

Dipartimento di Matematica e Informatica

27/05/2022

Tutorato didattico di Fisica per LT Informatica

A.A. 2021 - 2022

Tutor: Martina Natali

Contatti:

martina01.natali@edu.unife.it

Classroom del corso

FORMULARIO

FORMA DIFFERENZIALE dQ = dU + oll DEL 7 PRINCIPIO

TRASFORMAZLONI	TERMOMNAMICHE

$$\Delta U = 0$$

$$Q = 0$$

ISOBARA

$$\Delta p = 0$$

TRASF.	EO. 57A70	dU	da	l dL
LSOTERMA A→B	pV z cost	0	dQ=dL	L=MRThVB VA
Tzcost				L=MRTh PB
AMABATICA 8 = 5/3 (MONO) = 7/5 (B1)	$TV^{8-1} = cost$ $PV^{8} = cost$ $TP^{8} = cost$	M CV OLT	0	dL = -dU
ISOCO ILA Vz cort	T/p = cost	d U = dQ	Mcv dT	0
150RALA Pz cort	T/V = cost	m Cy ol T	MCp dT	oll-pdVz MRdT

CALORE SPECIFICO

MAYER RECAZIONE M CM. SPEC. CAL. SPECIF. A PRESS. COST. A VOL. COSTANTE COSTANTE GAS PERFETTI 8.31 Jand-1 K-1 WEFF.

MONDATOMICO 72 R BIRTOMICO 5/2 R

Cρ 5/2 R 7/2 R

Cp/cv = 5/3 Cp/cv = 7/s

4

A AMABATICO

$$1507 \rightarrow AMAB \rightarrow 1507 \rightarrow ADIAB$$
 $A \rightarrow B$
 $B \rightarrow C$
 $C \rightarrow D$
 $A \rightarrow A$
 $M = 1 - IMIN$
 $A \rightarrow B$
 $A \rightarrow B$

Una mole di gas inizialmente alla pressione di 2 atm e al volume di 0.3 litri ha un'energia interna di 91 J. Nel suo stato finale, la pressione è di 1.5 atm, il volume 0.8 litri e l'energia interna è 182 J. Per i percorsi IAF e IF calcolare:

- a) lavoro compiuto dal gas
- b) energia termica netta scambiata durante la trasformazione

LIAF = LAF = LAF = + 75.8 J QIAF = ? QIA + QAF = DU + L DU - UF - UI LIAF = LAF QIAF = UF-UI + LAF = 1 = 182 J - S1 J + 75.8 J = 166.8 J CALORE NETTO E - ALSORRITO

LIE? QIE? LIF CONCOLO COME AREA SOTTESA LAUR TRASF LIF = AREA (1) + AREA (2) AREA (1) = 1 AF AI 1 (VF-VA)(PI-PA) AIOI 1 (0.2-0.3)(2-2.5) etul = 0.5 (0.5)(0.5) = 0.125 atul

AREAQ = 2.5 x 0.5 5tm L = 0.75 otm L

9

LIF = AREA @ + AMEA @ = 0.125 + 0.75 otul = 0875 otul = 0.875 x 1.01 x 105 x 10-2 Fa m³ 2 6. 224 x 102 J z 22, 4 J Q_{IF} = ΔU_{IF} + L_{IF} = U_{F} - U_{I} + L_{IF} = 142 J - 21 J + 22 L = 172. 4 J = 172. 6 J = 172. 7 J = 172. 6 J = 172. 7 J = 172

Un gas perfetto biatomico descrive il ciclo reversibile in figura, a partire dallo stato A, le cui coordinate termodinamiche sono: $T_A = 1000 \text{ K}$, $p_A = 3x10^5 \text{ Pa}$, $V_A = 2$ m³ e raggiungendo con una trasformazione isoterma lo stato B, il cui volume è doppio di A. Successivamente il gas subisce una trasformazione adiabatica BC, in cui il volume raddoppia ancora, una trasformazione isobara CD, in cui il volume ritorna a VA, e infine una isocora DA. 12) Determinare la pressione nello stato B

0.750 x 10⁵ Pa

1.50 x 10⁵ Pa

3.00 x 10⁵ Pa

6.00 x 10⁵ Pa

7.50 x 10⁵ Pa

GAS	B1270 M100
A -> B	ISOTERMA
B -> C	AMAB
C-> D	120 BARA
$\Lambda \rightarrow A$	ISUCORA

	P ($ imes$ 10 5 Pa)	V (m ³)	T (K)
А	3	2	1000
В		4	1000
С	PC	ઠ	
D	PD=PC	2	

1)
$$P_B$$
?

 $A \rightarrow B$ 15078 RMA

LEGGE DI STATO

 $PV = cost => P_A V_A = P_C V_B$
 $P_B = \frac{P_A V_A}{V_B} = \frac{3 \times 10^5 \times 8}{X_1 \times 2}$
 $= 1.5 \times 10^5 P_B$

	U	Q	L
AB			-
ВС			
CD			
DA			

A 3 2 B 4. S 4		Т (К)	V (m ³)	P (× 10 ⁵ <i>Pa</i>)	
			2	3	А
С			4	1 . S	В
					С
D	12				D

Pc?

- 0.284 x 10⁵ Pa
- 0.568 x 10⁵ Pa
- 1.14 x 10⁵ Pa
- 2.27 x 10⁵ Pa
- 2.84 x 10^5 Pa

$B \rightarrow C$	AMARATI	4
-> LEGGE	05225 M	AMAB
TVX-1	cort	
p V 8 =	cost >	pn Vg = Pc Vc
Total	, cost	Y = (BI) 7/5

	U	Q	L
AB			
ВС			
CD			
DA			

	P (\times 10 ⁵ Pa)	V (m ³)	Т (К)
А	3	2	1000
В	1.5	4	1000
С		S	
D			

$$PC = PB \left(\frac{V_B}{V_C}\right)^8$$

$$= 1.5 \times 10^5 P_a \left(\frac{1}{2}\right)^{7/5} =$$

$$= 20.568 \times 10^5 P_a$$

	U	Q	L
AB			
ВС			
CD			
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	T (K)
А			
В	1.5	4	
С	0.56d	d	
D	O. 568		

4

EQ. SZAZO GAS PROFEZZI
(VALE PEL OGNI PUNTO)
DEL PLANO PV
pV= mRT
pV = mR
> RICAVARIO DA
UN PUNTO IN CUI AD

	U	Q	L
AB			
ВС			
CD			
DA			

	P (\times 10 ⁵ Pa)	V (m ³)	T (K)
А	3	2	1000
В	1,5	4	1000
С	0.568	d	
D			

	U	Q	L
AB			
ВС			
CD			
DA			

	P ($ imes$ 10 5 Pa)	V (m ³)	Т (К)
А	3	2	1000
В			
С			
D			

 $7c = \frac{\rho_c V_c}{NR} = \frac{0.561 \times 4}{72.2 \times 4.31} \times 10^5 = \frac{72.2 \times 4.31}{2} \times 10^2 = 7.57 \times 10^2 =$

15) Determinare la temperatura nello stato D

378 K

95.0 K

189 K

945 K

756 K

	U	Q	L
AB			
ВС			
CD			
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
А	3	2	1000
В	1.5	4	100 O
С	O. 56 &	<u> </u>	757
D	0. S6 d	2	143

16) Determinare il calore scambiato nella trasformazione AB

2080 kJ

1660 kJ

832 kJ

416 kJ

208 kJ

$$A \rightarrow B \qquad |SOTERMA|$$

$$Q_{AB} = L_{AB} = mRT ln \frac{V_B}{V_A}$$

$$= 72.2 \times 1.31 \times 1000 \times ln 2$$

$$= 4.16 \times 10^3 \text{ J}$$

x103]	Γ U	Q	L
AB		416	
ВС			
CD			
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
Α		2	1000
В		4	1000
С			
D			
			1 1 1 1 1 1 1

17) Determinare la variazione di energia interna ΔU nella trasformazione BC

$$B \rightarrow C$$
 AMAD $Q = 0$
 $dU = Mc_V dT$
 $\Delta U = Mc_V \Delta T$
 $c_V(BI) = 5/2 R$

	U	Q	L
AB			
ВС			
CD			_
DA			

	P (\times 10 ⁵ Pa)	V (m ³)	T (K)	
А				
В			1000	
С			757	
D				
	В	В	В	B 1000 C 757

$$\Delta U_{BC} = M(\frac{3}{2}R) \Delta T_{BC}$$

$$= \frac{5}{2}MR(757 - 1000)$$

$$= \frac{5}{2} \times 72.2 \times 1.31 \times (-243)$$

$$= -364 \times 1003 \text{ J}$$

	U	Q	L
AB			
ВС	-364		
CD			
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
А			
В			
С			
D			

18) Determinare il lavoro fatto nella trasformazione CD

- 1705 kJ

1360 kJ

-cs?

682 kJ

-3**31** kJ

-171 kJ

$$C \rightarrow D \qquad |SOBARA|$$

$$L_{CA} = P_{C} \Delta V = P_{C} (V_{A} - V_{C})$$

$$= 0.564 \times (2-4) \times 10^{5} = 1$$

$$= 344 \times 10^{3} \text{ J}$$

	U	Q	L
AB			
ВС			
CD			- 341
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
Α			
В			
С	0.568	J	
D		2	

19) Determinare il calore scambiato nella trasformazione

DA

6080 kJ

608 kJ

4860 kJ

2430 kJ

$$D \rightarrow A$$
 | SOCORA | V = cost
 $Q_{A} = M C_V A T$
 $\frac{1}{2} 72, 2 \times \frac{5}{2} R \times (1000 - 189)$
 $\frac{1}{2} 1216 2 10^{3} J$

	U	Q	L
АВ			
ВС			
CD			
DA		1216	

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
А			1000
В			
С			
D			129

20) Determinare il lavoro L complessivamente fatto dal sistema 876 kJ 48 kJ 219 kJ 1750 kJ

2190 kJ

APPLICARE IL I PRINCIPIO
IN OGNI TRASF.

JER OGNI TRASF

-> SOMMARE TUTTI I
LAVORI COL LORO SEGNO

	U	Q	L
AB			
ВС			
CD			
DA			

	P (× 10 ⁵ <i>Pa</i>)	V (m ³)	Т (К)
А			
В			
С			
D			

$$A \rightarrow B$$
 $L_{AB} = Q_{AB} = h / 6$ | SOT
 $B \rightarrow C$ $\Delta U_{BC} + L_{BC} = P$ | SOB
 $\Rightarrow L_{BC} = -\Delta U_{BC}$ | LSOC

$$\times 10^{3}$$
 J U Q L

AB 416

BC - 364 O + 364

CD - 341

DA 1216 O

D-1A	l	_ = 0	△ V =	0		6
L707	z	LAB +	LBC	4	Lco	LA VIA
	1	h16 +	364	_ 7	41 +	0
	2	439	KJ			

	P (\times 10 ⁵ Pa)	V (m ³)	Т (К)	
А				
В				
С				
D				
				2

Un pezzo 5 kg di piombo (calore specifico 0,03 cal/g °C) con temperatura di 80 °C viene aggiunto a 500 g di acqua alla temperatura di 20 °C. Quale sarà la temperatura finale del sistema in °C?

Un proiettile di piombo da 25 g a 0 °C si muove a 375 m/s e colpisce un blocco di ghiaccio a 0 °C. Quanto ghiaccio (in kg) viene sciolto, se tutta l'energia cinetica del proiettile viene convertita in calore? Il blocco di ghiaccio non si muove (il calore latente di fusione del ghiaccio è di 80 kcal/kg e il calore specifico del piombo è 0.0305 kcal/kg °C. 1 cal = 4.186 J).

Calcolare il calore scambiato da 2 moli di gas monoatomico durante il ciclo A \rightarrow B: isobara, B \rightarrow C adiabatica, C \rightarrow D: isocora, D \rightarrow A: adiabatica, con dati come da tabella.

	P ($ imes$ 10 ⁵ Pa)	V (m ³)	T (K)
А			
В			
С			
D			

	P (\times 10 ⁵ Pa)	V (m ³)	Т (К)
А	1	0.05	
В	1	0.15	
С	0.5	0.23	
D	0.08	0.23	

P ($ imes$ 10^5
1
1
0.5
0.08

				_
	P ($ imes$ 10 5 Pa)	V (m ³)	T (K)	_
А	1	0.05		
В	1	0.15		
С	0.5	0.23		
D	0.08	0.23		

	P ($ imes$ 10 5 Pa)	V (m ³)	Т (К)
А	1	0.05	
В	1	0.15	
С	0.5	0.23	
D	0.08	0.23	

1 0.05 1 0.15	1 0.15 0.5 0.23
1 0.15	1 0.15 0.5 0.23
	0.5 0.23
	0.5 0.23
	0.08 0.23

Considerare il ciclo dell'esercizio precedente: come cambiano le coordinate dei punti ABCD se le due trasformazioni adiabatiche vengono sostituite da due isoterme? Calcolare solo le nuove coordinate, considerando che il punto A non cambia.

