$$f(n) = f(\sqrt{n}) + 1$$

We will to **disprove** that $f(n) \in \theta(\log(n))$

Let $n = 2^m$

$$f(2^m) = f(2^{m/2}) + 1$$

Let $f(2^m) = S(m)$ such that S is a function of m.

$$S(m) = S(m/2) + 1$$

Apply Master Theorem, which is convenient for eventually non-decreasing functions which satisfy below conditions.

$$x(n) = a * x(n/b) + g(n)$$
 such that $x(1) = c$, $n = b^k$, $b > 1$, $a \ge 1$, $k \ge 1$

So,

$$a = 1, b = 2, k = 1, q(n) = 1$$

Master Theorem states that if $g(n) \in \theta(n^p)$, $p \ge 0$, then

$$x(n) \in \begin{cases} \theta(n^p), & a < b^p \\ \theta(n^p * logn), & a = b^p \end{cases}, for n \in \mathbb{N}$$

$$\theta(n^{\log_b a}), & a > b^p \end{cases}$$

Since we have p = 0,

$$x(n) = S(m) \in \theta(n^p * logn) = \theta(logn)$$

Also $n = 2^m \Rightarrow m = \log_2 n$

$$f(n) = S(m) = S(\log n)$$

So,

$$f(n) \in log(logn)$$

Hence, disproved