COMS10013 - Analysis - WS4

Questions

These are the questions you should make sure you work on in the workshop.

1. **Gradient descent:** In this question we're going to study the function

$$E(x,y) = x^2 + y^2$$

- (a) Calculate $\nabla E(x,y)$
- (b) Using the initial value (x, y) = (1, 2) and step $\eta = 0.1$, calculate $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ of the gradient descent algorithm. What is $E(\mathbf{x}_3)$?
- (c) Using the same initial value, calculate $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ taking
 - (i) $\eta = 0.5$
 - (ii) $\eta = 1$

Extrapolate what value you'd get for \mathbf{x}_n and $E(\mathbf{x}_n)$; discuss whether this is a good choice of η .

- (d) Find all minima of E using calculus
- (e) Pick a new initial starting point (not a minimum value that you found in (d)!), and calculate $E(\mathbf{x}_3)$ using $\eta = 0.1$. Compare this to what you found in (b) is it a better starting point? Is this what you'd expect given what you found in (d)?
- 2. **Nelder-Mead Method:** In this question, we're going to study the function

$$E(x,y) = x^2 + y^2.$$

The eagle-eyed amongst you will notice that this is the same function as in question 1. This means that we already know what the minimum should be; the purpose of this question is to use the downhill simplex method to find the minimum.

We'll start with the initial simplex points: (0,0),(1,0),(0,1).

- (a) Draw the initial simplex and assign values $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ to the initial simplex points so that $E(\mathbf{x}_1) \leq E(\mathbf{x}_2 \leq E(\mathbf{x}_3)$.
- (b) Calculate the centroid of the simplex and find \mathbf{x}_r and $E(\mathbf{x}_r)$, where \mathbf{x}_r is the reflected point.
- (c) What happens next in the algorithm? Determine the next point that the algorithm will create, and assign the values $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ to the new simplex that is created. Draw the new simplex.
- (d) Carry out the algorithm so that you find the next two new points in the algorithms (and draw the new simplicies that arise).
- (e) Based on what you're seeing in this algorithm (and also the fact that you know the minimal point of E), how would you characterise a sensible stopping condition for the algorithm for this choice of E?

Extra questions

These are extra questions you might attempt in the workshop or at a later time. Some parts of these questions require a computer (e.g. using Python).

1. **Gradient descent:** In this question we're going to aim to minimise the function

$$f(x,y) = e^{-x}\cos(x)y^2$$

using Gradient descent.

- (a) Calculate $\nabla f(x,y)$
- (b) Choose three random initial vectors.
- (c) Using $\eta = 0.01, 0.1, 0.5$, calculate \mathbf{x}_{100} and $f(\mathbf{x}_{100})$ for each of your initial starting points. Interpret your result: given what you've found, what do you expect the minimum value of f to be? Which values of η lead to the quickest minimisation? Which initial points seem better or worse?
- (d) With the same values of η as in (c), calculate \bar{x} for the first 100 outputs, and also $f(\bar{x})$. Interpret your result and compare it with the outputs found in (c).
- (e) Look again at f; what do you expect the minimum value to be? Comment on how well the outputs from (c) and (d) perform compared to this minimum value.
- 2. **Nelder-Mead:** Using your favourite computer program of choice, write a function that carries out the Nelder-Mead algorithm on a two dimensional function. If you're feeling confident, try it on a three dimensional function.