晶体学基础

选择:有关德布罗意波的计算

德布罗意公式

$$E = h v = \hbar \omega$$

$$\vec{P} = \frac{h}{\lambda} \vec{n} = \hbar \vec{k}$$

一维无限深势阱的 能量

$$E_n = \frac{\pi^2 \hbar^2 n^2}{8 \mu a^2}, n = 1, 2, 3 \cdots$$

 \hat{L}^2 的本征值是 (2l+1) 度简并的

第符和力学展開的交長 $\hat{H}\psi=E\psi$ 推广到一般算符 基本程定。知知算符 \hat{F} 表示力学展。那么当体最少于算符 \hat{F} 告示社志 ϕ 申、力学整定有误定性。这个值就 是異符 \hat{F} ϕ $=F\phi$

波恩提出的关于波 函数的统计解释

证明题

性质:如果 \hat{F} 是厄密算符,则它的本征值一定是实数。

例2:证明体心立方的倒格是面心立方。

计算题

设在
$$H_0$$
表象中, $H=H_0+H'$ 的矩阵形式为
$$H=\begin{pmatrix} E_1^{(0)}+a & b \\ b & E_2^{(0)}+a \end{pmatrix} \ \ (a,b)$$
 (a、b为实数),用微扰理论求 能量到二级修正。

计算简单立方和面心立方的致密度

晶体学基础

1

晶体学基础