Tentative

TFT LCD Tentative Specification

MODEL NO.: N141C1 - L03

Customer:	
Approved by:	
Note:	

QRA Division.	OA Head Division
Approval	Approval
94. 6. 30	林 94, 6, 30

Tentative

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 EDID DATA STRUCTURE	12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 22
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 22
8. PRECAUTIONS 8.1 HANDLING PRECAUTIONS 8.2 STORAGE PRECAUTIONS 8.3 OPERATION PRECAUTIONS	 28
9. PACKING 9.1 CARTON 9.2 PALLET	 29
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL 10.2 CMO CARTON LABE	 21

Tentative

REVISION HISTORY

Version	Date	Page (New)	Section	Description
	Date lun, 28,'05	Page (New)	All	Tentative specification was first issued.

Tentative

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N141C1 - L03 is a 14.1" TFT Liquid Crystal Display module with single CCFL Backlight unit and 30 pins LVDS interface. This module supports 1440 x (3 RGB) x 900 WXGA+ mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction. The inverter module for backlight is not built in.

1.2 FEATURES

- Thin and Light Weight
- WXGA+ (1440 x 900 pixels) resolution
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 2 pixel/clock

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	303.48(H) X 189.675(V) (14.1 inch Diagonal)	mm	(1)
Bezel Opening Area	306.76 (H) x 192.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1440 x R.G.B. x 900	pixel	-
Pixel Pitch	0.21075 (H) x 0.21075 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Anti-glare and Hard Coat (3H min.)	-	-

1.5 MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	319	319.5	320	mm	
Module Size	Vertical(V)	205	205.5	206	mm	(1)
	Depth(D)		5.0	5.3	mm	
Weight			400	415	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions

Tentative

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	200	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	2.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The ambient temperature means the temperature of panel surface.
- Note (3) 2ms, half sine wave, 1 times for $\pm X$, $\pm Y$, $\pm Z$.

Note (4) 10 ~ 500 Hz, Sweep rate 10min, 30min for X, Y, Z. The fixing condition is shown as below:

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

5 / 25

Tentative

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Svmbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	V_{CC}	-0.3	+4.0	V	(1)
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Ullit	Note
Lamp Voltage	V_L	-	2.5K	V_{RMS}	(1) , (2) , $I_L = 6.0 \text{ mA}$
Lamp Current	ΙL	-	(7.0)	mA_{RMS}	(1) (2)
Lamp Frequency	F∟	-	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Tentative

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value	Unit	Note	
		Symbol	Min.	Тур.	Max.	Offic	INOLE
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RP}	ı	-	100	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Power Supply Current	White	lcc	-	(420)	(470)	mA	(3)a
Fower Supply Current	Black	100	-	(500)	(565)	mA	(3)b
Logical Input Voltage	"H" Level	V_{IL}	-	-	+100	mV	-
"L" Level		V_{IH}	-100	-	-	mV	-
Terminating Resistor		R _⊤	•	100	-	Ohm	-
Power per EBL WG		P _{EBL}	-	TBD	-	W	(4)

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}$ Hz, whereas a power dissipation check pattern below is displayed.

Tentative

b. Black Pattern

Active Area

- Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.
 - (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$,
 - (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
 - (c) Luminance: 60 nits.

Tentative

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
r arameter	Syllibol	Min.	Typ.	Max.	Offic	Note
Lamp Input Voltage	V_L	(600)	(670)	(740)	V_{RMS}	$I_{L} = 6.0 \text{ mA}$
Lamp Current	Ι _L	(2.0)	(6.0)	(7.0)	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs			(1360 (25 °C))	V_{RMS}	(2)
Lamp rum on voltage	v _S			(1500 (0 °C))	V_{RMS}	(2)
Operating Frequency	F_L	(40)		(80)	KHz	(3)
Lamp Life Time	L_BL	(15,000)			Hrs	(5)
Power Consumption	P_L		(4.02)		W	(4) , $I_L = 6.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 6 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below.
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

 $I_p (or I_{-p}) / I_{rms}$

Tentative

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

1 11 1 LO	D MODULE				
Pin	Symbol	Description	Polarity	Remark	
1	Vss	Ground			
2	Vcc	Power Supply +3.3 V (typical)			
3	Vcc	Power Supply +3.3 V (typical)			
4	V_{EDID}	DDC 3.3V Power		DDC 3.3V Power	
5	BIST	Panel BIST enable			
6	CLK _{EDID}	DDC Clock		DDC Clock	
7	DATA _{EDID}	DDC Data		DDC Data	
8	Odd_Rin0-	- LVDS differential data input (R0-R5, G0) (odd pixels)	Negative	R0~R5,G0	
9	Odd_Rin0+	+ LVDS differential data input (R0-R5, G0) (odd pixels)	Positive	-	
10	VSS	Ground			
11	Odd_Rin1-	- LVDS differential data input (G1-G5, B0-B1) (odd pixels)	Negative	G1~G5, B0, B1	
12	Odd_Rin1+	+ LVDS differential data input (G1-G5, B0-B1) (odd pixels)	Positive	_	
13	VSS	Ground		~	
14	Odd_Rin2-	- LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)	Negative	DO DE DE H	
15	Odd_Rin2+	+ LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)	Positive	B2~B5, DE, Hsync, Vsync	
16	VSS	Ground			
17	Odd_ClkIN-	- LVDS differential clock input (odd pixels)	Negative	LV/DC L avail Clash	
18	Odd_ClkIN+	+ LVDS differential clock input (odd pixels)	Positive	LVDS Level Clock	
19	VSS	Ground			
20	Even_Rin0-	- LVDS differential data input (R0-R5, G0) (even pixels)	Negative	D0 D5 00	
21	Even_Rin0+	+ LVDS differential data input (R0-R5, G0) (even pixels)	Positive	- R0~R5,G0	
22	VSS	Ground			
23	Even_Rin1-	- LVDS differential data input (G1-G5, B0-B1) (even pixels)	Negative	C4 C5 D0 D4	
24	Even_Rin1+	+ LVDS differential data input (G1-G5, B0-B1) (even pixels)	Positive	- G1~G5, B0, B1	
25	VSS	Ground			
26	Even_Rin2-	- LVDS differential data input (B2-B5, HS, VS, DE) (even pixels)	Negative	DO DE DE Harma Varia	
27	Even_Rin2+	+ LVDS differential data input (B2-B5, HS, VS, DE) (even pixels)	Positive	B2~B5, DE, Hsync, Vsync	
28	VSS	Ground			
29	Even_ClkIN-	- LVDS differential clock input (even pixels)	Negative	1)/DC === C ==	
30	Even_ClkIN+	+ LVDS differential clock input (even pixels)	Positive	LVDS Level Clock	

Note (1) Connector Part No.: JAE- FI-XB30SRL-HF11 or equivalent

Note (2) User's connector Part No: FI-X30C2L or equivalent

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Ground	White

Note (1) Connector Part No.: JST- BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: SM02B-BHSS-1-TB or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

Color									[Data		al							
		Red				Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	: .	:	•	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	·		:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:)):	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0 <	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		: \	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:		-:/	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

5.5 EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

TBD

Tentative

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The specifications of input signal timing are as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	TBD	44.5	TBD	MHz	-
DE -	Vertical Total Time	TV	TBD	926	TBD	Η	-
	Vertical Addressing Time	TVD	900	900	900	Η	-
	Horizontal Total Time	TH	TBD	1600	TBD	Tc	-
	Horizontal Addressing Time	THD	1440	1440	1440	Tc	-

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \text{ msec}$

 $t5 \ge 200 \text{ msec}$

 $t6 \ge 200 \text{ msec}$

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time had better to follow

t7 5 msec

Tentative

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	3.3	V				
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"				
Inverter Current	IL	(6)	mA				
Inverter Driving Frequency	FL	60	KHz				
Inverter	Sumida H05-4915						

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

7.2 OPTICAL SPECIFICATIONS

Item		Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR			(300)	(400)	-	-	(2), (6)
Response Time		T_R			_	(5)	(10)	ms	(3)
Response fille		T_F			-	(11)	(16)	ms	(3)
Average Lumina	nce of White	L	-AVE		(185)	(220)	-	cd/m ²	(4), (6)
White Variation		δW	5pts				1.4	-	(6)
	Dad		Rx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		TBD		-	
	Red	Ry Gx		Viewing Normal Angle		TBD		-	
	Cross					TBD		-	
Color	Green	(Gy		TYP	TBD	TYP		
Chromaticity	Blue	Bx			-0.03	TBD	+0.03	-	
	blue		Ву			TBD		-	(4)
	White	'	Wx			(0.313)		-	(1)
		١	Ny			(0.329)		-	
Viewing Angle	Horizontal		9 _x +		(40)	(45)	-		
			θ_{x} -	OD>10	(40)	(45)	_	D	
	Vertical) _Y +	CR≥10	(10)	(15)		Deg.	
			θ _Y -		(30)	(35)	_		

Tentative

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Note (3) Definition of Response Time (T_R, T_F):

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

Note (4) Definition of Average Luminance of White (L_{AVE}):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (5)

Note (5) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Tentative

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Tentative

8. PACKAGING 8.1 CARTON

www.panelook.com

Figure. 8-1 Packing method

Issued Date: Jun 28, 2005 Model No.: N141C1 - L03

Tentative

9.2 PALLET

Figure. 9-2 Packing method

Tentative

10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N141C1 L03
- (b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

10.2 CMO CARTON LABEL

