実解析第2同演習・演習第2回

2022年10月21日

問 A-1

関数 $f:[0,1]\to\mathbb{R}$ を f(x)=x で定める.このとき,非負単関数の列 ϕ_n $(n=1,2,\cdots)$ で ϕ_n $\nearrow f$ となるもの,すなわち $\phi_n \le \phi_{n+1} \le f$ と $\lim_{n\to\infty}\phi_n(x)=f(x)$ がほとんどいたるところで成り立つものを構成し,それを用いて $\int_{[0,1]}f\,\mathrm{d}x$ を求めよ.(ヒント:[0,1] を 2^n 等分してみる.)

問 A-2

連続関数の列 $f_n:[0,1]\to\mathbb{R}$ $(n=1,2,\cdots)$ が次の条件をみたすとする.

- 1. 任意の n と $x \in [0,1]$ に対し $0 \le f_n(x) \le 1$.
- 2. 任意の $x \in [0,1]$ に対し $\lim_{n\to\infty} f_n(x) = 0$.

このとき

$$\lim_{n \to \infty} \int_0^1 f_n(x) \mathrm{d}x = 0$$

を示せ. (ヒント:問題の内容自体はリーマン積分の範囲であるが、ルベーグ積分に関する結果を 用いて示す.)

問 A-3

 $X=\{1,2\},\,Y=\{1,2,3\}$ とする.測度 $\mu:\mathcal{P}(X)\to[0,\infty)$ を $\mu(A):=\#A$ (#A は A の元の個数),測度 $\nu:\mathcal{P}(Y)\to[0,\infty)$ を

$$\nu(A) = \begin{cases} 1 & (1 \in A \text{ のとき}) \\ 0 & (1 \notin A \text{ のとき}) \end{cases}$$

でそれぞれ定める.

(1) $(X, \mathcal{P}(X), \mu)$, $(Y, \mathcal{P}(Y), \nu)$ がそれぞれ測度空間であることを確かめよ.

- **(2)** 関数 $f: X \to \mathbb{R}$ を f(1) = 1, f(2) = 2 で定めるとき, $\int_X f d\mu$ を求めよ.(ヒント:例えば $\chi_{\{1\}}$ の積分がどうなるかを考える.)
- (3) 関数 $g: Y \to \mathbb{R}$ を g(1) = 1, g(2) = 2, g(3) = 3 で定めるとき, $\int_{Y} g d\nu$ を求めよ.
- **(4)** $E := \{(1,1),(2,1),(2,2)\} \subset X \times Y$ について, $E = A \times B$ となる $A \in \mathcal{P}(X)$ と $B \in \mathcal{P}(Y)$ の組は存在しないことを確かめよ. (ヒント: $X \times Y$ の図を書いて考えるとよい.)
- (5) 直積測度 $\mu \otimes \nu$ について、 $(\mu \otimes \nu)(E)$ を求めよ.(ヒント: $A \in \mathcal{P}(X)$ と $B \in \mathcal{P}(Y)$ については $(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B)$.)

問B-1

 (X,\mathcal{F}) を可測空間とする. このとき任意の有界可測関数 $f:X \to [0,\infty)$ と $a\in X$ について,

$$\int_X f(x) d\delta_a(x) = f(a)$$

であることを示せ、ただし δ_a はデルタ測度であり、

$$\delta_a(F) = \begin{cases} 1 & (a \in F) \\ 0 & (a \notin F) \end{cases}$$

と定義される. (ヒント: まずは f が単関数のときを考える.)

問 B-2

 μ を $\mathcal{B}(\mathbb{R})$ 上の測度で平行移動について不変なもの,すなわち任意の $x\in\mathbb{R}$ と $E\in\mathcal{B}(\mathbb{R})$ について

$$\mu(x+E) = \mu(E)$$

となるものとする. また, m を \mathbb{R} の Lebesgue 測度とする.

- (1) \mathcal{A} を区間 [a,b) で両端点が有理数であるもの全体からなる集合とする (a=b のときは $[a,a)=\emptyset$ とみなす). このとき, \mathcal{A} は π -system であることを示せ.
- (2) $\mu([0,1)) = k < \infty$ のとき、任意の $[a,b) \in \mathcal{A}$ について、 $\mu([a,b)) = km([a,b))$ となることを示せ.
- (3) $\sigma(A) = \mathcal{B}(\mathbb{R})$ であることを用いて、任意の $E \in \mathcal{B}(\mathbb{R})$ について $\mu(E) = km(E)$ となることを示せ.

以上により、Lebesgue 測度の特徴づけが得られた。すなわち、平行移動について不変な $\mathcal{B}(\mathbb{R})$ 上の測度で、単位区間に値 1 を割り当てるものは Lebesgue 測度に限られる。