MCIS6273 Data Mining / Fall 2017 / Prof. Maull

LECTURE 1: CLASS POLICIES, TOOLS AND TECHNOLOGIES

Week of $8/30$	Lecture Notes
Content	class policies, class tools, introduction, what this course is about, data mining: tools, technologies and techniques
Expected	• overview of course policies
Outcomes	• overview of data mining concepts, algorithms, methodologies
	• installation of Anaconda and Python 3.6
	• introduction to Jupyter Notebooks
	• creation of Github account
Readings &	REQUIRED
Supplemental	» 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. \rightarrow ch.1
	» 2014. Leskovec, Jure and Rajaraman, Anand and Ullman, Jeffrey David; <i>Mining of massive datasets</i> . \rightarrow ch.1
	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.1, ch.2
	OPTIONAL
	\rightarrow 2012. Downey, Allen; Think Python. \rightarrow ch.1-ch.3
	(website) – 2017; The Periodic Table of Data Science: https:
	//www.datacamp.com/community/blog/data-science-periodic-table#gs.TF297Gsm. \rightarrow Familiarize yourself with the entire table.
Homework	DUE: Monday, 9/6 - midnight
	Please see the Blackboard/Github repo for what to turn in.

LECTURE 2: DATA / REPRESENTATION, PREPARATION AND MANIPULATION

Week of 9/6	Lecture Notes
Content	introduction to core concepts in data; data types and representation of data; data formats including structured and unstructured; concepts in pre-processing data including scaling, sampling, normalizing, binning and imputing
Expected Outcomes	 understand data types and common formats identify cleaning and adjusting scenarios and apply techniques appropriately utilize and apply the appropriate Python tools (Pandas for data import and cleaning)

Week of $9/6$	Lecture Notes
Readings & Supplemental	REQUIRED » 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. → ch.1 » 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. → ch.1, ch.2 » 2012. McKinney, Wes; Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. → ipython/Jupyter notebooks for ch.5, ch.6 and ch.7 » (website) – 2017; Distance computations (scipy.spatial.distance): https://docs.scipy.org/doc/scipy/reference/spatial.distance.html. → euclidean, cosine, correlation, jaccard
Homowork	OPTIONAL > 2012. Downey, Allen; Think Python. → ch.1-ch.3 > (website) - 2017; Pandas Cookbook: https://github.com/jvns/pandas-cookbook. → familiarize yourself with this content of this repo > (Michael Kennedy's Talk Python To Me podcast) - 11-28-2016; Episode #90: Data Wrangling with Python: http://talkpythontome.fm. → listen to the entire episode
Homework	DUE: Monday, 9/18 - midnight Please see the Blackboard/Github repo for what to turn in.

LECTURE 3: DATA / DISTANCE, SIMILARITY, STATISTICAL CONCEPTS $\,$

Week of $9/13$	Lecture Notes
Content	introduction to comparing data using common metrics; introductory concepts in disorder; introductory statistical concepts; intuitions over data dimensionality and common reduction techniques
Expected Outcomes	 identify common distance metrics and their appropriate contexts understand similarity (and dissimilarity) in data develop intuitions of statistical concepts in correlation, distributions and expect value understand dimensionality reduction via PCA utilize and apply basic statistical tools in Python (Pandas/Numpy)

Week of $9/13$	Lecture Notes
Readings & Supplemental	REQUIRED » 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. → ch.7 » 2014. Leskovec, Jure and Rajaraman, Anand and Ullman, Jeffrey David; Mining of massive datasets. → ch.11 » 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. → ch.2.5, ch.10.4.2 » 2017. VanderPlas, Jake; Python Data Science Handbook. → ch.5.10 (In-depth Principal Components Analysis notebook) » (website) − 2017; sklearn.neighbors.DistanceMetric class: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html → euclidean, cosine, jaccard
	OPTIONAL > 1997. Charles M. Grinstead, CM and Snell, JL; Introduction to Probability. → nice introductory resource to probability > (website) - 2017; Distance computations (scipy.spatial.distance): https://docs.scipy.org/doc/scipy/reference/spatial.distance.html. → cdist, euclidean, cosine, jaccard > (O'Reilly Data Show podcast) - 07-06-2017; A framework for building and evaluating data products: https://www.oreilly.com/ideas/a-framework-for-building-and-evaluating-data-products. → listen to the entire interview
Homework	_

LECTURE 4: ASSOCIATION RULE MINING, PATTERN MINING

 \rightarrow listen to the entire podcast

Week of 9/20	Lecture Notes
Content	introduction to concepts for rule and pattern mining; introduction to apriori algorithm for frequent patterns; motivating the market basket analysis context for pattern mining; exploring addition contexts
Expected	• understand concepts behind frequent patterns
Outcomes	• understand association rule mining, apriori algorithm, FP-growth
	• apply and compute basic patterns by hand
	• identify the contexts for applying pattern mining
Readings &	REQUIRED
Supplemental	» 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. \rightarrow ch.8
	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.5
	OPTIONAL
	> (PartiallyDerivative.com podcast) – 06-13-2017; The Secret Life Of A Data Scientist: http://partiallyderivative.com/podcast/2017/06/13/the-secret-life-of-a-data-scientist.

Week of 9/20	Lecture Notes
Homework	DUE: Monday, 10/2 - midnight Please see the Blackboard/Github repo for what to turn in.

LECTURE 5: UNSUPERVISED TECHNIQUES / INTRODUCTION TO CLUSTERING

Week of $9/27$	Lecture Notes
Content	introduction to cluster analysis and motivations; introduction to unsupervised clustering algorithms; partitioning (k-means, k-mediods); hierarchical agglomerative methods; model-based (expectation-maximization) neural networks (SOM self-organizing maps); visualing with voronoi diagrams
Expected	• exposure to unsupervised clustering methods, k-Means
Outcomes	• introduction to key clustering algorithms
	• distinguish between partition and model-based algorithms
Readings &	REQUIRED
Supplemental	» 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis:
	fundamental concepts and algorithms. $ ightarrow$ ch.13, ch.14, ch.15, ch.17
	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.7
	» (website) – 2015; Basic Clustering with k-Means: https:
	//nbviewer.jupyter.org/github/tmbdev/teaching-mmir/blob/master/30-kmeans.ipynb. \rightarrow Familiarize yourself with the notebook.
	OPTIONAL
	\rightarrow (Linear Digressions.com podcast) – 04-16-2017; Education Analytics:
	http://lineardigressions.com/episodes/2017/4/16/education-analytics. \rightarrow listen to the entire podcast
	\rightarrow (website); Programatically understanding Expectation Maximization:
	https://nipunbatra.github.io/blog/2014/em.html. \rightarrow read this practical explanation
	(with Python code) of the EM algorithm
Homework	\mathbf{DUE} : Monday, $10/23$ - midnight
	Please see the Blackboard/Github repo for what to turn in.

LECTURE 6: UNSUPERVISED TECHNIQUES / MORE CLUSTERING

Week of $10/4$	Lecture Notes
Content	continued clustering, hierarchical algorithms (agglomorative), introduction to density-based algorithms (DBSCAN)
Expected	• understand hierarchical and density-based algorithms
Outcomes	• develop intuitions for choosing algorithms in various contexts
	• utilize algorithms on read-world data

Week of 10/4	Lecture Notes
Readings & Supplemental Homework	No assigned readings. Please complete readings from previous week if not current.

LECTURE 7: SUPERVISED TECHNIQUES / CLASSIFICATION AND PREDICTION

Week of $10/11$	Lecture Notes
Content	classification and prediction; understanding decision trees, concepts and theory; probabilistic approaches to classification - naïve bayes; introduction to bayesian belief networks
Expected	• understand and explain decision trees
Outcomes	• develop probabilistic models of classification using naïve Bayes
	• identify BBNs and their application context
	• utilize naïve Bayes in real-world applications
Readings &	REQUIRED
Supplemental	» 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis:
	fundamental concepts and algorithms. $ ightarrow$ ch.18, ch.19
	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.6.3, ch.6.4
	OPTIONAL
	\rightarrow (DataSkeptic.com podcast) $-$ 08-04-2017; MINI: Bayesian Belief Networks: https://dataskeptic.com/blog/episodes/2017/bayesian-belief-networks. \rightarrow explore this light discussion of BBNs
	\rightarrow 2012. Barber, D.; Bayesian Reasoning and Machine Learning. \rightarrow explore ch.3 for in
	a deeper theoretical treatment of BBNs
Homework	$\mathbf{DUE:}$ Monday, $11/3$ - midnight
	Please see the Blackboard/Github repo for what to turn in.

LECTURE 8: SUPERVISED TECHNIQUES / CLASSIFICATION AND PREDICTION

Week of 10/18	Lecture Notes
Content	linear regression models for prediction; logistic regression models for prediction;
	introduction to generalized linear models
Expected	• understand and develop linear regression models
Outcomes	• understand and interpret logistic regression models
	• exposure to generalized linear models

Week of $10/18$	Lecture Notes
Readings & Supplemental	 REQUIRED » 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. → ch.20 » 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. → ch.6.11
	OPTIONAL → (DataSkeptic.com podcast) – 01-27-2017; MINI: Logistic Regression on Audio Data: https://dataskeptic.com/blog/episodes/2017/logistic-regression-on-audio-data. → lister to the entire podcast → (website) – -; Building a logistic regression classifier from the ground up: http://inmachineswetrust.com/posts/building-logistic-regression/. → this is a nice explanation (and code) in Python
Homework	_

LECTURE 9: SUPERVISED TECHNIQUES / CLASSIFICATION AND MODEL EVALUATION

Week of $10/25$	Lecture Notes
Content	support vector machines; neural networks and the basic NN model and its relation to
Expected	learning algorithms; evaluating models and applying techniques to model validation • understand support vector machines and their strengths
Outcomes	• understand neural networks, their basic theory and application
	• identify and develop intuition around model evaluation and validation
Readings &	REQUIRED
Supplemental	» 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis:
	$fundamental\ concepts\ and\ algorithms. ightarrow {f ch.21}$
	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.6.6, ch.6.7
	OPTIONAL
	(DataSkeptic.com podcast) – 05-27-2017; Data Science at eHarmony:
	https://dataskeptic.com/blog/episodes/2016/data-science-at-eharmony. \rightarrow listen to the entire podcast
Homework	DUE: Monday, 11/30 - midnight
	Please see the Blackboard/Github repo for what to turn in.

LECTURE 10: ENSEMBLE METHODS

Week of 11/1	Lecture Notes
Content	ensemble methods; introduction to boosting, bagging, random forests and related methods

Week of $11/1$	Lecture Notes
Expected Outcomes	 understand and identify the need for ensembles identify and develop intutition around ensemble model evaluation and validation
Readings & Supplemental	REQUIRED » 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms. → ch.22 » 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. → ch.6.12, ch.6.13, ch.6.14, ch.6.15
Homework	_

LECTURE 11: DATA VISUALIZATION: INTRODUCTORY CONCEPTS

Week of $11/8$	Lecture Notes
Content Expected Outcomes	introduction to data visualization; building data narratives • understand core social mining algorithms • understand concepts in network analysis
Readings & Supplemental	REQUIRED » 2015. Knaflic, Cole Nussbaumer; Storytelling with data: A data visualization guide for business professionals. \rightarrow ch.8 » (website) – 2017; D3.js: Data-Driven Documents: http://d3js.org. \rightarrow familiarize yourself with some of the visualizations and capabilities of D3.js
	OPTIONAL > 2014. B\"orner, Katy and Polley, David E; Visual insights: A practical guide to making sense of data. → ch.5 > (website) - 2017; Analyzing Scrabble Games: http://rpubs.com/jalapic/scrabblr. → This is a very interesting exploration in analysis and visualization. > (website) - 2017; World Population Growth: https://ourworldindata.org/world-population-growth/. → explore some of the data and visualizations > (website) - 2017; RAWGraphs: The missing link between spreadsheets and data visualization: http://rawgraphs.io/. → explore this site and its galleries > (website) - 2016; Rio 2016 Medals Race: An analysis of the 2016 Olympic Medals: http://timesofoman.com/extra/rio_2016_medal_tally/index.html. → explore this visualization
Homework	_

LECTURE 12: INTRODUCTION TO SOCIAL MINING

Week of $11/15$	Lecture Notes
Content	introduction to social mining; introduction to recommendation systems, collaborative and content-based filtering

Week of $11/15$	Lecture Notes
Expected Outcomes	 understand core social mining algorithms understand concepts in network analysis understand core recommender system concepts
Readings & Supplemental	REQUIRED » 2014. Leskovec, Jure and Rajaraman, Anand and Ullman, Jeffrey David; <i>Mining of massive datasets</i> . \rightarrow ch.10 » 2015. Grus, Joel; <i>Data science from scratch: First principles with Python</i> . \rightarrow ch.22
	OPTIONAL → 2014. Leskovec, Jure and Rajaraman, Anand and Ullman, Jeffrey David; Mining of massive datasets. → ch.9 → 2014. B\"orner, Katy and Polley, David E; Visual insights: A practical guide to making sense of data. → ch.5
Homework	_

LECTURE 13: INTRODUCTION TO TEXT MINING

Week of 11/29	Lecture Notes
Content	introduction to text mining; concepts in document preparation pipeline (tokenizing, stemming, etc.); TFIDF, cosine similarity; corpus selection
Expected	• understand introductory concepts in text mining and information retrieval
Outcomes	• understand document preparation tools
	• apply basic concepts to real-world data
Readings &	REQUIRED
Supplemental	» 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques. \rightarrow ch.10.4
	» 2008. Manning, Christopher D and Raghavan, Prabhakar and Sch\"utze, Hinrich; Introduction to information retrieval. \to ch.6
	OPTIONAL
	\rightarrow 2008. Manning, Christopher D and Raghavan, Prabhakar and Sch\"utze, Hinrich; Introduction to information retrieval. \rightarrow ch.13
	\rightarrow (O'Reilly Data Show podcast) – 07-06-2017; Language understanding remains one of AI's grand challenges: https://www.oreilly.com/ideas/language-understanding-remains-one-of-ais-grand-challenges. \rightarrow listen to the entire interview
	\rightarrow (Linear Digressions.com podcast) $-$ 04-30-2017; Word2 Vec:
	http://lineardigressions.com/episodes/2017/4/30/word2vec. \rightarrow listen to the entire
	podcast
Homework	_

LECTURE 14: OPEN DATA, ETHICS IN DATA MINING, THE FUTURE OF DATA SCIENCE

Week of $12/6$	Lecture Notes
Content	open data portals, APIs, tools and technologies; ethics in data mining; anonymization, privacy and data considerations; data science and the future
Expected	• exposure to open data portals and open data technologies
Outcomes	• exposure to open APIs and tools for open data access
	 understand data mining ethics and why ethics (and privacy) are critically important the future to data science, analytics and intelligent systems built on big data
Readings &	REQUIRED
Supplemental	 » (DataStori.es podcast) – 05-18-2016; 74 - Data Ethics and Privacy with Eleanor Saitta http://datastori.es/74-data-ethics-and-privacy-with-eleanor-saitta/. → listen to the entire podcast » (website) – 2017; ProgrammableWeb.com: The Journal of the API Economy: https://www.programmableweb.com/. → familiarize yourself with this site and some APIs
	OPTIONAL $(\text{LinearDigressions.com podcast}) - 08\text{-}13\text{-}2017; \textit{Curing Cancer with Machine Learning is Super Hard: http://lineardigressions.com/episodes/2017/8/13/curing-cancer-with-machine-learning-is-super-hard.} \rightarrow \textbf{listen to the entire podcast}$
Homework	_

RESOURCES

- 1. 2014. Zaki, Mohammed J and Meira Jr, Wagner; Data mining and analysis: fundamental concepts and algorithms.
- 2. 2014. Leskovec, Jure and Rajaraman, Anand and Ullman, Jeffrey David; Mining of massive datasets.
- 3. 1997. Charles M. Grinstead, CM and Snell, JL; Introduction to Probability.
- 4. 2011. Yau, Nathan; Visualize this: the Flowing Data guide to design, visualization, and statistics.
- 5. 2014. B{\"o}rner, Katy and Polley, David E; Visual insights: A practical guide to making sense of data.
- 6. 2012. Downey, Allen; Think Python.
- 7. 2012. Conway, Drew and White, John; Machine learning for hackers.
- 8. 2015. Grus, Joel; Data science from scratch: First principles with Python.
- 9. (website) 2017; The Periodic Table of Data Science: https://www.datacamp.com/community/blog/data-science-periodic-table#gs.TF297Gsm.
- 10. 2011. Han, Jiawei and Pei, Jian and Kamber, Micheline; Data mining: concepts and techniques.
- 11. 2012. McKinney, Wes; Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.

- 12. 2008. Manning, Christopher D and Raghavan, Prabhakar and Sch{\"u}tze, Hinrich; Introduction to information retrieval.
- 13. 2015. Knaffic, Cole Nussbaumer; Storytelling with data: A data visualization guide for business professionals.
- 14. 2016. Rose, Doug; Data Science: Create Teams That Ask the Right Questions and Deliver Real Value.
- 15. (website) 2013; Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More: https://github.com/ptwobrussell/Mining-the-Social-Web-2nd-Edition/.
- 16. 2017. Wexler, Steve and Shaffer, Jeffrey and Cotgreave, Andy; The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios.
- 17. 2017. VanderPlas, Jake; Python Data Science Handbook.
- 18. (website) 2015; Basic Clustering with k-Means: https://nbviewer.jupyter.org/github/tmbdev/teaching-mmir/blob/master/30-kmeans.ipynb.
- 19. (website) 2017; Distance computations (scipy.spatial.distance): https://docs.scipy.org/doc/scipy/reference/spatial.distance.html.
- 20. (website) 11-15-2016; Jupyter Notebook Tutorial: The Definitive Guide: https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook#gs.zExWvMw.
- 21. (website) 2017; Pandas Cookbook: https://github.com/jvns/pandas-cookbook.
- 22. (website) 2017; sklearn.neighbors.DistanceMetric class: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html.
- 23. ({Michael Kennedy's Talk Python To Me} podcast) 11-28-2016; Episode #90: Data Wrangling with Python: http://talkpythontome.fm.
- 24. ({O'Reilly Data Show} podcast) 07-06-2017; A framework for building and evaluating data products: https://www.oreilly.com/ideas/a-framework-for-building-and-evaluating-data-products.
- 25. ({O'Reilly Data Show} podcast) 07-06-2017; Language understanding remains one of AI's grand challenges: https://www.oreilly.com/ideas/language-understanding-remains-one-of-ais-grand-challenges.
- 26. (Partially Derivative.com podcast) – 06-13-2017; The Secret Life Of A Data Scientist: http://partially derivative.com/podcast/2017/06/13/the-secret-life-of-a-data-scientist.
- 27. (Linear Digressions.com podcast) 04-16-2017; Education Analytics: http://lineardigressions.com/episodes/2017/4/16/education-analytics.
- 28. (Linear Digressions.com podcast) – 06-04-2017; PageRank: http://linear digressions.com/episodes/2017/6/4/pagerank.
- 29. (LinearDigressions.com podcast) 08-13-2017; Curing Cancer with Machine Learning is Super Hard: http://lineardigressions.com/episodes/2017/8/13/curing-cancer-with-machine-learning-is-super-hard.
- 30. (Linear Digressions.com podcast) – 04-30-2017; Word2Vec: http://linear digressions.com/episodes/2017/4/30/word2vec.
- 31. (DataStori.es podcast) 05-18-2016; 74 Data Ethics and Privacy with Eleanor Saitta: http://datastori.es/74-data-ethics-and-privacy-with-eleanor-saitta/.
- 32. (website) 2017; Programmable Web.com: The Journal of the API Economy: https://www.programmableweb.

com/.

- 33. (website) 2017; Analyzing Scrabble Games: http://rpubs.com/jalapic/scrabblr.
- 34. (website) 2017; GSS Data Explorer: https://gssdataexplorer.norc.org/.
- 35. (website) 2017; World Population Growth: https://ourworldindata.org/world-population-growth/.
- 36. (website) 2017; RAWGraphs: The missing link between spreadsheets and data visualization: http://rawgraphs.io/.
- 37. (website) 2016; Rio 2016 Medals Race: An analysis of the 2016 Olympic Medals: http://timesofoman.com/extra/rio_2016_medal_tally/index.html.
- 38. (website) 2017; D3.js: Data-Driven Documents: http://d3js.org.
- 39. (DataSkeptic.com podcast) 08-04-2017; MINI: Bayesian Belief Networks: https://dataskeptic.com/blog/episodes/2017/bayesian-belief-networks.
- 40. (DataSkeptic.com podcast) 01-27-2017; MINI: Logistic Regression on Audio Data: https://dataskeptic.com/blog/episodes/2017/logistic-regression-on-audio-data.
- 41. (DataSkeptic.com podcast) 05-27-2017; Data Science at eHarmony: https://dataskeptic.com/blog/episodes/2016/data-science-at-eharmony.
- 42. (website) –; Programatically understanding Expectation Maximization: https://nipunbatra.github.io/blog/2014/em.html.
- 43. (website) —; Building a logistic regression classifier from the ground up: http://inmachineswetrust.com/posts/building-logistic-regression/.
- 44. 2012. Barber, D.; {Bayesian Reasoning and Machine Learning}.