CPSC 406 Assignment 1

	Vinny Caffaro
Part 1)	$C + \sum_{k \in I} as[k] = \sum_{k \in I} (as'[k]) + bs[k]$
*	
	$0+ \sum_{\kappa<0} as[\kappa] = \sum_{\kappa<0} (as'[\kappa] + bs[\kappa])$ $0=0 [def. of summation]$
*	For the ith iteration of the loop: First assignent of sum (s) \[\(\(\delta \sigma (k) + \bs (k) \) \\ \(\begin{array}{c} B^k + \left(\delta \sigma (k) + \bs (k) \right) \\ \(k \cdot (k) + \bs (k) \right) \\ \(\delta \sigma (k) + \bs (k) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
*	After assignment of c and as(i) \[\langle (as(k)) + bs(k)) \B' + \sin B' = \Sin (as(k)) \B' + \langle (as(i) + bs(i)) \B' \]
	= \(\langle (\frac{1}{3} \in \text{K}) \frac{1}{3} \in \text{(SUM >7 32)} + (\text{UIN \text{L32-t sum)}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
*	= S as [WB + C-Bit] End of Loop
*	Start of 100p i+1 E as[K]B* + cB = \(\) as[K]B* + c.Bi+1 k(i+1) k(i+1)

Part2) Proof of partial prod32

C+ \(\sigma \text{as[K]} = \sum (\frac{1}{2}s(\text{K)} + (\frac{1}{2}s(\text{K)} + \frac{1}{2}s(\text{K)} + \frac{1}{2}s(\text{K}) + \frac{1}{2} Basis: i=0 0+ [as(k) = [(as(k) + (6s(k) *d)) ()=0 [(prod-bd[K))+prod-cB= [(prod-c+(bs[K] * d)) * After assignment of temp

[(prod-bd[K]) + prod. B = [(temp) Σ (prod-bd [k]) + prod.c.B = Σ ((temp; 32)·B ((uin+32-t) temp)) E (Prod-bd[K])+prodeB=[(prod-c)-B+Prod-bd[K]))
KEE E (prod-balk)+prod-cB=E(prod-balk)+prod-c.13 Prod-bd Stores the product of b & d, so our unmodified add to \$2 code proved in Part Should compute: C+ \(\frac{72}{45} \) \(\frac{1}{10} \) \(\frac{

Part 3) \(\sum_{\kill} C[K] = \sum_{\kill} \left(\left(\sum_{\kill} \left(\sum_{\kill} \left) \deft(\sum_{\kill} \left(\sum_{\kill} \left) \right) \deft(\sum_{\kill} \left(\sum_{\kill} \left) \deft(\sum_{\kill} \left(\sum_{\kill} \left) \deft) \deft(\sum_{\kill} \left) \deft(\sum_{\kill} \left) \deft) \deft(\sum_{\kill} \left) \deft) \deft(\sum_{\kill} \left) \deft(\sum_{\kill} \left) \deft) \deft(\sum_{\killl} \left) \deft) \deft(\sum_{\killl} \left) \deft) \deft(\sum_{\killl} \left) \deft * On the nth iteration (i<n): \(\sum_{\(\in \) \text{Kei}} \) \(\in \) \ = > (> prod_shifted 32[k]) = EC[K] * [1]: Part 2 proves that partial prod 32 (prod-temp, 2, 6[j])
Computes & prod-temp + = & ((a[K]) * b[j])

Kei * [2]: For loop computes: \[\sum \text{prod-shifted} = \sum \text{(prod-temp(K) * B')} \] * [3]: Part 2 proves that add to 32 (c, prod-shifted)
computes \(\Sigma \sigma