1.6 极限和连续性

• 复变函数的极限和连续性的定义和实函数情形是类似的.

- 复变函数的极限和连续性的定义和实函数情形是类似的.
- 我们先来看数列极限的定义.

- 复变函数的极限和连续性的定义和实函数情形是类似的.
- 我们先来看数列极限的定义.

定义

• 设 $\{z_n\}_{n\geqslant 1}$ 是一个复数列. 如果 $\forall \varepsilon > 0$, $\exists N$ 使得当 $n\geqslant N$ 时 $|z_n-z|<\varepsilon$, 则称 z 是数列 $\{z_n\}$ 的极限, 记作 $\lim_{n\to\infty}z_n=z$.

- 复变函数的极限和连续性的定义和实函数情形是类似的.
- 我们先来看数列极限的定义.

定义

- 设 $\{z_n\}_{n\geqslant 1}$ 是一个复数列. 如果 $\forall \varepsilon > 0$, $\exists N$ 使得当 $n\geqslant N$ 时 $|z_n-z|<\varepsilon$, 则称 z 是数列 $\{z_n\}$ 的极限, 记作 $\lim_{n\to\infty}z_n=z$.
- 如果 $\forall X > 0, \exists N$ 使得当 $n \ge N$ 时 $|z_n| > X$, 则称 ∞ 是数 列 $\{z_n\}$ 的极限, 记作 $\lim_{n \to \infty} z_n = \infty$.

• 在闭复平面上, ∞ 的邻域是指

$$U(\infty, X) = \{ z \in \mathbb{C} : |z| > X \} \cup \{\infty\},\$$

• 在闭复平面上, ∞ 的邻域是指

$$U(\infty, X) = \{ z \in \mathbb{C} : |z| > X \} \cup \{\infty\},\$$

去心邻域是指

$$\overset{\circ}{U}(\infty,X)=\{z\in\mathbb{C}\colon |z|>X\}.$$

• 在闭复平面上, ∞ 的邻域是指

$$U(\infty, X) = \{ z \in \mathbb{C} : |z| > X \} \cup \{\infty\},\$$

去心邻域是指

$$\overset{\circ}{U}(\infty,X)=\{z\in\mathbb{C}\colon |z|>X\}.$$

• 在闭复平面上, ∞ 的邻域是指

$$U(\infty, X) = \{ z \in \mathbb{C} : |z| > X \} \cup \{\infty\},\$$

去心邻域是指

$$\overset{\circ}{U}(\infty, X) = \{z \in \mathbb{C} : |z| > X\}.$$

对 z 的任意邻域 $U,\exists N$ 使得当 $n \geqslant N$ 时 $z_n \in U$.

数列极限的等价刻画

定理

设
$$z_n = x_n + iy_n, z = x + iy.$$

$$\lim_{n \to \infty} z_n = z \Leftrightarrow \lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y.$$

数列极限的等价刻画

定理

设
$$z_n = x_n + iy_n, z = x + iy.$$

$$\lim_{n \to \infty} z_n = z \Leftrightarrow \lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y.$$

• 证明 由三角不等式

$$|x_n - x|, |y_n - y| \le |z_n - z| \le |x_n - x| + |y_n - y|$$
Sign.

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

•解(1)由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \qquad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0,$$

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

•解(1)由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \qquad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0,$$

• 因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

•解(1)由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \qquad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0,$$

• 因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.

• (2) 由于
$$x_n = \frac{n(e^n + e^{-n})}{2} \to \infty, y_n = 0,$$

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

•解(1)由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \qquad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0,$$

• 因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.

• (2) 由于
$$x_n = \frac{n(e^n + e^{-n})}{2} \to \infty, y_n = 0,$$

• 因此 {z_n} 发散.

• 例 判断下列数列是否收敛, 如果收敛求出其极限.

• (1)
$$z_n = \left(1 + \frac{1}{n}\right) e^{\frac{i\pi}{n}}$$
, (2) $z_n = n \cos(ni)$.

•解(1)由于

$$x_n = \left(1 + \frac{1}{n}\right)\cos\frac{\pi}{n} \to 1, \qquad y_n = \left(1 + \frac{1}{n}\right)\sin\frac{\pi}{n} \to 0,$$

- 因此 $\{z_n\}$ 收敛且 $\lim_{n\to\infty} z_n = 1$.
- (2) 由于 $x_n = \frac{n(e^n + e^{-n})}{2} \to \infty, y_n = 0,$
- 因此 $\{z_n\}$ 发散. 实际上此时 $\lim_{n\to\infty} z_n = \infty$.

定义

设函数 w = f(z) 在点 z_0 的某个去心邻域内有定义.

定义

设函数 w = f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 U, $\exists \delta > 0$ 使得当 $z \in U(z_0, \delta)$ 时, 有 $f(z) \in U$,

定义

设函数 w = f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 U, $\exists \delta > 0$ 使得当 $z \in \overset{\circ}{U}(z_0, \delta)$ 时, 有 $f(z) \in U$, 则称 A 为 f(z) 当 $z \to z_0$ 时的极限, 记为 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A$ ($z \to z_0$).

定义

设函数 w = f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 U, $\exists \delta > 0$ 使得当 $z \in U(z_0, \delta)$ 时, 有 $f(z) \in U$, 则称 A 为 f(z) 当 $z \to z_0$ 时的极限, 记为 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A$ ($z \to z_0$).

• 对于 $z_0 = \infty$ 或 $A = \infty$ 的情形, 也可以用上述定义统一描述.

定义

设函数 w = f(z) 在点 z_0 的某个去心邻域内有定义. 如果存在复数 A 使得对 A 的任意邻域 U, $\exists \delta > 0$ 使得当 $z \in U(z_0, \delta)$ 时, 有 $f(z) \in U$, 则称 A 为 f(z) 当 $z \to z_0$ 时的极限, 记为 $\lim_{z \to z_0} f(z) = A$ 或 $f(z) \to A$ ($z \to z_0$).

- 对于 $z_0 = \infty$ 或 $A = \infty$ 的情形, 也可以用上述定义统一描述.
- 不过通常说极限存在是不包括 $\lim f(z) = \infty$ 的情形的.

• 通过与二元实函数的极限对比可知, 复变函数的极限和二元实函数的极限定义是类似的.

- 通过与二元实函数的极限对比可知, 复变函数的极限和二元实函数的极限定义是类似的.
- $z \rightarrow z_0$ 可以是沿着任意一条曲线趋向于 z_0 ,

- 通过与二元实函数的极限对比可知,复变函数的极限和二元实函数的极限定义是类似的.
- $z \to z_0$ 可以是沿着任意一条曲线趋向于 z_0 , 或者看成 z_0 是在一个开圆盘内任意的点逐渐地靠拢 z_0 .

定义

设
$$f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0, A = u_0 + iv_0,$$

定义

设
$$f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0, A = u_0 + iv_0,$$

则
$$\lim_{z \to z_0} f(z) = A$$
 当且仅当

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \qquad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

定义

设
$$f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0, A = u_0 + iv_0,$$

则 $\lim_{z \to z_0} f(z) = A$ 当且仅当

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \qquad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

• 证明 由三角不等式

$$|u - u_0|, |v - v_0| \le |z - z_0| \le |u - u_0| + |v - v_0|$$

易证.

定义

设
$$f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0, A = u_0 + iv_0,$$

则 $\lim_{z \to z_0} f(z) = A$ 当且仅当

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = u_0, \qquad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = v_0.$$

• 证明 由三角不等式

$$|u-u_0|, |v-v_0| \le |z-z_0| \le |u-u_0| + |v-v_0|$$
 $\exists u \in [u-u_0]$

• 当 $z_0 = \infty$ 或 $A = \infty$ 时上述结论也正确.

极限的四则运算

• 由此可知极限的四则运算法则对于复变函数也是成立的.

极限的四则运算

• 由此可知极限的四则运算法则对于复变函数也是成立的.

定理

设
$$\lim_{z \to z_0} f(z) = A$$
, $\lim_{z \to z_0} g(z) = B$, 则

(1)
$$\lim_{z \to z_0} (f \pm g)(z) = A \pm B$$
.

$$(2) \lim_{z \to z_0} (fg)(z) = AB.$$

(3) 当
$$B \neq 0$$
 时, $\lim_{z \to z_0} \left(\frac{f}{g}\right)(z) = \frac{A}{B}$.

• 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.

• 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.

- 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.
- 证明 令 z = x + yi, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \qquad v(x,y) = 0.$$

- 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.
- 证明 令 z = x + yi, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \qquad v(x,y) = 0.$$

• 当 z 沿着直线 y = kx 趋向于 0 时, 则 $u(x,y) \to \pm \frac{1}{\sqrt{1+k^2}}$.

- 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\operatorname{Re} z}{|z|}$ 的极限不存在.
- 证明 令 z = x + yi, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \qquad v(x,y) = 0.$$

- 当 z 沿着直线 y = kx 趋向于 0 时, 则 $u(x,y) \rightarrow \pm \frac{1}{\sqrt{1+k^2}}$.
- 显然这个数依赖于 k 的选择, 因此 $\lim_{\substack{x\to 0\\y\to 0}} u(x,y)$ 不存在.

例题: 判断函数极限是否存在

- 例 证明当 $z \to 0$ 时, 函数 $f(z) = \frac{\text{Re } z}{|z|}$ 的极限不存在.
- 证明 令 z = x + yi, 则 $f(z) = \frac{x}{\sqrt{x^2 + y^2}}$. 因此

$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \qquad v(x,y) = 0.$$

- 当 z 沿着直线 y = kx 趋向于 0 时, 则 $u(x,y) \rightarrow \pm \frac{1}{\sqrt{1+k^2}}$.
- 显然这个数依赖于 k 的选择, 因此 $\lim_{\substack{x\to 0\\y\to 0}} u(x,y)$ 不存在.
- 从而 $\lim_{z\to 0} f(z)$ 不存在.

定义

如果 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.

定义

如果 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.

如果 f(z) 在区域 D 内处处连续, 则称 f(z) 在 D 内连续.

定义

如果 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.

如果 f(z) 在区域 D 内处处连续, 则称 f(z) 在 D 内连续.

• 由前面的定理可知:

定义

如果 $\lim_{z \to z_0} f(z) = f(z_0)$, 则称 f(z) 在 z_0 处连续.

如果 f(z) 在区域 D 内处处连续, 则称 f(z) 在 D 内连续.

• 由前面的定理可知:

定理

函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处连续当且 仅当 u(x,y) 和 v(x,y) 在 (x_0,y_0) 处连续.

• 例如 $f(z) = \ln(x^2 + y^2) + i(x^2 - y^2)$.

- 例如 $f(z) = \ln(x^2 + y^2) + i(x^2 y^2)$.
- $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 y^2$ 处处连续.

- 例如 $f(z) = \ln(x^2 + y^2) + i(x^2 y^2)$.
- $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 y^2$ 处处连续.
- 因此 f(z) 在 $z \neq 0$ 处连续.

- 例如 $f(z) = \ln(x^2 + y^2) + i(x^2 y^2)$.
- $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 y^2$ 处处连续.
- 因此 f(z) 在 $z \neq 0$ 处连续.

定理

• 在 z_0 处连续的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 在 z_0 处仍然连续.

- 例如 $f(z) = \ln(x^2 + y^2) + i(x^2 y^2)$.
- $u(x,y) = \ln(x^2 + y^2)$ 除原点外处处连续, $v(x,y) = x^2 y^2$ 处处连续.
- 因此 f(z) 在 $z \neq 0$ 处连续.

定理

- 在 z_0 处连续的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 在 z_0 处仍然连续.
- 如果函数 g(z) 在 z_0 处连续, 函数 f(w) 在 $g(z_0)$ 处连续, 则 f(g(z)) 在 z_0 处连续.

• 显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续,

• 显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续,有理函数 $\frac{P(z)}{Q(z)}$ 在 Q(z) 的零点以外处处连续.

• 显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续,有理函数 $\frac{P(z)}{Q(z)}$ 在 Q(z) 的零点以外处处连续.

• 有时候我们会遇到在曲线上连续的函数, 它指的是当 z 沿着该曲线趋向于 z_0 时, $f(z) \rightarrow f(z_0)$.

• 显然 f(z) = z 是处处连续的, 故多项式函数

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

也处处连续,有理函数 $\frac{P(z)}{Q(z)}$ 在 Q(z) 的零点以外处处连续.

- 有时候我们会遇到在曲线上连续的函数, 它指的是当 z 沿着该曲线趋向于 z_0 时, $f(z) \rightarrow f(z_0)$.
- 对于闭曲线或包含端点的曲线段, 其之上的连续函数 f(z) 是有界的.

• 例 证明: 如果 f(z) 在 z_0 连续, 则 $\overline{f(z)}$ 在 z_0 也连续.

- 例 证明: 如果 f(z) 在 z_0 连续, 则 f(z) 在 z_0 也连续.
- 证明 设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0.$

- 例 证明: 如果 f(z) 在 z_0 连续, 则 $\overline{f(z)}$ 在 z_0 也连续.
- 证明 设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0.$
- 那么 u(x,y), v(x,y) 在 (x_0,y_0) 连续.

- 例 证明: 如果 f(z) 在 z_0 连续, 则 f(z) 在 z_0 也连续.
- 证明 设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0.$
- 那么 u(x,y), v(x,y) 在 (x_0,y_0) 连续.
- 从而 -v(x,y) 也在 (x_0,y_0) 连续.

- 例 证明: 如果 f(z) 在 z_0 连续, 则 f(z) 在 z_0 也连续.
- 证明 设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0.$
- 那么 u(x,y), v(x,y) 在 (x_0,y_0) 连续.
- 从而 -v(x,y) 也在 (x_0,y_0) 连续.
- 所以 $\overline{f(z)} = u(x,y) iv(x,y)$ 在 (x_0,y_0) 连续.

- 例 证明: 如果 f(z) 在 z_0 连续, 则 f(z) 在 z_0 也连续.
- 证明 设 $f(z) = u(x,y) + iv(x,y), z_0 = x_0 + iy_0.$
- 那么 u(x,y), v(x,y) 在 (x_0,y_0) 连续.
- 从而 -v(x,y) 也在 (x_0,y_0) 连续.
- 所以 $\overline{f(z)} = u(x,y) iv(x,y)$ 在 (x_0,y_0) 连续.
- 另一种看法是, 函数 $g(z) = \overline{z} = x iy$ 处处连续, 从而 g(f(z)) 在 z_0 处连续.

• 可以看出, 在极限和连续性上, 复变函数和两个二元实函数没有什么差别.

- 可以看出,在极限和连续性上,复变函数和两个二元实函数没有什么差别.
- 那么复变函数和多变量微积分的差异究竟是什么导致的呢? 归根到底就在于 © 是一个域, 上面可以做除法.

- 可以看出,在极限和连续性上,复变函数和两个二元实函数没有什么差别.
- 那么复变函数和多变量微积分的差异究竟是什么导致的呢? 归根到底就在于 ℂ 是一个域, 上面可以做除法.
- 这就导致了复变函数有导数,而不是像多变量实函数只有偏导数.

- 可以看出, 在极限和连续性上, 复变函数和两个二元实函数没有什么差别.
- 那么复变函数和多变量微积分的差异究竟是什么导致的呢? 归根到底就在于 © 是一个域, 上面可以做除法.
- 这就导致了复变函数有导数,而不是像多变量实函数只有偏导数.
- 这种特性使得可导的复变函数具有整洁优美的性质,我们 将在下一章来逐步揭开它的神秘面纱.