Genome assembly strategies

Arturo Vera Ponce de Leon May 2019

veraponcedeleon.1@osu.edu

History of NGS and Quality control

High throughput sequencing or NGS

High-throughput sequencing Phase 1: more is better 100 bp 2005 GS20 200 000 reads 0.02 Gb/run 2011 GS FLX+ 1.2 million reads 750 bp 0./ Gb/run 2006 GA 28 million reads 25 bp 0.7 Gb/run 2011 HiSeq 2000 3 billion reads 2x100 bp 600 Gb/run

Sequencing-by-synthesis categories. SBS is a term used to describe numerous DNA-polymerase-dependent methods

NORWEGIAN SEQUENCING CENTRE

454 and IonTorrent sequencing

Template immobilization strategies.

Sequencing by synthesis: single-nucleotide addition approaches.

Illumina technology

Template immobilization strategies.

b Solid-phase bridge amplification (Illumina) Template binding Free templates hybridize with slide-bound adapters Bridge amplification Cluster generation Distal ends of hybridized templates After several rounds of interact with nearby primers where amplification, 100-200 million clonal clusters are formed amplification can take place Patterned flow cell Microwells on flow cell direct cluster generation, increasing cluster density

Sequencing by synthesis: cyclic reversible termination approaches.

base. Each cluster on a slide can

incorporate a different base.

Imaging
Slides are imaged with either two or four laser channels. Each cluster emits a colour corresponding to the base incorporated during this cycle.

Cleavage
Fluorophores are cleaved and washed from flow cells and the 3'-OH group is regenerated. A new cycle begins with the addition of new nucleotides.

High-throughput sequencing

Phase 3: single-molecule

C2 (current) chemistry:

Average read length 2500 bp 36 000 reads 90 MB per 'run'

Real-time sequencing.

Library preparation comprises the ligation of hairpin adapters (yellow) to double-stranded DNA molecules (blue), thereby creating circular molecules called 'SMRTbells'.

Trends in Genetics (2018) Vol. 34, No. 9 666-681

methyladenosine (6 mA), results in a delayed IPD

Applications

Platform	454	Illumina HiSeq	Illumina MiSeq*	Ion Torrent	PacBio
resequencing	-	+++	++	-	+
de novo	+++	+	+	+++	+++
metagenomics	+++	++	+	+++	+/-
mRNA	++	+++	++	++	++
miRNA		+++	+++	- >	-
ChIP	(- (+++	++	-	-
DNA meth	-	+++	+	_	
SNP validation	+	-	-	-	++

Multiple technologies diverse features

Which one is the good one?

Yields

A Genome of 1Mb (1 x 10⁶ bases):

```
By Sanger:
```

```
C = nI/L

10 = n(500)/1,000,000

n = 1,000,000*10/500

20,000 reads

Cost per read~ 1-2 USD

20,000 USD (~360,000 MX pesos)
```

- A 454 run ~700Mb (700X)
 - Cost arpox de 20,000 USD
- Un SMRT cell de PacBio (P6-C4) ~150,000 reads (1Gb)
 - Cost 800 USD (~14,400 pesos)
- An Illumina lane ~300 millions of reads (HiSeq2000)
 - An average length of 100 bp = 30 Gb = 30,000 X
 - Cost per lane 2,000 USD (~36,000 pesos)

```
Coverage:
    C = nl/L

C=Coverage

N=Number of reads

I=Read length

L=Genome size (length) in bases
```

```
30, 000 X coverage ~ $ 36, 000 Mxpesos
Illumina

10x coverage ~ $ 360, 000 MX pesos Sanger
Minimal coverage for SNPs, annotation and
completeness assessments

> 50 x
```

Pair end vs Mate Pair

Paired-End Sequencing (Short-insert paired-end reads) Fragmentation of genomic DNA Fragments (200-800 bp) **Ligate Adapters** Cluster generation and sequencing

Lets watch a very useful video

HTS general analysis flow chart

'Wet-lab' experimental design

Bioinformatics hard work

HTS general analysis time flow chart

Fig. 2. Typical whole genome sequencing workflow in a clinical or public health laboratory.

Genome assembly

Sequence file formats

 Next gen sequence file formats are based on the commonly used

FASTA format

>sequence_ID and optional comments

ATTCCGGTGCGGTGCGGTGCCGGTGC
TTCGAAATTGGCGTCAGT

 The Phred quality scores per base were added to form the FASTQ format

Sequence file formats

Illumina Fastq format (fasta format with Quality values for each base)

Full read header description

@ <instrument-name>:<run ID>:<flowcell ID>:<lane-number>:<tile-number>: <x-pos>:
<read number>:<is filtered>:<control number>:<barcode sequence>

The phred quality score

Quality score interpretation

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy			
10	1 in 10	90%			
20	1 in 100	99%			
30	1 in 1000	99.9%			
40	1 in 10000	99.99%			
50	1 in 100000	99.999%			

If base quality = 35P= $10^{-35/10}$ = 0.00032

or 1/3200 incorrect

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	`
1	1	1		33	21	41	!	65	41	101	Α	97	61	141	a
2	2	2		34	22	42	"	66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	С
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	Е	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	s
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

AAAAA **BBBBC** $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ 66 67 **ASCII** val -33 -33 Q value 33 34 $P = 10^{\frac{-Q}{10}}$ $Q = -10 \log_{10} P$ > 10^(-33/10) [1] 0.0005011872 = 1/5000 > 10^(-34/10) [1] 0.0003981072=1/39000

Let's play with FasQC to quality control visualization

Open FastQC program

Open in browser: fastqc_report.html

Quality filter trim galore

Before trimGalore

Good

Reasonable

bad

After trimGalore

