LDL Meta-analysis

SMED 8020

Brooke Wolford

PhD Candidate

In choosing software for GWAS consider...

- Is your trait binary or quantitative?
 - Logistic vs linear regression
- Is your sample size large and what computational capability do you have?
 - Memory and time constraints
- Is your sample related?
 - Subjects are not independent
- Is your sample geographically/ancestrally homogeneous?
 - Population stratification

SAIGE

Scalable and Accurate Implementation of GEneralized mixed model

Association Results (p-values...)

Step 2: Perform association test for each genetic marker

Apply SPA to score tests

genetic variants to be tested

(**M** genetic variants)

Meta-Analysis

- Alleviates concerns regarding privacy of study participants because works on summary statistics instead of individual level data
- Increase statistical power by increasing sample size
 - As efficient as pooling individual level data
- Analyze different ancestries separately before combining to avoid population stratification

Assumptions

- Each sub-study has controlled type 1 error and proper QC
- No sample overlap between studies
 - Methods in development for this situation (https://genome.sph.umich.edu/w/images/7/7b/METAL_sample_overlap_method_2017-11-15.pdf)
- Fixed or random effects meta-analysis have their own assumptions
- Estimated beta value is in terms of the same allele, consistent direction

Random vs Fixed effects

Fixed: one true effect size that underlies all the studies in the analysis Random: distribution of true effect sizes, effect size in each study is different with means assumed to be chosen from Gaussian

Fixed effects

Random effects

METAL

Table 1. Formulae for meta-analysis

	Analytical strategy	
	Sample size based	Inverse variance based
Inputs	$P_i - P$ -value for study i	β_i - effect size estimate for study i
	Δ_i - direction of effect for study i	se_i - standard error for study i
Intermediate Statistics	Study i $Z_i = \Phi^{-1} \left(1 - \frac{pi}{2} \right) * \operatorname{sign}(\Delta_i)$ $w_i = \sqrt{N_i}$	$w_i = 1/SE_i^2$ $se = \sqrt{1/\sum w_i}$
		$\beta = \sum_{i} \beta_{i} w_{i} / \sum_{i} w_{i}$
Overall Z-Score	$Z = \frac{\sum_{i} Z_{i} w_{i}}{\sqrt{\sum_{i} w_{i}^{2}}}$	$Z = \beta/SE$
Overall P-value	$\sqrt{\sum_{i}w_{i}^{2}}$ $P=2\Phi(-$	-Z)

Other GWAS meta-analysis software

- GWAMA (Genome-Wide Association Analysis)
- METASOFT
- MANTRA (Meta-Analysis of Trans-ethnic Association Studies)
- MR-MEGA (Meta-Regression of Multi-Ethnic Genetic Association)