Responda, razonando muy brevemente, las siguientes preguntas:

- 1. ¿Qué tamaño máximo tiene el espacio virtual de memoria direccionable por un proceso? 64KB, porque la dirección virtual tiene 16 bits
- ¿Qué tamaño tienen los marcos de página y las páginas?
 256 bytes, porque el desplazamiento dentro de una página/marco es de 8 bits
- 3. ¿Qué tamaño máximo puede llegar a tener la memoria física? 1MB, porque hay como máximo 2^{12} marcos de 2^8 bytes cada uno (12+8=20)
- 4. ¿Cuántas tablas de página de tamaño máximo caben en un marco? 2^4 páginas/segmento x 2 bytes/entrada == 32 bytes/tabla $\rightarrow 256/32 == 8$ tablas/marco

En un momento determinado, se están ejecutando concurrentemente dos procesos. El cuadro 1 muestra los valores de los registros RPBTS y RLTS de dichos procesos. El cuadro 2 muestra un volcado hexadecimal del primer marco de la memoria física. Interprete los datos relacionados con las tablas de segmentos y páginas, y realice las siguientes tareas:

5. Marque en el volcado del cuadro 2 las secuencias de bytes que pertenecen a tablas de segmentos.

Ver solución en cuadro 3.

- 6. Marque en el mismo volcado las secuencias de bytes que pertenecen a tablas de páginas. Ver solución en cuadro 3.
- 7. Complete las tablas de segmentos del cuadro 4 con los datos correspondientes.
- 8. Complete las tablas de páginas del cuadro 5 con los datos correspondientes.
- 9. Complete el cuadro 6 verificando si los accesos a memoria listados están permitidos. En los accesos permitidos, traduzca la dirección virtual a dirección física. En los accesos no permitidos, indique la causa.

Suponga que un tercer proceso realiza los siguientes accesos a memoria virtual:

```
0800_h, 0804_h, 011A_h, 00D3_h, 011E_h, 000A_h, 0954_h, 0804_h, 0808_h, 01F0_h, 003A_h, 09B3_h, 0000_h, 08BC_h, 11E0_h, 11E4_h, 09B0_h, 08C0_h, 0117_h, 00CD_h
```

Teniendo en cuenta que el proceso sólo tiene 3 marcos de página a su disposición, y que inicialmente están vacíos, responda a las siguientes cuestiones:

- 10. Extraiga la cadena de referencias Cadena de referencias: 08_h , 01_h , 00_h , 01_h ,
- 11. ¿Cuál es el mínimo teórico de fallos de página? Justifique la respuesta. Reemplazamos siempre la página que más vayamos a tardar en necesitar de nuevo: 08_h [8,-,-] 01_h [8,1,-] 00_h [8,1,0] 01_h 00_h 00_h [8,1,9] 08_h , 01_h 00_h [8,0,9] 09_h , 00_h , 00_h , 01_h [1...] 00_h [0...] **Mínimo:** 8 fallos de página

Cuadro 1: Registros de las tablas de segmentos del problema 1

Proceso	RPBTS	RLTS
1	$\mathtt{000A4}_h$	2_h
2	00080_{h}	3_h

Cuadro $2\colon$ Volcado hexadecimal de la memoria del problema 1

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
00000	00	01	03	00	00	A4	00	02	04	00	00	80	FF	FF	F2	E9
00010	A2	В6	24	9A	04	3D	22	CD	27	66	21	1B	FE	37	82	D5
00020	71	00	51	01	7D	F8	4A	C4	86	C4	66	E3	48	59	CD	EA
00030	11	F2	86	15	31	A9	E3	58	10	05	74	10	3C	F7	E6	D8
00040	4F	EΟ	4F	E1	4F	E2	4F	E3	4F	E4	4F	E5	4F	E6	4F	E7
00050	4F	E8	4F	E9	4F	EΑ	4F	EB	4F	EC	4F	ED	4F	EE	4F	EF
00060	4F	FO	4F	F1	4F	F2	4F	F3	25	ΕO	AЗ	6E	9D	47	C8	4E
00070	71	39	2F	46	8D	6A	2B	E7	1A	20	7E	C1	FB	EE	ΑE	61
08000	90	00	CA	26	90	00	4F	FF	90	00	63	FF	CO	00	ΑO	7F
00090	2C	3D	CB	BA	A7	F6	АЗ	C1	17	22	84	13	11	34	75	D1
000A0	40	01	OD	28	90	00	CA	26	CO	00	ΑO	7F	EΟ	00	21	FF
000B0	29	63	E8	D1	5B	8C	93	73	AF	19	87	C1	4D	FD	93	DF
000C0	50	80	50	09	50	ΟA	50	OB	40	OC	40	OD	40	ΟE	40	OF
000D0	40	10	40	11	ΑO	ЗА	B2	50	53	3B	12	A1	39	A6	82	F7
000E0	47	8B	B7	1C	78	97	FO	72	55	D8	6E	00	57	98	D4	3B
000F0	AC	7B	7A	4D	B5	2E	9E	ΑO	69	B1	AB	A2	58	2F	9B	9F

Cuadro 3: Datos significativos del volcado hexadecimal de la memoria del problema 1

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
00000													• •			
00010																
00020	71	00	51	01												
00030																
00040	4F	EΟ	4F	E1	4F	E2	4F	E3	4F	E4	4F	E5	4F	E6	4F	E7
00050	4F	E8	4F	E9	4F	ΕA	4F	EB	4F	EC	4F	ED	4F	EE	4F	EF
00060	4F	FO	4F	F1	4F	F2	4F	F3								
00070																
08000	90	00	CA	26	90	00	4F	FF	90	00	63	FF	CO	00	ΑO	7F
00090																
000A0	40	01			90	00	CA	26	CO	00	ΑO	7F	ΕO	00	21	FF
000B0																
000C0	50	80	50	09	50	OA	50	0B	40	OC	40	OD	40	0E	40	OF
000D0	40	10	40	11	ΑO	ЗА										
000E0																
000F0																

Cuadro 4: Tablas de segmentos del problema 1

Proceso 1

Proceso 2

N^o	PRWX	Base	0	Límite
0	PX	$OOOC_h$	-	$A26_h$
1	PR	OOOA $_h$	_	07F _h
2	PRW-	0002 _h	-	$1FF_h$
3	_	_	-	_
4	_	_	-	-
5	_	-	_	-

N^o	PRWX	Base	0	Límite
0	PX	$000C_h$	-	$A26_h$
1	PX	0004_{h}	-	FFF_h
2	PX	0006_{h}	-	$3FF_h$
3	PR	$000A_h$	-	07F _h
4	-	-	-	-
5	-	-	-	_

Cuadro $\,{\bf 5}\colon \,$ Tablas de páginas del problema 1

Dirección: 00020_h			Dir€	ección:	00040_{h}	Dir€	ección:	$OOOAO_h$	Dir€	ección:	$OOOCO_h$	
N^o	OPMR	Marco		N^o	OPMR	Marco	N^o	OPMR	Marco	N^o	OPMR	Marco
0	-PMR	100_{h}	-	0	-P	FEO_h	0	-P	001 _h	0	-P-R	008 _h
1	-P-R	101 _h		1	-P	$\mathtt{FE1}_h$	1	_	_	1	-P-R	009 _h
2	-	-		2	-P	$FE2_h$	2	_	_	2	-P-R	OOA_h
3	_	-		3	-P	FE3 _h	3	_	_	3	-P-R	OOB_h
4	_	_	-	4	-P	$FE4_h$	4	-	_	4	-P	OOC_h
5	_	-	-	5	-P	FE5 _h	5	-	_	5	-P	OOD_h
6	_	-	-	6	-P	FE6 _h	6	_	_	6	-P	$00E_h$
7	-	-		7	-P	$FE7_h$	7	_	_	7	-P	OOF_h
8	_	-	-	8	-P	FE8 _h	8	_	_	8	-P	010_{h}
9	_	-	-	9	-P	$FE9_h$	9	-	-	9	-P	011_{h}
10	_	-	-	10	-P	FEA_h	10	-	_	10	1-M-	NO P.
11	_	-	-	11	-P	FEB_h	11	_	_	11	-	-
12	_	-		12	-P	FEC_h	12	_	_	12	-	-
13	_	-	-	13	-P	FED_h	13	-	_	13	-	-
14	_	-	-	14	-P	FEE_h	14	-	-	14	-	-
15	_	-	-	15	-P	FEF_h	15	-	_	15	-	-
16	_	-	-	16	-P	FFO_h	16	_	_	16	-	-
17	_	-	-	17	-P	$FF1_h$	17	_	_	17	-	-
18	_	-	-	18	-P	$FF2_h$	18	_	_	18	_	-
19	_	-	-	19	-P	FF3 _h	19	-	_	19	-	-

12. ¿Cuántos fallos de página se producirán con una política de reemplazo FIFO? Justifique la respuesta simulando el algoritmo.

 08_h [8,-,-], 01_h [8,1,-], 00_h [8,1,0], 01_h , 00_h , 09_h [9,1,0], 08_h [9,8,0], 01_h [9,8,1], 00_h [0,8,1], 09_h [0,9,1], 00_h , 08_h [0,9,8], 11_h [11,9,8], 09_h , 08_h , 01_h [11,1,8], 00_h [11,1,0] **FIFO: 12** fallos de página