Seção 1.2. Curvas Parametrizadas

By Gabriela Silva

10 de fevereiro de 2020

Exercício 4. Seja $\alpha:I\to\mathbb{R}^3$ uma curva parametrizada e seja $v\in\mathbb{R}^3$ um vetor fixado. Admita que $\alpha'(t)$ seja ortogonal a v para todo $t\in I$ e que $\alpha(0)$ também seja ortogonal a v. Prove que $\alpha(t)$ é ortogonal a v para todo $t\in I$.

Solução. Defina a função

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(t) = \langle \alpha(t), v \rangle$$

Desse modo,

$$g'(t) = \langle \alpha'(t), v \rangle + \langle \alpha(t), v' \rangle$$

Como por hipótese $\langle \alpha'(t), v \rangle = 0$ e sabemos que v' = 0, consequentemente $\langle \alpha(t), v' \rangle = 0$. Logo, $g'(t) = \langle \alpha'(t), v \rangle + \langle \alpha(t), v' \rangle = 0$, isso significa que á função g é constante, e, além disso por hipótese $\langle \alpha(0), v \rangle = 0 = g(0)$. Logo, $g(t) = \langle \alpha(t), v \rangle = 0$, portanto $\alpha(t)$ e v são ortogonais.