# 逸出功的测量

## 简要报告

 姓名
 刘若涵

 学号
 2020011126

 班级
 自 05 班

 循环组号
 单三晚 L

 组内循环号
 18

#### 1 实验电路图



图 1 实验电路图

#### 2 基本公式

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\varphi}{T}$$
 (1)  
$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_1/r_2)}} \sqrt{U_a}$$
 (2)

#### 3 数据处理

在一定灯丝电流  $I_f$  下,改变加速电压  $U_a$ ,测定采样电阻  $R_e$  上的电压值  $U_e$ ',由  $I_e' = \frac{U_e'}{R_e}$  得发射电流  $I_e'$  。 改变  $I_f$ ,测量多组数据,利用  $I_f$  与阴极温度 T 的关系,通过线性插值法求出 T。测量数据及处理结果如下所示。

(1) 
$$I_f = 0.500\,A$$
 ,  $R_e = 2.7\,k\Omega$  ,  $T = 1726\,K$ 

#### Ue'单位为mV Ua单位为V

表 1  $I_f = 0.500 A$  时的数据

|          | U <sub>a</sub> / V        | 36.13  | 49.73  | 64.04  | 81.57  | 100.33  | 121.65  | 144.70  |
|----------|---------------------------|--------|--------|--------|--------|---------|---------|---------|
|          | Ue' / V                   | 3.80   | 3.86   | 3.94   | 4.01   | 4.08    | 4.17    | 4.26    |
| 应该不是m/   | Ie'/mA                    | 1.407  | 1.430  | 1.459  | 1.485  | 1.511   | 1.544   | 1.578   |
| MATTERIA | $\sqrt{U_a} / \sqrt{V}$   | 6.0108 | 7.0520 | 8.0025 | 9.0316 | 10.0165 | 11.0295 | 12.0291 |
|          | lg I <sub>e</sub> /lg(mA) | 0.1484 | 0.1552 | 0.1641 | 0.1718 | 0.1793  | 0.1888  | 0.1980  |

$$(2)\ I_f = 0.540\ A,\ R_e = 2.7\ k\Omega,\ T = \frac{1809 - 1726}{0.550 - 0.500} \times (0.540 - 0.500) + 0.500 = 1794.2\ K$$

表 2  $I_f = 0.540 A$  时的数据

|                      |       |       | ,     |       |        |        |        |
|----------------------|-------|-------|-------|-------|--------|--------|--------|
| $U_a / V$            | 36.66 | 48.35 | 63.99 | 81.89 | 100.77 | 121.18 | 144.32 |
| U <sub>e</sub> ' / V | 11.41 | 11.49 | 11.81 | 12.12 | 12.49  | 12.81  | 13.18  |

| Ie' / mA                  | 4.226  | 4.256  | 4.374  | 4.489  | 4.626   | 4.744   | 4.881   |
|---------------------------|--------|--------|--------|--------|---------|---------|---------|
| $\sqrt{U_a} / \sqrt{V}$   | 6.0548 | 6.9534 | 7.9994 | 9.0493 | 10.0384 | 11.0082 | 12.0133 |
| lg I <sub>e</sub> /lg(mA) | 0.6259 | 0.6290 | 0.6409 | 0.6521 | 0.6652  | 0.6762  | 0.6886  |

(3) 
$$I_f = 0.580 \, A$$
,  $R_e = 2.7 \, k\Omega$ ,  $T = \frac{1901 - 1809}{0.600 - 0.550} \times (0.580 - 0.550) + 0.550 = 1864.2 \, K$ 

表 3  $I_f = 0.580 A$  时的数据

|                           |        |        | ,      |        |        |         |         |
|---------------------------|--------|--------|--------|--------|--------|---------|---------|
| U <sub>a</sub> / V        | 36.03  | 48.68  | 64.44  | 80.39  | 99.43  | 120.22  | 143.60  |
| Ue' / V                   | 40.80  | 41.79  | 42.76  | 43.75  | 44.61  | 45.46   | 46.77   |
| Ie' / mA                  | 15.111 | 15.478 | 15.837 | 16.204 | 16.522 | 16.837  | 17.322  |
| $\sqrt{U_a} / \sqrt{V}$   | 6.0025 | 6.9771 | 8.0275 | 8.9660 | 9.9715 | 10.9645 | 11.9833 |
| lg I <sub>e</sub> /lg(mA) | 1.1793 | 1.1897 | 1.1997 | 1.2096 | 1.2181 | 1.2263  | 1.2386  |

(4) 
$$I_f = 0.620 \, A$$
,  $R_e = 2.7 \, k\Omega$ ,  $T = \frac{1975 - 1901}{0.650 - 0.600} \times (0.650 - 0.600) + 0.600 = 1930.6 \, K$ 

表 4  $I_f = 0.620 A$  时的数据

| U <sub>a</sub> / V        | 36.53  | 49.19  | 64.41  | 81.37  | 100.24  | 121.33  | 144.48  |
|---------------------------|--------|--------|--------|--------|---------|---------|---------|
| Ue' / V                   | 130.01 | 132.31 | 134.65 | 136.95 | 139.16  | 141.54  | 143.95  |
| Ie' / mA                  | 48.152 | 49.004 | 49.870 | 50.722 | 51.541  | 52.422  | 53.315  |
| $\sqrt{U_a} / \sqrt{V}$   | 6.0440 | 7.0136 | 8.0256 | 9.0205 | 10.0120 | 11.0150 | 12.0200 |
| lg I <sub>e</sub> /lg(mA) | 1.6826 | 1.6902 | 1.6978 | 1.7052 | 1.7122  | 1.7195  | 1.7268  |

(5) 
$$I_f = 0.660 \, A$$
,  $R_e = 270 \, \Omega$ ,  $T = \frac{2059 - 1975}{0.700 - 0.650} \times (0.700 - 0.650) + 0.650 = 1991.8 \, K$ 

表 5  $I_f = 0.660 A$  时的数据

| Ua / V                    | 36.24   | 49.52   | 64.81   | 81.51   | 100.80  | 121.46  | 144.83  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|
| Ue' / V                   | 32.16   | 32.81   | 33.40   | 33.92   | 34.74   | 35.04   | 35.63   |
| Ie' / mA                  | 119.111 | 121.519 | 123.704 | 125.630 | 128.667 | 129.778 | 131.963 |
| $\sqrt{U_a} / \sqrt{V}$   | 6.0200  | 7.0370  | 8.0505  | 9.0283  | 10.0399 | 11.0209 | 12.0345 |
| lg I <sub>e</sub> /lg(mA) | 2.0760  | 2.0846  | 2.0924  | 2.0991  | 2.1095  | 2.1132  | 2.1205  |

(6) 
$$I_f = 0.690 \, A$$
,  $R_e = 270 \, \Omega$ ,  $T = \frac{2059 - 1975}{0.700 - 0.650} \times (0.700 - 0.650) + 0.690 = 2042.2 K$ 

表 6  $I_f = 0.690 A$  时的  $U_a$  与  $U_{e'}$  ( $I_{e'}$ )

| $U_a / V$                 | 36.48   | 49.22   | 64.53   | 81.22   | 100.92  | 121.81  | 144.11  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|
| Ue' / V                   | 64.96   | 69.24   | 70.93   | 72.04   | 73.92   | 75.62   | 77.29   |
| Ie' / mA                  | 240.593 | 256.444 | 262.704 | 266.815 | 273.778 | 280.074 | 286.259 |
| $\sqrt{U_a} / \sqrt{V}$   | 6.0399  | 7.0157  | 8.0331  | 9.0122  | 10.0459 | 11.0368 | 12.0046 |
| lg I <sub>e</sub> /lg(mA) | 2.3813  | 2.4090  | 2.4195  | 2.4262  | 2.4374  | 2.4473  | 2.4568  |

由公式(2)可知, $\lg I_e'=\sqrt{U_a}$  呈线性关系,直线交 y 轴的截距为  $\lg I_e$ , $I_e$  为无加速电压时的发射电流。采用直线拟合法作不同灯丝电流  $I_f$  下的  $\lg I_e'\sim\sqrt{U_a}$  曲线,如图 2 所示。



图 2 不同  $I_f$  下的  $\lg I'_e \sim \sqrt{U_a}$  曲线

通过线性拟合得不同  $I_f$  下  $\lg I_e \sim \sqrt{U_a}$  直线的截距  $\lg I_e$ ,如下表所示。

0.500 0.540 0.580 0.620 0.660 0.690  $I_f/A$ 0.0978 0.55521.1219 1.6385 2.0323 2.3217 lg I<sub>e</sub>/lg (mA) 0.0005794 0.0005579 0.0005364 0.0005021 0.0005180 0.0004897 -6.3763 -5.9517 -5.4191 -4.9329 -4.5662 -4.2985  $lg \frac{I_e}{T^2}/lg(\frac{mA}{K^2})$ 

表7 不同 I<sub>f</sub> 下的 lg I<sub>e</sub>

由公式(1)可知,  $\lg \frac{l_e}{T^2}$ 与 $\frac{1}{T}$  呈线性关系,直线斜率为  $-5.039\times 10^3 \phi$ 。采用直线拟合法作  $\lg \frac{l_e}{T^2}\sim \frac{1}{T}$  曲线,如图 3 所示。



图 3  $\lg \frac{I_e}{T^2} \sim \frac{1}{T}$  曲线

由线性拟合结果可知直线斜率为 -23682,得  $\phi = \frac{-23682}{-5.039 \times 10^3} = 4.700 \, \text{V}$ 。

则逸出功  $W_0 = e_0 \phi = 4.700 \text{ eV}$ 。

与公认值  $W_{0\,\odot}=4.54~{\rm eV}$  对比,得相对偏差为  $\frac{W_0-W_{0\,\odot}}{W_{0\,\odot}}\times 100\%=3.5\%$  。

### 4 原始数据

| 4 Ua | 36                      | 49             | 64             | 81             | 100             | 121              | 144    |
|------|-------------------------|----------------|----------------|----------------|-----------------|------------------|--------|
| 0.50 | Ua= 36.13<br>Ue'= 3.80  | 3.86           | 64.04<br>3.94  | 81.57          | 4.08            | 121.65           | 144,70 |
| 0.54 | Ua= 36.66<br>Ue'= 11.41 | 48.35          | 63.99          | 81.89          | 12.49           | 12.18            | 13.18  |
| 0.58 | Un= 36.03<br>Ud= 40.80  | 48.68          | 64.44<br>42.76 | 80.39          | 99.43<br>44.61  | 120.2°E<br>45.46 | 46.77  |
| 0.62 | Ua=36.53<br>Ue'=130.01  | 49.19          | 64.41          | 81.37          | 139-16          | 121.33           | 144.48 |
| 0.66 | Ua=36.24<br>Ue'=32.16   | 49.52<br>32.81 | 64.81<br>33.40 | 81.51<br>33.92 | 100.80<br>34.74 | 121.46           | 144.83 |
| 0.69 | Ua=36.48<br>Ue'=64.96   | 69.22          | 64.53          | 81.22          | 13.92           | 121.81<br>75.62  | 144.11 |

