

C L A I M S

1 1. A device for height adjustment of a vehicle seat, comprising
2 a drive motor; transmissions having different lifting strokes and operating
3 synchronously, one of said transmissions reaching an abutment earlier than
4 the other of said transmissions; a housing provided for said transmissions
5 and having abutment surfaces; and an abutment surface being arranged so
6 that at reaching a maximum position of a vehicle seat a transmission housing
7 element abuts against said abutment surface so that a braking moment
8 which exceeds a drive moment of said drive motor is produced.

1 2. A device as defined in claim 1; and further comprising a
2 threaded sleeve which receives a threaded spindle of one of said
3 transmissions; and an abutment surface which is located at an end side
4 opposite to said threaded sleeve.

1 3. A device as defined in claim 2, wherein said threaded
2 sleeve has a base region provided with force receiving location.

1 4. A device as defined in claim 3, wherein said force receiving
2 location is formed in an outer tooth set which cooperates with a worm drive.

1 5. A device as defined in claim 1, wherein an abutment of said
2 housing element against said abutment surface is performed by deformation
3 of said housing element over a tensioning path s.

1 6. A device as defined in claim 2, wherein a contact location
2 between said abutment surface and said housing element is provided at a
3 radius with respect to an axis of symmetry of said threaded spindle.

1 7. A method of blocking a drive moment with which two
2 transmissions are driven synchronously and produced different lifting
3 strokes, comprising the steps of providing abutments at a housing of one of
4 the transmission to define a maximum positions; and producing by a contact
5 of a deformable housing element with an abutment surface a braking
6 moment which exceeds a drive moment of a threaded spindle.

1 8. A method as defined in claim 7; and further comprising
2 deforming the housing element by abutting an abutment surface of a bearing
3 flange against the abutment of one transmission housing.

1 9. A method as defined in claim 7; and further comprising
2 providing a contact region between surfaces which produce the braking
3 moment at a radius r with respect to an axis of symmetry, which is selected
4 so that the braking moment exceeds the drive moment.

1 10. A method as defined in claim 7; and further comprising
2 providing in a contact region between the surfaces which produce the
3 braking moment, coatings which increase friction.