Validation of ATLAS_2106_01676

November 17, 2021

AUTHOR: Junjie Cao, Liangliang Shang, Yuanfang Yue, Di Zhang, Pengxuan Zhu

EMAIL: junjiec@itp.ac.cn, shlwell1988@gmail.com,

yuanfang405@gmail.com,

dz 481655@gmail.com,

zhupx99@icloud.com

We validated our code for all Signal Regions (SRs) in ATLAS_2106_01676 using CheckMATE-2.0.29. We considered $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production. The masses of other charginos and neutralinos apart from the bino-like $\tilde{\chi}_1^0$ and wino-like $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ are set to 2.5 TeV, thus leaving kinematically allowed decay: $\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^{\pm}$, $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z/h$. For the validation of every point, we generated 100000 events using MG5_aMC_v3_2_0. To show the process of events generating, we take $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production of $(m_{\tilde{\chi}_1^{\pm}}/m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^0}) = (300 \text{ GeV}, 200 \text{ GeV})$ as an example.

add process p p > n2 x1- j j, n2 > l- l+ n1, x1- > w- > l- vl~ n1

In the run_card.dat, we set the following information and others are kept default:

In the param_card.dat, we set the following information and others are kept default:

```
Block mass
1000022 \ 2.0000000 e + 02 \# Mneu1
1000023 3.0000000e+02 \# Mneu2
1000024 3.0000000e+02 \# Mch1
1000025 -2.50000e +03 \# Mneu3
1000037 \ 2.500000 e + 03 \# Mch2
Block nmix # Neutralino Mixing Matrix M
          9.86364430E-01
                             # N_11 ^M
   2
         -5.31103553E-02
                             \# N_{12}M
   3
          1.46433995E-01
                             # N<sub>-</sub>13 M
         -5.31186117E-02
                             \# N_{14}M
   4
2
   1
          9.93505358E-02
                             \# N_{-}21^{M}
2
   2
          9.44949299E-01
                             \# N_22^M
2
         -2.69846720E-01
                              \# N_23^M
          1.56150698E-01
                             \# N_24^M
Block umix # Chargino Mixing Matrix U^M
          9.16834859E-01
                             # U_11^M
   1
   2
1
         -3.99266629E-01
                             \# U_{-}12^{M}
2
   1
          3.99266629E-01
                              \# U_{-}21^{M}
          9.16834859E-01
                              \# U_22^{\text{M}}
Block vmix # Chargino Mixing Matrix V^M
   1
          9.72557835E-01
                             \# V_{11}M
                             \# V_12^M
1
   2
         -2.32661249E-01
2
                             \# V_21^M
   1
          2.32661249E-01
2
   2
          9.72557835E-01
                             \# V_22^M
```

In the pythia8_card.dat, we set:

```
\label{eq:merging:Process} \begin{array}{ll} Merging: Process &= pp > \{ch1-,1000015\} \{ch1+,-1000015\} \{n2\,,\ 1000023\} \\ Merging: mayRemoveDecayProducts=on \end{array}
```

Table 1: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(300,200)$ GeV and $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(600,100)$ GeV.

Point $m(\bar{\chi}_{2}^{0}/\bar{\chi}_{1}^{+}, \bar{\chi}_{0}^{0})$ (300, 200) GeV (600, 100) GeV Generated Events ATLAS CheckMATE ATLAS CheckMATE Selection $\mathcal{L} \times \sigma \times BF$ Silt.eff 1760 1760 92 92 $\mathcal{L} \times \sigma \times BF$ Silt.eff 1322 1322 69 69 sisolated leptons lepton $p_{1}^{1,2,3} > 25,20,10$ GeV 227 221.55 23.9 22.64 Emisso 50 GeV 222 221.55 23.3 22.64 Trigger selection 222 221.55 23.3 22.64 $n_{b-jets} = 0$ 209 205.99 21.9 20.92 Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.92 Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.92 Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.92 Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.92 Resonance veto $m_{\ell\ell} > 12$ GeV 203 196.61 21.7 20.7 </th <th>Process</th> <th>pp</th> <th>$\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow$</th> <th>$W^{\pm}\tilde{\chi}_{1}^{0},\tilde{\chi}_{2}^{0}$</th> <th>$\to Z\tilde{\chi}^0_1$</th>	Process	pp	$\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow$	$W^{\pm}\tilde{\chi}_{1}^{0},\tilde{\chi}_{2}^{0}$	$\to Z\tilde{\chi}^0_1$
Generated Events ATLAS CheckMATE ATLAS CheckMATE Selection $L × σ × BF$ 1760 1760 92 92 $L × σ × BF$ 1160 1760 92 92 $L × σ × BF$ 1160ffff 1322 1322 69 69 3 isolated leptons 1227 221.55 23.9 22.64 Empton $p_1^{12.3} > 25.20,10$ GeV 227 221.55 23.7 22.64 Empton $p_1^{12.3} > 25.20,10$ GeV 222 221.55 23.3 22.64 Empton $p_1^{12.3} > 25.20,10$ GeV 209 20.59 21.9 20.264 Tigger selection 222 221.55 23.3 22.64 Trigger selection 220 205.11 21.9 20.91 Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.91 Resonance veto $m_{\ell\ell} > 12$ GeV 203 196.61 21.7 20.78 $m_{\ell} \in [75, 105]$ GeV 160 187.62 20.1 19.09 9.09 SRWZ - 1<	Point $m(\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$	(300,	200) GeV	(600,	100) GeV
Selection L × σ × BF 1760 1760 92 92 L × σ × BF × filt.eff 1322 1322 69 69 3 isolated leptons lepton $p_T^{1,2,3} > 25,20,10$ GeV 227 221.55 23.9 22.64 Emiss > 50 GeV x n _{SFOS} ≥ 1 226 221.55 23.3 22.64 n _{b−jets} = 0 209 205.99 21.9 20.92 Resonance veto m _{ℓℓ} > 12 GeV 209 205.11 21.9 20.91 lm _{3c} − m _Z > 15 GeV 203 196.61 21.7 20.78 m _{ℓℓ} ∈ [75,105] GeV 196 187.62 20.1 19.06 n̄ _{gots} = 0 76.4 82.99 7.72 7.98 m _T ∈ [100,160] GeV 26.7 29.19 0.9 0.97 SRWZ − 1 20.9 21.25 0.09 0.12 SRWZ − 2 4.86 6.93 0.11 0.14 SRWZ − 3 0.78 0.78 0.16 0.15 SRWZ − 4		,			,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ATLAS	CheckMATE	ATLAS	CheckMATE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selection				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{L} \times \sigma \times \mathrm{BF}$	1760	1760	92	92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{L} \times \sigma \times BF \times filt.eff$	1322	1322	69	69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lepton $p_T^{1,2,3} > 25,20,10 \text{ GeV}$	227	221.55	23.9	22.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_{\rm T}^{ m miss} > 50~{ m GeV}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n_{\rm SFOS} \ge 1$	1	221.55		22.64
Resonance veto $m_{\ell\ell} > 12$ GeV 209 205.11 21.9 20.91 $m_{3\ell} - m_Z > 15$ GeV 203 196.61 21.7 20.78 $m_{\ell\ell} ∈ [75, 105]$ GeV 196 187.62 20.1 19.06 $n_{jets} = 0$ 76.4 82.99 7.72 7.98 $m_T ∈ [100, 160]$ GeV 26.7 29.19 0.9 0.97 SRWZ − 1 20.9 21.25 0.09 0.12 SRWZ − 2 4.86 6.93 0.11 0.14 SRWZ − 3 0.78 0.78 0.16 0.15 SRWZ − 3 0.78 0.78 0.16 0.15 SRWZ − 4 0.14 0.23 0.54 0.55 $m_T > 160$ GeV 5.80 5.43 5.11 5.75 SRWZ − 5 4.64 5.23 0.37 0.5 SRWZ − 6 0.16 0.10 0.49 0.56 SRWZ − 7 0 0 0 2.14 2.15 $m_T ∈ [100, 160]$ GeV 29.6	Trigger selection				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		205.99		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					=
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n_{\rm jets} > 0, H_{\rm T} > 200 \; {\rm GeV}$	22.2	17.33	2.40	2.25
$m_T > 100 \text{ GeV}$ 10.8 8.29 0.47 0.49 $SR^{WZ} - 17$ 2.53 2.06 0.02 0.05 $SR^{WZ} - 18$ 3.12 3.24 0.11 0.13 $SR^{WZ} - 19$ 1.09 0.56 0.12 0.13		20.9	16.32	0.65	0.51
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$m_{\rm T} > 100~{\rm GeV}$	10.8	8.29	0.47	0.49
$SR^{WZ} - 19$ 1.09 0.56 0.12 0.13		2.53	2.06	0.02	0.05
*****		3.12	3.24	0.11	0.13
$SR^{WZ} - 20$ 1.13 0.16 0.13 0.14		1.09	0.56	0.12	0.13
	$\mathrm{SR^{WZ}}-20$	1.13	0.16	0.13	0.14

Table 2: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(190,60)~{\rm GeV}.$

Process	$pp \to \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \to W^{\pm} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0} \to h \tilde{\chi}_{1}^{0}$							
Point $m(\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$	(190, 60) GeV						
Generated Events	ATRI A C	500,000						
C-14:	ATLAS	CheckMATE						
Selection	10007	10007						
$\mathcal{L} \times \sigma \times BF$	10927	10927						
$\mathcal{L} \times \sigma \times BF \times \text{filt.eff}$	1174	1174						
3 isolated leptons	100	170.00						
lepton $p_{T}^{1,2,3} > 25,20,10 \text{ GeV}$	192	172.23						
$E_{\rm T}^{\rm miss} > 50 {\rm ~GeV}$	100	170.00						
Trigger selection	186	172.23						
$n_{\text{b-jets}} = 0$	171	161.34						
$n_{\rm SFOS} \ge 1$	137	122.22						
Resonance veto $m_{\ell\ell} > 12 \text{ GeV}$	133	114.87						
$ m_{3\ell} - m_Z > 15 \text{ GeV}$	110	92.51						
$m_{\ell\ell} < 75 \text{ GeV}$	56.2	55.74						
$n_{\text{jets}} = 0 (\mathbf{SR}_{\text{low}-\text{m}_{\text{II}}-0_{\text{j}}}^{\text{Wh}})$	22.3	30.30						
$ m SR_{SFOS}^{WII}-1$	8.26	11.03						
${f SR}_{ m SFOS}^{ m Wh}-{f 2}$	1.57	1.03						
${ m SR}_{ m SFOS}^{ m Wh} - {f 3}$	0.50	0.59						
${ m SR}_{ m SFOS}^{ m Wh} - 4$	5.97	6.32						
$ m SR_{SFOS}^{Wh} - 5$	0.64	4.41						
${ m SR}_{ m SEOS}^{ m Wh}-6$	2.67	2.5						
${ m SR_{SEOS}^{Wh}}-7$	2.75	4.41						
$n_{\text{jets}} > 0, H_{\text{T}} < 200 \text{ GeV} (\mathbf{SR}_{\text{low}-m_{\text{II}}-n_{\text{j}}}^{\text{Wh}})$	26.5	22.65						
$ m SR_{SFOS}^{Wh} - 8$	2.95	2.50						
${f SR}_{f SFOS}^{f Wh} - {f 9}$	5.28	5.00						
${ m SR}_{ m SFOS}^{ m Wh} - { m 10}$	1.59	2.50						
${ m SR}_{ m SFOS}^{ m Wh} - 11$	0.63	1.18						
${ m SR}_{ m SFOS}^{ m Wh} - 12$	5.55	3.23						
${ m SR}_{ m SFOS}^{ m Wh} - {f 13}$	2.91	3.83						
${ m SR_{SFOS}^{Wh}}-14$	0.68	0.44						
$egin{array}{c} \mathbf{SR}_{\mathrm{SFOS}}^{\mathrm{Nh}} - 15 \ \mathbf{SR}_{\mathrm{SFOS}}^{\mathrm{Wh}} - 16 \end{array}$	5.48	2.65						
	1.39	1.32						
$n_{\rm SFOS} = 0$	34	38.82						
$n_{\rm jets} = 0$	14.8	22.80						
$p_{\mathrm{T}}^{\ell_3} > 15 \; \mathrm{GeV}$	12.2	19.71						
E_{T}^{miss} significance > 8	5.36	7.94						
$\Delta R_{\rm OS,near} < 1.2$	4.73	5.74						
$n_{\mathrm{jets}} \in [1, 2]$	15.6	14.56						
$p_{\rm T}^{\ell_3} > 20 {\rm ~GeV}$	9.4	10.74						
E_{T}^{miss} significance > 8	3.91	2.65						
$\Delta R_{\rm OS,near} < 1.0$	2.84	1.18						
${f SR}_{ m DFOS}^{ m Wh}$	7.57	6.91						

Table 3: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(250,170)~{\rm GeV}.$

$\frac{1}{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \to WZ\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \text{wino/bino(+)}}$	I			m(v	$\frac{\pm}{1}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$	(250	170\C.	oV.							
$\chi_1 \chi_2 \rightarrow W Z \chi_1 \chi_1$ wino/bino(+)				ATLA		-(250 <u>,</u>	110)G	C V	(Check!	MATE				
$\mathcal{L} \times \sigma \times \mathrm{BF}$					3559					35					
$\mathcal{L} \times \sigma \times BF \times filt.eff$	1638									1638					
3 isolated leptons		434													
b veto		367										408			
Trigger					307					34	3				
$\mathrm{m}_{\ell\ell},\mathrm{m}_{\ell\ell}^{max}[\mathrm{GeV}]$	<75				299										
		f1		f2		g1		g2	f1	f2	g1	g2			
$ \begin{array}{ccc} \textbf{Common cuts} & \text{SR}_{\text{low} \rlap{/}\!\rlap{E}_T}^{\text{offWZ}} \\ \end{array} $															
$\mathrm{m}_{\ell\ell}^{\mathrm{min}}[\mathrm{GeV}]$	[40, 75]				239					16					
lepton $P_T^{1,2,3}[GeV]$	>15				189					13					
FNP lepton cleaning					146					11					
$m_{\ell\ell}^{max}[GeV]$	[40, 60]		50.0		146		07.0		4-	11					
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[40, 60]		58.2		[60, 75]		87.6		47		64				
$m_{T2}^{100}[GeV]$			58.2				87.6		47		64				
$\frac{\min \Delta R}{C_{\text{outs}} = \text{CDoffWZ}}$ 0:			58.2				87.6		47	.2	64	.0			
Cuts $SR_{low \not E_T}^{offWZ} - 0j$			0.1.1		0		FO 1		20	_	0.0				
nPT>30GeV njets	0		34.4		0		52.1		29		39				
E _T ^{miss} [GeV]	<50		15.8		< 50		26.6		9.		15				
E _T ^{miss} signif	>1.5		13.5		>1.5		22.6		9.		15				
$egin{array}{l} \mathrm{m}_{3\ell}[\mathrm{GeV}] \ \mathrm{m}_{\mathrm{T}}^{\mathrm{minmll}}[\mathrm{GeV}] \end{array}$	>100 <60	5.92	10.5 > 90	1 57	>100 <60	11 9	21.0 > 90	9 14	6.		13	$\frac{2.5}{2.5}$			
III _T [GeV]				1.57		11.3		3.14	2.85	1.4	7.3				
profession of the profession o	<1.4	5.11	<1.4	1.44	<1.4	9.87	<1.4	2.99	2.73	1.36	7.1	2.4			
$\frac{\text{Cuts}}{\text{Cuts}} \frac{\text{SR}_{\text{low}}^{\text{offWZ}} - \text{nj}}{\text{SR}_{\text{cev}}^{\text{offWZ}}}$			00.7		. 0		05.4		1 =	-	0.4				
nPT>30GeV njets	>0		23.7		>0		35.4		17		24				
$\mathrm{E_{T}^{miss}[GeV]}$	<200		21.2		<200		31.0		15		20				
${ m E_T^{miss}}$ signif ${ m m_T^{minmll}[GeV]}$	>3.0 <60	E 00	17.9 > 90	7.00	>3.0	0 00	25.2	10.9	14		18	2.6			
III _T [GeV]		5.88		7.08	<60	8.86	>90	10.3	5.2	1.6	6.7				
$\frac{p_{\mathrm{T}}^{\mathrm{lep}}/\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}}{\mathrm{Costar}}$	<1.2	4.35	<1.2	6.17	<1.2	7.15	<1.2	9.47	4.8	1.4	6.5	2.5			
$\frac{P_T / E_T}{\text{Cuts}} \frac{\text{SR}_{\text{high} \not E_T}^{\text{ffWZ}} - 0j}{\text{SR}_{\text{1-2-3}}^{1.2-3}}$	[07 47 40]				o= 4					20					
lepton $P_{T}^{1,2,3}$	[25, 15, 10]		01.0		274		100		71	20					
$\min_{\ell \ell} [\text{GeV}]$	[40, 60]		91.8		[60, 75]		132		71		88				
$rac{ ext{m}_{172}^{100}[ext{GeV}]}{ ext{m}_{jets}^{PT}{>}30 ext{GeV}}$	<160 0		81.8		$< 175 \\ 0$		131		63		87				
n _{jets}	1		49.6		-		77.9		37		53				
${ m E_T^{miss}[GeV]} \ { m E_T^{miss}signif}$	>50 >3.0		$24.5 \\ 23.4$		>50 >3.0		$37.1 \\ 35.5$		23 23		32				
${ m m_T^{minmll}[GeV]}$	>3.0 <70	9.62	>90	8.00	>3.0 <70	14.9	>90	12.1	13.1		32 16.8	7.6			
$\begin{array}{c c} \mathbf{m_T} & [\text{GeV}] \\ \hline \mathbf{Cuts} & \mathrm{SR}_{\mathrm{high}\cancel{E}_T}^{\mathrm{offWZ}} - \mathrm{nj} \end{array}$	<10	9.02	/30	0.00	<u> </u>	14.3	/30	14.1	10.1	5.0	10.0	7.0			
Cuts $\operatorname{SR}_{\operatorname{high} E_T} = \operatorname{Hj}$		f				or.			f		,	v			
lepton $P_T^{1,2,3}$	[4.5, 3]	1			299	g			I	20	15	5			
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[4.5, 5]		100		[60, 75]		139		7:		ю 89	1.3			
$m_{\ell\ell}^{100}[\text{GeV}]$	[40, 60] <160		89.2		(175)		138		64		88				
$egin{array}{l} \mathrm{m}_{\mathrm{T2}}^{100}[\mathrm{GeV}] \\ \mathrm{m}_{\mathrm{T2}}^{100}[\mathrm{GeV}] \\ \mathrm{n}_{iets}^{PT>30\mathrm{GeV}} \end{array}$	>0		35.6		>0		56.7		26		34				
${ m E}_{ m T}^{ m miss}[{ m GeV}]$	>200		3.78		>200		7.48		4.2		6.				
$\mathrm{E_{T}^{T}}$ [GeV] $\mathrm{E_{T}^{miss}}$ signif	>3.0		3.78		>3.0		7.35		4.2		6.				
$p_{ m T}^{ m lep}/{ m E}_{ m T}^{ m miss}$	<1.0		3.67		<1.0		7.22		4.2		6.				
<i>P</i> T / 12T	1 1.0		0.01		×1.0		1.44		7.2	-1	0.	10			

Table 4: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(125,85)~{\rm GeV}.$

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$ wino/bino(+)	$m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (125, 85) \text{GeV}$													
	ATLAS CheckMATE													
$\mathcal{L} \times \sigma \times \mathrm{BF}$		45634												
$\mathcal{L} \times \sigma \times BF \times filt.eff$	16811									16811				
3 isolated leptons					2660					3110				
b veto					2550					2961				
Trigger					1810						51			
$\mathrm{m}_{\ell\ell},\mathrm{m}_{\ell\ell}^{max}[\mathrm{GeV}]$	<75				1790						67			
$m_{\ell\ell}, m_{\ell\ell}$ [601]	1.0	b		С	1100	d		e	b	c	d	e		
$ \begin{array}{ccc} \mathbf{Common} \ \mathbf{cuts} & \mathrm{SR}^{\mathrm{offWZ}}_{\mathrm{low} \rlap{/}{E}_T} \end{array} $				C		•		Ü		Ü	•			
$\mathrm{m}_{\ell\ell}^{\mathrm{min}}[\mathrm{GeV}]$	[12, 40]				1700					17	55			
lepton $P_T^{1,2,3}[GeV]$	>10				1440						12			
FNP lepton cleaning	710				1120						36			
$m_{\ell\ell}^{max}[GeV]$	<60				1020						53			
$rac{m_{\ell\ell}}{m_{\ell\ell}^{min}}[ext{GeV}]$	[12, 15]	47.0	[15, 20]	119	[20, 30]	406	[30, 40]	452	35.82	88.07	322	432		
$\mathrm{m}_{ ext{T2}}^{100}[\mathrm{GeV}]$	<115	19.4	<120	74.7	<130	374	[50, 40]	452	17.91	56.02	297.06	432		
$\min_{\mathbf{T}^2} \lfloor \operatorname{GeV} \rfloor$	<1.6	19.4	<1.6	73.2	<1.6	295		452	17.91	56.02	248.33	432		
	<1.0	19.4	₹1.0	10.2	<1.0	290		402	11.91	50.02	240.00	404		
Cuts $SR_{low}^{offWZ} - 0j$			_		_		_							
nPT>30GeV	0	12.2	0	49.5	0	186	0	291	11.73	42.29	171.05	316		
$ m E_{T}^{miss}[GeV]$	< 50	11.2	< 50	42.9	< 50	147	< 50	242	10.31	36.13	124.48	255		
$\mathrm{E_{T}^{miss}}$ signif	>1.5	8.57	> 1.5	34.7	> 1.5	123	> 1.5	182	9.84	33.76	86.64	201		
$\mathrm{m}_{3\ell}[\mathrm{GeV}]$		8.57		34.7		123		182	9.84	33.76	86.64	201		
$ m m_T^{minmll} [GeV]$	< 50	8.16	< 50	32.6	< 50	97.8	< 60	158	6.06	21.9	54.89	151		
$p_{\mathrm{T}}^{\mathrm{lep}}/\mathrm{E_{\mathrm{T}}^{\mathrm{miss}}}$	<1.1	5.27	< 1.1	22.7	< 1.1	64.3	< 1.3	138	5.58	21.9	39.32	123		
$\frac{p_{\mathrm{T}} / E_{\mathrm{T}}}{\mathbf{Cuts}} \frac{\mathrm{SR}_{\mathrm{low}}^{\mathrm{offWZ}} - \mathrm{nj}}{\mathrm{SR}_{\mathrm{low}}^{\mathrm{TD}} \cdot 200 \mathrm{N}}$														
$n_{jets}^{PT>30 { m GeV}}$	>0	7.2	>0	23.8	>0	110	>0	161	6.18	13.73	77.28	116		
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	<200	6.52	< 200	21.3	< 200	102	< 200	150	6.18	13.25	75.36	113		
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}\mathrm{signif}$	>3.0	4.72	>3.0	16.1	>3.0	76.3	>3.0	106	6.18	12.29	60.23	92.92		
${ m m_T^{minmll}[GeV]}$	< 50	2.85	< 50	10.7	< 50	42.9	<60	65.7	1.43	2.81	9.85	22.06		
nlep /Fmiss	<1.0	2.54	<1.0	10.6	<1.0	36.5	<1.0	59.9	1.43	2.81	9.85	21.6		
$\frac{p_{\mathrm{T}}^{\mathrm{orb}}/\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}}{\mathbf{Cuts}} \frac{\mathrm{SR}_{\mathrm{high}}^{\mathrm{offWZ}}}{\mathrm{SR}_{\mathrm{high}}^{\mathrm{offWZ}}} - 0\mathrm{j}$	V1.0	2.01	V1.0	10.0	V1.0	00.0	V1.0	00.0	1.10	2.01	0.00	21.0		
$\begin{array}{ccc} & & & & & & \\ \operatorname{lepton} & \operatorname{P}_{\mathrm{T}}^{1,2,3} & & & & & \\ \end{array}$	[25, 15, 10]				1170					89	96			
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[12, 15]	44.0	[15, 20]	120	[20, 30]	422	[30, 40]	541	29.36	84.76	354	442		
$\mathrm{m}_{\mathrm{T2}}^{\ell\ell}[\mathrm{GeV}]$	<115	19.1	<120	76.3	<130	388	<140	540	14.7	54.56	329	441		
n_{jets}^{TZ} 30GeV	0	11.6	0	49.6	0	239	0	341	9.93	40.29	234	306		
${ m E}_{ m T}^{ m rjets} [{ m GeV}]$	>50	2.05	>50	10.3	>50	50.8	>50	67.0	1.42	7.62	60.61	72.13		
E _T [GeV] E _T signif	>3.0	1.80	>3.0	9.37	>3.0	46.1	>3.0	60.5	1.42	7.62	60.61	71.65		
${ m m_T^{minmll}[GeV]}$	<50	1.74	<50	8.84	<60	43.3	<60	52.4	0	1.89	21.0	23.42		
$\begin{array}{c c} \mathbf{m_T} & [\mathbf{GeV}] \\ \hline \mathbf{Cuts} & \mathrm{SR_{high}^{offWZ}} - \mathrm{nj} \end{array}$	\00	1.17		0.04	<u> </u>	10.0		02.4		1.00	21.0	20.42		
Cuts $\operatorname{Sit}_{\operatorname{high} \not E_T} = \operatorname{Hj}$	[4 = 0]				1700					1.0				
lepton $P_T^{1,2,3}$	[4.5, 3] 1790								04.69		744	704		
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[12, 15]	83.5	[15, 20]	207	[20, 30]	661	[30, 40]	746	94.63	222.02	744	784		
$egin{array}{l} \mathrm{m}_{\mathrm{T}0}^{100} [\mathrm{GeV}] \\ \mathrm{m}_{\mathrm{T}2}^{100} [\mathrm{GeV}] \\ \mathrm{n}_{iets}^{PT > 30 \mathrm{GeV}} \end{array}$	<115	34.8	<130	131	<120	607	<140	744	45.15	141.84	692	782		
	>0	15.8	>0	52.7	>0	252	>0	287	10.86	34.98	195	220		
E _T miss [GeV]	>200	2.09	>200	5.85	>200	22.3	>200	24.3	0	1.89	9.57	7.18		
E_{L}^{miss} signif	>3.0	2.09	> 3.0	5.85	> 3.0	22.3	> 3.0	24.1	0	1.89	9.57	7.18		
$p_{ m T}^{ m lep}/{ m E}_{ m T}^{ m miss}$	< 0.2	1.99	< 0.3	5.39	< 0.3	14.6	< 0.3	13.8	0	1.41	4.3	4.3		

Table 5: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(185,125)~{\rm GeV}.$

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$ higssino				-	$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ =	=(185	125)GeV						
$\chi_1 \chi_2$, $\chi_2 \chi_1 \chi_1$ ingoing		ATLAS CheckMATE											
$\mathcal{L} \times \sigma \times \mathrm{BF}$				111 211	3912)12		
$\mathcal{L} \times \sigma \times \mathrm{BF} \times \mathrm{filt.eff}$					1550						550		
3 isolated leptons					392						09		
b veto					374						88		
Trigger		280 304											
$\mathrm{m}_{\ell\ell},\mathrm{m}_{\ell\ell}^{max}[\mathrm{GeV}]$	<75												
$m_{\ell\ell}, m_{\ell\ell}$ [GeV]	(10	b		c	200	d		e	b	c	81 d	e	
Common cuts SR _{low Ex}												C	
	[12, 40]				165					16	94		
$m_{\ell\ell}^{\min}[GeV]$	' '												
lepton $P_T^{1,2,3}[GeV]$	>10				111						20		
FNP lepton cleaning	.00				85.2						9.9		
$m_{\ell\ell}^{max}[GeV]$	<60	2 52	[15 00]	10.9	79.3	20.0	[00 40]	20.0	4 50		.34	40.70	
$m_{\ell\ell}^{min}[GeV]$	[12, 15]	3.53	[15, 20]	10.3	[20, 30]	32.6	[30, 40]	32.9	4.58	12.23	34.74	40.79	
$m_{T2}^{100} [GeV]$	<115	0.681	<120	5.61	<130	26.3		32.9	1.41	6.14	29.70	40.79	
$\frac{\min \Delta R}{G}$	<1.6	0.681	< 1.6	5.55	< 1.6	23.2		32.9	1.41	6.14	27.13	40.79	
Cuts $SR_{low}^{offWZ} - 0j$													
$n_{jets}^{PT>30 \text{GeV}}$	0	0.534	0	3.84	0	13.3	0	21.3	1.05	4.36	19.31	27.78	
$\mathrm{E_{T}^{miss}[GeV]}$	< 50	0.465	< 50	2.70	< 50	7.47	< 50	12.8	0.68	2.43	9.88	14.05	
E _T signif	>1.5	0.465	> 1.5	2.37	> 1.5	6.86	> 1.5	11.6	0.64	2.26	9.07	12.96	
$\mathrm{m}_{3\ell}[\mathrm{GeV}]$		0.465		2.37		6.86		11.6	0.64	2.26	9.07	12.96	
$ m m_T^{minmll} [GeV]$	< 50	0.411	< 50	2.22	< 50	5.44	< 60	9.46	0.64	2.06	7.78	11.35	
$p_{ m T}^{ m lep}/{ m E}_{ m T}^{ m miss}$	<1.1	0.275	<1.1	1.47	<1.1	2.98	< 1.3	8.04	0.40	0.85	3.51	8.08	
Cuts $SR_{low}^{offWZ} - nj$													
$n_{jets}^{PT>30 \text{GeV}}$	>0	0.147	>0	1.71	>0	9.91	>0	11.7	0.36	1.78	7.82	13.00	
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	<200	0.122	< 200	1.54	< 200	8.99	< 200	10.3	0.36	1.69	7.62	12.64	
E _T ^{miss} signif	>3.0	0.083	> 3.0	1.11	>3.0	6.84	> 3.0	8.33	0.28	1.53	6.56	10.13	
${ m m_T^{minmll}[GeV]}$	< 50	0.066	< 50	0.886	< 50	4.62	< 60	5.97	0.24	0.97	4.62	7.02	
$p_{ m T}^{ m lep}/{ m E_{ m T}^{ m miss}}$	<1.0	0.066	< 1.0	0.783	< 1.0	3.64	< 1.0	4.53	0.16	0.93	3.52	5.69	
$\frac{\text{Cuts} \text{SR}_{\text{high} \cancel{E}_T}^{\text{offWZ}} - 0j}{\text{Cuts} \text{SR}_{\text{high} \cancel{E}_T}^{\text{offWZ}} - 0j}$	1210												
lepton $P_{T}^{1,2,3}$	[25, 15, 10]				152					11	56		
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	1	9 09	[15 20]	11 5	[20, 30]	36.9	[90 40]	41.9	4.87	13.17	37.52	47.27	
$m_{\ell\ell}$ [GeV]	[12, 15]	$\frac{3.83}{1.24}$	[15, 20] < 120	$11.5 \\ 6.19$	[20, 30] <130	30.5	[30, 40] < 140	41.9	1.53	6.91	$\frac{37.32}{32.07}$	45.61	
$\mathrm{m}_{100}^{\ell\ell}[\mathrm{GeV}]$ $\mathrm{m}_{100}^{100}[\mathrm{GeV}]$ $\mathrm{n}_{iots}^{PT} > 30\mathrm{GeV}$	0 <113	0.825	0	4.09	0	17.2	0	25.2	1.12	4.82	22.26	30.19	
E ^{miss} _T [GeV]	>50	0.205	>50	1.75	>50	8.1	>50	11.3	0.44	2.39	11.71	15.29	
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}\mathrm{signif} \ \mathrm{m}_{\mathrm{T}}^{\mathrm{minmll}}[\mathrm{GeV}]$	>3.0	0.205	>3.0	1.64	>3.0	7.79	>3.0	11.0	0.44	2.39	11.71	15.29	
m _T GeV	< 50	0.205	< 50	1.54	< 60	7.39	<60	10.1	0.44	2.23	10.46	13.11	
Cuts SR ^{offWZ} _{high} ∉ _T − nj													
lepton $P_T^{1,2,3}$	[4.5, 3]				253						81		
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[12, 15]	9.76	[15, 20]	24.2	[20, 30]	65.8	[30, 40]	65.5	12.55	29.32	74.62	77.47	
$\frac{m_{T2}^{100}[\text{GeV}]}{pPT>30\text{GeV}}$	<115	3.04	<130	13.2	<120	54.0	<140	62.1	4.14	15.1	62.99	74.35	
"jets	>0	1.06	>0	4.50	>0	22.0	>0	22.8	1.05	5.16	19.07	24.07	
E _T GeV	>200	0.086	>200	0.613	>200	2.22	> 200	2.56	0	0.12	0.48	0.78	
$\mathrm{E_{T}^{miss}}$ signif	>3.0	0.086	> 3.0	0.513	> 3.0	2.22	> 3.0	2.56	0	0.12	0.48	0.78	
$p_{ m T}^{ m lep}/{ m E_{ m T}^{ m miss}}$	< 0.2	0.086	< 0.3	0.336	< 0.3	1.44	< 0.3	1.65	0	0.08	0.28	0.45	

Table 6: Cutflow validation of ATLAS analysis atlas_2106_01676 for mass point $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0,\tilde{\chi}_1^0)=(100,40)~{\rm GeV}.$

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$ higssino					$m(\tilde{v}^0, \tilde{v}^0)$)_(100	40)CoV							
$\chi_1 \chi_2 \rightarrow W Z \chi_1 \chi_1$ mgssmo	$\begin{array}{c} \text{m}(\tilde{\chi}_2^0, \tilde{\chi}_1^0) {=} (100, 40) \text{GeV} \\ \\ \text{ATLAS} & \text{CheckMATE} \end{array}$													
$\mathcal{L} \times \sigma \times BF$	48276													
$\mathcal{L} \times \sigma \times \mathrm{BF} \times \mathrm{filt.eff}$		48276 16084												
3 isolated leptons	$\frac{16084}{3760}$											4247		
b veto		3620 4027												
Trigger														
00	-75	2620												
$m_{\ell\ell}, m_{\ell\ell}^{max} [GeV]$	<75	b		_	2380	d			b	29				
Common cuts SRoffWZ		D		c		а		е	D	c	d	e		
$\mathrm{m}_{\ell\ell}^{\mathrm{min}}[\mathrm{GeV}]$	[12, 40]				1590					20				
lepton $P_T^{1,2,3}[GeV]$	>10				1050					12				
FNP lepton cleaning					820					10				
$m_{\ell\ell}^{max}[GeV]$	<60				770					95	58			
$m_{\ell\ell}^{min}[{ m GeV}]$	[12, 15]	36.6	[15, 20]	101	[20, 30]	302	[30, 40]	331	47.55	126.89	361	423		
$\mathrm{m_{T2}^{100}[GeV]}$	<115	15.6	< 120	59.1	< 130	262		331	14.65	63.72	308	423		
$\min \Delta R$	< 1.6	15.6	< 1.6	58.6	< 1.6	216		331	14.65	63.72	282	423		
Cuts $SR_{low \cancel{E}_T}^{offWZ} - 0j$														
$_{\rm p}PT>30{\rm GeV}$	0	11.5	0	43.7	0	149	0	216	10.86	45.29	200	288		
${ m E_T^{mjets}[GeV]}$	<50	10.1	< 50	32.9	< 50	103	< 50	161	7.09	25.17	103	146		
$\mathrm{E_{T}^{miss}}$ signif	>1.5	8.03	>1.5	29.2	>1.5	92.6	>1.5	134	6.67	23.49	94.17	135		
$m_{3\ell}[GeV]$	71.0	8.03	/ 1.0	29.2	/ 1.0	92.6	/ 1.0	134	6.67	23.49	94.17	135		
$\mathrm{m_{T}^{minmll}[GeV]}$	<50	7.41	< 50	26.8	< 50	80.2	< 60	118	6.67	21.40	80.76	118		
$p_{ m T}^{ m lep}/{ m E_{ m T}^{ m miss}}$	<1.1	5.94	<1.1	8.0	<1.1	50.4	<1.3	100	4.16	8.82	36.37	83.87		
a croffW7	V1.1	0.94	<u> </u>	0.0	<1.1	30.4	<1.5	100	4.10	0.02	30.37	03.01		
Cuts $SR_{low}^{onw2} - nj$		4.10	0	140	0	o= o	0		0.50	10.40	01.10	105		
$n_{jets}^{PT>30 \text{GeV}}$	>0	4.12	>0	14.9	>0	67.6	>0	115	3.78	18.43	81.13	135		
$\mathrm{E_{T}^{miss}[GeV]}$	<200	4.12	< 200	14.5	< 200	64.9	< 200	111	3.78	17.59	79.03	131		
E _T signif	>3.0	2.81	> 3.0	10.9	> 3.0	45.6	> 3.0	76.4	2.95	15.92	68.09	105		
$m_{T}^{minmll}[GeV]$	< 50	1.96	< 50	9.16	< 50	34.2	< 60	60.9	2.52	10.05	47.91	72.83		
$p_{ m T}^{ m lep}/{ m E}_{ m T}^{ m miss}$	<1.0	1.68	< 1.0	7.34	< 1.0	27.6	< 1.0	44.4	1.69	9.64	36.57	58.96		
$\frac{P_{\mathrm{T}} / E_{\mathrm{T}}}{\mathbf{Cuts}} \frac{\operatorname{SR}_{\text{high} \cancel{E}_{T}}^{\text{offWZ}} - 0j}{\operatorname{SR}_{\text{high} \cancel{E}_{T}}^{\text{offWZ}} - 0j}$														
lepton $P_T^{1,2,3}$	[25, 15, 10]				1350					16	21			
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[12, 15]	37.1	[15, 20]	102	[20, 30]	313	[30, 40]	396	50.53	137	389	491		
$m_{m}^{100}[GeV]$	<115	16.1	<120	63.0	<130	269	<140	382	15.89	71.76	333	473		
$\mathrm{m_{TT}^{100}[GeV]}$ $\mathrm{n_{PT}^{PT}}>\mathrm{30GeV}$ jets	0	11.8	0	46.6	0	184	0	252	11.67	50.00	231	313		
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	>50	1.23	>50	16.7	>50	68.2	>50	75.9	4.6	24.77	122	159		
$\mathrm{E_{T}^{miss}}$ signif	>3.0	1.13	>3.0	16.2	>3.0	65.0	>3.0	72.5	4.6	24.77	122	159		
$\mathrm{m_{T}^{minmll}[GeV]}$	<50	1.13	<50	16.2	<60	62.8	<60	68.5	4.6	23.11	109	136		
Cute CDoffWZ ni	\ 00	1.10	<u> </u>	10.2		02.0		00.0	4.0	20.11	103			
Cuts $SR_{\substack{\text{high} \not E_T}}^{\text{offWZ}} - nj$	[[[]]													
lepton $P_{\mathrm{T}}^{1,2,3}$	[4.5, 3]		r	0	2380		foo :		40-	29				
$\mathrm{m}_{\ell\ell}^{min}[\mathrm{GeV}]$	[12, 15]	99.4	[15, 20]	233	[20, 30]	621	[30, 40]	640	130	304	774	804		
$\begin{array}{l} \mathrm{m_{T2}^{100}[GeV]} \\ \mathrm{n_{jets}^{PT}>30GeV} \end{array}$	<115	42.4	< 130	140	< 120	537	<140	617	43.01	157	654	772		
n _{jets} n _{jets}	>0	12.0	>0	37.0	>0	162	>0	200	10.89	53.57	198	250		
$E_{T}^{miss}[GeV]$	>200	0.376	>200	1.07	>200	7.12	>200	7.30	0	1.27	5.02	8.04		
E_{T}^{miss} signif	>3.0	0.376	> 3.0	1.07	> 3.0	6.95	> 3.0	7.30	0	1.27	5.02	8.04		
$p_{ m T}^{ m lep}/{ m E}_{ m T}^{ m miss}$	< 0.2	0.146	< 0.3	0.771	< 0.3	4.37	< 0.3	3.07	0	0.84	2.92	4.65		