A Tour of TensorFlow

Peter Goldsborough

October 1, 2016

Contents

Computational Graphs

1. Operations

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors

$$\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$$

- 1. Operations
- 2. Tensors
- 3. Variables

 $\hat{y} = \text{session.run}(\tanh(\mathbf{x}^{\top}\mathbf{w} + b))$

- 1. Operations
- 2. Tensors
- 3. Variables
- 4. Sessions

client

Actors

1. Client

Actors

1. Client

Master

- 1. Client
- MasterWorkers

- 1. Client
- 2. Master
- 3. Workers 4. Devices

- 1. Client
- 2. Master
- 3. Workers 4. Devices

- 1. Client
- 2. Master
- 3. Workers
- 4. Devices

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Symbol Differentiation

▶ Deep Neural Networks have the tendency of being . . . deep

- ▶ Deep Neural Networks have the tendency of being . . . deep
- ► Easy to drown in the complexity of an architecture

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

TensorBoard to the Rescue

► Smart email replies in Google *Inbox*

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html (computer-respond-to-this-email) (computer$

- ► Smart email replies in Google *Inbox*
- Emails mapped to "thought vectors"

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html \\$

- ► Smart email replies in Google *Inbox*
- Emails mapped to "thought vectors"
- LSTMs synthesize valid replies

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html (computer-respond-to-this-email) (computer$

► Google DeepMind now using TensorFlow

- Google DeepMind now using TensorFlow
- ► Already for *AlphaGo*

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - Integration with Google Cloud Platform,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - Integration with Google Cloud Platform,
 - Support for TPUs,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - Integration with Google Cloud Platform,
 - Support for TPUs,
 - Ability to run on many GPUs.

Walkthrough

Thank You