Generalization of stochastic calculus and its applications in large deviations theory

Sudip Sinha

2019-04-05

Advisors
Prof Hui-Hsiung Kuo
Prof Padmanabhan Sundar

Outline

1	Introduction and motivation	3
2	Generalization of Itô calculus	11
3	Large deviations theory	17
4	Conclusion	31
5	Sample slides	33

2

§ 1 Introduction and motivation

Quick revision and notations

- Let $T \in (0, \infty)$, and denote $\mathbb{T} = [0, T]$ as the index set for t.
- Let $(\Omega, \mathcal{F}, \mathcal{F}, \mathcal{P})$ be a filtered probability space.
- B is a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}_{\cdot}, \mathbb{P})$.
- Properties of *B*.
 - starts at 0
 - has independent increments
 - $B_t B_s \sim \mathcal{N}(0, t s)$
 - continuous paths

- has unbounded linear variation 🕃
- has bounded quadratic variation ©
- $\bullet \quad \mathbb{E}(B_t B_s) = s \wedge t$
- martingale
- Naive stochastic integration w.r.t. B_t : not possible.
- A stochastic process X_t is called (\mathcal{F}_t) -adapted if $\forall t, X_t$ is measurable w.r.t. \mathcal{F}_t .

Wiener integral $(f \in L^2[0,T])$

Definition

- 1. Step functions $f = \sum_{j=0}^{n-1} c_j \mathbb{1}_{[t_j,t_{j+1})}(t)$: Define $\int_0^T f(t) dB_t = \sum_{j=0}^{n-1} c_j \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
- 2. $f \in L^2[0,T]$: Use step functions approximating f to extend the integral a.s.

Properties

- * Linear
- * Gaussian distribution with mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry)
- * Corresponds to the Riemann–Stieltjes integral for $f \in C[0, T]$
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * martingale
- Problem: Cannot integrate stochastic processes.

Itô integral $(X \in L^2_{ad}([0, T] \times \Omega))$

Definition

- 1. Adapted step processes $X_t(\omega) = \sum_{j=0}^{n-1} \xi_j(\omega) \mathbb{1}_{[t_j,t_{j+1})}(t)$: define $\int_0^T X_t dB_t = \sum_{j=0}^{n-1} \xi_j \Delta B_j$.
- 2. $X \in L^2_{ad}([0,T] \times \Omega)$: use step processes approximating X to extend the integral in $L^2(\Omega)$.

Properties

- * Linear
- * Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry)
- * For X continuous, $\int_0^T X_t dB_t = \lim \int_0^T X_{\left\lfloor \frac{tn}{n} \right\rfloor} dB_t$, for example $\int_0^t B_s dB_s = \frac{1}{2} \left(B_t^2 t \right)$
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * martingale
- Example: $\int_0^T B_t dB_t = \frac{1}{2}(B_T T).$

Itô integral
$$(\int_0^T X_t^2 dt < \infty \text{ a.s.})$$

- Definition: Use sequences of processes in $L^2_{\rm ad}([0,T]\times\Omega)$ approximating X in probability to extend the integral in probability.
- Properties
 - * Linear
 - * Mean 0, but variance?
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * local martingale
- Example: $\int_0^T e^{B_t^2} dB_t = \int_0^{B_1} e^{t^2} dt \int_0^T B_t e^{B_t^2} dt$.

Itô formula

- An Itô process is a process of the form $X_t = X_0 + \int_0^t m(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB_s$, equivalently expressed as $dX_t = m(t, X_t) \, dt + \sigma(t, X_t) \, dB_t$. Only makes sense when $\int_0^T \left(|m(s, X_s)| + |\sigma(s, X_s)|^2 \right) \, ds < \infty$ a.s.
- Let X_t be a d-dimensional Itô process, and let $Y_t = f(X_t)$, where $f \in C^2(\mathbb{R})$. Then $f(X_t)$ is also a d-dimensional Itô process, and

$$\mathrm{d}f(X_t) = \left\langle (\mathrm{D}f)(X_t), \, \mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \, \mathrm{d}X_t, (D^2 f)(X_t) \, \, \mathrm{d}X_t \right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: For σ constant, $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$, we have $d\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t dt + \sigma \mathcal{E}_t dB_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (dB_t)^2$.

Exponential processes and Girsanov theorem

TODO

Let $h \in L^2[0,T]$. Then the translated stochastic process $W_t = B_t - \int_0^t h(s) \, \mathrm{d}s$ is a Brownian motion under the probability measure $\tilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}} = \exp\left(\sigma B_T - \frac{1}{2}\sigma^2 T\right) =: \mathcal{E}_T^h$. Then $\tilde{\mathbb{P}} \sim \mathbb{P}$ and the process $Z_t := \mathbb{E}\left(\frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}} \mid \mathcal{F}_t\right)$ is a martingale.

Stochastic differential equations

- Let ξ be independent of B, and $m, \sigma : [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R}$ be $\mathcal{B}[0, T] \times \mathcal{B}(\mathbb{R}) \times \mathcal{F}$ measurable with
 - * $\forall t, m(t, \cdot, \cdot)$ and $\sigma(t, \cdot, \cdot)$ are $\mathcal{B}(\mathbb{R}) \times \mathcal{F}_t$ measurable, and
 - * $\int_0^T \left(|m(s, X_s)| + |\sigma(s, X_s)|^2 \right) ds < \infty \text{ a.s.}$
 - Then a \mathcal{F}_t -adapted stochastic process X_t is called a solution of the stochastic *integral* equation $X_t = \xi + \int_0^t m(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$ if for each t, the X_t satisfies the integral equation a.s.
- The stochastic differential equation $dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t$, $X_0 = \xi$ is a symbolic representation of the stochastic integral equation.

Theorem (Existence and uniqueness) The stochastic differential equation above has a unique solution if there exists an M > 0 such that the following two conditions are satisfied:

- * (Lipschitz condition) $|m(t,x) m(t,y)| + |\sigma(t,x) \sigma(t,y)|^2 \le M(1 + |x|^2)$ a.s.
- * (growth condition) $|m(t,x)| + |\sigma(t,y)|^2 \le M(1+|x|^2)$ a.s.
- Example: For σ constant, the solution of $d\mathcal{E}_t = \sigma \mathcal{E}_t dB_t$, $\mathcal{E}_0 = 1$ is given by $\mathcal{E}_t = \exp\left(\sigma B_t \frac{1}{2}\sigma^2 t\right)$.

§ 2 Generalization of Itô calculus

Why?

- Iterated integrals: Consider the iterated integral $\int_0^T \int_0^T dB_s dB_t = \int_0^T B_T dB_t \stackrel{?}{=} B_T B_t$.
- Note that $\mathbb{E}(B_TB_t) = T \wedge t = t \neq 0$, so no martingale property \odot .
- Stochastic differential equations with anticipation

$$dX_t = X_t dB_t$$

$$X_0 = B_1$$

$$Y_0 = 1$$

- Problem: We want to define $\int_0^T X_t dB_t$, where X_t is not adapted (anticipating).
- Some approaches
 - * Itô's decomposition of integrand $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} ds\right) + \int_0^t \frac{B_T B_s}{T s} ds$
 - * Enlargement of filtration
 - * White noise theory
 - * ...

The new integral (Ayed & Kuo, 2008): Idea

- A process Y and filtration \mathcal{F}_t are called <u>instantly independent</u> if Y^t and filtration \mathcal{F}_t are independent for every t.
- Decompose the integrand into adapted and instantly independent parts.
- Evaluate the adapted part at the left endpoint, and the instantly independent part at the right endpoint.

A simple example

In the following, denote $\Delta B_j = B_{t_{j+1}} - B_{t_j}$ and \lim is the \lim L^2 .

$$\int_{0}^{t} B_{T} dB_{t} = \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) dB_{t} = \int_{0}^{t} B_{t} dB_{t} + \int_{0}^{t} (B_{T} - B_{t}) dB_{t}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} B_{t_{j}} \Delta B_{j} + \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - \Delta B_{j}) \Delta B_{j}$$

$$= B_{T} \lim_{t \to 0} \sum_{j=0}^{n-1} \Delta B_{j} - \lim_{t \to 0} \sum_{j=0}^{n-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t$$

$$\mathbb{E}(B_T B_t - t) = 0 \odot.$$

Generalized Itô formula

• Let $dX_t = m(t) dt + \sigma(t) dB_t$ be an d-dimensional Itô process, $Y^t = \tilde{m}(t) dt + \tilde{\sigma}(t) dB_t$ be a \tilde{d} -dimensional instantly independent process, $f(x,y) \in C^2(\mathbb{R}^2)$. Then

$$df(X_t, Y^t) = \left\langle (D_x f)(X_t, Y^t), dX_t \right\rangle + \frac{1}{2} \left\langle dX_t, (D_x^2 f)(X_t, Y^t) dX_t \right\rangle$$

$$+ \left\langle (D_y f)(X_t, Y^t), dY^t \right\rangle - \frac{1}{2} \left\langle dY^t, (D_y^2 f)(X_t, Y^t) dY^t \right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: For σ constant, $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$, we have $d\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t dt + \sigma \mathcal{E}_t dB_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (dB_t)^2$.

Differential formula (Itô, 1944 TODO:ref)

bla bla bla

§ 3 LARGE DEVIATIONS THEORY

Introduction

Weak convergence of measures

Version March 30, 2019 file: talk20190405

Laplace principle

Setup

- (X_n) : i.i.d. random variables
- $X_n \sim \mu$ and $\mathbb{E}X_n = m$
- $\bullet \quad \overline{S_n} = \frac{1}{n} \sum_{j=1}^n X_j$
- $B \in \mathcal{B}$ such that $m \notin \overline{B}$
- By LLN, we have $\overline{S_n} \to m$ as $n \to \infty$ (a.s.)
- So $\mathbb{P}(S_n \in B) \to 0$ as $n \to \infty$
- But at what speed?
- =

Version March 30, 2019 file: talk20190405

Version March 30, 2019 file: talk20190405

Version March 30, 2019 file: talk20190405

Cramér theorem

Theorem (Cramér, 1938) Let $X_1, X_2, ...$ be a series of i.i.d. real random variables with finite logarithmic moment generating function, for example $\Lambda(t) < \infty \ \forall t \in \mathbb{R}$. Then the Legendre transform of Λ , $\Lambda^* = \sup_{t \in \mathbb{R}} (tx - \Lambda(t))$ satisfies

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\sum_{i=1}^{n} X_i \ge nx\right) = -\Lambda^*(x) \quad \forall x > \mathbb{E}(X_1)$$

Cramér theorem applied to common distributions

Version March 30, 2019 file: talk20190405

:

Version March 30, 2019 file: talk20190405

Sanov theorem

LD in ∞-dimensions — Schilder theorem

Aim: Estimate the probability that a scaled-down sample path of a Brownian motion will stray far from the mean path (the 0 function).

Setup

- Let *B*. be a *d*-dimensional Brownian motion, so *B*. $\in C_0 = C_0([0, T]; \mathbb{R}^d)$
- $\forall \varepsilon > 0$, let W_{ε} denote the law of $\sqrt{\varepsilon}B$.
- Let CM = $\{\omega \in C_0 : \omega \in AC, \text{ and } \dot{\omega}_t \in L^2[0, T\}]$

Theorem (Schilder, 1966 (<Schühder Ba66xh) space $(C_0, \|\cdot\|_{\infty})$, the family of probability measures $\{W_{\varepsilon} : \varepsilon > 0\}$ satisfy the large deviations principle with the rate function $I : C_0 \to \overline{\mathbb{R}}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\dot{\omega}(t)|^{2} dt\right) \mathbb{1}_{AC}(\omega) + \infty \mathbb{1}_{AC^{\mathbb{C}}}(\omega)$$

Freidlin-Wentzell theorem

Aim: Estimate the probability that a scaled-down sample path of an Itô diffusion will stray far from the mean path.

Setup

- Let B_. be a d-dimensional Brownian motion, so $B_{\cdot} \in C_0 = C_0([0,T]; \mathbb{R}^d)$
- $\forall \varepsilon > 0$, let $X^{(\varepsilon)}$ be a \mathbb{R}^d -valued Itô diffusion solving an Itô SDE of the form

$$dX_t^{(\varepsilon)} = b(X_t^{(\varepsilon)}) dt + \sigma(X_t^{(\varepsilon)}) \sqrt{\varepsilon} dB_t, \quad X_0^{(\varepsilon)} = 0.$$

• $\forall \varepsilon > 0$, let W_{ε} denote the law of $X_{\cdot}^{(\varepsilon)}$.

Theorem (Freidlin, Wentzell (year?)) On the Banach space $(C_0, \|\cdot\|_{\infty})$, the family of probability measures $\{W_{\varepsilon} : \varepsilon > 0\}$ satisfy the large deviations principle with the rate function $I : C_0 \to \mathbb{R}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\dot{\omega}_{t} - b(\omega_{t})|^{2} dt\right) \mathbb{1}_{H^{1}([0,T];\mathbb{R}^{d})}(\omega) + \infty \mathbb{1}_{H^{1}([0,T];\mathbb{R}^{d})^{\mathbb{C}}}(\omega)$$

§4 Conclusion

Open areas for research

- * Extension to SDEs with anticipating coefficients
- * Near-Markov property
- * Girsanov theorem for anticipating integrals
- * Freidlin-Wintzell type result for SDEs with anticipation

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

§ 5 SAMPLE SLIDES

Possible areas of interest

- * Extension to SDEs with anticipating coefficients
- * Near-Markov property
- * Girsanov theorem for generalized integration
- * Freidlin-Wintzell type result for SDEs with anticipating initial conditions

Theorem (Cramér, 1938) Let $X_1, X_2, ...$ be a series of i.i.d. real random variables with finite logarithmic moment generating function, for example $\Lambda(t) < \infty \ \forall t \in \mathbb{R}$. Then the Legendre transform of Λ , $\Lambda^* = \sup_{t \in \mathbb{R}} (tx - \Lambda(t))$ satisfies

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left(\sum_{i=1}^{n} X_i \ge nx \right) = -\Lambda^*(x) \quad \forall x > \mathbb{E}(X_1)$$

Freidlin-Wentzell theorem

Column 1

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

Column 2

×	dt	dB_t
dt	0	0
dB_t	0	dt

Something

This is a citation (<HKSZ2016>).

□ One □ Three

□ Two □ Four

Bibliography

Ayed, W. & Kuo, H. H. (2008). An extension of the Itô integral. *Communications on Stochastic Analysis*, 2(3). doi:10.31390/cosa.2.3.05