1. Na figura está representado, em referencial o.n. xOy a circunferência trigonométrica, uma reta r e uma região a sombreado.

Sabe-se que:

- O é a origem do referencial
- P é o ponto de coordenadas (1,0)
- r é a reta definida por x = 1
- Q desloca-se sobre a circunferência ao longo do primeiro quadrante
- $\theta$  é a amplitude, em radianos, do ângulo POQ, com  $\theta \in \left]0,\frac{\pi}{2}\right[$
- R acompanha o movimento do ponto Q deslocando-se sobre a circunferência ao longo do quarto quadrante de modo que o ângulo ROQ é um ângulo reto
- os pontos S e T são os pontos de interseção da reta r com as semirretas  $\dot{O}Q$  e  $\dot{O}R$ , respectivamente.



Seja A a função que a cada valor de  $\theta$  faz corresponder o valor da área da região a sombreado.

- **1.1.** Mostre que  $A(\theta) = \frac{1}{\sin(2\theta)} \frac{\pi}{4}$ , com  $\theta \in \left]0, \frac{\pi}{2}\right[$ . (11º Ano) **Nota:**  $\sin(2\theta) = 2\sin\theta\cos\theta$
- **1.2.** Determine, sem utilizar a calculadora, o(s) valor(es) de  $\theta$  para o(s) qual(is) a área da região a sombreado é igual a  $\frac{8\sqrt{3}-3\pi}{12}$ .
- **1.3.** (12º Ano) Determine, por processos analíticos, o valor de  $\theta$  para o qual é mínima a área da região a sombreado.
- **1.4.** Qual é conjunto de valores de  $\theta$  para os quais a área da região a sombreado é menor que a área do triângulo [OPQ]?

Recorra às capacidades gráficas da sua calculadora para resolver esta questão.

Na sua resposta deve:

- Formular uma inequação cuja solução responde ao problema
- Representar graficamente a(s) função(ões) que lhe permitem obter a resposta ao problema
- Assinalar o(s) ponto(s) relevante(s), indicando a(s) sua(s) abcissa(s) com aproximação às centésimas
- Indicar o conjunto solução utilizando a notação de números reais

Autor: Carlos Frias