Geometry of surfaces - Solutions

- **29.** We have $\sigma_u = (1, 0, -\sin(u))$ and $\sigma_v = (0, 1, \cos(v))$. Thus $E(0, 0) = \|\sigma_u(0, 0)\|^2 = \|(1, 0, 0)\|^2 = 1$, $F(0, 0) = \sigma_u(0, 0) \cdot \sigma_v(0, 0) = (1, 0, 0) \cdot (0, 1, 1) = 0$ and $G(0, 0) = \|\sigma_v(0, 0)\|^2 = \|(0, 1, 1)\|^2 = 2$.
- **30.** We have $\sigma_u(u,v) = (1,1,2u)$ and $\sigma_v(u,v) = (-1,1,2v)$. Thus $E(u,v) = \|\sigma_u(u,v)\|^2 = 2 + 4u^2$, $F(u,v) = \sigma_u(u,v) \cdot \sigma_v(u,v) = 4uv$ and $G(u,v) = \|\sigma_v(u,v)\|^2 = 2 + 4v^2$. The first fundamental form of σ therefore is $ds^2 = (2 + 4u^2)du^2 + 8uvdudv + (2 + 4v^2)dv^2$.
- **31.** We have $\tilde{\sigma}_u = \lambda \sigma_u$ and $\tilde{\sigma}_v = \lambda \sigma_v$. Thus $\tilde{E} = \|\tilde{\sigma}_u\|^2 = \|\lambda \sigma_u\|^2 = \lambda^2 \|\sigma_u\|^2 = \lambda^2 E$, $\tilde{G} = \|\tilde{\sigma}_v\|^2 = \|\lambda \sigma_v\|^2 = \lambda^2 \|\sigma_v\|^2 = \lambda^2 G$ and $\tilde{F} = \tilde{\sigma}_u \cdot \tilde{\sigma}_v = (\lambda \sigma_u) \cdot (\lambda \sigma_v) = \lambda^2 (\sigma_u \cdot \sigma_v) = \lambda^2 F$. Thus the first fundamental form of $\tilde{\sigma}$ is $\lambda^2 (Edu^2 + 2Fdudv + Gdv^2)$.
- **32.** Since $\sigma(u,v)^2=1$, the image of σ lies in the unit sphere S^2 . It is also clear that σ is injective and smooth. We have $\sigma_u=\frac{2}{(1+u^2+v^2)^2}(1-u^2+v^2,-2uv,2u)$ and $\sigma_v=\frac{2}{(1+u^2+v^2)^2}(-2uv,1+u^2-v^2,2v)$. Then $E=\|\sigma_u\|^2=\frac{4}{(1+u^2+v^2)^2}=\|\sigma_v\|^2=G$ and $F=\sigma_u\cdot\sigma_v=0$, which means that σ is a conformal parametrization.
- **33.** We write $\gamma(t) = \sigma(u(t), v(t))$ with u(t) = t and $v(t) = t^2$. The coefficients of the first fundamental form of σ are E(u, v) = 1, $F(u, v) = \frac{1}{2}(1 u)$ and $G(u, v) = \frac{3u^2}{4v}$. The length of γ is equal to

$$\begin{aligned} \text{Length}(\gamma) &= \int_0^1 \sqrt{E(u(t), v(t)) \dot{u}(t)^2 + 2F(u(t), v(t)) \dot{u}(t) \dot{v}(t) + G(u(t), v(t)) \dot{v}(t)^2} dt \\ &= \int_0^1 \sqrt{1 + 2\frac{1}{2}(1 - t)2t + \frac{3t^2}{4t^2} 4t^2} dt = \int_0^1 \sqrt{1 + 2t + t^2} dt \\ &= \int_0^1 \sqrt{(1 + t)^2} dt = \int_0^1 (1 + t) dt = \left(t + \frac{t^2}{2}\right) \Big|_{t=0}^{t=1} = \frac{3}{2} \ . \end{aligned}$$

- **34.** We have to prove three items:
 - (a) The identity map $A \to A$, $p \mapsto p$ is an isometry.
 - (b) If A is isometric to B, then there exists an isometry $f: A \to B$. Then $f^{-1}: B \to A$ is a diffeomorphism and it remains to prove that it preserves distances. Let γ_B be a curve in B and let $\gamma_A = f^{-1}(\gamma_B)$. Since f is an isometry, Length $(\gamma_A) = \text{Length}(f(\gamma_A))$. Since Length $(f(\gamma_A)) = \text{Length}(f(f^{-1}(\gamma_B))) = \text{Length}(\gamma_B)$, then Length $(\gamma_A) = \text{Length}(\gamma_B)$ and f^{-1} is an isometry.
 - (c) Let $f:A\to B$ and $g:B\to C$ be isometries. Since the composition of two diffeomorphisms is a diffeomorphism, $h=g\circ f:A\to C$ is a diffeomorphism. Let γ be a curve in A. Since f is an isometry, we have $\mathrm{Length}(f(\gamma))=\mathrm{Length}(\gamma)$. Since g is an isometry, we have $\mathrm{Length}(g(f(\gamma)))=\mathrm{Length}(f(\gamma))$. Altogether this implies $\mathrm{Length}(h(\gamma))=\mathrm{Length}(\gamma)$. Thus h preserves the lengths of curves and hence is an isometry.

- **35.** We have $\sigma_u(u,v) = (\dot{f}(u),\dot{g}(u),0)$ and $\sigma_v(u,v) = (0,0,1)$. This implies $E(u,v) = \|\sigma_u(u,v)\|^2 = \dot{f}(u)^2 + \dot{g}(u)^2 = 1$, $F(u,v) = \sigma_u(u,v) \cdot \sigma_v(u,v) = 0$ and $G(u,v) = \|\sigma_v(u,v)\|^2 = 1$. Hence the first fundamental form of σ is $du^2 + dv^2$, which is the same as the first fundamental form for the plane in standard coordinates (u,v). The assertion then follows from Theorem 5.2.3.
- **36.** We have $\sigma_u(u,v) = (-\sin(u)v,\cos(u)v,0)$ and $\sigma_v(u,v) = (\cos(u),\sin(u),1)$. This implies $E(u,v) = \|\sigma_u(u,v)\|^2 = v^2$, $F(u,v) = \sigma_u(u,v) \cdot \sigma_v(u,v) = 0$ and $G(u,v) = \|\sigma_v(u,v)\|^2 = 2$. Hence the first fundamental form of σ is $v^2 du^2 + 2dv^2$.

Now consider the parametrization $\tilde{\sigma}(u,v) = \left(\sqrt{2}\cos\left(\frac{u}{\sqrt{2}}\right)v,\sqrt{2}\sin\left(\frac{u}{\sqrt{2}}\right)v,0\right)$ of (part of) the plane. Note that this is a slight modification of polar coordinates. Then we have $\tilde{\sigma}_u(u,v) = \left(-\sin\left(\frac{u}{\sqrt{2}}\right)v,\cos\left(\frac{u}{\sqrt{2}}\right)v,0\right)$ and $\tilde{\sigma}_v(u,v) = \left(\sqrt{2}\cos\left(\frac{u}{\sqrt{2}}\right),\sqrt{2}\sin\left(\frac{u}{\sqrt{2}}\right),0\right)$. This implies $\tilde{E}(u,v) = \|\tilde{\sigma}_u(u,v)\|^2 = v^2$, $\tilde{F}(u,v) = \tilde{\sigma}_u(u,v) \cdot \tilde{\sigma}_v(u,v) = 0$ and $\tilde{G}(u,v) = \|\tilde{\sigma}_v(u,v)\|^2 = 2$. Hence the first fundamental form of $\tilde{\sigma}$ is $v^2du^2 + 2dv^2$.

Since both surfaces have the same first fundamental form, they are isometric.

37. We have $E(u,v) = u^2v^3 + v^3$, F(u,v) = v and $G(u,v) = \frac{1}{v}$. For the area $\mathcal{A}_{\sigma}(\mathcal{S})$ we then get

$$\mathcal{A}_{\sigma}(\mathcal{S}) = \int_{0}^{1} \int_{0}^{1} \sqrt{E(u, v)G(u, v) - F(u, v)^{2}} du dv = \int_{0}^{1} \int_{0}^{1} \sqrt{(u^{2}v^{3} + v^{3})\frac{1}{v} - v^{2}} du dv$$
$$= \int_{0}^{1} \int_{0}^{1} \sqrt{u^{2}v^{2}} du dv = \int_{0}^{1} \int_{0}^{1} uv du dv = \frac{1}{2} \int_{0}^{1} v dv = \frac{1}{4}$$

38. We can parametrize the paraboloid by

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(u, v) \mapsto (u, v, u^2 + v^2)$.

Put $R = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}$. We have $\sigma_u(u, v) = (1, 0, 2u)$ and $\sigma_v(u, v) = (0, 1, 2v)$. This implies $E(u, v) = \|\sigma_u(u, v)\|^2 = 1 + 4u^2$, $F(u, v) = \sigma_u(u, v) \cdot \sigma_v(u, v) = 4uv$ and $G(u, v) = \|\sigma_v(u, v)\|^2 = 1 + 4v^2$. For the area we then get

$$\mathcal{A}_{\sigma}(R) = \iint_{R} \sqrt{E(u,v)G(u,v) - F(u,v)^{2}} dudv = \iint_{R} \sqrt{1 + 4u^{2} + 4v^{2}} dudv.$$