Chapter 9: Functions of Several Variables

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 9.1. If S is a nonempty subset of a vector space X, prove (as asserted in Section 9.1) that the span of S is a vector space.

Denote the span of S by span(S).

Proof.

- (1) Since $S \neq \emptyset$, there is $\mathbf{z} \in S$. So $1\mathbf{z} = \mathbf{z} \in \text{span}(S) \neq \emptyset$. (In fact, $\text{span}(S) \supseteq S$.)
- (2) If $\mathbf{x}, \mathbf{y} \in \text{span}(S)$, then there exist elements $\mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{y}_1, \dots, \mathbf{y}_n \in S$ and scalars $a_1, \dots, a_m, b_1, \dots, b_n$ such that

$$\mathbf{x} = a_1 \mathbf{x}_1 + \dots + a_m \mathbf{x}_m,$$

$$\mathbf{y} = b_1 \mathbf{y}_1 + \dots + b_n \mathbf{y}_n.$$

Then

$$\mathbf{x} + \mathbf{y} = a_1 \mathbf{x}_1 + \dots + a_m \mathbf{x}_m + b_1 \mathbf{y}_1 + \dots + b_n \mathbf{y}_n$$

is a linear combination of the elements of S. For any scalar c,

$$c\mathbf{x} = (ca_1)\mathbf{x}_1 + \dots + (ca_m)\mathbf{x}_m$$

is again linear combination of the elements of S.

(3) By (1)(2), span(S) is a vector space.

Note. Any subspace of X that contains S must also contain span(S).

Exercise 9.2. Prove (as asserted in Section 9.6) that BA is linear if A and B are linear transformations. Prove also that A^{-1} is linear and invertible if A is invertible.

Proof. Use the notation in Definitions 9.6.

(1) Show that BA is linear if A and B are linear transformations. Let X, Y, Z be vector spaces, $A \in L(X, Y)$ and $B \in L(Y, Z)$.

(a) Given any $\mathbf{x}_1, \mathbf{x}_2 \in X$.

$$(BA)(\mathbf{x}_1 + \mathbf{x}_2) = B(A(\mathbf{x}_1 + \mathbf{x}_2))$$

= $B(A\mathbf{x}_1 + A\mathbf{x}_2)$ (A is a linear transformation)
= $B(A\mathbf{x}_1) + B(A\mathbf{x}_2)$ (B is a linear transformation)
= $(BA)\mathbf{x}_1 + (BA)\mathbf{x}_2$.

(b) For any $\mathbf{x} \in X$ and scalar c,

$$(BA)(c\mathbf{x}) = B(A(c\mathbf{x}))$$

= $B(cA\mathbf{x})$ (A is a linear transformation)
= $cB(A\mathbf{x})$ (B is a linear transformation)
= $c(BA)\mathbf{x}$.

By (a)(b), $BA \in L(X, Z)$.

- (2) Show that A^{-1} is linear if A is invertible.
 - (a) Given any $\mathbf{y}_1, \mathbf{y}_2 \in X$. Since A is surjective, there exist $\mathbf{x}_1, \mathbf{x}_2 \in X$ such that

$$\mathbf{y}_1 = A\mathbf{x}_1$$
$$\mathbf{y}_2 = A\mathbf{x}_2.$$

So

$$A^{-1}\mathbf{y}_1 = A^{-1}(A\mathbf{x}_1) = \mathbf{x}_1$$

 $A^{-1}\mathbf{y}_2 = A^{-1}(A\mathbf{x}_2) = \mathbf{x}_2$

(by Definitions 9.4). Hence

$$A^{-1}(\mathbf{y}_1 + \mathbf{y}_2) = A^{-1}(A\mathbf{x}_1 + A\mathbf{x}_2)$$

$$= A^{-1}(A(\mathbf{x}_1 + \mathbf{x}_2)) \quad (A \text{ is a linear transformation})$$

$$= \mathbf{x}_1 + \mathbf{x}_2 \qquad (Definitions 9.4)$$

$$= A^{-1}\mathbf{y}_1 + A^{-1}\mathbf{y}_2.$$

(b) For any $\mathbf{y} \in X$ and scalar c, there is a corresponding $\mathbf{x} \in X$ such that $\mathbf{y} = A\mathbf{x}$ since A is surjective. So $A^{-1}\mathbf{y} = \mathbf{x}$ by Definition 9.4. Hence

$$A^{-1}(c\mathbf{y}) = A^{-1}(cA\mathbf{x})$$

= $A^{-1}(A(c\mathbf{x}))$ (A is a linear transformation)
= $c\mathbf{x}$ (Definitions 9.4)
= $cA^{-1}\mathbf{y}$.

By (a)(b), $A^{-1} \in L(X)$.

- (3) Show that A^{-1} is invertible if A is invertible. It suffices to show that A^{-1} is injective and surjective.
 - (a) Show that A^{-1} is injective. Given any $\mathbf{y}_1, \mathbf{y}_2 \in X$. Since A is surjective, there exist $\mathbf{x}_1, \mathbf{x}_2 \in X$ such that

$$\mathbf{y}_1 = A\mathbf{x}_1$$
$$\mathbf{y}_2 = A\mathbf{x}_2.$$

Suppose $A^{-1}\mathbf{y}_1 = A^{-1}\mathbf{y}_2$. So $A^{-1}(A\mathbf{x}_1) = A^{-1}(A\mathbf{x}_2)$, or $\mathbf{x}_1 = \mathbf{x}_2$, or $\mathbf{y}_1 = A\mathbf{x}_1 = A\mathbf{x}_2 = \mathbf{y}_2$.

(b) Show that A^{-1} is surjective. For any $\mathbf{x} \in X$, there exists $A\mathbf{x} \in X$ such that $A^{-1}(A\mathbf{x}) = \mathbf{x}$ by Definitions 9.4.

Exercise 9.3. Assume $A \in L(X,Y)$ and $A\mathbf{x} = \mathbf{0}$ only when $\mathbf{x} = \mathbf{0}$. Prove that A is then 1-1.

Proof. Suppose $A\mathbf{x} = A\mathbf{y}$. Since A is a linear transformation, $A(\mathbf{x} - \mathbf{y}) = A\mathbf{x} - A\mathbf{y} = \mathbf{0}$. By assumption, $\mathbf{x} - \mathbf{y} = \mathbf{0}$ or $\mathbf{x} = \mathbf{y}$. \square

Exercise 9.4. Prove (as asserted in Section 9.30) that null spaces and ranges of linear transformations are vector spaces.

Proof. Use the notation in Definitions 9.30. Suppose X, Y are vector spaces, and $A \in L(X,Y)$, as in Definition 9.6.

- (1) Show that $\mathcal{N}(A)$ is a vector space in X.
 - (a) Note that $\mathbf{0} \in X$. Since $A\mathbf{0} = \mathbf{0}$, $\mathbf{0} \in \mathcal{N}(A) \neq \emptyset$.
 - (b) Suppose $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{N}(A)$. Then

$$\begin{split} A(\mathbf{x}_1+\mathbf{x}_2) &= A\mathbf{x}_1 + A\mathbf{x}_2 & \quad (A \text{ is a linear transformation}) \\ &= \mathbf{0} + \mathbf{0} & \quad (\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{N}(A)) \\ &= \mathbf{0}. \end{split}$$

So $\mathbf{x}_1 + \mathbf{x}_2 \in \mathcal{N}(A)$.

(c) Suppose $\mathbf{x} \in \mathcal{N}(A)$ and c is a scalar. Then

$$A(c\mathbf{x}) = cA\mathbf{x}$$
 (A is a linear transformation)
= $c\mathbf{0}$ ($\mathbf{x} \in \mathcal{N}(A)$)
= $\mathbf{0}$.

So $c\mathbf{x} \in \mathcal{N}(A)$.

By (a)(b)(c), $\mathcal{N}(A)$ is a vector space.

- (2) Show that $\mathcal{R}(A)$ is a vector space in Y.
 - (a) Note that $\mathbf{0} \in X$. So $A\mathbf{0} = \mathbf{0} \in \mathcal{R}(A) \neq \emptyset$.
 - (b) Suppose $\mathbf{y}_1, \mathbf{y}_2 \in \mathcal{R}(A)$. Then there exist $\mathbf{x}_1, \mathbf{x}_2 \in X$ such that $A\mathbf{x}_1 = \mathbf{y}_1$ and $A\mathbf{x}_2 = \mathbf{y}_2$. Hence

$$\mathbf{y}_1 + \mathbf{y}_2 = A\mathbf{x}_1 + A\mathbf{x}_2$$

= $A(\mathbf{x}_1 + \mathbf{x}_2)$ (A is a linear transformation).

So $\mathbf{y}_1 + \mathbf{y}_2 \in \mathscr{R}(A)$.

(c) Suppose $\mathbf{y} \in \mathcal{R}(A)$ and c is a scalar. Then there exists $\mathbf{x} \in X$ such that $A\mathbf{x} = \mathbf{y}$. Hence

$$c\mathbf{y} = cA\mathbf{x}$$

= $A(c\mathbf{x})$ (A is a linear transformation).

So $c\mathbf{y} \in \mathcal{R}(A)$.

By (a)(b)(c), $\mathcal{R}(A)$ is a vector space.

Exercise 9.5. Prove that to every $A \in L(\mathbb{R}^n, \mathbb{R}^1)$ corresponds a unique $\mathbf{y} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{x} \cdot \mathbf{y}$. Prove also that $||A|| = |\mathbf{y}|$. (Hint: Under certain conditions, equality holds in the Schwarz inequality.)

Proof.

- (1) Recall that $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is the standard basis of \mathbb{R}^n (Definitions 9.1). Given any $\mathbf{x} \in \mathbb{R}^n$, write $\mathbf{x} = (x_1, \dots, x_n)$ as $\mathbf{x} = \sum x_i \mathbf{e}_i$.
- (2) Show that y exists. Since A is a linear transformation,

$$A\mathbf{x} = A\left(\sum x_j \mathbf{e}_j\right)$$

$$= \sum x_j A \mathbf{e}_j$$

$$= (x_1, \dots, x_n) \cdot (A \mathbf{e}_1, \dots, A \mathbf{e}_n)$$

$$= \mathbf{x} \cdot \sum (A \mathbf{e}_j) \mathbf{e}_j.$$

Define $\mathbf{y} = \sum (A\mathbf{e}_i)\mathbf{e}_i \in \mathbb{R}^n$ so that $A\mathbf{x} = \mathbf{x} \cdot \mathbf{y}$.

(3) Show that **y** is unique. Suppose there exists some $\mathbf{z} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{x} \cdot \mathbf{z}$. So

$$0 = A\mathbf{x} - A\mathbf{x}$$
$$= \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{z}$$
$$= \mathbf{x} \cdot (\mathbf{y} - \mathbf{z})$$

for any $\mathbf{x} \in \mathbb{R}^n$. In particular, take $\mathbf{x} = \mathbf{y} - \mathbf{z} \in \mathbb{R}^n$ to get

$$0 = (\mathbf{y} - \mathbf{z}) \cdot (\mathbf{y} - \mathbf{z}) = |\mathbf{y} - \mathbf{z}|^2$$

or y - z = 0 or y = z.

(4) Show that $||A|| = |\mathbf{y}|$. By the Schwarz inequality (Theorem 1.37(d)),

$$|A\mathbf{x}| = |\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}| \le |\mathbf{y}|$$

as $|\mathbf{x}| \leq 1$. Take the sup over all $|\mathbf{x}| \leq 1$ to get

$$||A|| \leq |\mathbf{y}|.$$

If $\mathbf{y} = \mathbf{0}$, then $||A|| = |\mathbf{y}| = 0$. If $\mathbf{y} \neq \mathbf{0}$, then the equality holds when $\mathbf{x} = \frac{\mathbf{y}}{|\mathbf{y}|} \in \mathbb{R}^n$. (Here $|\mathbf{x}| = 1$.)

Exercise 9.6. If f(0,0) = 0 and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$,

prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0,0).

Proof.

(1) Show that

$$(D_1 f)(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{y(y^2 - x^2)}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Write

$$(D_1 f)(x,y) = \lim_{t \to 0} \frac{f((x,y) + t(1,0)) - f(x,y)}{t}$$
$$= \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}.$$

If (x, y) = (0, 0),

$$(D_1 f)(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0.$$

If $(x, y) \neq (0, 0)$,

$$(D_1 f)(x, y) = \lim_{t \to 0} \frac{f(x + t, y) - f(x, y)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{(x + t)y}{(x + t)^2 + y^2} - \frac{xy}{x^2 + y^2}}{t}$$

$$= \lim_{t \to 0} \frac{y(y^2 - x^2) - txy}{((x + t)^2 + y^2)(x^2 + y^2)}$$

$$= \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}.$$

(2) Show that

$$(D_2 f)(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{x(x^2 - y^2)}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Similar to (1).

(3) Show that f is not continuous at (0,0). Note that

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{\frac{1}{n} \cdot \frac{1}{n}}{\frac{1}{n^2} + \frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}$$

and

$$\lim_{n\to\infty} f\left(\frac{1}{n},0\right) = \lim_{n\to\infty} \frac{0}{\frac{1}{n^2}+0} = \lim_{n\to\infty} 0 = 0.$$

Hence the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Exercise 9.7. Suppose that f is a real-valued function defined in an open set $E \subseteq \mathbb{R}^n$, and that the partial derivatives $D_1 f, \ldots, D_n f$ are bounded in E. Prove that f is continuous in E. (Hint: Proceed as in the proof of Theorem 9.21.)

Proof.

- (1) Since $D_j f$ is bounded in E, there is a real number M_j such that $|D_j f| \le M_j$ in E. Take $M = \max_{1 \le j \le n} M_j$ so that $|D_j f| \le M$ in E for all $1 \le j \le n$.
- (2) Fix $\mathbf{x} \in E$ and $\varepsilon > 0$. Since E is open, there is an open neighborhood

$$B(\mathbf{x}; r) = {\mathbf{x} + \mathbf{h} \in E : |\mathbf{h}| < r} \subseteq E$$

with

$$0 < r < \frac{\varepsilon}{n(M+1)}.$$

(3) Write $\mathbf{h} = \sum h_j \mathbf{e}_j$, $|\mathbf{h}| < r$, put $\mathbf{v}_0 = \mathbf{0}$, and $\mathbf{v}_k = h_1 \mathbf{e}_1 + \cdots + h_k \mathbf{e}_k$ for $1 \le k \le n$. Then

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{j=1}^{n} [f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1})].$$

Since $|\mathbf{v}_k| < r$ for $1 \le k \le n$ and since $B(\mathbf{x}; r)$ is convex, the open interval with end points $\mathbf{x} + \mathbf{v}_{j-1}$ and $\mathbf{x} + \mathbf{v}_j$ lie in $B(\mathbf{x}; r)$. Since $\mathbf{v}_j = \mathbf{v}_{j-1} - h_j \mathbf{e}_j$, the mean value theorem (Theorem 5.10) show that

$$f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1}) = h_j(D_j f)(\mathbf{x} + \mathbf{v}_{j-1} + \theta_j h_j \mathbf{e}_j)$$

for some $\theta_i \in (0,1)$.

(4) Note that $|h_j| \leq |\mathbf{h}| < r < \frac{\varepsilon}{n(M+1)}$. Hence

$$|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})| \le \sum_{j=1}^{n} |f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1})|$$

$$= \sum_{j=1}^{n} |h_j| |(D_j f)(\mathbf{x} + \mathbf{v}_{j-1} + \theta_j h_j \mathbf{e}_j)|$$

$$\le \sum_{j=1}^{n} \frac{\varepsilon}{n(M+1)} \cdot M$$

$$< \varepsilon$$

as $|\mathbf{h}| < r < \frac{\varepsilon}{n(M+1)}$. Hence f is continuous at all $\mathbf{x} \in E$.

Exercise 9.8. Suppose that f is a differentiable real function in an open set $E \subseteq \mathbb{R}^n$, and that f has a local maximum at a point $\mathbf{x} \in E$. Prove that $f'(\mathbf{x}) = 0$.

Proof (Theorem 5.8).

(1) Apply Theorem 5.8 to each $D_j f$ for $1 \leq j \leq n$. Since f has a local maximum at a point $\mathbf{x} \in E$, there is an open neighborhood $B(\mathbf{x}; r)$ of \mathbf{x} in E such that

$$f(\mathbf{y}) \le f(\mathbf{x})$$

for all $\mathbf{y} \in B(\mathbf{x}; r)$. Therefore,

$$f(\mathbf{x} + t\mathbf{e}_j) \le f(\mathbf{x})$$

for all |t| < r and $1 \le j \le n$, or $t \mapsto f(\mathbf{x} + t\mathbf{e}_j)$ has a local maximum at a point $t = 0 \in (-r, r)$.

(2) Since f is a differentiable in E, each partial derivatives $D_j f$ exist (Theorem 9.21). Hence Theorem 5.8 implies that $(D_j f)(\mathbf{x}) = 0$ for all $1 \le j \le n$. So

$$f'(\mathbf{x}) = [(D_1 f)(\mathbf{x}) \cdots (D_k f)(\mathbf{x})] = [0 \cdots 0] = 0$$

(as the zero matrix).

Exercise 9.9. If **f** is a differentiable mapping of a connected open set $E \subseteq \mathbb{R}^n$, and if $\mathbf{f}'(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$, prove that **f** is a constant in E.

Proof.

- (1) Show that \mathbf{f} is locally constant. Given any $\mathbf{x} \in E$. Since E is open, there exists an open neighborhood $B(\mathbf{x};r)$ of \mathbf{x} such that $B(\mathbf{x};r) \subseteq E$ and r > 0. Corollary to Theorem 9.19 implies that \mathbf{f} is a constant on $B(\mathbf{x};r)$, that is, \mathbf{f} is locally constant.
- (2) Show that **f** is constant if **f** is locally constant in a connected set $E \subseteq \mathbb{R}^n$. Might assume that $E \neq \emptyset$. (Otherwise there is nothing to do.) Take some $\mathbf{x}_0 \in E$.
 - (a) Let

$$U = \{ \mathbf{y} \in E : \mathbf{f}(\mathbf{y}) = \mathbf{f}(\mathbf{x}_0) \}.$$

- (b) U is open since \mathbf{f} is locally constant (by (1)). (Take any $\mathbf{y} \in U$. Since \mathbf{f} is locally constant, there is an open neighborhood $B(\mathbf{y}) \subseteq E$ of \mathbf{y} such that $f(\mathbf{z}) = f(\mathbf{y}) = f(\mathbf{x}_0)$ whenever $\mathbf{z} \in B(\mathbf{y})$. So that $B(\mathbf{y}) \subseteq U$, or U is open.)
- (c) Besides, since \mathbf{f} is continuous (Remarks 9.13(c)), the set U is closed. (The proof is the same as Proof (Definition 2.18(d)) in Exercise 4.3.)
- (d) So U is open and closed. Write $E = U \cup (E U)$. Here U and E U are both open and closed. Hence $U \cap \overline{E U} = U \cap (E U) = \emptyset$ and $\overline{U} \cap (E U) = U \cap (E U) = \emptyset$. Note that $\mathbf{x}_0 \in U \neq \emptyset$. By the connectedness of E, $E U = \emptyset$, or E = U, or \mathbf{f} is constant on E.

Note. The only subsets of a connected set E which are both open and closed are E and \varnothing .

Exercise 9.10. If f is a real function defined in a convex open set $E \subseteq \mathbb{R}^n$, such that $(D_1 f)(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$, prove that $f(\mathbf{x})$ depends only on x_2, \ldots, x_n . Show that the convexity of E can be replaced by a weaker condition, but that some condition is required. For example, if n = 2 and E is shaped like

a horseshoe, the statement may be false.

Proof.

(1) It suffices to show that

$$f(a, x_2, \dots, x_n) = f(b, x_2, \dots, x_n)$$

whenever $\mathbf{x} = (a, x_2, \dots, x_n) \in E$ and $\mathbf{y} = (b, x_2, \dots, x_n) \in E$ if $(D_1 f)(\mathbf{x}) = 0$ in the convex open set E.

(2) Might assume that a < b. Since $g: t \mapsto f(t, x_2, \dots, x_n)$ is a real continuous function on [a, b] (by the openness of E) and differentiable in (a, b) (by the existence of $D_1 f$),

$$g(b) - g(a) = (b - a)g'(\xi)$$

for some $\xi \in (a, b)$. Note that

$$g'(\xi) = (D_1 f)(\xi, x_2, \dots, x_n) = 0$$

by assumption. g(b) = g(a) or $f(a, x_2, \ldots, x_n) = f(b, x_2, \ldots, x_n)$.

(3) (2) shows that the convexity of E can be replaced by a weaker condition that $E \subseteq \mathbb{R}^n$ is convex in the first coordinate, say E is open and

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = (\lambda a + (1 - \lambda)b, x_2, \dots, x_n) \in E$$

whenever $\mathbf{x} = (a, x_2, ..., x_n) \in E$, $\mathbf{y} = (b, x_2, ..., x_n) \in E$, and $0 < \lambda < 1$.

(4) Show that the convexity of E or some weaker condition is required. Define $f(x,y) = \operatorname{sgn}(x)$ on $E = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$. E is open and $(D_1f)(x,y) = 0$ in E. Note that f(1989,0) = 1 and f(-64,0) = -1, and thus f(x,y) does not depend only on y = 0.

Exercise 9.11. If f and g are differentiable real functions in \mathbb{R}^n , prove that

$$\nabla(fg) = f\nabla g + g\nabla f$$

and that

$$\nabla\left(\frac{1}{f}\right) = -\frac{1}{f^2}\nabla f$$

whenever $f \neq 0$.

Proof. Recall Example 9.18:

$$(\nabla(f))(\mathbf{x}) = \sum_{i=1}^{n} (D_i f)(\mathbf{x}) \mathbf{e}_i.$$

(1) Show that $\nabla(fg) = f\nabla g + g\nabla f$. For any $\mathbf{x} \in \mathbb{R}^n$,

$$(\nabla(fg))(\mathbf{x}) = \sum_{i=1}^{n} (D_i(fg))(\mathbf{x})\mathbf{e}_i$$

$$= \sum_{i=1}^{n} (g(D_if) + f(D_ig))(\mathbf{x})\mathbf{e}_i \qquad (\text{Theorem 5.3(b)})$$

$$= \sum_{i=1}^{n} [g(\mathbf{x})(D_if)(\mathbf{x}) + f(\mathbf{x})(D_ig)(\mathbf{x})] \mathbf{e}_i$$

$$= g(\mathbf{x}) \sum_{i=1}^{n} (D_if)(\mathbf{x})\mathbf{e}_i + f(\mathbf{x}) \sum_{i=1}^{n} (D_ig)(\mathbf{x})\mathbf{e}_i$$

$$= g(\mathbf{x})(\nabla f)(\mathbf{x}) + f(\mathbf{x})(\nabla g)(\mathbf{x})$$

$$= (f\nabla g + g\nabla f)(\mathbf{x}).$$

(2) Show that

$$\nabla\left(\frac{1}{f}\right) = -\frac{1}{f^2}\nabla f$$

whenever $f \neq 0$. Note that $\nabla(1) = 0$ since

$$\nabla(1)(\mathbf{x}) = \sum (D_i 1)(\mathbf{x})\mathbf{e}_i = \sum (0)(\mathbf{x})\mathbf{e}_i = \sum 0\mathbf{e}_i = 0.$$

Hence as $f \neq 0$, we have

$$0 = \nabla(1)$$

$$= \nabla \left(f \frac{1}{f} \right) \qquad (f \neq 0)$$

$$= f \nabla \left(\frac{1}{f} \right) + \frac{1}{f} \nabla f \qquad ((1)),$$

or
$$\nabla \left(\frac{1}{f}\right) = -\frac{1}{f^2} \nabla f$$
.

Exercise 9.12. Fix two real numbers a and b, 0 < a < b. Define a mapping $\mathbf{f} = (f_1, f_2, f_3)$ of \mathbb{R}^2 into \mathbb{R}^3 by

$$f_1(s,t) = (b + a\cos s)\cos t$$

$$f_2(s,t) = (b + a\cos s)\sin t$$

$$f_3(s,t) = a \sin s$$
.

Describe the range K if f. (It is a certain compact subset of \mathbb{R}^3 .)

(a) Show that there are exactly 4 points $\mathbf{p} \in K$ such that

$$(\nabla f_1)(\mathbf{f}^{-1}(\mathbf{p})) = \mathbf{0}.$$

Find these points.

(b) Determine the set of all $\mathbf{q} \in K$ such that

$$(\nabla f_3)(\mathbf{f}^{-1}(\mathbf{q})) = \mathbf{0}.$$

- (c) Show that one of the point **p** found in part (a) corresponds to a local maximum of f_1 , one corresponds to a local minimum, and that the other two are neither (they are so-called "saddle points"). Which of the points **q** found in part (b) corresponds to maxima or minima?
- (d) Let λ be an irrational real number, and define $\mathbf{g}(t) = \mathbf{f}(t, \lambda t)$. Prove that \mathbf{g} is a one-to-one mapping of \mathbb{R}^1 onto a dense subset of K. Prove that

$$|\mathbf{g}'(t)|^2 = a^2 + \lambda^2 (b + a\cos t)^2.$$

Proof.

- (1) K is a torus, where
 - (a) s, t are angles which make a full circle (so that their values start and end at the same point).
 - (b) b is the distance from the center of the tube to the center of the torus.
 - (c) a is the radius of the tube.
- (2) Show that K is compact. Since sin and cos are periodic (with period 2π), $K = \mathbf{f}([0, 2\pi]^2)$ is compact by the compactness of $[0, 2\pi]^2$ and the continuity of \mathbf{f} (Theorem 4.14).

Proof of (a).

(1)

$$(\nabla f_1)(\mathbf{x}) = (D_1 f_1)(\mathbf{x}) \mathbf{e}_1 + (D_2 f_1)(\mathbf{x}) \mathbf{e}_2$$

= $((D_1 f_1)(s, t), (D_2 f_1)(s, t))$
= $(-a \sin s \cos t, -(b + a \cos t) \sin t)$

So $(\nabla f_1)(\mathbf{x}) = \mathbf{0}$ if and only if

$$0 = -a \sin s \cos t,$$

$$0 = -(b + a \cos t) \sin t.$$

(2) Note that $b+a\cos t>0$ for any b>a>0 and $t\in\mathbb{R}^1$. Hence $(\nabla f_1)(\mathbf{x})=\mathbf{0}$ if and only if $\sin t=\sin s=0$. Therefore, $\mathbf{p}=(\pm(b\pm a),0,0)$, or there are exactly 4 points $\mathbf{p}=(b+a,0,0), (b-a,0,0), (-b-a,0,0)$, or $(-b+a,0,0)\in K$.

Proof of (b).

(1)

$$(\nabla f_3)(\mathbf{x}) = (D_1 f_3)(\mathbf{x}) \mathbf{e}_1 + (D_2 f_3)(\mathbf{x}) \mathbf{e}_2$$

= $((D_1 f_3)(s, t), (D_2 f_3)(s, t))$
= $(a \cos s, 0)$

So $(\nabla f_1)(\mathbf{x}) = \mathbf{0}$ if and only if $\cos s = 0$ (since a > 0).

(2) Therefore, $\mathbf{q} = (b\cos t, b\sin t, \pm a)$.

Proof of (c).

- (1) Since $-1 \le \cos s \le 1$ and $-1 \le \cos t \le 1$, $-b a \le f_1(s, t) \le b + a$.
 - (a) (b+a,0,0) corresponds to a local maximum of f_1 .
 - (b) (-b-a,0,0) corresponds to a local minimum of f_1 .
 - (c) (b-a,0,0) and (-b+a,0,0) are saddle points by considering any open neighborhood of (s,t) at which $\cos s = \pm 1$ and $\cos t = \mp 1$.
- (2) Since $-1 \le \sin s \le 1, -a \le f_3(s, t) \le a$.
 - (a) $(b\cos t, b\sin t, a)$ corresponds to a local maximum of f_3 .
 - (b) $(b\cos t, b\sin t, -a)$ corresponds to a local minimum of f_3 .

Proof of (d).

(1)

$$\mathbf{g}(t) = \mathbf{f}(t, \lambda t) = ((b + a\cos t)\cos(\lambda t), (b + a\cos t)\sin(\lambda t), a\sin t).$$

(2) Show that **g** is a one-to-one mapping of \mathbb{R}^1 . It suffices to show that $\mathbf{g}(t) = \mathbf{g}(s)$ implies t = s.

(a) By g(t) = g(s),

$$(b + a\cos t)\cos(\lambda t) = (b + a\cos s)\cos(\lambda s),\tag{I}$$

$$(b + a\cos t)\sin(\lambda t) = (b + a\cos s)\sin(\lambda s),\tag{II}$$

$$a\sin t = a\sin s. \tag{III}$$

(I) and (II) imply that $\cos t = \cos s$ (since b>a>0). (III) implies that $\sin t = \sin s$. Hence

$$t = s + 2n\pi$$

for some integer n.

(b) Again, (I) and (II) imply that

$$cos(\lambda t) = cos(\lambda s)$$
 and $sin(\lambda t) = sin(\lambda s)$.

Hence

$$\lambda t = \lambda s + 2m\pi$$

for some integer m. By assumption that $t=s+2n\pi$, we have $m=n\lambda$. Since λ is irrational, m=n=0. Therefore t=s holds.

(3) Show that $\mathbf{g}(\mathbb{R}^1)$ is dense in K. Note that $\mathbf{f}([0,2\pi]^2) = K$. Use the notations $\{x\}$ in Exercise 4.16. It suffices to show that the set

$$\left\{ \left(2\pi \left\{ \frac{t}{2\pi} \right\}, 2\pi \left\{ \frac{\lambda t}{2\pi} \right\} \right) : t \in \mathbb{R}^1 \right\}$$

is dense in $[0, 2\pi]^2$ (Exercise 4.4), or to show that

$$\left\{ \left(\{t\}, \{\lambda t\} \right) : t \in \mathbb{R}^1 \right\}$$

is dense in $[0,1]^2$, which is the conclusion of Exercise 4.25(b).

(4) Show that $|\mathbf{g}'(t)|^2 = a^2 + \lambda^2 (b + a \cos t)^2$. By

$$\mathbf{g}'(t) = (-a\sin t\cos(\lambda t) - \lambda(b + a\cos t)\sin(\lambda t),$$
$$-a\sin t\sin(\lambda t) + \lambda(b + a\cos t)\cos(\lambda t),$$
$$a\cos t),$$

$$\begin{aligned} \left| \mathbf{g}'(t) \right|^2 &= \mathbf{g}'(t) \cdot \mathbf{g}'(t) \\ &= (-a \sin t \cos(\lambda t) - \lambda (b + a \cos t) \sin(\lambda t))^2 \\ &\quad + (-a \sin t \sin(\lambda t) + \lambda (b + a \cos t) \cos(\lambda t))^2 + (a \cos t)^2 \\ &= \underbrace{a^2 \sin^2 t \cos^2(\lambda t) + a^2 \cos^2 t}_{=a^2} \\ &\quad + \underbrace{\lambda^2 (b + a \cos t)^2 \sin^2(\lambda t) + \lambda^2 (b + a \cos t)^2 \cos^2(\lambda t)}_{=\lambda^2 (b + a \cos t)^2} \\ &\quad + 2a\lambda \sin t \cos(\lambda t) \lambda (b + a \cos t) \sin(\lambda t) \\ &\quad - 2a\lambda \sin t \sin(\lambda t) \lambda (b + a \cos t) \cos(\lambda t) \\ &= a^2 + \lambda^2 (b + a \cos t)^2. \end{aligned}$$

Exercise 9.13. Suppose \mathbf{f} is a differentiable mapping of \mathbb{R}^1 into \mathbb{R}^3 such that $|\mathbf{f}(t)| = 1$ for every t. Prove that $\mathbf{f}'(t) \cdot \mathbf{f}(t) = 0$. Interpret this result geometrically.

Proof.

(1) Write $\mathbf{f} = (f_1, f_2, f_3)$ as a vector-valued function. By Remarks 5.16, \mathbf{f} is differentiable if and only if each f_1, f_2, f_3 is differentiable. So $\mathbf{f}' = (f'_1, f'_2, f_3)'$. Hence

$$|\mathbf{f}(t)| = 1 \text{ for every } t$$

$$\iff \mathbf{f}(t) \cdot \mathbf{f}(t) = 1$$

$$\iff f_1(t)^2 + f_2(t)^2 + f_3(t)^2 = 1$$

$$\iff 2f_1(t)f_1'(t) + 2f_2(t)f_2'(t) + 2f_3(t)f_3'(t) = 0$$

$$\iff f_1(t)f_1'(t) + f_2(t)f_2'(t) + f_3(t)f_3'(t) = 0$$

$$\iff (f_1(t), f_2(t), f_3(t)) \cdot (f_1'(t), f_2'(t), f_3'(t)) = 0$$

$$\iff \mathbf{f}(t) \cdot \mathbf{f}'(t) = \mathbf{f}'(t) \cdot \mathbf{f}(t) = 0.$$

(2) The vector $\mathbf{f}'(t)$ is called the **tangent vector** (or **velocity vector**) of \mathbf{f} at t. Geometrically, given any mapping \mathbf{f} lying on the sphere S^2 , its tangent vector at t is lying on the tangent plane of S^2 at t.

Exercise 9.14. Define f(0,0) = 0 and

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$.

- (a) Prove that D_1f and D_2f are bounded functions in \mathbb{R}^2 . (Hence f is continuous.)
- (b) Let **u** be any unit vector in \mathbb{R}^2 . Show that the directional derivative $(D_{\mathbf{u}}f)(0,0)$ exists, and that its absolute value is at most 1.
- (c) Let γ be a differentiable mapping of \mathbb{R}^1 into \mathbb{R}^2 (in other words, γ is a differentiable curve in \mathbb{R}^2), with $\gamma(t) = (0,0)$ and $\gamma'(t) \neq (0,0)$ for any $t \in \mathbb{R}^1$. Put $g(t) = f(\gamma(t))$ and prove that g is differentiable for every $t \in \mathbb{R}^1$. If $\gamma \in \mathscr{C}'$, prove that $g \in \mathscr{C}'$.
- (d) In spite of this, prove that f is not differentiable at (0,0).

Proof of (a).

(1) Show that

$$(D_1 f)(x,y) = \begin{cases} 1 & \text{if } (x,y) = (0,0), \\ \frac{x^2 (x^2 + 3y^2)}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

If (x, y) = (0, 0),

$$(D_1 f)(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{t-0}{t} = 1.$$

If $(x, y) \neq (0, 0)$,

$$(D_1 f)(x,y) = \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{(x+t)^3}{(x+t)^2 + y^2} - \frac{x^3}{x^2 + y^2}}{t}$$

$$= \lim_{t \to 0} \frac{x^2(x^2 + 3y^2) + tx(2x^2 + 3y^2) + t^2(x^2 + y^2)}{((x+t)^2 + y^2)(x^2 + y^2)}$$

$$= \frac{x^2(x^2 + 3y^2)}{(x^2 + y^2)^2}.$$

(Or differentiate directly.)

(2) Show that $(D_1 f)(x, y)$ is bounded. It suffices to show that $(D_1 f)(x, y)$ is bounded if $(x, y) \neq (0, 0)$. Write $x = r \cos \theta$ and $y = r \sin \theta$ in the polar coordinates. (Here r > 0.) Hence

$$(D_1 f)(x, y) = \frac{x^2(x^2 + 3y^2)}{(x^2 + y^2)^2} = \cos^2 \theta (\cos^2 \theta + 3\sin^2 \theta)$$

is bounded by $1 \cdot (1+3) = 4$.

(3) Show that

$$(D_2 f)(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{-2x^3y}{(x^2+y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

If (x, y) = (0, 0),

$$(D_2 f)(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0.$$

If $(x, y) \neq (0, 0)$,

$$(D_2 f)(x,y) = \lim_{t \to 0} \frac{f(x,y+t) - f(x,y)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{x^3}{x^2 + (y+t)^2} - \frac{x^3}{x^2 + y^2}}{t}$$

$$= \lim_{t \to 0} \frac{-2x^3y - tx^3}{(x^2 + (y+t)^2)(x^2 + y^2)}$$

$$= \frac{-2x^3y}{(x^2 + y^2)^2}.$$

(Or differentiate directly.)

- (4) Show that $(D_2f)(x,y)$ is bounded. Similar to (2).
- (5) Show that f is continuous. Apply Exercise 9.7 to (2)(4).

Proof of (b).

(1) Write $\mathbf{u} = (u_1, u_2)$. The formula

$$(D_{\mathbf{u}}f)(0,0) = (D_1f)(0,0)u_1 + (D_2f)(0,0)u_2 = u_1$$

might be false since we don't know if f is differentiable or not. Actually, we will show that $(D_{\mathbf{u}}f)(0,0) = u_1^3 \neq u_1$.

(2)

$$(D_{\mathbf{u}}f)(0,0) = \lim_{t \to 0} \frac{f(tu_1, tu_2) - f(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{t^3 u_1^3}{t^2 u_1^2 + t^2 u_2^2} - 0}{t}$$

$$= \lim_{t \to 0} u_1^3 \qquad (|\mathbf{u}| = 1)$$

$$= u_1^3.$$

Also $|(D_{\mathbf{u}}f)(0,0)| = |u_1|^3 \le 1$ since $|\mathbf{u}| = 1$.

Proof of (c).

(1) Given any $t \in \mathbb{R}^1$.

$$g'(t) = \lim_{x \to t} \frac{g(x) - g(t)}{x - t} = \lim_{x \to t} \frac{f(\gamma(x)) - f(\gamma(t))}{x - t}.$$

Write $\gamma(t) = (\gamma_1(t), \gamma_2(t)).$

(2) Suppose that $\gamma(t) \neq (0,0)$. Since γ is differentiable, γ is continuous. So there exists an open neighborhood $B(t) \subseteq \mathbb{R}^1$ of t such that $\gamma(x) \neq (0,0)$ whenever $x \in B(t)$. Hence

$$g'(t) = \lim_{x \to t} \frac{\frac{\gamma_1(x)^3}{\gamma_1(x)^2 + \gamma_2(x)^2} - \frac{\gamma_1(t)^3}{\gamma_1(t)^2 + \gamma_2(t)^2}}{x - t}$$

$$= \frac{d}{dt} \left(\frac{\gamma_1(t)^3}{\gamma_1(t)^2 + \gamma_2(t)^2} \right)$$

$$= \frac{3\gamma_1(t)^2 \gamma_1'(t)}{\gamma_1(t)^2 + \gamma_2(t)^2} - \frac{\gamma_1(t)^3 (2\gamma_1(t)\gamma_1'(t) + 2\gamma_2(t)\gamma_2'(t))}{(\gamma_1(t)^2 + \gamma_2(t)^2)^2}.$$

exists since γ_1 and γ_2 are differentiable.

(3) Suppose that $\gamma(t) = (0,0)$ and thus $\gamma'(t) \neq (0,0)$. So

$$g'(t) = \lim_{x \to t} \frac{f(\gamma(x))}{x - t}$$

Note that $\gamma(x) \neq (0,0)$ in some open neighborhood of t since

$$\lim_{\substack{x \to t \\ \gamma(x) = (0,0)}} \frac{\gamma(x) - \gamma(t)}{x - t} = (0,0),$$

contrary to the assumption that $\gamma'(t) \neq (0,0)$. Note that $\gamma_1(t) = \gamma_2(t) = 0$. So

$$g'(t) = \lim_{x \to t} \frac{f(\gamma(x))}{x - t}$$

$$= \lim_{x \to t} \frac{\gamma_1(x)^3}{\gamma_1(x)^2 + \gamma_2(x)^2} \cdot \frac{1}{x - t}$$

$$= \lim_{x \to t} \frac{(\gamma_1(x) - \gamma_1(t))^3}{(\gamma_1(x) - \gamma_1(t))^2 + (\gamma_2(x) - \gamma_2(t))^2} \cdot \frac{1}{x - t}$$

$$= \lim_{x \to t} \frac{\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^3}{\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^2 + \left(\frac{\gamma_2(x) - \gamma_2(t)}{x - t}\right)^2}$$

$$= \frac{\gamma'_1(t)^3}{\gamma'_1(t)^2 + \gamma'_2(t)^2}$$

since $\gamma'(t) \neq (0,0)$.

(4) By (2)(3), g'(t) exists and

$$g'(t) = \begin{cases} \frac{3\gamma_1(t)^2\gamma_1'(t)}{\gamma_1(t)^2 + \gamma_2(t)^2} - \frac{\gamma_1(t)^3(2\gamma_1(t)\gamma_1'(t) + 2\gamma_2(t)\gamma_2'(t))}{(\gamma_1(t)^2 + \gamma_2(t)^2)^2} & \text{if } \gamma(t) \neq (0,0), \\ \frac{\gamma_1'(t)^3}{\gamma_1'(t)^2 + \gamma_2'(t)^2} & \text{if } \gamma(t) = (0,0). \end{cases}$$

(5) Now suppose $\gamma \in \mathscr{C}'$. To show $g' \in \mathscr{C}'$, it suffices to show that

$$\lim_{x \to t} g'(x) = g'(t)$$

if $\gamma(t)=(0,0)$ since g'(t) is always continuous if $\gamma(t)\neq(0,0)$. Here all $\gamma_1,\gamma_2,\gamma_1',\gamma_2'$ are continuous and $\gamma_1(t)^2+\gamma_2(t)^2\neq0$ by assumption. So

$$\lim_{x \to t} \frac{3\gamma_1(x)^2 \gamma_1'(x)}{\gamma_1(x)^2 + \gamma_2(x)^2}$$

$$= \lim_{x \to t} \frac{3\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^2 \gamma_1'(x)}{\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^2 + \left(\frac{\gamma_2(x) - \gamma_2(t)}{x - t}\right)^2}$$

$$= \frac{3\gamma_1'(t)^2 \cdot \gamma_1'(t)}{\gamma_1'(t)^2 + \gamma_2'(t)^2}$$

$$= \frac{3\gamma_1'(t)^3}{\gamma_1'(t)^2 + \gamma_2'(t)^2}$$

and similarly

$$\begin{split} &\lim_{x \to t} \frac{\gamma_1(t)^3(2\gamma_1(t)\gamma_1'(t) + 2\gamma_2(t)\gamma_2'(t))}{(\gamma_1(t)^2 + \gamma_2(t)^2)^2} \\ &= \lim_{x \to t} \frac{\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^3 \left(2\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\gamma_1'(t) + 2\frac{\gamma_2(x) - \gamma_2(t)}{x - t}\gamma_2'(t)\right)}{\left(\left(\frac{\gamma_1(x) - \gamma_1(t)}{x - t}\right)^2 + \left(\frac{\gamma_2(x) - \gamma_2(t)}{x - t}\right)^2\right)^2} \\ &= \frac{\gamma_1'(t)^3 \cdot (2\gamma_1'(t)\gamma_1'(t) + 2\gamma_2'(t)\gamma_2'(t))}{(\gamma_1'(t)^2 + \gamma_2'(t)^2)^2} \\ &= \frac{2\gamma_1'(t)^3}{\gamma_1'(t)^2 + \gamma_2'(t)^2}. \end{split}$$

Hence

$$\lim_{x \to t} g'(x) = \frac{3\gamma_1'(t)^3}{\gamma_1'(t)^2 + \gamma_2'(t)^2} - \frac{2\gamma_1'(t)^3}{\gamma_1'(t)^2 + \gamma_2'(t)^2} = g'(t).$$

Proof of (d). (Reductio ad absurdum) If f were differentiable, then

$$(D_{\mathbf{u}}f)(0,0) = (D_1f)(0,0)u_1 + (D_2f)(0,0)u_2 = u_1$$

(Formula (40) in Chapter 9), contrary to (b) if we take $\mathbf{u} = \left(\frac{1}{64}, \frac{\sqrt{4095}}{64}\right)$. \square

Exercise 9.15. Define f(0,0) = 0, and put

$$f(x,y) = x^2 + y^2 - 2x^2y - \frac{4x^6y^2}{(x^4 + y^2)^2}$$

if $(x, y) \neq (0, 0)$.

(a) Prove, for all $(x, y) \in \mathbb{R}^2$, that

$$4x^4y^2 < (x^4 + y^2)^2$$
.

Conclude that f is continuous.

(b) For $0 \le \theta \le 2\pi$, $-\infty < t < \infty$, define

$$g_{\theta}(t) = f(t\cos\theta, t\sin\theta).$$

Show that $g_{\theta}(0) = 0$, $g'_{\theta}(0) = 0$, $g''_{\theta}(0) = 2$. Each g_{θ} has therefore a strict local minimum at t = 0. In other words, the restriction of f to each line through (0,0) has a strict local minimum at (0,0).

(c) Show that (0,0) is nevertheless not a local minimum for f, since $f(x,x^2) = -x^4$.

Proof of (a).

(1) Since $t^2 \ge 0$ for all $t \in \mathbb{R}^1$,

$$(x^4 + y^2)^2 - 4x^4y^2 = (x^4 - y^2)^2 \ge 0.$$

Hence $4x^4y^2 \le (x^4 + y^2)^2$.

(2) f(x,y) is continuous at $(x,y) \neq (0,0)$. Besides,

$$|f(x,y)| = \left| x^2 + y^2 - 2x^2y - \frac{4x^6y^2}{(x^4 + y^2)^2} \right|$$

$$\leq |x^2| + |y^2| + |2x^2y| + |x^2| \left| \frac{4x^4y^2}{(x^4 + y^2)^2} \right|$$

$$\leq |x^2| + |y^2| + |2x^2y| + |x^2|.$$

Hence $|x^2| + |y^2| + |2x^2y| + |x^2| \to 0$ as $(x, y) \to (0, 0)$, or

$$\lim_{(x,y)\to(0,0)} |f(x,y)| = 0 = f(0,0),$$

or $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$, or f(x,y) is continuous at (0,0).

Proof of (b).

(1) $g_{\theta}(t) = \begin{cases} t^2 - 2t^3 \cos^2 \theta \sin \theta - \frac{4t^4 \cos^6 \theta \sin^2 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^2} & \text{if } t \neq 0, \\ 0 & \text{if } t = 0. \end{cases}$

(Note that $\frac{4t^4\cos^6\theta\sin^2\theta}{(t^2\cos^4\theta+\sin^2\theta)^2}$ is undefined as t=0 and $\sin\theta=0$.)

- (2) $g_{\theta}(0) = 0$ by definition.
- (3) Show that $g'_{\theta}(0) = 0$ for any $\theta \in [0, 2\pi]$. If $\sin \theta \neq 0$ $(\theta \neq 0, \pi, 2\pi)$, then

$$g_{\theta}'(0) = \lim_{t \to 0} \frac{t^2 - 2t^3 \cos^2 \theta \sin \theta - \frac{4t^4 \cos^6 \theta \sin^2 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^2} - 0}{t}$$
$$= \lim_{t \to 0} \left(t - 2t^2 \cos^2 \theta \sin \theta - \frac{4t^3 \cos^6 \theta \sin^2 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^2} \right)$$
$$= 0.$$

If $\sin \theta = 0$, then

$$g'_{\theta}(0) = \lim_{t \to 0} \frac{t^2 - 0}{t} = \lim_{t \to 0} t = 0.$$

(4) Combine (3) and a direct calculation for the case $t \neq 0$, we have

$$g_{\theta}'(t) = \begin{cases} 2t - 6t^2 \cos^2 \theta \sin \theta - \frac{16t^3 \cos^6 \theta \sin^4 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^3} & \text{if } t \neq 0, \\ 0 & \text{if } t = 0. \end{cases}$$

(5) Show that $g''_{\theta}(0) = 2$ for any $\theta \in [0, 2\pi]$. If $\sin \theta \neq 0$ $(\theta \neq 0, \pi, 2\pi)$, then

$$g_{\theta}''(0) = \lim_{t \to 0} \frac{2t - 6t^2 \cos^2 \theta \sin \theta - \frac{16t^3 \cos^6 \theta \sin^4 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^3} - 0}{t}$$
$$= \lim_{t \to 0} \left(t - 6t \cos^2 \theta \sin \theta - \frac{16t^2 \cos^6 \theta \sin^4 \theta}{(t^2 \cos^4 \theta + \sin^2 \theta)^3} \right)$$
$$= 2$$

If $\sin \theta = 0$, then

$$g_{\theta}''(0) = \lim_{t \to 0} \frac{2t - 0}{t} = \lim_{t \to 0} 2 = 2.$$

(6) Since $g_{\theta}''(0) > 0$ and $g_{\theta}'(0) = 0$, g_{θ} has a strict local minimum at t = 0. As θ is fixed, f is restricted to some line through (0,0). Hence, such restriction of f has a strict local minimum at t = 0.

Proof of (c). Since $f(x, x^2) = -x^4 \le 0 = f(0, 0)$ in any open neighborhood of (0, 0), f(0, 0) = 0 cannot be a local minimum for f. \square

Exercise 9.16. Show that the continuity of f' at the point a is needed in the inverse function theorem, even in the case n = 1: If

$$f(t) = t + 2t^2 \sin\frac{1}{t}$$

for $t \neq 0$, and f(0) = 0, then f'(0) = 1, f' is bounded in (-1,1), but f is not one-to-one in any neighborhood of 0.

Proof.

(1) Show that

$$f'(t) = \begin{cases} 1 + 4t \sin \frac{1}{t} - 2\cos \frac{1}{t} & \text{if } t \neq 0, \\ 1 & \text{if } t = 0. \end{cases}$$

It suffices to show that f'(0) = 1. In fact,

$$f'(0) = \lim_{t \to 0} \frac{t + 2t^2 \sin\frac{1}{t} - 0}{t - 0} = \lim_{t \to 0} \left(1 + 2t \sin\frac{1}{t} \right) = 1$$

(since $\sin \frac{1}{t}$ is bounded and $2t \to 0$ as $t \to 0$).

Note. f'(t) is not continuous at t = 0.

(2) Show that f' is bounded in (-1,1).

$$|f'(t)| \le 1 + 4|t| \left| \sin \frac{1}{t} \right| + 2 \left| \cos \frac{1}{t} \right| \le 1 + 4 + 2 = 7$$

if $t \neq 0$. Hence f' is bounded by 7 in (-1, 1).

(3) Show that f is not one-to-one in any neighborhood of 0. Take

$$x_n = \frac{1}{2n\pi}$$
 and $y_n = \frac{1}{2n\pi + \pi}$

for n = 1, 2, 3, ... So that

$$f'(x_n) = -1 < 0$$
 and $f'(y_n) = 3 > 0$.

Since f'(t) is continuous if $t \neq 0$, there exists $\xi_n \in (y_n, x_n)$ such that $f'(\xi_n) = 0$ (Theorem 4.23). Then Theorem 5.11 implies that f has a local maximum at ξ_n , that is, f is not one-to-one in the interval $[y_n, x_n]$ (by applying Theorem 4.23 again). Since $x_n \to 0$ and $y_n \to 0$ as $n \to \infty$, f is not one-to-one in any neighborhood of 0.

Exercise 9.17. Let $\mathbf{f} = (f_1, f_2)$ be the mapping of \mathbb{R}^2 into \mathbb{R}^2 given by

$$f_1(x,y) = e^x \cos y,$$
 $f_2(x,y) = e^x \sin y.$

- (a) What is the range of f?
- (b) Show that the Jacobian of \mathbf{f} is not zero at any point of \mathbb{R}^2 . Thus every point of \mathbb{R}^2 has a neighborhood in which \mathbf{f} is one-to-one. Nevertheless, \mathbf{f} is not one-to-one on \mathbb{R}^2 .
- (c) Put $\mathbf{a} = (0, \frac{\pi}{3})$, $\mathbf{b} = \mathbf{f}(\mathbf{a})$, let \mathbf{g} be the continuous inverse of \mathbf{f} , defined in a neighborhood of \mathbf{b} such that $\mathbf{g}(\mathbf{b}) = \mathbf{a}$. Find an explicit formula for \mathbf{g} , compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, and verify the formula

$$\mathbf{g}'(\mathbf{y}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{y}))\}^{-1}.$$

(d) What are the images under **f** of lines parallel to the coordinate axes?

Proof of (a).

- (1) The range of **f** is $\mathbb{R}^2 \{(0,0)\}$.
- (2) If $(a, b) \neq (0, 0)$, then $\mathbf{f} : (\log \sqrt{a^2 + b^2}, \operatorname{atan2}(b, a)) \mapsto (a, b)$ where

$$\operatorname{atan2}(b,a) = \begin{cases} \arctan\left(\frac{b}{a}\right) & \text{if } a > 0, \\ \arctan\left(\frac{b}{a}\right) + \pi & \text{if } a < 0 \text{ and } b \ge 0, \\ \arctan\left(\frac{b}{a}\right) - \pi & \text{if } a < 0 \text{ and } b < 0, \\ \frac{\pi}{2} & \text{if } a = 0 \text{ and } b > 0, \\ -\frac{\pi}{2} & \text{if } a = 0 \text{ and } b < 0. \end{cases}$$

(Or apply Theorem 8.7(d).)

(3) If (a,b) = (0,0), then for any $(x,y) \in \mathbb{R}^2$ we have $f_1(x,y)^2 + f_2(x,y)^2 = e^{2x} \neq 0$. So that there is no (x,y) such that $\mathbf{f}: (x,y) \mapsto (0,0)$.

Proof of (b).

(1)

$$[\mathbf{f}'(x,y)] = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}.$$

So f' is continuous and

$$J_{\mathbf{f}}(x,y) = \det \mathbf{f}'(x,y) = e^{2x} \neq 0.$$

- (2) Since $J_{\mathbf{f}}(x,y) \neq 0$, $\mathbf{f}'(x,y)$ is invertible (Theorem 9.36). So the inverse function theorem (Theorem 9.24) implies that there exists an open neighborhood B(x,y) of (x,y) such that \mathbf{f} is injective on B(x,y).
- (3) Note that

$$\mathbf{f}(0,0) = \mathbf{f}(0,2\pi) = (1,0).$$

So that \mathbf{f} is not injective on the whole \mathbb{R}^2 . (Injectivity of \mathbf{f} is a local property.)

Proof of (c).

- (1) If $\mathbf{a} = \left(0, \frac{\pi}{3}\right)$, then $\mathbf{b} = \mathbf{f}(\mathbf{a}) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
- (2) Similar to (2) in the proof of (a), define $\mathbf{g}: U \to \mathbb{R}^2$ by

$$\mathbf{g}(x,y) = \left(\log \sqrt{x^2 + y^2}, \arctan\left(\frac{y}{x}\right)\right).$$

where U is some open neighborhood of the point $\mathbf{b} \in \mathbb{R}^2$ described in (b). So \mathbf{g} is a continuous inverse of \mathbf{f} .

(3) Since

$$[\mathbf{f}'(x,y)] = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix},$$

$$[\mathbf{f}'(\mathbf{a})] = [\mathbf{f}'\left(0, \frac{\pi}{3}\right)] = \begin{bmatrix} e^0 \cos \frac{\pi}{3} & -e^0 \sin \frac{\pi}{3} \\ e^0 \sin \frac{\pi}{3} & e^0 \cos \frac{\pi}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

(4) Since

$$[\mathbf{g}'(x,y)] = \begin{bmatrix} \frac{x}{x^2+y^2} & \frac{y}{x^2+y^2} \\ \frac{-y}{x^2+y^2} & \frac{x}{x^2+y^2} \end{bmatrix},$$
$$[\mathbf{g}'(\mathbf{b})] = \left[\mathbf{g}'\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right] = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

Here we can see $[\mathbf{f}'(\mathbf{a})][\mathbf{g}'(\mathbf{b})] = [\mathbf{g}'(\mathbf{b})][\mathbf{f}'(\mathbf{a})] = 1$.

(5)

$$\begin{aligned} [\mathbf{g}'(\mathbf{y})] &= [\mathbf{g}'(\mathbf{f}(\mathbf{x}))] \\ &= [\mathbf{g}'(e^x \cos y, e^x \sin y)] \\ &= \left[\frac{e^x \cos y}{e^{2x}} \quad \frac{e^x \sin y}{e^{x^2}} \right] \\ &= \left[\frac{e^{-x} \cos y}{e^{2x}} \quad \frac{e^{-x} \sin y}{e^{2x}} \right] \\ &= \left[\frac{e^{-x} \cos y}{-e^{-x} \sin y} \quad e^{-x} \cos y \right], \end{aligned}$$

and

$$[\mathbf{f}'(\mathbf{g}(\mathbf{y}))] = [\mathbf{f}'(\mathbf{x})] = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}.$$

Note that

$$\begin{bmatrix} e^{-x}\cos y & e^{-x}\sin y \\ -e^{-x}\sin y & e^{-x}\cos y \end{bmatrix} \begin{bmatrix} e^x\cos y & -e^x\sin y \\ e^x\sin y & e^x\cos y \end{bmatrix} = 1.$$

Therefore

$$\mathbf{g}'(\mathbf{y}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{y}))\}^{-1}$$

on $\mathbf{g}(U)$.

Proof of (d).

(1) The case $L_r = \{(x, y) \in \mathbb{R}^2 : x = r\}$ parallel to y-axis where $r \in \mathbb{R}^1$ is constant. The image under \mathbf{f} is

$$\mathbf{f}(L_r) = \{ (e^r \cos y, e^r \sin y) \in \mathbb{R}^2 : y \in \mathbb{R}^1 \}$$
$$= \{ (s, t) \in \mathbb{R}^2 : s^2 + t^2 = (e^r)^2 \},$$

a circle which is centered at the origin $(0,0) \in \mathbb{R}^2$ with radius $e^r > 0$.

(2) The case $L_{\theta} = \{(x, y) \in \mathbb{R}^2 : y = \theta\}$ parallel to x-axis where $\theta \in \mathbb{R}^1$ is constant. The image under **f** is

$$\mathbf{f}(L_{\theta}) = \{ (e^x \cos \theta, e^x \sin \theta) \in \mathbb{R}^2 : x \in \mathbb{R}^1 \}$$
$$= \{ (y \cos \theta, y \sin \theta) \in \mathbb{R}^2 : y > 0 \},$$

which is a ray from the origin (0,0) (not included) to the infinity passing through a point $(\cos \theta, \sin \theta)$ in the unit circle.

Exercise 9.18. Answer analogous questions for the mapping defined by

$$u = x^2 - y^2, \qquad v = 2xy.$$

Outline. Let $\mathbf{f}(x, y) = (u, v) = (x^2 - y^2, 2xy)$.

- (a) What is the range of **f**?
- (b) Show that the Jacobian of \mathbf{f} is not zero at any point of $\mathbb{R}^2 \{(0,0)\}$. Thus every point of $\mathbb{R}^2 \{(0,0)\}$ has a neighborhood in which \mathbf{f} is one-to-one. Nevertheless, \mathbf{f} is not one-to-one on $\mathbb{R}^2 \{(0,0)\}$.

(c) Put $\mathbf{a} = (1,1)$, $\mathbf{b} = \mathbf{f}(\mathbf{a})$, let \mathbf{g} be the continuous inverse of \mathbf{f} , defined in a neighborhood of \mathbf{b} such that $\mathbf{g}(\mathbf{b}) = \mathbf{a}$. Find an explicit formula for \mathbf{g} , compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, and verify the formula

$$\mathbf{g}'(\mathbf{y}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{y}))\}^{-1}.$$

(d) What are the images under **f** of lines parallel to the coordinate axes?

Proof of (a). Show that the range of \mathbf{f} is \mathbb{R}^2 . Clearly, f(0,0) = (0,0). If $(a,b) \neq (0,0)$, then

$$\mathbf{f}: \left(\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}, \operatorname{sgn}(b)\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}},\right) \mapsto (a,b).$$

Proof of (b).

(1)

$$[\mathbf{f}'(x,y)] = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}.$$

So f' is continuous and

$$J_{\mathbf{f}}(x,y) = \det \mathbf{f}'(x,y) = 4(x^2 + y^2) \neq 0$$

if $(x, y) \neq (0, 0)$.

- (2) Since $J_{\mathbf{f}}(x,y) \neq 0$ if $(x,y) \neq (0,0)$, $\mathbf{f}'(x,y)$ is invertible if $(x,y) \neq (0,0)$ (Theorem 9.36). So the inverse function theorem (Theorem 9.24) implies that there exists an open neighborhood B(x,y) of $(x,y) \neq (0,0)$ such that \mathbf{f} is injective on B(x,y).
- (3) Note that

$$\mathbf{f}(1,0) = \mathbf{f}(-1,0) = (1,0).$$

So that **f** is not injective on the whole $\mathbb{R}^2 - \{(0,0)\}$. (Injectivity of **f** is a local property.)

Proof of (c).

- (1) If $\mathbf{a} = (1, 1)$, then $\mathbf{b} = \mathbf{f}(\mathbf{a}) = (0, 2)$.
- (2) Similar to (2) in the proof of (a), define $\mathbf{g}: U \to \mathbb{R}^2$ by

$$\mathbf{g}(x,y) = \left(\sqrt{\frac{\sqrt{x^2 + y^2} + x}{2}}, \sqrt{\frac{\sqrt{x^2 + y^2} - x}{2}}, \right),$$

where U is some open neighborhood of the point $\mathbf{b} \in \mathbb{R}^2 - \{(0,0)\}$ described in (b). So \mathbf{g} is a continuous inverse of \mathbf{f} .

(3) Since

$$[\mathbf{f}'(x,y)] = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix},$$

$$[\mathbf{f}'(\mathbf{a})] = \begin{bmatrix} \mathbf{f}'(1,1) \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}.$$

(4) Since

$$[\mathbf{g}'(x,y)] = \frac{1}{2\sqrt{x^2 + y^2}} \begin{bmatrix} \sqrt{\frac{\sqrt{x^2 + y^2} + x}{2}} & \sqrt{\frac{\sqrt{x^2 + y^2} - x}{2}} \\ -\sqrt{\frac{\sqrt{x^2 + y^2} - x}{2}} & \sqrt{\frac{x^2 + y^2}{2} + x} \end{bmatrix},$$
$$[\mathbf{g}'(\mathbf{b})] = [\mathbf{g}'(0,2)] = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

Here we can see $[\mathbf{f}'(\mathbf{a})][\mathbf{g}'(\mathbf{b})] = [\mathbf{g}'(\mathbf{b})][\mathbf{f}'(\mathbf{a})] = 1$.

(5)

$$\begin{aligned} [\mathbf{g}'(\mathbf{y})] &= [\mathbf{g}'(\mathbf{f}(\mathbf{x}))] \\ &= [\mathbf{g}'(x^2 - y^2, 2xy)] \\ &= \begin{bmatrix} \frac{x}{2(x^2 + y^2)} & \frac{y}{2(x^2 + y^2)} \\ -\frac{y}{2(x^2 + y^2)} & \frac{x}{2(x^2 + y^2)} \end{bmatrix}, \end{aligned}$$

and

$$[\mathbf{f}'(\mathbf{g}(\mathbf{y}))] = [\mathbf{f}'(\mathbf{x})] = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}.$$

Note that

$$\begin{bmatrix} \frac{x}{2(x^2+y^2)} & \frac{y}{2(x^2+y^2)} \\ -\frac{y}{2(x^2+y^2)} & \frac{x}{2(x^2+y^2)} \end{bmatrix} \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix} = 1.$$

Therefore

$$\mathbf{g}'(\mathbf{y}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{y}))\}^{-1}$$

on $\mathbf{g}(U)$.

Proof of (d).

(1) The case $L_{\alpha}=\{(x,y)\in\mathbb{R}^2:x=\alpha\}$ parallel to y-axis where $\alpha\in\mathbb{R}^1$ is constant. If $\alpha=0$, then

$$\mathbf{f}(L_0) = \{(-y^2, 0) \in \mathbb{R}^2 : y \in \mathbb{R}^1\} = \{(-t, 0) \in \mathbb{R}^2 : t \in \mathbb{R}^1, t \ge 0\}$$

is a ray from the origin (0,0) (included) to the infinity $(-\infty,0)$. If $\alpha \neq 0$, then

$$\mathbf{f}(L_{\alpha}) = \{(\alpha^2 - y^2, 2\alpha y) \in \mathbb{R}^2 : y \in \mathbb{R}^1\}$$
$$= \left\{ (s, t) \in \mathbb{R}^2 : s = \alpha^2 - \frac{t^2}{4\alpha^2} \right\},$$

which is a parabola.

(2) The case $L_{\beta} = \{(x, y) \in \mathbb{R}^2 : y = \beta\}$ parallel to x-axis where $\beta \in \mathbb{R}^1$ is constant. If $\beta = 0$, then

$$\mathbf{f}(L_0) = \{(x^2, 0) \in \mathbb{R}^2 : x \in \mathbb{R}^1\} = \{(t, 0) \in \mathbb{R}^2 : t \in \mathbb{R}^1, t \ge 0\}$$

is a ray from the origin (0,0) (included) to the infinity $(\infty,0)$. If $\beta \neq 0$, then

$$\mathbf{f}(L_{\beta}) = \{ (x^2 - \beta^2, 2\beta x) \in \mathbb{R}^2 : x \in \mathbb{R}^1 \}$$
$$= \left\{ (s, t) \in \mathbb{R}^2 : s = \frac{t^2}{4\beta^2} - \beta^2 \right\},$$

which is a parabola.

Exercise 9.19. Show that the system of equations

$$3x + y - z + u^{2} = 0$$
$$x - y + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

can solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

Proof (Brute-force).

(1) Denote

$$3x + y - z + u^2 = 0 (I)$$

$$x - y + 2z + u = 0 \tag{II}$$

$$2x + 2y - 3z + 2u = 0 (III)$$

So (I) - 3(II) implies that

$$4y + u(u - 3) = 7z, (IV)$$

and (III) - 2(II) implies that

$$4y = 7z. (V)$$

By (IV)(V), we have u(u-3)=0. Hence u=0 or u=3 in any case.

(2) Show that (I)(II)(III) can be solve for x, y, u in terms of z. (V) implies that $y = \frac{7z}{4}$. Hence

$$(x,y,u) = \left(-\frac{z}{4}, \frac{7z}{4}, 0\right), \left(-\frac{z}{4} - 3, \frac{7z}{4}, 3\right).$$

(3) Show that (I)(II)(III) can be solve for x, z, u in terms of y.

$$(x, z, u) = \left(-\frac{y}{7}, \frac{4y}{7}, 0\right), \left(-\frac{y}{7} - 3, \frac{4y}{7}, 3\right).$$

(4) Show that (I)(II)(III) can be solve for y, z, u in terms of x.

$$(y, z, u) = (-7x, -4x, 0), (-7x - 21, -4x - 12, 3).$$

(5) Show that (I)(II)(III) can not be solve for x, y, z in terms of u. Actually,

$$(x, y, z) = (-t - u, 7t, 4t)$$

for all $t \in \mathbb{R}^1$.

Proof (The implicit function theorem).

(1) Define **f** be a \mathscr{C}' -mapping of \mathbb{R}^{3+1} into \mathbb{R}^3 by

$$\mathbf{f}(x, y, z, u) = (3x + y - z + u^2, x - y + 2z + u, 2x + 2y - 3z + 2u).$$

Note that $\mathbf{f}(0,0,0,0) = \mathbf{0}$ and $\mathbf{f}(-3,0,0,3) = \mathbf{0}$.

(2) Since

$$[\mathbf{f}'(x,y,z,u)] = \begin{bmatrix} 3 & 1 & -1 & 2u \\ 1 & -1 & 2 & 1 \\ 2 & 2 & -3 & 2 \end{bmatrix},$$

f' is continuous,

$$[\mathbf{f}'(0,0,0,0)] = \begin{bmatrix} 3 & 1 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 2 & 2 & -3 & 2 \end{bmatrix},$$

and

$$[\mathbf{f}'(-3,0,0,3)] = \begin{bmatrix} 3 & 1 & -1 & 6 \\ 1 & -1 & 2 & 1 \\ 2 & 2 & -3 & 2 \end{bmatrix}.$$

(3) The submatrix

$$[\mathbf{f}'(0,0,0,0)]_x = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & -3 & 2 \end{bmatrix}$$

is invertiable since its determinant is $3 \neq 0$. By the implicit function theorem (Theorem 9.28), the system can be solved for y, z, u in terms of x. Similar arguments to $[\mathbf{f}'(0,0,0,0)]_y$, $[\mathbf{f}'(0,0,0,0)]_z$, $[\mathbf{f}'(-3,0,0,3)]_y$, and $[\mathbf{f}'(-3,0,0,3)]_z$.

(4) Note that $[\mathbf{f}'(0,0,0,0)]_u$ and $[\mathbf{f}'(-3,0,0,3)]_u$ are not invertible, we cannot apply the implicit function theorem (Theorem 9.28). We need to show by brute-force in this case.

Exercise 9.20. Take n = m = 1 in the implicit function theorem, and interpret the theorem (as well as its proof) graphically.

Implicit function theorem (for n=m=1). Let f(x,y) be a \mathscr{C}' -mapping of an open set $E\subseteq \mathbb{R}^2$ into \mathbb{R} , such that f(a,b)=0 for some point $(a,b)\in E$. Assume that

$$D_1 f(a,b) \neq 0.$$

Then there exist open sets $U \subseteq E$ and $W \subseteq \mathbb{R}^1$, with $(a, b) \in U$ and $b \in W$, having the following property:

To every $y \in W$ corresponds a unique x such that

$$(x,y) \in U$$
 and $f(x,y) = 0$.

If this x is defined to be g(y), then g is a \mathscr{C}' -mapping of W into \mathbb{R}^1 , g(b) = a,

$$f(g(y), y) = 0 \qquad (y \in W),$$

and

$$g'(b) = -\frac{D_2 f(a, b)}{D_1 f(a, b)}.$$

Proof.

(1) In the notations of Exercise 4.6, define the graph of f by the set

$$S = \{(x, y) \in E : f(x, y) = 0\}.$$

(2) Consider the graph S. As $D_1 f(a,b) \neq 0$ and $f(x,y) \in \mathscr{C}'$, there are an open neighborhood $U \subseteq E$ of (a,b) and an open neighborhood W of b such that $x \mapsto f(x,y)$ is strictly monotonic whenever $y \in W$. "Graphically" by the monotony of f(x,y), for any fixed y there is a unique x such that f(x,y) = 0.

(3) "Graphically" the tangent line passing through (a, b) is

$$D_1 f(a,b)(x-a) + D_2 f(a,b)(y-b) = 0.$$

Thus
$$g'(b) = -\frac{D_2 f(a,b)}{D_1 f(a,b)}$$
 if $D_1 f(a,b) \neq 0$.

Exercise 9.21. Define f in \mathbb{R}^2 by

$$f(x,y) = 2x^3 - 3x^2 + 2y^3 + 3y^2.$$

- (a) Find the four points in \mathbb{R}^2 at which the gradient of f is zero. Show that f has exactly one local maximum and one local minimum in \mathbb{R}^1 .
- (b) Let S be the set of all $(x,y) \in \mathbb{R}^2$ at which f(x,y) = 0. Find those points of S that have no neighborhoods in which the equation f(x,y) = 0 can be solved for y in terms of x (or for x in terms of y). Describe S as precisely as you can.

Proof of (a).

(1)

$$(\nabla f)(x,y) = ((D_1 f)(x,y), (D_2 f)(x,y)) = (6x(x-1), 6y(y+1)).$$

So
$$(\nabla f)(x,y) = 0$$
 if and only if $(x,y) = (0,0), (0,-1), (1,0), (1,-1)$.

- (2) $x \mapsto 2x^3 3x^2$ have one local maximum at x = 0 and one local minimum at x = 1. $y \mapsto 2y^3 + 3y^2$ have one local maximum at y = -1 and one local minimum at y = 0.
- (3) Hence $f:(x,y)\mapsto to(2x^3-3x^2)+(2y^3+3y^2)$ have one local maximum at (x,y)=(0,-1) and one local minimum at (x,y)=(1,0). Other two points (0,0) and (1,-1) are saddle points.

Proof of (b).

(1) By definition,

$$S = \{f(x,y) = 0\}$$

$$= \{(x+y)(2x^2 - 2xy - 3x + 2y^2 + 3y) = 0\}$$

$$= \{x+y=0\} \cup \{2x^2 - 2xy - 3x + 2y^2 + 3y = 0\},$$

which is a union of a line $L = \{x + y = 0\}$ and an ellipse $E = \{2x^2 - 2xy - 3x + 2y^2 + 3y = 0\}$. The intersection of $L \cap E$ is $\{(0,0), (1,-1)\}$, and it suggested that f(x,y) = 0 cannot be solved for y in terms of x (or for x in terms of y) on $L \cap E = \{(0,0), (1,-1)\}$.

- (2) By (1) in the proof of (a) and the implicit function theorem (Theorem 9.28), f(x,y) = 0 can be solved for y in terms of x (or for x in terms of y) whenever $(D_2 f)(x,y) \neq 0$ (or $(D_1 f)(x,y) \neq 0$).
- (3) Show that f(x,y) = 0 cannot be solved for y in terms of x if $(D_2 f)(x,y) = 0$. $(D_2 f)(x,y) = 0$ if and only if

$$(x,y) \in T = \left\{ (0,0), \left(\frac{3}{2},0\right), (1,-1), \left(-\frac{1}{2},-1\right) \right\}.$$

Solve y to get

$$y = -x$$

$$y = \frac{1}{4} \left(2x - 3 + \sqrt{-3(2x+1)(2x-3)} \right)$$

$$y = \frac{1}{4} \left(2x - 3 - \sqrt{-3(2x+1)(2x-3)} \right)$$

In any case, y can not be uniquely determined by x for any $(x,y) \in T$. ("Graphically" we can see the set S to get the conclusion. Explicitly, we can take the limit to each expression (as $(s,t) \to (x,y) \in T$), and observe that not all limits are equal.)

(4) Show that f(x,y) = 0 cannot be solved for x in terms of y if $(D_1f)(x,y) = 0$. $(D_1f)(x,y) = 0$ if and only if

$$(x,y) \in T = \left\{ (0,0), \left(0, -\frac{3}{2}\right), (1,-1), \left(1, \frac{1}{2}\right) \right\}.$$

Similar to (3), x can not be uniquely determined by y for any $(x, y) \in T$.

Supplement (Second-derivative test for extrema).

(1) (Theorem 13.11 in Tom M. Apostol, Mathematical Analysis, 2nd edition). Let f be a real-valued function with continuous second-order partial derivatives at a stationary point $\mathbf{a} \in \mathbb{R}^2$. Let

$$A = (D_{11}f)(\mathbf{a}), \qquad B = (D_{12}f)(\mathbf{a}), \qquad C = (D_{22}f)(\mathbf{a}),$$

and let

$$\Delta = \det \begin{bmatrix} A & B \\ B & C \end{bmatrix} = AC - B^2.$$

Then we have:

- (a) If $\Delta > 0$ and A > 0, f has a local minimum at ${\bf a}$.
- (b) If $\Delta > 0$ and A < 0, f has a local maximum at **a**.

- (c) If $\Delta < 0$, f has a saddle point at **a**.
- (2) We can give another proof of (a) by the second-derivative test for extrema.

Exercise 9.22. Given a similar discussion for

$$f(x,y) = 2x^3 + 6xy^2 - 3x^2 + 3y^2.$$

Outline.

- (a) Find the two points in \mathbb{R}^2 at which the gradient of f is zero. Show that f has one saddle point and one local minimum in \mathbb{R}^1 .
- (b) Let S be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Find those points of S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for y in terms of x (or for x in terms of y). Describe S as precisely as you can.

Proof of (a).

(1)

$$(\nabla f)(x,y) = ((D_1 f)(x,y), (D_2 f)(x,y)) = (6(x^2 + y^2 - x), 6y(2x + 1)).$$

So $(\nabla f)(x, y) = 0$ if and only if (x, y) = (0, 0) or (1, 0).

- (2) Show that f has one saddle point at (x,y) = (0,0). Since $f(x,x) = 8x^3$, $f(x,x) \le 0 = f(0,0)$ if x < 0 and $f(x,x) \ge 0 = f(0,0)$ if x > 0. Hence (x,y) is not a local maximum or a local minimum for f.
- (3) Show that f has one local minimum at (x,y) = (1,0). Write

$$f(x,y) = 2x^3 - 3x^2 + (6x+3)y^2.$$

Note that $2x^3 - 3x^2 \ge -1$ and $(6x+3)y^2 \ge 0$ in some open neighborhood $B\left((1,0);\frac{1}{64}\right)$ of (1,0). Therefore f has one local minimum at (x,y)=(1,0).

Proof of (b).

- (1) S is a folium of Descartes with a double point at the origin and asymptote $x + \frac{1}{2} = 0$.
 - whenever $(D_2 f)(x, y) \neq 0$ (or $(D_1 f)(x, y) \neq 0$).

(3) Show that f(x,y) = 0 cannot be solved for y in terms of x if $(D_2 f)(x,y) = 0$. $(D_2 f)(x,y) = 0$ if and only if

$$(x,y) \in T = \left\{ (0,0), \left(\frac{3}{2},0\right) \right\}.$$

Solve y to get

$$y = \sqrt{\frac{-x^2(2x-3)}{3(2x+1)}}$$
$$y = -\sqrt{\frac{-x^2(2x-3)}{3(2x+1)}}$$

In any case, y can not be uniquely determined by x for any $(x,y) \in T$. ("Graphically" we can see the set S to get the conclusion. Explicitly, we can take the limit to each expression (as $(s,t) \to (x,y) \in T$), and observe that two limits are different.)

(4) Show that f(x,y) = 0 cannot be solved for x in terms of y if $(D_1f)(x,y) = 0$. $(D_1f)(x,y) = 0$ if and only if

$$(x,y) \in T = \left\{ (0,0), \pm \sqrt{-\frac{3}{4} + \sqrt{\frac{3}{4}}} \right\}.$$

Similar to (3), x can not be uniquely determined by y for any $(x,y) \in T$. That is,

$$x = g(y)$$

$$= \frac{1 - 4y^{2}}{2} \left\{ 2\sqrt{16y^{6} + 24y^{4} - 3y^{2}} - 12y^{2} + 1 \right\}^{-\frac{1}{3}}$$

$$+ \left\{ 2\sqrt{16y^{6} + 24y^{4} - 3y^{2}} - 12y^{2} + 1 \right\}^{\frac{1}{3}} + 1.$$

So as $y \neq 0$, x = g(y) = g(-y). The expression x = g(y) is not unique.

Exercise 9.23. Define f in \mathbb{R}^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$

Show that f(0,1,-1) = 0, $(D_1 f)(0,1,-1) \neq 0$, and that there exists therefore a differentiable function g in some neighborhood of (1,-1) in \mathbb{R}^2 , such that g(1,-1) = 0 and

$$f(g(y_1, y_2), y_1, y_2) = 0.$$

Find $(D_1g)(1,-1)$ and $(D_2g)(1,-1)$.

Proof.

(1) Note that f(0,1,-1) = 0. Since

$$[\nabla f((x, y_1, y_2)]_{(x, y_1, y_2) = (0, 1, -1)} = [(2xy_1 + e^x, x^2, 1)]_{(x, y_1, y_2) = (0, 1, -1)}$$
$$= (1, 0, 1),$$

 $A_x = (1)$ and $A_y = (0,1)$. By the implicit function theorem (Theorem 9.28), there exists a \mathscr{C}' function in some open neighborhood of (1,-1) such that g(1,-1)=0 and $f(g(y_1,y_2),y_1,y_2)=0$.

(2) Besides, $g'(1,-1) = -(A_x)^{-1}A_y = (0,-1)$ implies that $(D_1g)(1,-1) = 0$ and $(D_2g)(1,-1) = -1$.

Exercise 9.24. For $(x, y) \neq (0, 0)$, define $\mathbf{f} = (f_1, f_2)$ by

$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \qquad f_2(x,y) = \frac{xy}{x^2 + y^2}.$$

Compute the rank of f'(x,y), and find the range of f.

Proof.

(1) $[\mathbf{f}'(x,y)] = \begin{bmatrix} \frac{4xy^2}{(x^2+y^2)^2} & \frac{4x^2y}{(x^2+y^2)^2} \\ -\frac{y(x^2-y^2)}{(x^2+y^2)^2} & \frac{x(x^2-y^2)}{(x^2+y^2)^2} \end{bmatrix}.$

(2) Show that $\operatorname{rank}([\mathbf{f}'(x,y)]) \neq 2$. It is equivalent to show that $\det[\mathbf{f}'(x,y)] = 0$. Actually,

$$\det[\mathbf{f}'(x,y)] = \frac{4xy^2}{(x^2+y^2)^2} \cdot \frac{x(x^2-y^2)}{(x^2+y^2)^2} - \frac{4x^2y}{(x^2+y^2)^2} \cdot \frac{-y(x^2-y^2)}{(x^2+y^2)^2} = 0.$$

(3) Show that $rank([\mathbf{f}'(x,y)]) \neq 0$.

$$\begin{aligned} [\mathbf{f}'(x,y)] \begin{bmatrix} 1\\0 \end{bmatrix} &= \begin{bmatrix} \frac{4xy^2}{(x^2+y^2)^2} & \frac{4x^2y}{(x^2+y^2)^2}\\ \frac{-y(x^2-y^2)}{(x^2+y^2)^2} & \frac{x(x^2-y^2)}{(x^2+y^2)^2} \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{4xy^2}{(x^2+y^2)^2}\\ \frac{-y(x^2-y^2)}{(x^2+y^2)^2} \end{bmatrix} \\ &\neq \begin{bmatrix} 0\\0 \end{bmatrix} \end{aligned}$$

for all $(x, y) \in \mathbb{R}^2 - \{(0, 0)\}.$

- (4) Since the rank of \mathbf{f}' is the dimension of the subspace $\mathscr{R}(\mathbf{f}')$ in \mathbb{R}^2 , rank($[\mathbf{f}'(x,y)]$) = 0,1,2. By (2)(3), rank($[\mathbf{f}'(x,y)]$) = 1.
- (5) Show that the range of f is an ellipse

$$E = \{(s, t) \in \mathbb{R}^2 : s^2 + 4t^2 = 1\}.$$

- (a) Clearly, $(f_1(x, y), f_2(x, y)) \in E$.
- (b) Conversely, for any $(s,t) \in E$ write

$$s = \cos \theta$$
 and $t = \frac{1}{2}\sin \theta$

for some unique $\theta \in [0, 2\pi)$ (Theorem 8.7(d)). By the tangent half-angle formula,

$$s = \cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} \quad \text{and} \quad t = \frac{1}{2} \sin \theta = \frac{\tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}.$$

Thus, there exists a point $(1, \tan \frac{\theta}{2}) \in \mathbb{R}^2$ such that

$$f:\left(1,\tan\frac{\theta}{2}\right)\mapsto (s,t)\in E.$$

(c) Or we can do a linear projection from a given point P=(1,0), say for any $\lambda \in \mathbb{R}^1$ we define a line through P with slope $-\lambda$ meeting E in a further point

$$Q_{\lambda} = \left(\frac{\lambda^2 - 1}{\lambda^2 + 1}, \frac{\lambda}{\lambda^2 + 1}\right).$$

Might define $Q_{\infty} = P$. Graphically and informally,

$${Q_{\lambda}: \lambda \in \mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup {\infty}} = E.$$

Therefore, f(1,0) = P and $f(\lambda, 1) \in E - \{P\}$.

By (a)(b), the range of \mathbf{f} is exactly the same as an ellipse E.

Exercise 9.25. ...

Proof.

- (1)
- (2)

Exercise 9.26. Show that the existence (and even the continuity) of $D_{12}f$ does not imply the existence of D_1f . For example, let f(x,y) = g(x), where g is nowhere differentiable.

Proof.

(1) Consider the function g defined on \mathbb{R}^1 by

$$g(x) = \begin{cases} 0 & (x \text{ irrational}), \\ \frac{1}{n} & (x = \frac{m}{n}). \end{cases}$$

g(x) is nowhere differentiable by (1) in the note of Exercise 4.18. Define f(x,y)=g(x) on \mathbb{R}^2 .

(2) $(D_1f)(x,y) = g'(x)$ does not exist on \mathbb{R}^2 . However, $(D_{12}f)(x,y) = (D_10)(x,y) = 0$ is continuous on \mathbb{R}^2 .

Note. Some nowhere differentiable functions.

- (1) Exercise 4.18.
- (2) Theorem 7.18.
- (3) (Weierstrass functions.)

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

where 0 < a < 1, b is a positive odd integer, and $ab > 1 + \frac{3}{2}\pi$.

(4)

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(n^2 \pi x).$$

(And so on.)

Exercise 9.27. Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

if $(x,y) \neq (0,0)$. Prove that

- (a) f, $D_1 f$, $D_2 f$ are continuous in \mathbb{R}^2 .
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous except at (0,0).
- (c) $(D_{12}f)(0,0) = 1$, and $(D_{21}f)(0,0) = -1$.

Proof of (a).

- (1) Show that f is continuous in \mathbb{R}^2 .
 - (a) Clearly, f(x,y) is continuous if $(x,y) \neq (0,0)$. So it suffices to show that

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0.$$

(b) Write $x = r \cos \theta$ and $y = r \sin \theta$ in the polar coordinates. (Here r > 0.) Hence

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
$$= \lim_{r\to 0} r^2 \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta)$$
$$= 0$$

since $\cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta)$ is bounded by 2.

- (2) Show that $D_1 f$ is continuous in \mathbb{R}^2 .
 - (a) $(x,y) \neq (0,0)$ implies that

$$(D_1 f)(x,y) = \frac{x^4 y + 4x^2 y^3 - y^5}{(x^2 + y^2)^2}.$$

Besides,

$$(D_1 f)(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0}$$
$$= \lim_{x \to 0} \frac{0}{x}$$
$$= 0.$$

In summary,

$$(D_1 f)(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{x^4 y + 4x^2 y^3 - y^5}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

(b) Clearly, $(D_1 f)(x, y)$ is continuous if $(x, y) \neq (0, 0)$. So it suffices to show that

$$\lim_{(x,y)\to(0,0)} (D_1 f)(x,y) = (D_1 f)(0,0) = 0.$$

(c) Similar to (1)(b). Write $x = r \cos \theta$ and $y = r \sin \theta$ in the polar coordinates. (Here r > 0.) Hence

$$\lim_{(x,y)\to(0,0)} (D_1 f)(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^4 y + 4x^2 y^3 - y^5}{(x^2 + y^2)^2}$$
$$= \lim_{r\to 0} r(\cos^4 \theta \sin \theta + 4\cos^2 \theta \sin^3 \theta - \sin^5 \theta)$$
$$= 0$$

since $\cos^4 \theta \sin \theta + 4 \cos^2 \theta \sin^3 \theta - \sin^5 \theta$ is bounded by 6.

- (3) Similar to (2). Show that D_2f is continuous in \mathbb{R}^2 .
 - (a) $(x,y) \neq (0,0)$ implies that

$$(D_2 f)(x,y) = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}.$$

Besides.

$$(D_2 f)(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0}$$
$$= \lim_{y \to 0} \frac{0}{y}$$
$$= 0.$$

In summary,

$$(D_2 f)(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

(b) Clearly, $(D_2 f)(x, y)$ is continuous if $(x, y) \neq (0, 0)$. So it suffices to show that

$$\lim_{(x,y)\to(0,0)} (D_2f)(x,y) = (D_2f)(0,0) = 0.$$

(c) Similar to (1)(b). Write $x = r \cos \theta$ and $y = r \sin \theta$ in the polar coordinates. (Here r > 0.) Hence

$$\lim_{(x,y)\to(0,0)} (D_2 f)(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^5 - 4x^3 y^2 - xy^4}{(x^2 + y^2)^2}$$
$$= \lim_{r\to 0} r(\cos^5 \theta - 4\cos^3 \theta \sin^2 \theta - \cos \theta \sin^4 \theta)$$
$$= 0$$

since $\cos^5 \theta - 4\cos^3 \theta \sin^2 \theta - \cos \theta \sin^4 \theta$ is bounded by 6.

Proof of (b).

- (1) Show that $D_{12}f$ exists at every point of \mathbb{R}^2 .
 - (a) $(x,y) \neq (0,0)$ implies that

$$(D_{12}f)(x,y) = (D_1D_2f)(x,y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}.$$

(b) Besides,

$$(D_{12}f)(0,0) = \lim_{x \to 0} \frac{(D_2f)(x,0) - (D_2f)(0,0)}{x - 0}$$
$$= \lim_{x \to 0} \frac{x}{x}$$
$$= 1.$$

In summary,

$$(D_{12}f)(x,y) = \begin{cases} 1 & \text{if } (x,y) = (0,0) \\ \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (2) Show that $D_{12}f$ is continuous except at (0,0).
 - (a) Clearly, $(D_{12}f)(x,y)$ is continuous if $(x,y) \neq (0,0)$. So it suffices to show that

$$\lim_{(x,y)\to(0,0)} (D_{12}f)(x,y)$$

does not exist.

(b) Take

$$\mathbf{p}_n = \left(\frac{1}{n}, 0\right)$$
 and $\mathbf{q}_n = \left(0, \frac{1}{n}\right)$

for n = 1, 2, 3, ... So $\lim \mathbf{p}_n = \lim \mathbf{q}_n = \mathbf{0}$,

$$\lim(D_{12}f)(\mathbf{p}_n) = 1$$
 and $\lim(D_{12}f)(\mathbf{q}_n) = -1$.

Hence $\lim_{(x,y)\to(0,0)} (D_{12}f)(x,y)$ does not exist.

- (3) Show that $D_{21}f$ exists at every point of \mathbb{R}^2 . Similar to (1).
 - (a) $(x,y) \neq (0,0)$ implies that

$$(D_{21}f)(x,y) = (D_2D_1f)(x,y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3},$$

which is the same as $(D_{12}f)(x,y)$.

(b) Besides,

$$(D_{21}f)(0,0) = \lim_{y \to 0} \frac{(D_1f)(0,y) - (D_1f)(0,0)}{y - 0}$$
$$= \lim_{y \to 0} \frac{-y}{y}$$
$$= -1.$$

In summary,

$$(D_{21}f)(x,y) = \begin{cases} -1 & \text{if } (x,y) = (0,0) \\ \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} & \text{if } (x,y) \neq (0,0). \end{cases}$$

(4) Show that $D_{21}f$ is continuous except at (0,0). Exactly the same as (2) since $(D_{21}f)(x,y) = (D_{12}f)(x,y)$ if $(x,y) \neq (0,0)$.

Proof of (c). See (2)(4) in the proof of (b). \square

Exercise 9.28. ...

Proof.

- (1)
- (2)

Exercise 9.29. ...

Proof.

- (1)
- (2)

Exercise 9.30. ...

Proof.

(1)

(2)

Exercise 9.31. ...

Proof.

- (1)
- (2)