

What is our evidence?

What is our evidence?

What is our evidence?

Distance between means

What is our evidence?

Is this enough distance to claim directional selection?

Distance between means

t test

$$t = \frac{X_1 - X_2}{s/\sqrt{n}}$$

Expected distribution of differences if there is NO directional selection

What is our evidence?

What is our evidence?

t test

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s/\sqrt{n}}$$

Expected distribution of differences if there is NO directional selection

Agrees with statistical null hypothesis: no difference in means (no directional selection)

What is our evidence?

Agrees with statistical null hypothesis: no difference in means (no directional selection)

Evidence of directional selection

t test

$$t = \frac{X_1 - X_2}{s / \sqrt{n}}$$

Assumptions

- Normality
- Equal variance

Expected distribution of differences if there is NO directional selection

Expected distribution of differences if there is NO directional selection

Agrees with statistical null hypothesis: no difference in means (no directional selection) **Evidence of directional** selection

Our data

	Α	В
1	Cotyledons	Generation
2546	3	Р
2547	2	Р
2548	3	Р
2549	3	Р
2550	2	Р
2551	2	Р
2552	3	Р
2553	3	Р
2554	2	Р
2555	2	Р
2556	2	Р
2557	3	Р
2558	3	0
2559	2	0
2560	3	0
2561	2	0
2562	3	0
2563	3	0
2564	3	0
2565	3	0
2566	4	0
2567	3	0

Good practices when storing data in spreadsheets:

- 1. Save file as csv
- 2. Name file without spaces or special characters
- 3. Meaningful column names without special characters
- 4. No empty cells
- 5. One thing per cell
- 6. Create a data dictionary
- 7. No calculations in the raw data files
- 8. Do not use font/color to highlight data

THE AMERICAN STATISTICIAN 2018, VOL. 72, NO. 1, 2-10 https://doi.org/10.1080/00031305.2017.1375989

Data Organization in Spreadsheets

Data Visualization

ggplot2

Data Analysis: t test

Data Analysis: t test

Data Analysis

What is the problem?

Variable is not truly continuous.

These are counts

What can we do?

- Use a fancier t test that does not require normality (Wilcoxon-Mann-Whitney test)
- Create categories (dicots/ polycots) and do a chi-square test

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

dicot 1612 825 polycot 944 2204

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

dicot 1612 825
$$2437$$
 $\frac{2437}{5585} = 0.436$

polycot 944 2204 3148 $\frac{3148}{5585} = 0.564$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

crsl4

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

$$\frac{\text{dicot}}{1612} = \frac{2437}{5585} = 0.436$$

$$2556 * 0.436 = 2556 * \frac{2437}{5585} = 0.436$$

$$2556 * 0.436 = 2556 * \frac{2437}{5585} = 0.436$$

$$\frac{2437}{5585} = 0.436$$

$$\frac{3148}{5585} = 0.564$$

Statistical null hypothesis: No difference in

2556

the proportion of dycots/polycots in parents

3029

5585

and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

$$\chi^2 = \sum \frac{(o - e)^2}{e}$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

crsl4

$$\chi^2 = \sum \frac{(o - e)^2}{e} = 722.1475$$

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

crsl4

$$\chi^2 = \sum \frac{(o - e)^2}{e} = 722.1475$$

$$\text{pvalue} = 4.6e-159$$
Reject null hypothesis

Statistical null hypothesis: No difference in the proportion of dycots/polycots in parents and offspring populations

Evidence of selection

Data analysis on WI Fast Stats app

https://wi-fast-stats.shinyapps.io/webinar-aug20/

Acknowledgement

Yizhou Liu (CS undergraduate student at UW-Madison)

