Digital Green Crop Yield Estimate Project

DTSA 5509 November 10, 2024

Data Challenge Introduction

The contest is sponsored by Digital Green (https://digitalgreen.org/).

The data challenge is to create a machine learning solution to predict the crop yield per acre of rice or wheat crops in India.

The data was collected through a survey conducted across multiple regions in India, which consists a variety of features, e.g., the type and amount of fertilizers used, the quantity of seedlings planted, irrigation methods, and etc.

- 5000 data records
- 43 features
- training/test data ratio: 75:25

The data challenge is available: https://zindi.africa/competitions/digital-green-crop-yield-estimate-challenge

Analysis Proposal

- 1. Predict the crop yields per acre using different models
 - Linear Regression
 - Tree-based Regression:

Extra Trees Algorithm
Lightweight Gradient Boosting Machine (LightGBM)
(and Ensemble model: the mixture of Extra Tree and LightGBM)

2. Evaluate the root mean square error (RMSE) across different models

Exploartory Data Analysis

Response: Yield

Factors: all other variables collected

Data Cleaning - check collinearity

- Dropped the categorical variables, focus on the effects from numerical variables.
- Removed the highly correlated numerical variables
- Deleted the records with missing Yield value

Exploartory Data Analysis

Response Variable Derivation

- Log transformed Yield as it is left-skewed distributed
- Derived new Yield variable :

Yield per acre = Yield / Acre

Outputs - Multiple Linear Regression

- Forward feature selection
- Good prediction with 5 or 6 features.
- Final Model:

Variable Name	Variable Description
BasalDAP	Amount of DAP(in kgs)applied during land preparation
CropCultLand	Area of land under cultivation
TransIrriCost	Cost of irrigation during transplantation
Residue_length	Length of the residue left after harvesting
Harv_hand_rent	If labours were used or harvesting machine hired, what was the rent (in rupees)
TransIrriCost	Cost of irrigation during transplantation
CropOrgFYM	Amount of FYM (Farm yard manure) organic fertilizer used (in Quintals)
CropTillageDepth	Depth of the tillage

Outputs - Tree-based Models

Compare the model performance using adjusted R² using testing datat

- Extra Tree
- LightGBM
- Ensemble model is the average of Extra Tree and LightGBM modele

All the three tree-based models have much higher adjusted R² values.

Outputs - Tree-based Models

Comparison of RMSE

The three tree-based models have similar RMSE.

Conclusion and Discussion

- In the final prediction model, I select the ensemble model, which is a mixture of Extra Tree and LightGBM
- The multiple linear regression is not recommended for real-world data, but could be a good practice for exploratory analysis.
- Limitations:
 - Categorical features are not taken into consideration.
 - Overfitting vs. Underfitting

Resources

1. Extra Tree and LightGBM Coding Resources

https://scikit-learn.org/dev/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html https://lightgbm.readthedocs.io/en/stable/Python-Intro.html

2. Data Source

https://zindi.africa/competitions/digital-green-crop-yield-estimate-challenge

3. My GitHub

https://github.com/lzheng01/Digital-Green-Crop-Yield-Estimate-Project

Thank You!