Knowledge Discovery and Data Mining

Lab 5 Linear Regression

Xuan Song Songx@sustech.edu.cn

Topics

Scikit-learn

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 0.24

GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

• Dataset:

explanatory variables dependent variables

Х	У
24	21.54945
50	47.46446
15	17.21866
38	36.5864
87	87.28898
36	32.46387
12	10.7809
81	80.7634
25	24.61215
5	6.963319
16	11.23757

• Dataset:

explanatory variables

dependent variables

_		
	Х	У
	24	21.54945
	50	47.46446
	15	17.21866
	38	36.5864
	87	87.28898
	36	32.46387
	12	10.7809
	81	80.7634
	25	24.61215
	5	6.963319
	16	11.23757

$$y = wx + b$$

where

x: explanatory variable (feature)

y: dependent variable

w: slope coefficient for explanatory variable

b: y-intercept

• 1. Load training data and test data from csv files

 2. Data cleaning pandas.Dataframe.dropna()

• 3. Get explanatory variables and dependent variables from training data and test data.

For example, you can use $X_{train} = df.iloc[:, :-1].values.reshape(-1,1)$ to obtain the independent variables of training data.

• 4. Visualize training data to further understand data

```
import matplotlib.pyplot as plt
plt.figure(figsize=(16,9))
plt.scatter(X_train, Y_train, color='blue')
plt.show()
```


If you have any problems about the functions of matplotlib, you could refer to the following link: https://matplotlib.org/3.3.2/api/pyplot_summary.html

• 5. Build a linear regression model based on scikit-learn library.

```
from sklearn.linear_model import LinearRegression
LR_Model = LinearRegression()
```

• 6. Data fitting

LR_Model.fit(X_train, Y_train)

print(LR_Model.intercept_)
print(LR_Model.coef_)

w = 1.00065638b = -0.10726546

Y = 1.00065638 *X* -0.10726546

• 7. Visualization

You can use plt.plot(x, y) to plot the function Y = 1.00065638 X - 0.10726546.

• 8. Evaluation

```
from sklearn import metrics

Y_pred = LR_Model.predict(X_test)

# 用scikit-learn计算MSE
print("MSE ",metrics.mean_squared_error(Y_test, Y_pred))

# 用scikit-learn计算RMSE
print("RMSE ",np.sqrt(metrics.mean_squared_error(Y_test, Y_pred)))
```


MSE 9.43292219203932 RMSE 3.0713062680298298

Class Work: Implement linear regression based on a given data set

• Data name: Combined Cycle Power Plant Data Set

- Data description:
 - The dataset contains 9568 data points collected from a Combined Cycle Power Plant, when the power plant was set to work with full load.
 - Features consist of hourly average ambient variables Temperature (**T**), Ambient Pressure (**AP**), Relative Humidity (**RH**) and Exhaust Vacuum (**V**) to predict the net hourly electrical energy output (**PE**) of the plant

AT	V	AP	RH	PE
14. 96	41.76	1024.07	73. 17	463. 26
25. 18	62.96	1020.04	59.08	444. 37
5. 11	39. 4	1012.16	92.14	488. 56
20.86	57. 32	1010. 24	76.64	446. 48
10.82	37. 5	1009.23	96.62	473.9
26. 27	59.44	1012.23	58.77	443.67
15.89	43.96	1014.02	75. 24	467.35

Task: Implement linear regression based on a given data set

AT	V	AP	RH	PE
14. 96	41.76	1024.07	73. 17	463. 26
25. 18	62.96	1020.04	59. 08	444. 37
5. 11	39. 4	1012.16	92. 14	488.56
20.86	57. 32	1010. 24	76. 64	446. 48
10.82	37.5	1009.23	96. 62	473. 9
26. 27	59.44	1012. 23	58. 77	443.67
15. 89	43.96	1014. 02	75. 24	467. 35
	Y			

$$PE = w_1 * AT + w_2 * V + w_3 * AP + w_4 * RH + b$$

Where

 w_1, w_2, w_3, w_4 : slope coefficients for each explanatory variable

b : y-intercept

Task

• Implement linear regression based on a given data set

Functions you may need:

(1) sklearn.model_selection.train_test_split(X,Y, test_size=0.2, shuffle=False)

Other Resources

- Data Visualization:
 - https://matplotlib.org/3.3.2/api/pyplot_summary.html
 - https://matplotlib.org/3.3.2/api/ as https://matplotlib.org/3.3.2/api/ as gen/matplotlib.pyplot.xticks.html#matplotlib.pyplot.xticks
- sklearn.linear_model.LinearRegression
 - https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

End of Lab5