Chevalley, Claude. (1956). Fundamental concepts of algebra. New York: Academic Press. $\verb|https://github.com/kmi-ne/Math-MyNotes||$

Chapter 1

Monoids

Convention 1.1 $a \tau b$ — Syn. for $\tau(a, b)$

 τ is associative:

Definition 1.2

$$\operatorname{Assoc}(\tau,A) : \leftrightarrow \begin{cases} \tau \colon A \to A \\ \forall a,b,c \in A \ (a \ \tau \, b) \ \tau \, c = a \ \tau \, (b \ \tau \, c) \end{cases}$$

- label: dfn_Assoc

Example: ^a

2. $\operatorname{Assoc}(\tau, \mathbb{Z})$

3. $\operatorname{Assoc}(\tau_{\circ}, {}^{S}S)$

 $\neg \operatorname{Assoc}(\tau_{-}, \mathbb{Z})$

neutral element:

Definition 1.3

$$\mathrm{Neut}(e,\tau,A) : \leftrightarrow \begin{cases} \tau \colon A \to A \\ \forall a \in A \ (a \ \tau \, e = e \ \tau \, a = a) \end{cases}$$

— label: dfn_Neut

Example:

1. Neut
$$(0, \tau_+, \mathbb{Z})$$

2. Neut
$$(1, \tau, \mathbb{Z})$$

3. Neut(id,
$$\tau_{\circ}$$
, ${}^{S}S$)

4.
$$\forall x \in \mathbb{Z} \neg \text{Neut}(x, \tau_{-}, \mathbb{Z})$$

Theorem 1.4

$$!e \in A \operatorname{Neut}(e, \tau, A)$$

— label: thm_neut_unq

 $[^]a$ $\tau_{\mathbf{f}}\!\!:$ the function corresponding to a function symbol \mathbf{f}