第四章 最优性理论

修贤超

https://xianchaoxiu.github.io

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论

最优化问题解的存在性

■ 考虑优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) \\
\text{s.t.} \quad x \in \mathcal{X}$$

- □ 首先分析最优解的存在性
- □ 然后考虑如何求出其最优解
- (Weierstrass 定理) 紧集上的连续函数一定存在最大 (最小) 值
- 而在许多实际问题中, 定义域可能不是紧的, 目标函数也不一定连续

推广的 Weierstrass 定理

- 若函数 $f: \mathcal{X} \to (-\infty, +\infty]$ 适当且闭, 且以下条件中任意一个成立
 - \bigcirc dom $f = \{x \in \mathcal{X} : f(x) < +\infty\}$ 是有界的
 - \Box 存在一个常数 $\bar{\gamma}$ 使得下水平集

$$C_{\bar{\gamma}} = \{ x \in \mathcal{X} \mid f(x) \le \bar{\gamma} \}$$

是非空且有界的

 $oxed{o}$ f 是强制的, 即对于任一满足 $\|x^k\| \to +\infty$ 的点列 $\{x^k\} \subset \mathcal{X}$, 都有

$$\lim_{k \to \infty} f(x^k) = +\infty$$

则函数 f 的最小值点集 $\{x \in \mathcal{X} \mid f(x) \leq f(y), \forall y \in \mathcal{X}\}$ 非空且紧

 \blacksquare 三个条件在本质上都是保证 f(x) 的最小值不能在无穷远处取到

例子

■ 当定义域不是有界闭集时, 对于强制函数

$$f(x) = x^2, x \in \mathcal{X} = \mathbb{R}$$

其全局最优解一定存在

■ 对于适当且闭的函数

$$f(x) = e^{-x}, x \in \mathcal{X} = \mathbb{R}$$

不满足三个条件中任意一个, 因此不能断言其全局极小值点存在

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论

无约束可微问题的最优性理论

■ 无约束可微优化问题通常表示为

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{1}$$

■ 对于可微函数 f 和点 $x \in \mathbb{R}^n$, 如果存在向量 d 满足

$$\nabla f(x)^{\top} d < 0$$

那么称 d 为 f 在点 x 处的一个下降方向

- 一阶最优性条件是利用梯度 (一阶) 信息来判断给定点的最优性
- 在局部最优点处不能有下降方向

一阶必要条件

■ 假设 f 在全空间 \mathbb{R}^n 可微. 如果 x^* 是 (1) 的一个局部极小点, 那么

$$\nabla f(x^*) = 0$$

证明 任取 $v \in \mathbb{R}^n$, 考虑 f 在点 $x = x^*$ 处的泰勒展开

$$\frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) + o(1)$$

根据 x^* 的最优性, 分别对 t 取点 0 处的左、右极限可知

$$\lim_{t \to 0^+} \frac{f(x^* + tv) - f(x^*)}{t} = v^\top \nabla f(x^*) \ge 0$$
$$\lim_{t \to 0^-} \frac{f(x^* + tv) - f(x^*)}{t} = v^\top \nabla f(x^*) \le 0$$

■ 称满足 $\nabla f(x) = 0$ 的点 x 为 f 的稳定点 (或驻点、临界点)

二阶最优性条件

- 对于 $f(x) = x^3$, 满足 f'(x) = 0 的点为 $x^* = 0$, 但其不是局部最优解
- 假设 f 在点 x 的一个开邻域内是二阶连续可微的,考虑

$$f(x+d) = f(x) + \nabla f(x)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x) d + o(\|d\|^2)$$

则以下最优性条件成立

 \square (二阶必要条件) 若 x^* 是 f 的一个局部极小点, 则

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$$

□ (二阶充分条件) 若满足

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succ 0$$

则 x^* 是 f 的一个局部极小点

证明

■ 必要性 若 $\nabla^2 f(x^*)$ 有负的特征值 $\lambda_- < 0$, 设 $\nabla^2 f(x^*)d = \lambda_- d$, 则

$$\frac{f(x^*+d) - f(x^*)}{\|d\|^2} = \frac{1}{2} \frac{d^\top}{\|d\|} \nabla^2 f(x^*) \frac{d}{\|d\|} + o(1) = \frac{1}{2} \lambda_- + o(1)$$

当 ||d|| 充分小时, $f(x^* + d) < f(x^*)$, 这和点 x^* 的最优性矛盾

■ 充分性 由 $\nabla f(x^*) = 0$ 时的二阶展开

$$\frac{f(x^* + d) - f(x^*)}{\|d\|^2} = \frac{d^\top \nabla^2 f(x^*) d + o(\|d\|^2)}{\|d\|^2} \ge \frac{1}{2} \lambda_{\min} + o(1)$$

当 ||d|| 充分小时有 $f(x^* + d) \ge f(x^*)$, 即二阶充分条件成立

实例: 实数情形的相位恢复

■考虑

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \sum_{i=1}^m r_i^2(x)$$

其中
$$r_i(x) = (a_i^{\top} x)^2 - b_i^2, i = 1, 2, \dots, m$$

■ 计算梯度和的海瑟矩阵

$$\nabla f(x) = 2\sum_{i=1}^{m} r_i(x) \nabla r_i(x) = 4\sum_{i=1}^{m} ((a_i^{\top} x)^2 - b_i^2) (a_i^{\top} x) a_i$$
$$\nabla^2 f(x) = \sum_{i=1}^{m} (12(a_i^{\top} x)^2 - 4b_i^2) a_i a_i^{\top}$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论

无约束不可微问题的最优性理论

■ 考虑不可微优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{2}$$

- 假设 f 是适当且凸的函数, 则 x^* 为 (2) 的全局极小点当且仅当 $0 \in \partial f(x^*)$
 - □ 必要性 因 x* 为全局极小点. 有

$$f(y) \ge f(x^*) = f(x^*) + 0^{\top} (y - x^*), \quad \forall y \in \mathbb{R}^n$$

$$\implies 0 \in \partial f(x^*)$$

 \square 充分性 如果 $0 \in \partial f(x^*)$, 那么根据次梯度的定义

$$f(y) \ge f(x^*) + 0^{\top} (y - x^*) = f(x^*), \quad \forall y \in \mathbb{R}^n$$

⇒ x* 为一个全局极小点

复合优化问题的一阶必要条件

■ 考虑一般复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x) \tag{3}$$

其中 ƒ 为光滑函数 (可能非凸), h 为凸函数 (可能非光滑)

■ 定理 4.5 令 x^* 为复合优化问题 (3)的一个局部极小点, 那么

$$-\nabla f(x^*) \in \partial h(x^*)$$

■ 由于目标函数可能是整体非凸的,因此一般没有一阶充分条件

实例: ℓ_1 范数优化问题

■考虑

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + \mu ||x||_1$$

■ ||x||1 不是可微的, 但可以计算其次微分

$$\partial_i ||x||_1 = \begin{cases} \{1\}, & x_i > 0 \\ [-1, 1], & x_i = 0 \\ \{-1\}, & x_i < 0 \end{cases}$$

■ 若 x^* 是局部最优解, 则 $-\nabla f(x^*) \in \mu \partial \|x^*\|_1$, 即

$$\nabla_i f(x^*) = \begin{cases} -\mu, & x_i^* > 0 \\ a \in [-\mu, \mu], & x_i^* = 0 \\ \mu, & x_i^* < 0 \end{cases}$$

总结

■ 无约束优化问题及其最优性条件

问题	一阶条件	二阶条件
可微问题	$\nabla f(x^*) = 0$ (必要)	必要/充分
凸问题	$0 \in \partial f(x^*)$ (充要)	_
复合优化问题	$-\nabla f(x^*) \in \partial h(x^*)$ (必要)	_
非凸非光滑	$0 \in \partial f(x^*)$ (必要)	_

Q&A

Thank you!

感谢您的聆听和反馈