Problem 1. Prove or disprove $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \simeq \mathbb{Z}/4\mathbb{Z}$.

Disprove: For every element in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, say $z = (\overline{a}, \overline{b})$, then $z^2 = \overline{e} = (\overline{0}, \overline{0})$, so there is no element of order 4 in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. However, $\overline{1} \in \mathbb{Z}/4\mathbb{Z}$ has order 4. Thus they cannot be isomorphic to each other.

Problem 2. Assume that the element a, b, c of a group G satisfies abc = e, where e is the neutral element.

- a). does that imply that bca = e?
- b). does that imply that bac = e?

Proof: a). Since abc = e, we have $a = c^{-1}b^{-1}$, thus $bca = bcc^{-1}b^{-1} = e$.

b). Consider the group S_3 , and let a = (1,2), b = (2,3), and c = (3,2,1), then abc = e. However, $bac = (2,3)(1,2)(3,2,1) \neq e$, for it permutes 3 to 1 rather than 3.

Problem 3. Determine the number of elements of order 2 in the symmetric group S_4 .

Solution: They are $(1\ 2)$, $(1\ 3)$, $(1\ 4)$, $(2\ 3)$, $(2\ 4)$, $(3\ 4)$, $(1\ 2)(3\ 4)$, $(1\ 3)(2\ 4)$, $(1\ 4)(2\ 3)$, and the total number is 9.

Problem 4. Classify the group of order 6 by analyzing the following three cases:

- a). G contains an element of order 6.
- b). G contains an element of order 3 but not of order 6.
- c). All elements of G have order 1 or 2.

Proof: Z_6 is a group of order 6 that contains an element of order 6. S_3 is a group of order 6 that contains order 3 but not of order 6. Suppose we have a group of order 6 where all elements of G have order 1 or 2, say the group $G = \{a_1, a_2, a_3, a_4, a_5, a_6\}$, then only one of them can have order 1, which is essentially e, and we let it be a_1 , then for i = 2, 3, 4, 5, 6, a_i has order 2, which implies that $a_i = a_i^{-1}$. We assume that $a_2a_3 = a_4$, then $a_4a_5 = a_6$, otherwise if $a_4a_5 = a_2$, then $a_2^{-1}a_4 = a_5^{-1}$, which means $a_2a_4 = a_5$, however, $a_2a_4 = a_3$, then we would have $a_3 = a_5$, which is absurd. $a_4a_5 \neq a_3$, $a_4a_5 \neq a_4$, and $a_4a_5 \neq a_5$ follows the same reasoning. Consider $a_2a_5 = a_3a_4a_5 = a_3a_6$, then this product can only be a_4 , which means that $a_2a_5 = a_2a_3$, then $a_5 = a_3$, which is absurd. Thus the c) case cannot be possible.

For group G of type a, it's easy to see that $G \simeq Z_6$. Take $x \in G$ that has order 6, we must have $x, x^2, x^3, x^4, x^5, e \in G$, and that is all of group G because it has order 6. The isomorphism $f: Z_6 \to G$ is defined as $i \mapsto x^i$.

For group G of type b, the maximum order of its element is 3. Take $x \in G$ of order 3, we have e, x, x^2 in G. Since the order of the element must divide 6, we must have $y \in G$ of order 2, and the number of such y is 3, otherwise the group is not of order 6. Now we write group G explicitly, $\{e, x, x^2, y_1, y_2, y_3\}$, and without loss of generality, we can fix the

operation law inside G as $xy_1 = y_2$, $xy_2 = y_3$, $xy_3 = y_1$. Finally the map $f: G \to S_3$ is defined as $x \mapsto (1 \ 2 \ 3)$, $y_1 \mapsto (1 \ 2)$, $y_2 \mapsto (1 \ 3)$, and $y_3 \mapsto (2 \ 3)$, and it is easy to verify that f is indeed a isomorphism. To conclude, group of order 6 can be classified as either Z_6 or S_3 up to isomorphism.

Problem 5. Give an example of a finite group G that satisfies the following both properties:

- a). G is of order 8.
- b). G is not abelian.

Solution: Consider the order 8 group of $\{e, r, r^2, r^3, f, fr, fr^2, fr^3\}$ where $f^2 = e, r^4 = e$, and $fr = r^3 f$. Verify this is indeed a group, by calculation, it is closed under internal law, and for each element, there is one inverse $(r^{-1} = r^3, r^{-2} = r^2, f^{-1} = f^1, (fr)^{-1} = r^3 f = fr, (fr^2)^{-1} = fr^2, (fr^3)^{-1} = (fr^3)$). Also, it is non-abelian since $r^3 f = fr \neq fr^3$.