Vector Mean Curvature of an Ellipsoid

a deal.ii implementation

November 17, 2016

Let $S \subset \mathbb{R}^{d+1}$ be a closed, codimension-1 surface, and let $\mathbf{x}_S : \hat{S} \to S$ be a parameterization of S from the parameteric domain $\hat{S} \subset \mathbb{R}^d$.

For concreteness, let d=2 and put $\hat{S}:=[0,2\pi]\times[0,\pi]$, and $\mathbf{x}_S:=(a\sin\phi\cos\theta,b\sin\phi\sin\theta,c\cos\phi)$.

 $\mathbf{id}_S: S \to S \subset \mathbb{R}^3$ Need to think about \mathbf{id}_S acting on quadrature points $p_\ell \in \hat{K}$, so $\mathbf{id}_S(p_\ell) := \mathbf{id}_S(\mathbf{x}_K(p_\ell))$

$$\sum_{\ell=1}^{N} \left(\nabla_K \boldsymbol{\phi}_i(p_\ell) : \nabla_K \mathbf{id}_K(p_\ell) \right) J \times W(p_\ell)$$
 (1)

$$\Delta \operatorname{id}_S = h \boldsymbol{\nu} =: \mathbf{h} \tag{2}$$

[?]