Technische Universität Berlin

Fakultät II – Institut für Mathematik SS 02 Penn-Karras,Bärwolff,Förster,Unterreiter,Borndörfer 7. Oktober 2002

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:							
Neben einem handbeschriebene mittel zugelassen.	en A4 B	latt mi	t Notiz	en sind	keine	weitere	en Hilfs-
Die Lösungen sind in Reinsc l geschriebene Klausuren können					geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst Rechenaufwand mit den Kennt wenn nichts anderes gesagt ist,	nissen a immer	aus der eine k ı	Vorles	ung lös	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt 6	0 Minu	iten.					
Die Gesamtklausur ist mit 32 beiden Teile der Klausur minde					•	-	
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 3 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische Funktion und sei die Funktion f sowohl gerade als auch ungerade.

Bestimmen Sie die Fourierreihe von f.

2. Aufgabe 13 Punkte

Es sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch f(x,y) = x + y.

- a) Skizzieren Sie die Niveaulinien von f zu den Werten -2; 0 und 3 und skizzieren Sie außerdem das Gradientenfeld von f auf diesen Niveaulinien.
- b) Geben Sie eine differenzierbare Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ an, so dass die Funktion f eingeschränkt auf die Nebenbedingung g(x,y)=0 sowohl ein Minimum als auch ein Maximum annimmt. Begründen Sie Ihre Wahl.
- c) Geben Sie eine differenzierbare Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ an, so dass die Funktion f eingeschränkt auf die Nebenbedingung g(x,y)=0 weder ein globales Minimum noch ein globales Maximum annimmt. Begründen Sie Ihre Wahl.

3. Aufgabe 8 Punkte

Es sei die Funktion $f:[0,1]\to\mathbb{R}$ gegeben durch $y=f(x)=\mathrm{e}^x$.

- a) Parametrisieren Sie die Fläche, die entsteht, wenn der Graph von f um die x-Achse rotiert.
- b) Parametrisieren Sie die Fläche, die entsteht, wenn der Graph von f um die y-Achse rotiert.

4. Aufgabe 4 Punkte

Bestimmen Sie (mit Begründung!) die Potenzreihe der Funktion $f : \mathbb{R} \to \mathbb{R}$, die gegeben ist durch $f(x) = \int_0^x \mathrm{e}^{(y^2)} \mathrm{dy}$.

Hinweis:
$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

5. Aufgabe 5 Punkte

Es sei $\ell: \mathbb{R}^2 \to \mathbb{R}$ eine lineare Abbildung, d.h. $\ell(x,y) = (c_1 \ c_2) \begin{pmatrix} x \\ y \end{pmatrix}$.

Geben Sie das Taylorpolynom zweiten Grades von ℓ im Punkt (a,b) an. Vereinfachen Sie dabei soweit wie möglich und begründen Sie Ihr Ergebnis geometrisch.

6. Aufgabe 7 Punkte

Sei $\vec{w}: \mathbb{R}^3 \to \mathbb{R}^3$ ein differenzierbares Vektorfeld mit Vektorpotenzial $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$. Weiter seien der folgende Kegelmantel

$$M = \{(x, y, z)^T \in \mathbb{R}^3 \mid 0 \le x^2 + y^2 \le 1, \ z = 1 - \sqrt{x^2 + y^2}\}$$

und die folgende Kugelkappe

$$K = \{(x, y, z)^T \in \mathbb{R}^3 \mid 0 \le x^2 + y^2 \le 1, \ z = -\sqrt{1 - (x^2 + y^2)}\}$$

gegeben. Die Flächen M und K seien mit "nach außen" weisenden Normalenvektoren parametrisiert.

Das Flussintegral von \vec{w} durch die Fläche M habe den Wert $\iint_{M} \vec{w} \cdot d\vec{O} = \pi$.

- a) Bestimmen Sie mit Begründung den Wert des Kurvenintegrals von \vec{v} über die Randkurve von M.
- b) Bestimmen Sie mit Begründung den Wert des Flussintegrals von \vec{w} durch die Fläche K.
- c) Bestimmen Sie mit Begründung den Wert des Volumenintegrals $\iiint_B \text{div } \vec{w} \text{dV}$ über das Volumen B, das von den Flächen M und K eingeschlossen wird.

Hinweis: Was bedeutet es, dass \vec{v} ein Vektorpotenzial von \vec{w} ist?