Endomorphisme symétrique dans un Hilbert

Ce problème est tiré en grande partie de [Randé, 2021].

I. LE CAS EUCLIDIEN

Dans cette partie $(\mathbf{E}, (\cdot|\cdot))$ désigne un espace euclidien de dimension n et u une endomorphisme symétrique de \mathbf{E} . La norme euclidienne sera sobrement notée $|\cdot|$, tandis que $||\cdot|$ désignera la norme sur $\mathcal{L}(\mathbf{E})$ subordonnée à $|\cdot|$, ainsi en désignant par S la sphère unité de \mathbf{E} , a-t-on :

$$||u|| = \sup_{x \in S} |u(x)|.$$

Nous aurons également besoin de R(u), défini par

$$R(u) = \{(u(x)|x), x \in S\}.$$

Enfin les n valeurs propres de u, nombres réels d'après le théorème spectral, distinctes ou non seront notées $\lambda_1, \lambda_2, ..., \lambda_n$.

- 1. Montrer que $\mathbf{R}(u)$ est un segment. On notera $m = \min(R(u))$ et $M = \max(R(u))$.
- 2. Montrer que $||u|| = \sup_{x \in S} |(u(x)|x)|$.
- 3. Montrer que le spectre de M contient m et M et est inclus dans [m, M].

On dit que u est positif (resp. défini positif) si par définition pour tout $x \in \mathbf{E} \setminus \{0_{\mathbf{E}}\}$,

$$(u(x)|x) \ge 0$$
 (resp. $(u(x)|x) > 0$).

L'ensemble des endomorphismes symétriques positifs (resp. l'ensemble des endomorphismes définis positifs) est un sous-espace vectoriel de $\mathcal{S}(\mathbf{E})$, noté $\mathcal{S}^+(\mathbf{E})$, (resp. $\mathcal{S}^{++}(\mathbf{E})$

- 4. Montrer que u est positif si et seulement si $\operatorname{sp}(u) \subset \mathbf{R}_+$ et que u est défini positif si et seulement si $\operatorname{sp}(u) \subset \mathbf{R}_+^*$.
- 5. Supposons que u soit positif. Montrer qu'il existe un et un seul endomorphisme w de \mathbf{E} tel que $w^2 = u$. On notera $\sqrt{u} := w$, et l'on dira que w est une racine carré de u.
- 6. montrer que $\mathcal{R}: \mathcal{S}^+(\mathbf{E}) \to \mathcal{S}^+(\mathbf{E}), v \mapsto \sqrt{v}$ est un homéomorphisme.
- 7. DÉCOMPOSITION POLAIRE Montrer que l'application

$$\mathcal{P}: \mathcal{S}^{++}(\mathbf{E}) \times \mathrm{O}(\mathbf{E}) \to \mathrm{GL}(\mathbf{E})(\mathbf{E}), (v, w) \mapsto vw.$$

est un homéomorphisme.

Soit u' un élément de $\mathcal{S}(\mathbf{E})$ semblable à u, c'est-à-dire qu'il existe un automorphisme w de \mathbf{E} tels que wu = u'w. Montrer que u' et u sont ortho-semblables, c'est-dire-qu'il existe un automorphisme orthogonal w_o , tel que $w_ou = u'w_o$.

Dans la seconde partie, c'est ces résultats et en particulier l'ultime que nous allons généraliser dans le cas de la dimension quelconque.

II. LE CAS DE ℓ^2

Dans cette partie **E** désigne l'espace des suites réelles de carré sommable ℓ^2 . Les éléments de **E** seront notés, le plus souvent, simplement x, y,, et le cas échéant un élément x de **E** s'écrira $(x(i))_{i \in \mathbb{N}}$, ce qui permétra de réserver la notation $(x_n)_{n \in \mathbb{N}}$ à une suite d'éléments de **E**, pour tout $n \in \mathbb{N}$,

$$x_n = (x_n(0), x_n(1), ..., x_n(i),) = (x_n(i))_{i \in \mathbf{N}}.$$

Nous munirons \mathbf{E} du produit scalaire $(\cdot|\cdot)$ usuel :

$$\mathbf{E} \times \mathbf{E} \to \mathbf{R} \quad (x, y) \mapsto \sum_{i=1}^{+\infty} x(i)y(i),$$

on renvoie au cours pour la définition de ce produit scalaire. La norme sur ℓ^2 associée sera notée sobrement $|\cdot|$. La norme sur $\mathcal{L}_c(\mathbf{E})$ subordonnée à cette dernière sera notée $|\cdot|$.

En fait de même que tout espace euclidien est isométrique à \mathbb{R}^n , grâce à l'application de coordonnées dans une base orthonormée, tout espace de Hilbert, c'est-à-dire tout espace vectoriel de dimension infinie, muni d'un produit scalaire tel que toute série absolument convergente pour la norme associée soit convergente est isométrique à l'espace ℓ^2 , pour peu qu'il admette une partie dense dénombrable et donc qu'il possède une suite orthonormée totale. Nous traitons en fait le cas presque général des espaces de Hilbert.

1. Soit $\sum x_n$ une série d'éléments de **E**. On suppose que $\sum x_n$ converge absolument, c'est-àdire que la série réelle $\sum |x_n|_2$ converge. Montrer que $\sum x_n$ converge dans **E**, autrement dit que la suite $(S_n)_{n\in\mathbb{N}}$ converge, où, pour tout entier $n\geq 0$, l'on a noté $S_n=\sum_{p=0}^n x_p$.

On pourra pour commencer étudier pour un entier naturel k, la convergence de la série réelle $\sum u_n(k)$.

Par u nous désignerons un endomorphisme de ${\bf E}$, pour le moment quelconque que nous prendrons continu.

Soit un réel λ . On adopte la terminologie suivante :

- le réel λ est dit valeur spectrale de u si $u \lambda$ id est non bijective. l'ensemble des valeurs spectrales de u est appelé spectre de u et noté $\operatorname{sp}(u)$;
- si $u \lambda$ id est non injectif on dit que λ est une valeur propre de u on notera VP(u) l'ensemble des valeurs propres de u;
- enfin si le réel λ est tel que $u \lambda$ id soit inversible on dit que ce réel est une valeurs résolvantes de u, l'ensemble des valeurs résolvantes sera noté $\varrho(u)$.

Comme dans la première partie, on définit $R(u) := \{(u(x)|x), x \in S\}.$

2. UN EXEMPLE —

Soit D_{\leftarrow} le décalage à gauche : D_{\leftarrow} : $\ell^2 \to \ell^2$; $u \mapsto (u(1), u(2), ..., u(n+1),)$. Montrer que VP(D_{\leftarrow}) =] -1,1[. Montrer que 1 est une valeur spectrale de D_{\leftarrow} .

3. Adjonction —

Montrer que pour tout élément v de $\mathcal{L}_c(\mathbf{E})$ il existe un et un seul élément de $\mathcal{L}_c(\mathbf{E})$, noté v^* tel que :

$$\forall (x, y) \in \mathbf{E}^2, (v(x)|y) = (x|v^*(y)).$$

Indication. On utilisera l'exercice sur la représentation des formes linéaires (théorème de Rietz).

On appelle v* adjoint de v. On dit que v est symétrique si par définition $v=v^*$ et orthogonal si v est inversible d'inverse v^* . On note $\mathcal{S}(\mathbf{E})$ l'ensemble des éléments de $\mathcal{L}_c(\mathbf{E})$ symétrique et O(E) celui des des éléments de $\mathcal{L}_c(\mathbf{E})$ orthogonaux.

- 4. (a) Montrer que toute série à valeurs dans $\mathcal{L}_c(\mathbf{E})$ absolument convergente, converge dans $(\mathcal{L}_c(\mathbf{E})), \|\cdot\|$).
 - (b) Montrer que l'ensemble $GL(\mathbf{E})$ des éléments inversibles de $\mathcal{L}_c(\mathbf{E})$ dont l'inverse ¹ est dans $\mathcal{L}_c(\mathbf{E})$ est un ouvert.

^{1.} En fait la continuité de l'inverse est automatique.

- 5. Soit λ un réel
 - (a) On suppose : $\lambda > ||u||$. Montrer que $\lambda \in \rho(u)$.
 - (b) Montrer que $\varrho(u)$ est ouvert.
 - (c) Montrer que sp(u) est un compact qui contient l'adérence de VP(u).

Dans la suite on suppose que u est symétrique.

- 6. (a) Montrer que R(u) est un segment. On notera $m = \min(R(u))$ et $M = \max(R(u))$ et $\gamma = \sup_{x \in S} |(u(x)|x)|$.
 - (b) Montrer que $m \in [-\|u\|, \|u\|]$ et $M \in [-\|u\|, \|u\|]$ et que $\gamma \leq \|u\|$.
 - (c) Soient λ un réel et x et y des éléments de \mathbf{E} . Montrer que :

$$\lambda^{2}(u(y)|y) + 2\lambda(u(y)|x) + (u(x)|x) < \gamma|x+y|^{2}$$

En déduire :

$$4\lambda(u(y), x) \le 2\gamma(|x|^2 + |\lambda||y|^2).$$

- (d) En déduire que $||u|| = \gamma$. Montrer que ||u|| = -m ou M.
- 7. Nous allons montrer que m et M sont dans le spectre de U.
 - (a) Soit v = u mid. Montrer que pour tout $(x, y) \in \mathbf{E}$,

$$|(v(x)|y)|^2 \le (v(x)|x)(v(y),y)$$

- (b) Justifier que l'on dispose d'une suite $(x_n)_{n\in\mathbb{N}}$ d'élément de S tel que $(u(x_n)|x_n)\underset{n\to+\infty}{\longrightarrow} m$. Quelle est la limite de la suite $((v(x_n)|x_n))_{n\in\mathbb{N}}$?
- (c) Montrer que pour tout entier $n \geq 0$,

$$|(v(x_n)|v(x_n))|^2 \le (v(x_n)|x_n)(v^2(x_n)|v(x_n)).$$

en déduire que $|v(x_n)| \underset{n \to +\infty}{\to} 0$.

- (d) Conclure.
- 8. RACINE CARRÉE D'UN OPÉRATEUR SYMÉTRIQUE POSITIF—

Dans cette question on suppose que u est un endomormisme symétrique positif, c'est à dire que pour tout $(x, y) \in \mathbf{E}^2$,

$$(u(x)|y) = (x|u(y) \text{ et } (u(x)|x) \ge 0.$$

L'ensemble des endomorphismes symétriques positifs de ${\bf E}$ sera noté ${\cal S}^+.$

Écrivons le développement en série entière de l'application $x \mapsto \sqrt{1-x}$ sous la forme :

$$\forall x \in]-1,1[, \sqrt{1-x} = \alpha(0) - \sum_{k=1}^{+\infty} \alpha(k)x^k$$

- (a) Que vaut $\alpha(0)$? Montrer la positivité des $\alpha(n)$. Montrer que $\frac{\alpha(k+1)}{\alpha(k)} = 1 \frac{c}{k} + \underset{k \to +\infty}{\text{o}} \left(\frac{1}{k}\right)$, où c est un réel à déterminer. En déduire la convergence de la série $\sum \alpha(k)$.
- (b) Dans cette sous question on suppose que u est de norme inférieure ou égal à 1 : $||u|| \le 1$. On notera $v := \mathrm{id} u$.

i. En étudiant R(u) montrer que $\|\mathrm{id} - u\| \le 1$. En déduire la convergence de la série $\alpha(0)\mathrm{id} - \sum \alpha(k)v^k$. On notera la somme de cette série w:

$$w = \alpha_0 \mathrm{id} - \sum_{k=1}^{+\infty} \alpha(k) v^k$$

ii. Pour tout entier $k \geq 0$ on pose c(k) le terme général de la série produit de Cauchy de la série $\alpha_0 - \sum_{k \geq 0} \alpha(k)$ par elle même. Montrer que la série d'éléments

de \mathbf{E} , $\sum c(k)v^k$ converge, puis que :

$$w^2 = u$$
.

iii. Montrer que w est un endomorphisme symétrique et positif.

La norme de u est de nouveau quelconque.

- (c) Déduire de ce qui précède l'existence d'un élément w_1 de \mathcal{S}^+ tel que $w_1^2=u$
- (d) Soit w_2 un endomorphisme de **E** symétrique et positif tel que $w_2^2 = u$.
 - i. Soit $y \in \mathbf{E}$ tel que $(w_i(y), y) = 0$, pour i = 1 ou 2. Montrer que pour i = 1, 2 on $a : w_i(y) = 0$
 - ii. En déduire que $w_2(w_2 w_1) = 0$ et $w_1(w_2 w_1) = 0$
 - iii. Conclure que $w_1 = w_2$.

On dit que w_1 est la racine carrée de u et l'on n'hésite pas à noter : $w_1 = \sqrt{u}$.

(e) Montrer que l'application

$$S^+ \to S^+ ; v \mapsto \sqrt{v}$$

est continue.

Remarque. On a donc immédiatement que

$$\mathcal{S}^+ \to \mathcal{S}^+ \; ; \; v \mapsto v^2$$

est un homéomorphisme.

9. DÉCOMPOSITION POLAIRE —

On note \mathcal{S}^{++} l'ensemble des éléments de \mathcal{S}^{++} inversible.

- (a) Soit $v \in GL(\mathbf{E})$ montrer que vv^* est élément de \mathcal{S}^{++} .
- (b) montrer que l'application

$$\mathcal{S}^{++} \times \mathrm{O}(\mathbf{E}) \to \mathrm{GL}(\mathbf{E}) \; ; \; (a, v) \mapsto av.$$

est un homéomorphime.

10. Ortho-similitude —

Soient u_1 et u_2 des élément de $\mathcal{S}(\mathbf{E})$, et w un élément de $\mathrm{GL}(\mathbf{E})$. On suppose que $wu_2 = u_1w$.

La question précédente fournit $s \in \mathcal{S}^{++}(\mathbf{E})$ et $w_o \in O(\mathbf{E})$ tels que $w = w_o s$.

- (a) Montrer que s^2u_1 est symétrique et en déduire que u et s^2 commutent.
- (b) Montrer que s commute avec u_1 .

 Indication. On pourra vérifier que s est élément de l'adhérence de $\mathbf{R}[s^2]$ dans l'espace vectoriel normé $(\mathcal{S}(E); \|\cdot\|)$.
- (c) Montrer que l'égalité :

$$w_{0}u_{1}=u_{2}w_{0}.$$

Références

[Randé, 2021] RANDÉ, b. (2021). Autoadjoints semblables dans un hilbert. RMS, janvier(2):24–30