Lista de exercícios

Luca Argolo, João, Fábio, Thiago Vieira

August 30, 2021

Questão 1. No caso φ , por ordem de precedência, a inserção de parêntesis se dará na forma:

$$\begin{aligned} p \lor q \to p \to r \\ (p \lor q) \to p \to r \\ (p \lor q) \to (p \to r) \\ \varphi = ((p \lor q) \to (p \to r)) \end{aligned}$$

No caso ψ , por ordem de precedência, a inserção de parêntesis se dará na forma:

$$x \to y \to \neg z \lor x \land z$$

$$x \to y \to \neg z \lor (x \land z)$$

$$x \to y \to (\neg z \lor (x \land z))$$

$$x \to (y \to (\neg z \lor (x \land z)))$$

$$\psi = (x \to (y \to (\neg z \lor (x \land z))))$$

$$\psi = (x \to (y \to (\neg z \lor (x \land z))))$$

$$x \to (y \to (\neg z \lor (x \land z))))$$

$$y \to (\neg z \lor (x \land z))$$

$$(y \to (\neg z \lor (x \land z)))$$

$$(p \lor q) \qquad (p \to r) \qquad \neg z \qquad (x \land z)$$

Questão 2 (Fórmulas do Exemplo 3.5 do script.). Seja $\varphi = \psi \wedge \chi$. Pela hipótese da indução, ψ tem um número par de parênteses que vamos chamar de 2m. Também pela hipótese, temos que y tem um número par de parênteses que chamaremos de 2n. Logo φ tem um número de parênteses igual à 2+2n+2m=2(1+n+m). Este número é par.

Seja $\varphi = \psi \rightarrow \chi$. Pela hipótese da indução, ψ tem um número par de parênteses que vamos chamar de 2m. Também pela hipótese, temos que χ tem um número par de parênteses que chamaremos de 2n. Logo φ tem um número de parênteses igual à 2+2n+2m=2(1+n+m). Este número é par.

Questão 3 (Exercício 3.8(a)). Seja M um conjunto, $S \subseteq M$ um subconjunto de M, Pw(M) o conjunto potência de M, e χ um elemento de Pw(M). $\{0,1\}^M$ é o conjunto dado por funções que podem ser descritas por $f_s: M \to \{0,1\}, f_s:=$ $m \mapsto \begin{cases} 1, m \in S, S \subseteq M \\ 0, c.c. \end{cases}$ (chamada de funções indicativas ou características).

Podemos criar a função que relaciona f_s e χ : $h: \{0,1\}^M \to Pw(M)$

 $h:=f_s\mapsto\chi, s=\chi.$ Essa função é bijetora pelo fato de que, para cada s em $\{0,1\}^M,$ existe um χ igual em Pw(M).

Questão 4 (Exercício 6). Sejam $\varphi, \psi, \chi \in F_m$ tal que $\varphi = \psi \wedge \chi$. Supomos que $v_1(\psi) = v_2(\psi)$ e $v_1(\chi) = v_2(\chi)$ (por hipótese). Aplicando a definição de $v_1(\varphi) = v_2(\psi)$ $v_1(\psi \wedge \chi)$ (por def.) = $f_{\wedge}(v_1(\psi), v_1(\chi))$, usando a hipótese $f_{\wedge}(v_1(\psi), v_1(\chi)) =$ $f_{\wedge}(v_2(\psi),v_2(\chi))$, que por definição, é $v_2(\psi \wedge \chi)$ que é $v_2(\varphi)$. o que prova a indução.

Sejam $\varphi, \psi, \chi \in F_m$ tal que $\varphi = \psi \vee \chi$. Supomos que $v_1(\psi) = v_2(\psi)$ e $v_1(\chi)$ $=v_2(\chi)$ (por hipótese). Aplicando a definição de $v_1(\varphi)=v_1(\psi\vee\chi)$ (por def.) $= f_{\vee}(v_1(\psi), v_1(\chi)),$ usando a hipótese $f_{\vee}(v_1(\psi), v_1(\chi)) = f_{\vee}(v_2(\psi), v_2(\chi)),$ que por definição, é $v_2(\psi \vee \chi)$ que é $v_2(\varphi)$. o que prova a indução.

Sejam $\varphi, \psi, \chi \in F_m$ tal que $\varphi = \psi \to \chi$. Supomos que $v_1(\psi) = v_2(\psi)$ e $v_1(\chi)$ $=v_2(\chi)$ (por hipótese). Aplicando a definição de $v_1(\varphi)=v_1(\psi\to\chi)$ (por def.) $= f_{\rightarrow}(v_1(\psi), v_1(\chi)),$ usando a hipótese $f_{\rightarrow}(v_1(\psi), v_1(\chi)) = f_{\rightarrow}(v_2(\psi), v_2(\chi)),$ que por definição, é $v_2(\psi \to \chi)$ que é $v_2(\varphi)$, o que prova a indução.