Predicting Loan Default

- Yang (Stefan) Lyu

Project Outline

Company Introduction

Feature Engineering

Data Preprocessing

Model Building/Evaluation

Exploratory Data Analysis

Recommendation

- Largest p2p lending platform
- Head-quartered in San Francisco
- Issued more than 10 billion by 2015
- Loans between \$1,000 to \$40,000

Business Model

Source: https://www.hbs.edu/openforum/openforum.hbs.org/challenge/understand-digital-transformation-of-business/business-model/lending-club-opening-the-floodgates-on-credit/comments.html

Objective

- **Problem:** Potential default risk
- Solution: Machine learning models to predict default
- Data:
 - All transactions issued between 2012 and 2013
 - 188,183 rows and 145 features
 - 108 numerical variables and 37 categorical variables

Data Description

Credit History

Number of open accounts, Credit inquiries, delinquency, total credit revolving balance, total credit limit, etc

User Info

State, employment length, employment title, annual income, dti, zip code, home ownership, member id, etc

Loan Info

Application type, description, purpose, grade, interest rate, term, issue date, loan amount, funded amount, etc

Payment Info

Last payment date, last payment amount, interest, late fee, principal received to date, etc.

A peak at the data

	/ id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership
6	NaN	NaN	12000.0	12000.0	12000.0	36 months	6.62%	368.45	Α	A2	MANAGER INFORMATION DELIVERY	10+ years	MORTGAGE
1	NaN	NaN	28000.0	28000.0	28000.0	36 months	7.62%	872.52	Α	A3	Area Sales Manager	5 years	MORTGAGE
2	NaN	NaN	27050.0	27050.0	27050.0	36 months	10.99%	885.46	В	B2	Team Leadern Customer Ops & Systems	10+ years	OWN
3	NaN	NaN	12000.0	12000.0	12000.0	36 months	11.99%	398.52	В	В3	LTC	10+ years	MORTGAGE
4	NaN	NaN /	12000.0	12000.0	12000.0	36 months	7.62%	373.94	А	A3	Systems Engineer	3 years	MORTGAGE

Data Preprocessing

Completeness – Missing > 50%

Missing < 50%

Missing - Categorical

- Few observations missing remove rows with missing in last payment date and last credit pull
- Ignore missing in employment title and title

Missing - Numerical

	count	mean	std	min	25%	50%	75%	max
annual_inc	188021.0	72240.624961	51833.633269	4800.0	45000.0	62000.0	87000.0	7141778.0
revol_bal	188021.0	16322.667085	19287.939650	0.0	7136.0	12440.0	20674.0	2568995.0
tot_cur_bal	160311.0	137372.156558	150765.340446	0.0	27490.0	80839.0	208229.0	800078.0
tot_hi_cred_lim	160311.0	165600.050938	167267.220360	0.0	44820.5	108628.0	243804.5	9999999.0

- Remove outliers > 4 standard deviation of median
- Impute ordinal variables with median
- Impute numerical variables with mean

Uniqueness

- Columns to check
 - Loan amount
 - Term
 - Interest Rate
 - Grade
 - Employment length

- Home ownership
- Issue date
- Purpose
- Zip code

• There are no duplicated records

Validity

Convert data types

int_rate	revol_util	emp_length
6.62%	21.6%	10+ years
7.62%	54.6%	5 years

- Convert to datetime object
 - Issue date, earliest credit line, last payment date, last credit pull date
- Drop features
 - Title, employment title, zip code, debt settlement flag

Exploratory Data Analysis

Univariate

Analyze a single variable

Multivariate

Analyze relationships between variable of interest

Univariate – Loan Status

Multivariate

Loan amount by Loan Status

Annual Income by Loan Status

Interest Rate by Loan Status

Two-sample Z-test

• Test for difference in mean

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Interest Rate by Grade

Grade by Loan Status

Term by Loan Status

Chi-square test

Test for independence between categorical groups

 H_0 : Two categorical variables are independent

 H_1 : Two categorical variables are not independent

$$x^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

Feature Engineering

Feature Creation Feature Scaling Feature Selection

Feature Creation

- Credit length = issue year earliest credit line year
- Installment Feat = monthly installment/monthly income

Feature Extraction - Binning

Binning (create buckets for variables)

- Employment length
- Delinquency in last 2 years
- Num of derogatory record
- Inquiry in last 6 months
- Number of open accounts
- Etc.

Feature Extraction - Grouping

Group some categories into larger group

```
map_list = {
    'purpose':{
        'renewable_energy':'other',
        'moving':'home_improvement',
        'house':'home_improvement',
        'vacation':'other',
        'wedding': 'other'},
    'home_ownership':{
        'OTHER':'MORTGAGE',
        'NONE':'MORTGAGE'
}
```


Feature Scaling

• Numerical: Standardization

	loan_amnt	funded_amnt	funded_amnt_inv	int_rate	installment	annual_inc
0	-0.254098	-0.253850	-0.252597	-1.769860	-0.277778	1.143209
2	1.653496	1.654310	1.656842	-0.771640	1.921421	-0.379746
3	-0.254098	-0.253850	-0.252597	-0.543215	-0.149869	1.904686
4	-0.254098	-0.253850	-0.252597	-1.541435	-0.254425	0.884306
5	-0.818138	-0.818057	-0.817182	0.427594	-0.712122	-1.202141

Categorical: Dummy coding

grade_A	grade_B	grade_C	grade_D	grade_E	grade_F	grade_G	€
1	0	0	0	0	0	0	
0	1	0	0	0	0	0	
0	1	0	0	0	0	0	
1	0	0	0	0	0	0	
0	0	1	0	0	0	0	

Feature Selection

- Filtering Method: Correlation based
- Wrapper Method : Recursive Feature Elimination
- Embedded: Model based variable selection (Lasso, Random Forest)

Filtering

- Funded Amount, funded Amount investors, loan amount almost have correlation of 1
- Number of revolving account, open accounts, satisfactory account, bank account are similar variables

Filtering

Removed 29 variables

Recursive Feature Elimination

- Exhaustive
- Backward elimination using logistic regression
- Eliminate least important features until 30 variables left
- Metric: accuracy
- Cross-validation to automatically select number of features

Model Building

- Train-test split: 80% Training/20% Testing
- Model:
 - Logistic Regression
 - Decision Tree
 - Random Forest
- Evaluation: ROC Curve/Confusion Matrix

Logistic Regression

Precision = 0.995 Recall (TPR) = 0.973 Fallout (FPR) = 0.001

Threshold: 0.2

Decision Tree

Precision = 0.846 Recall (TPR) = 0.760 Fallout (FPR) = 0.027

Threshold: 0.2

Random Forest

Precision = 0.551 Recall (TPR) = 0.736 Fallout (FPR) = 0.116

Threshold: 0.2

Random Forest

Precision = 0.231 Recall (TPR) = 1.000 Fallout (FPR) = 0.642

Threshold: 0.1

Precision = 0.316 Recall (TPR) = 0.966 Fallout (FPR) = 0.403

Threshold: 0.15

Feature Importance – Gini Index

Important Features:

- Last payment amount
- Total payment
- Term
- Total late fees paid
- Total Interest paid
- Loan amount
- Total principal paid
- Grade

Visualizing Random Forest

Conclusion

- In this dataset, all default/non-default cases are completely separated, which leads to good classification result using variables such as 'total late fees received'.
- In reality, most of the customers are 'current', the predicting power are likely to decrease
- The best result is achieved by Logistic Regression, but needs to be cross-validated before put into production

Recommendation

- Recursive Feature Elimination using cross-validation
- SMOTE (Oversampling) to deal with unbalanced dataset
- Hyperparameter tuning and cross validation
- Gather more data, up-to-2018Q4
- Analysis on geographic dimension
 - https://public.tableau.com/views/Book2 15528449246150/Dashboard1?:em bed=y&:display count=yes

Thank you!