MATH 1600 Linear Algebra — Winter 2020

Tutorial 7 - Wednesday

The Inverse of a Matrix

1. In exercises (a)–(d), let

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 \\ -4 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } E = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}.$$

- (a) Find the inverse of each of the matrices given above (if it exists).
- (b) Compute $(A+B)^{-1}$ and show that $(A+B)^{-1} \neq A^{-1} + B^{-1}$.
- (c) Compute $(AB)^{-1}$ and show that $(AB)^{-1} \neq A^{-1}B^{-1}$.
- (d) Show that DC = EC, yet $D \neq E$.

2. Let
$$A = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & -1 & 3 & 0 \\ 0 & -1 & -1 & 1 \end{pmatrix}$$
.

- (a) Use the Gauss-Jordan method to find A^{-1} .
- (b) Check that $AA^{-1} = I_4 = A^{-1}A$ by direct multiplication.

3. Let
$$A = \begin{pmatrix} 0 & 3 & 2 \\ 1 & -4 & -2 \\ -3 & 4 & 1 \end{pmatrix}$$
, $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

- (a) Find A^{-1} .
- (b) Use your answer in (a) to solve the three systems $A\mathbf{x} = \mathbf{e}_1$, $A\mathbf{x} = \mathbf{e}_2$ and $A\mathbf{x} = \mathbf{e}_3$.
- 4. Let A be an $n \times n$ invertible matrix. Either prove the statement or give an example showing it is false: claim: If \mathbf{v} is a vector in \mathbb{R}^n such that $A\mathbf{v} = 0$, then $\mathbf{v} = 0$.

Subspaces

5. In each case, determine whether the given set is a subspace of \mathbb{R}^2 . Explain.

(a)
$$S_1 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x \ge 0 \text{ and } y \ge 0 \right\}.$$

(b)
$$S_2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x \le 0 \text{ and } y \le 0 \right\}.$$

(c)
$$S_3 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \begin{pmatrix} x \\ y \end{pmatrix} \text{ is in } S_1 \text{ and/or } S_2 \right\}.$$

(d)
$$S_4 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : y = 2x + 1 \right\}.$$

6. In each case, determine whether the given set is a subspace of \mathbb{R}^3 . Explain.

(a)
$$S_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x = y = z \right\}.$$

(b)
$$S_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y + z = 0 \right\}.$$

- 7. In each case, determine whether the given set is a subspace of $\mathbb{R}^{n,n}$. Explain.
 - (a) The set of all $n \times n$ invertible matrices.
 - (b) The set of all $n \times n$ diagonal matrices.
 - (c) The set of all $n \times n$ upper triangular matrices.
 - (d) The set of all $n \times n$ matrices that are either zero or invertible.
- 8. Let A be an $m \times n$ matrix. In each case, determine whether the given set is a subspace of \mathbb{R}^n . Explain.
 - (a) S is the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.
 - (b) S is the set of solutions of the non-homogeneous linear system $A\mathbf{x} = \mathbf{b}$.
 - (c) S is the set spanned by the rows of A.