

## Data Acquisition and Cleaning

This project uses over 1.5 million beer reviews from BeerAdvocate, hosted on Kaggle.

I was inspired to use this dataset after reading a great article by Tanya Cashorali on how to interview for data science hires:

https://www.linkedin.com/pulse/how-hire-test-data-skills-one-size-fits-all-interview-tanva-cashorali/

#### **Dataset Features**

- 1. Brewery ID an integer identifier for each unique brewery
- 2. Brewery Name a string containing the name of the brewery
- 3. Review Time an integer containing the date the review was submitted
- 4. Review Overall a float of the complete review score. Ratings in this dataset are from 1-5
- 5. Review Aroma a float of the review score for the aroma of the beer
- 6. Review Palate a float of the review score for the mouthfeel of the beer
- 7. Review Appearance a float of the review score for the appearance of the beer
- 8. Review Taste a float of the review score for the taste of the beer
- 9. Review Profilename a string containing the reviewer's username
- 10. Beer Name a string of the reviewed beer's name
- 11. Beer ID an integer identifier for each unique beer
- 12. Beer Style a string containing the style of the beer
- 13. Beer ABV a float denoting the reviewed beers percent alcohol by volume

#### Missing Values

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1586614 entries, 0 to 1586613
Data columns (total 13 columns):
brewery id 1586614 non-null int64
brewery name 1586599 non-null object
review time 1586614 non-null datetime64[ns]
review overall 1586614 non-null float64
review aroma 1586614 non-null float64
review appearance 1586614 non-null float64
review profilename 1586266 non-null object
beer style
             1586614 non-null object
review palate 1586614 non-null float64
review taste 1586614 non-null float64
beer name
              1586614 non-null object
beer abv
           1518829 non-null float64
beer beerid 1586614 non-null int64
dtypes: datetime64[ns](1), float64(6), int64(2), object(4)
memory usage: 157.4+ MB
```

## **Accounting for missing values**

The Dataset contains around 68,000 missing values, mostly from the beer\_abv column. Since there is already so much data to work with, I decided to remove these altogether, as well as any reviews scoring less than 1.

There were also duplicate reviews present. I removed all duplicates, keeping the most recent review.

#### **Distribution of Reviews**

#### Distribution of Reviews



## **Distribution of Reviews - Highly Rated**

Distribution of Reviews - Highly Rated



## **Distribution of Reviews - Low Ratings**

Distribution of Reviews - Low Ratings



### **Reviews Analysis**

- Overall, there are more positive than negative reviews
- Review taste appears to be most closely related to review overall
- Review appearance is mostly independent of the overall review score.

# **Alcohol By Volume Distribution**

Beer ABV



# **Correlation Heatmap**



#### **Correlation Analysis**

- Review taste has the strongest correlation with review overall
- Review palate has the second strongest correlation
- Review appearance and aroma have weak correlation
- Beer ABV has no correlation

#### **Most Reviewed Beers**

10 Most Reviewed Beers



## **Beer Style Review Counts**



50k

100k

#### 10 Least Reviewed Beer Styles



#### **Most Reviewed Breweries**

Top 10 Most Reviewed Breweries



## Strongest Beers By ABV

Top 10 Strongest Beers by ABV



## Establishing a ranking system

When sorting by mean review overall, the results are thrown off by beers with a low number of ratings.

To address this, I created the review\_average column, which consists of the average of all review categories, and the review\_total column.

I then removed all beers with less than 100 reviews and ordered by mean review\_average

### Top Beers by Review Average

Top 15 Beers by Review Average



#### **Bottom Beers by Review Average**

Bottom 15 Beers by Review Average



## Top Breweries by Review Average

Top 15 Breweries by Review Average



## Top Styles by Review Average

Top 15 Styles by Review Average



#### **Reviews Per User**

#### Distribution of Reviews per User



#### **User Reviews**

The mean amount of reviews per user is 45, but the median is only 3

This means that there are a small subset of highly prolific users with many more reviews than average.

#### **Reviews Over Time**

#### Reviews Over Time



### **Recommendation System**

To create the recommender system, I created a new dataframe containing only the relevant columns, and removed all beers reviewed less than 50 times.

|   | review_profilename | beer_name              | review_overall |
|---|--------------------|------------------------|----------------|
| 0 | stcules            | Sausa Weizen           | 1.5            |
| 1 | stcules            | Red Moon               | 3.0            |
| 2 | stcules            | Black Horse Black Beer | 3.0            |
| 3 | stcules            | Sausa Pils             | 3.0            |
| 4 | johnmichaelsen     | Cauldron DIPA          | 4.0            |

#### **Initial Fit**

An initial fit with an untuned SVD algorithm achieved RMSE of 0.575. Here's a look at the first predictions it made:

```
[Prediction(uid='Long813', iid='Hophead Double India Pale Ale', r_ui=4.0, est=3.585667317417661, details={'was_impossible': False}),
Prediction(uid='beerwolf77', iid='Orchard White', r_ui=4.0, est=4.007106415545197, details={'was_impossible': False}),
Prediction(uid='SShelly', iid='Green Flash Le Freak', r_ui=4.0, est=4.131120724067257, details={'was_impossible': False}),
Prediction(uid='maxpower', iid='Lump Of Coal', r_ui=3.5, est=3.539782794389326, details={'was_impossible': False}),
Prediction(uid='Cs1987', iid='König Pilsener', r_ui=4.0, est=3.6295640690908293, details={'was_impossible': False})]
```

| Testing Different Algorithms |           |             |            |  |  |  |  |  |  |
|------------------------------|-----------|-------------|------------|--|--|--|--|--|--|
|                              | test_rmse | fit_time    | test_time  |  |  |  |  |  |  |
| Algorithm                    |           |             |            |  |  |  |  |  |  |
| SVDpp                        | 0.569573  | 3487.744543 | 121.888504 |  |  |  |  |  |  |
| BaselineOnly                 | 0.573327  | 2.806333    | 4.093334   |  |  |  |  |  |  |
| KNNBaseline                  | 0.573759  | 12.133106   | 114.039659 |  |  |  |  |  |  |

18.701889

38.108621

42.037437

9.753362

9.580004

10.216587

14.011497

1.216606

114.540148

3.073264

3.236865

105.637112

100.474461

109.887675

3.729301

3.308804

0.574417

0.575154

0.584200

0.586201

0.588927

0.589756

0.625232

0.953737

SlopeOne

**KNNWithMeans** 

**KNNWithZScore** 

NormalPredictor

CoClustering

**KNNBasic** 

SVD

NMF

#### SVD++ Grid Search

I attempted a grid search to tune the SVD++ hyperparameters

However, this grid search was incredibly computation intensive and after several days, I decided to perform manual tuning instead.

#### **SVD++ Parameters and Performance**

```
trainset, testset = train test split(data, test size=0.25)
algo = SVDpp(n factors=150, n epochs=75, lr all=0.01, reg all=0.1)
predictions = algo.fit(trainset).test(testset)
accuracy.rmse(predictions)
RMSE: 0.5718
0.5718358448010138
algo = NormalPredictor()
predictionsnormal = algo.fit(trainset).test(testset)
accuracy.rmse(predictionsnormal)
RMSE: 0.9570
0.9569947792018437
```

#### **SVD++ Parameters and Performance**

This model achieved an RMSE of 0.571, outperforming the NormalPredictor by around 0.4%.

### **Best Predictions**

|        | review_profilename | beer_name                         | rui | est      | details                   | items_rated | num_ratings | error    |
|--------|--------------------|-----------------------------------|-----|----------|---------------------------|-------------|-------------|----------|
| 139103 | oteyj              | The Abyss                         | 5.0 | 5.000000 | {'was_impossible': False} | 55          | 795         | 0.000000 |
| 260452 | oteyj              | Cantillon Crianza Helena          | 5.0 | 5.000000 | {'was_impossible': False} | 55          | 48          | 0.000000 |
| 211923 | oteyj              | Supplication                      | 5.0 | 5.000000 | {'was_impossible': False} | 55          | 654         | 0.000000 |
| 204248 | oteyj              | Trappist Westvleteren 8           | 5.0 | 5.000000 | {'was_impossible': False} | 55          | 440         | 0.000000 |
| 262703 | whartontallboy     | Uerige Altbier (Classic)          | 4.0 | 3.999997 | {'was_impossible': False} | 241         | 129         | 0.000003 |
| 140207 | mikesgroove        | The Reverend                      | 4.0 | 4.000004 | {'was_impossible': False} | 2227        | 448         | 0.000004 |
| 205873 | brewandbbq         | Corne De Brume                    | 4.0 | 4.000006 | {'was_impossible': False} | 507         | 39          | 0.000006 |
| 181089 | brentk56           | J.W. Lees Harvest Ale (Port Cask) | 4.0 | 4.000007 | {'was_impossible': False} | 1800        | 106         | 0.000007 |
| 144698 | Foxman             | Allagash Fluxus 2007              | 4.0 | 4.000008 | {'was_impossible': False} | 541         | 40          | 0.000008 |
| 178598 | kbub6f             | Prohibition Ale                   | 4.0 | 4.000009 | {'was_impossible': False} | 395         | 184         | 0.000009 |

### **Worst Predictions**

|        | review_profilename | beer_name                   | rui | est      | details                   | items_rated | num_ratings | error    |
|--------|--------------------|-----------------------------|-----|----------|---------------------------|-------------|-------------|----------|
| 188593 | aaronh             | Drie Fonteinen Oude Geuze   | 1.0 | 4.197010 | {'was_impossible': False} | 406         | 323         | 3.197010 |
| 138373 | dasenebler         | YuleSmith (Summer)          | 1.0 | 4.241274 | {'was_impossible': False} | 352         | 569         | 3.241274 |
| 88273  | rvdoorn            | Darkness                    | 1.0 | 4.274347 | {'was_impossible': False} | 197         | 391         | 3.274347 |
| 14188  | rye726             | Uerige Doppelsticke         | 1.0 | 4.277991 | {'was_impossible': False} | 732         | 244         | 3.277991 |
| 228632 | EssexAleMan        | Hardcore IPA (2nd Ed. 9.2%) | 1.0 | 4.353312 | {'was_impossible': False} | 62          | 64          | 3.353312 |
| 89760  | ChrisCage          | La Fin Du Monde             | 1.0 | 4.356200 | {'was_impossible': False} | 123         | 1438        | 3.356200 |
| 32019  | brdc               | Sinners Blend 2008          | 1.0 | 4.374767 | {'was_impossible': False} | 611         | 39          | 3.374767 |
| 206510 | jfitzy78           | Fantôme Brise-BonBons       | 1.0 | 4.408655 | {'was_impossible': False} | 35          | 105         | 3.408655 |
| 32728  | rvdoorn            | Pliny The Elder             | 1.0 | 4.479191 | {'was_impossible': False} | 197         | 1248        | 3.479191 |
| 190299 | madtappers         | The Dissident               | 1.0 | 4.522709 | {'was_impossible': False} | 33          | 231         | 3.522709 |

## Obtaining the Top Predictions Per User

```
from collections import defaultdict
def get top n(predictions, n=10):
    # map preictions to each user.
    top n = defaultdict(list)
    for review profilename, beer name, true r, est, in predictions:
        top n[review profilename].append((beer name, est))
    # sort predictions for each user and retrieve the k highest ones.
    for review profilename, user ratings in top n.items():
       user ratings.sort(key=lambda x: x[1], reverse=True)
        top n[review profilename] = user ratings[:n]
   return top n
```

## **Top Predictions Per User**

```
top ratings['whartontallboy']
[('St. Bernardus Abt 12', 4.290482442303683),
 ('Alpha King Pale Ale', 4.26160114639165),
 ('Gumballhead', 4.256343229014798),
 ('Founders Breakfast Stout', 4.240451085670301),
 ('Southampton Saison', 4.238378760158777),
 ('Péché Mortel (Imperial Stout Au Cafe)', 4.181327170748399),
 ('YuleSmith (Summer)', 4.180392408293553),
 ("Samuel Smith's Oatmeal Stout", 4.1580391159394585),
 ('Southampton Grand Cru', 4.154582216869394),
 ('Tripel Karmeliet', 4.145165485014519)]
```