ITCS 531: L4 homework solutions

Rob Egrot

L4 Q1

Which of the following are formulas? In the formulas identify the free and bound variables.

- a) $\forall x(f(c, f(x, d)) not a formula.$
- b) $R(x, y, z) \vee S(f(c, d))$ all free.
- c) $\exists y (R(x) \lor \forall z S(f(x,z),c)) x$ occurs free, z occurs bound.
- d) $\exists y(R(x) \lor \forall yS(f(x,y),c))$ Here y occurs bound, and x occurs free. Note $\exists y$ is null.
- e) $R(x) \wedge \exists x S(x) x$ occurs both free and bound..

L4 Q2 (1)

Let $\mathscr{L}=\{0,1,+,\times\}$ be the language of basic arithmetic. Let $\phi=\forall x(\neg(x\approx 0)\to \exists y(x\times y\approx 1))$. Let $\mathbb N$ and $\mathbb R$ have their usual meanings, and interpret $\mathscr L$ into these languages by giving the non-logical symbols of $\mathscr L$ their usual meanings.

- a) Does $\mathbb{N} \models \phi$?
- b) Does $\mathbb{R} \models \phi$?
- lackbox ϕ is the statement that every non-zero element has an inverse.
- ▶ This is not true in \mathbb{N} , but it is true in \mathbb{R} .

L4 Q2 (2)

- c) Let $n \in \mathbb{N}$ with $n \geq 2$, and let \mathbb{Z}_n be the integers mod n. For what values of n does $\mathbb{Z}_n \models \phi$?
- d) Let $A = (\{a, b\}, I)$, where I interprets 0 and 1 as a and b respectively, $b \times b = b$, and $a \times b = a \times a = a$. Does $A \models \phi$?
- ▶ Remember in \mathbb{Z}_n , an element has an inverse iff it is coprime with n.
- So $\mathbb{Z} \models \phi$ iff every non-zero element is coprime with n. I.e. iff n is prime.
- ▶ In the structure *A*, the only non-zero element is *b*.
- ▶ Does *b* have an inverse? Yes, because $b \times b = b = 1$.
- ightharpoonup So $A \models \phi$.

L4 Q2 (3)

- e) Let $\psi = \exists x \forall y (\neg (y \approx 0) \rightarrow (x \times y \approx 1))$. Which of the structures in parts a)-d) is a model for ψ ?
- $m{\psi}$ is the statement that there's an element which is an inverse to all non-zero elements.
- ▶ This is clearly not true in \mathbb{N} , \mathbb{R} or \mathbb{Z}_n for n > 2.
- $ightharpoonup \mathbb{Z}_2 \models \psi$ as 1 is the only non-zero element of \mathbb{Z}_2 .
- ψ is true in A, as b is the only non-zero element of A, and $b \times b = b = 1$.

L4 Q3 (1)

Let R and S be unary predicates. Let $\phi = \forall x R(x) \lor \forall x S(x)$, and let $\psi = \forall x \forall y (R(x) \lor S(y))$. Prove that $\phi \models \exists \psi$.

- Let A be a structure of the appropriate kind.
- ▶ Suppose first that $A \models \phi$.
- ► Then either every element of A satisfies R, or every element of A satisfies S.
- ▶ In the former case, for every pair of elements $a, b \in A$ we must have $R(a) \vee S(b)$, because R(a) must be true.
- ▶ So $A \models \forall x \forall y (R(x) \lor S(y))$. This shows $\phi \models \psi$.

L4 Q3 (2)

Let R and S be unary predicates. Let $\phi = \forall x R(x) \lor \forall x S(x)$, and let $\psi = \forall x \forall y (R(x) \lor S(y))$. Prove that $\phi \models = |\psi$.

- ▶ Conversely, suppose $A \models \psi$.
- ▶ Suppose wlog that A does not satisfy $\forall x R(x)$.
- ▶ Then there is $a \in A$ with $A \not\models R(a)$. I.e. R(a) is not true.
- ▶ As $A \models \forall x \forall y (R(x) \lor S(y))$, $A \models \forall y (R(a) \lor S(y))$.
- ▶ As R(a) is not true in A, it follows that $A \models \forall yS(y)$.
- ▶ By changing the variable name we have $A \models \forall x S(x)$, and so $A \models \forall x R(x) \lor \forall x S(x)$.
- ▶ This shows $\psi \models \phi$, and we are done.

L4 Q4 (1)

Let ϕ be an \mathscr{L} -formula, let A be an \mathscr{L} -structure, and let v be an assignment for \mathscr{L} to A with $A, v \models \phi$. Prove that $A, u \models \phi$ for all assignments u such that u(x) = v(x) for all variables x occurring free in ϕ .

- We induct on formula construction.
- ▶ It's obviously true for atomic formulas, because these have no bound variables.
- **Suppose** now that it's true for formulas ϕ and ψ .

L4 Q4 (2)

- $\neg \phi$: Suppose $A, v \models \neg \phi$.
 - ▶ Then $A, v \not\models \phi$.
 - \triangleright Suppose that u agrees with v about the free variables of ϕ .
 - If $A, u \models \phi$, by the inductive hypothesis we would have $A, v \models \phi$, which would be a contradiction.
 - ▶ So we must have $A, u \models \neg \phi$ as required.
- $\phi \lor \psi$ Suppose $A, v \models \phi \lor \psi$.
 - ▶ Then, wlog we can assume that $A, v \models \phi$.
 - Let u be an assignment agreeing with v about the free variables of $\phi \vee \psi$.
 - ightharpoonup Then u agrees with v about the free variables of ϕ .
 - So $A, u \models \phi$, and thus $A, u \models \phi \lor \psi$ as required.

L4 Q4 (3)

- $\forall x \phi$:
- Suppose $A, v \models \forall x \phi$, and let u be an assignment agreeing with v about the free variables of $\forall x \phi$.
- ▶ We must show that $A, u \models \forall x \phi$.
 - ▶ I.e. $A, u' \models \phi$ for all u' agreeing with u except possibly at x.
- Let u' be such an assignment, and let v' be an assignment agreeing with v except possibly at x, where we define v'(x) = u'(x).
- ▶ Then, if F is the set of variables occurring free in ϕ , we have
 - \triangleright v' agrees with v on $F \setminus \{x\}$.
 - ightharpoonup u agrees with v on $F \setminus \{x\}$.
 - u' agrees with u on $F \setminus \{x\}$.
 - ightharpoonup u' agrees with v' on F.
- ► So,

$$A, v \models \forall x \phi \implies A, v' \models \phi$$
 (by definition of \models) $\implies A, u' \models \phi$ (by the inductive hypothesis),

▶ And so $A, u \models \forall x \phi$ as required.