

| 2 | 5.2 Stigmergy & chaos                                                                         |
|---|-----------------------------------------------------------------------------------------------|
|   | O. Lotignergy & chaos                                                                         |
| 4 | Pos = can be pany but funde to grown & felf-org<br>Stimey intro - often involves pos Feedbach |
| 8 | & System W/ non-linear Freedback reaghe chaotic                                               |
| , | Chaos can be suprisy useful                                                                   |
|   | Will gies enampe of tist self adaptive sys                                                    |
|   | Stigners -> PP Grasse (1054)                                                                  |
|   | Stigmergy is an indirect, mediated mech                                                       |
|   | Stightergy is an indirect, mediated mech of coordination between achair - in which            |
|   | the trace of an action left on a med                                                          |
|   | medium Stimulates the performance q a Sub                                                     |
|   | action"                                                                                       |
|   | Artigacts of previous Benaviour influence<br>Future Benaviour                                 |
|   | Away to concept this would be the agent is imparting a store of memory into the environment   |
|   | Ants use pheremones to communicate via env<br>-Trails to follow - mark on env                 |
|   |                                                                                               |
|   | - Ants follow path collectives & converge on part                                             |
|   | - Asymetric well converge on short Path                                                       |
|   | - Ants with follow stranger concentration                                                     |
|   | - Hence shorter will have Brown ones ofter the                                                |
|   | - Phone builds up more stowly                                                                 |
|   |                                                                                               |

Some and leave Avores on pars once they find Fea - Pos Feedback Human Paths de a cesult of Stineuge Pathological Stigmergg - Ants Death circle Lecture 5 - Part I ENO More Stingines -> then onto chaos Ants are self-adaptive systems Positive feedbar being halted to avoid expo growth using thresholding points - feedback until pointreaud Chaos Determinanc chaos Desinition: Feldman \* A Dynamical sys is Chaotic y it has all props (9) Its time oro is given by petermin func ( Net random) 3 orbits ore bounded (connect grow to inpin) 3 orbits report or initial conduction (with privile even in Cos) orbib ore aperialii (dont repeat)

2(+1 = R nt (1 - nt) 10918711 map Pops reach stable level sien R large & will create oscillationis - RXd 1- re vers large will vary chaotically Sensitive to start points
- may start same but volveige over time even for July determinist system, stite impossible to predict behaviour due to lack of precision BiFuracation Riverson plat - Parameter Sweep Chaotic Systems can be used as psedde o vandom number generators Central Pattern Generation hangaroo vumping pattern - Stable, repeating Stable & efficient locomohan Shim & Husbands - CPG

|   | Summan                                                           |
|---|------------------------------------------------------------------|
|   | 4 types of feedbors in this acodus:                              |
|   | (i) Neg                                                          |
|   | (2) Por                                                          |
|   | (2) Pos<br>(3) Non-lin<br>(4) feedbater from envs (Sensivi loop) |
|   | (a) feedbatin from envs (Sensiviloop)                            |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
| • |                                                                  |
|   |                                                                  |
|   |                                                                  |