Question 6

```
\min(a, \min(b, c)) = \min(\min(a, b), c)
```

If a is the smallest (or equal to the smallest), then clearly, $a \leq \min(b, c)$, so the left side is just a. On the right side, we have $\min(\min(a, b), c) = \min(a, c) = a$. So we have a = a.

If b is the smallest (or equal to the smallest), we can use the same reasoning to show that $\min(a, \min(b, c)) = \min(a, b) = b$ on the left, and $\min(\min(a, b), c) = \min(b, c) = b$ on the right, and we have b = b.

If c is the smallest (or equal to the smallest), then we have $\min(a, \min(b, c)) = \min(a, c) = c$ on the left and $\min(\min(a, b), c) = c$ on the right. Again, we have c = c.

Since one of the three has to be smallest, all cases have been taken care of.