\sim	α	
Course	Code:	CS354TA

USN								
-----	--	--	--	--	--	--	--	--

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU) V Semester B.E

Model Question paper

THEORY OF COMPUTATION

Time: 03 Hours Maximum Marks: 100

Instructions to Candidate:

- 1. Answer all questions from PART-A. PART-A questions to be answered in first three pages of the answer book.
- 2. Answer question 2 and any one question from 3 and 4, any one question from 5 and 6, any one question from 7 and 8 AND any one question from 9 and 10 PART-B.

	PART-A	
1.1	Consider the following automata. What is the set of reachable states for the input string 0011?	1
	$ \underbrace{ \begin{array}{cccccccccccccccccccccccccccccccccc$	
1.2	The minimum state automaton equivalent to the below FA has how many number of states	1
1.3	Find R ² ₁₂ =?	1
1.4	Define ϵ –closure (q), where q ϵ Q of an automata.	1
1.5	In each case, find a string of minimum length in $\Sigma = \{0, 1\}$ not in the language corresponding to the given regular expression. i. $(0^*+1^*)(0^*+1^*)(0^*+1^*)$ ii. $0^*(100^*)^*1^*$	1

 1.6 Describe the decision algorithm to answer the following question. Given two DFA's M1 and M2, are there any strings that are accepted by neither? 1.7 Give CFG for the language "The set of odd length strings in {a, b}* with the middle symbol a". 1.8 Show that the grammar with indicated productions is ambiguous. S→aSb aaSb € 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS € 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a €, B→AC CB b €, C→AB BC c 1.11 If G is a context free grammar in CNF and x € L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. 8 a b A B B B B C C C C D D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 					
 symbol a". 1.8 Show that the grammar with indicated productions is ambiguous. S→aSb aaSb ε 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS ε 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c 1.11 If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b B B B C C C C D D D D A B B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	1				
 1.8 Show that the grammar with indicated productions is ambiguous. S→aSb aaSb € 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS € 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a €, B→AC CB b €, C→AB BC c 1.11 If G is a context free grammar in CNF and x € L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. 1.14 B B B B C C C C D D D D A B B 1.15 What is the equivalent left linear grammar for the above DFA. 1.16 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	Ĺ				
S→aSb aaSb ∈ 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS ∈ 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ∈, B→AC CB b ∈, C→AB BC c 1.11 If G is a context free grammar in CNF and x ∈ L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states.					
S→aSb aaSb ∈ 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS ∈ 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ∈, B→AC CB b ∈, C→AB BC c 1.11 If G is a context free grammar in CNF and x ∈ L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states.					
 1.9 Define Left Most Derivation (LMD). Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS ε 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c 1.11 If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states.	Ĺ				
Give LMD for abaaba in the grammar with productions S→aSaSbS aSbSaS bSaSaS ε 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c 1.11 If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states.					
S→aSaSbS aSbSaS bSaSaS ε 1.10 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c 1.11 If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear	Ĺ				
 Identify the nullable variables in the grammar given below. S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B B C C C C D D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 					
S→AB ABC, A→BA BC a ε, B→AC CB b ε, C→AB BC c 1.11 If G is a context free grammar in CNF and x ε L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
 1.11 If G is a context free grammar in CNF and x ∈ L(G) with x =n. How many steps are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B C C C D D D A B 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	Į				
are there in the derivation of x in G? 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. S a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
 1.12 Let G be the CFG with productions S→S+S S-S S*S S/S (S) a How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	Ĺ				
How many derivation strings are there for the string a+(a*a)/a-a? 1.13 DFA whose transition table is as below, here state A is the start state and states B, C are final states. S a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
 DFA whose transition table is as below, here state A is the start state and states B, C are final states. δ a b A B B B B C C C C D D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	Į				
B, C are final states. δ a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear	i				
 δ a b A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear 	Į				
A B B B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
B C C C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
C D D D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
D A B What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
What is the equivalent left linear grammar for the above DFA. 1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
1.14 Consider the right linear grammar with the productions A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
A→aB bD, B→aB bC €, C→aB bC €, D→aD bD Find the left linear grammar which is equivalent to the above right linear					
Find the left linear grammar which is equivalent to the above right linear	L				
grammar.					
1.15 Define Deterministic Push Down Automata.1.16 What is the language generated by the Context Sensitive Grammar with the					
6 What is the language generated by the Context Sensitive Grammar with the					
productions $S \rightarrow ABCS \mid ABC, AB \rightarrow BA, AC \rightarrow CA, BC \rightarrow CB, BA \rightarrow AB,$					
$CA \rightarrow AC$, $CB \rightarrow BC$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.					
1.17 Obtain Turing Machine to accepts the language	L				
$L=\{w w \in \{a, b\}^* \text{ and } w \text{ ends with abb}\}.$					
1.18 What is the language generated by the right linear grammar with productions	L				
$S \rightarrow aA \mid bC \mid b, B \rightarrow aC \mid bA \mid a, A \rightarrow aS \mid bB, C \rightarrow aB \mid bS.$					
if E1 and E2 are recursively enumerable languages, then E111E2 is recursively	l				
enumerable language. Is this statement is TRUE or FALE.					
	1				
List A List B					
Xi Yi					
1 010					
2 0 10					
3 10 101					
4 01 100					

	PART-B	
2 a	Find the regular expressions corresponding to each of the following subsets of {0,1}*. a) The language of all strings containing exactly two 0's. b) The language of all strings that do not end with 01.	4
b	For the DFA below describe, either in words or by writing regular expressions, the strings that cause the DFA to be in each state.	4
c	Explain the algorithm to find an equivalent NFA from the given NFA- ϵ . Use this algorithm to draw an NFA for the NFA- ϵ given below.	4
d	For the DFA shown below, use the minimization algorithm to find a minimum state DFA recognizing the same language.	4
3 a	State and prove pumping lemma for regular languages. Use pumping lemma to show that the following languages are not regular. a) $L=\{ww \mid w \in \{0,1\}^*\}$. b) $L=\{xy \mid x,y \in \{0,1\}^*$ and y is either x or $x^r\}$.	6
b	Describe decision algorithm to answer the following questions. a) Given two DFA's M1 and M2, are there any strings that are accepted by neither. b) Given a regular expression r and an DFA M, are the corresponding languages are same?	4

and L3 respectively.	6
M1: 0 B 0 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1	
M_3 : O_1	
Draw DFA's recognizing the following languages. a) L1 U L2 b) L1 L2 c) L1-L2	
OR	
Define CFG, Language generated by CFG, Left most derivation and Right most derivation. Consider the grammar below S→S+S S-S S*S S/S (S) a. i. Give two left most derivations for the string a+(a*a)/a-a. ii. Give the derivation tree corresponds to each of the derivations in (i). iii. How many distinct left most derivations of this string are there? iv. How many derivation trees are there for the string a+a+a+a+a?	4
_	4
	4
	4
	6
Let L be L(M1) for some PDA with empty stack M1=(Q, \sum , Γ , δ ,q ₀ ,Z ₀ , ϕ), prove that there exists an final state PDA M2 such that L=L(M2). Construct empty stack PDA to accept L={w w \in {a,b}* and w is palindrome}. Convert it into equivalent final state PDA.	4
	6
 What are steps to be followed while finding an equivalent PDA by empty stack for the given CFG. Find the equivalent PDA to the CFG with productions S→aSb bSa abS Sab Sba ε. Show that the string abaabb is generated by the given CFG and it is accepted by its equivalent PDA. 	

6 a	State and prove pumping lemma for context free languages.	6
	Show that $L=\{ww \mid w \in \{a,b\}^*\}$ is not context free.	
b	Let L1= $\{a^ib^jc^k \mid i \le j\}$ and L2= $\{a^ib^jc^k \mid i \le k\}$. Show that L1 and L2 are context free	6
	but L3=L1 \cap L2 is not context free.	
c	Decide whether the following languages are CFL or not.	4
	i. $L=\{a^nb^ma^mb^n m,n\geq 0\}.$	
	ii. L= $\{xayb x,y\in\{a,b\}^* \text{ and } x = y \}.$	
7 a	Design Turing Machine to accept the language L={ $w \mid \epsilon \{a, b\}^*$ and	6
	Na(w)=Nb(w). Trace the machine for the string <i>baabab</i> .	
_		_
b	Let x and y are two positive integers represented using unary notation.	6
	Design a Turing Machine that computes the function $f(x,y)$, where $x,y \in 1^+$	
	f(x, y) = x - y if x > y	
	f(x, y) = y - x if y > x	
	f(x, y)=0 if x=y	
c	If L_1 and L_2 are recursively enumerable languages over \sum , then show that	4
	$L_1 U L_2$ is also recursively enumerable languages.	-
	OR	
8 a	Design Turing Machine to perform the string reverse operation over $\Sigma = \{a, $	8
	b, c}. Use Instantaneous Descriptions to show operation on w=abac.	
b	Write a note on	6
	i. Multi tape Turing Machineii. Non deterministic Turing Machine	
С	Prove that every regular language is also a recursively enumerable language.	2
9 a	Construct the Linear Bounded Automata for the language	8
	L={ ww^R $w \in \{a, b\}^*$ }. Trace the machine for the string <i>aabbaa</i> .	
b	Define Context Sensitive Grammar.	4
	Give Context Sensitive Grammar to generate the language	
	L={ $a^nb^nc^nd^n \mid n \ge 1$ }. Show that the string <i>aabbccdd</i> is generated by the grammar.	
c	Write a note on Chomsky hierarchy.	4
	OR	
10 a	Define Unrestricted Grammar. Give Unrestricted Grammar to generate the	8
	language L={ w ε {a, b, c}* and Na(w)=Nb(w)=Nc(W)}. Show that the string	
_	acabcb is generated by the grammar.	4
b	Write a note on undecidability.	4
c	If the given language L is Context Sensitive Language, then L is recursively enumerable language. Prove this statement.	4
	1	1

Q.P.Code

Course code: 21CS54 Course Title: Theory of Computation

PART-A

Q.No	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
BT	1	2	3	1	2	3	2	1	1	2
COs	1	1	2	1	2	2	2	1	2	1
Q.No	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20
BT	3	4	4	4	1	3	3	2	1	4
COs	2	3	3	2	1	3	2	1	2	3

PART-B

Questio	n No	BT level	COs	Question	No	BT level	COs
			Addressed				Addressed
	a	2	1		a	3	2
2	b	3	2	3	b	2	2
	c	4	3		c	4	3
	d	4	3		d		
	a	3	3		a	3	3
4	b	4	3	5	b	2	2
	c	4	4		c	2	3
	d	3	4		d		
	a	2	2		a	4	4
6	b	3	3	7	b	4	4
	c	3	4		c	3	2
	d				d		
	a	4	4	9	a	4	4
8	b	3	2		b	3	2
	c	3	2		c	1	1
	d	4	1		d		
10	a	3	3		a		
	b	2	1		b		
	c	2	1		c		
	d				d		

Signature of Scrutinizer	Signature of Chairman
Name:	Name: