Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Beschleunigung – Weg			Beschleunigung – Kraft			Haftreibung			Gleitreibung		
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Arbeit potentielle Energie			kinteische Energie			Kreisfrequenz				
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreisfrequenz Hook'sche Feder]	narmonische Schwi Beschleunigur			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

μ_{C}	$F_{Gl} = \mu_{Gl} \cdot F_N$ Gl : Gleitreibung Gl : Gleitreibungskonstante Gl : Normalkraft	$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \mu_H : \ egin{array}{c} egin{array}{c} F_N : \end{array} \end{array}$	$F_H = \mu_H \cdot F_N$ Haftreibung Haftreibungskonstante Normalkraft		$x = \frac{1}{2} \cdot a \cdot t^2$ $[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
<u># 8</u>	Antwort	<u># 7</u>	Antwort	<u># 6</u>	Antwort	# 5	Antwort
	$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$		$\eta = \frac{P_{out}}{P_{in}}$		$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$		$\mu_H = an lpha$
# 12	Antwort	# 11	Antwort	<u># 10</u>	Antwort	# 9	Antwort
T: Kre	$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\text{rad}}{s}\right]$ eisfrequenz (Umlaufzeit)		$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = kg \cdot \frac{m^2}{s^2} \right]$		$E_{pot} = m \cdot g \cdot h$ $\left[J = kg \cdot \frac{m}{s^2} \cdot m \right]$ $= kg \frac{m^2}{s^2}$		$W = F \cdot s$ $\left[J = N \cdot m \right]$ $= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2}$
# 16	Antwort	# 15	Antwort	<u># 14</u>	Antwort	# 13	Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$		$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Federk	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$ onstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
potentielle Energie Hook'sche Feder			Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
Trägheitsmoment Stab um Stabende		ab um	Trägheitsmoment Stab um Schwerpunkt			Trägheitsmoment Vollzylinder			Trägheitsmoment Hohlzylinder		
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
Transformation Geschwindigkeit – Winkelgeschwindigkeit		Physik # 30 Mechanik Trägheitsmoment Kugel			Trägheitsmoment Stab um Stabende			Leistung Translation			

# 20	Antwort	<u># 19</u>	Antwort	# 18	Antwort	<u># 17</u>	Antwort	
	$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$	
# 24	Antwort	<u># 23</u>	Antwort	<u># 22</u>	Antwort	<u># 21</u>	Antwort	
Nur bei α	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$ $\left[J = kg \text{ m}^2 \cdot \text{s}^{-2} \right]$ $= kg \frac{\text{m}^2}{\text{s}^2}$		$L = \vartheta \cdot \omega$ $\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$	
# 28	Antwort	<u># 27</u>	Antwort	# 26	Antwort	<u># 25</u>	Antwort	
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durch	$artheta = rac{1}{2} \cdot m \cdot r^2$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \right]$ messer des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	
# 32	Antwort	<u># 31</u>	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort	
	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s}$		$\vartheta = \frac{1}{3} \cdot m \cdot L^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$	

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
Drehmoment		Kreisfrequenz Drehschwingung			Rückstellmoment Drehschwingung			Präzessionsfrequenz			
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Satz von Steine			Gravitationkonst			${ m ravitationspote}$			Energie Grav	
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
	Gravitationfeldstärke		Gravitationskraft			Erhaltungssätze der klassischen Physik			Corioliskraft		
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Nutzungshinweis	# 48	Lizenz
	Keplersche Gesetze			Planet auf Kreisl	bahn	Gebundener und ungebundener Zustand			Hinweise zur Nutzung dieser Karteilernkarten: Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.		

# 36	Antwort	# 35	Antwort	# 34	Antwort	# 33	Antwort
	$M = F \cdot r \cdot \sin \varphi$		M D				M E
	$\omega_p = \frac{\pi}{L} = \frac{1 + \sin \varphi}{\vartheta \cdot \omega_p}$		$M = -D_{\varphi} \cdot \varphi$		$\omega = \sqrt{\frac{D}{a}}$		$M = F \cdot r$

$$\begin{bmatrix} s^{-1} = \frac{\mathrm{Nm}}{\mathrm{N} \; \mathrm{m} \; \mathrm{s}} = \frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{kg} \; \mathrm{m}^2 \cdot s^{-1}} \end{bmatrix} \qquad \begin{bmatrix} \mathrm{Nm} = \mathrm{Nm}? \\ D_{\varphi} : & \mathrm{Torsionsfederkonstante} \\ \varphi : & \mathrm{Verdrillungswinkel} \end{bmatrix} \begin{bmatrix} s^{-1} = \sqrt{\frac{\mathrm{N}}{\mathrm{m}} \cdot \frac{1}{\mathrm{kg} \; \mathrm{m}^2}} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{s}^{-1} = \frac{\mathbf{N}\mathbf{m}}{\mathbf{N}\mathbf{m}} \mathbf{s} = \frac{\mathbf{N}\mathbf{m}}{\mathbf{k}\mathbf{g}\mathbf{m}^2 \cdot \mathbf{s}^{-1}} \end{bmatrix}$$

$$D_{\varphi}: \quad \text{Torsionsfederkonstante}$$

$$\varphi: \quad \text{Verdrillungswinkel}$$

$$\begin{bmatrix} \mathbf{s}^{-1} = \sqrt{\frac{\mathbf{N}}{\mathbf{m}} \cdot \frac{1}{\mathbf{k}\mathbf{g}\mathbf{m}^2}} \end{bmatrix}$$

40 Antwort # 39 Antwort # 38 Antwort # 37 Antwort
$$E_{\text{pot}} = -\frac{\gamma \cdot m_1 \cdot m_2}{r} \qquad \qquad \varphi = -\frac{\gamma \cdot m}{r} \qquad \qquad \gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2} \qquad \qquad \vartheta = m \cdot a^2 + \vartheta_{\text{SP}}$$

$$\begin{split} E_{\text{pot}} &= -\frac{\gamma \cdot m_1 \cdot m_2}{r} & \varphi &= -\frac{\gamma \cdot m}{r} \\ &\left[J = \frac{\frac{N \cdot m^2}{\text{kg}^2} \cdot \text{kg} \cdot \text{kg}}{\text{m}} & \left[\frac{m^2}{\text{s}^2} = \frac{\frac{N \cdot m^2}{\text{kg}^2} \cdot \text{kg}}{\text{m}} \right] \\ &= N m \end{split} \right] & = N \frac{m}{\text{kg}} = \text{kg} \frac{m}{\text{g}^2} \frac{m}{\text{kg}} \end{split}$$

47

E < 0:

$$= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}$$

$$= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}$$

$$= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}$$
Trägheitsmoment durch Schwerpunkt
Trägheitsmoment durch neue Achse,
$$\parallel \text{ zur Achse von } \vartheta_{\text{SP}}$$
a Abstand der beiden Achsen

$$F_{\rm C} = m \cdot a_{\rm c} = 2 \cdot m \cdot v_{\perp} \cdot \omega \qquad \qquad \bullet \text{ Impulse} \qquad \qquad F_{\rm G} = -\gamma \cdot \frac{m_1 m_2}{r^2} \qquad \qquad g = -\frac{\gamma \cdot M}{r^2}$$

$$\left[N = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \cdot \text{s}^{-1} \right] \qquad \qquad \bullet \text{ Drehimpulse} \qquad \qquad \left[N = \frac{N \text{ m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right] \qquad \qquad \left[\frac{m}{\text{s}^2} = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg}}{\text{m}^2} \right]$$

$$\bullet \text{ Coriolisbeschleunigung} \qquad \qquad \bullet \text{ Notation of the problem} \qquad \qquad \bullet \text{ Notation of the problem}$$

46

 $=\frac{N}{kg}=\frac{kg\frac{m}{s^2}}{kg}$ Geschwindigkeit des Körpers, rel. v_{\perp} : zum rotierenden Bezugssystem

"THE BEER-WARE LICENSE":

44

48

Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff.

Antwort

Winkelgeschwindigkeit Bezugssystem

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.

 $E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{m_2}$

Antwort

ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen

gebunder Zustand

 $\frac{r_p^{\circ}}{T_p^2} = \gamma \frac{m_s}{4\pi^2} = const.$

Antwort

Radius Planetenbahn Umlaufzeit Planet Masse der Sonne

• Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt

Antwort

: Planetenmasse

45

 $\left[kg m^2 = m^2 \cdot kg + kg m^2 \right]$

• Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: $\frac{\Delta A}{\Delta t} = \text{const}$

• Umlaufzeit $T_{1,2}$, große Halbachse $a_{1,2}$ zweier Planeten: $\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$