

Laguna State Polytechnic University

Province of Laguna

Machine Problem No. 2					
Topic:	Topic 1.2: Image Processing Techniques	Week No.	3-5		
Course Code:	CSST106	Term:	1st Semester		
Course Title:	Perception and Computer Vision	Academic Year:	2024-2025		
Student Name	Lucky Owell U. Millare	Section	BSCS 4B		
Due date	September 21, 2024	Points			

Machine Problem No. 2: Applying Image Processing Techniques

Objective:

Understand and apply various image processing techniques, including image transformations and filtering, using tools like OpenCV. Gain hands-on experience in implementing these techniques and solving common image processing tasks.

Hands-On Exploration:

1. INSTALL OPENCV

```
!pip install opencv-python-headless
```

2. IMPORT LIBRARIES

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
def display_image(img, title="Image"):
  plt.figure(figsize=(6,3))
  plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
  plt.title(title)
  plt.axis("off")
  plt.show()
def display_images(img1, img2, title1="Image 1", title2="Image 2"):
  plt.figure(figsize=(6,3))
  plt.subplot(1,2,1)
  plt.imshow(cv2.cvtColor(img1,cv2.COLOR_BGR2RGB))
  plt.title(title1)
  plt.axis("off")
  plt.subplot(1,2,2)
  plt.imshow(cv2.cvtColor(img2,cv2.COLOR_BGR2RGB))
  plt.title(title2)
  plt.axis("off")
  plt.show()
```


Republic of the Philippines **Laguna State Polytechnic University**Province of Laguna

3. LOAD IMAGE

```
from google.colab import files
from io import BytesIO
from PIL import Image

uploaded = files.upload()

image_path = next(iter(uploaded))
image = Image.open(BytesIO(uploaded[image_path]))
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

display_image(image, "Original Image")
```

Original Image

Laguna State Polytechnic University Province of Laguna

EXERCISE 1. Scaling and Rotation

```
def scale_image(image, scale_factor):
    height, width = image.shape[:2]
    scale_img = cv2.resize(image,(int(width * scale_factor), int(height * scale_factor)), interpolation = cv2.INTER_LINEAR)
    return scale_img

def rotate_image(image, angle):
    height, width = image.shape[:2]
    center = (width//2,height//2)
    matrix = cv2.getRotationMatrix2D(center,angle,1)
    rotated_image = cv2.warpAffine(image,matrix,(width,height))
    return rotated_image

scaled_image = scale_image(image, 0.5)
display_image(scaled_image, "Scaled Image")

rotated_image = rotate_image(image, 45)
display_image(rotated_image, "Rotated Image")
```

Scaled Image

Rotated Image

Laguna State Polytechnic University Province of Laguna

Exercise 2: Blurring Techniques

```
gussian_blur = cv2.GaussianBlur(image, (11,11), 0)
display_image(gussian_blur, "Gussian Blur")

median_blur = cv2.medianBlur(image,17)
display_image(median_blur, "Median Blur")

bilateral_blur = cv2.bilateralFilter(image, 99, 99, 99)
display_image(bilateral_blur, "Bilateral Blur")
```


Median Blur

Bilateral Blur

Laguna State Polytechnic University Province of Laguna

3. Edge Detection using Canny

Problem-Solving Session:

Common Image Processing Tasks:

 Engage in a problem-solving session focused on common challenges encountered in image processing tasks.

0

One of the Challenge I encounter in our lab session is the uploading a image in colab notebook this is because of having a BAYER in the code because of TAB too much in the Laboratory session.

```
✓ 3. Load Image

from google.colab import files
from io import BytesIO
from PIL import Image

uploaded = files.upload()
image_path = next(iter(uploaded))
image = Image.open(BytesIO(uploaded[image_path]))
image = cv2.cvtColor(np.array(image), cv2.CoLOR_BAYER_RGB2BGR)

display_image(image, "Original Image")

Choose Files image.jpg

Image_jpg(image/jpeg) - 5763 bytes, last modified: 9/9/2024 - 100% done
Saving image.jpg to image.jpg

NameError

Traceback (most recent call last)
sipython-input-1-7cc9397246fe> in <cell line: 9>()
7 image_path = next(iter(uploaded))
8 image = Image.open(BytesIO(uploaded[image_path]))
----> 9 image = cv2.cvtColor(np.array(image), cv2.CoLOR_BAYER_RGB2BGR)
10
11 display_image(image, "Original Image")

NameError: name 'cv2' is not defined

Next steps: Explain error

Next steps: Explain error

Traceback (most recent call last)
cipython-input-1-7cc9397246fe> in <cell line: 9>()
7 image_path = next(iter(uploaded))
8 image = Image.open(BytesIO(uploaded[image_path]))
----> 9 image = cv2.cvtColor(np.array(image), cv2.CoLOR_BAYER_RGB2BGR)
10
11 display_image(image, "Original Image")

NameError: name 'cv2' is not defined

Next steps: Explain error

Next steps: Explain error

Traceback (most recent call last)
cipython-input-1-7cc9397246fe> in <cell line: 9>()
7 image_path = next(iter(uploaded))
8 image_path = next(iter(uploaded))
9 image_path = next(iter
```


Republic of the Philippines **Laguna State Polytechnic University**Province of Laguna

To fix the problem is we have to remove the BAYER in the code so we can upload a image without error.

Scenario-Based Problems: Solve scenarios where you must choose and apply appropriate image processing techniques.

In the Exercise 1 Hand on Exploration we following the step of our professor instructed in the TV screen the problem I encounter in the one of the Image processing Techniques that been instructing is in the Scaling and Rotation. The problem I encounter in that Part is I didn't copy properly the code the professor instructed because I TAB it without knowing the code is not the same so when I run the code there is a error.

Laguna State Polytechnic University Province of Laguna


```
def scale_image(image, scale_factor):
 height, width = image.shape[:2]
 scale_img = cv2.resize(image, int(height * scale_factor), interpolation = cv2.INTER_LINEAR)
  return scale_img
def rotate_image(image, angle):
 height, width = image.shape[:2]
  center = (width//2,height//2)
  matrix = cv2.getRotationMatrix2D(center,angle,1)
  rotated_image = cv2.warpAffine(image,matrix,(width,height))
  return rotated_image
scaled_image = scale_image(image, 0.5)
display_image(scaled_image, "Scaled Image")
rotated_image = rotate_image(image, 45)
display_image(rotated_image, "Rotated Image")
                                           Traceback (most recent call last)
<ipython-input-17-b0f5ac9ca581> in <cell line: 13>()
    11 return rotated_image
    13 scaled_image = scale_image(image, 0.5)
    14 display_image(scaled_image, "Scaled Image")
<ipython-input-17-b0f5ac9ca581> in scale_image(image, scale_factor)
      1 def scale_image(image, scale_factor):
        height, width = image.shape[:2]
scale_img = cv2.resize(image, int(height * scale_factor), interpolation = cv2.INTER_LINEAR)
         return scale_img
error: OpenCV(4.10.0) :-1: error: (-5:Bad argument) in function 'resize'
> Overload resolution failed:
   - Can't parse 'dsize'. Input argument doesn't provide sequence protocol
   - Can't parse 'dsize'. Input argument doesn't provide sequence protocol
```

To solve the problem I try to compare my code to my seatmates and learn what is wrong in my code the problem is in the scale_img I do not have this (int(width * scale_factor) that will be used in to calculate the new width of the image after scaling. After I fix it the error is gone.

Laguna State Polytechnic University Province of Laguna


```
def scale_image(image, scale_factor):
    height, width = image.shape[:2]
    scale_img = cv2.resize(image,(int(width * scale_factor), int(height * scale_factor)), interpolation = cv2.INTER_LINEAR)
    return scale_img

def rotate_image(image, angle):
    height, width = image.shape[:2]
    center = (width/2, height/2)
    matrix = cv2.getRotationMatrix2D(center,angle,1)
    rotated_image = cv2.warpAffine(image,matrix,(width,height))
    return rotated_image

scaled_image = scale_image(image, 0.5)
    display_image(scaled_image, "Scaled Image")

rotated_image = rotate_image(image, 45)
    display_image(rotated_image, "Rotated Image")
```

Scaled Image

Rotated Image

Republic of the Philippines **Laguna State Polytechnic University**Province of Laguna

Rubric for Machine Problem No. 2: Applying Image Processing Techniques

Criteria	Excellent (10 points)	Good (8 points)	Fair (5 points)	Poor (2 points)
Understanding of Image Processing Concepts	Comprehensive understanding of image processing techniques.	Good understanding with minor gaps.	understanding with some	Poor or incomplete understanding.
Transformations and Filters	Correct and effective application of image transformations and filters.	Mostly correct with minor inaccuracies.	with significant	Inaccurate or ineffective application.
Problem-Solving Ability	Effective solutions to common image processing tasks.	Adequate solutions with some errors.		Poor or incorrect solutions.
Lab Work Submission	Well-organized, clear, and complete submission.	Organized with minor issues in clarity.	organized but lacks	Disorganized and unclear submission.