

Fig. 1



Fig. 2



Fig. 3



## Fig. 4A

File : H40.AMI  
 Range : 1 329  
 Codon Table : Universal

## SEQ ID NO. 1

10 20  
 Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu Ala Ser Pro Leu  
 ATG TGY CAY CAR CAR YTN GTN ATH WSN TGG TTY WSN YTN GTN TTY YTN GCN WSN CCN YTN

ATG TGT CAT CAA CAA TTA GTT ATT TCT TGG TTT TCT TTA GTT TTT TTA GCT TCT CCT TTA  
 TGC CAC CAG CAG TTG GTC ATC TCC TTC TCC TTG GTC TTC TTG GCC TCC CCC TTG  
 CTT GTA ATA TCA TCA CTT GTA CTT GCA TCA CCA CTT  
 CTC GTG TCG TCG CTC GTG CTC GCG TCG CCG CTC  
 CTA AGT AGT CTA CTA AGT CTA CTA  
 CTG AGC AGC CTG AGC AGC CTG

30 40  
 Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val Val Glu Leu Asp Trp Tyr Pro Asp  
 GTN GCN ATH TGG GAR YTN AAR AAR GAY GTN TAY GTN GTN GAR YTN GAY TGG TAY CCN GAY

GTG GCT ATT TGG GAA TTA AAA AAA GAT GTT TAT GTT GTT GAA TTA GAT TGG TAT CCT GAT  
 GTC GCC ATC GAG TTG AAG AAG GAC GTC TAC GTC GTC GAG TTG GAC TAC CCC GAC  
 GTA GCA ATA CTT GTA GTA CTT CCA  
 GTG GCG CTC GTG GTG CTC CCG  
 CTA CTG CTA CTG

50 60  
 Ala Pro Gly Glu Met Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp  
 GCN CCN GGN GAR ATG GTN YTN ACN TGY GAY ACN CCN GAR GAR GAY GGN ATH ACN TGG

GCT CCT GGT GAA ATG GTT TTA ACT TGT GAT ACT CCT GAA GAA GAT GGT ATT ACT TGG  
 GCC CCC GGC GAG GTC GTC TTG ACC TGC GAC ACC CCC GAG GAG GAC GGC ATC ACC  
 GCA CCA GGA GTA GTA CTT ACA ACA CCA GGA ATA ACA  
 GCG CCG GGG GTG GTG CTC ACG ACG CCG GGG ACAC GGG  
 CTA CTG

70 80  
 Thr Leu Asp Gln Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys  
 ACN YTN GAY CAR WSN WSN GAR GTN YTN GGN WSN GGN AAR ACN YTN ACN ATH CAR GTN AAR

ACT TTA GAT CAA TCT TCT GAA GTT TTA GGT TCT GGT AAA ACT TTA ACT ATT CAA GTT AAA  
 ACC TTG GAC CAG TCC TCC GAG GTC TTG GGC TCC GGC AAG ACC TTG ACC ATC CAG GTC AAG  
 ACA CTT TCA TCA GTA CTT GGA TCA GGA ACA CTT ACA ATA GTA  
 ACG CTC TCG TCG GTG CTC GGG TCG GGG ACG CTC ACG GTG  
 CTA AGT AGT CTA AGT CTA  
 CTG AGC AGC CTG AGC CTG

90 100  
 Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val Leu Ser His Ser  
 GAR TTY GGN GAY GCN GGN CAR TAY ACN TGY CAY AAR GGN GGN GAR GTN YTN WSN CAY WSN

GAA TTT GGT GAT GCT GGT CAA TAT ACT TGT CAT AAA GGT GGT GAA GTT TTA TCT CAT TCT  
 GAG TTC GGC GAC GCC GGC CAG TAC ACC TGC CAC AAG GGC GGC GAG GTC TTG TCC CAC TCC  
 GGA GCA GGA ACA BGA BGA GTA CTT TCA TCA  
 GGG GCG GGG ACG BGG BGG GTG CTC TCG TCG  
 CTA AGT AGT CTA AGT  
 CTG AGC AGC CTG AGC

## Fig. 4B

110 120

Leu Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp Ser Thr Asp Ile Leu Lys Asp Gln  
 YTN YTN YTN YTN CAY AAR AAR GAR GAY GGN ATH TGG WSN ACN GAY ATH YTN AAR GAY CAR

-----

TTA TTA TTA TTA CAT AAA AAA GAA GAT GGT ATT TGG TCT ACT GAT ATT TTA AAA GAT CAA  
 TTG TTG TTG TTG CAC AAG AAG GAG GAC GGC ATC TCC ACC GAC ATC TTG AAG GAC CAG  
 CTT CTT CTT CTT GGA ATA TCA ACA ATA CTT  
 CTC CTC CTC CTC GGG TCG ACG CTC  
 CTA CTA CTA CTA AGT CTA  
 CTG CTG CTG CTG AGC CTG

130 140

Lys Glu Pro Lys Asn Lys Thr Phe Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe  
 AAR GAR CCN AAR AAY AAR ACN TTY YTN MGN TGY GAR GCN AAR AAY TAY WSN GGN MGN TTY

-----

AAA GAA CCT AAA AAT AAA ACT TTT TTA CGT TGT GAA GCT AAA AAT TAT TCT GGT CGT TTT  
 AAG GAG CCC AAG AAC AAG ACC TTC TTG CGC TGC GAG GCC AAG AAC TAC TCC GCC CGC TTC  
 CCA ACA CTT CGA GCA TCA GGA CGA  
 CCG ACG CTC CGG GCG TCG GGG CGG  
 CTA AGA AGT AGA  
 CTG AGG AGC AGG

150 160

Thr Cys Trp Trp Leu (Thr Thr) Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg  
 ACN TGY TGG TGG YTN ACN ACN ATH WSN ACN GAY YTN ACN TTY WSN GTN AAR WSN WSN MGN

-----

ACT TGT TGG TGG TTA ACT ACT ATT TCT ACT GAT TTA ACT TTT TCT GTT AAA TCT TCT CGT  
 ACC TGC TTG ACC ACC ATC TCC ACC GAC TTG ACC TTC TCC GTC AAG TCC TCC CGC  
 ACA CTT ACA ACA ATA TCA ACA CTT ACA TCA GTA TCA TCA CGA  
 ACG CTC ACG ACG TCG ACG CTC ACG TCG GTG TCG TCG CGG  
 CTA AGT CTA AGT AGT AGT AGT AGA  
 CTG AGC CTG AGC AGC AGC AGC AGG

170 180

Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser Ala Glu Arg Val  
 GGN WSN WSN GAY CCN CAR GGN GTN ACN TGY GGN GCA GCN ACN YTN WSN GCN GAR MGN GTN

-----

GGT TCT TCT GAT CCT CAA GGT GTT ACT TGT GGT GCT GCT ACT TTA TCT GCT GAA CGT GTT  
 GGC TCC TCC GAC CCC CAG GGC GTC ACC TGC GGC GCC ACC TTG TCC GCC GAG CGC GTC  
 GGA TCA TCA CCA GGA GTA ACA TGA GCA GCA ACA CTT TCA GCA CGA GTA  
 GGG TCG TCG CCG GGG GTG ACG CGG GCG GCG ACG CTC TCG GCG CGG GTG  
 AGT AGT CTA AGT AGA  
 AGC AGC CTG AGC AGG

190 200

Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu Cys Gln Glu Asp Ser Ala Cys Pro  
 MGN GGN GAY AAY AAR GAR TAY GAR TAY WSN GTN GAR TGY CAR GAR GAY WSN GCN TGY CCN

-----

CGT GGT GAT AAT AAA GAA TAT GAA TAT TGT TTG GAA TGT CAA GAA GAT TCT GCT TGT CCT  
 CGC GGC GAC AAC AAG GAG TAC AG TAC TGC GAT TGC CAG GAC TCC GCC TGC CCC  
 CGA GGA TCA GTA TCA GCA CCA  
 CGG GGG TCG GTG TCG GCG CCG  
 AGA AGT AGT  
 AGG AGC AGC AGC

Fig. 4C

210

Ala Ala Glu Glu Ser Leu Pro Ile Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr  
GCU GCU GAR GAR WSN YTN CCN ATH GAR GTN ATG GTN GAY GCU GTN CAY AAR YTN AAR TAY

GCT GCT GAA GAA TCT TTA CCT ATT GAA GTT ATG GTT GAT GCT GTC CAT AAA TTA AAA TAT  
GCC GCC GAG GAG TCC TTG CCC ATC GAG GTC GTC GAC GCC GTC CAC AAG TTG AAG TAC  
GCA GCA TCA CTT CCA ATA GTA GTA GCA GTA CTT  
GCG GCG TCG CTC CCG GTG GTG GCG GTG CTC  
AGT CTA CTA  
AGC CTG CTG

220

Glu Asn Tyr Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn  
GAR AAY TAY ACN WSN WSN TTG TTG ATH MGN TAY ATH ATH AAR CCA GAY CCN CCN AAR AAY

GAA AAT TAT ACT TCT TCT TTT ATT CGT AT ATT ATT AAA CC GAT CCT CCT AAA AAT  
GAG AAC TAC ACC TCC TCC TTC ATC CGC AAC ATC ATC ATC AAG CC GAC CCC CCC AAG AAC  
ACA TCA TCA ATA CGA ATA ATA CGA CCA CCA  
ACG TCG TCG CGA CGA CGA CCG CCG  
AGT AGT AGA AGA  
AGC AGC AGG AGG

230

Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp Glu Tyr Pro Asp  
YTN CAR YTN AAR CCN YTN AAR AAY WSN MGN CAR GTN GAR GTN WSN TGG GAR TAY CCN GAY

TTA CAA TTA AAA CCT TTA AAA AAT TCT CGT CAA GAA GTT TCT TGG GAA TAT CCT GAT  
TTG CAG TTG AAG CCC TTG AAG AAC TCC CCC CAG GTC GAG GTC TCC GAG TAC CCC GAC  
CTT CTT CCA CTT TCA CGA GTA GTA TCA CCA  
CTC CTC CCG CTC TCG CGG GTG GTG TCG CCG  
CTA CTA CTA AGT AGA AGT  
CTG CTG CTG AGC AGG AGC

250

Leu Gln Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp Glu Tyr Pro Asp  
YTN CAR YTN AAR CCN YTN AAR AAY WSN MGN CAR GTN GAR GTN WSN TGG GAR TAY CCN GAY

TTA CAA TTA AAA CCT TTA AAA AAT TCT CGT CAA GAA GTT TCT TGG GAA TAT CCT GAT  
TTG CAG TTG AAG CCC TTG AAG AAC TCC CCC CAG GTC GAG GTC TCC GAG TAC CCC GAC  
CTT CTT CCA CTT TCA CGA GTA GTA TCA CCA  
CTC CTC CCG CTC TCG CGG GTG GTG TCG CCG  
CTA CTA CTA AGT AGA AGT  
CTG CTG CTG AGC AGG AGC

270

Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr Phe Cys Val Gln Val Gln Gly Lys  
ACN TGG WSN ACN CCN CAY WSN TAY TTG WSN YTN ACN TTY TGY GTN CAR GTN CAR GGN AAR

ACT TGG TCT ACT CCT CAT TCT TAT TTT TCT TTA ACT TTT TGT GTT CAA GAA GTT CAA GGT AAA  
ACC TCC ACC CCC CAC TCC TAC TTC TCC TTG ACC TTC TGC GTC CAG GTC CAG GGC AAG  
ACA TCA ACA CCA TCA TCA CTT ACA GTA GTA GGA  
ACG TCG ACG CCG TCG TCG CTC ACG GTG GTG GGG  
AGT AGT AGT CTA  
AGC AGC AGC AGC CTG

280

Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr Phe Cys Val Gln Val Gln Gly Lys  
ACN TGG WSN ACN CCN CAY WSN TAY TTG WSN YTN ACN TTY TGY GTN CAR GTN CAR GGN AAR

ACT TGG TCT ACT CCT CAT TCT TAT TTT TCT TTA ACT TTT TGT GTT CAA GAA GTT CAA GGT AAA  
ACC TCC ACC CCC CAC TCC TAC TTC TCC TTG ACC TTC TGC GTC CAG GTC CAG GGC AAG  
ACA TCA ACA CCA TCA TCA CTT ACA GTA GTA GGA  
ACG TCG ACG CCG TCG TCG CTC ACG GTG GTG GGG  
AGT AGT AGT CTA  
AGC AGC AGC AGC CTG

290

Ser Lys Arg Glu Lys Lys Asp Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys  
WSN AAR MGN GAR AAR AAR GAY MGN GTN TTY ACN GAY AAR ACN WSN GCU ACN GTN ATH TGY

TCT AAA CGT GAA AAA AAA GAT CGT GTT TTT ACT GAT AAA ACT TCT GCT ACT GTT ATT TGT  
TCC AAG CGC GAG AAG AAG GAC CGC GTC TTC ACC GAC AAG ACC TCC GCC ACC GTC ATC TGC  
TCA CGA CGA GTA ACA ACA TCA GCA ACA GTA ATA  
TCG CGG CGG GTG ACG ACG TCG GCG ACG GTG  
AGT AGA AGA AGT  
AGC AGG AGG AGC

300

Fig. 4D

310

Arg Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp Ser  
 MGN AAR AAY GCN WSN ATH WSN GTN MGN GCN CAR GAY MGN TAY TAY WSN WSN WSN TGG WSN

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CGT | AAA | AAT | GCT | TCT | ATT | TCT | GTT | CGT | GCT | CAA | GAT | CGT | TAT | TAT | TCT | TCT | TCT | TGG | TCT |
| CGC | AAG | AAC | GCC | TCC | ATC | TCC | GTC | CGC | GCC | QAG | GAC | CGC | TAC | TAC | TCC | TCC | TCC |     | TCC |
| CGA |     | GCA | TCA | ATA | TCA | GTA | CGA | GCA |     |     | CGA |     | TCA | TCA | TCA |     |     | TCA |     |
| CGG |     | GCG | TCG |     | TCG | GTG | CGG | GCG |     |     | CGG |     | TCG | TCG | TCG |     |     | TCG |     |
| AGA |     |     | AGT |     | AGT |     | AGA |     |     | AGA |     | AGT | AGT | AGT |     |     |     | AGT |     |
| AGG |     |     | AGC |     | AGC |     | AGG |     |     | AGG |     | AGC | AGC | AGC |     |     |     | AGC |     |

Glu Trp Ala Ser Val Pro Cys Ser \*\*\*  
GAR TGG GCG WSN GTN CCN TGY WSN TRR

|     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| GAA | TGG | GCT | TCT | GTT | CCT | TGT | TCT | TAA |
| GAG |     | GCC | TCC | GTC | CCC | TGG | TCC | TAG |
|     |     | GCA | TCA | GTA | CCA |     | TCA | TGA |
|     |     | GCG | TCG | GTG | CCG |     | TCG |     |
|     |     |     | AGT |     |     |     | AGT |     |
|     |     |     | AGC |     |     |     | AGC |     |

## Fig. 5A

File : H35.AMI  
 Range : 1 220  
 Codon Table : Universal

SEQ 10 NO. 5

10

20

Met Cys Pro Ala Arg Ser Leu Leu Leu Val Ala Thr Leu Val Leu Leu Asp His Leu Ser  
 ATG TGY CCN GCN MGN WSN YTN YTN GTN GCN ACN YTN GTN YTN YTN GAY CAY YTN WSN  
 -----  
 ATG TGT CCT GCT CGT TCT TTA TTA GTT GCT ACT TTA GTT TTA TTA GAT CAT TTA TCT  
 TGC CCC GCC CGC TCC TTG TTG GTC GCC ACC TTG GTC TTG TTG GAC CAC TTG TCC  
 CCA GCA CGA TCA CTT CTT CTT GTC GCA ACA CTT GTC CTT CTT CTT TCA  
 CCG GCG CGG TCG CTC CTC GTG GCG ACG CTC GTG CTC CTC CTC TCG  
 AGA AGT CTA CTA CTA CTA CTA CTA CTA CTA CTA AGT CTA AGT  
 AGG AGC CTG CTG CTG CTG CTG CTG CTG AGC

30

40

Leu Ala Arg Asn Leu Pro Val Ala Thr Pro Asp Pro Gly Met Phe Pro Cys Leu His His  
 YTN GCN MGN AAY YTN CCN GTN GCN ACN CCN GAY CCN GGN ATG TTY CCN TGY YTN CAY CAY  
 -----  
 TTA GCT CGT AAT TTA CCT GTT GCT ACT CCT GAT CCT GGT ATG TTT CCT TGT TTA CAT CAT  
 TTG GCC CGG AAC TTG CCC GTC GCC ACC CCC GAC CCC GGC TTC CCC TGC TTG CAC CAC  
 CTT GCA CGA CTT CCA GTC GCA ACA CCA CCA GGA CCA CTT  
 CTC CGG CGG CTC CCG GTG GCG ACG CCG CCG GGG CCG CTC CTA  
 CTA AGA CTA  
 CTG AGG CTG CTG CTG CTG CTG CTG CTG CTG

50

60

Ser Gln Asn Leu Leu Arg Ala Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu  
 WSN CAR AAY YTN YTN MGN GCN GTN WSN AAY ATG YTN CAR AAR GCN MGN CAR ACN YTN GAR  
 -----  
 TCT CAA AAT TTA TTA CGT GCT GTT TCT AAT ATG TTA CAA AAA GCT CGT CAA ACT TTA GAA  
 TCC CAG AAC TTG TTG CGC GCC GTC TCC AAC TTG CAG AAG GCC CGC CAG ACC TTG GAG  
 TCA CTT CTT CGA GCA GTC TCA CTT GCA CCA ACA CTT  
 TCG CTC CTC CGG GCG GTG TCG CTC GCG CGG ACA CTT  
 AGT CTA CTA AGA AGT CTA AGA CTA AGC CTA AGA CTA  
 AGC CTG CTG AGG AGC CTG AGG AGC CTG AGC CTG

70

80

Phe Tyr Pro Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp Lys Thr Ser  
 TTY TAY CCN TGY ACN WSN GAR GAR ATH GAY CAY GAR GAY ATH ACN AAR GAY AAR ACN WSN  
 -----  
 TTT TAT CCT TGT ACT TCT GAA GAA ATT GAT CAT GAA GAT ATT ACT AAA GAT AAA ACT TCT  
 TTC TAC CCC TGC ACC TCC GAG GAG ATC GAC CAC GAG GAC ATC ACC AAG GAC AAG ACC TCC  
 CCA ACA TCA ATA ATA ACA .. ACA TCA  
 CCG ACG TCG AGT ACG ACG TCG AGT  
 AGC AGC AGC AGC

90

100

Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn Glu Ser Cys Leu Asn Ser Arg  
 ACN GTN GAR GCN TGY YTN CCN YTN GAR YTN ACN AAR AAY GAR WSN TGY YTN AAY WSN MGN  
 -----  
 ACT GTT GAA GCT TGT TTA CCT TTA GAA TTA ACT AAA ATT GAA TCT TGT TTA AAT TCT CGT  
 ACC GTC GAG GCC TGC TTG CCC TTG GAG TTG ACC AAG AAC GAG TCC TGC TTG AAC TCC CGC  
 ACA GTA GCA CTT CCA CTT CTT ATA TCA CTT CTC CGA  
 ACG GTG GCG CTC CCC TC CTC ACG 3 CTC TCG CGG  
 CTA CTA CTA AGT CTA AGT  
 CTG CTG CTG AGC CTG AGC AGC AGG

## Fig. 5B

110

120

Glu Thr Ser Phe Ile Thr Asn Gly Ser Cys Leu Ala Ser Arg Lys Thr Ser Phe Met Met  
 GAR ACN WSN TTY ATH ACN AAY GGN WSN TGY YTN GCN WSN MGN AAR ACN WSN TTY ATG ATG

GAA ACT TCT TTT ATT ACT AAT GGT TCT TGT TTA GCT TCT CGT AAA ACT TCT TTT ATG ATG  
 GAG ACC TCC TTC ATC ACC AAC GGC TCC TGC TTG GCC TCC CGC AAG ACC TCC TTC  
 ACA TCA ATA ACA GGA TCA CTT GCA TCA CGA ACA TCA  
 ACG TCG ACG GGG TCG CTC GCG TCG CGG ACG TCG  
 AGT AGT CTA AGT AGA AGT  
 AGC AGC CTG AGC AGG AGC

130

140

Ala Leu Cys Leu Ser Ser Ile Tyr Glu Asp Leu Lys Met Tyr Glu Val Glu Phe Lys Thr  
 GCN YTN TGY YTN WSN WSN ATH TAY GAR GAY YTN AAR ATG TAY CAR GTN GAR TTY AAR ACN

GCT TTA TGT TTA TCT TCT ATT TAT GAA GAT TTA AAA ATG TAT CAA GTT GAA TTT AAA ACT  
 GCC TTG TGC TTG TCC TCC ATC TAC GAG GAC TTG AAG TAC CAG GTC GAG TTC AAG ACC  
 GCA CTT CTT TCA TCA ATA CTT GTA ACA  
 GCG CTC CTC TCG TCG CTC GTG ACG  
 CTA CTA AGT AGT CTA  
 CTG CTG AGC AGC CTG

150

160

Met Asn Ala Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln Asn Met Leu  
 ATG AAY GCN AAR YTN YTN ATG GAY CCN AAR MGN CAR ATH TTY YTN GAY CAR AAY ATG YTN

ATG AAT GCT AAA TTA TTA ATG GAT CCT AAA CGT CAA ATT TTT TTA GAT CAA AAT ATG TTA  
 AAC GCC AAG TTG TTG GAC CCC AAG CGC CAG ATC TTC TTG GAC CAG AAC TTG  
 GCA CTT CTT CCA CGA ATA CTT CTT  
 GCG CTC CTC CCG CGG CTC CTC  
 CTA CTA AGA CTA CTA  
 CTG CTG AGG CTG CTG

170

180

Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn Ser Glu Thr Val Pro Gln Lys  
 GCN GTN ATH GAY GAR YTN ATG CAR GCN YTN AAY TTY AAY WSN GAR ACN GTN CCN CAR AAR

GCT GTT ATT GAT GAA TTA ATG CAA GCT TTA AAT TTT AAT TCT GAA ACT GTT CCT CAA AAA  
 GCC GTC ATC GAC GAG TTG CAG GCC TTG AAC TTC AAC TCC GAG ACC GTC CCC CAG AAG  
 GCA GTA ATA CTT GCA CTT TCA ACA GTA CCA  
 GCG GTG CTC GCG CTC TCG ACG GTG CCG  
 CTA CTA AGT  
 CTG CTG AGC

190

200

Ser Ser Leu Glu Glu Pro Asp Phe Tyr Lys Thr Lys Ile Lys Leu Cys Ile Leu His  
 WSN WSN YTN GAR GAR CCN GAY TTY TAY AAR ACN AAR ATH AAR YTN TGY ATH YTN YTN CAY

TCT TCT TTA GAA GAA CCT GAT TTT TAT ATA ACT AAA ATT AAA TTA TGT ATT TTA TTA CAT  
 TCC TCC TTG GAG GAG CCC GAC TC TAC AAG ACC AAG ATC AAG 3 TGC ATC TTG TTG CAC  
 TCA TCA CTT CCA ACA ATA CTT ATA CTT CTT  
 TCG TCG CTC CCG ACG CTC CTC CTC  
 AGT AGT CTA CTA CTA CTA  
 AGC AGC CTG CTG CTG CTG

## Fig. 5C

210

220

Ala Phe Arg Ile Arg Ala Val Thr Ile Asp Arg Val Thr Ser Tyr Leu Asn Ala Ser \*\*\*  
GCN TTY MGN ATH MGN GCN GTN ACN ATH GAY MGN GTN ACN WSN TAY YTN AAY GCN WSN TRR

-----  
GCT TTT CGT ATT CGT GCT GTT ACT ATT GAT CGT GTT ACT TCT TAT TTA AAT GCT TCT TAA  
GCC TTC CGC ATC CGC GCC GTC ACC ATC GAC CGC GTC ACC TCC TAC TTG AAC GCC TCC TAG  
GCA CGA ATA CGA GCA GTA ACA ATA CGA GTA ACA TCA CTT GCA TCA TGA  
GCG CGG CGG GCG GTG ACG CGG GTG ACG TCG CTC GCG TCG  
AGA AGA AGA AGT CTA AGT  
AGG AGG AGG AGC CTG AGC

Fig. 6

## Codon Frequency Tables

human high.cod

Codon usage for human (highly expressed) genes 1/24/91.

| AAcid | Codon | Number  | /1000 | Fraction |
|-------|-------|---------|-------|----------|
| Gly   | GCG   | 965.00  | 18.76 | 0.24     |
| Gly   | GCA   | 525.00  | 10.18 | 0.14     |
| Gly   | GCT   | 441.00  | 9.14  | 0.12     |
| Gly   | GCC   | 1867.00 | 38.70 | 0.50     |
| Cle   | GAA   | 2426.00 | 50.18 | 0.73     |
| Glu   | CAA   | 732.00  | 14.62 | 0.25     |
| Asp   | CAT   | 532.00  | 12.27 | 0.25     |
| Asp   | CAC   | 1021.00 | 21.73 | 0.75     |
| Val   | GTC   | 1866.00 | 38.68 | 0.64     |
| Val   | GTA   | 134.00  | 2.78  | 0.05     |
| Val   | GTT   | 191.00  | 4.10  | 0.07     |
| Val   | GTC   | 721.00  | 15.49 | 0.25     |
| Ala   | GCG   | 652.00  | 13.51 | 0.17     |
| Ala   | GCA   | 486.00  | 10.12 | 0.13     |
| Ala   | GCT   | 634.00  | 13.56 | 0.17     |
| Ala   | GCC   | 2651.00 | 42.64 | 0.53     |
| Arg   | AGG   | 512.00  | 10.61 | 0.18     |
| Arg   | AGA   | 294.00  | 6.18  | 0.10     |
| Ser   | ACT   | 354.00  | 7.34  | 0.10     |
| Ser   | ACC   | 1171.00 | 24.27 | 0.36     |
| Lys   | AAA   | 2117.00 | 43.28 | 0.82     |
| Lys   | AAU   | 471.00  | 9.76  | 0.18     |
| Lys   | AAT   | 314.00  | 6.51  | 0.22     |
| Lys   | AAC   | 1120.00 | 23.22 | 0.78     |
| Met   | ATG   | 1077.00 | 22.32 | 1.00     |
| Ile   | ATA   | 88.00   | 1.82  | 0.05     |
| Ile   | ATT   | 315.00  | 6.53  | 0.21     |
| Ile   | ATC   | 1369.00 | 28.38 | 0.77     |
| Thr   | ACG   | 465.00  | 9.10  | 0.15     |
| Thr   | ACA   | 273.00  | 5.73  | 0.14     |
| Thr   | ACT   | 358.00  | 7.62  | 0.14     |
| Thr   | ACC   | 1502.00 | 31.13 | 0.57     |
| Ter   | TCC   | 652.00  | 13.51 | 1.00     |
| Ter   | TCA   | 109.00  | 2.26  | 0.05     |
| Cys   | TCT   | 325.00  | 6.74  | 0.32     |
| Cys   | TCC   | 706.00  | 14.63 | 0.64     |
| End   | TAC   | 42.00   | 0.87  | 0.21     |
| End   | TAA   | 46.00   | 0.95  | 0.23     |
| Tyr   | TAT   | 360.00  | 7.46  | 0.26     |
| Tyr   | TAC   | 1042.00 | 21.60 | 0.74     |
| Lys   | TTC   | 313.00  | 6.45  | 0.06     |
| Lys   | TTA   | 76.00   | 1.58  | 0.02     |
| Pro   | TTT   | 336.00  | 6.96  | 0.20     |
| Pro   | TTC   | 1377.00 | 28.54 | 0.80     |
| Ser   | TCC   | 329.00  | 6.74  | 0.09     |
| Ser   | TCA   | 165.00  | 3.42  | 0.05     |
| Ser   | TCT   | 456.00  | 9.33  | 0.13     |
| Ser   | TCC   | 958.00  | 19.86 | 0.28     |
| Arg   | CCC   | 611.00  | 12.67 | 0.21     |
| Arg   | CCA   | 183.00  | 3.79  | 0.06     |
| Arg   | CCT   | 216.00  | 4.35  | 0.07     |
| Arg   | CCG   | 1086.00 | 22.51 | 0.37     |
| Cln   | CAC   | 2020.00 | 41.17 | 0.68     |
| Cln   | CAA   | 283.00  | 5.17  | 0.12     |
| His   | CAT   | 234.00  | 4.15  | 0.21     |
| His   | CAC   | 870.00  | 17.03 | 0.39     |
| Lys   | CTG   | 2886.00 | 51.78 | 0.64     |
| Lys   | CTA   | 166.00  | 3.14  | 0.03     |
| Lys   | CTT   | 238.00  | 4.33  | 0.05     |
| Lys   | CTC   | 1276.00 | 26.45 | 0.26     |
| Pro   | CCC   | 162.00  | 3.09  | 0.17     |
| Pro   | CCA   | 456.00  | 9.43  | 0.26     |
| Pro   | CCT   | 568.00  | 11.77 | 0.22     |
| Pro   | CCC   | 1410.00 | 29.23 | 0.44     |

Fig. 7



Fig. 8



Fig. 9

(pCT0129.095:DOTMA/CHOL 1:3 -/+ 10% Lactose)



# Antigen-Induced Airway Inflammation Model in Guinea Pigs

Fig. 10



M (measurement) = bronchoalveolar lavage total and differential cell count

Fig. 11

