Грамматика зависимостей

Евгений Борисов

грамматика составляющих

грамматика зависимостей

Грамматика зависимостей (Dependency grammar)

Главные члены предложения

Подлежащее — предмет. кто? что?

Сказуемое — что делать? что сделать? каков?

Образец разбора предложения

В саду расцвели красные и белые розы.

Это предложение – повествовательное, невосклицательное. Основа предложения – розы (подлежащее) расцвели (сказуемое). В предложении есть второстепенные члены, поэтому оно распространённое. Розы (какие?) красные и белые – однородные определения, произносятся с интонацией перечисления. Расцвели (где?) в саду – обстоятельство.

Второстепенные члены предложения

Определение — признак предмета. какой? чей? который?

Обстоятельство — время, место, способ действия. где? когда? куда? откуда? почему? зачем? как?

Дополнение — предмет. кого? чего? кому? чему? кого? что? кем? чем? о ком? о чём?

Разбор в грамматику зависимостей

- Dependency parser
 - -Malt parser (2006)
 - -Stanford Neural Network Dependency Parser (2014)

строим ориентированный граф зависимостей на упорядоченном множестве слов

Разбор в грамматику зависимостей

- Остановка
 - -стек содержит один узел *ROOT*
 - -и буфер пуст

- Итеративный алгоритм разбора предложения w_1, w_2, \dots, w_n
- Состояние парсера c = (s, b, A):
 - -стек s = [Root]
 - -буфер $b = [w_1, w_2, \dots, w_n]$
 - -множество дуг зависимостей $A=\emptyset$
- На каждой итерации происходит выбор одного из трех правил (для выбора используется классификатор)
 - –LEFT-ARC(label): добавление дуги $s_1 \to s_2$ с меткой label и удаление s_2 из стека. Предусловие: $|s| \ge 2$
 - -RIGHT-ARC(label): добавление дуги $s_2 \to s_1$ с меткой label и удаление s_1 из стека. Предусловие: $|s| \ge 2$
 - –SHIFT: перенос b_1 из буфера в стек. $|b| \geq 1$

используем ML классификатор для выбора правила на каждом шаге

Пример

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC (amod)	[ROOT has control]	[.]	$A \cup \text{amod(control,good)}$
RIGHT-ARC (dobj)	[ROOT has]	[.]	A∪ dobj(has,control)
RIGHT-ARC (root)	[ROOT]		$A \cup \text{root}(\text{ROOT},\text{has})$

Литература

git clone https://github.com/mechanoid5/ml_nlp.git

Турдаков Д.Ю. Основы обработки текстов. лекция 8. Статистические методы синтаксического анализа. ИСП РАН, 2017 https://www.youtube.com/watch?v=Cq9E4Fa2Jsk

Steven Bird, Ewan Klein, and Edward Loper Analyzing Text with the Natural Language Toolkit https://www.nltk.org/book/

D.Jurafsky, J.H. Martin Speech and Language Processing. third edition, 2020