B0911005Y-01: Introduction to Theory of Computation

2023 Spring

Homework 5 — April 28

Lecturer: Mingji Xia Completed by: 吉骏雄

第 5.1 次作业: 4.24, 补充填空题, 5.4, 5.11, 5.11 中的 0^*1^* 可以替换成具有什么性质的语言?

4.24 设 C 是一个语言。证明 C 是图灵可识别的,当且仅当存在一个可判定语言 D,使得 $C = \{x \mid \exists y \ (\langle x,y \rangle \in D)\}$ 。

证明 仅当: 如果 C 是可识别的,那么一定存在一个 M_C 识别 C,并且存在图灵可识别语言 D 如下: $\langle x,y \rangle \in D$ (其中考虑 y 对应的二进制编码,将之视作二进制数处理),当且仅当 $x \in C$ 并且 M_C 仅用至多 $\langle y \rangle$ 步就能进入停机状态.显然, M_C 运行 $\langle y \rangle$ 步以上后,便不可能再接收 x,直接将其拒绝;因此构造能够模拟 M_C 运行的图灵机 M_D 来接收 D,它对于任何输入都是会停机的:若没有达到 $\langle y \rangle$ 步,则继续,若达到,则停机.这样构造的 M_D ,对于 M_C 接收的任何一个元素 x,由于图灵机计算步骤的有限性,一定存在计算步骤能使 M_C 在输入 x 后的计算在有限步内停机,因此存在符合定义的 y.

当: 如果存在这样的 D, 可以构造一个 M_D 判定之. 我们构造 M_C 去识别语言 C, 方式是: 对输入 x, 令 M_C 按字符串顺序遍历 $\langle y \rangle$ 的所有可能性, 每次以 $\langle x,y \rangle$ 作为输入, 模拟 M_D 的运行. 若 M_D 接受, 则接受; 若拒绝, 则继续尝试下一个 y. 这样构造的 M_C , 对于任意 $\langle x,y \rangle \in D$ 中的 x, 均能找到 y 使之接收; 但对于其他输入 x, 均不能停机. 这符合图灵可识别的定义, 且 M_C 识别的语言是 C.

两个方向均证毕, 得证.

- 填(空)题: (仿照 4.24) 语言 C 是补图灵可识别的,当且仅当(空)一个可判定语言 D,使得 $C = \{x \mid \}$ 。 解 语言 C 是补图灵可识别的,当且仅当存在一个可判定语言 D,使得 $C = \{x \mid \forall y (\langle x, y \rangle \in D')\}$ (D' 是 D 的补)。
- **5.4** 如果 $A \leq_m B$ 且 B 是一个正则语言,这是否蕴涵着 A 也是一个正则语言?为什么?

解 不是. 因为映射归约的过程是可计算函数, 可计算函数是图灵可判定的, 未必能够满足正则语言的要求. 其实 A 是可判定语言即可.

举例:语言 $A = \{x \mid x \to 0,1 \text{ 数量相同}\}$ 是一个可判定语言,但不是正则语言。 $B = \{1\}$ 是一个正则语言。由于 A 的可判定性,存在一个函数 f(x),其值在 $x \in A$ 时为 1,否则为 0. 因此 $x \in A \iff f(x) \in B$,满足映射归约.

5.11 证明当且仅当 $A \leq_m 0^*1^*$ 时,A 是可判定的。

证明 当: 0*1* 是可判定的, 根据定理 5.16 (如果 $A \leq_m B$ 且 B 是可判定的, 那么 A 也是可判定的), 显然 A 是可判定的。

仅当: 考虑一个图灵可判定的 A,那么对应存在一个可计算函数 f,使任意字符串 x 能够最终进入接受或者拒绝状态, 如果 A 接受 x, f(x) = 01,否则 f(x) = 10. 因此 $x \in A \iff f(x) \in B$,满足映射归约.

5.11 附加: 5.11 中的 0*1* 可以替换成具有什么性质的语言?

证明 所有非平凡的可判定语言均可 (即除去 Σ^* 与 \varnothing 以外的可判定语言). \square 第 5.2 次作业: 2 道题

- 1 考虑下面的判定问题:"对于任意给定的图灵机 M, 判定 M 是否接受字符串 010?"
 - (a) 将此判定问题写成为一个语言 L_{010} , 使得图灵机 M 接受字符串 010 当且仅当 $\langle M \rangle \in L_{010}$ 。
- (b) 通过构造从 A_{TM} 到 L_{010} 的归约,用反证法证明 L_{010} 是不可判定的。
- (c) 使用 Rice 定理证明 L_{010} 是不可判定的

证明 构造语言 $L_{010} = \{\langle M \rangle \mid M$ 是图灵机且 $M(010) = 1\}$.

方法一:

我们假设 L_{010} 是可判定的, 那么可以给出一个从 A_{TM} 到 L_{010} 的归约, 进而说明 A_{TM} 的可判定性. 构造能够判定语言 A_{TM} 的图灵机 S 的方法如下:

S = "对于输入 $\langle M, \omega \rangle$, 其中 M 是图灵机, ω 是字符串:

- 1. 构造一个图灵机 M_{ω} , 无论给予什么样的输入, 它都能根据输入 $\langle M \rangle$ 来判定图灵机 M 是否接受字符串 ω , 选择自己是否接受输入字符串; 即如果 $M(\omega) = 1$, 则 $M_{\omega} \equiv 1$; 否则 $M_{\omega} \equiv 0$.
- 2. 模拟在输入 $\langle M_{\omega} \rangle$ 上运行 L_{010}
- 3. 如果 L_{010} 接受,则接受;如果 L_{010} 拒绝,则拒绝"

这样, A_{TM} 就是可判定的. 这与它实际上不可判定的事实矛盾, 因此假设不成立, L_{010} 是不可判定的. 方法二: 考虑 $\mathcal{P} = \{A \mid A$ 是语言, 且 $010 \in A\}$, 则 $L_{010} = \{\langle M \rangle \mid M$ 是图灵机且 $L(M) \in \mathcal{P}\}$. 这样根据 Rice 定理, 满足如上性质 \mathcal{P} 的图灵机编码集合 L_{010} 是不可判定的.

- **2** 令 $ALL_{TM} = \{\langle M \rangle \mid M$ 是图灵机且 $L(M) = \Sigma^* \}$.
 - (a) 通过构造从 A_{TM} 到 ALL_{TM} 的归约,用反证法证明 ALL_{TM} 是不可判定的.
 - (b) 使用 Rice 定理证明 ALL_{TM} 是不可判定的.
 - (c) 通过构造从 ALL_{TM} 到 EQ_{TM} 的归约,用反证法证明 EQ_{TM} 是不可判定的. (EQ_{TM} 的定义见教材 P139)

证明

- (a) 我们假设 ALL_{TM} 是可判定的, 那么可以给出一个从 A_{TM} 到 ALL_{TM} 的归约, 进而说明 A_{TM} 的可判定性. 构造能够判定语言 A_{TM} 的图灵机 S 的方法如下:
 - S = "对于输入 $\langle M, \omega \rangle$, 其中 M 是图灵机, ω 是字符串:
 - (a) 构造一个图灵机 M_{ω} , 无论给予什么样的输入, 它都能根据输入 $\langle M \rangle$ 来判定图灵机 M 是否接受字符串 ω , 选择自己是否接受输入字符串; 即如果 $M(\omega)=1$, 则 $M_{\omega}\equiv 1$; 否则 $M_{\omega}\equiv 0$.
 - (b) 模拟在输入 $\langle M_{\omega} \rangle$ 上运行 ALL_{TM}

(c) 如果 ALL_{TM} 接受,则接受;如果 ALL_{TM} 拒绝,则拒绝"

这样, A_{TM} 就是可判定的. 这与它实际上不可判定的事实矛盾, 因此假设不成立, ALL_{TM} 是不可判定的.

- (b) 考虑 $\mathcal{P} = \{A \mid A$ 是语言,且 $L(A) = \Sigma^*\} = \{\Sigma^*\}$,则 $ALL_{TM} = \{\langle M \rangle \mid M$ 是图灵机且 $L(M) \in \mathcal{P}\}$. 这样根据 Rice 定理,满足如上性质 \mathcal{P} 的图灵机编码集合 ALL_{TM} 是不可判定的.
- (c) 我们假设 EQ_{TM} 是可判定的, 那么可以给出一个从 ALL_{TM} 到 EQ_{TM} 的归约, 进而说明 ALL_{TM} 的可判定性. 构造能够判定语言 ALL_{TM} 的图灵机 S 的方法如下:

 $S = \text{"对于输入} \langle M \rangle$, 其中 M 是图灵机:

- (a) 构造一个图灵机 M_{ALL} , 满足 $L(M_{ALL}) = \Sigma^*$. 由于 Σ^* 是正则语言, 所以这件事情很容易做到.
- (b) 模拟在输入 $\langle M, M_{ALL} \rangle$ 上运行 EQ_{TM}
- (c) 如果 EQ_{TM} 接受,则接受;如果 EQ_{TM} 拒绝,则拒绝"

这样, ALL_{TM} 就是可判定的. 这与它实际上不可判定的事实矛盾, 因此假设不成立, EQ_{TM} 是不可判定的.

第 5.3 次作业: 5.1, 5.2, 5.10, 6.11 选做题: 5.9

5.1 证明 EQ_{CFG} 是不可判定的。

解 我们假设 EQ_{CFG} 是可判定的, 那么可以给出一个从 ALL_{CFG} 到 EQ_{CFG} 的归约, 进而说明 ALL_{CFG} 的可判定性. 构造能够判定语言 ALL_{CFG} 的图灵机 S 的方法如下:

S ="对于输入 $\langle M \rangle$, 其中 $M \in PDA$:

- 1. 构造一个 PDA M_{ALL} , 满足 $L(M_{ALL}) = \Sigma^*$. 由于 Σ^* 是正则语言, 所以这件事情很容易做到.
- 2. 模拟在输入 $\langle M, M_{ALL} \rangle$ 上运行 EQ_{CFG}
- 3. 如果 EQ_{CFG} 接受,则接受;如果 EQ_{CFG} 拒绝,则拒绝"

这样, ALL_{CFG} 就是可判定的. 这与它实际上不可判定的事实矛盾, 因此假设不成立, EQ_{CFG} 是不可判定的.

5.2 证明 EQ_{CFG} 是补图灵可识别的。

解 补注:此问证明有点问题

 EQ_{CFG} 的补集是图灵可识别的. 根据定义, $\overline{EQ_{CFG}}=\{\langle M_1,M_2\rangle\mid M_1,M_2$ 均为 CFG 且 $L(M_1)\neq L(M_2)\}$. 只需要构造能够判定 $\overline{EQ_{CFG}}$ 的图灵机 S 如下:

S = "对于输入 $\langle M_1, M_2 \rangle$, 其中 M_1, M_2 均为 CFG:

- 1. 按照标准字符串顺序遍历所有字符串, 依次作为输入; 记某一次取到的字符串为 ω .
- 2. 分别模拟在输入 $\langle M_1, \omega \rangle$, $\langle M_2, \omega \rangle$ 上运行 A_{CFG} .

3. 如果 A_{CFG} 均接受或均拒绝, 则重复步骤 1, 继续考虑下一个字符串; 如果 A_{CFG} 对其中一个接受, 另一个拒绝, 则拒绝输入 $\langle M_1, M_2 \rangle$ "

由于 A_{CFG} 是可判定的, 所以 S 是可识别的 (因为对于所有 $x \in \overline{EQ_{CFG}}$, 一定会找到一个字符串能让 S 停机; 但是对任何 $x \notin \overline{EQ_{CFG}}$, S 都不能停机, 因为它会一直接受下去).

5.10 证明当且仅当 $A \leq_m A_{TM}$ 时,A 是图灵可识别的。

证明 当: (定理 5.22 的证明即如此) 存在可计算函数 f, 使得 $\forall \omega \in \Sigma^*$ ($\omega \in A \Leftrightarrow f(\omega) \in A_{TM}$). 根据 定义构造出图灵机 S:

S="对于输入 ω 为字符串:

- 1. 模拟某可判定图灵机, 根据输入 ω 得到输出 $f(\omega)$.
- 2. 模拟在输入 $f(\omega)$ 上运行 A_{TM} .
- 3. 如果 A_{TM} 接受,则接受;如果 A_{TM} 拒绝,则拒绝;如果 A_{TM} 不停机,会一直计算下去.

"

已知 A_{TM} 是图灵可识别的, 因此 $\forall x \in A$, 其和可计算函数 f 的计算一定会停机, 因此一定能停机并接受. 不过也有可能不停机. 总之 A 是图灵可识别的.

仅当: 由于 A 是图灵可识别的, 存在一个图灵机 N 能够识别语言 A. 再构造一个图灵机 S 如下: S="对于输入 ω 为字符串:

- 1. 模拟某可判定图灵机, 根据输入 ω 得到输出 $\langle T, \omega \rangle$.
- 2. 模拟在输入 $\langle T, \omega \rangle$ 上运行 A_{TM} .
- 3. 如果 A_{TM} 接受, 则接受; 如果 A_{TM} 拒绝, 则拒绝; 如果 A_{TM} 不停机, 会一直计算下去.

,,

这样 S 接受字符串 ω , 当且仅当 $\omega \in A$. 故可计算函数 $f(\omega) = \langle T, \omega \rangle$ 能调用 A_{TM} , 证明 $A \leq_m A_{TM}$.

6.11 证明 \overline{EQ}_{TM} 可由一个带 A_{TM} 的谕示的图灵机识别。

证明 补注: 此问证明有点问题

构造图灵机 S 如下:

S = "对于输入 $\langle M_1, M_2 \rangle$, 其中 M_1, M_2 均为图灵机:

- 1. 按照标准字符串顺序 (如若在 Σ^* 上即 0,1,00,01,10,11,000,001,...) 遍历所有字符串, 依次作为输入; 记某一次取到的字符串为 ω .
- 2. 向 A_{TM} 询问两个谕示: 分别以 $\langle M_1, \omega \rangle$ 和 $\langle M_2, \omega \rangle$ 为输入, A_{TM} 会返回何值, 即 M_1, M_2 分别是否接 受字符串 ω .
- 3. 如果 A_{TM} 均接受或均拒绝, 即 M_1, M_2 均接受 ω , 则重复步骤 1, 继续考虑下一个字符串; 如果 A_{TM} 对其中一个接受, 另一个拒绝, 则拒绝输入 $\langle M_1, M_2 \rangle$ "

,,

由于 "某个字符串是否在 A_{TM} 中" 这件事是谕示给出的, 所以 S 是可识别的 (因为对于所有 $x\in \overline{EQ}_{TM}$, 一定会找到一个字符串能让 S 停机; 但是对任何 $x\notin \overline{EQ}_{CFG}$, S 都不能停机, 因为它会一直接受下去). \qed