IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2009**

EEE/ISE PART I: MEng, BEng and ACGI

COMMUNICATIONS 1

Corrected Copy

Friday, 12 June 10:00 am

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory. Answer Q1 and any two of questions 2-4. Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): P.L. Dragotti, P.L. Dragotti

Second Marker(s): M.K. Gurcan, M.K. Gurcan

Special Information for the Invigilators: none

Information for Candidates

Some Fourier Transforms

$$\cos \omega_0 t \iff \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$$

$$\operatorname{rect}(\frac{t}{\tau}) \iff \tau \operatorname{sinc}(\frac{\omega\tau}{2})$$

$$\frac{W}{\pi} \operatorname{sinc}(Wt) \iff \operatorname{rect}(\frac{\omega}{2W})$$

$$\frac{\alpha^2}{2\pi} \operatorname{sinc}^2(\frac{\alpha t}{2}) \iff \Delta(\frac{\omega}{\alpha})$$

where

$$\Delta(\omega) = \begin{cases} 1 - |\omega|, & |\omega| \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

The Scaling Property of the Fourier Transform

$$g(\alpha t) \Longleftrightarrow \frac{1}{|\alpha|} G\left(\frac{\omega}{\alpha}\right).$$

Time-Shifting Property of the Fourier Transform

$$g(t-t_0) \Longleftrightarrow G(\omega)e^{-j\omega t_0}$$

Time differentiation

$$\frac{d^n g}{dt^n} \Longleftrightarrow (j\omega)^n G(\omega)$$

Some useful trigonometric identities

$$\cos x \cos y = \frac{1}{2}\cos(x-y) + \frac{1}{2}\cos(x+y).$$

$$\sin x \sin y = \frac{1}{2}\cos(x-y) - \frac{1}{2}\cos(x+y)$$

$$\sin x \cos y = \frac{1}{2}\sin(x-y) + \frac{1}{2}\sin(x+y)$$

The Questions

- 1. This question is compulsory.
 - (a) Consider the following two signals: $x_1(t) = \Delta(t-1)$ and $x_2(t) = \Delta(t-2)$, where $\Delta(t)$ is given by

$$\Delta(t) = \begin{cases} 1 - |t| & \text{for } |t| \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Notice that the signals are also sketched in Figure 1.

Figure 1: The two signals $x_1(t)$ and $x_2(t)$.

i. Compute the energy of $x_1(t)$.

[4]

ii. Compute the energy of $x_2(t)$.

[4]

iii. Compute the energy of $x_1(t) + x_2(t)$.

[4]

Question 1 continues on next page

(b) The Fourier transform of the triangular pulse x(t) in Figure 2(a) is

$$X(\omega) = \frac{1}{\omega^2} (e^{j\omega} - j\omega e^{j\omega} - 1).$$

Using this information, the scaling property and the time-shifting property, find the Fourier transform of the signal y(t) shown in Figure 2(b). Notice that y(t) is real and even, so you expect $Y(\omega)$ to be real and even as well.

[4]

Figure 2: The two signals x(t) and y(t).

(c) Consider the linear time-invariant system h(t) where the input x(t) and output y(t) are related by the following linear differential equation:

$$\frac{dy(t)}{dt} + y(t) = x(t).$$

i. Find the transfer function of h(t). Recall that the transfer function is defined as $H(\omega) = Y(\omega)/X(\omega)$.

[4]

ii. Assume that the Power Spectral Density (PSD) of the input is $S_x(\omega) = \text{rect}(\omega/2)$. Compute the power of x(t).

[4]

iii. Compute the power of the output signal y(t).

[4]

Question 1 continues on next page

(d) Consider the following full-AM signal:

$$\varphi(t) = (A + m(t)) \cos \omega_c t,$$

where $m(t) = \frac{t}{1+t^2}$. The modulation index is $\mu = 0.5$. Find the amplitude A.

[4]

(e) Sketch the PM and FM waves for the modulating signal shown in Figure 3. The constants k_f and k_p are $2\pi 10^5$ and 10π respectively and the carrier frequency is $f_c = 100 \mathrm{MHz}$

[4]

Figure 3: The modulating signal m(t).

- (f) A 50 Ω transmission line is connected to a 100 Ω line with a matched termination. A sine wave of 1 V amplitude propagating in the former is incident on the junction. Find
 - i. The voltage reflection coefficient k_v .

[2]

ii. The fraction of the incident power which is transmitted into the second line.

[2]

2. Consider the FM signal

$$\varphi(t) = 10\cos[2\pi f_c t + k_f \int_{-\infty}^t x(\alpha) d\alpha].$$

Assume that $k_f = 100\pi$, $f_c = 1 \text{MHz}$ and that the modulating signal is given by

$$x(t) = 100 \operatorname{sinc}(1000 \pi t).$$

(a) Determine the frequency deviation Δf .

[7]

(b) Using Carson's rule, determine the bandwidth of $\varphi(t)$.

[7]

(c) The signal $\varphi(t)$ is fed to the 'Armstrong Modulator' shown in Figure 4. The output of the non-linear device is $g(t) = \varphi(t) + \varphi^2(t) + \varphi^3(t)$. The bandpass filter $H(\omega)$ is shown in Figure 5.

Figure 4: The 'Armstrong modulator'.

Figure 5: The band-pass filter $H(\omega)$.

Question 2 continues on next page

Determine the bandwidth α and centre frequency ω_0 of the bandpass filter $H(\omega)$ so that the resulting FM signal y(t) has standard deviation $\Delta f = 10000$ Hz. Use Carson's rule to calculate the bandwidth of the FM signals.

[8]

(d) Assume now that the signal $\varphi(t)$ is fed to the modulator shown in Figure 6. Find the frequency ω_3 , the bandwidth and centre frequency of the two bandpass filters $H_1(\omega)$ and $H_2(\omega)$ that would give an FM signal y(t) with carrier $f_c = 4.5 \text{MHz}$ and frequency deviation $\Delta f = 15000 \text{Hz}$. The output of the non-linear device is $g(t) = z(t) + z^2(t) + z^3(t)$. Use Carson's rule to calculate the bandwidth of the FM signals.

[8]

Figure 6: FM modulator.

3. The signals $x_1(t) = \frac{300}{\pi} \mathrm{sinc}(300t)$ and $x_2(t) = 3 \cos 60t + 2 \cos 100t$ are applied at the input of the two ideal low-pass filters $H_1(\omega) = \mathrm{rect}(\omega/100)$ and $H_2(\omega) = \mathrm{rect}(\omega/140)$ (see also Figure 7). The outputs of these two filters are multiplied to obtain the signal $y(t) = y_1(t)y_2(t)$.

Figure 7: Filtering of $x_1(t)$ and $x_2(t)$.

(a) Sketch and dimension the Fourier transform of $x_1(t)$

[6]

(b) Sketch and dimension the Fourier transform of $x_2(t)$

[6]

(c) Sketch and dimension the Fourier transform of $y_1(t)$

[6]

(d) Sketch and dimension the Fourier transform of $y_2(t)$

[6]

(e) Sketch and dimension the Fourier transform of y(t)

[3]

(f) Write the exact time-domain expression of y(t).

[3]

4. Consider the demodulator shown in Figure 8, where $y_1(t) = x^2(t)$, $y_3(t) = \sqrt{y_2(t)}$ and the frequency response of the filter $H(\omega)$ is

$$H(\omega) = \begin{cases} 1 & \text{for } |\omega| \le 6 \text{ rad/s} \\ 0 & \text{otherwise} \end{cases}$$

Assume that $x(t) = m(t)\cos(\omega_c t) + m(t)\sin(\omega_c t)$, where $m(t) = A - \sin(3t)$ and $\omega_c = 100$.

Figure 8: Demodulator.

(a) Write the exact expression of $y_1(t)$.

[6]

(b) Write the exact expression of $y_2(t)$.

[6]

(c) Write the exact expression of $y_3(t)$.

[6]

(d) Find the minimum value of A that guarantees that $y_3(t) = m(t)$.

[6]

(e) Now assume that A=2, determine the minimum value of ω_c that guarantees that $y_3(t)=m(t)$. Justify your answer.

[6]

SOLUTIONS

QUESTION 1

E1.6 Communications I

2009

NOT CHANGE THE ENERGY OF A SIGNAL

iii.
$$E_{X_1 + X_2} = E_{X_1} + E_{X_2} + 2 \int_{-\infty}^{\infty} x_1(t) x_2(t) dt$$
;
$$\int_{-\infty}^{\infty} x_1(t) x_2(t) dt = \int_{-\infty}^{\infty} t(t) dt = \int_{-\infty}^{\infty} t(t)$$

$$E_{x_1 \in X_2} = E_{x_1} + E_{x_2} + 2 \int_{-\infty}^{\infty} x_1(x_1) x_2(t) dt = \frac{2}{3} + \frac{2}{3} + 2 \cdot \frac{1}{6} =$$

h)

$$x(t-1)$$
 (=) $x(w)$ e

$$y(\omega) = x(\omega) x^{-j\omega} + x(-\omega) x^{-j\omega} =$$

$$= \frac{1}{\omega^2} \left(1 - j\omega - \lambda + 1 + j\omega - \lambda \right)$$

$$= \frac{1}{\omega^{2}} \left(2 - 2 - 2 \right) = 4 \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{\left(\frac{3 \frac{1}{2}}{2} \right)^{2}} \right) = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}}{3 \frac{1}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}{2}}{2}} \right)^{2} = \frac{1}{2} \left(\frac{3 \frac{1}{2} - 2 \frac{3 \frac{1}$$

$$H(m) = \frac{\lambda(m)}{\lambda(m)} = \frac{1}{1+2m}$$

$$H(m) = \frac{\lambda(m)}{\lambda(m)} = \frac{1}{1+2m}$$

į١.

BY DEFINITION OF PSD WE KNOW

: TAHT

- (w)

$$P_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{y} (\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^{2} S_{x}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{1+\omega^{2}}^{\infty} d\omega = \frac{1}{2\pi} |TAN^{2}\omega|^{2} = \frac{1}{4}$$

$$d_{\frac{1}{1+t^2}} = \frac{1+t^2-6(16)}{(1+t^2)^2} = 0 = 1$$

THUS
$$m_p = \frac{1}{2}$$

1) IN BOTH CASES THE MINIMUM DAYS
MAXINUM INSTANTANEOUS FREQUENCIES
AILE:

- IN THE FIT CASE THE INSTANTANEOUS FREQUENCY
 DEPENDS LINEARLY ON m(t).
- IN THE PH CASE IT DEPENDS ON olm(t)

THUS:

6) i.
$$K_{V} = \frac{E_{L} - t_{o}}{t_{L} + t_{o}} = \frac{100 - 50}{100 + 50} = \frac{1}{3}$$

ii. $W_{P} = 1 - |U_{V}|^{L} = 1 - \frac{1}{9} = \frac{8}{9}$
 $W_{O} = \frac{V_{L} I_{L}}{V_{L} I_{L}} = 1 - \frac{1}{9} = \frac{8}{9}$

THUS WE HAVE

$$g(t) = \varphi(t) + \varphi^{2}(t) + \varphi^{3}(t) =$$

$$= 10 \left[a_{1} \cos \left(\frac{2\pi R t + 12}{4} \right) x(2) d\lambda \right] +$$

$$a_{1} \cos \left(\frac{4\pi R t + 22}{4} \right) x(2) d\lambda \right] + (1)$$

$$a_{3} \cos \left(\frac{6\pi R t + 32}{4} \right) x(2) d\lambda$$

WE WANT Of = 10000H; HE
THUS NEED TO KEEP THE SECOND TERM
OF (1). THE BAND WINTH OF THIS
SECOND TERM IS

THUS

$$\frac{\omega_0}{1\pi} = \frac{2.\omega_c}{1\pi} = \frac{2.000 \, \text{M}}{1\pi} = \frac{2.000 \, \text{M}$$

(d) WE NOW NEED TO REEP THE
THIND TENN IN (1) TO OBTAIN
N1=15000Hz.

Floweven THIS GIVE US AN RESMAX.

WE THUS CHOOSE W3 = 2M. 5.105 NAM/5

-1) R= 5.105 H7

 $\varphi(t) \cos \omega_1 t = \frac{10}{2} \cos((\omega_c - \omega_s) t + u_f \int_{x(s)} ds) + \frac{10}{2} \cos((\omega_c + \omega_1) t + u_f \int_{x(s)} ds)$

NOW PC+13= 1.511HI WHICH IS THE FREQUENCY WE WEED.

B q (+) = 11000Hz

SO H, (w) HAS CENTRAL PREQUENCY

MI = 1.511H]

AND BANDBIDIM BELLOODH? (BANDWIDIN OF)

H2(w) HAS CENTRAL FREQUENCY (2:4.5NH;

DND BANDBURDIN By= 2(15000 +500) = 46000H;

(a)
$$\frac{1}{\pi}$$
 SINC At (=) RECT ($\frac{\omega}{2d}$)

(C)
$$Y_1(w) = 14_1(w) = 12ECT\left(\frac{w}{100}\right)$$

(1) Y(w) $\frac{3}{2}$ $\frac{3$

i.l. y(6) = 3.50 SINC SOL . CUSGOE = 150 SINC 506. CUSGOT

(d) NOTICE THE SYSTEM BEHAVES LITTE BOD AN ENVELOPE DETECTOR.

THIS Y3(H): m(t) WHEN m(t) =0 YE,

THIS HAPPEHS WHEN A > 1. MINIMUM

VALUE, & N=1.

(1) THE BANDWIDTH OF m2(t) IS GRAD/S

THE MINIMUM VALUE OF WE TRAP/S.

IN THIS WAY THE TWO SPECTRA

m2(t) AND m2(t) coswet BO NOT

overlap n3/w m2(w) coswet