Convergence of Sequence

zcl.space

目录

A **sequence** is a function defined on a subset of the integers. (Usually this subset is the set $\mathbb{Z}^+ := \{n \in \mathbb{Z} : n > 0\}$ of positive integers or the set $\mathbb{N} := \{n \in \mathbb{Z} : n \geq 0\}$ of nonnegative integers.)

It is customary to denote the value of a sequence at an integer n with a subscript rather than with parentheses and to denote a sequence with a notation like $(p_n)_n$ or $(p_n)_{n\in\mathbb{Z}^+}$.

定义 0.1 The sequence $(p_n)_n$ of points of \mathbb{R}^m is said to **converge** to the point $p \in \mathbb{R}^m$ iff

$$\lim_{n \to \infty} p_n = p$$

This is sometimes abbreviated as $p_n \to p$ as $n \to \infty$. We say a sequence **converges** or is **convergent** iff it converges to p for some $p \in \mathbb{R}^m$. A sequence is said to **diverge** when it does not converge. (A sequence in \mathbb{R} whose limit is infinite is also said to diverge.)

Using the lingo introduced in ??? this may be stated as

$$\lim_{n \to \infty} p_n = p$$

iff for every $\epsilon > 0$ there exists $N = N(\epsilon) > 0$ such that $n \ge N \implies |p_n - p| < \epsilon$.

定理 0.1 Assume that $(a_n)_n$ and $(b_n)_n$ are convergent sequences of real numbers:

$$\lim_{n \to \infty} a_n = a, \qquad \lim_{n \to \infty} b_n = b.$$

Then

$$\lim_{n \to \infty} a_n + b_n = a + b, \qquad \lim_{n \to \infty} a_n b_n = ab.$$

Moreover, if $b \neq 0$ then $b_n \neq 0$ for sufficiently large n and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$

i.E. We prove $\lim_{n\to\infty} a_n + b_n = a + b$. Choose $\epsilon > 0$. By hypothesis there exists N_1 and N_2 such that

$$n > N_1 \implies |a_n - a| < \frac{\epsilon}{2}, \qquad n > N_2 \implies |b_n - b| < \frac{\epsilon}{2}.$$

Let $N = \max(N_1, N_2)$. Then for n > N we have

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)|$$

$$\leq |a_n - a| + |b_n - n|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

as required.

We prove $\lim_{n\to\infty} a_n b_n = ab$. Choose $\epsilon > 0$. By hypothesis there exists N_0, N_1, N_2 such that

$$n > N_0 \implies |a_n - a| < 1,$$

 $n > N_1 \implies |b_n - b| < \frac{\epsilon}{2(|a| + 1)},$
 $n > N_2 \implies |a_n - a| < \frac{\epsilon}{2|b|}.$

Let $N = \max(N_0, N_1, N_2)$. Then for n > N we have

$$|a_n b_n - ab| = |a_n (b_n - b) + (a_n - a)b|$$

$$\leq |a_n| |b_n - b| + |a_n - a| |b|$$

$$< (|a| + 1)|b_n - b| + |a_n - a| |b|$$

$$< (|a| + 1) \frac{\epsilon}{2(|a| + 1)} + \frac{\epsilon}{2|b|} |b|$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

We prove $\lim_{n\to\infty} 1/b_n = 1/b$ if $b\neq 0$. Choose $\epsilon>0$. By hypothesis there exists N_1 such that for $n>N_1$ we have that $|b_n-b|<\frac{1}{2}|b|$ (and hence that $\frac{1}{2}|b|<|b_n|$) and there exists N_2 such that $|b_n-b|<\epsilon\frac{1}{2}|b|^2$. Then for $n>\max(N_1,N_2)$ we have

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|bb_n|} < \frac{|b_n - b|}{\frac{1}{2}|b|^2} < \epsilon.$$

That $\lim_{n\to\infty} a_n/b_n = a/b$ follows immediately from (II) and (III) by substituting $1/b_n$ for b_n and 1/b for b

定义 0.2 A real valued function f defined on a subset of the real numbers \mathbb{R} is called

- 1. increasing iff $x_1 < x_2 \implies f(x_1) < f(x_2)$,
- 2. decreasing iff $x_1 > x_2 \implies f(x_1) > f(x_2)$,
- 3. monotonic iff it is either increasing or decreasing.

If < is replaced by \le in this definition, the meaning changes: a constant function satisfies the modified definition. When we want to use the weaker form we use the term **nondecreasing** instead of **increasing**, the term **nonincreasing** instead of **decreasing**, and the term **weakly monotonic** instead of **monotonic**. Thus in freshman calculus it is correct to say that a **differentiable** function is nondecreasing if and only if its derivative is everywhere **nonnegative** but incorrect to say that a **differentiable function** is **increasing** if and only if its derivative is everywhere **positive**. (If $f(x) = x^3$, then f is increasing but f'(0) = 0.) To avoid this confusion some authors insert the word **strictly**.

定理 0.2 A bounded weakly monotonic sequence is convergent. In fact

$$\lim_{n \to \infty} a_n = \sup_n a_n$$

if the sequence $(a_n)_n$ is nondecreasing, and

$$\lim_{n \to \infty} a_n = \inf_n a_n$$

if the sequence $\{a_n\}$ is nonincreasing.

In this proof we use the completeness axiom for the first time.

Assume that the sequence $(a_n)_n$ is nondecreasing and let $a = \sup\{a_n : n \in \mathbb{N}\}$. Then $a_n \leq a$ for all n as a is an upperbound for the set $\{a_n : n \in \mathbb{N}\}$. Choose $\epsilon > 0$. Then $a - \epsilon < a$ so $a - \epsilon$ is not an upperbound for the set $\{a_n : n \in \mathbb{N}\}$. Hence there is an N with $a - \epsilon < a_N$. For n > N we have $a_N \leq a_n$ as the sequence $(a_n)_n$ is nondecreasing so

$$a - \epsilon < a_N \le a_n \le a < a + \epsilon$$

so $|a_n - a| < \epsilon$ for n > N as required. The nonincreasing case is proved by an analogous argument, or alternatively by applying the nondecreasing case to the sequence $(-a_n)_n$.

We introduce some handy notation. For any sequence $(a_k)_k$ of real numbers we have $\{a_k : k \geq n\} \subseteq \{a_k : k \geq m\}$ for m < n. If the sequence $(a_k)_k$ is bounded above, then the sequence $s_n := \sup\{a_k : k \geq n\}$ is nonincreasing. The limit of the latter sequence is denoted

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \sup \{ a_k : k \ge n \}.$$

Similarly for a sequence which is bounded below,

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} \inf \{ a_k : k \ge n \}.$$

定义 0.3 When $n_1 < n_2 < n_3 < \cdots$ is an increasing sequence of positive integers, the sequence $(p_{n_k})_k$ is called a **subsequence** of the sequence $(p_n)_n$.

If the sequence $(p_n)_n$ converges to p, then every subsequence $(p_{n_k})_k$ also converges to p. This follows immediately from the definition of convergence: $n_k \geq k$ so if $N = N(\epsilon)$ satisfies $|p_n - p| < \epsilon$ for $n > N(\epsilon)$ then in particular we have $|p_{n_k} - p| < \epsilon$ for $k > N(\epsilon)$.

定理 0.3 Every bounded sequence in \mathbb{R}^m has a convergent subsequence.

iii We first do the case m = 1. Let $(a_n)_n$ be a bounded sequence of real numbers. Then there is a number M such that $-m \le a_n \le M$ for all M. For each n define

$$A_n := \{a_{n+1}, a_{n+2}, \dots, \}, \qquad b_n := \inf A_n.$$

Since $A_n \subset A_{n+1}$ we have that $b_n \leq b_{n+1}$ so the sequence $(b_n)_n$ converges to its supremum $b := \sup\{b_n\} := \liminf_n a_n$. We will show that a subsequence of the sequence $(a_n)_n$ also converges to b. For $n \in \mathbb{N}$ we have that $b_n < b_n + n^{-1}$ and b_n is the greatest lower bound for A_n so $b_n + n^{-1}$ is not a lower bound for A_n so there is a $c_n \in A_n$ with $b_n \leq c_n < b_n + n^{-1}$. As b_n converges to b We have that fore every $\epsilon > 0$ there is an $N = N(\epsilon)$ such that $|b_n - b| < \epsilon/2$ for $n > N(\epsilon)$. Hence for $n > \max(2/\epsilon, N(\epsilon))$ we have that

$$|c_n - b| \le |c_n - b_n| + |b + n - b| < n^1 + \frac{\epsilon}{2} < \epsilon$$
 (0.1)

which shows that $(c_n)_n$ converges to b_n .

Now $c_n \in A_n$ so $c_n = a_j$ for some $j = j(n) \ge n+1$, but we aren't quite done because the definition of subsequence requires that the subscripts j(n) increase and there is no reason for that to be true. However we can extract a further

subsequence by induction. Namely if $n_1 < n_2 < \cdots < n_k$ have been defined, define n_{k+1} by $n_{k+1} = j(n_k)$. Then $n_{k+1} = j(n_k) \ge n_k + 1 > n_k$ as required. (The further subsequence still converges.)

Now we prove the theorem for a sequence of points in \mathbb{R}^m by induction on m. Assume the theorem holds for \mathbb{R}^m and choose a bounded sequence $(p_n)_n$ of points in \mathbb{R}^{m+1} . Then $p_n = (q_n, a_n)$ where $q_n \in \mathbb{R}^m$ and $a_n \in \mathbb{R}$. That the sequence $(p_n)_n$ is bounded means that there is an M such that $|p_n| \leq M$ for all n, As $|p_n|^2 = |q_n|^2 + a_n^2$ it follows that $|q_n| \leq M$ and $|a_n| \leq M$ for all n, i.e. the sequence $(q_n)_n$ and $(a_n)_n$ are also bounded. By the inductive hypothesis the sequence $(q_n)_n$ has a subsequence $(q_{n_k})_k$ converging to q. By replacing the sequence $(p_n)_n$ by the sequence $(p_n)_n$ we may assume that the sequence $(q_n)_n$ converges.) Now by the case m = 1 (already proved) the sequence $(a_n)_n$ contains a convergent subsequence $(a_{n_k})_k$. Hence

$$\lim_{k \to \infty} q_{n_k} = q, \qquad \lim_{k \to \infty} a_{n_l} = a.$$

By the triangle inequality $|(q',a')-(q,a)| \leq |q'-a|+|a'-a|$ so

$$\lim_{k \to \infty} p_{n_k} = \lim_{k \to \infty} (q_{n_k}, a_{n_k}) = (q, a)$$

as required.

推论 0.1 For a subset $S \subseteq \mathbb{R}^m$ the following conditions are equivalent.

- 1. For every sequence $(p_n)_n$ of points of S there is a subsequence $(p_{n_k})_k$ which converges to $p \in S$.
- 2. The set S closed and bounded.

推论 0.2 Every bounded infinite subset of \mathbb{R}^m has an accumulation point.

The image¹ Buck calls the set S the **trace** of the sequence, but that terminology is uncommon. } of the sequence $(p_n)_{n\in\mathbb{N}}$ (when viewed as a map $n\mapsto p_n$) is the set

$$S = \{p_n : n \in \mathbb{N}\}.$$

The set S can be finite. For example for the sequence $p_n = (-1)^n$, the set S is the two element set $S = \{-1, 1\}$. If the image of a sequence is finite then

 $^{^{1}\{}$

there must be at least one constant subsequence and a constant subsequence is trivially convergent. By definition only an infinite set can have an accumulation point.

定义 0.4 A sequence $\{p_n\}$ is called **Cauchy** iff

$$\lim_{m,n\to\infty} |p_n - p_m| = 0$$

i.e. iff for every $\epsilon > 0$ there exists N > 0 such that $|p_n - p_m| < \epsilon$ for $n, m \ge N$.

定理 0.4 A sequence in \mathbb{R}^n converges if and only if it is a Cauchy sequence.