CHƯƠNG 4. HÀNG ĐỢI

ThS. Nguyễn Chí Hiếu

2021

NỘI DUNG

- 1. Giới thiệu hàng đợi
- 2. Cài đặt hàng đợi
- 3. Ứng dụng của hàng đợi

Giới thiệu hàng đợi

Hàng đợi (Queue)

- Thực hiện theo cơ chế FIFO (First In, First Out) vào trước ra trước.
- Dùng để lưu trữ các phần tử có thứ tự truy xuất đúng với thứ tự lưu trữ (vào trước, ra trước).

Hình 1: Hình minh họa hàng đợi.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 3/28

Giới thiệu hàng đợi

Các thao tác cơ bản

- EnQueue: thêm phần tử vào cuối hàng đợi.
- DeQueue: *lấy và xóa* phần tử tại *đầu* hàng đợi.
- GetFront: xem thông tin phần tử tại đầu hàng đợi.
- Kiểm tra hàng đợi rỗng, đầy.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 4/28

Cài đặt hàng đợi bằng mảng

- ▶ Biến Elements là mảng 1 chiều kích thước n: lưu trữ phần tử từ vị trí [0,...,n-1].
- Biến Front, Rear kiểu số nguyên: cho biết vị trí đầu và cuối.
- Mặc định, hàng đợi vừa khởi tạo Front = Rear = 0 và tất cả phần tử của mảng Elements gán bằng NULL_DATA.

Cài đặt hàng đợi bằng mảng

Nguyễn Chí Hiếu

```
public class Queue
3
       public int[] elements;
4
       public int front;
5
       public int rear;
6
7
       public void InitQueue()
8
9
            elements = new int[MAX_SIZE];
10
            front = rear = 0;
11
12
   }
```

Nguyễn Chí Hiểu

Cấu trúc dữ liêu và Giải thuật

```
Cài đặt hàng đợi bằng mảng
   Thuật toán 1: IsEmpty(q)
   - Đầu vào: hàng đợi q.
   - Đầu ra: true/false.
  if elements[front] \neq QUEUE_EMPTY
       return false
   return true
   Thuật toán 2: IsFull(q)
   - Đầu vào: hàng đợi q.
   - Đầu ra: true/false.
1 if elements[rear] = QUEUE_EMPTY
    return false
   return true
   Nguyễn Chí Hiểu
                                    Cấu trúc dữ liệu và Giải thuật
                                                                          7/28
```


Cài đặt hàng đợi bằng mảng

Xử lý vấn đề tràn giả

Sử dụng mảng như danh sách vòng.

EnQueue: nếu đến cuối mảng, cập nhật Rear = 0.

Nguyễn Chí Hiểu

Cấu trúc dữ liệu và Giải thuật

9/28

Cài đặt hàng đợi bằng mảng

```
Thuật toán 3: EnQueue(q, x)
```

- Đầu vào: hàng đợi q và phần tử x cần thêm.
- Đầu ra: hàng đợi q sau khi thêm x.
- 1 if hàng đợi chưa đầy
- 2 elements[rear] \leftarrow x
- $3 ext{rear} \leftarrow ext{rear} + 1$
- 4 if rear = MAX_SIZE
- 5 rear \leftarrow 0

Nguyễn Chí Hiếu

Cấu trúc dữ liệu và Giải thuật

Cài đặt hàng đợi bằng mảng

```
Thuật toán 4: DeQueue(q)
   - Đầu vào: hàng đợi q.
   - Đầu ra: phần tử đầu hàng đợi hay QUEUE_EMPTY (hàng đợi rỗng).
   if hàng đợi khác rỗng
2
        x \leftarrow elements[front]
3
        elements[front] ← QUEUE_EMPTY
4
        front \leftarrow front + 1
5
        if front = MAX_SIZE
6
             front \leftarrow 0
        return x
7
   return QUEUE_EMPTY
   Nguyễn Chí Hiểu
                                      Cấu trúc dữ liệu và Giải thuật
                                                                                 13/28
```

Cài đặt hàng đợi bằng mảng

```
Thuật toán 5: GetFront(q)

1 if hàng đợi khác rỗng

2 return elements[front]

3 return QUEUE_EMPTY
```

Nguyễn Chí Hiếu

Cài đặt hàng đợi bằng danh sách liên kết

- Cấu trúc dữ liệu một phần tử của hàng đợi chứa thành phần dữ liệu và thành phần liên kết (tương tự danh sách liên kết).
- Cấu trúc dữ liệu hàng đợi chứa hai con trỏ pFront trỏ đến phần tử đầu và con trỏ pRear trỏ đến phần tử cuối của hàng đợi.
- Thao tác thêm thực hiện ở cuối và thao tác xóa thực hiện ở đầu hàng đợi.

Cài đặt hàng đợi bằng danh sách liên kết

Định nghĩa cấu trúc của một phần tử trong hàng đợi và hàm khởi tạo một nút trong hàng đợi.

```
public class Node
3
        public int info;
4
        public Node pNext;
5
6
        public void InitNode(int x)
7
8
            info = x;
9
            pNext = null;
10
11
   }
```

Nguyễn Chí Hiếu

Cấu trúc dữ liêu và Giải thuật

Cài đặt hàng đợi bằng danh sách liên kết

```
Định nghĩa cấu trúc của một hàng đợi và hàm khởi tạo hàng đợi.
    public class Queue
 3
         public Node pFront;
         public Node pRear;
 5
         public int size;
 6
 7
         public void InitQueue()
 8
 9
              pFront = null;
10
              pRear = null;
              size = 0;
11
12
13
    }
    Nguyễn Chí Hiếu
                                       Cấu trúc dữ liệu và Giải thuật
                                                                                  17/28
```


Thao tác thêm phần tử

```
1 // Thêm phần tử vào hàng đợi (thêm cuối)
   public void EnQueue(Node p)
 3
    {
 4
   ---if (p-== null) ---
             return;
 6
         if (pFront == null)
7
 8
             pFront = p;
9
             pRear = p;
10
11
         else
12
13
             pRear.pNext = p;
             pRear = p;
14
15
         }
         size++;
16
17
    Nguyễn Chí Hiếu
                                      Cấu trúc dữ liệu và Giải thuật
                                                                               19/28
```


Thao tác lấy phần tử

```
// Lấy phần tử ra khỏi đầu hàng đợi (xóa đầu)
   public int DeQueue()
 3
        if (pFront == null)
 4
 5
             return QUEUE_EMPTY;
        Node p = pFront;
 7
        int x = p.info;
        pFront = pFront.pNext;
9
         size --;
10
        p = null; // delete p
11 - - - - return - x; - - - - -
12 }
    Nguyễn Chí Hiếu
                                      Cấu trúc dữ liệu và Giải thuật
                                                                               21/28
```

Thao tác lấy phần tử

```
1 public int GetFront()
2 {
3    if (pFront == null)
4      return QUEUE_EMPTY;
5    return pFront.info;
6 }
```

Nguyễn Chí Hiếu

Cấu trúc dữ liêu và Giải thuật

Ứng dụng của hàng đợi

Một số ứng dụng của hàng đợi

- Trong một số thuật toán của lý thuyết đồ thị, hàng đợi được sử dụng để lưu dữ liệu khi thực hiện.
- ► Bài toán sản xuất và tiêu thu.
- ightharpoonup Quản lý bộ đệm (ví dụ: nhấn phím ightarrow bộ đệm ightarrow CPU xử lý).
- Xử lý các lệnh/tiến trình trong máy tính (ví dụ: hàng đợi máy in)

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 23/28

Ứng dụng của hàng đợi

Ví dụ 1 (Bài toán Josephus)

Cho n người đứng thành vòng tròn và một số nguyên m, với m < n.

- ▶ Bắt đầu vị trí s, bài toán sẽ đếm từng người theo một chiều nhất định. Sau khi có m-1 người được bỏ qua, người thứ m sẽ bị xử tử.
- P Quy luật lặp lại đến khi còn m-1 người sống sót.

Câu hỏi m - 1 người còn sống đứng vị trí nào ?

Nguyễn Chí Hiểu Cấu trúc dữ liệu và Giải thuật 24/28

Bài toán Josephus

```
Thuật toán 6: Josephus (n, m)
   - Đầu vào: n là số người và m là một số nguyên
   - Đầu ra: in ra thứ tự người bị xử tử
   for i \leftarrow 1 to n
2
        EnQueue(q, i)
3
4
   while q \neq \emptyset
5
        for i \leftarrow 1 to m - 1
6
             EnQueue(q, DeQueue(q))
7
        x \leftarrow DeQueue(q)
        Print x
   Nguyễn Chí Hiếu
                                         Cấu trúc dữ liệu và Giải thuật
                                                                                       25/28
```

Bài toán Josephus

Giải thích

- ightharpoonup Dòng 1
 ightarrow 2: đưa tất cả người tham gia vào hàng đợi.
- ightharpoonup Dòng 4 ightharpoonup 7: hàng đợi khác rỗng, bắt đầu đếm và thực hiện
 - ightharpoonup Dòng 5 ightharpoonup 6: đưa m-1 người vào hàng đợi.
 - ightharpoonup Dòng 7: chọn người vị trí m.
- Dòng 8: in thứ tự người bị chọn (trong đó, hai người ở vị trí cuối cùng sẽ sống sót)

Nguyễn Chí Hiếu

Bài tập

- 1. Cho một hàng đợi rỗng, hãy lần lượt thực hiện các thao tác sau đây: EnQueue(1), EnQueue(5), EnQueue(2), EnQueue(7), DeQueue(), DeQueue(), EnQueue(9). Hãy vẽ ngăn xếp tương ứng với các thao tác trên.
- 2. Hàng đợi được cài đặt lại bằng cách sử dụng 2 ngặn xếp: ngặn xếp thứ nhất đặt tên là inStack và ngăn xếp thứ hai là outStack. Chú ý, chỉ sử dụng các thao tác của cấu trúc ngăn xếp.
- 3. Cài đặt phiên bản hàng đợi sử dụng hai thao tác thêm đầu và xóa cuối danh sách.
- 4. Áp dụng hàng đợi viết hàm cài đặt thuật toán Josephus.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 27/28

Tài liệu tham khảo

Donald E. Knuth.

The Art of Computer Programming, Volume 3.

Addison-Wesley, 1998.

Dương Anh Đức, Trần Hạnh Nhi.

Nhập môn Cấu trúc dữ liệu và Thuật toán.

Đại học Khoa học tự nhiên TP Hồ Chí Minh, 2003.

Niklaus Wirth.

Algorithms + Data Structures = Programs.Prentice-Hall, 1976.

Robert Sedgewick.

Algorithms in C.

Addison-Wesley, 1990

Nguyễn Chí Hiếu

Cấu trúc dữ liêu và Giải thuật