Agenda

Clustering

Association Rules

Text Mining

Growth of Data Mining

Explosion of data collection

Advancement in data storage and processing

Affordability and advancement in analytics

Machine Learning methods & Clustering

Clustering methods

Hierarchical clustering

starts with each observation belonging to its own cluster and then **sequentially merges the most similar clusters** to create a series of nested clusters.

K-means clustering

assigns each observation to one of **k clusters** in a manner such that the observations assigned to the same cluster are as similar as possible.

Similarity between observations

Measuring similarity

Euclidean distance

Most common method to measure dissimilarity between observations.

$$d_{uv} = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_q - v_q)^2}$$

 $d_{uv} = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_q - v_q)^2} \qquad u = [u_1, u_2, u_3 \dots u_q] \text{ and } v = [v_1, v_2, v_3 \dots v_q] \text{ are 2 sets of } v = [v_1, v_2, v_3 \dots v_q]$ observations of a variable.

Matching coefficient

number of variables with matching value for observations u and vtotal number of variables

(Encoded categorical variables)

Jaccard's coefficient

number of variables with matching nonzero value for observations u and v(total number of variables) – (number of variables with matching zero values for observations u and v)

Does not consider "O" to be a similarity unlike Matching coefficient

Measuring similarity - example

Observation	Female	Married	Loan	Mortgage
1	1	0	0	0
2	0	1	1	1
3	1	1	1	0
4	1	1	0	0
5	1	1	0	0

Observations	1	2	3	4	5
1	1				
2	0	1			
3	0.5	0.5	1		
4	0.75	0.25	0.75	1	
5	0.75	0.25	0.75	1	1

Observations	1	2	3	4	5
1	1				
2	0	1			
3	0.33	0.5	1		
4	0.5	0.25	0.67	1	
5	0.5	0.25	0.67	1	1

Matching coefficient

Jaccard's coefficient

Hierarchical clustering

Starts with each observation in its own cluster and then iteratively combines the two clusters that are the <u>most similar</u> into a single cluster.

 $d_{1,2} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Hierarchical Clustering

Ward's method - merges two clusters such that the dissimilarity of the observations with the resulting single cluster increases as little as possible.

McQuitty's method - considers merging two clusters A and B, the dissimilarity of the resulting cluster AB to any other cluster C is calculated as: ((dissimilarity between A and C) + (dissimilarity between B and C)) divided by 2).

Dendrogram - chart that depicts the set of nested clusters resulting at each step of aggregation

K-means Clustering

Given a value of k, the kmeans algorithm randomly
assigns each observation to
one of the k clusters.

After all observations have been assigned to a cluster, the resulting cluster centroids are calculated.

Using the cluster centroids, all observations are reassigned to the cluster with the closest centroid.

Choosing the Clustering method

Hierarchical Clustering	k-Means Clustering		
Suitable when we have a small data set (e.g., fewer than 500 observations).	Suitable when you know how many clusters you want and you have a larger data set (e.g., more than 500 observations).		
Convenient method if you want to observe how clusters are nested .	ldeal for quantitative data		

Association rules

If-then statements which convey the **likelihood** of certain variables **occurring together**.

Antecedent: The collection of items (or item set) corresponding to the *if* portion of the rule.

Consequent: The item set corresponding to the *then* portion of the rule.

Support count of an item set: Number of transactions in the data that include that item set.

CONFIDENCE

support of {antecedent and consequent}

support of antecedent

Conditional Probability of consequent item set occurring given the antecedent

LIFT RATIO

confidence

support of consequent/total number of transactions

Effectiveness the association rule

Example

Transaction	Shopping Cart				
1	bread, peanut butter, milk, fruit, jelly				
2	bread, jelly, soda, potato chips, milk, fruit, vegetables, peanut butter				
3	whipped cream, fruit, chocolate sauce, beer				
4	steak, jelly, soda, potato chips, bread, fruit				
5	jelly, soda, peanut butter, milk, fruit				
6	jelly, soda, potato chips, milk, bread, fruit				
7	fruit, soda, potato chips, milk				
8	fruit, soda, peanut butter, milk				
9	fruit, cheese, yogurt				
10	yogurt, vegetables, beer				

if **{bread, jelly}**, then **{peanut butter}**

Confidence = support { bread, jelly and peanut butter}/support { bread, jelly} = 2/4 = 0.5

Conditional Probability of consequent item set occurring given the antecedent

Lift ratio = Confidence/(support { peanut butter} / total transactions) = 0.5/ (4/10) = 1.25

Effectiveness the association rule

Text Mining

Extracting useful information from text

Text mining techniques

Text mining (NLP) - process

Topic Modeling

Sentence segmentation

Word tokenization

Filter stop words

Stemming

Evaluate Term frequency

Frequency term - document matrix

Sentiment Analysis

Sentence segmentation

Word tokenization

Filter stop words

Identify "parts of speech"

Calculate the sentiment

Topic Modeling Example

Concerns
The wi-fi service was horrible. It was slow and cut off several times.
My seat was uncomfortable.
My flight was delayed 2 hours for no apparent reason.
My seat would not recline.
The man at the ticket counter was rude. Service was horrible.
The flight attendant was rude. Service was bad.
My flight was delayed with no explanation.
My drink spilled when the guy in front of me reclined his seat.
My flight was canceled.
The arm rest of my seat was nasty.

	Term						
Document	Delayed	Flight	Horrible	Recline	Rude	Seat	Service
1	0	0	1	0	0	0	1
2	0	0	0	0	0	1	0
3	1	1	0	0	0	0	0
4	0	0	0	1	0	1	0
5	0	0	1	0	1	0	1
6	0	1	0	0	1	0	1
7	1	1	0	0	0	0	0
8	0	0	0	1	0	1	0
9	0	1	0	0	0	0	0
10	0	0	0	0	0	1	0

Term-Document matrix

Sentiment Analysis Example

Reviews	Word tokenization and filter	Sentiment
One of the worst movie ever	One, worst, movie, ever	-0.8
Boring	boring	-0.2
Great acting weak screenplay	Great, acting, weak, screenplay	0
One of the best performance by Actor X	One, best, performance, actor	1
Average	average	0
One time watch	One, time, watch	0.1
Never going to get back the 2 hours I've wasted	Never, going, get, back, 2, hours, wasted	-0.8
Wasted potential	Wasted, potential	-0.9
This movie makes "Another movie" look like a masterpiece	Movies, makes, another movie, look, masterpiece	1
Decent movie	Decent, movie	0.4

Summary

Clustering

Association Rules

Text Mining

