Bayes Theorem - Tennis Data set

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import networkx as nx
```

Load Data Set

```
In [2]: data = pd.read_csv('./dataset/tennis.csv')
    data
```

Out[2]:

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
6	overcast	cool	normal	True	yes
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
9	rainy	mild	normal	False	yes
10	sunny	mild	normal	True	yes
11	overcast	mild	high	True	yes
12	overcast	hot	normal	False	yes
13	rainy	mild	high	True	no

Outlook vs Play

sunny

```
In [5]: table = pd.crosstab(data['play'],columns=data['outlook'])
table
```

Out[5]:

```
        outlook
        overcast
        rainy
        sunny

        play
        0
        2
        3

        yes
        4
        3
        2
```

```
In [6]: table.loc['total'] = table.loc['no'] + table.loc['yes']
table['total'] = table['overcast'] + table['rainy'] + table['sunny']
```

Pivot Table

```
In [7]: table
```

Out[7]:

outlook	overcast	rainy sunny		totai
play				
no	0	2	3	5
yes	4	3	2	9
total	4	5	5	14

Contingency Table

```
In [8]: prob = table.div(14)# table.div(len(data)), table.div(table.iloc[-1,-1])
prob
```

Out[8]:

outlook	overcast	rainy	sunny	total
play				
no	0.000000	0.142857	0.214286	0.357143
yes	0.285714	0.214286	0.142857	0.642857
total	0 285714	0.357143	0.357143	1 000000

Marginal Probability:

- P(overcast)
- P(rainy)
- P(sunny)

```
In [9]: # P(overcast)
p_o = prob['overcast'].total
# P(rainy)
p_r = prob['rainy'].total
# P(sunny)
p_s = prob['sunny'].total
```

```
In [10]: # print
    print('Probability of overcast: P(overcast) = %0.3f'%p_o )
    print('Probability of rainy: P(rainy) = %0.3f'%p_r )
    print('Probability of sunny: P(sunny) = %0.3f'%p_s )
```

```
Probability of overcast: P(overcast) = 0.286
Probability of rainy: P(rainy) = 0.357
Probability of sunny: P(sunny) = 0.357
```

Marginal Probability:

- *P*(*no*)
- P(yes)

```
In [12]: # print
    print('Probability of No: P(no) = %0.3f'%p_no )
    print('Probability of Yes: P(yes) = %0.3f'%p_yes )
```

```
Probability of No: P(no) = 0.357
Probability of Yes: P(yes) = 0.643
```

Conditionality Probability

$$P(A|B) = \frac{P(AandB)}{P(B)}$$

- P(Sunny|Yes)
- P(Sunny|No)
- P(Sunny|Yes)
- P(Sunny|No)

```
In [13]:
         prob
Out[13]:
          outlook overcast
                            rainy
                                   sunny
                                             total
            play
                 0.000000 0.142857 0.214286 0.357143
                 ves
            total 0.285714 0.357143 0.357143 1.000000
In [14]: prob.keys()
Out[14]: Index(['overcast', 'rainy', 'sunny', 'total'], dtype='object', name='outlook')
In [15]: prob.index
Out[15]: Index(['no', 'yes', 'total'], dtype='object', name='play')
In [16]: | prob['overcast']['yes'] # joint probability
Out[16]: 0.2857142857142857
In [17]: prob['total']['yes'] # marginal probability
Out[17]: 0.6428571428571429
In [18]: prob['overcast']['total'] # marginal probability
Out[18]: 0.2857142857142857
In [19]:
         def jointprob(A,B,table):
             jointprob(A,B) will return probability of combination attribute from
             contigency table. P(A and B)
             A = column
             B = row
             >>> jointprob(A,B,table)
             0.00
             return table[A][B]#.loc[B]
         def marginprob(B,table):
             marginprob(B) will return probability of attribute from
             contigency table. P(B)
             B = row
             >>> marginprob(B,table)
             return table.loc[B][-1]
```

```
In [20]:
         # P(overcast and no)
         jointprob('rainy','no',prob)
Out[20]: 0.14285714285714285
In [21]:
         p_sunny_given_yes = jointprob('sunny','yes',prob) / p_yes
         print('Probability of sunny given yes: P(sunny|yes) = %0.3f'%p_sunny_given_yes)
         p sunny given no = jointprob('sunny', 'no', prob) / p no
         print('Probability of sunny given no: P(sunny|no) = %0.3f'%p sunny given no)
         print('\n')
         p_overcast_given_yes = jointprob('overcast','yes',prob) / p_yes
         print('Probability of overcast given yes: P(overcast|yes) = %0.3f'%p_overcast_giv
         p_overcast_given_no = jointprob('overcast','no',prob) / p_no
         print('Probability of overcast given no: P(overcast|no) = %0.3f'%p_overcast_given
         print('\n')
         p_rainy_given_yes = jointprob('rainy','yes',prob) / p_yes
         print('Probability of rainy given yes: P(overcast|yes) = %0.3f'%p rainy given yes
         p_rainy_given_no = jointprob('rainy','no',prob) / p_no
         print('Probability of rainy given no: P(overcast|no) = %0.3f'%p_rainy_given_no)
         Probability of sunny given yes: P(sunny|yes) = 0.222
         Probability of sunny given no: P(sunny|no) = 0.600
         Probability of overcast given yes: P(overcast yes) = 0.444
         Probability of overcast given no: P(overcast|no) = 0.000
         Probability of rainy given yes: P(overcast|yes) = 0.333
         Probability of rainy given no: P(overcast|no) = 0.400
```

Probability Tree

```
In [22]: table = prob
In [23]: start = table.index.name
    ind1 = 'P(%s)=%0.3f'%(table.index[0],marginprob(table.index[0],table))
    ind2 = 'P(%s)=%0.3f'%(table.index[1],marginprob(table.index[1],table))
# Given index-1 probability of events
    event11 = '%s=%0.3f'%(prob.keys()[0],jointprob(prob.keys()[0],prob.index[0],prob)
    event12 = '%s=%0.3f'%(prob.keys()[1],jointprob(prob.keys()[1],prob.index[0],prob)
    event13 = '%s=%0.3f'%(prob.keys()[2],jointprob(prob.keys()[2],prob.index[0],prob)
# Given index-2 probability of events
    event21 = '%s=%0.3f'%(prob.keys()[0],jointprob(prob.keys()[0],prob.index[1],prob)
    event22 = '%s=%0.3f'%(prob.keys()[1],jointprob(prob.keys()[1],prob.index[1],prob)
    event23 = '%s=%0.3f'%(prob.keys()[2],jointprob(prob.keys()[2],prob.index[1],prob)
```

Out[24]:

	from	to
0	play	P(no)=0.357
1	P(no)=0.357	overcast=0.000
2	P(no)=0.357	rainy=0.400
3	P(no)=0.357	sunny=0.600
4	play	P(yes)=0.643
5	P(yes)=0.643	overcast=0.444
6	P(yes)=0.643	rainy=0.333
7	P(yes)=0.643	sunny=0.222

In [25]: fig = plt.figure(figsize=(10,5))

Build your graph. Note that we use the DiGraph function to create the graph! G=nx.from_pandas_edgelist(draw, 'from', to')

Make the graph

nx.draw(G, with_labels=True, node_size=2000,alpha=0.8, arrows=True,linewitdh=50.0

Classification Report

```
In [26]: prob
```

Out[26]:

outlook	overcast	rainy	sunny	total
play				
no	0.000000	0.142857	0.214286	0.357143
yes	0.285714	0.214286	0.142857	0.642857
total	0.285714	0.357143	0.357143	1.000000

Bayes Theorem

$$P(A|B) = \frac{P(A)*A(B|A)}{P(B)}$$

Example:

$$P(yes|rainy) = \frac{P(yes)*A(rainy|yes)}{P(rainy)}$$

```
= \frac{P(yes)*A(rainy|yes)}{P(yes)*P(rainy|yes)+p(no)*P(rainy|no)}
```

```
In [56]: Event = 'yes'
given = 'rainy'

p_event_given = marginprob('yes',prob) * conditional('rainy','yes',prob) / margin
```

```
In [57]: p_event_given
```

Out[57]: 0.3333333333333333