Machine learning em saúde

Prof. Dr. Alexandre Chiavegatto Filho

MACHINE LEARNING

REDES NEURAIS

- Inspiradas pelo funcionamento do cérebro.
 - Neurônios conectados por axônios e dendritos.
 - Região de contato: sinapses.
 - Sinais são propagados sequencialmente.
 - Força das conexões sinápticas dependem de estímulos externos.

MACHINE LEARNING

REDES NEURAIS

Problemas de regressão: K=1 com apenas um desfecho (output), Y_1 .

Problemas de classificação: número de neurônios presentes no output são iguais ao número total de categorias a serem preditas.

MACHINE LEARNING

REDES NEURAIS

- Weight decay: efeito similar ao da regressão ridge em modelos lineares.
 - Uma penalidade é adicionada à função perda.
- $\lambda \ge 0$ é um hiperparâmetro otimizado por validação cruzada k-fold. Em geral, os valores de λ variam entre 0 e 0,1.

$$R(\theta) + \lambda J(\theta)$$

MACHINE LEARNING

REDES NEURAIS

- O modelo com apenas uma camada de unidades latentes representa a estrutura mais simples de uma rede neural.

- Outros modelos, em que mais camadas são utilizadas como passo intermediário entre os preditores e a resposta: deep learning.

MACHINE LEARNING

DEEP LEARNING

Redes neurais profundas (mais do que uma camada oculta), em que cada camada encontra novas representações para os dados.

MACHINE LEARNING

DEEP LEARNING

Três grandes tipos de modelos principais

Redes neurais

convolucionais: utilizadas

principalmente para

problemas de classificação

de imagens.

Redes neurais recorrentes:
utilizadas principalmente para
problemas de linguagem
natural (humana).

Perceptrons de Multicamada, ou camadas densas feedforward: utilizadas principalmente para predição de dados estruturados.

MACHINE LEARNING

DEEP LEARNING

Os dados são transformados em cada neurônio por meio de pesos (parâmetros) e vieses (interceptos). O objetivo é encontrar os pesos e vieses que levem ao desfecho correto.

MACHINE LEARNING

DEEP LEARNING

Como medir o erro da predição para calibrar os pesos e vieses?

- Por meio da função de perda (ou função objetivo).
 - Regressão: erro quadrático médio.
 - Classificação: entropia cruzada.

Os pesos e vieses são ajustados de trás para frente por meio de backpropagation.

MACHINE LEARNING

DEEP LEARNING

Os pesos e vieses são iniciados randomicamente com valores baixos.

- Nesses casos, o erro da função de perda será alto.
- Mas os erros são corrigidos pelo ajustes dos pesos de trás para frente.
- O processo é repetido diversas vezes com diferentes lotes (menos custoso computacionalmente que todos os dados) de observações sorteadas.

MACHINE LEARNING

Como corrigir os erros por meio do ajuste dos pesos?

DEEP LEARNING

- Solução simples: deixar todos os pesos fixos menos um.
- Porém seria ineficiente, já que um lote de dados teria de passar pelo algoritmo para cada peso atualizado.
- Solução: usar gradient descent.
 - Calcular o gradiente da função de perda em relação aos pesos e mover o valor dos pesos na direção oposta do gradiente, diminuindo as perdas.

MACHINE LEARNING

DEEP LEARNING

Mini-batch stochastic gradient descent.

MACHINE LEARNING

DEEP LEARNING

- Mini-batch stochastic gradient descent.
 - Sorteio de lotes que vão sendo utilizados para calibrar os pesos.
- Figura anterior foi para um só peso.
- É possível realizar o mesmo em várias dimensões, uma para cada peso a ser estimado.

MACHINE LEARNING

DEEP LEARNING

Função de ativação

Sem uma função de ativação, os neurônios são apenas a soma dos pesos multiplicados pelos valores dos neurônios anteriores.

Isso limita a rede a aprender transformações lineares.

É preciso uma função de ativação não-linear: mais comum é relu (elimina dados negativos e permite ganhos de velocidade de computação).

Figure 3.4 The rectified linear unit function

MACHINE LEARNING

DEEP LEARNING

Deep learning é composto por:

- Mais do que uma camada profunda, muitas vezes totalmente conectadas (densas).
- Função de ativação: como o sinal é modificado e passado entre neurônios.
- Função de perda, que orienta o aprendizado:
 - Entropia cruzada para desfecho binário (mede a distancia entre a realidade e a probabilidade predita).
 - Erro quadrático médio para problemas de regressão.

MACHINE LEARNING

DEEP LEARNING

Deep learning é composto por:

- Optimizer, que é como o gradiente da perda será usado para atualizar os pesos. Em geral, uma variação do stochastic gradient descent (rmsprop).
- Lotes dos dados de treino que são passados de cada vez para calibrar os pesos.

MACHINE LEARNING

DEEP LEARNING

- Keras é uma biblioteca relativamente simples e com linguagem amigável para rodar modelos de deep learning.
- Bastante prática, só não é recomendada se você quiser desenvolver novos modelos ainda não existentes.
- Utiliza tensorflow.

Figure 3.2 Google web search interest for different deep-learning frameworks over time

Muito se fala sobre necessidade de "interpretação" dos algoritmos.

- O objetivo de uma predição não é compreender
 a causalidade de um fenômeno, é predizê-lo!
- Se o interesse for causalidade: usar métodos causais.

Entretanto é sim possível alguma interpretação da importância preditora das variáveis.

- Importante: não confundir com causalidade.
- Exemplo: na predição de risco de uma pessoa ir a óbito talvez seja interessante incluir o fato de ela ter sido internada em UTI recentemente.
- O fato de ela ter ido para a UTI **não é a causa** de ela ir a óbito no futuro, é apenas um preditor (ninguém cogita impedir idas à UTI para diminuir óbito).

Conclusão: interpretação em machine learning não é causalidade, mas sim uma forma de entender como o algoritmo realizou a predição.

Por que interpretação:

- Identificar presença de preditores indesejáveis (vazamento de dados).
- Garantir maior robustez (se o algoritmo de carro sem condutor está identificando motos pela roda, cuidado com motos com bolsas laterais).
- Identificar preconceitos (pode ser que o algoritmo esteja usando raça para rejeitar empréstimos bancários).
- Auxiliar na adesão pelos profissionais (médicos aceitarão melhor se entenderem como toma a decisão).

Por que **não** ter interpretação:

- Manipular o sistema:
- Imaginem se forem divulgados como um algoritmo estabelece prioridades para receber cirurgia, e uma das variáveis for morar no Butantã (bairro menos poluído de SP). As pessoas vão começar a dizer que moram no Butantã para manipular o algoritmo.

Brecha no ranking da Fifa prejudica seleções que jogam muitos amistosos

Possibilidades para interpretação:

- Interpretação intrínseca: utilizar algoritmos interpretáveis (regressão linear/logística ou árvores simples de decisão).
- Interpretação extrínseca: utilizar técnicas que permitem retirar interpretação de algoritmos complexos após o treinamento.

IMPORTÂNCIA DE VARIÁVEIS PREDITORAS

Solução mais comum

- Análise da mudança do erro de predição ao **permutar valores** da variável.
 - Variável é importante para predição se erro aumenta.
 - Se o modelo não utiliza essa variável o erro não muda.

 Outras soluções envolvem o desenvolvimento de algoritmos interpretáveis que se aproximem ao mais complexo (LIME, Global Surrogate).

Decisão é uma black box

Como convencer profissionais a adotarem nossos algoritmos?

- Mostrando a quantidade de acertos (performance).
- Não consigo explicar de forma simplista por que esse paciente só tem 1 mês de vida (é devido a interações muito complexas entre fatores), mas o algoritmo acerta quase sempre.
- Hora de iniciar os cuidados paliativos (caso o paciente tenha interesse), não importa o motivo.

Consequências no mercado de trabalho:

Complementação do trabalho de alguns profissionais: área da saúde.

- Impacto positivo: melhores decisões →
 maiores salários.
- Entretanto: necessidade de treinamento.

Alteração drásticas em outros trabalhos feitos por humanos: carros sem condutor.

 Solução: renda mínima? Incentivo a treinamentos?

Problemas sociais

Algoritmos preconceituosos

Exemplo recente:

 Algoritmos que ajudam juízes a estabelecer fiança nos EUA com tendência para risco maior de reincidência para negros (mais visados pela polícia → maior risco de serem presos pelo mesmo crime).

Na área da saúde: prioridades para cirurgia maior para ricos (maior tempo e dinheiro para usar na recuperação → melhores resultados da cirurgia).

Problemas sociais

Ainda estamos longe, mas consequências drásticas.

- O que essa inteligência fará com humanos?
- Pode ser que ignore, até nos ajude.

Singularidade:

- Enorme avanço tecnológico em um curto espaço de tempo.
- Inteligência de uma criança é suficiente.

Problemas sociais

Desenvolvimento de inteligência artificial forte (inteligência artificial geral).

- Capacidade de aprender novas tarefas de fato sozinha.
- Não é a realidade hoje: algoritmos que predizem óbito não conseguem jogar xadrez.

Não virá de aprendizado supervisionado.

Impossível ensinar todas as tarefas possíveis.

Machine learning

"Inteligência artificial será como a eletricidade: não haverá uma única profissão que não será profundamente alterada em 10 anos."

Prof. Andrew Ng - Universidade de Stanford

Machine learning em Saúde

Objetivos:

Conseguir predizer a ocorrência de eventos, como óbitos ou doenças, é uma preocupação estrutural da ciência, mas que tem sido negligenciada até recentemente. O curso tem como objetivo introduzir o aluno ao uso prático dos modelos preditivos de inteligência artificial (*machine learning*). Programação: 1 – Perspectivas para o uso de inteligência artificial em saúde. 2 – O uso do R e do Python para limpeza, transformação e visualização de dados. 3 – Sobreajuste e divisão da amostra em treino, validação e teste. 4 – Mensuração da performance de modelos preditivos. 5 – Modelos para predição de variável contínua (regressões penalizadas com lasso e *ridge*, redes neurais, *support vector machines, random forests e gradient boosted trees*). 6 – Modelos para predição de variável binária (regressões logísticas penalizadas, redes neurais, *support vector machines, Naīve Bayes, random forests e gradient boosted trees*). 7 – *Deep learning*. 8 – Seleção, transformação e mensuração da importância das variáveis preditoras. 9 – Sobrevivência da espécie humana com a chegada da singularidade (provocações).

Período de Realização:

05/02/2018 a 09/02/2018 - 2.ª a 6.ª feira das 14h00 às 18h00

Carga horária:

20 horas

Local do curso:

Faculdade de Saúde Pública/USP - Av. Dr. Arnaldo, 715, Cerqueira Cesar - São Paulo/SP

Vagas:

25

Professor:

Alexandre Dias Porto Chiavegatto Filho (Coordenador)

Monitora:

Hellen Geremias dos Santos

Pesquisar

Inteligência Artificial em Saúde

O uso de Machine Learning

REPRODUZIR TUDO

Aulas USP | Inteligência Artificial em saúde: o uso de machine learning

11 vídeos • 12.382 visualizações • Última atualização em 30 de jun de 2018

Canal USP

INSCRITO 68 MIL

Machine learning

Medo de uma vida guiada por algoritmos?

Machine learning – medo de uma vida guiada por algoritmos?

Melhor alocação dos nossos recursos (tempo e dinheiro): menos livros e séries que não gostamos, eventos que não queremos ir, procedimentos de saúde ineficientes.

Mais tempo e dinheiro livre para o que de fato importa:

- Algoritmo não passeia meu cachorro.
- Algoritmo não abraça meus pais.
- Algoritmo não bebe um chopp com meus amigos.

Machine learning vai liberar nosso potencial humano

Obrigado!

Alexandre Chiavegatto Filho

http://www.fsp.usp.br/alexandre

@SaudenoBR

alexdiasporto@usp.br