# Traffic, Weather, & Incidents in Nashville, TN

Zakariyya Al-Quran, Rithik Reddy, Mohamed Sufiyaan

# Introduction

- Incident Response is a challenge faced by communities across the globe.
- Globally, about 3,200 people die every day from road accidents alone, leading to a total of 1.25 million deaths annually
- Furthermore, accidents can cause traffic and congestion
- We want to analyze the incidents, and their relationship with response time, traffic, and weather.



## **Data Sets**

- Incidents
  - Data of all of the incidents which occurred in Nashville from 2017-2021
- Roads
  - Data of all roadways in Tennessee
  - Gives info such as length of roadway, number of lanes, etc.
- Traffic
  - Gives traffic data across Nashville
- Weather
  - Weather data across Nashville. Weather in each area, precipitation, etc.



# **Technologies Used**

- Storing and loading data
  - S3 to store original and merged data sets
- Transforming data
  - Spark with EMR to add window column
- Querying data
  - Athena
- Visualization
  - Pandas to load result of queries
  - Plotly to generate maps and graphs
- Machine learning
  - Spark with EMR to run models











# Sample Queries





- 2. SELECT COUNT(distinct incident\_id) as num\_incidents, AVG(response\_time\_sec) as avg\_response, AVG(speed) as avg\_speed, hour\_of\_day FROM "incidents". "merge" WHERE xdgroup in (SELECT xdgroup FROM "incidents". "top20" as t20) GROUP BY hour\_of\_day ORDER BY hour\_of\_day;
- 3. SELECT COUNT(incident\_id) as num\_incident, temp\_range, AVG(avg\_response) as response, AVG(avg\_speed) as speed, AVG(avg\_congestion) as cong FROM (SELECT \*, CAST(FLOOR(avg\_temp/10) as INT) as INT) temp\_range FROM "incidents"."weather") GROUP BY temp\_range ORDER BY temp\_range;
- 4. SELECT COUNT(distinct incident\_id) as num\_incidents, month FROM (SELECT \* FROM "incidents"."merge" WHERE latitude >= 36.13 AND latitude < 36.15 AND longitude >= -86.81 AND longitude < -86.79) GROUP BY month ORDER BY month;

# Sample Results

### **Query 1: Top 20 Roadways**

| 1 xdgroup | cnt | cong                |
|-----------|-----|---------------------|
| 2 2858287 | 623 | 0.15202679436521624 |
| 3 1746789 | 377 | 0.08957439740297297 |
| 4 1743946 | 356 | 0.10160349472945007 |
| 5 1621379 | 340 | 0.12447910501136183 |
| 6 1740471 | 238 | 0.10180981537258228 |
|           |     |                     |

### **Query 2: Incident Statistics by Hour**

|   | 1681622 | 237 | num_incidents | avg_response       | avg_speed          | hour_of_day |
|---|---------|-----|---------------|--------------------|--------------------|-------------|
|   | 2860921 | 232 | 110           | 403.53636363636366 | 49.85473737373736  | 0           |
|   |         |     | 104           | 448.44005358338916 | 54.87695378432684  | 1           |
|   | 3177417 | 222 | 115           | 514.7913043478261  | 50.82140700483088  | 2           |
|   | 3176773 | 219 | 100           | 471.0251051893408  | 54.766370266479655 | 3           |
| 1 | 1722191 | 218 | 78            | 434.69005010737294 | 56.06633500357912  | 4           |
|   |         |     | 138           | 420.8027998791419  | 56.72735220062441  | 5           |
| 2 | 1627331 | 216 | 209           | 411.79514143094843 | 47.26504159733775  | 6           |
|   |         | ş   | 212           | 391.31253277399054 | 47.3891033036182   | 7           |
|   |         | 16  | 174           | 406.3735632183908  | 46.3839750957854   | 8           |
|   |         | 11  | 159           | 391.50314465408803 | 44.568080887491234 | 9           |
|   |         | 12  | 177           | 378.01483167229065 | 46.44047006199475  | 10          |
|   |         | 1   | 227           | 391.15859030837004 | 46.1140363436123   | 11          |

# Sample Results (Cont'd.)

### **Query 3: Incident Statistics by Temperature Range**

| 1 | num_incident | temp_range | avg_response       | avg_speed          | avg_conges |
|---|--------------|------------|--------------------|--------------------|------------|
| 2 | 386          | -1         | 400.97668393782385 | 37.95402752810969  | 0.11222674 |
| 3 | 3214         | 0          | 381.3453640323584  | 36.960817155673716 | 0.11476722 |
| 4 | 4383         | 1          | 372.6390600045631  | 36.50840666420556  | 0.11988138 |
| 5 | 5294         | 2          | 361.5521344918776  | 37.19889814320872  | 0.11488573 |
| 6 | 1299         | 3          | 367.75365665896845 | 33.70927520048498  | 0.16693998 |

**Query 4: Vanderbilt Incident Frequency by Month** 

| num_incidents | month |
|---------------|-------|
|               |       |
| 9             |       |
|               |       |
|               | 4     |
| 9             |       |
|               |       |
| 16            |       |
| 28            | 8     |
|               |       |
| 19            | 10    |
| 6             |       |
| 10            |       |

### Temperature Range

| -1 | -10 °C to 0 °C |  |
|----|----------------|--|
| 0  | o °C to 10 °C  |  |
| 1  | 10 °C to 20 °C |  |
| 2  | 20 °C to 30 °C |  |
| 3  | 30 °C+         |  |

# Machine Learning

| Area of grid | Linear<br>Regression<br>RMSE | Random Forest<br>Regression<br>RMSE | Gradient Boosted<br>Tree Regression<br>RMSE | Lowest RMSE<br>Regressor's<br>Prediction |
|--------------|------------------------------|-------------------------------------|---------------------------------------------|------------------------------------------|
| Q1           | 0.5369                       | 0.8814                              | 0.5                                         | 1                                        |
| Q2           | 1.6988                       | 1.83868                             | 1.7388                                      | 5.33                                     |
| Q3           | 10.914                       | 5.7268                              | 11.187                                      | 24.2                                     |
| Q4           | 2.499                        | 2.848                               | 2.965                                       | 6.49                                     |
| Q5           | 1.929                        | 1.456                               | 1.732                                       | 2.5                                      |
| Q6           | 13.559                       | 5.552                               | 8.503                                       | 20.6                                     |
| Q7           | 19.96                        | 7.439                               | 10.583                                      | 40.95                                    |









### Average Congestion per Month in Davidson County in 2019 vs 2020



### Average Speed per Hour on T20 roadways in Davidson County in 2019 vs 2020



# **Implications**

### • Time Implications

- Congestion/speed depends on time of day, day of week, etc
- COVID more or less didn't affect the number of incidents on Nashville roadways (2019 vs 2020)
- Most accidents happen at 5pm (rush hour), least happen at 6am
- Friday and Saturday are the busiest (and most accident-prone) days to be driving!

### Weather Implications

- Most accidents happen in 20-30 degrees Celsius
- Counterintuitively, lower visibility does *not* lead to more accidents
  - Perhaps because Nashville has good visibility year-round and/or drivers are more careful when visibility is low, since this is when congestion is highest
- Response Time inv. prop. to precipitation; prop. to temperature & visibility

### Location-Specific Implications

- Certain areas in Nashville are more prone to incidents
- O Downtown is ¼ the size of East Nashville, but has twice as many accidents
- o In **Vanderbilt**, the first semester of school (months) have the highest incident frequency
- During summer vacation months and winter break, **BNA** has the most accidents
- o In the afternoon hours (12-2pm) and after 7pm, **Downtown** has the most accidents
  - Lunch break? College nightlife?

# References

- [1] Learning Incident Prediction Models Over Large Geographical Areas for Emergency Response Systems
- [2] A Review of Incident Prediction, Resource Allocation, and Dispatch Models for Emergency Management