Problemas Tema 3. Topología I

Doble grado en ingeniería informática y matemáticas

Curso 2020–21

1.— Sea X un conjunto y T,T' dos topologías en X tales que $T \subset T'$. Probar que si (X,T') es conexo entonces (X,T) también lo es. Dar un ejemplo en el que (X,T) es conexo y (X,T') no lo es.

- **2.** Sea (X,T) un espacio topológico y $A \subset X$ un subconjunto arbitrario. Sea $B \subset X$ un subconjunto conexo tal que $B \cap A \neq \emptyset$, $B \cap (X \setminus A) \neq \emptyset$. Probar que $B \cap \partial A \neq \emptyset$. ¿Es cierto el resultado si el conjunto B no es conexo?
- **3.** Para cada $n \in \mathbb{N}$ se considera la recta:

$$R_n = \{(x, y) \in \mathbb{R}^2 : y = 1/n\}$$

y la recta límite $R_{\infty} = \{(x, y) \in \mathbb{R}^2 : y = 0\}$. Sea $X = \left(\bigcup_{n \in \mathbb{N}} R_n\right) \cup R_{\infty}$.

- 1. Describir las componentes conexas de X.
- 2. ¿Son las componentes conexas de X subconjuntos abiertos de X?
- **4.** Si X e Y son espacios topológicos conexos y $A \subsetneq X$, $B \subsetneq Y$, probar que $(X \times Y) \setminus (A \times B)$ es conexo.
- **5.** Consideramos en $[0,1] \subset \mathbb{R}$ la topología inducida por la topología usual en \mathbb{R} . Sea $f:[0,1] \to [0,1]$ una aplicación continua. Probar que, para todo $n \in \mathbb{N}$, existe $x_n \in [0,1]$ tal que $f(x_n) = x^n$.
- **6.** Estudiar las componentes conexas de ([-1,1],T), donde T es la topología $T=\{U\subset X:0\not\in U\text{ o }(-1,1)\subset U\}.$
- 7.— Sea X un conjunto, $A \subset X$. Se considera la topología

$$T = \{U \subset X : A \subset U\} \cup \{\emptyset\}.$$

Estudiar las componentes conexas de (X, T).

- 8. Estudiar las componentes conexas de R con la topología de Sorgenfrey.
- **9.** Probar que la imagen por una aplicación continua de un espacio topológico conexo por arcos es un espacio topológico conexo por arcos.
- **10.** Sean (X_i, T_i) , i = 1, ..., n, una familia finita de espacios topológicos. Probar que $X_1 \times \cdots \times X_n$ es conexo por arcos con la topología producto si y sólo si todos los espacios X_i , i = 1, ..., n, son conexos por arcos.
- 11.- Sea $f:(0,+\infty)\to\mathbb{R}$ la función $f(x)=\sin(1/x)$, y sea

$$G(f) = \{(x, y) : x > 0, y = f(x)\} \subset \mathbb{R}^2$$

el grafo de dicha función. Probar que:

- 1. G(f) es conexo y conexo por arcos.
- 2. $\overline{G(f)} = G(f) \cup (\{0\} \times [-1, 1]).$
- 3. $\overline{G(f)}$ no es conexo por arcos.
- **12.** Si (X,T) es un espacio topológico compacto y $T' \subset T$, probar que (X,T') es compacto. ¿Es cierto el resultado si $T \subset T'$?
- 13.— Estudiar los subconjuntos compactos de $\mathbb N$ con la topología de los complementos finitos.
- **14.** Sea $K = \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. Consideramos en \mathbb{R} la topología T_K generada por la base:

$$\mathcal{B} = \{(a, b) : a < b\} \cup \{(a, b) \setminus K : a < b\}.$$

- 1. ¿Es [0,1] un subconjunto compacto de (\mathbb{R},T_K) ?
- 2. Probar que (\mathbb{R}, T_K) es conexo.
- 3. Probar que (\mathbb{R}, T_K) no es conexo por arcos.
- **15.** Probar que un espacio métrico conexo con más de un punto es no numerable. (Indicación: si X es conexo y $x \neq y$, probar que para cada 0 < r < d(x,y) el conjunto $\overline{B}(x,r) \setminus B(x,r)$ es no vacío).
- **16.** Sea (X, d) un espacio métrico compacto sin puntos aislados.
 - 1. Dados $U\subset X$ abierto y $x\in X$, probar que existe V abierto tal que $V\subset U$ y $x\not\in \overline{V}$.
 - 2. Si $\{x_i\}_{i\in\mathbb{N}}$ es una sucesión en X, probar que existe una sucesión de conjuntos abiertos $\{V_i\}_{i\in\mathbb{N}}$ tal que $V_{i+1} \subset V_i$ y $x_i \notin \overline{V}_i$. Concluir que $\bigcap_{i\in\mathbb{N}} \overline{V}_i \neq \emptyset$.
 - 3. Deducir que X es no numerable.

¿Es cierto el resultado si (X,T) es un espacio topológico compacto y Hausdorff sin puntos aislados?

17.— Sea $I_0 = [0,1] \subset \mathbb{R}$. Se define I_n inductivamente por la igualdad

$$I_n = I_{n-1} \setminus \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right).$$

Probar que la intersección

$$C = \bigcap_{n \in \mathbb{Z}_+} I_n$$

es no vacía. Al conjunto C se le denomina el conjunto de Cantor.

- 1. Probar que cada conjunto I_n es unión finita de intervalos cerrados de longitud $1/3^n$ y que los extremos de dichos intervalos pertenecen a C.
- 2. Probar que C es compacto.
- 3. Probar que C es totalmente disconexo.
- 4. Probar que C no tiene puntos aislados.
- 5. Probar que C es no numerable.