Визуализация мышечных сокращений

Выполнил: Кузин Антон Андреевич группа ИУ7-52Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи работы

Цель – разработать программу, моделирующую мышечные сокращения.

Задачи:

- 1. Выбрать алгоритмы машинной графики, с помощью которых будет визуализирована трёхмерная сцена и построена анимация.
- 2. Выбрать метод для визуализации мышц.
- 3. Спроектировать архитектуру программы и структуры данных для хранения модели.
- 4. Реализовать выбранные алгоритмы.

Выбор метода моделирования мышц

_	Особенности		
Метод	Учитывает силу сокращения	Моделирует изометрическое и изотоническое сокращение	Представляет возможность моделирования всех форм мышц
Использование деформируемых эллипсоидов	Нет	Да	Да
Обобщенная цилиндрическая модель	Нет	Да	Да
Mass-spring system	Да	Нет	Нет, только вытянутых
Метод конечных элементов	Да	Да	Да

Изотоническое сокращение

Выбор метода представления объекта в пространстве

Метод	Особенности			
	Информативность	Затраты памяти на хранение	Возможные дефекты	
Каркасный	Только о ребрах объекта	Вершин и связей	Неизвестна глубина объекта	
Граничный	О поверхности объекта	Вершин, связей и цвета грани	Аппроксимация плоскими гранями ведет к погрешности	
Сплошной	О поверхности и внутреннем устройстве	Трёхмерной матрицы, каждый элемент которой хранит цвет и прозрачность	Аппроксимация элементами ведет к погрешности	

Выбор алгоритма удаления невидимых граней

	Критерии			
Алгоритм	Вычислительная трудоёмкость	Рабочее пространство	Многократное изображение пикселя	Обрабатывает пустые области
Алгоритм Робертса	Растёт как квадрат числа объектов	Объектное пространство	Нет	Нет
Алгоритм Варнока		Пространство изображения	Нет	Нет
Алгоритм, использующий Z-буфер	Не более чем линейная	Пространство изображения	Да	Нет
Алгоритм трассировки лучей	Линейная от сложности сцены	Объектное пространство	нет	Да

Выбор метода закраски

Метод	Критерии		
	Вычислительные затраты	Дефекты изображений	
Метод простой закраски	на вычисление интенсивности в одной точке	резкие переходы между гранями	
Метод Гуро	на интерполяцию интенсивности	полосы Маха и некоторые рёбра могут казаться сглаженными	
Метод Фонга	на интерполяцию нормалей	отсутствуют	

Выбор метода отображения полигонов для морфинга

Метод	Критерии		
	Учитывает возможные перестановки вершин	Устанавливает однозначное соответствие	Требует сортировки рёбер
Ближайшего соседа	Нет	Нет	Нет
Сортировки рёбер	Да	Да	Да

Общий алгоритм работы программы

9

Модель скелетных мышц с использованием деформируемых эллипсоидов

Объем эллипсоида рассчитывается по формуле:

$$v = \frac{4\pi abc}{3}$$

Полагая l' новой длиной мышцы, r = a/b, новые параметры вычисляются по формулам:

$$c' = \frac{l'}{2}, b' = \sqrt{\frac{3v}{4\pi rc'}}, a' = b'r$$

При изометрическом сокращении для соотношение г задана формула:

$$r = (1 - t + kt)r_n$$

Простая модель освещения

Формула Ламберта:

$$I = I_a k_a + I_l k_d cos\theta, 0 \le \theta \le \frac{\pi}{2}$$

- Первое слагаемое фоновая составляющая
- Второе слагаемое рассеянная составляющая

Результаты исследования

Постановка эксперимента

- Проводился на компьютере с параметрами Intel(R) Core(TM) i5-8250, 8гб оперативной памяти, операционная система Windows 10.
- Количество полигонов растёт по формуле $12 * 4^n$, $1 \le n \le 5$
- Представлено среднее время отображения 1 кадра для 5 замеров

Заключение

Разработана программа, моделирующая мышечные сокращения.

Решены поставленные задачи:

- 1. Выбраны алгоритмы машинной графики, с помощью которых была визуализирована трёхмерная сцена и построена анимация сокращения.
- 2. Выбран метод для визуализации мышц.
- 3. Спроектированы архитектура программы и структуры данных для хранения модели.
- 4. Реализованы выбранные алгоритмы.