四概率分布的分位数

1. 定义

定义1.11 对于随机变量X和给定的 α (0< α <1),若存在 x_{α} ,使

$$P\{X > x_{\alpha}\} = \alpha$$

则称 x_{α} 为X的(或它的概率分布的)上侧 α 分位数.

2. 常用分布的上侧分位数记号

分布	N(0,1)	$\chi^2(n)$	t(n)	$F(n_1,n_2)$
记号	u_{α}	$\chi^2_{\alpha}(n)$	$t_{\alpha}(n)$	$F_{\alpha}(n_1,n_2)$

3. 查表法

(1) 若X的分布密度关于y轴对称,则

$$x_{1-\alpha} = -x_{\alpha}$$

特例:

1)
$$N(0,1)$$
: $u_{1-\alpha} = -u_{\alpha}$

2)
$$t(n)$$
: $t_{1-\alpha}(n) = -t_{\alpha}(n)$

设X服从标准正态分布N(0,1),则其上侧分位数 u_{α} 满足

$$P\{X > u_{\alpha}\} = \frac{1}{\sqrt{2\pi}} \int_{u_{\alpha}}^{+\infty} e^{-\frac{x^2}{2}} dx$$

$$=1-P\{X\leq u_{\alpha}\}=1-\Phi(u_{\alpha})=\alpha$$

即
$$\Phi(u_{\alpha}) = 1 - \alpha$$

给定 α ,由附表1可查得 u_{α} 的值.

$$\Phi(u_{\alpha}) = 1 - \alpha$$

$$u_{0.05} = 1.645,$$

附表1

0.95

 $(\alpha=0.05)$

$$u_{0.025} = 1.96,$$

附表1

0.975

 $(\alpha = 0.025)$

根据正态分布的对称性知

$$u_{1-\alpha}=-u_{\alpha}$$
.

2) t分布的上侧分位数 $t_{\alpha}(n)$:

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t) dt = \alpha$$

的点 $t_{\alpha}(n)$ 为 t(n) 分布的上 α 分位点.

可以通过查表求

得上α分位点的值.

由分布的对称性知

$$t_{1-\alpha}(n) = -t_{\alpha}(n).$$

当n > 45时, $t_{\alpha}(n) \approx u_{\alpha}$.

$$t_{0.025}(15) = 2.1315.$$
 \$\text{\tint{\text{\tint{\text{\text{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\tint{\tint{\tilitet{\text{\text{\text{\text{\tint{\text{\text{\tilitet{\text{\tint{\tilitet{\text{\tilitet{\tilitet{\text{\tilitet{\tilitet{\tilitet{\tilitet{\tilitet{\tilitet{\text{\tilitet{\tilitet{\text{\text{\tilitet{\texitil\tet{\text{\tilitet{\texitet{\texitil{\tilitet{\texi{\texict{\tilitet{\tilitet{\tilitet{\tilitet{\tilitet{\tilitet{\te\tilitet{\tilitet{\tilitet{\tilitet{\tiitet{\tilitet{\tiitet{\tilitet{\tilitet{\tilitet{\te\tii}}\tiitet{\tilitet{\tiit

- (2) 若X的分布密度无对称性,
 - 1) $\chi^2_{\alpha}(n)$: 对于给定的正数 α , $0 < \alpha < 1$, 称满足

$$P\{\chi^2 > \chi_{\alpha}^2(n)\} = \int_{\chi_{\alpha}^2(n)}^{\infty} p(y) dy = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上侧分位数.

当n≤60时,可查表3 (表3只详列到 n=60 为止).

$$\chi^2_{0.025}(8) = 17.535$$
, 附表3

$$\chi^2_{0.975}(10) = 3.247,$$
 \$\text{\tilitet{\text{\tilitet{\tilitet{\text{\text{\text{\text{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilitet{\tilitet{\text{\tinite\text{\tilite\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texit{\texit{\texit{\texit{\texit{\texi{\texi\tilit{\tilit{\texi{\texi{\texi{\texi{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\t

当
$$n > 60$$
时, $\chi_{\alpha}^{2}(n) \approx n + \sqrt{2n} u_{\alpha}$.

费歇(R.A.Fisher)公式:

费歇资料

当n充分大时, $\chi_{\alpha}^{2}(n) \approx n + \sqrt{2nu_{\alpha}}$. 其中 u_{α} 是标准正态分布的上 α 分位点.

例如:
$$\chi_{0.05}^2(120) \approx 120 + \sqrt{2 \times 120} \times u_{0.05}$$

= $120 + \sqrt{240} \times 1.645$
= 145.5.

2)
$$F_{\alpha}(n_1, n_2)$$
: 对于 $\alpha = 0.01, 0.025, 0.05, 0.1$ 等,可直接查表4.1~4.4.

$$F_{0.05}(30,14) = 2.31$$
.

附表 4.1

$$F_{0.025}(8,7) = 4.90,$$

附表 4.2

此外,还可利用关系

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)} \cdot \frac{0.6}{0.4}$$

由 F_{α} 求得 $F_{1-\alpha}$.

如:
$$F_{0.95}(12.9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{2.8} = 0.357$$
.

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

证 因为 $F \sim F(n_1, n_2)$,

所以 $1-\alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}$

$$= P \left\{ \frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)} \right\} = 1 - P \left\{ \frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)} \right\}$$

$$=1-P\bigg\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\bigg\},\,$$

故 $P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\}=\alpha,$

因为
$$\frac{1}{F} \sim F(n_2, n_1),$$

所以
$$P\left\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\right\} = \alpha$$
,

比较后得
$$\frac{1}{F_{1-\alpha}(n_1, n_2)} = F_{\alpha}(n_2, n_1),$$

$$\mathbb{P}F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

五、正态总体样本均值和方差的分布

1. 单个总体样本均值的分布

定理1.11 设 $(X_1, X_2, \dots, X_n)^{\mathrm{T}}$ 来自正态总体 $N(\mu, \sigma^2)$ 的样本,即 $X_i \sim N(\mu, \sigma^2)$ $(i = 1, 2, \dots, n)$

则它们的任一确定的线性函数

$$U = \sum_{i=1}^{n} a_i X_i \sim N(\mu \sum_{i=1}^{n} a_i, \sigma^2 \sum_{i=1}^{n} a_i^2).$$

其中 a_1, a_2, \cdots, a_n 为不全为零的常数.

特别当 $a_i = \frac{1}{n}(i=1,2,\dots,n)$ 时,可以得到 \overline{X} 的分布

$$ar{X} \square N(\mu, \frac{\sigma^2}{n})$$
,或 $\frac{ar{X} - \mu}{\sigma/\sqrt{n}} \square N(0, 1)$

证 由于X₁, X₂, …, X_n独立且均为正态变量,

故他们的线性函数 $\sum_{i=1}^{n} a_i X_i$ 仍为正态变量,又

$$E(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n^{i-1}} a_i E(X_i) = \sum_{i=1}^{n} a_i \mu$$

$$D(\sum_{i=1}^{n} a_{i} X_{i}) = \sum_{i=1}^{n} a_{i}^{2} D(X_{i}) = \sum_{i=1}^{n} a_{i}^{2} \sigma^{2}$$

所以 $\sum_{i=1}^n a_i X_i \sim N(\sum_{i=1}^n a_i \mu, \sum_{i=1}^n a_i^2 \sigma^2)$

2. 单个总体样本方差的分布

定理1.12 设 $(X_1, X_2, \dots, X_n)^{\mathrm{T}}$ 是总体 $N(\mu, \sigma^2)$ 的样本, \bar{X}, S_n^2 分别是样本均值和样本方差,则有

(1)
$$\frac{nS_n^2}{\sigma^2} = \frac{(n-1)S_n^{*2}}{\sigma^2} \sim \chi^2(n-1);$$

(2) \bar{X} 与 S_n^2 (或 S_n^{*2})独立.

注
$$1^{\circ} \frac{nS_n^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2 (n-1),$$

自由度减少一个!

减少一个自由度的原因:

$$\{\frac{X_i - \overline{X}}{\sigma}\}(i = 1, 2 \cdots, n)$$
不相互独立.

事实上,它们受到一个条件的约束:

$$\sum_{i=1}^{n} X_i = n\overline{X}$$

$$\sum_{i=1}^{n} \frac{X_i - \overline{X}}{\sigma} = \frac{1}{\sigma} \left(\sum_{i=1}^{n} X_i - n \overline{X} \right) = \frac{1}{\sigma} \cdot 0 = 0.$$

3. 单个总体修正样本均方差的分布

定理1.13 设 $(X_1, X_2, \dots, X_n)^{\mathrm{T}}$ 是总体 $N(\mu, \sigma^2)$ 的样本, \bar{X}, S_n^{*2} 分别是样本均值和修正样本方差,则有

$$T = \frac{\overline{X} - \mu}{S_n^* / \sqrt{n}} = \frac{\overline{X} - \mu}{S_n / \sqrt{n-1}} \sim t(n-1).$$

if :
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1), V = \frac{(n-1)S_n^{*2}}{\sigma^2} \sim \chi^2(n-1),$$

且两者独立,由 t 分布的定义知

$$T = \frac{U}{\sqrt{\frac{V}{n-1}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} / \sqrt{\frac{(n-1)S_n^{*2}}{\sigma^2(n-1)}} \sim t(n-1).$$

4. 两个正态总体样本均值差的分布

定理1.14 设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X = Y相互独立. 样本 $(X_1, X_2, \dots, X_{n_1})^{\mathrm{T}}$ 与 $(Y_1, Y_2, \dots, Y_{n_r})^{\mathrm{T}}$ 分别来自总体X和Y,则

(1)
$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

或
$$\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \sim N(0,1)$$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_w^2 = \frac{(n_1 - 1)S_{1n_1}^{*2} + (n_2 - 1)S_{2n_2}^{*2}}{n_1 + n_2 - 2}$$
, $S_w = \sqrt{S_w^2}$.

 $S_{1n_1}^{*^2}$ 和 $S_{2n_2}^{*^2}$ 分别是来自两个总体样本的修正样本方差.

证 易知
$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2})$$

下证 (2)

$$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1),$$

且它们相互独立,故由 χ^2 分布的可加性知

$$V = \frac{(n_1 - 1)S_{1n_1}^{*2}}{\sigma^2} + \frac{(n_2 - 1)S_{2n_2}^{*2}}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2),$$

由于U与V相互独立,按t分布的定义

$$T = \frac{U}{\sqrt{V/(n_1 + n_2 - 2)}}$$

$$=\frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{S_{w}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\sim t(n_{1}+n_{2}-2).$$

5. 两个正态总体样本方差商的分布

定理1.15 设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

X与Y相互独立. 样本 $(X_1, X_2, \dots, X_n)^T$

与 $(Y_1, Y_2, \dots, Y_n)^T$ 分别来自总体X和Y,则

$$F = \frac{S_{1n_1}^{*2} / \sigma_1^2}{S_{2n_2}^{*2} / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1);$$

if
$$\frac{(n_1-1)S_{1n_1}^{*2}}{\sigma_1^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_{2n_2}^{*2}}{\sigma_2^2} \sim \chi^2(n_2-1),$$

由假设 $S_{1n_1}^{*2}$, $S_{2n_2}^{*2}$ 独立,则由 F 分布的定义知

$$\frac{(n_1-1)S_{1n_1}^{*2}}{(n_1-1)\sigma_1^2} / \frac{(n_2-1)S_{2n_2}^{*2}}{(n_2-1)\sigma_2^2} \sim F(n_1-1, n_2-1),$$

$$\mathbb{F} = \frac{S_{1n_1}^{*2} / \sigma_1^2}{S_{2n_2}^{*2} / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

六、一些非正态总体样本均值的分布

1. 问题的提出

抽样分布的精确分布可以归属到计算随机变量或随机向量函数的分布,但是从关于随机变量或随机向量函数的分布介绍中可以看到计算相当复杂,因而对于一般总体情形下的抽样分布的计算几乎无法完成,因而对于一般情形,我们一方面可以考虑特殊总体情形下的精确抽样分布,另一方面考虑大样本情形下抽样分布的渐近分布。

2. 特殊情形下抽样分布 的精确分布

例4(p26例1.14)设总体 $X \square B(N,p), X_1, X_2, \dots, X_n$ 来自总体的一个样本,试求 \overline{X} 的分布.

解 由二项分布的可加性可知

$$n\overline{X} = \sum_{i=1}^{n} X_i \square B(nN, p)$$

因此

$$P\{\bar{X} = \frac{k}{n}\} = P\{n\bar{X} = k\} = C_{nN}^{k} p^{k} (1-p)^{nN-k}$$

例5(p26例1.15) 设总体 $X \square P(\lambda), X_1, X_2, \dots, X_n$ 来自总体的一个样本,试求 \overline{X} 的分布.

解 由泊松分布的可加性可知

$$n\overline{X} = \sum_{i=1}^{n} X_{i} \square P(n\lambda)$$

因此

$$P\{\bar{X} = \frac{k}{n}\} = P\{n\bar{X} = k\} = \frac{(n\lambda)^k}{k!}e^{-n\lambda}, k = 0, 1, 2, \cdots$$

M6(p27M1.16) 设总体X服从参数为 λ 的指数分布 $e(\lambda), X_1, X_2, \dots, X_n$ 来自总体的一个样本,试求 \bar{X} 的分布.

解 由于指数分布是 $\Gamma(1,\lambda)$,因而由其可加性可知

$$T = n\overline{X} = \sum_{i=1}^{n} X_i \square \Gamma(n,\lambda)$$

$$f_T(y) = \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y}, \quad y > 0,$$

故
$$f_{\bar{X}}(x) = f_T(nx) | (nx)' |$$

$$=\frac{(n\lambda)^n}{\Gamma(n)}x^{n-1}e^{-n\lambda x}, \quad x>0,$$

因此

3. 一般情形下样本均值的渐近分布

定理1.16设总体X的分布是任意的,但具有有限方差 $D(X) > 0, X_1, X_2, \cdots, X_n$ 来自总体的一个样本,则当 $n \to \infty$ 时,样本均值 \overline{X} 有

$$Y = \frac{\overline{X} - EX}{\sqrt{DX/n}} \xrightarrow{L} N(0,1)$$

即

$$F_{Y}(x) \xrightarrow{n \to \infty} \Phi(x)$$

证 由林德贝格一列维中心极限定理可知

$$\frac{\sum_{i=1}^{n} X_{i} - E(\sum_{i=1}^{n} X_{i})}{\sqrt{D(\sum_{i=1}^{n} X_{i})}} \xrightarrow{L} N(0,1)$$

因而

$$\frac{\sum_{i=1}^{n} X_i - nE(X)}{\sqrt{nD(X)}} = \frac{\overline{X} - E(X)}{\sqrt{D(X)/n}} \xrightarrow{L} N(0,1)$$

例7(p27例1.17) 设总体 $X \square B(1,p), X_1, X_2, \dots, X_n$ 来自总体的一个样本,试求 \overline{X} 的渐近分布.

解 由例1.14可知,其精确分布为

$$P\{\bar{X} = \frac{k}{n}\} = P\{n\bar{X} = k\} = C_n^k p^k (1-p)^{n-k}$$

由定理1.16可知,其渐近分布为正态分布

$$\bar{X} \square AN(EX, \frac{DX}{n}) = AN(p, \frac{p(1-p)}{n})$$

4. 一般情形下样本方差的渐近分布

定理1.17 设总体X的分布是任意的,其均值为 μ ,方差为 σ^2 ,且具有有限四阶中心矩 $E(X-\mu)^4=v_4,X_1,X_2,\cdots,X_n$ 来自总体的一个样本,则当 $n\to\infty$ 时,样本的修正方差 S_n^{*2} 有

$$Y = \frac{S_n^{*2} - \sigma^2}{\sqrt{(v_4 - \sigma^4)/n}} \xrightarrow{L} N(0,1)$$

即 $S_n^{*2} \square AN(\sigma^2, (v_4 - \sigma^4)/n)$

定理1.18 设总体X的分布是任意的,其均值为 μ ,且有有限方差 $\sigma^2 > 0$, X_1, X_2, \dots, X_n 来自总体的一个样本,则当 $n \to \infty$ 时,有

$$Y = \frac{\bar{X} - \mu}{\sqrt{S_n^2/n}} \xrightarrow{L} N(0,1)$$

即 $\overline{X} \square AN(\mu, S_n^2/n)$

定理1.17与定理1.18证明比较复杂,因而省略, 可以参阅其它文献。

费歇资料

Ronald Aylmer Fisher

Born: 17 Feb 1890 in London, England Died: 29 July 1962 in Adelaide, Australia

Thank You!

