Course Type	Course Code	Name of Course	L	T	P	Credit
DC	GPC 509	Geoelectrical Methods	3	0	0	9

Course Objective

Understanding the physics of the current flow in the earth and its manifestation. Intricacies of data acquisition, interpretation and modelling for the entire gamut of geoelectrical methods. Understanding the phenomenon of Induced Polarization (IP) in identifying the electrical chargeability of subsurface materials

Learning Outcomes

Upon successful completion of this course, students will: The purpose of this course is to familiarise students with the resistivity and induced polarization methods which is extensively used in hydrogeological, environmental, geotechnical aspects of civil engineering, engineering geology and in mining engineering problems. The ultimate goal of the course is to solve geological problems by understanding the concepts of physics using electrical signature.

Sl.	Details of Lectures	Lecture	Learning
No.		Hrs.	Outcomes
1.	Electrical Properties of rocks	2	Basic
			Principles
2.	Potentials in homogenous media. Equipotential surface generated by	3	Knowledge on
	single and two electrodes. Effects of inhomogenous ground. Analogy		media
	between optical and electrical images		
3.	Fundamental relation between potential, apparent resistivity, resistivity	3	Laws of
	transform and layer distribution of a stratified earth (multiplayer).		resistivity
4.	Electrode Configuration, Geometrical constant, definition of apparent	3	Field
	resistivity.		arrangement
5.	Application of linear filter theory analogy. Frequency characteristics of	4	Filter theory
	Schlumberger filter. Sampling interval, Shanon's Sampling theorem.		analogy
	Nyquist Rule. Determination of Sampling Interval.		
6.	Determination of Schlumberger filters coefficients. Sinc response of the	4	Designing of
	Schlumberger filter. Filter coefficients, length of filter.		filter
7.	Recurrence relation, Flathe and Pekris Recurrence relations.	3	Empirical
	Determination of resistivity transform by using Pekris Recurrence		relations and
	Relation.		resistivity
			transformation
8.	Potential due to a point source in an anisotropic medium. Triangle of	3	Analysis in
	anisotropy, Paradox of Anisotropy, Principle of equivalence and		anisotropy
	suppression		media
9.	Self-Potential Method: Causes of Self-Potential, Interpretation of SP	3	Principle of SP
l	Data		
10.	Introduction, Sources of IP, Membrane polarization, Electrode	7	Measurement
	polarization, Time and Frequency Domain measurements. Chargeability,		of SP and
	Frequency effect and metal factor. Apparent Chargeability over layered		application
	earth, Application in Hydrocarbon Exploration		
11.	Electrical resistivity tomography: Principle and Acquisition, Frechet	5	Electrical
	Derivative for homogenous half-space, 1-D view of the sensitivity		Resistivity
	function- depth of investigation, 2-D view of the sensitivity function		Tomography
	lateral and vertical resolution of the different arrays		
12.	Mise-a-la-masse Method	2	Mise-a-la-
			masse Method
	Total Classes	42	

Text Books

- 1. Dobrin, M. B., and Savit, C. H., 1988, Introduction to Geophysical Prospecting (Fourth Edition), Tata McGraw Hill.
- 2. Telford, W. M., Geldart, L. P., Sheriff, R. E., and Keys, D. A., 1988, Applied Geophysics.

Reference Books

- 1. Parasnis, D. S., 1997, Principles of Applied Geophysics (Fifth Edition), Chapman and Hall.
- 2. Bhattacharya, B. K., and Patra, H. P., 1968, Direct Current Electric Sounding (Methods in Geochemistry and Geophysics) Elsevier Publishing Co.

Course Type	Course Code	Name of Course	L	Т	P	Credit
DP	GPC 513	Geoelectrical Methods Practical	0	0	2	2

Sl.	Details of Lectures	Lecture	Learning
No.		Hrs.	Outcomes
01	Acquisition of Vertical Electrical Sounding data		
02	Acquisition of Electrical Resistivity Tomography Data		
03	Generation of Vertical Electrical Sounding data using filter theory.		
04	Interpretation of Vertical Electrical Sounding data using partial curve matching technique		
05	Interpretation of Vertical Electrical Sounding data for resolution, sensitivity and uncertainty		
06	Interpretation of Dipole Dipole data using pseudo section		
07	Interpretation of SP data		
08	Computation of Frechet Derivative for different arrays and its utility in field planning		
09	Generation of triangle of anisotropy for the given data set		
10	Generation of second derivative of apparent resistivity curves for tackling equivalence problem.		