Actuadores

C2.1 Reto en clase

Actuadores Neumatico e Hidraulicos, y sus tipos

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema actuadores y a los videos observados sobre el mismo tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.1_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o **enlaces a sus documentos .md**, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
| blog
 | | C2.1 x.md
 | C2.2_x.md
 | C2.3_x.md
 | img
 docs
```


Desarrollo

Listado de preguntas:

1. Basándose en el video actuadores en Robótica, realice un cuadro sinóptico sobre la clasificación de los actuadores.

2. De acuerdo con el video descripcion de los actuadores industriales realice una matriz comparativa indicando clasificacion, subclasificacion, principio de funcionamiento, ventajas y desventajas.

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuadores Eléctricos (Motores)	Motores de Corriente Continua	Se es necesario controlar el par y tener un control muy preciso	Amplio rango de potencias, Control de velocidad preciso, Permite un control de par preciso y Es reversible	Su construcción es menor robusta, Requiere mayor mantenimiento y Mayor tamaño por unidad de potencia
	Motores de Corriente Alterna (Asíncronos)	Son capaces de similar potencia	Coste Bajo, Robusto, Puede controlarse mediante maniobras por contactores sencillas y Puede controlarse de forma más precia mediante un variador de frecuencia	Su velocidad depende de la carga, pudiendo ser entre un 2 y 8% menor que la nominal y El coste de variador incrementa el coste del motor
	Motores de Corriente Alterna (Síncronos)	Maneja una velocidad constante independientemente de la carga, el campo magnético es alimentado por corriente alterna trifásica	Mantienen su velocidad independientemente de la carga, dependiendo únicamente de la frecuencia y Mejora el factor de potencia con respecto a los motores asíncronos	Son más caros y complejos que los motores asíncronos, Requieren de un sistema de arranque auxiliar hasta alcanzar la velocidad de sincronismo y Requieren un mayor mantenimiento
	Motores paso a paso	Precisión muy alta a velocidades muy bajas	Posicionamiento muy preciso y Permite velocidades muy bajas	Protencia muy limitada
	Servomotores eléctricos	Posicionamiento extremadamente preciso	Posicionamiento muy preciso, apto para el control de máquinas herramienta o como preaccionador de válvulas de control, etc	Requieren de un circuito de control interno y La potencia es muy limitada

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuadores Eléctricos (Electroválvulas)	Electroválvulas de control neumático, Electroválvulas para líquidos y gases y Electroválvulas para control hidráulico	Combinan el campo magnético generado por una bobina con un imán permanente, puede ser usadas para líquidos, gases, neumáticos o control hidráulico	Alta fiabilidad, Alta flexibilidad, Máxima compatibilidad	Se obtienen velocidades bajas en los actuadores, Exige un buen mantenimiento, Las bombas, motores, válvulas proporcionales y servo válvulas son caras
Actuadores Eléctricos (Contactores)	Contactor electromecánico, Contactor de estado sólido	Los contactores son elementos de potencia que transmiten energía a los elementos de consumo como motores eléctricos	Hace que aumente la seguridad de los operarios y las instalaciones, Puede efectuarse un mando manual o automático a distancia y Es posible interrumpir corrientes con elevada intensidad y tensión por medio de un circuito de mando por el que pasa una pequeña intensidad	Su dimensionamiento debe ser muy superior a lo necesario, la potencia disipada es muy grande, son muy sensibles a los parásitos internos y tiene una corriente de fuga importante.

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuadores Eléctricos (Relés)	Relé electromecánico y Relé de estado sólido	Los relé forman parte de la lógica de control	Adaptación sencilla a diferentes valores de tensión, Insensibilidad ante temperaturas extremas, Conexión de varios circuitos independientes y Separación galvánica entre circuito de mando y de potencia	Contactos defectuosos por oxidación de los mismos, Creación del arco voltaico con efecto de abrasión de contactos, Ruido elevado en conmutación, Sufren una excesiva influencia por los agentes externos del entorno industrial y Tiempo de conmutación excesivamente altos.
Actuadores neumáticos (lineales)	Actuador de membrana	Empleado para control de válvulas	Precisos, Fiables y Fácil de control	Potencia limitada
Actuadores neumáticos (lineales)	Pistón neumático	Empleado para otros tipos de aplicaciones aparte del control de válvulas	Capaces de suministrar grandes fuerzas, Rápida respuesta y Válidos para grandes recorridos	Generalmente necesitan sistema de enclavamiento en caso de fallo de alimentación y Para control necesitan posicionador
Actuadores neumáticos (rotativos)	Motor neumático	Se emplean para el arranque de motores o accionamiento de herramienta	Costo bajo, seguridad, Velocidad y Control Ruidosos	No tienen velocidad uniforme y el coste de la fuente de energía es muy elevado

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuadores neumáticos (rotativos)	Actuador rotativo de pistones	Accionamiento de válvulas que requieren movimiento giratorio de un ángulo limitado	Suave y silencioso y menor número de piezas móviles	Emisiones contaminantes, mantenimiento complejo y mayor consumo de energía
Actuadores Hidráulicos	Motor Hidráulico (rotativo)	Para una elevada potencia y suelen funcionar con aceite hidráulico	Elevados índices entre potencia y carga, Gran exactitud, Respuesta con una frecuencia mayor que otros y Buen funcionamiento a bajas velocidades	Velocidades bajas, Exige buen mantenimiento y son costosas
Actuadores Hidráulicos	Pistón Hidráulico (lineal)	Para una elevada potencia y suelen funcionar con aceite hidráulico	levados índices entre potencia y carga, Gran exactitud, Respuesta con una frecuencia mayor que otros y Buen funcionamiento a bajas velocidades	Velocidades bajas, Exige buen mantenimiento y son costosas

3. De acuerdo con el video Neumática Industrial, explique como trabaja un sistema Neumático?

R= El sistema neumático necesita de un compresor de aire esto para absorber aire y disminuir su volumen, así aumentar la presión del mismo. El suministro de aire pasa a la siguiente etapa que es el filtro regulador lubricador, este se encarga de eliminar impurezas en el aire así como secarlo y regular la presión. Luego entra a la válvula de control direccional la cual es controlada por un PLC el cual se encarga de alternar por donde saldrá el aire. Por último el aire comprimido se envía a un actuador el cual utilizara la presión del aire.

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

