CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II , RECUPERO) 19 MARZO 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Posto $S = \{2, 6, 10, 20\}$ e indicato con \mathbb{P} l'insieme dei numeri naturali primi, si descrivano esplicitamente gli elementi di ciascuno degli insiemi:

$$A = \{ p \in \mathbb{P} \mid (\exists x \in S)(p|x) \}$$

$$C = \{ p \in \mathbb{P} \mid (\forall x, y \in S)(p|x \Rightarrow p|y) \}$$

$$E = \{ \operatorname{rest}(a, 5) \mid a \in S \}$$

$$B = \{ p \in \mathbb{P} \mid (\exists x \in S)(p \nmid x) \}$$

$$D = \{ \operatorname{MCD}(a, b) \mid (a, b) \in S \times S \}$$

$$F = \{ \operatorname{rest}(a, b) \mid a, b \in S \}.$$

Esercizio 2. Per ogni $n \in \mathbb{N}^{\#}$ esiste una ed una sola coppia $(E(n), D(n)) \in \mathbb{N} \times \mathbb{N}^{\#}$ tale che D(n) sia dispari e $n = 2^{E(n)}D(n)$. Dopo aver enunciato il Teorema Fondamentale dell'Aritmetica, giustificare questa affermazione.

Con le stesse notazioni, sia * l'operazione binaria in $\mathbb{N}^{\#}$ definita ponendo, per ogni $a, b \in \mathbb{N}^{\#}$, $a * b = 2^{E(a)}D(b)$.

- (i) * è associativa?; * è commutativa?; * è iterativa (vale cioè a * a = a per ogni $a \in \mathbb{N}^{\#}$)?
- (ii) Esiste in $(\mathbb{N}^{\#},*)$ un elemento neutro a destra, un elemento neutro?
- (iii) Tra le seguenti parti di $\mathbb{N}^{\#}$, dire quali sono chiuse e quali no: $2\mathbb{N}^{\#}$ (l'insieme degli interi positivi pari), $2\mathbb{N} + 1$ (l'insieme degli interi positivi dispari), $\{1, 2\}$, $\{2, 3\}$, $\{100\}$.
- (iv) Esiste in $(2\mathbb{N}+1,*)$ un elemento neutro a destra, un elemento neutro a sinistra, un elemento neutro?

Esercizio 3. Per ogni $n \in S := \mathbb{N}^{\#} \setminus \{1\}$, sia p_n il minimo primo positivo divisore di n. Si consideri l'applicazione $f : n \in S \mapsto n/p_n \in \mathbb{N}^{\#}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Sia \sim il nucleo di equivalenza di f. Si elenchino gli elementi di $[6]_{\sim}$ e di $[12]_{\sim}$; si descrivano in modo esplicito gli elementi di $[17]_{\sim}$.
- (iii) È vero che $[4n]_{\sim} = \{4n\}$ per ogni $n \in \mathbb{N}^{\#}$?

Sia Σ la relazione d'ordine definita in S ponendo, per ogni $n, m \in S$, n Σ m se e solo se o n = m oppure f(n) è un divisore proprio di f(m).

- (iv) Descrivere gli (eventuali) elementi minimali e massimali in (S, Σ) , nonché gli eventuali minimo e massimo di (S, Σ) .
- (v) Determinare, in (S, Σ) , l'insieme dei minoranti e quello dei maggioranti di $\{4, 6\}$.
- (vi) (S, Σ) è un insieme totalmente ordinato? È un reticolo? Nel caso, è distributivo? È complementato?
- (vii) Disegnare il diagramma di Hasse di $T = \{4, 6, 8, 13, 27, 72\} \subset S$, ordinato da Σ .
- (viii) (T, Σ) è un insieme totalmente ordinato? È un reticolo? Nel caso, è distributivo? È complementato?

Esercizio 4. Per ogni primo (positivo) p, sia $f_p = \overline{20}x^4 - x^2 + \overline{3} \in \mathbb{Z}_p[x]$.

- (i) Si determinino i primi p tali che f_p sia monico;
- (ii) Si determinino i primi p tali che f_p abbia $-\bar{1}$ come radice;
- (iii) Si determinino i primi \bar{p} tali che f_p sia divisibile, in $\mathbb{Z}_p[x]$, per $g = x^2 x \bar{2}$, tenendo presente che $g = (x + \bar{1})(x \bar{2})$.
- (iv) Si determinio i primi p tali che f_p sia divisibile, in $\mathbb{Z}_p[x]$, per $h = x^3 x^2 \bar{2}x$, tenendo presente che $h = xg = x(x+\bar{1})(x-\bar{2})$.