Matrix Command

Operation	Matlab Command	Example	help	
Sum of Matrix	+	C=A+B		
Difference of Matrix	_	C=A-B		
Product of Matrix	*	C=A*B	mtimes	
Matrix power	^	C=A^b	mpower	
Solve the system $Ax = b$	\	x=A\b	mldivide	
Solve the system $xA = b$	/	x=b/A	mrdivide	
Transpose	. '	tA=A.'	transpose	
Get the Eigenvalues and Eigenvectors matrices Λ , Ψ of the generalized eigenvalue problem $A\Psi = B\Psi\Lambda$)	eig()	[Psi,L]=eig(A,B)	eig	
Complex conjugate transpose	1	tA=A'	ctranspose	
Inverse of Matrix A	inv()	IA=inv(A)	inv	
Determinant of Matrix A	det()	dA=det(A)		
Rank of Matrix A	rank()	rA=rank(A)		
Get Diagonal of A	diag()	b=diag(A)		
Make Diagonal matrix A from vector b	diag()	A=diag(b)		
Make Unitary NxN Diag. matrix	eye()	A=eye(N)		
Make Unitary NxM matrix	ones()	A=ones(N,M)		
Make Zeros NxM matrix	zeros()	A=zeros(N,M)		
Array Command (Element By Element)				
Array Product $A_{ij} \cdot B_{ij}$.*	C=A.*B	times	
Array left divide $A \cdot \cdot / R \cdot \cdot$	\	C=A \B	ldivide	

Array Product $A_{ij} \cdot B_{ij}$. *	C=A.*B	times
Array left divide A_{ij}/B_{ij}	.\	$C=A.\B$	ldivide
Array right divide A_{ii}/B_{ii}	./	C=B./A	rdivide

Table 1 – Basic Matrix and Array Operations