CZ4041/CE4041: Machine Learning

Lesson 12: Dimensionality Reduction

Kelly KE
School of Computer Science and Engineering,
NTU, Singapore

Acknowledgements: some content is adapted from the lecture notes of Xiaojin Zhu @University of Wisconsin–Madison. Slides are modified from the version prepared by Dr. Sinno Pan.

High-level Idea

• To summarize observed high-dimensional data points with low-dimensional vectors

Why Dimensionality Reduction

- Avoid curse of dimensionality
 - Distance-based methods, e.g., *K*-NN Classifiers, *K*-means
- Reduce amount of time and memory required by other machine learning algorithms
- Allow data to be more easily visualized
 - 2D or 3D
- Reduce noise, and thus improve the performance of the downstream machine learning tasks

Dimensionality Reduction Approaches

- Feature Selection
 - To select a subset of *k* features from the original *d* features to represent each data instance
 - Brute-force approach
 - Greedy search
- Feature Extraction
 - To learn *k* new features from the original *d* features to represent each data instance
 - Linear combination of original features
 - Principal component analysis
 - Nonlinear combination of original features

Principal Component Analysis

- One of the most widely-used (unsupervised) dimensionality reduction methods
- Takes a data matrix of *N* data points by *d* features, and summarizes it by principal components that are linear combinations of the original *d* variables
- The first *k* components display as much as possible of the variation among data instances

PCA: Geometric Rationale

- Goal: to find a projection or rotation of the original *d*-dimensional coordinate system to capture the largest amount of variation in data
 - Ordered s.t. the 1^{st} principal component has the highest variance, the 2^{nd} component has the next highest variance, ..., the d-th component has the lowest variance
 - Principal components are orthogonal to each other

PCA: Algorithm

Input: $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ a set of observed data

1. Centering the data points s.t. the mean is 0

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \longrightarrow \boldsymbol{x}_{i} = \boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}}$$

2. Compute sample covariance matrix

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} x_i x_i^T$$
 Each u_i is of d dimensions

- 3. Compute eigenvectors of $\widetilde{\Sigma}$, $\{u_1, u_2, ..., u_d\}$, which are sorted based on their eigenvalues in non-increasing order, i.e., $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- 4. Select the first *k* eigenvectors to construct principal components

PCA: Algorithm (Illustration)

Derivation of PCA

- The variance preservation view
 - The first *k* components display as much as possible of the variation among data instances
- The minimum reconstruction view
 - The first *k* components convey maximum useful information of original data instances

Appendix (optional)

Eigenvalues & Eigenvectors

• Given a d-by-d square matrix \mathbf{A} , if there exists a non-zero d-dimensional vector \mathbf{u} , s.t.

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$
 scalar

then u is an eigenvector of A, and λ is called the corresponding eigenvalue

- Notes:
 - There are d eigenvectors and eigenvalues
 - An eigenvalue can be positive, negative or zero
 - An eigenvector cannot be a zero vector
 - Eigenvectors are orthogonal to each other

Properties of Eigenvalues

Given a square matrix \mathbf{A} (d-by-d)

- A is invertible $(A^{-1}A = I \text{ or } AA^{-1} = I)$ if all the eigenvalues of A are non-zero (positive or negative)
- If all the eigenvalues of **A** are non-negative, then **A** is a positive semi-definite matrix:

For any non–zero vector $\mathbf{x} \in \mathbb{R}^{d \times 1}$, we have $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$

• If all the eigenvalues of **A** are positive, then **A** is a positive definite matrix:

For any non–zero vector $\mathbf{x} \in \mathbb{R}^{d \times 1}$, we have $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

Properties of Eigenvalues (cont.)

• Recall: when inducing a closed form solution of regularized linear regression model, we mentioned that if a matrix **A** can be written as

$$\mathbf{A} = \mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$$
, where $\mathbf{X} \in \mathbb{R}^{N \times d}$, $\mathbf{I} \in \mathbb{R}^{d \times d}$ and $\lambda > 0$ then \mathbf{A} is always invertible:

$$\exists A^{-1}$$
, s.t., $A^{-1}A = I$ or $AA^{-1} = I$

Properties of Eigenvalues (cont.)

- We first prove **A** is positive definite
 - For any non-zero vector $\mathbf{x} \in \mathbb{R}^{d \times 1}$

$$x^{T}Ax = x^{T}(X^{T}X + \lambda I)x$$

$$= x^{T}(X^{T}X)x + x^{T}(\lambda I)x$$
Denote $\mathbf{z} = Xx$

$$= z^{T}\mathbf{z} + \lambda x^{T}x$$

$$= ||\mathbf{z}||_{2}^{2} + \lambda ||\mathbf{x}||_{2}^{2}$$

 $||z||_2^2 \ge 0$ and $||z||_2^2 = 0$ if and only if z = 0

 $||x||_2^2 > 0$ because $x \neq 0 \Rightarrow \lambda ||x||_2^2 > 0$ as long as $\lambda > 0$

$$x^T \mathbf{A} x > 0$$

Properties of Eigenvalues (cont.)

- As **A** is positive definite, all of its eigenvalues are positive, i.e., non-zero
- Recall: **A** is invertible if all the eigenvalues of **A** are non-zero (either positive or negative)
- Therefore, if a matrix **A** can be written as

 $\mathbf{A} = \mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$, where $\mathbf{X} \in \mathbb{R}^{N \times d}$, $\mathbf{I} \in \mathbb{R}^{d \times d}$ and $\lambda > 0$ then \mathbf{A} is invertible!

PCA: Variance Preservation

- The first *k* components display as much as possible of the variation among data instances
- Consider a projection of a data point x onto a vector going through the origin, represented by u
- The projection of \boldsymbol{x} onto \boldsymbol{u} is

$$\frac{\mathbf{u}^T \mathbf{x}}{\|\mathbf{u}\|_2} = \frac{\|\mathbf{u}\|_2 \|\mathbf{x}\|_2 \cos(\theta)}{\|\mathbf{u}\|_2} = \|\mathbf{x}\|_2 \cos(\theta)$$

- For simplicity, consider \boldsymbol{u} with unit length, i.e., $\|\boldsymbol{u}\|_2 = 1$
- The projected instances $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ onto \boldsymbol{u} are

$$\{u^T x_1, u^T x_2, ..., u^T x_N\}$$

Variance Preservation (cont.)

• In PCA, data points are centered at the beginning

$$\frac{1}{N}\sum_{i=1}^{N}x_i=0$$

• After projection onto u, the mean of data points is still 0

$$\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{u}^{T} \boldsymbol{x}_{i} = \boldsymbol{u}^{T} \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} = 0$$

• The variance of the data points projected onto \boldsymbol{u} is

$$\frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{u}^T \boldsymbol{x}_i - 0)^2 = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{u}^T \boldsymbol{x}_i)^2$$
Each row is a data instance
$$= \boldsymbol{u}^T \widetilde{\boldsymbol{\Sigma}} \boldsymbol{u} \rightarrow \widetilde{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i^T = \frac{1}{N-1} \boldsymbol{X}^T \boldsymbol{X}$$

Variance Preservation (cont.)

- The goal of PCA (for simplicity, projected on 1 principal component only) is to find u that maximizes the variance, expecting to maximally preserve distinction among data
- The resultant optimization problem is

$$\max_{\mathbf{u}} \ \mathbf{u}^T \widetilde{\mathbf{\Sigma}} \mathbf{u}$$

s.t. $\|\mathbf{u}\|_2^2 = 1$

• It can be solved by forming the Lagrangian

$$u^T \widetilde{\Sigma} u + \lambda (1 - u^T u)$$

ullet By setting the gradient w.r.t. $oldsymbol{u}$ to zero, we have

$$2\widetilde{\Sigma}u - 2\lambda u = \mathbf{0} \longrightarrow \widetilde{\Sigma}u = \lambda u$$

 $\mathbf{\Sigma} \mathbf{u} = \lambda \mathbf{u}$ The desired direction \mathbf{u} is an eigenvector of $\mathbf{\Sigma}$

 $\widetilde{\Sigma}$ has d eigenvectors, which one?

Variance Preservation (cont.)

- Recall that the variance of the projected dataset $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ is $\mathbf{u}^T \widetilde{\Sigma} \mathbf{u}$
- By substituting $\widetilde{\Sigma} u = \lambda u$ into the above formula, the projected variance becomes $\|u\|_2^2 \quad (\|u\|_2^2 = 1)$ $u^T \widetilde{\Sigma} \quad u = u^T \lambda u = \lambda u^T u = \lambda$
- To find a direction that maximizes the projected variance is to find the eigenvector u of $\widetilde{\Sigma}$ with the largest eigenvalue
- Generalized to multiple components case: let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ be the eigenvalues of $\widetilde{\Sigma}$, and u_1, u_2, \ldots, u_d be the corresponding eigenvectors, and choose the top k eigenvectors as the principal components

Determine Value of k

- Wrapper approaches
 - Dimensionality reduction is usually an intermediate step for some downstream tasks, such as classification, regression, clustering
 - Use cross-validation based on the performance of the final task to tune the value of *k*

Determine Value of k (cont.)

• Based on the percentage of variance preserved

$$p_{\text{var}} = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \times 100$$

- All the λ_i 's are nonnegative
- Predefine a value for the percentage of variance to determine the value of *k*

Compute Eigenvalues and Eigenvectors

- How to compute eigenvalues and eigenvectors of $\widetilde{\Sigma} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$?
- In a general case, if a *d*-by-*d* square matrix **A** can be written as

$$\mathbf{A} = \mathbf{X}^T \mathbf{X}$$
, where $\mathbf{X} \in \mathbb{R}^{N \times d}$

then eigenvectors and eigenvalues of $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ can be computed by performing Singular Value Decomposition (SVD) on \mathbf{X}

• As **A** is positive semi-definite, all of its eigenvalues are non-negative.

Orthogonal Vectors

- Two vectors v_1 and v_2 are said to be orthogonal if they are perpendicular to each other, i.e., the inner or dot product of two vectors is 0
 - $\bullet \ \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 = 0$
- A set of vectors $\{v_1, ..., v_d\}$ are mutually orthogonal if every pair of vectors are orthogonal
 - $v_i \cdot v_j = 0$, for any $i \neq j$

$$\boldsymbol{v}_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \boldsymbol{v}_{2} = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \quad \boldsymbol{v}_{3} = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$$
$$\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2} = \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{3} = \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{3} = 0$$

Orthonormal Vectors

- A set of vectors $\{v_1, \dots, v_d\}$ are mutually orthonormal if every pair of vectors are orthogonal, and the L_2 norm of each vector is 1
 - $v_i \cdot v_i = 0$, for any $i \neq j$
 - $||v_i||_2 = \sqrt{v_i \cdot v_i} = 1$
- A set of orthogonal vectors $\{v_1, ..., v_d\}$ can be normalized to orthonormal via $\left\{\frac{v_1}{\|v_1\|_2}, \dots, \frac{v_d}{\|v_d\|_2}\right\}$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \| v_1 \|_2 = \sqrt{2}$$
 $v_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \| v_2 \|_2 = 2$ $v_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \| v_3 \|_2 = 2$

$$v_1' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \|v_1'\|_2 = 1 \quad v_2' = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \|v_2'\|_2 = 1 \quad v_3' = \frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \|v_3'\|_2 = 1$$

Orthonormal Vectors (cont.)

- Given a matrix $\mathbf{V} = (\mathbf{v}_1, ..., \mathbf{v}_d)$, where \mathbf{v}_i is an N-dimensional column vector, and $N \ge d$
- If the columns of **V** are mutually orthonormal, then we have

$$\mathbf{V}^T\mathbf{V} = \mathbf{I}_d$$

$$\mathbf{I}_d = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} - d$$

Singular Value Decomposition (SVD)

• The SVD of **X** (*N*-by-*d*) has the following form

$$X = VDU^T$$

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$

Obtain Eigenvectors via SVD

- Perform SVD on **X** to get $\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T$
- Then **A** can be rewritten as

$$\mathbf{V}^T\mathbf{V} = \mathbf{I}_{\Lambda}$$

$$\mathbf{A} = \mathbf{X}^T \mathbf{X} = (\mathbf{V} \mathbf{D} \mathbf{U}^T)^T \mathbf{V} \mathbf{D} \mathbf{U}^T = \mathbf{U} \mathbf{D}^T \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$\mathbf{A} = \mathbf{U}\mathbf{D}^T\mathbf{D}\mathbf{U}^T$$

Denote
$$\widetilde{\mathbf{D}} = \mathbf{D}^T \mathbf{D}$$

= $\mathbf{U} \widetilde{\mathbf{D}} \mathbf{U}^T$

 $\widetilde{\mathbf{D}} \qquad \begin{array}{l} d - \text{by-}d \text{ diagonal matrix with} \\ \text{diagonal elements } \lambda_1^2 \geq \lambda_2^2 \geq \\ \cdots \geq \lambda_d^2 \geq 0 \end{array}$

Supporse d < N. All elements are zero expect for the first d-by-d submatrix diagonal being $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d$

Eigen Components via SVD (cont.)

$$\mathbf{A} = \mathbf{U}\widetilde{\mathbf{D}}\mathbf{U}^T \qquad \qquad \widetilde{\mathbf{D}} \qquad \text{Diagonal matrix with diagonal elements } \lambda_1^2 \geq \lambda_2^2 \geq \cdots \geq \lambda_d^2 \geq 0$$

$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_d \qquad \qquad \mathbf{A}\mathbf{U} = \mathbf{U}\widetilde{\mathbf{D}}\mathbf{U}^T\mathbf{U} = \widetilde{\mathbf{U}}\widetilde{\mathbf{D}} \qquad \qquad \mathbf{A} \times \mathbf{u}_1, \mathbf{A} \times \mathbf{u}_2, \dots, \mathbf{A} \times \mathbf{u}_d) \qquad = \qquad [\lambda_1^2 \times \mathbf{u}_1, \lambda_2^2 \times \mathbf{u}_2, \dots, \lambda_d^2 \times \mathbf{u}_d]$$

$$\mathbf{A}\mathbf{u}_i = \lambda_i^2 \mathbf{u}_i, i = 1, \dots, d$$

Each column u_i of **U** is an eigenvector of **A** with the eigenvalue λ_i^2

Reference (Optional)

- For feature subset selection:
 - An Introduction to Variable and Feature Selection,
 Isabelle Guyon, Andre Elisseeff, in JMLR 2003
- For dimensionality reduction:
 - <u>Dimensionality Reduction: A Comparative Review,</u> L.J.P. van der Maaten and E. O. Postma and H. J. van den Herik, Technical Report, 2008
 - https://lvdmaaten.github.io/drtoolbox/

Thank you!

Derivation of PCA

- The variance preservation view
 - The first *k* components display as much as possible of the variation among data instances
- The minimum reconstruction view
 - The first *k* components convey maximum useful information of original data instances

Minimum Reconstruction Error

• Given any <u>orthonormal</u> basis $v_1, v_2, ..., v_d$, a data point x_i (has been centered) can be written as

$$\mathbf{x}_i = \sum_{j=1}^d \alpha_{ij} \mathbf{v}_j \quad \alpha_{ij} = \mathbf{v}_j^T \mathbf{x}_i \quad \left(\sum_{j=1}^d \mathbf{v}_j^T \mathbf{x}_i \mathbf{v}_j = \mathbf{x}_i \sum_{j=1}^d \mathbf{v}_j^T \mathbf{v}_j = \mathbf{x}_i\right)$$

• Consider the k-term approximation of x_i :

$$\widehat{\boldsymbol{x}}_i \approx \sum_{j=1}^{\kappa} \alpha_{ij} \boldsymbol{v}_j$$

• The error of the approximate over all data points is

$$E = \frac{1}{N} \sum_{i=1}^{N} \|\widehat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \left\| \sum_{j=k+1}^{d} \alpha_{ij} \mathbf{v}_j \right\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{d} \alpha_{ij}^2$$

Minimum Reconstruction Error (cont.)

• The error of the approximate over all data points

$$E = \frac{1}{N} \sum_{i=1}^{N} \|\widehat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{d} \alpha_{ij}^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=k+1}^{d} \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j \approx \sum_{j=k+1}^{d} \mathbf{v}_j^T \widetilde{\mathbf{\Sigma}} \mathbf{v}_j$$

• Suppose k = d - 1, i.e., we aim to remove a single dimension, then resultant optimization problem is

$$\min_{\boldsymbol{v}_d} \quad \boldsymbol{v}_d^T \widetilde{\boldsymbol{\Sigma}} \; \boldsymbol{v}_d$$
 s.t. $\|\boldsymbol{v}_d\|_2^2 = 1$

Minimum Reconstruction Error (cont.)

• By setting the gradient of the Lagrangian w.r.t. \boldsymbol{v} to zero, we have

$$2\widetilde{\Sigma}v_d - 2\lambda v_d = \mathbf{0} \longrightarrow \widetilde{\Sigma}v_d = \lambda v_d$$
 The desired direction v_d is an eigenvector of $\widetilde{\Sigma}$

 $\tilde{\Sigma}$ has d eigenvectors, which one?

- Our goal is to minimize the reconstruction error $\mathbf{v}_d^T \widetilde{\mathbf{\Sigma}} \ \mathbf{v}_d$ $\mathbf{v}_d^T \widetilde{\mathbf{\Sigma}} \ \mathbf{v}_d = \mathbf{v}_d^T \lambda \mathbf{v}_d = \lambda \mathbf{v}_d^T \mathbf{v}_d = \lambda$
- Therefore, v_d should be the eigenvector u_d of $\widetilde{\Sigma}$ with the smallest eigenvalue because $u_d^T \widetilde{\Sigma} u_d = \lambda_d$
- Similarly, the other dimensions to remove are subsequently the eigenvectors corresponding to the least eigenvalues