Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	Übu	ıngen														5
	1.1	2017-10-27														5

Einstieg — Metrische Räume

1.1 Vorbemerkungen

Inhalt dieser Vorlesung wird sowohl *Stetigkeitsgeometrie* (Topologie) als auch *metrische Geometrie* sein. Die seitlich abgebildeten Objekte sind im Sinne der Stetigkeitsgeometrie "topologisch äquivalent", im Sinne der metrischen Geometrie sind diese allerdings verschieden.

1.1.1 Kartographieproblem.

Ein zentrales Problem der Kartographie ist die *längentreue* Abbildung einer Fläche auf der Weltkugel auf eine Fläche auf Papier. Mithilfe der Differentialgeometrie und der Gauß-Krümmung lässt sich zeigen, dass das nicht möglich ist.

1.2 Definitionen zu metrischen Räumen

1.2.1 Definition — Metrik.

Sei X eine Menge. Eine Funktion $d: X \times X \to \mathbb{R}_{>0}$ ist eine *Metrik* (Abstandsfunktion), falls $\forall x, y, z \in X$ gilt:

- 1. **Positivität**: $d(x, y) = 0 \Leftrightarrow x = y$
- 2. **Symmetrie**: d(x,y) = d(y,x)
- 3. **Dreiecksungleichung**: $d(x,z) \le d(x,y) + d(y,z)$

1.2.2 Definition — Metrischer Raum.

Ein metrischer Raum ist ein Paar (X, d) aus einer Menge und einer Metrik auf dieser.

1.2.3 Definition — Pseudometrik.

Eine *Pseudometrik* erfüllt die gleichen Bedingungen wie eine Metrik, außer $d(x, y) = 0 \Rightarrow x = y$ — die Umkehrung gilt.

Abbildung 1.1: Diese Objekte sind "topologisch äquivalent" (später mehr zur genauen Definition), aus Sicht der metrischen Geometrie allerdings nicht.

Abbildung 1.2: Die Projektion einer Fläche auf einer Kugel auf Papier — nicht längentreu möglich!

1.2.4 Definition — Abgeschlossener r-Ball um x.

Eine Teilmenge $\overline{B_r(x)} := \{ y \in X : d(x,y) \le r \}$ heißt *abgeschlossener* r-Ball $um \ x$.

1.2.5 Definition — Abstandserhaltende Abbildung.

Sind (X, d_X) und (Y, d_Y) metrische Räume, so heißt eine Abbildung $f: X \to Y$ abstandserhaltend, falls

$$\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$$

1.2.6 Definition — Isometrie.

Eine *Isometrie* ist eine bijektive, abstandserhaltende Abbildung. Falls eine Isometrie $f:(X,d_X)\to (Y,d_Y)$ existiert, so heißen X und Y isometrisch.

1.3 Beispiele zu metrischen Räumen

1.3.1 Beispiel — Triviale Metrik.

Menge $X, d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ \rightarrow jede Menge lässt sich zu einer Metrik verwursten.

1.3.2 Beispiel — Simple Metriken.

Sei $X = \mathbb{R}$.

- $d_1(s,t) := |s-t|$ ist Metrik.
- $d_2(s,t) := \log(|s-t|+1)$ ist Metrik.

1.3.3 Beispiel — Standardmetrik.

 $X = \mathbb{R}^n$, $d_e(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = ||x - y||$ ist die (euklidische) Standardmetrik auf dem \mathbb{R}^n . Die Dreiecksungleichung folgt aus der Cauchy-Schwarz-Ungleichung¹.

Bemerkung (aus LA II): Isometrien von (\mathbb{R}^n, d_e) sind Translationen, Rotationen und Spiegelungen.

Anmerkung: Wenn d(x,y) eine Metrik ist, so ist auch $\widetilde{d}(x,y) \coloneqq \lambda d(x,y)$ mit $\lambda \in \mathbb{R}_{>0}$ eine Metrik.

¹ Cauchy-Schwarz-Ungleichung: $\langle x, y \rangle \leq ||x|| \cdot ||y|| \quad (x, y \in \mathbb{R})$

1.3.4 Beispiel — Maximumsmetrik.

$$X = \mathbb{R}, d(x,y) \coloneqq \max_{1 \le i \le n} |x_i - y_i| \text{ ist Metrik.}$$

1.3.5 Beispiel — ?? und ?? allgemein: Norm.

V sei \mathbb{R} -Vektorraum. Eine *Norm* auf V ist eine Abbildung $||\cdot||$: $V \to \mathbb{R}_{>0}$, so dass $\forall v, w \in V, \lambda \in \mathbb{R}$:

- 1. **Definitheit**: $||v|| = 0 \Leftrightarrow v = 0$
- 2. absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. **Dreiecksungleichung**: $||v + w|| \le ||v|| + ||w||$

Eine Norm definiert eine Metrik durch d(v, w) := ||v - w||.

1.3.6 Beispiel — Einheitssphären.

 $S_1^n := \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ ist die *n*-te Einheitssphäre. Auf dieser ist mit $d_W(x,y) := \arccos(\langle x,y \rangle)$ die Winkel-Metrik definiert.

1.3.7 Beispiel — Hamming-Metrik.

Es ist \mathbb{F}_2 der Körper mit zwei Elementen $\{0,1\}$,

$$X := \mathbb{F}_2^n = \{ (f_1, \dots, f_n) : f_i = 0 \lor f_i = 1 \ (i \in 1, \dots, n) \}$$

die Menge der binären Zahlenfolgen der Länge n. Die Hamming-Metrik ist definiert als

$$d_H: X \times X \to \mathbb{R}_{>0}, \quad d_H(u, v) = |\{i : u_i \neq v_i\}|.$$

Längenmetriken

2.1 Graphen — Definitionen

2.1.1 Definition — Graph.

Ein *Graph* G = (E, K) besteht aus einer *Ecken*-Menge E und einer Menge von Paaren $\{u, v\}$ $\{u, v \in E\}$, genannt *Kanten*.

2.1.2 Definition — Erreichbarkeit.

Seien $p, q \in E$ von G = (E, K). q ist *erreichbar* von p aus, falls ein *Kantenzug* von p nach q existiert.

2.1.3 Definition — Zusammenhängend.

G = (E, K) heißt zusammenhängend, falls alle Ecken von einer beliebigen, festen Ecke aus erreichbar sind.

Ist G ein zusammenhängender Graph, so ist d(p,q) = minimale Kantenzahl eines Kantenzuges von p nach q eine Metrik.

2.1.4 Beispiel — Wortmetrik.

Sei $\Gamma := \langle S \rangle$ vom endlichen Erzeugendensystem S erzeugte Gruppe. Dann:

$$g \in \Gamma \Rightarrow g = s_1 \cdot \dots \cdot s_n$$
 (multiplikativ, nicht eindeutig), (2.1)

z.B. $\mathbb{Z} = \langle \pm 1 \rangle$.

Dann lässt sich über die Länge von $g \in \Sigma$ (minimales n in \ref{n}) eine Metrik definieren:

2.1.5 Definition — Wortmetrik.

$$d_S(g,k) \coloneqq |g^{-1}k|$$

Abbildung 2.1: Ein einfacher Graph. Dieser Graph ist <u>nicht</u> zusammenhängend, da die Ecke 1 nicht von den anderen Ecken aus erreicht werden kann.

ist eine Metrik mit

$$d_{s}(kg, kh) = |(kg)^{-1}kh|$$

$$= |g^{-1}\underbrace{k^{-1}k}_{=e}h| = |g^{-1}h|$$

$$= d_{s}(g, h),$$

also ist d_s linksmultiplikativ mit $k \in \Gamma$ und damit eine Isometrie.

2.1.6 Definition — Cayley-Graph.

Der *Cayley-Graph* Cay (Γ, S) von Γ bezüglich S ist der Graph G = (E, K) mit

$$E := \Gamma, \quad K := \{(g, gs) : g \in \Gamma, s \in S\}.$$

Die Graphen-Metrik auf Cay(Σ , S) ist isometrisch zur Wortmetrik.

2.2 Euklidische Metrik

2.2.1 Beispiel — Euklidische Metrik auf \mathbb{R}^2 als Standardmetrik.

Sei

$$c:[a,b] \to \mathbb{R}^2, \quad t \mapsto (x(t),y(t))$$

eine stückweise differenzierbare¹ Kurve. Die *euklidische Länge* von *C* ist

$$L_{\text{eukl}}(c) := \int_{a}^{b} ||C'(t)|| dt \quad \text{(via Polynom-Approximation)}$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Beispiel: Geraden-Segment.

$$g:[0,1] \to \mathbb{R}^2$$
, $t \mapsto g(t) = (1-t)p + tq$

Dann:

$$g'(t) = -p + q, \quad ||g'(t)|| = ||p - q||$$

und damit

$$\underline{L_{\rm eukl}(g)} = \int_0^1 ||p - q|| dt = ||p - q|| = \underline{d_e(p, q)}.$$

2.2.2 Lemma — Unabhängigkeit von Leukl.

1. $L_{\text{eukl}}(c)$ ist unabhängig von Kurvenparametrisierung.

 1 **Hinweis**: Mit *differenzierbar* ist im Folgenden immer C^{∞} -differenzierbar gemeint, wenn nicht anders angegeben.

Abbildung 2.2: c bildet ein Intervall $[a, b] \subseteq \mathbb{R}$ auf eine Kurve im \mathbb{R}^2 ab.

Abbildung 2.3: Durch *Polynom-Approximation* wird eine Kurve sukzessive angenähert.

2. $L_{\text{eukl}}(c)$ ist invariant unter Translationen, Drehungen und Spiegelungen.

Beweis:

1. Zu zeigen: Für $c:[a,b] \to \mathbb{R}^2$, $t\mapsto c(t)$ und einen monoton wachsenden Diffeomorphismus² $t : [c,d] \rightarrow [a,b], s \mapsto t(s)$ gilt:

$$L_{\text{eukl}}(c(t(s))) = L_{\text{eukl}}(c(t)).$$

Das folgt unmittelbar aus der Substitutionsregel für Integrale:

$$\int_{c}^{d} \left\| \frac{dc}{ds} \right\| ds = \int_{c}^{d} \left\| \frac{d_{c}(t(s))}{dt} \right\| \left\| \frac{dt}{ds} ds \right\| = \int_{t(c)=a}^{t(d)=b} \left\| \frac{dc}{dt} \right\| dt.$$

2. • Translation.

$$\overline{\text{Für } p = (p_1, \dots, p_n)} \in \mathbb{R}^2 \text{ sei}$$

$$T_p(c(t)) = c(t) + p = (\lambda(t) + p_1, y(t) + p_2)$$

die von p verschobene Kurve. Es gilt

$$(T_p \circ c)(t) = c'(t) \Rightarrow \int_a^b \left\| (T_p \circ c)' \right\| dt = \int_a^b \left\| c' \right\| dt$$

und damit gilt das Lemma für Translationen.

• Drehung.

 $\overline{\text{Für }\theta \in [0,2\pi]}$ sei

$$D_{\theta} \circ c(t) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} c(t)$$
$$= (\cos \theta x(t) - \sin \theta y(t), \sin \theta x(t) + \cos \theta y(t))$$

die um Winkel θ gedrehte Kurve.

Da D_{θ} eine orthogonale Abbildung ist, folgt

$$(D_{\theta} \circ c(t))' = D_{\theta} \cdot c'(t)$$

und damit

$$||(D_{\theta} \circ c(t))'|| = ||D_{\theta} \cdot c'|| \stackrel{\text{orth.}}{=} ||c'||$$

und damit gilt das Lemma für Drehungen.

• Spiegelungen sind wie Drehungen orthogonal, ihre Invarianz folgt aus der Invarianz der Drehungen.

² **Diffeomorphismus**: Bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar

2.2.3 Lemma — Geraden sind am kürzesten.

Die kürzesten Verbindungskurven zwischen Punkten in \mathbb{R}^2 sind genau die Geradensegmente.

Beweis: Seien $p, q \in \mathbb{R}^2$ beliebig. Durch geeignete Rotation und Translation kann man (p, q) überführen in Punkte in spezieller Lage;

$$p' = (0,0), q' = (0,l).$$

Wegen ?? ändert sich dabei die Länge entsprechender Verbindungskurven nicht.

Sei jetzt c(t) := (x(t), y(t)) eine stückweise differenzierbare Kurve zwischen p' und q'. Dann gilt:

$$L_{\text{eukl}}(c) = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} dt \ge \int_{a}^{b} |y'| dt \ge \int_{a}^{b} y'(t) dt = \int_{y(a)=0}^{y(b)=1} dy$$

$$= 1.$$

l ist die Länge des Geradensegmentes zwischen p' und q'. \Rightarrow Infimum der Längenwerte wird angenommen. Eindeutigkeit bleibt zu zeigen.

Gilt für eine Kurve c, dass $L_{\text{eukl}}(c) = l$, so hat man in obigen Ungleichungen überall Gleichheit, also insbesondere x'(t) = 0 ($\forall t$), also x(t) = konstant = x(0) = 0 und somit $\tilde{c} = (0, y(t))$. Also ist \tilde{c} auch (parametrisiertes) Geradensegment.

Für $p, q \in \mathbb{R}^2$ sei $\Omega_{pq}(\mathbb{R}^2)$ die Menge der stetig differenzierbaren Verbindungskurven zwischen p und q. Wir setzen dann:

$$(p,q) = \inf L_{\text{eukl}}(c), \quad c \in \Omega_{pq}(\mathbb{R}^2).$$

2.2.5 Satz — "Neuer" metrischer \mathbb{R}^2 .

$$(\mathbb{R}^2, d_{\mathrm{eukl}})$$

ist ein metrischer Raum und isometrisch zu (\mathbb{R}^2 , d_e).

Beweis: Direkter Beweis nach??.

Man hat eine explizite Formel

$$d_{\text{eukl}}(p,q) = ||p-q|| = d_e(p,q).$$

Die Identität ist eine Isometrie.

Beweis: Konzeptioneller, allgemeinerer Beweis. Es werden die Metrik-Eigenschaften gezeigt.

Abbildung 2.4: Verschiebung von p und q auf p' und q'.

• Symmetrie.

Sei

$$\Omega_{pq}(\mathbb{R}^2) \ni c : [a, b] \to \mathbb{R}^2.$$

Idee: Kurve wird rückwärts durchlaufen.

Es ist $d_{\text{eukl}} = d_{\text{eukl}}$, denn ist $\tilde{c}(t) = (a + b - t) \in \Omega_{av}(\mathbb{R}^2)$ (mit gleicher Länge wie c) und die Abbildung $c \mapsto \tilde{c}$ ist bijektiv. Dann $L(\tilde{c}) = L(c)$, und damit

$$d(q, p) = \inf(L(\tilde{c})) = \inf(L(c)) = d(p, q).$$

• Dreiecksungleichung.

Zu zeigen: $d_{\text{eukl}}(p,q) \le d_{\text{euk}}(p,r) + d_{\text{euk}}(r,q) \ (\forall p,q,r \in \mathbb{R}^2).$ Verknüpfen von Wegen von p nach r mit solchen von r nach qliefert gewisse — aber i.A. nicht alle — Wege von *p* nach *q*:

$$\Omega_{pr} \cup \Omega_{rq} \subseteq \Omega_{pq}$$
.

Infimumbildung liefert die Behauptung.

· Positivität.

Zu zeigen: $d_{\text{eukl}}(p,q) = 0 \iff p = q$.

- Falls p = q.

Die konstante Kurve $c:[0,1] \to \mathbb{R}^2, t \mapsto c(t) = p$ hat

$$c'(t) = 0 \Rightarrow L_{\text{eukl}}(c) = 0 \Rightarrow d_{\text{eukl}}(p, p) = 0.$$

- Falls $p \neq q$.

Die kürzeste Kurve ist das Geradensegment³

$$t \mapsto (1-t)p + tq$$

mit der Länge $d_{\text{eukl}} = ||p - q|| = 0$.

Sphärische Geometrie

2.3.1 Beispiel — 2-dimensionale sphärische Geometrie als Längenraum.

Eine 2-dimensionale Sphäre von Radius R in \mathbb{R}^3 ist

$$S_{\mathbb{R}}^2 := \{ x \in \mathbb{R}^3 : ||x|| = \mathbb{R} \} = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = \mathbb{R}^2 \}.$$

Für eine stückweise differenzierbare Kurve

$$c:[a,b] \to S_{\mathbb{R}}^2 \subset \mathbb{R}^3, \ t \mapsto (x_1(t), x_2(t), x_3(t))$$

³ Anmerkung: nur an dieser Stelle wird die Geometrie des \mathbb{R}^2 benötigt!

definiere die sphärische Länge durch

$$L_S(c) := \int_a^b ||c'(t)|| dt = \int_a^b \sqrt{x_1'^2 + x_2'^2 + x_3'^2} dt$$

und

$$d_s(p,q) \coloneqq \inf L_s(c) \quad (c \in \Omega_{pq}(S^2_{\mathbb{R}})).$$

2.3.2 Lemma — Kurvenlängen rotationsinvariant.

Die Länge einer differenzierbaren Kurve auf $S_{\mathbb{R}}^2$ ist invariant unter Rotationen von \mathbb{R}^2 .

Beweis: Eine orthogonale Matrix im \mathbb{R}^2 ist (bzgl. Standardbasis) gegeben durch eine orthogonale Matrix $D \in \mathbb{R}^{2 \times 2}$. Da ||D(x)|| = ||x|| für $x \in \mathbb{R}^3$ gilt, ist $D(S_{\mathbb{R}}^2) = S_{\mathbb{R}}^2$. Insbesondere ist für eine Kurve c in $S_{\mathbb{R}}^2$ auch das Bild $D \circ c \subset S_{\mathbb{R}}^2$.

Weiter folgt aus $(D \circ c(t))' = D \circ c'(t)$:

$$L_{s}(D \circ c) = \int_{a}^{b} ||(D \circ c(t))'|| dt = \int_{a}^{b} ||D(c'(t))|| dt$$
$$= \int_{a}^{b} ||c'(t)|| dt = L_{S}(c).$$

2.3.3 Lemma — Großkreise sind am kürzesten.

Die kürzesten Verbindungskurven zwischen zwei Punkten in $S_{\mathbb{R}}^2$ sind Großkreise, also Schnitte von $S_{\mathbb{R}}^2$ und zweidimensionalen Untervektorräumen des \mathbb{R}^3 .

Beweis: Seien zwei beliebige Punkte p,q auf $S_{\mathbb{R}}^2$. Dann finden wir eine Rotation von \mathbb{R}^3 , die p auf p' = (0,0,R) — also den "Nordpol" — und q auf $q' = (0,y,z) \in S_{\mathbb{R}}^2$ abbildet. Nach Lemma **??** und der Definition ist $d_s(p,q) = d_s(p',q')$. Es genügt also eine kürzeste Verbindung zwischen p' und q' zu finden.

Idee: Mittels "geographischer Koordinaten" φ und θ . Nun kann eine Verbindung zwischen p' und q' geschrieben werden als

$$c(t) = R(\sin \theta(t) \cos \varphi(t), \sin \theta(t) \sin \varphi(t), \cos \theta(t))$$

und somit

 $c'(t) = (\theta' \cos \theta \cos \varphi - \varphi' \sin \theta \sin \varphi, \ \theta' \cos \theta \sin \varphi + \varphi' \sin \theta \cos \varphi, \ -\theta' \sin \theta),$ also

$$||c'(t)|| = R^2(\theta'^2 + \varphi'^2 \sin^2 \theta)$$

und somit

$$L_s(c) = R \int_a^b \sqrt{\theta'^2 + \varphi'^2 \sin^2 \theta} dt \ge R \int_a^b \sqrt{\theta'^2(t)} dt$$
$$= R \int_a^b |\theta'(t)| dt \ge R \int_a^b \theta'(t) dt = \int_{\theta(a)}^{\theta(b)} d\theta = R(\theta(b) - \theta(a))$$

mit oBdA $\theta(b) \ge \theta(a)$.

Diese untere Schranke wird durch ein Großkreissegment realisiert.

Eine weitere Kurve diese Länge kann es (wieder) nicht geben man hätte sonst überall Gleichheit in den Ungleichungen, also insbesondere $\varphi'=0$, also wäre φ konstant = $\varphi(a)=\frac{\pi}{2}$. Also liegt die Kurve auf Meridian und ist somit Großkreis.

2.3.4 Satz — Infimums- & Winkelmetrik isometrisch.

 $(S_{\mathbb{R}}^2, d_s)$ ist ein metrischer Raum und isometrisch zu $(S_{\mathbb{R}}^2, R \cdot d_W)$. **Beweis**: Analog zu (R^2, d_{eukl}) .

Wozu sind Metriken gut?

3.1 Einleitendes

3.1.1 In Analysis I.

In Analysis I heißt eine Folge von reellen Zahlen $(a_n)_{n\in\mathbb{N}}$ konvergent, wenn

$$\exists \ a \in \mathbb{R} : \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : |a_n - a| < \epsilon \quad (\forall n \ge N).$$

3.1.2 Analogie zu metrischen Räumen.

Sei (X, d) metrischer Raum.

Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus X heißt konvergent, wenn

$$\exists \ x \in X \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : d(x_n, x) \le \epsilon \quad (\forall n \ge N).$$

Also $x_n \in B_{\epsilon}(x) \ (\forall n \geq N)$.

3.1.3 Erinnerung — Stetigkeit.

 $f: \mathbb{R} \to \mathbb{R}$ heißt stetig in $t_0 \in \mathbb{R}$ falls $\forall s > 0$ ein $\delta = \delta(\epsilon) > 0$ existiert und $|f(t) - f(t_0)| < \epsilon$ falls $|t - t_0| < \delta$. f heißt stetig, wenn sie stetig ist $\forall t_0 \in \mathbb{R}$.

3.1.4 Verallgemeinerung.

Metrische Räume (X, d_X) , (Y, d_Y) . Eine Abbildung

$$f: X \to Y$$

heißt stetig in $x_0 \in X$, falls $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0$ sodass

$$d_Y(f(x), f(x_0)) < \epsilon \text{ falls } d_X(x, x_0) < \delta.$$

Also wenn $f(x) \in B_{\epsilon}^{Y}(f(x))$ falls $x \in B_{\delta}^{X}(x_{0})$. f heißt *stetig*, falls f stetig ist $\forall x \in X$.

3.1.5 Bemerkung.

 $f: X \to Y \text{ stetig} \Rightarrow f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n).$

Als Übungsaufgabe zu zeigen, der Beweis ist analog zum Beweis in der Analysis.

Diese Beobachtung führt historisch (um 1900) durch die Verallgemeinerung metrischer Räume zu topologischen Räume.

Grundbegriffe der allgemeinen Topologie

4.1 Toplogischer Räume

4.1.1 Definition — Topologischer Raum.

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus einer Menge X und einem System bzw. einer Familie

$$\mathcal{O} \subseteq \mathcal{P}(X)$$
 (= Menge aller Teilmengen von X),

von Teilmengen von X, so dass gilt

- 1. $X, \emptyset \in \mathcal{O}$
- 2. Durchschnitte von *endlich* vielen und Vereinigungen von *beliebig* vielen Mengen aus \mathcal{O} sind wieder in \mathcal{O} .

Ein solches System \mathcal{O} heißt *Topologie* von X. Die Elemente von \mathcal{O} heißen *offene Teilmengen* von X.

 $A \subset X$ heißt *abgeschlossen*, falls das Komplement $X \setminus A$ offen ist.

4.1.2 Beispiel — Extrembeispiele.

- 1. Menge X, $\mathcal{O}_{trivial} := \{X, \emptyset\}$ ist die *triviale Topologie*.
- 2. Menge X, $\mathcal{O}_{diskret} := \mathcal{P}(X)$ ist die *diskrete Topologie*.

4.1.3 Beispiel — Standard-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

 $\mathcal{O}_{s \text{ (standard)}} := \{ I \subset \mathbb{R} : I = \text{ Vereinigung von offenen Intervallen} \}$

ist Topologie auf \mathbb{R} .

4.1.4 Beispiel — Zariski-Topologie auf $\mathbb R$.

 $X = \mathbb{R}$,

$$\mathcal{O}_{Z(ariski)} := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus, E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\}$$

Offenes Intervall:

 $(a,b) := \{t \in \mathbb{R} : a < t < b\},\$ a und b beliebig ist die Zariski-Topologie auf \mathbb{R} .

(Mit anderen Worten: Die abgeschlossenen Mengen sind genau die endlichen Mengen, \varnothing und \mathbb{R} .)

Diese Topologie spielt eine wichtige Rolle in der algebraischen Geometrie beim Betrachten von Nullstellen von Polynomen:

$$(a_1 \dots, a_n) \leftrightarrow p(X) = (X - a_1) \cdots (X - a_n)$$

 $\mathbb{R} \leftrightarrow \text{Nullpolynom}$
 $\emptyset \leftrightarrow X^2 + 1$

4.1.5 Definition — Metrischer → topologischer Raum.

Metrische Räume (z.B. (X,d)) sind topologische Räume: $U \subset X$ ist d-offen $\Leftrightarrow \forall p \in U \exists \epsilon = \epsilon(p) > 0$, sodass der offene Ball $B_{\epsilon}(p) = \{x \in X : d(x,p) < \epsilon\}$ um p mit Radius ϵ ganz in U liegt: $B_{\epsilon}(p) \subset U$.

Die d-offenen Mengen bilden eine Topologie — die von der Metrik d induzierte Topologie¹.

¹ **Übungsaufgabe**: Zeigen, dass es sich wirklich um eine Topologie handelt

4.1.6 Definition — Basis.

Eine *Basis* für die Topologie \mathcal{O} ist eine Teilmenge $\mathcal{B} \subset \mathcal{O}$, sodass für jede offene Menge $\emptyset \neq V \in \mathcal{O}$ gilt:

$$V = \bigcup_{i \in I} V_i, \quad V_i \in \mathcal{B}.$$

Beispiel: $\mathcal{B} = \{\text{offene Intervalle}\}\ \text{für Standard-Topologie auf }\mathbb{R}.$

4.1.7 Beispiel — Komplexität einer Topologie.

 \mathbb{R} , \mathbb{C} haben eine abzählbare Basis bezüglich Standard-Metrik d(x,y)=|x-y| (beziehungsweise Standard-Topologie): Bälle mit rationalen Radien und rationalen Zentren.

4.1.8 Bemerkung — Gleichheit von Topologien.

Verschiedene Metriken können die gleiche Topologie induzieren: Sind d, d' Metriken auf X und enthält jeder Ball um $x \in X$ bezüglich d einen Ball um x bezüglich d' ($B_{\epsilon'}^d(x) \subset B_{\epsilon}^d(x)$), dann ist jede d-offene Menge auch d'-offen und somit $\mathcal{O}(d) \subset \mathcal{O}(d')$. Gilt auch die Umkehrung ($\mathcal{O}(d') \subset \mathcal{O}(d)$), so sind die Topologien gleich: $\mathcal{O}(d) = \mathcal{O}(d')$.

4.1.9 Beispiel — Bälle und Würfel sind gleich.

$$X = \mathbb{R}^2, x = (x_1, x_2), y = (y_1, y_2)$$
$$d(x, y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
$$d'(x, y) := \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Die induzierten Topologien sind gleich.

4.1.10 Beispiel — asd.

(X, d) sei ein beliebiger metrischer Raum,

$$d'(x,y) \coloneqq \frac{d(x,y)}{1+d(x,y)}$$

ist Metrik mit $\mathcal{O}(d) = \mathcal{O}(d')$.

Für d' gilt: $d'(x, y) \le (\forall x, y)$, insbesondere ist der Durchmesser von X bezüglich d':

$$= \sup_{x,y \in X} d'(x,y) \le 1,$$

das heißt, der Durchmesser eines metrischen Raumes ("metrische Information") sagt nichts über die Topologie aus.

4.1.11 Definition — Umgebung.

 (X, \mathcal{O}) sei ein topologischer Raum. $U \subset X$ heißt *Umgebung* von $A \subset X$, falls

$$\exists O \in \mathcal{O} : A \subset O \subset U$$
.

4.1.12 Definition — Innerer Punkt.

Für $A \subset X$, $p \in X$ heißt p ein innerer Punkt von A (bzw. äußerer Punkt von A), falls A (bzw. $X \setminus A$) Umgebung von $\{p\}$ ist. Das *Innere* von A ist die Menge $\overset{\circ}{A}$ der inneren Punkte von A.

4.1.13 Definition — Abgeschlossene Hülle.

Die *abgeschlossene Hülle* von A ist die Menge $\overline{A} \subset X$, die nicht äußere Punkte sind.

Beispiel:
$$(a,b) = \{t \in \mathbb{R} : a < t < b\},\ \overline{(a,b)} = [a,b] = \{t \in \mathbb{R} : a \le t \le b\}.$$

Übungen

5.1 2017-10-27

5.1.1 Aufgabe 1.

Zeigen Sie: (\mathbb{R}^2, d) mit $d(x, y) = |(x_1 - y_1) + (x_2 - y_2)|$ ist pseudometrischer Raum.

- **Positivität**. Zu zeigen: $\forall x \in \mathbb{R}^2 : d(x, x) = 0$. $d(x, x) = |(x_1 x_1) + (x_2 x_2)| = |0| = 0$.
- **Symmetrie**. Zu zeigen: $\forall x, y \in \mathbb{R}^2 : d(x, y) = d(y, x)$. $d(x, y) = |(x_1 y_1) + (x_2 y_2)| = |(y_1 x_1) + (y_2 x_2)| = d(y, x)$.
- **Dreiecksungleichung**. Zu zeigen: $\forall x, y, z \in \mathbb{R}^2 : d(x, z) \le d(x, y) + d(y, z)$. $d(x, y) + d(y, z) = |(x_1 y_1) + (x_2 y_2)| + |(y_1 z_1) + (y_2 z_2)| \ge |(x_1 z_1) + (x_2 z_2)| = d(x, z)$.

5.1.2 Aufgabe 2.

Gegeben:

- $||x||_1 := \sum_{i=1}^n |x_i|$,
- $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$,
- $||x||_{\infty} := \max_{i=1,...,n} |x_i|$.

Wir zeigen, dass alle drei Normen sind. Dafür ist zu zeigen:

- 1. **Positivität**: $||x|| \ge 0 \forall x, x = 0 \Leftrightarrow ||x|| = 0$.
- 2. **Sublinearität**: $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$
- 3. **Homogenität**: $\forall x \in V \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| \cdot ||x||$.

Positivität ist klar für alle drei. Homogenität ist auch arg simpel. **Sublinearität**:

1.

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i|$$
$$= ||x||_1 + ||y||_1$$

2.

$$||x + y||_{2}^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle - \langle y, y \rangle$$

$$\stackrel{\text{CSU}}{\leq} ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2}$$

$$\Rightarrow ||x + y||_{2} \leq ||x||_{2} + ||y||_{2}$$

3.

$$||x + y||_{\infty} = \max_{i=1,\dots,n} |x_i + y_i| \le \max_{i=1,\dots,n} (|x_i| + |y_i|)$$

$$\le \max_{i=1,\dots,n} \max_{j=1,\dots,n} (|x_i| + |y_j|) = (\max_i |x_i|) + (\max_j |y_j|)$$

$$= ||x||_{\infty} + ||y||_{\infty}$$

5.1.3 Aufgabe 3.

Sei (X, d) ein metrischer Raum, $r_1, r_2 \in \mathbb{R}_{>0}$.

- 1. Beweise:
 - (a) Falls $d(x,y) \ge r_1 + r_2$, dann sind $B_{r_1}(x)$, $B_{r_2}(y)$ disjunkt. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_1}(x) \cap B_{r_2}(y)$. Dann ist $d(x,y) \le d(x,z) + d(z,y) < r_1 + r_2$ \not
 - (b) Falls $d(x, y) \le r_1 r_2$, so ist $B_{r_2}(y) \subseteq B_{r_1}(x)$. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_2}(y) \setminus B_{r_1}(x)$. Dann ist

$$d(x,z) \ge r_1 = (r_1 - r_2) + r_2$$

> $d(x,y) + d(z,y)$ $\ \ \Box$

- 2. Finde je ein Gegenbeispiel für die Rückrichtung:
 - (a) Sei $X = \{0, 1\}$ und d Metrik auf X mit d(0, 1) = 1. **Idee**: Wir nehmen zwei Bälle, die sich in der Theorie überschneiden, weil die Summe der Radien kleiner ist als der Abstand, aber in der Schnittmenge liegen keine Elemente. Wir wählen $r_1 = r_2 = \frac{2}{3}$, x = 0, y = 1. Wir haben $B_{r_1}(0) = \{0\}$, $B_{r_2}(1) = \{1\}$, aber $r_1 + r_2 = \frac{4}{3} > d(0, 1)$.
 - (b) Metrik wie in erstem Gegenbeispiel, $r_1 = r_2 = 100$, x = 0, y = 1. Dann ist $B_{r_1}(0) = \{0, 1\}$, $B_{r_2}(1) = \{0, 1\}$, aber d(0, 1) > 100 100.

5.1.4 Aufgabe 4.

1. Zeigen Sie, dass (\mathbb{R}^2 , d_1) und (\mathbb{R}^2 , d_{∞}) isometrisch sind.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (x+y,x-y)$.

Behauptung: $f: (\mathbb{R}^2, d_1) \to (\mathbb{R}^2, d_{\infty})$ ist Isometrie.

f ist linear mit Rang 2, also bijektiv.

Seien $p = (x_1, y_1), q = (x_2, y_2) \in \mathbb{R}^2$. Zu zeigen:

$$d_{\infty}(f(p),f(q))=d_1(p,q).$$

Es ist

$$d_1(p,q) = |x_1 - x_2| + |y_1 - y_2|$$

$$= \max\{|(x_1 - x_2) + (y_1 - y_2)|, |(x_1 - x_2) - (y_1 - y_2)|\}$$

$$= \max\{|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|\}$$

$$= (\text{undeutlich}) = d_{\infty}(f(p), f(q)). \quad \Box$$

2. Zeigen Sie, dass (\mathbb{R}^n, d_1) und $(\mathbb{R}^n, d_{\infty})$ **nicht** isometrisch sind für n > 2.

Angenommen, es gibt eine Isometrie $\varphi^1:(\mathbb{R}^n,d_\infty)$ nach (\mathbb{R}^n, d_1) . Die Abbildung $\varphi^2 : (\mathbb{R}^n, d_1) \to (\mathbb{R}^n, d_1), x \mapsto x - \varphi^1(0)$ ist eine Translation, also eine Isometrie.

Wähle $\varphi := \varphi^2 \circ \varphi^1$. φ ist Isometrie mit $\varphi(0) = 0$.

Die Menge $\{(x_1, \dots, x_n) : x_i \in \{-1, 1\}\} =: A$ hat folgende Eigenschaft: Für alle $p,q \in A$ mit $p \neq q$ gilt $d_{\infty}(p,q) = 2$ und $d_{\infty}(p,0)=1.$

Sei $B = \varphi(A)$. Für alle $p, q \in B$ mit $p \neq q$ gilt $d_1(p,q) = 2$ und $d_1(p,0) = 1$. Da φ injektiv ist, gilt $|B| = |A| = 2^n > 2n$ (weil $n \ge 3$). Da jedes $x \in B$ mindestens eine Koordinate $\neq 0$ hat, gibt es ein $i \in \{1, \ldots, n\}$ und $p, q, r \in B$ mit $p_i, q_i, r_i \neq 0$.

Dann gibt es oBdA verschiedene $p,q \in B$ mit $p_i,q_i > 0$ (bzw haben selbes Vorzeichen, da es nur zwei mögliche Vorzeichen

Es gilt
$$d_1(p,q) = \sum_{j=1}^n |p_j - q_j| < \sum_{j=1}^n |p_j| + |q_j| = d_1(p,0) + d_1(0,q) = 2$$