

## N-channel 600 V, 37 mΩ typ., 66 A MDmesh™ DM2 Power MOSFET in a TO-247 package



TO-247



#### **Features**

| Order code  | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> | P <sub>TOT</sub> |
|-------------|-----------------|--------------------------|----------------|------------------|
| STW70N60DM2 | 600 V           | 42 mΩ                    | 66 A           | 446 W            |

- Fast-recovery body diode
- · Extremely low gate charge and input capacitance
- · Low on-resistance
- 100% avalanche tested
- · Extremely high dv/dt ruggedness
- · Zener-protected

### **Applications**

· Switching applications

#### **Description**

This high-voltage N-channel Power MOSFET is part of the MDmesh  $^{\text{TM}}$  DM2 fast-recovery diode series. It offers very low recovery charge ( $Q_{rr}$ ) and time ( $t_{rr}$ ) combined with low  $R_{DS(on)}$ , rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.



#### Product status link

STW70N60DM2

| Product summary |             |  |  |
|-----------------|-------------|--|--|
| Order code      | STW70N60DM2 |  |  |
| Marking         | 70N60DM2    |  |  |
| Package         | TO-247      |  |  |
| Packing         | Tube        |  |  |



# 1 Electrical ratings

Table 1. Absolute maximum ratings

| Symbol                         | Parameter                                                | Value      | Unit  |  |
|--------------------------------|----------------------------------------------------------|------------|-------|--|
| $V_{GS}$                       | Gate-source voltage                                      | ±25        | V     |  |
| 1_                             | Drain current (continuous) at T <sub>case</sub> = 25 °C  | 66         |       |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>case</sub> = 100 °C | 42         | Α     |  |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed)                                   | 264        | Α     |  |
| P <sub>TOT</sub>               | Total power dissipation at T <sub>case</sub> = 25 °C     | 446        | W     |  |
| dv/dt <sup>(2)</sup>           | Peak diode recovery voltage slope                        | 50         | V/ns  |  |
| dv/dt <sup>(3)</sup>           | MOSFET dv/dt ruggedness                                  | 50         | V/115 |  |
| T <sub>stg</sub>               | Storage temperature range                                | -55 to 150 | °C    |  |
| T <sub>j</sub>                 | Operating junction temperature range                     | -55 (0 150 | C     |  |

- 1. Pulse width is limited by safe operating area.
- 2.  $I_{SD} \le 66$  A, di/dt=900 A/ $\mu$ s;  $V_{DS}$  peak <  $V_{(BR)DSS}$ ,  $V_{DD}$  = 400 V.
- 3.  $V_{DS} \le 480 \text{ V}.$

Table 2. Thermal data

| Symbol                | Parameter                           | Value | Unit |
|-----------------------|-------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 0.28  | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient | 50    | C/VV |

**Table 3. Avalanche characteristics** 

| Symbol          | Parameter                                           | Value | Unit |  |
|-----------------|-----------------------------------------------------|-------|------|--|
| I <sub>AR</sub> | Avalanche current, repetitive or not repetitive (1) | 10    | Α    |  |
| E <sub>AS</sub> | Single pulse avalanche energy <sup>(2)</sup>        | 1500  | mJ   |  |

- 1. Pulse width limited by  $T_{JMAX}$ .
- 2. Starting  $T_J$  = 25 °C,  $I_D$  =  $I_{AR}$ ,  $V_{DD}$  = 50 V

DS10558 - Rev 5 page 2/13



### 2 Electrical characteristics

 $(T_{case} = 25 \, ^{\circ}C \text{ unless otherwise specified}).$ 

**Table 4. Static** 

| Symbol               | Parameter                             | Test conditions                                                                       | Min. | Тур. | Max. | Unit |
|----------------------|---------------------------------------|---------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage        | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 1 mA                                          | 600  |      |      | V    |
| l                    | Zero gate voltage drain               | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 600 V                                        |      |      | 10   | μА   |
| I <sub>DSS</sub>     | current                               | $V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}, T_{case} = 125 ^{\circ}\text{C}^{(1)}$ |      |      | 100  |      |
| I <sub>GSS</sub>     | Gate-body leakage current             | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$                                     |      |      | ±5   | μA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage                | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250 μA                           | 3    | 4    | 5    | V    |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 33 A                                         |      | 37   | 42   | mΩ   |

<sup>1.</sup> Defined by design, not subject to production test.

Table 5. Dynamic

| Symbol           | Parameter                     | Test conditions                                                                                                                    | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| C <sub>iss</sub> | Input capacitance             |                                                                                                                                    | -    | 5508 | -    |      |
| C <sub>oss</sub> | Output capacitance            | V <sub>DS</sub> = 100 V, f = 1 MHz, V <sub>GS</sub> = 0 V                                                                          | -    | 241  | -    | pF   |
| C <sub>rss</sub> | Reverse transfer capacitance  |                                                                                                                                    | -    | 2.8  | -    |      |
| Coss eq. (1)     | Equivalent output capacitance | V <sub>DS</sub> = 0 to 480 V, V <sub>GS</sub> = 0 V                                                                                | -    | 470  | -    | pF   |
| R <sub>G</sub>   | Intrinsic gate resistance     | f = 1 MHz, I <sub>D</sub> = 0 A                                                                                                    | -    | 2    | -    | Ω    |
| Qg               | Total gate charge             | V <sub>DD</sub> = 480 V, I <sub>D</sub> = 66 A, V <sub>GS</sub> = 0 to 10 V (see Figure 14. Test circuit for gate charge behavior) | -    | 121  | -    |      |
| Q <sub>gs</sub>  | Gate-source charge            |                                                                                                                                    | -    | 26   | -    | nC   |
| Q <sub>gd</sub>  | Gate-drain charge             |                                                                                                                                    | -    | 61   | -    |      |

C<sub>oss eq.</sub> is defined as a constant equivalent capacitance giving the same charging time as C<sub>oss</sub> when V<sub>DS</sub> increases from 0 to 80% V<sub>DSS</sub>.

Table 6. Switching times

| Symbol              | Parameter           | Test conditions                                                                                            | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|------------------------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD}$ = 300 V, $I_{D}$ = 33 A $R_{G}$ = 4.7 $\Omega$ , $V_{GS}$ = 10 V (see Figure 13. Test circuit for | -    | 32   | -    |      |
| t <sub>r</sub>      | Rise time           |                                                                                                            | -    | 67   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | resistive load switching times and                                                                         | -    | 112  | -    | 115  |
| t <sub>f</sub>      | Fall time           | Figure 18. Switching time waveform)                                                                        | -    | 10.4 | -    |      |

DS10558 - Rev 5 page 3/13



Table 7. Source-drain diode

| Symbol                          | Parameter                     | Test conditions                                                                                                                                            | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                                                                                                            | -    |      | 66   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                                                                                            | -    |      | 264  | Α    |
| V <sub>SD</sub> (2)             | Forward on voltage            | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 66 A                                                                                                              | -    |      | 1.6  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 66 A, di/dt = 100 A/μs, V <sub>DD</sub> = 60 V<br>(see )Figure 15. Test circuit for inductive<br>load switching and diode recovery times | -    | 150  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       |                                                                                                                                                            | -    | 0.75 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      |                                                                                                                                                            | -    | 10.5 |      | Α    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD}$ = 66 A, di/dt = 100 A/ $\mu$ s, $V_{DD}$ = 60 V,                                                                                                  | -    | 250  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | load switching and diode recovery times                                                                                                                    | -    | 2.5  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      |                                                                                                                                                            | -    | 20.7 |      | Α    |

<sup>1.</sup> Pulse width is limited by safe operating area.

DS10558 - Rev 5 page 4/13

<sup>2.</sup> Pulse test: pulse duration = 300 μs, duty cycle 1.5%.



### 2.1 Electrical characteristics (curves)











DS10558 - Rev 5 page 5/13



C GIPG100415FQ69WCVR (pF) 10 4 C ISS 10 2 C OSS 10 1 MHz C RSS

∇ <sub>DS</sub> (V)

10 º

10 -1

10 º

10 1

10<sup>2</sup>

Figure 8. Normalized gate threshold voltage vs temperature

V GS(th) GIPG100415FQ69WVGS

1.10

1.00

0.90

0.80

0.70

0.60

-75
-25
25
75
125
T j (°C)

Figure 9. Normalized on-resistance vs temperature

R DS(on) (norm.)

2.2

V GS = 10 V

1.8

1.4

1.0

0.6

0.2

-75 -25 25 75 125 T j (°C)







DS10558 - Rev 5 page 6/13



### 3 Test circuits

Figure 13. Test circuit for resistive load switching times



Figure 14. Test circuit for gate charge behavior



Figure 15. Test circuit for inductive load switching and diode recovery times



Figure 16. Unclamped inductive load test circuit



Figure 17. Unclamped inductive waveform



Figure 18. Switching time waveform



DS10558 - Rev 5 page 7/13



## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS10558 - Rev 5 page 8/13



## 4.1 TO-247 package information

Figure 19. TO-247 package outline



0075325\_9

DS10558 - Rev 5 page 9/13



Table 8. TO-247 package mechanical data

| Dim. |       | mm    |       |
|------|-------|-------|-------|
| Dim. | Min.  | Тур.  | Max.  |
| Α    | 4.85  |       | 5.15  |
| A1   | 2.20  |       | 2.60  |
| b    | 1.0   |       | 1.40  |
| b1   | 2.0   |       | 2.40  |
| b2   | 3.0   |       | 3.40  |
| С    | 0.40  |       | 0.80  |
| D    | 19.85 |       | 20.15 |
| E    | 15.45 |       | 15.75 |
| е    | 5.30  | 5.45  | 5.60  |
| L    | 14.20 |       | 14.80 |
| L1   | 3.70  |       | 4.30  |
| L2   |       | 18.50 |       |
| ØP   | 3.55  |       | 3.65  |
| ØR   | 4.50  |       | 5.50  |
| S    | 5.30  | 5.50  | 5.70  |

DS10558 - Rev 5 page 10/13



# **Revision history**

Table 9. Document revision history

| Date        | Revision | Changes                                                                                                                                |
|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| 04-Sep-2014 | 1        | First release.                                                                                                                         |
| 18-May-2015 | 2        | Document status promoted from preliminary to production data.  Added Section 2.1 Electrical characteristics (curves).                  |
| 08-Jul-2015 | 3        | Text and formatting changes throughout document in Section Electrical characteristics: - updated Tables Dynamic and Source-drain diode |
| 09-Dec-2015 | 4        | Updated Table 4: "Avalanche characteristics".                                                                                          |
| 12-Nov-2018 | 5        | Updated Section 4.1 TO-247 package information.  Minor text changes.                                                                   |

DS10558 - Rev 5 page 11/13



## **Contents**

| 1   | Elec   | etrical ratings                     | 2  |
|-----|--------|-------------------------------------|----|
| 2   | Elec   | trical characteristics              | 3  |
|     | 2.1    | Electrical characteristics (curves) | 5  |
| 3   | Test   | circuits                            | 7  |
| 4   | Pac    | kage information                    | 8  |
|     | 4.1    | TO-247 package information          | 9  |
| Rev | /ision | history                             | 11 |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS10558 - Rev 5 page 13/13