IMAGE STYLE TRANSFER FOR BRAIN VESSEL SEGMENTATION USING MULTI-MODAL MRI

SEMESTER PROJECT – SPRING 2022

Daniele Falcetta

Daniele.falcetta@eurecom.fr

SUPERVISORS: PROFESSOR M. ZULUAGA – F. GALATI

TABLE OF CONTENTS

- 1) INTRODUCTION
- 2) SIFA
- 3) DATASET AND PREPROCESSING
- 4) EXPERIMENTS AND RESULTS
- 5) CONCLUSION

IMAGE STYLE TRANSFER

INTRODUCTION

Task of **changing the style** of an image in one domain to the style of an image in another domain.

It takes **two input** images and **combines** them together in a way that the output image maintain the **structure** of the first image but appears to be *painted* in the style of the second one.

GENERATIVE ADVERSARIAL NETWORK

INTRODUCTION

- **Implicitly** learns to model the true distribution and generate sample.
- Generator's Objective: Fooling the Discriminator (making fake data look real)
- **Discriminator's Objective:**Distinguishing between real and fake images
- Alternate Training/Optimization between the two models *D* and *G* untill convergence
- MinMax Game: convergence at the Nash Equilibrium

$$\begin{split} \mathcal{L}_{\textit{GAN}}\left(D\right) &= \mathbb{E}_{x \text{ } \sim \text{ } P \text{ } data \text{ } (x)}[log \text{ } D(x)] + \\ &\mathbb{E}_{x \text{ } \sim \text{ } P \text{ } z \text{ } (Z)}[log \text{ } (1-\text{ } D(G(z)))] \end{split}$$

CONDITIONAL GAN

INTRODUCTION

Control the data generation process in a *supervised* manner.

Combines z and y into a joint hidden representation of real x, along with conditional variable y

CYCLE GAN – UNPAIRED TRAINING DATA

INTRODUCTION

Cycle Consistency Loss: Preserves original semantic content in the transformed image

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1]$$

IMAGE SEGMENTATION

INTRODUCTION

Image Segmentation is the Task of clustering together parts of an image that belong to the same
Object Class.

The segmentation process is also called **Pixel-wise Classification**.

In other words, it involves partitioning images into multiple segments or objects.

PROJECT GOAL

Investigate image style transfer techniques for brain vessel segmentation in Magnetic Resonance Images (MRI).

- No Contrast needed
- Long acquisition Time → Possible presence of Artifacts
- Possible signal loss from the vessels

Susceptibility-Weighted Images (SWI)

- Based on tissue magnetic susceptibility differences
- Require the injection of contrast
 - Require post-processing

NETWORK ARCHITECTURE

SIFA

Synergic fusion of Adaptation from both Image and Feature perspective

Simultaneously, in one unified Framework:

- **1. Transform** the appearance of images across domains
- 2. Enhance **Domain-Invariance** of the extracted features

- 1. Image Adaptation
- 2. Feature Adaptation

SIFA LOSSES

SIFA

- Proposed to overcome the Vanishing Gradient problem caused by the minmax loss in the original GAN
- **L2 Loss Function** instead of the CE one
- Allows the learning process to be more stable

$$\mathcal{L}_{LSGAN}\left(G\right) = \mathbb{E}_{\varkappa \ \backsim \ P \ z \ (Z)} \big[(D(G(z)) - \ c)^2 \big]$$

$$\begin{split} \mathcal{L}_{LSGAN}\left(D\right) &= \mathbb{E}_{x \, \sim \, P \, \, data \, (x)} \Big[(D(x) - \, b)^2 \Big] + \\ &\mathbb{E}_{x \, \sim \, P \, z \, \, (Z)} \Big[(D(G(z)) - a)^2 \Big] \end{split}$$

- Hybrid Loss
- Linear Combination of **Dice** and **Cross-Entropy** Loss
- $E \circ C$ serves as **Segmentation** Network for the Target
- It is trained using the sample pairs of $\{x^{s \to t}, y^s\}$

$$\mathcal{L}_{seg}(E,C) = H(y^s, \hat{y}^{s \to t}) + \alpha \cdot Dice(y^s, \hat{y}^{s \to t})$$

PATCH DISCRIMINATOR

SIFA

PatchGAN Discriminator

It does not work for the whole image but tries to classify each patch in an image as **Real** or **Fake**

This discriminator is run **convolutionally** across the image, **averaging** all responses to provide the ultimate output probability

OUR DATASET

DATASET AND PREPROCESSING

- **SWI** Images as **Target** Domain
- **Size** (80, 192, 256)
- Average **Spacing** [2.00 0.89 0.89]
- No Segmentation Mask

- TOF Images as Source Domain
- **Size** (232, 576, 768)
- Average **Spacing** [0.59 0.29 0.29]
- Both Vessel and Brain Mask

PREPROCESSING

DATASET AND PREPROCESSING

• **Spacing Extraction:** Voxel spacing values indicate the real-world size or scale of each voxel in the 3D slice stack

X and Y Spacings define the **distance** from the **center** of one pixel to the center of an adjacent one, in **millimeters**

Slicing and Reshaping according to the SWI spacing

Same X and Y spacings for any image

PREPROCESSING

DATASET AND PREPROCESSING

- Standardization using mean μ and std σ computed over the Volume of the slice
- Normalization using Min and Max computed over the whole Dataset
- Center Crop, Padding, One-Hot Encoding

256x256x1 Images 256x256x2 Masks

Transformation into Tfrecords

SIFA OUTPUTS (IMAGES)

EXPERIMENTS AND RESULTS

 X_s : Input from the **Source** Domain

 X_t : Input from the **Target** Domain

 $X_{S \to t \to S}$: **Reconstructed Source** Image

 $X_{t \rightarrow s \rightarrow t}$: **Recontruscted Target** Image

$$X_{S}$$

$$X_{s \to t}$$

$$X_{t \to s}$$

$$X_{t \to s}$$
 $X_{s \to t \to s}$ $X_{t \to s \to t}$

$$X_{t \to s \to t}$$

 $X_{s \to t}$: Translated Image from **Source** to **Target** $X_{t \to s}$: Translated Image from **Target** to **Source**

SIFA OUTPUTS (SEGMENTATION MASKS)

 $X_{t \to s}$

Predicted Y_t

Predicted $Y_{t \to s}$

 X_{S}

 $X_{s \to t}$

Predicted Y_s

Predicted $Y_{s \to t}$

Ground Truth Y_s

EXPERIMENTS

	Step #	Learning Rate	Segmentation parameter	Used Mask
Experiment 1#	40k	2e-3	1	Vessel
Experiment 2#	40k	2e-3	1	Brain
Experiment 3#	10k	1e-4	1	Brain

- Batch size: 4 Images for each domain (max allowed by the GPU)
- Step: Complete network optimization using a single batch as input
- Segmentation parameter: If 0, all the Seg Losses = 0 during the whole training (Cycle-GAN)
- **Used Masks:** either vessels or brain as segmentation masks

EXPERIMENT #1: VESSEL MASK (40K)

EXPERIMENTS AND RESULTS Iter >14999

EXPERIMENT #1: VESSEL MASK (40K)

- Vessel are too tiny: the network is not able to segment and fails.
- Great imbalance between background and vessel

EXPERIMENT #2: BRAIN MASK (40K)

EXPERIMENTS AND RESULTS Iter >5399

After just **5k Iters** the Generators' Losses increase fastly:
Same phenomena as before

EXPERIMENT #2: BRAIN MASK (40K)

- Brain mask is bigger than the previous vessels mask
- Reduced imbalance between Background and the actual Brain

EXPERIMENT #3: BRAIN MASK (10K), LOWER LR

EXPERIMENT #3: BRAIN MASK (10K), LOWER LR

- Transformed Images are more blurry than before
- The pixel-wise classifier C is not able to learn how to segment small pixels in the image

SUMMARY

- Good transformed images quality but possible fading effect.
- **Instability:** the network is complex to fine-tune and **heavy** to train, convergence is not always reached.
- Vessel Masks are too unbalanced towards the background to be predicted, better results with Brain Masks.

POSSIBLE FUTURE EXPERIMENTS

- **Convergence Issues:** Fine-tune loss hyper-parameters so that all the objective function terms have the same importance.
- Fine-tuning: Run different experiments with lower Ir, different number of steps, decay, etc.
- **Unstable Losses**: Try a different Discriminator Loss in order to avoid any possible divergence and instability issues.
- Use **Target Masks** to have a quantitative segmentation metric and to compute a validation score (Dice Coefficient)

THANK YOU FOR YOUR ATTENTION

PROFESSOR: MARIA ZULUAGA STUDENT: DANIELE FALCETTA TEACHING ASSISTANT: FRANCESCO GALATI

SEMESTER PROJECT - SPRING 2022

BIBLIOGRAPHY

- Synergistic Image and Feature Adaptation: Towards Cross-Modality Domain Adaptation for Medical Image Segmentation. Cheng Chen, Qi Dou, Hao Chen, Jing Qin, Pheng-Ann Heng
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
- Image-to-Image Translation with Conditional Adversarial Networks. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A.Efros, Berkeley AI Research (BAIR) Laboratory, UCBerkeley.
- Image Segmentation Using Deep Learning: A Survey. Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, Demetri Terzopoulos
- Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1. E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli and Y.-C.N. Cheng. American Journal of Neuroradiology January 2009, 30 (1) 19-30; DOI: https://doi.org/10.3174/ajnr.A1400 (https://doi.org/10.3174/ajnr.A1400 (https://www.ajnr.org/content/30/1/19)
- https://radiopaedia.org/articles/time-of-flight-angiography-1
- https://radiopaedia.org/articles/susceptibility-weighted-imaging-1
- https://dicom.innolitics.com/ciods/rt-dose/image-plane/00280030