Data Structures and Algorithms

CatchUp Lecture Week 3

Recursion

 Basically speaking, an algorithm is called recursive if it calls itself

• Common examples: Fibonacci numbers, factorical, ...

Fibonacci

```
public static double fibonacci(int n) throws Exception {
    if (n < 0) {
        throw new Exception("n should be positive");
    }

if ((n == 0) || (n == 1)) {
    return 1;
    }

return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```


Factorial

```
public static double factorial(int n) throws Exception {
    if (n < 1) {
        throw new Exception("n should be positive");
    }

if (n == 1) {
    return 1;
    }

return n * factorial(n - 1);
}</pre>
```


Algorithm Analysis (1)

 To solve a given problem, several different algorithms may exist

Q: Which algorithm is better?

Algorithm Analysis (2)

To answer this question, a metric is needed:

• Q_{v2} : Which algorithm is better regarding X^* ?

* $X \in \{time, space\}$

Algorithm Analysis (3)

Is that question good enough?

Algorithm Analysis (3)

Is that question good enough?

No!

Algorithm Analysis (3)

Is that question good enough?

No!

• Q_{v3} : Which algorithm is better regarding X^* given problem size n?

* $X \in \{time, space\}$

Algorithm Analysis (4)

• The general answer to Q_{v3} generally is as follows:

The algorithms that needs less time / space.

Algorithm Analysis (4)

• The general answer to Q_{v3} generally is as follows:

The algorithms that needs less time / space.

... but how?!

Algorithm Analysis (5)

 A common approach to algorithm analysis is simply counting the steps / stored elements that occur while executing the algorithm with different input sizes n

However, counting alone may produce strange results

Finding Primes (1)

```
static boolean isPrime(int n) {
    // Corner case
    if (n \le 1)
       return false;
    // Check from 2 to sqrt(n)
    for (int i = 2; i <= Math.sqrt(n); i++) {</pre>
        if (n % i == 0) {
            return false;
    return true:
```


Finding Primes (2)

Cases & Complexity Classes

Best case, average case and worst case are distinguished

 Assign a problem to a complexity class and forget about the specific value from counting

Big-O (Landau) notation (1)

 Complexity classes are denoted using Big-O (Landau) notation:

$$O(f) = \left\{ \min \left(g : \mathbb{N} \to \mathbb{R}^+ \right) \mid f(n) \le c * g(n) \; \forall \; n \in \mathbb{N}, c \in \mathbb{R}^+ \right\}$$

Big-O (Landau) notation (2)

- Basically speaking:
 - The complexity class of a function f is the smallest function g in the set of all functions $g: \mathbb{N} \to \mathbb{R}^+$ such that $c * g(n) \ge f(n)$ for every $n \in \mathbb{N}$

- That is called an "upper bound"

Big-O (Landau) notation (3)

Class	Name	Example	
1	constant	A single instruction	
$\log n$	logarithmic	Binary Search	
n	linear	Unstructured search	
$n * \log n$	superlinear / log linear	Efficient sorting	
n^2	quadratic	Basic sorting	
n^k	polynomial	Linear programming	
2^n	exponential	Backtracking	
n!	factorial	Permutations	

What are ADTs? – Prerequisites (1)

Atomic Datatypes

- basic and scalar Datatypes
- In Java: primitive Datatypes (boolean, char, byte, short, int, long, float, double)

Data Structures

- structured and composite Datatypes
- In Java: Objects
- Data structures can be homogeneous or heterogeneous

What are ADTs? – Prerequisites (2)

- Data structures adhere to the principles of object-oriented programming:
 - Encapsulation (→ next slide)
 - Inheritance: Objects acquire properties of parent objects from which they are derived
 - Polymorphism: Different classes have the same interface because of a common superclass, but may react differently

What are ADTs?

- ADTs are data structures adhering to two principles:
 - Encapsulation: Accessing the data structure only works by using pre-defined interfaces, e.g. functions
 - Opaqueness: The internal working principles are hidden from the user

What's the difference between ... (1)

- First, you have to distinguish two things:
 - ADTs and their implementations
 - Map vs. HashMap, List vs. ArrayList, ...
- Normally, the latter part is the ADT and the first part gives a hint on the implementation
- There are always multiple ways of implementing

What's the difference between ... (2)

Common ADTs:

- (Array)
- List (ArrayList, LinkedList)
- Set (HashSet, TreeSet)
- Stack
- Queue
- Deque
- Map / Table (HashMap, TreeMap)

Arrays

 Arrays a composed of a fixed number of elements of the same data type

- Each element can be directly accessed
 - Access can be read or write
 - In Java: using the index operator []

Circular Arrays

0	1	2	3	4
15				5
14	d			6
13				7
12	11	10	9	8

Going clockwise

```
i = (i + 1) % d.length
```

Going counter clockwise

```
i = (i - 1 + d.length) % d.length
```

Lists

- Basically speaking, a List is like an Array that can grow and shrink
- Two common implementations
 - ArrayList
 - LinkedList
- Operations: add, get, contains, remove

ArrayList (1)

 An ArrayList is a class based on an Array to store the data

 If the array is full (or nearly full), a new array is created an all elements are copied to the new array

ArrayList (2)

- Complexity of the operations:
 - add:
 - at the end: O(1) (array not full), O(n) (array full)
 - else: O(n)
 - **get**: 0(1)
 - contains: O(n)
 - remove: O(n)

LinkedList

 A LinkedList is a data structure based on (doubly) linked node objects

 Each node object contains one data element and at least a link to the next node object

Single LinkedList (1)


```
class List {
    Node head;
}
```

```
class Node {
    Object element;
    Node next;
}
```


Single LinkedList (2)

- Complexity of the operations:
 - add:
 - at the end / begin: O(1)
 - else: O(n)
 - **get**: 0(n)
 - contains: O(n)
 - remove: O(n)

Double LinkedList (1)


```
class List {
   Node head;
   Node tail;
}
```

```
class Node {
    Object element;
    Node next;
    Node prev;
}
```


Double LinkedList (2)

Complexity of the operations:

- add, get, contains, remove:
 - at the begin / end: O(1)
 - else: O(n)

Iterating Arrays and Lists

Arrays / ArrayLists

```
for (int i = 0; i < a.length; i++) {
    ...
}</pre>
```

LinkedLists

```
for (Node n = head; n != null; n = n.next) {
    ...
}
```


Stacks

 Can be easily build based on an ArrayList or a doubly LinkedList

 Adding and Removing always happens at the end of the Stack (FIFO)

Operations: push, pop, peek

Queues (1)

Can be easily build based on a circular Array doubly LinkedList

 Adding happens at the end of the queue, removing always at the beginning (LIFO)

Operations: put, get, peek

Queues (2)


```
public boolean isEmpty() {
    return head == tail;
public void put(Object o) {
    data[tail] = o;
    tail = (tail + 1) % data.length;
    if (head == tail) {
       resize();
```

Queues (3)


```
public Object get() {
    if (isEmpty()) {
        return null;
    Object r = data[head];
    data[head] = null;
    head = (head + 1) % data.length;
    return r;
```

Queues (3)


```
public Object get() {
    if (isEmpty()) {
        return null;
    Object r = data[head];
    data[head] = null;
    head = (head + 1) % data.length;
    return r;
```

Sets and Maps (1)

- A set is an ADT that represents a collection of elements of the same data type
 - Sets are unordered
 - Each element can occur only once in the set

• Operations: add, contains

Sets and Maps (2)

- A map is an ADT that represents a collection of elements of the same data type accessible by a unique key
 - → The keys of a map form a set
- Operations: add, get, contains

Sets and Maps (3)

A map can be used as a set when only adding dummy data

Implementations using Hashes and Trees* are common

(HashSet & HashSet VS. TreeSet & TreeMap)

* We'll come to that later!

Sets and Maps (4)

- Complexity of the operations of a Set:
 - HashSet / TreeSet
 - contains: $O(1) / O(\log n)$
 - add:
 - If is full: $O(n) / O(\log n)$
 - else: $O(1) / O(\log n)$

Sets and Maps (5)

Complexity of the operations of a Map:

```
- HashMap / TreeMap
```

```
- contains: 0(1) / 0(log n)
- get: 0(1) / 0(log n)
```

- add:

```
- If is full: O(n) / O(\log n)
```

- else: $O(1) / O(\log n)$

Iterating Sets

```
Set < T > s = ...;
Iterator<T> it = s.iterator();
while (it.hasNext()) {
   T t = it.next();
```


Iterating Maps

```
Map < K, V > m = ...;
Set < Map.Entry < K, V >> s = m.entry Set();
Iterator<Map.Entry<K, V>> it = s.iterator();
while (it.hasNext()) {
    Map.Entry<K, V> kv = it.next();
    K \text{ key} = \text{kv.getKey()};
    V val = kv.qetValue();
```


Hashing

• A hash function h(x) is a function that maps an arbitrary input x to an output of fixed-size

Hash functions are generally not injective

ADTs based on Hashing (1)

Approach: Hashing with modulo on arrays

$$h(x) = h'(x) \mod N$$

• That is: h(x) is the result of another function h'(x) modulo N, where N is the size of the underlying array

ADTs based on Hashing (2)

Maastricht University

ADTs based on Hashing (3)

- Problem: There will be collisions
 - → Need to store key-value pairs either way, to be able to uniquely identify stored values
- Possible solutions:
 - Separate Chaining
 - Open Adressing

Separate Chaining

 Use the underlying array not to store the data, but to store lists

 Each list contains all elements that were mapped to the same index

Separate Chaining

Open Addressing

Resort to another hash function in case a collision occurs

Can be done n-fold

Open Addressing

Different common approaches

- Linear probing:
$$h_{2(x)} = h_{1(x)} + k$$

- Quadratic probing:
$$h_{2(x)} = h_{1(x)} + k^2$$

k starts at 1 and is incremented by one for each step

Open Addressing

Trees

• If in a LinkedList there is not only one next node, but multiple next nodes, then this is called a Tree

 Two distinct nodes in the Tree are connected by exactly one path, otherwise it is a Graph

Not a Tree

Trees (3)

- Each node in a Tree has a level
 - The root has level 0
 - Each other node has the level of the parent node plus 1

 The height of a tree is equal to the maximum level of any node

Binary Trees (1)

 A binary tree is a tree in which every node has two children at maximum

 In a balanced binary tree, all leaf nodes have the same level

Binary Trees (2)

 A complete binary tree is a tree, in which all levels of the tree are filled

 A binary search tree is a tree, in which all children to the left have a lower value than the parent and all children to the right have a higher value than the parent

Binary Trees (3)

A binary tree

Binary Trees (3)

A binary search tree

Maastricht University

A balanced binary search tree

balanced complete binary search tree

Complexity of a Tree

 In a complete binary search tree with N nodes, you will have to traverse log N nodes on average to find a node

You have to find a node to delete it

You have to "not find" a node to insert it

Complexity of a Tree

$$N = 6$$
$$\log N \cong 2.58$$