Практическое занятие № 2

Изучение методов сэкатия (экономного кодирования) цифровых потоков без потерь.

Построить двоичный код Хаффмана и вычислить его скорость для представления фрагмента текста:

"экономное кодирование"

РЕШЕНИЕ:

1. Вычисление вероятностей (частостей) появления символов.

$$9-1$$
, $K-2$, $0-5$, $H-3$, $M-1$, $e-2$, $A-1$, $A-2$, $B-1$, $B-1$, $A-1$.

2. Записываем символы в порядке возрастания частостей. Последовательно объединяются два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагается равной сумме вероятностей составляющих его символов. В конце концов получается дерево, каждый узел которого, имеет суммарную вероятность всех узлов, находящихся ниже него:

Примечание

Листовые узлы дерева Хаффмана соответствуют символам кодируемого алфавита. Глубина листовых узлов равна длине кода соответствующих символов.

Путь от корня дерева к листовому узлу можно представить в виде битовой строки, в которой "0" соответствует выбору левого поддерева, а "1" - правого. Используя этот механизм, мы без труда можем присвоить коды всем символам кодируемого алфавита. Выпишем, к примеру, коды для всех символов в нашем примере:

Полученный код:
$$o - 11$$
; $H - 101$; $H - 101$; $H - 101$; $H - 101$; $H - 1000$; $H - 1000$; $H - 1000$; $H - 1000$; $H - 1001$; $H - 1$

Длина кода сообщения: $L = 5 \cdot 2 + 3 \cdot 3 + 2 \cdot 3 + 2 \cdot 3 + 2 \cdot 3 + 2 \cdot 3 + 1 \cdot 4 + 1 \cdot 4 + 1 \cdot 5 + 1 \cdot 5 + 1 \cdot 5 + 1 \cdot 5 = 65$ дв. симв.

При кодировании равномерным кодом для представления каждого из 11 символов потребовалось бы 4 дв.симв. Для длины сообщения 20 символов потребовалось бы $L_1=20\cdot 4=80$ дв.симв.

Скорость кода:
$$R=L/L_1=65/80=13/16$$
. $R=1/K_{C>K}=L/L_1$

Примечание

Наряду с коэффициентом сжатия (K_{CM}) эффективность сжатия может быть охарактеризована скоростью сэксатия (R), определяемой как отношение

$$R = \frac{1}{K_{\mathrm{CM}}}$$
 , sõe $K_{\mathrm{CM}} = \frac{W_{\mathrm{MCX}}}{W_{\mathrm{CM}}}$.

и <u>измеряемой</u> в "количестве кодовых бит, приходящихся на отсчет данных источника". Система, имеющая <u>больший</u> коэффициент сжатия, обеспечивает <u>меньшую</u> скорость сжатого потока.