

METODY SVĚTELNĚ
TECHNICKÝCH VÝPOČTŮ

ODHAD PŘÍKONU
OSVĚTLOVACÍ SOUSTAVY

Popis geometrických parametrů prostoru

rozměry: c - šířka ; d - délka; h - výpočtová výška

index místnosti m

c.dh.(c+d) činitel prostoru k

plocha pudorysu prostoru h.(plovina obvodu prostoru)

m obv. v rozmezí 0.1 až 5

k obv. v rozmezí 1 až 10

5. h.(obvod prostoru)

2.(plocha pudorysu prostoru)

Odrazné vlastnosti ploch

integrální činitele odrazu - střední (po ploše vážené) hodnoty

ρ₁ - fiktivní roviny svítidel

 ρ_2 - stěn

ρ₃ - srovnávací roviny

METODA DUTIN

- Předpoklad
 počáteční toky dopadlé přímo ze svítidel jsou na plochách kam dopadly rovnoměrně rozloženy
- Povrchy mají vlastnosti rovnoměrně rozptylně odrážejících ploch

Střední činitel odrazu plochy

- při mnohonásobných odrazech se stanoví pro daný povrch jediná hodnota činitele odrazu a předpokládá se, že je stejná ve všech směrech

* Ekvivalentní činitel odrazu

- činitel odrazu, který se počítá pro fiktivní plochu a vychází z mnohonásobných odrazů v obecné duté ploše s otvorem

8. přednáška KEE/ESV

6. dubna 2016

Střední činitel odrazu plochy

Střední hodnota $\, \rho_{\text{S}} \,\,$ činitele odrazu povrchu $\, {\it A} \,$,

který má n částí o plochách A_1 , A_2 , A_3 ... A_n s činiteli odrazu ρ_1 , ρ_2 , ρ_3 ... ρ_n

$$\rho_s = \frac{\rho_1.A_1 + \rho_2.A_2 + \rho_3.A_3 + ... + \rho_n.A_n}{A_1 + A_2 + A_3 + ... + A_n}$$

Příklad : střední hodnota činitele odrazu ρ_{1s} všech ploch, které tvoří stropní dutinu se vypočte ze vztahu

$$\rho_{1s} = \frac{\rho_{11} \cdot (c \cdot d) + \rho_{21} \cdot 2 \cdot h_1 \cdot (c+d)}{c \cdot d + 2 \cdot h_1 \cdot (c+d)}$$

kde ρ_{11} - střední hodnota činitele odrazu povrchu samotného stropu,

c, d - šířka a délka osvětlovaného prostoru (m), h₁ - vzdálenost fiktivní roviny svítidel od stropu (m),

ρ₂₁ - střední činitel odrazu **stěn** ve stropní dutině.

STŘEDNÍ ČINITEL ODRAZU PLOCHY

$$\rho_{1s} = \frac{\rho_{11} \cdot (c \cdot d) + \rho_{21} \cdot 2 \cdot h_1 \cdot (c+d)}{c \cdot d + 2 \cdot h_1 \cdot (c+d)}$$

Pokud se zavedou činitele prostoru pro stropní a podlahovou dutinu:

$$k = \frac{5 \cdot h \cdot (obvod \ prostoru)}{2 \cdot (plocha \ pudorysu \ prostoru)}$$

$$k_1 = \frac{5 \cdot h_1(c+d)}{c \cdot d}$$

$$k_3 = \frac{5 \cdot h_3(c+d)}{c \cdot d}$$

Střední činitelé odrazu povrchů stropní a podlahové dutiny

$$\rho_{1s} = \frac{\rho_{11} + 0.4 \cdot k_1 \cdot \rho_{21}}{1 + 0.4 \cdot k_1}$$

$$\rho_{3s} = \frac{\rho_{33} + 0.4 \cdot k_3 \cdot \rho_{23}}{1 + 0.4 \cdot k_3}$$

8. přednáška KEE/ESV

6. dubna 2016

Ekvivalentní činitel odrazu pa

roviny výstupního otvoru Ao dutiny

$$\rho_e = \frac{\Phi_{vych}}{\Phi_0}$$

$$\rho_e = \frac{\rho \cdot \frac{A_0}{A}}{1 - \rho \cdot \left[1 - \frac{A_0}{A}\right]}$$

kde $A_{\rm o}$ - velikost rovinné plochy výstupního otvoru duté plochy (${\rm m}^2$), A - velikost plochy celého vnitřního povrchu duté plochy (${\rm m}^2$),

- střední činitel odrazu vnitřního povrchu A uvažované duté plochy (-).

Např. pro **stropní dutinu kvádru** : $A_{\mathbf{0}} = c \cdot d$; $A = c \cdot d + 2 \cdot h_1 \cdot (c + d)$ ekvivalentní činitel ρ_1 odrazu stropní dutiny, který se připisuje fiktivní rovině svítidel

$$\rho_{1} = \frac{\rho_{1s} \frac{c \cdot d}{c \cdot d + 2 h_{1}(c + d)}}{1 - \rho_{1s} \left[1 - \frac{c \cdot d}{c \cdot d + 2 h_{1}(c + d)} \right]}$$

h₁ - výška stropní dutiny (m) $\rho_{\text{1s}}\,$ - střední činitel odrazu povrchů stropní dutiny

MNOHONÁSOBNÉ ODRAZY V DUTÉ PLOŠE S OTVOREM

i viastiii vaz	-Бу Фаа - Ф -	ΨΑΑο	. — Ф . Ф ААО
oupec 1	sloupec 2	sloupec 3	sloupec 4
plochu A adne tok	z toku ve sl. 1 plocha A odrazí tok	z toku ve sl. 2 na plochu A znovu dopadne	z toku ve sl. 2 vychází otvorem A _o tok

sloupec 1	sloupec 2	sloupec 3	sloupec 4
na plochu A dopadne tok	z toku ve sl. 1 plocha A odrazí tok	z toku ve sl. 2 na plochu A znovu dopadne	z toku ve sl. 2 vychází otvorem A _o tok
Φ.	ρ.Φ _o	ψ.ρ.Φ _。	(1-ψ).ρ.Φ _o
ψ.ρ.Φ _。	ψ.ρ.ρ.Φ _。	ψ2.ρ2.Φ.	$(1-ψ)$. $ψ$. $ρ^2$. $Φ_{\circ}$
$ψ^2$. $ρ^2$. $Φ_0$	ψ². ρ². ρ.Φ _ο	ψ³. ρ³. Φο	(1-ψ) . ψ². ρ³. Φ _o
ψ3.ρ3.Φ.	ψ ³ .ρ ³ .ρ.Φ _o	$\psi^4.\rho^4.\Phi_{\circ}$	(1-ψ) . ψ ³ . ρ ⁴ . Φ _o
i i		l l	
$\Phi = \frac{1}{1 - \boldsymbol{\psi} \cdot \boldsymbol{\rho}} \Phi_0$			$\Phi_{Ao} = \frac{1}{1-\psi.\rho} (1-\psi).\rho.\Phi_0$

MNOHONÁSOBNÉ ODRAZY

V DUTÉ PLOŠE S OTVOREM

Na difúzně odrážející plochu A dopadá po mnohonásobných odrazech tok $\,\Phi\,$

 $\psi = \psi_{AA} = 1 - \psi_{AAo}$

 γ je činitel mnohonásobných odrazů

Tok $\Phi_{\mbox{\scriptsize Ao}}$ vycházející otvorem Ao :

$$\mathbf{\Phi}_{\mathbf{A} \rightarrow \mathbf{A}o} = \mathbf{\Phi}_{\mathbf{A}o} = \rho.\mathbf{\Phi}.\mathbf{\psi}_{\mathbf{A}\mathbf{A}o} = \frac{\rho}{1 - \psi_{AA}.\rho} \ \Phi_0 \ .\psi_{AAo} = \frac{\rho.\psi_{AAo}}{1 - (1 - \psi_{AAo}).\rho} \ \Phi_0$$

Ekvivalentní činitel odrazu $\, \rho_{e} \,$

$$\rho_e = \frac{\Phi_{Ao}}{\Phi_o} = \frac{\rho.\psi_{AAo}}{1 - (1 - \psi_{AAo}).\rho}$$

UDRŽOVACÍ ČINITEL

 $MF = LLMF \cdot LMF \cdot RSMF \cdot LSF$ $z = z_z \cdot z_s \cdot z_p \cdot z_{fz}$

z – udržovací činitel; MF – maintenance factor

- činitel stárnutí světelného zdroje

LLMF - Lumen lamp maintenance factor

 činitel znečištění svítidel (udržovací činitel svítidla) LMF - Luminaire mantenance factor

činitel znečištění ploch (udržovací činitel povrchů) RSMF - Room surface maintenance factor

 $z_{\rm fz}$ – činitel funkční spolehlivosti světelného zdroje

LSF - Lamp survival factor

Průměrná časově maximální (**počáteční**) osvětlenost E_{po} z=0.5 \Rightarrow $E_{po}=2$. \overline{E}_{m}

 \overline{E}_m

Údržba vnitřních osvětlovacích soustav – Technická zpráva CIE 97:2005; TNI 360451

Při určování udržovacího činitele se postupuje následujícím způsobem:

- Pro řešený prostor se navrhne vhodný typ světelného zdroje a svítidla.
 Pokud je pro danou osvětlovací soustavu výhodná skupinová výměna, stanoví se její interval.
- 3. Pro interval z kroku 2 se zjistí hodnoty činitele stárnutí zdrojů z_z (LLMF) a činitele jejich funkční spolehlivosti z_f (LSF) z údajů výrobce světelných zdrojů, popřípadě podle typických údajů v normě TNI 360451 Údržba vnitřních osvětlovacích soustav, ČSN EN 13201-2 Osvětlování pozemních komunikací; část 2 Požadavky.
- Při individuální výměně je činitel funkční spolehlivosti zdrojů z_f (LSF) = 1.
- 4. Stanoví se kategorie prostředí (viz tab.).
- Stanoví se interval čištění svítidel a obnovy povrchů (u vnitřních prostorů).
- 6. Pro interval stanovený v kroku 5 se zjistí hodnota udržovacího činitele svítidla $z_{\rm s}$ (LMF) z údajů výrobce svítidel, popřípadě podle typických údajů ve níněných normách.
- 7. Pro interval stanovený v kroku 5 se stanoví hodnota RSMF podle typických údajů v normě TNI 360451 nebo se zjistí výpočtem.
- Vypočítá se udržovací činitel z jako součin dílčích činitelů

$$z = z_z \cdot z_{fz} \cdot z_s \cdot z_p$$

 $MF = LLMF \cdot LSF \cdot LMF \cdot RSMF$

TŘÍDĚNÍ VNITŘNÍCH PROSTORŮ PODLE KATEGORIE PROSTŘEDÍ A DOPORUČENÉ INTERVALY KONTROLY OSVĚTLENOSTÍ

Označení	Kategorie prostředí	Typy prostorů	Kontrolní interval t (rok)	
vč	Velmi čisté	Čisté místnosti, závody na výrobu polovodičů, nemocniční oddělení, výpočetní střediska	3	
č	Čisté	Úřady, školy, areály nemocnic	3	
N	Normální	Obchody, laboratoře, restaurace, obchodní domy, montážní plochy, dílny	2	
š	Špinavé Ocelárny, chemické závody, slévárny, svařování, leštění, práce s dřevem		1	

8. přednáška KEE/ESV 6. dubna 2016

TŘÍDĚNÍ VENKOVNÍHO PROSTŘEDÍ PODLE ÚROVNĚ

Znečištění okolí	Popis prostředí	Koncentrace prachových částic c (μg/m³)
Malé	Nevyskytuje se činnost vytvářející kouř nebo prach, prostředí s nízkou úrovní znečišťujících látek, malá intenzita silniční dopravy, obytné a venkovské oblasti	c < 150
Střední	Vyskytují se činnosti vytvářející mírný kouř nebo prach, střední až velká intenzita silniční dopravy	150 ≤ c < 600
Velké	Svítidla obvykle zahalují oblaka kouře nebo prachu způsobená činnostmi v blízkém okolí	c ≥ 600

8. přednáška KEE/ESV 6. dubna 2016

DOPORUČENÉ INTERVALY ČIŠTĚNÍ JEDNOTLIVÝCH TYPŮ SVÍTIDEL PRO RŮZNÉ KATEGORIE PROSTŘEDÍ

_	_	Popis		Interval čištění (roky)		
Ozn.	Тур			N	Š	
Α	Necloněné svítidlo	Svítidlo s necloněným světelným zdrojem	3	2	1	
В	Otevřené svítidlo bez horního krytu (přirozené provětrání)	Přímo-nepřímé svítidlo bez krytu; přímo nepřímé svítidlo s nepřímým reflektorém a s uzavřeným optickým systémem; bokozářič (s vertikálním vystupním otvorem); nástěnné svítidlo nahoře a dole otevřené; stropní směrové svítidlo nahoře otevřené		2	1	
С	Svítidlo s horním krytem (nevětrané) Podhledové svítidlo (např. mřížkové); stropní svítidlo směrové; světlomet		3/2	1	Х	
D	Uzavřené svítidlo IP2X	Svítidlo pro všeobecné osvětlování s krytem a optickým systémem	3/2	1	х	
E	Svítidlo s ochranou proti prachu IP5X	Svítidlo chráněné proti prachu IP5X (svítidla pro čisté místnosti)	3	3	2	
F	Nepřímé svítidlo	Stojanové, závěsné nebo nástěnné svítidlo dole uzavřené; římsa pro nepřímé osvětlení	2/1	1	Х	
G	Provětrávané svítidlo	Svítidlo s optickým systémem kombinované se systémem vzduchotechniky	3	3	2	

6. dubna 2016

8. přednáška KEE/ESV

POČTY PROVOZNÍCH HODIN UMĚLÉHO OSVĚTLENÍ PRO TYPICKÉ APLIKAČNÍ OBLASTI

Aplikační		Počet provozních hodin t (h/rok)			
oblast	Charakteristika provozu	bez řízení podle denního světla	s řízením podle denního světla		
	nepřetržitý provoz	8 760	7 300		
Průmysl	dvě směny, 6 dnů / týden	4 960	3 720		
Prumysi	jedna směna, 6 dnů / týden	3 100	1 760		
	jedna směna, 5 dnů / týden	2 580	1 550		
Obchody	6 dnů / týden	3 100	х		
Kanceláře	5 dnů / týden	2 580	1 550		
Školy	5 dnů / týden	1 900	1 140		
Nemocnice	7 dnů / týden	5 840	3 504		

8. přednáška KEE/ESV 6. dubna 2016

Toková metoda výpočtu počátečního průměrného jasu $L_{20}\,$ stěn interiéru

Na všechny stěny o celkové ploše A_2 dopadá včetně vlivu odrazů počáteční tok Φ_2 a odráží se od ní tok $(
ho_{\scriptscriptstyle 2}\,.\,\Phi_{\scriptscriptstyle 2})$

Přepoklad : stěny vykazují vlastnosti **difúzně** odrážejícího povrchu \Rightarrow

$$M_{20} = (\rho_2 \cdot \Phi_2) / A_2 = \pi \cdot L_{20}$$

$$L_{20} = \frac{\rho_2 \cdot \Phi_2}{\pi \cdot A_2} = \frac{\Phi_z}{A} \cdot \frac{\rho_2}{\pi} \cdot \frac{A}{\Phi_z} \cdot \frac{\Phi_2}{A_2} = \frac{\Phi_z}{A} \cdot \eta_{L2}$$

kde A - plocha srovnávací roviny (m²) Φ , - časově maximální (počáteční) hodnota světelného toku (lm) všech světelných zdrojů instalovaných k zajištění průměrné udržované osvětlenosti E_m na ploše $\,{\cal A}\,$ η_{L2} - činitel využití pro výpočet jasu stěn, který se zjistí z výrazu

$$\eta_{L2} = \frac{\rho_2}{\pi} \frac{A}{A_2} \frac{\Phi_2}{\Phi_z}$$

Toková metoda

výpočtu počátečního průměrného jasu $L_{1\mathrm{e}0}~$ fiktivní roviny svítidel

Na fiktivní rovinu svítidel **dopadá** včetně vlivu odrazů počáteční tok $\,\Phi_{\scriptscriptstyle 1}\,$ a odráží se od ní tok $(\rho_1 . \Phi_1)$

Přepoklad : fiktivní rovina svítidel o ploše A_1 má **difúzní** charakter \Rightarrow (světlení $M_{\rm 1e0}$ plochy $A_{\rm 1}$) = $M_{\rm 1e0}$ = $(\rho_{\rm 1}\,.\,\Phi_{\rm 1})\,/\,A_{\rm 1}$ = $\pi\,.\,L_{\rm 1e0}$

$$L_{1e0} = \frac{\rho_1 \cdot \Phi_1}{\pi \cdot A_1} = \frac{\Phi_z}{A_1} \cdot \frac{\rho_1}{\pi} \cdot \frac{\Phi_1}{\Phi_z} = \frac{\Phi_z}{A_1} \eta_{L1}$$

 $\boldsymbol{\Phi}_{_{\!Z}}\,$ - časově maximální (počáteční) hodnota světelného toku (lm) všech světelných **zdrojů** instalovaných k zajištění průměrné udržované osvětlenosti $\,E_m\,$ na ploše A srovnávací roviny rovné ploše A_1 fiktivní roviny svítidel

 η_{L1} - činitel využití pro výpočet jasu fiktivní roviny svítidel (stropní dutiny), který se

 $\eta_{L1} = \frac{\rho_1}{\Phi_1}$

Příště

BODOVÁ METODA

prof. Ing. Jiří Habel, DrCs.