数值解析(共立出版,2017年)正誤表

齊藤官一

https://norikazu-saito.github.io/p/

最新更新日 2025年5月31日

この文書は,

齊藤宣一『数値解析』共立出版

の正誤表です.

本書は、2017 年 3 月 25 日に初版第 1 刷が出版されました。その後、2025 年 5 月 20 日に第 2 刷が出版され,以下の §3 に挙げた誤植は修正されました。なお、§2 で述べたコメントも、追加で修正することを検討しましたが、説明のトーンを崩したくなかったので、あえてそのままにしました。

1 初版第2刷(2025年5月20日発行)の正誤表

頁/行	訂正前	訂正後	更新日
/			
/			

2 初版第2刷(2025年5月20日発行)へのコメント

- 1. 注意 1.3 (p.9) について,このような説明をわざわざ加えた意図について補足説明をします. $f(x)=x^2-1=0$ の解 a=1 を求めるために,ニュートン法 $x_{k+1}=\varphi(x_k)=x_k-(x_k^2-1)/(2x_k)=\frac{1}{2}(x_k+\frac{1}{x_k})$ を適用しましょう.x>1 ならば $\varphi'(x)>0$,すなわち,x>1 で $\varphi(x)$ は単調増加です.したがって, $x_0>1$ ととれば,(図を書いてみれば明らかですが) $1<\dots< x_k< x_{k-1}<\dots< x_2< x_1< x_0$ となります.しかし, $x_0>1$ である限りは,あくまで, $x_k\to 1$ であり, $x_N=1$ となる N は存在しません.すなわち,(因数分解のできる) 2 次方程式の解を求める場合ですら,反復法を使う限りは,解を得るためには "無限回の反復" が必要です.一方で,一般の方程式 f(x)=0 にニュートン法を適用する場合,<u>もし求めるべき解 a が既知である</u>ならば,例えば, $x_3=a$ として, $x_k=x_{k-1}-f(x_{k-1})/f'(x_{k-1})$ (k=3,2,1) で, x_2,x_1,x_0 を求めれば,「ニュートン法が有限回で収束する例」を作ることができます. [2024.08.22/2025.05.31]
- 2. p.37 の下から 6 行目に「t は、x と ξ の間にある適当な数である」とあります。すなわち,t は、x の関数 t=t(x) です。しかしながら,どんな関数であるのかは,これだけの情報からは,よくわかりません。その意味で,(2.12) にある $\int_{x_{j-1}}^{x_j} f''(t)(x-\xi)^2 dx$ は,本当は, $\int_{x_{j-1}}^{x_j} f''(t(x))(x-\xi)^2 dx$ はと書くべきで,また,t(x) がどのような関数か全くわからないので(可測関数かどうかも不明),この積分自体,きちんと定義されていません。すなわち,(2.12) に始まり,定理 2.2 を述べるまでの議論の中では,f''(t) が x の関数として [a,b]

で連続であることが、暗に仮定されています.このような仮定を避けるためには、(2.11)の代わりに、

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \underbrace{\int_0^1 (1 - s)(x - \xi)^2 f''(\xi + s(x - \xi)) ds}_{=\varphi(x)}$$
(2.11')

を用いれば大丈夫です(例えば、[1] の命題 4.1.2)。実際、 $\xi=x_{j-1}$ とすると、

$$\left| \int_{x_{j-1}}^{x_j} \varphi(x) \ dx \right| \le \frac{h^3}{6} L_j$$

と評価できます.

p.43 の 4 行目に出てくる r についても, $f^{(4)}(r)$ が x の関数として [a,b] で連続であることが,暗に仮定されています.回避方法は,上と同じです.

なお,定理 2.2,定理 2.6,および定理 2.7 については,Taylor の定理を用いない証明も可能です. これについては,[1] の定理 7.4.8 を見て下さい. [2023.10.26/2025.05.31]

3 初版第1刷(2017年3月25日発行)の正誤表

頁/行	訂正前	訂正後	更新日
10/5	任意の反復列	反復列	2023.07.05
9/3, 4	もし, $x_N=arphi(x_N)$ が成り立つと仮定す	もし、 $arphi$ が単射であり、 $x_N=arphi(x_N)$ が	2024.08.22
	ると, $a=x_N=arphi(x_{N-1})$ と不動点の	成り立つと仮定すると,不動点の一意性	
	一意性により,	により $a = \varphi(x_N) = x_N = \varphi(x_{N-1})$ と	
		なるので、(柏木雅英先生から指摘を頂	
		きました. ありがとうございます.)	
26/1	アーバスの方法	アバースの方法	2023.07.05
46/2	$\frac{1}{2k}$	$rac{1}{2k^2}$ (読者の方から指摘を頂きました. あ	2019.01.28
		りがとうございます.)	
61/2	ψ_n	ψ_{k} (読者の方から指摘を頂きました)	2019.01.28
77/-8	A_m O	A_m *	2025.04.24
79/8, 9	正値性	正定値性	2017.04.01
80/9	$\sum_{j \neq i} (2 \text{ 箇所})$	$\sum_{j eq k}$ (読者の方から指摘を頂きました)	2019.01.28
88/1	$0 \le m \le k - 1$	$1 \le m \le k-1$ (読者の方から指摘を頂	2019.01.28
		きました)	
88/2	$Aoldsymbol{p}_k$	$\langle m{r}_m, Am{p}_k angle$ (読者の方から指摘を頂きま	2019.01.28
		した)	
88/6	一方で,	同様に、 $\langle {m r}_0, {m r}_{k+1} angle = 0$ もわかる.一方	2019.01.28
		で、(読者の方から指摘を頂きました)	
88/13, 14	Ap^{k-1}	$Aoldsymbol{p_{k-1}}$ (読者の方から指摘を頂きました)	2019.01.28
105/6	(1 - a - b)	(1-a-b) f (読者の方から指摘を頂きま	2017.06.26
		した)	
124/7	(1-x)	(L-x)(読者の方から指摘を頂きまし	2019.01.28
		た)	

133/4	$g(t) = \frac{t}{\sqrt{1 - t^2}} - 1 + t^2$	$g(t) = \frac{-t}{\sqrt{1-t^2}} - 1 + t^2$ (読者の方から 指摘を頂きました)	2017.07.19
133/7	$u(t) = 0.1t - 0.001 + 10.01e^{-10t}$	$u(t) = 0.1t - 0.01 + 10.01e^{-10t}$ (読者の方から指摘を頂きました)	2017.07.19
157/-11	渡辺善隆	渡部善隆 (渡部先生, 申し訳ありません でした)	2017.04.01
193/-6	ともに, $(x,y) = (0.50001, 0.49999)$ となる.	(x,y)=(1,0.49999)(行交換なし), $(x,y)=(0.50001,0.49999)$ (ピボット選択あり)となる.(読者の方から指摘を頂きました)	2018.12.17
196 索引	アーバスの方法	アバースの方法	2025.04.24

一以上一