MATH 4370/7370 - Linear Algebra and Matrix Analysis

Essentially nonnegative matrices and M-matrices

Julien Arino

Fall 2023

Outline

Essentially nonnegative matrices

Z-matrices

Class K₀

M-matrices

p. 1 -

Z-matrices

Class K_0

M-matrices

The Perron-Frobenius can be applied not only to nonnegative matrices, but also to matrices that are *essentially nonnegative*, in the sense that they are nonnegative except perhaps along the main diagonal

Definition 1

A matrix $A \in \mathcal{M}_n$ is essentially nonegative (or quasi-positive) if there exist $\alpha \in \mathbb{R}$ such that $A + \alpha \mathbb{I} > 0$

Remark 2

An essentially nonnegative matrix A has non-negative off-diagonal entries. The sign of the diagonal entries is not relevant

Remark 3

Irreducibility of a matrix is not affected by the nature of its diagonal entries. Indeed, consider an essentially nonnegative matrix A. The existence of a directed path in G(A) does not depend on the existence of "self-loops". The same is not true of primitive matrices, where the presence of negative entries on the main diagonal has an influence on the values of A^k and thus ultimately, on the capacity to find k such that $A^k > 0$

So we can apply the "weak" versions of the Perron-Frobenius Theorem (the imprimitive cases in Theorem $\ref{eq:constraint}$) to $A+\alpha\mathbb{I}$, which is a nonnegative matrix (potentially irreducible). One important ingredient is a result that was proved as Theorem $\ref{eq:constraint}$? Namely, that perturbations of the entire diagonal by the same scalar lead to a shift of the spectrum; this is summarised as

$$\sigma(A + \alpha \mathbb{I}) = \{\lambda_1 + \alpha, \dots, \lambda_n + \alpha, \quad \lambda_i \in \sigma(A)\}\$$

Definition 4 (Spectral abscissa)

Let $A \in \mathcal{M}_n$. The spectral abscissa of A, s(A), is

$$s(A) = \max\{\text{Re}(\lambda), \lambda \in \sigma(A)\}$$

Theorem 5

Let $A \in \mathcal{M}_n(\mathbb{R})$ be essentially nonnegative. Then s(A) is an eigenvalue of A and is associated to a nonnegative eigenvector. If, additionally, A is irreducible, then s(A) is simple and is associated to a positive eigenvector

p. 4 - Essentially nonnegative matrices

Z-matrices

Class K_0

M-matrice:

Definition 6

A matrix is of class Z_n if it is in $\mathcal{M}_n(\mathbb{R})$ and such that $a_{i,j} \leq 0$, $i \neq j$, $i,j = 1,\ldots,n$

$$Z_n = \{A \in \mathcal{M}_n : a_{i,j} \le 0, i \ne j\}$$

We also say that $A \in \mathbb{Z}_n$ has the \mathbb{Z} -sign pattern

Theorem 7 ([?])

Let $A \in Z_n$. TFAE

- 1. There is a nonnegative vector x such that Ax > 0
- 2. There is a positive vector x such that Ax > 0
- 3. There is a diagonal matrix diag(D) > 0 such that the entries in $AD = [w_{ik}]$ are such that

$$w_{ii} > \sum_{k \neq i} |w_{ik}| \forall i$$

- 4. For any $B \in Z_n$ such that $A \ge A$, then B is nonsingular
- 5. Every real eigenvalue of any principal submatrix of A is positive.
- 6. All principal minors of A are positive

Theorem 7 (Continued)

- 7. For all k = 1, ..., n, the sum of all principal minors is positive
- 8. Every real eigenvalue of A is positive
- 9. There exists a matrix $C \geq 0$ and a number $k > \rho(A)$ such that $A = k\mathbb{I} C$
- 10. There exists a splitting A = P Q of the matrix A such that $P^{-1} \ge 0$, $Q \ge 0$, and $\rho(P^{-1}Q < 1)$
- 11. A is nonsingular and $A^{-1} > 0$
- 12. ...
- 18 The real part of any eigenvalue of A is positive

Notation: $A \in \mathbb{Z}_n$ such that any (and therefore all) of these properties holds is a matrix of class K (or a nonsingular M-matrix).

Theorem 8

Let $A \in Z = \bigcap_{i=1,...} Z_n$ be symmetric. Then $A \in K$ if and only if A is positive define.

Z-matrices

Class K₀

M-matrice:

Theorem 9

Let $A \in Z_n$. TFAE

- 1. $A + \varepsilon \mathbb{I} \in K$ for all $\varepsilon > 0$
- 2. Every real eigenvalue of a principal submatrix of A is nonnegative
- 3. All principal minors of A are nonnegative
- 4. The sum of all principal minors of order k = 1, ..., n is nonnegative
- 5. Every real eigenvaue of A is nonegative
- 6. There exists $C \geq 0$ and $k \geq \rho(C)$ such that $A = k\mathbb{I} C$
- 7. Every eigenvalue of A has nonnegative real part

 $A \in Z_n$ such that any of these properties holds is a matrix of class K_0

Theorem 10

Let $A \in Z_n$. Assume $A \in K_0$. Then $A \in K \iff A$ nonsingular

Z-matrices

Class K₀

M-matrices

The following theorem can be found in [?], pages 134-138. It is famous for .. well, you will understand soon

Theorem 11 ([?])

Let $A \in \mathcal{M}_n$. Then for each fixed letter \mathcal{C} representing one of the following conditions, conditions C_i are equivalent for each i. Moreover, letting C then represent any of the equivalent conditions C_i , the following implication tree holds:

References I