

Course > Godel's... > A Proof... > The De...

The Details

We are now in a position to prove our main result.

Gödel's Incompleteness Theorem

Let \mathcal{L} be a language rich enough for the Lemma of Section 10.1.2 to be provable (for example, \mathcal{L} might be our simple language L). Then no Turing Machine M is such that when run on an empty input:

- 1. M runs forever, outputting sentences of \mathcal{L} ;
- 2. every true sentence of \mathcal{L} is eventually output by M; and
- 3. no false sentence of \mathcal{L} is ever output by M.

The proof proceeds by *reductio*.

We will assume that M is a Turing Machine that outputs all and only the true sentences of \mathcal{L} , and show that M's program can be used as a subroutine to construct a Turing Machine M^H which computes the Halting Function, which is impossible, since the Halting Function is not Turing-computable (as we saw in Chapter 9).

We will proceed in two steps. First, we will verify that if *M* existed, it could be used to construct ${\cal M}^H$. We will then verify that ${\cal M}^H$ would compute the Halting Function, if it existed.

Step 1

Here is how to construct M^H , on the assumption that M exists. (Assume that M^H 's input is a sequence of k ones.)

ullet M^H starts by running M's program as a subroutine. Each time M outputs a sentence, M^H proceeds as follows:

- If the sentence is "Halt (k)", M^H deletes everything on the tape, prints a one, and halts.
- If the sentence is " \neg Halt (k)", M^H deletes everything on the tape, and halts.
- Otherwise, M^H allows M to keep going.

Step 2

Let us verify that M^H would compute the Halting Function, if it existed. We will verify, in other words, that M^H outputs a one if the kth Turing Machine halts, and a zero otherwise.

- Suppose, first, that the kth Turing Machine halts given input k. Then our Lemma guarantees that "Halt (k)" is true. Since M will eventually output every true sentence of \mathcal{L} , this means that M will eventually output "Halt (k)". And since M will never output any falsehood, it will never output " \neg Halt (k)". So the construction of M^H guarantees that M^H will output a one.
- Now suppose that the kth Turing Machine does not halt given input k. Then our Lemma guarantees that " \neg Halt (k)" is true. Since M will eventually output every true sentence of \mathcal{L} , this means that M will eventually output " $\neg \text{Halt } (k)$ ". And since M will never output any falsehood, it will never print out "Halt (k)". So M^H will output a zero.

In summary, we have seen that if M existed, M^H would exist too. And we have seen that M^H would compute the Halting Function, which we know to be impossible. So M cannot exist.

This completes our proof of Gödel's Thoerem.

Discussion **Hide Discussion** Topic: Week 10 / A Proof of Godel's Theorem Add a Post Show all posts by recent activity > Godel's theorem - no false sentence of L is ever output by M... 1 Hi, I am not able to see how this is equivalent to the other two versions of the theorem. Can som..

© All Rights Reserved