# Discrete random walks with memory: Models and applications

Ing. Tomáš Kouřim

Institute of Information Theory and Automation, CAS CR Prague

16.9.2019

### Outline

- 1. Prepare mathematical model
- Describe its properties
- Apply it on data

#### Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- Apply it on data

#### Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- 3. Apply it on data

#### Random walk

#### Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and  $r + \delta r$  from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

#### Random walk

#### Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and  $r + \delta r$  from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

#### Random walk

#### Definition

Let  $\{X_k\}_{k=1}^{\infty}$  be a sequence of discrete random variables. For each positive integer n, let  $S_n$  denote the sum  $X_1+X_2+\cdots+X_n$ , with  $S_0=0$ . The sequence  $\{S_n\}_{n=1}^{\infty}$  is called a random walk. If the common range of the  $X_k$ 's is  $\mathbb{R}_m$ , then  $\{S_n\}$  is a random walk in  $\mathbb{R}_m$ .

If for  $\forall k$ ;  $X_k \sim B(p=\frac{1}{2})$ , the walk is called the standard random walk.



## Random walk properties

- Discrete random process
- n—dimensional, on a matrix, graph, finite or infinite set
- Self avoiding, reinforced
- Brownian motion, polymer creation, games simulation, sports simulation

## Random walk with memory

- Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- ► Constant total step size:

$$I_i^+ + I_i^- = 2 \ \forall i \in \mathbb{N}.$$

At the beginning the step sizes are equal  $(I_1^+ = I_1^- = 1)$  and further for t > 1 evolve using a memory parameter  $\lambda \in (0, 1)$ :

$$X_{t-1} = 1 \to \begin{cases} I_t^+ = \lambda I_{t-1}^+ \\ I_t^- = 2 - \lambda I_{t-1}^+ \end{cases} \quad X_{t-1} = -1 \to \begin{cases} I_t^+ = 2 - \lambda I_{t-1}^- \\ I_t^- = \lambda I_{t-1}^- \end{cases}$$

► Loïc Turban. On a random walk with memory and its relation with markovian processes. Journal of Physics A: Mathematical and Theoretical (2010).



## Random walk with varying transition probability

- ▶ Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- Step size remains constant, transition probability changes
- First step realized according to starting probability  $p_0$  which then for t > 1 evolve using a memory parameter  $\lambda \in (0, 1)$ :

$$X_t = 1 \rightarrow p_t = \lambda p_{t-1}$$

$$X_t = -1 \to p_t = 1 - \lambda(1 - p_{t-1})$$

## Example - RW evolution



$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$\triangleright$$
  $EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$ 

$$ES_t = S_0 + (2p_0 - 1) \frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$ightharpoonup EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$ES_t = S_0 + (2p_0 - 1) \frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

• 
$$EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\triangleright$$
  $ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$ 

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$ightharpoonup EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\triangleright$$
  $ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$ 

## Example - Expected transition probability



## Example - Transition probability variance



## Example - Expected position of the walker



## Example - Walker's position variance



#### Formulas to obtain next transition probability $P_i$ :

- $\frac{1}{2} [(1+X_i)\lambda P_{i-1} + (1-X_i)(1-\lambda(1-P_{i-1}))]$  Success numbered
- $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$  Success rewarded
- $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$  Success punished with multiple  $\lambda$
- $\frac{1}{2}[(1-X_i)\lambda_0 P_{i-1} + (1+X_i)(1-\lambda_1(1-P_{i-1}))]$



- Formulas to obtain next transition probability  $P_i$ :
  - - Success punished
  - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$
  - $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$  Success number with multiple  $\lambda$



- Formulas to obtain next transition probability  $P_i$ :
  - $\frac{1}{2}[(1+X_i)\lambda P_{i-1}+(1-X_i)(1-\lambda(1-P_{i-1}))]$ 
    - Success punished
  - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$
  - $\frac{1}{2}[(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success number with multiple  $\lambda$



- Formulas to obtain next transition probability  $P_i$ :
  - - Success punished
  - - Success rewarded
  - - Success punished with multiple  $\lambda$
  - - Success rewarded with multiple  $\lambda$

- Formulas to obtain next transition probability  $P_i$ :
  - - Success punished
  - - Success rewarded
  - - Success punished with multiple  $\lambda$
  - - Success rewarded with multiple  $\lambda$

- Formulas to obtain next transition probability  $P_i$ :
  - - Success punished
  - - Success rewarded
  - - Success punished with multiple  $\lambda$
  - $\frac{1}{2}[(1-X_i)\lambda_0P_{i-1}+(1+X_i)(1-\lambda_1(1-P_{i-1}))]$

• Success rewarded with multiple  $\lambda$ 

- Formulas to obtain next transition probability P<sub>i</sub>:
  - $\frac{1}{2}[(1+X_i)\lambda P_{i-1}+(1-X_i)(1-\lambda(1-P_{i-1}))]$ 
    - Success punished
  - - Success rewarded
  - - Success punished with multiple  $\lambda$
  - $\frac{1}{2}[(1-X_i)\lambda_0P_{i-1}+(1+X_i)(1-\lambda_1(1-P_{i-1}))]$ 
    - Success rewarded with multiple  $\lambda$



## Data generation

- Using Python & Numpy package
- Different parameters:
  - $\lambda \in \{0.5, 0.8, 0.9, 0.99\}$
  - $\bar{\lambda} = \{[0.5, 0.8], [0.5, 0.99], [0.99, 0.9]\}$
  - $p_0 = \{0.5, 0.8, 0.9, 0.99\}$

  - 100 walks for each combination

## Fitting parameters on generated data

- Find  $\overrightarrow{\lambda}$  with known  $p_0$ , model type
- Find  $p_0$  with known  $\overrightarrow{\lambda}$ , model type
- Find  $p_0$ ,  $\overrightarrow{\lambda}$  with known model type
- Find model type without any prior knowledge

## Parameter fitting evaluation

|                                         | SP - 1λ | SR - $1\lambda$ | SP - 2λ | $SR$ - $2\lambda$ |
|-----------------------------------------|---------|-----------------|---------|-------------------|
| Find $\overrightarrow{\lambda}$         | 96.9 %  | 34.4 %          | 80.2 %  | 77.1 %            |
| Find po                                 | 92.2 %  | 82.8 %          | 89.6 %  | 93.8 %            |
| Find $\overrightarrow{\lambda}$ , $p_0$ | 91.4 %  | 84.4 %          | 83.3 %  | 79.9 %            |
| Find model type                         | 1.6 %   | 1.6 %           | 87.5 %  | 89.6 %            |

## Parameter fitting evaluation

|                                         | SP - 1λ | SR - $1\lambda$ | SP - 2λ | SR - 2λ |
|-----------------------------------------|---------|-----------------|---------|---------|
| Find $\overrightarrow{\lambda}$         | 96.9 %  | 34.4 %          | 80.2 %  | 77.1 %  |
| Find po                                 | 92.2 %  | 82.8 %          | 89.6 %  | 93.8 %  |
| Find $\overrightarrow{\lambda}$ , $p_0$ | 91.4 %  | 84.4 %          | 83.3 %  | 79.9 %  |
| Find model type                         | 93.8 %  | 87.5 %          | 89.6 %  | 89.6 %  |

- Random processes with memory and one or just few dominant events
  - Reliability analysis, medical data analysis, criminal recidivism
  - Sport modelling
    - Tennis with model "Success rewarded"
      - Applied for live betting on US Open against Tipsport bookmaker
    - Source code and paper available at
      - https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
  - Reliability analysis, medical data analysis, criminal recidivism
  - Sport modelling
    - Tennis with model "Success rewarded"
    - Applied for live betting on US Open against Tipsport bookmaker
    - Source code and paper available at https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
  - Reliability analysis, medical data analysis, criminal recidivism
  - Sport modelling
    - Tennis with model "Success rewarded"
    - Applied for live betting on US Open against Tipsport hookmaker
    - Source code and paper available at https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
  - Reliability analysis, medical data analysis, criminal recidivism
  - Sport modelling
    - Tennis with model "Success rewarded"
    - Applied for live betting on US Open against Tipsport bookmaker
    - Source code and paper available at https://github.com/tomaskourim/mathsport2019

## Summary

- ► New models of Random walk described
- Properties derived
- Strenght of the models shown using simulated data
- Possible real life applications shown
- Source code and paper available at https://github.com/tomaskourim/amistat2019

## Next steps

- ► More detailed model description
  - Asymptotic behavior
  - ► Multidimensional models
- Model improvement
  - Other versions of random walk with memory
  - Combination with other approaches
- Application in other domains

## Next steps

- ► More detailed model description
  - Asymptotic behavior
  - ► Multidimensional models
- Model improvement
  - Other versions of random walk with memory
  - Combination with other approaches
- ► Application in other domains

## Next steps

- ► More detailed model description
  - Asymptotic behavior
  - ► Multidimensional models
- Model improvement
  - Other versions of random walk with memory
  - Combination with other approaches
- Application in other domains

## Thank you.

tom@skourim.com