Homework 6	CMSC 723
	Parsing
Due	: October 28, 2013

1 Context-Free Grammars (30 points)

Consider the following context free grammar:

Intermediate Rules	Terminal Rules
$S \to NP VP$	$\mathrm{D} \to \mathrm{a} \mid \mathrm{the}$
$NP \rightarrow (D) NOM$	$V \rightarrow \text{slept} \mid \text{disappeared} \mid \text{loved} \mid \text{gave} \mid \text{relied}$
$VP \rightarrow V (NP) (NP)$	$N \to cat \mid dog \mid roof \mid man$
$NOM \rightarrow N$	$P \rightarrow in \mid on \mid with$
$NOM \rightarrow NOM PP$	$CONJ \rightarrow and \mid or$
$VP \rightarrow VP PP$	
$\mathrm{PP} \to \mathrm{P} \ \mathrm{NP}$	
$X \to X \ CONJ \ X$	

We designate the start state to be S, and X in the last rule stands for any part of speech (thus the last rule allows NP \rightarrow NP CONJ NP but not NP \rightarrow NP CONJ VP).

- 1. Give a grammatical English sentence that has one an only one valid interpretation in this grammar. Draw the tree corresponding to it.
- 2. Give a grammatical English sentence that has more than one valid interpretation in this grammar. Draw two trees, and discuss whether the meaning in English is ambiguous.
- 3. Give a sentence that has a valid interpretation in this grammar but is not grammatical.
- 4. Give a grammatical English sentence using only these terminals that does not have a valid interpretation in this grammar. Why doesn't it have a valid interpretation?
- 5. Can you give an upper bound for the number of unique sequences of terminals this grammar admits? If not, why not?

2 Penn Treebank (30 points)

In this section, let's consider the 10% sample of the Penn Treebank included in NLTK.

- 1. What is the minimum and maximum height of sentences in the Treebank? Give an example tree for both. How does the depth correlate with sentence length?
- 2. In the following sentence:

```
( (S
(NP-SBJ-1
  (NP (NNP Rudolph) (NNP Agnew) )
  (, ,)
  (UCP
    (ADJP
      (NP (CD 55) (NNS years))
      (JJ old) )
    (CC and)
    (NP
      (NP (JJ former) (NN chairman) )
      (PP (IN of)
        (NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC) ))))
  (, ,)
(VP (VBD was)
  (VP (VBN named)
    (S
      (NP-SBJ (-NONE- *-1) )
      (NP-PRD
        (NP (DT a) (JJ nonexecutive) (NN director) )
        (PP (IN of)
          (NP (DT this) (JJ British) (JJ industrial) (NN conglomerate) ))))))
(...)
```

what does "(-NONE- *-1)" mean? Explain both in terms of this sentence specifically and what it means in general linguistically.

3. In order to build a PCFG, we need to estimate the probability of all of the production rules. What is the probability of each of the following production rules? This is a rare case where we actually want the MLE estimate, as zeros rule out possible parse trees. How many unique non-terminal productions are there? How about terminal productions?

Production Rule	Probability
$NP \rightarrow DT JJ NNS$	
$\mathrm{VP} \to \mathrm{VB} \; \mathrm{NP}$	
$\mathrm{ADJP} \to \mathrm{JJ}\;\mathrm{PP}$	
$\mathrm{VP} \to \mathrm{MD} \mathrm{VP}$	
$NN \rightarrow 'stock'$	
$IN \rightarrow 'like'$	
$IN \rightarrow 'on'$	
IN \rightarrow 'with'	
IN \rightarrow 'about'	
IN \rightarrow 'over'	

3 Probabilistic Context-Free Grammars (40 points)

Consider the following sentence and the following PCFG:

time flies like an arrow						
Intermediate Rules		Terminal Rules				
$S \to NP VP$	0.8	$N \to time$	0.5			
$S \to VP$	0.2	$N \to flies$	0.3			
$\mathrm{VP} \to \mathrm{V} \ \mathrm{NP}$	0.5	$N \to arrow$	0.2			
$\mathrm{VP} \to \mathrm{V} \; \mathrm{PP}$	0.3	$V \to time$	0.3			
$VP \rightarrow VP PP$	0.2	$V \to flies$	0.3			
$\mathrm{NP} \to \mathrm{Det}\ \mathrm{N}$	0.3	$V \to like$	0.4			
$NP \rightarrow N$	0.3	$P \to like$	1.0			
$NP \rightarrow N N$	0.2	$\mathrm{Det} \to \mathrm{an}$	1.0			
$\mathrm{NP} \to \mathrm{NP} \; \mathrm{PP}$	0.2					
$\mathrm{PP} \to \mathrm{P} \ \mathrm{NP}$	1.0					

- 1. What are the four possible parse trees for this sentence?
- 2. Draw a CKY chart parse for the sentence and determine the most likely parse of this sentence. Show your work.