Otimização Com Restrições

M. Fernanda P. Costa

Departamento de Matemática Universidade do Minho

Outline

- Preliminares: Problema e Definições gerais
- Problemas com restrições de igualdade
 - Condições de otimalidade de 1ª Ordem
 - Condições de otimalidade de 2ª ordem
- 3 Problemas com restrições de desigualdade
 - Condições de otimalidade de 1ª Ordem
 - Condições de otimalidade de 2ª Ordem
- Dualidade
 - Função dual de Lagrange
 - Problema dual

Otimização com restrições

Vamos agora estudar o problema geral de minimização de uma função sujeita a restrições nas variáveis. Uma formulação geral para estes problemas é:

$$\begin{array}{ll} \underset{w \in \mathbb{R}^d}{\text{minimizar}} & F(w) \\ \text{sujeito a} & c_n(w) = 0, \quad n \in \mathcal{E} = \{1, \dots, j\} \\ & c_n(w) \geq 0, \quad n \in \mathcal{I} = \{j+1, \dots, N\} \end{array} \tag{P_{CR}}$$

- $w = (w_1, w_2, \dots, w_d)$ são as variáveis de decisão
- $F : \mathbb{R}^d \to \mathbb{R}$ é a função objetivo (medida de desempenho)
- ullet $c_n:\mathbb{R}^d o \mathbb{R}$ com $n \in \mathcal{E}$, são as funções de restrição de igualdade
- ullet $c_n:\mathbb{R}^d o \mathbb{R}$ com $n \in \mathcal{I}$, são as funções de restrição de desigualdade

Definição: Chama-se **ponto admissível** para (P_{CR}) a um ponto que verifica todas as restrições.

Definição: Ao conjunto de todos os pontos admissíveis para (P_{CR}) , chama-se **conjunto admissível** e será denotado por \mathcal{D} .

$$\mathcal{D} = \{ w \in \mathbb{R}^d : c_n(w) = 0, n \in \mathcal{E}; c_n(w) \geq 0, n \in \mathcal{I} \}$$

- Minimizantes Local e Global:
 - $w^* \in \mathbb{R}^d$ é um minimizante global sse $w^* \in \mathcal{D}$ e satisfaz a condição:

$$F(w^*) \leq F(w)$$
, para todo $w \in \mathcal{D}$

• $w^* \in \mathbb{R}^d$ é um minimizante local sse $w^* \in \mathcal{D}$ e existe uma vizinhança $\mathcal{B}(w^*;\epsilon)$ de w^* de raio $\epsilon > 0$ que satisfaz a condição:

$$F(w^*) \leq F(w), \ \forall w \in B(w^*, \varepsilon) \cap \mathcal{D}$$

- A suavidade da função objetivo e das funções de restrição é uma questão importante na caracterização de soluções, tal como no caso da otimização sem restrições.
- Garante que a função objetivo e as funções restrições se comportam de maneira razoavelmente previsível e, portanto, permite que os algoritmos façam boas escolhas para as direções de procura.

ightharpoonup Conjunto de direções de descida para F a partir do ponto \overline{w} é o conjunto dos vetores $s \in \mathbb{R}^d$ que satisfazem a condição $\nabla F(\overline{w})^T s < 0$:

$$\{s \in \mathbb{R}^d : \nabla F(\overline{w})^T s < 0\}$$

Definição: restrição ativa ou não ativa

Seja $\overline{w} \in \mathcal{D}$ um ponto admissível. Uma restrição de desigualdade, $c_n(w) \geq 0$, é dita ativa no ponto \overline{w} , se $c_n(\overline{w}) = 0$. Caso $c_n(\overline{w}) > 0$, diz-se que c_n é não ativa no ponto \overline{w} .

Definição: conjunto ativo num ponto admissível

É conjunto dos índices das restrições de igualdade e dos índices das restrições de desigualdade ativas no ponto admissível \overline{w} :

$$\mathcal{A}(\overline{w}) = \mathcal{E} \cup \{n : c_n(\overline{w}) = 0, n \in \mathcal{I}\}.$$

Derivadas das funções de restrição $c_n : \mathbb{R}^d \to \mathbb{R}$ para $n \in \mathcal{E} \cup \mathcal{I}$

• Vetores gradientes (1^a derivada) das restrições c_n (n = 1, ..., N):

$$\nabla c_n(w) = \begin{pmatrix} \frac{c_n}{\partial w_1} \\ \vdots \\ \frac{\partial c_n}{\partial w_d} \end{pmatrix} \in \mathbb{R}^d$$

• Matrizes hessianas ($2^{\underline{a}}$ derivada) das restrições c_n (n = 1, ..., N):

$$\nabla^2 c_n(w) = \begin{pmatrix} \frac{\partial^2 c_n}{\partial w_1^2} & \cdots & \frac{\partial^2 c_n}{\partial w_d \partial w_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 c_n}{\partial w_1 \partial w_d} & \cdots & \frac{\partial^2 c_n}{\partial w_d^2} \end{pmatrix} \in \mathbb{R}^{d \times d} \text{(matriz simétrica)}$$

Existem N vetores gradientes e N matrizes hessianas das restrições.

Propriedade do Vetor Gradiente das Restrições

Seja $\mathcal{A}(\overline{w})$ o conjunto ativo no ponto $\overline{w} \in \mathcal{D}$. O vetor gradiente $\nabla c_n(\overline{w})$ da restrição $c_n(w) = 0$ (ou $c_n(w) \ge 0$) é perpendicular à superfície da restrição no ponto \overline{w} (e no caso da restrição de desigualdade o vetor aponta no sentido do lado admissível da região), para $n \in \mathcal{A}(\overline{w})$.

Exemplo: A figura seguinte mostra os vetores gradientes da função objetivo e da função da restrição em vários pontos admissíveis.

(a)
$$w_1^2 + w_2^2 - 2 = 0$$

(b)
$$w_1^2 + w_2^2 - 2 \le 0$$

Definição (Ponto Regular)

Seja $\overline{w} \in \mathcal{D}$ um ponto admissível e $\mathcal{A}(\overline{w})$ o conjunto ativo em \overline{w} . O ponto admissível é designado por ponto regular se o conjunto dos gradientes das restrições ativas em \overline{w} ,

$$\{\nabla c_n(\overline{w}): n \in \mathcal{A}(\overline{w})\}$$

é linearmente independente.

Exemplo: Problema com duas restrições de igualdade. 3 pontos que verificam as restrições. 2 pontos são regulares e 1 é não regular.

Exemplo:

Considere as restrições definidas por: $c_1(w) = w_1^2 + w_2^2 + w_3^2 - 3 = 0$ e $c_2(w) = 2w_1 - 4w_2 + w_3^2 + 1 = 0$. Verifique se o ponto $\overline{w} = (1, 1, 1)^T$ é admissível e regular.

Resolução:

 \overline{w} é ponto admissível pois verifica as restrições: $c_1(1,1,1)=0$ e $c_2(1,1,1)=0$. Os vetores gradientes das restrições no ponto $(1,1,1)^T$,

$$abla c_1(w) = \begin{pmatrix} 2w_1 \\ 2w_2 \\ 2w_3 \end{pmatrix}
ightarrow
abla c_1(1,1,1) = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

$$abla c_2(w) = \begin{pmatrix} 2w_1 \\ -4w_2 \\ 2w_3 \end{pmatrix}
ightarrow
abla c_2(1,1,1) = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$

são linearmente independentes, logo \overline{w} é ponto regular.

Direções admissíveis

Definição (Direção admissível)

Seja $\overline{w}\in\mathcal{D}$ um ponto admissível. Uma direção $s\in\mathbb{R}^d\setminus\{0\}$ é uma direção admissível a partir de \overline{w} , se existir um escalar suficientemente pequeno $\eta_{\varepsilon}>0$ tal que

$$\overline{w} + \eta s \in \mathcal{D}$$
, para todo $\eta \in (0, \eta_{\varepsilon})$

Uma condição necessária de otimalidade geral é: Se $w^* \in \mathcal{D}$ é minimizante local do problema de otimização, então não existem direções admissíveis de descida para F a partir de w^* :

$$\{s \in \mathbb{R}^d : \nabla F(w^*)^T s < 0, \forall s \text{ direções admissíveis}\} = \{\}$$

As direções admissíveis são fundamentais para a Otimalidade! Vamos considerar dois casos distintos:

- Problemas com restrições de igualdade.
- Problemas com restrições de desigualdade.

Problemas com restrições de igualdade

minimizar
$$F(w)$$

 $w \in \mathbb{R}^d$
sujeito a $c_n(w) = 0, \quad n = 1, ..., N$ (1)

Ideia:

Seja $\overline{w} \in \mathcal{D}$ um ponto admissível. \overline{w} não é ponto ótimo se existir um passo infinitesimal $\delta := \eta s$ $(\eta \in (0, \eta_{\varepsilon}))$ que mantém a admissibilidade e diminui o valor de F. δ diminui o valor F se

$$\nabla F(\overline{w})^T \delta < 0.$$

 δ mantém a admissibilidade se $c_n(\overline{w} + \delta) = 0$. Fazendo a expansão da série de Taylor de $1^{\underline{a}}$ ordem em torno de \overline{w} , tem-se

$$0 = c_n(\overline{w} + \delta) \approx c_n(\overline{w}) + \nabla c_n(\overline{w})^T \delta = \nabla c_n(\overline{w})^T \delta.$$

A existência de tal δ significa que s tem as propriedades:

$$\nabla c_n(\overline{w})^T s = 0$$
 e $\nabla F(\overline{w})^T s < 0$

Interpretação geométrica das direções admissíveis

Condição suficiente para direção admissível s (n=1,...,N)

$$\nabla c_n(\overline{w})^T s = 0.$$

Direções admissíveis são direções tangentes às curvas $c_n(w) = 0, \forall n \in \mathcal{E}$.

Exemplo: Problema com uma restrição de igualdade.

(a) Direções admissíveis em dois pontos diferentes.

Exemplo:

minimizar
$$F(w) = w_1 + w_2$$

sujeito a $c_1(w) = w_1^2 + w_2^2 - 2 = 0$

- gradiente de F e c_1 : $\nabla F(w) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\nabla c_1(w) = \begin{pmatrix} 2w_1 \\ 2w_2 \end{pmatrix}$
- conjunto admissível: circunferência centrada na origem de raio $\sqrt{2}$.
- solução ótima: $w* = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

• da figura vemos que na solução w^* , ambos os vetores $\nabla c_1(w^*)$ e $\nabla F(w^*)$ são perpendiculares à restrição no ponto w^* , e portanto são paralelos um ao outro. Portanto, existe uma constante λ_1^* tal que

$$\nabla F(w^*) = \lambda_1^* \nabla c_1(w^*).$$

Neste caso, $\lambda_1^* = -1/2$.

Condições de otimalidade de 1ª Ordem

As condições de otimalidade podem ser estabelecidas em termos da Função Lagrangiana.

A Função Lagrangiana é definida pela função objetivo F e pelas funções de restrição c_n . A Função Lagrangiana associada ao problema (1) é

$$L(w,\lambda) = F(w) - \sum_{n=1}^{N} \lambda_n c_n(w)$$

onde λ_n é designado por multiplicador de Lagrange associada à restrição $c_n(w) = 0 \ (n = 1, ..., N)$.

Notação:

 $\lambda = (\lambda_1, \dots, \lambda_N)^T$, é vetor dos multiplicadores de Lagrange (variáveis duais)

Condições de Karush-Kuhn-Tucker (KKT)

Teorema (Condição necessária de 1ª ordem)

Seja w^* um minimizante local do problema (1). Se w^* é um ponto regular das restrições então existe um vetor de multiplicadores de Lagrange λ^* tal que as seguintes condições são satisfeitas em (w^*, λ^*) :

$$abla_w L(w^*,\lambda^*)=0$$
 condição de $1^{\underline{a}}$ ordem $c_n(w^*)=0$ admissibilidade $(n=1,\ldots,N)$

- $\nabla_w L(w^*, \lambda^*) = 0 \Leftrightarrow \nabla F(w^*) = \sum_{n=1}^N \lambda_n^* \nabla c_n(w^*)$
- \bullet (w^*, λ^*) é ponto estacionário da Lagrangiana e chama-se ponto KKT.
- encontrar pontos estacionários do problema (1)
 ⇔ encontrar pontos estacionários da Lagrangiana

Teorema (Condições necessárias de 2ª ordem)

Seja w* um minimizante local do problema (1) que é ponto regular. Seja λ^* o vetor de multiplicadores de Lagrange que verifica as condições KKT. Então

$$s^T \nabla^2_{w w} L(w^*, \lambda^*) s \ge 0, \ \forall s \in C$$

onde $C(w^*, \lambda^*) = \{s \in \mathbb{R}^d : \nabla c_n(w^*)^T s = 0\}.$ (todos os vetores tangentes às superfícies das restrições)

Observação:

• A matriz hessiana da função Lagrangiana em ordem a w é

$$\nabla^2_{ww}L(w^*,\lambda^*) = \nabla^2 F(w^*) - \sum_{n=1}^N \lambda_n^* \nabla^2 c_n(w^*)$$

Teorema (Condições suficientes de 2^a ordem)

Suponha que para algum ponto admissível w^* do problema (1) existe um vetor de multiplicadores de Lagrange λ^* que verifica as condições KKT, e que

$$s^T \nabla^2_{w w} L(w^*, \lambda^*) s > 0, \ s \in \mathcal{C}$$

onde $C(w^*, \lambda^*) = \{ s \in \mathbb{R}^d \setminus \{0\} : \nabla c_n(w^*)^T s = 0 \}.$ Então w^* é minimizante local estrito do problema (1).

Observação:

 \mathcal{C} é o núcleo dos gradientes das restrições em w^* :

$$C(w^*, \lambda^*) = null[\nabla c_n(w^*)^T]$$

Podemos então definir uma matriz Z em que as colunas são a base do espaço núcleo. Assim, as condições de 2^a ordem podem ser substituídas por:

$$Z^T \nabla^2_{ww} L(w^*, \lambda^*) Z \ge 0$$
 é semi-definida positiva. $Z^T \nabla^2_{ww} L(w^*, \lambda^*) Z > 0$ é definida positiva.

Problema com restrições de desigualdade

Ideia:

Seja $\overline{w} \in \mathcal{D}$ um ponto admissível. \overline{w} não é ponto ótimo se existe um passo infinitesimal $\delta := \eta s$ $(\eta \in (0, \eta_{\varepsilon}))$ que mantém a admissibilidade e diminui o valor de F. δ diminui o valor de F se $\nabla F(\overline{w})^T \delta < 0$. Por outro lado, δ mantém a admissibilidade se

$$0 \leq c_n(\overline{w} + \delta) \approx c_n(\overline{w}) + \nabla c_n(\overline{w})^T \delta$$

A existência de tal δ significa que s satisfaz

$$c_n(\overline{w}) + \nabla c_n(\overline{w})^T s \ge 0 \text{ e } \nabla F(\overline{w})^T s < 0$$

◆ロト ◆母 ト ◆ 草 ト ◆ 草 ・ り Q ②

Condição suficiente para direção admissível s (n=1,...,N):

• Caso das restrições não ativas: $c_n(\overline{w}) > 0$.

$$c_n(\overline{w}) + \nabla c_n(\overline{w})^T s \geq 0$$

Notar que, s satisfaz a condição para $\eta > 0$ suficientemente pequeno.

• Caso das restrições ativas: $c_n(\overline{w}) = 0$.

$$\nabla c_n(\overline{w})^T s \geq 0$$

Interpretação geométrica das direções admissíveis

Exemplo: Problema com uma restrição de desigualdade.

(a)
$$w_1^2 + w_2^2 - 2 \le 0$$

As condições de otimalidade novamente podem ser estabelecidas em termos da Função Lagrangiana.

A Função Lagrangiana associada ao problema (2), é definida por

$$L(w,\alpha) = F(w) - \sum_{n=1}^{N} \alpha_n c_n(w)$$

onde α_n é o multiplicador de Lagrange associada à restrição $c_n(w) \ge 0$ (n = 1, ..., N).

Notação:

 $\alpha = (\alpha_1, \dots, \alpha_N)^T$, é vetor dos multiplicadores de Lagrange (variáveis duais)

Condições de Karush-Kuhn-Tucker (KKT)

Teorema (Condição necessária de 1ª ordem)

Seja w^* um minimizante local do problema (2). Se w^* é um ponto regular das restrições então existe um vetor de multiplicadores de Lagrange α^* tal que as seguintes condições são satisfeitas em (w^*, α^*)

$$abla_w L(w^*, lpha^*) = 0$$
 condição $1^{\underline{a}}$ ordem $c_n(w^*) \geq 0$ admissibilidade $(n=1,\ldots,N)$ $lpha_n^* \geq 0$ admissibilidade dual $(n=1,\ldots,N)$ $lpha_n^* c_n(w^*) = 0$ complementaridade $(n=1,\ldots,N)$

•
$$\nabla_w L(w^*, \alpha^*) = 0 \Leftrightarrow \nabla F(w^*) = \sum_{n=1}^N \alpha_n^* \nabla c_n(w^*)$$

4□ > 4□ > 4≡ > 4≡ > □ × 90 €

A condição

$$\alpha_n^* c_n(w^*) = 0 \ (n = 1, \dots, N)$$

- , chama-se condição de complementaridade e significa que:
 - ou a restrição n está ativa na solução $(c_n(w^*) = 0)$
 - ou o multiplicador α_n^* que lhe está associado é **nulo** $(\alpha_n^* = 0)$
 - Se os multiplicadores que correspondem a restrições ativas são todos positivos, a complementaridade diz-se estrita.
 - Qualquer restrição que **não esteja ativa** em w^* ($c_n(w^*) > 0$) tem multiplicador nulo.
 - Se o multiplicador que corresponde a uma restrição ativa é positivo, a restrição diz-se não degenerada.
 - Se um multiplicador que corresponde a uma restrição ativa é nulo, a restrição diz-se degenerada.

Teorema (Condições necessárias de 2ª ordem)

Seja w^* um minimizante local do problema (2) que é ponto regular. Seja α^* o vetor de multiplicadores de Lagrange que verifica as condições KKT e a condição de **complementaridade estrita**. Então

$$s^T \nabla^2_{w w} L(w^*, \lambda^*) s \ge 0, \ \forall s \in \mathcal{C}$$

onde $C(w^*, \lambda^*) = \{s \in \mathbb{R}^d : \nabla c_n(w^*)^T s = 0, \forall n \in \mathcal{A}(w^*) \text{ com } \alpha_n^* > 0\}.$ (vetores tangentes às superfícies das **restrições ativas e não** degeneradas)

Observação:

A matriz hessiana da função Lagrangiana em ordem a w é

$$\nabla_{w \, w}^{2} L(w^{*}, \alpha^{*}) = \nabla^{2} F(w^{*}) - \sum_{n=1}^{N} \alpha_{n}^{*} \nabla^{2} c_{n}(w^{*})$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Teorema (Condições suficiente de 2ª ordem)

Suponha que para algum ponto admissível w^* do problema (2) existe um vetor de multiplicadores de Lagrange α^* que verifica as condições KKT e a condição de **complementaridade estrita**, e que

$$s^T \nabla^2_{w w} L(w^*, \lambda^*) s > 0, \ \forall s \in C$$

onde

 $C(w^*, \lambda^*) = \{ s \in \mathbb{R}^d \setminus \{0\} : \nabla c_n(w^*)^T s = 0, \forall n \in \mathcal{A}(w^*) \text{ com } \alpha_n^* > 0 \}.$ Então w^* é **minimizante local estrito** do problema (1).

Observação: C é o núcleo dos gradientes das restrições ativas em w^* e não degeneradas:

$$C(w^*, \lambda^*) = null[\nabla c_n(w^*)^T]$$

Podemos então definir uma matriz Z em que as colunas são a base do espaço núcleo. Assim, as condições de $2^{\underline{a}}$ ordem podem ser substituídas por:

$$Z^T \nabla^2_{ww} L(w^*, \lambda^*) Z \ge 0$$
 é semi-definida positiva.

$$Z^T \nabla^2_{ww} L(w^*, \lambda^*) Z > 0$$
 é definida positiva.

Exemplo:

$$egin{array}{ll} \mathop{\sf minimizar}_{w \in \mathbb{R}^2} & F(w) = w_1 \ & \mathsf{sujeito} \; \mathsf{a} & c_1(w) = (w_1+1)^2 + w_2^2 \geq 1 \ & c_2(w) = w_1^2 + w_2^2 \leq 2 \end{array}$$

Verifique se os pontos $\overline{w}^1 = (0,0)^T$, $\overline{w}^2 = (-1,-1)^T$, $\overline{w}^3 = (0,\sqrt{2})^T$ satisfazem as condições de otimalidade de $1^{\underline{a}}$ ordem. Resolução:

• Neste problema ($d = 2, \mathcal{E} = \{\}, \mathcal{I} = \{2\}$) temos

$$F(w_1, w_2) = w_1$$

$$c_1(w_1, w_2) = (w_1 + 1)^2 + w_2^2 - 1 \ge 0$$

$$c_2(w_1, w_2) = 2 - w_1^2 - w_2^2 \ge 0$$

pelo que a Função Lagrangiana é dada por:

$$L(w,\alpha) = w_1 - \alpha_1((w_1+1)^2 + w_2^2 - 1) - \alpha_2(2 - w_1^2 - w_2^2)$$

Calcular:

$$\nabla_{w}L(w_{1}, w_{2}, \alpha) = \begin{bmatrix} \frac{\partial L}{\partial w_{1}} \\ \frac{\partial L}{\partial w_{2}} \end{bmatrix} = \begin{bmatrix} 1 - 2\alpha_{1}(w_{1} + 1) + 2\alpha_{2}w_{1} \\ -2\alpha_{1}w_{2} + 2\alpha_{2}w_{2} \end{bmatrix}$$

• Verificar se $\overline{w}^1 = (0,0)^T$ satisfaz as condições de otimalidade de $1^{\underline{a}}$ ordem: $c_1(0,0) = 0$ e $c_2(0,0) = 2 > 0$, então \overline{w}^1 é ponto admissível e c_1 está ativa. $\nabla c_1(0,0) = (2,0)^T \neq (0,0)$, então \overline{w}^1 é ponto regular. Como c_2 não está ativa, então $\alpha_2 = 0$.

Resolvendo $\nabla_w L(\overline{w}^1, \alpha) = 0$ tem-se que: $\begin{cases} 1 - 2\alpha_1 &= 0 \\ 0 &= 0 \end{cases} \Rightarrow \alpha_1 = \frac{1}{2} \geq 0.$

Portanto $(0,0,\frac{1}{2},0)$ satisfaz as condições de otimalidade de 1ª ordem.

Condições de otimalidade de 2ª Ordem

• Verificar se $\overline{w}^2=(-1,-1)$ satisfaz as condições de otimalidade de 1ª ordem: $c_1(-1,-1)=0$ e $c_2(-1,-1)=0$, então \overline{w}^2 é ponto admissível e ambas as restrições estão ativas.

 $\nabla c_1(-1,-1) = (0,-2)^T$ e $\nabla c_2(-1,-1) = (2,2)^T$ são linearmente independentes, então \overline{w}^2 é ponto regular.

Resolvendo
$$\nabla_w L(\overline{w}^2, \alpha) = 0$$
 tem-se que:
$$\left\{ \begin{array}{cc} 1 - 2\alpha_2 &= 0 \\ 2\alpha_1 - 2\alpha_2 &= 0 \end{array} \right.$$

$$\Rightarrow \alpha_1 = \alpha_2 = \frac{1}{2} \ge 0.$$

Portanto $(-1, -1, \frac{1}{2}, \frac{1}{2})$ satisfaz as condições de otimalidade de 1ª ordem.

• Verificar se $\overline{w}^3=(0,\sqrt{2})$ satisfaz as condições de otimalidade de $1^{\underline{a}}$ ordem: $c_1(0,\sqrt{2})=2>0$ e $c_2(0,0)=0$, então \overline{w}^3 é ponto admissível e c_2 está ativa.

 $\nabla c_2(0,\sqrt{2}) = (0,-2\sqrt{2})^T \neq (0,0)$, então \overline{w}^3 é ponto regular. Como c_1 não está ativa, então $\alpha_1 = 0$.

Resolvendo $\nabla_w L(\overline{w}^3, \alpha) = 0$ vem: $\begin{cases} 1 = 0 \\ 2\alpha_2 \sqrt{2} = 0 \end{cases} \Rightarrow \text{Sistema impossível}.$

Portanto, \overline{w}^3 não satisfaz as condições de otimalidade de $1^{\underline{a}}$ ordem.

Dualidade

Ideias gerais:

- A teoria da dualidade mostra como podemos construir um problema alternativo (problema dual) a partir do problema de otimização original (problema primal).
- Em alguns casos, o problema dual é computacionalmente mais fácil de resolver do que o problema primal.
- Noutros casos, o problema dual pode ser usado para obter facilmente um limite inferior para o valor ótimo F* da função objetivo do problema primal.
- A dualidade tem também sido usada para desenvolver algoritmos para resolver o problema primal. Como por exemplo, o método da Lagrangiana aumentada.

Função dual de Lagrange

Para simplificar a exposição, considera-se o caso especial do problema de otimização com restrições de desigualdade:

$$\begin{array}{ll} \underset{w \in \mathbb{R}^d}{\text{minimizar}} & F(w) \\ \text{sujeito a} & c_n(w) \geq 0, \quad n = 1, \dots, N \end{array} \tag{$\mathsf{P}_{\textit{primal}}$}$$

A Função Lagrangiana associada a este problema é

$$L(w,\alpha) = F(w) - \sum_{n=1}^{N} \alpha_n c_n(w)$$

 $\triangleright \alpha = (\alpha_1, \dots, \alpha_N)^T$ é vetor dos multiplicadores de Lagrange associadas às restrições $c_n(w) \ge 0$.

Função dual de Lagrange

A função dual $F_D: \mathbb{R}^N \to \mathbb{R}$ é definida pelo ínfimo (valor mínimo) da função Lagrangiana sobre w: para $\alpha \in \mathbb{R}^N$

$$F_D(\alpha) = \inf_{w \in \mathbb{R}^d} L(w, \alpha) \tag{F_{dual}}$$

- Se a função Lagrangeana é ilimitada inferiormente em w, para alguns valores de α , então a função dual toma o valor $-\infty$.
- Considera-se para domínio de F_D o conjunto dos valores de $\alpha \in \mathbb{R}^N$ para os quais F_D é finita, ou seja,

$$dom F_D = \{\alpha \in \mathbb{R}^{\mathbb{N}} : F_D(\alpha) > -\infty\}$$

• A função dual produz limites inferiores no valor ótimo F^* do problema primal (P_{primal}). Para qualquer $\alpha \geq 0$, tem-se que

$$F_D(\alpha) \leq F^*$$
.

Problema dual

O problema dual para o problema (P_{primal}) é definido da forma:

```
\begin{array}{ll} \underset{\alpha \in \mathbb{R}^{\mathrm{N}}}{\mathsf{maximizar}} & F_D \equiv \inf_{w \in \mathbb{R}^d} \mathit{L}(w, \alpha) \\ \mathsf{sujeito} \ \mathsf{a} & \alpha \geq 0 \end{array}
```

- Calcular o ínfimo de (F_{dual}) implica encontrar o minimizante global da função $L(., \alpha)$ para o α dado, o que pode ser extremamente difícil na prática.
- Porém, quando F e $-c_n$ são funções convexas e $\alpha \ge 0$ (o caso em que estamos interessados), a função Lagrangiana $L(.,\alpha)$ é também convexa. Neste caso, todos minimizantes locais são minimizantes globais, e o problema dual pode ser reescrito na forma:

Definição: (Problema dual)

$$\begin{array}{ll} \underset{w \in \mathbb{R}^d, \alpha \in \mathbb{R}^{\mathbb{N}}}{\operatorname{sujeito a}} & L(w, \alpha) \\ & \nabla_w L(w, \alpha) = 0 \\ & \alpha \geq 0 \end{array}$$

 (P_{dual})

Exemplo:

Definir o problema dual para o seguinte problema

$$\begin{array}{ll} \underset{w \in \mathbb{R}^2}{\text{minimizar}} & 0.5(w_1^2 + w_2^2) \\ \text{sujeito a} & w_1 - 1 \ge 0. \end{array}$$

Resolução: Como o problema é convexo, a função Lagrangiana associada ao problema é convexa:

$$L(w, \alpha_1) = 0.5(w_1^2 + w_2^2) - \alpha_1(w_1 - 1),$$

e o problema dual tem a seguinte forma:

$$\begin{array}{ll} \underset{w \in \mathbb{R}^2, \alpha_1 \in \mathbb{R}}{\text{maximizar}} & L(w, \alpha_1) \equiv 0.5(w_1^2 + w_2^2) - \alpha_1(w_1 - 1) \\ \text{sujeito a} & \nabla_w L(w, \alpha_1) = 0 \\ & \alpha \geq 0 \end{array}$$

Pela condição de 1^a ordem: $\nabla_w L(w, \alpha_1) = 0$ tem-se:

•
$$\nabla_{w_1} L = 0 \Leftrightarrow w_1 - \alpha_1 = 0 \Leftrightarrow w_1 = \alpha_1$$

•
$$\nabla_{w_2} L = 0 \Leftrightarrow w_2 = 0$$

Substituindo na função Lagrangiana:

$$L(w,\alpha_1) = 0.5(w_1^2 + w_2^2) - \alpha_1(w_1 - 1) = 0.5(\alpha_1^2 + 0) - \alpha_1(\alpha_1 - 1) = -0.5\alpha_1^2 + \alpha_1.$$

Portanto, o problema dual é:

$$\begin{array}{ll} \underset{\alpha_1 \in \mathbb{R}}{\text{maximizar}} & -0.5\alpha_1^2 + \alpha_1 \\ \text{sujeito a} & \alpha_1 \geq 0 \end{array}$$

o qual tem a solução $\alpha_1^* = 1$.

Teorema: (Dual de Wolfe)

Se (w^*, α^*) é um par solução do problema (P_{primal}) , se $F \in -c_n$, $n = 1, \ldots, N$, são funções convexas e continuamente diferenciáveis, e se w^* é ponto regular, então (w^*, α^*) é solução do problema dual:

Além disso $F(w^*) = L(w^*, \alpha^*)$.

Bibliografia

 Jorge Nocedal and Stephen Wright. Numerical Optimization, Second Edition, Springer 2006