Table of Contents

Question 1	1
Question 2	2
Question 3	
Question 4	4
Question 5	
Question 6	

```
rgbImage = imread('lenna_RGB.tif');
rChannel = rgbImage(:,:,1); % Red channel
gChannel = rgbImage(:,:,2); % Green channel
bChannel = rgbImage(:,:,3); % Blue channel
figure
subplot(1,3,1)
imshow(rChannel)
title('Red Channel')
subplot(1,3,2)
imshow(gChannel)
title('Green Channel')
subplot(1,3,3)
imshow(bChannel)
title('Blue Channel')
```

Red Channel

Green Channel

Blue Channel


```
hsvimg =rgb2hsv(rgbImage);
hChannel =hsvimg(:,:,1); hue is a angle and this is detect color value
 (red or something else)
sChannel =hsvimg(:,:,2);%saturation is give a color power
vChannel =hsvimg(:,:,3);%value is 0 black 1 is give a color however if
value is 1 and sat is 0 this give white
figure
subplot(1,3,1)
imshow(hChannel)
title('H Channel')
subplot(1,3,2)
imshow(sChannel)
title('S Channel')
subplot(1,3,3)
imshow(vChannel)
title('V Channel')
```

H Channel


```
YCBCR = rgb2ycbcr(rgbImage);
y =YCBCR(:,:,1); hue is a angle and this is detect color value (red or
something else)
cb=YCBCR(:,:,2);%saturation is give a color power
cr=YCBCR(:,:,3);%value is 0 black 1 is give a color however if value
is 1 and sat is 0 this give white
figure
subplot(1,3,1)
imshow(y)
title('H Channel')
subplot(1,3,2)
imshow(cb)
title('S Channel')
subplot(1,3,3)
imshow(cr)
title('V Channel')
```

H Channel


```
%Orjinal Photo
figure
subplot(4,2,1)
imshow(rgbImage)
title('Orginal Image')
subplot(4,2,2)
histogram(rgbImage)
%RGB Histogram
rEq = histeq(rChannel);
gEq = histeq(gChannel);
bEq = histeq(bChannel);
nrgbImage = cat(3, rEq,gEq,bEq);
subplot(4,2,3)
imshow(nrgbImage)
title('RGB - Histogram Equalizated')
subplot(4,2,4)
histogram(nrgbImage)
%HSV Histogram
vEq = histeq(vChannel);
nhsvImage = cat(3, hChannel,sChannel,vEq);
```

```
nhsv2rgb= hsv2rgb(nhsvImage);
subplot(4,2,5)
imshow(nhsv2rgb)
title('HSV - Histogram Equalizated')
subplot(4,2,6)
histogram(nhsv2rgb)
%YCbCr Histogram
yEq = histeq(y);
nycbcrImage = cat(3,yEq,cb,cr);
nycbcr2rqb= ycbcr2rqb(nycbcrImage);
subplot(4,2,7)
imshow(nycbcr2rqb)
title('Ycbcr - Histogram Equalizated')
subplot(4,2,8)
histogram(nycbcr2rgb)
%After the histogram there are 3 different result. Firt result is
RGB.In rgb
%histogram we expand all all colors 0 to 255. In orginal photo main
%red but after the histogram there is no main color because color
ratio
%equalized.
*Secont is HSV and we histogram only v parameters.V parameter show
%color light power.If v=1 it shows that lightest color.I think after
%histogram equalize light value. Maybe histograms not true because in
 this
%variables have 3 parameters and maybe we can not see every channel in
the
%historam.
%Thirdly Y is values again change colors black and white. So that it is
%optimum parameter for histogram but we are not sure is this true
histogram
%technic.
```

5

RGB - Histogram Equalizated

HSV - Histogram Equalizated

Ycbcr - Histogram Equalizated


```
imgOrgLinc = imread('lincoln.tif');
strDisk=strel('square',3);%Structuring element
imgDialted=imdilate(imgOrgLinc,strDisk);%Dialte the image by
structuring element
figure,imshow(imgDialted-imgOrgLinc);
title('Boundry image');

%Firstly create a structure.This structure 3x3 we use imdilate and
expand
%image after this image size little bit increase after this step if
delete
%the orginal image you see only boundry easly.
```



```
imgOrgText = imread('text_gaps.tif');
strDisk=strel('square',3);%Structuring element
imgDialted=imdilate(imgOrgText,strDisk);
imgDialted=imerode(imgDialted,strDisk);

figure,subplot(1,2,1),imshow(imgDialted1),title('Orginal Image');
subplot(1,2,2),imshow(imgDialted),title('Final Image');
%In this algorithm firstly we expand the image with imdilate we lost %deformation but characters thin is increase so that there is not easly reading
%Secondly we should narrow the characters so that we use imerode and show
%the image
```

Orginal Image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a data using "00" as 1900 rather than the year 2000.

Final Image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Published with MATLAB® R2018a