Devoir surveillé n° 9 – Version 2 –

Durée: 3 heures, calculatrices et documents interdits

I. Base duale.

Soit E un \mathbb{K} -ev de dimension finie n non nulle. L'ensemble $\mathscr{L}(E,\mathbb{K})$ des formes linéaires de E est un \mathbb{K} -ev appelé le dual de E et noté E^* . Le dual de E^* est appelé le bidual de E et noté E^{**} . On a ainsi $(E^*)^* = E^{**}$.

Soit $\mathscr{B} = (e_k)_{1 \leq k \leq n}$ une base de E. Pour tout $i \in [1, n]$, on note e_i^* l'unique forme linéaire de E définie par la relation :

$$\forall j \in [1, n], e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases},$$

où δ est appelé symbole de Kronecker. La famille $(e_k^*)_{1 \leq k \leq n}$ est alors notée \mathscr{B}^* .

1) Pour tout $k \in [1, n]$, e_k^* est appelée l'application coordonnée d'indice k de \mathscr{B} . Justifier cette appellation en montrant que pour tout $x \in E$ on a

$$x = \sum_{k=1}^{n} e_k^*(x)e_k.$$

- 2) a) Montrer que \mathscr{B}^* est une base de E^* , appelée la base duale de \mathscr{B} .
 - b) Soit $f \in E^*$, montrer que le *n*-uplet des coordonnées de f dans \mathscr{B}^* est $(f(e_1), \ldots, f(e_n))$.
- 3) Pour tout $x \in E$ on note ev_x l'application $E^* \to \mathbb{K}$, appelée évaluation $f \mapsto f(x)$ de f en x.
 - a) Soit $x \in E$. Montrer que ev_x appartient à E^{**} .
 - **b)** Montrer que l'application $ev: E \to E^{**}$ est un isomorphisme de $x \mapsto ev_x$ $E \text{ sur } E^{**}.$
 - c) Quelle est l'application e_i^{**} ?

II. Allumettes de Banach.

Deux urnes A et B, initialement vides, peuvent contenir respectivement au plus n et m boules $(n \ge 1, m \ge 1)$.

On s'intéresse au protocole suivant :

- on choisit l'urne A avec la probabilité $p \in]0; 1[$, l'urne B avec la probabilité q = 1 p;
- on met une boule dans l'urne choisie;
- on répète cette épreuve autant de fois qu'il est nécessaire pour que l'une des urnes A ou B soit pleine, c'est-à-dire contienne n boules pour l'urne A ou contienne m boules pour l'urne B, les choix des urnes étant mutuellement indépendants.

Dans le cas où n=m et $p=q=\frac{1}{2}$, ce processus est connu sous le nom de problème des allumettes de Banach.

Partie I : Préliminaires.

On définit la suite $(a_n)_{n\in\mathbb{N}^*}$ par

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{\sqrt{n} \binom{2n}{n}}{4^n}.$$

- 1) Calculer a_1 et, pour tout entier $n \in \mathbb{N}^*$, le rapport $\frac{a_{n+1}}{a_n}$.
- 2) Démontrer, pour tout entier $n \in \mathbb{N}^*$,

$$a_n \leqslant \sqrt{\frac{n}{2n+1}}.$$

3) Donner le sens de variation de $(a_n)_{n\in\mathbb{N}^*}$, et montrer qu'elle converge vers un réel ℓ tel que :

$$\frac{1}{2} \leqslant \ell \leqslant \frac{1}{\sqrt{2}}.$$

4) Montrer alors que $\ell = \frac{1}{\sqrt{\pi}}$.

Partie II : Étude du cas symétrique.

Dans cette partie **seulement**, on prend m = n et $p = q = \frac{1}{2}$.

On note R_n la variable aléatoire égale au nombre (éventuellement nul) de boules contenues dans l'urne qui n'est pas pleine, à l'issue de l'expérience.

- 5) Dans ces questions, on n'oubliera pas de justifier ses calculs.
 - a) Donner les lois de R_1 et de R_2 .
 - **b)** Donner la loi de R_3 .
- 6) Calculer l'espérance et la variance de R_1 , R_2 et R_3 .

Dans toute la suite de la partie, on suppose que $n \ge 2$.

- 7) Quel est l'ensemble $R_n(\Omega)$ des valeurs prises par la variable R_n ?
- 8) Soit k appartenant à $R_n(\Omega)$.
 - a) Calculer la probabilité, qu'à l'issue de la $(n-1+k)^e$ épreuve, l'urne A contienne n-1 boules et l'urne B contienne k boules.
 - **b)** Donner alors la probabilité $P(R_n = k)$.
- 9) Vérifier que

$$\forall k \in [0, n-1], \ 2(k+1) P(R_n = k+1) = (n+k) P(R_n = k).$$

10) a) Déduire de la question précédente que

$$E(R_n) = n - (2n - 1) P(R_n = n - 1).$$

- b) En déduire une expression de $E(R_n)$ en fonction de n.
- c) Donner alors un équivalent de $n E(R_n)$ quand n tend vers plus l'infini.
- 11) a) De façon analogue, montrer que

$$E(R_n^2) = (2n+1) E(R_n) - n(n-1).$$

b) En déduire l'expression de $V(R_n)$ en fonction de n et $E(R_n)$.

Partie III : Retour au cas général.

On abandonne les conditions m = n et $p = q = \frac{1}{2}$.

12) En utilisant un argument probabiliste, montrer que

$$q^{m} \sum_{k=0}^{n-1} {m-1+k \choose m-1} p^{k} + p^{n} \sum_{k=0}^{m-1} {n-1+k \choose n-1} q^{k} = 1.$$

13) a) En utilisant la question précédente, montrer que la suite $\left(\sum_{k=0}^{M} \binom{n-1+k}{n-1} q^k\right)_{M\geqslant 0}$ converge.

- b) Pour $k \in [0, n-1]$, donner un équivalent de $\binom{m-1+k}{m-1}$ lorsque m tend vers $+\infty$.
- c) En déduire l'existence et la valeur de la limite suivante :

$$\lim_{m\to +\infty} q^m \sum_{k=0}^{n-1} \binom{m-1+k}{m-1} p^k.$$

d) Prouver alors que

$$\sum_{k=0}^{M} \binom{n-1+k}{n-1} q^k \xrightarrow[M\to+\infty]{} \frac{1}{p^n}.$$
— FIN —