

Logarithm Function

⇒ Inverse of exponential function

log a ⇒ log a to the base b

 $\log_b a = c$ $\Rightarrow \delta^c = a$

log 8 = 3

$$\frac{2\times 3}{2} \Rightarrow 1 \qquad \log_2 64 = 6 \qquad (\log_2 8)$$

$$\frac{6}{2} = 64$$

$$2) \quad \log_5 2^5 = 2$$

$$\frac{\alpha}{2} = 16$$

$$\frac{NOTE:}{2} = N \Rightarrow \log_{2} 2^{K} = \log_{2} N$$

$$\Rightarrow K = \log_{2} N$$

$$4 \qquad \log_a a^N = N$$

Given a +ve no. N. How many times do we need to divide N by 2 (Consider only the integer part) to make it 1.

$$|00 \xrightarrow{1} 50 \xrightarrow{2} 25 \xrightarrow{3} |2 \xrightarrow{4} 6 \xrightarrow{5} 3 \xrightarrow{6} 1$$

$$\frac{9}{4} \xrightarrow{2} 2 \xrightarrow{3} 1$$

$$\frac{1}{1} \xrightarrow{3} 2 \xrightarrow{3} 1$$

$$\frac{N \to N}{2^1} \xrightarrow{N} \frac{N}{2^2} \xrightarrow{N} \dots (K + imes) \to \frac{N}{2^K} = 1$$

$$\frac{N}{2^K} = 1$$

$$27 \rightarrow 13 \rightarrow 6 \rightarrow 3 \rightarrow 1$$

Oterations

$$i = 1$$
While $(i < N) <$

$$i = i \times ?;$$

$$32 \xrightarrow{\div 2} |6 \xrightarrow{\div 2} 8 \xrightarrow{\div 2} 4 \xrightarrow{\div 2} 2 \xrightarrow{\div 2} 1$$

$$\times 2 \xrightarrow{\times 2} |6 \xrightarrow{\times 2} \times 2 \xrightarrow{\times 2} \times 2 \xrightarrow{\times 2} \times 2 \xrightarrow{\times 2} \times 2$$

$$\int_{0}^{\infty} \left(i = 0 \right) \cdot i < N \cdot i = i \times 2 \right) <$$

$$i = 0$$
While $(i < N) < i = i \times 2;$

$$\begin{array}{c}
\downarrow \\
0 \xrightarrow{\times 2} 0 \xrightarrow{\times 2} 0 \xrightarrow{\times 2} 0 & \dots &
\end{array}$$

MMM

8

7

N = | S

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} \times \frac{N}{\sqrt{N}}$$

$$\frac{1}{\sqrt{N}} = \frac{N \times N}{\sqrt{N}}$$

for (j = 1 to N Out multiplied of 2 every time) & for (i = 1 to N) x for (| = 1; j < N; j = j x 2) x # iterations

for
$$(i = 1 + 5)$$
 d

for $(j = 1 + 5)$ d

 $(j = 1 + 5)$

$$\frac{2^{1}+2^{2}+2^{3}+2^{4}}{\sqrt{2}}$$

$$a = 2$$

$$\frac{a(y^{N}-1)}{(y-1)} = \frac{a(y^{N}-1)}{(y-1)}$$

=> The analysis of an algorithm when the
⇒ The analysis of an algorithm when the
Asymptotic Analysis
08
Big (0) notation Jime Complexity.
Time Complexity is the vate of growth of execution time w.v.t increase in amount size.
Steps to calculate Sig (0)
Steps to calculate Sig (0) 1) Calculate the no. of iterations based on 1/P size
2) Agnore lower order terms
3) Agnore constant co-efficients of highest order term.

Doubt for (i = 1 + 5) d (j = 1 + 3i) d