ANÁLISE MATEMÁTICA 7934-30_43701_R_E1_20241

CONTEÚDO

Revisar envio do teste: QUESTIONÁRIO UNIDADE II

Usuário	
Curso	ANÁLISE MATEMÁTICA
Teste	QUESTIONÁRIO UNIDADE II
Iniciado	
Enviado	
Status	
Resultado da tentativa	
Tempo decorrido	
	Todas as respostas, Respostas enviadas, Respostas corretas, Comentários, Perguntas respondidas incorretamente

Pergunta 1 0,5 em 0,5 pontos

Analise os itens e assinale a alternativa correta. Para série a seguir, temos:

$$\sum_{n=0}^{\infty} (x-7)^n = 1 + (x-7) + (x-7)^2 + (x-7)^3 + \dots + (x-7)^n + \dots$$

I - O termo $\sum_{n=0}^{\infty} (x-7)^n$ é o n-ésimo termo da série.

II - a = 7 é o centro da série.

III - Os coeficientes $C_0, C_1, C_2, C_3, \cdots C_n, \cdots$ da série são todos iguais a 1.

IV - Observe que se fixarmos x, por exemplo x = 1, a série de potências $\sum_{n=0}^{\infty} (x-7)^n$ é a série

numérica $\sum_{n=0}^{\infty} (-1)^n \cdot 6^n$, que é uma série alternada.

Resposta Selecionada: o e. Todas as alternativas estão corretas.

Respostas:

a. Apenas a alternativa II está correta.

h II e IV estão corretas.

c. II, III e IV estão corretas.

d I, II e III estão corretas.

🟑 e. Todas as alternativas estão corretas.

Comentário da resposta:

Resposta: E

Comentário: essa é a definição de série de potência:

Uma expressão da forma:

$$\sum_{n=0}^{\infty} C_n (x-a)^n = C_0 + C_1 (x-a) + C_2 (x-a)^2 + \dots + C_n (x-a)^n + \dots$$

é uma série de potências centrada em x = a.

- 1 O termo $\sum_{n=0}^{\infty} C_n(x-a)^n$ é o n-ésimo termo; o número a é o centro.
- 2 Para cada x fixado, a série de potências $\sum_{n=0}^{\infty} C_n x^n$ é uma série

numérica.

3 - Os valores $C_0, C_1, C_2, C_3, \cdots C_n$ são os coeficientes da série.

Pergunta 2 0,5 em 0,5 pontos

Para série, podemos afirmar que:

$$\sum_{n=0}^{\infty} (3x-2)^n$$

Resposta Selecionada: o centro é a = 2/3.

Respostas:

a. O centro é a = 2.

b. O centro é a = 3.

d. O centro é a = 3/2.

e. O centro é a = 1.

Comentário da resposta: Resposta: C

Comentário:

$$\sum_{n=0}^{\infty} \left(3x - 2\right)^n = \sum_{n=0}^{\infty} \left(3\left(x - \frac{2}{3}\right)\right)^n = \sum_{n=0}^{\infty} 3^n \left(x - \frac{2}{3}\right)^n$$

Portanto, o centro é 2/3.

Para série a seguir, temos:

$$\sum_{n=0}^{\infty} \frac{1}{4} (x+5)^n = \frac{1}{4} + \frac{1}{4} (x+5) + \frac{1}{4} (x+5)^2 + \frac{1}{4} (x+5)^3 + \dots + \frac{1}{4} (x+5)^n + \dots$$

Podemos afirmar que:

Resposta Selecionada: _{C.} a = - 5 é o centro da série.

Respostas:

O termo
$$\sum_{n=0}^{\infty} (x+5)^n$$
 é o n-ésimo termo da série.

h a = 5 é o centro da série.

d. Os coeficientes
$$C_0, C_1, C_2, C_3, \cdots C_n, \cdots$$
 são todos iguais a 1.

$$_{\rm e.}$$
 a = 5/4 é o centro da série.

Comentário da resposta:

Resposta: C

Comentário: o termo $\sum_{n=0}^{\infty} C_n(x-a)^n$ é o n-ésimo termo; o número a é o centro.

Portanto, a = -5 é o centro, pois
$$\sum_{n=0}^{\infty} \frac{1}{4} (x+5)^n = \sum_{n=0}^{\infty} \frac{1}{4} (x-(-5))^n$$
.

Pergunta 4

0,5 em 0,5 pontos

O intervalo de convergência da seguinte série de potências é:

$$\sum_{n=0}^{\infty} (-1)^n (5x-4)^n$$

Resposta Selecionada:

$$\frac{3}{5} < x < 1$$

Respostas:

$$\frac{3}{5} < x < 1$$

$$\int_{\text{b.}} \frac{3}{5} \le x \le 1$$

d.
$$3 < x < 5$$

$$\frac{3}{5} < x \le 1$$

Comentário da resposta:

Resposta: A Comentário:

$$\sum_{n=0}^{\infty} (-1)^n (5x-4)^n = 1 - (5x-4) + (5x-4)^2 - (5x-4)^3 + \dots + (-1)^n (5x-4)^n + \dots$$

Essa série é uma série geométrica de razão r = -(5x-4) e

a = 1. É convergente se |r| < 1, ou seja, |-(5x-4)| < 1 ou -1 < 5x - 4 < 1 ou

$$3 < 5x < 5$$
 ou

$$\frac{3}{5} < x < 1$$
.

Como o intervalo de convergência absoluta é finito, vamos testar a convergência ou a divergência em cada extremidade.

Se x = 1, então a série:

$$\sum_{n=0}^{\infty} (-1)^n (5x-4)^n = \sum_{n=0}^{\infty} (-1)^n$$

é uma série alternada que diverge.

Se x = 3/5, então a série:

$$\sum_{n=0}^{\infty} (-1)^n (5x-4)^n = \sum_{n=0}^{\infty} (-1)^{2n}$$

é uma série alternada a qual diverge, portanto, o intervalo de convergência é:

$$\frac{3}{5} < x < 1$$

Pergunta 5

0,5 em 0,5 pontos

Para a série, podemos afirmar que:

$$\sum_{n=0}^{\infty} (7x-3)^n$$

Resposta Selecionada: $_{\bigcirc}$ b. Os coeficientes da série são $C_n = 7^n$.

Respostas:

a. O centro é a = 3.

 $_{\odot}$ b. Os coeficientes da série são $C_n = 7^n$.

 $_{\text{C}}$ O centro é a = 7/3.

d O centro é a = 7.

Os coeficientes da série são $C_n = \left(x - \frac{3}{7}\right)^n$.

Comentário da resposta: Resposta: B

Comentário:

$$\sum_{n=0}^{\infty} \left(7x - 3\right)^n = \sum_{n=0}^{\infty} \left(7\left(x - \frac{3}{7}\right)\right)^n = \sum_{n=0}^{\infty} 7^n \left(x - \frac{3}{7}\right)^n$$

Portanto, os coeficientes da série são $C_n = 7^n$.

Pergunta 6

0,5 em 0,5 pontos

O raio de convergência da seguinte série de potências é:
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^n}{n!} (x-6)^n$$

Resposta Selecionada: \bigcirc d. $(-\infty, \infty)$

Respostas:

b.
$$-6 \le x \le 6$$

$$_{\odot}$$
 d. $(-\infty,\infty)$

Comentário da

Resposta: D

resposta:

Comentário: pelo teste da razão, temos:

$$\lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| = \lim_{n \to \infty} \frac{\left| \frac{3^{n+1}}{(n+1)!}}{\frac{3^n}{n!}} = \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3^n \cdot 3}{(n+1) \cdot n!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3}{(n+1)} = 0$$

Isso indica que o raio é $R = \infty$ e a série converge absolutamente em qualquer valor de x, portanto, o intervalo de convergência é $(-\infty,\infty)$.

A série de potências (série de Maclaurin) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, para $-\infty < x < \infty$, é a

representação em série para a função:

Resposta Selecionada: 👩 a. senx

Respostas:

💋 a. senx

b. cosx

c. e^X

d. In x

e. tgx

Comentário da resposta:

Resposta: A

Comentário: a série de Maclaurin é:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

$$f(x) = senx \rightarrow f(0) = sen(0) \rightarrow f(0) = 0$$

$$f'(x) = \cos x \rightarrow f'(0) = \cos(0) \rightarrow f'(0) = 1$$

$$f''(x) = -senx \rightarrow f''(0) = -sen(0) \rightarrow f''(0) = 0$$

$$f'''(x) = -\cos x \to f''(0) = -\cos(0) \to f''(0) = -1$$

A série de Maclaurin é:

$$senx = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \dots$$

$$senx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(2n+1\right)!} \cdot x^{(2n+1)}$$

Pergunta 8

0,5 em 0,5 pontos

A série de potências (série de Maclaurin) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$, para $-\infty < x < \infty$, é a representação em

série para a função:

Resposta Selecionada: ob. cosx

Respostas:

a. senx

Comentário da

Resposta: B

resposta:

Comentário: como sabemos que a derivada da função senx é cosx, então por derivação termo a termo, temos:

$$senx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{\left(-1\right)^n}{\left(2n+1\right)!} \cdot x^{\left(2n+1\right)} + \dots$$

$$(senx)' = (x)' - \left(\frac{x^3}{3!}\right)' + \left(\frac{x^5}{5!}\right)' - \left(\frac{x^7}{7!}\right)' + \dots + \left(\frac{(-1)^n}{(2n+1)!} \cdot x^{(2n+1)}\right)' + \dots$$
$$\cos x = 1 - \frac{3x^2}{3 \cdot 2!} + \frac{5x^4}{5 \cdot 4!} - \frac{7x^6}{7 \cdot 6!} + \dots + \frac{(-1)^n}{(2n)!} \cdot x^{2n} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

Pergunta 9

0,5 em 0,5 pontos

A série de potências $\sum_{n=1}^{\infty} \frac{x^{n/2}}{n!}$, para $x \ge 0$, é a representação em série para a função:

Resposta Selecionada: 👩 e. $e^{\sqrt{x}}$

Respostas:

a. senx

b. cosx

 $_{\text{c.}}\,\text{e}^{\text{X}}$

d. In x

⊘ e. *e*√x

Comentário da resposta: Resposta: E

Comentário: a série de potências da função exponencial é:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$e^{\sqrt{x}} = \sum_{n=0}^{\infty} \frac{\left(\sqrt{x}\right)^n}{n!} = \sum_{n=0}^{\infty} \frac{\left(x^{1/2}\right)^n}{n!} = \sum_{n=0}^{\infty} \frac{\left(x^{n/2}\right)}{n!}$$

Pergunta 10 0,5 em 0,5 pontos

O intervalo de convergência da seguinte série de potências é:

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{3^n}$$

Resposta Selecionada: oa. -5 < x < 1

Respostas:

b. $-5 \le x \le 1$

c. -1 < x < 1

 $d - 5 < x \le 1$

 $\frac{3}{5} < x \le 1$

Comentário da resposta:

Resposta: A

Comentário:

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{3^n} = 1 - \frac{(x+2)}{3} + \frac{(x+2)^2}{9} + \frac{(x+2)^3}{27} + \dots + \frac{(-1)^n (x+2)^n}{3^n} + \dots$$

Essa série é uma série geométrica de razão
$$r=-\frac{(x+2)}{3}$$
 e $a=1$. É convergente se $|r|<1$, ou seja, $\left|-\frac{(x+2)}{3}\right|<1$ ou $-1<\frac{(x+2)}{3}<1$ ou $-3< x+2<3$ ou $-5< x<1$.

É convergente dentro do "raio de convergência" -5 < x < 1.

Como o intervalo de convergência absoluta é finito, vamos testar a convergência ou a divergência em cada extremidade.

Se x = 1, então a série:

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{3^n} = \sum_{n=0}^{\infty} (-1)^n$$

é uma série alternada a qual diverge

Se x = -5, então a série:

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{3^n} = \sum_{n=0}^{\infty} (-1)^{2n}$$

é uma série alternada a qual diverge, portanto, o intervalo de convergência é: -5 < X < 1