Distribuição	P(X=x)	Parâmetros	E(X)	Var(X)	f.g.p	f.g.m
Uniforme Discreta	$\frac{1}{N}, x = 1, 2, \cdots, N$	N	$\frac{N+1}{2}$	$\frac{N^2-1}{2}$	_	
Bernoulli	$p^x(1-p)^{1-x}, \ x=0,1$	p	p	p(1-p)	_	_
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}, \ x=0,1,,n$	n,p	np	np(1-p)	$[pt + (1-p)]^n$	$(pe^t + 1 - p)^n$
Geométrica	$p(1-p)^{x-1}, \ x=1,2,3,\cdots$	p	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pt}{1 - t(1 - p)}$	$\frac{pe^t}{1 - e^t(1 - p)}$
Binomial Negativa	$\binom{x-1}{r-1}p^r(1-p)^{x-r}, \ x=r,(r+1),(r+2),\cdots$	r,p	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	_	$\left[\frac{pe^t}{1{-}e^t(1{-}p)}\right]^r$
Hipergeométrica	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}, \ x=0,1,2,\cdots$	N, n, r	$rac{nr}{N}$	$\frac{nr}{N}(1-\frac{r}{N})(\frac{N-n}{N-1})$	-	_
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \cdots$	λ	λ	λ	$e^{\lambda(t-1)}$	$e^{\lambda(e^t-1)}$