Restaurant Rating Analysis

Importing libraries

In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [3]: Data = pd.read_csv('Dataset .csv')

In [4]: Data.head() #view the first rows

Out[4]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Long
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.02
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.0 ⁻
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.0!
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.0!
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.0!

In [5]: Data.info() #Get information about the data tpes

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype		
0	Restaurant ID	9551 non-null	int64		
1	Restaurant Name	9551 non-null	object		
2	Country Code	9551 non-null	int64		
3	City	9551 non-null	object		
4	Address	9551 non-null	object		
5	Locality	9551 non-null	object		
6	Locality Verbose	9551 non-null	object		
7	Longitude	9551 non-null	float64		
8	Latitude	9551 non-null	float64		
9	Cuisines	9542 non-null	object		
10	Average Cost for two	9551 non-null	int64		
11	Currency	9551 non-null	object		
12	Has Table booking	9551 non-null	object		
13	Has Online delivery	9551 non-null	object		
14	Is delivering now	9551 non-null	object		
15	Switch to order menu	9551 non-null	object		
16	Price range	9551 non-null	int64		
17	Aggregate rating	9551 non-null	float64		
18	Rating color	9551 non-null	object		
19	Rating text	9551 non-null	object		
20	Votes	9551 non-null	int64		
dtypes: float64(3), int64(5), object(13)					

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

In [6]: Data.describe() #summary statastics for numerical columns

Out[6]:

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Ąg
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	(
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	۷

```
In [7]: Data.isnull().sum() #Check for missing values
Out[7]: Restaurant ID
                                  0
        Restaurant Name
                                 0
        Country Code
                                  0
        City
                                  0
        Address
        Locality
                                  0
        Locality Verbose
                                  0
        Longitude
                                 0
        Latitude
                                 0
                                 9
        Cuisines
        Average Cost for two
                                  0
        Currency
                                  0
        Has Table booking
                                 0
        Has Online delivery
                                 0
        Is delivering now
                                 0
        Switch to order menu
                                 0
        Price range
                                  0
        Aggregate rating
        Rating color
                                 0
        Rating text
                                 0
        Votes
                                 0
        dtype: int64
```

Determine the top three most common cuisines in the dataset.

Calculate the percentage of restaurants that serve each of the top cuisines.

Name: count, dtype: float64

Chinese

Identify the city with the highest number of restaurants in the dataset.

3.706418

```
In [10]: city_count = Data['City'].value_counts()
    city_with_highest_restaurants = city_count.idxmax()
    city_with_highest_restaurants
```

Out[10]: 'New Delhi'

Calculate the average rating for restaurants in each city.

```
In [11]: Avg_rating_by_city = Data.groupby('City')['Aggregate rating'].mean()
         Avg_rating_by_city
Out[11]: City
         Abu Dhabi
                             4.300000
         Agra
                             3.965000
         Ahmedabad
                             4.161905
         Albany
                             3.555000
         Allahabad
                             3.395000
                               . . .
         Weirton
                             3.900000
         Wellington City
                             4.250000
         Winchester Bay
                             3.200000
         Yorkton
                             3.300000
         @
@
g
s
t
anbul
                             4.292857
         Name: Aggregate rating, Length: 141, dtype: float64
```

Determine the city with the highest average rating.

```
In [12]: Avg_rating_by_city = Data.groupby('City')['Aggregate rating'].mean()
highest_avg_rating = Avg_rating_by_city.idxmax()
highest_avg_rating
```

Out[12]: 'Inner City'

Create a histogram or bar chart to visualize the distribution of price ranges among the restaurants

```
In [13]: plt.figure(figsize=(10,6))
    sns.countplot(x = 'Price range',data = Data,palette='viridis')
    plt.title('Price ranges by restaurants')
    plt.xlabel('price range')
    plt.ylabel('count')
    plt.show()
```


Calculate the percentage of restaurants in each price range category.

Determine the percentage of restaurants that offer online delivery.

```
In [15]: Percent_onlinedelivery = Data['Has Online delivery'].value_counts(norm
Percent_onlinedelivery

Out[15]: Has Online delivery
    No     74.337766
    Yes     25.662234
    Name: proportion, dtype: float64
```

Compare the average ratings of restaurants with and without online delivery.

In [16]: Avg_ratings = Data.groupby('Has Online delivery')['Aggregate rating'].
Avg_ratings

Out[16]: Has Online delivery

No 2.465296 Yes 3.248837

Name: Aggregate rating, dtype: float64

Analyze the distribution of aggregate ratings and determine the most common rating range.

In [17]: sns.histplot(Data['Aggregate rating'],bins = 20,kde = True,color = 'bl
plt.title('Distribution of Aggregate Rating')
plt.show

Out[17]: <function matplotlib.pyplot.show(close=None, block=None)>

Distribution of Aggregate Rating 2000 - 1500 - 500 -

3

Aggregate rating

Calculate the average number of votes received by restaurants.

1

In [18]: Avg_votes = Data['Votes'].mean()
Avg_votes

Out[18]: 156,909747670401

Identify the most common combinations of cuisines in the dataset.

```
In [19]: Data['Combined cuisines'] = Data['Cuisines'].str.split(', ')
         common_cuisines = Data['Combined cuisines'].explode().value_counts()
         #The explode() function is then used to transform each element of the
         most_common_cuisines = common_cuisines.head(3)
         most_common_cuisines
Out[19]: Combined cuisines
         North Indian
                          3960
         Chinese
                          2735
         Fast Food
                          1986
         Name: count, dtype: int64
         Determine if certain cuisine combinations tend to have higher ratings.
In [20]: Data['Combined cuisines'] = Data['Cuisines'].str.split(', ')
         common_cuisines = Data.explode('Combined cuisines')
         Avg_rating_cusisine = common_cuisines.groupby('Combined cuisines')['Add
         Avg_rating_cusisine
Out[20]: Combined cuisines
         Afghani
                           1.971429
                           3.525000
         African
                           3.661538
         American
         Andhra
                           3.870000
         Arabian
                           3.385714
                          4.325000
         Turkish Pizza
         Vegetarian
                          4.073913
         Vietnamese
                          3.923810
         Western
                           4.140000
         World Cuisine
                          4.300000
         Name: Aggregate rating, Length: 145, dtype: float64
In [21]: import plotly express as px #for Geograph map
```

Plot the locations of restaurants on a map using longitude and latitude coordinates.

Restaurant locations

Restaurant Name

- Le Petit Souffle
- Izakaya Kikufuji
- Heat Edsa Shangri-La
- Ooma
- Sambo Kojin
- Din Tai Fung
- Buffet 101
- Vikings
- Spiral Sofitel Philippine Plaza
- Locavore
- Silantro Fil-Mex
- Mad Mark's Creamery & Good
- Guevarra's
- Sodam Korean Restaurant

- - - - - -

Identify if there are any restaurant chains present in the dataset

```
Data['Cleaned Name'] = Data['Restaurant Name'].str.lower().str.strip()
         # Find restaurant chains by counting the occurrences of each name
         chain_counts = Data['Cleaned Name'].value_counts()
         # Display the names that occur more than once (potential chains)
         potential_chains =chain_counts[chain_counts > 1]
         potential_chains
Out[23]: Cleaned Name
         cafe coffee day
                                83
         domino's pizza
                                79
         subway
                                63
         green chick chop
                                51
         mcdonald's
                                48
         jack po!tato's
                                 2
                                 2
         metro fast food
         the mirch masala
                                 2
         punjabi chicken
                                 2
         south indian corner
                                 2
         Name: count, Length: 742, dtype: int64
```

In [23]: #Clean and normalize the restaurant names for better comparison

Analyze the ratings and popularity of different restaurant chains.

```
In [24]: Data['Cleaned Name'] = Data['Restaurant Name'].str.lower().str.strip()
    #calculating avg rating for restaurant chain
    Avg_rating_chain = Data.groupby('Cleaned Name')['Aggregate rating'].me

#Calculate total num of votes per each chain
    total_chain = Data.groupby('Cleaned Name')['Votes'].sum()

#combined the results into a new dataframe
    chain_analysis_df = pd.DataFrame({
        'Average Rating': Avg_rating_chain,
        'Total Votes': total_chain})

# Sort the DataFrame by average rating in descending order
    chain_analysis_df = chain_analysis_df.sort_values(by='Average Rating',
        chain_analysis_df
```

Out [24]:

Average Rating Total Votes

Cleaned Name		
braseiro da g��vea	4.9	40
masala library	4.9	408
milse	4.9	754
solita	4.9	162
miann	4.9	281
m cr��me	0.0	0
m&s coffee cafe	0.0	3
sunrise bakery	0.0	0
royal bakery	0.0	2
khalsa eating point	0.0	0

7433 rows × 2 columns

Calculate the average length of reviews and explore if there is a relationship between review length and rating..

```
In [47]: # Calculate the length of each review
Data['Review Length'] = Data['Rating text'].apply(lambda x: len(str(x))

# Calculate the average review length
average_review_length = Data['Review Length'].mean()
average_review_length

# Explore the relationship between review length and rating
plt.figure(figsize=(10, 6))
plt.scatter(Data['Review Length'], Data['Rating text'], alpha=0.5)
plt.title('Relationship Between Review Length and Rating')
plt.xlabel('Review Length')
plt.ylabel('Rating')
plt.show()
```


Identify the restaurants with the highest and lowest number of votes.

```
In [25]:
         highest_votes =Data.loc[Data['Votes'].idxmax()]
         lowest_votes = Data.loc[Data['Votes'].idxmin()]
         print("Restaurant with the Highest Votes:")
         print(highest_votes[['Restaurant Name', 'Votes']])
         print("\nRestaurant with the Lowest Votes:")
         print(lowest_votes[['Restaurant Name', 'Votes']])
         Restaurant with the Highest Votes:
         Restaurant Name
                             Toit
         Votes
                             10934
         Name: 728, dtype: object
         Restaurant with the Lowest Votes:
         Restaurant Name
                            Cantinho da Gula
         Votes
         Name: 69, dtype: object
```

Analyze if there is a correlation between the number of votes and the rating of a restaurant.

Analyze if there is a relationship between the price range and the availability of online delivery and table booking

Determine if higher-priced restaurants are more likely to offer these services.

In [28]: # Group the data by Price range and calculate the percentage of restaut
service_percentage_by_price_range = Data.groupby('Price range')[['Hass service_percentage_by_price_range

Plot the results
service_percentage_by_price_range.plot(kind='bar', figsize=(10, 6))
plt.title('Percentage of Restaurants Offering Services by Price Range')
plt.xlabel('Price Range')
plt.ylabel('Percentage')
plt.show()

In []: