Tutorial 5

August 30, 2021

1. Locate and classify the type of singularities of:

a)
$$\frac{\sin(1/z)}{(1+z^4)}$$

a)
$$\frac{\sin(1/z)}{(1+z^4)}$$

b) $\frac{z^5 \sin(1/z)}{(1+z^4)}$
c) $\frac{1}{\sin(1/z)}$

c)
$$\frac{1}{\sin(1/z)}$$

d)
$$e^{\frac{1}{z}}$$

2. Construct a meromorphic function on \mathbb{C} with infinitely many poles.

3. Find Laurent expansions for the function $f(z) = \frac{2(z-1)}{z^2-2z-3}$ valid on the regions:

(i)
$$0 \le |z| < 1$$
, $(ii)1 < |z| < 3$, $(iii)|z| > 3$.

4. Let D be a domain in \mathbb{C} and let $z_0 \in D$. Suppose that z_0 is an isolated singularity of f(z) and f(z) is bounded in some punctured neighborhood of z_0 (that is, there exists M>0 such that $|f(z)|\leq M$ for all $z\in U-z_0$ for neighborhood U). Show that f(z) has a removable singularity at z_0 .

5. A complex-valued function f(z) on \mathbb{C} is called doubly periodic if there exist linearly independent vectors $v, w \in \mathbb{C}$ over \mathbb{R} such that f(z+v) = f(z) and f(z+w)=f(z) for all $z\in\mathbb{C}$. Show that any double periodic entire function is constant.

6. Show by transforming into an integral over the unit circle, that $\int_0^{2\pi} \frac{d\theta}{a^2+1-2a\cos\theta} =$ $\frac{-2\pi}{1-a^2}$, where a > 1. Also compute the value when a < 1.

7. Show that if $a_1, a_2, ..., a_n$ are the distinct roots of a monic polynomial P(z) of degree n, for each $1 \le k \le n$ we have the formula:

$$\prod_{i \neq k} (a_k - a_j) = P'(a_k)$$