

Desktop, Nearline & Enterprise HDDs What's the difference?

Willis Whittington, Seagate Technology

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Abstract

Desktop, Nearline & Enterprise Disk Drives What's the difference?

For the past twenty five years the storage marketplace has been divided into two major categories namely "Desktop" and "Enterprise". Recently, a third player variously known as "Nearline", "Reference" or "Business Critical" has evolved to provide a low cost, high capacity storage solution for Enterprise data that no longer needs to exist in a high availability transactional processing environment but must maintain 24 x 7 availability as a reference or backup resource.

Each of these classes of drives requires a unique and specific set of attributes to fulfill its role. This presentation will explore these differences and explain why you need to use

the right drive for the right application.

Agenda

- Basic Comparisons
- SAS & SATA Compatibility
- The Advantages of Nearline SAS
- Rotational Vibration
- Data Error Rate
- Error Correction Capability
- Data Integrity
- Performance
- Annualized Failure Rate

~ Q & A along the way ~

Basic Comparisons

Comparison Table DT / NL / MC*

			Key: 🔲 Good	Better Best
Metric	Desktop	SATA Nearline (NL)	SAS Nearline (NL)	Enterprise MC*
Capacity (GB)	1,000	1,000	1,000	450
Cost	Low	Mid	Mid	High
Power Consumption	lx	1.2x	1.2x+	1.5x
MTBF (Hrs)	600,000	1,200,000	1,200,000	1,600,000
Duty Cycle	Low (<10%)	Low/Medium (<20%)	Low/Medium (<20%)	High (100%)
Data Integrity	Parity (?)	EDC + (ECC?)	EDC/ECC + Proprietary Data Integrity Protection	EDC/ECC + Proprietary Data Integrity Protection
Unrec Error Rate	10-14	10-15	10-15	10-16
RV Radians/sec ²	6	12.5	12.5	>21
Error Recovery	SATA	SATA + Time Control	Full SCSI	Full SCSI
Firmware/Features	Standard SATA	SATA + Selected Nearline Features	SCSI + Adv. Features (Enabled by Dual CPU)	SCSI + Adv. Features (Enabled by Dual CPU)
Power On Hrs/Year	2400	8,760 (Low Duty cycle)	8,760 (Low Duty cycle)	8,760
Multi Initiator	No	No	16 Hosts & Dual Port	16 Hosts & Dual Port
Performance	lx	lx	Ix+	1.4x / 2.5x (Seq / Rand)
TI0 Data Protection	No	No	Yes 2x Dupl	ex Yes 2x Duple.
Scalability	Low	Low	High + Dual Port	High Dual Port

Motor

Higher rpm than NL or DT Tighter specifications Less runout More expensive

Head Stack

Eight head design Low mass, high rigidity Voice coil designed for

- o optimal performance
- 100% duty cycle

Higher cost design

Environmental Control Module

Humidity Control
Chemical Absorbtion
Multi-point filtration
Windage Design

Misc Mechanical

Powerful Voice Coil Motor Stiffer Covers Air Control Devices Faster Seeks High Servo Sample Rate Low RV susceptibility

Electronics

Dual processors
Multi host queuing
Dual port
Twice the memory of NL/DT
High rpm control
Command scheduling
Superior error protection
Superior error correction
Superior error correction
Smart servo algorithms
Perform. optimization
Data integrity checks
Sequential h/w assist

SAS & SATA Compatibility

I/O Connectors for SAS & SATA

Current Limited

Steady State

For SAS, the key-way is filled in and its flip side is used for the 2nd Port

The Advantages of Nearline SAS

NL SATA Compared to NL SAS

SAS/SATA NL Physical Differences

Nearline Head/Disc Assy.

SATA Electronics

SAS/SATA NL Differences

Multi Host Command Queuing

NL SAS/SATA Summary

- Both SATA and SAS Nearline drives are designed for use in Enterprise Mission Critical environments.
- ◆ SAS Nearline drives have additional advantages which are made possible by the Serial SCSI interface and enterprise electronics:
 - Full system interface compatibility at the protocol, physical ("phy"),
 and command level
 - Enterprise error recovery and performance optimization controls
 - Full data integrity protection both within the drive and at the system level with DIF¹ support.

¹Data Integrity Feature also known as T10 PI (Data Protection Information).

Rotational Vibration

RV Emitted by a Seeking Drive

'Scope Picture, Seagate Prod. Dev.

HDA subjected to rotational forces

Rotational Vibration

Impact on Performance*

Desktop, Nearline & Enterprise HDDs – What's the difference? © 2008 Storage Networking Industry Association. All Rights Reserved.

RV in 33 Different Cabinets

- More stringent RV spec. needed for SATA cabinets
- RV aggravated by system fans, random access and "bursty" workloads

Data Error Rate

UER* on High Capacity RAID Sets

- ♦ The UER for SATA desktop is 1 in 10¹⁴ bits transferred
 - 10^{14} bits = $12\frac{1}{2}$ terabytes
- → A 500 Gbyte drive has I/25 x I0¹⁴ bits
- ♦ Rebuilding a SATA drive in a RAID 5 set of 5 drives means transferring $5/25 \times 10^{14}$ bits = 1/5 of UER spec.
 - 20% probability of an Unrecoverable Error during the rebuild.
- Better odds would be available with RAID I or 6
 - RAID I rebuilds from a single mirror drive
 - RAID 6 can tolerate a second error during the rebuild.
- Risks can be reduced with good error management
 - Intelligent rebuild (ignore unused capacity)
 - Background media scan (dynamic certification)

DT/NL/MC UER*

Error Correction Capability

Standard vs Reverse ECC

(Write Command)

Standard vs Reverse ECC

(Read Command)

Sync Mark Errors on SATA Drives

- The Sync Field is used to get the read channel in frequency sync with the data recorded on the media
- The Sync Mark is used to define the beginning of the User Data Field
- ❖Failure to recognize the Sync Mark (due to a thermal asperity or a grown media defect) means the User Data Field is not delineated and the data is lost.

Sync Mark Errors on SAS Drives

Data Integrity

Performance

Performance Comparison

Performance Comparison

SPC-1C Performance Comparison

◆ SPC-IC comprises I/O operations designed to demonstrate small storage subsystem performance (I-I6 drives) while performing the typical function of a business critical application.

SPC-1C Workload

Email

OLTP

AFR (Annualized Failure Rate)

AFR vs Duty Cycle

In Conclusion.....

Although technological advances, driven by Enterprise research, will be leveraged into SATA products, there will continue to be functional limitations imposed on these devices by the overriding metric of Low \$IGB Storage.

Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: <u>trackstorage@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Craig Parris
Daniel Dummer
Willis Whittington
Wolfgang Rosner