Amendments to the Claims

e)

- 1. (previously amended) An improved vortex mill for milling a substantially particulate solid material, said mill including at least one working chamber having
 - a) a side-wall defining a generally cylindrical, inward facing surface;
 - b) a first end wall and a second end wall arranged transversely to said side-wall and having respective end surfaces formed contiguously with and transversely to said inward-facing surface, thereby to define therewith said at least one working chamber;
 - c) at least one working fluid inlet for introducing a generally tangential flow of working fluid into said at least one working chamber thereby to create a vortex flow therein;
 - d) at least one discharge port formed in at least one of said end walls, said at least one working fluid inlet and said at least one discharge port cooperating so as to facilitate a vortex flow of the working fluid introduced via said at least one working fluid inlet, said at least one discharge port permitting discharge of working fluid and milled material from said at least one working chamber;
 - at least one feed inlet disposed in said end wall_for introducing a substantially particulate solid material into said at least one working chamber so as to be taken up in a vortex flow of the working fluid, thereby to provide milling of the solid material, milled inlet material being discharged via said at least one discharge port; and
 - f) apparatus for inducing controlled perturbations in the flow of the working fluid in said at least one working chamber, thereby to improve the milling of the solid material in the vortex flow.

- 2. (Currently amended) An improved vortex mill according to claim 1, also includes at least one outer casing configured to surround and enclose said at least one working chamber so as to be spaced therefrom and thereby to define therewith an outer fluid flow volume, and wherein said at least one outer casing includes:
 - a) at least one outer working fluid inlet for introducing a flow of working fluid into said outer fluid flow volume, thereby to induce a fluid flow therein, operative to discharge through said working fluid inlet into said at least one working chamber;
 - b) at least one outer feed inlet for introducing substantially particulate solid material into said at least one working chamber via said at least one feed inlet; and
 - c) at least one outer discharge port for permitting discharge of milled particulate solid material from said at least one working chamber via said at least one outer discharge port.
- 3. (Original) An improved vortex mill according to claim 1, wherein said side-wall of said at least one working chamber is formed of at least one functional insert having a closed shape generally coaxially disposed within said working chamber, each said at least one functional insert having a generally cylindrical side-wall formed therein.
- 4. (Original) An improved vortex mill according to claim 3, wherein said at least one functional insert includes at least a first and a second functional insert having substantially similar configurations and a substantially similar angular orientation with respect to each other.
- 5. (Original) An improved vortex mill according to claim 3, wherein said at least one functional insert includes at least a first and a second functional insert having substantially dissimilar configurations with respect to each other, said dissimilar

Page 3 of 24

functional inserts being disposed in a predetermined configuration sequence within said working chamber.

- 6. (Previously Amended) An improved vortex mill according to claim 5, wherein said dissimilar functional inserts, are formed having at least one dissimilar parameter selected from the group of parameters, which consists of: diameter, height, shape of said inward facing surface, and mechanical insert elements.
- 7. (Previously Amended) An improved vortex mill according to claim 5, wherein said at least one working chamber includes at least one flow restriction element having at least one orifice formed therein, said at least one orifice having a predetermined size, orientation and disposition, said at least one flow restriction element mounted in a fixed, coaxial disposition relative to said at least one functional insert, thereby to increase dwell time of the particulate solid material to be milled therewithin.
- 8. (Original) An improved vortex mill according to claim 7, wherein said at least one flow restriction element has a configuration selected from the group which consists of: flat, planar, conical, frustum, convex, polyhedral, dished, and a surface generated by rotation of a line about the axis of said chamber in accordance with a predetermined geometric function.
- 9. (Original) An improved vortex mill according to claim 7, wherein said at least one orifice is formed coaxial with said flow restriction element.
- 10. (Original An improved vortex mill according to claim 7, wherein said at least one flow restriction element is formed integrally with said at least one working chamber.

Page 4 of 24

- 11. (Original) An improved vortex mill according to claim 7, wherein said flow restriction element is non-fixably supported within said at least one working chamber.
- 12. (Original) An improved vortex mill according to claim 7, wherein said flow restriction element is fixably mounted between a first functional insert and a second functional insert, thereby to control comminution of solid material.
- 13. (Original) An improved vortex mill according to claim 7, wherein said flow restriction element has vanes disposed thereon, thereby to deflect solid particles within the vortex flow generally away from said inward facing surface of said sidewall and generally towards the vortex axis.
- 14. (Original) An improved vortex mill according to claim 7, wherein said flow restriction element has vanes disposed thereon, thereby to deflect solid particles within the vortex flow generally away from the vortex axis and towards said inward facing surface of said side-wall.
- 15. (Original) An improved vortex mill according to claim 7, wherein said flow restriction elements have formed thereon at least one rib-shaped baffle, each of said rib-shaped baffles being concentric with said generally cylindrical side-wall thereby to reduce the velocity of solid particles adjacent to said flow restriction element and thus to prevent premature discharge of the solid particles.

- 16. (Currently Amended) An improved vortex mill according to claim 1, wherein said apparatus for inducing controlled perturbations includes at least one of the group which consists of:
 - a) a side-wall configuration which includes at least one of the group which consists of:
 - i) a plurality of substantially planar side-walls;
 - formed recess located between adjacent said plurality of substantially planar side-walls, said inlet being disposed substantially parallel to said substantially planar side-walls and generally tangentially with respect to said working chamber, and
 - within at least one of said plurality of substantially planar side-walls, disposed substantially non-parallel to said substantially planar side-walls with respect to said working chamber, said at least one auxiliary working fluid inlet thereby to introduce additional working fluid flow into said working chamber, thereby to cause controlled perturbations in the vortex flow and also thereby to redirect flow of particles away from said planar side-wall across the vortex flow;
 - b) a side-wall configuration including at least one substantially planar side-wall formed within said generally cylindrical inward facing surface;
 - c) at least one auxiliary working fluid inlet formed in said side-wall, said at least one auxiliary working fluid inlet directed substantially non-tangentially to said sidewall and at a predetermined angle to the direction of vortex flow at a point of entry of working fluid thereby to enable introduction of additional working fluid flow generally

Page 6 of 24

9.9

non tangentially into said working chamber, thereby to create controlled perturbations in the vortex flow and also thereby for redirecting the flow of particles away from said side-wall across the vortex flow;

- d) at least one mechanical insert element disposed on said inward facing surface, parallel to the axis of said working chamber, said at least one mechanical insert element having a curved surface so as to be generally disposed away from said inward facing surface and towards said working chamber axis, thereby to redirect the flow of working fluid and particles of solid material away from said inward facing surface, and thereby to induce predetermined perturbations in the flow of working fluid; and
- e) at least one auxiliary working fluid inlet disposed in said inward facing surface, said at least one auxiliary working fluid inlet associated with said at least one mechanical insert element, thereby to redirect flow of working fluid and particles of solid material away from said inward facing surface and thereby to induce predetermined perturbations in the flow of working fluid [;].
- 17. (Original) An improved vortex mill according to claim 1, wherein said apparatus for inducing predetermined perturbations in the flow of the working fluid includes apparatus selected from the group which consists of:
 - a) apparatus for controlling the entry flow rate of working fluid;
 - b) apparatus for controlling the rate of introduction of substantially particulate solid material into said working chamber;
 - c) apparatus for varying the working fluid pressure in said working chamber; and
 - d) apparatus for controlling the rate of discharge of particulate solid material.

10/080.216

- 18. (Original) An improved vortex mill according to claim 1, wherein said apparatus for inducing controlled perturbations in the flow of the working fluid is operative to limit the frequency to within the range 5Hz to 5.10^4kHz .
- 19. (Previously Amended) An improved vortex mill according to claim 1, wherein each of said end walls has a shape selected from the group which consists of: conical, frustum, convex, polyhedral, dished and a surface generated by rotation of a line about the axis of said chamber in accordance with a predetermined geometric function.
- 20. (Cancelled)
- 21. (Cancelled)
- 22. (Previously Amended) An improved vortex mill according to claim 1, wherein said at least one feed inlet has an orientation selected from the group which consists of:
 - disposed in said end wall co-axial with said working chamber; a)
 - disposed in said end wall co-axial with said discharge port formed in said b) working chamber;
 - disposed in said at least one of said end walls, eccentrically to the axis thereof; c)
 - disposed co-axially with said discharge port formed in said first end wall, and d) including a distal end of said at least one feed inlet fixably attached to said inner surface of said second end wall.

- 23. (Original) An improved vortex mill according to claim 1, wherein said at least one feed inlet includes a baffle apparatus generally disposed at a distal end of said feed inlet, said baffle to reduce the kinetic energy of feed particles entering said working chamber through said feed inlet, thereby to reduce feed particle velocity and thereby to diffuse particle flow into said working chamber.
- 24. (Original) An improved vortex mill according to claim 1, wherein said at least one feed inlet communicates with said working chamber via an opening, said opening having a configuration and position which is selected from the group which consists of:
 - a) a transverse opening in a distal end of said feed inlet;
 - b) a generally slot-shaped opening in said feed inlet orientated parallel to the axis of said working chamber; and
 - c) a generally slot-shaped opening in said cylindrical feed inlet orientated at a predetermined angle to the axis of said chamber.
- 25. (Cancelled)
- 26. (Cancelled)
- 27. (Cancelled)
- 28 (Cancelled)
- 29. (Original) An improved vortex mill according to claim 1, wherein said at least one feed inlet and said at least one discharge port are substantially mutually co-axial.
- 30. (Cancelled)

Page 9 of 24

- 31. (Original) 31. An improved vortex mill according to claim 1, also includes at least one auxiliary discharge port formed in at least one of said cylindrical side-wall and said end walls.
- 32. (Original) An improved vortex mill according to claim 31, wherein said at least one auxiliary discharge port includes means for discharging partially milled particulate solid material from said at least one auxiliary discharge port and further includes means for receiving discharged partially milled particulate material from said at least one auxiliary discharge port, and for re-introducing the discharged partially milled particulate solid material into said at least one working chamber via a conduit and an auxiliary feed inlet.
- 33. (Original) An improved vortex mill according to claim 32, wherein said auxiliary feed inlet is coaxially formed with said feed inlet.
- 34. (Previously Amended) An improved vortex mill according to claim 1, wherein said working chamber has at least one recess formed in at least one of said inward facing surface of said generally cylindrical side-wall, thereby to induce a controlled perturbation in the vortex flow.
- 35. (Original) An improved vortex mill according to claim 34, wherein said at least one recess includes at least one working fluid inlet formed in fluid flow communication with said recess.
- 36. (Cancelled)
- 37. (Cancelled)

Page 10 of 24

- 38. (Original) An improved vortex mill according to claim 34, wherein said at least one recess has at least one portion filled with a fluid permeable diffusing medium, thereby to enable dispersed ingress of working fluid into said working chamber.
- 39.(Cancelled)
- 40. (Cancelled)
- 41. (Original) An improved vortex mill according to claim 1, wherein said at least one working chamber includes a plurality of working chambers arranged to facilitate flow of particulate material there-among, in a predetermined sequence.
- 42. (Original) An improved vortex mill according to claim 41, wherein each of said plurality of working chambers includes at least one discharge port for discharging particulate solid material therefrom and each said at least one discharge port has associated therewith apparatus for receiving discharged material therefrom, and for introducing the discharged material into said feed inlet of a predetermined succeeding working chamber of said plurality of working chambers.
- 43. (Original) An improved vortex mill according to claim 41, wherein at least one of said plurality of working chambers includes at least one auxiliary discharge port formed in at least one of said cylindrical side-wall and said end walls, for discharging therefrom a preselected generally over-sized and partially milled proportion of the discharged particulate solid material and each said auxiliary discharge port has associated therewith apparatus for receiving the preselected proportion of the discharged material therefrom, and for introducing the preselected proportion of discharged material into said feed inlet of a predetermined succeeding working chamber of said plurality of working chambers.

44. (Cancelled)

Page 11 of 24

- 45. (Cancelled)
- 46. (Cancelled)
- 47. (Cancelled)
- 48. (Cancelled)
- 49. (Cancelled)
- 50. (Cancelled)
- 51. (Cancelled)
- 52. (Cancelled)

Page 12 of 24

- 53. (Previously Amended) A process for milling a substantially particulate solid material using an improved vortex mill, said process including:
 - introducing a generally tangential flow of working fluid into a generally a) cylindrical working chamber thereby to create a vortex flow therein;
 - feeding substantially particulate solid material sought to be milled into the b) working chamber through at least one feed inlet disposed in an end wall of the generally cylindrical working chamber, such that the material is taken up in suspension in the vortex flow, thereby to apply comminution stresses to the suspended solid particles;
 - inducing controlled perturbations in the vortex flow, thereby to regulate the c) comminution stresses applied to the suspended solid particles and thus also the rate of milling thereof; and
 - discharging milled particulate solid material together with working fluid from d) the working chamber.
- 54. (Original) A process according to claim 53, wherein said step of inducing controlled perturbations includes the step of controlling the extent and frequency of the controlled perturbations of the flow of the working fluid, thereby to control the rate of milling of the substantially particulate solid material within the working chamber.
- 55. (Original) A process according to claim 53, and including the additional step of introducing into the working chamber a flow of working fluid via an inlet disposed at a predetermined angle to the direction of flow of the vortex.
- 56. (Cancelled)
- 57. (Cancelled)
- 58. (Cancelled)

Page 13 of 24

- 59. (Previously Amended) A process according to claim 53, wherein said step of feeding substantially particulate solid material into the working chamber includes a step of drawing the substantially particulate solid material into the working chamber via an auxiliary feed inlet, such that said step of drawing the substantially particulate solid material into the working chamber is facilitated by a suction effect arising from the vortex flow tangential to the auxiliary feed inlet.
- 60. (Cancelled)
- 61. (Cancelled)
- 62. (Cancelled)
- 63. (Original) A process according to claim 53, wherein said step of discharging particulate solid material includes the step of discharging particulate solid material from one of a plurality of working chambers, and said process also includes the additional step of feeding the discharged particulate solid material into a preselected working chamber of the plurality of working chambers for milling therein.
- 64. (Previously Presented) An improved vortex mill for milling a substantially particulate solid material, said mill including at least one working chamber having
 - a) a side-wall defining a generally cylindrical, inward facing surface;
 - b) a first end wall and a second end wall arranged transversely to said side-wall and having respective end surfaces formed contiguously with and transversely to said inward-facing surface, thereby to define therewith said at least one working chamber;
 - c) at least one working fluid inlet for introducing a generally tangential flow of working fluid into said at least one working chamber thereby to create a vortex flow therein;

Page 14 of 24

- d) at least one discharge port formed in at least one of said end walls, said at least one working fluid inlet and said at least one discharge port cooperating so as to facilitate a vortex flow of the working fluid introduced via said at least one working fluid inlet, said at least one discharge port permitting discharge of working fluid and milled material from said at least one working chamber;
- e) at least one feed inlet for introducing a substantially particulate solid material into said at least one working chamber so as to be taken up in a vortex flow of the working fluid, thereby to provide milling of the solid material, milled inlet material being discharged via said at least one discharge port; and
- f) apparatus for inducing controlled perturbations in the flow of the working fluid in said at least one working chamber, thereby to improve the milling of the solid material in the vortex flow

wherein said side-wall of said at least one working chamber is formed of at least one functional insert having a closed shape generally coaxially disposed within said working chamber, each said at least one functional insert having a generally cylindrical side-wall formed therein.

- 65. (Currently Amended) An improved vortex mill according to claim 64, also includes at least one outer casing configured to surround and enclose said at least one working chamber so as to be spaced therefrom and thereby to define therewith an outer fluid flow volume, and wherein said at least one outer casing includes:
 - a) at least one outer working fluid inlet for introducing a flow of working fluid into said outer fluid flow volume, thereby to induce a fluid flow therein, operative to discharge through said working fluid inlet into said at least one working chamber;
 - b) at least one outer feed inlet for introducing substantially particulate solid material into said at least one working chamber via said at least one feed inlet; and

Page 15 of 24

- c) at least one outer discharge port for permitting discharge of milled particulate solid material from said at least one working chamber via said at least one outer discharge port.
- 66. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one functional insert includes at least a first and a second functional insert having substantially similar configurations and a substantially similar angular orientation with respect to each other.
- 67. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one functional insert includes at least a first and a second functional insert having substantially dissimilar configurations with respect to each other, said dissimilar functional inserts being disposed in a predetermined configuration sequence within said working chamber.
- 68. (Previously Presented) An improved vortex mill according to claim 67, wherein said dissimilar functional inserts, are formed having at least one dissimilar parameter selected from the group of parameters, which consists of: diameter, height, shape of said inward facing surface, and mechanical insert elements.
- 69. (Previously Presented) An improved vortex mill according to claim 67, wherein said at least one working chamber includes at least one flow restriction element having at least one orifice formed therein, said at least one orifice having a predetermined size, orientation and disposition, said at least one flow restriction element mounted in a fixed, coaxial disposition relative to said at least one functional insert, thereby to increase dwell time of the particulate solid material to be milled therewithin.

Page 16 of 24

- 70. (Previously Presented) An improved vortex mill according to claim 69, wherein said at least one flow restriction element has a configuration selected from the group which consists of: flat, planar, conical, frustum, convex, polyhedral, dished, and a surface generated by rotation of a line about the axis of said chamber in accordance with a predetermined geometric function.
- 71. (Previously Presented) An improved vortex mill according to claim 69, wherein said at least one orifice is formed coaxial with said flow restriction element.
- 72. (Previously Presented) An improved vortex mill according to claim 69, wherein said at least one flow restriction element is formed integrally with said at least one working chamber.
- 73. (Previously Presented) An improved vortex mill according to claim 69, wherein said flow restriction element is non-fixably supported within said at least one working chamber.
- 74. (Previously Presented) An improved vortex mill according to claim 69, wherein said flow restriction element is fixably mounted between a first functional insert and a second functional insert, thereby to control comminution of solid material.
- 75. (Previously Presented) An improved vortex mill according to claim 69, wherein said flow restriction element has vanes disposed thereon, thereby to deflect solid particles within the vortex flow generally away from said inward facing surface of said side-wall and generally towards the vortex axis.

Page 17 of 24

- 76. (Previously Presented) An improved vortex mill according to claim 69, wherein said flow restriction element has vanes disposed thereon, thereby to deflect solid particles within the vortex flow generally away from the vortex axis and towards said inward facing surface of said side-wall.
- 77. (Previously Presented) An improved vortex mill according to claim 69, wherein said flow restriction elements have formed thereon at least one rib-shaped baffle, each of said rib-shaped baffles being concentric with said generally cylindrical side-wall thereby to reduce the velocity of solid particles adjacent to said flow restriction element and thus to prevent premature discharge of the solid particles.
- 78. (Currently Amended) An improved vortex mill according to claim 64, wherein said apparatus for inducing controlled perturbations includes at least one of the group which consists of:
 - a) a side-wall configuration which includes at least one of the group which consists of:
 - i) a plurality of substantially planar side-walls;
 - ii) at least one working fluid inlet formed within a formed recess located between adjacent said plurality of substantially planar side-walls, said inlet being disposed substantially parallel to said substantially planar side-walls and generally tangentially with respect to said working chamber, and
 - within at least one of said plurality of substantially planar side-walls, disposed substantially non-parallel to said substantially planar side-walls with respect to said working chamber, said at least one auxiliary working fluid inlet thereby to introduce additional working fluid flow into said Page 18 of 24

working chamber, thereby to cause controlled perturbations in the vortex flow and also thereby to redirect flow of particles away from said planar side-wall across the vortex flow;

- b) a side-wall configuration including at least one substantially planar side-wall formed within said generally cylindrical inward facing surface;
- at least one auxiliary working fluid inlet formed in said side-wall, said at least one auxiliary working fluid inlet directed substantially non-tangentially to said side-wall and at a predetermined angle to the direction of vortex flow at a point of entry of working fluid thereby to enable introduction of additional working fluid flow generally non tangentially into said working chamber, thereby to create controlled perturbations in the vortex flow and also thereby for redirecting the flow of particles away from said side-wall across the vortex flow;
- d) at least one mechanical insert element disposed on said inward facing surface, parallel to the axis of said working chamber, said at least one mechanical insert element having a curved surface so as to be generally disposed away from said inward facing surface and towards said working chamber axis, thereby to redirect the flow of working fluid and particles of solid material away from said inward facing surface, and thereby to induce predetermined perturbations in the flow of working fluid; and
- e) at least one auxiliary working fluid inlet disposed in said inward facing surface, said at least one auxiliary working fluid inlet associated with said at least one mechanical insert element, thereby to redirect flow of working fluid and particles of solid material away from said inward facing surface and thereby to induce predetermined perturbations in the flow of working fluid [;].
- 79. (Previously Presented) An improved vortex mill according to claim 64, wherein said apparatus for inducing predetermined perturbations in the flow of the working fluid includes apparatus selected from the group which consists of:

Page 19 of 24

- a) apparatus for controlling the entry flow rate of working fluid;
- b) apparatus for controlling the rate of introduction of substantially particulate solid material into said working chamber;
- c) apparatus for varying the working fluid pressure in said working chamber; and
- d) apparatus for controlling the rate of discharge of particulate solid material.
- 80. (Previously Presented) An improved vortex mill according to claim 64, wherein said apparatus for inducing controlled perturbations in the flow of the working fluid is operative to limit the frequency to within the range 5Hz to 5.10⁴kHz.
- 81. (Previously Presented) An improved vortex mill according to claim 64, wherein each of said end walls has a shape selected from the group which consists of: flat, planar, conical, frustum, convex, polyhedral, dished and a surface generated by rotation of a line about the axis of said chamber in accordance with a predetermined geometric function.
- 82. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one feed inlet has an orientation selected from the group which consists of:
 - a) disposed in said end wall co-axial with said working chamber;
 - b) disposed in said end wall co-axial with said discharge port formed in said working chamber;
 - c) disposed in said at least one of said end walls, eccentrically to the axis thereof;
 - d) disposed co-axially with said discharge port formed in said first end wall, and including a distal end of said at least one feed inlet fixably attached to said inner surface of said second end wall; and
 - e) disposed in said side-wall.

 Page 20 of 24

- 83. (Currently Amended) An improved vortex mill according to claim 64, wherein said at least one feed inlet includes a baffle apparatus generally disposed at a distal end of said at least one feed inlet, said baffle to reduce the kinetic energy of feed particles entering said working chamber through said feed inlet, thereby to reduce feed particle velocity and thereby to diffuse particle flow into said working chamber.
- 84. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one feed inlet communicates with said working chamber via an opening, said opening having a configuration and position which is selected from the group which consists of:
 - a) a transverse opening in a distal end of said feed inlet;
 - b) a generally slot-shaped opening in said feed inlet orientated parallel to the axis of said working chamber; and
 - c) a generally slot-shaped opening in said cylindrical feed inlet orientated at a predetermined angle to the axis of said chamber.
- 85. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one feed inlet and said at least one discharge port are substantially mutually co-axial.
- 86. (Previously Presented) An improved vortex mill according to claim 64, also includes at least one auxiliary discharge port formed in at least one of said cylindrical sidewall and said end walls.
- 87. (Previously Presented) An improved vortex mill according to claim 86, wherein said at least one auxiliary discharge port includes means for discharging partially milled

 Page 21 of 24

particulate solid material from said at least one auxiliary discharge port and further includes means for receiving discharged partially milled particulate material from said at least one auxiliary discharge port, and for re-introducing the discharged partially milled particulate solid material into said at least one working chamber via a conduit and an auxiliary feed inlet.

- 88. (Previously Presented) An improved vortex mill according to claim 87, wherein said auxiliary feed inlet is coaxially formed with said feed inlet.
- 89. (Previously Presented) An improved vortex mill according to claim 64, wherein said working chamber has at least one recess formed in at least one of said inward facing surface of said generally cylindrical side-wall, thereby to induce a controlled perturbation in the vortex flow.
- 90. (Previously Presented) An improved vortex mill according to claim 89, wherein said at least one recess includes at least one working fluid inlet formed in fluid flow communication with said recess.
- 91. (Previously Presented) An improved vortex mill according to claim 89, wherein said at least one recess has at least one portion filled with a fluid permeable diffusing medium, thereby to enable dispersed ingress of working fluid into said working chamber.
- 92. (Previously Presented) An improved vortex mill according to claim 64, wherein said at least one working chamber includes a plurality of working chambers arranged to facilitate flow of particulate material there-among, in a predetermined sequence.

Page 22 of 24

- 93. (Previously Presented) An improved vortex mill according to claim 92, wherein each of said plurality of working chambers includes at least one discharge port for discharging particulate solid material therefrom and each said at least one discharge port has associated therewith apparatus for receiving discharged material therefrom, and for introducing the discharged material into said feed inlet of a predetermined succeeding working chamber of said plurality of working chambers.
- 94.(Previously Presented) An improved vortex mill according to claim 92, wherein at least one of said plurality of working chambers includes at least one auxiliary discharge port formed in at least one of said cylindrical side-wall and said end walls, for discharging therefrom a preselected generally over-sized and partially milled proportion of the discharged particulate solid material and each said auxiliary discharge port has associated therewith apparatus for receiving the preselected proportion of the discharged material therefrom, and for introducing the preselected proportion of discharged material into said feed inlet of a predetermined succeeding working chamber of said plurality of working chambers.