1.7 Estimation and Prediction in SLR

The LS line can be used to obtain values of the response (Y^*) for given values of the predictor $(X = x^*)$. There are **two variants** of this problem⁸:

- Estimation: Estimation of the *mean response* at x^* , i.e. $\mathbb{E}(Y|X=x^*)$. This is equivalent to estimating: $\beta_0+\beta_1x^*$
- **Prediction**: Prediction of an outcome of random variable Y^\star at a given value x^\star , where

$$Y^{\star} \sim ~~~ (eta_0 + eta_1 x^{\star}, \sigma^2)$$

The fitted value (or point estimate) for estimation and prediction is the same:

$$\hat{eta}_0 + \hat{eta}_1 x^{\star}.$$

However, the accuracy for estimation and the one for prediction is different. By "accuracy", we mean the expected value of the squared difference between the point estimate and the target.

1.7.1 Estimation of the Mean Response

For **estimation**, the target is $\beta_0 + \beta_1 x^*$:

$$\mathbb{E} \ \hat{\beta}_{0} + \hat{\beta}_{1}x^{*} - \beta_{0} - \beta_{1}x^{*}$$

$$= Var \ \hat{\beta}_{0} + \hat{\beta}_{1}x^{*}$$

$$= Var \ \hat{\beta}_{0} + (x^{*})^{2}Var \ \hat{\beta}_{1} + 2x^{*}Cov \ \hat{\beta}_{0}, \hat{\beta}_{1}$$

$$= \sigma^{2} \ \frac{1}{n} + \frac{(x^{*} - \bar{x})^{2}}{i(x_{i} - \bar{x})^{2}}$$

$$= \sigma^{2} \ \frac{1}{n} + \frac{(x^{*} - \bar{x})^{2}}{S_{xx}} \ .$$

Recall that all our calculations are done conditionally on x^{\star} .

A confidence interval is always reported for a parameter.

Confidence Interval for $\mathbb{E}(Y^\star)$

An (1-lpha)100% Confidence Interval for the Mean Response when $x=x^\star\}$ is given by

$$\hat{eta_0}+\hat{eta_1}x^\star\pm T_{n-2}(lpha/2)\;\hat{\sigma}\;\; \overline{rac{1}{n}+rac{(x^\star-ar{x})^2}{S_{xx}}}$$

1.7.2 Prediction

For prediction, the target is $Y^\star=\beta_0+\beta_1x^\star+e^\star$, where $e^\star\sim N(0,\sigma^2)$. This new error e^\star is independent of the previous n data points, and as a result independent of $(\hat{\beta}_0,\hat{\beta}_1)$. Therefore,

$$\begin{split} & \mathbb{E}[(\hat{\beta}_{0} + \hat{\beta}_{1}x^{*} - Y^{*})^{2}] \\ & = \mathbb{E}[(\hat{\beta}_{0} + \hat{\beta}_{1}x^{*} - \beta_{0} - \beta_{1}x^{*} - e^{*})^{2}] \\ & = \mathbb{E}[(\hat{\beta}_{0} + \hat{\beta}_{1}x^{*} - \beta_{0} - \beta_{1}x^{*})^{2}] + \mathbb{E}[(e^{*})^{2}] \\ & = \sigma^{2} \ 1 + \frac{1}{n} + \frac{(x^{*} - \bar{x})^{2}}{S_{XX}} \end{split}$$

A prediction interval is reported for the value of a $\it random\ \it variable$, for example, $\it Y^{\star}$.

Prediction Interval

An (1-lpha)100% Prediction Interval for \hat{Y}^{\star} when $x=x^{\star}$ is given by

$$\hat{eta_0} + \hat{eta_1} x^\star \pm T_{n-2} (lpha/2) \; \hat{\sigma} \; \; \overline{1 + rac{1}{n} + rac{(x^\star - ar{x})^2}{S_{xx}}}$$

Remarks:

- Based upon the $Var(\hat{Y}^{\star})$, the prediction interval is wider than the interval used to estimate the mean response at fixed $x=x^{\star}$.
- ullet So far, we have assumed that the x-levels are known constants. So, all the previous results hold if:
 - f(y|x) are independent and normally distributed with mean $\beta_0+\beta_1 x$ and variance σ^2 conditionally on x.
 - $\circ \ x$ are independent with distribution $g(x_i)$ that does not depend on β_0 , β_1 , or σ^2 .

University Admissions Example (Revisited)

g. What is the predicted gpa for a student with entrance_score equal to 2.1?

As we discussed, the **point estimate** is obtained by plugging in the "x" value to the fitted regression line. (You can also check this "by hand".)

predict(admissions.lm, newdata=data.frame(entrance_score=2.1))

```
## 1
## 4.688618
```

If we want to obtain a confidence interval we write:

```
predict(admissions.lm, newdata=data.frame(entrance_score = 2.1), interval="co
## fit lwr upr
## 1 4.688618 4.462133 4.915103
```

On the other hand, if we want to obtain a prediction interval we write:

```
predict(admissions.lm, newdata=data.frame(entrance_score = 2.1), interval="pr
## fit lwr upr
## 1 4.688618 3.780076 5.597159
```

R Remark: In order for the function predict to work, you need to input a data.frame in the newdata attribute.