Cache 与虚拟存储器部分作业

- 1. 某计算机的存储系统由 Cache 和主存。若所访问的字在 Cache 中,则存取它需要 10ns;将所访问的字从主存装入 Cache 需要 60ns。假定 Cache 的命中率为 0.9,计算该存储系统访问一个字的平均存取时间。
- 2. 假设一 4 路组相联 Cache,数据存储空间大小 64KB,块大小为 16 字节,主存地址 32 位,主存一个字包含 4 个字节, Cache 采用写回策略,每个数据块包括 1 位有效 位, Cache 每个字用 1 位脏位来表示是否被修改。
 - 1) CPU 如何解释主存地址(主存地址格式)
 - 2) 计算实现该 Cache 所需总存储容量
- 3. 计算机系统包含 32K 字的主存,Cache 容量 4K 字,每组 4 Blocks,每 Block 64 个字。假设 Cache 开始是空的,CPU 顺序从存储单元 0,1,2 到 4351 中读取字,然后再重复这样的取数 9 次,Cache 速度是主存速度的 10 倍,采用 LRU 替换算法,假定块替换的时间忽略不计.
 - 1) 计算上述取数过程的命中率;
 - 2) 计算采用 Cache 后的加速比。
- 4. 考虑一个 Cache, 其存取时间为 2.5ns, 行大小为 64 字节, 命中率 H=0.95。主存使用块传送方式,第一个字(4字节)存取时间为 50ns, 其后每个字存取时间为 5ns。
 - 1) 出现一次 Cache 缺失的存取时间是多少?假设此时 Cache 等待,直到该行从主存传送到 Cache,然后再从 Cache 读取;
 - 2) 假设行大小增大到 128 字节, 命中率提升到 0.97, 是否会降低平均存取时间。
- 5. 给定一个 32 位的虚拟地址空间和一个 24 位的物理地址,对于下面不同的分页大小 P,请确定虚拟页号(VPN)、虚拟页内偏移量(VPO)、物理页号(PPN)和物理页 内偏移量(PPO)的位数。

P	#VPN 位数	#VPO 位数	#PPN 位数	#PPO 位数
1KB	22	10		
2KB	21	11		
4KB	20	12		
8KB	19	13		

6. 假定一个计算机系统中有一个 TLB 和一个 L1 Data Cache。该系统按字节编址,虚拟地址 16 位,物理地址 12 为;页大小为 128 字节,TLB 采用 4 路组相联映射,共有 16 个页表项; L1 Data Cache 采用直接映射方式,块大小为 4 字节,共 16 行。在系统运行到某一时刻。TLB、页表和 L1 Data Cache 中的部分内容(用十六进制表示)如下图所示。

组号	标记	实页 号	有效 位									
0	03	_	0	09	1D	1	00		0	07	10	1
1	13	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	_	0	03	_	0
3	07		0	63	12	1	0A	34	1	72		0

(a) TLB 内容(4 路组相联, 4 组, 16 个页表项)

虚页	实页	有效
号	号	位
000	08	1
001	03	1
002	14	1
003	02	1
004	—	0
005	16	1
006		0
007	07	1
008	13	1
009	17	1
00A	09	1
00B		0
00C	19	1
00D		0
L	<u> </u>	

			ī			
行索引	标记	有效 位	字节3	字节 2	字节 1	字节 0
0	19	1	12	56	C9	AC
1	_	0	_	_	_	_
2	1B	1	03	45	12	CD
3	_	0		_	_	_
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	_	0		_	_	_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	_	0		_	_	_
Α	2D	1	43	62	23	С3
В		0	_		_	_
С	12	1	76	83	21	35
D	16	1	A3	F4	23	11

00E	11	1
00F	0D	1

Е	33	1	2D	4A	45	55
F	_	0	_	_	_	_

(b) 部分页表内容(前 16 项) (C) L1 Data Cache 内容(直接映射, 16 行, 块大小 4 字节)

请回答下列问题:

- (1) 虚拟地址中哪几位表示虚拟页号、哪几位表示页内偏移量?虚拟页号中哪几 位表示 TLB 标记?哪几位表示 TLB 组索引?
- (2) 物理地址中哪几位表示物理页号、哪几位表示页内偏移量? 在访问 Cache 时, 物理地址如何划分成标记字段、行索引字段和块内地址字段?
- (3)CPU 从地址 067AH 中取出的值是多少?要求对 CPU 读取地址 067AH 中内容 的过程进行详细说明。