

高等数学 A2

浙江理工大学期末试题汇编(试卷册)

学校:	
专业:	
班级:	
姓名:	
学号:	

目录

1 浙江理工プ	大学 2018	-2019	学年第	2 学期	《高等数学	A2»	期末 A	卷	1
2 浙江理工プ	大学 2018		学年第	2 学期	《高等数学	A2»	期末 B	卷	5
3 浙江理工プ	大学 2016		学年第	2 学期	《高等数学	A2»	期末 A	卷	9
4 浙江理工プ	大学 2016	5—2017	学年第	2 学期	《高等数学	A2»	期末 B	卷	13
5 浙江理工プ	大学 2015		学年第	2 学期	《高等数学	A2»	期末 A	卷	17
6 浙江理工プ	大学 2014	-2015	学年第	2 学期	《高等数学	A2»	期末 A	卷	21
7 浙江理工プ	大学 2013		学年第	2 学期	《高等数学	A2»	期末 A	卷	26
8 浙江理工プ	大学 2013		学年第	2 学期	《高等数学	A2»	期末 B	卷	30
9 浙江理工プ	大学 2012		学年第	2 学期	《高等数学	A2»	期末 A	卷	35
10 浙江理工	大学 201	2-2013	学年第2	2 学期	《高等数学	A2》	期末 B	卷	39
11 浙江理工	大学 201	1-2012	学年第2	2 学期	《高等数学	A2》	期末A	卷	43
12 浙江理工	大学 201	0-2011	学年第2	2 学期	《高等数学	A2》	期末 A	卷	48
13 浙江理工	大学 200	9-2010	学年第2	2 学期	《高等数学	A2》	期末 A	卷	52
14 浙江理工	大学 200	8-2009	学年第2	2 学期	《高等数学	A2》	期末 A	卷	56
15 浙江理工	大学 200	8-2009	学年第2	2 学期	《高等数学	A2》	期末 B	卷	60
16 浙江理工	大学 200	7-2008	学年第2	2 学期	《高等数学	A2》	期末 A	卷	64
17 浙汀理丁	大学 200	4-2005	学年第 2	2 学期	《高等数学	A2»	期末A	券	68

左侧: 创琦杂谈微信公众号

右侧: **创琦杂谈学习交流群**(QQ 群)

写在前面

当打开这套试题册时,你估计已经接近期末考试了。一本厚厚的试题册,满满的公式,瞬间让你有回到了高中的感觉。对于高中的我们来说,这十几套试题根本不算什么,但在大学,能把这十几套试卷认真做完真的不是一件很容易的事情。但我希望大家都能坚持下来,说近点的,高数还有 5 个学分呢!对吧?

能真正把这十几套试卷认真做完并学习透彻,确实很难。但当我们攻克一道道难题,刷完一套套试卷时,那种欣喜之感油然而生。以前有人说过,世界上有棵树很高很高,那棵树就是"高数",很多人爬上去就下不来了。段子归段子,玩笑归玩笑,乐呵乐呵就过去了。调侃之余进行认真学习是很必要的,至少能证明我高数在大学是合格的。当然了,人各有志,每个人追求不同,追求多少分无所谓,在乎的是那种心态,无所畏惧,当我们看到那一堆堆积分符号时,看到那一个个微分符号时,我告诉自己,拿出纸笔,我要做出来这道题目,这种态度是令我最羡慕的,也是我认为最纯粹的。

很多人都会坚持不下来,这是一大困难,我们要试着克服。进入大学后,我们的生活更加丰富多彩,课外时间也更加充实了。可很多人对学习的态度变弱了。每次当我反思自己这一天有多少时间是在认真投入学习时,结果令我吃惊并且失望,学习时长竟然能用手指头数地过来,当我去想时间都去那儿了的时候,我又感到一丝空虚。我现在在写序言,想到了还有十多天 2021 届的考生们就要高考了,心里还是有很多感慨的。此时此刻,我的脑海里浮现的是我曾经追过的五点半的那缕阳光,为了背单词、背文科题目背到口干舌燥却浑然不知;中午饭过后总想着要在班里多学习一会儿,结果每次回宿舍午休都得迟到;刷数学、理综题目时刷到忘了时间,忘了身边的一切;和小伙伴们争论一道题争到面红耳赤……当我高考完过后再去看自己做过的题目时,发现那一张张卷子有过我青春的回忆。时间,带走的是少年的张扬与不羁,带不走的是少年们为了自己的理想而不顾一切地追求自己所热爱的一切的坚韧、不屈、执着与勇气。我和别人唠嗑时总是会说我高三那时候怎么怎么放松,怎么怎么不努力,我觉得我发扬了中国了一大精神:谦虚的精神。但真正的生活,没有走过怎又能知道呢?当高考结束铃声响起,当录取志愿书递送到你的手边,当拖着行李箱迈进校园,少年成熟了,敢于追求的梦也越来越清晰了,热爱学习,热爱生活,本就是一个18岁的花季少年身上最发光发亮的地方。

关于写高数试卷,我在这里给大家提几点建议哈。

1、重视课本。重视课本的知识点、习题、概念定理的应用辨析。课本是基础,是提升

的地基。做完试卷后你会发现,期末考点万变不离其宗,也有多道试题来源于课本。课本的 每道题目存在都有其必然的道理,希望大家在期末考前不要扔掉课本;

- 2、学着去总结题型。总结题型是脱离题海游上岸的船舶,总结之后,你会发现考点也就只有那么些。总结时,大家要注意这个知识的应用背景、注意事项等等;
- 3、认真做题。这是我必须强调的,大学期末卷子没有高考难,想取得高分态度一定要端正,认真去学习每个类型的题目,去学习每个知识点。

于我而言,经历的人生最折磨的事情莫过于去把一行一行公式录入到 word 文档中(第一套、第三套、第五套、第六套试题以及第三套和第五套的答案是我一个字一个字、一个公式一个公式敲上去的),在这里希望大家可以认真做卷子,争取期末取得理想的成绩!

由于时间紧, 录入时可能出现错误, 也可能有其他大大小小的错误, 恳请大家批评指正。

张创琦

2021年5月22日

试卷整理人: 张创琦

微信公众号: 创琦杂谈

OO 号: 1020238657

微信号: asd15544827772

创琦杂谈学习交流群(QQ群): 749060380

微信公众号用于**提前告知资料更新内容**,**分享一些学习内容和一些优秀的文章**,我也 会写一些文章,主要是**以大学生视角进行一些事情的审视批判**。

QQ 学习群用于**学习资料的分享**,一般会第一时间进行资料的分享的。群里也可以进行**学习内容的讨论**,群里大佬云集哦(我不是大佬,呜呜呜),大家有什么不会的题目发到群里就好了哈!可以**水群**哦~ 我们分享的资料只作为学习使用,**不得进行售卖等行为,否则**后果自负。

如果有任何问题可以联系我的 QQ 和微信哈,我的性格很开朗,喜欢结交更多的朋友, 欢迎大家加我的联系方式哈~

版权声明: 试卷整理人: 张创琦, 试卷首发于 QQ 群"创琦杂谈学习交流群", 转发前需经过本人同意, 侵权后果自负。本资料只用于学习交流使用, 禁止进行售卖、二次转售等违法行为, 一旦发现, 本人将追究法律责任。解释权归本人所有。

1 浙江理工大学 2018—2019 学年第 2 学期《高等数学 A2》期末 A 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿 意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反, 自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名: _____任课老师: ____

一、选择题(本题共6小题,每小题4分,满分24分,每小题给出的四个选项中,只有一 项符合要求, 把所选项前的字母填在题后的括号内)

1. 过点M(1, -2, 1), 且与直线 x = y - 1 = z - 1 垂直的平面方程是 ()。

- A. x + y + z = 0
- B. x + y z = -2
- C. x y z = 2 D. x y + z = 4

2. 函数 $f(x,y) = 2x^2 + 3y^2$ 在P(1,1)处沿()方向增长最快。

- A. (-3,2) B. (3,-2) C.(2,3)

- D. (-2,-3)

3. 设f(x,y) 是连续函数,则 $\int_0^a dx \int_0^x f(x,y)dy = ($)。

- A. $\int_0^a dy \int_0^y f(x,y) dx$ B. $\int_0^a dy \int_v^a f(x,y) dx$
- C. $\int_0^a dy \int_a^y f(x, y) dx$ D. $\int_0^a dy \int_0^a f(x, y) dx$

4. 设 Ω 是由球面 $x^2+y^2+z^2=4$ 所围成的闭区域,则利用球面坐标计算,有 $\iint_\Omega x^2+z^2=4$ $v^2 + z^2 dv = ()$

- A. $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^2 r^2 dr$ B. $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^2 4 dr$

- C. $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^2 r^4 \sin\varphi dr$ D. $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^2 4r^2 \sin\varphi dr$

5. 设 L 是平面内光滑的有向曲线弧段,则下列曲线积分中与路径无关的是()。

- A. $\int_{L} 3x^2 y dx + 2x^3 y dy$ B. $\int_{L} 2x y dx + x^2 dy$
- C. $\int_{L} (x^2 + y^2) dx + (x^2 y^2) dy$ D. $\int_{L} \frac{-y dx + x dy}{x^2 + y^2}$

6. 下列级数中条件收敛的是()。

- A. $\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{2}{3})^n$
- B. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{2n^2+1}}$
- C. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{2n^3+1}}$ D. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt[3]{n^2}}$

二、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)

1. 圆柱螺旋线 $x=R\cos\theta$, $y=R\sin\theta$, $z=k\theta$ 在 $\theta=\frac{\pi}{2}$ 对应点处的切线方程为

- 2. 设 $D = \{(x,y) | x^2 + y^2 \le R^2\}$,则 $\iint_D (3x 5y + 8) dx dy = ______.$
- 3. 设 Σ 为球面 $x^2 + y^2 + z^2 = R^2$,则 $\iint_{\Sigma} \frac{dS}{x^2 + y^2 + z^2} =$ _______.
- 4. 幂级数 $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n^2}$ 的收敛域为 _______.
- 5. 椭圆 $x^2 + 4y^2 = 4$ 上的点到直线 2x + 3y 6 = 0 的最短距离是 _____。
- 6. 将函数 $\cosh x = \frac{e^x + e^{-x}}{2}$ 展开成 x 的幂级数: $\cosh x =$ ______.

三、计算题(本题共6小题,每题7分,满分42分,应写出演算过程及相应文字说明)

1. 设 $z = (x^2 + y^2)e^{x+y}$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2. 判定级数 $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$ 的收敛性。

3. 设 Σ 是球面 $x^2+y^2+z^2=9$ 被平面 z=1 截出的上半部分,求曲面 Σ 的面积。

4. 计算 $\iint_S xdydz + ydzdx + zdxdy$, 其中 S 为 $x^2 + y^2 + z^2 = a^2$, $z \ge 0$ 的上半球面的外 侧。

5. 验证: 在xOy 面内, $(3x^2y + 8xy^2)dx + (x^3 + 8x^2y + 12ye^y)dy$ 是某个函数的全微分, 并求出这个函数。

6. 设f(x)以 2π为周期,在 (-π,π] 上的表达式为

$$f(x) = \begin{cases} 0, & -\pi < x \le 0, \\ x^2, & 0 < x \le \pi, \end{cases}$$

将函数 f(x) 展开为傅里叶级数。

四、证明题(本题共2小题,每题5分,满分10分)

1. 设函数 f(x) 在区间 [0,1] 上连续,并设 $\int_0^1 f(x)dx = A$,证明 $\int_0^1 dx \int_x^1 f(x)f(y)dy = \frac{A^2}{2}$.

2. 已知平面区域 $D = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D的正向边界, 证明

$$\oint_{L} xe^{\sin y} dy - ye^{-\sin x} dx = \oint_{L} xe^{-\sin y} dy - ye^{\sin x} dx$$

2 浙江理工大学 2018—2019 学年第 2 学期《高等数学 A2》期末 B 卷

	人已阅读并且透彻地		
意在考试中自觉遵守这			
自愿按《浙江理工大学	学生违纪处分规定》	有关条款接受处理	0
承诺人签名:	. 学号:	班级:	任课老师:
一、选择题(本题共6小局	题,每小题 4 分,满分 2	24 分,每小题给出的[四个选项中,只有一
项符合要求,把所选项前的	的字母填在题后的括号内	勺)	
1、向量 $\vec{a} = (4, -3, 4)$ 在	向量 $\vec{b} = (2, 2, 1)$ 上的	投影是()。	
A, 2 B,	3 C, 6	D、12	
2 、设 n 是曲面 $2x^2 + 3y^2$	$z^2 + z^2 = 6$ 在点 P(1,1,	1)处的指向外侧的法	ξ 向量,则函数 $u=$
$\frac{1}{z}(6x^2+8y^2)^{\frac{1}{2}}$ 在此处沿方	方向 元 的方向导数为() 。	
$A \cdot \frac{\sqrt{14}}{7}$	$B_{\gamma} - \frac{11}{7}$	$C, \frac{11}{7}$	D, 0
3、下面表达式中肯定不是	某个二元函数的全微分	的是()。	
$A \cdot xdx + ydy$	B, $xdx - ydy$		
$C \cdot ydx + xdy$	$D_{x} ydx - xdy$		
4、设平面区域 D 由曲线y	$x^2 = 2x$ 和直线 $x = 1$ 所	围成,则 $\iint_D y\sqrt{4-x^2}$	dxdy =

- 5、下列级数中条件收敛的是()。
 - A. $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{2}{3}\right)^n$

B.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{2n^2+1}}$$

C, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{2n^3+1}}$ D, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt[3]{n^2}}$

D,
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt[3]{n^2}}$$

- 6、若级数 $\sum_{n=1}^{\infty} a_n (x-2)^n$ 在 x=3 处收敛,则此级数在 x=1 处()。

() 。

 A_{λ} -1 B_{λ} 0 C_{λ} 1 D_{λ} 2

- A、条件收敛 B、绝对收敛 C、发散 D、无法判断收敛性
- 二、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)
- 1、旋转曲面 $3x^2 + 2y^2 + 3z^2 = 12$ 在点 $P(0,\sqrt{3},\sqrt{2})$ 处指向外侧的单位法向量

- 3、设 L 是从 A (1,0) 到 B(-1,2)的直线段,则曲线积分 $\int_L (x+y)ds =$ _____。
- 4、设 Ω 是由曲面 $z=x^2+y^2$ 与平面z=4 所围成的闭区域,则 $\iint_{\Omega}zdv=$ ______。
- 5、幂级数 $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n^2}$ 的收敛域是_____。
- 6、设函数f(x)是周期为 2π的周期函数,它在[-π,π) 上的表达式为f(x)=x。将 f(x)展开 成傅里叶级数 S(x),则 $S(\pi) = ______$ 。
- 三、计算题(本题共6小题,每题7分,满分42分,应写出演算过程及相应文字说明)
- 1、通过交换积分次序计算 $\int_0^1 dy \int_{\sqrt{y}}^1 \sqrt{1+x^3} dx$ 。

2、求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值。

3、设f(x,y)连续,且 $f(x,y)=xy+\iint_D f(x,y)dxdy$,其中 D 是由 $y=0,y=x^2,x=1$ 所围 成的区域,求f(x,y)。

4、计算曲线积分 $\int_L (x^2 + xy) dy$,其中 L 为椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 上由点 A(2,0)到点 B(-2,0)的弧 段。

5、计算 $\iint_S xdydz + ydzdx + zdxdy$, 其中 S 为 $x^2 + y^2 + z^2 = a^2$, $z \ge 0$ 的上半球的外侧。

6、将 $f(x) = \frac{x}{2+x-x^2}$ 展开成x的幂级数。

四、证明题(本题共2小题,每题5分,满分10分)

1、设 L 是一条分段光滑的闭曲线,证明:

$$\oint_{L} (2xy^{3} - y^{2}\cos x)dx + (1 - 2y\sin x + 3x^{2}y^{2})dy = 0.$$

2、若正项级数 $\{x_n\}$ 单调增加且有上界,证明级数 $\sum_{n=1}^{\infty} (1-\frac{x_n}{x_{n+1}})$ 收敛。

3 浙江理工大学 2016—2017 学年第 2 学期《高等数学 A2》期末 A 卷

- ,	选择题	(本题共6小题,	每小题5分,	满分 30 分,	每小题给出的四个选项中,	只有一
项符	合要求,	把所选项前的字	华 母填在题后的	的括号内)		

D. 2x - 4y - z = 7

1.	旋转抛物面 $z = x^2 + 2y^2 - 4$	在点(1, -1, -1) 处的切平面方程为() 。
	A. 2x + 4y - z = 0	B. 2x - 4y - z = 4	

2. $\int_0^1 dy \int_0^y f(x,y)dx$ 则交换积分次序后得 () 。

A. $\int_{0}^{1} dx \int_{x}^{1} f(x, y) dy$ B. $\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy$ C. $\int_0^1 dx \int_y^1 f(x, y) dy$ D. $\int_0^1 dx \int_1^x f(x, y) dy$

3. 下列级数收敛的是()。

C. 2x + 4y - z = 4

A. $\sum_{n=1}^{\infty} \sin \frac{\pi}{n}$ B. $\sum_{n=1}^{\infty} \frac{n!}{10^n}$ C. $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n^2})$ D. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n} (1+\frac{1}{n})^{n^2}$

4. 设 L 沿 $y=x^2$ 从 (0,0) 到 (1,1) ,则 $\int_L 2x \sin y dx + (x^2 \cos y - 3y^2) dy = ($)。

B. $\sin 1$ C. $\sin 1 - 1$ D. $1 - \sin 1$

5. 下列结论中,错误的是()。

A. $x^2 + y^2 - z^2 = 0$ 表示圆锥面 B. $x = y^2$ 表示抛物柱面

C. $x + 2y^2 + z^2 = 0$ 表示椭圆抛物面 D. $x^2 + 2y^2 - 3z^2 = 1$ 表示双叶双曲面

6. 设 D 是由圆心在原点,半径为 1 的圆周所围成的闭区域,则 $\iint_D e^{-x^2-y^2} dx dy = ($)。

A. $\int_{0}^{2\pi} d\theta \int_{0}^{1} e^{-\rho^{2}} \rho d\rho$ B. $\int_0^{2\pi} d\theta \int_0^1 e^{-\rho^2} d\rho$

C. $\int_0^{2\pi} d\theta \int_0^1 e^{-1} \rho d\rho$ D. $\int_0^{2\pi} d\theta \int_0^1 e^{-\rho^2} \rho^2 d\rho$

二、填空题(本题共6小题,每小题5分,满分30分)

1. 若向量 (1,-1,3) 与向量 (-2,2,a) 平行,则 a=_____.

3. 设 $ax\cos ydx - (6y + x^2\sin y)dy$ 为某函数的全微分,则 a =_____.

5. 点 (1,2,1) 到平面 x+2y+2z-10=0 的距离为 .

- 6. 曲线 $x=t,y=-t^2,z=t^3$ 的所有切线中,与平面 x+2y+z+4=0 平行的切线有
- 三、计算题(本题共5小题,每小题6分,满分30分,应写出演算过程及文字说明)
- 1. 求三重积分 $\iiint_{\Omega} x dx dy dz$,其中 Ω 为三个坐标面及平面 x+2y+z=1 所围成的闭区 域。

2、将函数 $\frac{1}{1+x^2}$ 展开为x的幂级数,并求其收敛区间。

3. 计算 $\int_L \ |y| ds$,其中 L 为右半个单位圆 $x = \sqrt{1-y^2}$.

4. 计算 $\oint_{\Sigma} (x-y) dx dy$, 其中 足圆柱体 $x^2+y^2\leq 1, 0\leq z\leq 3$ 表面的外侧。

5. 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值点。

四、证明题(本题共2小题,第1题4分,第2题6分,满分10分,应写出详细证明和计 算过程)

1. 证明级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n-1}$ 绝对收敛。

2. 证明曲线积分 $\int_{(1,0)}^{(2,1)} (2xy-y^4+3)dx+(x^2-4xy^3)dy$ 在整个 xOy 面上内与路径无关, 并计算此积分。

4 浙江理工大学 2016—2017 学年第 2 学期《高等数学 A2》期末 B 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿 意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反, 自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

水i	诺人签名:	学号:_		
— ,	、选择题	(本题共6小题,每小剧	题 5 分,满分 30 分)	
1,	在曲线:	$x = t, y = -t^2, z = t^2$	」所有切线中,与平面 $\Pi: x+$	2y + z + 4 = 0 平行的切线
	()			
	(A) 只	有1条 (B) 只有	2条 (C) 至少有 3条	(D) 不存在
2、	$I = \int_0^1 dy$	$\int_{1-y}^{1} f(x,y)dx$,则交换	积分次序后得 ()	
	(A) I	$= \int_0^1 dx \int_{1-x}^1 f(x,y) dy$	$(B) I = \int_0^{1-y} dx \int_0^1$	f(x,y)dy
	(C) I:	$= \int_0^1 dx \int_0^{1-x} f(x, y) dy$	$(D) I = \int_0^1 dx \int_0^{x-}$	$\int_{0}^{1} f(x,y)dy$
3、	设 $\sum_{n=1}^{\infty} a_n$	_n 是正项级数,则部分和	口数列 $\{s_n\}$ 有界是数列 $\{a_n\}$ 收敛	枚的 ()
	(A) 充	三 分非必要条件	(B) 必要非充分条何	牛
	(C) 充	三 分必要条件	(D) 既非充分也非。	必要条件
4、	下列结论	中错误的是()		
	(A) z	$+2x^2+y^2=0$ 表示椭[圆抛物面 (B) $x^2 + 2y^2 =$	$1+3z^2$ 表示双叶双曲面
	$(C) x^2$	$x^2 + y^2 - (z - 1)^2 = 0 \ $	示圆锥面 (D) $y^2 = 5x$ 表示	示抛物柱面
5、	设 D 由x	$x^2 + y^2 = 3$ 所围成,则 \int	$\int_{D} (x^2 + y^2) dx dy = ()$	
	(A) 3	$\int_0^{2\pi} d heta \int_0^{\sqrt{3}} ho d ho$	(B) $\int_0^{2\pi} d\theta \int_0^{\sqrt{3}} \rho^3 d\theta$	lρ
	(C) \int_0^0	$\int_0^{2\pi}d heta\int_0^{\sqrt{3}} ho^2d ho$	(D) $\int_0^{2\pi} d\theta \int_0^3 \rho^3 d\theta$	ρ
6、	设 <i>L</i> 沿y	$= x^2$ 从 $(0,0)$ 到 $(1,1)$,则.	$\int_{L} 2x \sin y dx + (x^2 \cos y - 3y)$	$^{2})dy = ($
	(A) 0	(B) sin1	(C) $1-sin1$	(D) sin1 - 1
二、	、填空题	(本题共6小题,每小剧	题 5 分,满分 30 分)	
1,	若向量(1	,2,-1)与向量(1,b,-1)垂直	,则 <i>b</i> =	
2、	设Σ是球	(a) (a) (a) (b) (a) (a) (b) (a) (b) (a) (b) (b) (c) (c)	$\iiint_{\Sigma} (x^3 + y^3 + z^3) dS = \underline{\qquad}$	
3、	设axvdx	$+(x^2+3y^2)dy$ 是某函	数的全微分,则 <i>a</i> =	

- 4、设 $x^2 + y^2 + z^2 2z = 0$,则 $\frac{\partial z}{\partial y} =$ ______
- 5、设L是连接(1,0)和(0,1)的直线段,则 $\int_{L} (x+y)ds$ =_____
- 6、过点(0,2,4),与两平面x + 2z = 1 和 y 3z = 2 平行的直线方程为_____
- 三、计算题(本题共5小题,每小题6分,满分30分,应写出演算过程及文字说明)
- 1、求函数 $shx = \frac{e^x e^{-x}}{2}$ 在x = 0 处的幂级数展开式,并确定收敛区间。

2、 利用柱面坐标求三重积分 $\iint_{\Omega} z dv$,其中 Ω 是由曲面 $z=x^2+y^2$ 与平面z=4 所围成的闭 区域。

3、求 $\iint_{\Sigma} (x-y^2) dy dz + (y-z^2) dz dx + (z-x^2) dx dy$,其中 Σ 为半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧。

4、 计算 \iint_D arctan $\frac{y}{x}dxdy$,其中 D 是由圆周 $x^2+y^2=4$, $x^2+y^2=1$ 及直线y=0,y=x所围成的在第一象限内的闭区域。

5、求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 的和函数。

四、证明题(本题共2小题,每题5分,满分10分,应写出详细证明和计算过程)

1、试证曲面f(x-ay,z-by)=0的任一切平面恒与某一直线相平行(其中f为可微函数, a, b 为常数)。

2、设正项级数 $\sum_{n=1}^{\infty}a_n$ 和 $\sum_{n=1}^{\infty}b_n$ 都收敛,证明级数 $\sum_{n=1}^{\infty}(a_n+b_n)^2$ 也收敛。

5 浙江理工大学 2015—2016 学年第 2 学期《高等数学 A2》期末 A 卷

一、选择	题(本题共	6 小题,	毎小題49	7. 满分	24分)
------	-------	-------	-------	-------	------

- 1. 设函数z=z(x,y)由方程 $F(\frac{y}{x},\frac{z}{x})=0$ 确定,其中F为可微函数且 $F_2^{'}\neq 0$,则 $xz_x+yz_y=0$ () 。
- A. x B. z C. -x
- 2. 设有直线 L_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$, L_2 : $\begin{cases} x-y=6, \\ 2y+z=3, \end{cases}$ 则 L_1 与 L_2 的夹角为()。
 - A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{2}$

- 3. 设f(x,y)为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\cos\theta,r\sin\theta)rdr = ($)。

 - A. $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x,y) dy$ B. $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy$
 - C. $\int_0^{\frac{\sqrt{2}}{2}} dy \int_y^{\sqrt{1-y^2}} f(x,y) dx$ D. $\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$
- 4. 设 L_1 : $x^2 + y^2 = 1$, L_2 : $x^2 + y^2 = 2$, L_3 : $x^2 + 2y^2 = 2$, L_4 : $2x^2 + y^2 = 2$ 为四条逆时 针方向的平面曲线。记 $I_i = \oint_{L_i} (y + \frac{y^3}{6}) dx + (2x - \frac{x^3}{3}) dy (i = 1,2,3,4)$,则 $\max_{i=1,2,3,4} I_i = ($)。
- C. *I*₃
- 5. 设曲面 Σ 是上半球面: $x^2 + y^2 + z^2 = R^2$ $(z \ge 0)$, 曲面 Σ_1 是曲面 Σ 在第一卦限中的部分, 则有()。

 - A. $\iint_{\Sigma} xdS = 4 \iint_{\Sigma_1} xdS$ B. $\iint_{\Sigma} ydS = 4 \iint_{\Sigma_1} xdS$

 - C. $\iint_{\Sigma} zdS = 4 \iint_{\Sigma_1} xdS$ D. $\iint_{\Sigma} xyzdS = 4 \iint_{\Sigma_1} xyzdS$
- 6. 若级数 $\sum_{n=1}^{\infty}a_n$ 条件收敛,则 $x=\sqrt{3}$ 与x=3 依次为幂级数 $\sum_{n=1}^{\infty}na_n(x-1)^n$ 的()。
 - A. 收敛点, 收敛点
- B. 收敛点,发散点
- C. 发散点, 收敛点
- D. 发散点,发散点
- 二、填空题(本题共6小题,每小题4分,满分24分)
- 1. $\operatorname{grad} \frac{1}{x^2 + y^2} = \underline{\hspace{1cm}}$

- 4. 设L为 $y^2=x$ 上从点A(1,-1)到点B(1,1)的一段弧,则 $\int_L xyds=$ ______
- 5. $\forall \Sigma = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\}$, $\bigcup_{\Sigma} y^2 dS =$ ______
- 6. $\forall f(x) = |x \frac{1}{2}|, \ b_n = 2 \int_0^1 f(x) \sin(n\pi x) dx (n = 1, 2, ...), \ \diamondsuit S(x) = \sum_{n=1}^{\infty} b_n \sin(n\pi x)$
- ,则 $S(-\frac{9}{4}) = _____$
- 三、计算题(本题共6小题,每小题6分,满分36分,应写出演算过程及文字说明)
- 1. 判断下列级数的收敛性。
 - $(1) \sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$
- (2) $\sum_{n=1}^{\infty} (-1)^{n-1} \sin \frac{n}{3^{n-1}}$

2.求函数 $f(x,y) = (y + \frac{x^3}{3})e^{x+y}$ 的极值。

3. 计算二重积分 $\iint_D (3x+2y) dx dy$,其中 D 是由两坐标轴及直线 x+y=2 所围成的区域。

4. 计算曲线积分 $\int_L (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$, 其中 L 为上半圆周 $(x-a)^2 + y^2 = a^2$, $y \ge 0$ 沿逆时针方向。

5. 计算曲面积分 $\iint_{\Sigma} (y^2-z)dydz + (z^2-x)dzdx + (x^2-y)dxdy$,其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ $(0 \le z \le h)$ 的外侧。

6. 设函数f(x)的周期为 2π 且 $f(x) = 3x^2 + 1(-\pi \le x \le \pi)$,将f(x)展开成傅里叶级数。

三、综合题(本题8分)

已知函数z = u(x,y)的全微分为 dz = (x + 2y)dx + (2x + y)dy 且 u(0,0) = 0,

- (1) 求出这样的函数u(x,y);
- (2) 求曲面z = u(x,y)在点(1,1,3)处的切平面和法线方程。

五、证明题(本题共2小题,每小题4分,满分8分)

1. 证明: $\int_0^a dy \int_0^y e^{m(a-x)} f(x) dx = \int_0^a (a-x) e^{m(a-x)} f(x) dx$.

2. 设正项级数 $\sum_{n=1}^{\infty}u_n$ 和 $\sum_{n=1}^{\infty}v_n$ 都收敛,证明级数 $\sum_{n=1}^{\infty}(u_n+v_n)^2$ 也收敛。

6 浙江理工大学 2014—2015 学年第 2 学期《高等数学 A2》期末 A 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿 意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反, 自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	学号:	班级:	任课老师:
一、选择题(本题共	¢6小题,每小题 4	4 分,满分 24 分,每	ቓ小题给出的四个选项中,只有 ─
项符合要求,把所选	达项前的字母填在 是	题后的括号内)	
1. 己知曲面 $2z = x^2$	$+y^2$ 上点 M 的切	平面平行于平面x-	y + z = 1,则 M 的坐标为()。
A. (-1, 1, 1)	B. (-1, -1, 1)	C. (1, -1, 1)	D. (1, 1, 1)
2. 二元函数 f(x,y)	在点 (x ₀ , y ₀) 处西	两个偏导数 $f_x(x_0, y_0)$)、 $f_y(x_0,y_0)$ 存在,是 $f(x,y)$
在该点连续的() 。		
A. 充分而非必	要条件	B. 必要而非充分	·条件
C. 充分必要条	件	D. 既非充分又非	必要条件
3. 设 C 为闭区域D	$=\{(x,y) x^2+y^2\le$	1}的取正向的边界的	曲线,则积分 $\oint_C (-y)dx + xdy =$
() 。			
Α. –π	B. 0	C. π	D. 2π
4. 设曲面Σ是上半球	は面: $x^2+y^2+z^2$ =	$=R^2 \ (z\geq 0)$,曲面。	$Σ_1$ 是曲面 $Σ$ 在第一卦限中的部分,
则有()。			
A. $\iint_{\Sigma} x dS = 4$	$\iint_{\Sigma_1} x dS$ B	$3. \iint_{\Sigma} y dS = 4 \iint_{\Sigma_1} y$	dS
C. $\iint_{\Sigma} z dS = 4$	$\iint_{\Sigma_1} z dS$ D	$\iint_{\Sigma} xyzdS = 4 \iint_{\Sigma}$	₁ xyzdS
5. 设 <i>f</i> (<i>x</i> , <i>y</i>) 是 定	义在区域 D = {($(x,y) x^2+y^2\leq 1\} \perp$	的连续函数,则二重积分
$\iint_{\Omega} f(x,y) dx dy = 0$	() 。		
A. $\int_0^{2\pi} d\theta \int_0^1 rf$	$(r\cos\theta,r\sin\theta)dr$	B. $\int_0^1 r f(r\cos\theta)$	$r\sin\theta$) dr
C. $\int_0^{2\pi} d\theta \int_0^1 f(t)$	$r\cos\theta$, $r\sin\theta$) dr	D. $\int_0^{2\pi} d\theta \int_0^r r f(r)$	$\cos \theta$, $r \sin \theta$) dr
6. 设 $0 \le a_n < \frac{1}{n}$ (n	= 1,2,3,),则下	列级数中肯定收敛的	J是()。
A. $\sum_{n=1}^{\infty} a_n$	B. $\sum_{n=1}^{\infty} (-1)^n$	a_n^2 C. $\sum_{n=1}^{\infty} \sqrt{a_n}$	D. $\sum_{n=1}^{\infty} (-1)^n a_n$

二、填空题(本题共6小题,每小题4分,满分24分)

- 1. 过点P(1,2,-1)与直线 L: $\begin{cases} 4x-y+2z=2; \\ 2x+2y-3z=0 \end{cases}$ 垂直的平面方程为______.

- 4. 若 $\iint_D \sqrt{a^2-x^2-y^2} \, d\sigma = \frac{16}{3}\pi$, 其 中 积 分 区 域 $D = \{(x,y)|x^2+y^2 \leq a^2\}$, 则 *a* =______.
- 5. 设 L 为圆周 $x^2 + y^2 = ax$,则 $\oint_L \sqrt{x^2 + y^2} ds = _____$
- 6. 将函数 $f(x) = e^x$ 展开成 x 的幂级数: $e^x = _____$
- 三、计算题(本题共6小题,每小题6分,满分36分,应写出演算过程及文字说明)
- 1. 设 $z = e^{x^2 + y^2}$,求 $\frac{\partial^2 z}{\partial x^2}$ 以及 $\frac{\partial^2 z}{\partial x \partial y}$.

2.计算 $\iint_D \sqrt{x^2+y^2}dxdy$, 其中 D 是圆周上 $x^2+y^2=4$ 以及 $x^2+y^2=1$ 所围成的闭区域。

7. 计算曲线积分 $\int_{\Gamma} \frac{(x-y)dy-(x+y)dx}{x^2+y^2}$,其中 Γ : $x=a\cos t$, $y=a\sin t$ 上从 t=0 到 $t=\pi$ 的一 段弧。

8. 计算曲面积分 $\iint_{\Sigma}\ 2(1-x^2)dydz+8xydzdx-4xzdxdy$,其中 Σ 为曲线 $x=e^y(0\leq y\leq a)$ 绕 x 轴旋转一周而成的旋转曲面的外侧。

9. 求幂级数 $\sum_{n=1}^{\infty} nx^{n+1}$ 的和函数。

10. 将函数 $f(x) = x^2(-\pi \le x \le \pi)$ 展开成傅里叶级数。

四、证明题(本题共2小题,每题4分,满分8分)

1. 设函数f(u)是连续函数, Γ 是xOy平面上一条分段光滑的闭曲线,证明;

$$\oint_{\Gamma} f(x^2 + y^2)xdx + f(x^2 + y^2)ydy = 0.$$

2. 利用 $\frac{d}{dx}(\frac{e^x-1}{x})$ 在x = 0 处展开成的幂级数证明 $\sum_{n=0}^{\infty} \frac{n}{(n+1)!} = 1$.

五、数学建模题(本题8分,应写出具体建模和求解过程)

设有一高度为h(t)(t)为时间)的雪堆在融化过程中,其侧面满足方程 $z=h(t)-\frac{2(x^2+y^2)}{h(t)}$.设长度 单位为厘米,时间单位为小时,已知体积减少的速率与侧面积成正比(比例系数为0.9), 问高度为 130cm 的雪堆全部融化需要多少小时?

(提示:设t时刻雪堆的体积为v(t),侧面积为S(t),则根据题意,有 $\frac{d}{dt}v(t)=-0.9S(t)$;计 算体积v(t)与侧面积S(t)时可将 t 看成常量)

7 浙江理工大学 2013—2014 学年第 2 学期《高等数学 A2》期末 A 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	学号:		班级:
(本试卷共四页)			
一、选择题(本题共 6 小剧	圆,每小题 4 分,》	满分 24 分)	
1. 若函数 $z = f(x,y)$ 在点	P处的两个偏导数	双存在,则它在 <i>P</i> 如	2 ()
(A) 连续 (B)可微	(C) 不一定连续	(D) 一定不连续
2. 设 a 为常数,级数 $\sum_{n=1}^{\infty}$	$\frac{\sin(na)}{n^2} - \frac{1}{\sqrt{n}} $	的敛散情况是()
(A) 条件收敛 (I	3)绝对收敛	(C) 发散	(\mathbf{D}) 敛散性与 a 的取值有关
3. 设 $\sum_{n=1}^{\infty} a_n$ 是正项级数,!	则部分和数列 $\{S_n\}$	有界是数列 $\{a_n\}$ 也	女敛的 ()
(A) 充分非必要条件		(B) 必要非充分 (D) 既非充分也。	条件
(C) 充分必要条件		(D) 既非充分也:	非必要条件
4. 设平面区域 $D = \{(x \in A) \mid x \in A\}$	$(x,y) x^2+y^2 \le 1$	$D_1 = \left\{ (x, y) \middle x^2 \right\}$	$+y^2 \le 1, x \ge 0, y \ge 0$, \mathbb{R}
$\iint\limits_{D} (x^2 + y^3) dx dy = $)		
(A) $4\iint\limits_{D_1} (x^2 + y^3) dx dy$	(B) $4 \iint_{D_1} x^2 dx dx$	dy (C)	$4\iint_{D_1} y^3 dx dy \qquad (D) \ . 0$
5. 设函数 $f(x,y)$ 在原点 (0,0) 的某领域内连	E续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)\to(0,0)}{(x,y)\to(0,0)}$	$\frac{(x,y)-xy}{(x^2+y^2)^2}=1$,则下述四个
选项中正确的是()			
(A) 点(0,0) 不是函数 f	(x,y)的极值点;	(B) 点(0,0)是	函数 $f(x,y)$ 的极大值点;

(C) 点(0,0) 是函数 f(x,y) 的极小值点;

(D) 依所给条件无法确定点(0,0) 是否为函数 f(x,y) 的极值点;

6. 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
为某函数的全微分,则 a 等于()

- (A) -1

- (D) 2

二、填空题(本题共7小题,每小题4分,满分28分)

- 3. 设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 f(x)=x,则 f(x) 的傅
- 4. 设 L 为连接 (1,0) 与 (0,1) 两点的直线段,则 $\int_L (x+y)ds = _______;$

5. 设
$$x^2 = \sum_{n=0}^{\infty} a_n \cos nx, (-\pi \le x \le \pi), 则 a_2 = \underline{\hspace{1cm}};$$

6. 级数
$$\sum_{n=1}^{\infty} \frac{3^n + 5^n}{n} x^n$$
 的收敛区间是______;

7. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿点 A 指向 B(3,-2,2) 方向的方向导数

三、计算题(本题共6小题,每题6分,满分36分)

1.
$$z = f(u, x, y), u = xe^y$$
, 其中 f 具有连续二阶偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial y \partial x}$.

2. 判别级数 $\sum_{n=1}^{\infty} n^2 \sin \frac{\pi}{2^n}$ 的敛散性.

3. 计算 $\oint_L (2x-y+4) dx + (5y+3x-6) dy$,其中 L 为三顶点分别为 (0,0), (3,0) 和 (3,2)的三角形正向边界.

4 . 设 Σ 是 锥 面 $z=\sqrt{x^2+y^2}$ $(0\leq z\leq 1)$ 的 下 侧 , 计 算 曲 面 积 分 $\iint_{\Sigma} x dy dz + 2y dz dx + 3(z-1) dx dy$

5. 将函数 $f(x) = \frac{1+x}{(1-x)^2}$ 展开为 x 的幂级数.

6. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 的和函数.

四、应用题(本题满分 7 分)如图所示的是某一建筑物的屋顶,它由曲面 Σ_1 与 Σ_2 拼接而成, Σ_1 是半径为 1 的半球面, Σ_2 是半径为 2 的半球面的一部分,请问屋顶的面积是多少?

五、证明题(本题满分 5 分)设 f(u) 具有二阶连续导数,且 $g(x,y) = f(\frac{y}{x}) + yf(\frac{x}{y})$,证

$$x^{2} \frac{\partial^{2} g}{\partial x^{2}} - y^{2} \frac{\partial^{2} g}{\partial y^{2}} = \frac{2y}{x} f'(\frac{y}{x})$$

8 浙江理工大学 2013—2014 学年第 2 学期《高等数学 A2》期末 B 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

(本试卷共五页)

- 一、选择题(本题共6小题,每小题4分,满分24分)
- 1. 已知 f(x,y) = xy(1-x-y),则 f(x,y) 在第一象限内的驻点为()
- (A) $(\frac{1}{5}, \frac{3}{5})$ (B) $(\frac{1}{3}, \frac{1}{3})$ (C) (1,1)

- 2. 设平面区域 \boldsymbol{D} 为半圆 $x^2+y^2 \leq R^2(x \leq 0)$, 则将 $\iint\limits_{\Gamma} f(x,y) dx dy$ 化为极坐标系下的累次

积分结果为()

- (A) $\int_{0}^{\pi} d\theta \int_{-R}^{R} rf(r\cos\theta, r\sin\theta) dr$ (B) $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} d\theta \int_{-R}^{R} rf(r\cos\theta, r\sin\theta) dr$
- (C) $\int_{0}^{\pi} d\theta \int_{0}^{R} r f(r \cos \theta, r \sin \theta) dr$ (D) $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} d\theta \int_{0}^{R} r f(r \cos \theta, r \sin \theta) dr$
- 3. 设 $e^{xy}(1+xy)dx+x^2e^{xy}dy$ 是u(x,y)的全微分,则u(x,y)=(

- (A) $xe^{xy} + C$ (B) $x^2e^{xy} + C$ (C) $xye^{xy} + C$ (D) $x^2ye^{xy} + C$
- 4. 设曲线 L 为圆 $x^2 + y^2 = R^2$,取逆时针方向,则 $\oint (xy 2y)dx + (x^2 x)dy = ($)
- (A) $-\pi R^2$ (B) πR^2
- (C) $2\pi R^2$
- (D) $2\pi R$

- 5. 若 $\sum_{n=0}^{\infty} u_n$ 与 $\sum_{n=0}^{\infty} v_n$ 都发散,则()
- (A) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散 (B) $\sum_{n=1}^{\infty} u_n v_n$ 发散 (C) $\sum_{n=1}^{\infty} (|u_n| + |v_n|)$ 发散 (D) $\sum_{n=1}^{\infty} (u_n^2 + v_n^2)$ 发散

- (A) 偏导数不存在 (B) 不可微 (C) 偏导数存在且连续 (D) 可微

二、填空题(本题共6小题,每小题4分,满分24分)

1.
$$\lim_{\substack{x \to 3 \\ y \to +\infty}} \frac{xy - 2}{3y + 1} =$$
_____;

3. 交换二次积分的积分次序
$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$
_______;

4. 设
$$l$$
为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 其周长为 a , 则 $\oint_l (2xy + 3x^2 + 4y^2) ds = _____;$

5. 级数
$$\sum_{n=1}^{\infty} n(x+1)^n$$
 的收敛域为______;

6. 设
$$f(x) =$$

$$\begin{cases} 2, & -1 < x \le \pi \\ x^3, & 0 < x \le 1 \end{cases}$$
 是以 2 为周期的函数, $s(x)$ 是其傅里叶级数展开式的和函

三、计算题(本题共6小题,每题6分,满分36分)

1. 求函数
$$z = \ln(1 + x^2 + y^2)$$
 当 $x = 1, y = 2$ 时的全微分。

2. 求
$$\iint_{\Omega} (x^2 + y^2) dv$$
, 其中 Ω 是由 $x^2 + y^2 = 2z$ 及平面 $z = 2$ 所围成的闭区域。

3. 计算曲面积分

$$I = \bigoplus_{\Sigma} 2xzdydz + yzdzdx - z^2dxdy$$

其中 Σ 是由曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体表面外侧。

4. 求幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的收敛域以及和函数。

5. 将 $f(x) = \frac{1}{x-1}$ 展开为 x-4 的幂级数,并指出其收敛域。

6. 将函数 $f(x) = \begin{cases} -1, & -\pi < x \le 0, \\ 1, & 0 < x \le \pi, \end{cases}$ 展开为傅里叶级数。

四、应用题(本题满分8分)

求拋物面 $z = x^2 + y^2$ 到平面 x + y + z + 1 = 0 的最近距离。

五、证明题(本题共2小题,每小题4分,满分8分)

1. 设x = x(y,z), y = y(x,z), z = z(x,y)都是由方程F(x,y,z) = 0所确定的具有连续偏

导数的函数,证明:
$$\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$$

2. 设 $a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$, 计算 $a_n + a_{n+2}$, 并证明对任意常数 $\lambda > 0$, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛。

9 浙江理工大学 2012—2013 学年第 2 学期《高等数学 A2》期末 A 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

学号: _____ (本试卷共四页) 一、选择题(本题共6小题,每小题4分,满分24分) 1. $\[\] D: -1 \le x \le 1, 0 \le y \le 1 \]$, $\[\] \iint \text{sgn}(y-x) dx dy = ($) B. $\frac{1}{2}$ C. 1 A. 0 D. 2 2. 在点(x, y)处 f(x, y)可微的充分条件是() A. f(x,y) 的所有二阶偏导数连续 B. f(x,y) 的所有一阶偏导数连续 C. f(x,y) 连续 D. f(x,y) 连续且 f(x,y) 对 x,y 的偏导数都存在 3. 设 $\int_{\mathcal{C}} xy^2 dx + y\varphi(x) dy$ 与路径无关, 其中 $\varphi(x)$ 具有连续导数, 且 $\varphi(0) = 0$, 则 $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy = ($ B. $\frac{1}{2}$ C. 1 A. 0 4. 设Σ是界于 z = 0 及 z = R 之间的圆柱面 $x^2 + y^2 = R^2$,则 $\iint_{\Sigma} \frac{dS}{x^2 + y^2 + z^2} = ($) B. $\frac{\pi^2}{4}$ C. $\frac{\pi^2}{2}$ D. π^2 5. 对函数 $f(x,y) = x^2 + xy + y^2 - 3x - 6y$, 点(0,3) A. 是极小值点 B. 是极大值点 C. 是驻点但非极值点 D. 不是驻点 6. 下列级数条件收敛的是(A. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2^n}$ B. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n(n-1)}$ C. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$ D. $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{\sqrt{n}}$

二、填空题(本题共6小题,每小题4分,满分24分)

2. 己知
$$\sum_{n=1}^{\infty} (2-u_n)$$
 收敛,则 $\lim_{n\to\infty} \frac{\sin(\pi u_n)}{u_n} = \underline{\hspace{1cm}};$

3. 方程
$$u = \varphi(u) + \int_{y}^{x} p(t)dt$$
确定了 $u \neq x, y$ 的函数,其中 $\varphi(u)$ 连续且可微, $\varphi'(u) \neq 1$,

则
$$p(y)\frac{\partial u}{\partial x} + p(x)\frac{\partial u}{\partial y} = _____;$$

4. 设
$$L$$
 为圆周 $x^2 + y^2 = 1$ 则 $\oint_L (x+1)^2 ds = ______;$

6. 幂级数
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 2^n}$$
 的收敛域为______。

三、计算题(本题共4小题,每小题7分,满分28分)

1. 设
$$z = f(xy, \frac{x}{y}) + \sin y$$
, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2. 计算 \iint $\arctan \frac{y}{x} dx dy$,其中 D 是由圆周 $x^2 + y^2 = 4$, $x^2 + y^2 = 1$ 及直线 y = 0, y = x 所 围成的在第一象限内的闭区域。

3. 求 $\iint_{\Sigma} (x-y^2) dy dz + (y-z^2) dz dx + (z-x^2) dx dy$,其中 Σ 为半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧。

4. 将函数 $f(x) = \frac{1}{2-x}$ 展开为 x 的幂级数(注明收敛域)。

四、解答题(本题共2小题,第1小题10分,第2小题8分,满分18分)

- 1. (1) 验证 $(2xy^3 y^2\cos x)dx + (1-2y\sin x + 3x^2y^2)dy$ 在整个 *xoy* 平面内为某个函数 F(x,y)的全微分,并求F(x,y);
- (2) 计算 $I = \oint_C (2xy^3 y^2 \cos x + y) dx + (1 2y \sin x + 3x^2y^2) dy$, 其中 C 为单位圆 $x^2 + y^2 = 1$ 的正向。

2. 将函数 f(x) = x 在 $[0,\pi]$ 上展开成余弦级数。

五、证明题(本题共2小题,每小题3分,满分6分)

1. 设 f(x)在[0,a]上连续,证明: $\int_0^a dy \int_0^y f(x) dx = \int_0^a (a-x) f(x) dx$ 。

2. 试证明定理: 如果级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 必定收敛。

10 浙江理工大学 2012-2013 学年第 2 学期《高等数学 A2》期末 B 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	_ 学号:		班级:	
(本试卷共四页)				
一、选择题(本题共6小题,	每小题 4 分,	满分 24 分)		
1. 设函数 $f(x)$ 为连续函数,	$F(x) = \int_1^t dy$	$\int_{y}^{t} f(x) dx , \mathbb{I}$)
A. $2f(2)$	B. $-f(2)$	C.	f(2)	D. 0
2. 函数 $z = f(x, y)$ 在点 (x_0)	(y_0) 处具有偏导	学数是它在该点	存在全微分的	() 。
A. 充分必要条件		B. 必要条件ī	而非充分条件	
C. 充分条件而非必要条件	‡	D. 既非充分	又非必要条件	
3. 计算第一类曲面积分 $I = $	$\iint\limits_{S} \frac{dS}{x^2 + y^2 + z^2} dS$,其中 S: x ²	$+y^2+z^2=R^2$	()
$A.\frac{\pi}{2}$	B. 2π	C.	π	D. 4π
4. 设 $u = 2xy - z^2$,则 u 在	(2, -1, 1) 处的方	方向导数的最大	に値为()	
$A.2\sqrt{6}$	B. 4	C. 2	$2\sqrt{2}$	D. 24
5. 利用被积函数的对称性及	区域的对称性,	则 $\iiint_{\Omega} (x+y-x)^{-1}$	+z) dv 的值(),其中D为
$x^2 + y^2 + z^2 \le 4, z \ge 0 \ .$				
A. 大于 0 B.	小于 0	C. 等于(0	D. 上述都不对
6. 若 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 $x = -1$	处收敛,则此级	数在 $x=2$ 处	()	
A. 条件收敛 B. 约	色对收敛	C. 发散	D. 敛散性不能	
二、填空题(本题共6小题,	每小题 4 分,	满分 24 分)		

是_____;

1. 曲面 z=xy 上点 M 处的法线垂直于平面 2x-y-z=5 ,则 M 的坐标

2. 己知
$$\sum_{n=1}^{\infty} (2-u_n)$$
 收敛,则 $\lim_{n\to\infty} \frac{\sin(\pi u_n)}{u_n} =$ ______;

- 4. 设 L 是从 A(1,0) 到 B(-1,2) 的直线段,则 $\int_{I} (x+y) ds = ______;$
- 5. 已知曲线积分 $\int_{L} \frac{(x+ay)dx+ydy}{(x+y)^2}$ 与路径无关,则 a =_____;
- 6. $\[\mathcal{G} \] f(x) = \begin{cases} 1 & 0 \le x < \frac{\pi}{2} \\ x 1 & \frac{\pi}{2} \le x < \pi \end{cases} \]$ 的正弦级数 $\sum_{n=1}^{\infty} b_n \sin nx$ 的和函数为 s(x),则

$$s\left(\frac{3}{2}\pi\right) = \underline{\qquad}_{\circ}$$

三、计算题(本题共4小题,每小题6分,满分24分)

1. 已知
$$e^z + x^2 + y^2 = 2$$
, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$ 。

2. 计算
$$\iint_{D} \sqrt{x^2 + y^2} dx dy$$
, 其中 D : $x^2 + y^2 \le 1$.

3. 计算三重积分 $\iint_{\Omega} z \ dxdydz$,其中闭区域 Ω 为半球体: $x^2+y^2+z^2 \le 1, z \ge 0$.

4. 将函数 $chx = \frac{e^{x} + e^{-x}}{2}$ 展开成 x 的幂级数。

四、解答题(本题共3小题,每小题8分,满分24分)

1. 求曲线积分 $\int_L (x-2y)dx - (x+\sin^2 y)dy$, 其中 L 是沿曲线 $y=\sqrt{1-x^2}$ 由点 $A\big(1,0\big)$ 到 点B(-1,0)的弧段。

2. 求 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 为半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 的下侧。

3. 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛域、和函数以及数项级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的和。

五、(本题满分 4 分)讨论级数 $\sum_{n=1}^{\infty} \left(-1\right)^n \ln^p \left(\frac{n+1}{n}\right)$ 的敛散性,若收敛,是绝对收敛还是 条件收敛?

11 浙江理工大学 2011-2012 学年第 2 学期《高等数学 A2》期末 A 卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	学号:	班级:	
(本试卷共五页)			
一、选择题(本题共 6 小题,	每小题 4 分,满分 24	1分)	
1. 函数 $f(x,y) = 4(x-y) - x$	$^2 - y^2$ 的极值为()	
A. 极大值为 8 B.	极小值为0	C. 极小值为 8 D. 极力	大值为 0
2. 二元函数 $f(x,y)$ 在点 $P(x_0)$,y ₀)处 ①连续; ②两	两个偏导数连续;③可微;④闭	两个偏导数
都存在,那么下面关系正确	的是()		
A. ③⇒①⇒④		B. ③⇒②⇒①	
C. ③⇒④⇒①		D. ②⇒③⇒①	
3. 曲线 $\begin{cases} x - y + z = 2 \\ z = x^2 + y^2 \end{cases}$ 在点()	1,1,2)处的一个切	线方向向量为 ().	
A. (-1, 3, 4) B. ((3, -1, 4) C. (-	1, 0, 3) D. (3, 0, -1)	1
4. 设 $I = \iint_D e^{x^2 + y^2} d\sigma$, $D: x^2$	+ y^2 ≤ 4, 则 I = ()	
A. $\frac{\pi}{2}(e^4 - 1)$ B. 21	$\pi(e^4-1)$ C. $\pi($	$(e^4 - 1)$ D. πe^4	
5. 设 Σ 是球面 $x^2 + y^2 + z^2 = 1$	R^2 ,则 $\iint_{\Sigma} \frac{dS}{x^2 + y^2 + z}$	$\frac{1}{\sqrt{2}} = ($)	
A. $4\pi R^2$ B.	4π C. π	πR^2 D. π	
6. 若 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 $x = -1$ 友	上收敛,则此级数在 x	=2处().	
A. 条件收敛 B. 绝	对收敛 C. 发制	р D. 敛散性不能确定	
二、填空题(本题共 5 小题,	每小题 4 分,满分 20	(分)	

1. 曲面 z = xy 上点 M 处的法线垂直于平面 2x - y - z = 5,则 M 的坐标是______;

- 2. 设 $u = 2xy z^2$,则 u 在(2, -1, 1) 处的方向导数的最大值为______;

- 5. 设 f(x) 是周期为 2 的周期函数,它在区间 (-1,1] 的定义为 $f(x) = \begin{cases} 2 & -1 < x \le 0 \\ x & 0 < x \le 1 \end{cases}$,则

f(x) 的傅里叶级数在 x = 1 收敛于

- 三、解答题(本题共6小题,每小题6分,满分36分)
- 1. 求过点 M (4,-3,1) 且与两直线: $\frac{x}{6} = \frac{y}{2} = \frac{z}{-3}$ 和 $\begin{cases} x + 2y z + 1 = 0 \\ 2x z + 2 = 0 \end{cases}$ 都平行的平面方程.

2. 设 $z = f(xy, \frac{x}{y}) + \sin y$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

3. 将函数 $f(x) = \frac{1}{x}$ 展开为 x-3 的幂级数, 并求收敛域.

4. 计算 $\iint_{\Omega} xy dx dy dz$, 其中 Ω 是由柱面 $x^2 + y^2 = 1$ 及平面 z = 1, x = 0, y = 0 所围成且在 第一卦限内的区域.

5. 求曲线积分 $\int_L (x^2 - 2y) dx - (x + \sin^2 y) dy$, 其中 L 是沿曲线 $y = 1 - \sqrt{2x - x^2}$ 由点(0, 1) 到点(2,1)的弧段.

6. 计算曲面积分 $\iint_{\Sigma} y^2 dz dx + z dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 的上侧.

四、综合题(本题共2小题,每小题8分,满分16分)

1. 验证 $(3x^2y + 8xy^2)dx + (x^3 + 8x^2y + 12ye^y)dy$ 在整个 xoy 平面内是某一函数u(x,y) 的全 微分,并求这样的一个u(x,y).

2. 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{5^n} x^{n-1}$ 的收敛域、和函数以及数项级数 $\sum_{n=1}^{\infty} \frac{n}{5^n}$ 的和.

五、证明题(4分)设 $\sum_{n=1}^{\infty} a_n^2$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 绝对收敛.

12 浙江理工大学 2010-2011 学年第 2 学期《高等数学 A2》期末 A 卷

选择题(本题共7小题,每小题4分,满分28分)

1、设函数
$$f(x)$$
 为连续函数, $F(x) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$,则 $F'(2) = ($

- A. 2f(2) B. -f(2) C. f(2)

2、设D由
$$x^2 + y^2 = 3$$
所围成,则 $\iint_D (x^2 + y^2) dx dy = ($)

A.
$$3\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{3}} \rho d\rho$$
 B. $\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{3}} \rho^{3} d\rho$ C. $\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{3}} \rho^{2} d\rho$ D. $\int_{0}^{2\pi} d\theta \int_{0}^{3} \rho^{3} d\rho$

B.
$$\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{3}} \rho^{3} d\rho$$

C.
$$\int_0^{2\pi} d\theta \int_0^{\sqrt{3}} \rho^2 d\rho$$

D.
$$\int_0^{2\pi} d\theta \int_0^3 \rho^3 d\rho$$

3、下列级数中,发散的是(

A.
$$\sum_{n=1}^{\infty} \frac{1}{1+n^2}$$

B.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

$$C. \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$$

A.
$$\sum_{n=1}^{\infty} \frac{1}{1+n^2}$$
 B. $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ C. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$ D. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln n}$

4、设 L 为从点 A (-R, 0) 到 B (R, 0) 的上半圆周 $x^2+y^2=R^2$,则 $\int_L ydx+xdy=($

- A. 1

5、幂级数
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}}$$
 的收敛域为 ()

- A. [4,6)
- B. [-1,1) C. [-5,5) D. (-1,1)

6、设曲线积分 $\int_{\mathcal{C}} \left[f(x) - e^x \right] \sin y dx - f(x) \cos y dy$ 与路径无关,其中 f(x) 具有一阶连

续导数,且f(0)=0,则f(x)等于(

A.
$$\frac{1}{2}(e^{-x}-e^x)$$

$$B. \frac{1}{2} \left(e^x - e^{-x} \right)$$

C.
$$\frac{1}{2}(e^x - e^{-x}) - 1$$

A.
$$\frac{1}{2}(e^{-x}-e^x)$$
 B. $\frac{1}{2}(e^x-e^{-x})$ C. $\frac{1}{2}(e^x-e^{-x})-1$ D. $1-\frac{1}{2}(e^x-e^{-x})$

7、级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛是 $\lim_{n \to +\infty} u_n = 0$ 的()

A. 充分而非必要条件

B. 既非必要又非充分条件

C. 充分必要条件

D. 必要而非充分条件

二、填空(每题4分,共20分)

1、设
$$l$$
 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,则 $\iint_{l} (2xy + x^3 + 4y) ds =$ ______

- 3、将函数 $shx = \frac{e^x e^{-x}}{2}$ 展开成 x 的幂级数, shx =_____
- 4、设积分区域 D 是由直线 y=0、x=1 及 y=2x 所围成的闭区域,则 $\iint_D xyd\sigma =$ ______
- 5、曲面 $e^z z + xy = 3$ 在点(2, 1, 0)处的切平面方程为_____
- 三、简答题(每题6分,共30分)
- 1、判别级数 $\sum_{n=1}^{\infty} \left(1-\cos\frac{\pi}{n}\right)$ 的收敛性。

2、计算曲面积分 $I = \iint_{\Sigma} \frac{dS}{z}$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 被平面 z = h(0 < h < a)截出 的顶部。

3、求曲面积分 $\iint_{\mathbb{R}} \left(x+2y+3z\right) dxdy + \left(y+2z\right) dydz + \left(z^2-1\right) dxdz$, 其中 S 为三坐标面 与平面x+y+z=1所围成的四面体的外侧。

4、计算三重积分 $\iint\limits_{\Omega} z dx dy dz$,其中 Ω : 平面 x=1,x=2,y=x,z=0 及 2z=y 围成。

5、计算 $\int_L xydx + (y-x)dy$, L: 是抛物线 $y = x^2$ 上从点 O (0, 0) 到点 A (1, 1) 的一段 弧。

四、设
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 问: (1) 函数 $f(x,y)$ 在点 (0, 0) 是否连

续? (2) 求 f(x,y) 在点 (0,0) 的偏导数 $f_x(0,0)$ 和 $f_y(0,0)$, 在点 (0,0) 是否可微? 说明理由。(6分)

五、设
$$f(x,y)$$
 在 闭 区 间 $D = \{(x,y)|x^2 + y^2 \le y, x \ge 0\}$ 上 连 续 , 且
$$f(x,y) = \sqrt{1-x^2-y^2} - \frac{8}{\pi} \iint_D f(x,y) dx dy , 求 f(x,y) \circ (6 分)$$

六、求幂级数
$$\sum_{n=0}^{\infty} \frac{n+1}{n!} \left(\frac{1}{2}\right)^n$$
 的和。 (6 分)

七、设
$$f(x)$$
在 $[0,a]$ 上连续,证明: $2\int_0^a f(x)dx\int_x^a f(y)dy = \left[\int_0^a f(x)dx\right]^2$ (4分)

13 浙江理工大学 2009-2010 学年第 2 学期《高等数学 A2》期末 A 卷

一、选择题(每小题 4 分,满分 24 分)

1.下列说法不正确的是()

- (A) 若 $\lim_{n\to\infty} nu_n = 1$,则 $\sum_{n=1}^{\infty} u_n$ 必发散 (B) 若 $u_n \ge 0$,且 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} < 1$
- (C) 若 $\lim_{n\to\infty} n^2 u_n = \frac{1}{2}$,则 $\sum_{i=1}^{\infty} u_n$ 必收敛
- (D) 若 $\sum_{n=0}^{\infty} u_n^2$, $\sum_{n=0}^{\infty} v_n^2$ 都收敛, 则 $\sum_{n=0}^{\infty} u_n v_n$ 必绝对收敛

2.微分方程 $y'' + 2y' + 3y = e^{-x} \cos \sqrt{2}x$ 的特解应具有形式 (

- (A) $e^{-x} (a \cos x + b \sin x)$
- (B) $e^{-x}bx\sin x + ae^{-x}\cos x$
- (C) $xe^{-x}\left(a\cos\sqrt{2}x + b\sin\sqrt{2}x\right)$ (D) $e^{-x}\left(a\cos\sqrt{2}x + b\sin\sqrt{2}x\right)$

3. $z = y + \ln \frac{x}{2}$ 在点 (1,1,1) 处的法线方程为 ()

- (A) $x = y = \frac{3-z}{2}$ (B) $x-1 = y-1 = \frac{z-1}{2}$ (C) $x-1 = \frac{y-1}{-1} = \frac{z-1}{-2}$ (D) $x-1 = y-1 = \frac{z-1}{-1}$

4.下列级数中收敛的是(

- (A) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ (B) $\sum_{n=1}^{\infty} \frac{4n-1}{n^2+n}$ (C) $\sum_{n=1}^{\infty} \sin \frac{\pi}{n}$ (D) $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$

5. $I = \int_{a}^{1} dy \int_{a}^{\sqrt{1-y}} 3x^2y^2dx$,则交换积分次序后得()

- (A) $I = \int_{0}^{1} dx \int_{0}^{1+x^{2}} 3x^{2}y^{2}dy$ (B) $I = \int_{0}^{1} dx \int_{0}^{\sqrt{1-x}} 3x^{2}y^{2}dy$
- (C) $I = \int_0^1 dx \int_0^{1-x^2} 3x^2 y^2 dy$ (D) $I = \int_0^{\sqrt{1-y}} dx \int_0^1 3x^2 y^2 dy$

6.微分方程 $y \ln x dx = x \ln y dy$ 满足 $y \Big|_{x=1} = 1$ 的特解是(

- (A) $\ln^2 x + \ln^2 y = 0$
- (B) $\ln^2 x = \ln^2 y$
- (C) $\ln^2 x + \ln^2 v = 1$
- (D) $\ln^2 x = \ln^2 y + 1$

二、填空题(每小题 4 分,满分 24 分)

1.微分方程 $xy' + y = \cos 2x$ 的通解是_____

的外侧。(其中R > 0)

3.二元函数
$$z = \ln\left(x + \frac{y}{2x}\right)$$
,则 $\frac{\partial z}{\partial y}\Big|_{(1,0)} =$ ______

4. 若 D 满足:
$$x^2 + y^2 \le 2x$$
, 则 $\iint_D \sqrt{x^2 + y^2} dx dy =$ ______

5.函数
$$f(x) = e^{-x^2}$$
 关于 x 的幂级数展开为_____

6.幂级数
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt[3]{n}}$$
 的收敛域为_____

三、解答题(每小题6分,共30分)

1.设
$$z = x^3 + y^3 - 3xy^2$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2.计算
$$\iint_D e^{-(x^2+y^2)} dxdy$$
,其中 D : $x^2 + y^2 \le 1$ 。

4.计算二重积分 $\iint_D xyd\sigma$,其中 D 是由直线 y=1, x=2 及 y=x 所围成的闭区域。

5.计算第一类曲面积分
$$I = \iint_{S} \frac{dS}{x^2 + y^2 + z^2}$$
, 其中 S: $x^2 + y^2 = R^2$, $0 \le z \le H$.

四、(7分)求幂级数 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n3^n}$ 的收敛域及和函数。

五、 (7分) 将函数 $f(x) = x + 1(0 \le x \le \pi)$ 展开成余弦级数。

六、(8分)证明题: (1)证明曲线积分与路径无关,并计算积分值

$$\int_{(1,0)}^{(2,1)} \left(2xy - y^4 + 3\right) dx + \left(x^2 - 4xy^3\right) dy$$

(2) 证明级数 $\sum_{n=1}^{\infty} \left(-1\right)^n \left(1-\cos\frac{\alpha}{n}\right)$ 绝对收敛($\alpha \neq 0$ 常数)

14 浙江理工大学 2008-2009 学年第 2 学期《高等数学 A2》期末 A 卷

	一、	选择题	(每小题4分,	满分 28 分
--	----	-----	---------	---------

1、旋转抛物面 $z = x^2 + 2y^2 - 4$ 在点 (1,-1,-1) 处的切平面方程为 ()

- (A) 2x+4y-z=0 (B) 2x-4y-z=4
- (C) 2x+4y-z=4 (D) 2x-4y-z=7

2、二重积分 $\iint_{\Omega} 2xydxdy$ (其中 $D: 0 \le y \le x^2, 0 \le x \le 1$) 的值为 ()

- (A) $\frac{1}{6}$ (B) $\frac{1}{2}$ (C) $\frac{1}{12}$

3、微分方程 $y'' + y' + y = e^{-x/2} \cos \frac{\sqrt{3}}{2} x$ 的特解应具有形式 (

- (A) $e^{-x}(a\cos x + b\sin x)$;
- (B) $e^{-x}bx\sin x + ae^{-x}\cos x$;

(C) $e^{-x/2}(a\cos\frac{\sqrt{3}}{2}x + b\sin\frac{\sqrt{3}}{2}x);$ (D) $xe^{-x/2}(a\cos\frac{\sqrt{3}}{2}x + b\sin\frac{\sqrt{3}}{2}x);$

4、设L是从 A(1,0) 到 B(-1,2) 的直线段,则 $\int_{L} (x^2 - 2xy + y^2) ds = ($

- (A) $-\frac{13}{3}$ (B) $\frac{14}{3}$ (C) $2\sqrt{2}$ (D) 0

5、 设 $u_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}}\right)$,则下列说法正确的是()。

- (A) $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$ 都收敛 (B) $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$ 都发散

(C) $\sum_{n=1}^{\infty} u_n$ 收敛而 $\sum_{n=1}^{\infty} u_n^2$ 发散 (D) $\sum_{n=1}^{\infty} u_n^2$ 收敛

6、 $I = \int_0^1 dy \int_0^{\sqrt{1-y}} f(x,y) dx$, 则交换积分次序后得 (

- (A) $I = \int_{0}^{1} dx \int_{0}^{1+x^{2}} f(x,y) dy$ (B) $I = \int_{0}^{1} dx \int_{0}^{1-x^{2}} f(x,y) dy$
- (C) $I = \int_0^{\sqrt{1-y}} dx \int_0^1 f(x,y) dy$ (D) $I = \int_0^1 dx \int_0^{\sqrt{1-x}} f(x,y) dy$

7、设 $u = 2xy - z^2$,则u在(1,-1,1)处的方向导数的最大值为(

- (A) $2\sqrt{6}$ (B) 8 (C) 12 (D) $2\sqrt{3}$

二、填空题(每小题 4 分,满分 20 分)

- 1、微分方程 $xy' + y = e^x$ 的通解是
- 2、设 L 是圆周: $x^2 + y^2 = -6x$ 的正向,则 $\oint_L (x^3 y) dx + (x y^3) dy =$ ______
- 3、设幂级数 $\sum_{n=0}^{\infty} a_n (x+1)^n$ 的收敛域为 (-4,2),则幂级数 $\sum_{n=0}^{\infty} a_n (x-3)^n$ 的收敛区间为____
- 4、微分方程 y"+2y'+y=2的一般解是_____
- $5 \cdot \int_0^2 dx \int_1^2 e^{-y^2} dy = \underline{\hspace{1cm}}$
- 三、把下列积分化为极坐标的形式,并计算积分值, $I = \int_0^a dx \int_0^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy$ (a>0)。 (本题5分)

四、1.计算 $\oint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 Σ 为球面 $x^2 + y^2 + z^2 = 4$ 的外侧。 (本题 6 分)

2.设 f(x) 连续可微且 f(0) = -2,曲线积分 $\int_{x} [y \sin 2x - yf(x) \tan x] dx + f(x) dy$ 与路径 无关, 求f(x)。 (本题 8 分)

3.计算三重积分 $\iint_{\Omega} \left(x^2+y^2\right) dv$,其中 Ω 是由曲面 $x^2+y^2=2z$ 及平面 z=2 所围成的闭区 间。(本题8分)

五、求幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛域、和函数以及数项级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的和。(本题 8 分)

六、(本题满分 12 分,每小题 6 分) 1.求函数 $shx = \frac{e^x - e^{-x}}{2}$ 在 x = 0 处的幂级数展开式, 并确定收敛区间。

2.将函数 f(x) = x + 1 在 $[0, \pi]$ 上展开成余弦级数。

七、(本题满分5分)

试证曲面 f(x-ay,z-by)=0 的任一切平面恒与某一直线相平行(其中 f 为可微函数, a,b为常数)

15 浙江理工大学 2008-2009 学年第 2 学期《高等数学 A2》期末 B 卷

一、选择题(每小题 4 分,满分 28 分)

1、设力 $\overrightarrow{F} = (2,-1,2)$ 作用在一质点上,该质点从点 $M_1(1,1,1)$ 沿直线移动到点 $M_2(2,2,2)$ 力 所作的功()

- (A) 2
- (B) -1
- (C) 3
- (D) 4

 $2 \cdot z = y + \ln \frac{x}{z}$ 在点(1,1,1)处的法线方程为(

- (A) $x-1=y-1=\frac{z-1}{1}$
- (B) $x-1=y-1=\frac{z-1}{2}$
- (C) $x-1=\frac{y-1}{1}=\frac{z-1}{2}$
- (D) $x = y = \frac{3-z}{2}$

3、微分方程 $y'' + 2y' + 2y = e^{-x} \sin x$ 的特解应具有形式 ()

(A) $e^{-x}(a\cos x + b\sin x)$;

- (B) $e^{-x}bx\sin x + ae^{-x}\cos x$;
- (C) $xe^{-x}(a\cos x + b\sin x)$;
- (D) $e^{-x}b\sin x + axe^{-x}\cos x$

4、设L是从 A(1,0) 到 B(-1,2) 的直线段,则 $\int_{L} (x+y) ds = ($)。

- (A) 2
- (B) $\sqrt{2}$ (C) $2\sqrt{2}$ (D) 0

5、下列说法不正确的是()。

- (A) 若 $u_n \ge 0$,且 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\lim_{n \to \infty} \frac{u_{n+1}}{u} < 1$ (B) 若 $\lim_{n \to \infty} nu_n = 1$,则 $\sum_{n=1}^{\infty} u_n$ 必发散

(C) 若 $\lim_{n\to\infty} n^2 u_n = \frac{1}{2}$,则 $\sum_{n=1}^{\infty} u_n$ 必收敛

(D) 若 $\sum_{n=0}^{\infty} u_n^2$, $\sum_{n=0}^{\infty} v_n^2$ 都收敛, 则 $\sum_{n=0}^{\infty} u_n v_n$ 必绝对收敛

6、设 $D: x^2 + y^2 \le a^2$, 若 $\iint_{\mathbb{R}} \sqrt{a^2 - x^2 - y^2} dx dy = \pi$, 则a为(

- (A) $\sqrt[3]{\frac{3}{4}}$ (B) $\sqrt[3]{\frac{1}{2}}$ (C) 1
- (D) $\sqrt[3]{\frac{3}{2}}$

7、已知曲线 y = y(x) 过原点,且在原点处的法线垂直于直线 y - 3x = 1, y = y(x) 是微分方

程
$$y'' - y' - 2y = 0$$
 的解,则 $y(x) = ($

(A)
$$e^{-x} - e^{2x}$$
 (B) $e^{2x} - e^{-x}$ (C) $e^{x} - e^{-2x}$ (D) $e^{-2x} - e^{x}$

(B)
$$e^{2x} - e^{-}$$

(C)
$$e^x - e^{-2}$$

(D)
$$e^{-2x} - e^{-x}$$

二、填空题(每小题 4 分,满分 20 分)

- 1、微分方程 $xy' + y = \sin 2x$ 的通解是_
- 3、设幂级数 $\sum_{n=0}^{\infty} a_n (x+1)^n$ 的收敛域为 $\left(-4,2\right)$,则幂级数 $\sum_{n=0}^{\infty} a_n (x+3)^n$ 的收敛区间为____
- 4、设函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点(1,-1) 取得极值,则常数 a =______
- 5、设 $xy^2dx + x^2ydy$ 在xoy平面上是某个二元函数的全微分,求这样一个二元函数 $u(x,y) = \underline{\hspace{1cm}}$

三、计算下列积分(每小题 6 分,共 18 分)

1.计算二次积分
$$\int_0^2 dx \int_x^2 e^{-y} dy$$

2.计算
$$\bigoplus_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$$
,其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧。(其中 $a > 0$)

3. 计算
$$\iint_{\Omega} (x+y+z) dv$$
,其中 Ω 是由 $z=\sqrt{a^2-x^2-y^2}$ 与 $z=\sqrt{x^2+y^2}$ 所围成的区域。 (其中 $a>0$)

四、(本题满分8分)

设
$$f(x) = \sin x - \int_{0}^{x} (x-t)f(t)dt$$
, f 为连续函数, 试求 $f(x)$

五、(本题满分7分)

设函数
$$F(u,v)$$
 有二阶连续偏导数,证明由方程 $F\left(\frac{x-x_0}{z-z_0},\frac{y-y_0}{z-z_0}\right)=0$ 所确定的函数满足下列方程: $\left(x-x_0\right)\frac{\partial z}{\partial x}+\left(y-y_0\right)\frac{\partial z}{\partial v}=z-z_0$

六、(本题满分14分)

1. 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ 的收敛区间及和函数

2. 将函数 f(x) = x 在 $[0,\pi]$ 上展开成余弦级数

七、(本题满分5分)

设正项级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 都收敛,证明级数 $\sum_{n=1}^{\infty} \left(a_n + b_n\right)^2$ 也收敛

16 浙江理工大学 2007-2008 学年第 2 学期《高等数学 A2》期末 A 卷

1、函数 $f(x,y) = x^2 - y^2 + x^2 y^2$ 在点 (1,1) 处的全微分 df(1,1) 为 (

- (A) 0 (B) dx + dy (C) 4dx (D) 2dx dy

2、设L是从A(1,0)到B(-1,2)的直线段,则 $\int_L (x+y)ds = ($

- (A) $2\sqrt{2}$ (B) $\sqrt{2}$ (C) 2 (D) 0

3、方程 $y'' + 2y' = 3 + 4\sin 2x$ 的特解为 ()

- (A) $y = -\frac{1}{2}(\cos 2x + \sin 2x);$ (B) $y = \frac{3}{2}x \frac{1}{2}\cos 2x$

- (C) $y = \frac{3}{2}x \frac{1}{2}\sin 2x$ (D) $y = \frac{3}{2}x \frac{1}{2}\cos 2x \frac{1}{2}\sin 2x$.

4、设f(x)在(0, +∞)上有连续的导数,点A(1,2),B(2,8)在曲线 $y=2x^2$ 上。L为由

A 到 B 的任一曲线,则 $\int_{L} [2xy - \frac{2y}{r^3} f(\frac{y}{r^2})] dx + [\frac{1}{r^2} f(\frac{y}{r^2}) + x^2] dy = ($

- (A) 20,
- (B) 30,
- (C) 35, (D) 40°

5、 设b 为大于 1 的自然数,对幂级数 $\sum_{n=0}^{\infty} a_n x^{bn}$,有 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = a$,(a > 0, $a \ne 1$),则

其收敛半径R = ()。

- (A) a, (B) $\frac{1}{a}$, (C) $\sqrt[b]{a}$, (D) $\frac{1}{\sqrt[b]{a}}$.

6、下列级数收敛的是 ()

(A) $\sum_{n=1}^{\infty} \sin \frac{\pi}{n}$; (B) $\sum_{n=1}^{\infty} \frac{n!}{100^n}$; (C) $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n^2})$; (D) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n} (1+\frac{1}{n})^{n^2}$.

7、已知曲线 y = f(x) 过原点,且在原点处的法线垂直于直线 y - 3x = 1, y = y(x) 是微分

方程 y'' - y' - 2y = 0 的解,则 y(x) = 0

- (A) $e^{2x} e^{-x}$ (B) $e^{-x} e^{2x}$ (C) $e^{x} e^{-2x}$ (D) $e^{-2x} e^{x}$

二、填空题(每小题 4 分,满分 20 分)

4、将函数
$$chx = \frac{e^x + e^{-x}}{2}$$
 展开成 x 的幂级数为______

5、设
$$y = x^2 e^x$$
 是微分方程 $y'' + ay' + y = be^x$ 的一个特解,则常数 $a =$ _______, $b =$ ______.

三、计算下列积分(每小题 6 分, 共 18 分)

2. 求微分方程
$$y'' + y' - 2y = 2x$$
 的通解

3. 计算三重积分
$$\iint_{\Omega} z \ dxdydz$$
, 其中闭区域 Ω 为半球体: $x^2 + y^2 + z^2 \le 1, z \ge 0$.

四、(本题满分8分)

计算曲线积分 $I = \oint \frac{xdy - ydx}{3x^2 + v^2}$, 其中 L 是以点 (1, 0) 为中心,R 为半径的圆周 (R>1) , 取逆时针方向。

五、(本题满分7分)

设函数
$$f(x)$$
 连续,且满足
$$f(x) = e^x + \int_0^x tf(t)dt - x \int_0^x f(t)dt, \quad \bar{x} f(x).$$

六、(本题满分14分)

1. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛区间,并讨论该区间端点处的收敛性。

2. 将函数 $f(x) = \frac{\pi - x}{2} (0 \le x \le \pi)$ 展开成正弦级数。

七、(本题满分5分)

设 f(u) 具有二阶连续导数,且 $g(x,y)=f(\frac{y}{x})+yf(\frac{x}{y})$, 求证

$$x^{2} \frac{\partial^{2} g}{\partial x^{2}} - y^{2} \frac{\partial^{2} g}{\partial y^{2}} = \frac{2y}{x} f'(\frac{y}{x})$$

一 选择题 (每小题 4 分, 共 7 小题, 满分 28 分)

17 浙江理工大学 2004-2005 学年第 2 学期《高等数学 A2》期末 A 卷

$1. \ \ \mathop{ \forall } f(x,y) = x^2 +$	$xy - y^2$ 的驻点为 $(0,0)$,则 f	f(0,0) 是 $f(x,y)$ 的	()
(A)极大值;	(B) 极小值;	(C) 非极值;	(D) 不能确定.
2. 微分方程 y''-y=	e^x +1的一个特解应有形式。	().	
(A) $ae^x + b$	(B) $axe^x + bx$	(C) $ae^x + bx$	(D) $axe^x + b$
3. 函数 $u=x^2+2y$	$y^2 + 3z^2 + xy + 3x - 2y - 6$	z 在原点沿 OA ={1,2	2,1}方向的方向导数
等于 ()			
(A) $-\frac{7}{2}$;	(B) $\frac{1}{2}$;	(C) $\frac{\sqrt{6}}{6}$;	(D) $-\frac{7\sqrt{6}}{6}$
4. 两个圆柱体 $x^2 + y$	$y^2 \le R^2, \qquad x^2 + z^2 \le R^2$	公共部分的体积 V 为	J ()
(A) $2\int_0^R dx \int_0^{\sqrt{R^2-x^2}}$	$\sqrt{R^2-x^2}dy;$	$(B) 8 \int_0^R dx \int_0^{\sqrt{R^2 - x}}$	$\sqrt{R^2-x^2}dy;$
(C) $\int_{-R}^{R} dx \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}}$	$\sqrt{R^2-x^2}dy:$	(D) $4\int_{-R}^{R} dx \int_{-\sqrt{R^2-x}}^{\sqrt{R^2-x}} dx$	$\sqrt{R^2-x^2}dy$
5 设幂级数 $\sum_{n=0}^{\infty} \frac{a^n - b}{a^n + b}$	b" b" x"(0 <a<b),则所给级数的< td=""><td> 收敛半径 R 等于(</td><td>)</td></a<b),则所给级数的<>	收敛半径 R 等于()
(A) b;	(B) $\frac{1}{a}$; (C) $\frac{1}{b}$;	(D) R的	值与 a、b 无关.
6 下列级数中发散的	的是()		
(A) $\sum_{n=1}^{\infty} \frac{n^2}{3^n};$	(B) $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n; (C)$	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{\sqrt{n}};$	(D) $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}.$
7 设 AEB 是由 A($-1,0$) 沿上半圆 $y = \sqrt{1-x^2}$	⁻ 经过点 E(0,1)到点	(B(1,0),则曲线积分
$I = \int_{AEB} x^2 y^2 dx$	dy = (
(A) 0; (B)	$2\int_{AE} x^2 y^2 dy; \qquad (C) \int_{E}$	$_{B}x^{2}y^{2}dy$; (D) 2	$\int_{BE} x^2 y^2 dy.$
二 填空题 (每小题 4)	分,共7小题,满分28分)		

1 已知
$$\sum_{n=1}^{\infty} (2-u_n)$$
 收敛,则 $\lim_{n\to\infty} \frac{\sin(\pi u_n)}{u_n} = \underline{\qquad}$.

- 2 幂级数 $\sum_{n=1}^{\infty} n4^{n+1}x^{2n}$ 的收敛区间为_______.
- 3 设积分区域 D 是由直线 y=1 、 x=2 及 y=x 所围成的闭区域,则 $\iint xyd\sigma$
- 4 设Σ是平面 x = 0, y = 0, z = 0, x = 1, y = 2, z = 3 所围成的立体的表面外侧,则 $\oint (x+y+2z)dydz + (3y+z)dzdx + (z-3)dxdy = \underline{\qquad}.$
- 5 设函数 z = z(x, y) 由方程 $xz y + \arctan y = 0$ 所确定,则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$.
- 6 L为三顶点分别为 (0,0),(3,0) 和(3,2)的三角形正向边界,则

$$\oint_{L} (2x - y + 4) dx + (5y + 3x - 6) dy = \underline{\hspace{1cm}}.$$

- 三 (本题满分 10 分)、求曲面 $z = 2x^2 + \frac{y^2}{2}$ 上平行于平面 2z + 2y 4x + 1 = 0 的切平面 方程,并求切点处的法线方程.

四(本题满分 8 分) 计算三重积分 $\iint\limits_{\Omega} (x^2+y^2) dx dy dz$,其中 Ω 是由柱面 $x^2+y^2=R^2$ 与

平面 z = a(a > 0) 及 z = 0 围成的区域.

五(本题满分8分)、将函数 $f(x) = 2x + 1(0 \le x \le \pi)$ 展开成余弦级数。

六(本题满分 8 分)求 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 为半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 的 下侧

七(本题满分 8 分)求级数 $\sum_{n=1}^{\infty} \frac{x^{4n+1}}{4n+1}$ 的和函数.

八 (本题满分 4 分) 设 f(x) 是 [a,b] 上的正值连续函数,试证 $\iint_{D} \frac{f(x)}{f(y)} dx dy \ge (b-a)^{2}$. 其 中 D 为 $a \le x \le b, a \le y \le b$.