

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

ID

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12Q 1/68, C07H 21/04		A1	(11) International Publication Number: WO 95/01456 (43) International Publication Date: 12 January 1995 (12.01.95)		
(21) International Application Number: PCT/US94/07541		(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).			
(22) International Filing Date: 1 July 1994 (01.07.94)					
(30) Priority Data: 08/087,387 2 July 1993 (02.07.93)		US			
(71) Applicant (for all designated States except US): LYNX THERAPEUTICS, INC. [US/US]; 3632 Bay Center Plaza, Hayward, CA 94545 (US).		Published With international search report.			
(72) Inventors; and					
(75) Inventors/Applicants (for US only): GRYAZNOV, Sergei, M. [RU/US]; 2 Clark Drive #212, San Mateo, CA 94401 (US). LLOYD, David, H. [US/US]; 850 Pointe Pacific Drive, No. 1, Daly City, CA 94014 (US).					
(74) Agents: NEELEY, Richard, L. et al.; Cooley Godward Castro Huddleson & Tatum, Five Palo Alto Square, 4th floor, Palo Alto, CA 94306-2155 (US).					

(54) Title: OLIGONUCLEOTIDE CLAMPS HAVING DIAGNOSTIC AND THERAPEUTIC APPLICATIONS

(57) Abstract

Compounds referred to herein as oligonucleotide clamps are provided that stably bind to target polynucleotides in a sequence-specific manner. The oligonucleotide clamps comprise one or more oligonucleotide moieties capable of specifically binding to a target polynucleotide and one or more pairs of binding moieties covalently linked to the oligonucleotide moieties. In accordance with the invention, upon annealing of the oligonucleotide moieties to the target polynucleotide, the binding moieties of a pair are brought into juxtaposition so that they form a stable covalent or non-covalent linkage or complex. The interaction of the binding moieties of the one or more pairs effectively clamps the specifically annealed oligonucleotide moieties to the target polynucleotide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

OLIGONUCLEOTIDE CLAMPS HAVING DIAGNOSTIC AND THERAPEUTIC APPLICATIONS

5

The invention relates generally to oligonucleotides and their use as probes and therapeutic agents, and more particularly, to modified oligonucleotides whose ends are capable of spontaneously forming a stable ring structure whenever such oligonucleotide specifically binds to a target polynucleotide.

10

Background

The unpredictability and expense of conventional drug discovery has led to the exploration of several drug discovery approaches that promise more systematic and/or rapid identification candidate compounds for testing in biological assays and disease models.

- 15 Examples of such approaches include selection of small peptides from a synthetic or recombinant peptide libraries, e.g. Pирnung et al, U.S. patent 5,143,854; Geysen et al, J. Immunol. Meth., 102: 259-274 (1987); Lam et al, Nature, 354: 82-84 (1991); Scott et al, Science, 249: 386-390 (1990); the construction and selection of human or humanized antibodies from recombinant antibody libraries, e.g. Riechmann et al, Nature, 332: 323-327 (1988); Winter and Milstein, Nature, 349: 293-299 (1991); selection of aptamers or 20 ribozymes from random sequence polynucleotide libraries, e.g. Ellington and Szostak, Nature, 346: 818-822 (1990); Blackwell et al, Science, 250: 1104-1110 (1990); Tuerk et al, Science, 249: 505-510 (1990); Joyce, Gene, 82: 83-87 (1989); Cech et al, U.S. patent 4,987,071; Haseloff et al, Nature, 334: 585-591 (1988); and the use of antisense 25 oligonucleotides, e.g. Uhlmann and Peyman, Chemical Reviews, 90: 543-584 (1990); Goodchild, Bioconjugate Chemistry, 1: 165-187 (1990); Helene et al, Biochim. Biophys. Acta, 1049: 99-125 (1990); Cohen, Ed., Oligonucleotides: Antisense Inhibitors of Gene Expression (Macmillan Press, New York, 1989); Crooke, Ann. Rev. Pharmacol. Toxicol., 32: 329-376 (1992); McManaway et al, Lancet, Vol. 335, pgs. 808-811 (1990); Bayever et 30 al, Antisense Research and Development, 2: 109-110 (1992); Manson et al, Lymphokine Research, Vol. 9, pgs. 35-42 (1990); Lissiewicz et al, Proc. Natl. Acad. Sci., 90: 3860-3864 (1993); Miller, Biotechnology, Vol. 9, pgs. 358-362 (1991); Chiang et al, J. Biol. Chem.,

Vol. 266, pgs. 18162-18171 (1991); Calabretta, Cancer Research, Vol. 51, pgs. 4505-4510 (1991); and the like.

Of the cited examples, the antisense approach presents a compelling advantage of not requiring one or more initial screening steps to identify candidate compounds capable of binding to a predetermined target. Specific binding is achieved by providing an oligonucleotide or an analog thereof capable of forming a stable duplex or triplex with a target nucleotide sequence based on Watson-Crick or Hoogsteen binding, respectively. Thus, as soon as the sequence of a target polynucleotide is determined, the structure of candidate antisense compounds is also determined. The specifically bound antisense compound then either renders the respective targets more susceptible to enzymatic degradation, blocks translation or processing, or otherwise blocks or inhibits the function of a target polynucleotide.

Another advantage of the antisense approach has been the development of reliable and convenient methods for solid phase synthesis of polynucleotides and analogs thereof, e.g. Caruthers, Science, Vol. 230, pgs 281-285 (1985); Beaucage et al, Tetrahedron, 48: 2223-2311 (1992); and Eckstein, ed., Oligonucleotides and Analogues: A Practical Approach (IRL Press, Oxford, 1991). In particular, the availability of synthetic oligonucleotides and a variety of nuclease-resistant analogs, e.g. phosphorothioates, methylphosphonates, and the like, has encouraged investigation of antisense compounds for treating a variety of conditions associated with the inappropriate expression of indigenous and/or exogenous genes, such as described in the references cited above.

Notwithstanding the many hurdles that have been overcome in the course of developing antisense compounds, several significant uncertainties still stand in the way of their widespread adoption as drugs. One such uncertainty concerns the degree of specificity of antisense oligonucleotides under physiological conditions. Antisense oligonucleotides could be non-specific in at least two senses: (i) duplex or triplex formation may lack specificity, e.g. non-perfectly matched duplexes may form--leading to the unwanted inhibition of non-target polynucleotides, and (ii) the moieties not directly involved in base pairing, e.g. the backbone or other appendant groups, may interact non-specifically with other cellular components leading to undesired side effects, e.g. Woolf et al, Proc. Natl. Acad. Sci., 89: 7305-7309 (1992); Matsukura et al, Proc. Natl. Acad. Sci., 84: 7706-7710 (1987); and the like. In regard to first type of nonspecificity,

it has been observed that duplexes involving longer oligonucleotides tend to be more tolerant of mismatches—and hence, less specific—than duplexes involving shorter oligonucleotides, e.g. Young et al, Nucleic Acids Research, 19: 2463-2470 (1991). In regard to the second type of nonspecificity, such activity may not be surprising in view of the large body of work on the use of polyanions, in particular homopolymeric polynucleotides, as anti-viral compounds, e.g. Levy, Chapter 7, in Stringfellow, editor, Interferon and Interferon Inducers (Marcel Dekker, New York, 1980). Interestingly, increased activity—and with some polyanions increased toxicity—was observed with increased polymer size.

The uncertainty over nonspecific binding has led to the exploration of several ways to modify oligonucleotides to enhance duplex or triplex stability of antisense compounds. One approach has been to couple duplex or triplex intercalating moieties to the antisense oligonucleotide, e.g. Park et al, Proc. Natl. Acad. Sci., 89: 6653-6657 (1992); Stein et al, Gene, 72: 333-341 (1988); Mergny et al, Science, 256: 1681-1684 (1992); Miller, International application PCT/US92/03999; and the like. Another approach involves the use of circular oligonucleotides, which are exonuclease resistant and have been shown to melt from single-stranded targets at substantially higher temperatures than linear oligonucleotides when binding involves both Watson-Crick and Hoogsteen base pairing, e.g. Prakash and Kool, J. Am. Chem. Soc., 114: 3523-3527 (1992).

Additional approaches for enhancing specificity and binding strength would be highly useful for DNA-based therapeutics and diagnostic applications of nucleic acids.

Summary of the Invention

The invention relates to compounds capable of forming stable circular complexes and/or covalently closed macrocycles after specifically binding to a target polynucleotide. Generally, compounds of the invention comprise one or more oligonucleotide moieties capable of specifically binding to a target polynucleotide and one or more pairs of binding moieties covalently linked to the oligonucleotide moieties. In accordance with the invention, upon annealing of the oligonucleotide moieties to the target polynucleotide, the binding moieties of a pair are brought into juxtaposition so that they form a stable covalent or non-covalent linkage or complex. The interaction of the binding moieties of the one or

more pairs effectively clamps the specifically annealed oligonucleotide moieties to the target polynucleotide.

In one aspect, compounds of the invention comprise a first binding moiety, a first oligonucleotide moiety, a hinge region, a second oligonucleotide moiety, and a second binding moiety, for example, as represented by the particular embodiment of the following formula:

10

wherein O_1 and O_2 are the first and second oligonucleotide moieties, G is the hinge region, X is the first binding moiety and Y is the second binding moiety such that X and Y form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of the oligonucleotide moieties to a target polynucleotide, as illustrated diagrammatically in Figure 1a. Preferably, in this embodiment, one of O_1 and O_2 , 15 forms a duplex through Watson-Crick type of binding with the target polynucleotide while the other of O_1 and O_2 forms a triplex through Hoogsteen or reverse Hoogsteen type of binding. Whenever X and Y form a covalent linkage, the compound of the invention forms 20 a macrocycle of the following form:

30

wherein "XY" is the covalent linkage formed by the reaction of X and Y.

In another aspect, compounds of the invention comprise a first binding

moiety, a first, second, and third oligonucleotide moiety, a first and second hinge region, and a second binding moiety, for example, as represented by the particular embodiment of the following formula:

5

10

wherein X and Y are described as above, G₁ and G₂ are the first and second hinge regions, and O₁, O₂, and O₃ are the first through third oligonucleotide moieties. Preferably, the sequences of O₁, O₂, and O₃ are selected so that O₁ and O₂ and O₃ and O₂ form triplex structures with the target polynucleotide, as diagrammatically illustrated in Figure 1b.

15

Whenever X and Y form a covalent linkage, the compound of the invention forms a macrocycle of the following form:

20

25

wherein "XY" is the covalent linkage formed by the reaction of X and Y.

30

In yet another aspect, the oligonucleotide clamps of the invention are compositions of two or more components, e.g. having the form:

X-O₁-W and Y-O₂-Z

wherein X, Y, W, and Z are defined as X and Y above. In this embodiment, the hinge region is replaced by additional complex-forming moieties W and Z. As above, one of O₁ and O₂ undergoes Watson-Crick type of binding while the other undergoes Hoogsteen or reverse Hoogsteen type of binding to a target polynucleotide, as shown diagrammatically in Figure 1c. Similarly, whenever X and Y and W and Z form covalent linkages, compounds X-O₁-W and Y-O₂-Z form a macrocycle of the following form:

10

15

OR

20

depending on the selection of O₁ and O₂.

Preferably, compounds of the invention are capable of forming covalently closed macrocycles or stable circular complexes topologically linked to a target polynucleotide.

25

The invention provides compounds capable of specifically binding to predetermined target polynucleotides with superior stability than currently available probes and antisense compounds. Compounds of the invention are employed either as antisense or anti-gene compounds to inhibit the function of a polynucleotide whose expression or participation in a regulatory function is associated with a disease state or as probes for detecting the presence of a target polynucleotide. The invention includes the oligonucleotide clamps per se as well as pharmaceutical compositions and kits for particular applications.

30

Brief Description of the Figures

Figures 1a-c diagrammatically illustrate how three separate embodiments of the invention bind or "clamp" a target polynucleotide.

Figure 2a-b diagrammatically illustrates the concept of "topologically linked."

5 Figure 3 illustrates the results of the inhibition of the cytotoxic effects of HIV in an ATH8 cell assay.

Definitions

"Topologically linked" in reference to compounds of the invention refers to the relative configuration of target polynucleotide and oligonucleotide clamp wherein the 10 oligonucleotide clamp forms a closed circular complex or macrocycle enclosing the target polynucleotide strand, as shown diagrammatically in Figures 2a and 2b. In Figure 2a, oligonucleotide clamp 20 is topologically linked to target polynucleotide 10. In Figure 2b, oligonucleotide 20 is topologically disjoint from target polynucleotide 10.

"Stable" in reference to the formation of a covalent linkage and/or non-covalent 15 complex between binding moieties means that melting temperature of the oligonucleotide clamp incorporating the given pair(s) of binding moieties and its target polynucleotide is increased by at least fifty percent over the melting temperature of oligonucleotide moieties of the clamp alone, wherein melting temperature is measured by standard techniques, e.g. half maximum of 260 nm absorbance v. temperature as described more fully below.

20 "Linkage" in reference to the reaction of binding moieties includes both covalent linkages and non-covalent complexes.

The term "oligonucleotide" as used herein includes linear oligomers of natural or 25 modified monomers or linkages, including deoxyribonucleosides, ribonucleosides, -anomeric forms thereof, polyamide nucleic acids, and the like, capable of specifically binding to a target polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, Hoogsteen or reverse Hoogsteen types of base pairing, or the like. Usually monomers are linked by phosphodiester bonds or analogs thereof to form oligonucleotides ranging in size from a few monomeric units, e.g. 3-4, to several hundreds of monomeric units. Whenever an oligonucleotide is 30 represented by a sequence of letters, such as "ATGCCTG," it will be understood that the nucleotides are in 5'->3' order from left to right and that "A" denotes deoxyadenosine, "C" denotes deoxycytidine, "G" denotes deoxyguanosine, and "T" denotes thymidine,

unless otherwise noted. Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranylidate, phosphoramidate, and the like.

As used herein, "nucleoside" includes the natural nucleosides, including 2'-deoxy and 2'-hydroxyl forms, e.g. as described in Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992). "Analogs" in reference to nucleosides includes synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g. described generally by Scheit, Nucleotide Analogs (John Wiley, New York, 1980). Such analogs include synthetic nucleosides designed to enhance binding properties, e.g. stability, specificity, or the like, such as disclosed by .

Detailed Description of the Invention

The invention relates to oligonucleotide clamps that are capable of binding to a specific region of a target polynucleotide. The clamping aspect of the compounds is achieved by the formation of stable linkages or complexes between binding moieties after they are brought into proximity by specific binding of the one or more oligonucleotide moieties to a target polynucleotide. Preferably, oligonucleotide moieties of the compounds of the invention are selected so that they simultaneously undergo Watson-Crick and Hoogsteen types of binding with specific regions of a target polynucleotide.

In embodiments where triplex formation is desired, there are constraints on the selection of target sequences. Generally, third strand association via Hoogsteen type of binding is most stable along homopyrimidine-homopurine tracks in a double stranded target. Usually, base triplets form in T-A*T or C-G*C motifs (where "-" indicates Watson-Crick pairing and "*" indicates Hoogsteen type of binding); however, other motifs are also possible. For example, Hoogsteen base pairing permits parallel and antiparallel orientations between the third strand (the Hoogsteen strand) and the purine-rich strand of the duplex to which the third strand binds, depending on conditions and the composition of the strands. There is extensive guidance in the literature for selecting appropriate sequences, orientation, conditions, nucleoside type (e.g. whether ribose or deoxyribose nucleosides are employed), base modifications (e.g. methylated cytosine, and the like) in order to maximize, or otherwise regulate, triplex stability as desired in particular embodiments, e.g. Roberts et al, Proc. Natl. Acad. Sci., 88: 9397-9401 (1991); Roberts et al, Science, 258: 1463-1466

(1992); Distefano et al, Proc. Natl. Acad. Sci., 90: 1179-1183 (1993); Mergny et al, Biochemistry, 30: 9791-9798 (1991); Cheng et al, J. Am. Chem. Soc., 114: 4465-4474 (1992); Beal and Dervan, Nucleic Acids Research, 20: 2773-2776 (1992); Beal and Dervan, J. Am. Chem. Soc., 114: 4976-4982 (1992); Giovannangeli et al, Proc. Natl. Acad. Sci., 89: 8631-8635 (1992); Moser and Dervan, Science, 238: 645-650 (1987); McShan et al, J. Biol. Chem., 267:5712-5721 (1992); Yoon et al, Proc. Natl. Acad. Sci., 89: 3840-3844 (1992); Blume et al, Nucleic Acids Research, 20: 1777-1784 (1992); and the like.

Generally, after one of the oligonucleotide moieties forms a Watson-Crick duplex with a pyrimidine-rich or purine-rich track in a target polynucleotide, the remaining oligonucleotide components bind to the major groove of the duplex to form a triplex structure.

Selection of particular oligonucleotide sequences for triplex formation can also be carried out empirically, for example, through aptamer screening, or like process, where candidate oligonucleotide moieties are selected on the basis of binding strength to an immobilized double stranded target, e.g. Ellington and Szostak, Nature, 346: 818-822 (1990); Toole et al, International application PCT/US92/01383; and the like.

Target polynucleotides may be single stranded or double stranded DNA or RNA; however, single stranded DNA or RNA target polynucleotides are preferred.

Preferably, stability of oligonucleotide clamp/target polynucleotide complexes are determined by way of melting, or strand dissociation, curves. The temperature of fifty percent strand dissociation is taken as the melting temperature, T_m , which, in turn, provides a convenient measure of stability. T_m measurements are typically carried out in a saline solution at neutral pH with target and clamp concentrations at between about 1.0-2.0 μ M. Typical conditions are as follows: 150 mM NaCl and 10 mM MgCl₂ in a 10 mM sodium phosphate buffer (pH 7.0) or in a 10 mM Tris-HCl buffer (pH 7.0); or like conditions. Data for melting curves are accumulated by heating a sample of the oligonucleotide clamp/target polynucleotide complex from room temperature to about 85-90°C. As the temperature of the sample increases, absorbance of 260 nm light is monitored at 1°C intervals, e.g. using a Cary (Australia) model 1E or a Hewlett-Packard (Palo Alto, CA) model HP 8459 UV/VIS spectrophotometer and model HP 89100A temperature controller, or like instruments.

The oligonucleotide moieties of the invention are synthesized by conventional means

on a commercially available automated DNA synthesizer, e.g. an Applied Biosystems (Foster City, CA) model 380B, 392 or 394 DNA/RNA synthesizer. Preferably, phosphoramidite chemistry is employed, e.g. as disclosed in the following references: Beaucage and Iyer, Tetrahedron, 48: 2223-2311 (1992); Molko et al, U.S. patent 4,980,460; Koster et al, U.S. patent 4,725,677; Caruthers et al, U.S. patents 4,415,732; 4,458,066; and 4,973,679; and the like. For therapeutic use, nuclease resistant backbones are preferred. Many types of modified oligonucleotides are available that confer nuclease resistance, e.g. phosphorothioate, phosphorodithioate, phosphoramidate, or the like, described in many references, e.g. phosphorothioates: Stec et al, U.S. patent 5,151,510; Hirschbein, U.S. patent 5,166,387; Bergot, U.S. patent 5,183,885; phosphoramidates: Froehler et al, International application PCT/US90/03138; and for a review of additional applicable chemistries: Uhlmann and Peyman (cited above). In some embodiments it may be desirable to employ P-chiral linkages, in which case the chemistry disclosed by Stec et al, European patent application 92301950.9, may be appropriate.

The length of the oligonucleotide moieties is sufficiently large to ensure that specific binding will take place only at the desired target polynucleotide and not at other fortuitous sites. The upper range of the length is determined by several factors, including the inconvenience and expense of synthesizing and purifying oligomers greater than about 30-40 nucleotides in length, the greater tolerance of longer oligonucleotides for mismatches than shorter oligonucleotides, and the like. Preferably, the oligonucleotide moieties have lengths in the range of about 6 to 40 nucleotides. More preferably, the oligonucleotide moieties have lengths in the range of about 12 to 25 nucleotides.

Hinge regions consist of nucleosidic or non-nucleosidic polymers which preferably facilitate the specific binding of the monomers of the oligonucleotide moieties with their complementary nucleotides of the target polynucleotide. Generally, the oligonucleotide moieties may be connected to hinge regions and/or binding moieties in either 5'->3' or 3'->5' orientations. For example, in the embodiment described above comprising a first binding moiety, a first oligonucleotide moiety, a hinge region, a second oligonucleotide moiety, and a second binding moiety, the oligonucleotide moieties may have any of the following orientations:

X-(5')N₁N₂N₃- ... -N_j(3')-G-(5')N₁N₂N₃- ... -N_k(3')-Y

OR

5

X-(5')N₁N₂N₃- ... -N_j(3')-G-(3')N_kN_{k-1}N_{k-2}- ... -N₁(5')-Y

OR

10

X-(3')N_jN_{j-1}N_{j-2}- ... -N₁(5')-G-(5')N₁N₂N₃- ... -N_k(3')-Y

OR

15

X-(3')N_jN_{j-1}N_{j-2}- ... -N₁(5')-G-(3')N_kN_{k-1}N_{k-2}- ... -N₁(5')-Y

wherein N₁N₂N₃- ... -N_k and N₁N₂N₃- ... -N_j are k-mer and j-mer oligonucleotide moieties in the indicated orientations.

Preferably, the hinge region has the general form:

20

- (M-L)_n -

wherein M may be an inert non-sterically hindering spacer moiety serving to connect the oligonucleotide moieties, wherein the M's and L's in any given chain may be the same or different. Alternatively, one or more of monomers M may contain reactive functionalities for attaching labels; oligonucleotides or other binding polymers for hybridizing or binding to amplifier strands or structures, e.g. as described by Urdea et al, U.S. patent 5,124,246 or Wang et al, U.S. patent 4,925,785; "hooks", e.g. as described in Whiteley et al, U.S. patent 4,883,750; or other groups for affecting solubility, cellular delivery, promotion of duplex and/or triplex formation, such as intercalators, alkylating agents, and the like.

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8

Preferably, L is a phosphorus(V) linking group which may be phosphodiester, phosphotriester, methyl or ethyl phosphonate, phosphorothioate, phosphorodithioate, phosphoramidate, or the like. Generally, linkages derived from phosphoramidite precursors are preferred so that compounds of the invention can be conveniently synthesized with commercial automated DNA synthesizers, e.g. Applied Biosystems, Inc. (Foster City, CA) model 394, or the like.

n may vary significantly depending on the nature of M and L. Generally, n will vary from 1 for M comprising alkyl, alkenyl, and/or ethers containing 10 or more carbon atoms, e.g. Salunkhe et al, J. Am. Chem. Soc., 114: 8768-8772 (1992), to about 10 for M comprising alkyl, alkenyl, and/or ethers containing 2-3 carbon atoms. Preferably, for a hinge moiety consisting entirely of an alkyl chain (and linkage moieties), such alkyl chain contains from 8 to 15 carbon atoms, and more preferably, from 9 to 12 carbon atoms. Preferably, for nucleoside-sized monomers, n varies between about 3 and about 10; and more preferably, n varies between about 4 and 8.

Preferably, hinge moieties are synthesized using conventional phosphoramidite and/or hydrogen phosphonate chemistries. The following references disclose several phosphoramidite and/or hydrogen phosphonate monomers suitable for use in the present invention and provide guidance for their synthesis and inclusion into oligonucleotides: Newton et al, Nucleic Acids Research, 21: 1155-1162 (1993); Griffin et al, J. Am. Chem. Soc., 114: 7976-7982 (1992); Jaschke et al, Tetrahedron Letters, 34: 301-304 (1992); Ma et al, International application PCT/CA92/00423; Zon et al, International application PCT/US90/06630; Durand et al, Nucleic Acids Research, 18: 6353-6359 (1990); Salunkhe et al, J. Am. Chem. Soc., 114: 8768-8772 (1992); and the like.

In a preferred embodiment, M is a straight chain, cyclic, or branched organic molecular structure containing from 1 to 20 carbon atoms and from 0 to 10 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur. More preferably, M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 16 carbon atoms; heterocyclic having from 3 to 8 carbon atoms and from 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur; glycosyl; or nucleosidyl. Most preferably, M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 8 carbon atoms; glycosyl; or nucleosidyl.

A variety of binding moieties are suitable for use with the invention. Generally,

they are employed in pairs, which for convenience here will be referred to as X and Y. X and Y may be the same or different. Whenever the interaction of X and Y is based on the formation of stable hydrophobic complex, X and Y are lipophilic groups, including alkyl groups, fatty acids, fatty alcohols, steroids, waxes, fat-soluble vitamins, and the like.

5 Further exemplary lipophilic binding moieties include glycerides, glyceryl ethers, phospholipids, sphingolipids, terpenes, and the like. In such embodiments, X and Y are preferably selected from the group of steroids consisting of a derivatized perhydrocyclopentanophenanthrene nucleus having from 19 to 30 carbon atoms, and 0 to 6 oxygen atoms; alkyl having from 6 to 16 carbon atoms; vitamin E; and glyceride having 20 to 40 carbon atoms. Preferably, a perhydrocyclopentanophenanthrene-based moiety is
10 attached through the hydroxyl group, either as an ether or an ester, at its C3 position. It is understood that X and Y may include a linkage group connecting it to an oligonucleotide moiety. For example, glyceride includes phosphoglyceride, e.g. as described by MacKellar et al, Nucleic Acids Research, 20: 3411-3417 (1992), and so on. It is especially preferred
15 that lipophilic moieties, such as perhydrocyclopentanophenanthrene derivatives, be linked to the 5' carbon and/or the 3' carbon of an oligonucleotide moiety by a short but flexible linker that permits the lipophilic moiety to interact with the bases of the oligonucleotide clamp/target polynucleotide complex or a lipophilic moiety on the same or another oligonucleotide moiety. Such linkers include phosphate (i.e. phosphodiester),
20 phosphoramidate, hydroxyurethane, carboxyaminoalkyl and carboxyaminoalkylphosphate linkers, or the like. Preferably, such linkers have no more than from 2 to 8 carbon atoms.

Binding moieties can be attached to the oligonucleotide moiety by a number of available chemistries. Generally, it is preferred that the oligonucleotide be initially derivatized at its 3' and/or 5' terminus with a reactive functionality, such as an amino, phosphate, thiophosphate, or thiol group. After derivatization, a hydrophilic or hydrophobic moiety is coupled to the oligonucleotide via the reactive functionality. Exemplary means for attaching 3' or 5' reactive functionalities to oligonucleotides are disclosed in Fung et al, U.S. patent 5,212,304; Connolly, Nucleic Acids Research, 13: 4485-4502 (1985); Tino, International application PCT/US91/09657; Nelson et al, Nucleic
25 Acids Research, 17: 7187-7194 (1989); Stabinsky, U.S. patent 4,739,044; Gupta et al, Nucleic Acids Research, 19: 3019 (1991); Reed et al, International application PCT/US91/06143; Zuckerman et al, Nucleic Acids Research, 15: 5305 (1987); Eckstein,
30

editor, Oligonucleotides and Analogues: A Practical Approach (IRL Press, Oxford, 1991); Clontech 1992/1993 Catalog (Clontech Laboratories, Palo Alto, CA); and like references.

Preferably, whenever X and Y form a covalent linkage, X and Y pairs must react specifically with each other when brought into juxtaposition, but otherwise they must be substantially unreactive with chemical groups present in a cellular environment. In this aspect of the invention, X and Y pairs are preferably selected from the following group: when one of X or Y is phosphorothioate, the other is haloacetyl, haloacyl, haloalkyl, or alkylazide; when one of X or Y is thiol, the other is alkyl iodide, haloacyl, or haloacetyl; when one of Y or Y is phenylazide the other is phenylazide. More preferably, when one of X or Y is phosphorothioate, the other is haloacetyl, haloacyl, or haloalkyl, wherein said alkyl, acetyl, or acyl moiety contains from one to eight carbon atoms.

Most preferably, when one of X or Y is phosphorothioate, the other is haloacetyl. Most preferably, whenever one of X or Y is phosphorothioate, the other is bromoacetyl. These binding moieties form a covalent thiophosphorylacetamino bridge, as shown below, selectively and efficiently at low concentrations, e.g. less than one μM , when reacted in an aqueous environment in the presence of a target polynucleotide:

wherein X is halo and N_1 , N_2 , ... N_j and N_k are nucleotides of a j-mer and k-mer, respectively. Compound 1 can be prepared by N-succinimidyl haloacetate in N,N-dimethylformamide (DMF) with a 3'-aminodeoxyribonucleotide precursor in a sodium borate buffer at room temperature. After about 35 minutes the mixture is diluted (e.g. with H_2O), desalted and, purified, e.g. by reverse phase HPLC. The 3'-aminodeoxyribonucleotide precursor can be prepared as described in Gryaznov and Letsinger, Nucleic Acids Research, 20: 3403-3409 (1992) or Tetrahedron Letters, 34: 1261-1264 (1993). Briefly, after deprotection, the 5' hydroxyl of a deoxythymidine linked to a support via a standard succinyl linkage is phosphorylated by reaction with chloro-(diisopropylethylamino)-methoxyphosphine in an appropriate solvent, such as

dichloromethane/diisopropylethylamine. After activation with tetrazole, the 5'-phosphitylated thymidine is reacted with a 5'-trityl-O-3'-amino-3'-deoxynucleoside to form a nucleoside-thymidine dimer wherein the nucleoside moieties are covalently joined by a phosphoramidate linkage. The remainder of the oligonucleotide is synthesized by standard phosphoramidite chemistry. After cleaving the succinyl linkage, the oligonucleotide with a 3' terminal amino group is generated by cleaving the phosphoramidate link by acid treatment, e.g. 80% aqueous acetic acid for 18-20 hours at room temperature.

5'-trityl-O-3'-amino-3'-deoxynucleosides may be synthesized in accordance with Glinski et al, J. Chem. Soc. Chem. Comm., 915-916 (1970); Miller et al, J. Org. Chem. 29: 1772 (1964); Zielinki and Orgel, Nucleic Acids Research, 13: 2469-2484 (1985) and 15: 10 1699-1715 (1987); Ozols et al, Synthesis, 7: 557-559 (1980); and Azhayev et al, Nucleic Acids Research, 6: 625-643 (1979); which references are incorporated by reference.

5' monophosphorothioate 2 is formed as follows: A 5' monophosphate is attached to the 5' end of an oligonucleotide either chemically or enzymatically with a kinase, e.g. 15 Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd Edition (Cold Spring Harbor Laboratory, New York, 1989). Preferably, as a final step in oligonucleotide synthesis, a monophosphate is added by chemical phosphorylation as described by Horn and Urdea, Tetrahedron Lett., 27: 4705 (1986) (e.g. using commercially available reagents such as 5' Phosphate-ON™ from Clontech Laboratories (Palo Alto, California)). The 20 5'-monophosphate is then sulfurized using conventional sulfurizing agents, e.g. treatment with a 5% solution of S₈ in pyridine/CS₂ (1:1, v/v, 45 minutes at room temperature); or treatment with sulfurizing agent described in U.S. patents 5,003,097; 5,151,510; or 5,166,387. Preferably, the haloacetylamo derivatized oligonucleotides are synthesized 25 separately from unprotected monophosphorothioate groups.

Compounds of the invention can be employed as diagnostic probes to detect the presence of one or more target polynucleotides in a wide range of samples, including environmental samples, e.g. from public water supplies, samples from foodstuffs, and from other biological samples, such as blood, saliva, semen, amniotic fluid, tissue homogenates of plants or animals, or of human patients, and the like. The use of nucleic 30 acid probes in human diagnostics, forensics, and genetic analysis has been extensively reviewed. For example, the following references describe many diagnostic applications of nucleic acid probes for which the present invention can be usefully employed: Caskey,

Science 236: 1223-1228 (1987); Landegren et al, Science, 242: 229-237 (1988); and Arnheim et al, Ann. Rev. Biochem., 61: 131-156 (1992). Moreover, there is extensive guidance in the literature concerning the selection of hybridization conditions, labeling means, and the like, which is applicable to the practice of the present invention, e.g.

5 Wallace et al, Nucleic Acids Research 6: 3543-3557 (1979); Crothers et al, J. Mol. Biol. 9: 1-9 (1964); Gotoh, Adv. Biophys. 16: 1-52 (1983); Wetmer, Critical Reviews in Biochemistry and Molecular Biology 26: 227-259 (1991); Breslauer et al, Proc. Natl. Acad. Sci. 83: 3746-3750 (1986); Wolf et al, Nucleic Acids Research, 15: 2911-2926 (1987); McGraw et al, Biotechniques, 8: 674-678 (1990), and the like.

10 Oligonucleotide clamps of the invention may be used in essentially any of the known solution or solid phase hybridization formats, such as those in which the analyte is bound directly to a solid phase, or sandwich hybridizations in which the analyte is bound to an oligonucleotide that is, in turn, bound to a solid phase. Oligonucleotide clamps having an oligonucleotide "tail" attached to a hinge region are particularly useful in conjunction with branched polymer amplification schemes, such as those disclosed by Urdea et al, U.S. patent 5,124,246; Wang et al, U.S. patent 4,925,785; and the like. Urdea et al and Wang et al are incorporated by reference for their description of such hybridization assays. In such embodiments, the oligonucleotide clamp serves as a highly stable "capture" probe by binding to a target polynucleotide analyte of interest. The 15 oligonucleotide tail then hybridizes with a directly or indirectly labeled amplifier strand or complex. Such tails are long enough to form a stable duplex with the amplifier strand. Preferably, such tails are between 18 and 60 nucleotides in length. Tails may also comprise a second oligonucleotide clamp. That is, a dimer of oligonucleotide clamps having different binding specificities can be used to tightly couple an amplifier complex to a target polynucleotide.

20 Preferably, oligonucleotide tails are coupled to hinge regions at an amino group which has been derivatized with bromoacetyl. An oligonucleotide tail having either a 5' or 3' phosphorothioate group is then reacted with the bromoacetyl group to form a thiophosphorylacetylamino bridge, as described more fully above and in the Examples below. Phosphoramidate linkages are introduced in accordance with published 25 procedures, e.g. Letsinger, U.S. patent 4,958,013; Agrawal et al, Nucleic Acids Research, 18: 5419-5423 (1990); or the like. By a similar procedure, dimers of

oligonucleotide clamps can also be constructed.

Whenever oligonucleotide clamps of the invention are employed in diagnostic assays, or in other processes not requiring direct contact with a patient, a wider range of binding moieties may be employed than would be possible for therapeutic use. In diagnostic and other non-therapeutic applications, reaction of the binding moieties may involve an activation step wherein one or both of the binding moieties are activated or rendered reactive towards one another by exposure to an activating agent or condensing agent, such as radiation, a reducing agent, an oxidizing agent, or the like. Exemplary, binding moieties employing activating agents include thiophosphoryl groups in the presence of K₃Fe(CN)₆ or KI₃, e.g. Gryaznov and Letsinger, Nucleic Acids Research, 21: 1403-1408 (1993); phosphoryl and hydroxyl in the presence of N-cyanoimidazole, e.g. Luebke et al, J. Am. Chem. Soc., 113: 7447-7448 (1991); phosphoryl or amino group and hydroxyl in the presence of cyanogen bromide, e.g. Sokolova et al, FEBS Letters, 232: 153-155 (1988); phosphoryl and hydroxyl groups in the presence of spermine-5-(N-ethylimidazole)carboxamide and cyanoimidazole, e.g. Zuber et al, J. Am. Chem. Soc., 115: 4939-4940 (1993); and the like.

Kits incorporating oligonucleotide clamps can take a variety of forms depending on the particular embodiment, the type of assay format employed, and the labeling scheme employed. Generally, kits of the invention comprise an oligonucleotide clamp specific for a given target polynucleotide, a hybridization buffer, and a signal generation moiety. Kits of the invention may further comprise wash buffers for removing unbound label and/or oligonucleotide clamps, solid phase supports such as derivatized magnetic beads, or the like; and prehybridization buffers containing blocking agents, e.g. Denhardt's solution, sonicated salmon sperm DNA, detergents such as 1% SDS, or the like, for minimizing nonspecific binding of oligonucleotide clamps or other nucleosidic binding components, such as amplifier strands. An exemplary hybridization buffer comprises the following reagents: 100-150 mM NaCl, 10 mM MgCl₂, and 10 mM Tris-HCl (pH 7.0).

Signal generation moieties are molecular structures that directly or indirectly generate a signal, e.g. fluorescent, colorimetric, radioactive, or the like, that can be detected by conventional means. Direct signal generation means that the moiety producing a signal is covalently linked to the oligonucleotide clamp, e.g. as with the covalent attachment of a fluorescent dye, enzyme, or the like. Indirect signal generation means that

a particular moiety, e.g. an oligonucleotide tail on a hinge region, is one component of a multi-component system that produces a signal. Preferably, the signal generation moieties comprises an oligonucleotide tail of about 12 to about 50 nucleotides in length covalently attached to a hinge region of an oligonucleotide clamp. In one aspect of this preferred embodiment, a signal is generated indirectly by providing a second oligonucleotide which is complementary to the tail and which has a fluorescent dye covalently attached. Attaching fluorescent dyes to oligonucleotides is well known in the art, e.g. U.S. patents 4,997,828; 5,151,507; 4,855,225; 5,188,934; Eckstein, editor (cited above); and the like.

Compounds of the invention can be employed as components of pharmaceutical compositions. A variety of diseases and disorders can be treated by administration of a composition comprising compounds of the invention. Viral diseases that can be treated by antisense inhibition of nucleic acid expression include, but are not limited to, those caused by hepatitis B virus, cytomegalovirus, herpes simplex virus I or II, human immunodeficiency virus type I or II, influenza virus, respiratory syncytial virus, and human papilloma virus. Malignancies which can be treated by administration of antisense compounds of the invention include those known to be directly or indirectly caused by the inappropriate expression of one or more gene, such as cancers caused by the inappropriate expression of oncogenes, e.g. myb, bcr-abl, kit, myc, ras, raf, abl, or the like. In such diseases, the compounds of the invention are specifically targeted to aberrantly expressed genes associated with the diseases, or to regulatory polynucleotides that interact with aberrantly transcribed or expressed genes, e.g. Aaronson, Science, Vol. 254, pgs. 1146-1153 (1991). Acute inflammatory and immune reactions, such as septic shock, eosinophilia, and the like, can also be treated with compounds of the invention, wherein inappropriately and/or aberrantly expressed cytokine genes are inhibited, e.g. Tracey et al, Nature, Vol. 330, pgs. 662-664 (1987), U.S. patent 5,055,447, and Waage et al, J. Exp. Med., Vol. 169, pgs. 333-338 (1989)(antisense TNF- α and/or TNF- β); Starnes et al, J. Immunol., Vol. 145, pgs. 4185-4191 (1990), and Fong et al, J. Immunol., Vol. 142, pgs. 2321-2324 (antisense IL-6); Coffman et al, Science, Vol. 245 pgs. 308-310 (antisense IL-5); Finkelman et al, J. Immunol., Vol. 141, pgs. 2335-2341 (1988)(antisense IL-4); Young et al, Blood, Vol. 68, pgs. 1178-1181 (1986)(antisense GM-CSF); and the like.

The components included in pharmaceutical compositions of the invention depend

on several factors, including the nature of the disease or condition being treated, the location of disease lesions, the mode of drug delivery and/or administration contemplated, the latter of which can include in vivo administration by way of regional or systemic perfusion, topical application, intranasal administration, administration by implanted or transdermal sustained release systems, and the like, as well as ex vivo administration for use in bone marrow purging. A preferred method of administration of oligonucleotide clamps comprises either regional or systemic perfusion. According to a method of regional perfusion, the afferent and efferent vessels supplying the extremity containing a lesion, e.g. a cancerous lesion, are isolated and connected to a low-flow perfusion pump in continuity with an oxygenator and heat exchanger. The iliac vessels may be used for perfusion of the lower extremities. The axillary vessels are cannulated high in the axilla for upper extremity lesions. A pharmaceutical composition containing an oligonucleotide clamp is added to the perfusion circuit, and the perfusion is continued for an appropriate time period, e.g. an hour. Perfusion rates of from 100 to 150 ml/minute may be employed for lower extremity lesions, while half that rate should be employed for upper extremity lesions. Systemic heparinization may be used throughout the perfusion, and reversed after the perfusion is complete. This isolation perfusion technique permits administration of higher dosed of chemotherapeutic agent than would otherwise be tolerated upon infusion into the arterial or venous systemic circulation.

For systemic infusion, the oligonucleotide clamps are preferably delivered via a central venous catheter, which is connected to an appropriate continuous infusion device. Indwelling catheters provide long term access to the intravenous circulation for frequent administrations of drugs over extended periods of time.

Generally a pharmaceutical composition of the invention facilitates the delivery of an effective amount of the active drug to a desired site in a manner consistent with patient safety and comfort. An effective amount of an oligonucleotide clamp depends on several factors, including the disease or condition being treated, the method of administration, the scheduling of the administration, the condition of the patient, and the like. Typically, a parenterally administered dose will be in the range of about 1g/kg/day to about 100 mg/kg/day of patient body weight. A key factor in selecting an appropriate dose for a given condition or disease is the therapeutic result, as measure by standard criteria well known to the medical practitioner, e.g. for oncological applications see: Cancer:

Principles and Practice of Oncology, 3rd Edition, edited by V.T. DeVita et al (Lippincott Company, Philadelphia, 1989).

Pharmaceutical compositions of the invention include a pharmaceutical carrier that may contain a variety of components that provide a variety of functions, including regulation of drug concentration, regulation of solubility, chemical stabilization, regulation of viscosity, absorption enhancement, regulation of pH, and the like. For example, in water soluble formulations the pharmaceutical composition preferably includes a buffer such as a phosphate buffer, or other organic acid salt, preferably at a pH of between about 7 and 8. For formulations containing weakly soluble oligonucleotide clamps, microemulsions may be employed, for example by using a nonionic surfactant such as Tween 80 in an amount of 0.04-0.05% (w/v), to increase solubility. Other components may include antioxidants, such as ascorbic acid, hydrophilic polymers, such as, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, dextrans, chelating agents, such as EDTA, and like components well known to those in the pharmaceutical sciences, e.g. Remington's Pharmaceutical Science, latest edition (Mack Publishing Company, Easton, PA).

Compounds of the invention include the pharmaceutically acceptable salts thereof, including those of alkaline earths, e.g. sodium or magnesium, ammonium or NX_4^+ , wherein X is C_{1-4} alkyl. Other pharmaceutically acceptable salts include organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic, and succinic acids; organic sulfonic acids such as methanesulfonic, ethanesulfonic, and benzenesulfonic; and inorganic acids such as hydrochloric, sulfuric, phosphoric, and sulfamic acids. Pharmaceutically acceptable salts of a compound having a hydroxyl group include the anion of such compound in combination with a suitable cation such as Na^+ , NH_4^+ , or the like.

Sustained release systems suitable for use with the pharmaceutical compositions of the invention include semi-permeable polymer matrices in the form of films, microcapsules, or the like, comprising polylactides, copolymers of L-glutamic acid and gamma-ethyl-L-glutamate, poly(2-hydroxyethyl methacrylate), and like materials. Sustained release systems also include liposomally entrapped oligonucleotide clamps, e.g. as described in Liposome Technology, Vol. II, Incorporation of Drugs, Proteins, an Genetic Material (CRC Press).

Example 1Synthesis of Oligonucleotide Clamp having 3' and 5' CholesterolBinding Moieties for pol and nef genes of HIV

5 A series of oligonucleotide clamps were synthesized that have cholesterol moieties attached to either a 5' end, a 3' end, or to both a 3' end and a 5' end. The 3' cholesterol was attached by first constructing a cholesterol-derivatized solid phase support followed by routine oligonucleotide chain extension via phosphoramidite monomers on a conventional automated DNA synthesizer (Applied Biosystems model 394). The 5' cholesterol was
10 attached in the final coupling step of the synthesis by reacting cholesterol chloroformate with the terminal nucleotide having a 5' amino group or by coupling a cholesterol phosphoramidite with a terminal hydroxyl group, the former method usually giving higher yields.

15 (1) A polymer supported oligonucleotide, 1mole scale, with terminal 5'-amino group was treated with 2 ml of a 10% solution of cholesteryl formate in chloroform/diisopropylethylamine (9:1, v:v) for 20 minutes at room temperature. The polymer support was then washed with chloroform and acetonitrile, cleaved and deprotected with concentrated ammonium (5 hours at 55°C), and purified by reverse phase HPLC.

20 (2) A polymer supported oligonucleotide, 1 μ mole scale, with terminal hydroxyl group was treated with 250 μ l of 0.1 M solution of cholesterol phosphoramidite in chloroform and 250 μ l of 0.45 M solution of tetrazole in acetonitrile for 10-15 minutes at room temperature. The polymer support was then washed with acetonitrile, cleaved and deprotected with concentrated ammonium (5 hours at 55°C), and purified by reverse phase HPLC.

25

Example 2ATH8 Assay of Oligonucleotide Clamps Specific
for pol and nef genes of HIV

30 The oligonucleotides and oligonucleotide clamps listed in the Table I below were synthesized in accordance with Example 1 for specific binding to the following single stranded or double stranded target polynucleotides:

5' ---AAAAGAAAAGGGGGGA---3'

3' ---TTTCTTTCCCCCCT---5'

Double stranded DNA

5

5' ---AAAAGAAAAGGGGGGA---3'

Single stranded RNA or DNA

TABLE I

10

Designation

Sequence of Oligonucleotide Clamp*

050A	5'-CACTTT ^{Mc} TTCACACTCCCCCTTTCTTTAC-Chol
050B	5'-Chol-CACTTT ^{Mc} TTCACACTCCCCCTTTCTTTAC-Chol
051	5'-Chol-CACTTT ^{Mc} TTC ^{Mc} C ^{Mc} C ^{Mc}
15	C ^{Mc} C ^{Mc} C ^{Mc} TCACACTCCCCCTTTCTTTAC-Chol
052A	5'-CACTTT ^{Mc} TTCACACTCCCCCTCA-
	C ^{Mc} C ^{Mc} C ^{Mc} C ^{Mc} C ^{Mc} TTTCTTTAC-Chol
052B	5'-Chol-CACTTT ^{Mc} TTCACACTCCCCCTCA-
	CACTC ^{Mc} C ^{Mc} C ^{Mc} C ^{Mc} C ^{Mc} TTTCTTTAC-Chol
20	053 5'-Chol-CACTTT ^{Mc} TTTGCGGGGTACACTCCCCCTTTCTTTAC-Chol
	DL015 5'-CACTTTCTTTGGGGGTACACTCCCCCTTTCTTTAC
	DL014 5'-CACTTTCTTTGGGGGTACACTCCCCCTTTCTTTAC-Chol
	DL013 5'-Chol-CACTTTCTTTGGGGGTACACTCCCCCTTTCTTTAC-Chol
25	DL021 5'-Chol-TTTTCTTTCACACTTTCTTTGGGGGTACACTCCCCC-Chol
	DL022 5'-Chol-CACTTTCTTTCCCCCTCACACACTCCCCCTTTCTTTAC-Chol
	DL023 5'-Chol-TTTTCTTTCACACTTTCTTTCCCCCTCACTCCCCC-Chol

* "Chol" represents cholesterol and C^{Mc} represents 5-methylated cytidine.

The melting temperature of the following compounds were determined by computing the half maximum of the 260 nm absorption v. temperature curve, as described above: DL015: 39.0°C; DL014: 58°C; DL013: 68.0°C; DL021: 67.5°C; DL022: 67.5°C; and control (two unconnected oligonucleotides without binding moieties having sequences: 3'-TTTCTTTCCCCCT-5' and 5'-TTT^{Mc}TTC^{Mc}TTT^{Mc}-3'): 32.0°C.

Each of the compounds of Table I were tested in an ATH8 cell assay to assess the inhibition of the cytopathic effects of HIV infection on the ATH8 cells. The ATH8 assay is described in the following reference: Matsukura, pages 285-304 in Antisense RNA and DNA (Wiley-Liss, New York, 1992).

5 The cytopathic effect examined in the assay was the lytic effect of HIV and/or drug on the ATH8 cells. A measure of the degree of viral activity is the degree to which cells are lysed at the end of a given time period in culture. Protection against lysis is measured by the size of pellet formed after cells are harvested from culture and centrifuged, as described in the references cited above. The results of the assays are summarized in Table
10 II and Figures 3a and 3b.

TABLE II

	Oligonucleotide <u>Clamp</u>	Inhibition of Cytotoxic*		<u>Toxicity**</u>
		Effects at <u>2 mM Concentration</u>	Effects at <u>8 mM Concentration</u>	
15	015	0	0	0
	014	+++	+++	0
	013	++	++	0
20	021	++	++	0
	022	++	-	+
	025	++	-	+
	050A	++	++	0
	050B	++	-	+
25	051	+++	-	+
	052A	++	+++	0
	052B	not tested	-	+
	053	+	+	0

30 * "0" indicates no inhibitory effect observed; number of +'s indicates relative inhibitory effect;
 "—" indicates toxicity at that dose.

** "0" indicates no toxicity observed; "+" indicates some toxicity observed.

35 Figures 3 shows the change in pellet size versus time under different experimental conditions for oligonucleotide clamp 014. Curves 1 and 2 illustrate results from positive

and negative controls, i.e. curve 1 illustrates the results for uninfected ATH8 cells without drug (negative control) and curve 2 illustrates the results for infected ATH8 cells without drug (positive control). Curves 3 and 4 illustrate results from cultures containing 8 μ M of oligonucleotide clamp in infected and uninfected ATH8 cells, respectively. Curves 5 and 6 illustrate results from cultures containing 2 μ M of oligonucleotide clamp in infected and uninfected ATH8 cells, respectively. Figure 3 shows that clamp 014 has a clear and positive effect at both concentrations without toxicity.

10

Synthesis of Two-component Oligonucleotide Clamps

with Cholesterol Binding Moieties

The following two-component oligonucleotide clamps were synthesized by the procedures described above and tested in the ATH8 assay described above:

15

5'-Chol-CACTTTCTTTGGGGGTCA-3'

3'-Chol-ACCTTTCTTTCCCCCTCAC-5'

(DL033/DL034)

20

5'-Chol-CACTTTCTTTGGGGGTCA-Chol-3'

3'-Chol-ACCTTTCTTTCCCCCTCAC-Chol-5'

25

Example 4

Synthesis of Oligonucleotide Clamps with

Phosphorothioate Linkages

30

The following oligonucleotide clamps containing phosphorothioate linkages were synthesized by the procedures described above and tested in the ATH8 assay described above:

25

5'-Chol-CpsApsCpsCps(Tps)₄Cps(Tps)₄(Gps)₆CpsApsCpsAps-
CpsTps(Cps)₆(Tps)₄Cps(Tps)₄CpsAps-Chol-3'
066

5

5'-Chol-CACTTTCTTTGGGGGT-3'
3'-Chol-ApsCps(Tps)₄Cps(Tps)₄(Gps)₆T-5'
067/DL033

10

wherein "ps" indicates the presence of a phosphorothioate linkage.

Example 5

15

Synthesis of Oligonucleotide Clamp with Cholesterol Binding Moieties and a Polyethylene Glycol Hinge Region

The following oligonucleotide clamp having a non-nucleosidic hinge region is synthesized as described above and employing the protected ethyl glycol phosphoramidites disclosed by Durand et al, Nucleic Acids Research, 18: 6353-6359 (1990); and Rumney et al (cited above):

20 5'-Chol-CACTTTCTTTGGGGGp(OCH₂CH₂)₅pTCCCCCCTTTCTTTCA-Chol-3'

wherein "p" indicates the presence of a phosphodiester linkage.

25

Example 6

Synthesis of Oligonucleotide Clamp having Bromoacetyl/phosphorothioate Binding Moieties

30 The following oligonucleotide clamp is synthesized by the procedures described above and tested in the ATH8 assay:

BrAc033/PS034

5 5'-bromoacetyl amino oligonucleotides are prepared as follows: 15 μL of 0.4 M N-succinimidyl bromoacetate (e.g. Calbiochem) in N,N-dimethylformamide (DMF) is added to 4.9 A₂₆₀ units of a 5'-amino-oligonucleotide precursor in 10 mL of 0.2 M sodium borate buffer at room temperature. After about 35 minutes the mixture is diluted (0.5 mL H₂O), desalted by gel filtration on a NAP-5 column (Pharmacia), purified by reverse phase HPLC (as described below), and again desalted to yield 4 A₂₆₀ units of 5'-bromoacetyl amino oligonucleotide (elution time for reverse phase HPLC, 17.4 minutes; ion exchange HPLC, 17.4 minutes). Ion exchange HPLC is carried out on a Dionex Omni Pak NA100 4x250 mm column at pH 12 (0.001 M NaOH) with a 2%/minute gradient of 1.0 M NaCl in 0.01 M NaOH. Reverse phase HPLC is carried out on a Hypersil ODS 4.6x200 mm column with a 1%/minute gradient of acetonitrile in 0.03 M triethylammonium acetate buffer, pH 7.0.

10 15 A 5'-amino-oligonucleotide is prepared as described above. The 3' phosphorothioate oligonucleotide is formed as described above.

Example 7

20 Synthesis of Oligonucleotide Clamps Consisting of Two Oligonucleotide Moieties in Opposite Orientations with respect to Hinge Region and/or Binding Moieties

25 The following oligonucleotide clamps were prepared by the procedures described above and as noted below. The 3'-bromoacetyl amino oligonucleotides were prepared similarly to their 5' counterparts, except that a 3'-amino-oligonucleotide precursor was employed. The 3' phosphorothioate oligonucleotide is formed as described above.

30 064/063

wherein X is -(CH₂)₆NHC(=O)CH₂P(=O)(O⁻)S-.

5

5'-Chol-CACTGGGGGGTTTGTGTTCA(3')-X-

(3')ACTTTCTTTCCCCCTCA-Chol-5'

064/063**

wherein X is phosphodiester. All three clamps were tested in the ATH8 assays described
10 above.

10

Example 8

15

Synthesis of Oligonucleotide Clamp Carrying a Fluorescent Label Attached to Hinge Region

The following oligonucleotide clamp is synthesized as described above:

5'-Chol-CACTTTCTTTGGGGGGApXpACTCCCCCTTTCTTTCA-Chol-3'

20

wherein "pXp" indicates the presence of a branching linkage or base, e.g. a phosphoramidate linkage, and amino derivatized cytidine, or the like. A phosphoramidate linkage is introduced by carrying out the coupling of one nucleoside as a hydrogen phosphonate monomer then oxidizing the resulting phosphite linkage with I₂ and an alkyldiamine, e.g. a hexyldiamine as taught by Agrawal et al, Nucleic Acids Research, 18: 5419-5423 (1990); and Jager et al, Biochemistry, 27: 7237-7246 (1988). This results in a free amine that can be reacted with an activated dye.

25

Preferably, an AminoModifier II branching linkage (DMT-O-CH₂CH(CH₂NH-Fmoc)-O-phosphoramidite) (commercially available from Clontech Laboratories, Palo Alto) is introduced into the hinge region. After deprotection and cleavage a free primary amino group is available as an attachment site for a variety of activated fluorescent dyes, e.g. the NHS esters of fluorescein or rhodamine, commercially available from Applied Biosystems (Foster City, CA) as TAMRA-NHS, FAM-NHS,

30

ROX-NHS, and JOE-NHS.

Example 9

Synthesis of Oligonucleotide Clamp Carrying a Oligonucleotide Attached to Hinge Region

The oligonucleotide clamp of Example 8 is synthesized with the free primary amine in its hinge region. The amine is derivatized with bromoacetyl as described above. Separately, an oligonucleotide is prepared having either a 3' or 5' monophosphorothioate group, as desired. The bromoacetylated clamp and the oligonucleotide are combined in an aqueous solution and frozen as described above.

Example 10

Synthesis of Oligonucleotide Clamp Dimer

The two oligonucleotide clamps shown below having free amines in their hinge regions are separately synthesized and bromoacetylated as described in Example 2. In a third synthesis, an oligonucleotide, or other linear polymeric unit, is prepared which has a monophosphorothioate group at both its 5' and 3' ends.

30

wherein "pnp" represents a linkage or monomer containing an bromoacetyl amino functionality and "p" is a phosphodiester linkage. After purification **d**, **e**, and **f** are

29

combined in solution and frozen as described above. The oligonucleotide clamp dimer is then purified by gel electrophoresis.

5

SEQUENCE LISTING

5 (1) GENERAL INFORMATION:

(i) APPLICANT: Sergei M. Gryaznov

10 (ii) TITLE OF INVENTION: Oligonucleotide clamps having
diagnostic and therapeutic applications

(iii) NUMBER OF SEQUENCES: 6

15 (iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Richard L. Neeley, Ph.D.
- (B) STREET: Five Palo Alto Square, 4th Floor
- (C) CITY: Palo Alto
- (D) STATE: California
- (E) COUNTRY: USA
- (F) ZIP: 94306

20 (v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: 5.25 inch diskette
- (B) COMPUTER: IBM compatible
- (C) OPERATING SYSTEM: Windows 3.1/DOS 5.0
- (D) SOFTWARE: Microsoft Word for Windows, vers. 2.0

25 (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

30 (vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: 08/087,387
- (B) FILING DATE: July 2, 1993

35 (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Richard L. Neeley, Ph.D.
- (B) REGISTRATION NUMBER: 30,097
- (C) REFERENCE/DOCKET NUMBER: LYNX-004WO

40 (ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (415) 843-5070
- (B) TELEFAX: (415) 857-0663

45

(2) INFORMATION FOR SEQ ID NO: 1:

50 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16 nucleotides
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

31

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

5 AAAAGAAAAG GGGGGA

16

(2) INFORMATION FOR SEQ ID NO: 2:

- 10 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 nucleotides
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

20 CACTTTCTT TTCCCCCCTC ACACTCCCCC CTTTTCTTTT AC

42

(2) INFORMATION FOR SEQ ID NO: 3:

- 25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 nucleotides
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

35 CACTTTCTT TTGGGGGGTC ACACTCCCCC CTTTTCTTTT AC

42

(2) INFORMATION FOR SEQ ID NO: 4:

- 40 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 nucleotides
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
45 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

TTTTCTTTTC ACACTTTCT TTTGGGGGGT CACACTCCCC CC

42

- 50 (2) INFORMATION FOR SEQ ID NO: 5:

32

- 5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 nucleotides
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

10 TTTTTTTTTTT TTCAC

14

15 (2) INFORMATION FOR SEQ ID NO: 6:

- 20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 nucleotides
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

25 ACTTTTTTTTTT TTTT

14

I claim:

1. An oligonucleotide clamp for specifically binding to a target polynucleotide, the oligonucleotide clamp comprising:

5 (a) at least one oligonucleotide moiety capable of specifically binding to the target polynucleotide; and

(b) at least one pair of binding moieties, each pair of binding moieties comprising a first binding moiety and a second binding moiety, the first binding moiety being covalently linked to an oligonucleotide moiety and the second binding moiety being covalently linked to an oligonucleotide moiety, wherein a stable covalent or non-covalent linkage is formed between the first binding moiety and the second binding moiety of a pair whenever the first and second binding moieties of the pair are brought into juxtaposition by the specific binding to the target polynucleotide of the at least one oligonucleotide moiety to which the first and second binding moieties are attached.

15

2. The oligonucleotide clamp of claim 1 comprising two components defined by the formulas:

20

wherein:

O_1 and O_2 are oligonucleotides specific for said target polynucleotide;

X and Y are a first pair of binding moieties such that X and Y form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of O_1 and O_2 to said target polynucleotide; and

25 W and Z are a second pair of binding moieties such that W and Z form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of O_1 and O_2 to said target polynucleotide.

30

3. The oligonucleotide clamp of claim 2 wherein O_1 and O_2 have the same length and are from about 6 to about 40 nucleotides in length.

4. The oligonucleotide clamp of claim 3 wherein one or both of either X and Y or W and Z form a hydrophobic complex.

5. The oligonucleotide clamp of claim 4 wherein X and Y are selected from the group consisting of alkanes, fatty acids, fatty alcohols, steroids, waxes, and fat-soluble vitamins.

6. The oligonucleotide clamp of claim 5 wherein X and Y are each a perhydrocyclopentanophenanthrene having from 19 to 30 carbon atoms and from 0 to 6 oxygen atoms.

10

7. The oligonucleotide clamp of claim 6 wherein X and Y are each cholesterol.

15

8. The oligonucleotide clamp of claim 5 wherein X, Y, W, and Z are selected from the group consisting of alkanes, fatty acids, fatty alcohols, steroids, waxes, and fat-soluble vitamins.

9. The oligonucleotide clamp of claim 8 wherein X, Y, W, and Z are cholesterol.

20

10. The oligonucleotide clamp of claim 3 wherein either one or both of X and Y or W and Z form a covalent linkage.

25

11. The oligonucleotide clamp of claim 10 wherein X is selected from the group consisting of phosphorothioate and phosphorodithioate and wherein Y is selected from the group consisting of haloacyl- or haloalkylamino.

12. The oligonucleotide clamp of claim 11 wherein X and Y are thiophosphoryl.

13. The oligonucleotide clamp of claim 11 wherein W and Z are cholesterol.

30

14. The oligonucleotide clamp of claim 1 further comprising one or more hinge regions for covalently linking two or more of said oligonucleotide moieties.

15. The oligonucleotide clamp of claim 14 defined by the formula:

5

wherein:

O_1 and O_2 are oligonucleotides specific for said target polynucleotide;

G is a hinge region; and

10 X and Y are binding moieties such that X and Y form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of O_1 and O_2 to said target polynucleotide.

16. The oligonucleotide clamp of claim 15 wherein:

15 O_1 and O_2 have the same length and are from about 6 to about 40 nucleotides in length; and

G is defined by the formula:

20

wherein:

n is between 1 and 10;

L is a linking group; and

25 M is a straight chain, cyclic, or branched organic molecular structure containing from 1 to 20 carbon atoms and from 0 to 10 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur.

17. The oligonucleotide clamp of claim 16 wherein:

30 M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 16 carbon atoms; heterocyclic having from 3 to 8 carbon atoms and from 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur; glycosyl; or nucleosidyl; and L is a phosphorus(V) linking group.

18. The oligonucleotide clamp of claim 17 wherein:

M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 8 carbon atoms; glycosyl; or nucleosidyl;

5 L is selected from the group consisting of phosphodiester, phosphotriester, methyl phosphonate, ethyl phosphonate, phosphorothioate, phosphorodithioate, and phosphoramidate; and

n is from 4 to 8.

10 19. The oligonucleotide clamp of claim 18 wherein X and Y form a hydrophobic complex.

20 20. The oligonucleotide clamp of claim 19 wherein X and Y are selected from the group consisting of alkanes, fatty acids, fatty alcohols, steroids, waxes, and fat-soluble vitamins.

15 21. The oligonucleotide clamp of claim 20 wherein X and Y are each a perhydrocyclopentanophenanthrene having from 19 to 30 carbon atoms and from 0 to 6 oxygen atoms.

20 22. The oligonucleotide clamp of claim 21 wherein X and Y are each cholesterol.

23. The oligonucleotide clamp of claim 18 wherein X and Y form a covalent linkage.

25 24. The oligonucleotide clamp of claim 23 wherein X is selected from the group consisting of phosphorothioate and phosphorodithioate and wherein Y is selected from the group consisting of haloacyl- or haloalkylamino.

25 25. The oligonucleotide clamp of claim 23 wherein X and Y are thiophosphoryl.

30 26. The oligonucleotide clamp of claim 23 wherein said oligonucleotide clamp is topologically linked to said target polynucleotide whenever X and Y form a covalent linkage

27. The oligonucleotide clamp of claim 14 defined by the formula:

5 wherein:

O_1 , O_2 , and O_3 are oligonucleotides specific for said target polynucleotide;

G_1 and G_2 are hinge regions; and

X and Y are binding moieties such that X and Y form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of O_1 , O_2 , and O_3 to said target polynucleotide.

10

28. The oligonucleotide clamp of claim 27 wherein:

O_1 , O_2 , and O_3 each have a length in the range of about 6 to about 40 nucleotides;

15 and

G_1 and G_2 are defined by the formula:

20 wherein:

n is between 1 and 10;

L is a linking group; and

M is a straight chain, cyclic, or branched organic molecular structure containing from 1 to 20 carbon atoms and from 0 to 10 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur.

25

29. The oligonucleotide clamp of claim 28 wherein:

M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 16 carbon atoms; heterocyclic having from 3 to 8 carbon atoms and from 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur; glycosyl; or nucleosidyl; and

L is a phosphorus(V) linking group.

30

30. The oligonucleotide clamp of claim 29 wherein:

M is alkyl, alkoxy, alkenyl, or aryl containing from 1 to 8 carbon atoms; glycosyl; or nucleosidyl;

5 L is selected from the group consisting of phosphodiester, phosphotriester, methyl phosphonate, ethyl phosphonate, phosphorothioate, phosphorodithioate, and phosphoramidate; and

n is from 4 to 8.

10 31. The oligonucleotide clamp of claim 30 wherein X and Y form a hydrophobic complex.

32. The oligonucleotide clamp of claim 31 wherein X and Y are selected from the group consisting of alkanes, fatty acids, fatty alcohols, steroids, waxes, and fat-soluble vitamins.

15 33. The oligonucleotide clamp of claim 32 wherein X and Y are each a perhydrocyclopentanophenanthrene having from 19 to 30 carbon atoms and from 0 to 6 oxygen atoms.

20 34. The oligonucleotide clamp of claim 33 wherein X and Y are each cholesterol.

35. The oligonucleotide clamp of claim 30 wherein X and Y form a covalent linkage.

25 36. The oligonucleotide clamp of claim 35 wherein X is selected from the group consisting of phosphorothioate and phosphorodithioate and wherein Y is selected from the group consisting of haloacyl- or haloalkylamino.

37. The oligonucleotide clamp of claim 35 wherein X and Y are thiophosphoryl.

30 38. The oligonucleotide clamp of claim 35 wherein said oligonucleotide clamp is topologically linked to said target polynucleotide whenever X and Y form a covalent linkage.

39. A method of inhibiting the expression or function of an endogenous or exogenous

gene in a host, the method comprising the step of administering an effective amount of an oligonucleotide clamp specific for the endogenous or exogenous gene or messenger RNA transcribed therefrom.

5 40. The method of claim 39 wherein said host is a human patient and said endogenous or exogenous gene is a viral gene.

10 41. The method of claim 40 wherein said viral gene is selected from a genome of a virus selected from the group consisting of herpes virus, cytomegalovirus, human papilloma virus, and human immunodeficiency virus.

42. The method of claim 39 wherein said host is a human patient and said endogenous or exogenous gene is an oncogene.

15 43. The method of claim 42 wherein said oncogene is selected from the group consisting of myb, myc, bcr-abl, ras, kit, and raf.

20 44. A pharmaceutical composition comprising a pharmaceutical carrier and an oligonucleotide clamp specific for a target polynucleotide whose function or expression directly or indirectly causes a disease.

25 45. The pharmaceutical composition of claim 44 wherein said oligonucleotide clamp is defined by the formula:

30 wherein:

O₁ and O₂ are oligonucleotides specific for said target polynucleotide;
G is a hinge region; and

X and Y are binding moieties such that X and Y form a stable covalent or non-covalent linkage or complex whenever they are brought into juxtaposition by the annealing of O₁ and O₂ to said target polynucleotide.

- 5 46. The pharmaceutical composition of claim 45 wherein said target polynucleotide is a gene selected from a genome of a virus selected from the group consisting of herpes virus, cytomegalovirus, human papilloma virus, and human immunodeficiency virus.
- 10 47. A kit for detecting a target polynucleotide, the kit comprising a hybridization buffer and an oligonucleotide clamp specific for the target polynucleotide, the oligonucleotide clamp having a signal generation moiety for generating a detectable signal in the presence of the target polynucleotide.

1 / 2

FIG. 1a

FIG. 1b

FIG. 1c

2 / 2

FIG. 2a

FIG. 2b

FIG. 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US94/07541

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : C12Q 1/68; C07H 21/04

US CL : 436/ 6; 536/ 24.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 436/ 6; 536/ 24.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS, BIOSIS, APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BIOCONJUGATE CHEMISTRY, VOLUME 1, NUMBER 3, ISSUED MAY/JUNE 1990, GOODCHILD, "CONJUGATES OF OLIGONUCLEOTIDES AND MODIFIED OLIGONUCLEOTIDES: A REVIEW OF THEIR SYNTHESIS AND PROPERTIES", PAGES 166-186, SEE ENTIRE DOCUMENT.	1-47
Y	US, A, 4,958,013 (LETSINGER) 18 SEPTEMBER 1990, SEE ENTIRE DOCUMENT.	1-30
Y	US, A, 4,599,303 (YABUSAKI ET AL) 08 JULY 1986, SEE ENTIRE DOCUMENT.	1-35
Y	WO, A, 90/10448 (BISCHOFBERGER ET AL), 20 SEPTEMBER 1990, SEE ENTIRE DOCUMENT.	30-45

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

06 SEPTEMBER 1994

Date of mailing of the international search report

SEP 19 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

EGGERTON CAMPBELL

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/07541

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	NUCLEIC ACIDS RESEARCH, VOLUME 18, NUMBER 21, ISSUED 1990, DURAND ET AL, "CIRCULAR DICHROISM STUDIES OF AN OLIGODEOXYRIBONUCLEOTIDE CONTAINING A HAIRPIN LOOP MADE OF A HEXAETHYLENE GLYCOL CHAIN: CONFORMATION AND STABILITY", PAGES 6353-6359, SEE ENTIRE DOCUMENT.	35-47
Y	JOURNAL AMERICAN CHEMICAL SOCIETY, VOLUME 111, ISSUED 1989, LUEBKE ET AL, "NONENZYMATIC LIGATION OF OLIGODEOXYRIBONUCLEOTIDES ON A DUPLEX DNA TEMPLATE BY TRIPLE-HELIX FORMATION", PAGES 8733-8735, SEE ENTIRE DOCUMENT.	33-47
Y	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, VOLUME 85, ISSUED MARCH 1988, PRASEUTH ET AL, "SEQUENCE-SPECIFIC BINDING AND PHOTOCROSSLINKING OF α AND β OLIGODEOXYNUCLEOTIDES TO THE MAJOR GROOVE OF DNA VIA TRIPLE-HELIX FORMATION", PAGES 1349-1353, SEE ENTIRE DOCUMENT.	40-47