

# SST Data-Embedding Sparsity-Promoting Dynamic Mode Decomposition

Zhicheng Zhang and Yoshihiko Susuki



Department of Electrical Engineering, Kyoto University

### **Abstract**

In this poster, we exploit a sparsity-promoting dynamic mode decomposition approach to explore the equation-free weather system (possibly nonlinear and high-dimensional), where the system dynamics can directly be collected from the historical time series of monthly SST data. By virtue of spectral analysis of data-driven modeling, we discuss the dynamic modes and the related eigenvalues.

#### **Observed Historical Data Collection from SST**

Motivated by Navarra et al. (2021), we concern on the ensemble sea surface temperature (SST) data which provided by the Nino-3. The data are available from January 1891 to December 2019, where the monthly SST data measurements are constructed by  $\mathbf{10} \times \mathbf{60} = \mathbf{600}$  spatial grids points. Specifically, the data consist of  $N = \mathbf{1548}$  temporal snapshots for a total of  $\mathbf{928}$ ,  $\mathbf{800}$  points. For the sake of convenience, we first pack the monthly data matrix as a vector-field, and then repeat the similar procedure for every three months' data (i.e., stack the spatial measurements from a quarter of a year into a vector). Hence, the dimension of spatial points saved per time snapshot becomes  $n = \mathbf{1800}$ , and the number of snapshots reduces to  $N = \mathbf{515}$ , which provides an efficient platform to compute standard dynamic mode decomposition using a tall-skinny matrix  $(n \gg N)$ , i.e.,  $X := \begin{bmatrix} x_0 & x_1 & \cdots & x_N \end{bmatrix}$ , where  $x_i \in \mathbb{R}^{1800 \times 1}$ .

# **DMD** Algorithm

- (i) Generate two data matrices from observed SST full data X as follows  $X_0 := [x_0 \ x_1 \ \cdots \ x_{N-1}] \in \mathbb{R}^{n \times N}, \ X_1 := [x_1 \ x_2 \ \cdots \ x_N] \in \mathbb{R}^{n \times N}$
- (ii) Simulate a discrete-time LTI system as

$$x_{t+1} = Ax_t, t = 0, 1, ..., N-1 \Rightarrow X_1 = AX_0, A \in \mathbb{R}^{n \times n}$$
 (1)

(iii) Perform SVD/DMD algorithms (Kutz et al., 2016), and then approximate experimental snapshots using a linear combination of DMD modes. The solution of data-driven system is  $x_t = \sum_{i=1}^r \phi_i \lambda_i^t b_i$  for all t. We have



where  $D_b = \operatorname{diag}(b_i)$  represents the amplitudes of the modes  $\Phi$ , and the Vandermode matrix  $V_\lambda \in \mathbb{C}^{r \times N}$  captures the temporal evolution of the dynamic modes. An intuitive graphical sketch is explained as follows:



# Methodology: Sparsity-Promoting Dynamic Mode Decomposition

Inspired by the seminal work (Jovanović et al., 2014), we here consider sparsity promoting DMD (spDMD) for SST data, which not only provides a useful tool in quantitative analysis of high-dimensional data-embedding model, but also in the identification of the dominant dynamic modes to realize model reduction.

## **Sparsity-Promoting DMD Approach**

- ? Why we here introduce spDMD for SST data-embedding modeling?
- # It directly finds dominant amplitudes and then easily reduces model!

**Goal**: Minimize a regularized least-squares deviation (between the SST data matrix of snapshots and a linear combination of DMD modes) with an added  $\ell_1$  norm penalty of the vector of DMD amplitudes, i.e.,

$$J(\mathbf{b}) \triangleq \min_{\mathbf{b}} \|X_0 - \Phi D_b V_\lambda\|_F^2 + \gamma \|\mathbf{b}\|_1$$
 (2)

- $\ell_1$  norm  $||\mathbf{b}||_1 = \sum_{i=1}^r |b_i|$  is penalized on the amplitudes of the modes
- ullet Weight  $\gamma \geq \mathbf{0}$  makes the trade-off between least-square error and sparsity
- Convex optimization & computational tractable, e.g., cvx, YALMIP, ADMM

#### **Numerical Benchmark Results**



- ightharpoonup Eigenvalues for SST Data in DT/CT cases with different weights  $\gamma$
- > spDMD displays performance loss and spatio-temporal modes

#### Model-Order Reduction: A Low-dimensional Dynamical System

When optimal solution  $\mathbf{b}_{\gamma}^*$  is obtained from spDMD problem (2), the sparsity  $\operatorname{card}(\mathbf{b}_{\gamma}^*) = m$  paves the way to model reduction of original high-dimensional system  $x_{k+1} = T(x_k)$  related to (1). Let  $V_j := \varphi_j(x_0)v_j$  and  $\lambda_j^k$  as a variable  $z_j[k]$ , then a low-dimensional system from first reordered m KMs is as

$$y_k = x_k \approx \sum_{j=1}^m \lambda_j^k \varphi_j(x_0) v_j = \sum_{j=1}^m z_j[k] V_j := VZ^m[k],$$

 $\Diamond Z^m = [z_1, \dots, z_m]^{\top} \in \mathbb{C}^m, \ V = [V_1, \dots, V_m] \in \mathbb{C}^{n \times m}, \ \text{where } \lambda_j$  is Koopman eigenvalue (KE),  $\varphi_j$  is eigenfunction (KEF),  $v_j$  is mode (KM)

Ref. Susuki & Mezic (2012) 
$$\Rightarrow VZ^M[k+1] = T(VZ^M[k+1])$$
  
(Multiply  $V^{\dagger}$ )  $\Rightarrow Z^m[k+1] = (V^{\dagger}V)^{-1}V^{\dagger}T(VZ^m[k+1])$   
 $:= \mathcal{T}_m(Z^m[k])$  (3)

# **Conclusion & Discussion**

- Compare the effects for eigenvalues and modes by DMD and spDMD
- spDMD can identify dominant modes for better model reduction in SST
- Relations between spDMD, KEs and KEFs, KMs (Mauroy et al., 2020)

#### References

Jovanović, M. R., Schmid, P. J., & Nichols, J. W. (2014). Sparsity-promoting dynamic mode decomposition. *Phys. Fluids*, *26*(2).

Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). *Dynamic mode decomposition: Data-driven modeling of complex systems*. SIAM.

Mauroy, A., Mezić, I., & Susuki, Y. (2020). Koopman operator in systems and control. Springer.

Navarra, A., Tribbia, J., & Klus, S. (2021). Estimation of Koopman transfer operators for the equatorial Pacific SST. *J. Atmos. Sci.*, *78*(4), 1227–1244. Susuki, Y., & Mezic, I. (2012). Nonlinear koopman modes and a precursor to power system swing instabilities. *IEEE Trans. Power Syst.*, *27*(3), 1182–1191.