### - Replication -

# Judging Prosecutors: Public Support for Prosecutorial Discretion

Michael J. Nelson & Taran Samarth (2022)

Lily Rice Quantitative Methods: Applied Stats II 3 April 2023

#### Outline

#### [1] Replication of Paper

- Background
- Research Question
- Hypotheses
- Research Design
- Replicated Results (1-3)

#### [2] My Contribution / "Twist"

- Argument for Addition of Interaction Term in Test of H1
- Run Additive & Interactive Models
- Likelihood Ratio Test
- Interpretation & Conclusion

## Background

- In US, prosecutors have
  - (1) immense discretion about criminal justice policy &
  - (2) are elected in 45 states
- Common Assumption = US public are "tough on crime" →
  theoretically, the public should prefer prosecutors that are
  strict over lenient
- Is this true?

#### Research Question

What are the electoral impacts of lenient sentencing practices for prosecutors?

## Hypotheses

 H1 - The public is more supportive of punitive, rather than lenient, prosecutors.

 H2 - The public is more supportive of copartisan, rather than outpartisan, prosecutors.

 H3 - The effect of a lenient sentence is mitigated for copartisan prosecutors.

### Research Design

- Tests H1-3 using 2 experiments fielded during the 2020 CES survey
  - o H1:
    - N = 1000. presented with vignette
    - Treatment = presented with harsh or lenient prosecutor
    - Outcome = General Incumbent Support (General support for re-election), measured on a scale
  - o H2 & H3:
    - Incorporates Co-partisanship
    - N = 675, presented vignette
    - Treatment = either harsh / lenient prosecutor who is either co-partisan / outpartisan
    - Outcome = General Incumbent Support
- Methods:
  - Difference in Means (H1 & H2)
  - Linear Regression Analysis (H1-3)

#### Replicated Results (1/3):

```
# Study 1
svyttest(elec_sup_pre~lenient_pre, cces_design)$p.value
```

= lenient\_pre1 6.106674e-13

# Effect size
svyttest(elec\_sup\_pre~lenient\_pre, cces\_design)\$estimate

= difference in mean 0.5459462

- H1 =/= Supported:
  - Did t-test; finds the difference in means between treatments = .56 (over ½ of a standard deviation)
  - Respondents had on average, significantly (p<.01) higher support for re-election for "lenient" prosecutor (than "harsh" prosecutor)



Replication of Fig 1:: Average Re-election support across treatments

#### Replicated Results (2/3):

#### H2 = supported:

- On average, more support for co-partisan vs outpartisan prosecutors
- T-tests run, diff in means between lenient/harsh outpartisans and lenient/harsh co-partisans
- Significant (p<.01) difference in average support for lenient co-partisan vs harsh co-partisan, but no significant difference between support for harsh/lenient outpartisans
- Additional Bivariate Regression Models Run, also support H2



Replication of Fig. 2: Average Support by treatment, strongest support for lenient co-partisan

#### Replicated Results (3/3):

```
post_m1s <- glm(elec_sup_post \sim lenient_post, family = "gaussian", cces %>% filter(copartisan %in% c(0,1))) post_m2s <- glm(elec_sup_post \sim copartisan, family = "gaussian", cces %>% filter(copartisan %in% c(0,1))) post_m3s <- glm(elec_sup_post \sim lenient_post*copartisan, family = "gaussian", cces %>% filter(copartisan %in% c(0,1)))
```

- H3 =/= supported:
  - Respondents do not treat copartisans and outpartisans significantly differently according to their leniency
- Methods: Linear Regression Model with Interaction; ("post\_m3s")
  - Interaction: Copartisan x Leniency
    - Table shows: No significant difference in effect based on copartisanship

| Table 3: Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 3: Regression Models, Study 2 |          |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re-election Support                 |          |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)                                 | (2)      | (3)      |  |  |
| Lenient Sentence (1 Day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35***                             |          | 0.24*    |  |  |
| Control of the Contro | (0.07)                              |          | (0.10)   |  |  |
| Copartisan Pros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 0.39***  | 0.29**   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | (0.07)   | (0.09)   |  |  |
| Copartisan × Lenient Sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |          | 0.17     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |          | (0.14)   |  |  |
| Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.29***                             | 2.26***  | 2.15***  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.05)                              | (0.05)   | (0.06)   |  |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 675                                 | 675      | 675      |  |  |
| Log Likelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -886.82                             | -883.36  | -871.23  |  |  |
| AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,777.64                            | 1,770.73 | 1,750.46 |  |  |
| *p < .05; **p < .01; ***p < .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                   |          |          |  |  |

#### Contribution: Add an **Interaction Term?**

- Should I include an <u>INTERACTION TERM</u> to the model for testing H1?
- An interaction term may be better because: the effect of the LENIENT treatment on the outcome (SUPPORT FOR REELECTION) might vary depending on the respondent's RACE.

#### WHY:

- The CES study used = completed in 2020 (a period of protest against racially motivated police brutality in the US), African Americans = disproportionately negatively affected by the US criminal justice system
- Therefore: Leniency treatment might have a greater positive effect on respondent's support for re-election if the respondent is black vs not black.
- This would be the rationale behind adding an interaction term: (Leniency x Black) to the regression model

## [1] Run Both **Additive** and **Interactive** Models

#### Additive Model:

#### Interactive Model:

- Statistically significant (p<.05) differential effect of race on impact of lenient treatment.
- Interpretation of Coefficient: Re-election Support for Lenient Prosecutor increases by .41 units when the Respondent is black vs when the Respondent is not.
- However: Inclusion of interaction term does not seriously change primary finding that respondents generally extend greater support to lenient prosecutors.

|                          | Re-election Support |             |  |
|--------------------------|---------------------|-------------|--|
| 4                        | (1)                 | (2)         |  |
| Lenient Sentence (1 Day) | 0.57***             | 0.52***     |  |
|                          | (0.06)              | (0.06)      |  |
| White                    | -0.01               | -0.01       |  |
|                          | (0.08)              | (0.08)      |  |
| Black                    | -0.23*              | -0.45**     |  |
|                          | (0.11)              | (0.15)      |  |
| Age                      | -0.002              | -0.002      |  |
|                          | (0.002)             | (0.002)     |  |
| Pros. Knowledge          | 0.05                | 0.05        |  |
|                          | (0.03)              | (0.03)      |  |
| Woman                    | -0.03               | -0.03       |  |
|                          | (0.06)              | (0.06)      |  |
| Conservatism             | $0.07^{*}$          | $0.07^{**}$ |  |
|                          | (0.03)              | (0.03)      |  |
| Education                | -0.01               | -0.01       |  |
|                          | (0.02)              | (0.02)      |  |
| lenient_pre1:black       |                     | 0.41*       |  |
|                          |                     | (0.18)      |  |
| Constant                 | 6.27                | 6.31        |  |
|                          | (3.56)              | (3.55)      |  |
| N                        | 982                 | 982         |  |
| Log Likelihood           | -1,305.65           | -1,303.00   |  |
| AIC                      | 2,629.29            | 2,626.00    |  |

### [2] Run Likelihood Ratio Test:

- Why: to determine if there is a statistically significant difference in goodness
  of fit between the additive and interactive regression models.
- How I did this:

```
install.packages("lmtest")
library(lmtest)
lrtest(mod_add, mod_int)
```



## Interpretation of LRT & Conclusion

- LRT P-value = 0.02; so at the 0.05 significance level, can reject Null Hypothesis (there is no difference in goodness of fit between interactive and additive model). An argument for using the Interactive Model instead.
- HOWEVER, I would ultimately advise use of Additive Model for this paper:
  - Interactive Model =/= hugely better at predicting support for prosecutors
  - For purposes of original paper, the additive model is less complicated and still sufficiently tests
     H1
  - Interaction does not drastically change the main finding that leniency does significantly affect support for re-election, and that respondent's support leniency more than harshness
- Future research: would be interesting to test in more detail role that race plays in public opinion of prosecutorial behaviour, as results confirm theoretical assumption that this variable is important / might have differential effects.