

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR

Programa de Pós-Graduação em Engenharia e Informática - CPGEI Laboratório de Bioinformática e Inteligência Computacional, Curitiba

Computação Evolucionária

Prof. Heitor Silvério Lopes

hslopes@utfpr.edu.br

Fundamentos teóricos de Algoritmos Genéticos

- # Terminologia, Biologia
- # Definição formal e operação
- # Critérios de parada
- # Codificação e mapeamento genótipo/fenótipo
- # Função de objetivo e função fitness
- * Restrições e penalidades
- # AG canônico
- # Métodos de seleção e elistismo
- # Operadores genéticos para representação binária, inteira e real
- # Convergência, exploração e diversidade genética
- # Controle da pressão seletiva: escalonamento de fitness, truncagem, generation gap
- # Epistasia e decepção
- # Nichos e espécies, fator de crowding

Terminologia

- Influência da Biologia (Genética e Ecologia)
- Relembrando...
 - Um organismo é definido pelos seus cromossomos (Homo sapiens: 22 pares, mais XX/XY)
 - Cada cromossomo tem inúmeros genes (H.sapiens > 50.000 genes no total) e sequências inter-gênicas
 - Cada gene contém <u>exons</u> e outras sequências nãocodificantes (<u>introns</u>, região promotora, sequência terminadora)
 - Parte dos exons quando ligados sequencialmente e tomados em <u>triplas</u> serão os <u>códons</u> que codificam uma proteína com função biológica.

Terminologia: Biologia ←→ AG

Biologia	Algoritmos Genéticos
Cromossomo	String
Locus	Posição no <i>string</i>
Gene	Caracter, número ou bit
Genótipo	Estrutura, parâmetros (geralmente = string - monoploidia)
Fenótipo	Solução, ponto ou indivíduo
Epistasia	Interferência entre genes
Ploidia	Relativo ao número de pares de genes no genótipo de um organismo (monoploidia,diploidia)

"Anatomia" de um gene

- Um cromossomo é composto de genes e de sequências intergênicas (sem função conhecida).
- Em AGs, todo o conteúdo do cromossomo é "codificante".
- Existem parcos estudos a respeito do uso de introns em AGs e outras técnicas de CE.

Definição formal de parâmetros

- Baseado em Hoffmeister e Bäck (1990)
- Definição de um AG simples como uma 8tupla:

$$GA = \{P^0, \lambda, L, s, \rho, \Omega, f, t\}$$

Definição formal de parâmetros

Definição do parâmetro	significado
$P^0=(a^0_1,,a^0_\lambda) \in I^\lambda, I=\{0,1\}^L$	população inicial
$\lambda \in \mathcal{N}$	tamanho da população
L∈N	tamanho de cada <i>string</i>
$s: I^{\lambda} \to I^{\lambda}$	método de seleção
$\rho: I \to \Omega$	função que determina o operador
$\Omega \subseteq \{\omega: I \times I^{\lambda} \to Prob \to I\}$	conjunto de operadores genéticos
$f:I \to \mathcal{R}$	função de <i>fitness</i>
$\mathbf{t}: I^{\lambda} \to \{0,1\}$	critério de término

geração t

Funcionamento

$$P^{(t)} = \{a_1^{(t)}, \Lambda, a_{\lambda}^{(t)}\}$$

$$P'^{(t)} = s(P^{(t)})$$

$$p_{amost} = \frac{f(a_i^{(t)})}{\sum_{j=1}^{\lambda} f(a_j^{(t)})}$$

$p_{amost}(a_i^t): I \rightarrow [0,1]$

pop. intermediária

$$P'^{(t)} = \{a_1'^{(t)}, \Lambda, a_{\lambda}'^{(t)}\}\$$

$$a_i^{(t+1)} = w_j({a_i^{\prime}}^{(t)}, P^{(t)})$$

geração t+1

$$P^{(t+1)} = \{a_1^{(t+1)}, \Lambda, a_{\lambda}^{(t+1)}\}\$$

$$\Omega = \{ w_c, w_m, w_c \text{ o} w_m \}$$

Critérios de parada

- # Quando terminar a busca com AG, isto é, $t: \mathbb{P} \to 1$?
 - Parar após um período determinado de tempo ou número de gerações máximo
 - Parar quando não houver melhora significativa do máximo
 - Parar quando encontrar uma solução
 melhor do que outra existente (segundo º algum critério)
 - Parar quando o ótimo for atingido
 - Parar quando a média de *fitness* da população estiver próxima ao mínimo ou máximo *****

Mapeamento genótipo X fenótipo

Princípios da Codificação

- # A codificação é um elemento <u>crítico</u> na aplicação de AG's em problemas práticos.
- [♯] Um problema mal codificado pode impedir que a convergência do AG ou a obtenção de uma boa solução.
- # Princípios da codificação:
 - Princípio dos blocos construtivos significativos
 - Como uma regra prática útil, sempre se deve colocar parâmetros importantes ou que tenham alguma inter-relação, juntos ou próximos no string, de modo a constituir blocos construtivos úteis.
 - Princípio dos alfabetos mínimos:
 - O usuário deverá selecionar o menor alfabeto que permita a expressão natural do problema.
 - Para a maioria dos casos a representação é simples e direta, através do mapeamento das variáveis do problema em um string binário, onde cada variável é digitalizada com o número de bits que for necessário para alcançar a precisão desejada do problema.

Codificações

- # Binária
 - Default, para otimização discreta, não combinatorial ou otimização contínua discretizada
- # Inteira
 - Para problemas combinatoriais
- # Reais
 - Para otimização em espaços contínuos
- # Importante: cada tipo codificação exige operadores específicos !!!

Codificação binária

- # Codificação em AGs:
 - binário natural ou código de Gray
- # Codificação de múltiplos parâmetros:
 - cada variável = um gene
 - concatenação de vários parâmetros em um único string
- # Codificação de números reais em binário:
 - Não é usual em AG
 - Quantização ou "discretização": mapeamento em um intervalo binário finito
 - número de bits proporcional à precisão (arbitrária)

$$precisão = \frac{X_{\text{max}} - X_{\text{min}}}{2^{L}}$$

Alternativa ao binário natural: Código de Gray

Muda um bit de um número para outro: transição "mais suave".

Decimal	Binário	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
. 11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Codificação com números reais

- 0.236436775676...
 0.098473294543...
 0.193214042202...
 0.843279242093...
 0.012934812343...
 0.639423412934...
 0.017773923845...
 0.238920090909...
 0.123984732999...
 0.646329878122...
 0.000123943437...
- # Quando se tem <u>muitas variáveis</u> e ao mesmo tempo é necessário <u>alta precisão</u>:
 - Cromossomos muito longos levam a espaços de busca intratáveis. Exemplo:
 - 100 variáveis, cada uma no intervalo [-500,500]
 - precisão 6 dígitos decimais
 - 30 bits por variável
 - = espaço de busca: 2³⁰⁰⁰ ≈ 10¹⁰⁰⁰
- # Codificação real: vantagens e desvantagens:
 - Processamento mais rápido (não tem decodificação)
 - Exige operadores específicos
 - Mutação: aleatória ou incremental
 - Crossover aritmético

Codificação com números inteiros

- Alternativas para permutações:
 - # Utilizar números inteiros
 - # Utilizar um alfabeto restrito
 - # Utilizar binário (ou Gray) e decodificar adequadamente
- Implica em operadores genéticos especialmente adaptados para preservar a integridade do cromossomo

Função de fitness

- # É o ponto mais crítico de uma aplicação real.
- # Também conhecida como função de "adequabilidade" ou "adaptabilidade"
- # Abordagem "caixa-preta"

Função objetivo X Função de fitness

- # Mapeamento $f_{\text{objetivo}} \longrightarrow f_{\text{fitness}}$
- # Por <u>definição</u>, f_{fitness} é não-negativa e desejavelmente deve ser <u>normalizada</u> num intervalo conhecido.
- # A função objetivo pode envolver um custo ou um lucro
- # Minimização de custo:

$$f(x) = \begin{cases} C_{\text{max}} - custo(x) & \text{quando } custo(x) < C_{\text{max}} \\ 0 & \text{qualquer outro caso} \end{cases}$$
 onde C_{max} é o pior caso conhecido

Maximização de lucro:

$$f(x) = \begin{cases} ganho(x) + C_{\min} & \text{quando } ganho(x) + C_{\min} > 0 \\ 0 & \text{qualquer outro caso} \end{cases}$$
 onde C_{\min} é o pior caso conhecido

Restrições (Constraints)

Muitas aplicações reais exigem que a função objetivo seja submetida a certas restrições:

```
minimizar g(\mathbf{x})

sujeito a h_i(\mathbf{x}) \ge 0 i = 1, 2, ..., n

onde \mathbf{x} = x_1, x_2, ..., x_m
```

- # As restrições limitam os valores possíveis das variáveis do problema
- ★ As restrições afetam diretamente a codificação do problema

Satisfação de restrições importante

- Durante a execução do algoritmo podem surgir soluções que não satisfazem as restrições
- É necessário alguma metodologia para satisfazer as restrições
- # Opções:
 - 1. <u>Desprezar</u> soluções inválidas
 - 2. Fazer uma codificação especial, adaptada para cada variável de cada problema, que <u>não permita</u> soluções inválidas *****
 - Permitir uma codificação mais flexível e aplicar <u>penalidades</u> no caso de <u>violação</u> de restrições. *****
 - 4. Descobrir, para cada variável, como cada restrição é violada e "consertar" a solução.

Aplicação de penalidades

A aplicação de penalidades à função objetivo foi proposta por Goldberg (1989) e transforma o problema numa forma unconstrained:

minimizar
$$g(\mathbf{x}) + r \sum_{i=1}^{n} \Phi[h_i(\mathbf{x})]$$

onde: $\Phi = \text{função de penalidade}$

r = coeficient e de penalidade

 $\mathbf{x} = x_1, x_2, ..., x_m$

- # O coeficiente de penalidade (r) pondera o quão importante é a violação de restrições para o problema.
- # A função ₱é sugerida como o quadrado da violação da restrição.
- # O conjunto das penalidades deve ser <u>normalizado</u> na mesma faixa de valores da normalização da função objetivo.

Métodos de Seleção

- # Seleção NÃO é operador
- # A seleção é um processo executado <u>a priori</u> a fim de gerar indivíduos sobre os quais serão aplicados os operadores genéticos.
- # É na seleção onde se evidencia o processo de seleção natural de Darwin.
- # Os indivíduos mais bem adaptados ao ambiente têm maior probabilidade de se reproduzir e passar seu material genético para os descendentes

Seleção proporcional

- # Método "clássico" e mais simples
- # Também é conhecido como Roulette wheel ou roleta
- # É um método muito <u>ineficiente</u> pois induz a convergência para <u>máximos locais</u>.

i	string	fitness	fit.rel.
1	01101	169	14,4%
2	11000	576	49,2%
3	01000	64	5,5%
4	10011	361	30,9%

$$p_{seleção} = \frac{f(a_i^{(t)})}{\sum_{j=1}^{\lambda} f(a_j^{(t)})}$$

Outros métodos de seleção

- # Ordenamento linear (linear ranking)
- # Ordenamento uniforme (μ, λ) (uniform ranking)
- # Amostragem estocástica universal (SUS)
- # Amostragem estocástica sem reposição
 - calcula-se o fitness relativo para cada indivíduo (idem à roleta) e, para cada vez que um indivíduo é selecionado, subtrai-se 1 do valor esperado, até que seja 0.
- # Torneio estocástico de tamanho K
 - seleciona-se K indivíduos aleatoriamente, ordena-se,
 e apenas o melhor (ou 2) são selecionados

ep o mesmo individuo

Métodos de seleção X convergência

O método de seleção, juntamente com a probabilidade de aplicação do operador de mutação são os principais fatores que levam à convergência.

Elitismo

- S
- # Elitismo é a manutenção dos k-melhores indivíduos de uma geração para a geração seguinte.
 - É um complemento aos métodos de seleção
 - Para problemas unimodais acelera a convergência, aumentando a busca local
 - Para problemas multimodais pode tornar mais difícil a busca
 - Deve ser utilizado com cuidado pois pode induzir convergência prematura se o método de seleção for

"agressivo"

```
SEJA a_k(t) o melhor indivíduo até a geração t
SE a_k(t) \not\subset P(t+1)
ENTÃO P(t+1) \leftarrow a_k(t)
```


Operador de recombinação (crossover) para codificação binária

- ★ Realiza busca local (exploitation), através de recombinação de genes de dois cromossomos-pai, gerando dois cromossomos-filho
- # variações: 1-ponto, 2-pontos, uniforme...

Operador de mutação para codificação binária

Realiza busca global (*exploration*), através de uma modificação aleatória de um bit

Objetivos:

- Introduzir novos indivíduos na população
- Evitar a perda irrecuperável de informação genética

Probabilidade de mutação (p_m) :

- Muito alta: busca aleatória
- Muito baixa: busca localizada
- Em geral, $p_m = 1/\lambda$ por bit

Operador de inversão para codificação binária

- # Tem efeito equivalente a várias mutações
- # É aplicável a cromossomos de comprimento elevado.
- # Raramente é utilizado.
- # Pode ser útil para problemas de permutação

Operadores de crossover para codificação real

- # Operadores de crossover.
 - Crossover aritmético:
 - gera os filhos como uma combinação linear dos dois vetores-pai.
 - Crossover simples:
 - igual à versão binária para crossover de um ponto.
 - Crossover heuristico:
 - Usa a função objetivo para determinar a direção da busca, produz um único descendente (ou pode não produzir nenhum).
 - ► Sejam X_1 e X_2 os dois vetores-pai e Yo vetor-filho, $Y=r^*(X_2-X_1)+X_2$, desde que X_2 se ja uma solução melhor do que X1 (maior fitness), e r é um número aleatório entre 0 e 1. Este crossover contribui para a precisão da solução (ajuste fino).

Operadores de mutação para codificação real

Operadores de mutação:

- Mutação uniforme
 - um elemento x_k do vetor pai é mudado aleatoriamente no intervalo [left(k),right(k)]
- Mutação limítrofe
 - igual a anterior exceto que muda para um dos dois limites, inferior ou superior
- Mutação não-uniforme
 - o elemento selecionado será somado ou subtraído um valor aleatório que diminui à medida que avança o número de gerações

Operadores para codificação com inteiros (ordenamento)

- Utilizados em problemas combinatoriais/ permutação
- Não se pode utilizar o crossover tradicional pois gera soluções inválidas
- Codificação específica, em geral com números inteiros
- PMX, OX, CX, outros
- Por exemplo, para TSP depende da forma de codificação (vértices, arestas, etc)

PMX - partially matched crossover

- Tende a respeitar a posição absoluta dos elementos.
 O algoritmo tem três passos:
 - 1- escolhe-se aleatoriamente dois pontos p/corte
 - 2- trocam-se as partes da matching section
 - 3- mapeia-se o restante dos alelos

Cada filho tem um ordenamento parcialmente determinado por cada um de seus pais

OX - order crossover

Tende a respeitar a posição relativa dos elementos.
 O Algoritmo constroi um descendente escolhendo um substring de um pai e preservando a ordem relativa dos elementos no outro pai

CX - cycle crossover

- # Não usa pontos de corte
- # Mantém o ponto de início para completar um ciclo
- # Os filhos têm cada elemento e sua posição de um dos pais

Critérios de convergência

- # Critérios de convergência de DeJong:
 - Um determinado gene convergiu quando 95% da população tem o mesmo gene
 - Uma população convergiu quando todos os genes convergiram

Importante: sempre observar a curva de evolução dos fitness!!!!!

Visualização da convergência

2 13 14 15 16 17 1

Medidas de convergência de DeJong: On-line e off-line performance

On-line performance é a média de todas as avaliações de fitness até o momento. É uma medida de desempenho instantâneo (T=número de gerações)

on - line performance:
$$x_e(s) = \frac{1}{T} \sum_{1}^{T} f_e(t)$$

Off-line performance é a média dos melhores indivíduos de cada geração. É uma medida de convergência

off - line performance:
$$x_e^*(s) = \frac{1}{T} \sum_{1}^{T} f_e^*(t)$$

onde
$$f_e^*(t) = \text{melhor}\{f_e(1), f_e(2), ..., f_e(t), \}$$

Definições importantes importante!

Diversidade genética:

- Medida de não-semelhança entre indivíduos de uma população.
- Para AGs com codificação em binário a diversidade pode ser medida pela distância de Hamming entre pares de indivíduos.

Pressão seletiva:

- Efeito das discrepâncias de fitness entre indivíduos da população na preferência pela seleção
- Quanto maiores as diferenças, maior a pressão seletiva em benefício dos valores mais altos de fitness.

Efeito dos operadores na convergência

- # Efeito dos operadores:
 - crossover: exploração local (L)
 - mutação: exploração global (G)
 - se G >> L : busca aleatória
 - = se L >> G: ótimo local
- # Diversidade genética:
 - No início: alta (distribuição uniforme)
 - No fim: baixa (convergência)
- # Pressão seletiva:
 - relacionado ao gradiente da função de *fitness*
- # Consequências:
 - convergência prematura
 - "chegada lenta"

Pressão seletiva X Diversidade Genética

Problema:

- nas gerações iniciais ocorre:
 - alta diversidade genética
 - alta discrepância de fitness
 - alta pressão seletiva
 - rápida perda de diversidade genética
 - convergência prematura
- em gerações maduras ocorre:
 - baixa diversidade
 - baixas discrepâncias de fitness
 - baixa pressão seletiva
 - evolução lenta ou estagnação

Única solução:

Controlar a pressão seletiva

Controle da pressão seletiva

- # Escalonamento linear
- # Outros métodos de escalonamento
 - ranking, janelamento, sigma-truncation
- # Outras estratégias
 - Sharing
- # Métodos de seleção
 - Métodos menos "agressivos" ←

Escalonamento de fitness

Escalonamento linear:

- Objetivo: manter o fitness escalonado médio igual ao fitness não-escalonado médio
- Promove "compressão" e "expansão" automática de escala

$$f * = \alpha . f + \beta$$

$$f *_{\text{max}} = C.f_{med}$$

onde $1.2 \le C \le 2.0$

Outros mecanismos de escalonamento

Truncagem sigma:

executada antes de escalonar ou sem escalonamento

$$f^* = f - (\bar{f} - C.\sigma)$$

onde $1 \le C \le 2$

Janelamento:

$$f * = f - f_{\min}$$

Generation Gap

- Foi proposto por DeJong (1975)
- É uma maneira de permitir a sobreposição ou não de duas populações consecutivas
- Modelo generational:
 - G=1 é o modelo tradicional sem sobreposição, onde 100% da população é substituída a cada geração.
- Modelo steady-state:
 - 0< G< 1 λ * G novos indivíduos são gerados para substituir parte da população. Causa uma desaceleração da velocidade de evolução.

Epistasia

- # Epistasia é a influência de um gene em outro
- * Não há, até o momento, uma maneira de medir epistasia.
- # É praticamente inevitável para problemas reais.
- # Graduação qualitativa:
 - nível 0: nenhuma interação
 - nível 1: interação moderada ou previsível
 - nível 2: interação complexa e imprevisível
- # Se for muito baixa: técnicas mais simples
- # Se for muito alta: AG é pouco eficiente

Problemas enganadores

- * "Decepção" (deception) é um problema crítico em AGs
- # Está intimamente relacionada com a epistasia
- # Building Blocks Hypothesis
- # A combinação de blocos construtivos bons separadamente gera uma solução de má qualidade, logo, leva a uma redução do *fitness* em vez do seu aumento.
- # Única alternativa: modificar a <u>codificação</u> do problema

Marin ald

The state of the s

Nichos e espécies

- # Inspiração na natureza onde espécies <u>diferentes</u> se agrupam num mesmo nicho ecológico competindo entre si pelos recursos naturais
- # Em AGs é a manutenção de subpopulações estáveis com <u>baixa competição</u> entre as mesmas (espécies)
- # Dois objetivos básicos de utilizar nichos:
 - Quando se deseja não apenas uma solução, porém um conjunto das melhores soluções
 - Permitir uma melhor exploração do espaço de busca para problemas multimodais

Fator de crowding

- # Fator de crowding (fc):
 - um novo indivíduo gerado substitui o indivíduo mais semelhante a ele na população antiga, escolhido entre fc indivíduos amostrados aleatoriamente na população.
- # Diminui a competição inter-espécies (indivíduos muito diferentes) e aumenta a competição intra-espécies
- # Melhora exploração do espaço de busca através da manutenção da diversidade genética
- # Útil para busca de vários sub-ótimos

Compartilhamento

- # Compartilhamento (sharing) proposto por Goldberg (1989):
 - Os indivíduos de "uma mesma vizinhança" (mais próximos entre si) compartilham mais seus *fitness*
 - A semelhança pode ser no nível do genótipo ou do fenótipo
 - Quando há muitos indivíduos próximos, ocorre uma diminuição dos fitness deste grupo.
 - Este processo limita o crescimento indiscriminado de uma espécie numa região do espaço de busca

$$f_c(x_i) = \frac{f(x_i)}{\sum_{j=1}^{n} s(d(x_i, x_j))}$$

Redução de incesto

- ★ Redução de Incesto (ou restrição de acasalamento)
 - Reduz o número de cruzamentos entre indivíduos muito semelhantes.
 - * É semelhante ao crowding criado por DeJong
- # Sofisticação do método:
 - Permitir cruzamentos somente entre elementos da mesma "família" enquanto a média de fitness da família for progressivo (inbreeading).
 - Quando isto não ocorrer, permitir o cruzamento entre "famílias" diferentes (intermittent crossbreading)