Теортест-1 (Вариант 11)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. Длина кривой зависит от параметризации;
- 2. Спрямляемы только кусочно-гладкие кривые;
- 3. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 4. Длина спрямляемой кривой конечна;
- 5. Гладкая кривая это кривая, все параметризации которой гладкие;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b]$, a < b. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 2. Если f > 0 на [a,b], то $\int_a^b f(x) dx > 0$;
- 3. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 4. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(a) = 1;
- 2. f((a+b)/2) = 1;
- 3. f(a) = f(b) = 1;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Задача 4

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f'(x) \sin x dx = \cos x \cdot f(x) \int f(x) \cos x dx$;
- 2. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx$;
- 3. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 4. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = v';
- 2. v' = u + C;
- 3. udt = dv:
- 4. u = v' + C:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь A всегда неотрицательна;
- 2. если $A \subset B$, то площадь A меньше площади B;
- 3. при движении площадь не меняется;
- 4. $S(A) = S(A \cap B) + S(A \setminus B)$;

Задача 7

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-9; 90];
- 2. [-3; 90];
- 3. [-2; 20];
- 4. [9; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F непрерывна на [a, b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 4. F ограничена на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^9}{x^5+1}$;
- 2. $\frac{x^2+1}{x^5}$;
- 3. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 4. $\frac{x^4}{(x^5+1)^3}$;

Задача 10

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \ \exists \xi : S_{\tau} \sigma_{\tau}(\xi) < \varepsilon$;
- 2. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 3. $\forall \tau, \exists \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 4. $\forall \tau, \forall \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$