1-Error Analysis

2-Solution of non-linear equation

Example 2 Show that $x^5 - 2x^3 + 3x^2 - 1 = 0$ has a solution in the interval [0, 1].

Solution Consider the function defined by $f(x) = x^5 - 2x^3 + 3x^2 - 1$. The function f is continuous on [0, 1]. In addition,

$$f(0) = -1 < 0$$
 and $0 < 1 = f(1)$.

The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which $x^5 - 2x^3 + 3x^2 - 1 = 0$.

Decimal Machine Numbers

normalized decimal floating-point form

$$\pm 0.d_1d_2...d_k \times 10^n$$
, $1 \le d_1 \le 9$, and $0 \le d_i \le 9$,

for each i = 2, ..., k. Numbers of this form are called k-digit decimal machine numbers.

$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}...\times 10^n$$
.

$$fl(y) = 0.d_1d_2...d_k \times 10^n$$
. Chopping

Rounding

For rounding, when $d_{k+1} \ge 5$, we add 1 to d_k to obtain fl(y);

 $d_{k+1} < 5$, we simply chop off all but the first k digits; so we round down.

Significant digits are those digits that can be used with confidence.

Non zero numbers are always significant

```
1.23 45.6 6,7263
```

❖ In between zeros are always significant

```
1.005 70206
```

! Leading zeros are never significant

```
0.0055 0.0302
```

❖ Trailing zeros are some time significant

70,000 70,000. 1,030 1030.0000

Accuracy and Precision

- Accuracy is related to the closeness to the true value.
- Precision is related to the closeness to other estimated values.

Rounding and Chopping

Rounding: Replace the number by the nearest machine number. OR

its impossible to represent all real numbers exactly on machine with finite

Chopping: Throw all or drop the extra digits.

Error: is difference between an approximation of number used in computation and its exact value

OR Error = True value – approximate value

```
• \sqrt{2} = 1.414213562373095048801168872
```

ERROR Analysis:

Truncation Error:

are when an iterative method is terminatedOR mathematical procedure is approximated and approximate solution differs from exact solution

• Discretization Error:

are committed when a solution of discrete problem does not coincide with solution of continuous problem

Error in CM — True Error

Can be computed if the true value is known:

Absolute Error:

$$AE = |$$
 true value – approximation |

Absolute Relative Error:

$$ARE = \frac{\text{true value - approximation}}{\text{true value}}$$

Error in CM — Estimated Error

When the true value is not known:

Estimated Absolute Error

$$AE = |$$
 current estimate $-$ previous estimate $|$

Estimated Absolute Relative Error

$$ARE = \frac{|\text{current estimate} - \text{previous estimate}|}{\text{current estimate}}$$

Example 1 Determine the five-digit (a) chopping and (b) rounding values of the irrational number π .

Definition 1.15 Suppose that p^* is an approximation to p. The absolute error is $|p-p^*|$, and the relative error is $\frac{|p-p^*|}{|p|}$, provided that $p \neq 0$.

Example 2 Determine the absolute and relative errors when approximating p by p^* when

- (a) $p = 0.3000 \times 10^1$ and $p^* = 0.3100 \times 10^1$;
- **(b)** $p = 0.3000 \times 10^{-3}$ and $p^* = 0.3100 \times 10^{-3}$;
- (c) $p = 0.3000 \times 10^4$ and $p^* = 0.3100 \times 10^4$.

Example 3 Suppose that $x = \frac{5}{7}$ and $y = \frac{1}{3}$. Use five-digit chopping for calculating x + y, x - y, $x \times y$, and $x \div y$.

Solution Note that

Finite-Digit Arithmetic

$$x = \frac{5}{7} = 0.\overline{714285}$$
 and $y = \frac{1}{3} = 0.\overline{3}$

implies that the five-digit chopping values of x and y are

$$fl(x) = 0.71428 \times 10^0$$
 and $fl(y) = 0.33333 \times 10^0$.

Thus

$$x \oplus y = fl(fl(x) + fl(y)) = fl(0.71428 \times 10^{0} + 0.33333 \times 10^{0})$$

= $fl(1.04761 \times 10^{0}) = 0.10476 \times 10^{1}$.

The true value is $x + y = \frac{5}{7} + \frac{1}{3} = \frac{22}{21}$, so we have

Absolute Error =
$$\left| \frac{22}{21} - 0.10476 \times 10^{1} \right| = 0.190 \times 10^{-4}$$

and

Relative Error =
$$\left| \frac{0.190 \times 10^{-4}}{22/21} \right| = 0.182 \times 10^{-4}$$
.

$$x \oplus y = fl(fl(x) + fl(y)),$$

$$x \ominus y = fl(fl(x) - fl(y)),$$

Table 1.2

Operation	Result	Actual value	Absolute error	Relative error
$x \oplus y$	0.10476×10^{1}	22/21	0.190×10^{-4}	0.182×10^{-4}
$x \ominus y$	0.38095×10^{0}	8/21	0.238×10^{-5}	0.625×10^{-5}
$x \otimes y$	0.23809×10^{0}	5/21	0.524×10^{-5}	0.220×10^{-4}
$x \oplus y$	0.21428×10^{1}	15/7	0.571×10^{-4}	0.267×10^{-4}

The maximum relative error for the operations in Example 3 is 0.267×10^{-4} ,

Example 5 Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to approximate p - q and determine the absolute and relative errors using (a) rounding and (b) chopping.

Loss of significance:

occurs in numerical calculations when too many significant digits cancel

The quadratic formula states that the roots of $ax^2 + bx + c = 0$, when $a \neq 0$, are

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. (1.1)

which simplifies to an alternate quadratic formula

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}. (1.2)$$

The rationalization technique can also be applied to give the following alternative quadratic formula for x_2 :

$$x_2 = \frac{-2c}{b - \sqrt{b^2 - 4ac}}. ag{1.3}$$

Activity

(Taylor's Theorem)

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

- 7. Let $f(x) = x^3$.
 - a. Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$.
 - **b.** Find $R_2(0.5)$ and the actual error in using $P_2(0.5)$ to approximate f(0.5).
 - c. Repeat part (a) using $x_0 = 1$.
 - **d.** Repeat part (b) using the polynomial from part (c).
- 8. Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$. Approximate $\sqrt{0.5}$, $\sqrt{0.75}$, $\sqrt{1.25}$, and $\sqrt{1.5}$ using $P_3(x)$, and find the actual errors.
- 9. Find the second Taylor polynomial $P_2(x)$ for the function $f(x) = e^x \cos x$ about $x_0 = 0$.
 - a. Use $P_2(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) P_2(0.5)|$ using the error formula, and compare it to the actual error.

Activity

a.
$$p = \pi, p^* = 22/7$$

c.
$$p = e, p^* = 2.718$$

e.
$$p = e^{10}, p^* = 22000$$

b.
$$p = \pi, p^* = 3.1416$$

d.
$$p = \sqrt{2}, p^* = 1.414$$

0.
$$p = \sqrt{2}, p^* = 1.414$$

0. $p = 10^{\pi}, p^* = 1400$

c.
$$(121 - 0.327) - 119$$

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

d.
$$(121 - 119) - 0.327$$

f. $-10\pi + 6e - \frac{3}{62}$

a.
$$\frac{1}{3}x^2 - \frac{123}{4}x + \frac{1}{6} = 0$$

b. $\frac{1}{3}x^2 + \frac{123}{4}x - \frac{1}{6} = 0$

b.
$$\frac{1}{3}x^2 + \frac{123}{4}x - \frac{1}{6} = 0$$

c.
$$1.002x^2 - 11.01x + 0.01265 = 0$$

d.
$$1.002x^2 + 11.01x + 0.01265 = 0$$

Repeat Exercise 13 using four-digit chopping arithmetic.

Nested Arithmetic

Accuracy loss due to round-off error can also be reduced by rearranging calculations, as shown in the next example.

Example 6 Evaluate $f(x) = x^3 - 6.1x^2 + 3.2x + 1.5$ at x = 4.71 using three-digit arithmetic.

Three-digit (chopping):
$$f(4.71) = ((104. - 134.) + 15.0) + 1.5 = -13.5$$
,

Three-digit (rounding):
$$f(4.71) = ((105. - 135.) + 15.1) + 1.5 = -13.4$$
.

Chopping:
$$\left| \frac{-14.263899 + 13.5}{-14.263899} \right| \approx 0.05$$
, and Rounding: $\left| \frac{-14.263899 + 13.4}{-14.263899} \right| \approx 0.06$.

Nested Arithmetic

As an alternative approach, the polynomial f(x) in Example 6 can be written in a nested manner as

$$f(x) = x^3 - 6.1x^2 + 3.2x + 1.5 = ((x - 6.1)x + 3.2)x + 1.5.$$

Using three-digit chopping arithmetic now produces

$$f(4.71) = ((4.71 - 6.1)4.71 + 3.2)4.71 + 1.5 = ((-1.39)(4.71) + 3.2)4.71 + 1.5$$
$$= (-6.54 + 3.2)4.71 + 1.5 = (-3.34)4.71 + 1.5 = -15.7 + 1.5 = -14.2.$$

Three-digit (chopping):
$$\left| \frac{-14.263899 + 14.2}{-14.263899} \right| \approx 0.0045;$$

Three-digit (rounding):
$$\left| \frac{-14.263899 + 14.3}{-14.263899} \right| \approx 0.0025.$$

Nesting has reduced the relative error for the chopping approximation to less than 10% of that obtained initially. For the rounding approximation the improvement has been even more dramatic; the error in this case has been reduced by more than 95%.

2-Solution of non linear equation in one variable

- 1-Bracketing Methods
- 2-Open Methods

Bracketing Methods:

• In bracketing methods, the method starts with an <u>interval</u> that contains the root and a procedure is used to obtain a smaller interval containing the root.

- Examples of bracketing methods:
 - Bisection method
 - False position method

Open Methods:

• In the open methods, the method starts with one or more initial guess points. In each iteration, a new guess of the root is obtained.

- Open methods are usually more efficient than bracketing methods.
- They may not converge to a root.
 - Fixed point,
 - Newton and
 - Secant are examples of open method

Bisection

To find a solution to f(x) = 0 given the continuous function f on the interval [a, b], where f(a) and f(b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.
Step 4 If $FP = 0$ or $(b - a)/2 = TOI$ then

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then
OUTPUT (p) ; (Procedure completed successfully.)
STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
 $FA = FP$
else set $b = p$. (FA is unchanged.)

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.)

STOP. Assistant Prof:Jamilusmani

Algorithm

To determine a root of f(x) = 0 that is accurate within a specified tolerance value, given values x_1 and x_2 such that $f(x_1) * f(x_2) < 0$,

Repeat

Set
$$x_3 = (x_1 + x_2)/2$$
.

If
$$f(x_3) * f(x_1) < 0$$
 Then

$$Set x_2 = x_3$$

Else Set
$$x_1 = x_3$$
 End If.

Until
$$(|x_1 - x_2|) < 2$$
 * tolerance value).

The final value of x_3 approximates the root, and it is in error by not more than $|x_1 - x_2|/2$.

Note: The method may produce a false root if f(x) is discontinuous on $[x_1, x_2]$.

Stopping criteria:

select a tolerance $\varepsilon > 0$, and construct $p_1, \dots p_N$ until

$$|p_N - p_{N-1}| < \varepsilon,$$

$$\frac{|p_N-p_{N-1}|}{|p_N|}<\varepsilon,\quad p_N\neq 0,$$

$$|f(p_N)| < \varepsilon.$$

The number of iteration required for given tolerance:

$$|p-p_n|\leq \frac{b-a}{2^n}\leq \epsilon,$$

then taking the logarithms of both sides yields

$$n \ge \frac{\log\left(\frac{b-a}{\epsilon}\right)}{\log(2)}.$$

Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

Example 1 Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

	 _		
		400	- 65
400	400		-
100		-	
		-	

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

Assistant Prof:Jamilusmani

Pros

 The method has the important property that it always converges to a solution.

Cons

- 1. It is relatively slow to converge.
- A good intermediate approximation might be inadvertently discarded.
- 3. If a function f(x) is such that it just **touches the x-axis** such as $f(x) = x^2 = 0$, it will be unable to find the lower guess a and the upper guess b such that $f(a) \cdot f(b) < 0$.

Fixed-Point Iteration

Definition 2.2 The number p is a fixed point for a given function g if g(p) = p.

Example 1 Determine any fixed points of the function $g(x) = x^2 - 2$.

Solution A fixed point p for g has the property that

$$p = g(p) = p^2 - 2$$
 which implies that $0 = p^2 - p - 2 = (p+1)(p-2)$.

so g has two fixed points, one at p = -1 and the other at p = 2.

Example 2 Show that $g(x) = (x^2 - 1)/3$ has a unique fixed point on the interval [-1, 1].

Example

Fixed Point Iteration

$$f(x) = x^2 - 2x - 3 = 0$$
 (ans: $x = 3$ or -1)

Case a:

$$x^{2} - 2x - 3 = 0$$

$$\Rightarrow x^{2} = 2x + 3$$

$$\Rightarrow x = \sqrt{2x + 3}$$

$$\Rightarrow g(x) = \sqrt{2x + 3}$$

Case b:

$$x^{2} - 2x - 3 = 0$$

$$\Rightarrow x(x - 2) - 3 = 0$$

$$\Rightarrow x = \frac{3}{x - 2}$$

$$\Rightarrow g(x) = \frac{3}{x - 2}$$

Case c:

$$\begin{vmatrix} x^2 - 2x - 3 &= 0 \\ \Rightarrow 2x = x^2 - 3 \end{vmatrix}$$
$$\Rightarrow x = \frac{x^2 - 3}{2}$$
$$\Rightarrow g(x) = \frac{x^2 - 3}{2}$$

So which one is better?

Case a

$$x_{i+1} = \sqrt{2x_i + 3}$$

$$x_{i+1} - \sqrt{2x_i} + 3$$

1.
$$x_0 = 4$$

2.
$$x_1 = 3.31662$$

3.
$$x_2 = 3.10375$$

4.
$$x_3 = 3.03439$$

5.
$$x_4 = 3.01144$$

6.
$$x_5 = 3.00381$$

Converge!

Case b

$$x_{i+1} = \frac{3}{x_i - 2}$$

1.
$$x_0 = 4$$

2.
$$x_1 = 1.5$$

3.
$$x_2 = -6$$

4.
$$x_3 = -0.375$$

5.
$$x_4 = -1.263158$$

6.
$$x_5 = -0.919355$$

7.
$$x_6 = -1.02762$$

8.
$$x_7 = -0.990876$$

9.
$$x_8 = -1.00305$$

Case c

$$x_{i+1} = \frac{x_i^2 - 3}{2}$$

1.
$$x_0 = 4$$

2.
$$x_1 = 6.5$$

3.
$$x_2 = 19.625$$

4.
$$x_3 = 191.070$$

Diverge!

Iteration Algorithm with the Form x = g(x)

To determine a root of f(x) = 0, given a value x_1 reasonably close to the root,

Rearrange the equation to an equivalent form x = g(x).

Repeat

Set
$$x_2 = x_1$$
.
Set $x_1 = g(x_1)$
Until $|x_1 - x_2|$ < tolerance value

Note: The method may converge to a root different from the expected one, or it may diverge. Different rearrangements will converge at different rates.

Fixed-Point Iteration

To find a solution to p = g(p) given an initial approximation p_0 :

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = g(p_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_0| < TOL$$
 then
OUTPUT (p) ; (The procedure was successful.)
STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1}), n \ge 1,$$

converges to the unique fixed point p in [a, b].

Newton's

To find a solution to f(x) = 0 given an initial approximation p_0 :

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

```
Step 1 Set i = 1.
```

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = p_0 - f(p_0)/f'(p_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_0| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = N_0$); (The procedure was unsuccessful.) STOP.

Newton's Method

To determine a root of f(x) = 0, given x_0 reasonably close to the root,

```
Compute f(x_0), f'(x_0).

If (f(x_0) \neq 0) And (f'(x_0) \neq 0) Then

Repeat

Set x_1 = x_0.

Set x_0 = x_0 - f(x_0)/f'(x_0).

Until (|x_1 - x_0| < \text{tolerance value 1}) Or |f(x_0)| < \text{tolerance value 2}).

End If.
```

Note: The method may converge to a root different from the expected one or diverge if the starting value is not close enough to the root.

$$\tan \theta = f'(x_0) = \frac{f(x_0)}{r_0 - x_1},$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)},$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, \dots.$$

Example 1 Consider the function $f(x) = \cos x - x = 0$. Approximate a root of f using (a) a fixed-point method, and (b) Newton's Method

Table 2.3

n	p_n
0	0.7853981635
1	0.7071067810
2	0.7602445972
3	0.7246674808
4	0.7487198858
5	0.7325608446
6	0.7434642113
7	0.7361282565

Table 2.4

	Newton's Method
n	p_n
0	0.7853981635
1	0.7395361337
2	0.7390851781
3	0.7390851332
4	0.7390851332

Comparison b/w Secant and Newton

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad \text{for } n \ge 1.$$

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}.$$

An Algorithm for the Secant Method

To determine a root of f(x) = 0, given two values, x_0 and x_1 , that are near the root,

If
$$|f(x_0)| < |f(x_1)|$$
 Then
Swap x_0 with x_1 .
Repeat
$$Set x_2 = x_1 - f(x_1) * \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$
Set $x_0 = x_1$.
Set $x_1 = x_2$.
Until $|f(x_2)| <$ tolerance value.

Note: If f(x) is not continuous, the method may fail.

The Secant Method

Example 2 Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

	Newton
n	p_n
0	0.7853981635
1	0.7395361337
2	0.7390851781
3	0.7390851332
4	0.7390851332

Secant				
n	p_n			
0	0.5			
1	0.7853981635			
2	0.7363841388			
3	0.7390581392			
4	0.7390851493			
5	0.7390851332			

Table 2.5

An Algorithm for the Method of False Position (regula falsi)

To determine a root of f(x) = 0, given two values of x_0 and x_1 that bracket a root: that is, $f(x_0)$ and $f(x_1)$ are of opposite sign,

Repeat

Set
$$x_2 = x_1 - f(x_1) * \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

If $f(x_2)$ is of opposite sign to $f(x_0)$ Then Set $x_1 = x_2$
Else Set $x_0 = x_2$
End If.
Until $|f(x_2)| <$ tolerance value.

The Method of False Position

Example 3 Use the method of False Position to find a solution to x = cos x, and compare the approximations with those given in Example 1 which applied fixed-point iteration and Newton's method, and to those found in Example 2 which applied the Secant method.

_		470 4	
	110	71	4
	8 I W	Sec. 1	u

	False Position	Secant	Newton
n	p_n	p_n	p_n
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		

Comparison of methods, $f(x) = 3x + \sin(x) - e^x = 0$, $x_0 = 0$, $x_1 = 1$

	Interval halving		False position		Secant method	
Iteration	x	f(x)	x	f(x)	х	f(x)
1	0.5	0.330704	0.470990	0.265160	0.470990	0.265160
2	0.25	-0.286621	0.372277	0.029533	0.372277	0.029533
3	0.375	0.036281	0.361598	$2.94 * 10^{-3}$	0.359904	$-1.29*10^{-3}$
4	0.3125	-0.121899	0.360538	$2.90*10^{-4}$	0.360424	$5.55 * 10^{-6}$
5	0.34375	-0.041956	0.360433	$2.93 * 10^{-5}$	0.360422	$3.55 * 10^{-7}$
Error after 5 iterations	0.0	01667	-1.1	7 * 10 ⁻⁵	<-	1 * 10 ⁻⁷

Features of Bisection:

- √ Type closed bracket
- ✓ No. of initial guesses 2
- ✓ Convergence linear
- ✓ Rate of convergence slow but steady
- ✓ Accuracy good
- ✓ Programming effort easy
- ✓ Approach middle point

Features of Reguli false:

- ✓ No. of initial guesses 2
- √ Type closed bracket
- ✓ Convergence linear
- ✓ Rate of convergence slow
- ✓ Accuracy good
- ✓ Approach interpolation
- ✓ Programming effort easy

Features of Newton Raphson:

- ✓ Type open bracket
- ✓ No. of initial guesses 1
- ✓ Convergence quadratic
- ✓ Rate of convergence faster
- ✓ Accuracy good
- ✓ Programming effort easy
- ✓ Approach Taylor's series

Futures of Secant Method:

- ✓ No. of initial guesses 2
- ✓ Type open bracket
- ✓ Rate of convergence faster
- ✓ Convergence super linear
- ✓ Accuracy good
- ✓ Approach interpolation
- ✓ Programming effort tedious

Summary

Method	Pros	Cons
Bisection	 Easy, Reliable, Convergent One function evaluation per iteration No knowledge of derivative is needed 	SlowNeeds an interval [a,b] containing the root, i.e., f(a)f(b)<0
Newton	- Fast (if near the root)- Two function evaluations per iteration	 May diverge Needs derivative and an initial guess x₀ such that f'(x₀) is nonzero
Secant	 Fast (slower than Newton) One function evaluation per iteration No knowledge of derivative is needed 	- May diverge - Needs two initial points guess x ₀ , x ₁ such that f(x ₀)- f(x ₁) is nonzero