Math 307: 202 — Midterm 2 — 50 minutes

Last Name Nguyên	First Minh Khoj (Kevin)
Student Number 47703045	Signature W

- The test consists of 10 pages and 4 questions worth a total of 50 marks.
- You are allowed 1 page of notes (single-sided, in your handwriting).
- Aside from that is a closed-book examination. None of the following are allowed: documents, or electronic devices of any kind (including calculators, cell phones, etc.)
- No work on this page will be marked.

Please do not write on this page — it will not be marked.

Additional instructions

- Please use the spaces indicated.
- Unless it is specified not to do so, justify your answers.
- If you require extra paper then put up your hand and ask your instructor.
 - You must put your name and student number on any extra pages.
 - You must indicate the test-number and question-number.
 - Please do this **on both sides** of any extra pages.
- Please do not dismember your test. You must submit all pages.

1	4	10
2	5+9	21
3	7	10
4	9	9
Total	34	50

- 1. 10 marks Let $A = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$.
- (a) Compute the Singular value decomposition of A. (Hint: you are allowed to compute the SVD in any way you want, but one of the two ways is a lot easier than the other).

$$A^{T}A = \begin{bmatrix} 2 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} c & -2 \\ -3 & 5 \end{bmatrix}$$

$$di+(A^{T}A-TR) = (6-R)(5-R)-c$$

$$= R^{2}-11R+24$$

$$= (R-3)(R-8)=0$$

$$R_{1}=c_{1}R_{2}=3$$

 \sum (b) Find ||A||.

- 2. 21 marks Short answer questions, each question 3 marks. For True or False questions, if true, provide a short justification. If false, show a counter-example that contradicts the statement. For other questions, justify your answer by showing your work.
- 2 (a) Find an orthogonal basis for the subspace $U = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \right\}$. $u_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $u_2 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \frac{2}{5} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $u_1 \text{ and } u_2 \text{ are orthogonal}$ basis $= \begin{bmatrix} 5/5 \\ -9/5 \\ -9/5 \end{bmatrix}$

3 (b) True or False: If A is a real matrix with orthogonal columns, then $A^T A$ is a diagonal matrix.

7 (c) Let
$$A = SDS^{-1}$$
 where $S = \begin{pmatrix} 1 & 4 \\ 2 & 4 \end{pmatrix}$ and $D = \begin{pmatrix} -2 & 0 \\ 0 & 4 \end{pmatrix}$, find the eigenvalues of A^2 and a basis for $N(A^2 - 4I)$.

$$A^2 = SDS^{-1}$$
 hence the eigenvalues of A^2 is the eigenvalue of A (diagonal of D) squared $\Rightarrow R = 9.16$ $\Rightarrow A^2 = \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 15 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix}^{-1}$

 $N(A^2-4I)_{2}$ eigrec corresponding to $\pi_1=4$, which is the first column is S $\therefore N(A^2-4I) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(d) True or False: Let
$$A = \begin{pmatrix} 2 & 0 & 2 & 4 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
, then A is diagonalizable.

A is full rank, thus its eigenvectors span R3 and form eigen basis, so it is diagonalizable

True

(e) True or False: Let A be an $n \times n$ matrix. If λ is an eigenvalue of A, then $\lambda + 1$ is an eigenvalue of A + I.

$$AV = PVV$$
 for some $V \neq 0$
 $(A+I)_V = AV+IV$
 $= AV+V$
 $= PV+V$
 $= V(P+I) = Truc$
 $eigvec$ $eigval$

(f) True or False: Let A be a non-zero $n \times n$ orthogonal projection matrix. If y is a non-zero vector in R(A), then y is not in N(A).

$$A^2 = A$$
 and $A^T = A$
 $N(A) = R(A^T)^{\perp}$
 $= R(A)^{\perp}$ since A is ortho-projector

which by definition a non-serio sector in $R(A)$

will not be in $R(A)^{\perp} \rightarrow True$

D

(g) True or False: Let A be an $n \times n$ matrix. If all eigenvalues of A are positive real numbers, then ||A|| equals its largest eigenvalue.

Given A as above, this means that A is real symmetric and thus orthogonally diagonalizable to $A = P \bar{D} P^{-1} = P \bar{D} P^{T}$

From class, we know that P is orthog matrix and thus norm-preserving, so is DT, thus

IIAII = IIDII which will be the largest value on the diag of D which is the largest eigenvalue

=> True x

3. 10 marks Let
$$U = \text{span}\{\mathbf{x}\} \subseteq \mathbb{R}^3$$
 where $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

 $\mathbf{2}$ (a) Construct an orthogonal projection matrix which projects onto U.

ONB(U) =
$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \hat{u}$$
,
 $P_{u} = \hat{u} \hat{u}^{T} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$= \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(b) Find an orthogonal projection matrix P such that N(P) = U.

[Hint: Such a matrix P must satisfy $R(P^T) = N(P)^{\perp} = U^{\perp}$.]

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = P^{\mathsf{T}}$$

$$N(P) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 1 \end{bmatrix} \vee$$

$$P = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

Dis not a projector!

(c) Find a basis for U^{\perp} .

as above, basis of Ut is S[], [-]?

$$Q$$
 4. 9 marks Let $A = Q_1 R_1$ where

$$Q_1 = \begin{bmatrix} 1/3 & -2/3 \\ 2/3 & -1/3 \\ 2/3 & 2/3 \end{bmatrix}, \text{ and } R_1 = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}.$$

Find the least squares approximation $Ax \approx b$ where

$$R_{1}c^{*} = Q_{1}^{T}b$$

$$b = \begin{bmatrix} 1\\1\\3 \end{bmatrix}.$$

$$Q_{1}^{T}b = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2\\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 3\\3 & 3 \end{bmatrix}$$

$$Q_{1}^{T}b = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2\\ -2 & -1 & 2\\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 3\\1\\3 \end{bmatrix}$$

$$R_{1} \overset{\bullet}{\alpha} = Q_{1}^{\mathsf{T}} \overset{\bullet}{b}$$

$$\begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ c_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ c_{2} = \frac{1}{2} \end{bmatrix} \qquad c_{1} = \frac{1}{3}$$

$$\therefore c^* = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/2 \end{bmatrix}$$