$shipout/background shipout/foreground \\ [italian] babel picture$

Bozza Introduzione

Clark Ezpeleta

16 dicembre 2020

Prefazione

Lo scopo del mio lavoro consisteva nel porting del sistema operativo RTEMS su Raspberrypi e nella creazione di piccoli programmi per testare il funzionamento dei GPIO, USART, I2C, SPI e l'utilizzo degli interrupts. Per poter svolgere il porting ho dato una lettura al RTEMS User Manual[1] per comprendere meglio i concetti di RSB(RTEMS Source Builder) e BSP (board support packages), e ho utilizzato la guida fornita da un utente - AlanC, che ha già svolto il porting per la versione 4.11. Purtroppo la guida fornita non era totalmente corretta, poichè datata a Marzo 2013 ed era stata scritta per la versione di RTEMS precedente a quella che dovevo utilizzare, cioè la v5.1. Per questo motivo dopo aver effettuato correttamente il porting ho creato una guida con scritto tutti i passaggi effettuati integrando le correzioni necessarie rilevate.

Oltre alla Raspberrypi 3B+ che mi è stata fornita, per poter creare i programmi di test per l'interfaccia I2C e SPI erano necessari dei componenti aggiuntivi che mi sono stati gentilmente offerti dalla Microchip.

Premesso ciò, ho suddiviso la mia tesi nei seguenti capitoli:

- Capitolo 1 in questo capitolo vengono descritti gli obiettivi della tesi, il contesto di riferimento e l'applicazione .
- Capitolo 2 in questo capitolo vengono descritte le tecnologie utilizzate.
- Capitolo 3 in questo capitolo viene descritta tutta l'attività di porting svolta e la definizione della toolchain per poter realizzare applicazioni RTEMS.
- Capitolo 4 in questo capitolo vengono descritti i drivers di RTEMS e come le ho provate.
- Capitolo 5 in questo capitolo viene descritto ciò che si vuole testare, in che modo si vuole testare e i motivi per cui si vuole testare quella specifica interfaccia. Perciò vengono descritti i componenti aggiuntivi forniti da Microchip, e l'architettura generale dei programmi di prova.
- Capitolo 6 Ringraziamenti.

La tesi sarà utile alla BIS-Italia, fazione italiana della British Interplanetary Society società storica britannica, di cui sono membro, che mi ha seguito durante lo stage e integrerà ciò al progetto di creazione di una replica in scala 1:3 di Exo-Mars Rover che verrà utilizzato per divulgazione. Tutto il lavoro è stato svolto con l'aiuto dei membri della BIS-Italia e la collaborazione con Microchip.

Indice

1	Introduzione		
	1.1	Obiettivi	1
	1.2	Contesto di riferimento	1
	1.3	Applicazione	1
2	Tecnologie		
	2.1	RTEMS	2
	2.2	Raspberrypi	2
	2.3	Eclipse	2
$\frac{3}{4}$	•		3 4
5	Attività sperimentale		
	5.1	Obiettivi	5
	5.2	Test set-up	5
	5.3	Test application SW	5
	5.4	Risultati finali	5
6	Cor	nclusioni	6
7	Rin	graziamenti	7

1 Introduzione

- 1.1 Obiettivi
- 1.2 Contesto di riferimento
- 1.3 Applicazione

2 | Tecnologie

- 2.1 RTEMS
- 2.2 Raspberrypi
- 2.3 Eclipse