Projekt - Drzewa Decyzyjne II Sebastian Michoń 136770, Marcin Zatorski 136834 grupe L5

1 Wybrane najważniejsze atrybuty

- sex nawet jeśli płeć sama w sobie może nie być dobrze skorelowana z tym, czy student zdał, wpływa ona na to, jak dany atrybut wpływa na studenta - np. dla mężczyzn wyższą korelację z wynikiem końcowym może mieć chęć podjęcia edukacji wyższej raczej niż zdrowie, dla kobiet - wręcz przeciwnie.
- 2. reason to, dlaczego student wybrał daną szkołę.
- 3. failures
- 4. higher
- 5. Dalc dzienne spożycie alkoholu w dni robocze
- 6. health
- 7. absences

2 Wybrane metryki

- 1. Accuracy jako, że dataset jest dosyć zrównoważony (115/85 dla zestawu treningowego i 118/77 dla testowego) wykorzystanie procentu trafień jest zasadne.
- 2. F1 measure jeśli jakaś inna miara poza celnością jest zasadna, to najprędzej F1 pozwala ona bowiem zagregować informację o precyzji i czułości
- 3. Ostatnią miarą, która zostanie użyta jest Balanced accuracy $\frac{TPR+TNR}{2}$, czyli suma czułości i selektywności podzielona przez przez 2 nieco lepsza niż Accuracy, jako że proporcja w tym datasecie to 3:2 (gdzie więcej osób nie zdało niż zdało)
- 3 Rezultaty 3 wywołań algorytmu J48 (algorytm drzewa decyzyjnego z Weki) w zależności od datasetu, liczby atrybutów i techniki ewaluacji

Table 1: Porównanie wartości wybranych metryk dla drzew decyzyjnych trenowanych na wybranych atrybutach - math dataset, zadanie 4.

Binary Split	Confidence factor	Minimum objects	TP	FP	FN	TN	Accuracy	F1	Balanced Accuracy
0	0.1000	2	31	37	46	81	0.5744	0.4276	0.5445
0	0.2000	2	31	37	46	81	0.5744	0.4276	0.5445
0	0.3000	2	31	37	46	81	0.5744	0.4276	0.5445
0	0.4000	2	31	37	46	81	0.5744	0.4276	0.5445
0	0.5000 0.6000	2	27	28 35	50 49	90	0.6000 0.5692	0.4091	0.5567 0.5335
0	0.7000	2	28	35	49	83	0.5692	0.4000	0.5335
0	0.8000	2	28	35	49	83	0.5692	0.4000	0.5335
0	0.9000	2	28	35	49	83	0.5692	0.4000	0.5335
1	0.1000	2	31	37	46	81	0.5744	0.4276	0.5445
1	0.2000	2	31	37	46	81	0.5744	0.4276	0.5445
1	0.3000	2	27	29	50	89	0.5949	0.4060	0.5524
1	0.4000	2	26	23	51	95	0.6205	0.4127	0.5714
1	0.5000	2	26	23	51	95	0.6205	0.4127	0.5714
1	0.6000	2	30	30	47	88	0.6051	0.4380	0.5677
1	0.7000	2	30	30	47	88	0.6051	0.4380	0.5677
1	0.8000	2	30	30	47	88 88	0.6051 0.6051	0.4380	0.5677 0.5677
0	0.9000 0.1000	3	31	30	46	81	0.5744	0.4380	0.5445
0	0.2000	3	31	37	46	81	0.5744	0.4276	0.5445
0	0.3000	3	31	37	46	81	0.5744	0.4276	0.5445
0	0.4000	3	31	37	46	81	0.5744	0.4276	0.5445
0	0.5000	3	23	27	54	91	0.5846	0.3622	0.5349
0	0.6000	3	24	34	53	84	0.5538	0.3556	0.5118
0	0.7000	3	24	34	53	84	0.5538	0.3556	0.5118
0	0.8000	3	24	34	53	84	0.5538	0.3556	0.5118
0	0.9000	3	24	34	53	84	0.5538	0.3556	0.5118
1	0.1000	3	31	37	46	81	0.5744	0.4276	0.5445
1	0.2000	3	31	37	46	81	0.5744	0.4276	0.5445
1	0.3000	3	31	37	46	81	0.5744	0.4276	0.5445
1	0.4000 0.5000	3	25 25	29 25	52 52	89 93	0.5846 0.6051	0.3817	0.5395 0.5564
1	0.6000	3	28	28	49	90	0.6051	0.3937	0.5632
1	0.7000	3	28	28	49	90	0.6051	0.4211	0.5632
1	0.8000	3	28	28	49	90	0.6051	0.4211	0.5632
1	0.9000	3	28	28	49	90	0.6051	0.4211	0.5632
0	0.1000	4	31	37	46	81	0.5744	0.4276	0.5445
0	0.2000	4	31	37	46	81	0.5744	0.4276	0.5445
0	0.3000	4	31	37	46	81	0.5744	0.4276	0.5445
0	0.4000	4	31	37	46	81	0.5744	0.4276	0.5445
0	0.5000	4	31	37	46	81	0.5744	0.4276	0.5445
0	0.6000	4	25	27	52	91	0.5949	0.3876	0.5479
0	0.7000	4	25	27	52	91	0.5949	0.3876	0.5479
0	0.8000 0.9000	4	25 25	27 27	52 52	91 91	0.5949	0.3876 0.3876	0.5479 0.5479
1	0.1000	4	31	37	46	81	0.5744	0.3376	0.5445
1	0.2000	4	31	37	46	81	0.5744	0.4276	0.5445
1	0.3000	4	25	28	52	90	0.5897	0.3846	0.5437
1	0.4000	4	25	28	52	90	0.5897	0.3846	0.5437
1	0.5000	4	25	24	52	94	0.6103	0.3968	0.5606
1	0.6000	4	25	24	52	94	0.6103	0.3968	0.5606
1	0.7000	4	25	24	52	94	0.6103	0.3968	0.5606
1	0.8000	4	25	24	52	94	0.6103	0.3968	0.5606
1	0.9000	4	25	24	52	94	0.6103	0.3968	0.5606
0	0.1000	5	40	53	37	65	0.5385	0.4706	0.5352
0	0.2000 0.3000	5	19	16	58	102	0.6205 0.6205	0.3393	0.5556
0	0.3000	5	19 19	16 16	58 58	102	0.6205	0.3393	0.5556 0.5556
0	0.5000	5	19	16	58	102	0.6205	0.3393	0.5556
0	0.6000	5	19	16	58	102	0.6205	0.3393	0.5556
0	0.7000	5	19	16	58	102	0.6205	0.3393	0.5556
0	0.8000	5	19	16	58	102	0.6205	0.3393	0.5556
0	0.9000	5	19	16	58	102	0.6205	0.3393	0.5556
1	0.1000	5	36	49	41	69	0.5385	0.4444	0.5261
1	0.2000	5	22	18	55	100	0.6256	0.3761	0.5666
1	0.3000	5	24	27	53	91	0.5897	0.3750	0.5414
1	0.4000	5	24	27	53	91	0.5897	0.3750	0.5414
1	0.5000	5	24	27	53	91	0.5897	0.3750	0.5414
1	0.6000	5	24	27	53	91	0.5897	0.3750	0.5414 0.5414
1				27	53	91	0.5897	0.3750	1 11 54 14
1	0.7000 0.8000	5	24	27	53	91	0.5897	0.3750	0.5414

Figure 1: Wartość kolejnych metryk w zależności od hiperparametrów: Confidence factor i Minimum number of objects (in a leaf) - zadanie 4.

Figure 2: Najlepsze drzewo - Confidence Factor=0.5, Min
NumbObj=2, BinarySplit=True - zadanie 4.

Table 2: Porównanie wartości wybranych metryk dla drzew decyzyjnych trenowanych na wszystkich atrybutach - math dataset, zadanie 5.

Binary S	plit Confidence fa	actor Minimum	objects TP	FP	FN	TN	Accuracy	F1	Balanced Accuracy
0	0.1000	2	29	48	48	70	0.5077	0.3766	0.4849
0	0.2000	2	29	48	48	70	0.5077	0.3766	0.4849
0	0.3000	2	29	48	48	70	0.5077	0.3766	0.4849
0	0.4000	2	29	49	48	69	0.5026	0.3742	0.4807
0	0.5000	2	28	49	49	69	0.4974	0.3636	0.4742
0	0.6000	2	28	49	49	69	0.4974	0.3636	0.4742
0	0.7000	2	28	49	49	69	0.4974	0.3636	0.4742
0	0.8000	2	28	49	49	69	0.4974	0.3636	0.4742
0	0.9000	2	28	49	49	69	0.4974	0.3636	0.4742
1	0.1000	2	36	41	41	77	0.5795	0.4675	0.5600
1	0.2000	2	36	41	41	77	0.5795	0.4675	0.5600
1	0.3000	2	37	48	40	70	0.5487	0.4568	0.5369
1	0.4000	2	37	48	40	70	0.5487	0.4568	0.5369
1	0.5000	2	37	48	40	70	0.5487	0.4568	0.5369
1	0.6000	2	36	47	41	71	0.5487	0.4500	0.5346
1	0.7000	2	36	47	41	71	0.5487	0.4500	0.5346
1	0.8000	2	36	47	41		0.5487 0.5487	0.4500	0.5346 0.5346
0	0.9000 0.1000	3	29	48	41	71 70	0.5077	0.4500	0.4849
0	0.2000	3	29	48	48	70	0.5077	0.3766	0.4849
0	0.3000	3	29	48	48	70	0.5077	0.3766	0.4849
0	0.4000	3	29	48	48	70	0.5077	0.3766	0.4849
0	0.5000	3	28	48	49	70	0.5026	0.3660	0.4784
0	0.6000	3	28	48	49	70	0.5026	0.3660	0.4784
0	0.7000	3	28	48	49	70	0.5026	0.3660	0.4784
0	0.8000	3	28	48	49	70	0.5026	0.3660	0.4784
0	0.9000	3	28	48	49	70	0.5026	0.3660	0.4784
1	0.1000	3	40	42	37	76	0.5949	0.5031	0.5818
1	0.2000	3	41	44	36	74	0.5897	0.5062	0.5798
1	0.3000	3	42	36	35	82	0.6359	0.5419	0.6202
1	0.4000	3	41	33	36	85	0.6462	0.5430	0.6264
1	0.5000	3	41	33	36	85	0.6462	0.5430	0.6264
1	0.6000	3	37	32	40	86	0.6308	0.5068	0.6047
1	0.7000	3	37	32	40	86	0.6308	0.5068	0.6047
1	0.8000	3	37	32	40	86	0.6308	0.5068	0.6047
1	0.9000	3	37	32	40	86	0.6308	0.5068	0.6047
0	0.1000	4	14	30	63	88	0.5231	0.2314	0.4638
0	0.2000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.3000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.4000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.5000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.6000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.7000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.8000	4	14	28	63	90	0.5333	0.2353	0.4723
0	0.9000	4	14	28	63	90	0.5333	0.2353	0.4723
1	0.1000	4	31	41	46	77	0.5538		0.5276
1	0.2000 0.3000	4	28	39	49	79	0.5487 0.5487	0.3889	0.5166 0.5166
1	0.4000	4	33	39 40	49	79	0.5692	0.3669	0.5448
1	0.5000	4	33	40	44	78	0.5692	0.4400	0.5448
1	0.6000	4	33	40	44	78	0.5692	0.4400	0.5448
1	0.7000	4	33	40	44	78	0.5692	0.4400	0.5448
1	0.8000	4	33	40	44	78	0.5692	0.4400	0.5448
1	0.9000	4	33	40	44	78	0.5692	0.4400	0.5448
0	0.1000	5	13	30	64	88	0.5179	0.2167	0.4573
0	0.2000	5	12	31	65	87	0.5077	0.2000	0.4466
0	0.3000	5	12	31	65	87	0.5077	0.2000	0.4466
0	0.4000	5	13	31	64	87	0.5128	0.2149	0.4531
0	0.5000	5	13	31	64	87	0.5128	0.2149	0.4531
0	0.6000	5	13	29	64	89	0.5231	0.2185	0.4615
0	0.7000	5	13	29	64	89	0.5231	0.2185	0.4615
0	0.8000	5	13	29	64	89	0.5231	0.2185	0.4615
0	0.9000	5	13	29	64	89	0.5231	0.2185	0.4615
1	0.1000	5	35	46	42	72	0.5487	0.4430	0.5324
1	0.2000	5	35	46	42	72	0.5487	0.4430	0.5324
1	0.3000	5	29	37	48	81	0.5641	0.4056	0.5315
1	0.4000	5	34	38	43	80	0.5846	0.4564	0.5598
1	0.5000	5	34	38	43	80	0.5846	0.4564	0.5598
1	0.6000	5	34	38	43	80	0.5846	0.4564	0.5598
1	0.7000	5	34	38	43	80	0.5846	0.4564	0.5598
1	0.8000	5	34	38	43	80	0.5846	0.4564	0.5598
1	0.9000	5	34	38	43	80	0.5846	0.4564	0.5598

Figure 3: Wartość kolejnych metryk w zależności od hiperparametrów: Confidence factor i Minimum number of objects (in a leaf) - zadanie 5.

Figure 4: Najlepsze drzewo - Confidence Factor=0.5, Min
NumbObj=3, BinarySplit=True - zadanie 5.

Table 3: Porównanie wartości wybranych metryk dla drzew decyzyjnych ewaluowanych z użyciem krzyżowej waldacji - portugal dataset, zadanie 6.

Binary S	Split Confidence fa	ctor Minimum o	objects TP	FP	FN	TN	Accuracy	F1	Balanced Accuracy
0	0.1000	2	277	134	71	167	0.6841	0.7299	0.6754
0	0.2000	2	262	126	86	175	0.6733	0.7120	0.6671
0	0.3000	2	256	124	92	177	0.6672	0.7033	0.6618
0	0.4000	2	250	123	98	178	0.6595	0.6935	0.6549
0	0.5000	2	248	123	100	178	0.6564	0.6898	0.6520
0	0.6000	2	239	121	109	180	0.6456	0.6751	0.6424
0	0.7000	2	239	121	109	180	0.6456	0.6751	0.6424
0	0.8000	2	239	121	109	180	0.6456	0.6751	0.6424
0	0.9000	2	239	121	109	180	0.6456	0.6751	0.6424
1	0.1000	2	273	125	75	176	0.6918	0.7319	0.6846
1	0.2000	2	256	123	92	178	0.6687	0.7043	0.6635
1	0.3000	2	248	119	100	182	0.6626	0.6937	0.6586
1	0.4000	2	235	108	113	193	0.6595	0.6802	0.6582
1	0.5000	2	233	106	115	195	0.6595	0.6783	0.6587
1	0.6000	2	234	108	114	193	0.6579	0.6783	0.6568
1	0.7000 0.8000	2	234	108	114 114	193 193	0.6579 0.6579	0.6783	0.6568 0.6568
1	0.9000	2	234	108	114	193	0.6579	0.6783	0.6568
0	0.1000	3	283	133	65	168	0.6949	0.0783	0.6857
0	0.1000	3	283	129	74	172	0.6872	0.7408	0.6794
0	0.3000	3	256	118	92	183	0.6764	0.7291	0.6718
0	0.4000	3	254	116	94	185	0.6764	0.7075	0.6723
0	0.5000	3	251	113	97	188	0.6764	0.7051	0.6729
0	0.6000	3	242	111	106	190	0.6656	0.6904	0.6633
0	0.7000	3	242	111	106	190	0.6656	0.6904	0.6633
0	0.8000	3	242	111	106	190	0.6656	0.6904	0.6633
0	0.9000	3	242	111	106	190	0.6656	0.6904	0.6633
1	0.1000	3	273	122	75	179	0.6965	0.7349	0.6896
1	0.2000	3	264	113	84	188	0.6965	0.7283	0.6916
1	0.3000	3	257	110	91	191	0.6903	0.7189	0.6865
1	0.4000	3	248	105	100	196	0.6841	0.7076	0.6819
1	0.5000	3	248	103	100	198	0.6872	0.7096	0.6852
1	0.6000	3	245	105	103	196	0.6795	0.7020	0.6776
1	0.7000	3	245	105	103	196	0.6795	0.7020	0.6776
1	0.8000	3	245	105	103	196	0.6795	0.7020	0.6776
1	0.9000	3	245	105	103	196	0.6795	0.7020	0.6776
0	0.1000	4	286	136	62	165	0.6949	0.7429	0.6850
0	0.2000	4	275	133	73	168	0.6826	0.7275	0.6742
0	0.3000	4	266	121	82	180	0.6872	0.7238	0.6812
0	0.4000	4	263	117	85	184	0.6888	0.7225	0.6835
0	0.5000	4	261	117	87	184	0.6857	0.7190	0.6806
0	0.6000	4	245	113	103	188	0.6672	0.6941	0.6643
0	0.7000	4	245	113	103	188	0.6672	0.6941	0.6643
0	0.8000	4	245	113	103	188	0.6672	0.6941	0.6643
0	0.9000	4	245	113	103	188	0.6672	0.6941	0.6643
1	0.1000	4	271	127			0.6857		0.6784
1	0.2000	4	269	125	79	176	0.6857	0.7251	0.6789
1	0.3000 0.4000	4	252	120	96	181	0.6672	0.7000	0.6627
1	0.5000	4	247		101	191	0.6749 0.6749	0.7007	0.6722 0.6726
1	0.6000	4	245	108	111	193	0.6610	0.6830	0.6595
1	0.7000	4	237	109	111	192	0.6610	0.6830	0.6595
1	0.8000	4	237	109	111	192	0.6610	0.6830	0.6595
1	0.9000	4	237	109	111	192	0.6610	0.6830	0.6595
0	0.1000	5	288	137	60	164	0.6965	0.7451	0.6862
0	0.2000	5	274	128	74	173	0.6888	0.7307	0.6811
0	0.3000	5	257	119	91	182	0.6764	0.7099	0.6716
0	0.4000	5	252	115	96	186	0.6749	0.7049	0.6710
0	0.5000	5	252	112	96	189	0.6795	0.7079	0.6760
0	0.6000	5	234	109	114	192	0.6564	0.6773	0.6551
0	0.7000	5	234	109	114	192	0.6564	0.6773	0.6551
0	0.8000	5	234	109	114	192	0.6564	0.6773	0.6551
0	0.9000	5	234	109	114	192	0.6564	0.6773	0.6551
1	0.1000	5	282	129	66	172	0.6995	0.7431	0.6909
1	0.2000	5	268	124	80	177	0.6857	0.7243	0.6791
1	0.3000	5	263	124	85	177	0.6780	0.7156	0.6719
1	0.4000	5	258	120	90	181	0.6764	0.7107	0.6714
1	0.5000	5	255	119	93	182	0.6733	0.7064	0.6687
1	0.6000	5	240	116	108	185	0.6549	0.6818	0.6521
1	0.7000	5	240	116	108	185	0.6549	0.6818	0.6521
1									
1	0.8000	5	240	116	108	185	0.6549	0.6818	0.6521

Figure 5: Wartość kolejnych metryk w zależności od hiperparametrów: Confidence factor i Minimum number of objects (in a leaf) - zadanie 6.

Figure 6: Najlepsze drzewo - Confidence Factor=0.1, Min
NumbObj=5, BinarySplit=True - zadanie 6.

4 Powiązania między drzewami, podobieństwa, zasadność pierwotnie wybranych atrybutów

- 1. W każdym drzewie liczba poprzednich porażek w przejściu do następnej klasy była pierwszym predyktorem tego, czy ktoś zdał przedmiot był to argument wybrany na początku, jeden z siedmiu.
- 2. Najlepsze drzewa używające wszystkich atrybutów poza pierwszym używały jako predyktora Weekend Alcohol Consumption raczej niż Workday alcohol consumption, czyli drugiego z wykorzystanych w pierwszym modelu atrybutów.
- 3. Co ciekawe chęć podjęcia edukacji wyższej miała duży wpływ na drzewo decyzyjne dla ocen z języka portugalskiego, ale zerowy dla matematyki (dla wszystkich atrybutów)
- 4. Pozostałe atrybuty wybrane pierwotnie (płeć, zdrowie, przyczyny, absencje) były wykorzystywane na niższych poziomach pozostałych drzewa decyzyjnego dotyczącego matematyki (dla portugalskiego tylko absences, i to na niskim poziomie drzewa)
- 5. Oba drzewa korzystające ze wszystkich atrybutów używały jako kluczowych atrybutów (na najwyższych poziomach drzewa) czasu nauki w tygodniu, a także branż w jakich pracują ojciec/matka
- 6. Dodatkowo drzewo predykcji ocen z matematyki używało wsparcia (czyli zapewne korepetycji etc.) jako jednego z głównych predyktorów
- 7. Bazując na tych rezultatach nie można powiedzieć absolutnie nic o tym, czy uczeń jest uważny w szkole te dane nie dają podstaw, by wierzyć, że istnieje korelacja między uważnością, a oceną z matematyki/portugalskiego, a jeśli istnieje, to w którą stronę na gruncie czysto racjonalnym można argumentować, że uczeń uważny będzie słuchał na zajęciach i otrzyma wyższą ocenę, można też argumentować, że potężny matematyk/poeta nie będzie się zajmował na zajęciach z tych przedmiotów jakimiś śmiesznymi, plebejskimi, niezniuansowanymi, ludzkimi, arcyludzkimi problemami/poematami, zamiast tego zajmując się swoimi, po wielokroć ciekawszymi sprawami a i tak dostanie najwyższą możliwą ocenę.
- 8. Jeśli natomiast pytanie "Basing on these results, can we say which attributes can say if the student is attentive?" było o ocenę ucznia w zależności od tych atrybutów, to najlepszymi predyktorami oceny wydają się:
 - (a) Liczba poprzednich niezdanych lat/przedmiotów
 - (b) Praca matki
 - (c) Praca ojca
 - (d) Czas nauki
 - (e) Spożycie alkoholu w weekend
 - (f) Dla matematyki Wsparcie szkolne (korepetycje), dla portugalskiego wybrana szkoła

5 Zasadność pierwotnie wybranych atrybutów w kontekście Naive Bayesa

Patrząc na Przynależność do klas w zależności od atrybutów w algorytmie Bayesa, zasadnymi predyktorami (wybrane 7) są atrybuty:

- 1. Weekend Alcohol consumption in workdays nieuwzględniony na początku
- 2. Higher uwzględniony na początku
- 3. Failures uwzględniony na początku
- 4. Sex uwzględniony na początku
- 5. Mjob nieuwzględniony na początku
- 6. Reason uwzględniony na początku
- 7. School Support nieuwzględniony na początku