ZHAW Standort Zürich BA I Numerik 2 Übung 10

FS 2012

Dr. R. Massjung, Dr. D. Zuleger

Abgabe: bis 23.5., 18:30h

Besprechung: Übung am 23.5.

Aufgabe 1 (9 Punkte)

Gegeben ist das folgende Anfangswertproblem:

$$y(0) = 1$$

$$y'(t) = t(y^2 + 1)$$

- a) Lösen Sie das Problem mit Hilfe des Runge-Verfahrens. Verwenden Sie eine Schrittweite von h=0.3 und berechnen Sie alle y^k für $k=1\ldots 4$.
- b) Zeichnen Sie die berechneten Werte in ein Koordinatensystem. 2 Punkte
- c) Weisen Sie nach, dass $y(t) = \tan\left(\frac{t^2}{2} + \frac{\pi}{4}\right)$ die Lösung des Anfangswertproblems ist, und zeichnen Sie sie in das Koordinatensystem aus b) ein.

Aufgabe 2 (17 Punkte)

Gegeben ist das folgende Anfangswertproblem:

$$y(0) = 0$$

 $y'(t) = \frac{1}{1+t^2} - 2y^2$

- a) Lösen Sie das Problem mit Hilfe des Euler-Verfahrens, indem Sie das Verfahren in Matlab programmieren. Verwenden Sie $t=0\dots 10$ und eine Schrittweite $h_e=0.25$ und plotten Sie die berechneten Werte in ein Koordinatensystem.
- b) Lösen Sie das Problem mit Hilfe des Runge-Verfahrens, indem Sie Ihr Programm aus Aufgabe a) erweitern. Verwenden Sie wiederum $t=0\dots 10$, aber eine Schrittweite $h_r=2h_e=0.5$. Plotten Sie die berechneten Werte in das Koordinatensystem aus a).

5 Punkte

c) Die Lösung des Anfangswertproblems ist:

$$y(t) = \frac{t}{1+t^2}$$

Plotten Sie die Lösung in das Koordinatensystem aus a) und b).

2 Punkte

- d) Variieren Sie nun die Schrittweiten h_e und h_r . Verwenden Sie $h_e=1$, $h_e=0.5$ und $h_e=0.125$. Für h_r setzen Sie immer $h_r=2h_e$. Plotten Sie die berechneten Werte und die bekannte Lösung aus c) jeweils in ein Koordinatensystem.
- e) Was fällt Ihnen bei den verschiedenen Schrittweiten und den beiden Verfahren auf?

2 Punkte