Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Alexander Krauss Sommersemester 2009 Lösungsblatt Mittelklausur 23. Juni 2009

Einführung in die Theoretische Informatik

Name			Vorname				Studiengang			Matrikelnummer	
			vorname				☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ Mathe.				
Hörsaal			Reihe			,	Sitzplatz			Unterschrift	
Code:											
• Bitte füller	ı Sie o	bige		_			inwe		nterschr	eiben Sie!	
• Bitte schre		_									
• Die Arbeit	szeit b	eträg	gt 120) Min	uten.						
seiten) der	betref rechnu	fende ngen	en Au mac	ifgabe hen.	en ein Der	zutra Schm	gen. A ierblat	uf dem Sch	mierbla	en (bzw. Rück ttbogen könne falls abgegebe	
								riebenen D	IN-A4-B	slatt zugelasse	
Hörsaal verlass	en		von		l	ois .		/ von		bis	
Vorzeitig abgeg	eben		um								
Besondere Bem	erkung	gen:									
	A1	A2	A3	A4	A5	A6	Σ	Korrektor	·		
Erstkorrektur											
Zweitkorrektur											

Aufgabe 1 (6 Punkte)

Wahr oder falsch? Begründen Sie im Folgenden Ihre Antworten möglichst knapp!

- 1. Seien $A,B\subseteq \Sigma^*$ mit $\epsilon\not\in A$. Dann ist die Lösung X der Gleichung $X=AX\cup B$ eine reguläre Menge.
- 2. Für jeden NFA $N = (Q, \Sigma, \delta, q_0, F)$ gilt: Wenn F = Q, dann ist $L(N) = \Sigma^*$.
- 3. $a(ab)^*(ba)^*b \equiv a(ab|ba)^*b$.
- 4. Wenn $L \subseteq \Sigma^*$ regulär ist und $\Gamma \subseteq \Sigma$, dann ist $L' = \{ w \in L \mid w \text{ enthält nur Zeichen aus } \Gamma \}$ ebenfalls regulär.
- 5. Wenn $L \subseteq \Sigma^*$ regulär ist und $L' \subseteq L$, dann ist L' ebenfalls regulär.
- 6. Jede endliche Teilmenge einer kontextfreien Sprache ist wieder kontextfrei.

Lösungsvorschlag

- 1. (f) Gegenbsp.: $A = \emptyset$, B beliebig nicht regulär.
- 2. (f) Gegenbsp.: $\Sigma = \{a\}, Q = F = \{q_0\}, \delta(q_0, a) = \emptyset$. Dann ist $L(N) = \{\epsilon\}$.
- 3. (f) $w = aabbaabb \in L(a(ab|ba)*b)$, aber $w \notin L(a(ab)*(ba)*b$.
- 4. (w) Abschluss unter Schnitt: $L' = L \cap \Gamma^*$.
- 5. (f) Gegenbsp.: $L = \Sigma^*$, L' beliebig, nicht regulär.
- 6. (w) Jede endliche Sprache ist regulär und damit auch kontextfrei.

Richtige Antwort: 0,5 Punkte

Begründung auch richtig/sinnvoll: 0,5 Punkte

Aufgabe 2 (6 Punkte)

Gegeben sei der NFA $N=(\{q_0,\ldots,q_4\},\{0,1\},\delta,q_0,\{q_2\})$ mit folgendem Übergangsgraphen:

- 1. Bestimmen Sie $\delta(q_4,0)$ und $\hat{\delta}(\{q_1,q_3\},0111)$.
- 2. Konstruieren Sie einen DFA M, so dass L(M) = L(N).

Lösungsvorschlag

1.
$$\delta(q_4, 0) = \{q_4\} \text{ und } \hat{\delta}(\{q_1, q_3\}, 0111) = \emptyset.$$
 (2P.)

2. Der entstehende DFA hat 6 Zustände (und ist in dieser Form minimal):

(4P.)

Bewertung: kleine Fehler: -0,5P; Fehlerzustand fehlt: -1P; Endzustände fehlen: -1P

Aufgabe 3 (7 Punkte)

1. Seien $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ und $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ beliebige DFAs, und $M = (Q_M, \Sigma, \delta_M, q_{0M}, F_M)$ ein minimaler DFA mit $L(M) = L(A_1) \cup L(A_2)$. Zeigen Sie:

$$|Q_M| \le |Q_1| \cdot |Q_2|.$$

2. Berechnen Sie systematisch den Quotientenautomaten M/\equiv_M des DFA $M=(\{A,B,C,D,E,F\},\{0,1\},\delta,A,\{A,D\})$ mit folgender Übergangsfunktion:

q	$\delta(q,0)$	$\delta(q,1)$
\overline{A}	A	F
B	C	A
C	D	B
D	D	C
E	F	D
F	A	E

Protokollieren Sie die Schritte des angewandten Verfahrens.

Lösungsvorschlag

1. Der Produktautomat $A_1 \times A_2$ von A_1 und A_2 mit $|Q_1| \cdot |Q_2|$ Zuständen akzeptiert $L(A_1) \cap L(A_2)$. (1P.)

Es gilt
$$L(A_1) \cup L(A_2) = \overline{L(A_1)} \cap \overline{L(A_2)}$$
. (1P.)

Da es zu jedem DFA A einen DFA A' mit gleichvielen Zuständen gibt, der $\overline{L(A)}$ akzeptiert, gibt es einen DFA mit $|Q_1|\cdot |Q_2|$ Zuständen, der L(M) akzeptiert.

(1P.)

2.

A					
×	В				
×		С			
	×	×	D		
×			×	E	
×			×		F

(1) Nach der Initialisierung (1P.)

(1) Nach dem 2. Durchlauf (2P.)

Ergebnis nach Kollabierung:

Aufgabe 4 (8 Punkte)

Sei Σ ein Alphabet. Für eine Sprache $L\subseteq \Sigma^*$ definieren wir die folgenden Sprachen:

$$\mathtt{suff}(L) = \{v \in \Sigma^* \mid \exists w \in \Sigma^*. \ wv \in L\}$$

- 1. Geben Sie einen regulären Ausdruck für $suff(L((ab)^*b))$ an.
- 2. Gegeben sei folgender DFA M:

Geben Sie einen endlichen Automaten (DFA, NFA oder ϵ -NFA) an, der $\mathfrak{suff}(L(M))$ akzeptiert.

3. Zeigen Sie: Wenn $L \subseteq \Sigma^*$ regulär ist, so ist auch $\operatorname{suff}(L)$ regulär. Hinweis, falls Sie eine Automatenkonstruktion verwenden: Beschreiben Sie Ihre Konstruktionsidee zunächst informell und geben Sie danach den Automaten formal als 5-Tupel an.

Lösungsvorschlag

1.
$$\epsilon \mid (b \mid \epsilon)(ab)^*b$$
 (2P.)

2.

(2P.)

3. Idee: Aus einem ϵ -NFA $N=(Q,\Sigma,\delta,q_0,F)$ konstruiert man einen neuen ϵ -NFA N' mit $L(N')=\mathtt{suff}(L(N))$. Dafür fügt man einen neuen Startzustand hinzu, von dem ein ϵ -Übergang in jeden Zustand führt.

Formal ist N' wie folgt definiert: $N' = (Q \cup \{q_s\}, \Sigma, \delta', q_s, F)$, mit

$$\delta'(q_s, \epsilon) = Q$$

$$\delta'(q_s, a) = \emptyset \qquad \forall a \in \Sigma$$

$$\delta'(q, b) = \delta(q, b) \qquad \forall q \in Q, b \in \Sigma \cup \{\epsilon\}$$

$$(4P.)$$

Bewertung: 2P. für Idee und informelle Beschreibung, 2P. für formale Angabe des Automaten.

Alternative Lsg über reguläre Ausdrücke: $\operatorname{suff}(\emptyset) = \emptyset$, $\operatorname{suff}(\epsilon) = \epsilon$, $\operatorname{suff}(a) = a \mid \epsilon$, $\operatorname{suff}(\alpha \mid \beta) = \operatorname{suff}(\alpha) \mid \operatorname{suff}(\beta)$, $\operatorname{suff}(\alpha\beta) = \operatorname{suff}(\alpha) \mid \operatorname{suff}(\beta)$, $\operatorname{suff}(\alpha^*) = \operatorname{suff}(\alpha) \mid \alpha^*$.

Aufgabe 5 (5 Punkte)

Gegeben sei $\Sigma = \{a, b, c\}$ und die Sprache $L = \{aaa^nb^mc^m \mid n, m \in \mathbb{N}\}.$

Ansage: L muss geändert werden zu $L = \{a^n b^m c^k \mid n, m, k \in \mathbb{N}, n = 0 \lor m = k\}.$

- 1. Zeigen Sie, dass L eine Pumping-Lemma-Zahl besitzt¹.
- 2. Zeigen Sie, dass L dennoch nicht regulär ist.

Lösungsvorschlag

1. Z.B. ist 1 eine PLZ für L. Beweis: Sei $z \in L$ mit $|z| \ge 1$. Dann hat z die Form $a^n b^m c^k$ so dass n = 0 oder m = k. Wir zerlegen nun z = uvw so dass $u = \epsilon$, und v genau das erste Zeichen von z ist.

Falls n = 0 und m > 0, dann ist v = b und $uv^i w = b^{m+i-1} c^k \in L$.

Falls n = 0 und m = 0, dann ist v = c und $uv^i w = c^{k+i-1} \in L$.

Falls n > 0, dann ist v = a und $uv^i w = a^{n+i-1} b^m c^k \in L$.

In der Tat ist sogar jedes n > 0 eine PLZ.

(3P.)

Bewertung: Konkrete PLZ (z.B. 1) angegeben: bereits 0,5 P,

Nur einfache Fälle (1+2) betrachtet: 0.5 P.

Fall 2 fehlt, sonst OK: -0.5 P.

PLZ hängt von z ab: max 1,5 P.

Längenbeschränkung der Zerlegung nicht beachtet: -1P.

Bei im Ansatz bereits falscher Lsg (zB. Quantorenreihenfolge) max 1P. f. gute Fragmente.

2. Wir verwenden den Satz von Myhill-Nerode (Satz 2.69). Danach genügt es zu zeigen, dass \equiv_L unendlich viele Äquivalenzklassen hat: Für beliebiges $k \in \mathbb{N}$ sei w_k das Wort ab^k . Für $i \neq j$ ist stets $w_i \not\equiv_L w_i$, denn $w_i c^i = ab^i c^i \in L$, aber $w_i c^i = ab^j c^i \notin L$.

Alternativ kann man zuerst mit Hilfe von Abschlusseigenschaften auf eine andere Sprache kommen, auf die dann das Pumping-Lemma anwendbar ist, z.B. $L \cap L(ab^*c^*) = \{ab^nc^n \mid n \in \mathbb{N}\}$, oder $L^R = \{c^kb^ma^n \mid n, m, k \in \mathbb{N}, n = 0 \lor m = k\}$. (2P.)

Bewertung: Max 0,5P. für einen Versuch, das PL anzuwenden, denn aus der Aufgabenstellung kann man bereits sehen, dass das nicht geht. Falls dieser Versuch weitere Mängel hat: 0P.

0,5P. für Ansatz Myhill-Nerode; 1P. für Angabe der Äquivalenzklassen; 0,5P. für Begründung/Beweis, dass diese tatsächlich verschieden sind.

Abschlusseigenschaften falsch herum verwendet: in der Regel 0P., wenn auch richtige Anwendungen dabei, max 1P. Wer korrekt auf die Sprache $\{a^nb^mc^m \mid n, m \in N, n > 0\}$ o.ä. kommt: 1.5P.

¹Gemeint ist die Zahl aus dem Pumping-Lemma für reguläre Sprachen.

Aufgabe 6 (8 Punkte)

Wir betrachten die Grammatik $G = (\{S\}, \{a, b\}, P, S)$ mit den folgenden Produktionen:

$$S \rightarrow aSbSb \mid SS \mid \epsilon$$
.

- 1. Zeigen Sie induktiv, dass für alle ableitbaren Wörter $w \in L(G)$ die Anzahl der enthaltenen b doppelt so groß ist wie die Anzahl der enthaltenen a, d. h., dass gilt $\#_b(w) = 2 \cdot \#_a(w).$
- 2. Zeigen Sie, dass alle Satzformen $\alpha_n = (ab)^n Sb^n$ für $n \geq 0$ in G ableitbar sind.
- 3. Wir betrachten die Grammatik $G' = (\{S, T\}, \{a, b, c\}, P, S)$ mit den folgenden Produktionen:

$$\begin{array}{ccc} S & \to & T \,|\, SS \,, \\ T & \to & aSbSb \,|\, c \,. \end{array}$$

Konstruieren Sie eine zu G' äquivalente Grammatik G'' in Chomsky-Normalform.

Lösungsvorschlag

1. Mit Induktion über die Erzeugung zeigt man die Eigenschaft $\underbrace{\#_b(w) = 2 \cdot \#_a(w)}_{P(w)}$ für

alle $w \in L(G)$:

$$S \to \epsilon$$
: Offenbar gilt $P(\epsilon)$, denn $\#_b(\epsilon) = 2 \cdot \#_a(\epsilon) = 0$. (1P.)

 $S \rightarrow aSbSb$:

Es gelte P(x), P(y) und $x, y \in L(S)$. Dann gilt für w' = axbyb:

$$\#_b(w') = \#_b(x) + 1 + \#_b(y) + 1 = 2 \cdot \#_a(x) + 2 \cdot \#_a(y) + 2 = 2 \cdot (\#_a(x) + \#_a(y) + 1)$$

$$= 2 \cdot \#_a(w'), \text{ d.h. } P(w'). \tag{1P.}$$

 $S \to SS$:

Es gelte P(x), P(y) und $x, y \in L(S)$. Dann gilt für w' = xy:

$$\#_b(w') = \#_b(x) + \#_b(y) = 2 \cdot \#_a(x) + 2 \cdot \#_a(y) = 2 \cdot (\#_a(x) + \#_a(y))$$

$$= 2 \cdot \#_a(w'), \text{ d.h. } P(w'). \tag{1P.}$$

2. Induktion über n.

Induktion über
$$n$$
. $(\frac{1}{2}P.)$
Für $n = 0$ gilt $S \rightarrow_G {}^*S$. $(\frac{1}{2}P.)$

Falls $S \to_G^* (ab)^n Sb^n$, dann folgt

$$S \rightarrow_G^* (ab)^n Sb^n \rightarrow_G (ab)^n a SbSbb^n \rightarrow_G (ab)^n abSbb^n = (ab)^{n+1} Sb^{n+1}.$$
 (1P.)

Bewertung: Bei unklarer Beweisstruktur max. 1P.

3. Eliminierung der Kettenproduktion $S \to T$ (1P.)

und Ersetzung von
$$a,b$$
 durch Einführung von $A \to a, B \to b$ (1P.) führt zu

$$S \rightarrow ASBSB \mid SS \mid c$$
, $A \rightarrow a$, $B \rightarrow b$,

und schließlich

$$S \to AS_1$$
, $S_1 \to SS_2$, $S_2 \to BS_3$, $S_3 \to SB$,
 $S \to SS \mid c$, $A \to a$, $B \to b$. (1P.)