Improved Gradient-Based Neural Architecture Search

Zhexuan HUANG Supervised by: Bruno CONCHE

July 10, 2019

Overview

- Introduction
- 2 State-of-the-art Neural Architecture Search (NAS) strategies
- 3 NAS with unbiased and low variance gradient estimators
- 4 Experiments
- Conclusion

Introduction

Motivation of Neural Architecture Search (NAS)

- Designing neural network architectures is hard
- A lot of intuition and possibilities to design them
- Can we learn good architectures automatically?

Image classification over CIFAR10

- CIFAR-10 dataset consists of 60,000 32x32 colour images in 10 classes
- To have a better comparaison since many NAS researches use CIFAR10 as dataset

State-of-the-art Neural Architecture Search (NAS) strategies

Original Neural Architecture Search (NAS)

- Architecture Search algorithm proposed by Google in 2016 (Zoph and Le, 2016, Neural Architecture Search with Reinforcement Learning)
- Use un controller(RNN) to generate features of Neural Networks
- Train each NN to converge and return its accuracy to controller as rewards, update controller with reinforce policy

Result of NAS

Author's implementation

Used 1800 GPU days to search a model with 2.65% error rates over CIFAR10

Analysis

- Reinforcement Learning(RL) based algorithm
- In each controller loop, need to train a child network to converge to get accuracy R
- Computational expensive and time consuming

List of different state-of-the-art NAS strategies

Reinforcement Learning based

- NAS(Zoph and Le, 2016), 1800 GPU days
- ENAS(Pham et al., 2018), 0.5 GPU days

Evolution based

- AmoebaNet(Real et al., 2019), 3150 GPU days
- Hierarchical Evolution(H. Liu, Simonyan, Vinyals, et al., 2017), 300
 GPU days

Bayesian optimization

PNAS(C. Liu et al., 2018), 225 GPU days

Gradient based

- DARTS(H. Liu, Simonyan, and Yang, 2019), 1 GPU days
- SNAS(Xie et al., 2019), 1.5 GPU days

Search space of Gradient based NAS

- Search space: set of all candidate architectures
- The same search space as in NAS, ENAS, DARTS and SNAS
- Search for computation cells, which is represented by a directed acyclic graph(DAG)
- Each edge (i,j) in DAG is associated with some operation $\tilde{O}_{i,j}$. The possible choice for $\tilde{O}_{i,j}$ is given in priority (e.g. Conv 3 × 3, Maxpool 3 × 3, None, Identity, etc).

Figure: DAG, image retrieved from (H. Liu, Simonyan, and Yang, 2019)

Search space of Gradient based NAS

- Two kinds of computation cells: normal cell and reduction cell
- Whole architecture is obtained by stacking two kinds of cell together

Figure: A conceptual of global structure.

Examples of cells

(a) Normal cell found by SNAS

(b) Reduction cell found by SNAS

Figure: Normal cell and reduction cell (child graph) found by SNAS on CIFAR-10 (Xie et al., 2019) (a) Normal cell. (b) Reduction cell.

Reformulate of problem with stochastic modeling

• As defined in SNAS, each $\tilde{O}_{i,j}$ is probabilistic:

$$\tilde{O}_{i,j} = \left\{ \begin{array}{ll} O_{i,j}^1 & \text{ with probability } \rho_{i,j}^1 = \frac{\exp(\alpha_{i,j}^1)}{\sum_{k=1}^A \exp(\alpha_{i,j}^k)} \\ \cdots \\ O_{i,j}^A & \text{ with probability } \rho_{i,j}^A = \frac{\exp(\alpha_{i,j}^A)}{\sum_{k=1}^A \exp(\alpha_{i,j}^A)}, \end{array} \right.$$

where $\alpha = (\alpha_{i,j}^k)_{i < j, k=1,...,A}$ are architecture parameters.

• Equivalent to $\tilde{O}_{i,j} = Z_{i,j}O_{i,j}$ where

$$Z_{i,j} = \begin{cases} [1,0,\dots,0] & \text{with probability } p_{i,j}^1 = \frac{\exp(\alpha_{i,j}^1)}{\sum_{k=1}^A \exp(\alpha_{i,j}^k)} \\ & \cdots \\ [0,0,\dots,1] & \text{with probability } p_{i,j}^A = \frac{\exp(\alpha_{i,j}^A)}{\sum_{k=1}^A \exp(\alpha_{i,j}^A)}, \end{cases}$$

Objective

- \bullet Two kinds of parameters: architecture parameters α and operation parameters θ
- Objective is to minimize the expected loss:

$$\min_{\alpha,\theta} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)],\tag{1}$$

which can be estimated by Monte-Carlo sampling.

A conceptual of calculation loss retrieved from Xie et al., 2019

Gradient estimators: Overview

- The objective $\min_{\alpha,\theta} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)]$ can be optimized with gradient-descent algorithm
- Impossible to calculate the exact gradients
- $\nabla_{\theta} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{Z \sim p_{\alpha}(Z)}[\nabla_{\theta} L_{\theta}(Z)]$ can be estimated by Monte-Carlo sampling
- Different techniques to estimate $\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)]$

Gradient estimators: Score Function (SF) Estimators

Also known as REINFORCE(J.Williams, 1992), based on identity:

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)\nabla_{\alpha}\log p_{\alpha}(Z)]. \tag{2}$$

Analysis

- Unbiased estimator
- Depends only on the final result of $L_{\theta}(Z)$
- Not require to calculate the back-propagation
- Extremly high variance

Gradient estimators: Reparameterization Trick

If Z can be rewrite as $Z=g(\alpha,\epsilon)$ where $\epsilon\sim p_\epsilon$, then

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{\epsilon \sim p_{\epsilon}}[L'_{\theta}(g(\alpha, \epsilon)) \nabla_{\alpha} g(\alpha, \epsilon)]. \tag{3}$$

Example

If $X \sim \mathcal{N}(\mu, \sigma^2)$ then $\nabla_{\sigma} \mathbb{E}[f(X)] = \mathbb{E}[f'(\mu + \sigma N)N]$ for $N \sim \mathcal{N}(0, 1)$.

Analysis

- Unbiased, low variance, better than SF
- Only applicable for random variable which is reparameterizable
- Need to calculate the back-propagation

Gradient estimators: SNAS and Gumbel-Softmax

Main difficulty to use reparameterization trick

Z in our case is discrete random variable and is not reparameterizable.

Solution proposed in SNAS

ullet Relax Z to $Z\longrightarrow ilde{Z}$ by Gumbel-Softmax, where

$$\tilde{Z}_{i,j}^{k} = g_{i,j}(\alpha, U) = \frac{\exp((\alpha_{i,j}^{k} - \log(-\log(U_{i,j}^{k})))/\lambda)}{\sum_{l=1}^{A} \exp((\alpha_{i,j}^{l} - \log(-\log(U_{i,j}^{l})))/\lambda)}, \quad (4)$$

 $U = \{U_{i,j}^k\}_{i,j,k}$ are some independent uniform random variables, λ is the temperature of the Gumbel softmax, which is annealed to zero in SNAS.

• Minimize the approximated loss function with reparameterization:

$$\min_{\alpha,\theta} \mathbb{E}_{\tilde{Z} \sim \tilde{p}_{\alpha}(\tilde{Z})}[L_{\theta}(\tilde{Z})] = \min_{\alpha,\theta} \mathbb{E}_{U}[L_{\theta}(g(\alpha,U))], \tag{5}$$

Gradient estimators: Intuition of Gumbel-Softmax

Proposition 1

$$\mathbb{P}(\tilde{Z}_{i,j}^k > \tilde{Z}_{i,j}^l \text{ for } l \neq k) = \frac{\exp(\alpha_{i,j}^k)}{\sum_{l=1}^A \exp(\alpha_{i,j}^l)}.$$

Thus $Z_{i,j}^k$ can be obtained by taking arg max operation over $\tilde{Z}_{i,j}^k$, i.e.

$$Z_{i,j}^{k} = \begin{cases} 1 & \text{if } k = \arg\max_{l=1,\dots,A} \{\tilde{Z}_{i,j}^{l}\} \\ 0 & \text{otherwise} \end{cases}$$
 (6)

$$\tilde{Z}_{i,j} = [0.1, 0.3, 0.1, 0.4, 0.05, 0.05] \longrightarrow Z_{i,j} = [0, 0, 0, 1, 0, 0]$$
 (7)

Proposition 2

 $\tilde{Z}_{i,j}^k$ converge to $Z_{i,j}^k$ in distribution when $\lambda \to 0$, i.e.

$$\mathbb{P}(\lim_{\lambda \to 0} \tilde{Z}_{i,j}^k = 1) = \frac{\exp(\alpha_{i,j}^k)}{\sum_{l=1}^A \exp(\alpha_{i,j}^l)}.$$

Gradient estimators: Intuition of Gumbel-Softmax

Figure: A visualization of distributions of Gumbel Softmax with different temperatures. Temperature $\lambda=0$ correspond to original discrete distribution without relaxation. $\tilde{Z}_{i,j}^k$ becomes sharper and converge to discrete distribution as $\lambda \to 0$.

20 / 42

Gradient estimators: SNAS and Gumbel-Softmax

Analysis

- The gradient of the new objective $\mathbb{E}_U[L_\theta(g(\alpha, U))]$ can be estimated by calculating back-propagation with automatic differentiation libraries
- Biased estimator due to changes of objective
- Low variance thanks to reparameterization

NAS with unbiased and low variance gradient estimators

Gradient estimators: SF estimators with Control Variates

Control Variates

In SF estimator, the gradient is estimated using

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)\nabla_{\alpha}\log p_{\alpha}(Z)]. \tag{8}$$

Alternatively, the gradient can also be estimated by

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{Z \sim p_{\alpha}(Z)}[(L_{\theta}(Z) - c(Z))\nabla_{\alpha} \log p_{\alpha}(Z)] + \mathbb{E}_{Z \sim p_{\alpha}(Z)}[c(Z)\nabla_{\alpha} \log p_{\alpha}(Z)],$$
(9)

for some function c(Z).

Analysis

- Lower variance than ordinary SF estimator if c(Z) is positively correlated with $L_{\theta}(Z)\nabla_{\alpha}\log p_{\alpha}(Z)$.
- Require knoledge of $\mathbb{E}_{Z \sim p_{\alpha}(Z)}[c(Z)\nabla_{\alpha}\log p_{\alpha}(Z)]$

Gradient estimators: SF estimators with Control Variates

Constant Control Variates

If we take c(Z) = c which is constant, then the estimation can be written as

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \mathbb{E}_{Z \sim p_{\alpha}(Z)}[(L_{\theta}(Z) - c)\nabla_{\alpha} \log p_{\alpha}(Z)]. \tag{10}$$

A common used technique is to take c as the moving average of $L_{\theta}(Z)$ in each iteration.

We have implemented SF estimator with constant control variates and call it SF in our later experiment.

Analysis

- Significantly reduce the variance in practice
- Little additional computational cost compare to ordinary version of SF estimator (additional computation is to calculate the moving average)
- Unbiased estimator

Gradient estimators: RELAX estimators

(Grathwohl et al., 2018) proposed an estimator which they call RELAX, to combine the SF estimator, reparameterization trick and control variates.

RELAX estimators

RELAX estimators are based on

$$\nabla_{\alpha}\mathbb{E}_{Z\sim p_{\alpha}(Z)}[L_{\theta}(Z)] =$$

$$\mathbb{E}_{U,\tilde{Z}_{cond}}[(L_{\theta}(Z) - c_{\phi}(\tilde{Z}_{cond}))\nabla_{\alpha}\log p_{\alpha}(Z)] + \mathbb{E}_{U,\tilde{Z}_{cond}}[\nabla_{\alpha}(c_{\phi}(\tilde{Z}) - c_{\phi}(\tilde{Z}_{cond}))]$$
(11)

where \tilde{Z} is Gumbel-Softmax variable, $\tilde{Z}_{cond} \sim \tilde{Z}|Z$ and c_{ϕ} is a neural network which is trained in each iteration to minimize the variance of the estimator.

Estimator proposed by (Tokui and sato, 2016), which they call RAM (Reparameterization and Marginalization) estimator

A simple example

A single binary stochastic variable (i.e. a DAG with only two nodes: input node and output node, with two candidate operations: $\{O^1,O^2\}$). We denote $e_1=[1,0]$ and $e_2=[0,1]$ the *i*th entry vector. Then we can calculate the expected loss function as:

$$\mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = p(e_2)L_{\theta}(e_2) + (1 - p(e_2))L_{\theta}(e_1), \tag{12}$$

where
$$p(e_1) = \mathbb{P}(Z = e_1)$$
 and $p(e_2) = \mathbb{P}(Z = e_2)$.

Its gradient w.r.t. α can be calculated:

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \nabla_{\alpha} p(e_2) (L_{\theta}(e_2) - L_{\theta}(e_1)). \tag{13}$$

RAM for multi-node and multi-candidate operation

$$\nabla_{\alpha} \mathbb{E}_{Z \sim p_{\alpha}(Z)}[L_{\theta}(Z)] = \sum_{(i,j) \in E} \sum_{Z_{\setminus (i,j)}} p_{\setminus (i,j)}(Z_{\setminus (i,j)}) \times$$

$$\sum_{e_a,e_b} (\nabla_\alpha \alpha_{i,j}^a) p_{i,j}(e_a) p_{i,j}(e_b) [L_\theta(Z_{i,j} = e_a, Z_{\setminus (i,j)}) - L_\theta(Z_{i,j} = e_b, Z_{\setminus (i,j)})],$$

(14)

where $p_{i,j}$ is the marginal probability of $Z_{i,j}$, $Z_{\setminus (i,j)}$ represent Z without $Z_{i,j}$ and $p_{\setminus (i,j)}$ is the marginal probability of $Z_{\setminus (i,j)}$.

$$\sum_{(i,j)\in E}\sum_{Z_{\setminus (i,j)}} p_{\setminus (i,j)}(Z_{\setminus (i,j)}) imes$$

$$\sum_{e_a,e_b} (\nabla_\alpha \alpha_{i,j}^a) p_{i,j}(e_a) p_{i,j}(e_b) [L_\theta(Z_{i,j} = e_a, Z_{\setminus (i,j)}) - L_\theta(Z_{i,j} = e_b, Z_{\setminus (i,j)})].$$

$$(15)$$

Sampling strategy

For each edge $(i, j) \in E$,

- sample $Z_{\setminus (i,j)}$
- calculate

$$\sum_{e_a,e_b} (\nabla_\alpha I_{i,j}^a) p_{i,j}(e_a) p_{i,j}(e_b) [L_\theta(Z_{i,j} = e_a, Z_{\setminus (i,j)}) - L_\theta(Z_{i,j} = e_b, Z_{\setminus (i,j)})]$$

$$\tag{16}$$

for each e_a , e_b from candidate operation

Analysis

- Unbiased estimator
- Very low variance due to $L_{\theta}(Z_{i,j} = e_a, Z_{\setminus (i,j)}) L_{\theta}(Z_{i,j} = e_b, Z_{\setminus (i,j)})$ are evaluated at the same $Z_{\setminus (i,j)}$
- Theoretically proved to be better (lower variance) than Score Function estimator with constant control variates (Tokui and sato, 2016)
- More computations compare to SF and RELAX

Gradient estimators conclusion

We have proposed 3 different estimators:

- Score Function estimators with constant control variates (SF)
- RELAX estimators (RELAX)
- RAM estimators (RAM)

Experiments

Experiments setting

- For a better comparison, use exactly the same setting as the other research papers: NAS, ENAS, DARTS, SNAS, etc.
- Search for two kinds of cells: Normal cell and Reduction cell
- Implement three kinds of strategies: SF with constant control variates, RELAX and RAM

Figure: A conceptual of global structure. where reduction cells are located in 1/3 and 2/3 of the total depth of the neural network.

(a) Normal cell found by SF

(b) Reduction cell found by SF

Figure: Normal cell and reduction cell (child graph) found by SF on CIFAR-10. (a) Normal cell. (b) Reduction cell.

- (a) Normal cell found by RELAX after restrain
- (b) Reduction cell found by RELAX after restrain

Figure: Normal cell and reduction cell (child graph) found by RELAX on CIFAR-10. (a) Normal cell. (b) Reduction cell.

(a) Normal cell found by RAM

Figure: Normal cell and reduction cell (child graph) found by RAM on CIFAR-10. (a) Normal cell. (b) Reduction cell.

(a) Validation accuracy during architecture search with RAM, RELAX and Score Function estimator.

(b) Entropy of architecture distribution (i.e. $Z \sim p_{\alpha}(Z)$) during architecture search with RAM, RELAX and Score Function estimator.

Figure: Validation accuracy and entropy of architecture distribution during architecture search

Comparaison with other methods

Architecture	Test Error(%)	Params(M)	Search Cost (GPU days)	Search Method
NASNet-A[Zoph and Le, 2016]	2.65	3.3	1800	RL
AmoebaNet-A Real et al., 2019	3.34	3.2	3150	evolution
AmoebaNet-B Real et al., 2019	2.55	2.8	3150	evolution
Hierarchical Evo Liu et al., 2017	3.75	15.7	300	evolution
PNAS Liu et al., 2018	3.41	3.2	225	SMOB
ENAS Pham et al., 2018	2.89	4.6	0.5	RL
DARTS[Liu et al., 2019]	2.76	3.3	1	gradient-based
SNAS Xie et al., 2019	2.85	2.8	1.5	gradient-based
RAM(ours)	2.62	3.6	1.25	gradient-based
SF(ours)	2.64	3.4	0.4	gradient-based
RELAX(ours)	2.70	3.6	0.6	gradient-based

Figure: Classification errors of different estimators with other state-of-the-art image classifiers on CIFAR-10. All of our experiments are done using a single V100 GPU.

Conclusion

Conclusion

- Develop different gradient-based NAS strategies by introducing unbiased and low variance gradient estimators
- Low computational costs like other gradient-based NAS (around 1 GPU days)
- Results outperform other framework on the same search space

References I

- Grathwohl, Will et al. (2018). "Backpropagation through the Void: Optimizing control variates for black-box gradient estimation". In: arXiv:1711.00123v3 [cs.LG].
- J.Williams, Ronald (1992). "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: Reinforcement Learning, pp. 5-32.
- Liu, Chenxi et al. (2018). "Progressive Neural Architecture Search". In: arXiv:1712.00559v3 [cs.CV].
- Liu, Hanxiao, Karen Simonyan, Oriol Vinyals, et al. (2017). "Hierarchical Representations for Efficient Architecture Search". In: arXiv:1711.00436v2 [cs.LG].
- Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2019). "DARTS: Differentiable Architecture Search". In: arXiv:1806.09055v2 [cs.LG].
- Pham, Hieu et al. (2018). "Efficient Neural Architecture Search via Parameter Sharing". In: arXiv:1802.03268v2 [cs.LG].

References II

- Real, Esteban et al. (2019). "Regularized Evolution for Image Classifier Architecture Search". In: arXiv:1802.01548v7 [cs.NE].
- Tokui, Seiya and Issei sato (2016). "Categorical Reparameterization with Gumbel-Softmax". In: arXiv:1611.01239v1 [stat.ML].
- Xie, Sirui et al. (2019). "SNAS: Stochastic Neural Architecture Search". In: arXiv:1812.09926v2 [cs.LG].
- Zoph, Barret and Quoc V. Le (2016). "Neural Architecture Search with Reinforcement Learning". In: arXiv:1611.01578v2 [cs.LG].

Thanks!