1. Find the power series for each of the following functions.

(1)
$$f(x) = (1+2x)^7$$

(2)
$$f(x) = \frac{1}{1 - 3x}$$

(3)
$$f(x) = \frac{2}{1+4x}$$

$$(4) \quad f(x) = \frac{x}{1 + 5x}$$

(5)
$$f(x) = \frac{x^4}{1 - 2x}$$

(6)
$$f(x) = \frac{2}{4 - 3x}$$

$$(7) \quad f(x) = \frac{x}{2x - 1}$$

(8)
$$f(x) = \frac{1}{1 - x^3}$$

(9)
$$f(x) = \frac{1}{x - 3x^2}$$

$$(10) \quad f(x) = \frac{1}{(1 - 3x)^2}$$

(11)
$$f(x) = \frac{x}{(1+2x)^2}$$

(12)
$$f(x) = \frac{1}{(1-5x)^3}$$

(13)
$$f(x) = \frac{1}{(2-x)^2}$$

(14)
$$f(x) = \frac{1}{(x+2)(x-3)}$$

(15)
$$f(x) = \frac{x}{12 - 4x - x^2}$$

(16)
$$f(x) = e^{2x}$$

(17)
$$f(x) = e^{-3x}$$

(18)
$$f(x) = e^{2x^2}$$

(19)
$$f(x) = \ln(1+2x)$$

(20)
$$f(x) = \ln(1 - 4x)^2$$

(21)
$$f(x) = \ln[(1+2x)(1+3x)]$$

(22)
$$f(x) = \ln \frac{1+2x}{1+3x}$$

Answers:

(1)
$$\sum_{n=0}^{7} C(7,n) 2^n x^n$$

$$(2) \quad \sum_{n=0}^{\infty} 3^n x^n$$

(3)
$$\sum_{n=0}^{\infty} 2(-4)^n x^n$$

(4)
$$\sum_{n=1}^{\infty} (-5)^{n-1} x^n$$

(5)
$$\sum_{n=4}^{\infty} 2^{n-4} x^n$$

(6)
$$\sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{3}{4}\right)^n x^n$$

(7)
$$-\sum_{n=1}^{\infty} 2^{n-1} x^n$$

$$(8) \quad \sum_{n=0}^{\infty} x^{3n}$$

(9)
$$\sum_{n=0}^{\infty} 3^n x^{n-1}$$

(10)
$$\sum_{n=0}^{\infty} (n+1)3^n x^n$$

(11)
$$\sum_{n=0}^{\infty} (n+1)(-2)^n x^{n+1}$$

(12)
$$\sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} 5^n x^n$$

(13)
$$\sum_{n=0}^{\infty} (n+1) \left(\frac{1}{2}\right)^{n-2} x^n$$

- (14) $\sum_{n=0}^{\infty} -\frac{1}{5} \left(\left(-\frac{1}{2} \right)^{n+1} + \left(\frac{1}{3} \right)^{n+1} \right) x^n$
- (15) $\sum_{n=0}^{\infty} \frac{1}{8} \left(\left(\frac{1}{2} \right)^{n+1} \left(-\frac{1}{6} \right)^{n+1} \right) x^n$
- (16) $\sum_{n=0}^{\infty} \frac{1}{n!} 2^n x^n$
- (17) $\sum_{n=0}^{\infty} \frac{1}{n!} (-3)^n x^n$
- (18) $\sum_{n=0}^{\infty} \frac{1}{n!} \ 2^n x^{2n}$
- (19) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \ 2^n x^n$
- (20) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \ 2(-4)^n x^n$
- (21) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (2^n + 3^n) x^n$
- (22) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (2^n 3^n) x^n$