

Complex Analysis - Stein - Notebook

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

致谢

感谢 勇敢的 自己

目录

第一章	全纯函数	1
1.1	全纯函数	1
1.2	Cauchy-Riemann 方程	1
1.3	幂级数	4
1.4	曲线积分	5
第二章	Cauchy 积分定理与应用	8
	Goursat 定理	8
	Cauchy 积分定理	8
	Cauchy 积分公式	
	2.3.1 Cauchy 积分公式	
	• • • • • • • • • • • • • • • • • • • •	14
	2.3.3 零点定理	
2.4	应用	18
	2.4.1 Morera 定理	18
	2.4.2 全纯函数序列	19
		19
	2.4.4 Schwarz 反射定理	19
	2.4.5 Runge 近似定理	20
第三章	Laurent 展式	21
3.1	Laurent 展式	21
3.2	孤立奇点	22
3.3	留数公式	24
3.4	亚纯函数	28
3.5	辐角原理	29
3.6	同伦与单连通区域	33
3.7	复对数	33
附录 A	单复变函数定理扩展	37
附录 B	单复变经典定理	40

第一章 全纯函数

1.1 全纯函数

定义 1.1.1 (全纯函数)

称函数 f = u + iv 在开集 $\Omega \subset \mathbb{C}$ 上为全纯函数,如果成立如下命题之一。

1. 对于任意 $z \in \Omega$, 存在极限

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

2. 函数 u 和 v 在 Ω 上连续可微, 且成立 Cauchy-Riemann 方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

3. 函数 f 在 Ω 上连续, 且对于任意分段光滑闭曲线 γ , 成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

4. 对于任意 $z_0 \in \Omega$, 存在 r > 0, 使得对于任意 $z \in D_r(z_0)$, 成立幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

证明 $1 \implies 2$: 由 Cauchy-Riemann 方程1.2.1, 命题得证!

2 ⇒ 1: 由 Cauchy-Riemann 方程逆定理1.2.2, 命题得证!

 $1 \implies 3$: 由 Cauchy 积分定理2.2.3, 命题得证!

3 ⇒ 1: 由 Morera 定理2.4.2, 命题得证!

1 ⇒ 4: 由 Taylor 展开2.3.3, 命题得证!

4 ⇒ 1: 由定理1.3.2, 命题得证!

定义 1.1.2 (整函数)

称在℃上全纯的函数为整函数。

1.2 Cauchy-Riemann 方程

定理 1.2.1 (Cauchy-Riemann 方程)

如果函数 f = u + iv 在开集 $\Omega \subset \mathbb{C}$ 上全纯,那么

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

即

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

证明 由于存在极限

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{(h_1, h_2) \to (0, 0)} = \frac{f(x+h_1, y+h_2) - f(x, y)}{h_1 + ih_2}$$

那么当 h 沿实轴时

$$f'(z) = \lim_{h_1 \to 0} = \frac{f(x + h_1, y) - f(x, y)}{h_1} = \frac{\partial f}{\partial x}(z)$$

当 h 沿虚轴时

$$f'(z) = \lim_{h_2 \to 0} = \frac{f(x, y + h_2) - f(x, y)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(z)$$

从而

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

即

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

定理 1.2.2 (Cauchy-Riemann 方程逆定理)

如果函数 f=u+iv 在开集 $\Omega\subset\mathbb{C}$ 上成立 Cauchy-Riemann 方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

那么f在 Ω 上全纯。

证明 由于函数 u 和 v 在 Ω 上连续可微, 那么

$$u(x + h_1, y + h_2) - u(x, y) = \frac{\partial u}{\partial x} h_1 + \frac{\partial u}{\partial y} h_2 + h\psi_1(h)$$
$$v(x + h_1, y + h_2) - v(x, y) = \frac{\partial v}{\partial x} h_1 + \frac{\partial v}{\partial y} h_2 + h\psi_2(h)$$

其中

$$\lim_{h \to 0} \psi_1(h) = \lim_{h \to 0} \psi_2(h) = 0$$

\$

$$h = h_1 + ih_2, \qquad \psi = \psi_1 + i\psi_2$$

从而由 Cauchy-Riemann 方程

$$f(z+h) - f(z) = \left(\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}\right)h + h\psi(h)$$

从而 f 为全纯函数,且

$$f' = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = 2 \frac{\partial u}{\partial z} = \frac{\partial f}{\partial z}$$

定义 1.2.1 (微分算子)

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$$

命题 1.2.1

如果 f=u+iv 在开集 $\Omega\subset\mathbb{C}$ 上全纯,那么

$$\frac{\partial f}{\partial \bar{z}} = 0, \qquad f' = \frac{\partial f}{\partial z} = 2\frac{\partial u}{\partial z}$$

且其 Jacobian 矩阵成立

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = |f'|^2$$

命题 1.2.2

对于开集 Ω 上的全纯函数f = u + iv,如果f成立如下条件之一,那么f为常数。

- 1. Re(f) 为常数。
- 2. Im(f) 为常数。
- 3. |f| 为常数。
- 4. f' = 0
- $5. \overline{f}$ 全纯。

证明 对于 1, 由于 u 为常数, 那么由 Cauchy-Riemann 方程 1.2.1

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 0$$
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 0$$

因此v为常数,进而f为常数。

对于 2, 由于 v 为常数, 那么由 Cauchy-Riemann 方程 1.2.1

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0$$

因此u为常数,进而f为常数。

对于 3, 由于 u^2+v^2 为常数, 那么分别对 x 和 y 求偏导, 并由 Cauchy-Riemann 方程1.2.1得到

$$\begin{pmatrix} \frac{\partial u}{\partial x} & -\frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

注意到

$$\begin{vmatrix} \frac{\partial u}{\partial x} & -\frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} \end{vmatrix} = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

如果

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 0$$

那么 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$, 因此 u 为常数, 由 1, f 为常数。 如果

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \neq 0$$

那么上式存在唯一解u=v=0,因此f为常数。

因此, f 为常数。

对于4,由于

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{1}{i} \frac{\partial f}{\partial y} \right) = 0$$

同时由于 f 全纯, 那么

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{1}{i} \frac{\partial f}{\partial y} \right) = 0$$

联立两式可得

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$$

因此 ƒ 为常数。

对于 5, 由于 f 和 \overline{f} 均是全纯的, 那么 $u=\frac{1}{2}(f+\overline{f})$ 和 $v=\frac{1}{2i}(f+\overline{f})$ 是全纯的。由 Cauchy-Riemann 方

程1.2.1

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$$

因此u,v均为常数,进而f为常数。

1.3 幂级数

定义 1.3.1 (解析函数)

称定义在开集 Ω 上的函数 f 在点 $z_0 \in \Omega$ 处是解析的,如果在 z_0 的邻域内存在幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

定理 1.3.1 (Hadamard 公式)

幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

的收敛半径 R 成立

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$$

且

- 1. 如果 |z| < R, 那么级数绝对收敛。
- 2. 如果 |z| > R, 那么级数发散。

定理 1.3.2 (幂级数可逐项求导)

幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

在收敛域内定义了一个全纯函数, 其导函数为

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

且收敛半径不变。

命题 1.3.1

- 1. 幂级数 $\sum_{n=1}^{\infty} nz^n$ 在单位圆上任意一点均不收敛。
- 2. 幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ 在单位圆上任意一点均收敛。
- 3. 幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 在单位圆上除 z=1 外任意一点均收敛。

证明 对于1,注意到

$$\lim_{n \to \infty} |nz^n| = \lim_{n \to \infty} n = \infty$$

因此幂级数 $\sum_{n=1}^{\infty} nz^n$ 在单位圆上任意一点均不收敛。事实上

$$\sum_{n=1}^{\infty} nz^n = \frac{z}{(z-1)^2}$$

对于 2, 注意到当 |z|=1 时, 成立

$$\left| \frac{z^n}{n^2} \right| = \frac{1}{n^2}$$

而级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,于是幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ 在单位圆上任意一点均收敛。

对于 3, 当
$$z = 1$$
 时, 幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 显然不收敛。

当 |z|=1 且 $z\neq 1$ 时,令 $z=\cos\theta+i\sin\theta$,其中 $\theta\in(0,2\pi)$,那么

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n} + i \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n}$$

注意到

$$\sum_{k=1}^{n} \cos(k\theta) = \frac{\sin\frac{2n+1}{2}\theta - \sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}}$$
$$\sum_{k=1}^{n} \sin(k\theta) = \frac{\cos\frac{\theta}{2} - \cos\frac{2n+1}{2}\theta}{2\sin\frac{\theta}{2}}$$

因此

$$\left| \sum_{k=1}^{n} \cos(k\theta) \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}, \qquad \left| \sum_{k=1}^{n} \sin(k\theta) \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

又 1/n 单调趋于 0,那么由 Dirichlet 判别法,级数 $\sum_{n=1}^{\infty} \frac{\cos{(n\theta)}}{n}$ 和 $\sum_{n=1}^{\infty} \frac{\sin{(n\theta)}}{n}$ 均收敛,进而级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 收敛。

综上所述,幂级数 $\sum_{n=1}^{\infty} \frac{z^n}{n}$ 在单位圆上除 z=1 外任意一点均收敛。事实上

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = -\ln(1-z)$$

1.4 曲线积分

定义 1.4.1 (光滑曲线)

称曲线 $z:[a,b]\to\mathbb{C}$ 为光滑曲线,如果 z 在 [a,b] 上连续可微,且 $z'(t)\neq 0$ 。

定义 1.4.2 (封闭曲线)

称曲线 $z:[a,b]\to\mathbb{C}$ 为封闭曲线,如果 z(a)=z(b)。

定义 1.4.3 (简单曲线)

称曲线 $z:[a,b]\to\mathbb{C}$ 为简单曲线,如果成立

$$z(t) = z(s) \implies t = s$$

定义 1.4.4 (曲线积分)

定义连续函数 f 在可参数化为 $z(t):[a,b]\to\mathbb{C}$ 的光滑曲线 γ 上的曲线积分为

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$

定理 1.4.1

如果连续函数 f 在开集 Ω 上存在原函数 F,且分段光滑曲线 γ 起于 w_1 终于 w_2 ,那么

$$\int_{\gamma} f(z) \mathrm{d}z = F(w_2) - F(w_1)$$

证明 不妨假设 γ 为光滑曲线,参数化曲线 γ 为 $z(t):[a,b]\to\mathbb{C}$,其中 $z(a)=w_1$ 且 $z(b)=w_2$,那么

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$

$$= \int_{a}^{b} F'(z(t))z'(t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} F(z(t)) dt$$

$$= F(z(b)) - F(z(b))$$

$$= F(w_{2}) - F(w_{1})$$

推论 1.4.1

如果连续函数 f 在开集 Ω 上存在原函数,那么对于分段光滑封闭曲线 γ ,成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

 \sim

推论 1.4.2

对于区域 $\Omega \subset \mathbb{C}$ 上的全纯函数 f, 如果 f' = 0, 那么 f 为常函数。

命题 1.4.1

$$\int_{\gamma} z^n dz = \begin{cases} 2\pi i, & n = -1\\ 0, & n \neq -1 \end{cases}$$

其中γ为以原点为中心且方向为正的任何圆。

$$\int_{\gamma} z^n dz = i\rho^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} d\theta$$

4 n=-1时

$$\int_{\gamma} \frac{1}{z} \mathrm{d}z = i \int_{0}^{2\pi} \mathrm{d}\theta = 2\pi i$$

当 $n \neq -1$ 时

$$\int_{\gamma} z^n dz = i\rho^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} d\theta = 0$$

因此

$$\int_{\gamma} z^n dz = \begin{cases} 2\pi i, & n = -1\\ 0, & n \neq -1 \end{cases}$$

第二章 Cauchy 积分定理与应用

2.1 Goursat 定理

定理 2.1.1 (Goursat 定理)

如果函数 f 在开集 $\Omega \subset \mathbb{C}$ 上全纯,那么对于任意三角形 $T \subset \Omega$,成立

$$\int_T f(z) \mathrm{d}z = 0$$

 \sim

2.2 Cauchy 积分定理

定理 2.2.1

开圆上的全纯函数 f 存在原函数。

 $^{\circ}$

定理 2.2.2 (开圆上的 Cauchy 积分定理)

如果函数 f 在开圆 D 上全纯, 那么对于封闭曲线 $\gamma \subset D$, 成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

 \sim

定理 2.2.3 (Cauchy 积分定理)

对于边界分段光滑的区域 $\Omega \subset \mathbb{C}$, 如果函数 f 在 Ω 上全纯且在 $\overline{\Omega}$ 上连续, 那么

$$\int_{\partial\Omega} f(z) \mathrm{d}z = 0$$

m

例题 2.1

$$\int_0^\infty \sin x^2 dx = \int_0^\infty \cos x^2 dx = \frac{\sqrt{2\pi}}{4}$$

证明 记曲线为

$$\gamma_1: z = t,$$
 $t: 0 \to R$

$$\gamma_2: z = Re^{it}, \qquad \qquad t: 0 \to \frac{\pi}{4}$$

$$\gamma_3: z = \frac{1+i}{\sqrt{2}}t, \qquad t: R \to 0$$

考虑函数 e^{-z^2} 在 $\gamma_1 + \gamma_2 + \gamma_3$ 上的积分, 由 Cauchy 积分定理2.2.3

$$\int_{\gamma_1} e^{-z^2} dz + \int_{\gamma_2} e^{-z^2} dz + \int_{\gamma_3} e^{-z^2} dz = 0$$

考察各项积分,对于第一项

$$\int_{\gamma_1} e^{-z^2} dz = \int_0^R e^{-t^2} dt$$

因此

$$\lim_{R \to \infty} \int_{\gamma_1} e^{-z^2} dz = \int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

对于第二项,注意到当 $t \in [0,\pi]$ 时,成立 $\cos 2t \ge 1 - \frac{4}{\pi}t$,于是

$$\left| \int_{\gamma_2} e^{-z^2} dz \right| \le \int_{\gamma_2} \left| e^{-z^2} \right| |dz|$$

$$= R \int_0^{\frac{\pi}{4}} e^{-R^2 \cos 2t} dt$$

$$\le R \int_0^{\frac{\pi}{4}} e^{-R^2(1 - \frac{4}{\pi}t)} dt$$

$$= \frac{\pi}{4R} (1 - e^{-R^2})$$

进而

$$\lim_{R \to \infty} \int_{\gamma_2} e^{-z^2} dz = 0$$

对于第三项

$$\int_{\gamma_3} e^{-z^2} dz = -\frac{1+i}{\sqrt{2}} \int_0^R e^{-it^2} = -\frac{1}{\sqrt{2}} \left(\int_0^R (\cos t^2 + \sin t^2) dt + i \int_0^R (\cos t^2 - \sin t^2) dt \right)$$

于是当 $R \to \infty$ 时,成立

$$\int_0^\infty (\cos t^2 + \sin t^2) dt + i \int_0^\infty (\cos t^2 - \sin t^2) dt = \frac{\sqrt{2\pi}}{2}$$

因此

$$\int_{0}^{\infty} (\cos t^{2} + \sin t^{2}) dt = \frac{\sqrt{2\pi}}{2}, \qquad \int_{0}^{\infty} (\cos t^{2} - \sin t^{2}) dt = 0$$

所以

$$\int_0^\infty \sin x^2 dx = \int_0^\infty \cos x^2 dx = \frac{\sqrt{2\pi}}{4}$$

例题 2.2

$$\int_0^\infty \frac{\sin x}{x} \mathrm{d}x = \frac{\pi}{2}$$

证明 记曲线

$$egin{aligned} \gamma_1:z=t, & t:arepsilon
ightarrow R \ & \gamma_2:z=t, & t:-R
ightarrow -arepsilon \ & c_r:z=R\mathrm{e}^{it}, & t:0
ightarrow \pi \ & t:\pi
ightarrow 0 \end{aligned}$$

考虑函数 e^{iz}/z 在 $\gamma_1+\gamma_2+C_R+C_\varepsilon$ 上的积分,由 Cauchy 积分定理2.2.3

$$\int_{\gamma_1 + \gamma_2} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z + \int_{C_R} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z + \int_{C_{\varepsilon}} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z = 0$$

考察各项积分,对于第一项

$$\lim_{\substack{R\to\infty\\ z\to 0}}\int_{\gamma_1+\gamma_2}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z=\int_{-\infty}^{\infty}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z=2i\int_{0}^{\infty}\frac{\sin x}{x}\mathrm{d}x$$

对于第二项,注意到当 $t \in [0, \frac{\pi}{2}]$ 时,成立 $\sin t \geq \frac{2}{\pi}t$,因此

$$\begin{split} \left| \int_{C_R} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z \right| &\leq \int_{C_R} \left| \frac{\mathrm{e}^{iz}}{z} \right| |\mathrm{d}z| \\ &= 2 \int_0^{\frac{\pi}{2}} \mathrm{e}^{-R \sin t} \mathrm{d}t \\ &\leq 2 \int_0^{\frac{\pi}{2}} \mathrm{e}^{-\frac{2R}{\pi}t} \mathrm{d}t \\ &= \frac{\pi}{R} (1 - \mathrm{e}^{-R}) \end{split}$$

于是

$$\lim_{R \to \infty} \int_{C_R} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z = 0$$

对于第三项, 注意到

$$\int_{C_{\varepsilon}} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z = -i \int_{0}^{\pi} \mathrm{e}^{i\varepsilon \mathrm{e}^{it}} \mathrm{d}t$$

于是

$$\lim_{\varepsilon \to 0} \int_{C_\varepsilon} \frac{\mathrm{e}^{iz}}{z} \mathrm{d}z = -i \int_0^\pi \mathrm{d}t = -i\pi$$

因此当 $R \to \infty$ 且 $\varepsilon \to 0$ 时,成立

$$2i\int_0^\infty \frac{\sin x}{x} \mathrm{d}x = i\pi$$

进而

$$\int_0^\infty \frac{\sin x}{x} \mathrm{d}x = \frac{\pi}{2}$$

例题 2.3

$$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, \qquad \int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}, \qquad a > 0$$

证明 法一: 当 $b \neq 0$ 时, 记曲线

$$\gamma_1: z = t,$$
 $t: 0 \to R$
$$\gamma_2: z = Re^{it},$$
 $t: 0 \to \theta$
$$\gamma_3: z = te^{i\theta},$$
 $t: R \to 0$

其中

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}, \qquad \sin \theta = \frac{-b}{\sqrt{a^2 + b^2}}, \qquad \theta \in (-\pi/2, \pi/2)$$

考虑函数 e^{-rz} 在曲线 $\gamma_1 + \gamma_2 + \gamma_3$ 上的积分, 其中 $r = \sqrt{a^2 + b^2}$, 由 Cauchy 积分定理2.2.3

$$\int_{\gamma_1} e^{-rz} dz + \int_{\gamma_2} e^{-rz} dz + \int_{\gamma_3} e^{-rz} dz = 0$$

考察各项积分,对于第一项

$$\lim_{R\to\infty}\int_{\gamma_1}\mathrm{e}^{-rz}\mathrm{d}z=\int_0^\infty\mathrm{e}^{-rt}\mathrm{d}t=\frac{1}{r}$$

对于第二项

$$\left| \int_{\gamma_2} e^{-rz} dz \right| \le \int_{\gamma_2} \left| e^{-rz} \right| |dz|$$

$$= R \int_0^\theta e^{-rR\cos t} dt$$

$$\le \frac{R}{e^{rR\cos \theta}} \int_0^\theta dt$$

$$= \frac{\theta R}{e^{rR\cos \theta}}$$

于是

$$\lim_{R \to \infty} \int_{\gamma_2} e^{-rz} dz = 0$$

对于第三项

$$\int_{\gamma_3} e^{-rz} dz = -e^{i\theta} \int_0^R e^{-re^{i\theta}t} dt = -e^{i\theta} \left(\int_0^R e^{-ax} \cos bx dx + i \int_0^R e^{-ax} \sin bx dx \right)$$

于是当 $R \to \infty$ 时,成立

$$\int_0^\infty e^{-ax} \cos bx dx + i \int_0^\infty e^{-ax} \sin bx dx = \frac{1}{re^{i\theta}} = \frac{a+ib}{a^2+b^2}$$

因此

$$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, \qquad \int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}$$

当b=0时,显然有

$$\int_0^\infty e^{-ax} \cos bx dx = \int_0^\infty e^{-ax} dx = \frac{1}{a}$$
$$\int_0^\infty e^{-ax} \sin bx dx = 0$$

综上所述

$$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, \qquad \int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}$$

法二: 注意到

$$\int_0^\infty e^{(-a+ib)x} dx = \frac{e^{(-a+ib)x}}{-a+ib} \Big|_0^\infty = \frac{1}{a-ib} = \frac{a+ib}{a^2+b^2}$$

因此

$$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, \qquad \int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}$$

2.3 Cauchy 积分公式

2.3.1 Cauchy 积分公式

定理 2.3.1 (开圆上的 Cauchy 积分公式)

对于开集 $\Omega \subset \mathbb{C}$, 闭圆 $\overline{D} \subset \Omega$, 如果f在 Ω 上全纯, 那么对于任意 $z \in D$, 成立

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

C

 \Diamond

定理 2.3.2 (Cauchy 积分公式)

对于边界分段光滑的区域 $\Omega \subset \mathbb{C}$, 如果函数 f 在 Ω 上全纯且在 $\overline{\Omega}$ 上连续, 那么对于任意 $z \in \Omega$, 成立

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta$$

同时 f 在 Ω 上无穷阶可导, 且对于任意 $z \in \Omega$, 成立

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

推论 2.3.1 (平均值性质)

对于在开集 $\Omega \subset \mathbb{C}$ 上全纯的函数 f, 如果 $z_0 \in \Omega$ 且 $D_r(z_0) \subset \Omega$, 那么

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

证明 由 Cauchy 积分公式2.3.2, 这几乎是显然的!

推论 2.3.2 (Cauchy 不等式)

对于开集 $\Omega \subset \mathbb{C}$ 上的全函数f,如果 $\overline{D}_r(z_0) \subset \Omega$,那么

$$|f^{(n)}(z_0)| \le \frac{n!}{r^n} \sup_{|z-z_0|=r} |f(z)|$$

证明 由 Cauchy 积分公式2.3.2

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right|$$

$$= \left| \frac{n!}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{(re^{i\theta})^{n+1}} rie^{i\theta} d\theta \right|$$

$$\leq \frac{n!}{r^n} \sup_{|z - z_0| = r} |f(z)|$$

命题 2.3.1

对于整函数 f, 如果对于任意 R > 0, 存在 $k \in \mathbb{N}$, 和 A, B > 0, 成立

$$\sup_{|z|=R} |f(z)| \le AR^k + B$$

那么f是次数不多于k的多项式。

证明 由 Cauchy 不等式2.3.2

$$|f^{(n)}(0)| \le \frac{n!}{R^n} \sup_{|z|=R} |f(z)| \le \frac{n!}{R^n} (AR^k + B)$$

当 n > k 时,令 $R \to \infty$,可知 $f^{(n)}(0) = 0$,那么由 f 在 z = 0 处的 Taylor 展开式,f 在 z = 0 的邻域内为次数不多于 k 的多项式,由唯一性定理2.3.4,f 在 \mathbb{C} 上为次数不多于 k 的多项式。

命题 2.3.2

如果 f 是在区域 $z \in \mathbb{R} \times (-1,1)$ 上全纯函数,且存在 A>0 与 $\eta>0$,使得对于任意 $z \in \mathbb{R} \times (-1,1)$,成立

$$|f(z)| \le A(1+|z|)^{\eta}$$

那么对于任意 $n \in \mathbb{N}$, 存在 $A_n \ge 0$, 使得对于任意 $x \in \mathbb{R}$, 成立

$$|f^{(n)}(x)| \le A_n (1+|x|)^{\eta}$$

证明 任取 $x \in \mathbb{R}$, 作边界方向为正的圆 $D = D_{\frac{1}{2}}(x)$, 注意到当 $z \in \partial D$ 时, 成立

$$1 + |z| \le \frac{3}{2} + |x| \le 2(1 + |x|)$$

从而由 Cauchy 积分公式2.3.2

$$|f^{(n)}(x)| = \left| \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - x)^{n+1}} d\zeta \right|$$

$$\leq \frac{n!}{2\pi} \int_{\partial D} \frac{|f(\zeta)|}{|\zeta - x|^{n+1}} |d\zeta|$$

$$\leq \frac{n!}{2\pi} \int_{\partial D} \frac{A(1 + |\xi|)^{\eta}}{|\zeta - x|^{n+1}} |d\zeta|$$

$$\leq \frac{n!}{2\pi} \int_{\partial D} \frac{A2^{\eta}(1 + |x|)^{\eta}}{|\zeta - x|^{n+1}} |d\zeta|$$

$$= 2^{\eta + n} n! A(1 + |x|)^{\eta}$$

取 $A_n = 2^{\eta + n} n! A$ 即可。

命题 2.3.3

对于 \mathbb{C} 上的整函数f,如果

$$\lim_{|z| \to \infty} \left| \frac{f(z)}{z^m} \right| = 0$$

那么f至多为m-1次多项式。

证明 法一: 由于

$$\lim_{|z| \to \infty} \left| \frac{f(z)}{z^m} \right| = 0$$

所以存在 R > 0, 使得当 |z| > R 时, 成立

$$|f(z)| < |z|^m$$

将 f 展开为多项式级数

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

取 $z = Re^{i\theta}$, 那么

$$f(Re^{i\theta}) = \sum_{n=0}^{\infty} a_n R^n e^{in\theta}$$

注意到

$$\frac{1}{2\pi} \int_0^{2\pi} |f(Re^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{n=0}^{\infty} a_n R^n e^{in\theta} \right|^2 d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^{\infty} a_n R^n e^{in\theta} \right) \left(\sum_{n=0}^{\infty} \overline{a_n} R^n e^{-in\theta} \right) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{m,n=0}^{\infty} a_m \overline{a_n} R^{m+n} e^{i(m-n)\theta} \right) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^{\infty} |a_n R^n|^2 \right) d\theta$$

$$= \sum_{n=0}^{\infty} |a_n|^2 R^{2n}$$

因此

$$\sum_{n=0}^{\infty} |a_n|^2 R^{2n} < R^{2m}$$

进而对于任意 n > m, $a_n = 0$, 因此 f 至多为 m 次多项式, 而显然 f 不为 m 次多项式, 于是 f 至多为 m-1 次多项式。

法二: 任取 $z \in \mathbb{C}$, 由 Cauchy 积分公式2.3.2

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|\zeta-z|=R} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta = \frac{n!}{2\pi R^n} \int_0^{2\pi} \frac{f(z+Re^{i\theta})}{e^{in\theta}} d\theta$$

而由于

$$\lim_{|z| \to \infty} \left| \frac{f(z)}{z^m} \right| = 0$$

所以存在 A > 0, 使得当 |z| > A 时, 成立

$$|f(z)| < |z|^m$$

因此当R > A - |z|时,成立

$$\left| f^{(n)}(z) \right| \le \frac{n!}{2\pi R^n} \int_0^{2\pi} |f(z + Re^{i\theta})| d\theta \le \frac{n!}{R^n} |z + Re^{i\theta}|^m \le \frac{n!}{R^n} (|z|^m + R^m)$$

于是当n > m且 $R \to \infty$ 时,成立

$$f^{(n)}(z) = 0$$

这说明 f 在 \mathbb{C} 上的任意一点的 Taylor 展式均不超过 m 次,因此 f 至多为 m 次多项式,而显然 f 不为 m 次多项式,于是 f 至多为 m-1 次多项式。

2.3.2 Taylor 展开

定理 2.3.3 (Taylor 展开)

对于开集 Ω 上的全纯函数 f, 如果 $D_r(z_0) \subset \Omega$, 那么 f 存在幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in D_r(z_0)$$

其中

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \quad n \in \mathbb{N}$$

证明 任取 $z \in D_r(z_0)$, 由 Cauchy 积分公式2.3.2

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

对于 $\zeta \in \partial D$,考虑几何级数

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n = 0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n$$

从而由 Cauchy 积分公式2.3.2

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \right) (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

推论 2.3.3 (Liouville 定理)

- 1. 如果 f 是 \mathbb{C} 上的有界整函数,那么 f 是常函数。
- 2. 如果 f 是 \mathbb{C} 上的下有界整函数,那么 f 是常函数。

- 3. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 u 存在上界, 那么 f 是常函数。
- 4. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 u 存在下界, 那么 f 是常函数。
- 5. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 v 存在上界, 那么 f 是常函数。
- 6. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 v 存在下界, 那么 f 是常函数。

证明 对于 1,由于 f 在 \mathbb{C} 上有界,那么存在 $M \in \mathbb{R}$,使得对于任意 $z \in \mathbb{C}$,成立 $|f(z)| \leq M$ 。由 Cauchy 不等式2.3.2,对于任意 $z_0 \in \mathbb{C}$ 与 r > 0,成立

$$|f'(z_0)| \le \frac{1}{r} \sup_{|z-z_0|=r} |f(z)| \le \frac{M}{r} \to 0 \qquad (r \to \infty)$$

从而 f'=0。由推论1.4.2, f 为常函数。

对于 2, 如果 f 下有界, 那么 1/f 为有界整函数, 因此由 1, 1/f 为常函数, 进而 f 为常函数。

对于 3, 如果 u 上有界, 那么考虑 e^f 。由于

$$|\mathbf{e}^f| = |\mathbf{e}^{u+iv}| = \mathbf{e}^u$$

因此 e^f 有界。由 1, e^f 为常函数, 进而 f 为常函数。

对于 4, 如果 u 下有界, 那么由 $|f| \ge |u|$, 可知 f 下有界。由 2, f 为常函数。

对于 5, 如果 u 上有界, 那么考虑 e^{v+iu} 。由于

$$|e^{v+iu}| = e^v$$

因此 e^{v+iu} 有界。由 1, e^{v+iu} 为常函数,进而 u = v 为常函数,即 f 为常函数。

对于 6, 如果 v 下有界, 那么由 $|f| \ge |v|$, 可知 f 下有界。由 2, f 为常函数。

推论 2.3.4 (代数基本定理)

ℂ上的非常数多项式在℃中存在根。

证明 考虑 n 次多项式

$$P(z) = a_n z^n + \dots + a_1 x + a_0$$

假设 P(z) 无根。由于

$$\frac{P(z)}{z^n} = a_n + \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right) \to a_n \qquad (|z| \to \infty)$$

那么存在r > 0, 使得成立

$$|P(z)| \ge \frac{|a_n|}{2} |z|^n, \qquad |z| > r$$

从而 P(z) 在 |z| > r 时存在下界。由于 P(z) 为连续函数且无零点,那么 P(z) 在紧集 $|z| \le r$ 上有界,因此 P(z) 在 \mathbb{C} 上存在下界,进而 1/P(z) 为有界整函数。由 Liouville 定理2.3.3,1/P(z) 为常函数,即 P(z) 为常函数,矛盾! 进而 P(z) 存在根。

推论 2.3.5 (代数基本定理)

 \mathbb{C} 上的n次多项式

$$P(z) = a_n z^n + \dots + a_1 x + a_0$$

在 \mathbb{C} 上存在n个根,并可作因式分解

$$P(z) = a_n(z - w_1) \cdots (z - w_n)$$

证明 由代数基本定理2.3.4, P(z) 在 \mathbb{C} 中存在根 w_1 , 于是

$$P(z) = b_n(z - w_1)^n + \dots + b_1(z - w_1) + b_0$$

其中 $b_n = a_n$ 。由于 $P(w_1) = 0$,因此 $b_0 = 0$,从而

$$P(z) = (z - w_1)(b_n(z - w_1)^{n-1} + \dots + b_1) = (z - w_1)Q(z)$$

其中 Q(z) 为 n-1 次多项式。由归纳法,原命题得证!

命题 2.3.4

令 $\mathbb{D}=\{z:|z|<1\}$,对于在 $\overline{\mathbb{D}}$ 上连续无零点且在 \mathbb{D} 上全纯的函数 f,如果对于任意 $z\in\partial\mathbb{D}$,成立 |f(z)|=1,那么 f 为常函数。

证明 法一: 延拓 ƒ 为

$$F(z) = \begin{cases} f(z), & |z| \le 1\\ \frac{1}{f(\frac{1}{z})}, & |z| > 1 \end{cases}$$

考察 F 的连续性。显然 F 在 $|z| \neq 1$ 上是连续的,且 F 在 |z| = 1 上是内连续的。对于 F 在 |z| = 1 上的外连续性,任取 |z| = 1,对于 $\{z_n\}_{n=1}^\infty$ 满足 $|z_n| > 1$ 且 $z_n \to z$,注意到

$$\frac{1}{\overline{z_n}} \to \frac{1}{\overline{z}} = z$$

于是

$$F(z_n) = \frac{1}{f(\frac{1}{z_n})} \to \frac{1}{f(z)} = f(z) = F(z)$$

因此F在 \mathbb{C} 上是连续的。

考察 F 的全纯性。显然 F 在 |z|<1 是全纯的。对于 |z|>1,任取闭曲线 $\gamma\subset\{z:|z|>1\}$,令 γ' 为 γ 在映射 $z\mapsto \frac{1}{z}$ 下的像,那么 $\gamma'\subset\{z:|z|<1\}$,于是

$$\int_{\gamma} F(z) dz = \int_{\gamma} \frac{1}{f(\frac{1}{\overline{z}})} dz = -\int_{\gamma'} \frac{1}{f(\overline{z})} \frac{dz}{z^2} = 0$$

因此 F 在 |z| > 1 上是全纯的。对于 |z| = 1,任取三角形 $T \subset \mathbb{C}$ 。如果 $T \cap \partial \mathbb{D}$ 为空,那么

$$\int_T F(z) \mathrm{d}z = 0$$

如果 $T \cap \partial \mathbb{D}$ 为一个点,那么可在 T 内沿内边界作非常接近 T 的三角形 T_{ε} ,于是

$$\int_{T} F(z)dz = \lim_{\varepsilon \to 0} \int_{T_{\varepsilon}} F(z)dz = 0$$

如果 $T \cap \partial \mathbb{D}$ 至少为两个点,说明 T 被 $\partial \mathbb{D}$ 分为若干部分 T_1, \dots, T_n ,在每一个 T_k 内沿内边界作非常接近 T_k 的 三角形 $T_n^{(k)}$,于是

$$\int_T F(z)dz = \lim_{\varepsilon \to 0} \sum_{k=1}^n \int_{T_{\varepsilon}^{(k)}} F(z)dz = 0$$

于是,对于任意三角形 $T \subset \mathbb{C}$,成立

$$\int_{T} F(z) \mathrm{d}z = 0$$

由 Morera 定理2.4.2,F 在 \mathbb{C} 上全纯。又 F 在 \mathbb{D} 上有界,且连续无零点,那么存在 $\delta > 0$,使得对于任意 $|z| \leq 1$,成立 $|f(z)| > \delta$,进而 $\left|\frac{1}{f(\frac{1}{2})}\right| < \frac{1}{\delta}$,所以 F 在 \mathbb{C} 上有界。由 Liouville 定理2.3.3,F 为常函数,进而 f 为常函数。原命题得证!

$$\varphi: \quad \mathbb{D} \longrightarrow \pi^+$$

$$arg4 \longmapsto z$$

其逆映射为 $\varphi^{-1}(w) = \frac{w-i}{w+i}$, 定义

$$F(z) = \begin{cases} f(\varphi^{-1}(z)), & z \in \pi^+ \cup \mathbb{R} \\ f(\varphi^{-1}(\overline{z})), & z \in \pi^- \end{cases}$$

由反射定理2.4.7, F 在 \mathbb{C} 上全纯。又 F 在 π^+ \cup \mathbb{R} 上有界,所以 F 在 \mathbb{C} 上有界。由 Liouville 定理2.3.3, F 为常函数。原命题得证!

2.3.3 零点定理

定理 2.3.4 (唯一性定理)

对于在区域 $\Omega\subset\mathbb{C}$ 上的全纯函数 f,如果存在 $\{z_n\}_{n=1}^\infty\subset\Omega$,使得对于任意 $n\in\mathbb{N}^*$,成立 $f(z_n)=0$,且 $\lim_{n\to\infty}z_n\in\Omega$,那么在 Ω 上成立 f=0。

证明 记 $z_0=\lim_{n\to\infty}z_n$,由于 Ω 为开集,因此存在 r>0,使得 $D_r(z_0)\subset\Omega$ 。考虑幂级数展开2.3.3

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \qquad z \in D_r(z_0)$$

如果 f 在 $D_r(z_0)$ 上不为 0,那么存在最小的 $m \in \mathbb{N}$,使得成立 $a_m \neq 0$,此时存在多项式 g(z),使得成立

$$f(z) = a_m (z - z_0)^m (1 + g(z - z_0))$$

其中当 $z \to z_0$ 时 $g(z-z_0) \to 0$ 。由于 $z_n \to z_0$,那么存在 $z_{n_0} \neq z_0$,使得成立 $|g(z_{n_0}-z_0)| < 1/2$,从而

$$a_m(z_{n_0} - z_0)^m \neq 0, \qquad 1 + g(z_{n_0} - z_0) \neq 0$$

但是 $f(z_{n_0})=0$,因此产生矛盾! 进而 f 在 $D_r(z_0)$ 恒为 0。

$$U = \{ z \in \Omega : f(z) = 0 \}, \qquad V = U^{\circ}$$

那么V 为非空开集。断言V 为闭集,事实上,对于任意 $w \in \overline{V}$,存在 $\{w_n\}_{n=1}^{\infty} \subset V$,使得成立 $w_n \to w$ 。由上述论证, $w \in V$,进而V 为闭集。令 $W = \Omega \setminus V$ 为开集,那么 Ω 表示可为开集的不交并

$$\Omega = V \sqcup W$$

由于 Ω 为连通集,从而 $W=\varnothing$,进而 $\Omega=V$,因此在 Ω 上成立 f=0。

推论 2.3.6 (零点孤立性定理)

对于区域 $\Omega \subset \mathbb{C}$ 上的非零全纯函数 f,如果 $z_0 \in \Omega$ 为 f 的零点,那么存在 r > 0,使得 f 在 $D_r(z_0)$ 内无零点。

证明 由唯一性定理2.3.4, 命题得证!

推论 2.3.7

对于区域 $\Omega\subset\mathbb{C}$ 上的全纯函数 f,如果存在 $z_0\in\Omega$,使得对于任意 $n\in\mathbb{N}^*$,成立 $f^{(n)}(z_0)=0$,那么在 Ω 上成立 f=0。

证明 由于 Ω 为开集,因此存在 r>0,使得 $D_r(z_0)\subset\Omega$ 。考虑幂级数展开2.3.3

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = 0, \quad z \in D_r(z_0)$$

由零点孤立性定理2.3.6, 在 Ω 上成立f=0。

推论 2.3.8

对于在区域 $\Omega \subset \mathbb{C}$ 上的全纯函数 f 与 g,如果存在 $\{z_n\}_{n=1}^{\infty} \subset \Omega$,使得对于任意 $n \in \mathbb{N}^*$,成立 $f(z_n) = g(z_n)$, 且 $\lim_{n \to \infty} z_n \in \Omega$, 那么在 Ω 上成立 f = g。

证明 由唯一性定理2.3.4, 命题得证!

推论 2.3.9

对于在区域 $\Omega\subset\mathbb{C}$ 上的全纯函数 f,如果存在 $\{z_n\}_{n=1}^\infty\subset\Omega$,使得对于任意 $n\in\mathbb{N}^*$,成立 $f(z_n)=0$,且 $z_0=\lim_{n\to\infty}z_n$,那么或 Ω 上成立 f=0,或 $z_0\in\partial\Omega$ 。

证明 由唯一性定理2.3.4, 命题得证!

推论 2.3.10

对于 $\mathbb C$ 上的整函数 f,如果存在 $\{z_n\}_{n=1}^\infty\subset\mathbb C$,使得对于任意 $n\in\mathbb N^*$,成立 $f(z_n)=0$,且 $z_0=\lim_{n\to\infty}z_n$,那么或 Ω 上成立 f=0,或 $|z|\to\infty$ 。

证明 由唯一性定理的推论2.3.9, 命题得证!

命题 2.3.5

对于在 $\mathbb C$ 上的整函数 f,如果对于任意 $z\in\mathbb C$,存在 $n_z\in\mathbb N$,使得成立 $f^{(n_z)}(z)=0$,那么 f 为多项式。

证明 对于单位开圆盘 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, 定义

$$A_n = \{ z \in \overline{\mathbb{D}} : f^{(n)}(z) = 0 \}$$

于是

$$\overline{\mathbb{D}} = \bigcup_{n=0}^{\infty} A_n$$

由于 $\overline{\mathbb{D}}$ 为不可数集,那么存在 $k\in\mathbb{N}$,使得 A_k 为不可数集,因此 A_k 中存在收敛的点列 $\{z_n\}_{n=1}^\infty$ 且 $z_n\to z_0\in\overline{\mathbb{D}}$,进而

$$f^{(k)}(z_n) = 0, \quad n \in \mathbb{N}$$

由唯一性定理2.3.4, 在 \mathbb{C} 上成立 $f^{(k)} = 0$, 因此 f 为次数不大于 k 的多项式函数。

2.4 应用

2.4.1 Morera 定理

定理 2.4.1 (开圆上的 Morera 定理)

对于在开圆 $D \subset \mathbb{C}$ 上的连续函数 f,如果对于任意三角形 $T \subset D$,成立

$$\int_T f(z) \mathrm{d}z = 0$$

那么f在D上全纯。

定理 2.4.2 (Morera 定理)

对于在开集 $\Omega \subset \mathbb{C}$ 上的连续函数f,如果对于任意分段光滑封闭曲线 $\gamma \subset \Omega$,成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

那么f在 Ω 上全纯。

\mathbb{C}

2.4.2 全纯函数序列

定理 2.4.3

对于开集 $\Omega\subset\mathbb{C}$, 如果 Ω 上的全纯函数序列 $\{f_n\}_{n=1}^\infty$ 在 Ω 的任意紧致子集均一致收敛于函数 f, 那么 f 在 Ω 中是全纯的。

证明 任取分段光滑封闭曲线 $\gamma \subset \Omega$, 由 Cauchy 积分定理2.2.3

$$\int_{\gamma} f_n(z) \mathrm{d}z = 0$$

由于 f_n 在 Ω 的任意紧致子集均一致收敛于函数 f,那么

$$\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz$$

因此

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

从而由 Morera 定理2.4.2, f 在 Ω 中是全纯的。

定理 2.4.4

对于开集 $\Omega\subset\mathbb{C}$,如果 Ω 上的全纯函数序列 $\{f_n\}_{n=1}^\infty$ 在 Ω 的任意紧致子集均一致收敛于函数 f,那么其导函数序列 $\{f_n'\}_{n=1}^\infty$ 在 Ω 的任意紧致子集都一致收敛于函数 f'。

2.4.3 由积分定义的全纯函数

定理 2.4.5

对于定义在 $(z,s)\in\Omega\times[0,1]$ 上的连续函数 F(z,s),其中 $\Omega\subset\mathbb{C}$ 为开集,如果 F(z,s) 对于 z 为全纯的,那么函数

$$f(z) = \int_0^1 F(z, s) \mathrm{d}s$$

在Ω上全纯。

\sim

2.4.4 Schwarz 反射定理

对于对称的开集 $\Omega \subset \mathbb{C}$, 即

$$z \in \Omega \iff \overline{z} \in \Omega$$

令

$$\Omega^+ = \{z : z \in \Omega, \operatorname{Im}(z) > 0\}$$

$$\Omega^- = \{z : z \in \Omega, \operatorname{Im}(z) < 0\}$$

同时令

$$I=\Omega\cap\mathbb{R}$$

定理 2.4.6 (对称原理)

对于全纯函数 f^+ 和 f^- , 如果满足

$$f^+(x) = f^-(x), \quad x \in I$$

那么函数

$$f(z) = \begin{cases} f^+(z) & z \in \Omega^+ \\ f^+(z) & z \in I \\ f^-(z) & z \in \Omega^- \end{cases}$$

在Ω上全纯。

 \odot

定理 2.4.7 (反射定理)

如果函数 f 在 $\Omega^+ \cup I$ 上为全纯的,且

$$f(x) \in \mathbb{R}, \quad x \in I$$

那么存在在 Ω 上全纯的函数F,使得成立

$$F(z) = f(z), \quad z \in \Omega^+$$

事实上

$$F(z) = \begin{cases} f(z) & z \in \Omega^+ \cup I \\ \overline{f(\overline{z})} & z \in \Omega^- \end{cases}$$

 $^{\circ}$

2.4.5 Runge 近似定理

定理 2.4.8 (Runge 近似定理)

如果函数 f 在开集 $\Omega\subset\mathbb{C}$ 上是全纯的,且 $K\subset\Omega$ 为紧集,那么 f 可由奇点在 $\Omega-K$ 上的有理函数在 K 上一致近似。而且如果 $\Omega\setminus K$ 是连通的,那么 f 可由多项式函数在 K 上一致近似。

_

第三章 Laurent 展式

3.1 Laurent 展式

定义 3.1.1 (双边幂级数)

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n$$

定义 3.1.2

收敛圆环为

$$H: \qquad 0 \le r < |z - z_0| < R \le \infty$$

的双边幂级数

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n$$

成立如下命题。

- 1. f(z) 内闭一致收敛于 H。
- 2. f(z) 在 H 内解析。
- 3. f(z) 在 H 内可逐项求导。
- 4. f(z) 可沿曲线 $\gamma \subset H$ 逐项积分。

定理 3.1.1 (Laurent 定理)

在圆环

$$H: \qquad 0 \le r < |z - z_0| < R \le \infty$$

内的全纯函数 f(z) 存在且存在唯一 Laurent 展式

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

其中

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad \gamma : |\zeta - z_0| = \rho \in (r, R)$$

定义 3.1.3 (正则部分与主要部分)

定义函数 f 在 z_0 处的 Laurent 级数

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$

的正则部分为

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n$$

主要部分为

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$$

3.2 孤立奇点

定义 3.2.1 (零点)

称 z_0 ∈ ℂ 为函数 f 的 n 阶零点,如果存在函数 g,使得成立

$$f(z) = (z - z_0)^n g(z), \qquad g(z_0) \neq 0$$

定义 3.2.2 (奇点)

称 $z_0\in\mathbb{C}$ 为函数 f 的奇点,如果 f 在 z_0 处不全纯,且对于任意 r>0,存在 $z_r\in D_r(z_0)$,使得 f 在 z_r 处全纯。

定义 3.2.3 (孤立奇点)

称 z_0 ∈ \mathbb{C} 为函数 f 的孤立奇点,如果 f 在 z_0 处不全纯,且存在 r>0,使得 f 在 $D_r^{\circ}(z_0)$ 内全纯。

定义 3.2.4 (可去奇点)

称函数 f 的孤立奇点 $z_0 \in \mathbb{C}$ 为可去奇点,如果成立如下命题之一。

- 1. 存在极限 $\lim_{z\to z_0} f(z)$ 。
- 2. f 在 z_0 处的主要部分为 0。
- 3. f在 zo 的某去心邻域内有界。

定义 3.2.5 (极点)

称函数 f 的孤立奇点 $z_0\in\mathbb{C}$ 为极点,如果 $\lim_{z\to z_0}|f(z)|=\infty$ 。称函数 f 的孤立奇点 $z_0\in\mathbb{C}$ 为 n 阶极点,如果成立如下命题之一。

- $1. z_0$ 为 1/f 的 n 阶零点。
- 2. $0 < \lim_{z \to z_0} (z z_0)^n f(z) < \infty$
- $3. f 在 z_0$ 处的主要部分为

$$\sum_{k=1}^{n} \frac{c_{-k}}{(z - z_0)^k}$$

4. f在z0的某去心邻域内可表示为

$$f(z) = \frac{\lambda(z)}{(z - z_0)^n}$$

其中 $\lambda(z)$ 在 z_0 点的邻域内全纯, 且 $\lambda(z_0) \neq 0$ 。

定义 3.2.6 (本质奇点)

称函数 f 的孤立奇点 $z_0 \in \mathbb{C}$ 为本质奇点,如果成立如下命题之一。

- 1. 不存在极限 $\lim_{z\to z_0} f(z)$ 。
- 2. f在 zo 处的主要部分为

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$$

定义 3.2.7 (无穷远处的孤立奇点)

- 1. 称 ∞ 为 f 的孤立奇点,如果存在 $r \ge 0$,使得 f 在 |z| > r 内全纯。
- 2. 称 ∞ 为 f(z) 的可去奇点,如果 0 为 f(1/z) 的可去奇点。

- 3. 称 ∞ 为 f(z) 的 n 阶极点,如果 0 为 f(1/z) 的 n 阶极点。
- 4. 称 ∞ 为 f(z) 的本质奇点,如果 0 为 f(1/z) 的本质奇点。

例题 3.1 判断如下函数的奇点及类型。

$$\frac{\tan z}{z}$$

解由于

$$\frac{\tan z}{z} = \frac{e^{iz} - e^{-iz}}{iz} \frac{1}{e^{iz} + e^{-iz}}$$

那么奇点有 z=0 和 $z_n=(n-\frac{1}{2})\pi$ 以及 $z=\infty$, 其中 $n\in\mathbb{Z}$ 。

对于z=0,由于

$$\lim_{z \to 0} \frac{\tan z}{z} = 1$$

那么z=0为可去奇点。

对于 $z=z_n$, 由于

$$\lim_{z \to z_n} \left| \frac{\tan z}{z} \right| = \infty, \qquad \lim_{z \to z_n} (z - z_n) \frac{\tan z}{z} = -\frac{1}{z_n}$$

那么 $z = z_n$ 为一阶极点。

对于 $z = \infty$, 由于 $|z_n| \to \infty$, 那么 ∞ 为非孤立奇点。

例题 3.2 判断如下函数的奇点及类型。

$$\frac{z}{e^z - 1}$$

解 容易知道 $z_n=2n\pi i$ 和 $z=\infty$ 为奇点,其中 $n\in\mathbb{Z}$ 。

对于 $z = z_0 = 0$, 由于

$$\lim_{z \to 0} \frac{z}{e^z - 1} = 1$$

那么z=0为可去奇点。

对于 $z_n = 2n\pi i$, 其中 $n \neq 0$, 由于

$$\lim_{z \to z_n} \left| \frac{z}{e^z - 1} \right| = \infty, \qquad \lim_{z \to z_n} (z - z_n) \frac{z}{e^z - 1} = 2n\pi i$$

那么 $z_n = 2n\pi i$ 为一阶极点, 其中 $n \neq 0$ 。

对于 $z = \infty$, 由于 $|z_n| \to \infty$, 那么 ∞ 为非孤立奇点。

命题 3.2.1

对于在去心开圆 $D_r^{\circ}(z_0)$ 内全纯的函数 f,证明:如果存在 A>0 和 $\varepsilon>0$,使得在 z_0 附近,成立 $|f(z)| \le A|z-z_0|^{\varepsilon-1}$,那么 z_0 是 f 的可去奇点。

证明 注意到

$$\lim_{z \to z_0} |(z - z_0)f(z)| \le \lim_{z \to z_0} A|z - z_0|^{\varepsilon} = 0$$

于是

$$\lim_{z \to z_0} (z - z_0) f(z) = 0$$

于是 z_0 为 $g(z)=(z-z_0)f(z)$ 在 $D_r(z_0)$ 内的可去奇点,从而 g 在 $D_r(z_0)$ 内全纯,将 g 在 z_0 处展开

$$g(z) = g(z_0) + \sum_{n=1}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

注意到

$$g(z_0) = \lim_{z \to z_0} g(z) = 0$$

于是

$$g(z) = \sum_{n=1}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

进而

$$f(z) = \sum_{n=1}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n-1}$$

那么

$$\lim_{z \to z_0} f(z) = g'(z_0)$$

从而 z_0 为 f 的可去奇点。

命题 3.2.2

单调整函数为一次多项式。

证明 记单调整函数为 f(z), 定义 g(z)=f(1/z), 那么 g 在 $\mathbb{C}\setminus\{0\}$ 上全纯。下面考察 z=0 的奇点类型。

如果 z=0 为 g 的可去奇点,那么 g 在 z=0 的邻域 $\{|z|< r\}$ 内有界,从而 f 在 $\{|z|>1/r\}$ 内有界。而 f 连续,则 f 在紧集 $\{|z|\leq 1/r\}$ 内有界,从而 f 在 $\mathbb C$ 上有界,由 Liouville 定理2.3.3,f 为常函数,这与单调性矛盾!

如果 z=0 为 g 的本质奇点,由 Casorati-Weierstrass 定理3.2.1, $g(\{0<|z|< r\})$ 为稠密的,从而 $f(\{|z|>1/r\})$ 是稠密的。而由 f 为整函数,那么 $f(\{|z|<1/r\})$ 为开集,从而 $f(\{|z|<1/r\})\cap f(\{|z|>1/r\})\neq\varnothing$,这与单调性矛盾!

那么z=0为g的极点,由 Laurent 展式的唯一性,g的主要部分为有限项,于是f的正则项为有限项。又由f的单调性,f至多存在一个零点,于是f的次数不多于1,而常函数并不单调,于是f为一次多项式。综上所述,原命题得证!

定理 3.2.1 (Casorati-Weierstrass 定理)

如果 z_0 为函数 f 的本质奇点,那么对于任意 $z \in \overline{\mathbb{C}}$,存在 $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$,使得成立

$$\lim_{n \to \infty} z_n = z_0, \qquad \lim_{n \to \infty} f(z_n) = z$$

定理 3.2.2 (Picard 定理)

如果 z_0 为函数 f 的本质奇点,那么对于除可能的一个值 z' 外任意 $z \in \mathbb{C}$,存在 $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$,使得成立

$$\lim_{n \to \infty} z_n = z_0, \qquad f(z_n) = z, \quad n \in \mathbb{N}^*$$

3.3 留数公式

定义 3.3.1 (留数)

如果 $z_0 \in \mathbb{C}$ 为函数 f 的孤立奇点, 那么作 Laurent 展式

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

称 f 在 z_0 处的留数为 c_{-1} 。

定理 3.3.1 (留数计算公式)

如果 $z_0 \in \Omega$ 为函数 f 的 n 阶极点,那么

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \frac{\mathrm{d}^{n-1}}{\mathrm{d}z^{n-1}} (z - z_0)^n f(z)$$

定理 3.3.2 (留数公式)

对于边界分段光滑的区域 Ω 上的函数 f, 如果 $z_1, \dots, z_n \in \Omega_\gamma$ 为 f 的极点,同时 f 在 $\Omega \setminus \{z_1, \dots, z_n\}$ 上 全纯,在 $\overline{\Omega} \setminus \{z_1, \dots, z_n\}$ 上连续,那么

$$\int_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f$$

例题 3.3 求如下函数的留数。

$$f(z) = \frac{1}{(z+1)(z-1)^2}$$

解 容易知道 z=-1 为一阶极点, z=1 为二阶极点。由留数计算公式

$$\operatorname{res}_{-1} f = \lim_{z \to -1} (z+1) f(z) = \lim_{z \to -1} \frac{1}{(z-1)^2} = \frac{1}{4}$$
$$\operatorname{res}_{1} f = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} (z-1)^2 f(z) = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \frac{1}{z+1} = -\frac{1}{4}$$

例题 3.4 求如下函数的留数。

$$f(z) = \frac{1 - e^{2z}}{z^4}$$

解容易知道z=0为三阶极点。由留数计算公式

$$\operatorname{res}_{0} f = \lim_{z \to 0} \frac{1}{2} \frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} z^{3} f(z) = \lim_{z \to 0} \frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} \frac{1 - \mathrm{e}^{2z}}{2z} = -\frac{4}{3}$$

例题 3.5 计算积分

$$\int_{|z|=1} \frac{\mathrm{d}z}{z\sin z}$$

解令 $f(z) = \frac{1}{z \sin z}$,那么 $f \in |z| < 1$ 内存在二阶极点z = 0,其留数为

$$\operatorname{res}_0 f = \lim_{z \to 0} \frac{\mathrm{d}}{\mathrm{d}z} z^2 f(z) = \lim_{z \to 0} \frac{\mathrm{d}}{\mathrm{d}z} \frac{z}{\sin z} = 0$$

那么

$$\int_{|z|=1} \frac{\mathrm{d}z}{z\sin z} = 2\pi i \cdot \mathrm{res}_0 f = 0$$

例题 3.6 计算积分

$$\int_C \frac{\mathrm{d}z}{(z-1)^2(z^2+1)}$$

其中 $C: x^2 + y^2 = 2(x+y)$ 。

解 记 $f(z) = \frac{1}{(z-1)^2(z^2+1)}$,那么 f 在 $x^2+y^2 < 2(x+y)$ 内存在二阶极点 z=1 和一阶极点 z=i,其留数分别为

$$\operatorname{res}_{1} f = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} (z - 1)^{2} f(z) = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \frac{1}{z^{2} + 1} = -\frac{1}{2}$$

$$\operatorname{res}_{i} f = \lim_{z \to i} (z - i) f(z) = \lim_{z \to i} \frac{1}{(z - 1)^{2} (z + i)} = \frac{1}{4}$$

那么

$$\int_C \frac{\mathrm{d}z}{(z-1)^2(z^2+1)} = 2\pi i (\mathrm{res}_1 f + \mathrm{res}_i f) = -\frac{\pi}{2}i$$

例题 3.7 计算积分

$$\int_{|z|=1} \frac{z \sin z}{(1 - e^z)^3} dz$$

解 记 $f(z) = \frac{z \sin z}{(1-{
m e}^z)^3}$, 容易知道 z=0 为一阶极点, 其留数为

$$\operatorname{res}_0 f = \lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{z^2 \sin z}{(1 - e^z)^3} = -1$$

那么

$$\int_{|z|=1} \frac{z \sin z}{(1 - e^z)^3} dz = -2\pi i$$

例题 3.8

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^4} = \frac{\pi}{\sqrt{2}}$$

$$\operatorname{res}_{z_n} f = \lim_{z \to z_n} (z - z_n) f(z) = \frac{1}{4z_n^3} = \frac{1}{4} e^{i\frac{3(1-2n)}{4}\pi}$$

而 z_n 为以 4 为周期,且 $z_0=\frac{1-i}{\sqrt{2}}, z_1=\frac{1+i}{\sqrt{2}}, z_2=\frac{-1+i}{\sqrt{2}}, z_3=\frac{-1-i}{\sqrt{2}}$,因此其留数分别为

$$\operatorname{res}_{z_0} f = \frac{-1+i}{4\sqrt{2}}, \quad \operatorname{res}_{z_1} f = \frac{-1-i}{4\sqrt{2}}, \quad \operatorname{res}_{z_2} f = \frac{1-i}{4\sqrt{2}}, \quad \operatorname{res}_{z_3} f = \frac{1+i}{4\sqrt{2}}$$

选取积分路径

$$\gamma_0: z = t,$$
 $t: -R \to R$ $\gamma: z = Re^{it},$ $t: 0 \to \pi$

当 R>1 时, γ_0 和 γ 围成的区域内含有 z_1 和 z_2 ,且由留数公式

$$\int_{\gamma_0} f(z) dz + \int_{\gamma} f(z) dz = 2\pi i (\operatorname{res}_{z_1} f + \operatorname{res}_{z_2} f) = \frac{\pi}{\sqrt{2}}$$

注意到

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| = \int_{\gamma} \frac{|dz|}{|1 + z^4|} \leq \int_{\gamma} \frac{|dz|}{|z^4| - 1} = \frac{\pi R}{R^4 - 1} \to 0$$

因此

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^4} = \lim_{R \to \infty} \int_{\gamma_0} f(z) dz = \frac{\pi}{\sqrt{2}}$$

例题 3.9

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \frac{\pi}{ae^a}, \qquad a > 0$$

证明 记 $f(z) = \frac{e^{iz}}{z^2 + a^2}$, 积分路径为

$$\gamma_0: z = t,$$
 $t: -R \to R$ $\gamma: z = Re^{it},$ $t: 0 \to \pi$

当 R > a 时,由 γ_0 和 γ 围成的区域内含有 f 的一阶极点 z = ai,其留数为

$$\operatorname{res}_{ai} f = \lim_{z \to ai} (z - ai) f(z) = \lim_{z \to ai} \frac{e^{iz}}{z + ai} = \frac{1}{2aie^a}$$

从而

$$\int_{\gamma_0} f(z)dz + \int_{\gamma} f(z)dz = 2\pi i \operatorname{res}_{ai} f = \frac{\pi}{ae^a}$$

注意到, 当 $0 \le x \le \frac{\pi}{2}$ 时, 成立 $\sin x \ge \frac{2}{\pi}x$, 那么

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz|$$

$$\leq \int_{0}^{\pi} \frac{R e^{-R \sin t}}{R^{2} - a^{2}} dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \frac{R e^{-R \sin t}}{R^{2} - a^{2}} dt$$

$$\leq 2 \int_{0}^{\frac{\pi}{2}} \frac{R e^{-R \frac{2}{\pi}t}}{R^{2} - a^{2}} dt$$

$$= \frac{\pi}{R^{2} - a^{2}} (1 - e^{-R})$$

因此

$$\lim_{R \to \infty} \int_{\gamma} f(z) \mathrm{d}z = 0$$

进而

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \mathrm{d}x = \operatorname{Re} \lim_{R \to \infty} \int_{\gamma_0} f(z) \mathrm{d}z = \frac{\pi}{a \mathrm{e}^a}$$

例题 3.10

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \frac{\pi}{e^a}, \qquad a > 0$$

证明 记 $f(z) = \frac{ze^{iz}}{z^2 + a^2}$, 积分路径为

$$\gamma_0: z = t,$$
 $t: -R \to R$ $\gamma: z = Re^{it},$ $t: 0 \to \pi$

当 R > a 时,由 γ_0 和 γ 围成的区域内含有 f 的一阶极点 z = ai,其留数为

$$\operatorname{res}_{ai} f = \lim_{z \to ai} (z - ai) f(z) = \lim_{z \to ai} \frac{z e^{iz}}{z + ai} = \frac{1}{2e^a}$$

从而

$$\int_{\gamma_0} f(z) dz + \int_{\gamma} f(z) dz = 2\pi i \operatorname{res}_{ai} f = \frac{\pi}{e^a} i$$

注意到, 当 $0 \le x \le \frac{\pi}{2}$ 时, 成立 $\sin x \ge \frac{2}{\pi}x$, 那么

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq \int_{0}^{\pi} \frac{R^{2} e^{-R \sin t}}{R^{2} - a^{2}} dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \frac{R^{2} e^{-R \sin t}}{R^{2} - a^{2}} dt$$

$$\leq 2 \int_{0}^{\frac{\pi}{2}} \frac{R^{2} e^{-R \frac{2}{\pi} t}}{R^{2} - a^{2}} dt$$

$$= \frac{\pi R}{R^{2} - a^{2}} (1 - e^{-R})$$

因此

$$\lim_{R \to \infty} \int_{\gamma} f(z) \mathrm{d}z = 0$$

进而

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \operatorname{Im} \lim_{R \to \infty} \int_{\gamma_0} f(z) dz = \frac{\pi}{e^a}$$

例题 3.11

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{\frac{3}{2}}}, \qquad a > 1$$

证明 记 $f(z) = \frac{4z}{(z^2+2az+1)^2}$,积分路径为 $\gamma: z = \mathrm{e}^{i\theta}, \theta \in [0,2\pi]$,在此积分路径内f含有二阶极点 $z = \sqrt{a^2-1}-a$,其留数为

$$\operatorname{res}_{\sqrt{a^2-1}-a} f = \lim_{z \to \sqrt{a^2-1}-a} \frac{\mathrm{d}}{\mathrm{d}z} (z - (\sqrt{a^2-1}-a))^2 f(z) = \frac{a}{(a^2-1)^{\frac{3}{2}}}$$

因此

$$\int_{\gamma} f(z) dz = 2\pi i \text{res}_{\sqrt{a^2 - 1} - a} f = \frac{2\pi a i}{(a^2 - 1)^{\frac{3}{2}}}$$

而

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} \frac{i d\theta}{(a + \cos \theta)^{2}}$$

从而

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{\frac{3}{2}}}$$

例题 3.12

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}, \qquad a > |b|, a, b \in \mathbb{R}$$

证明 记 $f(z)=\frac{2}{bz^2+2az+b}$,积分路径为 $\gamma:z=\mathrm{e}^{i\theta},\theta\in[0,2\pi]$ 。 若 b=0,显然成立

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a} = \frac{2\pi}{a}$$

若 $b \neq 0$, 在此积分路径内 f 含有一阶极点 $z_0 = \frac{-a + \sqrt{a^2 - b^2}}{b}$, 其留数为

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z) = \frac{1}{\sqrt{a^2 - b^2}}$$

因此

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{res}_{z_0} f = \frac{2\pi i}{\sqrt{a^2 - b^2}}$$

而

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} \frac{i d\theta}{a + b \cos \theta}$$

从而

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}$$

3.4 亚纯函数

定义 3.4.1 (扩充复平面)

 $\overline{\mathbb{C}}$ 为 \mathbb{C} 的一点紧致化。

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

定义 3.4.2 (Riemann 球)

定义 Riemann 球

$$\mathbb{S} = \left\{ (X, Y, Z) : X^2 + Y^2 + \left(Z - \frac{1}{2}\right)^2 = \frac{1}{4} \right\}$$

与复平面

$$\mathbb{C} = \{(x, y) : (x, y) \in \mathbb{R}^2\}$$

Riemann 球的北极记作 $\mathcal{N} = (0,0,1)$, 那么存在双射

$$\mathcal{R}: \mathbb{S} \setminus \{\mathcal{N}\} \longrightarrow \mathbb{C}$$

$$(x, y, z) \longmapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

与

$$\mathcal{R}^{-1}: \quad \mathbb{C} \longrightarrow \mathbb{S} \setminus \{\mathcal{N}\}$$
$$(x,y) \longmapsto \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, 1 - \frac{2}{1+x^2+y^2}\right)$$

于是定义 $\infty = \mathcal{R}(\mathcal{N})$, 此时

$$\mathbb{S}\simeq\overline{\mathbb{C}}$$

定义 3.4.3 (亚纯函数)

- 1. 称 f 在开集 Ω 上是亚纯的,如果对于至多可数序列 $\{z_n\}$,f 在 $\Omega-\{z_n\}$ 全纯,每一个 z_n 为 f 的极点,且若序列 $\{z_n\}$ 收敛,则收敛于 $\partial\Omega$ 。
- 2. 称 ℂ上的亚纯函数 f 是在 $\overline{\mathbb{C}}$ 上的亚纯函数,如果 f 在 ∞ 处全纯,或者 ∞ 为 f 的极点。

定理 3.4.1

ℂ上的亚纯函数为有理函数。

$^{\circ}$

3.5 辐角原理

定理 3.5.1 (辐角原理)

对于开集 $\Omega \subset \mathbb{C}$ 上的亚纯函数f,如果开圆 $D \subset \Omega$,且f在 ∂D 上无极点和零点,那么

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = n_z - n_p$$

其中 n_z 和 n_p 分别为 f 在 C 的零点数和极点数。

$^{\circ}$

定理 3.5.2 (Rouché 定理)

对于开集 $\Omega \subset \mathbb{C}$ 上的全纯函数f和g,如果开圆 $D \subset \Omega$,且对于任意 $z \in \partial D$,成立

那么f和f+g在D上存在相同数目的零点。

 \sim

例题 3.13 方程 $z^6 + 6z + 10 = 0$ 在 |z| < 1 内有几个根?

解注意到, 当 |z| < 1 时, 成立

$$|z^6 + 6z + 10| \ge 10 - |z|^6 - 6|z| > 10 - 1 - 6 = 3 > 0$$

因此方程 $z^6 + 6z + 10 = 0$ 在 |z| < 1 内无根。

例题 3.14 方程 $z^6 + 60z + 10 = 0$ 在 |z| < 1 内有几个根?

解注意到, 当 |z|=1 时,成立

$$|z^6 + 60z| \ge 60|z| - |z|^6 = 59 > 10$$

因此由 Rouché 定理3.5.2,方程 $z^6+60z+10=0$ 和 $z^6+60z=0$ 在 |z|<1 内存在相同数目的根。而 $z^6+60z=0$ 的根为 z=0 和 $z=\sqrt[5]{60} \mathrm{e}^{i\frac{2n-1}{5}\pi}$,那么方程 $z^6+60z+10=0$ 在 |z|<1 内有且仅有一个根。

例题 3.15 方程 $z^4 - 8z + 10 = 0$ 在 |z| < 1 和 1 < |z| < 3 内有几个根?解 注意到,当 $|z| \le 1$ 时,成立

$$|z^4 - 8z + 10| \ge 10 - |z|^4 - 8|z| \ge 10 - 1 - 8 > 0$$

因此方程 $z^4 - 8z + 10 = 0$ 在 $|z| \le 1$ 内无根。

注意到, 当 |z|=3 时, 成立

$$|z^4 - 8z| \ge |z|^4 - 8|z| = 57 > 10$$

因此由 Rouché 定理3.5.2,方程 $z^4-8z+10=0$ 和 $z^4-8z=0$ 在 |z|<3 内存在相同数目的根。而 $z^4-8z=0$ 的根为 $z_1=0$, $z_2=2$, $z_3=2\omega$, $z_4=2\omega^2$,其中 ω 为三次单位根,因此 $z^4-8z=0$ 在 |z|<3 内存在 4 个根,于是方程 $z^4-8z+10=0$ 在 |z|<3 内存在 4 个根,进而方程 $z^4-8z+10=0$ 在 1<|z|<3 内存在 4 个根。

引理 3.5.1

对于℃上的多项式

$$P(z) = a_n z^n + \dots + a_1 z + a_0$$

令

$$M = \max\{|a_{n-1}|, \cdots, |a_0|\}$$

那么当 $|z| \ge 1 + M/|a_n|$ 时,成立 |P(z)| > 0。

证明 如果 M=0,那么 $P(z)=a_nz^n$,因此显然当 $|z|\geq 1$ 时,|P(z)|>0。 如果 M>0,由于当 $|z|\geq 1+M/|a_n|$ 时,成立

 $M_{\sim} n$

$$\frac{M|z|^n}{|z|-1} \le |a_n||z|^n$$

那么

$$|P(z)| = |a_n z^n + \dots + a_1 x + a_0|$$

$$\geq |a_n z^n| - |a_{n-1} z^{n-1} + \dots + a_1 z + a_0|$$

$$\geq |a_n z^n| - (|a_{n-1} z^{n-1}| + \dots + |a_1 z| + |a_0|)$$

$$\geq |a_n z^n| - M(|z|^{n-1} + \dots + |z| + 1)$$

$$= |a_n z^n| - M \frac{1 - |z|^n}{1 - |z|}$$

$$\geq |a_n z^n| - \frac{M|z|^n}{|z| - 1}$$

$$\geq 0$$

推论 3.5.1 (代数基本定理)

 \mathbb{C} 上的n次多项式在 \mathbb{C} 上存在n个根。

 \odot

证明 不妨记 \mathbb{C} 上的 n 次多项式为

$$P(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

由引理3.5.1,多项式 $a_1z^{n-1}+\cdots+a_n$ 的根在某个圆 D 内。由于 z^n 存在且存在 n 个零根,那么当 D 的半径充分大时,对于任意 $z\in\partial D$,成立

$$\frac{|a_1 z^{n-1} + \dots + a_n|}{|z^n|} < \frac{1}{2}$$

那么由 Rouché 定理3.5.2, P(z) 存在n个根。

定理 3.5.3 (开映射定理)

如果 f 为开集 $\Omega \subset \mathbb{C}$ 上的全纯函数,那么或 f 为开映射,或 f 为常函数。

 \Diamond

证明 假设 f 不为常函数,取开集 $G \subset \Omega$,任取 $w_0 \in f(G)$,那么存在 $z_0 \in G$,使得成立 $w_0 = f(z_0)$ 。由唯一性定理2.3.4,结合 f 不为常函数,那么存在 r > 0,使得对于任意 $z \in D_r(z_0) \subset G$,成立若 $f(z) = f(z_0)$,则 $z = z_0$ 。取 $\delta = \min_{z \in \partial D_r(z_0)} |f(z) - w_0|$,对于任意 $w \in D_\delta(w_0)$,考虑

$$f(z) - w = (f(z) - w_0) + (w_0 - w)$$

由于在 $\partial D_r(z_0)$ 上成立

$$|f(z) - w_0| \ge \delta, \qquad |w_0 - w| < \delta$$

那么由 Rouché 定理3.5.2,f(z) - w 与 $f(z) - w_0$ 在 $D_r(z_0)$ 中的零点个数相同。由于 $f(z) - w_0$ 在 $D_r(z_0)$ 中存在零点 z_0 ,那么 f(z) - w 在在 $D_r(z_0)$ 中存在零点 z_w ,因此

$$w = f(z_w) \in f(D_r(z_0))$$

由 w 的任意性, $D_{\delta}(w_0) \subset f(D_r(z_0)) \subset f(G)$, 从而 f(G) 为开集, 进而 f 为开映射。

定理 3.5.4 (最大模原理)

如果 f 为区域 $\Omega \subset \mathbb{C}$ 上的全纯函数,那么或 |f| 不在 Ω 内取到最大值,或 f 为常函数。

C

证明 如果 f 不为常函数,且在 $z_0 \in \Omega$ 处 |f| 取最大值,那么存在 r > 0,使得成立 $D_r(z_0) \subset \Omega$ 。由开映射定理3.5.3, $f(D_r(z_0))$ 为开集,因此存在 $w \in D_r(z_0)$,使得 $|f(w)| = |f(z_0)| + r/2 > |f(z_0)|$,矛盾!

命题 3.5.1

对于开圆盘 $D_r = \{z \in \mathbb{C} : |z| < r\}$,如果 f 在 \overline{D}_r 上全纯,且存在 A > 0,使得当 |z| = r 时,|f(z)| > A,同时 |f(0)| < A,证明:f 在 D_r 内存在零点。

证明 假设 f 在 D_r 内无零点,那么定义 g=1/f,于是当 |z|=r 时, $|g(z)|=\frac{1}{|f(z)|}<\frac{1}{A}$,而 $|g(0)|=\frac{1}{|f(0)|}>\frac{1}{A}$,这与最大模原理3.5.4矛盾! 因此 f 在 D_r 内无零点。

命题 3.5.2

对于单位开圆盘 $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$,如果 $\{w_k\}_{k=1}^n\subset\partial\mathbb{D}$,那么存在 $z\in\partial\mathbb{D}$,使得成立

$$\prod_{k=1}^{n} |z - w_k| \ge 1$$

进而存在 $w \in \partial \mathbb{D}$, 使得成立

$$\prod_{k=1}^{n} |w - w_k| = 1$$

证明 定义函数

$$f(z) = \prod_{k=1}^{n} (z - w_k), \quad z \in \mathbb{C}$$

注意到

$$|f(0)| = \prod_{k=1}^{n} |w_k| = 1$$

那么由最大模原理3.5.4

$$\sup_{z \in \partial \mathbb{D}} |f(z)| \ge |f(0)| = 1$$

又 $\partial \mathbb{D}$ 为紧集, 所以存在 $z \in \partial \mathbb{D}$, 使得 $|f(z)| \ge 1$ 。

 \Diamond

又由于 f 的连续性,且 $f(w_1) = 0$,那么存在 w 使得成立 |f(w)| = 1。

定理 3.5.5 (Schwartz 引理)

对于单位开圆盘 \mathbb{D} , 如果 $f: \mathbb{D} \to \mathbb{D}$ 为全纯函数,且 f(0) = 0,那么

$$|f'(0)| \le 1, \qquad |f(z)| \le |z|, \qquad z \in \mathbb{D}$$

当且仅当存在 $\theta \in \mathbb{R}$, 使得 $f(z) = e^{i\theta}z$ 时等号成立。

证明 构造

$$g(z) = \begin{cases} f(z)/z, & z \in \mathbb{D} \setminus \{0\} \\ f'(0), & z = 0 \end{cases}$$

那么 g(z) 在 \mathbb{D} 内全纯。由最大模原理3.5.4,对于任意 0 < r < 1,成立

$$\max_{|z| < r} |g(z)| \leq \max_{\theta \in \mathbb{R}} |g(r\mathrm{e}^{i\theta})| = \max_{\theta \in \mathbb{R}} \frac{|f(r\mathrm{e}^{i\theta})|}{r} \leq \frac{1}{r}$$

$$|f'(0)| \le 1, \qquad |f(z)| \le |z|, \qquad z \in \mathbb{D}$$

若存在 $z \neq 0$,使得成立 |f(z)| = |z| 或 |f'(0)| = 1,则由最大模原理3.5.4,g 为常函数,因此存在 $\theta \in \mathbb{R}$,使得 $f(z) = e^{i\theta}z$ 。

定理 3.5.6 (Schwartz-Pick 引理)

对于单位开圆盘 \mathbb{D} , 如果 $f: \mathbb{D} \to \mathbb{D}$ 为全纯函数, 那么

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(z)} f(w)} \right| \le \left| \frac{z - w}{1 - \overline{z}w} \right|, \qquad z, w \in \mathbb{D}$$

证明 首先容易证明对于 $z, w \in \overline{\mathbb{D}}$, 当 $\overline{w}z \neq 1$ 时, 成立

$$\left| \frac{w - z}{1 - \overline{w}z} \right| \le 1$$

当且仅当 |z| = 1 或 |w| = 1 时等号成立。

对于 $w \in \mathbb{D}$, 定义映射

$$\varphi_w : \mathbb{D} \longrightarrow \mathbb{D}$$

$$z \longmapsto \frac{w - z}{1 - \overline{w}z}$$

我们来证明 φ_w 为全纯双射。注意到

$$\lim_{h \to 0} \frac{\varphi_w(z+h) - \varphi_w(z)}{h} = \lim_{h \to 0} \frac{|w|^2 - 1}{(1 - \overline{w}(z+h))(1 - \overline{w}z)} = \frac{|w|^2 - 1}{(1 - \overline{w}z)^2}$$

因此 φ_w 为全纯映射。同时注意到

$$(\varphi_w \circ \varphi_w)(z) = z$$

因此 φ_w 为双射。

由于 $\varphi_w(w) = 0$, 那么 $\varphi_w^{-1}(0) = w$ 。考察映射

$$\psi_w = \varphi_{f(w)} \circ f \circ \varphi_w^{-1}$$

由于 φ_w 和 f 均为 $\mathbb{D} \to \mathbb{D}$ 上的全纯函数,那么 ψ_w 为为 $\mathbb{D} \to \mathbb{D}$ 上的全纯函数,且

$$\psi_w(0) = (\varphi_{f(w)} \circ f \circ \varphi_w^{-1})(0) = 0$$

于是由 Schwartz 引理3.5.5, 对于任意 $z \in \mathbb{D}$, 成立

$$|\psi_w(z)| \le |z|$$

即

$$|(\varphi_{f(w)} \circ f \circ \varphi_w^{-1})(z)| \le |z|$$

而 φ_w 为双射, 因此存在 $z' \in \mathbb{D}$, 使得成立 $z = \varphi_w(z')$, 因此

$$|(\varphi_{f(w)} \circ f)(z')| \le |\varphi_w(z')|$$

进而

$$\left| \frac{f(w) - f(z')}{1 - \overline{f(w)}f(z')} \right| \le \left| \frac{w - z'}{1 - \overline{w}z'} \right|$$

由z'与w的任意性,原命题得证!

3.6 同伦与单连通区域

定义 3.6.1 (同伦)

称曲线 $\alpha,\beta:[a,b]\to\Omega$ 在开集 $\Omega\subset\mathbb{C}$ 中同伦,如果存在连续函数 $\gamma:[0,1]\times[a,b]\to\Omega$,使得成立

$$\gamma(s,0) = \alpha(s),$$

$$\gamma(s,1) = \beta(s),$$

$$\forall s \in [0,1]$$

$$\gamma(0,t) = \alpha(0) = \beta(0),$$

$$\gamma(1,t) = \alpha(1) = \beta(1),$$

$$\forall t \in [a, b]$$

定义 3.6.2 (单连通区域)

称区域 $\Omega \subset \mathbb{C}$ 是单连通的,如果对于 Ω 中任意两条具有相同的始点和终点的曲线都是同伦的。

定理 3.6.1

如果 f 在开集 Ω 上是全纯的,那么对于任意 Ω 中的同伦曲线 γ_0 和 γ_1 ,成立

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

 \sim

定理 3.6.2

单连通区域中任何全纯函数都存在原函数。

 $^{\circ}$

3.7 复对数

定理 3.7.1

如果 Ω 为单连通区域, 且 $1 \in \Omega, 0 \notin \Omega$, 那么在 Ω 中存在对数的分支 $F(z) = \log_{\Omega}(z)$, 使得成立

- 1. F 在 Ω 中是全纯的。
- 2. 对于任意 $z \in \Omega$,成立 $e^{F(z)} = z$ 。
- 3. 对于任意 $r \in \mathbb{R}^+ \cap \Omega$,成立 $F(r) = \ln r$ 。

 \odot

定理 3.7.2

对于裂隙平面 $\Omega = \mathbb{C} \setminus (-\infty, 0]$, 存在对数的主分支

$$\log z = \ln r + i\theta$$

其中 $z = re^{i\theta}$ 且 $r \in \mathbb{R}^+, \theta \in (-\pi, \pi)$ 。

 $^{\circ}$

注

$$\log(z_1 z_2) \neq \log z_1 + \log z_2$$

定理 3.7.3

对于 |z| < 1,成立

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$$

 \Diamond

定义 3.7.1 (幂)

如果 Ω 为单连通区域, 且 $1 \in \Omega, 0 \notin \Omega$, 选择对数的分支, 对于任意 $\alpha \in \mathbb{C}$, 定义幂

$$z^{\alpha} = e^{\alpha \log z}$$

•

定理 3.7.4

如果函数 f 在单连通区域 Ω 上是全纯非零函数,那么在 Ω 上存在全纯函数 g,使得成立

$$f(z) = e^{g(z)}$$

其中 g(z) 可以表示为 $\log f(z)$, 并确定了该对数的一个分支。

 $^{\circ}$

命题 3.7.1

如果a > 0,那么

$$\int_0^\infty \frac{\log x}{x^2 + a^2} \mathrm{d}x = \frac{\pi}{2a} \log a$$

证明 记 $f(z) = \frac{\log z}{z^2 + a^2}$, 积分路径为

$$\gamma_1: z = t,$$
 $t: \varepsilon \to R$

$$\gamma_2: z = -t,$$
 $t: R \to \varepsilon$

$$C_{\varepsilon}: z = \varepsilon e^{it},$$

$$t: \pi \to 0$$

$$C_R: z = Re^{it},$$
 $t: 0 \to \pi$

注意到当 $\varepsilon < a < R$ 时,f在积分路径围成的区域内存在一阶极点z = ai,其留数为

$$\operatorname{res}_{ai} f = \lim_{z \to ai} (z - ai) f(z) = \frac{\log a + i\frac{\pi}{2}}{2ai}$$

因此由留数公式

$$\int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz + \int_{C_{\varepsilon}} f(z) dz + \int_{C_R} f(z) dz = 2\pi i \operatorname{res}_{ai} f = \frac{\pi \log a}{a} + i \frac{\pi^2}{2a}$$

考察各项积分。对于C。项

$$\int_{C_{\varepsilon}} f(z) dz = \varepsilon \int_{0}^{\pi} \frac{t e^{it}}{\varepsilon^{2} e^{i2t} + a^{2}} dt - i\varepsilon \ln \varepsilon \int_{0}^{\pi} \frac{e^{it}}{\varepsilon^{2} e^{i2t} + a^{2}} dt \to 0 \qquad (\varepsilon \to 0^{+})$$

对于 C_R 项

$$\left| \int_{C_R} f(z) dz \right| = R \left| \int_0^{\pi} \frac{(i \ln R - t)e^{it}}{R^2 e^{i2t} + a^2} dt \right|$$

$$\leq R \int_0^{\pi} \frac{|i \ln R - t|}{|R^2 e^{i2t} + a^2|} dt$$

$$\leq R \int_0^{\pi} \frac{\pi + \ln R}{R^2 - a^2} dt$$

$$= \pi R \frac{\pi + \ln R}{R^2 - a^2}$$

因此

$$\lim_{R \to \infty} \int_{C_R} f(z) \mathrm{d}z = 0$$

对于 γ_2 项

$$\int_{\gamma_2} f(z) \mathrm{d}z = \int_{\varepsilon}^R \frac{\log t + i\pi}{t^2 + a^2} \mathrm{d}t = \int_{\varepsilon}^R \frac{\log t}{t^2 + a^2} \mathrm{d}t + i\pi \int_{\varepsilon}^R \frac{\mathrm{d}t}{t^2 + a^2}$$

而

$$\int_0^\infty \frac{\mathrm{d}t}{t^2 + a^2} = \frac{\pi}{2a}$$

因此当 $\varepsilon \to 0$ 且 $R \to \infty$ 时,成立

$$2\int_0^\infty \frac{\log x}{x^2 + a^2} dx + i\frac{\pi^2}{2a} = \frac{\pi \log a}{a} + i\frac{\pi^2}{2a}$$

因此

$$\int_0^\infty \frac{\log x}{x^2 + a^2} \mathrm{d}x = \frac{\pi}{2a} \log a$$

命题 3.7.2

如果 |a| < 1,那么

$$\int_0^{2\pi} \log|1 - a\mathrm{e}^{i\theta}| \mathrm{d}\theta = 0$$

事实上, $|a| \le 1$ 时, 上式仍然成立。

证明 记 $f(z) = \frac{\log(1-az)}{iz}, |z| \le 1$,由于 $1-az \in \{x+iy: x>0, y \in \mathbb{R}\}$,因此 $\log(1-az)$ 在 $|z| \le 1$ 时全纯。注意到 z=0 为 f(z) 的可去奇点,因此 f(z) 在 $|z| \le 1$ 全纯,那么

$$\int_{|z|=1} f(z) \mathrm{d}z = 0$$

进而

$$\int_0^{2\pi} \log |1 - a \mathrm{e}^{i\theta}| \mathrm{d}\theta = \operatorname{Re} \int_{|z|=1} f(z) \mathrm{d}z = 0$$

而当 |a|=1 时,记 $a=e^{i\alpha}$,注意到

$$\int_0^{2\pi} \log|1 - ae^{i\theta}| d\theta = \int_0^{2\pi} \log|1 - e^{i(\theta + \alpha)}| d\theta = \int_0^{2\pi} \log|1 - e^{i\theta}| d\theta = 4 \int_0^{\frac{\pi}{2}} \ln(2\sin\theta) d\theta = 0$$

最后的积分是因为

$$I = \int_0^{\frac{\pi}{2}} \ln(\sin x) dx$$

$$= 2 \int_0^{\frac{\pi}{4}} \ln(\sin 2x) dx$$

$$= 2 \int_0^{\frac{\pi}{4}} (\ln 2 + \ln(\sin x) + \ln(\cos x)) dx$$

$$= \frac{\pi}{2} \ln 2 + 2I$$

因此

$$I = \int_0^{\frac{\pi}{2}} \ln(\sin x) dx = -\frac{\pi}{2} \ln 2$$

附录 A 单复变函数定理扩展

定理 A.0.1 (Bieberbach 定理)

对于单位圆盘 $\mathbb D$ 上的单的全纯函数 f,如果 f(0)=0,且 f'(0)=1,那么作 Taylor 展式

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

成立

$$|a_n| \le n, \qquad n \in \mathbb{N}$$

定理 A.0.2 (Koebe 定理 1/4 掩盖定理)

对于单位圆盘 \mathbb{D} 上的单的全纯函数 f, 如果 f(0) = 0, 且 f'(0) = 1, 那么 $f(\mathbb{D}) \supset \mathbb{D}/4$ 。

证明 作 Taylor 展式

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

任取 $w \notin f(\mathbb{D})$, 令

$$g(z) = \frac{wf(z)}{w - f(z)} = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n = z + \left(a_2 + \frac{1}{w}\right) z^2 + \sum_{n=3}^{\infty} \frac{g^{(n)}(0)}{n!} z^n$$

由 Bieberbach 定理**A.0.1**, $|a_2|$ 且 $|a_2 + 1/w| \le 2$, 因此

$$\frac{1}{|w|} \le \left| a_2 + \frac{1}{w} \right| + |a_2| \le 4$$

从而 $|w| \ge 1/4$, 进而 $f(\mathbb{D}) \supset \mathbb{D}/4$ 。

引理 A.0.1

对于单位圆盘 $\mathbb D$ 上的全纯函数 f,如果 $f(\mathbb D)\subset M\mathbb D$, $|f(0)|\neq 0$,那么当 |z|=r<|f(0)|< M 时,成立

$$|f(z)| \ge \frac{M(|f(0)| - Mr)}{M - r|f(0)|}$$

证明 当 M=1 时,由 Schwartz-Pick 引理3.5.6

$$|z| \ge \left| \frac{f(z) - f(0)}{1 - \overline{f(z)}f(0)} \right|, \qquad z \in \mathbb{D}$$

从而

$$1 - |z|^2 \le 1 - \left| \frac{f(z) - f(0)}{1 - \overline{f(z)}f(0)} \right|^2 = \frac{(1 - |f(z)|^2)(1 - |f(0)|^2)}{|1 - \overline{f(z)}f(0)|^2} \le \frac{(1 - |f(z)|^2)(1 - |f(0)|^2)}{(1 - |f(z)||f(0)|)^2}$$

因此

$$|z|^2 \ge 1 - \frac{(1 - |f(z)|^2)(1 - |f(0)|^2)}{(1 - |f(z)||f(0)|)^2} = \frac{(|f(z)| - |f(0)|)^2}{(1 - |f(z)||f(0)|)^2}$$

进而

$$|z| \ge \frac{||f(z)| - |f(0)||}{1 - |f(z)||f(0)|}$$

解之

$$|f(z)| \ge \frac{|f(0)| - |z|}{1 - |z||f(0)|} = \frac{|f(0)| - r}{1 - r|f(0)|}$$

当 $M \neq 1$ 时, 令 g = f/M, 从而由

$$|g(z)| \ge \frac{|g(0)| - |z|}{1 - |z||g(0)|} = \frac{|g(0)| - r}{1 - r|g(0)|}$$

可得

$$\frac{|f(z)|}{M} \ge \frac{\frac{|f(0)|}{M} - |z|}{1 - |z| \frac{|f(0)|}{M}} = \frac{\frac{|f(0)|}{M} - r}{1 - r \frac{|f(0)|}{M}} \iff |f(z)| \ge \frac{M(|f(0)| - Mr)}{M - r|f(0)|}$$

引理 A.0.2

对于单位圆盘 $\mathbb D$ 上的全纯函数 f,如果 $f(\mathbb D)\subset M\mathbb D$,且 f(0)=0, f'(0)=1,那么 $M\geq 1$,且 f 在 $\eta\mathbb D$ 中为单射,其中 $\eta=1/(M+\sqrt{M^2-1})$ 。

证明 作 Taylor 展式

$$f(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n = \sum_{n=0}^{\infty} a_n z^n$$

由 Cauchy 不等式

$$|f^{(n)}(0)| \le \frac{n!}{r^n} \sup_{|z|=r} |f(z)| < \frac{n!}{r^n} M, \qquad r < 1$$

从而

$$|a_n| = \frac{|f^{(n)}(0)|}{n!} \le \frac{M}{r^n}, \quad n \in \mathbb{N}, r < 1$$

$$|a_n| \le M, \qquad n \in \mathbb{N}$$

而 $|a_1| = |f'(0)| = 1$,从而 $M \ge 1$ 。

若 f 在 $\eta \mathbb{D}$ 中不为单射,则存在 $z_1 \neq z_2 \in \mathbb{D}$,使得成立 $f(z_1) = f(z_2) = \beta$ 。不妨 $|z_1| \leq |z_2| = \rho < 1/M$ 。令

$$g(z) = \frac{\frac{\beta}{M} - \frac{f(z)}{M}}{1 - \frac{\rho}{M} \frac{f(z)}{M}} = \frac{M(\beta - f(z))}{M^2 - \beta f(z)}$$

则 |g| < M,且 $g(z_1) = g(z_2) = 0$ 。再令

$$h(z) = \frac{g(z)(1 - \overline{z}_1 z)(1 - \overline{z}_2 z)}{(z - z_1)(z - z_2)}$$

则 h 在 $\mathbb D$ 内全纯。断言: |h| < M。事实上,由最大模原理3.5.4,|h| 在 $\partial \mathbb D$ 上取到;而 $z \to \partial \mathbb D$,|g(z)| < M,从 而 |h| < M。因此

$$|h(0)| = \frac{|g(0)|}{|z_1 z_2|} < M$$

而 $|g(0)| \leq \beta$,则 $\beta < M|z_1z_2| < M\rho^2$ 。令

$$\varphi(z) = \begin{cases} f(z)/z, & z \neq 0\\ f'(0) = 1, & z = 0 \end{cases}$$

则 φ 在 \mathbb{D} 内全纯,且 $|\varphi| < M$ 。由引理A.0.1,当 $|z| = \rho < 1/M$ 时

$$|\varphi(z)| \ge \frac{M(\varphi(0) - M\rho)}{M - \varphi(0)\rho} = \frac{M(1 - M\rho)}{M - \rho} \implies |f(z)| \ge \frac{M(1 - M\rho)}{M - \rho}|z|$$

结合

$$\beta = |f(z_2)| \ge \frac{M(1 - M\rho)}{M - \rho} |z_2| = \frac{M(1 - M\rho)}{M - \rho} \rho \implies M\rho^2 \ge \frac{M(1 - M\rho)}{M - \rho} \rho \implies \rho \ge \frac{1}{M + \sqrt{M^2 - 1}} |z_2|$$

可得要使得 f 在 $\rho \mathbb{D}$ 中不为单射, 从而当 $\rho < 1/(M + \sqrt{M^2 - 1})$ 时, f 在 $\rho \mathbb{D}$ 中为单射。

定理 A.0.3 (Landou 引理)

对于单位圆盘 $\mathbb D$ 上的全纯函数 f,如果 f(0)=0, $f(\mathbb D)\subset \mathbb D$, $0< f'(0)=\alpha\leq 1$,那么 f 在 $\eta \mathbb D$ 上为单射,且 $\eta^2 \mathbb D \subset f(\eta \mathbb D)$,其中 $\eta=\alpha/(1+\sqrt{1-\alpha^2})$ 。

证明 令 $F(z) = f(z)/\alpha$,则 F(0) = 0, F'(0) = 1,且 $F(\mathbb{D}) \subset \mathbb{D}/\alpha$ 。由引理A.0.2,则 F 在 $\eta \mathbb{D}$ 中为单射,其中 $\eta = \frac{1}{M + \sqrt{M^2 - 1}} = \frac{1}{\frac{1}{\alpha} + \sqrt{\frac{1}{\alpha^2} - 1}} = \frac{\alpha}{1 + \sqrt{1 - \alpha^2}}$

当 $|z| = \eta$ 时,由引理A.0.2

$$|F(z)| \ge \frac{M(1 - M\eta)}{M - \eta}|z|$$

从而

$$|f(z)| \ge \frac{1 - \frac{1}{\alpha}\eta}{\frac{1}{\alpha} - \eta}\eta = \frac{\alpha - \eta}{1 - \alpha\eta}\eta \ge \eta^2$$

由 Rouché 定理3.5.2, $\eta^2 \mathbb{D} \subset f(\eta \mathbb{D})$ 。

附录 B 单复变经典定理

定义 B.0.1 (全纯函数)

称函数 f = u + iv 在开集 $\Omega \subset \mathbb{C}$ 上为全纯函数,如果成立如下命题之一。

1. 对于任意 $z ∈ \Omega$, 存在极限

$$\lim_{h\to 0} \frac{f(z+h) - f(z)}{h}$$

2. 函数 u 和 v 在 Ω 上连续可微, 且成立 Cauchy-Riemann 方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

3. 函数 f 在 Ω 上连续,且对于任意分段光滑闭曲线 γ ,成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

4. 对于任意 $z_0 \in \Omega$, 存在 r > 0, 使得对于任意 $z \in D_r(z_0)$, 成立幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

定理 B.0.1 (Cauchy-Riemann 方程)

如果函数 f = u + iv 在开集 $\Omega \subset \mathbb{C}$ 上全纯, 那么

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

即

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

证明 由于存在极限

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{(h_1, h_2) \to (0, 0)} = \frac{f(x+h_1, y+h_2) - f(x, y)}{h_1 + ih_2}$$

那么当 h 沿实轴时

$$f'(z) = \lim_{h_1 \to 0} = \frac{f(x + h_1, y) - f(x, y)}{h_1} = \frac{\partial f}{\partial x}(z)$$

当 h 沿虚轴时

$$f'(z) = \lim_{h_2 \to 0} = \frac{f(x, y + h_2) - f(x, y)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(z)$$

从而

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

即

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

定理 B.0.2 (Cauchy-Riemann 方程逆定理)

如果函数 f=u+iv 在开集 $\Omega\subset\mathbb{C}$ 上成立 Cauchy-Riemann 方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

那么f在 Ω 上全纯。

证明 由于函数 $u \approx v \in \Omega$ 上连续可微,那么

$$u(x + h_1, y + h_2) - u(x, y) = \frac{\partial u}{\partial x} h_1 + \frac{\partial u}{\partial y} h_2 + h\psi_1(h)$$
$$v(x + h_1, y + h_2) - v(x, y) = \frac{\partial v}{\partial x} h_1 + \frac{\partial v}{\partial y} h_2 + h\psi_2(h)$$

其中

$$\lim_{h \to 0} \psi_1(h) = \lim_{h \to 0} \psi_2(h) = 0$$

令

$$h = h_1 + ih_2, \qquad \psi = \psi_1 + i\psi_2$$

从而由 Cauchy-Riemann 方程

$$f(z+h) - f(z) = \left(\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}\right)h + h\psi(h)$$

从而 f 为全纯函数,且

$$f' = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = 2 \frac{\partial u}{\partial z} = \frac{\partial f}{\partial z}$$

定理 B.0.3 (Goursat 定理)

如果函数 f 在开集 $\Omega \subset \mathbb{C}$ 上全纯, 那么对于任意三角形 $T \subset \Omega$, 成立

$$\int_T f(z) \mathrm{d}z = 0$$

 $^{\circ}$

定理 B.0.4 (Cauchy 积分定理)

对于边界分段光滑的区域 $\Omega \subset \mathbb{C}$, 如果函数 f 在 Ω 上全纯且在 $\overline{\Omega}$ 上连续, 那么

$$\int_{\partial\Omega} f(z) \mathrm{d}z = 0$$

 \odot

定理 B.0.5 (Cauchy 积分公式)

对于边界分段光滑的区域 $\Omega\subset\mathbb{C}$,如果函数 f 在 Ω 上全纯且在 $\overline{\Omega}$ 上连续,那么对于任意 $z\in\Omega$,成立

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta$$

同时 f 在 Ω 上无穷阶可导, 且对于任意 $z \in \Omega$, 成立

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial \Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

 \odot

推论 B.0.1 (平均值性质)

对于在开集 $\Omega \subset \mathbb{C}$ 上全纯的函数 f, 如果 $z_0 \in \Omega$ 且 $D_r(z_0) \subset \Omega$, 那么

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

 \sim

证明 由 Cauchy 积分公式2.3.2, 这几乎是显然的!

推论 B.0.2 (Cauchy 不等式)

对于开集 $\Omega \subset \mathbb{C}$ 上的全函数f,如果 $\overline{D}_r(z_0) \subset \Omega$,那么

$$|f^{(n)}(z_0)| \le \frac{n!}{r^n} \sup_{|z-z_0|=r} |f(z)|$$

C

证明 由 Cauchy 积分公式2.3.2

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right|$$

$$= \left| \frac{n!}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{(re^{i\theta})^{n+1}} rie^{i\theta} d\theta \right|$$

$$\leq \frac{n!}{r^n} \sup_{|z - z_0| = r} |f(z)|$$

定理 B.0.6 (Taylor 展开)

对于开集 Ω 上的全纯函数 f, 如果 $D_r(z_0) \subset \Omega$, 那么 f 存在幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in D_r(z_0)$$

其中

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \quad n \in \mathbb{N}$$

证明 任取 $z \in D_r(z_0)$, 由 Cauchy 积分公式2.3.2

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

对于 $\zeta \in \partial D$,考虑几何级数

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n$$

从而由 Cauchy 积分公式2.3.2

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \right) (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

推论 B.O.3 (Liouville 定理)

- 1. 如果 f 是 \mathbb{C} 上的有界整函数,那么 f 是常函数。
- 2. 如果 f 是 \mathbb{C} 上的下有界整函数,那么 f 是常函数。
- 3. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 u 存在上界, 那么 f 是常函数。
- 4. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 u 存在下界, 那么 f 是常函数。
- 5. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 v 存在上界, 那么 f 是常函数。
- 6. 对于 \mathbb{C} 上的整函数 f = u + iv, 如果 v 存在下界, 那么 f 是常函数。

证明 对于 1,由于 f 在 \mathbb{C} 上有界,那么存在 $M \in \mathbb{R}$,使得对于任意 $z \in \mathbb{C}$,成立 $|f(z)| \leq M$ 。由 Cauchy 不等式2.3.2,对于任意 $z_0 \in \mathbb{C}$ 与 r > 0,成立

$$|f'(z_0)| \le \frac{1}{r} \sup_{|z-z_0|=r} |f(z)| \le \frac{M}{r} \to 0 \qquad (r \to \infty)$$

从而 f' = 0。由推论1.4.2, f 为常函数。

对于 2, 如果 f 下有界, 那么 1/f 为有界整函数, 因此由 1, 1/f 为常函数, 进而 f 为常函数。

对于 3, 如果 u 上有界, 那么考虑 e^f 。由于

$$|\mathbf{e}^f| = |\mathbf{e}^{u+iv}| = \mathbf{e}^u$$

因此 e^f 有界。由 1, e^f 为常函数,进而 f 为常函数。

对于 4, 如果 u 下有界, 那么由 $|f| \ge |u|$, 可知 f 下有界。由 2, f 为常函数。

对于 5, 如果 u 上有界, 那么考虑 e^{v+iu} 。由于

$$|e^{v+iu}| = e^v$$

因此 e^{v+iu} 有界。由 1, e^{v+iu} 为常函数,进而 u = v 为常函数,即 f 为常函数。 对于 6,如果 v 下有界,那么由 |f| > |v|,可知 f 下有界。由 2, f 为常函数。

推论 B.0.4 (代数基本定理)

ℂ上的非常数多项式在℃中存在根。

证明 考虑 n 次多项式

$$P(z) = a_n z^n + \dots + a_1 x + a_0$$

假设 P(z) 无根。由于

$$\frac{P(z)}{z^n} = a_n + \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right) \to a_n \qquad (|z| \to \infty)$$

那么存在r > 0, 使得成立

$$|P(z)| \ge \frac{|a_n|}{2}|z|^n, \qquad |z| > r$$

从而 P(z) 在 |z| > r 时存在下界。由于 P(z) 为连续函数且无零点,那么 P(z) 在紧集 $|z| \le r$ 上有界,因此 P(z) 在 \mathbb{C} 上存在下界,进而 1/P(z) 为有界整函数。由 Liouville 定理2.3.3,1/P(z) 为常函数,即 P(z) 为常函数,矛盾! 进而 P(z) 存在根。

定理 B.0.7 (唯一性定理)

对于在区域 $\Omega\subset\mathbb{C}$ 上的全纯函数 f,如果存在 $\{z_n\}_{n=1}^\infty\subset\Omega$,使得对于任意 $n\in\mathbb{N}^*$,成立 $f(z_n)=0$,且 $\lim_{n\to\infty}z_n\in\Omega$,那么在 Ω 上成立 f=0。

证明 记 $z_0 = \lim_{n \to \infty} z_n$, 由于 Ω 为开集, 因此存在 r > 0, 使得 $D_r(z_0) \subset \Omega$ 。考虑幂级数展开2.3.3

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \qquad z \in D_r(z_0)$$

如果 $f \in D_r(z_0)$ 上不为 0, 那么存在最小的 $m \in \mathbb{N}$, 使得成立 $a_m \neq 0$, 此时存在多项式 q(z), 使得成立

$$f(z) = a_m (z - z_0)^m (1 + q(z - z_0))$$

其中当 $z \to z_0$ 时 $g(z-z_0) \to 0$ 。由于 $z_n \to z_0$,那么存在 $z_{n_0} \neq z_0$,使得成立 $|g(z_{n_0}-z_0)| < 1/2$,从而

$$a_m(z_{n_0}-z_0)^m \neq 0, \qquad 1+q(z_{n_0}-z_0) \neq 0$$

但是 $f(z_{n_0}) = 0$, 因此产生矛盾! 进而 f 在 $D_r(z_0)$ 恒为 0。 记

$$U = \{ z \in \Omega : f(z) = 0 \}, \qquad V = U^{\circ}$$

那么V为非空开集。断言V为闭集,事实上,对于任意 $w \in \overline{V}$,存在 $\{w_n\}_{n=1}^{\infty} \subset V$,使得成立 $w_n \to w$ 。由上述论证, $w \in V$,进而V为闭集。令 $W = \Omega \setminus V$ 为开集,那么 Ω 表示可为开集的不交并

$$\Omega = V \sqcup W$$

由于 Ω 为连通集, 从而 $W = \emptyset$, 进而 $\Omega = V$, 因此在 Ω 上成立 f = 0。

推论 B.0.5 (零点孤立性定理)

对于区域 $\Omega \subset \mathbb{C}$ 上的非零全纯函数 f,如果 $z_0 \in \Omega$ 为 f 的零点,那么存在 r > 0,使得 f 在 $D_r(z_0)$ 内无零点。

证明 由唯一性定理2.3.4, 命题得证!

定理 B.0.8 (Morera 定理)

对于在开集 $\Omega \subset \mathbb{C}$ 上的连续函数f,如果对于任意分段光滑封闭曲线 $\gamma \subset \Omega$,成立

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

那么f在 Ω 上全纯。

\bigcirc

定理 B.0.9 (留数计算公式)

如果 $z_0 \in \Omega$ 为函数 f 的 n 阶极点,那么

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \frac{\mathrm{d}^{n-1}}{\mathrm{d}z^{n-1}} (z - z_0)^n f(z)$$

定理 B.0.10 (留数公式)

对于边界分段光滑的区域 Ω 上的函数 f,如果 $z_1,\cdots,z_n\in\Omega_\gamma$ 为 f 的极点,同时 f 在 $\Omega\setminus\{z_1,\cdots,z_n\}$ 上 全纯,在 $\overline{\Omega}\setminus\{z_1,\cdots,z_n\}$ 上连续,那么

$$\int_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} res_{z_k} f$$

\sim

定理 B.0.11 (Rouché 定理)

对于开集 $\Omega \subset \mathbb{C}$ 上的全纯函数f和g,如果开圆 $D \subset \Omega$,且对于任意 $z \in \partial D$,成立

$$|f(z)| > |g(z)|$$

那么f和f+g在D上存在相同数目的零点。

\odot

推论 B.0.6 (代数基本定理)

 \mathbb{C} 上的 n 次多项式在 \mathbb{C} 上存在 n 个根。

 \sim

证明 不妨记 \mathbb{C} 上的 n 次多项式为

$$P(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

由引理3.5.1,多项式 $a_1z^{n-1}+\cdots+a_n$ 的根在某个圆 D 内。由于 z^n 存在且存在 n 个零根,那么当 D 的半径充分大时,对于任意 $z\in\partial D$,成立

$$\frac{|a_1 z^{n-1} + \dots + a_n|}{|z^n|} < \frac{1}{2}$$

那么由 Rouché 定理3.5.2, P(z) 存在n个根。

定理 B.0.12 (开映射定理)

如果 f 为开集 $\Omega \subset \mathbb{C}$ 上的全纯函数,那么或 f 为开映射,或 f 为常函数。

 $^{\circ}$

证明 假设 f 不为常函数,取开集 $G \subset \Omega$,任取 $w_0 \in f(G)$,那么存在 $z_0 \in G$,使得成立 $w_0 = f(z_0)$ 。由唯一性定理2.3.4,结合 f 不为常函数,那么存在 r > 0,使得对于任意 $z \in D_r(z_0) \subset G$,成立若 $f(z) = f(z_0)$,则 $z = z_0$ 。取 $\delta = \min_{z \in \partial D_r(z_0)} |f(z) - w_0|$,对于任意 $w \in D_\delta(w_0)$,考虑

$$f(z) - w = (f(z) - w_0) + (w_0 - w)$$

由于在 $\partial D_r(z_0)$ 上成立

$$|f(z) - w_0| \ge \delta, \qquad |w_0 - w| < \delta$$

那么由 Rouché 定理3.5.2, f(z) - w 与 $f(z) - w_0$ 在 $D_r(z_0)$ 中的零点个数相同。由于 $f(z) - w_0$ 在 $D_r(z_0)$ 中存

在零点 z_0 , 那么 f(z)-w 在在 $D_r(z_0)$ 中存在零点 z_w , 因此

$$w = f(z_w) \in f(D_r(z_0))$$

由 w 的任意性, $D_{\delta}(w_0) \subset f(D_r(z_0)) \subset f(G)$,从而 f(G) 为开集,进而 f 为开映射。

定理 B.0.13 (最大模原理)

如果 f 为区域 $\Omega \subset \mathbb{C}$ 上的全纯函数,那么或 |f| 不在 Ω 内取到最大值,或 f 为常函数。

 \Diamond

证明 如果 f 不为常函数,且在 $z_0 \in \Omega$ 处 |f| 取最大值,那么存在 r > 0,使得成立 $D_r(z_0) \subset \Omega$ 。由开映射定理3.5.3, $f(D_r(z_0))$ 为开集,因此存在 $w \in D_r(z_0)$,使得 $|f(w)| = |f(z_0)| + r/2 > |f(z_0)|$,矛盾!