федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по учебно-исследовательской работе №1 «Кодирование данных в телекоммуникационных сетях»

по дисциплине «Телекоммуникационные системы»

Автор: Кулаков Н. В.

Факультет: ПИиКТ

Группа: Р33312

Преподаватель: Алиев Т. И.

Санкт-Петербург 2022

1. Формирование сообщения.

Исходное сообщение	Кула Н.В.
В шестнадцатеричной форме	CA F3 EB E0 20 CD 2E C2 2E
В двоичном коде	11001010 11110011 11101011 11100000 00100000 11001101 11100010 11000010 11100010
Длина сообщения	9 байт (72 бит)

2. Физическое кодирование исходного сообщения.

2.1. Методы физического кодирования:

Начальные условия:

C = 1 Mбит/c

Потенциальный код без возврата к нулю (NRZ)

Временная диаграмма:

$$f_0 = \frac{C}{2} = 500 \, K\Gamma y$$

$$f_{\rm g} = \frac{C}{2} = 500 \, \text{KFy}$$

$$f_{\rm H} = \frac{f_0}{5} = \frac{C}{10} = 100 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 400 \, K \Gamma y$$

$$f_{cp} = f_0 \frac{\frac{2 \cdot 3}{2} + 7 + \frac{4}{4} + \frac{5 \cdot 3}{5}}{32} \approx 219 \, K\Gamma y$$

$$F \ge S \Rightarrow F \ge 400 \, K\Gamma y$$

Биполярное кодирование с альтернативной инверсией (АМІ)

Временная диаграмма:

Расчеты:

$$f_0 = \frac{C}{2} = 500 \, K\Gamma u$$

$$f_{e} = \frac{C}{2} = 500 \, K \Gamma u$$

$$f_{\rm H} = \frac{f_0}{5} = \frac{C}{10} = 100 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 400 \, K \Gamma u$$

$$f_{cp} = f_0 \frac{15 + \frac{2 \cdot 2}{2} + \frac{4 \cdot 2}{4} + \frac{1 \cdot 5}{5}}{32} \approx 313 \, K\Gamma y$$

$$F \ge S \Rightarrow F \ge 400 \, K\Gamma y$$

Манчестерский код

Временная диаграмма:

$$f_0 = C = 1 M \Gamma u$$

$$f_{e} = C = 1 M \Gamma y$$

$$f_{\rm H} = \frac{f_0}{2} = \frac{C}{2} = 500 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 500 \, K \Gamma \mu$$

$$f_{cp} = f_0 \frac{38 + \frac{2 \cdot 13}{2}}{64} \approx 797 \, K\Gamma u$$

$$F \ge S \Rightarrow F \ge 500 K \Gamma u$$

Дифференциальный манчестерский код

Временная диаграмма:

Расчеты:

$$f_0 = C = 1 M \Gamma y$$

$$f_e = C = 1 M \Gamma u$$

$$f_{H} = \frac{f_{0}}{2} = \frac{C}{2} = 500 \, K\Gamma y$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 500 \, K \Gamma y$$

$$f_{cp} = f_0 \frac{28 + \frac{2 \cdot 18}{2}}{64} \approx 719 \, K\Gamma y$$

$$F \ge S \Rightarrow F \ge 500 K \Gamma y$$

Пятиуровневый код PAM-5 (2B1Q)

Временная диаграмма:

Расчеты:

$$f_0 = \frac{C}{4} = 250 \, K\Gamma u$$

$$f_{\scriptscriptstyle g} = \frac{C}{4} = 250 \, K \Gamma u$$

$$f_{H} = \frac{f_{0}}{2} = \frac{C}{8} = 125 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 125 \, K \Gamma u$$

$$f_{cp} = f_0 \frac{4 + \frac{2 \cdot 6}{2}}{16} \approx 156 \, K\Gamma y$$

$$F \ge S \Rightarrow F \ge 125 K \Gamma y$$

2.2. Сравнительный анализ методов кодирования:

Название:	Плюсы:	Минусы:
NRZ	2 уровня потенциала – просто и дешево реализовать.	Нет самосинхронизации.
	1	Нет возможности
	Малая ширина спектра.	обнаружения ошибок.
		Присутствует постоянная составляющая.
AMI	Возможность синхронизации и	3 уровня сигнала.
	отсутствие постоянной при	
	последовательности единиц.	При передаче длинных
	Dagmanyan ayyıkayı mayı	последовательностей
	Распознавание ошибок при	нулей присутствует
	передаче единицах.	постоянная составляющая.
	Такая же низкая ширина	составляющая.
	спектра как и у NRZ.	Нет самосинхронизации.
M2	Отсутствие постоянной	Более широкий спектр по
	составляющей.	сравнению с AMI и NRZ.
	Возможность обнаружения	Частота основной
	ошибок.	гармоники выше, чем при

	Синхронизация присутствует. 2 уровня сигнала. Хорошо работает с чередующимися значениями единиц и нулей.	AMI и NRZ в 2 раза при передаче последовательности, состоящей из нулей и единиц.
M2- дифференциальный	Отсутствие постоянной составляющей.	Более широкий спектр по сравнению с AMI и NRZ.
	Возможность обнаружения ошибок.	Частота основной гармоники выше, чем при AMI и NRZ в 2 раза при
	Синхронизация присутствует.	передаче последовательности,
	2 уровня сигнала. Хорошо работает с длинными последовательностями из единиц.	состоящей из нулей.
PAM-5	Частота основной гармоники 2 раза ниже по сравнению с NRZ.	5 уровней сигнала. Отсутствует самосинхронизация.
		Присутствует постоянная составляющая.

2.3. Выбор двух наилучших методов.

Самыми лучшими способами кодирования являются <u>PAM-5</u> и <u>манчестерский</u> дифференциальный метод.

РАМ-5 — в случае моего варианта, поскольку нет длинных последовательностей нулей и единиц, и у него хорошая скорость передачи из-за низкой частоты основной гармоники.

Манчестерский дифференциальный метод — у него также относительно других методов удовлетворительная скорость передачи и есть свои преимущества: присутствует самосинхронизация и возможность обнаружения ошибок.

3. Логическое (избыточное) кодирование.

Метод кодирования	РАМ-5 (в <u>МА2 дифференциальном</u> нет постоянной составляющей)
Исходное сообщение	В шестнадцатеричной форме: CA F3 EB E0 20 CD 2E C2 2E В двоичном коде: 11001010 11110011 11101011 11100000 00100000 11001101 11100010 11000010 11100010
Полученное сообщение	В шестнадцатеричной форме: D5 BB 5E 5F 9E A7 B5 BE 53 54 E5 0 В двоичном коде: 11010101 10111011 01011110 01011111 10011110 10100111 10110101 10111110 01010011 01010100 11100101 00
Длина нового сообщения	11.25 байт (90 бит)
Избыточность	25%

Временная диаграмма:

$$f_0 = \frac{C}{4} = 250 \, K\Gamma y$$

$$f_{s} = \frac{C}{4} = 250 \, K\Gamma u$$

$$f_{\scriptscriptstyle H} = \frac{f_{\scriptscriptstyle 0}}{3} = \frac{C}{12} \approx 83 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 87 \, \text{KFu}$$

$$f_{cp} = f_0 \frac{7 + \frac{3}{3} + \frac{3 \cdot 2}{2}}{16} \approx 156 \, K\Gamma y$$

 $F \ge S \Rightarrow F \ge 87 \, K\Gamma y$

4. Скремблирование исходного сообщения.

Метод кодирования	РАМ-5 (в <u>МА2-дифференциальном</u> нет
	постоянной составляющей)
Исходное сообщение	В шестнадцатеричной форме:
	CA F3 EB E0 20 CD 2E C2 2E
	В проинцом коло
	В двоичном коде: 11001010 11110011 11101011 11100000
	00100000 1110011 11101011 11100000
	11100010
Полученное сообщение в результате	В шестнадцатеричной форме:
скремблирования полиномом	D6 95 FB 50 25 4E 5B 77 AA
$B_i = A_i \oplus B_{i-3} \oplus B_{i-5};$	D
(D. MOOM DODAYOUTO MOVO HENNIO	В двоичном коде: 11010110 10010101 11111011 01010000
(в моем варианте макс. длина последовательности нулей и единиц	00100101 010010101 11111011 01010000 001001
равна 5, поэтому такой полином)	10101010
Длина нового сообщения	8 байт (72 бит)
Избыточность	0%

Временная диаграмма:

$$f_0 = \frac{C}{4} = 250 \, K\Gamma u$$

$$f_{\rm g} = \frac{C}{4} = 250 \, \text{KFy}$$

$$f_{\rm H} = \frac{f_0}{3} = \frac{C}{12} \approx 83 \, \text{KFy}$$

$$S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 87 \, \text{KFu}$$

$$f_{cp} = f_0 \frac{3 + \frac{3}{3} + \frac{5 \cdot 2}{2}}{16} \approx 141 \, K\Gamma y$$

$$F \ge S \Rightarrow F \ge 87 \, K\Gamma u$$

5. Сравнительный анализ результатов кодирования.

Метод	Плюсы	Минусы
Манчестерский дифференциальный	Отсутствие постоянной составляющей.	Более широкий спектр по сравнению с РАМ-5.
	Возможность обнаружения ошибок.	Частота основной гармоники гораздо выше по сравнению с РАМ-5.
	Синхронизация присутствует.	Она еще сильнее увеличивается при
		передаче последовательности,
	2 уровня сигнала.	состоящей из нулей.
	Хорошо работает с длинными	
	последовательностями из единиц.	
PAM-5	Частота основной гармоники 2-4 раза ниже	5 уровней сигнала.
	по сравнению с М2-	Отсутствует
	дифференциальным.	самосинхронизация.
	3 уровень для выявления ошибок.	Присутствует постоянная составляющая.
		Как такового выявления ошибок нет.
Избыточное кодирование	Возможность выявления	Объем передаваемых

	ошибок за счет обнаружения	данных увеличивается на
	обнаружения	DEO/
	oonapymenn	25%, соответственно
3	запрещенных символов.	полезная пропускная
		способность
	Сужается спектр сигнала	уменьшается на 20%.
I	и уменьшается	
I	постоянная	Временные затраты на
	составляющая (макс.	логическое
1	последовательность из 0	перекодирование.
1	или 1 равна 8)	
1	Возможность	
	синхронизации за счет	
	отсутствия длинных	
I	последовательностей	
(единиц и нулей.	
]	Простая реализация.	
ование	Пропускная способность	Дополнительные затраты
$B_{i-2} \oplus B_{i-2}$:	не уменьшается.	на перекодирование.
ν _{i=3} Ψ ν _{i=5} ,		
	Как правило,	Нет гарантии
	способствует	исключения постоянной
ı	минимизации постоянной	составляющей.
l l	составляющей (зависит	
	от выбора полинома и	
	передаваемых данных).	
оование $B_{i-3} \oplus B_{i-5};$	постоянная составляющая (макс. последовательность из 0 или 1 равна 8) Возможность синхронизации за счет отсутствия длинных последовательностей единиц и нулей. Простая реализация. Пропускная способность не уменьшается. Как правило, способствует минимизации постоянной составляющей (зависит от выбора полинома и	логическое перекодирование. Дополнительные затрат на перекодирование. Нет гарантии исключения постоянно

6. Вывод.

При входных данных варианта автора не возникает постоянной составляющей, что уменьшает вероятность ошибок и увеличивает соответственно среднее значение основной гармоники.

Соответственно, автор выбрал наилучшим методом РАМ-5, потому что он обеспечивает наилучшую пропускную способность, хотя требует наличия 5 уровней сигнала.

Однако, если канал передачи является зашумленным и рассинхронизированным, то следует использовать M2-дифференциальный,

поскольку он обеспечивает возможность обнаружения ошибок и самосинхронизацию. Кроме того, для реализации этого метода требуется 2 уровня сигнала.