

EcoGrid EU: A real-time market demonstration

Salvador Pineda Morente Centre for Electric Technology

09/05/2012 Journal club

DTU Electrical Engineering
Department of Electrical Engineering

Introduction

Power Systems

Network operation:

- Continuous balance between generation and consumption
- Voltage within limits
- Stability analysis
- etc.

Electricity markets:

- Determine accepted bids and offers to sell and buy electricity
- Determine electricity price
- etc.

Introduction

Electricity markets:

- •Determine accepted bids and offers to sell and buy electricity
- Determine electricity price
- etc.

Network operation:

- Continuous balance between generation and consumption
- Voltage within limits
- Stability analysis
- etc.

Introduction

Current design:

Network operation:

- Continuous balance between generation and consumption
- Voltage within limits
- Stability analysis
- etc.

Electricity markets:

- Determine accepted bids and offers to sell and buy electricity
- Determine electricity price
- etc.

Old/Current electricity market

- Large centralize fossil-fuel generating units to take advantage of economies of scale
- Unflexible generating units.
- Generating units far from the consumption centers: electricity must be transmitted long distances through network
- Electricity end-consumers treated as passive participants
- High accuracy to forecast demand
- Considering these facts, how do we operate the market?

1. Power producers submit their bids to sell electricity

Unit type	Quantity (MW)	Price (€/MWh)
Hydro	200	0
Nuclear	400	6
Coal	350	15
Gas	100	30

 Power producers submit their bids to sell electricity

Unit	Q (MW)	P (€/MWh)
Hydro	200	0
Nuclear	400	6
Coal	350	15
Gas	100	30

2. Forecast electricity demand

Demand forecast = 700 MW

3. Clear the market

Demand forecast = 700 MW

Unit	Q (MW)
Hydro	200
Nuclear	400
Coal	100
Gas	0

Clearing price = 15 €/MWh

- However, CO2 emissions need to be reduced
- Renewable production comes into scene!

Unit	Q (MW)	P (€/MWh)
Hydro	200	0
Wind	100	0
Nuclear	400	6
Coal	350	15
Gas	100	30

Price reduction due to wind power production!!

- What is the problem then?
 - Day-ahead market is cleared once for the 24 hours of the following day.

Wind power production need to be forecasted
 36 hours in advance

Old/Current electricity market

 There exist other market mechanisms to balance wind power production: regulating market.

 There exist other market mechanisms to balance wind power production: intra-day markets and the balancing market.

Day d-1

At 6:15 a.m. the opeartion day:

✓ Collect bids for hour 7-8 for up and down regulate

Unit	Down
Hydro	200 / 5
Wind	100 / 4
Nuclear	0/0
Coal	-
Gas	-

Old/Current electricity market

 There exist other market mechanisms to balance wind power production: intra-day markets and the balancing market.

Day d-1

At 6:15 a.m. the operation day:

✓ Collect bids for hour 7-8 for up and down regulate

Unit	Down	Up
Hydro	200 / 5	1
Wind	100 / 4	-
Nuclear	0/0	0/0
Coal	-	350 / 15
Gas	-	100 / 30

 There exist other market mechanisms to balance wind power production: intra-day markets and the balancing market.

Day d-1

At 6:15 a.m. the operation day:

- ✓ Collect bids for hour 7-8 for up and down regulate
- ✓ Update demand forecast (we assume that demand error is 0)
- ✓ Update wind power production forecast

Unit	Down	Up
Hydro	200 / 5	-
Wind	100 / 4	-
Nuclear	0/0	0/0
Coal	-	350 / 15
Gas	-	100 / 30

Old/Current electricity market

Old/Current electricity market

Old/Current electricity market

Old/Current electricity market

Old/Current electricity market

Conclusion:

- ✓ Most electricity is traded through a day-ahead market that is cleared well in advance (usually the day before)
 - This design benefit large and inflexible units since they can efficiently adjust their production levels.
 - This design involves significant losses for producers with uncertain power production.
- ✓ If the current design is maintained considering the increase of renewable generation:
 - High investment of flexible generation
 - Financial instrument for wind producers to hedge against the price risk in the short-term.
- ✓ New market designs:

EcoGrid EU Market Concept

Motivation:

- ✓ Balance variation of wind power production (and others) through a simple and transparent market floor.
- ✓ Facilitate the integration of renewable and small generation units into the power system.
- Make use of the flexible demand to balance the system and reduce customers' bill.

A priori design:

- ✓ Publish the electricity price every five minutes so that small producers and flexible consumers can react to it.
- ✓ Simple and transparent: no need for bids to the market. Market agents pay or get pay the EcoGrid EU prices times the power they consume or produce, respectively.

Current market clearing:

• EcoGrid EU concept:

EcoGrid EU Market Concept

Social welfare:

EcoGrid EU Market Concept

Social welfare:

Maximize Δ Consumer surplus – Δ Production cost

Subject to Generation = Demand

Unit technical limits

Flexible demand requirements

Maximize $\lambda^{D} \cdot \Delta P^{L} - 0.5 \cdot \Delta P^{L} \cdot \alpha \cdot \Delta P^{L} - \Delta$ Production cost

Subject to Generation = Demand

Unit technical limits

Flexible demand requirements

Maximize $\lambda^{D} \cdot \Delta P^{L} - 0.5 \cdot \Delta P^{L} \cdot a \cdot \Delta P^{L} - \Delta$ Production cost

Subject to Generation = Demand

Unit technical limits

Flexible demand requirements

Each generator:

- Up regulating bids = $P^{UP,max}$, λ^{UP}
- Down regulating bids = $P^{DO,max}$, λ^{DO}

Maximize $\lambda^{D} \cdot \Delta P^{L} - 0.5 \cdot \Delta P^{L} \cdot \alpha \cdot \Delta P^{L} - \lambda^{UP} \cdot P^{UP} + \lambda^{DO} \cdot P^{DO}$

Subject to Generation = Demand

Unit technical limits

Flexible demand requirements

Each generator:

- Up regulating bids = $P^{UP,max}$, λ^{UP}
- Down regulating bids = $P^{DO,max}$, λ^{DO}

Maximize $\lambda^D \cdot \Delta P^L - 0.5 \cdot \Delta P^L \cdot \alpha \cdot \Delta P^L - \lambda^{UP} \cdot P^{UP} + \lambda^{DO} \cdot P^{DO}$ Subject to $P^{UP} - P^{DO} + \Delta W = \Delta P^L$ Unit technical limits

Flexible demand requirements

Example (known wind production):

Day-ahead outcome (obtained 24 hours before):

- Unit g1 → 150 MW
- Unit g2 → 100 MW
- Unit g3 → 100 MW
- Wind forecast → 100 MW
- Load → 450 MW
- Day-ahead price → 22€/MWh

Regulating bids (collected 45 minutes before):

Unit	PD	UR	DR	$\lambda^{\sf UP}$	P ^{UP,max}	$\lambda^{ extsf{DO}}$	P DO,max
g1	150	3	3	23	10	20	10
g2	100	5	5	25	20	18	20
g3	100	10	10	27	30	16	30

Demand modeling:

- Unflexible demand = $(1-\beta)\cdot 450$
- Flexible demand = $\beta \cdot 450$

$$- P^{min} = 0.7 \cdot \beta \cdot 450$$

$$- P^{max} = 1.3 \cdot \beta \cdot 450$$

-
$$\beta$$
 = 0.1 (only 10% of flexible demand)

$$-a = 0.5$$

Wind production is equal to the expected one, that is, 100 MW Real-time price = Day-ahead price

Wind production is 1 MW lower than expected, that is, 99 MW

$$0.5$$
· (-1) = 22 - λ ^{RT} → λ ^{RT} = 22.5 €/MWh

Wind production is 3 MW lower than expected, that is, 97 MW

$$0.5 \cdot (-3) = 22 - \lambda^{RT} > \lambda^{RT} = 23.5 \cdot \epsilon / MWh$$

$$\lambda^{RT} = 23 \in /MWh \rightarrow \Delta P^{L} = -2MW \& P^{UP} = 1 MW$$

Wind production is 5 MW lower than expected, that is, 95 MW

$$\lambda^{RT} = 23 \in /MWh \rightarrow \Delta P^{L} = -2MW \& P^{UP} = 3 MW$$

Wind production is 7 MW lower than expected, that is, 93 MW

$$\lambda^{PT} = 23 \in /MWh \rightarrow \Delta P^{L} = -2MW & P^{UP} = 5 MW$$

$$P^{UP} = 3 \text{ MW } \& \lambda^{RT} = 24 \text{ } \in /\text{MWh} \rightarrow \Delta P^{L} = -4 \text{MW}$$

Determining 5-minute prices (uncertain wind production):

$$\begin{array}{lll} \text{Maximize} & \lambda^{D} \cdot \Delta P^{L} - 0.5 \cdot \Delta P^{L} \cdot \alpha \cdot \Delta P^{L} - \lambda^{UP} \cdot P^{UP} + \lambda^{DO} \cdot P^{DO} \\ \text{Subject to} & P^{UP} - P^{DO} + \Delta W = \Delta P^{L} \\ & 0 < P^{UP} < P^{UP,max} & 0 < P^{DO} < P^{DO,max} & RAMPS!!!!! \\ & \alpha \cdot \Delta P^{L} = \lambda^{D} - \lambda^{RT} & P^{min} < P^{D} + \Delta P < P^{max} \end{array}$$

Scenario	t1	t2	t3	t4	t5
s1	100	80	90	60	70
s2	100	120	110	140	130

Probability
$$s1 = 1 - \chi$$

Probability $s2 = \chi$

Determining 5-minute prices (uncertain wind production):

Maximize	Expected ($\lambda^{D} \cdot \Delta P^{L} - 0.5 \cdot \Delta P^{L} \cdot a \cdot \Delta P^{L} - \lambda^{UP} \cdot P^{UP} + \lambda^{DO} \cdot P^{DO}$)					
Subject to	$P^{UP} - P^{DO} + \Delta W = \Delta P$	$P^{UP} - P^{DO} + \Delta W = \Delta P^{L}$				
	$0 < P^{UP} < P^{UP,max}$	$0 < P^{DO} < P^{DO,max}$	RAMPS!!!!!			
	$a\cdot\ \Delta P^L = \lambda^D-\lambda^{RT}$	$P^{min} < P^{D} + \Delta P < P^{max}$,			

Scenario	t1	t2	t3	t4	t5
s1	100	80	90	60	70
s2	100	120	110	140	130

Probability
$$s1 = 1 - \chi$$

Probability $s2 = \chi$

■ Example (uncertain wind production):

Theoretical issues: demand response modeling

- Demand response curve vary throughout time (one curve for each time period)
- Demand response curve is not totally known (scenarios characterizing uncertainty)
- Dynamic behavior of demand. Demand response curve for the next 5 minutes depends on the price we send right now to consumers. (suggestions???)

DTU

EcoGrid EU Market Concept

- Practical issues: regulating market is cleared by NordPool
- Both the regulating price and the corresponding accepted bids are decided by the NordPool.
- Therefore, in Bornholm, we cannot reduce the power output of a very expensive and contaminating unit even though we have enough demand response to balance the system.
- Moreover, regulating prices cannot be published...

- Conclusions:
- EcoGrid EU proposes a new market concept that allows the participation of small distributed energy sources as well as small end-consumers.
- We will be able to balance the power variations caused by renewable (and clean) production with demand response.

- This may also improve the frequency quality in the Nordpool system.

Network operation:

- Continuous balance between generation and consumption
- Voltage within limits
- Stability analysis
- etc.

Electricity markets:

- Determine accepted bids and offers to sell and buy electricity
- Determine electricity price
- etc.

Thanks for your attention Questions, comments, suggestions, ideas?

