FMI, Info, 2018/2019, Anul I Logică matematică și computațională

Seminar 11

(S11.1) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:

- (i) $((v_0 \to v_1) \land v_1) \to v_0;$
- (ii) $(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3)$.

Demonstrație:

(i) Avem:

$$((v_0 \to v_1) \land v_1) \to v_0 \sim \neg((\neg v_0 \lor v_1) \land v_1) \lor v_0 \qquad \text{(înlocuirea implicației)}$$

$$\sim \neg(\neg v_0 \lor v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (\neg \neg v_0 \land \neg v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (v_0 \land \neg v_1) \lor \neg v_1 \lor v_0, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(v_0 \wedge \neg v_1) \vee \neg v_1 \vee v_0 \sim ((v_0 \vee \neg v_1) \wedge (\neg v_1 \vee \neg v_1)) \vee v_0 \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1 \vee v_0) \wedge (\neg v_1 \vee \neg v_1 \vee v_0) \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1) \wedge (\neg v_1 \vee v_0), \qquad \text{(idempotență)}$$

iar ultima formulă este în FNC. De asemenea, ultima formulă este echivalentă și cu:

$$v_0 \vee \neg v_1$$
,

care este şi în FND, şi în FNC.

(ii) Avem:

$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3) \sim \neg(v_1 \vee \neg v_4) \vee (\neg \neg v_2 \vee v_3)$$
 (înlocuirea implicațiilor)
$$\sim \neg(v_1 \vee \neg v_4) \vee v_2 \vee v_3$$
 (reducerea dublei negații)
$$\sim (\neg v_1 \wedge \neg \neg v_4) \vee v_2 \vee v_3$$
 (de Morgan)
$$\sim (\neg v_1 \wedge v_4) \vee v_2 \vee v_3,$$
 (reducerea dublei negații)

iar ultima formulă este în FND. Mai departe, obținem:

$$(\neg v_1 \land v_4) \lor v_2 \lor v_3 \sim ((\neg v_1 \lor v_2) \land (v_4 \lor v_2)) \lor v_3 \qquad \text{(distributivitate)}$$
$$\sim (\neg v_1 \lor v_2 \lor v_3) \land (v_4 \lor v_2 \lor v_3), \qquad \text{(distributivitate)}$$

iar ultima formulă este în FNC.

(S11.2) Să se aducă formula $\varphi = (v_0 \to v_1) \to v_2$ la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).

Demonstrație: Alcătuim tabelul de valori al funcției asociate $F_{\varphi}: \{0,1\}^3 \to \{0,1\}$, precum și a funcției $\neg \circ F_{\varphi}$.

	x_0	x_1	x_2	$x_0 \rightarrow x_1$	$F_{\varphi}(x_0, x_1, x_2) := (x_0 \to x_1) \to x_2$	$\neg F_{\varphi}(x_0, x_1, x_2)$
_	1	1	1	1	1	0
	1	1	0	1	0	1
	1	0	1	0	1	0
	1	0	0	0	1	0
	0	1	1	1	1	0
	0	1	0	1	0	1
	0	0	1	1	1	0
	0	0	0	1	0	1

Obținem, așadar, uitându-ne pe liniile cu 1 de pe coloana valorilor lui F_{φ} și aplicând raționamentul din demonstrațiile Teoremelor 11.8 și 11.10, că o formă normală disjunctivă a lui φ este:

$$(v_0 \wedge v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge v_2),$$

iar uitându-ne pe liniile cu 0 de pe coloana valorilor lui F_{φ} și aplicând raționamentul din demonstrațiile Teoremelor 11.9 și 11.10, obținem că o formă normală conjunctivă a lui φ este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

Alternativ, ne putem uita pe liniile cu 1 de pe coloana valorilor lui $\neg \circ F_{\varphi} = F_{\neg \varphi}$ pentru a obține (ca mai sus) următoarea formă normală disjunctivă a lui $\neg \varphi$:

$$(v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge \neg v_2),$$

iar, pe urmă, aplicând Propoziția 11.4.(ii), obținem că o formă normală conjunctivă a lui $\neg\neg\varphi$, și deci a lui φ , este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

(S11.3) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

- (i) $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\};$
- (ii) $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$

Demonstrație:

- (i) Presupunem că am avea un model e al mulțimii de clauze. Atunci $e(v_0) = e(v_2) = e(v_3) = 1$. Cum $e \models \{\neg v_0, v_1, \neg v_3\}$, avem că $e(v_1) = 1$. Dar atunci $e \not\models \{\neg v_2, \neg v_1\}$. Am obținut o contradicție. Rămâne că mulțimea de clauze din enunț este nesatisfiabilă.
- (ii) Fie evaluarea $e: V \to \{0,1\}$ astfel încât $e(v_0) = 1$, $e(v_1) = 0$, şi $e(v_i) = 1$ pentru orice $i \ge 2$. Atunci e satisface fiecare clauză din mulţime, deci este model pentru mulţimea de clauze. Aşadar, mulţimea de clauze din enunţ este satisfiabilă.

(S11.4) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare din următoarele cazuri:

- (i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
- (ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$

Demonstraţie:

(i) Putem alege doar $L := \neg v_4$, deci există un singur rezolvent, anume $\{v_1, v_5, v_6\}$.

(ii) Putem rezolva clauzele, pe rând, după $L:=v_3$ și $L:=\neg v_4$, obținând așadar

$$Res(C_1, C_2) = \{ \{ \neg v_4, v_5, v_1, v_6, v_4 \}, \{ v_3, v_5, \neg v_3, v_1, v_6 \} \}.$$

(iii) Nu există L astfel încât $L \in C_1$ și $L^c \in C_2$, deci $Res(C_1, C_2) = \emptyset$.

(S11.5) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

Demonstraţie: Notăm:

$$\begin{split} C_1 &:= \{v_0, v_4\} \\ C_2 &:= \{\neg v_1, \neg v_2, v_0\} \\ C_3 &:= \{\neg v_4, v_0, v_1\} \\ C_4 &:= \{\neg v_0, v_3\} \\ C_5 &:= \{v_0, v_1\} & \text{(rezolvent al } C_1, C_3) \\ C_6 &:= \{\neg v_1, \neg v_2, v_3\} & \text{(rezolvent al } C_2, C_4) \\ C_7 &:= \{v_0, \neg v_2, v_3\} & \text{(rezolvent al } C_5, C_6) \end{split}$$

Avem, aşadar, că secvența $(C_1, C_2, \dots, C_6, C_7 = C)$ este o derivare prin rezoluție a lui C din S.

(S11.6) Să se deriveze prin rezoluție clauza $C := \{ \neg v_0, v_2 \}$ din forma clauzală a unei formule în FNC echivalente semantic cu:

$$\varphi := ((v_0 \wedge v_1) \to v_2) \wedge (v_0 \to v_1)$$

Demonstrație: Înlocuind implicațiile și aplicând legile de Morgan, obținem că:

$$\varphi \sim (\neg (v_0 \wedge v_1) \vee v_2) \wedge (\neg v_0 \vee v_1)$$
$$\sim (\neg v_0 \vee \neg v_1 \vee v_2) \wedge (\neg v_0 \vee v_1),$$

o formulă în FNC pe care o notăm cu φ' , a cărei formă clauzală este

$$S_{\varphi'} = \{C_1 := \{\neg v_0, \neg v_1, v_2\}, C_2 := \{\neg v_0, v_1\}\}.$$

Din faptul că $v_1 \in C_2$ și $\neg v_1 \in C_1$, avem că

$$C := (C_1 \setminus \{\neg v_1\}) \cup (C_2 \setminus \{v_1\}) = \{\neg v_0, v_2\}$$

este un rezolvent al clauzelor C_1 şi C_2 . Cum C_1 şi C_2 sunt în $\mathcal{S}_{\varphi'}$, avem aşadar că (C_1, C_2, C) este o derivare prin rezoluție a lui C din $\mathcal{S}_{\varphi'}$, forma clauzală a lui φ' , formulă în FNC echivalentă semantic cu φ .

(S11.7) Să se arate, folosind rezoluția, că formula:

$$\varphi := (v_0 \vee v_2) \wedge (v_2 \to v_1) \wedge \neg v_1 \wedge (v_0 \to v_4) \wedge \neg v_3 \wedge (v_4 \to v_3)$$

este nesatisfiabilă.

Demonstrație: Înlocuind implicațiile, obținem că:

$$\varphi \sim (v_0 \vee v_2) \wedge (\neg v_2 \vee v_1) \wedge \neg v_1 \wedge (\neg v_0 \vee v_4) \wedge \neg v_3 \wedge (\neg v_4 \vee v_3),$$

o formulă în FNC pe care o notăm cu φ' . Notând:

$$C_1 := \{v_0, v_2\}$$

$$C_2 := \{\neg v_2, v_1\}$$

$$C_3 := \{\neg v_1\}$$

$$C_4 := \{\neg v_0, v_4\}$$

$$C_5 := \{\neg v_3\}$$

$$C_6 := \{\neg v_4, v_3\}$$

se observă că $\mathcal{S}_{\varphi'} = \{C_1, C_2, C_3, C_4, C_5, C_6\}$. Notând mai departe:

$$C_7 := \{ \neg v_2 \}$$
 (rezolvent al C_2 , C_3)
 $C_8 := \{ v_0 \}$ (rezolvent al C_1 , C_7)
 $C_9 := \{ v_4 \}$ (rezolvent al C_4 , C_8)
 $C_{10} := \{ v_3 \}$ (rezolvent al C_6 , C_9)
 $C_{11} := \square$ (rezolvent al C_5 , C_{10})

avem că secvența $(C_1, C_2, \ldots, C_{11})$ este o derivare prin rezoluție a lui \square din $\mathcal{S}_{\varphi'}$, de unde, aplicând Teorema 11.25, rezultă că $\mathcal{S}_{\varphi'}$ este nesatisfiabilă. Din Propoziția 11.19, rezultă că φ' este nesatisfiabilă, deci și φ , care este echivalentă semantic cu φ' , este nesatisfiabilă. \square