Flip Flop Conversion

- 1. Consider the characteristic table of desired flip-flop.
- 2. Fill the excitation values inputs of given flip-flop for each combination of present
- 3. Get the simplified expressions for each excitation input. If necessary, use K maps for simplifying.
- 4. Draw the circuit diagram of desired flip-flop according to the simplified expressions using given flip-flop and necessary logic gates.

Ð	Q P.S	Q(++1) N.S
0	0	Ö
0		0
1	0	1
	1	

Step2: - Excitation table for available flip flop

SR flip flop excitation table

DOLLH) SR

	Q	Q CEHI)	SK
	· (5)	O	οX
-	Δ	1	10
	J	ח ו	0 1
/	ľ	ı ı	X o
_			

Combine step 1 & step 2 derved flip flop truthtable & Sh encitation of

			V_	_			
Degnal	\mathcal{D}	flip fl	op trutt Q(t+1)		exci S	itati R	on ilps
0	0	O	0		0	X	
1	D	1	6		Ó	1	
2	1	O	1		1	0	
3		1			X	0	

Step4: Get simplified expression for excitation ifps (SLR) either by using K map (R) Biolean Raws

SR Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of SR flip-flop to other flip-flops.

- SR flip-flop to D flip-flop
- · SR flip-flop to JK flip-flop
- SR flip-flop to T flip-flop

SR flip-flop to D flip-flop conversion

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the following characteristic table of D flip-flop.

D flip-flop input	Present State	Next State
D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

- 1. We know that SR flip-flop has two inputs S & R.
- 2. So, write down the excitation values of SR flip-flop for each combination of present state and next state values.
- 3. The following table shows the characteristic table of D flip-flop along with the excitation inputs of SR flip-flop.

D flip-flop input	Present State	Next State	SR flip-flop inputs	
D	Q(t)	Q(t+1)	S	R
0	0	0	0	Х
0	1	0	0	1
1	0	1	1	0
1	1	1	X	0

We can use 2 variable K-Maps for getting simplified expressions for these inputs. The k-Maps for S & R are shown below.

So, we got S = D & R = D' after simplifying. The circuit diagram of D flip-flop is shown in the following figure.

This circuit consists of SR flip-flop and an inverter. This inverter produces an output, which is complement of input, D. So, the overall circuit has single input, D and two outputs Q(t) & Q(t'). Hence, it is a D flip-flop. Similarly, you can do other two conversions.

SR flip to JK flip flop

SR flip flop to T flip flop

	T flip flop			excitation ilp
	T	Q	Q(t+1)	S R
	0	ъ	O	0 X
	0	1	1	X O
1	1	0	1 /	1 0
	ı	1	0	0 1

SR to T flip flop

D Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of D flip-flop to other flip-flops.

- D flip-flop to T flip-flop
- · D flip-flop to SR flip-flop
- D flip-flop to JK flip-flop

D flip-flop to T flip-flop conversion

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the following characteristic table of T flip-flop.

T flip-flop input	Present State	Next State
Т	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

- 1. We know that D flip-flop has single input D.
- 2. So, write down the excitation values of D flip-flop for each combination of present state and next state values.

The following table shows the characteristic table of T flip-flop along with the excitation input of D flip-flop.

T flip-flop input	Present State	Next State	D flip-flop input
Т	Q(t)	Q(t+1)	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

From the above table, we can directly write the Boolean function of D as below. $D=T\bigoplus Q(t)$

So, we require a two input Exclusive-OR gate along with D flip-flop. The circuit diagram of T flip-flop is shown in the following figure.

This circuit consists of D flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an

output, which is Ex-OR of T and Q(t). So, the overall circuit has single input, T and two outputs Q(t) & Q(t). Hence, it is a T flip-flop.

JK Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of JK flip-flop to other flip-flops.

- JK flip-flop to T flip-flop
- · JK flip-flop to D flip-flop
- · JK flip-flop to SR flip-flop

JK flip-flop to T flip-flop conversion

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the following characteristic table of T flip-flop.

T flip-flop input	Present State	Next State
Т	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

We know that JK flip-flop has two inputs J & K. So, write down the excitation values of JK flip-flop for each combination of present state and next state values. The following table shows the characteristic table of T flip-flop along with the excitation inputs of JK flipflop.

T flip-flop input	Present State	Next State	JK flip-flop inputs	
Т	Q tt	Q t+1t+1	J	K
0	0	0	0	Х
0	1	1	X	0
1	0	1	1	Х
1	1	0	X	1

From the above table, we can write the Boolean functions for each input as below.

We can use 2 variable K-Maps for getting simplified expressions for these two inputs. The k-Maps for J & K are shown below.

So, we got, J = T & K = T after simplifying. The circuit diagram of T flip-flop is shown in the following figure.

This circuit consists of JK flip-flop only. It doesn't require any other gates. Just connect the same input T to both J & K. So, the overall circuit has single input, T and two outputs Q(t) & Q(t'). Hence, it is a T flip-flop. Similarly, you can do other two conversions.

T Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of T flip-flop to other flip-flops.

- · T flip-flop to D flip-flop
- · T flip-flop to SR flip-flop
- T flip-flop to JK flip-flop

T flip-flop to D flip-flop conversion

- 1. The given flip-flop is T flip-flop and the desired flip-flop is D flip-flop.
- 2. Consider the characteristic table of D flip-flop and write down the excitation values of T flip-flop for each combination of present state and next state values.

The following table shows the characteristic table of D flip-flop along with the excitation input of T flip-flop.

D flip-flop input	Present State	Next State	T flip-flop input
D	Q(t)	Q(t+1)	Т
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

From the above table, we can directly write the Boolean function of T as below. $T=D\bigoplus Q(t)$

So, we require a two input Exclusive-OR gate along with T flip-flop. The circuit diagram of D flip-flop is shown in the following figure.

This circuit consists of T flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, which is Ex-OR of D and Q(t). So, the overall circuit has single input, D and two outputs Q(t) & Q(t'). Hence, it is a D flip-flop. Similarly, you can do other two conversions.