PERIODIC MOTION, HARMONIC OSCILLATOR AND MECHANICAL RESONANCE

Motivation: three systems

(A) horizontal spring-mass system (no friction; massless spring)

x<0=> Fel,x>0

spring constant x>0 => Fel,x <0

Fee,x = - Kx} (Hooke's law)

tries to bring the mass back to equilibrium

Equation of motion net force Fx

 $ma_x = F_{el,x} \iff \dot{x} + \frac{k}{m} x = 0$

vertical spring-mass system (massless spring)

Equation of motion

$$ma_{x} = -kx$$
 \Leftrightarrow $\frac{x^{2} + kx}{x^{2}} = 0$

0<0 0>0

Tangential component of the net force (due to mg only) $F_{\theta} = - \text{ mg sin } \theta$

For small angles: $\sin \theta \approx \theta + \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$

keep the 18t term only (APPROXIMATION!)

Motion along the arc of the circle (equ of motion for the temper tiol component)

OBSERVATION

In all three cases the equation of motion is of the same form

(*)
$$\frac{1}{x} + w_0^2 x = 0$$
 $w_0^2 = \frac{1}{x}$ mess-spring $w_0^2 = \frac{2}{x}$ simple pendulum

Any system for which the equetion of motion is of the former is called a simple hermonic oscilletor (SHO).

Mathematical problem to solve (case A - only the restoring force acts) $\dot{x} + \omega_0^2 x = 0$ find x = x(t)Note. 2nd order ODE (linear, with constant wefficients) How to solve? (quess & check) Guess: x(t) = cos(wot) & check: $\dot{x} = -w_0 \sin(\omega_0 t)$ $\ddot{x} = -\omega_o^2 \cos(\omega_o t) = -\omega_o^2 x$ $x^2 + \omega_0^2 x = 0$ Note that: $x(t) = A\cos(\omega_0 t) \Rightarrow \dot{x} = -\omega_0^2 x$ and $x(t) = A\cos(\omega_0 t + \varphi) = x = -\omega_0^2 x$ also satisfy the SHO equation of motion. Hence, the most general solution $x(t) = A \cos(\omega_{o}t + \varphi_{o})$ (eg. mass-spring system) $\omega_{o} = \varphi_{i}m; \text{ pendulum}$ $\omega_{o} = \varphi_{i}m; \text{ pendulum}$ oscillatory (pen'odic) behavior $T = \frac{2\pi}{w_0}$ pen'od (e.g. mass spring system $T = 2\pi T \frac{w_0}{k}$ simple pendulum $T = 2\pi T \frac{w_0}{k}$) Comment (see Problem Set 4): the most general solution can also be written as (again two constants) (again two constants The two constants A and φ (or B and C) are found by applying the rinitial constitions: $\chi(0) = \chi_0$ and $V_{\chi}(0) = V_{0\chi}$.

A general rule: 2nd order ODEs have general solutions depending on 2 peremeters (constrents).

Question: Are there any other solutions? NO! (existence & uniqueness thms.)

Position, velocity, and exceleration in simple hermonic motion

[Fig. 14.11, 14,12]

position

Observations: (x) velocity shifted by V4 of a cycle $(\frac{17}{2}-shift)$ w.r.t. position (x) acceleration shifted by $\frac{1}{2}$ of a cycle (J7-shift) w.r.t. position

Simple harmonic motion and uniform circular motion

$$\frac{d\varphi}{\partial t} = w_0 = \frac{v}{A} = const =) \quad \varphi = w_0 t$$
(assume $\varphi(0) = 0$)
Hence
$$(x(t) = A \cos \varphi = A \cos(\omega_0 t))$$

$$(y(t) = A \sin \varphi = A \sin(\omega_0 t))$$

Conclusion: The projection of point P outo the x exis (or y axis moves as if it was in a simple harmonic motion

B More realistic model: testoring force t linear drap (damping)

Eqn. of motion $ma_x = F_x = -kx - bv_x \qquad (6>0)$ $\ddot{x} + \frac{b}{m} \ddot{x} + \frac{k}{m} x = 0$ Recall that $\frac{k}{m} = w_0^2$, to $\ddot{x} + \frac{b}{m} \ddot{x} + w_0^2 x = 0 \qquad (\text{more complicateal than before})$ still linear eqn.!thou to solve? \Rightarrow guess & check \otimes (not easy to guess directly) $\Rightarrow \text{try} \quad x(t) = e^{\lambda t} \quad (\text{needs to find } \lambda) \otimes$ Then $\dot{x} = \lambda e^{\lambda t} = \lambda x$ $\ddot{x} = \lambda^2 e^{\lambda t} = \lambda^2 x$ Plup back into the eqn. of motion

Plug back into the eqn. of motion $\lambda^2 x + \frac{1}{m} \lambda x + w_0^2 x = 0$

$$\lambda^2 + \frac{\beta}{m}\lambda + \omega_0^2 = 0 \quad (**)$$

Observation: A differential egh. turned into an alpebracie (quadratic) egh - we know how to solve it!

Solution (roots) of (**) depends on the sign of

$$\Delta = (\frac{b}{m})^2 - 4\omega_0^2$$

$$\Delta > 0$$

$$\Delta > 0$$

$$\Delta = 0$$

$$\Delta$$

 $\lambda_{12} = -\frac{b}{2m} \pm i \sqrt{\omega_0^2 - (\frac{b}{2m})^2} \qquad \lambda_{12} = -\frac{b}{2m} \pm \sqrt{(\frac{b}{2m})^2 - \omega_0^2}$

 $(i^2 = -1)$

Analyze these 3 cases (1°) $\Delta < 0 \Rightarrow \left(\frac{b}{m}\right)^2 - 4w_s^2 < 0 \Rightarrow \left(\frac{b}{m}\right)^2 < 4w_o^2$ damping not too strong (underdamped regime) General solution (linear combination of two solutions) $x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} = C_1 e^{-\frac{\epsilon}{2mt}} e^{i \sqrt{\omega_0^2 - \left(\frac{\epsilon}{2m}\right)^2} t}$ Cze = + + - i (wo - (6/2m)) + But x(t) - physical quantity => must be teal, so $C_1 = \frac{1}{2} A e^{i \varphi_0} = C_2^* \Rightarrow C_2 = \frac{1}{2} A e^{-i \varphi_0}$ $x(t) = \frac{1}{2} A e^{-\frac{b}{2m}t} e^{i(w_0^2 - (\frac{b}{2m})^2 t + \varphi_0)} + \frac{1}{2} A e^{-\frac{b}{2m}t} e^{-i(w_0^2 - (\frac{b}{2m})^2) + \varphi_0}$ Hence (Recall: $e^{iu} = \cos u + i \sin u$) $x(t) = A e^{-\frac{6}{2mt}} \cos(\sqrt{w_0^2 - (\frac{8}{2m})^2} t + \varphi_0) \quad \text{(underdamp)}$ A de Sint

t $\begin{array}{ccc}
-\beta_1 \\
-\delta_2
\end{array} \qquad (\delta_2 > \delta_1)$ Effects of weak damping (underdamped regime) * motion still periodic, but the amplitude of oscillations decreases exponentially with time

* the engular frequency of oscillations $\omega = \left(\omega_0^2 - \left(\frac{6}{2m}\right)^2 < \omega_0$, so it is smaller than ω_0 (for undamped oscillations). Consequently, the period increases $(T = 2\pi/\omega)$

strong de inpino => (b) > 4 wo2 (overdouped regime) beneral solution: $+ C_2 e^{-\left(\frac{b}{2m} + \sqrt{\frac{b}{2m}}\right)^2 - w_0^2} + t$ $x(t) = C_1 e^{-\left(\frac{b}{2m} - \sqrt{\left(\frac{b}{2m}\right)^2 - \omega_0^2}\right)t}$ (overola uped regime) Effects of strong damping (overdamped regime) * motion is aperiodic - the system returns apeniodically to the equilibrium position $\Rightarrow \left(\frac{b}{m}\right)^2 = 4w_0^2$ critical damping $x(t) = D_1 e^{-\frac{6}{2m}t} + D_2(t) e^{-\frac{6}{2m}t}$ > provides another (linearly) independent) solution te-2t Effects of critical damping * apenisolic motion * the system may pass through the equilibrium position at most once (see Problem Set), overdamped critically damped

C forced (or driven) oscillations & mechanical resonance Now, one more element in the model: restoring force + linear drag + obniving force Far Simplest case: sinusoidally-varying force Far = Fo cos (wart)
4) driving frequency Equation of motion: $ma_x = F_x = -kx - bv_x + (\bar{f}_0 \cos(\omega_{\alpha} rt))$ $\ddot{x} + \frac{b}{m} \dot{x} + \left(\frac{k}{m} \dot{x} = \frac{f_0}{m} \cos(wart)\right) \tag{1}$ Observation: After some time, oscillations stabilize, and the particle (system) oscillates with the angular frequency t of the driving force (there may be a phase-shift) transient steady oscillations pen's dic, steady-state oscillations with enputs frequency war Solution to equ. of motion from B Solution to (1) ×(t) = vanishes as t >0 XSH) driving frequency The steady - state solution $x_s(t) = A \cos(\omega_{ar}t + \varphi)$ > phase shift (assume exc so that it represents phase Detailed calculations (shipped here) show that $A = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega_{ar}^2)^2 + (\frac{6\omega_{ar}}{m})^2}} = A(\omega_{ar})$ depends on war $\frac{6 \, \omega_{dr}}{m \left(\omega_{dr}^2 - \omega_0^2\right)}$ in general 470 => Fdr & xs. ere NOT in phase

Discussion of the results

$$A = \frac{F_o}{m \left[\left(\omega_o^2 - \omega_{ar}^2 \right)^2 + \left(\frac{b \omega_{ar}}{m} \right)^2 \right]}$$

A resonence curves

Features: \star peak in the curve $A = A(\omega_{ar})$ at $\omega_{res} = [\omega_o^2 - \frac{b^2}{2m^2}]$ Sharp increase in the amplitude

of oscillations when $\omega_{dr} \approx \omega_{res}$ is called

the (mechanical) resonance

* if $w_{\alpha r} \rightarrow 0$, then $A \rightarrow \frac{F_0}{mw_0^2} = \frac{F_0}{K}$ (i.e. $T_0 \rightarrow \infty$)
Constant force

* if war > wo then

 $ten \varphi = \frac{b\omega_{dr}}{m(\omega_{dr}^2 - \omega_o^2)} \Rightarrow \varphi \rightarrow -\frac{1}{2}$

the response (X(+)) laps the drive (F(+)) by 1/4 of the cycle

* if War > 00 (high frequencies)

the response laps the drive by 1/2 of the cycle (displacement and drive are in antiphase)

tau q wo

#_-lag

Ti-leg