Unidad I: Uso e Instalación de Micrófonos y Altavoces Parte 1

Diseño e Instalación de Sistemas de Sonido AUM-711

Prof. Ing. Andrés Barrera A.

1.- Micrófonos

2.- Clasificación según transducción acústica-mecánica

2.1.- Micrófono de Presión

• Respuesta Omnidireccional.

Omnidirectional

2.- Clasificación según transducción acústica-mecánica

2.2.- Micrófono de Gradiente de Presión (Velocidad)

• Respuesta bi-direccional.

2.- Clasificación según transducción acústica-mecánica

2.3.- Micrófono de Combinación Presión – Velocidad

• Respuesta direccional.

Figure 15-67 Cardioid pickup pattern. (Courtesy Sennheiser Electronics Corp.)

3.1.- Micrófonos Electroresistivos (micrófonos de carbón)

- Rango dinámico limitado,
 Rango de frecuencia estrecho,
- Útil para transmitir mensajes de voz,
- Obsoleto,
- Variación de la resistencia eléctrica.

3.2.- Micrófonos electromagnéticos (dinámicos) de bobina móvil

- Movimiento del diafragma > bobina dentro de un entrehierro magnético > variación de corriente eléctrica.
- Económico y resistente.

Shure SM57

3.3.- Micrófonos electromagnéticos (dinámicos) de cinta

- Conductor plano (cinta) suspendido en un campo magnético.
- Menor masa que el de bobina móvil.

Audio Engineering Associates AEA R44

3.4.- Micrófonos electroestáticos de condensador

 Condensador: placas metálicas polarizadas con cargas positivas y negativas > necesita voltaje de alimentación.

Altavoces

3.4.- Micrófonos electroestáticos de condensador

Neumann U-67

3.5.- Micrófonos electroestáticos piezoeléctricos

- Piezoelectricidad: propiedad de algunos cristales de deformarse ante la presencia de una diferencia de potencial.
- Uso: en medicina (ultrasonidos)

4.1.- Sensibilidad

• Relación existente entre el voltaje eficaz (o r.m.s.), obtenido en la salida del micrófono a circuito abierto y la presión sonora expresada en Pascales que actúa sobre el diafragma a 0° y a 1kHz. La presión utilizada es 1 [Pa] o 94dBSPL

dB relative to 1 V/Pa	mV/μbar	mV/10 μbar = mV/Pa	Approximate rating
-20	9.5	95	
-25	5.5	55	
-30	3.0	30	very sensitive
-35	1.8	18	
-40	1.0	10	fairly sensitive
- 45	0.55	5.5	-
-50	0.3	3.0	medium
- 55	0.18	1.8	
-60	0.10	1.0	insensitive

Microphone mechanism	S_V in dBV/Pa range	
Carbon	-20 to 0	
Capacitor	−50 to −25	
Dynamic	−60 to −50	
Piezoelectric	−40 to −20	

4.2.- Respuesta de Frecuencia

• Variación de la sensibilidad versus frecuencia.

Uso e Instalación de Micrófonos y Altavoces

4.3.- Patrón Polar

• Variación de la sensibilidad versus el ángulo de incidencia.

Polar Pattern

Unidirectional (cardioid), rotationally symmetrical about microphone axis, uniform with frequency.

4.3.- Patrón Polar

4.4.- Impedancia

- Clasificación:
 - Hi Z (Alta impedancia): Poseen impedancias mayores a 1000Ω (típico 20 a 50 kΩ). Poseen un gran voltaje de salida, pero muy poco de este llega a la consola.
 - Lo Z (Baja impedancia): Poseen impedancias menores a 600Ω (típico 50, 150 ó 250Ω), y permiten una buena transferencia de voltaje.
- Acoplamiento de impedancia mic consola (Zmic << Zpreamp).

4.4.- Impedancia

• Influencia del cable.

4.5.- Nivel de Ruido Equivalente

• Ruido propio (eléctrico) expresado en dB SPL ó dBA.

4.6.- Nivel de Ruido Máximo ("Overload Distorsion")

 Límite máximo de distorsión del micrófono (en dB SPL ó dBA) para cierto valor de THD (Third Armonic Distorsion; 0,1%, 1% ó 3%)

AKG C5 (Micrófono Vocal de Condensador para Refuerzo Sonoro)

Polar pattern:	cardioid		
Frequency range:	65 Hz to 20 kHz		
Sensitivity:	4 mV/Pa (-48 dBV re 1 V/Pa)		
Max. SPL for 1% / 3% THD:	140 / 145 dB SPL		
Equivalent noise level:	25 dB(A) to DIN 45412		
Impedance:	≤ 200 ohms		
Re commended load impedance:	≥ 2000 ohms		
Connector:	3-pin XLR		
Finish:	matte gray-blue		
Size:	length: 185.2 mm (7.3 in.); diameter: 51 mm (2 in.)		
Net weight:	345 g (12.2 oz.)		
Shipping weight:	660 g (1.5 lbs.)		
Patents:	electrode backing for a condenser trans- ducer (patents nos. AT 392.182, DE 4.021.661)		

This product conforms to the standards listed in the Declaration of Conformity. To order a free copy of the Declaration of Conformity, visit http://www.akg.com or contact sales@akg.com.

AKG C5 (Micrófono Vocal de Condensador para Refuerzo Sonoro)

Ejemplo 1

- Micrófono AKG C5 (4mV/Pa).
- Orador: 70 dB SPL @ 1m.
- Distancia orador micrófono: $r_1 = 3$ ".
- ¿Qué voltaje (y nivel de voltaje en dBV y dBu) habrá a la salida del micrófono (asuma 1kHz)?

Solución 1

- La sensibilidad del AKG C5 en dBV: $S_V = 20 \log \left(\frac{4 \times 10^{-3}}{1} \right) = -48 dBV$
- El orador genera un SPL (supuesto: campo libre, atenuación por distancia o divergencia) sobre la membrana del mic dado por:

$$SPL = 70 - 20 \log \left(\frac{3 \cdot 2.5 \times 10^{-2}}{1} \right) = 92.5 \ dBSPL$$

• Por lo tanto, como el mic genera -48dBV cuando inciden sobre él 94 dB SPL a 0°, entonces:

94
$$dBSPL \leftrightarrow -48dBV$$

92 5 $dBSPL \leftrightarrow XdBV$

$$X = -48 - 1.5 =$$

- 49.5 dBV

$$-49,5dBV = 20\log\left(\frac{V}{1}\right) \Rightarrow V = 3,35[mV]$$
$$20\log\left(\frac{3,35 \times 10^{-3}}{0,775}\right) = -47,3dBu$$

Reducción =
$$94 - 92,5 = -1,5 \text{ dB}$$

Ejemplo 2

- Micrófono AKG C5 (4mV/Pa).
- Monitor de piso: 90 dB SPL @ 1m.
- Distancia monitor micrófono: r₂ = 1,5 [m].
- ¿Qué voltaje (y nivel de voltaje en dBV y dBu) habrá a la salida del micrófono (asuma 1kHz)?

Directividad del mic

-30dB@180°/1kHz

Solución 2

• El monitor de piso genera un SPL (supuesto: campo libre, atenuación por distancia o divergencia) sobre la membrana del mic dado por:

$$SPL = 90 - 20 \log \left(\frac{1,5}{1} \right) = 86,5 \ dBSPL$$

• Por lo tanto, como el mic genera -48dBV cuando inciden sobre él 94 dB SPL a 0°, entonces:

94
$$dBSPL @ 0^{\circ} \leftrightarrow -48 dBV$$

94 $dBSPL @ 180^{\circ} \leftrightarrow -48 - 30 = -78 dBV$
86,5 $dBSPL \leftrightarrow XdBV$

Reducción = 94 - 86,5 = -7,5 dB

Uso e Instalación de Micrófonos y Altavoces

$$X = -78 - 7,5 =$$

- 85,5 dBV

Ejemplo 3

- Micrófono AKG C5 (4mV/Pa).
- Sistema PA: 110 dB SPL @ 1m.
- Distancia sistema PA micrófono: r₃
 = 6,5 [m].

• ¿Qué voltaje (y nivel de voltaje en dBV y dBu) habrá a la salida del micrófono (asuma 2kHz)?

C 5

Uso e Instalación de Micró: Altavoces

Solución 3

• El sistema de PA genera un SPL (supuesto: campo libre, atenuación por distancia o divergencia) sobre la membrana del mic dado por:

$$SPL = 110 - 20 \log \left(\frac{6,5}{1} \right) = 93,7 \ dBSPL$$

• Por lo tanto, como el mic genera - 48dBV cuando inciden sobre él 94 dB SPL@1kHz a 0°, entonces:

94
$$dBSPL @ 0^{\circ} / 1kHz \leftrightarrow -48dBV$$

94 $dBSPL @ 0^{\circ} / 2kHz \leftrightarrow -48 + 2 = -46dBV$
94 $dBSPL @ 135^{\circ} / 2kHz \leftrightarrow -46 - 15 = -61dBV$
93,7 $dBSPL \leftrightarrow -61 - 0.3 = -61.3dBV$

8.1.- Distancia entre micrófono y fuente

- Presencia de cancelaciones en mics omnidireccionales.
- <u>Supuestos</u>: igual energía sonido directo y reflejado, sólo con delay (desfase de tiempo).

$$f = \Delta \phi \frac{c}{2\pi \cdot \Delta r}$$
$$\Delta \phi = 0, 2\pi, 4\pi, \dots$$
$$\Delta \phi = \pi, 3\pi, 5\pi \dots$$

8.1.- Distancia entre micrófono y fuente

• Problema: Excesiva distancia entre mics y fuentes.

SOLUCIONES:

Figure 4.34. Two methods for reducing reduce leakage. (a) Place the microphones closer to their sources. (b) Use an acoustic barrier to reduce leakage.

Pantalla acústica divisoria

Acercar los mics a las fuentes

b

a

Regla 3:1

Figure 4.35. Example of the 3:1 microphone distance rule: "For every unit of distance between a mic and its source, a nearby mic (or mics) should be separated by at least three times that distance."

8.2.- Polaridad

• Cancelaciones cuando existen 2 micrófonos capturando la misma fuente a la misma distancia.

9.- Temas Propuestos

- Técnicas de Microfonía Stereo
- Técnicas de Ubicación de Micrófonos en instrumentos musicales.
- Libro: "Modern Recording Techniques", David Miles, 2005; Capítulo 4: "Microphones: Design and Application"

Unidad I: Uso e Instalación de Micrófonos y Altavoces Parte 1

Diseño e Instalación de Sistemas de Sonido AUM-711

Prof. Ing. Andrés Barrera A.