Training Data Generation

Current Idea

- 1. Given a set of parameters for GARCH (in Physical measure)
- 2. Given the initial asset price S_0 , use Monte Carlo method to simulate a path of asset prices,

```
S_1, S_2, ... S_N, with say N = 500 (Under P measure)
```

3. Select last 30-50 days on the path, for each day, use the selected asset price (under **Q**) as the initial price to generate American option prices with various strike prices (11-17) and maturities (7 days to 1 year). **Pay attention to the transformation from the physical**measure to the risk-neutral measure.

Pseudo Code

```
% Pseudo Code of Pricing American Options By the Willow Tree and Monte Carlo Method
% 1. Initialize Option Parameters
T = ...; % Time to maturity
K = ...; % Strike price
r = ...; % Risk-free rate
S0 = ...; % Initial asset price
N = ...; % Number of time steps for simulation (ex. 500)
M = ...; % Number of Monte Carlo paths
delta = T/N; % Time step
h0 = ...; % Initial volatility
% 2. Initialize HN-GARCH parameters under P Measure
alpha = ...;
beta = ...;
omega = ...;
gamma = ...;
lambda = ...;
% 3. Simulate paths using Monte Carlo simulation under P measure
% Number of paths will be N so we simulate a path of asset prices
% from S1, S2, ... S_N
points = N + 1; % number of points
Z = randn(points + 1, N);
Z1 = randn(points, N);
ht = nan(points + 1, N);
ht(1,:) = h0*ones(1,N);
Xt(1,:) = \log(S0)*ones(1,N);
for i=2:points
    ht(i,:) = omega+alpha*(Z(i-1,:)-gamma*sqrt(ht(i-1,:))).^2+beta*ht(i-1,:);
    Xt(i,:) = Xt(i-1,:)+(r-0.5*ht(i,:))+sqrt(ht(i,:)).*Z(i,:);
ht(i+1,:) = omega+alpha*(Z(i,:)-gamma*sqrt(ht(i,:))).^2+beta*ht(i,:);
S = \exp(Xt);
% 4. Risk-neutralize GARCH parameters (Q measure)
eta = ...;
omega_Q = omega / (1-2*alpha*eta);
gamma Q = gamma*(1-2*alpha*eta);
alpha_Q = alpha / (1-2*alpha*eta)^2;
lambda Q = lambda*(1-2*alpha*eta);
rho_Q = lambda_Q + gamma_Q + 1/2;
```

```
% 5. Initialize Willow Tree parameters
m_h = ...;
m_ht = ...;
m_x = \dots;
gamma_h = ...;
gamma x = ...;
% 6. Construct the willow tree for ht (using Q measure parameters)
[hd, qhd] = genhDelta(h0, beta_Q, alpha_Q, gamma_Q, omega_Q, m_h, gamma_h);
nodes_ht = TreeNodes_ht_HN(m_ht, hd, qhd, gamma_h, alpha_Q, beta_Q, gamma_Q, omega_Q,
N + 1);
[P_ht_N, P_ht] = Prob_ht(nodes_ht, h0, alpha_Q, beta_Q, gamma_Q, omega_Q);
% 7. Construct the willow tree for Xt (using Q measure parameters)
[nodes Xt, mu, var, k3, k4] = TreeNodes logSt HN(m \times n, gamma \times n, r, hd, ghd, S 0, gamma \times n, r, hd, gamma \times n, r, hd, ghd, S 0, gamma \times n,
alpha_Q, beta_Q, gamma_Q, omega_Q, N);
[q_Xt, P_Xt, tmpHt] = Prob_Xt(nodes_ht, qhd, nodes_Xt, S_0, r, alpha_Q, beta_Q,
gamma_Q, omega_Q);
nodes_S = exp(nodes_Xt);
% 8. Generate Data for last number of days
days to price = ...; % could be 50 for the last 50 days
moneyness = [0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2]; % Example: from 80% to 120% of
current price
maturities = [7/365, 1/12, 1/4, 1/2, 1]; % 7 days, 1 month, 3 months, 6 months, 1
year
A_prices = zeros(days_to_price, length(moneyness), length(maturities));
A sig = zeros(days to price, length(moneyness), length(maturities));
A0_prices = zeros(days_to_price, length(moneyness), length(maturities));
for i = 1:days_to_price
         % Use the last simulated path as an example
         S_t = simulated_paths{1}(end-days_to_price+i);
         % Calculate strike prices based on current stock price
         strike_prices = S_t * moneyness;
         for j = 1:length(moneyness)
                   for k = 1:length(maturities)
                             CorP = -1; % Call or Put
                             [A\_sig(i,j,k), A\_prices(i,j,k), A0\_prices(i,j,k)] = impVol\_HN(r,
lambda_Q,
                                                                             ... omega_Q, beta_Q, alpha_Q, gamma_Q, h0, S_t,
                                                                             ... strike_prices(j), maturities(k), N, m_h, m_x,
CorP);
                   end
         end
end
```

Functions to be aware of:

- genhDelta: Generates the discrete values and probabilities of a std normal distribution that are used to construct a Willow tree for the conditional variance in the HN model.
- TreeNodes_ht_HN: Constructs the Willow tree for the conditional variance in the HN model.
- Prob_ht: Calculates the transition probabilities of the nodes in the Willow tree for the conditional variance in the HN model.
- TreeNodes_logSt_HN: Constructs the nodes of the Willow tree for the log asset price in the HN model, as well as the first four moments.
- Prob_Xt: Calculates the transition probabilities of the nodes in the Willow tree for the log asset price in the HN model.
- impVol_HN: Calculates the American option price, the implied volatility, and the option price using the model parameters in the HN model.

f_hhh Situation The current dependency on f_hhh relies on a MEX file which is compiled from C code, currently the best tool to handle this is mkoctfile from Octave. Currently a Matlab native code is giving the following results (from the original demo code Prices)

Windows f_hhh.mexw64	Linux f_hhh.m	Linux f_hhh.mexa64	Rel Error of f_hhh.m to Mex
2.72207972210372	25.9570397649806	2.68249096732144	853.57%
10.0008627425866	35.6958936816417	10	256.93%
20	45.4628396735826	20	127.31%
30	55.2436491040201	30	84.15%
40	65.0342712634885	40	62.59%
50	74.848603483338	50	49.70%
60	84.6710358855933	60	41.12%
70	94.4938124800953	70	34.99%
80	104.317906789725	80	30.40%
90	114.142001099355	90	26.82%
100	123.966095408986	100	23.97%
110	133.790189718616	110	21.63%
120	143.614284028246	120	19.68%
130	153.438378337876	130	18.03%
140	163.262472647506	140	16.62%
150	173.086566957136	150	15.39%
160	182.910661266766	160	14.32%
170	192.735598373633	170	13.37%
180	202.561343435829	180	12.53%
190	212.387088498024	190	11.78%
200	222.212833560219	200	11.11%
210	232.038578622415	210	10.49%
220	241.86432368461	220	9.94%
230	251.690068746806	230	9.43%
240	261.516107218318	240	8.97%
250	271.34349038818	250	8.54%
260	281.170873558042	260	8.14%
270	290.998256727904	270	7.78%
280	300.825639897766	280	7.44%
290	310.653023067628	290	7.12%
300	320.481302750366	300	6.83%