Least Squares Estimation of Dynamic Games with Time Varying Unobserved Heterogeneity

A. Gupta (Essex/Queens) L. Puppi (USP) F. Sanches (EESP-FGV) S. Srisuma (NUS)

DSE, London, 2025

Overview

- We propose a new estimator for dynamic discrete decision problems and games with time varying unobserved heterogeneity
- Our estimator is easy to compute and does not rely on instruments or finite dependence assumptions
- Main idea is to add another step to an existing 2-step approach by way of k-means clustering on CCPs
- ► This talk focuses on a single agent case for simplicity, simulation studies done on a game

Related Literature

- Model builds on Rust (1987), Aguirregabiria and Mira (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2008)
- Many options for two-step estimators without UH: Hotz and Miller (1993), Hotz, Miller, Sanders and Smith (1994), Aguirregabiria and Mira (2002,2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2008)
- ▶ UH is often introduced to be time invariant (Kasahara and Shimotsu (2009), Aguirregabiria et al.) but not always, see Arcidiacono and Miller (2011), Hu and Shum (2012), Kaloupstidi, Scott, and Souza-Rodrigues (2021)

What We Do

- ▶ In a large N and T framework, consider models with unobserved time varying states
- ► Estimate CCP for each time period and do k-means clustering (cf. Pollard (1981,1982)), which identifies unobserved states (Bonhomme and Manresa (2015))
- A 2-step estimator then follows, use Sanches, Silva, and Srisuma (2016) for estimation as it is generally computationally efficient relative to Pesendorfer and Schmidt-Dengler (2008)

Notation and K-means Clustering

Variables:

- ▶ Action $a_{nt} \in A = \{0, 1, ..., K\}$
- ▶ Observed state $x_{nt} \in X = \{1, ..., J\}$
- ▶ Unobserved state $d_t \in D = \{1, ..., L\}$

Given $\{(a_{nt}, x_{nt})\}_{n=1,t=1}^{N,T}$, let \widehat{p}_{Nt} be a vector in $[0,1]^{KJ}$ that estimates p_t , vector of CCPs, $\{\Pr[a_{nt} = a | x_{nt} = x, d_t]\}$ for a > 0 and all x. We perform k-means clustering by choosing

 $\mathbf{p} \in [0, 1]^{KJL}$ to minimize:

$$W_{NT}\left(\mathbf{p}\right) = \frac{1}{T} \sum_{t=1}^{I} \phi\left(\widehat{p}_{Nt}, \mathbf{p}\right)$$
, where $\phi\left(p, \mathbf{p}\right) \equiv \min_{1 \leq \ell \leq L} \|p - p_{\ell}\|^{2}$.

Regularity Conditions

Assumption A. $\{(a_{nt}, x_{nt}, d_t)\}_{n=1,t=1}^{N,T}$ satisfies:

(i) for all n, $\{(a_{nt}, x_{nt}, d_t)\}_{t=1}^T$ is a strictly stationary α -mixing process such that

$$\sum_{t=1}^{\infty} t^{\lambda-2} \alpha(t)^{\frac{\gamma}{\lambda+\gamma}} < \infty,$$

for some $\gamma>0$ and even $\lambda\geq 2$, and for λ and γ , the bracketing numbers of F satisfy

$$\int_0^1 x^{-\frac{\gamma}{2+\gamma}} \left(N(x, \mathcal{F}) \right)^{1/\lambda} dx < \infty,$$

where \mathcal{F} is some class of functions (Pollard (1982), Andrews and Pollard (1994));

(ii) for all t, $\{(a_{nt},x_{nt})\}_{n=1}^N$ is an i.i.d. sequence conditional on d_t ; (iii) $p_t = \sum_{\ell} p_\ell^0 \mathbf{1} [d_t = \ell]$ such that $p_\ell^0 \in (0,1)^{KJ}$ and $\|p_\ell^0 - p_{\ell'}^0\| \neq 0$ for all ℓ, ℓ' .

Properties of CCP Estimator

Assumption B. For all t, N, $\widehat{p}_{Nt} = \sum_{\ell} \left(p_{\ell}^0 + \frac{c_{\ell Nt}}{\sqrt{N}} + r_{\ell Nt} \right) \mathbf{1} \left[d_t = \ell \right]$ such that:

(i) For all ℓ , T, there exists some finite K where

$$\Pr\left[\|c_{\ell Nt}\| > \epsilon \sqrt{N} \mid d_t = \ell
ight] \leq \exp\left(-NK\epsilon^2
ight)$$
 for all $N, t \leq T$ and $\epsilon > 0$;

(ii) For all ℓ , T,

 $\sup_{t \leq T} |\Pr[c_{\ell N t} \in U \mid d_t = \ell] - \Pr[z_{\ell} \in U]| = O\left(\frac{1}{\sqrt{N}}\right)$ for all convex U where z_{ℓ} is some vector of jointly normal variables with zero mean;

(iii) For all ℓ , T, $\sup_{t \leq T} E ||r_{\ell Nt}|| = O(N)$.

Proposition 1. Under Assumption A, the frequency estimator of the CCP satisfies Assumption B.

Properties of K-means Estimator

Proposition 2. Under Assumptions A and B, suppose $\log T = o(N)$,

$$\sqrt{T} \left(\widehat{\mathbf{p}}_{NT} - \mathbf{p}_{N}^{0} \right) \stackrel{d}{\to} \mathrm{N} \left(0, \Gamma_{N}^{-1} V_{N} \Gamma_{N}^{-1} \right) \text{ as } T \to \infty,$$

w.p.a. 1 as $N \to \infty$, for some PD matrices Γ_N and V_N , and $\left\|\mathbf{p}_N^0 - \mathbf{p}^0\right\| = o(1)$.

Intuition is, for \mathbf{p}_{NT} near \mathbf{p}_{N}^{0} :

$$\begin{split} W_{NT}\left(\mathbf{p}_{NT}\right) &= W_{NT}\left(\mathbf{p}_{N}^{0}\right) - \frac{1}{\sqrt{T}}Z_{NT}^{\mathsf{T}}\left(\mathbf{p}_{NT} - \mathbf{p}_{N}^{0}\right) \\ &+ \frac{1}{2}\left(\mathbf{p}_{NT} - \mathbf{p}_{N}^{0}\right)^{\mathsf{T}}\Gamma_{N}\left(\mathbf{p}_{NT} - \mathbf{p}_{N}^{0}\right) \\ &+ o_{p}\left(\frac{\left\|\mathbf{p}_{NT} - \mathbf{p}_{N}^{0}\right\|}{\sqrt{T}} + \left\|\mathbf{p}_{NT} - \mathbf{p}_{N}^{0}\right\|^{2}\right), \\ \widehat{\mathbf{p}}_{NT} &\approx \mathbf{p}_{N}^{0} + \frac{1}{\sqrt{T}}\Gamma_{N}^{-1}Z_{NT} \text{ w.p.a. 1 as } N \to \infty. \end{split}$$

Properties of Estimated Unobserved States

K-means clustering gives $\left\{\widehat{d}_t\right\}_{t=1}^T$. Let $\lambda_\ell^0 := \Pr\left[d_t = \ell\right]$, $\lambda_{\ell\ell'}^0 := \Pr\left[d_t = \ell, d_{t+1} = \ell'\right]$, and $\lambda_{\ell'\mid\ell}^0 := \Pr\left[d_{t+1} = \ell'|d_t = \ell\right]$.

Lemma 3. Under Assumptions A and B, as N, $T \to \infty$, if $\log T = o(N)$, then $\widehat{\lambda}_{\ell} = \lambda_{\ell}^0 + o_p(1)$, $\widehat{\lambda}_{\ell\ell'} = \lambda_{\ell\ell'}^0 + o_p(1)$, and $\widehat{\lambda}_{\ell'|\ell}^0 = \lambda_{\ell'|\ell}^0 + o_p(1)$ for all ℓ, ℓ' .

Let $(\widehat{\lambda}_M, \widehat{\lambda}_J, \widehat{\lambda}_C)$ and $(\widetilde{\lambda}_M, \widetilde{\lambda}_J, \widetilde{\lambda}_C)$ be respective vectors of frequency esimators estimating these probabilities with \widehat{d}_t and d_t .

Lemma 4. Under Assumptions A and B, as $N, T \to \infty$, if $\sqrt{T} = o(N)$, then $\left\| \widehat{\lambda}_M - \widetilde{\lambda}_M \right\| = o_p\left(\frac{1}{\sqrt{T}}\right), \left\| \widehat{\lambda}_J - \widetilde{\lambda}_J \right\| = o_p\left(\frac{1}{\sqrt{T}}\right)$, and $\left\| \widehat{\lambda}_C - \widetilde{\lambda}_C \right\| = o_p\left(\frac{1}{\sqrt{T}}\right)$.

Markov Decision Process

Assumption M.

(i) For all a, x, d, ε and some $\theta \in \Theta \subseteq R^p$,

$$u(a, x, d, \varepsilon) = \pi_{\theta}(a, x, d) + \varepsilon(a),$$

 $u_{\theta}(a, x, d, \varepsilon) = \theta^{\top} \pi(a, x, d),$

where Θ is compact and π known;

(ii) State transition satisfies:

$$F\left(x^{\prime},d^{\prime},\varepsilon^{\prime}|x,d,\epsilon,a
ight)=Q\left(\varepsilon^{\prime}
ight)H\left(d^{\prime}|d
ight)G\left(x^{\prime}|x,a
ight),$$

where Q, H, and G are respectively the CDFs of ε_{nt} , $d_{t+1}|d_t$, and $x_{nt+1}|x_{nt}$, a_{nt} ;

- (iii) ε_{nt} has a known and absolutely continuous distribution with bounded density supported on R^{K+1} ;
- (iv) The value of β is known.

Primitives of the model are (θ, β, F) .

ALS - Main Idea

Consider a model of binary actions based on

$$a_{t}\left(\theta\right) = \mathbf{1}\left[v_{\theta}\left(x_{t}\right) - \varepsilon_{t} \geq 0\right] \text{ for } \theta \in \Theta \subset \mathbb{R}^{p},$$

where x_t and ε_t are obs and unobs state variables s.t. v_{θ} and distribution of $\varepsilon_t|_{X_t}$ are known (say, CDF Q).

For all x,

$$P_{\theta}\left(x\right) := \Pr\left[a_{t}\left(\theta\right) = 1 \middle| x_{t} = x\right] = Q\left(v_{\theta}\left(x\right)\right).$$

Suppose we observe a random sample $\left\{a_{t}, x_{t}\right\}_{t=1}^{T}$ where $a_{t} = a_{t}\left(\theta_{0}\right)$ for some $\theta_{0} \in \Theta$. θ_{0} can be estimated by minimizing the distance between $P\left(\cdot\right) := \Pr\left[a_{t} = 1 \middle| x_{t} = \cdot\right]$ and $P_{\theta}\left(\cdot\right)$.

ALS - Main Idea

▶ When x_t is discrete, vectorizing P(x) and $P_{\theta}(x)$ leads to

$$\widehat{\boldsymbol{\theta}}_{p}\left(\mathcal{V}\right) = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left(\widetilde{\mathbf{P}} - \mathbf{P}_{\boldsymbol{\theta}}\right)^{\top} \mathcal{V}\left(\widetilde{\mathbf{P}} - \mathbf{P}_{\boldsymbol{\theta}}\right) \text{,}$$

P is a nonparametric estimator for P.

▶ We prefer to minimize expected payoffs/rewards,

$$\widehat{\boldsymbol{\theta}}_{\boldsymbol{v}}\left(\mathcal{W}\right) = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left(\widetilde{\mathbf{v}} - \mathbf{v}_{\boldsymbol{\theta}}\right)^{\top} \mathcal{W}\left(\widetilde{\mathbf{v}} - \mathbf{v}_{\boldsymbol{\theta}}\right),$$

 $\widetilde{\mathbf{v}}$ estimates \mathbf{v} (vectorized $Q^{-1}(P(x))$), because when $\mathbf{v}_{\theta} = \mathbf{X}\theta$,

$$\widehat{ heta}_{v}\left(\mathcal{W}
ight) = \left(\mathbf{X}^{ op}\mathcal{W}\mathbf{X}
ight)^{-1}\mathbf{X}^{ op}\mathcal{W}\widehat{\mathbf{v}}$$

N.B. dynamic models have the same structure as $v_{\theta}(x)$ becomes differences in expected utility flows

SSS showed $\widehat{\theta}_v$ and $\widehat{\theta}_p$ are asymptotically equivalent (cf. Pesendorfer and Schmidt-Dengler (2008)).

ALS - Estimation

▶ It can be shown our model gives:

$$\mathcal{Y} = \mathcal{X}\theta_0$$
,

where \mathcal{X} and \mathcal{Y} are known functions of CCPs and (β, π, Q, H, G) .

- ▶ Under a full rank condition $\theta_0 = (\mathcal{X}^{\intercal}\mathcal{X})^{-1}\mathcal{X}\mathcal{Y}$.
- Given estimators $(\widehat{\mathcal{Y}}, \widehat{\mathcal{X}})$,

$$\begin{split} \widehat{\boldsymbol{\theta}} &= & \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} (\widehat{\boldsymbol{\mathcal{Y}}} - \widehat{\mathcal{X}} \boldsymbol{\theta})^{\top} (\widehat{\boldsymbol{\mathcal{Y}}} - \widehat{\mathcal{X}} \boldsymbol{\theta}) \\ &= & (\widehat{\mathcal{X}}^{\top} \widehat{\mathcal{X}})^{-1} \widehat{\mathcal{X}}^{\top} \widehat{\boldsymbol{\mathcal{Y}}}, \end{split}$$

and properties of ALSE are driven by \widehat{H} (Lemma 4),

$$\sqrt{\mathcal{T}}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)\overset{d}{\rightarrow}N\left(\boldsymbol{0},\boldsymbol{\Sigma}\right).$$

Simulations

Consider an entry game in Pesendorfer and Schmidt-Dengler (2008) with UH

- lacksquare $a_{it} \in \{0,1\}$ and $x_t = (a_{1t-1}, a_{2t-1})$
- ▶ Firm 1's period payoffs is

$$\begin{array}{lcl} \theta^{\mathsf{T}} \pi_{1} \left(\mathsf{a}_{t}, \mathsf{x}_{t}, \mathsf{d}_{t} \right) & = & \mathsf{a}_{1t} \left(1 - \mathsf{a}_{2t} \right) \mu_{1} + \mu_{2} \mathsf{a}_{1t} \mathsf{a}_{2t} \\ & & + \mathsf{a}_{1t} \left(1 - \mathsf{a}_{1t-1} \right) F + \left(1 - \mathsf{a}_{1t} \right) \mathsf{a}_{1t-1} W \\ & & + \mathsf{a}_{1t} \sum_{\ell=1}^{L} \omega_{\ell} \mathsf{d}_{\ell t}, \end{array}$$

where $d_{\ell t}=1$ iff state ℓ occurs (ow 0), and impose $\omega_{\ell}>\omega_{\ell-1}>\cdots>\omega_{1}$

- ▶ With L = 2, set $(\mu_1, \mu_2, F, W, \omega_1, \omega_2) = (1.2, -1.2, -0.2, 0.1, 0, 0.1)$
- Performed 1,000 simulations for different combinations of (N, T) and estimation by OLS

Equilibria

States	Equilibrium 1		Equilib	orium 2	Equilib	orium 3	Symmetric Eq		
	p_i	p_{-i}	p_{i}	p_i p_{-i}		p_{-i}	p_i	p_{-i}	
(0,0,0)	0.733	0.276	0.667	0.463	0.672	0.460	0.572	0.572	
(0, 1, 0)	0.612	0.422	0.315	0.827	0.310	0.827	0.305	0.837	
(1,0,0)	0.800	0.223	0.822	0.307	0.824	0.309	0.837	0.305	
(1, 1, 0)	0.751	0.295	0.551	0.625	0.607	0.568	0.592	0.592	
(0,0,1)	0.751	0.295	0.550	0.625	0.498	0.675	0.592	0.592	
(0, 1, 1)	0.637	0.438	0.349	0.830	0.343	0.831	0.338	0.840	
(1,0,1)	0.816	0.242	0.829	0.337	0.829	0.340	0.840	0.338	
(1, 1, 1)	0.767	0.316	0.667	0.543	0.593	0.620	0.611	0.611	
Distance	0.038	0.037	0.169	0.183	0.177	0.223	0.042	0.042	

Symmetric Equilibrium

(M,T)	Estimator	F		μ_1	μ_1		μ_2		ω_2		d_t bias (%
		Bias (Mean)	SD								
(500, 10)	Infeasible	0.074	(0.091)	0.066	(0.079)	0.090	(0.110)	0.050	(0.063)	2.817	-
	Feasible	0.088	(0.109)	0.085	(0.100)	0.106	(0.126)	0.057	(0.070)	4.331	19.72
	Naive	0.068	(0.085)	0.063	(0.072)	0.095	(0.097)	-	-	2.738	-
(500, 50)	Infeasible	0.030	(0.038)	0.027	(0.033)	0.035	(0.044)	0.020	(0.025)	0.445	_
	Feasible	0.038	(0.046)	0.040	(0.048)	0.049	(0.054)	0.041	(0.049)	0.861	9.97
	Naive	0.030	(0.037)	0.050	(0.032)	0.057	(0.042)	-	-	0.931	-
(500,100)	Infeasible	0.020	(0.025)	0.017	(0.022)	0.024	(0.030)	0.013	(0.016)	0.204	-
	Feasible	0.027	(0.039)	0.033	(0.039)	0.038	(0.039)	0.035	(0.039)	0.506	7.41
	Naive	0.020	(0.025)	0.049	(0.021)	0.052	(0.029)	-	-	0.697	-
(1000, 10)	Infeasible	0.050	(0.063)	0.043	(0.054)	0.061	(0.076)	0.035	(0.043)	1.306	-
	Feasible	0.057	(0.073)	0.056	(0.070)	0.069	(0.086)	0.045	(0.053)	1.910	18.29
	Naive	0.045	(0.038)	0.053	(0.050)	0.072	(0.066)	-	-	1.520	-
(1000, 50)	Infeasible	0.019	(0.024)	0.017	(0.021)	0.023	(0.029)	0.014	(0.018)	0.187	-
	Feasible	0.023	(0.031)	0.028	(0.034)	0.031	(0.037)	0.032	(0.039)	0.365	9.49
	Naive	0.019	(0.050)	0.050	(0.029)	0.052	(0.029)	-	-	0.691	-
(1000,100)	Infeasible	0.015	(0.019)	0.013	(0.016)	0.019	(0.023)	0.010	(0.013)	0.115	-
	Feasible	0.018	(0.022)	0.021	(0.026)	0.025	(0.030)	0.024	(0.032)	0.222	6.75
	Naive	0.015	(0.019)	0.050	(0.016)	0.051	(0.022)	_		0.617	_

Equilibrium 1

(M,T)	Estimator	F		μ_1	μ_1		μ_2		ω_2		d_t bias (%
		Bias (Mean)	SD								
(500, 10)	Infeasible	0.043	(0.053)	0.049	(0.061)	0.061	(0.075)	0.058	(0.073)	1.257	-
	Feasible	0.049	(0.061)	0.076	(0.089)	0.068	(0.086)	0.068	(0.081)	2.200	20.43
	Naive	0.040	(0.050)	0.055	(0.049)	0.069	(0.062)	-	-	1.394	-
(500, 50)	Infeasible	0.017	(0.021)	0.019	(0.023)	0.023	(0.029)	0.023	(0.029)	0.184	_
	Feasible	0.019	(0.023)	0.039	(0.044)	0.033	(0.038)	0.045	(0.054)	0.449	10.68
	Naive	0.017	(0.021)	0.050	(0.019)	0.051	(0.026)	-	-	0.647	-
(500, 100)	Infeasible	0.012	(0.015)	0.013	(0.016)	0.017	(0.021)	0.016	(0.021)	0.094	_
	Feasible	0.014	(0.016)	0.034	(0.037)	0.026	(0.027)	0.039	(0.047)	0.290	7.25
	Naive	0.012	(0.015)	0.049	(0.014)	0.051	(0.019)	-	-	0.571	-
(1000, 10)	Infeasible	0.029	(0.037)	0.034	(0.043)	0.041	(0.052)	0.040	(0.052)	0.600	_
	Feasible	0.031	(0.040)	0.047	(0.059)	0.052	(0.066)	0.051	(0.062)	0.993	20.19
	Naive	0.027	(0.034)	0.051	(0.034)	0.056	(0.045)	-	-	0.928	-
(1000, 50)	Infeasible	0.012	(0.016)	0.014	(0.017)	0.018	(0.022)	0.016	(0.020)	0.100	_
	Feasible	0.013	(0.016)	0.026	(0.031)	0.029	(0.031)	0.037	(0.042)	0.254	10.35
	Naive	0.012	(0.016)	0.050	(0.015)	0.050	(0.020)	-	-	0.585	-
(1000, 100)	Infeasible	0.009	(0.011)	0.009	(0.012)	0.012	(0.015)	0.011	(0.014)	0.047	_
	Feasible	0.009	(0.011)	0.022	(0.027)	0.024	(0.023)	0.033	(0.037)	0.169	7.40
	Naive	0.008	(0.011)	0.050	(0.010)	0.050	(0.014)	_		0.544	_

Equilibrium 2

(M,T)	Estimator	F		μ_1		μ_2		ω_2		MSE	d_t bias (%
		Bias (Mean)	SD								
(500, 10)	Infeasible	0.068	(0.085)	0.061	(0.075)	0.084	(0.104)	0.047	(0.059)	2.462	-
	Feasible	0.069	(0.085)	0.060	(0.074)	0.085	(0.104)	0.045	(0.055)	2.476	4.21
	Naive	0.067	(0.083)	0.061	(0.071)	0.103	(0.103)	-	-	2.884	-
(500, 50)	Infeasible	0.028	(0.035)	0.025	(0.031)	0.033	(0.042)	0.019	(0.026)	0.398	_
	Feasible	0.028	(0.035)	0.025	(0.031)	0.033	(0.042)	0.020	(0.025)	0.401	0.92
	Naive	0.029	(0.036)	0.046	(0.032)	0.061	(0.044)	_	-	0.937	-
(500, 100)	Infeasible	0.019	(0.023)	0.016	(0.020)	0.023	(0.028)	0.013	(0.017)	0.177	_
	Feasible	0.019	(0.023)	0.016	(0.020)	0.023	(0.028)	0.014	(0.017)	0.179	0.80
	Naive	0.020	(0.024)	0.043	(0.020)	0.058	(0.030)	-	- '	0.701	-
(1000, 10)	Infeasible	0.049	(0.061)	0.043	(0.056)	0.058	(0.072)	0.034	(0.043)	1.217	_
	Feasible	0.049	(0.061)	0.043	(0.056)	0.058	(0.072)	0.034	(0.043)	1.221	0.81
	Naive	0.048	(0.060)	0.050	(0.052)	0.083	(0.077)	-	-	1.791	-
(1000, 50)	Infeasible	0.020	(0.025)	0.017	(0.022)	0.024	(0.030)	0.014	(0.017)	0.198	_
	Feasible	0.020	(0.025)	0.017	(0.022)	0.024	(0.030)	0.014	(0.017)	0.198	0.04
	Naive	0.020	(0.025)	0.044	(0.023)	0.058	(0.032)	-	-	0.733	-
(1000, 100)	Infeasible	0.013	(0.017)	0.012	(0.015)	0.016	(0.020)	0.009	(0.012)	0.092	_
	Feasible	0.013	(0.017)	0.012	(0.015)	0.016	(0.020)	0.009	(0.012)	0.092	0.06
	Naive	0.014	(0.017)	0.043	(0.015)	0.058	(0.023)			0.624	

Equilibrium 3

(M,T)	Estimator	F		μ_1		μ_2		ω_2		MSE	d_t bias (%
		Bias (Mean)	SD								
(500, 10)	Infeasible	0.069	(0.088)	0.062	(0.078)	0.083	(0.104)	0.047	(0.060)	2.505	-
	Feasible	0.069	(0.087)	0.061	(0.076)	0.082	(0.102)	0.046	(0.056)	2.439	3.07
	Naive	0.068	(0.086)	0.064	(0.074)	0.098	(0.101)	-	-	2.818	-
(500, 50)	Infeasible	0.027	(0.034)	0.025	(0.031)	0.032	(0.041)	0.019	(0.025)	0.376	_
	Feasible	0.027	(0.034)	0.025	(0.031)	0.032	(0.041)	0.019	(0.025)	0.378	0.81
	Naive	0.029	(0.035)	0.040	(0.031)	0.063	(0.042)	-	-	0.896	-
(500, 100)	Infeasible	0.019	(0.023)	0.017	(0.020)	0.023	(0.029)	0.013	(0.016)	0.179	_
	Feasible	0.019	(0.023)	0.017	(0.021)	0.023	(0.029)	0.014	(0.017)	0.180	0.63
	Naive	0.020	(0.024)	0.036	(0.021)	0.061	(0.030)	-	-	0.683	-
(1000, 10)	Infeasible	0.049	(0.061)	0.043	(0.054)	0.060	(0.074)	0.034	(0.043)	1.222	_
	Feasible	0.049	(0.061)	0.043	(0.054)	0.060	(0.074)	0.034	(0.043)	1.219	0.41
	Naive	0.049	(0.060)	0.051	(0.053)	0.079	(0.075)	-	-	1.688	-
(1000, 50)	Infeasible	0.020	(0.024)	0.017	(0.021)	0.024	(0.029)	0.014	(0.017)	0.192	_
	Feasible	0.020	(0.020)	0.017	(0.021)	0.024	(0.029)	0.014	(0.017)	0.192	0.03
	Naive	0.021	(0.025)	0.038	(0.023)	0.060	(0.030)	-	-	0.697	-
(1000, 100)	Infeasible	0.013	(0.017)	0.012	(0.015)	0.016	(0.020)	0.009	(0.012)	0.090	_
	Feasible	0.013	(0.017)	0.012	(0.015)	0.016	(0.020)	0.009	(0.012)	0.090	0.03
	Naive	0.014	(0.017)	0.037	(0.016)	0.059	(0.022)	_		0.590	_

Concluding Remarks

- Propose a new estimator with unobserved time varying heterogeneity without instruments/finite dependence.
- Estimation is very simple and direct:
 - 1. use k-means clustering to classify CCPs into types;
 - 2. do OLS/GLS as done in SSS.
- Idea readily extendable to ordered discrete games (e.g., Gowrisankaran, Lucarelli, Schmidt-Dengler and Town (2018)).
- Working with continuous observables is in principle possible, e.g., for continuous action games (Bajari, Benkard and Levin (2007), Srisuma (2013)) and/or with continuous x_t (Srisuma and Linton (2012), Buchholz, Shum and Xu (2021)).