## Distributed Systems Assignment 2

John Lång, Suravi Roy

November 30, 2019

1. 1) The Petri net given in this question has only four reachable markings, M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>, and M<sub>4</sub>, as demonstrated in Figures 1 and 2. Asterisks ('\*') denote enabled transitions. In the initial marking, M<sub>1</sub>, only the transition t<sub>2</sub> may fire, which leads the Petri net into marking M<sub>2</sub>. In marking M<sub>2</sub>, only t<sub>1</sub> may fire, so the Petri net transitions into marking M<sub>3</sub>. In marking M<sub>3</sub>, the only enabled transition is t<sub>3</sub>, which transforms the Petri net into marking M<sub>4</sub>. After marking M<sub>4</sub>, the Petri net transitions back into marking M<sub>1</sub>, as t<sub>1</sub> is the only enabled transition.

Since in every one of these four markings, there is only one enabled transition, the Petri net is deterministic and the sequence of markings repeats infinitely

$$M_1 \to M_2 \to M_3 \to M_4 \to M_1 \to \dots$$
 (1)

According to the English Wikipedia article on Petri nets, a Petri net is  $L_k$ -live if and only if all of its transitions are  $L_k$  live. In this case, the definition of  $L_3$ -liveness applies to the Petri net under investigation, as there is the infinite firing sequence (1) in which every transition fires infinitely often.

- 2) We produced a reachability graph of the second Petri net in this exercise by using WoPed. The result can be found in the bitmap image Question2.png. As the reachability graph shows, all of the 17 markings reachable from the initial marking belong to the same strongly connected graph (component). This Petri net is at least  $L_2$ -live, because every transition can be fired arbitrarily often, as the reachability graph shows.
  - Consider the vertex "( p1 p3 p6...". All cycles in the reachability graph pass through it. The only incoming edge to this vertex is labeled  $t_3$ , which means that all cycles have to contain  $t_3$ , making  $t_3$  satisfy  $L_3$ -liveness. This vertex has two outgoing edges labeled  $t_1$  and  $t_4$ . The destination of the latter has only one outgoing edge, labeled as  $t_1$ . Thus, the transition  $t_1$  also satisfies  $L_3$ -liveness. A similar argument starting from the vertex "( p1 p3 p6..." on the bottom-right side of the reachability graph shows that  $t_5$  is also  $L_3$  live. It can be reasoned further, that  $t_2$  and  $t_4$  are also  $L_3$ -live, by considering one step farther in the reachability graph.
- 3) We also produced a reachability graph for the third Petri net using WoPeD, and saved it to the bitmap image Question3.png. It is more complex than in the previous case, but it can be seen that for instance, the edges 1 and



Figure 1: The fist two markings ( $M_1$  on the left and  $M_2$  on the right).



Figure 2: The next two markings ( $M_3$  on the left and  $M_4$  on the right).

106 both represent the marking

$$p_1, p_2, p_5, p_6, p_9, p_{10}$$

and the path between these edges is non-trivial. This means that the path represents a cycle in a firing sequence, so the second Petri net is live at least in the sense that there exists an infinite firing sequence, namely the one that repeats this cycle forever.

- 2. 1) From the Figures 1 and 2 it shows that all of the places in the first Petri net are 1-bounded.
  - 2) Because the reachability graph of the second Petri net is finite, it follows that every firing sequence keeps cycling through a finite number of markings. For every place, the maximum bound of tokens can be determined from the reachability graph, by checking which of the markings place the largest number of tokens in that place. In this case, all places happen to be 1-bounded.
  - 3) The transitions of the third Petri net can be represented as the following  $12 \times 7$  matrix:

$$\mathbf{C} = \begin{pmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 \end{pmatrix}$$

Since all columns sum to zero, it holds that

$$(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \times \mathbf{C} = \mathbf{0},$$

regardless of the initial marking. It follows by a known result<sup>1</sup> that the third Petri net is bounded.

3. 1) The marking, in which all odd-numbered places have tokens, is  $M_3$ . The shortest firing sequence that reaches  $M_3$  from the initial marking  $M_1$  is

$$M_1 \to M_2 \to M_3$$
.

2) For the second petri net, the marking in which all the odd-numbered places have a token is the one where the tokens are in places  $p_1$ ,  $p_3$ ,  $p_5$ , and  $p_7$ . A shortest firing sequence to this marking has to remove the token from  $s_6$ . The only transition that can do this is  $t_4$ . Similarly, the only

 $<sup>^1 \</sup>rm http://wwwis.win.tue.nl/~wwdaalst/old/courses/BIScourse/BIS-12-structural-subclasses.pdf, p. <math display="inline">35$ 

transition that can remove the token from  $s_2$  is  $t_2$ . These two transitions are independent of each other, so it doesn't matter which one fires first in a shortest firing sequence. After  $t_2$ ,  $t_1$  needs to fire and the place  $s_8$  has to have a token in order to enable  $t_3$ . After  $t_3$  has fired, the part of the Petri net to the right of  $t_3$  has the correct marking. At this point, it remains to remove tokens from  $s_2$  and  $s_4$  and move tokens to places  $s_1$  and  $s_3$ . This can be accomplished by firing the transitions  $t_1$ ,  $t_2$ , and  $t_1$  again.

The three firing sequence fitting the description above, described in terms of transitions, are

$$t_2, t_1, t_4, t_3, t_1, t_2, t_1;$$
  
 $t_2, t_4, t_1, t_3, t_1, t_2, t_1;$  and  
 $t_4, t_2, t_4, t_3, t_1, t_2, t_1.$ 

Therefore, the length of the shortest firing sequences leading to the marking where all odd-numbered places have a token is 7.

3) Following the approach described above, for the shortest firing sequence leading to the marking that puts tokens in odd-numbered places starts with any permutation of  $t_2$ ,  $t_4$ , and  $t_6$  followed by the firing sequence

$$t_1, t_3, t_5, t_1, t_2, t_1, t_3, t_4, t_1, t_2, t_1, t_3, t_1, t_2, t_1.$$

All of these six shortest paths have length 18.

- 4. To mark the odd-numbered places in the *n*th member, the following algorithm can be used:
  - The two places with the highest indices have to be marked in the nth member by firing the transition  $t_{2n}$ .
  - Also, the transitions  $t_{2n-2}$  and  $t_{2n-3}$  must be fired.
  - After performing the previous two steps, firing the transition  $t_{2n-1}$  marks the odd-numbered places in the *n*th member.

There are two possible firing sequences that accomplish the desired marking:

$$t_{2n}, t_{2n-2}, t_{2n-3}, t_{2n-1}$$
  
 $t_{2n-2}, t_{2n-3}, t_{2n}, t_{2n-1}$ 

Repeating this algorithm for all members in decreasing order produces a shortest firing sequence to a marking with tokens in all odd-numbered places.