CAN207 Continuous and Discrete Time Signals and Systems

Lecture-8

Continuous-Time Fourier Transform

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content

- 1. Fundamentals of CTFT
 - From CTFS to CTFT
 - Synthesis and Analysis equations
 - Linear and angular frequencies
 - Relationship between FT spectrum and FS coefficients
 - Convergence of CTFT: Dirichlet conditions
 - (Fourier transform of a periodic signal) optional
- 2. Fourier transform pairs
 - $-e^{j\omega_0 t}$, $\delta(t)$, constant x(t)=1, impulse train, square wave and sinc() function, etc.
 - Table of CTFT pairs

Recall

• A continuous-time periodic signal x(t)

$$-x(t) = x(t+T)$$

- Period T, angular frequency $\omega_0 = \frac{2\pi}{T}$.
- can be represented as sums of complex exponentials:
 - Synthesis equation:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

– Analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

• What will happen to the spectrum of a rectangular pulse when T get increased, while keeping the same width of the pulse?

• CTFS of the rectangular pulse signal (T=4ms)

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n \frac{t}{T}}$$

$$C_n = \frac{2}{4} sinc(n\frac{2}{4})$$

• CTFS of the rectangular pulse signal (T=8ms)

$$C_n = \frac{2}{8} sinc(n\frac{2}{8})$$

• CTFS of the rectangular pulse signal (T=16ms)

• FS representation of a periodic signal: $x_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\frac{2\pi}{T}t}$

• FS coefficient:

substitue into above equation, get:

$$x_T(t) = \sum_{n=-\infty}^{\infty} \int_{-T/2}^{T/2} x_T(t) e^{-j2\pi t \frac{n}{T}} dt e^{j2\pi t \frac{n}{T}} \frac{1}{T}$$

• What will happen when $T \rightarrow \infty$

$$\left(\Delta f = \frac{1}{T}\right) \to df$$
 In the limit, as T approaches infinity, the spectrum $\left(f_n = \frac{n}{T}\right) \to f$ becomes continuous.

 $c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jn\frac{2\pi}{T}t} dt$

$$\Delta J = \frac{1}{T} - \frac{1}{T}$$

when $T \rightarrow \infty$

$$\left(\Delta f = \frac{1}{T}\right) \to df$$

$$\left(f_n = \frac{n}{T}\right) \to f$$

1.2 Fourier transform: synthesis and analysis

• Forward Fourier transform (analysis equation)

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi tf}dt$$

• Inverse Fourier transform (synthesis equation)

$$x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} X(f)e^{j2\pi tf}df$$

- Fourier transform pair: $x(t) \stackrel{f}{\longleftrightarrow} X(f)$
 - x(t) exists in the "time domain (TD)"
 - X(f) exists in the "frequency domain (FD)"

1.3 Linear and angular frequencies

- Linear frequency f
 - Unit: Hz(1/s)
 - Fourier transform
 - Forward (analysis)

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi tf}dt$$

• Inverse (synthesis)

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi tf}df$$

• FT pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f)$$

- Angular frequency $\omega = 2\pi f$
 - Unit: rad/s
 - Fourier transform
 - Forward:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

• FT pair
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

Example

Fourier transform of the rectangular pulse signal

$$x(t) = rect\left(\frac{t}{\tau}\right)$$

$$= \begin{cases} 1, & |t| \le -\tau/2 \\ 0, & \text{otherwise} \end{cases}$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt = \int_{-\tau/2}^{\tau/2} e^{-j2\pi ft}dt$$
$$= \frac{e^{-j2\pi ft}}{-j2\pi f} \Big|_{-\tau/2}^{\tau/2} = \frac{e^{-j\pi f\tau} - e^{j\pi f\tau}}{-j2\pi f}$$

$$= \frac{\sin(\pi f \tau)}{\pi f}$$
$$= \tau \operatorname{sinc}(f \tau)$$

1.4 Relationship between $X(\omega)$ and a_k

• FS spectrum (coefficients a_k):

$$a_k = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt$$

• FT spectrum:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

- Then: $Ta_k = X(\omega)|_{\omega = k\omega_0}$
 - $X(\omega)$ is the envolope of Ta_k
 - a_k are the samples of $\frac{1}{T}X(\omega)$

1.5 Meaning of the FT $X(\omega)$

- $X(\omega)$ contains equivalent information to that in x(t).
 - It is widely used to study linear systems.
- Allows to generalize the concept of fourier series to finite duration and non-periodic signals.
- Introduces the concept of *continuous frequency*.
- $X(\omega)$ is called the spectrum of x(t).
 - Magnitude $|X(\omega)|$
 - − Phase $\angle X(\omega)$

1.6 Convergence of FT: Dirichlet conditions

- If $\int_{-\infty}^{\infty} x(t)e^{-jk\omega_0 t}dt$ goes to infinity then we don't have a valid Fourier transform for x(t).
- If x(t) is a finite-energy signal, i.e. $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$, then $X(\omega)$ is finite.
- Dirichlet conditions that ensures $\mathcal{F}^{-1}\{\mathcal{F}[x(t)]\} = x(t)$ except at discontinuities:
 - Signal x(t) is integrable: $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$;
 - x(t) has a finite maxima and minima within any finite interval;
 - x(t) has a finite number of discontinuities within any interval, and all discontinuities are finite.

1.7 Fourier transform of a periodic signal

• For periodic signal $\tilde{x}(t)$

$$\tilde{x}(t) \stackrel{FS}{\Longleftrightarrow} a_k$$

Fourier series coefficients

$$\widetilde{x}(t) \stackrel{CTFT}{\longleftrightarrow} \widetilde{X}(\omega)$$
 Fourier transform

$$\widetilde{X}(\omega) \triangleq \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \omega_0)$$

CTFT of
$$\widetilde{X}(\omega)$$
:

Calculate inverse
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{X}(\omega) e^{j\omega t} d\omega$$
CTFT of $\widetilde{X}(\omega)$:

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{+\infty}2\pi a_k\int_{-\infty}^{+\infty}\delta(\omega-\omega_0)e^{j\omega t}d\omega =\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}=\tilde{x}(t)$$

 $\rho jk\omega_0 t$

1.7 Fourier transform of a periodic signal

• Example: Symmetric square wave

discrete-frequency sequence a_k

continuous-freq. impulse train

1.7 Fourier transform of a periodic signal

- $-\tilde{x}(t)$ is periodic
- -x(t) represents one period

$$a_k = \frac{1}{T}X(\omega)|_{\omega = k\omega_0}$$

• Fourier transform of $\tilde{x}(t)$

$$\widetilde{X}(\omega) \triangleq \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \omega_0)$$

Quiz 1

• Find the CTFT of the following signals:

1.
$$x(t) = e^{-a|t|}, a > 0$$

2.
$$x(t) = e^{-2(t-1)}u(t-1)$$

• Eg.1 Calculate the CTFT of a constant function $x(t) = \delta(t)$

• Solution:

$$X(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = e^{-j\omega 0} \int_{-\infty}^{\infty} \delta(t)dt = 1$$

• CTFT pair: $\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$

• Eg.2 Calculate the CTFT of a constant function $x(t) = \delta(t - t_0)$

• Solution:

$$X(\omega) = \int_{-\infty}^{\infty} \delta(t - t_0) e^{-j\omega t} dt = e^{-j\omega t_0} \int_{-\infty}^{\infty} \delta(t) dt = e^{-j\omega t_0}$$

• CTFT pair: $\delta(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega t_0}$

- Eg.3 The CTFT of an aperiodic function x(t) is given by $X(\omega) = 2\pi\delta(\omega)$
- Determine the aperiodic function x(t).
- Solution:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega) e^{j\omega t} d\omega = \int_{-\infty}^{\infty} \delta(\omega) d\omega = 1$$

• CTFT pair: $1 \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi \delta(\omega)$

- Eg.4 The CTFT of an aperiodic function x(t) is given by $X(\omega) = 2\pi\delta(\omega \omega_0)$
- Determine the aperiodic function x(t).
- Solution:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) e^{j\omega t} d\omega$$
$$= e^{j\omega_0 t} \int_{-\infty}^{\infty} \delta(\omega - \omega_0) d\omega = e^{j\omega_0 t}$$

• CTFT pair: $e^{j\omega_0 t} \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$

• Eg.5 Calculate the CTFT of sinusoidal signals $x_1(t) = \cos \omega_0 t$ $x_2(t) = \sin \omega_0 t$

• Eg.6 Calculate the CTFT of a linear combination of complex exponentials:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

• Eg.7 Calculate the CTFT of a square wave:

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases}$$

• Eg.8 Calculate the Inverse CTFT of a sinc function:

$$X(\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

• Eg.9 Calculate the CTFT of an impulse train:

$$p(t) = \sum_{n = -\infty} \delta(t - nT)$$

• Eg.10 Calculate the CTFT of: $x(t) = \sin \omega_0 t$ and $x(t) = \cos \omega_0 t$

Quiz 2

• Find the CTFT of the following signals:

1.
$$x(t) = \frac{d}{dt}[u(-2-t) + u(t-2)]$$

2.
$$x(t) = \sin(2\pi t + \frac{\pi}{4})$$

Next ...

- Continuous-Time Fourier Transform
 - 3. Properties of CTFT
 - Linearity, time and frequency scaling, time and frequency shifting, conjugation and symmetry, duality, Parseval's relation, convolution and multiplication properties
 - 4. System characterization
 - Frequency response of a system
 - Impulse response VS frequency response
 - LCCDE VS frequency response

List of Abbreviations

- CT Continuous Time
- DT Discrete Time
- TD Time Domain
- FD Frequency Domain
- FS(CTFS) Fourier Series
- FT(CTFT) Continuous Time Fourier Transform
- LCCDE Linear Constant Coefficient Differential Equation

