HOCHSCHULE **HANNOVER** UNIVERSITY OF APPLIED SCIENCES AND ARTS

Brückenkurs Mathematik

Lösungen zum Übungsblatt 3 (Vektoren)

Aufgabe 1. Berechnen Sie die Längen der Vektoren

$$\vec{u} = \begin{pmatrix} 3 \\ 5 \\ -12 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} \ und \ \vec{w} = \begin{pmatrix} 11 \\ 1 \\ -3 \end{pmatrix}.$$

$$|\vec{u}| = \sqrt{9 + 25 + 144} = \sqrt{178}$$

 $|\vec{v}| = \sqrt{1 + 9 + 49} = \sqrt{59}$

$$|\vec{v}| = \sqrt{1+9+49} = \sqrt{59}$$

$$|\vec{w}| = \sqrt{121 + 1 + 9} = \sqrt{131}$$

Aufgabe 2. Gegeben seien die Vektoren
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 3 \\ 17 \end{pmatrix}$ und $\vec{d} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

(a) Berechnen und zeichnen Sie

$$(i) \vec{a} + \vec{b} + \vec{c} = \begin{pmatrix} 2\\25 \end{pmatrix}$$

(ii)
$$\vec{b} - \vec{d} + \vec{a} = \begin{pmatrix} -9\\12 \end{pmatrix}$$

(iii)
$$\frac{1}{2}\vec{a} + \frac{1}{5}\vec{b} - 3\vec{d} = \begin{pmatrix} -23\frac{9}{10} \\ 14\frac{1}{2} \end{pmatrix}$$

(b) Berechnen Sie jeweils den Winkel φ zwischen den Vektoren

(i)
$$\vec{a}$$
 und \vec{b} :
 $\vec{a} \cdot \vec{b} = 13, |\vec{a}| = \sqrt{10}, |\vec{b}| = \sqrt{29}$
 $\Rightarrow \cos \varphi = \frac{13}{\sqrt{290}} = 0,76339 \Leftrightarrow \varphi = 42,79^{\circ}$

- (ii) \vec{a} und \vec{d} : φ ist gleich dem Winkel zwischen \vec{a} und $\frac{1}{4}\vec{d}$ $\vec{a} \cdot \frac{1}{4}\vec{d} = -1, \ |\vec{a}| = \sqrt{10}, \ |\frac{1}{4}\vec{d}| = \sqrt{5}$ $\Rightarrow \cos \varphi = \frac{-1}{\sqrt{50}} = \frac{-1}{5\sqrt{2}} \Leftrightarrow \varphi = 98, 13^{\circ}$
- (c) Wählen Sie zwei Vektoren in \mathbb{R}^2 mit dem Zwischenwinkel $\varphi = 45^\circ$. Was ist der Wert von $\cos \varphi$? Zeigen Sie mit der Formel aus dem Brückenkurs, warum sich der Wert nicht verändert, wenn man die Vektoren mit unterschiedlichen Faktoren streckt.

$$\begin{split} &Zum \; Beispiel \; \vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \; und \; \vec{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ &\cos \varphi = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \\ &Seien \; \vec{a} \; = \; \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \; \vec{b} \; = \; \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \; \in \; \mathbb{R}^2 \; und \; r,s \; \in \; \mathbb{R}. \quad Dann \; gilt: \\ &\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_1 \cdot b_1 + a_2 \cdot b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}} = \frac{rs(a_1 \cdot b_1 + a_2 \cdot b_2)}{rs\sqrt{(a_1^2 + a_2^2) \cdot \sqrt{(b_1^2 + b_2^2)}}} \\ &= \frac{ra_1 \cdot sb_1 + ra_2 \cdot sb_2}{\sqrt{r^2(a_1^2 + a_2^2) \cdot \sqrt{s^2(b_1^2 + b_2^2)}}} = \frac{r\vec{a} \cdot s\vec{b}}{|r\vec{a}| \cdot |s\vec{b}|} \end{split}$$

Aufgabe 3. Berechnen Sie
$$\vec{u} \times \vec{v}$$
 für $\vec{u} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ und $\vec{v} = \begin{pmatrix} 4 \\ 3 \\ 7 \end{pmatrix}$.
$$\vec{u} \times \vec{v} = \begin{pmatrix} (-1) \cdot 7 - 4 \cdot 3 \\ 4 \cdot 4 - 2 \cdot 7 \\ 2 \cdot 3 - (-1) \cdot 4 \end{pmatrix} = \begin{pmatrix} -7 - 12 \\ 16 - 14 \\ 6 + 4 \end{pmatrix} = \begin{pmatrix} -19 \\ 2 \\ 10 \end{pmatrix}$$

Aufgabe 4. Berechnen Sie jeweils die Seitenlängen und den Flächeninhalt des Dreiecks mit den Eckpunkten A,B und C:

(a)
$$A = (1,0), B = (3,5), C = (5,0)$$
:

$$\vec{a} = \begin{pmatrix} 3-1\\ 5-0 \end{pmatrix} = \begin{pmatrix} 2\\ 5 \end{pmatrix} \Rightarrow |\vec{a}| = \sqrt{29},$$

$$\vec{b} = \begin{pmatrix} 5-3\\ 0-5 \end{pmatrix} = \begin{pmatrix} 2\\ -5 \end{pmatrix} \Rightarrow |\vec{b}| = \sqrt{29},$$

$$\vec{c} = \begin{pmatrix} 1-5\\ 0-0 \end{pmatrix} = \begin{pmatrix} 4\\ 0 \end{pmatrix} \Rightarrow |\vec{c}| = \sqrt{16} = 4$$

Fläche $F = \frac{1}{2}(4 \cdot 5)$ (Skizze!)

(b)
$$A = (3,5), B = (-4,1), C = (5,6)$$
:

$$\vec{a} = \begin{pmatrix} -4 - 3 \\ 1 - 5 \end{pmatrix} = \begin{pmatrix} -7 \\ -4 \end{pmatrix} \Rightarrow |\vec{a}| = \sqrt{65},$$

$$\vec{b} = \begin{pmatrix} 5 + 4 \\ 6 - 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 5 \end{pmatrix} \Rightarrow |\vec{b}| = \sqrt{106},$$

$$\vec{c} = \begin{pmatrix} 3 - 5 \\ 5 - 6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \Rightarrow |\vec{c}| = \sqrt{5}$$

Erweitere zwei der Vektoren zu Vektoren in \mathbb{R}^3 :

Fläche
$$F = \frac{1}{2} \cdot |\begin{pmatrix} \vec{a} \\ 0 \end{pmatrix} \times \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}| = \frac{1}{2} \cdot |\begin{pmatrix} 0 \\ 0 \\ -35 + 36 \end{pmatrix}| = \frac{1}{2}$$

Die Fläche kann mit beliebiger Vektorwahl berechnet werden, wir bekommen immer das gleiche Ergebnis!

Aufgabe 5. Berechnen Sie die Fläche des durch \vec{u} und \vec{v} aufgespannten Dreiecks für

$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} und \vec{v} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}.$$

Fläche
$$A = \frac{1}{2} \cdot | \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix} | = \frac{1}{2} \cdot | \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} | = \frac{1}{2}\sqrt{8} = \sqrt{2}$$