

Course > Unit 2: ... > 3 Colu... > 2. Revi...

2. Review of the nullspace and an introduction to the column space, a geometric example

Let ${f f}$ be the function from ${\Bbb R}^3$ to ${\Bbb R}^3$ that projects all of ${\Bbb R}^3$ onto the ${\it xy}$ -plane:

$$\mathbf{f}egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} x \ y \ 0 \end{pmatrix}$$

- 1. What is the matrix $\bf A$ that represents $\bf f$?
- 2. Which vectors from the input vector space does \mathbf{f} map to $\mathbf{0}$?
- 3. Describe the range (or image) of \mathbf{f} geometrically in the output space. Recall that the range of \mathbf{f} is the set of all vectors $\mathbf{b} = \mathbf{f}(\mathbf{x})$ for all vectors \mathbf{x} in the input space.

Solution:

1. **A** is a 3×3 matrix such that

$$(\text{first column of } \mathbf{A}) \quad = \mathbf{f} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(\text{second column of } \mathbf{A}) \quad = \mathbf{f} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$ext{(third column of } \mathbf{A}) = \mathbf{f} egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}.$$

Thus
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

2. Note that $oldsymbol{f}egin{pmatrix}x\\y\\z\end{pmatrix}=egin{pmatrix}x\\y\\0\end{pmatrix}$ is the zero vector if and only if $oldsymbol{x}=oldsymbol{0}$ and $oldsymbol{y}=oldsymbol{0}$. Thus the

projection takes any vector of the form $\begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$ to the zero vector. Geometrically, this says that the entire z-axis is sent to the zero vector.

The set of vectors mapped to $\mathbf{0}$ by \mathbf{f} is the same as the set of solutions $\mathbf{A}\mathbf{x}=\mathbf{0}$. Using our algorithm from the last lecture, we find the set of solutions $\mathbf{A}\mathbf{x}=\mathbf{0}$. This set of solutions forms a vector space called the nullspace. The nullspace $\mathbf{NS}(\mathbf{A})$ is a subspace of the **input** space; in this example:

$$\operatorname{NS}(\mathbf{A}) = \{ \operatorname{solutions to } \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

$$= \operatorname{solutions to } \mathbf{f}(x, y, z) = \mathbf{0}$$

$$= \{ (0, 0, z) : z \in \mathbb{R} \}$$

$$= \operatorname{the } z \operatorname{-axis in the input space } \mathbb{R}^3.$$

3. The set of all vectors \mathbf{b} in the image (also called the range) of \mathbf{f} are all vectors $\mathbf{f}(\mathbf{x})$; in our example:

$$\begin{array}{ll} \text{Image of } \mathbf{f}(x,y,z) & = & \{(x,y,0): x,y \in \mathbb{R}\} \\ \\ & = & \text{the } xy\text{-plane in the output space } \mathbb{R}^3. \end{array}$$

Another way of thinking of this is as the set of all vectors \mathbf{b} that can be written as $\mathbf{A}\mathbf{x}$ for some vector \mathbf{x} ; in our example:

$$\{All\ vectors\ \mathbf{Ax}\}$$
 = all linear combinations of the columns of \mathbf{A} .

Therefore the set of all vectors $\mathbf{b} = \mathbf{A}\mathbf{x}$ is the same as the span of the columns of \mathbf{A} . The span of the columns of \mathbf{A} is called the **column space** $\mathbf{CS}(\mathbf{A})$; it is a subspace of the **output space** .

2. Review of the nullspace and an introduction to the column space, a geometric example

Hide Discussion

Topic: Unit 2: Linear Algebra, Part 2 / 2. Review of the nullspace and an introduction to the column space, a geometric example

Add a Post

Show all posts ▼ by recent activity ▼

There are no posts in this topic yet.

×