Limits of functions. Continuous functions

Mathematics - 1st year, English

Faculty of Computer Science Alexandru Ioan Cuza University of Iasi

e-mail: corina.forascu@gmail.com

facebook: Corina Forăscu

December 4, 2018

Outline of the lecture

Limits of functions

2 Continuous functions

Limits of functions

Definition

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq A \subseteq X$, $f : A \to Y$ and $x_0 \in A'$. We say that an element $\ell \in Y$ is the *limit* of f in x_0 if

$$\forall V \in \mathcal{V}_{d'}(\ell), \ \exists U \in \mathcal{V}_{d}(x_0), \ \forall x \in (A \cap U) \setminus \{x_0\} : f(x) \in V,$$

In this case, we write $\lim_{x \to x_0} f(x) = \ell$ or $f(x) \stackrel{x \to x_0}{\longrightarrow} \ell$.

- As in the case of limits of sequence, one can show that the limit of a function in a point, if existent, is unique.
- We say that the function f has a limit in the point x_0 if there exists $\ell \in Y$ such that $\lim_{x \to x_0} f(x) = \ell$.

Characterizations

Proposition

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq A \subseteq X$, $f : A \rightarrow Y$, $x_0 \in A'$ and $\ell \in Y$. The following statements are equivalent:

- $\lim_{x \to x_0} f(x) = \ell;$
- **1** if $\mathscr{U}(x_0)$ and $\mathscr{U}'(\ell)$ are systems of neighbourhoods for x_0 , respectively ℓ , then

$$\forall V \in \mathscr{U}'(\ell), \ \exists U \in \mathscr{U}(x_0), \ \forall x \in (A \cap U) \setminus \{x_0\} : f(x) \in V;$$

The last relation can be written

$$\forall \varepsilon > 0, \ \exists \delta > 0, \forall x \in A : 0 < d(x, x_0) < \delta \Rightarrow d'(f(x), \ell) < \varepsilon.$$

In the particular case that X and Y are normed spaces, we have:

Proposition

Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|')$ be normed spaces, $\emptyset \neq A \subseteq X$, $f: A \to Y$. An element $\ell \in Y$ is the limit of f in $x_0 \in A'$ if and only if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in A : 0 < ||x - x_0|| < \delta \Rightarrow ||f(x) - \ell||' < \varepsilon.$$

Theorem (Characterization with sequences)

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq A \subseteq X$, $f: A \to Y$. An element $\ell \in Y$ is the limit of f in some point $x_0 \in A'$ if and only if for every sequence $(x_n)_{n \in \mathbb{N}^*} \subseteq A \setminus \{x_0\}$ such that $\lim_{n \to \infty} x_n = x_0$, we have $\lim_{n \to \infty} f(x_n) = \ell$.

Remarks.

- 1. For proving that $\lim_{x \to x_0} f(x) \neq \ell$, it is enough to provide some sequence
- $(x_n)_{n\in\mathbb{N}^*}\subseteq A\smallsetminus\{x_0\}$ converging to x_0 such that $f(x_n)$ does not converge to ℓ .
- **2.** If, moreover, we want to show that $\lim_{x \to x_0} f(x)$ doesn't exist, it is sufficient to point out two sequences $(x_n)_{n \in \mathbb{N}^*}, (x_n')_{n \in \mathbb{N}^*} \subseteq A \setminus \{x_0\}$ such that

 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n' = x_0, \lim_{n\to\infty} f(x_n) = \ell \text{ and } \lim_{n\to\infty} f(x_n') = \ell', \text{ where } \ell \neq \ell'.$

Example

Let the function $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be defined by

$$f(x,y) := \frac{xy}{x^2 + y^2}, \ (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

Then $(0,0) \in A'$, where $A := \mathbb{R}^2 \setminus \{(0,0)\}$. If we take the sequence $(x_n,y_n)_{n \in \mathbb{N}^*} \subseteq \mathbb{R}^2 \setminus \{(0,0)\}$, $x_n := \frac{1}{n}$, $y_n := \frac{1}{n}$, $n \in \mathbb{N}^*$, we have $(x_n,y_n) \stackrel{n \to \infty}{\longrightarrow} (0,0)$ and

$$f(x_n, y_n) = \frac{1}{2} \xrightarrow{n \to \infty} \frac{1}{2}.$$

On the other hand, if we take the sequence, $(x'_n, y'_n)_{n \in \mathbb{N}^*} \subseteq \mathbb{R}^2 \setminus \{(0, 0)\},$ $x'_n := \frac{1}{n}, \ y'_n := \frac{1}{n^2}, \ n \in \mathbb{N}^*,$ we have $(x'_n, y'_n) \stackrel{n \to \infty}{\longrightarrow} (0, 0)$ and

$$f(x'_n, y'_n) = \frac{\frac{1}{n^3}}{\frac{1}{n^2} + \frac{1}{n^4}} = \frac{n}{n^2 + 1} \xrightarrow{n \to \infty} 0.$$

The conclusion is that the function f does not possess a limit in the point (0,0).

As in the case of limits of sequence, the following series of criteria applies in the case of limits of functions.

Proposition

Let (X,d), (Y,d') be metric spaces, $\emptyset \neq A \subseteq X$, $f:A \to Y$, $g:A \to \mathbb{R}_+$ and $x_0 \in A'$, $\ell \in Y$. If

- $\lim_{x\to x_0}g(x)=0,$

then $\lim_{x \to x_0} f(x) = \ell$.

Theorem (Cauchy-Bolzano)

Let (X, d) be a metric space, (Y, d') a complete metric space, $\emptyset \neq A \subseteq X$, $x_0 \in A'$ and $f: X \to Y$. Then f has a limit in the point x_0 if and only if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, x' \in (A \cap B(x_0, \delta)) \setminus \{x_0\} : d'(f(x), f(x')) < \varepsilon.$$

Theorem

(X,d): metric space, $(Y,\|\cdot\|)$: normed space, $\emptyset \neq A \subseteq X$, $x_0 \in A'$, $f:X \to Y$.

- i) If $\lim_{x \to x_0} f(x) = \ell$, then $\lim_{x \to x_0} ||f(x)|| = ||\ell||$.
- ii) If $\lim_{x \to x_0} \|f(x)\| = 0$, then $\lim_{x \to x_0} f(x) = \mathbf{0}_Y$.
- iii) If $\lim_{x \to x_0} \|f(x)\| > 0$, then $\exists \delta > 0$, $\forall x \in (A \cap B(x_0, \delta)) \setminus \{x_0\} : f(x) \neq \mathbf{0}_Y$.

Theorem

Let (X, d) be a metric space, $(Y, \|\cdot\|)$ a normed space, $\emptyset \neq A \subseteq X$, $x_0 \in A'$, $f, g: X \to Y$ and $\varphi: X \to \mathbb{R}$.

i) If $\lim_{x \to x_0} f(x) = \ell_1 \in Y$ and $\lim_{x \to x_0} g(x) = \ell_2 \in Y$, then we have

$$\lim_{x \to x_0} (\alpha f + \beta g)(x) = \alpha \ell_1 + \beta \ell_2, \ \forall \alpha, \beta \in \mathbb{R}.$$

ii) If $\lim_{x\to x_0} f(x) = \ell \in Y$ and $\lim_{x\to x_0} \varphi(x) = \alpha \in \mathbb{R}$, then we have

$$\lim_{x \to x_0} \varphi(x) f(x) = \alpha \ell.$$

In the case of Euclidean spaces, one can compute the limits of functions on components:

Theorem

Let $\emptyset \neq A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ and $\mathbf{x}_0 \in A'$. Let f_k , $1 \le k \le m$ be the m components of the function f. Then there exists $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \ell \in \mathbb{R}^m$ if and only if for every $k = \overline{1,m}$ there exists the limit $\lim_{\mathbf{x} \to \mathbf{x}_0} f_k(\mathbf{x}) = \ell_k \in \mathbb{R}$. In this case, $\ell = (\ell_1, \dots, \ell_m)$.

The next result shows us how we can compute limits for composed functions:

Theorem (substitution principle)

Let (X, d), (Y, d') and (Z, d'') be metric spaces, $\emptyset \neq A \subseteq X$, $\emptyset \neq B \subseteq Y$, $f : A \rightarrow B$, $g : B \rightarrow Z$ and $x_0 \in A'$, $y_0 \in B'$. If

- $\lim_{y\to y_0}g(y)=\ell\in Z;$
- $\exists V \in \mathscr{V}(x_0), \ \forall x \in (A \cap V) \setminus \{x_0\} : f(x) \neq y_0,$

then $\lim_{x \to \infty} g(f(x)) = \ell$.

Iterate limits

A commun mistake when computing limits of functions of several variables is to *iterate* the limit:

Let $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be defined by

$$f(x,y) := \frac{x^2y^2}{x^2y^2 + (x-y)^2}, \ (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

Then, fixing some $y \in \mathbb{R}^*$, we have

$$\lim_{x\to 0} f(x,y) = 0.$$

Letting now $y \rightarrow 0$, we obtain the *iterated* limit

$$\lim_{y\to 0}\lim_{x\to 0}f(x,y)=0.$$

By symmetry we get the other iterated limit

$$\lim_{x\to 0}\lim_{y\to 0}f(x,y)=0.$$

However, f does not have a limit in (0,0), since $f(\frac{1}{n},\frac{1}{n})=1 \xrightarrow{n\to\infty} 1$ and $f(\frac{1}{n},0)=0 \xrightarrow{n\to\infty} 0$.

On the other hand, a function could have a limit in some point, but not iterated limits.

Let $A := \{(x, y) \in \mathbb{R}^2 \mid xy \neq 0\}$ and $f : A \to \mathbb{R}$ defined by

$$f(x,y) := (x+y)\sin\frac{1}{x}\cdot\sin\frac{1}{y}.$$

Then $|f(x,y)| \le g(x,y) := |x| + |y|$. Since $\lim_{(x,y) \to (0,0)} g(x,y) = 0$, we have

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

If we try to compute the limit $\lim_{x \to 0} f(x,y)$ for some $y \in \mathbb{R}^*$, we obtain that

 $\lim_{x\to 0}x\sin\frac{1}{x}=0$ (because $\left|x\sin\frac{1}{x}\right|\leq |x|$, $\forall x\in\mathbb{R}^*$), but $x\mapsto\sin\frac{1}{x}$ does not have a limit in 0. Therefore, since

$$f(x,y) = \left(x\sin\frac{1}{x}\right)\sin\frac{1}{y} + \left(\sin\frac{1}{x}\right)\left(y\sin\frac{1}{y}\right),$$

f(x,y) does not have a limit as $x\to 0$ if $\sin\frac{1}{y}\neq 0$, i.e. $y\neq\frac{1}{k\pi}$, $k\in\mathbb{Z}^*$. It is clear now that the problem of existence of the iterated limit $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ has a negative answer.

Directional limits

Definition

Let $\emptyset \neq A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ and $\mathbf{x}_0 \in \mathbb{R}^n$.

• We say that the function f has a limit in \mathbf{x}_0 along the direction $\mathbf{u} \in \mathbb{R}^n$ if

$$0 \in \left\{ t \ge 0 \mid \mathbf{x}_0 + t\mathbf{u} \in A \right\}'$$

(i.e., there exists a sequence $t_n \searrow 0$ such that $\mathbf{x}_0 + t_n \mathbf{u} \in A$, $\forall n \in \mathbb{N}$) and there exists the limit of the function

$$(0, +\infty) \ni t \mapsto f(\mathbf{x}_0 + t\mathbf{u}) \text{ in } t = 0,$$

i.e. there exists the limit (to be defined later)

$$\ell_{\mathbf{u}} := \lim_{t \searrow 0} f(\mathbf{x}_0 + t\mathbf{u}).$$

• We say that the function f has a $(k^{th}$ -) partial limit in \mathbf{x}_0 if f has a limit in \mathbf{x}_0 along the direction \mathbf{e}_k , for $k \in \{1, ..., n\}$, where $\mathbf{e}_k = (0, ..., 0, 1, 0, ..., 0)$.

The existence of a global limit implies the existence of directional limits:

Proposition

Let $\emptyset \neq A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ and $\mathbf{x}_0 \in A'$ such that $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \ell \in \mathbb{R}^m$. If $\mathbf{u} \in \mathbb{R}^n \setminus \{\mathbf{0}_{\mathbb{R}^n}\}$ is such that $0 \in \{t \ge 0 \mid \mathbf{x}_0 + t\mathbf{u} \in A\}'$, then there exists the limit of f in \mathbf{x}_0 along the direction \mathbf{u} and is equal to ℓ .

- The converse of this result is not true;
- in fact, even if the limits along all the directions exist and are equal, a global limit might not exist:

Example. Let
$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
 be defined by $f(x,y) := \frac{xy^2}{x^2 + y^4}$.

Let (u, v) be a direction in $\mathbb{R}^2 \setminus \{(0, 0)\}$. Then, for t > 0,

$$f((0,0) + t(u,v)) = f(tu,tv) = \frac{t^3uv^2}{t^2(u^2 + t^2v^4)} = \frac{tuv^2}{u^2 + t^2v^4}.$$

Hence $\lim_{t\searrow 0} f\left((0,0)+t(u,v)\right)=0$, *i.e.* the limit of f in (0,0) along the direction (u,v) exists and is equal to 0. However, f does not have a global limit in (0,0) because $f\left(\frac{1}{n^2},\frac{1}{n}\right)=\frac{1}{2}\stackrel{n\to\infty}{\longrightarrow}\frac{1}{2}\neq 0$.

Left and right limits

When f is a function of one variable, we will speak about left and right limits.

Definition

Let $A \subseteq \mathbb{R}$ be a nonempty set.

- We say that $x_0 \in \mathbb{R}$ is a *left-limit point* (*right-limit point*) of A if x is a limit point for the set $A \cap (-\infty, x_0)$ $(A \cap (x_0, +\infty))$.
- If $f:A\to\mathbb{R}^m$ is a function and x_0 is a left-limit point (right-limit point), we say that f has a left-limit (right-limit) in x_0 if there exists the limit of f in x_0 along the direction -1 (1). In this case, we will denote this limit $\lim_{x\to\infty} f(x)$,

$$f(x_0 - 0)$$
 or $f(x_0^-)$ $(\lim_{x \searrow x_0} f(x), f(x_0 + 0) \text{ or } f(x_0^+)).$

Proposition

Let $\emptyset \neq A \subseteq \mathbb{R}^n$, $f:A \to \mathbb{R}^m$ and x_0 be both a left-limit and a right-limit point of A. Then the limit $\lim_{x \to x_0} f(x)$ exists if and only if both limits $\lim_{x \nearrow x_0} f(x)$ and

 $\lim_{x \to x_0} f(x) \text{ exist and are equal. In this case, } \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x).$

Usual limits

$$\begin{split} &\lim_{t\to 0} (1+t)^{1/t} = \mathbf{e}; &\lim_{t\to \pm \infty} (1+\frac{1}{t})^t = \mathbf{e}; \\ &\lim_{t\to 0} \frac{\log_a (1+t)}{t} = \frac{1}{\ln a} \ (a>0, \ a\neq 1); &\lim_{t\to 0} \frac{\ln (1+t)}{t} = 1; \\ &\lim_{t\to 0} \frac{a^t-1}{t} = \ln a \ (a>0); &\lim_{t\to 0} \frac{\mathbf{e}^t-1}{t} = 1; \\ &\lim_{t\to 0} \frac{(1+t)^r-1}{t} = r \ (r\in \mathbb{R}); \\ &\lim_{t\to 0} \frac{\sin t}{t} = 1; &\lim_{t\to 0} \frac{\operatorname{arctg} t}{t} = 1. \\ &\lim_{t\to 0} \frac{\operatorname{arctg} t}{t} = 1. \end{split}$$

Continuous functions

Definition

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq A \subseteq X$ and $f : A \rightarrow Y$.

• We say that f is *continuous* in a point $x_0 \in A$ if

$$\forall V \in \mathscr{V}_{d'}(f(x_0)), \ \exists U \in \mathscr{V}_{d}(x_0), \ \forall x \in U \cap A : f(x) \in V.$$

- We say that f is discontinuous in a point $x_0 \in A$ if f is not continuous in x_0 ; in this case, we also say that x_0 is a discontinuity point of f.
- We say that f is *continuous* if f is continuous in x_0 , for every $x_0 \in A$.

Relation with limits: f is continuous in $x_0 \in A$ if and only if either x_0 is a limit point for A and $\lim_{x \to x_0} f(x) = f(x_0)$ or x_0 is an isolated point.

Characterizations

Proposition

Let (X,d), (Y,d') be metric spaces, $\emptyset \neq A \subseteq X$, $f:A \rightarrow Y$ and $x_0 \in A$. Then f is continuous in x_0 if and only if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in A : d(x, x_0) < \delta \Rightarrow d'(f(x), f(x_0)) < \varepsilon.$$

The continuity in some point can be characterized with sequences, too.

Theorem

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq A \subseteq X$, $f : A \to Y$ and $x_0 \in A$. Then f is continuous in x_0 if and only if for every sequence $(x_n)_{n \in \mathbb{N}^*} \subseteq A$ such that $\lim_{n \to \infty} x_n = x_0$, we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

It turns out that the global continuity (*i.e.*, in all points) of a function can be characterized in terms of open or closed sets.

Theorem

Let (X,d) and (Y,d') be two metric spaces and a function $f:X\to Y$. Then the following statements are equivalents:

- f is continuous;
- **②** for every open set $D \subseteq Y$, the set $f^{-1}[D]$ is open (with respect to d);
- **1** for every closed set $F \subseteq Y$, the set $f^{-1}[F]$ is closed;
- for every subset $A \subseteq Y$, we have $\overline{f^{-1}[A]} \subseteq f^{-1}[\overline{A}]$.

Definition

Let (X, \mathbf{d}) , (Y, \mathbf{d}') be metric spaces, $\emptyset \neq A \subseteq X$, $x_0 \in A'$ and $f : A \to Y$. If $\lim_{x \to x_0} f(x) = \ell \in Y$, then the function $\tilde{f} : A \cup \{x_0\} \to Y$ defined by

$$\tilde{f}(x) := \begin{cases} f(x), & x \in A \setminus \{x_0\}; \\ \ell, & x = x_0 \end{cases}$$

is continuous in x_0 and is called the extension by continuity of f in x_0 .

Definition

Let (X, d) and (Y, d') be two metric spaces.

- We say that a bijective function $f: X \to Y$ is a homeomorphism if f and f^{-1} are both continuous.
- We say that (X, d) and (Y, d') are homeomorphic if there exists a homeomorphism between them.

Remark. If f is an isometry between (X, d) and (Y, d'), then f is continuous. If, moreover, f is bijective, then f is a homeomorphism.

Stronger notions of continuity

Definition

Let (X, d) and (Y, d') be two metric spaces and $f: X \to Y$ a function.

• The function f is called *uniformly continuous* if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, y \in X : d(x, y) < \delta \Rightarrow d'(f(x), f(y)) < \varepsilon.$$

• The function f is called *Lipschitz-continuous* if there exists a constant $c_1 > 0$, called the *Lipschitz constant* of f, such that

$$d'(f(x), f(y)) \le c_1 d(x, y), \ \forall x, y \in X.$$

• The function f is called *Hölder-continuous* of order $\alpha \in (0,1]$ if $\exists c_{\alpha} > 0$:

$$d'(f(x), f(y)) \le c_{\alpha} [d(x, y)]^{\alpha}, \forall x, y \in X.$$

- An uniformly continuous function is continuous.
- Any Hölder-continuous function is uniformly continuous (for $\varepsilon > 0$, it is enough to set $\delta := (\varepsilon/c_{\alpha})^{1/\alpha}$).

Operations with continuous functions

Theorem

Let (X, d), (Y, d') and (Z, d'') be metric spaces, $A \subseteq X$, $B \subseteq Y$ non-empty sets and the functions $f : A \to B$, $g : B \to Z$.

- i) If f is continuous in some point $x_0 \in A$ and g is continuous in $y_0 := f(x_0)$, then $g \circ f$ is continuous in x_0 .
- ii) If f and g are continuous, then $g \circ f$ is continuous.

Theorem

Let (X,d) be a metric space, $(Y,\|\cdot\|)$ a normed space, $A\subseteq X$ a nonempty set and $x_0\in A$.

- i) If the functions $f, g: X \to Y$ are continuous in x_0 , then $\alpha f + \beta g$ is continuous in x_0 .
- ii) If the functions $f: X \to Y$ and $\varphi: X \to \mathbb{R}$ are continuous in x_0 , then $\varphi \cdot f$ is continuous in x_0 .

Compactness

If f is a continuous function between metric spaces, D is an open set and F is a closed set, then f[D] is not necessarely open set, nor f[F] is a closed set. However, there is a property, named *compactness*, which is preserved by continuity.

Definition

Let (X, d) be a metric space. We say that a subset $K \subseteq X$ is *compact* if every sequence $(x_n)_{n \in \mathbb{N}} \subseteq K$ contains a convergent subsequence to an element of K.

By Bolzano-Weierstrass theorem, the compact subsets of $\ensuremath{\mathbb{R}}$ are the closed, bounded subsets.

Theorem

Let (X, d), (Y, d') be metric spaces, $\emptyset \neq K \subseteq X$ a compact subset and $f : K \to Y$ a continuous function. Then f[K] is compact.

An immediate consequence is the following result:

Theorem (Weierstrass)

Let (X, d) be a metric space, $\emptyset \neq K \subseteq X$ a compact subset and $f: K \to \mathbb{R}$ a continuous function. Then the function f is bounded and there exist $x_0, x_1 \in K$ such that $f(x_0) := \min_{x \in K} f(x)$ and $f(x_1) := \max_{x \in K} f(x)$.

Theorem (Cantor)

Let (X, d), (Y, d') be metric spaces, $K \subseteq X$ a non-empty compact subset and $f : K \to Y$ a continuous function. Then f is uniformly continuous.

Continuous functions in Euclidean spaces

Theorem

Let $A \subseteq \mathbb{R}^n$ be a nonempty set, $f: A \to \mathbb{R}^m$ and $\mathbf{x}_0 = (x_1^0, \dots, x_m^0) \in A$. Then f is continuous in \mathbf{x}_0 if and only if f_k is continuous in x_k^0 for every $k \in \{1, \dots, m\}$.

Proposition

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then T is continuous.

Definition

Let $\emptyset \neq A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}^m$. We say that f is *left-continuous* (*right-continuous*) in $x_0 \in A$ if $f|_{A \cap (-\infty, x_0]} (f|_{A \cap [x_0, +\infty)})$ is continuous in x_0 .

Proposition

Let $A \subseteq \mathbb{R}^n$ be a nonempty set, $f: A \to \mathbb{R}^m$ and $x_0 \in A$. Then f is continuous in x_0 if and only if f is both left-continuous and right-continuous in x_0 .

December 4, 2018

- C. Canuto, A. Tabacco, Mathematical Analysis II (2nd ed.), Springer International Publishing, Switzerland, 2015.
- C. Drăguşin, O. Olteanu, M. Gavrilă, Analiză matematică, Editura Matrix Rom, Bucureşti, 2006.
- S. R. Ghorpade, B. V. Limaye, A Course in Multivariable Calculus and Analysis, Undergraduate Texts in Mathematics, Springer Science, 2010.
- R. Heath-Brown, *Analysis II. Continuity and Differentiability*, Hilary Term, 2016.
- R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2005.
- E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- M. Postolache, Analiză matematică (teorie și aplicații), Editura "Fair Partners", București, 2011.
- V. Postolică, Eficiență prin matematică aplicată. Analiză matematică, Editura Matrix Rom, București, 2006.
- 🔈 A. Precupanu, *Bazele analizei matematice*, Editura-Polirom, Iași, 1998. 🕫 🦠