General Electronics II

3rd April 2018 (Tue.)

Room: E202 10:30-12:00

ผู้สอน: คร. อัจฉรา พิเชฐจำเริญ

BJT AC Analysis

Outline:

- Review of ac
- r_e model
- Common-Emitter Fixed-Bias Configuration
- Voltage-Divider Bias
- CE Emitter-Bias Configuration

AC waveform

Review:

How large of I_C , I_B , I_E ?

BJT = Current control device

FET = Voltage control device

BJT has β (beta)

FET has g_m transconductance factor

Amplifier Modeling:

- Approximation of device behavior to Equivalent circuit.
- Apply with circuit analysis theory to solve the parameters.
- 1. Hybrid Equivalent Network → data sheet data
- 2. r_e model \rightarrow actual operation data but no feedback terms
- 3. Two-port system

r_e Transister Model

Common-Emitter Fixed-Bias Configuration

Transform to r_e model

Parameters

$$Z_{\rm i} = r_{\rm e} = \frac{26 \, mV}{I_E}$$

$$V_i = 0$$
; $Z_o =$

$$A_{v} =$$

180° phase shift

- a. Determine r_e .
- b. Find Z_i (with $r_o = \infty \Omega$).
- c. Calculate Z_o (with $r_o = \infty \Omega$).
- d. Determine A_v (with $r_o = \infty \Omega$).
- e. Repeat parts (c) and (d) including $r_o = 50 \, \mathrm{k}\Omega$ in all calculations and compare results.

VOLTAGE-DIVIDER BIAS

