ZADANIE 1.

Uzasadnij, że jeśli w definicji rozmaitości topologicznej warunek lokalnej euklidesowości zastąpimy którymkolwiek z następujących warunków:

- (a) każdy punkt posiada otwarte otoczenie homeomorficzne z otwartą kulą w \mathbb{R}^n ,
- (b) każdy punkt posiada otwarte otoczenie homeomorficzne z całą przestrzenią \mathbb{R}^n to otrzymamy definicję równoważną.

To, że (a) \iff (b) wynika z tego, że otwarta kula jest homeomorficzna z \mathbb{R}^n . Pokażemy więc, że Lokalnie euklidesowa \iff każdy punkt posiada otoczenie homeomorficzne z otwartą kulą.

 \Longrightarrow

Ustalmy dowolne $x\in M$. Niech $x\in U\subseteq M$ będzie otwartym otoczeniem x w M takim, że $U\cong \overline{U}\subseteq \mathbb{R}^n$ z definicji podanej na wykładzie. Nazwijmy ten homeomorfizm $\phi:U\to \overline{U}$. Wiemy, że istnieje r>0 takie, że $B_r(\phi(x))\subseteq \overline{U}$. Co więcej, $\phi^{-1}[B_r(\phi(x))]$ jest otwartym podzbiorem M, bo ϕ to homeomorfizm i przeciwobraz zbioru otwartego jest przezeń otwarty. Czyli $M\supseteq \phi^{-1}[B_r(\phi(x))]\ni x$ jest otwartym podzbiorem M zawierającym X0 i homeomorficznym X1 otwartą kulą w X2.

=

Otwarta kula jest otwartym podzbiorem \mathbb{R}^n , więc mamy homeomorfizm między pewnym otwartym otoczeniem $x \in U \subseteq M$ a otwartym podzbiorem \mathbb{R}^n .

ZADANIE 2.

Uzasadnij, że każdy otwarty podzbiór rozmaitości topologicznej jest rozmaitością topologiczną.

Niech M będzie rozmaitością topologiczną, a $M' \subseteq M$ jej otwartym podzbiorem.

1. Hausdorffowość:

2. Przeliczalna baza:

Niech $\{U_i\}_{i\in\mathbb{N}}$ będzie przeliczalną bazą M. Wtedy $\{U_i\cap M'\}_{i\in\mathbb{N}}$ jest przeliczalną rodziną zbiorów otwartych w M' (przecięcie dwóch otwartych jest otwarte). Ponieważ otwarty zbiór w M' jest również otwarty w M, to mogliśmy go wysumować za pomocą U_i , czyli w szczególności możemy go wysumować z $U_i\cap M'$, bo sam jest i tak zawarty z M'.

3. Lokalna Hausdorffowość:

Weźmy dowolny $x \in M' \subseteq M$. Ponieważ M było rozmaitością topologiczną, to dla pewnego otwartego otoczenia $x \in U \subseteq M$ mieliśmy homeomorfizm $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$. Znowu, $U \cap M'$ jest zbiorem otwartym, a więc $\phi \upharpoonright (U \cap M')$ jest homeomorfizmem z otwartym podzbiorem \mathbb{R}^n (bo $U \cap M'$ przechodzi na coś otwartego).

ZADANIE 3.

Uzasadnij, że jeśli rozmaitość M jest spójna, to jest też drogowo spójna, tzn. każde dwa punkty p, $q \in M$ można połączyć ciągłą krzywą $\gamma: [0,1] \to M$ (taką, że $\gamma(0) = p$, $\gamma(1) = q$). Wskazówka: dla ustalonego punktu p rozważ zbiór tych punktów q, które można połączyć z p krzywą ciągłą.

Spójna \implies jedyne zbiory otwarto-domknięte to \emptyset i M.

Ustalmy dowolne $p \in M$. Niech Σ_p będzie zbiorem tych punktów $q \in M$, które można połączyć z p krzywą ciągłą.

1. Σ_{D} jest zbiorem otwartym:

Niech $q \in \Sigma_p$ i γ będzie krzywą taką, że $\gamma(0) = p, \gamma(1) = q$. Pokażemy, że możemy na nim opisać zbiór otwarty. Niech $q \in U \subseteq M$ będzie otwartym otoczeniem q, a $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$ będzie homeomorfizmem wynikającej z lokalnej euklidesowości M. Weźmy teraz dowolny $y \in U$ i pokażemy, że wówczas istnieje krzywa z p do y.

Wiemy, że \mathbb{R}^n jest przestrzenią łukowo spójną, niech więc $\mu:[0,1]\to\mathbb{R}^n$ będzie krzywą ciągłą taką, że $\mu(0)=\phi(q)$ i $\mu(1)=\phi(y)$. Rozważmy teraz krzywą

$$\gamma':$$
 [0, 1] $ightarrow$ M

$$\gamma'(\mathsf{a}) = \begin{cases} \gamma(\mathsf{2a}) & \mathsf{a} \leq \frac{1}{2} \\ \phi^{-1}[\mu(\mathsf{2a} - 1)] \end{cases}$$

Mamy
$$\gamma'(0) = p i \gamma'(1) = \phi^{-1}[\mu(1)] = \phi^{-1}[\phi(y)] = y$$
, czyli $y \in \Sigma_p$

2. Σ_p jest zbiorem domkniętym:

Równoważnie, $M \setminus \Sigma_p$ jest zbiorem otwartym. Jeśli $M \setminus \Sigma_p$ nie byłoby otwarte, to dla pewnego $x \notin \Sigma_p$ mielibyśmy otoczenie z $y \in \Sigma_p$ i argument podobny jak wyżej: punkty są w jednym otoczeniu homeomorficznym z \mathbb{R}^n , więc możemy skonstruować krzywą z p przez y do x, więc $x \in \Sigma_p$ i mamy sprzeczność.

ZADANIE 4.

Udowodnij, że jeśli (U, ϕ) jest mapą na rozmaitości M, zaś K jest zwartym podzbiorem ϕ (U), to zbiór $\phi^{-1}(K)$ jest domknięty i zwarty w M. Pokaż też, że jeśli K jest domknięty w ϕ (U), to $\phi^{-1}(K)$ nie musi być domknięty w M.

Jeśli K jest zwartym podzbiorem $\phi(U)$, to z każdego pokrycia K możemy wybrać podpokrycie skończone. Popatrzmy na zbiór $\phi^{-1}(K)$. Możemy go pokryć zbiorami otwartymi $\{V_i\}_{i\in I}$. Czyli $\phi(V_i)$ pokrywają K, a więc możemy wybrać ciąg $i_1,...,i_n\subseteq I$ taki, że $K=\bigcup_{1\le k\le n}\phi(V_k)$. W takim razie,

$$\bigcup_{1\leq k\leq n}V$$

pokrywają $\phi^{-1}(K)$. Czyli $\phi^{-1}(K)$ jest zwarty.

To drugie to jakiś kontrprzykład, ale mi się nie chce.

ZADANIE 5.

Pokaż, że jeśli przestrzeń topologiczna ma przeliczalną bazę, to z każdego jej pokrycia zbiorami otwartymi można wybrać przeliczalne podpokrycie.

ZADANIE 6.

Korzystając z zadań 4 i 5 uzasadnij, że każda rozmaitość jest przeliczalną sumą otwartych podzbiorów homeomorficznych z otwartymi kulami w \mathbb{R}^n , których domknięcia w M są homeomorficzne z domkniętymi kulami w \mathbb{R}^n .

Niech $(U_i, \phi_i)_{i \in I}$ będzie rodziną map z M. Na mocy zadania 5 możemy wybrać ciąg $i_1, ..., i_n, ... \subseteq I$ taki, że

$$M = \bigcup_{1 \le k} U_k.$$

Popatrzmy teraz, co się dzieje w środku jednej takiej mapy. To jest ustalmy dowolne i z wcześniej wybranego ciągu $i_1, ..., i_n, ...$

Niech $\overline{U_i} = \phi(U_i)$. Jest to zbiór otwarty w \mathbb{R}^n , czyli na dowolnym $x \in \overline{U_i}$ możemy opisać kulę $B_r(x)$ o promieniu r > 0. Teraz, jeśli weźmiemy $B_{r/2}(x)$, to możemy taką kulę domknąć nie wychodząc z $\overline{U_i}$ (chociażby dlatego, że to domknięcie dalej będzie się zawierało w $B_r(x)$). Teraz zbiór $F = cl(B_{r/2}(x))$ jest zwarty w \mathbb{R}^n , czyli na mocy zadania 4. mamy, że $\phi^{-1}(F)$ jest domknięty w M.

Mamy więc, że w każdej mapie (U_i , ϕ_i) możemy pokryć zbiorami otwartymi homeomorficznymi z kulami w \mathbb{R}^n i o domknięciach homeomorficznych z domkniętymi kulami w \mathbb{R}^n . Wystarczy teraz dla każdego (U_i , ϕ_i) wybrać przeliczalnie wiele takich zbiorów otwartych, co możemy zrobić z ośrodkowości \mathbb{R}^n .

ZADANIE 7.

Uzasadnij, że lokalnie wokół każdego punktu $(x, y) \neq (0, 0)$ współrzędne biegunowe na \mathbb{R}^2 są zgodne ze współrzędnymi kartezjańskimi.

Po pierwsze, co rozumiemy przez współrzędne? To są odwzorowania w \mathbb{R}^2 , parametryzacje naszej rozmaitości. W tym przypadku kartezjańskie współrzędne to będzie dla nas tak naprawdę funkcja id. Popatrzymy też na ϕ , czyli przejście ze współrzędnych biegunowych do współrzędnych kartezjańskich zadane wzorem:

$$\phi(\alpha, r) = \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix}$$
.

Aby obie te współrzędne były zgodne, potrzebujemy, żeby kolorowe strzałki były funkcjami gładkimi (bo jest to odpowiedni id $\circ \phi^{-1}$ i $\phi \circ \text{id}^{-1}$).

Ciągłość funkcji $\phi \circ id^{-1}$ jest jasna ze wzoru na ϕ . Wystarczy teraz pokazać, że ϕ^{-1} jest gładkie. Wiemy, że jeśli Jakobian funkcji nie zeruje się w pewnym punkcie, to na jego otoczeniu funkcja jest

odwracalna i ta odwrotność też będzie gładka, bo ϕ_1 takie było.

$$D_{\phi}(\alpha, r) = \begin{bmatrix} \cos \alpha & -r \sin \alpha \\ \sin \alpha & r \cos \alpha \end{bmatrix} = r > 0.$$

Z zadania tego możemy wyciągnąć wniosek, że mapami możemy zadać więcej niż jedną strukturę na rozmaitości.

ZADANIE 8.

Pokaż, że współrzędne geograficzne na sferze S² (określone na dopełnieniu biegunów i jednego z południków) są zgodne ze standardową strukturą na S². Wskazówka: skorzystaj z parametryzacji równania sfery z użyciem współrzędnych geograficznych.

Czy współrzędne geograficzne to to samo co współrzędne sferyczne?

To zadanie wygląda syfnie jakoś, idę dalej

ZADANIE 9.

Uzasadnić, że zgodność atlasów jest relacją symetryczną i przechodnią.

Niech $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ będą atlasami na rozmaitości M.

Symetryczność:

Pokazanie symetryczności relacji zgodności atlasów sprowadza się do wzięcia dwóch map: $(U_1,\phi_1)\in\mathscr{A}_1$ i $(U_2,\phi_2)\in\mathscr{A}_2$ i stwierdzeniu, że jeśli (U_1,ϕ_1) jest zgodna z (U_2,ϕ_2) (czyli po porównaniu wszystkich \mathscr{A}_1 zgodny z \mathscr{A}_2), to $\phi_1\phi_2^{-1}$ oraz $\phi_2\phi_1^{-1}$ są gładkie. No ale to samo, jeśli przestawimy indeksy, czyli (U_2,ϕ_2) jest zgodne z (U_1,ϕ_1) $(\mathscr{A}_2$ jest zgodny z \mathscr{A}_1).

Przechodniość:

Tutaj kusiłoby wziąć dowolne trzy mapy: (U_1, ϕ_1) , (U_2, ϕ_2) i (U_3, ϕ_3) odpowiednio z $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ i powiedzieć, że śmiga, ale w taki sposób ignorujemy dziedziny poszczególnych ϕ_i . To znaczy, może zajść coś takiego:

I wtedy dziedziny np $\phi_1\phi_2^{-1}$ i $\phi_1\phi_3^{-1}$ są rozłączne.

ZADANIE 10.

Uzasadnij, że każdy atlas $\mathscr A$ na rozmaitości M zawiera się w dokładnie jednym atlasie maksymalnym (złożonym ze wszystkich map na M zgodnych z $\mathscr A$).