

PCT
WELTOORGANISATION FÜR GEISTIGES EIGENTUM
 Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation⁶: C07D 301/12	A1	(11) Internationale Veröffentlichungsnummer: WO 97/47613 (43) Internationales Veröffentlichungsdatum: 18. Dezember 1997 (18.12.97)	
		(21) Internationales Aktenzeichen: PCT/EP97/02815 (22) Internationales Anmeldedatum: 30. Mai 1997 (30.05.97) (30) Prioritätsdaten: 196 23 608.8 13. Juni 1996 (13.06.96) DE	(81) Bestimmungsstaaten: AL, AU, BG, BR, CA, CN, CZ, GE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
		(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): MÜLLER, Ulrich [DE/DE]; Birkenweg 16, D-67434 Neustadt (DE). GROSCH, Georg, Heinrich [DE/DE]; Berliner Strasse 16, D-67098 Bad Dürkheim (DE). HAUER, Bernhard [DE/DE]; Merowingerstrasse 1, D-67136 Fußgönheim (DE). SCHULZ, Michael [DE/DE]; Dhauner Strasse 39, D-67067 Ludwigshafen (DE). RIEBER, Norbert [DE/DE]; Liebfrauenstrasse 1c, D-68259 Mannheim (DE).	Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
		(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).	
(54) Title: PROCESS FOR PRODUCING EPOXIDES FROM OLEFINES AND HYDROGEN PEROXIDE OR HYDROPEROXIDES USING A ZEOLITHIC OXIDATION CATALYST			
(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON EPOXIDEN AUS OLEFINEN UND WASSERSTOFFPEROXID ODER HYDROPEROXIDEN UNTER VERWENDUNG EINES ZEOLITH-OXIDATIONSKATALYSATORS			
(57) Abstract <p>A process for producing epoxides from olefines and hydrogen peroxide or hydroperoxides in the liquid phase using an oxidation catalyst based on titanium or vanadium silicalites with a zeolithic structure, in which the concentration of the hydrogen peroxide or hydroperoxides in the reaction mixture is in the range from 0.05 to less than 1 wt.% during the reaction.</p>			
(57) Zusammenfassung <p>Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid oder Hydroperoxiden in flüssiger Phase unter Verwendung eines Oxidationskatalysators auf Basis von Titan- oder Vanadiumsilikaten mit Zeolith-Struktur, dadurch gekennzeichnet, daß die Konzentration des Wasserstoffperoxids oder der Hydroperoxide in der Reaktionsmischung bei der Umsetzung im Bereich von 0,05 bis kleiner 1 Gew.-% liegt.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

**VERFAHREN ZUR HERSTELLUNG VON EPOXIDEN AUS OLEFINEN UND WASSERSTOFFPEROXID ODER
HYDROPEROXIDEN UNTER VERWENDUNG EINES ZEOLITH-OXIDATIONSKATALYSATORS**

5 Beschreibung

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid oder Hydroperoxiden unter Verwendung eines Oxidationskatalysators auf Basis von Titan- oder Vanadionsilikaten mit Zeolith-Struktur.

Verfahren zur Herstellung von Epoxiden aus Olefinen und wäßrigem Wasserstoffperoxid unter Verwendung von Titansilikaten als Epoxidierungskatalysatoren sind aus der EP-A 100 119 (1) und der Literaturstelle M.G. Clerici et al., J. Catal. 129, 159-167 (1991) (2) bekannt.

Gemäß (1) wird die Epoxidierung von Ethylen, Propen, Allylchlorid, 2-Buten, 1-Octen, 1-Tridecen, Mesityloxid, Isopren, Cycloocten und Cyclohexen mittels verdünntem wäßrigem Wasserstoffperoxid in Gegenwart eines Titansilikats in einem Autoklaven durchgeführt. Die Wasserstoffperoxidkonzentration in der Reaktionsmischung kann dabei bis zu 10 Gew.-% abgesenkt werden.

Aus (2) ist bekannt, daß die Wasserstoffperoxidkonzentration bei solchen Epoxidierungen sogar bis zu 1 % heruntergefahren werden kann. Als Wasserstoffperoxidquellen für die in (2) beschriebenen Titansilikat-katalysierten Epoxidierungen von Propen zu Propylenoxid werden 30 bis 35 %ige wäßrige H₂O₂-Lösungen eingesetzt.

Derartige aus dem Stand der Technik bekannte Epoxidierungsverfahren weisen jedoch Nachteile auf. Bei Verwendung von konzentrierten Wasserstoffperoxid-Lösungen (mit ca. 10 bis 70 Gew.-% H₂O₂) können erhebliche Sicherheitsprobleme bei der Reaktionsführung wegen möglicher spontaner Zersetzung des Wasserstoffperoxids oder von dessen Nebenprodukten (z.B. Hydroperoxiden), insbesondere in Gegenwart bestimmter organischer Lösungsmittel, auftreten. Die Beseitigung solcher Sicherheitsprobleme führt zu erheblich größerem Aufwand und höheren Verfahrenskosten. Auch ohne den genannten Sicherheitsaspekt sind die Verfahrenskosten ohnehin schon groß, da mittel- bis hochkonzentrierte Wasserstoffperoxid-Lösungen relativ teuer sind.

2

Aufgabe der vorliegenden Erfindung war es daher, ein einfaches, effizientes und insbesondere wirtschaftliches Epoxidierungsverfahren von Olefinen bereitzustellen, das die Nachteile des Standes der Technik nicht mehr aufweist.

5

Demgemäß wurde ein Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid oder Hydroperoxiden in flüssiger Phase unter Verwendung eines Oxidationskatalysators auf Basis von Titan- oder Vanadionsilikatiten mit Zeolith-Struktur gefunden,

10 welches dadurch gekennzeichnet ist, daß die Konzentration des Wasserstoffperoxids oder der Hydroperoxide in der Reaktionsmischung bei der Umsetzung im Bereich von 0,05 bis kleiner 1 Gew.-%, insbesondere von 0,1 bis 0,8 Gew.-%, vor allem von 0,2 bis 0,6 Gew.-%, liegt.

15

Als Hydroperoxide können alle als übliche Oxidationsmittel für derartige Epoxidierungen verwendeten organischen Hydroperoxide der Formel R-O-O-H eingesetzt werden, wobei R in der Regel für einen organischen Rest mit 1 bis 30 C-Atomen steht. Von besonderem Interesse sind hierbei Cumol- und Diisopropylbenzol-Hydroperoxid.

In einer bevorzugten Ausführungsform setzt man als Wasserstoffperoxidquellen für die erfindungsgemäße Epoxidierung wäßrige Wasserstoffperoxid-Lösungen, insbesondere technische (also nicht gereinigte) Wasserstoffperoxid-Lösungen, mit einem Gehalt an 0,1 bis 10 Gew.-%, insbesondere 0,15 bis 5 Gew.-%, vor allem 0,2 bis 2 Gew.-% Wasserstoffperoxid ein.

30 Als derartige technische Wasserstoffperoxidquellen eignen sich vor allem wasserstoffperoxidhaltige Extraktionslösungen aus einer Anthrachinon-Arbeitslösung zur Wasserstoffperoxid-Herstellung.

Als derartige technische Wasserstoffperoxidquellen eignen sich weiterhin gut wasserstoffperoxidhaltige Ströme oder Rückstände, z.B. Brüden oder Sumpfausträge, aus einer Wasserstoffperoxid-Destillation, wobei diese Ströme oder Rückstände meist nicht weiter in ihrem H₂O₂-Gehalt aufkonzentriert worden sind.

40 Als derartige technische Wasserstoffperoxidquellen eignen sich insbesondere auch wasserstoffperoxidhaltige Extraktionslösungen von Fermenterbrühen oder von enzymhaltigen Mischungen, also aus natürlich vorkommenden oder biotechnologisch zugänglichen Quellen.

45

Die eingesetzten Oxidationskatalysatoren auf Basis von Titan- oder Vanadiumsilikaten mit Zeolith-Struktur sind aus dem Stand der Technik bekannt. Zeolithe sind bekanntermaßen kristalline Alumosilikate mit geordneten Kanal- und Käfigstrukturen, deren Porenöffnungen im Bereich von Mikroporen, die kleiner als 0,9 nm sind, liegen. Das Netzwerk solcher Zeolithe ist aufgebaut aus SiO_4 - und AlO_4 -Tetraedern, die über gemeinsame Sauerstoffbrücken verbunden sind. Eine Übersicht der bekannten Strukturen findet sich beispielsweise bei W.M. Meier und D.H. Olson, "Atlas of 10 Zeolite Structure Types", Butterworth, 2nd Ed., London 1987.

Es sind nun auch Zeolithe bekannt, die kein Aluminium enthalten und bei denen im Silikatgitter anstelle des Si(IV) teilweise Titan als Ti(IV) steht. Diese Titanzeolithe, insbesondere solche mit einer Kristallstruktur vom MFI-Typ, sowie Möglichkeiten zu ihrer Herstellung sind beschrieben, beispielsweise in der EP-A 311 983 oder der EP-A 405 978. Außer Silizium und Titan können solche Materialien auch zusätzliche Elemente wie Aluminium, Zirkonium, Zinn, Eisen, Kobalt, Nickel, Gallium, Bor oder geringe Mengen an Fluor enthalten.

Im beschriebenen Oxidationskatalysator kann das Titan des Zeoliths teilweise oder vollständig durch Vanadium ersetzt sein. Das molare Verhältnis von Titan und/oder Vanadium zur Summe aus 25 Silicium plus Titan und/oder Vanadium liegt in der Regel im Bereich von 0,01:1 bis 0,1:1.

Titanzeolithe mit MFI-Struktur sind dafür bekannt, daß sie über ein bestimmtes Muster bei der Bestimmung ihrer Röntgenbeugungs- 30 aufnahmen sowie zusätzlich über eine Gerüstschwingsbande im Infrarotbereich (IR) bei etwa 960 cm^{-1} identifiziert werden können und sich damit von Alkalimetalltitanaten oder kristallinen und amorphen TiO_2 -Phasen unterscheiden.

Typischerweise stellt man die genannten Titan- und auch Vanadiumzeolithe dadurch her, daß man eine wäßrige Mischung aus einer SiO_2 -Quelle, einer Titan- bzw. Vanadium-Quelle wie Titandioxid bzw. einem entsprechenden Vanadiumoxid und einer stickstoffhaltigen organischen Base ("Schablonen-Verbindung"), z.B. Tetrapropylammoniumhydroxid, gegebenenfalls noch unter Hinzufügen von Alkalimetallverbindungen, in einem Druckbehälter unter erhöhter Temperatur im Zeitraum mehrerer Stunden oder einiger Tage umsetzt, wobei das kristalline Produkt entsteht. Dieses wird abfiltriert, gewaschen, getrocknet und zur Entfernung der organischen Stickstoffbase bei erhöhter Temperatur gebrannt. In dem so erhaltenen Pulver liegt das Titan bzw. das Vanadium zumindest teilweise innerhalb des Zeolithgerüsts in wechselnden Anteilen

mit vier-, fünf- oder sechsfacher Koordination vor. Zur Verbesserung des katalytischen Verhaltens kann sich noch eine mehrmalige Waschbehandlung mit schwefelsaurer Wasserstoffperoxidlösung anschließen, worauf das Titan- bzw. Vanadiumzeolith-Pulver erneut 5 getrocknet und gebrannt werden muß; daran kann sich eine Behandlung mit Alkalimetallverbindungen anschließen, um den Zeolith von der H-Form in die Kation-Form zu überführen.

Bevorzugte Titan- oder Vanadiumzeolithe sind solche mit Pentasil-
10 Zeolith-Struktur, insbesondere die Typen mit röntgenographischer Zuordnung zur BEA-, MOR-, TON-, MTW-, FER-, MFI-, MEL- oder MFI/MEL-Mischstruktur. Zeolithe dieses Typs sind beispielsweise in W.M. Meier und D.H. Olson, "Atlas of Zeolite Structure Types", Butterworths, 2nd Ed., London 1987, beschrieben. Denkbar sind für 15 die vorliegende Erfindung weiterhin titanhaltige Zeolithe mit der Struktur des ZSM-48, ZSM-12, Ferrierit oder β -Zeolith und des Mor-
denits.

Das erfindungsgemäße Verfahren zur Herstellung von Epoxiden kann 20 im Prinzip mit allen üblichen Umsetzungsfahrweisen und in allen üblichen Reaktortypen durchgeführt werden, beispielsweise in Suspensionsfahrweise oder in einer Festbettanordnung. Man kann kontinuierlich oder diskontinuierlich arbeiten.

25 Die erfindungsgemäße Epoxidierung wird in flüssiger Phase zweckmäßigerweise in Wasser allein oder in einer Mischung aus Wasser und wassermischbaren organischen Lösungsmitteln durchgeführt. Als derartige organische Lösungsmittel eignen sich insbesondere Alkohole wie Methanol, Ethanol, iso-Propanol, tert.-Butanol oder 30 Mischungen hieraus. Werden solche organische Lösungsmittel in Mischung mit Wasser verwendet, beträgt ihr Anteil an der Gesamt-
mischung meist 5 bis 95 Vol.-%, insbesondere 30 bis 85 Vol.-%.

Die erfindungsgemäße Epoxidierung wird in der Regel bei einer 35 Temperatur von -20 bis 70°C, insbesondere -5 bis 50°C, und bei einem Druck von 1 bis 10 bar vorgenommen.

Das eingesetzte Olefin kann eine beliebige organische Verbindung sein, die mindestens eine ethylenisch ungesättigte Doppelbindung 40 enthält. Sie kann aliphatischer, aromatischer oder cycloaliphatischer Natur sein, sie kann aus einer linearen oder einer verzweigten Struktur bestehen. Vorzugsweise enthält das Olefin 2 bis 30 C-Atome. Mehr als eine ethylenisch ungesättigte Doppelbindung kann vorhanden sein, so etwa in Dienen oder Trienen. Das 45 Olefin kann zusätzlich funktionelle Gruppen wie Halogenatome, Carboxylgruppen, Carbonesterfunktionen, Hydroxylgruppen, Ether-

brücken, Sulfidbrücken, Carbonylfunktionen, Cyanogruppen, Nitrogruppen oder Aminogruppen enthalten.

Typische Beispiele für derartige Olefine sind Ethylen, Propen,
5 1-Buten, cis- und trans-2-Buten, 1,3-Butadien, Pentene, Isopren, Hexene, Octene, Nonene, Decene, Undecene, Dodecene, Cyclopenten, Cyclohexen, Dicyclopentadien, Methylencyclopropan, Vinylcyclohexan, Vinylcyclohexen, Allylchlorid, Acrylsäure, Methacrylsäure, Crotonsäure, Vinylsäigsäure, Allylalkohol, Alkylacrylate, Alkylmethacrylate, Ölsäure, Linolsäure, Linolensäure, Ester und Glyceride derartiger ungesättigter Fettsäuren, Styrol, α -Methylstyrol, Divinylbenzol, Inden und Stilben. Auch Mischungen der genannten Olefine können nach dem erfindungsgemäßen Verfahren epoxidiert werden.

15

Das erfindungsgemäße Verfahren eignet sich in besonderem Maße für die Epoxidierung von Propen zu Propylenoxid.

Gemäß der vorliegenden Erfindung kann man weit unterhalb der im 20 Stand der Technik bekannten Wasserstoffperoxid-Konzentration mittels Titan- oder Vanadionsilikatiten erfolgreich Olefine epoxidieren. Aufgrund der niedrigen Konzentration an Wasserstoffperoxid im System treten keine Sicherheitsprobleme mehr auf. Weiterhin können Wasserstoffperoxid-Lösungen ohne störende Stabilisatoren, welche bei hohen Konzentrationen notwendig sind, eingesetzt werden. Zudem hat das erfindungsgemäße Verfahren den Vorteil, daß preiswerte technische Wasserstoffperoxidquellen als 25 Einsatzmaterial herangezogen werden können; die in solchen Quellen vorhandenen Verunreinigungen stören überraschenderweise 30 bei der erfindungsgemäßen Epoxidierung nicht.

Die nachstehenden Beispiele sollen das erfindungsgemäße Verfahren näher erläutern, ohne daß dadurch eine Einschränkung zu verstehen wäre.

35

Beispiel 1

In einem Vierhalskolben (2 l Inhalt) wurden 455 g Tetraethyl-orthosilikat vorgelegt und aus einem Tropftrichter innerhalb von 40 30 min mit 15 g Tetraisopropylorthotitanat unter Rühren (250 U/min, Blattrührer) versetzt. Es bildete sich eine farblose, klare Mischung. Abschließend versetzte man mit 800 g einer 20 gew.-%igen Tetrapropylammoniumhydroxid-Lösung (Alkaligehalt < 10 ppm) und rührte noch eine Stunde nach. Bei 90 bis 100°C wurde 45 das aus der Hydrolyse gebildete Alkoholgemisch (ca. 450 g) abdestilliert. Man füllte mit 1,5 l deionisiertem Wasser auf und

gab das mittlerweile leicht opaque Sol in einen 2,5 l fassenden Rührautoklaven aus Edelstahl.

Mit einer Heizrate von 3°/min wurde der verschlossene Autoklav
5 (Ankerrührer, 200 U/min) auf eine Reaktionstemperatur von 175°C
gebracht. Nach 92 Stunden war die Reaktion beendet. Das erkaltete
Reaktionsgemisch (weiße Suspension) wurde abzentrifugiert und
mehrfach mit Wasser neutral gewaschen. Der erhaltene Feststoff
wurde bei 110°C innerhalb von 24 Stunden getrocknet (Auswaage
10 149 g).

Abschließend wurde unter Luft bei 550°C in 5 Stunden das im
Zeolithen noch verbliebene Templat abgebrannt (Kalzinierungs-
verlust: 14 Gew.-%).

15 Das reinweiße Produkt hatte nach naßchemischer Analyse einen Ti-
Gehalt von 1,5 Gew.-% und einen Gehalt an Restalkali unterhalb
100 ppm. Die Ausbeute auf eingesetztes SiO₂ betrug 97 %. Die
Kristallite hatten eine Größe von 0,05 bis 0,25 µm und das Produkt
20 zeigte im IR eine typische Bande bei ca. 960 cm⁻¹.

Beispiel 2

In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 0,5 g
25 Titansilikatpulver aus Beispiel 1 eingefüllt und die Suspension
wurde mit einem Magnetrührer gerührt. Der verschlossene Glasauto-
klav wurde danach auf -30°C abgekühlt und 20,7 g Propen wurden
aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 23 g
0,5 gew.-%ige Wasserstoffperoxidlösung wurde zudosiert. Die
30 Reaktionsmischung wurde 5 h bei 0°C unter Eigendruck gerührt.
Danach wurde der Katalysator abzentrifugiert und der Gehalt an
Propylenoxid gaschromatographisch bestimmt. Der Gehalt an
Propylenoxid betrug 0,3 Gew.-%.

35 Beispiel 3

In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 0,5 g
Titansilikat aus Beispiel 1 eingefüllt und die Suspension wurde
mit einem Magnetrührer gerührt. Der verschlossene Glasautoklav
40 wurde danach auf -30°C abgekühlt und 20,2 g Propen wurde aufge-
preßt. Danach wurde Glasautoklav auf 0°C erwärmt und 23 g
0,5 gew.-%ige Wasserstoffperoxidlösung zudosiert. Die Reak-
tions-
45 mischung wurde 30 Minuten bei 0°C unter Eigendruck gerührt. Danach
wurde der Katalysator abzentrifugiert und der Gehalt an Propylen-
oxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid
betrug 0,18 Gew.-%.

gab das mittlerweile leicht opaque Sol in einen 2,5 l fassenden Rührautoklaven aus Edelstahl.

Mit einer Heizrate von 3°/min wurde der verschlossene Autoklav
5 (Ankerrührer, 200 U/min) auf eine Reaktionstemperatur von 175°C
gebracht. Nach 92 Stunden war die Reaktion beendet. Das erkaltete
Reaktionsgemisch (weiße Suspension) wurde abzentrifugiert und
mehrfach mit Wasser neutral gewaschen. Der erhaltene Feststoff
wurde bei 110°C innerhalb von 24 Stunden getrocknet (Auswaage
10 149 g).

Abschließend wurde unter Luft bei 550°C in 5 Stunden das im
Zeolithen noch verbliebene Templat abgebrannt (Kalzinierungs-
verlust: 14 Gew.-%).

15

Das reinweiße Produkt hatte nach naßchemischer Analyse einen Ti-
Gehalt von 1,5 Gew.-% und einen Gehalt an Restalkali unterhalb
100 ppm. Die Ausbeute auf eingesetztes SiO₂ betrug 97 %. Die
Kristallite hatten eine Größe von 0,05 bis 0,25 µm und das Produkt
20 zeigte im IR eine typische Bande bei ca. 960 cm⁻¹.

Beispiel 2

In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 0,5 g
25 Titansilikatpulver aus Beispiel 1 eingefüllt und die Suspension
wurde mit einem Magnetrührer gerührt. Der verschlossene Glasauto-
klav wurde danach auf -30°C abgekühlt und 20,7 g Propen wurden
aufgepreßt. Danach wurde der Glasautoklav auf 0°C erwärmt und 23 g
0,5 gew.-%ige Wasserstoffperoxidlösung wurde zudosiert. Die
30 Reaktionsmischung wurde 5 h bei 0°C unter Eigendruck gerührt.
Danach wurde der Katalysator abzentrifugiert und der Gehalt an
Propylenoxid gaschromatographisch bestimmt. Der Gehalt an
Propylenoxid betrug 0,3 Gew.-%.

35 Beispiel 3

In einen 250 ml Glasautoklaven wurden 45 ml Methanol und 0,5 g
Titansilikat aus Beispiel 1 eingefüllt und die Suspension wurde
mit einem Magnetrührer gerührt. Der verschlossene Glasautoklav
40 wurde danach auf -30°C abgekühlt und 20,2 g Propen wurde aufge-
preßt. Danach wurde Glasautoklav auf 0°C erwärmt und 23 g
0,5 gew.-%ige Wasserstoffperoxidlösung zudosiert. Die Reak-
tions-
45 mischung wurde 30 Minuten bei 0°C unter Eigendruck gerührt. Danach
wurde der Katalysator abzentrifugiert und der Gehalt an Propylen-
oxid gaschromatographisch bestimmt. Der Gehalt an Propylenoxid
betrug 0,18 Gew.-%.

Patentansprüche

1. Verfahren zur Herstellung von Epoxiden aus Olefinen und
5 Wasserstoffperoxid oder Hydroperoxiden in flüssiger Phase
unter Verwendung eines Oxidationskatalysators auf Basis von
Titan- oder Vanadiumsilikaten mit Zeolith-Struktur, dadurch
gekennzeichnet, daß die Konzentration des Wasserstoffperoxids
oder der Hydroperoxide in der Reaktionsmischung bei der Um-
10 setzung im Bereich von 0,05 bis kleiner 1 Gew.-% liegt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man
als Wasserstoffperoxidquellen für die Epoxidierung wäßrige
Wasserstoffperoxid-Lösungen mit einem Gehalt von 0,1 bis
15 10 Gew.-% an Wasserstoffperoxid einsetzt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man
als Wasserstoffperoxidquellen wasserstoffperoxidhaltige Ex-
20 traktionslösungen aus einer Anthraquinon-Arbeitslösung zur
Wasserstoffperoxid-Herstellung einsetzt.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man
als Wasserstoffperoxidquellen wasserstoffperoxidhaltige
Ströme oder Rückstände aus einer Wasserstoffperoxid-Destilla-
25 tion einsetzt.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man
als Wasserstoffperoxidquellen wasserstoffperoxidhaltige Ex-
30 traktionslösungen von Fermenterbrühen oder von enzymhaltigen
Mischungen einsetzt.
6. Verfahren zur Herstellung von Propylenoxid aus Propen und
Wasserstoffperoxid oder Hydroperoxiden nach den Ansprüchen 1
bis 5.
35

40

45

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/EP 97/02815

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D301/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 374 747 A (SAXTON ROBERT J ET AL) 20 December 1994 see column 6, line 38 - line 52 ---	1-6
X	EP 0 568 336 A (ARCO CHEM TECH) 3 November 1993 see page 5, line 15 - line 40 ---	1-6
X	EP 0 659 685 A (ARCO CHEM TECH) 28 June 1995 see page 8, line 25 - line 57; claims 26-35 ---	1-6
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

1

Date of the actual completion of the international search

24 September 1997

Date of mailing of the international search report

08.10.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Stellmach, J

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/EP 97/02815
--

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CLERICI M G ET AL: "SYNTHESIS OF PROPYLENE OXIDE FROM PROPYLENE AND HYDROGEN PEROXIDE CATALYZED BY TITANIUM SILICALITE" JOURNAL OF CATALYSIS, vol. 129, no. 1, 1 May 1991, pages 159-167, XP000577042 cited in the application see page 163-164; figures 3,4 ---	1-6
Y	EP 0 315 248 A (ENIRICERCHE SPA) 10 May 1989 see claim 2 ---	1-6
Y	EP 0 315 247 A (ENIRICERCHE SPA) 10 May 1989 see page 2, line 24 - line 25 ---	1-6
Y	EP 0 573 887 A (BASF AG) 15 December 1993 see the whole document ---	1-6
Y	HAGGIN J: "NOVEL EPOXIDATION CATALYST TITANIUM COMPLEX ANCHORED INSIDE ZEOLITE" CHEMICAL AND ENGINEERING NEWS, vol. 73, no. 46, 13 November 1995, page 6 XP000535773 see the whole document ---	1-6
Y	WO 96 02323 A (BASF AG ;MUELLER ULRICH (DE); LINGELBACH PETER (DE); BASSLER PETER) 1 February 1996 see the whole document ---	1-6
Y	EP 0 100 119 A (ANIC SPA) 8 February 1984 cited in the application see the whole document ---	1-6
Y	EP 0 405 978 A (ENGELHARD CORP) 2 January 1991 cited in the application see the whole document -----	1-6
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat. Appl. No.

PCT/EP 97/02815

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5374747 A	20-12-94	CA 2138840 A CN 1113454 A EP 0659685 A JP 7242649 A US 5453511 A US 5621122 A US 5527520 A	24-06-95 20-12-95 28-06-95 19-09-95 26-09-95 15-04-97 18-06-96
EP 0568336 A	03-11-93	US 5262550 A AT 129708 T DE 69300720 D DE 69300720 T ES 2079236 T JP 6009592 A	16-11-93 15-11-95 07-12-95 11-04-96 01-01-96 18-01-94
EP 0659685 A	28-06-95	US 5374747 A US 5453511 A CA 2138840 A CN 1113454 A JP 7242649 A US 5621122 A US 5527520 A	20-12-94 26-09-95 24-06-95 20-12-95 19-09-95 15-04-97 18-06-96
EP 0315248 A	10-05-89	DE 3870153 A	21-05-92
EP 0315247 A	10-05-89	DE 3870152 A	21-05-92
EP 0573887 A	15-12-93	DE 4218765 A DE 59303823 D	09-12-93 24-10-96
WO 9602323 A	01-02-96	DE 4425672 A AU 2982295 A CA 2195574 A EP 0772491 A	25-01-96 16-02-96 01-02-96 14-05-97
EP 0100119 A	08-02-84	CA 1196925 A JP 1721832 C JP 4005028 B JP 59051273 A US 4833260 A	19-11-85 24-12-92 30-01-92 24-03-84 23-05-89

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 97/02815

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0405978 A	02-01-91	US 5244650 A AU 633567 B AU 5510990 A CA 2014666 A,C DE 69001644 T JP 3069510 A	14-09-93 04-02-93 03-01-91 29-12-90 11-11-93 25-03-91

INTERNATIONALER RECHERCHENBERICHT

Interna. Aktenzeichen
PCT/EP 97/02815

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C07D301/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 C07D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 374 747 A (SAXTON ROBERT J ET AL) 20.Dezember 1994 siehe Spalte 6, Zeile 38 - Zeile 52 ---	1-6
X	EP 0 568 336 A (ARCO CHEM TECH) 3.November 1993 siehe Seite 5, Zeile 15 - Zeile 40 ---	1-6
X	EP 0 659 685 A (ARCO CHEM TECH) 28.Juni 1995 siehe Seite 8, Zeile 25 - Zeile 57; Ansprüche 26-35 ---	1-6
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

S. die Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besondere Bedeutung anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

24.September 1997

08.10.97

Name und Postanschrift der Internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Stellmach, J

INTERNATIONALER RECHERCHENBERICHT

Internat. Aktenzeichen PCT/EP 97/02815

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CLERICI M G ET AL: "SYNTHESIS OF PROPYLENE OXIDE FROM PROPYLENE AND HYDROGEN PEROXIDE CATALYZED BY TITANIUM SILICALITE" JOURNAL OF CATALYSIS, Bd. 129, Nr. 1, 1.Mai 1991, Seiten 159-167, XP000577042 in der Anmeldung erwähnt siehe Seite 163-164; Abbildungen 3,4 ---	1-6
Y	EP 0 315 248 A (ENIRICERCHE SPA) 10.Mai 1989 siehe Anspruch 2 ---	1-6
Y	EP 0 315 247 A (ENIRICERCHE SPA) 10.Mai 1989 siehe Seite 2, Zeile 24 - Zeile 25 ---	1-6
Y	EP 0 573 887 A (BASF AG) 15.Dezember 1993 siehe das ganze Dokument ---	1-6
Y	HAGGIN J: "NOVEL EPOXIDATION CATALYST TITANIUM COMPLEX ANCHORED INSIDE ZEOLITE" CHEMICAL AND ENGINEERING NEWS, Bd. 73, Nr. 46, 13.November 1995, Seite 6 XP000535773 siehe das ganze Dokument ---	1-6
Y	WO 96 02323 A (BASF AG ;MUELLER ULRICH (DE); LINGELBACH PETER (DE); BASSLER PETER) 1.Februar 1996 siehe das ganze Dokument ---	1-6
Y	EP 0 100 119 A (ANIC SPA) 8.Februar 1984 in der Anmeldung erwähnt siehe das ganze Dokument ---	1-6
Y	EP 0 405 978 A (ENGELHARD CORP) 2.Januar 1991 in der Anmeldung erwähnt siehe das ganze Dokument -----	1-6
1		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat...ales Aktenzeichen

PCT/EP 97/02815

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5374747 A	20-12-94	CA 2138840 A CN 1113454 A EP 0659685 A JP 7242649 A US 5453511 A US 5621122 A US 5527520 A	24-06-95 20-12-95 28-06-95 19-09-95 26-09-95 15-04-97 18-06-96
EP 0568336 A	03-11-93	US 5262550 A AT 129708 T DE 69300720 D DE 69300720 T ES 2079236 T JP 6009592 A	16-11-93 15-11-95 07-12-95 11-04-96 01-01-96 18-01-94
EP 0659685 A	28-06-95	US 5374747 A US 5453511 A CA 2138840 A CN 1113454 A JP 7242649 A US 5621122 A US 5527520 A	20-12-94 26-09-95 24-06-95 20-12-95 19-09-95 15-04-97 18-06-96
EP 0315248 A	10-05-89	DE 3870153 A	21-05-92
EP 0315247 A	10-05-89	DE 3870152 A	21-05-92
EP 0573887 A	15-12-93	DE 4218765 A DE 59303823 D	09-12-93 24-10-96
WO 9602323 A	01-02-96	DE 4425672 A AU 2982295 A CA 2195574 A EP 0772491 A	25-01-96 16-02-96 01-02-96 14-05-97
EP 0100119 A	08-02-84	CA 1196925 A JP 1721832 C JP 4005028 B JP 59051273 A US 4833260 A	19-11-85 24-12-92 30-01-92 24-03-84 23-05-89

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internat. Aktenzeichen

PCT/EP 97/02815

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0405978 A	02-01-91	US 5244650 A AU 633567 B AU 5510990 A CA 2014666 A,C DE 69001644 T JP 3069510 A	14-09-93 04-02-93 03-01-91 29-12-90 11-11-93 25-03-91