CS 5/7320 Artificial Intelligence

Probabilistic Reasoning AIMA Chapter 13

Slides by Michael Hahsler based on slides by Svetlana Lazepnik with figures from the AIMA textbook

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

Sprinkler

P(S=F)

0,9

0,5

Online Material

Probability Theory Recap

- Notation: Prob. of an event P(X = x) = P(x)Prob. distribution $P(X) = \langle P(X = x_1), P(X = x_2), ..., P(X = x_n) \rangle$
- Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) ...$ = $\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$
- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)} = \alpha P(x,y)$
- Marginal distribution given P(X,Y) $P(X) = \sum_{y} P(X,y)$ (called marginalizing out Y)
- Independence
 - $X \perp\!\!\!\perp Y$: X,Y are independent (written as $X \perp\!\!\!\perp Y$) if and only if: $\forall x, v : P(x,v) = P(x)P(v)$
 - $X \perp\!\!\!\perp Y|Z:X$ and Y are conditionally independent given Z if and only if: $\forall x,y,z:P(x,y|z)=P(x|z)P(y|z)$

Contents

Bayesian
Networks to
Specify
Dependence

Exact Inference

Approximate Inference

Bayesian Networks (aka Belief Networks)

A type of graphical model.

A way to specify dependence between random variables.

A compact specification of a full joint probability distribution.

A general and important model to reason with uncertainty in Al.

Structure of Bayesian Networks

Nodes: Random variables

 Can be assigned (observed) or unassigned (unobserved)

Arcs: Dependencies

- An arrow from one variable to another indicates direct influence.
- Show independence
 - Weather is independent of the other variables (no connection).
 - Toothache and Catch are conditionally independent given Cavity (directed arc).
- Must form a directed acyclic graph (DAG)

A network with all random variables assigned represents a state of the system.

Example: N independent coin flips

Complete independence: no interactions between coin flips

$$X_1$$
 X_2 X_n

$$P(X_1, X_2, ..., X_n) = P(X_1)P(X_2) ... P(X_n) = \prod_{i=1}^{n} P(X_i)$$

Joint probability

distribution

Example: Naïve Bayes spam filter

Random variables:

- C: message class (spam or not spam)
- $W_1, ..., W_n$: presence or absence of words comprising the message

Words depend on the class, but they are modeled conditional independent of each other given the class (= no direct connection between words).

$$P(W_1, W_2, ..., W_n | C) = P(W_1 | C) P(W_2 | C) ... P(W_n | C)$$

Example: Burglar Alarm

- Description: I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
- Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
 - Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- What are the direct influence relationships?
 - A burglar can set off the alarm
 - An earthquake can set off the alarm
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example: Burglar Alarm as a Network

Parameters: Conditional probability tables

The full joint distribution, can be broken down into *conditional* distribution for each node given its parents:

These distributions are stored in conditional probability tables (CPTs)

Example:

Example: Burglar Alarm with CPTs

The Joint Probability Distribution

- For each node X_i , we know $P(Xi \mid Parents(Xi))$
- How do we get the full joint distribution $P(X_1, ..., X_n)$?
- Using chain rule, but only depends on parents:

$$P(X_1, ..., X_n) = \prod_{i=1}^{n} P(X_i | Parents(X_i))$$

• Example:

$$P(J, M, A, B, E) = P(B) P(E) P(A | B, E) P(J | A) P(M | A)$$

Dependence

• Example: causal chain

X: Low pressure

Y: Rain

Z: Traffic

Are X and Z independent?

1. Conditioning: P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)

We are not interested in y.

2. Marginalize over $y: P(X,Z) = \sum_{y} P(X)P(y|X)P(Z|y)$ = $P(X)\sum_{y} P(Z|y)P(y|X) \neq P(X)P(Z)$

X and Z are **not** independent!

Conditional Independence

• Example: causal chain

X: Low pressure

Y: Rain

Z: Traffic

• Is Z independent of X given Y?

1. Conditioning: $P(X,Z|Y) = \frac{P(X,Y,Z)}{P(Y)} = \frac{P(X)P(Y|X)P(Z|Y)}{P(Y)}$

Definition of conditional independence

$$= \frac{P(X)\frac{P(X|Y)P(Y)}{P(X)}P(Z|Y)}{P(Y)} = P(X|Y)P(Z|Y)$$

X and Z are conditionally independent given Y

Conditional Independence cont.

Common cause

Y: Project due

X: Newsgroup busy

Z: Lab full

- Are X and Z independent?
 - No
- Are they conditionally independent given Y?
 - Yes

Common effect

X: Raining

Z: Ballgame

Y: Traffic

- Are X and Z independent?
 - Yes
- Are they conditionally independent given Y?
 - No

Compactness

• For a network with n Boolean variables, the full joint distribution requires $O(2^n)$ probabilities.

Example: Burglary network

Complete joint probability specification $2^5 - 1 = 31$

- If each variable X_i has at most k Boolean parents, then each conditional probability table (CPT) has at most 2^k rows.
- The CPTs for all n nodes contain then at most $O(n \times 2^k)$ probabilities.
- ullet This reduces the complexity from exponential to linear in n and makes it vert compact!
- Example: Burglary network Using CPTs: 1 + 1 + 4 + 2 + 2 = 10 probabilities

Constructing Bayesian Networks

- 1. Choose an ordering of variables X_1, \dots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1})$ that is, add a connection only from nodes it directly depends on.

Note: There are many ways to order the variables. Networks are typically constructed by domain experts with causality in mind. E.g., Fire causes Smoke:

The network resulting from causal ordering is typically sparse and conditional probabilities are easier to judge because they represent causal relationships.

A more realistic Bayes Network: Car diagnosis

Summary

- Bayesian networks provide a natural representation for joint probabilities used to calculated conditional probabilities needed for inference (prediction).
- Independence and conditional independence (induced by causality) reduces the number of needed parameters and creates a compact network.
- Representation
 - Topology (nodes and edges)
 - Conditional probability tables
 - Typically easy for domain experts to construct

P(B, E, A, I, M) is defined by

Exact Inference

Goal

- Query variables: X
- Evidence (observed) variables: E = e
- Set of unobserved variables: Y
- Calculate the probability of X given e.

If we know the full joint distribution P(X, E, Y), we can infer X by:

$$P(X|E=e) = \frac{P(X,e)}{P(e)} = \frac{\sum_{y} P(X,e,y)}{P(e)} \propto \sum_{y} P(X,e,y)$$

Sum over values of unobservable variables = marginalizing them out.

Exact inference: Example – Calculation

Assume we can observe being called and the two variables have the values j and m. We want to know the probability of a burglary.

Query: $P(B \mid j, m)$ with unobservable variables: Earthquake E, Alarm A

$$P(b|j,m) = \frac{P(b,j,m)}{P(j,m)} \propto \sum_{e} \sum_{a} P(b,e,a,j,m)$$

$$= \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$$
Full joint probability and marginalize over E and A

Implementation using an evaluation tree and CPTs

Issues with Exact Inference in Al

$$P(X|E=e) = \frac{P(X,e)}{P(e)} \propto \sum_{y} P(X,e,y)$$

Problems

1. Full joint distribution is too large to store.

Bayes nets provide significant savings for representing the conditional probability structure using CPTs.

2. Marginalizing out many unobservable variables Y may involve **too** many summation terms.

This summation is called **exact inference by enumeration**. Unfortunately, it does not scale well (#p-hard).

In praxis, approximate inference by sampling is used.

Bayesian Networks as a Generative Models

Bayesian networks can be used as *generative models*.

Generative models allow us to efficiently **generate** samples from the joint distribution.

Idea: Generate samples from the network to estimate joint and conditional probability distributions using Monte Carlo methods.

Prior-Sample Algorithm

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn**inputs**: bn, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \dots, X_n)$ $\mathbf{x} \leftarrow$ an event with n elements for each variable X_i in X_1, \ldots, X_n do $\mathbf{x}[i] \leftarrow \text{a random sample from } \mathbf{P}(X_i \mid parents(X_i))$ return x P(C=.5)Order is important! We Cloudy need to start with the random variables that Sprinkler Rain have no parents. .10 WetGrass

Variable order

Estimating the Joint Probability Distribution from Individual Samples

Sample *N* times and determine $N_{PS}(x_1, x_2, ..., x_n)$, the count of how many times Prior-Sample produces event $(x_1, x_2, ..., x_n)$.

$$\hat{P}(x_1, x_2, ..., x_n) = \frac{N_{PS}(x_1, x_2, ..., x_n)}{N}$$

The marginal probability of partially specified event (some x values are known) can also be calculated using the same samples. E.g.,

$$\widehat{P}(x_1) = \frac{N_{PS}(x_1)}{N}$$

Estimating Conditional Probabilities: **Rejection Sampling**

Sample N times and ignore the samples that are not consistent with the evidence e.

$$\widehat{P}(X|e) = \alpha N_{PS}(X,e) = \frac{N_{PS}(X,e)}{N_{PS}(e)}$$

Issue: What if e is a rare event?

- Example: burglary ∧ earthquake
- Rejection sampling ends up throwing away most of the samples. This is very inefficient!

Estimating Conditional Probabilities: **Rejection Sampling**

```
function REJECTION-SAMPLING(X, \mathbf{e}, bn, N) returns an estimate of P(X \mid \mathbf{e})
  inputs: X, the query variable
           e, observed values for variables E
            bn, a Bayesian network
            N, the total number of samples to be generated
  local variables: C, a vector of counts for each value of X, initially zero
  for j = 1 to N do
                                                We throw away many samples
      \mathbf{x} \leftarrow \mathsf{PRIOR}\text{-}\mathsf{SAMPLE}(bn)
                                                           if e is rare!
      if x is consistent with e then
         C[j] \leftarrow C[j] + 1 where x_j is the value of X in x
  return NORMALIZE(C)
```

Estimating Conditional Probabilities: Importance Sampling (likelihood weighting)

Goal: Avoid throw out samples like in rejection sampling.

1. Fix the evidence E = e for sampling and estimate the probability for the non-evidence variables using prior-sampling. We call this probability

$$Q_{WS}(x)$$

Note: Fixing the evidence breaks the dependence of the evidence variable on the evidence parents!

2. Correct the probabilities using weights

$$P(x|e) = w(x)Q_{WS}(x)$$

The right weight is the chance that we see the evidence given its parent (to fix the broken dependence).

$$w(x) = \frac{1}{P(e)} \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Example: Evidence = it rains

Estimating Conditional Probabilities: Markov Chain Monte Carlo Sampling (MCMC)

- Idea: Instead of creating each sample individually from scratch, generates a sequence of samples.
- Create the next state (= sample) by making random changes to the current state (= modify non-evidence variables). The sequence of states forms a random process called a **Markov Chain** (MC).
- The MC's stationary distribution turns out to be the posterior distribution of the non-evidence variables.
- The stationary distribution of a MC can be estimated using **Monte Carlo** simulation by counting how often each state is reached and normalize to obtain probability estimates.
- Algorithms:
 - 1. Gibbs sampling works well for BNs since we have CPTs.
 - 2. Metropolis-Hastings sampling is more general.

Note: Simulated annealing local search belongs to the family of MCMC algorithms.

Gibbs Sampling in Bayes Networks

• $mb(Z_i)$ is the Markov blanket of random variable Z_i . It makes sure that the new value is consistent with the other values. The Markov blanket of a variable consists of all variables it can be dependent of (parents, children and parents of children).

$$P(z_i|mb(Z_i)) = \alpha P(z_i|parents(Z_i)) \prod_{Y_i \in children(X_i)} P(y_i|parents(Y_j))$$

Gibbs Sampling: Example

Find P(Rain | Sprinkler = true, WetGrass = true).

Determine states and calculate transition probabilities of the Markov chain for changing one variable using $P(z_i|mb(Z_i))$.

The algorithm randomly wanders around in this graph using the stated transition probabilities.

Assume that we observe 20 states with Rain = true and 60 with rain = false: $NORMALIZE(\langle 20,60 \rangle) = \langle 0.25,0.75 \rangle$

 $P(Rain | Sprinkler = true, WetGrass = true) \approx 0.25$

Note the self-loops: the state stays the same when the resampled value is same it already has.

Conclusion

- Bayesian networks provide an efficient way to store a complete probabilistic model by exploiting (conditional) independence between variables.
- Inference means querying the model for a conditional probability given some evidence.
- Exact inference is difficult, for all but tiny models.
- State of the art is to use approximate inference by sampling from the model.
- Software libraries provide general inference engines.