Genuine equivariant operads

Peter Bonventre, Luís A. Pereira

April 13, 2017

Abstract

We build new algebraic structures, which we call genuine equivariant operads, which can be thought of as a hybrid between equivariant operads and coefficient systems. We then prove an Elmendorf type theorem stating that equivariant operads, with their graph model structure, are equivalent to genuine equivariant operads with their projective model structure.

As an application, we build explicit models for the N_{∞} -operads of Blumberg and Hill.

Contents

1	Introduction	1
2	Planar and tall maps	1
	2.1 Planar structures	1
	2.2 Outer faces and tall maps	5
	2.3 Substitution	
3	The genuine equivariant operad monad	9
	3.1 Wreath product over finite sets	9
	3.2 Equivariant leaf-root and vertex functors	10
	3.3 Planar strings	12
	3.4 A monad on spans	14
4	Appendix	17
	4.1 Grothendieck fibrations	17

1 Introduction

No content yet.

2 Planar and tall maps

2.1 Planar structures

Throughout we will work with trees possessing $planar\ structures$ or, more intuitively, trees embedded into the plane.

Our preferred model for trees will be that of broad posets first introduced by Weiss in 3 and further worked out by the second author in 2. We now define planar structures in this context.

PLANARIZE DEF

Definition 2.1. Let $T \in \Omega$ be a tree. A *planar structure* of T is an extension of the descendancy partial order \leq_d to a total order \leq_p such that:

• Planar: if $e \leq_p f$ and $e \nleq_d f$ then $g \leq_d f$ implies $e \leq_p g$.

Example 2.2. An example of a planar structure on a tree T follows, with \leq_r encoded by the number labels.

(2.3) PLANAREX EQ

Intuitively, given a planar depiction of a tree T, $e \le_d f$ holds when the downward path from e passes through f and $e \le_p f$ holds if either $e \le_d f$ or if the downward path from e is to the left of the downward path from f (as measured at the node where the paths intersect).

Intuitively, a planar depiction of a tree amounts to choosing a total order for each of the sets of *input edges* of each node (i.e. those edges immediately above that node).

While we will not need to make this last statement precise, we will nonetheless find it convenient to show that Definition 2.1 is equivalent to such choosing total orders for each of the sets of input edges. To do so, we first introduce some notation.

Notation 2.4. Let $T \in \Omega$ be a tree and $e \in T$ and edge. We will denote

$$I(e) = \{ f \in T : e \le_d f \}$$

and refer to this poset as the input path of e.

We will repeatedly use the following, which is a consequence of [2, Cor. 5.26].

Lemma 2.5. If $e \leq_d f$, $e \leq_d f'$, then f, f' are \leq_d -comparable.

Proposition 2.6. Let $T \in \Omega$ be a tree. Then

- (a) for any $e \in T$ the finite poset I(e) is totally ordered;
- (b) the poset (T, \leq_d) has all joins, denoted \vee . In fact, $\bigvee_i e_i = \min(\bigcap_i I(e_i))$.

Proof. (a) is immediate from Lemma 2.5. To prove (b) we note that $\min(\bigcap_i I(e_i))$ exists by (a), and that this is clearly the join $\bigvee e_i$.

Notation 2.7. Let $T \in \Omega$ be a tree and suppose that $e <_d b$. We will denote by $b_e^{\dagger} \in T$ the predecessor of b in I(e).

Proposition 2.8. Suppose e, f are \leq_d -incomparable edges of T and write $b = e \vee f$. Then

- (a) $e <_d b$, $f <_d b$ and $b_e^{\uparrow} \neq b_f^{\uparrow}$;
- (b) $b_e^{\uparrow}, b_f^{\uparrow} \in b^{\uparrow}$. In fact $\{b_e^{\uparrow}\} = I(e) \cap b^{\uparrow}, \{b_f^{\uparrow}\} = I(f) \cap b^{\uparrow}$;
- (c) if $e' \leq_d e$, $f' \leq_d f$ then $b = e' \vee f'$ and $b_{e'}^{\uparrow} = b_e^{\uparrow}$, $b_{f'}^{\uparrow} = b_f^{\uparrow}$.

Proof. (a) is immediate: the condition e = g (resp. f = g) would imply $f \le_d e$ (resp. $e \le_d f$) while the condition $b_e^{\dagger} = b_f^{\dagger}$ would provide a predecessor of b in $I(e) \cap I(f)$.

For (b), note that any relation $a <_d h$ for some unique $b_a^* <_d b$ for some unique $b_a^* \in b^{\uparrow}$, where uniqueness follows from Lemma 2.5. Choosing a = e implies $I(e) \cap b^{\uparrow} = \{b_e^*\}$ and letting a range over edges such that $e \le_d a <_d b$ shows that b_e^* is in fact the predecessor of b.

To prove (c) one reduces to the case e' = e, in which case it suffices to check $I(e) \cap I(f') = I(e) \cap I(f)$. But if it were otherwise there would exist an edge a satisfying $f' \leq_d a <_d f$ and $e \leq_d a$, and this would imply $e \leq_d f$, contradicting our hypothesis.

INPUTPATH NOT

INCOMPNOTOP

INPUTPATHS PROP

ECESSORPROP PROP

TERNARYJOIN PROP

Proposition 2.9. Let $c = e_1 \lor e_2 \lor e_3$. Then $c = e_i \lor e_j$ iff $c_{e_i}^{\uparrow} \neq c_{e_j}^{\uparrow}$. Therefore, all ternary joins in (T, \leq_d) are binary, i.e.

$$c = e_1 \lor e_2 \lor e_3 = e_i \lor e_j \tag{2.10}$$

for some $1 \le i < j \le 3$, and (2.10) fails for at most one choice of $1 \le i < j \le 3$.

Proof. If $c_{e_i}^{\uparrow} + c_{e_j}^{\uparrow} + c_{e_j}^{\uparrow} = \min_{i \in \mathcal{E}} (I(e_j)) = e_i \vee e_j$, whereas the converse follows from Proposition 2.8(a).

The "therefore" part follows by noting that $c_{e_1}^{\dagger}$, $c_{e_2}^{\dagger}$, $c_{e_3}^{\dagger}$ can not all coincide, or else c would not be the minimum of $I(e_1) \cap I(e_2) \cap I(e_3)$.

Example 2.11. In the following example $b = e \lor f$, $c = e \lor f \lor g$, $c_e^{\uparrow} = c_f^{\uparrow} = b$.

Notation 2.12. Given a set S of size n we write $Ord(S) \simeq Iso(S, \{1, \dots, n\})$. We will usually abuse notation by regarding its objects as pairs (S, \leq) where \leq is a total order in S.

Proposition 2.13. Let $T \in \Omega$ be a tree. There is a bijection

and we write $b = e \vee f$. We first show that (2.14) is injective, i.e. that the restrictions $\leq_p |_{a}$ determine if $e <_p f$ holds or not. If $b_e^{\dagger} <_p b_f^{\dagger}$, the relations $e \leq_d b_e^{\dagger} <_p b_f^{\dagger} \geq_d f$ and Definition 2.1 imply it must be $e <_p f$. Dually, if $b_f^{\dagger} <_p b_e^{\dagger}$ then $f <_p e$. Thus $b_e^{\dagger} <_p b_f^{\dagger} \Leftrightarrow e <_p f$ and hence (2.14) is indeed injective.

To check that (2.14) is surjective, it suffices (recall that e, f are assumed \leq_d -incomparable) to check that defining $e \leq_p f$ to hold iff $b_e^{\uparrow} < b_f^{\uparrow}$ holds in b^{\uparrow} yields a planar structure.

Antisymmetry and the total order conditions are immediate, and it thus remains to check the transitivity and planar conditions. Transitivity of \leq_p in the case $e'_{\begin{subarray}{c} \begin{subarray}{c} \begin$ of \leq_p in the case $e <_p f \leq_d f'$ follows since either $e \in_p f'$ or else e, f' are \leq_d -incomparable, in which case one can apply 2.8(c) with the roles of f, f' reversed.

It remains to check transitivity in the hardest case, that of $e <_p f <_p g$ with incomparable f,g. We write $c = e \lor f \lor g$. By the "therefore" part of Proposition 2.9, either (i) $e \lor f <_d c$, in which case Proposition 2.9 implies $c = c \cdot f$ and transitivity follows; (ii) $f \vee g <_d c$, which follows just as (i): (iii) $e \vee f = f \vee g = c$, in which case $c_e^{\uparrow} < c_g^{\uparrow}$ in c^{\uparrow} so that $c_e^{\uparrow} \neq c_g^{\uparrow}$ and by Proposition 2.9 it is also $e \vee g = c$ and transitivity follows.

Remark 2.15. Definition 2.17 readily extends to forests $F \in \Phi$. The analogue of Proposition 2.13 then states that the data of a planar structure is equivalent to total orderings of the nodes of F together with a total ordering of its set of roots. Indeed, this follows by either adapting the proof above or by noting that planar structures on F are clearly in bijection with planar structures on the join tree $F \star \eta$ (cf. [2, Def. 7.44]), which adds a single edge η to F, serving as the (unique) root of $F \star \eta$.

IZATIONCHAR PROP

FORESTPLAN REM

When discussing the substitution procedure in \$2.3 we will find it convenient to work with a model for the category Ω that possesses exactly one representative of each possible planar structure on each tree or, more precisely, such that the only isomorphisms preserving the planar structures are the identities. On the other hand, using such a model for Ω throughout would, among other issues, make the discussion of faces in §2.2 rather awkward. We now outline our conventions to address such issues.

Let Ω^p , the category of planarized trees, denote the category with objects pairs T_{\leq_p} = (T, \leq_p) of trees together with a planar structure and morphisms the underlying maps of trees (so that the planar structures are ignored). There is a full subcategory $\Omega^s \hookrightarrow \Omega^p$, whose objects we call $standard\ models,$ of those T_{\leq_p} whose underlying set is one of the sets $\underline{n} = \{1, 2, \dots, n\}$ and for which \leq_p coincides with the canonical order.

Example 2.16. Some examples of standard models, i.e. objects of Ω^s , follow (further, (2.3) can also be interpreted as such an example).

PLANAROMEGAEX1 EQ

Here T_1 and T_2 are isomorphic to each other but not isomorphic to any other standard model in Ω^s while both C and U are the unique objects in their isomorphism classes.

Given $T_{\leq_p} \in \Omega^p$ there is an obvious standard model $T^s_{\leq_p} \in \Omega^s$ given by replacing each edge by its order following \leq_p . Indeed, this defines a retraction $(-)^s : \Omega^p \to \Omega^s$ and a natural transformation $\sigma: id \Rightarrow (-)^s$ given by isomorphisms preserving the planar structure (in fact, the pair $((-)^s, \sigma)$ is clearly unique).

Convention 2.18. From now on, we will write simply Ω , Ω_G to denote the categories Ω^s , Ω_G^s of standard models (where planar structures are defined in the underlying forest as in Remark 2.15). Similarly O_G will denote the model O_G^s for the orbital category whose objects are the orbital G-sets whose underlying set is one of the sets $\underline{n} = \{1, 2, \dots, n\}$.

Therefore, whenever one of our constructions produces an object/diagram in Ω^p , Ω^p_G , Ω^p_G (of trees, G-trees, orbital G-sets with a planarization/total order) we will hence implicitly reinterpret it by using the standardization functor $(-)^s$.

Example 2.19. To illustrate our convention, we consider the trees in Example 2.16.

One has subfaces $F_1 \subset F_2 \subset U$ where F_1 is the subtree with edge set $\{1,2,6,7\}$ and F_2 is the subtree with edge set $\{1, 2, 3, 6, 7\}$, both with inherited tree and planar structures. Applying $(-)^s$ to the inclusion diagram on the left below then yields a diagram as on the right.

$$F_1 \xrightarrow{\smile} U \qquad \qquad C \xrightarrow{\smile} U$$

$$T_1 \xrightarrow{\smile} U$$

Similarly, let $\leq_{(12)}$ and $\leq_{(45)}$ denote alternate planar structures for U exchanging the orders of the pairs 1,2 and 4,5, so that one has objects $U_{\leq_{(12)}}$, $U_{\leq_{(45)}}$ in Ω^p . Applying (-)^s to the diagram of underlying identities on the left yields the permutation diagram on the right.

$$U \xrightarrow{id} U_{\leq_{(45)}} \qquad \qquad U \xrightarrow{(45)} U$$

$$U \xrightarrow{id} U_{\leq_{(12)}} U$$

$$U \xrightarrow{(12)(45)} U$$

Example 2.20. An additional reason to leave the use of $(-)^s$ implicit is that when depicting G-trees it is preferable to choose edge labels that describe the action rather than the planarization (which is already implicit anyway).

STANDMODEL EX

For example, when $G = \mathbb{Z}_{/4}$, in both diagrams below the orbital representation on the left represents the isomorphism class consisting of the two trees $T_1, T_2 \in \Omega_G$ on the right.

Definition 2.21. A morphism $S \xrightarrow{\varphi} T$ in Ω that is compatible with the planar structures $\leq_{\mathcal{D}}$ is called a *planar map*.

More generally, a morphism $F \to G$ in the categories Φ , $\Phi^G = \Omega^G_{\text{pef6b}}$ of forests, G-forests, G-trees is called a *planar map* if it is an independent map (cf. [2, Def. 5.28]) compatible with the planar structures $\leq_{\mathcal{D}}$.

Remark 2.22. The need for the independence condition is justified by $\frac{\text{Pe16b}}{|2, \text{ Lemma}}$ 5.33 and its converse, since non independent maps do not reflect \leq_d inequalities.

We note that in the Ω_G case a map φ is independent iff φ does not factor through a non trivial quotient iff φ is injective on each edge orbit.

Proposition 2.23. Let $F \xrightarrow{\varphi} G$ be an independent map in Φ (or Ω , Ω_G , Φ_G). Then there is a unique factorization

$$F \xrightarrow{\simeq} \bar{F} \to G$$

such that $F \xrightarrow{\simeq} \bar{F}$ is an isomorphism and $\bar{F} \to G$ is planar.

Proof. We need to show that there is a unique planar structure $\leq_p^{\bar{F}}$ on the underlying forest of F making the underlying map a planar map. Simplicity of G ensures that for any vertex $e^{\uparrow} \leq e$ of F the edges in $\varphi(e^{\uparrow})$ are all distinct while independence of φ likewise ensures that the edges in C(r) are distinct. The result now follows from (the forest version of) Proposition 2.13: one simply orders each set e^{\uparrow} and \underline{r}_F according to its image.

not quite complete... may be that \leq_p is the closure of \leq_d and the vertex relations under transitivity and the planar condition

Remark 2.24. Proposition 2.23 says that planar structures can be pulled back along independent maps. However, they can not always be pushed forward. As an example, in the notation of (2.17), consider the map $C \to T_1$ defined by $1 \mapsto 1, 2 \mapsto 4, 3 \mapsto 2, 4 \mapsto 5$.

Remark 2.25. Given any tree $T \in \Omega$ there is a unique corolla $lr(T) \in \Sigma$ and planar tall map $\operatorname{Ir}(T) \to T$. Explicitly, the number of leaves of $\operatorname{Ir}(T)$ matches that of T, together with the inherited order.

2.2Outer faces and tall maps

In preparation for our discussion of the substitution operation in \$2.3, we now recall some Pelich. basic notions and results concerning outer subtrees and tree grafting, as in $[2, \frac{100}{5}]$

Definition 2.26. Let $T \in \Omega$ be a tree and $e_1 \cdots e_n = \underline{e} \le e$ a broad relation in T.

We define the planar outer face $T_{e \le e}$ to be the subtree with underlying set those edges $f \in T$ such that

$$f \leq_d e, \quad \forall_i e_i \not <_d f, \tag{2.27}$$

generating broad relations the relations $f^{\uparrow} \leq f$ for f satisfying (2.27) and $\forall i f \neq e_i$, and planar structure pulled back from T.

OUTERFACE EQ

PLANARPULL EQ

PULLPLANAR REM

UNIQCOR REM

OUTTALL SEC

Remark 2.28. If one forgoes the requirement that $T_{e\leq e}$ be equipped with the pullback planar structure, the inclusion $T_{\underline{e} \leq e} \to T$ is usually called simply an outer face.

We now recap some basic results.

Proposition 2.29. Let $T \in \Omega$ be a tree.

- (a) $T_{\underline{e} \leq e}$ is a tree with root e and edge tuple \underline{e} ;
- (b) there is a bijection

 $\{planar \ outer \ faces \ of \ T\} \leftrightarrow \{broad \ relations \ of \ T\};$

- (c) if $R \to S$ and $S \to T$ are outer face maps then so is $R \to T$;
- (d) any pair of broad relations $g \le v$, $fv \le e$ induces a grafting pushout diagram

Proof. We first show (a). That $T_{\underline{e} \leq e}$ is indeed a tree is the content of [2, Prop. 5.20]: more precisely, $T_{\underline{e} \leq e} = (T^{\leq e})_{\leq \underline{e}}$ in the potation therein. That the root of $T_{\underline{e} \leq e}$ is e is clear and that the root tuple is \underline{e} follows from [2, Remark 5.23].

(b) follows from (a), which shows that $\underline{e} \leq e$ can be recovered from $T_{\underline{e} \leq e}$. (c) follows from the definition of outer face together with [2, Lemma 5.33], which states that the \leq_d relations on S, T coincide.

Since by (c) both $T_{\underline{g} \leq v}$ and $T_{\underline{f}v \leq e}$ are outer faces of $T_{\underline{f}\underline{g} \leq v}$, (d) is a restatement of [2, 0]Prop. 5.15].

Definition 2.31. A map $S \xrightarrow{\varphi} T$ in Ω is called a *tall map* if

$$\varphi(\underline{l}_S) = \underline{l}_T, \qquad \varphi(r_S) = r_T,$$

where $l_{(-)}$ denotes the leaf tuple and $r_{(-)}$ the root. The following is a restatement of [2, Cor. 5.24]

Proposition 2.32. Any map $S \xrightarrow{\varphi} T$ in Ω has a factorization, unique up to unique isomorphism,

$$S \xrightarrow{\varphi^t} U \xrightarrow{\varphi^u} T$$

as a tall map followed by an outer face (in fact, $U = T_{\varphi(l_{\varsigma}) \leq r_{\varsigma}}$).

We recall that a face $F \to T$ is called inner if is obtained by iteratively removing inner edges, i.e. edges other than the root or the leaves. In particular, it follows that a face is inner iff it is tall. The usual face-degeneracy decomposition thus combines with Corollary to give the following.

Corollary 2.33. Any map $S \xrightarrow{\varphi} T$ in Ω has a factorization, unique up to unique isomorphisms,

$$S \xrightarrow{\varphi^{-}} U \xrightarrow{\varphi^{i}} V \xrightarrow{\varphi^{u}} T \tag{2.34}$$

as a degeneracy followed by an inner face followed by an outer face.

Proof. The factorization ($\frac{\text{TRIPLEFACT}}{(2.34)}$ can be built by first performing the degeneracy-face decomposition and then performing the tall-outer decomposition on the face map.

SUBS SEC

2.3 Substitution

One of the key ideas needed to describe operads is that of substitution of tree nodes, a process that we will prefer to repackage in terms of maps of trees. We start by discussing an EQ example, focusing on the related notion of iterated graftings of trees (as described in (2.30)).

Example 2.35. The trees U_1, U_2, \dots, U_6 on the left below can be grafted into the tree U in the middle. More precisely (among other possible grafting orders), one has

$$U = (((((U_6 \coprod_a U_2)) \coprod_a U_1) \coprod_b U_3) \coprod_d U_5) \coprod_c U_4$$
 (2.36) UFORMULA EQ

(2.37)

SUBSDATUMTREES EQ

We now consider the tree T, which is built by converting each U_i into the corollar U_i (cf. Remark 2.25), and then performing the same grafting operations as in U_i (U_i) (cf. Remark 2.25), and then performing the same grafting operations as in U_i (U_i) (U_i) (cf. Remark 2.25), and then performing the same grafting operations as in U_i (U_i) (U_i)

the tree T together with the (unique) planar tall maps φ_i below.

(2.38)

SUBSDATUMTREES2 EQ

From this perspective, U can now be thought as obtained from T by substituting each of its nodes with the corresponding U_i . Moreover, the φ_i assemble to a planar tall map $\varphi: T \to U$ (such that $a_i \mapsto a, b \mapsto b, \dots, e \mapsto e$), which likewise encodes the same information.

Our perspective will then be that data for substitution of tree nodes such as in (2.38) can equivalently be repackaged using planar tall maps.

UBSTITUTIONDATUM

TAUNDERPLAN PROP

Definition 2.39. Let $T \in \Omega$ be a tree.

A T-substitution datum is a tuple $\{U_{e^{\uparrow} \leq e}\}_{(e^{\uparrow} \leq e) \in V(T)}$ such that $\operatorname{Ir}(U_{e^{\uparrow} \leq e}) = T_{e^{\uparrow} \leq e}$. Further, a map of T-substitution data $\{U_{e^{\uparrow} \leq e}\} \to \{V_{e^{\uparrow} \leq e}\}$ is a tuple of planar tall maps $\{U_{e^{\uparrow} \leq e} \to V_{e^{\uparrow} \leq e}\}$.

Definition 2.40. Let $T \in \Omega$.

The Segal core poset Sc(T) is the poset with objects the edge subtrees η_e and vertex substrees $T_{e^{\uparrow} \leq e}$. The order relation is given by inclusion.

Remark 2.41. Note that the only maps in Sc(T) are inclusions of the form $\eta_a \subset T_{e^{\dagger} \leq e}$. In particular, there are no pairs of composable non-identity relations in Sc(T).

Given a T-substitution datum $\{U_{\{e^{\uparrow} \leq e\}}\}$ we abuse notation by writing

$$U_{(-)}:\operatorname{Sc}(T)\to\Omega$$

for the functor $\eta_a \mapsto \eta$, $T_{e^{\uparrow} \leq e} \mapsto U_{e^{\uparrow} \leq e}$ and sending the inclusions $\eta_a \subset T_{e^{\uparrow} \leq e}$ to the composites

$$\eta \xrightarrow{a} T_{e^{\uparrow} < e} = \operatorname{Ir}(U_{e^{\uparrow} < e}) \to U_{e^{\uparrow} < e}.$$

Proposition 2.42. Let $T \in \Omega$ be a tree. There is an isomorphism of categories

$$\operatorname{Sub}(T) & \longrightarrow \Omega_{T/}^{\operatorname{pt}}$$

$$\{U_{e^{\dagger} \leq e}\} & \longmapsto \left(T \to \operatorname{colim}_{\operatorname{Sc}(T)} U_{(-)}\right)$$

$$\{U_{\varphi(e^{\dagger}) \leq \varphi(e)}\} & \longleftarrow (T \xrightarrow{\varphi} U)$$

$$(2.43)$$

SUBDATAUNDERPLAN EQ

Where $\mathsf{Sub}(T)$ denotes the category of T-substitution data and $\Omega_{T/}^{\mathsf{pt}}$ the category of planar tall maps under T.

Proof. We first claim that (i) the $\operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$ indeed exists; (ii) for the canonical datum $\{T_{e^{\dagger} \leq e}\}$, it is $T = \operatorname{colim}_{\mathsf{Sc}(T)} T_{(-)}$; (iii) the induced map $T \to \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$ is planar tall.

The argument is by induction on the number of vertices of T, with the base cases of T with 0 or 1 vertices being immediate, since then T is the terminal object of $\mathsf{Sc}(T)$. Otherwise, one can choose a non trivial grafting decomposition so as to write $T = R \amalg_e S$, resulting in identifications $\mathsf{Sc}(R) \subset \mathsf{Sc}(T)$, $\mathsf{Sc}(S) \subset \mathsf{Sc}(T)$ so that $\mathsf{Sc}(R) \cup \mathsf{Sc}(S) = \mathsf{Sc}(T)$ and $\mathsf{Sc}(R) \cap \mathsf{Sc}(S) = \{\eta_e\}$. The existence of $\mathsf{colim}_{\mathsf{Sc}(T)} U_{(-)}$ is thus equivalent to the existence of the pushout below.

$$\eta \longrightarrow \operatorname{colim}_{\mathsf{Sc}(R)} U_{(-)}
\downarrow \qquad \qquad \downarrow
\operatorname{colim}_{\mathsf{Sc}(S)} U_{(-)} \xrightarrow{----} \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$$
(2.44)

ASSEMBLYGRAFT EQ

By induction, the top right and bottom left colimits exist for any $U_{(-)}$, equal R and S in the case $U_{(-)} = T_{(-)}$, and the maps $R_T \to \text{colim}_{Sc(R)} U_{(-)}$, $S \to \text{colim}_{Sc(S)} U_{(-)}$ are planar tall. But is now follows that (2.44) is a gratting pushout diagram, so that the pushout indeed exists. The conditions that $T = \text{colim}_{Sc(T)} T_{(-)}$ and $T_{AT} \to \text{colim}_{Sc(T)} T_{(-)}$ is planar tall follow.

The conditions that $T = \operatorname{colim}_{\mathsf{Sc}(T)} T_{(-)} \operatorname{\operatorname{Subhataunder}}_{\mathsf{Subhataunder}} \mathbb{E}_{\mathsf{D}} U_{(-)}$ is planar tall follow. The fact that the two functors in (2.43) are inverse to each other is clear by the same inductive argument.

Remark 2.45. It follows from the previous proof that, writing $U = \operatorname{colim}_{Sc(T)} U_{(-)}$, one has

$$V(U) = \coprod_{(e^{\dagger} \le e) \in V(T)} V(U_{e^{\dagger} \le e}). \tag{2.46}$$

Alternatively, (2.46) can be regarded as a map $f^*:V(U)\to V(T)$ induced by the planar tall map $f:T\to U$. Explicitly, $f^*(U_{u^{\dag}\le u})$ is the unique $T_{t^{\dag}\le t}$ such that $U_{u^{\dag}\le u}\subset U_{t^{\dag}\le t}$. We note that f^* is indeed contravariant in the tall planar map f.

VERTEXDECOMP REM

3 The genuine equivariant operad monad

We now turn to the task of building the monad encoding genuine equivariant operads.

3.1 Wreath product over finite sets

In what follows we will let F denote the usual skeleton of the category of finite sets and all set maps. Explicitly, its objects are the finite sets $\{1,2,\cdots,n\}$ for $n\geq 0$. However, much as in the discussion in Convention 2.18 we will often find it more convenient to regard the elements of F as equivalence classes of finite sets equipped with total orders.

Definition 3.1. For a category C, we let $F \wr C$ denote the opposite of the Grothendieck construction for the functor

$$F^{op} \longrightarrow \mathsf{Cat}$$
 $I \longmapsto \mathcal{C}^I$

Explicitly, the objects of $F \wr C$ are tuples $(c_i)_{i \in I}$ and a map $(c_i)_{i \in I} \to (d_j)_{j \in J}$ consists of a pair

$$(\phi: I \to J, (f_i: c_i \to d_{\phi(i)})_{i \in I}),$$

henceforth abbreviated as $(\phi, (f_i))$.

The following is immediate.

WREATPRODLIM LEM

Proposition 3.2. Suppose C has all finite coproducts. One then has a functor as on the left below. Dually, if C has all finite products, one has a functor as on the right below.

Lemma 3.3. Suppose that \mathcal{E} is a bicomplete category such that coproducts commute with limits in each variable. If the leftmost diagram

is a right Kan extension diagram then so is the composite of the rightmost diagram. Dually, if in \mathcal{E} products commute with colimits in each variable, and the leftmost diagram

is a left Kan extension diagram then so is the composite of the rightmost diagram.

Proof. Unpacking definitions using the pointwise formula for Kan extensions ([1, X.3.1]), the claim concerning ([3.4) amounts to showing that for each $(d_i) \in F \wr \mathcal{D}$ one has natural isomorphisms

$$\lim_{((d_i)\to(kc_j))\in((d_i)\downarrow F\wr \mathcal{C})} \left(\coprod_j F(c_j)\right) \simeq \coprod_i \lim_{(d_i\to kc_i)\in d_i\downarrow \mathcal{C}} \left(F(c_i)\right). \tag{3.6}$$

Noting that the canonical factorizations of each $(\varphi, (f_i)): (d_i)_{i \in I} \to (kc_j)_{j \in J}$ as

$$(d_i)_{i \in I} \to (c_{\phi(i)})_{i \in I} \to (kc_j)_{j \in J}$$

$$\lim_{((d_i) \to (kc_j)) \in ((d_i) \downarrow \mathsf{F} \wr \mathcal{C})} \left(\coprod_j F(c_j) \right) \simeq \lim_{((d_i) \to (kc_i)) \in \prod_i (d_i \downarrow \mathcal{D})} \left(\coprod_i F(c_i) \right)$$

and hence (B.6) now follows from the assumption that coproducts commute with limits in each variable.

Notation 3.7. Using the coproduct functor $\mathsf{F}^{\wr 2} = \mathsf{F}^{\wr \{0,1\}} = \mathsf{F} \wr \mathsf{F} \xrightarrow{\coprod} \mathsf{F}$ (where $\coprod_{i \in I} J_i$ is ordered lexicographically) and the simpleton $\{1\} \in \mathsf{F}$ one can regard the collection of categories $\mathsf{F}^{\wr \{0,\cdots,n\}} \wr \mathcal{C} = \mathsf{F}^{!\underline{n}} \wr \mathcal{C}$ as a coaugmented cosimplicial object in Cat. As such, we will denote by

$$\delta^{i} : \mathsf{F}^{\imath n-1} \wr \mathcal{C} \to \mathsf{F}^{\imath n} \wr \mathcal{C}, \qquad 0 \le i \le n$$

the cofaces obtained by inserting simpletons $\{1\} \in \mathsf{F}$ and by

$$\sigma^i\!:\!\mathsf{F}^{\wr\underline{n+1}}\wr\mathcal{C}\to\mathsf{F}^{\wr\underline{n}}\wr\mathcal{C},\qquad 0\leq i\leq n$$

the codegeneracies obtained by applying the coproduct $F^{i2} \xrightarrow{\coprod} F$ to adjacent F coordinates.

3.2 Equivariant leaf-root and vertex functors

Definition 3.8. A morphism $T \xrightarrow{\varphi} S$ in Ω_G is called a *quotient* if the underlying morphism of forests

$$\coprod_{[g] \in G/H} T_{[g]} \to \coprod_{[h] \in G/K} S_{[h]}$$

maps each tree component (or, equivalently, some tree component) isomorphically onto its image component.

We denote the subcategory of G-trees and quotients by Ω_G^q .

Definition 3.9. The *G*-symmetric category, which we will also call the category of *G*-corollas, is the full subcategory $\Sigma_G \subset \Omega_G^q$ of those *G*-trees that are corollas, i.e. *G*-trees such that each edge is either a root or a leaf (but not both).

Definition 3.10. The *leaf-root functor* is the functor $\Omega_G^q \xrightarrow{\text{lr}} \Sigma_G$ defined by

$$lr(T) = \{leaves of T\} \coprod \{roots of T\}$$

with a broad relation $l_1 \cdots l_n \leq r$ holding in Ir(T) iff its image holds in T and similarly for the planar structure \leq_p .

Remark 3.11. Generalizing Remark 2.25, $\Gamma(T)$ can alternatively be characterized as being the *unique G*-corolla which admits an also unique (tree-wise) tall planar map $\Gamma(T) \to T$. Moreover, $\Gamma(T)$ can usually be regarded as the "smallest inner face" of T, obtained by removing all the inner edges, although this characterization fails when $T = G \cdot_H \eta$ is a stick G-tree. Some examples with $G = \mathbb{Z}_{/4}$ follow.

Remark 3.12. One consequence of the fact that planarizations can not be pushed forward along tree maps (cf. Remark 2.24) is that $\operatorname{Ir}:\Omega_G^q \to \Sigma_G$ is not a categorical fibration. maybe add to this.

VG DEF

ERTEXDECOMPG REM

Definition 3.13. Given $T \in \Omega_G$ we define the set $V_G(T)$ of *G-vertices* of T to be the orbit set V(T)/G, i.e. the quotient of the vertex set V(T) by its G-action.

Furthermore, we will regard $V_G(T)$ as an object in F by equipping it with its lexicographic order: i.e. vertex equivalence classes $[e^{\uparrow} \leq e]$ are ordered according to the planar order \leq_p of the smallest representative $ge, g \in G$.

of the smallest representative ge, $g \in G$. Remark 3.14. Following Remark 2.45, a planar tall map $f: T \to U$ of G-trees induces a G-equivariant map $f^*: V(U) \to V(T)$ and thus also a map of orbits $f^*: V_G(U) \to V_G(T)$. We note, however, that f^* is not in general compatible with the order on V_G , as is indeed the case even in the non-equivariant case.

A minimal example follows.

In V(T) the vertices are ordered as a < c < d while in V(U) they are ordered as a < e < c < d but the map $f^*: V(U) \to V(T)$ is given by $a \mapsto a, c \mapsto c, d \mapsto d, e \mapsto d$.

Note that each element of $V_G(T)$ corresponds to an unique edge orbit Ge for e not a leaf. As such, we will represent the corresponding G-vertex by $v_{Ge} = (Ge)^{\dagger} \leq Ge$ (which we interpret as the concatenation of the relations $f^{\dagger} \leq f$ for $f \in Ge$) and write

$$T_{v_{Ge}} = T_{(Ge)^{\uparrow} \leq Ge} = \coprod_{f \in Ge} T_{f^{\uparrow} \leq f}.$$

We note that $T_{v_{Ge}}$ is always a G-corolla. Indeed, noting that a quotient map $\varphi: T \to S$ induces quotient maps $T_{v_{ge}} \to S_{v_{G\varphi(e)}}$ one obtains a functor

Remark 3.16. The need to introduce the $F \wr C$ categories comes from the fact that general quotient maps do not preserve the number of G-vertices. For a simple example, let $G = \mathbb{Z}_{/4}$ and consider the quotient map

sending edges labeled a,b,c to the edges with the same name and the edges a^{+1} , b^{+1} to the edges a+1, b+1. We note that T has three G-vertices v_{Gc} , v_{Gb} , v_{Gb+1} while S has only two G-vertices v_{Gc} and v_{Gb} . $V(\phi)$ then maps the two corollas $T_{v_{Gb}}$ and $T_{v_{Gb+1}}$ isomorphically onto $T_{S_{Gb}}$ and the corolla $T_{v_{Gc}}$ non-isomorphically onto $S_{v_{Gc}}$.

 $\begin{array}{c} {\tt SUBSTITUTIONDATUM} \\ {\tt Definition} & {\tt 2.39~now~immedia} \\ {\tt tellow} & {\tt generalizes}. \end{array}$

Definition 3.17. Let $T \in \Omega_G$ be a G-tree.

A T-substitution datum is a tuple $\{U_{v_{Ge}}\}_{v_{Ge} \in V_G(T)}$ such that $\mathsf{Ir}(U_{v_{Ge}}) = T_{v_{Ge}}$. Further, a map of T-substitution data $\{U_{v_{Ge}}\} \to \{V_{v_{Ge}}\}$ is a tuple of planar tall maps $\{U_{v_{Ge}} \to V_{v_{Ge}}\}.$

Remark 3.18. To establish the equivariant analogue of Proposition 2.42 we will prefer to repackage equivariant substitution data in terms of non-equivariant terms.

Noting that there are decompositions $U_{v_{Ge}} = \coprod_{ge \in Ge} U_{ge^{\dagger} \leq ge}$ and letting $G \ltimes V(T)$ denote the Grothendieck construction for the action of G on the non-equivariant vertices V(T)(often called the action groupoid), it is immediate that an equivariant T-substitution datum is the same as a functor $G \ltimes V(T) \to \Omega$ whose restriction to $V(T) \subset G \ltimes V(T)$ is a (nonequivariant) substitution datum.

Proposition 3.19. Let $T \in \Omega_G$ be a G-tree. There is an isomorphism of categories

$$Sub(T) \xrightarrow{} \Omega_{G,T/}^{pt}$$

$$\{U_{v_{Gr}}\} \longmapsto (T \to \text{colim}_{Sc(T)} U_{(-)})$$

$$(3.20) \quad \text{SUBDATAUNDERPLANG EQ}$$

Proof. This is a minor adaptation of the non-equivariant analogue Proposition 3.19. Since $\mathsf{Sc}(T)$ inherits a G action one can form the Grothendieck construction $G \ltimes \mathsf{Sc}(T)$ and by Remark 3.18 equivariant substitution data $\{U_{v_{Ge}}\}$ therefore induce functors $U_{(-)}:G$ × $Sc(T) \to \Omega$. It is then immediate that $colim_{Sc(T)} U_{(-)}$ inherits a G-action, provided it exists. The key observation is then that, since Sc(T) is now a disconnected poset, this colimit is to be interpreted as taken in the category Φ of forests rather than in Ω .

Remark 3.21. We will need to know that each of the maps

$$U_{v_{Ge}} \to U = \operatorname{colim}_{\mathsf{Sc}(T)} U_{(-)}$$

induced by the previous proof is a planar map of G-trees. This requires two observations: (i) the restrictions to each of the constituent non-equivariant trees $U_{ge^{\dagger} \leq ge}$ is planar by Proposition 3.19; (ii) the restriction to the roots of U_{vGe} is injective and order preserving since it matches the inclusion of the roots of T_{vGe} , and the map $T \to U$ is a planar map of G-trees.

Planar strings 3.3

The leaf-root and vertex functors will allow us to reinterpret our results concerning substi-

Definition 3.22. The category $\Omega_{G,n}$ of substitution n-strings is the category whose objects

$$T_0 \xrightarrow{f_1} T_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} T_n$$

where $T_i \in \Omega_G$ and the f_i are tall planar maps, and arrows are commutative diagrams

where each q_i is a quotient map.

PLANARSTRING SEC

TUTIONDATUMG DEF

UBSDATUMCONV REM

AUNDERPLANG PROP

IMPOPERATORS NOT

SUBSASPULL PROP

Notation 3.24. Since compositions of planar tall arrows are planar tall and identity arrows are planar tall it follows that $\Omega_{G,\bullet}$ forms a simplicial object in Cat, with faces given by composing and degeneracies by inserting identities.

Noting that $\Omega_{G,0} = \Omega_G^q$ and setting $\Omega_{G,-1} = \Sigma_G$, the leaf-root functor $\Omega_G^q \xrightarrow{\operatorname{lr}} \Sigma_G$ makes $\Omega_{G,\bullet}^q$ into an augmented simplicial object and, furthermore, the maps $s_{-1} \colon \Omega_{G,n}^q \to \Omega_{G,n+1}^q$ sending $T_0 \to T_1 \to \cdots \to T_n$ to $\operatorname{lr}(T_0) \to T_0 \to T_1 \to \cdots \to T_n$ equip it with extra degeneracies.

Notation 3.25. We extend the vertex functor to a functor $V_G: \Omega_{G,n+1} \to \mathsf{F} \wr \Omega_{G,n}$ by

$$V_G(T_0 \to T_1 \to \cdots \to T_n) = \left(V_G(T_0), (T_{1,v_{Ge}} \to \cdots \to T_{n,v_{Ge}})_{v_{Ge} \in V_G(T_0)}\right)$$

where we abuse notation by writing $T_{i,v_{Ge}}$ for $T_{i,(f_i \circ \cdots \circ f_1)(v_{Ge})}$.

The following is a reinterpretation of Proposition 3.19.

Proposition 3.26. The diagram

is a pullback diagram in Cat.

Proof. An object in the pullback $(3.27)_{0.00}$ $T_{0.00}$ $T_$ T.

The case of arrows is slightly more subtle. A quotient map $\pi:T\to T'$ induces a Gequivariant poset map $\pi_*: \mathsf{Sc}(T) \to \mathsf{Sc}(T')$ (or equivalently, a map of Grothendieck constructions $G \ltimes Sc(T) \to G \ltimes Sc(T')$) and diagrams as on the left below (where v_{Ge} ranges over $V_G(T)$ and $e' = \varphi(e)$ induce diagrams (of functors $Sc(T) \to \Omega$) as on the right below.

$$T_{v_{Ge}} \longrightarrow T_{1,v_{Ge}} \longrightarrow \cdots \longrightarrow T_{n,v_{Ge}} \qquad T_{(-)} \longrightarrow T_{1,(-)} \longrightarrow \cdots \longrightarrow T_{n,(-)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T'_{v_{Ge'}} \longrightarrow T'_{1,v_{Ge'}} \longrightarrow \cdots \longrightarrow T'_{n,v_{Ge'}} \qquad T'_{(-)} \circ \pi_* \longrightarrow T'_{1,(-)} \circ \pi_* \longrightarrow \cdots \longrightarrow T'_{n,(-)} \circ \pi_*$$

(3.28)

PTNARROWLOC EQ

Passing to colimits then gives the desired commutative diagram [3.23]. Moreover, diagrams of the form (3.23) clearly induce diagrams as in (3.28) and it is straightforward to check that these are inverse processes.

DSCOM REM

Remark 3.29. The diagrams (with back and lower slanted faces instances of (3.27))

commute whenever defined (i.e. $0 \le i \le n+1$).

Notation 3.30. We will let

$$V_{G,n}:\Omega_{G,n}\to\mathsf{F}\wr\Sigma_G$$

be inductively defined by $V_{G,n} = \sigma_0 \circ V_{G,n-1} \circ V_G$.

Remark 3.31. When n = 2, $V_{G,2}$ is thus the composite

$$\Omega_{G,2} \xrightarrow{V_G} \mathsf{F} \wr \Omega_{G,1} \xrightarrow{V_G} \mathsf{F} \wr \mathsf{F} \wr \Omega_{G,0} \xrightarrow{V_G} \mathsf{F} \wr \mathsf{F} \wr \mathsf{F} \wr \Sigma_G \xrightarrow{\sigma^0} \mathsf{F} \wr \mathsf{F} \wr \Sigma_G \xrightarrow{\sigma^0} \mathsf{F} \wr \Sigma_G$$

In light of Remarks 2.45 and 3.14, $V_{G,n}(T_0 \to \cdots \to T_n)$ is identified with the tuple

$$(T_{n,v_{Ge}})_{v_{Ge} \in V_G(T_n)},$$
 (3.32) VGNISO EQ

though this requires changing the total order in $V_G(T_n)$. Rather than using the order induced by T_n , one instead equips $V_G(T_n)$ with the order induced lexicographically from the maps $V_G(T_n) \to V_G(T_{n-1}) \to \cdots \to V_G(T_0)$, i.e., for $v, w \in V_G(T_n)$ the condition v < w is determined by the lowest i such that the images of $v, w \in V_G(T_i)$ are distinct.

3.4 A monad on spans

Definition 3.33. We will write $\mathsf{WSpan}^l(\mathcal{C}, \mathcal{D})$ (resp. $\mathsf{WSpan}^r(\mathcal{C}, \mathcal{D})$), which we call the category of *left weak spans* (resp. *right weak spans*), to denote the category with objects the spans

$$\mathcal{C} \xleftarrow{k} A \xrightarrow{F} \mathcal{D}$$

arrows the diagrams as on the left (resp. right) below

$$C \bigvee_{k_{2}}^{k_{1}} \bigvee_{f_{2}}^{F_{1}} \mathcal{D} \qquad C \bigvee_{k_{2}}^{k_{1}} \bigvee_{f_{2}}^{F_{1}} \mathcal{D} \qquad (3.34) \quad \boxed{\text{TWISTEDARROWRIGHT EQ}}$$

which we write as $(i, \varphi): (k_1, F_1) \to (k_2, F_2)$, and composition given in the obvious way.

Remark 3.35. There are natural isomorphisms

$$\mathsf{WSpan}^r(\mathcal{C}, \mathcal{D}) \simeq \mathsf{WSpan}^l(\mathcal{C}^{op}, \mathcal{D}^{op}). \tag{3.36}$$
 LRSPANISO EQ

Remark 3.37. The terms left/right are motivated by the existence of adjunctions (which are seen to be equivalent by using (3.36))

$$\mathsf{Lan} : \mathsf{WSpan}^l(\mathcal{C}, \mathcal{D}) \rightleftarrows \mathsf{Fun}(\mathcal{C}, \mathcal{D}) : \iota$$

$$\iota$$
: Fun $(\mathcal{C}, \mathcal{D}) \rightleftarrows \mathsf{WSpan}^r(\mathcal{C}, \mathcal{D})^{op}$: Ran

where the functors ι denote the obvious inclusions (note the need for the $(-)^{op}$ in the second adjunction) and Lan/Ran denote the left/right Kan extension functors.

We will mainly be interested in the span categories $\mathsf{WSpan}^l(\Sigma_G^{op}, \mathcal{V}) \simeq \mathsf{WSpan}^r(\Sigma_G, \mathcal{V}^{op})$.

Notation 3.38. Given a functor $\pi: A \to \Sigma_G$, we let $\Omega_{G,n}^{(A)}$ denote the pullback (in Cat)

$$\Omega_{G,n}^{(A)} \xrightarrow{V_{G,n}^{(A)}} \operatorname{F} \wr A$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_{G,n} \xrightarrow{V_{G,n}} \operatorname{F} \wr \Sigma_{G}$$

Explicitly, the objects of $\Omega_{G,n}^{(A)}$ are pairs

$$(T_0 \to \cdots \to T_n, (a_e)_{e \in V_G(T_n)})$$
 (3.39) OMEGAGNA EQ

such that $\pi(a_{e^{\uparrow} \leq e}) = T_{n,e^{\uparrow} \leq e}$.

RANLANADJ REM

14

Remark 3.40. Our primary interest here will be in the $\Omega_{G,0}^{(A)}$ construction. Importantly, the composite maps $\Omega_{G,0}^{(A)} \to \Omega_{G,0} \to \Sigma_G$ allow us to iterate the $\Omega_{G,0}^{(-)}$ construction. In practice, the role of higher strings $\Omega_{G,n}^{(A)}$ will then be to provide more convenient models for iterated

Indeed, the content of Proposition 8.26 is then that there are compatible identifications $\Omega_{G,0}^{(\Omega_{G,n})} \cong \Omega_{G,n+1}$ which identify $V_G^{(\Omega_{G,n})}$ with V_G .

Moreover, since all squares in the A:

Moreover, since all squares in the diagram

are pullback squares (the top center square is so by induction, the top right square by direct verification, the total top square by definition of $\Omega_{G,n+1}^{(A)}$ and the bottom left square by

Proposition SUBSASPULL PROP 3.26), we likewise obtain identifications $\Omega_G^{(\Omega_{G,n}^{(A)})} \simeq \Omega_{G,n+1}^{(A)}$.

Proposition 3.41. For any $A \to \Sigma_G$ there are functors $d_0^{(A)}: \Omega_{G,1}^{(A)} \to \Omega_G^{(A)}$ and natural isomorphisms

both natural in $A \to \Sigma$. Here naturality of $\pi^{(-)}$ means that for a functor $H: A \to B$ with corresponding diagram

one has an equality

$$(\mathsf{F} \wr H)\pi^{(A)} = \pi^{(B)}\Omega^{(H)}_{G,1}$$

(i.e. the two natural isomorphisms between the two distinct functors $\Omega_{G,1}^{(A)} \Rightarrow \mathsf{F} \wr B$ coincide).

Proof. Informally, using the object description in (3.39), d_0^{AA} is simply given by the formula

$$d_0^{(A)}\left(T_0 \to T_1, (a_{e^{\uparrow} \le e})_{(e^{\uparrow} \le e) \in V_G(T_1)}\right) = \left(T_1, (a_{e^{\uparrow} \le e})_{(e^{\uparrow} \le e) \in V_G(T_1)}\right), \tag{3.44}$$

though one must note that since in (3.39) the order in $V_G(T_1)$ is induced lexicographically from the string, the two orders for $V_G(T_1)$ in each side of (3.44) do not coincide.

It now follows that the composites $\sigma^0 \circ (\mathsf{F} \wr V_G^{(A)}) \circ V_G^{(A)}$ and $V_G^{(A)} \circ d_0^{(A)}$ differ by the natural automorphism $\pi^{(A)}$ given by the tuple permutations interchanging the two orders in $V_G^{(A)}$ for and $T_G^{(A)}$ in $V_G(T_1)$ for each $T_0 \to T_{1}$ PICUBOIDAB EQ The commutativity of (3.43) is clear.

Definition 3.45. Suppose $\mathcal V$ has finite products.

We define an endofunctor N of Wspan^r $(\Sigma_G, \mathcal{V}^{op})$ by letting $N(\Sigma_G \leftarrow A \rightarrow \mathcal{V}^{op})$ be the span $\Sigma_G \leftarrow \Omega_G^{(A)} \rightarrow \mathcal{V}^{op}$ given composition along the diagram

and defined on maps of spans in the obvious way.

One has a multiplication $\mu: N \circ N \Rightarrow N$ given by the natural isomorphisms

MULTDEFSPAN EQ (3.46)

where α is an associativity isomorphism for the product Π . We we note that naturality of μ follows from the commutativity of (3.43).

Lastly, there is a unit $\eta: id \Rightarrow N$ given by the strictly commutative diagrams

MONSPAN PROP

Proposition 3.48. (N, μ, η) form a monad on Wspan^r $(\Sigma_G, \mathcal{V}^{op})$.

Proof. The natural transformation component of $\mu \circ (N\mu)$ is given by the composite diagram

$$\begin{array}{c} \Omega_{G,2}^{(A)} \to \mathsf{F} \wr \Omega_{G,1}^{(A)} \to \mathsf{F}^{\wr 2} \wr \Omega_{G}^{(A)} \to \mathsf{F}^{\wr 3} \wr A \to \mathsf{F}^{\wr 3} \wr \mathcal{V}^{op} \to \mathsf{F}^{\wr 2} \wr \mathcal{V}^{op} \to \mathsf{F} \wr \mathcal{V}^{op} \to \mathcal{V}^{op} \\ d_{1}^{(A)} \downarrow \qquad \qquad \qquad \downarrow \sigma^{1} \qquad \downarrow \sigma^{1} \qquad \qquad \downarrow \sigma^{1} \qquad$$

ASSOCSPAN1 EQ

whereas the natural transformation component of $\mu \circ (\mu N)$ is given by

$$\begin{array}{c} \Omega_{G,2}^{(A)} \to \mathsf{F} \wr \Omega_{G,1}^{(A)} \to \mathsf{F}^{\wr 2} \wr \Omega_{G}^{(A)} \to \mathsf{F}^{\wr 3} \wr A \to \mathsf{F}^{\wr 3} \wr \mathcal{V}^{op} \to \mathsf{F}^{\wr 2} \wr \mathcal{V}^{op} \to \mathsf{F}^{\wr 2} \mathcal{V}^{op} \to \mathcal{V}^{op} \\ \downarrow^{d_{0}^{(A)}} & \downarrow^{\sigma^{0}} & \downarrow^{\sigma^{0}} & \downarrow^{\sigma^{0}} & \downarrow^{\sigma^{0}} \\ \Omega_{G,1}^{(A)} & \to^{\mathsf{F}} \wr \Omega_{G}^{(A)} \to \mathsf{F}^{\wr 2} \wr A \to \mathsf{F}^{\wr 2} \wr \mathcal{V}^{op} \to \mathsf{F} \wr \mathcal{V}^{op} \\ \downarrow^{d_{0}^{(A)}} & \downarrow^{\sigma^{0}} & \downarrow^{\sigma^{0}} & \downarrow^{\sigma^{0}} \\ \Omega_{G}^{(A)} & \to^{\mathsf{F}} \wr A \to \mathsf{F} \wr \mathcal{V}^{op} & \to^{\mathsf{F}} \mathcal{V}^{op} \end{array}$$

(3.50)That the rightmost sections of (3.49) and (3.50) coincide follows from compatibility of ASSOCSPAN2 EQ

the associativity isomorphisms for Π^{op} .

For the leftmost sections, note first that, in either diagram, the top right and bottom left paths $\Omega_{G,2}^{(A)} \to \mathsf{F} \wr A$ differ only by the induced order on $V_G(T_2)$ for each string $T_0 \to T_1 \to T_2$. More explicitly, the top right paths use the order induced lexicographically from the string $T_0 \rightarrow T_1 \rightarrow T_2$ while the bottom left paths use the order induced exclusively by T_2 . The two left sections then coincide since are both given by the permutation interchanging these orders, the only difference being that the intermediate stage of (3.49) uses the order induced lexicographically from $T_0 \to T_2$ while (3.50) uses the order induced lexicographically from

As for unit conditions, $\mu \circ (N\eta)$ is represented by

while $\mu \circ (\eta N)$ is represented by

It is straightforward to check that the composites of the left and right sections of both (3.51) and (3.52) are strictly commutative diagrams, and thus that (3.51) and (3.52) coincide. \Box

HERE

McL

Pe16b

References

[1] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[2] L. Equivariant dendroidal Pereira. Available at: http://www.faculty.virginia.edu/luisalex/, 2016.

We12

[3] I. Weiss. Broad posets, trees, and the dendroidal category. Available at: https://arxiv.org/abs/1201.3987, 2012.