AE 234 Aircraft Propulsion Tutorial 2

- I. An airbreathing engine flies at Mach $M_a=2.0$ at an altitude where the ambient temperature is $T_a=-50^oC$ and ambient pressure is $p_a=10$ kPa. The airflow rate to the engine is 25 kg/s. The fuel flow rate is 3% of airflow rate and has a heating value of 42,800 kJ/kg. Assuming the exhaust speed is $V_e=1050$ m/s, and the nozzle is perfectly expanded, i.e., $p_e=p_a$, calculate
 - ram drag ($\mathcal{D}_{ram}=\dot{m}_aV_a$) and gross thrust ($\mathcal{T}_g=\dot{m}V_e+(p_e-p_a)\,A_e$) in kN
 - uninstalled thrust ($\mathcal{T} = \mathcal{T}_g \mathcal{D}_{ram}$) in kN
 - TSFC in mg/N s and kg/hr kgf
 - thermal, propulsive and overall efficiencies

Gross Thrust: 27.04 kN, Ram Drag: 14.97 kN, Net Thrust: 12.07 kN TSFC is 62.15 mg/N-s, $\eta_p=0.73,~\eta_{th}=0.29,~\eta_{ov}=0.21$

2. For a propeller driven aircraft, we have the following parameters:

Gain in flow kinetic power:
$$\Delta \dot{\mathcal{E}} = 0.5 \left(\dot{m} V_e^2 - \dot{m}_a V_a^2 \right)$$
 Propeller Efficiency: $\eta_{prop} = \frac{\mathcal{T}_{prop} V_a}{\mathcal{P}_{s,prop}}$ Propulsive Efficiency: $\eta p = \frac{\mathcal{T} V_a}{\mathcal{P}_{s,prop} + \Delta \dot{\mathcal{E}}}$

A turbo-propeller-driven aircraft is flying at $V_a=150~m/s$ and has a propeller efficiency of $\eta_{pr}=0.75$. The propeller thrust is $\mathcal{T}_{prop}=5000~N$ and the airflow rate through the engine is 5~kg/s. The nozzle is perfectly expanded and produces 1000~N of gross thrust. Calculate

- shaft power delivered to the propeller (in kW)
- the nozzle exit velocity in m/s (neglect f)
- Compare the gain in flow kinetic power of the exhaust with the shaft power \mathcal{P}_s
- · Obtain the propulsive efficiency

Shaft Power is 1000.0 kW, Exhaust velocity is 350.0 m/s Gain in kinetic power is 250.0 kW, $\eta_p=0.72$

- 3. A turbojet-powered aircraft cruises at $V_a=300\ m/s$ while the engine produces an exhaust speed of $600\ m/s$. The air mass flow rate is $100\ kg/s$ and the fuel mass flow rate is $2.5\ kg/s$. The fuel heating value is $\mathcal{Q}_R=42\ MJ/kg$. Assuming that the nozzle is perfectly expanded, calculate
 - ullet engine ram drag, gross thrust and uninstalled thrust in kN
 - engine thrust-specific fuel consumption (TSFC) in mg/s-kN

- · engine thermal and propulsive efficiencies
- aircraft range R for L/D=10 and the $M_{init}/M_{final}=1.25$

Ram Drag is 30.0 kN, Gross Thrust is 61.5 kN, Net Thrust is 31.5 kN TSFC = 79 mg/N-s , $\eta_p=0.667$, $\eta_{th}=0.129$, Range is 860.0 km

- 4. Derive the expression for the range of an aircraft if its weight decreases from W_{ini} to W_{fin} during cruise. Consider the following flight scenarios:
 - · Constant speed, attitude
 - · Constant attitude, altitude
 - · Constant altitude, speed
- 5. The unit of lbm/lbf hr is common for TSFC. Show that 1lbm/lbf hr = 28.3 gm/kN s
- 6. Verify that the fuel-air ratio for the stoichiometric combustion of a hydrocarbon fuel of the approximate composition $C_{17n}H_{36n}$ is nearly 0.068.
- 7. We wish to investigate the range of a slender supersonic aircraft where its lift-to-drag ratio as a function of flight mach number is described by

$$\frac{\mathcal{L}}{\mathcal{D}} \approx 3 \frac{M_a + 3}{M_a}$$

Varying the TSFC between 1.0-2.0 lbm/hr-lbf, plot the variation of range, R, for the fligh mach number ranging between 2.0 and 4.0. You can assume that speed of sound is 333m/s, and the aircraft initial to final weight ratio is $\mathcal{M}_0/\mathcal{M}_f=2$.

Figure 1: Problem 7: Range of supersonic bomber