Bayesian Analysis Project Report

Group D 2021H1540840P 2021H1540843P 2021H1540833P 2019A5PS1075P

Problem Statement : The airbnb_small data in the bayes rules package contains information on AirBnB rentals in Chicago. This data was originally collated by Trinh and Ameri (2016) and distributed by Legler and Roback (2021). In this open-ended exercise, build, interpret, and evaluate a model of the number of reviews an AirBnB property has with respect to its rating, district, room_type, and the number of guests it accommodates.

Approach: We first checked the data for missing data, business abnormalities. Then we selected priors (default). After that, we built the model using a sequential approach. After the model building, We observed the Markov Chain diagnostics followed by the posterior analysis. Then we checked for the accuracy of the predictability of the model.

Observations:

Categorical Variables: Room_type(I), district (I)

Continuous variables : Rating(I) , Accommodates(I) , Reviews (Dependant)

	rating district		accommodates
district	Min. :2.500 North:336	room_type	Min. : 1.000
Far North:336	1st Qu.:4.500 :484	Entire home/apt:467	1st Qu.: 2.000
North :484	Median :5.000 49	Private room :370	Median : 2.000
Northwest: 49	Mean :4.801 3rd Qu.:5.000 Max. :5.000	Shared room : 32	Mean : 3.522 3rd Qu.: 4.000 Max. :16.000

Every value of the variables present have business sense. There are no spurious values as of our knowledge.

Model Building:

Test train split, Prior:

- We have built a posterior based on Prior 1 (the default prior).
- This posterior is then taken as Prior 2 and the models are simulated.
- We have used the sequential analysis approach. We have splitted the data into 3 sets in the ratio of 1:1:3.
- Two equal parts are used for prior and test, whereas the largest part is for training purposes.

Distributions:

- Dependant variable Negative binomial distribution
- Prior Gaussian

Model: (depicting sequential approach)

Results:

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>
(Intercept)	1.63531882	0.61562896
rating	0.27527951	0.12539785
accommodates	0.05024106	0.01834141
districtNorth	0.17497808	0.07273202
districtNorthwest	-0.20542806	0.16213498
room_typePrivate room	0.20500735	0.08320858
room_typeShared room	-0.44511758	0.19332951

Important observations(MCMC Diagnostics):

• **Negative autocorrelation**: causing Neff to be greater than 1 (property of antithetic markov chain - needs further conditioning of model)

Posterior predictability measures :

I	Estimate	SE			
	mae <dbl></dbl>	mae_scaled <dbl></dbl>	within_50 <dbl></dbl>	within_95 <dbl></dbl>	
	17.51518	0.6923427	0.5017561	0.9597142	
elpd_lc	o -2206.96322	28.422147			
p_loo	7.91684	1.297097			
looic	4413.92644	56.844294			

Conclusion:

Based on ELPD and pp_check , we can infer that our model is good. Our assumption of dependent variable distribution to be negative binomial is proven to be correct. However, based on the MAE values ,we can infer that there is a lot of scope for improvement in the model. We intend to try with other family of distributions for priors, also explore other packages for even better predictability.