19 BUNDESREPUBLIK **DEUTSCHLAND**

[®] Patentschrift ® DE 3800721 C1

(51) Int. Cl. 4: H 02 H 3/08 G 01 R 19/00

DEUTSCHES PATENTAMT ② Aktenzeichen:

P 38 00 721.5-32

② Anmeldetag: Offenlegungstag:

> Veröffentlichungstag der Patenterteilung:

13. 1.88

1. 6.89

Behördeneigentum

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

73 Patentinhaber:

Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt,

② Erfinder:

Kobel, Karsten, Dipl.-Ing.; Gloyer, Hans-Werner; Giday, Zoltan, 2350 Neumünster, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 36 25 084 DE-OS DE-OS 31 14 551 Siemens-Katalog 3WN1, 1986, S.7;

Elektronisches Überstromauslösesystem

Der Erfindung liegt die Aufgabe zugrunde, ein elektronisches Überstromauslösesystem mit verbesserten Bedienungseigenschaften zu schaffen.

In einem elektronischen Überstromauslösesystem, das von einem Mikroprozessor unterstützt wird und eine Meßeinrichtung für Phasenströme besitzt, werden gleichzeitig in allen drei Phasen die Betriebsströme gemessen und auf separaten Displays angezeigt, wobei im Auslösefall die gespeicherten Fehlerströme der einzelnen Phasen auf diesen Displays zur Anzeige kommen. In das System ist ein Datenbus-Interface für externe Datenverarbeitung integriert und die Auslöseparameter werden mit BCD-Schaltern eingestellt.

Die Erfindung ist anwendbar auf elektronische Überstromauslösesysteme, die in mehrphasigen Netzen eingesetzt werden.

9 (1) Überstromausibser Typ 007 1. =1250 A (5) 7 (11) (8)

Beschreibung

Die Erfindung betrifft ein elektronisches Überstromauslösesystem, das von einem Mikroprozessor unterstützt wird und eine Meßeinrichtung für Phasenströme besitzt gemäß dem Oberbegriff des Anspruchs 1.

Diese Systeme sind bisher so ausgeführt, daß die einzelnen Phasenströme nacheinander auf einem Display zur Anzeige kommen und ein Hilfswerkzeug für die (z. B. Überstromauslösesystem der Firma Siemens, Firmenschrift "Leistungsschalter 3WN1", 1986, Seite 7)

Ein weiteres Überstromauslösesystem mit sequentieller Überwachung der Phasenströme ist aus der DE 31 14 551 A1 bekannt. Dieses bekannte System ist 15 von einem Mikroprozessor unterstützt und besitzt eine Meßeinrichtung für die Phasenströme. Das Überstromauslösesystem enthält ein Datenbusinterface für die Fernanzeige der überwachten Werte und für die Fern-

steuerung des Systems.

Aus der DE 36 25 084 A1 ist ein Leistungstrennschalter mit einem elektronischen Auslösesystem bekannt, das auf Analogprozessoren basiert. Die Erstellung der Überstrom- und Verzögerungswerte erfolgt dabei mittels binär codierten Digitalschaltern sog. BCD Schal- 25 tern, die in einem Widerstandsleiternetzwerk den für den Auslösesollwert erforderlichen Widerstand des Netzwerkes bestimmen. Die Verwendung von binär codierten Schaltern bei der Einstellung von Auslösesollwerten reduziert die Anzahl der erforderlichen Wider- 30 stände, ohne daß der Bereich der Auslöseeinstellungen nachteilig beeinflußt wird.

Tritt in einem zu überwachenden Stromnetz eine instationäre Schieflast auf, so ist mit den vorangehend erwähnten Systemen ein genauer Vergleich von Augen- 35 blickswerten einzelner Phasenströme nicht möglich. Durch die daraus resultierende unsichere Fehleranalyse wird die Überwachung des Stromnetzes beeinträchtigt. Ein weiterer Nachteil bei dem erstgenannten bekannten System liegt darin, daß die Einstellung von Auslösewer- 40 ten mittels des Hilfswerkzeuges den Bedienungskom-

fort mindert.

Der Erfindung liegt die Aufgabe zugrunde, ein elektronisches Überstromauslösesystem mit verbesserten Bedienungseigenschaften zu schaffen. Diese Aufgabe 45 wird durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Weiterbildungen sind in den

Unteransprüchen angegeben.

Durch die im Überstromauslösesystem integrierte Drei-Phasen-Meßeinrichtung und -Anzeige kann im 50 Auslösefall auf eine zusätzliche Messung mit externen Geräten in den meisten Fällen verzichtet werden, da die Aussagekraft der Drei-Phasen-Anzeige groß genug ist, um eine sichere Fehleranalyse zu ermöglichen. Sollte zusätzlich eine externe Auswertung erforderlich sein, so 55 ermöglicht das integrierte Datenbus-Interface den Transfer von Meßwerten, Einstellparametern und Auslöseströmen auf externe Auswertesysteme. Die Bedienung des Systems wird durch die BCD-Schalter verbessert, die sich auf der Frontplatte befinden und zum Ein- 60 stellen der Auslöseparameter dienen.

Anhand des in der Zeichnung dargestellten Ausführungsbeispiels soll die Erfindung näher erläutert wer-

den.

Die Figur zeigt die Frontplatte eines elektronischen 65 Überstromauslösesystems. Dabei sind mit 1 bis 3 die Displays für die einzelnen Phasen bezeichnet. Auf den Displays können Stromwerte in der Einheit kA und

Zeitwerte in den Einheiten ms und s zur Anzeige kommen. Die Einstellung der Auslöseparameter erfolgt für die unterschiedlichen Auslöser - hier ist es der thermische Überlastauslöser b im Feld 4, der magnetische 5 Kurzschlußauslöser s im Feld 5, der superschnelle magnetische Kurzschlußauslöser k im Feld 6, der Erdschlußauslöser g im Feld 7 und der Vorwahlauslöser v im Feld 8 - über "BCD-Schalter" (BCD-Binary Coded Decimal) für Strom- und Zeitwerte, deren Schaltknöpfe Einstellung von Auslöseparametern erforderlich ist 10 beispielhaft für alle anderen Felder mit 9 und 10 gekennzeichnet sind. Mit 11 ist das Datenbus-Interface für die externe Datenverarbeitung bezeichnet.

Patentansprüche

1. Elektronisches Überstromauslösesystem, das von einem Mikroprozessor unterstützt wird und eine Meßeinrichtung für Phasenströme besitzt, dadurch gekennzeichnet, daß gleichzeitig in allen drei Phasen die Betriebsströme gemessen und auf separaten Displays (1, 2, 3) angezeigt werden, wobei im Auslösefall die gespeicherten Fehlerströme der einzelnen Phasen auf diesen Displays zur Anzeige kom-

2. Elektronisches Überstromauslösesystem gemäß Anspruch 1, dadurch gekennzeichnet, daß ein Datenbus-Interface (11) für externe Datenverarbei-

tung integriert ist.

3. Elektronisches Überstromauslösesystem gemäß Anspruch 1, dadurch gekennzeichnet, daß die Auslöseparameter mit BCD-Schaltern (9, 10) eingestellt werden.

Hierzu 1 Blatt Zeichnungen

Nummer: Int. Cl.4:

38 00 721 H 02 H 3/08

Veröffentlichungstag: 1. Juni 1989

Nummer: Int. Cl.4:

38 00 721 H 02 H 3/08

Veröffentlichungstag: 1. Juni 1989

