Implementasi *Weighted Product* (WP) dalam Penentuan Penerima Bantuan Langsung Masyarakat PNPM Mandiri Perdesaan

Aziz Ahmadi Program Studi Pendidikan Informatika STKIP PGRI Pacitan aziz_petn@gmail.com Dian Tri Wiyanti Program Studi Teknik Informatika Universitas Semarang Semarang deediy87@gmail.com

Abstrak—Permasalahan kemiskinan di Indonesia merupakan hal yang kompleks. Agar tingkat kemiskinan dapat menurun, maka diperlukan dukungan dan kerja sama baik dari pemerintah maupun masyarakat. Sejak tahun 2007, pemerintah mencanangkan Program Nasional Pemberdayaan Masyarakat (PNPM) Mandiri. Program tersebut adalah program untuk mempercepat penanggulangan kemiskinan secara terpadu dan berkelanjutan. Salah satu implementasi dari program PNPM ini ditujukan untuk masyarakat perdesaan, dengan memberikan bantuan langsung kepada masyarakat. Terdapat beberapa kriteria untuk menentukan kegiatan masyarakat yang akan dibiayai melalui dana bantuan langsung masyarakat (BLM), tentunya dengan bobot-bobot pada tiap kriterianya. Dalam makalah ini dibuat implementasi untuk menentukan prioritas desa penerima BLM menggunakan metode Weighted Product (WP). Dalam metode ini ada 6 kriteria yang digunakan dan 16 alternatif berupa desa yang mengajukan usulan kegiatan. Hasil penerapan dari metode ini adalah sistem dapat menentukan desa dengan prioritas tertinggi untuk mendapatkan BLM dari sekian alternatif desa pengusul.

Kata kunci-PNPM; Weighting Product; BLM

I. PENDAHULUAN

PNPM Mandiri Perdesaan adalah program untuk mempercepat penanggulangan kemiskinan secara terpadu dan berkelanjutan (PNPM) [4] dalam [1]. Bentuk kegiatan dari program ini adalah memberikan Bantuan Langsung Masyarakat (BLM). Tentunya BLM diutamakan untuk kegiatan-kegiatan yang memenuhi kriteria-kriteria tertentu. Agar suatu desa terpilih untuk mendapatkan BLM, maka desa tersebut diharuskan untuk menuliskan gagasan kegiatan secara tertulis. Disinilah peran dari Tim Verifikasi (TV) dalam menilai usulan-usulan kegiatan dari desa alternatif [5] dalam [1].

Berdasarkan fakta yang dipaparkan pada [1], penentuan daftar rangking usulan selama ini masih dilakukan secara manual, sering tidak dilakukan perhitungan, serta hanya menyesuaikan usulan mana yang banyak memperoleh nilai "baik". Dengan metode semacam itu, tentunya penentuan

prioritas desa usulan menjadi kurang efektif dan cenderung subjektif.

Penelitian mengenai studi kasus PNPM ini telah dilakukan oleh [1] dengan menggunakan metode *fuzzy c-means*. Keunggulan dari metode ini adalah mampu melakukan pengelompokkan untuk data yang tersebar secara tidak teratur. Sebelum dilakukan perangkingan, data usulan diklaster menjadi "layak", "kurang layak", dan "tidak layak". Sehingga jika usulan bernilai "tidak layak" maka tidak perlu dirangking lagi.

Dalam penelitian ini, dipilih metode *Weighted Product* (WP) untuk menentukan prioritas desa yang mengajukan usulan kegiatan. Metode ini lebih efisien dibandingkan metode lain yang termasuk dalam penyelesaian masalah MADM (*Multi Attibute Decision Making*). Alasannya karena waktu yang dibutuhkan dalam perhitungan lebih singkat. Hal ini diperkuat dengan beberapa referensi yang digunakan.

Berdasarkan referensi dari beberapa penelitian yang telah mengimplementasikan metode ini, diantaranya adalah penelitian yang dilakukan oleh [8]. Penelitian tersebut menerapkan metode WP untuk meningkatkan efektifitas dan efisiensi kerja bagi pihak sekolah dalam menentukan penjurusan siswa dan memberikan laporan mengenai penjurusan tersebut. Sedangkan penelitian yang dilakukan oleh [7], metode WP diimplementasikan untuk menyeleksi calon penerima beasiswa akademik dan non akademik di Universitas Islam Negeri Sunan Kalijaga.

Dengan referensi yang ada, WP telah dibuktikan efektif untuk permasalahan optimasi. Diharapkan dengan metode ini dapat memilih usulan kegiatan PNPM yang terbaik dengan menghilangkan unsur subjektivitas dalam pemilihannya.

II. METODE PENELITIAN

A. Metode WP

Metode WP merupakan salah satu dari beberapa metode MADM (*Multi Atribute Decision Making*). Metode MADM merupakan metode pengambilan keputusan yang didasarkan pada beberapa atribut. Konsep permasalahannya adalah

mengevaluasi m alternatif A_i (i=1,2,...,m) terhadap sekumpulan atribut atau kriteria C_j (j=1,2,...,n), dimana setiap atribut tidak saling bergantung satu dengan yang lainnya. Metode ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut.

Metode WP menggunakan proses normalisasi, dimana rating setiap atribut harus dipangkatkan dahulu dengan bobot atribut yang bersangkutan. Proses ini diberikan dengan rumus sebagai berikut:

$$S_{i} = \prod_{j=1}^{n} = x_{ij}^{w_{j}}$$
 (1)

dengan i = 1, 2, ..., m, dimana : S menyatakan preferensi alternatif, x menyatakan nilai kriteria, w menyatakan bobot kriteria, n menyatakan banyaknya kriteria.

w_j adalah pangkat bernilai positif untuk atribut keuntungan, dan bernilai negatif untuk atribut biaya.

A.1. Alternatif (A_i)

Alternatif A_i dengan i=1,2,...,m adalah obyek-obyek yang berbeda dan memiliki kesempatan yang sama untuk dipilih oleh pengambil keputusan.

Data yang digunakan adalah data desa yang mengajukan usulan dalam bidang kegiatan sarana prasarana sejumlah 16 desa, yaitu:

Bodag, Bogoharjo, Cangkring, Cokrokembang, Hadiluwih, Ngadirojo, Nogosari, Pagerejo, Tanjunglor, Tanjungpuro, Wiyoro, Wonoasri, Wonodadi Kulon, Wonodadi Wetan, Wonokarto, Wonosobo.

Preferensi relatif dari setiap alternatif diberikan sebagai :

$$V_i = \frac{\prod_{j=1}^n X_{ij}^{w_j}}{\prod_{j=1}^n (X_j)^{w_j}}$$
 (2)

dimana :

V: Preferensi alternatif,

X: Nilai kriteria, w: Bobot kriteria.

Alternatif yang akan dipilih adalah 5 besar yang memiliki nilai preferensi tertinggi.

A.2. Kriteria (C_i)

Untuk memilih satu desa prioritas usulan yang memiliki usulan kegiatan berstatus "layak" untuk menerima BLM, maka dibutuhkan beberapa kriteria pengambilan keputusan. Kriteria (C_j) yang ditetapkan adalah :

C1: Kesesuaian terhadap ketentuan PNPM.

C2: Mendesak untuk dilaksanakan.

C3: Lebih bermanfaat untuk kelompok miskin.

C4: Bisa dikerjakan masyarakat.

C5: Tingkat keberhasilan pengembangan dan berkelanjutan.

C6: Didukung oleh sumber daya yang ada.

Adapun data hubungan antara alternatif dan kriteria terlihat pada TABEL I. Nilai-nilai tersebut merupakan nilai yang diberikan oleh TV untuk usulan kegiatan yang diajukan oleh desa-desa alternatif.

TABEL I. TABEL NILAI ALTERNATIF DAN KRITERIA

Alternatif (A _i)	Kriteria (C _j)					
	C1	C2	С3	C4	C5	C6
Bodag	70	80	81	73	76	77
Bogoharjo	77	45	80	80	66	87
Cangkring	79	90	82	81	80	79
Cokrokembang	78	80	90	84	80	80
Hadiluwih	80	78	79	81	82	84
Ngadirojo	80	85	82	81	79	83
Nogosari	77	40	80	80	62	55
Pagerejo	81	80	83	80	80	80
Tanjunglor	78	80	83	80	80	80
Tanjungpuro	80	80	0,8	80	80	80
Wiyoro	79	79	78	78	80	80
Wonoasri	82	82	82	82	82	82
Wonodadi Kulon	81	66	50	80	60	80
Wonodadi Wetan	77	80	80	80	60	80
Wonokarto	79	60	80	80	80	50
Wonosobo	20	50	50	50	50	50

A.3. Bobot (w)

Adapun bobot adalah nilai atau tingkat kepentingan relatif dari setiap kriteria (C_j) yang diberikan oleh *decision maker*, dalam hal ini adalah TV. Nilai bobot diberikan sebagai :

$$W = \{w_1, w_2, w_3, ..., w_n\}$$
 (3)

di mana nilai $\sum w_i = 1$.

B. Algoritma

Langkah-langkah analisa permasalahan dengan metode WP digambarkan dalam diagram alir pada Gambar 1 berikut.

Gambar 1. Diagram alir proses WP

Tahapan-tahapan yang digambarkan oleh diagram alir pada Gambar 2 dijelaskan sebagai berikut :

1) Input data.

Data yang diinputkan adalah data yang terdapat pada Tabel 1. Selain itu bobot yang ditentukan oleh TV yaitu $W = \{w_1, w_2, w_3, w_4, w_5, w_6\} = \{0,18; 0,22; 0,23; 0,2; 0,08; 0,09\} = 1.$ Dalam sistem, Gambar 2 merupakan tampilan aplikasi dimana TV dapat memasukkan nilai-nilai dari alternatif usulan desa berdasarkan kriteria masing-masing.

Gambar 2. Tampilan Form Input Nilai Usulan (contoh input pada alternatif desa Bodag)

- Proses S_i.
 Ini adalah proses normalisasi, dimana nilai vektor S yang dicari merupakan nilai preferensi untuk setiap alternatif.
- 3) Proses V_i . Proses mencari vektor V sebagai perankingan untuk setiap alternatif.

III. HASIL PENELITIAN

Secara manual, untuk proses normalisasi yang dilakukan menggunakan rumus (1) adalah :

$$S_1 = (70^{0.18})(80^{0.22})(81^{0.23})(73^{0.2})(76^{0.00})(77^{0.03}) = 76.32$$

$$S_2 = (77^{0.18})(45^{0.22})(80^{0.23})(80^{0.2})(66^{0.00})(87^{0.03}) = 69.46$$

dan seterusnya hingga S_{16} telah dilakukan oleh aplikasi, sehingga didapat hasil normalisasinya dalam Tabel II.

TABEL II. TABEL NILAI NORMALISASI

S_i	Nilai S_i		
S_1	76,32		
S_2	69,46		
S_3	82,49		
S_4	82,63		
S_5	80,03		
S_6	81,93		
S_7	23,46		
S_8	80,86		
S_9	80,31		
S_{10}	27,74		
S_{11}	78,74		
S ₁₂	82,00		
S_{13}	67,41		
S ₁₄	77,64		
S ₁₅	26,08		
S ₁₆	42,40		
	·		

Untuk proses perhitungan vektor V yang dilakukan oleh program, digambarkan sebagai berikut:

$$V_1 = \frac{S_1}{S_1 + S_2 + \dots + S_{16}} = \frac{76.32}{76.32 + 69.46 + \dots + 42.40} = 0.0720$$

$$V_2 = \frac{S_2}{S_1 + S_2 + \dots + S_{16}} = \frac{69.46}{76.32 + 69.46 + \dots + 42.40} = 0.0656$$

dan seterusnya hingga V_{16} , sehingga berikut adalah hasil dari perhitungan vektor V ada dalam Tabel III.

TABEL III. TABEL NILAI VEKTOR V

V_i	Nilai V _i		
V_1	0,0720		
V ₂	0,0656		
V ₃	0,0779		
V_4	0,0780		
V_5	0,0755		
V_6	0,0773		
V_7	0,0221		
V_8	0,0763		
V_9	0,0758		
V_{10}	0,0262		
V ₁₁	0,0743		
V ₁₂	0,0774		
V_{13}	0,0636		
V_{14}	0,0733		
V ₁₅	0,0246		
V_{16}	0,0400		

Dari sini diperoleh 5 besar alternatif terbaik yang memiliki nilai tertinggi.

TABEL IV. 5 BESAR ALTERNATIF TERBAIK

Alternatif 5 besar	Nilai preferensi	Ranking	
V_4	0,078	1	
V_3	0,0779	2	
V_{12}	0,0774	3	
V ₆	0,0773	4	
V_8	0,0763	5	

IV. KESIMPULAN

Perangkingan usulan kegiatan PNPM dengan menggunakan metode WP dapat ditarik sejumlah kesimpulan bahwa :

- a) Pada kasus perangkingan usulan kegiatan pada PNPM ini, dipilih 5 besar nilai preferensi tertinggi.
- b) 5 besar alternatif terpilih adalah Cokrokembang, Cangkring, Wonoasri, Ngadirojo, Pagerejo.
- c) Dengan kata lain, Cokrokembang, Cangkring, Wonoasri, Ngadirojo, dan Pagerejo akan terpilih sebagai desa dengan prioritas tertinggi untuk mendapatkan BLM dari sekian alternatif desa pengusul.
- d) Metode WP adalah metode dengan perhitungan sederhana dan mudah untuk diterapkan dalam kasus-kasus yang masih tinggi unsur subjektivitasnya.

REFERENSI

- [1] A. Ahmadi, "Penerapan Fuzzy C-Means Dalam Sistem Pendukung Keputusan Untuk Penentuan Penerima Bantuan Langsung Masyarakat (BLM) PNPM-MPd (Studi Kasus: PNPM-MPd Kec. Ngadirojo Kab. Pacitan)", Tesis, Yogyakarta: Universitas Gadjah Mada, 2012.
- [2] R. Alfita, "Perancangan Sistem Pendukung Keputusan Penentuan Prioritas Produk Unggulan Daerah Menggunakan Metode Weighted Product (WP)", Madura: Universitas Trunojoyo.
- [3] Y. Anggraeni, "Sistem Pendukung Keputusan Pemilihan Produk GSM Menggunakan Metode Weighted Product", Universitas Pendidikan Indonesia, 2013.
- [4] Anonim, "Pedoman Umum Program Nasional Pemberdayaan Masyarakat (PNPM) Mandiri", DEPDAGRI, 2007.
- [5] Anonim, "Petunjuk Teknis Operasioanal (TPO) Program Nasional Pemberdayaan Masyarakat (PNPM) Mandiri Perdesaan", DEPDAGRI, 2008
- [6] W.R. Ningrum, Y. Nataliani, R. Somya, "Sistem Pendukung Keputusan untuk Merekomendasikan TV Layar Datar Menggunakan Metode Weighted Product (WP)", Artikel Ilmiah, Salatiga: Universitas Kristen Satya Wacana, 2012.
- [7] S. 'Uyun dan I. Riadi, A Fuzzy Topsis Multiple-Attribute Decision Making for Scholarship Selection, *TELKOMNIKA*, Vol.9, No.1, Hal. 37-46, 2011.
- [8] F. Yusuf, E. Darmawan, dan F. Friatna, "Implementasi Metode Weighted Product Pada Sistem Pendukung Keputusan Untuk Menentukan Penjurusan Di Sekolah Menengah Atas (Studi Kasus di SMA Negeri 1 Lebakwangi)", Fakultas Komputer Universitas Kuningan.