

# LED CONTROLED BY EXTI PIN

#### **ABSTRACT**

This report will explain the logical sequence to enable the EXTI to control an LED.

first of all, we must adjust the system clock of our MCU and then provide this clock to the APB2 Bus to make GPIOA, AFIO, and EXTI peripherals.



Figure 1. System architecture (low-, medium-, XL-density devices)

#### RCC

I want to provide a 16 MHz to APB2 Bus (GPIOA & EXTI) Let's do it in the following diagram.



- Adjust pin GPIOA0 to be input pull-down.
- Adjust pin GPIOA13 to be output.

Table 33. Other IOs

|      | Pins             | Alternate function        | GPIO configuration                                                     |  |  |  |  |  |  |
|------|------------------|---------------------------|------------------------------------------------------------------------|--|--|--|--|--|--|
|      | TAMPER-RTC pin   | RTC output                | Forced by hardware when configuring the BKP_CR and BKP_RTCCR registers |  |  |  |  |  |  |
|      |                  | Tamper event input        |                                                                        |  |  |  |  |  |  |
|      | MCO              | Clock output              | Alternate function push-pull                                           |  |  |  |  |  |  |
| $\P$ | EXTI input lines | External input interrupts | Input floating / input pull-up (input pull-down)                       |  |  |  |  |  |  |

## AFIO Alternative Function Input output peripheral

# Attach PAO to EXTIO from AFIO peripheral



## **EXTI** peripheral

- Adjusting the triggered sensitivity (rising edge or falling edge).
- Enable the interrupt from interrupt mask enable register.



Figure 20. External interrupt/event controller block diagram

# **NVIC** peripheral

# Enable interrupt related to EXTIO in NVIC controller.

#### Table 8-8 Interrupt Set-Enable Register bit assignments

| Bits   | Field  | Function                                                                                                                   |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------|
| [31:0] | SETENA | Interrupt set enable bits. For write operation:                                                                            |
|        |        | 1 = enable interrupt                                                                                                       |
|        |        | 0 = no effect.                                                                                                             |
|        |        | For read operation:                                                                                                        |
|        |        | 1 = enable interrupt                                                                                                       |
|        |        | 0 = disable interrupt                                                                                                      |
|        |        | Writing 0 to a SETENA bit has no effect. Reading the bit returns its current enable state. Reset clears the SETENA fields. |

### EXTIO is on index 6

| <u> </u> |    | COLLADIO |       | r idon grobal intorrupt |             |
|----------|----|----------|-------|-------------------------|-------------|
| 5        | 12 | settable | RCC   | RCC global interrupt    | 0x0000_0054 |
| 6        | 13 | settable | EXTI0 | EXTI Line0 interrupt    | 0x0000_0058 |
| 7        | 14 | settable | EXTI1 | EXTI Line1 interrupt    | 0x0000_005C |
| 8        | 15 | settable | EXTI2 | EXTI Line2 interrupt    | 0x0000_0060 |
| 9        | 16 | settable | EXTI3 | EXTI Line3 interrupt    | 0x0000_0064 |
|          |    |          |       |                         |             |

# Finally, after adjusting RCC, GPIO, AFIO, EXTI peripherals now we can write the application.

```
22
23 #include "STD_TYPES.h"
24 #include "RCC.h"
25 #include "GPIO.h"
26 #include "EXTI.h"
27 #include "NVIC.h"
28
29 void EXTIO_IRQHandler();
30 volatile int x=0;
31⊖ int main(void)
32 {
33
34
35
       RCC_init();
      GPIO_init();
36
       EXTI_init();
37
38
       NVIC_init();
39
41
42
        /* Loop forever */
        while(1);
43
        return 0;
44 }
45⊖ void EXTI0_IRQHandler()
               for(x=0;x<100000;x++);
47
48
      Toggle_pin_void(GPIO_uint8_PORTC,GPIO_uint8_PIN13);
49
        SET_BIT(EXTI_PR_uint32_REG,0);
50
51 }
52
```

### Simulation

• Toggling pin C13 duing rising edge on A0



