2.6 Traduction machine

□ Vue d'ensemble – Un modèle de traduction machine est similaire à un modèle de langage ayant un auto-encodeur placé en amont. Pour cette raison, ce modèle est souvent surnommé modèle conditionnel de langage.

Le but est de trouver une phrase y telle que :

$$y = \underset{y<1>,...,y}{\text{arg max}} P(y^{<1>},...,y^{}|x)$$

- \square Recherche en faisceau Cette technique (en anglais beam search) est un algorithme de recherche heuristique, utilisé dans le cadre de la traduction machine et de la reconnaissance vocale, qui vise à trouver la phrase la plus probable y sachant l'entrée x.
 - Étape 1 : Trouver les B mots les plus probables $y^{<1>}$
 - Étape 2 : Calculer les probabilités conditionnelles $y^{< k>}|x,y^{< 1>},...,y^{< k-1>}$
 - Étape 3 : Garder les B combinaisons les plus probables $x,y^{<1>},...,y^{< k>}$

 $Remarque: si\ la\ largeur\ du\ faisceau\ est\ prise\ \'egale\ \grave{a}\ 1,\ alors\ ceci\ est\ \'equivalent\ \grave{a}\ un\ algorithme\ qlouton.$

- □ Largeur du faisceau − La largeur du faisceau (en anglais beam width) B est un paramètre de la recherche en faisceau. De grandes valeurs de B conduisent à avoir de meilleurs résultats mais avec un coût de mémoire plus lourd et à un temps de calcul plus long. De faibles valeurs de B conduisent à de moins bons résultats mais avec un coût de calcul plus faible. Une valeur de B égale à 10 est standarde et est souvent utilisée.
- □ Normalisation de longueur Pour que la stabilité numérique puisse être améliorée, la recherche en faisceau utilise un objectif normalisé, souvent appelé l'objectif de log-probabilité normalisé, défini par :

Objectif =
$$\frac{1}{T_y^{\alpha}} \sum_{t=1}^{T_y} \log \left[p(y^{< t>} | x, y^{< 1>}, ..., y^{< t-1>}) \right]$$

Remarque : le paramètre α est souvent comprise entre 0.5 et 1.

 \square Analyse d'erreur – Lorsque l'on obtient une mauvaise traduction prédite \widehat{y} , on peut se demander la raison pour laquelle l'algorithme n'a pas obtenu une bonne traduction y^* en faisant une analyse d'erreur de la manière suivante :

Cas	$P(y^* x) > P(\widehat{y} x)$	$P(y^* x) \leqslant P(\widehat{y} x)$
Cause	Recherche en faisceau défectueuse	RNN défectueux
Remèdes	Augmenter la largeur du faisceau	Essayer une différente architectureRégulariserObtenir plus de données

.0 HIVER 2019