KF School of Computing and Information Sciences Florida International University

CNT 4403 Computing and Network Security

Access Control – Models

Dr. Kemal Akkaya

E-mail: kakkaya@fiu.edu

Access Control

- □ "The prevention of unauthorized users getting access to resources, including the prevention of use of a resource in an unauthorized manner
- ☐ Central element of computer security
- □ Assume have users and groups
 - > authenticate to system
 - assigned access rights to certain resources on system

Access Control Elements

- ☐ Subject entity that can access objects
 - > a process representing user/application
 - > often have 3 classes: owner, group, world
- □ Object access controlled resource
 - > e.g. files, directories, records, programs etc
 - number/type depend on environment
- ☐ Access right way in which subject accesses an object
 - > e.g. read, write, execute, delete, create, search

Kemal Akkaya

Access Control Matrix

- ☐ Introduced by Butler Lampson in 1971
- □ Foundation of most access mechanisms used today
- Not suitable for implementation
 - Very sparse
 - Costly in terms of space & processing

Objects Subjects	grade.doc	a.out	solution.txt
kfong	{r,w}	{r,w,x}	{r,w}
rchirra		{r,x}	{r}

Access Control Lists (ACLs)

- ☐ The ACL of an object is a list which has:
 - The subjects who can access to that object
 - The access rights of those subjects
- ☐ Corresponds to a column in Access Control Matrix
- Most widely used access control mechanism today
- □ Need to be stored in system memory and queried.

```
<u>grade.doc</u>: [(kfong, {r,w})]
```

<u>a.out</u>: [(kfong, {r,w,x}), (rchirra, {r,x})]

solution.txt: [(kfong, {r,w}), (rchirra, {r})]

Capabilities

- □ A Capability is an unforgeable ticket that gives a subject certain rights to an object
- ☐ Corresponds to a row in the Access Control Matrix

```
kfong: (grade.doc, {r,w}), (a.out, {r,w,x}), (solution.txt, {r,w})
```

rchirra: (a.out, {r,x}), (solution.txt, {r})

- □ A subject who wants to access an object passes an appropriate capability to the system
 - System verifies capability before giving access
- □ Unlike ACLs, capabilities can be stored in user memory (each user keeps it) and do not need to be searched

Kemal Akkaya

Access Control Models

☐ Discretionary access control (DAC):

- ➤ based on the identity of the requestor and access rules (authorizations) stating what requestors are (or are not) allowed to do.
 - ✓ This policy is termed discretionary because it is left to the discretion of the object owner
 - ✓ E.g., UNIX permission bits

■ Mandatory access control (MAC):

- ➤ Beyond the control of individual object owner. A central system policy determines which subjects can access which objects.
 - ✓ This policy is termed mandatory because an entity that has clearance to
 access a resource may not, just by its own volition, enable another entity to
 access that resource.
 - ✓ E.g., SELinux

☐ Role-based access control (RBAC):

- based on the roles that users have within the system and rules stating what accesses are allowed to users in given roles.
 - ✓ E.g., Oracle DMBS, MS Windows Active Directory

Role-Based Access Control

Access Control Models

- □ DAC is the traditional method of implementing access control.
- MAC is a concept that evolved out of requirements for military information security
- □ RBAC has become increasingly popular.
- □ These three models can employ two or even all three of these models to cover different classes of system resources.

Multi-level Security

- Multi-level security (MLS) model is used by the US military and government
- □ Assigns security level (clearance) to each object and subject

Covert Channels

- □ Hidden communications channel that allows transfer of information in a manner that violates the access control policy of the system
- □ A resource is shared by high (Trojan) and low (spy) processes in an MLS
 - Storage Channel:
 - ✓ Data stored by one process is to be read by the other
 - > Timing Channel:
 - √ Some system parameter is modulated

☐ Covert Channels:

- > Difficult to detect
- Can operate for a long time and leak a substantial amount of classified data to uncleared processes
- ➤ Can compromise an otherwise secure system, including one that has been formally verified!

