ODEs

Jinyuan Wu

January 19, 2023

1 First order ODEs

1.1 Linear ODEs

An ODE in the form of

$$y'(x) + p(x)y(x) = q(x) \tag{1}$$

is considered linear. All linear ODEs can be solved by the following procedure. First we have

$$(y' + py)e^{\int pdx} = qe^{\int pdx},$$
(2)

and now the LHS is a derivative:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\mathrm{e}^{\int p\mathrm{d}x}\right) = q\mathrm{e}^{\int p\mathrm{d}x},\tag{3}$$

and now we can integrate over x and get

$$y e^{\int p dx} = \int q e^{\int p dx} dx,$$
 (4)

$$y = e^{-\int p dx} \int q e^{\int p dx} dx.$$
 (5)

1.2 "Energy-conservation lines" and exact equations

Another way to represent the solution of an ODE is the form $\phi(x,y) = \text{const.}$ Note that the RHS contains no variables, and we have

$$0 = \frac{\mathrm{d}\phi}{\mathrm{d}x} = \frac{\partial\phi}{\partial x} + \frac{\partial\phi}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x},\tag{6}$$

and thus if

$$y' = f(x, y) \tag{7}$$

is algebraically equivalent to (6), the equation is already solved: We should find M, N such that

$$y' = -\frac{M}{N}, \quad M = \frac{\partial \phi}{\partial x}, \quad N = \frac{\partial \phi}{\partial y},$$
 (8)

and then $\phi(x,y)$ solves the equation. In this case we say y'=-M/N is **exact**.

To test for exactness, we only have to test whether

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x},\tag{9}$$

and if so, the existence of ϕ is guaranteed. (Since we work on a topological trivial space, things like cohomology group will not bother us.) We can now use "partial integral" to find ϕ .

Example: suppose in a calculation we find

$$\frac{\partial \phi}{\partial x} = 2y^2 + ye^{xy}, \quad \frac{\partial \phi}{\partial y} = 4xy + xe^{xy} + 2y.$$
 (10)

After partial integration, we find

$$\phi(x,y) = \underbrace{2xy^2 + e^{xy} + h(y)}_{\int \frac{\partial \phi}{\partial x} dx} = \underbrace{2xy^2 + e^{xy} + y^2 + g(x)}_{\int \frac{\partial \phi}{\partial y} dy},$$
(11)

and we have to choose

$$h(y) = y^2, \quad g(x) = \text{const}, \tag{12}$$

and the solution is

$$\phi(x,y) = 2xy^2 + e^{xy} + y^2 + \text{const.}$$
 (13)

Note that even when the decomposition f = -M/N doesn't give an exact equation for us, we can still use the method of exact equations: we can multiply a factor μ to both M and N, and try to guess the form of μ so that

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x}. (14)$$

An example can be found in solving

$$y' = -\frac{1}{3x - e^{-2y}}. (15)$$

We have

$$\frac{\partial 1}{\partial y} = 0, \quad \frac{\partial (3x - e^{-2y})}{\partial x} = 3,$$

so the equation is not exact if we choose M=1 and $N=3x-\mathrm{e}^{-2y}$. However, (14) can be fulfilled now: it's now

$$\frac{\partial \mu}{\partial y} = 3\mu + \left(3x - e^{-2y}\right) \frac{\partial \mu}{\partial x},$$

and the most convenient way to solve it (we don't need to find all solutions of this equation!) is to let μ contain y only, so the tricky term on the RHS disappears, and thus we choose $\mu = e^{3y}$, and we get

$$\phi(x,y) = \int \mu M \, dx = \int e^{3y} \, dx = x e^{3y} + u(y),$$

$$\phi(x,y) = \int \mu N \, dy = \int (3x e^{3y} - e^y) \, dy = x e^{3y} - e^y + v(x),$$

so

$$\phi(x,y) = xe^{3y} - e^y + \text{const.}$$
(16)

1.3 Bernoulli equation

Consider the following **Bernoulli equation**

$$y' + P(x)y = R(x)y^{\alpha}. (17)$$

When $\alpha = 0, 1$, the equation can be solved by the standard methods for linear first order ODEs. When this is not the case, we may do the substitution

$$v = y^{\beta},\tag{18}$$

and then the equation becomes

$$\frac{1}{\beta}v^{1/\beta - 1}v' + P(x)v^{1/\beta} = R(x)v^{\alpha/\beta},$$

$$v' + P(x)v = R(x)v^{1 + \frac{\alpha - 1}{\beta}}.$$
(19)

The next step is to choose a good beta so that the equation gets simplified. We may want to make to exponent to be zero, and this means we should choose

$$\beta = 1 - \alpha,\tag{20}$$

and the ODE is now

$$v' + Pu = R, (21)$$

which can then be solved by the method in Section 1.1.

2 Second order ODEs

2.1 Linear 2nd order ODE with initial values

A linear second order ODE has the following form:

$$y'' + p(x)y' + q(x)y = f(x). (22)$$

It usually comes with initial value conditions

$$y(x_0) = A, \quad y'(x_0) = B.$$
 (23)

This course is about concrete calculations, but knowing what we are doing makes sense is important. Here is an existence and uniqueness theorem: if p(x), q(x), and f(x) are continuous over an interval I, and $x_0 \in I$, then a unique solution exists for (22) with the initial conditions given above.

Usually, we start by looking at the **homogeneous** second order ODE

$$y'' + p(x)y' + q(x)y = 0.$$
 (24)

The influence of f(x) can be included as the "response" of the LHS. The full solution of (24) takes the form

$$y = c_1 y_1 + c_2 y_2, (25)$$

where c_1, c_2 are constants to be decided by initial conditions, and y_1 and y_2 are linearly independent solutions of (24). The **Wronskian** is defined as

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}. {26}$$

By checking if it is non-zero at most points, we can find whether y_1 and y_2 are truly linearly independent to each other.

There is a method to arrive at y_2 from y_1 : we can always take the ansatz

$$y2 = y_1 u, (27)$$

and therefore we get

$$(u''y_1 + 2u'y_1' + uy_1'') + p(u'y_1 + uy_1') + quy_1 = 0,$$

and the condition that y_1 is a solution to (24) means

$$u'' + \underbrace{\frac{2y_1' + py_1}{y_1}}_{g(x)} u' = 0, \tag{28}$$

which is essentially a first order ODE, because we can replace u' by v, and then we find

$$\ln v = -\int g(x) \, \mathrm{d}x,$$

and

$$u(x) = \int e^{-\int g(x)dx} dx.$$
 (29)

2.2 Constant coefficients

The equation

$$y'' + Ay + By = 0 \tag{30}$$

can be solved directly by the following construction:

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}, \tag{31}$$

where λ_1, λ_2 are solutions of

$$\lambda^2 + A\lambda + B = 0. ag{32}$$

For example, to solve the equation

$$y'' - 2y' + 10y = 0, (33)$$

we just solve

$$\lambda^2 - 2\lambda + 10 = 0,$$

which gives us

$$\lambda = 1 \pm 3i,\tag{34}$$

and therefore a general solution is

$$y = e^x (c_1 e^{3ix} + c_2 e^{-3ix}). (35)$$

It should be noted that c_1, c_2 can be complex, even when we restrict y in \mathbb{R} : we can let the imaginary part of y vanish as long as we impose some constraints over c_1, c_2 . If we are determined to work in the real space, two alternative linearly independent solutions can be used:

$$y_1(x) = e^x \cos(3x), \quad y_2(x) = e^x \sin(3x).$$
 (36)

Although we can immediately say they are linearly independent, we can use them as a demonstration of the Wronskian method: now we have

$$W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x) = 3e^{2x},$$
(37)

which of course isn't constantly zero.

(32) is faced with the problem of having only one solution when $A^2 - 4B = 0$. In this case we need to go back to the standard procedure to get y_2 from y_1 . An example is

$$y'' + 6y + 9 = 0, (38)$$

for which (32) only gives

$$y_1 = e^{-3x}$$
. (39)

Suppose $y_2 = ue^{-3x}$, we have