

An Al for Game Tokkun'99

Yilong Li¹, Shiyu Liu², Zhefan Wang²

Department of Computer Science, Stanford University ² Department of Electrical Engineering, Stanford University

Introduction

The Game

- Tokkun'99 is a game which requires quick reactions and thus challenging for human players.
- The objective for the player is to control the airplane to go along eight directions on a 2D map in order to dodge bullets.
- Most bullets move in a straight line with constant velocity, but some special ones can follow the agent (player), move along a parabola, or move at high speed.
- Once player is hit by any of the bullets, the game ends.

Screenshots of the Tokkun'99 Game

Challenges

- To speed up the training, need to implement a game simulator to run in headless mode and return useful information
- Need to experiment and figure out which features are most useful to make the Al as good as or even better than an average human player

Related Work

- M. G. Bellemare, Y. Naddaf, et al. "The arcade learning environment: An evaluation platform for general agents," J. Artif. Intell. Res., vol. 47, pp. 253–279, 2013.
- V. Mnih, K. Kavukcuoglu, et al., "Playing atari with deep reinforcement learning," in NIPS Deep Learning Workshop, 2013.
- V. Mnih, K. Kavukcuoglu, et al. "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529–533,
- V. Mnih, A. P. Badia, et al. "Asynchronous methods for deep reinforcement learning," in International Conference on Machine Learning, 2016, pp. 1928–1937.

Methods

Framework – Q Learning

Q-Function Estimation

A. Feature Extraction + Linear / Neural Network Approximation

Features

Hand-labeled Feature

- HIST: Histogram of neighboring bullets of R*R region in B*B bins
- **K-N:** Relative offsets of *K* nearest bullets
- Variations of K-N:
- K-N INVERSE: K-N features including squared distance to player to highlight nearer bullets
- K-N MEMORY: Include K-N features of R recent frames to cover velocity information

Raw Pixels

K-N MEMORY

General Feature from Raw Pixels

- Methods from (Bellamare et al., 2012) on Atari games
- BASS: Remove the background and use a 8-color palette to represent a downsampled image.
- LSH: Map raw game screens into a small set of binary features using a hashing algorithm such that similar screens have similar hashes.

Approximation Methods

Linear Function Approximation

Use linear combination of features to approximate Q function

$$Q^+(s, a; \boldsymbol{\theta}) = \boldsymbol{\theta} \cdot \phi(s, a)$$

■ Train **0** using SGD:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \left[r + \gamma \max_{a'} Q^{+}(s', a'; \boldsymbol{\theta}) - \boldsymbol{\theta} \cdot \phi(s, a) \right]$$

Neural Network Function Approx.

- Train a 3-layer fully-connected neural network (multilayer perceptron) to approximate Q function
- Memorize N most recent (s, a, r, s') tuples, which are previous experiences.
- After each action taken, draw a mini-batch of previous experiences to perform the update step.

B. Deep Q Learning

- Methods from (Mnih et al, 2013)
- Use Convolution Neural Network to estimate the Q function.
- Apart from the local memory features, we also keep a large replay memory of size **D** to save previous plays
- For each step we draw a minimatch of size B with (s, a, r, s') tuples to train the network
- In our experiments, D = 2000, B = 32

2nd hidden 3rd hidden layer layer layer 8x8x4 filter 84x84x4 20x20x16 4~18

Results

Average # of Frames Using Different Methods

Feature	Params	Linear Approx.	3-Layer MLP
HIST	R = 25, B = 5	89.37	61.28
	R = 30, B = 6	89.34	80.50
K-N	K = 5	85.76	90.13
	INVERSE, K = 5	85.37	108.40
	MEMORY, K = 5	126.17	100.12
DQN	115.81		
Random	52.00		
Static	63.56		

Comparison of the Top Methods

Sliding Average Frames of the Recent 1000 Episodes

Memory matters; DQN is not satisfactory

Future Work

- Implement some general feature extracting methods to compare with current features
- Find the reason for Deep Q Learning's low performance
- Tune the network structure, network parameters (training η, decaying rate, etc.) and the memory parameters (D, B)
- Try Double DQN and Dueling Double DQN which have achieved better results on Atari games
- Now training and tuning is slow, try to implement methods like single-step SARSA / Q Learning and actor-critic based methods like A3C