Linear operators and their geometric representation

Francesco Preta

July 9, 2020

Definition and examples of linear functions

Linear functions (or operators) are one of the fundamental concepts of linear algebra. The definition is the following:

Definition 1. Let V, W be vector spaces over \mathbb{R} . A function $T: V \to W$ is called *linear* if for every $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{R}$, we have

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T(\mathbf{x}) + \beta T(\mathbf{y})$$

Examples of linear functions are:

• Matrix multiplication: let A be a $n \times m$ matrix. Then for \mathbf{x}, \mathbf{y} in \mathbb{R}^m and $\alpha, \beta \in \mathbb{R}$, we have

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$$

For instance, take $A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$, then for every coefficient $\alpha, \beta \in \mathbb{R}$ and vectors $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ we have

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \end{bmatrix} = \begin{bmatrix} \alpha(x_1 + 2x_2) + \beta(y_1 + 2y_2) \\ \alpha(x_2 - x_1) + \beta(y_2 - y_1) \end{bmatrix}$$

while

$$\alpha A \mathbf{x} + \beta A \mathbf{y} = \alpha \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \beta \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \alpha(x_1 + 2x_2) + \beta(y_1 + 2y_2) \\ \alpha(x_2 - x_1) + \beta(y_2 - y_1) \end{bmatrix}$$

• Inner product with a fixed vector: let $\mathbf{z} \in \mathbb{R}^n$, then for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, we have

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$$

For instance, let $\mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Then for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$

$$\langle \alpha \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \beta \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \rangle = \langle \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \alpha x_3 + \beta y_3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \rangle = \alpha (x_1 - x_3) + \beta (y_1 - y_3)$$

On the other hand,

$$\alpha \langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \rangle + \beta \langle \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \rangle = \alpha(x_1 - x_3) + \beta(y_1 - y_3)$$

• Integrals on function spaces: let $f_1, f_2 : [0,1] \to \mathbb{R}$ be Riemann-integrable functions and $\alpha, \beta \in \mathbb{R}$. Then

$$\int_0^1 (\alpha f_1(t) + \beta f_2(t)) dt = \alpha \int_0^1 f_1(t) dt + \beta \int_0^1 f_2(t) dt$$

• Derivatives on function spaces: let $g_1, g_2 : [0, 1] \to \mathbb{R}$ be derivable functions and $\alpha, \beta \in \mathbb{R}$. Then

$$\frac{d}{dt}(\alpha g_1 + \beta g_2)(t) = \alpha \frac{dg_1(t)}{dt} + \beta \frac{dg_2(t)}{dt}$$

Examples of non-linear functions:

• Euclidean norm of a vector: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ in general

$$||\alpha \mathbf{x} + \beta \mathbf{v}|| \neq \alpha ||\mathbf{x}|| + \beta ||\mathbf{v}||.$$

For instance, consider $\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\alpha = \beta = 1$. Then

$$||\alpha \mathbf{x} + \beta \mathbf{y}|| = || \begin{bmatrix} 1 & 1 \end{bmatrix} || = \sqrt{2}$$

but

$$\alpha ||\mathbf{x}|| + \beta ||\mathbf{y}|| = ||\begin{bmatrix} 1 & 0 \end{bmatrix}|| + ||\begin{bmatrix} 0 & 1 \end{bmatrix}|| = 2$$

Analogously, if $\alpha = -1, \beta = 0$, we have

$$||\alpha \mathbf{x} + \beta \mathbf{y}|| = ||\begin{bmatrix} -1 & 0 \end{bmatrix}|| = 1$$

while

$$\alpha ||\mathbf{x}|| + \beta ||\mathbf{y}|| = -||\begin{bmatrix} 1 & 0 \end{bmatrix}|| = -1$$

• Maximum function: Consider max : $\mathbb{R}^n \to \mathbb{R}$, the function returning the maximum element in a vector. Then for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, in general

$$\max(\alpha \mathbf{x} + \beta \mathbf{y}) \neq \alpha \max(\mathbf{x}) + \beta \max(\mathbf{y})$$

As a counterexample, consider $\mathbf{x} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 0 & -1 \end{bmatrix}$, $\alpha = \beta = 1$. Then

$$\max(\alpha \mathbf{x} + \beta \mathbf{y}) = \max \begin{bmatrix} 0 & 0 \end{bmatrix} = 0$$

while

$$\alpha \max(\mathbf{x}) + \beta \max(\mathbf{y}) = \max \begin{bmatrix} 0 & 1 \end{bmatrix} + \max \begin{bmatrix} 0 & -1 \end{bmatrix} = 1 + 0 = 1$$

.

Matrix representation of linear functions

In Definition 1, T is an operator between two abstract vector spaces. In the specific example of matrix multiplication, a $n \times m$ matrix A defines a function from \mathbb{R}^m to \mathbb{R}^n according to the rule of matrix multiplication. To this extent, inner product can be seen as a particular case of matrix multiplication for A a $1 \times n$ matrix.

A priori, it seems to be the case that matrix multiplication constitutes only one of the possible linear functions between \mathbb{R}^m and \mathbb{R}^n . However we will proving that every linear function on \mathbb{R}^m is in some sense a matrix multiplication:

Theorem 1 (Representation Theorem). Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator. Then there exists a $n \times m$ matrix A such that $f(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^m$

Proof. Linearity of f guarantees that the value of $f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^m$ is uniquely determined by the value of f on a finite set of vectors that span the entire space. In the case of \mathbb{R}^m , we introduced in the last lecture the canonical basis $\{\mathbf{e}_i\}_{i=1}^m$, where we recall the definition as

$$(\mathbf{e}_i)_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Then every vector $\mathbf{x} \in \mathbb{R}^m$ is a linear combination of \mathbf{e}_i 's, that is $\mathbf{x} = \sum_{i=1}^m x_i \mathbf{e}_i$. Then we have

$$f(\mathbf{x}) = f(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i f(\mathbf{e}_i)$$

so that if we know the values of $\{f(\mathbf{e}_i)\}_{i=1}^m$, $f(\mathbf{x})$ can be obtained as a linear combination of those values with *i*-th coefficient x_i .

In order to find the $n \times m$ matrix A such that $f(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^m$, on each \mathbf{e}_i for i = 1, ..., m, A would satisfy $A\mathbf{e}_i = f(\mathbf{e}_i)$. But an easy calculation shows that $A\mathbf{e}_i$ is the i-th column of A:

$$(A\mathbf{e}_i)_j = \sum_{k=1}^n A_{j,k}(\mathbf{e}_i)_k = A_{j,i}$$

That means that for A given by

$$A = \begin{bmatrix} f(\mathbf{e}_1) & f(\mathbf{e}_2) & \dots & f(\mathbf{e}_m) \end{bmatrix}$$

where every $f(\mathbf{e}_i)$ is a column vector of \mathbb{R}^n , we have the desired representation matrix. In fact, we have

$$A\mathbf{x} = A(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i A \mathbf{e}_i = \sum_{i=1}^{m} x_i f(\mathbf{e}_i) = f(\sum_{i=1}^{m} x_i \mathbf{e}_i) = f(\mathbf{x})$$

An interesting consequence of this construction regards composition of linear functions: let $f_1: \mathbb{R}^m \to \mathbb{R}^n$ and $f_2: \mathbb{R}^n \to \mathbb{R}^l$ be two linear functions, then $f_2 \circ f_1: \mathbb{R}_m \to \mathbb{R}^l$ is also a linear function. This can be proved using the definition since for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and $\alpha, \beta \in \mathbb{R}$

$$f_2(f_1(\alpha \mathbf{x} + \beta \mathbf{y})) = f_2(\alpha f_1(\mathbf{x}) + \beta f_1(\mathbf{y})) = \alpha f_2(f_1(\mathbf{x})) + \beta f_2(f_1(\mathbf{y}))$$

But then if A is the matrix given by the representation theorem for $f_2 \circ f_1$, A_1 is the one for f_1 and A_2 is the one for f_2 , $A = A_2A_1$ with the usual matrix product (notice that the dimensions match).

Example: consider $f: \mathbb{R}^3 \to \mathbb{R}^3$ to be the shift-forward operator, that is

$$f(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \end{bmatrix}$$

We first need to prove that f is linear and then we need to find the matrix $A \in \mathbb{R}^{3\times 3}$ such that $f(\mathbf{x}) = A\mathbf{x}$. In order to prove linearity:

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = f\begin{pmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \alpha x_3 + \beta y_3 \end{pmatrix} = \begin{bmatrix} \alpha x_3 + \beta y_3 \\ \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \end{bmatrix}$$

On the other hand

$$\alpha f(\mathbf{x}) + \beta f(\mathbf{y}) = \alpha \begin{bmatrix} x_3 \\ x_1 \\ x_2 \end{bmatrix} + \beta \begin{bmatrix} y_3 \\ y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \alpha x_3 + \beta y_3 \\ \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \end{bmatrix}$$

so that the two quantities coincide for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$. Now, in order to find the operator A, consider

$$f(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \mathbf{e}_2$$

$$f(\mathbf{e}_2) = \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \mathbf{e}_3$$

$$f(\mathbf{e}_3) = \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \mathbf{e}_1$$

In this way we have

$$A = \begin{bmatrix} f(\mathbf{e}_1) & f(\mathbf{e}_2) & f(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

We can double check that for every $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ we have

$$A\mathbf{x} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \end{bmatrix} = f(\mathbf{x})$$

Injectivity and surjectivity

We recall the following definitions for generic (non-necessarily linear) functions:

Definition 2. A function $f: V \to W$ is said to be *injective* if

$$f(\mathbf{x}) = f(\mathbf{y})$$
 if and only if $\mathbf{x} = \mathbf{y}$

that is, different points of V have different image in W. f is said to be surjective if

$$\forall \mathbf{w} \in W, \exists \mathbf{x} \in V \text{ such that } f(\mathbf{x}) = \mathbf{w}$$

that is, all points in W are the image of a point in V.

If a function is both injective and surjective it is said to be bijective.

In the case of linear functions, the following holds:

Theorem 2. Let $T: V \to W$ be a linear function. Then injectivity of T is equivalent to the condition that $T(\mathbf{x}) = \mathbf{0}$ if and only if $\mathbf{x} = \mathbf{0}$.

Proof. Consider $\mathbf{x}, \mathbf{y} \in V$ such that $T(\mathbf{x}) = T(\mathbf{y})$. Since T is linear and $T(\mathbf{x}) - T(\mathbf{y}) = \mathbf{0}$, then $T(\mathbf{x} - \mathbf{y}) = 0$. If T is injective, then $\mathbf{x} = \mathbf{y}$, therefore $\mathbf{x} - \mathbf{y} = 0$. On the other hand, if $T(\mathbf{v}) = 0$ if and only if $\mathbf{v} = 0$, then $\mathbf{x} - \mathbf{y} = \mathbf{0}$, so $\mathbf{x} = \mathbf{y}$ and T is injective.

On the other hand, for a linear operator it is always the case that $T(\mathbf{0}) = \mathbf{0}$. This comes from the definition of linearity, since

$$T(\mathbf{0}) = T(2 \cdot \mathbf{0}) = 2T(\mathbf{0})$$

which is true only if $T(\mathbf{0}) = \mathbf{0}$. Theorem 2 tells us that injectivity of T corresponds to the fact that $\mathbf{0}$ is the only element whose image is $\mathbf{0}$.

In general, we have the following denominations:

Definition 3. Let $T: V \to W$ be a linear function. Then the *Kernel* of T is defined as the elements of V whose image is $\mathbf{0}$, that is

$$Ker(T) = \{ \mathbf{x} \in V \mid T(\mathbf{x}) = \mathbf{0} \}$$

and the image or range of T are the elements of W that are mapped through T by some element in V

$$\operatorname{Im}(T) = \{ y \in W \mid T(\mathbf{x}) = \mathbf{y} \text{ for some } \mathbf{x} \in V \}$$

Theorem 2 can be restated by saying that T is injective if and only if $Ker(T) = \{\mathbf{0}\}.$

Linearity can also be used to obtain some result on surjectivity. In fact, notice if by the representation theorem $T(\mathbf{x}) = A\mathbf{x}$ for some matrix A in $\mathbb{R}^{n \times m}$, then every \mathbf{x} can be written as a linear combination of the canonical basis of \mathbb{R}^m , and by linearity

$$A\mathbf{x} = A(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i A \mathbf{e}_i$$

However, since $A\mathbf{e}_i$ corresponds to the i-th column of A, for every choice of \mathbf{x} , $A\mathbf{x}$ will be a linear combination (with coefficients depending on \mathbf{x}) of column vectors of A. This implies that $\text{Im}(T) = \text{span}(\mathbf{a}_1, ..., \mathbf{a}_m)$, where $\mathbf{a}_i = A\mathbf{e}_i$ is the i-th column vector of A. We have proved the following:

Theorem 3. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator and A a $n \times m$ matrix such that $T(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^m$. Then T is surjective if and only if the columns of A span \mathbb{R}^n .

Example: Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}^3$:

$$f(\mathbf{x}) = (x_1, x_1, x_2)$$

In order to find the corresponding matrix, consider the action on the canonical basis of \mathbb{R}^2 , that is

$$f(1,0) = (1,1,0),$$
 $f(0,1) = (0,0,1)$

then the matrix is given by

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

In order to prove that f is injective, consider the equation $f(\mathbf{x}) = 0$. Then

$$(x_1, x_1, x_2) = (0, 0, 0) \implies x_1 = 0, x_2 = 0$$

therefore f is injective. As for surjectivity, consider span $(A\mathbf{e}_1, A\mathbf{e}_2)$, that is:

$$\operatorname{span}(A\mathbf{e}_{1}, A\mathbf{e}_{2}) = \left\{ \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mid \alpha, \beta \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} \alpha \\ \alpha \\ \beta \end{bmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}$$

Clearly this is not the whole \mathbb{R}^3 because, for instance, it doesn't allow for vectors with first coordinate different from the second coordinate.

In general, to prove injectivity and surjectivity of a linear operator we need a few more notions on linearity and rank of matrices. However, the method to prove injectivity is always the same: prove that the solution to $f(\mathbf{x}) = \mathbf{0}$ is given by the sole vector $\mathbf{0} \in \mathbb{R}^n$, while proving surjectivity involves proving that the span of the column vectors of A is the whole space \mathbb{R}^n .

Linear and affine transformations of \mathbb{R}^2

We will now go through some examples of transformations in \mathbb{R}^2 and \mathbb{R}^3 . In these cases, vectors will represent coordinates in the plane and the transformation will bring a point in \mathbb{R}^2 (or \mathbb{R}^3) to another point in \mathbb{R}^2 (or \mathbb{R}^3).

Rotations in \mathbb{R}^2

A matrix of the form

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \tag{1}$$

represents a rotation around the origin of angle θ . Consider a point $\mathbf{x} = (x_1, x_2)$. Then

$$A\mathbf{x} = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta)$$

First notice that $A\mathbf{x} = 0$ if and only if $\mathbf{x} = (0,0)$, so that A is injective. An easy calculation shows that $||A\mathbf{x}|| = ||\mathbf{x}||$. That is, A is a norm-preserving matrix (also called *unitary*). In addition, we can calculate the angle between \mathbf{x} and its image as

$$\cos \angle(\mathbf{x}, A\mathbf{x}) = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{||\mathbf{x}|| ||A\mathbf{x}||}$$

and we have

$$\langle \mathbf{x}, A\mathbf{x} \rangle = x_1^2 \cos \theta - x_1 x_2 \sin \theta + x_1 x_2 \sin \theta + x_2^2 \cos \theta = ||\mathbf{x}||^2 \cos \theta$$

Therefore $\cos \angle(\mathbf{x}, A\mathbf{x}) = \cos \theta$ which is the algebraic correspondent to the geometric property we wanted.

Alternatively, notice that if f is a linear function on \mathbb{R}^2 inducing a counterclockwise rotation around the origin by an angle θ , then

$$f(\mathbf{e}_1) = f(1,0) = (\cos(\theta), \sin(\theta))$$

and

$$f(\mathbf{e}_2) = f(0,1) = (\cos(\frac{\pi}{2} + \theta), \sin(\frac{\pi}{2} + \theta)) = (-\sin(\theta), \cos(\theta))$$

so that the representation theorem tells us that $f(\mathbf{x}) = A\mathbf{x}$ for A as in equation 1.

Figure 1: Rotation of $\frac{\pi}{6}$ on the unit square $[0,1]\times[0,1]$.

Dilatations in \mathbb{R}^2

Any diagonal matrix of the form

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

for a, b > 0 is a dilatation in \mathbb{R}^2 . A sends a circle of radius one $x^2 + y^2 = 1$ to an ellipsis $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, dilating the horizontal axis by a and the vertical axis by b. Each axis is dilated if the corresponding coefficient is greater than 1 and it's contracted if the corresponding coefficient is less than 1.

Figure 2: Effect of dilatation by $A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$ on the unit circle

Reflections in \mathbb{R}^2

We list here different types of reflections across an axis or a point in \mathbb{R}^2 . In general, in order to find the matrix form of the reflection, one can either find the image of the canonical basis, or understand where it sends a generic point $(x_1, x_2) \in \mathbb{R}^2$.

• Reflection across the x_1 -axis. In this case, (1,0) is mapped to itself, while (0,1) is mapped to (0,-1). The matrix A has therefore the form

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Alternatively, consider the function form $f(x_1, x_2) = (x_1, -x_2)$. Then A is the matrix such that $A\mathbf{x} = f(\mathbf{x})$.

Figure 3: Reflection across the x_1 axis.

• Reflection across the x_2 -axis. In this case, (1,0) is mapped to (-1,0), while (0,1) is mapped to itself. The matrix B has therefore the form

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Alternatively, consider the function form $g(x_1, x_2) = (-x_1, x_2)$. Then B is the matrix such that $B\mathbf{x} = g(\mathbf{x})$.

Figure 4: Reflection across the x_2 axis.

• Reflection across the origin. In this case, (1,0) is mapped to (-1,0), while (0,1) is mapped to (0,-1). The matrix C has therefore the form

$$C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Alternatively, consider the function form $h(x_1, x_2) = (-x, -y)$. Then C is the matrix such that $C\mathbf{x} = h\mathbf{x}$).

Figure 5: Reflection across the origin.

• Reflection across the bisector $x_2 = x_1$. In this case, (1,0) is mapped to (0,1), while (0,1) is mapped to (1,0). The matrix D has therefore the form

$$D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Alternatively, consider the function form $i(x_1, x_2) = (x_2, x_1)$. Then D is the matrix such that $D\mathbf{x} = i(\mathbf{x})$.

Figure 6: Reflection across the bisector of the first and third quadrant, $x_2 = x_1$.

• Reflection across the bisector y = -x. In this case, (1,0) is mapped to (0,-1), while (0,1) is mapped to (-1,0). The matrix E has therefore the form

$$E = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

Alternatively, consider the function form $l(x_1, x_2) = (-x_2, -x_1)$. Then E is the matrix such that $E\mathbf{x} = l(\mathbf{x})$.

Figure 7: Reflection across the bisector of the second and fourth quadrant, $x_2 = -x_1$.

Shear transformations

A shear transformation is a transformation of the type

$$S_h = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \qquad \text{(horizontal shear)}$$

or of the type

$$S_v = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
 (vertical shear)

for k > 0.

This type of transformation maps the unit square to a parallelograms. In general, a horizontal shear will map horizontal lines to horizontal lines and vertical lines to oblique lines. A vertical shear will do the opposite: horizontal lines will be mapped to oblique lines and vertical lines will be mapped to vertical lines.

Consider the unit square $[0,1] \times [0,1]$. In order to understand where such square is mapped, we can consider the image of its vertices. Since both S_h and S_v are linear, (0,0) is mapped to itself. As for the other vertices, we have

$$S_h(1,0) = (1,0),$$

 $S_h(0,1) = (k,1),$
 $S_h(1,1) = S_h(0,1) + S_h(1,0) = (k+1,1).$

Thus S_h maps the unit square to a parallelogram of vertices (0,0),(1,0),(k,1) and (1+k,1).

Figure 8: Horizontal shear transformation of the unit square $[0,1] \times [0,1]$ by $S_h = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$.

On the other hand,

$$S_v(1,0) = (1,k),$$

$$S_v(0,1) = (0,1),$$

$$S_v(1,1) = S_v(0,1) + S_v(1,0) = (1,k+1).$$

The unit square is therefore mapped to the parallelogram of vertices (0,0), (0,1), (1,k) and (1,1+k).

Affine transformations: translations

An affine transformation on \mathbb{R}^m is a function $F : \mathbb{R}^m \to \mathbb{R}^n$ of the form $F(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. It is therefore a function that differs from a linear function by an additive term \mathbf{b} .

In \mathbb{R}^2 , the additive component **b** of the affine transformation can be seen as translation by a vector **b**. In this sense, if F is an affine function, then for every \mathbf{x} , $F(\mathbf{x}) - \mathbf{b}$ is a linear transformation. Given an affine function, it is generally useful to consider its linear component $f(\mathbf{x}) = F(\mathbf{x}) - F(\mathbf{0})$. In fact $F(\mathbf{0}) = A\mathbf{0} + \mathbf{b} = \mathbf{b}$ is nothing else than the translation vector we're considering.

Example: Consider an affine function mapping the points (0,0), (1,0) and (0,1) respectively to (3,2), (3,3) and (7,3). Since $f(0,0) = (3,2) \neq (0,0)$, this function is not linear, but rather it has the form $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for $\mathbf{b} = f(0,0) = (3,2)$. Then it makes sense to consider the linear component $f_l(\mathbf{x}) = f(\mathbf{x}) - f(0,0)$. Such component maps (0,0) to itself, (1,0) to (0,1) and (0,1) to (4,1). The matrix form of f is therefore given by

$$f(x_1, x_2) = \begin{bmatrix} 0 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Figure 9: Vertical shear transformation of the unit square $[0,1] \times [0,1]$ by $S_h = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

Figure 10: Translation of the unit square $[0,1] \times [0,1]$ by the vector $b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$