

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Информатика и системы управления
КАФЕДРА	_ Системы обработки информации и управления»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

Миварная экспертная система, используемая в автономных транспортных средствах

Студент	ИУ5И-32М		Лю Ченхао	
	(Группа)	(Подпись, дата)	(И.О.Фамилия)	
Руководитель			Ю.Е. Гапанюк	
•		(Подпись, дата)	(И.О.Фамилия)	

2024 г

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ		
	Заведующий кафедрой <u>ИУ-5</u> (Индекс)		
	<u>В.И. Терехов</u> (И.О.Фамилия)		
	«»2024 г.		
3	АДАНИЕ		
	учно-исследовательской работы		
	- -		
по теме Миварная экспертная систе	ма, используемая в автономных транспортных средствах		
Студент группы <u>ИУ5И-32М</u>			
	Лю Ченхао		
(0	Фамилия, имя, отчество)		
Направленность НИР (учебная, иссле	довательская, практическая, производственная, др.)		
исследовательская			
Источник тематики (кафедра, предпр	иятие, НИР)учебная тематика		
График выполнения НИР: 25% к <u>12</u>	2 нед., 50% к <u>14</u> нед., 75% к <u>15</u> нед., 100% к <u>16</u> нед.		
Техническое задание <u>Миварна</u>	я экспертная система, используемая в автономных		
<i>транспортных</i>			
средствах			
Оформление научно-исследователь	ской работы:		
Расчетно-пояснительная записка на 2	0 листах формата А4.		
Перечень графического (иллюстрати	вного) материала (чертежи, плакаты, слайды и т.п.)		
Слайды презентации 7-8 шт.			
Дата выдачи задания « <u>18</u> » <u>декабр</u>	<u>оя</u> 2024 г.		
Руководитель НИР	. Ю.Е. Гапанюк		
•	(Подпись, дата И.О.Фамилия)		
Студент			
	(Подпись, дата И.О.Фамилия)		

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на

кафедре.

Оглавление

1.	H	Введение	4
2.		миварные экспертные системы	
2. 3.		Миварная технология: определение и ключевые идеи	
	3.1		
	3.2		
	3.3		
4.	Ι	Применение миварных технологий в автономных транспортных средствах	10
	4.1	1 Автоматическое экстренное торможение (AEB)	10
	4.2	 Автоматический круиз-контроль (АСС)	11
	4.3	3 Система автоматической парковки (APS)	13
	4.4	4 Расширение сложных правил принятия решений	14
	4.4.1 Сложные сценарии вождения		14
	4	4.4.2 Анализ поведения водителя	14
5.	I	Преимущества миварных технологий	15
6.	Заключение		
7.	(Список	17

1. Введение

Автономные транспортные средства (АТС) становятся всё более популярными в современном мире, где технологии быстро развиваются, а требования безопасности и удобства для водителей и пассажиров растут. Одной из ключевых технологий, способствующих этому прогрессу, является использование миварных экспертных систем (МЭС) и миварных технологий логического искусственного интеллекта (ИИ). Эти системы предоставляют автономным автомобилям возможность эффективно анализировать дорожную ситуацию и принимать решения в реальном времени, что способствует повышению безопасности, комфорта и эффективности их работы.

Миварные экспертные системы основываются на уникальных миварных технологиях, которые позволяют интегрировать накопление и обработку информации, используя логическое рассуждение и гибкие алгоритмы. Это особенно важно для автономных автомобилей, которые должны учитывать множество факторов в динамично меняющемся окружении, таких как поведение других участников дорожного движения, состояние дорожной сети и погодные условия. В этой статье мы подробно рассмотрим, как миварные экспертные системы работают в контексте автономных транспортных средств, какие функции они поддерживают и как они обеспечивают высокий уровень безопасности и эффективности.

2. миварные экспертные системы

Миварные экспертные системы (МЭС) являются мощными инструментами для принятия решений и логического рассуждения, предназначенными для работы в динамичных и сложных условиях. Эти системы используют миварные технологии для создания эффективных сетей обработки информации и принятия решений. Миварные сети обеспечивают высокую точность при обработке данных и принятии решений, что делает их идеальными для использования в автономных транспортных средствах, таких как автомобили с системой автоматического управления.

Миварные экспертные системы (МЭС) — это комплексные решения для принятия решений, основанные на анализе данных, полученных от различных сенсоров, и логическом рассуждении на основе заранее заданных или автоматически обучаемых правил. МЭС используют три миварные технологии для решения задач накопления, обработки информации и логического вывода:

- 1. Миварная технология накопления информации: В этой технологии осуществляется сбор, хранение и интеграция данных о текущей ситуации на дороге. Важно, что эти базы данных могут изменяться и эволюционировать в зависимости от изменяющихся условий (например, изменения дорожной ситуации или поведение других участников движения).
- 2. **Миварная технология обработки информации**: Эта технология обрабатывает полученные данные с использованием логического вывода и сетей правил. Процесс обработки включает в себя анализ большого объема данных, таких как координаты объектов, их поведение, скорость и направление, а также внешние факторы, такие как погодные условия.
- 3. **Миварная технология логического вывода**: На основе обработки данных и использования правил, эта технология генерирует решения, такие как экстренное торможение, уклонение от препятствий или

изменение маршрута. Решения принимаются на основе логического рассуждения и предсказаний о возможных сценариях.

МЭС являются основой для реализации функционала автономных транспортных средств, таких как системы автоматического экстренного торможения, круизконтроль, автоматическая парковка и другие, обеспечивая быстрые и точные решения, необходимые для безопасного и эффективного вождения.

3. Миварная технология: определение и ключевые идеи

3.1 Определение технологии MIVAR

Миварные технологии представляют собой передовые искусственные интеллектуальные технологии, основанные на логическом рассуждении, моделировании знаний и сетях правил, которые помогают решать сложные задачи принятия решений. В отличие от традиционных методов машинного обучения (таких как обучение с учителем и без учителя), миварные технологии не зависят от больших размеченных данных для тренировки и не требуют сложных настроек моделей для обучения паттернов. Напротив, миварные технологии ориентированы на создание моделей представления знаний через структуру "Объект-атрибут-отношение" (ОАR) и применяют логическое рассуждение для достижения эффективной поддержки принятия решений.

В отличие от глубокого обучения, которое используется для обработки неструктурированных данных, таких как изображения и звуки, в миварных технологиях основное внимание уделяется обработке структурированных данных с помощью сетей правил, что позволяет эффективно извлекать правильные решения в сложных условиях, таких как автономное вождение, робототехника и интеллектуальный транспорт.

3.2 Модель "Объект-атрибут-отношение" (OAR)

Ключевая концепция миварных технологий основывается на модели "Объектатрибут-отношение" (ОАR). Эта модель помогает системе интерпретировать и представлять сложные реальные сущности и их взаимосвязи. В рамках этой модели выделяют три ключевых компонента:

1. Объект (Object): Объекты представляют собой сущности, которые система должна обработать. В контексте автономных транспортных средств это могут быть автомобили, пешеходы, дорожные знаки и другие элементы, с которыми система взаимодействует. Каждый объект имеет

свои особенности и поведение, которые влияют на его реакцию в различных ситуациях. Например, для автомобиля объектом будет являться транспортное средство с определёнными характеристиками, такими как скорость, размер и местоположение.

- 2. **Атрибут (Attribute)**: Атрибуты характеризуют свойства объектов. Для автомобиля это могут быть параметры такие как скорость, направление, состояние тормозов, а для пешехода расстояние, скорость движения и место на дороге. Атрибуты помогают системе принимать более точные решения, основываясь на конкретных характеристиках каждого объекта.
- 3. Отношение (Relation): Отношения описывают взаимодействие между объектами. Например, для автомобиля и пешехода важными отношениями будут: "дистанция между автомобилем и пешеходом", "вероятность столкновения", "положение автомобиля на дороге". Эти отношения на основе атрибутов позволяют системе предсказать возможные сценарии и принять решение о безопасности и действиях, например, тормозить или уклоняться от препятствия.

С помощью этой модели миварные сети могут гибко и эффективно обрабатывать различные сценарии и принимать решения в сложных, изменяющихся условиях.

3.3 Миварная система и механизм рассуждений

Механизм рассуждения в системе миварных технологий реализуется через построение сети правил. Эти сети, основанные на знаниях экспертов или автоматически обучаемых правилах, анализируют данные и выдают оптимальное решение. Процесс рассуждения включает несколько этапов:

1) Построение правил: Система миварных технологий использует знания экспертов для создания базы правил, описывающих взаимосвязи между объектами и их атрибутами. Например, в автоматическом вождении могут быть такие правила, как: «если автомобиль находится на дистанции менее 2 метров и движется с высокой скоростью, необходимо выполнить экстренное торможение».

- 2) **Ввод и интеграция данных**: Система получает данные от сенсоров, таких как камеры, лидары, ультразвуковые датчики и GPS, которые предоставляют информацию о текущей ситуации на дороге. Эти данные затем обрабатываются и используются в правилах сети для принятия решений.
- 3) Рассуждения и принятие решений: Миварные сети используют данные и правила для логического рассуждения, что позволяет принимать решения в реальном времени. Например, в случае экстренной ситуации система может решить автоматически тормозить или провести маневр избегания.
- 4) Обратная связь и адаптация: Система может адаптироваться к новым условиям с помощью самообучения. Это означает, что миварные сети способны корректировать свои действия и обновлять правила на основе новых данных, что позволяет системе улучшать точность и эффективность в долгосрочной перспективе.

4. Применение миварных технологий в автономных транспортных средствах

Автономные транспортные средства используют миварные экспертные системы для решения ряда задач, таких как автоматическое экстренное торможение (AEB), круиз-контроль, парковка и другие. Рассмотрим эти функции подробнее.

4.1 Автоматическое экстренное торможение (АЕВ)

- Автоматическое экстренное торможение (AEB) и система автоматического избегания препятствий (AEB + Obstacle Avoidance) являются важнейшими компонентами в современных системах активной безопасности автономных автомобилей. Эти системы необходимы для предотвращения или минимизации последствий аварийных ситуаций, когда водитель не может вовремя среагировать.
- Применение миварных технологий в AEB и системе избегания препятствий

Миварные экспертные системы играют ключевую роль в этих системах, поскольку они обеспечивают быстрое принятие решений на основе анализа множества входных данных. В процессе работы системы АЕВ и системы избегания препятствий, данные с сенсоров (камеры, лидары, ультразвуковые датчики, радары) и навигационной системы автомобиля поступают в миварную сеть, где проходят анализ. Миварные сети способны обработать эти данные в реальном времени и принять логические решения на основе предсказания действий других участников дорожного движения, состояния окружающей среды и состояния самого автомобиля.

• Принципы работы:

1) **Обработка данных с сенсоров**: Миварные системы используют различные датчики для получения информации о расстоянии до других автомобилей, пешеходов, объектов на дороге. Система анализирует

- скорость и направление движения этих объектов, а также вероятность столкновения.
- 2) **Прогнозирование**: Миварная сеть анализирует поведение других участников движения (например, приближающихся автомобилей) и прогнозирует возможные сценарии на основе их текущего положения, скорости и направления.
- 3) Принятие решения о торможении или маневре: Если система предсказывает высокую вероятность столкновения, она инициирует экстренное торможение. В некоторых случаях, если торможение недостаточно для предотвращения столкновения, миварная система активирует маневр уклонения (например, поворот влево или вправо).

• Преимущества применения миварных технологий в АЕВ

- 1) **Высокая скорость реакции**: Миварные экспертные системы принимают решения в реальном времени, что критически важно для предотвращения аварий.
- 2) **Адаптивность**: Миварные сети могут адаптироваться к различным дорожным ситуациям, обрабатывая большое количество факторов одновременно (состояние дороги, поведение других участников движения, погодные условия).
- 3) **Самообучение**: Миварные системы могут улучшать свою способность предсказать столкновения, обучаясь на данных с реальных дорог и на основе опыта прошлых ситуаций.

4.2 Автоматический круиз-контроль (АСС)

• **Автоматический круиз-контроль** (ACC) помогает автомобилю поддерживать заданную скорость и дистанцию до впереди идущего транспортного средства, что облегчает вождение на длинных дистанциях и в условиях плотного трафика.

• Применение миварных технологий в АСС

В системе АСС миварные экспертные системы используются для

мониторинга окружающей обстановки, анализа движения впереди идущего автомобиля и предсказания дальнейших изменений ситуации. Миварная сеть, получая данные с сенсоров автомобиля, использует алгоритмы для расчета оптимальной скорости и поддержания безопасного расстояния. В отличие от простых круиз-контролей, системы, использующие миварные технологии, могут динамически реагировать на изменения ситуации, такие как внезапное изменение плотности трафика или аварийную ситуацию.

• Принципы работы:

- 1) **Данные с сенсоров**: Вся информация о движении впереди идущих автомобилей, а также общее состояние трафика, поступает в систему из радаров, камер и лидаров.
- 2) **Моделирование дорожной ситуации**: Миварная система создает модель текущей ситуации на основе полученных данных, предсказывает возможные изменения в плотности трафика и оценивает вероятность возникновения опасных ситуаций.
- 3) **Принятие решения о регулировке скорости**: В зависимости от ситуации на дороге, миварная сеть принимает решение о том, когда и как изменять скорость для поддержания безопасного расстояния.

• Преимущества применения миварных технологий в АСС

- 1) **Гибкость**: Миварные системы могут быстро адаптироваться к изменениям в трафике, корректируя скорость для обеспечения безопасного и комфортного движения.
- 2) **Прогнозирование**: Миварные сети могут предсказать изменения в дорожной ситуации, например, увеличение плотности движения, что позволяет заранее регулировать скорость.
- 3) **Интеграция с другими системами**: Миварные системы могут интегрировать данные с других систем безопасности, таких как AEB, для улучшения общей эффективности работы автомобиля.

4.3 Система автоматической парковки (APS)

Система автоматической парковки (APS) позволяет автомобилю самостоятельно припарковаться в ограниченном пространстве. Это позволяет водителю не вмешиваться в процесс парковки и обеспечивать высокую точность при маневрировании, особенно в условиях ограниченных парковочных мест.

Применение миварных технологий в APS

Миварные экспертные системы играют ключевую роль в системе автоматической парковки, поскольку они анализируют окружающее пространство и обеспечивают точность маневра. Система получает данные с камер, датчиков и лидаров для определения свободных парковочных мест и расстояний до объектов. Миварная сеть анализирует эту информацию и принимает решение о том, как безопасно выполнить парковку.

Принципы работы:

- 1) Обработка данных с сенсоров: Камеры и ультразвуковые датчики сканируют окружающую среду и создают 3D-модель парковочного пространства, включая другие автомобили, препятствия и границы парковки.
- 2) **Прогнозирование** движения: Миварная сеть оценивает возможные пути движения автомобиля и принимает решения о том, какой маневр является оптимальным для безопасной парковки.
- 3) **Решение о действиях**: На основе анализа миварная система определяет, какой маневр следует выполнить (например, задний ход, поворот и т. д.) для эффективного парковки в ограниченном пространстве.

Преимущества применения миварных технологий в APS

- 1) **Точность и безопасность**: Миварные системы обеспечивают точность при маневрировании и парковке в узких пространствах, что минимизирует вероятность столкновений с другими автомобилями или препятствиями.
- 2) Гибкость: Миварные экспертные системы могут работать в различных ситуациях, включая параллельную парковку, перпендикулярную парковку

и парковку в ограниченных пространствах.

з) **Самообучение**: Миварные системы могут обучаться на опыте предыдущих парковок, улучшая точность маневров в будущем.

4.4 Расширение сложных правил принятия решений

4.4.1 Сложные сценарии вождения

В процессе автономного вождения часто возникают сложные ситуации, такие как сложные перекрёстки, круговые движения, плохие погодные условия и другие. В таких случаях необходимо учесть множество факторов и переменных, что увеличивает сложность принятия решения. MIVAR помогает решать эту задачу с помощью гибких сетей правил, которые могут динамично адаптироваться и подбирать оптимальные решения в таких ситуациях.

Примером может служить решение на перекрёстке, где необходимо учитывать светофоры, плотность движения и статус пешеходов. Система MIVAR способна анализировать эти данные и принимать решение о том, следует ли замедлить движение, остановиться или ускориться для безопасного продолжения поездки.

4.4.2 Анализ поведения водителя

Кроме анализа внешней обстановки, MIVAR также может анализировать поведение водителя. Это особенно важно для повышения уровня взаимодействия человека и системы. Например, если водитель не соблюдает идеальные действия, рекомендованные системой (например, не тормозит вовремя при изменении сигнала светофора), MIVAR может предоставить уведомления или автоматически вмешаться для коррекции поведения.

5. Преимущества миварных технологий

Миварные экспертные системы имеют несколько ключевых преимуществ:

- 1) **Высокая скорость принятия решений**: Миварные системы могут быстро обрабатывать большие объемы данных в реальном времени, что критично для автономных транспортных средств, требующих оперативного реагирования.
- 2) **Адаптивность и самообучение**: Эти системы способны адаптироваться к изменениям в окружении (дорожные условия, трафик, погода) и улучшать свои решения на основе накопленного опыта, что повышает их эффективность в долгосрочной перспективе.
- 3) Гибридные интеллектуальные системы: Миварные технологии могут интегрировать различные методы ИИ, такие как нейронные сети, нечеткую логику и продукционные правила, что делает систему более гибкой и адаптивной.
- 4) **Прозрачность и низкая вычислительная сложность**: В отличие от глубокого обучения, MIVAR не требует огромных вычислительных ресурсов и предоставляет ясное объяснение принятых решений, что важно для безопасности автономных транспортных средств.

6. Заключение

Миварные экспертные системы становятся неотъемлемой частью автономных транспортных средств, обеспечивая высокую степень безопасности, удобства и эффективности. Использование миварных технологий для реализации таких функций, как автоматическое экстренное торможение, круиз-контроль и автоматическая парковка, значительно повышает возможности автономных автомобилей, позволяя им работать в условиях динамичного и меняющегося окружения.

С развитием миварных технологий и их интеграцией в систему управления автономными транспортными средствами можно ожидать еще более высокую степень автоматизации, а также создание более безопасных и интеллектуальных транспортных решений для будущего.

7. Список

- 1. Абдрашитова А.Н., Вардумян А.Т., Головацкий А.Д., Пасатюк А.Д., Машкин К.В. О разработке «облачной» системы создания миварных моделей и управления миварными базами знаний // ИИАСУ'23 Искусственный интеллект в автоматизированных системах управления и обработки данных : Сборник статей II Всероссийской научной конференции (Москва, 27–28 апреля 2023 г.) : в 5 т. М.: «КДУ», «Добросвет», 2023. Т. 3. 574 с. Электронное издание сетевого распространения. URL: https://bookonlime.ru/node/72304. doi: 10.31453/kdu.ru.978-5-7913-1351-5-2023-435. C. 537-541.
- 2. Адамова Л.Е., Варламов О.О. Исследование процессов обучения людей и логического искусственного интеллекта В сборнике: Математическая психология: современное состояние и перспективы. Материалы международной научной конференции, посвященной 90-летию со дня рождения В.Ю. Крылова. Москва, 2023. С. 174-180. EDN: EGWJDR.
- 3. Адамова Л.Е., Варламов О.О. Применение логического искусственного интеллекта для внедрения индивидуальных траекторий студентов // В сборнике: Цифровые технологии в инженерном образовании: новые тренды и опыт внедрения. Сборник трудов Международного форума. 2020. С. 129-132.
- 4. Аладин Д.В. ГИИС для поведенческой модели водителя ВАТС // В сборнике: МИВАР'22. Москва, 2022. С. 338-344.
- 5. Аладин Д.В., Булатова И.Г., Миядин А.А. Миварная система контроля за соблюдением правил дорожного движения для роботизированных устройств и транспортных средств // Информация и образование: границы коммуникаций. 2019. № 11 (19). С. 151-152.
- 6. Аладин Д.В., Варламов О.О., Чувиков Д.А., Черненький В.М., Смелкова Е.А., Балдин А.В. О перспективах использования миварного подхода в системах контроля за соблюдением правил дорожного движения // В

- сборнике: Технологии и компоненты интеллектуальных транспортных систем. 2018. С. 127-140.
- 7. Аладин Д.В., Миядин А.А. О миварной системе помощи водителю по применению правил дорожного движения // В сборнике: Труды Конгресса по интеллектуальным системам и информационным технологиям «IS&IT'18». Научное издание. Минобрнауки РФ, РАИИ, ФГАОУ ВО «Южный федеральный университет». 2018. С. 338-342.