* No se permite el uso de ningún tipo de material *

EJERCICIO 1) (4 puntos) Sea X un conjunto. Dados subconjuntos $\{A_n\}_{n\in\mathbb{N}}$ se define el límite infimo y el límite supremo

$$\liminf_{n} A_n := \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} A_n \qquad \qquad \lim_{n} \sup_{n} A_n := \bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} A_n$$

Decimos que la sucesión $(A_n)_n$ de subconjuntos de X converge a un subconjunto A de X, y escribimos lím $_n A_n = A$, cuando la sucesión de funciones características $(\chi_{A_n})_n$ converge puntualmente a la función característica χ_A de A.

- (1) Demostrar que las siguientes condiciones son equivalentes:
- (1.a) lím_n A_n existe.
- (1.b) $\lim_{n} A_{n}^{c}$ existe.
- (1.c) $\liminf_n A_n = \limsup_n A_n = A$ y $\lim_n A_n = A$.

Sea (Ω, Σ, μ) un espacio de medida (σ -aditiva, no necesariamente finita), y sea $(A_n)_n$ una sucesión de conjuntos en Σ .

- (3) Demostrar que si $(A_n)_n$ converge a $A \subseteq \Omega$, entonces $A \in \Sigma$.
- (4) Supongamos $\lim_n A_n$ existe y que existe B tal que $\mu(B) < \infty$ y que contiene a todos los A_n 's. Demostrar que $\lim_n \mu(A_n) = \mu(\lim_n A_n)$. ¿De cual teorema de convergencia de funciones integrables es este resultado un caso particular?
- (5) Encontrar un espacio de medida (Ω, Σ, μ) y una sucesión de conjuntos $(A_n)_n$ en Σ tal que $\mu(\lim A_n) \neq \lim_n \mu(A_n)$.

EJERCICIO 2) (3 puntos)

- (1) Enunciar el teorema de Radon-Nikodym.
- (2) Sea $X := \{1, 2, ..., n\}, a_1, ..., a_n$ números reales positivos, y sean $\mu, \nu : \mathcal{P}(X) \to \mathbb{R}$ las medidas $\mu(A) := \sum_{j \in A} a_j$ y $\nu(A) := \operatorname{Card}(A) = \operatorname{cardinalidad} \operatorname{de} A$, para cada $A \subseteq X$. Demostrar que existe la derivada de Radon-Nikodym de μ con respecto a ν y encontrarla.

EJERCICIO 3) (3 puntos) Sean X un conjunto, \mathcal{A} una σ -álgebra sobre X, y $\mu : \mathcal{A} \to \mathbb{R}$ una medida finita signada real. Recordemos que un conjunto $D \in \mathcal{A}$ es positivo (resp. negativo) si $\mu(B) \geq 0$ (resp. $\mu(B) \leq 0$) para todo $B \subseteq D$, $B \in \mathcal{A}$. Denotamos por \mathcal{P} (resp. por \mathcal{N}) la familia de todos los conjuntos positivos (resp. negativos) de \mathcal{A} . Se pide:

- (1) Demostrar que $\mathcal{N} \neq \emptyset$, y que existe $B \in \mathcal{N}$ tal que $\mu(B) = \inf\{\mu(D) : D \in \mathcal{N}\}$ (Si no fuera cierto, decir por qué).
- (2) Demostrar que existen $A \in \mathcal{P}$ y $B \in \mathcal{N}$ tales que $A \cup B = X$ y $A \cap B = \emptyset$. (Teorema de descomposición de Hahn).