Solution for HW 2

- 1. (a). Note that $\mu(\mathbb{Q} \cap (0,1)) = \mu(\mathbb{Q}^c \cap (0,1)) = 0$ but $\mu((0,1)) = 1$. Thus μ is not finitely additive on \mathcal{B} . (b). Consider $B = (a_1, b_1] \cup \cdots \cup (a_n, b_n]$ and $B' = (a'_1, b'_1] \cup \cdots \cup (a'_n, b'_n]$ disjoint. We can check that at most one of them is equal to 1 (otherwise $\exists \epsilon > 0$ s.t. $(0, \epsilon) \in B \cap B'$, which contradicts disjointness). This leads to $\mu(B) + \mu(B') = \mu(B \cup B') : \mu$ is finitely additive on \mathcal{B}_0 . In addition, for $k \in \mathbb{N}$, $\mu((\frac{1}{k+1}, \frac{1}{k}]) = 0$ but $\mu(\cup_{k \in \mathbb{N}} (\frac{1}{k+1}, \frac{1}{k}]) = \mu((0, 1)) = 1 : \mu$ is not countably additive on \mathcal{B}_0 .
- **2.** It is straightforward that countable additivity implies finite additivity and continuity from above (in particular, if $A_n \downarrow \emptyset$ then $\mu(A_n) = 0$). Conversely, consider $(A_n)_{n \in \mathbb{N}}$ disjoint. We have $\mu(\cup_{n \in \mathbb{N}} A_n) = \mu(\cup_{n \in \mathbb{N}} A_n \setminus \cup_{n \leq N} A_n) + \sum_{n \leq N} \mu(A_n)$ by finite additivity. Note that the first term goes to 0 and the second converges to $\sum_{n \in \mathbb{N}} \mu(A_n)$ by hypotheses. Thus we obtain countable additivity.
- **3.** Take $S = \{1, 2, 3, 4\}$ and $S = \mathcal{P}(S)$. Consider $\mathcal{A} = \{\{1, 2\}, \{1, 3\}\}$, we have $S = \sigma(\mathcal{A})$. Set $\mu(\{1\}) = \mu(\{4\}) = \frac{1}{6}$, $\mu(\{2\}) = \mu(\{3\}) = \frac{1}{3}$ and $\nu(\{1\}) = \nu(\{2\}) = \nu(\{3\}) = \nu(\{4\}) = \frac{1}{4}$ s.t. $\mu \neq \nu$ but $\mu = \nu$ on \mathcal{A} .
- **4.** Denote $\mathcal{T} = \{B \in \mathcal{S} \text{ s.t. } \forall \epsilon > 0, \exists A \in \mathcal{F}, \mu(B \triangle A) < \epsilon\}$. Clearly, $\emptyset \in \mathcal{T}$. Moreover, \mathcal{T} is closed under complement since $B^c \triangle A^c = B \triangle A$. Now consider $B = \bigcup_n B_n$ where $B_n \in \mathcal{T}$ for $\forall n$. Given $\epsilon > 0$, take $N \in \mathbb{N}$ s.t. $\mu(B \setminus \bigcup_{n \leq N} B_n) \leq \frac{\epsilon}{2}$. Then for $n \leq N$, take A_n s.t. $\mu(B_n \triangle A_n) < \frac{\epsilon}{2N}$. Since $\bigcup_{n < N} B_n \triangle \bigcup_{n < N} A_n \subset \bigcup_{n \leq N} (B_n \triangle A_n)$. We have then $\mu(B \triangle \bigcup_{n \leq N} A_n) < \epsilon$. Therefore, \mathcal{T} is a σ -field containing \mathcal{F} , which permits to conclude.

Remark: For those who have already read the **Appendix A.1** of Durrett's book, it is also possible to appeal to the notion of outer measure to solve the problem.

5. First we approximate g by simple functions with bounded intervals. Note that $\exists \sum_{n=1}^{N} x_n 1_{A_n}$ where $\mu(A_n) < \infty$ s.t. $\int_0^1 |g - \sum_{n=1}^{N} x_n 1_{A_n}| dx < \frac{\epsilon}{4}$. According to $\mathbf{Q}\mathbf{4}$, there exists finite disjoint union B_n s.t. $\mu(A_n \triangle B_n) \leq \frac{\epsilon}{4Nx_n}$. Thus, $\int_0^1 |g - \sum_{n=1}^{N} x_n 1_{B_n}| dx < \frac{\epsilon}{2}$. WLOG, we suppose that $B_n = (a_n, b_n]$. Then take f_{δ} equal to 1 on $(a_n, b_n]$, 0 outside $(a_n - \delta, b_n + \delta]$ and piecewise linear elsewhere. Remark that $\int_0^1 |f_{\delta} - \sum_{n=1}^{N} x_n 1_{B_n}| dx \to 0$ as $\delta \to 0$. Take $f = f_{\delta_{\epsilon}}$ s.t. $\int_0^1 |f_{\delta_{\epsilon}} - \sum_{n=1}^{N} x_n 1_{B_n}| dx < \frac{\epsilon}{2}$. Then $\int_0^1 |g - f| dx < \epsilon$.

Remark: Some powerful measure theory (or functional analysis) theorems can also be applied to conclude: Urysohn's lemma and Luzin's theorem among others.