$$O(x) = \frac{1}{1+e^{-x}}.$$

$$\Rightarrow \underline{\sigma(x)} = \underline{\sigma(x)} \left(1 - \underline{\sigma(x)} \right) = \underline{\sigma(x)} - \underline{\sigma^2(x)}.$$

:. For gradient delcent:

adient descent:

$$x_{n+1} = x_n - \eta$$

descent:

descent:

$$= \chi_n = \eta \left[e^{1.702 \times (1.702 \times + e^{1.702 \times + 1}) / (e^{1.702 \times + 1})^2} \right]$$

$$= 0$$

$$G \in L \cup (\infty_0) = 0$$

$$=>|x_1=-0.05|$$
 Gelu(xi) = -0.02393

$$x_2 = -0.0957501$$
 Crelu $(x_1) = -0.04398$

$$\chi_3 = -0.13763$$
 Grelu (χ_3) = -0.06079

$$x_{i}=-0.5$$
 Gelu(x) = -0.149611

The update is fatter for n=1 compared to n = 0.1 we get faster Convergence to minima

$$\begin{array}{ll}
C & & \\
\nabla C = -3 & & \\
\nabla C$$

Uling the above algorithm we get.

$$x_{1}=-2.99$$
 $x_{2}=-2.9950$
 $x_{3}=-2.9950$
 $x_{4}=-0.081$
 $x_{5}=-0.0182$
 $x_{6}=-0.0183$

Using momentum update as
$$\beta = 0.9$$
.

 $\chi_{1} = -2.9975$
 $\chi_{2} = -2.9950$
 $\chi_{3} = -2.9925$

Geth $\chi_{3} = -0.0182$
 $\chi_{3} = -2.9925$

Geth $\chi_{3} = -0.0183$

The ferformance is almost Same for zmethods but in that can be due to the town reason that GEV as her graph as only I minima and momentum is generally used to bypass local minima to keach global minima.

PROBLEM-12

$$\begin{array}{c} \Rightarrow A = 0 \\ B = 0 \end{array} \Rightarrow Z = A(i) + B(i) + (-2) \Rightarrow \sigma(z) = \sigma(-2) = 0.119 \Rightarrow x = 0 \\ Z = 0 + 0 - 2 = -2 \end{array}$$

$$\begin{array}{c|c}
A = 0 \\
B = 0 \\
X = 0
\end{array}$$

$$\Rightarrow A = 1 \Rightarrow Z = A(i) + B(i) + (-2) \Rightarrow \sigma(-1) = 0.2 \Rightarrow x = 0$$

$$B = 0 \quad Z = 1 + 0.2$$

$$\begin{array}{c|c}
A = 1 \\
B = 0 \\
X = 0
\end{array}$$

=>
$$A=0$$

 $B=1$ => $Z=A(1)+B(1)+(-2)=> O(-1)=0.2 => $X=0$
 $Z=O+1-2=-1$$

$$A = 0$$

$$B = 1$$

$$X = 0$$

$$A=0 \Rightarrow Z=A(i)+B(i)+(-0.5) \Rightarrow O(-0.5)=0.3775 \Rightarrow X=0$$
 $Z=0+0+(-0.5)$

$$A=1$$
 $B=0 \Rightarrow Z=A(1)+B(1)+(-0.5) \Rightarrow \sigma(0.5)=0.622 \Rightarrow X=1$
 $Z=1+0-0.5$

$$A=0$$
 $B=1$
 $Z=A(1)+B(1)+(-0.5)$
 $Z=0+1-0.5$
 $Z=0+1-0.5$

$$A = 0$$

 $B = 1$
 $x = 1$

$$A = 0$$
 => $z = A(i) + B(i) + (-0.5)$ => $\sigma (-0.5) = 0.3775 => x = 0$
 $z = 0 + 0 - 0.5$

All activation Sigmoid A=12 At L, Atl3. = 20+20-10 B=15 = 30 (70.5) ie 0. 20-30 = -10Sig (-10) 20.5 Atlz. = -20-20t30 Lin (-10) Lo.5 ie (1) Similarly for 00 (A=0, B=0) we can say outfut x= AtLI At L3 20-10=10 20+20 Sig(10) >0.5 At Lz -20+30=10. Sig(10) > 0.5 dividally we camprove for A=0 &B=1

$$A = 0$$

$$B = 0$$

$$At L_1 = \lim_{n \to \infty} \frac{10}{10}$$

$$At L_2 = \lim_{n \to \infty} \frac{10}{10}$$

$$At L_3 = 0$$

$$At L_2 = \lim_{n \to \infty} \frac{10}{10}$$

$$At L_3 = 0$$

$$At L_4 = \lim_{n \to \infty} \frac{10}{10}$$

$$At L_5 = \lim_{n \to \infty} \frac{10}{10}$$

$$At L_1 = 20 - 30 = -10 \rightarrow \lim_{n \to \infty} \frac{10}{10}$$

$$At L_3 = -10$$

$$At L_3 = -10$$

$$At L_3 = -10$$

$$At L_4 = 10 - 20 = -10$$

$$\lim_{n \to \infty} \frac{10}{10} = 0$$

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial 0} \times \frac{\partial O}{\partial f_{2}} \times \frac{\partial F_{2}}{\partial \alpha} \times \frac{\partial F_{2}}{\partial f_{1}} \times \frac{\partial F_{1}}{\partial x}$$

$$= \frac{\partial E}{\partial \alpha} \times \frac{\partial O}{\partial f_{2}} \times \frac{\partial F_{2}}{\partial \alpha} \times \frac{\partial F_{1}}{\partial x} \times \frac{\partial F_{1}}{\partial x}$$

HROBLEM-4

0	\
	-)
	/

	5	2		3	
9	1	8	3	4	
		+	2	7	
6	4			4	\
7	10	∞ 1	2 — 1	(F)	_
rcā	ture	'bf	ν (

-1	0.5	-2	
2	0	1	
10	1	1.5	
Filter 1			

Size of feature Map (F) = 4×4 Size of filter 1 = 3×3

. Size of new featule map (F') = 4 × 4

Output lize = W-K+2P+1

=>4=4-3+2P+1

=> $\rho = \frac{(4-1)-(4-3)}{2} = 1$ => Radding bize=1

where	W= input size K = Kernel size C = 1+0: do
	S=Stride P=Opadding

						-
1	0	0	0	0	0	0
1	D	3	ts	2	3	0
	0	9	1	8	4	0
	0	6	4	3	7	0
	_	15	0	2	4	0
	0	0	0	0	0	0
				_	-	1

Padded feature map

1-1	0.5	-2
2	0	1
to	1	1.5
	<u>`</u>	+

			10+3+8+6	4+4
1	9+1.5+5	6+2+1+12	10431010	411
>	=15.5	=21	=27	= 8
	1.5-10+1+6+6	-3+2·5-4+18+8 +4+4·5	-5+1-6+2+4 +3+10.5	-2+1-5+16 +7
	=4.5	=30		=22.5
	4.5-2+4+7	-9+·5+12-16 +3+3	-1+4-8+8+7 +2+6	-8+2+6+4
	= 13.5	=-6.5	=18	=4
	3 - 8	-6+2-6+14+	2 -4+1.5-14+4	-3+3-5+4
	=-5	=6	=-12-5	=4.5

Padding Size = 1

Given feature map (F) Size = 4 × 4

Final feature map Size = 4 × 4.

=> Final feature map Size =
$$W - K + 2P + 1$$

=> $4 = 4 - 2 + 2 + 1$
 $S = 4/3 \rightarrow Not possible to have fractional Stride.$

It is not possible to get feature map of same size as infut with given parameters.

C) From @ the new feature map F=

			TX
15.5	21	27	8
4.5	30	9.5	22.5
13.5	-6.5	18	4
-5.	6.	-12.5	4.5

	Avelage	Pooling	•
•	Prvedege		
	and the second		

27+8+9-5+22·S
1170
= 6.15
18+4+4.5-12.5
4,
F4.5)

