

Analisi e Sintesi

- Operatore
- Regole di operazione
- Tabella della verità
- Porta logica

- Funzione
- Espressione
- Composizione di porte
- Schema fisico

0' = 1

1' = 0

Operazioni e Espressioni

$$\mathbf{f_1}(\mathbf{x}) = \mathbf{x} \qquad \mathbf{f_7}(\mathbf{x})$$

$$\mathbf{f}_7(\mathbf{x},\mathbf{y}) = \mathbf{x} + \mathbf{y}$$

$$f_1(x,y) = x \cdot y$$

$$f_6(x,y) = x \oplus y$$

$$f_2(x) = x$$

$$f_{8}(x,y) = x \downarrow y$$

$$|\mathbf{f}_{14}(\mathbf{x},\mathbf{y}) = \mathbf{x} \uparrow \mathbf{y}|$$

$$\mathbf{f}_{9}(\mathbf{x},\mathbf{y}) = \mathbf{x} \equiv \mathbf{y}$$

Espressione logica - Stringa formata da costanti, bit, operatori logici e parentesi.

Esempi:
$$(x \oplus y) \oplus (z \oplus w)$$

$$a + (b.c)$$

$$(x \downarrow y) \downarrow 0$$

Espressioni e Funzioni

Le 2^n valutazioni di una espressione $E(x_1, x_2, ..., x_n)$ creano 2^n coppie x, $z \{x, z \mid x \in B^n, z \in B\}$

Esempio:
$$E(a,b,c) = a+(b.c)$$

$$E(0,0,0) = 0+(0.0) = 0$$
 $\begin{array}{c|c} a & b & c & E \\ \hline 0 & 0 & 0 & 0 \end{array}$

$$E(0,0,1) = 0+(0.1) = 0$$
 0 0 1 0

$$E(0,1,0) = 0+(1.0) = 0$$
 0 1 0 0

$$E(0,1,1) = 0+(1,1) = 1$$
 0 1 1 1

$$E(0,1,1) = 0 + (1,1) = 1$$
 $0 + (1,1) = 1$ 0

$$E(1,0,1) = 1+(0.1) = 1$$
 1 0 1 1

$$E(1,1,0) = 1+(1,0) = 1$$
 1 1 0

$$E(1,1,0) = 1+(1.0) = 1$$
 1 1 0 1

$$E(1,1,1) = 1+(1,1) = 1$$
 1 1 1 1

T1) Ogni espressione descrive una e una sola funzione completa.

Valutazione di una espressione

Valutazione di una espressione di n variabili per una n-pla di valori

- 1 Si sostituisce ad ogni variabile il valore che le compete.
- 2 Partendo dalle parentesi più interne si sostituisce ogni operazione con il suo risultato fino ad ottenere o la costante 0 o la costante 1.

N° di valutazioni - Una espressione di n variabili può essere valutata in 2ⁿ modi diversi.

Espressioni e Schemi logici

T2) Ogni espressione descrive una struttura formata da gate connessi in serie e/o in parallelo.

Per individuare lo schema descritto da una espressione:

- 1 si parte dalle parentesi più interne e si traccia il simbolo del gate corrispondente all'operazione, collegandone gli ingressi ai segnali esterni;
- 2 si procede in modo analogo con le altre coppie di parentesi, considerando via via come ingressi dei nuovi gate anche le uscite di quelli già tracciati.

Proprietà

T3) proprietà commutativa $(+, ., \downarrow, \uparrow, \oplus, \equiv)$

$$\mathbf{a} * \mathbf{b} = \mathbf{b} * \mathbf{a}$$

T4) proprietà associativa (+, ., ⊕)

$$(a * b) * c = a * (b * c) = a * b * c$$

T5) complementi:

$$(x + y)' = x \downarrow y$$
$$(x \cdot y)' = x \uparrow y$$
$$(x \equiv y)' = x \oplus y$$

Equivalenze notevoli

Proprietà della complementazione:

E7) involuzione (x')' = x

E8) limitazione x + x' = 1

x.x'=0

E9) combinazione xy + xy' = x

(x+y).(x+y') = x

E10) I^a legge di De Morgan $(x + y)' = x' \cdot y'$ II^a legge di De Morgan $(x \cdot y)' = x' + y'$

E11) consenso xy + x'z + yz = xy + x'z

(x+y).(x'+z).(y+z) = (x+y).(x'+z)

Equivalenze notevoli

Proprietà della somma e del prodotto logico:

E1) commutativa x + y = y + x $x \cdot y = y \cdot x$ E2) associativa (x + y) + z = x + y + z

 $(x \cdot y) \cdot z = x \cdot y \cdot z$ E3) distributiva $(x \cdot y) + (x \cdot z) = x \cdot (y + z)$

 $(x + y) \cdot (x + z) = x + (y \cdot z)$ E4) idempotenza x + x = x

E5) identità x + 0 = x $x \cdot 1 = x$

X.X

E6) *limite* $\begin{array}{ccc} x + 1 & = & 1 \\ x \cdot 0 & = & 0 \end{array}$

Espressioni di funzioni incomplete

ENCODER a 3 ingressi

x ₂	x ₁	\mathbf{x}_{0}	\mathbf{z}_1	\mathbf{z}_0
0	0	0	0	0
1	0	0	1	1
0	1	0	1	0
0	0	1	0	1

N.B. le altre configurazioni sono per ipotesi impossibili

x ₂	\mathbf{x}_1	\mathbf{x}_0	\mathbf{z}_1	\mathbf{z}_0
0	0	0	0	0
1	0	0	1	1
0	1	0	1	0
0	0	1	0	1
1	1	0	-	-
1	0	1	-	-
0	1	1	-	-
1	1	1	-	-

X

<u>Espressioni equivalenti di funzioni incomplete</u> - Espressioni che forniscono eguale valutazione limitatamente al dominio di una funzione incompleta sono dette equivalenti.

 \mathbf{x}_1

Espressioni canoniche

T6) Espressione canonica SP (Somma di Prodotti)

 $\underline{I^a}$ forma canonica - Ogni funzione di n variabili è descritta da una somma di tanti prodotti logici quante sono le configurazioni per cui vale 1. In ciascun prodotto, o <u>mintermine</u>, appare ogni variabile, in forma vera se nella configurazione corrispondente vale 1, in forma complementata se vale 0.

T7) Espressione canonica PS (Prodotto di Somme)

<u>IIa forma canonica</u> - Ogni funzione di n variabili è descritta da un prodotto di tante somme logiche quante sono le configurazioni per cui vale 0. In ciascuna somma, o <u>maxtermine</u>, appare ogni variabile, in forma vera se nella configurazione corrispondente vale 0, in forma complementata se vale 1.

Espressioni canoniche della funzione "a implica b"

a b	a→b
00	1
01	1
10	0
11	1

II^a forma canonica:

$$F(a,b) = a' + b$$

Ia forma canonica:

$$\overline{F(a,b)} = a' \cdot b' + a' \cdot b + a \cdot b$$

Verifica della equivalenza per manipolazione algebrica:

$$F(a,b) = a' \cdot b' + a' \cdot b + a \cdot b$$

$$= a' \cdot (b' + b) + a \cdot b$$

$$= a'.1 + a.b'$$

$$= a \cdot 1 + a \cdot b$$
 E5

$$= a' + a \cdot b + a' \cdot b$$

E3

= a' + b

Sintesi di un ENCODER a tre ingressi

x ₂	\mathbf{x}_1	\mathbf{x}_0	\mathbf{z}_1	\mathbf{z}_0
0	0	0	0	0
1	0	0	1	1
0	1	0	1	0
0	0	1	0	1
N.B.	le altre	e config	urazio	ni
sono	per ipo	otesi im	possibi	ili

Sintesi del trascodificatore da binario a 1 su N

Esempio: Trascodifica 2:4

В	A	$\mathbf{U_0}$	$\mathbf{U_1}$	$\mathbf{U_2}$	U_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Manipolazione algebrica

Ia forma canonica:

$$\mathbf{U} = \mathbf{A'} \cdot \mathbf{I_0} \cdot \mathbf{I_1'} + \mathbf{A'} \cdot \mathbf{I_0} \cdot \mathbf{I_1} + \mathbf{A} \cdot \mathbf{I_0'} \cdot \mathbf{I_1} + \mathbf{A} \cdot \mathbf{I_0} \cdot \mathbf{I_1}$$

4 AND a 3 ingressi e 1 OR a 4 ingressi

 $forme\ equivalenti\ ottenute\ per\ "manipolazione":$

$$= A'. I_0. (I_1' + I_1) + A. (I_0' + I_0). I_1$$

= $A'. I_0. 1 + A. 1. I_1$
= $A'. I_0 + A. I_1$

Il Selettore a quattro vie

MUX a 4 vie (espressione SP)

$$U = A_1' \cdot A_0' \cdot I_0 + A_1' \cdot A_0 \cdot I_1 + A_1 \cdot A_0' \cdot I_2 + A_1 \cdot A_0 \cdot I_3$$

Notazioni simboliche per le espressioni canoniche

i	r a b	R	S
0	0 0 0	0	0
1	0 0 1	0	1
2	010	0	1
3	0 1 1	1	0
4	100	0	1
5	101	1	0
6	1 1 0	1	0
7	111	1	1

S
$$(r,a,b) = \Sigma_3 m (1,2,4,7)$$

$$S(r,a,b) = \Pi_3 M(0,3,5,6)$$

$$R(r,a,b) = \Sigma_3 m (3,5,6,7)$$

$$R(r,a,b) = \Pi_3 M(0,1,2,4)$$

- m(i): mintermine di n bit che assume il valore 1 solo per la n-pla di valori delle variabili corrispondente all'indice i
- M(i): maxtermine di n bit che assume il valore 0 solo per la n-pla di valori delle variabili corrispondente all'indice i

T8)
$$E(x_1, x_2, ..., x_{n-1}, x_n) = x_n' . E(x_1, x_2, ..., x_{n-1}, 0) + x_n . E(x_1, x_2, ..., x_{n-1}, 1)$$

T9)
$$E(x_1, x_2, ... x_{n-1}, x_n) = (x_n + E(x_1, x_2, ..., x_{n-1}, 0)).(x_n' + E(x_1, x_2, ..., x_{n-1}, 1))$$

Applicazione iterata dei teoremi di espansione

$$\begin{split} E(x_1x_2x_3) &= x_1 + x_2 \ x_3' \\ &= x_1'(0 + x_2x_3') + x_1(1 + x_2x_3') \\ &= x_1'x_2'(0 + 0.x_3') + x_1'x_2(0 + 1.x_3') + x_1x_2'(1 + 0.x_3') + x_1x_2(1 + 1.x_3') \\ &= x_1'x_2' \ x_3'(0 + 0.0) + & m(0).E(0) + \\ &x_1'x_2' \ x_3(0 + 0.1) + & m(1).E(1) + \\ &x_1'x_2 \ x_3'(0 + 1.0) + & m(2).E(2) + \\ &x_1'x_2 \ x_3(0 + 1.1) + & m(3).E(3) + \\ &x_1 \ x_2' \ x_3'(1 + 0.0) + & m(4).E(4) + \\ &x_1 \ x_2' \ x_3'(1 + 0.1) + & m(5).E(5) + \\ &x_1 \ x_2 \ x_3'(1 + 1.0) + & m(6).E(6) + \\ &x_1 \ x_2 \ x_3 \ (1 + 1.1) & m(7).E(7) \end{split}$$

Esercitazione N.6 1 – Individuazione dei mintermini 2 – Uso dei multiplexer 3 – Analisi di uno schema

Il ritardo sui fronti

- Il <u>ritardo sui fronti di salita</u> (τ_{LH}) <u>e di discesa</u> (τ_{HL}) è presente in ogni tipo di gate e varia in modo notevole da dispositivo a dispositivo.
- A causa della marcata differenza dei due valori, la durata di una situazione H o L in ingresso ad un gate è diversa dalla corrispondente situazione in uscita.
- A causa della "inerzia" del gate, un segnale di ingresso "impulsivo" e "troppo stretto" può non essere avvertito in uscita.

Ritardi dei MUX SN54150, SN54151A, SN74150, SN74151A DATA SELECTORS/MULTIPLEXERS switching characteristics, VCC = 5 V, TA = 25°C то TEST PARAMETER* (OUTPUT) MIN TYP MAX MIN TYP MAX CONDITIONS (INPUT) A, B, or C 25 38 tPLH (4 levels) 38 A. B. C. or D زن 23 26 tPLH. w 22 33 30 tPH1 33 ₹**P**ŁH 21 CL = 15 pF, Strobe G 22 33 ^tPHL R_L = 400 Ω, 21 tPLH_ Strobe ੌ w See Note 4 ; 23 tPH L **TPLH** 13 20 D0 thru D7 27 ^TPHL €0 thru €15, or 14 В **tPLH** D0 thru D7 TPHL TtpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output NOTE 4: Load circuits and voltage waveforms are shown in Section 1. INSTRUMENTS

recommende	ed operating o	conditions				_				
				MIN	NOM		MIN	NOM	MAX	ŲNIT
V _{CC} Supply v	oltage			4.5	NUW 5	5.5	4.75	NUM 5	5.25	v
	el input voltage			2			2			v -
	al input voltage			1		8.0			0.B	V
OH High-leve	output current					- 0.8			- 0.8	mA
OL Low-leve	l output current		***************************************			16			16	mА
w Pulse du	ration, low			20			20			ns
T _A Operation	g free-air tempera	ture		55		125	0		70	°c
vitching cha			= 25°C (see note 3 TEST CON			125	MIN		MAX	°C
VITCHING CHA	racteristics, \	VCC = 5 V, TA =				125		12	MAX 22	1
vitching cha	FROM (INPUT)	VCC = 5 V, TA =		DITIONS	15 pF	125			MAX	UNI

Y=f(S,R,y): caratteristica in "catena chiusa" Due tratti di "saturazione" (pendenza minore di 1) connessi da un tratto con "alto guadagno" (pendenza maggiore di 1): 3 intersezioni! Per chiudere la retroazione occorre una amplificazione del segnale ed un metastabilità comando "energico". Se l'impulso di set/reset ha durata inferiore al tempo di set-up il latch può andare in metastabilità. Valore attuale?? E futuro ?? 3-