Practical No./Project ID	01
Project Title	Installing a Real-Time Operating System (RTOS) and OpenCV to Raspberry Pi
Description	Selecting an appropriate (compatible) Operating System (RTOS) and installing it on the Raspberry Pi device. Then download, install configure and test the properly installed OpenCV libraries.
	Property mistanes opened mistanes OpenCV Raspberry Pi 3/4 OpenCV
Intended Learning	At the completion of this course student will be able to:
Outcomes (ILOs)	 ✓ Elaborate the function of a RTOS, specifically designed for an Embedded System (ES) architecture i.e. ARM/ targeting an IoT platform ✓ Explain the key advantages of using a RTOS for ES/IoT i.e. Multitasking, Graphical User Interfaces (GUIs), Connecting and interfacing peripherals, etc. ✓ Install third-party libraries i.e. OpenCV, ROS, configure and interface various devices
Data Sheets	https://www.raspberrypi.com/software/operating-systems/ If you find a better resource, please mention the download link in the Report.
Procedures	 Select an appropriate (compatible) Operating System (RTOS) and flash the image on a memory card. Install the O/S on the Raspberry Pi device. Download, Install and configure the OpenCV libraries. Test the successfully installed OpenCV using an example program compiled for recognizing an object / face seen through a (web) camera.
Reporting	General Guidelines: You should report every (key) important step followed; starting from ✓ Accessing Data Sheets ✓ Device configuration (both hardware and software) ✓ Installing libraries ✓ Updating firmware / bootloaders, etc. Attach screen-shots / captured images for each of the important steps.

- Explain the procedures (steps) you followed clearly, referring to the figures (schematic diagrams), flow-charts, etc. whenever necessary.
 - Better provide a summary in point form immediately after a paragraph.
- Do not attach the Source Code to the report
 - ✓ Compress (. Zip or .rar) your all project files to a single (.zip or .rar) file, rename with your group no., then upload to VLE.
 - ✓ Commenting on the source code is significantly important. Please note that proper / descriptive comments on the source code will contribute 5% marks allocated for the in-class project.
 - ✓ Also maintain the modularity and the readability indentation, etc.
 - ✓ Better if you could upload the Source Codes to a Code Repository (such as Git Hub) and provide the link in the Report. Make sure you grant access to the public (anyone with the link should be able to access)
- Optionally, in Appendixes, attach any additional information such as data samples collected, analysis of data, additional screen-shots, extracted important sections of data sheets, etc.
- In the References section (refer to the Report Format provided separately), include all relevant information such as the web-links for downloading Data Sheets and any other source you referred.