

Phase-1 Submission

Student Name: Gowtham P

Register Number: 712523104023

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: BE-CSE

Date of Submission:28-04-2025

1.Problem Statement;

The rapid spread of fake news on digital platforms poses a significant threat to societal trust, public safety, and democratic processes. This project aims to build an NLP-based system that can automatically detect fake news, helping users and organizations make informed decisions and combat misinformation effectively.

2. Objectives of the Project;

- interface. Build a machine learning model that accurately classifies news as real or fake.
- Analyze linguistic patterns in fake vs real news using NLP techniques.

3. Scope of the Project;

- Text preprocessing and NLP-based feature extraction
- Multiple classification models (Logistic Regression, Random Forest, etc.)

Limitations/Constraints:

- Model trained on static datasets
- Focus limited to English-language news.

4.Data Sources;

- Fake and real news dataset from Kaggle (e.g., "Fake News Detection" dataset)
- Static dataset downloaded once.

<u>Data Source Link</u>: https://www.kaggle.com/datasets/mahdimashayekhi/fake-news-detection-dataset

5. High-Level Methodology;

- Data Collection: Download dataset from Kaggle.
- Data Cleaning: Remove duplicates, handle missing values, standardize text formatting.
- EDA: Word clouds, frequency plots, sentiment analysis.
- Feature Engineering: TF-IDF, n-grams, stop word removal, POS tagging.
- Model Building: Logistic Regression, Naive Bayes, Random Forest, XG Boost.
- Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AU
- Data Collection: Download dataset from Kaggle.
- Data Cleaning: Remove duplicates, handle missing values, standardize text formatting.
- EDA: Word clouds, frequency plots, sentiment analysis.
- Feature Engineering: TF-IDF, n-grams, stop word removal, POS tagging.
- Model Building: Logistic Regression, Naive Bayes, Random Forest, XG Boost.

6. Tools and Technologie;

- Programming Language: Python.
- Notebook/IDE: Google Colab, Jupyter Notebook
- Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn, nltk, spaCy, TensorFlow/Keras
- Deployment Tools (Optional): Streamlit, Gradio, Flask.,

7. Team Members and Roles;

NAME	ROLE	WORK
MURALIDHARAN.K		Model development and evaluation.
GOWTHAM.P		Data collection, cleaning, and preprocessing.
PUGAZHENTHI.G		Visualization and interpretation of results.
BHARATHIDHASAN.M		(Optional) Deployment and

	UI design.
JESLIN SAJAN.	