IN THE CLAIMS

A complete listing of the claims follows and replaces any prior versions.

- (Currently Amended) A read channel, comprising: 1 1. a Viterbi decoder for decoding a received data stream to produce an estimated 2 sequence representing decoded data bits; and 3 a sequence selection stage for analyzing error events and selecting a sequence 4 based upon the analysis of the error events; 5 wherein the sequence selection stage and the Viterbi decoder each include at least 6 one threshold, and wherein at least one threshold of the sequence selection stage and the 7 Viterbi decoder is dynamically biased to improve detection reliability in the presence of 8 data dependent noise and wherein an offset term is provided specific for each sequence 9 selection stage to produce an error sequence, the offset terms comprising an offset 10 threshold dependent upon the sequence at the output of the Viterbi decoder. 11
- 2. (Original) The read channel of claim 1 further comprising an equalizer for receiving a readback signal and producing a desired target response at the Viterbi decoder.

1 3. The read channel of claim 1, wherein the Viterbi decoder (Original) 2 further comprises: a branch metric generator for generating distance metrics for a received data 3 4 stream; a plurality of adders for adding the distance metric for each possible branch to a 5 previously accumulated path metric to produce a revised path metric for each branch; 6 at least one comparator for comparing the revised path metric for a plurality of 7 branches; and 8 a selector for selecting a path metric for a path having a smallest path metric. 9 1 4. The read channel of claim 3, wherein the at least one (Original) comparator includes a threshold for making a bias adjustment to improve detection 2 reliability in the presence of data dependent noise. 3 1 5. The read channel of claim 4, wherein the threshold is (Original) adjusted to choose a sequence with more transitions. 2 1 6. The read channel of claim 4, wherein the threshold is (Original) adjusted to choose a sequence that compensates for polarity dependent noise. 2 1 **7**. The read channel of claim 6, wherein the threshold is (Original) adjusted to choose a sequence with more ones when polarity dependent noise makes ones 2 3 more noisy.

1	8. (Original) The read channel of claim 6, wherein the threshold is
2	adjusted to choose a sequence with more zeroes when polarity dependent noise makes
3	zeroes more noisy.
1	9. (Currently Amended) The read channel of claim 1, wherein the sequence
2	selection stage further comprises:
3	a plurality of error event filters, operatively coupled to the Viterbi decoder, for
4	identifying an error event and producing an output error;
5	a plurality of adders, coupled to the error event filters, for combining the output
6	error with the [[an]] offset term specific for each error event filter to produce an error
7	sequence; and
8	a selector for deciding on one error sequence from the plurality of adders.
1	10. (Currently Amended) The read channel of claim 9, wherein each of the
2	offset terms comprise a threshold, each of the offset thresholds being adjusted to improve
3	detection reliability in the presence of data dependent noise.
1	11. (Canceled)
1	12. (Currently Amended) The read channel of claim 11, wherein the offset
2	terms comprising [[a]] an offset threshold are adjusted to choose a sequence with more
3	transitions.

- 1 13. (Currently Amended) The read channel of claim 11, wherein the offset terms comprising [[a]] an offset threshold are adjusted to choose a sequence that
- 3 compensates for polarity dependent noise.
- 1 14. (Currently Amended) The read channel of claim 13, wherein the offset
- threshold is adjusted to choose a sequence with more ones when polarity dependent noise
- 3 makes ones more noisy.
- 1 15. (Currently Amended) The read channel of claim 13, wherein the offset
- threshold is adjusted to choose a sequence with more zeroes when polarity dependent
- 3 noise makes zeroes more noisy.

1	16. (Currently Amended) A signal processing system for providing read
2	channel functions, comprising:
3	a memory for storing data therein; and
4	a processor, coupled to the memory, the processor configured for decoding a
5	received data stream to produce an estimated sequence representing decoded data bits, for
6	analyzing error events and for selecting a sequence based upon the analysis of the error
7	events;
8	wherein the processor includes at least one threshold, and wherein at least one
9	threshold is dynamically biased to improve detection reliability in the presence of data
10	dependent noise and wherein an offset term is provided specific for each sequence
11	selection stage to produce an error sequence, the offset terms comprising an offset
12	threshold dependent upon the sequence at the output of the Viterbi decoder.
1	17. (Original) The signal processing system of claim 16, wherein the
2	processor is further configured for receiving a readback signal and producing a desired
3	equalized target response at the Viterbi decoder.
1	18. (Original) The signal processing system of claim 16, wherein the
2	processor is further configured for adding the distance metric for each possible branch to
3	a previously accumulated path metric to produce a revised path metric for each branch,
4	for comparing the revised path metric for a plurality of branches and for selecting a path
5	metric for a path having a smallest path metric.

- 1 19. (Original) The signal processing system of claim 18, wherein the processor adjusts the comparing based upon adjustment of the threshold to improve
- detection reliability in the presence of data dependent noise.
- 20. (Original) The signal processing system of claim 19, wherein the threshold is adjusted to choose a sequence with more transitions.
- 1 21. (Original) The signal processing system of claim 19, wherein the
 2 threshold is adjusted to choose a sequence that compensates for polarity dependent noise.
- 1 22. (Original) The signal processing system of claim 21, wherein the 2 threshold is adjusted to choose a sequence with more ones when polarity dependent noise 3 makes ones more noisy.
- 1 23. (Original) The signal processing system of claim 21, wherein the 2 threshold is adjusted to choose a sequence with more zeroes when polarity dependent 3 noise makes zeroes more noisy.
 - 24. (Canceled)

1

1 25. (Currently Amended) The signal processing system of claim [[24]] 16, 2 wherein the offset terms comprise [[a]] an offset threshold, each of the thresholds being 3 adjusted to improve detection reliability in the presence of data dependent noise.

- 1 26. (Currently Amended) The signal processing system of claim 25, wherein
- the offset terms comprising [[a]] an offset threshold are made dependent upon the
- 3 estimated sequence.
- 1 27. (Currently Amended) The signal processing system of claim 26, wherein
- the offset terms comprising [[a]] an offset threshold are adjusted to choose a sequence
- with more transitions.
- 1 28. (Currently Amended) A signal processor configured for performing read
- 2 channel operations, wherein the signal processor decoding a received data stream to
- 3 produce an estimated sequence representing decoded data bits, analyzing error events and
- selecting a sequence based upon the analysis of the error events based upon a chosen
- 5 threshold, wherein the threshold is dynamically biased to improve detection reliability in
- 6 the presence of data dependent noise and based upon an offset term specific for each
- 5 sequence selection stage for producing an error sequence, the offset terms comprising an
- 8 offset threshold dependent upon the sequence at the output of the Viterbi decoder...

1	29. (Currently Amended) A data storage system, comprising:
2	at least one storage medium for storing data thereon;
3	a motor for moving the at least one storage medium;
4	a transducer, operatively coupled to the at least one storage medium, for reading
5	and writing data on the at least one storage medium;
6	an actuator, coupled to the transducer, for translating the transducer relative to the
7	at least one storage medium; and
8	a read channel for processing a data stream received via the transducer, the read
9	channel further comprising:
10	a Viterbi decoder for decoding a received data stream to produce an
1	estimated sequence representing decoded data bits; and
12	a sequence selection stage for analyzing error events and selecting a
13	sequence based upon the analysis of the error events;
14	wherein the sequence selection stage and the Viterbi decoder each include at
15	least one threshold, and wherein at least one of the threshold of the sequence selection
16	stage and the Viterbi decoder is dynamically biased to improve detection reliability in the
17	presence of data dependent noise and wherein an offset term is provided specific for each
18	sequence selection stage to produce an error sequence, the offset terms comprising an
19	offset threshold dependent upon the sequence at the output of the Viterbi decoder.
4	20 (Original) The data starges system of claim 20 firsther comprising on
1	30. (Original) The data storage system of claim 29 further comprising an
2	equalizer for receiving a readback signal and producing a desired target response at the
3	Viterbi decoder.

i	31. (Original) The data storage system of claim 29, wherein the Viterbi
2	decoder further comprises:
3	a branch metric generator for generating distance metrics for a received data
4	stream;
5	a plurality of adders for adding the distance metric for each possible branch to a
6	previously accumulated path metric to produce a revised path metric for each branch;
7	at least one comparator for comparing the revised path metric for a plurality of
8	branches; and
9	a selector for selecting a path metric for a path having a smallest path metric.
1	32. (Currently Amended) The data storage system of claim 31, wherein the at
2	least one comparator adjusts the includes a threshold for making a bias adjustment to
3	improve detection reliability in the presence of data dependent noise.
	33. (Original) The data storage system of claim 32, wherein the threshold
1	
2	is adjusted to choose a sequence with more transitions.
1	34. (Original) The data storage system of claim 32, wherein the threshold
2	is adjusted to choose a sequence that compensates for polarity dependent noise.
ı	35. (Original) The data storage system of claim 34, wherein the threshold
2	is adjusted to choose a sequence with more ones when polarity dependent noise makes
3	ones more noisy.

1	36. (Original) The data storage system of claim 34, wherein the threshold
2	is adjusted to choose a sequence with more zeroes when polarity dependent noise makes
3	zeroes more noisy.
1	37. (Currently Amended) The data storage system of claim 29, wherein the
2	sequence selection stage further comprises:
3	a plurality of error event filters, operatively coupled to the Viterbi decoder, for
4	identifying an error event and producing an output error;
5	a plurality of adders, coupled to the error event filters, for combining the output
6	error with the [[an]] offset term specific for each error event filter to produce an error
7	sequence; and
8	a selector for deciding on one error sequence from the plurality of adders.
1	38. (Currently Amended) The data storage system of claim 37, wherein each
2	of the offset terms comprise [[a]] an offset threshold, each of the thresholds being
3	adjusted to improve detection reliability in the presence of data dependent noise.
1	39. (Currently Amended) The data storage system of claim 38, wherein the
2	offset terms comprising [[a]] an offset threshold are made dependent upon the sequence
3	at the output of the Viterbi decoder.

- 1 40. (Currently Amended) The data storage system of claim 39, wherein the
 2 offset terms comprising [[a]] an offset threshold are adjusted to choose a sequence with
 3 more transitions.
- 1 41. (Currently Amended) The data storage system of claim 39, wherein the
 2 offset threshold is adjusted to choose a sequence that compensates for polarity dependent
 3 noise.
- 42. (Currently Amended) The data storage system of claim 41, wherein the

 offset threshold is adjusted to choose a sequence with more ones when polarity dependent

 noise makes ones more noisy.
- 1 43. (Currently Amended) The data storage system of claim 41, wherein the
 2 offset threshold is adjusted to choose a sequence with more zeroes when polarity
 3 dependent noise makes zeroes more noisy.

1	44. (Currently Amended) A read channel, comprising:
2	means for decoding a received data stream to produce an estimated sequence
3	representing decoded data bits; and
4.	means for analyzing error events and selecting a sequence based upon the analysis
5	of the error events;
6	wherein the means for analyzing error events and the means for decoding each
7	include at least one threshold, and wherein at least one of the threshold of the means for
8	analyzing error events and the means for decoding is dynamically biased to improve
9	detection reliability in the presence of data dependent noise and wherein an offset term is
10	provided specific for means for analyzing error events and selecting a sequence to
11	produce an error sequence, the offset terms comprising an offset threshold dependent

upon the sequence at the output of the Viterbi decoder.

12

IN THE DRAWINGS

Please replace drawing sheet 3 of 8 with the following replacement sheet.