CS 224N: TensorFlow Tutorial

Lecture and Live Demo

Nishith Khandwala & Barak Oshri

31 January, 2017

Intro to Deep Learning Frameworks

- Scales machine learning code
- Computes gradients!
- Standardizes machine learning applications for sharing
- Zoo of Deep Learning frameworks available with different advantages, paradigms, levels of abstraction, programming languages, etc
- Interface with GPUs for parallel processing

In some ways, rightfully gives Deep Learning its name as a separate practice

What is TensorFlow?

- Open source software library for numerical computation using data flow graphs
- Originally developed by Google Brain Team to conduct machine learning research
- "Tensorflow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms"

Big idea: express a numeric computation as a graph.

- Graph nodes are operations which have any number of inputs and outputs
- Graph edges are tensors which flow between nodes

$$h = ReLU(Wx + b)$$

$$h = ReLU(Wx + b)$$

Variables are stateful nodes which output their current value.

State is retained across multiple executions of a graph

(mostly parameters)

$$h = ReLU(Wx + b)$$

Placeholders are nodes whose value is fed in at execution time

(inputs, labels, ...)

$$h = ReLU(Wx + b)$$

Mathematical operations:

MatMul: Multiply two matrix values.

Add: Add elementwise (with broadcasting).

ReLU: Activate with elementwise rectified

linear function.

In code,

- Create weights, including initialization
 W ~ Uniform(-1, 1); b = 0
- 2. Create input placeholder x m * 784 input matrix
- 3. Build flow graph

import tensorflow as tf

```
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
```

$$h = ReLU(Wx + b)$$

But where is the graph?

New nodes are automatically built into the underlying graph! tf.get_default_graph().get_operations():

zeros/shape zeros/Const

zeros

Variable

Variable/Assign

Variable/read

random_uniform/shape

random_uniform/min

random_uniform/max

random_uniform/RandomUniform

random_uniform/sub random_uniform/mul

random_uniform

Variable_1

Variable_1/Assign

Variable_1/read

Placeholder

MatMul

add

Relu == h

h refers to an op!

How do we run it?

So far we have defined a graph.

We can deploy this graph with a **session**: a binding to a particular execution context (e.g. CPU, GPU)

Getting output

sess.run(fetches, feeds)

Fetches: List of graph nodes. Return the outputs of these nodes.

Feeds: Dictionary mapping from graph nodes to concrete values. Specifies the value of each graph node given in the dictionary.

```
import numpy as np
import tensorflow as tf
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100),
                -1, 1)
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
sess = tf.Session()
sess.run(tf.initialize all variables())
sess.run(h, \{x: np.random.random(100, 784)\})
```

So what have we covered so far?

We first built a graph using variables and placeholders

We then deployed the graph onto a session, which is the execution environment

Next we will see how to train the model

How do we define the loss?

Use placeholder for labels

Build loss node using labels and **prediction**

```
prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)
```

How do we compute Gradients?

```
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
```

- tf.train.GradientDescentOptimizer is an **Optimizer** object
- tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds optimization **operation** to computation graph

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with backpropagation

...automatically

Creating the train_step op

```
prediction = tf.nn.softmax(...)
label = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(label * tf.log(prediction), reduction_indices=[1]))

train step = tf.train.GradientDescentOptimizer(0.5).minimize(cross entropy)
```

Training the Model

```
sess.run(train_step, feeds)
```

- 1. Create Session
- 2. Build training schedule
- Run train_step

Variable sharing

Variable sharing: naive way

Not good for encapsulation!

What's in a Name?

tf.variable scope()

provides simple name-spacing to avoid clashes

In Summary:

- 1. Build a graph
 - a. Feedforward / Prediction
 - b. Optimization (gradients and train_step operation)
- Initialize a session.
- Train with session.run(train_step, feed_dict)

Acknowledgments

Jon Gauthier, Natural Language Processing Group, Symbolic Systems

Bharath Ramsundar, PhD Student, Drug Discovery Research

Chip Huyen, Undergraduate, teaching CS20SI: TensorFlow for Deep Learning Research!

Visual Dialog

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh, Dhruv Batra

Presented by: Alan Luo

Introduction Natural Language Processing + Computer Vision

- Aiding visually impaired users in understanding their surroundings or social media content
- Interacting with an AI assistant

Related Work Image/Video Captioning

Image Captioning

a man is throwing a frisbee in a park

a man riding a wave on top of a surfboard

Video Summary

Input video:

Our output: A cat is playing with a toy. Humans: A Ferret and cat fighting with each other. / A cat and a ferret are playing. / A kitten is playing with a ferret. / A kitten and a ferret are playfully wrestling.

Related Work Visual-Semantic Alignments

Visual-Semantic Alignments

Datasets

Related Work Visual Q&A

are on the plate?	1	1 1	
What is the shape of the plate?	circle round round	circle round round	

What does the sign say?	stop stop stop	stop stop yield
What shape is this sign?	octagon octagon octagon	diamond octagon round

Contributions

Propose a new Al task: Visual Dialog

Develop a novel two-person chat data-collection protocol and introduce a new dataset

 Introduce a family of neural encoder-decoder models for Visual Dialog

Technical Details with Late Fusion Encoder

lmage I

Do you think the woman is with him?

Question Q,

The man is riding his bicycle on the sidewalk. Is the man wearing a helmet? No he does not have a helmet on. ... Are there any people nearby? Yes there's a woman walking behind him.

t rounds of history (concatenated)

Dataset VisDial

Qualitative

Caption: A statue depicting a bear breaking into a car.

Person A (1): how big is statue

Person B (1): about size of real full grown bear

Person A (2): so is car full size then as well

Person B (2): yes replica of car

Person A (3): is statue all 1 color

Person B (3): no brown and black

Person A (4): what color is car

Person B (4): dark red

Person A (5): where is this, do you think

Person B (5): in wooded area someplace

Person A (6): do you see any people in image

Person B (6): yes 1 man

Person A (7): how old is man

Person B (7): 35-40

Person A (8): what is man doing

Person B (8): sitting in car behind replica

Person A (9): do you see any signs

Person B (9): yes, on car door warning sign

Person A (10): what else can you tell me about this image

Person B (10): there are many trees in background

Quantitative

Results

Qualitative Results

Visual Chatbot mini anna visual chatbut, capable of answering a sequence of questions about images. Please upload an image and fire away! Caption: A group of bikers parked in a parking lot under large lights on street cloudy sky looks clear

Quantitative Results

	Model	MRR	R@1	R@5	R@10	Mean
Baseline	Answer prior	0.311	19.85	39.14	44.28	31.56
	NN-Q	0.392	30.54	46.99	49.98	30.88
	NN-QI	0.385	29.71	46.57	49.86	30.90
	LF-Q-G	0.403	29.74	50.10	56.32	24.06
	LF-QH-G	0.425	32.49	51.56	57.80	23.11
	LF-QI-G	0.437	34.06	52.50	58.89	22.31
ţį.	LF-QIH-G	0.430	33.27	51.96	58.09	23.04
S d	HRE-QH-G	0.430	32.84	52.36	58.64	22.59
Generative	HRE-QIH-G	0.442	34.37	53.40	59.74	21.75
	HREA-QIH-G	0.442	34.47	53.43	59.73	21.83
	MN-QH-G	0.434	33.12	53.14	59.61	22.14
	MN-QIH-G	0.443	34.62	53.74	60.18	21.69
native	LF-Q-D	0.482	34.29	63.42	74.31	8.87
	LF-QH-D	0.505	36.21	66.56	77.31	7.89
	LF-QI-D	0.502	35.76	66.59	77.61	7.72
	LF-QIH-D	0.511	36.72	67.46	78.30	7.63
置{	HRE-QH-D	0.489	34.74	64.25	75.40	8.32
Discriminative	HRE-QIH-D	0.502	36.26	65.67	77.05	7.79
	HREA-QIH-D	0.508	36.76	66.54	77.75	7.59
	MN-QH-D	0.524	36.84	67.78	78.92	7.25
	MN-QIH-D	0.529	37.33	68.47	79.54	7.03
VQA	SAN1-QI-D	0.506	36.21	67.08	78.16	7.74
	HieCoAtt-QI-D	0.509	35.54	66.79	77.94	7.68
	Н	uman A	ccuracio	es		
Human	Human-Q	0.441	25.10	67.37	-	4.19
	Human-QH	0.485	30.31	70.53	-	3.91
	Human-QI	0.619	46.12	82.54	-	2.92
	Human-QIH	0.635	48.03	83.76		2.83

What is this?

Where is this?

how is the weather?