

Gowin DSP

User Guide

UG287-1.1E,10/9/2017

Copyright©2017 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photo-copying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, AroraTM, and the GOWINSEMI logos are trademarks of GOWINSEMI and registered in China, the U.S. Patent and Trademark Office and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.gowinsemi.com.cn. GOWINSEMI assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document without notice. Anyone relying on this documentation shall contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
10/9/2017	1.1E	Initial version.

Contents

Contents	i
List of Figures	ii
List of Tables	iii
1 About This Guide	1
1.1 Purpose	1
1.2 Supported Products	1
1.3 Related Documents	1
1.4 Abbreviation and Terminology	2
1.5 Support and Feedback	2
2 Overview	3
3 DSP Architecture	5
3.1 PADD	8
3.2 MULT	11
3.3 Arithmetic Logic Unit	12
4 DSP Operation Mode	14
4.1 MULT	14
4.1.1 MULT 9 x 9	14
4.1.2 MULT 18 x 18	16
4.1.3 MULT 36 x 36	18
4.2 MULTALU	20
4.2.1 MULTALU 36 x 18	21
4.2.2 MULTALU 18 x 18	23
4.3 MULTADDALU	25
5 DSP Invocation	29

List of Figures

Figure 3-1 DSP Architecture	6
Figure 3-2 PADD18 Architecture	9
Figure 3-3 PADD9 Architecture	10
Figure 3-4 ALU54D Architecture	12
Figure 4-1 MULT 9 x 9 Architecture	15
Figure 4-2 MULT 18 x 18 Architecture	17
Figure 4-3 MULT 36 x 36 Architecture	18
Figure 4-4 MULT 36 x 18 Architecture	21
Figure 4-5 MULT 18 x 18 Architecture	23
Figure 4-6 MULTADDALU 18 x 18 Architecture	26

UG287-1.1E ii

List of Tables

Table 1-1 Abbreviations and Terminologies	. 2
Table 2-1 MULT18 x 18 Resources	. 4
Table 2-2 Configuration Modes Supported by DSP	. 4
Table 3-1 DSP Ports Description	. 7
Table 3-2 Internal Registers Description	. 8
Table 3-3 PADD18 Port Signals	. 9
Table 3-4 PADD18 Attribute Description	. 9
Table 3-5 PADD9 Port Signals	. 10
Table 3-6 PADD9 Attribute Description	. 11
Table 3-7 ALU54D Port Signals	. 12
Table 3-8 ALU54D Attributes Setting	. 13
Table 4-1 MULT 9 x 9 Port Signals	. 15
Table 4-2 MULT 9 x 9 Attributes Setting	. 16
Table 4-3 MULT 18 x 18 Port Signals	. 17
Table 4-4 MULT 18 x 18 Attributes Setting	. 17
Table 4-5 MULT 36 x 36 Port Signals	. 19
Table 4-6 MULT 36 x 36 Attributes Setting	. 19
Table 4-7 MULT 36 x 18 Port Signals	. 21
Table 4-8 MULT 36 x 18 Attributes Setting	. 22
Table 4-9 MULT 18 x 18 Port Signals	. 23
Table 4-10 MULT 18 x 18 Attributes Setting	. 24
Table 4-11 MULTADDALU 18 x 18 Port Signals	. 26
Table 4-12 MULT 18 x 18 Attributes Setting	. 27

UG287-1.1E iii

1About This Guide 1.1Purpose

1 About This Guide

1.1 Purpose

This manual provides a main description of DSP architecture, signal definition, and user calling methods, etc., which helps in getting used to Gowin DSP and enhancing design efficiency.

1.2 Supported Products

The information in the guide applies to the following products:

- 1. GW1N series FPGA products: GW1N-2, GW1N-4, GW1N-6, GW1N-9.
- 2. GW1NR series FPGA products: GW1NR-4, GW1NR-9;
- 3. GW2A series FPGA products: GW2A-55, GW2A-18.
- 4. GW2AR series FPGA products: GW2AR-18.

1.3 Related Documents

The latest user guides are available on our Website. Refer to the related documents at http://www.gowinsemi.com.cn:

- 1. GW2A series FPGA Products Data Sheet
- 2. GW1N series FPGA Products Data Sheet
- 3. GW2AR series FPGA Products Data Sheet
- 4. GW1NR series FPGA Products Data Sheet

UG287-1.1E 1(29)

1.4 Abbreviation and Terminology

Table 1-1 shows the abbreviations and terminologies used in this manual.

Table 1-1 Abbreviations and Terminologies

Abbreviation and Terminology	Full Name	Meaning
DSP	Digital Signal Processing	_
FPGA	Field Programmable Gate Array	-
FIR	Finite Impulse Response	-
FFT	Fast Fourier Transformation	-
CFU	Configurable Function Unit	-
MULT	Multiplier	-
PADD	Pre-adder	-
ALU	Arithmetic Logic Unit	-

1.5 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If any questions, comments, or suggestions, please feel free to contact us directly.

Website: http://www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

UG287-1.1E 2(29)

2_{Overview}

GOWINSEMI FPGA products (except GW1N-1) have abundant DSP blocks. GOWINSEMI DSP solutions can meet user demands for high performance digital signal processing, such as FIR and FFT designs, etc. DSP blocks have the advantages of stable timing performance, high-usage, and low-power. This manual mainly helps users to be familiar with DSP architecture and usage quickly. Please refer to <u>Gowin FPGA Primitives</u> <u>Guide</u> for the details. Primitives library locates in the installation directory of Gowin Yunyuan software: GOWIN/x.x/Pnr/lib/gwxx, of which "x.x" is the software version, and "gwxx" is the device series, such as gw1n and gw2a.

DSP blocks functions and features are as follows:

- Multiplier with 3 width: 9-bit, 18-bit, 36-bit
- 54-bit ALU
- Multipliers cascading to support wider data
- Barrel Shifter
- Adaptive filtering through signal feedback
- Support registers pipeline and bypass

UG287-1.1E 3(29)

The number of GOWINSEMI FPGA products 18-bit multiplier MULT18×18 is listed in Table 2-1. The configuration modes supported by DSP blocks are listed in Table 2-2.

Table 2-1 MULT18 x 18 Resources

Device		MULT18 x 18 Qty.
	GW1N-2	16
GW1N series FPGA	GW1N-4	16
Products	GW1N-6	20
	GW1N-9	20
GW1NR series FPGA	GW1NR-4	16
Products	GW1NR-9	20
GW2A series FPGA	GW2A-18	48
Products	GW2A-55	40
GW2AR series FPGA Products	GW2AR-18	48

Table 2-2 Configuration Modes Supported by DSP

Mode	Primitives Name	Description
PADD	PADD9	9-bit pre-adder
FADD	PADD18	18-bit pre-adder
ALU	ALU54	54-bit ALU
	MULT9 x 9	9-bit Multiplier
MULT	MULT18 x 18	18-bit Multiplier
	MULT36 x 36	36-bit Multiplier
MULTALU	MULTALU18 x 18	MULTALU 18X18: 18-bit MULTALU
MOLTALO	MULTALU36 x 18	MULTALU 36X18: 36X18-bit MULTALU
MULTADDALU	MULTADDALU18 x 18	Accumulation or reloading of two 18-bit MULTADD

UG287-1.1E 4(29)

3_{DSP} Architecture

GOWINSEMI DSP blocks are arranged in horizontal rows in the FPGA array. DSP block contains 2 Macro, and each Macro contains two pre-adders, two 18 x 18 bit multipliers, and one 3 input ALU54. Figure 3-1 shows the architecture of a GOWINSEMI DSP macro.

UG287-1.1E 5(29)

Figure 3-1 DSP Architecture

UG287-1.1E 6(29)

GOWINSEMI DSP block contains pre-adder, multiplier, ALU, and internal staged registers. Table 3-1 shows DSP ports description. The internal staged registers are as shown in Table 3-2. In addition, input signals CLK, CE, and RESET are used to control the registers.

Table 3-1 DSP Ports Description

Ports Name	I/O	Description	
A0[17:0]	1	18-bit data input A0	
B0[17:0]	1	18-bit data input B0	
A1[17:0]	I	18-bit data input A1	
B1[17:0]	1	18-bit data input B1	
C[53:0]	1	54-bit data input C	
		Shift data input A, used for CASCADE	
		connection. The input signal SIA is directly	
SIA[17:0]	I	connected to the output signal SOA of previously	
		adjacent DSP and the delay from SIA to SOA	
		inside a DSP is one clock cycle.	
		Shift data input B, used for CASCADE	
		connection. The input signal SIB is directly	
SIB[17:0]	1	connected to the output signal SOB of previously	
		adjacent DSP and the delay from SIB to SOB	
		inside a DSP is one clock cycle.	
SBI[17:0]	1	Pre - adder logic shift input, backward direction.	
CASI[54:0]	1	ALU input from previous DSP block, used for	
CAGI[34.0]	'	cascade connection.	
ASEL[1:0]	1	Source select for Multiplier or pre-adder input A	
BSEL[1:0]	1	Source select for Multiplier input B	
ASIGN [1:0]	1	Sign bit for input A	
BSIGN[1:0]	1	Sign bit for input B	
PADDSUB[1:0]	1	Operation control signals of pre-adder, used for	
1 ADDOOD[1.0]	'	pre-adder logic add/subtract selection	
CLK[3:0]	1	Clock input	
CE[3:0]	1	Clock Enable	
RESET[3:0]	1	Reset input, synchronous or asynchronous	
SOA[17:0]	0	Shift data output A	
SOB[17:0]	0	Shift data output B	
SBO[17:0]	0	Pre - adder logic shift output, backward	
[0.77]		direction.	
DOUT[35:0]	0	DSP output data	
CASO[54:0]	0	ALU output to next DSP block for cascade	
UA3U[34.0]		connection, the highest bit is sign extended.	

UG287-1.1E 7(29)

3DSP Architecture 3.1PADD

Table 3-2 Internal Registers Description

Register	Description and Associated Attribute	
A0 register	Registers for A0 input	
A1 register	Registers for A1 input	
B0 register	Registers for B0 input	
B1 register	Registers for B1 input	
C register	Registers for C input	
P1_A0 register	Registers for A0 input of left multiplier	
P1_A1 register	Registers for A1 input of right multiplier	
P1_B0 register	Registers for B0 input of left multiplier	
P1_B1 register	Registers for B1 input of right multiplier	
P2_0 register	Registers for pipeline of left multiplier	
P2_1 register	Registers for pipeline of right multiplier	
OUT register	Registers for DOUT output	
OPMODE register	Registers for operation mode control	
SOA register	Registers for shift output at port SOA	

3.1 PADD

Each DSP macro features two units of pre-adders to implement pre-add, pre-subtraction, and shifting. PADD locates at the first stage with two inputs. One is parallel 18-bit input B or SBI, and the other is either parallel 18-bit input A or SIA. A register chain is used for each input to enhance timing performance. The stage registers can also be bypassed to directly feed multiplier. GOWINSEMI PADD can be used as function block independently. PADD contains 9-bit PADD9 and 18-bit PADD18. The two PADDs have the same structure, registers, and parameters attribute. See Figure 3-2 for PADD18 architecture.

UG287-1.1E 8(29)

3DSP Architecture 3.1PADD

Figure 3-2 PADD18 Architecture

The port signals and description for PADD18 are listed in Table 3-3. PADD18 registers and attributes are listed in Table 3-4.

Table 3-3 PADD18 Port Signals

Ports Name	I/O	Description
A[17:0]	1	18-bit data input A
B[17:0]	1	18-bit data input B
SI[17:0]	I	18-bit shift data input A
SBI[17:0]	I	Pre-adder shift input, backward direction
ASEL	I	Source select for pre-adder
CLK	I	Clock input
CE	1	Clock Enable
RESET	1	Reset input
SO[17:0]	0	Shift data output A
SBO[17:0]	0	Pre - adder shift output, backward direction
DOUT[17:0]	0	Data output

PADD registers and parameter attribute are listed in Table 3-4. The parameters can be configured according to user demands to implement expected functions by selecting different inputs.

Table 3-4 PADD18 Attribute Description

Attribute Name	Values(default)	Description
AREG	1'b0,1'b1 (1'b0)	Registers for A input (A or SI) 1'b0: bypass mode 1'b1: registered mode

UG287-1.1E 9(29)

3DSP Architecture 3.1PADD

Attribute Name	Values(default)	Description	
		Registers for B input(B or SBI)	
BREG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode	
		1'b1: registered mode	
		Pre-adder add/subtract selection	
ADD_SUB	1'b0,1'b1(1'b0)	• 1'b0: add	
		• 1'b1: sub	
PADD_RESET_MODE	SYNC,ASYNC(SYNC)	synchronous or asynchronous	
		Registers for shift output at port	
SOREG	1'b0,1'b1(1'b0)	SO.	
SOREG	150,151(150)	• 1'b0: bypass mode	
		1'b1: registered mode	
	1'b0,1'b1(1'b1)	B input selection	
BSEL_MODE		1'b1: input SBI	
		• 1'b0: input B	

PADD9 can be used for 9-bit pre-adding, pre-subtraction, and shifting. Figure 3-3 shows PADD9 architecture. PADD9 Port signals and description are listed in Table 3-5.

Figure 3-3 PADD9 Architecture

Table 3-5 PADD9 Port Signals

Ports Name	I/O	Description
A[8:0]	1	9-bit data input A
B[8:0]	1	9-bit data input B
SI[8:0]	1	shift data input A
SBI[8:0]	1	Pre - adder shift input, backward direction
ASEL	1	Source select for pre-adder
CLK	I	Clock input
CE	I	Clock Enable

UG287-1.1E 10(29)

3DSP Architecture 3.2MULT

Ports Name	I/O	Description
RESET	1	Reset input
SO[8:0]	0	Shift data output A
SBO[8:0]	0	Pre - adder shift output, backward direction
DOUT[8:0]	0	Data output

Table 3-6 PADD9 Attribute Description

Attribute Name	Values(default)	Description
		Registers for A input (A or SI)
AREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Registers for B input (B or SBI)
BREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Pre-adder add/subtract selection
ADD_SUB	1'b0,1'b1(1'b0)	• 1'b0: add
		• 1'b1: sub
PADD_RESET_MODE	SYNC,ASYNC(SYNC)	synchronous or asynchronous
		Registers for shift output at port
SOREG	1'h0 1'h1(1'h0)	SO
SUREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b1)	B input selection
BSEL_MODE		1'b1: input SBI
		• 1'b0: input B

3.2 MULT

Each DSP macro has two multiplier units to perform the multiplication. Based on the needs of multiplication width, the multipliers can be configured as 9x9, 18x18, 36x18 or 36x36. Based on the needs of multiplication width, the multipliers can be configured as 9x9, 18x18, 36x18 or 36x36. The 36x36 multiplier mode requires one DSP block (two macros) to configure.

Registers at both multiplier input side and output side are optionally available. For each bit of the input signal or the output signal, the user can select to use register or bypass the register. For each DSP macro, there are clock signals, clock enable signals, and reset signals. Each clock

UG287-1.1E 11(29)

3DSP Architecture 3.3Arithmetic Logic Unit

signal can be driven by BUFG, BUFS, or logic. Each clock enable signal or reset signal can be driven by BUFS or logic. Registers can select clock signals, clock enable signals, and reset signals as input. Please refer to $\underline{4}$ DSP Operation Mode > 4.1MULT for the detailed information.

3.3 Arithmetic Logic Unit

Each DSP macro supports one flexible 54-bit ALU which provides robust extension to MULT part. It can be used independently. Figure 3-4 shows the architecture of ALU54D. The port signals for ALU54D are listed in Table 3-7.

Figure 3-4 ALU54D Architecture

Table 3-7 ALU54D Port Signals

Ports Name	I/O	Description
A[53:0]	1	54-bit data input A
B[53:0]	1	54-bit data input B
ASIGN	1	Sign bit for input A
BSIGN	1	Sign bit for input B
ACCLOAD	1	used for accumulator reload selection
CASI[54:0]	1	55-bit data input B
CLK	1	Clock input
CE	1	Clock Enable
RESET	1	Reset input
DOUT[53:0]	0	54-bit data output
CASO[54:0]	0	55-bit data cascade output

UG287-1.1E 12(29)

3DSP Architecture 3.3Arithmetic Logic Unit

ALU54D Attributes

ALU54D attributes are as shown in Table 3-8.

Table 3-8 ALU54D Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A input
AREG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		Registers for B input
BREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register
ASIGN_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register
BSIGN_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	ACCLOAD register
ACCLOAD_REG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Output register
OUT_REG		1'b0: bypass mode
		1'b1: registered mode
		B_OUT add/subtract selection
B_ADD_SUB	1'b0,1'b1(1'b0)	• 1'b0: add
		• 1'b1: sub
		C_OUT add/subtract selection
C_ADD_SUB	1'b0,1'b1(1'b0)	• 1'b0: add
		• 1'b1: sub
	0,1,2(0)	ALU54D operation mode:
ALU54D_MODE		• 0: ACC/0 +/- B +/- A;
/\LOGTD_IVIODL		• 1: ACC/0 +/- B + CASI;
		• 2: A +/- B + CASI;
ALU_RESET_MODE	SYNC,ASYNC(SYNC)	Synchronous or asynchronous
//LO_INEGET_INIODE	O TNO,AO TNO(O TNO)	reset

UG287-1.1E 13(29)

4DSP Operation Mode

GOWINSEMI DSP supports the following operation modes:

- MULT
- MULTALU
- MULTADDALU

4.1 MULT

Based on the needs of multiplication width, the multipliers can be configured as 9x9, 18x18, 36x36, etc. Each DSP macro have two independent 18 x 18 multipliers.

Each DSP block can be configured with up to 36 bits data-width of DSP supporting modes including 9x9, 18x18, 36x18 and 36x36 multipliers.

4.1.1 MULT 9 x 9

MULT 9 X 9 can be used to implement 9-bit multiplication. The port signals are listed in Table 4-1. The architecture is shown in Figure 4-1.

UG287-1.1E 14(29)

Figure 4-1 MULT 9 x 9 Architecture

Table 4-1 MULT 9 x 9 Port Signals

Ports Name	I/O	Description
A[8:0]	1	9-bit data input A
SIA[8:0]	I	9-bit shift data input A
B[8:0]	1	9-bit data input B
SIB[8:0]	1	9-bit shift data input B
ASIGN	I	Sign bit for input A
BSIGN	I	Sign bit for input B
ASEL	1	Source select for Multiplier input A (A/SIA)
BSEL	I	Source select for Multiplier input A (A/SIA)
CLK	I	Clock input
CE	1	Clock Enable
RESET	I	Reset input
DOUT[17:0]	0	Multiplier output data
SOA[8:0]	0	Shift data output A
SOB[8:0]	0	Shift data output B

UG287-1.1E 15(29)

MULT 9 x 9 Attribute

MULT 9 x 9 attributes are listed in Table 4-2

Table 4-2 MULT 9 x 9 Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A (A/SIA) input
AREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Registers for B (B/SIB)input
BREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register
ASIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register
BSIGN_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		SOA register
SOA_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		Output register
OUT_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Pipeline registers
PIPE_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
MULT DECET MODE		Synchronous or asynchronous
MULT_RESET_MODE	SYNC,ASYNC(SYNC)	reset

4.1.2 MULT 18 x 18

MULT 18 X 18 can be used to implement 18-bit multiplication. The port signals are listed in Table 4-3. The architecture is shown in Figure 4-2.

UG287-1.1E 16(29)

Figure 4-2 MULT 18 x 18 Architecture

Table 4-3 MULT 18 x 18 Port Signals

Ports Name	I/O	Description
A[17:0]	I	18-bit data input A
SIA[17:0]	I	18-bit shift data input A
B[17:0]	1	18-bit data input B
SIB[17:0]	1	18-bit shift data input B
ASIGN	I	Sign bit for input A
BSIGN	I	Sign bit for input B
ASEL	1	Source select for Multiplier input A (A/SIA)
BSEL	1	Source select for Multiplier input A (A/SIA)
CLK	1	Clock input
CE	1	Clock Enable
RESET	I	Reset input
DOUT[35:0]	0	Multiplier output data
SOA[17:0]	0	Shift data output A
SOB[17:0]	0	Shift data output B

MULT 18 x 18 Attribute

MULT 9 x 18 attributes are listed in Table 4-4

Table 4-4 MULT 18 x 18 Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A (A/SIA) input
AREG	1'b0,1'b1(1'b0)	● 1'b0: bypass mode
		1'b1: registered mode
BREG	1'b0,1'b1(1'b0)	Registers for B (B/SIB)input

UG287-1.1E 17(29)

Attribute Name	Values(default)	Description
		1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register
ASIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register
BSIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		SOA register
SOA_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Output register
OUT_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Pipeline registers
PIPE_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
MILIT DESET MODE	SANC VSANC(SANC)	Synchronous or asynchronous
MULT_RESET_MODE	SYNC,ASYNC(SYNC)	reset

4.1.3 MULT 36 x 36

MULT 36 x 36 can be used to implement 36-bit multiplication. A 36x36 multiplier is constructed with one DSP block. The port signals are listed in Table 4-5. The architecture is shown in Figure 4-3.

Figure 4-3 MULT 36 x 36 Architecture

UG287-1.1E 18(29)

Table 4-5 MULT 36 x 36 Port Signals

Ports Name	I/O	Description
A[35:0]	I	36-bit data input A
B[35:0]	I	36-bit data input B
ASIGN	I	Sign bit for input A
BSIGN	I	Sign bit for input B
CLK	I	Clock input
CE	I	Clock Enable
RESET	I	Reset input
DOUT[71:0]	0	Multiplier output data

MULT 36 x 36 Attribute

MULT 36 x 36 attributes are listed in Table 4-6

Table 4-6 MULT 36 x 36 Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A input
AREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Registers for B input
BREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Output0 register
OUT0_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Output1 register
OUT1_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		Pipeline registers
PIPE_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register
ASIGN_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register
BSIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
MULT DESET MODE	CANC VCANC(CANC)	Synchronous or asynchronous
MULT_RESET_MODE	SYNC,ASYNC(SYNC)	reset

UG287-1.1E 19(29)

4.2 MULTALU

MULTALU contains 36 x 18 MULTALU and 18 x 18 MULTALU.

MULTALU36 x 18 has three operation modes:

$$DOUT = A * B \pm C$$

$$DOUT = \sum (A * B)$$

$$DOUT = A * B + CASI$$

MULTALU18 x 18 has three operation modes:

$$DOUT = \sum (A*B) \pm C$$

$$DOUT = \sum (A * B) + CASI$$

$$DOUT = A * B \pm D + CASI$$

UG287-1.1E 20(29)

4.2.1 MULTALU 36 x 18

The port signals of MULTALU 36 x 18 are listed in Table 4-7. The architecture for MULTALU 36 x 18 is shown in Figure 4-4. It can be composed of two 18x18 multipliers and an ALU.

Figure 4-4 MULT 36 x 18 Architecture

Table 4-7 MULT 36 x 18 Port Signals

Ports Name	I/O	Description
A[17:0]	1	18-bit data input A
B[35:0]	I	36-bit data input B
C[53:0]	1	54-bit data input C
ASIGN	I	Sign bit for input A
BSIGN	I	Sign bit for input B
CLK	I	Clock input
CE	I	Clock Enable
RESET	I	Reset input
ACCLOAD	I	used for accumulator reload selection
CASI[54:0]	1	ALU input from previous DSP block, used for
CA3[[34.0]	ı	cascade connection
DOUT[53:0]	0	54-bit data output
CASO[54:0]	0	ALU output to next DSP block for cascade
CASO[54:0] O		connection

UG287-1.1E 21(29)

MULT 36 x 18 Attribute

MULT 36 x 18 attributes are listed in Table 4-8.

Table 4-8 MULT 36 x 18 Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A input
AREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Registers for B input
BREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Registers for C input
CREG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register
ASIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register
BSIGN_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		The first stage register of
ACCLOAD_REG0	1'b0,1'b1(1'b0)	ACCLOAD
//OOLO/ID_INEOU	1 50,1 51(1 50)	1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	The second stage register of
ACCLOAD_REG1		ACCLOAD
7.00207.15_1.1201		1'b0: bypass mode
		1'b1: registered mode
		Pipeline registers
PIPE_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		Output register
OUT_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		C_OUT add/subtract selection
C_ADD_SUB	1'b0,1'b1(1'b0)	• 1'b0: add
		• 1'b1: sub
		MULTALU36 operation mode:
MULTALU36X18_MODE	0,1,2(0)	• 0: 36x18 +/- INC
		• 1: ACC/0 + 36x18

UG287-1.1E 22(29)

Attribute Name	Values(default)	Description
		• 2: 36x18 + CASI
MULT_RESET_MODE	SYNC,ASYNC(SYNC)	synchronous or asynchronous

4.2.2 MULTALU 18 x 18

MULTALU 18 x 18 is 18-bit MULTALU. The architecture for MULTALU 18 x 18 is shown in Figure 4-5. The port signals of MULTALU 18 x 18 are listed in Table 4-9.

Figure 4-5 MULT 18 x 18 Architecture

Table 4-9 MULT 18 x 18 Port Signals

Ports Name	I/O	Description
A[17:0]	1	18-bit data input A
B[17:0]	1	18-bit data input B
C[53:0]	1	54-bit data input C
D[53:0]	1	54-bit data input D
ASIGN	1	Sign bit for input A
BSIGN	1	Sign bit for input B
DSIGN	1	Sign bit for input D
CASI[54:0]	1	ALU input from previous DSP block, used for
CASI[54.0]		cascade connection
ACCLOAD	1	used for accumulator reload selection

UG287-1.1E 23(29)

Ports Name	I/O	Description
CLK	I	Clock input
CE	I	Clock Enable
RESET	I	Reset input
DOUT[53:0]	0	Data output
CASO[54:0] O		ALU output to next DSP block for cascade
CASO[54.0]	0	connection

MULT 18 x 18 Attribute

MULT 18 x 18 attributes are listed in Table 4-10.

Table 4-10 MULT 18 x 18 Attributes Setting

Attribute Name	Values(default)	Description
	1'b0,1'b1(1'b0)	Registers for A input
AREG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Registers for B input
BREG		• 1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Registers for C input
CREG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Registers for D input
DREG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	DSIGN input register
DSIGN_REG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	ASIGN input register
ASIGN_REG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	BSIGN input register
BSIGN_REG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	The first stage register of
ACCLOAD_REG0		ACCLOAD
MOOLOAD_NEGO		1'b0: bypass mode
		1'b1: registered mode
ACCLOAD_REG1	1'b0,1'b1(1'b0)	The second stage register of
//OOLO/ID_INEOT		ACCLOAD

UG287-1.1E 24(29)

Attribute Name	Values(default)	Description
		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Output register
OUT_REG		1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	Pipeline registers
PIPE_REG		1'b0: bypass mode
		1'b1: registered mode
	0,1,2(0)	MULTALU18X18 Mode
		• 0: ACC/0 +/- 18x18 +/- C
MULTALU18X18_MODE		• 1: ACC/0 +/- 18x18 +
		CASI
		• 2: 18x18 +/- D + CASI
	1'b0,1'b1(1'b0)	add/subtract selection
B_ADD_SUB		• 1'b0: add
		• 1'b1: sub
	1'b0,1'b1(1'b0)	add/subtract selection
C_ADD_SUB		• 1'b0: add
		• 1'b1: sub
MILIT DESET MODE	SYNC,ASYNC(SYNC)	Synchronous or asynchronous
MULT_RESET_MODE		reset

4.3 MULTADDALU

MULTADDALU mode can implement the operation of MULTADD accumulation or reloading. The architecture of MULTADDALU 18 x 18 is shown in Figure 4-6, and the port signals are listed in Table 4-11.

The three operation modes are as follows:

$$DOUT = A0*B0 \pm A1*B1 \pm C$$

$$DOUT = \sum (A0*B0 \pm A1*B1)$$

$$DOUT = A0*B0 \pm A1*B1 + CASI$$

UG287-1.1E 25(29)

Figure 4-6 MULTADDALU 18 x 18 Architecture

Table 4-11 MULTADDALU 18 x 18 Port Signals

Ports Name	I/O	Description
A0[17:0]	I	18-bit data input A0
B0[17:0]	I	18-bit data input B0
A1[17:0]	1	18-bit data input A1
B1[17:0]	1	18-bit data input B1
C[53:0]	1	54-bit data input C
SIA[17:0]	I	18-bit shift data input A
SIB[17:0]	1	18-bit shift data input B
ASIGN [1:0]	1	Sign bit for input A1/A0
BSIGN[1:0]	I	Sign bit for input B1/B0
ASEL[1:0]	1	Source select for input
BSEL[1:0]	1	Source select for input
CASI[54:0]	I	ALU input from previous DSP block, used for cascade connection
ACCLOAD	I	Used for accumulator reload selection
CLK	1	Clock input
CE	I	Clock Enable
RESET	1	Reset input
DOUT[53:0]	0	Data output

UG287-1.1E 26(29)

Ports Name	I/O	Description
CASO[54:0] O	0	ALU output to next DSP block for cascade
	O	connection
SOA[17:0]	0	Shift data output A
SOB[17:0]	0	Shift data output B

MULT 18 x 18 Attribute

MULT 18 x 18 attributes are listed in Table 4-12.

Table 4-12 MULT 18 x 18 Attributes Setting

Attribute Name	Values(default)	Description
		Registers for A0/SIA input
A0REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		• 1'b1: registered mode
		Input register for A1 or AOREG
A1REG	1'b0,1'b1(1'b0)	output
AIREO	1 50,1 51(1 50)	• 1'b0: bypass mode
		1'b1: registered mode
		Registers for B0/SIB input
B0REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		Input register for B1 or BOREG
B1REG	1'b0,1'b1(1'b0)	output
BINEO	1 50,1 51(1 50)	• 1'b0: bypass mode
		1'b1: registered mode
		Registers for C input
CREG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode
		Pipeline registers for multiplier 0
PIPE0_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		• 1'b1: registered mode
		Pipeline registers for multiplier 1
PIPE1_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		• 1'b1: registered mode
		Output register
OUT_REG	1'b0,1'b1(1'b0)	• 1'b0: bypass mode
		1'b1: registered mode

UG287-1.1E 27(29)

Attribute Name	Values(default)	Description
		ASIGN input register 0
ASIGN0_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		ASIGN input register1
ASIGN1_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register 0
BSIGN0_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		BSIGN input register 1
BSIGN1_REG	1'b0,1'b1(1'b0)	1'b0: bypass mode
		1'b1: registered mode
		The first stage register of
ACCLOAD REGO	1'b0,1'b1(1'b0)	ACCLOAD
AOOLOAD_REGO	1 50,1 51(1 50)	1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	The second stage register of
ACCLOAD_REG1		ACCLOAD
AOOLOAD_REOT	1 50,1 51(1 50)	1'b0: bypass mode
		1'b1: registered mode
	1'b0,1'b1(1'b0)	SOA register
SOA_REG		1'b0: bypass mode
		1'b1: registered mode
		MULT 18 x 18 mode:
	0,1,2(0)	• 0: 18 x 18 +/- 18 x 18 +/- C
MULTADDALU18X18_M		• 1: ACC/0 + 18 x 18 +/- 18 x
ODE		18
		• 2: 18 x 18 +/- 18 x 18 +
		CASI
B_ADD_SUB	1'b0,1'b1(1'b0)	add/subtract selection
		• 1'b0: add
		• 1'b1: sub
	1'b0,1'b1(1'b0)	add/subtract selection
C_ADD_SUB		• 1'b0: add
		• 1'b1: sub
MULT_RESET_MODE	SYNC,ASYNC(SYNC)	Synchronous or asynchronous
IVIOLI_INLOLI_IVIODL		reset

UG287-1.1E 28(29)

5_{DSP Invocation}

For the details about DSP configuration and invocation, please refer to Gowin IP Core Generator User Guide >3 IP Core Generation>3.2 DSP.

UG287-1.1E 29(29)

