Problem 4.1: Assume that the magnitude f(r) of electric field due to a positive unit charge is given as $f(r) = \frac{1}{r^2 + \varepsilon}$ (0 < ε < 1) and it points away from it.

- (a) Calculate the electric field $\mathbf{E}(r)$ on the axis of a uniformly charged ring of radius R carrying a total charge Q.
- (b) Using the result of part (a), find the electric field inside and outside a uniformly charged thin spherical shell of radius R and carrying a total charge Q correct to first order in ε . Show that the field inside the shell points towards its centre.
- (c) Show that field near the centre of the shell varies linearly with r.
- (d) Plot $\mathbf{E}(r)$ versus r inside and outside the shell.

Problem 4.2: What is the electric field in a cavity formed by the intersection of two spheres as shown in the figure? The spheres carry uniform charge densities of ρ and $-\rho$ respectively and the distance between the spheres is a.

Problem 4.3: Use the result of problem above to find the surface charge density on a spherical surface that gives a uniform field inside the spherical cavity enclosed by the surface. Hence find the surface charge density induced on a metallic sphere put in a uniform electric field.

Problem 4.4: Find the electric field a distance z above the centre of a square loop (side a) carrying uniform line charge λ .

Problem 4.5: A charge q sits at the back corner of a cube as shown in the figure. What is the flux of \mathbf{E} through the shaded side?

Problem 4.6: A long coaxial cable (see figure) carries a uniform volume charge density ρ on the inner cylinder (radius a) and a uniform surface charge density on the outer cylindrical shell (radius b). this surface charge is negative and is of just the right

magnitude that the cable as a whole is electrically neutral. Find the electric field in each three regions: (i) inside the inner cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable (s > b). Also plot $|\mathbf{E}|$ as a function of s.

Problem 4.7: Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q, use infinity as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch V(r).

Problem 4.8: Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ . Compute the gradient of your potential, and check that it yields the correct field.