Parallel Processing

MT 2014_HK1_2017_2018

Ho Chi Minh City University of Technology http://www.cse.hcmut.edu.vn/~nam

References

- 1. Parallel Computing theory and practice, Michael J. Quinn, McGRAW-HILL, 1994.
- 2. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, Barry Wilkinson and MiChael Allen, Second Edition, Prentice Hall, 2005.
- 3. Distributed Algorithms, Nancy Lynch, Morgan Kaufmann, 1997.
- 4. Scalable Parallel Computing: Technology, Architecture, Programming, Kai Hwang & Zhiwei Xu, McGRAW-HILL, 1997.
- 5. Introduction to Parallel Computing: https://computing.llnl.gov/tutorials/parallel_comp/#Designing
 6. Open MP:
 7. MPI: http://www.mcs.anl.gov/research/projects/mpi/tutorial/
 8. Xeon Phi Programming:
 6. ONL Policy (CNL) Programming:

- 9. GPU Programming
- 10. Hadoop:
- 11. Spark:
- 12. Parallel Computing theory and practice: http://www.cs.cmu.edu/afs/cs/academic/class/15210f15/www/tapp.html# preface

Lectures

(90 min) Introduction [1] Lecture 1 W1 Introduction [1] Lab 1 W2 Lab: Introduction Chung Tl Lecture 2 W2 Abstract machine models & [1][2]	hành Minh
Lab 1 W2 Lab: Introduction Chung Tl	aành Minh
	iann iviinn
Lecture 2 W 2 Prostract machine models & [1][2]	
Multithreading	
- PRAM & BSP	
- Multithreading	
	hành Minh
Lecture 3 W3 MPI [7]	
Lab 3 W4 Lab: MPI – Point-to-point communication Diệp Tha	nh Đăng
Lecture 4 W4 Parallel machine architectures: [1][2]	
- Flynn classifications	
- Pipeline, Processor array,	
Multiprocessor, Data flow computer	
 Processor organizations 	
Lab 4 W5 Lab: MPI – Collective communication Diệp Tha	nh Đăng
Lecture 5 W5 Speedup: [1]	
– Amdahl	
- Gustafson	
	hành Minh
Lecture 6 W6 OpenMP [6]	
	hành Minh
Lecture 7 W7 Map/Reduce [10]	
No Lecture W8 Midterm Break	
& Lab	
Exam W9 Midterm Exam	1 2 6 1
	hành Minh
Lecture 8 W10 Parallel & distributed computing [2]	
techniques (1) Lab 8 W11 Lab: GPUs 1 Ng. Manl	h Thìn
Lecture 9 W11 Parallel & distributed computing [2] Ref	1 1 11111
techniques (2)	
Lab 9 W12 Lab: GPUs 2 Ng. Manl	h Thìn
Lecture 10 W12 Designing parallel progams (1) [12] Ref	1 11111
Lab 10 W13 Lab: Hadoop 1 Ng. Manl	h Thìn
Lecture 11 W13 Designing parallel progams (2) [12] Ref	1 11111
Lab 11 W14 Lab: Hadoop 2 Ng. Manl	h Thìn
Lecture 12 W14 Parallel algorithms (1) [2]	

Lab 12	W15	Lab: Algorithm 1		Ng. Mạnh Thìn
Lecture 13	W15	Parallel algorithms (2)	[4]	Ref
Lab 13	W16	Lab: Algorithm 2		Ng. Mạnh Thìn
Lecture 14	W16	Review		
Lab 14	W16	Lab: Algorithm 3		Ng. Mạnh Thìn

HPC Lab

- SuperNode-I: 5 nodes x (2 CPUs x 8 cores, 32GB RAM), Infiniband 30 Gbps
- SuperNode-XP 24 nodes x (2 CPus x 12 cores, 2 Xeon Phi x 61 cores, 512/256/128 GB RAM, 1 TB HD/SSD), Infiniband 56 Gbps
- IBM system: 8 nodes x (2 CPUs x 16 cores, 10 Gbps Ethernet)

Evaluation

■ Midterm exam (tuần thứ 8): 10%

Final exam: 30%Project: 30%Lab: 30%

Contact:

- Thoại Nam: namthoai@hcmut.edu.vn
- Đại diện lớp (Lớp trưởng): Hồ Bảo Quốc (baoquoc29@gmail.com)

Đề Project môn XLSS&HPB

TNMT 2014_HK1_2017_2018

Quy định:

- 1. Mỗi nhóm tối đa 3-4 sinh viên (trùng với nhóm seminar).
- 2. Các nhóm đăng ký danh sách và đề tài cho Trưởng lớp, hạn cuối 01/09/2017:
 - Ghi rõ họ tên, MSSV, email của các thành viên trong nhóm
- 3. Nộp báo cáo 2-4 trang mô tả nội dung đề tài thực hiện, nguồn dữ liệu, dự kiến kết quả, han cuối 15/09/2017
- 4. Nộp báo cáo sơ bộ về tiến độ và kết quả đạt được, hạn cuối 15/10/2017
- 5. Nộp báo cáo cuối kỳ, hạn cuối 01/12/2017, tất cả các nhóm phải nộp:
 - Báo cáo tối đa 8 trang A4
 - Mã nguồn.
- Đề 1: Viết chương trình giải bài toán Association Rules dùng multi-thread trên Xeon Phi dùng cơ chế Offload và OpenMP

Lý thuyết:

- Tìm hiểu giải thuật cho Association Rules
- Tìm hiểu cách lập trình trên Xeon Phi dùng cơ chế Offload và OpenMP.

Hiên thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau
- Thử nghiệm sử dụng 2 Xeon Phi cards.
- Đề 2: Viết chương trình Association Rules dùng multi-thread trên Xeon Phi dùng OpenCL Lý thuyết:
 - Tìm hiểu giải thuật cho Association Rules
 - Tìm hiểu cách lập trình trên Xeon Phi dùng OpenCL.

Hiên thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau
- Thử nghiệm sử dung 2 Xeon Phi cards.
- Đề 3: Viết chương trình Association Rules dùng multi-thread trên Xeon Phi dùng Intel Cilk Plus và Intel TBB (Thread Building Blocks).

Lý thuyết:

- Tìm hiểu giải thuật cho Association Rules
- Tìm hiểu cách lập trình trên Xeon Phi dùng Intel Cilk Plus và Intel TBB (Thread Building Blocks).

Hiên thực:

- Viết chương trình
- Vẽ biểu đánh giá hiệu năng (speedup) cho từng trường hợp với số lượng threads khác nhau
- Thử nghiệm sử dụng 2 Xeon Phi cards.
- Đề 4: Viết chương trình nhân ma trận kích thước 1.000x1.000, 10.000x10.000 và 100.000x100.000 (có trao đổi hàng/cột giữa các bộ xử lý) trên hệ thống máy tính ảo có giao tiếp 1Gpbs, 10 Gbps (Gigabit Ethernet), 40 Gbps (Infiniband).

Lý thuyết:

- Tìm hiểu và viết chương trình nhân ma trận dùng MPI có trao đổi hàng cột
- MPI One-Sided Communication

Hiên thực:

- Viết chương trình
- Vẽ biểu đồ đánh giá hiệu năng (speedup) cho 2 trường hợp dùng hệ thống máy tính vật lý và máy tính ảo với số lượng máy tính khác nhau
- So sánh trường hợp giao tiếp thông thường và cách sử dụng One-Sided Communication.

Bài 5: Viết chương trình so trùng ảnh dùng "The Skein Hash Function Family" trên Hadoop Lý thuyết:

- Tìm hiểu Hadoop
- Tìm hiểu "The Skein Hash Function Family"
- Giải pháp loại các ảnh trùng nhau trong một tập ảnh lớn

Hiên thực:

- Viết chương trình
- Đánh giá hiệu suất trên hệ thống thực.

Đề 6: Viết chương trình Association Rules trên GPUs

Lý thuyết:

- Tìm hiểu về lập trình GPU (CUDA)
- Tìm hiểu về giải thuật cho Association Rules.

Hiện thực:

- Viết chương trình
- Đánh giá hiệu năng (speedup) với số lương core khác nhau.

Đề 7: sinh viên có thể đề xuất bài toán để giải như K-means, SVM (Support Vector Machines), bài toán trên Graph...

Tham khảo

Video

High Performance Computing made easy, http://www.hpc.uva.nl/

Algorithms on Xeon Phi (XP)

- 1. Strassen algorithm: https://www.singularis-lab.com/docs/materials/07 Shapovalov Strassen CKA.pdf
- 2. Fast Smith-Waterman: http://xsw.sdu-hpcl.org
- 3. PCIT algorithm: https://utexas.influuent.utsystem.edu/en/publications/optimizing-the-pcit-algorithm-on-stampedes-xeon-and-xeon-phi-proc
- 4. Breadth-first search: http://www.dislab.org/docs/bfs-phi-paper-eng.pdf
- 5. Graph coloring: http://www.sandia.gov/~egboman/papers/Deveci coloring ipdps16.pdf
- 6. Pattern matching: http://sbac.lip6.fr/2014/session%206/1-BitParallel.pdf
- 7. Sort: http://cass-mt.pnnl.gov/docs/ia3-2013/2-3.pdf
- 8. OpenFoam: https://www.nersc.gov/assets/Uploads/IXPUGISC15OpenFOAMTCSV6.pdf
- 9. Kalman Filter: https://facultystaff.richmond.edu/~ggilfoyl/research/keegan2014DNP.pdf
- 10. SU2: http://stanford.edu/~economon/docs/SU2_IPCC_SciTech2015_final.pdf
- 11. Conjunction Gradient method: https://en.wikipedia.org/wiki/Conjugate_gradient_method

Deep learning on XP

 Deep Neural Networks for Financial Market Prediction: https://www.researchgate.net/publication/281685181_Implementing_Deep_Neural Networks for Financial Market Prediction on the Intel Xeon Phi