machine learning and probability theory.
- To appreciate supervised learning and their applications.
- To understand unsupervised learning like clustering and EM algorithms.
- ❖ To understand the theoretical and practical aspects of probabilistic graphical models.
- ❖ To learn other learning aspects such as reinforcement learning, representation learning, deep learning, neural networks and other technologies.

UNIT I	INTRODUCTION	9						
Machine Learni	ng - Types of Machine Learning - Supervised Learning - Unsupervised Learning -							
Basic Concepts	in Machine Learning - Machine Learning Process - Weight Space - Testing Machine	CO1						
Learning Algori	thms - A Brief Review of Probability Theory -Turning Data into Probabilities - The	COI						
Bias-Variance T	rade-off, FIND-S Algorithm, Candidate Elimination Algorithm							
UNIT II	SUPERVISED LEARNING	9						
Linear Models f	For Regression – Linear Basis Function Models – The Bias-Variance Decomposition –							
Bayesian Linear	Regression – Common Regression Algorithms – Simple Linear Regression – Multiple							
Linear Regressi	on – Linear Models for Classification – Discriminant Functions – Probabilistic	CO2						
Generative Models – Probabilistic Discriminative Models – Laplace Approximation – Bayesian Logistic								
Regression – Common Classification Algorithms – k-Nearest Neighbors – Decision Trees – Random								
Forest model – S	Support Vector Machines							
UNIT III	UNSUPERVISED LEARNING	9						
Mixture Models	s and EM - K-Means Clustering - Dirichlet Process Mixture Models - Spectral							
Clustering – Hi	erarchical Clustering - The Curse of Dimensionality - Dimensionality Reduction -	CO ₃						
	erarchical Clustering – The Curse of Dimensionality – Dimensionality Reduction – onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA)	CO3						
	·	CO3						
Principal Compo	onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA)	9						
Principal Compo UNIT IV Bayesian Netwo	onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA) GRAPHICAL MODELS							
Principal Compo UNIT IV Bayesian Netwo	onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA) GRAPHICAL MODELS orks – Conditional Independence – Markov Random Fields – Learning – Naive Bayes	9						
Principal Compo UNIT IV Bayesian Netwo Classifiers – Ma UNIT V	onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA) GRAPHICAL MODELS orks – Conditional Independence – Markov Random Fields – Learning – Naive Bayes rkov Model – Hidden Markov Model.	9 CO4 9						
Principal Compo UNIT IV Bayesian Netwo Classifiers – Ma UNIT V Reinforcement I	onent Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA) GRAPHICAL MODELS orks – Conditional Independence – Markov Random Fields – Learning – Naive Bayes rkov Model – Hidden Markov Model. ADVANCED LEARNING	9 CO4						

TEXT BOOKS

1. Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Prentice Hall of India, 2015.

REFERENCE BOOKS

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 3. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, CRC Press, 2014.
- 4. Tom Mitchell, "Machine Learning", McGraw-Hill, 2017.
- 5. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition, Springer, 2008.
- 6. Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, Apress, 2018.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Gain knowledge about basic concepts of machine learning techniques
CO2	Develop predictive model based on both input and output data
CO3	Ability to understand the unsupervised learning algorithm and dimensionality reduction techniques
CO4	Design systems that use the appropriate graphical models of machine learning
CO5	Ability to address the problem of learning control strategies for autonomous agents

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2			
CO2	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2			
CO3	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2			
CO4	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2			
CO5	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2			

ML1402	STATISTICS FOR MACHINE LEARNING	L	Р	Т	С
		3	0	0	3

OBJECTIVES

- Be familiar with estimation theory and related concepts.
- Be provide basic applications of testing of hypothesis.
- To introduce correlation functions and ARIMA models.
- To provide fundamental applications on fourier analysis and SARIMA models.
- To demonstrate VC dimension

UNIT I	ESTIMATION THEORY		9					
Introduction to	estimation theory-Goodness of estimators-Fishers information -Properties of	CC) 1					
estimators; bia	s, variance, efficiency- C-R bound- consistency		'					
UNIT II	BAYESIAN LEARNING		9					
Regression -M	aximum Likelihood Estimator-MAP Estimator -Evidence Function and Laplacian	CC	72					
Approximator-Latent Variables-EM Algorithm.								
UNIT III	ARMA MODELS		9					
Auto- and cros	s-correlation functions- Partial correlation functions -Linear random processes-	CC	72					
Auto-regressive	e-Moving average and ARMA models.		<i>)</i> 3					
UNIT IV	ARIMA MODELS AND FOURIER ANALYSIS		9					
Models for nor	n-stationary processes-Trends, heteroskedasticity and ARIMA models -Fourier	CC	74					
analysis of dete	erministic signals- DFT and periodogram.		<i>)</i> 4					
UNIT V	STATISTICAL LEARNING THEORY		9					
Computational Learning Theory-Introduction-General Framework for Concept Learning-PAC								
Learning Model-VC Dimension-Learning in the presence of noise.								
			-					

TOTAL : 45 PERIODS

TEXT BOOKS

- 1.Theodoridis, S, Machine Learning: A Bayesian and Optimization Perspective. United Kingdom: Elsevier Science, 2020.
- 2.Kukar, M., Kononenko, I, Machine Learning and Data Mining. United Kingdom: Elsevier Science, 2007.
 - 3. Jonathan D. Cryer, Kung Sik Chan, Time Series Analysis, Springer, Second Edition, 2008.
 - 4. Robert H. Shumway, Time Series Analysis and its Applications, Springer, Fourth Edition, 2016.
 - 5. Jerome H. Friedman, Robert Tibshirani, The Elements of Statistical Learning, Springer.

REFERENCE BOOKS

- 1. Kevin Murphy, Machine Learning: A probabilistic perspective, MIT Press, 2012
- 2. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., Schaum's Outline of Theory and Problems of Probability and Statistics, Tata McGraw Hill Edition, 2008.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Analyze estimation theory and different types of estimators.
- CO2 Apply testing of hypothesis related concepts.
- CO3 Apply the cross-correlation functions and ARIMA models.
- CO4 | Specify and manipulate non-stationary processes and SARIMA models.
- CO5 | Apply the VC dimension in different problems

COs				PROGRAM SPECIFIC OUCOMES											
003	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12		1 002	
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2

CS1407	OPERATING SYSTEMS LABORATORY	L	Т	Р	С
	Common to CSE & IT	0	0	4	2

OBJECTIVES

- ❖ To learn basic Unix commands, shell programming and to implement various Process Management functions such as IPC and Scheduling.
- ❖ To implement Process Synchronization, Deadlock Detection and Avoidance and Memory Allocation methods.
- To implement Paging Techniques and File Management Techniques.

LIST OF EXPERIMENTS

- 1. Simulation of Unix Commands like cp, ls, grep, cd, mkdir, cat, rm etc.,
- **2.** Implementation of Shell Programs.
- **3.** Implementation of CPU Scheduling Algorithms.
- **4.** Implementation of Producer Consumer problem using Semaphore.
- **5.** Implementation of Inter-process Communication using Shared memory.
- **6.** Implementation of Threading and Synchronization Applications.
- 7. Implementation of Bankers Algorithm for Deadlock Avoidance.
- **8.** Implementation of Deadlock Detection Algorithm.
- 9. Implementation of Contiguous Memory Allocation.
- 10. Implementation of Memory Management scheme using Paging.
- **11.** Implementation of Page Replacement Algorithms.

12. Implementation of Directory Structures.

13. Implementation of File Allocation Strategies.

TOTAL: 60 PERIODS

CO1

CO₂

CO₃

REFERENCE BOOKS

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, —Operating System Conceptsll, 9th Edition, John Wiley and Sons Inc., 2012.
- 2. William Stallings, "Operating Systems Internals and Design Principles", 7 th Edition, Prentice Hall, 2011.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 | Develop simple applications with shell programming and Scheduling mechanisms.
- CO2 Design and develop applications for synchronization, deadlock avoidance and detection.
- CO3 Develop applications for implementing Paging and File management concepts.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	-	-	-	1	2	2	2	3	3	2
CO2	3	3	3	3	3	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	3	-	-	-	-	2	2	2	3	3	2

ML140	08	MACHINE LEARNING LABORATORY	L	Т	P	C						
		Common for IT, AI-DS & AI-ML	0	0	4	2						
* *	To imple To unde OF EXPE	e use of Data sets in implementing the machine learning algorithms ement the machine learning concepts and algorithms in any suitable languagestand the practical aspects of probabilistic graphical models. CRIMENTS ent and demonstrate the FIND-S algorithm for finding the most				oice						
2.	.CSV Fi	esis based on a given set of training data samples. Read the training data le given set of training data examples stored in a .CSV file, implementate the Candidate-Elimination algorithm. Output a description of the sees consistent with the training examples.	ent	and	-	CO1						
3.	Use an	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample										
4.	Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets											
5.		program to implement the naïve Bayesian classifier for a sample trained as a .CSV file. Compute the accuracy of the classifier, considering ts.	_									
6.	Classific	ng a set of documents that need to be classified, use the naïve Eer model to perform this task. Built-in Java classes/API can be used to n. Calculate the accuracy, precision, and recall for your data set.	-									
7.	demonst	program to construct a Bayesian network considering medical data. Use this morate the diagnosis of heart patients using standard Heart Disease Data Set. You hon ML library lasses/API										
8.	for clus	M algorithm to cluster a set of data stored in a .CSV file. Use the same tering using k-Means algorithm. Compare the results of these two almment on the quality of clustering. You can add Java/Python MIAPI in the program.	gorit	thms	(CO3						
9.	Print bo	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.										
10	•	ent the non-parametric Locally Weighted Regression algorithm in ordints. Select appropriate data set for your experiment and draw graphs	der	to fit								

TOTAL: 60 PERIODS

REFERENCE BOOKS

- 1. Aurelien Geron , "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems", Second Edition, O'Reilly Media
- 2. Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, Apress,

2018

3. Practical Machine Learning with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems" Dipanjan Sarkar, Raghav Bali, Tushar Sharma, Apress.

WEB REFERENCES

- 1. https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
- 2. Web Resources: https://www.anaconda.com/enterprise-machine-learning-getting-started/
- 3. https://www.tutorialspoint.com/machine_learning_with_python/index.htm

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Update the general and specific boundary for each new example in concept learning
- CO2 | Develop supervised learning predictive model for general data set
- CO3 Ability to apply knowledge representation and machine learning techniques to real world problems

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3			
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3			
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3 3 3					

ML1501	REINFORCEMENT LEARNING L P	T	C							
OBJECTIVE		0	3							
This course	provides an introduction to some of the foundational ideas on which modern reinforc	em	ent							
	ouilt, including Markov decision processes, value functions, Monte Carlo estin									
•	erence learning, eligibility traces, function approximation& Q Learning. This cour									
•	intuitive understanding of these concepts (taking the agent's perspective), while									
·	the mathematical theory of reinforcement learning. Programming assignment									
•	require implementing and testing complete decision making systems.									
UNIT I	INTRODUCTION TO RL		9							
	otimalities-Epsilon greedy theory- Concentration bounds-Probably approximate		`							
	- Upper confidence bound theory (UCB)-Medium Elimination-Thomson Sampling									
theory –Thomson sampling with Gaussian reward- Policy search- Gradient Bandwidths-										
theory – I nomson sampling with Gaussian reward- Policy search- Gradient Bandwidths- Contextual Bandwidth – returns- value functions.										
UNIT II	MARKOV DECISION PROCESSES & DYNAMIC PROGRAMMING		9							
			Ľ							
Markov Decision Processes (MDP)- Introduction-Markov Property-MDP modelling- Bellman										
•	Bellman optimality equation- Cauchy sequence- Green's equation- Convergence	С	02							
	Convergence- Value iterations- policy iterations- Dynamic Programming - Monte									
. ,	MC policy evaluation- MC control.									
UNIT III	MONTE CARLO & TEMPORAL DIFFERENCE METHODS									
•	Monte Carlo control – Temporal difference- Optimality of TD(0)- State–action–	_								
	e-action (SARSA) - TD(0) Control- Q Learning – Eligibility traces-Backward View	С	03							
	races- Eligibility trace control.									
UNIT IV	Deep Q Learning		Ç							
Function Ap	proximation – Linear Parameterization- State aggregation methods- LSTD and									
LSTDQ- LS	PI and Fitted Q - Deep Q Network (DQN) - Fitted Q- Iteration- Actor Critic-	С	04							
Reinforce –	Policy gradient with function approximation									
UNIT V	Hierarchical RL		,							
Introduction-	Types of optimality- Semi MDP- Learning with options- Hierarchical abstract	C	O!							
machines- M	AXQ- MAXQ value function decomposition- option discovery.		O.							
	TOTAL : 45 PER	RIO	DS							
TEXT BOOK	is .									
1. Richa	ard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning, 2nd E	diti	on							
МІТІ	Press 2017 [Draft conies available now]									

- MIT Press. 2017. [Draft copies available now]
- 2. Neuro Dynamic Programming. Dimitri Bertsikas and John G. Tsitsiklis. Athena Scientific. 1996

Approved by Second BOS Meeting Held on 20/01/2022

REFERENCE BOOKS

1. Algorithms for Reinforcement Learning by Csaba Szepesvari, Morgan and Claypool, 1 edition (2010)

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Build a Reinforcement Learning system for sequential decision making.
- CO2 Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
- CO3 Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
- CO4 Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning
- CO5 Understand a new perspective of Reinforcement Learning.

COs				PR	OGRA	O MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUCOMES			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	2	2	2	2	2	-	-	-	1	1	1	1	2	2	2	
CO2	2	2	2	2	2	-	-	-	1	1	1	1	2	2	2	
CO3	2	2	2	2	2	-	-	-	1	1	1	1	2	2	2	
CO4	2	2	1	2	2	-	-	-	1	1	1	1	2	2	2	
CO5	2	2	2	2	2	-	-	-	1	1	1	1	2	2	2	

DS1502	ADVANCED ARTIFICIAL INTELLIGENCE SYSTEMS	L	Т	Р	С
	(Common to AI-DS)	3	1	0	3

OBJECTIVES

- To analyze Probabilistic Reasoning for knowledge
- To give understanding of main abstractions of decision making.
- To understand a wide variety of learning algorithms.
- To understand the different ways of designing software agents
- To understand the application of Al namely Robotics

UNIT I	UNCERTAINTY AND REASONING	9
Uncertainty -	Basic Probability Notation – Axioms of Probability – Bayes Rule - Probabilistic	
Reasoning -	Bayesian Networks - Semantics - Inference - Other Approaches to Uncertain	CO1
Reasoning – I	Dempster Shafer Theory – Fuzzy sets and Fuzzy Logic	
UNIT II	DECISION MAKING	9
Utility Theory	- Utility Functions - Decision Networks - Value of Information - Decision	
Theoretic Exp	ert Systems – Sequential Decision Problems – Value Iteration – Policy Iteration –	CO2
Decision Theo	pretic Agents	<u> </u>
UNIT III	LEARNING METHODS	9
Learning from	Observations - Forms of Learning - Inductive Learning - Learning Decision	
Trees - Ense	mble Learning - Explanation Based Learning - Learning with Complete Data -	CO3
Naïve Bayes I	Models – Learning with Hidden Variables – The EM Algorithm – Neural Networks	<u> </u>
UNIT IV	SOFTWARE AGENTS	9
Architecture for	or Intelligent Agents – Examples - Agent communication – KQML- KIF - FIPA	
ACL - Speed	h Acts - Argumentation among Agents – Trust and Reputation in Multi-agent	CO4
systems		<u> </u>
UNIT V	ROBOTICS	9
Robot Hardwa	are – Robotic Perception – Planning to Move, Planning Uncertain Movements –	CO5
Moving – Rob	otic Software Architectures – Application Domains	
	TOTAL : 45 PER	RIODS
TEXT BOOKS		

1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third

2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill- 2008.

Edition, 2009.

REFERENCE BOOKS

- 1. Gerhard Weiss, Multi Agent Systems, Second Edition, MIT Press, 2013
- 2. S. Kaushik, Artificial Intelligence, Cengage Learning, 1st Edition, 2011
- 3. David L. Poole and Alan K. Mackworth, Artificial Intelligence: Foundations of Computational Agents ,Cambridge University Press, 2010.
- 4. Nils J. Nilsson,- The Quest for Artificial Intelligence, Cambridge University Press, 2009

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Acquire theoretical knowledge about principles for logic-based representation and reasoning
CO2	Develop a decision making model that utilizes Artificial Intelligence.
CO3	Develop an understanding what is involved in learning models from data.
CO4	Select appropriately from a range of techniques when implementing intelligent systems
CO5	Gain knowledge on the functions of Robots

Cos					ECIFIC PSOs)												
COS	PO 1	O PO PO PO PO PO PO PO 1 2 3 4 5 6 7 8		PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3						
CO1	3	3	3	3	3	1	-	1	1	2	2	3	3	3	3		
CO2	3	3	3	3	3	1	-	-	1	2	2	3	3	3 3		3 3	
CO3	3	3	3	3	3	1	-	-	1	2	2	3	3	3	3		
CO4	3	3	3	3	3	1	-	-	2	2	2	3	3	3 3			
CO5	3	3	3	3	3	1	-	-	2	2	2	3	3	3	3		

NATURE INSPIRED COMPUTING TECHNIQUES ML1502 **OBJECTIVES** To understand the fundamentals of nature inspired techniques which influence computing To study the Swarm Intelligence and Immuno computing techniques. To Learn fundamental concepts of fuzzy logic and artificial neural network INTRODUCTION UNIT I 9 From Nature to Nature Computing, Philosophy, Three Branches: A Brief Overview, Individuals. **Entities** and agents Parallelism and Distributivity Interactivity **CO1** ,AdaptationFeedback-Self-Organization-Complexity, Emergence and ,Bottom-up Vs Top-Down- Determination, Chaos and Fractals. UNIT II **SWARM INTELLIGENCE** 9 Introduction - Ant Colonies, Ant Foraging Behavior, Ant Colony Optimization, SACO and scope of ACO algorithms, Ant Colony Algorithm (ACA), Swarm Robotics, Foraging for food, Social CO₂ Adaptation of Knowledge, Particle Swarm Optimization (PSO). UNIT III **IMMUNOCOMPUTING** 9 Introduction- Immune System, Physiology and main components, Pattern Recognition and Binding, Immune Network Theory- Danger Theory, Evaluation Interaction Immune Algorithms-CO₃ -Genetic Algorithms, Reproduction-Crossover, Mutation, Evolutionary Programming, Genetic Programming. **FUNDAMENTALS OF FUZZY LOGIC UNIT IV** 9 Basic concepts: fuzzy set theory- basic concept of crisp sets and fuzzy sets- complementsunion intersection- combination of operation- general aggregation operations- fuzzy relations-CO₄ compatibility relations-orderings- morphisms- fuzzy relational equations-fuzzy set and systems-Fuzzy inference. UNIT V INTRODUCTION TO NEURAL NETWORKS 9 Introduction - history-Applications-Biological inspiration -Neuron Model and Network Architecture: Objectives - notation - neuron model - Network Architectures - A layer of neurons – multiple layers of Neurons-recurrent networks – An Illustrative example - Perceptron CO₅ Learning Rule Perceptron Learning Rule: Perceptron architecture -Perceptron learning rule proof of convergence **TOTAL: 45 PERIODS TEXT BOOKS** 1. Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/ CRC, Taylor and Francis Group, 2007 2. T1. Kliryvan- Fuzzy System & Fuzzy logic Prentice Hall of India, First Edition.

3. Lawrence Fussett- fundamental of Neural network Prentice Hall, First Edition.

REFERENCE BOOKS

- 1. Floreano D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press, Cambridge, MA, 2008.
- 2. Albert Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006.
- 3. Marco Dorrigo, Thomas Stutzle," Ant Colony Optimization", PHI,2005

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	The concepts of Natural systems and its applications.
CO2	Basic Natural systems functions(operations) and Natural design considerations.
CO3	Integration of Hardware and software in Natural applications.
CO4	To understand the basic concept of fuzzy sets, fuzzy logic & defuzzification
CO5	To learn basics of Artificial Neural of theory

COs				PROGRAM SPECIFICOUCOMES											
Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	-	1	1	1	1	2	2	2
CO2	2	2	2	2	1	1	-	-	1	1	1	1	2	2	2
CO3	2	2	2	2	1	1	-	-	1	1	1	1	2	2	2
CO4	2	2	2	2	1	1	-	-	1	1	1	1	2	2	2
CO5	2	2	2	2	1	1	-	-	1	1	1	1	2	2	2

ML1503	WEB PROGRAMMING (LAB INTEGRATED)	L	T	Р	С
00 IE0TIVE		3	0	2	4
OBJECTIVES					
	nderstand and explore HTML, CSS and Javascript				
	esign interactive web pages using Scripting languages				
	iderstand the concepts of TypeScript and practice Angular JS Framework				
	ork with Express, a Node.js web application framework				
	velop solution to complex problems using appropriate method, technologic	es, f	rame	ewoi	rks,
	ervices and content management				1 -
UNIT I	Web Essentials, HTML & CSS				9
message-Wel HTML5 contro CSS3 - Inlir	Internet Protocols -The World Wide Web-HTTP request message-red Clients-Web Servers - XHTML: Syntax and Semantics - HTML Basic Electrical elements - Semantic elements - Drag and Drop - Audio - Video code, embedded and external style sheets - Rule cascading - Inher - Border Images - Colors - Shadows - Text - Transformations - Transent	eme ontro itano	nts - ols - ce -	- - -	01
-	n a Webpage using all HTML elements				
•	a web page with all types of Cascading style sheets and CSS Selectors				
UNIT II	Client-Side Scripting and HTML DOM				9
Introduction to Modifying Ele Lab Compon Write Client S using JavaSc a. Include Ima	ide Scripts for Validating Web Form Controls using DHTML Design the f	. D lanc	OM- lling-		02
UNIT III	WEB APPLICATIONS AND ANGULAR.JS				9
Web Applica TypeScript - I Implementing Adding Angu Application A Directives - E Lab Compon Use be Design have t	tion Frameworks - MVC (Model-View-Controller) framework - Jump Learning the Different Types Understanding Interfaces - Implementing C Modules - Understanding Functions - Why Angular? Understanding Alar to Your Environment-Using the Angular CLI - Creating a Basic Ingular Components - Component Configuration - Building a Template-expressions - Using Expressions - Using Pipes - Building a Custom Pipe ent Unit-in Angular directives to show and hide elements and display lists of date a shopping cart application using AngularJS. Your shopping webpage the provisions for selecting the list of items from different category, Once to lected on clicking the submit button the items in the cart with its price standard price of the submit button the items in the cart with its price standard price in the cart with its price in the cart with	Class Angu Angu Inje Ita. e sh	ses - lar - gulai cting cting		;O3
UNIT IV	INTRODUCTION TO NODE.JS				9
Requests Ob Receiving Co Implementing Query Strings - Implementing	g Node.js - Event Model — Express Framework - Configuring Routes jects - Using Response Objects - Handling POST Body Data Sence okies - Implementing Sessions - Applying Basic HTTP Authentic Session Authentication - Working with JSON - Processing URLs - Processing URLs - Processing Parameters - Understanding Request, Response, and Servering HTTP Clients and Servers in Node.js - Creating a simple server, Regring JSON Data- MongoDB-Manipulating and Accessing MongoDB Docent	ding cation oces Obj ende	and on - ssing jects ering		04
	Design an online super market using Express JS and MongoDB datab	າລຣດ	رد ر		
•	Design an online super marker using express 35 and wongode datat	Jast	e a)	<i>!</i>	

Perform a search based on product id or name b) On retrieving the results , display the product details of different brands in table format with the Price field in sorted order using AngularJS

Serving JSON with Express.js

UNIT V WEB FRAMEWORKS

9

Implementing AJAX Frameworks - AJAX with JSON - Implementing Security and Accessibility in AJAX Applications - Secure AJAX Applications - Web Frameworks - Data store and access methods - Redux - Vuex - Stateless and Stateful - REST API - Declarative UI - Overview of React JS - Performance improvement through caching and server side rendering

CO5

Lab Component

To Build an

- a) AJAX Application
- b) Application using React.JS

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. BradDayley, Node. js, MongoDB, and Angular JSWebDevelopment; 2edition, Addison Wesley, 2017
- 2. JonDuckett, JavaScriptandJQuery: InteractiveFront-EndWebDevelopment, Wiley, 2014Zammetti, Frank, ModernFull-StackDevelopment, Apress, 2020

REFERENCE BOOKS

- . Nathan Rozentals, "Mastering TypeScript", April 2015
- 2. Nate Murray, Felipe Coury, Ari Lerner and Carlos Taborda, "ng-book, The Complete Book on Angular 4" September 2016
- 3. AmolNayak, "MongoDB Cookbook Paperback", November 2014
- 4. KrasimirTsonev, "Node is by Example Paperback", May 201
- 5. Jeffrey C. Jackson, "Web Technologies--A Computer Science Perspective", Pearson Education, 2007

WEB REFERENCES

- https://javascript.info/
- https://www.typescriptlang.org/
- https://angular.io/
- https://nodejs.org/en/
- https://www.mongodb.com/

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand web fundamentals
- CO2 | Create dynamic web pages using DHTML and java script that is easy to navigate and use
- CO3 Implement Angular features and create component-based web pages using them
- CO4 GeneratedynamicpagecontentusingNode.js,useJSONtopassAJAXupdatesbetween Client and Server and create application using Node .js with Mongo DB
- CO5 | Build scalable web apps quickly and efficiently using appropriate tool kits and framework

COs				PROGRAM SPECIFIC OUCOMES													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12	PSO1	PSO2	PSO3		
CO1	2 - 2 -				1	-	1	-	2	1	1	1	1	1	1		
CO2	2	-	2	-	1	-	1	-	2	1	1	1	1	1 1			
CO3	2	1	2	1	2	1	1	-	2	1	2	2	1	1	1		
CO4	2 1 2 1			2 1 2 1 2			1	-	2	1	2	2	1	1	1		
CO5	2	2	2	2	3	1	2	1	2	2	3	2	1	1	1		

ML1507	APPLIED REINFORCEMENT LABORATORY	L	Т	Р	С
		C	0	4	2

OBJECTIVES

Reinforcement learning is a paradigm that aims to model the trial-and-error learning process that is needed in many problem situations where explicit instructive signals are not available. It has roots in operations research, behavioral psychology and AI. The goal of the course is to introduce the basic mathematical foundations of reinforcement learning, as well as highlight some of the recent directions of research

LIST OF EXPERIMENTS

Implement Epsilon Greedy algorithm with python	
2. Implement Upper confidence bound theory (UCB) algorithm with python	CO1
3. Implement Thomson sampling algorithm with python	COI
4. Implement Policy iteration algorithm with python	
5. Implement Value Iteration code algorithm with python	
6. Implement Monte Carlo control & MC Policy Evaluvation algorithm with python	CO2
7. Implement TD(0) Prediction algorithm with python	
8. Implement SARSA algorithm with python	CO3
9. Implement Q Learning algorithm with python	CO3

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Python 3 Interpreter for Windows/Linux 30 Nos

REFERENCE BOOKS

- 1. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810.06339 (2018).
- 2. Wiering, Marco, and Martijn Van Otterlo. "Reinforcement learning." Adaptation, learning, and optimization 12 (2012): 3
- 3. David Silver's course on Reinforcement Learning (link).

WEB REFERENCES

https://cse.iitkgp.ac.in/~adas/courses/rl

https://nptel.ac.in/content/syllabus_pdf/106106143.pdf

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand and apply basic RL algorithms for simple sequential decision making problems in uncertain conditions.
- CO2 Evaluate the performance of the solution
- CO3 Interpret state-of-the-art RL research and communicate their results

COs					ECIFIC PSOs)												
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	Р9	PO 10	PO 11	PO 12	PSO1	PSO1 PSO2			
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3		
CO2	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3		
CO3	3	3	3	3	3	2	1	1	2	2	2	3	3	3	3		

DS150	8 ADVANCED ARTIFICIAL INTELLIGENCE LABORATORY	L	Т	Р	С
	(Common to AI-DS)	0	0	4	2
OBJE	CTIVES				
•	To be able to reason under uncertainty of the real-world.				
•	To understand supervised learning techniques.				
•	To increase knowledge about learning with hidden variables.				
•	To understand how to use natural language processing.				
•	To get familiarized with basics of robotics.				
	To get terminalized with sacres of resoluci				
LIST C	F EXPERIMENTS				
1.	Implement a Python program of automatic Tic Tac Toe game using random nur	nbei	•		
	Apply Bayes' Rule to a scenario of drug screening, which is a mandatory to			_	
	federal or many other jobs which promise a drug-free work environment.	, o	9 .0		
3	Demonstrate the application of Bayesian Network for the Monty Hall Probl	ρm	The	_	
٥.	Monty Hall problem is a brain teaser, in the form of a probability puzzle. Assi				
	you're on a game show, and you're given the choice of three doors: Behind on				
	a car; behind the others, goats. You pick a door, say No. 1, and the host, wh				CO1
	what's behind the doors, opens another door, say No. 3, which has a goat.				JO 1
	says to you, "Do you want to pick door No. 2?" Is it to your advantage to sw	ilch	youi		
4	choice?				
4.	Write a Python program to create a fuzzy control system which models how y				
	choose to tip at a restaurant. When tipping, you consider the service and food	a qu	ality	,	
	rated between 0 and 10. You use this to leave a tip of between 0 and 25%.			+	
5.	Formulate a decision tree, which is applicable in the field of medical sciences	tha	t wil	i	
	help predict whether or not a patient has diabetes.				
6.	Implement Adaptive Boosting in Python for a simple fruit classification				
	Consider classification of the fruits into oranges or apples. The characteristics				
	provided for the fruits to be classified are weight and size (diameter). Classif	fy a	new		
	fruit as either apple or orange just based on the data on the size and weights.				CO2
7.	For a coin toss example with incomplete information, we have missing data				
	problem of estimating θ , where θ is the probability of heads or tails is harder	to s	olve		
	Apply Expectation Maximization (EM) Algorithm to start with a guess for	θ,	ther	1	
	calculate z , then update θ using this new value for z , and repeat till converge	nce.	The	ţ	
	label of the coin is indicated by z.				
8.	Perform text classification for a real-world example. Consider a model ca	pab	le o	f	
	predicting whether a given movie review is positive or negative. Use	peo	ple's	\$	
	sentiments which are classified into different categories and based upon	the	tex	t	
	classification give either a positive review or a negative review.				
9.	Given a robot which can only move in four directions, UP (U), DOWN (D), LEFT	(L),	and	ī	
	RIGHT(R). Given a string consisting of instructions to move. Output the coordin				CO3
	robot after executing the instructions. Initial position of robot is at origin (0, 0).				
10.	A robot moves in a plane starting from the original point (0, 0). The robot co	an r	nove	,	
	toward UP, DOWN, LEFT and RIGHT with a given steps. Write a program to				
	the distance from current position after a sequence of movement and original				
	the distance is a float, then just print the nearest integer.	•			
	TOTAL	_ : 6	0 PE	RIC	DDS
LIST C	F EQUIPMENT FOR A BATCH OF 30 STUDENTS				
	lone desktops with Python 3 Interpreter for Windows/Linux 30 Nos.				
 -					

1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third

2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill- 2008.

Approved by Second BOS Meeting Held on 20/01/2022

REFERENCE BOOKS

Edition, 2009.

WEB REFERENCES

- 1. https://www.tutorialspoint.com/artificial_intelligence_with_python/index.htm
- 2. https://machinelearningmastery.com/uncertainty-in-machine-learning/
- 3. https://learn-robotics.com/

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 | Approach a real world problem, which is uncertain and provide appropriate reasoning.
- CO2 Develop solutions using supervised learning techniques and know how to deal with problems with hidden variables.
- CO3 Use natural language processing and program basics of robotics.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO2	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO3	3	3	3	3	3	2	1	1	2	2	2	3	3	3	3

ML1601	DEEP LEARNING	L	Т	Р	С
	,	3	1	0	3
OBJECTIVES					
To fam	iliarize the fundamental concepts and principles of neural networks.				
•	ore the basic concepts of deep learning.				
	iliarize with CNN and RNN models.				
	erstand and develop deep learning architectures.				
	ement various applications using deep learning.				
UNIT I	INTRODUCTION TO DEEP LEARNING				9
	t of Neurons – Perceptron Algorithm – Shallow Neural Networks – Nor				-
	ctions - Gradient Descent and Backpropagation - Shallow and Deep L	_ear	ning	C	01
Networks				_L_	
UNIT II	IMPROVING NEURAL NETWORKS				9
	Regularization – Dropout – Vanishing and Exploding Gradients Probler	n -	Min	т	9
•	t Descent – Weight Initialization Strategies - Nesterov Accelerated Gr				
	· · · · · · · · · · · · · · · · · · ·				-00
	RMSProp – ADAM - Mitigation — Heuristics for Avoiding Bad Local Min				02
,	g – Mini Batch Gradient Descent - Batch Normalization - Adversarial Tr	aini	ng –		
Optimization for	or Training Deep Models.				ı
LINUT III	CONVOLUTIONAL NEURAL NETWORKS				_
Convolution O	perations – Pooling Layers – ResNets – CNN Architectures - Transfer Le	orn:	na.	$\overline{}$	9
	eation – Image Classification using Transfer Learning – Autoencoders				О3
	idels – Generative Adversarial Networks (GANs) – Evaluation GANs.	- L	Jeep	' `	.03
Contractive ivid	Evaluation Control				
UNIT IV	SEQUENCE MODELS AND NATURAL LANGUAGE PROCESSING				9
Recurrent Neu	ural Networks - Vanishing Gradients in RNNs - Gated Recurrent Units	s - L	ong	ıΠ	
	emory (LSTM) Networks – Bidirectional RNNs - Sequence Prediction –				04
	anguage Models – Word Embeddings – Beam Search - Attention M	lode	els -	٠ ٦	-
Transformer N	etworks.				1
LINUT V					
UNIT V	ADDI IOATIONO OF DEED LEADNING				_
I	APPLICATIONS OF DEEP LEARNING		:41-		9
	ntation – Object Detection – Image Captioning – Image generati				9
Generative ad	ntation – Object Detection – Image Captioning – Image generativersarial networks – Video to Text with LSTM models – Attention mo	dels	s for	-	
Generative ad Computer Visi	ntation – Object Detection – Image Captioning – Image generativersarial networks – Video to Text with LSTM models – Attention moon – Case Study: Named Entity Recognition – Opinion Mining using Ro	dels ecu	s for	: C	9
Generative ad Computer Visi Neural Netwo	ntation – Object Detection – Image Captioning – Image generativersarial networks – Video to Text with LSTM models – Attention moon – Case Study: Named Entity Recognition – Opinion Mining using Rocks – Parsing and Sentiment Analysis using Recursive Neural Networks –	dels ecu	s for	: C	
Generative ad Computer Visi Neural Netwo	entation – Object Detection – Image Captioning – Image generation versarial networks – Video to Text with LSTM models – Attention moden – Case Study: Named Entity Recognition – Opinion Mining using Rocks – Parsing and Sentiment Analysis using Recursive Neural Networks.	odels ecu work	s foi rrent ks -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Clas	Intation – Object Detection – Image Captioning – Image generation versarial networks – Video to Text with LSTM models – Attention moden – Case Study: Named Entity Recognition – Opinion Mining using Rocks – Parsing and Sentiment Analysis using Recursive Neural Networks. TOTAL	odels ecu work	s foi rrent ks -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Class	entation – Object Detection – Image Captioning – Image generation versarial networks – Video to Text with LSTM models – Attention models – Attention models – Case Study: Named Entity Recognition – Opinion Mining using Rocks – Parsing and Sentiment Analysis using Recursive Neural Networks – Study: State of the Convolutional Neural Networks. TOTAL	odels ecu work	s for rrent (S -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Clase TEXT BOOKS 1. Ian J. Ge	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention model on — Case Study: Named Entity Recognition — Opinion Mining using Recrease and Sentiment Analysis using Recursive Neural Networks — Parsing and Sentiment Analysis using Recursive Neural Networks. TOTAL Condenses — Total Control of Control	odels ecu work	s for rrent (S -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Clase TEXT BOOKS 1. Ian J. Ge	entation – Object Detection – Image Captioning – Image generation versarial networks – Video to Text with LSTM models – Attention models – Attention models – Case Study: Named Entity Recognition – Opinion Mining using Rocks – Parsing and Sentiment Analysis using Recursive Neural Networks – Study: State of the Convolutional Neural Networks. TOTAL	odels ecu work	s for rrent (S -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Class TEXT BOOKS 1. Ian J. Go 2. Francois	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention model on — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Security Convolutional Neural Networks. TOTAL — TOTAL — Convolutional Recognition — Total Recks — Parsing Convolutional Neural Networks — TOTAL — Total Recognition — Total Recks — Total Rec	odels ecu work	s for rrent (S -	C	O5
Generative ad Computer Visi Neural Netwo Sentence Clas TEXT BOOKS 1. Ian J. G. 2. Francois	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention models — Case Study: Named Entity Recognition — Opinion Mining using Recard Parsing and Sentiment Analysis using Recursive Neural Networks — Parsing Convolutional Neural Networks. TOTAL TOTAL Codfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, a Chollet, "Deep Learning with Python", Manning Publications, 2018 BOOKS	odels ecur work : 49	s for rrent s = 5 PE	ERIO	O5
Generative ad Computer Visit Neural Network Sentence Class TEXT BOOKS 1. Ian J. Go. 2. Francois REFERENCE 1. Phil Kim,	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention models — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Formula Convolutional Neural Networks. TOTAL — Dodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, a Chollet, "Deep Learning with Python", Manning Publications, 2018 BOOKS — Matlab Deep Learning: With Machine Learning, Neural Networks	odels ecur work : 49	s for rrent s = 5 PE	ERIO	05 DDS
Generative ad Computer Visi Neural Netwo Sentence Class TEXT BOOKS 1. Ian J. G. 2. Francois REFERENCE 1. Phil Kim, Intelligence", A	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention models — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Parsing Convolutional Neural Networks. TOTAL — Dodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, a Chollet, "Deep Learning with Python", Manning Publications, 2018 BOOKS — Matlab Deep Learning: With Machine Learning, Neural Networks (Apress, 2017).	ecuiwork :: 4!	s for rrent (s -	Artifi	DDS
Generative ad Computer Visit Neural Network Sentence Class TEXT BOOKS 1. Ian J. Go. 2. Francois REFERENCE 1. Phil Kim, Intelligence", A. 2. Ragav Veni	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention models — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Formula Convolutional Neural Networks. TOTAL — Dodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, a Chollet, "Deep Learning with Python", Manning Publications, 2018 BOOKS — Matlab Deep Learning: With Machine Learning, Neural Networks	ecuiwork :: 4!	s for rrent (s -	Artifi	DDS
Generative ad Computer Visi Neural Netwo Sentence Class TEXT BOOKS 1. lan J. G. 2. Francois REFERENCE 1. Phil Kim, Intelligence", A. 2. Ragav Veni 2018.	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention model on — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Section using Convolutional Neural Networks. TOTAL — TOTAL	odels ecul work :: 45 201	s for rrent (s - 5 PE 7.	ERIO	DDS cial
Generative ad Computer Visi Neural Netwo Sentence Class TEXT BOOKS 1. Ian J. G. 2. Francois REFERENCE 1. Phil Kim, Intelligence", A. 2. Ragav Veni 2018. 3. Navin Kuma	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention models — Case Study: Named Entity Recognition — Opinion Mining using Real Research Parsing and Sentiment Analysis using Recursive Neural Networks — Parsing Convolutional Neural Networks. TOTAL Convolutional Neural Networks — TOTAL Convolution Parsing With Python", Manning Publications, 2018 — BOOKS — Matlab Deep Learning: With Machine Learning, Neural Networks (Apress, 2017). Katesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing at Manaswi, "Deep Learning with Applications Using Python", Apress, 2017.	odels ecul work :: 45 201	s for rrent (s - 5 PE 7.	ERIO	cial
Generative ad Computer Visi Neural Netwo Sentence Class TEXT BOOKS 1. Ian J. G. 2. Francois REFERENCE 1. Phil Kim, Intelligence", A. 2. Ragav Veni 2018. 3. Navin Kuma	Intation — Object Detection — Image Captioning — Image generation versarial networks — Video to Text with LSTM models — Attention model on — Case Study: Named Entity Recognition — Opinion Mining using Recks — Parsing and Sentiment Analysis using Recursive Neural Networks — Section using Convolutional Neural Networks. TOTAL — TOTAL	odels ecul work :: 45 201	s for rrent (s - 5 PE 7.	ERIO	cial

4. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.

	RSE OUTCOMES completion of the course, students will be able to
CO1	Know the importance of deep learning in machine learning applications.
CO2	Design and implement deep learning applications.
CO3	Design and implement CNN and RNN.
CO4	Understand the use of different deep learning models in image processing.
CO5	Explore the applications of deep learning in various domains.

COs				PR	OGRA	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	1	1	1	1	1	1	1	2	1	1	1	2	2	2	2	
CO2	2	2	1	2	2	1	1	2	1	1	1	2	2	2	2	
CO3	2	2	2	2	2	`1	1	2	1	1	1	2	2	2	2	
CO4	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2	
CO5	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2	

ML1602	AUTONOMOUS MOBILE ROBOT L P	T	С
OBJECTIVES	3 1	0	3
	derstand the fundamental concepts of Autonomous mobile robotics.	(l	
	ow about robot sensory perception algorithms, sensor suites and robot control	inro	ug
	ry feedback.		
• To un	derstand the basic concepts and algorithms required for locomotion and mobi	e ro	bo
Kinem	patics.		
• To ge	t deep knowledge about mapping and localization.		
• To ur	nderstand the basic concepts and algorithm required for mobile robot planni	ng	ar
naviga	ating.		
JNIT I	FUNDAMENTAL CONCEPTS OF AUTONOMOUS MOBILE ROBOTICS		
ntroduction t	to Robotics- Robot features, sensors, manipulators- Application areas-State o	Τ	
Robotics res	earch and adoptionRobotic hardware systems- Intelligence and embodiment	. c	0
Ratslife- Cha	llenges of Mobile Autonomous Robots- Challenges of Autonomous Manipulation.		
INIT II	ROBOTICSENSORS AND VISION		T
Robotic Sens		. T	
Sensors usin	g sound- Inertia-based sensors- Beacon-based sensors-Vision- Images as two		
	signals- From signals to information- Basic image operations- Feature extraction	C	O
	nd Error Propagation.		
JNIT III	LOCOMOTION AND MOBILE ROBOT KINEMATICS		T
	Introduction- Legged Mobile Robots- Wheeled Mobile Robots- Aerial Mobile	$\overline{}$	
	ile Robot Kinematics: Introduction-Kinematic Models and Constraints- Mobile		
	everability- Mobile Robot Workspace- Beyond Basic Kinematics- Motion Contro		C
Kinematic Co	·		
			1
JNIT IV	LOCALIZATION AND MAPPING		
	The Challenge of Localization- Localization-Based Navigation Versus		
J	Solutions- Belief Representation- Map Representation- Probabilistic Map Based	C	O
	Examples of Localization Systems- Autonomous Map Building.		
JNIT V	PLANNING AND NAVIGATION		
ntroduction-	Planning and Reacting- Path Planning- Obstacle avoidance- Bug algorithm-		_
ector field h	istogram- The bubble band technique- Curvature velocity techniques- Dynamic	(0
vindow appro	paches- The Schlegel approach to obstacle avoidance- Nearness diagram-		
	hod- Adding dynamic constraints- Navigation Architectures.		

TEXT BOOKS

- 1. Introduction to Autonomous Mobile Robots ,2nd edition 2011 Roland Siegwart, Illah R. Nourbakhsh, and DavideScaramuzza
- 2. Introduction to Autonomous Robots, 1stedition 2016 NikolausCorrell

REFERENCE BOOKS

- 1. Probabilistic robotics, MIT Press, Thrun, Burgards, and Fox. 2005
- 2. Computational Principles of Mobile Robotics. Gregory Dudek and Michael Jenkin. 2nd ed. Cambridge University Press, 2010.
- 3. Robot Modeling and Control. Mark W. Spong, Seth Hutchinson and M. Vidyasagar. John Wiley and Sons, 2006.
- 4. Computational Principles of Mobile Robotics, Gregory Dudek, Michael Jenkin, Cambridge University Press, 2010.
- 5. Autonomous Robots, George A. Bekey, MIT Press, 2005.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand the fundamental concepts of Autonomous mobile robotics
- CO2 Discuss the essential of Robotic Sensors and Vision
- CO3 Understand the concepts and algorithms for mobile robot locomotion and mobile robot Kinematics
- CO4 | Get firm grasp of the algorithms for mapping and localization
- CO5 Describe the concepts and algorithm required for mobile robot planning and navigating

COs				PR	OGRA	NO MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUCOMES			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	2	1	1	-	-	-	1	1	2	2	2	2	1	2	
CO2	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO3	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO4	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO5	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	

ML1603	PROBABILISTIC GRAPHICAL MODELS	L	Р	T	С
OBJECTIVES		3	1	0	3
	knowledge and ckills necessary to design implement and apply probab	ailict	tic ar	anh	ical
_	e knowledge and skills necessary to design implement and apply probab	וכוווכו	ic gr	арп	icai
	e real problems		iono		
	d bayesian networks, undirected graphical models and their temporal ext	ens	ions.		
	exact and approximate inference methods				
	nation of the parameters and the structure of graphical models.				
UNIT I	REPRESENTATION				9
·	- Bayesian network representation - independencies in graphs, distribu				
graphs, Undire	ected Graphical Models - parameterization, Markov network independent	den	cies,	С	:01
Bayesian to Ma	arkov networks, partially directed models				
UNIT II	LOCAL PROBABILISTIC AND TEMPORAL MODELS				9
Local probabili	stic Models - Tabular conditional probability distributions (CPDs), dete	rmir	nistic		
CPDs, contex	t specific CPDs, independence of causal influence, continuous va	arial	bles,		:02
conditional Ba	yesian networks, Template based representations - temporal models,	dire	cted		02
models, undire	cted models, structural uncertainty - Gaussian network models.				
UNIT III	INFERENCE				9
Inference - Vai	riable elimination, conditioning, inference with structured CPDs, exact infe	erer	nce -	Τ	
clique trees, r	nessage passing, inference as optimization, exact inference as optin	niza	ation,		
propagation-ba	ased approximation, propagation with approximate messages, Particle	e-Ba	ased	С	O3
Approximate I	nference - likelihood weighting and importance sampling, Markov chair	n M	lonte		
Carlo methods	, collapsed particles, Deterministic search methods.				
UNIT IV	MAXIMUM A POSTERIORI(MAP)			1	9
MAP Inference	l e - variable elimination for MAP, Max product in clique trees, Max-produ	ict b	elief	Τ	
propagation in	loopy cluster graphs, MAP as a linear optimization problem, graph cuts f	or N	ЛАР,		
	mporal models - Inference in hybrid networks - variable elimination in G			I C	04
	-linear dependencies - inference in temporal models				
UNIT V	LEARNING			<u> </u>	9
	arning Graphical Models - learning as optimization, learning tasks, Pa	aran	neter	\top	
	earning with shared parameters, Bayesian networks, Structure lea				:05
	ork - constraint based approaches, structure scores, structure search.		9 "'		
Bayesian netw	TOTAL	- 4	5 PF	RIO	פחי
TEXT BOOKS					
	er, Nir Friedman, Probabilistic Graphical Models - Principles and Technic	אווג			
The MIT Press		1400	٠,		
THE WILL LIGGS	, 2000.				

REFERENCE BOOKS

- 1. Kiren R Karkera, Building Probabilistic Graphical Models with Python, Packt, 2014
- 2. Adnan Darwiche, Modeling and Reasoning with Bayesian networks, First edition, Cambridge University Press, 2014
- 3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Second edition, Springer, 2011
- 4. Kevin P. Murphy, Machine Learning: a Probabilistic Perspective, MIT Press, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explore the various representations of Probabilistic Graphical Models.
CO2	Understand different Local Probabilistic and Temporal Models.
002	Chaoretana amerena 200ar i resusmene ana remperar medele.
CO3	Apply inference as an optimization tool in various Probabilistic Graphical Models.
CO4	Understand MAP inference techniques and inference in temporal models.
	·
CO5	Apply learning as an optimization tool for decision making.

				M	APPI	NG O	F CO	s WI7	TH PC	s ANI) PSO	S			
COs					PROGRAM SPECIFIC OUCOMES										
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	3	-	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	2	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	1	-	-	2	2	2	3	2	2
CO4	3	3	3	3	2	-	-	3	-	2	2	2	3	3	2
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	2	2

ML1604	BIG DATA ANALYTICS L P	T	C						
OBJECTIVES	[3 1	0	3						
To understand	the basics of big data and analytics.								
•	e frameworks for working with big data								
	ut stream computing.								
To learn abou UNIT I	It recommender systems and data analytics methods in R. INTRODUCTION TO BIG DATA AND HADOOP		9						
		$oxed{igspace}$	9						
<i>,</i>	I Data - Characteristics of Data - Evolution of Big Data - Definition of Big Data -								
•	h Big Data - Vs of Big Data - Non Definitional traits of Big Data - Business								
Intelligence vs.	Big Data - Understanding Big Data Storage - Examples of Big Data in Real Life	C	01						
- Big Data App	lications - History of Hadoop, Apache Hadoop, Analysing Data with Hadoop -								
Hadoop Stream	ning								
UNIT II	BIG DATA FRAMEWORK AND NOSQL		9						
Hadoop Ecosys	stem - Overview of: Apache Spark, Pig, Hive, Hbase, Sqoop - What is NoSQL?								
NoSQL data a	rchitecture patterns: Key-value stores, Graph stores, Column family (Bigtable)								
stores, Docume	ent stores - Mongo DB: Introduction - Features - Data types - Mongo DB Query	С	02						
language - CRUD operations - Arrays - Functions: Count - Sort - Limit - Skip - Aggregate -									
Map Reduce. Cursors – Indexes - Mongo Import – Mongo Export.									
UNIT III	MAP REDUCE		9						
MapReduce: T	he Map Tasks - Grouping by Key - The Reduce Tasks – Combiners - Details of	T^{J}							
MapReduce Ex	secution - Coping With Node Failures - Algorithms Using MapReduce: Matrix-								
Vector Multiplic	cation by MapReduce – Relational Algebra Operations - Computing Selections								
by MapReduce	- Computing Projections by MapReduce – Union – Intersection and Difference	С	О3						
	e - Computing Natural Join by MapReduce - Grouping and Aggregation by								
	Matrix Multiplication - Matrix Multiplication with One MapReduce Step -								
•	of MapReduce with use of real life databases and applications.								
UNIT IV	STREAM MEMORY	Щ,	9						
			9						
	Streams Concepts – Stream Data Model and Architecture - Stream Computing,								
. 0	in a Stream - Filtering Streams - Counting Distinct Elements in a Stream -		. .						
J	ments - Counting oneness in a Window - Decaying Window - Real time		O 4						
•	orm(RTAP) applications - Case Studies - Real Time Sentiment Analysis, Stock								
Market Predicti	ons. Using Graph Analytics for Big Data: Graph Analytics								
UNIT V	RECOMMENDATION SYSTEM AND REVIEW OF BASIC DATA ANALYTIC		9						
	METHODS USING R								
Recommendati	on System: Collaborative Recommendation- Content Based Recommendation -								
Knowledge Bas	sed Recommendation - Hybrid Recommendation Approaches –Introduction to R	C	O 5						
		1							
Exploratory D	ata Analysis – Statistical methods for evaluation.								

TEXT BOOKS

- 1. Seema Acharya, Subhasini Chellappan, "Big Data Analytics 2nd Edition" Wiley 2019.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets 3rd Edition", Cambridge University Press, 2020.
- 3. Dietmar Jannach and Markus Zanker, "Recommender Systems: An Introduction -2^{nd} Edition", Cambridge University Press, 2015.
- 4. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.

REFERENCE BOOKS

- 1. Kyle Banker, Piter Bakkum, Shaun Verch, "MongoDB in Action 2nd Edition", Manning Publications, 2016
- 2. Tom White, "HADOOP: The definitive Guide 4th Edition", O Reilly 2015.
- 3. Vignesh Prajapati, "Big Data Analytics with R and Hadoop", Packt Publishing 2013

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Learn Big Data and Hadoop
CO2	Learn NoSQL databases and management.
CO3	Learn MapReduce
CO4	Perform analytics on data streams
CO5	Learn recommendation systems for large volumes of data

COs				PROGRAM SPECIFIC OUCOMES											
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	-	-	-	1	1	2	2	2
CO2	1	2	2	1	2	1	1	-	-	-	1	1	2	2	2
CO3	2	2	2	2	1	`1	1	-	-	-	1	1	2	2	2
CO4	2	2	2	2	2	1	1	-	-	-	1	1	2	2	2
CO5	2	2	2	2	2	1	1	-	-	-	1	1	2	2	2

ML1607	DEEP LEARNING LABORATORY	L	Т	Р	С
		0	0	4	2

OBJECTIVES

- Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.
- Have a working knowledge of neural networks and deep learning
- Understand the characteristics and types of artificial neural network and remember working of Artificial Neural Network.
- Apply learning algorithms on perceptron and apply back propagation learning on Neural Network.
- Design Convolutional Neural Network and classification using Convolutional Neural Network.

LIST OF EXPERIMENTS

LIST OF EXPENSION TO							
1.	To write a program to implement Perceptron.						
2.	To write a program to implement Classification using Back propagation						
3.	Create Simple Sequence Classification Network Using Deep Network Designer	CO1					
4.	Implement and demonstrate the new deep neural network for classification and	COI					
	regression						
5.	Write a program to Resize, rotate, or preprocess images for training or prediction						
6.	Create deep learning networks for sequence and time series data.						
7.	Implement and demonstrate how to Detect and recognize objects in images						
8.	Write a program to Classify text data using CNN	CO2					
9.	Write a program to Train on CPU, GPU, multiple GPUs, in parallel on your desktop or						
	on clusters in the cloud, and work with data sets too large to fit in memory						
10	. Create a Deep Learning Toolbox Model for AlexNet Network, VGG, ResNet						
11	. Create a Deep Learning Toolbox Model for ImageNet, GoogleNet, Recurrent Neural	CO3					
	Network	COS					

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Python 3 Interpreter for Windows/Linux 30 Nos.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand the implementation procedures for the Deep learning algorithms.

12. Create Simple Sequence Classification Network Using Deep Network Designer

- CO2 Design MatLab/Python programs for various Learning algorithms.
- CO3 To learn data science and design and implement various convolutional Neural Networks

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	1	1	1	1	2	2	2	3	3	3
CO2	3	3	3	3	2	1	1	1	1	2	2	2	3	3	3
CO3	3	3	3	3	2	1	1	1	1	2	2	2	3	3	3

ML1608	SOCIALLY RELEVANT PROJECT	L	Т	Р	С
		0	0	4	2

Choose any project of solving social problems

- Team Project with a maximum of two in a team
- Need to concentrate on software development methodologies
- Documentation is based on the standards
- Evaluation pattern is like Lab examination,
- Need to submit a report, presentation with demo.

.

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	

ML1701	STATISTICAL NATURAL LANGUAGE PROCESSING	L	Т	Р	С
		3	1	0	3

OBJECTIVES

- To learn the fundamentals of natural language processing
- To understand word level and syntactic analysis.
- To understand the syntax analysis and parsing
- To understand the role of semantics of sentences and pragmatics
- To get knowledge about the machine translation

UNIT I	INTRODUCTION	9			
in Language - I Statistical Lan parameters a	listory of NLP- Challenges and Applications of NLP - Ambiguity and Uncertainty NLP Phases - Language Modelling- Various Grammar-based Language Models- guage Model- N-gram Language Models – Markov Process- Estimating and smoothing - Evaluating language models- Regular Expression-Text - Minimum Edit Distance.	CO1			
UNIT II	PART OF SPEECH TAGGING AND SYNTACTIC PARSING	9			
Evaluation of Markov Model	Named Entities and Named Entity Tagging- Conditional Random Fields (CRFs)-Named Entity Recognition- HMM Part-of-Speech Tagging-Trigram Hidden s- Decoding with HMMs: the Viterbi Algorithm- Syntactic Parsing- Efficient	CO2			
parsing for con	text-free grammars (CFGs)- Semantic Parser – Semantic Role Labelling				
UNIT III	INFORMATION RETRIEVAL	9			
Design Features of Information Retrieval systems - Information Retrieval Models - Classical Information Retrieval Models - Non-classical models of IR -Alternative Models of IR -					
Evaluation of	the IR System- Natural Language Processing in IR -Relation Matching - sed Approaches - Conceptual Graphs in IR -Cross-lingual Information Retrieval.	CO5			

Unit IV Machine Learning for NLP

Vocabulary & Feature Extraction – Bag of Words Model - ML for NLP: Logistic Regression, Naïve Bayes, Neural Networks - Error Analysis – Vector Space models – Language Modelling with Sequential Models - Embeddings for Words and Documents – Word2Vec - Cosine Similarity – 1D Convolutions - Attention Mechanism – Transformers – Recursive Neural Networks

Unit V Applications in NLP

Question Answering with SQUAD – Dependency Parsing – Machine Translation – Conference Resolution – Text Summarization

TEXT BOOKS

- 1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Second Edition, Pearson Publication, 2014
- 2. Christopher Manning, "Foundations of Statistical Natural Language Processing", MIT Press, 2009
- 3. Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman & Hall/CRC Press, 2010.

REFERENCE BOOKS

- 1. Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", First Edition, OReilly Media, 2009
- 2. Breck Baldwin, "Natural Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.
- 3. Richard M Reese,"Natural Language Processing with Java", First Edition, Packt Publishing,2015.

TOTAL: 45 PERIODS

- 4. YoavGoldberg,GraemeHirst, "Neural Network Methods for Natural Language Processing Synthesis Lectures on Human Language Technologies", Morgan and Claypool Life Sciences, 2017.
- 5. DeeptiChopra, Nisheeth Joshilti Mathur, "Mastering Natural Language Processing with Python", First Edition, Packt Publishing Limited, 2016
- 6. Mohamed ZakariaKurdi "Natural Language Processing and Computational Linguistics 1: Speech, Morphology and Syntax", First Edition, ISTE Ltd. Wiley, 2016
- 7. AtefehFarzindar, Dianalnkpen, "Natural Language Processing for Social Media, Second Edition, Morgan and Claypool Life Sciences, 2015

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To tag a given text with basic Language features
CO2	To design an innovative application using NLP components
CO3	To implement a rule based system to tackle morphology/syntax of a language
CO4	To design a tag set to be used for statistical processing for real-time applications
CO5	To apply NLG and machine translation

	MIZET INC OF GGG WITH GG ZING F GGG															
COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUCOMES			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	2	1	1	-	-	-	1	1	2	2	2	2	1	2	
CO2	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO3	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO4	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	
CO5	1	2	1	1	-	-	-	1	1	2	2	2	2	2	2	

ML1702	FORMAL LANGUAGES AND AUTOMATA THEORY L 3	Γ P	C
OBJECTIVES	[3]	, 10	<u> </u>
To understanTo understanTo study about	d a finite automata for a given language. d the relation between grammar and language d the basic principles of working of a compiler ut the type checking procedure during the compilation d the storage structure of the running program		
UNIT I AUT	OMATA		9
- Deterministic Fini	al proof – Additional forms of proof – Inductive proofs –Finite Automata (Fite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Firon transitions- Equivalence and minimization of Automata.	-	01
UNIT II CON	NTEXT FREE GRAMMARS AND LANGUAGES		9
Definition of the Pus Pushdown automata	mar (CFG) – Parse Trees – Ambiguity in grammars and languages shdown automata – Languages of a Pushdown Automata – Equivalence a and CFG– Deterministic Pushdown Automata- Normal forms for CFG or CFL – Closure Properties of CFL – Turing Machines – Programm	of 5 – C	02
UNIT III BAS	SICS OF COMPILATION		9
Compiler construction	sis of source program – Phases of a compiler – Grouping of phases on tools – Lexical Analyzer: Token Specification – Token Recognition - ifying lexical analyzer – Top down parser: Table implementation Bottom up Parser: SLR(1) Parser – Parser generators.	A	CO3
UNIT IV TYP	E CHECKING AND RUNTIME ENVIRONMENTS		9
simple type checker for a simple type che	nitions – Construction of syntax trees – Type systems – Specification of Equivalence of type expressions – Type conversions – Attribute gramn ecking system – Runtime Environments: Source language issues – Storage allocation strategies – Parameter passing	nar c	04
UNIT V COI	DE GENERATION AND OPTIMIZATION		9
- Basic blocks and allocation and assig	of a code generator - The target machine - Run-time storage management flow graphs - Next-use information - A simple code generator - Registernment - The dag representation of basic blocks - Generating code from the gramming code generation algorithm — Code generator generators - Co	ter om C de	05

TEXT BOOKS

- 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2007.
- 2. Alfred V. Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, "Compilers :Principles, Techniques and Tools", Second Edition, Pearson Education, 2008.

REFERENCE BOOKS

- J.Martin, "Introduction to Languages and the Theory of computation" Third Edition, Tata Mc Graw Hill, 2007
- 2. Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependencebased Approach", Morgan Kaufmann Publishers, 2002.
- 3. Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers Elsevier Science, India, Indian Reprint 2003.
- 4. Muneeswaran. K, "Compiler Design", Oxford University Press, 2012.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Design a finite automaton for a specific language.
CO2	Design a Turing machine.
CO3	Select appropriate grammar for the implementation of compiler phases and Design a lexical
	analyzer and simple parser
CO4	Design and implement techniques used for optimization by a compiler.
CO5	Write a very simple code generator

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	2	-	-	2	-	2	2	2	3	3	2		
CO2	3	3	3	3	2	-	-	2	-	2	2	2	3	3	2		
CO3	3	3	3	3	2	-	-	2	-	2	2	2	3	3	2		
CO4	3	3	3	3	2	-	-	2	-	2	2	2	3	3	2		
CO5	3	3	3	3	2	-	-	2	-	2	2	2	3	3	2		

ML1703	IMAGE PROCESSING AND VISION TECHNIQUES L		Р	С
OBJECTIVES	3	0	0	3
	ew image processing techniques for computer vision.			
	ne the image enhancement in the Spatial and Frequency Domain.			
	erstand Image Restoration and Image Compression.			
	erstand three-dimensional image analysis.			
	y some applications of computer vision algorithms			
UNIT I	IMAGE PROCESSING FOUNDATION			9
Introduction-I	mage Processing Operations— Basic Image filtering operations: N	Noise		
	by Gaussian Smoothing- Median Filters- Mode Filters- Rank Order Filters-			
	rs in Industrial Applications of VisionThresholding- Adaptive Thresholding-		C	01
	hniques – corner and interest point detection – mathematical morphology – S	•		
	aches to Texture Analysis.			
UNIT II	IMAGE ENHANCEMENT IN THE SPATIAL AND FREQUENCY DOMAIN	1		9
	I cement by point processing-Image enhancement by neighbourhood proces	ssing-		
Basic Gray Le	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming-Basics of Spatial Filters-Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and	nmetic Spatial	C	O 2
Basic Gray Le and Logic Ope Filters-Combin	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmeter at the Processing-Enhancement Using Arithmeter	nmetic Spatial nd the	C	O2
Basic Gray Le and Logic Ope Filters-Combir frequency Do Filtering	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmeterations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and Smain-Smoothing and Sharpening Frequency Domain Filters- Homomo	nmetic Spatial nd the	C	
Basic Gray Leand Logic Operations of the second of the sec	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmeterations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and Smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderation and Sharpening Frequency Do	nmetic Spatial nd the orphic	C	
Basic Gray Lea and Logic Ope Filters-Combir frequency Do Filtering UNIT III Model of The presence of North Filtering-Linear Filtering-Wiener Transformation Theory- Lossle Coding-Golom	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmeterations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and Smain-Smoothing and Sharpening Frequency Domain Filters- Homomo	in the omain nverse metric mation		O2 9
Basic Gray Lea and Logic Ope Filters-Combin frequency Do Filtering UNIT III Model of The presence of National Filtering-Linear Filtering-Wiener Transformation Theory- Lossic Coding-Golom Coding-Image	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and Smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderal Mage Restoration And Image Compression IMAGE RESTORATION AND IMAGE COMPRESSION Image Degradation / Restoration Process-Noise Models- Restoration in Noise Only Spatial Filtering- Periodic Noise Reduction by Frequency Domain Filtering- Constrained Least Square Filtering-Geometric Mean Filter-Geometric Instrumentation of Degradation Function- Instrumentation of Degradation Functions. Data Redundancies-Image Compression Models-Elements of Information Coding-Loss Predictive Coding- Arithmetation Standards	in the omain nverse metric mation		9
Basic Gray Lea and Logic Ope Filters-Combir frequency Do Filtering UNIT III Model of The presence of North Filtering-Linear Filtering-Wiener Transformation Theory- Lossle Coding-Golom Coding-Image UNIT IV	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and Smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderal Methods and Sharpening Frequency Domain Filters- Periodic Noise Reduction by Frequency Domain Position-Invariant DegradationsEstimation of Degradation Function- Invertible Constrained Least Square Filtering-Geometric Mean Filter-Geomas. Data Redundancies-Image Compression Models-Elements of Information Coding-Run Length Coding-Loss less predictive Coding- Bit For Compression Standards 3D VISION	in the omain nverse metric mation nmetic Plane		9
Basic Gray Lea and Logic Ope Filters-Combir frequency Do Filtering UNIT III Model of The presence of National Filtering-Linear Filtering-Wiener Transformation Theory- Lossle Coding-Golom Coding-Image UNIT IV 3-D Vision - I	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderal Methods and Sharpening Frequency Domain Filters- Homomoderal Methods (Process-Noise Models- Restoration in Noise Only Spatial Filtering- Periodic Noise Reduction by Frequency Domain Filtering- Constrained Least Square Filtering-Geometric Mean Filter-Geomas. Data Redundancies-Image Compression Models-Elements of Information Designation Standards (Procession Standards) Methods for 3D vision – projection schemes – shape from shading – photon	in the omain nverse metric nation nmetic Plane	C	9 03
Basic Gray Lea and Logic Ope Filters-Combir frequency Do Filtering UNIT III Model of The presence of National Filtering-Linear Filtering-Wiener Transformation Theory- Lossle Coding-Golom Coding-Image UNIT IV 3-D Vision - National Stereo — Summer Summ	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderal Methods and Sharpening Frequency Domain Filters- Homomoderal Methods and Sharpening Frequency Domain Filters- Homomoderal Methods of Position Process-Noise Models- Restoration in Process Only Spatial Filtering- Periodic Noise Reduction by Frequency Domain Position-Invariant DegradationsEstimation of Degradation Function- Invertible Constrained Least Square Filtering-Geometric Mean Filter-Geomans. Data Redundancies-Image Compression Models-Elements of Information Designation Standance Coding-Shanon-Fano Coding- ArithmetabCodingLZW Coding-Run Length Coding-Loss less predictive Coding- Bit For compression standards 3D VISION Methods for 3D vision – projection schemes – shape from shading – photomatics Smoothness – shape from texture – use of structured lighting- transformations.	in the omain nverse metric mation nmetic Plane metric three-	C	9
Basic Gray Lea and Logic Ope Filters-Combir frequency Do Filtering UNIT III Model of The presence of National Filtering-Linear Filtering-Wiener Transformation Theory- Lossle Coding-Golom Coding-Image UNIT IV 3-D Vision - National Stereo — Summer Summ	evel 20% Transformations-Histogram Processing-Enhancement Using Arithmetations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Enhancement Methods. Introduction to Fourier Transform and smain-Smoothing and Sharpening Frequency Domain Filters- Homomoderal Methods and Sharpening Frequency Domain Filters- Homomoderal Methods (Process-Noise Models- Restoration in Noise Only Spatial Filtering- Periodic Noise Reduction by Frequency Domain Filtering- Constrained Least Square Filtering-Geometric Mean Filter-Geomas. Data Redundancies-Image Compression Models-Elements of Information Designation Standards (Procession Standards) Methods for 3D vision – projection schemes – shape from shading – photon	in the omain nverse metric mation nmetic Plane metric three-	C	O3

UNIT V APPLICATION	9
--------------------	---

Automated Visual Inspection: Process- Types- Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application- Surveillance-foreground-background separation – particle filtres – Chamfer matching- tracking- and occlusion – combining views from multiple cameras – human gait analysis Application- In-vehicle vision system: locating roadway – road markings – road signs

CO₅

- locating pedestrians

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. E. R. Davies, "Computer & Machine Vision", Fourth Edition, Academic Press, 2012.
- 2 Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 2nd edition, Pearson Education

REFERENCE BOOKS

- 1. R. Szeliski, "Computer Vision: Algorithms and Applications", Springer 2011.
- 2. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", Cambridge University Press, 2012
- 3. Mark Nixon and Alberto S. Aquado, "Feature Extraction & Image Processing for Computer Vision", Third Edition, Academic Press, 2012.
- 4. D. L. Baggio et al., "Mastering OpenCV with Practical Computer Vision Projects", Packt Publishing, 2012.
- 5. Jan Erik Solem, "Programming Computer Vision with Python: Tools and algorithms for analyzing images", O'ReillyMedia, 2012.
- 6. A.K. Jain, "Fundamental of Digital Image Processing", PHI.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Implement fundamental image processing techniques required for computer vision
CO2	Understand the image enhancement in the Spatial and Frequency Domain.
CO3	Apply Image Restoration and Image Compression.
CO4	Apply 3D vision techniques
CO5	Develop applications using computer vision techniques.

COs -		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
COS	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	2	-	3	-	-	-	-	-	-	-	3	-	-	3		
CO2	-	3	3	2	-	-	-	-	-	-	-	3	3	-	3		
СОЗ	-	3	3	3	-	-	-	-	-	-	-	3	3	-	3		
CO4	-	3	2	3	•	-	-	-	-	-	-	3	3	-	-		
CO5	-	2	3	3	-	-	-	-	-	-	3	3	•	3	-		

ML1704		Т	Р	С
	3	1	0	3
OBJECTIVES				
• .To und	derstand human behaviour in social web and related communities.			
 To lea 	arn visualization of social networks.			
 Learn 	to predict human behaviour in social web and related communities			
UNIT I	VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS			9
Graph theory	- Centrality - Clustering - Node-Edge Diagrams - Matrix representation	า -		
Visualizing o	nline social networks, Visualizing social networks with matrix-bas	sed		01
representation	s - Matrix and Node-Link Diagrams - Hybrid representations - Application	s -	_ C	UI
Cover network	s - Community welfare - Collaboration networks - Co-Citation networks.			
UNIT II	EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS	S		9
Extracting evo	blution of Web Community from a Series of Web Archive – Detect	ing		
Communities	in Social Networks – Definition of Community – Evaluating Communities	; –		
Methods for	Community Detection & Detection & Applications of Community Min	ing		02
Algorithms -	Tools for Detecting Communities - Social Network Infrastructure a	and	, C	UZ
Communities -	- Decentralized Online Social Networks - Multi-Relational Characterization	of		
Dynamic Socia	Il Network Communities			
			1	
UNIT III	MACHINE LEARNING FOR GRAPHS - I			9
Machine Learn	ing for Graphs; Traditional Methods for ML in Graphs – Node Level Tasks, No	ode		
Level prediction	on, Link level prediction, Graph -level prediction; Node Embeddings. La	bel	C	О3
Propagation fo	r Node Classification			
UNIT IV	MACHINE LEARNING FOR GRAPHS – II			9
Graph Neural	Networks - Model, Design Space; Applications of GNN; Knowledge Gra	aph		04
			0	0
Embeddings; F	Reasoning over Knowledge Graphs; Subgraph mining with GNNs.			
UNIT V	GENERATIVE MODELLING AND CASE STUDY			9
UNIT V Traditional Ger	GENERATIVE MODELLING AND CASE STUDY nerative Models for Graphs; Deep Generative Models for Graphs; Graph neu-			
UNIT V Traditional Ger	GENERATIVE MODELLING AND CASE STUDY		C	
UNIT V Traditional Genetworks in co	GENERATIVE MODELLING AND CASE STUDY nerative Models for Graphs; Deep Generative Models for Graphs; Graph neutomputational biology (GNN), Graph Embeddings in fraud detection, Netwo systems, Machine learning and Drug Discovery	rks		05
UNIT V Traditional Genetworks in correcommended	GENERATIVE MODELLING AND CASE STUDY nerative Models for Graphs; Deep Generative Models for Graphs; Graph neutomputational biology (GNN), Graph Embeddings in fraud detection, Netwo systems, Machine learning and Drug Discovery TOTAL: 45	rks		05
UNIT V Traditional Genetworks in correcommended TEXT BOOKS	GENERATIVE MODELLING AND CASE STUDY nerative Models for Graphs; Deep Generative Models for Graphs; Graph neutomputational biology (GNN), Graph Embeddings in fraud detection, Netwo systems, Machine learning and Drug Discovery TOTAL: 45	rks		05
UNIT V Traditional Gernetworks in correcommended TEXT BOOKS 1. Networks	GENERATIVE MODELLING AND CASE STUDY nerative Models for Graphs; Deep Generative Models for Graphs; Graph neutomputational biology (GNN), Graph Embeddings in fraud detection, Netwo systems, Machine learning and Drug Discovery TOTAL: 45	rks		05

3. Networks, Crowds, and Markets: Reasoning About a Highly Connected World by David Easley and Jon Kleinberg, Cambridge University Press (2010)

REFERENCE BOOKS

- 1. Peter Mika, Social Networks and the Semantic Web, First Edition, Springer 2007.
- 2. Borko Furht, Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010

COURSE OUTCOMES

Upon completion of the course, students will be able to

- Use statistical software to visualize networks and analyze their properties, connecting these to network concepts and theories
- CO2 Know basic notation and terminology used in network science
- CO₃ Graph Machine Learning uses the network structure of the underlying data to improve predictive outcome
- CO4 provide an easy way to do node-level, edge-level, and graph-level prediction tasks.
- CO₅ To understand human behaviour in social web and related communities

COs				PR	OGRA	AM O	UTCO	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)						
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3				
CO1	2	2	2	2	1	1	1	1	1	1	1	1	2	2	2				
CO2	2	2	2	2	1	1	1	1	1	1	1	1	2	2	2				
CO3	1	1	2	2	2	1	1	1	1	1	1	1	2	2	2				
CO4	1	1	2	2	2	1	1	1	1	1	1	1	2	2	2				
CO5	2	2	2	2	1	1	1	1	1	1	1	1	2	2	2				

ML1707	NATURAL LANGUAGE PROCESSING LABORATORY	L	Т	Р	С
		0	0	4	2

OBJECTIVES

- able to explain and apply fundamental algorithms and techniques in the area of natural language processing (NLP)
- Understand language modeling.
- to manipulate and analyze language data using Python

LIST OF EXPERIMENTS

LIST OF EXPERIMENTS	
Word Generation- generate word forms from root and suffix information	
2. Morphology- Understanding the morphology of a word by the use of Add-Delete table	
3. N-Grams- to calculate bigrams from a given corpus and calculate probability of a	CO1
sentence.	
4. N-Grams Smoothing- to apply add-one smoothing on sparse bigram table.	
5. POS Tagging: Hidden Markov Model- to calculate emission and transition matrix which	
will be helpful for tagging Parts of Speech using Hidden Markov Model.	
6. POS Tagging: Viterbi Decoding- to find POS tags of words in a sentence using Viterbi	CO2
decoding.	COZ
7. Building POS Tagger- to know the importance of context and size of training corpus in	
learning Parts of Speech	
8. Chunking- to understand the concept of chunking and get familiar with the basic chunk	
tagset.	
9. Building Chunker- selecting proper features for training a model and size of training	CO3
corpus in learning how to do cunking.	
10. Parsing: parsing specific kinds of data, focusing primarily on dates, times, and HTML	

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Python 3 Interpreter for Windows/Linux 30 Nos

PYTHON PACKAGES

Students are expected to know/ learn the following Python NLP packages

- NLTK (www.nltk.org/ (http://www.nltk.org/))
- Spacy (https://spacy.io/)
- TextBlob (http://textblob.readthedocs.io/en/dev/
- Gensim (https://pypi.python.org/pypi/gensim)
- Pattern (https://pypi.python.org/pypi/Pattern)

DATASETS

NLTK includes a small selection of texts from the Project Gutenberg electronic text archive, which contains some 25,000 free electronic books, hosted at http://www.gutenberg.org/.

- 2. The Brown Corpus contains text from 500 sources, and the sources have been categorized by genre, such as news, editorial, and so on (http://icame.uib.no/brown/bcmlos.html).
- 3. Wikipedia Articles

Or any other dataset of your choice

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Tag a given text with basic language features.

CO2 To implement a rule based system to tackle morphology/syntax of a language

CO3 To design a tag set to be used for statistical processing for real-time applications

COs				PR	OGRA	AM O	UTCO	MES	(POs	5)				ECIFIC PSOs)	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO2	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO3	3	3	3	3	3	2	1	1	2	2	2	3	3	3	3

ML1708	CAPSTONE PROJECT- PHASE I	L	Р	T	С
		0	0	4	2

The purpose of this course is to apply the concept of Mathematics, Science and Engineering Fundamentals and an Engineering Specialization to solve complex engineering Problem.

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUCOMES			
	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	РО	PSO	PSO	PSO		
	01	02	O3	04	O 5	O6	07	08	O9	10	11	12	1	2	3		
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		

ML1807	CAPSTONE PROJECT- PHASE II	L	Р	T	С
		0	0	20	10

The purpose of this course is to apply the concept of Mathematics, Science and Engineering Fundamentals and an Engineering Specialization to solve complex engineering Problem.

COs				PR	OGR/	AM O	UTCO	MES	(POs)			PROGRAM SPECIF OUCOMES							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO3					
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3					
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3					
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3					

PROFESSIONAL ELECTIVE - I (SEMESTER V)

ML1511	ADVANCED DATABASES	L	Р	Т	С
		3	0	С	3

OBJECTIVES

- To explore the features of Parallel and Distributed databases
- Be familiar with a commercial relational database system (Oracle) by writing SQL using the system
- To provide knowledge about XML Databases
- To know about Temporal and Spatial Databases
- Be familiar with the relational database theory, and be able to write relational algebra expressions for queries

•	said to true queries	
UNIT I	PARALLEL AND DISTRIBUTEDDATABASES :	8
Database Sy	stem Architectures: Centralized and Client-Server Architectures-Server	
System Archi	itectures -Parallel Systems Distributed Systems -Parallel Databases: I/O	
Parallelism -	Interquery Parallelism - Intraquery Parallelism - Intraoperation Parallelism	CO1
Interoperation	Parallelism –Distributed Databases: -Homogeneous and Heterogeneous	COI
Databases -	Distributed Data Storage -Distributed Transactions -Commit Protoc ols -	
Conc urrency	Control in Distributed Databases –Distributed Query Processing.	
UNIT II	OBJECTAND OBJECT RELATIONAL DATABASES	8
Object-Based	Databases: Complex Data Types–Structured Types and Inheritance in SQL	
-Table Inherit	ance –Arra y and Multiset Types in SQL –Object Identity and Reference	000
Types in SQL	-Implementing O-R Features - Persistent Programming Languages -	CO2
Object-Orient	ed versus Object –Relational.	
UNIT III	ANALYTICAL MODELING OF PARALLEL PROGRAMS	8
XML: Motivat	tion –Structure of XML Data –XML Document Schema –Querying and	l
Transformatio	n – Appl ication Program Interfaces to XML –Storage of XML Data –XML	CO3
Applications.		
UNIT IV	SPATIAL AND TEMPORAL DATABASES	8
Spatial and To	emporal Data and Mobility: Time in Databases –Spatial and Geographic Data	004
Mobility a nd l	Personal Databases.	CO4
UNIT V	MULTIMEDIA DATABASES	8
Multidimensio	nal Data Structures: k-d Trees – Point Quadtrees – MXQuadtree – R-Tree -	l .
Image Databa	ases: Representing Image DBs with Relations –Representing Image DBs with	CO5
R-Trees –Tex	t/Document Databases: TV Trees - Video Databases – Audi o Databases.	

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill International Edition, Sixth Edition, 2011.
- 2. V. S. Subramanian, "Principles of Multimedia Database Systems", Elsevier Publishers, 2001
- 3. R. Elmasri, S. B. Navathe, "Fundamentals of Database Systems", Pearson Education, Seventh Edition, 2016.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand Parallel Databases and Distributed Databases
CO2	Apply query evaluation techniques and query optimization techniques
CO3	Develop transaction processing systems with concurrency control.
CO4	Understand Temporal and Spatial Databases
CO5	Design and develop a database application system as part of a team

COs					PROGRAM SPECIFIC OUCOMES										
	P 01	P 02	P O3	P 04	P O5	P 06	P 07	P 08	P 09	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	1	-	-	-	-	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	-	-	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	-	-	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	-	-	1	1	1	2	2	2
CO5	2	2	2	2	1	-	-	-	-	1	1	1	2	2	2

ML1512		L T	PC						
OBJECTIVE		3 0	0 3						
	 To understand the concepts of Semantic Web To build and implement a small ontology that is semantically degree your chosen problem domain To implement applications that can access, use and manipulate ontology, represent data from a chosen problem in XML with agreement tags To design and implement a web services application that "discusted and/or other web services via the semantic web To discover the capabilities and limitations of semantic web ted different applications 	e the ppropri	iate the gy for						
UNIT I	Foundation of Semantic Web Technologies		9						
Introduction	to the Syntactic web and Semantic Web - Evolution of the Web	– The	;						
visual and s	yntactic web – Levels of Semantics – Metadata for web information	າ - The	;						
semantic we	eb architecture and technologies –Contrasting Semantic with Conve	entiona	CO1						
Technologies –Semantic Modeling -Potential of semantic web solutions and challenges									
of adoption									
UNIT II	ONTOLOGICAL ENGINEERING		9						
Ontologies -	-Taxonomies –Topic Maps – Classifying Ontologies - Terminological								
aspects: cor	ncepts, terms, relations between them – Complex Objects -Subclasse	s and							
Sub-properti	es definitions –Upper Ontologies – Quality – Uses - Types of termino	logical	CO2						
resources fo	r ontology building - Methods and methodologies for building ontolog	jies –	COZ						
Multilingual (Ontologies -Ontology Development process and Life cycle – Methods	for							
Ontology Le	arning – Ontology Evolution – Versioning								
UNIT III	STRUCTURING AND DESCRIBING WEB RESOURCES		9						
Structured V	Veb Documents - XML – Structuring – Namespaces – Addressing –		1						
Querying – F	Processing - RDF – RDF Data Model – Serialization Formats- RDF		000						
Vocabulary -	-Inferencing -RDFS – basic Idea – Classes – Properties- Utility Prope	erties –	CO3						
RDFS Mode	lling for Combinations and Patterns- Transitivity								
UNIT IV	WEB ONTOLOGY LANGUAGE		9						
OWL – Sub-	Languages – Basic Notions -Classes- Defining and Using Properties	_							
Domain and	Range – Describing Properties - Data Types – Counting and Sets-		CO4						
Negative Pro	operty Assertions – Advanced Class Description – Equivalence – Owl	l Logic	-						
UNIT V	SEMANTIC WEB TOOLS AND APPLICATIONS		9						
Developmen	ıt Tools for Semantic Web – Jena Framework – SPARL –Qı	ueryinç	;						
semantic web - Semantic Desktop - Semantic Wikis -Semantic Web Services -									
Application i	n Science – Business								
	TOTAL :	: 45 PF	ERIODS						

TEXT BOOKS

- 1. Liyang Yu, A Developer's Guide to the Semantic Web, Springer; 1st Edition. Edition, 2011
- 2. John Hebeler, Matthew Fisher, Ryan Blace and Andrew Perez-Lopez, Semantic Web Programming, Wiley; 1 edition, 2009.
- 3. Grigoris Antoniou, Frank van Harmelen, A Semantic Web Primer, Second Edition (Cooperative Information Systems) (Hardcover), MIT Press, 2008

REFERENCE BOOKS

- 1. Robert M. Colomb, Ontology and the Semantic Web: Volume 156 Frontiers in Artificial Intelligence and Applications (Frontier in Artificial Intelligence and Applications), IOS Press, 2007.
- 2. Dean Allemang and James Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Morgan Kaufmann; 2 edition, 2011.

COURSE OUTCOMES

upon cor	npletion of the course, students will be able to
CO1	Discuss about basic of semantic web and search engine
CO2	Explain RDFS and its process
CO3	Explain owl and its operation
CO4	Explain semantic issue and prototype system.
CO5	Explain various semantic web services and its design

COs				PRC	GRA	M O	JTCC	OMES	S (PO	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO PSO 1 2					
CO1	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1				
CO2	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1				
CO3	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1				
CO4	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1				
CO5	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1				

ML1513	ADVANCED DATA STRUCTURES	L	Р	T	С
		3	0	0	3

OBJECTIVES

- To understand the usage of algorithms in computing.
- To learn and use hierarchical data structures and its operations
- To learn the usage of graphs and its applications.
- To select and design data structures and algorithms that is appropriate for problems.
- To study about NP Completeness of problems.

UNIT I	ROLE OF ALGORITHMS IN COMPUTING	
Algorithms –	Algorithms as a Technology- Insertion Sort – Analyzing Algorithms –	
Designing Alg	orithms- Growth of Functions: Asymptotic Notation – Standard Notations	СО
and Common	Functions- Recurrences: The Substitution Method – The Recursion-Tree	1
Method		
UNIT II	HIERARCHICAL DATA STRUCTURES	
Binary Search	Trees: Basics - Querying a Binary search tree - Insertion and Deletion-	
Red-Black tree	es: Properties of Red-Black Trees - Rotations - Insertion - Deletion -B-	00
Trees: Definition	on of Btrees – Basic operations on B-Trees – Deleting a key from a B-Tree-	CC
Fibonacci Hea	ps: structure - Mergeable-heap operations- Decreasing a key and deleting	2
a node-Boundi	ng the maximum degree.	
UNIT III	GRAPHS	
Elementary G	raph Algorithms: Representations of Graphs – Breadth-First Search –	
Depth-First Se	earch – Topological Sort – Strongly Connected Components- Minimum	
Spanning Tree	es: Growing a Minimum Spanning Tree – Kruskal and Prim- Single-Source	CC
Shortest Paths	s: The Bellman-Ford algorithm - Single-Source Shortest paths in Directed	3
Acyclic Graphs	s – Dijkstra's Algorithm; All-Pairs Shortest Paths: Shortest Paths and Matrix	
Multiplication -	- The FloydWarshall Algorithm;	
UNIT IV	ALGORITHM DESIGN TECHNIQUES	
Dynamic Prog	ramming: Matrix-Chain Multiplication – Elements of Dynamic Programming	
 Longest Cor 	mmon Subsequence- Greedy Algorithms: An Activity-Selection Problem –	CC
Elements of th	e Greedy Strategy- Huffman Codes.	4
UNIT V	NP COMPLETE AND NP HARD	
NP-Completen	less: Polynomial Time – Polynomial-Time Verification – NP- Completeness	CC
Mi -Completen		
•	ity – NP-Completeness Proofs – NP-Complete Problems	5

TEXT BOOKS

- 1. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, —Data Structures and AlgorithmsII, Pearson Education, Reprint 2006.
- 2. Robert Sedgewick and Kevin Wayne, —ALGORITHMSII, Fourth Edition, Pearson Education.
- 3. S.Sridhar, IDesign and Analysis of Algorithms II, First Edition, Oxford University Press. 2014
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, —Introduction to AlgorithmsII, Third Edition, Prentice-Hall, 2011.

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Upon the completion of the course the students should be able to:
CO2	Design data structures and algorithms to solve computing problems
CO3	Design algorithms using graph structure and various string matching algorithms to solve real-life problems
CO4	Apply suitable design strategy for problem solving
CO5	Understand the applications of NP Complete and NP Hard Concepts

COs			F		PROGRAM SPECIFIC OUCOMES										
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	2	-	-	-	-	2	2	2	3	3	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO4	2	2	3	3	2	-	-	-	-	2	2	2	3	3	3
CO5	2	2	2	2	2	-	-	-	ı	2	2	2	3	3	3

ML1514	LOGIC PROGRAMMING	L	T		C
OBJECTIVE	8	3	0	0	3
	part knowledge on				
	learn the basics and advanced concepts of Prolog				
	explain the basic concepts of knowledge representation				
	explain the fundamentals of expert systems and knowledge repr		ntati	on	wit
	tainty	COC	iiiai	OII	VVIC
	represent a problem using constraint and inductive logic programming.				
	understand the relation between prolog, modal and temporal logic.				
UNIT I	THE PROLOG LANGUAGE			Ç)
	to Prolog: Defining Relations - facts - rules - Recursive Rules - Syr	ıtax	and		-
	Prolog Programs - Data Objects - Matching - Declarative meaning o				
	Procedural Meaning - Example - Order of clauses and goals -				CO1
	log and logic - Lists - Operators - Arithmetic - Using Structures: Eigh				
Problems					
UNIT II	PROGRAMMING STYLE AND TECHNIQUE			Ç)
	utput: Communication with files - Processing files of terms - Mani				
	- Constructing and decomposing atoms - Reading programs -				
	Ferms - Testing - Constructing and decomposing - Equality and comp				
	anipulation - control facilities - Operations on Data Structures: Sorting			•	
•	g sets by binary trees – Binary Dictionary - Insertion and deletion– Di	spla	ıyıng		
trees - Graph UNIT III	PROLOG IN ARTIFICIAL INTELLIGENCE			9	
_	m-Solving Strategies: Depth first search – Breadth first search – And	alve	ic of		,
	techniques - Best First Heuristic Search – Bleadth first search – Eight F				
	- Space saving techniques for best first search- Problem Decomposit				CO3
AND/OR Gra			and		
UNIT IV	CONSTRAINT AND INDUCTIVE LOGIC PROGRAMMING			Ç)
Constraint s	atisfaction and logic programming – CLP - real numbers – Schedu	ıling	<u>д</u> — А		
simulation p	rograms-finite domains - Knowledge Representation and Expert Sys	sten	ns -	.	
	structure: expert system –if then rules –Rule based system - Forw				CO4
	aining - An Expert System Shell- Knowledge representation format -De	esig	ıning		
	engine – Inductive Logic Programming				
UNIT V	MODAL AND TEMPORAL LOGIC			()
	Basic Concepts – Relational Structures – Modal Languages – Mo				
	eneral Frames – Modal Consequence Relations – Normal Modal L				COS
	gic – Basic concepts and notion of logics–Logical Languages – Sem			1	
	em - Creating AI Characters for Fighting Games Using GeneticProgramm	nınç	}		
TOTAL: 45 TEXT BOOK					
	Bratko, "PROLOG Programming for Artificial Intelligence", Addison -W	loci	0)/	201	orco
	ation, Third Edition, 2001	V CSI	Cy,	C	31 SU
	trick Blackburn, Maarten de Rijke, Yde Venema, "Modal Logic ",Camb	rida	ıe II	niv	≏rcit
	s 2001	···ug	,00		0101
REFERENC	E BOOKS				
	Kroger, Stephen Merz,"Temporal Logic and State Systems", Springer 20	800			
2. I. Kor	nonenko and N. Lavrac,"Prolog Through Examples", Sigma press,1989				
3. Ulf N	Isson and Jan Maluszynski,"Logic Programming and Prolog(2ED)", Joh	ın V	√iley	&	Son
Ltd,2			-		
	t Russell and Peter Norvig, "Artificial Intelligence A Modern Appr	oac	h", I	⊃ea	arso
	ation, Third Edition,2010				
	ni Niederlinski," A Quick and Gentle Guide to Constraint Logic Pr	oar	amn	nind	iv r
	se", Gliwice 2011	J			9 *'

- 6. Svorenova, M; Cerna, I.; Belta, C, "Optimal Temporal Logic Control for Deterministic Transition Systems With Probabilistic Penalties", IEEETrans. Autom. Control, vol. 60, issue: 6, pp.1528 -1541 ,2015
- 7. Giovanna Martinez-Arellano, Richard Cant and David Woods, "Creating Al Characters for Fighting Games Using Genetic Programming", IEEE Transactions on Computational Intelligence and Al in Games, vol. 9, No. 4,pp.423-434, 2017.

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Develop prolog programs for simple application CO2 Implement control structures in Prolog programs CO3 Use Prolog for problem solving in artificial intelligence CO4 Implement the expert systems satisfying various constraints

	MAPPING OF COs WITH POs AND PSOs																					
COs				PRO	PROGRAM SPECIFIC OUTCOMES (PSOs)																	
COs	P 01	P 02	P 03	P 04	P 05	P 06	P 07	P 08	P 09	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO3							
CO1	1	1	1	1	1	1	1	2	1	1	1	2	2	2	2							
CO2	2	2	1	2	2	1	1	2	1	1	1	2	2	2	2							
CO3	2	2	2	2	2	`1	1	2	1	1	1	2	2	2	2							
CO4	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2							
CO5	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2							

CO5 | Develop simple applications using modal and temporal logic

ML1515 A	PPLICATION OF MACHINE LEARNING IN INDUSTRIES	L	T		С	
OBJECTIVES		3	0	0	3	
ODJEC IIVES						
 Understand the concept of Machine Learning. Familiarize with applications of Machine Learning in Banking sectors. Appreciate the various applications in Communication and Edusectors. Identify the applications in Health care and Government sectors. Recognize the applications in Manufacturing, Transportation and Losectors. 						
UNIT I M	ACHINES LEARNING IN BANKING AND SECURITIES			9)	
detection, Toughanks, Custome Personalized mand securities, Fraud preventic approach in fransactions in systems, Case management, Oprediction systems management, Deep learning security, Types security, Deep Networks (CNN underwriting &	earning in banking sector, Use of AI in banking and finance of competition in banking industry, Risk modelling and inverse data management, Decreased customer experience and narketing, Role of machine learning: Challenges of banking Widely used machine learning algorithms in banking and son and detection systems, Rule based and machine learning raud detection, Anomaly detection: Ways to expose sust banks, Advanced fraud detection systems, Risk manage study: Application of machine learning for financi Credit risk analysis using machine learning classifier, Invertems, Portfolio management systems, Objectives of particular trading, Deep learning for customer services, Capproach, AI powered marketing systems, Deep learning in a for cyber-attacks in banks, Deep learning methods used in learning v/s restricted Boltzmann machines, Convolution als), Recurrent neural networks, Machine learning techniques sentiment/news analysis, Sentiment or news analysis, opportunities: Banking and security domain.	estmiloya loya loya loya loya loya loya loya	nent helty, ctor rity, sed ous nent risk hent olio bot: vber vber vber ural	C	CO 1	
(MED	IA.	9)	
	IEALTHCARE AND LIFE SCIENCE		•,			
learning in me customer sentil short term mer entertainment in social media ar based collabora filtering, Hybrid Deep learning learning in heal learning in heal analysis, Why clearning archite learning models background, Tulnterpreting deep terming deep terming deep terming models background, Tulnterpreting deep terming deep terming deep terming in median models background, Tulnterpreting deep terming models background, Tulnterpreting deep terminal median medi	ng in communication, media and entertainment, Usage of nedia and entertainment industry, Machine learning techniquement analysis, World embedding's, Sentiment analysis wimory networks, Real-time analytics in communication, meandustries, Real time analytics and social media, Deep learnalytics, Recommendations engines, Collaborative filtering, Native filtering, Model based collaborative filtering, Content recommendation systems, Summary of recommendation systeminated in the sciences, The most important applications of neith and life sciences, The most important applications of neithcare, Role of machine learning in drug discovery, Medical deep learning for medical image analysis, Neural network are sture, Comparisons between architecture of different types are systems. Applications in genetics and genomics, Genomics, Machine learning in genetics and genomics, Genomics wo category of genomics, How to use deep learning effective medicine: Examples, ML applications in breast prognosis.	ues th I dia ning Mem ba yste nach nach I im d d of d anc ance gnos	for ong and for sed ms, nine eep eep I Al ely, stics	C	CO2	
	MACHINE LEARNING IN EDUCATION, MANUFACTURING	GΔ	ND	9)	
	ETROLEUM INDUSTRIES	<i>-</i>	. 10		•	
Advantages of analytics, Action	machine learning in education, learning analytics, Acon research, Educational data mining, Recommender sudaptive learning, Learning analytics process, Data enviro	syst	em,		CO3	

What? Stakeholders: Who? Methods: How? Case study: Sentimental analysis for student's feedback using ML, Recommender systems in education, Domain model, Learner model, Students classification algorithm, Recommendation model, Case study: Application of ML in predicting students' performance, Proposed methodology, Data description, Sample data sets, Visualization, Selection of machine learning technique. Introduction, Applications of machine learning in manufacturing industry, Deep learning for smart manufacturing, Machine learning for quality control in manufacturing, Case study, Construction of CNN, Experimental results, Efficiency of CNN for defect detection, Comparative experiments, Machine learning for fault assessment, Time frequency methods, Spectrograms: Short-Time Fourier Transform (STFT), Scalograms: Wavelet transform, Hilbert-Huang transform, Proposed CNN architecture for fault classification based on vibration signals, Case study 1, Machinery failure prevention technology.

UNIT IV MACHINE LEARNING IN GOVERNMENT ADMINISTRATION AND INSURANCE INDUSTRIES

Introduction, Risk and compliance, Type of government problems appropriate for Al applications, Al for citizen services use cases, Answering questions, Routing requests, Translation, Drafting documents, Chat bots for communication between citizen and government, Media richness theory, Chatbots in the public sector, Case study, Data management services, Knowledge processing services, Application services, An application scenario, Classifications of citizen complaints using ML, Case study, Step 1: Document collection, Step 2: Prepossessing, Step 3: Feature extraction, Term frequency- Inverse document frequency, Step 4: Feature selection, Step 5: Classification, How to implement, Result. Importance of machine learning in insurance, Potential use cases of machine leaning in insurance industry, Case study on insurance climb analysis using machine learning algorithms, Case study on using machine learning for insurance pricing optimization, Personalized marketing in insurance industry, Predictive model for insurance underwriting, Case study: Risk prediction in life insurance industry

UNIT V MACHINE LEARNING IN RETAIL AND SUPPLY CHAIN, TRANSPORTATION AND LOGISTICS, ENERGY AND UTILITIES

Introduction, Inventory management, Few use case examples, Benefits of predictive analytics to retailers, Robots-seeing to customer satisfaction, IoT: Prevention first, Predictive analytics: Weathering demand, Analysing buying patterns, Analysing traffic patterns, Assortment planning, Eliminate guess work, Feed the right stores, Get better information, Assortment planning to drive supply chain, Retail analytics, Domestic forecasting, Case study: Forecasting seasonal footwear demand using ML, Demand forecasting methods, Predictor variables in demand forecasting, Traditional techniques v/s machine learning techniques, Methodology, Machine learning techniques used, List of attributes from the aggregated data by month at the style level, Feature selection and engineering, List of attributes for feature selection, Dataset partitioning, Model building, Three step model, K-means clustering, Three steps followed in classification, Three sub-steps in prediction, Performance measurement, Results, Three step model, Machine learning for supply chain management, Recommended architecture for machine learning models, Machine learning models use case. Introduction, Applications of ML and artificial intelligence in transportation, Applications of machine learning in transport, Incident detection, Predictive models, Application of AI in aviation and public transportation, Aviation, Shared mobility, Buses, Intelligent urban mobility, Autonomous vehicles, Autonomous transportation, Artificial intelligence use cases in logistics, Back office Al, Cognitive customs, Predictive logistics, Predictive risk management, Seeing thinking and speaking logistics operations, ML powered customer experience, Limitations of AI techniques in transportation, Computation complexity of AI algorithms. Introduction, Smart grid, Smart grid technologies, Key characteristics of smart grid, Machine learning applications in smart grid, Machine learning techniques for renewable energy generation, Forecasting

TOTAL: 45 PERIODS

CO₅

CO4

TEXT B	OOKS						
Data Mining & Predictive Modeling (IBM ICE Publications).							
COURS	E OUTCOMES						
Upon co	ompletion of the course, students will be able to						
CO1	Understand the concept of Machine Learning.						
CO2	Familiarize with applications of Machine Learning in Banking sectors.						
CO3	Appreciate the various applications in Communication and Education sectors.						
CO4	Identify the applications in Health care and Government sectors.						
005	Recognize the applications in Manufacturing, Transportation and Logistics						
CO5	sectors.						

	MAPPING OF COs WITH POS AND PSOS																
	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
COs	P 0 1	P 0 2	P O 3	P O 4	P O 5	P 0 6	P O 7	P 0 8	P O 9	PO 10	PO 11	PO 12	PSO 1	PSO PSO PSO3			
CO1	1	1	1	1	1	1	1	2	1	1	1	2	2	2	2		
CO2	2	2	1	2	2	1	1	2	1	1	1	2	2	2	2		
CO3	2	2	2	2	2	`1	1	2	1	1	1	2	2	2	2		
CO4	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2		
CO5	2	2	2	2	2	1	1	2	1	1	1	2	2	2	2		

PROFESSIONAL ELECTIVE - II (SEMESTER VI)

ML1611	GREEN COMPUTING	L	Р	T	С			
OBJECTIVES		3	0	0	3			
	knowledge to adopt green computing practices to minimize negative	imn	acts	on	the			
environment, skill in energy saving practices in their use of hardware, examine technology tools t								
can reduce paper waste and carbon footprint by user, and to understand how to minimize equipm								
disposal red		11120	, cqc	ιρп	CIII			
UNIT I	FUNDAMENTALS				9			
	damentals: Business, IT, and the Environment – Green computing: carbor	o for	\ +	_	9			
	·							
	on power – Green IT Strategies: Drivers, Dimensions, and C	J0ai	s –	C	:01			
Environmenta								
•	Business: Policies, Practices, and Metrics.			<u>L</u>				
UNIT II	GREEN ASSETS AND MODELING				9			
	s: Buildings, Data Centers, Networks, and Devices – Green Business		cess					
Management:	Modeling, Optimization, and Collaboration – Green Enterprise Architectur	re –		C	:02			
Environmenta	I Intelligence – Green Supply Chains – Green Information Systems: Desig	ın aı	nd		-			
Development	Models.							
UNIT III	GRID FRAMEWORK				9			
Virtualizing of	IT systems - Role of electric utilities, Telecommuting, teleconference	ing	and					
teleporting – N	Materials recycling – Best ways for Green PC – Green Data center – Gree	n G	rid	C	CO3			
framework.								
UNIT IV	GREEN COMPLIANCE				9			
Socio-cultural	aspects of Green IT - Green Enterprise Transformation Roadmap -	- G	reen		<u> </u>			
Compliance: F	Protocols, Standards, and Audits – Emergent Carbon Issues: Technologie	s ar	nd	C	04			
Future.								
UNIT V	CASE STUDIES				9			
The Environm	ା nentally Responsible Business Strategies (ERBS) – Case Study Scena	arios	for	T				
	Case Studies – Applying Green IT Strategies and Applications to a				:05			
Hospital, Packaging Industry and Telecom Sector.								
· · ·	TOTAL	<u> </u>	5 PE	RIC	DS			
TEXT BOOKS								
	uvan Unhelkar, "Green IT Strategies and Applications-Using Environment	tal Ir	ntellio	gen	ce",			
CRC Press, June 2011								
Woody Leonhard, Katherrine Murray, "Green Home computing for dummies", August 200								
	, , , , , , , , , , , , , , , , , , ,							

REFERENCE BOOKS

- 1. Alin Gales, Michael Schaefer, Mike Ebbers, "Green Data Center: steps for the Journey", Shoff/IBM rebook, 2011.
- 2. John Lamb, "The Greening of IT", Pearson Education, 2009.
- 3. Jason Harris, "Green Computing and Green IT- Best Practices on regulations & industry", Lulu.com, 2008.
- 4. Carl speshocky, "Empowering Green Initiatives with IT", John Wiley & Sons, 2010.
- 5. Wu Chun Feng (editor), "Green computing: Large Scale energy efficiency", CRC Press, 2012.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Acquire knowledge to adopt green computing practices to minimize negative impacts on the
	environment.
CO2	Enhance the skill in energy saving practices in their use of hardware.
CO3	Evaluate technology tools that can reduce paper waste and carbon footprint by the
	stakeholders.
CO4	Understand the ways to minimize equipment disposal requirements .
CO5	Learn about various case studies

COs		PROGRAM OUTCOMES (POs)												RAM SP OUCOME			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	3	3	1	1	1	1	1	2	1	1	2	3	2	2		
CO2	3	3	3	1	1	1	1	1	2	1	1	2	3	2	2		
CO3	3	3	3	1	1	1	1	1	2	1	1	2	3	2	2		
CO4	3	3	3	1	1	1	1	1	2	1	1	2	3	2	2		
CO5	3	3	3	1	1	1	1	1	2	1	1	2	3	2 2			

ML1612	GAME PROGRAMMING	L	Ρ	T	O
		3	0	0	3

OBJECTIVES

- Understand the concepts of Game design and development.
- Learn the processes, mechanics and issues in Game Design.
- Be exposed to the Core architectures of Game Programming.
- Know about Game programming platforms, frame works and engines.
- Learn to develop games.

UNIT I	3D GRAPHICS FOR GAME PROGRAMMING	8					
3D Transformations	s, Quaternions, 3D Modeling And Rendering, Ray Tracing, Shader	СО					
Models, Lighting,	Color, Texturing, Camera And Projections, Culling And Clipping,						
Character Animatio	n, Physics-Based Simulation, Scene Graphs.	1					
UNIT II	GAME ENGINE DESIGN	8					
Game Engine Archi	tecture, Engine Support Systems, Resources And File Systems,	СО					
Game Loop And Real-Time Simulation, Human Interface Devices, Collision And Rigid							
Body Dynamics, Game Profiling.							
UNIT III	GAME PROGRAMMING	8					
Application Layer, 0	Game Logic, Game Views, Managing Memory, Controlling The Main	СО					
Loop, Loading And	Caching Game Data, User Interface Management, Game Event	3					
Management.		3					
UNIT IV	GAMING PLATFORMS AND FRAMEWORKS	8					
2D And 3D Game	Development Using Flash, DirectX, Java, Python, Game Engines –	СО					
DX Studio, Unity		4					
UNIT V	GAME DEVELOPMENT	8					
Developing 2D And 3D Interactive Games Using DirectX Or Python – Isometric And Tile							
Based Games, Puz	zle Games, Single Player Games, Multi Player Games.	5					

REFERENCE BOOKS

- **1.** Mike Mc Shaffrfy And David Graham, "Game Coding Complete", Fourth Edition, Cengage Learning, PTR, 2012.
- 2. Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009
- **3.** David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach To Real-Time Computer Graphics" 2nd Editions, Morgan Kaufmann, 2006.
- **4.** Ernest Adams And Andrew Rollings, "Fundamentals Of Game Design", 2nd Edition Prentice Hall / New Riders, 2009.

TOTAL: 45 PERIODS

- **5.** Eric Lengyel, "Mathematics For 3D Game Programming And Computer Graphics", 3rd Edition, Course Technology PTR, 2011.
- **6.** Jesse Schell, The Art Of Game Design: A Book Of Lenses, 1st Edition, CRC Press, 2008.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Discuss the concepts of Game design and development.
CO2	Design the processes, and use mechanics for game development.
CO3	Explain the Core architectures of Game Programming
CO4	Use Game programming platforms, frame works and engines
CO5	Create interactive Games.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUCOMES			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2		
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2		
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2		
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2		
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2 2 2			

ML1613 GAME THEORY L	T	Р	С				
OBJECTIVES 3	0	0	3				
To impart knowledge on							
☐ To understand the sequential moves							
☐ To familiarize with Simultaneous moves							
☐ To solve strategic games between two and more agents in non	- co	opera	ative				
scenario		•					
☐ To solve both simultaneous and sequential move games							
☐ To learn different methods to solve games							
UNIT I INTRODUCTION AND GENERAL PRINCIPLES		9					
Basic Ideas and Examples- Decisions versus Games- Classifying games termin	ology	,					
and background assumptionsthe uses of game theory- Games with sequential m	•	;					
- game trees solving games by using trees adding more players -Evic		CO	1				
concerning rollback-Strategies in the survivor game							
UNIT II SIMULTANEOUS-MOVE GAMES		9					
Games with Simultaneous-Move Games with Pure Strategies : Nash Equilibri	um -	-					
Dominance-Best-Response Analysis - The Minimax Method For Zero-Sum Gar			CO2				
Three Players - Multiple Equilibria In Pure Strategies -No Equilibrium In		:					
Strategies-Discrete Strategies- Simultaneous-Move Games with Pure Strateg		CO					
Continuous Strategies Pure Strategies That Are Continuous Variables Requiren	nents	;					
of Rationality for Nash Equilibrium - Rationalizability							
UNIT III BROAD CLASSES OF GAMES AND STRATEGIES		9					
Uncertainty and Information -Imperfect Information: Dealing With Risk-Asymr	netrio	;					
Information: Basic Ideas-Direct Communication-Adverse Selection, Signaling	and						
Screening -Equilibria In Signaling Games -The Prisoners' Dilemma And Repo	eated	СО	3				
Games -The Basic Game - Solutions -Repetition -Penalties And Rewal	ds ·						
Leadership –Asymmetric Information -Experimental Evidence -Real-World Dilem	mas						
UNIT IV VARIANTS AND EXTENSIONS		9					
Strictly Competitive Games and Maxminimization: Maxminimization-Maxminimiz	ation	1					
and Nash Equilibrium-Strictly Competitive Games -Maxminimization and	Nash	1					
Equilibrium in Strictly Competitive Games-Maxminimization: Some History-Emp	oirica	СО					
Tests: Experiments, Tennis, and Soccer. Rationalizability- Iterated Elimination of							
Strictly Dominated Actions- Iterated Elimination of Weakly Dominated Actions-							
Dominance							
UNIT V APPLICATION		9					
Voting-Voting Rules, Paradoxes, Strategic Manipulation -Bidding strategy	anc	СО	5				

Auction Design -Bargaining: Nash Bargaining Solution, Ultimatum game, Alternating-offers game, Threat Points, Bargaining Shares

TOTAL: 45 PERIODS

TEXT BOOKS

- Avinash K. Dixit , David H. Reiley Jr. , Susan Skeath "Games of Strategy" , W. W. Norton & Company, Fourth International Student Edition, 2015.
- 2. Martin J. Osborne, "An Introduction to Game Theory", Oxford University Press, Illustrated Reprint, 2003

REFERENCE BOOKS

- 1. Martin J. Osborne and Ariel Rubinstein, "A course in game theory", MIT Press, 1994.
- 2. Joel Watson, "Strategy: An Introduction to Game Theory" Hardcover, W. W. Norton & Company, Third Edition, 2013.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Create game tree for any application.
CO2	Use different strategies for simultaneous-move games
CO3	Analyze strategic games between two and more agents in non - cooperative scenario
CO4	Apply Equilibrium and Rationalizability for games
CO5	Deploy game strategy in various applications

	PROGRAM														
			F	SPECIFIC											
COs				OUCOMES											
	PO1	РО	РО	РО	РО	РО	РО	РО	РО	PO1	P01	PO1	PSO1	PSO2	PS
	101	2	3	4	5	6	7	8	9	0	1	2	. 501	1 002	О3
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1614	PARALLEL AND DISTRIBUTED COMPUTING L	P	T	C
OBJECTIV	TES 3	0	0	3
• To 6	explore the features of Parallel Programming Platforms			
 To 	learn the concepts of CUDA programming Model			
 To 	provide knowledge about Analytical Modeling Of Parallel Programs			
 To I 	know about dense matrix algorithms			
 To 	explore different search algorithms			
UNIT I	PARALLEL PROGRAMMING PLATFORMS:			8
Introduction	l n: Scope , issues, applications and challenges of Parallel and Distributed			
Computing				
Microproce	ssor Architectures, Dichotomy of Parallel Computing Platforms, Physical			
Organizatio	on, Communication Costs in Parallel Machines, Routing Mechanisms for		CO1	
Interconne	ction Networks, GPU, co-processing.			
Principles	of Parallel Algorithm Design: Decomposition Techniques, Characteristics of			
Tasks and	Interactions,Mapping Techniques for Load Balancing.			
UNIT II	CUDA PROGRAMMING MODEL			8
Overview c	I f CUDA, Isolating data to be used by parallelized code, API function to			
allocate me	emory on parallel computing device, to transfer data, Concepts of Threads,			
Blocks, Gri	ds, Developing a kernel function to be executed by individual threads,		CO2	
Execution (of kernel function by parallel threads, transferring data back to host processor			
with API fu	nction			
UNIT III	ANALYTICAL MODELING OF PARALLEL PROGRAMS			8
Sources of	Overhead in Parallel Programs, Performance Metrics for Parallel Systems,			
The Effect	of Granularity on Performance, Scalability of Parallel Systems, Minimum		CO3	
Execution ⁻	Time and Minimum Cost-Optimal Execution Time			
UNIT IV	DENSE MATRIX ALGORITHMS			8
Matrix-Vec	tor Multiplication, Matrix-Matrix Multiplication, Issues in Sorting on Parallel			
Computers	, Bubble Sort and Variants, Quick Sort, Other Sorting Algorithms Graph			
Algorithms:	Minimum Spanning Tree: Prim's Algorithm, Single-Source Shortest Paths:		CO4	
Dijkstra's	Algorithm, All-Pairs Shortest Paths, Transitive Closure, Connected			
Componen	ts, Algorithms for Sparse Graph			
UNIT V	SEARCH ALGORITHMS FOR DISCRETE OPTIMIZATION PROBLEMS			8
Sequential	Search Algorithms, Parallel Depth-First Search, Parallel Best-First Search,		CO5	
Speedup A	nomalies in Parallel Search Algorithms		555	
. '				

- A Grama, AGupra, G Karypis, V Kumar. Introduction to Parallel Computing (2nd ed.). Addison Wesley, 2003.
- 2. C Lin, L Snyder. Principles of Parallel Programming. USA: Addison-Wesley Publishing Company, 2008.
- **3.** J Jeffers, J Reinders. Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kaufmann Publishing and Elsevier, 2013
- **4.** T Mattson, B Sanders, B Massingill. Patterns for Parallel Programming. Addison-Wesley Professional, 2004.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explore the features of Parallel Programming Platforms
CO2	Understand the concepts of CUDA programming Model
CO3	Analyze about Analytical Modeling Of Parallel Programs
CO4	Explore dense matrix algorithms
CO5	Explore different search algorithms for optimization problems

COs				PROGRAM SPECIFIC OUCOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	2	2	2	2	1	1	-	1	1	1	1	1	2	2	2

ML1615	CASE BASED REASONING	L	Т	Р	С				
		3	0	0	3				
OBJECTIVE	S		l	<u>I</u>	<u> </u>				
•	understand the basic elements of case based reasoning understand the case representation and similarity measures. understand apply caseretrieval, indexing and adaptation process Develop case based reasoning systems. implement case based reasoning for managing complex knowledge	SOL	ırcos						
UNIT I	BASIC CASE BASED REASONING ELEMENTS	SOU	irces	9					
Case-Based Types – Ca	Reasoning- Experiences and Cases -Parts of a Case -Problems - se Representations - Case Bases - Similarity and Retrieval -Reu Models of CBR.				:01				
UNIT II	CASE REPRESENTATION AND SIMILARITY MEASURES			9					
Representation Layers - Completeness and Efficiency -Flat Attribute-Value Representation-Complex Representations in General. Similarity and Case Representations -Types of Similarity Measures -The Local-Global Principle for Similarity Measures - Virtual Attributes- Similarity Measure to Use. Complex Similarities: Graph Representations and Graph Similarities- Largest Common Subgraphs Taxonomic Similarities- Similarities for Object-Oriented Representations- Many-Valued									
AttributesSim	nilarity for Processes and Workflows								
AttributesSim UNIT III	nilarity for Processes and Workflows CASE RETRIEVAL AND INDEXING			9					
AttributesSim UNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Usin	nilarity for Processes and Workflows	Filtes ar	nd k- kd- Case	c	:03				
AttributesSim UNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Usin	nilarity for Processes and Workflows CASE RETRIEVAL AND INDEXING I Task - Retrieval Errors-Basic Retrieval Methods: Query Generation-etrieval -Two-Level Retrieval -Geometric Methods - Voronoi Diagrams Geometric Approximation - Geometric Filtering-Index-Based Retrieval with Decision Trees. Case Indexing- Traditional Indexing Methology a Bayesian Model, Prototype-Based Neural Network and Three-	Filtes ar	nd k- kd- Case	c	:03				
AttributesSim UNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Usin Back Propag UNIT IV Rules - Adap Adaptations Container. C Preprocessin Systematic E	CASE RETRIEVAL AND INDEXING I Task - Retrieval Errors-Basic Retrieval Methods: Query Generation-etrieval -Two-Level Retrieval -Geometric Methods - Voronoi Diagrams Geometric Approximation - Geometric Filtering-Index-Based Retrieval ation with Decision Trees. Case Indexing- Traditional Indexing Methods and Bayesian Model, Prototype-Based Neural Network and Three-ation Neural Network. CASE ADAPTATION AND CASE-BASE DEVELOPMENT Obtation Types -The Adaptation Process - Adaptation Using Several Case Based Development-Problem Formulation -Finding and Getting - Case AcquisitionPrototypes and Evaluation The Knowledge Control Development of CBR SystemsImplementation Aspects -Combining C	Filtes ar	kd- Case erec	9	:03				
AttributesSimuNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Usin Back Propag UNIT IV Rules - Adap Adaptations Container. C Preprocessin Systematic D Other Techni	illarity for Processes and Workflows CASE RETRIEVAL AND INDEXING I Task - Retrieval Errors-Basic Retrieval Methods: Query Generation-etrieval -Two-Level Retrieval -Geometric Methods - Voronoi Diagrams Geometric Approximation - Geometric Filtering-Index-Based Retrievation with Decision Trees. Case Indexing- Traditional Indexing Methods a Bayesian Model, Prototype-Based Neural Network and Three-ation Neural Network. CASE ADAPTATION AND CASE-BASE DEVELOPMENT Obtation Types -The Adaptation Process - Adaptation Using Several Case Based Development-Problem Formulation -Finding and Getting - Case AcquisitionPrototypes and Evaluation The Knowledge Control	Filtes ar /al - cod-Cascapta	kd- case ereconstantion data, with	9	:04				
AttributesSim UNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Usin Back Propag UNIT IV Rules - Adap Adaptations Container. C Preprocessin Systematic D Other Techni UNIT V	iliarity for Processes and Workflows CASE RETRIEVAL AND INDEXING I Task - Retrieval Errors-Basic Retrieval Methods: Query Generation-etrieval -Two-Level Retrieval -Geometric Methods - Voronoi Diagrams -Geometric Approximation - Geometric Filtering-Index-Based Retrieval on with Decision Trees. Case Indexing- Traditional Indexing Methods and Bayesian Model, Prototype-Based Neural Network and Three-ation Neural Network. CASE ADAPTATION AND CASE-BASE DEVELOPMENT Detaition Types -The Adaptation Process - Adaptation Using Several Clusing the Solution Process - Quality Issues - Knowledge in the Adapse Based Development-Problem Formulation -Finding and Getting - Case AcquisitionPrototypes and Evaluation The Knowledge Conference of CBR SystemsImplementation Aspects -Combining Claus-Maintenance COMPLEX KNOWLEDGE SOURCES AND KNOWLEDGE SOURCES AND KNOWLEDGE COMPLEX KNOWLEDGE SOURCES AND KNOWLEDGE COMPLEX KNOWLEDGE SOURCES AND KNOWLEDGE SOURC	Filtes ar /al - cod-Cascapta Etaine BR	kd-Caseerecc	9	:04				
AttributesSimuNIT III The Retrieva Sequential R Nearest Neighbours - Trees Integra Indexing Using Back Propag UNIT IV Rules - Adapt Adaptations Container. C Preprocessin Systematic D Other Techni UNIT V Textual CBF Management	Illarity for Processes and Workflows CASE RETRIEVAL AND INDEXING I Task - Retrieval Errors-Basic Retrieval Methods: Query Generation-etrieval -Two-Level Retrieval -Geometric Methods - Voronoi Diagrams -Geometric Approximation - Geometric Filtering-Index-Based Retrieval -Geometric Filtering-Index-Based Retrieval - Geometric Methods - Voronoi Diagrams -	Filtes ar /al - cod-Cascapta Etaine BR	kd-Caseerecc	9	:04				

REFERENCE BOOKS

1. J. Kolodner, —Case-Based Reasoning, San Mateo, CA: Morgan Kaufmann Publishers; 1993 2. I.Watson, Applying Case-Based Reasoning: Techniques for Enterprise Systems. San Francisco, CA: Morgan Kaufmann Inc. 1997.

	COURSE OUTCOMES Upon completion of the course, students will be able to										
CO1	Knowledge the basic elements of case based reasoning										
CO2	Knowledge the case representation and similarity measures.										
CO3	Ability to apply case retrieval, indexing and adaptation process										
CO4	Ability to develop case based reasoning systems.										
CO5	Ability to implement case based reasoning for managing complex knowledge sources										

MAPPING OF COs WITH POS AND PSOS PROGRAM PROGRAM OUTCOMES (POs) **SPECIFIC OUCOMES** COs РО PO1 РО РО РО РО РО РО РО РО PO1 PO1 PSO PS PSO1 CO1 CO₂ CO₃ CO₄ CO₅

PROFESSIONAL ELECTIVE - III (SEMESTER VII)

ML1711	AI for CLINICAL INFORMATION SYSTEM	L	T	PC	3
		3	0	0 3	3

OBJECTIVES

- 1.The objective of this course is to gain insight and situational experience with clinical information systems.
- 2. To examine the effective use of data and information technology to assist in the migration away from paper-based systems
- 3. To Explain the principles of health care data exchange and standards...
- 4.To understand Human interaction system in Health care
- 5. To gain insights and understanding of the impacts placed on patients and health care providers.

TOTAL: 45 PERIODS

TEXT BOOKS

- Sittig&Ash, Clinical Information Systems Overcoming Adverse Consequences, Jones & Bartlett Learning Publishers, 2009.
- 2. Edward H. Shortliffe; Leslie E. Perreault, Medical Informatics Computer Applications in Healthcare and Biomedicine, Springer-Verlag New York Inc. Publishers, 2014. 3.

REFERENCE BOOKS

- 1. Arnold, M. (2016). Digital health news update: Machine learning meets health search. Decision Resources Group
- 2. Blenner, S. R., Köllmer, M., Rouse, A. J., Daneshvar, N., Williams, C., Andrews, L. B. (2016) Privacy Policies of Android Diabetes Apps and Sharing of Health Information. JAMA, 315(10), 1051

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to												
CO1	To understand the basics of clinical information systems.												
CO2	To learn how to apply information technology and related tools in workflow design.												
CO3	To explore the "benefits and barriers" associated with electronic health records.												
CO4	Explain strategies to minimize major barriers to the adoption of electronic health records.												
CO5	Capacity for applying Artificial Intelligence techniques in technological and industrial												
	environments to improve quality and productivity												

COs	PRO	GRA	M OL	PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1
CO2	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1
CO3	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1
CO4	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1
CO5	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1

ML1712	AI IN HEALTHCARE	L	Р	Т	С
		3	0	0	3
OBJECTIVES)				
To disc	cuss the role of data analytics in quality and performance improvement eff	forts	i.		
 To des 	scribe the tools and techniques used for data analytics in health care organ	niza	tions	j.	
 To Ide 	ntify techniques for summarization and visualization of data				
• To und	derstand various data analysis tools and Techniques				
	oly regression and non-regression techniques for predictive analysis.				
UNIT I	INTRODUCTION TO QUALITY IMPROVEMENT AND DATA ANALYT	ICS	;		9
Health care of	lata analytics - Definition - How analytics can help transform health of	are.	-The		
drivers for hea	alth care transformation -Business value of data to an organization eg he	alth	care		
institution- He	ealth care quality and value- The background and evolution of qua	ality	and	C	01
performance i	mprovement - The quality improvement frameworks that utilize analytics	3 -T	ypes		
	cs techniques and their strengths and weaknesses.				
UNIT II	DATA PROCESSING AND REPORTING TECHNIQUES				9
	Cycle- Data sources and data structures – examples from healthcare- Me				
	fety of care- Various measures, metrics, and indicators -Defining and De				
	nce Indicators- The purpose and use of Key Performance Indicators (KPI				
	nowledge and wisdom hierarchy- Organizational approach for effective				02
•	- The role of data governance-The DMAIC problem-solving model and t				
•	es used in each step of the process - Apply the DMAIC methodology to	a he	ealth		
care issue.	DATA CUMMARY AND WOLLAND TATION TROUBLES				
UNIT III	DATA SUMMARY AND VISUALIZATION TECHNIQUES	1	1	$\overline{}$	9
	a types -The information value chain - The importance of data cont				
	business processes - Basic statistical terms - Recognize common pat				
	n statistics -Distributions using numerical measures such as mean, med				:О3
	ation - Graphical representations of data including histograms, bar charation at summary techniques (for measurement and categorical data)- Visu				.U3
	or measurement and categorical data)- Interactive visualization tecl				
	uses of data visualization.	шч	ucs		
UNIT IV	DATA ANALYTICS TOOLS AND TECHNIQUES				9
	s terms - The process steps of data analytics and the tools used in each	h st	en -	T	
•	e data analyst - Tools and techniques used to analyse and interpret he				
	ly - Various types of databases and how they are structured -Data wa				04
	terprise data architecture in health care organizations.				
UNIT V	PREDICTIVE ANALYTICS INVOLVING REGRESSION AND NON-				9
	REGRESSION TECHNIQUES				
Principles of	predictive analytics-Predicting one outcome variable from a predictor va	ariat	ole –		
Simple linear	regression-Predicting one measurement outcome variable from several p	pred	ictor		
	fultiple linear regression-Predicting one binary outcome variable from				
	ables – Multiple logistic regression- Misuses of regression techniques in p				O 5
	esian techniques in predictive analytics- Application of Bayesian techn				
. •	alth screening outcomes- Principles of Survival Analysis- Support		ector		
Machines for	cluster analysis- Strategic applications of Sentiment Analysis in Healthcar			<u> </u>	
	TOTAL	<u>. : 4</u>	5 PE	RIO	DS
TEXT BOOKS					
	maya, Ajith Abraham, Patrick Siarry, Mengjie Zhang, FazleBaki, Ana	nd .	J. K	ulka	ırnı,
	umar Singh," Big Data Analytics in Healthcare", 2019				
	nandan K. Reddy, Charu C. Aggarwal," Healthcare Data Analytics", 2015.		Char	. m.a	n 0
	K. Reddy and Charu C. Aggarwal," Healthcare Data Analytics", First Edition Press 2015.	JII, (onap	лпа	II OX
Hall /CRC	1 1533 AUTU.				
REFERENCE	BOOKS				
	Mullner Edward M. Rafalski, "Healthcare Analytics – Foundations and	Fro	ntier	s" F	iret
	&F/Routledge, 2020.	0		<i>-</i> 1	31
	hristo Ali-Hassan Hossam " Analytics in Healthcare" springer 2019				

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand role of data analytics in quality and performance improvement efforts in healthcare institutions.
- CO2 Understand the tools and techniques used for data analytics in health care organizations.
- CO3 | Summarize and Visualize Data.
- CO4 | Apply Data Analytics Tools and Techniques.
- CO5 Predict health screening outcomes, Survival Analysis and sentiment analysis in Healthcare.

COs		PROGRAM OUTCOMES (POS)													PROGRAM SPECIFIC OUCOMES			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3			
CO1	2	2	2	2	2	-	-	-	-	2	2	2	2	3	2			
CO2	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2			
CO3	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2			
CO4	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2			
CO5	2	2	2	2	2	-	-	-	-	2	2	2	2	3	2			

ML1713	DATA MINING AND PREDICTIVE MODELLING	L	T	P	С
		3	0	0	3
OD IEOTIVE	0				

OBJECTIVES

- Recognize the process of formulating business objectives, data selection/collection, preparation and process to successfully design, build, evaluate and implement predictive models for a various business application.
- Compare and contrast the underlying predictive modelling techniques.
- Select appropriate predictive modelling approaches to identify particular cases.
- Appreciate the nuances of Support Vector Machines and clustering techniques.
- Apply predictive modelling approaches using a suitable package such as SPSS Modeler

Of GO Widdelet	
UNIT I DATA UNDERSTANDING & PREPARATION	9
Identifying business objectives, translating business objectives to data mining goals,	
reading data from various sources – Database/ Excel/ Text/others, data	CO1
visualization – tabular & graphic, distributions and summary statistics, field	COI
reordering, Reclassify data.	
UNIT II DATA TRANSFORMATIONS	9
Data quality issues, Data Audit, anomalies, relationships among variables, Extent of Missing Data, Segmentation, Outlier detection, Variable transformations, Variable derivation, Variable selection, Automated Data Preparation, combining data files, data restructuring, Aggregation, Duplicates removal, Sampling cases, Data Caching, Partitioning data, Missing Value replacement.	CO2
UNIT III MODELING TECHNIQUES – I	9
Partitioning The Data - Training, Validation & Testing, Model selection, Model development techniques - Linear regression, Logistic regression, Discriminant analysis, Bayesian networks, Neural networks, Rule Induction.	CO3
UNIT IV MODELING TECHNIQUES – II	9
Support vector machines, Cox regression, Time series analysis, Decision trees, Clustering, Association Rules, Sequence Detection, Which Technique to use when.	CO4
UNIT V MODEL EVALUATION & DEPLOYMENT	9
Model Validation, Determining Model Accuracy, Rule Induction Using CHAID, Automating Models for Categorical Targets, Automating Models for Continuous Targets, Comparing and Combining Models, Evaluation Charts for Model Comparison, Using Propensity Scores, Meta-Level Modeling, Error Modeling, Deploying Model, Exporting Model Results, Assessing Model Performance, Updating A Model.	CO5

TOTAL: 45 PERIODS

TEXT BOOKS

Data Mining & Predictive Modeling (IBM ICE Publications).

REFERENCE BOOKS

 Data Mining and Predictive Analytics (Wiley Series on Methods and Applications in Data Mining) 2nd Edition, Kindle Edition

COURS	ЕΟ	UTCC	MES	3											
Upon co	omp	letior	of t	he co	ourse	e, stu	ıdent	s wil	l be	able t	0				
		Reco	gnize	th	e p	roce	SS	of	form	ulating	j bi	sines	s obje	ectives,	data
CO1		select	tion/c	ollec	tion,	prep	arati	on a	nd p	roces	s to	succe	ssfully	design,	build,
		evaluate and implement predictive models for a various business application.													
CO2		Compare and contrast the underlying predictive modeling techniques.													
CO3		Select appropriate predictive modeling approaches to identify particular cases.													
CO4		Appreciate the nuances of Support Vector Machines and clustering techniques.													
005		Apply predictive modeling approaches using a suitable package such as SPSS													
CO5		Mode	ler												
				MA	PPIN	G OI	F CO	s Wi	TH P	Os Al	ND PS	SOs			
COs				PRO	GRA	M O	UTC	OME	S (PC	Os)			S	ROGRA PECIFI JTCOM (PSOs)	C ES
	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	2	-	2	-	-	2	2	2	2	2	1
CO2	3	3	3	3	2	-	2	-	-	2	2	2	2	2	1
CO3	3	3	3	3	2	-	2	-	-	2	2	2	2	2	1
CO4	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1
CO5	3	3	3	3	2	-	-	-	-	2	2	2	2	2	1

CC4740	VIDTUALIZATION TECHNIQUES		-	_						
CS1712	,	<u>L</u>	T	P	C					
OBJECTIVES		3	U	U	3					
	erstand the concept of virtualization.									
	erstand the various issues in virtualization.									
	amiliar with the virtualization of various components/functionalities.									
	·									
	pare and analyze various virtual machines products.									
	with virtualization platforms									
UNIT I	INTRODUCTION				9					
Machines – Talinterpretation -	ectures – Virtual Machine Basics – Process Virtual Machines – System axonomy of Virtual Machines – Emulation: Basic Interpretation – Th - Pre-Coded & Direct Interpretation – Binary Translation – Full and Types of Hypervisor – Types of Virtualization	rea	aded		:01					
LINIT II	SERVER VIRTUALIZATION				_					
UNIT II	SERVER VIRTUALIZATION ration - Partitioning Techniques - Hardware Virtualization - Virtual Hard	dwa	ıro		9					
Types of Serv	er Virtualization – Business Cases for Sever Virtualization – Uses of dation – Selecting Server Virtualization Platform				:02					
LINUT III	NETWORK VIRTUALIZATION									
UNIT III	NETWORK VIRTUALIZATION lable Enterprise Networks – Virtualizing the Campus – WAN Design	١.	Λ/ Λ Ν Ι		9					
Scalability – Tl Layer 2 – VFIs Layer 2: 802.1	WAN virtualization – Virtual Enterprise Transport Virtualization – VLA neory Network Device Virtualization Layer 2 – VLANs Layer 3 VRF In Virtual Firewall Contexts Network Device Virtualization – Datapath Virtual – Trunking Generic Routing Encapsulation – IPSec L2TPv3 Label Sol-Plane Virtualization – Routing Protocols – VRF- Aware Routing ng	stai aliza wito	nces ation ched	С	:03					
LINIT IV	STODACE VIDTUALIZATION				_					
UNIT IV	STORAGE VIRTUALIZATION	000	<u> </u>		9					
Fiber Channel iSCSI SAN Bac Storage Mode	ces – SCSI – SCSI Communication – Using SCSI Buses – Fiber Ch Cables – Fiber Channel Hardware Devices – iSCSI Architecture – Sckup & Recovery Techniques – RAID – Classic Storage Model – SNIA Host based Architecture – Storage based architecture – Network Fault tolerance to SAN – Performing Backups – Virtual Tape Libraries	Secu Sh	uring ared	С	04					
	ADDL VINO VIDTUALITATION									
Comparison of	APPLYING VIRTUALIZATION Virtualization Technologies: Cuest OS, Heat OS, Hunardiner, Emulation	17 -	N P P P P	1	9					
Comparison of Virtualization Technologies: Guest OS, Host OS, Hypervisor, Emulation, Kernel Level – Shared Kernel – Enterprise Solutions: Vmware Server, ESXi, Citrix Xen Server, Microsoft Virtual PC, Microsoft Hyper-V, Virtual Box – Server Virtualization: Configuring Server with Server Virtualization, Adjusting & Tuning Virtual Servers, VM Backup and Migration – Desktop Virtualization: Terminal Services, Hosted Desktop, Web Based Solutions, Localized Virtualized Desktop – Network and Storage Virtualization: VPN, VLAN, SAN and VSAN, NAS										
TEXT BOOKS	TOTAL		<i>.</i>							
 Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress, 201 James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Process Elsevier/Morgan Kaufmann, 2005. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Micro Platform in the Virtual Data Center", Auerbach Publications, 2006. 										

- 1. William von Hagen, "Professional Xen Virtualization", Wrox Publications, January, 2008.
- 2. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- 3. Amy Newman, Kenneth Hess, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, October 2009

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Create a virtual machine and extend it to a virtual network.
- CO2 Perform server virtualization.
- CO3 | Explain the concept of network virtualization.
- CO4 Discuss various tasks in storage virtualization.
- CO5 | Compile all types of virtualization techniques and utilize them in design of virtual machines

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	1	2	2	3	3	2
CO2	3	3	3	2	1	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	1	2	2	3	3	2
CO5	3	3	2	2	1	-	-	-	-	1	2	2	3	3	2

•		3	0	0	3		
demonstration economic im To understare engineering a	the relevance of this course to the existing technology through ons, case studies and applications with a futuristic vision along of apact and issues and virtual reality, augmented reality and using them to build Biod applications intricacies of these platform to develop PDA applications with b	with med	ical				
UNIT I VIRT	TUAL REALITY AND VIRTUAL ENVIRONMENTS				8		
computer graphics, of Virtual reality. H	elopment of VR: Scientific landmarks Computer Graphics, Refight simulation, Virtual environments, Requirements for VR, I ARDWARE TECHNOLOGIES FOR 3D USER INTERFACES: Displays, Haptic Displays, Choosing Output Devices for 3	bene : Vis	efits sual	C	01		
UNIT II 3D U	JSER INTERFACE INPUT HARDWARE				8		
Input device characteristics, Desktop input devices, Tracking Devices, 3D Mice, Special Purpose Input Devices, Direct Human Input, Home - Brewed Input Devices, Choosing Input Devices for 3D Interfaces							
	TWARE TECHNOLOGIES				8		
		ome	etry,	T			
Database - World S Position / Orientation Environment - VR D Cameras, Scripts, Panel, 2D Controls	Space, World Coordinate, World Environment, Objects - Ge ton, Hierarchy, Bounding Volume, Scripts and other attribut Database, Tessellated Data, LODs, Cullers and Occluders, Lig Interaction - Simple, Feedback, Graphical User Interface, s, Hardware Controls, Room / Stage / Area Descriptions, back, VR toolkits, Available software in the market	tes, hts a Con	VR and ntrol	C	О3		
Database - World S Position / Orientation Environment - VR D Cameras, Scripts, Panel, 2D Controls Authoring and Playb	Space, World Coordinate, World Environment, Objects - Ge on, Hierarchy, Bounding Volume, Scripts and other attribut Database, Tessellated Data, LODs, Cullers and Occluders, Lig Interaction - Simple, Feedback, Graphical User Interface, s, Hardware Controls, Room / Stage / Area Descriptions,	tes, hts a Con	VR and ntrol	C			
Database - World S Position / Orientatic Environment - VR D Cameras, Scripts, Panel, 2D Controls Authoring and Playb UNIT IV 3D IN 3D Manipulation of Techniques for 3D N Design Guidelines - Support, Environme Guidelines - System Commands, Tools, Study: Mixing Systechniques, Design DEVELOPING 3D Guidelines and	Space, World Coordinate, World Environment, Objects - Geton, Hierarchy, Bounding Volume, Scripts and other attribut Database, Tessellated Data, LODs, Cullers and Occluders, Lig Interaction - Simple, Feedback, Graphical User Interface, s, Hardware Controls, Room / Stage / Area Descriptions, back, VR toolkits, Available software in the market	eractions of the control of the cont	VR and atrol orld tion ues, ding ase nput ND bing	С	8		
Database - World S Position / Orientatic Environment - VR D Cameras, Scripts, Panel, 2D Controls Authoring and Playb UNIT IV 3D IN 3D Manipulation of Techniques for 3D N Design Guidelines of Support, Environme Guidelines - System Commands, Tools, Study: Mixing System Commands, Design DEVELOPING 3D Guidelines and Architecture, Educat UNIT V	Space, World Coordinate, World Environment, Objects - Geton, Hierarchy, Bounding Volume, Scripts and other attributed Database, Tessellated Data, LODs, Cullers and Occluders, Liginteraction - Simple, Feedback, Graphical User Interface, s, Hardware Controls, Room / Stage / Area Descriptions, Dack, VR toolkits, Available software in the market NTERACTION TECHNIQUES tasks, Manipulation Techniques and Input Devices, Interface, and Input Devices, Interface, some control of Wayfinding, User Centered Wayfind Centered Wayfinding Support, Evaluating Wayfinding Aids, and Control, Classification, Graphical Menus, Voice Commands, of Mutimodal System Control Techniques, Design Guidelines and Stem Control Methods, Symbolic Input Tasks, symbolic in Guidelines, Beyond Text and Number entry . DESIGNING USER INTERFACES: Strategies for Designing and Develoud Evaluation. VIRTUAL REALITY APPLICATIONS: Engir	erach erach Des Gestra G A Velop	VR and atrol orld tion ues, ding ase aput ND bing ing,	С	O3 8		

AUGMENTED & VIRTUAL REALITY

IT1715

- **1.** Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations of Effective Design", Morgan Kaufmann, 2009.
- 2. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
- 3. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.
- **4.** Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.
- 5. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.
- 6. John Vince, "Virtual Reality Systems", Addison Wesley, 1995.
- 7. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simon and Schuster, 1991.
- 8. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002
- Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. A Grama, AGupra, G Karypis, V Kumar. Introduction to Parallel Computing (2nd ed.). Addison Wesley, 2003.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Analyse and Design a system or process to meet given specifications with realistic engineering constraints.
- CO2 Identify problem statements and function as a member of an engineering design team.
- CO3 Utilize technical resources
- CO4 Propose technical documents related to design mini project results.
- CO5 | Give technical oral presentations related to design mini project results.

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUCOMES				
COS	P PO PO PO PO PO PO 10 11 12									PSO 1	PSO 2	PSO 3							
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2				
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2				
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2				
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2				
CO5										1	2	2	2						

PROFESSIONAL ELECTIVE - IV (SEMESTER VII)

ML1721	GENETIC ALGORITHM L	T	PC						
OBJECTIVES	3	0	0 3						
	 To understand the concepts of Genetic algorithm scientific models To build and implement a computer implementation of genetic algorithm To survey of the many aspects of evolutionary algorithms (EAs), in partic GP, ES, technique To known about Advance operators and techniques in genetic Search To understand data mining using genetic algorithm dearch in industrial a 	cular							
UNIT I	Introduction to Genetic Algorithms in Scientific models		9						
Introduction: A brief history of evolutionary computation, Elements of Genetic Algorithms, A simple genetic algorithm, Applications of genetic algorithms Genetic Algorithms in Scientific models: Evolving computer programs, data analysis and prediction, evolving neural networks, Modelling interaction between learning and evolution, modelling sexual selection, measuring evolutionary activity.									
UNIT II	Theoretical Foundation of genetic algorithm:		9						
royal roads, ex Approaches. Computer Imp mutation, map	undation of genetic algorithm: Schemas and Two-Armed and k-armed problet act mathematical models of simple genetic algorithms, Statistical- Mechanical lementation of Genetic Algorithm: Data structures, Reproduction, crossover a ping objective functions to fitness form, fitness scaling, coding, a multiparame point coding, discretization and constraints	s and	CO						
UNIT III	Applications of genetic algorithms		9						
optimization, Ir	ions of genetic algorithms: The risk of genetic algorithms, De Jong and functi mprovement in basic techniques, current application of genetic algorithms	ion	CO						
UNIT IV	Advanced operators and techniques in genetic search:		9						
inversion and	rators and techniques in genetic search: Dominance, duplicity, and abeyance other reordering operators. Other micro operators, Niche and speciation, optimization, knowledge based techniques, genetic algorithms and parallel	∋,	co						
UNIT V	Industrial Application Of Genetic Algorithms		9						
	lication Of Genetic Algorithms: Data mining using genetic Algorithms Searcenetic algorithms for game playing eg TIC TAC TOE	ch in	CO						
	TOTAL : 4	45 P	ERIO						
TEXT BOOKS									
	c algorithms in search, optimization and Machine Learning by David E. Goldb n Education	erg,							
i caiso	TI Eddodion								

- 1. An introduction to genetic algorithms by Melanle Mitchell, PHI.
- 2. The simple genetic algorithm foundations and theory by Michael D. Vose, PHI

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Discuss about basic of Genetic algorithm
CO2	Apply Evolutionary Computation Methods to find solutions to complex problems
CO3	Analyze and experiment with parameter choices in the use of Evolutionary Computation
CO4	Summarize current research in Genetic Algorithms and Evolutionary Computing
CO5	Explain Industrial application of Genetic algorithm

								_		_		_				
COs				PR	OGR/	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	-	-	2	-	2	2	2	2	2	1	
CO2	3	3	3	3	2	-	-	2	-	2	2	2	2	2	1	
CO3	3	3	3	3	2	-	-	2	-	2	2	2	2	2	1	
CO4	3	3	3	3	2	-	-	2	-	2	2	2	2	2	1	
CO5	3	3	3	3	2	-	-	2	-	2	2	2	2	2	1	

ML1722	0. ==0	T	C
OBJECTIVES		0	3
• To und	derstand the fundamentals of the speech processing		
	e the various speech models		
	r knowledge about the phonetics and pronunciation processing		
	m wavelet analysis of speech		
	derstand the concepts of speech recognition		
UNIT I	INTRODUCTION		S
Introduction -	- knowledge in speech and language processing - ambiguity - models and		
algorithms - I	anguage - thought - understanding - regular expression and automata - words	C	01
& transducers	s – N grams		
UNIT II	SPEECH MODELLING		Ć
Word classes	and part of speech tagging - hidden markov model - computing likelihood: the	,	
forward algori	thm - training hidden markov model - maximum entropy model - transformation-	C	02
based taggin	g - evaluation and error analysis - issues in part of speech tagging - noisy		02
channel mode	el for spelling		
UNIT III	SPEECH PRONUNCIATION AND SIGNAL PROCESSING		Ć
Phonetics – s	peech sounds and phonetic transcription – articulatory phonetics – phonological		
categories an	d pronunciation variation – acoustic phonetics and signals – phonetic resources –	C	O 3
articulatory ar	nd gestural phonology		
UNIT IV	SPEECH IDENTIFICATION		G
Speech synth	nesis – text normalization – phonetic analysis – prosodic analysis – diphone	_	04
waveform syn	thesis – unit selection waveform synthesis – evaluation		0-1
UNIT V	SPEECH RECOGNITION		ξ
Automatic sp	eech recognition – architecture – applying hidden markov model – feature		
extraction: mf	cc vectors - computing acoustic likelihoods - search and decoding - embedded		
training – m	ultipass decoding: n-best lists and lattices- a* (_stack') decoding - context-	C	05
dependent a	coustic models: triphones - discriminative training - speech recognition by		
humans			
	TOTAL : 45 PEF		חי

- Daniel Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Person education, 2013.
- 2. Kai-Fu Lee, —Automatic Speech Recognition, The Springer International Series in Engineering and Computer Science, 1999.

- 3. Himanshu Chaurasiya, —Soft Computing Implementation of Automatic Speech Recognition, LAP Lambert Academic Publishing, 2010.
- 4. Claudio Becchetti, Klucio Prina Ricotti, —Speech Recognition: Theory and C++ implementation, Wiley publications 2008.
- 5. Ikrami Eldirawy, Wesam Ashour, —Visual Speech Recognition, Wiley publications, 2011

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Create new algorithms with speech processing
- CO2 Derive new speech models
- CO3 | Perform various language phonetic analysis
- CO4 | Create a new speech identification system
- CO5 | Generate a new speech recognition system

COs				PR	OGRA	AM O	UTCO	MES	(POs)			PROGRAM SPECIFIC OUCOMES		
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	Р9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1723		ADVANCED OPTIMIZATION TECHNIQUES L P											Т	С			
														3	0	0	3
OBJECT	IVES																
	nderst																
	now a																
	o crea						stic al	gorith	ms								
UNIT I			ISIO														9
Decision Markov D		-	•	•	Gam	e the	eory,	MCDI	M – (Goal p	rogran	nming,	AHP a	nd <i>i</i>	ANP;	С	01
UNIT II		NON	I-LINI	EAR (OPTIN	MIZAT	ΓΙΟN -	- I									9
Types of	Non-	linear	prog	ramm	ning p	roble	ms, l	Jncon:	strain	ed opt	imizati	on, Kł	KT condi	ition	s for	_	02
constrain	ed op	timiza	ition, (Quad	ratic p	rogra	mmin	g								C	UZ
UNIT III		NON	I-LINI	EAR (OPTIN	MIZAT	TION -	-									တ
Separable	e pro	ogram	nming	, Co	nvex	prog	gramn	ning,	Non-	-conve	x pro	gramn	ning, G	eon	netric	_	О3
programn	ning, S																
UNIT IV								TION									9
Principles												nneali	ng, Tabu	ı se	arch,	C	04
Ant Color	ny Opt									pplicat	ions.					J	<u> </u>
UNIT V								ATION									9
Neural ne	etwork	base	d opt	imizat	ion, C	Optimi	zatior	n of Fu	uzzy s	system	S						O5
													TOTAL	_ : 4	5 PE	RIO	<u>DS</u>
REFERE																	
											ı", TMF	1, 2000).				
										1998.							
				<u>Optim</u>	izatio	n for E	Engine	eering	j Desi	gn", Pl	HI, 200	00.					
COURSE																	
Upon con						ents w	/III be	able t	.0								
	erform																
								•	•	mation							
				•						nd con	straine	d meth	nods.				
	oply va																
CO5 Ap	oply di	ifferer	nt tech	nnique	es to s	solve	variou	ıs opt	imizat	tion pro	oblems	arisin	g from e	ngir	eerir	ng	
ar	eas.																
	1			M	APPI	NG O	F CO	s WIT	TH PC	s ANI) PSO	S	T				
0.5				PR	OGR/	O MA	UTCC	MES	(POs	5)			PROGI O		/I SPI OME		FIC
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО					^^
														28	002	22	О3
l	1								1	t	i		1				
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2		2	2	2
	1	2			1	-	-	1	1	1	1	-					
CO2			2 2 2	2 2 2		-	-	-	1 1 1		_	1 1 1	2 2 2		2 2 2	2	2 2 2
	1	2	2	2	1	- - -	- - -	1	1	1	1	1	2		2	2	2

ML1724				ı	NTEL	LIGE	NT TE	RANS	POR	T SYS	TEMS			L	Т	Р	С
		1												3	0		3
OBJEC	TIVES																
-	To imp	art kn	owled	ge on	l												
	∃ Fund							ysten	ns.								
[□ Cond	cepts	of ATI	S and	d its o	perati	ons.	-									
[∃ Basi	cs of p	oredic	tive ro	oute g	uidan	ce sy	stem.									
[□ Cond	cepts (of AP	ΓS an	d its d	pera	tions.										
[Gen						d env	ironm	ent								
UNIT I		ITS	FUND	AME	NTAL	.S										9)
Introduc																	
ITS Obj														niqu	es -	- (CO1
Detecto	rs - Au											ficatior	ı (AVI)				
UNIT II										N SYS						9)
Basic co	oncept	s - Mo	odels	- Sim	nulatio	n - L	OS of	trans	sporta	ation sy	/stems	- Stat	tic, real	time	and	1	
dynamic									gy -	Where	and \	Nhen ⁻	to receiv	e da	ata -	. (CO2
Informat	tion flo	ws - T	ravel	suppo	ort – D	Dynan	nic ro	uting.									
UNIT III		PRE	DICT	IVE F	ROUT	E GU	IDAN	CE								9)
ITS - Ap	plicati	ons - I	ssues	- Info	rmatio	on typ	es - I	mpac	t on ro	oute gu	uidance	e - Cas	e studie	S.		(CO3
UNIT IV										N SYS						9)
Scope -	Comp	onent	s of A	PTS -	- Adva	antage	es- Lir	mitatio	ons of	APTS	- Cas	e studi	es - Issu	es			CO4
UNIT V					RONN											9)
ITS and													- Genera	al is:	sues	; [CO5
and Cas				ew of	ITS i	mpler	nenta	tions	in dev	/eloped	d coun	tries.					<i>-</i>
TOTAL	: 45 P	<u>ERIOI</u>	DS														
TEXT B	OOKS	<u> </u>															
1. Pradi	p Kum	nar Sa	rkar,	Amit	Kuma	r Jair	n, "Into	elligei	nt Tra	nsport	Syste	ms", P	aperbac	k, P	HI L	ear	ning,
2018																	
REFER																	
													ards",CR				
)00: I	Recor	nmen	datior	ns foi	r Wor	ld Roa	ad Ass	sociatio	on (PIAF	RC)Ł	у К	an	Paul
	Chen,																
_				•						Publisl							
4.	Nation	al ITS	Arch	itectu	re Do	cume	ntatio	n, US	Depa	artmen	t of Tra	anspor	tation, 20	007			
00::==																	
COURS						,											
Upon c					_												
	Analyz					rattic	and s	ugges	sting I	15.							
	Plan ar																
	Plan th	_			_		_		.,	45=0							
										APTS).						
CO5 N	Manag	e the i	ssues								<u> </u>	_					
				IV	APPI	NG O	r CO	s WI	IH PC	S AND	7 750	<u>S</u>	DDCC	D 4 -			ILIO
				PR	OGR <i>A</i>	O MA	UTCC	MES	(POs	s)			PROG				IFIC
COs			D C 2		1				`		DC **	DC 15			OME	_	000
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1		02	ר א	SO3
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2	-	2		2
CO2	1	2	2	2	1	-	-	1	1	1	1	1	2		2		2
CO3	1	2	2	2	1	-	-	1	1	1	1	1	2		2		2

CO4

CO5

ML1725	ADVANCED BIO-INSPIRED ARTIFICIAL INTELLIGENCE TECHNIQUES	L	T	P	С
		3	0	0	3
□ To a □ To u algoritl □ To a □ To fo	art knowledge on ppreciate the use of biological aspects in building intelligent systems nderstand the algorithms, programming and applications of Evolutionary hms and neural and fuzzy systems ppreciate the adaptation of cellular and developmental systems ocus on the understanding of artificial immune systems and its application nderstand issues in developing collective and behavioral systems		gen	etio	С
UNIT I	EVOLUTIONARY SYSTEMS			9	9
individuals), E Variation Oper Condition, evo cellular system	algorithm, components of evolutionary algorithm representation (defination function (Fitness function), Population, parent selection Mediators, Survivor Selection Mechanism (Replacement), Initialization, Terflutionary algorithm case study Cellular systems, cellular automata, moderns, other cellular systems, computation with cellular systems, artifyonthesis of cellular systems.	char mina eling	ism atior with	1 (CO1
UNIŤ II	NEURAL AND DEVELOPMENTAL AND IMMUNE SYSTEMS			(9
encoding ,syr learning, evolu developmental biological imm	vous systems, artificial neural networks, neuron models, architecture naptic plasticity, unsupervised learning, supervised learning, reinfolition of neural networks, hybrid neural systems, Rewriting system, synd system, evolutionary rewriting systems, evolutionary developmental pune systems, lessons for artificial immune systems, algorithms and apponegative selection algorithm, clonal selection algorithm. case study.	rcer thes rogra	nen sis o ams	t f	CO2
UNIT III	BEHAVIORAL SYŠTEMS			(9
robots, robots	gnitive science, behavior in AI, behavior based robotics, biological inspir as biological models, robot learning, evolution of behavioral systems, le tems, co-evolution of body and control, towards self-reproduction, simula	arniı	ng ir	1	СОЗ
UNIT IV	GENETIC AND MEMETIC ALGORITHMS			9,	9
Survivor Selector Local Search Heuristic or Crossover and	n of Individuals, Mutation, Recombination, Population Models, Parent Section, Example Application: Solving a Job Shop Scheduling Problem. Introch, Lamarckianism and the Baldwin Effect, Structure of a Memetic A Intelligent Initialization, Hybridization within Variation Operators: Ind Mutation, Local Search Acting on the output from Variation Couring the Genotype to Phenotype Mapping, Design Issues for	odu Igori ntelli Opera	ctior thm gen ators	t	CO4
UŇIT V	COLLECTIVE SYSTEMS			1	9
swarm robotic evolution of co	organization, Particle Swarm Optimization (PSO), ant colony optimizations, co-evolutionary dynamics, artificial evolution of competing systems, operation, case study.				CO5
TOTAL: 45 P					
2.Tao Song, F Algorithms", IS 3.F. Neumann	and C. Mattiussi, "Bio-Inspired Artificial Intelligence", MIT Press, 2008. Pan Zheng, Mou Ling Dennis Wong, Xun Wang, "Bio-Inspired CompuBN: 978-981-3143-19-7, world scientific, 2019 and C. Witt, "Bioinspired Computation in combinatorial optimization: Algoromplexity", Springer, 2010.				
DEEEDENCE	BOOKS				
Wesley 2. Simon 3. M. Dori	Goldberg, "Genetic algorithms in search, optimization, and machine le		•		

5. Xin-She Yang,Zhihua Cui Renbin Xiao Amir HosseinGandomi Mehmet Karamanoglu "Swarm Intelligence and Bio-Inspired Computation", 1st Edition, Elsevier, 2013.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Use existing open source tools to build an application using genetic approaches
- CO2 Identify different applications suitable for different types of neural networks giving justifications
- CO3 Critically analyze the use of cellular systems
- CO4 Differentiate the different models of immune systems
- CO5 Implement the Particle swarm and Ant colony algorithms within a framework and build applications

COs				PR	OGRA	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUCOMES			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	

PROFESSIONAL ELECTIVE - V (SEMESTER VIII)

ML1811	VIDEO ANALYTICS	L	T	PC
OBJECTIVES		3	0	0 3
To impa	art knowledge on			
□ To kr	now the fundamental concepts of big data and analytics			
□ To le	arn various techniques for mining data streams			
□ To ad	equire the knowledge of extracting information from surveillance videos.			
□ To le	arn Event Modelling for different applications.			
□ To ur	nderstand the models used for recognition of objects in videos			
UNIT I	INTRODUCTION TO BIG DATA & DATA ANALYSIS			9
Introduction to	Big Data Platform – Challenges of Conventional systems – Web data- E	volu	tion	
of Analytic sc	alability- analytic processes and tools- Analysis Vs Reporting- Mode	ern d	lata	CO1
analytic toolsD	ata Analysis: Regression Modeling- Bayesian Modeling- Rule induction			
UNIT II	MINING DATA STREAMS			9
Introduction to	Stream concepts- Stream data model and architecture – Stream Cor	 nputi	ing-	
Sampling data	a in a Stream- Filtering Streams- Counting distinct elements in a	Strea	am-	
Estimating mo	mentsCounting oneness in a window- Decaying window- Real time A	∖naly	tics	CO2
platform(RTAP) applicationscase studies.			
UNIT III	VIDEO ANALYTICS			9
Introduction- \	/ideo Basics - Fundamentals for Video Surveillance- Scene Artifacts	- Ob	ject	1
Detection and	Tracking: Adaptive Background Modelling and Subtraction- Pedestrian D	etec	tion	
and Tracking\	ehicle Detection and Tracking- Articulated Human Motion Tracking	in L	ow-	CO3
Dimensional La	atent Spaces.			
UNIT IV	BEHAVIOURAL ANALYSIS & ACTIVITY RECOGNITION			9
Event Modell	ing- Behavioural Analysis- Human Activity Recognition-Complex	Acti	vity	1
RecognitionAc	tivity modelling using 3D shape, Video summarization, shape based	acti	vity	CO4
models- Suspic	cious Activity Detection.			
UNIT V	HUMAN FACE RECOGNITION & GAIT ANALYSIS			9
Introduction: C	Overview of Recognition algorithms – Human Recognition using Fac	e: F	ace	
Recognition from	om still images, Face Recognition from video, Evaluation of Face Rec	ognit	tion	
Technologies-	Human Recognition using gait: HMM Framework for Gait Recognition	n, V	iew	CO5
Invariant Gait F	Recognition, Role of Shape and Dynamics in Gait Recognition			
TOTAL : 45 PI	ERIODS			
TEXT BOOKS				
1. Anand	Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Camb	ridge	€	
Univer	sity Press, 2012.			

Michael Berthold, David J.Hand, Intelligent Data Analysis, Springer, 2007.

REFERENCE BOOKS

- 1. Rama Chellappa, Amit K.Roy-Chowdhury, Kevin Zhou.S, "Recognition of Humans and their Activities using Video", Morgan&Claypool Publishers, 2005.
- 2. Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and Francis Group), 2009.

COURSE OUTCOMES

Upon	completion of the course, students will be able to
CO1	Work with big data platform and its analysis techniques
CO2	Design efficient algorithms for mining the data from large volumes.
CO3	Work with surveillance videos for analytics.
CO4	Design of optimization algorithms for better analysis and recognition of objects in a scene.

CO5 | Model a framework for Human Activity Recognition

	MAPPING OF COs WITH POS AND PSOS														
COs				PR	OGR/	AM O	UTCC	MES	(POs	5)				RAM SP UCOME	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1812	BLOCKCHAIN ARCHITECTURE DESIGN	L	Р	Т	С
		3	С	C	3

OBJECTIVES

- To understand Blockchain's fundamental components, and examine decentralization using blockchain.
- To explain how cryptocurrency works, from when a transaction is created to when it• is considered part of the Blockchain.
- To explain the components of Ethereum and Programming Languages for Ethereum.
- To study the basics of Hyperledger and Web
- To know about alternative Blockchains and Blockchain projects in different domains.

UNIT I Introduction to Blockchain	
Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus,	
Permissions, Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash,	CO
Signature,) Hashchain to Blockchain, Basic consensus mechanisms	
UNIT II Consensus	
Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of	
Blockchain consensus protocols	CO
Permissioned Blockchains: Design goals, Consensus protocols for Permissioned Blockchains	
UNIT III Hyperledger Fabric	
Hyperledger Fabric (A): Decomposing the consensus process , Hyperledger fabric	
components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond	CO
Chaincode: fabric SDK and Front End (b) Hyperledger composer tool	
UNIT IV	
Use case 1 : Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii)	
Capital markets, (iv) Insurance	CO
Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply	
chain finance, invoice management discounting, etc	
UNIT V	
Use case 3:	
Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping	CO
between government entities, (ii) public distribution system social welfare systems Blockchain	CO
Cryptography, Privacy and Security on Blockchain	
TOTAL : 45 PER	RIOD

1. MsteringBitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos

2. Blockchain by Melanie Swa, O'Reilly

REFERENCE BOOKS

- 3. Hyperledger Fabric https://www.hyperledger.org/projects/fabric
- **4.** Zero to Blockchain An IBM Redbooks course, by Bob Dill, David Smits https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Understand the technology components of Blockchain and how it works behind the scenes.
- CO2 | Identify different approaches to developing decentralized applications.
- CO3 Understand Bitcoin and its limitations by comparing with other alternative coins.
- CO4 Understand and use Hyperledger and its development framework
- CO5 Track alternative Blockchains and emerging trends in Blockchain.

COs				PR	OGR/	AM O	UTCO	MES	(POs	5)				RAM SP UCOME	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	1	2	2	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	2	2	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	2	2	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	2	2	1	1	2	2	2
CO5	2	2	2	2	1	-	-	1	2	2	1	1	2	2	2

ML1813	MICROSOFT BOTS FRAMEWORK	L	Р	Т	С
		3	0	0	3
OR IECTIVES					

- Develop various real-world intelligent BOTs from scratch using Microsoft Bot Framework.
- Understand the components of Bot Architecture
- Build Bots to parse the text and voice
- Create intelligent Bots using APIs
- Integrate BOTSs with most popular conversation platforms

UNIT I BOT INTRODUCTION & BUILDING CONVERSATION	8						
Overview -Exploring BOT framework architecture -BOT chat benefits -Visualizing chatbots	l .						
,connector -overview of channels -Bot connector services-characteristics of chatbot-							
chatbot communication-steps to build c hatbotcreating Bot framework project -examining							
default code -iinitial testing with Emulator -Publishing and registering chatbot-Game Bot-	CO1						
conversation state Management -participating in conversations-using custom message							
activity – fine tuning chat bot –Handling activities –Advanced conversation messages							
UNIT II BOT BUILDER	8						
Building dialogs -Introducing wine Bot -implementing dialog class -dialog c onversation fl	I						
ow- dialog prompt options -calling dialog using Form Flow- basic form flow chat -	CO2						
enhancing form flow conversati ons – a dvanced templates and patterns -customizing Form	COZ						
Flow-configuring property –message method and common parameters .							
UNIT III NATURAL LANGUAGE PROCESSING WITH LUIS	8						
Learning essential LUIS concepts -creating models -building intents -introducing							
winebotLuis -handling entities - Managing advanced conversation -managing dialog stack -	000						
navigating to other dialogs-managing c onversations with chaining –wine bot chain program	CO3						
-LINQ to dialog -formatting text output							
UNIT IV CHANNELS AND GUI	8						
Attaching cards –Music chat BOT overview –building blocks-working wi th a ttac hments – di							
splaying c ards – adaptive cards –layout with containers –using controls –handling actions –	CO4						
configuring channels –creating email , SMS and Web Bots							
UNIT V APIS INTEGRATION AND VOICE	8						
Coding custom channels – overview of console channel –starting conversation – sending							
activities - ending conversation - integrating cognitive services -searching with Bing-	CO5						
interpreting image –translating text – Bui I ding FAQ Chat Bots - adding voice services-							
adding speech to activities specifying input Hints.							
TOTAL : 45 PERI	ODS						

TEXT BOOK

1. Joe Mayo, "Programming the Microsoft BOTS framework: A multiple Approach to building chatbots", Pea rson Education Inc., 2018

REFERENCE BOOKS

- 1. Kishore Gaddam, "Building bots with Microsoft BOTS framework", 2017, Packt Publishing Ltd
- Srikanth Machiraju, Ritesh Modi, "Developing Bots with Microsoft Bots Framework:
 Create Intelligent Bots using MS Bot Framework and Azure Cognitive Services", A Press, 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the architecture of Bot and build the conversation
CO2	Build dialogs and form flow
CO3	Identify the intent of a text with the help of LUIS
CO4	Analyze the issues of channels and create Email , SMS and Web Bot
CO5	Understand the APIs and integrate cognitive services &voice services

COs					8	ROGRA SPECIFIC UCOME	CIFIC								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1814 **BUSINESS INTELLIGENCE OBJECTIVES** Tο Be exposed with the basic rudiments of business intelligence system understand the modeling aspects behind Business Intelligence understand of the business intelligence life cycle and the techniques used in it Be exposed with different data analysis tools and techniques 9 **UNIT I** Business intelligence Business intelligence: Effective and timely decisions, Data, information and knowledge, The role of mathematical models, Business intelligence architectures, Ethics and business intelligence CO1 Decision support systems: Definition of system, Representation of the decision-making process, Evolution of information systems, Definition of decision support system, Development of a decision support system Mathematical models for decision making UNIT II 9 Mathematical models for decision making: Structure of mathematical models, Development of a model, Classes of models Data mining: Definition of data mining, Representation of input data, Data mining process, CO₂ Analysis methodologies Data preparation: Data validation, Data transformation, Data reduction UNIT III Classification 9 Classification: Classification problems, Evaluation of classification models, Bayesian methods, Logistic regression, Neural networks, Support vector machines. CO₃ Clustering: Clustering methods, Partition methods, Hierarchical methods, Evaluation of clustering models **Business intelligence applications UNIT IV** Business intelligence applications: Marketing models: Relational marketing, Sales force Logistic and production models: Supply chain optimization, Optimization models for logistics CO₄ planning, Revenue management systems. Data envelopment analysis: Efficiency measures, Efficient frontier, The CCR model, Identification of good operating practices **Knowledge Management UNIT V** Knowledge Management: Introduction to Knowledge Management, Organizational Learning and Transformation, Knowledge Management Activities, Approaches to Knowledge Management, Information Technology (IT) In Knowledge Management, Knowledge Management Systems Implementation, Roles of People in Knowledge Management. CO₅ Artificial Intelligence and Expert Systems: Concepts and Definitions of Artificial Intelligence, Artificial Intelligence Versus Natural Intelligence, Basic Concepts of Expert Systems, Applications of Expert Systems, Structure of Expert Systems, Knowledge Engineering, Development of Expert Systems **TOTAL: 45 PERIODS TEXT BOOKS** 1. Carlo Vercellis, Business Intelligence: Data Mining and Optimization for Decision Making, Wiley 1st.2009 **REFERENCE BOOKS** 1. Efraim Turban, Ramesh Sharda, Dursun Delen , Decision support and Business Intelligence 9th,2011 Systems, Pearson, Edition 2. Grossmann W, Rinderle-Ma, Fundamental of Business Intelligence, Springer, Edition 1st. 2015

COUF	COURSE OUTCOMES				
Upon	Upon completion of the course, students will be able to				
CO1	Explain the fundamentals of business intelligence.				
CO2	Link data mining with business intelligence And Apply various modeling techniques.				
CO3	Explain the data analysis and knowledge delivery stages.				
CO4	Apply business intelligence methods to various situations.				
CO5	Decide on appropriate technique.				
	MARRING OF CO. WITH BO. AND DOC				

	MAPPING OF COS WITH POS AND PSOS																	
COs					PROGRAM SPECIFIC OUCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2			
CO2	1	2	2	2	1	-	-	1	1	1	1	1	2	2 2 2				
CO3	1	2	2	2	1	-	-	1	1	1	1	1	2 2 2					
CO4	1	2	2	2	1	-	-	1	1	1	1	1	2 2 2					
CO5	1	2	2	2	1	-	-	1	1	1	1	1	2	2 2 2				

SUPPLY CHAIN MANAGEMENT

	3 0 1	0 3				
OBJECTIVES						
To help understand the importance of and major decisions in supply chain management						
gaining competitive advantage.						
UNIT I	INTRODUCTION	9				
Supply Chain	- Fundamentals, Evolution, Role in Economy, Importance, Decision Phases,					
Enablers & D	Orivers of Supply Chain Performance; Supply chain strategy; Supply Chain	CO1				
Performance N	Measures.					
UNIT II	SUPPLY CHAIN NETWORK	9				
Distribution Ne	etwork Design – Role in supply chain, Influencing factors, design options, online					
sales and distribution network, Distribution Strategies; Network Design in supply chain – Role,						
influencing fac	tors, framework for network design, Impact of uncertainty on Network Design.					
UNIT III	PLANNING DEMAND, INVENTORY AND SUPPLY	9				
Managing sup	ply chain cycle inventory and safety inventory - Uncertainty in the supply chain					
, Analyzing im	pact of supply chain redesign on the inventory, Risk Pooling, Managing inventory	CO3				
for short life-cy	cle products, multiple item -multiple location inventory management; Pricing and	COS				
Revenue Mana	agement					
UNIT IV	LOGISTICS	9				
Transportation	- Role, Modes and their characteristics, infrastructure and policies, transport					
documentation, design options, trade-offs in transportation design, intermodal transportation.						
Logistics outsourcing – catalysts, benefits, value proposition. 3PL, 4PL, 5PL, 6PL; International						
Logistics -obje	ectives, importance in global economy, Characteristics of global supply chains,	CO4				
Incoterms						
I						

MG1815

3

UNIT V	SUPPLY CHAIN INNOVATIONS	9			
Supply Chain I	ntegration, SC process restructuring, IT in Supply Chain; Agile Supply Chains,				
Legible supply chain, Green Supply Chain, Reverse Supply chain; Supply chain technology					
trends – AI, Ad	vanced analytics, Internet of Things, Intelligent things, conversational systems,	CO5			
robotic process	s automation, immersive technologies, Block chain.				

TOTAL: 45 PERIODS

REFERENCE BOOKS

- 1. Sunil Chopra, Peter Meindl and DharamVirKalra, Supply Chain Management-Strategy Planning and Operation, Pearson Education, Sixth Edition, 2016.
- 2. Janat Shah, Supply Chain Management Text and Cases, Pearson Education, 2009
- **3.** Ballou Ronald H, Business Logistics and Supply Chain Management, Pearson Education, 5thEdition, 2007.
- 4. David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi, Designing and Managing the SupplyChain: Concepts, Strategies, and Cases, Tata McGraw-Hill, 2005.
- 5. Pierre David, International Logistics, Biztantra, 2011.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understanding of supply chain fundamentals
CO2	Ability to design supply chain networks to enhance supply chain performance
CO3	Ability to plan demand based on inventory and supply
CO4	Understanding the role of logistics in supply chain performance
CO5	Awareness of innovations for sustainable supply chains

COs						OGRAM SPECIFIC OUCOMES									
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	1	2	2	2	1	-	-	1	1	1	1	1	2	2 2	
CO5	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2

PROFESSIONAL ELECTIVE - VI (SEMESTER VIII)

ML1821	INTERNET OF EVERYTHING	L	Т	Р	С
		3	0	0	3
To enurTo studyTo explo	v the fundamental concepts and applications of IoT merate the enabling technologies for IoT y ,analyze and design evolving standards of IoT ore IpV6 technologies for IoT				
	n python programming for designing IoT applications				
Definition - Io Design of IoT Health/Body A Smart Cards	IOT INTRODUCTION AND APPLICATIONS Motivations -IPv6 Role -IoT Definitions -Observations - ITU-T Views -T Frameworks - Basic Nodal Capabilities — Physical Design of IoT - Applications Examples -Smart Metering/Advanced Metering Infrastructive and Networks - City Automation - Automotive Applications - Home Auto-Tracking (Following and Monitoring Mobile Objects) - Over-The-Airing of Steel -Control Application Examples	Lo cture mat	gical e -e- ion -	C	:01
UNIT II	FUNDAMENTAL MECHANISMS AND KEY TECHNOLOGIES				9
Identification of Characteristics Open Architect Mobility Supp	of IoT Objects and Services -Structural Aspects of the IoT - Envi s - Traffic Characteristics – Scalability – Interoperability -Security and F ture - Key IoT Technologies - Device Intelligence -Communication Capa ort - Device Power - Sensor Technology - RFID Technology - oT Enabling Technologies	Priva abilit	acy - ies -	· C	O2
UNIT III	EVOLVING IOT STANDARDS				9
IETF IPv6 Ro Representation Service Requi Lowpower WF	Duting Protocol for RPL Roll – Constrained Application Protocol (Conal State Transfer (REST) – ETSI M2M – Third-Generation Partnership irements for Machine-Type Communications - CENELAC – IETF IPPAN (6LoWPAN) – ZigBee IP (ZIP) – IP in Small Objects (IPSO) - For IoT/M2M -Cellular and Mobile Network Technologies for IoT/M2M	Prov6 (oject Over	· C	:03
111117 117	IDVO TECUNO COIES FOR THE IOT				
Header Comp Protocol Detai Option - Modif Corresponden	IPV6 TECHNOLOGIES FOR THE IOT Address Capabilities -IPv6 Protocol Overview -IPv6 Tunneling - IPsec is ression Schemes - Quality of Service in IPv6 - Migration Strategies to Is - Generic Mechanisms - New IPv6 Protocol - Message Types - Defications to IPv6 Neighbor Discovery - Requirements for Various IPv6 to Node Operation - HA Node Operation - Mobile Node Operation Relation Pv4 (MIP) - IPv6 Over Low-Power WPAN - Goals - Transmission of IPv6 2.15.4	o IF stina Noc onsh	Pv6 - ation les - lip to	c	:04
				1	
UNIT V	IPV6 DESIGN METHODOLOGY			1	9
- Information N View Specifica Application De using Python Raspberry Pi- with Python -	Requirements Specification - Process Specification - Domain Model Specification - Service Specifications - IoT Level Specification - Fuation - Operational View Specification - Device & Component Integrated Process of Interest for IoT - IoT Physical Devices and Enc Python Packages of Interest for IoT - IoT Physical Devices and Enc Linux on Raspberry Pi - Raspberry Pi Interfaces - Programming Rasp WAMP : AutoBahn for IoT - Xively Cloud for IoT - Python Web Apjango) - Designing a RESTful Web API - Amazon Web Services for IoT - Pelatform	uncti grati Il De dpoi bber plica	ional on - esign nts - ry Pi ation	C	:O5
	TOTAL	. : 4:	5 PE	RIC	DS
	Minoli, Building the Internet of Things with IPv6 and MIPv6: The Evolving unications, Wiley Publications, First Edition, 2013.	Wc	orld c	of M2	2M

- 1. ArshdeepBagha, Vijay Madisetti, Internet of Things: A Hands on Approach, Elsevier Publications, 2014
- 2. Jean-Philippe Vasseur, Adam Dunkels, Interconnecting Smart Objects with IP: The Next Internet, Elsevier Publications, 2010
- 3. Adrian McEwen, Hakim Cassimally, Designing the Internet of Things, Wiley Publications, First Edition, 2013

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO.	Identify the applications of IoT
CO2	Apply key technologies for IoT objects and services
CO	Interpret various IoT standards
CO	Assemble IpV6 technologies that suits IoT applications

CO5 Design IoT applications using Python

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2

DS1821	COGNITIVE SYSTEMS	L	Т	Р	С
		3	0	0	3

OBJECTIVES

- To provide an understanding of the central challenges in realizing aspects of human cognition.
- To provide a basic exposition to the goals and methods of human cognition.
- To develop algorithms that use AI and machine learning along with human interaction and feedback to help humans make choices/decisions.
- To support human reasoning by evaluating data in context and presenting relevant findings along with the evidence that justifies the answers.

	INTRODUCTION TO COCNITIVE COLEMON	
UNIT I	INTRODUCTION TO COGNITIVE SCIENCE	9
Understanding	Cognition, IBM's Watson, Design for Human Cognition, Augmented Intelligence,	
Cognition Mod	deling Paradigms: Declarative/ logic-based computational cognitive modeling,	CO1
connectionist	models of cognition, Bayesian models of cognition, a dynamical systems	COI
approach to co	ognition.	
UNIT II	MODELS	g
	lels of memory and language, computational models of episodic and semantic	
_	eling psycholinguistics.	CO2
UNIT III	COGNITIVE MODELING	g
modeling the	interaction of language, memory and learning, Modeling select aspects of	
•	sical models of rationality, symbolic reasoning and decision making.	CO3
UNIT IV	INDUCTIVE GENERALIZATION	9
Formal models	s of inductive generalization, causality, categorization and similarity, the role of	!
analogy in pro	blem solving, Cognitive Development Child concept acquisition. Cognition and	CO4
Artificial cogn	itive architectures such as ACT-R, SOAR, OpenCog, CopyCat, Memory	CO4
Networks.		
UNIT V	APPLICATION	9
	tecture, Unstructured Information Management Architecture (UIMA), Structured	
•	· · · · · · · · · · · · · · · · · · ·	005
•	usiness Implications, Building Cognitive Applications, Application of Cognitive	CO5
Computing and	·	
	TOTAL : 45 PER	NODS
REFERENCE	BOOKS	

1. Formal Approaches in Categorization by Emmanuel M. Pothos, Andy J. Wills, Cambridge

University Press,2012.

- Cognition, Brain and Consciousness: Introduction to Cognitive Neuroscience by Bernard J. Bears, Nicole M. Gage, Academic Press, 2013.
- 3. Cognitive Computing and Big Data Analytics by Hurwitz, Kaufman, and Bowles, Wiley, 2012.
- 4. The Cambridge Handbook of Computational Psychology by Ron Sun (ed.), Cambridge University Press,2008.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand what cognitive computing and it's models
CO2	Understand how it differs from traditional approaches.
CO3	Plan and use the primary tools associated with cognitive computing.
CO4	Plan and execute a project that leverages cognitive computing.
CO5	Understand and develop the business implications of cognitive computing.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2
CO2	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2
CO3	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2
CO4	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2
CO5	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2

ML1822	HUMAN ROBOT INTERACTION L	Т		С
OBJECTIVES	3	0	0	3
•	To Understand the fundamental concepts of robots, sensors and hardwar To have in depth understanding of various sensors, its elements and chara To Understand the integration of robot working in the real world into progra languages To Understand the theoretical aspects of robotics from the basics applications	cteri ımmi	stics ng	6.
UNIT I	INTRODUCTION TO ROBOTICS			9
Robotics rese	D Robotics - Robot features, sensors, manipulators - Application areas - State Robotics - Robotic hardware systems - Kinematics and ir Sensors, sensor data interpretation and sensor fusion - Path plant spaces.	nvers	se	CO1
UNIT II	ROBOT SENSING		(9
Lighting Appro effect sensors sensors: Bina	g - Categories of sensors in robots - Range sensing: Triangulation, Structure of the Structure of the Categories of Structure of the Categories of Structure of S	, Ha Touc	II- ch (CO2
UNIT III	ROBOT VISION		(9
calibration - S	- Imaging geometry - Perspective transformations - Camera model - Catereo imaging - Basic relationship between pixels - Preprocessing - Smooth - Edge detection - Thresholding - Segmentation - Use of motion -Descrip	thing	-	СОЗ
UNIT IV	ROBOT PROGRAMMING LANGUAGES		- 1	9
	amming Languages - Characteristics of robot-level languages: Po Motion specification, Sensing and flow of control, Programming sup is of taskLevel languages: World modeling, Task specification, Robot pro		-	CO4
UNIT V	HUMAN-ROBOT INTERACTION		- 1	9
	Interaction - Basics - Implicit vs Explicit interaction - HRI experimentation of eraction - Multi-agent systems Applications. ERIODS	gisət	jn (CO5
TEXT BOOKS				
McGraw Hill, S	C.Gonzalez, C.S.G.Lee,"Robotics - Control, Sensing, Vision and Intelligence Second Edition,2008 .JNagrath, "Robotics and Control", Tata McGraw Hill, Second Edition, 2007		ıta	
REFERENCE	BOOKS			
CambridgeUni	nal Principles of Mobile Robotics. Gregory Dudek and Michael Jenkin. 2nd eliversity Press, 2010. als of robotic mechanical systems: theory, methods, and algorithms. Jorge Ainger, 2003.		eles.	

	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Understanding the fundamental concepts of robots, sensors and hardware systems
CO2	In depth understanding of various sensors, its elements and characteristics.
CO3	Understanding the integration of robot working in the real world into programming languages
CO4	Understanding the theoretical aspects of robotics from the basics to advanced applications
CO5	To Build a real time Robots

				M	APPI	NG O	F CO	s WIT	TH PC)s AN[) PSO	S			
COs				PROGRAM SPECIFIC OUCOMES											
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	1	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1823	AGILE SOFTWARE DEVELOPMENT	L	Р	T	С
		3	0	0	3

OBJECTIVES

- To provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create high-quality software.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand the benefits and pitfalls of working in an Agile team.
- To understand Agile development and testing.

UNIT I	AGILE METHODOLOGY	8
Theories for	Agile Management – Agile Software Development – Traditional Model vs. Agile	
Model - Cla	ssification of Agile Methods - Agile Manifesto and Principles - Agile Project	CO1
Management	- Agile Team Interactions - Ethics in Agile Teams - Agility in Design, Testing -	COI
Agile Docume	entations – Agile Drivers, Capabilities and Values	
UNIT II	AGILE PROCESSES	8
Lean Produc	ction – SCRUM, Crystal, Feature Driven Development- Adaptive Software	
Development	– Extreme Programming: Method Overview – Lifecycle – Work Products, Roles	CO2
and Practices	S.	
UNIT III	AGILITY AND KNOWLEDGE MANAGEMENT	8
Agile Informa	ation Systems – Agile Decision Making – Earl_S Schools of KM – Institutional	
Knowledge E	volution Cycle – Development, Acquisition, Refinement, Distribution, Deployment,	
Leveraging -	KM in Software Engineering – Managing Software Knowledge – Challenges of	CO3
Migrating to	Agile Methodologies – Agile Knowledge Sharing – Role of Story-Cards – Story-	
Card Maturity	Model (SMM).	
UNIT IV	AGILITY AND REQUIREMENTS ENGINEERING	8
Impact of Ag	ile Processes in RE–Current Agile Practices – Variance – Overview of RE Using	
Agile – Mana	aging Unstable Requirements – Requirements Elicitation – Agile Requirements	
Abstraction M	Model – Requirements Management in Agile Environment, Agile Requirements	CO4
Prioritization	- Agile Requirements Modeling and Generation - Concurrency in Agile	
Requirement		
UNIT V	AGILITY AND QUALITY ASSURANCE	8
Agile Product	Development – Agile Metrics – Feature Driven Development (FDD) – Financial	
and Production	on Metrics in FDD – Agile Approach to Quality Assurance – Test Driven	CO5
Development	Agile Approach in Global Software Development.	
•	TOTAL : 45 PEF	RIODS
	101/121 101 21	

- **1.** David J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results", Prentice Hall, 2003.
- 2. Hazza and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer Science", Springer, 2009.
- 3. Craig Larman, "Agile and Iterative Development: A Managers Guide", Addison-Wesley, 2004.
- **4.** Kevin C. Desouza, "Agile Information Systems: Conceptualization, Construction, and Management", ButterworthHeinemann, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Realize the importance of interacting with business stakeholders in determining the requirements for a software system
- CO2 Perform iterative software development processes: how to plan them, how to execute them.
- CO3 Develop techniques and tools for improving team collaboration and software quality.
- CO4 | Perform Software process improvement as an ongoing task for development teams.
- CO5 | Show how agile approaches can be scaled up to the enterprise level.

CO-				PROGRAM SPECIFIC OUCOMES											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2

ML1824		P T	С
OBJECTIV		0 0	3
• Und	erstand the basic concepts of brain computer interface		
	dy the various signal acquisition methods		
	rn about the signal processing methods used in BCI		
	erstand the various machine learning methods of BCI.		
	·		
	rn the various applications of BCI		
UNIT I	INTRODUCTION TO BCI		8
	- Brain structure and function, Brain Computer Interface Types		
•	us and Asynchronous -Invasive BCI -Partially Invasive BCI - Non Invasive B	CI,	CO1
	BCI System, BCI Monitoring Hardware, EEG, ECoG, MEG, fMRI.		
UNIT II	BRAIN ACTIVATION		8
Brain activa	tion patterns – Spikes, Oscillatory potential and ERD, Slow cortical potential	als,	
Movement	related potentials-Mu rhythms, motor imagery, Stimulus related potentials	s –	CO2
Visual Evol	ked Potentials – P300 and Auditory Evoked Potentials, Potentials related		
cognitive ta	sks		
UNIT III	FEATURE EXTRACTION METHODS	•	8
Data Proce	ssing – Spike sorting, Frequency domain analysis, Wavelet analysis, Ti	me	
domain an	alysis, Spatial filtering -Principal Component Analysis (PCA), Independent	ent	CO3
Component	Analysis (ICA), Artefacts reduction, Feature Extraction – Pha		COS
synchroniza	ation and coherence		
UNIT IV	MACHINE LEARNING METHODS FOR BCI		8
Classification	on techniques –Binary classification, Ensemble classification, Multicla	ass	
Classification	on, Evaluation of classification performance, Regression - Linear, Polynom	ial,	004
RBF's, Pe	rceptron's, Multilayer neural networks, Support vector machine, Gra	aph	CO4
theoretical	unctional connectivity analysis.		
UNIT V	APPLICATIONS OF BCI		8
Case Studi	es – Invasive BCIs: decoding and tracking arm (hand) position, controll	ing	
prosthetic	devices such as orthotic hands, Cursor and robotic control using m	ulti	
electrode a	rray implant, Cortical control of muscles via functional electrical stimulation	on.	CO5
Noninvasiv	e BCIs:P300 Mind Speller, Visual cognitive BCI, Emotion detection. Ethics	of	
Brain Comp	outer Interfacing.		
	TOTAL : 45	PERI	ODS
REFEREN	CE BOOKS		
1. Rajesh.	P.N.Rao, Brain-Computer Interfacing: An Introduction, Cambridge Univers	sity P	ress,
•	ition, 2013.	,	

2. Jonathan Wolpaw, Elizabeth Winter Wolpaw, Brain Computer Interfaces: Principles and practice, Oxford University Press, USA, Edition 1, January 2012.

REFERENCE BOOKS

- 1. Ella Hassianien, A &Azar.A.T (Editors), Brain-Computer Interfaces Current Trends and Applications, Springer, 2015.
- 2. Bernhard Graimann, Brendan Allison, GertPfurtscheller, "Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction", Springer, 2010
- 3. Ali Bashashati, MehrdadFatourechi, Rabab K Ward, Gary E Birch, A survey of signal Processing algorithms in brain-computer interfaces based on electrical brain signals Journal of Neural Engineering, Vol.4, 2007, PP.32-57
- 4. Arnon Kohen, Biomedical Signal Processing, Vol I and II, CRC Press Inc, Boca Rato, Florida.
- 5. Bishop C.M., Neural networks for Pattern Recognition, Oxford, Clarendon Press, 1995.
- 6. Andrew Webb, Statistical Pattern Recognition, Wiley International, Second Edition, 2002.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Comprehend and appreciate the significance and role of this course in the present
	contemporary world.
CO2	Evaluate concept of BCI.

CO3 | Assign functions appropriately to the human and to the machine.

CO4 | Select appropriate feature extraction methods

CO5 Use machine learning algorithms for translation.

MAPPING OF COs WITH POS AND PSOS

													PROGRAM			
	PROGRAM OUTCOMES (POs)												SPECIFIC			
COs												OUCOMES				
	PO1	РО	PSO1	PS	PS											
	POI	2	3	4	5	6	7	8	9	10	11	12		02	О3	
CO1	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO2	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO3	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO4	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	
CO5	2	2	2	2	1	-	-	1	1	1	1	1	2	2	2	

OPEN ELECTIVES - I& II

OBT101	INDUSTRIAL BIOTECHNOLOGY	L	T	Р	С
		3	0	0	3
biotech and ap enviror	tivate students to excel in research and to practice the technologies in the fie anology. To provide students with a solid understanding of Biotechnology oplications required to solve real life problems. To provide students with nament that is aware of professional excellence and leadership through in sional bodies	fui ar	ndar n ac	nent ader	tals mic
UNIT I	OVERVIEW OF THE CELL				9
function of int	e and properties, prokaryotic and eukaryotic cells, structural organization racellular organelles; Cell wall, Nucleus, Mitochondria, Golgi bodies, Lysos reticulum, Peroxisomes and Chloroplast.			C	D 1
UNIT II	MICROBIAL GROWTH: PURE CULTURE TECHNIQUES				9
photosynthetic Growth curve, Media formula media, factors	culture techniques for isolation of chemoautotrophs, chemoheterotroph or microorganisms. The definition of growth, mathematical expression of growth, availability of oxygen, culture collection and maintenance of cultures. The ation: principles of microbial nutrition, formulation of culture medium, set influencing the choice of various carbon and nitrogen sources, vitamins, mid antifoam agents. Importance of pH.	grov elec	wth, tive	C	<i>J</i>
UNIT III	MANAGEMENT OF WASTE				9
Monogomast					
•	of Contaminated land, lake sediments and Solid Waste, Anaerobic dig , Bioaugmentation, Phytoremediation, Natural attenuation, Vermicomposting		ion,	C	D 3
•	-		ion,	CC	9
Biostimulation UNIT IV Definition, corsitu bioreme	BIOREMEDIATION astraints and priorities of Bioremediation, Types of bioremediation, In-situ a	ınd		CO	9
Biostimulation UNIT IV Definition, corsitu bioreme	BIOREMEDIATION astraints and priorities of Bioremediation, Types of bioremediation, In-situ and diation techniques, Factors affecting bioremediation. Bioremediation	ınd	Ex-		9
Biostimulation UNIT IV Definition, consitu bioreme Hydrocarbons UNIT V Bio energy: E	BIOREMEDIATION Instraints and priorities of Bioremediation, Types of bioremediation, In-situ and indication techniques, Factors affecting bioremediation. Bioremediation. Lignocellulosic Compounds.	ind on	Ex- of		9 04 9
Biostimulation UNIT IV Definition, consitu bioreme Hydrocarbons UNIT V Bio energy: Elements Biomining: Biomining: Biomining: Biomining	BIOREMEDIATION Instraints and priorities of Bioremediation, Types of bioremediation, In-situ and idiation techniques, Factors affecting bioremediation. Bioremediation. Lignocellulosic Compounds. BIOENERGY AND BIOMINING Intergy and Biomass Production from wastes, biofuels, bio hydrogen and biomass.	and on oma	Ex- of ass. fuel	CC	9 04 9 05
Biostimulation UNIT IV Definition, consitu bioreme Hydrocarbons UNIT V Bio energy: Elements Biomining: Biomining: Biomining: Biomining	BIOREMEDIATION Instraints and priorities of Bioremediation, Types of bioremediation, In-situ and idiation techniques, Factors affecting bioremediation. Bioremediation. Lignocellulosic Compounds. BIOENERGY AND BIOMINING Intergy and Biomass Production from wastes, biofuels, bio hydrogen and bioleaching, monitoring of pollutants, microbially enhanced oil recovery, microbially enhanced.	and on oma	Ex- of ass. fuel	CC	9 04 9 05
Biostimulation UNIT IV Definition, consitu bioreme Hydrocarbons UNIT V Bio energy:	BIOREMEDIATION Instraints and priorities of Bioremediation, Types of bioremediation, In-situ and idiation techniques, Factors affecting bioremediation. Bioremediation. Lignocellulosic Compounds. BIOENERGY AND BIOMINING Intergy and Biomass Production from wastes, biofuels, bio hydrogen and bioleaching, monitoring of pollutants, microbially enhanced oil recovery, microbially enhanced oil recovery enhanced enhanc	on oma oma oial	Ex- of ass. fuel	CC	9 04 9 05
Biostimulation UNIT IV Definition, consitu bioreme Hydrocarbons UNIT V Bio energy:	BIOREMEDIATION Instraints and priorities of Bioremediation, Types of bioremediation, In-situ and idiation techniques, Factors affecting bioremediation. Bioremediation. Lignocellulosic Compounds. BIOENERGY AND BIOMINING Intergy and Biomass Production from wastes, biofuels, bio hydrogen and bioleaching, monitoring of pollutants, microbially enhanced oil recovery, enhanced oil recovery enhanced en	on oma oma oial	Ex- of ass. fuel	CC	9 04 9 05

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Design, perform experiments, analyze and interpret data for investigating complex problems in Biotechnology, Engineering and related fields.
- CO2 Decide and apply appropriate tools and techniques in biotechnological manipulation.
- CO3 Justify societal, health, safety and legal issues
- CO4 Understand his responsibilities in biotechnological engineering practices
- CO5 Understand the need and impact of biotechnological solutions on environment and societal context keeping in view need for sustainable solution.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1 PSO2 PSO3				
CO1	1	1	2	1	1	2	2	4	2	1	1	1	2	1	1		
CO2	2	1	1	2	2	1	2	1	3	4	1	2	1	1	2		
CO3	3	3	2	1	1	2	4	3	1	2	4	5	1	2	2		
CO4	3	3	2	4	2	1	1	1	2	1	3	2	1	2	2		
CO5	2	1	4	5	2	4	3	2	1	2	3	1	1 2 2				

	04	BIOSENSORS	L	Т	Р	С
			3	0	0	3
OBJE	CTIVE					
*	Unders	tand protein based biosensors and their enzyme reactivity, stability and the	eir a	pplic	ation	า
UNIT	I	PROTEIN BASED BIOSENSORS				9
		for enzyme stabilization - Single enzyme nano particles - Nanotubes mic	rop	orus	C	D1
		based nanocrystalline Diamond thin film for processing				
UNIT	ll	DNA BASED BIOSENSOR				9
Heavy bioser		omplexing with DNA and its determination water and food samples - DN	A z	ymo	C	D2
UNIT	III	ELECTRO CHEMICAL APPLICATION			•	9
		osensors - Flurorescence - Absorption - Electrochemical. Integration of bre optic biosensors	var	ious	C	D 3
UNIT	IV	FABRICATION OF BIOSENSORS				9
Techr	niques us	ed for microfabrication - Microfabrication of electrodes - On chip analysis			C	D4
UNIT	V	BIOSENSORS IN RESEARCH				9
		TOTAL	. : 4	5 PE	RIO	DS
	BOOKS				RIO	DS
					RIO	DS
1.		sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press,			ERIO	DS
1. REFE	Biosens RENCE Nanom	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007			ERIO	DS
1. REFE 1. 2.	Biosens RENCE Nanom Smart E	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.			ERIO	DS
1. REFE 1. 2. COUR	Biosens RENCE Nanom Smart E	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.			ERIO	DS
1. REFE 1. 2. COUR	Biosens RENCE Nanom Smart E RSE OUT complete	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. COMES Sion of the course, students will be able to	200	4		
1. REFE 1. 2. COUF	Biosens RENCE Nanom Smart E RSE OUT complete	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.	200 zzym	4		
1. REFE 1. 2. COUR	Biosens RENCE Nanom Smart E RSE OUT complete The stu stability The stu	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. COMES aterials to understand protein based biosensors and their engagements.	200 zym	4 e re	activ	vity,
1. REFE 1. 2. COUF Upon CO1	Biosens RENCE Nanom Smart E RSE OUT complet The stu stability The stu in the fo	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. COMES and the course, students will be able to and their application in protein based biosensors and their enamed their application in protein based biosensors to study the presence of products and their able to understand fluorescence, UV-Vis and electrochemical	zym	e re	activ	vity
1. 2. COUF Upon CO1	Biosens RENCE Nanom Smart E RSE OUT complet The stu stability The stu in the fo	BOOKS aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. COMES and the course, students will be able to and their application in protein based biosensors and their enamed their application in protein based biosensors to study the presence of products and their able to understand fluorescence, UV-Vis and electrochemical	zym of h	e re eavy	activ me	vity,

				ľ	MAPP	ING (OF C	Os W	TH P	Os AN	ID PSC)s									
COs				PF	ROGR	RAM C	OUTC	OME	S (PO	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)								
	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	1						
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	2						
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	2						
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	2						
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	2						

OBT105	INTRODUCTION TO NANOSCIENCE AND NANOTECHNOLOGY	L	Т	Р	С					
		3	0	0	3					
OBJECTIVE										
	stand the principles of processing, manufacturing and characterization of anostructures.	f na	nom	ater	ial					
UNIT I	BASICS OF NANOTECHNOLOGY				,					
Introduction - Time and length scale in structures -Definition of a nanosystem -Dimensionality and size dependent phenomena -Surface to volume ratio -Fraction of surface atoms - Surface energy and surface stress- surface defects-Effect of nanoscale on various properties - Structural, thermal, mechanical, magnetic, optical and electronic properties.										
UNIT II	DIFFERENT CLASSES OF NANOMATERIALS				,					
Classification based on dimensionality-Quantum Dots,Wells and Wires- Carbon based nano materials (buckyballs, nanotubes, grapheme)- Metal based nanomaterials (nanogold, nanosilver and metal oxides) - Nanocomposites-Nanopolymers - Nano ceramics -Biological nanomaterials.										
UNIT III	SYNTHESIS OF NANOMATERIALS									
Synthesis-Pho Chemical Vap	thods:Metal Nanocrystals by Reduction -Sol - gel processing -Solvo otochemical Synthesis - Chemical Vapor Deposition(CVD) - Metal Coor Deposition (MOCVD).Physical Methods:Ball Milling - Electrodeposition C/RF Magnetron Sputtering - Molecular Beam Epitaxy (MBE).	Oxid	e -	CO	D 3					
UNIT IV	CHARACTERIZATION OF NANOSTRUCTURES									
Introduction, structural characterization, X-ray diffraction (XRD-Powder/Single crystal), Small angle X-ray scattering (SAXS), Scanning Electron Microscopy (SEM) - Energy Dispersive X-ray analysis (EDAX)- Transmission Electron Microscope (TEM) - Scanning Tunneling Microscope (STM)-Atomic Force Microscopy (AFM), UV-vis spectroscopy (liquid and solid state) - Raman Spectroscopy -X-ray Photoelectron Spectroscopy (XPS) - Auger Electron spectroscopy (AES).										
UNIT V	APPLICATIONS			•						
• • • • • • • • • • • • • • • • • • • •	conversion and catalysis - Molecular electronics and printed electronics - Polymers with a special architecture - Liquid crystalline systems - Appl			C) 5					

Solar energy conversion and catalysis - Molecular electronics and printed electronics - Nanoelectronics -Polymers with a special architecture - Liquid crystalline systems - Applications in displays and other devices -Nanomaterials for data storage -Photonics, Plasmonics- Chemical and biosensors -Nanomedicine and Nanobiotechnology

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Nano Technology: Basic Science and Emerging Technologies, Mick Wilson, KamaliKannargare., Geoff Smith Overseas Press (2005)
- 2. A Textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGrawHill Education Pvt.Ltd., 2012.
- 3. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, 2002.
- 4. Introduction to Nanotechnology, Charles P.Poole, FrankJ.Owens, Wiley Interscience (2003)
- 5. Textbook of Nanoscience and Nanotechnology, B.S. Murty, P. Shankar, Baldev Raj, B BRath, James Murday, Springer Science & Business Media, 2013.

REFERENCE BOOKS

- 1. Nanotechnology: A gentle introduction to the next Big idea, Mark A.Ratner, Daniel Ratner, Mark Ratne, Prentice Hall P7R:1st Edition (2002)
- 2. Fundamental properties of nanostructed materials Ed D. Fioran, G.Sberveglier, World Scientific 1994
- 3. Nanoscience: Nanotechnologies and Nanophysics, Dupas C., Houdy P., Lahmani M., Springer-Verlag Berlin Heidelberg, 2007

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Demonstrate the understanding of length scales concepts, nanostructures and nanotechnology
CO2	Understand the different classes of nanomaterials.
CO3	Identify the CVD, MOCVD
CO4	Outline the applications of nanotechnology and

CO5 Develop an ability to critically evaluate the promise of a nanotechnology device.

COs				PF	ROGR	RAM C	OUTC	OME	S (PO	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	1					
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	2					
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	2					
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	2					
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	1					

OCE102	INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM	L	Р	Т	С	
		3	0	0	3	
OBJECTIVES		ļ.	1	1	1	
To intro	duce the fundamentals and components of Geographic Information Sys	stem				
To prov	ride details of spatial data models.					
To know	w the details of data input and topology					
To know	w the knowledge on data management and output processes					
To know	w the data quality and standards					
UNIT I	FUNDAMENTALS OF GIS				ç	
Introduction to	GIS - Basic spatial concepts - Coordinate Systems - GIS and Info	rmat	ion			
Systems - Def	finitions – History of GIS - Components of a GIS – Hardware, Software	e, Da	ata,	a, co		
People, Metho	ds – Proprietary and open-source Software - Types of data – Spatial, A	4ttrib	ute	C	<i>)</i>	
data- types of a	attributes – scales/ levels of measurements.					
UNIT II	SPATIAL DATAMODELS			l .	9	
Database Stru	ctures – Relational, Object Oriented – Entities – ER diagram - data n	node	ls -			
conceptual, log	gical and physical models - spatial data models – Raster Data Struc	cture	s –	C	D2	
Raster Data Co	ompression - Vector Data Structures - Raster vs Vector Models- TIN an	id GF	RID	C	JZ	
data models.						
UNIT III	DATA INPUTANDTOPOLOGY				9	
Scanner - Ras	ter Data Input – Raster Data File Formats – Georeferencing – Vecto	or D	ata			
Input -Digitise	r – Datum Projection and reprojection -Coordinate Transformation – To	polog	ју -	C	23	
•	nnectivity and containment – Topological Consistency – Non topologi	ical	file		J J	
	ute Data linking – Linking External Databases – GPS Data Integration					

UNIT IV DATA QUALITY AND STANDARDS

9

Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage - Metadata - GIS Standards -CO4 Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENTANDOUTPUT

9

CO₅

Import/Export - Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation - Chart/Graphs - Multimedia - Enterprise Vs. Desktop GIS- distributed GIS.

TOTAL: 45 PERIODS

TEXT BOOKS

- Kang TsungChang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition,2011.
- 2. Ian Sarah Cornelius, SteveCarver, Srinivasa Raju, "An Introduction Heywood, Geographical Information Systems, Pearson Education, 2ndEdition, 2007.

REFERENCE BOOKS

Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Have basic idea about the fundamentals of GIS. CO2 Understand the types of data models. CO3 Get knowledge about data input and topology. CO4 Gain knowledge on data quality and standards.

MAPPING OF COS WITH POS AND PSOS

Understand data management functions and data output

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1	
CO2	2	2	1	1	2	-	1	-	-	-	-	2	2	2	2	
CO3	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1	
CO4	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1	
CO5	2	2	1	1	2	-	1	-	-	-	-	2	2	2	2	

CO5

OCH101	HOSPITAL MANAGEMENT	L	Т	Р	С
		3	0	0	3

- ❖ To understand the fundamentals of hospital administration and management.
- ❖ To know the market related research process and its HRM
- To understand the recruitment and training processes in hospitals
- To explore various information management systems and relative supportive services.
- To learn the quality and safety aspects in hospital.

UNIT I	OVERVIEW OF HOSPITAL ADMINISTRATION		9				
	ween Hospital and Industry, Challenges in Hospital Administration – Hospital pment Planning – Functional Planning	C	01				
UNIT II	HUMAN RESOURCE MANAGEMENT IN HOSPITAL		9				
•	RM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory wer Planning.	C	02				
UNIT III RECRUITMENT AND TRAINING							
Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer.							
UNIT IV	SUPPORTIVE SERVICES		9				
Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services.							
UNIT V	COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL		9				
Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules.							

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI Fourth Edition, 2006.
- 2. G.D.Kunders, "Hospitals Facilities Planning and Management TMH, New Delhi Fifth Reprint 2007.

REFERENCE BOOKS

- 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977.
- 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990.
- 3. Peter Berman "Health Sector Reform in Developing Countries" Harvard University Press, 1995.
- 4. William A. Reinke "Health Planning For Effective Management" Oxford University Press.1988
- 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21st Century", Eric Calrendon Press 2002.
- 6. Arnold D. Kalcizony& Stephen M. Shortell, "Health Care Management", 6th Edition Cengage Learning, 2011.

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Explain the principles of Hospital administration. CO2 Identify the importance of Human resource management. CO3 List various marketing research techniques. CO4 Identify Information management systems and issues in supporting departments of hospitals

MAPPING OF COS WITH POS AND PSOS

Understand safety procedures followed in hospitals

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PS									PSO3							
CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1		
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1		
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1		
CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1		
CO5	3	3	3	3	2	-	-	-	-	2	2	2	1 1 1				

CO5

OEC103 BASICS OF EMBEDDED SYSTEMS AND IOT L T P C 3 0 0 3

OBJECTIVES:

- Understand the concepts of embedded system design and analysis
- Learn the architecture and programming of ARM processor
- Be exposed to the basic concepts of embedded programming
- Learn the concepts of IOT

UNIT I INTRODUCTION TO EMBEDDED SYSTEM

C

Complex systems and microprocessors— Embedded system design process - Design methodologies- Design flows - Requirement Analysis — Specifications-System analysis and architecture design — Quality Assurance techniques—Design example: Model train controller.

UNIT II BASICS OF ARM ARCHITECTURE AND PERIPHERAL 9 INTERFACING

ARM Architecture Versions – ARM Architecture – Instruction Set – Stacks and Subroutines – Features of the LPC 214X Family – Peripherals – The Timer Unit – Pulse Width Modulation Unit – UART – Block Diagram of ARM9 and ARM Cortex M3 MCU

UNIT III EMBEDDED PROGRAMMING CONCEPTS

9

Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing

UNIT IV INTRODUCTION TO IOT

9

Functional blocks of an IoT system - Basics of Physical and logical design of IoT - IoT enabled domains - Difference between IoT - Passive and active sensors - Different applications of sensors - IoT front-end hardware Case Studies - Smart Parking, Air Pollution Monitoring.

UNIT V COMMUNICATION PROTOCOLS FOR EMBEDDED AND OF STREET OF STREE

Embedded Networking: Introduction-Serial/Parallel Communication - Serial communication protocols- RS485 - Synchronous Serial Protocols - Serial Peripheral Interface (SPI) - Inter Integrated Circuits (I2C). IoT Infrastructure - 6LowPAN - IPv6 - Wi-Fi, Bluetooth, ZigBee..

TOTAL: 60 PERIODS

TEXT BOOKS:

- Marilyn Wolf, —Computers as Components Principles of Embedded Computing System DesignII, Third Edition —Morgan Kaufmann Publisher (An imprint from Elsevier), 2012. (UNIT I, II, III, IV)
- 2. ArshdeepBahga, Vijay Madisetti, "Internet of Things, A Hands-on-Approach", 1st Edition, Universities press Pvt. Ltd., India, 2015.
- 3. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6, 1st Edition, John Wiley & Sons", Inc, USA, 2013

REFERENCES:

- 1. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", 1st Edition, John Wiley & Sons Ltd, UK, 2014
- 2. Peter Waher, "Learning Internet of Things", 1st Edition, Packt Publishing Ltd, UK, 2015.
- 3. Charles Bell, "Beginning Sensor Networks with Arduino and Raspberry Pi", 1st Edition, Apress Publishers, USA, 2013.
- 4. Raj Kamal, Internet of Things, Architecture and Design Principles, McGraw-Hill, 2017

COURSE OUTCOMES:

By the end of this course, the student should be able to:

CO1	Understand the Embedded System Design Process
CO2	Describe the architecture and programming of ARM processor
CO3	Outline the concepts of embedded system programming
CO4	Explain the basic concepts of IOT
CO5	Model Networked systems with basic protocols

COs				PRO	GRAI	M OU	ITCO	MES	(POs	5)				RAM SP OMES (
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	-	2	1	2	-	1	2	2	3	3	2
CO2	3	3	2	3	•	3	1	2	•	1	2	2	3	3	2
CO3	3	3	2	3	3	3	1	2	1	1	2	2	3	3	2
CO4	3	3	3	3	•	2	1	2	•	1	2	2	3	3	2
CO5	3	3	3	3	2	3	1	2	1	1	2	2	3	3	2

OBJECTIVES To introduce electric circuits and its analysis To impart knowledge on solving circuit equations using network theorems To introduce the phenomenon of resonance in coupled circuits. To introduce Phasor diagrams and analysis of three phase circuits UNIT I BASIC CIRCUITS ANALYSIS Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network reductions- voltage and current division, source transformation; Mesh and node analysis; CO3	OEE101	BASIC CIRCUIT THEORY L P	Т	C
To introduce electric circuits and its analysis To impart knowledge on solving circuit equations using network theorems To introduce the phenomenon of resonance in coupled circuits. To introduce Phasor diagrams and analysis of three phase circuits WNIT I BASIC CIRCUITS ANALYSIS Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network		3 0	0	3
To impart knowledge on solving circuit equations using network theorems To introduce the phenomenon of resonance in coupled circuits. To introduce Phasor diagrams and analysis of three phase circuits Note	OBJECTIVES			
To introduce the phenomenon of resonance in coupled circuits. To introduce Phasor diagrams and analysis of three phase circuits UNIT I BASIC CIRCUITS ANALYSIS Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	∻ Toi	ntroduce electric circuits and its analysis		
To introduce Phasor diagrams and analysis of three phase circuits UNIT I BASIC CIRCUITS ANALYSIS Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	∻ Toi	mpart knowledge on solving circuit equations using network theorems		
Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	❖ Toi	ntroduce the phenomenon of resonance in coupled circuits.		
Resistive elements - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws – methods of analysis-Mesh current and node voltage. UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	To i	ntroduce Phasor diagrams and analysis of three phase circuits		
Metwork reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. CO2 MNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	UNIT I	BASIC CIRCUITS ANALYSIS		
Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. CO2 CO3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5	Resistive eler	nents - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs laws –	CC	_
Network reduction- voltage and current division, source transformation, star delta conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	methods of ar	nalysis-Mesh current and node voltage.		, ,
Conversion; Network theorems- Thevenins and Norton Theorems, Superposition Theorem, Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	JNIT II	NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS		
Maximum power transfer theorem, Reciprocity Theorem, Millman's theorem. UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	Network red	uction- voltage and current division, source transformation, star delta		
UNIT III ANALYSIS OF AC CIRCUITS Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	conversion; N	etwork theorems- Thevenins and Norton Theorems, Superposition Theorem,	CC)2
Introduction to AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	Maximum pov	ver transfer theorem, Reciprocity Theorem, Millman's theorem.		
real power, reactive power, apparent power, power factor; RL, RC, RLC networks; Network	UNIT III	ANALYSIS OF AC CIRCUITS		
	ntroduction t	AC circuits- Inductive reactance, Capacitive reactance, Phasor diagrams,		
reductions- voltage and current division, source transformation; Mesh and node analysis;	eal power, re	active power, apparent power, power factor; RL, RC, RLC networks; Network		
	eductions- v	oltage and current division, source transformation; Mesh and node analysis;	CC)3
		rems- Thevenins and Norton Theorems, Superposition Theorem , Maximum		

UNIT IV THREE PHASE CIRCUITS

9

A.C. circuits – Average and RMS value, Phasor Diagram, Power, Power Factor and Energy; Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced; phasor diagram of voltages and currents; power measurement in three phase circuits.

CO4

UNIT V RESONANCE AND COUPLED CIRCUITS

9

Series and parallel resonance – frequency response, Quality factor and Bandwidth; Self and mutual inductance; Coefficient of coupling; Tuned circuits – Single tuned circuits.

CO5

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers, edition, New Delhi, 2013.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.
- 3. Allan H. Robbins, Wilhelm C. Miller, "Circuit Analysis Theory and Practice", Cengage Learning India, 2013.

REFERENCE BOOKS

- 1. Chakrabarti A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 2. Jegatheesan, R., "Analysis of Electric Circuits," McGraw Hill, 2015.
- 3. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, McGraw- Hill, New Delhi, 2010.
- 4. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 2015.
- 5. Mahadevan, K., Chitra, C., "Electric Circuits Analysis," Prentice-Hall of India Pvt Ltd., New Delhi, 2015.
- 6. Richard C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 7th Edition, John Wiley & Sons, Inc. 2015.
- 7. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", McGraw Hill, 2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Ability to introduce electric circuits and its analysis
CO2	Ability to impart knowledge on solving circuit equations using network theorems
CO3	Ability to introduce the phenomenon of resonance in coupled circuits.
CO4	Ability to introduce Phasor diagrams and analysis of three phase circuits
CO5	Ability to impart knowledge on resonance and coupled circuits

COs				PR	OGRA	O MA	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1		
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3		
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3		
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3		
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3		

OEE103	INTRODUCTION TO RENEWABLE ENERGY SYSTEMS	L	Р	Т	С
		3	0	0	3

- ❖ About the stand alone and grid connected renewable energy systems.
- Design of power converters for renewable energy applications.
- Wind electrical generators and solar energy systems.
- Power converters used for renewable energy systems.

UNIT I	INTRODUCTION		9
generation on energy resour	aspects of electric energy conversion: impacts of renewable energy environment (cost-GHG Emission) - Qualitative study of different renewable ces: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and ole energy systems.	СО	1
UNIT II	ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION		9
Reference the	ory fundamentals-principle of operation and analysis: IG and PMSG	СО	2
UNIT III	POWER CONVERTERS		9
converters (inv	iagram of solar photo voltaic system -Principle of operation: line commutated version-mode) - Boost and buck-boost converters- selection of inverter, battery zing Wind: Three phase AC voltage controllers	СО	3
UNIT IV	ANALYSIS OF WIND AND PV SYSTEMS		9
	peration of fixed and variability speed wind energy conversion systems and Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid ar system	СО	4
UNIT V	HYBRID RENEWABLE ENERGY SYSTEMS		9
_	rid Systems- Range and type of Hybrid systems- Case studies of Wind-PV rer Point Tracking (MPPT).	СО	5
	TOTAL : 45 P	ERIO	DS

TEXT BOOKS

- 1. S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- 2. B.H.Khan, "Non-conventional Energy Sources", Tata McGraw-hill Publishing Company, New Delhi, 2017.

REFERENCE BOOKS

- 1. Muhammad H. Rashid, "Power Electronics Hand Book", Third Edition, Butterworth-Heinemann, 2015.
- 2. Ion Boldea, "Variability Speed Generators", Second Edition, CRC Press, 2015.
- 3. Rai. G.D, "Non- conventional Energy Sources", Khanna Publishers, 2004.
- 4. Gray, L. Johnson, "Wind Energy Systems", Prentice Hall, 2006.
- 5. Andrzej M. Trzynnadlowski, "Introduction to Modern Power Electronics", Third Edition, WileyIndia Pvt. Ltd, 2016.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Ability to understand and analyze power system operation, stability, control and protection.
CO2	Ability to handle the engineering aspects of electrical energy generation and utilization.
CO3	Ability to understand the stand alone and grid connected renewable energy systems.
CO4	Ability to design of power converters for renewable energy applications.
CO5	Ability to acquire knowledge on wind electrical generators and solar energy systems.

COs				PR	OGR <i>A</i>	AM O	UTCO	MES	(POs	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1		
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3		
СОЗ	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3		
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3		
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3		

OEI102	ROBOTICS	L	Т	Р	С
		3	0	0	3
OBJECTIVE	,				
To under	erstand the functions of the basic components of a Robot.				
To stud	y the use of various types of End of Effectors and Sensors				
To impa	art knowledge in Robot Kinematics and Programming				
To lear	n Robot safety issues and economics.				
UNIT I	FUNDAMENTALSOF ROBOT				9
Classification-	nition - Robot Anatomy - Coordinate Systems, Work Envelope Typ Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay and their Functions-Need for Robots-Different Applications.			CC)1
UNIT II	ROBOT DRIVE SYSTEMS ANDEND EFFECTORS				9
Stepper Motors Drives, End I Magnetic Grip	ives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo s, A.C. Servo Motors-Salient Features, Applications and Comparison of a Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Gpers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; external Grippers; Selection and Design Considerations.	all th iripp	ese ers,	CC	1
UNIT III	SENSORS AND MACHINEVISION				9
Sensors, Range I Flight, Range I Wrist Sensors Digitizing Ima Processing a	zo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic I ge Sensors Triangulations Principles, Structured, Lighting Approach, Finders, Laser Range Meters, Touch Sensors ,binary Sensors., Analog S, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensige Data- Signal Conversion, Image Storage, Lighting Techniques, and Analysis-Data Reduction, Segmentation, Feature Extraction, Other Algorithms, Applications- Inspection, Identification, Visual Service.	Fime Sense Ing Im Ob	e of ors, and age ject		
UNIT IV	ROBOT KINEMATICS AND ROBOTPROGRAMMING				9
Kinematics of Degrees of free Trajectory Gen Programming,	natics, Inverse Kinematics and Difference; Forward Kinematics and Finantipulators with Two, Three Degrees of Freedom (in 2 Dimension edom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynerator, Manipulator Mechanism Design-Derivations and problems. Lead Robot programming Languages-VAL Programming-Motion Commands, and Effector commands and simple Programs.	n), F nam thro	our ics, ugh	СС	14
UNIT V	IMPLEMENTATION ANDROBOTECONOMICS				9
	nplementation of Robots in Industries-Various Steps; Safety Considerations - Economic Analysis of Robots.	ions	for	CC)5
	TOTAL	. : 4	5 PE	RIO	DS
TEXT BOOKS					
	R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integra e Hall, 2003.	ated	App	roac	 :h",

2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCE BOOKS

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co.,1994.
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co.,1992.
- 4. Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd.,1991.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the functions of the basic components of a Robot.
CO2	Study the use of various types of End of Effectors and Sensors
CO3	Understand Sensors and Machine Vision of Robot
CO4	Understand Robot Kinematics and Robot Programming
CO5	Understand the Implementation of Robots in Industries

COs				ROGR	OME	PROGRAM SPECIFIC OUTCOMES (PSOs)									
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	2	-	-	-	-	2	2	3	2	1	2
CO2	3	3	1	2	2	-	-	-	-	2	2	3	3	2	2
CO3	3	3	1	2	2	-	-	-	-	2	2	3	3	2	2
CO4	3	2	1	2	2	-	-	-	-	2	2	3	3	2	2
CO5	2	2	1	2	2	-	-	-	-	2	2	3	2	2	2

	TOTAL QUALITY MANAGEMENT	L	Т	Р	С
		3	0	0	3
OBJECTIVES	,				
To lear	rn the quality philosophies and tools in the managerial perspective.				
UNIT I	INTRODUCTION				9
quality, Trans	on, mission and policy statements. Customer Focus – customer percelating needs into requirements, customer retention. Dimensions of produce. Cost of quality.	•			:01
UNIT II	PRINCIPLES AND PHILOSOPHIES OF QUALITY MANAGEMENT				9
Taguchi techr	ne contributions of Deming, Juran Crosby, Masaaki Imai, Feigenbaum, Ish niques — introduction, loss function, parameter and tolerance design, s oncepts of Quality circle, Japanese 5S principles and 8D methodology			C	:02
UNIT III	STATISTICAL PROCESS CONTROL				9
sigma - conce parallel, pro Terotechnolog	attributed. Process capability – meaning, significance and measurement of process capability. Reliability concepts – definitions, reliability in second life characteristics curve. Total productive maintenance by. Business process Improvement (BPI) – principles, applications, reengulations and limitations.	ries (T	and	c	:О3
UNIT IV	TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT				9
House of qual requirements	ons development (QFD) – Benefits, Voice of customer, information organity (HOQ), building a HOQ, QFD process. Failure mode effect analysis (For reliability, failure rate, FMEA stages, design, process and docume old & new). Bench marking and POKA YOKE.	ME	A) -	- c	:04
UNIT V	QUALITY SYSTEMS ORGANIZING AND IMPLEMENTATION				9

TEXT BOOKS

- Dale H.Besterfield, Carol Besterfield Michna, Glen H. Besterfield, Mary Besterfield SacreHermant – Urdhwareshe, Rashmi Urdhwareshe, Total Quality Management, Revised Third edition, Pearson Education, 2011
- 2. Shridhara Bhat K, Total Quality Management Text and Cases, Himalaya Publishing House, First Edition 2002.

REFERENCE BOOKS

- 1. Douglas C. Montgomory, Introduction to Statistical Quality Control, Wiley Student Edition, 4th Edition, Wiley India Pvt Limited, 2008.
- 2. James R. Evans and William M. Lindsay, The Management and Control of Quality, Sixth Edition, Thomson, 2005.
- 3. PoornimaM.Charantimath, Total Quality Management, Pearson Education, First Indian Reprint 2003.
- 4. Indian standard quality management systems Guidelines for performance improvement (Fifth Revision), Bureau of Indian standards, New Delhi.

COURSE OUTCOMES

At the end of the course, the student should be able:

CO1	To apply quality philosophies and tools to facilitate continuous improvement and ensure customer delight.
CO2	To understand the principles of business process improvement
CO3	To understand and apply the concepts of statistical process control
CO4	To apply the tools and techniques used for quality management
CO5	To understand the methods in organizing and implementation of quality systems

COs				PR	OGRA	AM O	UTCC	MES	(POs	s)			PROGRAM SPECIFIC OUTCOMES (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	2	3	3	3	-	-	-	-	2	2	2	1	1	1			
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1			
CO3	3	3	2	3	3	-	-	-	-	2	2	2	1	1	1			
CO4	2	3	3	3	2	-	-	-	-	2	2	2	1	1	1			
CO5	3	3	2	3	2	-	-	-	-	2	2	2	1	1	1			

OME104	INDUSTRIAL SAFETY ENGINEERING	L	T	Р	С
		3	0	0	3

- ❖ To provide exposure to the students about safety and health provisions related to hazardous processes as laid out in Factories act 1948
- To familiarize students with powers of inspectorate of factories
- ❖ To help students to learn about Environment act 1986 and rules framed under the act.
- ❖ To provide wide exposure to the students about various legislations applicable to an industrial unit.
- To prepare onsite and offsite emergency plan.

penalties and procedures-Tamil Nadu Factories Rules 1950 under Safety and health chapters of Factories Act 1948 UNIT II	:01						
General powers of the central government, prevention, control and abatement of environmental pollution-Biomedical waste (Management and handling Rules, 1989-The noise pollution (Regulation and control) Rules, 2000-The Batteries (Management and Handling Rules) 2001- No Objection certificate from statutory authorities like pollution control board. Air Act 1981 and Water Act 1974: Central and state boards for the prevention and control of air pollution-powers and functions of boards – prevention and control of air pollution and water pollution – fund – accounts and audit, penalties and procedures. UNIT III MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMICAL RULES 1989 Definitions – duties of authorities – responsibilities of occupier – notification of major accidents – information to be furnished – preparation of offsite and onsite plans – list of hazardous and							
environmental pollution-Biomedical waste (Management and handling Rules, 1989-The noise pollution (Regulation and control) Rules, 2000-The Batteries (Management and Handling Rules) 2001- No Objection certificate from statutory authorities like pollution control board. Air Act 1981 and Water Act 1974: Central and state boards for the prevention and control of air pollution-powers and functions of boards – prevention and control of air pollution and water pollution – fund – accounts and audit, penalties and procedures. UNIT III MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMICAL RULES 1989 Definitions – duties of authorities – responsibilities of occupier – notification of major accidents – information to be furnished – preparation of offsite and onsite plans – list of hazardous and	9						
RULES 1989 Definitions – duties of authorities – responsibilities of occupier – notification of major accidents – information to be furnished – preparation of offsite and onsite plans – list of hazardous and CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GO2						
- information to be furnished - preparation of offsite and onsite plans - list of hazardous and	9						
toxic chemicals – safety reports – safety data sheets.	:03						
UNIT IV OTHER ACTS AND RULES 9	9						
Indian Boiler Act 1923, static and mobile pressure vessel rules (SMPV), motor vehicle rules, mines act 1952, workman compensation act, rules – electricity act and rules – hazardous wastes (management and handling) rules, 1989, with amendments in 2000- the building and other construction workers act 1996., Petroleum rules, Gas cyclinder rules-Explosives Act 1983-Pesticides Act							
UNIT V INTERNATIONAL ACTS AND STANDARDS 9	9						
Occupational Safety and Health act of USA (The Williames - Steiger Act of 1970) – Health and safety work act (HASAWA 1974, UK) – OSHAS 18000 – ISO 14000 – American National Standards Institute (ANSI).	·05						

TEXT BOOKS

1. The Factories Act 1948, Madras Book Agency, Chennai, 2000

TOTAL: 45 PERIODS

- 2. The Environment Act (Protection) 1986, Commercial Law Publishers (India) Pvt.Ltd., New Delhi.
- 3. Water (Prevention and control of pollution) act 1974, Commercial Law publishers (India) Pvt.Ltd., New Delhi.

REFERENCE BOOKS

- 1. Air (Prevention and control of pollution) act 1981, Commercial Law Publishers (India) Pvt.Ltd., New Delhi.
- 2. The Indian boilers act 1923, Commercial Law Publishers (India) Pvt.Ltd., Allahabad.
- 3. The manufacture, storage and import of hazardous chemical rules 1989, Madras Book Agency, Chennai.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To list out important legislations related to health, Safety and Environment.
CO2	To list out requirements mentioned in factories act for the prevention of accidents.
CO3	To understand the health and welfare provisions given in factories act.
CO4	To understand the statutory requirements for an Industry on registration, license and its renewal.
CO5	To prepare onsite and offsite emergency plan.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO2	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO3	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO4	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO5	2	2	-	-	1	2	2	2	2	2	2	2	1	1	1

AUDIT COURSES

AD1001	CONSTITUTION OF INDIA	L	Т	Р	С
		2	0	0	0

OBJECTIVES

- Teach history and philosophy of Indian Constitution.
- Describe the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- Summarize powers and functions of Indian government.
- Explain emergency rule.
- Explain structure and functions of local administration.

UNIT I	INTRODUCTION	
•	aking of the Indian Constitution-Drafting Committee- (Composition & Working) - the Indian Constitution-Preamble-Salient Features	CC
UNIT II	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES	
Freedom of Directive Prin UNIT III Parliament-Co	Rights-Right to Equality-Right to Freedom-Right against Exploitation Right to Religion-Cultural and Educational Rights-Right to Constitutional Remedies ciples of State Policy-Fundamental Duties ORGANS OF GOVERNANCE omposition-Qualifications and Disqualifications-Powers and Functions-Executive vernor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Powers and Functions	co
Qualifications		
Qualifications UNIT IV	EMERGENCY PROVISIONS	

District's Administration head- Role and Importance-Municipalities- Introduction- Mayor and role of Elected Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI-Zila Pachayat-Elected officials and their roles- CEO ZilaPachayat- Position and role-Block level Organizational Hierarchy (Different departments)-Village level- Role of Elected and Appointed officials-Importance of grass root democracy

CO₅

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Basu D D, Introduction to the Constitution of India, Lexis Nexis, 2015.
- 2. Busi S N, Ambedkar B R framing of Indian Constitution, 1st Edition, 2015.
- 3. Jain M P, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. The Constitution of India (Bare Act), Government Publication, 1950

COURSE OUTCOMES

Upon com	pletion of	the cou	ırse, studen	its will be	able to

CO1	Able to understand history and philosophy of Indian Constitution.
CO2	Able to understand the premises informing the twin themes of liberty and freedom
	from a civil rights perspective.
CO3	Able to understand powers and functions of Indian government.
CO4	Able to understand emergency rule.
CO5	Able to understand structure and functions of local administration.

COs				PRC	GRA	M OL	JTCO	MES	(POs))			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-	
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-	
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-	
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-	
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-	

AD1002	VALUE EDUCATION L T	PC
	2 0	0
OBJECTIVE	S	
Deve	lop knowledge of self-development	
 Expla 	ain the importance of Human values	
• Deve	lop the overall personality through value education	
Over	come the self-destructive habits with value education	
• Interp	oret social empowerment with value education	
UNIT I	INTRODUCTION TO VALUE EDUCATION	9
	elf-development –Social values and individual attitudes, Work ethics, Indian vision	CO1
of humanism	, Moral and non- moral valuation, Standards and principles, Value judgments	
UNIT II	IMPORTANCE OF VALUES	9
Importance o	f cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence,	
Concentration Patriotism, Lo	n, Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National Unity, ove for nature, Discipline	CO2
Concentration	n, Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National Unity,	CO2
Concentration Patriotism, Lo UNIT III Personality and	INFLUENCE OF VALUE EDUCATION and Behaviour development - Soul and Scientific attitude. Positive Thinking, discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, our, Universal brotherhood and religious tolerance, True friendship Happiness Vs	
Concentration Patriotism, Lo UNIT III Personality a Integrity and Dignity of lab	INFLUENCE OF VALUE EDUCATION and Behaviour development - Soul and Scientific attitude. Positive Thinking, discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, our, Universal brotherhood and religious tolerance, True friendship Happiness Vs	9

UNIT V VALUE EDUCATION IN SOCIAL EMPOWERMENT

CO₅

Equality, Non-violence, Humility, Role of Women, All religions and same message, Mind your Mind, Self-control, Honesty, Studying effectively

TOTAL: 45 PERIODS

REFERENCE:

Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press ,New Delhi

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Gain knowledge of self-development
CO2	Learn the importance of Human values
CO3	Develop the overall personality through value education
CO4	Overcome the self destructive habits with value education
CO5	Interpret social empowerment with value education

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-	
CO2	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-	
CO3	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-	
CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-	
CO5	-	ı	-	-	-	-	1	1	-	-	-	1	-	-	-	

AD1003	PEDAGOGY STUDIES	L	Т	Р	С
		2	0	0	0

- Understand the methodology of pedagogy.
- Compare pedagogical practices used by teachers in formal and informal classrooms in developing countries.
- Infer how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
- Illustrate the factors necessary for professional development.
- Identify the Research gaps in pedagogy.

UNIT I	INTRODUCTION AND METHODOLOGY	
learning, Cur	ionale, Policy background, Conceptual framework and terminology - Theories of riculum, Teacher education - Conceptual framework, Research questions – nethodology and Searching.	CO1
UNIT II	THEMATIC OVERVIEW	9
• •	practices are being used by teachers in formal and informal classrooms in puntries - Curriculum, Teacher education.	CO2
UNIT III	EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES	9
education (cu support effect for effective	for the in depth stage: quality assessment of included studies - How can teacher irriculum and practicum) and the school curriculum and guidance materials best tive pedagogy? - Theory of change - Strength and nature of the body of evidence pedagogical practices - Pedagogic theory and pedagogical approaches - tudes and beliefs and Pedagogic strategies.	COS
UNIT IV	REINCARNATION THROUGH VALUE EDUCATION	9
support - Sup	development: alignment with classroom practices and follow up support – Peer poort from the head teacher and the community - Curriculum and assessment – arning: limited resources and large class sizes	CO4

UNIT V	RESEARCH GAPS AND FUTURE DIRECTIONS		9
	sign – Contexts – Pedagogy - Teacher education - Curriculum and assessment - and research impact.	co)5

REFERENCE:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

COURSE OUTCOMES

Upon c	Upon completion of the course, students will be able to					
CO1	Understand the methodology of pedagogy					
CO2	Understand Pedagogical practices used by teachers in formal and informal classrooms in developing countries.					
CO3	Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.					
CO4	Know the factors necessary for professional development.					
CO5	Identify the Research gaps in pedagogy.					

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-

TOTAL: 45 PERIODS

AD1004	STRESS MANAGEMENT BY YOGA	L	Т	Р	С
		2	0	0	0

- Develop healthy mind in a healthy body thus improving social health also improve efficiency
- Invent Do's and Don't's in life through Yam
- Categorize Do's and Don't's in life through Niyam
- Develop a healthy mind and body through Yog Asans
- Invent breathing techniques through Pranayam

UNIT I	INTRODUCTION TO YOGA	9			
Definitions of	f Eight parts of yog.(Ashtanga)	CO1			
UNIT II	YAM	9			
Do`s and Do	on't's in life.Shaucha, santosh, tapa, swadhyay, ishwarpranidhan	CO2			
UNIT III	NIYAM	9			
Do`s and Do	on't's in life. Ahinsa, satya, astheya, bramhacharya and aparigraha	CO3			
UNIT IV	ASAN	9			
Professional development: alignment with classroom practices and follow up support – Peer support - Support from the head teacher and the community - Curriculum and assessment – Barriers to learning: limited resources and large class sizes					

UNIT V	RESEARCH GAPS AND FUTURE DIRECTIONS		9
Research des	sign – Contexts – Pedagogy - Teacher education - Curriculum and assessment -	C) 5

TOTAL: 45 PERIODS

REFERENCE:

- 1. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata
- 2. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur

COURSE OUTCOMES

Dissemination and research impact.

Upon c	Upon completion of the course, students will be able to						
CO1	Develop healthy mind in a healthy body thus improving social health also improve efficiency						
CO2	Learn Do's and Don't's in life through Yam						
CO3	Learn Do's and Don't's in life through Niyam						
CO4	Develop a healthy mind and body through Yog Asans						
CO5	Learn breathing techniques through Pranayam						

COs				PRO	OGRA	M OL	JTCO	MES	(POs)					RAM SP OMES (
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO3	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	1	-	-		1	-	-	-

AD1005	PERSONALITY DEVELOPMENT THROUGH LIFE	L	T	Р	С
	ENLIGHTENMENT SKILLS				
		2	0	0	0

- Develop basic personality skills holistically
- Develop deep personality skills holistically to achieve happy goals
- Rewrite the responsibilities
- Reframe a person with stable mind

UNIT I	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I	9
Verses- 19,2 (virtue)	0,21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) - Verses- 26,28,63,65	CO1
UNIT II	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II	9
Verses- 52,53	3,59 (dont's) - Verses- 71,73,75,78 (do's)	CO2
UNIT III	ORGANS OF GOVERNANCE	9
	ngwad Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, 27, 35 rses 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48	СОЗ
UNIT IV	EMERGENCY PROVISIONS	9
	of basic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 erses 13, 14, 15, 16,17, 18	CO4

UNIT V	LOCAL ADMINISTRATION	9
Chapter2-Ver	ses 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chapter18 -	CO5
Verses 37,38,	63	

REFERENCE:

- 1. Gopinath,Rashtriya Sanskrit Sansthanam P, Bhartrihari's ThreeSatakam , Niti-sringarvairagya, New Delhi,2010
- 2. Swami Swarupananda , Srimad Bhagavad Gita, Advaita Ashram, Publication Department, Kolkata, 2016.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To develop basic personality skills holistically
CO2	To develop deep personality skills holistically to achieve happy goals
CO3	To rewrite the responsibilities
CO4	To reframe a person with stable mind, pleasing personality and determination
CO5	To awaken wisdom in students

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		

TOTAL: 45 PERIODS

AD1006	UNNAT BHARAT ABHIYAN	L	Т	Р	С
		2	0	0	0

- To engage the students in understanding rural realities
- To identify and select existing innovative technologies, enable customization of technologies, or devise implementation method for innovative solutions, as per the local needs.
- To leverage the knowledge base of the institutions to devise processes for effective implementation of various government programmes
- To understand causes for rural distress and poverty and explore solutions for the same
- To apply classroom knowledge of courses to field realities and thereby improve quality of learning

UNIT I	QUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARAT ABHIYAN	9				
Introduction to	Unnat Bharat Abhiyan - concept, scope and objectives, rural life, rural society,	'				
cast and ger	nder relations, rural values with respect to community, nature and resources,					
elaboration o	f "Soul of India lies in villages" - (Gandhi Ji), Rural infrastructure, problems in	CO1				
rural area.						
Assignment: I	Prepare a map (Physical , visual and digital) of the village you visited and write an					
essay about i	nter-family relation in that village.					
UNIT II	RURAL ECONOMY AND LIVELIHOOD	9				
Agriculture, fa	arming, land ownership pattern, water management, animal husbandry, non-farm	1				
livelihoods an	d artisans, rural entrepreneurs, rural market .					
Assignment:	Describe your analysis of rural household economy, it's challenges and possible	CO2				
pathways to a	address them. Group discussion in class- (4) Field visit 3.					
UNIT III	RURAL INSTITUTIONS	9				
History of Ru	ral Development, Traditional rural organizations, Self Help Groups, Gram Swaraj	,				
and 3- Tier P	anchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Committee),					
local civil soc	iety, local administration. Introduction to Constitution, Constitutional Amendments	CO3				
in Panchayati Raj – Fundamental Rights and Directive Principles.						
Assignment:	Panchayati Raj institutions in villages? What would you suggest to improve their					
effectiveness	? Present a case study (written or audio-visual). Field Visit – 4.					

RURAL DEVELOPMENT PROGRAMMES **UNIT IV** 9 National programmes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman Bharat, Swatchh Bharat, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning, NRLM, MNREGA, etc. **CO4** Written Assignment: Describe the benefits received and challenges faced in the delivery of one of these programmes in the rural community, give suggestions about improving implementation of the programme for the rural poor. UNIT V FIELD WORK 9 Each student selects one programme for field visit Field based practical activities: Interaction with SHG women members, and study of their functions and challenges; planning for their skill building and livelihood activities · Visit MGNREGS project sites, interact with beneficiaries and interview functionaries at the work site · Field visit to Swachh Bharat project sites, conduct analysis and initiate problem solving measures Conduct Mission Antyodaya surveys to support under Gram Panchayat Development Plan(GPDP) Interactive community exercise with local leaders, panchayat functionaries, grass-root officials and local institutions regarding village development plan preparation and resource mobilization Visit Rural Schools I mid-day meal centres, study Academic and infrastructural resources and gaps CO₅ • Participate in Gram Sabha meetings, and study community participation · Associate with Social audit exercises at the Gram Panchayat level, and interact with programme beneficiaries Attend Parent Teacher Association meetings, and interview school drop outs • Visit local Anganwadi Centre and observe the services being provided • Visit local NGOs, civil society organisations and interact with their staff and beneficiaries. Organize awareness programmes, health camps, Disability camps and cleanliness camps or Conduct soil health test, drinking water analysis, energy use and fuel efficiency surveys · Raise understanding of people's impacts of climate change, building up community's disaster preparedness Organise orientation programmes for farmers regarding organic cultivation, rational use of irrigation and fertilizers and promotion of traditional species of crops and plants • Formation of

committees for common property resource management, village pond maintenance and fishing.

TOTAL: 45 PERIODS

Text Books:

- 1. . Singh, Katar, Rural Development Principles, Policies and Management, Sage Publications, New Delhi, 2015
- 2.A Hand book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchayati Raj Studies, 2002
- 3. United Nations, Sustainable Development Goals, 2015 un.org/sdgs

Reference Books:

- 1. M.P.Boraian, Best Practices in Rural Development, Shanlax Publishers
- 2. Unnat Bharat Abhiyan Website : www.unnatbharatabhiyan.gov.in

COURSE OUTCOMES

Upon c	ompletion of the course, students will be able to
CO1	Able to understand of rural life, culture and social realities
CO2	Able to understand the concept of measurement by comparison or balance of parameters.
CO3	Able to develop a sense of empathy and bonds of mutuality with local community
CO4	Able to appreciate significant contributions of local communities to Indian society and economy
CO5	Learned to value the local knowledge and wisdom of the community

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
CO3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
CO4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
CO5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

AD1007	ESSENCE OF INDIAN KNOWLEDGE TRADITION	L	Т	Р	С
		2	0	0	0

- Get a knowledge about Indian Culture
- Know Indian Languages and Literature religion and philosophy and the fine arts in India
- Explore the Science and Scientists of Ancient, Medieval and Modern India
- Understand education systems in India

UNIT I	INTRODUCTION TO CULTURE	9
	ization, culture and heritage, general characteristics of culture, importance of nan literature, Indian Culture, Ancient India, Medieval India, Modern India	CO1
UNIT II	INDIAN LANGUAGES AND LITERATURE	9
Languages a	uages and Literature – I: Languages and Literature of South India, – Indian nd Literature – II: Northern Indian Languages & Literature	CO2
UNIT III	RELIGION AND PHILOSOPHY	9
,	ns practiced in India and Understanding their Philosophy – religious movements in (Selected movements only)	CO3
UNIT IV	FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)	9
music, Dance	ng, Indian handicrafts, Music, divisions of Indian classic music, modern Indian e and Drama, Indian Architecture (ancient, medieval and modern), Science and India, development of science in ancient, medieval and modern India	CO4

UNIT V	EDUCATION SYSTEM IN INDIA	9	•
--------	---------------------------	---	---

Education in ancient, medieval and modern India, aims of education, subjects, languages, Science and Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of Modern India

CO5

TOTAL: 45 PERIODS

REFERENCE:

- 1. . Kapil Kapoor, "Text and Interpretation: The India Tradition", ISBN: 81246033375, 2005
- 2. "Science in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007
- 3. NCERT, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450 494-X, 200
- 4. Narain, "Examinations in ancient India", Arya Book Depot, 1993
- 5. Satya Prakash, "Founders of Sciences in Ancient India", Vijay Kumar Publisher, 1989
- 6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-8120810990, 2014

COURSE OUTCOMES

Upon completion of the course, students will be able to	
CO1	Understand philosophy of Indian culture.

CO2 Distinguish the Indian languages and literature.

CO3 Learn the philosophy of ancient, medieval and modern India.

CO4 Acquire the information about the fine arts in India.

Acquire the information about the fine arts in India.

CO5

Know the contribution of scientists of different eras

Know the contribution of scientists of different eras.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-		
CO3	-		-	-	-	-	-	-	1	-	-	1	-	-	-		
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-			
CO5	-	ı	-	ı	-	-	-	ı	1	-	-	1	-	-	-		

AD1008	SANGA TAMIL LITERATURE APPRECIATION	L	Т	Р	С
		2	0	0	0

The main learning objective of this course is to make the students an appreciation for:

- 1. Introduction to Sanga Tamil Literature.
- 2.'Agathinai' and'Purathinai' in SangaTamil Literature.
- 3.'Attruppadai' in SangaTamil Literature.
- 4. 'Puranaanuru' in SangaTamil Literature.
- 5. 'Pathitrupaththu' in SangaTamil Literature.

UNIT I	SANGA TAMIL LITERATURE – AN INTRODUCTION	9						
Introduction to Tamil Sangam–History of Tamil Three Sangams–Introduction to Tamil Sangam Literature–Special Branches in Tamil Sangam Literature- Tamil Sangam Literature's Grammar Tamil Sangam Literature's parables.								
UNIT II	'AGATHINAI'AND'PURATHINAI'	9						
Culture from A	Tholkappiyar's Meaningful Verses–Three literature materials–Agathinai's message- History of Culture from Agathinai– Purathinai–Classification–Mesaage to Society from Purathinai.							
UNIT III	'ATTRUPPADAI'.	9						
AttruppadaiLiterature–Attruppadaiin'Puranaanuru'-Attruppadaiin'Pathitrupaththu'-Attruppadaiin 'Paththupaattu'.								
UNIT IV	'PURANAANURU'	9						
Puranaanuru Puranaanuru	on Good Administration, Ruler and Subjects–Emotion & its Effect in	CO4						

UNIT V	'PATHITRUPATHTHU'	9
	nuin'Ettuthogai'–Pathitrupaththu'sParables–Tamildynasty:Valor, n,Charity in Pathitrupaththu- Mesaage to Society from Pathitrupaththu.	CO5
	TOTAL : 45 PEI	RIODS

REFERENCE:

- 1. . Sivaraja Pillai, The Chronology ofthe Early Tamils, Sagwan Press, 2018.
- 2. HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002.
- 3. Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Academic Pub,1997.
- 4. GeorgeL. Hart, Poetsof the Tamil Anthologies: Ancient Poemsof Love and War, Princeton University Press, 2015.
- 5. XavierS.Thani Nayagam, Landscape and poetry: a study of nature in classical Tamil poetry, Asia Pub.House, 1967.

COURSE OUTCOMES

Upon completion of the course, students will be able to										
CO1	Appreciate and apply the messages in Sanga Tamil Literature in their life.									
CO2	Differentiate 'Agathinai' and 'Purathinai' in their personal and societal life.									
CO3	Appreciate and apply the messages in Attruppadai in their personal and societal life.									
CO4	Appreciate and apply the messages in Puranaanuru' in their personal and societal life.									
CO5	Appreciate and apply the messages in Pathitrupaththu in their personal and societal life.									

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-			
CO2	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-			
CO3	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-			
CO4	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-			
CO5	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-			
