ZFS met RAID-Z als alternatief voor klassieke RAID-oplossingen

Jonas De Moor

Toegepaste Informatica - Systeem- en Netwerkbeheer Hogeschool Gent

jonas.demoor.v3741@student.hogent.be

16 juni 2017

Inhoud

- $lue{1}$ Achtergrond
 - Motivatie
 - Onderzoeksvragen
 - Opbouw van het onderzoek
 - Gehanteerde methodiek
- Onderzoek
 - Achtergrondinformatie m.b.t. ZFS
 - Architectuur van ZFS
 - VDEV's & Storage Pools
 - Benchmarks
 - Betrouwbaarheidstesten
- 3 Conclusie

Motivatie voor het voeren van dit onderzoek

- RAID5 'write hole'
- Relatie tussen BTRFS en ZFS
- ZFS On Linux (cf. Ubuntu 16.04 LTS)
- Interesses: Linux en Unix

Onderzoeksvragen

- Wat zijn de grootste verschillen tussen een klassieke RAID-oplossing en ZFS RAID-Z?
- Hoe is de architectuur van ZFS opgebouwd en op welke manieren tracht het oplossingen te vinden voor de problemen die zich voordoen bij andere bestandssystemen en RAID-opstellingen?
- Hoe staat het met data-integriteit en performantie¹ bij ZFS onder verschillende workloads en toepassingen?

¹Met 'performantie' wordt het aantal I/O's per seconde en de globale CPU-belasting bedoeld

Opbouw van het onderzoek

Twee grote onderdelen:

- Theoretisch gedeelte
 - Inleiding tot RAID-niveaus
 - Architectuur en ontwerpprincipes van ZFS
 - Interne datastructuren en transactiemodel
- Praktisch gedeelte
 - Storage Pools & VDEV's
 - Datasets
 - Performantie & Betrouwbaarheid

Gehanteerde methodiek

- Phoronix Benchmark: performantietesten op fysieke machine
 - FIO (Flexible I/O Tester): IOPS
 - FS-Mark: bestandssysteemoperaties
 - PostMark: simulatie van webserver/mailserver
 - SQLite: databankoperaties
- Virtuele Machine: betrouwbaarheidstesten
 - Wegvallen van een schijf (array van drie schijven)
 - Dataverlies door gebruikersfout
 - Bescherming tegen datacorruptie

Gehanteerde methodiek

Specificaties				
Fabrikant	HP			
Model	HP Pavilion Elite HPE-310be			
CPU	Intel Core i5 650 @ 3.2 GHz (2 Cores; 4 Threads)			
Geheugen	10GB DDR3 @ 1333MHz			
GPU	AMD Radeon HD 5570			
	SAMSUNG HD103SJ (1TB)			
Interne schijven	WDC WD1002FAEX-0 (1TB)			
	WDC WD5000AZRX-0 (500GB)			
Externe schijf	WD Elements 1078 (1TB)			
RAID Controller	Intel Corporation SATA RAID Controller			

Tabel: Specificaties van het fysieke systeem dat gebruikt werd doorheen de bachelorproef (data verkregen via lshw)

Gehanteerde methodiek

Specificaties Virtuele Machine					
OS	Fedora Server 25				
CPU	4x Host CPU (Intel Core i7-4712HQ CPU @ 2.30GHz)				
Geheugen	8GB				
OS-schijf	20GB (/dev/sda; SATA non-hot-pluggable)				
	40GB (/dev/sdb; SATA hot-pluggable)				
Zpool schijven	40GB (/dev/sdc; SATA hot-pluggable)				
	40GB (/dev/sdd; SATA hot-pluggable)				
NIC's	VirtualBox NAT-adapter (10.0.2.15/24)				
	VirtualBox Host-only Adapter (192.168.56.10/24)				

Tabel: Specificaties van de virtuele machine die gebruikt werd voor de betrouwbaarheidstesten

ZFS: een kort overzicht

- Copy-On-Write bestandssysteem
- Ontwikkeld door Sun Microsystems (begin jaren 2000)
- Oorspronkelijk onderdeel van Solaris
- Nu: verdere ontwikkeling via OpenZFS (en Oracle)
- Ondertussen ook beschikbaar op BSD en Linux (ZFS on Linux)
- Beschikt over RAID-Z (softwarematige RAID)

Architectuur van ZFS

Figuur: Een overzicht van de verschillende componenten van ZFS (Kendi, Onbekend)

Architectuur van ZFS

Figuur: Vergelijking tussen een 'traditionele' storage stack (links) en de ZFS storage stack (rechts) (Bonwick e.a., 2002)

Storage Pools

- Abstractie voor fysieke apparaten → gegroepeerd in VDEV's
- Dynamische allocatie van opslagruimte
- Schijven kunnen worden toegevoegd zonder downtime²

Figuur: Illustratie van ZFS pooled storage (rechts) t.o.v.volume-based storage (links) (Bonwick e.a., 2002)

²Afhankelijk van de situatie

VDEV's: Virtual Devices

- Bouwstenen van storage pools
- RAID-niveaus binnen ZFS:
 - Stripes, Mirrors, RAID-Z, etc.
- Speciale VDEV's:
 - SLOG, L2ARC

Figuur: Conceptuele voorstelling van VDEV's in een boomstructuur (Sun Microsystems, 2006)

Voorbeeld: zpool met een RAID-Z VDEV

```
$ zpool create storage raidz1 /dev/sda /dev/sdb /dev/sdc
$ zpool status
  pool: storage
  state: ONLINE
  scan: none requested
  config:
NAME.
            STATE
                      READ WRITE CKSUM
            ONLINE
storage
                                      0
  raidz1-0
            ONLINE
    sda
            ONLINE
    sdb
            ONLINE
                                      0
    sdc
            ONI.THE
                                      0
```

errors: No known data errors

Figuur: Aantal IOPS bij random read operaties (blokgrootte: 4MB), uitgevoerd op een Linux MD-opstelling

Figuur: Aantal IOPS bij random read operaties (blokgrootte: 4MB), uitgevoerd op een ZFS-opstelling

Figuur: Aantal IOPS bij random write operaties (blokgrootte: 4MB), uitgevoerd op een Linux MD-opstelling

Figuur: Aantal IOPS bij random write operaties (blokgrootte: 4MB), uitgevoerd op ZFS-opstelling

Figuur: Aantal IOPS bij sequential read operaties (blokgrootte: 4MB), uitgevoerd op een Linux MD-opstelling

Figuur: Aantal IOPS bij sequential read operaties (blokgrootte: 4MB), uitgevoerd op een ZFS-opstelling

Figuur: Aantal IOPS bij sequential write operaties (blokgrootte: 4MB), uitgevoerd op een Linux MD-opstelling

Figuur: Aantal IOPS bij sequential write operaties (blokgrootte: 4MB), uitgevoerd op een ZFS-opstelling

FS-Mark: algemene bestandssysteemperformantie (bestanden per seconde)

Figuur: Vergelijking tussen Linux MD i.c.m. XFS en ZFS inzake algemene bestandssysteemperformantie

PostMark: Simulatie van de workload van een mail- of webserver

Figuur: Simulatie van een web- of mailserver waarbij de performantie van respectievelijk Linux MD i.c.m. XFS en ZFS met elkaar wordt vergeleken

SQLite: Simulatie van de workload van een databanksysteem

Figuur: Performantie van Linux MD i.c.m. XFS bij een groot aantal INSERT-bewerkingen op een SQLite-databank

SQLite: Simulatie van de workload van een databanksysteem

Figuur: Performantie van ZFS bij een groot aantal INSERT-bewerkingen op een SQLite-databank

Dataverlies door een gebruikersfout³

³Testdata gegenereerd met: for i in 1..5; do head -c 15GB </dev/urandom > /storage/dummy_\$i; done

Dataverlies door een gebruikersfout

```
$ zfs rollback storage@31-05-2017
$ ls -lh /storage/
total 70G
-rw-r--r-. 1 root root 14G May 31 17:18 dummy_1
-rw-r--r-. 1 root root 14G May 31 17:19 dummy_2
-rw-r--r-. 1 root root 14G May 31 17:21 dummy_3
-rw-r--r-. 1 root root 14G May 31 17:23 dummy_4
-rw-r--r-. 1 root root 14G May 31 17:24 dummy_5
```

• Gedrag van de array bij het wegvallen van een schijf

```
# Op het hostsysteem

$ VBoxManage storageattach "Fedora Server x64" --storagectl "SATA" --port 1 --d

# Op de virtuele machine

$ dmesg
(deel van de uitvoer is weggelaten)

[ 6772.524376] ata2: exception Emask 0x10 SAct 0x0 SErr 0x4010000 action 0xe fr
[ 6772.525402] ata2: irq_stat 0x80400040, connection status changed
[ 6772.525670] ata2: SError: { PHYRdyChg DevExch }
[ 6772.525866] ata2: hard resetting link
[ 6773.198452] ata2: SATA link down (SStatus 0 SControl 300)
```

Gedrag van de array bij het wegvallen van een schijf

```
$ zpool export storage
$ zpool import storage
$ zpool status
 pool: storage
state: DEGRADED
status: One or more devices could not be used because the label is missing or
invalid. Sufficient replicas exist for the pool to continue
functioning in a degraded state.
action: Replace the device using 'zpool replace'.
  see: http://zfsonlinux.org/msg/ZFS-8000-4J
  scan: none requested
config:
NAME
                          STATE
                                    READ WRITE CKSUM
                          DEGRADED
storage
  raidz1-0
                          DEGRADED
    18175546172533204033
                         UNAVAIL
                                                      was /dev/sdb1
```

errors: No known data errors

0

sdc

sdd

ONI.THE

ONLINE

Gedrag van de array bij het wegvallen van een schijf

```
$ zpool replace storage 18175546172533204033 /dev/sdb -f
$ zpool status
  pool: storage
state: DEGRADED
status: One or more devices is currently being resilvered. The pool will
continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
  scan: resilver in progress since Wed May 31 19:35:54 2017
    6.88G scanned out of 105G at 227M/s, 0h7m to go
    2.29G resilvered, 6.56% done
config:
NAME.
                             STATE
                                       READ WRITE CKSUM
                             DEGRADED
storage
                                                      0
  raidz1-0
                            DEGRADED
                                                      0
    replacing-0
                             UNAVATI.
                                                      0
                                                          was /dev/sdb1/old
      18175546172533204033
                            UNAVAIL
                             ONI.THE
                                                          (resilvering)
      sdb
                                                      0
    sdc
                             ONLINE
                                                      0
    sdd
                             ONLINE
                                                      0
```

errors: No known data errors

• Gedrag van de array bij het optreden van silent data corruption

```
$ sha256sum /storage/dummy_1 fc4c5c62db504cec7b5cafa264c329416d0207da9e4a61066bb07563caf9ec2e /storage/dumm
```

\$ zpool export storage

Gedrag van de array bij het optreden van silent data corruption

```
$ zpool import storage
$ zpool status
  pool: storage
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace'.
see: http://zfsonlinux.org/msg/ZFS-8000-9P
scan: none requested
config:

NAME STATE READ WRITE CKSUM
```

NAME	STATE	READ	WRITE	CKSUM
storage	ONLINE	0	0	0
raidz1-0	ONLINE	0	0	0
sdb	ONLINE	0	0	5
sdc	ONLINE	0	0	0
sdd	ONLINE	0	0	0

errors: No known data errors

• Gedrag van de array bij het optreden van silent data corruption

```
$ zpool scrub storage
$ zpool status
  pool: storage
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace'.
see: http://zfsonlinux.org/msg/ZFS-8000-9P
scan: scrub repaired 39.0M in OhOm with 0 errors on Wed May 31 21:58:32 2017
config:
```

NAME	STATE	READ	WRITE	CKSUM
storage	ONLINE	0	0	0
raidz1-0	ONLINE	0	0	0
sdb	ONLINE	0	0	640
sdc	ONLINE	0	0	0
sdd	ONLINE	0	0	0

errors: No known data errors

• Gedrag van de array bij het optreden van silent data corruption

```
$ sha256sum /storage/dummy_1
4c5c62db504cec7b5cafa264c329416d0207da9e4a61066bb07563caf9ec2e /storage/dummy_
```

Conclusie

- Performantie: meeste gevallen in het voordeel van ZFS
- Betrouwbaarheid van ZFS is uitstekend
- Voordelen van ZFS: ZVOL's, CoW, ARC, etc.
- Use cases:
 - ZFS: grote SAN's, enthousiastelingen (ECC geheugen?)
 - 'klassieke' RAID: NAS-systemen, consumentensystemen

Referenties I

- Bonwick, J. e.a. (2002). *The Zettabyte Filesystem*. Verkregen van http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184. 3704&rep=rep1&type=pdf
- Kendi, C. (Onbekend). ZFS: Enhancing the Open Source Storage System (and the Kernel). Verkregen van https://www.blackhat.com/presentations/bh-dc-10/Kendi_Christian/Blackhat-DC-2010-Kendi-Enhancing-ZFSslides.pdf
- Sun Microsystems. (2006). ZFS on-disk specification. Verkregen van http://www.giis.co.in/Zfs_ondiskformat.pdf

Zijn er nog vragen?