The laws of physics can become extremely **counterintuitive**. A counterintuitive problem is one that appears simple and obvious, but in which the answer you feel turns out to be incorrect when examined more closely.

In this assignment, you will use Newton's Laws to analyze the motion of objects moving in a straight line (or nearly a straight line, in the case of an arrow.) The goal is to find a free-body diagram of each situation and try to build it. In this assignment, we are building only *qualitative* free-body diagrams.

The table below displays consequences of Newton's First and Second Laws. This is not how Newton's First and Second Laws are typically presented, but for *qualitatively* analyzing free-body diagrams, these representations can be very useful.

| LAW                 | If                                                                     | then                                         |
|---------------------|------------------------------------------------------------------------|----------------------------------------------|
|                     |                                                                        |                                              |
| Newton's First Law  | Net force on a moving object is zero.                                  | The object will move at a constant velocity. |
| Newton's Second Law | Net force on a moving object is in the SAME direction as velocity.     | The speed of the object will increase.       |
| Newton's Second Law | Net force on a moving object is in the OPPOSITE direction as velocity. | The speed of the object will decrease.       |

Principle of contact forces: all contact forces exist *only* when two objects are in contact. After two objects loose contact, a contact force does not continue to exist.

## Problem 1:

Someone fires a nerf gun across the room to the right. Our goal is to draw a free-body diagram of the nerf bullet as it flies, beginning from the moment after it leaves the gun and ending the moment before it strikes the wall.



| In option A, the net horizontal force on the nerf bullet is    |                            |  |
|----------------------------------------------------------------|----------------------------|--|
| In option B, the net horizontal force on the nerf bullet is    |                            |  |
| The direction of the horizontal velocity of the nerf bullet is |                            |  |
| If A were correct, then according to                           | Law, the nerf bullet would |  |
| horizontally because                                           |                            |  |
| If B were correct, then according to                           | Law, the nerf bullet would |  |
| horizontally because                                           |                            |  |
| We can observe that, in real life, the nerf bullet             |                            |  |
| Therefore, the correct answer must be                          | <u>_</u> .                 |  |
| The force(s) that do not exist in reality is (are)             |                            |  |
| hacausa                                                        |                            |  |

## Problem 2:

Someone throws a ball directly into the air. Our goal is to draw a free-body diagram of the ball from the moment it leaves the person's hand until it reaches the top of its arc.

| A          | В              | С           |                                   |
|------------|----------------|-------------|-----------------------------------|
|            |                |             | In option A, the net force on the |
|            |                | 1           | ball is                           |
|            |                | ₩ ₩         | In option B, the net force on the |
|            | <br><b>□</b> ↑ | throw force | ball is                           |
|            | throw force    | rce         |                                   |
|            | orce           |             | In option C, the net force on the |
| $\bigcirc$ |                |             | ball is                           |
| gr         | 9              | ي ا         |                                   |
| gravity    | gravity        | gravity     | The direction of the velocity of  |
| 1          | ↓              | ↓           | the ball is                       |
|            |                |             |                                   |

| If A were correct, then according to               | Law, the ball would |
|----------------------------------------------------|---------------------|
| because                                            |                     |
| If B were correct, then according to               | Law, the ball would |
| because                                            |                     |
| If C were correct, then according to               | Law, the ball would |
| because                                            |                     |
| We can observe that, in real life, the ball        |                     |
| Therefore, the correct answer must be              | <u>_</u> .          |
| The force(s) that do not exist in reality is (are) |                     |
| because                                            |                     |

## Problem 3:

Someone kicks a book on the floor across the room. Our goal is to draw a free-body diagram of the book from the moment it leaves the person's foot until it the moment is stops moving.



In option A, the net force on the book is

In option B, the net force on the book is

\_\_\_\_\_•

| In option C, the net force on the book is          | <del>.</del>          |  |
|----------------------------------------------------|-----------------------|--|
| The direction of the velocity of the book is       | ·                     |  |
| If A were correct, then according to               | Law, the book would _ |  |
| because                                            |                       |  |
| If B were correct, then according to               | Law, the book would _ |  |
| because                                            |                       |  |
| If C were correct, then according to               | Law, the book would _ |  |
| because                                            |                       |  |
| We can observe that, in real life, the book        | ·                     |  |
| Therefore, the correct answer must be              |                       |  |
| The force(s) that do not exist in reality is (are) |                       |  |
| because                                            | ·                     |  |

## Problem 4:

Someone is lifting a box. Our goal is to draw a diagram of the box while it is in motion at a constant velocity (frequently, people lift heavy objects at a nearly constant velocity).

| A                | В                   | С                        |
|------------------|---------------------|--------------------------|
| ← pulling force  | ← Dulling force     | <b>← O</b> pulling force |
| <b>y</b> gravity | <b>&gt;</b> gravity | <b>y</b> gravity         |

In option A, the net force on the box is \_\_\_\_\_.

In option B, the net force on the box is \_\_\_\_\_.

In option C, the net force on the box is \_\_\_\_\_.

The direction of the velocity of the arrow is \_\_\_\_\_.

| If A were correct, then according to               | Law, the box would |
|----------------------------------------------------|--------------------|
| because                                            |                    |
| If B were correct, then according to               | Law, the box would |
| because                                            |                    |
| If C were correct, then according to               | Law, the box would |
| because                                            |                    |
| We can observe that, in real life, the box         |                    |
| Therefore, the correct answer must be              | ·                  |
| The force(s) that do not exist in reality is (are) |                    |
| hooguso                                            |                    |