Elementary manipulations of probabilities

Set probability of multi-valued r.v.

•
$$P(\{x=Odd\}) = P(1)+P(3)+P(5) = 1/6+1/6+1/6 = \frac{1}{2}$$

•
$$P(X = X_1 \lor X = X_2, ..., \lor X = X_i) = \sum_{j=1}^i P(X = X_j)$$

Multi-variant distribution:

• Joint probability: $P(X = true \land Y = true)$

$$P(Y \land \{X = X_1 \lor X = X_2, ..., \lor X = X_j\}) = \sum_{j=1}^{\prime} P(Y \land X = X_j)$$

• Marginal Probability: $P(Y) = \sum_{j \in S} P(Y \land X = X_j)$

Joint Probability

- A joint probability distribution for a set of RVs gives the probability of every atomic event (sample point)
 - $P(Flu, DrinkBeer) = a 2 \times 2 \text{ matrix of values}$:

	В	¬В
F	0.005	0.02
¬F	0.195	0.78

- **P**(*Flu*,*DrinkBeer*, *Headache*) = ?
- Every question about a domain can be answered by the joint distribution, as we will see later.

Conditional Probability

- P(X|Y) = Fraction of worlds in which X is true that also have Y true
 - H = "having a headache"
 - F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2
 - P(H|F) = fraction of flu-inflicted worlds in which you have a headache = $P(H \land F)/P(F)$
- Definition:

$$P(X|Y) = \frac{P(X \wedge Y)}{P(Y)}$$

Corollary: The Chain Rule

$$P(X \wedge Y) = P(X \mid Y)P(Y)$$

MLE

sample mean

Objective function:

$$\ell(\theta; D) = \log P(D \mid \theta) = \log \theta^{n_h} (\mathbf{1} - \theta)^{n_t} = n_h \log \theta + (N - n_h) \log(\mathbf{1} - \theta)$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N} \qquad \text{or} \quad \widehat{\theta}_{MLE} = \frac{1}{N} \sum_i x_i$$
Frequency as

- Sufficient statistics
 - The counts, n_h , where $n_k = \sum_i x_i$, are sufficient statistics of data D

The Bayes Rule

 What we have just did leads to the following general expression:

$$P(Y \mid X) = \frac{P(X \mid Y)p(Y)}{P(X)}$$

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

More General Forms of Bayes Rule

$$P(Y \mid X) = \frac{P(X \mid Y)p(Y)}{P(X \mid Y)p(Y) + P(X \mid Y)p(Y)}$$

$$P(Y = y_i \mid X) = \frac{P(X \mid Y)p(Y)}{\sum_{i \in S} P(X \mid Y = y_i)p(Y = y_i)}$$

$$P(Y | X \land Z) = \frac{P(X | Y \land Z)p(Y \land Z)}{P(X \land Z)} = \frac{P(X | Y \land Z)p(Y \land Z)}{P(X | Y \land Z)p(\neg Y \land Z) + P(X | Y \land Z)p(\neg Y \land Z)}$$

P(Flu | Headhead ∧ DrankBeer)

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2
- One day you wake up with a headache. You come with the following reasoning: "since 50% of flues are associated with headaches, so I must have a 50-50 chance of coming down with flu"

Is this reasoning correct?

Probabilistic Inference

- H = "having a headache"
- F = "coming down with Flu"
 - P(H)=1/10
 - P(F)=1/40
 - P(H|F)=1/2

• The Problem:

$$P(F|H) = ?$$

Prior Distribution

 Support that our propositions about the possible has a "causal flow"

- Prior or unconditional probabilities of propositions
 e.g., P(Flu=true) = 0.025 and P(DrinkBeer=true) = 0.2
 correspond to belief prior to arrival of any (new) evidence
- A probability distribution gives values for all possible assignments:
 - **P**(*DrinkBeer*) =[0.01,0.09, 0.1, 0.8]
 - (normalized, i.e., sums to 1)

Posterior conditional probability

- Conditional or posterior (see later) probabilities
 - e.g., P(Flu|Headache) = 0.178
 - → given that flu is all I know
 NOT "if flu then 17.8% chance of Headache"
- Representation of conditional distributions:
 - **P**(*Flu*|*Headache*) = 2-element vector of 2-element vectors
- If we know more, e.g., DrinkBeer is also given, then we have
 - P(Flu|Headache,DrinkBeer) = 0.070 This effect is known as explain away!
 - P(Flu|Headache,Flu) = 1
 - Note: the less or more certain belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
 - **P**(*Flu*|*Headache*, *StealerWin*) = **P**(*Flu*|*Headache*)
 - This kind of inference, sanctioned by domain knowledge, is crucial

- Start with a Joint Distribution
- Building a Joint Distribution of M=3 variables
 - Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).

•	For each combination of values,
	say how probable it is.

Normalized, i.e., sums to 1

F	В	Н	Prob
0	0	0	0.4
0	0	1	0.1
0	1	0	0.17
0	1	1	0.2
1	0	0	0.05
1	0	1	0.05
1	1	0	0.015
1	1	1	0.015

 One you have the JD you can ask for the probability of any atomic event consistent with you query

$$P(E) = \sum_{i \in E} P(row_i)$$

¬F	¬B	¬Η	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬H	0.17	
¬F	В	Н	0.2	
F	¬В	¬H	0.05	
F	¬B	Н	0.05	
F	В	¬H	0.015	
F	В	Н	0.015	

Compute Marginals

$$P(Flu \land Headache) =$$

¬F	¬B	¬Η	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬H	0.17	
¬F	В	Н	0.2	
F	¬В	¬H	0.05	
F	¬В	Н	0.05	
F	В	¬H	0.015	
F	В	Н	0.015	

Compute Marginals

$$P(\text{Headache}) =$$

¬F	¬В	Ŧ	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬Η	0.17	
¬F	В	Н	0.2	
F	¬В	¬Η	0.05	
F	¬В	Н	0.05	
F	В	¬Н	0.015	
F	В	Н	0.015	

Compute Conditionals

$$\begin{split} P(E_1 \middle| E_2) &= \frac{P(E_1 \land E_2)}{P(E_2)} \\ &= \frac{\sum\limits_{i \in E_1 \cap E_2} P(row_i)}{\sum\limits_{i \in E_2} P(row_i)} \end{split}$$

¬F	¬В	Ŧ	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬H	0.17	
¬F	В	Н	0.2	
F	¬В	¬H	0.05	
F	¬В	Н	0.05	
F	В	¬Η	0.015	
F	В	Н	0.015	

Compute Conditionals

$$P(\text{Flu} | \text{Headhead}) = \frac{P(\text{Flu} \land \text{Headhead})}{P(\text{Headhead})}$$

¬F	¬B	¬Η	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬H	0.17	
¬F	В	Н	0.2	
F	¬В	¬H	0.05	
F	¬В	Н	0.05	
F	В	¬H	0.015	
F	В	Н	0.015	

 General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Summary: Inference by enumeration

- Let X be all the variables. Typically, we want
 - the posterior joint distribution of the query variables Y
 - given specific values e for the evidence variables E
 - Let the hidden variables be H = X-Y-E
- Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e)=\alpha P(Y,E=e)=\alpha \sum_{h} P(Y,E=e, H=h)$$

- The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables
- Obvious problems:
 - Worst-case time complexity $O(d^n)$ where d is the largest arity
 - Space complexity $O(d^n)$ to store the joint distribution
 - How to find the numbers for $O(d^n)$ entries???

Conditional independence

- Write out full joint distribution using chain rule:
 - P(Headache; Flu; Virus; DrinkBeer)
- = P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)
- = P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer) P(DrinkBeer)

Assume independence and conditional independence

- = P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)
- I.e., ? independent parameters
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from **exponential** in *n* to **linear** in *n*.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Rules of Independence --- by examples

- P(Virus | DrinkBeer) = P(Virus)
 iff Virus is independent of DrinkBeer
- P(Flu | Virus; DrinkBeer) = P(Flu|Virus)
 iff Flu is independent of DrinkBeer, given Virus
- P(Headache | Flu; Virus; DrinkBeer) = P(Headache | Flu; DrinkBeer)
 iff Headache is independent of Virus, given Flu and DrinkBeer

Marginal and Conditional Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional probability of E given H, written as P(E|H), is

$$P(E \text{ and } H)/P(H)$$

(= the probability of both *E* and *H* are true, given H is true)

E and H are (statistically) independent if

$$P(E) = P(E|H)$$

(i.e., prob. E is true doesn't depend on whether H is true); or equivalently P(E and H) = P(E)P(H).

E and F are conditionally independent given H if

$$P(E|H,F) = P(E|H)$$

or equivalently

$$P(E,F|H) = P(E|H)P(F|H)$$

Why knowledge of Independence is useful

Lower complexity (time ace, sea ...)

- Motivates efficient inference for all kinds of queries
 Stay tuned !!
- Structured knowledge about the domain
 - easy to learning (both from expert and from data)
 - easy to grow

Where do probability distributions come from?

- Idea One: Human, Domain Experts
- Idea Two: Simpler probability facts and some algebra

¬F	¬B	¬H	0.4	
¬F	¬В	Н	0.1	
¬F	В	¬H	0.17	
¬F	В	Н	0.2	
F	¬В	¬Н	0.05	
F	¬В	Н	0.05	
F	В	¬Н	0.015	
F	В	Н	0.015	

- Idea Three: Learn them from data!
 - A good chunk of this course is essentially about various ways of learning various forms of them!

Density Estimation

 A Density Estimator learns a mapping from a set of attributes to a Probability

- Often know as parameter estimation if the distribution form is specified
 - Binomial, Gaussian ...
- Three important issues:
 - Nature of the data (iid, correlated, ...)
 - Objective function (MLE, MAP, ...)
 - Algorithm (simple algebra, gradient methods, EM, ...)
 - Evaluation scheme (likelihood on test data, predictability, consistency, ...)

Parameter Learning from iid data

Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (iid), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

- Maximum likelihood estimation (MLE)
 - One of the most common estimators
 - 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_1, x_2, ..., x_N; \theta)$$

$$= P(x; \theta)P(x_2; \theta), ..., P(x_N; \theta)$$

$$= \prod_{i=1}^{N} P(x_i; \theta)$$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \log L(\theta)$$

Example 1: Bernoulli model

- Data:
 - We observed *N iid* coin tossing: *D*={1, 0, 1, ..., 0}
- Representation:

Binary r.v:
$$x_n = \{0,1\}$$

- Model: $P(x) = \begin{cases} 1 - p & \text{for } x = \mathbf{0} \\ p & \text{for } x = \mathbf{1} \end{cases} \Rightarrow P(x) = \theta^{x} (\mathbf{1} - \theta)^{1 - x}$
- How to write the likelihood of a single observation x_i ?

$$P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}$$

• The likelihood of dataset $D=\{x_1, ..., x_N\}$:

$$P(x_{1}, x_{2}, ..., x_{N} \mid \theta) = \prod_{i=1}^{N} P(x_{i} \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_{i}} (1 - \theta)^{1 - x_{i}}\right) = \theta^{\sum_{i=1}^{N} x_{i}} (1 - \theta)^{\sum_{i=1}^{N} 1 - x_{i}} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}$$

MLE for discrete (joint) distributions

More generally, it is easy to show that

$$P(\text{event}_i) = \frac{\text{\#records in which event}_i \text{ is true}}{\text{total number of records}}$$

 This is an important (but sometimes not so effective) learning algorithm!

후	¬B	¬H	0.4	
투	¬В	Н	0.1	
투	В	¬Η	0.17	
٦F	В	Н	0.2	
F	В	Ŧ	0.05	
F	В	Ι	0.05	
F	В	Ŧ	0.015	
F	В	Н	0.015	

Example 2: univariate normal

- Data:
 - We observed *N* iid real samples:
 D={-0.1, 10, 1, -5.2, ..., 3}
- Model: $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$
- Log likelihood:

$$\ell(\theta; D) = \log P(D \mid \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{\left(x_n - \mu\right)^2}{\sigma^2}$$

MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

Overfitting

Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- What if we tossed too few times so that we saw zero head? We have $\hat{\theta}_{ML}^{head} = 0$, and we will predict that the probability of seeing a head next is zero!!!
- The rescue:
 - Where n' is know as the pseudo- (imaginary) count

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'}$$

But can we make this more formal?

The Bayesian Theory

The Bayesian Theory: (e.g., for date D and model M)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the posterior equals to the likelihood times the prior, up to a constant.
- This allows us to capture uncertainty about the model in a principled way

Hierarchical Bayesian Models

- θ are the parameters for the likelihood $p(x|\theta)$
- α are the parameters for the prior $p(\theta | \alpha)$.
- We can have hyper-hyper-parameters, etc.
- We stop when the choice of hyper-parameters makes no difference to the marginal likelihood; typically make hyperparameters constants.
- Where do we get the prior?
 - Intelligent guesses
 - Empirical Bayes (Type-II maximum likelihood)
 - \rightarrow computing point estimates of α :

$$\hat{\vec{\alpha}}_{MLE} = \arg \max_{\vec{\alpha}} = p(\vec{n} \mid \vec{\alpha})$$

Bayesian estimation for Bernoulli

Beta distribution:

$$P(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (\mathbf{1} - \theta)^{\beta - 1} = B(\alpha, \beta) \theta^{\alpha - 1} (\mathbf{1} - \theta)^{\beta - 1}$$

• Posterior distribution of θ :

$$P(\theta \mid x_1, ..., x_N) = \frac{p(x_1, ..., x_N \mid \theta) p(\theta)}{p(x_1, ..., x_N)} \propto \theta^{n_h} (\mathbf{1} - \theta)^{n_t} \times \theta^{\alpha - 1} (\mathbf{1} - \theta)^{\beta - 1} = \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1}$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior

Bayesian estimation for Bernoulli, con'd

• Posterior distribution of θ :

$$P(\theta \mid x_1, ..., x_N) = \frac{p(x_1, ..., x_N \mid \theta) p(\theta)}{p(x_1, ..., x_N)} \propto \theta^{n_h} (1 - \theta)^{n_t} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1}$$

Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg\max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

Posterior mean estimation:

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interoperated as the size of an imaginary data set from which we obtain the pseudo-counts

Effect of Prior Strength

- Suppose we have a uniform prior $(\alpha = \beta = 1/2)$, and we observe $\vec{n} = (n_h = 2, n_t = 8)$
- Weak prior A = 2. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha}' \times 2) = \frac{1+2}{2+10} = 0.25$$

Strong prior A = 20. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 20) = \frac{10 + 2}{20 + 10} = 0.40$$

• However, if we have enough data, it washes away the prior. e.g., $\vec{n} = (n_h = 200, n_f = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Bayesian estimation for normal distribution

Normal Prior:

$$P(\mu) = (2\pi\tau^2)^{-1/2} \exp\{-(\mu - \mu_0)^2 / 2\tau^2\}$$

Joint probability:

$$P(\mathbf{x}, \mu) = \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (\mathbf{x}_{n} - \mu)^{2}\right\}$$
$$\times \left(2\pi\tau^{2}\right)^{-1/2} \exp\left\{-\left(\mu - \mu_{0}\right)^{2} / 2\tau^{2}\right\}$$

Posterior:

$$P(\mu \mid \mathbf{X}) = \left(2\pi\tilde{\sigma}^2\right)^{-1/2} \exp\left\{-\left(\mu - \tilde{\mu}\right)^2 / 2\tilde{\sigma}^2\right\}$$
where $\tilde{\mu} = \frac{N/\sigma^2}{N/\sigma^2 + 1/\tau^2} \frac{1}{\tilde{x}} + \frac{1/\tau^2}{N/\sigma^2 + 1/\tau^2} \mu_0$, and $\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}$

Sample mean