Marwadi University Faculty of Technology Department of Information and Communication Technology

Subject Code: 01CT1507

Subject Name: Advanced Microprocessor

B. Tech. Year – III (Semester V)

Objectives:

This course introduces the ARMv7 and ARMv7 CortexM architecture, Instruction set, assembly language and C language programming of ARMv7 CortexM core-based Microcontroller. It gives a hands-on training of evaluate various on chip peripherals and interfacing external sensors and actuators with Cortex-M based microcontroller. The course objective is to introduce the basic concepts medium scale embedded system design using ARMv7 CortexM based microcontroller and to develop assembly and C language programming skills for real time applications of ARMv7 CortexM based microcontroller.

Credits Earned: 04 Credits

Course Outcomes: After completion of this course, student will be able to:

- 1. Understand evolution of RISC based microprocessors and their comparative analysis
- 2. Develop real time software and hardware for embedded systems using Cortex M Microcontroller (Create).
- 3. Write and debug C programs for Cortex-M Microcontroller (Apply).
- 4. Effectively utilize on chip peripherals such as timers, serial communications, analog-to-digital converters & pulse width modulation for low power applications (Apply).
- 5. Implement advance communication protocol like I2C and SPI on Cortex-M Microcontroller (Apply).
- 6. Effectively utilize ARMv7 and ARMv7 Cortex M based microcontroller to solve real world problems (Apply).

Pre-requisite of course: Basics of Digital Logic Design, Microprocessor architecture, and basics of C programming

Teaching and Examination Scheme:

Teaching Scheme (Hours)				Theory Marks			Tutorial /		
			Credits	•		II KS	Practical Marks		Total Marks
						V	T		
Theory	Tutorial	Practical		ESE	IA	CSE	Viva	Term Work	
3	0	2	4	50	30	20	25	25	150

Marwadi University Faculty of Technology Department of Information and Communication Technology

Contents:

Unit	Topics			
1	Introduction Introduction to Microprocessors, RISC & CISC Microprocessors, Scalar & super scalar processors, Vector & array processors, Chronology of Intel processors: 8086, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium IV, Itanium, Latest Intel processors: Atom, 13, 15, 17, AMD processors, MIPS processors			
	SUN's Sparc processor, Mobile/Tablet processors, Comparative analysis of characteristics of various microprocessors, Concepts of Memory management units			
	RISC Processors and ARM:			
	The RISC revolution – Characteristics of RISC Architecture, Basic architecture of the ARM7core, Registers, Current Program Status Register			
2	(CPSR), Operating States, Operating Modes, Programming Model, Interrupt and Exception Handling, ARM Instruction Set, Migration to Cortex Series, ARM 12 architecture v7 profile, ARMv7-Marchitecture, Operating States and Operating	12		
	Modes, Programming Model.			
3	C Programming for ARM: Overview of C compiler and optimization, Basic C data types, C Looping structures, Register allocations, function calls, pointer aliasing, structure arrangement, bitfields, unaligned data and Endianness, Division, floating point, Inline functions and inline assembly, Portability issues.	08		
4	Peripheral Programming in C for Cortex M based Microcontroller C programs for General purpose I/O, General Purpose Timers, WDT Programming,			
	Interrupt Programming, LPM programming, ADC, DAC, PWM and DMA programming	08		
_	Serial communication protocols			
5	UART protocol, I2C protocol, SPI protocol and their programming	06		
	Total Hours	42		

Suggested Text books / Reference books:

- 1. Muhammad Ali Mazidi, Sarmad Naimi and Sepehr Naimi, TI ARM Peripherals Programming and Interfacing Using C Language, Pearson Education.
- 2. Jonathan W. Valvano, Embedded Systems: Introduction to Arm® CortexTM-M Microcontrollers, 5th edition, ISBN: 978-1477508992.
- 3. Embedded System Design Using TIVA, TI University Program, Learning Material.
- 4. Microprocessors and Interfacing: Programming and Hardware, Douglas V.Hall, McGraw-Hill/Glencoe, ISBN: 9780070257429

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process.

Marwadi University Faculty of Technology Department of Information and Communication Technology

Distribution of Theory for course delivery and evaluation								
Remember	Understand	Apply Analyze		Evaluate	Create			
20% 20%		30%	15%	10%	5%			

Suggested List of Experiments:

Minimum 14 experiments to be performed during the semester

- 1. Installation of CCS and familiarization of ARMv7 Development Board.
- 2. Hands-on experimentation of GPIO programming in C on ARMv7 development board.
- 3. Hands-on experimentation of Timer to generate accurate delay in C on ARMv7 development board.
- 4. Hands-on experimentation of Hibernation and Wakeup by RTC programming in C on ARMv7 development board.
- 5. Hands-on experimentation of ADC programming in C on ARMv7 development board.
- 6. Hands-on experimentation of PWM programming in C on ARMv7 development board.
- 7. Hands-on experimentation of UART Transmit programming in C on ARMv7 development board.
- 8. Hands-on experimentation of UART Receive programming in C on ARMv7 development
- 9. Hands-on experimentation of UART Transmit and Receive programming in C on ARMv7 development board.
- 10. Hands-on experimentation of interfacing 16x2 LCD and programming in C with ARMv7 development board.
- 11. Hands-on experimentation of interfacing SIM800L GSM/GPRS and programming in C withARMv7 development board.
- 12. Hands-on experimentation of interfacing HC-05 Serial Bluetooth and programming in C with ARMv7 development board.
- 13. Hands-on experimentation of MPU6050 Accelerometer & Gyroscope Interfacing in C using I2C protocol with ARMv7 development board.
- 14. Hands-on experimentation of MAX7219 LED matrix driver interfacing in C using SPI protocol with ARMv7 development board.
- 15. Design Mini project based on Cortex M based Microcontroller utilizing minimum 3 onchip peripherals and minimum 2 external sensors/actuators to solve a real-world problem.

Supplementary Resources:

- 1. https://www.ti.com/seclit/ml/ssqu015/ssqu015.pdf
- 2. https://university.ti.com/en/faculty/teaching-materials-and-classroom-resources/embedded-learning-material