Introduction to Data Science a Learn everything about analytics

In the previous video

- How to calculate probabilities
- Calculated probabilities for getting an 8 on a pair of dice

Learn everything about analytics

In this video

Graphically represent probabilities

Sum on the dice	Frequency of occuring	Probability
2	1	1/36
3	2	2/36
4	3	3/36
5	4	4/36
6	5	5/36
7	6	6/36
8	5	5/36
9	4	4/36
10	3	3/36
11	2	2/36
12	1	1/36

Analytics Vidhya

-arn everything about analytics

Representing Probabilities Graphically

Probability Mass Function

Events with just two outcomes

- Toss of a coin heads and tails
- The outcome of a fight between two people win and loss

Bernoulli Trials

- An experiment which has exactly two outcomes
- Probability distribution of the number of successes in n Bernoulli trials is known as a Binomial distribution

Analytics Vidhya

Learn everything about analytics

Bernoulli Trials

 Suppose your favorite football team is playing against a weaker team. Chances for your team to win are 75% while for the other team are 25%. Your team wins the series if they win more games out of 5. Figure out the probability of your team winning the series.

Learn everything about analytics

Bernoulli Trials

$$P(X-2) = 5C_{2}(0.75)^{2}(0.25)^{3} = 0.088$$

$$P(X-3)_{2}^{5}C_{3}(0.75)^{3}(0.15)^{2} = 0.264$$

$$I(X=4)_{2}^{5}5C_{4}(0.75)^{4}(0.25)^{2} = 0.395$$

$$P(X=5) = 5C_{5}(0.75)^{5}(0.25)^{2} = 0.237$$

Probability Mass Function

ya

p = q = 0.5

ya

