Automatic prostate cancer detection through DCE-MRI images: all you need is a good normalization

Guillaume Lemaître^{a,b,*}, Robert Martí^b, Fabrice Meriaudeau^{a,c}

^aLE2I UMR6306, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, 12 rue de la Fonderie, 71200 Le Creusot, France ^bViCOROB, Universitat de Girona, Campus Montilivi, Edifici P4, 17071 Girona, Spain ^cCISIR, Electrical & Electronic Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia

Abstract

This template helps you to create a properly formatted LATEX manuscript.

Keywords: DCE-MRI, prostate cancer, normalization, classification, quantification

1. Introduction

Prostate Cancer (PCa) is the second most frequently diagnosed men cancer, accounting for 899,000 cases leading to 258,100 deaths (Ferlay et al., 2010). As highlighted by the PI-RADS Steering Committee, the two main challenges to be addressed are (Weinreb et al., 2016): (i) the improvement of detecting clinically significant PCa and (ii) an increase of the confidence in benign or dormant cases, avoiding unnecessary invasive medical exams. In this regard, multiparametric Magnetic Resonance Imaging (MRI) (mpMRI) is frequently used to build robust Computer-Aided Detection and Diangosis (CAD) systems to detect, localize, and grade PCa. In general, CAD systems are based on mpMRI which combines several of the following modalities (Lemaître et al., 2015): T₂ Weighted (T₂-W)-MRI, Dynamic Contrast-Enhanced (DCE)-MRI, Apparent Diffusion Coefficient (ADC) maps, and Magnetic Resonance Spectroscopy Imaging (MRSI).

Email address: g.lemaitre58@gmail.com (Guillaume Lemaître)

^{*}Corresponding author.

In DCE-MRI, a contrast media is injected intravenously and a set of images is acquired over time. Consequently, each voxel in the image is a dynamic signal which is related to the vascular properties of the tissue. In fact, these properties are automatically extracted using quantitative or semi-quantitative approaches (Lemaître et al., 2015).

The former group of approaches uses pharmacokinetic modelling based on a bicompartment model, namely Brix (Brix et al., 1991) and Tofts (Tofts et al., 1995) models. The parameters of the Brix model are found assuming a linear relationship between the media concentration and MRI signal intensity. This assumption has shown, however, to lead to inaccurate parameter calculation (Heilmann et al., 2006). In the contrary, Tofts model only requires a conversion from MRI signal intensity to concentration, which can become a non-linear relationship using specific equation of MRI sequences (e.g., FLASH sequence). Tofts modelling suffers, however, from an higher complexity (Gliozzi et al., 2011). The conversion using the non-linear approach requires to acquire a T₁ map which is not always possible during clinical examination. Furthermore, the parameter calculation require the Arterial Input Function (AIF) which is challenging to measure and can also lead to inaccurate estimation of the parameters.

The latter group of approaches are rather mathematical than pharmacokinetic modelling (Huisman et al., 2001; Gliozzi et al., 2011). These methods offer the advantages to not require any knowledge about the MRI sequence nor any conversion from signal intensity to concentration. However, the heuristic approach propose by Huisman et al. requires an estimate regarding the noise standard deviation of the signal as well as manual tuning.

Nevertheless, all presented methods suffer from two major drawbacks: (i) the inter-patient variability of the data lead to a variation of the parameters estimated and to poor classification performance while designing CAD systems, and (ii) only few parameters are used to characterize the dynamic signal implying that some information are discarded.

In this work, we propose a fully automatic normalization method for DCE-MRI that reduce the inter-patient variability of the data. Furthermore, we show

that using the full normalized signal lead to the best classification performance.

The paper is organized as follows: Section 2 outlines our normalization strategy (Section 2.1) as well as specificity regarding the state-of-the-art methods used for comparison (Section 2.2). The dataset, experiments, and results are reported in Section 3 while discussed in Section 4 followed by a concluding section.

2. Methods

- 2.1. Normalization of DCE-MRI images
- 2.2. Quantification of DCE-MRI
- 2.2.1. Brix and Hoffmann models

In the Brix model (Brix et al., 1991), the MRI signal intensity is assumed to be proportional to the media concentration. Therefore, the model is expressed as in Eq. (1):

$$s_n(t) = 1 + A \left[\frac{\exp(k_{el}t') - 1}{k_{ep}(k_{ep} - k_{el})} \exp(-k_{el}t) - \frac{\exp(k_{ep}t') - 1}{k_{el}(k_{ep} - k_{el})} \exp(-k_{ep}t) \right], \quad (1)$$

with

55

$$s_n(t) = \frac{s(t)}{S_0},\tag{2}$$

where s(t) and S_0 are the MRI signal intensity at time t and the average precontrast MRI signal intensity, respectively; A, k_{el} , and k_{ep} are a constant proportional to the transfer constant, the diffusion rate constant, and the rate constant, respectively. Additionally, during the injection time $0 \le t \le \tau$, t' = tand afterwards while $t > \tau$, $t' = \tau$.

Following this model, Hoffmann et al. propose the following similar model as expressed in Eq. (3):

$$s_n(t) = 1 + \frac{A}{\tau} \left[\frac{k_{ep} \left(\exp(k_{el}t') - 1 \right)}{k_{el}(k_{ep} - k_{el})} \exp(-k_{el}t) - \frac{\exp(k_{ep}t') - 1}{(k_{ep} - k_{el})} \exp(-k_{ep}t) \right]. \tag{3}$$

2.2.2. Tofts model

The extended Tofts model is formulated as in Eq. (4):

$$C_t(t) = K_{trans}C_p(t) * \exp(-k_{ep}t) + v_pC_p(t), \tag{4}$$

where * is the convolution operator; $C_t(t)$ and $C_p(t)$ is the concentration of contrast agent in the tissue and in the plasma, respectively; K_{trans} , k_{ep} , and v_p are the volume transfer constant, the diffusion rate constant, and the plasma volume fraction, respectively.

Therefore, Tofts model requires to: (i) estimate an AIF signal to later compute $C_p(t)$, and (ii) convert the MRI signal intensity into a concentration.

Estimation of AIF signal Two different strategies can be used to get an AIF signal: (i) estimate a patient-based AIF signal from the DCE-MRI data or (ii) compute a population-based AIF signal.

Conversion of MRI signal intensity to concentration

2.2.3. PUN model

Gliozzi et al. show that Phenomenological Universalities (PUN) approach can be used for DCE-MRI analysis (Gliozzi et al., 2011). The model has been successfully used in a CAD system proposed by Giannini et al. (2015). This model can be expressed as in Eq. (5):

$$s_n(t) = \exp\left[rt + \frac{1}{\beta}(a_0 - r)(\exp(\beta t) - 1)\right],\tag{5}$$

with

75

$$s_n(t) = \frac{s(t) - S_0}{S_0},\tag{6}$$

where s(t) and S_0 are the MRI signal intensity at time t and the average precontrast MRI signal intensity, respectively; r, a_0 , and β are the free parameters of the model.

2.2.4.

- 3. Experiments and results
- 4. Discussions

5. Conclusions and future works

References

100

110

- Brix, G., Semmler, W., Port, R., Schad, L.R., Layer, G., Lorenz, W.J., 1991.

 Pharmacokinetic parameters in cns gd-dtpa enhanced mr imaging. Journal of computer assisted tomography 15, 621–628.
- Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M., 2010. Estimates of worldwide burden of cancer in 2008: Globocan 2008. International journal of cancer 127, 2893-2917. doi:10.1002/ijc.25516.
 - Giannini, V., Mazzetti, S., Vignati, A., Russo, F., Bollito, E., Porpiglia, F., Stasi, M., Regge, D., 2015. A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging. Computerized Medical Imaging and Graphics 46, 219–226. doi:10.1016/j.compmedimag.2015.09.001.
- Gliozzi, A., Mazzetti, S., Delsanto, P.P., Regge, D., Stasi, M., 2011. Phenomenological universalities: a novel tool for the analysis of dynamic contrast enhancement in magnetic resonance imaging. Physics in medicine and biology 56, 573.
 - Heilmann, M., Kiessling, F., Enderlin, M., Schad, L.R., 2006. Determination of pharmacokinetic parameters in dce mri: consequence of nonlinearity between contrast agent concentration and signal intensity. Investigative radiology 41, 536–543. doi:10.1097/01.rli.0000209607.99200.53.
 - Hoffmann, U., Brix, G., Knopp, M.V., He β , T., Lorenz, W.J., 1995. Pharmacokinetic mapping of the breast: a new method for dynamic mr mam-

- mography. Magnetic resonance in medicine 33, 506-514. doi:10.1002/mrm.1910330408.
- Huisman, H.J., Engelbrecht, M.R., Barentsz, J.O., 2001. Accurate estimation of pharmacokinetic contrast-enhanced dynamic mri parameters of the prostate. Journal of Magnetic Resonance Imaging 13, 607–614. doi:10.1002/jmri. 1085.
 - Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F., 2015. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review. Computers in biology and medicine 60, 8–31. doi:10.1016/j.compbiomed.2015.02.009.
 - Tofts, P.S., Berkowitz, B., Schnall, M.D., 1995. Quantitative analysis of dynamic gd-dtpa enhancement in breast tumors using a permeability model. Magnetic Resonance in Medicine 33, 564–568. doi:10.1002/mrm.1910330416.

125

Weinreb, J.C., Barentsz, J.O., Choyke, P.L., Cornud, F., Haider, M.A., Macura, K.J., Margolis, D., Schnall, M.D., Shtern, F., Tempany, C.M., et al., 2016. Pirads prostate imaging–reporting and data system: 2015, version 2. European urology 69, 16–40.