1 40	孔率 论.
1. IIIV.	语言是稳态的,可遍历的随机过程.
	× 稳态的:即随机过程的 nnn.率分布只与时间长度 相关
	$f(x_1, \dots, x_n, t_1, \dots, t_n) = f(x_1, \dots, x_n, t_1 + \Delta t, \dots, t_n + \Delta t).$
	语言在短时间内数学特征应保持相同.
	×可遍历的:即单个随机变量在长时间下可以遍历其所有可能取值
	一个人长时间不断书写语言 🖨 为人短时间书写语言
2. 齐太	ė A
). T. X	将大规模语言数据统计词频,并按从高到低排序,发某个词以的词频为f、
	排在第一位。四)fxr—>C,C为一个常数。
	f \
	· 大尾词。
3. 信息	ė, it.
	$+$ 大角: $H(x) = -\frac{T}{x \in X}$ p(x) log_p(x) ologo = 0
	描述性机变量不确定性
	*联合熵: H(x,y)=-\frac{\subset}{xex} \subsetex plx,y) log_2 p(x,y).
	一对随机变量平均所需要的信息量
	\star 条件 火商: $H(Y X) = \sum_{x \in X} p(x) H(Y X=x)$
	= xex plx) [- yer ply x). = xex yer plxy) log, ply x).
	$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$
	$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \left[\log_2 p(y x) + \log_2 p(x) \right]$

= H(XIX) - xex yex b(x) loft b(x)
$=H(X X) - \sum_{x \in X} b(x) a ^{3}b(x)$
= H (Y X)+ H (X).
* 相对 y商 (k-) 散度): p(x) 为两个概率分布.
$D(p q) = \sum_{x \in X} p(x) \log \frac{P(x)}{q(x)} \qquad 0 \log \frac{Q}{Q} = 0 p\log \frac{P}{Q} = \infty$
用于衡量两个随机办布的差距。
D(plQ)
q(x)
* 左叉: b : X~pix). q(x) 是 p(x) 的 近似, D) 友义熵定义为·
H(X, q) = D(p q) + H(X)
$= \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} - \sum_{x \in X} p(x) \log p(x).$
$\frac{1-\sum_{x\in X}p(x)\log p(x)}{\sum_{x\in X}p(x)\log p(x)}$
交叉熵 ⇔ 相对熵.[由于plx)为真实数据分布. 不会改变,故两者只是数值上不同)
语言 2=(X)~ptx). 理论模型 q. 友叉焰定义为:
$H(1,q) = -\lim_{x \to \infty} \frac{1}{n} \sum_{x \in P} p(x_i^n) \log q(x_i^n)$
x^= x,, x, 为语言上的样本
若
$H(1,q) = -\lim_{n \to \infty} \frac{1}{n} \log q(x_n^n). \qquad (p(x_n) = \frac{1}{n})$
米困惑度: Xî-x···xn 是 语言L 的 样本. 助 L 的 困惑度:
$PP_{q} = 2^{H(L,q)} = 2^{-\frac{1}{n}\log q(x_{1}^{n})} = [Q(x_{1}^{n})]^{-\frac{1}{n}}$
樂量 语言模型的妇坏
女互信息、 (X,Y)~p(x,y). 则 X,Y上间的互信息、定义:
I(X,Y) = H(X) - H(X Y).
$= -\sum_{x \in X} p(x) \log p(x) + \sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x)$
XEX LIVILLA XEX LEX LEX LOS

$= \sum_{x \in X} \sum_{y \in Y} p(x,y) (\log p(x)) - p(x))$	
$= \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(y)p(x)}$	
描述 X在 给定 Y 后 不确定 性 減 9 的量.	
H(X) = H(X) - H(X X) = I(X,X).	
用互信息,估计两个汉字结合紧密程度, 进而分	词 效果 不好。但
个字可以组成的种词。 P(Y X)	
y 噪声信号模型 编码器 y 噪声信道 X A	母器 ♥ → 根据输
机器 斷泽、 X: 源 语言、Y: 目前语言. → 础 D(Y X).	出尽量恢复 初始 信号
4. 应用举病:	
目前: 歧义消4.	
1) 基千贝叶斯 分类器	
9 义词 W , 上下文语境为 C , W 的为个语义记为	
见在C中山的语义为:arg max p(si)C). ⇔ arg max	p(c)si)p(si)
	1 2 2 3 1
P(C) Si)= T P(VK) Si) , 水为以的上下文 (如以前后	± 2 \(\alpha\)
$p(V_K S_i) = \frac{N(V_K,S_i)}{N(S_i)}$	
$p(S_i) = \frac{N(S_i)}{N(W_i)}$	
实际操作中. 通常将 计算 p(c si) p(si) → log p(si) + 反c	lon Durksi)
VKEC	Clay Karlan
2) 基 子 最 大 熵 的 消 歧 办 法 .	
基本原理, 在只掌握 关于未知分布的部分知识的情	况下, 春春已知
知识的规则率分布可能有为人,取始值最	之某种条件
特征函数: xeX, yeY. f(x) = { 1, (x,y) 满脸	

模型定义: 给定数据集 T= f(x,,y,),,(x,,y,)]
目前: $\min_{p \in C} -H(p) = \frac{2}{i} \widetilde{p}(x_i) p(y_i x_i) \log p(y_i x_i)$
即寻求在治定 X 下,条件, 烟 最大的分类器
约束: $\mathfrak{D} \to \mathfrak{F}_{\widetilde{i}}$ $\mathfrak{p} \to \mathfrak{p}$
$E_{p}(f_{i}) = \sum_{i=1}^{n} \widetilde{p}(x_{i}) p(y_{i} x_{i}) f_{j}(x_{i},y_{i})$
即满足特征函数期望保持不变
模型求利:上式模型最长点。 [*(以)]= = = = = = = = = = = = = = = = = = =
其中 Z是归一化常量、对为某个固定的数
特征函数fixy)确定: 取 × 为上下文条件 y 为 为义词词义 上下文条件: * 表示: ① 词形信息(字词)
五八文称(中, * X)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
②河形+河性.
* 顺序: O 位 置 有关
②位置大关.
+ 窗口大小: 前后土人个词.
参数入(GIS算法)、
*要求每个实例的 k 个特征 和为常量 C (是 f; (X, y) = C
若不满足、取 C= max 产 fix,y),构造一个新特征
$f_{k+1}(x,y) = C - \sum_{j=1}^{k} f(x,y).$
算法 迭代:
0 初始化: 7=0
② 计算 $Epf(xy) = \frac{5}{1-1} p(xiy) f(xiyi)$

③ 迭代 计算 巨方(x/y). $Z(x) = \overline{y} \exp(\frac{\xi}{2\pi} \int_{\overline{y}} f(x,y))$ $p^{*}(y X) = \overline{z}(x) \exp(\frac{\xi}{2\pi} \int_{\overline{y}} f(x,y))$ $Ep(\overline{f}) = \overline{\xi}_{\overline{x}} \widetilde{p}(x,y) p^{*}(y;1xi) f(xi,yi)$ \overline{E} $Ep(\overline{f}) = \overline{\xi}_{\overline{x}} \widetilde{p}(x,y) p^{*}(y;1xi) f(xi,yi)$ $Ep(\overline{f}) = \overline{\xi}_{\overline{x}} \widetilde{p}(x,y) p^{*}(y;1xi) f(x,y)$	
田确定文. 算出p*.	