

Evaluation of ROS as an Addition to the W3C WoT

by Marcus Wolf Schmidt

July 3rd, 2020

W3C WoT Binding Templates Task Force Weekly Call

Robot Operating System (ROS)

- Open Source middleware for robotics applications
- Allows varies protocols to be used (e.g. Ethernet, Modbus, USB)
- Focus on reusability of code (like WoT scripting API)
- Interest from the W3C WoT Working Group: <u>GitHub Issue</u>

ROS Nodes

ROS Master Node

Only ONE per ROS environment

Helps Nodes find each other

Communicates over XMLRPC

Provides a parameter server

Simple ROS Nodes

Multiple Nodes per environment and device/robot

Nodes exchange data directly

Communicates over XMLRPC and other protocols

Nodes register themselves on the Master

ROS Architecture

ROS and the W3C WoT

W3C WoT Thing Description

What about Services

Thing Description Vocabulary

```
1
2
      "@context": ["https://www.w3.org/2019/wot/td/v1",
3
                  {"ros":"http://www.example.org/ros-binding"}],
4
      "title": "Uarm",
5
      "properties": {
6
            "location":{
                 "title": "Return location",
8
                 "type":"integer",
9
                 "forms": [{
10
                      "href": "ros.xmlrpc://192.168.0.100:11311/uarm/properties/location",
11
                      "contentType": "application/json",
12
                      "op" "readproperty",
                      "ros:methodName":"getParam"
13
14
                     }]
15
16
17
      "actions":{
18
            "beep":{
19
                 "title": "Beep",
20
                 "forms":[{
21
                      "href": "ros.tcp://192.168.0.100:11311/uarm/actions/beep",
22
                      "contentType":"ROS/String",
23
                      "op":"invokeaction",
24
                      "ros:registerClass":"Publish'
25
                  }]
26
27
28
      "events":{
29
            "error":{
30
                 "title": "Error Event",
31
                 "forms":[{
32
                      "href": "ros.tcp://192.168.0.100:11311/uarm/events/error",
33
                      "contentType":"ROS/String",
34
                      "op":"subscribeevent",
35
                       "ros:registerClass":"Subscribe
36
                  }]
37
38
39
     }
```


Vocabulary Table

Vocabulary	Description	Туре
ros:methodName	Defines the interaction method	"getParam", "setParam"
ros:registerClass	Defines the object class	"Publish", "Subscribe", ("Service")

Vocabulary Mapping

op value	ROS	
readproperty	getParam	
writeproperty	setParam	
observeproperty	Subscribe	
invokeaction	Publish	
subscribeevent	Subscribe	

Discussion

- 1. How to describe the ROS URI Scheme: HTTP or new URI Scheme
- 2. What contentType to choose: Relevant GitHub issue in Thing Description

Discussion Results (added after presenting)

Instead of ros.xmlrpc://rosmaster in href of forms, we will use
http://rosmaster and subprotocol:"ros.xmlrpc"

Reasoning behind:

- Since the protocol over the wire is HTTP, this is more adequate
- A subprotocol makes it easier to describe the protocol that happens over the payload, otherwise we would need specify the concrete payload mechanism that XMLRPC uses in the DataSchema of each interaction.

Discussion Results

Instead of application/json in the contentType, we will use application/xml since the actual data on the wire is XML but the DataScheme allows us to properly describe the needed structure.

Discussion Results: Example TD

```
{"@context": ["https://www.w3.org/2019/wot/td/v1",
2
                  {"ros": "http://www.example.org/ros-binding"}],
3
      "title": "Uarm",
      "properties": {
5
            "location":{
6
                 "title": "Return location",
                 "type":"integer",
8
                 "forms": [{
9
                      "href": "http://192.168.0.100:11311/uarm/properties/location",
10
                      "contentType":"application/xml",
11
                      "subprotocol": "ros.xmlrpc",
12
                      "op": "readproperty",
                      "ros:methodName":"getParam"
13
14
15
16
17
      "actions":{
18
            "beep":{
19
                 "title":"Beep",
20
                 "forms":[{
21
                      "href": "http://192.168.0.100:11311/uarm/actions/beep",
22
                      "contentType":"ROS/String",
                      "subprotocol":"ros.tcp",
23
24
                      "op" "invokeaction"
25
                      "ros:registerClass":"Publish"
26
                  }]
27
28
29
      "events":{
30
            "error":{
                 "title": "Error Event",
31
32
                 "forms":[{
                       "href": "http://192.168.0.100:11311/uarm/events/error",
33
34
                      "contentType": "ROS/String",
35
                       "subprotocol": "ros.tcp",
36
                      "op" "subscribeevent",
37
                      "ros:registerClass": "Subscribe"
38
                  }]
39 }}
```


Conclusion

Thank you for your attention

