4-Bit Arithmetic Logic Unit/ Function Generator

The MC10181 is a high–speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four–bit words. Full internal carry is incorporated for ripple through operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided to allow fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

- $P_D = 600 \text{ mW typ/pkg (No Load)}$
- t_{pd} (typ): A1 to F = 6.5 ns
- C_n to $C_{n+4} = 3.1$ ns
- A1 to $P_G = 5.0 \text{ ns}$
- A1 to $G_G = 4.5 \text{ ns}$
- A1 to $C_{n+4} = 5.0$

LOGIC DIAGRAM 13 15 17 V_{CC1} = PIN 1 V_{CC2} = PIN 24 VEE = PIN 12 S0 S1 S2 S3 2 21 A0 F0 20 B0 F1 3 18 A1 19 В1 F2 16 A2 F3 11 B2 10 **A**3 GG 9 В3 P_{G} 8 22 C_n C_{n+4}

Function Select				Logic Functions M is High C = D.C.	Arithmetic Operation M is Low C _n is low						
S3	S2	S1	S0	F F	F						
			ILILLILILILI	$F = \overline{A}$ $F = \overline{A} + \overline{B}$ $F = \overline{A} + B$ $F = \text{Logical "1"}$ $F = \overline{A} \bullet \overline{B}$ $F = \overline{B}$ $F = A \odot B$ $F = \overline{A} \bullet B$ $F = A \oplus B$ $F = A \oplus B$ $F = A \odot B$ $F = A \circ B$	F = A F = A plus $(A \bullet \overline{B})$ F = A plus $(A \bullet B)$ F = A times 2 F = $(A + B)$ plus 0 F = $(A + B)$ plus $(A \bullet \overline{B})$ F = A plus B F = A plus $(A + B)$ F = $(A + \overline{B})$ plus 0 F = A minus B minus 1 F = $(A + \overline{B})$ plus $(A \bullet B)$ F = A plus $(A + \overline{B})$ F = minus 1 (two's complement) F = $(A \bullet \overline{B})$ minus 1 F = $(A \bullet B)$ minus 1 F = A minus 1						

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

CDIP-24 L SUFFIX CASE 623

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping					
MC10181L	CDIP-24	15 Units / Rail					

ELECTRICAL CHARACTERISTICS

			Test Limits							
		Pin Under	-30)°C	+25°C			+85	1	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	12		159			145		159	mAdc
Input Current	linH	9 10 11 13 14 15 16 17 18 19 20 21 22 23		390 350 390 320 425 425 350 425 350 390 390 350 460 320			245 220 245 200 265 265 220 265 220 245 245 220 290 200		245 220 245 200 265 265 220 265 220 245 245 220 290 200	μAdc
Input Leakage Current	l _{inL}	9 10 11 13 14 15 16 17 18 19 20 21 22 23	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		μAdc
Output Voltage Logic 1	Vон	*	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage Logic 0	VOL	*	-2.000	-1.675	-1.990		-1.650	-1.920	-1.615	Vdc
Threshold Voltage Logic 1	VOHA	*	-1.080		-0.980			-0.910		Vdc
Threshold Voltage Logic 0	V _{OLA}	*		-1.655			-1.630		-1.595	Vdc

^{*} Test all input-output combinations according to Function Table.

 $^{^{\}star\star}$ For threshold level test, apply threshold input level to only one input pin at a time.

ELECTRICAL CHARACTERISTICS (continued)

	@ Test Te	mperature	VIHmax	V _{ILmin}	VIHAmin	VILAmax	VEE	1	
		-30°C	-0.890	-1.890	-1.205	-1.500	-5.2		
	+25°C		-0.810	-1.850	-1.105	-1.475	-5.2	1	
	+85°0		-0.700	-1.825	-1.035	-1.440	-5.2	1	
		Pin	TEST V]					
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	(VCC)		
Power Supply Drain Current	ΙΕ	12					12	1, 24	
Input Current	linH	9 10 11 13 14 15 16 17 18 19 20 21 22 23	9 10 11 13 14 15 16 17 18 19 20 21 22 23				12 12 12 12 12 12 12 12 12 12 12 12 12	1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24 1, 24	
Input Leakage Current	l _{inL}	9 10 11 13 14 15 16 17 18 19 20 21 22 23		9 10 11 13 14 15 16 17 18 19 20 21 22 23			12 12 12 12 12 12 12 12 12 12 12 12 12 1	1, 24 1, 24	
Output Voltage Logic 1	Vон	*	*	*			12	1, 24	
Output Voltage Logic 0	V _{OL}	*	*	*			12	1, 24	
Threshold Voltage Logic 1	Vона	*			**	**	12	1, 24	
Threshold Voltage Logic 0	VOLA	*			**	**	12	1, 24	

^{*} Test all input–output combinations according to Function Table.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

^{**} For threshold level test, apply threshold input level to only one input pin at a time.

					AC Switching Characteristics							
					–30°C *		+25°C			+85°C *		
Characteristic	Symbol	Input	Output	Conditions†	Min	Max	Min	Тур	Max	Min	Max	Unit
Propagation Delay	t++,t	C _n	C _{n+4}	A0,A1,A2,A3	1.0	5.1	1.1	3.1	5.0	1.1	5.4	ns
Rise Time, Fall Time	t+,t-	C _n	C _{n+4}	A0,A1,A2,A3	1.0	3.2	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay Rise Time, Fall Time	t++,t+-	C _n	F1	A0	1.7	7.2	2.0	4.5	7.0	2.0	7.5	ns
	t-+,t	C _n	F1	A0	1.7	7.2	2.0	4.5	7.0	2.0	7.5	ns
	t+,t-	C _n	F1	A0	1.3	5.3	1.5	3.0	5.0	1.5	5.3	ns
Propagation Delay Rise Time, Fall Time	t++,t+-	A1	F1	_	2.6	10.4	3.0	6.5	10	3.0	10.8	ns
	t-+,t	A1	F1	_	2.6	10.4	3.0	6.5	10	3.0	10.8	ns
	t+,t-	A1	F1	_	1.3	5.4	1.5	3.0	5.0	1.5	5.3	ns
Propagation Delay	t++,t	A1	PG	\$0,\$3	1.6	7.0	2.0	5.0	6.5	2.0	7.0	ns
Rise Time, Fall Time	t+,t-	A1	PG	\$0,\$3	0.8	3.7	1.1	2.0	3.5	1.1	3.8	ns
Propagation Delay	t++,t	A1	G _G	A0,A2,A3,C _n	1.1	7.4	2.0	4.5	7.0	1.3	7.7	ns
Rise Time, Fall Time	t+,t-	A1	G _G	A0,A2,A3,C _n	1.2	5.1	1.5	4.0	5.0	1.2	5.3	ns
Propagation Delay	t+-,t-+	A1	C _{n+4}	A0,A2,A3,C _n	1.7	7.3	2.0	5.0	7.0	2.0	7.8	ns
Rise Time, Fall Time	t+,t-	A1	C _{n+4}	A0,A2,A3,C _n	1.0	3.1	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay	t++,t-+	B1	F1	S3,C _n	2.7	11.3	3.0	8.0	11	3.0	11.9	ns
Rise Time, Fall Time	t+,t-	B1	F1	S3,C _n	1.2	5.3	1.5	3.5	5.0	1.5	5.3	ns
Propagation Delay	t++,t	B1	PG	S0,A1	1.6	7.7	2.0	6.0	7.5	2.0	8.0	ns
Rise Time, Fall Time	t+,t-	B1	PG	S0,A1	1.0	3.6	1.1	2.0	3.5	1.1	3.9	ns
Propagation Delay	t++,t	B1	G _G	S3,C _n	1.7	8.2	2.0	6.0	8.0	2.0	8.6	ns
Rise Time, Fall Time	t+,t-	B1	G _G	S3,C _n	1.4	5.2	1.5	3.0	5.0	1.2	5.4	ns
Propagation Delay	t+-,t-+	B1	C _{n+4}	S3,C _n	1.8	8.2	2.0	6.0	8.0	2.0	8.7	ns
Rise Time, Fall Time	t+,t-	B1	C _{n+4}	S3,C _n	0.9	3.1	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay	t++,t+-	M	F1	_	2.4	10.3	3.0	6.5	10	3.0	10.8	ns
Rise Time, Fall Time	t+,t-	M	F1	_	1.1	5.1	1.5	4.0	5.0	1.5	5.3	ns
Propagation Delay	t+,t+	S1	F1	A1,B1	2.5	10.7	3.0	6.5	10	3.0	10.8	ns
Rise Time, Fall Time	t+-,t-	S1	F1	A1,B1	1.0	5.4	1.5	3.0	5.0	1.5	5.4	ns
Propagation Delay	t-+,t+-	S1	PG	A3,B3	1.7	8.3	2.0	6.0	8.0	2.0	8.4	ns
Rise Time, Fall Time	t+,t-	S1	PG	A3,B3	0.8	5.1	1.1	3.0	5.0	1.1	5.2	ns
Propagation Delay	t+,t+	S1	C _{n+4}	A3,B3	1.6	9.3	2.0	6.0	9.0	2.0	9.9	ns
Rise Time, Fall Time	t+-,t-	S1	C _{n+4}	A3,B3	0.9	5.3	1.1	3.0	5.0	1.0	5.2	ns
Propagation Delay	t+,t+	S1	G _G	A3,B3	1.5	9.6	2.0	6.0	9.0	1.9	9.7	ns
Rise Time, Fall Time	t+-,t-	S1	G _G	A3,B3	0.8	6.2	0.8	3.0	6.0	0.8	6.5	ns

[†] Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. $V_{CC1} = V_{CC2} = +2.0 \text{ Vdc}, V_{EE} = -3.2 \text{ Vdc}$

^{*} L Suffix Only