طراحی سیستمهای دیجیتال

مرور مولفههای مهم

Dr. Aref Karimiafshar A.karimiafshar@iut.ac.ir

Decoders

Inputs			Outputs					
EN	Α	В	Y ₃	Y ₂	Y ₁	Yo		
0	×	×	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

Decoders

• 4-to-16 decoder with active-LOW outputs

Decimal	I	Binar	y Inp	outs	Decoding								Out	puts							
Digit	A_3	A_2	A_1	A_0	Function	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	0	$\overline{A}_3 \overline{A}_2 A_1 \overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\overline{A}_3 A_2 A_1 A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
13	1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
14	1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
15	1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Decoders

Encoders

	INF	OUT	PUTS		
Υ ₃	Y ₂	Υ ₁	Y ₀	A ₁	A ₀
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Encoders

	Inp	uts	v.	Outputs		
\mathbf{D}_0	$\mathbf{D_1}$	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{Y_1}$	\mathbf{Y}_{0}	V
0	0	0	0	×	×	0
1	0	0	0	0	0	1
×	1	0	0	0	1	1
×	×	1	0	1	0	1
×	×	×	1	1	1	1

Multiplexers

Selection	Output	
s_1	S ₀	Y
0	0	I ₀
0	1	I ₁
1	0	I ₂
1	1	I ₃

Multiplexers

Multiplexers

E	S	Y
0	×	All 0's
1	0	Α
1	1	В

D Flip-flops

D = 1 flip-flop SETS on positive clock edge. (If already SET, it remains SET.)

D = 0 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

Truth table for a positive edge-triggered D flip-flop.

In	puts	Ou		
D	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	↑	0	1 0	RESET SET

^{↑ =} clock transition LOW to HIGH

D Flip-flops

J-K Flip-Flop

J = 1, K = 0 flip-flop SETS on positive clock edge. (If already SET, it remains SET.)

J = 0, K = 1 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

J = 1, K = 1 flip-flop changes state (toggle).

J = 0, K = 0 flip-flop does not change. (If SET, it remains SET; if RESET, it remains RESET.)

Truth table for a positive edge-triggered J-K flip-flop.

	Input	s	Out	puts	
J	K	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0	1	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

 $[\]uparrow$ = clock transition LOW to HIGH

 Q_0 = output level prior to clock transition

J-K Flip-Flop

T Flip-Flop

T	Q_{t+1}
0	Qt
1	Qt

T Flip-Flop

	Previ	ous	Next			
T	Q _{Prev}	Q'Prev	Q _{Next}	Q' _{Next}		
0	0	1	0	1		
0	1	0	1	0		
1	0	1	1	0		
1	1	0	0	1		

4-bit register

4-bit shift register

4-bit universal shift register

Counter

	f/16	f/8	f/4	f/2
	1	1	1	1
Decimal	D	C	В	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

toggle Frequency

Binary Counter with Parallel Load

پایان

موفق و پیروز باشید