Higher-Order SMT Solving

(Work in Progress)

Haniel Barbosa¹ Andrew Reynolds¹ Pascal Fontaine² Daniel El Ouraoui² Cesare Tinelli¹

University of Iowa, Iowa City, USA haniel-barbosa, cesare-tinelli@uiowa.edu, andrew.j.reynolds@gmail.com

University of Lorraine, CNRS, Inria, and LORIA, Nancy, France daniel.el-ouraoui, pascal.fontaine@inria.fr

21st July 2018

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

Why Higher-Order (HO)

Higher-Order logic

- Expressive
 - Mathematics
 - Verification conditions
- The language of proof assistants
 - Isabelle, Coq, Agda

Automation

- Hard to automatize
- Few provers to reason on it LEO-II, Leo-III, Satalax

Challenge

- New techniques for SMT
- Avoid automatic translation

Summary

Two procedures

Features	Predicate calculus λ -free		λ -calculus
function	✓ ✓		✓
predicate	✓	✓	✓
functional arguments	Х	✓	✓
quantification on objects	✓	✓	✓
quantification on predicates	X	√	✓
quantification on functions	Х	✓	✓
partial applications	Х	✓	✓
anonymous functions	Х	Х	√

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

First-Order to Higher-Order with CDCL(T)

- Ground part described by the conjunctive sets of literals *E*
- lacksquare Quantified part described by the sets of quantified formulas Q
- Check if $E \cup Q$ is consistent

First-Order to Higher-Order with CDCL(T)

Instantiation

- Ground part described by the conjunctive sets of literals *E*
- \blacksquare Quantified part described by the sets of quantified formulas Q
- Check if $E \cup Q$ is consistent

First-Order to Higher-Order with CDCL(T)

- \blacksquare Ground part described by the conjunctive sets of literals *E*
- lacksquare Quantified part described by the sets of quantified formulas Q
- Check if $E \cup Q$ is consistent

Lift up SMT solver

Ground Applicative encoding

Suitable data-structure

Instantiation E-matching extension

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

Applicative encoding

encoding

For all terms of the shape $(((f_{\tau_1 \to \dots \to \tau_n \to \sigma} \ a_1) \dots) \ a_n)) : \sigma$ given a unique symbol @ we have the translation App defined as following:

$$App(((f a_1) ...) a_n)) = @(@(...@(f, a_1), ..., a_n))$$

where f, g become constant symbols

$$f a b \simeq b \wedge f a (f a b) \simeq g b$$

 $@(@(f,a),b) \simeq b \wedge @(@(f,a), @(@(f,a),b)) \simeq @(g,b)$

Applicative encoding

encoding

For all terms of the shape $(((f_{\tau_1 \to \dots \to \tau_n \to \sigma} \ a_1) \dots) \ a_n)) : \sigma$ given a unique symbol @ we have the translation App defined as following:

$$\mathsf{App}(((f\ a_1)\ldots)\ a_n)) = @(@(\ldots@(f,a_1),\ldots,a_n))$$

app translation

$$f a b \simeq b \wedge f a (f a b) \simeq g b$$

 $@(@(f,a),b) \simeq b \land @(@(f,a), @(@(f,a),b)) \simeq @(g,b)$

where f, g become constant symbols

Lazy encoding

- Turn all partial applications into total
- Use first-order procedure on App(*E*)
- Add remaining equalites between regular terms $E' = \mathsf{App}(E) \cup \{\mathsf{App}(f(a_1,...,a_n)) \simeq f(a_1,...,a_n), ...\}$
- Do it only for partial function symbols
- \blacksquare Check again E'

Example

```
f \ a \simeq g \land f(a,a) \not\simeq g(a) \land g(a) \simeq h(a) \Rightarrow \ \{@(f,a) \simeq g, \ f(a,a) \not\simeq g(a), \ g(a) \simeq h(a)\} \subseteq E
```

Lazy encoding

- Turn all partial applications into total
- Use first-order procedure on App(E)
- Add remaining equalites between regular terms $E' = \mathsf{App}(E) \cup \{\mathsf{App}(f(a_1,...,a_n)) \simeq f(a_1,...,a_n), ...\}$
- Do it only for partial function symbols
- \blacksquare Check again E'

Example

$$f \ a \simeq g \land f(a, a) \not\simeq g(a) \land g(a) \simeq h(a) \Rightarrow \{@(f, a) \simeq g, \ f(a, a) \not\simeq g(a), \ g(a) \simeq h(a)\} \subseteq E$$
$$E \cup \{@(@(f, a), a) \simeq f(a, a), \ @(g, a) \simeq g(a)\} \Rightarrow @(@(f, a), a) \simeq @(g, a)$$

Extentionality

$$(\forall \bar{x} f(\bar{x}) \simeq g(\bar{x})) \leftrightarrow f \simeq g$$

■ The "←" direction is ensured by the functional congruence axiom:

$$f \simeq g \to (\forall \bar{x} \, f(\bar{x}) \simeq g(\bar{x}))$$

- lacksquare The "ightarrow" direction is ensured by $f(ar{k})
 ot \simeq g(ar{k})$ for some Skolem $ar{k}$
- $lacksquare f(ar k)
 ot\simeq g(ar k) \lor f\simeq g$ is added for each pair of functions of finite type

Model generation

For each satisfiable problem produce a first-order model M

$$f_1(0) \simeq f_1(1) \wedge f_1(1) \simeq f_2$$

 $f_2(0) \simeq f_2(1) \wedge f_2(1) \simeq 2$

 $f_1: \operatorname{Int} \times \operatorname{Int} \to \operatorname{Int}$, and $f_2: \operatorname{Int} \to \operatorname{Int}$

Model construction

$$\mathit{M}(\mathit{f}_1) = \lambda \mathit{xy}\,\mathsf{ite}(\mathit{x} \simeq 0, \lambda \mathit{x}\,\mathsf{ite}(\mathit{x} \simeq 1, 2, _)(\mathit{y}), \mathsf{ite}(\mathit{x} \simeq 1, \lambda \mathit{x}\,\mathsf{ite}(\mathit{x} \simeq 1, 2, _)(\mathit{y}), _))$$

Polynomial construction

$$M(f_1)=\lambda xy$$
 ite($x\simeq 0, M(f_2)(y),$ ite($x\simeq 1, M(f_2)(y), _))$ $M(f_2)=\lambda x$ ite($x\simeq 1, 2, _)$

Trigger based instantiation

Triggers

A trigger T for a quantified formula $\forall \overline{x}_n.\psi$ is a set of non-ground terms $u_1,\ldots,u_n\in \mathbf{T}(\psi)$ such that: $\{\overline{x}\}\subseteq \mathsf{FV}(u_1)\cup\ldots\cup\mathsf{FV}(u_n)$.

E-matching

Given a conjunctive set of equality literals E and terms u and t, with t ground, the E-matching problem is that of finding a substitution σ such that $E \models u\sigma \simeq t$.

$$E = \{f(a) \simeq g(b), \ a \simeq g(b)\}$$

$$Q = \{\forall x f(g(x)) \not\simeq g(x)\}$$

$$f(a) \text{ E-matches } f(g(x)) \text{ under } \{x \mapsto b\}$$

E-matching

- E-matching relies on indexing term by head symbols for efficiency
- At Higher-Order level two applications can be equals with different head symbol $f \simeq g \wedge f$ $a \simeq g$ b
- Common term indexing
- First-order *E*-matching with applicative encoding and suitable indexing

E-matching

$$\varphi = q(k(0,1)) \land \neg p(k(0,0)) \land \forall (f: \mathsf{Int} \times \mathsf{Int} \to \mathsf{Int}) \ (y,z: \mathsf{Int}). \ p(f(y,z)) \lor \neg q(f(1,y))$$

- Extend first-order *E*-matching to derive new lambda expressions
- From Huet's algorithm to higher-order matching
- Unsatisfiable with regular Henkin semantics

$$\{f\mapsto \lambda w_1w_2.\ k(0,w_1),\ y\mapsto 0,\ z\mapsto 0\}$$

Evaluation

Figure: Time comparison of cvc4 configurations on "Judgement day" benchmarks.

	hosmt			smt-lib	
	#unsat	avg time (s)	#unsat	avg time (s)	
сус4-но	648	1.08	662	1.02	
cvc4	4	0.06	662	1.01	

Table: cvc4 configurations on "Judgement day" benchmarks with 60s timeout.

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

Congruence closure

Theory of equality \mathcal{T}_E

$$\Sigma_f = \{a, b, f, g, \ldots\}$$

$$\Sigma_p = \{=, p, q, \ldots\}$$

$$\forall (x:\tau) \ x=x$$

$$\forall (xy:\tau) \ x=y \Rightarrow y=x$$

$$\forall (xyz:\tau) \ (x=y\Rightarrow y=z)\Rightarrow x=z$$

$$(z) \Rightarrow x = z$$

$$x = y \Rightarrow f \ x = f \ y$$

 $f = g \Rightarrow f \ x = g \ x$

(transitivity)

Congruence closure

Deciding a conjunction of \mathcal{T}_E :

How can we check whether a set of \mathcal{T}_E is satisfiable?

- Union find algorithm
- Optimal time complexity: $O(n \log n)$
- Graphs with connected component
- Not optimal time complexity: $\mathcal{O}(n^2)$

Evaluation

Figure: Time comparison of cvc4 veriT and veriT-Ho on QFUF benchmarks.

- 1 Introduction
- 2 Towards Higher-Order
- 3 CVC4 approach
- 4 veriT approach
- 5 Conclusions

Conclusions and future directions

- No significant overhead
- HO ATPs such LEO-II, Leo-III, Satalax should be investigated
- Towards an effective and refutationally complete calculus
- Improving and extend VERIT in the same fashion