Support Vector Machines

SYS 6018 | Spring 2023

svm.pdf

Contents

1	Sup	port Vector Machines (SVM) Introduction	2
	1.1	Required R Packages	2
	1.2	Example	2
	1.3	SVM as Loss + Penalty	3
	1.4	SVM vs. Logistic Regression	4
	1.5	Example: Compare Linear Classifiers	5
	1.6	Three Representations of the Optimization Problem	6
	1.7	Linear SVM	6
2	Ker	nels and Non-linear SVM	7
	2.1	Basis Expansion	7
	2.2	Alternative (Dual) Formulation	8
	2.3	SVM in R	8
	2.4	Kernels	9
	2.5	Unbalanced Data	12
3	App	pendix: R Code	13

1 Support Vector Machines (SVM) Introduction

1.1 Required R Packages

We will be using the R packages of:

- tidyverse for data manipulation and visualization
- e1071 for the svm() functions

1.2 Example

Goal: find *best* line(s)/curve(s) to separate the two classes.

```
#> Error in rmvnorm(n1, mean = mu1, sigma = sigma1): unused argument (mean = mu1)
#> Error in rmvnorm(n2, mean = mu2, sigma = sigma2): unused argument (mean = mu2)
```


1.3 SVM as Loss + Penalty

Training Data: $\{(\tilde{y}_i, \mathbf{x}_i)\}_{i=1}^n$

- $\tilde{y}_i \in \{-1, +1\}$ $\mathbf{x}_i^{\mathsf{T}} = [x_{i1}, x_{i2}, \dots, x_{in}] \in \mathbb{R}^p$

Predictor Function: f(x)

- Linear: $f(\mathbf{x}; \beta) = \beta_0 + \sum_{j=1}^p x_j \beta_j$ Basis Expansion: $f(\mathbf{x}; \beta) = \beta_0 + \sum_{j=1}^d h_j(\mathbf{x}) \beta_j$
 - $h_i(\mathbf{x})$ transforms the raw x vector
 - Polynomial example: $h_1(\mathbf{x}) = x_1$, $h_2(\mathbf{x}) = x_1^2$, $h_3(\mathbf{x}) = x_2$, $h_4(\mathbf{x}) = x_2^2$, $h_5(\mathbf{x}) = x_1x_2$
 - This is the connection to kernels that we will discuss later
- Let $f_i = f(\mathbf{x}_i)$

Classification:

- If $\hat{f}_i \geq 0$, then label as class +1
- If $\hat{f}_i < 0$, then label as class -1

Loss Function: Hinge Loss

$$L(\tilde{y}_i, f_i) = \max\{0, 1 - \tilde{y}_i f_i\}$$

Penalty Function: Ridge Penalty

$$P_{\lambda}(\beta) = \frac{\lambda}{2} \sum_{j=1}^{d} \beta_j^2$$
$$= \lambda \|\beta\|^2 / 2$$

• This should have you thinking that the x's should be scaled!

Summary of SVM

1. Estimate model parameters β

$$\hat{\beta}_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \max\{0, 1 - \tilde{y}_{i} f_{i}(\beta)\} + \lambda \|\beta\|^{2} / 2 \right\}$$

$$= \underset{\beta}{\operatorname{arg\,min}} \left\{ \operatorname{Hinge\,Loss}(\beta) + \lambda \operatorname{Penalty}(\beta) \right\}$$

- 2. Label Class +1 if $\hat{f}_i \geq 0$, else label Class -1
 - This implicitly assumes a 0-1 loss (or equal cost FP and FN)
 - \bullet More generally, use threshold t that considers the costs of FP and FN
- 3. **Tuning Parameters**: besides the λ , SVM will also have tuning parameters related to the kernels (more to come on this).

1.4 SVM vs. Logistic Regression

The linear SVM is actually very similar to Logistic Regression (with Ridge Penalty).

Let
$$f_i(\beta) = \beta_0 + \sum_{j=1}^p x_j \beta_j$$
 be the log-odds.

- We also referred to this as $\gamma(\mathbf{x}_i)$ in previous notes.
- 1. Estimate model parameters β
 - This assumes standardized x's

$$\hat{\beta}_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \log \left(1 + \exp \left(-\tilde{y}_{i} f_{i}(\beta) \right) \right) + \lambda \left\| \beta \right\|^{2} / 2 \right\}$$

$$= \underset{\beta}{\operatorname{arg\,min}} \left\{ \operatorname{Log\,Loss}(\beta) + \lambda \operatorname{Penalty}(\beta) \right\}$$

- 2. Label Class +1 if $\hat{f}_i \geq t$, else label Class -1
 - ullet For some threshold t that considers the costs of FP and FN
 - If Cost(FP) = Cost(FN), the set t = 0, which is equivalent to p(x) = 1/2

Details of the Logistic Regression Loss Function

Note		

The Log-Loss has been scaled so it equals the Hinge Loss at f=0.

1.5 Example: Compare Linear Classifiers

1.6 Three Representations of the Optimization Problem

1. Penalized optimization

$$\begin{split} \hat{\beta} &= \operatorname*{arg\,min}_{\beta} \left\{ \operatorname{Loss}(\beta) + \lambda \ \operatorname{Penalty}(\beta) \right\} \\ &= \operatorname*{arg\,min}_{\beta} \left\{ C \ \operatorname{Loss}(\beta) + \operatorname{Penalty}(\beta) \right\} \end{split}$$

- where $C = \frac{1}{\lambda} > 0$ is an alternative strength of penalty
- In SVM, C is referred to as the cost

2. Constraint on Penalty

$$\begin{split} \hat{\beta} &= \mathop{\arg\min}_{\beta} \ \operatorname{Loss}(\beta) \quad \text{ subject to } \ \operatorname{Penalty}(\beta) \leq t \\ &= \mathop{\arg\min}_{\beta: \ \operatorname{Penalty}(\beta) \leq t} \ \operatorname{Loss}(\beta) \end{split}$$

3. Constraint on Loss

$$\begin{split} \hat{\beta} &= \mathop{\arg\min}_{\beta} \ \operatorname{Penalty}(\beta) \qquad \text{subject to} \ \operatorname{Loss}(\beta) \leq M \\ &= \mathop{\arg\min}_{\beta: \ \operatorname{Loss}(\beta) \leq M} \ \operatorname{Penalty}(\beta) \end{split}$$

Note

There is a one-to-one relationship between all tuning parameters: λ , C, t, M.

1.7 Linear SVM

2 Kernels and Non-linear SVM

2.1 Basis Expansion

- Linear: $f(\mathbf{x}; \beta) = \beta_0 + \sum_{j=1}^p x_j \beta_j$
- Basis Expansion: $f(\mathbf{x}; \beta) = \beta_0 + \sum_{j=1}^d h_j(\mathbf{x})\beta_j$
 - $h_j(\mathbf{x})$ transforms the raw \mathbf{x} vector

2.1.1 Polynomial Expansion: Quadratic Terms

- Polynomial example: $h_1(\mathbf{x}) = x_1, h_2(\mathbf{x}) = x_1^2, h_3(\mathbf{x}) = x_2, h_4(\mathbf{x}) = x_2^2, h_5(\mathbf{x}) = x_1x_2$
- $f(\mathbf{x}; \beta) = \beta_0 + \sum_{j=1}^5 h_j(\mathbf{x})\beta_j$
- #> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

2.2 Alternative (Dual) Formulation

It turns out that the SVM solution for the model coefficients β can be written as

$$\hat{\beta}_j = \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, h_j(\mathbf{x}_i)$$

- See ESL Eq. 12.17 if you are interested in the details.
- In this reformulation, the $\{\hat{\alpha}_i\}_{i=1}^n$ become the model parameters.
 - There is one model parameter for each observation!
 - $-0 \le \alpha_i \le C \text{ (or } 0 \le \alpha_i \le \frac{1}{\lambda})$
 - But SVM will force most values to 0.
 - The observations with $\alpha_i > 0$ are called the *support vectors*
 - * So the entire SVM model is a function of the support vectors only!
 - * The support vectors are the observations on the wrong side of the margin.
- The decision function $\hat{f}(\mathbf{x})$ can be re-written

$$\hat{f}(\mathbf{x}) = f(\mathbf{x}; \hat{\beta})$$

$$= \hat{\beta}_0 + \sum_{j=1}^d h_j(\mathbf{x}) \hat{\beta}_j$$

$$= \hat{\beta}_0 + \sum_{j=1}^d h_j(\mathbf{x}) \left[\sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, h_j(\mathbf{x}_i) \right]$$

$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \left[\sum_{j=1}^d h_j(\mathbf{x}) h_j(\mathbf{x}_i) \right]$$

$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, K(\mathbf{x}, \mathbf{x}_i)$$

where

$$K(\mathbf{x}, \mathbf{x}_i) = \sum_{j=1}^d h_j(\mathbf{x}) h_j(\mathbf{x}_i) = \langle h(\mathbf{x}), h(\mathbf{x}_i) \rangle$$

is called a **kernel** and measures the inner product, or *similarity* between x and x_i (observation i).

2.3 SVM in R

- The svm() function from the e1071 package can implement SVM.
 - There is also a helpful tune.svm() to help you select the tuning parameters.
- The ISLR Lab in Section 9.6 has example R code.

2.4 Kernels

To help illustrate the difference between different kernels, let's look at slightly different data that won't be easy to classify using linear classifiers.

```
#> Error in rmvnorm(n1, mean = mu1, sigma = sigma1): unused argument (mean = mu1)
#> Error in rmvnorm(n2[1], mean = mu2, sigma = sigma2): unused argument (mean = mu2)
#> Error in rmvnorm(n2[2], mean = mu2.B, sigma = sigma2): unused argument (mean = mu2.B)
```


Three popular kernels (but there are many more) are the linear, polynomial, and radial basis

2.4.1 Linear Kernel

The linear kernel is

$$K(\mathbf{x}, \mathbf{u}) = \sum_{j=1}^{p} \mathbf{x}_j \mathbf{u}_j = \langle \mathbf{x}, \mathbf{u} \rangle$$

$$\hat{f}_{linear}(\mathbf{u}) = \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, K(\mathbf{x}_i, \mathbf{u})$$
$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, \left(\sum_{j=1}^p \mathbf{x}_{ij} \mathbf{u}_j\right)$$

2.4.2 Polynomial Kernel

The polynomial kernel of degree deg is

$$K(\mathbf{x}, \mathbf{u}) = \left(1 + \sum_{j=1}^{p} \mathbf{x}_j \mathbf{u}_j\right)^{\text{deg}}$$

Note: in R, the 'svm()' function from 'e1071' package includes two other tuning parameters (gamma and coef0)

$$\hat{f}_{\text{poly}}(\mathbf{u}) = \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, y_i \, K(\mathbf{x}_i, \mathbf{u})$$
$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, y_i \, \left(1 + \sum_{j=1}^p \mathbf{x}_j \mathbf{u}_j \right)^{\text{deg}}$$

2.4.3 Radial Basis Kernel

The *Radial Basis Kernel* with parameter γ (gamma) is

$$K(\mathbf{x}, \mathbf{u}) = \exp\left(-\gamma \sum_{j=1}^{p} (\mathbf{x}_j - \mathbf{u}_j)^2\right)$$
$$= \exp\left(-\gamma \operatorname{dist}^2(\mathbf{x}, \mathbf{u})\right)$$

where $dist^2(\mathbf{x}, \mathbf{u})$ is the squared Euclidean distance between \mathbf{x} and \mathbf{u} .

- The Radial Basis kernel is large for test observations close to training observations.
- Notice that both cost and gamma are influential tuning parameters.

$$\hat{f}_{\text{radial}}(\mathbf{u}) = \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, K(\mathbf{x}_i, \mathbf{u})$$
$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i \, \tilde{y}_i \, \exp\left(-\gamma \, dist^2(\mathbf{x}_i, \mathbf{u})\right)$$

2.5 Unbalanced Data

Three primary approaches:

- 1. Use weights corresponding to prior class probabilities
 - See the class.weights argument in ?svm
 - Ensure the resulting score is what you want for unadjusted prediction.

$$\hat{\beta}_{\lambda} = \operatorname*{arg\,min}_{\beta} \left\{ \sum_{i=1}^{n} w_{i} \max\{0, 1 - \tilde{y}_{i} f_{i}(\beta)\} + \lambda \left\|\beta\right\|^{2} / 2 \right\}$$

- 2. Use a threshold on the score
 - E.g., choose label = +1 if: $\hat{f}(\mathbf{x}) > t$
 - The \hat{f} are the decision.values output of predict.svm
 - Its an attribute of the returned object
- 3. Sampling
 - under or over sample training data from one class to balance the label distribution.
 - The SVM (hinge) objective function is optimized at sign $[\Pr(Y = +1|X = x) 1/2]$.
 - Ensure the resulting score is what you want for unadjusted prediction.

3 Appendix: R Code

```
# Create Data
library (mvtnorm)
prior = c(.60, .40)
mu1 = c(2, 2)
mu2 = c(0, 0)
mu2.B = c(4, 4)
sigma1 = .5*matrix(c(2,-1, -1, 2), nrow=2)
sigma2 = .5*matrix(c(1,0,0,1), nrow=2)
set.seed(2020)
n = 200
n1 = rbinom(1, size=n, prob=prior[1])
n2 = n-n1
n2 = round(c(n2/2, n2/2))
X1 = rmvnorm(n1, mean=mu1, sigma = sigma1)
#> Error in rmvnorm(n1, mean = mu1, sigma = sigma1): unused argument (mean = mu1)
X2 = rmvnorm(n2[1], mean=mu2, sigma = sigma2)
#> Error in rmvnorm(n2[1], mean = mu2, sigma = sigma2): unused argument (mean = mu2)
X2 = rbind(X2, rmvnorm(n2[2], mean=mu2.B, sigma = sigma2))
#> Error in rmvnorm(n2[2], mean = mu2.B, sigma = sigma2): unused argument (mean = mu2.B)
labels = c("+1", "-1")
data_mix = bind_rows(
 !!labels[1] := as_tibble(X1, .name_repair = ~str_c("X", seq_along(.))),
 !!labels[2] := as_tibble(X2, .name_repair = ~str_c("X", seq_along(.))),
  .id = "class"
data_mix %>%
 ggplot(aes(X1, X2, color = class)) +
geom_point()
```



```
#> Parameters:
#> SVM-Type: C-classification
#> SVM-Kernel: polynomial
#> cost: 1
#>
      degree: 2
#>
      coef.0: 0
#>
#> Number of Support Vectors: 148
#>
#> ( 73 75 )
#>
#>
#> Number of Classes: 2
#>
#> Levels:
#> -1 +1
#: predictions
pred = predict(fit, data_mix[fold == 1,], decision.values = TRUE)
eval_data = tibble(
 outcome = data_mix$class[fold == 1],
  pred_hard = c(pred),
  pred_soft = as.numeric(attr(pred, "decision.values"))
# Notes:
# - using the `decision.values = TRUE` argument to get the scores. But set
# to default of FALSE to just get the hard classifications
# - the scores can be used to create rank or threshold-based metrics like ROC
# - There is also a way to get probability estimatates by setting
# svm(..., probability = TRUE) and predict(..., probability = TRUE).
# This attempts to convert scores to probabilities
#: evaluation
library(vardstick)
levs = c("+1", "-1") # set outcome of interest at first level
eval_data %>%
yardstick::roc_curve(truth = factor(outcome, levels=levs), estimate = pred_soft)
#> # A tibble: 42 x 3
#> .threshold specificity sensitivity
#> #> 1 -Inf
#> 2 -1.28 0
-1.28 0.0370
-1.27 0.0741
#> <dbl> <dbl> <dbl> 1 -Inf 0 1
                                    7
                                    1
                                    1
      -1.26
                0.148
#> 6
#> # ... with 36 more rows
eval_data %>%
yardstick::accuracy(truth = factor(outcome, levels=levs),
                     estimate = factor(pred_hard, levels=levs))
#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
```

```
#> 1 accuracy binary 0.825
# Notes:
# - the yardstick packages wants outcome variables and hard predictions be
# "factors" with the outcome of interest as the first level
# Radial basis SVM tuning parameter selection
#: create function to fit, predict, and evaluate
eval_svm <- function(data_train, data_test, cost, gamma) {</pre>
  fit = svm(factor(class) ~ X1 + X2,
           data = data_train,
           #: tuning parameters
           kernel = "radial",
           gamma = gamma,
           cost = cost
  #: predict
  pred = predict(fit, data_test, decision.values = TRUE)
  #: evaluate
  eval_data = tibble(
  outcome = data_test$class,
   pred_hard = c(pred),
   pred_soft = as.numeric(attr(pred, "decision.values"))
  levs = c("+1", "-1") # set outcome of interest at first level
  auroc = eval_data %>%
   yardstick::roc_auc(truth = factor(outcome, levels=levs), estimate = pred_soft)
  accuracy = eval_data %>%
     yardstick::accuracy(truth = factor(outcome, levels=levs),
                        estimate = factor(pred_hard, levels=levs))
  bind_rows(auroc, accuracy) %>%
    mutate(cost, gamma) # add tuning parameters
#: test it out
eval_svm(
  data_train = data_mix[fold != 1,],
  data_test = data_mix[fold == 1,],
 cost = 1,
 qamma = .1
#> # A tibble: 2 x 5
#> .metric .estimator .estimate cost gamma
```

```
#: using tidymodels
library(rsample)
eval_svm(
 data_train = training(cv_folds$splits[[1]]),
 data_test = testing(cv_folds$splits[[1]]),
 cost = 1,
 qamma = .1
#> # A tibble: 2 x 5
#> .metric .estimator .estimate cost gamma
#> <chr> <chr> <chr> dbl> <dbl> <dbl> <dbl> 1 roc_auc binary 0.974 1 0.1
#> 2 accuracy binary 0.95
#: create grid of tuning parameter values
tune_grid = expand_grid(
 cost = 10^{(-2:2)}
 gamma = c(.1, .5, 1)
#: loop over folds and grids
out = tibble()
for(k in unique(fold)){
  for(i in 1:nrow(tune_grid)){
    metrics = eval_svm(
     data_train = data_mix[fold != k,],
     data_test = data_mix[fold == k,],
     cost = tune_grid$cost[i],
     gamma = tune_grid$gamma[i]
    )
    out = bind_rows(out, metrics %>% mutate(fold = k) )
  }
#: average over folds
out %>%
 # calculate average performance over folds
 group_by(.metric, cost, gamma) %>%
 summarize(mu = mean(.estimate), .groups = "drop") %>%
 # spread data wider to see both metrics
  pivot_wider(names_from = .metric, values_from = mu) %>%
 # arrange by auc and then accuracy (if ties)
  arrange(desc(roc_auc), desc(accuracy))
#> # A tibble: 15 x 4
#> cost gamma accuracy roc_auc
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.1 1 0.972 0.995
#> 2 0.01 1 0.687 0.995
#> 3 100 0.5 0.975 0.994
#> 4 1
            1 0.980 0.994
#> 5 10 0.5 0.980 0.992
#> 6 10 1 0.980 0.989
```

```
#> # ... with 9 more rows
 # Notes:
# - can go back and modify grid to focus on best tuning region
#: using tidymodels and purrr
 #: function to search over grid
eval_svm_grid <- function(data, grid) {</pre>
 pmap_df(grid, function(cost, gamma) eval_svm(training(data), testing(data), cost, gamma))
# try it out
data = cv_folds$splits[[1]]
eval_svm_grid(data, head(tune_grid))
#> # A tibble: 12 x 5
#> .metric .estimator .estimate cost gamma
#> # ... with 6 more rows
#: loop over folds
map_df(cv_folds$splits, ~eval_svm_grid(data=.x, grid=tune_grid), .id="fold")
#> # A tibble: 300 x 6
#> fold .metric .estimator .estimate cost gamma
#> chr> chr> chr> chr> dbl> dbl> dbl> #> 1 1 roc_auc binary 0.980 0.01 0.1 #> 2 1 accuracy binary 0.675 0.01 0.1 #> 3 1 roc_auc binary 0.675 0.01 0.5 #> 4 1 accuracy binary 0.675 0.01 0.5 #> 5 1 roc_auc binary 0.974 0.01 1 #> 5 1 roc_auc binary 0.974 0.01 1 #> 6 1 accuracy binary 0.675 0.01 1 #> 6 1 accuracy binary 0.675 0.01 1
#> # ... with 294 more rows
```