1 Chapter 13 Combining Inference with Utility

Problem 13.3 We build on our discussion of cost functions in continuous estimation in section 13.5.2. Suppose we use absolute error instead of squared error as the cost function:

$$U(s, \hat{s}) = -|s - \hat{s}|.$$

Prove that the posterior median rather than the posterior mean maximizes expected utility.

Answer

So the gist is that we aim to get the estimate \hat{s} that maximizes the expected utility:

$$\mathbb{E}[U(s,\hat{s})] = \mathbb{E}[-|s-\hat{s}|] = -\int |s-\hat{s}| \, p(s\mid x) \, ds.$$

Maximizing expected utility is equivalent to minimizing expected loss, so we need to minimize:

$$\int |s - \hat{s}| \, p(s \mid x) \, ds.$$

This is a classic result from Bayesian decision theory. The function

$$L(\hat{s}) = \int |s - \hat{s}| p(s \mid x) ds$$

is minimized when \hat{s} is the **median** of the posterior distribution $p(s \mid x)$.

If we want to do a little proofing:

Let $F(\hat{s}) = \int_{-\infty}^{\hat{s}} p(s \mid x) ds$ be the cumulative distribution function of the posterior. Taking derivative of $L(\hat{s})$ with respect to \hat{s} :

$$\frac{d}{d\hat{s}}L(\hat{s}) = \frac{d}{d\hat{s}} \int_{-\infty}^{\hat{s}} (\hat{s} - s)p(s \mid x)ds + \int_{\hat{s}}^{\infty} (s - \hat{s})p(s \mid x)ds$$

Differentiate:

$$\frac{d}{d\hat{s}}L(\hat{s}) = \int_{-\infty}^{\hat{s}} p(s \mid x)ds - \int_{\hat{s}}^{\infty} p(s \mid x)ds = 2F(\hat{s}) - 1.$$

Set this derivative to 0:

$$2F(\hat{s}) - 1 = 0 \Rightarrow F(\hat{s}) = 0.5.$$

Thus, the minimum of the expected absolute error occurs at the median of the posterior distribution.