

Elaboração da Carta de Risco de Incêndio do distrito de Braga

Mestrado em Sistema de Informação Geográfica e Ordenamento do Território

Docente: Miguel Saraiva

Discente: Joana Teixeira

Índice

- Introdução;
- Enquadramento Territorial;
- Objetivos;
- Metodologia;
- Análise Descritiva;
- Análise das Variáveis Adotadas;
- Normalização das Variáveis;
- A Carta de Risco de Incêndio;
- Questões?
- Conclusões Finais.

Introdução

Este trabalho surge no âmbito da unidade curricular de Análise Espacial Aplicada ao Ordenamento do Território, onde nos foi proposta a elaboração de uma Carta de Risco de Incêndio para um distrito à nossa escolha. O distrito escolhido foi Braga, devido à sua riqueza florestal e ao património natural, que muitas vezes se encontra exposto e vulnerável ao perigo dos incêndios.

Num quadro de perigo de risco de incêndio é importante olharmos para as vulnerabilidades e encara-las como uma prioridade nacional. Neste contexto será fulcral consciencializar a população e a sociedade da importância das florestas e em como a tomada de decisões e medidas a longo prazo será uma mais-valia.

A concretização destas medidas será apenas possível se houver um trabalho de campo detalhado e um acompanhamento por parte das entidades responsáveis que terão de trabalhar as questões de planeamento e ordenamento e, ainda, introduzir novas preocupações ligadas à preservação da floresta. Estes estudos deverão ter por base a criação de nova cartografia quantitativa da probabilidade de incêndio florestal, de modo a facilitar o processo de reflexão sobre as mudanças e adaptações a implementar.

O trabalho que está a ser desenvolvido coloca em prática métodos e ferramentas capazes de auxiliar e produzir estudos de prevenção e combate a incêndios, todavia, também, torna possível compreender e estudar acontecimentos passados.

Enquadramento Territorial

O distrito de Braga é pertencente à região do Minho, sendo limitado a norte pelo o distrito de Viana do Castelo e Espanha, a leste pelo distrito de Vila Real, e a sul pelo distrito do Porto. Possui uma área de 2 706 km² e uma população residente de

956 185 habitantes, de acordo com os censos de 2011.

O distrito possui, ainda, 14 municípios, sendo que a sede do distrito é a cidade Braga.

FIG.1- Mapa de Enquadramento do Distrito de Braga

Objetivos

Os objetivos principais deste trabalho concentram-se em elaborar, primeiramente, uma análise descritiva do distrito, tendo por base informação recolhida e trabalhada, através dos métodos estudados.

De seguida será fulcral a escolha variáveis específicas que deverão ser normalizadas e ponderadas de modo a percebermos o impacto que possuem no desencadear de um incêndio.

A análise multicritério e a elaboração da Carta de Risco de Incêndio são das tarefas mais complexas deste trabalho e com o seu resultado será possível tirar as grandes conclusões, sendo que nos permitirá responder às últimas questões expostas no enunciado do trabalho.

Metodologia

Para a produção deste trabalho foi usada uma metodologia muito diversificada, tendo sempre em conta métodos estudados e lecionados durante o semestre.

Antes de ser usado o ArcGis foi fulcral pesquisar e recolher informação como a CAOP, a COS, a BGRI, a Rede Viária, os Cursos de Água, Área Ardidas de 2017, para isso o uso de WEBSITES como a Direção Geral do Território, o SNIG (Sistema Nacional de Informação Geográfica), o OpenStreetMap e ICNF (Instituto da Conservação da Natureza e das Florestas) foram necessários para se obter essa informação.

Após o projeto já estar guardado definiu-se o sistema de coordenadas, ETRS 1989 Portugal TM06, e ativaram-se as extensões.

Uma vez que o objetivo do trabalho envolvia dados matriciais foi importante escolher o nosso *Workspace* e definir o *Cellsize*, para isso usou-se o *Geoprocessing /Enviroments*, onde o *Processing Extent* definido foi o limite da área de estudo (distrito de Braga) e o *Cellsize*, em *Raster Analisys*, decretado foi o de 10 metros. O recurso ao uso da *Fishnet* foi algo colocado em consideração porém esta revelou-se muito pesada para a máquina que estava a funcionar no estudo e, por isso, teve de ser cancelada. Apesar de ser uma ferramenta importante para perceber se os dados matriciais criados estão de acordo com o que foi predefinido, 10*10 metros, esta tornou-se inviável.

Para a elaboração da Análise descritiva foram utilizadas ferramentas do *Spatial Statistics Tools c*omo o *Mapping Clustering* e o *Measuring Geographic Distribution*.

Porém, para a realização da análise das variáveis, para a normalização das mesmas, para o cálculo da AMC e, ainda, para a produção da Carta de Risco de Incêndio, foram usadas mais ferramentas. Algumas ferramentas estão expostas na *Spatial Analyst Tools*, no *ArcTool Box*, onde se encontra o *Slope, Aspect, Kernel Density, Euclidean Distance, Raster Calculator, Lookup, Reclassify, Fuzzy Membership*. A maior parte das ferramentas mencionadas foram usadas durante a execução deste trabalho tanto na análise das variáveis como no cálculo da AMC e produção da Carta.

Também foram fulcrais algumas ferramentas do *ConversionTools* de modo a converter *rasters* para *shapefiles* e *shapefiles* para *rasters*. O *Project, do Projection and Tranformation,* foi usado uma vez para redefinir o sistema de coordenadas de uma *shapefile*.

Análise Descritiva

Durante a elaboração do estudo sobre o distrito de Braga foi possível colocar em prática técnicas e métodos estudados durante o semestre.

Um dos passos iniciais foi recolher informação acerca da população, alojamentos e edifícios, para isso recorreu-se ao uso da *BGRI*, onde foi realizado um *Clip* pela área de estudo.

Com base nas ferramentas *Feature to Point* e *Mean Center* foi possível obter os Centróides das freguesias do distrito, bem como a freguesia central, que se localiza em Lombos, Guimarães. A ferramenta *Mean Center* identifica o centro geográfico de um conjunto de elementos, porém, geralmente, não é a localização de um dos elementos do Input.

FIG.2- Mapa dos Centróides e Freguesia Central do distrito de Braga

No que concerne a população do distrito, a escolha dos indicadores foi realizada a partir da *BGRI*, onde foi calculada a Densidade Populacional em km² e selecionado o Número de Indivíduos Residentes. Com base no mapa de Densidade Populacional podemos concluir que existem mais habitantes por km² no concelho de Braga.

FIG.3- Mapa da Densidade Populacional km² do Distrito de Braga,2011

Para explorar estes indicadores foram usadas ferramentas de *Mapping Clusters*, como o *Hot Spot Analysis (Getis-Ord Gi*)* e o *Cluster and Outlier Analysis (Anselin Local Morans I)*.

Com base nos resultados obtidos, através do uso destas ferramentas, podemos concluir que o distrito de Braga possui um grande foco populacional nos concelhos de Braga, Guimarães, Barcelos e Vila Nova de Famalicão, segundo a análise *Hot Spot*. Esta ferramenta assumiu uma *Distance Band* ou *Threshold Distance* de 5215,8780 metros.

Porém, no que concerne a análise de *Cluster and Outlier* encontramos, nos centros dos concelhos mais povoadas, *Outliers* de valores baixos rodeados de valores altos e *Clusters* de valores altos rodeados de valores altos. Ao longo do distrito e, usualmente, à volta dos centros principais, encontramos *Outliers* de valores altos, rodeados de valores baixos, ou seja freguesias e cidades de importância intermédia. Esta ferramenta também assumiu uma *Distance Band* ou *Threshold Distance* de 5215,8780 metros.

FIG.4- Mapa de Hot Spot- № Indivíduos, no Distrito de Braga, 2011

FIG.5- Mapa de Hot Spot- Densidade Populacional km2, no Distrito de Braga, 2011

 ${\sf FIG.6-Mapa}\ de\ \textit{Cluster}\ and\ Outlier\ da\ Densidade\ Populacional\ km2,\ no\ Distrito\ de\ Braga,\ 2011$

Para explorar os alojamentos e edifícios do distrito de Braga foram, de igual forma, usadas ferramentas, *Directional Distribution* e, novamente, *Hot Spot Analysis (Getis-Ord Gi*), Cluster and Outlier Analysis (Anselin Local Morans I)*. Ambas as ferramentas assumiram uma *Distance Band* ou *Threshold Distance* de 5215,8780 metros.

Com uso destas ferramentas foi possível concluir que os alojamentos e os edifícios

concentram-se, principalmente, nos principais concelhos do distrito como Braga, Guimarães, Barcelos, porém representam um peso muito menor e mais disperso em concelhos comos Terras de Bouro e Vieira do Minho. Esta tendência é similar à estudada anteriormente, na população.

FIG.7- Mapa da Distribuição Direcional dos Alojamentos e dos Edifícios, no Distrito de Braga, 2011

FIG.8- Mapa de *Hot Spot*- Alojamentos, no Distrito de Braga, 2011

FIG.9- Mapa de Cluster and Outlier- Alojamentos, no Distrito de Braga, 2011

Análise das Variáveis Adotadas

As variáveis ou critérios são fundamentais para a AMC (Análise Multicritério), pois representam algo que se pode quantificar ou avaliar e que contribui para determinar a melhor solução possível face a uma questão de investigação

Na AMC existem 2 tipos de critérios, fatores e constrangimentos /condicionantes.

Os fatores acentuam ou minimizam a aptidão de uma determinada alternativa em relação ao estudo, estes são os "critérios ou variáveis" que foram referidos anteriormente. Os constrangimentos/condicionantes são critérios que limitam as alternativas em análise, podendo assumir um papel de aceitação ou recusa, dessas mesmas. Geralmente são expressos em forma de modelo boleano, onde 0 corresponde a inapto, e 1, a apto.

Tendo em conta o objetivo do trabalho foram escolhidos 6 fatores para a elaboração da AMC, a Influência da População, o Uso do Solo, os Declives, as Vertentes, a Rede Viária e os Cursos de água.

O primeiro fator, a Influência da População, é usado para compreendemos o impacto que a população poderá ter no risco de incêndio e em ser afetada pelo mesmo. Este fator pode ser avaliado através do impacto do abando populacional ou da presença de população que coloca em prática comportamentos descuidados, e, por isso, aumenta o risco de incêndio.

A informação relativa a população foi retirada da *BGRI* de 2011. Dessa forma procedeuse ao uso da ferramenta *Feature do Raster*, onde foi usado o campo da densidade populacional em km², anteriormente calculado na análise descritiva. Após esta ferramenta estar concluído os valores foram colocados em formato *Stretch* de modo a ser realizada uma primeira análise à variável.

As regiões com mais população por km² são Braga, Guimarães, Fafe, Barcelos, Vizela, Esposende. Estas são consideradas cidades secundárias, porém são focos populacionais no distrito de Braga.

O fator Uso do Solo foi explorado através da COS (Carta de Ocupação do Solo de 2018), com o intuito de se explorar os diferentes estratos de ocupação solo e onde estes se localizam. Para tal foi necessário reclassificar as classes da COS, sendo que foram escolhidas 8 classes, de acordo com a sua importância para os incêndios. Após a COS estar reclassificada foi necessário transformá-la em formato *raster*, usando a ferramenta *Polygon to Raster*, o campo selecionado foi o campo Classes, adicionado anteriormente na tabela de atributos.

CLASSES
Territórios Artificializados
Agricultura
Florestas
Florestas de Eucalipto
Florestas de Pinheiro
Matos
Outros
Água

FIG.10- COS Reclassificada

De acordo com COS, o distrito de Braga apresenta, maioritariamente, uma ocupação solo de Agricultura e Floresta de Eucalipto, o que pode constituir-se num perigo. "As áreas com plantios de eucalipto apresentam alto risco de ocorrência de incêndios. Além da disponibilidade de madeira, existe o depósito contínuo de folhas e galhos sobre a superfície do solo, provenientes dos plantios e da vegetação de sub-bosque, o que permite a formação de uma manta orgânica que serve como material combustível em incêndios florestais", segundo (Tiago Sperandio Borges, 2011).

O terceiro fator corresponde aos Declives, este é considerado pois poderá provocar uma maior propagação do fogo devido à facilidade de passagem de vento e ao difícil acesso dos locais com maior declive.

Para a produção de um mapa de Declives foi necessária a elaboração de um Modelo Digital de Terreno, através da ferramenta *Creat TIN*, onde foram usadas as curvas de nível e os pontos cotados cedidos pelo docente. Posteriormente à criação do *TIN* foi usada a ferramenta *TIN to Raster*. Porém, o *Slope* em Graus foi o instrumento usado para criar o mapa de declives, sendo que a reclassificação dos seus valores em 5 classes foi concretizada mais tarde, e escolhida, depois, uma trama de cores apropriada ao relevo.

De acordo com os resultados obtidos é possível afirmar que os municípios de Terras de Bouro, Vieira do Minho e Cabeceiras de Basto são as regiões que apresentam maiores declives.

A ferramenta *Aspect* foi usada para elaborar o mapa de Exposição de Vertentes, o quarto fator, este revela a orientação geográfica das vertentes, onde a radiação solar e a humidade recebidas podem variar em função das mesmas. A ferramenta é usada a partir do *TIN* em formato *raster*, sendo que a reclassificação e atribuição de cores foi realizada no fim.

FIG.11- Reclassificação do Aspect

A orientação das vertentes mais comuns, no distrito, é a Oeste.

O quinto fator é a Rede Viária, este fator é considerado por muitos pois os incêndios, aconteçam por negligência, ou não, tem a sua origem, normalmente, perto da rede viária.

Para explorar este fator foram experimentadas várias ferramentas, o *Euclidean Distance* e o *Kernel Density*. De forma a tornar mais percetível os resultados selecionaram-se, apenas, a vias primárias, secundárias e terciárias, sendo que foi necessária a realização de um *Project*, pois a *shapefile* não estava no mesmo sistema de coordenadas. De seguida foram postas em práticas as 2 ferramentas, sendo a *Kernel Density* a escolhida, pois revelou-se a mais apropriada e percetível. A ferramenta assumiu um raio de 2689,5334729942556 metros.

Podemos concluir que os valores de densidades de rede viária mais elevados estão presentes nos concelhos de Braga e Guimarães.

Os Cursos de Água são o sexto fator, este fator é considerado devido a importância que a sua presença terá para amenizar ou evitar um incêndio. Para este fator também se experimentaram as 2 ferramentas acima expostas, porém a escolhida foi o *Euclidean Distance*.

Após a sua aplicação obtiveram-se resultados capazes de nos elucidar sobre a proximidade ou distância dos cursos de água. Com base nos resultados obtidos foi possível perceber que os valores mais altos rondam os 4km 236 metros, o que significa que para aceder aos cursos de água terá de ser percorrida uma distância de mais ou menos 4km.

Normalização das Variáveis

As variáveis/fatores podem estar em diferentes escalas por isso, na elaboração de uma Análise Multicritério é necessário que os fatores estejam todos na mesma unidade de medida, de modo a podermos compará-los e calculá-los.

A normalização é o processo usado para transformar os valores dos critérios numa só e igual escala, esta escala deverá possuir valores elevados, que corresponderão a um maior custo e/ou suscetibilidade, enquanto os valores baixos irão representar o oposto.

Na realização deste trabalho a escala definida para as variáveis foi de 0 a 1, porém ao longo do trabalho serão usados diferentes métodos de normalização.

No que toca ao primeiro fator, a Influência da População, foi usada a ferramenta *Fuzzy Membership*, onde o *Membership Type* selecionado foi o *Gaussian*.

De acordo com o mapa conclui-se que os valores iguais a 0 ou próximos de 0 representam as regiões menos densamente povoadas, ao contrário dos valores 1 ou próximos de 1.

FIG.12- Mapa Ponderado da Influência da População km2, no distrito de Braga,2011

O segundo fator, o Uso do Solo, foi reclassificado em 8 classes e é apresentado em formato *raster*, como já foi mencionado, porém o passo seguinte foi ponderar os valores e normalizá-los, de modo a estarem todos numa só escala (0 a 1). Para tal foi criado um campo na tabela de atributos, com o nome de Peso, onde atribuímos valores de 0 a 1 às classes, mediante a sua suscetibilidade ao risco de incêndio.

Através da tabela podemos concluir que o valor mais alto,1, foi atribuído às Florestas e Eucaliptal devido à sua importância e perigosidade no risco de incêndio, contudo, o valor mais baixo, 0, representa tudo o que esta relacionado com os Cursos de Água.

П	Rowid	VALUE	COUNT	CLASSES	PESO
١	0	1	4074324	Territórios Artificializados	0,1
	1	2	6852453	Agricultura	0,3
	2	3	3999348	Florestas	1
	3	4	5590956	Florestas de Eucalipto	1
	4	5	2617801	Florestas de Pinheiro	0,6
	5	6	3672227	Matos	0,8
	6	7	31082	Outros	0
	7	8	223262	Água	0

FIG.13- Reclassificação da Cos e atribuição de pesos

Por fim foi usada a ferramenta *Lookup* para normalizar os pesos, nessa ferramenta o campo escolhido foi o campo Peso, criado na tabela de atributos da COS em formato *raster*.

FIG.14- Mapa Ponderado do Uso do Solo, no Distrito de Braga

Os Declives são apresentados como o terceiro fator, estes foram calculados e devidamente reclassificados, precedentemente. Contudo foi necessário realizar a ponderação e normalização dos valores conseguidos, a ferramenta *Fuzzy Membership*, foi a escolhida para a normalização dos valores na escala de 0 a 1, o *Membership Type* eleito foi o Linear.

Com base no mapa da ponderação dos Declives, os valores mais elevados estão presentes a Nordeste e a Este do distrito de Braga, apresentando valores de 1 ou próximos de 1.

FIG.15- Mapa Ponderado dos Declives, no Distrito de Braga

No que concerne o fator Exposição de vertentes, e após a reclassificação do *Aspect* ter sido concluída restava normalizar os valores na escala selecionada. Para isso, foi criado um campo na tabela de atributos com o nome Peso, onde foram atribuídos, novamente, valores de 0 a 1 a cada classe.

reclas_aspect								
\Box	Rowid	VALUE	COUNT	PESO				
١	0	1	1841866	0				
\Box	1	2	4908476	0,1				
\Box	2	3	6093619	0,5				
	3	4	7043395	1				
	4	5	7142397	0,3				

FIG.16- Atribuição de pesos às vertentes, após a reclassificação

O valor mais baixo, 0, foi atribuído à classe Plano, 0,1, ao Norte, 0,5, a Este, 1, a Sul e, 0,3, a Oeste. O valor mais alto e mais baixo foi atribuído consoante as vertentes com mais e menos exposição e, nomeadamente, as com mais e menos perigosidade de risco de incêndio. Ou seja, as vertentes a Sul e a Este são as vertentes com mais risco devido à sua exposição solar e passagem de ventos. No caso em estudo há um número elevado de vertentes expostas a Oeste.

FIG.17- Mapa Ponderado da Exposição de Vertentes, no Distrito de Braga

Para o quinto fator, a Rede Viária, foi realizado um *Kernel Density*, esta ferramenta resultou no mapa que expõem a densidade de estradas ao longo do distrito. Após o mapa estar concluído era necessário normalizar os seus valores. Para a normalização deste fator foi utilizado o *Fuzzy Membership*, onde foi escolhido o *Membership Type*, Linear, tal como nos anteriores.

FIG.18- Mapa Ponderado da Densidade da Rede Viária, no Distrito de Braga

Os Cursos de Água foram explorados a partir da ferramenta *Euclidean Distance*, porém para a execução da normalização, o *raster* da distância euclidiana teve de ser convertido para *Float*, após esta conversão estar executada foi necessário usufruir do *Raster Calculator* e colocar em prática a fórmula do método de variação linear.

$$x_{\scriptscriptstyle i} = \frac{R_{\scriptscriptstyle i} - R_{\scriptscriptstyle \min}}{R_{\scriptscriptstyle \max} - R_{\scriptscriptstyle \min}}$$

FIG.19- Fórmula do Método de Variação Linear aplicada no Raster Calculator

Com base no mapa obtido podemos concluir que a proximidade dos cursos de água é maior a Nordeste, onde os declives também são mais elevados. Os valores mais baixos encontram-se no centro do distrito e nos locais mais urbanizados.

FIG.20- Mapa Ponderado da Proximidade dos Cursos de Água, no Distrito de Braga

A Carta de Risco de Incêndio

Uma carta de Risco de Incêndio possui como objetivo apoiar a prevenir os incêndios, bem como contribuir para a otimização dos recursos e das infraestruturas de defesa e combate aos fogos.

Para a produção das cartas de risco de incêndio é comum recorrer-se à escolha do modelo de variáveis fisiográficas onde, no nosso caso, foram selecionadas 6 variáveis. Estas variáveis foram tratadas, ponderadas e normalizadas numa só escala, com o intuito de expressarem a variabilidade espacial do risco de incêndio do distrito de Braga, a região escolhida para o estudo.

A Análise Multicritério é um passo muito importante para a produção da carta, podemos até afirmar, que é o passo final antes de a produzir.

A AMC que foi desenvolvida neste trabalho foi executada através do processo de comparação par-a-par, uma forma complexa de obter os pesos e avaliar os critérios, este utiliza dados quantitativos e qualitativos e é apropriados a grupos de decisão.

Para este método foram desenvolvidas 2 matrizes, a Matriz de Comparação e a Matriz Normalizada, com a função de calcularam e determinarem os pesos dos critérios. Segundo as matrizes e os pesos que foram atribuídos, inicialmente, por nós, determinou-se que o Uso do Solo e os Declives são os critérios com mais peso na decisão das áreas com maior risco de incêndio, seguindo-se as Vertentes, os Cursos de Água, Densidade de Vias e a Influência da População.

Matriz de comparação (A)						
CRITÉRIOS	dec	densv	cursagua	usolo	infpop	vertentes
Declives (dec)	1,00	4,00	1,50	1,00	4,00	3,00
Densidade vias (densv)	0,25	1,00	0,50	0,11	4,00	0,33
Curso de Água	0,67	2,00	1,00	0,14	2,00	0,33
Uso solo (usolo)	1,00	9,00	7,00	1,00	10,00	10,00
Influencia da Pop (inpop)	0,25	0,25	0,50	0,10	1,00	0,50
Vertentes	0,33	3,00	3,00	0,10	2,00	1,00
Soma	3,50	19,25	13,50	2,45	23,00	15,17

FIG.21- Matriz de Comparação

Matriz normalizada								
	dec	densv	cursagua	usolo	densp	vertentes	Produto	VP (w)
Declives (dec)	0,29	0,21	0,11	0,41	0,17	0,20	0,21	0,23
Densidade vias (densv)	0,07	0,05	0,04	0,05	0,17	0,02	0,05	0,06
Cursos de Água (cursagua)	0,19	0,10	0,07	0,06	0,09	0,02	0,07	0,08
Uso solo (usolo)	0,29	0,47	0,52	0,41	0,43	0,66	0,45	0,49
Influencia da Pop (infpop)	0,07	0,01	0,04	0,04	0,04	0,03	0,04	0,04
Vertentes	0,10	0,16	0,22	0,04	0,09	0,07	0,10	0,10
Soma	1.00	1,00	1.00	1.00	1.00	1.00	0,92	1.00

FIG.22- Matriz Normalizada

O cálculo da AMC foi realizado através do *Raster Calculator*, onde foi realizada a soma de todos os fatores, e a multiplicação de cada variável, individualmente, pelo peso atribuído nas matrizes.

FIG.23- Cálculo da AMC, através do Raster Calculator

FIG.25- Distribuição dos valores da carta de risco de incêndio

FIG.24-Carta de Risco de Incêndio para o Distrito de Braga

Com base na Carta de Risco de Incêndio elaborada é possível concluir que as regiões com maior risco estão a Norte, Nordeste e Este do distrito de Braga, e possuem valores de 0.8, como é o caso dos concelhos de Terras de Bouro, Vieira do Minho, Póvoa de Lanhoso, Cabeceiras de Basto e Celorico de Basto. Porém, os concelhos que assumem valores Baixos e Muitos Baixos de risco são Braga, Barcelos e Vila Nova de Famalicão, com valores entre os 0,2 e 0,3.

Questões?

Após ser criada a Carta de Risco de Incêndio para o distrito de Braga foram expostas algumas questões à qual devemos responder usando a material que foi desenvolvido.

1. Calcular a área total do distrito classificada com um nível de risco de incêndio elevado (> 0,7)?

Para dar resposta a esta questão foi o usado o *Raster Calculator* para selecionar todas as áreas com um nível de risco superior a 0,7. Após obtermos o resultado convertemos o ficheiro *raster* produzido (áreas com um nível de risco superior a 7) para *shapefile*, usando a ferramenta *Raster to Polygon*, por fim foi adicionado um campo da Área em Km2,na tabela de atributos, e selecionado o *Calculate Geometry*. Deverá ser salientado que na ferramenta *Raster To Polygon* é retirada a seleção *Simplify*.

Con("AMC_SUM" >0.7,1)

FIG.26-Cálculo no Raster Calculator das áreas com um nível de risco superior a 0,7

A fim de sabermos a área total, dirigimo-nos ao *Statistics* e procuramos o campo *Sum*, assim concluímos que **29,145 km2** é a área total do distrito classificada com um nível de risco de incêndio elevado (> 0,7).

2. Calcular o número total de habitantes abrangidos por estas áreas. Proceda ao cálculo recorrendo ao valor ponderado pela área.

Para responder a segunda questão foi necessário produzir um *Intersect* entre a *BGRI*, onde iríamos retirar o número total de habitantes, e entre a *shapefile* criada anteriormente (áreas com um nível de risco superior a 7). De seguida, criamos um campo da Área em Km2 na tabela de atributos do *Intersect*, a fim executar um cálculo, mais tarde.

Para calcular o número total de habitantes abrangidos, foi adicionado outro campo na tabela de atributos do *Intersect*, remetente ao total de habitantes abrangidos. Para obter um resultado foi executado o seguinte cálculo, [Nº de indivíduos * Área em Km² / Área já calculada anteriormente na BGRI].

Será importante referir que ambas as áreas estavam na mesma unidade km2, se não o cálculo não era executado corretamente. Após o cálculo estar executado dirigimo-nos, novamente, ao *Statistics* e ao campo *Sum*, onde este apresentou o valor de **47,067541 habitantes** abrangidos por estas áreas nível de risco de incêndio elevado (> 0,7).

3. Recorrendo à cartografia nacional de áreas ardidas do ano de 2017 (disponível em http://www2.icnf.pt/portal/florestas/dfci/inc/mapas), calcule a percentagem de área ardida que se sobrepõe às áreas de maior risco identificadas no ponto (v). O que se pode concluir?

De acordo com a questão, o primeiro passo foi recorrer ao Website indicado no enunciado e retirar a informação lá contida sobre as áreas ardidas do ano de 2017 e, conceber um Clip dessa informação, pela área de estudos.

De seguida foi realizado um *Intersect* entre a informação das áreas ardidas, do distrito de Braga, e a informação calculada na primeira questão (área total do distrito classificada com um nível de risco de incêndio elevado (> 0,7). Após estar concluído o *Intersect* foi calculada a área em Km2 num campo da tabela de atributos do *Intersect*, sendo o valor de **0,977491 km2** dado pelo campo *Sum* no *Statistics*.

A fim de se expor o valor total da área das áreas ardidas do distrito de Braga, foi importante a calcular, novamente, o campo Área em Km2,na tabela de atributos da *shapefile* das áreas ardidas. No campo *Sum* do *Statistics* foi exposto o valor de **99,384864 km2** de áreas ardidas no distrito de Braga em 2017.

Por fim restava realizar o cálculo final da percentagem de áreas ardidas que se sobrepõe às áreas de maior risco identificadas na primeira questão, para tal foi usada a seguinte expressão, [0,977491/99,384864*100]. A percentagem de área ardida que se sobrepõe às áreas de maior risco identificadas na pergunta 1 é de 0.98%.

4. Assumindo uma faixa de proteção de até 100 metros aos aglomerados urbanos e 10 metros às estradas, e que o preço da limpeza dos terrenos varia entre os 350 e os 1.200 euros/ha, calcule o orçamento necessário para a limpeza dos terrenos do distrito que selecionou.

Primeiramente recorreu-se à COS, onde foram selecionados os aglomerados urbanos ("Tecido edificado contínuo predominantemente vertical", "Tecido edificado contínuo predominantemente horizontal", "Tecido edificado descontínuo", "Tecido edificado descontínuo esparsa"), para as estradas foi reutilizada a informação usada no cálculo da AMC.

De seguida foram criados 2 *Buffers* através do *Geoprocessing*, um 100 metros para os aglomerados urbanos, e outro de 10 metros para as estradas. Após os *Buffers* serem criados, colocamos em prática a ferramenta *Merge*, que podemos encontrar, também, no *Geoprocessing*.

Após o *Merge* entre os 2 Buffers estar concluído foi criado um campo na tabela de atributos da nova *shapefile* (*shapefile* criada a partir do *Merge* entre os 2 *Buffers*), nesse campo foi calculada a área em hectares. O valor exposto pelo *Sum* foi de **130538,607937** hectares, este valor é o resultado da área total em hectares resultante do *Merge* entre os 2 *Buffers*.

A fim de calcular o orçamento necessário para a limpeza dos terrenos do distrito, multiplicou-se o valor total da área em hectares pelos valores mínimo (350 euros) e máximo (1200 euros). Assim podemos afirmar que o valor mínimo de orçamento necessário para a limpeza dos terrenos do distrito de Braga ronda os 45 688 512,4 euros e o valor máximo os 156 646 328 euros.

Conclusões Finais

A realização deste estudo/trabalho tornou-se bastante vantajosa, na medida em que permitiu estudar e praticar as técnicas que foram lecionadas, bem como aplica-las num estudo que é muito útil nos dias de hoje, devido ao risco de incêndios e à perigosidade que advém do mesmo.

Através da Carta de Risco de Incêndio para o Distrito de Braga conclui-se que é de urgente a implementação de medidas para prevenir, mitigar e preparar para o evento. A resposta ao evento e a recuperação são sem dúvida fulcrais porém se o trabalho anterior de prevenir, mitigar e preparar estiver completo, então o que se segue será mais facilidade. De acordo com a Carta elaborada o distrito de Braga e em especial os concelhos de Terras de Bouro, Vieira do Minho, Póvoa de Lanhoso, Cabeceiras de Basto e Celorico de Bastos urgem de apoio e consciencialização.

Bibliografia

Tiago Sperandio Borges, N. C. (2011). *Desempenho de Alguns Índices de Risco de Incêndios*. Floresta e Ambiente - Floram.

http://www2.icnf.pt/portal/icnf

http://www.dgterritorio.pt/

https://sniamb.apambiente.pt/?language=pt-pt

https://download.geofabrik.de/europe/portugal.html