IP Routing

Risanuri Hidayat

Routing terletak di layer 3

Routing

- Routing adalah proses pengiriman informasi/data dari pengirim di suatu jaringan ke penerima yang berada di jaringan yang lain (melalui internetwork).
- Untuk dapat me-route paket, dibutuhkan Router
- Agar dapat me-route paket, Router minimal harus mengetahui
 - Alamat (IP) Penerima
 - Router tetangganya, yang dengan itu ia bisa mempelajari jaringan lebih luas
 - Route/lintasan yang bisa dilewati
 - Route terbaik ke setiap jaringan
 - Informasi routing

Routing

- Router mengetahui/belajar mengenai jaringan yang jauh dari router tetangganya (atau dimasukkan secara manual oleh admin)
- Router membangun tabel routing untuk dapat mem-forwardkan data ke jaringan yang jauh

Routing Proses

• ping 172.16.100.15 dari 172.16.20.15

Routing Proses

- Paket dibuat di A untuk dikirim ke B
- A broadcast ARP ke jaringan untuk mengetahui MAC address B
- Karena B terletak di jaringan yang lain, Router yang memberi response dengan memberikan fisik address-nya, agar Paket itu oleh A dikirim ke Router (sebagai default Router)
- A kemudian mengirim paket tersebut ke Router lewat port E0.
- Hardware address sesuai dengan HA milik Router, maka header frame dicopot, sehingga tinggal paket IP. Router kemudian men-check alamat Penerima. Ketika diketahui bahwa Penerima adalah 172.16.100.15, Router tahu (dari Routing Tabel-nya) bahwa alamat network 172.16.100.0 bisa dicapai lewat port E1.

Routing Proses

- Router menempatkan paket itu ke port E1.
 Kemudian dari E1 dibuatkan frame untuk kemudian dikirim ke B.
- Paket diterima oleh B kemudian diproses untuk dilihat isinya.
- Karena paket tersebut adalah ping (ICMP), B menjawab paket tersebut (reply) ke A. Terjadi proses yang sama dengan arah berlawanan.

Type-type Routing

- Static Routing, administrator secara manual men-set tabel routing.
- Default Routing, mengirim paket ke jaringan yang tidak ada di dalam tabel routing ke Router selanjutnya. Hal ini terjadi jika Router hanya mempunyai satu port keluar.
- Dynamic Routing, terjadi proses pembelajaran oleh Router dan meng-update tabel routing jika terjadi perubahan. Pembelajaran dilakukan dengan komunikasi antar routerrouter dengan protokol-protokol tertentu.

Routing dalam Jaringan

Router	NN	Port	НА
2621A	172.16.10.0	F0/0	172.16.10.1
2501A	172.16.10.0	E0	172.16.10.2
2501A	172.16.20.0	S0	172.16.20.1
2501B	172.16.20.0	S0	172.16.20.2

Router	NN	Port	НА
2501B	172.16.30.0	E0	172.16.30.1
2501B	172.16.40.0	S1	172.16.40.1
2501C	172.16.40.0	S0	172.16.40.2
2501C	172.16.50.0	E0	172.16.50.1

- Tidak membebani CPU
- Tidak diperlukan komunikasi antar Router
- Aman (krn hanya admin yg bisa men-setup)
- Admin harus menguasai jaringan keseluruhan
- Jika ada tambahan jaringan, admin harus menambahkannya pada semua Router
- Pada jaringan yang besar, hal ini akan sangat menyita waktu dan tenaga

- Router 2621 hanya tersambung langsung dengan 172.16.10.0. Network-network yang lain harus dikonfigurasi
- Tabel Routing untuk 2621A

Network Number	Next Hope/Port	Keterangan
172.16.50.0	172.16.10.2	S
172.16.40.0	172.16.10.2	S
172.16.30.0	172.16.10.2	S
172.16.20.0	172.16.10.2	S
172.16.10.0	F0/0	C

- Router 2501A tersambung langsung dengan 172.16.10.0 dan 172.16.20.0. Network-network yang lain harus dikonfigurasi
- Tabel Routing 2501A

Network Number	Next Hope/Port	Keterangan
172.16.50.0	172.16.20.2	S
172.16.40.0	172.16.20.2	S
172.16.30.0	172.16.20.2	S
172.16.20.0	S0	С
172.16.10.0	E0	С

• Dengan cara yang sama, 2501B dan 2501C dapat dikonfigurasi

2501B

NN NH/Port		Ket
172.16.50.0	72.16.50.0 172.16.40.2	
172.16.40.0 S1		С
172.16.30.0	E0	С
172.16.20.0	S0	С
172.16.10.0	172.16.20.1	S

2501C

NN	NH/Port	Ket
172.16.50.0	E0	С
172.16.40.0	S0	С
172.16.30.0	172.16.40.1	S
172.16.20.0	172.16.40.1	S
172.16.10.0	172.16.40.1	S

Default Routing

- Dalam tabel routing, default Routing adalah pada NN yang tersambung langsung ke Router
- Contoh

2501B

	NN	NH/Port	Ket	
17	2.16.50.0	172.16.40.2	S	
17	2.16.40.0	S 1	C ←	— Default
17	2.16.30.0	E0	C ←	Routing
17	2.16.20.0	S 0	C	
17	2.16.10.0	172.16.20.1	S	

Dynamic Routing

- Terjadi proses pembelajaran oleh Router dan meng-update tabel routing jika terjadi perubahan. Pembelajaran dilakukan dengan komunikasi antar router-router dengan protokol-protokol tertentu
- Ada beberapa type,
 - RIP (Routing Information Protocol)
 - IGRP (Interior Gateway Routing Protocol)
 - EIGRP (Enhanced IGRP)
 - OSPF (Open Shortest Path First)

Administrative Distance

- Angka tingkat informasi routing dapat dipercaya
- Bernilai antara 0 –255, 0 adalah angka terpercaya, sementara 255 menunjukkan tidak akan ada traffic lewat route tersebut
- Tabel Administrative Distance menurut Cisco

Route Source	Default Distance
Langsung	0
Static	1
EIGRP	90
IGRP	100

Route Source	Default Distance
OSPF	110
RIP	120
External EIGRP	170
Unknown	255

Routing Protocol

- Distance Vector, menggunakan jarak
 (Distance) untuk menentukan jalur terbaik menuju jaringan yang jauh
- Link state
- Hybrid

- Setiap node (router) membuat vektor (*Destination*, *cost*, *Next Hope*) ke semua node, dan mendistribusikan vektornya kepada tetangga terdekatnya.
- Awal mula: Setiap node tahu *cost* ke tetangga sebelahnya adalah 1. Tetangga yang bukan sebelah *cost* bernilai ∞ (tak terhingga)

A		
Dest	Cost	Next
1.0	0	
2.0	0	

Cost

0

0

Next

C=2.2

С		
Dest	Cost	Next
2.0	0	
3.0	0	

C			
Dest	Cost	Next]
2.0	0		
3.0	0	1	

C		
Dest	Cost	Next
2.0	0	
3.0	0	
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2

Dest	Cost	Next
2.0	0	
3.0	0	
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2

D		
D		
Dest	Cost	Next
3.0	0	
5.0	0	
6.0	0	

2.0

3.0

D		
Dest	Cost	Next
3.0	0	
5.0	0	
6.0	0	
2.0	1	C=3.1
4.0	1	B=5.2

Cost	Next
0	-1
0	
	0

4.0

5.0

В		
Dest	Cost	Next
4.0	0	
5.0	0	
3.0	1	D=5.1
6.0	1	D=5.1

7 July 2011

A

Dest

1.0

2.0

3.0

6.0

A		
Dest	Cost	Next
1.0	0	
2.0	0	
3.0	1	C=2.2

C		
Dest	Cost	Next
2.0	0	
3.0	0	
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2

D		
Dest	Cost	Next
3.0	0	
5.0	0	-1
6.0	0	1
2.0	1	C=3.1
4.0	1	B=5.2

В		
Dest	Cost	Next
4.0	0	
5.0	0	-
3.0	1	D=5.1
6.0	1	D=5.1

A		
Dest	Cost	Next
1.0	0	
2.0	0	
3.0	1	C=2.2
5.0	2	C=2.2
6.0	2	C=2.2

С		
Dest	Cost	Next
2.0	0	
3.0	0	1
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2
4.0	2	D=3.2

D		
Dest	Cost	Next
3.0	0	
5.0	0	-
6.0	0	
2.0	1	C=3.1
4.0	1	B=5.2
1.0	2	C=3.1

В		
Dest	Cost	Next
4.0	0	
5.0	0	
3.0	1	D=5.1
6.0	1	D=5.1
2.0	2	D=5.1

A		
Dest	Cost	Next
1.0	0	
2.0	0	
3.0	1	C=2.2
5.0	2	C=2.2
6.0	2	C=2.2

C		
Dest	Cost	Next
2.0	0	
3.0	0	
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2
4.0	2	D=3.2

D		
Dest	Cost	Next
3.0	0	
5.0	0	
6.0	0	
2.0	1	C=3.1
4.0	1	B=5.2
1.0	2	C=3.1

В		
Dest	Cost	Next
4.0	0	
5.0	0	
3.0	1	D=5.1
6.0	1	D=5.1
2.0	2	D=5.1

A		
Dest	Cost	Next
1.0	0	1
2.0	0	
3.0	1	C=2.2
5.0	2	C=2.2
6.0	2	C=2.2
4.0	3	C=2.2

С		
Dest	Cost	Next
2.0	0	-
3.0	0	
1.0	1	A=2.1
5.0	1	D=3.2
6.0	1	D=3.2
4.0	2	D=3.2

I	D		
I	Dest	Cost	Next
Ī	3.0	0	
Ì	5.0	0	
Ì	6.0	0	
I	2.0	1	C=3.1
Ì	4.0	1	B=5.2
Ì	1.0	2	C=3.1

В		
Dest	Cost	Next
4.0	0	
5.0	0	
3.0	1	D=5.1
6.0	1	D=5.1
2.0	2	D=5.1
1.0	3	D=5.1

Exchange updates directly connected neighbors

- periodically (on the order of several seconds, RIP:25-35 second)
 - other node is still running
 - keep information
- whenever table changes (called *triggered* update)

Update

- Example 1
 - F detects that link to G has failed
 - F sets distance to G to infinity and sends update t o A
 - A sets distance to G to infinity since it uses F to reach G
 - A receives periodic update from C with 2-hop path to G
 - A sets distance to G to 3 and sends update to F
 - F decides it can reach G in 4 hops via A

F		
Dest	Cost	Next
x.0	1	G

F		
Dest	Cost	Next
x.0	00	

A		
Dest	Cost	Next
x.0	OO	

C		
Dest	Cost	Next
x.0	1	D

A		
Dest	Cost	Next
x.0	00	С

A		
Dest	Cost	Next
x.0	2	D

F		
Dest	Cost	Next
x.0	3	A

Routing Loops

• Example 2

- link from A to E fails
- A advertises distance of infinity to E
- B and C advertise a distance of 2 to E
- B decides it can reach E in 3 hops; advertises this to A
- A decides it can read E in 4 hops; advertises this to C
- C decides that it can reach E in 5 hops...

A		
Dest	Cost	Next
e.0	1	Е

Γ	A		
Ī	Dest	Cost	Next
Γ	e.0	00	

В		
Dest	Cost	Next
e.0	00	

В		
Dest	Cost	Next
e.0	00	
C		
Dest	Cost	Next

2

A

В		
Dest	Cost	Next
e.0	3	С

A		
Dest	Cost	Next
e.0	4	В

FAIL & UNSTABLE

TD	Da		~
IΡ	KO	utin	g

C		
Dest	Cost	Next
e.0	5	A

Loop-Breaking Heuristics

Pencegahan:

- Set infinity to 16 (menjadi bermasalah jika jumlah network membesar dan menjadi lebih dari 16 router)
- Split horizon (misal: B mengirim routing update ke A, B tidak mengirim tabel (e.0,2,A) ke A karena routing itu berasal dari A)
- Split horizon with poison reverse (tabel (e.0,2) tetap dikirim oleh B ke A dengan tanda tertentu agar A tidak menggunakannya). Tetap bermasalah: waktu convergency menjadi lama

Routing Information Protocol

- Menggunakan Prinsip Distance Vector
- Beroperasi dengan UDP port 520
- Destination adalah Network, bukan Router

RIPv1 Packet Format

0	8	16 31			
Command	Version	Unused (= zero)			
Address Fam	ily Identifier	Unused (= zero)			
IPAddress 1					
Unused (= zero)					
Unused (= zero)					
Metric					
Address Fam	ily Identifier	Unused (= zero)			
IP Address 2					
Unused (= zero)					
Unused (= zero)					
Metric					

Up to a maximum of 25

RIPv1 Packet Format

- Command: Request bernilai 1, response bernilai 0
- Version: bernilai 1, RIP versi 1
- Address Family Identifier: bernilai 2 untuk IP
- IP Address: Address destination of the route. Bisa berupa mayor dari Network Address, subnet, atau route host
- Metric: Cost, bernilai antara 1 dan 16

RIPv2 Packet Format

0	8	16 31			
Command	Version	Unused (= zero)			
Address Fam	ily Identifier	Route Tag			
IPAddress 1					
Subnet Mask					
Next Hop					
Metric					
Address Fam	ily Identifier	Route Tag			
IPAddress 2					
Subnet Mask					
Next Hop					
Metric					

Up to a maximum of 25

RIPv2 Packet Format

- Command: Request bernilai 1, Response bernilai 0
- Version : bernilai 2, RIP versi 2
- Address Family Identifier: bernilai 2 untuk IP
- Route Tag: Untuk tagging external route, atau route yang telah di redistribusi ke dalam proses RIPv2
- IP Address: Address destination of the route. Bisa berupa mayor dari Network Address, subnet, atau route host
- Subnet mask: mask 32 bit mengidentifikasi network dan subnet alamat IP
- Next Hop: mengidentifikasi alamat next hop yang terbaik
- Metric : Cost, bernilai antara 1 dan 16