| ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ    |        |        |  |  |  |  |  |  |
|-----------------------------------|--------|--------|--|--|--|--|--|--|
| КАТЕДРА ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНИКА |        |        |  |  |  |  |  |  |
| Студент                           | Фак. № |        |  |  |  |  |  |  |
| Факултет                          | Група  | Дата   |  |  |  |  |  |  |
| Преподавател                      |        | Подпис |  |  |  |  |  |  |

# Упражнение №4

### ИЗСЛЕДВАНЕ НА ЛИНЕЙНИ ЕЛЕКТРИЧЕСКИ ВЕРИГИ С ИНДУКТИВНИ ВРЪЗКИ

1. Теоретични положения

#### 2. Опитна постановка

### 2.1. Определяне на комплексните съпротивления на бобините и едноименните им изводи





#### Последователно свързване





#### Паралелно свързване





- 2.2. Определяне на зависимостта на коефициента на взаимна индукция от:
  - а) линейното отместване M(x) (макет 1)
  - б) ъгловото отместване M(lpha) (макет 2)



2.3. Определяне на активната мощност, предавана по индуктивен път (макет 1)



- 3. Резултати от измерванията и изчисленията
- 3.1. Определяне на комплексните съпротивления (макет 1)

| Изследван                                                      | U   | I   | P | z | $\varphi$ | R | X | Z = R + jX |
|----------------------------------------------------------------|-----|-----|---|---|-----------|---|---|------------|
| двуполюсник                                                    | V   | A   | W | Ω | deg       | Ω | Ω | Ω          |
| $Z_1$                                                          |     | 0,9 |   |   |           |   |   |            |
| $Z_2$                                                          |     | 0,9 |   |   |           |   |   |            |
| $Z_{{\it nocn.cupn.}}$                                         | 110 |     |   |   |           |   |   |            |
| $Z_{{\scriptscriptstyle nocn. Hec}_{\scriptscriptstyle DZn}.}$ |     | 0,9 |   |   |           |   |   |            |
| $Z_{\it nap.cъгл.}$                                            |     | 0,9 |   |   |           |   |   |            |
| $Z_{\it nap. Hec}$ ъгл.                                        |     | 0,9 |   |   |           |   |   |            |

3.2. Определяне на зависимостта на коефициента на взаимна индукция при  $I_1 = 0.9A = const$  от: а) линейното отместване M(x) (макет 1)

| Х                            | ст | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
|------------------------------|----|---|---|---|---|---|----|----|----|
| ${U}_{\scriptscriptstyle 2}$ | V  |   |   |   |   |   |    |    |    |
| M                            | mН |   |   |   |   |   |    |    |    |

б) ъгловото отместване  $M(\alpha)$  (макет 2)

| α                            | deg | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
|------------------------------|-----|---|----|----|----|----|----|----|----|----|----|
| ${U}_{\scriptscriptstyle 2}$ | V   |   |    |    |    |    |    |    |    |    |    |
| M                            | mН  |   |    |    |    |    |    |    |    |    |    |

- 3.3. Изчисляване на максималния коефициент на взаимна индукция M и на комплексното съпротивление  $Z_{\scriptscriptstyle M}$  (макет 1) при:
  - а) последователно свързване

$$M =$$

$$Z_{\scriptscriptstyle M} =$$

б) трансформаторно свързване

$$M =$$

$$Z_{\scriptscriptstyle M} =$$

### 3.4. Определяне на активната мощност, предавана по индуктивен път (макет 1)

| Макет 1    | U  | $I_1$ | $I_2$ | $P_{W1}$ | $P_{W2}$ | $P_{R1}$ | $P_{R2}$ | $P_{M12}$ | $P_{M21}$ |
|------------|----|-------|-------|----------|----------|----------|----------|-----------|-----------|
|            | V  | A     | A     | W        | W        | W        | W        | W         | W         |
| Опитно     | 50 |       |       |          |          |          |          |           |           |
| Аналитично | 50 |       |       |          |          |          |          |           |           |

## 4. Графики



### 5. Изчисления