Problem

You are given arrays \boldsymbol{A} and \boldsymbol{B} with \boldsymbol{N} non-negative integers each.

An array X of length N is called good, if:

- $\bullet\;$ All elements of the array X are non-negative;
- $X_1 \mid X_2 \mid \ldots \mid X_i = A_i$ for all $(1 \leq i \leq N)$;
- $X_i \& X_{(i+1)} \& \dots \& X_N = B_i$ for all $(1 \le i \le N)$.

Find the ${\bf maximum}$ bitwise XOR of all elements over all good arrays ${\it X}.$

More formally, find the maximum value of $X_1 \oplus X_2 \oplus \ldots X_N$, over all good arrays X.

It is guaranteed that at least one such array \boldsymbol{X} exists.

Note that |,&, and \oplus denote the bitwise or, and, and xor operations respectively.

Input Format

- \bullet The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of multiple lines of input.
- $\circ~$ The first line of each test case contains one integer N the size of the array.
- $\circ~$ The next line contains N space-separated integers describing the elements of the array A.
- $\circ~$ The next line contains N space-separated integers describing the elements of the array B.

Output Format

For each test case, output on a new line, the ${\bf maximum}$ bitwise XOR of all elements over all good arrays X.

- $1 \le T \le 10^5$
- $1 \le N \le 10^5$
- $0 \le A_i < 2^{30}$
- $0 \leq B_i < 2^{30}$
- ullet It is guaranteed that at least one such array X exists.
- Sum of N over all test cases is less than $3\cdot 10^5\,.$

Sample 1:

Input	Output 🗀
2	1
3	3
033 022	
022	
2	
23	
01	

Explanation:

 $\mbox{Test case 1: An optimal $good$ array is $X=[0,3,2]$. }$

- $\bullet \ \ \text{For} \ i=1 \text{:} \ A_1=X_1=0 \ \text{and} \ B_1=X_1 \ \& \ X_2 \ \& \ X_3=0.$
- For i=2: $A_2=X_1\mid X_2=3$ and $B_2=X_2$ & $X_3=2$.
- $\bullet \ \ \text{For} \ i=3\text{:} \ A_3=X_1 \ | \ X_2 \ | \ X_3=3 \ \text{and} \ B_3=X_3=2.$

The XOR of all elements of X is $0\oplus 3\oplus 2=1$. It can be proven that this is the maximum XOR value for any X.

Test case 2: An optimal good array is X=[2,1].

- $\bullet \ \ \text{For} \ i=1\text{:}\ A_1=X_1=2 \ \text{and} \ B_1=X_1 \ \& \ X_2=0.$
- For i=2: $A_2=X_1 \mid X_2=3$ and $B_2=X_2=1$.

The XOR of all elements of X is $2 \oplus 1 = 3$. It can be proven that this is the maximum XOR value for any X.

