

CSE220: Data Structures (Lab)
Fall 2024
Lab Quiz - 07

Duration: 30 Minutes

В

Name: ID: Section:

Question 1 [15 Points]

Given a directed weighted graph, a starting vertex s and total available points p, traverse the graph, always choosing the outgoing edge with the **minimum weight at each step**. When traversing an edge with weight w, expend w points from total available points.

Determine the last vertex you can reach from s before running out of points. If you reach a **dead end (no outgoing edges)** before using all your points, that vertex is the last reachable vertex.

Note: You can solve using either adjacency matrix or adjacency list. Assume that the **Graph** is already created.

Given Graph & Sample Input	Sample Output
4	Last reachable vertex = 0
graph = 3 3 3 4 3 3 4 3 4 4 3 4 4 4 4 4 4 4 4	Explanation:
	Choosing min weight edge from the starting point $s = 0$,
	i) vertex $0 \rightarrow \text{vertex } 3$
	cost = 2, points available = $13-2 = 11$
	ii) vertex 3 → vertex 2
s = 0	cost = 4, points available = $11-4 = 7$
p = 13	iii) vertex 2 → vertex 1
findMinPath(graph, s, p)	cost = 6, points available = 7-6 = 1
	iv) vertex 1 -> vertex 0
Here, the "graph" parameter is a square Matrix if you're using the Adjacency Matrix. Otherwise, it is an array of singly Nodes if you're using Adjacency List.	cost = 1, points available = $1-1 = 0$
	Cannot go any further with available
	points.
	Therefore, last reachable vertex = 0