Cheat Sheet for EE463

Performance Parameters

$$FormFactor = \frac{V_{rms}}{V_{avg}}$$

$$CrestFactor = \frac{V_{peak}}{V_{rms}}$$

$$DistortionFactor = \frac{I_{1rms}}{I_{rms}}$$

 ϕ : phase difference between fundamentals of current and voltage

 $DisplacementPowerFactor = \cos(\phi)$

$$TruePowerFactor = \frac{P}{S} = DPF \frac{I_{1,RMS}}{I_{RMS}}$$

$$THD = \sqrt{(\frac{I_{rms}}{I_{1rms}})^2 - 1}$$

Single Phase Diode Rectifier

$$V_{av} = \frac{2\sqrt{2}V_s}{\pi}$$

u: commutation period

$$\cos(u) = 1 - \frac{2\omega L_s I_d}{\sqrt{2}V_s}$$

$$I_{d,avg} = \frac{\int_b^f i(\theta)d\theta}{\pi}$$

$$I_{d,shortcircuit} = \frac{V_s}{\omega L_s}$$

Figure 1: Characteristics of source current wrt w*Ls (battery on load side)

Three Phase Rectifier

• Half Wave

$$V_{av} = \frac{3\sqrt{6}V_s}{2\pi}$$

Crossing points (integration) on the waves are from $\pi/6$ to $5\pi/6$

• Full Wave

Full Bridge Rectifier Average Output V_s :rms value of source voltage

$$V_{av} = \frac{3\sqrt{6}V_s}{\pi} - \frac{3wL_sI_d}{\pi}$$

Single Phase Controlled Rectifiers-Thyristors

• Idealized Circuit α : firing angle

$$V_{av}(\alpha) = \frac{2\sqrt{2}V_d}{\pi} \cdot \cos \alpha$$

• Effect of Ls

$$\cos(\alpha + u) = \cos(\alpha) - \frac{2\omega L_s I_d}{\sqrt{2}V_s}$$

$$V_d = 0.9V_s cos(\alpha) - \frac{2\omega L_s I_d}{\pi}$$

• Inverter Mode

$$ExtinctionAngle = \gamma = 180 - (\alpha + u)$$

Three Phase Controlled Rectifiers-Thyristors

• Idealized Circuit α : firing angle

$$V_{av}(\alpha) = \frac{3\sqrt{2}V_{LL}}{\pi} \cdot \cos\alpha$$

• Effect of Ls

$$\cos(\alpha + u) = \cos(\alpha) - \frac{2\omega L_s I_d}{\sqrt{2}V_{LL}}$$

$$V_d = \frac{3\sqrt{2}}{\pi} V_{LL} cos(\alpha) - \frac{3\omega L_s I_d}{\pi}$$

• Output Waveforms

Figure 2: Output Voltage Waveforms

Figure 6-25 Commutation in the presence of L_s .

Figure 3: Effect of Commutation

Waveforms in a discontinuous-current-conduction mode.

Figure 4: Discontinuous Current Conduction Mode

	Symmetry	Condition Required	a_h and b_h
	Even	f(-t) = f(t)	$b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$
► a	Odd	f(-t) = -f(t)	$a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$
	Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_h = b_h = 0 \text{ for even } h$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t) \text{ for odd } h$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t) \text{ for odd } h$

Figure 7: Fourier Transform Table

Figure 6-32 Waveforms in the inverter of Fig. 6-31.

Figure 5: Inverter Waveforms

Figure 6-32 Waveforms in the inverter of Fig. 6-31.

Figure 6: Inverter Waveforms

Convection Thermal Resistance Conduction Heat Loss Fluid Temperature Rise

$$R_c=rac{1}{Ah}$$
 $P=rac{\Delta T}{R}$ for a liquid cooled system $\Delta T=rac{P}{Q.\,d.\,C_p}$ Radiation Heat Loss (Black body radiation)

$$q_R=
ho\epsilon F(T_1^4-T_2^4)$$
 $\zeta=rac{L}{2R\sqrt{LQ}}$

Converter

Trigonometric

$$\sin A \cos B = \frac{1}{2} \left[\sin(A - B) + \sin(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\cos A + \cos B = 2 \cos(\frac{A + B}{2}) \cos(\frac{A - B}{2})$$

$$\cos A - \cos B = -2 \sin(\frac{A + B}{2}) \sin(\frac{A - B}{2})$$

$$\sin^2(A) = \frac{1}{2} - \frac{\cos(2A)}{2}$$

Power Flow

$$P = V_s I_{s1} cos(\phi) = V_d I_d$$

$$S = V_s I_s$$

$$V_{ripplebuck} = V_o(1 - D)\left(\frac{f_c}{f_s}\right)^2 \pi^2 / 2$$

$$I_{ob} = T_s V_o D(1 - D)^2 / 2L$$

$$V_{rippleboost} = V_o D T s / RC$$