



Mastering Embedded System Online Diploma www.learn-in-depth.com

# **Design Document**

First Term (Final Project 1)

Eng. Abdallah Shabaan Ghazy

email:abdallah.shabaan.ghazy@gmail.com

# **My Profile:**

https://www.learn-in-depth-store.com/certificate/abdallah.shabaan.ghazy%40gmail.com

# **Design for Pressure Control System (PCS)**

Version 1.0 approved

Prepared by: Abdallah Shabaan Ghazy

Organization: learn in depth

**Date Created:** 8/11/2024

# 1. Introduction

# 1.1 Purpose

This Design Document provides a comprehensive overview of the design for the Pressure Control System (PCS). It outlines the architecture, components, and design decisions that guide the development of the system.

# 1.2 Scope

The document covers the design of the PCS, which includes monitoring cabin pressure, alerting the crew when the pressure exceeds 20 bars, and optionally storing pressure values.

# 1.3 Definitions and Acronyms

• PCS: Pressure Control System

• Alarm: A signal to alert the crew of high pressure

• Flash Memory: Non-volatile storage for pressure data

• LED: Light Emitting Diode

# 2. System Overview

# 2.1 System Architecture

The PCS consists of several key components:

- Pressure Sensor: Measures the cabin pressure.
- Control Unit: Processes sensor data and checks against thresholds.
- Alarm System: Activates the alarm (LED) when needed.
- Notification System: Alerts the crew.
- Flash Memory: Stores pressure data (optional).

# 2.2 Design Constraints

- Hardware Constraints: Compatibility with existing cabin sensors and alarm hardware.
- Environmental Constraints: Operates effectively in the cabin's environmental conditions (temperature, noise).

# 3. Detailed Design

# 3.1 Components

### 3.1.1 Pressure Sensor

- Function: Continuously measures the cabin pressure.
- Interface: Connects to the Control Unit via an analog or digital interface.
- **Specifications:** Digital barometric pressure sensor with a range of 300 to 1100 hPa and accuracy of ±1 hPa.

### 3.1.2 Control Unit

- Function: Receives data from the Pressure Sensor and processes it.
- Components: Microcontroller or microprocessor.
- Algorithms: Includes logic to compare pressure values to the threshold (20 bars).

### 3.1.3 Alarm System

- Function: Activates an LED alarm when the pressure exceeds the threshold.
- Components: LED, driving circuitry.

## 3.1.4 Notification System

- Function: Notifies the crew about high pressure.
- Components: Audio or visual indicators.

# 3.1.5 Flash Memory

- Function: Stores pressure values for future analysis.
- Specifications: [Include memory size, type, and interface details]

# 3.2 Data Flow

### 1. Pressure Measurement

- o Description: Pressure Sensor measures and sends data to the Control Unit.
- Data Flow: Sensor Data → Control Unit

# 2. Threshold Checking

- o Description: Control Unit compares pressure data to the predefined threshold.
- Data Flow: Sensor Data → Control Unit → Threshold Check

### 3. Alarm Activation

- o Description: If pressure exceeds 20 bars, the Alarm System activates.
- $\circ$  Data Flow: Control Unit  $\rightarrow$  Alarm System  $\rightarrow$  LED Activation

### 4. Crew Notification

- o Description: Notifies the crew of high pressure.
- Data Flow: Control Unit → Notification System

# 5. Data Storage (Optional)

- o Description: Stores pressure values in Flash Memory.
- o Data Flow: Control Unit → Flash Memory

# Context Diagram



# Level-0 DFD



# 4. Interface Design

### 4.1 Hardware Interfaces

• Pressure Sensor: Connects via GPIO pins

• Alarm System: Connects to Control Unit via GPIO pins

### 4.2 Software Interfaces

- Control Unit Software: Handles data from sensors, processes information, and interfaces with the alarm and notification systems.
- Notification System Software: Receives alerts from the Control Unit and activates notifications.

# 5. Error Handling

### 5.1 Error Detection

- Sensor Failures: Detect failures or inaccuracies in sensor readings.
- Communication Errors: Identify and handle issues with data transfer between components.

# 5.2 Error Response

- Redundant Systems: Implement backup systems or alerts for critical failures.
- Logs: Maintain logs for error diagnosis and troubleshooting.

# 6. Security

# 6.1 Data Security

- Encryption: Ensure sensitive data (if any) is encrypted.
- Access Control: Implement controls to restrict access to system data and configurations.

# 6.2 System Security

- Physical Security: Protect hardware components from tampering.
- Software Security: Regular updates and patches to fix vulnerabilities.

# 7. Performance

# 7.1 Response Time

• Description: The system must detect pressure changes and activate the alarm within 2 seconds.

# 7.2 Reliability

• Description: The system must operate continuously with minimal downtime.

# 8. Maintenance

# 8.1 Regular Maintenance

- Description: Periodic checks and updates to ensure system functionality.
- Components: Sensors, control units, and alarm systems.

# 8.2 Troubleshooting

• Description: Procedures for diagnosing and fixing issues with the system.

# **Sequence Diagram**



# **Activity Diagram**



# ~ out SetPressureValue() PValue = 0 : int; PSensorPullTime : Timer; <<bl></bl><<blook>>PressureSensorDriver ~ in SetPressureValue() ~ out HighPressureDetect() Pvalue = 0 : int; Threshold = 20 : int; - AlamTime: Timer: - AlamPeriod = 80 : int: - in HighPressureDetect0 - out StateAlam0 - out StopeAlam0 AlarmMonitor <<blook>> **P** in StopeAlarm ~ in StateAlarmO in StateAlarm in StopeAlarmO

# **System Design**

(Modules with its own state machines)

# 

# **AlarmMonitor**



# **PressureSensorDriver**



