Tiempo: 2 horas

NOMBRE:

- **1. (2.5 p).** En el espacio afín \mathbf{A}^4 se dan los subespacios $S: \begin{cases} x = \lambda + \mu \\ y = 1 \lambda + \mu \\ z = -1 + \lambda + \mu \end{cases}$ $\forall T: \begin{cases} x = 1 \\ y 2t 2z = 0 \end{cases}$
 - a) Calcular ecuaciones implícitas de $S\,$ y $\,$ paramétricas de $T\,$.
 - **b)** Posición relativa de \overrightarrow{S} y de \overrightarrow{T} . Posición relativa de S y T .
 - **2. (2.5 p). a)** Escoger una referencia cartesiana del subespacio generado por los puntos de \mathbf{A}^4 $\{(1,0,1,0),(0,-1,1,0),(0,1,0,1),(1,0,2,-1)\}$ y completarla a una referencia de \mathbf{A}^4 (\mathbf{R}).
 - **b)** Calcular la referencia baricéntrica asociada a R y las coordenadas baricéntricas del punto P = (1,1,1,1) respecto de ella.
 - **3. (2.5 p). a)** Dar una referencia de A^3 ortonormal y positivamente orientada, R, en la que la recta $L = (3,5,0) + \mathcal{L}\{(1,1,0)\}$ sea el nuevo eje z.
 - **b)** Calcular la matriz del cambio de \mathbf{R} a $\mathbf{R_2} = \{(1,2,3); (1,2,3), (4,5,6), (7,8,0)\}$ (Si no has sabido calcular \mathbf{R} hazlo con letras)
 - **4.** (2.5 p). Clasificar y determinar los elementos del movimiento en A^3 dado por la matriz:

$$\begin{pmatrix} 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} x & | & 1 & 1 \\ y-1 & | & -1 & 1 \\ t & | & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} x & | & 1 & 1 \\ y-1+x & | & 0 & 2 \\ \hline t+1 & | & 1 & 1 \\ t & | & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} x & | & 1 & 1 \\ y-1+x & | & 0 & 2 \\ \hline t+1 & | & 1 & 1 \\ t+1 & | & 0 & 1 \end{pmatrix} \qquad 2t+2x-y+1-x=0$$

$$S: \begin{cases} x-2=1 \\ x-y+2t=-1 \end{cases}$$
 dim $S=2$

Parametricas de T (resolviendo el sistema)

$$\begin{cases} x=1 \\ y-2t-2t=0 \end{cases} \begin{cases} x=1 \\ y=2\lambda+2\mu \\ z=\lambda \\ t=\mu \end{cases}$$
 divin $T=2$

b) Posición relativa de SyT:

a)
$$A = \frac{1}{16} = \frac{$$

a)
$$R = \begin{cases} P_0; \vec{v}_1, \vec{v}_2, \vec{v}_3 \end{cases}$$

 $\begin{cases} \vec{v}_1, \vec{v}_1, \vec{v}_3 \end{cases}$ box or to normal $(=)$ $\vec{v}_1 \perp \vec{v}_2 \mid |\vec{v}_2|| = 1$

$$\begin{cases} \vec{v}_3 = (\frac{1}{2}, \frac{1}{2}, 0) \\ \vec{v}_1 = (-\frac{1}{2}, \frac{1}{2}, 0) \\ \vec{v}_1 = (0, 0, 1) \end{cases}$$

$$R = \frac{1}{3}(3,5,0); (-\frac{1}{12}\frac{1}{12}0), (0,0,1), (\frac{1}{12},\frac{1}{12}0)$$

$$b) = C(R_1R_2) = C(R_2,R_2) \cdot C(R_1R_2) =$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} & \frac{$$