22 2025-10-15 | Week 08 | Lecture 22

The nexus question of this lecture: Why do the row space and column space always have the same dimension?

This lecture is based on sections 5.1

22.1 The dimension of the column space equals the dimension of the row space

Consider the 3×2 matrix

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The row space is the vector space $\left\{ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$. The column space is the vector space $\left\{ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.

These are not the same. But they have the same dimesnion: 1.

The fact that the dimensions are equal is not a coincidence.

Theorem 102. Given any $m \times n$ matrix A, the row space and column space always have the same dimesion. That is, $\dim RS(A) = \dim CS(A)$.

22.2 Preliminaries

We begin with the following theorem.

Theorem 103. Let X, Y be vector spaces. If $T: X \to Y$ is a linear transformation, then $\ker(T)$ is a subspace of X and $\operatorname{range}(T)$ is a subspace of Y.

Proof. The fact that ker(T) is a subspace follows similarly to the proof of Theorem 56 (the "kernels are subspaces" theorem from lecture 13).

To show that range(T) is a subspace of Y, we need only verify two facts:

- (i) $y + y' \in \text{range}(T)$ whenever $y, y' \in \text{range}(T)$
- (ii) $cy \in \text{range}(T)$ whenever $y \in Y$ and $c \in \mathbb{R}$
 - **Proof of (i).** Let $y, y' \in Y$. Then there exist x, x' such that T(x) = y and T(x') = y'. Since X is closed under vector addition, $x + x' \in X$. Moreover,

$$T(x + x') = T(x) + T(x') = y + y'$$

Therefore $y + y' \in \text{range}(T)$.

• Proof of (ii). Let $y \in \text{range}(T)$. Then there exists $x \in X$ such that T(x) = y. Therefore

$$cy = cT(x)$$
$$= T(cx)$$

Since X is closed under scalar multiplication $cx \in X$. Therefore $cy \in \text{range}(T)$.

Because $\ker(T)$, range(T) are subspaces by Theorem 103, they each have bases, a fact which we will need to use to prove the following theorem.

22.3 Rank-nullity, again

Theorem 104 (Rank Nullity Theorem – Theorem 5.4 in textbook). If $T: V \to W$ is a linear transformation where V is a finite dimensional vector space, then

$$\dim \ker(T) + \dim \operatorname{range}(T) = \dim V$$

If T is an $m \times n$ matrix A, then $A : \mathbb{R}^n \to \mathbb{R}^m$, and we can restate this as

$$\dim NS(A) + \dim CS(A) = n \tag{19}$$

(recall that the column space is the range, and that nullspace and kernel are synonyms).

Proof sketch. Suppose dim $\ker(T) = k$ and dim V = n (note: $k \le n$). Then with some work (omitted, see p242), one can find vectors $v_1, \ldots, v_n \in V$ which form a basis for V with the property that

- v_1, \ldots, v_k is a basis for $\ker(T)$; and,
- $\underbrace{T(v_{k+1}), T(v_{k+1}), \dots, T(v_n)}_{n-k \text{ vectors}}$ is a basis for range(T).

This shows that $\dim \operatorname{range}(T) = n - k$. Therefore we have:

- $\dim \ker(T) = k$
- $\dim \operatorname{range}(T) = n k$
- $\dim V = n$

Putting these together implies

$$\dim \ker(T) + \dim \operatorname{range}(T) = \dim(V).$$

22.4 Dimension of the nullspace

Theorem 105. Let A be an $n \times m$ matrix. Then

$$\dim NS(A) = n - r$$
,

where $r = \dim RS(A)$.

An example will illustrate why Theorem 105 is true. Suppose we have a 4×5 matrix A and we want to solve the linear system AX = 0. Suppose that row-reducing the augmented matrix gives

$$\left[\begin{array}{cccc|cccc}
1 & 0 & 2 & 3 & 4 & 0 \\
0 & 1 & 5 & 6 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]$$

This has two nonzero zero rows after row-reduction, so r = 2. Theorem 105 says that

$$\dim NS(A) = n - r = 5 - 2 = 3.$$

We can check this. The augmented matrix above corresponds to the linear system

$$x_1 + 2x_3 + 3x_4 + 4x_5 = 0$$
$$x_2 + 5x_3 + 6x_4 + 7x_6 = 0$$

or

$$x_1 = -2x_3 - 3x_4 - 4x_5$$
$$x_2 = -5x_3 - 6x_4 - 7x_6$$

and this has three free variables x_3, x_4, x_5 . Therefore the solutions to AX = 0 are of the form

$$\begin{bmatrix} -2x_3 - 3x_4 - 4x_5 \\ -5x_3 - 6x_4 - 7x_5 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ -5 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ -6 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -4 \\ -7 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Therefore the nullspace has dimension 3 because

$$NS(A) = \text{Span} \left\{ \begin{bmatrix} -2\\ -5\\ 1\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} -3\\ -6\\ 0\\ 1\\ 0 \end{bmatrix} \begin{bmatrix} -4\\ -7\\ 0\\ 0\\ 1 \end{bmatrix} \right\}.$$

22.5 Proof that dim $CS(A) = \dim RS(A)$

We can now prove the following theorem, which says that the row space and column space of a matrix are the same thing.

Theorem 106. If A is any $m \times n$ matrix, then

$$\dim RS(A) = \dim NS(A)$$

Proof. By Theorem 104,

$$\dim NS(A) + \dim CS(A) = n. \tag{20}$$

By Theorem 105,

$$\dim NS(A) = n - \dim RS(A) \tag{21}$$

Plugging Eq. (21) into Eq. (20) gives

$$n - \dim RS(A) + \dim CS(A) = n$$

wich simplifies to

$$\dim RS(A) = \dim CS(A).$$

Theorem 106 says that we are justified in writing

$$rank(A) = dim NS(A) = dim CS(A)$$

and hence that

$$rank(A) + nullity(A) = n$$

for any $m \times n$ matrix A.