实验八: HPL (High Performance Linpack)

郑海刚

本讲概述

- CPU的浮点计算能力
- HPL介绍
- HPL.dat说明与调优
- 超算Top500介绍

CPU性能

• 同频性能

■ IPC:每时钟周期执行的指令数

■ CPI: 每指令的执行时间时钟周期数

• 不同CPU的频率显然不同

■ MIPS (Million Instructions Per Second): 每秒执行的指令数

■ MIPS 衡量定点指令(整数操作)

2024/9/20

计算机系统性能

- 除了CPU之外
 - 总线、内存、磁盘
 - SPEC测试
 - 图形渲染性能、邮件服务、存储、虚拟化等
- 由于应用的多样性,不同的计算机对不同的应用有不同的适应性, 很难建立一个统一的标准来比较不同计算机的性能

FLOPS (floating point operations per second)

- 常用于科学计算领域, 浮点操作比较多
- 每秒的浮点操作数, 非指令数, 不区分加减乘除
 - 一条指令可以有多个浮点操作,用指令数衡量不准确
 - 向量化指令 (SIMD) 一次可以执行多个数的操作,比如x86的avx256
 - SIMD的<u>FMA</u> (融合乘加): c=a*b+c
 - CPU的理论性能如下

$$FLOPS = cores \times \frac{cycles}{second} \times \frac{FLOPs}{cycle}.$$

CPU基本信息查看与解读

• 查看CPU型号 Iscpu 命令

■ 1 sockets: 1颗cpu

■ cores per socket: 4核

\$ ~ »lscpu Architecture: x86 64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 39 bits physical, 48 bits virtual CPU(s): On-line CPU(s) list: Thread(s) per core: Core(s) per socket: Socket(s): Vendor ID: GenuineIntel CPU family: Model: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz Model name: Stepping:

■ threads per core:每核2个线程,采用了超线程技术,8个逻辑线程

■ 基准频率1.6G, 实际运行频率可变

■ flags 包含了指令集的信息: avx等

■ wikichip 、Intel 、AMD官网也可查处理器信息

CPU浮点性能计算

- 现代X86处理器峰值浮点性能按照AVX指令计算
 - AVX2: 寄存器是256位, 一次可以进行256/64=4个浮点操作
 - 有FMA,一条指令最多2条浮点操作,乘以2
 - 如果包含两个执行单元(EUs),能同时执行两条AVX指令,继续乘以2
 - 再乘以频率(AVX工作时的频率)、乘以物理核心数
- https://en.wikichip.org/wiki/flops

<u>S</u>	Haswell Broadwell	EUs	2 × 256-bit FMA			
	Skylake Kaby Lake Amber Lake	DP	16 FLOPs/cycle	2 × 8 FLOPs	AVX2 & FMA (256-bit)	
	Coffee Lake Whiskey Lake	offee Lake SP	32 FLOPs/cycle	2 × 16 FLOPs		

浮点计算单元数、处理器频率

- haswell 架构图
- 处理器的频率跟工作状态有关:
 - i5-4570R, 单核频率3.2GHz
 - 4核全开3Ghz

List of Haswell Processors									
				Turbo Boost					
Model	_2\$ ≑	L3\$ ÷	TDP ÷	Frequency +	1 Core +	2 Cores +	3 Cores +	4 Cores +	
i5-4570R	MiB	4 MiB	65 W	2.7 GHz	3.2 GHz	3.1 GHz	3 GHz	3 GHz	
i5-4670R	MiB	4 MiB	65 W	3 GHz	3.7 GHz	3.6 GHz	3.5 GHz	3.5 GHz	
i7-4750HQ	MiB	6 MiB	47 W	2 GHz	3.2 GHz	3.1 GHz	3 GHz	3 GHz	
i7-4760HQ	MiB	6 MiB	47 W	2.1 GHz	3.3 GHz	3.2 GHz	3.1 GHz	3.1 GHz	
i7-4770HQ	MiB	6 MiB	47 W	2.2 GHz	3.4 GHz	3.3 GHz	3.2 GHz	3.2 GHz	
i7-4770R	MiB	6 MiB	47 W	3.2 GHz	3.9 GHz	3.8 GHz	3.7 GHz	3.7 GHz	
i7-4850EQ	MiB	6 MiB	47 W	1.6 GHz	3.2 GHz	3.1 GHz	3 GHz	3 GHz	

服务器芯片

- 核心数更多, 支持AVX512
- Intel Xeon Gold 6150

Mode	Base	Turbo Frequency/Active Cores										
Mode		1	2	3	4	5	6	7	8	9	10	11
Normal	2,700 MHz	3,700 MHz	3,700 MHz	3,500 MHz	3,500 MHz	3,400 MI						
AVX2	2,300 MHz	3,600 MHz	3,600 MHz	3,400 MHz	3,400 MHz	3,300 M						
AVX512	1,900 MHz	3,500 MHz	3,500 MHz	3,300 MHz	3,300 MHz	3,200 MHz	3,200 MHz	3,200 MHz	3,200 MHz	2,900 MHz	2,900 MHz	2,900 M

<u>Linpack基准测试</u>

- 通过求解线性方程组 Ax=b 测量系统的浮点计算性能
- Linpack100:求解规模为100阶的稠密线性代数方程组
- Linpack1000:求解规模为1000阶的线性代数方程组,可以在不改变计算量的前提下做算法和代码的优化。
- HPLinpack: 求解规模n可以自行调整,适用于并行系统

HPLinpack (HPL测试)

- HPL (High-Performance Linpack Benchmark)
 - 通过LU分解求解一个稠密线性方程组测试64位浮点峰值性能
 - 依赖BLAS库
 - 专注于分布式内存系统的性能测试
 - · 依赖MPI实现
 - 可以调整矩阵规模,可改代码优化,但计算量要保证不变

HPL.dat参数说明

· HPL Tuning: 上一行决定了下一行多少个数据有效

■ 1-2行: 说明信息

■ 3-4行:内容输出到哪里

■ 5-6行: 矩阵规模的大小

■ 7-8行: 分块计算时块大小

■ 9行: 处理器布局,推荐行优先

■ 10-12: 进程网格的数量, 乘积是总进程数

■ 14-21: 算法有关, LU分解的方式

```
1 HPLinpack benchmark input file
2 Innovative Computing Laboratory, University of Tennessee
 3 HPL.out
                output file name (if anv)
 Ц 6
                device out (6=stdout,7=stderr,file)
                # of problems sizes (N)
 6 29 30 34 35 Ns
                # of NRs
8 1 2 3 4
 9 0
                PMAP process mapping (0=Row-,1=Column-major)
                # of process grids (P x 0)
10 2
11 2 1
12 2 1
13 16.0
               threshold
14 3
                # of panel fact
15 0 1 2
                PFACTs (0=left, 1=Crout, 2=Right)
16 2
                # of recursive stopping criterium
17 2 4
                NBMINs (>= 1)
18 1
                # of panels in recursion
19 2
                NDIVs
20 3
                # of recursive panel fact.
21 0 1 2
                RFACTs (0=left, 1=Crout, 2=Right)
22 1
                # of broadcast
23 0
                BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
24 1
                # of lookahead depth
25 0
                DEPTHs (>=0)
26 2
                SWAP (0=bin-exch,1=long,2=mix)
27 64
                swapping threshold
                L1 in (0=transposed,1=no-transposed) form
28 0
29 0
                U in (0=transposed,1=no-transposed) form
30 1
                Equilibration (0=no.1=ves)
31 8
                memory alignment in double (> 0)
```

HPL.dat参数常用调整策略

- FAQ: https://www.netlib.org/benchmark/hpl/faqs.html
- 自动调参工具
 - 节点数、CPU核数、内存、块大小

超算Top500

• 始于1993年,一年更新2次,每年6月的ISC大会,11月的SC大会

• 根据HPL测试数据排名

■ Rmax: HPL实测峰值,排名的依据

■ Rpeak: 理论峰值

Top1: 2024.6月

- <u>Top1: 美国Frontier</u>
 - AMD EPYC 64C 2GHz
 - AMD Instinct MI250X
 - 8,699,904核数
 - Rmax: 1206Pflops
 - Rpeak: 1714Pflops

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel D0E/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

历史上的Top1

• 2010.11: 天河1A

• 2013.6-2015.11: 天河2

• 2016.6-2017.11: 神威太湖之光

供应商份额

- 数量上: 联想第一 (32.6%) , HPE第二 (22.4%) , 浪潮第五 (4.4%)
- 总算力占比: HPE第一(前身为惠普的企业级产品部门)
- 处理器Intel、IBM Power处理器为主
- 加速器Nvidia、AMD为主

地区占比

- 数量上: 美国 (34.2%), 中国 (16%)
- 总的算力上: 美国 (53.7) , 中国 (4.3%)

ASC超算竞赛HPL测试

- 在3kw功耗下,使用组委会提供的服务器,自带GPU 卡,现场组装进行HPL测试
- 2023年取得了超过了100Tflops记录
- GPU也能跑HPL,用英伟达的容器方案

Roofline model (屋顶线模型)

- GEMM最快能有多快? 系统的性能上限
- 估计应用在指定的硬件系统上能达到的性能、硬件的边界、潜在的优化
- 横轴是计算强度 (Operational Itensity) : 计算次数/访存字节数
- 纵轴是性能 (Performance)

$$P = \min \left\{ egin{array}{l} \pi \ eta imes I \end{array}
ight.$$

• /是计算强度, π 是性能上限, β 是内存带宽

内存带宽的2个例子

• 神威超算: 内存带宽小, 应用优化难

• GPU上的HBM (<u>High Bandwidth Memory</u>)

		Clock		per Stack (1024 bit)			
Type	Release	(GHz)	Stack	Capacity (2 ³⁰ Byte)	Data rate (GByte/s)		
HBM 1	Oct 2013	0.5		1× 4 = 4	128		
HBM 2	Jan 2016	1.01.2	8× 128 bit	1× 8 = 8	256307		
HBM 2E	Aug 2019	1.8	120 510	2× 8 = 16	461		
HBM 3	Oct 2021	3.2	16×	2×12 = 24	819		
HBM 4	2026	5.6	64 bit	2×16 = 32	1434		

论文: Benchmarking SW26010 Many-Core Processor