Fizika 1i, 2018 őszi félév, 3. gyakorlat

Szükséges előismeretek: szögelfordulás, szögsebesség, szöggyorsulás, centripetális és tangenciális gyorsulás; dinamika: Newton-törvények, a dinamika alapegyenlete egy testre, csúszási és tapadási súrlódás, mozgás lejtőn;

Feladatok

Körmozgás kinematikája

- **F1.** Egy falióra nagymutatója másfélszer hosszabb, mint a kismutató.
- a) Hogyan aránylik egymáshoz a nagymutató és a kismutató végpontjának sebessége?
- b) Éjfél után leghamarabb mikor változik a falióra mutatóinak végpontjai közötti távolság a leggyorsabban, és mikor a leglassabban?
- **F2.** A P pont R=50 cm sugarú körpályán mozog úgy, hogy az O origóból a P-hez húzott r helyvektor állandó, $\omega=0.40\,\mathrm{s}^{-1}$ nagyságú szögsebességgel forog (lásd az ábrát! Adjuk meg a P pont sebességének nagyságát, valamint eredő gyorsulásának nagyságát és irányát!

- **F4.** Anna egy 6 méter sugarú, egyenletesen forgó körhinta szélén ül. Béla a körhinta középpontjától 12 méterre a földön áll. Béla úgy látja, hogy Anna éppen feléje mozog 1 m/s sebességgel. Mekkora sebességgel látja ekkor mozogni Anna Bélát?
- **F5.** Körpályán egyenletesen lassuló test félkörív megtétele során sebességének kétharmadát elveszíti. A körpálya teljes körívének hányad részét teszi még meg a megállásig, és ez mennyi ideig tart?
- **F6.** Álló helyzetből induló autó körpályán mozogva egyenletesen növeli sebességének nagyságát. Egy negyedkör megtétele után mekkora szöget zár be gyorsulásának iránya a sugárral?
- **F7.** Egy fonálon lévő golyó függőleges síkban leng úgy, hogy gyorsulásának nagysága a szélső és a legmélyebb helyzetben azonos. Határozzuk meg a fonál és a függőleges közötti szöget a szélső helyzetben!
- **F8.** Egyenletes körmozgást végző kis test v sebességgel halad. A kör középpontjából a testhez húzott sugár t idő alatt φ szöggel fordul el. Határozzuk meg a t idő alatti átlaggyorsulás vektorának nagyságát a fenti adatokból!

- **F9.** A földi nehézségi erőtérben egy követ v_0 sebességgel a vízszinteshez képest felfelé, α szögben elhajítunk. Mekkora a kő pályájának görbületi sugara
 - a) közvetlenül az eldobás utáni időpillanatban;
 - b) a pálya tetőpontján?
- **F10.** Határozzuk meg fizikai megfontolások felhasználásával egy $y=\alpha x^2$ egyenletű parabola görbületi sugarát a csúcspontjában! (Útmutatás: használjuk az előző feladat eredményét!)
- **F11.** Vízszintes, érdes asztallapon egy R sugarú hengert csúszás nélkül gördítünk. A henger tengelyének sebessége v. Határozzuk meg az ábrán látható A, B és C pontok sebességének nagyságát és irányát!

- **F12.** Vízszintes, érdes asztallapon egy R sugarú hengert csúszás nélkül gördítünk.
- a) Adjuk meg a henger egy kerületi pontja által leírt görbe (ciklois) paraméteres egyenletét derékszögű koordinátákban!
- b) Mekkora a ciklois görbületi sugara a legmagasabb pontjában?

F13. Egy cérnaorsó egy középső, R/2 sugarú, henger alakú csévetestből és annak két végére erősített, R sugarú korongokból áll. Az orsót érdes asztallapra helyezzük, és a cérna végét vízszintesen v sebességgel húzni kezdjük. Adjuk meg az ábrán látható P pont sebességét és pályájának görbületi sugarát!

F14. Egy merev rúd egyik vége a talajon, másik vége pedig egy függőleges falhoz támaszkodik. A rúd alsó végét állandó v_0 sebességgel húzzuk vízszintes irányban. Mekkora a rúd szögsebessége és szöggyorsulása abban a pillanatban, amikor a rúd vízszintessel bezárt szöge éppen α ? (Tegyük fel, hogy a rúd nem válik el a faltól.)

- ${f F15.}$ Vízszintes talajon lévő pontszerű testhez egy fonalat erősítünk, a fonál másik végét pedig egy függőleges falon h magasságban rögzített motor csévéli fel állandó, v nagyságú sebességgel. Adjuk meg
 - a) a fonál szögsebességét;
 - b) a fonál szöggyorsulását

abban a pillanatban, amikor a fonál α szöget zár be a vízszintessel.

Dinamika (feladatok egy testre)

F16. Vízszintes asztallap szélén áll egy kis "micsoda". Meglökjük úgy, hogy eljusson az 1 méter széles asztal túlsó széléig. El is jut oda 2 másodperc alatt. Van-e kereke ennek a kis micsodának?

F17. Vízszintes asztalon egy m tömegű kis testet szeretnénk elhúzni egy kötél segítségével. A csúszási súrlódási együttható μ . Mekkora β szöget zárjon be a kötél az asztal síkjával, hogy a kötélerő a legkisebb legyen? Mekkora ez a legkisebb erő?

Megoldások

F1. Körmozgás $\omega' = 2\omega$ szögsebességgel.

A sebesség: $v = 2R\omega = 0.4 \text{ m/s}$;

A gyorsulás: $a_{\rm cp} = 4R\omega^2 = 0.32 \text{ m/s}^2$.

F9. $r_1 = v_0^2/(g\cos\alpha)$, $r_2 = v_0^2\cos^2\alpha/g$.

F11. $v_A = v_C = \sqrt{2}v$, $v_B = 2v$.

F12. a) $x(s) = s - R \sin(s/R)$, $y(s) = R - R \cos(s/R)$.

b) 4R

F18. Azonos alapú, de különböző hajlásszögű lejtők közül melyiken csúszik le leghamarabb egy kis test? A súrlódási együttható értéke μ .

F19. Egy lejtő hosszának felső felén μ_1 a súrlódási együttható, alsó felén pedig $\mu_2 > \mu_1$. Ha a lejtő tetejéről egy kicsiny testet elengedünk, az lecsúszik, és éppen a lejtő aljához érve áll meg. Mekkora a lejtő hajlásszöge?

F20. Egy hasáb α hajlásszögű sík felületen nyugszik. A felületet vízszintes irányban agyorsulással mozgatjuk, a gyorsulás iránya a sík normálvektorát tartalmazó függőleges síkba esik. Mekkora μ tapadási súrlódási együttható esetén maradhat a hasáb a felülethez képest nyugalomban?

F21. Egy vízszintes síkú, r=15 cm sugarú, csapágyazott tengelyű korong fordulatszáma az első fél fordulat megtétele után már $f=15 \, \mathrm{min}^{-1}$. A korong szöggyorsulása állandó. Határozzuk meg, hogy a korong szélére helyezett kisméretű test az indulás után mennyi idő elteltével csúszik le a korongról, ha köztük a tapadási súrlódási együttható $\mu=0.06!$

F22. Egy különleges versenypályán egy éles, meredek dölésű kanyar ívének görbületi sugara r=50 m, az úttest dőlése "befelé" $\alpha=30^\circ$. Mekkora az a minimális és maximális sebesség, mellyel egy egyenletesen haladó gépkocsi nem csúszik meg? A kerekek és a pálya közötti tapadási súrlódási együttható $\mu=0,4$.

F23. Egy 100 m szélességű folyón parabola alakú híd ível át. A híd legmagasabb pontja 5 m-rel van a part szintje felett. Egy 1000 kg tömegű autó halad át a hídon egyenletesen, 20 m/s sebességgel. Mekkora erővel nyomja az autó a hidat a híd legmagasabb pontján?

F17. $\beta = \arctan \mu$ (súrlódási határszöggel és szerkesztéssel vagy deriválással)

F21. t = 5 s, paraméteresen:

$$t = \sqrt[4]{\frac{\mu^2 g^2}{r^2 \beta^4} - \frac{1}{\beta^2}}, \quad \text{ahol} \quad \beta = 2\pi f^2.$$

F22. 8,4 m/s $\leq v \leq$ 25,0 m/s, paraméteresen:

$$\sqrt{\frac{gr(\sin\alpha - \mu\cos\alpha)}{\cos\alpha + \mu\sin\alpha}} \le v \le \sqrt{\frac{gr(\sin\alpha + \mu\cos\alpha)}{\cos\alpha - \mu\sin\alpha}}.$$