

Models for requirements

Requirement analysis and specification includes selecting the appropriate tool for the particular task

- Models provide a bridge between the client's understanding and the developers'
- A variety of tools and techniques
- There is no correct technique that fits all situations

4

Models

A model is a simplification of reality

- We build models so that we can better understand the system we are developing
- We build models of complex system because we cannot comprehend such a system in its entirely

5

Example: Model as a Blueprint 2. Design 1. Requirements 3. System Shall fit on given piece of land. Each room shall have a door. • Furniture shall fit into living room. Bathroom shall have a window. Cost shall be in http://wikimedia.org (CC nc-sa 3.0, budget. Bobthebuilder82)

Principles of Modeling

- The choice of what model to be created has a profound influence on how to resolve a problem
- No single model is sufficient
- Every model can be expressed at different levels of precision
- Good models are connected to reality
- Every nontrivial system is best approached through a small set of nealy independent models

* NAME OF STREET

8

The Unified Modeling Language

- UML is a standard language for modeling software systems
 - Serves as a bridge between the requirements and the implementation
 - Provides a means to specify and document the design of a software system
 - It is intended to be processed and programming language independent, but is particularly suited to object-oriented program development

9

Data Flow Models (Data Flow Diagrams - DFDs)

- Goal
 - Represent the flow of information through the system and the activities that process this information
- DFDs provide a graphical representation of the system that aims to be accessible to computer specialist and non-specialist users
- The models enable software engineers, customers and users to work together effectively during the analysis and specification of requirements

10

DFD notations

Processes

- The activities carried out by the system which use and transform information
- Process is denoted as a rounded rectangle

Data-flows

- The data inputs to and outputs from to these activities (processes)
- Data flows are notated as named arrows

External entities

- The sources from which information flows into the system and the recipients of information leaving the system
- External entities are notated as ovals

Data stores

- Where information is stored within the system
- Notated as rectangles

11

11

DFD symbols	
	External entities
	Processing steps
	Data stores or sources
─	Data flows
	12

Decision Table Model

University	Admission	Decision

SAT > S1	Т	F	F	F	F	F
GPA > G1	-	Т	F	F	F	F
SAT between S1 and S2	-	-	Т	Т	F	F
GPA between G1 and G2	-	-	Т	F	Т	F
Accept	X	X	X			
Reject				X	X	X

Each column is a separate decision case. The columns are processed from left to right.

Note that the rules are specific and testable.

16

Flowchart Models An informal modeling technique to show the logic part of a system and paths that data takes through a system Operation Decision Manual operation Report

Example: University Admission Assemble Application New Application applicant? complete? Form Update received database Evaluate Notify New database student record Notify student

17

Entity Relation Model

A requirement and design methodology for relational databases

- A database of entities and relations
- Tools for displaying and manipulating entity-relation diagrams
- Tools for manipulating the database

Entity Relationship Models can be used both for requirement specification and for the design specification

22

Example: IT3180 Project IsClient Major 1 1 Client team IT 3180 Project member Student 1 0:n 6 to 8 1 IsContact IsMember

Prototyping Requirements

Rapid prototyping is the most comprehensive of all modeling methods

- A method for specifying requirements by building a system that demonstrates the functionality of key parts of the required system
- Particularly valuable for user interfaces

26

Discussion

- Class and object models are used as a tool for program design, not for modeling requirements
- Some documents recommend class and object models for requirements definition, but it is difficult to use them without constraining the system design
- Flow charts, finite state machines, entity relationship diagrams are supported by UML as design models but are equally useful for requirement modeling.

27

27

