Segunda Avaliação de Circuitos Elétricos II – $1^{0/2017}$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Non	ne:_			Turma:
Mat	rícu	ıla:/		
Data	a:			
			na de Respostas:	
Que	stão	1 - Resposta:		
Fui	nção	de Transferência:		
l				
Que	stão	2 - Resposta:		
	a)	Frequência de corte:		
	b)	Resposta em frequência em decibé	is:	
	0)	resposta em requencia em aceroe	Diagrama de Bode	
	40,0		· · · · · · · · · · · · · · · · · · ·	+
	20.0			
(dB)	20,0			
Magnitude (dB)	0,0		·	·
Σ	-20,0			
	-40,0		} }	
	0,0	0,10	1,00	10,0 100
			Frequência (rad/s)	

Questão 3 - Resposta:		
Tensão de saída do circuito:		

Questão 4 - Resposta:

a) Função de transferência do circuito:

b) Resposta em frequência em decibéis:

Questão 1 – A figura a seguir mostra um diagrama Bode por meio de aproximação por assíntotas. Com base na resposta em frequência apresentada, determine a função de transferência H(s).

	0,5 5 12	25	40	ω (rad/s)
Solução:			\	

Questão 2 – Determine a frequência de corte e a resposta de amplitude em decibéis para o circuito a seguir. Use aproximação por assíntotas.

 $R_1 = 7\Omega$ $R_2 = 1\Omega$ $L = \frac{1}{2}H$ $20log_{10}(2^{-1}) = -6$ $20log_{10}(2^{-2}) = -12$ $20log_{10}(2^{-3}) = -18$ $20log_{10}(2^{-4}) = -24$

Solução:	 $20log_{10}(2^{-3}) = -18$ $20log_{10}(2^{-4}) = -24$	

Questão 3 – Dados v_1 e v_2 no circuito abaixo, determine v_o . Considere os AO's ideais.	$\begin{split} R_1 &= 1\Omega \\ R_2 &= 2\Omega \\ R_3 &= 3\Omega \\ R_4 &= 1\Omega \\ R_5 &= 3\Omega \\ R_6 &= 1\Omega \\ v_1 &= 2V; \ v_2 &= 3V \end{split}$
Solução:	

Questão 4 — Determine a função de transferência do circuito $H(s) = V_0(s)/V_s(s)$ e desenhe a sua resposta aproximada em frequência por meio do diagrama de Bode de amplitude. Utilize aproximação por assíntotas. Considere os AO's ideais.

Solução:	-

