Arithmetic and Combinatorics Part 2

Training problems for M1 2018 term 2

Ted Szylowiec tedszy@gmail.com

1. I have have 5 objects. I want to choose 3 of them. can be done. How many are there?	Draw all the different ways that this
2. I have have 5 objects. I want to choose 2 of them.	Draw all the different ways that this

3. I have four fruits: apple, banana, strawberry and peach. I want to choose three of them to make a milkshake. Write down all the different ways of doing this. Order doesn't matter

to make a minksmake.	write down a	an me	amerent	ways or	domg	uus.	Order	doesn
matter.								
4. What does $\binom{n}{k}$ mean	? Explain it.							

(a) $\binom{1}{0}$.	(b) $\binom{5}{5}$.	(c) $\binom{5}{0}$.	(d) $\binom{n}{0}$.	(e) $\binom{n}{n}$.
6. Figure these	e out.			
(a) $\binom{1}{2}$.	(b) $\binom{0}{1}$.	(c) $\binom{5}{6}$.	(d) $\binom{n}{n+1}$.	(e) $\binom{2}{-1}$.

7. Draw Pascal's triangle, circle these elements and label them:

 $\begin{pmatrix} 5 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 7 \\ 6 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 6 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

8. What is the sum of row n = 5 of Pascal's triangle?

can be done. How many ways are there?

5. Figure these out.

9. What is the sum of row n = 12 of Pascal's triangle? Do it *without* using the numbers of row n = 12.

1

10. Draw Pascal's triangle up to row n = 8 and circle the central Pascal numbers $\binom{2m}{m}$.

11. Figure out $\binom{8}{4}$ by summing the squares of the elements in row n=4.

12. Figure out $\binom{14}{7}$. by summing the squares of the elements in row n=7.

13. What is a set? Explain it. What are the rules for sets?

14. What is a subset? Explain it.

15. Write down all the subsets of $\{a, b, c\}$. How many are there?

16. Write down all the subsets of {1,2,3,4}. How many are there?

17. Let $S = \{a, b, c, d, e, f, g\}$. How many size-3 subsets does S have?

- **18.** Let |S| = 10 and let $A \subseteq S$ with |A| = 5. How many such A are there?
- **19.** Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many subsets does S have?
- **20.** Let |S| = 14 and $A \subseteq S$. How many such A are there?
- **21.** Let $S = \{a, b, c, d, e, f, g, h, i, j\}$. Let $A \subseteq S$ such that |A| is an even number. How many such A are there? Use Pascal numbers and Pascal's triangle.
- **22.** Let $S = \{a, b, c, d, e, f, g, h, i, j\}$. Let A be an odd-sized subset of S. How many such A are there? Use Pascal numbers and Pascal's triangle to solve this.
- 23. This is the menu at the Italian restaurant.

Main dishes	Side dishes	Desserts
Fetuccine alfredo	Porcini mushroom bruschetta	Hazelnut tartufo
Pepperoni pizza	Grilled polenta	Cannoli
Three-cheese lasagna	Spinach ricotta gnocci	White chocolate panna cotta
	Radicchio with lemon	Sfogliatelle
	Stuffed artichokes	

I want to get one main dish, one side dish, and one dessert. How many ways can I do that? Write the definitions for what you are doing. Be clear. Write the principle. Do the computation.

- **24.** At the Italian restaurant in problem **23**, I want to get either one main dish *or* one side dish *or* one dessert. How many ways can I do that? Show definitions, principle, calculation. Do a proper job, don't just write the answer.
- **25.** At the Italian restaurant in **23**, I want to get either only a main dish or a side dish and a dessert. How many ways can I do that? Show definitions, principle, calculation.
- **26.** At the Italian restaurant in **23**, I want to get either both a main dish and a dessert or both a side dish and a dessert. How many ways can I do that? Definitions. Principle. Calculation.
- 27. The Boring Book Library has nothing but the most boring books on the dullest topics.

Торіс	Number of books
Dishwashing	7
K-Pop	6
Mops and brooms	5
British tophats	4

How many ways can I choose 2 diswashing books, 2 K-Pop books, 2 books about mops and brooms, and 2 books about British tophats? Show your definitions, combinatorics principle, and calculation.

28. From the library in problem **27**, I want to choose either 4 dishwashing books or 3 K-pop books *or* 2 books about mops or 1 tophat book. How many ways can I do this? Definition—principle—calculation.

- **29.** From the Boring Book Library, choose either three dishwashing books and two mops books, *or* two K-Pop books and three British tophat books. How many ways can you do that? Show definition—principle—calculation.
- **30.** From the Boring Book Library, choose 3 Dishwashing books or 2 British tophat books *and* 4 K-Pop books and 3 books on mops and brooms. Definitions. Principle. Calculation.
- **31.** We have 7 girls and 5 boys. How many ways can we make a team by choosing 3 girls and 3 boys? Definitions, principle, calculation.
- **32.** We have 7 girls and 5 boys. We want a small team of only 3 people: either all girls or all boys. How many ways can I do this? Definitions, principle, calculation.
- 33. How many 3-digit numbers are there? Show definitions, principle, calculation.
- **34.** How many 3-digit numbers can you make using only *even* digits? Show your definitions, combinatorics principle, and your calculations.
- **35.** How many 3-digit numbers can you make using only *odd* digits? Definitions. Principle. Calculation. Be clear. Explain what you are doing. Don't just write an answer.
- **36.** What is a permutation? Explain it.
- **37.** Write down all different permutations of the letters *EFG*. How many are there?
- **38.** Write down all the different permutations of the digits 1234. How many are there.
- **39.** Prove that the number of different ways to arrange *k* objects in order is *k*!.
- **40.** I have 6 books and I want to arrange them in order on a bookself. How many different ways can I do it?
- **41.** I have 6 books and I want to choose 3 to arrange on my bookshelf in order. How many ways can I do this?
- **42.** I have 8 students. I want to choose 3 of them and give them prizes: 1st, 2nd and 3rd place. Does order matter? How many ways can I do this? Do it in two steps and show definitions, principle, calculation.
- **43.** We have n students. We want to choose k of them and arrange them in order. How many ways can we do this? Show your definitions, what principle you use, and the calculation of the final answer.
- **44.** We have 5 girls and 5 boys in our class. I want to choose 2 girls and one boy and give them prizes: 1st place, 2nd place, 3rd place. Does order matter? How many ways can I do this? Definitions (be clear). Principle (what combinatorics principle are you using?) Calculation (get the final answer).
- **45.** We have 5 girls and 5 boys. I want to choose 3 girls and 3 boys to make a team of six. Then I want to choose three in the team to be president, secretary and messenger. Is order important? How many ways can I do this? Show definitions, principle, calculation.
- **46.** We have 6 girls and 5 boys. I want to give three prizes to the girls (1st, 2nd, 3rd) and three prizes to the boys (1st, 2nd, 3rd). How many ways can I do this? Definitions. Principle. Calculation.

- **47.** We have 6 consonants *mnopqr*, 5 vowels *aeiou* and 5 digits 12345. I want to make passwords by choosing two of each, a total of 6 symbols. Of course order matters when you make passwords. For example: 2*aqur*5 and 5*ruqa*2 are two different passwords. How many such passwords can I make? Definitions. Principle. Calculation.
- **48.** (A) I have n objects. I select k of them in some special order. This one first, then that one, then another one, and so on.
- (B) I have n objects. I select k of them without order, but then I arrange them in some special order later. I put one first, then aonther one second, and so on.

Is there a difference between (A) and (B)? Think about it.