Minimaler Abstand einer Parameterform zu diskreten Gitterpunkten (2D)

1. Theorie allgemeine Parameterfunktion

Gegeben sei die Parameterform $P(t) = egin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ mit $t \in \mathbb{R}$ und t normiert auf das Intervall

 $t\in (0,arepsilon,1]$ und den beiden reellwertigen Funktionen $\boxed{x(t)=f_x(t)}$ und $\boxed{y(t)=f_y(t)}$.

Weiterhin bilden sich die diskreten Gitterpunkte $\overline{G_{ij} = (\,u_i, v_i\,)}$ definiert durch die

Ortsauflösungen $0 < dX \in \mathbb{R} <= 1$ und $0 < dY \in \mathbb{R} <= 1$

$$c^2 = a^2 + b^2$$

 $\mathsf{mit}\ i \in [0,1,N_i] \in \mathbb{N}\ \mathsf{und}\ j \in [0,1,N_j] \in \mathbb{N}\ \mathsf{mit}\ u_i = i \cdot dX\,\mathsf{und}\ v_i = i \cdot dY\,.$

Gesucht ist das zu einem Gitterpunkt G_{ij} zugehörige t_{min} mit der minimalen Distanz D entsprechend:

$$D=\sqrt{(x(t)-u_i)^2+(y(t)-v_i)^2}=:\sqrt{S}\,$$
 und damit

$$S = (x(t) - u_i)^2 + (y(t) - v_i)^2)$$

Die notwendigen Bedingungen für ein minimales Abstands- S_{min} folgen:

$$rac{\partial S}{\partial t} = 0 = rac{\partial}{\partial t}[(x(t) - u_i)^2 + (y(t) - v_i)^2]$$

$$0 = rac{\partial}{\partial t}(x(t)-u_i)^2 + rac{\partial}{\partial t}(y(t)-v_i)^2]$$

$$0=2(x(t)-u_i)rac{\partial x(t)}{\partial t}+2(y(t)-v_i)rac{\partial y(t)}{\partial t}$$

$$0 = (x(t) - u_i) \frac{\partial x(t)}{\partial t} + (y(t) - v_i) \frac{\partial y(t)}{\partial t}$$

Nachbarpunkte (mit Unterschied von $dx=\{-1,0,+1\}$ und/oder $dy=\{-1,0,+1\}$) ergeben dann die diskrete Bahnkurve $B_k=\{(u_k,v_k)\}$ mit $k\in\{0,1,N_B\}$ mit N_B+1 Interpolations- bzw. Bearbeitungspunkten.

2. Theorie Gerade

Wahl der Zwei-Punkte-Form einer Geraden mit den gegebenen Punkten

$$P_0=(x_0,y_0)$$
 und $P_1=(x_1,y_1)$ und mit

$$P(t)=egin{pmatrix} x(t)\ y(t) \end{pmatrix}=egin{pmatrix} (x_1-x_0)t+x_0\ (y_1-y_0)t+y_0 \end{pmatrix}$$

eingesetzt in

$$\begin{aligned} 0 &= (x(t) - u_i) \frac{\partial x(t)}{\partial t} + (y(t) - v_i) \frac{\partial y(t)}{\partial t} \\ 0 &= ((x_1 - x_0)t + x_0 - u_i) \frac{\partial x(t)}{\partial t} + ((y_1 - y_0)t + y_0 - v_i) \frac{\partial y(t)}{\partial t} \\ \frac{\partial x(t)}{\partial t} &= \frac{\partial [(x_1 - x_0)t + x_0]}{\partial t} = (x_1 - x_0) \\ \frac{\partial y(t)}{\partial t} &= \frac{\partial [(y_1 - y_0)t + y_0]}{\partial t} = (y_1 - y_0) \end{aligned}$$

 \Rightarrow Bestimmung t_{min} :

$$0 = ((x_1 - x_0)t_{min} + x_0 - u_i)(x_1 - x_0) + ((y_1 - y_0)t_{min} + y_0 - v_i)(y_1 - y_0)$$

$$0 = t_{min}[(x_1 - x_0)(x_1 - x_0) + (y_1 - y_0)(y_1 - y_0)] + (x_0 - u_i)(x_1 - x_0) + (y_0 - v_i)(y_1 - y_0)$$

$$0 = t_{min}[(x_1 - x_0)^2 + (y_1 - y_0)^2] + (x_0 - u_i)(x_1 - x_0) + (y_0 - v_i)(y_1 - y_0)$$

$$t_{min}[(x_1 - x_0)^2 + (y_1 - y_0)^2] = -(x_0 - u_i)(x_1 - x_0) - (y_0 - v_i)(y_1 - y_0)$$

$$t_{min} = -\frac{(x_0 - u_i)(x_1 - x_0) + (y_0 - v_i)(y_1 - y_0)}{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$

3. Theorie Kreisbogen

Wahl der Zwei-Winkel-Form eines Kreisbogens mit den gegebenen Winkeln

 $lpha_0 \in [0..2\pi)$ und $lpha_1 \in (0..2\pi]$ und dem Kreismittelpunkt $P_m = (x_m, y_m)$ und mit

$$\begin{split} P(t) &= \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_{ob} + R \cdot \cos((\alpha_1 - \alpha_0)t + \alpha_0) \\ y_m + R \cdot \sin((\alpha_1 - \alpha_0)t + \alpha_0) \end{pmatrix}, \\ \frac{\partial x(t)}{\partial t} &= \frac{\partial [x_m + R \cdot \cos((\alpha_1 - \alpha_0)t + \alpha_0)]}{\partial t} \\ \frac{\partial x(t)}{\partial t} &= -R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t + \alpha_0) \\ \frac{\partial y(t)}{\partial t} &= \frac{\partial [y_{ob} + R \cdot \sin((\alpha_1 - \alpha_0)t + \alpha_0)]}{\partial t} \\ \frac{\partial y(t)}{\partial t} &= +R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t + \alpha_0) \\ \text{einge-setzt in } 0 &= (x(t_{min}) - u_i) \frac{\partial x(t_{min})}{\partial t} + (y(t_{min}) - u_i) \frac{\partial y(t_{min})}{\partial t} \\ \vdots \\ 0 &= [x_m + R \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0) - u_i][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [y_m + R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) - v_i][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [(y_m - u_i) + R \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [(y_m - v_i) + R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [y_m - v_i][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)][-R \cdot (\alpha_1 - \alpha_0) \cdot \cos((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0)] \\ &+ [R \cdot \sin((\alpha_1 - \alpha_0)t_{min} + \alpha_0) \sin((\alpha_1 - \alpha_0)t_{min}$$

kann nicht sein, sieht zu einfach aus!

	4.	The	orie	Elli	psen	bogen
--	----	-----	------	------	------	-------

5. Theorie Kubischer Spline