FMI, Info, Anul II, 2019-2020 Programare logică

Seminar 6-7 Rezoluție. Rezoluție SLD

Teorie pentru S6-7.1:

Rezoluția în calculul propozițional

• În calculul propozițional un literal este o variabilă sau negația unei variabile.

 $literal := p \mid \neg p$ unde p este variabilă propozițională

- O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.
- Pentru orice formulă α din există o FNC α^{fc} astfel încât $\alpha \vDash \alpha^{fc}$.
- O clauză este o disjuncție de literali.
- Observăm că o FNC este o conjuncție de clauze.
- Clauza vidă □ nu este satisfiabilă.
- Mulţimea de clauze vidă {} este satisfiabilă.
- Dacă φ este o formulă în calculul propozițional, atunci

$$\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$$
unde L_{ij} sunt literali

• Ştim că:

 φ este satisfiabilă dacă și numai dacă $\varphi^{fc} \text{ este satisfiabilă dacă și numai dacă } \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \text{ este satisfiabilă}$

• Regula Rezoluției păstrează satisfiabilitatea:

$$Rez \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1, C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

• Algoritmul Davis-Putnam:

Intrare: o multime C de clauze

Se repetă următorii pași:

- se elimină clauzele triviale
- se alege o variabilă p
- $-\,$ se adaugă la mulțimea de clauze toți rezolvenții obținuți prin aplicarea Rez pe variabila p
- se șterg toate clauzele care conțin p sau $\neg p$

Ieșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă; altfel $\mathcal C$ este satisfiabil

(S6-7.1) Folosind algoritmul Davis-Putnam, cercetați dacă următoarea mulțime de clauze din calculul propozițional este satisfiabilă:

$$\mathcal{C} = \{\{v_0\}, \{\neg v_0, v_1\}, \{\neg v_1, v_2, v_3\}, \{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}\}\}$$

Demonstrație:

Pasul 1.

Alegem variabila v_0 și selectăm $C_0^{v_0} := \{\{v_0\}\}, C_0^{\neg v_0} = \{\{\neg v_0, v_1\}\}.$ Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{v_1\}\}.$

Se elimină clauzele în care apare v_0 , adăugăm rezolvenții și obținem:

$$C_1 := \{ \{\neg v_1, v_2, v_3\}, \{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}, \{v_1\} \}$$

Pasul 2.

Alegem variabila v_1 și selectăm $C_1^{v_1} := \{\{v_1\}\}$ și $C_1^{\neg v_1} := \{\{\neg v_1, v_2, v_3\}\}$. Mulțimea rezolvenților posibili este $\mathcal{R}_1 := \{\{v_2, v_3\}\}$.

Se elimină clauzele în care apare v_1 , adăugăm rezolvenții și obținem: $C_2 := \{\{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}, \{v_2, v_3\}\}$. Pasul 3.

Alegem variabila v_2 și selectăm $C_2^{v_2} := \{\{v_2, v_3\}\}, C_2^{\neg v_2} := \{\{\neg v_2\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_2 := \{\{v_3\}\}.$

Se elimină clauzele în care apare v_2 , adăugăm rezolvenții și obținem: $\mathcal{C}_3 := \{\{\neg v_3, v_4\}, \{\neg v_4\}, \{v_3\}\}.$

Pasul 4.

Alegem variabila v_3 și selectăm $C_3^{v_3} := \{\{v_3\}\}, C_3^{\neg v_3} := \{\{\neg v_3, v_4\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_3 := \{\{v_4\}\}.$

Se elimină clauzele în care apare v_3 , adăugăm rezolvenții și obținem: $C_4 := \{\{\neg v_4\}, \{v_4\}\}\}$. Pasul 5.

Alegem variabila v_4 şi selectăm $C_4^{v_4} := \{\{v_4\}\}, C_4^{\neg v_4} := \{\{\neg v_4\}\}.$

Mulțimea rezolvenților posibili este $\mathcal{R}_4 := \{\Box\}$.

Se elimină clauzele în care apare v_4 , adăugăm rezolvenții și obținem: $C_5 := \{\Box\}$.

Deoarece $C_5 = \{\Box\}$, obţinem că mulţimea de clauze C nu este satisfiabilă.

Teorie pentru S6-7.2:

Rezoluția pentru clauze închise în logica de ordinul I

• În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

unde $P \in \mathbf{R}, ari(P) = n$, și t_1, \ldots, t_n sunt termeni.

- Pentru un literal L vom nota cu L^c literalul complement. De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ şi invers.
- \bullet O formulă φ este formă clauzală dacă

$$\varphi := \forall x_1 \dots \forall x_n \psi \text{ unde } \psi \text{ este FNC}$$

- Pentru orice formulă φ din logica de ordinul I există o formă clauzală φ^{fc} astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - (i) se determină forma rectificată
 - (ii) se cuantifică universal variabilele libere
 - (iii) se determină forma prenex
 - (iv) se determină forma Skolem în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$
 - (v) se determină o FNC ψ' astfel încât $\psi \vDash \psi'$

(vi)
$$\varphi^{fc}$$
 este $\forall x_1 \dots \forall x_n \psi'$

• Fie C o clauză. Spunem că C' este o instanță a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ astfel încât $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)

ullet Fie ${\mathcal C}$ o multime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

O mulțime de clauze \mathcal{C} este nesatisfiabilă dacă și numai dacă există o submulțime finită a lui $\mathcal{H}(\mathcal{C})$ care este nesatisfiabilă.

 $\mathcal{H}(\mathcal{C})$ este multimea instanțelor închise ale clauzelor din \mathcal{C} .

• Rezoluția pe clauze închise păstrează satisfiabilitaea

$$Rez \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1, C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$

(S6-7.2) Considerăm următoarea mulțime de clauze în logica de ordinul I:

$$C = \{ \{ \neg P(f(a)), Q(y) \}, \{ P(y) \}, \{ \neg Q(b) \} \}$$

Arătați că \mathcal{C} nu este satisfiabilă prin următoarele metode:

- 1) Găsiți o submulțime finită nesatisfiabilă lui $\mathcal{H}(\mathcal{C})$.
- 2) Găsiți o derivare pentru \square folosind rezoluția pe clauze închise.

Demonstraţie:

1) $\mathcal{H}(C) = \{ \{ \neg Q(b) \}, \{ \neg P(f(a)), Q(a) \}, \{ \neg P(f(a)), Q(b) \}, \{ P(a) \}, \{ P(b) \}, \{ P(f(a)) \}, \cdots \}$ Submulţimea nesatisfiabilă este:

$$\{\{\neg P(f(a)),Q(b)\},\,\{P(f(a))\},\,\{\neg Q(b)\}\}$$

Explicație: Se face tabelul de adevăr pentru formula: $(\neg P(f(a)) \lor Q(b)) \land P(f(a)) \land \neg Q(b)$ și se observă că este nesatisfiabilă (adică o contradicție).

2) Derivare pentru \square :

$$C_{1} = \{\neg P(f(a)), Q(b)\}\$$

$$C_{2} = \{P(f(a))\}\$$

$$C_{3} = \{\neg Q(b)\}\$$

$$C_{4} = \{Q(b)\} \text{ din } Rez, C_{1}, C_{2}$$

$$C_{5} = \Box \text{ din } Rez, C_{3}, C_{4}$$

Teorie pentru S6-7.3, S6-7.4:

Regula rezoluției pentru clauze arbitrare

• Regula rezoluției păstrează satisfiabilitatea:

$$Rez \ \frac{C_1, C_2}{(\sigma C_1 \setminus \sigma Lit_1) \cup (\sigma C_2 \setminus \sigma Lit_2)}$$

dacă următoarele condiții sunt satisfăcute:

- (i) C_1, C_2 clauze care nu au variabile comune,
- (ii) $Lit_1 \subseteq C_1$ şi $Lit_2 \subseteq C_2$ sunt mulţimi de literali,
- (iii) σ este un cgu pentru Lit_1 şi Lit_2^c , adică σ unifică toți literalii din Lit_1 şi Lit_2^c .
- O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.
- Fie \mathcal{C} o mulțime de clauze. O derivare prin rezoluție din mulțimea \mathcal{C} pentru o clauză C este o secvență C_1, \ldots, C_n astfel încât $C_n = C$ și, pentru fiecare $i \in \{1, \ldots, n\}, C_i \in \mathcal{C}$ sau C_i este un rezolvent pentru două cauze C_i, C_k cu j, k < i.
- O mulțime de clauze \mathcal{C} este nesatisfiabilă dacă și numai dacă există o derivare a clauzei vide \Box din \mathcal{C} prin Rez.

(S6-7.3) Găsiți doi rezolvenți pentru următoarele clauze:

$$C_1 = \{P(x), P(g(y)), Q(x)\}\$$

 $C_2 = \{\neg P(x), R(f(x), a)\}\$

unde P, Q, R sunt simboluri de relații, a este o constantă, x, y sunt variabile.

Demonstrație: Se redenumește $C_2' = {\neg P(z), R(f(z), a)}$

Rezolvent 1: $Lit_1 = \{P(x)\}, Lit_2 = \{\neg P(z)\},$ substituție $\sigma = \{z \leftarrow x\},$ rezolvent $C = \{P(g(y)), Q(x), R(f(x), a)\}$

Rezolvent 2: $Lit_1 = \{P(x), P(g(y))\}, Lit_2 = \{\neg P(z)\}, \text{ substituție } \sigma = \{z \leftarrow g(y), x \leftarrow g(y)\}, \text{ rezolvent } C = \{Q(g(y)), R(f(g(y)), a)\}$

(S6-7.4) Găsiți o derivare prin rezoluție a \square pentru următoarea mulțime de clauze:

 $C_1 = \{ \neg P(x), R(x, f(x)) \}$

 $C_2 = \{ \neg R(a, x), Q(x) \}$

 $C_3 = \{P(a)\}\$

 $C_4 = \{\neg Q(f(x))\}\$

unde P, Q, R sunt simboluri de relații, f e simbol de funcție, a este o constantă, x, y sunt variabile.

Demonstrație:

 $C_5 = \{R(a, f(a))\} \text{ din } Rez, C_1, C_3, \sigma = \{x \leftarrow a\}$

 $C_4' = {\neg Q(f(z))}$ redenumire

 $C_6 = \{ \neg R(a, f(z)) \} \text{ din } Rez, C_4', C_2, \sigma = \{ y \leftarrow f(z) \}$

 $C_7 = \square \operatorname{din} \operatorname{Rez}, C_6, C_5, \sigma = \{z \leftarrow a\}$

Teorie pentru S6-7.5, S6-7.6:

Deducție și satisfiabilitate

• Dacă $\varphi_1, \dots, \varphi_n, \varphi$ sunt formule (în logica propozițională sau calculul cu predicate) atunci:

 $\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$ este echivalent cu

 $\models \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$ este echivalent cu

 $\vDash \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$ este echivalent cu

 $\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$ este satisfiabilă.

- În particular, $\vDash \varphi$ dacăși numai dacă există o derivare pentru \square din forma clauzală a lui $\neg \varphi$.
- Pentru a cerceta satisfiabilitatea este suficient să studiem forme clauzale.
- (S6-7.5) Folosind rezoluția, arătați că următoarea formulă este validă în logica de ordinul I:

$$\varphi := (\forall x (P(x) \to Q(x))) \to (\exists x P(x) \to \exists x Q(x))$$

Indicație: se găsește o derivare pentru \square din forma clauzală a lui $\neg \varphi$.

Demonstrație:

O formă prenex a $\neg \varphi$ este:

$$\exists y \forall x ((\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(x))$$

Atunci, $(\neg \varphi)^{fc}$ este identică cu forma Skolem a acesteia:

$$\forall x ((\neg P(x) \lor Q(x)) \land P(c) \land \neg Q(x))$$

Deci forma clauzală este:

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(c) \}, \{ \neg Q(x) \} \}$$

Derivare prin rezoluţie pentru □:

$$C_1 = \{ \neg P(x), Q(x) \}$$

$$C_2 = \{P(c)\}\$$

$$C_3 = \{\neg Q(x)\}\$$

$$C_4 = \{Q(c)\} \text{ din } Rez, C_1, C_2, \sigma = \{x \leftarrow c\}$$

$$C_5 = \square$$
 din $Rez, C_3, C_4, \sigma = \{x \leftarrow c\}$

(S6-7.6) Avem următorul raționament:

"Există elevi cărora le plac toate lecturile. Nici unui elev nu îi plac lucrurile plictisitoare. În consecință, nici o lectură nu este plictisitoare."

Definim predicatele

E(x) = "x este elev"

L(x) = "x este lectură"

P(x) = "xeste plictisitor"

R(x,y) = "xplace y"

- 1) Folosind predicatele E, L, P, R, exprimați fiecare afirmație în logica de ordinul I.
- 2) Demonstrați prin rezoluție că raționamentul este corect.

Demonstrație:

$$\varphi_1 := \exists x (E(x) \land \forall y (L(y) \to R(x,y)))$$

$$\varphi_2 := \forall x (E(x) \to \forall y (P(y) \to \neg R(x, y)))$$

 $\psi := \forall x (L(x) \to \neg P(x))$

Calculăm formele clauzale pentru φ_1, φ_2 și $\neg \psi$:

```
pt \varphi_2: C_2 = \{ \{ \neg E(x), \neg P(y), \neg R(x, y) \} \}

pt \neg \psi: C = \{ \{ L(b) \}, \{ P(b) \} \}

unde a, b sunt constantele care apar din Skolemizare.

\{ \varphi_1, \varphi_2 \} \vDash \psi ddacă există o derivare pentru \Box din C_1 \cup C_1 \cup C.

C_1 = \{ \neg L(y), R(a, y) \}

C_2 = \{ L(b) \}

C_3 = \{ \neg E(x), \neg P(y), \neg R(x, y) \}

C_4 = \{ P(b) \}

C_5 = \{ E(a) \}

C_6 = \{ R(a, b) \} Rez, C_1, C_2, \theta = \{ y \leftarrow b \}

C_7 = \{ \neg E(x), \neg R(x, b) \} Rez, C_3, C_4, \theta = \{ y \leftarrow b \}

C_8 = \{ \neg R(a, b) \} Rez, C_5, C_7, \theta = \{ x \leftarrow a \}

C_9 = \Box
```

• O clauză definită este o formulă de forma:

pt φ_1 : $C_1 = \{ \{ E(a) \}, \{ \neg L(y), R(a, y) \} \}$

 $-P(t_1,\ldots,t_n)$ (formulă atomică), unde P este un simbol de predicat, iar t_1,\ldots,t_n termeni $-P_1\wedge\ldots\wedge P_n\to Q$, unde toate P_i,Q sunt formule atomice.

- O regulă din Prolog $Q : -P_1, ..., P_n$ este o clauză $P_1 \wedge ... \wedge P_n \to Q$, iar un fapt din Prolog $P(t_1, ..., t_n)$ este o formulă atomică $P(t_1, ..., t_n)$.
- \bullet O clauză definită $P_1 \wedge \ldots \wedge P_n \to Q$ poate fi gândită ca formula $Q \vee \neg P_1 \vee \ldots \vee \neg P_n.$
- Pentru o multime de clauze definite T, regula rezolutiei SLD este

SLD
$$\frac{\neg P_1 \lor \dots \lor \neg P_i \lor \dots \lor \neg P_n}{(\neg P_1 \lor \dots \lor \neg Q_1 \lor \dots \lor \neg Q_m \lor \dots \lor \neg P_n)\theta}$$

unde $Q \vee \neg Q_1 \vee \cdots \vee \neg Q_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și θ este c.g.u pentru P_i și Q.

• Fie T o mulţime de clauze definite şi $P_1 \wedge \ldots \wedge P_m$ o ţintă, unde P_i sunt formule atomice. O derivare din T prin rezoluţie SLD este o secvenţă $G_0 := \neg P_1 \vee \ldots \vee \neg P_m, G_1, \ldots, G_k, \ldots$ în care G_{i+1} se obţine din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numeşte SLD-respingere.

Teorema 1 (Completitudinea SLD-rezoluției). Sunt echivalente:

- (i) există o SLD-respingere a lui $P_1 \wedge \ldots \wedge P_m$ din T,
- (ii) $T \models P_1 \land \cdots \land P_m$.

(S6-7.7) Găsiți o SLD-respingere pentru următoarele programe Prolog și ținte:

```
(a) 1. r:-p,q. 5. t. ?-w.
2. s:-p,q. 6. q.
3. v:-t,u. 7. u.
4. w:-v,s. 8. p.
```

(b) 1.
$$q(X,Y) := q(Y,X), q(Y,f(f(Y))).$$
 ?- $q(f(Z),a).$ 2. $q(a,f(f(X))).$

Demonstrație:

$$(a)$$

$$G_0 = \neg w$$

$$G_1 = \neg v \lor \neg s$$

$$G_2 = \neg t \lor \neg u \lor \neg s$$

$$G_3 = \neg u \lor \neg s$$

$$G_4 = \neg s$$

$$G_5 = \neg p \lor \neg q$$

$$G_6 = \neg q$$

$$G_7 = \square$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(7)$$

$$(6)$$

$$(8)$$

$$(6)$$

(b)

$$G_0 = \neg q(f(Z), a)$$

 $G_1 = \neg q(a, f(Z)) \lor \neg q(a, f(f(a)))$ (1 cu $\theta(X) = f(Z)$ şi $\theta(Y) = a$)
 $G_2 = \neg q(a, f(Z))$ (2 cu $\theta(X) = a$)
 $G_3 = \square$ (2 cu $\theta(Z) = f(X)$)

$$\begin{array}{ll} (c) \\ G_0 = \neg p(X) \lor \neg q(Y,Z) \\ G_1 = \neg r(X_1) \lor \neg q(Y,Z) \\ G_2 = \neg q(Y,Z) \\ G_3 = \neg p(Z_1) \\ G_4 = \neg r(X) \\ G_5 = \square \end{array} \qquad \begin{array}{ll} (2 \text{ cu } \theta(X) = X_1) \\ (5 \text{ cu } \theta(X_1) = f(b)) \\ (3 \text{ cu } \theta(X) = Y_1 \text{ şi } \theta(Y) = Z_1) \\ (2 \text{ cu } \theta(Z_1) = X) \\ (5 \text{ cu } \theta(X) = f(b)) \end{array}$$

Teorie pentru S6-7.8:

Fie T o mulțime de clauze definite și o țintă $G_0 = \neg P_1 \lor \ldots \lor \neg P_m$. Un arbore SLD este definit astfel:

- Fiecare nod al arborelui este o ţintă (posibil vidă)
- Rădăcina este G_0
- Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i şi G_{i+1} este etichetată cu C_i .

Dacă un arbore SLD cu rădăcina G_0 are o frunză \square (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

(S6-7.8) Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?- p(X,X).

- 1. p(X,Y) := q(X,Z), r(Z,Y).
- 7. s(X) := t(X,a).

2. p(X,X) := s(X).

8. s(X) := t(X,b).

3. q(X,b).

- 9. s(X) := t(X,X).
- 4. q(b,a).
- 10. t(a,b).
- 5. q(X,a) := r(a,X).
- 11. t(b,a).

6. r(b,a).

Demonstrație:

