COMP2610 / 6261 - Information Theory

Lecture 14: Source Coding Theorem for Symbol Codes

Robert C. Williamson

Research School of Computer Science The Australian National University

17 September, 2018

Last time

Variable-length codes

Uniquely decodable and prefix codes

Prefix codes as trees

Kraft's inequality:

Lengths
$$\{\ell_i\}_{i=1}^I$$
 can form a prefix code $\iff \sum_{i=1}^I 2^{-i} \le 1$

How to generate prefix codes?

Prefix Codes (Recap)

A simple property of codes **guarantees** unique decodeability

Prefix property

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• **Example**: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{c_1, ..., c_l\}$ is a **prefix code** if for every codeword $c_i \in C$ there is no prefix of c_i in C.

In a stream, no confusing one codeword with another

Prefix Codes as Trees (Recap)

$$\textit{C}_2 = \{0, 10, 110, 111\}$$

0	00	000	0000
			0001
		001	0010
			0011
	01	010	0100
			0101
		011	0110
			0111
1	10	100	1000
			1001
		101	1010
			1011
	11	110	1100
			1101
		111	1110
			1111

This time

Bound on expected length for a prefix code

Shannon codes

Huffman coding

- Expected Code Length
 - Minimising Expected Code Length
 - Shannon Coding
- 2 The Source Coding Theorem for Symbol Codes
- 3 Huffman Coding
 - Algorithm and Examples
 - Advantages and Disadvantages

- Expected Code Length
 - Minimising Expected Code Length
 - Shannon Coding
- 2 The Source Coding Theorem for Symbol Codes
- Huffman Coding
 - Algorithm and Examples
 - Advantages and Disadvantages

Expected Code Length

With uniform codes, the length of a message of *N* outcomes is trivial to compute

With variable-length codes, the length of a message of N outcomes will depend on the outcomes we observe

Outcomes we observe have some uncertainty

On average, what length of message can we expect?

Expected Code Length

With uniform codes, the length of a message of *N* outcomes is trivial to compute

With variable-length codes, the length of a message of N outcomes will depend on the outcomes we observe

Outcomes we observe have some uncertainty

On average, what length of message can we expect?

Expected Code Length

The **expected length** for a code C for ensemble X with $A_X = \{a_1, \ldots, a_l\}$ and $\mathcal{P}_X = \{p_1, \ldots, p_l\}$ is

$$L(C,X) = \mathbb{E}\left[\ell(x)\right] = \sum_{x \in A_X} p(x) \, \ell(x) = \sum_{i=1}^{I} p_i \, \ell_i$$

Expected Code Length: Examples

Example: X has $\mathcal{A}_X = \{a, b, c, d\}$ and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

1 The code $C_1 = \{0001, 0010, 0100, 1000\}$ has

$$L(C_1, X) = \sum_{i=1}^4 \rho_i \, \ell_i = 4$$

Expected Code Length: Examples

Example: *X* has $A_X = \{a, b, c, d\}$ and $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

① The code $C_1 = \{0001, 0010, 0100, 1000\}$ has

$$L(C_1, X) = \sum_{i=1}^4 p_i \, \ell_i = 4$$

② The code $C_2 = \{0, 10, 110, 111\}$ has

$$L(C_2, X) = \sum_{i=1}^4 p_i \, \ell_i = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = 2.25$$

The *Kraft inequality* says that $\{\ell_1, \dots, \ell_I\}$ are prefix code lengths **iff**

$$\sum_{i=1}^{l} 2^{-\ell_i} \leq 1$$

If it were true that

$$\sum_{i=1}^{I} 2^{-\ell_i} = 1$$

then we could interpret

$$\boldsymbol{q}=(2^{-\ell_1},\ldots,2^{-\ell_l})$$

as a probability vector over I outcomes

General lengths ℓ ?

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \dots, \ell_l\}$ such that $\sum_{i=1}^{l} 2^{-\ell_i} \le 1$, we define $\mathbf{q} = \{q_1, \dots, q_l\}$, the **probabilities for** ℓ , by

$$q_i = \frac{2^{-\ell_i}}{z}$$

where

$$z = \sum_{i} 2^{-\ell_i}$$

ensure that q_i satisfy $\sum_i q_i = 1$.

Note: this implies $\ell_i = \log_2 \frac{1}{zq_i}$

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \dots, \ell_l\}$ such that $\sum_{i=1}^l 2^{-\ell_i} \le 1$, we define $\mathbf{q} = \{q_1, \dots, q_l\}$, the **probabilities for** ℓ , by

$$q_i = \frac{2^{-\ell_i}}{z}$$

where

$$z = \sum_{i} 2^{-\ell_i}$$

ensure that q_i satisfy $\sum_i q_i = 1$.

Note: this implies $\ell_i = \log_2 \frac{1}{zq_i}$

Examples:

1 Lengths $\{1, 2, 2\}$ give z = 1 so $q_1 = \frac{1}{2}$, $q_2 = \frac{1}{4}$, and $q_3 = \frac{1}{4}$

Probabilities from Code Lengths

Given code lengths $\ell = \{\ell_1, \dots, \ell_I\}$ such that $\sum_{i=1}^I 2^{-\ell_i} \le 1$, we define $\mathbf{q} = \{q_1, \dots, q_I\}$, the **probabilities for** ℓ , by

$$q_i = \frac{2^{-\ell_i}}{z}$$

where

$$z = \sum_{i} 2^{-\ell_i}$$

ensure that q_i satisfy $\sum_i q_i = 1$.

Note: this implies $\ell_i = \log_2 \frac{1}{2a_i}$

Examples:

① Lengths $\{1,2,2\}$ give z=1 so $q_1=\frac{1}{2},\ q_2=\frac{1}{4},\ \text{and}\ q_3=\frac{1}{4}$ ② Lengths $\{2,2,3\}$ give $z=\frac{5}{8}$ so $q_1=\frac{2}{5},\ q_2=\frac{2}{5},\ \text{and}\ q_3=\frac{1}{5}$

The probability view of lengths will be useful in answering:

Goal of compression

Given an ensemble X with probabilities $\mathcal{P}_X = \mathbf{p} = \{p_1, \dots, p_l\}$ how can we minimise the expected code length?

The probability view of lengths will be useful in answering:

Goal of compression

Given an ensemble X with probabilities $\mathcal{P}_X = \mathbf{p} = \{p_1, \dots, p_l\}$ how can we minimise the expected code length?

In particular, we can relate the expected code length to the **relative entropy** (KL divergence) between **p**, **q**:

The probability view of lengths will be useful in answering:

Goal of compression

Given an ensemble X with probabilities $\mathcal{P}_X = \mathbf{p} = \{p_1, \dots, p_l\}$ how can we minimise the expected code length?

In particular, we can relate the expected code length to the **relative entropy** (KL divergence) between **p**, **q**:

Limits of compression

Given an ensemble X with probabilities \mathbf{p} , and prefix code C with codeword length probabilities \mathbf{q} and normalisation z,

$$L(C, X) = H(X) + D_{KL}(\mathbf{p}||\mathbf{q}) + \log_2 \frac{1}{z}$$

 $\geq H(X),$

with equality only when $\ell_i = \log_2 \frac{1}{\rho_i}$.

$$L(C,X)=\sum_{i}p_{i}\ell_{i}$$

$$L(C, X) = \sum_{i} p_{i} \ell_{i}$$
$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zq_{i}}\right)$$

$$L(C, X) = \sum_{i} p_{i} \ell_{i}$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zq_{i}}\right)$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zp_{i}} \frac{p_{i}}{q_{i}}\right)$$

$$L(C, X) = \sum_{i} p_{i} \ell_{i}$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zq_{i}}\right)$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zp_{i}}\frac{p_{i}}{q_{i}}\right)$$

$$= \sum_{i} p_{i} \left[\log_{2} \left(\frac{1}{p_{i}}\right) + \log_{2} \left(\frac{p_{i}}{q_{i}}\right) + \log_{2} \left(\frac{1}{z}\right)\right]$$

$$L(C, X) = \sum_{i} p_{i} \ell_{i}$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zq_{i}}\right)$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zp_{i}} \frac{p_{i}}{q_{i}}\right)$$

$$= \sum_{i} p_{i} \left[\log_{2} \left(\frac{1}{p_{i}}\right) + \log_{2} \left(\frac{p_{i}}{q_{i}}\right) + \log_{2} \left(\frac{1}{z}\right)\right]$$

$$= \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} + \log_{2} \left(\frac{1}{z}\right) \sum_{i} p_{i}$$

$$L(C, X) = \sum_{i} p_{i} \ell_{i}$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zq_{i}}\right)$$

$$= \sum_{i} p_{i} \log_{2} \left(\frac{1}{zp_{i}}\frac{p_{i}}{q_{i}}\right)$$

$$= \sum_{i} p_{i} \left[\log_{2} \left(\frac{1}{p_{i}}\right) + \log_{2} \left(\frac{p_{i}}{q_{i}}\right) + \log_{2} \left(\frac{1}{z}\right)\right]$$

$$= \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} + \log_{2} \left(\frac{1}{z}\right) \sum_{i} p_{i}$$

$$= H(X) + D_{KL}(\mathbf{p}||\mathbf{q}) + \log_{2}(1/z) \cdot 1$$

So if $\mathbf{q} = \{q_1, \dots, q_l\}$ are the probabilities for the code lengths of C then under ensemble X with probabilities $\mathbf{p} = \{p_1, \dots, p_l\}$

$$L(C, X) = H(X) + D_{KL}(p||q) + \log_2 \frac{1}{z}$$

So if $\mathbf{q} = \{q_1, \dots, q_l\}$ are the probabilities for the code lengths of C then under ensemble X with probabilities $\mathbf{p} = \{p_1, \dots, p_l\}$

$$L(C, X) = H(X) + D_{KL}(\rho || q) + \log_2 \frac{1}{z}$$

Thus, L(C,X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D_{KL}(\mathbf{p}||\mathbf{q})=0$ and $\log_2\frac{1}{2}=0$

So if $\mathbf{q} = \{q_1, \dots, q_l\}$ are the probabilities for the code lengths of C then under ensemble X with probabilities $\mathbf{p} = \{p_1, \dots, p_l\}$

$$L(C, X) = H(X) + D_{KL}(p||q) + \log_2 \frac{1}{z}$$

Thus, L(C,X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D_{KL}(\mathbf{p}||\mathbf{q})=0$ and $\log_2\frac{1}{z}=0$

But the relative entropy $D_{KL}(\mathbf{p}\|\mathbf{q}) \geq 0$ with $D_{KL}(\mathbf{p}\|\mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)

So if $\mathbf{q} = \{q_1, \dots, q_l\}$ are the probabilities for the code lengths of C then under ensemble X with probabilities $\mathbf{p} = \{p_1, \dots, p_l\}$

$$L(C, X) = H(X) + D_{KL}(\rho || q) + \log_2 \frac{1}{z}$$

Thus, L(C,X) is minimal (and equal to the entropy H(X)) if we can choose code lengths so that $D_{KL}(\mathbf{p}||\mathbf{q})=0$ and $\log_2\frac{1}{z}=0$

But the relative entropy $D_{KL}(\mathbf{p}\|\mathbf{q}) \ge 0$ with $D_{KL}(\mathbf{p}\|\mathbf{q}) = 0$ iff $\mathbf{q} = \mathbf{p}$ (Gibb's inequality)

For
$$\mathbf{q} = \mathbf{p}$$
, we have $z \stackrel{\text{def}}{=} \sum_i q_i = \sum_i p_i = 1$ and so $\log_2 \frac{1}{z} = 0$

Entropy as a Lower Bound on Expected Length

We have shown that for a code C with lengths corresponding to \mathbf{q} ,

$$L(C,X) \geq H(X)$$

with equality only when C has code lengths $\ell_i = \log_2 \frac{1}{\rho_i}$

Once again, the entropy determines a lower bound on how much compression is possible

- L(C, X) refers to average compression
- Individual message length could be bigger than the entropy

Shannon Codes

If we pick lengths $\ell_i = \log_2 \frac{1}{D_i}$, we get optimal expected code lengths

But $\log_2 \frac{1}{D_i}$ is not always an integer—a problem for code lengths!

Shannon Codes

If we pick lengths $\ell_i = \log_2 \frac{1}{p_i}$, we get optimal expected code lengths

But $\log_2 \frac{1}{p_i}$ is not always an integer—a problem for code lengths!

Shannon Code

Given an ensemble X with $\mathcal{P}_X = \{p_1, \dots, p_I\}$ define codelengths $\ell = \{\ell_1, \dots, \ell_I\}$ by

$$\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil \ge \log_2 \frac{1}{p_i}.$$

A code C is called a **Shannon code** if it has codelengths ℓ .

Here $\lceil x \rceil$ is "smallest integer not smaller than x". e.g., $\lceil 2.1 \rceil = 3$, $\lceil 5 \rceil = 5$.

This gives us code lengths that are "closest" to $\log_2 \frac{1}{p_i}$

Shannon Codes: Examples

Examples:

• If $\mathcal{P}_X=\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\}$ then $\ell=\{1,2,2\}$ so $C=\{0,10,11\}$ is a Shannon code (in fact, this code has *optimal* length)

Shannon Codes: Examples

Examples:

• If $\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$ then $\ell = \{1, 2, 2\}$ so $C = \{0, 10, 11\}$ is a Shannon code (in fact, this code has *optimal* length)

② If $\mathcal{P}_X = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$ then $\ell = \{2, 2, 2\}$ with Shannon code $C = \{00, 10, 11\}$ (or $C = \{01, 10, 11\}$...)

Source Coding Theorem for Symbol Codes

Shannon codes let us prove the following:

Source Coding Theorem for Symbol Codes

Shannon codes let us prove the following:

Source Coding Theorem for Symbol Codes

For any ensemble X, there exists a prefix code C such that

$$H(X) \leq L(C,X) < H(X) + 1.$$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left| \log_2 \frac{1}{p_i} \right|$ — have *expected code length within 1 bit of the entropy*.

Source Coding Theorem for Symbol Codes

Shannon codes let us prove the following:

Source Coding Theorem for Symbol Codes

For any ensemble X, there exists a prefix code C such that

$$H(X) \leq L(C,X) < H(X) + 1.$$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left| \log_2 \frac{1}{\rho_i} \right|$ — have *expected code length within 1 bit of the entropy*.

Entropy also gives a guideline upper bound of compression

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil < x + 1$.

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil < x + 1$.

Therefore, if we create a Shannon code C for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \log_2 \frac{1}{p_i} + 1$ it will satisfy

$$L(C, X) = \sum_{i} p_{i} \ell_{i} < \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + 1 = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i}$$
$$= H(X) + 1$$

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil < x + 1$.

Therefore, if we create a Shannon code C for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \log_2 \frac{1}{p_i} + 1$ it will satisfy

$$L(C, X) = \sum_{i} p_{i} \ell_{i} < \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + 1 = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i}$$
$$= H(X) + 1$$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil < x + 1$.

Therefore, if we create a Shannon code C for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \log_2 \frac{1}{p_i} + 1$ it will satisfy

$$L(C, X) = \sum_{i} p_{i} \ell_{i} < \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + 1 = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i}$$
$$= H(X) + 1$$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Examples:

• If
$$\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$$
 then $\ell = \{1, 2, 2\}$ and $H(X) = \frac{3}{2} = L(C, X)$

Since $\lceil x \rceil$ is the *smallest* integer bigger than or equal to x it must be the case that $x \leq \lceil x \rceil < x + 1$.

Therefore, if we create a Shannon code C for $\mathbf{p} = \{p_1, \dots, p_l\}$ with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \log_2 \frac{1}{p_i} + 1$ it will satisfy

$$L(C, X) = \sum_{i} p_{i} \ell_{i} < \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + 1 = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} + \sum_{i} p_{i}$$
$$= H(X) + 1$$

Furthermore, since $\ell_i \ge -\log_2 p_i$ we have $2^{-\ell_i} \le 2^{\log_2 p_i} = p_i$, so $\sum_i 2^{-\ell_i} \le \sum_i p_i = 1$. By Kraft there is a *prefix code* with lengths ℓ_i

Examples:

1 If
$$\mathcal{P}_X = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$$
 then $\ell = \{1, 2, 2\}$ and $H(X) = \frac{3}{2} = L(C, X)$
2 If $\mathcal{P}_X = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$ then $\ell = \{2, 2, 2\}$ and

② If
$$\mathcal{P}_X = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$$
 then $\ell = \{2, 2, 2\}$ and $H(X) = \log_2 3 \approx 1.58 \le L(C, X) = 2 \le 2.58 \approx H(X) + 1$

- Expected Code Length
 - Minimising Expected Code Length
 - Shannon Coding
- 2 The Source Coding Theorem for Symbol Codes
- Huffman Coding
 - Algorithm and Examples
 - Advantages and Disadvantages

The Source Coding Theorem for Symbol Codes

The previous arguments have established:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

$$H(X) \le L(C, X) < H(X) + 1.$$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left| \log_2 \frac{1}{\rho_i} \right|$ — have *expected code length within 1 bit of the entropy.*

The Source Coding Theorem for Symbol Codes

The previous arguments have established:

Source Coding Theorem for Symbol Codes

For any ensemble X there exists a prefix code C such that

$$H(X) \le L(C, X) < H(X) + 1.$$

In particular, **Shannon codes** C — those with lengths $\ell_i = \left| \log_2 \frac{1}{\rho_i} \right|$ — have *expected code length within 1 bit of the entropy.*

This is good, but is it **optimal**?

Shannon codes are suboptimal

Example: Consider $p_1 = 0.0001$ and $p_2 = 0.9999$. (Note $H(X) \approx 0.0013$)

- The Shannon code C has lengths $\ell_1 = \lceil \log_2 10000 \rceil = 14$ and $\ell_2 = \lceil \log_2 \frac{10000}{9999} \rceil = 1$
- The expected length is $L(C, X) = 14 \times 0.0001 + 1 \times 0.9999 = 1.0013$
- But clearly $C' = \{0, 1\}$ is a prefix code and L(C', X) = 1

Shannon codes are suboptimal

Example: Consider $p_1 = 0.0001$ and $p_2 = 0.9999$. (Note $H(X) \approx 0.0013$)

- The Shannon code C has lengths $\ell_1 = \lceil \log_2 10000 \rceil = 14$ and $\ell_2 = \lceil \log_2 \frac{10000}{9999} \rceil = 1$
- The expected length is $L(C, X) = 14 \times 0.0001 + 1 \times 0.9999 = 1.0013$
- But clearly $C' = \{0, 1\}$ is a prefix code and L(C', X) = 1

Shannon codes do not necessarily have **smallest** expected length

This is perhaps disappointing, as these codes were constructed very naturally from the theorem

• Fortunately, there is another simple code that is provably optimal

- Expected Code Length
 - Minimising Expected Code Length
 - Shannon Coding
- 2 The Source Coding Theorem for Symbol Codes
- 3 Huffman Coding
 - Algorithm and Examples
 - Advantages and Disadvantages

Constructing a Huffman Code

Huffman Coding is a procedure for making provably optimal prefix codes

It assigns the longest codewords to least probable symbols

Basic algorithm:

- Take the two least probable symbols in the alphabet
- Prepend bits 0 and 1 to current codewords of symbols
- Combine these two symbols into a single "meta-symbol"
- Repeat

Start with
$$\mathcal{A}=\{a,b,c\}$$
 and $\mathcal{P}=\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\}$ Step 1
$$a \qquad 0.5$$

$$b \qquad 0.25$$

$$c \qquad 0.25$$

Start with
$$\mathcal{A}=\{a,b,c\}$$
 and $\mathcal{P}=\{\frac{1}{2},\frac{1}{4},\frac{1}{4}\}$ Step 1 a 0.5 0.5 b 0.25 $\stackrel{0}{\longrightarrow}$ 0.5

Start with
$$\mathcal{A} = \{a, b, c\}$$
 and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

Now we read off the labelling implied by path from the last meta-symbol to each of the original symbols: $C = \{0, 10, 11\}$

$$\mathcal{A}_{X} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e}\} \text{ and } \mathcal{P}_{X} = \{0.25,0.25,0.2,0.15,0.15\}$$
 $x \qquad \text{step } 1 \qquad \text{step } 2 \qquad \text{step } 3 \qquad \text{step } 4$

$$\mathtt{a} \qquad 0.25 \qquad 0.25 \qquad 0.25 \qquad 0.55 \qquad 0.55 \qquad 0.45 \qquad 0.45 \qquad 1$$

$$\mathtt{b} \qquad 0.25 \qquad 0.25 \qquad 0.45 \qquad 0.45 \qquad 1$$

$$\mathtt{c} \qquad 0.2 \qquad 0.2 \qquad 1$$

$$\mathtt{d} \qquad 0.15 \qquad 0.3 \qquad 0.3 \qquad 0.3$$

From Example 5.15 of MacKay

$$C = \{00, 10, 11, 010, 011\}$$

English letters - Monogram statistics

a_i	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
С	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
е	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
1	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
0	0.0689	3.9	4	1011
Р	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
W	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
У	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
_	0.1928	2.4	2	01

P(x)0.0575 0.0128 0.0263 0.0285 0.0913 0.01730.0133 0.0313 0.0599 0.0006 0.0084 0.0335 0.0235 0.0596 0.0689 0.01920.0008 0.0508 0.05670.07060.0334 0.0069 0.0119 x 0.0073 0.0164 0.0007 0.1928

Huffman Coding: Formally

HUFFMAN(A, P):

- If |A| = 2 return $C = \{0, 1\}$; else
- 2 Let $a, a' \in A$ be *least probable* symbols.
- **3** Let $A' = A \{a, a'\} \cup \{aa'\}$
- 4 Let $\mathcal{P}' = \mathcal{P} \{p_a, p_{a'}\} \cup \{p_{aa'}\}$ where $p_{aa'} = p_a + p_{a'}$
- **⑤** Compute $C' = \mathsf{HUFFMAN}(\mathcal{A}', \mathcal{P}')$
- Opening Define C by
 - c(a) = c'(aa')0
 - c(a') = c'(aa')1
 - c(a) = c(aa)
 - $c(x) = c'(x) \text{ for } x \in \mathcal{A}'$
- Return C

Start with
$$A = \{a, b, c\}$$
 and $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$

Start with
$$A = \{a, b, c\}$$
 and $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \mathbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$

Start with
$$A = \{a, b, c\}$$
 and $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \mathbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ▶ Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $\bullet \ |\mathcal{A}|=|\{\mathtt{a},\mathtt{bc}\}|=2$
 - Return code with c'(a) = 0, c'(bc) = 1

Start with
$$A = \{a, b, c\}$$
 and $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \textbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ▶ Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $\bullet \ |\mathcal{A}| = |\{\mathtt{a},\mathtt{bc}\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1
 - Define
 - c(b) = c'(bc)0 = 10
 - c(c) = c'(bc)1 = 11
 - c(a) = c'(a) = 0

Start with
$$\mathcal{A} = \{a, b, c\}$$
 and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \mathbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $\bullet \ |\mathcal{A}| = |\{\mathtt{a},\mathtt{bc}\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1
 - Define
 - c(b) = c'(bc)0 = 10
 - c(c) = c'(bc)1 = 11
 - c(a) = c'(a) = 0
 - Return $C = \{0, 10, 11\}$

Start with
$$\mathcal{A} = \{a, b, c\}$$
 and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \mathbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $\bullet \ |\mathcal{A}| = |\{\mathtt{a},\mathtt{bc}\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1
 - Define
 - c(b) = c'(bc)0 = 10
 - c(c) = c'(bc)1 = 11
 - c(a) = c'(a) = 0
 - Return $C = \{0, 10, 11\}$

Start with
$$\mathcal{A} = \{a, b, c\}$$
 and $\mathcal{P} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - **b** and c are least probable with $p_a = p_b = \frac{1}{4}$
 - $\mathcal{A}' = \{a, \mathbf{bc}\}$ and $\mathcal{P}' = \{\frac{1}{2}, \frac{1}{2}\}$
 - ► Call HUFFMAN(A', P'):
 - $\bullet \ |\mathcal{A}| = |\{\mathtt{a},\mathtt{bc}\}| = 2$
 - Return code with c'(a) = 0, c'(bc) = 1
 - Define
 - c(b) = c'(bc)0 = 10
 - c(c) = c'(bc)1 = 11
 - c(a) = c'(a) = 0
 - Return $C = \{0, 10, 11\}$

The constructed code has $L(C, X) = \frac{1}{2} \times 1 + \frac{1}{4} \times (2+2) = 1.5$. The entropy is H(X) = 1.5.

Start with $\mathcal{A}=\{a,b,c,d,e\}$ and $\mathcal{P}=\{0.25,0.25,0.2,0.15,0.15\}$ • HUFFMAN(\mathcal{A},\mathcal{P}):

Start with $\mathcal{A} = \{a, b, c, d, e\}$ and $\mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}$ • HUFFMAN(\mathcal{A}, \mathcal{P}):

 $\blacktriangleright \ \mathcal{A}' = \{\mathtt{a},\mathtt{b},\mathtt{c},\textbf{de}\}$ and $\mathcal{P}' = \{0.25,0.25,0.2,\textbf{0.3}\}$

Start with $\mathcal{A} = \{\texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}, \texttt{e}\}$ and $\mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}$

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - $A' = \{a, b, c, de\}$ and $P' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):

```
Start with \mathcal{A} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e}\} and \mathcal{P} = \{0.25,0.25,0.2,0.15,0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - $\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN(A', P'):
 - $\bullet~\mathcal{A}''=\{\mathtt{a},\textbf{bc},\mathtt{de}\}$ and $\mathcal{P}''=\{0.25,\textbf{0.45},0.3\}$

```
Start with A = \{a, b, c, d, e\} and P = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - Arr $A' = \{a, b, c, de\}$ and $P' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call HUFFMAN($\mathcal{A}'', \mathcal{P}''$):
 - $\mathcal{A}^{\prime\prime\prime}=\{ extsf{ade}, extsf{bc}\}$ and $\mathcal{P}^{\prime\prime\prime}=\{ extsf{0.55}, 0.45\}$
 - Return c'''(ade) = 0, c'''(bc) = 1

```
Start with \mathcal{A} = \{a, b, c, d, e\} and \mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - $\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - ▶ Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call HUFFMAN($\mathcal{A}'', \mathcal{P}''$):
 $\mathcal{A}''' = \{ ade, bc \}$ and $\mathcal{P}''' = \{ 0.55, 0.45 \}$ Return $\mathbf{c}'''(ade) = 0, \mathbf{c}'''(bc) = 1$
 - Return c''(a) = 00, c''(bc) = 1, c''(de) = 01

```
Start with \mathcal{A} = \{a, b, c, d, e\} and \mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - Arr $A' = \{a, b, c, de\}$ and $P' = \{0.25, 0.25, 0.2, 0.3\}$
 - ▶ Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call HUFFMAN($\mathcal{A}'', \mathcal{P}''$):
 $\mathcal{A}''' = \{ ade, bc \}$ and $\mathcal{P}''' = \{ 0.55, 0.45 \}$ Return $\mathbf{c}'''(ade) = 0, \mathbf{c}'''(bc) = 1$
 - Return c''(a) = 00, c''(bc) = 1, c''(de) = 01
 - Return c'(a) = 00, c'(b) = 10, c'(c) = 11, c'(de) = 01

```
Start with \mathcal{A} = \{a, b, c, d, e\} and \mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - $\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call HUFFMAN($\mathcal{A}'', \mathcal{P}''$): - $\mathcal{A}''' = \{ \mathbf{ade}, \mathbf{bc} \}$ and $\mathcal{P}''' = \{ \mathbf{0.55}, 0.45 \}$
 - Return c'''(ade) = 0, c'''(bc) = 1
 - Return c''(a) = 00, c''(bc) = 1, c''(de) = 01
 - Return c'(a) = 00, c'(b) = 10, c'(c) = 11, c'(de) = 01
- Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

```
Start with \mathcal{A} = \{a, b, c, d, e\} and \mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - $\mathcal{A}' = \{a, b, c, de\} \text{ and } \mathcal{P}' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call HUFFMAN($\mathcal{A}'', \mathcal{P}''$): - $\mathcal{A}''' = \{ \mathbf{ade}, \mathbf{bc} \}$ and $\mathcal{P}''' = \{ \mathbf{0.55}, 0.45 \}$
 - Return c'''(ade) = 0, c'''(bc) = 1
 - Return c''(a) = 00, c''(bc) = 1, c''(de) = 01
 - Return c'(a) = 00, c'(b) = 10, c'(c) = 11, c'(de) = 01
- Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

```
Start with \mathcal{A} = \{\texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}, \texttt{e}\} and \mathcal{P} = \{0.25, 0.25, 0.2, 0.15, 0.15\}
```

- HUFFMAN(\mathcal{A}, \mathcal{P}):
 - Arr $A' = \{a, b, c, de\}$ and $P' = \{0.25, 0.25, 0.2, 0.3\}$
 - ► Call HUFFMAN($\mathcal{A}', \mathcal{P}'$):
 - $A'' = \{a, bc, de\}$ and $P'' = \{0.25, 0.45, 0.3\}$
 - Call $\mathsf{HUFFMAN}(\mathcal{A}'', \mathcal{P}'')$:
 - $-A''' = \{ ade, bc \} \text{ and } \mathcal{P}''' = \{ 0.55, 0.45 \}$
 - Return c'''(ade) = 0, c'''(bc) = 1
 - Return c''(a) = 00, c''(bc) = 1, c''(de) = 01
 - ► Return c'(a) = 00, c'(b) = 10, c'(c) = 11, c'(de) = 01
- Return c(a) = 00, c(b) = 10, c(c) = 11, c(d) = 010, c(e) = 011

The constructed code is $C = \{00, 10, 11, 010, 011\}$.

It has $L(C, X) = 2 \times (0.25 + 0.25 + 0.2) + 3 \times (0.15 + 0.15) = 2.3$. Note that $H(X) \approx 2.29$.

Huffman Coding in Python

See full example code with examples at:

```
https://gist.github.com/mreid/fdf6353ec39d050e972b
def huffman(p):
    '''Return a Huffman code for an ensemble with distribution p.'''
    assert(sum(p.values()) == 1.0) # Ensure probabilities sum to 1
   # Base case of only two symbols, assign 0 or 1 arbitrarily
    if(len(p) == 2):
        return dict(zip(p.keys(), ['0', '1']))
   # Create a new distribution by merging lowest prob. pair
   p_prime = p.copy()
   a1, a2 = lowest_prob_pair(p)
   p1, p2 = p_prime.pop(a1), p_prime.pop(a2)
   p_prime[a1 + a2] = p1 + p2
   # Recurse and construct code on new distribution
   c = huffman(p_prime)
   ca1a2 = c.pop(a1 + a2)
   c[a1], c[a2] = ca1a2 + '0', ca1a2 + '1'
   return c
```

Advantages of Huffman coding

- Produces prefix codes automatically (by design)
- Algorithm is simple and efficient
- Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

Advantages of Huffman coding

- Produces prefix codes automatically (by design)
- Algorithm is simple and efficient
- Huffman Codes are provably optimal [Exercise 5.16 (MacKay)]

If C_{Huff} is a Huffman code, then for any other uniquely decodable code C',

$$L(C_{\mathsf{Huff}},X) \leq L(C',X)$$

It follows that

$$H(X) \leq L(C_{\mathsf{Huff}}, X) < H(X) + 1$$

Disadvantages of Huffman coding

Assumes a fixed distribution of symbols

- The extra bit in the SCT
 - If H(X) is large − not a problem
 - ▶ If H(X) is small (e.g., \sim 1 bit for English) codes are $2\times$ optimal

Disadvantages of Huffman coding

Assumes a fixed distribution of symbols

- The extra bit in the SCT
 - If H(X) is large − not a problem
 - ▶ If H(X) is small (e.g., \sim 1 bit for English) codes are $2\times$ optimal

Huffman codes are the best possible symbol code but symbol coding is not always the best type of code

Next Time: Stream Codes!

Summary

Key Concepts:

- **1** The expected code length $L(C, X) = \sum_i p_i \ell_i$
- Probabilities and codelengths are interchangeable $q_i = 2^{-\ell_i} \iff \ell_i = \log_2 \frac{1}{q_i}$
- 3 Relative entropy $D_{KL}(\mathbf{p}||\mathbf{q})$ measures excess bits over the entropy H(X) for using the wrong code \mathbf{q} for probabilities \mathbf{p}
- The Source Coding Theorem for symbol codes: There exists prefix (Shannon) code C for ensemble X with $\ell_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$ so that

$$H(X) \leq L(C,X) \leq H(X) + 1$$

• Huffman codes are optimal symbol codes

Reading:

- §5.3-5.7 of MacKay
- §5.3-5.4, §5.6 & §5.8 of Cover & Thomas