Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 1

Выполнил					
		(фамилия, и.о.)	(подпись)		
Проверил		(фамилия, и.о.)	(подпись)		
""	20г.	Санкт-Петербург,	20г.		
Работа выполнена	а с оценкой				
Лата зашиты "	"	20 г			

Задание

Цель работы

Изучение частотных характеристик типовых динамических звеньев и способов их построения; построение частотных характеристик, расчёт передаточных функций для заданных типовых звеньев.

Таблица 1 – Исходные элементарные звенья

Тип звена	Передаточная функция
Апериодическое 1-го порядка	$\frac{k}{Ts+1}$
Дифференцирующее с замедлением	$\frac{ks}{Ts+1}$
Консервативное	$\frac{k}{T^2s^2+1}$

Таблица 2 – Параметры

k	Т	ξ
3	5	0.4

1 Исследование апериодического звена 1-го порядка

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{Ts+1} \tag{1}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{-k(T\omega j + 1)}{T^2\omega^2 + 1} \tag{2}$$

$$A(\omega) = \frac{k}{\sqrt{T^2 \omega^2 + 1}} \tag{3}$$

$$\psi(\omega) = -arctg(T\omega) \tag{4}$$

Данные, полученные по результатам моделирования, представлены в таблице 3.

Таблица 3 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	4.97	13.93	-7.2
2.51	0.4	4.85	13.71	-14.4
6.31	0.8	4.23	12.52	-28.8
15.85	1.2	2.67	8.52	-58.32
39.81	1.6	1.22	1.71	-77.76
100	2	0.5	-6.07	-82.8
251.19	2.4	0.2	-14.03	-86.4
630.96	2.8	$7.92 \cdot 10^{-2}$	-22.02	-89.28
1,584.89	3.2	$3.15 \cdot 10^{-2}$	-30.02	-86.4
3,981.07	3.6	$1.26 \cdot 10^{-2}$	-38.02	-86.4
10,000	4	$5\cdot 10^{-3}$	-46.02	-88.56

На рисунке 1 представлены частотные характеристики апериодического звена 1-го порядка.

Рисунок 1 — Частотные характеристики апериодического звена 1-го порядка

2 Исследование дифференцирующего звена с замедлением

Передаточная функция исследуемого звена:

$$W(s) = \frac{ks}{Ts+1} \tag{5}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{k(\omega j + T\omega^2)}{T^2\omega^2 + 1} \tag{6}$$

$$A(\omega) = \frac{k\omega}{\sqrt{T^2\omega^2 + 1}}\tag{7}$$

$$\psi(\omega) = arctg \frac{1}{T\omega} \tag{8}$$

Данные, полученные по результатам моделирования, представлены в таблице 4.

Таблица 4 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	4.97	13.93	-277.2
2.51	0.4	12.18	21.71	-284.4
6.31	0.8	26.68	28.52	-298.8
15.85	1.2	42.29	32.52	-328.32
39.81	1.6	48.49	33.71	-347.76
100	2	49.74	33.93	-352.8
251.19	2.4	49.95	33.97	-356.4
630.96	2.8	49.99	33.98	-359.28
1,584.89	3.2	50	33.98	-356.4
3,981.07	3.6	50	33.98	-356.4
10,000	4	50	33.98	-358.56

На рисунке 3 представлены частотные характеристики дифференцирующего звена с замедлением.

Рисунок 2 — Частотные характеристики дифференцирующего звена с замедлением

3 Исследование консервативного звена

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{T^2 s^2 + 1} \tag{9}$$

Найдём выражения для АЧХ и ФЧХ:

$$A(\omega) = \frac{k}{|1 - T^2 \omega^2|} \tag{10}$$

$$\psi(\omega) = \begin{cases} 0, \ \omega < \frac{1}{T} \\ -180, \ \omega > \frac{1}{T} \end{cases}$$
 (11)

Данные, полученные по результатам моделирования, представлены в таблице 4.

Таблица 5 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	5.36	14.59	0.36
2	0.3	5.6	14.96	10.8
3.98	0.6	8.07	18.13	-10.8
7.94	0.9	23.6	27.46	1.08
15.85	1.2	7.97	18.03	-189.16

На рисунке 3 представлены частотные характеристики консервативного звена. Снять полностью характеристику не удалось из-за сильного искажения выходного сигнала, поэтому смоделированные графики дополняют аналитически полученные.

Рисунок 3 — Частотные характеристики консервативного звена

Вывод

В ходе проведения данной лабораторной работы с помощью математического моделирования и аналитических расчётов определен вид частотных характеристик трех динамических звеньев: апериодического звена первого порядка, дифференцирующего звена с замедлением и консервативного звена, – а также получены годографы положения вектора передаточной функции для всех трех звеньев. Вид полученных характеристик полностью согласуется с начальными предсказаниями, сделанными при аналитическом анализе выражений для передаточных функций.

Были построены асимптотические ЛАЧХ звеньев. При сравнении с полученными математически данными графики ЛАЧХ и асимптотических ЛАЧХ сошлись.