PR_Exercices

Exercice 1: Table de routage

Table de routage (routeur G)

Réseau	Moyen	Métr.
Réseau R2	Eth0	0
Routeur A	Eth1	0
Réseau R1	Routeur A	1
Réseau R3	Routeur A	1

Réseau	Moyen de l'atteindre	Métrique
réseau R1	eth0	0
Routeur G	eth1	0
Réseau R3	eth2	0
Réseau R2	Routeur G	1

Remarque: suivre la logique du tableau proposé (pour la métrique)

Exercice 2: Protocole RIP

<u>Conseil</u>: commencer par les routeurs voisins, puis ceux avec une métrique de 2, puis 3 etc.

Exercice 3: Algorithme de Dijkstra

Le chemin le plus court est donc B-E-D-C-F pour aller de B vers F avec une distance de 11 unités.

- a) Le protocole OSPF permet de trouver le chemin le plus rapide entre deux routeurs en s'appuyant sur la qualité de connexion. Il utilise l'algorithme de Dijkstra.
- b) En procédant comme à l'exercice précédent, on trouve A C E G avec une distance de 2.001 unités.

