# **Internal Forced Convection**

Notes based on practice, tutorial and past year examination papers

### **Typical Assumptions**

For examination style problems, we typically assume the following:

- 1. Steady heat transfer
- 2. 1D heat transfer
- 3. No external convection or radiation exchange (please check!)
- 4. Constant properties
- 5. Flow is incompressible.
- 6. Flow is laminar or turbulent or mixed (please check!)
- 7. Velocity does not vary in direction perpendicular to the flow
- 8. Fully (thermal or hydrodynamic) developed flow or (thermal or hydrodynamic) developing (please check!)
- 9. No heat generation (from frictional heating)
- 10. No work done by viscous forces. (please check!)
- 11. No body forces on fluid (please check!)
- 12. Negligible heat conduction in direction perpendicular to the flow (please check!)
- 13. Smooth surface (please check!)
- 14. Gas (if there is any) is standard and calorically perfect.
- 15. Tube wall has no contact resistance or thermal resistance (please check!)
- 16. Negligible kinetic energy and potential energy change in fluid (example fluid)
- 17. Fluid in question has similar properties to air or water (example: blood)
- 18. Properties are obtained by linear interpolation.
- 19. No fouling.
- 20. No heat loss to surroundings.
- 21. Flow is inviscid (please check!)
- 21. Average velocity is constant

#### **Internal Flow Definition**

Internal flow is characterized by the fluid being completely confined by the inner surfaces of the tube. The mean or average velocity and temperature for a circular tube of radius R are expressed as

$$V_{\text{avg}} = \frac{2}{R^2} \int_0^R u(r) r dr$$
 and  $T_m = \frac{2}{V_{\text{avg}} R^2} \int_0^R u(r) T(r) r dr$ 

#### Reynolds and Regions

The Reynolds number for internal flow and the hydraulic diameter are defined as

$$Re = \frac{\rho V_{avg}D}{\mu} = \frac{V_{avg}D}{\nu} \quad and \quad D_h = \frac{4A_c}{p}$$

The flow in a tube is laminar for Re < 2300, turbulent for about Re > 10,000, and transitional in between.

## **Moody Chart**



For fully developed turbulent flow with rough surfaces, the friction factor f is determined from the Moody chart or

$$\frac{1}{\sqrt{f}} = -2.0 \log \left( \frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}} \right) \approx -1.8 \log \left[ \frac{6.9}{\text{Re}} + \left( \frac{\varepsilon/D}{3.7} \right)^{1.11} \right]$$

### **Hydraulic Diameters**



#### FIGURE 8-4

The hydraulic diameter  $D_h = 4A_c/p$  is defined such that it reduces to ordinary diameter for circular tubes. When there is a free surface, such as in open-channel flow, the wetted perimeter includes only the walls in contact with the fluid.

For a *concentric annulus*, the hydraulic diameter is  $D_h = D_o - D_i$ , and the Nusselt numbers are expressed as

$$Nu_i = \frac{h_i D_h}{k}$$
 and  $Nu_o = \frac{h_o D_h}{k}$ 

where the values for the Nusselt numbers are given in Table 8–4.

### **Entry Lengths**

Hydrodynamically fully developed: 
$$\frac{\partial u(r,x)}{\partial x} = 0 \longrightarrow u = u(r)$$
 (8–7)

Thermally fully developed: 
$$\frac{\partial}{\partial x} \left[ \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \right] = 0$$
 (8–8)

The length of the region from the tube inlet to the point at which the flow becomes fully developed is the *hydrodynamic* entry length  $L_h$ . The region beyond the entrance region in which the velocity profile is fully developed is the *hydrodynamically* fully developed region. The length of the region of flow over which the thermal boundary layer develops and reaches the tube center is the thermal entry length  $L_t$ . The region in which the flow is both hydrodynamically and thermally developed is the fully developed flow region. The entry lengths are given by

$$L_{h, \, ext{laminar}} pprox 0.05 \, ext{Re} \, D$$
  $L_{t, \, ext{laminar}} pprox 0.05 \, ext{Re} \, ext{Pr} \, D = ext{Pr} \, L_{h, \, ext{laminar}}$   $L_{h, \, ext{turbulent}} pprox L_{t, \, ext{turbulent}} = 10 D$ 

#### Circular Tube

**TABLE 8.4** Summary of convection correlations for flow in a circular tube<sup>a,b,e</sup>

| Correlation                                                                                                                                         |            | Conditions                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f = 64/Re_D$                                                                                                                                       | (8.19)     | Laminar, fully developed                                                                                                                                                                                                  |
| $Nu_D = 4.36$                                                                                                                                       | (8.53)     | Laminar, fully developed, uniform $q_s''$                                                                                                                                                                                 |
| $Nu_D = 3.66$                                                                                                                                       | (8.55)     | Laminar, fully developed, uniform $T_s$                                                                                                                                                                                   |
| $\overline{Nu}_D = 3.66 + \frac{0.0668  Gz_D}{1 + 0.04  Gz_D^{2/3}}$                                                                                | (8.57)     | Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$ ), uniform $T_s$ , $Gz_D = (D/x) Re_D Pr$                                                                                                                   |
| $\overline{Nu}_D = \frac{\frac{3.66}{\tanh[2.264 Gz_D^{-1/3} + 1.7 Gz_D^{-2/3}]} + 0.0499 Gz_D \tanh(Gz_D^{-1})}{\tanh(2.432 Pr^{1/6}Gz_D^{-1/6})}$ | (8.58)     | Laminar, combined entry, $Pr \gtrsim 0.1$ , uniform $T_s$ , $Gz_D = (D/x) Re_D Pr$                                                                                                                                        |
| $\frac{1}{\sqrt{f}} = -2.0 \log \left[ \frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$                                                        | $(8.20)^c$ | Turbulent, fully developed                                                                                                                                                                                                |
| $f = (0.790 \ln Re_D - 1.64)^{-2}$                                                                                                                  | $(8.21)^c$ | Turbulent, fully developed, smooth walls, $3000 \lesssim Re_D \lesssim 5 \times 10^6$                                                                                                                                     |
| $Nu_D = 0.023  Re_D^{4/5}  Pr^n$                                                                                                                    | $(8.60)^d$ | Turbulent, fully developed, $0.6 \lesssim Pr \lesssim 160$ , $Re_D \gtrsim 10,000$ , $(L/D) \gtrsim 10$ , $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$                                                         |
| $Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$                                                                            | $(8.61)^d$ | Turbulent, fully developed, $0.7 \lesssim Pr \lesssim 16,700$ , $Re_D \gtrsim 10,000$ , $L/D \gtrsim 10$                                                                                                                  |
| $Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$                                                                            | $(8.62)^d$ | Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$ , $3000 \lesssim Re_D \lesssim 5 \times 10^6$ , $(L/D) \gtrsim 10$                                                                                            |
| $Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$                                                                                                            | (8.64)     | Liquid metals, turbulent, fully developed, uniform $q_s''$ , $3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5$ , $3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}$ , $10^2 \lesssim Re_D Pr \lesssim 10^4$ |
| $Nu_D = 5.0 + 0.025(Re_D Pr)^{0.8}$                                                                                                                 | (8.65)     | Liquid metals, turbulent, fully developed, uniform $T_s$ , $Re_D Pr \gtrsim 100$                                                                                                                                          |

<sup>&</sup>lt;sup>a</sup>The mass transfer correlations may be obtained by replacing  $Nu_D$  and Pr by  $Sh_D$  and Sc, respectively.

<sup>&</sup>lt;sup>b</sup>Properties in Equations 8.53, 8.55, 8.60, 8.61, 8.62, 8.64, and 8.65 are based on  $T_m$ ; properties in Equations 8.19, 8.20, and 8.21 are based on  $T_f = (T_s + T_m)/2$ ; properties in Equations 8.57 and 8.58 are based on  $\overline{T}_m = (T_{m,i} + T_{m,o})/2$ .

<sup>&</sup>lt;sup>c</sup>Equation 8.20 pertains to smooth or rough tubes. Equation 8.21 pertains to smooth tubes.

<sup>&</sup>lt;sup>d</sup>As a first approximation, Equations 8.60, 8.61, or 8.62 may be used to evaluate the average Nusselt number  $\overline{Nu}_D$  over the entire tube length, if  $(L/D) \gtrsim 10$ . The properties should then be evaluated at the average of the mean temperature,  $\overline{T}_m = (T_{m,i} + T_{m,o})/2$ .

For tubes of noncircular cross section,  $Re_D \equiv D_h u_m / v$ ,  $D_h \equiv 4A_c / P$ , and  $u_m = \dot{m} / \rho A_c$ . Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.

For fully developed laminar flow in a circular pipe, we have:

$$\begin{split} u(r) &= 2V_{\text{avg}} \left( 1 - \frac{r^2}{R^2} \right) = u_{\text{max}} \left( 1 - \frac{r^2}{R^2} \right) \\ f &= \frac{64\mu}{\rho D V_{\text{avg}}} = \frac{64}{\text{Re}} \\ \dot{V} &= V_{\text{avg}} A_c = \frac{\Delta P R^2}{8\mu L} \pi R^2 = \frac{\pi R^4 \Delta P}{8\mu L} = \frac{\pi R^4 \Delta P}{128\mu L} \end{split}$$

Circular tube, laminar (
$$\dot{q}_s$$
 = constant): Nu =  $\frac{hD}{k}$  = 4.36

Circular tube, laminar (
$$T_s = \text{constant}$$
): Nu =  $\frac{hD}{k} = 3.66$ 

For developing laminar flow in the entrance region with constant surface temperature, we have

Circular tube: Nu = 
$$3.66 + \frac{0.065(D/L)\text{Re Pr}}{1 + 0.04[(D/L)\text{Re Pr}]^{2/3}}$$

Circular tube: Nu = 1.86 
$$\left(\frac{\text{Re Pr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$

Parallel plates: Nu = 
$$7.54 + \frac{0.03(D_h/L)\text{Re Pr}}{1 + 0.016[(D_h/L)\text{Re Pr}]^{2/3}}$$

For fully developed turbulent flow with smooth surfaces, we have

$$f = (0.790 \ln \text{Re} - 1.64)^{-2}$$
  $10^4 < \text{Re} < 10^6$ 

$$Nu = 0.125 f \text{ Re Pr}^{1/3}$$

Nu = 0.023 Re<sup>0.8</sup> Pr<sup>1/3</sup> 
$$\begin{pmatrix} 0.7 \le Pr \le 160 \\ Re > 10,000 \end{pmatrix}$$

Nu =  $0.023 \text{ Re}^{0.8} \text{ Pr}^n$  with n = 0.4 for *heating* and 0.3 for *cooling* of fluid

$$Nu = \frac{(f/8)(Re - 1000)Pr}{1 + 12.7(f/8)^{0.5}(Pr^{2/3} - 1)} \quad {0.5 \le Pr \le 2000 \choose 3 \times 10^3 < Re < 5 \times 10^6}$$

The fluid properties are evaluated at the *bulk mean fluid tem*perature  $T_b = (T_i + T_e)/2$ . For liquid metal flow in the range of  $10^4 < \text{Re} < 10^6$  we have:

$$T_s = \text{constant}$$
: Nu = 4.8 + 0.0156 Re<sup>0.85</sup> Pr<sub>s</sub><sup>0.93</sup>

$$\dot{q}_s$$
 = constant: Nu = 6.3 + 0.0167 Re<sup>0.85</sup> Pr<sub>s</sub><sup>0.93</sup>

### **General Thermal Analysis**

### Constant Surface Heat Flux ( $\dot{q}_s$ = constant)

In the case of  $\dot{q}_s$  = constant, the rate of heat transfer can also be expressed as

$$\dot{Q} = \dot{q}_s A_s = \dot{m}c_p (T_e - T_i)$$
 (W) (8–16)

Then the mean fluid temperature at the tube exit becomes

$$T_e = T_i + \frac{\dot{q}_s A_s}{\dot{m} c_p} \tag{8-17}$$

Note that the mean fluid temperature increases *linearly* in the flow direction in the case of constant surface heat flux, since the surface area increases linearly in the flow direction ( $A_s$  is equal to the perimeter, which is constant, times the tube length).

The surface temperature in the case of constant surface heat flux  $\dot{q}_s$  can be determined from

$$\dot{q}_s = h(T_s - T_m) \longrightarrow T_s = T_m + \frac{\dot{q}_s}{h}$$
 (8–18)

In the fully developed region, the surface temperature  $T_s$  will also increase linearly in the flow direction since h is constant and thus  $T_s - T_m = \text{constant}$  (Fig. 8–11). Of course this is true when the fluid properties remain constant during flow.

The slope of the mean fluid temperature  $T_m$  on a T-x diagram can be determined by applying the steady-flow energy balance to a tube slice of thickness dx shown in Fig. 8–12. It gives

$$\dot{m}c_p dT_m = \dot{q}_s(pdx) \longrightarrow \frac{dT_m}{dx} = \frac{\dot{q}_s p}{\dot{m}c_p} = \text{constant}$$
 (8–19)

where p is the perimeter of the tube.

Substituting this into Eq. 8–14, we obtain

$$\dot{Q} = hA_s \Delta T_{\rm lm} \tag{8-32}$$

where

$$\Delta T_{\rm lm} = \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]} = \frac{\Delta T_e - \Delta T_i}{\ln(\Delta T_e/\Delta T_i)}$$
(8–33)

is the **log mean temperature difference**. Note that  $\Delta T_i = T_s - T_i$  and  $\Delta T_e = T_s - T_e$  are the temperature differences between the surface and the fluid at the inlet and the exit of the tube, respectively. This  $\Delta T_{\rm lm}$  relation appears to be prone to misuse, but it is practically fail-safe, since using  $T_i$  in place of  $T_e$  and vice versa in the numerator and/or the denominator will, at most, affect the sign, not the magnitude. Also, it can be used for both heating  $(T_s > T_i \text{ and } T_e)$  and cooling  $(T_s < T_i \text{ and } T_e)$  of a fluid in a tube.

The log mean temperature difference  $\Delta T_{\rm lm}$  is obtained by tracing the actual temperature profile of the fluid along the tube and is an *exact* representation of the *average temperature difference* between the fluid and the surface. It truly reflects the exponential decay of the local temperature difference. When  $\Delta T_e$  differs from  $\Delta T_i$  by no more than 40 percent, the error in using the arithmetic mean temperature difference is less than 1 percent. But the error increases to undesirable levels when  $\Delta T_e$  differs from  $\Delta T_i$  by greater amounts. Therefore, we should always use the log mean temperature difference when determining the convection heat transfer in a tube whose surface is maintained at a constant temperature  $T_s$ .

For  $\dot{q}_s$  = constant, the rate of heat transfer is expressed as

$$\dot{Q} = \dot{q}_s A_s = \dot{m} c_p (T_e - T_i)$$

For  $T_s = \text{constant}$ , we have

$$\begin{split} \dot{Q} &= hA_s\Delta T_{\rm lm} = \dot{m}c_p(T_e - T_i) \\ T_e &= T_s - (T_s - T_i) \exp(-hA_s/\dot{m}c_p) \\ \Delta T_{\rm lm} &= \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]} = \frac{\Delta T_e - \Delta T_i}{\ln(\Delta T_e/\Delta T_i)} \end{split}$$

## Fully Developed Laminar Flow (Different Cross Section)

#### TABLE 8-1 Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections $(D_h = 4A_c/p, \text{Re} = V_{ave}D_h/\nu, \text{ and Nu} = hD_h/k)$ Nusselt Number a/b Friction Factor **Tube Geometry** or $\theta^{\circ}$ $T_s = \text{Const.}$ $\dot{q}_s = \text{Const.}$ Circle 3.66 4.36 64.00/Re Rectangle a/b 1 2.98 56.92/Re 3.61 2 3.39 4.12 62.20/Re 3 3.96 4.79 68.36/Re 4 4.44 5.33 72.92/Re 6 5.14 6.05 78.80/Re 5.60 8 6.49 82.32/Re $\infty$ 7.54 8.24 96.00/Re Ellipse <u>a/b</u> 1 3.66 4.36 64.00/Re 2 3.74 4.56 67.28/Re 4 3.79 4.88 72.96/Re 8 3.72 5.09 76.60/Re 16 78.16/Re 3.65 5.18 Isosceles triangle $\theta$ 10° 1.61 2.45 50.80/Re 30° 2.91 2.26 52.28/Re 60° 2.47 3.11 53.32/Re 90° 2.98 2.34 52.60/Re 120° 2.00 2.68 50.96/Re

**TABLE 8.2** Nusselt number for fully developed laminar flow in a circular tube annulus with one surface insulated and the other at constant temperature

| $D_i/D_o$ | $Nu_i$ | $Nu_o$ | Comments                                |
|-----------|--------|--------|-----------------------------------------|
| 0         | _      | 3.66   | See Equation 8.55                       |
| 0.05      | 17.46  | 4.06   |                                         |
| 0.10      | 11.56  | 4.11   |                                         |
| 0.25      | 7.37   | 4.23   |                                         |
| 0.50      | 5.74   | 4.43   |                                         |
| ≈1.00     | 4.86   | 4.86   | See Table 8.1, $b/a \rightarrow \infty$ |

Used with permission from W. M. Kays and H. C. Perkins, in W. M. Rohsenow and J. P. Hartnett, Eds., *Handbook of Heat Transfer*, Chap. 7, McGraw-Hill, New York, 1973.