

Mark Scheme (Unused)

January 2022

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Question Number		Scheme	Marks			
1 (a)	Number	the 1200 students (1 – 1200)	B1			
	Use a ra	andom starting point between 1 and 20	B1			
	Select e	very 20 th person on the list	B1			
			(3)			
(b)(i)	They on	ly need to generate one random number	B1			
			(1)			
(b)(ii)		t random as the list is ordered alphabetically or not all combinations of g units are possible	M1			
	e.g. unli	kely siblings would be selected	A1			
		·	(2)			
(c)	Number of Y9 students = $\frac{200}{1200} \times 60 = 10$					
	The stra	tified sample gives a better proportion or is more representative oe	A1			
			(2)			
		Notes	Total 8			
1 (a)	B 1	numbering the students (Allow $0 - 1199$).				
	B1	using a random starting point. Must be between 1 and 20 (Allow $0 - 19$).				
	B1	selecting every 20 th person.				
(b)(i)	B1	a suitable comment.				
(b)(ii)	M1	a suitable comment.				
	A1	a suitable example.				
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$				
	A1	a correct explanation.				

Question Number		Scheme	Marks			
2 (a)	Use of \bar{x}	Use of $\overline{x} \pm z \times \frac{1.9}{\sqrt{10}}$; $z = 1.96$				
		, 54.897) awrt 52.5 and 54.9	A1 A1			
			(4)			
(b)	Use of 1.	$.5 > 2 \times z \times \frac{1.9}{\sqrt{n}}$ oe ; $z = 2.5758$ (or better)	M1;B1			
	$1.5 > \frac{9.78804}{\sqrt{n}}$					
	n > 42.5	8 So $n = 43$	A1			
			(4)			
		Notes	Total 8			
2 (a)	M1	for use of correct expression with 1.9, 10 and $1 < z < 3$				
	B1	for $z = 1.96$				
	A1	for awrt 52.5				
	A1	for awrt 54.9				
(b)	M1	use of $z \times \frac{1.9}{\sqrt{n}}$ in a correct inequality with 0.75 or 1.5 and 2 < z < 3 (allow written	n as an			
	D1	equation)				
	B1	for $z = 2.5758$ (or better)				
	dM1	dependent on 1 st M1, for solving a correct inequality for the width of the 99% CI (all equation rather than an inequality)	ow an			
	A1	cao				

Question Number	Scheme										Marks		
2 ()	Driver	A	В	C	D	E	F	G	Н	I	J		3.64
3 (a)	Rank F FP	QL 1	5 2	3	2	5	4 6	8 7	9	10	7	_	M1
	$\sum d^2 = 0$	0+9+0+4					0	/	0	9	10		M1
					1,,[20]							1411
	$r_s = 1 - \frac{1}{2}$	10(99)											dM1
	= 0.81	81818								8	wrt 0.8	318	A1
													(4)
(b)		$0, H_1: \rho > 0$											B1
	Critical V	Value $r_s = 0$.7455	or CR:	r_s ().7455							B1
	Reject H	or signific	ant or li	es in th	e critic	al regio	n						M1
	There is sufficient evidence of a positive correlation between fastest qualifying lap time and finishing position for these Formula One racing drivers									A1			
	<u>5</u>										(4)		
		ı			N	otes							Total 8
3 (a)	M1	attempt to rank fastest qualifying lap (at least four correct).											
M1 finding the difference between each of the							ranks a	nd evalı	ating 2	$\sum d^2$			
	dM1 dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$												
	A1	A1 $\frac{9}{11}$ or awrt 0.818											
(b)	B 1	both hypoti	heses co	rect. M	ust be in	n terms	of ρ . N	Aust be	attached	d to H ₀ a	and H ₁		
	B1	critical valu											
	M1	A correct s	tatement	compar	ring the	ir CV w	ith their	r_s - no	o contex	kt neede	d but de	o not	allow
		contradicti											
	A1	correct con	clusion v	which is	rejectii	ng H ₀ , w	hich m	ust men	tion lap	time a	nd finis	hing	position.

Question Number	Scheme										
4			tion between typ				B1				
7	H_1 : The	re is an associa	tion between typ	e of property an	d the time ta	ken to sell it	DI				
	Expect	ed	Bungalow	Flat	House	Total					
	Within	3 months	10.496	31.488	40.016	(82)	M1				
		han 3 months	5.504	16.512	20.984	(43)	A1				
	Total		(16)	(48)	(61)	(125)					
	Ot	Observed Expected			$\frac{(O-E)^2}{E} \qquad \frac{O^2}{E}$						
		7	10.496	1.164	4	4.6684					
		29	31.488	0.196		26.7085	dM1				
		46	40.016	0.894		52.8788	A1				
		9	5.504	2.220		14.7165	111				
		19	16.512	0.374		21.8628					
		15	20.984	1.706		10.7224					
		2	Tot	als 6.55	7	131.557					
	$X^2 = X$	$\sum \frac{(O-E)^2}{E} \text{or} $	$\sum \frac{O^2}{E} - 125$				dM1				
	= 6.557 awrt 6.56										
	v = (2-1)(3-1) = 2										
	$c_2^2(0.05) = 5.991 \Rightarrow CR: X^2 5.991$										
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that there is an association between type of property and the time taken to sell it.										
	The state of the s										
	Notes										
4	B1		n in terms of indep	endence)	roperty" and	"time taken" at least on	ce.				
	M1	Some attempt a	$at \frac{(Row Total)(Co)}{(Grand Total)}$	(.a	n be implied b	by at least one correct I	E_i to 1dp				
	A1	All expected frequencies correct									
	dM1	Dependent on 1 st M1 for at least 2 correct terms for $\frac{(O-E)^2}{O}$ or $\frac{O^2}{O}$ or correct expressions									
	GIVII	with their E_i A	Accept 2 sf accurac	ev.	Ц	L					
	A1	At least 3 corre	$\frac{\cot \frac{C}{E}}{E}$ or -	$\frac{E}{E}$ terms to 2dp	or better. Allo	ow truncated answers.					
	dM1	Dependent on 2 nd M1 For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$									
	A1	awrt 6.56									
	B1		rk can be implied	by a correct critic	cal value of 5.	991					
	B1	5.991	a and								
	Dependent on the 3 rd M1 and 3 rd B1. A correct contextualised conclusion which is reject										
	Must mention type and time . Contradictory statements score A0. e.g. "significant, do not H_0 ". Condone "relationship" or "connection" here but not "correlation".										

Question Number		Scheme	Marks						
5 (a)(i)		$\left[\frac{10}{0}\right] \Rightarrow \left[\overline{x} = 72.2\right] \qquad s_x^2 = \frac{260955.6 - 50(72.2)^2}{50 - 1} = 6.4$	B1; M1 A1						
5(a)(ii)		$\left[\overline{y} = \frac{2585}{50} \Rightarrow \right] \overline{y} = 51.7 \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$							
			(5)						
(b)	$H_0: \mu_x -$		B1						
(0)	$H_1: \mu_x -$	$\mu_y > 20$	ы						
	7 - 172.2	$\frac{2'-'51.7'-20}{\frac{6.4'}{50}+\frac{'2.3'}{50}}$							
	[]	6.4' '2.3'	M1 M1						
	$\sqrt{}$	$\frac{1}{50} + \frac{1}{50}$							
	=1.198	86 awrt 1.20	A1						
	One taile	ed c.v. $Z = 1.6449$ or CR: $Z 1.6449$	B1						
	Not in C	R/Not significant/Do not reject H ₀	M1						
	No signi	ficant evidence to support Tammy's belief	A1						
			(7)						
(c)		e sample is large the CLT applies.	M1						
	No need	to assume (the weights) are normally distributed.	A1 (2)						
(1)	A 1.1 , 2 2								
(4)	A gazzen a d	1 that -2 -2	D1						
(d)	Assumed	I that $s^2 = \sigma^2$	B1 (1)						
(d)	Assumed	I that $s^2 = \sigma^2$ Notes	(1)						
(d) 5 (a)(i)	Assumed B1								
		Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$	(1) Total 15						
	B1	Notes $\overline{x} = 72.2$	(1) Total 15						
	B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))	(1) Total 15						
5 (a)(i)	B1 M1 A1 B1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3	(1) Total 15						
5 (a)(i)	B1 M1 A1 B1 A1 B1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) $\frac{6.4}{\overline{y} = 51.7}$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) $\frac{6.4}{\overline{y} = 51.7}$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm $\frac{a + b + 20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen)	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{50}+\frac{d}{50}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non concomments.	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown $1.6449 \text{ or better (seen)}$ A correct statement – need not be contextual but do not allow contradicting non correct.	(1) Total 15						
5 (a)(i) 5(a)(ii)	M1 A1 B1 A1 B1 M1 M1 M1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{50}+\frac{d}{50}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non concomments. A correct contextual statement. Allow the difference in mean weights is not graph \pm 20 kg A suitable comment that mentions large and CLT	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 A1 A1 A1 A1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non corcomments. A correct contextual statement. Allow the difference in mean weights is not graphs	(1) Total 15						

Question Number			Sche				Marks		
6 (a)	$0\times1+1\times$	<10+2>	$\begin{array}{c} \times 23 + 3 \times 15 + 4 \times \\ 80 \end{array}$	$19 + 5 \times 9 + 6 \times 3$	= 3 *		B1		
(b)	$r = e^{-3} \times 80 = 3.983$ $s = \frac{e^{-3} \times 3^5}{5!} \times 80$;= 8.066								
	t = 80 - (r + 11.949 + 17.923 + 17.923 + 13.443 + s); = 6.713								
	H _o : Pois	sson (dis	stribution) is a re	asonable/suitable	e/ sensible (mod	lel)	(4)		
(c)	Ü			a /reasonable/sui			B1		
	Numb		Combined	Combined		· · · · · · · · · · · · · · · · · · ·			
	ema		Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$			
	SIAL		11	15.932	1.5267	7.5947			
	2		23	17.923	1.4381	29.5151			
	3		15	17.923	0.4767	12.5537	M1		
	4		19	13.443	2.2971	26.8541			
	5		9	8.065	0.1083	10.0433			
	>	6	3	6.714	2.0544	1.3404			
				Totals	7.901	87.901			
	$X^2 = \sum$	$\frac{O-E}{E}$	$\frac{(1)^2}{E}$ or $\sum \frac{O^2}{E}$	- 80			M1		
	= 7.9	901				awrt 7.90	A1		
	v = 6 - 1	-1 = 4					B1		
	$c_4^2(0.10)$	= 7.779	\Rightarrow CR: X^2	7.779			B1		
				hen there is suffi	cient evidence to	n reject H]			
						A1			
	Sufficient evidence to say that Poisson is not a reasonable model								
				Notes			(7) Total 12		
6 (a)	B1	For a c	orrect method to s	shown that the mea	n is 3				
(b)	M1					wer for either r or s			
	A1					64 as these come from t	ables)		
	M1			sures that expected					
	A1			714 if tables used	/				
(c)	B1		<i>y</i> 1	Must mention Poi					
	M1 M1					nd expected frequencies values (to awrt 2dp)			
	A1			o incorrect workin		varues (10 awrt 2up)			
	B1			implied by a corre		f 7.779			
	B1	7.779							
	A1	1	ect conclusion bas	ed on their X^2 val	lue and their γ^2	critical value			
	***	110011							

Question Number		Scheme	Marks					
7 (a)	Let X rep	present $B_1 + B_2 - C_1$						
, ()		0.268, 0.015633) awrt 0.0156	M1 A1					
	`	$P\left(Z < \frac{0 - 0.268}{\sqrt{0.015633}} (= -2.14)\right)$	M1					
		(=1-0.9838)=0.0162						
			(4)					
(b)	Let Y rep	present $2.5B_1 + 3C_1 + 3C_2$						
	<i>Y</i> □ N(6	.918,0.071478) awrt 6.92, 0.0715	M1 A1					
		$= P\left(Z > \frac{7 - "6.918"}{\sqrt{"0.071478"}} (= 0.31)\right)$	M1					
		(=1-0.6217) = 0.3783 (Calculator gives 0.3795) $0.378-0.380$	A1					
			(4)					
(c)	Mean = 2	2.94w	B1					
	Standard	deviation = $0.084\sqrt{5} \ w \ (=0.188w)$	B1					
			(2)					
(d)	$\frac{6-2.94w}{0.084\sqrt{5} \ w}$, -1.2816							
	-1.2816	$-1.2816 \times 0.084\sqrt{5} \ w + 2.94w \dots 6$						
	$w \dots 2.22\dots$ So $w = 2.23$							
	,,		A1 (4)					
		Notes	Total 14					
7 (a)	M1	for setting up normal distribution with mean 0.268						
	A1	for a correct expression for variance (= 0.015633) or for standard deviation (= 0.125 .)					
	M1	for standardising with 0, 0.268 and their standard deviation						
	A1	awrt 0.0162 (Allow awrt 0.0160 as this comes from a calculator)						
(b)	M1 for setting up normal distribution with mean awrt 6.92							
	A1	A1 for a correct expression for variance (= 0.071478) or for standard deviation (= 0.267)						
	M1	for standardising with 7, 0.071478 and their standard deviation						
	A1	for answer between $0.378 - 3.80$						
(c)	B1	for 2.94w						
	B1	for $0.084\sqrt{5}w$ or awrt $0.188w$						
(d)	M1	for standardising using their mean and their standard deviation = z where $1 < z < 1$.	5					
	B1	for -1.28						
	dM1	dependent on M1, for solving their inequality						
	A1	awrt (£)2.23						