Hongxu (Danny) Yin

Education

Princeton University New Jersey, USA 2015 - 2020 Ph.D. in Electrical Computer Engineering Research focus: Efficient and Secure Deep Learning Advisor: Prof. Niraj K. Jha Nanyang Technological University Singapore, SG 2011 - 2015 B.Eng in Electronic & Electronics Engineering (GPA 3.9/4.0, dean's lister all four years) Minor in Business (GPA 4.0/4.0) Advisor: Prof. Bah Hwee Gwee and Prof Zhiping Lin University of California, Berkeley California, USA 2012 Undergraduate summer exchange University of Cambridge Cambridge, UK 2007 High school elite exchange program

Academic Experience

NVIDIA, Learning and Perception Research (LPR) Senior Research Scientist (Team lead: Dr. Jan Kautz)	May 2022 - Now
NVIDIA, Learning and Perception Research (LPR)	·
Research Scientist (Team lead: Dr. Jan Kautz)	<i>May 2020 - Apr 2022</i>
NVIDIA, Learning and Perception Research (LPR)	
Research Intern (Mentor: Dr. Pavlo Molchanov and Dr. Jan Kautz)	<i>May 2019 - Nov 2019</i>
Alibaba U.S., Machine Learning Team	
Research Intern (Mentor: Dr. Weifeng Zhang)	May 2018 - Nov 2018

Selected Awards

 Forbes Top 60 Elite Chinese North America 	2021
 Princeton ECE Best Dissertation Award Finalist (Top-3 in department) 	2020
 Princeton Yan Huo *94 Fellowship (Top-3 in department) 	2019
O Princeton Natural Science and Foundation Fellowship	2015-2017
 Gold Medal - Defense Science and Technology 	2015
o Gold Medal - Thomas Asia Pacific Holdings	2015
O Department Dean's Lister Award	2011-2015
 Nanyang Best Industrial Orientation Award 	2014
O Nanyang Presidential Scholar with Highest Distinction	2012-2015

Conference Publications

(*: equal contribution; †: advised intern)

 Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, Pavlo Molchanov A-ViT: Adaptive tokens for efficient vision transformer Conference on Computer Vision and Pattern Recognition (CVPR), 2022 (Oral Presentation)

- 2. Ali Hatamizadeh*, **Hongxu Yin***, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, Pavlo Molchanov *GradViT: Gradient inversion of vision transformers*Conference on Computer Vision and Pattern Recognition (CVPR), 2022
- 3. Maying Shen, Pavlo Molchanov, **Hongxu Yin**, Jose Alvarez *When to prune? A policy towards early structural pruning* Conference on Computer Vision and Pattern Recognition (CVPR), 2022
- 4. Xin Dong[†], **Hongxu Yin**, Jose Alvarez, Jan Kautz, Pavlo Molchanov

 Deep neural networks are surprisingly reversible: A baseline for zero-shot inversion

 Conference on Computer Vision and Pattern Recognition Workshop (CVPR Workshop), 2022
- 5. Ali Hatamizadeh*, **Hongxu Yin***, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, Pavlo Molchanov *Gradient inversion of vision transformers*Conference on Computer Vision and Pattern Recognition Workshop (CVPR Workshop), 2022
- Pavlo Molchanov*, Jimmy Hall*, Hongxu Yin*, Jan Kautz, Nicolo Fusi, Arash Vahdat HANT: Hardware-aware network transformation European Conference on Computer Vision (ECCV), 2022
- 7. **Hongxu Yin**, Arun Mallya, Arash Vahdat, Jose Alvarez, Jan Kautz, Pavlo Molchanov *See through gradients: Image batch recovery via GradInversion*Conference on Computer Vision and Pattern Recognition (CVPR), 2021
- 8. Yerlan Idelbayev[†], Pavlo Molchanov, Maying Shen, **Hongxu Yin**, M. C. Perpinan, Jose Alvarez *Optimal quantization using scaled codebook*Conference on Computer Vision and Pattern Recognition (CVPR), 2021
- 9. Akshay Chawla[†], **Hongxu Yin**, Pavlo Molchanov, Jose Alvarez *Data-free knowledge distillation for object detection* Winter Conference on Applications of Computer Vision (WACV), 2021
- Hongxu Yin, Arun Mallya, Arash Vahdat, Jose Alvarez, Jan Kautz, Pavlo Molchanov Dreaming to distill: Data-free knowledge transfer via DeepInversion Conference on Computer Vision and Pattern Recognition (CVPR), 2020 (Oral Presentation)
- 11. Wenhan Xia, **Hongxu Yin**, Niraj K. Jha *Efficient synthesis of compact deep neural networks* IEEE Design Automation Conference (DAC), 2020
- 12. Xiaoliang Dai, Peizhao Zhang, Bichen Wu, **Hongxu Yin**, Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, Niraj K. Jha *ChamNet: Towards efficient network design through platform-aware model adaptation* Conference on Computer Vision and Pattern Recognition (CVPR), 2019
- 13. Ozge Akmandor, **Hongxu Yin**, and Niraj K. Jha *Simultaneously ensuring smartness, security, and energy efficiency in Internet-of-Things sensors* IEEE Custom Integrated Circuits Conference (CICC), 2017
- 14. Hongxu Yin, Bah Hwee Gwee, Zhiping Lin, Kumar Anil, Galul R. Sirajudeen, and Choo M. S. See Novel real-time system design for floating-point sub-Nyquist multi-coset signal blind reconstruction IEEE Int. Symp. on Circuits and Systems (ISCAS), 2015 (Oral Presentation)

Journal Publications

15. Shayan Hassantabar, Joe Zhang, **Hongxu Yin**, Niraj K. Jha MHDeep: Mental health disorder detection system based on body-area and deep neural networks ACM Transactions on Embedded Computing Systems, 2022

16. **Hongxu Yin**, Guoyang Chen, Yingmin Li, Shuai Che, Weifeng Zhang, and Niraj K. Jha *Hardware-guided symbiotic training for compact, accurate, yet execution-efficient LSTMs* IEEE Trans. Emerging Topics in Computing, 2021

17. Wenhan Xia, Hongxu Yin, Xiaoliang Dai, Niraj K. Jha

Fully dynamic inference with deep neural networks

IEEE Trans. Emerging Topics in Computing, 2021

18. Xiaoliang Dai*, Hongxu Yin*, and Niraj K. Jha

Grow and prune compact, fast, and accurate LSTMs

IEEE Trans. Computers, 2020

19. Hongxu Yin, Bilal Mukadam, Xiaoliang Dai, and Niraj K. Jha

DiabDeep: Pervasive diabetes diagnosis based on wearable medical sensors and efficient neural networks IEEE Trans. Emerging Topics in Computing, 2020

20. Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha

Incremental learning using a grow-and-prune paradigm with efficient neural networks

IEEE Trans. Computers, 2020

21. Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha

NeST: A neural network synthesis tool based on a grow-and-prune paradigm

IEEE Trans. Computers, 2019

22. Hongxu Yin, Zeyu Wang, and Niraj K. Jha

A hierarchical inference model for Internet-of-Things

IEEE Trans. Multi-scale Computing Systems, 2018

23. Hongxu Yin and Niraj K. Jha

A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles

IEEE Trans. Multi-scale Computing Systems, 2017

24. Ozge Akmandor, **Hongxu Yin** and Niraj K. Jha

Smart, secure, yet energy-efficient, Internet-of-Things sensors

IEEE Trans. Multi-scale Computing Systems, 2017

Book Chapter

25. Hongxu Yin, Ozge Akmandor, Arsalan Mosenia, and Niraj K. Jha

Smart healthcare

Foundations and Trends, 2017

Preprint (under review)

26. Huanrui Yang[†], **Hongxu Yin**, Pavlo Molchanov, Hai Li, Jan Kautz

NViT: Vision transformer compression and parameter redistribution

Neural Information Processing Systems (NeurIPS), 2022

27. Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, Jose M. Alvarez

Structural pruning via latency-saliency Knapsack

Neural Information Processing Systems (NeurIPS), 2022

28. Ali Hatamizadeh, Hongxu Yin, Jan Kautz, Pavlo Molchanov

Global context vision transformer

Neural Information Processing Systems (NeurIPS), 2022

29. Xin Dong[†], **Hongxu Yin**, Jose Alvarez, Jan Kautz, Pavlo Molchanov

Deep neural networks are surprisingly reversible: A baseline for zero-shot inversion

British Machine Vision Conference (BMVC), 2022

- 30. Ali Hatamizadeh, **Hongxu Yin**, Pavlo Molchanov, Andriy Myronenko, Wenqi Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz, Daguang Xu, Holger R. Roth *Do gradient inversion attacks make federated learning unsafe?*IEEE Trans. Biomedical Imaging submission (TMI), 2022
- 31. Zhen Dong[†], **Hongxu Yin**, Arash Vahdat, Jan Kautz, Pavlo Molchanov *Efficient transformation of architectures through hardware-aware nonlinear optimization* Winter Conference on Applications of Computer Vision (WACV), 2022

Invited Keynote & Talk

 Towards Efficient and Secure Deep Learning Invited Keynote, Design Automation Conference (DAC'59) 	Jul. 2022
 Towards Efficient and Secure Deep Nets University of British Columbia ECE Department 	May 2022
 Inverting Deep Nets Princeton University, Department of Computer Science research groups 	Aug. 2021
 See through Gradients Europe ML meeting 	Apr. 2021
 Oreaming to Distill Synced AI (largest AI media in Asia) 	Jul. 2020
 Dreaming to Distill Facebook AR/VR 	Jun. 2020
 Making Neural Networks Efficient Alibaba Cloud / Platform AI group 	Feb. 2020
 Efficient Neural Networks NVIDIA Research, Facebook Research 	Dec. 2019
 Efficient Neural Networks Baidu Research, ByteDance A.I. Lab US 	Dec. 2019
 Efficient Neural Networks Alibaba A.I. Research, Kwai Lab 	Nov. 2019
 Applied Machine Learning: From Theory to Practice Invited Keynote, IEEE Circuits and Systems Society (Singapore Chapter) 	Feb. 2018
 A Health Decision Support System for Disease Diagnosis New Jersey Tech Council 	Jun. 2016
Patents	
 Pruning Vision Transformers under Latency Budget and a Method to Distribute Paramete NVIDIA 	ers across Layers 2022
 GradViT: Gradient Inversion of Vision Transformers NVIDIA 	2022
 Adaptive Token Depth Adjustment Algorithm for Networks with Transformer Blocks NVIDIA 	2022
 Global Context Model for Transformer Neural Networks NVIDIA 	2022
 Towards Understanding the Risks of Gradient Inversion in Federated Learning NVIDIA 	2022

0	When to Prune? A Policy for Early Structural Pruning NVIDIA	2021
0	See Through Gradients: Image Batch Recovery via GradInversion NVIDIA	2021
0	Network similarity metric as a Pruning Indicator NVIDIA	2021
0	Zero-shot Model Inversion for Data-free Distillation NVIDIA	2021
0	MHDeep: Mental Health Disorder Detection System based on Body-Area and Deep Neural Networks Princeton University	2019
0	Optimal MSE Quantization with Fixed Codebook and Rescaling NVIDIA	2020
0	Dreaming Data for Continual Learning NVIDIA	2020
0	Data-Free Knowledge Distillation for Object Detection NVIDIA	2020
0	Hardware-aware Latency Neural Network Pruning NVIDIA	2020
0	Image Generation for Data Free Pruning NVIDIA	2019
0	Hardware-guided Symbiotic Training for Compact, Accurate, yet Execution-efficient LSTMs Alibaba	2019
0	Incremental Learning using a Grow-and-prune Paradigm with Efficient Neural Networks Princeton University	2019
0	DiabDeep: Pervasive Diabetes Diagnosis based on Wearable Medical Sensors and Efficient Neural Ne Princeton University	tworks 2019
0	Smart, Secure, yet Energy-efficient Internet-of-Things Sensors Princeton University	2019
0	NeST: A Neural Network Synthesis Tool based on a Grow-and-prune Paradigm Princeton University	2018
0	Grow and Prune Compact, Fast, yet Accurate LSTMs Princeton University	2018
0	A Hierarchical Health Decision support System based on Wearable Medical Sensors and Machine Lea Ensembles Princeton University	arning 2017
A	cademic Services	
Te	aching Assistant - Princeton University	
	·	l, 17-18 g, 16-17
Co	onference Reviewer & Committee	

5/6

Computer Vision and Pattern Recognition (CVPR)

International Conference on Computer Vision (ICCV)

Conference on Neural Information Processing Systems (NeurIPS)

International Conference on Machine Learning (ICML)

European Conference on Computer Vision (ECCV)

British Machine Vision Conference (BMVC)

Winter Conference on Applications of Computer Vision (WACV)

AAAI Conference on Artificial Intelligence (AAAI)

Design Automation Conference (DAC)

High-Performance Computer Architecture (HPCA)

Journal Reviewer & Committee

IEEE Transactions on Pattern Analysis and Machine Intelligence

International Journal of Computer Vision

IEEE Journal of Biomedical and Health Informatics

IEEE Journal of Selected Topics in Signal Processing

IEEE Sensors Journal

IEEE Consumer Electronics Magazine

International Journal on Artificial Intelligence Tools

International Journal of Systems Architecture

International Journal of Healthcare Technology and Management

International Journal of Electronic Imaging

Mentorship

Princeton Senior Thesis Mentees	
	2010 2020
Joe Zhang, now Ph.D. at Stanford	2019-2020
Hari Santhanam, now Ph.D. at University of Pennsylvania	2019-2020
Frederick Hertan, now at SIG Trading	2018-2019
Kyle Johnson, now at Princeton University	2018-2019
Bilal Mukadam, now at Microsoft	2018-2019
Chloe Song, now at Astra Inc.	2017-2018
NVIDIA Research Intern Mentees	
Divyam Madaan, New York University	2022-now
Shixing Yu, University of Texas, Austin	2022-now
Annamarie Bair, Carnegie Mellon University	2022-now
Alex Sun, University of Illinois Urbana-Champaign	2022-now
Huanrui Yang, Duke University	2021-2022
Zhen Dong, University of California, Berkeley	2021-2022
Xin Dong, Harvard University	2021-2022
Paul Micaelli, University of Edingbugh	2021-2022
Yerlan Idelbayev, University of California, Merced	2020-2021
Vu Nguyen, Stony Brooks University	2020-2021
Akshay Chawla, Carnegie Mellon University	2020-2021