In [1]:

```
import numpy as np
import pandas as pd
```

In [5]:

```
dataset = pd.read_csv("C:/Users/Sampath/Downloads/adult.csv")
dataset.head()
dataset.head()
```

Out[5]:

	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0
0	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0
1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0
2	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0
3	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0
4	37	Private	284582	Masters	14	Married- civ- spouse	Exec- managerial	Wife	White	Female	0	0
4												•

In [6]:

```
colnames= ['Age', 'Workclass', 'Fnlwgt', 'Education','education_num','marital_status','occu
dataset = pd.read_csv("C:/Users/Sampath/Downloads/adult.csv",names=colnames, header=None)
dataset.head()
```

Out[6]:

	Age	Workclass	Fnlwgt	Education	education_num	marital_status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife
4								•

In [7]:

```
print("Original features:\n", list(dataset.columns), "\n")
data_dummies = pd.get_dummies(dataset)
print("Features after get_dummies:\n", list(data_dummies.columns))
data_dummies.head()
```

Original features:

['Age', 'Workclass', 'Fnlwgt', 'Education', 'education_num', 'marital_statu s', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_lo ss', 'hours_per_week', 'native_country', 'income']

Features after get_dummies:

['Age', 'Fnlwgt', 'education_num', 'capital_gain', 'capital_loss', 'hours_p er_week', 'Workclass_ ?', 'Workclass_ Federal-gov', 'Workclass_ Local-gov', 'Workclass_ Never-worked', 'Workclass_ Private', 'Workclass_ Self-emp-inc', 'Workclass_ Self-emp-not-inc', 'Workclass_ State-gov', 'Workclass_ Without-p ay', 'Education_ 10th', 'Education_ 11th', 'Education_ 12th', 'Education_ 1s t-4th', 'Education_ 5th-6th', 'Education_ 7th-8th', 'Education_ 9th', 'Educa tion_ Assoc-acdm', 'Education_ Assoc-voc', 'Education_ Bachelors', 'Educatio n_ Doctorate', 'Education_ HS-grad', 'Education_ Masters', 'Education_ Presc hool', 'Education_ Prof-school', 'Education_ Some-college', 'marital_status_ Divorced', 'marital_status_ Married-AF-spouse', 'marital_status_ Married-civ -spouse', 'marital_status_ Married-spouse-absent', 'marital_status_ Never-ma rried', 'marital_status_ Separated', 'marital_status_ Widowed', 'occupation_ ?', 'occupation_ Adm-clerical', 'occupation_ Armed-Forces', 'occupation_ Cra ft-repair', 'occupation_ Exec-managerial', 'occupation_ Farming-fishing', 'o ccupation_ Handlers-cleaners', 'occupation_ Machine-op-inspct', 'occupation_ Other-service', 'occupation_ Priv-house-serv', 'occupation_ Prof-specialty', 'occupation_ Protective-serv', 'occupation_ Sales', 'occupation_ Tech-suppor t', 'occupation_ Transport-moving', 'relationship_ Husband', 'relationship_ Not-in-family', 'relationship_ Other-relative', 'relationship_ Own-child', 'relationship_ Unmarried', 'relationship_ Wife', 'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Black', 'race_ Other', 'race_ White', 'se x_ Female', 'sex_ Male', 'native_country_ ?', 'native_country_ Cambodia', 'n ative_country_ Canada', 'native_country_ China', 'native_country_ Columbia', 'native_country_ Cuba', 'native_country_ Dominican-Republic', 'native_country_ Cuba', 'native_cou y_ Ecuador', 'native_country_ El-Salvador', 'native_country_ England', 'nati ve_country_ France', 'native_country_ Germany', 'native_country_ Greece', 'n ative_country_ Guatemala', 'native_country_ Haiti', 'native_country_ Holand-Netherlands', 'native_country_ Honduras', 'native_country_ Hong', 'native_country_ Hungary', 'native_country_ India', 'native_country_ Iran', 'native_co untry_ Ireland', 'native_country_ Italy', 'native_country_ Jamaica', 'native_country_ Japan', 'native_country_ Laos', 'native_country_ Mexico', 'native_ country_ Nicaragua', 'native_country_ Outlying-US(Guam-USVI-etc)', 'native_c ountry_ Peru', 'native_country_ Philippines', 'native_country_ Poland', 'nat ive_country_ Portugal', 'native_country_ Puerto-Rico', 'native_country_ Scot land', 'native_country_ South', 'native_country_ Taiwan', 'native_country_ T hailand', 'native_country_ Trinadad&Tobago', 'native_country_ United-State s', 'native_country_ Vietnam', 'native_country_ Yugoslavia', 'income_ <=50 K', 'income_ >50K']

Out[7]:

	Age	Fnlwgt	education_num	capital_gain	capital_loss	hours_per_week	Workclass_	W
0	39	77516	13	2174	0	40	0	
1	50	83311	13	0	0	13	0	

	Age	Fnlwgt	education_num	capital_gain	capital_loss	hours_per_week		W
2	38	215646	9	0	0	40	0	
3	53	234721	7	0	0	40	0	
4	28	338409	13	0	0	40	0	
5 r	ows ×	110 colu	ımns					-
4								•

In [8]:

```
dataset.info('income')
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Age	32561 non-null	int64
1	Workclass	32561 non-null	object
2	Fnlwgt	32561 non-null	int64
3	Education	32561 non-null	object
4	education_num	32561 non-null	int64
5	marital_status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital_gain	32561 non-null	int64
11	capital_loss	32561 non-null	int64
12	hours_per_week	32561 non-null	int64
13	native_country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

```
In [9]:
X = data_dummies.iloc[:, :-2].values
y = data_dummies.iloc[:, -1].values
data_dummies.head()
Out[9]:
                                                                     Workclass_
                                                                                 Workc
   Age Fnlwgt education_num capital_gain capital_loss hours_per_week
                                                                                    Fe
 0
     39
         77516
                           13
                                     2174
                                                   0
                                                                  40
                                                                               0
 1
     50
         83311
                           13
                                        0
                                                   0
                                                                  13
                                                                               0
```

0

0

0

40

40

40

0

0

0

5 rows × 110 columns

38 215646

53 234721

28 338409

```
→
```

0

0

9

7

13

In [11]:

2

3

4

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state =
```

In [12]:

```
print(y_train)
```

[0 0 1 ... 0 1 0]

In [13]:

```
print(y_train)
```

[0 0 1 ... 0 1 0]

In [14]:

```
print(X_test)
```

```
27 177119
                      10 ...
                                           0
[[
                                    1
                                                   0]
      27 216481
                      13 ...
                                    1
                                           0
                                                   0]
                      12 ...
      25 256263
                                           0
                                    1
                                                   0]
 [
 [
      38 229236
                       9 ...
                                    0
                                           0
                                                   0]
 [
      63 213095
                      13 ...
                                    1
                                           0
                                                   0]
 47 186009
                                    0
                                           0
                                                   0]]
                      10 ...
```

```
In [17]:
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [18]:

```
print(X_train)
[[ 1.49894077 -1.2079589 -0.80338299 ... 0.33936755 -0.04296689
  -0.02307887]
 [ 2.38045121 -0.08366135 1.53114709 ... 0.33936755 -0.04296689
  -0.02307887]
 [ 0.2501343 -0.77396423 1.53114709 ... 0.33936755 -0.04296689
  -0.02307887]
 [-1.14559057 -1.36469155 -0.0252063 ... 0.33936755 -0.04296689
  -0.02307887]
 [ 0.47051192  0.24865765  2.30932378  ...  0.33936755  -0.04296689
  -0.02307887]
 [-0.99867216 -0.02508527 -0.0252063 ... 0.33936755 -0.04296689
  -0.02307887]]
In [19]:
```

```
print(X_test)
```

```
[[-0.85175375 -0.11784965 -0.0252063 ... 0.33936755 -0.04296689
 -0.02307887]
-0.02307887]
[-0.99867216  0.63084957  0.7529704  ...  0.33936755  -0.04296689
 -0.02307887]
[-0.04370251 0.37517518 -0.41429464 ... -2.94665767 -0.04296689
 -0.02307887]
[ 1.79277758  0.22248194  1.14205874  ...  0.33936755  -0.04296689
 -0.02307887]
[ 0.61743032 -0.03375059 -0.0252063 ... -2.94665767 -0.04296689
 -0.02307887]]
```

DECISION TREE

```
In [20]:
```

```
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
```

Out[20]:

DecisionTreeClassifier(criterion='entropy', random_state=0)

```
In [21]:
print(classifier.predict(sc.transform(X_train)))
[0\ 0\ 1\ \dots\ 0\ 1\ 0]
In [22]:
y_pred = classifier.predict(X_test)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
[[0 0]]
[0 0]
 [0 0]
 [0 0]
 [1\ 1]
 [0 0]]
In [23]:
from sklearn.metrics import confusion_matrix, accuracy_score,classification_report
cm = confusion_matrix(y_test, y_pred)
print(cm)
DT_accu=accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
[[5412 747]
 [ 756 1226]]
              precision
                            recall f1-score
                                                support
           0
                    0.88
                              0.88
                                         0.88
                                                   6159
           1
                    0.62
                              0.62
                                         0.62
                                                   1982
                                         0.82
                                                   8141
    accuracy
                              0.75
                                         0.75
                    0.75
                                                   8141
   macro avg
weighted avg
                    0.82
                              0.82
                                         0.82
                                                   8141
```

RANDOM FOREST CLASSIFIER

In [25]:

```
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state
classifier.fit(X_train, y_train)
```

Out[25]:

RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=0)

In [26]:

```
print(classifier.predict(sc.transform(X_train)))
```

```
[0 0 1 ... 0 1 0]
```

```
In [27]:
```

```
y_pred = classifier.predict(X_test)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

[[0 0]
  [0 0]
  [0 0]
  [0 0]
  [1 1]
  [0 0]]
```

In [28]:

```
from sklearn.metrics import confusion_matrix, accuracy_score,classification_report
cm = confusion_matrix(y_test, y_pred)
print(cm)
RF_accu=accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
```

[[5741 41 [852 113					
		precision	recall	f1-score	support
	0	0.87	0.93	0.90	6159
	1	0.73	0.57	0.64	1982
2661102	6 14			0.84	8141
accura	СУ			0.04	0141
macro a	vg	0.80	0.75	0.77	8141
weighted a	vg	0.84	0.84	0.84	8141

LOGISTIC REGRESSION

In [29]:

```
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
```

Out[29]:

LogisticRegression(random_state=0)

In [30]:

```
print(classifier.predict(sc.transform(X_train)))
```

```
[0 0 1 ... 0 1 0]
```

```
In [31]:
```

```
y_pred = classifier.predict(X_test)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

[[0 0]
    [0 0]
    [0 0]
    ...
    [0 0]
    [1 1]
    [0 0]]
```

In [32]:

```
from sklearn.metrics import confusion_matrix, accuracy_score,classification_report
cm = confusion_matrix(y_test, y_pred)
print(cm)
LR_accu=accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
```

[[5719 440] [779 1203]				
	precision	recall	f1-score	support
0	0.88	0.93	0.90	6159
1	0.73	0.61	0.66	1982
accuracy	•		0.85	8141
macro avg	0.81	0.77	0.78	8141
weighted avg	0.84	0.85	0.85	8141

KNN CLASSIFIER

In [33]:

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
```

Out[33]:

KNeighborsClassifier()

In [36]:

```
print(classifier.predict(sc.transform(X_train)))
```

```
[0 0 1 ... 0 1 0]
```

```
In [38]:
y_pred = classifier.predict(X_test)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
[[0 0]]
[0 0]
 [1 0]
 [0 0]
 [1 1]
 [0 0]]
In [39]:
from sklearn.metrics import confusion_matrix, accuracy_score,classification_report
cm = confusion_matrix(y_test, y_pred)
print(cm)
KNN_accu = accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
[[5562 597]
[ 854 1128]]
              precision
                            recall f1-score
                                               support
           0
                   0.87
                              0.90
                                        0.88
                                                   6159
                              0.57
                                                   1982
           1
                   0.65
                                        0.61
                                        0.82
                                                   8141
    accuracy
                   0.76
                              0.74
                                        0.75
                                                   8141
   macro avg
weighted avg
                   0.82
                              0.82
                                        0.82
                                                  8141
```

SVC CLASSIFIER(with linear kernel)

```
In [40]:
```

```
# Importing SVM from sklearn
from sklearn import svm
```

In [41]:

```
# Creating the SVM model and training the model with X_train and y_train
SVM_m = svm.SVC()
SVM_m.fit(X_train, y_train)
```

```
Out[41]:
```

SVC()

In [42]:

```
# Using the X_test to predict the values
y_pred_SVM = SVM_m.predict(X_test)
```

```
In [43]:
```

```
# Calculating the Confusion Matrix and Accuracy Score of the model
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
cm = confusion_matrix(y_test, y_pred_SVM)
print("Confusion Matrix = ", cm)
print("*"*80)
# Classification Report
print(classification_report(y_test, y_pred_SVM))
print("*"*80)
SVM_accu = accuracy_score(y_test, y_pred_SVM)
print("SVM Classifier Accuracy = ", SVM_accu)
Confusion Matrix = [[5789 370]
[ 867 1115]]
*****************************
            precision recall f1-score
                                        support
                         0.94
                                  0.90
         0
                0.87
                                           6159
                0.75
         1
                         0.56
                                  0.64
                                           1982
                                  0.85
                                           8141
   accuracy
                         0.75
                                  0.77
                                           8141
                0.81
  macro avg
weighted avg
                0.84
                         0.85
                                  0.84
                                           8141
*****************************
SVM Classifier Accuracy = 0.8480530647340622
```

In [44]:

```
print("Decision Tree Classifier Accuracy = ", DT_accu)
print("Random Forest Classifier Accuracy = ", RF_accu)
print("KNN Classifier Accuracy = ", KNN_accu)
print("Logistic Regression Accuracy = ", LR_accu)
print("SVM Classifier Accuracy = ", SVM_accu)
```

```
Decision Tree Classifier Accuracy = 0.8153789460754207
Random Forest Classifier Accuracy = 0.8439995086598698
KNN Classifier Accuracy = 0.8217663677680874
Logistic Regression Accuracy = 0.8502640953199853
SVM Classifier Accuracy = 0.8480530647340622
```

Logistic Regression has the best accuracy

In []:		