

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT NON INVERTING

- HIGH SPEED: t_{PD} = 12ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 6mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 373

The M74HC373 is an high speed CMOS OCTAL LATCH WITH 3-STATE OUTPUTS fabricated with sub-micron silicon gate C^2MOS technology. This 8-BIT D-Type latches is controlled by <u>a latch enable input (LE)</u> and output enable input (\overline{OE}). While the LE input is held at a high level, the Q outputs will follow the data input. When the LE is taken low, the Q outputs will be latched at the logic level of D input data.

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC373B1R	
SOP	M74HC373M1R	M74HC373RM13TR
TSSOP		M74HC373TTR

While the \overline{OE} input is at low level, the eight outputs will be in a normal logic state (high or low logic level) and when \overline{OE} is in high level the outputs will be in a high impedance state.

The 3-State output configuration and the wide choice of outline make bus organized system simple.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION				
1	OE	3 State Output Enable Input (Active LOW)				
2, 5, 6, 9, 12, 15, 16, 19	Q0 to Q7	3 State Outputs				
3, 4, 7, 8, 13, 14, 17, 18	D0 to D7	Data Inputs				
11	LE	Latch Enable Input				
10	GND	Ground (0V)				
20	V _{CC}	Positive Supply Voltage				

TRUTH TABLE

	INPUTS							
ŌE	LE	D	Q					
Н	X	X	Z					
L	L	X	NO CHANGE (*)					
L,	Н	L	L					
L	Н	Н	Н					

LOGIC DIAGRAM

X: Don't Care
Z: High Impedance
(*): Q Outputs are latched at the time when the LE input is taken low logic level.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 35	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage	2 to 6	V	
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		٦	Test Condition	Value							
Symbol	Parameter	v _{cc}		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		V	
	6.0	I _O =-20 μA	5.9	6.0		5.9		5.9			
		4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μА
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		7	Test Co	ondition	Value							
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90	
	Time	4.5	50			7	12		15		18	ns
	6.0				6	10		13		15		
t _{PLH} t _{PHL}	Propagation Delay	2.0				42	125		155		190	
	Time	4.5	50			14	25		31		38	ns
	(LE, D - Q)	6.0				12	21		26		32	
	2.0				57	175		220		265		
	4.5	150			19	35		44		53	ns	
	6.0				16	30		37		45		
t _{PZL} t _{PZH}	High Impedance	2.0	50			39	125		155		190	ns
Output Enable	Output Enable Time	4.5		$R_L = 1 K\Omega$		13	25		31		38	
	Time	6.0				11	21		26		32	
		2.0				54	175		220		265	
		4.5	150	$R_L = 1 K\Omega$		18	35		44		53	ns
		6.0				15	30		37		45	
t _{PLZ} t _{PHZ}	High Impedance	2.0				30	125		155		190	
	Output Disable Time	4.5	50	$R_L = 1 K\Omega$		14	25		31		38	ns
	Tillie	6.0				13	21		26		32	
$t_{W(H)}$	Minimum Pulse	2.0				15	75		95		110	
	Width (LE)	4.5	50			6	15		19		22	ns
		6.0				6	13		16		19	
t _s	Minimum Set-up	2.0				16	50		65		75	
	Time	4.5	50			4	10		13		15	ns
		6.0				3	9		11		13	
t _h	t _h Minimum Hold Time	2.0					5		5		5	
		4.5	50				5		5		5	ns
		6.0					5		5		5	

CAPACITIVE CHARACTERISTICS

	Parameter	Test Condition		Value								
Symbol		v _{cc}	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{OUT}	Output Capacitance					10						pF
C _{PD}	Power Dissipation Capacitance (note 1)					38						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{|N} + I_{CC}/8$ (per Flip Flop) and the C_{PD} when n pcs of Flip Flop operate, can be gained by the following equation: $C_{PD(TOTAL)} = 22 + 16 \times n$ (pF)

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 $[\]begin{split} &C_L = 50 \text{pF}/150 \text{pF or equivalent (includes jig and probe capacitance)} \\ &R_1 = 1 \text{K}\Omega \text{ or equivalent} \\ &R_T = Z_{OUT} \text{ of pulse generator (typically } 50\Omega) \end{split}$

WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP **AND HOLD TIMES** (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

477

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
Е		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

SO-20 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.2	0.004		0.008		
a2			2.45			0.096		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.5			0.020			
c1			45°	(typ.)				
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.300		
L	0.50		1.27	0.020		0.050		
М			0.75			0.029		
S			8° (r	nax.)	•			

TSSOP20 MECHANICAL DATA

DIM.		mm.		inch			
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	6.4	6.5	6.6	0.252	0.256	0.260	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

