Esempio: Riconoscitore Sequenze

Descrizione verbale:

Progettare una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che $z_j=1$ se e solo se $x_{j-2}x_{j-1}x_j$ coincide con una delle sequenze 110 o 101, eventualmente anche sovrapposte

Diagramma di Stato della Macchina Sequenziale

Utilizziamo i seguenti stati:

 q_0 : riconoscimento di 110 o 101 non ancora iniziato

 q_1 : ricevuto il primo 1 di 110 o 101

 q_2 : ricevuti i primi due simboli 10 di 101

 q_3 : ricevuti i primi due simboli 11 di 110

Diagramma di Stato della Rete Sequenziale

- Si codificano ingressi, stati e uscite con corrispondenti sequenze di bit
- Poiché abbiamo 4 stati, possiamo codificare gli stati con coppie di bit
- Ad esempio: 00 per q_0 , 10 per q_1 , 01 per q_2 e 11 per q_3
- In questo caso gli ingressi e le uscite sono già banalmente codificati con 0 e 1
- Si ottiene così il seguente diagramma di stato della rete sequenziale

Tavola di Transizione o degli Stati Successivi della Rete Sequenziale

			x=0			x=1	
<i>y</i> ₁	y ₂	Y ₁	Y ₂	Z	Y ₁	Y ₂	Z
0	0	0	0	0	1	0	0
0	1	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	1	0	1	1	1	1	0

Funzioni Booleane della Rete Sequenziale

- Dato che abbiamo due bit che determinano lo stato della rete sequenziale, è possibile utilizzare due flip-flop per memorizzarli
- Consideriamo, ad esempio, due flip-flop D
- Per determinare le funzioni di eccitazione, ossia le funzioni di x, y₁ e y₂ che definiscono gli ingressi dei due flip-flop nel passo corrente per provocare il passaggio di stato desiderato, osserviamo innanzitutto che d₁ = Y₁ e d₂ = Y₂
- Riorganizziamo la tavola delle transizioni per ottenere le tabelle di verità di d₁ e d₂

X	<i>y</i> ₁	y ₂	Y ₁	Y ₂	d_1	d_2
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	1	0	1	0
1	1	0	1	1	1	1
1	1	1	1	1	1	1

- E' immediato verificare che $d_1=x$ ($d_1=Y_1$) e $d_2=y_1$ ($d_2=Y_2$)
- Per determinare invece z, applichiamo il metodo delle mappe di karnaugh a 3 variabili

X	y ₁	y ₂	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Non ci sono sottocubi massimali da considerare e si ottiene:

$$z = \neg x \ y_1 \ y_2 + x \neg y_1 \ y_2$$

Rete Sequenziale

- Torniamo indietro al passo 4. e vediamo cosa succede se procediamo ad una diversa codifica degli stati
- Ad esempio: 10 per q_0 , 00 per q_1 , 01 per q_2 e 11 per q_3
- Si ottiene un diverso diagramma di stato della rete sequenziale:

Tavola di Transizione o degli Stati Successivi della Rete Sequenziale

			x=0			x=1	
<i>y</i> ₁	y ₂	Y ₁	Y ₂	Z	Y ₁	Y ₂	Z
0	0	0	1	0	1	1	0
0	1	1	0	0	0	0	1
1	0	1	0	0	0	0	0
1	1	0	1	1	1	1	0

Funzioni Booleane della Rete Sequenziale

• Con la codifica precedente (10 per q_0 , 00 per q_1 , 01 per q_2 e 11 per q_4) Si ottengono le seguenti tabelle di verità per d_2 e d_1

X	<i>y</i> ₁	y ₂	Y ₁	Y ₂	d_1	d_2
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	0	1	0
0	1	1	0	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	1	1	1	1

Minimizziamo le funzioni risultanti usando le mappe di Karnaugh

Quindi:

$$d_1 = x \neg y_1 \neg y_2 + \neg x \neg y_1 y_2 + x y_1 y_2 + \neg x y_1 \neg y_2$$

$$d_2 = \neg y_1 \neg y_2 + y_1 y_2$$

Osserviamo infine che la funzione z rimane invariata

X	y ₁	y ₂	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

, y	1 y 2			
X	00	01	11	10
0	0	0	1	0
1	0	1	0	0

$$z = \neg x \ y_1 \ y_2 + x \neg y_1 \ y_2$$

- Nell' esempio precedente, torniamo indietro al passo di determinazione delle funzioni booleane della rete sequenziale
- Cambiando il tipo dei flip-flop utilizzati per memorizzare lo stato, mentre la funzione di uscita rimane invariata, cambiano le funzioni di eccitazione dei flip-flop
- Esse devono essere determinate opportunamente in modo da causare le commutazioni di stato richieste
- Mentre per i flip-flop D questo passaggio è banale essendo Y=d, per gli altri flip-flop si deve tener conto del diverso comportamento, che può essere convenientemente descritto tramite delle tabelle dette "Tavole di eccitazione"

• Esse in pratica rispondono alla seguente domanda:

quale deve essere l'ingresso di un determinato flip-flop affinché il suo stato commuti da y a Y?

Flip-flop SR									
У	y Y s r								
0	0	0	ı						
0	1	1	0						
1	0	0	1						
1	1	I	0						

Flip-flop JK									
У	y Y j								
0	0	0	I						
0	1	1	-						
1	0	ı	1						
1	1	I	0						

Flip-flop D									
У	Y	d							
0	0	0							
0	1	1							
1	0	0							
1	1	1							

Flip-flop T									
У	y Y t								
0	0	0							
0	1	1							
1	0	1							
1	1	0							

• A partire dalle tabelle di eccitazione, costruiamo le tabelle di verità delle funzioni di eccitazione:

X	y ₁	y ₂	Y ₁	Y ₂	S ₁	<i>r</i> ₁	s ₂	r_2	j ₁	<i>k</i> ₁	j ₂	k ₂	d ₁	d ₂	<i>t</i> ₁	t_2
0	0	0	0	1	0	-	1	0	0	-	1	-	0	1	0	1
0	0	1	1	0	1	0	0	1	1	-	-	1	1	0	1	1
0	1	0	1	0	-	0	0	-	-	0	0	-	1	0	0	0
0	1	1	0	1	0	1	-	0	-	1	-	0	0	1	1	0
1	0	0	1	1	1	0	1	0	1	-	1	1	1	1	1	1
1	0	1	0	0	0	1	0	1	0	1	1	1	0	0	0	1
1	1	0	0	0	0	1	0	-	1	1	0	1	0	0	1	0
1	1	1	1	1	1	0	-	0	1	0	1	0	1	1	0	0

Minimizzando si ottengono le seguenti funzioni di eccitazione:

•
$$s_1 = \neg x \neg y_1 y_2 + x \neg y_1 \neg y_2$$
, $r_1 = \neg x y_1 y_2 + x y_1 \neg y_2$

•
$$s_2 = \neg y_1 \neg y_2, r_2 = \neg y_1 y_2$$

• flip-flop JK:

•
$$j_1 = k_1 = \neg x y_2 + x \neg y_2$$

•
$$j_2 = k_2 = \neg y_1$$

• flip-flop D:

•
$$d_1 = x \neg y_1 \neg y_2 + \neg x \neg y_1 y_2 + x y_1 y_2 + \neg x y_1 \neg y_2$$

•
$$d_2 = \neg y_1 \neg y_2 + y_1 y_2$$

• flip-flop T:

•
$$t_1 = \neg x \ y_2 + x \neg y_2$$

•
$$t_2 = \neg y_1$$

- Il passo 3. della sintesi delle reti sequenziali, ossia la minimizzazione del numero di stati del diagramma di stato, non è stato considerato; in pratica consiste nella determinazione ed eliminazione di stati equivalenti
- I passi descritti per la sintesi non sono univocamente determinati
- Ad esempio, dopo aver minimizzato il diagramma di stato nel passo 3., è possibile andare al passo 5., ossia determinare la tavola di transizione o degli stati successivi, passando per la tabella di flusso.

 $(00 \text{ per } q_0, 10 \text{ per } q_1, 01 \text{ per } q_2 \text{ e } 11 \text{ per } q_3)$

	0	1
q_0	$q_0,0$	$q_{1},0$
q_1	q_{2} , 0	q_{3} , 0
q_2	$q_{0},0$	q ₁ ,1
q_3	q ₂ ,1	q_{3} , 0

		x=0			x=1		
<i>y</i> ₁	y ₂	Y ₁	Y_2	Z	Y ₁	Y_2	Z
0	0	0	0	0	1	0	0
1	0	0	1	0	1	1	0
0	1	0	0	0	1	0	1
1	1	0	1	1	1	1	0

		x=0			x=1		
<i>y</i> ₁	y ₂	Y ₁	Y_2	Z	Y ₁	Y_2	Z
0	0	0	0	0	1	0	0
0	1	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	1	0	1	1	1	1	0

- Nell' esempio precedente determinare tutte le funzioni di eccitazione minimali usando le mappe di Karnaugh
- Ripetere l'esempio precedente con diverse codifiche degli stati
- Progettare una rete sequenziale che legga in input una sequenza di bit e dia uscita pari a 1 quando il numero di bit letti in ingresso uguali a 1 è pari
- Realizzare un contatore modulo 4

x ₁	X ₂	X ₃	X ₄	f(x ₁ ,x ₂ ,x ₃ ,x ₄)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	-
0	0	1	1	-
0	1	0	0	-
0	1	0	1	1
0	1	1	0	0
0	1	1	1	-
1	0	0	0	-
1	0	0	1	0
1	0	1	0	1
1	0	1	1	-
1	1	0	0	1
1	1	0	1	-
1	1	1	0	0
1	1	1	1	1

gunt soluin uhlitten lo ae moppe dik

Disegnare il diagramma di stato di una rete sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 2, 4, ... e in generale j = 2i (con $i \ge 1$),

 $z_j = 1$ se e solo se la somma degli 1 letti fino all'istante j è pari (quindi anche nulla, ovvero somma uguale a 0).

* repli is Venh 5 disposi, $z_5 = 0$ escurple: t: 12345673...×:0010111011-...

2:0100001...

Disegnare il diagramma di stato di una rete sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 2, 4, ... e in generale j = 2i (con $i \ge 1$),

 $z_j = 1$ se e solo se la somma degli 1 letti fino all'istante j è pari

(quindi anche nulla, ovvero somma uguale a 0).

1) istententi pri/Misp

Disegnare il diagramma di stato di una rete sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 2, 4, ... e in generale j=2i (con $i\geq 1$), (stationali istante j è pari quindi anche nulla, ovvero somma uguale a 0).

