

Learning to Model Pixel-Embedded Affinity for Homogeneous Instance Segmentation

Wei Huang¹, Shiyu Deng¹, Chang Chen¹, Xueyang Fu¹, Zhiwei Xiong^{1,2,*}

¹University of Science and Technology of China ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center zwxiong@ustc.edu.cn

Presenter: Wei Huang (weih527@mail.ustc.edu.cn)

Background

Instance Segmentation & Homogeneous Instance Segmentation

Instance Segmentation

Homogeneous Instance Segmentation

Background

- Challenges
 - Similar appearances
 - Dense distributions
 - Ambiguous boundaries

Related Work

Proposal-based Instance Segmentation

Related Work

- Proposal-based Instance Segmentation
- Proposal-free Instance Segmentation
 - Affinity learning

Related Work

- Proposal-based Instance Segmentation
- Proposal-free Instance Segmentation
 - Affinity learning
 - Metric learning

Introduction

- Motivations
 - How to preserve the semantic information of instances
 - How to improve the distinguishability of adjacent instances

Introduction

Contributions

Proposed	Operation	Purpose
Self-Correlation Module (SCM)	Explicitly modeling the pairwise relationship between pixels	To preserve the semantic instance information
Cross-Correlation Module (CCM)	Mutually estimating the pairwise relationships under different views and appearances of the input image	To improve the distinguishability of adjacent instances
Embedding Pyramid Module (EPM)	Modeling affinity on different scales	To integrate the global instance information

> Affinity Definition

SCM: Modeling Affinity Explicitly

> CCM: Distinguishing Adjacent Instances

> EPM: Integrating Global Information

> Framework

➤ Datasets & Implementation details & Metrics

Dataset	Description	Mode	Training set	Validation set	Test set	Metric
CVPPP [1]	Plant leaves	Consumer- grade camera	108 (530x500)	20 (530x500)	33 (530x500)	SBD, DiC
BBBC039V1 [2]	Nuclei of U2OS cells	Fluorescence microscopy	100 (520x696)	50 (520x696)	50 (520x696)	AJI, Dice, PQ
AC3/AC4 [3]	Neurons of mouse brain	Electron microscope	80 (1024x1024)	20 (1024x1024)	100 (1024x1024)	VOI, ARAND

^{[1].} https://competitions.codalab.org/competitions/18405

^{[2].} https://bbbc.broadinstitute.org/BBBC039

^{[3].} https://software.rc.fas.harvard.edu/lichtman/vast/AC3AC4Package.zip

> Results

CVPPP

Methods	Param.	SBD	DiC
MSU (Scharr et al. 2016)	_	66.7	2.3
Nottingham (Scharr et al. 2016)	-	68.3	3.8
Wageningen (Yin et al. 2014)	-	71.1	2.2
IPK (Pape and Klukas 2014)	-	74.4	2.6
Coloring (Kulikov et al. 2018)	30.2M	80.4	2.0
ML-De (De Brabandere et al. 2017)	23.1M	84.2	1.0
Recurrent (Ren and Zemel 2017)	-	84.9	0.8
Aug. (Kuznichov et al. 2019)	-	88.7	5.3
Harmonic (Kulikov et al. 2020)	43.1M	89.0	3.0
Synthesis (Ward et al. 2018)	105.7M	90.0	-
PFFNet (Liu et al. 2021)	105.7M	91.1	-
Ours w/ ResNet-50	15.3M	91.7	1.5
Ours w/ ResNet-101	34.3M	91.9	1.4
Ours w/ ResUNet	4.7M	92.3	2.4

Quantitative comparison with state-of-theart methods on the test set of CVPPP A1.

Dataset	Methods	Clustering	SBD	DiC
A1	AL-Gao	Mutex	87.1	1.25
	ML-De	Mean-shift	87.3	1.45
	ML-De	Mutex	88.5	1.10
	Ours	Mutex	89.1	0.85
A2	AL-Gao	Mutex	71.1	2.61
	ML-De	Mean-shift	71.2	2.52
	ML-De	Mutex	73.4	2.00
	Ours	Mutex	76.3	1.71

Quantitative comparison with affinity learning (AL-Gao) and metric learning (ML-De) on the validation sets of CVPPP A1 and A2.

- > Results
 - CVPPP

Qualitative comparison with affinity learning (AL-Gao) and metric learning (ML-De).

- > Results
 - CVPPP
 - BBBC039V1

Methods	AJI	Dice	PQ
Mask R-CNN (He et al. 2017)	0.7983	0.9277	0.7773
Cell R-CNN (Zhang et al. 2018)	0.8070	0.9290	0.7959
UPSNet (Xiong et al. 2019)	0.8128	0.9274	0.7857
JSISNet (De Geus et al. 2018)	0.8134	0.9316	0.7913
PanFPN (Kirillov et al. 2019)	0.8193	0.9320	0.7960
OANet (Liu et al. 2019b)	0.8198	0.9372	0.8085
AUNet (Li et al. 2019)	0.8252	0.9377	0.8090
Cell R-CNN v2 (Liu et al. 2019a)	0.8260	0.9336	0.8010
PFFNet (Liu et al. 2021)	0.8477	0.9478	0.8330
Ours	0.8674	0.9673	0.8420

Raw/Groundtruth Embedding Segmentation

Quantitative comparison with state-of-theart methods on the test set of BBBC039V1.

Visual results on the test set of BBBC039V1.

Results

- **CVPPP**
- BBBC039V1
- AC3/AC4

Methods	VOI_S	VOI_{M}	VOI	ARAND
ML-De	1.5752	0.6151	2.1903	0.1964
SuperHuman	1.1445	0.2630	1.4075	0.1220
MALA	1.3039	0.2423	1.5462	0.1203
Ours	0.8522	0.2322	1.0844	0.0938

Quantitative comparison with metric learning (ML-De) and two affinity learning methods (i.e., SuperHuman and MALA) on the test set of AC3/AC4.

Visual comparison on the test set of AC3/AC4. We select 10 neurons for qualitative comparison.

- > Ablation studies
 - The effectiveness of modules

SCM	CCM	EPM	SBD	DiC
√			87.7	1.15
\checkmark		\checkmark	88.1	1.00
\checkmark	\checkmark		88.5	0.95
\checkmark	\checkmark	\checkmark	89.1	0.85

Ablation results for the effectiveness of modules.

Visual demonstration for the effectiveness of modules on the CVPPP A1 dataset.

- > Ablation studies
 - The effectiveness of modules
 - The effectiveness of transformations

Flip. & Rot.	Cutout	Intensity	SBD	DiC
	✓	✓	86.5	1.35
\checkmark		\checkmark	86.5 87.7	1.00
\checkmark	\checkmark		88.6	0.85
√	✓	✓	89.1	0.85

Ablation results for the effectiveness of transformations.

- Ablation studies
 - The effectiveness of modules
 - The effectiveness of transformations
 - Dimension of embeddings

Ablation results for dimension of embeddings

- Ablation studies
 - The effectiveness of modules
 - The effectiveness of transformations
 - Dimension of embeddings
 - Range set of affinity

Ablation results for dimension of range set of affinity

- Ablation studies
 - The effectiveness of modules
 - The effectiveness of transformations
 - Dimension of embeddings
 - Range set of affinity
 - Adaptive affinity

\mathcal{R}	\mathcal{N}	SBD	DiC
	4	76.3	1.71
	8	77.1	1.68
	8	77.4	1.55

Ablation results for adaptive affinity by extending the ranges and neighborhoods of affinity during inference on the CVPPP A2 dataset.

Conclusion

- A pixel-embedded affinity modeling method for homogeneous instance segmentation, including:
 - A self-correlation module to enable explicit affinity modeling
 - A cross-correlation module to improve the distinguishability of adjacent instances
 - A embedding pyramid module to integrate the global instance information
- Versatile and superior performance on three representative datasets

Thanks for your listening!

Presenter: Wei Huang (weih527@mail.ustc.edu.cn)

https://github.com/weih527/Pixel-Embedded-Affinity

