Biostatistics Spring 2021 Monday, March 22nd 2021 Wk 8, Mo Topic:: Inference for proportions Chapter 6 overview - Scenarios are all ones we have discussed univariate (one population) proportion arising from binary categorical variable parameter proportion arising from quantitative variable 2 populations parameters P1 - P2 difference of proportions difference of means investigated using two independent samples matched pairs - One previously investigated scenarios deferred to later chapter: 2 quant vars - Something of a history lesson - Relies entirely on facts from Central Limit Theorem Sections 1-3: single proportion Confidence interval construction - previously observed: sampling dist. sometimes reminiscent of normal dist used bootstrapping to estimate SE used near normality to co-opt 68-95-99.7% rule - first, a refinement it is not truly the case that 95% of values in normal dist lie within 2 sds pnorm(2) - pnorm(-2) qnorm(c(.025,.975))

- prior to today's computing power, what was done

Stat 145, Mon 22-Mar-2021 -- Mon 22-Mar-2021

constructed tables of Z-scores

see https://www.math.arizona.edu/~jwatkins/normal-table.pdf compare with pnorm(), qnorm() calculations appeared in all statistics books, perhaps up to 2010 or later

used whatever value available for p to
 decide if rule of thumb for normality is met

insert into formula for approximate SE: sqrt(p*(1-p) / n)

Practice:

- obtaining critical z* values for

96% confidence

90% confidence

99% confidence

- doing inference (CI and hypothesis testing) with datasets
 - 1. in 119 games of rock-paper-scissors, player did rock 66 times
 - 2. in 70 out of 120 soccer games, the home team won
 - 3. suppose that 42% of people have 0+ blood. sample shows 65 out of 192

For 95% Confidence intervals for p (from population proportion), use critical Z* = 1.96 (not Z) as a multiplier

Margin of error = X. SE

1.96

1.96

Similarly, you can adjust Z^{*} for Q^{*} (Shulis comment Q^{*}), confidence: Use $Z^{*} = 1.645 = Q^{*}$ norm Q^{*}) Q^{*} (0.95) Q^{*} (orfidence: Use $Z^{*} = Q^{*}$ gnorm Q^{*}) Q^{*} Q^{*}

Used bootstrapping for 2 reasons - convince that a normal model is appropriate Not needed if we substitute rules of themb np \geq 10

In practice - must ase the best number you have as p.

In CIs, use \$\hat{p}\$ for p In hyp. tests, use p. for p. - To obtain estimate for SEp. $SE_{p} = \sqrt{\frac{p(1-p)}{n}}$ Ex.) p = true proportion of "rock" in RPS -games (unknown) Sample: N = 119 games, $p = \frac{66}{119}$ Con we assume a normal model? $n\hat{p} = (119)\frac{66}{119} = 66$ $n(1-\hat{p}) = 119 \cdot \frac{119-66}{119} = 53$ both at least (0) so normal model is justified.

What estimate for SEp = $\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(66/19)(53/19)}{119}} = 0.0456$ Use of for PI

Now, to get a 90% CT:
lower bound:
$$\frac{66}{119} - (1.645)(0.0456) = 0.48$$

upper bound: $\frac{66}{119} + (1.645)(0.0456) = .63$

Ex.] Hypothesis test. Let p = true proportion home team wins $H_0: p = \frac{1}{2}$ $H_a: p > \frac{1}{2}$ Have data $\hat{p} = \frac{70}{120}$ Check for normality $np = 120(\frac{1}{2}) = 60$ $n(1-p) = 120(1-\frac{1}{2}) = 60$ $SE_{p} = \begin{cases} P(1-p) \\ n \end{cases} = \begin{cases} (1/2)/(2) \\ (1/2) \end{cases} = 0.0456$ To assess P-value, take my normal dist. (the one CLT indicated: Norm (1.5 0.0456) hyp. value SEp right-tail area = 6.034.

0.583

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1. 4 -1.3	0.0008	0.0793	0.0776	0.0704	0.0749	0.0733	0.0721	0.0753	0.0034	0.0823
-1.2	0.0300	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0025
-1.1	0.1157	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.4	0.2446	0.2400	0 2272	0 2226	0.3300	0.2264	0 2220	0.2402	0.2456	0 2424
-0.4 -0.3	0.3446 0.3821	0.3409 0.3783	0.3372 0.3745	0.3336 0.3707	0.3300 0.3669	0.3264 0.3632	0.3228 0.3594	0.3192 0.3557	0.3156 0.3520	0.3121 0.3483
-0.3 -0.2	0.3621	0.3763	0.3745	0.3707	0.3009	0.3032	0.3974	0.3936	0.3320	0.3463
-0.2 -0.1	0.4207	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.3930	0.4286	0.3039
0.0	0.5000	0.4960	0.4920	0.4483	0.4840	0.4801	0.4364	0.4323	0.4681	0.4247
0.0	1 0.0000	0.4000	0.4020	0.4000	J.∓J+U	J.∓JJ I	0.4701	U. 71 Z I	J.∓JJ I	0.4041

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
4.5	0.0000	0.0045	0.0057	0.0070	0.0000	0.0004	0.0400	0.0440	0.0400	0.0444
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564 0.9649	0.9573 0.9656	0.9582	0.9591 0.9671	0.9599 0.9678	0.9608 0.9686	0.9616	0.9625 0.9699	0.9633 0.9706
1.8 1.9	0.9641 0.9713	0.9649	0.9656	0.9664 0.9732	0.9671	0.9676	0.9666	0.9693 0.9756	0.9699	0.9767
1.9	0.9713	0.97 19	0.9720	0.9732	0.9730	0.9744	0.9750	0.9730	0.9701	0.9707
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998