# Training Deep Neural Networks

Using Machine Learning Tools 2021

Reading: Géron Chapter 11

### Previously ...

Training: Minimise cost function by adjusting model parameters





### Today ...

- Training deep NNs uses gradient descent
- Backpropagation (very briefly)
- Vanishing and exploding gradient problems
  - Four ways of reducing these problems
- Optimisers have been incrementally refined
  - A range of options are available
- Learning rate scheduling and 1cycle method

- Initialise weights randomly (break symmetry)
- Forward pass:
- Compute loss function
- Backward pass (Backpropagation)

softmax p<sub>j</sub>

- Initialise weights randomly (break symmetry)
- Forward pass:
- Compute loss function
- Backward pass (Backpropagation)



softmax p<sub>j</sub>

- Initialise weights randomly (break symmetry)
- Forward pass:
- Compute loss function
- Backward pass (Backpropagation)



$$z = f(y) = f(g(x))$$

$$\frac{\partial z}{\partial y} = f'(y)$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} * \frac{\partial y}{\partial x}$$

$$= f'(y) * g'(x)$$

softmax p<sub>j</sub>

- Initialise weights randomly (break symmetry)
- Forward pass:
- Compute loss function
- Backward pass (Backpropagation)
- Gradient descent step on weights
- Repeat for batches of data (mini-batch)
- Repeat for multiple epochs



### Vanishing & Exploding Gradients

Backpropagation calculates gradients of loss for many, many weights

#### Vanishing gradients:

- Gradients can get small depending on where they are in activation function
- Many contributions => individual terms are small
- Small gradients => slow convergence

#### Exploding gradients:

- Chain rule can lead to increasing and opposing contributions
- Large gradients => instability





### Non-saturating Activation Functions

#### Many options:

- Sigmoid saturates for low/high values
- ReLU: for negative values, becomes 0 and stays 0 (with zero gradient)
- Leaky ReLU: non-saturating, non-dying
- Exponential linear unit (ELU): average closer to 0, converges faster, slower to compute
- Scaled exponential linear unit (SELU): selfnormalises dense sequential NNs

ReLU is still popular - as it is simple and encourages sparseness

Be wary of generalisations, as no single thing works best in all situations





==> No Free Lunch theorem

### **Batch Normalisation**

To prevent growing or shrinking gradients through layers...

Add normalisation layer before or after each hidden layer that learns optimal mean and scale for each input of a layer

#### During training:

- 1. Standardise to mean 0 and standard deviation 1 across current training batch
- Scale with adjustable parameter γ
- 3. Shift with adjustable parameter  $\beta$
- 4. Create moving average across batches

$$\widehat{\mathbf{x}}^{(i)} = \frac{\mathbf{x}^{(i)} - \mathbf{\mu}_B}{\sqrt{{\mathbf{\sigma}_B}^2 + \varepsilon}}$$

$$\mathbf{z}^{(i)} = \mathbf{\gamma} \otimes \widehat{\mathbf{x}}^{(i)} + \mathbf{\beta}$$

Very commonly used and can be highly useful at improving optimisation... but not always.

## Gradient Clipping

- Another strategy for managing gradient problems in particular exploding gradients
- During backpropagation, clip gradients at a threshold

 In recurrent neural networks as an alternative to batch normalisation

- Keras: hyperparameters of optimizer
  - "clipvalue": absolute value per dimension, orientation changes
  - "clipnorm": L2 norm clipped, orientation preserved

### Initialisation Strategies

- Initialise connection weights randomly with mean = 0
- Aim to "statistically" have weights that keep signal variance the same
- Several options (with both normal or uniform distributions) with recommended matches to activation functions
- Keras default: Glorot (with uniform distribution)

| fan <sub>in</sub>  | = number inputs of layer                     |
|--------------------|----------------------------------------------|
| fan <sub>out</sub> | = number of neurons/outputs                  |
| fan <sub>ava</sub> | = (fan <sub>in</sub> +fan <sub>out</sub> )/2 |

| Initia-<br>lisation | Activation functions             | Variance σ²<br>of normal<br>distr. |
|---------------------|----------------------------------|------------------------------------|
| Glorot              | None, tanh,<br>logistic, softmax | 1/fan <sub>avg</sub>               |
| He                  | ReLU and variants                | 2/fan <sub>in</sub>                |
| LeCun               | SELU                             | 1/fan <sub>in</sub>                |

#### **Gradient Descent (from Lecture 5):**

Partial derivatives of cost function

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left( \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

• Local gradier

Weight vector θ

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{bmatrix} \overline{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{bmatrix} = \frac{2}{m} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Iteratively step downhill

$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} MSE(\boldsymbol{\theta})$$

Learning rate "eta" η



#### **Gradient Descent (from Lecture 5):**

Partial derivatives of cost function

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left( \mathbf{\theta}^{\top} \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

• Local gradier  $\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\mathsf{T}})$ 

Iteratively step downhill

$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} MSE(\boldsymbol{\theta})$$

Cost

mage: Chartrand et al. RadioGraphics 2017

#### **Gradient Descent (from Lecture 5):**

Partial derivatives of cost function

Idea: follow the gradient downhill

- need to pick a step size
- not always the most efficient
- variations exist to improve on this
- often uses physics for inspiration

• Iteratively step downhill  $\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} \text{MSE}(\theta)$ 



Optimizable parameter

Image: Chartrand et al. RadioGraphics 2017

#### Options are:

- Momentum Optimisations
  - Partially follow previous direction
  - Gradient = force, not displacement
- Nesterov Accelerated Gradient
  - Use gradient at projected location
- AdaGrad (Adaptive Subgrad. Opt.)
  - Scale gradient with decaying value
- RMSprop
  - Different scaling/decay
- Adam (Adaptive Momentum Est.)
  - Combine momentum and scaling
- Nadam
  - Adam with Nesterov calculation
- AdaMax
  - Use max rather than adding terms



# Optimiser Comparison (Géron 2019)

#### Trade-off between:

- Speed
- Convergence quality
- Number of hyperparameters
- Assumptions about cost function landscape
- \* Based on empirical tests
- \* May not apply in all cases
- \* Can change as new approaches emerge

| Optimizer<br>(Keras) | Convergence speed | Convergence quality       |
|----------------------|-------------------|---------------------------|
| SGD                  | *                 | ***                       |
| Momentum             | **                | ***                       |
| Nesterov             | **                | ***                       |
| Adagrad              | ***               | * (can stop<br>too early) |
| RMSprop              | ***               | ** or ***                 |
| Adam                 | ***               | ** or ***                 |
| Nadam                | ***               | ** or ***                 |
| AdaMax               | ***               | ** or ***                 |

\* bad, \*\* average, \*\*\* good

### Early Stopping: Shorter Runtimes

- Stop if no improvement for X iterations ("patience")
- Tolerance ("min\_delta")
- Implemented as a Callback

```
tf.keras.callbacks.EarlyStopping(
    monitor="val_loss",
    min_delta=0,
    patience=0,
    verbose=0,
    mode="auto",
    baseline=None,
    restore_best_weights=False,
)
```

### Early Stopping: Shorter Runtimes

- Stop if no improvement for X iterations ("patience")
- Tolerance ("min\_delta")
- Implemented as a Callback

```
tf.keras.callbacks.EarlyStopping(
    monitor="val_loss",
    min_delta=0,
    patience=0,
    verbose=0,
    mode="auto",
    baseline=None,
    restore_best_weights=False,
)
```

https://keras.io/api/callbacks/early\_stopping/

### Learning Rate

- Simplest choice: constant learning rate n
- Best learning rate\* differs across training, e.g. larger at start, smaller at end
- Rate depends on initialisation, optimizer, its parameters, model, etc., etc.
- Also depends on cost function landscape in high-dimensional weight space, i.e. the data



Start with a high learning rate then reduce it: perfect!

\* As with most things, this is not always true

Image: Géron, Hands On ML

### Learning Rate Scheduling

- Change learning rate during iterations based on iteration number t, error, or a test on data
- Very empirically based, often trial and error, as many things affect it

## Learning Rate Scheduling

- Change learning rate during iterations based on iteration number t, error, or a test on data
- Very empirically based, often trial and error, as many things affect it
- Piecewise constant:

$$\eta(t) = \begin{cases}
1 - 5 & 0.1 \\
6 - 10 & 0.01 \\
> 10 & 0.001
\end{cases}$$

Power scheduling:

$$\eta(t) = \frac{\eta_0}{\left(1 + \frac{t}{s}\right)^c}$$
 Initial learning rate  $\eta_0$   
Power c (e.g. 1)

• Exponential scheduling:

$$\eta(t) = \eta_0 0.1^{\frac{t}{s}}$$

- Performance scheduling:
  - E.g. if validation error not decreasing, reduce learning rate by factor
- Implementation in Keras/ tk.keras:
  - Built-in parameter of optimizer
  - Callback in model (LearningRateScheduler)
  - Schedule object of tk.keras in optimizer

#### Cyclical Learning:

- Start with minimum learning rate (LR)
- Increase to a maximum LR
- Decrease back to minimum LR
- Repeat



Image: Géron, Hands On ML

CS7317 Using Machine Learning Tools

#### Cyclical Learning:

- Start with minimum learning rate (LR)
- Increase to a maximum LR
- Decrease back to minimum LR
- Repeat

#### "1cycle" scheduling (Smith 2018)

- Initial LR range test:
  - Run with increasing LR (from very small value) until training starts to diverge (when error goes up) => maximum LR
  - For cycle set: minimum LR = maximum LR / 10



Image: Géron, Hands On ML

CS7317 Using Machine Learning Tools

#### Cyclical Learning:

- Start with minimum learning rate (LR)
- Increase to a maximum LR
- Decrease back to minimum LR
- Repeat

"1cycle" scheduling (Smith 2018)

- Initial LR range test:
  - Run with increasing LR (from very-smāll value) until training starts to diverge (when error goes up) => maximum LR

Smith LN 2018 A disciplined approach to neural network hyper-parameters: Part 1 – Learning rate,

batch size, momentum, and weight decay. US Naval Research Laboratory Technical Report 5510-026.

- For cycle set: minimum LR = maximum LR / 10
- Use 1 cycle with linear increase/decrease of LR across most epochs
- After that drop LR linearly to very small value





#### Cyclical Learning:

- Start with minimum learning rate (LR)
- Increase to a maximum LR
- Decrease back to minimum LR
- Repeat

"1cycle" scheduling (Smith 2018)

- Initial LR range test:
  - Run with increasing LR (from very-smāll value) until training starts to diverge (when error goes up) => maximum LR
  - For cycle set: minimum LR = maximum LR / 10
- Use 1 cycle with linear increase/decrease of LR across most epochs
- After that drop LR linearly to very small value

CS7317 Using Machine Learning Tools



Smith LN 2018 A disciplined approach to neural network hyper-parameters: Part 1 – Learning rate, batch size, momentum, and weight decay. US Naval Research Laboratory Technical Report 5510-026.

**Iterations** 

### Recommendations in Practice (Géron 2019)

| Hyperparameter         | Dense NN default                                    | Self-normalising DNN default      |
|------------------------|-----------------------------------------------------|-----------------------------------|
| Kernel initialiser     | He ( $\sigma^2 = 2/\text{fan}_{in}$ )               | LeCun ( $\sigma^2 = 1/fan_{in}$ ) |
| Activation Function    | ELU                                                 | SELU                              |
| Normalisation          | None if shallow, batch normalisation if deep        | None (self-normalising)           |
| Regularisation         | Early stopping (+ L2 norm regularisation if needed) | Alpha drop out if needed          |
| Optimiser              | Momentum (or RMSProp or Nadam)                      | Momentum (or RMSProp or Nadam)    |
| Learning rate schedule | 1cycle                                              | 1cycle                            |

- Usually based on limited empirical tests and don't apply to all situations
- Field and libraries under active development, recommendations may change!

### Summary

- Training deep NNs uses gradient descent
- Backpropagation used to compute the gradient sequentially
- Prevent vanishing and exploding gradients with
  - Initialisation
  - Non-saturating activation functions
  - Batch normalisation layers
  - Gradient clipping
- Optimisers have been incrementally refined
  - Use the most "patched" version of an approach (e.g. Nadam)
  - If problems, try alternative approach (e.g. Nesterov Momentum)
- Learning rate scheduling and 1cycle current default