Домашняя работа по дискретной математике №15

Михайлов Никита Маратович, БПМИ-167

Теорема 1.Если множество A бесконечно, то существует счетное множество $B \subset A$.

Теорема 2. Если множество А счетно и $B \subseteq A$, то В конечно или счетно.

Теорема 3. Если множество A счетно, то при любом целом положительном n множество A^n конечных последовательностей длины n счетно (а множество A^0 конечно).

Теорема 4. Если множества A и B конечны или счетны, причем хотя бы одно из них бесконечно, то множество $A \cup B$ счетно.

Теорема 5.Пусть множества A и B конечны, причем |A| = n и |B| = m. Тогда множество $A \times B$ конечно, причем $|A \times B| = nm$.

1. Решение. По Т.1 $\exists A' \subseteq A \setminus B : A' \sim \mathbb{N}$. Обозначим $A \cap B = C$ - конечно или счетно, тогда(воспользовавшись Т.4)

$$A \setminus B = A \setminus B \setminus A' \cup A' = A \setminus C \setminus A' \cup A' \sim A \setminus C \setminus A' \cup A' \cup C.$$

Так как $A' \cap C = \emptyset$, то $A \setminus C \setminus A' = A \setminus A' \setminus C$. Подставим в формулу выше:

$$A \setminus B \sim A \setminus A' \setminus C \cup A' \cup C = A.$$

Таким образом, $A \setminus B \sim A$ - верно.

- **2.** Решение. Не верно. Возьмем $A=B=\mathbb{N},$ тогда $A\triangle B=(A\cup B)\setminus (A\cap B)=\mathbb{N}\setminus \mathbb{N}=\varnothing \nsim \mathbb{N}.$
- **3.** Решение. Верно. Это частный случай задания 1, когда $A \cap B = C$ конечно.
- **4.** Решение. Известно, что 1) $\mathbb Q$ счетно; 2) между двумя любыми числами существует некоторое рациональное число.

Для каждого интервала поставим ему в соответствие одно из рациональных чисел, принадлежащих данному интервалу. Очевидно, что получившееся множество является подмножеством $\mathbb{Q} \Rightarrow$ конечно или счетно.

- **5.** Решение. Пусть A бесконечное множество, тогда по Т.1 $\exists A' \subseteq A : A' \sim \mathbb{N}. \Rightarrow A' = \{a_1, a_2, ...\}$. Составим новые множества $A'_1 = \{a_1, a_3, ...\}$ и $A'_2 = \{a_2, a_4, ...\}$. Таким образом, каждое бесконечное множество содержит минимум 2 счетных непересекающихся множества. А они свою очередь содержат еще по 2 счетных. Это никогда не закончится, так как на каждой итерации есть хотя бы 2 счетных множества \Rightarrow исходное множество A содержит в себе бесконечное число счетных непересекающихся множеств.
- **6.** Решение. Чтобы задать периодическую функцию достаточно взять T последовательных чисел и сопоставить каждому его значение. Каждое из значений T содержится в \mathbb{Z} счетное. Для каждого фиксированного T множество значений содержится в множестве \mathbb{Z}^T счетное по T.5. Следовательно, кол-во всех периодических функций счетно, т.к. получаем счетное объединение счетных множеств (для каждого T свое множество значений).
- 7. Решение. Пусть \mathbb{A} мн-во конечных строго возрастающих последовательностей, а \mathbb{B} мн-во всех конечных последовательностей. Рассмотрим строго возрастающую последовательность длины $n: x_n = (a_1, a_2, ..., a_n)$. Рассмотрим следующую функцию f, возвращающую последовательность:

$$f(x_n) = \begin{cases} (a_1, a_2 - a_1 - 1, a_3 - a_2 - 1, ..., a_n - a_{n-1} - 1), \text{ если } x_n \neq \emptyset \\ \emptyset, \text{ если } x_n = \emptyset \end{cases}$$

*Замечание: На первое место ставим первый элемент исходной последовательности, а на i-е место ставим разность между i-ым и (i-1)-ым $\forall i \in [2; n]$. Но почему -1? Чтобы представить 0, т.к. в нашем курсе $0 \in \mathbb{N}$ и $a_i - a_{i-1} \geq 1$.

Заметим, что это инъекция $f: \mathbb{A} \to \mathbb{B}$. $\forall x_n \neq x'_n \Rightarrow f(x_n) \neq f(x'_n)$. Зная первый элемент новой последовательности и все разности, мы однозначно можем задать исходную последовательность $\Rightarrow f^{-1}$ - инъекция. Таким образом:

$$egin{cases} f^- & \text{инъекция} \ f^{-1} - & \text{инъекция} \end{cases} \Rightarrow f^- & \text{биекция} : \mathbb{A} \leftrightarrow \mathbb{B}$$