1 Analytic Functions

We look at different properties of analytic functions.

- 1. We show that if f(z) is analytic then it "only" depends on z. For this question, we'll assume the opposite and write $f(z, \overline{z})$.
 - (a) Using the fact that z = x + iy and z = x iy, as well as the chain rule, show that

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \qquad \qquad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$

- (b) Compute the difference quotient with $\Delta y = 0$ to show that $f'(z) = \frac{\partial f}{\partial x}$.
- (c) Compute the difference quotient with $\Delta x = 0$ to show that $f'(z) = -i\frac{\partial f}{\partial y}$.
- (d) Use the above three facts to conclude $\frac{\partial f}{\partial \overline{z}} = 0$.

Note: If you want to see more of this, it's found in Complex Analysis by Lars V. Ahlfors, who also happens to be the first winner of the Fields medal!

2 Finding Solutions to Polynomials

- 1. Find all solutions to $p(z) = (z^3 + 1)(z^2 2) = z^5 2z^3 + z^2 2$.
- 2. Find all solutions to $p(z) = (z^2 3i)(z^2 3) = z^4 + -3z(1+i) + 9i$

3 Multiplication by a Complex Number

This is not quite relevant to the class but I think it's an interesting concept.

1. Argue that, if S is a circle and z_0 is a complex number, then z_0S is also a circle.

Hint: Use the fact that multiplication by a complex number $z_0 = \alpha + i\beta$ looks like a linear map $\begin{pmatrix} \alpha & -\beta \\ \alpha & \beta \end{pmatrix}$. That is, $z_0 z = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$