Graduate Program in Software CSIS 734-01: Data Mining & Predictive Analytics

Assignment #3 (100 points)

Due Date: March 10th, 2018

- Assume all the closed (frequent) itemsets and their support counts are
 - Support ({C}) = 0.3
 - Support ({A, C}) = 0.2
 - Support ({B, E}) = 0.3
 - Support ({B, C, E}) = 0.2
 - What is Conf (E \Rightarrow C) = ?

We first derive the supports of B and E. Support {B} and Support {E} couldn't happen more than 3 times, because superset support can't be greater than subset. As a rule, if support is unknown, use the max of its supersets.

Next, calculate confidence:

Confidence (E -> C) =
$$\{E \lor C\} / \{E\}$$

= 2 / 3
= 66%

Note: If an itemset does not have the same support of either of its parents (supersets), then it is unique/closed. If an itemset has no frequent parents (supersets), then it is maximal. Only unique and maximal itemsets need be stored in computer memory.

- Assume all the closed (frequent) itemsets and their support counts are
 - Support ({A, B, C, D}) = 0.3
 - Support ({A, B, C}) = 0.4

• What is Conf (B
$$\Rightarrow$$
 ACD) = ?

Conf (B
$$\Rightarrow$$
 ACD) = {A v B v C v D} / {B}
= 1 / 9
= 11%

• What is Conf (A
$$\Rightarrow$$
 BCD) = ?

Conf (A
$$\Rightarrow$$
 BCD) = {A v B v C v D} / {A}
=1 / 9
= 11%

• What is Conf (ABD
$$\Rightarrow$$
 C) = ?

Conf (ABD
$$\Rightarrow$$
 C) = {A v B v C v D} / {A v B v D}
= 1 / 1
= 100%

• What is Conf (BD
$$\Rightarrow$$
 AC) = ?

Conf (BD
$$\Rightarrow$$
 AC) = {A v B v C v D} / {B v D}
= 1 / 4
= 25%