Solar Farm – Model Card

Predicting the Electricity Output based on Sensors and Weather Data

Overview

- 1. Model Name
 - Solar-Electric-Output
- 2. Version
 - 1.1
- 3. Model Type
 - Regression
- 4. Primary Use Case
 - Predicting the Output of a Solar Farm

Intended Use

- 5. Target Audience
 - Solar Farm owners or Students(for research)
- 6. Limitation
 - Some of the data has been created synthetically to simulate real life scenarios
- 7. Ethical considerations
 - N/A

Training Data

- 8. Data Sources: curated synthetic data based on real measurements patterns
 - Time series of measurements for 34 days every 15 minutes
 - Data points:
 - Date/Time of measurement
 - o DC_Power
 - o AC_Power
 - o Irradiation
 - o Ambient Temperature
 - Module Temperature
 - o Days since last cleanup
 - o Electricity Output

Model Architecture

- 9. Algorithms: Random Forest Regressor
- 10. Train/Test Split: 70/30
- 11. Cross Validation: 5 folds
- 12. Hyperparameters tuning: Bayesian Optimization
 - Max_depth = 24
 - Max features = 0.28
 - Min_samples_leaf = 2
 - Min split = 4
 - N_estimators = 158
- 13. Libraries
 - sklearn
 - RandomForestRegressor
 - BayesianOptimization
 - Numpy, Panda

Performance Metrics

- 14. Precision: based on RMSE (last training = 0.027781)
- 15. Benchmark Comparisons: compared against Polynomial, KNN and Gradient Boosting
- 16. Generalisation: it handles well unseen data
- 17. Bias Analysis: no major biases

Limitations

18. It assumes that all solar panels are the same. In reality a Solar Farm can have multiple brands of hardware where each of them has specific manufacturer parameters.

Deployment and Maintenance

- 19. The trained model is saved in pickled file
- 20. The Scaler of Input and Output are saved in separate files
- 21. To get the real output the values needs to be inverse transformed
- 22. It needs regular maintenance/training especially when different makes of Solar Panels are installed
- 23. Computing usage during training is lightweight considering that Random Forest is quite efficient. One powerful CPU and 64M RAM will be sufficient to perform calculations.
- 24. Recommended training: every week to capture seasonality in the weather pattern