矩阵可对角化的充要条件

定理1

n 阶方阵 A 相似于对角阵的充要条件是 A 有 n 个线性无关的特征向量.

注 2

- 若方阵 A 可对角化,则将其对角化的矩阵 T 的列向量为 A 的特征向量,而对角化后的对角阵上的主对角线上的元素为 A 的特征值.
- ② 方阵 A 可对角化的充要条件是 A 有足够多的特征向量来形成 Fⁿ 的基. 我们不 妨称这样的基为特征向量基.
- ③ 用来对角化的矩阵 T并不是唯一的. 例如, 将 T的各列重新排列, 或者将它们分别乘以不同的非零标量, 这样得到的新矩阵仍然可以将 A 对角化.

矩阵特征向量之间的线性相关性

命题3

设 **A** 是數域 F 上的 n 阶方阵, $\lambda_1, \ldots, \lambda_m$ 为 **A** 的两两互不相等的特征值, $\{x_{i,j} \mid 1 \leq j \leq k_i\}$ 为属于 λ_i 的线性无关的特征向量, 则 $\{x_{i,j} \mid 1 \leq i \leq m, 1 \leq j \leq k_i\}$ 线性无关.

例 4

考虑矩阵 (1)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 (2) $\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$

推论 5

设 A 是数域 F 上的 n 阶方阵, $\lambda_1, \ldots, \lambda_m$ 为 A 的两两互不相等的特征值, x_i 为属于 λ_i 的特征向量, 则 x_1, \ldots, x_m 线性无关.

另外, 如下的推论给出了一个常用的矩阵可对角化的充分条件,

推论 6

如果 n 阶方阵 A 的 n 个特征值两两不同,则 A 可以对角化.

注 7

若 A 为 n 阶对角阵, 其对角线上的元素各不相等. 那么我们可以证明: 同阶方阵 B 与 A 乘法可交换的充要条件是 B 为对角阵. 教材习题 P192#22 给出了与之等价的形式. 留作课后作业.

例 8 (与教材 P157 的作业题 #48 题相关)

设 A 为数域 F 上的 n 阶方阵, 有 n 个互不相等的特征值 $\lambda_1, \ldots, \lambda_n$, 对应分别有特征向量 x_1, \ldots, x_n . 记 $T = (x_1, \ldots, x_n)$, 则 T 是一个可逆方阵, 并且

$$T^{-1}AT = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \stackrel{i 2 fe}{=\!=\!=\!=} B.$$

容易验证 $V = \{C \in F^{n \times n} \mid CA = AC\}$ 是 $F^{n \times n}$ 的一个子空间. 同样地, 易验证 $C \in V$ 当且仅当 $TBT^{-1}C = CTBT^{-1}$, 当且仅当 $B(T^{-1}CT) = (T^{-1}CT)B$. 由于 B 是主对角线上元素互不相等的对角阵, 这等价于说 $T^{-1}CT$ 是一个 F 上的对角阵. 由此, 我们看出 $\dim(V) = n$, 而 V 有一组基 $\{TE_{ii}T^{-1} \mid 1 \leq i \leq n\}$.

接下来, 我们给出 V 的另外一组基, 若记之前提到的对角阵

 $T^{-1}CT = \operatorname{diag}(\mu_1, \dots, \mu_n)$, 由 Lagrange 插值公式 (教材 P115#32) 可知, 存在

$$(A_i) \in F_{n-1}[x]$$
, 使得 $f(\lambda_i) = \mu_i$, $1 \le i \le n$. 这说明矩阵的多项式 $f(\mathbf{B}) = \mathbf{T}^{-1}\mathbf{CT}$, \mathbf{F}

 $C = Tf(B)T^{-1} = f(TBT^{-1}) = f(A).$

 $f(x) \in F_{n-1}[x]$, 使得 $f(\lambda_i) = \mu_i$, $1 \le i \le n$. 这说明矩阵的多项式 $f(\mathbf{B}) = \mathbf{T}^{-1}\mathbf{CT}$. 即

这说明 C 可由 $\{I, A, A^2, \ldots, A^{n-1}\}$ 生成. 由于这组向量显然在 V 中, 它们构成了 V的一组生成元. 又由于已知 $\dim(V) = n$, 这足以说明 $\{I, A, A^2, \dots, A^{n-1}\}$ 也构成了

V的一组基

特征值的代数重数与几何重数(※)

这是书上的打星号内容, 考试不作要求, 但是强烈建议掌握

定义 9

对于复数域 \mathbb{C} 上的 n 阶矩阵 A. 设其特征多项式为

$$p_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_s)^{n_s},$$

其中 $\lambda_1, \ldots, \lambda_s$ 是 **A** 的所有两两不同的特征值 (不计重数). $n_i \ge 1$ 称为 λ_i 的代数重数 (algebraic multiplicity). 对于 λ_i . 考察特征子空间

$$V_{\mathbf{A}}(\lambda_i) = \{ \mathbf{x} \in F^n \mid \mathbf{A}\mathbf{x} = \lambda_i \mathbf{x} \}.$$

则向量空间维数 $m_i = \dim(V_{\mathbf{A}}(\lambda_i)) \geq 1$ 称为 λ_i 的几何重数 (geometric multiplicity).

定理 10

用上面的记号,则对于每个 i, 我们总有 $1 \le m_i \le n_i$. 而 **A** 可以对角化的充要条件 是对于每个 i, 等号成立: $m_i = n_i$.

定理的证明与书上本节的例子, 请课后阅读

注 11 (求相似对角阵的方法)

设 A 是给定的 n 阶方阵.

- ① 求 **A** 的特征值, 得到 $p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I}_n \mathbf{A}) = \prod_{i=1}^s (\lambda \lambda_i)^{n_i}$, 其中 $\lambda_1, \lambda_2, \dots, \lambda_s$ 是 **A** 的所有两两不同的特征值.
- ② 若对每个 i 都有 $n \operatorname{rank}(\lambda_i I_n A) = n_i$, 则 A 可对角化; 否则, A 不可对角化.
- ③ 在可对角化的前提下, 对每个 λ_i , 求出方程组 $(\lambda_i I_n A)X = 0$ 的一组基础解系 $x_{i1}, x_{i2}, \ldots, x_{in_i}$.
- \bullet 令 $T = (\mathbf{x}_{11}, \mathbf{x}_{12}, \dots, \mathbf{x}_{1n_1}, \mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{in_2}, \dots, \mathbf{x}_{s1}, \mathbf{x}_{s2}, \dots, \mathbf{x}_{sn_s})$, 则 T 是可逆方 阵,并满足

$$T^{-1}AT = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{n_1 \uparrow}, \underbrace{\lambda_2, \dots, \lambda_2}_{n_2 \uparrow}, \dots, \underbrace{\lambda_s, \dots, \lambda_s}_{n_s \uparrow}).$$

重新考察矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

例 13

对于下三角方阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 2 & b & 2 & 0 \\ 3 & 2 & c & 2 \end{pmatrix}$$
, 问 a, b, c 各为何值时, \mathbf{A} 可以相似对角化?

例 14

已知 $\mathbf{A}_t = \begin{pmatrix} t & t-2 & 4-2t \\ 3 & -1 & 0 \\ 1+t & t-2 & 3-2t \end{pmatrix}$. 若 \mathbf{A}_t 可对角化, 描述此时的 t, 并求出 \mathbf{P} , 使得

例 15

 $P^{-1}A_{t}P$ 是对角阵.

设方阵 \mathbf{A} 为幂等矩阵: $\mathbf{A}^2 = \mathbf{A}$. 证明:

- A 的特征值只有()和1:
- ② **A** 相似于其相抵标准形 $\begin{pmatrix} \mathbf{I}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}$, 其中 $r = \operatorname{rank}(\mathbf{A})$;
- tr(A) = rank(A). (教材第六章作业题 #27)