Dynamical systems. Final exam 13-02-2005

- 1. Find the general solution of $y' = 3y + x^2$.
- 2. We consider the Initial Value Problem:

$$y' = \frac{1}{y - x^2} + 2x$$
, $y(0) = -1$.

- a) Write the domain of the differential equation, denoted D_f , as $D_f = U_1 \cup U_2$, where U_1 and U_2 are open and connected.
 - b) Do the change of the variable $u = y x^2$, where u = u(x).
 - c) Find the maximal solution of this IVP.
- 3. We consider the differential equation $y' = \lambda + 2y y^2$ where $\lambda \in \mathbb{R}$ is a parameter.
 - a) Find the equilibrium points and study their stability.
- b) Write the Euler's numerical formula to find the approximate solution of this differential equation on the interval [0,1] that satisfies y(0) = 0.5.
- 4. We consider the scalar map $f: \mathbb{R} \to \mathbb{R}$ f(x) = (1+x)/2. Find the fixed points of f. Draw the stair–step diagram starting with $x_0 = 3$.
 - 5. Write the definition of the Wronski–an of two C^1 functions.
- 6. Linear homogeneous second order differential equations with constant coefficients.