201 Espaces de fonctions. Exemples et applications.

I - Espaces de fonctions continues sur un compact

1. Continuité et compacité

Proposition 1. Soient (E, d) et (E', d') deux espaces métriques. On suppose E compact. Si $f: E \to E'$ est continue, alors f(E) est compact.

[**DAN**] p. 55

[GOU20]

p. 231

Contre-exemple 2. Cela ne marche pas si f n'est pas continue. Par exemple, $\arcsin([-1,1]) = \mathbb{R}$.

Proposition 3. Sous les mêmes hypothèses et en supposant f bijective, f^{-1} est continue (ie. f est un homéomorphisme).

Théorème 4 (Des bornes). Une application continue sur un compact est bornée et atteint ses bornes.

Théorème 5 (Heine). Une application continue sur un compact y est uniformément continue.

Corollaire 6. Toute fonction périodique continue sur $\mathbb R$ y est uniformément continue.

2. Convergences simple et uniforme

Définition 7. Soient (f_n) et f respectivement une suite de fonctions et une fonction définies sur un ensemble X à valeurs dans un espace métrique (E,d). On dit que :

— (f_n) converge simplement vers f si

$$\forall x \in X, \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, d(f_n(x), f(x)) < \epsilon$$

— (f_n) converge uniformément vers f si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, \forall x \in X, d(f_n(x), f(x)) < \epsilon$$

Proposition 8. La convergence uniforme entraîne la convergence simple.

Contre-exemple 9. La réciproque est fausse. Il suffit en effet de considérer la suite (f_n) définie pour tout $n \in \mathbb{N}$ et pour tout $x \in [0,1]$ par $f_n(x) = x^n$ converge simplement sur [0,1] mais pas uniformément.

Théorème 10 (Critère de Cauchy uniforme). Soit (f_n) une suite de fonctions définies sur un ensemble X à valeurs dans un espace métrique (E,d). Alors (f_n) converge uniformément si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall p > q \ge N, \forall x \in X, d(f_p(x), f_q(x)) < \epsilon$$

Corollaire 11. Une limite uniforme sur \mathbb{R} de fonctions polynômiales est une fonction polynômiale.

p. 237

p. 232

Notation 12. — Pour toute fonction g bornée sur un ensemble X et à valeurs dans un espace vectoriel normé $(E, \|.\|)$, on note

$$\|g\|_{\infty} = \sup_{x \in X} \|g(x)\|$$

— On note $\mathcal{B}(X,E)$ l'ensemble des applications bornées de X dans E.

Proposition 13. En reprenant les notations précédentes, une suite de fonctions (f_n) de $\mathscr{B}(X,E)$ converge uniformément vers $f \in \mathscr{B}(X,E)$ si $||f_n - f||_{\infty} \longrightarrow_{n \to +\infty} 0$.

Proposition 14. Si *E* est de Banach, alors $(\mathscr{B}(X,E), \|.\|_{\infty})$ est de Banach.

p. 238

- **Théorème 15** (Théorèmes de Dini). (i) Soit (f_n) une suite *croissante* de fonctions réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.
 - (ii) Soit (f_n) une suite de *fonctions croissantes* réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.

3. Densité

[DEV]

Théorème 16 (Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

On a une version plus générale de ce théorème.

Théorème 17 (Stone-Weierstrass). Soit K un espace compact et \mathscr{A} une sous-algèbre de l'algèbre de Banach réelle $\mathscr{C}(K,\mathbb{R})$. On suppose de plus que :

p. 304

[LI]

p. 46

- (i) \mathscr{A} sépare les points de K (ie. $\forall x \in K, \exists f \in A$ telle que $f(x) \neq f(y)$).
- (ii) A contient les constantes.

Alors \mathscr{A} est dense dans $\mathscr{C}(K,\mathbb{R})$.

Remarque 18. Il existe aussi une version "complexe" de ce théorème, où il faut supposer de plus que \mathcal{A} est stable par conjugaison.

Exemple 19. La suite de polynômes réels (r_n) définie par récurrence par

$$r_0 = 0 \text{ et } \forall n \in \mathbb{N}, r_{n+1} : t \mapsto r_n(t) + \frac{1}{2}(t - r_n(t)^2)$$

converge vers $\sqrt{.}$ sur [0,1].

II - Espaces L_p

Soit (X, \mathcal{A}, μ) un espace mesuré. Les résultats qui vont suivre sont, par extension, également valable pour les fonctions à valeurs dans \mathbb{C} .

[G-K] p. 209

1. Espaces \mathcal{L}_n

— Pour $p \in [1, +\infty[$, on note $\mathcal{L}_p(X, \mathcal{A}, \mu))$ (où \mathcal{L}_p en l'absence d'ambiguïté) l'ensemble des applications f mesurables de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}(R))$ telles que

$$\int_X |f(x)|^p \,\mathrm{d}\mu(x) < +\infty$$

on note alors $||f||_p = (\int_X |f(x)|^p d\mu(x))^{\frac{1}{p}}$.

- On note de même \mathcal{L}_{∞} l'ensemble des applications mesurables de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathscr{B}(R))$ de sup-essentiel borné. On note alors $||f||_{\infty}$ pour $f \in \mathscr{L}_{\infty}$.

> [B-P] p. 163

[G-K]

p. 209

Exemple 21. Si μ est la mesure de comptage sur $(\mathcal{P}(\mathbb{N}), \mathbb{N})$, alors

$$\mathcal{L}_p = \ell_p = \left\{ (u_n) \in \mathbb{R}^n \mid \sum_{n \ge 0} |u_n|^p < +\infty \right\}$$

Proposition 22. \mathcal{L}_p est un sous-espace vectoriel de l'espace vectoriel des fonctions de X dans \mathbb{R} .

Théorème 23 (Inégalité de Hölder). Soient $p,q\in]1,+\infty[$ tels que $\frac{1}{p}+\frac{1}{q}=1,f\in \mathcal{L}_p$ et $g\in \mathcal{L}_q$. Alors $fg\in \mathcal{L}_1$ et

$$||fg||_1 \le ||f||_p ||g||_q$$

Remarque 24. C'est encore vrai pour $q = +\infty$ en convenant que $\frac{1}{+\infty} = 0$.

Application 25. On considère la fonction Γ d'Euler. Alors,

$$\forall \theta \in]0,1[,\forall x,y > 0, \Gamma(\Theta x + (1 - \Theta)y) \le \Gamma(x)^{\theta} \Gamma(y)^{1-\theta}$$

et en particulier, Γ est log-convexe sur \mathbb{R}_*^+ .

Théorème 26 (Inégalité de Minkowski).

$$\forall f, g \in \mathcal{L}_p, \|f + g\|_p \le \|f\|_p + \|g\|_p$$

L'application $\|.\|_p$ définit donc une semi-norme sur \mathcal{L}_p pour $p \in [1, +\infty]$. L'idée dans la sous-section suivante sera de construire un espace dans lequel l'axiome de séparation n'est pas pris en défaut.

2. Construction des espaces L_p

Définition 27. On définit pour tout $p \in [1, +\infty]$,

$$L_p = \mathcal{L}_p/V$$

où $V = \{ v \in \mathcal{L}_p \mid v = 0 \text{ pp.} \}.$

Proposition 28. Dans un espace de mesure finie,

$$1 \leq p < q \leq +\infty \implies L_q \subseteq L_p$$

Contre-exemple 29. La fonction $\mathbb{1}$ est dans $L_{\infty}(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda)$ mais dans aucun $L_p(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda)$ pour tout $p \in [1, +\infty[$.

Théorème 30. Pour tout $p \in [1, +\infty]$, (L_p) , $\|.\|_p$ est un espace vectoriel normé.

Théorème 31 (Riesz-Fischer). Pour tout $p \in [1, +\infty]$, L_p est complet pour la norme $\|.\|_p$.

3. Convolution et régularisation dans L_1

Définition 32. Soient f et g deux fonctions de \mathbb{R}^d dans \mathbb{R} . On dit que **la convolée** (ou **le produit de convolution**) de f et g en $x \in \mathbb{R}$ **existe** si la fonction

$$\mathbb{R} \to \mathbb{C}$$

$$t \mapsto f(x-t)g(t)$$

est intégrable sur \mathbb{R}^d pour la mesure de Lebesgue. On pose alors :

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - t)g(t) dt$$

Exemple 33. Soient $a < b \in \mathbb{R}^+_*$. Alors $\mathbb{1}_{[-a,a]} * \mathbb{1}_{[-b,b]}$ existe pour tout $x \in \mathbb{R}$ et

$$(\mathbb{1}_{[-a,a]} * \mathbb{1}_{[-b,b]})(x) = \begin{cases} 2a & \text{si } 0 \le |x| \le b - a \\ b + a - |x| & \text{si } b - a \le |x| \le b + a \\ 0 & \text{sinon} \end{cases}$$

Proposition 34. Dans $L_1(\mathbb{R}^d)$, dès qu'il a un sens, le produit de convolution de deux fonctions est commutatif, bilinéaire et associatif.

Théorème 35 (Convolution dans $L_1(\mathbb{R}^d)$). Soient $f, g \in L_1(\mathbb{R}^d)$. Alors :

- (i) pp. en $x \in \mathbb{R}^d$, $t \mapsto f(x-t)g(t)$ est intégrable sur \mathbb{R}^d .
- (ii) f * g est intégrable sur \mathbb{R}^d .
- (iii) $||f * g||_1 \le ||f||_1 ||g||_1$.
- (iv) L'espace vectoriel normé $(L_1(\mathbb{R}^d),\|.\|_1)$ muni de * est une algèbre de Banach commutative.

Proposition 36. L'algèbre $(L_1(\mathbb{R}^d), +, *, \cdot)$ n'a pas d'élément unité.

p. 114

[AMR08]

p. 75

Application 37.

$$f * f = f \iff f = 0$$

Définition 38. On appelle **approximation de l'identité** toute suite (ρ_n) de fonctions mesurables de $L_1(\mathbb{R}^d)$ telles que

[**B-P**] p. 306

- (i) $\forall n \in \mathbb{N}, \int_{\mathbb{R}^d} \rho_n \, d\lambda_d = 1.$
- (ii) $\sup_{n\geq 1} \|\rho_n\| < +\infty$.
- (iii) $\forall \epsilon > 0$, $\lim_{n \to +\infty} \int_{\mathbb{R} \setminus B(0,\epsilon)} \rho_n(x) dx = 0$.

Exemple 39. $\forall n \in \mathbb{N}$, on note :

[**GOU20**] p. 304

$$a_n = \int_{-1}^{1} (1 - t^2)^n dt$$
 et $p_n : t \mapsto \frac{(1 - t^2)^n}{a_n} \mathbb{1}_{[-1,1]}(t)$

Alors, (p_n) est une approximation positive de l'identité.

[AMR08] p. 96

Application 40. (i) $\mathscr{C}_K^{\infty}(\mathbb{R}^d)$ est dense dans $\mathscr{C}_K(\mathbb{R}^d)$ pour $\|.\|_{\infty}$.

(ii) $\mathscr{C}_K^{\infty}(\mathbb{R}^d)$ est dense dans $L_p(\mathbb{R}^d)$ pour $\|.\|_p$ avec $p \in [1, +\infty[$.

III - Espace L_2

1. Propriétés hilbertiennes

Définition 41. On considère la forme bilinéaire suivante sur L_2 :

[**BMP**] p. 92

$$\langle .,. \rangle : (f,g) \mapsto \int_X f\overline{g} \,\mathrm{d}\mu$$

C'est un produit scalaire hermitien, ce qui confère à $(L_2, \langle .,. \rangle)$ une structure d'espace de Hilbert.

On peut donc énoncer quelques propriétés dont hérite L_2 .

p. 98

Théorème 42. Pour tout sous-espace vectoriel fermé F de L_2 ,

$$L_2 = F \oplus F^{\perp}$$

Corollaire 43. Un sous-espace vectoriel F de L_2 est dense dans L_2 si et seulement si $F^{\perp} = \{0\}$.

Théorème 44. Soit $(e_n)_{n\in I}$ une famille orthonormée dénombrable de L_2 . Les propriétés suivantes sont équivalentes :

- (i) La famille orthonormée $(e_n)_{n\in I}$ est une base hilbertienne de H.
- (ii) $\forall f \in L_2, f = \sum_{n=0}^{+\infty} \langle f, e_n \rangle e_n$.
- (iii) $\forall f \in L_2$, $||f||_2 = \sum_{n=0}^{+\infty} |\langle f, e_n \rangle|^2$.

2. Polynômes orthogonaux

Soit *I* un intervalle de \mathbb{R} . On pose $\forall n \in \mathbb{N}$, $g_n : x \mapsto x^n$.

p. 110

Définition 45. On appelle **fonction poids** une fonction $\rho : I \to \mathbb{R}$ mesurable, positive et telle que $\forall n \in \mathbb{N}, \rho g_n \in L_1(I)$.

Soit $\rho: I \to \mathbb{R}$ une fonction poids.

Notation 46. On note $L_2(I,\rho)$ l'espace des fonctions de carré intégrable pour la mesure de densité ρ par rapport à la mesure de Lebesgue.

Proposition 47. Muni de

$$\langle .,. \rangle : (f,g) \mapsto \int_{I} f(x) \overline{g(x)} \rho(x) dx$$

 $L_2(I, \rho)$ est un espace de Hilbert.

Théorème 48. Il existe une unique famille (P_n) de polynômes unitaires orthogonaux deux-à-deux telle que $\deg(P_n) = n$ pour tout entier n. C'est la famille de **polynômes orthogonaux** associée à ρ sur I.

Exemple 49 (Polynômes de Hermite). Si $\forall x \in I$, $\rho(x) = e^{-x^2}$, alors

$$\forall n \in \mathbb{N}, \forall x \in I, P_n(x) = \frac{(-1)^n}{2^n} e^{x^2} \frac{\partial}{\partial x^n} \left(e^{-x^2} \right)$$

Lemme 50. On suppose que $\forall n \in \mathbb{N}$, $g_n \in L_1(I, \rho)$ et on considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I. Alors $\forall n \in \mathbb{N}$, $g_n \in L_2(I, \rho)$. En particulier, l'algorithme de Gram-Schmidt a bien du sens et (P_n) est bien définie.

p. 140

Application 51. On considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I

et on suppose qu'il existe a > 0 tel que

$$\int_I e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

alors (P_n) est une base hilbertienne de $L_2(I, \rho)$ pour la norme $\|.\|_2$.

Contre-exemple 52. On considère, sur $I = \mathbb{R}_*^+$, la fonction poids $\rho : x \mapsto x^{-\ln(x)}$. Alors, la famille des g_n n'est pas totale. La famille des polynômes orthogonaux associée à ce poids particulier n'est donc pas totale non plus : ce n'est pas une base hilbertienne.

IV - Dualité

Définition 53. On appelle **forme linéaire** d'un espace vectoriel E sur un corps \mathbb{K} toute application linéaire de E dans \mathbb{K} et on note E^* appelé **dual** de E l'ensemble des formes linéaires de E.

[**GOU21**] p. 132

On note E' le **dual topologique** de E, qui est le sous-espace de E^* constitué des formes linéaires continues.

Théorème 54 (de représentation de Riesz). L'application

[**BMP**] p. 103

$$\Phi \colon \begin{array}{ccc} H & \to & H' \\ y & \mapsto & (x \mapsto \langle x, y \rangle) \end{array}$$

est une isométrie linéaire bijective de H sur son dual topologique H'.

Exemple 55. Dans le cas $L_2(X, \mu)$,

$$\forall \varphi \in L_2', \, \exists ! g \in H, \text{ telle que } \forall f \in L_2, \, \varphi(f) = \int_X f(g) \overline{g(x)} \, \mathrm{d}\mu(x)$$

[DEV]

Théorème 56 (Dual de L_p). On se place dans un espace mesuré de mesure finie. On note $\forall p \in]1,2[$. L'application

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g : f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

[LI] p. 140

p. 222

Remarque 57. Plus généralement, si l'on identifie g et φ_g :

- L_q est le dual topologique de L_p pour $p \in]1, +\infty[$.
- L_{∞} est le dual topologique de L_1 si μ est σ -finie.

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Analyse [B-P]

Marc Briane et Gilles Pages. *Analyse. Théorie de l'intégration*. 8^e éd. De Boeck Supérieur, 29 août 2023.

https://www.deboecksuperieur.com/ouvrage/9782807359550-analyse-theorie-de-l-integration.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

De l'intégration aux probabilités

[G-K]

Olivier GARET et Aline KURTZMANN. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5° éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.