

**Unidad Aritmético Lógica** 



### Introducción

- Operador aritmético y lógico (uno o varios).
- El Acumulador.
- Uno o varios registros temporales.
- Un banco de registros.
- Indicadores de resultado:
  - Acarreo (C)
  - Negativo (N)
  - Desbordamiento (O)
  - Cero (Z)





### Operaciones lógicas

- ♠ Fáciles de implementar ⇒ Correspondencia directa con Hardware.
- Puertas lógicas AND, OR, OR-EXCLUSIVA, INVERSORES,...



Unidad Aritmético Lógica



### **Unidad Lógica**

| ope | función    |
|-----|------------|
| 000 | NOT A      |
| 001 | NOT B      |
| 010 | A AND B    |
| 011 | A OR B     |
| 100 | A NAND B   |
| 101 | A NOR B    |
| 110 | A XOR B    |
| 111 | A NO_XOR B |





### **Unidad Lógica**

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
(generic n:integer:=8);
entity unidad_logica is
   Port ( a : in std_logic_vector(n-1 downto 0);
          b : in std_logic_vector(n-1 downto 0);
          ope : in std_logic_vector(3 downto 0);
          y : out std_logic_vector(n-1 downto 0));
end unidad_logica;
architecture comporta of unidad_logica is
begin
PROCESS(a, b, ope)
begin
        CASE ope(2 DOWNTO 0) IS -- puede ser cualquier bit
        WHEN "000" => y \le NOT a;
        WHEN "001" => y \le NOT b;
        WHEN "010" => y \le a AND b;
        WHEN "011" => y \le a OR b;
        WHEN "100" => y <=a NAND b;
        WHEN "101" => y <=a NOR b;
        WHEN "110" => v \le a \times b;
        WHEN OTHERS => y <= NOT (a XOR b);
        END CASE;
end process;
end comporta;
```



### **Unidad Lógica**

| ope | función    |
|-----|------------|
| 000 | NOT A      |
| 001 | NOT B      |
| 010 | A AND B    |
| 011 | A OR B     |
| 100 | A NAND B   |
| 101 | A NOR B    |
| 110 | A XOR B    |
| 111 | A NO_XOR B |

| Now:<br>1000 ns   | 0 ns         | 200<br>         | 400 ns                                                       | 600<br>                 | 800 ns |
|-------------------|--------------|-----------------|--------------------------------------------------------------|-------------------------|--------|
| ⊞ 📉 a[7:0]        | 8'hA8 (8'h5F | 8'hC8 8'h91     | 8'h1D 8'hEA                                                  | 8'h73 \ 8'h74 \         | 8'hA8  |
| ⊞ 📉 b[7:0]        | 8'h66 (8'h91 | (8'h1D) (8'hEA  | \(\) \(8'\) \(\) \(8'\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \ | 8'hA8 \ 8'h3F \         | 8'h66  |
|                   | 4'h7 (4'h0   | 4'h1 4'h2       | 4'h3 4'h4                                                    | 4'h5 \ 4'h6 \           | 4'h7   |
| ⊞ <b>X</b> y[7:0] | 8'h31 (8'hA0 | (8'hE2 \( 8'h80 | \\\\ 8'h7F\\\\\ 8'h9F\\\\                                    | (8'h04)\(\)\(8'h4B)\(\) | 8'h31  |
|                   |              |                 |                                                              |                         |        |



- Consisten en trasladar los bits de una palabra hacia la izquierda o derecha.
- Si llamamos O al operando origen, de n bits (o<sub>n-1</sub>...o<sub>2</sub>o<sub>1</sub>o<sub>0</sub>) y D al operando destino, de n bits, (d<sub>n-1</sub>...d<sub>2</sub>d<sub>1</sub>d<sub>0</sub>)

$$d_{i+k} = o_i$$
 para  $i=0,1,...n-1$ 

Donde k, indica el número de desplazamientos y el signo el sentido de los mismos:

izquierda el signo es más (+)

derecha el signo es menos (-)

La cantidad de desplazamientos depende de la complejidad de las máquinas, las más sencilla admiten k=1 y k=-1.



Unidad Aritmético Lógica

- La complejidad es elevada.
- Las señales de control son las mismas para cada bit.
- Las puertas pueden sustituirse por multiplexores
- Dependiendo de cómo se traten los extremos, se obtienen tres tipos de desplazamientos:
  - Lógicos
  - Circulares
  - Aritméticos







-----



### Desplazamientos lógicos

Los valores extremos se completan con ceros, aunque se pueden plantear desplazamientos lógicos con inclusión de unos en lugar de



Habitualmente, el origen y destino es la misma palabra.







```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity shifter is
          GENERIC (N: INTEGER:=8);
    Port ( ENTRADA : in std_logic_vector(N-1 downto 0);
           SALIDA: out std_logic_vector(N-1 downto 0);
           shift : in std_logic);
end shifter;
architecture rtl of shifter is
begin
   process (ENTRADA, shift)
begin
      if (shift = '0') then
         SALIDA <= ENTRADA;
      else
         SALIDA(0)<='0';
         for i in 1 to ENTRADA' high loop
             SALIDA(i) <= ENTRADA(i-1);</pre>
         end loop;
      end if;
   end process;
end rtl;
```







```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity shifter2 is
    Port ( inp : in std_logic_vector(7 downto 0);
           shift : in std_logic_vector(2 downto 0);
           outp : out std_logic_vector(7 downto 0));
end shifter2;
architecture Behavioral of shifter2 is
begin
PROCESS (inp, shift)
 VARIABLE temp1: STD LOGIC VECTOR (7 DOWNTO 0);
VARIABLE temp2: STD LOGIC VECTOR (7 DOWNTO 0);
BEGIN
---- 1st shifter -----
        IF (shift(0)='0') THEN
                 temp1 := inp;
        ELSE
                 temp1(0) := '0';
                 FOR i IN 1 TO inp'HIGH LOOP
                          temp1(i) := inp(i-1);
                 END LOOP;
        END IF;
```



```
---- 2nd shifter ----
        IF (shift(1)='0') THEN
                 temp2 := temp1;
        ELSE
                 FOR i IN 0 TO 1 LOOP
                          temp2(i) := '0';
                 END LOOP;
                 FOR i IN 2 TO inp'HIGH LOOP
                          temp2(i) := temp1(i-2);
                 END LOOP;
        END IF;
---- 3rd shifter ----
        IF (shift(2)='0') THEN
                 outp <= temp2;
        ELSE
                 FOR i IN 0 TO 3 LOOP
                          outp(i) <= '0';
                 END LOOP;
                 FOR i IN 4 TO inp'HIGH LOOP
                          outp(i) \le temp2(i-4);
                 END LOOP;
        END IF;
END PROCESS;
end Behavioral;
```







### Desplazamientos circulares

Los bits del origen que sobran por un lado, se insertan en el destino por el otro, matemáticamente:

$$o_i = d_{(n+i+k) \mod n}$$
 para i=1,2, ... n-1





Desplazamiento circular a la derecha



Desplazamiento circular a la izquierda



### Operaciones aritméticas: Suma y resta

- La suma se utiliza como operación primitiva para procesar muchas funciones aritméticas, por lo tanto merece una atención particular.
- El algoritmo clásico de lápiz y papel implica un procesado secuencial de los acarreos, cada uno de ellos depende de los que le preceden.
- El tiempo de procesado, por lo tanto, depende del número n de dígitos del operando.
- Para minimizar el tiempo de procesado, vamos a ver varios métodos.



#### Suma de números naturales

#### Algoritmo básico:

Considerando la base de representación **B** de dos números de **n** dígitos

$$x = x_{n-1} \cdot B^{n-1} + x_{n-2} \cdot B^{n-2} + \dots + x_0 \cdot B^0$$
$$y = y_{n-1} \cdot B^{n-1} + y_{n-2} \cdot B^{n-2} + \dots + y_0 \cdot B^0$$

la suma  $z = x + y + c_{in}$  procesa n+1 dígitos

Algoritmo 1 lápiz y papel

```
c(0)=c_in
for i in 0 to n-1 loop
  if x(i)+y(i)+c(i)>B-1 then
     c(i+1):=1;
  else
     c(i+1):=0;
  end if;
  z(i):=(x(i)+y(i)+c(i)) mod B;
end loop;
z(n):=c(n)
```

Como c(i+1) es una función de c(i) el tiempo de ejecución del algoritmo 1, es proporcional a *n* 



### Sumador con propagación de acarreo

- La estructura para sumar dos números de n bits es colocar en cascada n sumadores completos.
- El acarreo se propaga de una etapa a la siguiente: Sumador con Propagación de Acarreo (Carry Propagated Adder)







### Sumador completo (F.A.)



| Entradas |   |     |  |  |  |
|----------|---|-----|--|--|--|
| Α        | В | Cin |  |  |  |
| 0        | 0 | 0   |  |  |  |
| 0        | 0 | 1   |  |  |  |
| 0        | 1 | 0   |  |  |  |
| 0        | 1 | 1   |  |  |  |
| 1        | 0 | 0   |  |  |  |
| 1        | 0 | 1   |  |  |  |
| 1        | 1 | 0   |  |  |  |
| 1        | 1 | 1   |  |  |  |

| Salidas |      |  |  |
|---------|------|--|--|
| S       | Cout |  |  |
| 0       | 0    |  |  |
| 1       | 0    |  |  |
| 1       | 0    |  |  |
| 0       | 1    |  |  |
| 1       | 0    |  |  |
| 0       | 1    |  |  |
| 0       | 1    |  |  |
| 1       | 1    |  |  |

$$S = A \oplus B \oplus Cin$$

$$Cout = A \cdot B + A \cdot Cin + B \cdot Cin$$

Unidad Aritmético Lógica



## Sumador con propagación de acarreo

Si llamamos C<sub>FA</sub> y T<sub>FA</sub> al coste y tiempo computacional de un FA (sumador completo), para un sumador de *n* bits tendremos:

$$C_{\text{sumador\_básico}}(n) = n \cdot C_{\text{FA}}$$
 $T_{\text{sumador\_básico}}(n) = n \cdot T_{\text{FA}}$ 

El comportamiento del sumador de acarreo propagado será:

```
c(0)=c_in
for i in 0 to n-1 generate
c(i+1)=x(i) \cdot y(i) + x(i) \cdot c(i) + y(i) \cdot c(i)
z(i)=x(i) \text{ xor } y(i) \text{ xor } c(i)
end generate;
z(n):=c(n)
```







Se puede acelerar el proceso de suma si se tiene en cuenta que se puede obtener acarreo de acuerdo a dos condiciones

Señal generadora de acarreo : 
$$G_i = a_{i+}b_i$$

Señal propagadora de acarreo: 
$$P_i = a_i \cdot b_i$$

El acarreo de la etapa i: 
$$C_i = G_i + P_i \cdot C_{i-1}$$

Si particularizamos para 4 bits:

$$C_0 = G_0 + P_0 \cdot C_{-1}$$

$$C_1 = G_1 + P_1 \cdot C_0$$

$$C_2 = G_2 + P_2 \cdot C_1$$

$$C_3 = G_3 + P_3 \cdot C_2$$



Desarrollando las expresiones y poniéndolas en función de C-1:

$$C_{0} = G_{0} + P_{0} \cdot C_{-1}$$

$$C_{1} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{-1}$$

$$C_{2} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{-1}$$

$$C_{3} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{-1}$$

- Todos los acarreos dependen de ai y bi.
- Estas expresiones se resuelven como suma de productos.
- Tres niveles de puertas lógicas para obtener cada uno de los acarreos.



Por lo tanto el acarreo siguiente se puede calcular como

```
if p[x(i),y(i)]=1 then
    c(i+1):=c(i);
else
    c(i+1):=g[x(i),y(i)];
end if;
```



```
-- cálculo de generación y propagación
for i in 0 to n-1 loop
       q(i) := q[x(i), y(i)];
       p(i) := p[x(i), y(i)];
end loop;
-- cálculo del acarreo
c(0)=c in
for i in 0 to n-1 loop
  if p(i)=1 then
    c(i+1) := c(i);
  else
    c(i+1) := q(i);
  end if;
end loop;
-- cálculo de la suma
for i in 0 to n-1 loop
 z(i) := (x(i) + y(i) + c(i)) \mod B;
end loop;
z(n) := c(n)
```

Algoritmo 2 acarreo anticipado







El bloque carry chain calcula el acarreo siguiente, es decir,

```
if p(i)=1 then
      c(i+1)= c(i);
else
      c(i+1)= g(i);
end if;
```







### **Ejercicio propuesto**

 Modelar en VHDL utilizando COMPONENT una ALU que cumple las siguientes especificaciones:



| Ope  | Operación              | Función             |
|------|------------------------|---------------------|
| 0000 | Resultado <= A         | Transparente a A    |
| 0001 | Resultado <= A +1      | Incrementa A        |
| 0010 | Resultado <= A -1      | Decrementa A        |
| 0011 | Resultado <= B         | Transparente a B    |
| 0100 | Resultado <= B+1       | Incrementa B        |
| 0101 | Resultado <= B-1       | Decrementa B        |
| 0110 | Resultado <= A –B      | Resta               |
| 0111 | Resultado <= A +B +Cin | Suma A y B y el Cin |
| 1000 | Resultado <= NOT A     | C1(A)               |
| 1001 | Resultado <= NOT B     | C1(B)               |
| 1010 | Resultado <= A AND B   | AND                 |
| 1010 | Resultado <= A OR B    | OR                  |
| 1100 | Resultado <= A NAND B  | NAND                |
| 1101 | Resultado <= A NOR B   | NOR                 |
| 1110 | Resultado <= A XOR B   | XOR                 |
| 1111 | Resultado <= A XNOR B  | XNOR                |







### La multiplicación

- Algoritmo de suma y desplazamiento
- Si multiplicando de n bits y multiplicador de m bits, entonces el producto tendrá una longitud de n+m bits.
- Multiplicación binaria: sencilla ya que hay que multiplicar por 1 o por 0.

| Multiplicando |   |   |   | 5 | 3 | 2 |  |
|---------------|---|---|---|---|---|---|--|
| Multiplicador |   |   |   | 4 | 3 | 1 |  |
|               |   |   |   | 5 | 3 | 2 |  |
|               |   | 1 | 5 | 9 | 6 |   |  |
|               | 2 | 1 | 2 | 8 |   |   |  |
| Producto      | 2 | 2 | 9 | 2 | 9 | 2 |  |



#### Repetir n veces

Si el bit 0 del registro producto=1 entonces

Sumar el multiplicando a la mitad izquierda del producto y colocar el resultado en la mitad izquierda del producto.

Versión final

Fin entonces

Desplazar 1 bit a la derecha el registro producto

#### Fin repetir





























# Multiplicación binaria sin signo





# Multiplicación rápida





## Multiplicación binaria con signo

- Supongamos números expresados en Ca2
- **2** A = 1010 y B = 0011
- Apliquemos algoritmo de sumas y desplazamientos

|   |   |   |   | 1 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   |   | X | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 |   |
| 0 | 0 | 0 | 0 | 0 | 0 |   |   |
| 0 | 0 | 0 | 0 | 0 |   |   |   |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |

Versión correcta



### Algoritmo de Booth

- Supongamos Multiplicando = 2 y Multiplicador = 7 (en binario 0010 x 0111)
- Booth expresó 7 = 8 1 y sustituyo el multiplicador por esta descomposición: 0111 = 1000 0001 = +100-1

Multiplicando
Multiplicador según A. Booth
Restamos el multiplicadodo
2 despl. (2 ceros en el multiplicador)
Sumamos el multiplicando



# Algoritmo de Booth

| Bit actual | Bit a la izquierda | Sustitución                     |
|------------|--------------------|---------------------------------|
| 0          | 0                  | 0 (no hay transición)           |
| 0          | 1                  | -1 (transición hacia negativoo) |
| 1          | 0                  | +1 (transición hacia positivo)  |
| 1          | 1                  | 0 (no hay transición)           |

Ejemplo: Multiplicando = 11101110 y Multiplicador = 01111010 Recodificación del multiplicador según Booth = +1000-1+1-10

|   |   |   |   |   |   |   |   | 1  | 1 | 1 | 0 | 1  | 1  | 1  | 0 |
|---|---|---|---|---|---|---|---|----|---|---|---|----|----|----|---|
|   |   |   |   |   |   |   | Χ | +1 | 0 | 0 | 0 | -1 | +1 | -1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | 0  | 0  | 0  | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 1 | 0 | 0  | 1  | 0  |   |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 0 | 1 | 1 | 1  | 0  |    |   |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 1 | 0  |    |    |   |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0  | 0 | 0 | 0 |    |    |    |   |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0  | 1 | 1 | 0 | 1  | 1  | 0  | 0 |



### Algoritmo de Booth

Inicialmente  $q_{-1}$ =0
Repetir n veces  $Si \ q_0 = 1 \ y \ q_{-1} = 0 \ entonces$   $Producto_h = producto_h - Multiplicando$   $Si \ q_0 = 0 \ y \ q_{-1}$ =1 entonces  $Producto_h = Producto_h + Multiplicando$   $Desplazamiento aritmético a la derecha de Producto y q_{-1}$ Fin repetir.





#### La división

La división la podemos expresar como:

#### Dividendo = Cociente x Divisor + Resto

- El resto es más pequeño que el divisor. Hay que reservar el doble de espacio para el dividendo.
- Supondemos operandos positivos.

Dividendo 
$$\rightarrow$$
 10010011  $\boxed{1011}$   $\leftarrow$  Divisor 10010  $\boxed{01101}$   $\leftarrow$  Cociente  $\boxed{1011}$   $\boxed{001110}$   $\boxed{1011}$   $\boxed{001111}$   $\boxed{1011}$   $\boxed{0100}$   $\leftarrow$  Resto



## Algoritmo con restauración

```
Repetir n veces
      Desplazar el Dividendo a la izquierda
      Dividendo<sub>h</sub> = Dividendo<sub>h</sub> - Divisor
      Si Dividendo<sub>h</sub> < 0 entonces (no cabe)
             q_0 = 0
             Dividendo_h = Dividendo_h + Divisor (restaurar)
      Sino
             q_0 = 1
      Fin Si
                                            Divisor
Fin Repetir
                                                 n bits
                                                       Suma/Resta
                                      ALU
                                                        Despl. izquierda
                                                                             Control
                                    Dividendo
                                                               |\mathbf{q}_0|
                                                     Resto
                                    Cociente
                                              2n bits
```



# Algoritmo con restauración

| Dividendo          | Divisor | Acción                                              | Iteración |
|--------------------|---------|-----------------------------------------------------|-----------|
| 0101 0011          | 0110    | Valores iniciales                                   | 0         |
| 1010 011_          | 0110    | Desplazar un bit a izquierda                        | 1         |
| 0100 011_          | 0110    | Restar                                              | 1         |
| 0100 011 <b>1</b>  | 0110    | Dividendo <sub>h</sub> > $0 \Rightarrow q_0 = 1$    | 1         |
| 1000 11 <b>1</b> _ | 0110    | Desplazar un bit a izquierda                        | 2         |
| 0010 11 <b>1</b> _ | 0110    | Dividendo <sub>h</sub> - Divisor (Restar)           | 2         |
| 0010 11 <b>11</b>  | 0110    | Dividendo <sub>h</sub> > $0 \Rightarrow q_0 = 1$    | 2         |
| 0101 1 <b>11</b> _ | 0110    | Desplazar un bit a izquierda                        | 3         |
| 1111 1 <b>11</b> _ | 0110    | Dividendo <sub>h</sub> - Divisor (Restar)           | 3         |
| 1111 1 <b>110</b>  | 0110    | Dividendo <sub>h</sub> $\leq 0 \Rightarrow q_0 = 0$ | 3         |
| 0101 1 <b>110</b>  | 0110    | Dividendo <sub>h</sub> + Divisor (Restaurar)        | 3         |
| 1011 <b>110</b> _  | 0110    | Desplazar un bit a izquierda                        | 4         |
| 0101 <b>110</b> _  | 0110    | Dividendo <sub>h</sub> - Divisor (Restar)           | 4         |
| 0101 <b>1101</b>   | 0110    | Dividendo <sub>h</sub> > $0 \Rightarrow q_0 = 1$    | 4         |



Resto Cociente



# Algoritmo sin restauración

```
Dividendo_h = Dividendo_h - Divisor
Repetir n veces
      Si Dividendo<sub>h</sub> < 0 entonces
      Desplazar el Dividendo a la izquierda
      Dividendo_h = Dividendo_h + Divisor
      Sino
            Desplazar el Dividendo a la izquierda
            Dividendo_h = Dividendo_h - Divisor
      Fin Si
      Si Dividendo<sub>h</sub> < 0 entonces
            q_0=0
      Sino
                                                        Divisor
            q_0 = 1
      Fin Si
                                                            n bits
Fin Repetir
```



Control )

Suma/Resta

Despl. izquierda

 $|\mathbf{q}_0|$ 

Resto

2n bits

**ALU** 

Dividendo

Cociente



# Algoritmo sin restauración

| Dividendo          | Divisor | Acción                                           | Iteración |
|--------------------|---------|--------------------------------------------------|-----------|
| 0000 0111          | 0010    | Valores iniciales                                | 0         |
| 1110 0111          | 0010    | Dividendo <sub>h</sub> - Divisor                 | 0         |
| 1100 111_          | 0010    | Dividendo <sub>h</sub> < 0 ⇒ Desplazar Izda      | 1         |
| 1110 111_          | 0010    | Dividendo <sub>h</sub> + Divisor                 | 1         |
| 1110 111 <b>0</b>  | 0010    | Dividendo <sub>h</sub> < $0 \Rightarrow q_0 = 0$ | 1         |
| 1101 11 <b>0</b> _ | 0010    | Dividendo <sub>h</sub> < 0 ⇒ Desplazar Izda      | 2         |
| 1111 11 <b>0</b> _ | 0010    | Dividendo <sub>h</sub> + Divisor                 | 2         |
| 1111 1 <b>100</b>  | 0010    | Dividendo <sub>h</sub> < $0 \Rightarrow q_0 = 0$ | 2         |
| 1111 1 <b>00</b> _ | 0010    | Dividendo <sub>h</sub> < 0 ⇒ Desplazar Izda      | 3         |
| 0001 1 <b>00</b> _ | 0010    | Dividendo <sub>h</sub> + Divisor                 | 3         |
| 0001 1 <b>001</b>  | 0010    | Dividendo <sub>h</sub> >= 0 $q_0$ = 1            | 3         |
| 0011 <b>001</b> _  | 0010    | Dividendo <sub>h</sub> > 0 ⇒ Desplazar Izda      | 4         |
| 0001 <b>001</b> _  | 0010    | Dividendo <sub>h</sub> - Divisor                 | 4         |
| 0001 <b>0011</b>   | 0010    | Dividendo <sub>h</sub> > $0 \Rightarrow q_0 = 1$ | 4         |



Resto Cociente





#### **Conclusiones**

#### Sumadores

- Problemática temporal de los Sumadores con Propagación de Acarreo (CPA), especialmente si n elevado.
- Los Sumadores con anticipación de acarreo (CLA) mejoran el tiempo de respuesta de los sumadores.

#### Multiplicación

- Problemática de la multiplicación de números con signo.
- El algoritmo de Booth permite multiplicar números en Ca2 y en algunos casos reduce el números de operaciones si aparecen cadenas de 1's o 0's en el multiplicador.

#### La División

 Algoritmo para la división con restauración para números positivos. Si números negativos, entonces tratamiento previo del signo, y en función de éste se obtiene el signo del resultado.





#### **Coma flotante**

Representación para números fraccionarios

Coma fija 1234,567

Logarítmica log 123,456 = 2,0915122

Coma flotante 1,234566 x 10<sup>3</sup>

Otras

Ventajas de estandarizar una representación determinada

- Posibilidad de disponer de bibliotecas de rutinas aritméticas
- Técnicas de implementación en hardware de alto rendimiento
- Construcción de aceleradores aritméticos estándar, etc.
- En la actualidad la industria de los computadores está convergiendo hacia el formato del estándar 754-1985 del IEEE.



#### Formatos

Simple precisión (32 bits)

| 1 bit | 8 bits    | 23 bits |
|-------|-----------|---------|
| signo | exponente | mantisa |

Doble precisión (64 bits)

| 1 bit | 11 bits   | 52 bits |
|-------|-----------|---------|
| signo | exponente | mantisa |



- Base del exponente 2
- Exponente representado en exceso 2<sup>q-1</sup>-1
  - Exceso a 127 en simple precisión
  - Exceso a 1023 en doble precisión
- Mantisa en valor absoluto; fraccionaria y normalizada con un uno implícito a la izquierda de la coma decimal.
  - Mantisa de la forma 1,XXXXXX
  - El primer uno nunca estará representado
  - Valores posibles entre 1,00000..... y 1,11111....
- S es el signo de la mantisa
- Números
  - $(-1)^S \times 1$ ,  $M \times 2^{E-127}$  simple precisión
  - (-1)<sup>S</sup> x 1,M x 2<sup>E-1023</sup> doble precisión





Casos especiales

E M Valores

| 2 <sup>q-1</sup> -1 | ≠0 | NaN (no un Número)          |
|---------------------|----|-----------------------------|
| 2 <sup>q-1</sup> -1 | 0  | +∞ y -∞ según el signo de S |
| 0                   | 0  | Cero                        |
| 0                   | ≠0 | Números desnormalizados     |

- NaN resultado de operaciones tales como 0/0,
- ❷ El valor cero tiene dos representaciones +0 y −0.



#### Formato desnormalizado

- 0,M x 2<sup>-126</sup> simple precisión
- 0,M x 2<sup>-1022</sup> doble precisión



-1.1...11 x 2<sup>127</sup>

 $-1.0...01 \times 2^{-127} \pm 0 \qquad 1.0...01 \times 2^{-127}$ 

1,1...11 x 2 <sup>127</sup>

#### Sin números desnormalizados

-0,1...11 x 
$$2^{-126}$$
 -0,0...01 x  $2^{-126}$  0,0...01 x  $2^{-126}$  0,1...11 x  $2^{-126}$ 



#### Con números desnormalizados



### Operaciones en coma flotante

- Operaciones aditivas
  - Reglas de Suma/Resta
    - Seleccionar el número de menor exponente y desplazar su mantisa hacia la derecha tantas posiciones como la diferencia de los exponentes en valor absoluto.
    - 2. Igualar el exponente del resultado al exponente mayor.
    - 3. Operar las mantisas (según operación seleccionada y signos de ambos números) y obtener el resultado en signo y valor absoluto.
    - 4. Normalizar el resultado y redondear la mantisa al número de bits apropiado.





#### Circuito Sumador/Restador





## Multiplicación y división

#### Reglas de Multiplicación

- 1. Sumar los exponentes y restar el exceso para obtener el exponente del resultado
- 2. Multiplicar las mantisas para determinar la mantisa del resultado
- 3. Procesar los signos
- 4. Normaliza y redondear si es necesario



# Multiplicación y división

- Reglas de División
  - 1. Restar los exponentes y sumar el exceso para obtener el exponente resultado
  - 2. Dividir las mantisas para determinar la mantisa del resultado.
  - 3. Procesar los signos.
  - 4. Normalizar y redondear si es necesario.
- Procesamiento de los signos

| S <sub>A</sub>         | $S_B$ | S <sub>R</sub> |  |  |
|------------------------|-------|----------------|--|--|
| 0                      | 0     | 0              |  |  |
| 0                      | 1     | 1              |  |  |
| 1                      | 0     | 1              |  |  |
| 1                      | 1     | 1              |  |  |
| $S_R = S_A \oplus S_B$ |       |                |  |  |



### Circuito Multiplicador / Divisor





#### Redondeo

- Las técnicas de redondeo consisten en limitar el número de bits al disponible en el sistema de representación utilizado.
- Dada una cantidad C, y un sistema de representación que permite representar los valores V<sub>0</sub>, V<sub>1</sub>, ... V<sub>r</sub>.
- El redondeo consiste en asignar a C una representación R que se le aproxime.
  - Si  $V_{i-1}$  < C <  $V_i$  el redondeo consiste en asignar  $V_{i-1}$  o  $V_i$  como representación R de la cantidad C
- 🤏 El error absoluto se define como: ε =|R C|
- La resolución se define como: ∆ = |V<sub>i</sub> V<sub>i-1</sub>|
- Técnicas de redondeo
  - Truncamiento
  - Redondeo propiamente dicho
  - Bit menos significativo forzado a "uno"



#### **Truncamiento**

- Elimina los bits a la derecha que no caben en la representación.
  - Es facil de implementar.
  - El error del resultado es siempre por defecto.

Unidad Aritmético Lógica

El error puede crecer rápidamente

© 2008 A.G.O. All Rights Reserved



#### Redondeo al más próximo

Toma el valor más próximo al que se quiere representar

Si 
$$|V_{i-1} - C| < |V_i - C|$$
 entonces  
 $R \equiv V_{i-1}$ 

si no

$$R \equiv V_i$$

Ejemplo: representación con 8 bits de punto implícito

$$C = 0.01100000$$
  $01 \equiv 0.375976563$   $V_{i-1}=0.01100000$   $\equiv 0.375$   $V_i = 0.011000001$   $\equiv 0.37890625$   $|V_{i-1} - C| = 0.000976563$   $|V_i - C| = 0.00390625$   $R = 0.011000000$ 



#### Bit menos significativo forzado a "uno"

- Consiste en truncar y forzar el bit menos significativo a "uno"
  - Es muy rápido, tanto como el truncamiento
  - Sus errores son tanto por defecto como por exceso.