МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Введение в анализ данных

Студент гр. 3344	Сьомак Д.А.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Получение навыков работы с библиотеками, содержащими базовые инструменты для анализа данных на языке программирования python.

Задание

Вариант 1.

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей на вход аргумент train_size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: из данного набора запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в y_train. В переменную X_test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в y_test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train_test_split необходимо указать 42.).

В качестве результата верните X_{train} , X_{test} , y_{train} , y_{test} .

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, у train с параметрами n neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}), которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

Выполнение работы

1. Описание реализации 5и требуемых функций:

load_data — функция загружает набор данных о вине из библиотеки *sklearn* в переменную wine, разбивает его на обучающую и тестовую выборки. В конце возвращает четыре массива: *X_train*, *X_test*, *y_train*, *y_test*.

train_model — создаёт и обучает модель классификатора К-ближайших соседей на обучающей выборке, после этого он возвращается.

predict – использует обученный классификатор и тестовую выборку для прогнозирования меток тестовых данных и возвращает массив предсказанных меток.

estimate — принимает массив предсказанных меток и массив истинных меток, вычисляет точность прогнозов через сравнение предсказанных и заданными метками, возвращает точность.

scale – принимает массив данных, режим масштабирования и возвращает масштабированный массив данных.

2. Исследование работы классификатора, обученного на данных разного размера:

Таблица 1 – Результаты работы классификатора

Размер	0.1	0.3	0.5	0.7	0.9
набора					
Точность	0.379	0.8	0.843	0.815	0.722

Видно, что точность классификации зависит от размера выборки. Слишком большая или наоборот маленькая выборка может быть неэффективна для классификации, так как может приводить к переобучению модели и увеличению времени этого самого обучения.

3. Исследование работы классификатора, обученного с различными значениями *n_neighbors*:

Таблица 2 – результаты работы классификатора

Количество	3	5	9	15	25
соседей					
Точность	0.861	0.833	0.861	0.861	0.833

Видно, что точность работы классификаторов с разными значениями n_neighbors почти не различаются. Для данного набора данных наиболее эффективными значениями n_neighbors является 3, 9, 15, однако разница в точности с другими значениями незначительна.

4. Исследование работы классификатора с предобработанными данными:

Таблица 3 – результаты работы классификатора

Скейлер	standart	minmax	maxabs
Точность	0.417	0.417	0.278

Видно, что точность классификации для различных способов масштабирования данных различается. Выбор способа масштабирования данных может влиять на точность классификации, таким образом MinMaxScaler и StandardScaler в данном случае обладают лучшими результатами.

Исходный код см. в приложении А

Выводы

Были получены практические навыки работы с библиотеками, содержащими базовые инструменты для анализа данных. Был получен опыт анализа данных при написании программы на язык python.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Somak_Demid_lb3.py

```
from sklearn import datasets
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
from sklearn.preprocessing import StandardScaler, MinMaxScaler,
MaxAbsScaler
def load data(train size=0.8):
    wine = datasets.load wine()
    X,y = wine.data, wine.target
    X_train, X_test, y_train, y_test = train_test_split(X[:, :2], y,
train size=train size, random state=42)
    return X train, X test, y train, y test
def train_model(X_train, y_train, n_neighbors=15, weights='uniform'):
                          KNeighborsClassifier(n neighbors=n neighbors,
weights=weights).fit(X train, y train)
    return clf
def predict(clf, X test):
    return clf.predict(X test)
def estimate(res, y_test):
    return round (accuracy score (y true=y test, y pred=res), 3)
def scale(X, mode='standard'):
    if mode not in ['standard', 'minmax', 'maxabs']:
        return None
    scaler = StandardScaler()
    if mode == 'minmax':
        scaler = MinMaxScaler()
    elif mode == 'maxabs':
        scaler = MaxAbsScaler()
    scaler = scaler.fit(X)
    x scaled = scaler.transform(X)
    return x_scaled
def scale(args, mode='standard'):
    if mode == 'standard':
        scaler = StandardScaler()
    elif mode == 'minmax':
       scaler = MinMaxScaler()
    elif mode == 'maxabs':
        scaler = MaxAbsScaler()
    else:
       return None
```

x_scaled = scaler.fit_transform(args)
return x_scaled