Deep Generative Models

Lecture 2

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

We're given i.i.d. samples $\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^m$ drawn from some unknown distribution $\pi(\mathbf{x})$.

Objective

Our goal is to learn the distribution $\pi(\mathbf{x})$ so that we can:

- ightharpoonup Evaluate $\pi(\mathbf{x})$ for new samples;
- ▶ Sample from $\pi(\mathbf{x})$ (i.e., generate novel samples $\mathbf{x} \sim \pi(\mathbf{x})$).

Rather than considering all possible probability distributions, we approximate $\pi(\mathbf{x})$ by a parameterized family $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Divergence Minimization Task

- ▶ $D(\pi || p) \ge 0$ for all $\pi, p \in \mathcal{P}$;
- ▶ $D(\pi || p) = 0$ if and only if $\pi \equiv p$.

$$\min_{\boldsymbol{\theta}} D(\boldsymbol{\pi} \| \boldsymbol{p})$$

Forward KL Divergence

$$\mathrm{KL}(\pi \| p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x} | oldsymbol{ heta})} \, d\mathbf{x}
ightarrow \min_{oldsymbol{ heta}}$$

Reverse KL Divergence

$$\mathrm{KL}(p\|\pi) = \int p(\mathbf{x}|\boldsymbol{\theta}) \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x})} \, d\mathbf{x} \to \min_{\boldsymbol{\theta}}$$

Maximum Likelihood Estimation (MLE)

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \prod_{i=1}^n p(\mathbf{x}_i | oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i | oldsymbol{ heta})$$

Maximum likelihood estimation is equivalent to minimizing the Monte Carlo estimate of the forward KL divergence.

Likelihood as Product of Conditionals

Let $\mathbf{x} = (x_1, \dots, x_m)$, and define $\mathbf{x}_{1:j} = (x_1, \dots, x_j)$. Then,

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta}), \quad \log p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} \log p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta})$$

MLE for Autoregressive Models

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \sum_{i=1}^n \sum_{i=1}^m \log p(x_{ij}|\mathbf{x}_{i,1:j-1}, \boldsymbol{\theta})$$

Sampling

$$\hat{\mathbf{x}}_1 \sim p(\mathbf{x}_1|\boldsymbol{\theta}), \quad \hat{\mathbf{x}}_2 \sim p(\mathbf{x}_2|\hat{\mathbf{x}}_1, \boldsymbol{\theta}), \quad \dots, \quad \hat{\mathbf{x}}_m \sim p(\mathbf{x}_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

The generated sample is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Autoregressive MLP

Autoregressive Transformer

Image credit: https://jmtomczak.github.io/blog/2/2_ARM.html Chen M. et al. Generative Pretraining from Pixels, 2020

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Generative Models Zoo

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let ${\bf x}$ be a random variable with density $p({\bf x})$ and ${\bf f}:\mathbb{R}^m\to\mathbb{R}^m$ a differentiable, **invertible** mapping. If ${\bf z}={\bf f}({\bf x})$ and

$$\mathbf{x} = \mathbf{f}^{-1}(\mathbf{z}) = \mathbf{g}(\mathbf{z})$$
, then

$$p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right|$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let \mathbf{x} be a random variable with density $p(\mathbf{x})$ and $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ a differentiable, **invertible** mapping. If $\mathbf{z} = \mathbf{f}(\mathbf{x})$ and

$$\mathbf{x} = \mathbf{f}^{-1}(\mathbf{z}) = \mathbf{g}(\mathbf{z})$$
, then

$$p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let \mathbf{x} be a random variable with density $p(\mathbf{x})$ and $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ a differentiable, **invertible** mapping. If $\mathbf{z} = \mathbf{f}(\mathbf{x})$ and $\mathbf{x} = \mathbf{f}^{-1}(\mathbf{z}) = \mathbf{g}(\mathbf{z})$, then

$$\begin{aligned} & p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ & p(\mathbf{z}) = p(\mathbf{x}) |\det(\mathbf{J_g})| = p(\mathbf{x}) \left| \det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right) \right| = p(\mathbf{g}(\mathbf{z})) \left| \det\left(\frac{\partial \mathbf{g}(\mathbf{z})}{\partial \mathbf{z}}\right) \right| \end{aligned}$$

Inverse Function Theorem

If the function ${\bf f}$ is invertible and its Jacobian is continuous and non-singular, then

$$\mathsf{J}_{\mathsf{f}^{-1}}=\mathsf{J}_{\mathsf{g}}=\mathsf{J}_{\mathsf{f}}^{-1};$$

Inverse Function Theorem

If the function ${\bf f}$ is invertible and its Jacobian is continuous and non-singular, then

$$\mathbf{J_{f^{-1}}} = \mathbf{J_g} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = |\det(\mathbf{J_g})| = \frac{1}{|\det(\mathbf{J_f})|}$$

Inverse Function Theorem

If the function \mathbf{f} is invertible and its Jacobian is continuous and non-singular, then

$$\mathbf{J_{f^{-1}}} = \mathbf{J_g} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = |\det(\mathbf{J_g})| = \frac{1}{|\det(\mathbf{J_f})|}$$

- **x** and **z** reside in the same space (\mathbb{R}^m) .
- $\mathbf{f}_{\theta}(\mathbf{x})$ is a parameterized transformation.

Inverse Function Theorem

If the function ${\bf f}$ is invertible and its Jacobian is continuous and non-singular, then

$$\mathbf{J_{f^{-1}}} = \mathbf{J_g} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = |\det(\mathbf{J_g})| = \frac{1}{|\det(\mathbf{J_f})|}$$

- **x** and **z** reside in the same space (\mathbb{R}^m) .
- $\mathbf{f}_{\theta}(\mathbf{x})$ is a parameterized transformation.
- The determinant of the Jacobian $\mathbf{J} = \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}}$ quantifies how the volume is changed by the transformation.

Fitting Normalizing Flows

MLE Problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Fitting Normalizing Flows

MLE Problem

$$\begin{aligned} p(\mathbf{x}|\boldsymbol{\theta}) &= p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| \\ \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \to \max_{\boldsymbol{\theta}} \end{aligned}$$

Fitting Normalizing Flows

MLE Problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \to \max_{\boldsymbol{\theta}}$$

Theorem

If every $\{f_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $f(\mathbf{x}) = f_K \circ \ldots \circ f_1(\mathbf{x})$ also satisfies them.

$$p(\mathbf{x}) = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Theorem

If every $\{\mathbf f_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $\mathbf f(\mathbf x) = \mathbf f_K \circ \ldots \circ \mathbf f_1(\mathbf x)$ also satisfies them.

$$p(\mathbf{x}) = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\kappa}}{\partial \mathbf{f}_{\kappa-1}} \dots \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}} \right) \right|$$

Theorem

If every $\{\mathbf f_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $\mathbf f(\mathbf x)=\mathbf f_K\circ\ldots\circ\mathbf f_1(\mathbf x)$ also satisfies them.

$$\begin{aligned} \rho(\mathbf{x}) &= \rho(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \rho(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_K}{\partial \mathbf{f}_{K-1}} \dots \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}} \right) \right| = \rho(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{\mathbf{f}_k}) \right| \end{aligned}$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a *differentiable*, *invertible* mapping that transforms data \mathbf{x} to latent noise \mathbf{z} .

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a *differentiable*, *invertible* mapping that transforms data x to latent noise z.

- Normalizing refers to mapping samples from $\pi(x)$ to a base distribution p(z).
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\mathbf{z} = \mathbf{f}_{\mathcal{K}} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x}); \quad \mathbf{x} = \mathbf{f}_{1}^{-1} \circ \ldots \circ \mathbf{f}_{\mathcal{K}}^{-1}(\mathbf{z}) = \mathbf{g}_{1} \circ \ldots \circ \mathbf{g}_{\mathcal{K}}(\mathbf{z})$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a *differentiable*, *invertible* mapping that transforms data \mathbf{x} to latent noise \mathbf{z} .

- Normalizing refers to mapping samples from $\pi(\mathbf{x})$ to a base distribution $p(\mathbf{z})$.
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\mathbf{z} = \mathbf{f}_{\mathcal{K}} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x}); \quad \mathbf{x} = \mathbf{f}_{1}^{-1} \circ \ldots \circ \mathbf{f}_{\mathcal{K}}^{-1}(\mathbf{z}) = \mathbf{g}_{1} \circ \ldots \circ \mathbf{g}_{\mathcal{K}}(\mathbf{z})$$

Log-Likelihood

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log p(\mathbf{f}_K \circ \ldots \circ \mathbf{f}_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{\mathbf{f}_k})|$$
 where $\mathbf{J}_{\mathbf{f}_k} = rac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a *differentiable*, *invertible* mapping that transforms data \mathbf{x} to latent noise \mathbf{z} .

- Normalizing refers to mapping samples from $\pi(\mathbf{x})$ to a base distribution $p(\mathbf{z})$.
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\textbf{z} = \textbf{f}_{\mathcal{K}} \circ \ldots \circ \textbf{f}_{1}(\textbf{x}); \quad \textbf{x} = \textbf{f}_{1}^{-1} \circ \ldots \circ \textbf{f}_{\mathcal{K}}^{-1}(\textbf{z}) = \textbf{g}_{1} \circ \ldots \circ \textbf{g}_{\mathcal{K}}(\textbf{z})$$

Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\mathcal{K}} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x})) + \sum_{k=1}^{K} \log |\det(\mathbf{J}_{\mathbf{f}_{k}})|$$

where $\mathbf{J}_{\mathbf{f}_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

Note: Here we consider only **continuous** random variables.

Normalizing Flows

Example: 4-Step NF

Normalizing Flows

Example: 4-Step NF

NF Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

What's the computational complexity of evaluating this determinant?

Normalizing Flows

Example: 4-Step NF

NF Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

What's the computational complexity of evaluating this determinant?

Requirements

- **E**fficient computation of the Jacobian $\mathbf{J_f} = rac{\partial \mathbf{f_{ heta}(x)}}{\partial \mathbf{x}}$
- \blacktriangleright Efficient inversion of the transformation $\mathbf{f}_{\theta}(\mathbf{x})$

Papamakarios G. et al. Normalizing Flows for Probabilistic Modeling and Inference, 2019

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Outline

1. Normalizing Flows (NF)

NF Examples Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Normalizing Flows Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

Normalizing Flows Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

1. **z** is a permutation of **x**.

Normalizing Flows Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. **z** is a permutation of **x**.
- 2. z_j depends only on x_j .

Normalizing Flows Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. z is a permutation of x.
- 2. z_j depends only on x_j .

$$\log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right|$$

Jacobian Structure

Normalizing Flows Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. z is a permutation of x.
- 2. z_i depends only on x_i .

$$\log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right|$$

3. z_j depends only on $\mathbf{x}_{1:j}$ (autoregressive dependency).

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^{T}$$

In general, matrix inversion has computational complexity $O(m^3)$.

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

In general, matrix inversion has computational complexity $O(m^3)$.

Invertibility

- ▶ Diagonal matrix: O(m).
- ► Triangular matrix: $O(m^2)$.
- Directly parameterizing the full group of invertible matrices is infeasible.

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

In general, matrix inversion has computational complexity $O(m^3)$.

Invertibility

- ▶ Diagonal matrix: O(m).
- ► Triangular matrix: $O(m^2)$.
- Directly parameterizing the full group of invertible matrices is infeasible.

Invertible 1×1 Convolution

 $\mathbf{W} \in \mathbb{R}^{c \times c}$ acts as the kernel of a 1×1 convolution with c input and c output channels. Calculating or differentiating $\det(\mathbf{W})$ incurs a cost of $O(c^3)$. It is critical that \mathbf{W} is invertible.

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^T$$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

QR Decomposition:

$$W = QR$$

where \mathbf{Q} is orthogonal, and \mathbf{R} is upper triangular with positive diagonal.

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

QR Decomposition:

$$W = QR$$

where ${\bf Q}$ is orthogonal, and ${\bf R}$ is upper triangular with positive diagonal.

Decomposition is performed only at initialization; the decomposed matrices (P, L, U or Q, R) are optimized during training.

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$\mathbf{x}_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \quad \mathbf{z}_j \sim \mathcal{N}(0,1)$$

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

► This gives an **invertible** and **differentiable** transformation from $p(\mathbf{z})$ to $p(\mathbf{x}|\theta)$.

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

- This gives an **invertible** and **differentiable** transformation from p(z) to $p(x|\theta)$.
- ▶ This model is called an autoregressive (AR) NF with base distribution $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Consider the autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{i,\theta}(\mathbf{x}_{1:j-1})}$$

- ► This gives an **invertible** and **differentiable** transformation from $p(\mathbf{z})$ to $p(\mathbf{x}|\theta)$.
- ▶ This model is called an autoregressive (AR) NF with base distribution $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.
- The Jacobian matrix of this transformation is triangular.

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

To generate samples, apply $\mathbf{g}_{\theta}(\mathbf{z})$ sequentially; inference via $\mathbf{f}_{\theta}(\mathbf{x})$ is parallelizable.

$$\mathbf{z} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

To generate samples, apply $\mathbf{g}_{\theta}(\mathbf{z})$ sequentially; inference via $\mathbf{f}_{\theta}(\mathbf{x})$ is parallelizable.

Forward KI for NFs

$$\mathrm{KL}(\pi \| p) = -\mathbb{E}_{\pi(\mathbf{x})} \left[\log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \right] + \mathrm{const}$$

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

To generate samples, apply $\mathbf{g}_{\theta}(\mathbf{z})$ sequentially; inference via $\mathbf{f}_{\theta}(\mathbf{x})$ is parallelizable.

Forward KL for NFs

$$\mathrm{KL}(\pi \| p) = -\mathbb{E}_{\pi(\mathbf{x})} \left[\log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \right] + \mathrm{const}$$

- ightharpoonup Computing $\mathbf{f}_{\theta}(\mathbf{x})$ and its Jacobian is necessary.
- ▶ One must be able to evaluate the density p(z).
- ▶ The inverse $\mathbf{g}_{\theta}(\mathbf{z}) = \mathbf{f}_{\theta}^{-1}(\mathbf{z})$ is only needed for sampling.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

$$\mathbf{z} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

$$\mathbf{z} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

- ► Sampling must be done sequentially, but density estimation can be parallelized.
- ▶ The forward KL divergence is a natural objective for training.

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

- Sampling must be done sequentially, but density estimation can be parallelized.
- ▶ The forward KL divergence is a natural objective for training.

Forward Transformation: $\mathbf{f}_{\theta}(\mathbf{x})$

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = \frac{x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

- ► Sampling must be done sequentially, but density estimation can be parallelized.
- The forward KL divergence is a natural objective for training.

Forward Transformation: $\mathbf{f}_{\theta}(\mathbf{x})$

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

Inverse Transformation: $\mathbf{g}_{\theta}(\mathbf{z})$

$$\mathbf{x}_j = \sigma_{j,\boldsymbol{ heta}}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_{j,\boldsymbol{ heta}}(\mathbf{x}_{1:j-1})$$

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

Split **x** and **z** into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Split x and z into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$egin{cases} \mathbf{x}_1 = \mathbf{z}_1 \ \mathbf{x}_2 = \mathbf{z}_2 \odot oldsymbol{\sigma_{ heta}}(\mathbf{z}_1) + \mu_{ heta}(\mathbf{z}_1) \end{cases}$$

Split x and z into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \sigma_{\theta}(\mathbf{z}_1) + \mu_{\theta}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \mu_{\theta}(\mathbf{x}_1)) \odot \frac{1}{\sigma_{\theta}(\mathbf{x}_1)} \end{cases}$$

Split **x** and **z** into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$egin{cases} \mathsf{x}_1 = \mathsf{z}_1 \ \mathsf{x}_2 = \mathsf{z}_2 \odot \sigma_{oldsymbol{ heta}}(\mathsf{z}_1) + \mu_{oldsymbol{ heta}}(\mathsf{z}_1) \end{cases}$$

$$egin{cases} \mathsf{z}_1 = \mathsf{x}_1 \ \mathsf{z}_2 = (\mathsf{x}_2 - \mu_{oldsymbol{ heta}}(\mathsf{x}_1)) \odot rac{1}{\sigma_{oldsymbol{ heta}}(\mathsf{x}_1)} \end{cases}$$

Image Partitioning

- Checkerboard ordering corresponds to masking.
- Channelwise ordering relies on splitting.

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed!

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) = \det \left(\begin{matrix} \mathbf{I}_d & \mathbf{0}_{d \times m - d} \\ \frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2} \end{matrix} \right)$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_{j,\theta}(\mathbf{x}_1)}$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_{j,\theta}(\mathbf{x}_1)}$$

Gaussian AR NF

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad \mathbf{z}_{j} = (x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_{i,\theta}(\mathbf{x}_{1:j-1})}.$$

How can the RealNVP layer be derived as a special instance of the Gaussian autoregressive NF?

Dinh L., Sohl-Dickstein J., Bengio S. Density Estimation Using Real NVP, 2016

Glow: Coupling Layers + Linear Flows (1×1 Convolutions)

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Summary

- The change-of-variables theorem provides a method for computing a random variable's density under an invertible transformation.
- Normalizing flows transform a simple base distribution into a complex one via a sequence of invertible mappings, each with efficient Jacobian determinants.
- This enables exact likelihood computation, thanks to the change-of-variables formula.
- ► Linear NFs capture invertible matrices by using matrix decompositions.
- Gaussian autoregressive NFs are AR models with triangular Jacobians.
- ► The RealNVP coupling layer provides an efficient normalizing flow (a special case of AR NF), supporting fast inference and sampling.