Masih Eskandar

SUMMARY

Machine learning researcher with 5+ years of experience in continual learning, adversarial robustness, and scalable AI. Published in top-tier venues (ICLR, TMLR). Developed foundation models for real-world applications such as skin cancer diagnosis and genomics. Passionate about trustworthy AI for critical domains such as genomics, healthcare, and safety-critical systems.

EDUCATION

Northeastern University

- Ph.D. in Electrical Engineering (In Progress)

2022 - 2027 (Expected)

M.S. in Electrical Engineering

2022 - 2024

Sharif University of Technology

- B.S. in Computer Engineering

2018 - 2022

PROFESSIONAL EXPERIENCE

Northeastern University | Machine Learning Lab @ SPIRAL

2022 - Curr.

Doctoral Candidate

- Developed STAR, a regularization method using weight perturbations for continual learning methods, resulting in up to 15% improvements in accuracy (ICLR 2025)
- Proposed ADAPT, an adversarially robust prompt-tuning method for Vision Transformers, increasing robustness by up to 40% compared to existing methods (TMLR 2025)
- Implemented deep learning methodologies for dermatology, including image generation using stable diffusion, multi-modal LLMs, and feature matching to enhance the skin cancer diagnostic pipeline
- · Developing interpretable Transformer-based models for splice site prediction using RNA sequencing data
- · Developing theoretically verifiable continual learning algorithms for safety-critical applications (e.g. healthcare)

Technical University of Munich | CAMP

2021

Research Intern

• Developed a novel method for explaining the predictions of machine learning models using information theory

Sharif University of Tech. Robust/Interpretable ML lab

2020 - 2022

Undergraduate Research Assistant

 Proposed an efficient adversarial training method for deep neural networks, solving key overfitting issues and leading to up to 50% increase in robust accuracy (ISwA 2023)

PUBLICATIONS

 Grounding Multimodal Large Language Models with Quantitative Skin Attributes: A Retrieval Study M. Torop, M. Eskandar, N. Kurtansky, J. Liu, J. Weber, O. Camps, V. Rotemberg, J. Dy, K. Kose Under Review (2025)

• CerCE: Towards Verifiable Continual Learning M. Eskandar, F. Tohidian, A. Kashiri, M. Everette, J. Dy

Under Review (2025)

• DISCO: Disentangled Communication Steering for Large Language Models M. Torop, A. Masoomi, M. Eskandar, J. Dy

Under Review (2025)

• STAR: Stability-Inducing Weight Perturbation for Continual Learning M. Eskandar, T. Imtiaz, D. Hill, Z. Wang, J. Dy

ICLR 2025

SAIF: Sparse Adversarial and Interpretable Attack Framework T. Imtiaz, M. Kohler, J. Miller, Z. Wang, M. Eskandar, M. Sznaier, O. Camps, J. Dy

TMLR 2025

ADAPT to Robustify Prompt Tuning Vision Transformers M. Eskandar, T. Imtiaz, Z. Wang, J. Dy

ISwA 2023

• ZeroGrad: Costless conscious remedies for catastrophic overfitting in the FGSM adversarial training Z. Golgooni, M. Saberi*, M. Eskandar*, M.H. Rohban

SKILLS

- **Programming Languages:** Python, C++/C, R, Java, Golang
- Frameworks: PyTorch, Tensorflow, JAX
- Tools: Numpy, Pandas, Huggingface, Git, Docker, Auto-LiRPA

OPEN-SOURCE CONTRIBUTIONS

• Mammoth: Integrated STAR into the Mammoth continual learning library, enabling reproducible benchmarking and broader accessibility