

Introdução à Data Science O que são modelos?

O que são modelos?

Modelos estão presentes em todos os lugares...

O que são modelos?

Mas existem diferentes tipos de modelos

Modelos Matemáticos

Representação ou interpretação simplificada de um fenômeno considerando conceitos matemáticos.

Modelos Estatísticos

Representação ou interpretação simplificada de um fenômeno considerando a distribuição dos dados de origem.

Modelos Machine Learning

Representação ou interpretação simplificada de um fenômeno considerando **exemplos de dados para seu treinamento**.

Modelos de Dados

Representação ou interpretação simplificada de um fenômeno.

O que são modelos?

Exemplo: Modelo de Regressão

Modelos de Regressão são utilizados quando a variável resposta é quantitativa, e busca-se identificar quais fatores a influenciam.

Neste exemplo temos um estudo que visa **estimar o consumo de cerveja** (em litros) a partir da **temperatura máxima** registrada no dia.

Ajustando um modelo de **regressão linear simples**, obtemos os seguintes **coeficientes / parâmetros**:

Consumo Cerveja = 7975 + 655 · Temperatura Máxima

Ou seja, a cada **incremento de 1 grau Celsius** o consumo médio de cerveja **aumenta 655 litros**.

Todos os modelos estão errados, mas alguns são úteis.

Introdução à Data Science Para que servem os modelos?

Existem modelos específicos para cada finalidade

Source: Gartner (March 2012)

Modelos Descritivos

Modelos Descritivos são utilizados para compreender como os diversos fatores (variáveis explicativas) influenciam o comportamento de um fenômeno (variável resposta) e são baseados exclusivamente em dados do passado. Por esse motivo são utilizados para responder perguntas do tipo: "O que aconteceu?".

Alguns exemplos de aplicações de Modelos Descritivos:

- Quais fatores estiveram mais presentes no turnover dos funcionários?
- Quais perfis de clientes mais compraram no ano passado?
- Quais regiões foram mais favoráveis aos clientes em ações cíveis revisionais?
- Quais combinações de produtos e lojas tiveram maior rentabilidade?

Perceba que todos os verbos acima estão no **passado**. Na prática é como se estivéssemos olhando para o **retrovisor** de um carro e vendo tudo o que **já aconteceu**.

 $\textbf{Fonte:}\ \underline{\text{https://www.rottenbytes.info/post/adventures-in-hindsight/}}$

Modelos Preditivos

Modelos Preditivos são utilizados para **prever** o que acontecerá com o **fenômeno** em estudo (variável resposta) se os **fatores** exercerem determinada **influência** (variáveis explicativas). São utilizados para responder perguntas do tipo: "**O que acontecerá?**".

Alguns exemplos de aplicações de Modelos Preditivos:

- Quais fatores influenciam o turnover dos funcionários?
- Quais perfis de clientes possuem maior volume de compras?
- Quais regiões favorecem os clientes em ações cíveis revisionais?
- Quais combinações de produtos e lojas **geram** maior rentabilidade?

Neste caso todos os verbos acima estão no **presente**. Ou seja, a partir de um modelo descritivo, analisa-se as relações de influência dos fatores no fenômeno em estudo, buscando associações que possam ajudar a prever **resultados futuros**.

Fonte: https://www.techrepublic.com/article/analytics-prediction-confidence-its-all-about-semantics/

Modelos Prescritivos

Modelos Prescritivos são um dos mais avançados níveis de utilização de dados para tomada de decisão. Além dos dados históricos e das análises de associação para previsão, os Modelos Prescritivos utilizam dados do presente para responder a pergunta: "Como faço isso acontecer?".

Alguns exemplos de aplicações de Modelos Prescritivos:

- Como reduziremos o turnover dos funcionários?
- Como estimularemos os diferentes perfis de clientes para aumentar o volume de compras?
- Como aumentaremos o êxito em ações cíveis revisionais?
- Como escolheremos a melhor combinação de produtos e lojas para maior rentabilidade?

Agora todos os verbos acima estão no **futuro**. Após compreender o fenômeno e estudar as associações entre ele e os fatores de influência, chega o momento de obter recomendações para os possíveis resultados desejados.

Fonte: https://www.lucidchart.com/blog/webinar-critical-elements-for-better-decision-making

Introdução à Data Science Categorias de Modelos

Categorias de Modelos

Método Supervisionado

No método supervisionado temos sempre as variáveis explicativas (features) e a variável resposta (target).

Por esse motivo, os tipos de problemas mais comuns nesse método são:

- Classificação: variável resposta qualitativa.
- Regressão: variável resposta quantitativa.

Nas duas situações dizemos que os **dados estão rotulados**, pois além das características de cada observação, temos o que normalmente é o objetivo do modelo: a **categoria** em problemas de **classificação** e os **valores** em problemas de **regressão**.

Iris Versicolor

Iris Setosa

Iris Virginica

Fonte: http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html

Largura Pétala	Comprimento Pétala	Largura Sépala	Comprimento Sépala	Espécie
0,2	1,4	3,5	5,1	Setosa
1,6	4,5	3,0	5,4	Versicolor
1,8	6,0	3,2	7,2	Virgínica
				Target

Categorias de Modelos

Método Não Supervisionado

No método não supervisionado é muito utilizado quando não temos os dados rotulados, ou seja, temos apenas as variáveis explicativas (features).

Dessa forma, os tipos de problemas para os métodos não supervisionados são:

- Clusterização: agrupamento de observações com variáveis explicativas semelhantes.
- Detecção de anomalias: análise de outliers.
- Redução de dimensionalidade: transformação dos dados para espaço com menor dimensão.

Categorias de Modelos

Método Semi-Supervisionado

Rotular os dados normalmente é uma **tarefa muito custosa** em termos de tempo e dinheiro. Por esse motivo, surgiu o **método semi-supervisionado**.

No método semi-supervisionado os problemas também são de classificação e regressão, porém são utilizados dados rotulados em pequena quantidade e uma grande quantidade de dados não rotulados.

Existem algumas estratégias para utilização do método semi-supervisionado.

Uma delas consiste em **treinar** um estimador com os **dados rotulados** e aplicar esse estimador nos **dados não rotulados**, e em seguida **re-treinar** o estimador.

Fonte: https://www.researchgate.net/figure/Principle-of-semi-supervised-learning-1-a-model-eg-CSP-LDA-classifier-is-first fig4 277605013

Introdução à Data Science Modelos Estatísticos vs. Machine Learning

Processo de Ajuste vs. Aprendizado de Máquina Diferentes estratégicas para transformar dados em informação

A terminologia depende do tipo de Modelos de Dados considerado:

- Modelos Matemáticos / Estatísticos: Ajuste
- Modelos Machine Learning: Aprendizado ou Treinamento

O ajuste e o aprendizado têm o mesmo objetivo: minimizar uma função de erro prédefinida. O que muda é a estratégia para se obter os menores erros.

Processo de Ajuste vs. Aprendizado de Máquina Diferentes estratégicas para transformar dados e informação

Em Modelos Estatísticos, um método bastante comum para encontrar os parâmetros que minimizam o erro é o Método da Máxima Verossimilhança.

Esse método consiste em 2 principais etapas:

- 1. Definir a **função de verossimilhança**: depende da **distribuição de probabilidades** utilizada.
- Encontrar os valores dos parâmetros que maximizam a função de verossimilhança: quando essa função for diferenciável é possível obter os parâmetros de forma explícita. Caso contrário, é necessário utilizar métodos numéricos.

Por considerar a distribuição de **probabilidades dos dados**, os **Modelos Estatísticos** possuem premissas que devem ser respeitadas.

Em geral, nas bibliotecas e plataformas de modelagem estatística, já estão incluídos alguns testes de hipóteses para avaliar se os **valores encontrados** são **estatisticamente significantes**.

Fonte: https://blogs.sas.com/content/iml/2011/10/12/maximum-likelihood-estimation-in-sasiml.html

Processo de Ajuste vs. Aprendizado de Máquina Diferentes estratégicas para transformar dados e informação

Em **Modelos** *Machine Learning* não existe o conceito de uma distribuição de probabilidades associada aos dados. Por esse motivo, nesses modelos não existem as premissas dos **Modelos Estatísticos**.

Com a ausência dessas premissas, a **estrutura do modelo é mais flexível** e o custo dessa flexibilidade é a necessidade de um **maior volume de dados** para que os modelos sejam treinados adequadamente.

Devido a diversidade de técnicas utilizadas em **Modelos** *Machine Learning*, também existem diversos métodos de treinamento desses modelos:

- 1. Árvores de Decisão: Ganho de informação e Entropia.
- 2. Redes Neurais Artificiais: Gradiente Descendente e outros.
- 3. Suport Vector Machines: Construção de hiperplanos.

Fonte: https://en.wikipedia.org/wiki/Support vector machine

Processo de Ajuste vs. Aprendizado de Máquina Diferentes estratégicas para transformar dados e informação

Principais diferenças entre ajuste e/ou aprendizado em Modelos de Dados:

Características	Modelo Estatístico	Modelo <i>Machine Learning</i>
Suposições sobre a distribuição de probabilidade dos dados	Sim	Não
Quantidade de dados necessários	Média	Alta
Processo de ajuste / aprendizado	Explícito ou Numérico Iterativo	Numérico Iterativo
Recursos computacionais necessários para ajuste / aprendizado	Médio	Alto
Tempo do Cientista de Dados no desenvolvimento do modelo	Alto	Médio

