Portfolio Theory

Econ 147

UCLA

Version 1.0

- ▶ In practice, financial investment is typically done via portfolio
 - Market index (SP500) is a sort of portfolio
- Using the fundamental principle of (risk-averse) economic agent, we study portfolio theory
 - statistical and distributional properties of portfolio returns
 - financial risks of portfolio returns
 - portfolio frontier and efficient portfolio, mutual fund separation theorem

- Reading: Course slides and Eric Zivot's Book Chapters on portfolio theory
- Optional: Chapter 5 (Efficient Portfolios and Capital Asset Pricing Model) in Fan and Yao's book
- ▶ Optional: Chapter 11 (Portfolio Theory) in Ruppert's book

▶ Investment in Two Risky Assets

 $R_A = \text{ simple return on asset A}$ $R_B = \text{ simple return on asset B}$ $W_0 = \text{ initial wealth}$

Assumptions:

$$R_i \sim \mathrm{iid}~(\mu_i, \sigma_i^2),~i = A, B$$
 $\mathrm{cov}(R_A, R_B) = \sigma_{AB},~\mathrm{cor}(R_A, R_B) = \rho_{AB}$

Introduction: underlying logics

- Let R_p denote the simple return of the portfolio
- ▶ Investors like high $E[R_p] = \mu_p$
- Investors dislike high $\operatorname{var}(R_p) = \sigma_p^2$
- ▶ Investment horizon is one period (e.g., one month or one year)

Note: Traditionally in portfolio theory, returns are simple and not continuously compounded

Portfolios

$$x_A = \text{share of wealth in asset A} = \frac{\$ \text{ in A}}{W_0}$$

 $x_B = \text{share of wealth in asset B} = \frac{\$ \text{ in B}}{W_0}$

Long position

$$x_A > 0 \text{ or } x_B > 0$$

Short position

$$x_A < 0 \text{ or } x_B < 0$$

Assumption: Allocate all wealth between assets A and B with $x_A + x_B = 1$, then the Portfolio Return is

$$R_p = x_A R_A + x_B R_B$$

► Portfolio Distribution

$$\mu_p = E[R_p] = x_A \mu_A + x_B \mu_B$$

$$\sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$= x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \rho_{AB} \sigma_A \sigma_B$$

End of Period Wealth

$$W_1 = W_0(1 + R_p) = W_0(1 + x_A R_A + x_B R_B)$$

Volatility Risk

▶ Result for Portfolio Risk: Portfolio's standard deviation (SD) is not a weighted average of asset SD unless $\rho_{AB}=1$:

$$\sigma_{p} = \left(x_{A}^{2}\sigma_{A}^{2} + x_{B}^{2}\sigma_{B}^{2} + 2x_{A}x_{B}\rho_{AB}\sigma_{A}\sigma_{B}\right)^{1/2}$$

$$\neq x_{A}\sigma_{A} + x_{B}\sigma_{B} \text{ for } \rho_{AB} \neq 1$$

• If $\rho_{AB}=1$ then

$$\sigma_{AB} = \rho_{AB}\sigma_{A}\sigma_{B} = \sigma_{A}\sigma_{B}$$

and

$$\sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_A \sigma_B$$
$$= (x_A \sigma_A + x_B \sigma_B)^2$$
$$\Rightarrow \sigma_p = x_A \sigma_A + x_B \sigma_B$$

Examples:

▶ Data: Asset A (XOM) has lower expected return and risk than asset B (DAL)

$$\mu_A = 0.00466, \ \mu_B = 0.02579$$
 $\sigma_A^2 = 0.00209, \ \sigma_B^2 = 0.01139$
 $\sigma_A = 0.04566, \ \sigma_B = 0.10671$
 $\sigma_{AB} = -0.00000713,$
 $\rho_{AB} = \frac{\sigma_{AB}}{\sigma_A \sigma_B} = -0.001463$

▶ The above numbers are estimators based on the monthly simple returns from 2009 Jan to 2018 Jan (T = 108).

Example: Long-Long Two-Asset Portfolio

- ▶ Consider an equally weighted portfolio with $x_A = x_B = 0.5$.
- ▶ The expected return ($\mu_A = 0.00466$, $\mu_B = 0.02579$), variance ($\sigma_A = 0.04566$, $\sigma_B = 0.10671$):

$$\begin{split} \mu_p &= (0.5) \cdot (0.00466) + (0.5) \cdot (0.02579) = \textbf{0.015227} \\ \sigma_p^2 &= (0.5)^2 \cdot (0.00209) + (0.5)^2 \cdot (0.01139) \\ &+ 2 \cdot (0.5)(0.5)(-0.00000713) = \textbf{0.00336428} \\ \sigma_p &= \sqrt{0.003633} = \textbf{0.058} \end{split}$$

- This portfolio has expected return half-way between the expected returns on assets A and B,
- but the portfolio standard deviation is less than half-way between the asset standard deviations, i.e.,

$$(0.5) \cdot (0.04566) + (0.5) \cdot (0.10671) = \mathbf{0.07619}$$

Example: Long-Short Two-Asset Portfolio

▶ Consider a long-short portfolio with $x_A = -\frac{1}{2}$ and $x_B = \frac{3}{2}$. In this portfolio, asset A is sold short and the proceeds of the short sale are used to leverage the investment in asset B. The portfolio characteristics are

$$\mu_p = (-0.5) \cdot (0.00466) + (1.5) \cdot (0.02579) = \mathbf{0.03635}$$

$$\begin{split} \sigma_{p}^2 &= (-0.5)^2 \cdot (0.00209) + (1.5)^2 \cdot (0.01139) \\ &+ 2 \cdot (-0.5) \cdot (1.5) (-0.00000713) = \textbf{0.02615} \end{split}$$

$$\sigma_p = \sqrt{0.02615} = \mathbf{0.16171}$$

This portfolio has both a higher expected return and standard deviation than asset B 4 D > 4 B > 4 B > 4 B > B = 900

Portfolio Value-at-Risk

- Assume an initial investment of $\$W_0$ in the portfolio of assets A and B
- By definition, the profit of the portfolio is

$$L_1 = W_1 - W_0 = W_0 R_p$$

▶ For $\alpha \in (0,1)$, the $\alpha \times 100\%$ portfolio value-at-risk is

$$VaR_{p,\alpha} = W_0 q_{\alpha}^{R_p}$$

where $q_{\alpha}^{R_p}$ is the α quantile of R_p .

- ▶ Two possible estimators of $VaR_{p,\alpha}$:
 - ightharpoonup parametric estimator based on normal distribution on R_p
 - ightharpoonup nonparametric estimator from the sample quantile of R_p

Portfolio Value-at-Risk

▶ Suppose $R_A \sim N(\mu_A, \sigma_A^2)$ and $R_B \sim N(\mu_B, \sigma_B^2)$. Then $R_P = x_A R_A + x_B R_B \sim N(\mu_p, \sigma_p^2),$

$$\mu_{p} = x_{A}\mu_{A} + x_{B}\mu_{B},$$

$$\sigma_{p}^{2} = x_{A}^{2}\sigma_{A}^{2} + x_{B}^{2}\sigma_{B}^{2} + 2x_{A}x_{B}\sigma_{AB}$$

Therefore,

$$\mathrm{VaR}_{p,\alpha} = W_0 q_{\alpha}^{R_p} = W_0 \cdot \mathbf{qnorm}(\alpha, \mu_p, \sigma_p)$$

► Then $\widehat{\mathrm{VaR}}_{p,\alpha}^{PARA} = W_0 \cdot \mathbf{qnorm}(\alpha, \widehat{\mu}_p, \widehat{\sigma}_p)$, where

$$\widehat{\mu}_{p} = x_{A}\widehat{\mu}_{A} + x_{B}\widehat{\mu}_{B},
\sigma_{p}^{2} = x_{A}^{2}\widehat{\sigma}_{A}^{2} + x_{B}^{2}\widehat{\sigma}_{B}^{2} + 2x_{A}x_{B}\widehat{\sigma}_{AB}$$

where $\widehat{\mu}_A$ and $\widehat{\mu}_B$ are the sample means, $\widehat{\sigma}_A^2$, $\widehat{\sigma}_B^2$ and $\widehat{\sigma}_{AB}$ are the sample variance and covariance.

14 / 68

Portfolio Value-at-Risk

▶ Given data $\{(R_{A,t}, R_{B,t})\}_{t=1}^T$, we can calculate the sample $\{R_{p,t}\}_{t=1}^T$ where

$$R_{p,t} = x_A R_{A,t} + x_B R_{B,t}$$
 for $t = 1, ..., T$.

Order the sample of the portfolio simple return from the smallest to the largest

$$\left\{R_{p,[1]},\ldots,R_{p,[T]}\right\}$$

▶ Then $\widehat{\mathrm{VaR}}_{p,\alpha}^{NONP} = W_0 \cdot R_{p,[T\alpha]}$, where $[T\alpha]$ is the largest integer which is smaller than $T\alpha$.

Example: Long-Long Two-Asset Portfolio

- Consider $W_0 = 10000$ and $x_A = x_B = 0.5$.
- The expected return and standard deviation:

$$\mu_p = \mathbf{0.015227}$$
 and $\sigma_p = \mathbf{0.058}$

Therefore

$$\widehat{\text{VaR}}_{p,0.1}^{\textit{PARA}} = 10000 \cdot \textbf{qnorm}(0.1, 0.015227, 0.058) = -591.0299$$

Moreover,

$$\widehat{\text{VaR}}_{p,\alpha}^{NONP} = W_0 \cdot R_{p,[T\alpha]} = 10000 \cdot R_{p,[10]} = -589.712$$

Example: Long-Short Two-Asset Portfolio

- lacktriangle Consider $W_0=10000$ and $x_{\mathcal{A}}=-rac{1}{2}$ and $x_{\mathcal{B}}=rac{3}{2}$
- The expected return and standard deviation:

$$\mu_p = \mathbf{0.03635}$$
 and $\sigma_p = \mathbf{0.16171}$

Therefore

$$\widehat{\mathrm{VaR}}_{p,0.1}^{\mathit{PARA}} = 10000 \cdot \mathbf{qnorm}(0.1, 0.03635, 0.16171) = -1708.897$$

Moreover,

$$\widehat{\text{VaR}}_{p,\alpha}^{NONP} = W_0 \cdot R_{p,[T\alpha]} = 10000 \cdot R_{p,[10]} = -1773.06$$

▶ We know that

$$\mu_p = E[R_p] = x_A \mu_A + x_B \mu_B = \mu_B + x_A (\mu_A - \mu_B)$$

and

$$\sigma_{p}^{2} = x_{A}^{2}\sigma_{A}^{2} + x_{B}^{2}\sigma_{B}^{2} + 2x_{A}x_{B}\rho_{AB}\sigma_{A}\sigma_{B}$$
$$= x_{A}^{2}\sigma_{A}^{2} + (1 - x_{A})^{2}\sigma_{B}^{2} + 2(1 - x_{A})x_{A}\rho_{AB}\sigma_{A}\sigma_{B}$$

Therefore,

$$x_A = (\mu_B - \mu_B)/(\mu_A - \mu_B)$$

and hence

$$\sigma_{p}^{2} = \left(\frac{\mu_{p} - \mu_{B}}{\mu_{A} - \mu_{B}}\right)^{2} \sigma_{A}^{2} + \left(\frac{\mu_{p} - \mu_{A}}{\mu_{A} - \mu_{B}}\right)^{2} \sigma_{B}^{2}$$

$$-2 \frac{(\mu_{p} - \mu_{A})(\mu_{p} - \mu_{B})}{(\mu_{A} - \mu_{B})^{2}} \rho_{AB} \sigma_{A} \sigma_{B}$$

► Portfolio Frontier:

$$\sigma_{p}^{2} = \left(\frac{\mu_{p} - \mu_{B}}{\mu_{A} - \mu_{B}}\right)^{2} \sigma_{A}^{2} + \left(\frac{\mu_{p} - \mu_{A}}{\mu_{A} - \mu_{B}}\right)^{2} \sigma_{B}^{2}$$
$$-2\frac{(\mu_{p} - \mu_{A})(\mu_{p} - \mu_{B})}{(\mu_{A} - \mu_{B})^{2}} \sigma_{AB}$$

► Recall

$$\mu_A = 0.00466, \ \mu_B = 0.02579$$
 $\sigma_A^2 = 0.00209, \ \sigma_B^2 = 0.01139$
 $\sigma_{AB} = -0.00000713$

▶ Plot (σ_p, μ_p)

- Shape of portfolio frontier depends on correlation between assets A and B
- ▶ If $\rho_{AB} = -1$ then there exists x_A and x_B s.t. $\sigma_p^2 = 0$
- If $ho_{AB}=1$ then no benefit from diversification

Efficient Portfolio

- Definition: Portfolios with the highest expected return for a given level of risk, as measured by portfolio standard deviation, are efficient portfolios
- If investors like portfolios with high expected returns and dislike portfolios with high return standard deviations then they will want to hold efficient portfolios
- Which efficient portfolio an investor will hold depends on their risk preferences
 - Very risk averse investors dislike volatility and will hold portfolios near the global minimum variance portfolio. They sacrifice expected return for the safety of low volatility
 - Risk tolerant investors don't mind volatility and will hold portfolios that have high expected returns. They gain expected return by taking on more volatility.

Global Minimum Variance Portfolio

- ► The portfolio with the smallest possible variance is called the *global minimum variance portfolio*.
- This portfolio is chosen by the most risk averse individuals
- ➤ To find this portfolio, one has to solve the following constrained minimization problem

$$\min_{x_A, x_B} \sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$s.t. \ x_A + x_B = 1$$

Global Minimum Variance Portfolio

Calculus Solution

Minimization problem

$$\min_{x_A,x_B} \sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$s.t. \ x_A + x_B = 1$$

Use substitution method with

$$x_B = 1 - x_A$$

to give the univariate minimization

$$\min_{x_A} \ \sigma_p^2 = x_A^2 \sigma_A^2 + (1 - x_A)^2 \sigma_B^2 + 2x_A (1 - x_A) \sigma_{AB}$$

Global Minimum Variance Portfolio

First order conditions

$$\begin{split} 0 &= \frac{d}{dx_{A}} \sigma_{p}^{2} \\ &= \frac{d}{dx_{A}} \left(x_{A}^{2} \sigma_{A}^{2} + (1 - x_{A})^{2} \sigma_{B}^{2} + 2x_{A} (1 - x_{A}) \sigma_{AB} \right) \\ &= 2x_{A} \sigma_{A}^{2} - 2(1 - x_{A}) \sigma_{B}^{2} + 2\sigma_{AB} (1 - 2x_{A}) \\ &= x_{A} (2\sigma_{A}^{2} + 2\sigma_{B}^{2} - 4\sigma_{AB}) - 2\sigma_{B}^{2} + 2\sigma_{AB} \\ &\Rightarrow x_{A}^{\min} = \frac{\sigma_{B}^{2} - \sigma_{AB}}{\sigma_{A}^{2} + \sigma_{B}^{2} - 2\sigma_{AB}}, \ x_{B}^{\min} = 1 - x_{A}^{\min} \end{split}$$

- Risk Free Asset
 - Asset with fixed and known rate of return over investment horizon
 - Usually use U.S. government T-Bill rate (horizons < 1 year) or T-Note rate (horizon > 1 yr)
- ▶ Note: T-Bill or T-Note rate is only nominally risk free

► Property of risk-free asset

$$R_f=$$
 return on risk-free asset $E[R_f]=r_f=$ constant ${
m var}(R_f)=0$ ${
m cov}(R_f,R_i)=0$, $R_i=$ return on any asset

Portfolios of Risky Asset and Risk Free Asset

$$x_f=\,$$
 share of wealth in T-Bills $x_B=\,$ share of wealth in asset B $x_f+x_B=1$ $x_f=1-x_B$

Portfolio return

$$R_p = x_f r_f + x_B R_B$$

= $(1 - x_B) r_f + x_B R_B$
= $r_f + x_B (R_B - r_f)$

Portfolio excess return

$$R_p - r_f = x_B (R_B - r_f)$$

Portfolio Distribution

$$\mu_p = E[R_p] = r_f + x_B(\mu_B - r_f)$$

$$\sigma_p^2 = \text{var}(R_p) = x_B^2 \sigma_B^2$$

$$\sigma_p = x_B \sigma_B$$

► Risk Premium

 $\mu_B - r_f = {
m excess}$ expected return on asset B $= {
m expected}$ return on risky asset over return on safe asset

For the portfolio of T-Bills and asset B

$$\mu_p - r_f = x_B (\mu_B - r_f)$$
= expected portfolio return over T-Bill

The risk premia is an increasing function of the amount invested in asset B.

Leveraged Investment

$$x_f < 0, x_B > 1$$

Borrow at T-Bill rate to buy more of asset B

▶ Result: Leverage increases portfolio expected return and risk

$$\mu_{p} = r_{f} + x_{B}(\mu_{B} - r_{f})$$
$$\sigma_{p} = x_{B}\sigma_{B}$$
$$x_{B} \uparrow \Rightarrow \mu_{p} \& \sigma_{p} \uparrow$$

Determining Portfolio Frontier

Goal: Plot μ_p vs. σ_p

$$\sigma_{p} = x_{B}\sigma_{B} \Rightarrow x_{B} = \frac{\sigma_{p}}{\sigma_{B}}$$

$$\mu_{p} = r_{f} + x_{B}(\mu_{B} - r_{f})$$

$$= r_{f} + \frac{\sigma_{p}}{\sigma_{B}}(\mu_{B} - r_{f})$$

$$= r_{f} + \left(\frac{\mu_{B} - r_{f}}{\sigma_{B}}\right)\sigma_{p}$$

where

$$\left(rac{\mu_{\mathcal{B}}-r_{\mathit{f}}}{\sigma_{\mathcal{B}}}
ight)=\mathrm{SR}_{\mathcal{B}}=\mathsf{Asset}\;\mathsf{B's}\;\mathit{Sharpe}\;\mathit{Ratio}$$

= excess expected return per unit risk

- ▶ The Sharpe Ratio (SR) is commonly used to rank assets.
- Assets with high Sharpe Ratios are preferred to assets with low Sharpe Ratios

William F. Sharpe, Nobel Prize in 1990

- William Sharpe was born on June 16, 1934 in Boston, Massachusetts.
- He enrolled at the University of California at Berkeley planning to pursue a degree in medicine. However, in the first year he decided to change his focus and moved to the University of California at Los Angeles to study Business Administration.
- ▶ Finding that he was not interested in accounting, Sharpe had a further change in preferences, finally majoring in Economics.
- ► From UCLA, he earned a B.A. in 1955, a M.A. in 1956 and a Ph.D in 1961 with a thesis on a **single factor model** of security prices, also including an early version of **the security market line**.

▶ 3 Month T-Bill and XOM

$$\mu_A = 0.00466, \ \mu_f = 0.00214,$$
 $\sigma_A^2 = 0.00209, \ \sigma_T^2 = 0.00000959 \approx 0,$
 $\sigma_{AT} = 0.00000599 \approx 0$

Portfolio Frontier

$$\mu_{p} = r_{f} + \left(\frac{\mu_{A} - r_{f}}{\sigma_{A}}\right) \sigma_{p}$$

$$= 0.00214 + \frac{0.00466 - 0.00214}{\sqrt{0.00209}} \sigma_{p}$$

$$= 0.00214 + 0.05516\sigma_{p}$$

Portfolio Frontier

▶ 3 Month T-Bill and DAL

$$\mu_B = 0.02579, \ \mu_f = 0.00214,$$
 $\sigma_B^2 = 0.01139, \ \sigma_T^2 = 0.00000959 \approx 0,$ $\sigma_{BT} = -0.00001759 \approx 0$

Portfolio Frontier

$$\mu_{p} = r_{f} + \left(\frac{\mu_{B} - r_{f}}{\sigma_{B}}\right) \sigma_{p}$$

$$= 0.00214 + \frac{0.02579 - 0.00214}{\sqrt{0.01139}} \sigma_{p}$$

$$= 0.00214 + 0.22165 \sigma_{p}$$

► Efficient Portfolios with 2 Risky Assets and a Risk Free Asset

Investment in 2 Risky Assets and T-Bill

$$R_A = \text{ simple return on asset A}$$

 $R_B = \text{ simple return on asset B}$
 $R_f = r_f = \text{ return on T-Bill}$

Assumptions: R_A and R_B satisfy

$$R_i \sim iid \ (\mu_i, \sigma_i^2), \ i = A, B$$
 $cov(R_A, R_B) = \sigma_{AB}, \ corr(R_A, R_B) = \rho_{AB}$

- ▶ **Results**: The best portfolio of two risky assets and T-Bills is the *one with the highest Sharpe Ratio*
- Graphically, this portfolio occurs at the tangency point of a line drawn from R_f to the risky asset only frontier.
- ► The maximum Sharpe Ratio portfolio is called the "tangency portfolio"

- Mutual Fund Separation Theorem: Efficient portfolios are combinations of two portfolios (mutual funds)
 - T-Bill portfolio
 - Tangency portfolio portfolio of assets A and B that has the maximum Shape ratio
- ▶ Implication: All investors hold assets A and B according to their proportions in the tangency portfolio regardless of their risk preferences.

► Finding the tangency portfolio

$$\max_{x_A, x_B} SR_p = \frac{\mu_p - r_f}{\sigma_p} \text{ subject to}$$

$$\mu_p = x_A \mu_A + x_B \mu_B$$

$$\sigma_p^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}$$

$$1 = x_A + x_B$$

Solution can be found analytically or numerically.

Using the substitution method it can be shown that

$$\begin{aligned} \mathbf{x}_{A}^{\text{tan}} &= \frac{(\mu_{A} - r_{f})\sigma_{B}^{2} - (\mu_{B} - r_{f})\sigma_{AB}}{(\mu_{A} - r_{f})\sigma_{B}^{2} + (\mu_{B} - r_{f})\sigma_{A}^{2} - (\mu_{A} - r_{f} + \mu_{B} - r_{f})\sigma_{AB}} \\ \mathbf{x}_{B}^{\text{tan}} &= 1 - \mathbf{x}_{A}^{\text{tan}} \end{aligned}$$

portfolio characteristics

$$\begin{split} \mu_{p}^{\mathrm{tan}} &= x_{A}^{\mathrm{tan}} \mu_{A} + x_{B}^{\mathrm{tan}} \mu_{B} \\ \left(\sigma_{p}^{\mathrm{tan}}\right)^{2} &= \left(x_{A}^{\mathrm{tan}}\right)^{2} \sigma_{A}^{2} + \left(x_{B}^{\mathrm{tan}}\right)^{2} \sigma_{B}^{2} + 2 x_{A}^{\mathrm{tan}} x_{B}^{\mathrm{tan}} \sigma_{AB} \end{split}$$

► Efficient Portfolios: tangency portfolio plus T-Bills

$$egin{align*} x_{ ext{tan}} &= ext{share of wealth in tangency portfolio} \ x_f &= ext{share of wealth in T-bills} \ x_{ ext{tan}} + x_f &= 1 \ R_p^e &= x_f r_f + x_{ ext{tan}} R_p^{ ext{tan}} = r_f + x_{ ext{tan}} (R_p^{ ext{tan}} - r_f) \ \mu_p^e &= r_f + x_{ ext{tan}} (\mu_p^{ ext{tan}} - r_f) \ \sigma_p^e &= x_{ ext{tan}} \sigma_p^{ ext{tan}} \end{aligned}$$

Result: The weights x_{tan} and x_f are determined by an investor's risk preferences

- Risk averse investors hold mostly T-Bills
- ▶ Risk tolerant investors hold mostly tangency portfolio

Example: for the two asset example, the tangency portfolio is

$$\begin{split} x_A^{\mathsf{tan}} &= 0.36975, \ x_B^{\mathsf{tan}} = 0.63025 \\ \mu_\rho^{\mathsf{tan}} &= (.36975) \cdot (.00466) + (.63025) \cdot (.02579) = 0.01798 \\ \left(\sigma_\rho^{\mathsf{tan}}\right)^2 &= (.36975)^2 \cdot (.00209) + (.63025)^2 \cdot (.01139) \\ &\quad + 2(.36975) \cdot (.63025) \cdot (-.0.00000713) = 0.0048 \\ \sigma_\rho^{\mathsf{tan}} &= \sqrt{0.0048} = 0.06931 \end{split}$$

► Example (continued): Efficient portfolios have the following characteristics

$$\mu_p^e = r_f + x_{tan}(\mu_p^{tan} - r_f)$$

$$= 0.00214 + x_{tan} \cdot (0.01798 - 0.00214)$$

$$= 0.00214 + x_{tan} \cdot 0.01584$$

and

$$\sigma_{\scriptscriptstyle D}^{e} = x_{\rm tan} \sigma_{\scriptscriptstyle D}^{\rm tan} = 0.06931 \cdot x_{\rm tan}$$

Problem: Find the efficient portfolio that has the same risk (SD) as asset A? That is, determine x_{tan} and x_f such that

$$\sigma_{\scriptscriptstyle D}^{\rm e} = \sigma_{A} = 0.04582 = {\sf target\ risk}$$

Note: The efficient portfolio will have a higher expected return than asset A

► Solution:

$$0.04582 = \sigma_p^e = x_{tan}\sigma_p^{tan} = x_{tan}(0.06931)$$

$$\Rightarrow x_{tan} = \frac{0.04582}{0.06931} = 0.66$$

$$x_f = 1 - x_{tan} = 0.34$$

Efficient portfolio with same risk as asset B has

$$(0.66)(0.36975) = 0.244$$
 in asset A $(0.66)(0.63025) = 0.416$ in asset B 0.34 in T-Bills

The expected Return on efficient portfolio is

$$\mu_p^e = 0.00214 + 0.66 \cdot 0.01584 = 0.01259$$

compared with
$$\mu_A = 0.00466$$

Problem: find the efficient portfolio that has the same expected return as asset A. That is, determine x_{tan} and x_f such that

$$\mu_{p}^{e}=\mu_{A}=0.00466={
m target}$$
 expected return

Note: The efficient portfolio will have a lower SD than asset B

► Solution:

$$0.00466 = \mu_p^e = 0.00214 + x_{tan} \cdot 0.01584$$

$$x_{tan} = \frac{0.00466 - 0.00214}{0.01584} = 0.1595$$

$$x_f = 1 - x_{tan} = 0.8405$$

Efficient portfolio with same expected return as asset B has

$$(0.1595)(0.36975) = 0.059$$
 in asset A $(0.1595)(0.63025) = 0.100$ in asset B 0.841 in T-Bills

The SD of the efficient portfolio is

$$\sigma_p^e = x_{tan}(0.06931) = 0.1595 \cdot (0.06931) = 0.01106$$

compared with
$$\sigma_A = 0.04582$$

- ▶ We have solved two portfolios: the first one has the same risk (SD) as asset A, but has large expected return; the second one has the same expected return as asset A but has smaller risk (SD).
- ► The calculation is based on the full sample (i.e., from 2009 Jan to 2018 Jan).
- ▶ We are more interested in checking how these two portfolios perform in the future.
- ► To do this, we will use the rolling window techniques we used for checking the VaR_{α} estimators in the previous lecture.

- There are 108 observations (9 year monthly data) in our sample
- At any time t (t > 60), we use 60 previous (5 year) data to estimate μ_A , μ_B , σ_A^2 , σ_B^2 and σ_{AB} then construct two
- portfolios: the first one track the risk (SD) of asset A, while the second one track the expected return of asset A
- ▶ At time 61, $\{(R_{A,1}, R_{B,1}, R_{T,1}), ..., (R_{A,60}, R_{B,60}, R_{T,60})\}$
- ▶ At time 62, $\{(R_{A,2}, R_{B,2}, R_{T,2}), ..., (R_{A,61}, R_{B,61}, R_{T,61})\}$
- ·
- ▶ At time 108, $\{(R_{A,48}, R_{B,48}, R_{T,48}), ..., (R_{A,107}, R_{B,107}, R_{T,107})\}$
- We consider investment of $W_0 = 10,000$ for one month

- ▶ The data at time 61: $\{(R_{A,1}, R_{B,1}, R_{T,1}), ..., (R_{A,60}, R_{B,60}, R_{T,60})\}$
- ▶ We calculate the estimators of μ_A , μ_B , σ_A^2 , σ_B^2 and σ_{AB} , the tangency portfolio

$$(x_{A, \mathsf{tan}}^1, x_{B, \mathsf{tan}}^1)$$

and the two target portfolios

$$(x_{1,\tan}^1, x_{1,T}^1)$$
 and $(x_{2,\tan}^1, x_{2,T}^1)$

▶ Using $(R_{A,61}, R_{B,61}, R_{T,61})$, we calculate the future (one month later) profits of the two portfolios and asset A

$$\begin{array}{lcl} L_1^1 & = & 10,000 \cdot (x_{1, \tan}^1 R_{\tan,61} + x_{1,T}^1 R_{T,61}) \\ L_2^1 & = & 10,000 \cdot (x_{2, \tan}^1 R_{\tan,61} + x_{2,T}^1 R_{T,61}) \\ L_A^1 & = & 10,000 \cdot R_{A,61} \end{array}$$

where $R_{\text{tan},61} = x_{A,\text{tan}}^1 R_{A,61} + x_{B,\text{tan}}^1 R_{B,61}$.

- ▶ The data at time 62: $\{(R_{A,2}, R_{B,2}, R_{T,2}), ..., (R_{A,61}, R_{B,61}, R_{T,61})\}$
- ▶ We calculate the estimators of μ_A , μ_B , σ_A^2 , σ_B^2 and σ_{AB} , the tangency portfolio

$$(x_{A, tan}^2, x_{B, tan}^2)$$

and the two target portfolios

$$(x_{1,\tan}^2, x_{1,T}^2)$$
 and $(x_{2,\tan}^2, x_{2,T}^2)$

▶ Using $(R_{A,62}, R_{B,62}, R_{T,62})$, we calculate the future (one month later) profits of the two portfolios and asset A

$$L_1^2 = 10,000 \cdot (x_{1,\tan}^2 R_{\tan,62} + x_{1,T}^2 R_{T,62})$$

$$L_2^2 = 10,000 \cdot (x_{2,\tan}^2 R_{\tan,62} + x_{2,T}^2 R_{T,62})$$

$$L_A^2 = 10,000 \cdot R_{A,62}$$

where
$$R_{\text{tan},62} = x_{A,\text{tan}}^2 R_{A,62} + x_{B,\text{tan}}^2 R_{B,62}$$
.

- **.....**
-
-

- ▶ The data at time 62: $\{(R_{A,48}, R_{B,48}, R_{T,48}), ..., (R_{A,107}, R_{B,107}, R_{T,107}, R$
- We calculate the estimators of μ_A , μ_B , σ_A^2 , σ_B^2 and σ_{AB} , the tangency portfolio

$$\left(x_{A, \mathsf{tan}}^{48}, x_{B, \mathsf{tan}}^{48}\right)$$

and the two target portfolios

$$(x_{1,\tan}^{48}, x_{1,T}^{48})$$
 and $(x_{2,\tan}^{48}, x_{2,T}^{48})$

▶ Using $(R_{A.108}, R_{B.108}, R_{T.108})$, we calculate the future (one month later) profits of the two portfolios and asset A

$$L_1^{48} = 10,000 \cdot (x_{1,\tan}^{48} R_{\tan,108} + x_{1,T}^{48} R_{T,108})$$

$$L_2^{48} = 10,000 \cdot (x_{2,\tan}^{48} R_{\tan,108} + x_{2,T}^{48} R_{T,108})$$

$$L_2^{48} = 10,000 \cdot R_{A,108}$$

where
$$R_{\mathsf{tan},108} = x_{A,\mathsf{tan}}^{48} R_{A,108} + x_{B,\mathsf{tan}}^{48} R_{B,108}$$
.

At the end, we get

$$\left(L_1^1,L_1^2,\ldots,L_1^{48}\right)$$
 and $\left(L_2^1,L_2^2,\ldots,L_2^{48}\right)$

which are the future profits of the two portfolios

We also get

$$\left(L_A^1, L_A^2, \dots, L_A^{48}\right)$$

which are the future profits if we invest all the money W_0 in asset A.

- We can compare $(L_1^1, L_1^2, ..., L_1^{48})$ against $(L_A^1, L_A^2, ..., L_A^{48})$, and $(L_2^1, L_2^2, ..., L_2^{48})$ against $(L_A^1, L_A^2, ..., L_A^{48})$ to see if there
- is any benefit of applying the efficient portfolio theory.

- ▶ The efficient portfolio 1 is to track the risk of Asset A
- ▶ Hence we expect it to have high expected return than asset A

- ► The efficient portfolio 2 is to track the expected return of Asset A
- ▶ Hence we expect it to have smaller risk than asset A

What's next

- We have investigated the portfolio theory with two risky assets and one riskless asset
- If we consider more assets, we will have better portfolio frontier (in theory) which may help build better portfolio in practice
- Our next topic is on the portfolio theory with many risky assets
- Some knowledge on matrix theory will be required