### Ch 3.1: Linear Regression

Lecture 4 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 9, 2022

#### Announcements

Last time:

• 2.2 Assessing Model Accuracy

Announcements:

2/26

Office Hours

#### Covered in this lecture

- Least squares coefficient estimates for linear regression
- Residual sum of squares (RSS)
- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared

Dr. Munch (MSU-CMSE) Fri, Sep 9, 2022

#### Section 1

## Simple Linear Regression

r. Munch (MSU-CMSE) Fri, Sep 9, 2022

# Setup

 Predict Y on a single predictor variable X

$$Y \approx \beta_0 + \beta_1 X$$

• "≈" .... "is approximately modeled as"

Dr. Munch (MSU-CMSE)

# Example

| 1  |    | TV    | Radio | Newspaper | Sales |
|----|----|-------|-------|-----------|-------|
| 2  |    | 230.1 | 37.8  | 69.2      | 22.1  |
| 3  | 2  | 44.5  | 39.3  | 45.1      | 10.4  |
| 4  | 3  | 17.2  | 45.9  | 69.3      | 9.3   |
| 5  | 4  | 151.5 | 41.3  | 58.5      | 18.5  |
| 6  | 5  | 180.8 | 10.8  | 58.4      | 12.9  |
| 7  | 6  | 8.7   | 48.9  | 75        | 7.2   |
| 8  |    | 57.5  | 32.8  | 23.5      | 11.8  |
| 9  | 8  | 120.2 | 19.6  | 11.6      | 13.2  |
| 10 | 9  | 8.6   | 2.1   |           | 4.8   |
| 11 | 10 | 199.8 | 2.6   | 21.2      | 10.6  |
| 12 | 11 | 66.1  | 5.8   | 24.2      | 8.6   |

Dr. Munch (MSU-CMSE) Fri, Sep 9, 2022 6/26

### Least squares criterion: Setup

How do we estimate the coefficients?



### Least squares criterion: RSS





Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2 = \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

8/26

sales 
$$\approx \beta_0 + \beta_1 TV$$

#### Least squares criterion

Find  $\beta_0$  and  $\beta_1$  that minimize the RSS.

Dr. Munch (MSU-CMSE) Fri, Sep 9, 2022

### Least squares coefficient estimates

$$\min_{\beta_0,\beta_1} \sum_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \beta_0} = -2\sum_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = -2\sum_i x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

# Coding group work

Dr. Munch (MSU-CMSE) Fri, Sep 9, 2022

#### Section 2

### Assessing Coefficient Estimate Accuracy

Or. Munch (MSU-CMSE) Fri, Sep 9, 2022

#### Bias in estimation

Analogy with mean

- Assume a true value  $\mu^*$
- An estimate from training data  $\hat{\mu}$
- The estimate is unbiased if  $E(\hat{\mu} = \mu^*)$

Sample mean is unbiased for population mean:

$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \mu$$

Standard variance estimate is biased

$$E(\hat{\sigma}^2) = E\left[\frac{1}{n}\sum_{i}(X_i - \overline{X})^2\right] \neq \sigma^2$$

# Linear regression is unbiased



### Coding group work

Run the section titled "Simulating data"

Dr. Munch (MSU-CMSE) Fri, Sep 9, 2022

#### Variance in estimation

#### Continuing analogy with mean

- True value  $\mu^*$
- ullet Estimate from training data  $\hat{\mu}$
- Variance of sample mean

$$\operatorname{Var}(\hat{\mu}) = \operatorname{SE}(\hat{\mu})^2 = \frac{\sigma^2}{n}$$

## Variance of linear regression estimates

Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[ \frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where  $\sigma^2 = \operatorname{Var}(\varepsilon)$ 

ullet Residual standard error is an estimate of  $\sigma$ 

$$RSE = \sqrt{RSS/(n-2)}$$

#### Confidence Interval

The 95% confidence interval for  $\beta_1$  approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

#### Interpretation:

There is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain  $\beta_1$  where we repeatedly approximate  $\hat{\beta}_1$  using repeated samples.

## CI in Advertising data



For the advertising data set, the 95% CIs are:

18 / 26

•  $\beta_1$  :: [0.042, 0.053]

•  $\beta_0$  :: [6.130, 7.935]

. Munch (MSU-CMSE) Fri, Sep 9, 2022

### Hypothesis testing

 $H_0$ : There is no relationship between X and Y

 $H_1$ : There is some relationship between X and

Y

### Test statistic and p-value

Test statistic:

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

t-distribution with n-2 degrees of freedom



Dr. Munch (MSU-CMSE)

### Advertising example

|           | Coefficient | Std. error | t-statistic | <i>p</i> -value |
|-----------|-------------|------------|-------------|-----------------|
| Intercept | 7.0325      | 0.4578     | 15.36       | < 0.0001        |
| TV        | 0.0475      | 0.0027     | 17.67       | < 0.0001        |



r. Munch (MSU-CMSE) Fri, Sep 9, 2022

Assessing the accuracy of the module: RSE

### Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$
$$= \sqrt{\frac{1}{n-2}\sum_{i}(y_i - \hat{y}_i)^2}$$

Assessing the accuracy of the module:  $R^2$ 

#### R squared:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where total sum of squares is

$$TSS = \sum_{i} (y_i - \overline{y})^2$$

### Advertising example



$$R^2 = 0.61$$

$$R^2 = 0.33$$

$$R^2 = 0.05$$

Dr. Munch (MSU-CMSE)

### Coding group work

Run the section titled "Assessing Coefficient Estimate Accuracy"

#### Next time

| Lec# Date |   | Date   | Topic                                                 | Reading       | Homeworks |
|-----------|---|--------|-------------------------------------------------------|---------------|-----------|
| 1         | w | Aug 31 | Intro / First day stuff / Python Review Pt 1          | 1             |           |
| 2 F Sep 2 |   | Sep 2  | What is statistical learning? / Python<br>Review Pt 2 | 2.1           |           |
|           | М | Sep 5  | No class - Labor day                                  |               |           |
| 3         | W | Sep 7  | Assessing Model Accuracy                              | 2.2           | HW #1 Due |
| 4         | F | Sep 9  | Linear Regression                                     | 3.1           |           |
| 5         | М | Sep 12 | More Linear Regression                                | 3.2           |           |
| 6         | W | Sep 14 | Even more linear regression                           | 3.3           | HW #2 Due |
| 7         | F | Sep 16 | Probably more linear regression                       |               |           |
| 8         | М | Sep 19 | Intro to classification, Logisitic<br>Regression      | 4.1, 4.2, 4.3 |           |
| 9         | W | Sep 21 | More logistic regression                              |               | HW #3 Due |
| 10        | F | Sep 23 | Review                                                |               |           |
| 11        | М | Sep 26 | Midterm #1                                            |               |           |
| 12        | W | Sep 28 | [No class, Dr Munch out of town]                      |               |           |
| 13        | F | Sep 30 | [No class, Dr Munch out of town]                      |               |           |
| 14        | М | Oct 3  | Leave one out CV                                      | 5.1.1, 5.1.2  |           |
| 15        | W | Oct 5  | k-fold CV                                             | 5.1.3         |           |
| 16        | F | Oct 7  | More k-fold CV                                        | 5.1.4         |           |
| 17        | М | Oct 10 | CV for classification                                 | 5.1.5         | HW #4 Due |
| 18        | W | Oct 12 | Resampling methods: Bootstrap                         | 5.2           |           |
| 19        | F | Oct 14 | Subset selection                                      | 6.1           |           |
| 20        | М | Oct 17 | Shrinkage: Ridge                                      | 6.2.1         | HW #5 Due |
| 21        | W | Oct 19 | Shrinkage: Lasso                                      | 6.2.2         |           |
| 22        | F | Oct 21 | Dimension Reduction                                   | 6.3           |           |

#### **Announcements**

- We had a quiz last time!
- Homework 2
  - ► NEW: Upload to crowdmark
  - Due Weds, Sep 14
  - Need to upload individual file for EACH QUESTION