ОТЧЕТ

Итерационные методы решения систем линейных уравнений

Автор

Черепахин Иван 409 группа, мехмат

1 Задача 1

1.1 Постановка задачи

Решить методом Фурье следующую систему уравнений

$$-\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + py_k = f_k, \quad k = 1, \dots, N-1;$$

$$y_0 = y_N = 0;$$

$$h = \frac{1}{N};$$

$$p \ge 0.$$

1.2 Решение

Метод Фурье подразумевает поиск собственных функций относительно краевых и последующий поиск собственных чисел относительно оператора системы. Также в этой и последующих задачах, решением системы уравнений будет вектор $(0,1,0,\ldots,0)$. Из задачи о дискретном разложении Фурье имеем что собственная функция задачи:

$$\psi_k^{(n)} = \sin(\frac{\pi nk}{N}).$$

Далее вычислим собственные значения:

Далее вычислим собственные значения:
$$A\psi_k^{(n)} = -\frac{\psi_{k+1}^{(n)} - 2\psi_k^{(n)} + \psi_{k-1}^{(n)}}{h^2} + p\psi_k^{(n)}$$

$$= -\frac{\sin(\frac{\pi n(k+1)}{N}) - 2\sin(\frac{\pi nk}{N}) + \sin(\frac{\pi n(k+1)}{N})}{h^2} + p\sin(\frac{\pi nk}{N})$$

$$= -\frac{\sin(\frac{\pi nk}{N})\cos(\frac{\pi n}{N}) + \cos(\frac{\pi nk}{N})\sin(\frac{\pi n}{N}) - 2\sin(\frac{\pi nk}{N}) + \sin(\frac{\pi nk}{N})\cos(\frac{\pi n}{N}) - \cos(\frac{\pi nk}{N})\sin(\frac{\pi n}{N})}{h^2} + p\sin(\frac{\pi nk}{N})$$

$$= -\frac{\sin(\frac{\pi nk}{N})\cos(\frac{\pi n}{N}) - 2\sin(\frac{\pi nk}{N}) + \sin(\frac{\pi nk}{N})\cos(\frac{\pi n}{N})}{h^2} + p\sin(\frac{\pi nk}{N})$$

$$= -\frac{2\sin(\frac{\pi nk}{N})(\cos(\frac{\pi n}{N}) - 1)}{h^2} + p\sin(\frac{\pi nk}{N}) = \sin(\frac{\pi nk}{N})(-\frac{2(\cos(\frac{\pi n}{N}) - 1)}{h^2} + p).$$
Итог, $\lambda_n = p - 2N^2(\cos(\frac{\pi n}{N}) - 1)$. Далее выполним программу.

```
1.0000000000000000
                                            1.00000000000000000
                                                                  0.0000000000000000
                                                                                         1.0000000000000000
                                                                                                                0.0000000000000000
                      0.0000000000000000
0.99999999999999
                     -0.000000000000000
                                            1.0000000000000000
                                                                 -0.0000000000000000
                                                                                         1.0000000000000000
```

Рис. 1: Запуск для N = 6, p = 1.

Задача 2 $\mathbf{2}$

2.1 Постановка задачи

Решить систему из задачи 1 с помощью метода Ричардсона.

2.2 Решение

Рис. 2: График нормы ошибки. Запуск для $N=6,\, p=1.$ Количество итераций от 100 до 200

	residual = 0.0000000000000099						
result =							
0.0000	00000000000	72.99999999999730	-71.99999999999588	72.99999999999432	-71.99999999999588	72.99999999999730	0.000000000000000
answer =							
0.0000	0000000000	73.0000000000000000	-72.0000000000000000	73.0000000000000000	-72.0000000000000000	73.0000000000000000	0.0000000000000000
q = 0.854162042088761 _							

Рис. 3: Значение велчины нормы ошибки. Запуск для $N=6,\,p=1.$ Количество итераций 350.

3 Задача 3

3.1 Постановка задачи

Для решения системы линейных уравнений

$$-\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p_k y_k = f_k, \quad k = 1, \dots, N-1;$$

$$y_0 = y_N = 0;$$

$$h = \frac{\pi}{N};$$

$$p_k = 1 + \sin^2 \pi k h.$$

реализовать метод с предобуславливателем.

3.2 Решение

Заметим отличие в условие от первой задачи, а именно работы на отрезке $[0,\pi]$. Тем самым базисные функции для краевой задачи, после чего найдем собственные числа оператора. Несложно посчитать, что собственные функции

$$\psi_k^{(n)} = \sin(\frac{nk}{N}).$$

Воспользуемся поиском решения в виде

$$By^{k+1} = b - Ax^k, x^{k+1} = x^k + \tau y^{k+1},$$

где B мы взяли из задачи 1. Заметим, что нам нужно обратить матрицу B и для этого мы использовали метод Фурье. Далее представим полученные ответы на запрограммированном алгоритме. Будем брать $N=6,\,p=1.$

Рис. 4: Запуск для для 500 шагов итераций.

Рис. 5: График теоретической и действительной сходимости. Количество итераций от 1 до 700.

4 Программная реализация

Программа реализует построение дискретного ряда Фурье и подсчет порядка сходимости для него. Общая структура проекта:

- 1. $task_1.cpp$ файл, который выполняет первую задачу;
- 2. task_2.cpp файл, который выполняет вторую задачу;
- 3. task_3.cpp файл, который выполняет третью задачу;
- 4. _lib.cpp файл, который реализует различные векторные операции(принт, умножение, норма и т.д.) и реализует сборку методов для решения задач;