Teoria ed Elaborazione dei Segnali - Appello 29 giugno 2023

(1) 1a RISPOSTA MULTIPLA Una sola alternativa

Si consideri una funzione x(t) continua in t e che rappresenta un segnale deterministico reale ad energia finita e non nulla. Quale delle seguenti affermazioni è vera?

a.
$$\int_{-\infty}^{+\infty} x(t-t_1) \cdot \delta(t-t_2) dt = x(t_1-t_2)$$

b.
$$\int_{-\infty}^{+\infty} x(t-t_1) \cdot \delta(t-t_2) dt = x(t_2-t_1) \cdot \delta(t-t_2)$$

c.
$$\int_{-\infty}^{+\infty} x(t-t_1) \cdot \delta(t-t_2) dt = x(t_2-t_1) \cdot \delta(t-t_2) dt$$

d.
$$\int_{-\infty}^{+\infty} x(t-t_1) \cdot \delta(t-t_2) dt = x(t_2-t_1)$$

SOLUZIONE Grazie alle proprietà della funzione δ di Dirac (si vedano anche le lezioni relative al teorema del campionamento), la risposta corretta è la seguente: $\int_{-\infty}^{+\infty} x(t-t_1) \cdot \delta(t-t_2) dt = x(t_2-t_1)$

(2) 1b RISPOSTA MULTIPLA Una sola alternativa

Si consideri una funzione x(t) continua in t e che rappresenta un segnale deterministico reale ad energia finita e non nulla. Quale delle seguenti affermazioni è vera?

a.
$$x(t-t_1) \cdot \delta(t-t_2) = x(t_1-t_2)$$

b.
$$x(t-t_1) \cdot \delta(t-t_2) = x(t_2-t_1) \cdot \delta(t-t_2)$$

c.
$$x(t-t_1) \cdot \delta(t-t_2) = x(t-t_1-t_2)$$

d.
$$x(t-t_1) \cdot \delta(t-t_2) = x(t_2-t_1)$$

SOLUZIONE Grazie alle proprietà della funzione δ di Dirac (si vedano anche le lezioni relative al teorema del campionamento), la risposta corretta è la seguente: $x(t-t_1) \cdot \delta(t-t_2)dt = x(t_2-t_1) \cdot \delta(t-t_2)$

(3) 2a RISPOSTA MULTIPLA Una sola alternativa

Si consideri un processo casuale x(t). Dire quale delle seguenti affermazioni è vera.

- a. x(t) è detto "ergodico" se le sue realizzazioni sono costanti nel tempo.
- b. se il processo è stazionario in senso stretto, la funzione di autocorrelazione dipende da una singola variabile temporale.
- c. x(t) è detto "quasi determinato" se le sue realizzazioni sono costanti nel tempo
- d. dato un processo casuale x(t), la densitè spettrale di potenza è reale solo se il processo casuale x(t) assume valori reali.

SOLUZIONE La risposta corretta è questa: "se il processo è stazionario in senso stretto, la funzione di autocorrelazione dipende da una singola variabile temporale." in quanto i processi WSS hanno proprio come caratteristica il fatto che $R_x(t_1, t_2)$ dipenda solo da $\tau = t_2 - t_1$. Le altre risposte sono sbagliate, in quanto:

- x(t) è detto "quasi determinato" se si tratta di un processo casuale con un'espressione analitica che dipende solo dal tempo e da variabili casuali, e questo non implica nessuna condizione rispetto al tempo.
- x(t) è detto "ergodico" se le medie di insieme e quelle temporali sono uguali, e anche in questo caso ció non implica nessuna condizione in x(t) rispetto al tempo.
- la densitè spettrale di potenza di un processo casuale è sempre una funzione reale, indipendentemente dalle caratteristiche del processo casuale x(t)

(4) 2b RISPOSTA MULTIPLA Una sola alternativa

Si consideri un processo casuale x(t). Dire quale delle seguenti affermazioni è vera.

- a. x(t) è detto "ergodico" se le sue realizzazioni sono costanti nel tempo.
- b. la densitè spettrale di potenza è sempre pari in f qualunque sia la tipologia di processo casuale x(t).
- c. affinchè x(t) possa essere ergodico, le medie temporali devono assumere lo stesso valore per tutte le realizzazioni.
- d. x(t) è detto stazionario solo se le sue realizzazioni sono costanti nel tempo

La risposta corretta è questa: "affinchè x(t) possa essere ergodico, le medie temporali devono assumere lo stesso valore per tutte le realizzazioni" in quanto per i processi ergodici le medie di insieme e quelle temporali devono coincidere, e da ciò consegue il fatto che le una determinata media temporale deve avere un valore costante su tutte le realizzazioni. Le altre risposte sono sbagliate, in quanto:

- la condizione x(t) stazionario non implica necessariamente che le sue realizzazioni siano costanti nel tempo, ma solo che le medie di insieme abbiano determinate condizioni di regolarità nel tempo
- x(t) è detto "ergodico" se le medie di insieme e quelle temporali sono uguali, e questo non implica che le sue realizzazioni siano costanti nel tempo

• la densitè spettrale di potenza di un processo casuale può non essere pari se il processo casuale x(t) è complesso

(5) 3a Risposta multipla Una sola alternativa

Si considerino i seguenti due segnali a tempo discreto: $x_1[n]$ che assume valori strettamente non nulli solo per $n \in [2,5]$ e $x_2[n]$ che assume valori strettamente non nulli solo per $n \in [6, 9]$. Entrambi i segnali sono invece strettamente nulli al di fuori degli intervalli specificati. Sia y[n] il segnale che risulta dalla convoluzione lineare tra $x_1[n]$ e $x_2[n]$. Dire quali delle seguenti affermazioni è vera:

- a. y[n] assume (al massimo) 8 valori non nulli
- b. y[n] assume (al massimo) 7 valori non nulli
- c. y[n] assume (al massimo) 6 valori non nulli
- d. y[n] è certamente non nullo per n=1

SOLUZIONE I due segnali discreti hanno entrambi supporto temporale strettamente limitato, in particolare $x_1[n]$ e $x_2[n]$ hanno entrambi quattro valori non nulli. Il risultato della convoluzione lineare avrà dunque un supporto dato dalla somma dei due supporti meno uno, e dunque si estenderà (al massimo) su un supporto pari a sette. La risposta corretta è dunque "y[n] assume (al massimo) 6 valori non nulli".

La risposta "y[n] è certamente non nullo per n=1" è anch'essa sbagliata, in quanto risulta evidente che in n=1 i due segnali (opportunamente shiftati come richiesto dalla costruzione grafica della convoluzione) non si sovrappongono temporalmente.

(6) 3b RISPOSTA MULTIPLA Una sola alternativa

Si considerino i seguenti due segnali a tempo discreto: $x_1[n]$ che assume valori strettamente non nulli solo per $n \in [2,3]$ e $x_2[n]$ che assume valori strettamente non nulli solo per $n \in [7, 9]$. Entrambi i segnali sono invece strettamente nulli al di fuori degli intervalli specificati. Sia y[n] il segnale che risulta dalla convoluzione lineare tra $x_1[n]$ e $x_2[n]$. Dire quali delle seguenti affermazioni è vera:

- a. y[n] è certamente non nullo per n=0
- b. y[n] assume (al massimo) 3 valori non nulli
- c. y[n] assume (al massimo) 4 valori non nulli
- d. y[n] assume (al massimo) 5 valori non nulli

SOLUZIONE I due segnali discreti hanno entrambi supporto temporale strettamente limitato, in particolare $x_1[n]$ e $x_2[n]$ hanno rispettivamente due e tre valori non nulli. Il risultato della convoluzione lineare avrà dunque un supporto dato dalla somma dei due supporti meno uno, e dunque si estenderà (al massimo) su un supporto pari a quattro. La risposta corretta è dunque "y[n] assume (al massimo) 4 valori non nulli".

La risposta "y[n] è certamente non nullo per n=0" è anch'essa sbagliata, in quanto risulta evidente che in n=0 i due segnali (opportunamente shiftati come richiesto dalla costruzione grafica della convoluzione) non si sovrappongono temporalmente.

(7) 4a RISPOSTA MULTIPLA Una sola alternativa

Si consideri il sistema riportato nella seguente figura:

dove $x(t) = \cos(2\pi f_0 t + \phi)$, con $f_0 = \frac{1}{4T}$ e $\phi = \frac{3}{4}\pi$, e $w(t) = \operatorname{sinc}\left(\frac{t}{4T}\right)$. Calcolare lo spettro di potenza o lo spettro di energia (a seconda della tipologia del segnale) di z(t). Quale delle seguenti risposte è corretta?

- a. Lo spettro di potenza di z(f) è $G_z(f)=4T^2\left[\delta\left(f-\frac{1}{4T}\right)+\delta\left(f+\frac{1}{4T}\right)\right]$ b. Lo spettro di energia di z(f) è $S_z(f)=4T^2p_{\frac{1}{4T}}(f)$
- c. Lo spettro di energia di z(f) è $S_z(f) = 2T^2 \left[p_{\frac{1}{4T}} \left(f \frac{1}{4T} \right) + p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$ d. Lo spettro di energia di z(f) è $S_z(f) = 8T^2 \left[p_{\frac{1}{4T}} \left(f \frac{1}{4T} \right) + p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$
- e. Nessuna delle altre risposte è corretta
- f. Lo spettro di potenza di z(f) è $G_z(f)=8T^2\left[\delta\left(f-\frac{1}{4T}\right)-\delta\left(f+\frac{1}{4T}\right)\right]$

SOLUZIONE

I segnali y(t) e x(t) sono legati dalla relazione:

$$y(t) = x(t) + x(t - T)$$

Il sistema tra x(t) e y(t) è LTI, con risposta all'impulso reale:

$$h(t) = \delta(t) + \delta(t - T)$$

La risposta del sistema ad un ingresso sinusoidale è quindi a sua volta una sinusoide:

$$y(t) = |H(f_0)| \cos(2\pi f_0 t + \phi + \arg\{H(f_0)\})$$

La funzione di trasferimento del sistema (trasformata di Fourier della risposta all'impulso) vale:

$$H(f) = 1 + \mathrm{e}^{-j2\pi fT} = \mathrm{e}^{-j\pi fT} \left(\mathrm{e}^{j2\pi fT} + \mathrm{e}^{-j2\pi fT} \right) = 2\mathrm{e}^{-j\pi fT} \cos\left(\pi fT\right)$$

Calcolata in $f_0 = \frac{1}{4T}$:

$$H(f_0) = 2e^{-j\pi/4}\cos\left(\frac{\pi}{4}\right) = \sqrt{2}e^{-j\pi/4}$$

 $H(f_0)$ ha quindi modulo pari a $\sqrt{2}$ e fase pari a $-\pi/4$:

$$y(t) = \sqrt{2}\cos\left(\frac{\pi}{2T}t + \frac{3}{4}\pi - \frac{\pi}{4}\right) = \sqrt{2}\cos\left(\frac{\pi}{2T}t + \frac{\pi}{2}\right) = -\sqrt{2}\sin\left(\frac{\pi}{2T}t\right)$$

In alternativa, si poteva cacolare y(t) sostituendo x(t) in y(t) = x(t) + x(t-T):

$$y(t) = \cos(2\pi f_0 t + \phi) + \cos(2\pi f_0 (t - T) + \phi)$$

e applicando la formula (disponibile nel formulario) $\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$:

$$y(t) = 2\cos(2\pi f_0 t - \pi f_0 T + \phi)\cos(\pi f_0 T) = 2\cos\left(2\pi \frac{1}{4T}t - \pi \frac{1}{4T}T + \frac{3}{4}\pi\right)\cos\left(\pi \frac{1}{4T}T\right)$$
$$= 2\cos\left(\frac{\pi}{2T}t - \frac{\pi}{4} + \frac{3}{4}\pi\right)\cos\left(\frac{\pi}{4}\right) = 2\cos\left(\frac{\pi}{2T}t + \frac{\pi}{2}\right)\frac{\sqrt{2}}{2} = -\sqrt{2}\sin\left(\frac{\pi}{2T}t\right)$$

Il segnale $z(t) = y(t) \cdot w(t) = -\sqrt{2} \sin\left(\frac{\pi}{2T}t\right) \operatorname{sinc}\left(\frac{t}{4T}\right)$ è un segnale ad energia finita, con trasformata di Fourier pari a:

$$Z(f) = -\frac{\sqrt{2}}{2\jmath} \left[\delta \left(f - \frac{1}{4T} \right) - \delta \left(f + \frac{1}{4T} \right) \right] * 4Tp_{\frac{1}{4T}}(f) = 2\jmath\sqrt{2}T \left[p_{\frac{1}{4T}} \left(f - \frac{1}{4T} \right) - p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$$

Le due porte sono separate spettralmente. Lo spettro di energia vale quindi:

$$S_z(f) = |Z(f)|^2 = 8T^2 \left[p_{\frac{1}{4T}} \left(f - \frac{1}{4T} \right) + p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$$

(8) 4b RISPOSTA MULTIPLA Una sola alternativa

Si consideri il sistema riportato nella seguente figura:

dove $x(t) = \cos(2\pi f_0 t + \phi)$, con $f_0 = \frac{1}{4T}$ e $\phi = \frac{3}{4}\pi$, e $w(t) = \frac{1}{2}\mathrm{sinc}\left(\frac{t}{4T}\right)$. Calcolare lo spettro di potenza o lo spettro di energia (a seconda della tipologia del segnale) di z(t). Quale delle seguenti risposte è corretta?

- a. Lo spettro di potenza di z(f) è $G_z(f)=4T^2\left[\delta\left(f-\frac{1}{4T}\right)-\delta\left(f+\frac{1}{4T}\right)\right]$ b. Lo spettro di energia di z(f) è $S_z(f)=4T^2p_{\frac{1}{4T}}(f)$
- c. Nessuna delle altre risposte è corretta
- d. Lo spettro di energia di z(f) è $S_z(f)=8T^2\left[p_{\frac{1}{4T}}\left(f-\frac{1}{4T}\right)+p_{\frac{1}{4T}}\left(f+\frac{1}{4T}\right)\right]$
- e. Lo spettro di energia di z(f) è $S_z(f)=2T^2\left[p_{\frac{1}{4T}}\left(f-\frac{1}{4T}\right)+p_{\frac{1}{4T}}\left(f+\frac{1}{4T}\right)\right]$

f. Lo spettro di potenza di z(f) è $G_z(f) = 2T^2 \left[\delta\left(f - \frac{1}{4T}\right) + \delta\left(f + \frac{1}{4T}\right)\right]$

SOLUZIONE

I segnali y(t) e x(t) sono legati dalla relazione:

$$y(t) = x(t) - x(t - T)$$

Il sistema tra x(t) e y(t) è LTI, con risposta all'impulso reale:

$$h(t) = \delta(t) - \delta(t - T)$$

La risposta del sistema ad un ingresso sinusoidale è quindi a sua volta una sinusoide:

$$y(t) = |H(f_0)| \cos(2\pi f_0 t + \phi + \arg\{H(f_0)\})$$

La funzione di trasferimento del sistema (trasformata di Fourier della risposta all'impulso) vale:

$$H(f) = 1 - e^{-j2\pi fT} = e^{-j\pi fT} \left(e^{j2\pi fT} - e^{-j2\pi fT} \right) = 2je^{-j\pi fT} \sin(\pi fT)$$

Calcolata in $f_0 = \frac{1}{4T}$:

$$H(f_0) = 2je^{-j\pi/4}\sin\left(\frac{\pi}{4}\right) = \sqrt{2}e^{j3\pi/4}$$

 $H(f_0)$ ha quindi modulo pari a $\sqrt{2}$ e fase pari a $3\pi/4$:

$$y(t) = \sqrt{2}\cos\left(\frac{\pi}{2T}t + \frac{3}{4}\pi + \frac{\pi}{4}\right) = \sqrt{2}\cos\left(\frac{\pi}{2T}t + \pi\right) = -\sqrt{2}\cos\left(\frac{\pi}{2T}t\right)$$

In alternativa, si poteva cacolare y(t) sostituendo x(t) in y(t) = x(t) - x(t-T):

$$y(t) = \cos(2\pi f_0 t + \phi) - \cos(2\pi f_0 (t - T) + \phi)$$

e applicando la formula (disponibile nel formulario) $\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$:

$$y(t) = -2\sin(2\pi f_0 t - \pi f_0 T + \phi)\sin(\pi f_0 T) = -2\sin\left(2\pi \frac{1}{4T}t - \pi \frac{1}{4T}T + \frac{3}{4}\pi\right)\sin\left(\pi \frac{1}{4T}T\right)$$
$$= -2\sin\left(\frac{\pi}{2T}t - \frac{\pi}{4} + \frac{3}{4}\pi\right)\sin\left(\frac{\pi}{4}\right) = -2\sin\left(\frac{\pi}{2T}t + \frac{\pi}{2}\right)\frac{\sqrt{2}}{2} = -\sqrt{2}\cos\left(\frac{\pi}{2T}t\right)$$

Il segnale $z(t) = y(t) \cdot w(t) = -\sqrt{2}\cos\left(\frac{\pi}{2T}t\right)\frac{1}{2}\mathrm{sinc}\left(\frac{t}{4T}\right)$ è un segnale ad energia finita, con trasformata di Fourier pari

$$Z(f) = -\frac{\sqrt{2}}{4} \left[\delta \left(f - \frac{1}{4T} \right) + \delta \left(f + \frac{1}{4T} \right) \right] * 4Tp_{\frac{1}{4T}}(f) = \sqrt{2}T \left[p_{\frac{1}{4T}} \left(f - \frac{1}{4T} \right) + p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$$

Le due porte sono separate spettralmente. Lo spettro di energia vale quindi

$$S_z(f) = |Z(f)|^2 = 2T^2 \left[p_{\frac{1}{4T}} \left(f - \frac{1}{4T} \right) + p_{\frac{1}{4T}} \left(f + \frac{1}{4T} \right) \right]$$

(9) 5a RISPOSTA MULTIPLA Una sola alternativa

Si consideri il segnale

$$x(t) = 2\sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{4}{T}(t - nT)\right).$$

Il segnale x(t) viene filtrato da un sistema LTI con funzione di trasferimento

$$H(f) = \begin{cases} 1 & \text{se } |f| < \frac{9}{4T} \\ 0 & \text{altrove} \end{cases}$$

per ottenere il segnale di uscita y(t) che vale:

a.
$$y(t) = \frac{1}{2}\cos\left(\frac{4\pi}{T}t\right) + \cos\left(\frac{2\pi}{T}t\right)$$

b. $y(t) = \frac{1}{2} + \frac{1}{2}\cos\left(\frac{2\pi}{T}t\right)$
c. $y(t) = \frac{1}{2} + \cos\left(\frac{2\pi}{T}t\right) + \frac{1}{4}\cos\left(\frac{4\pi}{T}t\right)$
d. $y(t) = \frac{1}{2} + \frac{3}{4}\cos\left(\frac{2\pi}{T}t\right) + \frac{1}{2}\cos\left(\frac{4\pi}{T}t\right)$
e. $y(t) = \frac{1}{2}\sum_{n=-\infty}^{+\infty}\cos\left(\frac{2n\pi}{T}t\right)$

b
$$u(t) = \frac{1}{2} + \frac{1}{2} \cos{(\frac{2\pi}{2}t)}$$

c.
$$u(t) = \frac{1}{2} + \cos(\frac{2\pi}{2}t) + \frac{1}{2}\cos(\frac{4\pi}{2}t)$$

d.
$$y(t) = \frac{1}{2} + \frac{3}{2}\cos(\frac{2\pi}{2}t) + \frac{1}{2}\cos(\frac{4\pi}{2}t)$$

e.
$$y(t) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} \cos(\frac{2n\pi}{T}t)$$

f.
$$y(t) = 0 \ \forall t$$

SOLUZIONE Il segnale periodico x(t) ha come trasformata

$$X(f) = 2\frac{T}{4}\operatorname{tri}\left(\frac{T}{4}f\right) \cdot \frac{1}{T} \sum_{n = -\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right) = \frac{1}{2} \sum_{n = -\infty}^{+\infty} \operatorname{tri}\left(\frac{n}{4}\right) \cdot \delta\left(f - \frac{n}{T}\right)$$

Poiché H(f) é un filtro passabasso che annulla tutte le componenti per $|f|>\frac{9}{4T}$ restano in uscita solo le delta per n=-2,-1,0,1,2da cui

$$Y(f) = \frac{1}{2} \left[\delta(f) + \operatorname{tri}\left(\frac{1}{4}\right) \delta\left(f - \frac{1}{T}\right) + \operatorname{tri}\left(-\frac{1}{4}\right) \delta\left(f + \frac{1}{T}\right) + \operatorname{tri}\left(\frac{1}{2}\right) \delta\left(f - \frac{2}{T}\right) + \operatorname{tri}\left(-\frac{1}{2}\right) \delta\left(f + \frac{2}{T}\right) \right] \right]$$

Siccome tri $\left(\frac{1}{4}\right)$ = tri $\left(-\frac{1}{4}\right)$ = $\frac{3}{4}$ e tri $\left(\frac{1}{2}\right)$ = tri $\left(-\frac{1}{2}\right)$ = $\frac{1}{2}$:

$$y(t) = \frac{1}{2} + \frac{1}{2} \frac{3}{4} \cdot 2\cos\left(\frac{2\pi}{T}t\right) + \frac{1}{2} \frac{1}{2} \cdot 2\cos\left(\frac{4\pi}{T}t\right) = \frac{1}{2} + \frac{3}{4}\cos\left(\frac{2\pi}{T}t\right) + \frac{1}{2}\cos\left(\frac{4\pi}{T}t\right)$$

(10) **5b** RISPOSTA MULTIPLA Una sola alternativa

Si consideri il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2} \left(\frac{2}{T} (t - nT) \right).$$

Il segnale x(t) viene filtrato da un sistema LTI con funzione di trasferimento

$$H(f) = \begin{cases} 1 & \text{se } |f| < \frac{5}{4T} \\ 0 & \text{altrove} \end{cases}$$

per ottenere il segnale di uscita y(t) che vale:

a.
$$y(t) = \frac{1}{2} + \frac{1}{2}\cos(\frac{2\pi}{T}t)$$

a.
$$y(t) = \frac{1}{2} + \frac{1}{2}\cos\left(\frac{2\pi}{T}t\right)$$

b. $y(t) = \frac{1}{2} + \frac{3}{4}\cos\left(\frac{2\pi}{T}t\right) + \frac{1}{2}\cos\left(\frac{4\pi}{T}t\right)$
c. $y(t) = 0 \ \forall t$
d. $y(t) = \sum_{n=-\infty}^{+\infty}\cos\left(\frac{2n\pi}{T}t\right)$
e. $y(t) = \frac{1}{2}\cos\left(\frac{4\pi}{T}t\right)$
f. $y(t) = \frac{1}{2} + \frac{1}{4}\cos\left(\frac{4\pi}{T}t\right)$

c.
$$y(t) = \overline{0} \ \forall t$$

d.
$$y(t) = \sum_{n=-\infty}^{+\infty} \cos\left(\frac{2n\pi}{T}t\right)$$

e.
$$y(t) = \frac{1}{2} \cos\left(\frac{4\pi}{T}t\right)$$

f.
$$y(t) = \frac{1}{2} + \frac{1}{4} \cos(\frac{4\pi}{T}t)$$

SOLUZIONE Il segnale periodico x(t) ha come trasformata

$$X(f) = \frac{T}{2} \operatorname{tri}\left(\frac{T}{2}f\right) \cdot \frac{1}{T} \sum_{n = -\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right) = \frac{1}{2} \sum_{n = -\infty}^{+\infty} \operatorname{tri}\left(\frac{n}{2}\right) \cdot \delta\left(f - \frac{n}{T}\right)$$

Poiché H(f) é un filtro passabasso che annulla tutte le componenti per $|f|>\frac{5}{4T}$ restano in uscita solo le delta per n = -1, 0, 1 da cui

$$Y(f) = \frac{1}{2} \left[\delta(f) + \operatorname{tri}\left(\frac{1}{2}\right) \delta\left(f - \frac{1}{T}\right) + \operatorname{tri}\left(-\frac{1}{2}\right) \delta\left(f + \frac{1}{T}\right) \right]$$

Siccome tri $\left(\frac{1}{2}\right) = \operatorname{tri}\left(-\frac{1}{2}\right) = \frac{1}{2}$:

$$y(t) = \frac{1}{2} + \frac{1}{2}\frac{1}{2} \cdot 2\cos\left(\frac{2\pi}{T}t\right) = \frac{1}{2} + \frac{1}{2}\cos\left(\frac{2\pi}{T}t\right)$$

(11) 6a RISPOSTA MULTIPLA Una sola alternativa

Si consideri il segnale a tempo continuo $y(t) = 2x^2(t-1)\cos(\pi B_x t)$, in cui x(t) ha uno spettro X(f) a banda limitata,

$$X(f) \begin{cases} \neq 0, & \text{if } |f| < B_x \\ = 0, & \text{if } |f| > B_x \end{cases}$$

La minima frequenza di campionamento f_s (frequenza di Nyquist) che permette la perfetta ricostruzione di y(t) a partire dai suoi campioni vale

a.
$$f_s = 2B_x$$

b. $f_s = 5B_x$

b.
$$f_s = 5B_s$$

c.
$$f_s = 4B_x$$

d.
$$f_s = 7B_x$$

e. nessuna delle altre risposte

SOLUZIONE

La trasformata di fourier di $w(t) = x^2(t) = x(t) \cdot x(t)$ è pari a W(f) = X(f) * X(f). Siccome il supporto della convoluzione tra due segnali è pari alla somma dei supporti, la banda di W(f) è uguale a $2B_x$. Un ritardo temporale non influisce sulla banda del segnale, quindi anche la banda di $z(t) = w(t-1) = x^2(t-1)$ è uguale a $2B_x$.

La trasformata di Fourier di y(t) vale:

$$Y(f) = 2Z(f) * \frac{1}{2} \left[\delta \left(f - \frac{1}{2} B_x \right) + \delta \left(f + \frac{1}{2} B_x \right) \right] = Z \left(f - \frac{1}{2} B_x \right) + Z \left(f + \frac{1}{2} B_x \right)$$

La massima frequenza di Y(f) è $f_{max} = 2B_x + \frac{1}{2}B_x = \frac{5}{2}B_x$, da cui $f_s = 2f_{max} = 5B_x$.

Si consideri il segnale a tempo continuo $y(t) = \frac{1}{2}x^2(t+1)\cos(3\pi B_x t)$, in cui x(t) ha uno spettro X(f) a banda limitata,

$$X(f) \begin{cases} \neq 0, & \text{if } |f| < B_x \\ = 0, & \text{if } |f| > B_x \end{cases}$$

La minima frequenza di campionamento f_s (frequenza di Nyquist) che permette la perfetta ricostruzione di y(t) a partire dai suoi campioni vale

a.
$$f_s = 10B_x$$

b. Nessuna delle altre risposte

c.
$$f_s = 3B_x$$

$$d. f_s = 7B_x$$

e.
$$f_s = 5B_x$$

SOLUZIONE

La trasformata di fourier di $w(t) = x^2(t) = x(t) \cdot x(t)$ è pari a W(f) = X(f) * X(f). Siccome il supporto della convoluzione tra due segnali è pari alla somma dei supporti, la banda di W(f) è uguale a $2B_x$. Un ritardo temporale non influisce sulla banda del segnale, quindi anche la banda di $z(t) = w(t+1) = x^2(t+1)$ è uguale a $2B_x$.

La trasformata di Fourier di y(t) vale:

$$Y(f) = \frac{1}{2}Z(f) * \frac{1}{2}\left[\delta\left(f - \frac{3}{2}B_x\right) + \delta\left(f + \frac{3}{2}B_x\right)\right] = \frac{1}{4}Z\left(f - \frac{3}{2}B_x\right) + Z\left(f + \frac{3}{2}B_x\right)$$

La massima frequenza di Y(f) è $f_{max} = 2B_x + \frac{3}{2}B_x = \frac{7}{2}B_x$, da cui $f_s = 2f_{max} = 7B_x$.

Un sistema LTI a tempo discreto è descritto dalla seguente relazione ingresso/uscita:

$$y(n) = x(n) + \frac{1}{2}x(n-1) + \frac{1}{4}y(n-2)$$

Quanto vale il modulo della funzione di trasferimento $H(e^{j2\pi f})$ del sistema?

a.
$$H(e^{j2\pi f})$$
 non esiste

a.
$$H(e^{j2\pi f})$$
 non esiste
b. $|H(e^{j2\pi f})| = \sqrt{\frac{5+4\cos(2\pi f)}{5+4\cos(4\pi f)}}$
c. $|H(e^{j2\pi f})| = \frac{2}{\sqrt{5+4\cos(2\pi f)}}$
d. $|H(e^{j2\pi f})| = \frac{2}{\sqrt{5-4\cos(2\pi f)}}$
e. Nessuna delle altre risposte è corretta
f. $|H(e^{j2\pi f})| = \sqrt{\frac{5+4\cos(2\pi f)}{5-4\cos(4\pi f)}}$

c.
$$|H(e^{j2\pi f})| = \frac{2}{\sqrt{5+4\cos(2\pi f)}}$$

d.
$$|H(e^{j2\pi f})| = \frac{2}{\sqrt{5-4\cos(2\pi f)}}$$

f.
$$|H(e^{j2\pi f})| = \sqrt{\frac{5+4\cos(2\pi f)}{5-4\cos(4\pi f)}}$$

SOLUZIONE La trasformata zeta della relazione ingresso uscita vale:

$$Y(z) = X(z) + \frac{1}{2}X(z)z^{-1} + \frac{1}{4}Y(z)z^{-2}$$

Quindi:

$$Y(z) - \frac{1}{4}Y(z)z^{-2} = X(z) + \frac{1}{2}X(z)z^{-1}$$

$$\begin{split} Y(z)\left[1-\frac{1}{4}z^{-2}\right] &= X(z)\left[1+\frac{1}{2}z^{-1}\right] \\ H(z) &= \frac{Y(z)}{X(z)} = \frac{1+\frac{1}{2}z^{-1}}{1-\frac{1}{4}z^{-2}} = \frac{1+\frac{1}{2}z^{-1}}{\left(1-\frac{1}{2}z^{-1}\right)\left(1+\frac{1}{2}z^{-1}\right)} = \frac{1}{1-\frac{1}{2}z^{-1}} \end{split}$$

Siccome $H(e^{j2\pi f}) = H(z)|_{z=e^{j2\pi f}}$:

$$H(e^{j2\pi f}) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi f}}$$

Il suo modulo quadro vale:

$$|H(e^{j2\pi f})|^2 = H(e^{j2\pi f}) \cdot H^*(e^{j2\pi f}) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi f}} \cdot \frac{1}{1 - \frac{1}{2}e^{j2\pi f}} =$$

$$= \frac{1}{1 - \frac{1}{2}e^{-j2\pi f} - \frac{1}{2}e^{j2\pi f} + \frac{1}{4}} = \frac{1}{\frac{5}{4} - \cos(2\pi f)} = \frac{4}{5 - 4\cos(2\pi f)}$$

La risposta corretta è quindi:

$$|H({\rm e}^{\jmath 2\pi f})| = \frac{2}{\sqrt{5 + 4\cos(2\pi f)}}$$

(14) 7b RISPOSTA MULTIPLA Una sola alternativa

Un sistema LTI a tempo discreto è descritto dalla seguente relazione ingresso/uscita:

$$y(n) = x(n) - \frac{1}{2}x(n-1) + \frac{1}{4}y(n-2)$$

Quanto vale il modulo della funzione di trasferimento $H(e^{j2\pi f})$ del sistema?

a.
$$|H(e^{j2\pi f})| = \frac{2}{\sqrt{5-4\cos(2\pi f)}}$$

b. $|H(e^{j2\pi f})| = \sqrt{\frac{5-4\cos(2\pi f)}{5+4\cos(4\pi f)}}$
c. $|H(e^{j2\pi f})| = \sqrt{\frac{5-4\cos(2\pi f)}{5-4\cos(4\pi f)}}$
d. $|H(e^{j2\pi f})| = \frac{2}{\sqrt{5+4\cos(2\pi f)}}$

b.
$$|H(e^{j2\pi f})| = \sqrt{\frac{5 - 4\cos(2\pi f)}{5 + 4\cos(4\pi f)}}$$

c.
$$|H(e^{j2\pi f})| = \sqrt{\frac{5-4\cos(2\pi f)}{5-4\cos(4\pi f)}}$$

d.
$$|H(e^{j2\pi f})| = \frac{2}{\sqrt{5+4\cos(2\pi f)}}$$

e. Nessuna delle altre risposte è corretta

f.
$$H(e^{j2\pi f})$$
 non esiste

SOLUZIONE La trasformata zeta della relazione ingresso uscita vale:

$$Y(z) = X(z) - \frac{1}{2}X(z)z^{-1} + \frac{1}{4}Y(z)z^{-2}$$

Quindi:

$$Y(z) - \frac{1}{4}Y(z)z^{-2} = X(z) - \frac{1}{2}X(z)z^{-1}$$

$$Y(z) \left[1 - \frac{1}{4}z^{-2}\right] = X(z) \left[1 - \frac{1}{2}z^{-1}\right]$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{1}{4}z^{-2}} = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1}\right)} = \frac{1}{1 + \frac{1}{2}z^{-1}}$$

Siccome $H(e^{j2\pi f}) = H(z)|_{z=e^{j2\pi f}}$:

$$H(e^{j2\pi f}) = \frac{1}{1 + \frac{1}{2}e^{-j2\pi f}}$$

Il suo modulo quadro vale:

$$|H(e^{j2\pi f})|^2 = H(e^{j2\pi f}) \cdot H^*(e^{j2\pi f}) = \frac{1}{1 + \frac{1}{2}e^{-j2\pi f}} \cdot \frac{1}{1 + \frac{1}{2}e^{j2\pi f}} =$$

$$= \frac{1}{1 + \frac{1}{2}e^{-j2\pi f} + \frac{1}{2}e^{j2\pi f} + \frac{1}{4}} = \frac{1}{\frac{5}{4} + \cos(2\pi f)} = \frac{4}{5 + 4\cos(2\pi f)}$$

La risposta corretta è quindi:

$$|H(e^{j2\pi f})| = \frac{2}{\sqrt{5 + 4\cos(2\pi f)}}$$

(15) 8a RISPOSTA MULTIPLA Una sola alternativa

La risposta all'impulso di un sistema numerico vale:

$$h(n) = \delta(n) + \frac{1}{3} \left(\frac{3}{4}\right)^n u(n-1)$$

All'ingresso del sistema viene inserito il segnale:

$$x(n) = \left(-\frac{1}{4}\right)^n u(n)$$

Quanto vale il segnale y(n) in uscita dal sistema?

- a. Nessuna delle altre risposte è corretta

- b. $y(n) = \frac{1}{4} \left(-\frac{1}{4}\right)^n u(n) + \frac{3}{4} \left(\frac{3}{4}\right)^n u(n)$ c. $y(n) = \frac{5}{4} \left(\frac{3}{4}\right)^n u(n) \frac{1}{4} \left(-\frac{1}{4}\right)^n u(n)$ d. $y(n) = \frac{1}{4} \left(\frac{3}{4}\right)^n u(n) + \frac{3}{4} \left(-\frac{1}{4}\right)^n u(n)$ e. $y(n) = \frac{5}{4} \left(-\frac{1}{4}\right)^n u(n) \frac{1}{4} \left(\frac{3}{4}\right)^n u(n)$

SOLUZIONE La trasformata zeta di x(n) vale:

$$X(z) = \frac{1}{1 + \frac{1}{4}z^{-1}}$$

h(n) si può scrivere come:

$$h(n) = \delta(n) + \frac{1}{3} \frac{3}{4} \left(\frac{3}{4}\right)^{n-1} u(n-1)$$

Applicando la proprietà del ritardo, si può ricavare la sua trasformata zeta

$$H(z) = 1 + \frac{1}{3} \frac{3}{4} z^{-1} \frac{1}{1 - \frac{3}{4} z^{-1}} = \frac{1 - \frac{3}{4} z^{-1} + \frac{1}{4} z^{-1}}{1 - \frac{3}{4} z^{-1}} = \frac{1 - \frac{1}{2} z^{-1}}{1 - \frac{3}{4} z^{-1}}$$

Moltiplicando X(z) e H(z) si ottiene:

$$Y(z) = X(z) \cdot H(z) = \frac{1}{1 + \frac{1}{4}z^{-1}} \cdot \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{3}{4}z^{-1}} = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{3}{4}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

Y(z) ha due poli semplici e può essere scomposta con il metodo dei residui:

$$Y(z) = \frac{R_1}{1 - \frac{3}{4}z^{-1}} + \frac{R_1}{1 + \frac{1}{4}z^{-1}}$$

con:

$$R_1 = Y(z) \cdot \left(1 - \frac{3}{4}z^{-1}\right) \Big|_{z = \frac{3}{4}} = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{4}z^{-1}} \Big|_{z = \frac{3}{2}} = \frac{1 - \frac{1}{2}\frac{4}{3}}{1 + \frac{1}{4}\frac{4}{3}} = \frac{1/3}{4/3} = \frac{1}{4}$$

$$R_2 = Y(z) \cdot \left(1 + \frac{1}{3}z^{-1}\right) \Big|_{z = -\frac{1}{4}} = \left. \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{3}{4}z^{-1}} \right|_{z = -\frac{1}{4}} = \frac{1 - \frac{1}{2}(-4)}{1 - \frac{3}{4}(-4)} = \frac{3}{4}$$

Antitrasformando:

$$y(n) = \frac{1}{4} \left(\frac{3}{4}\right)^n u(n) + \frac{3}{4} \left(-\frac{1}{4}\right)^n u(n)$$

(16) 8b RISPOSTA MULTIPLA Una sola alternativa

La risposta all'impulso di un sistema numerico vale:

$$h(n) = \delta(n) + \frac{5}{3} \left(\frac{3}{4}\right)^n u(n-1)$$

All'ingresso del sistema viene inserito il segnale:

$$x(n) = \left(-\frac{1}{4}\right)^n u(n)$$

Quanto vale il segnale y(n) in uscita dal sistema?

a.
$$y(n) = \frac{5}{4} \left(\frac{3}{4}\right)^n u(n) - \frac{1}{4} \left(-\frac{1}{4}\right)^n u(n)$$

b.
$$y(n) = \frac{1}{4} \left(-\frac{1}{4} \right)^n u(n) + \frac{3}{4} \left(\frac{3}{4} \right)^n u(n)$$

c. $y(n) = \frac{5}{4} \left(-\frac{1}{4} \right)^n u(n) - \frac{1}{4} \left(\frac{3}{4} \right)^n u(n)$
d. Nessuna delle altre risposte è corretta
e. $y(n) = \frac{1}{4} \left(\frac{3}{4} \right)^n u(n) + \frac{3}{4} \left(-\frac{1}{4} \right)^n u(n)$

c.
$$y(n) = \frac{5}{4} \left(-\frac{1}{4}\right)^n u(n) - \frac{1}{4} \left(\frac{3}{4}\right)^n u(n)$$

e.
$$y(n) = \frac{1}{4} \left(\frac{3}{4}\right)^n u(n) + \frac{3}{4} \left(-\frac{1}{4}\right)^n u(n)$$

SOLUZIONE La trasformata zeta di x(n) vale:

$$X(z) = \frac{1}{1 + \frac{1}{4}z^{-1}}$$

h(n) si può scrivere come:

$$h(n) = \delta(n) + \frac{5}{3} \frac{3}{4} \left(\frac{3}{4}\right)^{n-1} u(n-1)$$

Applicando la proprietà del ritardo, si può ricavare la sua trasformata zeta

$$H(z) = 1 + \frac{5}{3} \frac{3}{4} z^{-1} \frac{1}{1 - \frac{3}{4} z^{-1}} = \frac{1 - \frac{3}{4} z^{-1} + \frac{5}{4} z^{-1}}{1 - \frac{3}{4} z^{-1}} = \frac{1 + \frac{1}{2} z^{-1}}{1 - \frac{3}{4} z^{-1}}$$

Moltiplicando X(z) e H(z) si ottiene:

$$Y(z) = X(z) \cdot H(z) = \frac{1}{1 + \frac{1}{4}z^{-1}} \cdot \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{3}{4}z^{-1}} = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{3}{4}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

Y(z) ha due poli semplici e può essere scomposta con il metodo dei residui:

$$Y(z) = \frac{R_1}{1 - \frac{3}{4}z^{-1}} + \frac{R_1}{1 + \frac{1}{4}z^{-1}}$$

con:

$$R_{1} = Y(z) \cdot \left(1 - \frac{3}{4}z^{-1}\right) \Big|_{z=\frac{3}{4}} = \frac{1 + \frac{1}{2}z^{-1}}{1 + \frac{1}{4}z^{-1}} \Big|_{z=\frac{3}{4}} = \frac{1 + \frac{1}{2}\frac{4}{3}}{1 + \frac{1}{4}\frac{4}{3}} = \frac{5/3}{4/3} = \frac{5}{4}$$

$$R_{2} = Y(z) \cdot \left(1 + \frac{1}{3}z^{-1}\right) \Big|_{z=-\frac{1}{2}} = \frac{1 + \frac{1}{2}z^{-1}}{1 - \frac{3}{4}z^{-1}} \Big|_{z=-\frac{1}{2}} = \frac{1 + \frac{1}{2}(-4)}{1 - \frac{3}{4}(-4)} = \frac{-1}{4} = -\frac{1}{4}$$

Antitrasformando:

$$y(n) = \frac{5}{4} \left(\frac{3}{4}\right)^n u(n) - \frac{1}{4} \left(-\frac{1}{4}\right)^n u(n)$$

(17) 9a RISPOSTA MULTIPLA Una sola alternativa

E' dato un processo casuale X(t) con densità di probabilità $f_X(x,t)$ uniforme nell'intervallo [-1,1] e autocorrelazione $R_X(t_1,t_2)=0$ se $|t_1-t_2|>T$. Calcolare la varianza di una variabile casuale ottenuta da X(t) come $Y(t_1)=t$ $X(t_1) + X(t_1 + 3T).$

- a. $\frac{1}{10}$ b. Non ci sono dati sufficienti per calcolarla
- d. E' una funzione del tempo
- e. $\frac{2}{3}$ f. $\frac{T}{2}$

SOLUZIONE

Si noti che il processo X(t) non é necessariamente WSS. Sappiamo pero che é strettamente stazionario del prim'ordine perché $f_X(x,t)$ non dipende dal tempo. La media vale

$$\mu_x = \int_{-1}^{1} \frac{1}{2} p dp = 0$$

Il valore quadratico medio vale:

$$s_x = \int_{-1}^{1} \frac{1}{2} p^2 dp = \frac{1}{3}$$

Calcoliamo

$$\sigma_V^2 = E\{Y^2(t_1)\} - E^2\{Y(t_1)\}$$

$$E{Y(t_1)} = E{X(t_1) + X(t_1 + 3T)} = E{X(t_1)} + E{X(t_1 + 3T)} = 0 + 0 = 0$$

$$E\{Y^2(t_1)\} = E\{(X(t_1) + X(t_1 + 3T))^2\} = E\{X^2(t_1)\} + E\{X^2(t_1 + 3T)\} + 2E\{X(t_1)X(t_1 + 3T)\} = 2s_x^2 + 2R_X(t_1, t_1 + 3T)$$

Sappiamo che l'ultimo termine é nullo $(|t_1 - t_2| = 3T > T)$, quinidi $\sigma_Y^2 = E\{Y^2(t_1)\} = 2 \cdot \frac{1}{3} = \frac{2}{3}$.

(18) 9b RISPOSTA MULTIPLA Una sola alternativa

> E' dato un processo casuale X(t) con densità di probabilità $f_X(x,t)$ uniforme nell'intervallo [-2,2] e autocorrelazione $R_X(t_1,t_2)=0$ se $|t_1-t_2|>T$. Calcolare la varianza di una variabile casuale ottenuta da X(t) come $Y(t_1)=t$ $X(t_1) + 2X(t_1 + 2T).$

- b. Non ci sono dati sufficienti per calcolarla
- c. E' una funzione del tempo

- e. $\frac{2T}{5}$ f. $\frac{2}{3}$

SOLUZIONE

Si noti che il processo X(t) non é necessariamente WSS. Sappiamo pero che é strettamente stazionario del prim'ordine perché $f_X(x,t)$ non dipende dal tempo. La media vale

$$\mu_x = \int_{-2}^2 \frac{1}{2} p dp = 0$$

Il valore quadratico medio vale:

$$s_x = \int_{-2}^{2} \frac{1}{4} p^2 dp = \frac{4}{3}$$

Calcoliamo

$$\sigma_Y^2 = E\{Y^2(t_1)\} - E^2\{Y(t_1)\}$$

$$E\{Y(t_1)\} = E\{X(t_1) + 2X(t_1 + 2T)\} = E\{X(t_1)\} + 2E\{X(t_1 + 2T)\} = 0 + 0 = 0$$

$$E\{Y^2(t_1)\} = E\{(X(t_1) + 2X(t_1 + 2T))^2\} = E\{X^2(t_1)\} + 4E\{X^2(t_1 + 2T)\} + 2E\{X(t_1)X(t_1 + 2T)\} = 5s_x^2 + 2R_X(t_1, t_1 + 2T)$$

Sappiamo che l'ultimo termine é nullo $(|t_1-t_2|=2T>T)$, quinidi $\sigma_V^2=E\{Y^2(t_1)\}=5\cdot\frac{4}{3}=\frac{20}{3}$.

(19) 10a RISPOSTA MULTIPLA Una sola alternativa

Si consideri un rumore gaussiano bianco n(t) ed un processo y(t) = h(t) * n(t) + n(t), dove h(t) è la risposta all'impulso di un sistema LTI stabile. Dire quale delle seguenti affermazioni è falsa.

- a. y(t) è bianco
- b. y(t) è a varianza infinita
- c. y(t) è gaussiano a valore medio nullo
- d. y(t) è stazionario

SOLUZIONE L'affermazione falsa é "y(t) è bianco." Infatti il filtraggio di n(t) tramite il filtro h(t) fa sì che lo spettro di potenza in uscita dal filtro non sia costante.

(20) 10b RISPOSTA MULTIPLA Una sola alternativa

Si consideri un rumore gaussiano bianco $n_1(t)$, un altro rumore gaussiano bianco $n_2(t)$ indipendente da $n_1(t)$ ed un processo $y(t) = h(t) * n_1(t) + n_2(t)$, dove h(t) è la risposta all'impulso di un sistema LTI stabile. Dire quale delle seguenti affermazioni è falsa.

- a. y(t) è gaussiano a valore medio nullo
- b. y(t) è a varianza infinita
- c. y(t) è stazionario
- d. $E\{y(t_1)y(t_2)\}=0 \text{ per } t_1 \neq t_2$

SOLUZIONE L'affermazione falsa é " $E\{y(t_1)y(t_2)\}=0$ per $t_1\neq t_2$.", che equivale a dire che $E\{y(t_1)y(t_2)\}=0$ $K\delta(t_2-t_1)$. Infatti il filtraggio di $n_1(t)$ tramite il filtro h(t) fa sì che l'autocrrelazione in uscita dal filtro non sia più una delta (e lo spettro di potenza in uscita non sia più costante).

Punteggio complessivo: 20