

American International University- Bangladesh (AIUB) Faculty of Engineering

Course Name:	Introduction to Electrical Circuits	Course Code:	COE 2101
Semester:	Fall 2021-22	Total Marks:	5
Faculty:	Prof. Dr. Mohammad Abdul Mannan	Term	Final

Assignment 03 [Final-TERM] [5 Marks]

Submission Date: November 25, 2021 [Thursday]

General Instruction:

- 1. Solve the problem to A4-size white paper by your handwritten.
- 2. Write your Name, Student ID, Section, Page Number and value of m_5 on the top of first page.
- 3. In top of other pages write the Page Number.
- **4.** Take picture of your solution for each page individually.
- 5. Insert the picture in a word file.
- **6.** Make word file into PDF format file.
- 7. Save PDF file using middle five digits of your ID number such as:

*m*₁*m*₂*m*₃*m*₄*m*₅_A03F_IECK_M.pdf such as: 45328_A03F_IECK_M.pdf

- **8.** Submit it in VUES.
- 9. For each day delay 1 marks will be reduced.
- 10. Picture format file submission will not be considered

Problem 01: For the **Figure 1**: having $e(t) = 70.8\sin(314t + 60^\circ) \text{ V}$, $R = 44 \Omega$, $X_L = 20 \Omega$ and $X_C = 10 \Omega$.

- (i) Calculate the admittance and the impedance and write it in both Cartesian and Polar form.
- (ii) Draw the admittance diagram.
- (iii) Draw the impedance diagram.
- (*iv*) Find the value of *C* in microfarads and *L* in henries.
- (v) Find the voltage E and the currents I_s , I_R , I_L , and I_C in phasor form.
- (vi) Draw the phasor diagram of the currents I_s , I_R , I_L , and I_C and the voltage E.
- (vii) Verify Kirchhoff's current law.
- (*viii*) Find the average power, the reactive power and the apparent power to the circuit.
- (ix) Draw the power triangle.
- (x) Find the power factor of the circuit and indicate whether it is leading or lagging.
- (xi) Find the sinusoidal expressions for the currents I_s , I_R , I_L , and I_C .

[2]

[3]

Figure 1

Problem 02: For the **Figure 2**:

- (a) (i) Determine the Thévenin's equivalent impedance (\mathbf{Z}_{Th}) , the Thévenin's equivalent voltage (\mathbf{E}_{Th}) and (ii) Draw the Thévenin's equivalent circuit.
- (b) (i) Determine the Norton's equivalent impedance (\mathbb{Z}_N), the Norton's equivalent voltage (\mathbb{I}_N) and (ii) Draw the Norton's equivalent circuit.
- (c) Find the load impedance \mathbf{Z}_L for maximum power to the load, and find the maximum power to the load.

Figure 2