

Engineering Chemistry

CYC 102

Dr. Sukriti

School Of Basic Sciences

Indian Institute of Information Technology, Una Himachal Pradesh

Overview

- Disadvantages of using hard water
- Degree of Hardness
- Units of Hardness
- Summary
- References
- Topics to be covered in next lecture

Disadvantages of using hard water

For Domestic Use

HARD WATER IS NOT
SUITABLE FOR ALL THESE
PURPOSES

Disadvantages of using hard water...Contd.

For Industrial Use

Paper

Ca and Mg effects the properties and quality of paper

Textile

Ca and Mg contaminants induce poor quality of shades.

• Sugar

Nitrates and sulphates of Ca and Mg hinders crystallization of sugar.

Boilers

Scales formation, Wastages of fuel.

Degree of Hardness

- The expression of hardness producing salts usually expressed in terms of an equivalent amount of CaCO₃.
- Calcium Carbonate is chosen as a standard for reporting hardness of water due to following reasons:
- ✓ Molecular weight (100) and equivalent weight (50) is a whole number, so the calculations in water analysis can be simplified.
- ✓ Most insoluble salt that can be precipitated in water treatment.

Degree of Hardness...Contd.

• The conversion of the hardness causing salts into CaCO₃ equivalents is expressed as:

$$Equivalent \ of \ CaCO_3 = \frac{[Mass \ of \ hardness \ producing \ substance] \times [Chemical \ equivalent \ of \ CaCO3\]}{[chemical \ equivalent \ of \ hardness \ producing \ substance]}$$

$$= \frac{[\text{Mass of hardness producing substance}] \times [50]}{[\text{chemical equivalent of hardness producing substance}]}$$

=[Mass of hardness producing substance] \times (multiplication factor) in mg/L or ppm

Multiplication Factor for different salts

Salt/ion	Molar mass	Chemical Equivalent Or Equivalent Weight	Multiplication factor for converting into equivalents of CaCO ₃
Ca(HCO ₃) ₂	162	81	100/162
Mg(HCO ₃) ₂	146	73	100/146
CaSO ₄	136	68	100/136
CaCl ₂	111	55.5	100/111
MgSO ₄	120	60	100/120
MgCl ₂	95	47.5	100/95
CaCO ₃	100	50	100/100
MgCO ₃	84	42	100/84
CO ₂	44	22	100/44
Ca(NO ₃) ₂	164	82	100/164
$Mg(NO_3)_2$	148	74	100/148
HCO ₃ ·	61	61	100/122
OH.	17	17	100/34
CO ₃ ² -	60	30	100/60
NaAlO ₂	82	82	100/164
$Al_2(SO_4)_3$	342	57	100/114
FeSO ₄ .7H ₂ O	278	139	100/278
H ⁺	1	1	100/2
HCl	36.5	1	100/73

Units of Hardness

• Parts per Million (ppm)

The number of parts of calcium carbonate equivalent hardness presents in 10^6 parts of water.

1ppm = 1 part of $CaCO_3$ equivalent hardness in 10^6 parts of water.

• Milligrams per litre (mg/l)

The number of milligrams of calcium carbonate equivalent hardness presents per litre of water.

1 mg/L = 1 mg of $CaCO_3$ equivalent hardness in 1 L of water.

Clark's degree (°Cl)

The number of parts of calcium carbonate equivalent hardness presents in 70,000 or (7×10^4) parts of water.

1° Clarke = 1 part of CaCO₃ equivalent hardness per 70,000 parts of water.

Units of Hardness...Contd.

Degree French (°Fr)

The number of parts of calcium carbonate equivalent hardness presents in 10^5 parts of water.

1° Fr = 1 part of $CaCO_3$ equivalent per 10^5 parts of water.

✓ Interconversion of Hardness units

```
As 1ppm = 1part per 10^6 parts of water 1^\circ Fr = 1 part per 10^5 part of water 1^\circ Cl = 1 part per 70,000 parts of water Therefore, 10^6 ppm = 10^5 °Fr = 70,000 ° Cl Hence, 1 ppm = 0.1° Fr = 0.07° Cl = 1 mg/L 1 \text{ mg/L} = 1 \text{ ppm} = 0.1° Fr = 0.07° Cl 1^\circ Cl = 0.7° Fr = 0.07 ppm = 0.07 mg/L 1^\circ Fr = 10 \text{ ppm} = 10 \text{ mg/L} = 0.7° Cl
```


Summary

- ✓ Hard water unfit for drinking, cooking, bathing, washing etc.
- ✓ Hardness classified as carbonate and non-carbonate hardness.
- ✓ Hardness always expressed as CaCO₃ equivalent.
- ✓ Hardness of water can be expressed in different units.
- ✓ Different units of hardness ppm, mg/L, °Cl and ° Fr.

Reference

• O.G Palanna, "Engineering Chemistry" Page No. 263-268.

Topics to be covered in next lecture

- Numerical based on hardness of water
- Hardness determination by EDTA method

Thank You!