A P P E N D I X A

Conversion Factors, Constants, and Fluid Properties

	OUT	LINE	
A.1. Conversion Factors	853	A.4. Properties of Dry Air at	
A.2. Physical Constants	854	Atmospheric Pressure	855
A.3. Properties of Pure Water at		A.5. The Standard Atmosphere	855
Atmospheric Pressure	854		

A.1. CONVERSION FACTORS

Length:	1 m = 3.2808 ft
	1 in. = 2.540 cm
	1 mile = 1.609 km
	1 nautical mile = 1.852 km
$Mass^1$:	$1 \text{ kg} = 0.06854 \text{ slug} = 1000 \text{ g} \leftrightarrow 2.205 \text{ lbs}$
	1 metric ton = 1000 kg
Time:	1 day = 86,400 s
<i>Density</i> ¹ :	$1 \text{ kg m}^{-3} = 1.941 \times 10^{-3} \text{ slugs ft}^{-3} \leftrightarrow 0.06244 \text{ lbs/ft}^{3}$
Velocity:	1 knot = 0.5144 m/s
Force:	$1 \text{ N} = 10^5 \text{ dyn} = 0.2248 \text{ lbs}$
Pressure:	$1 \text{dyn cm}^{-2} = 0.1 \text{N/m}^2 = 0.1 \text{Pa}$
	$1 \text{ bar} = 10^5 \text{ Pa}$
Energy:	$1 J = 10^7 \text{ erg} = 0.2389 \text{ cal}$
	1 cal = 4.186 J
Energy flux:	$1 \text{ W m}^{-2} = 2.39 \times 10^{-5} \text{ cal cm}^{-2} \text{ s}^{-1}$

¹At the earth's surface, the weight of a 1 kg mass is 2.205 lbs.

A.2. PHYSICAL CONSTANTS

Avogadro's Number:	$6.023 \times 10^{23} \text{ gmole}^{-1}$
Boltzmann's Constant:	$1.381 \times 10^{-23} \mathrm{JK^{-1}}$
Gravitational Acceleration:	$9.807 \text{ m s}^{-2} = 32.17 \text{ ft s}^{-2}$ (at the surface of the earth)
Graviational Constant:	$6.67 \times 10^{-11} \mathrm{m^3kg^{-1}s^{-2}}$
Planck's Constant:	$6.626 \times 10^{-34} \mathrm{J \ s}$
Speed of Light in Vacuum:	$2.998 \times 10^8 \text{ m s}^{-1}$
Universal Gas Constant:	8.314 J gmole ⁻¹ K ⁻¹

A.3. PROPERTIES OF PURE WATER AT ATMOSPHERIC PRESSURE

Here, $\rho =$ density, $\alpha =$ coefficient of thermal expansion, $\mu =$ shear viscosity, $\nu =$ kinematic viscosity = μ/ρ , $\kappa =$ thermal diffusivity = $k/(\rho C_p)$, (k is first defined in Section 1.5) Pr = Prandtl number, and 1.0×10^{-n} is written as 1.0E - n.

T°C	$\rho \text{ kg/m}^3$	$\alpha \text{ K}^{-1}$	$\mu \text{ kg m}^{-1} \text{ s}^{-1}$	ν m ² /s	κ m²/s	$C_{\rm p}\mathrm{Jkg}^{-1}\mathrm{K}^{-1}$	Pr ν/κ
0	1000	-0.6E - 4	1.787E - 3	1.787E – 6	1.33E - 7	4217	13.4
10	1000	+0.9E - 4	1.307E - 3	1.307E - 6	1.38E - 7	4192	9.5
20	998	2.1E - 4	1.002E - 3	1.004E - 6	1.42E - 7	4182	7.1
30	996	3.0E - 4	0.799E - 3	0.802E - 6	1.46E - 7	4178	5.5
40	992	3.8E - 4	0.653E - 3	0.658E - 6	1.52E - 7	4178	4.3
50	988	4.5E - 4	0.548E - 3	0.555E - 6	1.58E - 7	4180	3.5

Latent heat of vaporization at 100 °C = 2.257×10^6 J/kg. Latent heat of melting of ice at 0 °C = 0.334×10^6 J/kg. Density of ice = 920 kg/m³. Surface tension between water and air at 20 °C = 0.0728 N/m. Sound speed at 20 °C = 1481 m/s.

A.4. PROPERTIES OF DRY AIR AT ATMOSPHERIC PRESSU	A.4. PROI	PERTIES OF	DRY AIR	AT ATMOS	SPHERIC	PRESSUR
--	-----------	------------	----------------	----------	---------	---------

T°C	ρ kg/m ³	$\mu \text{ kg m}^{-1} \text{ s}^{-1}$	$\nu \text{ m}^2/\text{s}$	$\kappa \text{ m}^2/\text{s}$	Pr ν/κ
0	1.293	1.71E – 5	1.33E – 5	1.84E - 5	0.72
10	1.247	1.76E - 5	1.41E - 5	1.96E - 5	0.72
20	1.200	1.81E - 5	1.50E - 5	2.08E - 5	0.72
30	1.165	1.86E - 5	1.60E - 5	2.25E - 5	0.71
40	1.127	1.87E - 5	1.66E - 5	2.38E - 5	0.71
60	1.060	1.97E - 5	1.86E - 5	2.65E - 5	0.71
80	1.000	2.07E - 5	2.07E - 5	2.99E - 5	0.70
100	0.946	2.17E - 5	2.29E - 5	3.28E - 5	0.70

At 20°C and 1 atm:	Specific heat capacity at constant pressure:	$C_p = 1004 \mathrm{J kg^{-1} K^{-1}}$
	Specific heat capacity at constant volume:	$C_{\rm v} = 717 \rm J kg^{-1} K^{-1}$
	Ratio of specific heat capacities:	$\gamma = 1.40$
	Coefficient of thermal expansion:	$\alpha = 3.41 \times 10^{-3} \mathrm{K}^{-1}$
	Speed of sound:	$c = 343 \text{ m s}^{-1}$
Constants for dry air:	Gas constant:	$R = 287 \mathrm{J kg^{-1} K^{-1}}$
	Molecular mass:	28.966 g gmole ⁻¹ or kg kmole ⁻¹

A.5. THE STANDARD ATMOSPHERE

The following average values are accepted by international agreement. Here, z is the height above sea level.

z km	T °C	p kPa	ρ kg/m³
0	15.0	101.3	1.225
0.5	11.5	95.5	1.168
1	8.5	89.9	1.112
2	2.0	79.5	1.007
3	-4.5	70.1	0.909

(Continued)

856	CONVERSION FACTORS, CONSTANTS, AND FLUID PROPERTIES				
z km	T°C	p kPa	ρ kg/m³		
4	-11.0	61.6	0.819		
5	-17.5	54.0	0.736		
6	-24.0	47.2	0.660		
8	-37.0	35.6	0.525		
10	-50.0	26.4	0.413		
12	-56.5	19.3	0.311		
14	-56.5	14.1	0.226		
16	-56.5	10.3	0.165		
18	-56.5	7.5	0.120		

5.5

0.088

-56.5

20