Results

Repeated Measurements

You have entered several related numeric variables. Hence, a repeated measures ANOVA seems to be a good option for you! In order to run this analysis in jamovi, go to: ANOVA > Repeated Measures ANOVA

- Under Repeated Measures Factors, replace the name RM Factor 1 with a more appropriate name (e.g., 'measurement point'). Then give a name to each level (e.g., measurement 1, measurement 2, etc.). Make sure that the number of levels you have defined equals the number of related variables you have
- Drag the related variables to the box below Repeated Measures Cells, one per level

Alternatively, if distributional assumptions are violated, you could use the non-parametric <u>Friedman test</u>. Click on the link to learn more about this test!

Scatter Plot

Descriptives

Descriptives

	stick	witchetty
N	8	8
Missing	0	0
Mean	8.13	5.75
Std. error mean	0.789	1.03
95% CI mean lower bound	6.58	3.73
95% CI mean upper bound	9.67	7.77
Median	8.00	6.50
Standard deviation	2.23	2.92
Minimum	5.00	1.00
Maximum	12.0	9.00
Skewness	0.409	-0.778
Std. error skewness	0.752	0.752
Kurtosis	0.0142	-0.760
Std. error kurtosis	1.48	1.48
Shapiro-Wilk W	0.982	0.901
Shapiro-Wilk p	0.970	0.292

Repeated Measures ANOVA

Within Subjects Effects

	Sphericity Correction	Sum of Squares	df	Mean Square	F	р	η² _G
Food	None	83.1	3	27.71	3.79	0.026	0.327
	Greenhouse-Geisser	83.1	1.60	52.0	3.79	0.063	0.327
	Huynh-Feldt	83.1	2.00	41.6	3.79	0.048	0.327
Residual	None	153.4	21	7.30			
	Greenhouse-Geisser	153.4	11.19	13.7			
	Huynh-Feldt	153.4	13.98	11.0			

Note. Type 3 Sums of Squares

[3]

Between Subjects Effects

	Sum of Squares	df	Mean Square	F	р	η²G
Residual	17.4	7	2.48			

Note. Type 3 Sums of Squares

Assumptions

Tests of Sphericity

	Mauchly's W	р	Greenhouse-Geisser ε	Huynh-Feldt ε
Food	0.136	0.047	0.533	0.666

Q-Q Plot

Post Hoc Tests

Post Hoc Comparisons - Food

Comparison		arison	_				
Food		Food	Mean Difference	SE	df	t	P _{bonferroni}
stick	-	testicle	3.875	0.811	7.00	4.775	0.012
	-	eye	4.000	0.732	7.00	5.465	0.006
	-	witchetty	2.375	1.792	7.00	1.325	1.000
testicle	-	eye	0.125	1.202	7.00	0.104	1.000
	-	witchetty	-1.500	1.336	7.00	-1.122	1.000
eye	-	witchetty	-1.625	1.822	7.00	-0.892	1.000

[4]

Estimated Marginal Means

Food

Estimated Marginal Means - Food

			95% Confidence Interval		
Food	Mean	SE	Lower	Upper	
stick	8.12	0.789	6.26	9.99	
testicle	4.25	0.648	2.72	5.78	
eye	4.13	0.972	1.83	6.42	
witchetty	5.75	1.031	3.31	8.19	

[4]

References

[1] The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).

[3] Singmann, H. (2018). *afex: Analysis of Factorial Experiments*. [R package]. Retrieved from https://cran.r-project.org/package=afex.

[4] Lenth, R. (2020). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.