Information System

Module Code: INFS-111

Programs: BCSS/BBIT

Data

- Data Consists of the raw facts and figures that are processed into Information.
- Most people mistaken Data being a physical object.

Characteristics of Data

- Data have a true value
- Data needs to be represented
- Data can be encoded and decoded

Representation of Data

- Data in computers is dictated using electronic circuit inside the computer and can only take **two** different **states**. These states include **ON** and **OFF**. This indicates whether electric charge is present **(ON)** or **NOT**.
- That's the reason why computers are called **Binary** because they only work with **2** values.

Representation of Data

- Data only exists if it is represented in some form a Matter or Energy.
- Storage Medium-The physical encapsulation of the data
- A number system that has just two unique digits, 0 and 1
 - A single digit is called a bit (binary digit)
 - A bit is the smallest unit of data the computer can represent
 - By itself a bit is not very informativeA Bit is the smallest unit of Information

Representation of Data

- What is a Byte?
- ¿ Eight bits are grouped together to form a byte
- Os and 1s in each byte are used to represent individual characters such as letters of the alphabet, numbers, and punctuation

8-bit byte for the number 3

8-bit byte for the capital letter T

• Expanding Decimal(base10) Numbering System

- Expanding Binary Number System
- Digital computers internally use the binary (base 2) number system to represent data and perform arithmetic calculations.

- Converting Decimal to Binary
- The answer 99 = 1100011.
- The answer 13 = 1101

Converting Binary to Decimal

- Binary Addition
- Adding two binary numbers together is easy, keeping in mind the following rules:

```
(1) 0 + 0 = 0
```

(2)
$$0 + 1 = 1$$

$$(3)$$
 1 + 0 = 1

$$(4)$$
 1 + 1 = 10

Binary Addition

- Subtracting Decimal using complements
- (4589-322)
- 1. First, we'll compute the four digit nine's complement of the subtrahend 0322 (we must add the leading zero in front of the subtrahend to make it the same size as the minuend):

- Subtracting Decimal using complements
- 2. Add 1 to the nine's complement of the subtrahend (9677) giving the ten's complement of subtrahend (9678):

Subtracting Decimal using complements

3. Add the ten's complement of the subtrahend to the minuend giving 14267. Drop the leading 1, effectively performing the subtraction of 4589 - 0322 = 4267.

The answer can be
$$c^+$$
 $\begin{bmatrix} 4 & 5 & 8 & 9 \\ 9 & 6 & 7 & 8 \end{bmatrix}$ ing sure that $322 + 4267 = 4589$.

- Subtracting Binary using complements
- 1. Compute the one's complement of 1001011₂ by subtracting each digit from 1

- Subtracting Binary using complements
- 2. Add 1 to the one's complement of the subtrahend, giving the two's complement of the subtrahend:

1	0	1	1	0	1	0 +	0
1	0	1	1	0	1	0	1

3. Add the two's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference:

The answer can be checked by making sure that $1001011_2 + 10001010_2 = 11010101_2$.

Decimal	Octal	Decimal	Octal
0	0	16	20
1	1	17	21
2	2	18	22
3	3	19	23
4	4	20	24
5	5	21	25
6	6	22	26
7	7	23	27
8	10	24	30
9	11	25	31
10	12	26	32
11	13	27	33
12	14	28	34
13	15	29	35
14	16	30	36
15	17	31	37

Converting Octal to Decimal

- Converting Decimal to Octal
- Convert the decimal number 465 to its octal equivalent

$$\begin{array}{c|c}
0 & 7 \\
8 & 7
\end{array}$$

$$\begin{array}{c|c}
7 & 2 \\
8 & 58
\end{array}$$
START
HERE \Rightarrow 8 | 465

• The answer, reading the remainders from top to bottom, is 721, so 465 = 721

- Converting Decimal to Octal
- Convert the decimal number 2548 to its octal equivalent

Octal Addition

Example 1: Add 543₈ + 121₈ (no carry required):

Example 2: Add 7652₈ + 4574₈ (carries required):

Octal Subtraction using Complement

Example 1: Compute 7526₈ - 3142₈

(1) Compute the seven's complement of 3142₈ by subtracting each digit from 7:

• Octal Subtraction using Complement

(2) Add 1 to the seven's complement of the subtrahend, giving the eight's complement of the subtrahend:

Octal Subtraction using Complement

(3) Add the eight's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference:

So $7526_8 - 3142_8 = 4364_8$

The answer can be checked by making sure that $3142_8 + 4364_8 = 7526_8$.

Decimal	Hexadecimal	Decimal	Hexadecimal
0	0	16	10
1	1	17	11
2	2	18	12
3	3	19	13
4	4	20	14
5	5	21	15
6	6	22	16
7	7	23	17
8	8	24	18
9	9	25	19
10	A	26	1A
11	В	27	1B
12	C	28	1C
13	D	29	1D
14	E	30	1E
15	F	31	1F

Converting Hexadecimal to Decimal

Example 1: Convert the hexadecimal number 20B3₁₆ to its decimal equivalent.

Converting Hexadecimal to Decimal

Example 2: Convert the hexadecimal number 12AE5₁₆ to its decimal equivalent.

Converting Decimal to Hexadecimal

Example 1: Convert 9263₁₀ to its hexadecimal equivalent: 2 0 The answer, reading the remainders from top to bottom, is 242F, so $9263_{10} = 242F_{16}$. 36 2 578 \mathbf{F} START

Addition of Hexadecimal

Subtraction using Complement

Example 1: Compute ABED₁₆ - 1FAD₁₆

(1) Compute the 15's complement of 1FAD₁₆ by subtracting each digit from 15:

Subtraction using Complement

(2) Add 1 to the 15's complement of the subtrahend, giving the 16's complement of the subtrahend:

Subtraction using Complement

(3) Add the 16's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference:

So $ABED_{16} - 1FAD_{16} = 8C40_{16}$

The answer can be checked by making sure that $1FAD_{16} + 8C40_{16} = ABED_{16}$.

Reading Assignment

- Please read from **Discovering Information Systems** book on the following topics:
- Representing Data page 11-14
- Measuring Data page 15-16
- Information 16-18