Sapienza Training Camp 2020

Building an Image Search Engine

3 - 5 September, 2020

Agenda for today

- Word and sentence embeddings
- Recurrent neural networks

Roadmap

Q Query: "person walking with a dog on the beach"

Define similarity function. Order images according to similarity to the query.

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Roadmap

Image from the photo collection

 I_k

Neural Network (CNN)

Image encoding $ightarrow arphi_k
ightarrow$

Recurrent neural network (RNN) Image description

e "dog next to person on the bike near street crossing"

Q Query: "person walking with a dog on the beach"

Define similarity function. Order images according to similarity to the query.

 $sim(Q, T_1) > sim(Q, T_2)$

Text embeddings

Query: "person walking with a dog on the beach" = Q

m V is a fixed-size vocabulary, each word is mapped to its index in the vocabulary

$$Q o \mathbf{e}(Q) \in \mathbb{R}^{|V|}$$
 embedding vector

Text embeddings

Query: "person walking with a dog on the beach" = Q

m V is a fixed-size vocabulary, each word is mapped to its index in the vocabulary

$$Q o \mathbf{e}(Q) \in \mathbb{R}^{|V|}$$
 embedding vector

$$\mathbf{e}(Q) = [0, \dots, 1, 0, 1, \dots, 0]$$

 $\mathbf{e}(Q)_i$ - indicates presence/absence of a vocabulary term with index i

Text embeddings

Query: "person walking with a dog on the beach" = Q

m V is a fixed-size vocabulary, each word is mapped to its index in the vocabulary

$$Q o \mathbf{e}(Q) \in \mathbb{R}^{|V|}$$
 embedding vector

$$\mathbf{e}(Q) = [0, \dots, 1, 0, 1, \dots, 0]$$

- $\mathbf{e}(Q)_i$ indicates presence/absence of a vocabulary term with index i
- $\mathbf{e}(Q)^T\mathbf{e}(T)$ = how many words are in common between query Q and text T

Cosine similarity

Define similarity between query and image description as

$$sim(Q,T) = \frac{\mathbf{e}(Q)^T \mathbf{e}(T)}{\|\mathbf{e}(Q)\| \|\mathbf{e}(T)\|}$$

https://en.wikipedia.org/wiki/Cosine_similarity

- Observation: not all words are equally important for comparing query and image description
 - "the", "on" not as important as "dog" or "beach"
 - problems with synonyms, e.g. "bike" vs. "bicycle"
 - different wording expresses the same concept: "riding on a bike" vs. "biking"

- Observation: not all words are equally important for comparing query and image description
 - o "the", "on" not as important as "dog" or "beach"
- Good step forward is to switch from binary embedding to tf-idf weights

how many times j occurs in T

$$\mathbf{e}(T)_i = \left[\frac{f_{i,T}}{\sum_j f_{j,T}}\right] \left[\log \frac{|\mathcal{D}|}{|d \in \mathcal{D} : d \text{ contains term i}|}\right]$$

- Observation: not all words are equally important for comparing query and image description
 - o "the", "on" not as important as "dog" or "beach"
- Good step forward is to switch from binary embedding to tf-idf weights

some representative set of documents $\mathbf{e}(T)_i = \left[\frac{f_{i,T}}{\sum_j f_{j,T}}\right] \left[\log \frac{|\mathcal{D}|}{|d \in \mathcal{D}: d \text{ contains term i}|}\right]$

- Observation: not all words are equally important for comparing query and image description
 - o "the", "on" not as important as "dog" or "beach"
- Good step forward is to switch from binary embedding to tf-idf weights

term frequency

$$\mathbf{e}(T)_i = \left[\frac{f_{i,T}}{\sum_j f_{j,T}}\right] \left[\log \frac{|\mathcal{D}|}{|d \in \mathcal{D} : d \text{ contains term i}|}\right]$$

- Observation: not all words are equally important for comparing query and image description
 - o "the", "on" not as important as "dog" or "beach"
- Good step forward is to switch from binary embedding to tf-idf weights

inverse document frequency

$$\mathbf{e}(T)_i = \left[\frac{f_{i,T}}{\sum_j f_{j,T}}\right] \left[\log \frac{|\mathcal{D}|}{|d \in \mathcal{D}: d \text{ contains term i}|}\right]$$

Word and sentence embeddings

- Ideally we want the embedding to stay similar in the presence of factors such as
 - synonyms, e.g. "bike" vs. "bicycle"
 - o paraphrasing: e.g. "riding on a bike" vs. "biking"
- Consider more complex word embeddings:
 - word2vec
 - Glove
 - 0 ...
- Many embeddings available:
 - https://github.com/chakki-works/chakin
- Construct sentence embeddings:
 - paper: "A simple but tough-to-beat baseline for sentence embeddings", https://openreview.net/pdf?id=SyK00v5xx

Agenda for today

- Word and Sentence Embeddings
- Recurrent Neural Networks

Roadmap

Image from the photo collection

 I_k

Q Query: "person walking with a dog on the beach"

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Define similarity function. Order images

according to similarity to the guery.

Highlights in Natural Language Processing (NLP)

- Google Translate
 - o <u>translate.google.com</u>
- BERT language model used in Google search
 - o Google uses AI to boost search engine ranking efficiency, FT.com, Oct. 2019
- OpenAl's GPT language model:
 - https://openai.com/blog/better-language-models

Recurrent neural networks

Image captioning model from:

https://colab.research.google.com/github/ten sorflow/docs/blob/master/site/en/tutorials/t ext/image_captioning.ipynb

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Convolutional layer:

$$\mathbf{o}[m, n] = g(W\mathbf{x}^{(m,n)} + w_0), \text{ where } \mathbf{x}^{(m,n)} = \mathbf{x}[m: m+D, n: n+D]$$

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Convolutional layer:

$$\mathbf{o}[m, n] = g(W\mathbf{x}^{(m,n)} + w_0), \text{ where } \mathbf{x}^{(m,n)} = \mathbf{x}[m: m+D, n: n+D]$$

- weight sharing: same weights used for all local windows $\mathbf{x}^{(m,n)}$
- convolutional layer supports variable size input

Recurrent layer

- Recurrent layer
 - weight sharing across time steps
 - recurrent layer supports sequences of variable size

$$\mathbf{h}^{(t)} = g(W\mathbf{h}^{(t-1)} + U\mathbf{x}^{(t)} + w_0)$$
where $\mathbf{h}^{(t)} \in \mathbb{R}^K$

Recurrent layer configurations

Image description (our application!)

Recurrent layer configurations

Image description (our application!)

Text classification

Recurrent layer configurations

Image description (our application!)

Text classification

Machine translation

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

More complex RNN units: LSTM and GRU

Take a quiz!