Applications of Integration

2.5 Regions Between Curves

Name:	

If g(x) < f(x) on (a, b), the area between f and g from a to b is

Area =
$$\int_{a}^{b} f(x) - g(x) dx.$$

For typical problems in this section, you have two intersecting curves f and g. Then you need to find where the curves intersect to get the endpoints of integration a and b. You also need to determine which function is bigger. If g > f then you need to do $\int_a^b g(x) - f(x) \, dx$ to get the area.

Sketch the region between the two curves and find its area.

1.
$$f(x) = x^2 + 1$$
 and $g(x) = 1 + 2x - x^2$.

SOLUTION: To find the endpoints of the region,

$$x^{2} + 1 = 1 + 2x - x^{2}$$
 \Rightarrow $2x^{2} - 2x = 0$ \Rightarrow $2x(x - 1) = 0$.

So x = 0, 1. Also, $1 + 2x - x^2$ is a parabola pointing down, and sits above $x^2 + 1$ between 0 and 1. So the area is

Area =
$$\int_0^1 (1+2x-x^2) - (x^2+1) dx$$

= $\int_0^1 2x - 2x^2 dx$
= $x^2 - \frac{2}{3}x^3 \Big|_0^1 = \frac{1}{3}$ \square .

2.
$$f(x) = x^2 - 2x$$
 and $g(x) = 2 - x$.

3.
$$y = \sqrt{5x - 1}$$
 and $y = x + 1$.

4.
$$x = 2y^2 - 2$$
 and $x = y^2 - y$.

Find the area between the two curves by adding two integrals. Draw a picture.

1.
$$y = x^3 - x$$
 and $y = 3x$.

2.
$$y = 4 - x^2$$
 and $y = 2 + |x|$.