OWASP Germany 2008 Conference

http://www.owasp.org/index.php/Germany

SOA Sicherheit

OPTIMAbit GmbH

bruce.sams@optimabit.com +49 (8165) 65095

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

Agenda

- Zusammenfassung des Problems
- Standards für Sicherheit
- Architektur (Security als Service)
- Ausblick

Die Herausforderung von SOA Sicherheit

■ Die große Herausforderung für Unternehmen ist es, umfassende Sicherheit für SOA mit einfacher Integration und Verwendung zu vereinen.

- ▶ Lösungen, die auf "traditionellen" Techniken (z.B. Firewalls, SSL) basieren, sind unzulänglich.
- ▶ Um erfolgreich zu sein, muss die Sicherheit auch als Service betrachtet werden.
- ▶ Betrachtung der Macro- und Mikroskala

SOA = verbundene Services

OWASP Germany 2008 Conference SOA Sicherheit– Dr. Bruce Sams

SSL und Web Services

- SSL bietet keine Lösung für:
 - **◆**Weiterleitung einer Nachricht
 - ◆Verschlüsselung der Nachricht
- SSL ist OK, wenn Sie keine Multi-Schritt Dienste haben und Identitäten nicht propagieren müssen.
 - Nachrichtensicherheit ist besser: die Nachrichten selber sind verschlüsselt.
 - Ein SOA braucht Nachrichtensicherheit, NICHT nur Transportsicherheit.

Wichtige Aspekte der SOA Sicherheit

- ◆Multiple Schritte benötigen Propagierung der Identität
- ◆Viele Protokolle (HTTP, JMS, FTP) bedeutet, dass die Sicherheit vom Protokol getrennt wird (Kein SSL).
- ◆Interoperabilität braucht viele Standards!
- ◆Arbeiten über verschiedenen Domänen braucht Identitätsmanagement & Föderation

STANDARDS

Keine Sicherheit in der WS Standard

- Die Web Services Spezifikation kümmert sich um die Sicherheit überhaupt nicht.
 - ▶ Weitere Standards vom W3C, OASIS, Microsoft, IBM und andere gehen spezifisch auf die Sicherheit.

Unverschlüsseltes XML

■ Ohne Verschlüsselung

Kompletter Inhalt verschlüsselt

Verschlüsseltes XML

■ Nur die Nummer wird verschlüsselt

SAML Overview

- Security Assertion Markup Language (SAML) defines
 - ◆a standard for the format and embedding of security information in an XML file
 - protocols for token exchange
- The most important uses of SAML is for authentication, authorization and SSO.
- SAML tokens contain a collection of assertions about a subject (e.g. a user, his identity and his rights).

 OWASP Germany 2008 Conference

WS-Security ist ein "Meta" Standard

- Der OASIS WS-Security Standard vereint verschiedene bestehende XML and WS Standards, unter einem "Schirm".
- Die WS-Security
 Spezifikation funktioniert
 mit SOAP Version 1.1 +.
- SAML Tokens werden oft verwendet.

WS-Policy Diagram

- Eine WS-Policy ist eine Anzahl von Behauptungen, die an einem Web Service angebunden wird.
 - ▶ Das Attachment findet am WSDL oder UDDI statt, so dass der Service selbst nicht modifiziert werden muss.

▶ Es bietet eine flexible Konfiguration, z.B. der Server kann mehrere Optionen akzeptieren, hat aber eine Präferenz.

Sicherheitsbedenken beim WS-Policy

■ Angriffe

- ▶ Fingerprinting
- Downgrading
- Denial of Service

■ Optionen:

- ◆Authentifizeirung für den Client, um die Policy lesen zu dürfen
- ◆Keine sicherheitsrelevante Information in der Policy
- ◆Verschlüsselte Übertragung.
- **◆**Sichere Konfiguration

Chained Policy Bomb

```
<Policy wsu:Id="p1">
  <PolicyReference URI="#p2"/ >
 <PolicyReference URI="#p2"/>
</Policy>
<Policy wsu:Id="p2" >
  <PolicyReference URI="#p3"/>
 <PolicyReference URI="#p3"/>
</Policy>
<Policy wsu:Id="p3" >
  <PolicyReference URI="#p4"/>
  <PolicyReference URI="#p4"/>
</Policy>
<!-- Policy Id p4 through p101 -->
```

```
<Policy wsu:Id="p101" >
    <wsa:UsingAddressing />
    </Policy>
This call results in 2^100 policy statements...
```

OWASP Germany 2008 Conference SOA Sicherheit– Dr. Bruce Sams

ARCHITEKTUR

Autorisierung

- Um die Identität des Ausrufers zu propagieren, muss sie in der Nachricht selbst eingebunden sein.
 - ▶ Der Empfänger kann die Information nutzen, um Entscheidungen über Authentifizierung bzw. Autorisierung zu treffen.
 - ▶ Die Security Assertion Markup Language (SAML) beitet Tokens mit Authentifizierungsinformation an.

Sicherheit als Service

■ Ein Policy Decision Point (PDP) ist für Entscheidungen über Zugriffskontrolle verantwortlich.

■ Ein Policy Enforcement Point (PEP) ist für die Durchsetzung einer PDP-Entscheidung verantwortlich.

■ XACML ist ein Standard für den Austausch.

Die Prinzipien angewandt

- So sieht eine Anwendung mit PDP und PEP aus.
 - ▶ PEP wo Daten von T=>P wechseln

Sicherheit als Service: Diagram

Using the "Security as a Service" paradigm

Sicherheit als Service: Diagram

——Messages pass through a chain of mediations and services — ▶

Using the "Security as a Service" paradigm

Zugriffskontrolle: grob => fein

- Eine Progression von groben zu feinen Entscheidungen hat einige Vorteile:
 - ◆Unautorisierte Requests können weit entfernt von den geschützten Ressourcen blockiert werden.
 - ◆Die Anzahl von unautorisierten Requests, die das Ziel erreichen, wird minimiert.
 - ◆Die Performanceeinbußen von Sicherheitslogik in der Anwendungsschicht werden minimiert.
 - ◆Das Kombinieren von Services in einer Kette wird vereinfacht.

AUSBLICK

Macro and Micro Scales

- Sichere Konfiguration und Installation!
 - ▶ Beispiel TIBCO.

Some Issues

- •RV Multicast Protocol
- Databases
- •Passwords (admin)
- Passwords (configuration)
- Adapter authentication
- Application server
- Daemons
- Identity Management (LDAP)

•

ASP 🗑

Angriffsarten

■ Heute

- ► SOA haben dasselbe Probleme wie WebApps (Injection, Parameter Manipulation, usw).
- ▶ Viel XML bedueten potentielle Probleme mit Entity Bomben
- Voraussage für die nächste 3 Jahre
 - Konfigurationsprobleme
 - ▶ Inkonsistene Zugriffskontrolle
 - ▶ Implementationsprobleme
 - Neue, unbekannte

Google SOA/SSO Schwachstelle

- T. Groß (IBM) analysiert SAML SSO
 - ▶ Einige "Probleme" im Protokol/Bindings festgestellt.
- Armando, etal (Uni Genova) analysiert Google SAML/SSO.
 - ▶ Oktober 2008 => Google Schwachstelle basierend auf Roque Service Provider.

Andere SOA/WS Optionen

- **■** Enterprise Service Bus
 - ▶ Hohe Performance, Transaktionen
 - ▶ Keine ESB-spezifische Sicherheitsstandards
- REST Web Services
 - ▶ Einfache Handhabung
 - ▶ Keine Verwendung von WS-*, erfordert Eigenlösungen (Tokens/Replay, A&A).

Zusammenfassung

- Standards und Implementierungen existieren, um WS-Security zu verwenden, aber der "volle" Einsatz ist nicht weit verbreitet.
- Neue Standards verkomplizieren die Implementierung (z.B. WS-Policy).
- Neue, bisher unerforschte Schwachstellen werden entdeckt.
- Unachtsame Programmierung wird ein Problem sein

Danke!

- Danke für Ihre Aufmerksamkeit!
 - ▶ Dr. Bruce Sams
 - ▶ OPTIMA Business Information Technology
 - bruce.sams@optimabit.com

