Introduction to Digital Systems Part II (4 lectures) 2021/2022

Combinational Logic Blocks

Lecture 6 contents

- Block oriented combinational logic design
- Multiplexers
- Demultiplexers

Multiplexers

 A multiplexer is a digital switch: one out of n data sources is passed to a single output

Information selector

2ⁿ:1 Mux models

4:1 Mux Truth Table

EN	S_1	S_0	Υ
0	X	X	0
1	0	0	I ₀
1	0	1	l ₁
1	1	0	l ₂
1	1	1	I ₃

Alternate Symbol

Functional description

4:1 Mux Truth Table

EN	S ₁	S ₀	Υ
0	X	X	0
1	0	0	I ₀
1	0	1	l ₁
1	1	0	l ₂
1	1	1	l ₃

$$Y = EN. \left[\sum_{k=0}^{2^{n}-1} m(S)_{k} I_{k} \right]$$

 $m(S)_k$ is the kth minterm on the selection variables $S_0...S_{n-1}$

Alternate Symbol

Exercise: Draw the 4:1 Mux internal logic circuit

The 74151 model

- 8:1 mux
- Obtain the truth table
- Write the output equations

Mux and decoders

Verify that the logic circuit is a 8:1 Mux

Demultiplexers

- Functional inverse of a multiplexer
 - An inverse digital switch: a single input is "routed" to one out of *N outputs*

$$O_k = EN. D_{in} m_k(S), \qquad k = 0, ... 2^n - 1$$

Question: How can we use a demux as a decoder?

Multiplexing multibit data channels

- Mux 4:1, 4 bit input data channels
- Explain the timing diagram

	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400,0 ns
in_	Α	B 1						
in_	В	B 0						
	> X	H E910	E910	031A \ 380D	FE51 F198	5863 6234	A3AD 22EA	7E52 EF5
*	> Y	H 9	9	1 X D	E X 1	5 (4)	(A) 2	(E

The 74157 model

• 74157: 4x2:1

H = high level, L = low level, X = irrelevent

The 74153 model

• 74153: 2x4:1

FUNCTION TABLE

SELECT		T	DATA	INPUT	STROBE	ОПТРИТ		
В	А	CO	C1	C2	C3	Ğ	٧	
×	×	X	×	×	×	н	Ĺ	
L	L	L	×	X	×	L	L	
L	L	н	×	×	×	L	н	
L	н	×	L	×	×	L	L	
L	н	×	н	×	×	L	н	
н	L	×	×	L	×	L	L	
н	L	×	×	н	×	L.	н	
#	H	×	×	×	L	Ł	L	
H	н	×	×	×	н	L	н	

Select inputs A and B are common to both sections. H = high level, L = low level, X = irrelevant

Mux hierarchies

• 8:1 with 7x(2:1)

- Always check the design by obtaining the truth table.
- Note that IN THIS case A is the most significant selection variable

Mux hierarchies

• 8:1 with 2x(4:1 MUX) + 1x(2:1 MUX)

- Always check the design by obtaining the truth table.
- Note that IN THIS case A is the most significant selection variable

Mux hierarchies

• 8:1 with 4x(2:1 MUX) + 1x(4:1 MUX)

Always check the design by obtaining the truth table.

 Note that IN THIS case A is the most significant selection variable

Logic Function Unit (LFU)

Use C₂C₁C₀ as function code (Opcode)

C ₂	C ₁	C _o	F
0	0	0	1
0	0	1	A+B
0	1	0	(A.B)'
0	1	1	А⊕В
1	0	0	(A⊕B)′
1	0	1	A.B
1	1	0	(A+B)'
1	1	1	0

Explain the LFU timing diagram

	Name	Value at 0 ps	0 ps	80.0 ns	160.0 ns	240,0 ns	320.0 ns	400.0 r
i <u>s</u>	> Opcode	B 00	00	X 01 X 10	11	X 00 X 01	X 10 X	11
in_	Х	B 0						
in_	Υ	B 1						
out	F	B 1						

Boolean Functions with Multiplexers

- Simplest approach:
 - Direct mapping of the Truth Table
 - Selection = input variables
 - $D_k = F_k$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean Functions with Multiplexers

The general case:

- Selection = a subset of input variables
- $-D_k = g_k$ where each g_k is a simpler Boolean function of the remaining input variables

Example

n-1 input variables used for selection

I1	I2	. **	In	F				
•••	••	••	0	0	0	1	1	
		••	1	0	1	0	1	
				0	In	Īn	1	

Possible output values as a function of I_n

Example

• Implement the Boolean function F(A,B,C,D) using a 8:1 Mux $F(A,B,C,D) = \sum_{m(1,3,6,7,8,11,12,14)}$

D

1. Use the Karnaugh map JUST to layout

the truth table

2.Choose the subset of inputs to be assigned to the mux selection inputs

3. Find the logic values of the mux data inputs as functions of the remaining inputs

D in this case

Regions of the truth sharing the same value of the selection inputs. (A,B,C) in this case. DO NOT MISINTERPRET as prime implicants

Example

Find the error in the logic circuit

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

 Implement the Boolean function F using a a MUX 4:1 and additional elementary logic

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

 Several choices of input variables are possible to be assigned to the mux selection inputs. Try for example (A,B) and (C,D)

Using A,B for selection

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

Using C,D for selection

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

High-Impedance (High – Z)

A switch model

- When the switch is open there is an almost infinite resistance (Impedance) to the signal flow through the "wire" OUT.
- The output signal is left "floating" with neither HIGH or LOW logic levels assigned.
- The output is assigned a High-Z state and the device exhibits a 3 State behavior

3 State Buffers

Possible outputs: HIGH, LOW, High-Z

Wire sharing

High-Z outputs may be physically connected

- Of course EN1 = EN2 = 1 should never occour.
- Tight control of enabling inputs is required

A special kind of Mux

- Efficient multiplexing strategy
- Mux 2:1

• Write the Truth Table

 Write the truth table of the circuit and verify that's a 4:1 mux

Aggregate 3 State Buffer Models

"BUS" Driver

Transceiver

Aggregate 3 State Buffer Models

Word Multiplexing

- Main idea:
 - Decode the 3 State
 buffers enabling inputs
- Share the output data bus

Explain the timing diagram of the previous circuit

• SELECT = (S1,S0)

	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400.0 ns	480.0 ns	560.0 ns
<u> </u>	> SELECT	Н 0		0	1	2	3		0	1
<u>:</u>	> A	HA	A	X 5 X 3	3 (9)	4 \ 6	7 X	0 X C	X F X 2	6
<u>:</u>	> B	HA		Α Χ	3	D	E		7	5
<u>:</u>	> C	H 5	5	ХС	7	Х В Х	2	С	0 \ 8	F
<u> </u>	> D	H D		D	\square X	9	X	7	χ 9	
*	> Dout	НА	A	X 5	3	(γ)\ B \ (γ)	2 7	X c	XFX	5

Final Remarks

- Always recall
 - The block symbol
 - The types of inputs and outputs
 - Data
 - Control
 - The truth table
 - The output equations
- Design with encapsulated logic requires mastering all the functional details of each block