Resolução do Exame de AUC

2023/2024

Nota Preliminar

Não há qualquer garantia de que as resoluções estejam totalmente corretas.

Em todo este teste:

- \mathcal{N} denota a álgebra $(\mathbb{N}_0, +, 0)$ de tipo 2,0;
- M_3 denota o conjunto $\{0, a, b, c, 1\}$ e O_6 denota o conjunto $\{0, a, b, c, d, 1\}$;
- $\mathcal{M}_3 = (M_3; \wedge, \vee)$ e $\mathcal{O}_6 = (O_6; \wedge', \vee')$ são os reticulados dados respectivamente pelos dois diagramas seguintes.

Grupo I - Perguntas de V/F

1. a) Existe um homomorfismo $\alpha: \mathcal{O}_6 \to \mathcal{M}_3$ tal que $\ker(\alpha) = \nabla_{\mathcal{O}_6}$.

Resposta: A afirmação é **verdadeira**. Por exemplo, o homomorfismo dado por $\alpha(x) = 0$ para todo o $x \in O_6$ satisfaz $\ker(\alpha) = \nabla_{O_6}$, uma vez que todos os seus elementos têm a mesma imagem (e é fácil verificar que se trata de um homomorfismo).

b)
$$Sg^{\mathcal{O}_6}(\{a,c\}) = O_6.$$

Resposta: A afirmação é **falsa**. Tem-se $Sg^{\mathcal{O}_6}(\{a,c\}) = \{0,a,c,1\}$ pois não é possível obter os elementos b e d calculando sucessivamente ínfimos e supremos com os elementos a e c.

c) \mathcal{O}_6 é um reticulado distributivo.

Resposta: A afirmação é **falsa**. De facto, um reticulado é distributivo se e só se não possuir nenhum sub-reticulado isomorfo a \mathcal{M}_3 nem a \mathcal{N}_5 . Ora, \mathcal{O}_6 não é distributivo, uma vez que o sub-reticulado associado ao subuniverso $\{0, a, b, c, 1\}$ é isomorfo a \mathcal{N}_5 .

d) Existem reticulados não triviais \mathcal{R}_1 e \mathcal{R}_2 tais que $\mathcal{R}_1 \times \mathcal{R}_2$ é isomorfo a \mathcal{O}_6 .

Resposta: A afirmação é **falsa**. Se \mathcal{O}_6 fosse isomorfo a $\mathcal{R}_1 \times \mathcal{R}_2$, então $|O_6| = |R_1| \times |R_2|$. Tratando-se de reticulados não triviais, como $|O_6| = 6$, seria necessário ter-se $|R_1| = 2$ e $|R_2| = 3$ (ou vice-versa). Ora, os únicos reticulados com 2 e 3 elementos são cadeias:

pelo que o seu produto corresponde ao reticulado abaixo:

que não é isomorfo a \mathcal{O}_6 .

e) No monóide \mathcal{N} , visto como categoria, 0 é epimorfismo.

Resposta: A afirmação é **falsa**. Nesta categoria, os morfismos são os números naturais (incluindo o 0) e a composição é dada pela multiplicação. Sendo assim, um número n é um epimorfismo se $m \times n = k \times n \Rightarrow m = k$. Portanto, 0 não é um monomorfismo, visto que $1 \times 0 = 2 \times 0$ e, no entanto, $1 \neq 2$.

f) Em \mathcal{M}_3 , $\Theta(a,a) = \Delta_{M_3}$.

Resposta: A afirmação é **verdadeira**, uma vez que a menor congruência contendo o par (a, a) é a congruência trivial, Δ_{M_3} .

Grupo II - Justificar se é verdade em 2 linhas

Diga, justificando com apenas 2 linhas, se cada uma das seguintes afirmações é verdadeira.

2. Se (P, \leq) é um reticulado, $Q \subseteq P$ e \leq' é a ordem induzida em Q, então (Q, \leq') é um reticulado.

Resolução: A afirmação é **falsa**. Por exemplo, se $P = M_3$ e $Q = \{0, a, b, c\}$, então (Q, \leq') não é um reticulado, uma vez que o conjunto $\{a, b\}$ não tem supremo.

3. Existe um mergulho $\alpha \colon \mathcal{M}_3 \to \mathcal{O}_6$.

Resolução: A afirmação é **falsa**. Se $\alpha \colon \mathcal{M}_3 \to \mathcal{O}_6$ fosse um mergulho, então \mathcal{O}_6 teria de ter um sub-reticulado isomorfo a \mathcal{M}_3 , o que não acontece.

4. A álgebra \mathcal{N} tem um par de congruências-fator.

Resolução: A afirmação é **verdadeira**, uma vez que $(\Delta_{\mathbb{N}_0}, \nabla_{\mathbb{N}_0})$ é um par de congruências fator em \mathcal{N} . De facto, em qualquer álgebra $\mathcal{A} = (A; F)$, tem-se que (Δ_A, ∇_A) é um par de congruências-fator.

5. Na categoria Set, existe um monomorfismo que é um epimorfismo.

Resolução: A afirmação é **verdadeira**. De facto, em qualquer categoria, a identidade associada a qualquer objeto é um monomorfismo e um epimorfismo. Então, por exemplo, em Set tem-se que id_{\emptyset} é um monomorfismo e um epimorfismo.

Grupo III - Demonstrações

Demonstre as seguintes afirmações.

6. Todo o reticulado finito é algébrico.

Resolução: Seja $\mathcal{R} = (R; \wedge, \vee)$ um reticulado finito. Para mostrar que \mathcal{R} é um reticulado algébrico, temos de verificar que:

- 1. \mathcal{R} é um reticulado completo;
- 2. \mathcal{R} é um reticulado compactamente gerado.

Comecemos por 1. Um reticulado diz-se completo se, dado $S \subseteq R$, existe $\bigwedge S$ e $\bigvee S$. Ora, como R é finito, S também é, pelo que existem $x_1, \ldots x_n$ tais que $S = \{x_1, \ldots, x_n\}$. Consequentemente, $\bigwedge S = x_1 \wedge x_2 \wedge \cdots \wedge x_n$ e $\bigvee S = x_1 \vee x_2 \vee \cdots \vee x_n$, uma vez que as operações \wedge e \vee são associativas.

Relativamente a 2., temos de mostrar que, dado $x \in R$, se tem $x = \bigvee S$ para algum $S \subseteq R$ constituído por elementos compactos de R. Além disso, um elemento $a \in R$ é compacto se, sempre que existe $\bigvee A$ e $a \leq \bigvee A$, para algum $A \subseteq R$, então $a \leq \bigvee B$, para algum conjunto finito $B \subseteq A$. Ora, como R é finito, todos os seus elementos são compactos. Por isso, basta mostrar que, dado $x \in R$, existe $S \subseteq R$ tal que $x = \bigvee S$. Para tal, basta considerar $S = \{x\}$, uma vez que $x = x \vee x$.

Por 1. e 2. concluímos que um reticulado finito é completo e compactamente gerado, logo é algébrico.

7. Sejam $\mathcal{A} = (A; F)$ e $\mathcal{B} = (B; G)$ álgebras do mesmo tipo, S um subuniverso de \mathcal{B} e $h: A \to B$ um homomorfismo de \mathcal{A} em \mathcal{B} . O conjunto $h^{\leftarrow}(S) = \{a \in A \mid h(a) \in S\}$ é um subuniverso de \mathcal{A} .

Resolução: Para mostrar que $h^{\leftarrow}(S)$ é um subuniverso de \mathcal{A} , temos de mostrar que este conjunto é fechado para as operações de \mathcal{A} . Ou seja, que, dado $f \in O_n$ e $x_1, \ldots, x_n \in h^{\leftarrow}(S)$, se tem

$$f^{\mathcal{A}}(x_1,\ldots,x_n)\in h^{\leftarrow}(S).$$

Sejam então $\underline{f} \in O_n$ e $x_1, \ldots, x_n \in h^{\leftarrow}(S)$. Por definição de $h^{\leftarrow}(S)$, tem-se que $h(x_1), \ldots, h(x_n) \in S$. Além disso, como S é um subuniverso de \mathcal{B} , decorre que

$$f^{\mathcal{B}}(h(x_1),\ldots,h(x_n)) \in S.$$

Mais ainda, como h é um homomorfismo,

$$f^{\mathcal{B}}(h(x_1),\ldots,h(x_n))=h(f^{\mathcal{A}}(x_1,\ldots,x_n))$$

pelo que $h(f^{\mathcal{A}}(x_1,\ldots,x_n)) \in S$. Consequente, por definição de $h^{\leftarrow}(S)$, decorre que $f^{\mathcal{A}}(x_1,\ldots,x_n) \in h^{\leftarrow}(S)$, como pretendíamos.

8. Se \mathcal{C} é uma categoria onde todo o morfismo é invertível à esquerda, então em \mathcal{C} todo o morfismo é invertível à direita.

Resolução: Seja \mathcal{C} uma categoria em que todo o morfismo é invertível à esquerda e seja $f : A \to B$ um morfismo de \mathcal{C} . Temos de mostrar que f é invertível à direita, isto é, que existe um morfismo $g : B \to A$ tal que $f \circ g = id_B$. Ora, como f é invertível à esquerda, existe $g : B \to A$ tal que $g \circ f = id_A$. Por hipótese, g é invertível à esquerda, pelo que existe $h : A \to B$ tal que $h \circ g = id_B$. Mas então

$$(h \circ g) \circ f = id_B \circ f = f$$

 $h \circ (g \circ f) = h \circ id_A = h.$

Como, numa categoria, a composição é associativa, decorre que f=h. Portanto, $f\circ g=id_B$ e g é uma inversa direita de f, como queríamos.