Exercices de colles

Simon Queric

2022-2023

Il s'agit d'un polycopié d'exercices de mathématiques de première année de licence ou de prépa. Ce sont les exercices que je donne en colle chaque semaine à la MPSI1 du Lycée Charlemagne à Paris.

1 Logique, rédaction et applications

1.1 Questions de cours

- 1) Rappeler les relations coefficients/racines d'un polynôme de degré 2.
- 2) Soit une fonction $f: E \to F$. Montrer que pour tout $A, B \subseteq E$ on a $f(A \cup B) = f(A) \cup f(B)$ et pour tout C, D $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 3) Soient deux fonctions $f: E \to F$ et $g: F \to G$. Montrer que:
 - (a) $g \circ f$ injective $\Rightarrow f$ injective
 - (b) $g \circ f$ surjective $\Rightarrow g$ surjective

1.2 Exercices

Exercice 1

Soit $f: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ et A = [-1, 4]. Déterminer $f(A), f^{-1}(A)$.

Déterminer $\sin([0, 2\pi]), \sin([0, \pi/2]), \sin^{-1}([3, 4]), \sin^{-1}([-2, -1])$

Exercice 2

- (a) Trouver un ensemble E, une partie $F \subseteq E$ et une fonction $f: F \to E$ bijective.
- (b) Trouver une fonction $f: \mathbb{N} \to \mathbb{N}$ telle que tout entier n possède une infinité d'antécédants par f.

Exercice 3

Soient $A, B, C \subseteq E$. Montrer que $A \cap B = A \cap C \Leftrightarrow A \cap B^c = A \cap C^c$

Exercice 4

Montrer que $(A \cup B) \cap C \subseteq A \cup (B \cap C)$ avec égalité ssi $A \subseteq C$.

Exercice 5

Soit une fonction $f: E \to F$. Montrer que (a) $\forall A \subseteq F \ f(f^{-1}(A)) \subseteq A$ (b) $\forall B \subseteq E \ B \subseteq f^{-1}(f(B))$

Exercice 6

- (a) Soit $\varphi: X \in \mathcal{P}(\mathbb{N}) \mapsto X \cap 2\mathbb{N} \in \mathcal{P}(\mathbb{N})$. φ est-elle injective? surjective? quelle est son image?
- (b) Soit E un ensemble non vide, $A \subseteq E$ et $\phi : X \in \mathcal{P}(E) \mapsto X \cup A \in \mathcal{P}(E)$. ϕ est-elle injective ? surjective ? Quelle est son image ?

Exercice 7

Soit E un ensemble non vide et $A, B \subseteq E$. Soit $\phi : X \in \mathcal{P}(E) \mapsto (X \cap A, X \cap B) \in \mathcal{P}(A) \times \mathcal{P}(B)$.

- (a) Mq f injective $\Leftrightarrow A \cup B = E$.
- (b) Mq f surjective $\Leftrightarrow A \cap B = \emptyset$
- (c) Trouver une CNS pour que f soit bijective et sous cette condition, exhiber f^{-1}

Exercice 8

Soit une fonction $f: E \to F$. Montrer que f est bijective ssi $\forall A \subseteq E, f(A^c) = f(A)^c$

Exercice 9

Montrer que $f:(n,p)\in\mathbb{N}^2\to 2^n(2p+1)\in\mathbb{N}^*$ est bijective.

Exercice 10

Soit E un ensemble. Soit $f: E \mapsto E$. On suppose que $f \circ f \circ f = f$. Montrer que f est injective ssi elle est surjective.

2 Raisonnement par réccurence et relations binaires

2.1 Questions de cours

- 1) Montrer que les classes d'équivalence d'une relation d'équivalence d'un ensemble E forment une partition de E
- 2) Montrer que $g \circ f$ surjective $\Rightarrow g$ surjective et $g \circ f$ injective $\Rightarrow f$ injective
- 3) Montrer que la relation de congruence modulo n est une relation d'équivalence sur \mathbb{Z} .

2.2 Exercices

2.2.1 Réccurences

Exercice 1

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1, u_1=3$ et $\forall n\in\mathbb{N}$ $u_{n+2}=3u_{n+1}-2u_n$. Déterminer u_n pour tout $n\in\mathbb{N}$

Exercice 2

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $\forall n\geqslant 1$ $u_n=\sum_{k=0}^{n-1}u_k$. Montrer que $\forall n\in\mathbb{N}^*$ $u_n=2^{n-1}$

Exercice 3

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=u_1=1$ et $\forall n\in\mathbb{N}^*$ $u_{n+1}=u_n+\frac{2}{n+1}u_{n-1}$. Montrer que $\forall n\in\mathbb{N}^*$ $1\leqslant u_n\leqslant n^2$

Exercice 4

Soit $x \in \mathbb{R}$. Montrer que si $x + \frac{1}{x} \in \mathbb{Z}$ alors $\forall n \in \mathbb{N} \ x^n + \frac{1}{x^n} \in \mathbb{Z}$

Exercice 5

Montrer que pour tout entier $n \ge 3 \exists (x_1, \dots, x_n) \in \mathbb{N}^n$ (avec les x_i 2 à 2 distincts) tel que $\sum_{k=1}^n \frac{1}{x_k} = 1$

2.2.2 Relations binaires

Exercice 1

On considère l'ensemble des suites $\mathbb{R}^{\mathbb{N}}$. Montrer que la relation définit sur cet espace par $u \sim v \Leftrightarrow u_n - v_n \longrightarrow 0$ est une relation d'équivalence. Trouver la classe d'équivalence de la suite u définie par $\forall n \in \mathbb{N} \ u_n = 3$

Exercice 2

Montrer que la relation sur \mathbb{Z} définie par $x \sim y \Leftrightarrow x + y \in 2\mathbb{Z}$ est une relation d'équivalence. Déterminer ses classes d'équivalence.

Exercice 3

Montrer que si $f: E \to F$ est une fonction, $\{f^{-1}(\{y\}), y \in f(E)\}$ forme une partition de E.

3 Fonctions usuelles et notion de groupe

Questions de cours

(1) Soit f un morphisme de groupe de G vers G'. Montrer que si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'. Montrer que si H' est un sous-groupe de G', $f^{-1}(H')$ est un sous-groupe de G. Donner les relations coefficients/racines.

(2) Montrer que le noyau d'un morphisme $f: G \to G'$ est un sous-groupe de G. Montrer que f est injectif ssi ker $f = \{e\}$. Formulaire : $\cos(p) + \cos(q)$ et \arctan'

(3) Si $f:G\to G'$ et $g:G'\to G''$ sont des morphismes, montrer que $g\circ f$ en est un. Montrer que si f est un morphisme bijectif, f^{-1} est aussi un morphisme. Donner l'énoncé de l'égalité des accroissements finis.

Exercice 1

Trouver une relation polynomiale entre les fonctions $x: t \mapsto \cos(2t)$ et $y: t \mapsto \cos(3t)$

Exercice 2

Montrer que la n'est pas le quotient de deux polynômes.

Exercice 3

Montrer que $x \in \mathbb{R}^* \mapsto \arctan x + \arctan \frac{1}{x}$ est constante sur \mathbb{R}_+^* et sur \mathbb{R}_-^*

Exercice 4

Calculer $\arctan(2) + \arctan(5) + \arctan(8)$

Exercice 5

Montrer que $\arctan(p+1) - \arctan(p) = \arctan\left(\frac{1}{p^2 + p + 1}\right)$

Exercice 6

Montrer qu'il n'existe pas de bijection continue de [0,1] dans \mathbb{R}

Exercice 7

Soit x_1, \ldots, x_n dans \mathbb{R} tel que $\sum_{i=1}^n x_i = \sum_{i=1}^n x_i^2 = n$. Montrer que pour tout $i \in [1, n]$ $x_i = 1$.

Exercice 8

Soit G un groupe fini (i.e un groupe dont le cardinal est fini). Soit $f:G\to\mathbb{C}$ un morphisme de groupe. Montrer que $f(G)\subseteq\mathbb{U}=\{z\in\mathbb{C}\ |z|=1\}$

Exercice 9

Montrer qu'une fonction continue de [a, b] dans [a, b] admet un point fixe.

Exercice 10

Résoudre les équations suivantes.

(1) $\arcsin x = \arcsin 4/5 + \arcsin 5/13$

(2) $2 \arcsin x = \arcsin 2x\sqrt{1-x^2}$

(3) $\arccos x = \arcsin 2x$

(4) $\arccos(1-x)/(1+x) + \arccos(2\sqrt{x}/(1+x)) = \pi$

(5) $\arctan x + \arctan x\sqrt{3} = 7\pi/12$

4 Corps des nombres complexes

Exercice 1

Soit $n \in \mathbb{N}$. Résoudre dans \mathbb{C} l'équation $(z^2+1)^n=(z-1)^{2n}$

Exercice 2

Donner la forme exponentielle de $\frac{1+\cos\theta-i\sin\theta}{1-\cos\theta+i\sin\theta}$ et de $\frac{1+e^{i\theta}}{1-e^{i\theta}}$

Exercice 3

On considère l'équation $(z-1)^n=(z+1)^n$ pour un entier fixé $n\geqslant 2$.

(1) Montrer que les solutions sont imaginaires pures.

(2) Montrer que les solutions sont deux à deux opposées.

(3) Résoudre l'équation.

Exercice 4

Soit $\alpha \in]0, \pi/2[$. Résoudre dans $\mathbb C$ l'équation : $\left(\frac{1+iz}{1-iz}\right) = \frac{1+i\tan\alpha}{1-i\tan\alpha}$.

Exercice 5

Calculer $(1+i\sqrt{3})^9$

Exercice 6

Posons $Z = \frac{1+z}{1-z}$. Déterminer l'ensemble des points M d'affixe z tel que :

5

(1) |Z| = 1

(2) |Z| = 2

- (3) $Z \in \mathbb{R}$
- $(4) Z \in i \mathbb{R}$

5 Équations différentielles et calcul d'intégrales

Exercice 1 (Lemme de Riemann-Lebesgue)

Soient a, b deux réels. Soit $f: [a, b] \to \mathbb{R}$ de classe C^1 . Montrer que $\int_a^b f(t) \cos{(nt)} dt \longrightarrow 0$ quand $n \to +\infty$

Exercice 2

Soient $(p,q) \in \mathbb{N}^2$. Calculer $I(p,q) = \int_0^1 x^p (1-x)^q dx$.

Exercice 22

6 Corps des nombres réels

À écrire...

7 Suites numériques

À écrire... Lemme sous-additif u_n/n , $u_{n+1} = f(u_n)$

8 Analyse : continuité, dérivation et fonctions convexes

exos de convexité

9 Intégration

Exercice 1

Soit $f:[0,1]\to\mathbb{R}_+^*$ continue.

- 1. Etablir l'existence d'une subdivision $\sigma = (a_{n,i})_i$ de [0,1] telle que $\forall i \int_{a_{n,i}}^{a_{n,i+1}} f(t)dt = \frac{1}{n} \int_0^1 f(t)dt$
- 2. Étudier le comportement de $\frac{a_{n,0} + \cdots + a_{n,n}}{n+1}$

Exercice 2

Soit $f:[0,1]\to\mathbb{R}$ continue telle que la suite $(u_n)_n$ définie par $u_n=\int_0^1 f^n$ prend un nombre fini de valeurs. Montrer que f est constante.

Exercice 3

Soit a > 0 et $f: [0, a] \to \mathbb{R}$ de classe C^1 telle que f(0) = 0.

- (1) Montrer que $\int_0^a |ff'| \leqslant \frac{a}{2} \int_0^a f'^2$
- (2) Étudier les cas d'égalité.

Exercice 4

Trouver un équivalent quand $n \Leftrightarrow +\infty$ de $u_n = \sum_{k=0}^n \frac{1}{k^2 + (n-k)^2}$

Exercice 5

Soit $f:[0,1]\to\mathbb{R}$ continue telle que $\int_0^1 f^2 = \int_0^1 f^3 = \int_0^1 f^4$. Montrer que f=0 ou f=1.

Exercice 6

Montrer le lemme de Gronwall.

Exercice 7

Soit $f:[0,1]\to\mathbb{R}$ de classe C^2 . Montrer que $\left(\int_0^1 f'^2\right)^2\leqslant \left(\int_0^1 f^2\right)\left(\int_0^1 f''^2\right)$

À rajouter : Exercices 30, 31, 32, 34

10 Développements limités

11 Dénombrements et Probabilités sur un univers fini

exercice serrage de mains, nombre de catalans sans séries entières

- 12 Arithmétique dans un anneau intègre
- 13 Polynômes
- 14 Algèbre linéaire
- 15 Matrices
- 16 Groupe symétrique et déterminant

exo cassini

17 Espaces préhilbertiens et espaces euclidiens

18 Séries numériques

critères de D'alembert, cauchy, calcul de sommes retrouver le maths C pour me donner des idées.

19 Sources

- exo7
- bibmaths
- Calculus
- The Cauchy-Schwartz masterclass
- cassini