

BACKGROUND

Previous research done:

- Puzzle
- Rubik's cube
- <u>Tetris</u>
- Others:

Initial State				Goal State			
1	2	3		2	8	1	
8		4			4	3	
7	6	5		7	6	5	

		1	2			
		1	1	0	4	3
2	2					
1	2					
	2					
2	1					
	0					

https://pathak22.github.io/large-scale-curiosity/

https://blog.openai.com/reinforcement-learning-with-prediction-based-rewards/

https://sandipanweb.wordpress.com/2017/03/24/solving-4-puzzles-with-reinforcement-learning-q-learning-in-python/

PROPOSED PROJECT

TangrAl goals:

- Minimize the empty spaces.
- Use all the seven pieces.

Project scope:

- How many different positions achieve the goal? ———— Space optimization
- Could be found any piece with only one possible result? -> Design

Goal: As much buildings as we can

Goal: As better distributed as we can

Goal: organize spaces using computer vision

Goal: use less material as possible

STRUCTURE

DISPLAY EXAMPLE

```
HackathonCU\
setup.py Create openAl environment
tangrai_agent.py Execution and training
tangrai
__init__.py Environment registration
envs\
__init__.py Import functions
tangrai_engine.py Functionality
tangrai_env.py Connect engine and agent
```


CURRENT STATE

CURRENT PARAMETERS

- episodes=5000
- max_env_steps=7
- epsilon_decay=1
- epsilon=0.8
- epsilon_min=0.01
- gamma=0.8
- learning_rate=.001
- alpha_decay=0.1
- batch_size=4

PENDING TASKS

- Render the states.
- Increase the evaluation techniques to improve the feedback.
- Adjust the parameters.
- Include rotations and random choice of each piece.
- Test the results using unseen pieces.
- Optimize the neural network.

PENDING TASKS

CNN to define the states \rightarrow Generic algorithm

CONTACT DETAILS

paucutrina@gmail.com

carles.prego@gmail.com