1. Use Linearization to approximate the following values. Additionally, find the error and the relative error.

- (a) $\sqrt[3]{1.1}$
- (b) $tan^{-1}(\sqrt{3} + 0.15)$ (Convert your answer to degrees)

To use a linearization we must first have an x_0 for which we know the exact value of $f(x_0)$.

(a) Let $f(x) = \sqrt[3]{x}$ then the linearization of f(x) about $x_0 = 1$ is

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$
$$= 1 + \frac{1}{3(1)^{2/3}}(x - 1)$$
$$= 1 + \frac{1}{3}(x - 1)$$

Thus, the approximate value to $\sqrt[3]{1.1}$ is

$$L(1.1) \approx 1 + 0.0333 = \boxed{1.0333}$$

The error is

$$\epsilon = |f(1.1) - L(1.1)|$$

= $|1.0323 - 1.0333| = 1 \times 10^3$

and the relative error is

$$\varepsilon = \left| \frac{f(1.1) - L(1.1)}{f(1.1)} \right|$$

$$\approx \left| \frac{1.0323 - 1.0333}{1.0323} \right| \approx \boxed{1 \times 10^{-3}}$$

(b) Let $f(x) = \tan^{-1} x$ then the linearization of f(x) about $x_0 = \sqrt{3}$ is

$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$

$$= \frac{\pi}{3} + \frac{1}{1 + (\sqrt{3})^2}(x - \sqrt{3})$$

$$= \frac{\pi}{3} + \frac{1}{4}(x - \sqrt{3})$$

Thus, the approximate value of $tan^{-1}(\sqrt{3} + 0.15)$ is

$$L(\sqrt{3} + 0.15) = \frac{\pi}{3} + \frac{1}{4}(\sqrt{3} + 0.15 - \sqrt{3})$$
$$= \frac{\pi}{3} + \frac{1}{4}0.15$$
$$\approx 1.085 = 1.085 \cdot \frac{180^{\circ}}{\pi} \approx \boxed{62.15^{\circ}}$$

The error is

$$\epsilon = |f(\sqrt{3} + 0.15) - L(\sqrt{3} + 0.15)|$$

 $\approx |62.02^{\circ} - 62.15^{\circ}| = \boxed{0.13^{\circ}}$

and the relative error is

$$\varepsilon = \left| \frac{f(1.1) - L(1.1)}{f(1.1)} \right|$$
$$\approx \left| \frac{0.13^{\circ}}{62.02^{\circ}} \right| \approx \boxed{2.1 \times 10^{-3}}$$

2. Using Newton's Method find the root to the following functions, to the nearest hundreth. (You must show each iteration to get full credit)

(a)
$$f(x) = x^5 + x + 1$$

(b)
$$g(x) = \cos^{-1} x - e^x$$

(a) Let $x_0 = 0$ and $f(x) = 5x^4 + 1$ then we will use a table to find the solution

n	x_n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	0	1	1	-1
1	-1	-1	6	-0.833
2	-0.833	-0.235	3.411	-0.764
3	-0.764	-0.025	2.707	-0.755
4	-0.755	-0.000	2.625	-0.755

By the fifth iteration we see that difference between x_5 and x_4 is less than 0.01 and so our answer is $x \approx -0.755$.

(b) Let $x_0 = 0$ and $f(x) = -\frac{1}{\sqrt{1-x^2}} - e^x < ++>$ then we will use a table to find the solution

n	x_n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	0.000	0.571	-2.000	0.285
1	0.285	-0.049	-2.374	0.265
2	0.265	0.000	-2.340	0.265

By the fifth iteration we see that difference between x_2 and x_3 is less than 0.01 and so our answer is $x \approx 0.265$.

3. Using the Taylor series expansion about $\theta_0 = 0$ show that

$$e^{i\theta} = \cos\theta + i\sin\theta$$

where $i^2 = -1$.

Let $g(\theta) = \cos \theta + i \sin \theta$ then

n	$g^{(n)}(\theta)$	$g^{(n)}(\theta_0)$
0	$\cos \theta + i \sin \theta$	1
1	$-\sin\theta + i\cos\theta$	i
2	$-\cos\theta - i\sin\theta$	-1
3	$\sin \theta - i \cos \theta$	-i
4	$\cos \theta + i \sin \theta$	1

Thus, we see that the Taylor series is

$$g(\theta) \approx g(\theta_0) + g'(\theta_0)(\theta - \theta_0) + \frac{g''(\theta_0)}{2!}(\theta - \theta_0) + \frac{g'''(\theta_0)}{3!}(\theta - \theta_0)^3 + \cdots$$
$$= 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

On the other hand let $f(x) = e^{i\theta}$ then

n	$f^{(n)}(\theta)$	$f^{(n)}(\theta_0)$
0	$e^{i\theta}$	1
1	$ie^{i\theta}$	i
2	$-e^{i\theta}$	-1
3	$-ie^{i\theta}$	-i
4	$e^{i\theta}$	1

Thus, we see that the Taylor series is

$$f(\theta) \approx f(\theta_0) + f'(\theta_0)(\theta - \theta_0) + \frac{f''(\theta_0)}{2!}(\theta - \theta_0) + \frac{f'''(\theta_0)}{3!}(\theta - \theta_0)^3 + \cdots$$
$$= 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

and we see that $e^{i\theta} = \cos \theta + i \sin \theta$.

4. Find the fourth-order Taylor series expansion of the following function about the given x_0 .

(a)
$$f(x) = 2x^4 + 3x^2 - x + 4$$
, $x_0 = 0$ (Simplify)

(b)
$$g(x) = \ln x$$
, $x_0 = 1$

(a)

п	$f^{(n)}(x)$	$f^{(n)}(x_0)$
0	$2x^4 + 3x^2 - x + 4$	4
1	$8x^3 + 6x - 1$	-1
2	$24x^2 + 6$	6
3	48 <i>x</i>	0
4	48	48

And so the fourth-order taylor series is

$$p_4(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \frac{f^{(4)}(x_0)}{4!}(x - x_0)^4$$

$$= 4 - x + \frac{6}{2}x^2 + \frac{48}{24}x^4$$

$$= \boxed{4 - x + 3x^2 + 2x^4}$$

(b)

n	$g^{(n)}(x)$	$g^{(n)}(x_0)$
0	ln x	0
1	$\frac{1}{r}$	1
2	$-\frac{1}{r^2}$	-1
3	$\frac{2^{x}}{x^3}$	2
4	$-\frac{3}{x^4}$	-6

And so the gourth-order taylor series is

$$p_4(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{g''(x_0)}{2!}(x - x_0)^2 + \frac{g'''(x_0)}{3!}(x - x_0)^3 + \frac{g^{(4)}(x_0)}{4!}(x - x_0)^4$$

$$= \left[(x - 1) - \frac{1}{2}(x - 1)^2 + \frac{2}{3!}(x - 1)^3 - \frac{6}{4!}(x - 1)^4 \right]$$

5. Find the absolute maximum and absolute minimum values of *f* on the given interval.

(a)
$$f(x) = x^3 - 12x + 1$$
, $[-3, 5]$

(b)
$$f(x) = x - 2\cos x$$
, $[-\pi, \pi]$

(a) First we must find all critical points (in the given interval)

$$f'(x) = 3x^2 - 12 = 0$$
$$\Rightarrow x = \{\pm 2\}$$

Now, we check the value of the function at the end points and the critical points

$$f(-3) = 10$$

$$f(5) = 66$$

$$f(2) = -15$$

$$f(-2) = 17$$

Therefore, we see that the **absolute max** is 66 at x = 5 and the **absolute min** is -15 at x = 2.

(b) First we must find all critical points (in the given interval)

$$f'(x) = 1 + 2\sin x = 0$$
$$\Rightarrow x = \left\{-\frac{\pi}{6}, -\frac{5\pi}{6}\right\}$$

Now, we check the value of the function at the end points and the critical points

$$f(-\pi) = -\pi + 2$$

$$f(\pi) = \pi + 2$$

$$f(^{-\pi}/_{6}) = ^{-\pi}/_{6} - \sqrt{3}$$

$$f(^{-5\pi}/_{6}) = ^{-5\pi}/_{6} + \sqrt{3}.$$

Therefore, we see that the **absolute max** is $\pi + 2$ at $x = \pi$ and the **absolute min** is $\pi - \pi/6 - \sqrt{3}$ at $x = \pi/6$.