Lab 2: Non-Ideal Sources

Team: Joshua Ortiz, James Robinson

ECEN 214-502

TA: Yichi Zhang

Date Performed: 02/05/18

Date Report Due: 02/19/19

Procedure

Task 1:

- 1. Use your AA battery as the voltage source of the circuit.
- 2. Measure the voltage of the AA battery using the voltmeter and record the data. (in parallel)
- 3. Now connect a resistor to the circuit that ranges from 50 to 2000 ohms.
- 4. Measure the voltage of the resistor using a voltmeter (voltmeter in parallel with the resistor) and write the measurement in your lab notebook.
- 5. Disconnect the resistor and then measure the resistance of it using the voltmeter. (voltmeter in parallel with the resistor).
- 6. Repeat steps 2-5 with various (at least 7 times) resistors/resistance.

Task 2:

- 1. Repeat task 1 with the other battery in your kit
- 2. Repeat task 1 using both batteries in series.

Data Tables

Task 1: Battery 1 (1.616 V)

R (expected)	Resistance (Ohms)	Voltage of Resistor (V)
100	101	1.552
200	201	1.597
1000	978	1.61
2000	1957	1.612
3000	2939	1.612
2200	2156	1.602
1200	1178	1.609

Task 2: Battery 2 (1.532 V)

R (expected)	Resistance (Ohms)	Voltage of Resistor (V)
100	103	1.487
200	201	1.492
1000	1101	1.501
2000	1982	1.511
2100	2101	1.523
2200	2189	1.525
1200	1220	1.508

Task 2: Battery 1 and 2 (3.148 V)

R (expected)	Resistance (Ohms)	Voltage of Resistor (V)
100	99.4	3.023
200	202.4	3.048
1000	974.6	3.088
2000	1969.1	3.095
3000	2932	3.1
2200	1175	3.099
1200	2150	3.102

Graphs

Task 1: Battery 1 (1.616 V) Non-Linear

Task 1: Battery 1 (1.616 V) Linearized

Task 2: Battery 2 (1.532 V) Non-Linear

Task 2: Battery 2 (1.532 V) Linearized

Task 2: Battery 1 and 2 (3.148 V) Non-Linear

Task 2: Battery 1 and 2 (3.148 V) Linearized

Simple Calculations:

$$V_L = V_S \frac{R_L}{R_L + R_S}$$

$$V_L = V_S - \frac{V_L}{R_I} R_S$$

 $V_{\rm S}$ is the y-intercept

 $-R_S$ is the slope

Graphed V_L vs $\frac{V_L}{R_L}$ to solve for both V_S and R_S

$$\%Error_1 = \left| \frac{Actual - Experimental}{Actual} \right| \times 100$$

 V_S error for Battery 1:

$$\left| \frac{1.616 - 1.6134}{1.616} \right| \times 100 = 0.16\%$$

 V_S error for Battery 2:

$$\left| \frac{1.532 - 1.5149}{1.532} \right| \times 100 = 1.12\%$$

 V_S error for Battery 1 and 2 combined:

$$\left| \frac{3.148 - 3.1016}{3.148} \right| \times 100 = 1.47\%$$

Screenshot

Ruperty A 100 200 1600 2000 3000 3000	V _{Bott} = 116/6 V 101 1.552 201 1.597 27 8 1.610 1951 1.612 2939 1.612 2150 1.602 1178 1.604	Battenes 1; 2 VBatt: 3.148 Respects Radiel VR 100 99.4 3023 200 202.4 3048 1000 474.6 3.089 2000 1969.1 3.095 3000 2432 3.100 1200 1175 3.099 2200 2150 3.102	
	ery 2 = 1.532		
3,00 1000 2000 3,100	103 1.487 201 1.492 1101 1.501 982 1.511 2101 1.523 2169 1.525		

Discussion

Overall, the experiment was a success. Both our measured voltage of the batteries and calculated voltage were almost equal with no greater than a 1.5% difference, so there was around 1.5% or less error within our experimentation. However, this was calculated with the experimental error formula, we hadn't accounted for the accuracy of our graphs, which would be the correlation. For task 1, the linearized graph had a R^2 value of 0.9014. For task 2, the graphs had correlation values of 0.6501 and 0.951. Anything close to $R^2=1$ is considered great data. In our case, we had 2 graphs with good data and 1 with bad data. If there was no error within the equipment used to measure, all our graphs should have a R^2 of 1 because $V_L = V_S - \frac{V_L}{R_L} R_S$ is a proven formula. Thus, there were some errors with our measurements or unaccounted for variables that lead our data to not have a perfect correlation. Even though our graphs aren't perfect they are accurate to our measure voltage of the batteries. In hindsight, we could improve the estimates if we knew the values of the resistance of the wires we used to setup the circuit, then we could account for some extra resistance that isn't from the voltage source.

Conclusion

In this lab, we learned how to setup a simple circuit with resistors and use the voltmeter to measure resistance. We also learned to linearize data given a formula. Most important of all, we proved that voltages sources produce their own internal resistance.