Ram Math

Anay Aggarwal

July 20, 2021

§1 Jamboards

Polynomials Sequences

§2 Polynomials

Example 2.1 (AMC 12 2017)

For certain reals a, b, c, the polynomial

$$g(x) = x^3 + ax^2 + x + 10$$

Has three distinct roots, each of which is also a root of

$$f(x) = x^4 + x^3 + bx^2 + 100x + c$$

Compute f(1)

Solution. Since the sum of the three roots is -a, and the sum of the four roots is -1, we know that the last root is a-1. We want 102+b+c. Notice that the product of the three roots is -10, hence $c=(a-1)\cdot -10$. If x_1,x_2,x_3 are the roots, and x_4 is the fourth, then

$$b = \sum x_1 x_2 = x_1 x_2 + x_2 x_3 + x_1 x_3 + x_1 x_4 + x_2 x_4 + x_3 x_4 = 1 + x_4 (x_1 + x_2 + x_3) = 1 + (a - 1)(-a)$$

Note that

$$-100 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_2 x_3 x_4 + x_1 x_3 x_4 = -10 + x_4 (x_1 x_2 + x_2 x_3 + x_1 x_3) = -10 + (a - 1)$$

Thus $a-1=-90 \rightarrow a=-89$. Putting everything together, the answer is 7007.

Example 2.2 (AMC 12 2010)

The graph of $y = x^6 - 10x^5 + 29x^4 - 4x^3 + ax^2$ lies above the line y = bx + c except at 3 values of x, where they intersect. What's the largest of the three values?

Solution. We must have $f(x) = x^6 - 10x^5 + 29x^4 - 4x^3 + ax^2 - bx - c \ge 0$ for all real x. We want the equality cases. Note that all 3 roots must be double roots. Let

1

 $p(x) = x^3 - ux^2 + vx - w$ be the polynomial with the single roots instead of the double roots. In other words, $(p(x))^2 = f(x)$. Comparing coefficients in the expansion of $(p(x))^2$,

$$u^2 + 2v = 29$$

$$2uv + 2w = 4$$

$$2u = 10 \rightarrow u = 5 \rightarrow v = 2, w = -8$$

Hence $p(x) = x^3 - 5x^2 + 2x + 8 = (x - 4)(x - 2)(x + 1)$. So equality of the original inequality occurs at 4, 2, -1, of which the maximum is 4.

Example 2.3 (AIME 1996)

Suppose that the roots of $x^3 + 3x^2 + 4x - 11 = 0$ are a, b, and c, and that the roots of $x^3 + rx^2 + sx + t = 0$ are a + b, b + c, and a + c. Find t.

Solution. Note that

$$-t = (a+b)(b+c)(a+c) = (ab+ac+bc+b^2)(a+c) = a^2b+a^2c+abc+ab^2+abc+ac^2+bc^2+b^2c$$

$$= (ab + ac + bc)(a + b + c) - abc = 4(-3) - 11 = -23$$

Hence
$$t = 23$$
.

Example 2.4 (CMIMC 2018)

Let $P(x) = x^2 + 4x + 1$. What is the product of the real roots of

$$P(P(x)) = 0?$$

Solution. If P(P(x)) = 0, then P(x) is a root of $x^2 + 4x + 1$. Hence

$$P(x) = -2 \pm \sqrt{3}$$

If $x^2 + 4x + t$ has real roots, then

$$16 - 4t > 0 \rightarrow t < 4$$

Hence we either have $x^2 + 4x + 3 + \sqrt{3} = 0$ or $x^2 + 4x + 3 - \sqrt{3} = 0$. The former is impossible, and the latter has both real roots. Hence the product is $3 - \sqrt{3}$.

Example 2.5 (PuMAC 2016)

Let f(x) = 15x - 2016. If f(f(f(f(f(x))))) = f(x), find the sum of all possible values of x.

Solution. The given equation is linear, hence there is 1 solution. Notice that f(x) = x suffices, hence x = 144.

Example 2.6 (HMMT 2014)

Find the sum of the real roots of

$$5x^4 - 10x^3 + 10x^2 - 5x - 11 = 0$$

Solution. Note that

$$(x-1)^5 = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1$$
$$-(x-1)^5 = -x^5 + 5x^4 - 10x^3 + 10x^2 - 5x + 1$$
$$x^5 - (x-1)^5 = 5x^4 - 10x^3 + 10x^2 - 5x + 1$$
$$5x^4 - 10x^3 + 10x^2 - 5x - 11 = x^5 - (x-1)^5 - 12$$

Hence

$$x^5 - (x-1)^5 = 12$$

There is a positive solution and a negative solution. The graph has symmetry at x = 0.5, hence the answer is 2(0.5) = 1.

Example 2.7 (HMMT 2014)

Let b and c be real numbers and define the polynomial $P(x) = x^2 + bx + c$. Suppose that P(P(1)) = P(P(2)) = 0 and that $P(1) \neq P(2)$. Find P(0).

Solution. We get

$$P(1)P(2) = c$$
$$P(1) + P(2) = -b$$

But P(1) = b + c + 1, P(2) = 2b + c + 4. Hence

$$4b + 2c + 5 = 0$$

$$(b+c+1)(2b+c+4) = c$$

Solving, we want $c = -\frac{3}{2}$.

Example 2.8 (AIME 2010)

Let P(x) be a quadratic with real coefficients satisfying

$$x^2 - 2x + 2 \le P(x) \le 2x^2 - 4x + 3$$

for all real numbers x, and suppose P(11) = 181. Find P(16).

Solution. Plugging in x=1, we get $1 \le P(1) \le 1$, hence P(1)=1. In addition, all three parabolas share the same vertex. Thus $P(x)=c(x-1)^2+1$ for some c. Plugging x=11, $100c+1=181 \to c=\frac{9}{5}$ hence the answer is 406.

Example 2.9 (AIME 2007)

The polynomial P(x) is cubic. What is the largest value of k for which the polynomials $Q_1(x) = x^2 + (k-29)x - k$ and $Q_2(x) = 2x^2 + (2k-43)x + k$ are both factors of P(x)?

Solution. Q_1, Q_2 must have a common root, say a. If $Q_1(a) = 0, Q_2(a) = 0$, then

$$Q_2(a) - 2Q_1(a) = 15a + 3k = 0$$

Hence $a = -\frac{k}{5}$. Plugging this into Q_1 , we get the answer is 30.

Example 2.10 (AIME 2015)

Let $f(x) \in R[x]$ be a cubic such that

$$|f(1)| = |f(2)| = |f(3)| = |f(5)| = |f(6)| = |f(7)| = 12$$

Solution. Cubics have two bumps, so f(1) = f(5) = f(6), f(2) = f(3) = f(7), f(4) = 0. Let f(1) = 2 hence the others are -12. The third difference is 12, hence f(0) = 12 + 24 + 24 + 12 = 72.

§3 Sequences

Example 3.1 (AIME 1988)

For any positive integer k, let $f_1(k)$ be the sum of the digits of k. For $n \geq 2$, let $f_n(k) = f_1(f_{n-1}(k))$. Find $f_{1988}(11)$.

 \Box

Example 3.2 (Pumac 2016)

Let $a_1 = 20, a_2 = 16$, and for $k \ge 3$, let $a_k = \sqrt[3]{k - a_{k-1}^3 - a_{k-2}^3}$. Compute $a_1^3 + a_2^3 + \dots + a_{10}^3$.

Solution. \Box

Example 3.3 (HMMT 2013)

Let $\{a_n\}_{n\geq 1}$ be an arithmetic sequence and $\{g_n\}_{n\geq 1}$ be a geometric sequence such that the first four terms of $\{a_n+g_n\}$ are 0,0,1,0. What is the 10th term of $\{a_n+g_n\}$?

 \Box

Example 3.4 (HMMT 2016)

An infinite sequence of reals a_1, a_2, \cdots satisfies

$$a_{n+3} = a_{n+2} - 2a_{n+1} + a_n$$

Given that $a_1 = a_3 = 1$ and $a_{98} = a_{99}$, compute $a_1 + a_2 + \cdots + a_{100}$.

 \Box

Example 3.5 (AIME 2009)

The sequence (a_n) satisfies $a_1 = 1$ and $5^{a_{n+1}-a_n} - 1 = \frac{1}{n+\frac{2}{3}}$. Find the least k > 1 such that $a_k \in \mathbb{Z}$.

 \Box

Example 3.6 (PUMAC)

 \Box

Example 3.7

 \Box

Example 3.8

 \Box

Example 3.9

Solution. \Box

Example 3.10

 \Box