- 1. (5 points) BONUS QUESTIONS DE COMPRÉHENSION : 1 point par bonne réponse, 5, 6 ou 7 bonnes réponses sur 7 donnent 5 points. Les calculs ne sont pas exigés.
 - (a) Une matrice est inversible si son déterminant est différent de O (un nombre).
 - (b) Deux vecteurs sont orthogonaux si leur produit scalaire est égal à _____ (un nombre).
 - (c) Quelles sont les valeurs propres de la matrice A :

A = [a b c] MATRICE TRIANGULAIRE -> DONC, ELÉ-0 d e 0 0 f] RÉP: a, d et F MENTS DE LA DIAGONALE

(d) Quel est le déterminant de la matrice A :

 $A = \begin{bmatrix} 2a & 2a & 2a & 2a \\ a & a & a & a \\ 3 & 1 & 4 & 2 \\ 7 & 2 & 3 & 6 \end{bmatrix} \quad \begin{array}{c} \text{LIGNE 1 multiple DE LIGNE 2.} \\ \text{DONC DET(A) = 0} \\ \text{REP: 0} \end{array}$

- (e) Qui suis-je? Je suis une matrice toujours diagonalisable, toujours diagonalisable orthogonalement, dont les valeurs propres sont toujours réelles et dont la décomposition spectrale est possible. Je suis une matrice ____ (un mot). 5 METRIQUE
- (f) Quels est l'intervalles (axe réel seulement) de l'estimation de la valeur propre centrée à 6 de la matrice A en utilisant la technique des disques de Gerschgorin. Vous pouvez utiliser une notation du style valeur ± rayon: 5€LON LA LIGNE: 11 + 1 1+1 = 1+V2 ≈ 2, 4142

 $A = \begin{bmatrix} 6 & 1 & 1+i \\ 2 & a & b \\ i & c & d \end{bmatrix} \xrightarrow{\text{RED!}} LA COLONNE : |2| + |i| = 2+i = 3$ (g) Toute matrice $n \times n$ admettant n valeurs propres _____ est diagonalisable (un mot).

Figure 1: Ellipse - Question 2-a)

2. (15 points) DÉTERMINANTS (manuel)

- (a) (2 points) L'aire d'une ellipse (figure 1) est donnée par $Aire=\pi ab$
 - i. Si a=2 et b=1, utilisez le déterminant pour calculer la nouvelle aire si on applique à l'ellipse la transformation représentée par la matrice T?

$$T = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

a) Pine Mipse: $\pi ab = \pi \times 2 \times 1 = 2\pi$ Pine après transformation = line × dot(T) det (T) = $2 \times 4 - 6 \times 0 = 8$ Monvelle aire = $2 \pi \times 8 = 16\pi$ L'emarque: on obtaint un cercle de rayon 4: Pare = $\pi R^2 = 16\pi$

(b) (4 points) Résoudre le système Ax=b avec la méthode de Cramer.

$$\begin{bmatrix} 4 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$$

 $det(A) = 4 \times 2 - 1 \times 5 = 3 \quad det(A_1) = 6 \quad 1 = 6 \times 2 - 1 \times 7 = 5$ $det(A_2) = 4 \quad 6 = 4 \times 7 - 6 \times 5 = 28 - 30 \quad 7 \quad 2$

(c) (9 points) Inverse d'une matrice. Soit la matrice A:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 3 & 2 \end{bmatrix}$$

- i. (1 points) Calculez le déterminant de A.
- ii. (3 points) Calculez la matrice des cofacteurs de A.
- iii. (2 points) Donnez la matrice adjointe de A.
- iv. (3 points) Calculez l'inverse de A à l'aide des éléments que vous venez de calculer.

(a) (3 points) Quel est le polynôme caractéristique de A (au choix, sous forme d'un polynôme ou sous forme factorisée)?

$$A = \begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix}$$

- (b) (4 points) Quelles sont les valeurs propres de la matrice précédente?
- (c) (8 points) Soit la matrice A. Déterminez, pour la valeur propre $\lambda = 5$, une base du sous-espace

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

a)
$$\det(A - \lambda I) = 0$$
 $\begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (8 - \lambda) & 2 \\ 3 & (3 - \lambda) \end{bmatrix}$ $\begin{vmatrix} (8 - \lambda) & 2 \\ 3 & (3 - \lambda) \end{vmatrix} = (8 - \lambda)(3 - \lambda) - 6 = 24 - 11\lambda + \lambda^2 - 6 = 0$ $\lambda^2 - 11\lambda - 18 = 0$ ou $(\lambda - 9)(\lambda - 2) = 0$

b) $\lambda_1 = 9 \text{ et } \lambda_2 = 2$

4. (15 points) ORTHOGONALITÉ ET FACTORISATION QR (manuel)

(a) (7 points) Gram-Schmidt. Utilisez la méthode de Gram-Schmidt pour déterminer une base orthogonale de l'espace représenté par les col(A).

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

[1] Remarque: x, x,	
V = x, = 1	
1) & R3 car lineairement [100] [1]	
independents- [1] [1/3]	
$\vec{V}_2 = \vec{\chi}_2 - \vec{\chi}_2 \cdot \vec{V}_1 \vec{V}_1 = \vec{\chi}_1 + \vec{\chi}_1 + \vec{\chi}_1 = 3$ $\vec{V}_2 = \vec{\chi}_1 - 2 \vec{\chi}_2 = \vec{\chi}_1 + \vec{\chi}_1 + \vec{\chi}_1 = 3$	
$\overrightarrow{\nabla}_{1} \cdot \overrightarrow{\nabla}_{1} = x + x + x + x = 2$	
$\vec{\nabla}_{3} = \vec{\chi}_{3} - \vec{\chi}_{3} \cdot \vec{\nabla}_{1} \vec{\nabla}_{2} + \vec{\chi}_{3} \cdot \vec{\nabla}_{2} \vec{\nabla}_{3} \cdot \vec{\nabla}_{1} = \vec{\chi}_{1} + \vec{\chi}_{0} + \vec{\chi}_{0} = \vec{\nabla}_{2} \cdot \vec{\nabla}_{2} = \vec{\chi}_{1} + \vec{\chi}_{0} + \vec{\chi}_{0} = \vec{\nabla}_{2} \cdot \vec{\nabla}_{2} = \vec{\chi}_{1} + \vec{\chi}_{0} + \vec{\chi}_{0} = \vec{\chi}_{1} + \vec{\chi}_{0} + \vec{\chi}_{0} + \vec{\chi}_{0} = \vec{\chi}_{1} + \vec{\chi}_{0} $	
$\vec{V}_1 \cdot \vec{V}_1 \cdot \vec{V}_2 = \vec{V}_3 \cdot \vec{V}_2 = \vec{V}_3 \cdot \vec{V}_3 \cdot \vec{V}_3 + \vec{V}_4 \cdot \vec{V}_3 + \vec{V}_4 \cdot \vec{V}_3 + \vec{V}_4 \cdot \vec{V}_3 + \vec{V}_4 \cdot \vec{V}_4 \cdot \vec{V}_3 + \vec{V}_4 \cdot \vec{V}_4 \cdot \vec{V}_4 \cdot \vec{V}_4 + \vec{V}_4 \cdot \vec$	
7-0-11-1 7 3 30-3 -6 = 0 -6 6 2 2	
3 0 3 1 3 2 -3 0 3 7 -26 0 26 -26 0	7
[17] [1/3] [1/2]	
$\nabla = 1$ $\nabla_2 = \frac{1}{3}$ $\nabla_3 = \frac{1}{2}$	
$\nabla_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \nabla_2 = \begin{bmatrix} 1/3 \\ -2/3 \end{bmatrix} \nabla_3 = \begin{bmatrix} -5/2 \\ 0 \end{bmatrix}$	
1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

(b) (8 points) Factorisation QR. W est une base **orthogonale** de col(A) obtenue avec la méthode de Gram-Schmidt. Déterminez une matrice Q et une matrice R tel que A = QR.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ -1 & -1 \\ 0 & 1 \end{bmatrix} \qquad W = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$

[-]	
Q doit the une base orthoNORMALE	le col(A). West une
logge on the angle mais pos or the	normale & faut done
normaliser (rendre unitabre) les ce	Connes de V.
V = V = 1 2 = 2/16	$ \vec{w_1} = \sqrt{1^2 + 2^2 + (+1)^2 + 0^2} = \sqrt{6}$
11211 VE -1 -1VZ	
1010	$ W_2 = \sqrt{ ^2 + 0^2 + ^2 + ^2} = \sqrt{3}$
[1] [1/2] \\ \tau_2 \tau_3 \\	
$V_1 = W_2 = 10 = 0$ $Q = 2/v_6 = 0$	R(11)=V6++++++++++++++++++++++++++++++++++++
11 v2 1 V3 1 V3 1 V3	$R(1) = \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}$
1 1/3 0 1/3	R(2,1)=++0++0=0
	$R(2,2) = \frac{3}{13} + 0 - \frac{1}{13} + \frac{1}{13} = \frac{3}{13} = \frac{1}{13}$
	2 1/6]
R=Q [†] A=[t ₆ t ₆ t ₆ 0 [1 3]=[V6] t ₃ 0 t ₃ t ₃ 2 4 0	V3
R= V6 2V6 101	
0 V3	

5. (15 points) DIAGONALISATION (manuel)

(a) (8 points) La diagonalisation d'une matrice consiste à trouver une matrice P et une matrice D tel que A=PDP-1. Calculez P et D pour la matrice A.

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

Valeuro det (A-XI	$) = 0 \Rightarrow A - \lambda I = \begin{bmatrix} 1 & 3 & - \begin{bmatrix} \lambda & 0 \end{bmatrix} = \begin{pmatrix} (1 - \lambda) & 3 \\ 4 & 2 & 0 \end{bmatrix} \begin{pmatrix} \lambda & 0 \\ \lambda & \lambda \end{pmatrix} = \begin{pmatrix} (1 - \lambda) & 3 \\ 4 & (2 - \lambda) \end{pmatrix}$
propos de A	[42] [0 \] [4 (2-\lambda)]
$(1-\lambda)(2-\lambda)-12=0$	$\Rightarrow 2+\lambda-2\lambda+\lambda^2-12=0 \Rightarrow \lambda^2-3\lambda-10=0$
-b+ Vb-4ac = 3-	$4\sqrt{9+40} = 3\pm7$ $\lambda_1 = 5$ $\lambda_2 = -2$
2a	2
Base pour 1 = 5: 13 - 50	1 3 0 0 0 -4 x +3 5 = 0 x = 3
A+X/I [42] [05]	[7-5,0] [000] 12,155-02,-4
$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 3 \begin{pmatrix} 44 \\ 1 \end{pmatrix} \forall i = 3 \begin{pmatrix} 44 \\ 1 \end{pmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
18 1 - 2 [137 - [20]	33:0 \[\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440 1000 1000 1000 1000 1000 1000 1000
P=[V, V2]=[3/4-1] et]	D=50] Outre . P=[-13/4] at D=[-20] [0-2] réponse [1] [] [05]
	[0-2] réponse [1] [03]

(b) (7 points) Soit la matrice A dont les valeurs propres sont $\lambda_1=3$ et $\lambda_2=1$. Une base pour λ_1 est $\mathbf{v_1}$ et une base pour λ_2 est $\mathbf{v_2}$.

$$A = \begin{bmatrix} 9 & -4 \\ 12 & -5 \end{bmatrix} \quad \mathbf{v_1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \mathbf{v_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

À partir de ces informations, utilisez la diagonalisation pour calculer ${\bf A}^4.$

6. (15 points) MÉTHODE DES MOINDRES CARRÉS (manuel)

Soit les points (θ, y) mesurés suivants : (0, 2), $(\frac{\pi}{4}, 2)$, $(\frac{\pi}{2}, 1)$. Les angles θ sont en radians. Trouvez la solution $\hat{\mathbf{x}}$ au sens des moindres carrés avec la méthode 1 qui approxime l'équation de la forme : $y = a \cdot \sin(\theta) + b \cdot \cos(\theta)$ où :

$$\hat{\mathbf{x}} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Conseil : conserver le symbole de la racine carrée $\sqrt{\text{jusqu'à}}$ la fin des calculs devrait vous permettre d'aller plus vite.

7. (15 points) PSEUDOINVERSE ET MOINDRES CARRÉS (manuel)

Soit le système Ax=b suivant :

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

On vous fournit une décomposition en valeurs singulières de la matrice A, soit les matrice U, Σ et V :

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- (a) (10 points) Calculez le pseudoinverse A⁺.
- (b) (5 points) Utilisez le résultat obtenu en (a) pour calculer la solution $\bar{\mathbf{x}}$ au sens des moindres carrés.

Déterminez une décomposition en valeurs singulières de la matrice A (on veut les matrices U, Σ et V)
$A = \begin{bmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{bmatrix}$
$A'A = \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$det(A^{T}A - \lambda I) = 0 \Rightarrow (74 - \lambda)(26 - \lambda) - 32 \times 32 = 1924 - 74\lambda - 26\lambda + \lambda^{2} - 1024 = 0$
$\lambda^{2} - 100\lambda + 900 = 0 \Rightarrow 100 \pm \sqrt{10000 - 3600} = 50 \pm 40 \lambda_{1} = 90 \lambda_{2} = 10$ $B_{000} poin$ $\lambda_{1} = 90 : A^{T}A - \lambda_{1}I = 74 32 - 90 0 \Rightarrow -16 32 : 0 -16 32 : 0 -12 : 0$ $32 26 0 90 32 -64 : 0 0 0 0 0 0$ $NORMALISATION \Rightarrow 0$
Var. libre: $\chi_2 \Rightarrow \chi_2 = S \Rightarrow -\chi_1 + 2\chi_2 = 0 \Rightarrow \chi_1 = 2S \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = S \begin{bmatrix} 2 \\ 1 \end{bmatrix} = V_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
Bose pour $\lambda_2 = 10$: A^A - λ_2 $J = 74 32 - \{100\}$ = $64 32 0$ $64 32 0$ $2 1 0$ $16 10$ 16
$\begin{array}{c} V_{\alpha n}.l_{1}l_{1}l_{2} \rightarrow \chi_{2}=S \rightarrow 2\chi_{1}+\chi_{2}=0 \rightarrow \chi_{1}=\frac{1}{2}S \rightarrow \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}=S\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \rightarrow V_{2}^{2}=\begin{bmatrix} -1 \\ 2 \end{bmatrix} \text{ or } V_{2}^{-1}=\begin{bmatrix} -1 \\ 2 \end{bmatrix} $
V=[3\signit 5] V st ene matrice mxn. [1\signit 5] 3\signit 5] Ja normalisation at obligatoire?
Calcul de Σ : A ost une matrice $m \times m$. Men est de même pour Σ . Dans notre cas, $m = 3$ et $n = 2$. $\Sigma = \begin{bmatrix} D & O \end{bmatrix} $ $D = \begin{bmatrix} G & O \end{bmatrix}$ où $G_1 = \sqrt{\lambda_1} = \sqrt{90} = 3\sqrt{10}$ et $G_2 = \sqrt{\lambda_2} = \sqrt{10}$
$D = \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \qquad \qquad \sum_{i=1}^{n} \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \qquad \qquad \sum_{i=1}^{n} \underbrace{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$
Calcul de U: dans notre cas toutes les valeurs singulières sont non nulles et donc, utilisables.
$\vec{u}_{i} = 1 A \vec{v}_{i} = 1 \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

8. (30 points) DÉCOMPOSITION EN VALEURS SINGULIÈRES (manuel)

9. (15 points) MATLAB : Compression d'image avec la SVD

Le fichier carillon.m lit et convertit l'image carillon.bmp pour la stockez dans la variable A.

(a) Compressez l'image en utilisant la décomposition en valeurs singulières en ne gardant que les 7 valeurs singulières les plus grandes. Vous pouvez utiliser, au choix, la commande svd() ou la commande svds(). Si vous utilisez la commande svd(), vous devrez générer vous-même les nouvelles matrices U, S et V à partir de celles fournies par la commande svd().

20-12-18

- (b) Calculez le taux de compression comme expliqué au cours.
- (c) Ensuite, construisez une nouvelle image compressée A2. Le code d'affichage et de sauvegarde de la nouvelle image est déjà fourni. clear all;

La commande imshow(A2/255) est déjà dans le fichier. Pour cette question, le hardcoding est close all; accepté. Insérez votre code dans le fichier carillon.m à l'endroit indiqué.

```
k = 7
 I = imread('carillon.bmp');
 A = double(I);
 figure(1)
 imshow(A/255);
 % SOLUTION AVEC LA COMMANDE SVDS()
[U,S,V] = svds(A,k);
 disp('d) Calculer le taux de compression (suite à svds).');
 Taille I = size(A)
 Taille I = Taille I(1) *Taille I(2)
 taille U = size(U)
 taille U = taille U(1)*taille U(2)
 taille V = size(V);
  taille V = taille V(1) *taille V(2)
  Taille ImCompressee = taille U + taille V + k
 disp(['Calcul du taux de compression en %']);
 TauxCompression= (Taille I-Taille ImCompressee)/Taille I*100
 A2 = U*S*V';
                                                            Taux de compression (en %) = 97.3751
 figure(2)
 imshow(A2/255);
 % SOLUTION AVEC LA COMMANDE SVD()
 [U,S,V] = svd(A);
 U2 = U(:,1:k);
 S2 = S(1:k, 1:k);
 V2 = V(:, 1:k);
 disp('d) Calculer le taux de compression (suite à svd).');
 Taille I = size(A)
 Taille_I = Taille_I(1) *Taille_I(2)
 taille U = size(U2)
 taille_U = taille_U(1)*taille_U(2)
 taille V = size(V2);
 taille V = taille V(1)*taille V(2)
 Taille ImCompressee = taille_U + taille_V + k
 disp(['Calcul du taux de compression en %']);
 TauxCompression = (Taille_I-Taille_ImCompressee)/Taille I*100
 A2 = U2*S2*V2';
                                                             Taux de compression (en %) = 97.3751
 figure(3)
 imshow(A2/255);
```

imwrite(A2/255, 'carillon2.bmp', 'bmp');

https://fr.wikipedia.org/wiki/Carillon_moderne

10. (15 points) MATLAB : Méthode de la puissance inverse

Implémentez l'algorithme de la puissance inverse pour calculer la valeur propre λ de la matrice A la plus petite en valeur absolue. On fournit la valeur de $\mathbf{x_0}$. Faites 10 itérations. À chaque itération \mathbf{k} , affichez dans un vecteur $\mathbf{x_k}$ les valeurs propres, le vecteur $\mathbf{y_k}$ normalisé par rapport à la valeur propre la plus importante, ainsi que la valeur propre la plus importante $\mathbf{m_k}$. À la toute fin, affichez la valeur propre λ la plus petite de la matrice A. Insérez votre code dans le fichier puissanceinv.m à l'endroit indiqué.

$$A = \begin{bmatrix} 3 & 2 & -8 \\ 0 & 5 & -2 \\ 0 & -4 & 3 \end{bmatrix} \quad \mathbf{x_0} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

% On peut vérifier avec la commande [V, D] = eig(A)

```
0
% INSCRIVEZ VOTRE NOM ET MATRICULE
% NOM :
% MATRICULE :
% solution_puissanceinv.m
% MAT-2930 Algèbre linéaire appliquée
% Examen final automne 2020
clear all;
close all;
            3
                2
                    -8 ; % REMARQUE : IL Y AVAIT UN - DEVANT LE 2.
                    -2 ; % IL A ÉTÉ DIT DE L'ENLEVER, MAIS QUE DE TOUTE
                       ] % FAÇON, LA MÉTHODE DOIT MARCHER POUR N'IMPORTE
                          % QUELLE MATRICE À NOMBRES RÉELS.
            1
                1
                    1
K = 10
% INSÉREZ LE CODE ICI
yk = x0
xk = x0
A2 = inv(A)
for i=1:K
   xk = A2*yk
    absXk = abs(xk);
   maxAbsXk = max(absXk);
 ind = find(maxAbsXk == absXk);
    mk = xk(ind(1))
    yk = 1/mk*xk
end
lambda = 1/mk
                                                              \lambda = 1
```

11. (15 points) MATLAB: Classement (avec les valeurs propres et vecteurs propres)

La figure 2 représente un graphe non orienté. Chaque lien est donc bidirectionnel. Une connexion entre les noeuds A et B implique donc automatiquement une connexion entre les noeuds B et A.

La matrice d'adjacence A Du graphe en a) vous est fournie dans le fichier graphe.m avec une valeur de 1 à chaque lien. On vous demande d'effectuer le classement des noeuds du graphe en utilisant les valeurs propres et les vecteurs propres de la matrice d'adjacence. Le code pour l'affichage et le tri est fourni en commentaires, vous devez le décommenter. Vous devez insérer votre code dans le fichier graphe.m aux endroits indiqués pour chaque sous-question.

- (a) Affichez le vecteur propre à utiliser pour le classement que vous nommerez monVecteurPropre1.
- (b) Classez les noeuds en ordre décroissant de connectivité, du plus connecté au moins connecté (code fourni dans graphe.m à décommenter).
- (c) Modifiez la matrice d'adjacence A pour ajouter un lien bidirectionnel de valeur 1 entre les noeuds A et E, tel qu'illustré sur la figure b), et affichez la nouvelle matrice d'adjacence.
- (d) Affichez le vecteur propre à utiliser pour le nouveau classement que vous nommerez monVecteur-Propre2.
- (e) Classez les noeuds en ordre décroissant de connectivité, du plus connecté au moins connecté (code fourni dans graphe.m à décommenter).
- (f) Affichez les classements pour les deux graphes (code fourni dans graphe.m à décommenter.
- (g) Y a-t-il un noeud dont l'ordre de classement a été amélioré ? Si oui, quel noeud ? Répondez en

affichant un commandaire à l'écran avec la commande disp('Ma réponse'). Pour cette question, le hardcoding est accepté. Insérez votre code dans le fichier graphe.m aux endroits indiqués. clear all; close all; Figure 2: Graphe non orienté - Question 11 0 ; 1 1 1 0 0; 7 0 1 0 0 1 1 0 1 0 ; 0 0 0 1 0 1; 0 % INSÉREZ LE CODE ICI [V, D] = eig(A)% La valeur propre dominante est la sixième monVecteurPropre1 = -V(:, 6) % On change de signe car le vecteur est négatif [c, Noeuds1] = sort (monVecteurPropre1, 'descend') B = ['A', 'B', 'C', 'D', 'E', 'F']

```
BClassement1 = B(Noeuds1);
% INSÉREZ LE CODE ICI - ajout du lien et 2ème classement
A(1,5) = 1 % Dans les 2 sens car ...
A(5,1) = 1 % ... c'est un graphe non-orienté (chaque lien bidirectionnel)
[V, D] = eig(A)
% La valeur propre dominante est la sixième
% On NE change PAS de signe car le vecteur est déjà POSITIF
monVecteurPropre2 = V(:,6)
[c, Noeuds2] = sort (monVecteurPropre2, 'descend')
BClassement2 = B(Noeuds2);
BClassement1
BClassement2
disp('Le noeud E a amélioré son classement, passant de la quatrième ')
disp('à la troisième position');
```

>> solution_graphe

```
V =
                          0.7618
   0.2522
                  -0.1680
                                   0.2957
                                            -0.2337
          -0.4310
                          0.2089
                                  0.3251
                  0.0999
  -0.4388
          0.5922
                                            -0.5454
                          -0.3890
                                   0.1843
                                            -0.4753
  -0.0978
          -0.5610
                  0.5143
  0.6089
          0.1785
                  -0.4056
                          -0.3155
                                   -0.1225
                                           -0.5641
                          0.0936
  -0.5227 -0.2764 -0.3730
                                   -0.6441
                                           -0.2960
   0.3005
          0.2012
                  0.6274
                           0.3412
                                   -0.5857
                                            -0.1268
  -1.7397
           0
                        0
                                0
                                        0
                                                 0
          -1.3738
                       0
                                0
                                        0
                                                 0
       0
       0
           0
                 -0.5945
                               0
                                        0
                                                 0
       0
               0
                    0
                            0.2742
                                       0
                                                 0
       0
               0
                        0
                               0
                                    1.0996
                                                 0
       0
               0
                       0
                               0
                                     0
                                             2.3342
```

monVecteurPropre1 =

0.2337

0.5454

0.4753

0.5641

0.2960

0.1268

c =

0.5641

0.5454

0.4753

0.2960

0.2337

0.1268

Noeuds1 =

4

2

3

5 1

6

B =

'ABCDEF'

```
V =
 -0.6993 -0.2815 -0.2869 -0.4337
0.3299 0.4934 -0.3677 -0.1541
 -0.0208
                                  0.4011
  0.4715
       0.3299
                                   0.5163
  -0.5594 -0.2121 0.3560 -0.1018 0.5821 0.4076
  0.2619 0.1759 -0.6584 -0.3900
                            0.5378 0.1605
D =
         0
               0
  -2.1364
                                       0
                         0
                               0
       -1.2061
     0
                        0
                               0
                                       0
                       0
                               0
      0
         0 -0.5406
                                       0
           0 0.2611
                                      0
      0
                               0
           0
                  0 0
                             1.0825
      0
      0
                  0
                         0
                             0
                                   2.5395
```

monVecteurPropre2 =

0.3583

0.5023

0.4011

0.5163

0.4076

0.1605

C =

0.5163

0.5023

0.4076

0.4011

0.3583

0.1605

Noeuds2 =

4

2 5

3

1

6

BClassement1 =

'DBCEAF'

BClassement2 =

'DBECAF'

Le noeud ${\tt E}$ a amélioré son classement, passant de la quatrième à la troisième position