TD du 20 mars

William Hergès ¹

20 mars 2025

Exercice 1

On n'oublira pas la proposition suivante :

$$|\mathcal{P}(E)| = 2^n$$

où n est le cardinal de E et $\mathcal{P}(E)$ désigne l'ensemble des parties de E.

- 1. C'est un quadruplet. Il y a donc 10^4 arrangements possibles. Si on évite les répétitions, il y en a $\frac{10!}{6!}$
- 2. Il s'agit aussi d'un arrangement car l'ordre compte. Il y a donc $\frac{10!}{7!}$ possibilités.
- 3. Le nombre de chemin possible est $\binom{p+q}{p}$.
- 4. 12! manières de les aligner. Si 1 et 2 se suivent, alors il suffit de déterminer la place de 1 pour déterminer 2. On n'a donc que 11 tomes à placer donnant ainsi 11! possibilités.
- 5. $\binom{p}{1} \times 2^{n-p}$ car on se retrouve à choisir une partie de $E \setminus A$ (on a donc 2^{n-p} choix)
- 6. $2^8 = 256$ car ordre avec répétition
- 7. 10^{14} car ordre avec répétition
- 8. $\binom{11}{5}$. Si deux amis ne peuvent venir qu'ensemble, on a un ami en moins à choisir si un des deux amis arrivent. Si deux amis ne peuvent pas se voir, on a un ami de possible en moins.

Dans le premier cas, on a $\binom{9}{3} + \binom{9}{5}$ (car on somme les « ou bien »!).

Dans le deuxième cas, on a $2\binom{9}{4} + \binom{9}{5}$ (idem).

9.

Exercice 2

Je sais faire, donc flemme (par contre j'ai calculé ce que ça valait en python)

Exercice 5

1.
$$f(x) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{2^{n-k}}{x^{n-k-1}} = 2\binom{n}{1} + o_{x \to +\infty}(1) \xrightarrow[x \to \infty]{} 2n$$

2.
$$\sum_{i=0}^{n} {n \choose i} x^i = (x+1)^n$$

$$\sum_{i=0}^{n} \binom{n}{i} = (1+1)^n = 2^n$$

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^{i} = (1-1)^{n} = 0$$