Week 2: How to read a regression table in a social science paper

Dr. Gabriel Geisler Mesevage

gabriel.mesevage@kcl.ac.uk Office Hours: Wed. 10-11am & Thurs. 2-3pm

21 January 2020

What you will see

	(1)
	OLS
Log of initial income	-6.0603***
	[1.1125]
Growth in capital stock per capita	0.1971**
	[0.0760]
Growth in land per capita	0.3077
• •	[0.1855]
Log of 1 + agricultural tariff	-5.0697
	[4.8451]
Log of 1 + manufacturing tariff	14.7219**
	[6.1808]
Log of 1 + exotic tariff	-1.3786
_	[0.8040]
Constant	8.1735***
	[1.3241]
Observations	70
Number of countries	10
R^2	0.51

The equation behind the table

```
\begin{split} & \texttt{gdp\_growth\_pc}_i = \alpha + \beta_1 log(\texttt{initial\_income}_i) + \\ & \beta_2 \texttt{growth\_capital\_stock}_i + \beta_3 \texttt{growth\_land\_pc}_i + \\ & \beta_4 log(\texttt{agric\_tariff}_i + 1) + \beta_5 log(\texttt{manuf\_tariff}_i + 1) + \\ & \beta_6 log(\texttt{exotic\_tariff}_i + 1) + \epsilon_i \end{split}
```

- α and the β 's are **parameters**: they are estimated from the data
- The numbers in the table are the **parameters** associated with each **variable**
 - \circ E.g. $\beta_1 = -6.0603$ is the parameter for initial_income
- ϵ_i is the **error**:
 - o The difference between what the model suggests and the data
 - \circ We do not observe the true ϵ_i
 - \circ We do observe how the model differs from the data: we call these observations $\hat{\epsilon}$ where the hat denotes an estimate

Let's start with a simple example

Simple example

Interpretation: Linear Conditional Expectation

ullet The line that makes the best guess at average y given x

A simple regression

Example Regression Table

	Dependent variable:		
	у		
X	1.527**** (0.088)		
Constant	39.912*** (0.091)		
Observations	100		
Adjusted R ²	0.753		
Note:	*p<0.1; **p<0.05; ***p<0.01		

- Standard errors are in parantheses
- A **statistically significant** coefficient means the **slope is non-zero**
 - \circ The stars by x indicate statistical significance
 - \circ The stars by Constant indicate that the intercept is far from zero

Statistical significance

- We estimated the coefficient on $\beta_1=1.527$
- We estimated its standard error to be $se_1=.088$
 - \circ This means we think on **average** the coefficient will be 1.527 with a variance of $se_1^2=.088^2=.007744$
- The mean and average imply a distribution for the coefficient -- is it far from zero?
 - Rule of thumb: multiply the standard-error by 2 and add/subtract from coefficient for 95% confidence interval

Assumptions: the relationship is linear

- Here the true model is $y = \alpha + \beta x^2 + \epsilon$
 - With two variables plotting your data should usually let you fix a problem like this

What happens with more variables?

Omitted Variable Bias in Action

	Dependent variable:				
	У				
	(1) (2		2)		
X	1.045***	(0.309)	-0.984***	(0.170)	
Z			50.174***	* (1.002)	
Constant	63.647**	* (0.922)	39.452***	* (0.689)	
Observations	1,000		1,000		
\mathbb{R}^2	0.011		0.719		
Note:	*p<0.1; ***p<0.05; ****p<0.01				

- The value a parameter takes depends on the other variables in the model
 - We call this omitted variable bias
 - Why you should not interpret regressions as causal relations
 - \circ Intuition: z is large whenever x is large. If you look only at y and x the effect of x combines the effects of x and z
- Why does randomization produce causal estimates?
- R^2 : a measure of how much of the variation in y the model explains

Questions to think about when reading a regression

- Did the authors omit variables that could change the relationship and should be included?
 - The constant concern of any statistical argument
- Is the model appropriate?
- Is the relationship of a meaningful magnitude?

Resources

Morgan, Stephen L., and Christopher Winship. Counterfactuals and Causal Inference: Methods and Principles for Social Research, Cambridge University Press, 2007: This is an introductory graduate level text frequently used in sociology and political science. It focuses on causal inference from data analysis.

Jeffrey Wooldridge, *Introductory Econometrics: A Modern Approach*, is what is often used with economics undergrads (no digital copy in the library unfortunately).

Joshua D. Angrist & Jorn-Steffen Pischke, *Mostly Harmless Econometrics: An Empiricist's Companion*, is a popular graduate-level treatment for economists that surveys common approaches.