For office use only	Team Control Number	For office use only
T1	1900000	F1
T2		F2
T3	Problem Chosen	F3
T4	\mathbf{A}	F4

2020 MCM/ICM Summary Sheet

The Comprehensive Evacuation Planing Model in Case of Emergency

Summary

Keywords: VRP; optimal path; Tyson polygon; Time-varying curve; Time-varying curve

Contents

1	Int	roduction·····	1
	1.1	Background · · · · · · · · · · · · · · · · · · ·	1
	1.2	Problem Restatement · · · · · · · · · · · · · · · · · · ·	2
	1.3	Our Work · · · · · · · · · · · · · · · · · · ·	2
2	Ass	sumptions · · · · · · · · · · · · · · · · · · ·	2
3	Lis	t of Notation · · · · · · · · · · · · · · · · · · ·	2
4	The	e fish accumutation model·····	3
	4.1	The varying temperature model·····	3
		4.1.1 basic idea · · · · · · · · · · · · · · · · · · ·	3
		4.1.2 monthly changing · · · · · · · · · · · · · · · · · · ·	3
	4.2	The fish-temperature model · · · · · · · · · · · · · · · · · · ·	4
	4.3	The predicted fish accumutation distribution · · · · · · · · · · · · · · · · · · ·	4
5	The	e Demand Distribution Model · · · · · · · · · · · · · · · · · · ·	4
6	The	e Comprehensive Evacuation Planning Model · · · ·	8
	6.1	Model Preparation · · · · · · · · · · · · · · · · · · ·	8
	6.2	Modeling · · · · · · · · · · · · · · · · · · ·	10
	6.3	Model Solution · · · · · · · · · · · · · · · · · · ·	12
7	Str	engths and Weaknesses·····	13
	7.1	Strengths····	13
	7.2	Weaknesses and Extensions · · · · · · · · · · · · · · · · · · ·	13
	Ref	ference·····	14
	Ap	pendices·····	15
A	Ap	pendix First appendix · · · · · · · · · · · · · · · · · · ·	15
В	Ap	pendix Second appendix ·····	15

Team # 1900000 Page 1 of 15

1 Introduction

1.1 Background

Changes in global ocean temperature will cause various marine lives to migrate. When the temperature varies too great, these animals can no longer survive and they will migrate to more suitable habitats.

herring and mackerel are very important pelagic fish in the Scottish fisheries. herring is widely distributed throughout the Northeast Atlantic, while mackerel is mostly distributed in the North and West Seas. They are located in the deep water during the day and move towards the surface at dusk and spread over a wide area.

It has been suggested that observed spatial variation in mackerel fisheries, extending over several hundreds of kilometers, is reflective of climate-driven changes in mackerel migration patterns.

In recent years, with the global ocean temperature rising, the distribution of these populations has changed dramatically. However, the geographic population shift may seriously affect the disrupt the livelihood of the smaller Scottish Fisheries companies who depend on these ocean-dwelling species.

Figure 1: Percentage change from 2015 to 2016 in the real term price per tonne obtained for key fish species

Team # 1900000 Page 2 of 15

1.2 Problem Restatement

In order to develop the Scottish fishing industries steadily, we need to analyze the characteristics, requirements, and interactions of herring and mackerel

- 1. How does the location of herring and mackerel change according to temperature
- 2. What are the best case, worse case and most likely time about small fishing companies based on the rate
- 3. Whether these small fishing companies should change the way they operate, what is the best way to run a small fishing company
- 4. What will happen if a certain percentage of fishery enters the territorial seas of another country
 - 5. What solutions will improve the future business prospects of fishermen

1.3 Our Work

2 Assumptions

•

•

3 List of Notation

Table 1: The List of Notation

Symbol	Meaning
\overline{L}	The length of the Scottish vessels
B	The width of the Scottish vessels
D	The height of the Scottish vessels
W	The weight of the Scottish vessels
P	The waterline length of the Scottish vessels
l	Length between perpendiculars
v	The average velocity of the Scottish vessels
P	The average power of the Scottish vessels
V	The displacement of the Scottish vessels
V_o	The volume of the fuel consumption
A_1	Total purchase cost of a Scottish vessel
A_2	Total salary of a crew member
A_3	Total fuel cost of a Scottish vessel
A	total cost of a Scottish vessel

Team # 1900000 Page 3 of 15

c_1	The purchase cost of a Scottish vessel per hour
c_2	The salary of a crew member per hour
c_3	The fuel cost of a Scottish vessel per hour
T_1	The time spent in fishing of a Scottish vessel
T_2	Fish preservation time at ambient temperature
T_3	The time spent in sailing of a Scottish vessel
S	The distance sailed of a Scottish vessel
a	Fish density ratio
r_o	Fuel consumption ratio
B_1	The earnings of herrings
B_2	The earnings of mackerels
p_1	The price of herrings
p_2	The price of mackerels

4 The fish accumutation model

4.1 The varying temperature model

[6]

4.1.1 basic idea

There are many factors can affect the temperature of the oscan, and the changing of the sea surface temperature(SST) can be regarded as short monthly average temperature change and long-term yearly average temperature change from a time perspective, and spatial distribution from geographical perspective. We separate those changing trend by analyzing the data from project ERSST which contains $1\deg$ resolution data from 1981 to 2010 and $2\deg$ data from 1854 to 2020. Specificly, we use the long-term data to predicte the yearly change, and use high resolution data to be the beginning of long-term prediction as well as to analyze the spatial distribution and the monthly change. The area we analyze lies in W15.5 to E13.5 and N46.5 to 65.5.

4.1.2 monthly changing

In our model, we assume that the monthly change has a central value related to yearly avarage temperature. We also assume that the monthly change are determined by the seasonal change and not only independent of the factors affect the change of yrarly avachange temperature, but also much stronger than the change of yearly average temperature. A long-term monthly avarage are made

Team # 1900000 Page 4 of 15

based on SST data from 1981 to 2010. Since the seasonal change of temperature are mostly related to the rotation of the earth, it is convenience to suppose this change has a trigonometric form.

4.2 The fish-temperature model

4.3 The predicted fish accumutation distribution

5 The Demand Distribution Model

Table 2: The range dimension ratios of trawlers

parameter	L/B	B/d	D/d
Range of steel materials Range of wood materials			

Figure 2: English Harbor Division

Team # 1900000 Page 5 of 15

Table 3: The prices (pround per tonne) of two species: 2012 to 2016

Year	2012	2013	2014	2015	2016	average
Herring	565	408	308	369	665	463
Mackerel	1034	979	832	664	895	880.8

Table 4: The information about Scottish registered vessels

vessel length (metres)	<=10	10-12	12-15	15-24	24-40	>=40
Herring (tonnes)	0	0	0	7	1505	63031
Mackerel (tonnes)	811	0	0	42	3802	183831
Average tonnage of	4	13	22	110	273	1748
Average age	26	33	29	31	28	17
Average engine power (kW)	57	127	190	325	641	4327

$$v = 1.84 \times \left(\frac{P}{V}\right)^{0.237} \times \sqrt{l} \tag{1}$$

$$P = 4000 \tag{2}$$

$$V = L \times B \times d = \frac{1}{48 \times L^3} \tag{3}$$

$$l = L \approx 40 \tag{4}$$

$$T = \frac{S}{v} \tag{5}$$

$$A_1 = c_1 \times T_1 \tag{6}$$

$$A_2 = c_2 \times T_1 \tag{7}$$

$$A_3 = c_3 \times T_1 \tag{8}$$

$$A = A_1 + A_2 + A_3 \tag{9}$$

$$B = 1800 \times 10\% \times a \times \frac{p_1 + p_2}{2} \tag{10}$$

Team # 1900000 Page 6 of 15

$$\frac{T_1}{2} \le T_2 \tag{11}$$

The demand distribution defines the number of people arriving at the station nodes during the evacuation process. The demand distribution depends on the potential population of the evacuation area depending on the transport system. This demand not only has spatial dependence, but also has time dependence. To determine how many evacuees will arrive at each station node, we need to define a service area to determine its appeal scope. One way to do this is to use the concept of the Thiessen Polygon [1]. The Thiessen Polygon is centered around the station node and the nearest family is located in the same service area. By dividing the network into a number of adjacent polygons, families are assigned to the Thiessen Polygon where their nearest assembly point is located.

In the study, we determined the potential demand by using the Thiessen Polygon to determine the service area of the station node. Due to the evacuees in the evacuation process, the demand of the station nodes is uncertain, mainly manifested in the following two situations:

- Those who have been registered to evacuate will change their minds and evacuate by private cars or other means, reducing the need for evacuation;
- Personnel who have not been registered prepare to evacuate, including tourists or travel agents, and increase evacuation demand.

The demand distribution in this paper is based on the pre-population survey data covered by the station node, assuming that it is subject to uniform distribution. For example, if the number of evacuees covered by the survey is 40, then U [30, 50], and the demand will be gradually generated according to the Mobilization Curve. For station nodes, assuming that they have a certain storage capacity, the evacuees can wait for a while before they evacuate. Emergency evacuation in practice, can under the circumstances of road network, through the whole evacuation phases to define the generated during evacuation demands, in order to make every vehicle evacuation route.

Figure 3: The model of a ship

Team # 1900000 Page 7 of 15

Goerigk proposed the mobilization curve [3, 4], also known as the S type curve, used to estimate demand in different time evacuees percentage. In the event of natural disasters, the cumulative percentage of evacuation demand can be calculated by the time-varying curve function. The time-varying curve is expressed as follows:

$$C(t) = \frac{1}{(1 + e^{-\alpha(t-h)})}$$
 (12)

$$C(0) = 0 (13)$$

Where:

C(t) is the cumulative percentage of withdrawal demands from time to time;

a is the loading rate or the reaction rate of the public to the evacuation instructions, also expressed as the slope of the time curve;

h is the time required for half of the demand in the system;

t=0 represents the time the evacuation order is released.

The individual loading time is the time when they arrive at the station node. h can be determined according to the peak value of the departure time of the traffic or half of the estimated allowable evacuation time. Choose half the load time as an input parameter for the system. If time varying curve is used to calculate the cumulative percentage of the traffic demand is loaded into the road network, then according to the nature of the disaster, we can use different half load time to impact load parameter. therefore, in the process of evacuation, the choice of half load time is crucial [10, 11].

Loading time usually includes departure time and time required to reach the station node. Departure time refers to the time each person spends preparing for withdrawal once the evacuation order is released. Through this definition, we can know that the loading time varies based on the type of events, the relative severity of events, the communication efficiency of the public and the involvement of emergency management centres.

In the study of this paper, we do not cover the departure time, but only the time that needs to reach the station node.

By introducing different loading rates during the implementation phase of the evacuation plan, the withdrawal situation will change.

In the case of low loading rates usually, more people are responding to instructions in the early stages of evacuation, while the high loading rate, a large number of evacuees spend a lot of time preparing for the evacuation.

In the case of low loading rate, people gradually reach the station node within the time range of evacuation, but for the high loading rate, a large number of people rush to the station node during the final phase of evacuation, as is Team # 1900000 Page 8 of 15

shown in Figure ??.

In the case of a hurricane, the initial phase of withdrawal is usually slow, and the demand for station nodes is not greater than the capacity of the vehicle. But in the final phase of the evacuation, the demand may be concentrated, and the cumulative result is that the demand for a station node is greater than the capacity of the vehicle. At this moment, we need to send vehicles from another station node to meet their needs, carrying away for the rest. With the demand of the other station node considering again, a reasonable, optimizing transportation route can be arranged.

6 The Comprehensive Evacuation Planning Model

6.1 Model Preparation

- Station nodes: In this problem, the locations of all station nodes are known and fixed, and the demand generation changes over time to meet the S type behavior curve. Requirements may exceed the load capacity of the vehicle during the process of time change. In this case, it may be necessary to mobilize the vehicle from other station nodes or carry out the second transport. Having no time limit on the vehicle service, evacuees can be carried out at any time in station nodes, and the transport vehicle is set at the set point;
- Transport vehicle: In this problem, all vehicles start from the shelter, via the station node, and then complete the transport mission, during which the overload operation is not allowed to exceed the maximum driving time of the vehicle;
- Shelter: In this problem, there are several shelters whose location and capacity have been determined.

VRP [2, 5] generally defined as: on a range of clients point (location known or can be estimated) in satisfying certain constraints (such as the demand for goods, the delivery time of delivery, the vehicle capacity constraints, etc.), reasonably arrange the vehicle distribution route, making the vehicle through them in an orderly way to achieve a certain goal (such as the shortest mileage and least cost, least time, use as little as possible and so on). The representation of VPR can be seen in Figure 3.

Based on the traditional VRP, a comprehensive evacuation planning model is established to satisfy the constraint conditions:

- Time constraint: the total withdrawal time is the shortest in the case of meeting all the evacuees' needs and not violating the constraints;
- Risk constraint: minimum risk of meeting the minimum evacuation time;

Team # 1900000 Page 9 of 15

Table 5: The categories of hurricanes

Category	Maximum sustained winds	Potential damage
Category 1	119-153 km/h	No actual damage to the building, but damage to unfixed houses and cars, shrubs and trees. Some coasts will be flooded, and small docks will be damaged.
Category 2	154-177 km/h	Some roof materials, doors, windows and vegetation are damaged. Flood waters may break through unprotected garages to threaten docks and boats.
Category 3	178-209 km/h	Some of the houses and buildings will be damaged, some of them completely destroyed. Flood near the coast destroyed buildings and flooded inland land.
Category 4	210-249 km/h	The roof of the small building was completely destroyed. Most of the area near the sea was flooded, flooding inland.
Category 5	≥ 250 km/h	Most of the buildings and detached houses were completely destroyed, and some houses were blown away completely. Flood have devastated large areas, and all buildings near the coast have been flooded and settlers may need to evacuate.

- Carrying capacity constraint: the number of customers on each vehicle path is limited no more than a constant;
- Road afford ability constraint: the total carrying capacity on the road is not allowed to exceed the road capacity;
- Shelter capacity constraint: the total population in the shelter shall is not allowed to exceed the capacity limit;
- Priority relationship constraints: the more endangered areas have priority access;
- Path first constraint: after every vehicle completes its mission, records its shelter and the time to reach the sanctuary, preparing for the assignment of

Team # 1900000 Page 10 of 15

the next mission.

Before each task, we need to update the network node demand, shelter of residual capacity and the starting position of the vehicles, where each task should be according to the last mission at the end of the vehicle at the beginning of status to the caller, get the transport vehicles in the task.

6.2 Modeling

We now describe an optimization model that includes the assumptions of the previous section

The considered time horizon is denoted by T. This is not the evacuation time we are aiming for, but an upper bound on the evacuation time that is needed by our model. This quantity is used to build the time expanded network.

For public transportation we assume that there is already an established set of collection points, where evacuees gather for further transportation to shelters. For each collection point it is known how many people will appear at this point in each time step. We also given a set of possible shelter location. For each such location we are given the number of people W_j that this shelter can hold and additionally the parking space C_j available near this shelter.

The set of buses available for the public evacuation transit is denoted by B. For simplicity, we assume that all buses have the same capacity N_0 (however, different capacities can easily be included in our model). Besides all cars carry the same number of people.

Once the used shelter locations have been chosen, the public and private traffic will pour into the shelter. The private traffic is modeled as a dynamic network flow, the public traffic (the buses) as a dynamic multi commodity network flow. The private traffic is a single commodity whereas each bus is a commodity of its own. The flow of the buses has to be chosen such that all people that need public transportation can be brought to shelter locations while respecting the bus capacity. Both flows are chosen simultaneously in a system optimal way.

The total risk exposure is given by the sum of the risks of the individual arcs over all time steps. The risk of a single arc at a time step is given by the risk value of the arc multiplied with the number of people on this arc at this time step.

Formulating these aspects mathematically, we propose the following multicriteria mixed-integer programming model, which we call the Comprehensive Evacuation Problem (CEP)[7–9]

In this mixed integer program we use the following variables: δ_{ij} denotes traversal of arc (i,j) \in A. x_{ij}^t denotes the spend time passing arc (i,j). r_{ij}^t denotes the risk factor passing arc (i,j) at time t. f_{ij}^t denotes the number of evacuees using cars passing arc (i,j) at time t. In contrast, g_{ij}^t denotes the number of evacuees using bus b to go from node i to node j at time t. η represents the jam factor, which

Team # 1900000 Page 11 of 15

depends on the magnitude of the hurricane, the location of the landing, and the average number of evacuees passing arc (i,j) at time t. B_{ij}^t denotes the number of bus driving on arc (i,j) at time t. In the same way, C_{ij}^t denotes the number of car driving on arc (i,j) at time t. P_j^t denotes the number of people in the j shelter at time t. r denotes the capacity factor.

$$\Delta \min(\Delta, R) \tag{14}$$

$$\Delta \ge (2n - 1) \times \max(\sum_{(i,j) \in A} \sum_{t \in T} \delta_{ij}^t x_{ij}^t) + \Delta t \tag{15}$$

The objective (1) is to minimize the evacuation time Δ and the risk R, These objectives are computed using constraints (2)-(4). Constraints (2) ensure that Δ is the maximal evacuation time. The risk R depends on the number of people passing a link. This relation is expressed in constraint (3)and(4).

$$R = \sum_{(i,j)\in A} \sum_{t\in T} r_{ij}^t (f_{ij}^t + \sum_{(i,j)\in A} g_{ij}^t) + W + V$$
 (16)

$$\sum_{(i,j)\in A} \sum_{t\in T} f_{ij}^t = N_i \times a\% \tag{17}$$

$$n = \left\lceil \frac{N_{\rm i} \times (1 - a\%)}{B_{\rm i} \times N_0} \right\rceil + 1 \tag{18}$$

$$x_{ij}^t = \eta \frac{S_{ij}}{v_b} \tag{19}$$

$$\mathbf{g}_{ij}^t = N_0 \times B_{ij}^t \tag{20}$$

$$C_{ij}^{t} = p \times C_{i} \tag{21}$$

In the equation (5), n means the number of journeys that the bus needs to transport, and the calculation should Integer plus one. Equation (8) - (10) is the road traffic that is used to constrain not to exceed its maximum capacity at time t.

$$B_{ij}^t = \mathbf{p} \times \mathbf{B}_i \tag{22}$$

$$C_{ij}^t + B_{ij}^t \le V_{ij} \tag{23}$$

Team # 1900000 Page 12 of 15

The individual and the public traffic are linked together in the edge capacity constraints (11)-(12). Each used shelter must supply enough parking space and enough room to support evacuees.

$$C_i^t \le C_i \tag{24}$$

$$P_j^t \le rW_j \tag{25}$$

$$r = \frac{N_{\rm i}}{W_i} \tag{26}$$

When a hurricane is stronger, it may require a massive evacuation, that is, to consider the interaction of the three states. The site selection, risk coefficient, road congestion, and site accommodation will be affected, we need to reset the influence parameters to get the minimum required time and the site situation again.

Optimization method: When the forecast hat hurricane level is high, we can arrange inland evacuation ahead, in the case of ensure the overall time is enough for the coastal areas to evacuate to the site of the corresponding time calculation.

Advantage: Inland remove first can reduce the road pressure; Coastal remove later can increase the economic benefit. Compare the results again and get the final optimization plan.

6.3 Model Solution

Based on the above model and the parameters involved in the model, the final evacuation time is obtained by programming, and the result is shown in the table below:

Table 6: The Evacuation time

Hurricane level	1	2	3	4	5	6
Evacuation time	11.4	18.2	24.28	33.6	47.8	49.6

As shown in the figure above, it is necessary to calculate the time required for a category 1-5 hurricane, including the withdrawal time required for the optimization programme.

Because the evacuation and time of personnel also satisfied the curve of S type curve, it can be used to draw the time-varying personnel evacuation curve of hurricane from category 1 - 5, which can be seen in figure 4.

Team # 1900000 Page 13 of 15

On the basis of guarantee the safety of life, we put forward the optimization scheme, when hurricane prediction level too high, let let evacuated inland areas, in order to improve the economic benefit of coastal, and reduce economic loss. The maximum population density due to coastal areas, and abide by the S type curve evacuation rules.

Under the same Five - level hurricane conditions, the optimization scheme minimizes the economic loss under the conditions of increasing the cost of the smaller time. It has been proved that evacuating in the right time can get better effect, which has a positive effect on the subsequent development of evacuation plan.

7 Strengths and Weaknesses

7.1 Strengths

- The comprehensive evacuation planning model takes the shortest time and lowest risk and low economic losses as the total constraint conditions to get the optimal solution;
- The constraint conditions such as road carrying capacity and the capacity of escape points are considered in the comprehensive evacuation planning model;
- Determine the coverage scope by Thiessen polygon;
- Considering the demand distribution characteristics in the station nodes;
- In terms of model constraints, the shortest evacuation time is obtained for a 1-5 hurricane;
- Considering the economic benefit gap between inland and coastal areas, the optimal plan for economic loss is proposed;
- Analyze the extreme problems, propose solutions, and obtain the optimal solution through comprehensive consideration of evacuation time, evacuation risks and economic losses.

7.2 Weaknesses and Extensions

- Without considering the evacuation of the county itself;
- Without considering the refueling problem of cars and buses;
- Without considering the risk caused by large numbers of people in station nodes;

Team # 1900000 Page 14 of 15

• Without considering other means of transportation, such as aircraft, railway, etc.;

• Without considering the subsequent material problems of the shelter.

Optimization method: When the forecast hat hurricane level is high, we can arrange inland evacuation ahead, in the case of ensure the overall time is enough for the coastal areas to evacuate to the site of the corresponding time calculation.

Advantage: Inland remove first can reduce the road pressure; Coastal remove later can increase the economic benefit. Compare the results again and get the final optimization plan.

References

- [1] S. Bretschneider and A. Kimms. A basic mathematical model for evacuation problems in urban areas. *Transportation Research Part A Policy & Practice*, 45(6):523–539, 2011.
- [2] G. Dikas and I. Minis. Solving the bus evacuation problem and its variants. *Computers & Operations Research*, 70:75–86, 2016.
- [3] Marc Goerigk. *Branch and bound algorithms for the bus evacuation problem*. Elsevier Science Ltd., 2013.
- [4] Marc Goerigk, Kaouthar Deghdak, and Philipp Hebler. A comprehensive evacuation planning model and genetic solution algorithm. *Transportation Research Part E Logistics & Transportation Review*, 71(71):82–97, 2014.
- [5] Xiaozheng He, Hong Zheng, and Srinivas Peeta. Model and a solution algorithm for the dynamic resource allocation problem for large-scale transportation network evacuation. *Transportation Research Part C*, 59:233–247, 2015.
- [6] Shang-Min Long, Shang-Ping Xie, Xiao-Tong Zheng, and Qinyu Liu. Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. *Journal of climate*, 27(1):285–299, 2014.
- [7] Pamela Murray-Tuite and Brian Wolshon. Evacuation transportation modeling: An overview of research, development, and practice. *Transportation Research Part C*, 27(2):25–45, 2013.
- [8] Man Wo Ng and Dung Ying Lin. Sharp probability inequalities for reliable evacuation planning. *Transportation Research Part C Emerging Technologies*, 60:161–168, 2015.
- [9] Man Wo Ng and S. Travis Waller. Reliable evacuation planning via demand inflation and supply deflation. *Transportation Research Part E*, 46(6):1086–1094, 2010.

Team # 1900000 Page 15 of 15

[10] Fatemeh Sayyady and Sandra D. Eksioglu. *Optimizing the use of public transit system during no-notice evacuation of urban areas.* Pergamon Press, Inc., 2010.

[11] Stella K. So and Carlos F. Daganzo. Managing evacuation routes. *Transportation Research Part B Methodological*, 44(4):514–520, 2010.

Appendices

Appendix A First appendix

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Here are simulation programmes we used in our model as follow.

Input matlab source:

Appendix B Second appendix

some more text **Input C++ source**: