Digital Electronics Basic Concepts

Digital Electronics

NUMBER SYSTEM

Numbers

Every number system is associated with a base or radix

A positional notation is commonly used to express numbers

$$(a_5 a_4 a_3 a_2 a_1 a_0)_r = a_5 r^5 + a_4 r^4 + a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0$$

The decimal system has a base of 10 and uses symbols (0,1,2,3,4,5,6,7,8,9) to represent numbers

$$(2009)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$(123.24)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2}$$

An octal number system has a base 8 and uses symbols (0,1,2,3,4,5,6,7)

$$(2007)_8 = 2 \times 8^3 + 0 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

What decimal number does it represent?

$$(2007)_8 = 2 \times 512 + 0 \times 64 + 0 \times 8^1 + 7 \times 8^0 = 1033$$

A hexadecimal system has a base of 16

Number	Symbol
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	С
13	D
14	Е
15	F

$$(2BC9)_{10} = 2 \times 16^3 + B \times 16^2 + C \times 16^1 + 9 \times 16^0$$

How do we convert it into decimal number?

$$(2BC9)_{10} = 2 \times 4096 + 11 \times 256 + 12 \times 16^{1} + 9 \times 16^{0} = 11209$$

A Binary system has a base 2 and uses only two symbols 0, 1 to represent all the numbers

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Which decimal number does this correspond to?

$$(1101)_2 = 1 \times 8 + 1 \times 4 + 0 \times 2^1 + 1 \times 2^0 = 13$$

2-1	2-2	2-3	2-4	2-5	2-6
0.5	0.25	0.125	0.0625	0.03125	0.015625

2^{0}	1
2^{1}	2
2^2	4
23	8
24	16
2^5	32
26	64
2^7	128
28	256
29	512
210	1024(K)
2^{20}	1048576(M)

Developing Fluency with Binary Numbers

25

$$1\ 1\ 0\ 0\ 1 = ?$$

$$1100001 = ?$$
 $64+32+1=97$

$$0.101 = ?$$
 $0.5+0.125=0.625$

$$11.001 = ?$$
 $3+0.125=3.125$

Converting decimal to binary number

Convert 45 to binary number

$$(45)_{10} = b_n b_{n-1} \dots b_0$$

$$45 = b_n 2^n + b_{n-1} 2^{n-1} \dots b_1 2^1 + b_0$$

Divide both sides by 2

$$\frac{45}{2} = 22.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_1 2^0 + b_0 \times 0.5$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_2 2^1 + b_1 2^0$$

Divide both sides by 2

$$\frac{22}{2} = 11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots b_2 2^0 + b_1 \times 0.5$$

$$\Rightarrow b_1 = 0$$

$$11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots + b_3 2^1 + b_2 2^0$$

$$5.5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} + b_3 2^0 + 0.5b_2$$
 $\Rightarrow b_2 = 1$

$$\Rightarrow b_2 = 1$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$2.5 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_4 2^0 + 0.5b_3 \implies b_3 = 1$$

$$2 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_5 2^1 + b_4 2^0$$

$$1 = b_n 2^{n-5} + b_{n-1} 2^{n-6} \dots b_5 2^0 + 0.5b_4 \implies b_4 = 0$$

$$\Rightarrow b_5 = 1$$

$$(45)_{10} = b_5 b_4 b_3 b_2 b_1 b_0 = 101101$$

Converting decimal to binary number

Method of successive division by 2

45	remainder	
22	1	
11	0	
5	1	
2	1 4	15 = 101101
1	0	
0	1	

Convert $(153)_{10}$ to octal number system

$$(153)_{10} = (b_n b_{n-1} \dots b_0)_8$$

$$(153)_{10} = b_n 8^n + b_{n-1} 8^{n-1} \dots b_1 8^1 + b_0$$

Divide both sides by 8

$$\frac{153}{8} = 19.125 = b_n 8^{n-1} + b_{n-1} 8^{n-2} \dots b_1 8^0 + \frac{b_0}{8} \implies \frac{b_0}{8} = 0.125 \implies b_0 = 1$$

153 remainder

19 1

2 3

0 2

153 =
$$(231)_8$$

Internshala Trainings

Converting decimal to binary number

Convert $(0.35)_{10}$ to binary number

$$(0.35)_{10} = 0.b_{-1}b_{-2}b_{-3}.....b_{-n}$$

$$0.35 = 0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots b_{-n}2^{-n}$$

How do we find the b₋₁ b₋₂ ... coefficients?

Multiply both sides by 2

$$0.7 = b_{-1} + b_{-2} 2^{-1} + \dots b_{-n} 2^{-n+1}$$
 $\Rightarrow b_{-1} = 0$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

Multiply both sides by 2

$$1.4 = b_{-2} + b_{-3}2^{-1} + \dots b_{-n}2^{-n+2}$$

Note that
$$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots \le 1$$

$$\Rightarrow b_{-2} = 1$$

$$0.4 = b_{-3}2^{-1} + b_{-4}2^{-2} \dots b_{-n}2^{-n+2}$$

$$0.8 = b_{-3} + b_{-4} 2^{-1} \dots b_{-n} 2^{-n+3}$$

$$\Rightarrow b_{-3} = 0$$

Converting decimal to binary number

$$0.125 = ?$$

				0 .	125	
				0 .	25	x2
				0.	20	x2
				0.	5	x2
0.125	=	(.00	$(1)_{2}$	1.	0	112

Binary numbers

Most significant bit or MSB

1011000111

ainings

Least significant bit or LSB This is a 10 bit number

Binary digit = bit

decimal	2bit	3bit	4bit	5bit
0	00	000	0000	00000
1	01	001	0001	00001
2	10	010	0010	00010
3	11	011	0011	00011
4		100	0100	00100
5		101	0101	00101
6		110	0110	00110
7		111	0111	00111
8			1000	01000
9			1001	01001
10			1010	01010
11			1011	01011
12			1100	01100
13			1101	01101
14			1110	01110
15			1111 _{I1}	nternshala T

N-bit binary number can represent numbers from 0 to 2^N -1

Converting Binary to Hex and Hex to Binary

$$(b_7b_6b_5b_4b_3b_2b_1b_0)_b = (h_1, h_0)_{Hex}$$

$$b_7 2^7 + b_6 2^6 + b_5 2^5 + b_4 2^4 + b_3 2^3 + b_2 2^2 b_1 2^1 + b_0 = h_1 16^1 + h_0$$

$$(b_7 2^3 + b_6 2^2 + b_5 2^1 + b_4) 2^4 + (b_3 2^3 + b_2 2^2 b_1 2^1 + b_0) = h_1 16^1 + h_0$$

 h_1

 h_0

$$(10110011)_b = (1011)(0011) = (B3)_{Hex}$$

$$(110011)_b = (11)(0011) = (33)_{Hex}$$

$$(EC)_{Hex} = (1110)(1100) = (11101100)_b$$

 $\begin{array}{c}
11) = (33)_{Hex} \\
10(1010) & A \\
11(1011) & B \\
12(1100) & C \\
13(1101) & D \\
14(1110) & E \\
15(1111) & F
\end{array}$ Internshala Trainings

Number

0(0000)

1(0001)

2(0010)

3(0011)

4(0100)

5(0101)

6(0110)

7(0111)

8(1000)

9(1001)

Symb

01

0

1

3

4

5

6

7

8

9

Binary Addition/Subtraction

Complement of a number

9's complement of n-digit number x is 10ⁿ -1 -x

10's complement of n-digit number x is 10ⁿ -x

9's complement of 85?

$$10^2 - 1 - 85$$

$$99 - 85 = 14$$

9's complement of 123 = 999 - 123 = 876

10's complement of 123 = 9's complement of 123+1=877

Complement of a binary number

1's complement of n-bit number x is $2^n - 1 - x$

2's complement of n-bit number x is 2^n -x

1's complement of 1011? $2^4 - 1 - 1011$

$$2^4 - 1 - 1011$$

$$1111 - 1011 = 0100$$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

1's complement of 1001101 = ?

0110010

2's complement of 1010 = 1's complement of 1010+1 = 0110

2's complement of 110010 =

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

001110

 $1011 \to 0101$

 $101101100 \rightarrow 010010100$

Advantages of using 2's complement

Can we carry out $Y = X_1 - X_2$ using such an adder?

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

Advantages of using 2's complement

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

A zero carry implies a negative number whose magnitude $(x_2 - x_1)$ can be found as follows: $S = x_1 + 2^N - x_2$

2's complement of
$$S = 2^N - (x_1 + 2^N - x_2) = x_2 - x_1$$
Internshala Trainings

Example

It makes sense to use adder as a subtractor as well provided additional circuit required for carrying out 2's complement is simple

Subtraction using 10's complement

This way of subtraction would make sense only if subtracting a number x_2 from 10^N is much simpler than directly subtracting it directly from x_1

Representing positive and negative binary numbers

One extra bit is required to carry sign information. Sign bit = 0
Represents positive number and Sign bit = 1 represents negative number

decimal	Signed Magnitude
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

decimal	Signed 1's
	complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

Intern	shala	Train	ings
	OZZUZU		

decimal	Signed 2's complemen t
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001

If we represent numbers in 2's complement form carrying out subtraction is same as addition

Example

x₁,x₂: N bit numbers in 2's complement

2's complement is 0011 = 3

2's complement is 0111 = 7

BOOLEAN ALGEBRA

Boolean Algebra

Algebra on Binary numbers

A variable x can take two values {0,1}

Basic operations:

AND:
$$y = x_1 \cdot x_2$$

Y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

Basic operations:

OR:
$$y = x_1 + x_2$$

Y is 1 if either x_1 and x_2 is 1. Or y=0 if and only if both variables are zero

X ₁	X_2	у
0	0	0
0	1	1
1	0	1
1	1	1

NOT:
$$y = \bar{x}$$

Boolean Algebra

Basic Postulates

P1:
$$x + 0 = x$$

$$P2: \quad x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + x = 1$$

P1:
$$x . 1 = x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot \bar{x} = 0$$

Basic Theorems

T1:
$$x + x = x$$

T2:
$$x + 1 = 1$$

T3:
$$(\overline{x}) = x$$

T4:
$$x + (y+z) = (x+y)+z$$

T5
$$(x+y) = x \cdot y$$
 (DeMorgan's theorem)

T6:
$$x+x.y = x$$

T1:
$$x \cdot x = x$$

T2:
$$x \cdot 0 = 0$$

T4:
$$x \cdot (y.z) = (x.y).z$$

T5
$$\overline{(x.y)} = \overline{x} + \overline{y}$$
 (DeMorgan's theorem)

T6:
$$x.(x+y) = x$$

Proving theorems

P1:
$$x + 0 = x$$

$$P2: \quad x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + x = 1$$

P1:
$$x \cdot 1 = x$$

$$P2: \quad x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot x = 0$$

Prove T1:
$$x + x = x$$

$$x + x = (x+x). 1 (P1)$$

$$= (x+x). (x+x) (P4)$$

$$= x + x.\overline{x} \quad (P3)$$

$$= x + 0 \quad (P4)$$

$$= x (P1)$$

Prove T1:
$$x \cdot x = x$$

$$x \cdot x = x \cdot x + 0 \text{ (P1)}$$

$$= x.x + x.x \quad (P4)$$

$$= x \cdot (x + \overline{x})$$
 (P3)

$$= x . 1 (P4)$$

$$= x (P1)$$

Proving theorems

P1:
$$x + 0 = x$$

P2:
$$x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + x = 1$$

P1:
$$x \cdot 1 = x$$

$$P2: \quad x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot x = 0$$

Prove :
$$x + 1 = 1$$

$$x + 1 = x + (x + \overline{x})$$

$$=(x+x)+\overline{x}$$

$$= x + x$$

$$= 1$$

DeMorgan's theorem

$$x + x . y = x$$

= $x . 1 + x . y$
= $x . (1+y)$
= $x . 1$

=X

$$x + x \cdot y = x+y$$

= $(x + x \cdot) \cdot (x + y)$
= 1. $(x + y)$
= $x + y$

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1, x_2, x_3, ...)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

Simplification of Boolean expressions

$$\overline{(x_1.x_2 + x_2.x_3)} = ?$$

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1. x_2. x_3....)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

$$=(x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1. x_2 + x_1. \overline{x_3} + \overline{x_2}. \overline{x_3}$$

Function of Boolean variables

X ₁	X_2	у
0	0	0
0	1	1
1	0	0
1	1	0

Y = 1 when x_1 is 0 and x_2 is 1

$$y = \overline{x_1} \cdot x_2$$

Boolean expression

Obtaining Boolean expressions from truth Table

<u> X₁</u>				
0 0 1 1	0	0		$y = x_1 \cdot \overline{x_2}$
0	1	0		J 11 12
1	0	1		
1	1	0		

$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

Obtaining Boolean expressions from truth Table

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$y = \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2}$$

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0

Internshala Trainings

X ₁	X_2	у
0	0	0
0	1	1
1	0	1
1	1	1

$$y = x_1 + x_2$$

Obtaining Boolean expressions from truth Table

Product of Sum (POS) form

IMPLEMENTATION OF BOOLEAN EXPRESSIONS

Implementing Boolean expressions

Elementary Gates

AND:
$$y = x_1. x_2$$

$$x_1$$
 AND y

Why call it a gate?

$$x_1$$
 AND $y = 0$ Gate is closed

$$x_1$$
AND
 $y = x_1$
Gate is open

OR:
$$y = x_1 + x_2$$

NOT:
$$y = \bar{x}$$

$$x_1 \longrightarrow CR \longrightarrow y$$

NAND:
$$y = \overline{x_1 \cdot x_2}$$

$$x_1$$
 NAND y

NOR:
$$y = x_1 + x_2$$

$$x_1$$
 OR $x_1 + x_2$ $x_2 + x_3$

$$x_1$$
 NOR y

XOR:
$$y = x_1 \oplus x_2 = x_1 \cdot x_2 + x_1 \cdot x_2$$

Y is 1 if only one variable is 1 and the other is zero

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$x_1 \longrightarrow x_2 \longrightarrow x_2$$

XNOR:
$$y = x_1 \Box x_2 = x_1 . x_2 + \overline{x_1} . \overline{x_2}$$

Y is 1 if only both variables are either 0 or 1

$$x_1 - y$$

$$y = x_1 \square x_2 = \overline{x_1 \oplus x_2}$$

Gates with more than 2 inputs

AND:
$$y = x_1. x_2. x_3...$$

$$X_1$$
 X_2
 X_3
 X_3
 X_4
 X_2
 X_3

OR:
$$y = x_1 + x_2 + x_3 +$$

$$X_1$$
 X_2
 X_3

XOR:
$$y = x_1 \oplus x_2 \oplus x_3 = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + \overline{x_2}$$

Y = 1 only if odd number of inputs is 1

Implementing Boolean expressions using gates

$$S = \overline{x.y.z} + \overline{x.y.z} + \overline{x.y.z} + x.y.z$$

$$C = x.y + x.z + y.z$$

Implementing gates using Switches

Voltage controlled Switch

SN:

Switch is closed if voltage x is HIGH Switch is open if voltage x is LOW

Voltage controlled Switch

SP:

Switch is closed if voltage x is LOW Switch is open if voltage x is HIGH

We have seen earlier (in class 12) that transistors act as switches!

Switch is closed if voltage x is HIGH Switch is open if voltage x is LOW Switch is closed if voltage x is LOW Switch is open if voltage x is HIGH

NAND Gate NAND: $y = x_1 \cdot x_2$

X ₁	\mathbf{x}_2	у
LOW	LOW	HIGH
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	LOW

NOR Gate

X_2	у
LOW	HIGH
HIGH	LOW
LOW	LOW
HIGH	LOW
	LOW HIGH LOW

Design Overview

$$S = \bar{x}.\bar{y}.z + \bar{x}.\bar{y}.\bar{z} + \bar{x}.\bar{y}.\bar{z} + \bar{x}.\bar{y}.z$$

$$C = x.y + x.z + y.z$$

_a	b	С	S	CY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

SOP AND POS REPRESENTATIONS

Representation of Boolean Expressions

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

$$f_1 = \bar{x} \cdot y + x \cdot \bar{y}$$

$$\mathbf{f}_1 = m_1 + m_2$$

$$f_1 = \sum (1,2)$$

$$f_2 = \sum (0, 2, 3) = ?$$

$$f_2 = \overline{x} \cdot \overline{y} + x \cdot \overline{y} + x \cdot y$$

A minterm is a product that contains all the variables used in a function

Three variable functions

X	У	Z	min terms	
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1	1	0	$x.y.\overline{z}$ m6	
1	1	1	x.y.z m7	

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

Product of Sum Terms Representation

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

$$F1 = (x+y)(x' + y') = M_0.M_3 = \prod M_0M_3$$

$$f_1 = \Pi(1,5,7) = ?$$

$$f_2 = (x + y + \overline{z}).(\overline{x} + y + \overline{z}).(\overline{x} + \overline{y} + \overline{z})$$

Simplification of Boolean Expressions

$$y = \sum (1,3,5,7)$$

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Simplification of Boolean expression yields: $y = x_3!!$ which does not require any gates at all!

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Goal of simplification is to reduce the complexity of gate circuit. This requires that we minimize the number of gates. Since number of gates depends on number of minterms, one of the goals of simplification is to **minimize the number of minterms in SOP expression**

$$y = x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$
 $\Rightarrow y = x_1 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3$

This circuit is simpler not just because it uses 4 gates instead of 5 but also because circuit-2 uses one 2-input and three 3-input gates as compared to five 3-input gates used in circuit-1

Goal of Simplification

In the SOP expression:

- 1. Minimize number of product terms
- 2. Minimize number of literals in each term

Simplification \Rightarrow Minimization

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = \overline{x_1} \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1).x_3$$

$$y = x_3$$

Principle used:
$$x + x = 1$$

$$f = \overline{x} \cdot \overline{y} + \overline{x} \cdot y + x \cdot \overline{y}$$

Apply the Principle: x + x = 1 to simplify

$$f = \overline{x} \cdot (\overline{y} + y) + x \cdot \overline{y}$$

$$f = x + x \cdot y$$

How do we simplify further?

$$f = x. y + x. y + x. y = x. y + x. y + x. y + x. y$$

Principle used: x + x = x

$$f = \bar{x}. \bar{y} + \bar{x}. y + \bar{x}. \bar{y} + \bar{x}. \bar{y}$$

$$= \bar{x}. (\bar{y} + y) + (\bar{x} + x). \bar{y} = \bar{x} + \bar{y}$$

Internshala Trainings

Simplify

$$f = \overline{x_1}.x_2.\overline{x_3}.x_4 + \overline{x_1}.x_2.x_3.x_4 + x_1.x_2.\overline{x_3}.x_4 + x_1.x_2.x_3.x_4 + x_1.x_2.x_4.$$

Principle: x + x = 1 and x + x = x

Need a systematic and simpler method for applying these two principles

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

KARNAUGH MAPS

K-map representation of truth table

X	У	min term
0	0	<u>x</u> . y m0
0	1	x. <u>y</u> m1
1	0	x.y m2
1	1	x.y m3

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

$$f_2 = \sum (0, 2, 3)$$
 x
 0
 1
 1
 1
 1

3-variable K-map representation

X	у	Z	min terms	
0	0	0	<u>x. y</u> . z	m0
0	0	1	X. y. z	m1
0	1	1	<u>X</u> .y.z X.y.z	m2 m3
1	0	0	$X \cdot \overline{y} \cdot \overline{z}$	m4
1	0	1	x . y . z	m5
1	1	0	x . y . Z	m6
1	1	1	x . y . z	m7

XXZ	00	01	11	10	
0	m_0	m ₁	m ₃	m_2	
1	m ₄	m ₅	m ₇	m ₆	

X	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

XXX	00	01	11	10
0	0	1	1	0
1	0	1	1	0

0 1 0 1	10_	
	0	
1 0 1 1	0	

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

4-variable K-map representation

X	у	Z	min terms		VZ WX	00	01	11	10_
0	0	0	m_0			0	1	3	2
0	0	1	m_1						
0	1	0	m_2		01	4	5	7	6
Q	1	1	m ₃	•	11	12	13	15	14
1	1	0	m ₁₄		10	8	9	11	10
	0 0 0 0	0 0 0 0 0 1 0 1	0 0 0 0 0 1 0 1 0 0 1 1 ! ! ! 1 1 0	0 0 0 m ₀ 0 0 1 m ₁ 0 1 0 m ₂ 0 1 1 m ₃ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0 0 0 m ₀ 0 0 1 m ₁ 0 1 0 m ₂ 0 1 1 m ₃ 1 1 0 m ₁₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

WX VZ	00	01	11	10_
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w.x.y.z} + \overline{w.x.y.z}$$

Internshala Trainings

Minimization using Kmap

$$f_2 = \sum (2,3)$$

$$f = x. \overline{y} + x. y$$

$$f = x.(\overline{y} + y)$$

$$f = x$$

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$f = \bar{x}. y + x. y$$

$$f = (\overline{x} + x) \cdot y$$

$$\Rightarrow$$
 f = y

$$\Rightarrow$$
 f = \overline{y}

$$\Rightarrow$$
 f = \bar{x}

$$F2 = \sum (1, 2, 3)^{0} \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$f = x.\overline{y} + x.y + \overline{x}.y$$

$$f = x.(\overline{y} + y) + \overline{x}.y$$
$$= x + \overline{x}.y$$

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

The idea is to cover all the 1's with as few and as simple terms as possible

$$f = \overline{x}.\overline{y}.\overline{z} + y.z + x.z$$

$$f = x \cdot z + x \cdot z$$

$$f = (x.y.z + x.y.z + x.y.z + x.y.z)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(\overline{y} + y) = x$$

 \mathcal{X}

$$f = x + z$$

Can we do this?

Note that each encirclement should represent a single product term. In this case it does not.

$$f = x.y.z + x.y.z + x.y.z$$

= $x.y + x.z$

We do not get a single product term. In general we cannot make groups of 3 terms. Can we use kmap with the following ordering of variables?

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

= $x.(y.z + y.z)$

Note that no simplification is possible. Kmap requires information to be represented

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y+y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x + x = 1

$$f = w. y. z + w. x. z + w. y. z + w. x. y. z + w. x. y. z + w. x. y. z$$

But is this the simplest expression?

$$w. x. y. z + w. x. y. z = w. x. z$$

VZ V/X	00	01_	11_	10_	
wx 00	1	0	1	0	
01	0	1	1	0	
11	1	0	0	1	
10	1	0	0	0	

$$w. \overline{x}. \overline{y}. \overline{z} + \overline{w}. \overline{x}. \overline{y}. \overline{z} = \overline{x}. \overline{y}. \overline{z}$$

$$f = w. y. z + w. x. z + w. y. z + w. x. z + x. y. z$$

Is this the best that we can do?

Cover the 1's with minimum number of terms

$$f = w. y. z + w. x. z + w. y. z + w. x. z + w. y. z + w. x. z + x. y. z$$

$$f = w. y. z + w. x. z + w. x. z + w. x. z + w. x. z + x. y. z$$

wx VZ	00	01	11	10_
00		0	0	0
01	(1	0	0
11	0	0	0	0
10	1	0	0	1

$$f = w.x.y + w.x.z + w.y.z$$

$$f = w.x.y + w.x.z + x.y.z$$

Groups of 4 WX VZ $\overline{w}.x$ <u>y</u>.z wx T X.ZW.Z

Internshala Trainings

Groups of 8

Z

WX VZ	00	01	11	10_	
00	0	0	0	0	
01	1	1	1	1	
11	1	1	1	1	
10	0	0	0	0	

 \mathcal{X}

WX VZ	00	01	11	10_
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

_ Z

 $\frac{-}{x}$

Examples

Don't care terms

Y_3	.00	ı			
	ab	00	01	11	_10_
	ab 00	0	0	$\left(\begin{array}{c} 1 \end{array}\right)$	0
	01	0	0	0	0
	11	Х	х	Х	х
	10	0	0	Х	Х

$$y_3 = \overline{a}.\overline{b}.c.d$$

	а	b	С	d	<i></i>
	0	0	0	0	1000000000
	0	0	0	1	0100000000
	0	0	1	0	0010000000
•	0	0	1	1	0001000000
	0	1	0	0	0000100000
	0	1	0	1	0000010000
	0	1	1	0	0000001000
	0	1	1	1	0000000100
	1	0	0	0	0000000010
	1	0	0	1	0000000001
	1	0	1	0	xxxxxxxxx
	1	0	1	1	xxxxxxxxx
	1	1	0	0	XXXXXXXXX
	1	1	0	1	XXXXXXXXX
	1	1	1	0	XXXXXXXXX
	1	1	1	1	xxxxxxxxx

Don't care terms can be chosen as 0 or 1. Depending on the problem, we can choose the don't care term as 1 and use it to obtain a simpler Boolean expression

$$y_3 = \overline{b}.c.d$$

Don't care terms should only be included in encirclements if it helps in obtaining a larger grouping or smaller number of groups.

Minimization of Product of Sum Terms using Kmap

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

$$\Rightarrow$$
 f = \bar{x}

$$\Rightarrow$$
 f = \overline{y}

$$f = (\bar{x} + z).(x + \bar{z})$$

$$\Rightarrow$$
 f = $\overline{x} \cdot \overline{z} + x \cdot z$

$$f = (x + y + z).(x + y + z).(w + y + z).(w + x)$$

Example

Obtain the minimized PoS by suitably using don't care terms

00	01	11	10	
1	X	0	1	
1	0	1	1	
0	X	1	1	
1	x	1	Х	
	1	1 0 x 0 x	00 01 11 1 x 0 1 0 1 0 x 1	00 01 11 10 1 x 0 1 1 0 1 1 0 x 1 1

$$f = (x + w + \overline{z}).(x + \overline{w} + y).(y + \overline{z})$$

Design Flow

Mapping of Boolean expression to a Network of gates available in the library

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Library of available Gates	Cost
Inverter	1
Two input NAND	2
Three input NAND	3
AND-OR-Invert $Y = \overline{AB + C}$	3

IMPLEMENTATION USING SPECIFIC GATES

Implementation using only NAND gates

A SoP expression is easily implemented with NAND gates. f = a.b + c.d + g.h

There is a one-to-one mapping between AND-OR network and NAND network

Often there is lot of further optimization that can be done

Consider implementation of XOR gate $f = \overline{A}.B + A.\overline{B}$

$$f = \overline{A}.B + B.\overline{B} + A.\overline{B} + A.\overline{A}$$
$$= B(\overline{A} + \overline{B}) + A(\overline{A} + \overline{B})$$

Implementation using only NOR gates

To implement using NOR gates, it is easiest to start with minimized Boolean expression in POS form

$$f = (a+b).(c+d).(g+h)$$

$$f = (a+b).(c+d).(g+h)$$

There is a one-to-one mapping between OR-AND network and NOR network

To implement SoP expression using NOR gates, determine first the corresponding PoS expression and then follow the procedure outlined earlier

Implement $f(x,y,z) = x \cdot z + x \cdot z$ using NOR gates

Similarly PoS expression can be implemented as NAND network by first converting it to SoP expression and then following the procedure outlined earlier

COMBINATIONAL CIRCUIT DESIGN

Digital Circuits

Combinational Circuits

Sequential Circuits

Output is determined by current values of inputs only.

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

Design of Complex Combinational circuits

Truth table has 2¹⁶ entries

This design approach becomes difficult to use

Design system as a network of sub-systems that are of manageable size and can be implemented using the earlier approach of truth table, minimization etc.

General Approach

There are certain sub-systems or blocks that are used quite often such as:

- 1. decoders, encoders
- 2. Multiplexers
- 3. Adder/Subtractors, Multipliers
- 4. Comparators
- 5. Parity Generators
- 6.

Decoders

Maps a smaller number of inputs to a larger set of outputs in general

В	Α	Y ₀	Y ₁	Y_2	Y_3
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

→ y ₀			b	а	Y_0	Y ₁	Y ₂	Y ₃
→ y ₁			0	0	0	1	1	1
→ y ₂ → y ₂			0	1	0	0	1	1
→ y ₃			1	0	1 1	1	0	1
			1	1	1	1	1	0
Active	Low Internshala T	Γrain	ings					

Example

Decoder with Enable Input

E	В	Α	Y ₀	Y ₁	Y ₂	Y_3
0	X	X	0 1 0 0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

E	В	Α	Y ₀	Y ₁	Y ₂	Y ₃
1	X	X	0	0 0 1 0 0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	1	1	0	0	0	1

Decoder: gate Implementation

$$Y_0 = E.\overline{B}.\overline{A}; Y_1 = E.\overline{B}.A; Y_2 = E.B.\overline{A}; Y_3 = E.B.A$$

A n to 2ⁿ decoder is a minterm generator

It can be used to implement any combinational circuit

Implementation of a 3-variable function with a 3-to-8 decoder

С	В	Α	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0 0 0
1	1	1	0

Although it is easy to implement any combinational circuit with this method, it is often very inefficient in terms of gate utilization. Note that this method does not require any minimization.

Implementing larger decoders using simpler ones.

3/8 decoder using 2/4 decoders

How many 2/4 decoders are required to implement a 4/16 decoder?

E	С	В	Α	y ₀	y ₁	y ₂	y ₃	y ₄	y ₅	y ₆	y ₇
			X								
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Seven segment decoder

Seven segment decoder

Dec		ł	npı	лt				0	utp	ut		
Function	٥	C	В	A	BI	•	Ь	С	d	•	f	g
0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	1	0	0	1
4	0	1	0	0	1	0	1	1	0	0	1	1
5	0	1	0	1	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	t	0	0	1	1
10	1	0	1	0	1	0	0	0	1	1	0	1
11	1	0	1	1	1	0	0	1	1	0	0	1
12	1	1	0	0	1	0	1	0	0	0	1	1
13	1	1	0	1	1	1	0	0	1	0	1	1
14	1	1	1	0	1	0	0	0	1	1	1	1
15	1	1	1	1	1	0	0	0	0	0	0	0
BI	×	×	×	×	0	0	0	0	0	0	0	0

DC 00	00	01	11	10	
01	0	1	1	0	
11	0	1	0	0	
10	1	1	0	0	

Encoders

An encoder performs the inverse operation of a decoder.

d_3	0 0 1 0	d_1	d_0	В	Α	
0	0	0	1	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	

$$A = \overline{d_2} \ \overline{d_0}$$

$$B = \overline{d_1} \ \overline{d_0}$$

Internshala Trainings

Priority Encoders

Priority is 3,2,1,0 with user 3 having the highest priority

X, Y have to be determined based on this priority order and the requests to use the resource.

R_0	R_1	R_2	R_3	Х	у	
0	0 0 1 x x	0	0	X	Х	
1	0	0	0	0	0	
X	1	0	0	0	1	
X	X	1	0	1	0	
X	X	X	1	1	1	

$$x = R_2 + R_3$$
Internshala Trainings

Gray Codes

Natural Binary	Gray
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000
	Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1011 1110 1110 1110

In the case of natural binary code:

0111-1111-1000 0111-0000-1000

In the case of Gray code, no such problem occurs.

1-bit change as one goes from one code word to the next.

ASCII: American Standard Code for information interchange

Hex	ASCII	Hex	ASCII	Нех	ASCII	Hex	ASCII								
00	NUL	10	DLE	20	SP	30	0	40	0	50	Р	60		70	р
01	SOH	11	DC ₁	21	1	31	1	41	A	51	Q	61	a	71	q
02	STX	12	DC ₂	22	"	32	2	42	В	52	R	62	ь	72	г
03	ETX	13	DC ₃	23	£(#)	33	3	43	С	53	s	63	С	73	s
04	EOT	14	DC ₄	24	\$	34	4	44	D	54	Т	64	đ	74	t
05	ENQ	15	NAK	25	%	35	5	45	E	55	U	65		75	u
06	ACK	16	SYN	26	&	36	6	46	F	56	٧	66	f	76	v
07	BEL	17	ETB	27	,	37	7	47	G	57	W	67	g	77	w
08	BS	18	CAN	28	(38	8	48	н	58	Х	68	h	78	×
09	HT	19	EM	29)	39	9	49	1	59	Y	69	1	79	у
0A	LF	1A	SUB	2A	•	ЗА	:	4A	J	5A	Z	6A	j	7A	z
OB	VT	1B	ESC	2B	+	38	;	4B	К	5B	[6B	k	7B	{
00	FF	1C	F\$	2C	,	3C	<	4C	L	5C	١	6C	1	7C	1
OD.	CR	1D	GS	2D	-	3D	=	4D	М	5D	1	6D	m	7D	}
0E	so	1E	RS	2E		3E	>	4E	N	5E	^	6E	n]	7E	-
OF	SI	1F	US	2F	1	3F	?	4F	0	5F	-	6F	•	7F	DEL

Parity

Extra bits are added to aid in error detection and correction

Decimal	Binary	Even parity	Odd parity
0	000	0000	0001
1	001	0011	0010
2	010	0101	0100
3	011	0110	0111
4	100	1001	1000
5	101	1010	1011
6	110	1100	1101
7	111	1111	1110

A 1-bit error changes the parity and thus can be detected

Multiplexers

Internshala Trainings

S_1	S ₀	У
0	0	I ₀
0	1	I ₁
1	0	l ₂
1	1	

Mux is often used when resources have to be shared

S ₁	S_0	<i>y</i> =
0	0	a+c
0	1	a+d
1	0	b+c
1	1	b+d

Implementing Boolean expressions using Multiplexers

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$
 $x_2 ? 0$
 $x_2 ? 0$
 $x_2 ? 1$

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

A 3 variable function can be implemented with a 4:1 mux with 2 select lines

Mux is more efficient way of implementing combinational circuits as compared to decoders.

Internshala Trainings

Mux. expansion

Mux. expansion

DeMultiplexer

Demultiplexer is very much like a decoder

E		В	Α	Y ₀	Y ₁	Y ₂	Y ₃
_)	Х	X	0	0 0 1 0	0	0
1		0	0	1	0	0	0
1		0	1	0	1	0	0
1		1	0	0	0	1	0
1		1	1	0	0	0	1

Comparator

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
0000	0000	0	0	1
0000	0001	1	0	0
0001	0000	0	1	0
:		:	:	:

Adder/Subtractor

<u>a</u>	b	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{a}.b + a.\overline{b}$$
; $C = a.b$

<u>a</u>	b	C_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}; C_{out} = a.b + a.c_{in} + b.c_{in}$$

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = a.b + a.C_{in} + b.C_{in}$$

$$C_{out} = C_{in}(a.\overline{b} + \overline{a.b}) + a.b = C_{in}.(a \oplus b) + a.b$$

4-bit Adder

Ripple Carry Adder (20 gate circuit)

Subtraction

A - B = A + 2's complement of B

A - B = A + 1's complement of B+1

$$A - B = A + B + 1$$

One needs add a circuit for predicting errors resulting from overflow

Adder/Subtractor

SEQUENTIAL CIRCUITS

Digital Circuits

Combinational Circuits

Sequential Circuits

Output is determined by current values of inputs only.

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

NOR SR Latch

$$Q=1; \overline{Q}=0$$
 Set State

$$\frac{1}{Q} = 0; \overline{Q} = 1 \quad \text{Re set State}$$

S	,	R	Q	-Q	State
	1	0	1	0	SET

Internshala Trainings

NOR SR Latch

$$Q = 1; \overline{Q} = 0$$
 Set State

$$\frac{}{Q} = 0; \overline{Q} = 1 \quad \text{Re set State}$$

S	R	Q	-Q	State
1	0	1	0	SET
0) 1	0	1	RESET

Internshala Trainings

HOLD State

S	R	Q Q		State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

Both the outputs are well defined and 0. the first problem is that we do not get complementary output.

A more serious problem occurs when we switch the latch to the hold state by changing RS from $11 \rightarrow 00$. Suppose the inputs do not change simultaneously and we get the situation $11 \rightarrow 01^* \rightarrow 00$

Q = 1

Suppose the inputs change as RS = $11 \rightarrow 10^* \rightarrow 00$

So although output is well defined when we apply RS = 11, it becomes unpredictable once we switch the latch to hold state by applying RS = 00. That is why RS = 11 is not used as an input combination.

The error can occur also due to unequal gate delays.

Suppose gate-1 is faster

On the other hand suppose that gate-2 is faster.

Again the output is unpredictable in general

Q = 0

NAND Latch

S	R	Q	_Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

RS NAND Latch with Enable

Hold State

Enable	S R	QQ	State
0	хх	l а	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

D latch

Enable	S R	Q Q State
0	хх	Q Q Hold
1	1 0	1 0 Set
1	0 1	0 1 Reset
1	0 0	Q Q Hold
1	1 1	0 0 Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Synchronous Sequential Circuits

Example

Example

Problem with Latch

Circuits are designed with the idea there would be single change in output or memory state in single clock cycle.

Edge Triggered Latch or Flip-flop

Internshala Trainings

Negative Edge Triggered Latch or Flip-flop

Master-Slave D Flip-flop

Positive edge triggered Flip-flop

Positive edge triggered Flip-flop

A change in input has no effect if it occurs after the clock edge

Internshala Trainings

Positive edge Triggered Flip-flop with Asynchronous Reset

Characteristic table

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs (D)	Q(t+1)
	0	0
	1	1

$$Q(t+1) = D$$

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

$$Q(t+1) = \overline{Q(t)}.J + Q(t).\overline{K}$$

→ Characteristic equation

Toggle or T Flip-flop

Inputs	(T)	Q(t+1)
	0	Q(t)
	1	Q(t)

$$Q(t+1) = \overline{Q(t)}.T + Q(t).\overline{T}$$

Excitation Table What inputs are required to effect a particular state change

		Inputs
Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Internshala Trainings

Excitation Table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

			Inpu	uts
Q(t)	Q((t+1)	J	K
C		0	0	X
C)	1	1	X
1		0	X	1
1		1	X	0

D	Q(t+1)
0	0
1	1

	Inputs		
Q(t)	Q(t+1)	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Convert a D FF to JK FF

ſ	J	K	Q(t+1)	D
ľ	0	0	Q(t)	Q(t)
	0	1	0	0
	1	0	1	1
[1	1	Q(t)	Q(t)

$$D = \overline{Q}.J + Q.\overline{K}$$

