2016-11-11

Duração 1h30m+30min

- 1. Considere o λ -termo $M \equiv (\lambda xyz.x(\lambda y.yy)z)(\lambda z.z(zx))(\lambda y.y)$.
 - (a) Indique um termo (diferente de M) que seja α -equivalente a M.
 - (b) Indique um termo, cuja árvore sintática seja isomorfa à de M, mas que não seja α -equivalente a M.
 - (c) Converta o termo M para a notação de De Brujin.
- 2. Reduza à forma normal os seguintes termos:
 - (a) $(\lambda zx.z(xz))(\lambda y.ay)(\lambda x.xx)$
 - (b) $(\lambda xy.xy(xx))(\lambda x.x)(\lambda w.ww)(\lambda z.zz)$
- 3. Mostre que o termo $Y \equiv (\lambda xy.xyx)(\lambda yx.y(xyx))$ é um operador ponto-fixo.
- 4. Considere as codificações no λ-calculus dadas no curso para manipulação de listas (nil, cons, null, head e tail) assim como o combinador ponto-fixo Y. Considere a função de ordem superior fldr, definida como:

fldr
$$f \ v \ [x_1, \dots, x_n] = f \ x_1 \ (f \ x_2 \ (\dots (f \ x_n \ v) \dots))$$

Escreva um λ -termo F que codifique a função fldr.

- 5. Utilizando qualquer um dos algoritmos de inferência para o sistema de tipos simples, dados no curso, determine o par principal do termo $(\lambda xyz.x(yz))(\lambda xy.y)$.
- 6. Considere o sistema de tipos com polimofismo paramétrico de Damas-Milner.
 - (a) Derive um tipo para o termo λx .let $f = \lambda y \cdot y$ in f(ff)x.
 - (b) No sistema de tipos de Damas-Milner, dizemos que $\sigma = \forall \alpha_1 \dots \alpha_m . \tau$ tem uma instância genérica $\sigma' = \forall \beta_1 \dots \beta_n . \tau'$ se existem tipos τ_1, \dots, τ_m tais $\tau' = [\tau_i/\alpha_i]\tau$ e as variáveis $\beta_j \notin FV(\sigma)$. Mostre que, se σ tem como instância genérica σ' e $\Gamma_x \cup \{x : \sigma'\} \vdash M : \sigma''$, então $\Gamma_x \cup \{x : \sigma\} \vdash M : \sigma''$.