

TMSCA HIGH SCHOOL MATHEMATICS TEST # 1 © OCTOBER 21, 2017

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate $5.4 \div \left(\frac{5}{2}\right)^{-1} 4! + 7.8$.
 - (A) -14.0
- **(B)** 5.3
- (C) -6.0
- (D) 10.8
- (E) -2.7
- 2. Seven billion, eighty-seven is subtracted from sixteen billion, three hundred sixty-one thousand, eight hundred seventy-two. What is the sum of the digits in the difference?
 - (A) 47
- **(B)** 35
- (C) 26
- (D) 63
- **39 (E)**
- 3. Find the sum of the multiples of 5 that are greater than -27 and less than 148.
 - (A) 2220
- **(B)** 1925
- (C) 2100
- (D) 2975
- **(E)** 2240
- 4. Given that (3x-2) is a factor of $3x^3 + ax^2 27x + 2a$, find the value of a.
 - (A) 5
- (\mathbf{B}) 3
- (C) -5
- (\mathbf{D}) 7
- **(E)** -15
- 5. Which of the following is an equation of the perpendicular bisector of the line segment illustrated?
- (A) 3x + 2y = 3 (B) 2x 3y = 2 (C) 3x 2y = -3

- (D) 3x-2y=-1 (E) 3x+2y=-8
- 6. Simplify: $\frac{(n+2)!}{(n-1)!} \times \frac{1}{n} \div \frac{(n+1)!}{n!}$
 - (A) $\frac{n+2}{n}$ (B) n+2 (C) n^2+n-2 (D) n^2+2n

- $(E) \quad \frac{n^2+n-2}{}$
- 7. Given that (2x+3) is a factor of $2x^3 + ax^2 22x + 3a$, find the value of a.
 - (A) 5
- (\mathbf{B}) 3
- (C) -5
- **(D)** 7
- (E) -15
- 8. Carol bought Columbian coffee that cost \$13.00 per pound and Guatemalan coffee that cost \$15.00 per pound. How much Guatemalan coffee did she buy if she bought 3 pounds of coffee for \$42.50?
 - (A) 24 oz.
- (B) 28 oz.
- (C) 20 oz.
- (D) 16 oz.
- **(E)** 18 oz.
- 9. A box contains 6 black marbles, 7 red marbles and 8 green marbles. If Leon draws out 3 marbles 1 at a time without replacement, what are the odds that he will draw out 3 red marbles?
 - (A) 1:38
- (B) 49:1091
- (C) 1:37
- (D) 49:1140
- **(E)** 7:221
- 10. $\angle A$ and $\angle B$ are supplementary. If $m\angle A = 8x^2 3x$ and $m\angle B = 17x 4$, find the measure of the larger angle.
 - (A) 64°
- (B) 48°
- (C) 132°
- (D) 116°
- **(E)** 41°

- 11. If $\frac{Ax+B}{3x+2} + \frac{x-3}{2x+1} = \frac{7x^2+5x-1}{6x^2+7x+2}$, where A and B are constants, then A+B=?
 - (A) 12
- (C) 5
- **(D)** 10
- **(E)** 15
- 12. The three shapes below are made up of one-unit squares. If the pattern continues, the area of the figure with a perimeter of 114 units is _____square units.

- (A) 56
- **(B)** 48
- (C) 60
- (D) 230
- 234 **(E)**
- 13. A square has side lengths of 8 cm. If the square's width is quadrupled and the length is halved, the area of the square is what percent of the area of the new rectangle?
 - (A) 75%
- (B) $12\frac{1}{2}\%$
- (C) 25%
- (D) 50%
- (E) $33\frac{1}{2}\%$
- 14. A tank in the form of a rectangular prism is completely empty. The length of the tank is twice the width and the height is triple the width. How many gallons of water will fill the tank to 80% capacity if the height of the tank is 5 feet? (nearest gallon)
 - (A) 120 gal
- (B) 22 gal
- (C) 208 gal
- (D) 147 gal
- (E) 166 gal

- 15. Let $A = \begin{bmatrix} 2 & 7 \\ -13 & -9 \end{bmatrix}$, $B = \begin{bmatrix} -7 & 0 \\ 1 & -11 \end{bmatrix}$ and C = AB. Find $C_{1,2}$.
 - (A) -77
- (B) -12
- (C) -13
- (\mathbf{D}) 82
- (\mathbf{E}) 7
- 16. An operation " Ω " is defined by $a\Omega b = b^a ab$. What is the value of $(3\Omega 2)\Omega(2\Omega 3)$?
 - (A) 2
- **(B) 6**
- (C) 9
- (\mathbf{D}) 3
- (E) 7
- 17. A rubber band was stretched on the geoboard to form this 9-sided figure. What is the area?
 - (A) 11 units^2
- (B) 10 units^2
- (C) 9 units 2

- (D) 11.5 units^2
- (E) 10.5 units^2
- 18. Determine the frequency of $f(x) = 7 + 4\cos[6\pi(x-3)]$.
- (B) $\frac{3}{4}$ (C) 3
- $(\mathbf{D}) \quad \frac{2}{3}$
- **(E)**
- 19. Given the geometric sequence -48, a, b, c, -3,..., find the largest possible value of a+b+c.
 - (A) -9
- **(B)** -42
- (\mathbf{C}) -6
- (D) 18
- (E) 3

- 20. Find the remainder when $x^4 3x^3 + 8x 5$ is divided by x 5.
 - (A) 955
- **(B)** 285
- (C) 505
- **(D)** -9
- (E) 585

TMSCA	17-18 HSMA	Γest 1									Page 3
21. Whic	h of the follow	ing fu	nctions is n	eithe	er eve	en nor odd?	f(x) =	•			
(A)	$\sin(3x)$	(B)	x-5		(C)	x -5	(D)	$4x^2 - 7$	((E)	$\cos(2x)$
22. Let <i>f</i>	$f'(x) = 12x^2 + 1$	10 <i>x</i> –	2 and $f(2)$	2)=6	60. F	ind $f(-2)$.					
(A)	-12	(B)	12		(C)	0	(D)	4	((E)	-4
23. If the height of a right conical container is doubled and the radius of the base is cut in half, then what is the ratio of the volume of the original container to the volume of the new container?											
(A)	1:2	(B)	1:1		(C)	4:1	(D)	1:4	((E)	2:1
24. Let <i>f</i>	$f(x) = x^2 + 1 a$	nd $g($	$(x) = x^3. $	Calcu	ılate	$f\left(g^{-1}\left(27\right)\right).$					
(A)	19,683	(B)	4		(C)	730	(D)	82	((E)	10
25. What	is the angle be	etweer	the minut	e and	d hou	r hands on a	circula	r clock at	3:27 p	m?	
(A)	58.5°	(B)	60°		(C)	56.5°	(D)	57°	((E)	57.5°
	line's Ice Crear different 2-sco						_		ıtaineı	opti	ions. How
(A)	126	(B)	504		(C)	165	(D)	378	((E)	168
27. Let th	ne "1" at the to	p of P	'ascal's tria	ngle	be ro	ow 0. Determ	nine the	fifth num	ber in	row	42.
(A)	111,930	(B)	850,668		(C)	962,598	(D)	123,410	((E)	101,270
	h Euclid's UIL sting of at least				-	_	ow many	different	t 4-me	mbe	r teams
` '	246	(B)	1,785		(C)		, ,	1,330		(E)	2,345
29. Whic	h of the follow	ing ma	athematicia	ans is	s/are	known for w	orking v	with prim	e num	bers	?
	I. Sophie	Germa	ain :	II.	Mari	n Mersenne	II	I. Erasto	sthen	es	
(A)	I only	(B)	III only		(C)	I & III	(D)	II & III	((E)	all of them
30. Giver	that $x - y = -$	-12 ar	$\mathbf{nd} \ xy = 28,$, find	$ x^3-$	y^3 .					
(A)	-2400	(B)	-2064		(C)	-8976	(D)	-9264	((E)	-2736
31. The s	haded region i	n whi	ch of the fo	llow	ing V	enn diagram	s repres	ents the s	et (A	∩C)	$\cup (B \cap C)$?
(A)	$A \bigcirc B$		(1)	B)	A.	\int_{C}^{B}		(C)	A CO	$\binom{B}{C}$	

32. The statement $(5x-3)(3x-7) = 15x^2 - 35x - 9x + 21$ is an example of ______property.

(A) Associative

- **(B) Commutative**
- (C) Distributive

(D) Transitive

- **Identity (E)**
- 33. Use the table of values to create a function and find K.

X	1	2	3	4	5	•••	18
Y	-25	-15	13	71	171		K

- (A) 10,753 (B) 1,841
- (C) 4,105
- (E) 498

34. Find $\lim_{x \to -\infty} \frac{2x^3 - x - 3}{2x^3 - 9x + 9}$

- (A) 0
- **(B)** 1
- (\mathbf{C}) $-\infty$
- $(\mathbf{D}) \quad \infty$
- (\mathbf{E}) -1

35. Let $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$,... be the terms of the Fibonacci sequence. How many digits are in f_{47} ?

- (A) 7
- **(B)** 8
- (C) 9
- **(D)** 10
- **(E)** 11

36. If $[(5+3i)(3-2i)] \div (4-i) = a+bi$, then a+b=?

- (A) 3.8
- **(B)** 4.2
- (C) 6.0
- **(D)** 8.0
- (E) 9.2

37. The chart shows the losses and gains in an investment over the course of five years. What was the average growth rate over the course of the five years? (nearest hundredth)

Year	1	2	3	4	5
Percent Growth	+ 10%	-4%	-8%	+7%	+6%

- (A) +2.46%
- (B) +1.96%
- (C) +1.59%
- (D) +2.22%
- (E) +5.01%

38. Which of the following are the side lengths of a scalene obtuse triangle?

- (A) 5, 6, 6
- **(B)** 4.5.6
- (C) 5, 6, 8
- (D) 6, 8, 10
- (E) 8, 10, 12

39. Find the perimeter of triangle ABC. (nearest tenth)

- (A) 45.5
- (B) 52.8
- (C) 56.4
- (D) 54.6
- **(E)** 96.9

40. If $\frac{11}{(x-2)(x+4)} - \frac{2}{(x-5)(x+4)} = \frac{k}{(x-2)(x-5)(x+4)}$, then k equals:

- (A) 9x-52 (B) 9x-59
- (C) 13x 59
- (D) 13x 52
- (E) 9x 51

										- 4.80
41. Tł	ie in	itersection of t	he alt	itudes of a tria	ngle o	of a triangle	is called	the	•	
()	A)	Incenter	(B)	Orthocenter	(C)	Center	(D)	Centroid	(E)	Circumcenter
								$3x^2-2$ if :	x < 3	
42. W	hicł	n of the followi	ng sta	ntements is a fa	lse sta	atement for	f(x) =	$\begin{cases} 20 & if . \end{cases}$	x=3.	
			Ü	ntements is a fa			<i>y</i> ()	$\int 6x + 7 if .$	x > 3	
(A)	f(3) exists		(B) f	is con	tinuous at 3	(($\lim_{x\to 3^+} f(x)$	c) exists	5
(D)	$\lim_{x\to 3^-} f(x) \exp$	ists	(E) no	ne of	them				
				the function f			+63 the	$\mathbf{n} pq^2 + p^2q$	=	
,		1113	(T)	3339	(6)	2809	(D)	53	(T)	3969
(4	A)	50	(B)	$\frac{3339}{100}$	(C)	200	(D)	$\overline{10}$	(E)	$\frac{3969}{100}$
44. Fi	nd t	he mean value	of the	e function $f(x)$	(c) = 2	$x^3 - 8x$ ove	r the inte	erval [-4,6]	•	
(4	A)	44	(B)	59	(C)	592	(D)	440	(E)	22
45. Gi	ven	$v = \ln(5x - 4)$) . find	d the positive v	alue o	of x for which	$\frac{dy}{dx} = \frac{dy}{dx}$	$\frac{dx}{dx}$		
		<i>y</i> (, ,	positive v			dx	ly		
(/	A)	0.2	(B)	1	(C)	0.6	(D)	1.2	(E)	1.8
46. A	poly	hedron has 30	faces	s and 60 edges,	how	many vertic	es does it	t have?		
(1	A)	92	(B)	52	(C)	30	(D)	32	(E)	10
47. Let $f(x) = \frac{(x+2)^3}{x^2}$ and $s(x)$ be the slant asymptote of f . Find the value of $s(-2)$.										
(4	A)	32	(B)	4	(C)	-32	(D)	24	(E)	16
48. What is the constant term in the expansion of $\left(2x^2 - \frac{1}{x}\right)^{15}$?										
(A)	3003	(B)	30,030	(C)	96,096	(D)	480	(E)	205,920
49. (1	212	$(1_3 + 21212_3) \times (1_3 + 21212_4) \times (1_3 + 21212_5) \times (1_3 + 212$	$2_3 = _{-}$	9 •						
•	•	, and the second	(B)		, ,		(D)		` ′	726
50. Th		ength of one ed cm². (nearest	_	a regular tetra e centimeter)	hedro	on is $9\sqrt{3}$ cr	n. The s	urface area	of the te	etrahedron is
(1	A)	508	(B)	191	(C)	303	(D)	255	(E)	421
51. If $a_0 = -2$, $a_1 = 3$, $a_2 = 2$ and $a_n = (a_{n-3})(a_{n-2}) + a_{n-1}$ for $n \ge 3$, then $a_6 = :$										
	A)			-26					(E)	2
				Copy	yright	© 2017 TM	ISCA			

52. There are two values of k for which $\det \begin{bmatrix} 6 & 1 & 2 \\ 4 & -k & 7 \\ k & 0 & 5 \end{bmatrix} = -71$. What is the smallest value of k?

- (A) 3
- (B) -2
- (C) 2
- **(D)** 8.5

53. Find the area in square units of a scalene triangle with vertices (-3,1), (4,2) and (0,-5).

- (A) 22.5
- **(B)** 16.5
- (C) 18.5
- (D) 20
- (E) 20.5

54. The function $f(x) = 2x^4 - 5x^2$ is decreasing over which of the following intervals?

- (A) $\left(-\infty,0\right]$ (B) $\left[-\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}\right]$ (C) $\left[0,\infty\right)$ (D) $\left[0,\frac{\sqrt{5}}{2}\right]$ (E) $\left[\frac{\sqrt{3}}{2},0\right]$

55. If $27^{(x+1)} = 3^{-3x}$, then x = ?

- (A) $-\frac{1}{2}$ (B) -2 (C) $-\frac{2}{3}$ (D) $-\frac{1}{3}$
- (\mathbf{E}) 1

56. The graph of $f(x) = x^3 - x^2 - x + 1$ has a point of inflection at x equals?

- (C) $\frac{1}{3}$ (D) $\frac{1}{2}$ (E) $-\frac{1}{3}$

57. $f(x) = 1 + x - \frac{x^2}{2} - \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} - \frac{x^6}{6!}$... Find the digit in the 10-8 place of f(3).

- (A) 4
- **(B)** 5
- (C) 8
- (\mathbf{D}) 2
- (\mathbf{E}) 0

58. If $2e^{2x} - 7e^x = -3$, then x equals:

- (A) $-\ln 3$, $\ln 2$ (B) $-\log 2$, $\log 3$ (C) $-\log 3$, $\log 2$ (D) $-\ln 2$, $\ln 3$

- (E) $\log 2, \log 3$

59. Given the rectangular solid shown, find BF if DC = 12", CE = 20" and BC = 18". (nearest tenth)

- (A) 27.4"
- (B) 29.5"
- (C) 24.0"
- (D) 22.6"
- 26.2"

60. If $16^{x+y} = 256$ and $4^{x-y} = 256$ then $x^2 - y^2$ equals_____.

- (A) 8
- **(B) 6**
- (C) 4
- (**D**) 10
- **(E)**

2017 – 2018 TMSCA Mathematics Test One Answers

1. E	21. B	41. B
2. E	22. D	42. B
3. C	23. E	43. B
4. D	24. E	44. A
5. A	25. A	45. E
6. B	26. D	46. D
7. C	27. A	47. B
8. B	28. B	48. C
9. C	29. E	49. B
10. D	30. E	50. E
11. B	31. E	51. D
12. A	32. C	52. A
13. D	33. A	53. A
14. E	34. B	54. D
15. A	35. D	55. A
16. D	36. C	56. C
17. D	37. B	57. C
18. C	38. C	58. D
19. D	39. B	59. B
20. B	40. E	60. A

2017-2018 TMSCA Mathematics Test One Select Solutions

9.
$$p(3red) = \frac{7}{21} \times \frac{6}{20} \times \frac{5}{19} = \frac{1}{38}$$
 so the odds are $\frac{1}{38-1} = \frac{1}{37}$ or 1:37

- 12. The first three perimeters are 10, 14 and 18, while the first three areas are 4, 6 and 8. Both are increasing by a set value, so find the linear function that relates the two sets for $A = \frac{1}{2}p 1$ and an area of 56 when p = 114.
- 13. Solve 64 = (32)(4)x for x = 0.5 = 50%
- 14. $V = 0.8(60in)(20in)(40in) = 38400 in^3 \times \frac{1 gal}{231 in^3} \approx 166 gal$
- 17. Let I = the number of interior points and P = the number of points on the perimeter, then $A = \frac{2I + P}{2} 1 = 11.5$
- 18. The frequency is $\frac{b}{2\pi} = \frac{6\pi}{2\pi} = 3$ b is the coefficient of x.
- 19. $r^4 = \frac{-3}{-48}$ for $r = \pm \frac{1}{2}$, then use the negative value for a sum of 18.

26.
$$_{(6+2-1)}C_2 \times_4 C_2 \times 3 = 378$$

28.
$$All-no\ girls = _{16} C_4 -_7 C_4 = 1785$$

30.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2) = (x - y)[(x - y)^2 + 3xy] =$$

-12[(-12)^2 + 3(28)] = -2736

- 37. $\sqrt[5]{(1.10)(0.96)(0.92)(1.07)(1.06)} \approx 1.0196$ for an average growth rate of 1.96%.
- 42. f is not continuous at 3 because 20 does not equal the values of the other two expressions evaluated at 3.
- 43. This is the product of the sum of the roots and the product of the roots for $\left(\frac{53}{10}\right)\left(\frac{63}{10}\right) = \frac{3339}{100}$
- 45. Either graph or use solver to find the solutions to $\pm 1 = \frac{5}{5x 4}$ for x = 0.2 or 1.8. The 0.2 is outside of the domain of the original function, so only 1.8 is an acceptable answer.

46.
$$V + F - E = 2$$
, so $V + 30 - 60 = 2$ for $V = 32$

47.
$$(x^3 + 6x^2 + 12x + 8) \div x^2 = x + 6 + \frac{12x - 8}{x^2}$$
, so $s(x) = x + 6$
and $s(-2) = 4$

- 48. Use binomial theorem for $\binom{15}{5} \left(2x^2\right)^5 \left(-\frac{1}{x}\right)^{10} = 96096$
- 53. Find the area of any polygon using coordinates of vertices

by
$$A = \left| \frac{(x_1 y_2 - y_1 x_2) + (x_2 y_3 - y_2 x_3) ... + (x_n y_1 - y_n x_1)}{2} \right|$$
 where the

points are arranged in either clockwise or counter-clockwise order. So here

$$A = \left| \frac{\left(-3 \cdot 2 - 4 \cdot 1 \right) + \left(-5 \cdot 4 - 0 \cdot 2 \right) + \left(0 \cdot 1 - \left(-3 \right) \left(-5 \right) \right)}{2} \right| = 22.5$$

55.
$$3^{3(x+1)} = 3^{-3x}$$
, so solve $3x+3=-3x$ for $x=-\frac{1}{2}$

57. This is the McClaurin series polynomial for $f(x) = \cos x + \sin x$ making sure to be in radian mode, evaluate $\cos 3 + \sin 3$ for an 8 in the requested decimal place

58. Factor
$$0 = 2e^{2x} - 7e^x + 3 = (2e^x - 1)(e^x - 3)$$
 then solve $2e^x - 1 = 0$ and $e^x - 3 = 0$ for $-\ln 2$ and $\ln 3$

60. Solve
$$\begin{cases} x+y=2 \\ x-y=4 \end{cases}$$
 for $x=3$ and $y=-1$, then $9-1=8$