V tem poglavju bomo definirali nekaj osnovnih konstrukcij iz algebraične topologije in jih uporabili na simplicialnih kompleksih in končnih ter splošnih topoloških prostorih

Join Topoloških prostorov X in Y je topološki prostor $X*Y=X\times Y\times I/_{\sim}$, pri čemer $(x,y_1,0)\sim (x,y_2,0)$ in $(x_1,y,1)\sim (x_2,y,1)$. Torej $X\times Y\times \{0\}$ strnemo na X in $X\times Y\times \{1\}$ na Y. Intuitivno, to pomeni, da vsako točko na X z intervalom povežemo z vsako točko na Y Posebna primera joina sta štožec"CX, ki je join točke in prostora X,

$$\{\bullet\} * X = X \times I/_{(X \times \{0\})}$$

in suspenzija ΣX , ki je join X in prostora na dveh točkah, S^0 .

$$\Sigma X = S^0 * X = X \times I/_{(X \times \{0\}, X \times \{1\})}$$

Naj bosta X in Y topološka prostora in $x_0 \in X$ ter $y_0 \in Y$, potem je Wedge $sum \ X \lor Y$ kvocient disjunktne unije $X \sqcup Y$, pri katerem identificiramo x_0 in y_0 . Na primer $S^1 \lor S^1$ je prostor, ki ga dobimo, če staknemo dve krožnici v eni točki in je homeomorfen "8".

Simplicialni "Join "K*L (včasih tudi KL) kompleksov K in L z disjunktnima množicama ogljišč je kompleks

$$K * L = K \cup L \cup \{\sigma \cup \tau | \sigma \in K, \tau \in L\}$$

Primer 1. simplicialni join dveh 1-simpleksov je 3 simpleks. Slika?

Simplicialni stožec aK z bazo K je join K in ogljišča $a \notin K$ Za vsaka končna simplicialna kompleksa K in L velja, da je geometrijska realizacija |K*L| homeomorfna topološkemu joinu |K|*|L| !!!dokaz?!!.

Če je K 0-kompleks z dvema ogljiščema, potem je $|K*L| = |K|*|L| = S^0*|L| = \Sigma|L|$.

Definicija 1. Ne-Hausdorffov join $X \circledast Y$ dveh končnih T_0 – prostorov X in Y je disjunktna unija $X \sqcup Y$, v kateri pustimo ureditev v X in v Y in nastavimo $x \leq y$ za vsaka $x \in X$ in $y \in Y$.

Ta join je asociativen in v splošnem ni komutativen, tako kot pri topološkem joinu imamo posebna primera ne-Hausdorffovega stožca $\mathbb{C}(X) = X \otimes D^0$ in ne Hausdorffova Suspenzija $\mathbb{S}(X) = X \otimes S^0$. D^0 pomeni 0 dimenzionalni disk, kar je točka.

Ne-Hausdorffova suspenzija reda n je definirana rekurzivno, kot $\mathbb{S}(\mathbb{S}(X))$.

Opomba 1. Velja
$$\mathcal{K}(X \circledast Y) = \mathcal{K}(Y) * \mathcal{K}(X)$$

Dokaz. Najprej poiščimo homotopijo med $|\varphi|s_K$ in $s_L|\varphi'|$ Naj bo $S = \{\sigma_1, \sigma_2, \cdots, \sigma_r\}$ simpleks v K' in naj bo $\sigma_1 \subsetneq \sigma_2 \subsetneq \cdots \subsetneq \sigma_r$ veriga simpleksov K. Naj bo α točka v zaprtem simpleksu \overline{S} . Potem je $S_K(\alpha) \in \overline{\sigma_r} \subseteq |K|$ in $|\varphi|S_K(\alpha) \in \overline{\varphi_r} \subseteq |L|$. Velja pa tudi $|\varphi'|(\alpha) \in \varphi(\sigma_1), \varphi(\sigma_2), \cdots, \varphi(\sigma_r)\}$ in potem $S_L|\varphi'|(\alpha) \in \overline{\varphi(\sigma_r)}$. Zato je linearna homotopija

$$H: |K'| \times I \to |L|$$

$$H: (\alpha, t) \mapsto (1 - t)|\varphi|S_K(\alpha) + tS_L|\varphi'|(\alpha)$$

zvezna in dobro definirana in zato $|\varphi|S_K(\alpha)\simeq S_L|\varphi'|$. Iz leme ?? potem sledi

$$\mu_L|\varphi| = \mu_{\chi(L)}S_L^{-1}|\varphi| \simeq \mu_{\chi(L)}|\varphi'|S_K^{-1} =$$
$$= \chi(\varphi)\mu_{\chi(K)}S_K^{-1} = \chi(\varphi)\mu_K$$