Analysis of some data from microstructure database

Andy Pickering

June 7, 2017

Contents

1	Overview	2
2	Data	2
3	Code	2
4	Results	2
	4.1 Histograms of χ and ϵ	3
	4.2 2D Histograms of ϵ_{χ} vs ϵ	5
	4.3 Histograms of ϵ_{χ}/ϵ	8
	4.4 Plots of normalized χ vs ϵ	10

1 Overview

Analysis of some global microstructure datasets, to compare the results to my EQ14 analysis. Specifically I am looking at γ and the ratio of ϵ_{χ}/ϵ , where γ is the mixing efficiency (more accurately mixing coefficient?) and ϵ_{χ} is computed as

$$\epsilon_{\chi} = \frac{N^2 \chi}{2\gamma T_z^2} \tag{1}$$

, in the framework of trying to estime ϵ from thermistor profiles.

2 Data

- Data are from the microstructure data base at https://microstructure.ucsd.edu/. I am using matlab files made from the raw database files by Amy Waterhouse (shared w/ me via Google drive).
- IWISE 11 vmp data were shared with me by Lou St. Laurent.
- EQ14 data are from Jim Moum and group at OSU.

3 Code

Code and results (including figures and these notes) are available in a github repository: https://github.com/OceanMixingGroup/Analysis/tree/master/Andy_Pickering/micro_database

- Plot_micro_data_AP.m
- Plot_hist_chieps_chi_all.m
- Plot_epschi_eps_2Dhist_all.m
- Plot_chi_eps_norm_all.m

4 Results

4.1 Histograms of χ and ϵ

Most of the data sets contain mostly small values of ϵ (Figure 1). Graviluck and IWISE11 seem to be the only ones w/ ϵ values as large as EQ08.

Figure 1: Histograms of (log10) χ and ϵ for different data sets.

4.2 2D Histograms of ϵ_{χ} vs ϵ

Figures 2 and 3 show 2D histograms of ϵ_{χ} vs ϵ for the various data sets. Based on Figure 2, I estimated the ϵ noise level at about $log_{10}\epsilon = -10$ (except for EQ14, which is estimated to be -8.5). Data below these noise levels are excluded in Figure 3.

Figure 2: 2D histograms of ϵ_{χ} vs ϵ .

Figure 3: 2D histograms of ϵ_{χ} vs ϵ . Values below estimated noise level of $log_{10}[\epsilon] = -10$ discarded.

4.3 Histograms of ϵ_{χ}/ϵ

 \bullet EQ08 and IWISE11 are biased low. Geotraces is biased high. Most of the others are close to 0.

Figure 4: Histograms of (log10) the ratio ϵ_χ/ϵ for different data sets.

Figure 5: Histograms of (log10) the ratio ϵ_{χ}/ϵ . Values below estimated noise level of $log_{10}[\epsilon] = -10$ discarded.

4.4 Plots of normalized χ vs ϵ

Figure 6: χ vs ϵ , normalized such that the slope is proportional to γ .

Figure 7: χ vs ϵ , normalized such that the slope is proportional to γ . Values below estimated noise level of $log_{10}[\epsilon] = -10$ discarded.