Introduction to Theoretical Computer Science, Fall 2024 Assignment 7 Solutions

- Q1. Let A be a DFA. Consider the state diagram of A. It can be viewed as a directed graph G. We delete from G the nodes that are not reachable from the initial sate and the nodes from which we cannot reach the final states. Then L(A) is infinite if and only if G has a cycle, the latter of which can be determined using DFS in linear time.
- Q2. Let M be a Turing machine. Let w be a string. In the following, we shall construct a Turing machine M' such that M accepts w if and only if L(M') is infinite.

M' =on input x:
1. run M on w2. if M accepts w3. accept x4. else
5. reject x

The above is a reduction from A_{TM} to INF_{TM}. Since A_{TM} is not recursive, nor is INF_{TM}.

- Q3. Let A be a DFA. Let B be the NFA with $L(B) = L^R(A)$. B can be constructed from A by reversing all the transitions of A. One can see that "A" $\in S$ if and only if L(A) = L(B). Therefore, S can be reduced to $\mathrm{EQ}_{\mathrm{DF}A}$. Since $\mathrm{EQ}_{\mathrm{DF}A}$ is recursive, so is S.
- Q4. Let A be the stated language in the question. Let $B = \{"M" : M \text{ is a TM that accepts } e\}$. We already know that B is not recursive. To prove A is not recursive, it suffices to reduce B to A. Let M be a TM. Let M' be the following Turing machine.

M' =on input x: 1. if x == e2. accept x3. else 4. reject x

It is easy to see that $L(M') = \{e\}$. Then we have that M accepts e if and only if $L(M) \cap L(M') \geq 1$. This finishes the reduction.