บทที่ 1

บทนำสู่การสร้างแบบจำลองทาง คณิตศาสตร์

"คณิตศาสตร์เอาไปใช้ประโยชน์อะไรได้?" อาจจะเป็นคำถามที่ผู้ศึกษาคณิตศาสตร์มักจะถูก ถามกันมากที่สุด นับว่าเป็นสิ่งที่สะท้อนความเป็นจริงได้ดีว่า สังคมนั้นคาดหวังว่าคณิตศาสตร์ที่ คนทั่วไปมองว่ายากและซับซ้อนจะต้องมีประโยชน์คุ้มค่าที่ศึกษาเล่าเรียน

หนังสือการสร้างแบบจำลองทางคณิตศาสตร์เบื้องต้นเล่มนี้มีเนื้อหาเกี่ยวกับ ความรู้พื้น ฐาน กระบวนการสร้างแบบจำลองทางคณิตศาสตร์ การนำไปใช้งาน ตลอดจนถึงมีการสอด แทรกปัญหาและผลกระทบจากการนำแบบจำลองทางคณิตศาสตร์ไปใช้งานจริง

โลกแห่งความเป็นจริงและโลกแห่งคณิตศาสตร์

โลกแห่งความเป็นจริง (Real World) ประกอบไปด้วยผู้คนและความสัมพันธ์ที่ซับซ้อน การที่ มนุษย์จะอยู่ร่วมกันได้อย่างสันติสุขจำเป็นที่จะต้องมีการจัดการปัญหาอย่างมีประสิทธิภาพ เมื่อ เราพิจารณาถึงต้นตอของปัญหาจะพบว่า กิจกรรม (Activities) ของมนุษย์มีความหลากหลาย ทั้งในแง่ของลักษณะ ขนาด และความเสี่ยง ในบางกิจกรรมที่เกี่ยวข้องกับคนส่วนใหญ่ของสังคม ย่อมต้องใช้เงินลงทุนสูง กิจกรรมบางอย่างไม่สามารถที่จะมาลองผิดลองถูกได้ และในกิจกรรมที่ มีความเสี่ยงสูงก็ย่อมที่จะมีผลกระทบต่อชีวิตและทรัพย์สินอย่างร้ายแรง

แม้ว่าโลกปัจจุบันจะมีเทคโนโลยีที่ก้าวหน้าขึ้นมาก แต่ปัญหาหลายอย่างก็ไม่สามารถแก้ไข ได้โดยง่าย โดยเฉพาะอย่างยิ่งในบางปัญหานั้นเราต้องดำเนินการด้วยความระมัดระวัง ต้องมี การศึกษาทบทวนข้อมูล มีการออกแบบ หรือสร้างแบบจำลอง (Model) เพื่อศึกษาผลลัพธ์ ประเมินประสิทธิภาพ และวางแผนการดำเนินการที่รอบคอบก่อนนำไปดำเนินการใช้จริง ทั้งนี้ก็ เพื่อลดความเสี่ยง ประหยัดเวลา และงบประมาณในการดำเนินการ คณิตศาสตร์เป็นวิชาหนึ่งที่ มีบทบาทในการเตรียมการในเรื่องนี้ โดยเฉพาะอย่างยิ่งคือ การนำมาใช้ในการสร้างแบบจำลอง ทางคณิตศาสตร์

โลกแห่งคณิตศาสตร์ (Mathematical World) เป็นโลกนามธรรมที่มีการกำหนด สัญลักษณ์แทนนามธรรมเหล่านั้น มีการนิยามทางคณิตศาสตร์ที่รัดกุม เพื่อใช้ในการศึกษา ระบบ และพิสูจน์ผลที่ได้เป็นทฤษฎีเพื่อการนำไปใช้ การสร้างแบบจำลองทางคณิตศาสตร์ (Mathematical Modeling) คือกระบวนการในการใช้คณิตศาสตร์เป็นตัวแทน วิเคราะห์ พยากรณ์ หรือสร้างความเข้าใจต่อกิจกรรมในโลกแห่งความเป็นจริง

รูปที่ 1.1: กระบวนการสร้างแบบจำลองทางคณิตศาสตร์

แบบจำลองทางคณิตศาสตร์ (Mathematical Model) เป็นการจำลองสิ่งที่อยู่ในโลก แห่งความเป็นจริง ให้เป็นแบบจำลองทางคณิตศาสตร์ที่อยู่ในรูปนามธรรม และใช้กฎเกณฑ์ทาง คณิตศาสตร์หาคำตอบของแบบจำลองเพื่อนำผลกลับไปประยุกต์ใช้กับโลกแห่งความเป็นจริง ซึ่งสามารถสรุปเป็นขั้นตอนได้ 6 ขั้นตอน ดังต่อไปนี้

ขั้นตอนที่ 1 ระบุปัญหาในโลกแห่งความเป็นจริง (Identify the real world problem)

การทำความเข้าใจปัญหาเป็นขั้นตอนแรกในการสร้างแบบจำลอง ต้อง วิเคราะห์ให้ทราบว่า ปัญหาคืออะไร มีอะไรบ้างที่เกี่ยวข้องกับปัญหา มีคำถามมากมายที่ต้องทำความเข้าใจโจทย์ ปัญหาในสถานการณ์จริง เช่น ปัญหานี้ต้องการทราบอะไร มีวัตถุประสงค์และเป้าหมายอะไร จะ ตัดสินผลที่ออกมาอย่างไร แหล่งข้อมูลมาจากไหน เชื่อถือได้หรือไม่ มี คำตอบเป็นแบบเดียวหรือไม่ จำแนกปัญหาว่าเป็นแบบมีคำตอบแน่นอน (deterministic) หรือแบบมีคำตอบไม่แน่นอน (stochastic) ต้องใช้การ สร้างสถานการณ์จำลอง (simulation) หรือไม่ คำถามหรือคำตอบดัง กล่าวมาแล้วต้องนิยาม กำหนดขอบเขต ให้ตรงประเด็นและชัดเจน

ขั้นตอนที่ 2 สร้างแบบจำลองทางคณิตศาสตร์ (Formulate a mathematical model)

ขั้นตอนนี้เป็นขั้นตอนการสร้างแบบจำลองทางคณิตศาสตร์จากปัญหาที่ได้ วิเคราะห์ หรือทำให้ชัดเจนแล้วในขั้นตอนที่ 1 ทดลองสร้างแบบจำลองที่ ซับซ้อนน้อยที่สุดก่อน เขียนแผนภาพตามความเหมาะสม เขียนรายการ ปัจจัยที่เกี่ยวข้องรวบรวมข้อมูลและทดสอบเนื้อหารายละเอียด จุดสำคัญ ในขั้นตอนนี้คือ

- (1) การกำหนดตัวแปรพร้อมทั้งกำหนดหน่วย ซึ่งประกอบไป ด้วย ตัวแปรนำเข้า (Inputs) ตัวแปรผลลัพธ์หรือตัวแปร ส่งออก (Outputs) ตัวแปรประกอบ (Parameters) การ อธิบายพฤติกรรมของตัวแปร รวบรวมข้อมูลเพิ่มเติมถ้าจำเป็น กำหนดข้อสมมติที่ต้องการสร้าง
- (2) เขียนความสัมพันธ์หรือสมการของตัวแปรโดยใช้ข้อเท็จจริง เช่น การเป็นสัดส่วน ความสัมพันธ์เชิงเส้นและไม่เชิงเส้น ความสัมพันธ์จากการทดลอง กฎหรือทฤษฎีทางวิทยาศาสตร์ สมการเชิงผลต่าง สมการเชิงอนุพันธ์ เมทริกซ์ ความน่าจะเป็น การแจกแจงเชิงสถิติ เป็นต้น

ขั้นตอนที่ 3 หาผลลัพธ์ของแบบจำลอง (Solve the model)

การหาคำตอบทางคณิตศาสตร์ของแบบจำลอง อาจจะใช้วิธีเกี่ยวกับ พีชคณิต หรือใช้วิธีเชิงตัวเลข ใช้แคลคูลัสและกราฟ เขียนโปรแกรม คอมพิวเตอร์ หรือใช้โปรแกรมสำเร็จรูปที่เหมาะสม หาค่าของตัวแปรที่ ต้องการ อาจจะเป็นรูปแบบตารางหรือรูปภาพ

ขั้นตอนที่ 4 แปลความหมายของผลลัพธ์ (Interpret the solution)

ขั้นตอนนี้เป็นการแปลความหมาย และตรวจสอบผลลัพธ์ที่หาได้จากวิธี การทางคณิตศาสตร์ เช่น พิจารณาค่าของตัวแปรที่หาได้ ว่ามีเครื่องหมาย และขนาดถูกต้องหรือไม่ มีค่าเพิ่มหรือลดตามที่ควรจะเป็นหรือไม่ พิจารณาค่ามากและค่าน้อยของตัวแปรเพื่อตรวจสอบพฤติกรรมความ ไวต่อสิ่งกระตุ้นได้คำตอบที่ดีที่สุดตามที่คาดไว้หรือไม่ หรือต้องเปลี่ยน เงื่อนไขเริ่มต้น

ขั้นตอนที่ 5 ตรวจสอบผลลัพธ์กับข้อมูลจริง (Compare with reality)

ผลลัพธ์ที่ได้สามารถตรวจสอบกับข้อมูลจริงได้หรือไม่ คำตอบทาง คณิตศาสตร์มีความหมายหรือไม่ การทำนายสอดคล้องกับข้อมูลจริงหรือ ไม่ ประเมินแบบจำลองที่สร้างขึ้นว่าได้ครบตามวัตถุประสงค์หรือไม่ แบบ จำลองสามารถปรับปรุงให้ดีขึ้นได้อีกหรือไม่ ผลลัพธ์ที่ได้ก่อนหน้านี้ชี้ให้ เห็นว่าต้องคำนวณหาค่าตัวแปรจากแบบจำลองที่ปรับปรุงใหม่เพื่อความ แม่นยำที่ดีกว่าหรือไม่ ถ้าต้องการทำใหม่ก็ต้องกลับไปเริ่มที่ขั้นที่ 1 หรือถ้า ไม่ต้องก็ให้ไปที่ขั้นที่ 6 (ดูรูป 1.1 ประกอบความเข้าใจ) ขั้นตอนนี้สำคัญ มาก เพราะมีบ่อยครั้งที่ต้องสร้างแบบจำลองหลายรอบก่อนที่จะได้ผลเป็น ที่น่าพอใจ

ขั้นตอนที่ 6 นำเสนอผลงาน (Present the results)

ผลงานที่ไม่ได้ถูกเสนอต่อสังคมย่อมไม่มีประโยชน์กับผู้ใดเลย การนำเสนอ ผลงานจึงเป็นกระบวนการที่สำคัญ และยังเป็นการเปิดโอกาสให้เกิดการ พัฒนาและต่อยอด การนำเสนอผลงานนั้นอาจจะอยู่ในรูปของการสัมมนา การเขียนบทความ หรือการเขียนรายงาน โดยที่เราต้องทราบว่าจะนำ เสนอเพื่อใคร ต้องการทราบอะไรบ้าง ต้องการรายละเอียดในรายงาน

มากน้อยเพียงใด จะสร้างการนำเสนออย่างไร จึงจะทำให้ลักษณะที่สำคัญ ชัดเจน และผลที่ต้องการทราบปรากฏอยู่

การจำแนกแบบจำลอง

โดยทั่วไปแล้วเราจะสามารถจำแนกแบบจำลองออกได้เป็น แบบจำลองรูปธรรม (Physical Model) แบบจำลองรูปภาพ (Visual Model) และ แบบจำลองทางคณิตศาสตร์ (Mathematical Model) หรือ แบบจำลองนามธรรม (Abstract Model) โดยที่แบบจำลองดังกล่าว นั้นมีความแตกต่างตามลักษณะการนำไปใช้งาน ดังนี้

- 1. แบบจำลองทางคณิตศาสตร์ หรือแบบจำลองนามธรรม เป็นแบบจำลองที่ประกอบ ด้วยประพจน์ทางคณิตศาสตร์ (Mathematical Statements) มักอยู่ในรูป สัญลักษณ์ สมการ อสมการ หรือ ฟังก์ชันทางคณิตศาสตร์
- 2. แบบจำลองรูปธรรม (Physical Model) เป็นแบบจำลองที่สามารถจับต้องได้ เช่น แบบจำลองอาคาร แบบหุ่นจำลองต่าง ๆ
- 3. แบบจำลองรูปภาพ (Visual Model) เป็นแบบจำลองลักษณะรูปภาพที่สามารถมอง เห็นได้ เช่น กราฟ แผนที่ แบบแปลน ลายแทง

ในที่นี้เราจะกล่าวถึงเฉพาะแบบจำลองทางคณิตศาสตร์เท่านั้น ซึ่งแบบจำลองทาง คณิตศาสตร์ สามารถถูกจำแนกออกตามลักษณะพื้นฐานได้ 4 ลักษณะ คือ

- 1. จำแนกตามการเปลี่ยนแปลง ซึ่งแยกได้เป็นแบบจำลองสถิต กับแบบจำลองพลวัต (Static and Dynamic Models) แบบจำลองสถิต เป็นแบบจำลองที่ไม่เกี่ยวข้อง กับเวลา ส่วนแบบจำลองพลวัตเป็นแบบจำลองที่มีเวลาเข้ามาเกี่ยวข้อง หรือผลลัพธ์ (Outputs) ของแบบจำลองขึ้นอยู่กับช่วงเวลา
- 2. จำแนกตามความแน่นอนของผลลัพธ์ ซึ่งแยกได้เป็น แบบจำลองแน่นอน กับแบบ จำลองความน่าจะเป็น (Deterministic and Stochastic Models) แบบจำลอง แน่นอนเป็นแบบจำลองที่ข้อมูลนำเข้า (Inputs) ชุดเดียวจะให้ผลลัพธ์ (Outputs) ชุดเดียวเสมอไม่ว่าทำซ้ำกี่ครั้งก็ตาม ส่วนแบบจำลองความน่าจะเป็นนั้นเป็นแบบ จำลองที่ข้อมูลนำชุดเดียวจะให้ผลลัพธ์อยู่ในรูปของตัวแปรสุ่ม (หรือมีผลลัพธ์หลาย ชุดจากข้อมูลนำเข้าชุดเดียวกันนั่นเอง)
- 3. จำแนกตามความต่อเนื่อง ซึ่งแยกได้เป็น แบบจำลองต่อเนื่อง กับแบบจำลองไม่ต่อ เนื่อง (Continuous and Discrete Models) แบบจำลองต่อเนื่อง เป็นแบบจำลอง ที่มีข้อมูลนำเข้าต่อเนื่องตลอดเวลา เช่น การเปลี่ยนแปลงของระดับน้ำ ส่วนแบบ จำลองไม่ต่อเนื่องเป็นแบบจำลองที่มีข้อมูลนำเข้าไม่ต่อเนื่อง เช่น จำนวนลูกค้าที่มา ใช้บริการของธนาคาร จะเปลี่ยนแปลงเมื่อมีลูกค้าเข้าหรือออกจากธนาคารเท่านั้น
- 4. จำแนกตามการให้ความหมาย ซึ่งแยกได้เป็น แบบจำลองกลวิธาน กับแบบจำลอง ทางสถิติ (Mechanistic and Statistical Models) โดยแบบจำลองกลวิธานนั้น จะถูกสร้างมาจากกฏหรือทฤษฎีทางวิทยาศาสตร์โดยมีข้อเท็จจริงรองรับ ส่วนแบบ จำลองทางสถิตินั้นจะถูกสร้างมาจากข้อมูลเชิงคุณภาพหรือเชิงปริมาณโดยวิธีการ ทางคณิตศาสตร์และสถิติโดยไม่ได้สนใจในเรื่องการให้ความหมายของ

หมายเหตุ การจำแนกประเภทของแบบจำลองตามลักษณะต่าง ๆ ของแบบจำลอง ดังที่กล่าว มาแล้วในบทนี้เป็นเพียงการจำแนกเบื้องต้นเท่านั้น ในความเป็นจริงยังมีแบบจำลองที่มีลักษณะ ผสมผสานในหลายลักษณะดังกล่าวข้างต้นในแบบจำลองเดียวกัน