

#### Historique

1950-1960: gestion par simple fichier texte

1960: COBOL (début de notion de base de données)

1968: premier produit de sgbdr structuré (IBM -> IDMS)

1970-74: élaboration de l'outil d'analyse (modèle entité-association)

1974-76: sgbdr avec le language SEQUEL

1976-79: début du SQL (encore baptisé QUEL et en 1977, QBE)

1981-82: IBM sort ORACLE basé sur le language SQL

1982: normalisation du SQL en tant quel tel

1984-86: BGSQL, Sybase, Informix, DBASE

1986: normalisation SQL86

1992: normalisation SQL2 (toutes les appli sont basées dessus)

1999: SQL3 (quelques fonctions orientées objet ... controversées...)

2003: SQL2003 (ajout manipulation XML)

2008: SQL2008 (améliorations mineurs)...



#### le language SQL

il est basé sur des instructions structurées.

les DDL (data definition langage)

• CREATE, ALTER, DROP

les DML (data manipulation Langage)

• INSERT, UPDATE, DELETE, SELECT

les DCL (Data control langage)

• GRANT, REVOKE

les TCL (Transaction control langage)

• SET, TRANSACTION, COMMIT



# Exemple de départ

- Gestion d'une entreprise de dépannage :
  - Dictionnaire des données :

| code         | description                     | type | taille    |
|--------------|---------------------------------|------|-----------|
| dep_id       | identifiant depanneur           | N    | entier    |
| dep_nom      | nom du depanneur                | Α    | 30        |
| dep_prenom   | prenom du depanneur             | Α    | 30        |
| dep_age      | age du depanneur                | N    | entier    |
| dep_tel      | tel du depanneur                | Α    | 14        |
| categorie    | categorie                       | Α    | 20        |
| salaire      | salaire du depanneur            | N    | Reel      |
| ent_id       | code de l'entreprise cliente    | N    | entier    |
| ent_nom      | nom de l'entreprise             | Α    | 30        |
| ent_tel      | tel de l'entreprise             | Α    | 14        |
| date_inter   | date d'intervention             | D    | JJ/MM/AAA |
| inter_action | type d'intervention             | Α    | 30        |
| inter_dist   | distance client / notre societé | N    | entier    |

MCD: à faire...

• MLD: à faire...

Déployer la base de données : à faire...



création d'une base (interdit sur les serveur mmi)

CREATE DATABASE mabase;

(votre base est déjà créée et vide sur le serveur mmi)

création d'une table

**CREATE TABLE** depanneurs(

dep\_id INT AUTO\_INCREMENT PRIMARY KEY,
dep\_nom CHAR(20),
dep\_prenom CHAR(20),
dep\_age INT,
dep\_tel CHAR(15)
);

suppression d'une table

DROP TABLE depanneurs;



```
modification d'une structure de table
   ALTER TABLE depanneurs ADD COLUMM qualif CHAR(5);
   ALTER TABLE depanneurs DROP COLUMM qualif;
   ALTER TABLE depanneurs ALTER COLUMM qualif CHAR(10);
ajout d'une données (enregistrement ou ligne)
   INSERT INTO depanneurs(dep_nom,dep_prenom,dep_age,dep_tel)
                 values('Dupond', 'Bob', 34, '02.25.42.42.42');
   INSERT INTO depanneurs
                 values(", 'Dupond', 'Bob', 34, '02.25.42.42.42');
suppression d'une ou plusieurs données
    DELETE FROM depanneurs WHERE dep_id=5;
    DELETE FROM depanneurs WHERE dep_age>20 AND age<30;
    DELETE FROM depanneurs WHERE dep_nom='Dupond';
```



#### modification d'un enregistrement

**UPDATE** depanneur

SET dep\_nom='Bubu', dep\_prenom='Toto' WHERE dep\_id=5;

UPDATE depanneur SET dep\_age=dep\_age+1 WHERE dep\_id=5;

UPDATE depanneur SET dep\_age=dep\_age+1 WHERE dep\_age>25;



afficher des enregistrements

SELECT ..... FROM ..... WHERE .....;

afficher la liste des dépanneurs ayant entre 20 et 30 ans

SELECT dep\_nom, dep\_prenom, dep\_age

FROM depanneurs

WHERE dep\_age>20

AND dep\_age<30;

**SELECT**\*

FROM depanneurs
WHERE dep\_age>20
AND dep\_age<30;



#### les jointures:

afficher la liste des interventions (date, distance et code) avec le nom du dépanneur et le tel des entreprises pour les interventinos ayant été faites à plus de 50 Km

écriture acceptée (SQL1):

SELECT dep\_nom, ent\_nom, date\_inter, inter\_id

FROM depanneurs, interventions, entreprises

WHERE inter\_dist>50

AND depanneurs.dep\_id=interventions.dep\_id

AND entreprises.ent\_id=interventions.ent\_id;



#### les jointures (suite SQL2):

SELECT dep\_nom, inter\_date, ent\_nom

**FROM interventions** 

**INNER JOIN depanneurs** 

ON interventions.\_dep\_id=depanneurs.dep\_id

**INNER JOIN entreprises** 

ON interventions.\_ent\_id=entreprises.ent\_id

WHERE inter\_dist>30;

INNER JOIN
OUTER JOIN

FULL, LEFT et RIGHT (exemple: LEFT INNER JOIN)



• les tris:

SELECT \* FROM depanneurs ORDER BY dep\_nom ASC

SELECT \* FROM depanneurs ORDER BY dep\_nom DESC



#### voir aussi:

COUNT
SUM
AVG
GROUP BY
HAVING
UNION
LIKE
AS

Illustration: Voir base http://195.83.128.55/adminsql/index.php?db=fmeuzeret\_src1

gestion des dates (INTERVAL...)
gestion des caractères spéciaux (\' \" \n ...)

• • •



SUM, AVG, AS...:

Age moyen de tous les dépanneurs SELECT AVG(dep\_age) FROM depanneurs

SELECT AVG(dep\_age) AS age\_moyen FROM depanneurs

Somme de tous les salaires mensuels des dépanneurs SELECT SUM(dep\_salaire) FROM depanneurs



#### COUNT...:

Nombre de dépanneurs de plus de 40 ans SELECT COUNT(dep\_id) FROM depanneurs WHERE dep\_age >40

GROUP BY combiné avec AVG :

Age moyen des dépanneurs par type de diplôme
SELECT dep\_diplo, AVG(dep\_age) FROM depanneurs GROUP BY dep\_diplo



# références

### mysql:

www.mysql.com/doc/fr/ www.mysql.com/doc/fr/Reference.html