Efficient Generation of Geographically Accurate Transit Maps

Hannah Bast¹, Patrick Brosi¹ and Sabine Storandt²

¹University of Freiburg

² LMU Würzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA

Motivation

Official CTA map

Motivation

Motivation

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips"

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips"

Goal

Goal: Generate these maps automatically, in high quality

"Bag of trips"

Challenges

Challenges

Challenges

Line graph construction

Line graph:

- Undirected labeled graph
 G = (V, E, L)
- Edge labels are subsets of the network lines L
 (L(e) ⊆ L)
- Nodes are usually stations

Example: $\mathcal{L} = \{\}$ and $L((a, b)) = \{\}$

Line graph construction - Input data

Line graph construction - Shared segment collapsing

- Repeatedly collapse (segments of) two edges e and f within a distance \hat{d}
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If $d < \hat{d}$, start new segment. If not, end current (if open)
- ullet Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries

Results so far (1)

Results so far (1)

Line-ordering optimization

- · 23 edges
- Each edge e has |L(e)|! possible line permutations
- Possible configurations for the graph on the left: $> 2 \times 10^{17}$
- ⇒ Naive exhaustive search infeasible

Line-ordering optimization - Baseline ILP

- For each edge e, line l and position p, introduce variable $x_{elp} \in 0, 1$
- Example: x_{eA1} and x_{eA2} for line A
- Constraint: all x_{elp} have to sum up to 1 for a single line l on a single edge e
- Standard crossing: Objective variable $x_{ee'AB}$ which is 1 if $p_e(A) < p_e(B)$ and $p_{e'}(A) > p_{e'}(B)$, or else 0
- Split crossing: Objective variable $x_{ee'e''AB}$ which is 1 if $p_e(A) < p_e(B)$, or else 0

 $\Rightarrow \mathcal{O}(|E|M^2)$ variables, $\mathcal{O}(|E|M^6)$ constraints

Line-ordering optimization - Improved ILP

- Observation: we only need to check if $p_e(A) < p_e(B)$ (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e
- Basic idea: introduce binary variables x_{eA<B} and x_{eB<A} which can be efficiently checked

 $\Rightarrow \mathcal{O}(|E|M^2)$ variables, $\mathcal{O}(|E|M^2)$ constraints

Results so far (2)

Results so far (2)

Results so far (2)

Line-ordering optimization - Line separations

1 crossing, 1 separation

2 crossings, 0 separations

2 crossings, 1 separation

2 crossings, 0 separations

Line-ordering optimization - Line separations (ctd.)

- Add $x_{ee'A||B}$ to the objective function

 \Rightarrow Still $\mathcal{O}(|E|M^2)$ variables, $\mathcal{O}(|E|M^2)$ constraints

Results so far (3)

Results so far (3)

Line-ordering optimization - Core optim graph

Rendering

Results so far (4)

Evaluation

Future work

- Additional rules for core graph reduction (work in progress)
- · Faster construction times of line graph
- TODO