模型研究系列 角平分线四大模型

一粒沙整理 安徽省霍邱县龙潭中心校

2020年7月4日

文章导航

1	角平分线的相关重要知识点	1
2	角平分线的相关模型 2.1 双垂模型 2.2 单垂模型 2.3 双等模型 2.4 双平模型	1 1 3 4
	 1 角平分线的相关重要知识点 1. 角平分线的定义 	O
	 1. 角平分线的性质定理 3. 角平分线的判定定理 	

2 角平分线的相关模型

2.1 角平分线上的点向两边作垂线(双垂模型)

【模型基础】

如图, $P \neq \angle MON$ 的平分线上一点, 过点 P 作 $PA \perp OM$ 于点 A, $PB \perp BN$ 于点 B. 结论: PB = PA.

【模型分析】

利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

【模型实例】

✔例 1: 如图 1, 在 △ABC 中, $\angle C = 90^\circ$, AD 平分 $\angle CAB$, BC = 6, BD = 4, 那么点 D 到直线 AB 的距离是:

✔例 2: 如图 2, $\angle 1 = \angle 2, \angle 3 = \angle 4$. 求证: $AP \oplus AC$.

【模型精炼】

1. 如图,在四边形 ABCD 中, BC > AB, AD = DC, BD 平分 $\angle ABC$ 。求证: $\angle BAD + \angle BCD = 180^{\circ}$ 。

2. 如图, $\triangle ABC$ 的外角 $\angle ACD$ 的平分线 CP 与内角 $\angle ABC$ 的平分线 BP 交于点 P,若 $\angle BPC=40^\circ$,则 $\angle CAP=$ _____.

3. 如图,正方形 ABCD 的边长为 4, $\angle DAC$ 的平分线交 DC 于点 E,若点 P,Q 分别是 AD 和 AE 上的动点,则 PQ+PD 的最小值是 ______.

2.2 角平分线 + 垂线构造等腰三角形(单垂模型)

【模型基础】

如图, P 是 MON 的平分线上一点, $AP \perp OP$ 于 P 点, 延长 AP 于点 B.

结论: $\triangle AOB$ 是等腰三角形.

【模型分析】

构造此模型可以利用等腰三角形的"三线合一",也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线和三线合一联系了起来。

【模型实例】

如图,已知等腰直角三角形 ABC 中, $\angle A=90^\circ$,AB=AC,BD 平分 $\angle ABC$, $CE\perp BD$,垂足为 E. 求证: BD=2CE.

【模型精炼】

1. 如图, 在 $\triangle ABC$ 中, BE 是角平分线, $AD \perp BE$, 垂足为 D。 求证: $\angle 2 = \angle 1 + \angle C$.

2. 如图,在 $\triangle ABC$ 中, $\angle ABC=3\angle C$, AD 是 $\angle BAC$ 的平分线, $BE\perp AD$ 于点 E。 求证: $BE=\frac{1}{2}(AC-AB)$.

2.3 截长补短构造对称全等(双等模型)

【模型基础】

如图,P 是 $\angle MON$ 的平分线上一点,点 A 是射线 OM 上任意一点,在 ON 上截取 OB = OA,连接 PB. 结论: $\triangle OPB \cong \triangle OPA$.

【模型分析】

利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

【模型实例】

- (1) 图 1 所示, 在 $\triangle ABC$ 中, AD 是 $\triangle ABC$ 的外角平分线, P 是 AD 上异于点 A 的任意一点, 试比较 PB+PC 与 AB+AC 的大小, 并说明理由;
- (2) 如图 2 所示,AD 是 $\triangle ABC$ 的内角平分线,其他条件不变,试比较 PC-PB 与 AC-AB 的大小,并说明理由。

【模型精炼】

1. 已知, 在 $\triangle ABC$ 中, $\angle A = 2 \angle B$, CD 是 $\angle ACB$ 的平分线, AC = 16, AD = 8. 求线段 BC 的长。

2. 已知,在 $\triangle ABC$ 中,AB=AC, $\triangle A=108^{\circ}$,BD平分 $\angle ABC$.求证:BC=AB+CD.

3. 如图所示,在 $\triangle ABC$ 中, $\angle A=100^\circ$, $\angle A=40^\circ$,BD 是 $\angle ABC$ 的平分线,延长 BD 至 E,DE=AD. 求证: BC=AB+CE.

4. 如图,梯形 ABCD 中,AD//BC,点 E 在 CD 上,且 AE 平分 $\angle BAD$,BE 平分 $\angle ABC$,求证:AD = AB - BC.

2.4 角平分线 + 平行线(双平模型)

【模型基础】

如图, $P \neq \angle MON$ 的平分线上一点, 过点 P 作 PQ//ON, 交 OM 于点 Q. 结论: $\triangle POQ$ 是等腰三角形.

【模型分析】

有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

【模型实例】

解答下列问题:

(1) 如图 1 所示,在 $\triangle ABC$ 中,EF//BC,点 D 在 EF 上,BD, CD 分别平分 $\angle ABC$, $\angle ACB$,写出线段 EF 与 BE, CF 有什么数量关系;

- (2) 如图 2 所示,BD 平分 $\angle ABC$,CD 平分 $\angle ACG$,DE//BC 交 AB 于点 E,交 AC 于点 F,线段 EF 与 BE, CF 有什么数量关系? 并说明理由;
- (3) 如图 3 所示,BD,CD 分别为外角 $\angle CBM$, $\angle BCN$ 的平分线,DE//BC 交 AB 延长线于点 E,交 AC 延长线于点 F,直接写出线段 EF 与 BE,CF 有什么数量关系?

【模型精炼】

1. 如图,在 $\triangle ABC$ 中, $\angle ABC$, $\angle ACB$ 的平分线交于点 E, 过点 E 作 EF//BC,交 AB 于点 M,交 AC 于点 N. 若 BM+CN=9,则线段 MN 的长为 ______.

2. 如图,在 $\triangle ABC$ 中,AD 平分 $\angle BAC$,点 E,F 分别在 BD,AD 上,EF//AB,且 DE=CD. 求证: EF=AC.

3. 如图,梯形 ABCD 中,AD//BC,点 E 在 CD 上,且 AE 平分 $\angle BAD$,BE 平分 $\angle ABC$. 求证: AD = AB - BC.

4. 如图,在矩形 ABCD 中, $\angle BAD$ 的平分线交 BC 于点 E,交 DC 的延长线于点 F,点 G 是 EF 的中点,求 $\angle BDG$ 的度数。

