Wed 12-14. BO39.							
Literature Script Hutcher AT - Bredon, Geometry & Topology							
- Older Scripts							
Contents Cohomology H*(X) - product structures on cohomology - Pomcaré duality							
- higher hamstopy groups The(X)							
Why cohomology? Cohomology is contravariant. If f: X-Y							
is continuous, we get induced map $f^*: H^*(Y) \to H^*(X)$							
Toy problem. $U \subseteq \mathbb{R}^2$ open, and extra structure: Vitield $V: U \to \mathbb{R}^2$ cts.							
· line field L: U - IRP1 cts							
Question: given a line field L, is there a vfield V s.t. L(x) = Span(V(x)) 4xEU?							
Not always! Not always! Not valid vector field, Valid line field.							
If this is possible or not as litting problem							
$\begin{array}{c} X \\ X \\ X \\ X \\ Y \\ X \\ Y \\ Y \\ Y \\ Y \\$							

This could be prirated in terms of the fundamental group of U & RP2.
ot U & IKP2.
Con me parkage this into some kind of obstruction on U?
"The problem is the 1 ETT. (TRP1) - if this (or any odd#) is in the inverge of L.
We can with cohomology. In H1(IRP1), there is a
class w which measures parity of how often we turn in TLa"
Since cohomology is contravariant, we then get
L*W EH*(U, 2/22)
"obstruction to L = < V)"
If L*w≠0, L is not defined by the vfield.
This principle is common: "classitying map"
extra structure) -> (Mup X -> C) on spare X
f*w E H*(X) Em H*(C) contains "characteristic classes"
Allows to study/constrain existence of structure on & via study of cohomology.
Cohomology
Recall: homology: purely alwance
Space X → Chain complex Ci → handogy H:
$Cochen Cplx C^i \sim coh H^i$.
Suppose ue houre a chain complex Ci ot free Abelian groups.

abelian \cdots $C_{n+1} \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots$
take a group G (feel free to think about G=Z) and consider the dual (Ch) = Horn (Cn, G). addithe group
We have no nutural map from $C_n^* \to C_{n-1}$, but we do have one from $C_n^* \to C_{n+1}$
2 *: Hom(Cn,G) → Hom(Cn+1,G) 4 → 4.3
$\cdots \to C_{n-1}^* \to C_n^* \xrightarrow{S} C_{n+1}^* \to C_{n+2}^* \to \cdots$
△ Conventions differ on how to define S . (Featons! Bredon S : $C_n^* \to C_{n+1}^*$ in $(-1)^{m/3}$ * do not put this sign)
Det: A cochain complex C° is a collection of Ab groups C° w/ codiffeentials S, s.t. S, = 0.
~> from $(C.,G)$ is a cochain complex, as defined above. Let $C(C.,G)$ = Hom $(C.,G)$ $C(C.,G)$
Pet: for a cochain Cx C^{\bullet} , detire cohomology as Hi (C^{\bullet}) = Ker Si /im Si-1
If C. is a cham complex, then any choice of Abgroup G gives a C.C.
Hom(C,G),
hence a cohomology and thus con gps. H*(C.; G)
If C. is the singular Cochem Cx of Spriex,
H*(X', G) = H*(dlow(C,G))

```
\cdots \rightarrow 0 \rightarrow Z \xrightarrow{\circ} Z \xrightarrow{\circ} Z \xrightarrow{\circ} Z \xrightarrow{\circ} 0
 H_{*}(C_{*}) = \begin{cases} Z & n=0 \\ \frac{2}{2} = 1 \\ 0 & n=2 \end{cases}
 G=Z, dualize:
      -- -- D - Z - Z - Z - Hom(Z,Z) - 0
       H*(Hom(C., Z))= D n=1 ns not the

2/22 n=2

duels of H.
 G= Z/2Z has different results...
Functoriality. If C. - D. is a map of coch exs,
dualizing gives dlom(D., G) - Hom(C., G)
                                    4 - 40f
induas a map
                H* (dlom(D., G)) -> H* (dlom(C., G)).
We want to now relate con of Home C., G) to
 Lemma. For any ch cx of Abelian gps, any Abelian G, there is a natural surj.
                           h: H"(C.;G) → Hom(H,(Co);G)
           and the sequence
           0 > Ker(h) -> H^(C.; G) -> Hom(Hn(C.); 6) -O
           splits.
```


detines the section.										
Check	that	this	is	the	desired	section.				