Основы теории множеств, 1 курс Математика

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Осенний семестр, 2025

Важная дополнительная информация

Mой адрес: v.selivanov@spbu.ru

Страница курса в интернете: https://github.com/vseliv/sets-2025/tree/main

Литература:

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. ч. 1. Начала теории множеств. М.: МЦНМО, 2012.
- 2. К. Куратовский, А. Мостовский, Теория множеств. М.: Мир, 1970.
- 3. Т. Йех, Теория множеств и метод форсинга. М.: Мир, 1973.
- 4. И.А. Лавров, Л.Л.Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. М.: Наука, 2001.

Теория множеств имеет двоякую природу. С одной стороны, это раздел математической логики со своими задачами, открытыми вопросами, подходами и идеями, которой занимается ограниченный круг специалистов.

С другой стороны, она является инструментом для других дисциплин. Эта её роль является особенно существенной, поскольку она выработала общий язык и стала фундаментом для всей математики.

Теория множеств имеет двоякую природу. С одной стороны, это раздел математической логики со своими задачами, открытыми вопросами, подходами и идеями, которой занимается ограниченный круг специалистов.

С другой стороны, она является инструментом для других дисциплин. Эта её роль является особенно существенной, поскольку она выработала общий язык и стала фундаментом для всей математики.

Более того, она позволила преодолеть кризис оснований математики, позникший на рубеже 19 и 20 веков, когда в математике были обнаружены противоречия (парадоксы).

Важной идеей является возможность сведения одних математических объектов к другим. Один из известнейших примеров такого сведения принадлежит Рене Декарту, который предложил отождествлять вещественные числа с точками на обычной Евклидовой прямой. Это привычное нам сейчас, но тогда совершенно революционное соображение привело к созданию метода координат, перевернувшего всё тогдашнее естествознание, и позволило считать, что геометрия, в определённом смысле, сводится к вещественной арифметике.

Важной идеей является возможность сведения одних математических объектов к другим. Один из известнейших примеров такого сведения принадлежит Рене Декарту, который предложил отождествлять вещественные числа с точками на обычной Евклидовой прямой. Это привычное нам сейчас, но тогда совершенно революционное соображение привело к созданию метода координат, перевернувшего всё тогдашнее естествознание, и позволило считать, что геометрия, в определённом смысле, сводится к вещественной арифметике.

Выяснилось, что ВСЕ математические понятия сводятся к понятию множества, т.е. (почти) все математические дисциплины можно считать разделами теории множеств. Т.о., изучая ТМ мы лучше поймем и другие разделы математики. Создание теории множеств заложило прочный фундамент для математики и показало ее единство.

Этапы развития теории множеств

1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.

Этапы развития теории множеств

- 1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.
- 2. Аксиоматическая ТМ (ZFC и ее варианты). Возникла как попытка преодоления противоречий, возникшихих в наивной ТМ (Цермело, Френкель, Гёдель, Бернайс, фон Нейман,...).

Этапы развития теории множеств

- 1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.
- 2. Аксиоматическая ТМ (ZFC и ее варианты). Возникла как попытка преодоления противоречий, возникшихих в наивной ТМ (Цермело, Френкель, Гёдель, Бернайс, фон Нейман,...).
- 3. Альтернативы ZFC. Рассел, Мычельский, Штейнгауз, Мартин-Лёф, Ловер,...

Множества и операции над ними

Все переменные обозначают множества. Принадлежность: $a \in A$.

Равенство: A=B означает $\forall x(x\in A\leftrightarrow x\in B)$. Включение: $A\subseteq B$ означает $\forall x(x\in A\to x\in B)$.

Множества часто задаются в виде $\{x \mid \varphi(x)\}$, где $\varphi(x)$ — выражение, построенное из переменных и отношений $=, \in$ с помощью логических операций $\land, \lor, \rightarrow, \neg, \forall, \exists$. Самое популярное множество: $\emptyset = \{x \mid x \neq x\}$.

Множества и операции над ними

Все переменные обозначают множества. Принадлежность: $a \in A$.

Равенство: A=B означает $\forall x(x\in A\leftrightarrow x\in B).$

Включение: $A \subseteq B$ означает $\forall x (x \in A \rightarrow x \in B)$.

Множества часто задаются в виде $\{x \mid \varphi(x)\}$, где $\varphi(x)$ — выражение, построенное из переменных и отношений $=, \in$ с помощью логических операций $\land, \lor, \rightarrow, \neg, \forall, \exists$. Самое популярное множество: $\emptyset = \{x \mid x \neq x\}$.

Объединение: $A \cup B = \{x \mid x \in A \lor x \in B\}.$

Пересечение: $A \cap B = \{x \mid x \in A \land x \in B\}.$

Разность: $A \setminus B = \{x \mid x \in A \land x \notin B\}.$

Симметрическая разность: $A\triangle B=(A\setminus B)\cup (B\setminus A).$

Дополнение: $\overline{A}=U\setminus A$ (если все рассматриваемые множества содержатся в U).

Свойства булевых операций

$$A \cup A = A, \ A \cup B = B \cup A$$
$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$\overline{A \cup B} = \overline{A} \cap \overline{C}, \ \overline{\overline{A}} = A.$$

Все написанные выше свойства справедливы при замене объединения на пересечение и наоборот.

Свойства булевых операций

$$A \cup A = A$$
, $A \cup B = B \cup A$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\overline{A \cup B} = \overline{A} \cap \overline{C}, \ \overline{\overline{A}} = A.$$

Все написанные выше свойства справедливы при замене объединения на пересечение и наоборот.

 \triangle коммутативна и ассоциативна, \cap дистрибутивна относительно \triangle

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \setminus (A \setminus B) = (A \cap B)$$

$$A \setminus B = (A \setminus (A \cap B)$$

Отношения

```
Декартово произведение: A \times B = \{(a,b) \mid a \in A \wedge b \in B\}, где (a,b) = \{\{a\}, \{a,b\}\} — упорядоченная пара. Подмножества R \subseteq A \times B называются отношениями между A и B. Запись (a,b) \in R иногда упрощают до aRb. Бывают также n-местные отношения (подмножества множества A_1 \times \cdots \times A_n). dom(R) := \{a \mid \exists b(aRb)\} — область определения R, rng(R) := \{b \mid \exists a(aRb)\} — область значений R, R(a) := \{b \mid aRb\} — значение R в точке A.
```

Отношения

 $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

 $(a,b) = \{\{a\}, \{a,b\}\}$ — упорядоченная пара. Подмножества $R \subseteq A \times B$ называются отношениями между Aи B. Запись $(a,b) \in R$ иногда упрощают до aRb. Бывают также n-местные отношения (подмножества множества $A_1 \times \cdots \times A_n$). $dom(R) := \{a \mid \exists b(aRb)\}$ — область определения R, $rng(R) := \{b \mid \exists a(aRb)\}$ — область значений R, $R(a) := \{b \mid aRb\}$ — значение R в точке A. Пусть $R^{-1} := \{(b, a) \mid (a, b) \in R\}$, тогда $R^{-1} \subseteq B \times A$ называется обратным отношением к R. $(R^{-1})^{-1} = R$. Композицией отношенией $R\subseteq A\times B$ и $S\subseteq B\times C$ называется отношение $S \circ R \subseteq A \times C$ такое, что $a(S\circ R)c \stackrel{\mathsf{def}}{\Longleftrightarrow} \exists b\in B(aRb\wedge bSc).$ Композиция ассоциативна

Декартово произведение: $A \times B = \{(a,b) \mid a \in A \land b \in B\}$, где

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Отношение R называется ϕ ункцией, если оно функционально и dom(R)=A. В этом случае $R(a)=\{b\}$ для единственного b, которое называют значением функции R в точке a и пишут R(a)=b. Для функций используется стандартная терминолгия. Функция f из A в B часто обозначается $f:A\to B$. Композиция функций является функцией.

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Отношение R называется ϕ ункцией, если оно функционально и dom(R)=A. В этом случае $R(a)=\{b\}$ для единственного b, которое называют значением функции R в точке a и пишут R(a)=b. Для функций используется стандартная терминолгия. Функция f из A в B часто обозначается $f:A\to B$. Композиция функций является функцией.

Функция $f:A\to B$ называется инъекцией (сюръекцией), если $\forall a,a_1\in A(a\neq a_1\to f(a)\neq f(a_1))$ ($\forall b\in B\exists a\in A(f(a)=b)$). Функция называется биекцией, если она является и инъекцией, и сюръекцией. Биекции из A на A образуют группу относительно композиции.

Предпорядки и эквивалентности

Некоторые важные свойства отношений $R \subseteq A \times A$:

 $\forall a \in A(aRa)$ рефлексивность,

 $\forall a \in A \neg (aRa)$ антирефлексивность,

 $\forall a,b \in A(aRb o bRa)$ симметричность,

 $\forall a,b \in A(aRb \wedge bRa \rightarrow a=b)$ антисимметричность,

 $\forall a,b,c \in A((aRb \wedge bRc) \rightarrow aRc)$ транзитивность

Предпорядки и эквивалентности

Некоторые важные свойства отношений $R \subseteq A \times A$:

 $\forall a \in A(aRa)$ рефлексивность,

 $\forall a \in A \neg (aRa)$ антирефлексивность,

 $\forall a,b \in A(aRb \rightarrow bRa)$ симметричность,

 $\forall a,b \in A(aRb \wedge bRa \rightarrow a=b)$ антисимметричность,

 $\forall a,b,c \in A((aRb \wedge bRc) \rightarrow aRc)$ транзитивность

Предпорядок = рефлексивность и транзитивность; типичные обозначения \leq , \preceq , \subset , \sqsubseteq .

Частичный порядок = антисимметричный предпорядок.

Линейный порядок = Частичный порядок + $\forall a,b \in A(aRb \lor bRa)$

 $\forall a, b \in A(aRb \vee bRa).$

Строгий частичный порядок = антирефлексивность и транзитивность; типичные обозначения <, \prec , \subset , \sqsubset

Эквивалентность = рефлексивность, симметричность и транзитивность; типичные обозначения =, \simeq , \equiv

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_{\equiv}$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_\equiv$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

TEOPEMA. Если \equiv — эквивалентность на A, то классы эквивалентности непусты, попарно не пересекаются и их объединение равно A.

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_\equiv$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

TEOPEMA. Если \equiv — эквивалентность на A, то классы эквивалентности непусты, попарно не пересекаются и их объединение равно A.

Д-ВО. В качестве объединения классов эквивалентности множество A представляется: любой элемент $a \in A$ эквивалентен самому себе, а значит принадлежит классу [a]. Остаётся показать, что разные классы не пересекаются. Покажем, что если $a \in [b] \cap [c]$, то [b] = [c]. В самом деле, пусть $b' \in [b]$, тогда $b' \equiv b$. Но также и $a \equiv b$, что по транзитивности означает, что $b' \equiv a$. Аналогично можно показать, что если $c' \in [c]$, то $c' \equiv a$. Отсюда по транзитивности $b' \equiv c'$, т.е. $b' \equiv c$, т.е. $b' \in [c]$. Таким образом, $[b] \subseteq [c]$.