Algebra II (ISIM), lista 13 (deklaracje 1.02.2022, ćwiczenia 2.02.2022)

Teoria: Postać normalna elementu k[x]/I. (–)Porządek dopuszczalny w zbiorze wieloindeksów. (–)Redukcja wielomianu modulo F. (–)Baza Gröbnera ideału $I \triangleleft k[\bar{x}]$: definicja, własności. (–)Charakteryzacja bazy Gröbnera przy pomocy S-wielomianów. (–)Algorytm Buchbergera. (–) oznacza, że dane zagadnienie nie obowiązuje na egzaminie i na kolokwiach.

R oznacza pierścień przemienny z $1 \neq 0$.

- 1. Obliczyć sumę i iloczyn danych elementów w podanych pierścieniach ilorazowych, w postaci normalnej.
 - (a) 3x + 4 + I i 5x 2 + I w $\mathbb{Q}[x]/I$, $I = (x^2 7)$.
 - (b) $x^2 + 3x + 1 + I$ i -2x + 4 + I w $\mathbb{Q}[x]/I$, gdzie $I = (x^3 + 2)$
 - (c) $x^2 + 1 + I$ i x + 1 + I w $\mathbb{Z}_2[x]/I$, $I = (x^3 + x + 1)$
 - (d) ax + b + I i cx + d + I w $\mathbb{R}[x]/I$, $I = (x^2 + 1)$, $a, b, c, d \in \mathbb{R}$
- 2. Załóżmy, że R' jest nadpierścieniem pierścienia R, $a \in R'$ oraz $I = \{f \in R[x] : f(a) = 0\}$. Dowieść, że $I \triangleleft R[x]$, $R[a] = \{f(a) : f \in R[x]\}$ jest podpierścieniem pierścienia R' (generowanym przez $R \cup \{a\}$) izomorficznym z R/I.
- 3. Wielomian $W(x) = x^3 + x + 1$ jest nierozkładalny w pierścieniu euklidesowym $\mathbb{Z}_2[x]$, zatem pierścień ilorazowy $\mathbb{Z}_2[x]/I$, gdzie I = (W), jest ciałem.
 - (a) Ile elementów ma to ciało?
 - (b) Obliczyć element odwrotny w ciele $\mathbb{Z}_2[x]/I$ do elementu x+1+I. (wsk: skorzystać z algorytmu Euklidesa).
 - (c) Korzystając z postaci normalnej elementu ciała $\mathbb{Z}_2[x]/I$ określić strukturę ciała w zbiorze 8-elementowym $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 4. To samo, co w zadaniu poprzednim, dla ciała 9-elementowego $\mathbb{Z}_3[x]/I$, gdzie $I=(x^2+1)$.
- 5. $\Phi: \mathbb{Q}[x] \to \mathbb{R}$ dane jest wzorem $\Phi(f) = f(\sqrt[3]{2})$. Udowodnić, że:
 - (a) Φ jest homomorfizmem pierścieni (bez rachunków!).
 - (b) $Im(\Phi) = \mathbb{Q}[\sqrt[3]{2}] := \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}.$
 - (c) $Ker(\Phi) = (x^3 2)$.
 - (d) Pierścień $\mathbb{Q}[\sqrt[3]{2}]$ jest ciałem izomorficznym z pierścieniem ilorazowym $\mathbb{Q}[x]/Ker(\Phi)$.
 - (e) Określamy $\Psi: \mathbb{Q}[x] \to \mathbb{C}$ wzorem $\Psi(f) = f(\alpha)$, gdzie $\alpha \in \mathbb{C} \setminus \mathbb{R}$ oraz $\alpha^3 = 2$. Udowodnić, że

$$Im(\Psi) = \mathbb{Q}[\alpha] := \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\}\$$

jest ciałem izomorficznym z ciałem $\mathbb{Q}[\sqrt[3]{2}]$.

6. Udowodnić istnienie poniższych izomorfizmów. Wsk: w każdym przypadku znaleźć epimorfizm pierścieni, którego jądrem jest odpowiedni ideał, skorzystać z

zsadniczego tweirdzenia o homomorfizmie pierścieni.

(a)
$$\mathbb{R}[x]/(x^2+5) \cong \mathbb{C}$$

(b)
$$-\mathbb{Z}[x]/(x^2+1) \cong \mathbb{Z}[i]$$

$$(b) \quad \mathbb{Z}[x]/(x+1) = \mathbb{Z}[t]$$

$$(c) - \mathbb{Q}[x]/(x^2 - 7) \cong \mathbb{Q}[\sqrt{7}] = \{a + b\sqrt{7} : a, b \in \mathbb{Q}\}$$

$$(d) \ \mathbb{Z}[x]/(2x - 1) \cong \mathbb{Z}[\frac{1}{2}].$$

(d)
$$\mathbb{Z}[x]/(2x-1) \cong \mathbb{Z}[\frac{1}{2}].$$

$$(e)-\mathbb{Z}_{36}/(4)\cong\mathbb{Z}_4$$

(f)
$$\mathbb{R}[x,y]/(x+y) \cong \mathbb{R}[y]$$

(g)
$$\mathbb{Z}[x]/(3, x+1) \cong \mathbb{Z}_3$$

(h)
$$\mathbb{Q}[x]/(x(x+1)) \cong \mathbb{Q} \times \mathbb{Q}$$

7. * Czy
$$\mathbb{Q}[x]/(x^2) \cong \mathbb{Q}[x]/(x(x+1))$$
?

- 8. Załóżmy, że \leq jest porządkiem dopuszczalnym na \mathbb{N}^n , $n \geq 0$.
 - (a) Udowodnić, że jeśli $\bar{\alpha}, \beta \in \mathbb{N}^n$ oraz $\alpha_i \leq \beta_i$ dla wszystkich i, to $\bar{\alpha} \leq \beta$.
 - (b) Udowodnić, że ≤ jest dobrym porządkiem.
 - (c)* Jaki jest największy typ porządkowy porządku dopuszczalnego na \mathbb{N}^n ?
 - $(d)^*$ Ile jest różnych porządków dopuszczalnych na \mathbb{N}^n ?
- 9. * Obliczyć bazę Gröbnera dla ideału $I = (x^2 y, xy 1) \triangleleft k[x, y]$ względem porządku leksykograficznego z y < x, zgodnie z algorytmem Buchbergera. Obliczyc ciąg ideałów generowanych przez wiodące wyrazy wielomianów bazy na każdym kroku dowodu.