

William Stallings
Computer Organization
and Architecture
9th Edition

+ Chapter 4 Cache Memory

Memory

- The most common forms are:
 - Semiconductor memory
 - Magnetic surface memory
 - Optical
 - Magneto-optical

- Several physical characteristics of data storage are important:
 - Volatile memory
 - Information decays naturally or is lost when electrical power is switched off
 - Nonvolatile memory
 - Once recorded, information remains without deterioration until deliberately changed
 - No electrical power is needed to retain information
 - Magnetic-surface memories
 - Are nonvolatile
 - Semiconductor memory
 - May be either volatile or nonvolatile
 - Nonerasable memory
 - Cannot be altered, except by destroying the storage unit
 - Semiconductor memory of this type is known as read-only memory (ROM)
- For random-access memory the organization is a key design issue
 - Organization refers to the physical arrangement of bits to form words

Memory Hierarchy

- Design constraints on a computer's memory can be summed up by three questions:
 - How much, how fast, how expensive
- There is a trade-off among capacity, access time, and cost
 - Faster access time, greater cost per bit
 - Greater capacity, smaller cost per bit
 - Greater capacity, slower access time
- The way out of the memory dilemma is not to rely on a single memory component or technology, but to employ a memory hierarchy

⁺ Memory Hierarchy - Diagram

Figure 4.1 The Memory Hierarchy

Locality of Reference

- Two or more levels of memory can be used to produce average access time approaching the highest level
- The reason that this works well is called "locality of reference"
 - Spatial locality refers to the tendency of execution to involve a number of memory locations that are clustered.
 - Temporal locality refers to the tendency for a processor to access memory locations that have been used recently.
- During the course of the execution of a program, memory references tend to cluster
 - e.g. loops

Cache and Main Memory

(a) Single cache

Figure 4.3 Cache and Main Memory

Cache/Main Memory Structure

Figure 4.4 Cache/Main-Memory Structure

Figure 4.5 Cache Read Operation

Typical Cache Organization

Figure 4.6 Typical Cache Organization

Elements of Cache Design

Cache Addresses

Logical

Physical

Cache Size

Mapping Function

Direct

Associative

Set Associative

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Write Policy

Write through

Write back

Line Size

Number of caches

Single or two level

Unified or split

Cache Addresses Virtual Memory

- Virtual memory
 - Facility that allows programs to address memory from a logical point of view, without regard to the amount of main memory physically available
 - When used, the address fields of machine instructions contain virtual addresses
 - For reads to and writes from main memory, a hardware memory management unit (MMU) translates each virtual address into a physical address in main memory

Logical and Physical Caches

(a) Logical Cache

(b) Physical Cache

Figure 4.7 Logical and Physical Caches

Processor	Type	Year of Introduction	L1 Cache _a	L2 cache	L3 Cache	
IBM 360/85	Mainframe	1968	16 to 32 kB	_	_	
PDP-11/70	Minicomputer	1975	1 kB	_	_	
VAX 11/780	Minicomputer	1978	16 kB	_	_	
IBM 3033	Mainframe	1978	64 kB	_	_	— 11 40
IBM 3090	Mainframe	1985	128 to 256 kB	_	_	Table 4.3
Intel 80486	PC	1989	8 kB	_	_	
Pentium	PC	1993	8 kB/8 kB	256 to 512 KB	_	Cooks
PowerPC 601	PC	1993	32 kB	_	_	Cache
PowerPC 620	PC	1996	32 kB/32 kB	_	_	Sizes of
PowerPC G4	PC/server	1999	32 kB/32 kB	256 KB to 1 MB	2 MB	Some
IBM S/390 G6	Mainframe	1999	256 kB	8 MB	_	
Pentium 4	PC/server	2000	8 kB/8 kB	256 KB	_	Processors
IBM SP	High-end server/ supercomputer	2000	64 kB/32 kB	8 MB	-	
CRAY MTA _b	Supercomputer	2000	8 kB	2 MB	_	
Itanium	PC/server	2001	16 kB/16 kB	96 KB	4 MB	
Itanium 2	PC/server	2002	32 kB	256 KB	6 MB	
IBM POWER5	High-end server	2003	64 kB	1.9 MB	36 MB	
CRAY XD-1	Supercomputer	2004	64 kB/64 kB	1MB	_	
IBM POWER6	PC/server	2007	64 kB/64 kB	4 MB	32 MB	^a Two values separated by a
IBM z10	Mainframe	2008	64 kB/128 kB	3 MB	24-48 MB	slash refer to instruction and
Intel Core i7 EE 990	Workstaton/ server	2011	$6 \times 32 \text{ kB/}32 \text{ kB}$	1.5 MB	12 MB	data caches.
IBM zEnterprise 196	Mainframe/ Server	2011	24 × 64 kB/ 128 kB	24 × 1.5 MB	24 MB L3 192 MB L4	^b Both caches are instruction only; no data caches.

Mapping Function

- Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines
- Three techniques can be used:

Direct

- The simplest technique
- Maps each block of main memory into only one possible cache line

Associative

- Permits each main memory block to be loaded into any line of the cache
- The cache control logic interprets a memory address simply as a Tag and a Word field
- To determine whether a block is in the cache, the cache control logic must simultaneously examine every line's Tag for a match

Set Associative

 A compromise that exhibits the strengths of both the direct and associative approaches while reducing their disadvantages