The use of mixture distributions in a Bayesian linear mixed effects model

Anirudh TOMER

Promoter: Professor Emmanuel LESAFFRE

Bayesian heterogeneity model

Vs.

What is the problem we are facing?

Estimation of mixture component density parameters θ_G

Criteria for choice of number of components (DIC, Marginal likelihood, Predictive methods)

Classification of observations into groups

DIC (deviance information criteria)

$$DIC = \overline{D(\boldsymbol{\theta})} + p_D$$

Where $p_D = \overline{D(\boldsymbol{\theta})} - D(\overline{\boldsymbol{\theta}})$ is the effective number of parameters in the model.

 $D(\theta) = -2 \log p(y|\theta) + 2 \log f(y)$ is called the Bayesian deviance.

Various definitions of DIC proposed by Celeux et al., (2006) for missing data models.

Marginal/Complete/Conditional likelihood

$$p(y|\theta) = \prod_{i=1}^{n} \sum_{k=1}^{K} f_N(y_i; X_i\beta + Z_ib_k^C, Z_iG_kZ_i^T + R_i)\eta_k$$

$$f(\mathbf{y}^F|\boldsymbol{\theta}) = \prod_{i=1}^n f(\mathbf{y}_i|\mathbf{b}_i, S_i) f(\mathbf{b}_i|S_i) f(S_i)$$

$$= \prod_{i=1}^n f_N(\mathbf{y}_i; \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i, R_i) f_N(\mathbf{b}_i; \mathbf{b}_{S_i}^C, G_{S_i}) f(S_i; \boldsymbol{\eta})$$

$$X_i, Z_i$$

$$\boldsymbol{\beta}, \boldsymbol{b}_k^C$$

$$G_k, R_i$$

$$\eta_k, S_i, b_i$$

$$p(y| heta^{\mathsf{cond}}) = \prod_{i=1}^n f_N(y_i; X_i eta + Z_i b_i, R_i)$$
 $heta^{\mathsf{cond}} = (heta, b, S).$

Marginal DIC definitions

$$\mathsf{DIC}_1 = -4\mathsf{E}_{\theta|y}(\log p(y|\theta)) + 2\log p(y|\bar{\theta}))$$

$$\mathsf{DIC}_2 = -4\mathsf{E}_{\theta|y}(\log p(y|\theta)) + 2\log p(y|\hat{\theta}_M))$$

$$\hat{\theta}_M = \arg\max_{\theta} p(\theta|y)$$

$$\mathsf{DIC}_3 = -4\mathsf{E}_{\theta|y}(\log p(y|\theta)) + 2\log \hat{p}(y)$$

$$\hat{p}(y) = \prod_{i=1}^{n} \hat{p}(y_i) = \prod_{i=1}^{n} \frac{1}{m} \sum_{l=1}^{m} \sum_{k=1}^{K} f_N(y_i; X_i \beta^{(l)} + Z_i b_k^{C(l)}, Z_i G_k^{(l)} Z_i^T + R_i^{(l)}) \eta_k^{(l)}$$

Complete and conditional DIC definitions

$$\mathsf{DIC}_4 = -4\mathsf{E}_{\theta,b,S|y}(\log p(y^F|\theta)) + 2\mathsf{E}_{b,S|y}(\log p(y^F|\bar{\theta}))$$

$$\mathsf{DIC}_5 = -4\mathsf{E}_{\theta,b,S|y}(\log p(y^F|\theta)) + 2\log p(y,\hat{b}_M,\hat{S}_M|\hat{\theta}_M)$$

$$\begin{aligned} &\mathsf{DIC}_6 = -4\mathsf{E}_{\theta^{\mathsf{cond}}}(\log p(\boldsymbol{y}|\boldsymbol{\theta^{\mathsf{cond}}})) + 2\log p(\boldsymbol{y}|\hat{\boldsymbol{\theta}}_M^{\mathsf{cond}})) \\ &\boldsymbol{\theta^{\mathsf{cond}}} = (\boldsymbol{\theta}, \boldsymbol{b}, \boldsymbol{S}). \\ &\hat{\boldsymbol{\theta}}_M^{\mathsf{cond}} = \arg \max_{\boldsymbol{\theta^{\mathsf{cond}}}} p(\boldsymbol{\theta^{\mathsf{cond}}}|\boldsymbol{y}), \ \mathsf{and} \ \mathsf{E}_{\theta^{\mathsf{cond}}}(\log p(\boldsymbol{y}|\boldsymbol{\theta^{\mathsf{cond}}})) \end{aligned}$$

Marginal likelihood using Chib's approximation

$$\begin{split} m(y) &= p(y|M) = \frac{L(\theta|y, M)p(\theta|M)}{p(\theta|y, M)} \\ \log \hat{m}(y) &= \log L(\theta^*|y) + \log p(\theta^*) - \log p(\theta^*|y) \\ \log p(\theta^*|y) &= \sum_{k=1}^K \log p(G_k^*|y) + \sum_{k=1}^K \log p(b_k^{C^*}|G_k^*, y) + \log p(\sigma^{2^*}|G_k^*, b_k^{C^*}, y) \\ &\quad + \log p(\beta^*|G_k^*, b_k^{C^*}, \sigma^{2^*}, y) + \log p(\eta^*|G_k^*, b_k^{C^*}, \sigma^{2^*}, \beta^*, y) \\ \prod_{k=1}^K p(G_k^*|y) &= \int \prod_{k=1}^K p(G_k^*|y, b, S, b_k^C) p(b_1^C, b_2^C, ..., b_K^C, b, S|y) \, \mathrm{d}b_1^C \, \mathrm{d}b_2^C ... \, \mathrm{d}b_K^C \, \mathrm{d}b \, \mathrm{d}S \\ &\approx \frac{1}{m} \sum_{l=1}^m \prod_{k=1}^K p(G_k^*|y, b^{(l)}, S^{(l)}, b_k^{C^{(l)}}) \\ &\approx \frac{1}{m} \sum_{l=1}^m \prod_{k=1}^K f_{\mathcal{W}^{-1}}(G_k^*; n_k^{(l)} + n_0, \Psi + \sum_{i=1}^{n_k^{(l)}} (b_i^{(l)} - b_k^{C^{(l)}})(b_i^{(l)} - b_k^{C^{(l)}})^T) \end{split}$$

Posterior predictive checks

$$T(r) = \frac{1}{\sum_{i=1}^{n} m_i} \sum_{i=1}^{n} \sum_{j=1}^{m_i} (r_{ij} - \bar{r}_{i.})^2$$

$$r_{ij} = z_{ij}\tilde{b}_i + \varepsilon_{ij} = y_{ij} - x_{ij}\beta,$$

$$\bar{r}_{i.} = \frac{1}{m_i} \sum_{j=1}^{m_i} r_{ij}$$

Motivation: Testing for overfitting.

Idea: Sample big values from empty components to obtain inflated test statistic.

Data sets

Zebu cow weights

Predictors were gender, birth year, age, time of measurement.

Various versions of the dataset which differed in number of mixture components for random effects, number of subjects, separation of mixture components and number of subjects per component.

DIC results

DIC4 is most discerning.

DIC results

Less sample size, fused components → DIC is not much discerning for anything other than DIC4

DIC results

					X	X
# Components Fitted	DIC_1	DIC_2	DIC_3	DIC_4	DIC_5	DIC_6
1	8982	8981	8980	11847	9251	6655
2	8829	8827	8827	11327	9293	6838
3	8745	8742	8744	11036	9251	6895
4	8669	8672	8677	10737	9208	6925
5	8649	8643	8648	10601	9165	6909

(b) Data set 7

	?				?	3
# Components Fitted	DIC_1	DIC_2	DIC_3	DIC_4	DIC_5	DIC_6
1	6708	6707	6706	8819	6977	5071
2	6606	6605	6604	8443	6946	5135
3	6539	6538	6537	8178	6944	5204
4	6506	6514	6521	8078	6915	5196
5	6505	6500	6508	7984	6896	5202

Marginal likelihood results $(\log \widehat{m}(y))$

	Fitted	1 Comp	2 Comp	3 Comp	4 Comp	5 Comp
	Data set 1	-2120				
	Data set 2	-5019	-4989	-4937		
X	Data set 3	-1038	-1044	-1042		
X	Data set 4	-3317	-3318	-3322		
X	Data set 5	-1001	-986	-993		
X	Data set 6	-4545	-4492	-4477	-4467	-4473
	Data set 7	-3397	-3379	-3373	-3380	-2749

PPC results (data set 6) Using Wishart prior for covariance matrix

PPC results Using U(-1,1) prior on ρ Gamma (10^{-4,}10⁻⁴) on precision

- a) Overfitting has a big penalty
- b) posterior variances of random effects were underestimating the sample data's variance covariance of the random effects. Bad model fit is detected with the test statistic

Blood donor data set analysis

# Components Fitted	DIC_1	DIC_2	DIC_3	DIC_4	DIC_5	DIC ₆
1 comp						
2 comp	4808	4805	4811	6956	/3/6	4306

(c) #Components fitted = 5

Blood donor data set analysis

Component 1

- Baseline random component of Hb level is low
- Random slope is less negative relative to group 2.
- Correlation between random slope and random intercept is most likely 0.

Component 2

- Baseline random component of Hb level is higher.
- Average subject from group 2 has a more rapid decrease in Hb level levels with frequent donations.
- Higher the baseline Hb level level, more likely to have a rapid decrease in Hb level levels with donations

Other interesting results

Dirichlet prior with large parameter values. Incrementally increasing hyperparameter?

Chib's approximation and chain length. Chib's approximation when posterior's do not belong to well known parametric families.

Wishart prior: underestimated posterior component variances if actual within subject variability > between subject variability.