Jordan Content

Jay Waddell

March 27, 2020

1 The integrals of two functions that are equal except on a set of Jordan content 0

For **I** a generalized rectangle in \mathbb{R}^n , let A be a subset of **I** of Jordan content 0 and suppose that the integrable functions $f: \mathbf{I} \to \mathbb{R}$ and $g: \mathbf{I} \to \mathbb{R}$ are such that $f(\mathbf{x}) = g(\mathbf{x})$ for \mathbf{x} in $\mathbf{I} \setminus A$. Show that $\int_{\mathbf{I}} f = \int_{\mathbf{I}} g$.

Let $h(\mathbf{x}) = f(\mathbf{x}) - g(\mathbf{x}) = 0$ for all \mathbf{x} in $\mathbf{I} \backslash A$. We then know $\int_{\mathbf{I}} h = 0$. f and g are both integrable, and by additivity, $\int_{\mathbf{I}} (f - g) = 0 \implies \int_{\mathbf{I}} f - \int_{\mathbf{I}} g = 0 \implies \int_{\mathbf{I}} f = \int_{\mathbf{I}} g$. \square

2 Integral on a closed rectangle versus on its interior

Let I be a generalized rectangle in \mathbb{R}^n and let the function $f: I \to \mathbb{R}$ be integrable. Denote the interior of I by D. Show that the restriction $f: D \to \mathbb{R}$ is integrable and that $\int_I f = \int_D f$.

Let \hat{f} be the zero extension of f. On D, $U(\hat{f}, P_k) - L(\hat{f}, P_k) = U(f, P_k) - L(f, P_k)$. Therefore, $\lim_{k\to\infty}[U(\hat{f}, P_k) - L(\hat{f}, P_k)] = \lim_{k\to\infty}[U(f, P_k) - L(f, P_k)] = 0$ and \hat{f} is integrable. D is a bounded subset of \mathbb{R}^n and $D \subset I$, so $\int_I f = \int_D \hat{f}$. We now have $f: D \to \mathbb{R}$ is integrable. From §A3, the boundary of a generalized rectangle has Jordan content 0. Therefore, $\int_I f = \int_D f + \int_{\partial D} = \int_D f$.

3 A function that is constant on a subset

Let $g: \mathbb{R}^n \to \mathbb{R}$.

3.1

Assume g is constant on an open set $\mathcal{O} \subset \mathbb{R}^n$. Prove that $g : \mathbb{R}^n \to \mathbb{R}$ is continuous at all $\mathbf{x} \in \mathcal{O}$.

Pick an $\epsilon > 0$. Because g is constant on \mathcal{O} , $g(\mathbf{x}) - g(\mathbf{y}) = 0 < \epsilon$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{O}$. Because $|g(\mathbf{x}) - g(\mathbf{y})| < \epsilon$ is always true, $\exists \delta > 0$ such that $|\mathbf{x} - \mathbf{y}| < \delta \implies |g(\mathbf{x}) - g(\mathbf{y})| < \epsilon$, and g is continuous for all $\mathbf{x} \in \mathcal{O}$.

3.2

Now, assume $g: \mathbb{R}^n \to \mathbb{R}$ is constant on an arbitrary set \mathcal{O} in \mathbb{R}^n . Is g necessarily continuous for all $\mathbf{x} \in \mathcal{O}$? Either prove this or provide a counterexample.

Let $U = (0,1) \times [-\infty,\infty] \cup (2,3) \times [-\infty,\infty]$. A constant function on this set is not continuous, because there is a gap from x=1 and x=2.

4 Closure and interior of a set of Jordan content 0

Let $S \subset \mathbb{R}^n$ have Jordan content 0.

4.1

Prove that the closure of S, cl(S), has Jordan content 0.

The boundary of a set with Jordan Content 0 has Jordan Content 0, and $\operatorname{cl}(S) = S \cup \partial S$. The union of finitely many sets with Jordan content 0 has Jordan content 0, so $\operatorname{cl}(S)$ has Jordan content 0.

4.2

Prove that $int(S) = \emptyset$.

S has Jordan content 0, so by §5, S has volume 0. $vol(S) = 0 \implies int(S) = \emptyset$. \square

5 Jordan content 0 versus volume 0

Let A be a bounded subset of \mathbb{R}^n . Prove that A has Jordan content zero if and only if A has volume and vol(A) = 0.

Assume A has Jordan content 0. That means there exists a finite set of rectangles R_i such that $A \subset \bigcup R_i$ and $\operatorname{vol}(\bigcup R_i) < \epsilon$ for all $\epsilon > 0$. Hence $\operatorname{vol}(A) \mid \epsilon$ for all $\epsilon \Longrightarrow \operatorname{vol}(A) = 0$. \square

Assume A has volume 0. By definition, $\operatorname{vol}(A) = \int_A 1_A = \int_I \hat{1}_A$, where $1_A : A \to \mathbb{R}$ is constant with value 1 on A. Let $f = \hat{1}_A$. By hypothesis, $\int_I f$ is integrable and $\int_I f = 0$. Assume $\epsilon > 0$. Because f is integrable on I, by Riemann, there must exist a partition P of I such that $\operatorname{Osc}(f,P) < \epsilon \implies \sum_{J \in P} (M_J(f) - m_J(f)) \operatorname{vol}(J) < \epsilon$. This defines a summation of finitely many generalized rectangles that cover A with volume less than ϵ . Therefore A has Jordan content 0. \square