AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently amended) A compound of formula (I)

wherein A represents A1-or-A2

$$A1 = \begin{array}{c} O \\ N \\ R \end{array} \begin{array}{c} A1 = \begin{array}{c} O \\ R \\ H \end{array} \begin{array}{c} R \\ A2 = \begin{array}{c} NH \\ R \\ O \end{array} \end{array}$$

R is unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, aryl, aryl-(C_1 - C_{10} -alkyl)-, heteroaryl, heteroaryl-(C_1 - C_{10} -alkyl)-, heterocyclyl, heterocyclyl-(C_1 - C_{10} -alkyl)-, C_3 - C_{10} -cycloalkyl, polycycloalkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkinyl,

where the substituents are chosen from halogen, -CN, C₁-C₁₀-alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C₃-C₁₀-cycloalkyl, aryl-(C₁-C₆-alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C₁-C₆-alkyl, C₁-C₆-alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

Ar is unsubstituted or at least monosubstituted anyl or heteroaryl;

where the substituents are chosen from halogen, [[- CN_7]] NO₂, C₁-C₁₀-alkyl, [[-OR1]] -OH, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -NHC(S)R1, -C(S)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -O-SO₂R1, -SO₂-O-R1, aryl, heteroaryl, aryl-(C₁-C₆-alkyl)-, formyl, trifluoromethyl and trifluoromethoxy,

and the substituents aryl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl)amino-, $di(C_1$ - C_6 -alkyl)amino-, OH, COOH, $COO-(C_1$ - C_6 -alkyl), - $CONH_2$, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof;

with the proviso that

(1)-A is not -C(O)NH(C₁-C₆-alkyl), when Ar is phenyl which is at least monosubstituted with heterocyclyl or heteroaryl containing nitrogen, (2) the compound is not 3-{4-(3,4,5-trimethoxyanilinocarbonyl)-3-oxo-2,3-dihydropyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 3-{4-(N-ethoxycarbonylmethyl)-carbamoyl-3-oxo-2,3-dihydro-pyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 3-{4-(N-carboxymethyl)-carbamoyl-3-oxo-2,3-dihydro-pyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 6-(4-cyanophenyl)-4[(4-carboxybutyl)-aminocarbonyl]-2H-pyridazin-3-one; or 6-(4-methoxyphenyl)-4-methylcarbamoyl-2H-pyridazin-3-one, and (3) when A is NHCOCH(CH₃)₂₇.Ar is not unsubstituted or at least monosubstituted bicyclic heteroaryl

wherein when Ar is a 9-membered bicyclic heterocycle containing one or more heteroatoms selected from N, O and S, Ar is unsubstituted.

2. (Previously presented) The compound according to claim 1, wherein in the formula (I)

A is A1;

is unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, aryl, aryl-(C_1 - C_{10} -alkyl)-, heteroaryl, heteroaryl-(C_1 - C_{10} -alkyl)-, heterocyclyl, heterocyclyl-(C_1 - C_{10} -alkyl)-, C_3 - C_{10} -cycloalkyl, polycycloalkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkinyl,

where the substituents are chosen from halogen, -CN, C_1 - C_{10} -alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1,

-C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C₃-C₁₀-cycloalkyl, aryl-(C₁-C₆-alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C₁-C₆-alkyl, C₁-C₆-alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl)amino-, $di(C_1$ - C_6 -alkyl)amino-, OH, COOH, $COO-(C_1$ - C_6 -alkyl), $CONH_2$, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 3. (Previously presented) The compound according to claim 1, wherein in the formula (I)
 - R is unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, aryl, aryl-(C_1 - C_{10} -alkyl)-, heterocyclyl, heterocyclyl-(C_1 - C_{10} -alkyl)-, C_3 - C_{10} -cycloalkyl, heteroaryl or heteroaryl-(C_1 - C_{10} -alkyl)-,

where the substituents are chosen from halogen, -CN, C₁-C₁₀-alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C₃-C₁₀-cycloalkyl, aryl-(C₁-C₆-alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoroethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl)ami no-, $di(C_1$ - C_6 -alkyl)amino-, OH, COOH, COOH,

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 4. (Currently amended) The compound according to claim 1, wherein in the formula (I)
 - Ar is unsubstituted or at least monosubstituted phenyl, pyridinyl, pyrimidinyl, pyrazolyl, thiophenyl, isoxazolyl, benzo[b]thiophenyl, benzodioxolyl or thiazolo[3,2-b][1,2,4]-thiazolyl,

where the substituents are chosen from halogen, [[- CN_{+}]] NO₂, C₁-C₁₀-alkyl, [[- $OR1_{-}$]] -OH, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -NHC(S)R1, -C(S)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -O-SO₂R1, -SO₂-O-R1, aryl, heteroaryl, aryl-(C₁-C₆-alkyl)-, formyl, trifluoromethyl and trifluoromethoxy,

and the substituents aryl and heteroaryl may further be at least monosubstituted with C₁-C₆-alkyl, C₁-C₆-alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 , C_1 - C_6 -alkyl) amino-,

 $di(C_1-C_6-alkyl)$ amino-, OH, COOH, -COO-($C_1-C_6-alkyl$), -CONH₂, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered aromatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered aliphatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

5. (Previously presented) The compound according to claim 1, wherein in the formula (I)

A is A1;

R is unsubstituted or at least monosubstituted aryl-(C_1 - C_6 -alkyl)-heteroaryl-(C_1 - C_6 -alkyl)- or heterocyclyl-(C_1 - C_6 -alkyl)-,

where the substituents are chosen from halogen, C_1 - C_6 -alkyl, -OH, -O-aryl, C_1 - C_6 -alkoxy, -O-(C_1 - C_6 -alkylen)-N(C_1 - C_6 -alkyl)₂, -C(O)OH, -C(O)O-(C_1 - C_6 -alkyl), -NH₂, -N(C_1 - C_6 -alkyl)₂, -NH(C_1 - C_6 -alkyl), -NH(C_1 - C_6 -alkyl), -C(O)NH-heteroaryl, -C(O)NH-(C_1 - C_6 -alkyl), -SO₂(C_1 - C_6 -alkyl), -SO₂NH₂, -C(O)-heterocyclyl, -C(NH)NH₂, heterocyclyl, aryl-(C_1 - C_6 -alkyl)-, aryl, trifluoromethyl, and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C₁-C₃-alkyl, C₁-C₃-alkoxy, fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy or OH;

heteroaryl is imidazolyl, thiophenyl, furanyl, isoxazolyl, pyridinyl, pyrimidinyl, benzoimidazolyl, indolyl or benzodioxolyl;

aryl is phenyl or naphthyl;

heterocyclyl is morpholinyl, piperazinyl or piperidinyl;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

6. (Currently amended) The compound according to claim 1, wherein in the formula (I)

A is A1;

Ar is unsubstituted or at least monosubstituted phenyl, pyridin-4-yl or pyrimidin-4-yl,

where the substituents are chosen from halogen, C_1 - C_6 -alkyl, -OH, C_1 - C_6 -alkoxy, -C(O)OH, -C(O)O-(C_1 - C_6 -alkyl), -NH $_2$, -N(C_1 - C_6 -alkyl) $_2$, -NH(C_1 - C_6 -alkyl), -NH(C_1 - C_6 -alkyl-), -NH(heterocyclyl-(C_1 - C_6 -alkyl-)), -NH(aryl-(C_1 - C_6 -alkyl-)), -C(O)NH $_2$, -C(O)NH-(C_1 - C_6 -alkyl), aryl, and heteroaryl,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy or OH;

heteroaryl is pyridinyl or pyrimidinyl;

aryl is phenyl or naphthyl;

heterocyclyl is morpholinyl, piperazinyl or piperidinyl;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

7. (Currently amended) The compound according to claim 1, wherein in the formula (I)

A is A1;

- R is unsubstituted or at least monosubstituted benzyl, phenylethyl-, phenylpropyl-, piperazinylpropyl-, pyridinylmethyl-, pyridinylpropyl-,
 - where the substituents are chosen from chlorine, bromine, fluorine, trifluoromethyl, methyl, ethyl, propyl, methoxycarbonyl and carboxy;
- Ar is unsubstituted or at least monosubstituted pyridin-4-yl, pyrimidin-4-yl or phenyl,

where the substituents are chosen from methylamino-, ethylamino-, propylamino-, butylamino-, hydroxy, methoxy, ethoxy, methyl, ethyl, propyl, (phenylethyl)amino-, benzylamino-, and (morpholinylethyl)amino-;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 8. (Currently amended) The compound according to claim 1 chosen from 6-(2-butylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-car-boxylic acid (3-pyridin- 3-yl-propyl)-amide,
- 6-(4-hydroxy-3-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide,

- 6-(4-hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide,
- 6-(2-ethylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,
- 6-(3-chloro-4-hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,
- 4-({[6-(4-hydroxy-3-methoxy-phonyl)-3-oxo-2,3-dihydro-pyridazine-4-carbonyl]-amino}-methyl)-benzoic acid,
- 6-(2-butylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (pyridin-3-yl-methyl)-amide,
- 6-(3-fluoro-4-hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,
- 6-[2-(2-morpholin-4-yl-ethylamino)-pyrimidin-4-yl]-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,
- N-(3,4-dichlorobenzyl)-3-oxo-6-pyridin-4-yl-2,3-dihydropyridazin-4-carboxamide,
- 3-oxo-6-pyridin-4-yl-2,3-dihydro-pyridazine-4-carboxylic acid [2-(2-chloro-phenyl)-ethyl]-amide,
- 6-(2-methylamino-pyridin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzyl amide,
- R-3-oxo-6-[2-(1-phenyl-ethylamino)-pyrimidin-4-yl]-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide,
- 6-(2-butylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid [3-(4-methyl-piperazin-1-yl)-propyl]-amide,

4-{[(3-oxo-6-pyridin-4-yl-2,3-dihydro-pyridazine-4-carbonyl)-amino]-methyl}-benzoic acid methyl ester,

6-(2-methylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide,

6-(4-hydroxy-3-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,

6-(2-methylamino-pyrimidin-4-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,

6-(4-hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide,

3-oxo-6-pyridin-4-yl-2,3-dihydro-pyridazine-4-carboxylic acid 4-bromobenzylamide,

N-(2,4-dichlorobenzyl)-3-oxo-6-pyridin-4-yl-2,3-dihydropyridazine-4-carboxamide,

3-oxo-6-pyridin-4-yl-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-2-fluoro-benzylamide, and

N-(4-chlorobenzyl)-3-oxo-6-pyridin-4-yl-2,3-dihydropyridazine-4-carboxamide;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

9. (Currently amended) A method for inhibiting CDK2 *in vivo* comprising administering a physiologically active amount of a compound of formula (I)

wherein A represents A1-or-A2

$$A1 = \begin{array}{c} O \\ N \\ H \end{array} R \qquad \begin{array}{c} A1 = \begin{array}{c} O \\ R \\ H \end{array} R \qquad \begin{array}{c} A2 = \begin{array}{c} NH \\ O \\ O \end{array} R$$

R is unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, heteroaryl, heteroaryl- $(C_1$ - C_{10} -alkyl)-, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)-, C_3 - C_{10} -cycloalkyl, polycycloalkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkinyl,

where the substituents are chosen from halogen, -CN, C_1 - C_{10} -alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C_3 - C_{10} -cycloalkyl, aryl-(C_1 - C_6 -alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

Ar is unsubstituted or at least monosubstituted anyl or heteroaryl;

where the substituents are chosen from halogen, [[-CN,]] NO_2 , C_1 - C_{10} -alkyl, [[-OR1]] -OH, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -NHC(S)R1, -C(S)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -O-SO₂R1, -SO₂-O-R1, aryl, heteroaryl, aryl-(C_1 - C_6 -alkyl)-, formyl, trifluoromethyl and trifluoromethoxy,

and the substituents aryl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl)amino-, $di(C_1$ - C_6 -alkyl)amino-, OH, COOH, COO- $(C_1$ - C_6 -alkyl), $CONH_2$, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof;

with the proviso that

(1)-A is not -C(O)NH(C₁-C₆-alkyl), when Ar is phenyl which is at least monosubstituted with heterocyclyl or heteroaryl containing nitrogen, (2) the compound is not 3-{4-(3,4,5-trimethoxyanilinocarbonyl)-3-oxo-2,3-dihydropyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 3-{4-(N-ethoxycarbonylmethyl)-carbamoyl-3-oxo-2,3-dihydro-pyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 3-{4-(N-carboxymethyl)-carbamoyl-3-oxo-2,3-dihydro-pyridazino-6-yl}-2-phenyl-pyrazolo[1,5-a]pyridine; 6-(4-cyanophenyl)-4[(4-carboxybutyl)-aminocarbonyl]-2H-pyridazin-3-one; or 6-(4-methoxyphenyl)-4-methylcarbamoyl-2H-pyridazin-3-one, and (3) when A is NHCOCH(CH₃)₂₇. Ar is not unsubstituted or at least monosubstituted bicyclic heteroaryl

wherein when Ar is a 9-membered bicyclic heterocycle containing one or more heteroatoms selected from N, O and S, Ar is unsubstituted.

10. (Previously presented) The method according to claim 9, wherein in the formula (I)

A is A1;

R is unsubstituted or at least monosubstituted C₁-C₁₀-alkyl, aryl, aryl-(C₁-C₁₀-alkyl)-, heteroaryl, heteroaryl-(C₁-C₁₀-alkyl)-, heterocyclyl, heterocyclyl-(C₁-C₁₀-alkyl)-, C₃-C₁₀-cycloalkyl, polycycloalkyl, C₂-C₁₀-alkenyl or C₂-C₁₀-alkinyl,

where the substituents are chosen from halogen, -CN, C_1 - C_{10} -alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C_3 - C_{10} -cycloalkyl, aryl-(C_1 - C_6 -alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 , C_1 - C_6 -alkyl)amino-, C_1 - C_6 -alkyl)amino-, C_1 - C_6 -alkyl)amino-, C_1 - C_6 -alkyl)amino-, C_1 - C_1 - C_1 - C_2 -alkyl)amino-, C_1 - C_2 - C_2 -alkyl)amino-, C_1 - C_2 -alkyl)amino-, C_1 - C_2 -alkyl)amino-, C_1 - C_2 - C_2 - C_2 - C_1 - C_2 -

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 11. (Previously presented) The method according to claim 9, wherein in the formula (I)
 - R is unsubstituted or at least monosubstituted C₁-C₁₀-alkyl, aryl, aryl-(C₁-C₁₀-alkyl)-, heterocyclyl, heterocyclyl-(C₁-C₁₀-alkyl)-, C₃-C₁₀-cycloalkyl, heteroaryl or heteroaryl-(C₁-C₁₀-alkyl)-,

where the substituents are chosen from halogen, -CN, C₁-C₁₀-alkyl, -NO₂, -OR1, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1,

-C(O)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -C(S)NR1R2, -NHC(S)R1, -O-SO₂R1, -SO₂-O-R1, oxo, -C(O)R1, -C(NH)NH₂, heterocyclyl, C₃-C₁₀-cycloalkyl, aryl-(C₁-C₆-alkyl)-, aryl, heteroaryl, trifluoromethyl, trifluoromethylsulfanyl and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoroethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl)ami no-, $di(C_1$ - C_6 -alkyl)amino-, COO- $(C_1$ - C_6 -alkyl), - $CONH_2$, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered, aromatic, mono- or bicyclic heterocycle containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered, aliphatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 12. (Currently amended) The method according to claim 9, wherein in the formula (I)
 - Ar is unsubstituted or at least monosubstituted phenyl, pyridinyl, pyrimidinyl, pyrazolyl, thiophenyl, isoxazolyl, benzo[b]thiophenyl, benzodioxolyl or thiazolo[3,2-b][1,2,4]-thiazolyl,

where the substituents are chosen from halogen, [[- CN_{τ}]] NO₂, C₁-C₁₀-alkyl, [[-OR1]] -OH, -C(O)OR1, -O-C(O)R1, -NR1R2, -NHC(O)R1, -C(O)NR1R2, -NHC(S)R1, -C(S)NR1R2, -SR1, -S(O)R1, -SO₂R1, -NHSO₂R1, -SO₂NR1R2, -O-SO₂R1, -SO₂-O-R1, aryl, heteroaryl, aryl-(C₁-C₆-alkyl)-, formyl, trifluoromethyl and trifluoromethoxy,

and the substituents aryl and heteroaryl may further be at least monosubstituted with C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, trifluoromethyl, trifluoromethoxy or OH;

R1 and R2, independently from each other, are

hydrogen;

unsubstituted or at least monosubstituted C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, aryl, aryl- $(C_1$ - C_{10} -alkyl)-, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, heterocyclyl, heterocyclyl- $(C_1$ - C_{10} -alkyl)- or heteroaryl, where the substituents are chosen from halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, CN, NO_2 , NH_2 , $(C_1$ - C_6 -alkyl) amino-, $di(C_1$ - C_6 -alkyl)amino-, OH, COOH, COO- $(C_1$ - C_6 -alkyl), $CONH_2$, formyl, trifluoromethyl and trifluoromethoxy;

heteroaryl is a 5 to 10-membered aromatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

aryl is phenyl, indanyl, indenyl or naphthyl;

heterocyclyl is a 5 to 10-membered aliphatic, mono- or bicyclic heterocycle, containing one or more heteroatoms chosen from N, O and S;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

13. (Previously presented) The method according to claim 9, wherein in the formula (I)

A is A1;

R is unsubstituted or at least monosubstituted aryl-(C_1 - C_6 -alkyl)- heteroaryl-(C_1 - C_6 -alkyl)- or heterocyclyl-(C_1 - C_6 -alkyl)-,

where the substituents are chosen from halogen, C_1 - C_6 -alkyl, -OH, -O-aryl, C_1 - C_6 -alkoxy, -O-(C_1 - C_6 -alkylen)-N(C_1 - C_6 -alkyl)₂, -C(O)OH, -C(O)O-(C_1 - C_6 -alkyl), -NH $_2$, -N(C_1 - C_6 -alkyl)₂, -NH(C_1 - C_6 -alkyl), -NH(C_1 - C_1 -cycloalkyl), -C(O)NH-heteroaryl, -C(O)NH-(C_1 - C_6 -alkyl), -SO₂(C_1 - C_6 -alkyl), -SO₂NH₂, -C(O)-heterocyclyl, -C(NH)NH₂, heterocyclyl, aryl-(C_1 - C_6 -alkyl)-, aryl, trifluoromethyl, and trifluoromethoxy,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C₁-C₃-alkyl, C₁-C₃-alkoxy, fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy or OH;

heteroaryl is imidazolyl, thiophenyl, furanyl, isoxazolyl, pyridinyl, pyrimidinyl, benzoimidazolyl, indolyl or benzodioxolyl;

aryl is phenyl or naphthyl;

heterocyclyl is morpholinyl, piperazinyl or piperidinyl;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

14. (Currently amended) The method according to claim 9, wherein in the formula (I)

A is A1;

Ar is unsubstituted or at least monosubstituted phenyl, pyridin-4-yl or pyrimidin-4-yl,

where the substituents are chosen from halogen, C_1 - C_6 -alkyl, -OH, C_1 - C_6 -alkoxy, -C(O)OH, -C(O)O-(C_1 - C_6 -alkyl), -NH $_2$, -N(C_1 - C_6 -alkyl) $_2$, -NH(C_1 - C_6 -alkyl), -NH(C_1 - C_6 -alkyl), -NH(heterocyclyl-(C_1 - C_6 -alkyl-)), -NH(aryl-(C_1 - C_6 -alkyl-)), -C(O)NH $_2$, -C(O)NH-(C_1 - C_6 -alkyl), aryl, and heteroaryl,

and the substituents aryl, heterocyclyl and heteroaryl may further be at least monosubstituted with C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy, fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy or OH;

heteroaryl is pyridinyl or pyrimidinyl;

aryl is phenyl or naphthyl;

heterocyclyl is morpholinyl, piperazinyl or piperidinyl;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

15. (Currently amended) The method according to claim 9, wherein in the formula (I)

A is A1;

- R is unsubstituted or at least monosubstituted benzyl, phenylethyl-, phenylpropyl-, piperazinylpropyl-, pyridinylmethyl-, pyridinylpropyl-, pyridinylpropyl-,
 - where the substituents are chosen from chlorine, bromine, fluorine, trifluoromethyl, methyl, ethyl, propyl, methoxycarbonyl and carboxy;
- Ar is unsubstituted or at least monosubstituted pyridin-4-yl, pyrimidin-4-yl or phenyl,
 - where the substituents are chosen from methylamino-, ethylamino-, propylamino-, butylamino-, hydroxy, methoxy, ethoxy, methyl, ethyl, propyl, (phenylethyl)amino-, benzylamino-, and (morpholinylethyl)amino-;

or the racemates, enantiomers, diastereoisomers and mixtures thereof, the tautomers or the physiologically acceptable salts thereof.

- 16. (Previously presented) A method for inhibiting CDK2 *in vivo* comprising administering a physiologically active amount of a compound according to claim 8.
 - 17.-25. (Cancelled).
 - 26. (New) A compound, chosen from
- 6-(4-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide;
- 6-(4-hydroxy-3-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide;

- 6-(4-hydroxy-3-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid (3-pyridin-3-yl-propyl)-amide;
- 6-(4-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide;
- 4-[5-(4-chloro-benzylcarbamoyl)-6-oxo-1,6-dihydro-pyridazin-3-yl]-3-methoxy-thiophene-2-carboxylic acid;
- 6-(5-carbamoyl-4-methoxy-thiophen-3-yl)-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid 4-chloro-benzylamide; and
- 4-({[6-(4-hydroxy-3-methoxy-phenyl)-3-oxo-2,3-dihydro-pyridazine-4-carbonyl]-amino}-methyl)-benzoic acid.
- 27. (New) A method for inhibiting CDK2 *in vivo* comprising administering a physiologically active amount of a compound according to claim 26.