Subjectul 1 (3 puncte)

Se dă un arbore ponderat T cu n>3 vârfuri și un vârf s.

Informațiile despre arbore se citesc din fișierul *graf.in* cu structura:

- pe prima linie este n
- pe următoarele n linii sunt listele de adiacență ale lui G; linia i începe cu gradul vârfului i și apoi conține vecinii vârfului i, fiecare vecin fiind urmat de costul muchiei:

<grad> <vecin1> <cost_muchie_de_la_i_la_vecin1> <vecin2> <cost_muchie_de_la_i_la_vecin2> etc

- pe ultima linie este vârful s

(vârfurile sunt numerotate de la 1)

Pentru un lanț P în T definim capacitatea lanțului P ca fiind capacitatea minimă a unei muchii din P.

- a) Să se afișeze pentru fiecare vârf v capacitatea unicului lanț elementar de la s la v (sub forma v: capacitate lanț) **Complexitate O(n)**
- b) Să se afișeze care este capacitatea minimă a unui lanț cu o extremitate în s și să se afișeze un astfel de lanț

graf.in	lesire pe ecran
6	1:0
2 2332	2: 3
2 1346	3: 2
3 125163	4: 3
126	5: 1
1 31	6: 2
133	
1	Capacitatea minima este 1 pentru lantul 1 3 5
Explicații: informațiile de pe linia 2 2 3 3 2 corespunzătoare vârfului 1 se citesc astfel: varful 1 are gradul 2; primul său vecin este 2 și costul muchiei de la el la 2 este 3: al doilea sau vecin este 3, iar costul muchiei de la el la 3 este 2	

Subjectul 2 (3 puncte)

Se citesc informații despre un graf **orientat** ponderat **fără circuite** G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf (**costul poate fi și negativ**)
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului (distincte de vârfurile sursă din G).

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

- a) Să se verifice dacă graful dat este fără circuite și să se afișeze un mesaj corespunzător.
- b) Să se determine distanța între cele două mulțimi S și T:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = min \{d(x, y) | x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(m)

Exemplu

Exemple	
graf.in	Iesire pe ecran
6 8	distanta intre multimi = 5
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 10	
4 3 -5	
5 3 4	
1 5 5	
2 3 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=8, d(2,3)=5$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)=5$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3 (3 puncte)

Propuneți un algoritm bazat pe algoritmul Ford-Fulkerson / Edmonds Karp pentru rezolvarea următoarei probleme.

Pentru n proiecte, numerotate 1,..., n s-au înscris m studenți numerotați 1,...,m, fiecare student depunând o listă de optiuni cu proiectele la care vrea să participe.

- a) Dat un număr k de la tastatură, să de determine o listă de k asocieri proiect student prin care k studenți diferiți sunt asociați la k proiecte diferite **Complexitate O(km)**
- b) Să se determine, dacă există, o modalitatea de a asocia toți studenții la proiecte astfel încât un student să fie asociat la exact 2 proiecte, iar la un proiect să fie asociați exact 2 studenți și să se afișeze o astfel de modalitate sub forma prezentată în exemplul de mai jos. Altfel se va afișa mesajul "nu este posibil". **Complexitate O(nm)**

Datele despre proiecte și studenți se vor citi dintr-un fișier cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe următoarele linii sunt perechi de numere naturale i j cu $i \in \{1,..., n\}$ și $j \in \{1,..., m\}$ cu semnificația: studentul j s-a înscris la proiectul i.

graf.in	lesire pe ecran (solutia nu este unica)
4 4	a)
11	pentru k=2
12	asocieri proiect - student
13	11
2 1	2 2
2 2	b)
31	asocieri proiect-student
33	11
3 4	12
4 3	2 1
4 4	2 2
	33
(primul este indicele proiectului, al doilea al	3 4
studentului)	4 3
	4 4

