Ensemble Learning

Supervised learning task use संझ इसे न ग्राम भागा

Prof. Je-Won Kang
Electronic & Electrical Engineering
Ewha Womans University

Performance evaluation in supervised learning

Performance evaluation in supervised learning

Prediction

Actual

1000	정상 판정	암 판정
정상 환자	988 (TN)	2 (FP)
암 환자	1 (FN)	9 (TP)

*Confusion matrix

False positive error: predict = positive but actual = negative

False negative error: predict = negative but actual = positive

Positive samples

Negative samples

relevant elements false negatives true negatives ° TNo

Hypothesis

Performance evaluation in supervised learning

Prediction

Actual

1000	정상 판정	암 판정
정상 환자	988 (TN)	2 (FP)
암 환자	1 (FN)	9 (TP)

*Confusion matrix

Accuracy =
$$\frac{TP+TN}{ALL}$$
 = $\frac{997}{1000}$

Precision (P) =
$$\frac{TP}{TP+FP}$$
 = $\frac{9}{11}$

Recall (R) =
$$\frac{TP}{TP+FN} = \frac{9}{10}$$

Positive samples relevant elements **Negative samples**

Hypothesis

unbalanced data = 1 79 20 Tel.

ROC Curve

• Performance comparisons between different classifiers in different true positive rates (TPR) and true negative rates (TNR).

$$TPR = R = \frac{TP}{TP + FN}$$
 (recall or sensitivity)
 $TNR = \frac{TN}{TN + FP}$ (specificity)

Error measure

- The error measure should be specified by the user
 - Not always given but needs to be carefully considered

Prediction

1000	정상 판정		암 판정
정상 환자	988 (TN)	1	2 (FP)
암 환자	1 (FN)		9 (TP)

*Confusion matrix

recallor whorety

Prediction

1000	지급 판정	미지급 판정	
재난지원대상자	988 (TN)	2 (FP)	
재난지원비대상자	1 (FN)	9 (TP)	

*Confusion matrix

precisional Zotor

Ensemble Methods

- Predict class label for unseen data by aggregating a set of predictions: different classifiers (experts) learned from the training data
- Make a decision with a voting

Build Ensemble Classifiers

- Basic idea: Build different experts, and let them vote.
 - Bagging and boosting
- Advantages:
 - Improve predictive performance
 - Other types of classifiers can be directly included
 - Easy to implement
 - No too much parameter tuning
- Disadvantage
 - Not a compact representation

Bagging

The ensemble model

Forest output probability $p(c|\mathbf{v}) = \frac{1}{T} \sum_{t=1}^{T} p_t(c|\mathbf{v})$

的理智分

Bagging

- Bootstrapping + aggregating (for more robust performance; lower variance)
- Train several models in parallel
 - A classifier C_i is learned for each S_i in sample set S
- Bagging works because it reduces variance by voting/averaging (robust to overfitting)
 - Learning algorithm is unstable: if small changes to the training set cause large changes in the learned classifier.
 - Usually, the more classifiers the better

Bootstrapping - The sample data sets yydstad by by

- Generate multiple datasets S_i in a dataset S
 - S_i has n randomly chosen samples, which may be less than the original set, with replacement

- Repeat M times \rightarrow generate M datasets, in which the size is n. \rightarrow Train M models

Aggregating

Committee prediction

Boosting

Cascading of weak classifiers

Boosting

- Cascading of weak classifiers
 - Train multiple models in sequence
 - Assign a larger weight for misclassified points by one of the base classifiers, when training the next classifier in the sequence (combat to lower bias)
 - Adaboost
- Advantage
 - Simple and easy to implement
 - Flexible: can combine with any learning algorithm
 - No prior knowledge needed about weak learner
 - Versatile : can be applied on a wide variety of problems
 - Non-parametric

Adaboost

AdaBoost, short for Adaptive Boosting, by Y. Freund and R. Shapire (1996)

- M sequential base classifiers : $h_1, ..., h_m, ..., h_M$
- Trained on weighted form of the training set
- Weight depends on the performance of the previous classifier
- Combined to give the final classifier

https://www.sciencedirect.com/topics/engineering/adaboost

Bagging and Boosting

- Improving decision tree
 - By bagging -> random forest (inherently boosting)
 - By boosting -> gradient boosting machine (GBM) as generalized Adaboost
 - Very popular machine learning algorithm
 - One of leading methods for winning many Kaggle competition

Applications using SL most of recent ML applications

Applications using SL most of recent ML applications

Image, language inter-disciplinary studies (image/video captioning, question and answering, etc.)

Applications using SL most of recent ML applications

Semantic segmentation

Face detection

Reference

- Book: Pattern Recognition and Machine Learning (by Christopher M. Bishop)
- Book: Machine Learning: a Probabilistic Perspective (by Kevin P. Murphy)
- https://www.andrewng.org/courses/

Thank you for your attention!

