ARITHMETIC Chapter 5

TEORIA DE NUMERACION II

01

MOTIVATING STRATEGY

¿Qué opinas al respecto?

CAMBIO DE BASE

CASO 1

De base "n" a base 10

CASO 2

De base 10 a base "m"

Método:

Descomposición polinómica

Ejemplo 1 $1432_{(5)}$ a base 10

$$1432_{(5)} = 1 \times 5^3 + 4 \times 5^2 + 3 \times 5^1 + 2$$
$$= 125 + 100 + 15 + 2$$

 $1432_{(5)} = 242$

Método: Divisiones sucesivas

CASO 3

De base "n" a base "m"

Ejemplo 3

358₍₉₎ a base 4

Paso 1

A base 10

descomposición polinómica

$$358_{(9)} = 3 \times 9^2 + 5 \times 9^1 + 8$$

= 243 + 45 + 8
= 296

 $358_{(5)} = 296$

PROPIEDADES

CIFRAS MÁXIMAS DE UN NUMERAL

Ejemplos:

$$99 = 100 - 1 = 10^2 - 1$$

$$999 = 1000 - 1 = 10^3 - 1$$

$$_{\circ}$$
 4444₍₅₎ = 10000₍₅₎ - 1 = 5⁴ - 1

$$\circ 66666_{(7)} = 100000_{(7)} - 1 = 7^5 - 1$$

En general:

$$(n-1)(n-1)...(n-1)_{(n)} = n^k - 1$$
"K" cifras

BASES SUCESIVAS

Ejemplo:

$$\bullet$$
 13₍₈₎ = 8 + 3

$$\bullet \quad 15_{13_8} = 15_{(8+3)} = 8+3+5$$

$$12_{15_{13_8}} = 12_{(8+3+5)} = 8+3+5+2$$

En general:

$$\overline{1a_{1b_{1c}}^{-}}_{-\overline{1m_{(n)}}} = a + b + c + \dots + m + n$$

INTERVALO PARA UN NUMERAL CON CIERTA CANTIDAD DE CIFRAS

Ejemplos:

■
$$10^{2} \le \overline{abc} < 10^{3}$$

$$10^{3} \le \overline{mnpq} < 10^{4}$$

$$7^{3} \le \overline{wxyz_{(7)}} < 7^{4}$$

$$9^{4} \le \overline{mnpqr_{(9)}} < 9^{5}$$

En general:

$$n^{k-1} \leq N_{(n)} < n^k$$

$$\downarrow^{"K" \ cifras}$$

1. Al convertir el mayor número de cuatro cifras del sistema senario al sistema decimal, se obtiene un número del cual se pide indicar la suma de cifras.

RESOLUCION

El mayor numero de cuatro cifras: 5555₍₆₎

Recuerda:

$$(n-1)(n-1)...(n-1)_{(n)} = n^{k} - 1$$
"K" cifras

Entonces:

$$5555_{(6)} = 6^{4}-1$$

$$5555_{(6)} = 1296 - 1$$

$$5555_{(6)} = 1295$$

Suma de cifras:

$$1 + 2 + 9 + 5$$

17

2. Si el mayor número de cuatro cifras de la base n es igual a $1688_{(9)}$, halle el valor de n.

RESOLUCION

$$\frac{(n-1)(n-1)(n-1)(n-1)}{(n)} = n^4 - 1$$

$$n^4 - 1 = 1688_{(9)}$$

$$n^4 - 1 = 1 \times 9^3 + 6 \times 9^2 + 8 \times 9^1 + 8$$

$$n^4 - 1 = 729 + 486 + 72 + 8$$

$$n^4 - 1 = 1295$$

$$n^4 = 1296$$

$$n = 6$$

3. Si número de cuatro cifras iguales del sistema quinario se convierte al sistema decimal, se obtiene un número de tres cifras que termina en 8. Halle este último número y dé como respuesta la cifra de mayor orden.

RESOLUCION

$$\overline{aaaa}_{(5)} = \overline{bc8}$$

Descomposición polinómica:

$$a \times 5^3 + a \times 5^2 + a \times 5^1 + a = \overline{bc8}$$

$$156a = \overline{bc8}$$

Por terminación de su ultima cifra:

...6 x a = ...8
$$\Rightarrow$$
 $a = 3$ 8

156x3 = $\overline{bc8}$

468 = $\overline{bc8}$

La cifra de mayor orden es 4

4. Si el número 576 se expresa en el sistema senario se obtiene un número de la forma: $\overline{(a+1)(b+1)(c+1)(d+1)}$. Determine el valor de a+b+c+d.

RESOLUCION

576 =
$$\overline{(a + 1)(b + 1)(c + 1)(d + 1)}_{(6)}$$

576 a base 6 (divisiones sucesivas)

Luego:

$$2400_{(6)} = \overline{(a+1)(b+1)(c+1)(d+1)}_{(6)}$$

$$b + 1 = 4 \implies b = 3$$

$$c + 1 = 0 \implies c = -1$$

$$d + 1 = 0 \implies d = -1$$

Nos piden:

1101₍₄₎ =
$$\overline{1a_{1a_{1a}}}_{1a_{1a}}$$
. $\overline{1a_{(9)}}$

Determine el valor de $R = a^3 - 7$.

RESOLUCION

Recuerda:

$$\overline{1a_{1b_{1c}}}_{\overline{1b_{1c}}_{(n)}} = a + b + c + \dots + m + n$$

$$1101_{(4)} = 24 \times a + 9$$

$$1 \times 4^{3} + 1 \times 4^{2} + 0 \times 4^{1} + 1 = 24a + 9$$

$$81 = 24a + 9$$

$$24a = 72$$

$$a = 3$$

Nos piden:

$$R = a^3 - 7$$

$$R = 3^3 - 7$$

$$R = 27$$

6. Utilizando una balanza de dos platillos se desea pesar un cuerpo de 877 gramos, para lo cual se dispone de pesas de 1 g; 6 g; 36 g; 216 g; ... Si se tiene solo 5 pesas de cada tipo, ¿cuál será la cantidad de pesas a usarse en la operación? (Las pesas se pondrán en un platillo y el cuerpo en el otro platillo).

RESOLUCION

Sea el numero de pesas de cada tipo: a,b,c, ...

Por lo tanto:

$$877 = a \times 6^{0} + b \times 6^{1} + ...$$

En conclusión:

877 a base 6 (divisiones sucesivas)

7. En el casino Royal Place de Plaza de San Miguel, Roberto, un apostador con suerte, lanza tres dados; al resultado del primero se le multiplica por 7, a esto se le suma el resultado del segundo dado y se vuelve a multiplicar todo por 7; finalmente se le agrega el resultado del tercer dado obteniéndose así 145. Determine qué resultado obtuvo Roberto en el segundo dado.

RESOLUCION

Descomposicion polinomica de un numeral de 3 cifras en base 7