

 $\max p(y|w_k; w)$, $\forall k \in \{0, ..., |w| - 1\}$

 $:= N \mid NP \mid S \mid PP$

Cat := FxnCat | AtomCat := Cat Slash Cat FxnCat

Slash

AtomCat

Jakob Prange^G Nathan Schneider^G Vivek Srikumar^U

In: TACL 9:243-260

Tree-structured models improve accuracy on rare tags and recover unseen ones without losing performance on frequent tags.

Non 88.79 92.87 19.29 /// Seq 88.73 92.64 25.11 11.62 26.48 89.01 92.70 10.96 Tree

Their better across-the-board performance pays off in **generalizing** to a starkly shifted distribution.

BASELINES W_k W_{k+1} Encoder (SNP)/NP Non[constructive] **Seq**[uential] $\boldsymbol{H}_0 = \text{RoBERTa}(\boldsymbol{w})$ $o_{k,i} = MLP(h_{k,i})$

TreeRNN: $h_{k,c(i)} = GRU_c(Embed(y_{k,i}), h_{k,i})$

AddrMLP: $h_{k,i} = h_{k,0} + \text{Linear}(\text{Features}(i, y_{k,\text{anc}(i)}))$

	L/(/ (IVII LLS			
	orders began	piling	up	
Gold		(S[ng]\NP)/PR	PR	
MLP_10		S[ng]\NP	ADV	
MLP_1		S[ng]\NP	ADV	
K+19		S[ng]\NP	ADV	
RNN		(S[ng]\NP)/PP	S[adj]\NP	
AddrMLP		✓	✓	

FXAMPLES

14141		(3[119] (111 //11	Jiuuj	1 (141
AddrMLP	•	✓	✓	
	garnered	from	1984 to	1986
Gold	(S[pss]\NP)	(ADV/ADV)/NP		
MLP_10	✓	✓		
MLP_1	✓	✓		
ζ+19	✓	✓		
RNN	✓	✓		
AddrMLP	(S[pss]\NP)/PP	(PP/ADV)/NP		
	Why	cons	tructive	?
C-14	651//65-1	(1) ND) CI-	LZ IV NID	

	Why	constructive	?
Gold	S[wq]/(S[adj]\NP)	S[adj]\NP	
MLP_10	<unknown></unknown>	✓	
MLP_1	(S/S)/(S[adj]\NP)	✓	
K+19	✓	✓	
RNN	✓	✓	
AddrMLP	✓	✓	

They capture inter-category relations without being explicitly trained to do so.

Errors are self-consistent.

EFFICIENCY

ICY	Params	Train time	$\frac{\textbf{Infer speed}}{\textit{sents/s}}$	
Model	millions	hours		
Nonconstru	ıctive Clas	sification		
MLP_10	2.0	9	191	
MLP_1	2.4	11	195	
Constructiv	ve: Sequer	ntial		
K+19	11.8	120	0.3	
RNN	4.8	68	135	
Constructiv	ve: Tree-st	ructured		
TreeRNN	8.3	10	125	
AddrMLP	1.3	10	126	

MODELING

The best tree-structured model, AddrMLP, is the smallest model, and similarly fast as nonconstructive ones.

^GNERT @ Georgetown ^UU of Utah NLP