Measure Energy Consumption

NAME: KARUPPAYI.C REGISTER NO:720421104026

AI_PHASE1 DOCUMENT SUBMISSION

PROJECT: Measure Energy Consumption

PROBLEM DEFINITION:

The problem at hand is to create and automated system that measure energy consumption, analyses the data, and provides visualization for informed decision-making. This solution aims to enhance efficiency, accuracy, and ease of understanding in managing energy consumption across various sectors.

DESIGN THINKING:

- 1.Data source: Identify an available dataset containing energy consumption measurements.
- 2.Data preprocessing: Clean,transform,and prepare the dataset for analysis.
- 3.Feature Extraction: Extract relevant features and metrics from the energy consumption data.
- 4.Model Development: Utilize statistical analysis to uncover trends,patterns,and anomalies in the data.
- <u>5.Visualization: Develop visualizations (graphs,charts)to present the energy consumption trends and insights.</u>
- 6. Automation; Build a script that automates data collection, analysis, and visualization processes.

EXPLANATION:

1. *Data Collection*:

- Implement sensors or devices to collect energy consumption data. These could be smart meters, IoT devices, or other sensors connected to the energy sources.

2. *Data Storage*:

- Set up a database system to store the collected data. You can use databases like MySQL, PostgreSQL, or NoSQL databases like MongoDB, depending on the volume and nature of the data.

3. *Data Analysis*:

- Develop algorithms and scripts to analyze the energy consumption data. You can use programming languages like Python with libraries like pandas and NumPy for data analysis.

4. *Visualization*:

- Create a web-based or desktop application to visualize the analyzed data. You can use libraries like Matplotlib, Plotly, or JavaScript frameworks like D3.js for interactive visualizations.

5. *User Interface*:

- Build a user-friendly interface for users to interact with the system. This could be a web application using frameworks like React, Angular, or Vue.js, or a desktop application using technologies like PyQt or Electron.

6. *Automation*:

- Implement automation scripts to schedule data collection,
analysis, and reporting tasks.
7. *Security*:
- Ensure data security and access control mechanisms to protect
sensitive energy consumption data.
8. *Reporting*:
- Generate reports and alerts based on energy consumption trends
and anomalies.
9. *Scaling*:
- Consider scalability as your system may need to handle a large
amount of data as it grows.
10. *Testing and Deployment*:
- Thoroughly test your system before deploying it in a production
environment.
11. *Maintenance and Updates*:
- Regularly maintain and update your system to ensure it remains
accurate and secure.