Алгебра

Сидоров Дмитрий

Группа БПМИ 219

May 20, 2022

№1

Какие значения может принимать длина убывающей (в лексикографическом порядке) цепочки одночленов от переменных x_1, x_2, x_3 , начинающейся с одночлена $x_1 x_2^3 x_3^2$ и заканчивающейся одночленом $x_1 x_2^2 x_3^3$?

Решение:

Тк цепочка начинается с одночлена $x_1x_2^3x_3^2$ и заканчивающейся одночленом $x_1x_2^2x_3^3$, то она состоит хотя бы из двух одночленов, а значит её длина не меньше 2 (например, если длина равна 2, то цепочка имеет вид $x_1x_2^3x_3^2 > x_1x_2^2x_3^3$). Теперь покажем, что длина цепочки может быть равна любому $n>2, n\in N$. Если цепочка начинается с одночлена $x_1x_2^3x_3^2$ и заканчивающейся одночленом $x_1x_2^2x_3^3$, то цепочка вида $x_1x_2^3x_3^2 > x_1x_2^2x_3^{n+1} > x_1x_2^2x_3^n > \cdots > x_1x_2^2x_3^4 > x_1x_2^2x_3^3$ удовлетворяет условию про начало и конец, является убывающей, а так же её длина равна 1+((n+1)-3+1)=n. Таким образом, длина убывающей (в лексикографическом порядке) цепочки одночленов от переменных x_1, x_2, x_3 , начинающейся с одночлена $x_1x_2^3x_3^2$ и заканчивающейся одночленом $x_1x_2^2x_3^3$ равна $n\geq 2, n\in N$.

Ответ: $n \ge 2, n \in N$

№2

Найдите остаток многочлена g относительно системы $\{f\}$, где $g=x_2^4x_3^5+2x_1x_2^4x_3+x_1^2x_2^2$, $f=x_2^4x_3-2x_1x_2x_3^2+x_1x_2^2$.

Решение:

Известно, что множество $\{f\}$ является системой Грёбнера, тк единственный S-многочлен этой системы равен 0 (факт из лекции). Значит остаток многочлена g относительно системы $\{f\}$ определён однозначно (те не зависит от порядка элементарных редукций). Заметим, что $L(f)=x_1x_2^2$. Теперь найдём остаток многочлена g относительно системы $\{f\}$:

 $g = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2 \xrightarrow{f \cdot x_1} x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2 - (x_1 x_2^4 x_3 - 2x_1^2 x_2 x_3^2 + x_1^2 x_2^2) = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 - x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 = x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 \xrightarrow{f \cdot x_2^2 x_3} x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 - (x_2^6 x_3^2 - 2x_1 x_2^3 x_3^3 + x_1 x_2^4 x_3) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^3 - x_2^6 x_3^2 + 2x_1 x_2^3 x_3^3 - (2x_2^5 x_3^4 - 4x_1 x_2^2 x_3^5 + 2x_1 x_2^3 x_3^3) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 \xrightarrow{f \cdot 4x_3^5} x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 + 4x_1 x_2^2 x_3^5 - (4x_2^4 x_3^6 - 8x_1 x_2 x_3^7 + 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 - 4x_2^4 x_3^6 + 8x_1 x_2 x_3^7 - (3x_1 x_2 x_3^4 - 4x_1 x_2^2 x_3^5) = x_2^4 x_3^5 + 2x_1 x_2 x_3^2 - x_2^6 x_$

Ответ: $x_2^4 x_3^5 + 2x_1^2 x_2 x_3^2 - x_2^6 x_3^2 - 2x_2^5 x_3^4 - 4x_2^4 x_3^6 + 8x_1 x_2 x_3^7$

№3

Выясните, является ли множество $\{f_1, f_2, f_3\}$ системой Грёбнера, где $f_1 = 2x_1x_2 + 4x_1x_3 + x_2x_3^2$, $f_2 = 4x_1x_3^2 + x_2x_3^3 - 4$, $f_3 = x_2^2x_3^3 - 4x_2 - 8x_3$.

Решение:

По критерию Бухбергера $F = \{f_1, f_2, f_3\}$ - система Грёбнера \Leftrightarrow для любых $f_1', f_2' \in F$ многочлен $S(f_1', f_2')$ редуцируем к нулю относительно F, где $S(f_1', f_2') := m_1 f_1' - m_2 f_2', \ m = \text{HOK}(L(f_1'), L(f_2')) = L(f_1') \cdot m_1 = L(f_2') \cdot m_2$. Так же заметим, что $L(f_1) = 2x_1x_2, \ L(f_2) = 4x_1x_3^2, \ L(f_3) = x_2^2x_3^3$.

Рассмотрим $S(f_1,f_2)$. $m=\mathrm{HOK}(L(f_1),L(f_2))=\mathrm{HOK}(2x_1x_2,4x_1x_3^2)=4x_1x_2x_3^2\Rightarrow m_1=2x_3^2,\ m_2=x_2\Rightarrow S(f_1,f_2)=2x_3^2(2x_1x_2+4x_1x_3+x_2x_3^2)-x_2(4x_1x_3^2+x_2x_3^3-4)=4x_1x_2x_3^2+8x_1x_3^3+2x_2x_3^4-(4x_1x_2x_3^2+x_2^2x_3^3-4x_2)=8x_1x_3^3+2x_2x_3^4-x_2^2x_3^3+4x_2\xrightarrow{f_2\cdot 2x_3} 8x_1x_3^3+2x_2x_3^4-x_2^2x_3^3+4x_2-(8x_1x_3^3+2x_2x_3^4-8x_3)=-x_2^2x_3^3+4x_2+8x_3\xrightarrow{f_3\cdot -1} -x_2^2x_3^3+4x_2+8x_3+(x_2^2x_3^3-4x_2-8x_3)=0.$ Таким образом, $S(f_1,f_2)\stackrel{F}{\leadsto} 0$.

Рассмотрим $S(f_1,f_3)$. $m=\mathrm{HOK}(L(f_1),L(f_3))=\mathrm{HOK}(2x_1x_2,x_2^2x_3^3)=2x_1x_2^2x_3^3\Rightarrow m_1=x_2x_3^3,\ m_3=2x_1\Rightarrow S(f_1,f_3)=x_2x_3^3(2x_1x_2+4x_1x_3+x_2x_3^2)-2x_1(x_2^2x_3^3-4x_2-8x_3)=4x_1x_2x_4^4+x_2^2x_3^5+8x_1x_2+16x_1x_3\xrightarrow{f_2\cdot x_2x_3^2}4x_1x_2x_4^4+x_2^2x_3^5+8x_1x_2+16x_1x_3-(4x_1x_2x_3^4+x_2^2x_3^5-4x_2x_3^2)=8x_1x_2+16x_1x_3+4x_2x_3^2\xrightarrow{f_1\cdot 4}8x_1x_2+16x_1x_3+4x_2x_3^2-(8x_1x_2+16x_1x_3+4x_2x_3^2)=0.$ Таким образом, $S(f_1,f_3)\overset{F}{\leadsto} 0$.

Рассмотрим $S(f_2,f_3)$. $m=\mathrm{HOK}(L(f_2),L(f_3))=\mathrm{HOK}(4x_1x_3^2,x_2^2x_3^3)=4x_1x_2^2x_3^3\Rightarrow m_2=x_2^2x_3,\ m_3=4x_1\Rightarrow S(f_2,f_3)=x_2^2x_3(4x_1x_3^2+x_2x_3^3-4)-4x_1(x_2^2x_3^3-4x_2-8x_3)=x_2^3x_3^4-4x_2^2x_3+16x_1x_2+32x_1x_3\xrightarrow{f_1\cdot 8}x_2^3x_3^4-4x_2^2x_3+16x_1x_2+32x_1x_3\xrightarrow{f_1\cdot 8}x_2^3x_3^4-4x_2^2x_3+16x_1x_2+32x_1x_3\xrightarrow{f_1\cdot 8}x_2^3x_3^4-4x_2^2x_3-8x_2x_3^2\xrightarrow{f_3\cdot x_2x_3}x_3^2x_3^4-4x_2^2x_3-8x_2x_3^2-(x_2^3x_3^4-4x_2^2x_3-8x_2x_3^2)=0.$ Таким образом, $S(f_2,f_3)\overset{F}{\leadsto} 0$.

Таким образом, $S(f_1,f_2), S(f_1,f_3), S(f_2,f_3)$ редуцируются к нулю относительно F. Значит $S(f_2,f_1)=-S(f_1,f_2),$ $S(f_3,f_1)=-S(f_1,f_3), S(f_3,f_2)=-S(f_2,f_3)$ тоже редуцируются к нулю относительно F. Кроме того, известно, что $S(f_1,f_1)=S(f_2,f_2)=S(f_3,f_3)=0 \stackrel{F}{\leadsto} 0$. Итого, для любых $f_1',f_2'\in F$ многочлен $S(f_1',f_2')$ редуцируем к нулю относительно F, а значит $F=\{f_1,f_2,f_3\}$ является системой Грёбнера.

Ответ: является

№4

Докажите, что множество $F \subseteq K[x] \setminus \{0\}$ является системой Грёбнера тогда и только тогда, когда существует такой многочлен $f \in F$, который делит любой многочлен из F.

Доказательство:

(те рассматриваемые многочлены являются многочленами от одной переменной), то $\mathrm{HOK}(L(f),L(g))=L(g)\Rightarrow S(f,g)=x^{m-n}\cdot f-g$. Тк f имеет минимальную степень, то можно провести редукцию только с его помощью, те, тк $S(f,g)\overset{F}{\leadsto}0$, получим, что $S(f,g)\vdots f$ (на каждом этапе из S(f,g) вычитаем $m_i\cdot f$). Итого, получим, что $x^{m-n}\cdot f-g-m_1\cdot f-m_2\cdot f-\cdots-m_k\cdot f=0\Rightarrow$ тк правая часть делится на f, то левая часть делится на f, а значит $g\vdots f$. Таким образом, любой многочлен из F (тк в F нет многочленов степени меньше степени f, тк его степень минимальна, а так же f делит многочлены, степени которых больше или равна его степени) делится на f.

Теперь докажем, что если существует такой многочлен $f \in F$, который делит любой многочлен из F, то множество $F \subseteq K[x]\backslash\{0\}$ является системой Грёбнера. По критерию Бухбергера F - система Грёбнера \Leftrightarrow для любых $f_1, f_2 \in F$ многочлен $S(f_1, f_2)$ редуцируем к нулю относительно F. Тогда для прозвольных $f_1, f_2 \in F$ известно, что они делятся на некоторый $f \in F$, и тогда $S(f_1, f_2) = m_1 \cdot f_1 - m_2 \cdot f_2$ делится на f (тк $m_1 \cdot f_1, m_2 \cdot f_2$ делятся на f). Значит $S(f_1, f_2)$ редуцируется к нулю относительно F, тк $\exists g \in K[x]\backslash\{0\}: S(f_1, f_2) = g \cdot f$ (тк $S(f_1, f_2)$ делится на f). Таким образом, тк f_1, f_2 произвольные, то F является системой Грёбнера.