CS2040S Data Structures and Algorithms

Augmented Trees!

Last week...

Dictionaries

Binary search trees

Tries

Balanced search trees

- AVL trees
- Scapegoat trees
- B-trees

Today: Dynamic Data Structures

1. Maintain a set of items

2. Modify the set of items

3. Answer queries.

Today: Dynamic Data Structures

1. Maintain a set of items

2. Modify the set of items

3. Answer queries.

B-trees are at the heart of *every* database!

Big picture idea:

Trees are a good way to store, summarize, and search dynamic data.

Dynamic Data Structures

- Operations that create a data structure
 - build (preprocess)
- Operations that modify the structure
 - insert
 - delete

- Query operations
 - search, select, etc.

"Why do we need to learn how an AVL tree works?"

Just use a Java TreeMap, amiright?

"Why do we need to learn how an AVL tree works?"

1. Learn how to think like a computer scientist.

"Why do we need to learn how an AVL tree works?"

- 1. Learn how to think like a computer scientist.
- 2. Learn to modify existing data structures to solve new problems.

Augmented Data Structures

Many problems require storing additional data in a standard data structure.

Augment more frequently than invent

Augmented Data Structures

Many problems require storing additional data in a standard data structure.

Augment more frequently than invent

Useful for summarizing and processing data

Today

Three examples of augmenting balanced BSTs

1. Order Statistics

2. Interval Queries

3. Orthogonal Range Searching

Basic methodology:

1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)

Basic methodology:

- Choose underlying data structure
 (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Modify data structure to *maintain* additional info when the structure changes.

(subject to insert/delete/etc.)

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Modify data structure to *maintain* additional info when the structure changes.

(subject to insert/delete/etc.)

4. Develop new operations.

Input

A set of integers.

Output: select(k)

select(2) returns:

52	7	13	43	22	92	18	9	65	67	87	25

- 1. 52
- **√**2. 9
 - 3. 13
 - 4. 43
 - 5. 25

Input

A set of integers.

Output: select(k)

Input

A set of integers.

Output: select(k)

Input

A set of integers.

Output: $select(k) \longrightarrow Sort: O(n log n)$

Input

A set of integers.

Output: select(k) ———— QuickSelect: O(n)

Solution 1:

Sort: O(n log n)

Solution 2:

QuickSelect: O(n)

Solution 1:

```
Preprocess: sort --- O(n log n)
```

Select: O(1)

Solution 2:

Preprocess: nothing --- O(1)

QuickSelect: O(n)

Solution 1:

Preprocess: sort --- O(n log n)

Select: O(1)

Solution 2:

Preprocess: nothing --- O(1)

QuickSelect: O(n)

Trade-off: how many items to select?

Implement a data structure that supports:

- insert(int key)
- delete(int key)

and also:

select(int k)

Solution 1:

Basic structure: sorted array A.

insert(int item): add item to sorted array A.

select(int k): return A[k]

7 9 13 18 22 25 43 52 65 67 87 92

Solution 2:

Basic structure: unsorted array A.

insert(int item): add item to end of array A.

select(int k): run QuickSelect(k)

7 9 13 18 22 25 43 52 65 67 87 92

When is it more efficient to maintain a sorted array (Solution 1)?

- A. Always
- B. When there are more inserts than selects.
- C. When there are more selects than inserts.
 - D. Never
 - E. I'm confused.

	Insert	Select
Solution 1: Sorted Array	O(n)	O(1)
Solution 2: Unsorted Array	O(1)	O(n)

Today: use a (balanced) tree

20 27 29 41 50

How to find the right item?

Simple solution: traversal select(k): O(k)

in-order traversal

 11
 20
 27
 29
 41
 50
 65

Augment!

What extra information would help?

Idea: store rank in every node

11 20 27 29 41 50 65

Idea: store rank in every node

11 20 27 29 41 50 65

Idea: store rank in every node

Idea: store rank in every node

11 20 27 29 41 50 65

Idea: store rank in every node

11 20 27 29 41 50 65

What is the problem if we store rank in every node?

11	20	27	29	41	50	65
----	----	----	----	----	-----------	----

Idea: store rank in every node

Problem: insert(5)

Idea: store rank in every node

Problem: insert(5) requires updating all the ranks!

Idea: store rank in every node

 5
 11
 20
 27
 29
 41
 50
 65

Conclusion: too expensive to store rank in every node!

What should we store in each node?

Idea: store size of sub-tree in every node

Idea: store size of sub-tree in every node

The <u>weight</u> of a node is the size of the tree rooted at that node.

Define weight:

```
w(leaf) = 1
 w(v) = w(v.left) + w(v.right) + 1
```

Idea: store size of sub-tree in every node

What is the rank of 41?

- 1. 1
- 2. 3
- **✓**3. 5
 - 4. 7
 - 5.9
 - 6. Can't tell.

Example: select(3)

"rank in subtree" = left.weight + 1

Example: select(3)

Item to select:

$$3 - (left.weight + 1) =$$

$$3 - (1 + 1) = 1$$

- 1. Go left at 65
- ✓2. Go right at 65
 - 3. Stop at 65
 - 4. I'm confused

- 1. Go left at 75
- 2. Go right at 75
- **✓**3. Stop at 75
 - 4. I'm confused

select(k)

```
rank = left.weight + 1;
if (k == rank) then
    return v;
else if (k < rank) then
    return left.select(k);
else if (k > rank) then
    return right.select(k-rank);
```

select(k): finds the node with rank k

Example: find the 10th tallest student in the class.

select(k): finds the node with rank k

Example: find the 10th tallest student in the class.

rank(v): computes the rank of a node v

Example: determine the percentile of Johnny's height. Is Johnny in the 10th percentile or the 90th percentile?

Example: rank(27)

Example: rank(27)

Example: rank(27)

Example: rank(27)

rank = 1 + 2

Example: rank(27)

rank = 1 + 2 = 3

Rank(v): computes the rank of a node v rank(node)

```
rank = node.left.weight + 1;
while (node != null) do
      if node is left child then
            do nothing
      else if node is right child then
            rank += node.parent.left.weight + 1;
      node = node.parent;
return rank;
```

rank(75)

rank(75)

$$rank = 2 + 2$$

Dynamic Order Statistics

rank(75)

$$rank = 2 + 2 + 5 = 9$$

Dynamic Order Statistics

Rank(v): computes the rank of a node v

```
rank(node)
     rank = node.left.weight + 1;
     while (node != null) do
           if node is left child then
                 do nothing
           else if node is right child then
                 rank += node.parent.left.weight + 1;
           node = node.parent;
     return rank;
```

Augmenting data structures

Basic methodology:

1. Choose underlying data structure:

AVL tree

- 2. Determine additional info needed: Weight of each node
- 3. Maintained info as data structure is modified.

 Update weights as needed
- 4. Develop new operations using the new info.

Select and Rank

Augmenting data structures

Basic methodology:

1. Choose underlying data structure:

AVL tree

- 2. Determine additional info needed: Weight of each node
- 3. Maintained info as data structure is modified.

 Update weights as needed
- 4. Develop new operations using the new info.

Select and Rank

How to update weights on rotation?

How long does it take to update the weights during a rotation?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. What is a rotation?

How long does it take to update the weights during a rotation?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. What is a rotation?

Augmenting data structures

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Verify that the additional info can be maintained as the data structure is modified.

(subject to insert/delete/etc.)

4. Develop new operations using the new info.

Today

Three examples of augmenting balanced BSTs

1. Order Statistics

2. Intervals

3. Orthogonal Range Searching

Find a tower that covers my location.

Find a tower that covers my location.

Find a tower that covers my location.

insert(begin, end) delete(begin, end)

Find a tower that covers my location.

17

19

insert(begin, end) delete(begin, end)

query(x): find an interval that overlaps x.

Find a tower that covers my location.

Idea 1: Keep intervals in a list.

Query: scan entire list.

Find a tower that covers my location.

Idea 1: Keep intervals in a list.

Query: scan entire list.

Find a tower that covers my location.

Idea 2: O(1) queries??

Find a tower that covers my location.

Idea 2: O(1) queries

			A	A	A	A	A	В	В	C				D	D	D	D	Ε	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Idea 3: Interval Trees

Each node is an interval

Sorted by left endpoint

search-interval(25) = ?

Augment: ??

Augment: maximum endpoint in subtree

- 2.8
- 3. 11
- 4. 18
- **✓**5. 25
 - 6. 19

Augment: maximum endpoint in subtree

Insertion: example - insert(7, 25)

Insertion: example - insert(7, 25)

Insertion: example - insert(7, 25)

Insertion: out-of-balance

Insertion: right-rotate (17, 19)

Insertion: right-rotate (17, 19), OOPS!

Insertion: out-of-balance

Insertion: left-rotate, right-rotate

Maintain MAX during rotations:

Maintain MAX during rotations:

Maintain MAX during rotations:


```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c != null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```



```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c != null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```

Will any search find (21, 23)?

Why does it work?

Claim: If search goes right, then no overlap in left subtree.

Max in "left sub-tree" is 18:

Safe to go right: 22 is not in the left sub-tree.

Claim: If search goes left and there is no overlap in the left subtree...

Why does it work? **17**,19 max=23**5**, 11 max=18 max=23 **15**,18 4,8 max=8 max=18 **7**, 10 max=10

Claim: If search goes left, then safe to go left.

Max in "left sub-tree" is 18:

Go left: search(13) < 18

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

13 < every interval in right subtree

Claim: If search goes left and no overlap, then key < every interval in right sub-tree.

If search goes right: then no overlap in left subtree.

→ Either search finds key in right subtree or it is not in the tree.

If search goes left: if there is no overlap in left subtree, then there is no overlap in right subtree either.

→ Either search finds key in left subtree or it is not in the tree.

Conclusion: search finds an overlapping interval, if it exists.

The running time of interval-search is:

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. Can't say.

Extension: List all intervals that overlap with point?

E.g.: search(22) returns:

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm:

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

The running time of All-Overlaps, if there are k overlapping intervals?

- 1. O(1)
- 2. O(k)
- 3. O(k log n)
- 4. O(k + log n)
- 5. O(kn)
- 6. O(kn log n)

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm: O(k log n)

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

Best known solution: O(k + log n)

Today

Three examples of augmenting BSTs

1. Order Statistics

2. Intervals

3. Orthogonal Range Searching

Orthogonal Range Searching

Input: *n* points in a 2d plane

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Orthogonal Range Searching

Input: *n* points in a 2d plane

Query: Box

- Contains at least one point?
- How many?

Practical Example

Are there any good restaurants within one block of me?

One Dimension

One Dimension

Range Queries

- Important in databases
- "Find me everyone between ages 22 and 27."

One Dimension

Strategy:

1. Use a binary search tree.

- 2. Store all points in the <u>leaves</u> of the tree. (Internal nodes store only copies.)
- 3. Each internal node ν stores the MAX of any leaf in the <u>left</u> sub-tree.

(25)

Note: BST Property

Example: query(10, 50)

Example: query(10, 50)

Example: query(10, 50)

Example: query(8, 20)

Example: query(8, 20)

Algorithm:

- Find "split" node.
- Do left traversal.
- Do right traversal.

```
FindSplit(low, high)
     v = root;
     done = false;
     while !done {
            if (high <= v.key) then v=v.left;
            else if (low > v.key) then v=v.right;
            else (done = true);
     return v;
```

Example: query(8, 20)

Algorithm:

- v = FindSplit(low, high);
- LeftTraversal(v, low, high);
- RightTraversal(v, low, high);

```
RightTraversal(v, low, high)
     if (v.key <= high) {</pre>
            all-leaf-traversal(v.left);
            RightTraversal(v.right, low, high);
     else {
            RightTraversal(v.left, low, high);
```



```
RightTraversal(v, low, high)
     if (v.key <= high) {</pre>
            all-leaf-traversal(v.left);
            RightTraversal(v.right, low, high);
     else {
            RightTraversal(v.left, low, high);
```



```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```



```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```

Algorithm:

- v = FindSplit(low, high);
- LeftTraversal(v, low, high);
- RightTraversal(v, low, high);

Analysis

Query time:

- Finding split node: O(log n)
- Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.
- Right Traversal:

At every step, we either:

- 1. Output all left sub-tree and recurse right.
- 2. Recurse left.

Analysis

Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

Counting:

- 1. Recurse at most O(log n) times (i.e., option 2).
- 2. How expensive is "output all sub-tree" (i.e., option 1)?

Left Traversal:

At every step, we either:

- 1. Output all right sub-tree and recurse left.
- 2. Recurse right.

Counting:

- 1. Recurse at most O(log n) times (i.e., option 2).
- 2. How expensive is "output all sub-tree" (i.e., option 1)?
 - \rightarrow O(k), where k is number of items found.

Query time complexity:

O(k + log n)

where k is the number of points found.

Preprocessing (buildtree) time complexity:

O(n log n)

Total space complexity:

O(n)

What if you just want to know *how many* points are in the range?

What if you just want to know *how many* points are in the range?

- Augment the tree!
- Keep a count of the number of nodes in each sub-tree.
- Instead of walking entire sub-tree, just remember the count.

```
LeftTraversal(v, low, high)
     if (low <= v.key) {
           all-leaf-traversal(v.right);
           total += v.right.count;
           LeftTraversal(v.left, low, high);
     else {
           LeftTraversal(v.right, low, high);
```


1D Range Tree

Done??

What about dynamic updates?

– Need to verify rotations!

Ex: search for all points between dashed lines.

Step 1:

Create a 1d-range-tree on the x-coords.

Problem: can't enumerate entire sub-trees, since there may be too many nodes that don't satisfy the y-restriction.


```
LeftTraversal(v, low, high)
  if (v.key >= low) {
        all-leaf-traversal(v.right);
        LeftTraversal(v.left, low, high);
  else {
        LeftTraversal(v.right, low, high);
```

Solution: Augment!

- Each node in the x-tree has a set of points in its sub-tree.
- Store a y-tree at each x-node containing all the points in the sub-tree.


```
LeftTraversal(v, low, high)
  if (v.key.x >= low.x) {
        ytree.search(low.y, high.y);
        LeftTraversal(v.left, low, high);
  else {
        LeftTraversal(v.right, low, high);
```

Example:

Example:

Idea:

- Build an x-tree using only x-coordinates.
- For every node in the x-tree, build a y-tree out of nodes in subtree using only y-coordinates.

Query time: $O(log^2n + k)$

- O(log n) to find split node.
- O(log n) recursing steps
- O(log n) y-tree-searches of cost O(log n)
- O(k) enumerating output

Space complexity: O(n log n)

- Each point appears in at most one y-tree per level.
- There are O(log n) levels.
- → Each node appears in at most O(log n) y-trees.

The rest of the x-tree takes O(n) space.

Building the tree: O(n log n)

- Tricky...
- − Left as a puzzle... ☺

Challenge of the Day...

Dynamic Trees

What about inserting/deleting nodes?

- Hard!
- How do you do rotations?
- Every rotation you may have to entirely rebuild the y-trees for the rotated nodes.
- Cost of rotate: O(n) !!!!

Example:

d-dimensional

What if you want high-dimensional range queries?

- Query cost: O(logdn + k)
- buildTree cost: O(n log^{d-1}n)
- Space: O(n log^{d-1}n)

Idea:

- Store d–1 dimensional range-tree in each node of a 1D range-tree.
- Construct the d–1-dimensionsal range-tree recursively.

Curse of Dimensionality

What if you want high-dimensional range queries?

- Query cost: O(logdn + k)
- buildTree cost: O(n log^{d-1}n)
- Space: O(n log^{d-1}n)

Idea:

- Store d–1 dimensional range-tree in each node of a 1D range-tree.
- Construct the d–1-dimensionsal range-tree recursively.

Real World (aside)

kd-Trees

- Alternate levels in the tree:
 - vertical
 - horizontal
 - vertical
 - horizontal
- Each level divides the points in the plane in half.

Real World (aside)

kd-Trees

- Alternate levels in the tree
- Each level divides the points in the plane in half.
- Query cost: $O(\sqrt{n})$ worst-case
 - Sometimes works better in practice for many queries.
 - Easier to update dynamically.
 - Good for other types of queries: e.g., nearestneighbor

Today

Three examples of augmenting BSTs

1. Order Statistics

2. Intervals

3. Orthogonal Range Searching