STA 9705: HW5

Tanay Mukherjee

8.8 (a)

a
0.345249
-0.130388
-0.106434
-0.143353

From the SAS output we have disconnincent function (oefficient vector
$$a = S_{FL}(g_1 - g_2) = \begin{pmatrix} 0.3452 \\ -0.1304 \\ -0.1434 \end{pmatrix}$$

8.8 (b)

	as
ľ	4.1366401
	-2.50055
	-1.157705
	-2.067833

(b) From the SAS output the standarized coefficients are
$$a^* = (diag(Spe))^{1/2} = \begin{pmatrix} 4.1366 \\ -2.5006 \\ -1.1574 \\ -2.0678 \end{pmatrix}$$

8.8 (c)

T1
3.8879456

T2
-3.865239

T3
-5.691131

T4
-5.042625

(c) t-lests for individual variables is $t_3 = 3.8879$, $t_2 = -3.8652$, $t_3 = -5.6911$, $t_4 = -5.0426$

8.8 (d)

Section 8.7 in the book says we use the true value for interpretation but only the absolute Value for companying the contribution for each Variable to the superation of groups.

so, using values of |a'| me can say the contributions are ranked -> 1, >12 > 14 > 13

Also, using absolute values for t-stat we have the contributions ranked -> 13 > 14 > 17, > 12

We know that in case of conflict, me go mith |a'| as the standardized coefficients takes into account the sample co-relations among variables as well as the influence of each variable in the presence of others.

<mark># 8.11 (a)</mark>

Raw Canonical Coefficients						
Variable Can1 Can2						
AROMA	0.118947483	-1.822971192				
FLAVOR	3.064352847	1.714018010				
TEXTURE	-1.992418219	1.396730818				
MOISTURE	-0.775971076	-0.150866787				

8.11(a) The eigenvectors of
$$E'H$$
 are

0.1189

3.0644

-1.9924

-0.7760

, $o_2 = \begin{pmatrix} -1.8230 \\ 1.7140 \\ 1.3367 \\ -0.1509 \end{pmatrix}$

8.11 (b)

		Adjusted	Approximate	Squared	Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq)			
	Canonical Correlation	Canonical Correlation	Standard Error	Canonical Correlation	Eigenvalue	Difference	Proportion	Cumulative
1	0.864251	0.850266	0.042777	0.746930	2.9515	2.8242	0.9586	0.9586
2	0.336071	0.268316	0.149940	0.112944	0.1273		0.0414	1.0000

Test of H0: The canonical correlations in the current row and all that follow are zero						
Likelihood Approximate Ratio F Value Num DF Den DF Pr						
0.22448732	8.33	8	60	<.0001		
0.88705614	1.32	3	31	0.2869		

(b) From SAC output me have the sigen values as

A: 2.9515 and A: 0.1273 For any wth step, Am = II 1/(1+ 1;) So. for 1st Stop, 1 = 1 (1+2.9515) 1 (1+0.1273) = 0.2245 and for 2°d Step, 1 = 1 (1+0.1273) = 0.8871 From the lest of Ho in the table above we can compare the p-value with x=0.05 for significance test and confirm that for 1. We reject to as p-value is less than <.001 whereas for 12 we fail to reject to -70 Now, let's do it using critical values: For step 1: - P= 4, K=3, M=1, N=12, N=36. 1m = 1, = 0.2245 and 1x (p-m+1, k-m, N-K-m+1) $= \Lambda_{0.05}(4,2,33)$ wring table 1.9 we see that 10.05 (4,2,33) > 10.05 (4,2,30)

The have 1m < 10.05 (4, 2, 30) < 10.05 (4, 2, 33) DO. 2245 (0.580. Theorefore, we reject to. For Step 2:- P=4, K=3, m=2, n=12, N=36. 1m=12=0.8871 and 1x (p-m+1, K-m, N-K-m+1) = No.05 (3, 1,32) Using table 1.9 me see that. 10.05 (3,1,32) > 10.05 (3,1,40) Now, the confusion could be whether to lost for VE = 30 or VE = 40. When me fail to sige at Ho for lower bond, always test for higher

bound next and if that's fails to origest we Can conclude.

So, me have 1m > 10.05 (3.1,32) > 10.05 (3.1,40) DO.8871 > 0.816.

Therefore, we fail to reject Ho. -> @

Both O and & give us the same conclusion that is - first discriminant function is Significant but the second discovinional function is not significant.

8.11 (c)

Pooled Within-Class Standardized Canonical Coefficients					
Variable	Can2				
AROMA	0.075820332	-1.162010988			
FLAVOR	1.553387218	0.868873071			
TEXTURE	-1.181660941	0.828371392			
MOISTURE	-0.439076751	-0.085366711			

(2) The first discriminant function separates groups I and groups from groups but the second discriminant function fails to separate groups from groups. From the graph below:

The first discriminant function "(an 1 (horizontal axus) separates group 1 2 group 2 for am 3.

However, Se could discriminant function "can 2" (vartical axus) fails to Separate group 1 from group 2.

Linear Discriminant Function for METHOD							
Variable	1	2	3				
Constant	-72.76878	-65.18045	-68.56609				
AROMA	0.80819	2.12237	0.67639				
FLAVOR	15.15136	10.11279	2.79198				
TEXTURE	-1.03021	0.23934	6.54334				
MOISTURE	10.01533	11.06496	13.09289				

We know linear classification furtion is given by:

Li (Ynew) = (i'Ynew + (oi

where (i = Spe'lyi and (oi = -1 yisplyi

For the given distant we have

$$L_1(y) = -72.77 + 0.81y_1 + 15.15y_2 - 1.03y_3 + 10.02y_4$$
 $L_2(y) = -65.18 + 2.12y_1 + 10.11y_2 - 0.24y_3 + 11.06y_4$
 $L_3(y) = -68.57 + 0.68y_1 + 2.79y_2 + 6.54y_3 + 13.09y_4$

9.10 (b)

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.FISH Resubstitution Summary using Linear Discriminant Function

Number of Observations and Percent Classified into METHOD							
From METHOD 1 2 3 Total							
1	9	3	0	12			
	75.00	25.00	0.00	100.00			
2	3	7	2	12			
	25.00	58.33	16.67	100.00			
3	0	1	11	12			
	0.00	8.33	91.67	100.00			
Total	12	11	13	36			
	33.33	30.56	36.11	100.00			
Priors	0.33333	0.33333	0.33333				

Error Count Estimates for METHOD							
	1 2 3 Total						
Rate	0.2500	0.4167	0.0833	0.2500			
Priors 0.3333 0.3333							

(b) Error Rate = 1 - (ordrect classification rate
$$= 1 - \frac{n_{11} + n_{22} + n_{33}}{n_{1} + n_{2} + n_{3}}$$

$$= 1 - \left[(9 + 7 + 11)/36 \right] = 9/36 = 0.25$$

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.FISH Resubstitution Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into METHOD							
From METHOD 1 2 3 T							
1	10	2	0	12			
	83.33	16.67	0.00	100.00			
2	2	8	2	12			
	16.67	66.67	16.67	100.00			
3	0	1	11	12			
	0.00	8.33	91.67	100.00			
Total	12	11	13	36			
	33.33	30.56	36.11	100.00			
Priors	0.33333	0.33333	0.33333				

Error Count Estimates for METHOD								
1 2 3 Total								
Rate	0.1667	0.3333	0.0833	0.1944				
Priors	Priors 0.3333 0.3333							

(c) Everor state = 1 - Correct Classification state
$$= 1 - \frac{n_{11} + n_{12} + n_{33}}{n_{1} + n_{2} + n_{3}}$$

$$= 1 - \left[(10 + 8 + 11)/36 \right] = 7/36 = 0.1944$$

9.10 (d)

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.FISH Cross-validation Summary using Linear Discriminant Function

Number of Observations and Percent Classified into METHOD							
From METHOD 1 2 3							
1	7	5	0	12			
	58.33	41.67	0.00	100.00			
2	4	5	3	12			
	33.33	41.67	25.00	100.00			
3	0	1	11	12			
	0.00	8.33	91.67	100.00			
Total	11	11	14	36			
	30.56	30.56	38.89	100.00			
Priors	0.33333	0.33333	0.33333				

Error Count Estimates for METHOD				
	1	2	3	Total
Rate	0.4167	0.5833	0.0833	0.3611
Priors	0.3333	0.3333	0.3333	

(d) Error rate = 1 - Correct Classification rate
= 1 -
$$m_{11} + m_{12} + m_{33}$$

 $m_{1} + m_{2} + m_{3}$
= 1 - $[(7 + 5 + 11)/36] = 13/36 = 0.3611$

APPENDIX:

This section will have the entire SAS code.

8.8

```
Code:
DATA work.FBEETLES;
INFILE "/folders/myfolders/data/T5_5_FBEETLES.dat";
INPUT NUM TYPE Y1 Y2 Y3 Y4;
TITLE "HW5 Q-8.8";
PROC IML;
USE work.FBEETLES;
READ ALL VAR {Y1 Y2 Y3 Y4} INTO X;
X1 = X[1:19,];
X2 = X[20:39,];
RESET PRINT;
N1 = NROW(X1);
 N2 = NROW(X2);
X1BAR = 1/N1*X1`*J(N1,1);
X2BAR = 1/N2*X2`*J(N2,1);
S1 = 1/(N1-1)*X1`*(I(N1)-1/N1*J(N1))*X1;
S2 = 1/(N2-1)*X2`*(I(N2)-1/N2*J(N2))*X2;
```

```
Spl = 1/(N1+N2-2)*((N1-1)*S1+(N2-1)*S2);
T1 = (X1BAR[1]-X2BAR[1])/SQRT(Spl[1,1]*(1/n1+1/n2));
T2 = (X1BAR[2]-X2BAR[2])/SQRT(Spl[2,2]*(1/n1+1/n2));
T3 = (X1BAR[3]-X2BAR[3])/SQRT(Spl[3,3]*(1/n1+1/n2));
T4 = (X1BAR[4]-X2BAR[4])/SQRT(Spl[4,4]*(1/n1+1/n2));
a = INV(Spl)*(X1BAR-X2BAR);
as=J(4,1);
as[1]=SQRT(Spl[1,1])*a[1];
as[2]=SQRT(Spl[2,2])*a[2];
as[3]=SQRT(Spl[3,3])*a[3];
as[4]=SQRT(Spl[4,4])*a[4];
z1 = a*X1;
z1 = z1`;
z2 = a^*X2;
z2 = z2`;
PRINT X1BAR,X2BAR,Spl,T1,T2,T3,T4,a,as,z1,z2;
```

RUN;

```
Code:
DATA work.FISH;
INFILE "/folders/myfolders/data/T6_17_FISH.dat";
INPUT METHOD AROMA FLAVOR TEXTURE MOISTURE;
RUN;
TITLE "HW5 Q-8.11";
PROC FORMAT;
VALUE METHOD 1='METHOD 1' 2='METHOD 2' 3='METHOD 3';
RUN;
PROC CANDISC OUT=CAND;
CLASS METHOD;
RUN;
PROC PRINT DATA=CAND;
RUN;
PROC PLOT DATA=CAND;
PLOT CAN2*CAN1=METHOD;
RUN;
```

```
Code:
DATA work.FISH;
INFILE "/folders/myfolders/data/T6_17_FISH.dat";
INPUT METHOD AROMA FLAVOR TEXTURE MOISTURE;
RUN;
TITLE "HW5 Q-9.10";
proc discrim data=FISH outstat=ftstat
method=NORMAL pool=yes list crossvalidate;
class METHOD;
var AROMA FLAVOR TEXTURE MOISTURE;
proc discrim data=FISH outstat=ftstat
method=NORMAL pool=no list crossvalidate;
class METHOD;
var AROMA FLAVOR TEXTURE MOISTURE;
proc discrim data=FISH outstat=ftstat
method=npar k=5 pool=yes list crossvalidate;
class METHOD;
var AROMA FLAVOR TEXTURE MOISTURE;
```