William Stallings Data and Computer Communications

BAB 3 Transmisi Data

Terminologi (1)

- Transmitter
- Receiver
- Media Transmisi
 - Guided media
 - ☐ Contoh; twisted pair, serat optik
 - Unguided media
 - Contoh; udara, air, ruang hampa

Terminologi (2)

- Hubungan Langsung (Direct link)
 - Tanpa alat perantara
- Point-to-point
 - □ Termasuk hubungan langsung
 - □ Hanya 2 alat yang menggunakan jalur hubungan
- Multi-point
 - Lebih dari 2 alat yang menggunakan jalur hubungan

Terminologi (3)

- Simplex
 - Satu arah
 - Contoh; Televisi
- ☐ Half duplex
 - Dua arah, tetapi hanya satu arah pada satu waktu (dua arah secara bergantian)
 - □ Contoh; Radio polisi
- □ Full duplex
 - Dua arah pada waktu bersamaan
 - Contoh; Telepon

Frekuensi, Spektrum dan Bandwidth

- Konsep Time Domain
 - Sinyal Kontinu
 - ☐ Bentuk bervariasi yang mulus dengan berjalannya waktu (intensitasnya berubah-ubah sepanjang waktu)
 - □ Sinyal Diskret
 - ☐ Berada pada tingkat konstan tertentu kemudian berubah pada tingkat konstan yang lain (intensitasnya konstan pada level dan periode tertentu)
 - ☐ Sinyal Periodik
 - Mempunyai bentuk yang berulang dengan berjalannya waktu (pola sinyal berulang setiap waktu)
 - ☐ Sinyal Aperiodik
 - ☐ Bentuk tidak berulang dengan berjalannya waktu (pola sinyal tidak berulang setiap waktu

Sinyal Kontinu & Diskret

Sinyal Periodik

(b) Square wave

Gelombang Sinus

- □ Amplitudo Puncak (A)
 - Kekuatan maximum sinyal
 - volts
- ☐ Frekuensi (f)
 - Kecepatan / tingkat perubahan sinyal
 - ☐ Hertz (Hz) atau putaran per detik
 - □ Perioda = waktu untuk satu pengulangan (T)
 - □ T = 1/f
- □ Fase (∅)
 - Posisi Relatif dalam waktu

Berbagai Gelombang Sinus

Panjang Gelombang

- Jarak yang didapat dengan satu putaran
- Jarak antara dua titik yang bersesuaian dengan fase pada dua putaran yang berkesinambungan
- Ωλ
- □ Anggap kecepatan sinyal v
 - $\square \lambda = \nu T$
 - $\square \lambda f = V$
 - \Box c = $3*10^8$ mdt⁻¹ (kecepatan cahaya pada ruang hampa)

Konsep Domain Frekuensi

- Sinyal biasanya dibentuk dari berbagai frekuensi
- Komponennya adalah gelombang sinus
- Dapat dijelaskan (Analisis Fourier) bahwa setiap sinyal dibuat dari komponen gelombang sinus
- Dapat mencetak (plot) fungsi domain frekuensi

Penjumlahan Komponen Frekuensi

Frekuensi Domain

Spektrum & Bandwidth

- Spektrum
 - Jangkauan frekuensi yang dikandung didalam sinyal
- Bandwidth absolut
 - Lebar spektrum
- Bandwidth efektif
 - Sering disebut bandwidth saja
 - Semakin sempit frekuensi semakin banyak energinya
- Komponen DC
 - Komponen frequensi nol

Sinyal dengan Komponen DC

(a) $s(t) = 1 + (4/) [\sin(2/ft) + (1/3)\sin(2/(3f)t)]$

Kecepatan Data dan Bandwidth

- Setiap sistem transmisi mempunyai pita terbatas dari frekuensi / lebar frekuensi
- Hal ini membatasi kecepatan data & banyaknya data yang dapat dibawa / dikirim

Transmisi Data Analog dan Digital

- Data
 - Sesuatu yang membawakan sebuah arti
- Sinyal
 - □ Representasi listrik atau elektromagnetik dari data
- Transmisi
 - Komunikasi data dengan propagasi (penjalaran / penggadaan) dan pengolahan sinyal

Data

- Analog
 - Nilai-nilai kontinu didalam beberapa interval
 - ☐ Contoh; suara (sound), gambar (video)
- Digital
 - □ Nilai-nilai Diskret
 - ☐ Contoh; text, integer

Spektrum Akustik (Analog)

Sinyal

- Data yang dijalarkan/ dipropagasikan/ ditransmisikan
- Analog
 - Variabel secara kontinu
 - Berbagai media transmisi
 - ☐ kawat, serat optik, udara
 - □ Lebar Bandwidth 100Hz sampai 7kHz
 - □ Telephone Bandwidth 300Hz sampai 3400Hz
 - □ Video Bandwidth 4MHz
- Digital
 - Menggunakan dua komponen DC

Data and Sinyal

- Biasanya menggunakan sinyal digital untuk data digital dan sinyal analog untuk data analog
- Bisa menggunakan sinyal analog untuk membawa data digital
 - Modem
- Bisa menggunakan sinyal digital untuk membawa data analog
 - □ Compact Disc audio

Sinyal Analog membawa Data Analog dan Data Digital

Sinyal Digital membawa Data Analog dan Digital

Transmisi Analog

- Sinyal Analog ditransmisikan tanpa mengetahui isinya
- Bisa berupa data analog atau digital
- Terjadi pelemahan (atenuasi) jika melebihi jarak yang ditentukan
- Menggunakan amplifier untuk meningkatkan kuat sinyal
- □ Tapi juga bisa menaikkan "noise"

Transmisi Digital

- Sangat memperhatikan isi
- Integritas sinyal akan melemah setelah menenpuh jarak tertentu & sangat dipengaruhi oleh "noise", atenuasi dll.
- Digunakan berulang
- Menggunakan Repeater untuk menerima sinyal
- Meng-"Extract" bit pattern
- Mengirim ulang / dapat dikirim kembali
- Atenuasi bisa ditanggulangi
- "Noise" tidak dikuatkan

Kelebihan Transmisi Digital

- Teknologi Digital
 - □ Teknologi LSI/VLSI dengan biaya rendah yang murah
- Integritas Data
 - Jarak yang lebih jauh bisa dilewatkan pada jalur dengan kualitas yang lebih rendah
- Penggunaan Kapasitas Jalur
 - □ Bandwidth tinggi yang ekonomis
 - Tingkat multiplexing yang tinggi memudahkan teknik digital
- Keamanan dan kerahasiaan
 - Enkripsi
- Integrasi
 - Dapat memperlakukan sama terhadap data analog dan digital

Transmission Impairments

- Sinyal yang diterima bisa jadi berbeda dari sinyal yang dikirimkan
- Analog degradasi kualitas sinyal
- □ Digital kesalahan bit
- Disebabkan oleh
 - Atenuasi dan distorsi atenuasi
 - □ Delay distortion / distorsi yang terlambat
 - Noise

Atenuasi

- Kuat Sinyal menurun dengan bertambahnya jarak / kekuatan sinyal berbanding terbalik dengan jarak
- Tergantung pada Media transmisinya
- Kuat sinyal yang diterima:
 - harus cukup untuk dideteksi
 - harus cukup lebih tinggi dibanding "noise" yang akan diterima tanpa kesalahan
- Atenuasi merupakan suatu fungsi kenaikan dari frekuensi

Delay Distortion

- Hanya ada di guided media
- Kecepatan penjalaran (Propagasi) bervariasi terhadap frekuensinya

Noise (1)

- Sinyal tambahan yang masuk diantara transmitter dan receiver
- □ Thermal (suhu/panas)
 - □ Akibat dari "thermal agitation" dari elektron
 - □ Tersebar secara uniform
 - White noise
- Intermodulation
 - Sinyal yang merupakan penjumlahan dan pengurangan dari frekuensi aslinya yang menggunakan media bersama

Noise (2)

- Crosstalk / pembicaraan silang
 - Suatu sinyal dari satu jalur yang diambil oleh jalur lain
 - ☐ Sinyal dari sebuah hubungan didengar oleh pihak lain
- Impulse
 - Pulsa yang tidak beraturan atau spike (lonjakan)
 - Contoh; Interferensi elektromagnetik eksternal
 - □ Short duration / durasi singkat
 - Amplitudo yang tinggi

Kapasitas Channel

- □ Kecepatan Data (Data rate)
 - □ Dalam bit per detik (bit per second : bps)
 - Banyaknya muatan data yang dapat dilakukan
 - Rata-rata dimana data dapat dikomunikasikan
- Bandwidth
 - □ Dalam putaran per detik (cycle per second : cps) dari Hertz
 - Dibatasi oleh transmitter dan media

Required Reading

□ Stallings chapter 3