Funkcja liniowa

Definicja.

Proporcjonalnością prostą nazywamy zależność między dwiema zmiennymi x i y określona wzorem y = ax, gdzie $a \neq 0$.

Definicja.

Funkcją liniową nazywamy funkcję, którą można opisać wzorem f(x) = ax + b, gdzie $a, b \in \mathbb{R}$. Liczbę a nazywamy współczynnikiem kierunkowym, zaś b wyrazem wolnym.

Twierdzenie (o monotoniczności funkcji liniowej).

Funkcja liniowa dana wzorem f(x) = ax + b jest:

- rosnąca $\Leftrightarrow a > 0$,
- malejąca $\Leftrightarrow a < 0$,
- stała $\Leftrightarrow a = 0$.

Twierdzenie.

Funkcja liniowa dana wzorem f(x) = ax + b ma:

- jedno miejsce zerowe $\Leftrightarrow a \neq 0$,
- zero miejsc zerowych $\Leftrightarrow a = 0 \land b \neq 0$,
- nieskończenie wiele miejsc zerowych $\Leftrightarrow a = 0 \land b = 0$.

Twierdzenie.

Jeśli dwa różne punkty $A(x_A, y_A), B(x_B, y_B)$ należą do wykresu funkcji f(x) = ax + b, to $a = \frac{y_B - y_A}{x_B - x_A}$.

Uwaga.

- 1) Aby naszkicować wykres funkcji liniowej wystarczy wyznaczyć dwa punkty należące do jej wykresu i poprowadzić przez nie prostą.
- 2) Dla każdej funkcji liniowej f(x) = ax + b wzrost argumentu o 1 powoduje przyrost wartości funkcji równy a.

Twierdzenie.

Proste będące wykresami funkcji liniowych są **równoległe** \Leftrightarrow współczynniki kierunkowe występujące we wzorach tych funkcji są równe.

Twierdzenie.

Dwie proste będące wykresami funkcji liniowych są **prostopadłe** \Leftrightarrow iloczyn współczynników kierunkowych występujących we wzorach tych funkcji wynosi -1.

Definicja (Funkcje szczególne).

Signum

$$\operatorname{sgn} x \coloneqq \begin{cases} 1, & \operatorname{gdy} \ x \in (0, +\infty) \\ 0, & \operatorname{gdy} \ x = 0 \\ -1, & \operatorname{gdy} \ x \in (-\infty, 0) \end{cases}$$

Wartość bezwzględna (moduł)

$$|x| := \begin{cases} x, & \text{gdy } x \in [0, +\infty) \\ -x, & \text{gdy } x \in (-\infty, 0) \end{cases}$$

Część całkowita (cecha, podłoga)

 $[x] \coloneqq$ największa liczba całkowita, która jest mniejsza lub równa x

Część ułamkowa (mantysa)

$$\{x\} \coloneqq x - [x]$$

Maksimum

$$\max(a,b) \coloneqq \left\{ \begin{array}{ll} a, & \text{gdy } a \geqslant b \\ b, & \text{gdy } a < b \end{array} \right.$$

Minimum

$$\min(a,b) \coloneqq \left\{ \begin{array}{ll} a, & \text{gdy } a \leqslant b \\ b, & \text{gdy } a > b \end{array} \right.$$