Announcements

Mildern 2: Wed 3/26 7:00-8:30pm, Sidney Lu 1043

Topics: Everything through DRF \$14.1 (i.e. pre-Spring break)
Practice problem soln sketches posted

HW7 posted (due hed 4/2)

Office hour changes:

This week: Mon after class, Wed. before class (CAB) Next week and onwords: Mon. before class, Fri. before class (GB) Will send email about these changes

Recall: K/F: field exth

Aut(K/F) = {automs. of k fixing F}

- $\sigma \in Aut(k/F)$ is detid by its action on the set of generators of k/F (i.e. if $k = F(x_1, ..., x_n)$ these are $x_1, ..., x_n$)
- If \(\pi \in \) is a root of \(\(\frac{1}{2} \) \), then
 \(\pi \) (\(\alpha \)) is also a root of \(\xi \).
- If k = SpeF, ~1, --, ~n: roots of f in k

 then of is det'd by the permutation of = ola, --, an

 i.e. Aut(k/f) ⊆ Sn

- If $k = Sp_{f}F$, f sep., then Gal(k/f) := Aut(k/f)and k/f is Galois
- "If K=SpfF, |Aut(K/F)] = [K:F], w/ equality
 iff K/F is Galois
- · If $H \leq Aut(k/F)$, $Fix H = \{k \in k \mid \sigma(k) = k \mid \forall k \in H\}$ is a subfield of k, and if $H \leq H \leq Aut(k)$ $F \subseteq L \subseteq k$

 $I = Aut(K/K) \le Aut(K/L) \le Aut(K/F) \le Aut(K)$

For the next couple of weeks, we'll focus our proofs on char O and/or finite fields

Def: K/F is separable if K/F is alg. and $M_{d,F}(x)$ is sep. $\forall \alpha \in K$.

(If char F=0 or F: finite, K/F finite => K/F sep.)

Primitive Elt. Thm. (§13.4): Every finite, separable extín is simple.

E.g: Q(12, 13) = Q(12+13)

Pf in char O: Since K/F is finite, K= F(a11-, dn) for some diligion. Inducting on n, suffices to consider K= F(4, B). Let f= m, F(x), g= mp, F(x). Let E be a splitting field over K for fg, containing roots d,,-,dm of f and B,,-, Bn of g. Choose CEFISOS, and set Y= x+ CB, L=F(r). LEK; if K # L, then & # L, so m, L(x) has another root of #a. Now, ma, L | f = ma, F and also $M_{d,L} / g(\frac{y-x}{c}) = :h(x)$ since $g(\beta)=0$ and $\frac{\gamma-\alpha}{c}=\beta$, so $f(\delta)=h(\delta)=0$. The roots of h in E are $C = \frac{\alpha' - \alpha}{\beta - b!}$ $\delta \zeta = \gamma - C\beta \zeta = \alpha + C(\beta - \beta \zeta)$, 15 is n

and we must have $J = \alpha_i = J_j$ for some i,j.

That is, $\alpha_i = J = \alpha + c(\beta - \beta_j)$. Since $J \neq \lambda$, this means that $\beta \neq \beta_j$, so $c = \frac{\alpha_i - \alpha}{\beta - \beta_j}$. There are only finitely

many such choices for c, and F is infinite, so there exists some $c \in k$ not of this form, and $k = F(a + c\beta)$, so $k \in k$ is simple.