Math Booklet

Iago Mendes

Contents

1	Algebra	3
	1.1 Linear Algebra	3
	1.1.1 Matrices	3
2	Algebra	4
	Algebra 2.1 Analytic Geometry	4

Algebra

1.1 Linear Algebra

1.1.1 Matrices

• Notation

$$A = [a_{ij}]$$

 \bullet Matrix Addition

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

• Scalar multiplication

$$c[a_{ij}] = [ca_{ij}]$$

• Transpose

$$(aT)_{ij} = a_{ji}$$

• Matrix Multiplication

$$c_{ij} = (\text{ith row of A})(\text{jth column of B}) = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Algebra

2.1 Analytic Geometry

2.1.1 Coordinate systems

- \bullet Cartesian coordinates (\mathbb{R}^2 and $\mathbb{R}^3)$
- Polar coordinates (\mathbb{R}^2)

 (r, θ)

- Polar/rectangular conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \end{cases}$$

• Cylindrical coordinates (\mathbb{R}^3)

 (r, θ, z)

- Cylindrical/rectangular conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \\ z = z \end{cases}$$

• Spherical coordinates (\mathbb{R}^3)

 (ρ, ϕ, θ)

- Typical restrictions

$$\rho \ge 0$$
$$0 \le \phi \le \pi$$
$$0 \le \theta \le 2\pi$$

- Spherical/cylindrical conversions

$$\begin{cases} r = \rho \sin \phi \\ \theta = \theta \\ z = \rho \cos \phi \end{cases} \qquad \begin{cases} \rho^2 = r^2 + z^2 \\ \tan \phi = \frac{r}{z} \\ \theta = \theta \end{cases}$$