ALUMINA THICKENED LATEX FORMULATIONS

Patent number: JP9511258T Publication date: 1997-11-11

Inventor: Applicant: Classification:

- International: C08K3/18; C08J3/03; C08K3/22; C08L1/02;

C08L21/00; C08L101/00; C09D7/00; C09D7/12; C09D12/100; C09D201/00; C08L3/00; C08K3/00; C08L1/00; C08L21/00; C08L10/100; C09D7/00; C09D7/12; C09D7/12; C09D121/00; C09D201/00; (IPC1-7): C09D7/12; C09D121/00; C09D201/00; C08K3/18; C08K3/22; C08L1/02; C08L21/00; C08L101/00

- european: C08J3/03; C08K3/22; C09D7/00D Application number: JP19940511787T 19940902

Priority number(s): WO1994US09878 19940902; US19930140267

19931021

(Also published as: (国 WO9511270 (A1) (国 EP0728157 (A1) (US5550180 (A1) (国 EP0728157 (A4) (国 EP0728157 (A0) (MOFE)

Report a data error here

Abstract not available for JP9511258T Abstract of correspondent: WO9511270

A latex composition comprising, as a rheology modifier, an effective amount of a boehmite alumina having a crystal size (020 plane) of less than about 60 Angstroms and a surface area, when calcined to gamma phase, of greater than approximately 200 m<2>/g, the boehmite alumina being present in an amount effective to obtain the desired rheological properties of the composition

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公表特許公報(A)

(11)特許出願公表番号

特表平9-511258

(43)公表日 平成9年(1997)11月11日

(51) Int.Cl. ⁶	識別配号	庁内整理番号	FΙ				
C 0 8 K 3/18		9272 — 4 J	C 0 8	K 3/1	18		
3/22		9272-4 J		3/2	22		
C 0 8 L 1/02		9362-4J	C 0 8	L 1/0	02		
21/00		9362-4 J		21/0	00		
101/00		9272-4 J		101/0	00		
		家語主語	未請求	予備審查	請求 有	(全29頁)	最終頁に続く
(21) 出願番号 (86) (22) 出顯日 (85) 翻訳文提出日 (86) 国際出顧番号 (87) 国際公開番号 (87) 国際公開日 (31) 優先権主張番号 (32) 優先目 (33) 優先権主張国 (81) 指定国 DK, ES, FR, (C, NL, PT, S)	1993年10月21日 米国 (US) EP(AT, BE, GB, GR, IE,	号19日 /09878 70 月27日 67 CH, DE,	(72) š (72) š	が	アメリカ(- ン・ス) - ルシク, アメリカ(イン・マー ・ ツグリカ(アメカウ)	・ビスタ・カンパ 今衆国テキサス90 カツドニードル90 カーマース・エ 合衆国テキサスト10 ロナルド・サスト ロナエティンド・サスト か田島 平吉	77079ヒユース 0 ム 78726オーステ 604 78641リーンダ

アルミナ増粘ラテックス調合物 (54) 【発明の名称】

(57)【要約】

約60オングストローム以下の結晶サイズ(020面) を有しそして焼成でガンマ相にした時に約200㎡/ g以上の表面積を示すペーマイトアルミナを流動改良剤 として有効量で含むラテックス組成物であって、ここで は、この組成物の所望流動特性を得るに有効な量で該べ ーマイトアルミナを存在させる。

【特許請求の範囲】

- 1. 約60オングストローム以下の結晶子サイズ(020面)を有しそして 焼成でガンマ相にした時に約200m²/g以上の表面積を示すベーマイトアル ミナを流動改良剤として含むラテックス組成物であって、上記ラテックス組成物 の所望流動特性を得るに有効な量で上記ベーマイトアルミナが存在する組成物。
- 2. 上記ラテックス組成物がラテックス塗料を含む請求の範囲第1項の組成物。
 - 3. 追加的流動改良剤を含む請求の範囲第2項の組成物。
- 4. 上記追加的流動改良剤がセルロース系増粘剤を含む請求の範囲第3項の組成物。
- 5. 上記追加的流動改良剤がヒドロキシエチルセルロースを含む請求の範囲 第4項の組成物。
- 6. 上記追加的流動改良剤が、水系媒体中で流動特性を示す無機材料を含む 請求の範囲第3項の組成物。
 - 7. 上記追加的流動改良剤が粘土を含む請求の範囲第6項の組成物。
- 8. 上記追加的流動改良剤が、水に相溶性を示す担体液体中に分散しているポリマー材料を含む請求の範囲第3項の組成物。
 - 9. 上記ベーマイトアルミナが水分散性を示す請求の範囲第1項の組成物。
- 10. 上記ベーマイトアルミナが約40オングストローム以下の結晶子サイズを有しそして焼成を受けさせてガンマ相にした時に約250m²/g以上の表面積を示す請求の範囲第1項の組成物。
 - 11. 上記ベーマイトアルミナが上記組成物中に上記組成物の約0.
- 1重量%から約5重量%の量で存在する請求の範囲第1項の組成物。

【発明の詳細な説明】

アルミナ増粘ラテックス調合物

発明の背景

1. 発明の分野

本発明は、増粘(thickened)ラテックス組成物、より詳細には増粘ラテックス塗料組成物に関する。

2. 従来技術の説明

水を基とするラテックス塗料および被覆材(ラテックス組成物)が産業および住宅用途で幅広く用いられている。性能を適切にするには、上記ラテックス組成物を水平(上部および下部)、垂直および複雑な形状の物に流出傾向を最小限にしながら均一に塗布することができなければならない。このような性能を得るには、上記ラテックス組成物を塗布している間そして塗布した後の流動性を調節する必要がある。典型的には、噴霧、はけ塗りまたはローラーを用いた塗布を含むいくつかの方法の1つを用いてラテックス組成物を塗布することができる。従って、この組成物の流動調節は代替塗布方法を可能にするような調節でなければならない。加うるに、このような調合物は全部、液体中に固体、例えば顔料などが入っている懸濁液であることから、この調合物の成分が過度の沈降および分離を記こさないように、流動性の調節を製造中に加えて貯蔵中にも行う必要がある。

水を基とするラテックス組成物の増粘で有機増粘剤、例えばヒドロキシエチルセルロース(HEC)などを用いることができることはよく知られている。加うるに、水溶液中でチキソトローブ(thixotropes)として働くことが知られている特定の粘土もまた増粘剤として

単独か或はHECと協力させて用いられる。より最近になって、「会合増粘剤(Associative Thickeners)」として知られるものが開発され、これは一般に、水に相溶性(混和性)を示す液体中に分散している合成ポリマー材料である。

単純な水溶液用の増粘剤として一水化アルミナ類、例えばベーマイトアルミナなどを用いることができることはよく知られている。例えば、水系の洗浄調合物

で上記ベーマイトアルミナを増粘剤として用いることが従来技術に開示されている。

発明の要約

従って、本発明の1つの目的は、せん断低粘化(shear thinning)を示すアルミナ増粘剤を用いた水を基とする増粘ラテックス組成物を提供することにある。

本発明のさらなる目的は、優れた浄化(clean-up)特性を示す水を基とするラテックス塗料組成物を提供することにある。

本明細書に示す図、説明および添付請求の範囲から本発明の上記および他の目的が明らかになるであろう。

本発明は増粘ラテックス組成物を提供し、これに、この組成物の所望流動特性を得るに有効な量でベーマイトアルミナを流動改良剤として含める。本発明の組成物で用いるに有用なベーマイトアルミナは、約60オングストローム以下の結晶子サイズ(020面)を有しそして焼成時に約200m²/g以上の表面積を示すアルミナである。

図の簡単な説明

図1は、内装品質の平面壁用塗料で用いられる種々の増粘剤の効果を示すボーリン (Bohlin)流動グラフである。

図2は、高品質の内装平面塗料 (ビニルーアクリル系) で用いられる種々の増 粘剤の効果を示すポーリン流動グラフである。

図 3 は、外装(改質アクリル系) 品質のハウスペイント (House Paint) - 白色における種々の増粘剤の効果を示すボーリン流動グラフである。

図4は、外装(改質アクリル系)品質のハイビルド(High Build)ハウスペイントー白色における種々の増粘剤の効果を示すボーリン流動グラフである。

図5は、良品質の平面壁用塗料-白色において種々のベーマイトアルミナが示す増粘能力をHECと対比させた比較を示すグラフである。

好適な態様の説明

示すように、本発明はラテックス組成物の個々の用途で用いられる。このようなラテックス組成物は本分野の技術者によく知られている。言葉「ラテックス組成物」を本明細書で用いる場合、これは、天然もしくは合成のゴムもしくはプラスチックであって小滴または粒子で出来ている結合剤が水中に分散している組成物を指す。上記ラテックス組成物の例はエマルジョンペイントまたはラテックス塗料と通常呼ばれる組成物である。上記合成ゴムもしくはプラスチック材料の非制限的例には、スチレンープタジエンゴム、ポリ酢酸ビニル、酢酸ビニルとアクリル酸ブチル、アクリル酸オクチル、フマル酸ジブチル、マレイン酸ジオクチル、プロピオン酸ビニルなどの如きモノマー類とのコポリマー類、並びにポリアクリレートのポリマー類およびコポリマー類、例えばアクリル酸エチルと適切なメタアクリル酸アルキルのコポリマー類などが含まれる。一般的に言って、考慮下の種類のラテックス組成物は、ラテックス結合

剤またはベヒクル(水を含む)を約10重量%から約90重量%そして他のよく知られている成分もしくは材料、例えば二酸化チタン、炭酸カルシウムなどの如き顔料などを約90重量%から約10重量%の量で含む。加うるに、ラテックス塗料組成物には通常、増粘剤、界面活性剤、凍結防止剤、防腐剤、殺生物剤、集合助剤、pH調整剤、消泡剤などが入っている。考慮下の種類のラテックス塗料には通常この組成物の約10重量%から約70重量%の量で顔料が入っている。

本発明の増粘組成物で用いるに有用なベーマイトアルミナ増粘剤は、020面で測定して約60オングストローム以下の結晶サイズを有しそして焼成でガンマ相にした時に約200m²/g以上の表面積を示す如何なるベーマイトアルミナも包含し得る。この有用なベーマイトアルミナ類の表面積測定では典型的にベーマイトアルミナの焼成を約450℃から約500℃の温度で約1から約5時間行う。このような焼成により、一般に、ベーマイトアルミナがガンマアルミナに変化する。しかしながら、このアルミナを本発明の組成物で増粘剤または流動改良剤として用いる場合、これをベーマイト形態のアルミナ、即ちそれの未焼成形態で用いると理解されるべきである。一般的に言って、本組成物の所望流動特性を得るに有効な量でベーマイトアルミナを存在させる。例えば、ラテックス塗料を

塗布する表面の種類および角度(水平に対する)に応じて、この組成物の所望流動特性を幅広く変化させることができ、従って、この用いる増粘剤の量を幅広く変化させることができる。しかしながら、一般的に言って、特にこのベーマイトアルミナ増粘剤をラテックス塗料で用いる場合、この組成物の約0.1 重量%から約5 重量%の量でベーマイトアルミナ増粘剤を存在させる。この用いるベーマイトアルミナは

水に分散し得る種類のもの、即ち分散で酸を必要としない種類のものが特に好適であるが、必ずしも必要ではない。

本発明をより詳細に説明する目的で以下の非制限的実施例を示す。以下の実施例では、塗料調合物の商業的製造で通常用いられる2段階様式でラテックス塗料の調製を行った。「グラインド(grind)」段階で、顔料そして分散で必要とされる材料を加えて高せん断速度で混合する。「レットダウン(1etdown)」段階で、樹脂そして他の熱もしくはせん断に敏感な成分を加えて低せん断速度で混合する。上記グラインド段階では、その成分を一緒にした後、1.5°のCowlesブレードが用いられている実験室のCowlesディソルバー(dissolver)を用いて約2000フィート/分(撹拌機先端速度)で分散させた。レットダウンの材料を加え、そして均一に混ざり合うまで、より低い撹拌機先端速度でブレンドした。B形粘度計またはボーリンVORレオメーターを用いて種々の粘度測定を行った。

<u>実施例1</u>

この実施例では、内装用(改質アクリル系)の良品質の平面壁用塗料でHEC の全体および部分的置き換えとして水分散性アルミナを用いることを示す。調合物を以下の表1に示す。

. ||X

	田	HEC	アルミナ	: 7	HEC + アルドナ	アグッナ
バッチサイズ	< 7 x - 1		< 7 × - }		10 0ガロン の調合物	
女 女	ゲラム	重量/重量%	グラム	重量/重量%	ネンド	重量/重量%
顔科グラインド						
光イオイ路	181.84	22.73	100.00	12.50	170.00	14.78
DISPERSAL SOL P2'	4		5.76	0.72	4.14	0.36
NATROSOL 250 HBR ²	3.84	0.48			2.76	0.24
Nuosept 1453	1.84	0.23	1.84	0.23	2.64	0.23
プロピレン グリコール	21.12	2,64	21.12	2,64	30.35	2.64
NDW,	1.36	0.17	1.36	0.17	1.95	0.17
Triton X-100	2.96	0.37	2.96	0.37	4.25	0.37
Tamol 7314	5.84	0.73	5.84	0.73	8,39	0.73
AMP-957	2.96	0.37	2,96	0.37	4,25	0.37
Ti-Pure R-931	106.08	13,26	106.08	13.26	152.44	13.26

51.12 6.39 51.12 6.39 1.36 0.17 1.36 0.17 14.64 1.83 14.64 1.83 317.44 39.68 317.68 39.70 800.00 100.00 800.24 100.00	CaCO,#1 白色色	87.60	10.95	87.60	10.95	125.89	10.95
トダウン 1.36 0.17 1.36 0.17 W 1.83 14.64 1.83 14.64 1.83 17.68 317.44 39.68 317.68 39.70 おけら 100.00 800.24 100.00	ASP-NC2°	51.12	6:39	51.12	6.39	73.46	6.39
1.36 0.17 1.36 0.17 14.64 1.83 14.64 1.83 317.44 39.68 317.68 39.70 800.00 79.92 9.99 800.24 100.00	ノットダウン						
tanol ¹⁰ 14.64 1.83 14.64 1.83 AR 317.44 39.68 317.68 39.70 rylic 516 ¹¹ 77.44 39.68 317.68 39.70 14.64 100.00 100.00 100.00 100.00	NDW	1.36	0.17	1,36	0.17	1.95	0,17
AR 317.44 39.68 317.68 39.70 rylic 516 ⁿ 79.92 9.99 オン水 800.00 100.00 800.24 100.00	Texanoli	14.64	1.83	14,64	1.83	21.04	1.83
(オン水 ROO OO 100 00 800.24 100.00 11	UCAR Acrylic 516"	317.44	39.68	317.68	39.70	456.53	39.70
EF 800.00 100.00 800.24 100.00	記とドンギ			79.92	9.99	89.85	7.81
22.22.2	海	800.00	100.00	800.24	100.00	1149.89	100.00

1 Condea Chemie G.m. b. H. が市販している水分散性ベーマイトアルミナ

² Aqualonが市販しているヒドロキシエチルセルロース

3 Huls America Inc. が市販している複素環式アミン (防腐剤)

4 Henkel Corp. が市販している消泡剤

Union Carbideが市販しているノニオン界面活性剤(アルキルアリールポリエーテルアルコール類) Angus Chemical Co. が市販しているアミノメチルプロパノール Rohm and Haasが市販しているアニオンポリマー分散剤

DuPontが市販している二酸化チタン、最小値80% (SiO₃+Al₂O₃) Engelhardが市販しているケイ酸アルミニウム

10 Eastman Chemicalが市販しているエステルアルコール

Κ 11 Union Carbideが市販しているアクリル系ー塩化ビニル改質ラテック

図1に表1の調合物に関するボーリン流動プロットを示す。見られるように、 HECの完全もしくは部分的置き換えでベーマイトアルミナを用いることができ 、そして調合物全体では、同様な粘度プロファイルを維持することができる。ま た見られるように、アルミナを含有する調合物はHECのみを含有する調合物より高いせん断低粘化を示す。これは、塗料調合物を噴霧で塗布する時にこの調合物を希釈する必要がないことから重要な要因である。

実施例2

この実施例では、高品質の内装平面用塗料(ビニルーアクリル系)でベーマイトアルミナを粘土増粘剤の全体的置き換えおよび会合増粘剤の部分的置き換えと して用いることを示す。調合物を以下の表2に示す。 表2

	QR 708 + ATTAGEL 40	TTAGEL 40	QR 708 + TNミナ	アルミナ
バッチサイズ	100ガロンの調合物		100ガロンの調合物	
村村	ボンド	重量/重量%	ポンド	重量/重盘%
顔料グラインド				
脱イオン米	130.0	11.34	120.0	10.53
DISPERAL SOL P2			8.20	0.72
Tamoi 960	10.0	0.87	10.0	0.88
Nuosept 145	2.0	0,17	2.0	0.18
Colloid 6402	2.0	0.17	2.0	0.18
AMP-95	2.0	0.17	2.0	0.18
Ti-Pure R-900	200.0	17.45	200.0	17.55
Satintone Special	125,0	10.91	125.0	10,97
Min-U-Sil 40	75.0	6.54	75.0	6.58
Attagel 40°	7.0	0.61		
レットダウン			Table to the second sec	
Colloid 640	4.0	0.35	4.0	0.35

		T	1		.]	
0.88	2.19		0.90	30.72	17.20	100.0
10.0	25.0		10.3	350.0	196.0	1139.5
0.87	2.18	1.46	1.40	30.54	14.95	100.00
10.0	25.0	16.7	16.0	350.0	171.3	1146.0
Texanol	プロピレングリコール	脱イオン水	QR-708'	UCAR Latex 367	脱イオン水	総計
ラテックス		の形ではして十分	强合		The state of the s	

1 Rohm and Haasが市販しているアニオンポリアー分散剤

(流泡剤) Phone-Poulencが市販している、石油系炭化水素担体中の非晶質シリカ

A 120

+20

s DuPontが市販している二酸化チタン、最低限80%(Si t * Bngelhardが市販しているケイ酸アルミニウム

bugermardwillwのことであって、歌ノゲトーン 1.S. Silicaが市販している二酸化ケイ素

・ n.s. siiicawinwの cv.の一般がつ 4 ** ngelhardが市販しているケイ酸マグネシウムアルミーウム

含有していて非揮発性固体量が W 2 <u>__</u> Ŋ S K 7 アチラケルドトーラ/水 > 15 1 アクリル米 Union Carbideが市販しているビニルー Rohm and Haasが市販している、 25%のノニオン会合増粘剤

図2に表2の調合物を比較するボーリン流動曲線を示す。見られるように、粘土増粘剤および会合増粘剤が入っている調合物で、同様な粘度プロファイルを維持しながら該粘土増粘剤の完全な置き換えおよび会合増粘剤の部分的置き換えでアルミナを用いることができる。更に見られるように、アルミナを含有する調合

物はアルミナが全く入っていない調合物より良好なせん断低粘化特性を示す。 実施例3

この実施例では、外装(改質アクリル系)品質のハウスペイントー白色でHE Cの部分的置き換えとしてベーマイトアルミナを用いることができることを示す 。調合物を以下の表3に示す。

¢	Y)
H	ļ	۲
	•	•

	CHEC	20	HEC + アルミナ	ルミナ
バッチサイズ	100ガロンの調合物		100ガロンの調合物	
材料	ポンド	重量/重量%	ポンド	重量/重量%
顔料グラインド				
祝イギン米	242.2	20,53	242.2	20.52
DISPERAL SOL P2			2.6	0.22
CELLOSIZE QP-15,000'	3.5	0.30	1.8	0.15
Byk VP-155 ²	9.1	0.77	9.1	0.77
Triton N-101	2.0	0.17	2.0	0.17
Colloid 640	6.0	0.08	0.9	80'0
KTPP	1,0	0.08	1.0	0.08
Nuosept 145	2.0	0.17	2.0	0.17
Nuocide 960	7,0	0.59	7.0	0.59
プロピレングリコール	28.0	2.37	28.0	2.37
Ti-Pure R-900	250,0	21.19	250.0	21.18
Minex 7*	150,0	12.72	150.0	12.71
.Optiwhite	50.0	4.24	50.0	4.24

UCAR Acrylic 516 412.6 34.98 412.6 34.95 Texanol 16.9 1.43 1.43 Colloid 640 2.6 0.22 2.6 0.22 水酸化アンモニウム 28% 1.8 0.15 1.8 0.15 総計 1179.6 100.0 1180.5 100.00	レットダウン				
16.9 1.43 16.9 2.6 0.22 2.6 1.8 0.15 1.8 1179.6 100.0 1180.5	UCAR Acrylic 516	412.6	34.98	412.6	34.95
2.6 0.22 2.6 1.8 0.15 1.8 1179.6 100.0 1180.5	Texanol	16.9	1.43	16,9	1.43
4化アンモニウム 1.8 0.15 1.8 1.8 28% 1.79.6 1179.6 1180.5	Colloid 640	2.6	0.22	2.6	0.22
計 1179.6 100.0 1180.5	水酸化アンモニウム 28%	1.8	0.15	8.1	0.15
		1179.6	100.0	1180.5	100.00

1 Union Carbideが市販しているヒドロキシエチルセルロース

BYK Chemie USAが製造しているアクリル酸コポリマーのナトリウム塩

Union Carbideが市販しているノニオン界面活性剤(アルキルアリールポリエーテルアルコール類)

* Albright & Wilson Amerが市販しているトリポリ燐酸カリウム

e Huls America Inc. が市販している塩素化芳香族ニトリル

K レテ ル リ Unimin Canada Ltd. が市販しているネフェリンシエナイト(Nepheline syenite)(ケイ酸Na、 かな)

'Burgess Pigment Co. が市販している焼成カオリン粘土

図3に表3の調合物のボーリン流動プロットを示す。見られるように、外装ハウスペイントにおけるHECの部分的置き換えでベーマイトアルミナを用いることができ、そして調合物全体では、粘度プロファイルを維持することができる。

また図3で見られるように、ベーマイトアルミナを含有する調合物は向上したせん断低粘化を示し、このことから、噴霧の如き技術を用いた塗布がより容易である。

実施例4

この実施例では、外装(改質-アクリル系)品質のハイビルドハウスペイント -白色でベーマイトアルミナを粘土増粘剤の全体的置き換えおよび会合増粘剤の 部分的置き換えで用いることを示す。調合物を以下の表4に示す。

表在

	QR-708 + ATTAGEL-50	TTAGEL-50	QR-708 + アルミナ	アルミナ
バッチサイズ	100ガロンの調合物		100ガロンの調合物	
林格	ポンド	重量/重量%	光ンド	重量/重量%
顔料グラインド	- And and a second seco			
現イギンゲ	160.8	13.83	160.8	13.85
DISPERAL SOL P2			5,5	0.47
プロピレングリコール	34.1	2.93	34.1	2.94
Byk VP-155	8'9	0.58	6.8	0.59
KTPP	1.0	0.09	1.0	0.09
Triton N-571	yd yd	0.09	served a	0.09
Colloid 640	1.0	0.09	1.0	0.09
Nuosept 145	2.0	0.17	2.0	0,17
Nuocide 960	7.0	09.0	7.0	09.0
Ti-Pure R-902	225,0	19.34	225.0	19.39
Nytal 300°	100.0	8.60	100.0	8.62
Minex 7	100.0	8.60	100.0	8.62
Attagel 504	3.0	0.26		

レットダウン				
弱イギンを	104.4	86.8	104.4	00'6
QR-708	13.5	1.16	8.5	0.73
UCAR Acrylic 516	384.0	33.02	384.0	33.09
Texanol	15.8	1.36	15.8	1.36
Colloid 640	1.8	0.15	1.8	0.16
水酸化アンモニウム 28%	1,8	0.15	1.8	0.16
第二	1163.1	100.0	1160.6	100.0

1 Union Carbideが市販しているノニオン界面活性剤(アルキルアリールポリエーテルアルコール類) Huls America Inc. が製造している塩素化芳香族ニトリル(殺生物剤)

DuPontが市販している二酸化チタン、最低限91%(A12〇a)

63

R.T. Vanderbilt Co. Inc. が市販している二酸化ケイ素 Engelhardが市販しているケイ酸マグネシウムアルミニウム

表4の調合物のボーリン流動曲線を示す。見られるように、この曲線は、建築 外装用の塗料調合物において最終調合物で同様な粘度プロファイルを維持しなが らベーマイトアルミナを粘土増粘剤の完全な置き換えおよび会合増粘剤の部分的

置き換えで用いることができることを示している。

<u> 実施例 5</u>

種々のベーマイトアルミナが示す物性を以下の表5に挙げる。

ŧ)
1	l	

		71	アルミナの物面	4.1		
アルミナ	DISPERAL® SOL P2	DISPAL® 23N4-20	DISPAL ^{®2} 11N7-12	CATAPAL ^{®3} D	DISPERAL®	DISPERAL®s CLASSIC
結晶子サイズ (Å), 020	33	55	210	47	65	74
焼成後の表面積 (m²/g)	301	230	110	250	190	175
水中分散度 (%)	98.4	86<	86<	<15(分散で酸が必要)	<15 (分散 で酸が必要)	<15 (分散 で酸が必要)

+ 115 \neq 1.2 Vista Chemical Co. が市販している水分散性ベーマイトアルミナ 8 Vista Chemical Co. が市販している酸分散性ベーマイトアルミナ4.2 Condea Chemie C.m. P.H. が市販している敵分散性ベーマイトアル

表 5 に挙げたベーマイトアルミナを良品質の平面壁用塗料 - 白色調合物で増粘 剤として用いた。このアルミナ増粘剤を用いて製造した調合物を、HECを増粘 剤として用いた調合物と比較した。このアルミナ増粘剤を用いた場合全て、この 増粘剤を、相当する調合物で用いるHEC量の2.7倍量で存在させた。増粘剤がHECである調合物を以下の表6に示す。

表6

材料	重量%
顔料グラインド	
水	27.75
防腐剂1	0.20
セルロースQP-15.000	0.42
分散剤 ²	0.31
トリポリ燐酸カリウム (KTPP)	0.17
ノニオン界面活性剤 ³	0.17
消泡剤 4	0.16
プロピレングリコール	2.38
二酸化チタン5	19.14
粘土6	8.51
シリカフ	8.51
シリカ ^B	2.13
レットダウン	
UCAR Acrylic 516	28.58
集合助剤 ⁹	1.18
消泡剤4	0.16
水酸化アンモニウム、28%水溶液	0.15
総計	100%

- 1 NUOSEPT 145
- ² 「Colloid」111(Rhone-Poulenc)または相当物
- 3 「Triton」N-101(Union Carbide)または相当物
- ¹ 「Patcote」803(Patco Specialty)または相当物
- ⁵ 「Ti-Pure」R-900(DuPont)または相当物
- ⁶ 「Altowhite」TE(Dry Branch Knolin Co.)または相当物
- 7 MIN-U-SIL 40
- ® 「Celite」499(Johns Manville)または相当物
- 9 「Texanol」(Eastman)または相当物

種々のアルミナおよびHECを入れたラテックス塗料にB形粘度測定を受けさせた。その結果を図5に示す。図5で見られるように、結晶子サイズ(020面)が約60オングストローム以下で表面積(焼成後)が約200m²/g以上のアルミナはHECに匹敵するか或はより良好な流動特性を示す。特に、結晶子サイズ(020面)が約40オングストローム以下で表面積(焼成を受けさせてガンマ相にした時)が約250m²/g以上のアルミナは充填量をより高くしたにも拘らずHECに比較して優れた流動特性を示すことを注目されたい。

図5に示すように、必要とされるベーマイトアルミナ増粘剤充填量は匹敵するラテックス塗料中のHEC充填量よりも有意に高いが、HECに比較した時、ベーマイトアルミナを用いることで達成される他の利点は、そのような充填量の差を相殺する。ベーマイトアルミナを用いて製造したラテックス塗料はたとえこれを増粘剤の部分的置き換えとして用いたとしてもHEC、粘土または会合増粘剤のみが入っているラテックス染料に比べて浄化がずっと容易であることを見い出した。また、HE

Cおよびある種の会合増粘剤とは異なり、ベーマイトアルミナ増粘剤は生分解を受けないと考えられる。上に示したように、ラテックス塗料にベーマイトアルミナを入れるとせん断低粘化が向上し、これにより恐らくは、噴霧装置を用いた上

記ラテックス塗料の塗布を希釈なしに行うのがより容易になるであろう。最後に、会合増粘剤またはHECに比較した時にベーマイトアルミナが示す固有の性質から、ベーマイトアルミナを増粘剤として用いたラテックス塗料は良好な洗浄性(scrubbability)を示すと期待される、即ち洗い流しまたは洗浄を受けた時、これらはより高い耐久性を示す。

上記説明および実施例は本発明の選択した態様の例示である。これを考慮に入れることで本分野の技術者に変形および修飾形が思い浮かぶと思われるが、これらは全部本発明の精神および範囲内である。

[図1]

HEC アルミナ HEC + アルミ

[図2]

FIGURE 2

□ QR-708 + TJU ≥ ታ
O QR-708 + ATTAGEL-40

,

[図3]

(25)

ロ′ HEC Φ. HEC + アルミナ

□ QR-706 + ATTAGEL-50

○ QR-708 + T JU ≥ ታ

【国際調査報告】

	INTERNATIONAL SEARCH REPORT	Ţ	International applicational applications	1			
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :COSI 5/10; COSK 3/18, 3/22, 3/34; COSL 33/08, 1/26 US CL :524/430, 43, 44, 445, 446 According to International Patent Classification (IPC) or to both national classification and IPC							
	DS SEARCHED ocumentation searched (classification system followed	hu classification ev	mhole)				
	524/430, 43, 44, 445, 446	oy vasassouson ay.					
Documental	ion scarehed other than minimum documentation to the	extent that such doc	uments are included	in the fields scarched			
Electronis d	Lta base consulted during the international search (na	me of data base and	, where practicable	, search terms used)			
c. poc	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the rel	evant passages	Relevant to claim No.			
х	US, A. 4,571,415 (JORDAN, JR.) document.	18 February	1 9 86, entire	1-11			
x	US, A, 4,117,105 (HERTZENBER 1978, entire document.	G ET AL) 26	September	1-11			
х	US, A, 4,544,408 (MOSSER ET AL) 01 October 1985, entire document.						
		•					
Fund	her documents are listed in the continuation of Box C	. See pat	ent family annox.				
"A" do	orial estegacies of cited documents: cument defining the general state of the grt which is not considered	चौभंद करतां हाता	nt published after the int in conflict with the applica- theory underlying the in-	emetional filing data or priority ation but cited to uniorsand the ention			
E a	be part of perticular relevance ricer secument published on or after the international filing date	considered t	perioder relevence; the evelor cannot be counted cument in taken alone	e claimed invention cannot be red to lavelve so inventive sep			
ch sp	ecument which may throw doubts on priority claim(s) or which is and an emphish the publication date of another creation or other social responsion (as specified)	"Y" decument of	particular relevance; it	e chimed invention cannot be step when the document is			
173	common referring to an oral disclosure, use, ethibition or other cans common published prior to the international filling date but buter than	being obvio	ith one or more other sile as to a person skilled in a comber of the same paign	i i			
th.	epriority data chimed secret completion of the international search		the international se-				
}	EMBER 1994	08F	EB1995				
Commission Box PCT	mailing address of the ISA/US mor of Patente and Trademarks	Authorized officer PAUL R. MIC	newler	and for			
	n, D.C., 20231 No. (703) 305-3230	l .	(703) 308-2351				

フロン	トペー	ジの続き
-----	-----	------

(51) Int. Cl. ⁶	識別記号	庁内整理番号	FI	
// C09D 7/12		8017-4J	C 0 9 D 7/12	Z
121/00		9362-4J	121/00	
201/00		9272 — 4 J	201/00	