Real Analysis HW #9

Jack Krebsbach

Nov 28th

Question 1

Let $g: A \to \mathbb{R}$ and $f: A \to \mathbb{R}$. Suppose that $\lim_{x \to a} f(x) = 0$.

(a) Show that $\lim_{x\to a} f(x)g(x) = 0$ for any function g as above IS NOT TRUE.

Proof: Assume for the sake of contradiction that $\lim_{x\to a} f(x)g(x) = 0$ for any g(x). Consider the case when $g(x) = 1/x^2$. Let $\epsilon > 0$. Then there exists δ such that whenever $0 < |x-0| < \delta$ we have $|f(x)g(x) - 0| < \epsilon$. By the Archimedes principle there exists $N \in \mathbb{N}$ such that for all n > N, $0 < |1/n| < \delta$.1 Thus,

$$|f(1/n)g(1/n) - 0| = |f(1/n)n^2 - 0| < \epsilon.$$

Herein lies the absurdity, if f approaches zero slower then n^2 increases, we choose $n_* > N$ such that $|f(1/n_*)n_*^2| > \epsilon \longrightarrow$ Hence, $\lim_{x\to a} f(x)g(x) = 0$ for any function g is not true.

(b) Assume that *g* is a bounded function on *A*. Show that $\lim_{x\to a} g(x)f(x) = 0$.

Proof: Let $\epsilon > 0$ and g be bounded by $B \in \mathbb{R}^+$. So |g(x)| < B for all $x \in \mathbb{R}$. Because $\lim_{x \to a} f(x) = 0$ then there exists δ such that if $c \in \mathbb{R}$ and $0 < |x - c| < \delta$ we automatically have $|f(x) - 0| < \epsilon/B$. Now,

$$|g(x)f(x) - 0| < |g(x)| \left| \frac{\epsilon}{B} \right| \le |B| \left| \frac{\epsilon}{B} \right| = \epsilon.$$

☺

Question 2

Let a and b be real numbers with $a \ne 0$. Use the definition of continuity to prove that the function f defined by f(x) = ax + b is continuous at every real number.

Proof: Let $\epsilon > 0$ and $c \in \mathbb{R}$. Choose $\delta = \epsilon/a$. If we have $|x - c| < \delta$ it follows

$$|f(x) - f(c)| = |ax + b - (ac + b)| = |ax + b - ac - b| = |ax - ac| = |a(x - c)| < |a\frac{\epsilon}{a}| < \epsilon.$$

Thus, f(x) = ax + b is continuous at every real number.

⊜

Question 3

Use the definition of limit to prove that $\lim_{x\to c} x^2 = c^2$ for every real number c.

Proof: Let $\epsilon > 0$. Choose $\delta = \min\{1, \epsilon/(2c+1)\}$. If we have $0 < |x-c| < \delta$ it follows that,

$$|f(x) - L| = |x^2 - c^2| = |x + c||x - c| < (2c + 1)\frac{\epsilon}{2c + 1} = \epsilon$$

Thus, $\lim_{x\to c} x^2 = c^2$ for every real number c.

⊜

Question 4

Find constants *a* and *b* so that the function *f* defined by

$$f(x) = \begin{cases} 3ax^2 + 1 & 0 \le x \le 1\\ ax + b & 1 < x < 2\\ 2bx + a & 2 \le x \le 4 \end{cases}$$

has a limit at each point of [0, 4]. Be sure to show the limit exists.

Solution:

First we find constants a and b so that f(x) has a limit defined at each point [0,4]. Plugging in 1 and 2 in each of the equations defined in the piecewise function f(x) yields a system of equations:

$$2a + 1 = a + b \implies 2a + 1 = b$$

and

$$2a + b = 4b + a \implies a = 3b$$
.

Substituting a = 3b into the first equation yields

$$2(3b) = b \implies 6b + 1 = 6 \implies 5b = -1 \implies b = \frac{-1}{5}.$$

Finally, solving for a = 3b = 3(-1/5) = -3/5. Thus,

$$b = \frac{-1}{5}$$
 and $a = \frac{-3}{5}$

and f becomes

$$f(x) = \begin{cases} -9/5x^2 + 1 & 0 \le x \le 1\\ -3/5x - 1/5 & 1 < x < 2\\ -2/5x - 3/5 & 2 \le x \le 4 \end{cases}$$

Question 5

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and suppose that f(x) = 0 for each irrational number x in [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$.

Proof: If $f : [a,b] \to \mathbb{R}$ is continuous on [a,b] then it must be continuous on every point $c \in [a,b]$. Assume, for the sake of contradiction, that there exists $x_0 \in [a,b]$ with $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ and $f(x_0) \neq 0$.

Then f must be continuous at x_0 , and there must exist δ such that $|x - x_0| < \delta$ implies that $|f(x) - f(x_0)| < |f(x_0)|/2$.

By the density of rationals in the real numbers there must exist an irrational number, x_I , such that $|x_I - x_0| < \delta$.

Since x_I is irrational then $f(x_I) = 0$ and we have $|f(x_I) - f(x_0)| = |f(x_0)| < |f(x_0)|/2 \implies 1 < 1/2 \longrightarrow 1$. Thus, we have arrived at a contradiction which means that f(x) = 0 for all $x \in [a, b]$.

(3)

Question 6

CHAT GPT CHALLENGE: Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b], and suppose that f(x) = 0 for each rational number x in [a, b]. We aim to show that f(x) = 0 for all $x \in [a, b]$.

Assume, for the sake of contradiction, that there exists $c \in [a, b]$ such that $f(c) \neq 0$. Since f is continuous, for any $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in [a, b]$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Consider the case when $\epsilon = |f(c)|$. By continuity, there exists $\delta > 0$ such that for all $x \in [a, b]$, if $|x - c| < \delta$, then |f(x) - f(c)| < |f(c)|. This implies

$$-f(c) < f(x) - f(c) < f(c).$$

Adding f(c) to all parts of the inequality yields 0 < f(x) for x in the interval $(c - \delta, c) \cap [a, b]$. Similarly, subtracting f(c) from all parts of the inequality yields f(x) < 0 for x in the interval $(c, c + \delta) \cap [a, b]$. Now, consider the set of rational numbers in [a, b]. Since \mathbb{Q} is dense in \mathbb{R} , there exist rational numbers in both $(c - \delta, c) \cap [a, b]$ and $(c, c + \delta) \cap [a, b]$. However, we have shown that for any rational x in these intervals, f(x) has opposite signs, which is a contradiction.

You are almost there. Instead of saying there exists a rational number in the intervals you should say there exists an irrational number, say x_I , which we know $f(x_I) = 0$. From then you can continue with your contradiction argument. You also need to note that for any number in those intervals f(x) has opposite signs.

Therefore, our assumption that there exists c such that $f(c) \neq 0$ is false, and we conclude that f(x) = 0 for all $x \in [a, b]$.