60米亚毫米波望远镜主要科学目标

1. 宇宙有机物分布与生命起源

星际有机物的广域分布、生命前物质产生的物理和化学环境、生命物质探测研究

2. 暗能量和宇宙起源

精确测量星系团S-Z效应和亚毫米星系重子声波振荡、宇宙再电离过程的刻画

3. 宇宙构件和黑洞质量

矮星系气体和尘埃的大样本普查、黑洞质量的动力学高精度测量、黑洞质量谱的构建、宇宙原初黑洞的起源研究

4. 宇宙磁场拓扑

星际磁场三维结构、近邻星系磁场探测、宇宙磁场起源

附录:大型亚毫米波天文观测设施I期建设内容包括一台60米级大型亚毫米波天线以及多波束超导SIS接收机、大规模偏振阵列相机、3D宽带成像频谱仪等领先探测终端,工作波段覆盖0.65-3mm。

附表:望远镜光学性能估算

波段	频率 范围 (GHz)	角分 辨率 (*)	有效 口径 (m)	口面效率	大气 透过率	连续谱 NEFD (mJy·s ^{1/2})	视场 直径 (deg)	视场 面积 (deg²)	$\begin{array}{c} A\Omega \\ (m^2deg^2) \end{array}$
3mm	75~118	12.3	59.4	0.82	0.96	0.30	1.35	1.43	3963
2mm	120~182	8.2	59.4	0.80	0.96	0.25	1.10	0.95	2633
1mm(L)	185~260	5.5	59.4	0.76	0.94	0.28	0.91	0.65	1801
1mm(U)	240~323	4.4	59.4	0.73	0.90	0.34	0.81	0.52	1441
0.85mm	327~373	3.5	59.4	0.68	0.80	0.91	0.71	0.40	1108
0.65mm	388~496	2.8	59.4	0.60	0.64	1.93	0.64	0.32	887