

AD-A148 870

C

CII'

GUIDELINES FOR PREDICTING THE EFFECTS OF UNDERWATER EXPLOSIONS ON SWIMBLADDER FISH

BY DAVID JOHN O'KEEFFE

RESEARCH AND TECHNOLOGY DEPARTMENT

29 MARCH 1984

Approved for public release, distribution unlimited.

IL FILE COPY

D

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

SECURITY SUASSIFICATION OF THIS PAGE (When Date Ent	ered)
REPORT DOCUMENTATION PA	GE READ INSTRUCTIONS BEFORE COMPLETING FORM
	D-A148 870
4. TITUE (and Subsiste)	S. TYPE OF REPORT & PERIOD COVERED
GUIDELINES FOR CREDICTING THE EFFECTS	S OF UNDER- Final Report
WATER EXPLOSIONS ON SWIMBLADDER FISH	4. PERFORMING ORG. REPORT NUMBER
7. AU*HOR(e)	S. CONTRACT OR GRANT NUMBER(S)
David John O'Keeffe	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM EL EMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Surface Weapons Center (Code Rl White Oak	P.E.63721N; S0400SL; S0400SL;
Silver Spring, Maryland 20910	R14CA
11. CONTROLLING OFFICE NAME AND ADDRESS	18. REPORT DATE 29 March 1984
	13. NUMBER OF PAGES
TA. MONITORING AGENCY NAME & ADDRESS(IL dillorent le	
	UNCLASSIFIED
	15. DECLASSIFICATION/DOWNGRADING
IS. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distr	ribution unlimited.
17. DISTRIBUTION STATEMENT (of the obstract entered in a	
17. DISTRIBUTION STATEMENT (of the equipment entered in i	Block 20, it ditierent from Report)
	•
	į.
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and is	dentify by block number)
	abladder Fish
Explosion Effects	al Ranges

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report is a guide for predicting the effects of underwater explosions on swimbladder fish. Computer calculations have been made covering a wide range of fish sizes, explosive charge weights, and depths of burst. Contour plots of kill probability are presented along with equations depicting maximum range in terms of charge weight. A criterion is established which should aid in minimizing fish-kill, and an upper limit is set on the lateral extent of kill for a given charge weight.

DD 1 1473

EDITION OF 1 NOV 68 18 0840LETE

UNCLASSIFIED

SECURITY SLASSIFICATION OF THIS PAGE When Dete Entered)

FOREWORD

This report deals with the prediction of the effects of underwater explosions on swimbladder fish and is part of a continuing study of the effects of underwater explosions on marine life. Swimbladder fish are especially vulnerable to explosions, and this class includes most fish of sport and commercial value. This study will result in an improved capability to predict such effects and thereby reduce or avoid injury. It will be useful in connection with a variety of Naval research operations and will also apply to underwater blasting for channel clearance or for construction.

This study is part of the Ordnance Pollution Abatement Program of the Naval Sea Systems Command (SEA 62R) under Program Element 63721N, Work Unit: Environmental Effects of Explosive Testing.

The author is indebted to Robert Thrun and John F. Goertner for their assistance in the computer calculations and to George A. Young for many valuable suggestions during the course of this work.

Approved by:

Accossion For

NTIS GRAMI
PTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Avail and/or
Diet Special

KURT F. MUELLER, Acting Head Energetic Materials Division

CONTENTS

																														Page
INTRODUCTION	•	•	•	•	•		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		•	•	•		•	•	1
BACKGROUND	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
THE CALCULATION	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	2
CONTOUR PLOTS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
conclusions						•							•		•					•	•	•							,	3

ILLUSTRATIONS

Figure			Page
1		FOR 1-OZ FISH; 10-LB PENTOLITE,	
2	10-FT DEPTH OF BURST .	FOR 1-LB FISH; 10-LB PENTOLITE,	8
•			8
3	KILL PROBABILITY CONTOURS	FOR 30-LB FISH; 10-LB PENTOLITE,	9
4		FOR 1-OZ FISH; 10-LB PENTOLITE,	9
•	50-FT DEPTH OF BURST .		9
5		FOR 1-LB FISH; 10-LB PENTOLITE,	10
6		FOR 30-LB FISH; 10-LB PENTOLITE,	10
	50-FT DEPTH OF BURST .		10
7		FOR 1-OZ FISH; 10-LB PENTOLITE,	11
8		FOR 1-LB FISH; 10-LB PENTOLITE,	11
	200-FT DEPTH OF BURST .		11
9		FOR 30-LB FISH; 10-LB PENTOLITE,	12
10		FOR 1-OZ FISH; 100-LB PENTOLITE,	••
1.1		BOD 1-1 B STOLL LOOPIN BENEGOT TOR	12
11		FOR 1-LB FISH; 100-LB PENTOLITE,	13
12	KILL PROBABILITY CONTOURS	FOR 30-LB FISH; 100-LB PENTOLITE,	
13		FOR 1-OZ FISH: 100-LB PENTOLITE.	13
13		* · · · · · · · · · · · · · · · · · · ·	14
14	KILL PROBABILITY CONTOURS	FOR 1-LB FISH; 100-LB PENTOLITE,	
15		FOR 30-LB FISH: 100-LB PENTOLITE.	14
••	50-FT DEPTH OF BURST .		15
16		FOR 1-OZ FISH; 100-LB PENTOLITE,	1.5
17		FOR 1-LB FISH; 100-LB PENTOLITE,	15
	200-FT DEPTH OF BURST .		16
18		FOR 30-LB FISH; 100-LB PENTOLITE,	16
19	KILL PROBABILITY CONTOURS	FOR 1-OZ FISH; 1000-LB PENTOLITE,	
20	10-FT DEPTH OF BURST .	FOR 1-LB FISH: 1000-LB PENTOLITE,	17
40	IN-ET NEBTH OF BURCT	•	1.7

ILLUSTRATIONS (Cont.)

Figure		Page
21	KILL PROBABILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE,	
	10-FT DEPTH OF BURST	18
22	KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 1000-LB PENTOLITE,	
	50-FT DEPTH OF BURST	18
23		
	50-FT DEPTH OF BURST	19
24	KILL PROB'BILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE,	
	50-FT DEPTH OF BURST	19
25	KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 1000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	20
26	KILL PROBABILITY CONTOURS FOR 1-LB FISH; 1000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	20
27	KILL PROBABILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	21
28	KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE,	
	10-FT DEPTH OF BURST	21
29	KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10,000-LB PENTOLITE,	
	10-FT DEPTH OF BURST	22
30	KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE,	
	10-FT DEPTH OF BURST	22
31	KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE,	
	50-FT DEPTH OF BURST	23
32		
	50-FT DEPTH OF BURST	23
33	KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE,	
	50-FT DEPTH OF BURST	24
34	KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	24
35	KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10,000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	25
36	KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE,	
	200-FT DEPTH OF BURST	25
37	FISH-KILL RANGES FOR 1-OZ FISH	26
38	FISH-KILL RANGES FOR 1-LB FISH	27
20	FIGU-VIII PANCES FOD 30-IB FIGU	20

TABLES

<u>[able</u>	<u>g</u>	,a Ke
1	CONSTANTS IN THE FISH-KILL RANGE EQUATION	4
2	CONTOUR PARAMETERS FOR A 30-LB FISH	5
3	CONTOUR PARAMETERS FOR A 1-LB FISH	6
4	CONTOUR PARAMETERS FOR A 1-OZ FISH	7

GUIDELINES FOR PREDICTING THE EFFECTS OF UNDERWATER EXPLOSIONS ON SWIMBLADDER FISH

INTRODUCTION

いては、自己なったのは、自己などのではなってはなっている。自己などながながら、ことできてい

In many operations which require the detonation of conventional explosives underwater (the removal of hazards to shipping, the explosive cutting of abandoned oil wellheads, seismic exploration, experimental testing for military purposes, etc.) federal law requires that: (1) all possible adverse environmental effects be examined, and (2) at least a preliminary environmental assessment be prepared. Possible adverse environmental effects include noise, the deposit of chemical products in the water and atmosphere, cratering, as well as the killing of fish and other marine life. The impact of any one of these effects on the environment will, of course, depend on the particular explosive operation. However, it is safe to say that in any underwater explosion at least a few fish will be killed, and it is important to be able to estimate just how many.

This report provides guidance for predicting the effects of underwater explosions on swimbledder fish. Computer calculations of fish-kill have been made covering a wide range of fish sizes, explosive charge weights and depths of burst.

BACKGROUND

We are principally concerned with the lethal zone around an underwater explosion for fish with swimbladders. This class includes most fish of commercial or sports value. In addition, swimbladder fish have been found to be more vulnerable to explosions than non-swimbladder fish, such as flat fish and shell fish. 1

Wiley, M. L., Gaspin, J. B., and Goertner, J. F. "Effects of Underwater Explosions on Fish with a Dynamical Model to Predict Fish Kill," Ocean Science and Eng., Vol. 6, 1981, p. 223.

THE CALCULATION

The basic question is how to determine the probability that a fish will be killed when subjected to a specific explosion-induced pressure wave. Until recently there has been no reliable quantitative technique available to answer that question. However, in 1978 Goertner devised such a method and programmed it for a computer. The key to the problem turned out to be the fish swimbladder, since fish mortality due to an underwater explosion was usually traceable to swimbladder damage. Goertner represented the swimbladder as a spherical bubble of air in an infinite body of water and calculated its oscillatory response to the explosive pressure pulse. It was found that a strong resonance occurred when surface cutoff (the arrival of the rarefaction wave relected from the water surface) coincided with maximum bladder compression. The result was maximum damage to the fish. The complete calculation is fairly complicated, since it involves: (1) the explosive pressure signature; (2) the fish swimbladder model; and (3) the interaction of (1) and (2) for numerous geometries.

CONTOUR PLOTS

In order to simplify the presentation of the fish-kill results, the computer program was modified to produce contour plots of kill probability. They are shown in Figures 1 through 36. The relevant parameters are: (1) charge weight; (2) depth of burst; and (3) location and size of the fish. Contours depicting 90%, 50%, and 10% probabilities of fish-kill are plotted in each figure. For example, Figure 16 shows predicted regions of greater than 10%, 50%, and 90% kill (defined by the solid, dotted and dashed lines, respectively) for 1-oz swimbladder fish for a 100 pound charge at a depth of burst of 200 feet. For practical purposes the 10% contour defines the range or extent of the kill zone, although many fish will survive at positions closer to the charge. The 50% contour is more useful for estimating the actual numerical kill if the fish population density is known.

In Figures 1 through 36 the charge sizes range from 10 pounds to 10,000 pounds, while depths of burst vary from 10 feet to 200 feet. Fish weights are: 1 ounce; 1 pound; and 30 pounds.

These contour plots should bracket most situations encountered in underwater detonations in terms of fish size, charge weight, and depth of burst.

Estimates of the accuracy of the computer calculations for the 50% contour indicate that a 90% confidence limit can be placed on the 10% and 90% contours. This means that one can cite the horizontal range (at a given depth) taken from the 50% contour and be 90% confident that that number will be bracketed by the horizontal range taken from the 10% and the 90% contours (at the same depth).

²Goertner, J. F., <u>Dynamical Model for Explosion Injury to Fish</u>, NSWC TR 76-155, Dec 1978.

Figures 37, 38, and 39 are plots of the maximum horizontal range of the 10% contours versus the charge weight for a given fish size. The solid lines, which are seen to represent the calculated points quite well, indicate that the maximum horizontal range is a function of the charge weight. That is,

Hmax = kW

where H_{\max} is the maximum horizontal range, in feet, W is the charge weight, in pounds, and k and α are constants.

In Table 1 we have tabulated values of k and α for the different fish sizes and depths of burst. The resulting empirical equations should prove useful in estimating relatively safe ranges for swimbladder fish.

Upon examining Figures 37, 38, and 39 it becomes apparent that the greater the depth of burst the greater the maximum horizontal range, regardless of fish size. This might seem to indicate that the fish-kill would be minimized if the charges were detonated at shallower depths, but the situation is not that simple. For one thing the shape of the contours must be taken into account. Figure 7 best illustrates this point. The maximum horizontal range, H_{max} , is 905 feet at a depth of 15 feet. However, at shallower depths this range is reduced by more than half. At depths exceeding 15 feet it is less than 0.25 Himax. The other contours are not as sharply peaked, but the general shape is nevertheless maintained. Therefore, in Tables 2, 3, and 4 we have presented the charge weight, the depth of burst, DOB, the maximum horizontal range, H_{max} , and $D(H_{max})$, the depth at which H_{max} is attained. From these tables we can see that in virtually every case the greater the DOB the closer D(H_{max}) is to the water surface. This is desirable for it increases the volume of 'safe water' under the contour. 'Safe water' denotes the region where kill probability is less than 10%. (It should be noted that for a given contour the volume of 'safe water' under the curve exceeds the volume of 'safe water' over the curve). However, as we have seen, the greater the DOB the greater is Hmax, so the two effects work against each other. Consequently, care must be exercised in deciding on shot geometries.

There is one other conclusion that can be drawn from a comparison of Tables 2, 3, and 4. In almost every instance, $D(H_{max})$ is greater for the larger fish. That is to say, the larger fish are safer at the shallower depths for a given charge size and depth of burst. To put it another way, the larger the fish the greater the volume of 'safe water' near the surface.

CONCLUSIONS

Characteristics - arrespond to the contract Associated and the contract of the

There is a demonstrated need for quantitative predictions of fishkill due to underwater explosions. A computer program has been modified to generate such predictions in terms of probability contour plots. Calculations have been made for a wide range of charge weights, fish sizes, and depths of burst to encompass a great many practical situations. Empirical equations have been developed which relate maximum range to a function of the charge weight. Guidelines have been established for minimizing fish-kill.

TABLE 1. CONSTANTS IN THE FISH-KILL RANGE EQUATION

FISH	DOB (FT)	COEFFICE	ENT EXPONENT
1-0Z	10	328	0.220
1-02	50	385	0.256
1-0Z	200	475	0.262
1-LB	10	174	0.264
1-LB	50	235	0.275
1-LB	200	272	0.299
30-LB	10	86	0.284
30-LB	50	131	0.314
30-LB	200	139	0.342

TABLE 2. CONTOUR PARAMETERS FOR A 30-LB FISH

CHARGE (LBS)	DOB (FT)	H _{MAX}	D(H _{MAX}) (FT)
10	10 50	165 260	65 25
	200	290	10
100	10	330	120
	50	590	70
	200	725	35
1000	10	630	135
	50	1130	100
	200	1555	60
10,000	10	1155	280
	50	2350	160
	200	3090	70

TABLE 3. CONTOUR PARAMETERS FOR A 1-LB FISH

CHARGE (LBS)	DOB	HMAX	D(H _{MAX})
	(YT)	(FT)	(FT)
10	10	315	55
	50	425	25
	200	505	15
100	10	600	85
	50	865	50
	200	1225	30
1000	10	1130	125
	50	1655	50
	200	2390	25
10,000	10	1920	200
	50	2885	70
	200	4153	35

TABLE 4. CONTOUR PARAMETERS FOR A 1-02 FISH

CHARGE	DOB	HMAX	D(H _{MAX}) (FT)
(LBS)	(FT)	(FT)	
10	10	530	40
	50	705	20
	200	905	15
100	10	985	60
	50	1235	15
	200	1540	30
1000	10	1465	60
	50	2255	25
	200	2870	10
10,000	10	2490	80
	50	4090	35
	200	5555	15

and the contract of the second of the second

FIGURE 1. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10-LB PENTOLITE, 10-FT DOB

HORIZONTAL RANGE (FEET)
FIGURE 2. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10-LB PENTOLITE, 10-FT DOB

FIGURE 3. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10-LB PENTOLITE, 10-FT DOB

FIGURE 4. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 10-LB PENTOLITE, 50-FT DOB

FIGURE 5. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10-LB PENTOLITE, 50-FT DOS

FIGURE 6. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10-LB PENTOLITE, 50-FT DOB

FIGURE 7. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10-LB PENTOLITE, 200-FT DOB

FIGURE 8. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10-LB PENTOLITE, 200-FT DOS

FIGURE 9. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10-LB PENTOLITE, 200-FT DOB

FIGURE 10. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 100-LB PENTOLITE, 10-FT DOS

FIGURE 11. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 100-LB PENTOLITE, 10-FT DOS

FIGURE 12. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 100-LB PENTOLITE, 10-FT DOS

FIGURE 13. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 180-LB PENTOLITE, 60-FT DOS

FIGURE 14. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 100-LB PENTOLITE, 50-FT DOB

FIGURE 15. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 100-LB PENTOLITE, 50-FT DOS

FIGURE 16. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 100-LB PENTOLITE, 200-FT DOB

FIGURE 17. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 100-LB PENTOLITE, 200-FT DOS

FIGURE 18. KILL PROBABILITY CONTOURS FOR 30-LS FISH; 100-LB PENTOLITE, 200-FT DOB

FIGURE 19. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 1000-LB PENTOLITE, 10-FT DOS

FIGURE 20. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 1000-LB PENTOLITE, 10-FT DOB

FIGURE 21. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE, 10-FT DOB

FIGURE 22. KILL PROBABILITY CONTOURS FOR 1-02 FISH; 1000-LB PENTOLITE, 50-FT DOB

FIGURE 23. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 1000-LB PENTOLITE, 50-FT DOB

FIGURE 24. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE, 50-FT DOS

FIGURE 25. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 1000-LB PENTOLITE, 200-FT DOB

FIGURE 26. KILL PROBABILITY CONTOURS FOR 1-LB fish; 1000-LB PENTOLITE, 200-FT DOB

FIGURE 27. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 1000-LB PENTOLITE, 200-FT DOB

FIGURE 28. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE, 10-FT DOB

FIGURE 29. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10,000-LB PENTOLITE, 10-FT DOB

FIGURE 30. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE, 10-FT DOS

FIGURE 31. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE, 50-FT DOB

FIGURE 32. KILL PROBABILITY CONTOURS FOR 1-LB FISH; 10,000-LB PENTOLITE, 50-FT DOB

FIGURE 33. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE, 50-FT DOB

FIGURE 34. KILL PROBABILITY CONTOURS FOR 1-OZ FISH; 10,000-LB PENTOLITE, 200-FT DOB

acquarity of separate - extenses, respected businesses

FIGURE 35. KILL PROBABILITY CONTOURS FOR 1-LB FIGH; 10,000-LB PENTOLITE, 200-FT DOB

FIGURE 36. KILL PROBABILITY CONTOURS FOR 30-LB FISH; 10,000-LB PENTOLITE, 200-FT DOS

CAS BARBARDA CASARARA BARBARDA BARBARDA BARBARDA CASARARA CASARA CASARARA CASARA CASARARA CASARA CASARARA CASARA CASARA CASARA CASARA CASARA CASARA CASARARA CASARA CASARARA CASARA CASA

26

AND CHESTARY INSTRUCTION CONTRACT. INCOMEST CONTRACT STATEMEN HEAVING CONTRACT CONTRACT.

27

FIGURE 38. FEBHAULL RANGES FOR 39-LB FISH

DISTRIBUTION

<u>Co</u>	pies		Copies
Commander Naval Sea Systems Command		Defense Technical Information	
Attn: SEA-55X13 (D. Lund)	1	Center	
SEA-55X11 (D. M. Hurt)	1	Cameron Station	
SEA-55X1 (W. Forehand)	1	Alexandria, VA 22314	12
SEA-62R32 (G. D. Edwards)	1		
SEA-62R (W. W. Blaine)	1	Office of Naval Research	
Washington, DC 20362		Attn: Code 480	2
		Code 441	1
Commander		800 North Quincy Street	
David Taylor Naval Ship Research		Arlington, VA 22217	
& Development Center		•	
Attn: Code 17	1	Library of Congress	
Code 1740	1	Attn: Gift and Exchange	
Code 1740.1	1	Division	4
Code 1750	1	Washington, DC 20540	
Code 1720	1		
Code 1720.3	1	Commander	
Code 042	1	Naval Coastal Systems Center	
Bethesda, MD 20084		Attn: Code 734 (H. Loftin) Library	1
Underwater Explosions Research Division		Panama City, FL 32407	
David Taylor Naval Ship Research		Chief of Naval Material	
& Development Center		Office of Naval Technology	
Attn: Technical Reference Center	1	Attn: MAT-07	1
R. Oliver	ī	Washington, DC 20360	_
Portsmouth, VA 23709	_		
		Director	
Director Naval Research Laboratory		Waterways Experiment Station	
Attn: Code 2027	1	Attn: Technical Library	1
Code 8400	ī	Kim Davis	ī
Code 8406	ī	P.O. Box 631	•
Washington, DC 20375	_	Vicksburg, MS 39180	
Commanding Officer		Commending Officer	
Naval Underwater Systems Center		Naval Biosciences Laboratory	
Attn: Technical Library	1	Attn: Dr. Harold E. Guard	1
Newport, RI 02840		LCDR Andre B. Cobet	1
		Hldg. 844, Naval Supply Center	
		Oakland, CA 94625	

THE PERSON IN THE PROPERTY OF THE PERSON OF

<u>Cc</u>	pies		Copies
Commanding Officer		Commanding Officer	
Naval Underwater Systems Center		Naval Air Station	
Attn: Code EA 11 (Roy R. Manstan)	1	Attn: A. L. Clark, Environmental	1
Newport, RI 02840	•	Protection Coordinator	
• • • • • • • • • • • • • • • • • • • •		Public Works Department	1
Commander		Patuxent River, MD 20670	•
Naval Ocean Systems Center		200000000000000000000000000000000000000	
Attn: Code 51 (F. G. Wood)	1	U.S. Army Engineer District	
Code 5102 (C. S. Johnson)	ĭ	Attn: Tom Crews, III,	
Code 513 (8. Yamamoto)	ī	Environmental Branch	1
(M. Salarar)	ī	100 McAllister Street	•
Code 6331 (J. D. Warner)	ī	San Francisco, CA 94102	
(W. Peete)	ī	oan 11 and 1000 on 74102	
San Diego, CA 92152	•	U.S. Army Engineer Division, Pacific Ocean	
Naval Ocean Systems Center		Attn: Michael T. Lee, Biologist	1
Hawaii Laboratory		Environmental Section	•
Attn: Code 512 (W. A. Friedl)	1	Bldg. 230, Ft. Shafter	
Code 513 (E. C. Evans)	ī	APO San Francisco 96558	
(J. G. Grovhoug)	1		
P.O. Box 997, Kailua, Oahu	_	ADTC/DLV	
Hawaii 96734		Attn: J. C. Cornette	1
		Eglin AFB, FL 32542	•
Officer in Charge			
New London Laboratory		National Marine Fisheries	
Naval Underwater Systems Center		Service	
Attn: Albert B. Brooks	1	Auka Bay Biological Laboratory	
Code TA13	_	Attn: Theodore Merrell	1
(C. L. Brown, Jr.)	1	P.O. Box 155	-
New London, CT 06329	Ū	Auke Bay, AK 99821	
Commanding Officer		National Marine Fisheries	
Naval Explosive Ordnance		Service	
Disposal Facility		Water Resources Division	
Attn: Library Division	1	Attn: Dale R. Evans, Chief	1
Code 5D (L. A. Dickinson)	ī	P.O. Box 1668	•
Richard Burdette	ī	Juneau, AK 99801	
Lyle Malotky	ī	7,000	
Indian Head, MD 20640	_	National Marine Fisheries Service	
Officer in Charge		Southwest Fisheries Center	
Civil Engineering Laboratory		P.O. Box 271	
Attn: Code L70	1	La Jolla, CA 92037	1
Code L71	ì		-
Code 143	ī	Department of Commerce	
Code L65	i	Biological Laboratory	
Naval Construction Battalion	_	Midford, CT 06460	1
Center			•
Port Hueneme, CA 93043			

9	opies		Copies
Department of the Interior Attn: Karen Bachman Mark L. Holmes 1107 NE 45th Street	1	State of Alaska Department of Fish and Game Attn: L. L. Trasky, Fisheries Research Biologist	1
Suite 110 Seattle, WA 95105		333 Raspberry Road Anchorage, AK 99502	•
Department of the Interior Bureau of Sports Fisheries and Wildlife		Deputy Commissioner Alaska Department of Fish and Game	
Attn: J. S. Gottschalk, Director Interior Building Washington, DC 20240	1	Attn: Joseph R. Blum Support Building Juneau, AK 99801	1
Bureau of Commercial Fisheries		State of Alaska	
Attn: Philip M. Roedel, Director Interior Building Washington, DC 20240	1	Department of Fish and Game Habitat Section 333 Raspberry Road	•
State of Maryland Fish and Wildlife Administration Attn: Charles Frisbie	1	Anchorage, AK 99502 Department of Fish and Game Wildlife Protection Branch	1
Barbara Holdon Howard J. King Annapolis, MD 21404	1	1416 Ninth Street Secremento, CA 95814	1
State of North Carolina		State of California Marine Recources Division	
Department of Natural and Economic Resources Attn: Willard Lane, Artifical		Attn: D. Getes, Regional Manager 350 Golden Shore	1
Reef Program Jim Tyler, Artifical Reef Program	1	Long Beach, CA 90802 State of Florida	
Division of Marine Fisheries Box 769 Morehead City, NC 28557		Department of Natural Resources Larson Building Tallahassee, FL 32304	1
South Caroline Marine Resources Division		State of Louisiana Wildlife and Fisheries	
Attn: Michael D. McKensie 2024 Mayban!: Highway Charleston, SC 29412	1	Commission Attn: Fred Dunham P.O. Box 44095, Capital Station	ı
Trust Territory Environmental Protection Board		Baton Rouge, LA 70804 Virginia Institute of Marine	
Attn: M. Falanruw, Staff Ecologist	1	Science Attn: William J. Hargis,	
P.O. Box 215 Yap, W.C.I. 96943		Director Gloucester Point, VA 23062	1

	Copies		Copies
Director Woods Hole Oceanographic	;	Marine Resources Division	
Institution		California State Fisheries Lab	
Attn: Earl E. Hays	1	Attn: Rober Kanlen	1
Lincoln Baxter, II	1	350 South Magnolia	
Library	1	Long Beach, CA 30802	
Woods Hole, MA 02543		•	
		Robert E. Eckels & Associates	
Director Scripps Institution of		Consulting Engineers	
Oceanography		2102 Youngfield	
Attn: Fred Spiess	1	Golden, CO 80401	1
La Jolla, CA 92037	_		
		Woodward Clyde Consultant	
School of Oceanography		Attn: Jack Kiker	1
Oregon State University		Box 1149	_
Attn: A. G. Carey, Jr.	1	Orange, CA 92668	
Librarian	i	otalige, on stoop	
Corvallis, OR 97331		Lovelace Biomedical	
COPVELLIS, ON 9/331		& Environmental Research	
Observative Box South tuto		Institute, Inc.	
Chesapeake Bay Institute		•	1
The Johns Hopkins University	,	Attn: Donald R. Richmond	1.
Baltimore, MD 21218	1	E. Royce Flatcher	1
Observation Biological		Robert K. Jones	1
Chesapeake Biological		John T. Yelverton	1
Laboratory	1	P.O. Box 5890	
Attn: T. S. Y. Koo	1	Albuquerque, NM 87115	
Joseph A. Mihursky	1	Markey March 9 a	
Mertin L. Wiley	1	Tetra Tech, Inc.	
John S. Wilson	1	Attn: Li-San Hwang	1
P.O. Box 38		630 North Rosemead Blvd.	
Solomons, MD 20688		Pasadena, CA 91107	
Marine Physical Laboratory,		Explo Precision Engineering	
S10/UCSD		Corporation	
Attn: Charles B. Bishop	1	Attn: John J. Ridgeway	1
Bldg. 106, Naval Undersea Center	_	Manager of Technical Services	-
San Diego, CA 92106		Gretna, LA 70053	
		7,000	
University of Hawaii at Manoa		Dr. Grant L. Beardaley Jr.	
Hawaii Institute of Marine		Southeast Fisheries Center	
Biology		Miami Laboratory	
Attn: G. H. Balaza, Jr.,		National Marine Fisheries	
Marine Biologiet	1	Service	
P.O. Box 1346, Coconut Island	•	75 Virginia Beach Drive	
Kaneche, HI 96744		Miami, FL 33149	1
namedite; its 70/44		cramula y a ser e e e e e e e e e e e e e e e e e e	•
Department of Biology		Mr. Richard C. Marolt	
Juniata College		Chief of Operations	
Attn: Robert L. Fisher	1	& Maintenance	
Huntington, PA 16652	•	6550 ABG/DERM	
		Patrick Air Force Rese. Fl. 3292	5 1

	Copies		Copies
Mr. Gene Huntsman		Mr. Harold A. Brusher	
National Marine Fisheries		National Marine Fisheries	
Service		Service	
Beaufort, NC 28516	1	SEFC, Panama City Laboratory	
		3500 Delwood Beach Road	_
Mr. Steven A. Berkeley		Panama City, FL 32407	1
University of Miami			
Rosenstiel School of Marine &		Mr. Andreas Mager, Jr.	
Atmospheric Science		National Marine Fisheries	
4600 Rickenbacker Causeway		Service	
Miami, FL 33149	1	Southeast Region	
		9450 Koger Blvd	•
Dr. Grant Gilmore		St. Petersburg, FL 33702	1
Harbour Branch Foundation Inc			
RR1 Box 196	_	Dr. Charles Barons	
Fort Pierce, FL 33450	1	South Caroline Wild Life	
		& Marine Resources Department	
Dr. George Maul		Marine Resources	
Atlantic Oceanographic &		P.O. Box 12559	•
Meteorological Laboratories		Charlestown, SC 29412	1
National Oceanic and Atmospheric	C	No. 7ab - Minhamana	
Administration		Dr. John Fletemeyer	
15 Rickenbacker Causeway	•	Nova Oceanographic Laboratory	
Miami, FL 33149	1	Nova University	
No. Posses Costs	-	8000 North Ocean Drive	•
Mr. Ernest Snell		Dania, FL 33316	1
Southeast Fisheries Center		Dr. J. Ross Wilcox	
Miami Laboratory National Marine Fisheries		Chief Ecologist	
Service		Environmental Affairs	
75 Virginia Beach Drive		Florida Power & Light Co.	
Miami, FL 33149	1	Juno Beach, FL 33408	1
Midwi, Pt 33149	•	Sullo Beach, FB 33400	•
Dr. C. Richard Robins		Mr. Edwin Irby	
University of Miami		Florida Dept. of Natural	
Rosenstiel School of Marine		Resources	
& Atmospheric Science		727 Belvedere Road	
4600 Rickenbacker Causeway		West Palm Beach, FL 33405	1
Miami, FL 33149	1	, . -	~
	-	Dr. Thomas H. Fritts	
Mr. Elmer Allen		U.S. Fish and Wildlife Service	
National Marine Fisheries		Denver Wildlife Research Center	
Service		Museum of Southwestern Biology	
P.O. Box 566		University of New Mexico	
New Smyrna Beach, FL 32069	1	Albuquerque, NM 87131	1
,,	_	• •	

	Copies		Copies
Dr. Coleman Levenson		Dr. Howard E. Winn	
Code 243		Graduate School of Oceanography	
National Space Technology		University of Rhode Island	
Laboratory		Kingston, RI 02881	1
Naval Ocean Research Development		-	
Activity		Dr. Ross Witham	
NSTL, MI 39529	1	Marine Research Laboratory	
		State of Florida Department of	
Dr. Nicholas Mrosovsky		Natural Resources	
Department of Zoology		P.O. Box 941	
University of Toronto		Jensen Beach, FL 33457-0941	1
Toronto Canada M5S1A1	1		_
	-	Jet Research Center	
Dr. Daniel O'Dell		Attn: Dr. John A. Regalbuto	1
University of Miami		Box 246	•
Rosentiel School of Marine		Arlington, TX 76010	
		Allington, IX /0010	
and Atmospheric Science		Ones Taninal December	
4600 Richenbacker Causeway	•	Ocean Engineering Department	
Miami, FL 33149	1	Massachusette Institute of	
		Technology	
Dr. James O'Hara		Attn: Dr. Ira Dyer	. 1
Environmental and Chemical		Cambridge, MA 02139	
Sciences, Inc.			
P.O. Box 1393		U.S. Geological Survey	
Aiken, SC 29801	1	Research and Development Program	
		620 National Center, Conservation	
Dr. Nancy B. Thompson		Division	
Southeast Fisheries Center		12201 Sunrise Valley Drive	
Miami Laboratory		Reston, VA 22092	2
National Marine Fisheries		•	
Service		U.S. Geological Survey	
75 Virginia Beach Drive		Eastern Region/Atlantic OCS	
Miami, FL 33149	1	Region	
, , , , , , , , , , , , , , , , , , , ,	-	1725 K Street, NW., Suite 204	
Dr. Thomas J. Thompson		Washington, DC 20006	2
Graduate School of Oceanography		"Estimation, bo Ecoco	•
University of Rhode Island		U.S. Geological Survey	
Kingston, RI 02881	1		
KINGSCON, KI UZOGI	.	Alaska Region/Alaska OCS Region	
De William A Mambina		P.O. Box 259	•
Dr. William A. Watkins		Anchorage, AK 99510	2
Woods Hole Oceanographic			
Institution		U.S. Geological Survey	
Woods Hole, MA 02543	1	Pacific OCS Region	
		1340 West 6th Street	
Dr. J. Ross Wilcox		Los Angeles, CA 90017	2
Chief Ecologist			
Environmental Affairs			
Florida Power and Light Company			
Juno Beach, FL 33408	1		

	Copies		Copies
U.S. Geological Survey		Internal Distribution:	
Gulf of Mexico OCS Region		E35 (GIDEP Office)	1
Imperial Office Building		G5 0	1
P.O. Box 7944		G501 (W. S. Martens)	2
Meteirie, LA 70010	2	R	1
		R10	1
Commanding Office		RII	1
Navel Explosive Ordnance		R41 (M. G. Lei)	1
Disposit School		R12	1
Attn: LCDR E. W. McConnell	1	R13	1
Indian Head, MD 20640		R14 (R. M. Barash)	1
•		R14 (T. E. Farley)	1
JICC Trident		R14 (J. B. Gaspin)	1
Attn: Emilio Gonseles	1	R14 (D. J. O'Keeffe)	. 10
293 Point Peter Road		R14 (J. A. Goertner)	1
Saint Mary's, GA 31547		R14 (J. F. Goertner)	10
•		R10G (G. A. Young)	10
Jacksonville District, Corps of	-	R15	1
Engineers		R15 (J. G. Connor)	1
Attn: L. H. Saunders, Acting		R15 (W. H. Faux)	1
Chief Planning Division	1	R15 (M. Swiedak)	1
P.O. Box 4870		R15 (R. Tussing)	1
Jicksonville, FL 32232		R16	1
		R17	1
Engineering Sciences Division		R102	1
Southwest Research Institute		R10B (M. Stosz)	1
Attn: Wilfred E. Baker	1	R10C (L. Roslund)	1
Peter S. Westine	1	E431	1 9 3
6220 Culebra Road		E432	3
San Antonio, TX 78284		R14	10