

第二章 物理层

第2讲 数字信号与基带传输技术

东南大学仪器科学与工程学院

主讲:陈熙源

数据通信

▶ 数据通信: 把数据以信号的形式从一处(源发出端)传送到另一处 (接收端),并在接收端还原成原来的数据。

> 计算机中的数据是以离散的二进制0、1比特序列 方式表示的。计算机数据在传输过程中的数据编码类型, 主要取决于它采用的通信信道所支持的数据通信类型。

数据通信

模拟数据编码方法

- ▶ 数字信号优点:传输失真小、误码率低、数据传输速率高。
- ▶ 脉冲编码调制(PCM): 是模拟数据数字化的主要方法。 PCM技术的典型应用是语音数字化,语音可以用模拟信号 形式通过电话线路传输。

模拟信号

数字信号

- **采样:**隔一定的时间间隔,将模拟信号的电平幅度取出作为样本, 让其表示原信号;
- 采样频率f应为: f≥2B或f=1/T≥2•fmax。

其中,B=通信信道带宽,T=采样周期, fmax=信道允许通过的信号最高频率(Shanon);

如果以大于或等于通信信道带宽2倍的速率对信号采样, 其样本可以包含足以重构原模拟信号的所有信息(Nyquist)。

▶ 量化:将采样样本幅度按量化级决定取值的过程。经过量化

后的样本幅度为离散的量化级值,已不是连续值。

编码:用相应位数的二进制代码表示量化后的采样样本的量级。

如有k个量化级,则二进制的位数为 $\log_3 k$ 。

▶ 基带传输:数据通信中,矩形脉冲信号往往用于表示计算机的

二进制比特序列,是一种典型的数字信号。在数字

信道上直接传送基带信号即为基带传输。

▶ 数字数据编码:基带传输前要对数字信号重新编码。

1.外同步方式——非归零码编码等。

2.内同步方式——曼彻斯特编码、差分曼彻斯特编码等。

适配器: 完成比特序列到物理电信号或是电压信号到比特之间的转换

▶ 非归零反向编码 NRZI: 1 →电平改变; 0 →保持原先电平。

▶ 非归零反向编码 NRZI: 1 →电平改变; 0 →保持原先电平。

改进之处: 1.当存在一个很长的1序列时,可以完成NRZ无法

解决的时钟问题;

2.对于很长的0序列依然有原先的问题。

> 数字数据编码方法

▶ 曼彻斯特编码 Manchester:

- 1.1→电平改变; 0→保持原先电平;
- 2.地址时钟恢复和基线漂移问题;

缺点:需要2倍于传输速率的时钟来实现该编码。

▶ 差分曼彻斯特编码 Difference Manchester:

- 1.1→保持电平; 0→电平改变;
- 2.地址时钟恢复和基线漂移问题;

优点:每比特位的中间跳变仅做同步使用,且每比特的值根据其开始边界是否跳变来决定。差分曼彻斯特从电路角度其解码比曼彻斯特解码更容易实现。

▶ 4B/5B编码 4Bit/5Bit:

目标:不扩大高信号或低信号的持续期而解决曼彻斯特编码的

低效问题。

方法:1.用5来对每4bit 信号进行,如此每个代码最多有1个

前导0,且末端最多有两个0;

2.对5bit 信号采用NRZI编码。

4-bit	5-bit	4-bit	5-bit
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
	0110 01110 1111 01111	1110	11100
1111		1111	11101

▶ 4B/5B编码 4Bit/5Bit:

优点:能够在很大程度上降低线路传输中的调制速率,

从而可以降低对线路的要求。

4-bit	5-bit	4-bit	5-bit
0000 0001 0010 0011 0100 0101 0110 1111	11110 01001 10100 10101 01010 01011 01110 01111	1000 1001 1010 1011 1100 1101 1110	10010 10011 10110 10111 11010 11011 11100 11101

画出二进制序列0011100101 对应的非归零编码和差分曼彻斯特 编码的时序图。

