Week 9 Sorting

Binary heaps

2 Heapification

Building a heap

4 HEAP-SORT

6 Priority queues

6 QUICK-SORT

Analysing QUICK-SORT

8 Exercises

Outlook

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a

HFAP-

Priority queues

SORT

QUICK-SORT

Analysing QUICK-SORT

Exercises

General remarks

 We return to sorting, considering HEAP-SORT and QUICK-SORT.

Reading from CLRS for week 7

- ① Chapter 6, Sections 6.1 6.5.
- 2 Chapter 7, Sections 7.1, 7.2.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-

QUICK-SORT

Exercises

Discover the properties of binary heaps Running example

CS_270 Algorithms

Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

- In data structures they should be as "balanced" as possible, i.e., their height should be as small as possible for the given number of nodes.
- Recall that the height ht(T) of a rooted tree is the maximum distance between the root and any leaf.
- **3** Perfect are the perfect binary trees (for height h they have $2^{h+1} 1$ nodes).
- Now close to perfect come the level-complete binary trees:
 - We can partition the nodes of a (binary) tree T into levels, according to their distance from the root.
 - ② We have levels $0, 1, \ldots, ht(T)$.
 - 3 In general, level k has from 1 to 2^k nodes.
 - If all levels k except possibly for the last one are full (have precisely 2^k nodes in them), then we call the tree level-complete.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues QUICK-

SORT
Analysing
OUICK-

QUICK-SORT

Exercises

Examples

The binary tree

is level-complete (level-sizes are 1, 2, 4, 4), while

is not (level-sizes are 1, 2, 3, 6).

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

$$ht(T) = \lfloor \lg(\#nds(T)) \rfloor$$
,

where #nds(T) is the number of nodes of T.

That is, the height of T is the binary logarithm of the number of nodes of T, after removal of the fractional part.

• "Balanced" ("good") trees T should have

$$ht(T) \approx \lg(\#nds(T)).$$

• Level-complete binary trees definitely fulfil that.

Operations in binary trees are often linear in the height of the tree.

Thus the height should be as small as possible.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues

OUICK-

SORT

QUICK-SORT

Exercises

HEAP-SORT

Priority queues QUICK-

SORT
Analysing
QUICK-

SORT

Exercises

Outlook

To have simple and efficient access to the nodes of the tree, the nodes of the last layer better are not placed in random order:

- Best is if they fill the positions from the left without gaps.
- A level-complete binary tree with such gap-less last layer is called a complete tree.
- So the level-complete binary tree on the examples-slide is not complete.
- While the running-example is complete.

The running-example is NOT a binary search tree:

- It would be too expensive to have this property (all nodes to the left ≤, all nodes to the right ≥) together with the completeness property.
- We have another property related to order (not just related to the structure of the tree): The value of every node is not less than the value of any of its successors (the nodes below it).
- \odot In other words, all nodes below (to the left and to the right) are \leq .
- This property is called the heap property.
- **1** More precisely it is the max-heap property.

Definition 1

A binary heap is a binary tree which is complete and has the heap property. More precisely we have binary max-heaps and binary min-heaps.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-SORT

Exercises

Outlook

1 D 7 1 LE 7 1 E 7 1 E 7 U 4 C

Outlook

Consider the numbering (not the values) of the nodes of the running-example:

- This numbering follows the layers, beginning with the first layer and going from left to right.
- Due to the completeness property (no gaps!) these numbers yield easy relations between a parent and its children.
- If the node has number p, then the left child has number 2p, and the right child has number 2p + 1.
- And the parent has number |p/2|.

For binary search trees we needed full-fledged trees (as you implemented in your first year):

- That is, we needed nodes with three pointers: to the parent and to the two children.
- However now, for complete binary trees we can use a more efficient array implementation, using the numbering for the array-indices.

So a binary heap with m nodes is represented by an array with m elements:

- C-based languages use 0-based indices (while the book uses 1-based indices).
- For such an index $0 \le i < m$ the index of the left child is 2i + 1, and the index of the right child is 2i + 2.
- While the index of the parent is $\lfloor (i-1)/2 \rfloor$.

Float down a single disturbance

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues OUICK-

SORT Analysing

QUICK-SORT

Exercises

Outlook

10

3

• The input is an array A and index i into A.

- It is assumed that the binary trees rooted at the left and right child of i are binary (max-)heaps, but we do not assume anything on A[i].
- After the "heapification", the values of the binary tree rooted at i have been rearranged, so that it is a binary (max-)heap now.

For that, the algorithm proceeds as follows:

- First the largest of A[i], A[I], A[r] is determined, where l=2i and r=2i+1 (the two children).
- ② If A[i] is largest, then we are done.
- **1** Otherwise A[i] is swapped with the largest element, and we call the procedure recursively on the changed subtree.

Analysing heapification

CS-270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

aueues QUICK-

SORT Analysing QUICK-

SORT Exercises

Outlook

Obviously, we go down from the node to a leaf (in the worst case), and thus the running-time of heapification is

linear in the height h of the subtree.

This is $O(\lg n)$, where n is the number of nodes in the subtree (due to $h = |\lg n|$).

Heapify bottom-up

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

$$A = (4, 1, 3, 2, 16, 9, 10, 14, 8, 7).$$

We repair (heapify) the binary trees bottom-up:

- **1** The leaves (the final part, from $\lfloor n/2 \rfloor + 1$ to n) are already binary heaps on their own.
- For the other nodes, from right to left, we just call the heapify-procedure.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Analysing building a heap

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification Building a

heap HEAP-**SORT**

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Outlook

Roughly we have $O(n \cdot \lg n)$ many operations:

- Here however it pays off to take into account that most of the subtrees are small.
- Then we get run-time O(n).

So building a heap is linear in the number of elements.

Heapify and remove from last to first

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Now the task is to sort an array A of length n:

- First make a binary max-heap out of A (in linear time).
- 2 Repeat the following until n = 1:
 - The maximum element is now A[1] swap that with the last element A[n], and remove that last element, i.e., set n := n 1.
 - ② Now perform heapification for the root, i.e., i = 1. We have a binary (max-)heap again (of length one less).

The run-time is $O(n \cdot \lg n)$.

Remark on SELECTION-SORT

We see that HEAP-SORT is an itelligent form of SELECTION-SORT (where we move from right to left, not from left to right):

- We extract the largest element, the second largest etc., as does SELECTION-SORT.
- ② But we support the search by the binary-heap data structure.
- **3** Thus each search takes only time $O(\lg n)$, where n is the number of remaining elements, instead of $\Theta(n)$ as for SELECTION-SORT.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

- MAXIMUM
- DELETE-MAX
- INSERTION.

We use an array A containing a binary (max-)heap (the task is just to maintain the max-heap-property!):

- ① The maximum is A[1].
- ② For deleting the maximum element, we put the last element A[n] into A[1], decrease the length by one (i.e., n := n 1), and heapify the root (i.e., i = 1).
- And we add a new element by adding it to the end of the current array, and heapifying all its predecessors up on the way to the root.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

> riority ueues

QUICK-SORT

Analysing QUICK-SORT

Exercises

HEAP-SORT

QUICK-SORT

Analysing QUICK-SORT

Exercises

Outlook

Using our running-example, a few slides ago for HEAP-SORT:

- Onsidering it from (a) to (j), we can see what happens when we perform a sequence of DELETE-MAX operations, until the heap only contains one element (we ignore here the shaded elements they are visible only for the HEAP-SORT).
- And considering the sequence in reverse order, we can see what happens when we call INSERTION on the respective first shaded elements (these are special insertions, always inserting a new max-element).

HEAP-SORT

queues

OUICK-

SORT
Analysing
QUICK-

SORT

Exercises

- MAXIMUM is a constant-time operation.
- DELETE-MAX is one application of heapification, and so need time $O(\lg n)$ (where n is the current number of elements in the heap).
- INSERTION seems to invoke up to the current height many applications of heapification, and thus would look like $O((\lg n)^2)$, but it's easy to see that it is $O(\lg n)$ as well (see the tutorial).

The idea of QUICK-SORT

Remember MERGE-SORT:

- A divide-and-conquer algorithm for sorting an array in time $O(n \cdot \lg n)$.
- The array is split in half, the two parts are sorted recursively (via MERGE-SORT), and then the two sorted half-arrays are merged to the sorted (full-)array.

Now we split along an element x of the array:

- We partition into elements $\leq x$ (first array) and > x (second array).
- Then we sort the two sub-arrays recursively.
- Done!

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

- **1** So the indices for an array A of length n are $1, \ldots, n$.
- 2 Accordingly, a sub-array is given by indices $p \le r$, meaning the range p, \ldots, r .

For Java-code (C, C++, C#, etc.) we use 0-based arrays:

- \bullet So the indices are $0, \ldots, n-1$.
- 2 Accordingly, a sub-array is given by indices p < r, meaning the range $p, \ldots, r-1$.

Range-bounds for a sub-array are here now always left-closed and right-open!

So the whole array is given by the range-parameters 0, n.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

aueues

QUICK-SORT

Analysing QUICK-SORT

Exercises

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

aueues

QUICK-SORT Analysing

QUICK-SORT

Exercises

The idea of partitioning in-place

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

An example

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT Analysing

QUICK-SORT

Exercises

```
Binary heaps
```

Heapification

```
Building a
```

```
heap
HEAP-
```

```
SORT
Priority
```

aueues

```
QUICK-
SORT
```

```
Analysing
QUICK-
SORT
```

Exercises

Outlook

```
private static void
    place_partition_element_last(final int[]
     A, final int p, final int r) {}
```

However this makes it vulnerable to "malicious" choices, so we better randomise:

```
private static void
    place_partition_element_last(final int[]
     A, final int p, final int r) {
  final int i = p+(int) Math.random()*(r-p);
 { final int t=A[i]; A[i]=A[r-1]; A[r-1]=t; }
```

A not unreasonable tree

CS_270 Algorithms

Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues QUICK-SORT

Analysing QUICK-

Exercises

Average-case

If we actually achieve that both sub-arrays are at least a constant fraction α of the whole array (in the previous picture, that's $\alpha=0.1$), then we get

$$T(n) = T(\alpha \cdot n) + T((1 - \alpha) \cdot n) + \Theta(n).$$

That's basically the second case of the Master Theorem (the picture says it's similar to $\alpha=\frac{1}{2}$), and so we *would* get

$$T(n) = \Theta(n \cdot \log n).$$

And we actually get that:

- for the non-randomised version (choosing always the last element as pivot), when averaging over all possible input sequences (without repetitions);
- for the randomised version (choosing a random pivot), when averaging over all (internal!) random choices; here we do not have to assume something on the inputs, except that all values are different.

CS_270 Algorithms

Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-

Exercises

The worst-case run-time of QUICK-SORT is $\Theta(n^2)$ (for both versions)!

- This can be repaired, making also the worst-case run-time $\Theta(n \cdot \log n)$.
- For example by using median-computation in linear time for the choice of the pivot.
- In practice these days often (for example in gcc) Introsort is used, which starts with QUICK-SORT, and switches to HEAP-SORT if recursion depth becomes too big, while when the array is small enough, INSERTION-SORT is used.
- When pointers are to be handled, then Timsort is preferable, which is derived from MERGE-SORT and INSERTION-SORT.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

SORT Priority

queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

HEAP-SORT on sorted sequence

What does HEAP-SORT on an already sorted sequence? And what's the complexity? Consider the input sequence

$$1, 2, \ldots, 10.$$

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-

SORT Exercises

- **10**, 9, 7, 8, 5, 6, 3, 1, 4, 2
- **2** 9, 8, 7, 4, 5, 6, 3, 1, 2; 10
- **3** 8, 5, 7, 4, 2, 6, 3, 1; 9, 10
- **3** 7, 5, 6, 4, 2, 1, 3; 8, 9, 10
- **5** 6, 5, 3, 4, 2, 1; 7, 8, 9, 10
- **5**, 4, 3, 1, 2; 6, 7, 8, 9, 10
- **4**, 2, 3, 1; 5, 6, 7, 8, 9, 10
- **3**, 2, 1; 4, 5, 6, 7, 8, 9, 10
- **2**, 1; 3, 4, 5, 6, 7, 8, 9, 10
- **1**; 2, 3, 4, 5, 6, 7, 8, 9, 10

So HEAP-SORT doesn't take any advantage from some already existing sorting.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-SORT

Evercises

Simplifying insertion

When discussing insertion into a (max-)priority-queue, implemented via a binary (max-)heap, we just used a general addition of one element into an existing heap:

- The insertion-procedure used heapification up on the path to the root.
- Now actually we have always special cases of heapification
 — namely which?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues QUICK-

SORT Analysing

Analysing QUICK-SORT

Exercises

SORT Priority

queues QUICK-SORT

Analysing QUICK-

SORT

Outlook

When discussing insertion into a (max-)priority-queue, implemented via a binary (max-)heap, we just used a general addition of one element into an existing heap:

- The insertion-procedure used heapification up on the path to the root.
- Now actually we have always special cases of heapification - namely which?

Answer: The new element only goes up, swapping with its parent, which then has already its place, until the new element found its place.

What happens if we change the line

if
$$(v \le x) \{A[j] = A[q]; A[q++] = v;\}$$

of function partition to

if
$$(v < x) \{A[j] = A[q]; A[q++] = v;\}$$

- Can we do it?
- Would it have advantages?

CS-270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

aueues QUICK-SORT

Analysing QUICK-SORT

Exercises

What happens if we change the line

if
$$(v \le x) \{A[j] = A[q]; A[q++] = v;\}$$

of function partition to

$$if \ (v < x) \ \{A[j] = A[q]; \ A[q++] = v;\}$$

- Can we do it?
- Would it have advantages?

Answer: Yes, we can do it: it would save work, due to values equal x not being moved to the left part.

QUICK-SORT on constant sequences

What is QUICK-SORT doing on a constant sequence, in its three incarnations:

- pivot is last element
- pivot is random element
- pivot is median element?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues
QUICKSORT

Analysing QUICK-SORT

Exercises

QUICK-SORT on constant sequences

What is QUICK-SORT doing on a constant sequence, in its three incarnations:

- pivot is last element
- pivot is random element
- pivot is median element?

One of the two sub-arrays will have size 1, and QUICK-SORT degenerates to an $O(n^2)$ algorithm (which does nothing).

What can we do about it?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

QUICK-SORT on constant sequences

What is QUICK-SORT doing on a constant sequence, in its three incarnations:

- pivot is last element
- pivot is random element
- pivot is median element?

One of the two sub-arrays will have size 1, and QUICK-SORT degenerates to an $O(n^2)$ algorithm (which does nothing).

What can we do about it?

We can refine the partition-procedure by

- not just splitting into two parts,
- but into three parts: all elements < x, all elements = x, and all elements > x.

Then we use only the left and the right sub-array (leaving out the whole middle) for recursion. We get $O(n \log n)$ for constant sequences.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Worst-case for QUICK-SORT

Consider sequences without repetitions, and assume the pivot is always the last element:

- What is a worst-case input?
- And what is QUICK-SORT doing on it?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Worst-case for QUICK-SORT

Consider sequences without repetitions, and assume the pivot is always the last element:

- What is a worst-case input?
- And what is QUICK-SORT doing on it?

Every already sorted sequence is a worst-case example! QUICK-SORT behaves as with constant sequences.

Note that this is avoided with randomised pivot-choice (and, of course, with median pivot-choice).

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Worst-case $O(n \log n)$ for QUICK-SORT

How can we achieve $O(n \log n)$ in the **worst-case** for QUICK-SORT?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

- Just choosing, within our current framework, the median-element is not enough, but we need the change the framework, allowing to compute the median-index (or we do the triple-partition as discussed).
- Best is to remove the function place_partition_element_last, and leave the partitioning fully to function partition.

Then the main procedure becomes (without the asserts):

```
public static void sort(final int[] A, final
    int p, final int r) {
    if (r-p <= 1) return;
    final int q = partition(A,p,r);
    sort(A,p,q); sort(A,q+1,r);
}</pre>
```

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Divide-and-Conquer

 Matrix Multiplication is a great example, which you should have seen.

- Otherwise, if you do not have special interests, I think you can move on to other paradigms.
- Sure, algorithmic analysis (and the underlying mathematics) is an infinite game, but you might learn it as you go.
- The Wikipedia page on the Master Theorem is quite nice.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Graphs

- Graph theory has many many aspects.
- Much theory, much experimentation.
- "Network" are graphs, but with a specialised focus on growth of the graph.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues QUICK-

SORT
Analysing
QUICK-

SORT

Exercises

Data structures

- The book has plenty on the classical data structures.
- Hashing is a very active topic, with special links to cryptography.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises

Complexity theory

- This is about about the resource needs of algorithmic problem IN GENERAL.
- Most central (and most famous) the "P versus NP" question: is there a polytime algorithm for finding an assignment for a propositional formula?

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT Priority

queues OUICK-

SORT
Analysing
QUICK-

SORT Exercises

See The Science of Brute Force.

CS_270 Algorithms

> Oliver Kullmann

Binary heaps

Heapification

Building a heap

HEAP-SORT

Priority queues

QUICK-SORT

Analysing QUICK-SORT

Exercises