

How does network structure in Agent-Based Models affect epidemiological parameters?

A large simulation study

Aníbal Olivera¹, George Vega Yon², Chong Zhang², Matthew Samore², Karim Khader², Alun Thomas²

- 1. Introductiona. The contextb. The goal
- Simulation studya. Methods
 - 3. Resultsa. Peak Prevalenceb. Peak Timec. Generation Timed. Reproductive Number
- 4. Conclusions

Introduction

Early days of epidemiology → Modelling with continuous mathematics

Early days of epidemiology → Modelling with continuous mathematics

Compartmentalization hypothesis

Early days of epidemiology → Modelling with continuous mathematics

- Compartmentalization hypothesis
 - An individual can be in one of three states: Susceptible (S), Infected (I), Recovered (R), etc.
 - No overlap between states.

Early days of epidemiology → Modelling with continuous mathematics

Compartmentalization hypothesis

- An individual can be in one of three states: Susceptible (S), Infected (I), Recovered (R), etc.
- No overlap between states.

Homogenous Mixing hypothesis

- Each individual has the same chance of coming into contact with an infected individual.
- Eliminates the need to know the precise contact network.

If we assume that a typical individual has $\langle k
angle$ contacts, then

If we assume that a typical individual has $\langle k
angle$ contacts, then

$$i(t) = I(t)/N$$

$$rac{di}{dt}=eta\langle k
angle(1-i)i$$

$$i(t) = rac{i_0 e^{eta \langle k
angle t}}{1 - i_0 + i_0 e^{eta \langle k
angle t}}$$

If we assume that a typical individual has $\langle k
angle$ contacts, then SI Model

If we assume that a typical individual has $\langle k
angle$ contacts, then

SI Model

Characteristic time

$$au = rac{1}{eta \langle k
angle}$$

If we assume that a typical individual has $\langle k
angle$ contacts, then

If we assume that a typical individual has $\langle k \rangle$ contacts, then

$$rac{di}{dt}=eta\langle k
angle i(1-i)-\mu i$$

$$i(t) = \left[1 - rac{\mu}{eta\langle k
angle}
ight]rac{Ce^{(eta\langle k
angle - \mu)t}}{1 + Ce^{(eta\langle k
angle - \mu)t}}$$

If we assume that a typical individual has $\langle k
angle$ contacts, then

If we assume that a typical individual has $\langle k \rangle$ contacts, then

If we assume that a typical individual has $\langle k \rangle$ contacts, then

SIS Model

$$au=rac{1}{\mu\left(R_{0}-1
ight)}$$

Reproductive Number

$$R_0 = rac{eta \langle k
angle}{\mu}$$

If we assume that a typical individual has $\langle k \rangle$ contacts, then

SIR Model

$$egin{aligned} rac{ds}{dt} &= -eta \langle k
angle i [1-r-i] \ rac{di}{dt} &= -\mu i + eta \langle k
angle i [1-r-i] \ rac{dr}{dt} &= \mu i \end{aligned}$$

If we assume that a typical individual has $\langle k \rangle$ contacts, then

SIR Model

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

$$lacksquare p_k = \mathrm{e}^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

$$oldsymbol{
ightarrow} p_k = \mathrm{e}^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

 How many individuals do we expect to interact with?

$$\langle k \rangle = 1,000$$

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

$$oldsymbol{
ightarrow} p_k = \mathrm{e}^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

 How many individuals do we expect to interact with?

$$\langle k \rangle = 1,000$$

$$kpprox \langle k
angle \pm \langle k
angle^{1/2}$$

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

$$oldsymbol{
ightarrow} p_k = \mathrm{e}^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

 How many individuals do we expect to interact with?

$$\langle k
angle = 1,000 \qquad igotharpoonup \langle k
angle^{1/2} = 31.62$$

$$kpprox \langle k
angle \pm \langle k
angle^{1/2}$$

The problem with $\langle k \rangle$

 Let's assume that all individuals interact with others randomly

$$oldsymbol{
ightarrow} p_k = \mathrm{e}^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

 How many individuals do we expect to interact with?

$$\langle k
angle = 1,000 \qquad \longrightarrow \quad \langle k
angle^{1/2} = 31.62$$

$$kpprox \langle k
angle \pm \langle k
angle^{1/2} \quad ightharpoonup kpprox 1000\pm 31.6$$

The problem with $\langle k \rangle$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis

The problem with $\langle k \rangle$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis

No realistic approach

In Agent Based Models, we can add the details of the ego-network of each agent

Rich network-structure

In Agent Based Models, we can add the details of the ego-network of each agent

Rich network-structure

More accurate predictions

The problem with $\langle k \rangle$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis

No realistic approach

With ABM, we have the actual $\,k\,$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis Network structure

The problem with $\langle k \rangle$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis

No realistic approach

With ABM, we have the actual $\,k\,$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis Network structure
- We can compute the Prevalence and $R_{
 m 0}$ more accurately

The problem with $\langle k \rangle$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis

No realistic approach

With ABM, we have the actual $\,k\,$

- Compartmentalization hypothesis
- Homogenous Mixing hypothesis Network structure
- We can compute the Prevalence and $R_{
 m 0}$ more accurately

ABMs are an important research and policy tool in epidemiology

The idea behind R_0

 $R_0>1$: Epidemic grows

 $R_0 < 1$: Epidemic declines

The idea behind R_0

 $R_0>1$: Epidemic grows

 $R_0 < 1$: Epidemic declines

but...

Actually $R_0 < 1$ and still feature full transmission, both in SIR and SEIR! [1, 2]

The goal

We know that real-networks are not random.

The goal

- We know that real-networks are not random.
- Most studies uses particular network models to simulate outbreaks.

The goal

- We know that real-networks are not random.
- Most studies uses particular network models to simulate outbreaks.
- Each network topology is characterized by different levels of local-structures.

The goal

- We know that real-networks are not random.
- Most studies uses particular network models to simulate outbreaks.
- Each network topology is characterized by different levels of local-structures.

How much do these local structures affect different epidemiological indicators?

Simulation Study

Based on real-network data:

• We constructed **1,000 networks** of six topologies, all with similar density.

Based on real-network data:

- We constructed 1,000 networks of six topologies, all with similar density.
- We simulated 20,000 SEIR outbreaks, using the epiworldR package [3].

Based on real-network data:

- We constructed 1,000 networks of six topologies, all with similar density.
- We simulated **20,000 SEIR** outbreaks, using the epiworldR package [3].

Transmission rate [4]

Based on real-network data:

- We constructed 1,000 networks of six topologies, all with similar density.
- We simulated 20,000 SEIR outbreaks, using the epiworldR package [3].

Based on real-network data:

- We constructed 1,000 networks of six topologies, all with similar density.
- We simulated 20,000 SEIR outbreaks, using the epiworldR package [3].

From each outbreak, we get:

Four epidemiological indicators

Peak Prevalence

From each outbreak, we get:

Four epidemiological indicators

Peak Prevalence - Peak time

From each outbreak, we get:

Four epidemiological indicators

Peak Prevalence - Peak time - Generation time

From each outbreak, we get:

Four epidemiological indicators

Peak Prevalence - Peak time - Generation time - Reproductive number

From each outbreak, we get:

Four epidemiological indicators

Peak Prevalence - Peak time - Generation time - Reproductive number

From the underlying network

Two paths - # Balance - # Triangles

Avg. degree - Avg. path length - Transitivity - Modularity

So now we can write regressions models like

$$R_0 \sim eta_0 + ext{ Net-type } + eta_2 ext{ Two paths } + eta_3 ext{ Modularity}$$

So now we can write regressions models like

$$R_0 \sim \beta_0 + ext{ Net-type } + \beta_2 ext{ Two paths } + \beta_3 ext{ Modularity}$$

But what about...

$$R_0 \sim eta_0 + ext{Net-type} \, + eta_2 ext{ Two paths } + eta_3 ext{ Modularity } \ + eta_4 ext{ Modularity }^2$$

So now we can write regressions models like

$$R_0 \sim \beta_0 + \text{ Net-type } + \beta_2 \text{ Two paths } + \beta_3 \text{ Modularity}$$

But what about...

$$R_0 \sim eta_0 + ext{Net-type} \, + eta_2 ext{ Two paths } + eta_3 ext{ Modularity } \ + eta_4 ext{ Modularity }^2$$

...or

$$R_0 \sim \beta_0 + \text{ Net-type } + \beta_2 \text{ Two paths } + \beta_3 \log(\text{ Modularity })$$

 We write all possible combinations of linear, logarithmic, and quadratic form of each variable.

- We write all possible combinations of linear, logarithmic, and quadratic form of each variable.
- How many?

Total formulas
$$=\sum_{k=1}^{n}(1+2k)\binom{n}{k}$$

Quadratic + Log forms of each variable

Possible ways to select *k* variables from *n* variables

- We write all possible combinations of linear, logarithmic, and quadratic form of each variable.
- How many?

$$n = 7 \implies \text{Total formulas} = 1,023$$

- We write all possible combinations of linear, logarithmic, and quadratic form of each variable.
- How many?

$$n = 7 \implies \text{Total formulas} = 1,023$$

4 Dependent
$$\longrightarrow$$
 4 × Total formulas = 4,092

Unfortunately, there is high correlation between the variables

Unfortunately, there is high correlation between the variables

To identify the problematic models:

Generalized Variance Inflation Factor (GVIF)

If.. ${
m GVIF}^{(1/2{
m Df})} > 10$...the model was dropped

Unfortunately, there is high correlation between the variables

To identify the problematic models:

Generalized Variance Inflation Factor (GVIF)

 $m GVIF^{(1/2Df)} > 10$...the model was dropped

This left us with 208 models in total

 Our goal is to find a well-performing and general model for each epidemiological indicator.

- Our goal is to find a well-performing and general model for each epidemiological indicator.
- To find best performing models, we:
 - 1. Got their AIC and BIC values

- Our goal is to find a well-performing and general model for each epidemiological indicator.
- To find best performing models, we:
 - 1. Got their AIC and BIC values
 - 2. Normalized those values

- Our goal is to find a well-performing and general model for each epidemiological indicator.
- To find best performing models, we:
 - 1. Got their AIC and BIC values
 - 2. Normalized those values
 - 3. Computed the mean of the z-scores for AIC and BIC

- Our goal is to find a well-performing and general model for each epidemiological indicator.
- To find best performing models, we:
 - 1. Got their AIC and BIC values
 - 2. Normalized those values
 - 3. Computed the mean of the z-scores for AIC and BIC
 - 4. Sort the models according to this number

• Since we have several regression models, we can search for patterns among the best models.

• Since we have several regression models, we can search for patterns among the best models.

So we:

1. Select the Q% best performing models, with $Q\in(10,25,50)$

• Since we have several regression models, we can search for patterns among the best models.

So we:

- 1. Select the Q% best performing models, with $Q\in(10,25,50)$
- 2. Looked to the **frequency of each variable** among those models..

• Since we have several regression models, we can search for patterns among the best models.

So we:

- 1. Select the Q% best performing models, with $Q\in(10,25,50)$
- 2. Looked to the **frequency of each variable** among those models..
- 3. Looked to the **total number of variables** of those models

Results - Peak Prevalence

The best 10% have only 2 or 3 variables

Results - Peak Prevalence

- The best 10% have only 2 or
 3 variables
- The most prominent variable is Avg. path length (linear and quadratic form), along with Two path - Avg. degree

Results - Peak Prevalence

- The best 10% have only 2 or 3 variables
- The most prominent variable is Avg. path length (linear and quadratic form), along with Two path - Avg. degree
- [Avg. path length^2] has more frequency across all Q

Results - Peak Prevalence

 $ext{Peak}_P = ext{Net-type} + eta_0 ext{ two path} \ + eta_1 ext{ avg. degree} \ + eta_2 ext{ [avg. path length}^2 ext{]}$

Results - Peak Time

 Models with 2 variables performs better

Results - Peak Time

- Models with 2 variables performs better
- Once more Avg. path length is relevant (linear and quadratic form), along with Balance

Results - Peak Time

$$\operatorname{Peak}_T = \operatorname{Net-type} + \beta_0 \text{ balance} + \beta_1 [\operatorname{avg. path length}^2]$$

The best models have only
 1 or 2 variables

- The best models have only1 or 2 variables
- Clear prominence of Avg.
 degree and Balance...

- The best models have only
 1 or 2 variables
- Clear prominence of Avg.
 degree and Balance...

... but they shows high correlation

- The best models have only
 1 or 2 variables
- Clear prominence of Avg.
 degree and Balance...
 - ... but they shows high correlation
- So we get Balance / Avg.
 degree along (optional) with
 other relevant variable

Gen. Time = Net-type $+ eta_0$ balance or

Gen. Time = Net-type + β_0 balance + β_2 [modularity²]

Results - Reproductive Number

- The best models have only1 variable
- That variable has to be
 Balance or Avg. degree
 (in his logarithmic or quadratic form)

Results - Reproductive Number

$$R_0 = \text{Net-type} + \beta_1 \log(\text{ balance})$$

Results

$$R_0 = \text{Net-type} + \beta_1 \log(\text{ balance})$$

$$egin{aligned} ext{Gen. Time} &= ext{Net-type} + eta_0 ext{ balance} \ &+ eta_2 ext{ [modularity}^2 ext{]} \end{aligned}$$

$$ext{Peak}_T = ext{Net-type} + eta_0 ext{ balance} \ + eta_1 ext{[avg. path length}^2 ext{]}$$

$$ext{Peak}_P = ext{Net-type} + eta_0 ext{ two path} \ + eta_1 ext{ avg. degree} \ + eta_2 ext{ [avg. path length}^2 ext{]}$$

Results

Gen. Time = Net-type + β_0 balance $+\beta_2$ [modularity²]

 $Peak_T = Net-type + \beta_0 balance$ $+\beta_1$ avg. path length²

 $Peak_P = Net-type + \beta_0$ two path $+\beta_1$ avg. degree $+\beta_2$ [avg. path length²]

Estimate

Model

Peak preval

Peak time

Gen time

Rt

• Our recommended models:

1. Consists of **few variables** → between 1 - 3 variables

- Our recommended models:
 - 1. Consists of few variables \rightarrow between 1 3 variables
 - 2. Have non-trivial forms

- Our recommended models:
 - 1. Consists of few variables \rightarrow between 1 3 variables
 - 2. Have non-trivial forms
 - 3. Relevant role of Balance and Avg. path length

Our recommended models:

1. Consists of few variables \rightarrow between 1 - 3 variables

2. Have non-trivial forms

3. Relevant role of Balance and Avg. path length

ullet Add more variables to **refine the work** $o \langle k^2
angle$

Thank you!

Reference

- [1] C.-H. Li and A. M. Yousef, Bifurcation analysis of a network-based sir epidemic model with saturated treatment function, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 033129 (2019).
- [2] J. Zhou, Y. Zhao, and Y. Ye, Complex dynamics and control strategies of seir heterogeneous network model with saturated treatment 10.2139/ssrn.4151291 (2022).
- [4] Derek Meyer and George Vega Yon. "epiworldR: Fast Agent-Based Epi Models". In: The Journal of Open Source Software 8.90 (Oct. 2023). DOI: 10.21105/joss.05781. URL: https://joss.theoj.org/papers/10.21105/joss.05781.
- [3] To calculate the transmission rate, we use the following formula: $\beta=\frac{\gamma}{(C/R+\gamma-1)}$, with contact rate C=14, reproductive R=2, and $\gamma=1/7$.

(0.910) (0.684) (0.021) orld (p=0.1)	Peak	Peak preval Peak ti	Gen time
orld (p=0.1)	Scale-free 0.6	free 0.638 -4.251	0.050***
(0.628) (0.985) (0.028) orld (p=0.2) 0.154 1.078*** 0.008	(0.9	(0.910) (0.684	(0.021)
orld (p=0.2)	Small-world (p=0.1) -1.80	world (p=0.1) -1.809*** 0.413	0.069***
(0.195) (0.276) (0.012) sequence 0.997*** 1.288*** -0.049*** (0.196) (0.309) (0.020) enyi 0.925*** 1.500*** -0.045*** (0.195) (0.310) (0.020) h 0.553*** (0.174) e degree 1.488*** (0.263) e path length^2 -1.364*** 3.870*** (0.366) (0.574) e modularity^2 -0.238* ance) ss. 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	(0.6	(0.628) (0.989	(0.028)
1.288*** -0.049*** (0.196) (0.309) (0.020) enyi	Small-world (p=0.2) 0.1	world (p=0.2) 0.154 1.078*	0.008
(0.196) (0.309) (0.020) enyi (0.925*** 1.500*** -0.045*** (0.195) (0.310) (0.020) h (0.553*** (0.174) e degree 1.488*** (0.407) (0.006) e path length^2 -1.364*** 3.870*** (0.366) (0.574) e modularity^2 -0.238* (0.165) ance) os. 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	(0.1	(0.195) (0.276	(0.012)
enyi	Degree-sequence 0.99	e-sequence 0.997*** 1.288*	-0.049***
(0.195) (0.310) (0.020) (0.195) (0.310) (0.020) (0.020) (0.174) (0.174) (0.407) (0.006) (0.407) (0.006) (0.263) (0.263) (0.263) (0.366) (0.574) (0.366) (0.574) (0.165) (0.165) (0.165) (0.165) (0.165) (0.165)	(0.1	(0.196) (0.309	(0.020)
0.553*** (0.174) 1.434*** -0.361*** (0.407) (0.006) 1.488*** (0.263) 1.494*** 3.870*** (0.366) (0.574) 1.404*** 1.401*** 1.401** 1.401** 1.400	Erdos-Renyi 0.92	Renyi 0.925*** 1.500*	-0.045***
(0.174) 1.434*** -0.361*** (0.407) (0.006) 2. degree	(0.1	(0.195) (0.310	(0.020)
-1.434*** -0.361*** (0.407) (0.006) e degree	Two-path 0.55	oth 0.553***	
(0.407) (0.006) e degree 1.488*** (0.263) e path length^2 -1.364*** 3.870*** (0.366) (0.574) e modularity^2 -0.238* (0.165) ance) 98018.8 114201.7 1670.9	(0.1	(0.174)	
e degree 1.488*** (0.263) e path length^2 -1.364*** 3.870*** (0.366) (0.574) e modularity^2 -0.238* (0.165) ance) 98018.8 114201.7 1670.9	Balance	re -1.434	-0.361***
(0.263) 2 path length^2 -1.364*** 3.870*** (0.366) (0.574) 2 modularity^2 -0.238* (0.165) ance) 2 ss. 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9		(0.40	(0.006)
e path length^2 -1.364*** 3.870*** (0.366) (0.574) e modularity^2 -0.238* (0.165) ance) 98018.8 114201.7 1670.9	Average degree 1.48	ge degree 1.488***	
(0.366) (0.574) e modularity^2 -0.238* (0.165) ance) 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	(0.2	(0.263)	
e modularity^2 -0.238* (0.165) ance) os. 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	Average path length^2 -1.36	ge path length^2 -1.364*** 3.870*	
(0.165) ance) 18011 18011 18009 97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	(0.3	(0.366) (0.574	
97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	Average modularity^2	ge modularity^2	-0.238*
97940.8 114131.5 1600.7 98018.8 114201.7 1670.9			(0.165)
97940.8 114131.5 1600.7 98018.8 114201.7 1670.9	Log(Balance)	alance)	
97940.8 114131.5 1600.7 98018.8 114201.7 1670.9			
98018.8 114201.7 1670.9	Num.Obs. 180	Obs. 18011 1801	18009
	AIC 979	97940.8 11413	1600.7
	BIC 980:		
	* p < 0.15, ** p < 0.1, *** p < 0		

0.003 (0.018) -0.117*** (0.017) -0.036*** (0.017) -0.007 (0.015) 0.029** (0.015)

0.708*** (0.097) 18011 77572.4 77634.8