Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Estatística

ME 607 SÉRIES TEMPORAIS Prova 2

Professor: Mauricio Zevallos

Segundo Semestre 2013

Instruções

- Justifique suas respostas. Respostas sem justificativa não serão aceitas.
- Nos cálculos intermediários considere pelo menos 3 casas decimais.
- Esta prova tem quatro questões com pontuações

Questão	1	2	3	4
Pontos	2,8	1,6	1,6	4,0

- 1. São geradas n=144 observações do modelo AR(1) $y_t=\phi y_{t-1}+\varepsilon_t$, onde $\varepsilon_t\sim RB(0,\sigma^2)$. Se $y_1=-1,7$ $y_{144}=-2,1$ $\sum_{t=2}^n y_t y_{t-1}=-128,6$ e $\sum_{t=1}^n y_t^2=246,4$
 - (a) (1 pto.) Estime ϕ
 - (b) (1 pto.) Calcule a previsão $y_{144}(2)$ e a previsão de longo prazo, $y_{144}(\infty)$
 - (c) (0.8 pts.) Supondo σ^2 conhecido, calcule $Cov(e_n(1), e_n(2))$, onde $e_n(j)$ é o erro de previsão j passos à frente.
 - 2. No modelo,

$$Y_t = \delta + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}, \quad \varepsilon_t \sim RB(0, 1)$$

- (a) $(0,6 \ pts.)$ Encontre um estimador para δ , indicando o método de estimação utilizado.
- (b) (1 pto.) Seja $\theta = 0, 5$. Calcule a variância do estimador encontrado em (a) para uma amostra de tamanho quatro: y_1, y_2, y_3, y_4 .
- 3. Responda brevemente às seguintes perguntas
 - (a) (0,8 pts.) Qual o objetivo de diferenciar uma série?
 - (b) $(0.8 \ pts.)$ Qual o objetivo de aplicar uma transformação numa série?

- 4. Interessa fazer a modelagem de uma série temporal de 200 observações. O gráfico desta série e as FAC e FACP são mostrados na Figura 1. A informação correspondente aos ajustes por máxima verossimilhança dos modelos AR(1) e ARMA(1,1) é mostrada na Tabela 1. Nas Figuras 2 e 3 são apresentados os gráficos de diagnóstico.
 - (a) (0.8 pts.) Com base na Figura 1, quais modelos são candidatos para estimar?
 - (b) (1 pto.) Vale a pena considerar um modelo ARIMA com d=1? Vale a pena considerar um modelo SARIMA?
 - (c) (1,4 pts.) Discuta detalhadamente a qualidade dos ajustes AR(1) e ARMA(1,1). Qual destes ajustes escolheria?
 - (d) (0,8 pts.) Com respeito ao gráfico p values for Ljung-Box statistic da Figura 2. Considere o quarto ponto. Que significa exatamente esse ponto? Qual é a hipótese que está sendo testada?

Figura 1: Série, FAC e FACP

Tabela 1

Modelo	Estimativa	e.p	$\hat{\sigma}^2$	AIC	BIC
AR(1)	$\hat{\phi} = 0.762$	0.04587	1.067	0.075	0.091
ARMA(1,1)	$\hat{\phi} = 0.654$	0.06865	1.031	0.051	0.084
	$\hat{\theta} = 0.259$	0.08767			

 ${\bf ep}$ é o erro padrão da estimativa.

