

SODA 24

A brief introduction to some interesting papers

Zhiwei Ying 2024-09-11

- Edge-disjoint paths in expanders: online with removals
- Fully Dynamic Consistent k-Center Clustering

Edge-disjoint paths in expanders: online with removals

Fully Dynamic Consistent k-Center Clustering

Given a d-regular expander graph G with n vertices ((n,d)-graph), several pairs of vertices are in this graph. The goal is to find edge-disjoint paths between pairs of vertices.

Given a d-regular expander graph G with n vertices ((n,d)-graph), several pairs of vertices are in this graph. The goal is to find edge-disjoint paths between pairs of vertices.

A property on *d*-regular graph

Given a d-regular graph G and its adjacency matrix A_G , d is the maximal eigenvalue of A_G .

Given a d-regular expander graph G with n vertices ((n,d)-graph), several pairs of vertices are in this graph. The goal is to find edge-disjoint paths between pairs of vertices.

A property on *d*-regular graph

Given a d-regular graph G and its adjacency matrix A_G , d is the maximal eigenvalue of A_G .

An (n,d,λ) -graph is a d-regular graph with n vertices and the second largest absolute eigenvalue of its adjacency matrix is at most λ .

For a given $S\subseteq V(G)$, denote with $e_G(S)$ the number of edges with both endpoints in S. A (n,d)-graph is a (β,γ) -expander if $\forall S\subseteq V(G), |S|\leq \frac{n}{2}$,

$$e_G(S) \le \begin{cases} \gamma d|S|, & |S| \le \beta n\\ \frac{d|S|}{3}, & \beta n \le |S| \le \frac{n}{2} \end{cases}$$
 (1)

Settings

Given a (n,d)-graph G and $r\in\mathbb{N}$, there are 2 players: Router & Adversary. Router maintains a family of pairwise edge-disjoint paths \mathcal{P} . In each turn, there are 2 choices for the adversary. Request 1 is to find a path from a to b that is edge-disjoint from all the other paths in \mathcal{P} , and a,b appears less than $\frac{d}{200}$ paths in \mathcal{P} . If the path does not exist, the router loses the game. Request 2 is to remove a path P from \mathcal{P} .

Observation

Let G be an (n,d,λ) -graph, the diameter of G is at most $\lceil \log(n-1)/\log(d/\lambda) \rceil$. So if we can nicely distribute the paths, since there are $\frac{nd}{2}$ edges, $r = O(nd\frac{\log(d/\lambda)}{\log n})$.

Previous Results

- **1** Improve r to $\Theta(n/\log^C n)$, for some $C \geq 7$.
- 2 Propose a randomized polynomial time algorithm that connects any pair of $\Theta(nd/\log n)$ pairs of vertices, as long as each vertex appears as an endpoint at most εd times, for some constant $\varepsilon > 0$.

Result

- ① Let G be an (n,d) (β,γ) -expander graph, for 200 < d < n, positive constants and $\gamma < 1/1000$, and n large enough. Then Router has a strategy to win the r-Routing game for $r = \varepsilon nd/\log n$, for a constant $\varepsilon = \varepsilon(\beta,\gamma) > 0$. Moreover, the Router can respond to each request in $O(n^3d^3)$ time and each path in $\mathcal P$ is of length $O(\log n)$.
- 2 Let G be an (n,d,λ) -graph for 200 < d < n, where $\lambda < \varepsilon d$ for a small enough constant $\varepsilon > 0$. Then Router has a strategy to win the r-Routing game for $r = \alpha n d \frac{\log(d/\lambda)}{\log n}$, for some absolute constant $\alpha > 0$. Moreover, Router can respond to each request in $O(n^3 d^3)$ time and each path in $\mathcal P$ is of length $O(\frac{\log n}{\log(d/\lambda)})$.

Future Work

- Improve time complexity.
- Optimize the constants.
- $oldsymbol{3}$ Handle non-regular graphs. In this paper, the writer claims that their algorithm can be applied to almost regular graphs (each degree is within a small range around d).

Edge-disjoint paths in expanders: online with removals

Fully Dynamic Consistent k-Center Clustering

Basic Setting: *k*-center clustering problem

Given a metric space (\mathcal{X},d) and a set of points $P\subseteq\mathcal{X}$, the k-center problem is to output a set $C\subseteq\mathcal{X}$ of at most k centers such that the maximum distance of any point $p\in P$ to the nearest center $c\in C$ is minimized; in other words, the goal is to minimize $\max_{p\in P}\min_{c\in C}d(p,c)$.

Setting: consistent *k*-center clustering problem

Goal: to maintain a constant factor approximate k-center solution during a sequence of n point insertions and deletions while minimizing the recourse, i.e., the number of changes made to the set of centers after each point insertion or deletion.

Previous Result

- **1** In the offline setting, k-center admits several well-known greedy 2-approximation algorithms. It is known to be NP-hard to approximate the objective to within a factor of $(2-\varepsilon)$ for any constant $\varepsilon > 0$.
- 2 In the incremental setting, where points are inserted but not deleted, one can maintain a O(1)-approximate solution for k-center with $O((k\log n)/n)$ amortized recourse.

Result

There exists a fully dynamic deterministic algorithm that maintains a constant-approximate solution of the k-center problem and obtains worst-case recourse of at most 1 for an insertion and 2 for a deletion.

谢谢

