# Matching Reviews to Objects using a Language Model

Nilesh Dalvi, Ravi Kumar, Bo Pang, Andrew Tomkins Yahoo! Research ACL and AFNLP, 2009

> 15 April, 2014 Jaehwan Lee

# Outline

- Introduction
- Related Work
- Model and Method
- Data
- Evaluation
- Conclusions



- the Search Engine would like
  - to offer a high quality result set for even obscure restaurants
  - to enable advanced applications and recommendation
- To solve them, It faces two high-level challenges
  - identify the restaurant review pages on the Web
  - identify the restaurant that is being reviewed
- Notice
  - restaurant reviews are running example
  - "the techniques are general"



- the Search Engine would like
  - to offer a high quality result set for even obscure restaurants
  - to enable advanced applications and recommendation
- To solve them, It faces two high-level challenges
  - identify the restaurant review pages on the Web
  - identify the restaurant that is being reviewed
- Notice
  - restaurant reviews are running example
  - "the techniques are general"



# Two Settings of Related Flavor

- Entity Matching
  - to find the correspondence between two structured objects
- Information Retrieval(IR)
  - to match unstructured short text against unstructured text



#### Classical IR Methods Doesn't Fit

- Example of "Food"
  - "food" is rare as a restaurant name
  - thus, it will get a very high IDF score
  - AND hence will likely be the top match for all reviews containing the word "food"
- UNLIKE in traditional IR
  - a query (i.e. review) is long and a document (i.e. restaurant) is short







#### **Our** Their Contributions

- The intuition behind their model is simple and natural
  - When a review is written about an object,
  - each word in the review is drawn either from a description of the object or from a generic review language that is independent of the object





## Related Work

- Opinion topic identification
  - Some work on fine-grained opinion extraction from reviews
  - focused on identifying product features of the object under review, rather than object itself
- Language modeling
  - to postulate a model for each document
  - to select the document that is most likely to have generated for a given query
- Entity matching
  - consider pairwise attribute similarities between entities
  - exploit the relationships that exist between entities



### **Model and Method**

- r : a review
- R: a collection of reviews
- e: an object, has a set of attributes
- E: a set of objects
- text(e): the union of the textual content of all its attributes
- $r_e = r \cap \text{text}(e)$
- P(w): the probability the word w is chosen according some object-independent distribution
- $P_e(w)$ : the probability the word w is chosen according some object-dependent distribution



$$\Pr[r \mid e] = Z(r) \prod_{w \in r} \Pr[w \mid e]$$

$$= Z(r) \prod_{w \in r} ((1 - \alpha)P(w) + \alpha P_e(w)), (1)$$

- It represent the probability that a review r is a review about object e when e exists in r
- alpha is a parameter (0 \langle alpha \langle 1)
- Modeling
  - $-P_e(w)$  is object-dependent
  - -P(w) is object-independent (generic review feature)



$$\Pr[r \mid e] = Z(r) \prod_{w \in r} \Pr[w \mid e]$$

$$= Z(r) \prod_{w \in r} ((1 - \alpha)P(w) + \alpha P_e(w)), (1)$$

It can be zero, if a word w is not in text(e)
Thus, have to modify the equation as following

$$\Pr[r \mid e] = Z(r) \prod_{w \in r \setminus r_e} (1 - \alpha) P(w) \cdot \prod_{w \in r_e} ((1 - \alpha) P(w) + \alpha P_e(w))$$

$$= Z(r) \prod_{w \in r} (1 - \alpha) P(w) \cdot \prod_{w \in r_e} \left( 1 + \frac{\alpha}{1 - \alpha} \frac{P_e(w)}{P(w)} \right). \tag{2}$$



$$e^* = \arg\max_{e} \Pr[e \mid r] = \arg\max_{e} \frac{\Pr[e]}{\Pr[r]} \cdot \Pr[r \mid e].$$

By assuming a uniform distribution for Pr[e], we get

$$e^* = \arg\max_{e} \Pr[r \mid e],$$

$$e^* = \arg\max_e \log \Pr[r \mid e].$$

Since  $Z(r) \prod_{w \in r} ((1-\alpha)P(w))$  is independent of e, using (2), we have

$$e^* = \arg\max_{e} \sum_{w \in r_e} \log\left(1 + \frac{\alpha}{1 - \alpha} \frac{P_e(w)}{P(w)}\right).$$
(3)



$$e^* = \arg\max_{e} \Pr[e \mid r] = \arg\max_{e} \frac{\Pr[e]}{\Pr[r]} \cdot \Pr[r \mid e].$$

By assuming a uniform distribution for Pr[e], we get

$$e^* = \arg\max_{e} \Pr[r \mid e],$$

$$e^* = \arg\max_e \log \Pr[r \mid e].$$

Since  $Z(r) \prod_{w \in r} ((1-\alpha)P(w))$  is independent of e, using (2), we have

How?

$$e^* = \arg\max_{e} \sum_{w \in r_e} \log\left(1 + \frac{\alpha}{1 - \alpha} \frac{P_e(w)}{P(w)}\right). \tag{3}$$



Object-independent factor

$$P(w) = \frac{c(w, \mathcal{R}^{(g)}) + 1}{\sum_{w'} c(w', \mathcal{R}^{(g)}) + |V|},$$

- By treating the set of processed reviews where for each reviewobject pair (r, e), words in text€ are remove from r as an approximation of  $R^{(g)}$
- Then, we can compute P(w) in the aforementioned manner
- Object-dependent factor

(say, 
$$g(w) = \log(1/f_w)$$
), we let 
$$P_e(w) = \frac{g(w)}{\sum_{w' \in \text{text}(e)} g(w')}.$$

- By using the frequency  $f_w$  of the word w in R or in  $\{\text{text}(e) \mid e \in \mathcal{E}\}$ .



#### **Model and Method**

## RLM, TFIDF and TFIDF+

Generic equation

$$e^* = \arg\max_e \sum_{w \in r_e} \log f(w)$$

• for RLM, f(w) goes

$$f(w) = f_R(w) = 1 + \frac{\alpha}{1 - \alpha} \frac{P_e(w)}{P(w)}$$

• for TFIDF and TFIDF+, f(w) goes

$$f(w) = f_B(w) = \frac{1}{Q(w)}$$

$$Q(w) = \frac{\mathrm{df}(w)}{N}$$





### Data

- 299,762 reviews
  - each aligned with one of a set of 12,408 unique restaurants hosted on Yelp (yelp.com)
  - no more than 40 reviews per each restaurants
- 681,320 restaurants from Yahoo! Local database
- Task
  - to match a given Yelp review, using ONLY its free-form textual content



## The Final Aligned Dataset

- R
  - 24,910 Yelp reviews covering 6,010 restaurants
- R'
  - to estimate the models
  - reviews filtered out because of lack of identifying information were added
  - 205,447 reviews
- R<sub>test</sub>
  - to evaluate RLM
  - 11,217 reviews
- There are no overlapping restaurants between them



### **Evaluation**

- Unlike a standard IR task
  - not interested in retrieving multiple relevant objects
  - each review in dataset has only one single correct match from  $\boldsymbol{\mathcal{E}}$
- Macro vs. micro average
  - Macro average
    - first, compute the average for reviews about the same restaurant
    - and report the average over all restaurants
  - micro average
    - take the average accuracy over all reviews
- Accuracy @ k
  - consider a review is correctly matched if one of the top-k objects returned is the correct match



#### **Evaluation**

### **Main Result**

| Method             | Micro-avg. | Macro-avg. |
|--------------------|------------|------------|
| RLM                | 0.647      | 0.576      |
| TFIDF <sup>+</sup> | 0.518      | 0.481      |
| TFIDF              | 0.314      | 0.317      |

(a) Main comparison.

| Method      | Micro-avg. | Macro-avg. |
|-------------|------------|------------|
| RLM-UNIFORM | 0.634      | 0.562      |
| RLM-UNCUT   | 0.627      | 0.546      |
| RLM-DECAP   | 0.640      | 0.573      |

(b) RLM variants.

| Method                  | Micro-avg. | Macro-avg. |
|-------------------------|------------|------------|
| TFIDF <sup>+</sup> -N   | 0.586      | 0.523      |
| TFIDF <sup>+</sup> -D   | 0.593      | 0.533      |
| TFIDF <sup>+</sup> -O   | 0.522      | 0.488      |
| TFIDF <sup>+</sup> -ND  | 0.628      | 0.549      |
| TFIDF <sup>+</sup> -NDO | 0.647      | 0.576      |

(c) TFIDF<sup>+</sup> variants.

Table 1: Average accuracy of the top-1 prediction for various techniques. Micro-average computed over 11,217 reviews in  $\mathcal{R}_{\mathrm{test}}$ ; macro-average computed over 2,810 unique restaurants in  $\mathcal{R}_{\mathrm{test}}$ .



## **Main Result**



Figure 1: Precision–recall curve (of top one prediction): RLM vs. TFIDF<sup>+</sup> baseline.



Figure 2: Accuracy@k (percentage of reviews whose correct match is returned in one of its top-k predictions): RLM vs. TFIDF<sup>+</sup> baseline.



#### **Evaluation**

#### **Main Result**



Figure 3: Average accuracy of the top-1 prediction for reviews with different length (on test set): RLM vs. TFIDF<sup>+</sup> baseline.

Longer reviews might be more difficult to match since they may include more proper nouns such as dish names and related restaurants, and yield a longer list of highly competitive candidate objects.

#### **Evaluation**

#### **Main Result**

| Method             | Micro-avg. | Macro-avg. |
|--------------------|------------|------------|
| RLM                | 0.647      | 0.576      |
| TFIDF <sup>+</sup> | 0.518      | 0.481      |
| TFIDF              | 0.314      | 0.317      |

(a) Main comparison.

| Method      | Micro-avg. | Macro-avg. |
|-------------|------------|------------|
| RLM-UNIFORM | 0.634      | 0.562      |
| RLM-UNCUT   | 0.627      | 0.546      |
| RLM-DECAP   | 0.640      | 0.573      |

(b) RLM variants.

| Method                  | Micro-avg. | Macro-avg. |
|-------------------------|------------|------------|
| TFIDF <sup>+</sup> -N   | 0.586      | 0.523      |
| TFIDF <sup>+</sup> -D   | 0.593      | 0.533      |
| TFIDF <sup>+</sup> -O   | 0.522      | 0.488      |
| TFIDF <sup>+</sup> -ND  | 0.628      | 0.549      |
| TFIDF <sup>+</sup> -NDO | 0.647      | 0.576      |

(c) TFIDF<sup>+</sup> variants.

Table 1: Average accuracy of the top-1 prediction for various techniques. Micro-average computed over 11,217 reviews in  $\mathcal{R}_{\text{test}}$ ; macro-average computed over 2,810 unique restaurants in  $\mathcal{R}_{\text{test}}$ .

- Choices for RLM
  - RLM-Uniform
  - RLM-Uncut
  - RLM-Decap
- Revisiting TFIDF+
  - Object Length Normalization
  - Dampening
  - Removing mentions of objects
- Using term counts
  - each of the other modeling decisions incorporated in RLM is important



## **Conclusions**

- The model provides us a principled way to match reviews to objects
- Their techniques vastly outperforms standard TF-IDF based techniques

