Proyecto IA

Campaña Ricardo, Chalacama Erik, Delgado Joel, Román Paúl, Salazar Santiago, Ya

Tabla de contenidos

polinomio grado 2
import pickle
import numpy as np
import pandas as pd
import sklearn.metrics as sm
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics
from sklearn import preprocessing
from sklearn.metrics import pairwise
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
import seaborn as sns
<pre>from pandas.plotting import parallel_coordinates</pre>
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
<pre>from sklearn.model_selection import train_test_split</pre>
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
<pre>from sklearn.pipeline import make_pipeline</pre>
from sklearn import datasets
from sklearn.svm import SVR
<pre>from sklearn.metrics import mean_squared_error, r2_score</pre>
from sklearn.utils import shuffle

data = pd.read_csv("inec_encuesta-estructural-emprresarial_establecimientos_2019.csv", del
data.sample(5)

	$id_empresa$	$tipo_estable cimiento_cod$	$tipo_estable cimiento$	provincia_cod	$provincia_desc$
2947	13705202090	Sucursal	Sucursal	TUNGURAHUA	TUNGURAHU
4217	13706014092	Sucursal	Sucursal	PICHINCHA	PICHINCHA
2132	13705121090	Sucursal	Sucursal	LOJA	LOJA
16162	14629457098	Matriz	Matriz	GUAYAS	GUAYAS
3546	13705657097	Único	Único	GUAYAS	GUAYAS

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23524 entries, 0 to 23523
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	id_empresa	23524 non-null	int64
1	tipo_establecimiento_cod	23524 non-null	object
2	tipo_establecimiento	23524 non-null	object
3	provincia_cod	23524 non-null	object
4	provincia_desc	23524 non-null	object
5	ciiu_cod	23524 non-null	object
6	ciiu_desc	23524 non-null	object
7	personal_ocupado	23524 non-null	int64
8	sueldos	23524 non-null	int64
9	ventas	23524 non-null	int64

dtypes: int64(4), object(6)
memory usage: 1.8+ MB

```
data.drop(columns=['id_empresa'], inplace=True)
```

data.columns

```
# Elimina las filas en las que al menos una columna contenga un espacio en blanco o cadena
data_cleaned = data[~(data == ' ').any(axis=1) & ~(data == '').any(axis=1)].copy()

# Imprime el número de filas antes y después de la eliminación
print("Número de filas antes de eliminación:", len(data))
print("Número de filas después de limpieza:", len(data_cleaned))
```

Número de filas antes de eliminación: 23524 Número de filas después de limpieza: 21695

```
# Aplica strip() a todas las celdas del DataFrame para eliminar espacios en blanco
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)

data_cleaned['ciiu_cod'].value_counts()
```

VENTA AL POR MENOR DE PRODUCTOS FARMACÉUTICOS Y MEDICINALES, COSMÉTICOS Y ARTÍCULOS DE TOCADO VENTA AL POR MAYOR DE OTROS ENSERES DOMÉSTICOS.

ACTIVIDADES DE RESTAURANTES Y DE SERVICIO MÓVIL DE COMIDAS.

VENTA AL POR MENOR DE APARATOS ELÉCTRICOS DE USO DOMÉSTICO, MUEBLES, EQUIPO DE ILUMINACIÓN Y VENTA AL POR MENOR EN COMERCIOS NO ESPECIALIZADOS CON PREDOMINIO DE LA VENTA DE ALIMENTOS, B

OTRAS ACTIVIDADES DE TECNOLOGÍA DE LA INFORMACIÓN Y DE SERVICIOS INFORMÁTICOS.

FABRICACIÓN DE GAS; DISTRIBUCIÓN DE COMBUSTIBLES GASEOSOS POR TUBERÍAS.

FABRICACIÓN DE EQUIPO ELÉCTRICO DE ILUMINACIÓN.

TRANSMISIONES DE RADIO.

FABRICACIÓN DE PARTES Y PIEZAS DE CARPINTERÍA PARA EDIFICIOS Y CONSTRUCCIONES.

Name: ciiu_cod, Length: 264, dtype: int64

```
data_cleaned['ciiu_desc'].value_counts()
```

Venta al por menor de productos farmacéuticos y medicinales, cosméticos y artículos de tocado Venta al por mayor de otros enseres domésticos.

Actividades de restaurantes y de servicio móvil de comidas.

Venta al por menor de aparatos eléctricos de uso doméstico, muebles, equipo de iluminación y Venta al por menor en comercios no especializados con predominio de la venta de alimentos, be

Otras actividades de tecnología de la información y de servicios informáticos. Fabricación de gas; distribución de combustibles gaseosos por tuberías.

Fabricación de equipo eléctrico de iluminación.

Transmisiones de radio.

Fabricación de partes y piezas de carpintería para edificios y construcciones.

Name: ciiu_desc, Length: 264, dtype: int64

data_cleaned['provincia_desc'].value_counts()

GUAYAS	6578
PICHINCHA	6158
MANABÍ	1553
AZUAY	1281
EL ORO	820
LOS RÍOS	766
TUNGURAHUA	686
STO. DOMINGO DE LOS TSÁCHILAS	644
IMBABURA	453
LOJA	388
ESMERALDAS	346
CHIMBORAZO	296
SANTA ELENA	276
COTOPAXI	262
ORELLANA	214
SUCUMBÍOS	214
CAÑAR	175
CARCHI	126
BOLÍVAR	90
ZAMORA CHINCHIPE	77
MORONA SANTIAGO	76
GALÁPAGOS	73
PASTAZA	72
NAPO	71
Name: provincia_desc, dtype: i	nt64

data_cleaned['provincia_cod'].value_counts()

GUAYAS	6578
PICHINCHA	6158
MANABI	1553
AZUAY	1281
EL ORO	820

```
ORELLANA
                                   214
SUCUMBIOS
                                   214
CAÑAR
                                   175
CARCHI
                                   126
BOLIVAR
                                    90
                                    77
ZAMORA CHINCHIPE
MORONA SANTIAGO
                                    76
GALAPAGOS
                                    73
PASTAZA
                                    72
NAPO
                                    71
Name: provincia_cod, dtype: int64
  data_cleaned['tipo_establecimiento_cod'].value_counts()
Sucursal
            17916
Matriz
             2447
Único
             1332
Name: tipo_establecimiento_cod, dtype: int64
  data_cleaned['tipo_establecimiento'].value_counts()
Sucursal
            17916
Matriz
             2447
Único
             1332
Name: tipo_establecimiento, dtype: int64
  data_cleaned.drop(columns=['ciiu_cod', 'tipo_establecimiento_cod', 'provincia_cod'], inpla
  data_cleaned.columns
```

766

686

644

453

388

346

296

276

262

LOS RIOS

IMBABURA

ESMERALDAS

CHIMBORAZO

COTOPAXI

SANTA ELENA

LOJA

TUNGURAHUA

STO. DOMINGO DE LOS TSACHILAS

	tipo_establecimiento	provincia_desc	ciiu_desc	personal
23236	Sucursal	EL ORO	Venta al por mayor de otros enseres domésticos.	3
4238	Sucursal	PICHINCHA	Venta al por mayor de otros enseres domésticos.	7
13229	Sucursal	IMBABURA	Elaboración y conservación de carne.	50
373	Sucursal	GUAYAS	Venta al por mayor de otros enseres domésticos.	10
22351	Sucursal	GUAYAS	Venta al por menor de productos farmacéuticos	2

```
# Convertir las variables categóricas a tipo 'category'
data_cleaned['tipo_establecimiento'] = data_cleaned['tipo_establecimiento'].astype('categor')
data_cleaned['provincia_desc'] = data_cleaned['provincia_desc'].astype('category')
data_cleaned['ciiu_desc'] = data_cleaned['ciiu_desc'].astype('category')
# Definir nuevas asignaciones de categorías basadas en los resultados de value_counts()
provincia_desc_categories = {
'GUAYAS': 0,
'PICHINCHA': 1,
'MANABÍ': 3,
'AZUAY': 4,
'EL ORO': 5,
'LOS RÍOS': 6,
'TUNGURAHUA': 7,
'STO. DOMINGO DE LOS TSÁCHILAS': 8,
'IMBABURA': 9,
'LOJA': 10,
'ESMERALDAS': 11,
'CHIMBORAZO': 12,
'SANTA ELENA': 13,
'COTOPAXI': 14,
'ORELLANA': 15,
'SUCUMBÍOS': 16,
'CAÑAR': 17,
'CARCHI': 18,
'BOLÍVAR': 19,
```

```
'ZAMORA CHINCHIPE': 20,
'MORONA SANTIAGO': 21,
'GALÁPAGOS': 22,
'PASTAZA': 23,
'NAPO': 24,
}
# Obtener los valores únicos de tipo_establecimiento
unique_tipo_establecimiento = data_cleaned['tipo_establecimiento'].unique()
# Crear el diccionario 'tipo_establecimientor_categories' usando un bucle for
tipo_establecimientor_categories = {}
for index, tipo_establecimiento in enumerate(unique_tipo_establecimiento):
   tipo_establecimientor_categories[tipo_establecimiento] = index
# Obtener los valores únicos de tipo_establecimiento
unique_ciiu_desc = data_cleaned['ciiu_desc'].unique()
# Crear el diccionario 'ciiu_desc_categories' usando un bucle for
ciiu_desc_categories = {}
for index, ciiu_desc in enumerate(unique_ciiu_desc):
   ciiu_desc_categories[ciiu_desc] = index
# Renombrar las categorías utilizando los nuevos códigos
data_cleaned['tipo_establecimiento'] = data_cleaned['tipo_establecimiento'].cat.rename_cat
data_cleaned['provincia_desc'] = data_cleaned['provincia_desc'].cat.rename_categories(prov
data_cleaned['ciiu_desc'] = data_cleaned['ciiu_desc'].cat.rename_categories(ciiu_desc_cate
# Convertir las variables categóricas a enteros
data_cleaned['tipo_establecimiento'] = data_cleaned['tipo_establecimiento'].astype('int64'
data_cleaned['provincia_desc'] = data_cleaned['provincia_desc'].astype('int64')
data_cleaned['ciiu_desc'] = data_cleaned['ciiu_desc'].astype('int64')
# Mostrar una muestra de los datos transformados
data_cleaned.sample(10)
```

	$tipo_estable cimiento$	provincia_desc	ciiu_desc	personal_ocupado	sueldos	ventas
5424	2	3	2	7	46473	1901888
22187	2	3	15	0	0	0
17971	2	0	154	3	33027	4261323
13659	2	3	10	4	31733	496003
8712	2	9	62	80	616888	20393257
17936	2	1	4	15	10936	124962
15463	2	1	74	3	22771	622951
8330	2	0	137	249	2953816	11760923
1546	2	0	74	1	5970	0
8287	2	18	2	7	0	6144810

```
# Mostrar una muestra de los datos transformados

#data_cleaned=data_cleaned[data_cleaned['ventas']!=0]
#data_cleaned=data_cleaned[data_cleaned['ventas']>0]
data_cleaned = data_cleaned.reset_index(drop=True)
data_cleaned.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21695 entries, 0 to 21694
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	tipo_establecimiento	21695 non-null	int64
1	provincia_desc	21695 non-null	int64
2	ciiu_desc	21695 non-null	int64
3	personal_ocupado	21695 non-null	int64
4	sueldos	21695 non-null	int64
5	ventas	21695 non-null	int64

dtypes: int64(6) memory usage: 1017.1 KB

ENTRENAMIENTO DEL MODELO (REGRESION POLINOMIAL Y LINEAL)

```
y = data_cleaned['sueldos'] #variable target
X = data_cleaned.drop(columns=['sueldos']) #variables input
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=20)
print(X_train.shape,X_test.shape)
```

(15186, 5) (6509, 5)

	tipo_establecimiento	provincia_desc	ciiu_desc	personal_ocupado	ventas
0	1	4	1	2	2117598

```
scaler = preprocessing.StandardScaler()
scaler.fit(X_train[['tipo_establecimiento','provincia_desc','ciiu_desc','personal_ocupado'
#transformamos todo el dataset
data_cleaned_normalized=pd.concat([pd.DataFrame(scaler.transform(data_cleaned[['tipo_estab
                                                columns=['tipo_establecimiento','provincia_
                                  data_cleaned[['sueldos']]],axis=1)
print(data_cleaned_normalized.head())
X_train_norm = data_cleaned_normalized.iloc[X_train.index].drop(columns=['sueldos'])
X_test_norm = data_cleaned_normalized.iloc[X_test.index].drop(columns=['sueldos'])
print('Training sample:')
print(X_train_norm.iloc[:14, :])
#print(validNorm[0])
nuevoSueldo_norm = pd.DataFrame(scaler.transform(nuevoSueldo), columns=['tipo_establecimie
print('\nNueva obs:')
print(nuevoSueldo)
print('Nueva obs escalada:')
print(nuevoSueldo_norm)
```

```
provincia_desc ciiu_desc personal_ocupado
   tipo_establecimiento
0
              -2.607276
                                0.070884
                                           -0.958594
                                                               0.263368
1
              -1.085246
                                0.070884
                                          -0.940636
                                                              -0.195637
2
              -1.085246
                                0.070884
                                          -0.922678
                                                              -0.025361
3
              -1.085246
                                0.070884
                                          -0.904720
                                                               0.085689
4
              -1.085246
                                0.070884
                                          -0.886761
                                                              -0.069781
     ventas
             sueldos
0 0.077898
              600616
1 -0.050010
               66000
2 0.024593
              298257
3 -0.056455
              319010
4 -0.063409
              193291
Training sample:
       tipo_establecimiento provincia_desc
                                               ciiu_desc
                                                         personal_ocupado
10213
                    0.436784
                                   -0.726481
                                               -0.886761
                                                                  -0.136410
12035
                    0.436784
                                    0.270225
                                                0.567846
                                                                  -0.173427
9041
                    0.436784
                                   -0.527140
                                                0.531930
                                                                  -0.121604
                                   -0.527140
                                                1.016799
                                                                  -0.203040
11898
                    0.436784
17373
                    0.436784
                                    0.070884
                                                2.489364
                                                                  -0.217847
                                   -0.726481
797
                    0.436784
                                              -0.761055
                                                                   0.544694
14826
                    0.436784
                                    0.270225
                                              -0.743097
                                                                  -0.232653
1285
                   0.436784
                                    1.266931
                                                0.352348
                                                                  -0.240057
4090
                  -2.607276
                                   -0.726481
                                                                   0.574307
                                              -0.365976
19608
                  -2.607276
                                   -0.726481 -0.779013
                                                                  -0.129007
6636
                    0.436784
                                    1.067590
                                               -0.743097
                                                                  -0.129007
9298
                    0.436784
                                   -0.726481
                                                                  -0.247460
                                               -0.186395
14319
                    0.436784
                                    2.064295
                                               -0.132521
                                                                  -0.232653
6495
                    0.436784
                                   -0.726481
                                               -0.096604
                                                                  -0.232653
         ventas
10213 -0.070054
12035 -0.058917
9041 -0.076331
11898 -0.078543
17373 -0.080638
797
      -0.078744
14826 -0.081419
1285
     -0.054861
4090
      -0.004939
19608 0.000604
6636
     -0.001066
```

9298

-0.084756

```
14319 -0.079642
6495 -0.039279
Nueva obs:
   tipo_establecimiento provincia_desc ciiu_desc personal_ocupado
                                                                   2 2117598
Nueva obs escalada:
   tipo_establecimiento provincia_desc ciiu_desc personal_ocupado
                                                                       ventas
             -1.085246
                        0.070884 -0.940636
                                                         -0.232653 -0.05001
  • Separamos data de training y testing:
  #Cree y entrene el modelo de regresor lineal
  # Create the linear regressor model
  linear_regressor = linear_model.LinearRegression()
  # Train the model using the training sets
  linear_regressor.fit(X_train_norm, y_train)
LinearRegression()
  # Realiza la predicción
  predicted_price = linear_regressor.predict(nuevoSueldo_norm)
  print("Predicted price:", predicted_price)
Predicted price: [144447.71579988]
  # Predict the output
  y_test_pred = linear_regressor.predict(X_test_norm)
  # Calcule los valores para las diferentes métricas, consulte su interpretación
  print("Linear regressor performance:")
  print("Mean absolute error =", round(sm.mean_absolute_error(y_test, y_test_pred), 2))
  print("Mean squared error =", round(sm.mean_squared_error(y_test, y_test_pred), 2))
  print("Median absolute error =", round(sm.median_absolute_error(y_test, y_test_pred), 2))
  print("Explain variance score =", round(sm.explained_variance_score(y_test, y_test_pred),
```

print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

```
Linear regressor performance:
Mean absolute error = 152721.72
Mean squared error = 422914277963.96
Median absolute error = 30704.72
Explain variance score = 0.76
R2 \text{ score} = 0.76
  with open('trained_model.pkl','wb') as file:
      pickle.dump(linear_regressor,file)
polinomio grado 2
  degree = 2
  polyreg = make_pipeline(PolynomialFeatures(degree), LinearRegression())
  polyreg.fit(X_train_norm, y_train)
  y_predicted = polyreg.predict(X_test_norm)
  poly_reg_rmse = np.sqrt(mean_squared_error(y_test, y_predicted))
  poly_reg_rmse
808602.3153096966
  # Measure performance
  print("Linear Regressor performance:")
  print("Mean absolute error =", round(sm.mean_absolute_error(y_test, y_predicted), 2))
  print("Mean squared error =", round(sm.mean_squared_error(y_test, y_predicted), 2))
  print("Median absolute error =", round(sm.median_absolute_error(y_test, y_predicted), 2))
  print("Explained variance score =", round(sm.explained_variance_score(y_test, y_predicted)
  print("R2 score =", round(sm.r2_score(y_test, y_predicted), 2))
Linear Regressor performance:
Mean absolute error = 170483.77
Mean squared error = 653837704324.2
Median absolute error = 40041.11
Explained variance score = 0.62
R2 \text{ score} = 0.62
```

SVM regressor

```
# Create Support Vector Regression model
sv_regressor = SVR(kernel='poly',degree=5, C=1.0, epsilon=0.1)

# Train Support Vector Regressor
sv_regressor.fit(X_train_norm, y_train)

SVR(degree=5, kernel='poly')

# Evaluate performance of Support Vector Regressor
y_test_pred = sv_regressor.predict(X_test_norm)
mse = mean_squared_error(y_test, y_test_pred)
r2 = r2_score(y_test, y_test_pred)
print("\n### Performance ####")
print("Mean squared error =", round(mse, 2))
print("R2 score =", round(r2, 2))

#### Performance ####
Mean squared error = 1430701216056.59
R2 score = 0.18
```