CG Experiment 11. Yash Sarang DGAD/47

Ain: Implement fractal generation motherd - Koch curve.

Theory:

Fractals- They are very complex pictures generated by a computer from a single formula. They are created using iterations. That means I formula is repeatedly used with slightly different values. over & over again, taking into account the result from previous iteration.

Koch Curre- The Koch snowflake Calso known as Koch star, Kuch curre is a mathematical curre and one of the earliest practical curres to have been constructible from elementary glomety.

A Koch curve is a tractal generated by a replacement rule. This rule is, at each step, to replace the middle 131/3 of each line segment with two sides of a right angle treangle having sides of length equal to the replaced segment.

This quantity increases without bound. Hence, the koch curve has infinite length. However, the curve still bounds a finite area.

Construction The Koeh were can be constructed by starting with an equilateral triangle.

Divide the line segment into 3 segments of equal length

· Dsaw an equilateral triangle that has the middle segment: from step 1 as its base and points outward.

Remove the line segment that is the base of the triangle from step 2.
have of the travale from step 2.
me of in inge
o After one iteration of this process,
the resulting shape is the outline of a heragram.
heragram.
不不了了了了
The Koch unve is a limit approach as the above steps are followed over to over agia again.
as the whole eleve are fillered are to
as me acros sigs and somewhat over le
over agra again.
In short, three Koch weres make a
Koch snowflake.

Code:-

```
tinclude<graphics.h>
#include<comio.h>
#include<math.h>
#include<stdio.h>
#include<dos.h>
#include<stdlib.h>
void koch(int x1,int y1,int x2,int y2,int it)
float angle=60*M PI/180;
int \times 3 = (2 \times x1 + x2)/3;
int y3=(2*y1+y2)/3;
int \times 4 = (\times 1 + 2 \times \times 2) / 3;
int y4=(y1+2*y2)/3;
int x=x3+(x4-x3)*cos(angle)-(y4-y3)*sin(angle);
int y=y3+(x4-x3)*sin(angle)+(y4-y3)*cos(angle);
if(it)0)
koch(x1,y1,x3,y3,it-1);
koch(x3,y3,x,y,it-1);
koch(x,y,x4,y4,it-1);
koch(x4,y4,x2,y2,it-1);
else{
line(x1,y1,x3,y3);
line(x3,y3,x,y);
line(x,y,x4,y4);
line(x4,y4,x2,y2);
delay(100);
int main()
int qd=DETECT,qm,e;
int \times 1, \times 2, y 1, y 2, n;
initgraph(&gd,&gm,"C:NNTURBOC3NNBGI");
printf("ENTER THE ENDSPOINT OF LINE X1, X2, Y1, Y2: Nn");
scanf("xdxdxdxd",&x1,&x2,&y1,&y2);
e=graphresult();
if (e!=grOk)
printf("GRAPHICS ERROR:\n",grapherrormsg(e));
```

```
int x1,x2,y1,y2,n;
initgraph(&gd,&gm,"C:NNTURBOC3NBGI");
printf("ENTER THE ENDSPOINT OF LINE X1,X2,Y1,Y2:\n");
scanf ("zdzdzdzd", &x1, &x2, &y1, &y2);
e=graphresult();
if (e!=grOk)
printf("GRAPHICS ERROR:\n",grapherrormsg(e));
printf("ENTER ANY KEY TO HALT:\n");
getch();
exit(1);
printf("HOW MANY ITERATION YOU WANT?\n");
scanf("xd",&n);
setcolor(RED);
line(\times1,y1,\times2,y2);
setcolor(GREEN);
koch(x1,y1,x2,y2,n-1);
getch();
return 0;
```

Condusion: In this way, we successfully implemented Koch Curve.

._____

Output:-

```
ENTER THE ENDSPOINT OF LINE X1,X2,Y1,Y2:
200
250
400
450
HOW MANY ITERATION YOU WANT?
```

.....