

ML supervisado

$$\hat{y}^{(i)} = f_{\theta}(x^{(i)})$$

¡Gradient Descent al rescate!

$$\theta^{(i+1)} = \theta^{(i)} - \alpha \cdot \nabla L(\theta)$$

Funciones de Perdida

Funciones de costo

Perdida (Loss)

La pérdida (costo) es un número que indica qué tan mala fue la predicción del modelo en un solo ejemplo. Esta se puede encontrar con varias funciones, la más utilizada es la función Squared Loss, también conocida como L2 loss.

Squared Loss =
$$(y_i - \hat{y}_i)^2$$

Donde:

- y_i es el valor real
- \hat{y}_i es el valor predecido

Funciones de costo para regresión

Mean Absolute Error L₁ (MAE)

El error absoluto medio es una forma de encontrar el total de pérdidas y una buena opción si MSE no funciona para un problema específico. Ambos son buenos con tareas de regresión.

Mean Absolute Error = $\frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|$

Mean Squared Error L₂ (MSE)

El agregado de pérdidas generalmente se calcula mediante MSE porque facilita el cálculo del gradiente, mientras que el error absoluto medio requiere herramientas de programación lineal complicadas para calcular el gradiente.

Mean Squared Error = $\frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2$ MSc. Edwin Salcedei

Categorical Cross-Entropy

La entropía cruzada es la mejor función de pérdida para la clasificación multiclase y su propósito es tomar las probabilidades de salida (P) y medir la distancia de los valores de verdad.

Para el ejemplo anterior, el resultado deseado es [1,0,0,0] para el perro de la clase pero el modelo salidas [0,775, 0,116, 0,039, 0,070] .

Categorical Cross-Entropy

$$L_{Cross-Entropy} = -\sum_{i=1}^{n} t_i * log_2(p_i)$$

Donde:

- *n* es el numero de clases (etiquetas)
- t_i el la etiqueta real
- p_i es la probabilidad proveniente de Softmax para la i clase

Categorical Cross-Entropy

$$\begin{split} L_{CE} &= -\sum_{i=1} T_i \log(S_i) \\ &= -\left[1\log_2(0.775) + 0\log_2(0.126) + 0\log_2(0.039) + 0\log_2(0.070)\right] \\ &= -\log_2(0.775) \\ &= 0.3677 \end{split}$$
 MSc. Edwin Salcedo

Binary Cross-Entropy

$$L = -\frac{1}{N} \left[\sum_{j=1}^{N} \left[t_j * \log_2(p_j) + (1 - t_j) * \log(1 - p_j) \right] \right]$$

donde:

- N es el numero de muestras
- t_i es la etiqueta real, donde se toma en cuenta a los valores 0 o 1
- p_i es la salida de la función Softmax para la i clase

Funciones de Optimización

Los pasos del algoritmo son:

- 1. Definir los parámetros del modelo aleatoriamente.
- 2. While nos ubiquemos en una pendiente:
 - A. Encontrar el error (costo) de la función de perdida.
 - B. Calcular el error a propagar para cada variable usando derivadas parciales del error encontrado con respecto a cada parámetro.
 - C. Calcular el nuevo valor para cada parámetro del modelo, usando la siguiente función, donde α será el grado de aprendizaje (su valor debería rondar entre 0.1 y 0.01).

$$\theta^{(i+1)} = \theta^{(i)} - \alpha \cdot \nabla L(\theta)$$
MSc. Edwin Salcedo

Descenso de la gradiente (Gradient Descent)

Cost function

$$J\left(\theta\right) = \frac{1}{2m} \sum_{i=1}^{m} \underbrace{\left(\frac{h_{\theta}(x^{(i)})}{\text{Predicted value}}, \underbrace{y^{(i)}}_{\text{True value}}\right)^{2}}^{\text{Square Error of data i}}$$

Mean Error Square

Problem Type	Output Type	Final Activation Function	Loss Function
Regression	Numerical value	Linear	Mean Squared Error (MSE)
Classification	Binary outcome	Sigmoid	Binary Cross Entropy
Classification	Single label, multiple classes	Softmax	Cross Entropy
Classification	Multiple labels, multiple classes	Sigmoid	Binary Cross Entropy

Back-propagation

Error

$$E(W) = -\frac{1}{m} \sum_{i=1}^{m} y_i ln(\hat{y}_i) + (1 - y_i) ln(1 - \hat{y}_i)$$

Error a propagar

$$\nabla E = \begin{pmatrix} \frac{\partial E}{\partial W_{11}^{(1)}} & \frac{\partial E}{\partial W_{12}^{(1)}} & \frac{\partial E}{\partial W_{11}^{(2)}} \\ \frac{\partial E}{\partial W_{21}^{(1)}} & \frac{\partial E}{\partial W_{22}^{(1)}} & \frac{\partial E}{\partial W_{21}^{(2)}} \\ \frac{\partial E}{\partial W_{31}^{(1)}} & \frac{\partial E}{\partial W_{32}^{(1)}} & \frac{\partial E}{\partial W_{31}^{(2)}} \end{pmatrix}$$

Local Minimum

Nuestro Gradient Descent también puede tener problemas, por ejemplo, los mínimos locales son bastante comunes y pueden hacernos pensar que hemos llegado a un buen modelo.

Gradient Descent

Ejemplo perfecto

a Edwin Calcada

Gradient Descent

https://cld//fSgc.ofele/wim/Sandretstai/ml-comic-1

Diferentes estrategias para el descenso de gradiente pueden aliviar el enorme procesamiento informático necesario para encontrar una solución optima.

A Newbie's Guide to Stochastic Gradient De Sewii Chein Selong Wang on Medium

Batch Gradient Descent

Ventajas

- Menos actualizaciones del modelo significan que esta variante es mas eficiente desde el puntos de vista computacional.
- La frecuencia de actualización reducida da como resultado un gradiente de error más estable, lo que conlleva una convergencia más estable en algunos problemas.

Desventajas

- Comúnmente, <u>requiere todo el conjunto de</u> <u>datos de entrenamiento</u> en la memoria y disponible para el algoritmo.
- Es propenso a encontrar mínimos locales.

Calcula el error para cada ejemplo en el conjunto de datos de entrenamiento, pero solo actualiza el modelo después de que se hayan MSc. Edwin Saluado todos los ejemplos de entrenamiento.

Mini-Batch Gradient Descent

Ventajas

- La frecuencia de actualización del modelo es mayor que la anterior estrategia, lo que permite una <u>convergencia más robusta</u>, evitando mínimos locales.
- El procesamiento por lotes permite <u>no tener</u> todos los datos de entrenamiento en la <u>memoria</u> como la anterior estrategía.

Desventajas

- El mini-batch requiere la configuración de un hiperparámetro adicional de "tamaño de minibatch", el cual también requiere tunning.

Calcula el error y actualiza el modelo por cada batch procesado.

Stochastic Gradient Descent

Ventajas

- Las actualizaciones frecuentes permiten encontrar una solución optima en menor tiempo.
- La aleatoriedad del modelo permite evitar mínimos locales.

Desventajas

- Actualizar el modelo tan frecuentemente requiere de mas recursos computaciones.
- La aleatoriedad también podría causar que el modelo tenga sobresaltos de error.
- La aleatoriedad puede causar que el el error y la gradiente no pueda establecerse en un MSc. Edwin Salcedo mínimo global.

Calcula el error y actualiza el modelo para cada ejemplo en el conjunto de datos de entrenamiento. La selección es aleatoria.

Momentum

Paso: Promedio de los pasos anteriores

 β : momentum

$$Paso(n) \rightarrow Paso(n) + \beta * Paso(n-1) + \beta^2 * Paso(n-2) + \dots$$

Adaptive Moment Estimation (ADAM)

For each Parameter w^j

(j subscript dropped for clarity)

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$

$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta\omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

$$\omega_{t+1} = \omega_t + \Delta\omega_t$$

 $\eta: Initial\ Learning\ rate$

 g_t : Gradient at time t along ω^j

 ν_t : Exponential Average of gradients along ω_j

 $s_t: Exponential \ Average \ of \ squares \ of \ gradients \ along \ \omega_j$

 $\beta_1, \beta_2: Hyperparameters$

Ajuste apropiado

¿Como resolver problemas de entrenamiento?

Dropout

Dropout ayuda a apagar algunos nodos al azar en una capa para que podamos evitar el sobreajuste.

Random restart

Vanishing gradient

El fuga de gradiente (Vanishing gradient) ocurre cuando nuestra función de activación no es la más adecuada para una determinada capa o tarea.

Efectos del Learning Rate

Understanding learning rate in machine learning, Medium

Learning Rate Schedules: Step Decay

Actualización de pesos:

$$w_x = w_x - \alpha * (\frac{\partial LossFunction}{\partial w_x})$$

Donde α es el grado de aprendizaje.

Reading: Learning Rate Schedule in Practice: an example with Keras and TensorFlow 2.0 on Medium

Regla:

- Si estamos en una pendiente: realizar pasos largos
- Si estamos en un lugar plano: realizar pasos cortos

Learning Rate Schedules: Time-based

Step Decay

Cosine Annealing

Cosine Annealing with Restart

MjScplEdwiperSalcedoia

Funciones de Optimización

Conjunto de entrenamiento, prueba y validación

Métricas de evaluación

Elementos Relevantes

Métricas de evaluación

Classification Accuracy

La precisión de la clasificación es lo que generalmente queremos decir cuando usamos el término precisión. Es la relación entre el número de predicciones correctas y el número total de muestras de entrada.

$$Accuracy = \frac{Numero\ de\ predicciones\ bien\ hechas}{Numero\ total\ de\ predicciones\ hechas}$$

Funciona bien solo si hay igual número de muestras pertenecientes a cada clase.

Métricas de evaluación

Confusion Matrix

Confusion Matrix nos da una matriz como salida y describe el rendimiento completo del modelo.

Métricas de evaluación: Confusion Matrix

PASO 1: Identificar components

Confusion Matrix nos da una matriz como salida y describe el rendimiento completo del modelo.

PASO 2: Normalizar valores

Confusion Matrix nos da una matriz como salida y describe el rendimiento completo del modelo.

PASO 3: Calcule la precisión promediando la diagonal principal

Confusion Matrix nos da una matriz como salida y describe el rendimiento completo del modelo.

$$(0,55 + 0,56)/2 = 0,55 = Accuracy$$

2000

1000

Fashion-MNIST Dataset

Dataset de 70000 imágenes de ropa para clasificarlas según 10 categorías: camiseta, pantalón, jersey, vestido, abrigo, sandalia, camisa, zapatilla, bolso, botín.

Tobacco-3482 Dataset

Conjunto de datos para clasificar texto en función de su contenido visual.

Precision and recall

La precisión es la fracción de instancias relevantes entre las instancias recuperadas, mientras que la recuperación es la fracción de instancias relevantes que se recuperaron.

Logarithmic Loss

Logarithmic Loss o Log Loss, funciona penalizando las clasificaciones falsas. Funciona bien para la clasificación multiclase.

$$LogarithmicLoss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} * \log(p_{ij})$$

Where:

 y_{ij} indicates whether sample i belongs to class j or not

 p_{ij} indicates the probability of sample i belonging to class j [0,1]

LogarithmicLoss has no upper bound [0, ∞)

AUC

El área bajo la curva (AUC) es una de las métricas más utilizadas para la evaluación. Se utiliza para problemas de clasificación binaria.

$$TPR (True \ Positive \ Rate \ / \ Recall \ / \ Sensitivity) = \frac{TP}{TP + FN}$$

AUC

El área bajo la curva (AUC) es una de las métricas más utilizadas para la evaluación. Se utiliza para problemas de clasificación binaria.

$$Specificity = \frac{TN}{TN + FP}$$

 $FPR(False\ Positive\ Rate) = 1 - Specificity$

Area Under Curve (AUC)

Samples	%	Class
Kiril	0.21	Healthy
Hans	0.67	Infected
Carl	0.56	Healthy
Jane	0.31	Healthy
Julie	0.70	Infected
Carol	0.84	Healthy

FPR

Area Under Curve (AUC) for Multi-Category Classification

F1 Score

F1 es una función de Precisión y Recuperación. El valor más alto posible de una puntuación F es 1,0, lo que indica precisión y recuperación perfectas.

$$F1Score = 2 * \frac{1}{\frac{1}{precision} + \frac{1}{recall}}$$

Logs de entrenamiento


```
Epoch 2/50
Epoch 4/50
Epoch 6/50
Epoch 17/50
```

Herramientas de implementación

Programación Pura

Composición de capas y modelos desechables.

MSc. Edwin Salcedo

Arquitectura tuneable

