

UNCLASSIFIED

AD NUMBER

AD820399

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Jun 1967.
Other requests shall be referred to Naval
Air Systems Command, Attn: NMC,
Washington, DC 20360.**

AUTHORITY

USNWC ltr, 17 Apr 1979

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

AD820399

NOTS TP 4143
Part 2

STORAGE TEMPERATURE OF EXPLOSIVE HAZARD MAGAZINES

Part 2. WESTERN PACIFIC

by

I. S. Kurotori and H. C. Schafer
Propulsion Development Department

ABSTRACT. Storage magazine temperature measurements (188,614 data points) from the tropic regions of the Pacific are under study. The areas under consideration are the Republic of the Philippines, Hawaii, and Guam. This data collection is for the purpose of establishing a temperature criterion by statistical methods for ordnance stored in explosive hazard magazines.

This report is the second of the series of reports which will cover explosive hazard magazine storage throughout the world. This report includes 47 figures and 14 tables.

D D C
REF ID: A6542
OCT 2 1967
B
RECORDED
REBULITE

U. S. NAVAL ORDNANCE TEST STATION
China Lake, California

June 1967

DISTRIBUTION STATEMENT

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF THE U.S. NAVAL ORDNANCE TEST STATION.

U. S. NAVAL ORDNANCE TEST STATION

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

G. H. LOWE, CAPT., USN
Commander

Wm. B. McLEAN, PH.D.
Technical Director

FOREWORD

This report is a continuation of the work covered in TP 4143, Part 1, American Desert. The effort described herein was undertaken by the U. S. Naval Ordnance Test Station (NOTS), China Lake, California, to determine the valid temperature environment of ordnance stored in "explosive hazard magazines" located in the tropical areas of the Western Pacific.

It is expected that there will be sufficient interest generated among ordnance designers to warrant continued work in the study of storage temperatures in other areas of interest such as marine-induced arctic, etc. This is the second in a series of reports.

This work was supported by Task Assignment Number A33-536-711/216-1/F009-06-01.

This report has been reviewed for technical content by Warren W. Oshel.

Released by
CRILL MAPLES, Head,
Quality Assurance Division
15 May 1967

Under authority of
G. W. LEONARD, Head,
Propulsion Development Department

NOTS Technical Publication 4143, Part 2

Published by Propulsion Development Department
Collation Cover, 44 leaves, DD Form 1473, abstract cards
First printing 375 unnumbered copies
Security classification UNCLASSIFIED

CONTENTS

Introduction	1
Scope	1
Background	1
Instrumentation	2
Method of Data Retrieval and Reduction	2
Results	3
Conclusions	12
Recommendations	12
Appendixes:	
A. Data Handling	13
B. Classification of Magazines	16
C. Applicable Statistics	52
D. Statistical Notes and Implications	79

Figures:

1. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at NAD, Oahu, Hawaii	5
2. Average Minimum and Average Maximum Temperatures for Non-Earth-Covered Magazines at NAD, Oahu, Hawaii	5
3. Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NAS, Barbers Point, Hawaii	6
4. Average Maximum and Average Minimum Temperatures for Non-Earth-Covered Magazines at NAS, Barbers Point, Hawaii	6
5. Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at the Naval Magazines, Guam	7
6. Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at the Naval Magazines, Guam	7
7. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at NAS, Agana, Guam	8
8. Average Minimum and Average Maximum Temperatures of Non-Earth-Covered Magazines at NAS, Agana, Guam	8
9. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at the U. S. Naval Magazines, Subic Bay, Republic of the Philippines	9

10.	Average Minimum and Average Maximum Temperatures of Non-Earth-Covered Magazines at the U. S. Naval Magazines, Subic Bay, Republic of the Philippines	9
11.	Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at the U. S. Naval Air Station, Sangley Point, Republic of the Philippines	10
12.	Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at the U. S. Naval Air Station, Sangley Point, Republic of the Philippines	10
13.	Typical Data Card	14
14.	Typical Microfilm Data	15
15.	Aperture Card With Microfilm Insert	15
16.	Magazine 21HT4, Typical of the AT, BT, BTX, FT, HT, and WT Magazines of the Naval Ammunition Depot, Oahu, Hawaii	21
17.	Magazine 10FT3, Typical of AT, BT, BTX, FT, HT, and WT Magazines at the Naval Ammunition Depot, Oahu, Hawaii	22
18.	Magazine 13PC16, Typical of the PC Magazines at the Naval Ammunition Depot, Oahu, Hawaii	23
19.	Magazine 24PT3, Typical of the PT and XT Magazines at the Naval Ammunition Depot, Oahu, Hawaii	24
20.	Magazine 10N13, Typical of Some Permanent Non-Earth-Covered Storage L, SH, N, and Z Shelters at the Naval Ammunition Depot, Oahu, Hawaii	25
21.	Storehouse 13SH5, Typical of Some Permanent Non-Earth-Covered SH Shelters at the Naval Ammunition Depot, Oahu, Hawaii	26
22.	Magazine 12Z16, Typical of Permanent Non-Earth-Covered Z Shelters at the Naval Ammunition Depot, Oahu, Hawaii	27
23.	Smoke Drum 21SD10, Typical of Some Non-Earth-Covered Shelters at the Naval Ammunition Depot, Oahu, Hawaii	28
24.	Magazine 3BT2, Typical of the BT, BC, EC and YC Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii	29
25.	Magazine 2HT2, Typical of the HT Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii	30
26.	Magazine 6XC6, Typical of the XC Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii	31
27.	Magazine 1Y1, Typical of the Non-Earth-Covered Y Shelters at the Naval Air Station, Barbers Point, Oahu, Hawaii	32

28. Ready Service Locker 1698, Naval Air Station, Barbers Point, Oahu, Hawaii	33
29. Magazine 14AT3, Typical of AT Magazines at the Naval Magazines, Guam	34
30. Magazine 8YC2, Typical of YC Magazines at the Naval Magazines, Guam	35
31. Receiving and Sorting RS-1, Naval Magazines, Guam	36
32. Magazine 2HT1, Typical of the HT Magazines at the Naval Air Station, Agana, Guam	37
33. Magazine 3YC1, Typical of the YC Magazines at the Naval Air Station, Agana, Guam	38
34. Magazine 1XT1, Typical of the XT Magazines at the Naval Air Station, Agana, Guam	39
35. Magazines 4X1 and 4XS1 at the Naval Air Station, Agana, Guam	40
36. Magazine 5FC9, Typical of the FC Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines	41
37. Magazine 5HT1, Typical of the HT Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines	42
38. Magazine 3ZC29, Typical of the ZC Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines	43
39. Magazine 6PC1, Typical of the Newer Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines	44
40. Magazine RX, Typical of Temporary Shelters for Explosive Ordnance at the Naval Magazines, Subic Bay, Republic of the Philippines	45
41. Magazine 3AT2, This Magazine is Similar to the One Shown in Fig. 29. The Photograph Depicts the Temporary Shelter Built Around the Magazines. Naval Magazines, Subic Bay, Republic of the Philippines	46
42. Outside Storage 3-OS4, the OS Storage Varies From no Covering, Tarpaulin Covering to Light Shelter (as Shown in Fig. 40). Naval Magazines, Subic Bay, Republic of the Philippines	47
43. Magazine 1BTY5, Typical of the YTY, TX, BTY and XTX Magazines at the Naval Station, Sangley Point, Republic of the Philippines	48
44. Magazine 1XC9, Typical of XC and XCX Magazines at the Naval Station, Sangley Point, Republic of the Philippines	49
45. Magazine 3XC1, Found at the Naval Station, Sangley Point, Republic of the Philippines	50

46. Magazine 4YC1, Typical of the YC Magazines at the Naval Station, Sangley Point, Republic of the Philippines	51
47. Gaussian Distribution and Skewed Distributions	53

Tables:

1. Data Summary by Station and Magazine Type	4
2. Punchcard Data	13
3. Construction, Use, and Capacities	16
4. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, NAD, Oahu, Hawaii	54
5. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, NAD, Oahu, Hawaii	58
6. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, NAS, Oahu, Hawaii	62
7. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, NAS, Oahu, Hawaii	63
8. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, Naval Magazines, Guam	64
9. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, Naval Magazines, Guam	66
10. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, NAS, Agana, Guam	68
11. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, NAS, Agana, Guam	70
12. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Magazines, Subic Bay, Republic of the Philippines ...	72
13. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Magazines, Subic Bay, Republic of the Philippines ...	75
14. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Air Station, Sangley Point, Republic of the Philippines	77
15. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Air Station, Sangley Point, Republic of the Philippines	78

ACKNOWLEDGMENT

The authors are indebted to personnel at the U. S. Naval Ammunition Depot, Oahu, Hawaii; U. S. Naval Air Station, Barbers Point, Oahu, Hawaii; U. S. Naval Magazine, Guam; U. S. Naval Air Station, Agana, Guam; U. S. Naval Magazines, Subic Bay, Republic of the Philippines; and the U. S. Naval Station, Sangley Point, Republic of the Philippines, who provided the magazine temperature data, photographs, and other valuable information concerning storage magazines; also Mr. Jack L. Bateman for editing.

Special acknowledgment is due Ruth Massaro and Edna Vines, who have generated via computer equipment, the pertinent graphs and statistics presented in this report.

INTRODUCTION

Environmental temperature criteria are a major controlling factor in the design of all types of ordnance. However, the accepted temperature criteria, as set forth in Military Specifications, may be such that there are ordnance that actually meet the needs of our Naval services, and yet have failed over-strenuous qualification requirements. It is important then, that the actual temperature environment of ordnance be studied to substantiate existing temperature specifications or to revise the limitations in accordance with the findings.

SCOPE

This report covers a comparatively small area of the storage environment of explosive ordnance. Storage temperatures (data points) were obtained from Naval facilities located in the tropics of the Pacific in order to conduct preliminary studies of temperatures within storage magazines. These data points were obtained by the personnel at the Naval Ammunition Depot (NAD), Oahu, Hawaii; the Naval Air Station (NAS), Barbers Point, Oahu, Hawaii; the Naval Magazines, Guam; the Naval Air Station, Agana, Guam; the U. S. Naval Magazines, Subic Bay, Republic of the Philippines; and the U. S. Naval Station, Sangley Point, Republic of the Philippines, for use in their ammunition safety programs.

The data reported herein are comprised of the measured air temperatures inside the described structures only. Due to the difference in mass density between the air and the ordnance, the actual temperature of the ordnance will lag behind the air temperature fluctuations. Therefore, any temperatures herein reported can be treated as "conservative" relative to the actual temperature of the ordnance stored in these explosive hazard magazines.

BACKGROUND

This study of magazine temperatures is the second of the series which will cover worldwide storage magazine temperatures. The first part covered the desert regions of the Western United States. As is true with temperature data from storage magazines from the desert, data from the tropics are available because of the requirements set forth in the Navy Bureau of Ordnance Publication, OP5, "Ammunition Ashore, Handling, Stowing and Shipping", which sets forth a definite requirement for the maintenance of magazine air maximum and minimum temperature records.

INSTRUMENTATION

The magazine temperature data were obtained through the use of "horseshoe" maximum and minimum mercury thermometers. These thermometers are equipped with steel "tattletale" devices that float on the mercury and remain at the highest and lowest temperature positions reached during the measurement period. The ordnancemen reset the tattletales with a magnet after reading the indicated maximum and minimum temperature for the measurement period. The manufacturers of the thermometers (Taylor, Weksler, and Moeller) warrant that the temperature readings are accurate to within 2 °F at time of delivery to the Navy. These thermometers are mounted on the inside forward face of the back wall of the explosive hazard magazines at about eye level (standard procedure).

The nonstandard magazines may not allow the placement of the thermometers at the usual locations within the magazines. Thermometers have been occasionally observed to be mounted on boards and situated for convenience even in "standard" types of magazines.

METHOD OF DATA RETRIEVAL AND REDUCTION

All available storage magazine temperature data from the NAD, Oahu, Hawaii; the NAS, Oahu, Hawaii; the Naval Magazines, Guam; the NAS, Agana, Guam; the Naval Magazines, Subic Bay, Republic of the Philippines; and the Naval Station, Sangley Point, Republic of the Philippines; were collected and sent to the Analysis Branch, Propulsion Development Department at NOTS. The raw data were reduced to meaningful statistics. The significant points of interest for each location were tabulated. These were (1) the number of temperature measurements collected, (2) the number of measured temperatures exceeding 90 °F for each month, and (3) the average maximum and the average minimum temperature for each month.

The raw data input consisted of summary sheets of the maximum and minimum temperatures organized by magazine area, magazine type and the date of the readings. The information on the summary sheets was transferred to IBM punchcards. A computer was then used to reduce the information into the statistics previously mentioned. The steps by which the raw data were processed are explained in detail in Appendix A.

RESULTS

A summarization of all the data points exceeding 90°F and 100°F from both earth-covered and non-earth-covered tropically located explosive hazard magazines is presented in Table 1.

The results presented in Table 1 give an indication of temperatures to be expected in explosive hazard magazines in the tropics. It must be remembered, however, that the apparent differences in temperature between locations is to some extent due to the construction of the individual storage magazines. It should also be noted that the average earth-covered magazine air temperatures for some months are higher than those recorded for non-earth-covered magazines. This is due to the differences in construction, size, deployment of the magazines, and the location of the thermometers within the earth-covered magazines. A description of the magazine classifications pertinent to this report is given in Appendix B.

The average maximum and minimum temperatures of each month for the six magazine sites are shown in Fig. 1 through 12. Figures 1, 3, 5, 7, 9, and 11 are the data reported from earth-covered explosive hazard magazines at the various locations. Figures 2, 4, 6, 8, 10, and 12 present the data reported from the non-earth-covered buildings and temporary shelters at the candidate storage sites. The upper lines in Fig. 1 through 12 represent the monthly observed average maximums and the lower lines represent the observed average minimum.

Figures 1 and 2 include the years 1960 through 1966, for NAD, Oahu, Hawaii. The data were not available for the month of November 1962. However, it is probable that the missing data could be "interpolated" with a high degree of assurance when the subsequent months of November are consulted. It is indicated by Fig. 1 and 2 that the earth-covered magazines at NAD, Oahu, Hawaii are so constructed that there is a more constant temperature within their interiors than in those that are non-earth-covered. Non-earth-covered magazine air temperature are more affected by outside ambient air temperature changes.

The time spans and data sources included in Fig. 3 through 12 are as follows:

Figure	Time span	Data source
3-4	1965-1966	NAS, Barbers Point, Oahu, Hawaii
5	Aug. 1963-Nov. 1966	Naval Magazines, Guam
6	Oct. 1963-Nov. 1966	Naval Magazines, Guam
7	April 1963-Dec. 1966	NAS, Agana, Guam
8	Jan. 1964-Nov. 1966	NAS, Agana, Guam
9	Jan. 1962-Dec. 1966	Naval Magazines, Subic Bay
10	Jan. 1962-Dec. 1964	Naval Magazines, Subic Bay
11	Feb. 1965-Dec. 1966	NAS, Sangley Point
12	Feb. 1965-June 1966	NAS, Sangley Point

TABLE i. Data Summary
(Location and Magazine Type).

Storage locations	Magazine type	Years ^a	N ^b	Number of maximum temperatures equal to or greater than		Maximum recorded temperature
				90°F	100°F	
Naval Ammunition Depot, Oahu, Hawaii	Earth-covered	6	39,155	128	0	98
	Non-earth-covered	6	7,165	2,203	0	99
Naval Air Station, Barbers Point, Oahu, Hawaii	Earth-covered	2	2,146	95	3	161
	Non-earth-covered	2	2,837	141	1	100
Naval Magazines, Guam	Earth-covered	3	6,739	35	0	98
	Non-earth-covered	3	679	471	79	104
Naval Air Station, Agana, Guam	Earth-covered	3	6,518	416	8	108
	Non-earth-covered	2	2,421	311	1	105
Naval Magazines, Republic of the Philippines	Earth-covered	5	9,100	661	1	100
	Non-earth-covered	2	140	69	56	110
Naval Station, Sangley Point, Republic of the Philippines	Earth-covered	1	3,479	476	1	101
	Non-earth-covered	1	383	8	0	98

^a Length of time in complete calendar years.^b Number of data points represented in the sampling.

FIG. 1. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at NAD, Oahu, Hawaii.

FIG. 2. Average Minimum and Average Maximum Temperatures for Non-Earth-Covered Magazines at NAD, Oahu, Hawaii.

FIG. 3. Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NAS, Barbers Point, Hawaii.

FIG. 4. Average Maximum and Average Minimum Temperatures for Non-Earth-Covered Magazines at NAS, Barbers Point, Hawaii.

FIG. 5. Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at the Naval Magazines, Guam.

FIG. 6. Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at the Naval Magazines, Guam.

FIG. 7. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at NAS, Agana, Guam.

FIG. 8. Average Minimum and Average Maximum Temperatures of Non-Earth-Covered Magazines at NAS, Agana, Guam.

FIG. 9. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at the U. S. Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 10. Average Minimum and Average Maximum Temperatures of Non-Earth-Covered Magazines at the U. S. Naval Magazines, Subic Bay, Republic of the Philippines.

NOTS TP 4143

Part 2

FIG. 11. Average Minimum and Average Maximum Temperatures of Earth-Covered Magazines at the U. S. Naval Air Station, Sangley Point, Republic of the Philippines.

FIG. 12. Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at the U. S. Naval Air Station, Sangley Point, Republic of the Philippines.

The non-earth-covered magazine air temperature record shown in Fig. 6 varies considerably, which is in contrast with the earth-covered magazine air temperature plot shown in Fig. 5. The reason is that the temperature records from the same magazines have not been reported for each month; therefore, the sample is a variable and the number of data points for each month is not a constant. The general trend of non-earth-covered magazine air temperatures seems to indicate a lack of stability. More data are necessary to define this trend.

A comparison of Fig. 5 with Fig. 7 indicates an overall stability of temperatures. The reason for the temperature change at NAS, Agana, Guam (Fig. 7) is not apparent. The difference may have been due to ambient temperature change but more likely was caused by the increased activity within the magazines brought about by the situation in Viet Nam. Figure 8 is indicative of the air temperature excursion to be expected in non-earth-covered ammunition storage structures at Guam.

The increase of solar radiation as the sun reaches the overhead position in April of each yearly cycle is clearly evident in Fig. 9. The rains come to negate this trend throughout the "summer". The rest of the year seems to moderate generally from the "springtime" peak. At the latitude in which Subic Bay is located, the usual summer extreme pattern is bicuspidate. The first hot spell occurs during April and May, as indicated in Fig. 9. The second cusp is experienced when the rains cease in late September, October, and early November. Traces of this second cusp are evident in Fig. 9.

The erratic surface temperature plot of Fig. 10 is due to the disparity in the type of non-earth-covered magazines and the number of measurements being taken during each month at Subic Bay (see Appendix C). This information is included only because of the vast amount of material stored in non-earth-covered structures at this time. It is hoped that more data will indicate the air temperature trend more fully. It should be noted that the maximum point in the maximum mean air temperature plot is comprised of one measurement of 106°F. More data will place this value more firmly in context.

Figures 11 and 12 appear to closely resemble each other for comparable temperature measurement periods and exhibit the same general temperature patterns as that seen in Fig. 9.

The data from which the plots of Fig. 1 through 12 were taken are included in Appendix C. These data include the number of measured points from which the averages and the standard deviations were computed. The importance of reporting these data and the implications arising therefrom are discussed in Appendix D.

CONCLUSIONS

It has been found that the type of storage structure determines, to some extent, the storage temperatures. The temperature differences are, however, such that further detailed study of structure effects on enclosed air temperatures is not warranted at the present time. Even the maximum air temperature of 110°F recorded in the non-earth-covered OS type shelter located at the U. S. Naval Magazines, Subic Bay, Republic of the Philippines, is nowhere near the existing storage specification requirement temperature of 165°F.

Parts 1 and 2 of this report have to a large degree statistically established that the maximum storage specification air temperature of 165°F is not to be found in the "explosive hazard magazines" located in either the hot desert or the tropics.

Assuming that the data are representative of the enclosed air temperatures encountered in the explosive hazard magazines located in the tropics, the results of this study indicate that ordnance, explosives, propellants, pyrotechnics, etc. stored in these magazines will probably never be subjected to temperatures exceeding 115°F.

RECOMMENDATIONS

This report does not cover the minimum 11-year period of one solar cycle required to provide a thorough representation of the storage temperatures in the tropics. Therefore, these reports, Parts 1 and 2 of Storage Magazine Temperatures, should be used as a basis for the continuation of this program.

These reports on storage magazine enclosed air temperatures and oncoming similar reports should be used as a basis for the updating of the storage temperature requirements of the Military Specifications to which ordnance are designed.

It is also recommended that as significantly more data become available, this work be revised so that the trends become more obvious to the designer of new ordnance. (See Appendix D.)

Appendix A

DATA HANDLING

The procedure for handling the storage temperature data is as follows:

Step 1. The applicable data are keypunched onto IBM type cards from the temperature summary sheets as received from the ammunition storage facility as shown in Table 2.

TABLE 2. Punchcard Data.

	Month	Day	Year	Type of magazine	Temp. reading		Storage location
					Low	High	
Example	12	01	66	IWT1	74	78	NAD, Oahu, Hawaii
Card column	3		8	18-26	36-38	42-44	55-79

Step 2. The punched cards (step 1) are sorted in the following manner.

- a. Storage location: NAD, Oahu, Hawaii; NAS, Oahu, Hawaii; Naval Magazines, Guam; NAS, Agana, Guam; Naval Magazines, Republic of the Philippines; Naval Station, Sangley Point, Republic of the Philippines.
- b. Each group of cards by location into calendar sequence by:
 - (1) Year
 - (2) Month
 - (3) Day

Step 3. The "input deck" consists of: (1) Univac 1108 computer program (420052), (2) the sorted cards from step 2, and (3) a "total card" with the number of months of data included in columns 4 and 5. The computer program, 420052, computes the averages and standard deviations of maximum and minimum temperatures of each month.

Step 4. The resulting output from step 3 consists of the output deck with averages and standard deviations of maximum and minimum temperatures punched in the cards as shown in Fig. 13. Microfilm

containing data for each month, as sorted in step 2, are processed by the computer. Figure 14 is a photographic reproduction of a typical microfilm.

Step 5. The output deck created in step 4 is reproduced on aperture cards. The microfilm of step 4 is cut into segments and mounted on an aperture card as shown in Fig. 15.

FIG. 13. Typical Data Card.

Step 6. The output deck is assembled with another Univac 1108 computer program (420053) and fed into the computer. The output from the computer is a curve such as that illustrated in Fig. 1 which plots the average maximum and minimum temperatures for the effective dates of the output deck knowledge. The microfilm of this curve is also mounted on an aperture card.

HIGH TEMPERATURES

DATE = 12 66

LOCATION = 1

N =	480	MEAN =	79.07	STANDARD DEVIATION =	3.099														
78.	78.	79.	78.	78.	80.	81.	79.	78.	81.	82.	83.	84.	80.	80.	81.	84.	85.	79.	78.
76.	78.	77.	75.	78.	78.	76.	83.	79.	82.	81.	82.	84.	83.	83.	83.	79.	79.	80.	78.
82.	82.	80.	84.	78.	76.	77.	76.	75.	79.	78.	81.	80.	81.	78.	81.	82.	81.	78.	
80.	83.	84.	84.	76.	82.	82.	81.	80.	80.	77.	76.	75.	76.	78.	78.	78.	77.	81.	
77.	82.	84.	81.	81.	84.	81.	82.	80.	84.	80.	80.	83.	81.	78.	76.	77.	75.	78.	
79.	79.	80.	79.	78.	79.	80.	93.	83.	83.	79.	79.	81.	80.	79.	78.	76.	75.	78.	
78.	78.	76.	77.	79.	79.	77.	78.	30.	82.	77.	79.	81.	81.	82.	83.	83.	83.	80.	
80.	83.	82.	78.	76.	76.	76.	74.	75.	76.	78.	78.	78.	77.	77.	85.	81.	79.	71.	
79.	82.	79.	79.	83.	83.	79.	81.	82.	80.	80.	84.	76.	76.	75.	75.	74.	76.		
78.	77.	81.	76.	83.	82.	81.	83.	85.	84.	79.	79.	84.	85.	81.	80.	80.	76.	77.	
76.	74.	76.	77.	79.	78.	81.	80.	80.	82.	78.	81.	81.	85.	82.	83.	81.	76.	76.	
78.	76.	76.	76.	77.	80.	77.	79.	79.	82.	80.	79.	78.	86.	79.	84.	81.	83.	81.	
82.	79.	76.	75.	77.	76.	75.	76.	77.	78.	76.	76.	80.	81.	78.	78.	79.	80.	80.	
83.	84.	78.	80.	84.	87.	84.	76.	76.	75.	76.	76.	76.	79.	78.	76.	81.	79.	78.	
80.	79.	83.	83.	83.	76.	80.	82.	84.	80.	80.	80.	76.	76.	76.	77.	75.	75.	79.	
78.	77.	78.	77.	82.	79.	79.	82.	83.	82.	80.	77.	77.	82.	81.	81.	79.	76.	76.	
77.	76.	76.	77.	77.	76.	75.	75.	75.	71.	76.	77.	77.	78.	80.	80.	77.	78.	80.	
80.	81.	78.	78.	77.	79.	80.	81.	80.	81.	79.	75.	77.	78.	76.	78.	78.	79.	77.	
77.	78.	78.	80.	82.	81.	85.	85.	80.	76.	76.	75.	75.	75.	76.	75.	77.	78.	76.	
77.	75.	79.	76.	77.	80.	79.	80.	85.	86.	90.	80.	77.	80.	79.	82.	87.	85.	80.	
76.	73.	75.	79.	75.	79.	79.	81.	76.	77.	81.	81.	81.	79.	79.	79.	85.	84.	80.	
82.	76.	82.	86.	76.	76.	76.	75.	74.	76.	75.	85.	82.	85.	81.	86.	80.	82.	87.	
72.	78.	75.	76.	75.	80.	77.	83.	78.	82.	80.	82.	82.	81.	77.	76.	76.	75.	75.	
78.	81.	76.	75.	77.	82.	78.	79.	79.	80.	81.	78.	79.	81.	81.	81.	81.	81.	81.	

FIG. 14. Typical Microfilm Data.

FIG. 15. Aperture Card With Microfilm Insert.

Appendix B

CLASSIFICATION OF MAGAZINES

Storage magazines differ in construction and deployment for the type of ammunition that is to be stowed. The storage magazines from which the temperature data have been collected differ greatly in their classification range from "explosive hazard magazines" to storehouses. Their construction, labeling, maintenance, etc., and the frequency at which temperature measurements were taken are in accordance with Ammunition Ashore Handling, Stowing, and Shipping, OP5, Vol. 1, second revision. The letter designations exactly as established by OP5 are present in Table 3, so that the reader will have no difficulty in distinguishing between types of magazines that are found at the specified locations in the tropics.

In order to indicate the type of magazine, OP5 requires that the letter L is added if the magazine is earth covered and barricaded; the letter C is added if the magazine is earth covered but the door is not barricaded; and the letter S is added if the magazine is not earth covered but is barricaded.

TABLE 3. Construction, Use, and Capacities.

L to N inclusive and SC and Y Fire Hazard--Powder (Bulk, Semi-fixed or Bag Ammunition), Pyrotechnics, Ignition Fuze and Primers, Small Arms, Smoke Drums, Chemical Ammunition.

DIMENSIONS (nominal)	NORMAL EXPLOSIVE LIMIT	LETTER DESIGNATOR
50' x 100' -----	500,000 lbs -----	L
25' x 80' triple arch	500,000 lbs -----	L
52' dome (Corbetta type)	500,000 lbs -----	D
50' x 60' -----	300,000 lbs -----	M
30' x 50' -----	125,000 lbs -----	N
25' x 48' -----	125,000 lbs -----	N
25' x 40' -----	125,000 lbs -----	N
Miscellaneous or non- standard size	Dependent upon loca- tion, size, and construction	Y

TABLE 3. (Cont.)
 P and Z Missile Hazard--Projectile and Fixed Ammunition.

DIMENSIONS (nominal)	MAXIMUM EXPLOSIVE LIMIT	LETTER DESIGNATOR
50' x 100' -----	143,000 lbs -----	P
25' x 80' triple arch	143,000 lbs (total for three arches)	P
52' dome (Corbetta type)	143,000 lbs -----	D
Miscellaneous or non- standard size	143,000 lbs -----	Z

A to K inclusive and W and X Explosion Hazard--High Explosive
(Bulk, Depth Charges, Mines, Warheads, Bombs, etc.) Fuzes,
Detonators, Exploders, Black Powder.

DIMENSIONS (nominal)	NORMAL USE	NORMAL EXPLOSIVE LIMIT	LETTER DESIG- NATOR
25' x 80' arch type (igloo)	High explosives	250,000 lbs	A
25' x 50' arch type (igloo)	High explosives	143,000 lbs	B
25' x 40' arch type (igloo)	High explosives	143,000 lbs	B
39' x 44' or 32' x 44 (war- head type)	High explosives	250,000 lbs	W
12' x 17' (box type)	Black powder	20,000 lbs	E
Miscellaneous or non-standard size	High explosives	Dependent up- on size, lo- cation, and construction	X
25' x 20' arch type (igloo)	Fuze and detonator	70,000 lbs	F
Dimensions vary (gallery or tunnel type)	High Explosives	250,000 lbs	G

TABLE 3. (Contd.)

DIMENSIONS (nominal)	NORMAL USE	NORMAL EXPLOSIVE LIMIT	LETTER DESIG- NATOR
10' x 14'	Fuze and detonator	15,000 lbs	H
10' x 7'	Fuze and detonator	7,500 lbs	H
6' x 8'8" (keyport type)	High explosives	4,000 lbs	K

DIMENSIONS (nominal)	TYPE	LETTER DESIGNATOR
25' x 68' -----	Smoke drum type ---	SD
25' x 34' -----	Smoke drum type ---	SD
25' x 51' -----	Smoke drum type ---	SD
	All inert storehouses	SH

TYPE OF HAZARD	LETTER DESIGNATOR
Explosive hazard magazine	X
Fire hazard magazine	Y
Missile hazard magazine	Z

PHYSICAL APPEARANCE OF MAGAZINES

The number of magazines at each of the Western Pacific ordnance storage areas under consideration in this report is given in the following paragraphs. The types of magazines at each storage site are described using the "letter designator" system previously explained. A series of photographs (Fig. 16 through 46) is included following the text of this Appendix (B).

NAVAL AMMUNITION DEPOT, OAHU, HAWAII

There are approximately 311 storage magazines from which the temperature data were taken. Two hundred eighty-five magazines are earth covered with letter designations AT, ATX, BT, BTX, FT, EC, HT, PC, PT, WT and XT. Twenty-six magazines are surface magazines with letter designations L, N, SD, SH and Z. Typical magazines are shown in Fig. 16 through 23.

NAVAL AIR STATION, BARBERS POINT, HAWAII

There are 39 magazines from which temperature data were taken. Twenty-eight magazines are earth covered with letter designators HT, BC, BT, EC, YC and XC. Eleven are surface magazines with letter designators Y, L, Z and R. S. L. (Ready Service Lockers). Photographs of typical magazines are included in Fig. 24 through 28.

NAVAL MAGAZINES, GUAM

There are 224 magazines from which temperature data were taken. They are all earth covered with letter designations AT, AC, HT, XC, YC and ZC. Temperature measurements were also taken from ready service lockers. These lockers may be considered surface magazines as they are of similar construction. Photographic coverage of some typical magazines is given in Fig. 29 through 31.

NAVAL AIR STATION, AGANA, GUAM

There are 11 magazines from which temperature data were taken. Nine magazines are earth covered with letter designations XT, YC, and HT. Two magazines are surface magazines of concrete construction with multiple cubicles with a letter designation X. Typical magazines are shown in Fig. 32 through 35.

NAVAL MAGAZINES, SUBIC BAY, REPUBLIC OF
THE PHILIPPINES

There are 222 magazines at Subic Bay from which temperature data were taken. One hundred forty-seven are earth covered with letter designations AT, XT, BT, FC, ZC, PC, and PT. There are 75 surface magazines with letter designations OS, Xs, F, and RX. Temperature measurements were taken from OS type magazines (outside storage) which range from no covering or tarpaulin covered, to sheds. Typical photographic coverage is given in Fig. 36 through 42. No temperatures have been recorded in the type of magazine shown in Fig. 40, however, it is considered that the temperatures are similar to those recorded in the OS type shelter. Temperature readings are not available from shelters such as shown in Fig. 41.

NAVAL STATION, SANGLEY POINT, REPUBLIC OF
THE PHILIPPINES

There are 21 magazines from which temperature data were taken. Fifteen magazines are earth covered with letter designators, YTY, ZTX, BTY, XTX, XC, XCX, and YC. Six magazines are surface magazines with the letter designator X. The surface magazine temperature data has been discontinued since June 1966. Typical magazines at Sangley Point are shown in Fig. 43 through 46.

FIG. 16. Magazine 2HT4, Typical of the AT, BT, BTX, FT, HT, and WT Magazines of the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 17. Magazine 10FT3, Typical of AT, BT, BTX, FT, HT, and WT Magazines at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 18. Magazine 13PC16, Typical of the PC Magazines at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 19. Magazine 24PT3, Typical of the PT and XT Magazines at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 20. Magazine 10N13, Typical of Some Permanent Non-Earth-Covered Storage L, SN, N, and Z Shelters at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 21. Storehouse 13SH5, Typical of Some Permanent Non-Earth-Covered SH Shelters at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 22. Magazine 12716, Typical of Permanent Non-Earth-Covered Z Shelters at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 23. Smoke Drum 21SD10, Typical of Some Non-Earth-Covered Shelters at the Naval Ammunition Depot, Oahu, Hawaii.

FIG. 24. Magazine 3BT2, Typical of the BT, BC, EC and YC Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii.

FIG. 25. Magazine 2HT2, Typical of the HT Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii.

FIG. 26. Magazine 6XC6, Typical of the XC Magazines at the Naval Air Station, Barbers Point, Oahu, Hawaii.

FIG. 27. Magazine 1Y1, Typical of the Non-Earth-Covered Y Shelters at the Naval Air Station, Barbers Point, Oahu, Hawaii.

FIG. 28. Ready Service Locker 1698, Naval Air Station, Barbers Point, Oahu, Hawaii.

FIG. 29. Magazine 14 AT 3, Typical of AT Magazines at the Naval Magazines, Guam.

FIG. 30. Magazine 8YC2, Typical of YC Magazines at the Naval Magazines, Guam.

FIG. 31. Receiving and Sorting RS-1, Naval Magazines, Guam.

FIG. 32. Magazine 2HT1, Typical of the HT Magazines at the Naval Air Station, Agana, Guam.

FIG. 33. Magazine 3YC1, Typical of the YC Magazines at the Naval Air Station, Agana, Guam.

FIG. 34. Magazine 1XT1, Typical of the XT Magazines at the Naval Air Station, Agana, Guam.

NOTS TP 4143
Part 2

FIG. 35. Magazines 4X1 and 4X51 at the Naval Air Station, Agana, Guam.

FIG. 1. Magazine 5FC9, Typical of the FC Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines.

NOTS TP 4143

Part 2

FIG. 37. Magazine 5HT1, Typical of the HT Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 38. Magazine 3ZC29, Typical of the ZC Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 39. Magazine 6PC1, Typical of the Newer Magazines at the Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 40. Magazine RX, Typical of Temporary Shelters for Explosive Ordnance at the Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 41. Magazine 3AT2, This Magazine is Similar to the One Shown in Fig. 29. The Photograph Depicts the Temporary Shelter Built Around the Magazines, Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 42. Outside Storage 3-OS4, the OS Storage Varies From no Covering, Tarpaulin Covering to Light Shelter (as Shown in Fig. 40). Naval Magazines, Subic Bay, Republic of the Philippines.

FIG. 43. Magazine 1B7Y5, Typical of the YTY, TX, BTY and XTX Magazines at the Naval Station, Sangley Point, Republic of the Philippines.

FIG. 44. Magazine 1XC9, Typical of XC and XCX Magazines at the Naval Station, Sangley Point, Republic of the Philippines.

FIG. 45. Magazine 3XC1, Found at the Naval Station, Sangley Point, Republic of the Philippines.

FIG. 46. Magazine 4YC1, Typical of the YC Magazines at the Naval Station, Sangley Point, Republic of the Philippines.

Appendix C

APPLICABLE STATISTICS

The standard deviation given along with the average maximum and average minimum temperature is a measure of dispersion (precision, reproducibility, spread, scatter, etc.) of temperatures within the month. If it is assumed¹ the temperature readings within each month are dispersed normally (Gaussian distribution) then the standard deviation (σ) can easily be used for calculating the percentage of temperature readings that would exceed nominal temperatures. The Gaussian distribution is a group of measurements that has its measurement frequencies bell-shaped about the average. That is, the spread of frequency of measurements below and above the averages would appear as equally descending bell-shaped curves on either side of the average.¹ Skewness is a term used to define the degree of departure from the symmetrical bell-shaped curve. Figure 47 presents this Gaussian distribution. The distributions for within-month temperatures differ from month to month in that the skewness of these distributions differ. However, the skewness is never so extreme that the assumption of normality, which can easily provide the prediction of approximate percentage points, can be discarded.

Temperature averages for the six storage sites under consideration in this report are given in Tables 4-15. An explanation of the symbols is as follows:

- D = date, followed by month and year
- N = number of data points measured
- X = average
- SD = standard deviation
- LT = low temperature (minimum)
- HT = high temperature (maximum)

¹ For a Gaussian distribution, the average (μ) minus 1 standard deviation (σ) to the average (μ) plus 1 standard deviation (σ), that is $\mu \pm 1\sigma$, includes approximately 68% of all the values of the distribution. Similarly $\mu \pm 2\sigma$ covers 95% and $\mu \pm 3\sigma$ covers 99% of all the values of the distribution.

FIG. 47. Gaussian Distribution and Skewed Distributions.

TABLE 4. Minimum and Maximum Earth-Covered Storage
Temperatures, Monthly Summaries,
NAD, Oahu, Hawaii.

D	01	60	NAD OAHU	N	163	X	74.72	SD	2.361	LT
D	01	60	NAD OAHU	N	163	X	78.13	SD	1.933	HT
D	02	60	NAD OAHU	N	165	X	73.99	SD	2.330	LT
D	02	60	NAD OAHU	N	165	X	78.44	SD	1.722	HT
D	03	60	NAD OAHU	N	190	X	74.39	SD	2.179	LT
D	03	60	NAD OAHU	N	190	X	78.09	SD	1.837	HT
D	04	60	NAD OAHU	N	171	X	76.91	SD	2.299	LT
D	04	60	NAD OAHU	N	171	X	80.75	SD	1.758	HT
D	05	60	NAD OAHU	N	1064	X	76.06	SD	2.909	LT
D	05	60	NAD OAHU	N	1064	X	80.77	SD	3.058	HT
D	06	60	NAD OAHU	N	1105	X	78.44	SD	3.126	LT
D	06	60	NAD OAHU	N	1105	X	82.99	SD	2.955	HT
D	07	60	NAD OAHU	N	969	X	78.87	SD	3.070	LT
D	07	60	NAD OAHU	N	969	X	83.74	SD	2.952	HT
D	08	60	NAD OAHU	N	883	X	81.25	SD	3.144	LT
D	08	60	NAD OAHU	N	883	X	85.24	SD	3.122	HT
D	09	60	NAD OAHU	N	1258	X	79.55	SD	3.535	LT
D	09	60	NAD OAHU	N	1258	X	83.84	SD	3.151	HT
D	10	60	NAD OAHU	N	1090	X	79.05	SD	3.142	LT
D	10	60	NAD OAHU	N	1090	X	83.07	SD	4.040	HT
D	11	60	NAD OAHU	N	981	X	76.96	SD	2.840	LT
D	11	60	NAD OAHU	N	981	X	80.93	SD	3.106	HT
D	12	60	NAD OAHU	N	1088	X	74.33	SD	2.730	LT
D	12	60	NAD OAHU	N	1088	X	78.27	SD	2.932	HT
D	01	61	NAD OAHU	N	920	X	72.41	SD	2.585	LT
D	01	61	NAD OAHU	N	920	X	77.02	SD	2.943	HT
D	02	61	NAD OAHU	N	839	X	72.29	SD	2.365	LT
D	02	61	NAD OAHU	N	839	X	76.84	SD	2.793	HT
D	03	61	NAD OAHU	N	1023	X	74.02	SD	2.660	LT
D	03	61	NAD OAHU	N	1023	X	78.38	SD	3.090	HT
D	04	61	NAD OAHU	N	897	X	74.43	SD	2.747	LT
D	04	61	NAD OAHU	N	897	X	79.22	SD	2.873	HT
D	05	61	NAD OAHU	N	975	X	76.85	SD	2.721	LT
D	05	61	NAD OAHU	N	975	X	81.52	SD	3.007	HT
D	06	61	NAD OAHU	N	968	X	78.01	SD	2.772	LT
D	06	61	NAD OAHU	N	968	X	82.72	SD	2.909	HT
D	07	61	NAD OAHU	N	885	X	78.51	SD	2.870	LT
D	07	61	NAD OAHU	N	885	X	83.32	SD	2.950	HT
D	08	61	NAD OAHU	N	1011	X	79.66	SD	2.973	LT
D	08	61	NAD OAHU	N	1011	X	84.01	SD	3.040	HT
D	09	61	NAD OAHU	N	882	X	79.34	SD	2.095	LT
D	09	61	NAD OAHU	N	882	X	83.88	SD	3.126	HT
D	10	61	NAD OAHU	N	951	X	77.79	SD	2.953	LT
D	10	61	NAD OAHU	N	951	X	82.43	SD	2.930	HT
D	11	61	NAD OAHU	N	903	X	75.76	SD	2.534	LT
D	11	61	NAD OAHU	N	903	X	80.61	SD	3.113	HT
D	12	61	NAD OAHU	N	901	X	73.84	SD	2.354	LT
D	12	61	NAD OAHU	N	901	X	77.54	SD	2.709	HT

TABLE 4. (Cont.)

D	01	62	NAD	OAHI	N	976	X	72.62	SD	2.384	LT
D	01	62	NAD	OAHI	N	976	X	76.02	SD	2.743	HT
D	02	62	NAD	OAHI	N	862	X	71.65	SD	2.494	LT
D	02	62	NAD	OAHI	N	862	X	76.55	SD	2.685	HT
D	03	62	NAD	OAHI	N	904	X	71.00	SD	2.282	LT
D	03	62	NAD	OAHI	N	904	X	75.77	SD	2.548	HT
D	04	62	NAD	OAHI	N	919	X	73.20	SD	2.460	LT
D	04	62	NAD	OAHI	N	919	X	78.21	SD	2.755	HT
D	05	62	NAD	OAHI	N	966	X	74.69	SD	2.356	LT
D	05	62	NAD	OAHI	N	966	X	79.53	SD	2.572	HT
D	06	62	NAD	OAHI	N	514	X	76.63	SD	2.413	LT
D	06	62	NAD	OAHI	N	514	X	81.46	SD	2.812	HT
D	07	62	NAD	OAHI	N	335	X	77.44	SD	2.773	LT
D	07	62	NAD	OAHI	N	335	X	83.36	SD	2.518	HT
D	08	62	NAD	OAHI	N	358	X	78.92	SD	3.136	LT
D	08	62	NAD	OAHI	N	358	X	84.84	SD	2.571	HT
D	09	62	NAD	OAHI	N	325	X	79.25	SD	2.617	LT
D	09	62	NAD	OAHI	N	325	X	84.25	SD	2.604	HT
D	10	62	NAD	OAHI	N	320	X	78.41	SD	2.743	LT
D	10	62	NAD	OAHI	N	320	X	83.29	SD	2.677	HT
D	11	62	NAD	OAHI	N						HT
D	11	62	NAD	OAHI	N						HT
D	12	62	NAD	OAHI	N	161	X	73.71	SD	2.312	LT
D	12	62	NAD	OAHI	N	161	X	79.27	SD	2.819	HT
D	01	63	NAD	OAHI	N	340	X	71.49	SD	2.394	LT
D	01	63	NAD	OAHI	N	340	X	77.46	SD	2.827	HT
D	02	63	NAD	OAHI	N	316	X	71.15	SD	2.149	LT
D	02	63	NAD	OAHI	N	316	X	76.97	SD	2.554	HT
D	03	63	NAD	OAHI	N	354	X	71.78	SD	2.242	LT
D	03	63	NAD	OAHI	N	354	X	77.06	SD	2.131	HT
D	04	63	NAD	OAHI	N	323	X	72.50	SD	1.960	LT
D	04	63	NAD	OAHI	N	323	X	77.40	SD	2.021	HT
D	05	63	NAD	OAHI	N	355	X	73.22	SD	2.273	LT
D	05	63	NAD	OAHI	N	355	X	78.70	SD	2.209	HT
D	06	63	NAD	OAHI	N	352	X	75.62	SD	3.078	LT
D	06	63	NAD	OAHI	N	352	X	81.37	SD	2.373	HT
D	07	63	NAD	OAHI	N	338	X	77.04	SD	3.081	LT
D	07	63	NAD	OAHI	N	338	X	83.14	SD	2.710	HT
D	08	63	NAD	OAHI	N	338	X	78.38	SD	2.806	LT
D	08	63	NAD	OAHI	N	338	X	83.81	SD	2.414	HT
D	09	63	NAD	OAHI	N	339	X	79.29	SD	2.683	LT
D	09	63	NAD	OAHI	N	339	X	84.24	SD	2.608	HT
D	10	63	NAD	OAHI	N	376	X	78.19	SD	2.525	LT
D	10	63	NAD	OAHI	N	376	X	83.08	SD	2.442	HT
D	11	63	NAD	OAHI	N	289	X	76.45	SD	2.606	LT
D	11	63	NAD	OAHI	N	289	X	81.77	SD	2.575	HT
D	12	63	NAD	OAHI	N	352	X	74.25	SD	2.340	LT
D	12	63	NAD	OAHI	N	352	X	79.50	SD	2.725	HT

TABLE 4. (Cont.)

D	01	64	NAD	OAHIU	N	355	X	73.47	SD	2.206	LT
D	01	64	NAD	OAHIU	N	355	X	77.85	SD	2.297	HT
D	02	64	NAD	OAHIU	N	320	X	73.26	SD	2.308	LT
D	02	64	NAD	OAHIU	N	320	X	77.59	SD	2.570	HT
D	03	64	NAD	OAHIU	N	318	X	73.69	SD	2.424	LT
D	03	64	NAD	OAHIU	N	314	X	77.60	SD	2.448	HT
D	04	64	NAD	OAHIU	N	311	X	72.93	SD	2.479	LT
D	04	64	NAD	OAHIU	N	311	X	77.66	SL	2.275	HT
D	05	64	NAD	OAHIU	N	319	X	74.44	SD	2.829	LT
D	05	64	NAD	OAHIU	N	319	X	79.45	SD	2.397	HT
D	06	64	NAD	OAHIU	N	352	X	76.58	SD	3.332	LT
D	06	64	NAD	OAHIU	N	352	X	82.59	SD	2.722	HT
D	07	64	NAD	OAHIU	N	302	X	78.69	SD	3.044	LT
D	07	64	NAD	OAHIU	N	302	X	83.80	SD	2.424	HT
D	08	64	NAD	OAHIU	N	335	X	79.27	SD	2.855	LT
D	08	64	NAD	OAHIU	N	335	X	84.00	SD	2.443	HT
D	09	64	NAD	OAHIU	N	335	X	79.54	SD	2.818	LT
D	09	64	NAD	OAHIU	N	335	X	84.01	SD	2.620	HT
D	10	64	NAD	OAHIU	N	334	X	78.43	SD	2.878	LT
D	10	64	NAD	OAHIU	N	334	X	83.03	SD	2.668	HT
D	11	64	NAD	OAHIU	N	300	X	76.36	SD	2.774	LT
D	11	64	NAD	OAHIU	N	300	X	81.21	SD	2.747	HT
D	12	64	NAD	OAHIU	N	350	X	74.18	SD	2.426	LT
D	12	64	NAD	OAHIU	N	350	X	79.36	SD	2.651	HT
D	01	65	NAD	OAHIU	N	414	X	72.97	SD	2.203	LT
D	01	65	NAD	OAHIU	N	414	X	78.58	SD	3.069	HT
D	02	65	NAD	OAHIU	N	398	X	71.09	SD	2.405	LT
D	02	65	NAD	OAHIU	N	398	X	77.01	SD	3.271	HT
D	03	65	NAD	OAHIU	N	411	X	70.83	SD	2.826	LT
D	03	65	NAD	OAHIU	N	411	X	76.94	SD	3.118	HT
D	04	65	NAD	OAHIU	N	407	X	72.48	SD	2.859	LT
D	04	65	NAD	OAHIU	N	407	X	78.40	SD	2.700	HT
D	05	65	NAD	OAHIU	N	395	X	74.17	SD	2.675	LT
D	05	65	NAD	OAHIU	N	395	X	80.04	SD	2.586	HT
D	06	65	NAD	OAHIU	N	386	X	76.02	SD	3.108	LT
D	06	65	NAD	OAHIU	N	386	X	82.11	SD	2.305	HT
D	07	65	NAD	OAHIU	N	397	X	77.35	SD	3.519	LT
D	07	65	NAD	OAHIU	N	397	X	83.72	SD	2.475	HT
D	08	65	NAD	OAHIU	N	396	X	78.43	SD	3.248	LT
D	08	65	NAD	OAHIU	N	396	X	84.23	SD	2.639	HT
D	09	65	NAD	OAHIU	N	401	X	78.65	SD	3.352	LT
D	09	65	NAD	OAHIU	N	401	X	84.22	SD	2.736	HT
D	10	65	NAD	OAHIU	N	403	X	77.92	SL	3.214	LT
D	10	65	NAD	OAHIU	N	403	X	83.52	SD	2.805	HT
D	11	65	NAD	OAHIU	N	385	X	74.98	SD	2.685	LT
D	11	65	NAD	OAHIU	N	385	X	81.05	SD	2.784	HT
D	12	65	NAD	OAHIU	N	406	X	71.89	SD	2.610	LT
D	12	65	NAD	OAHIU	N	406	X	78.04	SD	3.077	HT

TABLE 4. (Cont.)

D	01	66	NAD OAHU	N	532	X	71.85	SD	2.692	LT
D	01	66	NAD OAHU	N	532	X	76.04	SD	2.124	HT
D	02	66	NAD OAHU	N	513	X	71.52	SD	2.787	LT
D	02	66	NAD OAHU	N	513	X	75.55	SD	1.953	HT
D	03	66	NAD OAHU	N	550	X	71.49	SD	2.886	LT
D	03	66	NAD OAHU	N	550	X	76.15	SD	2.322	HT
D	04	66	NAD OAHU	N	532	X	72.72	SD	2.733	LT
D	04	66	NAD OAHU	N	532	X	77.42	SD	2.366	HT
D	05	66	NAD OAHU	N	532	X	74.60	SD	3.054	ET
D	05	66	NAD OAHU	N	532	X	79.56	SD	3.250	HT
D	06	66	NAD OAHU	N	485	X	77.01	SD	3.224	LT
D	06	66	NAD OAHU	N	485	X	81.65	SD	4.107	HT
D	07	66	NAD OAHU	N	497	X	78.60	SD	3.325	LT
D	07	66	NAD OAHU	N	497	X	82.89	SD	4.219	HT
D	08	66	NAD OAHU	N	528	X	79.40	SD	3.306	LT
D	08	66	NAD OAHU	N	528	X	83.54	SD	4.348	HT
D	09	66	NAD OAHU	N	445	X	79.11	SD	3.287	LT
D	09	66	NAD OAHU	N	445	X	83.18	SD	4.542	HT
D	10	66	NAD OAHU	N	488	X	78.38	SD	3.145	LT
D	10	66	NAD OAHU	N	488	X	82.65	SD	4.159	HT
D	11	66	NAD OAHU	N	489	X	76.19	SD	2.379	LT
D	11	66	NAD OAHU	N	489	X	81.05	SD	3.715	HT
D	12	66	NAD OAHU	N	480	X	74.68	SD	2.246	LT
D	12	66	NAD OAHU	N	480	X	79.07	SD	3.099	HT

TABLE 5. Minimum and Maximum Non-Earth-Covered Storage
Temperatures, Monthly Summaries,
NAD, Oahu, Hawaii.

D	01	60	NAD	OAHIU	N	8	X	68.75	SD	5.007	LT
D	01	60	NAD	OAHIU	N	8	X	78.75	SD	3.196	HT
D	02	60	NAD	OAHIU	N	7	X	68.43	SD	5.912	LT
D	02	60	NAD	OAHIU	N	7	X	78.43	SD	2.878	HT
D	03	60	NAD	OAHIU	N	9	X	67.78	SD	6.099	LT
D	03	60	NAD	OAHIU	N	9	X	80.33	SD	3.279	HT
D	04	60	NAD	OAHIU	N	9	X	72.11	SD	4.755	LT
D	04	60	NAD	OAHIU	N	9	X	80.00	SD	1.732	HT
D	05	60	NAD	OAHIU	N	118	X	76.40	SD	2.406	LT
D	05	60	NAD	OAHIU	N	118	X	86.58	SD	3.022	HT
D	06	60	NAD	OAHIU	N	124	X	78.92	SD	2.255	LT
D	06	60	NAD	OAHIU	N	124	X	98.85	SD	3.445	HT
D	07	60	NAD	OAHIU	N	111	X	78.63	SD	2.796	LT
D	07	60	NAD	OAHIU	N	111	X	89.37	SD	3.205	HT
D	08	60	NAD	OAHIU	N	128	X	81.44	SD	2.720	LT
D	08	60	NAD	OAHIU	N	128	X	90.50	SD	3.501	HT
D	09	60	NAD	OAHIU	N	123	X	80.63	SD	2.826	LT
D	09	60	NAD	OAHIU	N	123	X	89.90	SD	2.861	HT
D	10	60	NAD	OAHIU	N	126	X	78.75	SD	2.881	LT
D	10	60	NAD	OAHIU	N	126	X	98.76	SD	2.815	HT
D	11	60	NAD	OAHIU	N	107	X	76.79	SD	2.293	LT
D	11	60	NAD	OAHIU	N	107	X	85.91	SD	2.478	HT
D	12	60	NAD	OAHIU	N	126	X	73.44	SD	2.726	LT
D	12	60	NAD	OAHIU	N	126	X	82.79	SD	3.224	HT
D	01	61	NAD	OAHIU	N	118	X	72.44	SD	2.580	LT
D	01	61	NAD	OAHIU	N	118	X	82.42	SD	2.402	HT
D	02	61	NAD	OAHIU	N	107	X	72.60	SD	2.145	LT
D	02	61	NAD	OAHIU	N	107	X	82.78	SD	2.582	HT
D	03	61	NAD	OAHIU	N	129	X	75.02	SD	1.930	LT
D	03	61	NAD	OAHIU	N	129	X	85.35	SD	2.871	HT
D	04	61	NAD	OAHIU	N	112	X	74.71	SD	2.384	LT
D	04	61	NAD	OAHIU	N	112	X	84.99	SD	2.625	HT
D	05	61	NAD	OAHIU	N	123	X	78.16	SD	2.500	LT
D	05	61	NAD	OAHIU	N	123	X	88.30	SD	3.326	HT
D	06	61	NAD	OAHIU	N	124	X	79.31	SD	1.604	LT
D	06	61	NAD	OAHIU	N	124	X	79.31	SD	1.604	HT
D	07	61	NAD	OAHIU	N	113	X	79.45	SD	2.117	LT
D	07	61	NAD	OAHIU	N	113	X	89.00	SD	3.082	HT
D	08	61	NAD	OAHIU	N	128	X	81.11	SD	1.606	LT
D	08	61	NAD	OAHIU	N	128	X	90.50	SD	3.071	HT
D	09	61	NAD	OAHIU	N	112	X	79.52	SD	2.748	LT
D	09	61	NAD	OAHIU	N	112	X	90.12	SD	3.205	HT
D	10	61	NAD	OAHIU	N	122	X	77.79	SD	2.743	LT
D	10	61	NAD	OAHIU	N	122	X	87.60	SD	2.925	HT
D	11	61	NAD	OAHIU	N	117	X	75.48	SD	2.336	LT
D	11	61	NAD	OAHIU	N	117	X	85.18	SD	2.602	HT
D	12	61	NAD	OAHIU	N	115	X	73.80	SD	2.005	LT
D	12	61	NAD	OAHIU	N	115	X	82.82	SD	2.171	HT

TABLE 5. (Cont.)

D	01	62	NAD	OAHU	N	114	X	71.64	SD	2.807	LT
D	01	62	NAD	OAHU	N	118	X	82.31	SD	2.266	HT
D	02	62	NAD	OAHU	N	97	X	70.17	SD	3.404	LT
D	02	62	NAD	OAHU	N	97	X	82.13	SD	3.174	HT
D	03	62	NAD	OAHU	N	102	X	70.72	SD	2.231	LT
D	03	62	NAD	OAHU	N	102	X	82.12	SD	3.052	HT
D	04	62	NAD	OAHU	N	102	X	73.65	SD	1.407	LT
D	04	62	NAD	OAHU	N	102	X	86.27	SD	3.303	HT
D	05	62	NAD	OAHU	N	105	X	75.50	SD	1.096	LT
D	05	62	NAD	OAHU	N	105	X	87.62	SD	3.342	HT
D	06	62	NAD	OAHU	N	92	X	76.75	SD	1.681	LT
D	07	62	NAD	OAHU	N	92	X	89.35	SD	3.143	HT
D	07	62	NAD	OAHU	N	91	X	79.09	SD	1.644	LT
D	08	62	NAD	OAHU	N	91	X	91.12	SD	3.087	HT
D	08	62	NAD	OAHU	N	105	X	79.72	SD	1.114	LT
D	09	62	NAD	OAHU	N	105	X	91.80	SD	2.939	HT
D	09	62	NAD	OAHU	N	77	X	78.48	SD	1.854	LT
D	10	62	NAD	OAHU	N	77	X	90.66	SD	3.424	HT
D	10	62	NAD	OAHU	N	75	X	77.04	SD	2.202	LT
D	11	62	NAD	OAHU	N	75	X	88.56	SD	2.202	HT
D	11	62	NAD	OAHU	N						LT
D	12	62	NAD	OAHU	N	55	X	73.64	SD	1.905	HT
D	12	62	NAD	OAHU	N	55	X	82.47	SD	2.624	HT
D	01	63	NAD	OAHU	N	102	X	69.68	SD	3.306	LT
D	01	63	NAD	OAHU	N	102	X	81.27	SD	2.501	HT
D	02	63	NAD	OAHU	N	94	X	71.01	SD	1.709	LT
D	02	63	NAD	OAHU	N	94	X	83.00	SD	2.606	HT
D	03	63	NAD	OAHU	N	105	X	71.58	SD	2.079	LT
D	03	63	NAD	OAHU	N	105	X	84.83	SD	3.059	HT
D	04	63	NAD	OAHU	N	90	X	72.58	SD	1.526	LT
D	04	63	NAD	OAHU	N	99	X	84.93	SD	2.532	HT
D	05	63	NAD	OAHU	N	108	X	74.06	SD	2.167	LT
D	05	63	NAD	OAHU	N	108	X	86.33	SD	3.674	HT
D	06	63	NAD	OAHU	N	107	X	76.60	SD	2.562	LT
D	07	63	NAD	OAHU	N	107	X	90.61	SD	2.938	HT
D	07	63	NAD	OAHU	N	102	X	78.81	SD	2.091	LT
D	08	63	NAD	OAHU	N	102	X	91.54	SD	3.120	HT
D	08	63	NAD	OAHU	N	107	X	78.73	SD	1.521	LT
D	09	63	NAD	OAHU	N	107	X	91.53	SD	3.272	HT
D	09	63	NAD	OAHU	N	104	X	79.33	SD	2.088	LT
D	10	63	NAD	OAHU	N	104	X	91.83	SD	3.297	HT
D	10	63	NAD	OAHU	N	113	X	78.00	SD	1.680	LT
D	11	63	NAD	OAHU	N	113	X	90.09	SD	2.433	HT
D	11	63	NAD	OAHU	N	87	X	87.43	SD	2.048	HT
D	12	63	NAD	OAHU	N	104	X	71.60	SD	2.326	LT
D	12	63	NAD	OAHU	N	104	X	83.76	SD	2.428	HT

TABLE 5. (Cont.)

D 01 64 NAD OAHU	N 109 X 72.61	SD 1.593	LT
D 01 64 NAD OAHU	N 109 X 83.07	SD 2.197	HT
D 02 64 NAD OAHU	N 99 X 72.30	SD 1.752	LT
D 02 64 NAD OAHU	N 99 X 83.16	SD 2.193	HT
D 03 64 NAD OAHU	N 99 X 71.94	SD 2.755	LT
D 03 64 NAD OAHU	N 99 X 84.27	SD 2.490	HT
D 04 64 NAD OAHU	N 99 X 73.03	SD 2.007	LT
D 04 64 NAD OAHU	N 99 X 84.76	SD 3.127	HT
D 05 64 NAD OAHU	N 94 X 74.61	SU 1.839	LT
D 05 64 NAD OAHU	N 94 X 87.29	SD 3.164	HT
D 06 64 NAD OAHU	N 105 X 77.33	SD 2.252	LT
D 06 64 NAD OAHU	N 105 X 90.54	SD 3.325	HT
D 07 64 NAD OAHU	N 92 X 78.15	SD 1.467	LT
D 07 64 NAD OAHU	N 92 X 90.32	SD 3.052	HT
D 08 64 NAD OAHU	N 102 X 79.41	SD 1.588	LT
D 08 64 NAD OAHU	N 102 X 91.53	SD 2.695	HT
D 09 64 NAD OAHU	N 99 X 78.98	SD 1.591	LT
D 09 64 NAD OAHU	N 99 X 90.87	SD 2.750	HT
D 10 64 NAD OAHU	N 98 X 76.94	SD 1.442	LT
D 10 64 NAD OAHU	N 98 X 88.02	SU 2.721	HT
D 11 64 NAD OAHU	N 87 X 74.18	SD 1.715	LT
D 11 64 NAD OAHU	N 87 X 85.66	SD 2.367	HT
D 12 64 NAD OAHU	N 103 X 71.97	SD 3.037	LT
D 12 64 NAD OAHU	N 103 X 84.00	SD 2.642	HT
D 01 65 NAD OAHU	N 101 X 70.90	SD 1.769	LT
D 01 65 NAD OAHU	N 101 X 82.49	SD 2.583	HT
D 02 65 NAD OAHU	N 95 X 68.46	SD 2.259	LT
D 02 65 NAD OAHU	N 95 X 81.55	SD 2.604	HT
D 03 65 NAD OAHU	N 102 X 69.14	SD 2.786	LT
D 03 65 NAD OAHU	N 102 X 82.83	SD 2.832	HT
D 04 65 NAD OAHU	N 104 X 72.35	SD 2.242	LT
D 04 65 NAD OAHU	N 104 X 84.47	SD 2.738	HT
D 05 65 NAD OAHU	N 103 X 74.08	SD 1.898	LT
D 05 65 NAD OAHU	N 103 X 86.03	SD 2.837	HT
D 06 65 NAD OAHU	N 100 X 78.10	SD 1.624	LT
D 06 65 NAD OAHU	N 100 X 89.94	SD 3.237	HT
D 07 65 NAD OAHU	N 101 X 78.62	SD 2.078	LT
D 07 65 NAD OAHU	N 101 X 90.20	SD 3.105	HT
D 08 65 NAD OAHU	N 100 X 77.66	SD 2.952	LT
D 08 65 NAD OAHU	N 100 X 91.16	SD 3.509	HT
D 09 65 NAD OAHU	N 97 X 78.42	SD 1.749	LT
D 09 65 NAD OAHU	N 97 X 91.05	SD 2.822	HT
D 10 65 NAD OAHU	N 95 X 76.00	SD 2.037	LT
D 10 65 NAD OAHU	N 95 X 89.35	SD 3.168	HT
D 11 65 NAD OAHU	N 91 X 73.20	SD 2.120	LT
D 11 65 NAD OAHU	N 91 X 85.74	SD 2.658	HT
D 12 65 NAD OAHU	N 93 X 69.78	SU 2.264	LT
D 12 65 NAD OAHU	N 93 X 81.48	SD 3.275	HT

TABLE 5. (Cont.)

D	01	06	NAD OAHU	N	94	X	89.60	SD	1.980	LT
D	01	06	NAD OAHU	N	94	X	82.60	SD	2.117	HT
D	02	06	NAD OAHU	N	91	X	68.63	SD	2.516	LT
D	02	06	NAD OAHU	N	91	X	82.10	SD	2.513	HT
D	03	06	NAD OAHU	N	100	X	70.25	SD	2.552	LT
D	03	06	NAD OAHU	N	100	X	83.67	SD	3.664	HT
D	04	06	NAD OAHU	N	94	X	71.10	SD	2.095	LT
D	04	06	NAD OAHU	N	94	X	85.04	SD	2.606	HT
D	05	06	NAD OAHU	N	127	X	74.83	SD	2.313	LT
D	05	06	NAD OAHU	N	127	X	87.33	SD	4.293	HT
D	06	06	NAD OAHU	N	88	X	78.61	SD	1.884	LT
D	06	06	NAD OAHU	N	88	X	91.30	SD	2.276	HT
D	07	06	NAD OAHU	N	93	X	79.25	SD	1.761	LT
D	07	06	NAD OAHU	N	93	X	91.64	SD	2.832	HT
D	08	06	NAD OAHU	N	104	X	79.89	SD	1.576	LT
D	08	06	NAD OAHU	N	104	X	93.13	SD	2.886	HT
D	09	06	NAD OAHU	N	80	X	77.90	SD	1.595	LT
D	09	06	NAD OAHU	N	80	X	92.84	SD	2.665	HT
D	10	06	NAD OAHU	N	91	X	77.11	SD	1.748	LT
D	10	06	NAD OAHU	N	91	X	90.40	SD	2.649	HT
D	11	06	NAD OAHU	N	92	X	74.10	SD	1.853	LT
D	11	06	NAD OAHU	N	92	X	87.67	SD	2.632	HT
D	12	06	NAD OAHU	N	91	X	71.82	SD	2.559	LT
D	12	06	NAD OAHU	N	91	X	84.35	SD	2.782	HT

TABLE 6. Minimum and Maximum Earth-Covered Storage
Temperatures, Monthly Summaries,
NAS, Oahu, Hawaii.

D	01	55	NAS, OAHU	N	103	X	74.75	SD	3.403	LT
D	01	65	NAS, OAHU	N	103	X	80.48	SD	2.927	HT
D	02	65	NAS, OAHU	N	92	X	72.66	SD	2.419	LT
D	02	65	NAS, OAHU	N	92	X	76.70	SD	2.329	HT
D	03	65	NAS, OAHU	N	102	X	73.65	SD	2.852	LT
D	03	65	NAS, OAHU	N	102	X	79.62	SD	3.398	HT
D	04	65	NAS, OAHU	N	112	X	76.29	SD	3.030	LT
D	04	65	NAS, OAHU	N	112	X	81.30	SD	2.825	HT
D	05	65	NAS, OAHU	N	92	X	77.72	SD	2.884	LT
D	05	65	NAS, OAHU	N	92	X	82.68	SU	2.660	HT
D	06	65	NAS, OAHU	N	102	X	80.31	SD	2.928	LT
D	06	65	NAS, OAHU	N	102	X	84.29	SD	2.944	HT
D	07	65	NAS, OAHU	N	112	X	81.14	SD	2.529	LT
D	07	65	NAS, OAHU	N	112	X	84.93	SD	2.381	HT
D	08	65	NAS, OAHU	N	98	X	82.20	SD	2.644	LT
D	08	65	NAS, OAHU	N	98	X	85.93	SD	2.748	HT
D	09	65	NAS, OAHU	N	97	X	83.01	SD	2.998	LT
D	09	65	NAS, OAHU	N	97	X	86.62	SD	2.800	HT
D	10	65	NAS, OAHU	N	99	X	80.88	SD	3.176	LT
D	10	65	NAS, OAHU	N	99	X	85.37	SD	2.992	HT
D	11	65	NAS, OAHU	N	102	X	75.55	SD	6.140	LT
D	11	65	NAS, OAHU	N	102	X	82.52	SD	4.637	HT
D	12	65	NAS, OAHU	N	83	X	73.52	SD	2.813	LT
D	12	65	NAS, OAHU	N	83	X	77.66	SD	3.444	HT
D	01	66	NAS, OAHU	N	89	X	73.15	SD	2.737	LT
D	01	66	NAS, OAHU	N	89	X	77.24	SD	3.030	HT
D	02	66	NAS, OAHU	N	78	X	72.82	SD	3.298	LT
D	02	66	NAS, OAHU	N	78	X	78.37	SD	5.071	HT
D	03	66	NAS, OAHU	N	101	X	73.58	SD	2.643	LT
D	03	66	NAS, OAHU	N	101	X	80.52	SD	3.084	HT
D	04	66	NAS, OAHU	N	84	X	73.95	SD	2.459	LT
D	04	66	NAS, OAHU	N	84	X	81.31	SD	2.168	HT
D	05	66	NAS, OAHU	N	76	X	75.50	SD	1.956	LT
D	05	66	NAS, OAHU	N	76	X	83.89	SD	2.788	HT
D	06	66	NAS, OAHU	N	90	X	80.44	SD	2.209	LT
D	06	66	NAS, OAHU	N	90	X	84.71	SD	3.021	HT
D	07	66	NAS, OAHU	N	73	X	81.38	SD	2.464	LT
D	07	66	NAS, OAHU	N	73	X	85.48	SD	2.334	HT
D	08	66	NAS, OAHU	N	99	X	82.10	SD	2.422	LT
D	08	66	NAS, OAHU	N	99	X	84.22	SD	2.202	HT
D	09	66	NAS, OAHU	N	79	X	80.99	SD	2.599	LT
D	09	66	NAS, OAHU	N	79	X	84.56	SD	2.625	HT
D	10	66	NAS, OAHU	N	84	X	81.42	SD	2.446	LT
D	10	66	NAS, OAHU	N	84	X	84.48	SD	2.457	HT
D	11	66	NAS, OAHU	N	92	X	79.52	SD	2.795	LT
D	11	66	NAS, OAHU	N	92	X	82.30	SD	2.729	HT
D	12	66	NAS, OAHU	N	7	X	75.29	SD	1.799	LT
D	12	66	NAS, OAHU	N	7	X	82.29	SU	2.870	HT

TABLE 7. Minimum and Maximum Non-Earth-Covered Storage
 Temperatures, Monthly Summaries,
 NAS, Oahu, Hawaii.

D	01	65	NAS, OAHU	N	85	X	73.09	SD	3.105	LT
D	01	65	NAS, OAHU	N	85	X	81.19	SD	2.363	HT
D	02	65	NAS, OAHU	N	92	X	70.30	SD	1.862	LT
D	02	65	NAS, OAHU	N	92	X	77.73	SD	1.584	HT
D	03	65	NAS, OAHU	N	102	X	71.12	SD	3.207	LT
D	03	65	NAS, OAHU	N	102	X	80.63	SD	2.092	HT
D	04	65	NAS, OAHU	N	93	X	75.63	SD	2.514	LT
D	04	65	NAS, OAHU	N	93	X	83.33	SD	1.985	HT
D	05	65	NAS, OAHU	N	94	X	76.27	SD	3.424	LT
D	05	65	NAS, OAHU	N	94	X	83.05	SD	4.159	HT
D	06	65	NAS, OAHU	N	106	X	78.15	SD	4.158	LT
D	06	65	NAS, OAHU	N	106	X	83.43	SD	4.927	HT
D	07	65	NAS, OAHU	N	119	X	78.32	SD	4.405	LT
D	07	65	NAS, OAHU	N	119	X	85.15	SD	5.063	HT
D	08	65	NAS, OAHU	N	110	X	78.46	SD	5.528	LT
D	08	65	NAS, OAHU	N	110	X	84.83	SD	6.270	HT
D	09	65	NAS, OAHU	N	139	X	79.60	SD	5.250	LT
D	09	65	NAS, OAHU	N	139	X	85.58	SD	5.976	HT
D	10	65	NAS, OAHU	N	128	X	76.31	SD	5.483	LT
D	10	65	NAS, OAHU	N	128	X	83.46	SD	5.730	HT
D	11	65	NAS, OAHU	N	138	X	72.29	SD	5.759	LT
D	11	65	NAS, OAHU	N	138	X	81.11	SD	6.346	HT
D	12	65	NAS, OAHU	N	141	X	69.30	SD	3.601	LT
D	12	65	NAS, OAHU	N	141	X	76.39	SD	5.035	HT
D	01	66	NAS, OAHU	N	141	X	68.23	SD	4.759	LT
D	01	66	NAS, OAHU	N	141	X	71.75	SD	5.652	HT
D	02	66	NAS, OAHU	N	124	X	67.94	SD	5.303	LT
D	02	66	NAS, OAHU	N	124	X	77.10	SD	6.438	HT
D	03	66	NAS, OAHU	N	134	X	70.12	SD	4.489	LT
D	03	66	NAS, OAHU	N	134	X	82.12	SD	6.587	HT
D	04	66	NAS, OAHU	N	109	X	70.66	SD	4.840	LT
D	04	66	NAS, OAHU	N	109	X	80.59	SD	4.969	HT
D	05	66	NAS, OAHU	N	101	X	74.21	SD	4.000	LT
D	05	66	NAS, OAHU	N	101	X	83.91	SD	4.231	HT
D	06	66	NAS, OAHU	N	92	X	77.93	SD	4.415	LT
D	06	66	NAS, OAHU	N	92	X	85.75	SD	3.314	HT
D	07	66	NAS, OAHU	N	155	X	77.34	SD	4.019	LT
D	07	66	NAS, OAHU	N	155	X	84.77	SD	3.569	HT
D	08	66	NAS, OAHU	N	144	X	78.53	SD	3.336	LT
D	08	66	NAS, OAHU	N	144	X	83.58	SD	3.310	HT
D	09	66	NAS, OAHU	N	161	X	78.70	SD	3.404	LT
D	09	66	NAS, OAHU	N	161	X	84.21	SD	2.809	HT
D	10	66	NAS, OAHU	N	172	X	77.78	SD	3.786	LT
D	10	66	NAS, OAHU	N	172	X	84.09	SD	2.952	HT
D	11	66	NAS, OAHU	N	137	X	76.08	SD	2.491	LT
D	11	66	NAS, OAHU	N	137	X	82.41	SD	3.248	HT
D	12	66	NAS, OAHU	N	20	X	75.00	SD	4.103	LT
D	12	66	NAS, OAHU	N	20	X	83.75	SD	2.826	HT

TABLE 8. Minimum and Maximum Earth-Covered Storage
Temperatures, Monthly Summaries,
Naval Magazines, Guam.

D	08	63	NM	GUAM	N	21	X	81.10	SD	.995	LT
D	08	63	NM	GUAM	N	21	X	83.05	SD	.921	HT
D	09	63	NM	GUAM	N	50	X	80.58	SD	1.279	LT
D	09	63	NM	GUAM	N	50	X	83.02	SD	1.253	HT
D	10	63	NM	GUAM	N	68	X	80.28	SD	1.485	LT
D	10	63	NM	GUAM	N	68	X	82.41	SD	1.448	HT
D	11	63	NM	GUAM	N	60	X	80.63	SD	1.275	LT
D	11	63	NM	GUAM	N	60	X	82.30	SD	1.154	HT
D	12	63	NM	GUAM	N	47	X	79.74	SD	1.188	LT
D	12	63	NM	GUAM	N	47	X	81.85	SD	1.285	HT
D	01	64	NM	GUAM	N	51	X	79.63	SD	1.131	LT
D	01	64	NM	GUAM	N	51	X	81.43	SD	1.005	HT
D	02	64	NM	GUAM	N	55	X	79.47	SD	.979	LT
D	02	64	NM	GUAM	N	55	X	80.91	SD	.928	HT
D	03	64	NM	GUAM	N	72	X	79.74	SD	.856	LT
D	03	64	NM	GUAM	N	72	X	81.17	SD	.856	HT
D	04	64	NM	GUAM	N	83	X	79.45	SD	1.232	LT
D	04	64	NM	GUAM	N	83	X	81.51	SD	1.017	HT
D	05	64	NM	GUAM	N	76	X	79.61	SD	1.132	LT
D	05	64	NM	GUAM	N	76	X	81.36	SD	1.080	HT
D	06	64	NM	GUAM	N	208	X	80.45	SD	1.553	LT
D	06	64	NM	GUAM	N	208	X	83.33	SD	1.397	HT
D	07	64	NM	GUAM	N	279	X	80.62	SD	1.308	LT
D	07	64	NM	GUAM	N	279	X	83.36	SD	1.224	HT
D	08	64	NM	GUAM	N	270	X	80.46	SD	1.434	LT
D	08	64	NM	GUAM	N	270	X	82.89	SD	1.092	HT
D	09	64	NM	GUAM	N	290	X	79.75	SD	1.581	LT
D	09	64	NM	GUAM	N	290	X	82.29	SD	1.392	HT
D	10	64	NM	GUAM	N	308	X	79.91	SD	1.396	LT
D	10	64	NM	GUAM	N	308	X	82.44	SD	1.569	HT
D	11	64	NM	GUAM	N	271	X	80.08	SD	1.281	LT
D	11	64	NM	GUAM	N	271	X	82.30	SD	1.434	HT
D	12	64	NM	GUAM	N	318	X	79.97	SD	1.426	LT
D	12	64	NM	GUAM	N	318	X	82.27	SD	1.485	HT
D	01	65	NM	GUAM	N	292	X	78.84	SD	1.777	LT
D	01	65	NM	GUAM	N	292	X	81.40	SD	1.845	HT
D	02	65	NM	GUAM	N	294	X	78.51	SD	1.552	LT
D	02	65	NM	GUAM	N	294	X	80.70	SD	1.614	HT
D	03	65	NM	GUAM	N	353	X	78.48	SD	1.712	LT
D	03	65	NM	GUAM	N	353	X	81.33	SD	2.779	HT
D	04	65	NM	GUAM	N	303	X	79.34	SD	1.537	LT
D	04	65	NM	GUAM	N	303	X	81.88	SD	1.668	HT
D	05	65	NM	GUAM	N	266	X	80.28	SD	1.484	LT
D	05	65	NM	GUAM	N	266	X	82.78	SD	1.641	HT

TABLE 8. (Cont.)

D	06	65	NM	GUAM	N	275	X	80.45	SD	1.388	LT
D	06	65	NM	GUAM	N	275	X	82.88	SD	1.454	HT
D	07	65	NM	GUAM	N	255	X	80.11	SD	1.542	LT
D	07	65	NM	GUAM	N	255	X	82.49	SD	1.498	HT
D	08	65	NM	GUAM	N	263	X	80.07	SD	1.307	LT
D	08	65	NM	GUAM	N	263	X	82.74	SD	1.823	HT
D	09	65	NM	GUAM	N	266	X	80.24	SD	1.437	LT
D	09	65	NM	GUAM	N	266	X	83.31	SD	1.652	HT
D	10	65	NM	GUAM	N	301	X	79.05	SD	1.453	LT
D	10	65	NM	GUAM	N	301	X	82.68	SD	1.677	HT
D	11	65	NM	GUAM	N	160	X	80.28	SD	1.626	LT
D	11	65	NM	GUAM	N	160	X	82.87	SD	1.812	HT
D	12	65	NM	GUAM	N	198	X	79.46	SD	1.821	LT
D	12	65	NM	GUAM	N	198	X	82.14	SD	2.028	HT
D	01	66	NM	GUAM	N	176	X	78.61	SD	2.039	LT
D	01	66	NM	GUAM	N	176	X	81.31	SD	2.048	HT
D	02	66	NM	GUAM	N	171	X	78.19	SD	2.281	LT
D	02	66	NM	GUAM	N	171	X	80.66	SD	2.257	HT
D	03	66	NM	GUAM	N	183	X	78.79	SD	1.783	LT
D	03	66	NM	GUAM	N	183	X	80.85	SD	1.581	HT
D	04	66	NM	GUAM	N	152	X	79.41	SD	1.995	LT
D	04	66	NM	GUAM	N	152	X	81.78	SD	2.361	HT
D	05	66	NM	GUAM	N	155	X	80.15	SD	1.806	LT
D	05	66	NM	GUAM	N	155	X	83.41	SD	2.381	HT
D	06	66	NM	GUAM	N	146	X	80.99	SD	1.704	LT
D	06	66	NM	GUAM	N	146	X	84.62	SD	2.035	HT
D	07	66	NM	GUAM	N	82	X	81.10	SD	1.638	LT
D	07	66	NM	GUAM	N	82	X	84.45	SD	1.854	HT
D	08	66	NM	GUAM	N	59	X	80.76	SD	1.557	LT
D	08	66	NM	GUAM	N	59	X	83.97	SD	1.829	HT
D	09	66	NM	GUAM	N	30	X	80.03	SD	1.542	LT
D	09	66	NM	GUAM	N	30	X	83.07	SD	2.132	HT
D	10	66	NM	GUAM	N	21	X	79.81	SD	1.123	LT
D	10	66	NM	GUAM	N	21	X	83.10	SD	1.895	HT
D	11	66	NM	GUAM	N	10	X	80.20	SD	1.229	LT
D	11	66	NM	GUAM	N	10	X	83.20	SD	1.932	HT

TABLE 9. Minimum and Maximum Non-Earth-Covered Storage
Temperatures, Monthly Summaries,
Naval Magazines, Guam.

U	10	03	NM	GUAM	N	2	X	79.50	SD	.707	LT
U	10	03	NM	GUAM	N	2	X	82.00	SD	-.000	HT
U	11	03	NM	GUAM	N	1	X	80.00	SD	-.000	LT
U	11	03	NM	GUAM	N	1	X	81.00	SD	-.000	HT
D	12	03	NM	GUAM	N	1	X	79.00	SD	-.000	LT
D	12	03	NM	GUAM	N	1	X	81.00	SD	-.000	HT
U	01	04	NM	GUAM	N	1	X	79.00	SD	-.000	LT
D	01	04	NM	GUAM	N	1	X	80.00	SD	-.000	HT
U	02	04	NM	GUAM	N	4	X	78.25	SD	1.708	LT
D	02	04	NM	GUAM	N	4	X	83.75	SD	6.850	HT
D	03	04	NM	GUAM	N	2	X	79.50	SD	.707	LT
D	03	04	NM	GUAM	N	2	X	80.50	SD	.707	HT
D	04	04	NM	GUAM	N	3	X	79.33	SD	1.155	LT
D	04	04	NM	GUAM	N	3	X	81.67	SD	.577	HT
D	05	04	NM	GUAM	N	2	X	78.50	SD	.707	LT
D	05	04	NM	GUAM	N	2	X	80.50	SD	.707	HT
U	06	04	NM	GUAM	N	12	X	77.50	SD	3.177	LT
U	06	04	NM	GUAM	N	12	X	92.02	SD	7.115	HT
D	07	04	NM	GUAM	N	41	X	80.24	SD	2.321	LT
D	07	04	NM	GUAM	N	41	X	90.68	SD	7.237	HT
D	08	04	NM	GUAM	N	12	X	80.08	SD	1.311	LT
D	08	04	NM	GUAM	N	12	X	88.83	SD	7.697	HT
D	09	04	NM	GUAM	N	8	X	79.87	SD	3.137	LT
D	09	04	NM	GUAM	N	8	X	84.12	SD	5.330	HT
D	10	04	NM	GUAM	N	8	X	78.02	SD	1.847	LT
D	10	04	NM	GUAM	N	8	X	86.25	SD	6.205	HT
D	11	04	NM	GUAM	N	10	X	78.60	SD	2.221	LT
D	11	04	NM	GUAM	N	10	X	90.50	SD	7.634	HT
D	12	04	NM	GUAM	N	41	X	77.78	SD	1.909	LT
D	12	04	NM	GUAM	N	41	X	94.39	SD	6.232	HT
D	01	05	NM	GUAM	N	26	X	76.31	SD	1.828	LT
D	01	05	NM	GUAM	N	26	X	89.00	SD	5.209	HT
D	02	05	NM	GUAM	N	39	X	76.62	SD	1.858	LT
D	02	05	NM	GUAM	N	39	X	89.00	SD	4.730	HT
D	03	05	NM	GUAM	N	23	X	76.70	SD	1.603	LT
D	03	05	NM	GUAM	N	23	X	91.22	SD	6.389	HT
D	04	05	NM	GUAM	N	32	X	76.37	SD	2.225	LT
D	04	05	NM	GUAM	N	32	X	94.03	SD	5.345	HT
D	05	05	NM	GUAM	N	30	X	78.17	SD	1.859	LT
D	05	05	NM	GUAM	N	30	X	94.63	SD	5.007	HT
D	06	05	NM	GUAM	N	30	X	78.53	SD	1.592	LT
D	06	05	NM	GUAM	N	30	X	92.20	SD	5.047	HT

TABLE 9. (Cont.)

D	07	65	NM	GUAM	N	38	X	78.68	SD	2.791	LT
D	07	65	NM	GUAM	N	38	X	92.61	SD	5.033	HT
D	08	65	NM	GUAM	N	50	X	78.02	SD	1.660	LT
D	08	65	NM	GUAM	N	50	X	92.74	SD	5.138	HT
D	09	65	NM	GUAM	N	47	X	78.96	SD	1.488	LT
D	09	65	NM	GUAM	N	47	X	91.11	SD	6.332	HT
D	10	65	NM	GUAM	N	28	X	78.75	SD	1.378	LT
D	10	65	NM	GUAM	N	28	X	92.57	SD	6.669	HT
D	11	65	NM	GUAM	N	17	X	78.94	SD	2.106	LT
D	11	65	NM	GUAM	N	17	X	93.65	SD	6.964	HT
D	12	65	NM	GUAM	N	13	X	78.31	SD	1.182	LT
D	12	65	NM	GUAM	N	13	X	92.92	SD	7.697	HT
D	01	66	NM	GUAM	N	3	X	78.00	SD	-0.000	LT
D	01	66	NM	GUAM	N	3	X	82.00	SD	1.732	HT
D	02	66	NM	GUAM	N	17	X	75.18	SD	2.099	LT
D	02	66	NM	GUAM	N	17	X	95.41	SD	6.462	HT
D	03	66	NM	GUAM	N	23	X	77.22	SD	2.907	LT
D	03	66	NM	GUAM	N	23	X	96.61	SD	4.439	HT
D	04	66	NM	GUAM	N	21	X	78.38	SD	1.962	LT
D	04	66	NM	GUAM	N	21	X	98.14	SD	2.393	HT
D	05	66	NM	GUAM	N	21	X	78.76	SD	1.338	LT
D	05	66	NM	GUAM	N	21	X	95.86	SD	2.816	HT
D	06	66	NM	GUAM	N	7	X	78.14	SD	.378	LT
D	06	66	NM	GUAM	N	7	X	100.57	SD	7.345	HT
D	07	66	NM	GUAM	N	1	X	79.00	SD	-0.000	LT
D	07	66	NM	GUAM	N	1	X	87.00	SD	-0.000	HT
D	08	66	NM	GUAM	N	20	X	77.75	SD	2.425	LT
D	08	66	NM	GUAM	N	20	X	92.45	SD	5.501	HT
D	09	66	NM	GUAM	N	23	X	78.65	SD	2.948	LT
D	09	66	NM	GUAM	N	23	X	92.13	SD	4.192	HT
D	10	66	NM	GUAM	N	23	X	76.43	SD	1.343	LT
D	10	66	NM	GUAM	N	23	X	94.09	SD	5.080	HT
D	11	66	NM	GUAM	N	4	X	78.00	SD	1.633	LT
D	11	66	NM	GUAM	N	4	X	90.25	SD	5.560	HT

TABLE 10. Minimum and Maximum Earth-Covered Storage
Temperatures, Monthly Summaries,
NAS, Agana, Guam.

L	04	63	NAS	GUAM	N	70	X	82.34	SD	1.141	LT
D	04	63	NAS	GUAM	N	70	X	83.74	SD	1.212	HT
D	05	63	NAS	GUAM	N	154	X	81.31	SD	1.345	LT
D	05	63	NAS	GUAM	N	154	X	82.66	SD	1.421	HT
D	06	63	NAS	GUAM	N	140	X	81.09	SD	1.275	LT
D	06	63	NAS	GUAM	N	140	X	82.61	SD	1.317	HT
D	07	63	NAS	GUAM	N	140	X	81.41	SD	1.368	LT
D	07	63	NAS	GUAM	N	140	X	82.84	SD	1.371	HT
D	08	63	NAS	GUAM	N	155	X	81.96	SD	1.450	LT
D	08	63	NAS	GUAM	N	155	X	83.30	SD	1.473	HT
D	09	63	NAS	GUAM	N	155	X	82.15	SD	1.189	LT
D	09	63	NAS	GUAM	N	155	X	83.52	SD	1.229	HT
D	10	63	NAS	GUAM	N	150	X	81.67	SD	1.126	LT
D	10	63	NAS	GUAM	N	150	X	83.24	SD	1.197	HT
D	11	63	NAS	GUAM	N	150	X	81.08	SD	1.293	LT
D	11	63	NAS	GUAM	N	150	X	82.19	SD	1.575	HT
D	12	63	NAS	GUAM	N	150	X	81.53	SD	1.553	LT
D	12	63	NAS	GUAM	N	150	X	83.41	SD	1.742	HT
D	01	64	NAS	GUAM	N	155	X	79.81	SD	1.373	LT
D	01	64	NAS	GUAM	N	155	X	81.90	SD	1.699	HT
D	02	64	NAS	GUAM	N	145	X	79.30	SD	1.401	LT
D	02	64	NAS	GUAM	N	145	X	81.33	SD	1.799	HT
D	03	64	NAS	GUAM	N	167	X	79.68	SD	1.864	LT
D	03	64	NAS	GUAM	N	167	X	81.80	SD	2.005	HT
D	04	64	NAS	GUAM	N	174	X	80.21	SD	0.987	LT
D	04	64	NAS	GUAM	N	174	X	82.05	SD	1.474	HT
D	05	64	NAS	GUAM	N	78	X	80.38	SD	1.009	LT
D	05	64	NAS	GUAM	N	78	X	82.18	SD	1.246	HT
D	06	64	NAS	GUAM	N	30	X	81.80	SD	1.424	LT
D	06	64	NAS	GUAM	N	30	X	83.23	SD	1.547	HT
D	07	64	NAS	GUAM	N	180	X	81.78	SD	1.646	LT
D	07	64	NAS	GUAM	N	180	X	82.94	SD	2.012	HT
D	08	64	NAS	GUAM	N	186	X	81.04	SD	1.396	LT
D	08	64	NAS	GUAM	N	186	X	82.67	SD	1.947	HT
D	09	64	NAS	GUAM	N	180	X	80.54	SD	1.477	LT
D	09	64	NAS	GUAM	N	180	X	81.96	SD	1.616	HT
D	10	64	NAS	GUAM	N	180	X	81.24	SD	1.820	LT
D	10	64	NAS	GUAM	N	180	X	82.57	SD	1.923	HT
D	11	64	NAS	GUAM	N	180	X	81.29	SD	2.129	LT
D	11	64	NAS	GUAM	N	180	X	82.73	SD	1.852	HT
D	12	64	NAS	GUAM	N	160	X	81.27	SD	2.180	LT
D	12	64	NAS	GUAM	N	160	X	82.19	SD	2.272	HT

TABLE 10. (Cont.)

D 01 65	NAS GUAM	N	151	X	79.60	SD	1.981	LT
D 01 65	NAS GUAM	N	151	X	80.77	SD	2.114	HT
D 02 65	NAS GUAM	N	167	X	79.63	SD	1.772	LT
D 02 65	NAS GUAM	N	167	X	80.77	SD	2.027	HT
D 03 65	NAS GUAM	N	186	X	80.21	SD	1.442	LT
D 03 65	NAS GUAM	N	186	X	81.28	SD	1.659	HT
D 04 65	NAS GUAM	N	180	X	81.12	SD	1.458	LT
D 04 65	NAS GUAM	N	180	X	82.53	SD	1.659	HT
D 05 65	NAS GUAM	N	186	X	82.14	SD	1.372	LT
D 05 65	NAS GUAM	N	186	X	83.44	SD	1.485	HT
D 06 65	NAS GUAM	N	178	X	81.84	SD	1.270	LT
D 06 65	NAS GUAM	N	178	X	83.05	SD	1.281	HT
D 07 65	NAS GUAM	N	181	X	80.95	SD	1.137	LT
D 07 65	NAS GUAM	N	181	X	82.20	SD	1.559	HT
D 08 65	NAS GUAM	N	198	X	81.67	SD	1.753	LT
D 08 65	NAS GUAM	N	198	X	83.01	SD	2.141	HT
D 09 65	NAS GUAM	N	178	X	81.01	SD	2.169	LT
D 09 65	NAS GUAM	N	178	X	82.94	SD	2.287	HT
D 10 65	NAS GUAM	N	201	X	80.20	SD	2.818	LT
D 10 65	NAS GUAM	N	201	X	83.30	SD	3.755	HT
D 11 65	NAS GUAM	N	198	X	81.05	SD	3.396	LT
D 11 65	NAS GUAM	N	198	X	84.09	SD	3.668	HT
D 12 65	NAS GUAM	N	226	X	79.47	SD	3.334	LT
D 12 65	NAS GUAM	N	226	X	82.62	SD	2.967	HT
D 01 66	NAS GUAM	N	231	X	78.65	SD	3.041	LT
D 01 66	NAS GUAM	N	231	X	81.33	SD	3.102	HT
D 02 66	NAS GUAM	N	198	X	78.94	SD	3.706	LT
D 02 66	NAS GUAM	N	198	X	81.79	SD	3.932	HT
D 03 66	NAS GUAM	N	231	X	78.78	SD	3.466	LT
D 03 66	NAS GUAM	N	231	X	82.34	SD	3.332	HT
D 04 66	NAS GUAM	N	234	X	80.52	SD	3.286	LT
D 04 66	NAS GUAM	N	234	X	84.18	SD	3.912	HT
D 05 66	NAS GUAM	N	250	X	81.54	SD	4.179	LT
D 05 66	NAS GUAM	N	250	X	86.89	SD	5.621	HT
D 06 66	NAS GUAM	N	210	X	80.97	SD	3.806	LT
D 06 66	NAS GUAM	N	210	X	87.48	SD	6.115	HT
D 07 66	NAS GUAM	N	216	X	80.78	SD	3.456	LT
D 07 66	NAS GUAM	N	216	X	86.47	SD	5.313	HT
D 08 66	NAS GUAM	N	217	X	79.67	SD	3.787	LT
D 08 66	NAS GUAM	N	217	X	85.46	SD	5.837	HT
D 09 66	NAS GUAM	N	210	X	78.13	SD	3.430	LT
D 09 66	NAS GUAM	N	210	X	83.61	SD	5.804	HT
D 10 66	NAS GUAM	N	217	X	78.41	SD	3.270	LT
D 10 66	NAS GUAM	N	217	X	85.36	SD	6.210	HT
D 11 66	NAS GUAM	N	210	X	79.00	SD	3.630	LT
D 11 66	NAS GUAM	N	210	X	85.10	SD	6.405	HT
D 12 66	NAS GUAM	N	49	X	78.47	SD	4.093	LT
D 12 66	NAS GUAM	N	49	X	83.98	SD	6.845	HT

TABLE 11. Minimum and Maximum Non-Earth-Covered Storage
Temperatures, Monthly Summaries,
NAS, Agana, Guam.

D	01	64	NAS	GUAM	N	124	X	76.11	SD	1.333	LT
D	01	64	NAS	GUAM	N	124	X	86.34	SD	4.235	HT
D	02	64	NAS	GUAM	N	100	X	75.56	SD	1.217	LT
D	02	64	NAS	GUAM	N	100	X	86.13	SD	4.077	HT
D	03	64	NAS	GUAM	N	95	X	76.33	SU	2.819	LT
D	03	64	NAS	GUAM	N	95	X	86.31	SD	3.112	HT
D	04	64	NAS	GUAM	N	125	X	77.14	SD	2.270	LT
D	04	64	NAS	GUAM	N	125	X	85.62	SU	1.839	HT
D	05	64	NAS	GUAM	N	100	X	77.48	SD	1.806	LT
D	05	64	NAS	GUAM	N	100	X	84.95	SD	1.893	HT
D	06	64	NAS	GUAM	N	99	X	80.97	SD	1.770	LT
D	06	64	NAS	GUAM	N	99	X	87.81	SD	2.271	HT
D	07	64	NAS	GUAM	N	124	X	79.27	SU	1.344	LT
D	07	64	NAS	GUAM	N	124	X	87.08	SD	1.641	HT
D	08	64	NAS	GUAM	N	100	X	78.43	SD	1.057	LT
D	08	64	NAS	GUAM	N	100	X	85.82	SD	1.019	HT
D	09	64	NAS	GUAM	N	100	X	77.75	SD	1.209	LT
D	09	64	NAS	GUAM	N	100	X	85.39	SD	1.355	HT
D	10	64	NAS	GUAM	N	125	X	78.48	SD	1.418	LT
D	10	64	NAS	GUAM	N	125	X	87.15	SD	2.091	HT
D	11	64	NAS	GUAM	N	71	X	79.51	SD	1.672	LT
D	11	64	NAS	GUAM	N	71	X	87.17	SD	2.752	HT
D	12	64	NAS	GUAM	N	91	X	77.62	SD	2.356	LT
D	12	64	NAS	GUAM	N	91	X	86.26	SU	3.797	HT
D	01	65	NAS	GUAM	N	92	X	76.34	SD	2.029	LT
D	01	65	NAS	GUAM	N	92	X	84.70	SD	3.582	HT
D	02	65	NAS	GUAM	N	85	X	77.24	SD	2.062	LT
D	02	65	NAS	GUAM	N	85	X	85.02	SU	3.098	HT
D	03	65	NAS	GUAM	N	73	X	77.77	SD	1.768	LT
D	03	65	NAS	GUAM	N	73	X	85.64	SD	2.182	HT
D	04	65	NAS	GUAM	N	113	X	79.67	SD	2.558	LT
D	04	65	NAS	GUAM	N	113	X	86.25	SU	1.578	HT
D	05	65	NAS	GUAM	N	73	X	79.97	SD	1.683	LT
D	05	65	NAS	GUAM	N	73	X	86.12	SD	1.699	HT
D	06	65	NAS	GUAM	N	89	X	79.99	SD	1.641	LT
D	06	65	NAS	GUAM	N	89	X	86.04	SD	1.783	HT
D	07	65	NAS	GUAM	N	115	X	77.92	SD	2.082	LT
D	07	65	NAS	GUAM	N	115	X	85.70	SD	2.244	HT
D	08	65	NAS	GUAM	N	90	X	79.34	SD	2.459	LT
D	08	65	NAS	GUAM	N	90	X	86.84	SD	2.114	HT
D	09	65	NAS	GUAM	N	91	X	79.16	SD	1.899	LT
D	09	65	NAS	GUAM	N	91	X	86.34	SD	2.217	HT
D	10	65	NAS	GUAM	N	123	X	78.98	SD	3.095	LT
D	10	65	NAS	GUAM	N	123	X	86.85	SD	2.698	HT
D	11	65	NAS	GUAM	N	91	X	79.53	SD	2.267	LT
D	11	65	NAS	GUAM	N	91	X	86.32	SU	3.190	HT
D	12	65	NAS	GUAM	N	108	X	78.31	SD	2.600	LT
D	12	65	NAS	GUAM	N	108	X	84.40	SU	3.407	HT

TABLE 11. (Cont.)

D 01 66	NAS GUAM	N	72	X	77.15	SD	2.516	LT
D 01 66	NAS GUAM	N	72	X	84.46	SD	3.603	HT
D 02 66	NAS GUAM	N	251	X	78.37	SD	3.659	LT
D 02 66	NAS GUAM	N	251	X	82.27	SD	3.868	HT
D 03 66	NAS GUAM	N	62	X	78.34	SD	1.933	LT
D 03 66	NAS GUAM	N	62	X	84.31	SD	2.906	HT
D 04 66	NAS GUAM	N	90	X	80.08	SD	2.089	LT
D 04 66	NAS GUAM	N	90	X	86.00	SD	1.453	HT
D 05 66	NAS GUAM	N	61	X	81.57	SD	2.125	LT
D 05 66	NAS GUAM	N	61	X	86.13	SD	2.225	HT
D 06 66	NAS GUAM	N	125	X	80.84	SD	2.638	LT
D 06 66	NAS GUAM	N	125	X	88.62	SD	1.945	HT
D 07 66	NAS GUAM	N	101	X	82.17	SD	2.728	LT
D 07 66	NAS GUAM	N	101	X	83.35	SD	1.967	HT
D 08 66	NAS GUAM	N	100	X	79.66	SD	2.972	LT
D 08 66	NAS GUAM	N	100	X	87.99	SD	1.845	HT
D 09 66	NAS GUAM	N	125	X	78.86	SD	2.752	LT
D 09 66	NAS GUAM	N	125	X	86.59	SD	2.167	HT
D 10 66	NAS GUAM	N	100	X	80.54	SD	2.945	LT
D 10 66	NAS GUAM	N	100	X	86.90	SD	3.430	HT
D 11 66	NAS GUAM	N	100	X	80.16	SD	3.113	LT
D 11 66	NAS GUAM	N	100	X	86.81	SD	3.228	HT

TABLE 12. Minimum and Maximum Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Magazines, Subic Bay, Republic of the Philippines.

D	01	62	SUBIC BAY	N	220	X	80.11	SD	2.378	LT
D	01	62	SUBIC BAY	N	220	X	83.63	SD	2.749	HT
D	02	62	SUBIC BAY	N	213	X	79.40	SD	2.712	LT
D	02	62	SUBIC BAY	N	213	X	82.67	SD	3.051	HT
D	03	62	SUBIC BAY	N	218	X	82.06	SD	2.588	LT
D	03	62	SUBIC BAY	N	218	X	85.19	SD	2.355	HT
D	04	62	SUBIC BAY	N	207	X	84.58	SD	1.978	LT
D	04	62	SUBIC BAY	N	207	X	87.17	SD	1.612	HT
D	05	62	SUBIC BAY	N	195	X	86.27	SD	1.833	LT
D	05	62	SUBIC BAY	N	195	X	89.42	SD	1.582	HT
D	06	62	SUBIC BAY	N	216	X	85.05	SD	1.390	LT
D	06	62	SUBIC BAY	N	216	X	88.19	SD	1.853	HT
D	07	62	SUBIC BAY	N	216	X	82.10	SD	2.690	LT
D	07	62	SUBIC BAY	N	216	X	85.50	SD	2.749	HT
D	08	62	SUBIC BAY	N	228	X	79.68	SD	1.659	LT
D	08	62	SUBIC BAY	N	228	X	83.07	SD	2.179	HT
D	09	62	SUBIC BAY	N	217	X	79.52	SD	1.171	LT
D	09	62	SUBIC BAY	N	217	X	82.88	SD	1.845	HT
D	10	62	SUBIC BAY	N	188	X	81.18	SD	1.802	LT
D	10	62	SUBIC BAY	N	188	X	83.04	SD	1.489	HT
D	11	62	SUBIC BAY	N	211	X	81.60	SD	1.677	LT
D	11	62	SUBIC BAY	N	211	X	84.03	SD	1.717	HT
D	12	62	SUBIC BAY	N	189	X	80.14	SD	1.586	LT
D	12	62	SUBIC BAY	N	189	X	82.90	SD	1.773	HT
D	01	63	SUBIC BAY	N	223	X	79.00	SD	1.602	LT
D	01	63	SUBIC BAY	N	223	X	82.20	SD	2.201	HT
D	02	63	SUBIC BAY	N	211	X	78.90	SD	1.792	LT
D	02	63	SUBIC BAY	N	211	X	81.58	SD	1.949	HT
D	03	63	SUBIC BAY	N	185	X	80.18	SD	2.008	LT
D	03	63	SUBIC BAY	N	185	X	83.24	SD	1.790	HT
D	04	63	SUBIC BAY	N	216	X	82.82	SD	1.905	LT
D	04	63	SUBIC BAY	N	216	X	85.53	SD	1.608	HT
D	05	63	SUBIC BAY	N	215	X	85.84	SD	1.947	LT
D	05	63	SUBIC BAY	N	215	X	88.78	SD	1.537	HT
D	06	63	SUBIC BAY	N	190	X	82.48	SD	2.381	LT
D	06	63	SUBIC BAY	N	190	X	86.50	SD	3.112	HT
D	07	63	SUBIC BAY	N	199	X	80.10	SD	1.592	LT
D	07	63	SUBIC BAY	N	189	X	83.03	SD	2.101	HT
D	08	63	SUBIC BAY	N	200	X	80.81	SD	1.609	LT
D	08	63	SUBIC BAY	N	200	X	83.77	SD	1.406	HT
D	09	63	SUBIC BAY	N	194	X	80.23	SD	1.844	LT
D	09	63	SUBIC BAY	N	194	X	83.22	SD	1.696	HT
D	10	63	SUBIC BAY	N	214	X	81.02	SD	2.487	LT
D	10	63	SUBIC BAY	N	214	X	84.10	SD	2.183	HT
D	11	63	SUBIC BAY	N	193	X	82.04	SD	2.531	LT
D	11	63	SUBIC BAY	N	193	X	84.96	SD	2.711	HT
D	12	63	SUBIC BAY	N	204	X	81.69	SD	2.635	LT
D	12	63	SUBIC BAY	N	204	X	84.30	SD	3.093	HT

TABLE 12. (Cont.)

D 01 64	SUBIC BAY	N	216	X	81.05	SD	2.516	LT
D 01 64	SUBIC BAY	N	216	X	84.02	SD	2.653	HT
D 02 64	SUBIC BAY	N	194	X	80.55	SD	2.839	LT
D 02 64	SUBIC BAY	N	194	X	83.53	SD	2.894	HT
D 03 64	SUBIC BAY	N	194	X	81.47	SD	2.831	LT
D 03 64	SUBIC BAY	N	194	X	84.66	SD	2.936	HT
D 04 64	SUBIC BAY	N	197	X	83.49	SD	2.998	LT
D 04 64	SUBIC BAY	N	197	X	87.24	SD	2.468	HT
D 05 64	SUBIC BAY	N	207	X	85.44	SD	3.004	LT
D 05 64	SUBIC BAY	N	207	X	89.66	SD	2.155	HT
D 06 64	SUBIC BAY	N	226	X	83.76	SD	2.377	LT
D 06 64	SUBIC BAY	N	226	X	88.36	SD	2.142	HT
D 07 64	SUBIC BAY	N	182	X	82.08	SD	1.909	LT
D 07 64	SUBIC BAY	N	182	X	86.21	SD	2.170	HT
D 08 64	SUBIC BAY	N	213	X	80.92	SD	1.813	LT
D 08 64	SUBIC BAY	N	213	X	84.68	SD	2.378	HT
D 09 64	SUBIC BAY	N	210	X	80.17	SD	1.946	LT
D 09 64	SUBIC BAY	N	210	X	83.59	SD	2.180	HT
D 10 64	SUBIC BAY	N	201	X	80.46	SD	1.873	LT
D 10 64	SUBIC BAY	N	201	X	82.77	SD	2.114	HT
D 11 64	SUBIC BAY	N	228	X	80.82	SD	1.937	LT
D 11 64	SUBIC BAY	N	228	X	83.34	SD	2.088	HT
D 12 64	SUBIC BAY	N	206	X	78.73	SD	2.464	LT
D 12 64	SUBIC BAY	N	206	X	81.75	SD	2.821	HT
D 01 65	SUBIC BAY	N	47	X	79.94	SD	2.120	LT
D 01 65	SUBIC BAY	N	47	X	83.21	SD	1.988	HT
D 02 65	SUBIC BAY	N	51	X	79.57	SD	1.847	LT
D 02 65	SUBIC BAY	N	51	X	82.73	SD	2.401	HT
D 03 65	SUBIC BAY	N	53	X	81.60	SD	2.429	LT
D 03 65	SUBIC BAY	N	53	X	84.02	SD	1.550	HT
D 04 65	SUBIC BAY	N	57	X	83.37	SD	2.127	LT
D 04 65	SUBIC BAY	N	57	X	86.58	SD	1.802	HT
D 05 65	SUBIC BAY	N	57	X	85.93	SD	1.879	LT
D 05 65	SUBIC BAY	N	57	X	88.65	SD	1.674	HT
D 06 65	SUBIC BAY	N	58	X	81.93	SD	1.375	LT
D 06 65	SUBIC BAY	N	58	X	86.40	SD	2.499	HT
D 07 65	SUBIC BAY	N	64	X	80.12	SD	1.618	LT
D 07 65	SUBIC BAY	N	64	X	84.20	SD	2.147	HT
D 08 65	SUBIC BAY	N	63	X	79.79	SD	1.618	LT
D 08 65	SUBIC BAY	N	63	X	82.90	SD	1.757	HT
D 09 65	SUBIC BAY	N	49	X	80.65	SD	1.234	LT
D 09 65	SUBIC BAY	N	49	X	83.92	SD	1.644	HT
D 10 65	SUBIC BAY	N	34	X	80.76	SD	1.539	LT
D 10 65	SUBIC BAY	N	34	X	83.88	SD	1.871	HT
D 11 65	SUBIC BAY	N	41	X	82.32	SD	2.554	LT
D 11 65	SUBIC BAY	N	41	X	85.59	SD	2.280	HT
D 12 65	SUBIC BAY	N	38	X	82.21	SD	2.009	LT
D 12 65	SUBIC BAY	N	38	X	84.10	SD	2.150	HT

TABLE 12. (Cont.)

D	01	66	SUBIC BAY	N	39	X	81.62	SD	2.267	LT
D	01	66	SUBIC BAY	N	39	X	83.49	SD	2.175	HT
D	02	66	SUBIC BAY	N	47	X	82.57	SD	2.103	LT
D	02	66	SUBIC BAY	N	47	X	84.53	SD	2.483	HT
D	03	66	SUBIC BAY	N	26	X	82.65	SD	2.399	LT
D	03	66	SUBIC BAY	N	26	X	85.42	SD	1.983	HT
D	04	66	SUBIC BAY	N	41	X	83.95	SD	1.949	LT
D	04	66	SUBIC BAY	N	41	X	88.05	SD	2.291	HT
D	05	66	SUBIC BAY	N	63	X	82.95	SD	3.220	LT
D	05	66	SUBIC BAY	N	63	X	88.03	SD	2.794	HT
D	06	66	SUBIC BAY	N	35	X	81.80	SD	2.247	LT
D	06	66	SUBIC BAY	N	35	X	85.40	SD	2.648	HT
D	07	66	SUBIC BAY	N	67	X	82.81	SD	1.836	LT
D	07	66	SUBIC BAY	N	67	X	84.91	SD	2.248	HT
D	08	66	SUBIC BAY	N	110	X	81.84	SD	1.743	LT
D	08	66	SUBIC BAY	N	110	X	85.18	SD	2.227	HT
D	09	66	SUBIC BAY	N	122	X	80.80	SD	1.813	LT
D	09	65	SUBIC BAY	N	122	X	84.26	SD	2.391	HT
D	10	66	SUBIC BAY	N	188	X	82.31	SD	2.061	LT
D	10	66	SUBIC BAY	N	188	X	84.80	SD	2.129	HT
D	11	66	SUBIC BAY	N	198	X	82.44	SD	2.396	LT
D	11	66	SUBIC BAY	N	198	X	84.52	SD	2.604	HT
D	12	66	SUBIC BAY	N	126	X	80.47	SD	3.098	LT
		66	SUBIC BAY	N	126	X	83.60	SD	3.070	HT

TABLE 13. Minimum and Maximum Non-Earth-Covered Storage Temperatures, Monthly Summaries, U. S. Naval Magazines, Subic Bay, Republic of the Philippines.

D	01	62	SUBIC BAY	N	1	X	68.	SD	-0.	LT
D	01	62	SUBIC BAY	N	1	X	99.	SD	-0.	HT
D	02	62	SUBIC BAY				0.	SD	-0.	LT
D	02	62	SUBIC BAY				0.	SD	-0.	HT
D	03	62	SUBIC BAY	N	2	X	82.00	SD	7.071	LT
D	03	62	SUBIC BAY	N	2	X	90.00	SD	1.414	HT
D	04	62	SUBIC BAY	N	13	X	84.15	SD	2.853	LT
D	04	62	SUBIC BAY	N	13	X	87.77	SD	1.301	HT
D	05	62	SUBIC BAY	N	19	X	85.68	SD	2.110	LT
D	05	62	SUBIC BAY	N	19	X	89.95	SD	1.957	HT
D	06	62	SUBIC BAY	N	1	X	79.	SD	-0.	LT
D	06	62	SUBIC BAY	N	1	X	98.	SD	-0.	HT
D	07	62	SUBIC BAY	N	1	X	75.	SD	-0.	LT
D	07	62	SUBIC BAY	N	1	X	87.	SD	-0.	HT
D	08	62	SUBIC BAY	N	1	X	75.	SD	-0.	LT
D	08	62	SUBIC BAY	N	1	X	90.	SD	-0.	HT
D	09	62	SUBIC BAY	N	1	X	74.	SD	-0.	LT
D	09	62	SUBIC BAY	N	1	X	90.	SD	-0.	HT
D	10	62	SUBIC BAY				0.	SD	-0.	LT
D	10	62	SUBIC BAY				0.	SD	-0.	HT
D	11	62	SUBIC BAY	N	1	X	72.	SD	-0.	LT
D	11	62	SUBIC BAY	N	1	X	90.	SD	-0.	HT
D	12	62	SUBIC BAY	N	6	X	68.67	SD	4.274	LT
D	12	62	SUBIC BAY	N	6	X	94.00	SD	1.789	HT
D	01	63	SUBIC BAY	N	7	X	67.80	SD	2.795	LT
D	01	63	SUBIC BAY	N	7	X	96.29	SD	2.870	HT
D	02	63	SUBIC BAY	N	8	X	70.25	SD	7.226	LT
D	02	63	SUBIC BAY	N	8	X	94.25	SD	3.454	HT
D	03	63	SUBIC BAY	N	8	X	66.75	SD	4.803	LT
D	03	63	SUBIC BAY	N	8	X	99.00	SD	2.449	HT
D	04	63	SUBIC BAY	N	7	X	71.43	SD	5.094	LT
D	04	63	SUBIC BAY	N	7	X	100.00	SD	2.582	HT
D	05	63	SUBIC BAY	N	1	X	77.	SD	-0.	LT
D	05	63	SUBIC BAY	N	1	X	106.	SD	-0.	HT
D	06	63	SUBIC BAY	N	7	X	73.00	SD	2.160	LT
D	06	63	SUBIC BAY	N	7	X	102.00	SD	3.266	HT
D	07	63	SUBIC BAY	N	8	X	72.00	SD	1.852	LT
D	07	63	SUBIC BAY	N	8	X	95.38	SD	6.886	HT
D	08	63	SUBIC BAY	N	7	X	75.71	SD	3.039	LT
D	08	63	SUBIC BAY	N	7	X	96.80	SD	4.140	HT
D	09	63	SUBIC BAY	N	1	X	75.	SD	-0.	LT
D	09	63	SUBIC BAY	N	1	X	100.	SD	-0.	HT
D	10	63	SUBIC BAY	N	1	X	77.	SD	-0.	LT
D	10	63	SUBIC BAY	N	1	X	102.86	SD	-0.	HT
D	11	63	SUBIC BAY	N	7	X	72.86	SD	3.532	LT
D	11	63	SUBIC BAY	N	7	X	100.29	SD	4.645	HT
D	12	63	SUBIC BAY	N	8	X	70.50	SD	5.425	LT
D	12	63	SUBIC BAY	N	8	X	99.38	SD	3.739	HT

TABLE 13. (Cont.)

D	01	64	SUBIC	BAY	N	7	X	74.57	SD	5.653	LT
D	01	64	SUBIC	BAY	N	7	X	97.29	SD	3.039	HT
D	02	64	SUBIC	BAY	N	7	X	71.57	SD	3.309	LT
D	02	64	SUBIC	BAY	N	7	X	94.43	SD	9.796	HT
D	03	64	SUBIC	BAY	N	5	X	66.80	SD	3.114	LT
D	03	64	SUBIC	BAY	N	5	X	97.40	SD	3.975	HT
D	04	64	SUBIC	BAY	N	6	X	72.83	SD	8.353	LT
D	04	64	SUBIC	BAY	N	6	X	102.00	SD	4.336	HT
D	05	64	SUBIC	BAY	N	4	X	73.75	SD	4.349	LT
D	05	64	SUBIC	BAY	N	4	X	102.75	SD	2.062	HT
D	06	64	SUBIC	BAY	N	7	X	74.14	SD	3.237	LT
D	06	64	SUBIC	BAY	N	7	X	101.14	SD	6.149	HT
D	07	64	SUBIC	BAY	N	1	X	74.	SD	-0.	LT
D	07	64	SUBIC	BAY	N	1	X	100.	SD	-0.	HT
D	08	64	SUBIC	BAY	N	5	X	71.40	SD	4.561	LT
D	08	64	SUBIC	BAY	N	5	X	98.20	SD	7.294	HT
D	09	64	SUBIC	BAY	N	1	X	79.	SD	-0.	LT
D	09	64	SUBIC	BAY	N	1	X	97.	SD	-0.	HT
D	10	64	SUBIC	BAY	N	5	X	73.40	SD	5.595	LT
D	10	64	SUBIC	BAY	N	5	X	91.40	SD	4.561	HT
D	11	64	SUBIC	BAY	N	14	X	75.71	SD	7.907	LT
D	11	64	SUBIC	BAY	N	14	X	88.93	SD	6.294	HT
D	12	64	SUBIC	BAY	N	1	X	76.	SD	-0.	LT
D	12	64	SUBIC	BAY	N	1	X	77.	SD	-0.	HT

TABLE 14. Minimum and Maximum Earth-Covered Storage
 Temperatures, Monthly Summaries, U. S. Naval Air
 Station, Sangley Point, Republic of the Philippines.

D	02	65	NAV STA. P.I.	N	184	X	80.51	SD	1.293	LT
D	02	65	NAV STA. P.I.	N	184	X	82.14	SD	1.474	HT
D	03	65	NAV STA. P.I.	N	186	X	82.89	SD	1.209	LT
D	03	65	NAV STA. P.I.	N	186	X	84.60	SD	2.253	HT
D	04	65	NAV STA. P.I.	N	180	X	85.76	SD	2.409	LT
D	04	65	NAV STA. P.I.	N	180	X	88.32	SD	2.344	HT
D	05	65	NAV STA. P.I.	N	186	X	87.86	SD	2.240	LT
D	05	65	NAV STA. P.I.	N	186	X	89.12	SD	2.327	HT
D	06	65	NAV STA. P.I.	N	240	X	84.12	SD	1.450	LT
D	06	65	NAV STA. P.I.	N	240	X	86.26	SD	1.598	HT
D	07	65	NAV STA. P.I.	N	247	X	82.47	SD	1.891	LT
D	07	65	NAV STA. P.I.	N	247	X	84.60	SD	1.841	HT
D	08	65	NAV STA. P.I.	N	248	X	82.81	SD	1.653	LT
D	08	65	NAV STA. P.I.	N	248	X	85.00	SD	1.602	HT
D	09	65	NAV STA. P.I.	N	241	X	82.66	SD	1.616	LT
D	09	65	NAV STA. P.I.	N	241	X	84.66	SD	1.339	HT
D	10	65	NAV STA. P.I.	N	273	X	82.92	SD	1.871	LT
D	10	65	NAV STA. P.I.	N	273	X	85.29	SD	1.680	HT
D	11	65	NAV STA. P.I.	N	292	X	82.64	SD	2.062	LT
D	11	65	NAV STA. P.I.	N	292	X	85.16	SD	2.211	HT
D	12	65	NAV STA. P.I.	N	307	X	80.74	SD	2.599	LT
D	12	65	NAV STA. P.I.	N	307	X	83.91	SD	2.364	HT
D	01	66	NAV STA. P.I.	N	279	X	79.93	SD	3.532	LT
D	01	66	NAV STA. P.I.	N	279	X	83.96	SD	2.315	HT
D	02	66	NAV STA. P.I.	N	228	X	80.24	SD	3.643	LT
D	02	66	NAV STA. P.I.	N	228	X	84.31	SD	2.285	HT
D	03	66	NAV STA. P.I.	N	279	X	82.35	SD	3.508	LT
D	03	66	NAV STA. P.I.	N	279	X	86.11	SD	2.180	HT
D	04	66	NAV STA. P.I.	N	267	X	84.61	SD	3.606	LT
D	04	66	NAV STA. P.I.	N	267	X	88.82	SD	2.269	HT
D	05	66	NAV STA. P.I.	N	278	X	83.15	SD	3.567	LT
D	05	66	NAV STA. P.I.	N	278	X	86.42	SD	3.540	HT
D	06	66	NAV STA. P.I.	N	270	X	84.47	SD	2.273	LT
D	06	66	NAV STA. P.I.	N	270	X	87.39	SD	2.109	HT
D	07	66	NAV STA. P.I.	N	323	X	83.46	SD	2.322	LT
D	07	66	NAV STA. P.I.	N	323	X	87.42	SD	2.333	HT
D	08	66	NAV STA. P.I.	N	333	X	83.50	SD	2.040	LT
D	08	66	NAV STA. P.I.	N	333	X	86.92	SD	2.001	HT
D	09	66	NAV STA. P.I.	N	332	X	80.77	SD	2.200	LT
D	09	66	NAV STA. P.I.	N	332	X	84.92	SD	3.080	HT
D	10	66	NAV STA. P.I.	N	301	X	81.73	SD	1.702	LT
D	10	66	NAV STA. P.I.	N	301	X	85.51	SD	2.383	HT
D	11	66	NAV STA. P.I.	N	280	X	81.77	SD	1.953	LT
D	11	66	NAV STA. P.I.	N	280	X	84.97	SD	2.303	HT
D	12	66	NAV STA. P.I.	N	309	X	80.39	SD	1.549	LT
D	12	66	NAV STA. P.I.	N	309	X	83.59	SD	2.529	HT

TABLE 15. Minimum and Maximum Non-Earth-Covered Storage
Temperatures, Monthly Summaries, U. S. Naval Air
Station, Sangley Point, Republic of the Philippines.

D	02	65	NAV STA. P.I.	N	182	X	79.04	SD	1.782
D	02	65	NAV STA. P.I.	N	182	X	80.68	SD	1.675
D	03	65	NAV STA. P.I.	N	186	X	79.76	SD	1.226
D	03	65	NAV STA. P.I.	N	186	X	82.11	SD	1.883
D	04	65	NAV STA. P.I.	N	135	X	82.77	SD	1.620
D	04	65	NAV STA. P.I.	N	135	X	87.18	SD	2.796
D	05	65	NAV STA. P.I.	N	92	X	84.34	SD	3.025
D	05	65	NAV STA. P.I.	N	92	X	88.54	SD	3.516
D	06	65	NAV STA. P.I.	N	30	X	80.27	SD	1.112
D	06	65	NAV STA. P.I.	N	30	X	84.33	SD	1.788
D	07	65	NAV STA. P.I.	N	31	X	79.06	SD	1.590
D	07	65	NAV STA. P.I.	N	31	X	82.74	SD	2.529
D	08	65	NAV STA. P.I.	N	31	X	79.61	SD	1.564
D	08	65	NAV STA. P.I.	N	31	X	83.94	SD	1.965
D	09	65	NAV STA. P.I.	N	30	X	79.43	SD	1.547
D	09	65	NAV STA. P.I.	N	30	X	83.30	SD	1.878
D	10	65	NAV STA. P.I.	N	29	X	80.17	SD	1.256
D	10	65	NAV STA. P.I.	N	29	X	84.66	SD	2.857
D	11	65	NAV STA. P.I.	N	30	X	79.83	SD	1.763
D	11	65	NAV STA. P.I.	N	30	X	84.70	SD	1.317
D	12	65	NAV STA. P.I.	N	31	X	79.90	SD	1.535
D	12	65	NAV STA. P.I.	N	31	X	82.68	SD	1.222
D	01	66	NAV STA. P.I.	N	51	X	78.22	SD	0.901
D	01	66	NAV STA. P.I.	N	51	X	82.37	SD	1.685
D	02	66	NAV STA. P.I.	N	28	X	79.79	SD	1.792
D	02	66	NAV STA. P.I.	N	28	X	83.71	SD	1.536
D	03	66	NAV STA. P.I.	N	31	X	80.71	SD	1.071
D	03	66	NAV STA. P.I.	N	31	X	84.94	SD	1.825
D	04	66	NAV STA. P.I.	N	30	X	82.67	SD	1.241
D	04	66	NAV STA. P.I.	N	30	X	87.33	SD	1.561
D	05	66	NAV STA. P.I.	N	31	X	80.61	SD	2.642
D	05	66	NAV STA. P.I.	N	31	X	84.58	SD	3.548
D	06	66	NAV STA. P.I.	N	30	X	81.10	SD	1.470
D	06	66	NAV STA. P.I.	N	30	X	84.13	SD	1.655

Appendix D

STATISTICAL NOTES AND IMPLICATIONS

The following points concerning the temperature data should be considered before making final judgement on the contents of this report.

1. The time intervals at which temperature readings were taken were not equal. The maximum and minimum temperature readings were those encountered within the magazine during those intervals of time. The difference in reading-time intervals biases the results in both maximum and minimum directions. It has been found that the temperatures in some magazines were read daily, weekly, biweekly, monthly, or less frequently, depending on the material and procedures indigenous to each facility. This, of course, biases the results upward as a high temperature for 1 day may be the recorded temperature for that magazine for a 1-week or greater period, instead of for that specific day.

2. The amount of ammunition in the storage magazines is not always constant. The absorption of heat by the ammunition (dependent on the quantity of material) within the magazine could cause differences in temperature readings that are not accounted for.

3. The frequency at which the magazine doors are opened will also influence the temperature readings. This effect is also not accounted for.

4. The data summary indicating the number of maximum temperature readings exceeding nominal temperatures is exclusive of minimum temperature readings. Perhaps the minimum temperatures could be used in such a way as to provide the length of time which these nominal temperatures are exceeded. If, for example, the minimum temperature recorded for a reading interval is 90°F, it is certain that the temperature within the storage magazine was at least 90°F during that reading interval.

The number of data points, the averages, and the standard deviations of temperature readings for each month was reported in Appendix C because these statistics provide information concerning the distribution of temperature readings. If it is assumed that these temperature measurements are normally distributed (the Gaussian curve) within each month, and the data in most cases do not indicate that it is a poor assumption for practical use, the standard deviation can be used to attach probabilities of occurrences to nominal temperature values. For example, in May 1966, for earth-covered magazines at Subic Bay, Republic of the Philippines, the sample size is 68, the average is 88.03°F and the standard deviation is 2.794°F. From this and the assumption that the data are representative of the storage temperatures encountered in May, the probability of getting a storage temperature of 110°F or greater is for practical purposes essentially zero. If the same method is employed to the means (\bar{x}) and standard deviations (S) of storage temperatures given in Appendix C, it would be found that a temperature of 115°F is unlikely to be reached in storage magazines, with the exception of a few non-earth covered "magazines" that are actually receiving and sorting buildings or temporary shelters that are found at the Naval Magazines, Guam, or Naval Magazines, Republic of the Philippines.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		12a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
U. S. Naval Ordnance Test Station China Lake, California 93555		12b. GROUP
3. REPORT TITLE STORAGE TEMPERATURE OF EXPLOSIVE HAZARD MAGAZINES, PART 2. WESTERN PACIFIC		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Temperature measurement studies		
5. AUTHOR(S) (Last name, first name, initial) Kurotori, I. S., and H. Schafer		
6. REPORT DATE June 1967	7a. TOTAL NO. OF PAGES 82	7b. NO. OF REPS None
8a. CONTRACT OR GRANT NO.		9a. ORIGINATOR'S REPORT NUMBER(S) NOTS TP 4143, Part 2
b. PROJECT NO. A33-536-711/216-1/ F009-06-01		9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
c. d.		
10. AVAILABILITY/LIMITATION NOTICES This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the U. S. Naval Ordnance Test Station.		
11. SUPPLEMENTARY NOTES		12. SPONSORING MILITARY ACTIVITY Naval Air Systems Command Naval Material Command Washington, D. C. 20360
13. ABSTRACT Storage magazine temperature measurements (188,614 data points) from the tropic regions of the Pacific are under study. The areas under consideration are the Republic of the Philippines, Hawaii, and Guam. This data collection is for the purpose of establishing a temperature criterion by statistical methods for ordnance stored in explosive hazard magazines. This report is the second of the series of reports which will cover explosive hazard magazine storage throughout the world. This report includes 47 figures and 14 tables.		

DD FORM 1 JAN 64 1473 0101-807-6800

UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification

14 KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
<p>MAGAZINE TEMPERATURES AT NAD, OAHU, HAWAII NAS, OAHU, HAWAII NAVAL MAGAZINES, GUAM NAS, AGANA, GUAM U. S. NAVAL MAGAZINES, SUBIC BAY, P. I. U. S. NAS, SANGLEY POINT, P. I.</p> <p>TEMPERATURE DATA RETRIEVAL TEMPERATURE DATA REDUCTION</p>						
INSTRUCTIONS						
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.	imposed by security classification, using standard statements such as:					
2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.	<ul style="list-style-type: none"> (1) "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign announcement and dissemination of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _____." (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _____." (5) "All distribution of this report is controlled. Qualified DDC users shall request through _____." 					
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.						
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.						
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.						
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.						
6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.						
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.						
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.						
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.						
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.						
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.						
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).						
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:						
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.						
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.						
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.						
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.						

UNCLASSIFIED

Security Classification

ABSTRACT CARD

<p>U. S. Naval Ordnance Test Station Storage Temperature of Explosive Hazard Magazines, Part 2. Western Pacific, by I. S. Kurotori and H. C. Schafer. China Lake, Calif., NOTS, June 1967. 82 pp. (NOTS TP 4143, Part 2), UNCLASSIFIED.</p> <p>ABSTRACT. Storage magazine temperature measurements (188, 614 data points) from the tropic regions of the Pacific are under study. The areas under consideration are the Republic of the Philippines, Hawaii, and Guam. This data collection is for the purpose of establishing a temperature</p> <p style="text-align: right;">(Over) <input type="circle"/> 1 card, 8 copies</p>	<p>U. S. Naval Ordnance Test Station Storage Temperature of Explosive Hazard Magazines, Part 2. Western Pacific, by I. S. Kurotori and H. C. Schafer. China Lake, Calif., NOTS, June 1967. 82 pp. (NOTS TP 4143, Part 2), UNCLASSIFIED.</p> <p>ABSTRACT. Storage magazine temperature measurements (188, 614 data points) from the tropic regions of the Pacific are under study. The areas under consideration are the Republic of the Philippines, Hawaii, and Guam. This data collection is for the purpose of establishing a temperature</p> <p style="text-align: right;">(Over) <input type="circle"/> 1 card, 8 copies</p>
---	---

NOTS TP 4143

Part 2
criterion by statistical methods for ordnance stored
in explosive hazard magazines.

This report is the second of the series of reports
which will cover explosive hazard magazine storage
throughout the world. This report includes
47 figures and 14 tables.

NOTS TP 4143

Part 2
criterion by statistical methods for ordnance stored
in explosive hazard magazines.

This report is the second of the series of reports
which will cover explosive hazard magazine storage
throughout the world. This report includes
47 figures and 14 tables.

NOTS TP 4143

Part 2
criterion by statistical methods for ordnance stored
in explosive hazard magazines.

This report is the second of the series of reports
which will cover explosive hazard magazine storage
throughout the world. This report includes
47 figures and 14 tables.

NOTS TP 4143

Part 2
criterion by statistical methods for ordnance stored
in explosive hazard magazines.

This report is the second of the series of reports
which will cover explosive hazard magazine storage
throughout the world. This report includes
47 figures and 14 tables.

