Corso di Laboratorio di Calcolo

Appello straordinario- 7 maggio 2013, ore 10:00

Scrivere un programma, chiamato $\langle cognome \rangle - \langle nome \rangle .c$ (avendo eliminato caratteri speciali dal nome e dal cognome, es: Marco D'Alì $dali_marco.c$) che esegua una delle due seguenti tracce a scelta. La prima traccia é semplificata e pertanto non permette di prendere voti superiori al 24/30.

A) Dadi Truccati (voto max 24/30)

Il programma simuli il lancio di un dado a 6 facce...il dado però è truccato! A tal scopo il programma deve:

- \bullet definire un array di double p[6] che rappresenta il peso con cui il singolo possibile risultato del dato uscirá.
- Chiedere all'utente di inserire da tastiera, mediante un opportuno ciclo, i sei elementi di p[6]. Ogni elemento di questo array deve essere un numero razionale fra zero e uno. Se i dati inseriti sono fuori dall'intervallo si deve ripetere l'inserimento finché l'inserimento non é corretto;
- definire un array di interi sorte[6]. Ciascun elemento di questo array sarà usato per contare il numero di volte in cui esce il corrispondente risultato ne dado (sorte[0] conterà quante volte esce 1, sorte[1] quante volte esce 2 e cosi' via...).
- Mediante un opportuno ciclo, ripetere N=10000 volte il lancio del dado. Ogni "lancio" equivale a
 - 1. generare un numero casuale i intero compreso nell'intervallo da 1 a 6 che rappresenta il risultato del lancio;
 - 2. accettare o rifiutare tale risultato secondo il seguente schema: generare un numero casuale razionale r nell'intervallo da 0 a 1. Se r è minore della probabilità di accettazione p[i] del numero estratto i accettare l'estrazione.
 - 3. in caso di mancata accettazione i punti 1 e 2 vanno ripetuti e questo ciclo si interrompe solo quando il risultato viene accettato
- Per ogni numero accettato si aggiorni l'elemento dell'array sorte corrispondente aumentandolo di una unitá.
- Calcolare e stampare sullo schermo la frequenza di ognuno dei risultati possibili. La frequenza è data dal numero di volte che ciascun numero è uscito diviso per il numero di lanci N.

B) Calcolo dell'area con il metodo Monte Carlo

Il programma effettui il calcolo numerico dell'area di sovrapposizione tra un quadrato di lato 2L centrato nell'origine (0,0) ed un cerchio di raggio R con il centro nel punto (L/2,0).

Per determinare l'area di sovrapposizione A_{sovr} , generare le coordinate di N_{tot} punti all' interno del quadrato e contare quanti di essi (N_{in}) cadono anche all'interno del cerchio. L'area A_{sovr} si può stimare come $4 \cdot L^2 \cdot N_{in}/N_{tot}$.

A tal fine il programma deve:

- \bullet Chiedere all'utente di inserire il valore di L (metà del lato) compreso tra [1,7] e in caso di errore ripetere l'operazione
- Chiedere all'utente di inserire il valore del raggio $\frac{1}{3}L \leq R \leq L$ e in caso di errore ripetere l'operazione
- Chiedere all'utente il numero N_{tot} di punti che si devono utilizzare per la stima dell'area, assicurandosi che N_{tot} sia compreso tra [100, 1000] e in caso di errore ripetere l'operazione.
- Tramite un opportuno ciclo, stimare l'area A_{sovr} per 1000 volte generando N_{tot} punti e seguendo l'algoritmo descritto sopra. A tal fine si richiede di scrivere una funzione **distanza** per calcolare la distanza $d = \sqrt{(x_1 x_2)^2 + (y_1^2 y_2)^2}$ bidimensionale tra due punti di cui si conoscono le coordinate (x_1, y_1) e (x_2, y_2)

 \bullet Salvare i 1000 valori di A_{sovr} in un array "dati". scrivere ed utilizzare una funzione **analisi** che prenda in input l'array **dati** e restituisca il valore medio e la deviazione standard delle stime dell'area definite come

$$\langle A \rangle = \frac{1}{N_{stime}} \sum_{i=1}^{N_{stime}} A_{sovr}^{i}$$

$$Var = \sqrt{\frac{\sum_{i=1}^{N_{stime}} (A_{sovr}^{i} - \langle A \rangle)^{2}}{N_{stime} - 1}}$$
(1)

$$Var = \sqrt{\frac{\sum_{i=1}^{N_{stime}} (A_{sovr}^{i} - \langle A \rangle)^{2}}{N_{stime} - 1}}$$
 (2)

dove $N_{stime} = 1000$.

• Infine, nella funzione main utilizzando i valori restituiti dalla funzione analisi, stampare sullo schermo il valore medio e la deviazione standard della stime dell'area