

### ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

http://www.cslab.ece.ntua.gr

# Λειτουργικά Συστήματα

7ο εξάμηνο, Ακαδημαϊκή περίοδος 2011-2012

# Άσκηση 3: Συγχρονισμός Διεργασιών

| 1 | Ασκήσεις                    |                                               | 1 |
|---|-----------------------------|-----------------------------------------------|---|
|   | 1.1                         | Υλοποίηση σημαφόρων με σωληνώσεις του UNIX    | 1 |
|   | 1.2                         | Παράλληλος υπολογισμός του συνόλου Mandelbrot | 2 |
|   | 1.3                         | Ταυτόχρονη πρόσβαση σε μοιραζόμενους πόρους   | 3 |
| 2 | Εξέταση άσκησης και αναφορά |                                               | 4 |
| 3 | Προαιρετικές ερωτήσεις      |                                               | 4 |

# 1 Ασκήσεις

#### 1.1 Υλοποίηση σημαφόρων με σωληνώσεις του UNIX

Ζητείται η υλοποίηση μιας βιβλιοθήκης σημαφόρων (pipesem) βασισμένης στο μηχανισμό σωληνώσεων του UNIX. Η βιβλιοθήκη θα αποτελείται από τα αρχεία pipesem.h και pipesem.c. Σας δίνεται το pipesem.h που ορίζει τη διεπαφή (API) της βιβλιοθήκης. Αυτή είναι:

- Ο τύπος struct pipesem, που ορίζει ένα σημαφόρο ως τα δύο άκρα ενός pipe.
- Οι συναρτήσεις pipesem\_{init, destroy, wait, signal}() για τις λειτουργίες αρχικοποίησης, καταστροφής, πράξης wait και πράξης signal σε σημαφόρο, αντίστοιχα.

Η πράξη wait αντιστοιχίζεται σε read() από τη σωλήνωση, η πράξη signal σε write(). Για τον έλεγχο της καλής λειτουργίας της βιβλιοθήκης σας, θα χρησιμοποιήσετε το παράδειγμα pipesem-test.c που δίνεται.

Σημείωση: Το αρχείο pipesem-test.c μαζί με όλα τα αρχεία κώδικα που δίνονται για την άσκηση βρίσκεται στον κατάλογο /home/oslab/code/sync.

Πριν ξεκινήσετε την υλοποίηση μελετήστε τον κώδικα που δίνεται!

#### Ερωτήσεις:

- 1. Τι ακριβώς κάνει το pipesem-test.c; Πόσες διεργασίες τρέχουν και πώς αυτές συγχρονίζονται;
- 2. Ποια είναι η βασική αρχή λειτουργίας της βιβλιοθήκης pipesem. c; Πώς εξασφαλίζεται ότι η πράξη wait σε σημαφόρο μηδενικής ή αρνητικής τιμής μπλοκάρει; Τι σημαίνει αυτό για την υφιστάμενη σωλήνωση του UNIX;
- 3. Θα μπορούσε αυτός ο τρόπος υλοποίησης να οδηγήσει σε λιμοκτονία (starvation); Πώς επηρεάζεται η λειτουργία του από τον τρόπο με τον οποίο το ΛΣ υλοποιεί την ανάγνωση από pipes, όταν πολλές διεργασίες χρειάζεται να περιμένουν σε άδεια σωλήνωση;

#### 1.2 Παράλληλος υπολογισμός του συνόλου Mandelbrot

Σας δίνεται πρόγραμμα που υπολογίζει και εξάγει στο τερματικό εικόνες του συνόλου του Mandelbrot:



**Σχήμα 1:** Εικόνα από το http://en.wikipedia.org/wiki/Mandelbrot\_set

Το σύνολο του Mandelbrot ορίζεται ως το σύνολο των σημείων c του μιγαδικού επιπέδου, για τα οποία η ακολουθία  $z_{n+1}=z_n^2+c$  είναι φραγμένη. Ένας απλός αλγόριθμος για τη σχεδίασή του είναι ο εξής: Ξεκινάμε αντιστοιχίζοντας την επιφάνεια σχεδίασης σε μια περιοχή του μιγαδικού επιπέδου. Για κάθε pixel παίρνουμε τον αντίστοιχο μιγαδικό c και υπολογίζουμε επαναληπτικά την ακολουθία  $z_{n+1}=z_n^2+c, z_0=0$  έως ότου  $|z_n|>2$  ή το n ξεπεράσει μια προκαθορισμένη τιμή. Ο αριθμός των επαναλήψεων που απαιτήθηκαν αντιστοιχίζεται ως χρώμα του συγκεκριμένου pixel.

Στο mandel. c σας δίνεται ένα πρόγραμμα που υπολογίζει και σχεδιάζει το σύνολο Mandelbrot σε τερματικό κειμένου, χρησιμοποιώντας χρωματιστούς χαρακτήρες. Για τη λειτουργία του βασίζεται στη βιβλιοθήκη mandel-lib.{c,h}. Η βιβλιοθήκη υλοποιεί τις εξής συναρτήσεις:

- mandel\_iterations\_at\_point(): Υπολογίζει το χρώμα ενός σημείου (x,y) με βάση τον παραπάνω αλγόριθμο.
- set\_xterm\_color(): θέτει το χρώμα των χαρακτήρων που εξάγονται στο τερματικό.

Η έξοδος του προγράμματος είναι ένα μπλοκ χαρακτήρων, διαστάσεων x\_chars στηλών και y\_chars γραμμών. Το πρόγραμμα καλεί επαναληπτικά την compute\_and\_output\_mandel\_line() για την εκτύπωση του μπλοκ γραμμή προς γραμμή.

Ζητείται η επέκταση του προγράμματος του mandel . c έτσι ώστε ο υπολογισμός να μοιράζεται σε NCHILDREN, ενδεικτική τιμή 3, διεργασίες. Η κατανομή του υπολογιστικού φόρτου γίνεται ανά σειρά: Για n διεργασίες, η i-ιοστή (με  $i=0,1,2,\ldots$ ) αναλαμβάνει τις σειρές  $i,i+n,i+2\times n,i+3\times n,\ldots$ 

Ο απαραίτητος συγχρονισμός των διεργασιών θα γίνει με σημαφόρους που παρέχονται από τη βιβλιοθήκη pipesem του προηγούμενου ερωτήματος.

**Σημείωση:** Αν το τερματικό σας αφεθεί με λάθος χρώμα στο κείμενο λόγω της εκτέλεσης του προγράμματος [π.χ. μωβ χαρακτήρες σε μαύρο φόντο], χρησιμοποιήστε την εντολή reset για να το επαναφέρετε στην αρχική ρύθμισή του.

#### Ερωτήσεις:

- 1. Πόσοι σημαφόροι χρειάζονται για το σχήμα συγχρονισμού που υλοποιείτε;
- 2. Πόσος χρόνος απαιτείται για την ολοκλήρωση του σειριακού και του παράλληλου προγράμματος με δύο διεργασίες υπολογισμού; χρησιμοποιήστε την εντολή time για να χρονομετρήσετε την εκτέλεση ενός προγράμματος, π.χ., time sleep 2. Για να έχει νόημα η μέτρηση, δοκιμάστε σε ένα μηχάνημα που διαθέτει επεξεργαστή δύο πυρήνων. Χρησιμοποιήστε την εντολή cat /proc/cpuinfo για να δείτε πόσους υπολογιστικούς πυρήνες διαθέτει κάποιο μηχάνημα.
- 3. Το παράλληλο πρόγραμμα που φτιάξατε, εμφανίζει επιτάχυνση; αν όχι, γιατί; τι πρόβλημα υπάρχει στο σχήμα συγχρονισμού που έχετε υλοποιήσει; Υπόδειξη: πόσο μεγάλο είναι το κρίσιμο τμήμα; χρειάζεται να περιέχει και τη φάση υπολογισμού και τη φάση εξόδου κάθε γραμμής που παράγεται;
- 4. Τι συμβαίνει στο τερματικό αν πατήσετε Ctrl-C ενώ το πρόγραμμα εκτελείται; σε τι κατάσταση αφήνεται, όσον αφορά το χρώμα των γραμμάτων; πώς θα μπορούσατε να επεκτείνεται το mandel. c σας ώστε να εξασφαλίσετε ότι ακόμη κι αν ο χρήστης πατήσει Ctrl-C, το τερματικό θα επαναφέρεται στην προηγούμενη κατάστασή του;

#### 1.3 Ταυτόχρονη πρόσβαση σε μοιραζόμενους πόρους

Δίνεται το πρόγραμμα procs-shm.c, το οποίο δημιουργεί τρεις διεργασίες  $P_A$ ,  $P_B$  και  $P_C$ . Οι διεργασίες εκτελούν προσβάσεις σε μια μοιραζόμενη ακέραια μεταβλητή n, σε ατέρμονα βρόχο, ως εξής:

 $P_A: n=n+1$   $P_B: n=n-2$  $P_C: \text{ print } n$ 

Η n έχει αρχική τιμή n=1. Ζητείται να συγχρονίσετε κατάλληλα τις τρεις διεργασίες με χρήση της βιβλιοθήκης pipesem έτσι ώστε η έξοδος του προγράμματος να είναι 1 1 1 1 1 1 . . .

Η υλοποίησή σας θα πρέπει να ικανοποιεί τους εξής περιορισμούς:

- Όλες οι διεργασίες πρέπει να έχουν τη δυνατότητα να εκτελούνται αποφυγή λιμοκτονίας
- Μπορείτε να δηλώσετε όσους σημαφόρους χρειάζεται, κατάλληλα αρχικοποιημένους. Στον κώδικα των διεργασιών, γράφετε μόνο στα σημεία που σημειώνονται με /\* . . . \*/ στο αρχείο procs-shm.c.

Είναι εφικτή η υλοποίηση του σχήματος συγχρονισμού μόνο με κατάλληλα αρχικοποιημένους σημαφόρους και κλήσεις pipesem\_wait() και pipesem\_signal() στα σημεία που υποδηλώνονται;

#### Βήματα:

- 1. Αντιγράψτε το αρχείο procs-shm. c στο ask3-3. c, επεκτείνετε το Makefile. Αντιγράψτε τα proc-common. {c,h}, τα οποία έχουν επεκταθεί σε σχέση με την προηγούμενη άσκηση. Βεβαιωθείτε ότι το πρόγραμμα μεταγλωττίζεται χωρίς λάθη.
- 2. Εκτελέστε το πρόγραμμα ως έχει, χωρίς συγχρονισμό των διεργασιών. Παρατηρήστε ότι η  $P_C$  εκτυπώνει τιμές  $n \neq 1$  και ανάλογο μήνυμα λάθους.
- 3. Υλοποιήστε κατάλληλο σχήμα συγχρονισμού ανάμεσα στις διεργασίες, εισάγοντας κλήσεις προς τη βιβλιοθήκη pipesem. Προσοχή: Δεν επιτρέπεται καμία αλλαγή στις proc\_a(), proc\_b(), proc\_c() εκτός από εισαγωγή κώδικα πριν και μετά από το κρίσιμο τμήμα, μαζί με όσες δηλώσεις μεταβλητών ίσως χρειαστούν.
- 4. Βεβαιωθείτε ότι το νέο πρόγραμμα λειτουργεί σωστά, και η έξοδος περιέχει μόνο τιμές n=1.

#### Ερωτήσεις:

- 1. Ποιος είναι ο σκοπός της κλήσης create\_shared\_memory\_area(sizeof(int)), πριν από τη δημιουργία των τριών διεργασιών;
- 2. Πώς θα μπορούσε να γενικευτεί το σχήμα συγχρονισμού που υλοποιήσατε για την περίπτωση στην οποία η  $P_B$  εκτελούσε n=n-K, με K δεδομένη θετική σταθερά;

## 2 Εξέταση άσκησης και αναφορά

Η προθεσμία για την εξέταση της άσκησης στο εργαστήριο είναι η Πέμπτη 2012/01/19. Μετά την εξέταση η κάθε ομάδα θα πρέπει να συντάξει μια (σύντομη) αναφορά και να τη στείλει μέσω e-mail στους βοηθούς εργαστηρίου. Η προθεσμία για την αναφορά είναι μια εβδομάδα μετά την προθεσμία εξέτασης της άσκησης.

Η αναφορά αυτή θα περιέχει:

- Τον πηγαίο κώδικα (source code) των ασκήσεων.
- Την έξοδο εκτέλεσης των προγραμμάτων για διάφορα αρχεία εισόδου, ενδεικτικά.
- Σύντομες απαντήσεις στις ερωτήσεις.

# 3 Προαιρετικές ερωτήσεις (επιπλέον βαθμοί: 0)

- 1. Σκιαγραφήστε υλοποίηση σημαφόρων χρησιμοποιώντας Ελεγκτές/Παρακολουθητές (Monitors)
- 2. Εκτελέστε το πρόγραμμα που προκύπτει από το αρχείο rand-fork.c. Τι παρατηρείτε; Γιατί συμβαίνει;