

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral III — Lista 11

Prof. Adriano Barbosa

(1) Faça uma correspondência entre as equações paramétricas e as curvas.

(a)
$$x = t \cos t, y = t, z = t \operatorname{sent}, t \ge 0$$

(b)
$$x = \cos t, y = \sin t, z = \cos 2t$$

(c)
$$x = \cos 8t, y = \sin 8t, z = e^{0.8t}, t \ge 0$$

(d)
$$x = \cos^2 t, y = \sin^2 t, z = t$$

(2) Faça a correspondência entre os campos vetoriais e as figuras.

(a)
$$F(x,y) = (x, -y)$$

(b)
$$F(x,y) = (y, x - y)$$

(c)
$$F(x,y) = (y, y+2)$$

(d)
$$F(x,y) = (\cos(x+y), x)$$

(3) Calcule as integrais de linha.

(a)
$$\int_C y^3 ds$$
, $C: x = t^3, y = t, 0 \le t \le 2$

(b)
$$\int_C xy^4 ds$$
, C é a metade direita do círculo $x^2 + y^2 = 16$

(c)
$$\int_C x^2 y^3 - \sqrt{x} \ dy$$
, C é o arco da curva $y = \sqrt{x}$ de $(1,1)$ a $(4,2)$

(d)
$$\int_C xe^y dx$$
, C é o arco da curva $x = e^y$ de $(1,0)$ a $(e,1)$

(e)
$$\int_C z^2 dx + x^2 dy + y^2 dz$$
, C consiste no segmento de reta de $(1,0,0)$ a $(4,1,2)$