虽然上节中我们可以利用定义来计算一些特殊的行列式,

虽然上节中我们可以利用定义来计算一些特殊的行列式, 但是一

般而言,用定义计算n阶行列式将是十分复杂的。

虽然上节中我们可以利用定义来计算一些特殊的行列式,但是一般而言,用定义计算n阶行列式将是十分复杂的。具体来看:

虽然上节中我们可以利用定义来计算一些特殊的行列式,但是一 般而言, 用定义计算n阶行列式将是十分复杂的。具体来看:

乘法次数: $(n-1) \times n!$

加法次数:n!-1

虽然上节中我们可以利用定义来计算一些特殊的行列式, 但是一 般而言, 用定义计算n阶行列式将是十分复杂的。具体来看:

乘法次数: $(n-1) \times n!$

加法次数:n!-1

总数n×n! - 1

虽然上节中我们可以利用定义来计算一些特殊的行列式,但是一般而言,用定义计算n阶行列式将是十分复杂的。具体来看:

乘法次数:(n-1) × n! 加法次数:n! -1

还要考虑排列的奇偶性, 计算量更大

总数n×n!-1

心数11人11:一工

虽然上节中我们可以利用定义来计算一些特殊的行列式,但是一般而言,用定义计算n阶行列式将是十分复杂的。具体来看:

乘法次数: $(n-1) \times n!$ 加法次数:n!-1

总数n×n!-1

还要考虑排列的奇偶性, 计算量更大

接下来将讨论行列式的性质, 依据这些性质, 行列式的计算就具有了可操作性.

1.4 n阶行列式的性质

1.4 n阶行列式的性质

所有性质的证明只需要理解即可,但性质本身一定要牢记并熟练 应用

有n阶行列式

$$D = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|,$$

有n阶行列式

$$D = \left| \begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|,$$

我们将

$$D^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

有n阶行列式

$$D = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|,$$

我们将

$$D^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

称为D的转置行列式,

有n阶行列式

$$D = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|,$$

我们将

$$D^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

称为D的转置行列式, 有时候也记作D'.

性质1 行列式与它的转置行列式相等:

 $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$

性质1 行列式与它的转置行列式相等: $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$

证明:

性质1 行列式与它的转置行列式相等:

证明: 比较两边的展开式是否相等。

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

性质1 行列式与它的转置行列式相等:

证明: 比较两边的展开式是否相等。设 $b_{ii} = a_{ii}(i, j = 1, 2, \dots, n)$,

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

性质1 行列式与它的转置行列式相等:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ij} = a_{ji}(i, j = 1, 2, \dots, n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \end{vmatrix}$$

性质1 行列式与它的转置行列式相等:

$D^T -$	b_{21}	b_{22}	• • •	b_{2n}
$D^T =$:	:		:
	b_{n1}	b_{n2}	• • •	b_{nn}

按列展开

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ii} = a_{ii}(i, j = 1, 2, \dots, n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

性质1 行列式与它的转置行列式相等:

$$D^{T} = \begin{vmatrix} b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

接列展开
$$\sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} b_{j_1 1} b_{j_2 2} \cdots b_{j_n n}$$

$$= \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(J_1 J_2 \cdots J_n)} b_{j_1 1} b_{j_2 2} \cdots b_{j_n r}$$

性质1 行列式与它的转置行列式相等: $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{vmatrix}$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

接列展开 $\sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} b_{j_1 1} b_{j_2 2} \cdots b_{j_n n}$

$$=\sum_{\substack{j_1j_2\cdots j_n\ j_1j_2\cdots j_n}} (-1)^{ au(j_1j_2\cdots j_n)} a_{1j_1}a_{2j_2}\cdots a_{nj_n}$$

性质1 行列式与它的转置行列式相等:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

$$_{\underline{j_1j_2\cdots j_n}}$$
 $\sum_{j_1j_2\cdots j_n} (-1)^{\tau(j_1j_2\cdots j_n)} b_{j_11} b_{j_22}\cdots b_{j_nn}$

$$j_1 j_2 \cdots j_n$$

$$= \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n} =$$
 按行展开 D .

性质1 行列式与它的转置行列式相等:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}.$$

证明: 比较两边的展开式是否相等。设 $b_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,

$$D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

行列式中行与列具有同等的地位,因此行列式的性质凡是对行成 立的对列也同样成立.

设行列式为

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

证明:

设行列式为

交换D的p,q两行得

	a ₁₁	<i>a</i> ₁₂	• • •	a_{1n}			a ₁₁	a ₁₂	• • •	a_{1n}	
	:	÷		÷			i			:	
	a_{p1}	a_{p2}	• • •	a_{pn}			a_{q1}	a_{q2}	• • •	a_{qn}	
D = 1	:	:		÷		$D_1 =$:	:		:	
	a_{q1}	a_{q2}	• • •	a_{qn}			a_{p1}	a_{p2}	• • •	a_{pn}	
	:	:		÷			:	:		:	
	a_{n1}	a_{n2}		a_{nn}	-		a _{n1}	a_{n2}	• • •	a _{nn}	

证明:

设行列式为

交换D的p,q两行得

	a ₁₁	a ₁₂	• • •	a_{1n}		a ₁₁	a ₁₂	• • •	a_{1n}	
	:	:		÷		÷	:		÷	
	a_{p1}	a_{p2}	• • •	a_{pn}		a_{q1}	a_{q2}	• • •	a_{qn}	
D =	:	:		÷	$D_1 =$:	:		÷	
	a_{q1}	a_{q2}	• • •	a_{qn}		a_{p1}	a_{p2}	• • •	a_{pn}	
	:	:		÷		:	:		÷	
	a_{n1}	a_{n2}	• • •	a_{nn}		a_{n1}	a_{n2}	• • •	a_{nn}	

比较两者的展开式。

证明:

设行列式为

交换D的p,q两行得

比较两者的展开式。

先不考虑符号, 任取D的一项 $a_{1j_1}a_{2j_2}\cdots a_{pj_p}\cdots a_{qj_q}\cdots a_{nj_n}$ 。

证明:

设行列式为

交换D的p,q两行得

比较两者的展开式。

先不考虑符号, 任取D的一项 $a_{1j_1}a_{2j_2}\cdots a_{pj_p}\cdots a_{qj_q}\cdots a_{nj_n}$ 。同样的项也在 D_1 中;

证明:

设行列式为

交换D的p,q两行得

比较两者的展开式。

先不考虑符号, 任取D的一项 $a_{1j_1}a_{2j_2}\cdots a_{pj_p}\cdots a_{qj_q}\cdots a_{nj_n}$ 。同样的项也在 D_1 中; 反之亦然。

证明:

设行列式为

交换D的p,q两行得

比较两者的展开式。

先不考虑符号, 任取D的一项 $a_{1j_1}a_{2j_2}\cdots a_{pj_p}\cdots a_{qj_q}\cdots a_{nj_n}$ 。同样的项也在 D_1 中; 反之亦然。 故不计符号, 两展开式有相同的项。

再来比较这项分别在D和D1中的符号.

再来比较这项分别在D和D1中的符号.

在D中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$

再来比较这项分别在D和D1中的符号. 在D中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)}$,

在D1中的符号为 $(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)}$, 再来比较这项分别在D和D₁中的符号. 在D中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$

在D1中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_q\cdots j_n)},$

由于排列相差一个对换, 以上两式符号相反。

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)}$.

在D₁中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)}$,

由于排列相差一个对换、以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

$$(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$$

在D₁中的符号为

$$(-1)^{ au(j_1j_2\cdots j_q\cdots j_n)},$$
由王桃列和美一会对格,以上五半领导和

由于排列相差一个对换、以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

由性质1. 交换任意两列结论也成立。

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$

$$(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)},$$

由于排列相差一个对换,以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

山林 医1 交换任务西列什公山长之

由性质1,交换任意两列结论也成立。

推论1:如果行列式有两行(列)完全相同,则行列式为零。

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)}$.

在D₁中的符号为

$$(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)},$$

由于排列相差一个对换,以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

由性质1. 交换任意两列结论也成立。

推论1:如果行列式有两行(列)完全相同,则行列式为零。

证明:设行列式D有i,i两行完全相同,交换i,i行形成的新行列式 记为 D_1 . 则 $D_1 = D$.

$$(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$$

在Di中的符号为

$$(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)},$$

由于排列相差一个对换,以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

由性质1. 交换任意两列结论也成立。

推论1:如果行列式有两行(列)完全相同,则行列式为零。

证明:设行列式D有i,i两行完全相同,交换i,i行形成的新行列式 记为 D_1 . 则 $D_1 = D$.

又由性质2知 $D_1 = -D$. 于是D = -D.

 $(-1)^{\tau(j_1j_2\cdots j_p\cdots j_q\cdots j_n)},$

在D₁中的符号为

 $(-1)^{\tau(j_1j_2\cdots j_q\cdots j_p\cdots j_n)},$

由于排列相差一个对换, 以上两式符号相反。

最后根据该项选取的任意性, 有 $D_1 = -D$.

由性质1. 交换任意两列结论也成立。

田性质1, 父换任息两列结论也成立。

推论1:如果行列式有两行(列)完全相同,则行列式为零。

证明:设行列式D有i,j两行完全相同,交换i,j行形成的新行列式记为 D_1 .则 $D_1=D$.

又由性质2知 $D_1 = -D$, 于是D = -D, 从而D = 0.

行列式运算对某一行(列)具有线性

行列式运算对某一行(列)具有线性

性质3:

第i行
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_1 + c_1 & b_2 + c_2 & \cdots & b_n + c_n \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix};$$

证明:

证明: 直接看展开式,

证明: 直接看展开式,

左侧
$$=\sum_{j_1j_2\cdots j_n}(-1)^{ au(j_1j_2\cdots j_n)}a_{1j_1}\cdots(b_{j_i}+c_{j_i})\cdots a_{nj_n}$$

左侧
$$=\sum_i (-1)^{ au(j_1j_2\cdots j_n)} \mathsf{a}_{1j_1}\cdots (\mathsf{b}_{j_i}+\mathsf{c}_{j_i})\cdots \mathsf{a}_{\mathsf{n}j_n}$$

 $j_1j_2\cdots j_n$

 $j_1j_2\cdots j_n$

iı iz…in = 右侧.

 $= \sum_{j=1}^{n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} \cdots b_{j_i} \cdots a_{nj_n}$

 $+\sum_{i}(-1)^{\tau(j_1j_2\cdots j_n)}a_{1j_1}\cdots c_{j_i}\cdots a_{nj_n}$

性质4

a ₁₁	a_{12}	• • •	a_{1n}		a ₁₁	a ₁₂	• • •	a_{1n}
:	:		:		:	:		:
ka _{i1}	ka _{i2}		ka _{in}	= k	a _{i1}	a_{i2}		a _{in}
:	:		÷		:	:		:
a_{n1}	a_{n2}		a _{nn}		a_{n1}			a _{nn}

性质4

a ₁₁	a ₁₂	 a_{1n}		a ₁₁	a ₁₂	• • •	a_{1n}
:	:	:		:	:		:
ka _{i1}	ka _{i2}	 ka _{in}	= k	a_{i1}	a_{i2}		a _{in}
:	:	÷		:	:		÷
a _{n1}	a_{n2}	 a_{nn}		a_{n1}	a _{n2}		ann

证明: 与性质3的证明类似。

性质4

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

证明: 与性质3的证明类似。

性质3与性质4, 表明了行列式的运算遵从一定的线性。这是行列式最重要的性质。之后的研究均以此为基础。

推论2: 如果行列式有两行(列)成比例, 则行列式为零, 即

推论2: 如果行列式有两行(列)成比例, 则行列式为零, 即

证明: 结合性质4和推论1可得。

推论3: 行列式的某一行(列)的k倍加到另一行(列)行列式不变,即

'									
a ₁₁	a ₁₂		a_{1n}		a ₁₁	a ₁₂	• • •	a_{1n}	
:	:		:		÷	:		:	
a_{p1}	a_{p2}	• • •	a_{pn}		a_{p1}	a_{p2}	• • •	a_{pn}	
÷	:		÷	=	:	:		:	
a_{q1}	a_{q2}		a_{qn}		$a_{q1} + ka_{p1}$	$a_{q2} + ka_{p2}$		$a_{qn} + ka_{pn}$	
÷	:		÷		:	:		:	
a_{n1}	a_{n2}		a _{nn}		a_{n1}	a_{n2}		a_{nn}	

推论3: 行列式的某一行(列)的k倍加到另一行(列)行列式不变,即

a ₁₁	a ₁₂		a_{1n}		a ₁₁	a ₁₂		a_{1n}	
:	:		:		:	:		÷	
a_{p1}	a_{p2}	• • •	a_{pn}		a_{p1}	a_{p2}	• • •	a_{pn}	
:	:		÷	=	:	:		:	
a_{q1}	a_{q2}		a_{qn}		$a_{q1} + ka_{p1}$	$a_{q2} + ka_{p2}$		$a_{qn}+ka_{pn}$	
:	:		:		:	:		:	
a_{n1}	a_{n2}		a _{nn}		a_{n1}	a_{n2}		a _{nn}	

证明: 结合性质3和推论2可得.

推论3: 行列式的某一行(列)的k倍加到另一行(列)行列式不变,即

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & & \vdots \\ a_{q1} + ka_{p1} & a_{q2} + ka_{p2} & \cdots & a_{qn} + ka_{pn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

证明: 结合性质3和推论2可得.

性质及其推论一定要牢记,如果确实理解证明过程有困难,可以 用二阶和三阶行列式验证一下帮助记忆

行列式性质在计算行列式中的应用 这些性质似乎看起来和行列式的计算没有关系。无非是说某些行

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行列式相等的, 相反的或者为零。

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行 列式相等的,相反的或者为零。

但是仔细回想一下:

a_{11}	a ₁₂		$a_{1,n-1}$	a_{1n}	
0	a ₂₂	• • •	$a_{1,n-1}$ $a_{2,n-1}$	a_{2n}	
÷	:	٠	:	:	$=a_{11}a_{22}\cdots a_{nn}.$
0	0		$a_{n-1,n-1}$	$a_{n-1,n}$	
0	0	• • •	0	a_{nn}	

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行列式相等的, 相反的或者为零。 但是仔细回想一下:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

这样的上三角行列式是非常容易计算的。

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行 列式相等的, 相反的或者为零。

但是仔细回想一下:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

这样的上三角行列式是非常容易计算的。 自然的问题,任给一个行列式,

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行列式相等的, 相反的或者为零。

但是仔细回想一下:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

这样的上三角行列式是非常容易计算的。 自然的问题, 任给一个行列式,

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

能否将其转化为上三角行列式, 再进行计算?

这些性质似乎看起来和行列式的计算没有关系, 无非是说某些行 列式相等的, 相反的或者为零。 但是仔细回想一下:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

这样的上三角行列式是非常容易计算的。 自然的问题, 任给一个行列式.

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

能否将其转化为上三角行列式,再进行计算?回答是肯定的。

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍,

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍,得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍,得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

根据 推论3: 行列式的某一行(列)的k倍加到另一行(列)行 列式不变。

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍。得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

根据 推论3: 行列式的某一行(列)的k倍加到另一行(列)行 列式不变。

这两个行列式的值相同。

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍。得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

根据 推论3: 行列式的某一行(列)的k倍加到另一行(列)行 列式不变。

这两个行列式的值相同。如法炮制,

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行的两倍,得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

根据 推论3: 行列式的某一行(列)的k倍加到另一行(列)行列式不变。

这两个行列式的值相同。如法炮制,第三行加上第一行,

例: 计算行列式

$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & -2 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

解:观察第一行和第二行,接近于相差2倍。第二行减去第一行 的两倍, 得:

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 2 & -1 \end{vmatrix}.$$

根据 推论3: 行列式的某一行(列)的k倍加到另一行(列)行 列式不变。

这两个行列式的值相同。如法炮制, 第三行加上第一行, 得

$$\begin{vmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{vmatrix}.$$

差一些就是上三角行列式了, 只需要

$$-egin{array}{ccc|c} 1 & -1 & 0 \ 0 & 1 & -1 \ 0 & 0 & -1 \ \end{array}.$$

$$-egin{array}{ccc|c} 1 & -1 & 0 \ 0 & 1 & -1 \ 0 & 0 & -1 \ \end{array}.$$

注意添加负号

$$-\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{vmatrix}.$$

注意添加负号 容易计算值为1,

$$-egin{bmatrix} 1 & -1 & 0 \ 0 & 1 & -1 \ 0 & 0 & -1 \end{bmatrix}.$$

注意添加负号 容易计算值为1,根据行列式的基本性质及线性,初始行列 式D=1。

$$-\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{vmatrix}.$$

注意添加负号 容易计算值为1,根据行列式的基本性质及线性,初始行列 式D=1。

返回来审视这个思路,利用性质转化为三角行列式,对任意行列式的计算都是适用的。

$$-\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{vmatrix}.$$

注意添加负号 容易计算值为1,根据行列式的基本性质及线性,初始行列 式D=1。

返回来审视这个思路,利用性质转化为三角行列式,对任意行列式的计算都是适用的。

在用于更一般的例子前, 先解决记号的问题:

$$-\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{vmatrix}.$$

注意添加负号 容易计算值为1,根据行列式的基本性质及线性,初始行列 式D=1。

返回来审视这个思路,利用性质转化为三角行列式,对任意行列式的计算都是适用的。

在用于更一般的例子前, 先解决记号的问题:

- 1. $r_i \div k$ (或 $c_i \div k$)表示从第i行(列)提取公因子k;
- 2. $r_i + kr_j$ (或 $c_i + kc_j$)表示将第j行(列)的k倍加到第j行(列);
- 3. $r_i \leftrightarrow r_j$ (或 $c_i \leftrightarrow c_j$)表示交换第i行(列)与第j行(列)的位置.

$$- \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{vmatrix}.$$

注意添加负号 容易计算值为1,根据行列式的基本性质及线性,初始行列 式D=1。

返回来审视这个思路,利用性质转化为三角行列式,对任意行列 式的计算都是适用的。

在用于更一般的例子前, 先解决记号的问题:

- 1. $r_i \div k$ (或 $c_i \div k$)表示从第i行(列)提取公因子k;
- 2. $r_i + kr_j$ (或 $c_i + kc_j$)表示将第j行(列)的k倍加到第i行(列);
- 3. $r_i \leftrightarrow r_j$ (或 $c_i \leftrightarrow c_j$)表示交换第i行(列)与第j行(列)的位置.

这里row代表行, column代表列。

例: 计算行列式 7 13 1 月: 计算行列式 7 24 7 11 24 4

例: 计算行列式

$$D = \left| \begin{array}{cccc} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{array} \right|.$$

$$D = \left| \begin{array}{rrrr} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{array} \right|.$$

例: 计算行列式
$$D = \begin{vmatrix} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{vmatrix}.$$

$$D = \begin{vmatrix} 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{vmatrix}$$

$$D = \frac{r_3 \div \frac{1}{2}}{r_4 \div \frac{1}{6}} = \begin{bmatrix} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 4 & 1 & 0 & -6 \\ 6 & 1 & 12 & 4 \end{bmatrix}$$

$$D = \left| egin{array}{ccccc} 3 & -1 & 5 & 4 \ 1 & 2 & 6 & 2 \ 2 & rac{1}{2} & 0 & -3 \ 1 & rac{1}{6} & 2 & rac{2}{3} \end{array}
ight|.$$

$$D = \left| \begin{array}{rrrr} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{array} \right|.$$

$$D \xrightarrow[r_4 \leftrightarrow r_2]{r_4 \div \frac{1}{6}} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} = \begin{bmatrix} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 4 & 1 & 0 & -6 \\ 6 & 1 & 12 & 4 \end{bmatrix} \xrightarrow[r_4 \leftrightarrow r_2]{} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} = \begin{bmatrix} 3 & -1 & 5 & 2 \\ 1 & 2 & 6 & 1 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{bmatrix}$$

$$D = \left| \begin{array}{cccc} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{2} \end{array} \right|.$$

$$D \xrightarrow[r_4 \div \frac{1}{6}]{1} \xrightarrow{6} \begin{vmatrix} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 4 & 1 & 0 & -6 \\ 6 & 1 & 12 & 4 \end{vmatrix} \xrightarrow{c_4 \div 2} \xrightarrow{6} \begin{vmatrix} 3 & -1 & 5 & 2 \\ 1 & 2 & 6 & 1 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix}$$

$$D = \frac{r_{3} \div \frac{1}{2}}{r_{4} \div \frac{1}{6}} = \frac{1}{6} \begin{vmatrix} 1 & 2 & 0 & 2 \\ 4 & 1 & 0 & -6 \\ 6 & 1 & 12 & 4 \end{vmatrix} = \frac{c_{4} \div 2}{6} = \frac{1}{6} \begin{vmatrix} 1 & 2 & 0 & 1 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix}$$

$$= \frac{r_{1} \leftrightarrow r_{2}}{1} - \frac{1}{6} \begin{vmatrix} 1 & 2 & 6 & 1 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix} = \frac{r_{2} - 3r_{1}}{r_{3} - 4r_{1}} - \frac{1}{6} \begin{vmatrix} 1 & 2 & 6 & 1 \\ 0 & -7 & -13 & -1 \\ 0 & -7 & -24 & -7 \\ 0 & -11 & -24 & -4 \end{vmatrix}$$

$$D = \left| \begin{array}{rrrr} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{array} \right|.$$

$$D \xrightarrow[r_4 \leftrightarrow r_2]{r_4 \div \frac{1}{6}} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 3 \\ 0 \\ 0 \end{array} \begin{array}{c} -1 \\ 0 \\ 0 \end{array} \begin{array}{c} 5 \\ 0 \\ 0 \end{array} \begin{array}{c} 4 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \begin{array}{$$

$$D = \left| \begin{array}{rrrr} 3 & -1 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 2 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{6} & 2 & \frac{2}{3} \end{array} \right|.$$

$$D \xrightarrow{\frac{r_3 - \frac{1}{2}}{r_4 \div \frac{1}{6}}} \frac{1}{6} \begin{vmatrix} 1 & 2 & 0 & 2 \\ 4 & 1 & 0 & -6 \\ 6 & 1 & 12 & 4 \end{vmatrix} \xrightarrow{\frac{c_4 \div 2}{6}} \frac{1}{6} \begin{vmatrix} 1 & 2 & 0 & 1 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix}$$

$$\xrightarrow{\frac{r_1 \leftrightarrow r_2}{r_4 \to r_2}} -\frac{1}{6} \begin{vmatrix} 1 & 2 & 6 & 1 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix} \xrightarrow{\frac{r_2 - 3r_1}{r_3 - 4r_1}} -\frac{1}{6} \begin{vmatrix} 1 & 2 & 6 & 1 \\ 0 & -7 & -13 & -1 \\ 0 & -7 & -24 & -7 \\ 0 & -11 & -24 & -4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 6 & 1 \\ 1 & 2 & 6 & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 1 & 6 & 2 \end{vmatrix}$$

$$\frac{r_1 \leftrightarrow r_2}{=} -\frac{1}{6} \begin{vmatrix} 3 & -1 & 5 & 2 \\ 4 & 1 & 0 & -3 \\ 6 & 1 & 12 & 2 \end{vmatrix} = \frac{r_2 - 3r_1}{r_3 - 4r_1} - \frac{1}{6} \begin{vmatrix} 0 & -7 & -1 \\ 0 & -7 & -2r_1 \\ 0 & -11 & -2r_2 \end{vmatrix}$$

$$\frac{r_i \div (-1)}{i = 2, 3, 4} = \frac{1}{6} \begin{vmatrix} 1 & 2 & 6 & 1 \\ 0 & 7 & 13 & 1 \\ 0 & 7 & 24 & 7 \\ 0 & 11 & 24 & 4 \end{vmatrix} = \frac{c_2 \leftrightarrow c_4}{-1} - \frac{1}{6} \begin{vmatrix} 1 & 1 & 6 & 2 \\ 0 & 1 & 13 & 7 \\ 0 & 7 & 24 & 7 \\ 0 & 4 & 24 & 11 \end{vmatrix}$$

$$\frac{r_3 - 7r_2}{r_4 - 4r_2} - \frac{1}{6} \begin{vmatrix}
1 & 1 & 6 & 2 \\
0 & 1 & 13 & 7 \\
0 & 0 & -67 & -42 \\
0 & 0 & -28 & -17
\end{vmatrix}$$

$$\frac{r_3 - 7r_2}{r_4 - 4r_2} - \frac{1}{6} \begin{vmatrix} 1 & 1 & 6 & 2 \\ 0 & 1 & 13 & 7 \\ 0 & 0 & -67 & -42 \\ 0 & 0 & -28 & -17 \end{vmatrix} = \frac{r_4 \div (-1)}{r_4 - 28r_3} - \frac{67}{6} \begin{vmatrix} 1 & 1 & 6 & 2 \\ 0 & 1 & 13 & 7 \\ 0 & 0 & 1 & \frac{42}{67} \\ 0 & 0 & 0 & \frac{-37}{67} \end{vmatrix}$$

$$\frac{r_3 - 7r_2}{r_4 - 4r_2} - \frac{1}{6} \begin{vmatrix} 1 & 1 & 6 & 2 \\ 0 & 1 & 13 & 7 \\ 0 & 0 & -67 & -42 \\ 0 & 0 & -28 & -17 \end{vmatrix} = \frac{r_4 \div (-1)}{r_3 \div (-67)} - \frac{67}{6} \begin{vmatrix} 1 & 1 & 6 & 2 \\ 0 & 1 & 13 & 7 \\ 0 & 0 & 1 & \frac{42}{67} \\ 0 & 0 & 0 & -\frac{37}{67} \end{vmatrix}$$

 $= -\frac{67}{6} \times \frac{-37}{67} = \frac{37}{6}.$

$$D = \left| \begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|$$

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的
$$-\frac{221}{a_{11}}\cdots-\frac{a_{11}}{a_{11}}$$
倍分别加到第2 行到第 n 行,

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的
$$-\frac{a21}{a_{11}}$$
 ··· $-\frac{an1}{a_{11}}$ 信分别加到第2 行到第 n 行,第2行的 $-\frac{a32}{a_{22}}$ ··· $-\frac{an2}{a_{22}}$ 信分别加到第3 行到第 n 行,

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的-<u>a11</u>···- <u>a11</u>倍分别加到第2 行到第n行, 第2行的-<u>a22</u>···- <u>a22</u>倍分别加到第3 行到第n行,

类推。

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的
$$-\frac{a_{21}}{a_{11}}$$
 ··· $-\frac{a_{11}}{a_{11}}$ 信分别加到第2 行到第 n 行,第2行的 $-\frac{a_{32}}{a_{22}}$ ··· $-\frac{a_{n2}}{a_{22}}$ 倍分别加到第3 行到第 n 行,类推。

总的计算次数:

$$2[(n-1)^2 + (n-2)^2 + \dots + 2^2 + 1] = 2\frac{(n-1)n(2n-1)}{6}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的
$$-\frac{\partial 21}{\partial 11}\cdots -\frac{\partial n1}{\partial 11}$$
倍分别加到第2 行到第 n 行,第2行的 $-\frac{\partial 32}{\partial 22}\cdots -\frac{\partial n2}{\partial 22}$ 倍分别加到第3 行到第 n 行,类推。

总的计算次数:

$$2[(n-1)^2 + (n-2)^2 + \dots + 2^2 + 1] = 2\frac{(n-1)n(2n-1)}{6}$$

而且, 更重要的是, 无需计算逆序数。

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

理想的状况:

第1行的
$$-\frac{\partial 21}{\partial 11}\cdots -\frac{\partial n1}{\partial 11}$$
倍分别加到第2 行到第 n 行,第2行的 $-\frac{\partial 32}{\partial 22}\cdots -\frac{\partial n2}{\partial 22}$ 倍分别加到第3 行到第 n 行,类推。

总的计算次数:

$$2[(n-1)^2 + (n-2)^2 + \dots + 2^2 + 1] = 2\frac{(n-1)n(2n-1)}{6}$$

而且, 更重要的是, 无需计算逆序数。

例: 计算行列式

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

例: 计算行列式

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

$$D = \begin{bmatrix} \frac{r_2 + 3r_1}{r_3 - 5r_1} \\ r_4 - 4r_1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{bmatrix}$$

例: 计算行列式

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

$$D = \begin{bmatrix} \frac{r_2 + 3r_1}{r_3 - 5r_1} \\ \frac{r_4 - 4r_1}{r_4 - 4r_1} \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{bmatrix} = \underbrace{\frac{r_3 \leftrightarrow r_4}{r_2 \leftrightarrow r_3}}_{12} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

例: 计算行列式

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

$$D \xrightarrow[r_3 - 5r_1]{r_3 - 5r_1} \begin{vmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{vmatrix} \xrightarrow[r_3 \leftrightarrow r_4]{r_3 \leftrightarrow r_4} \begin{vmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \\ 0 & 0 & 3 & 1 \end{vmatrix}$$
$$\xrightarrow[r_3 - 2r_2]{r_3 - 2r_2} \begin{vmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & 1 \end{vmatrix}$$

例: 计算行列式

$$D = \left| \begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -3 & 3 & 0 & -2 \\ 5 & -2 & 2 & 6 \\ 4 & 2 & 1 & 5 \end{array} \right|.$$

解:

$$D = \begin{bmatrix} \frac{r_2 + 3r_1}{r_3 - 5r_1} & 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{bmatrix} = \underbrace{\frac{r_3 \leftrightarrow r_4}{r_2 \leftrightarrow r_3}}_{\begin{array}{c} r_3 \leftrightarrow r_4 \\ \end{array}} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

$$= \underbrace{\frac{r_3 - 2r_2}{r_3 - 2r_2}}_{\begin{array}{c} 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & 1 \end{bmatrix}}_{\begin{array}{c} 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

= 18

$$D = \begin{bmatrix} \frac{r_2 + 3r_1}{r_3 - 5r_1} \\ \hline r_4 - 4r_1 \\ \hline \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} \frac{r_2 + 3r_1}{r_3 - 5r_1} & 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{bmatrix} = \underbrace{c_2 \leftrightarrow c_4}_{\begin{array}{c} c_2 \leftrightarrow c_4 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & -3 & 3 \\ 0 & 1 & -3 & 6 \end{bmatrix}$$

$$D = \frac{\frac{r_2 + 3r_1}{r_3 - 5r_1}}{r_4 - 4r_1} \begin{vmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{vmatrix} = \frac{c_2 \leftrightarrow c_4}{} - \begin{vmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & -3 & 3 \\ 0 & 1 & -3 & 6 \end{vmatrix}$$

$$D = \frac{\frac{r_2 + 3r_1}{r_3 - 5r_1}}{\frac{r_3 - 5r_1}{r_4 - 4r_1}} \begin{vmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 3 & -3 & 1 \\ 0 & 6 & -3 & 1 \end{vmatrix} = \frac{c_2 \leftrightarrow c_4}{-1} - \begin{vmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & -3 & 3 \\ 0 & 1 & -3 & 6 \end{vmatrix}$$
$$= \frac{r_3 - r_2}{r_3 - r_2} - \begin{vmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & -6 & 6 \end{vmatrix} = \frac{r_4 - r_3}{-1} - \begin{vmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & 0 & 3 \end{vmatrix}$$
$$= 18$$

专题: 特殊行列式的计算

专题: 特殊行列式的计算

以上介绍的只是将行列式化为三角行列式的最普通的方法,但是 具体到一些特殊的行列式,往往根据行列式自身的特点,有更为 简便的方法将它们化为三角行列式

$$D = \left| \begin{array}{ccccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{array} \right|.$$

$$D = \left| \begin{array}{cccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{array} \right|.$$

$$D = \left| \begin{array}{cccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{array} \right|.$$

解:可以按标准的思路直接来做,大家可以是尝试一下,

$$D = \left| \begin{array}{cccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & x & 1 \end{array} \right|.$$

解:可以按标准的思路直接来做,大家可以是尝试一下,但不是 最简便的方法。

$$D = \left| \begin{array}{ccccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{array} \right|.$$

解:可以按标准的思路直接来做,大家可以是尝试一下,但不是最简便的方法。行或者列中的元素不计次序的话都是一样的.

$$D = \left| \begin{array}{cccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{array} \right|.$$

解:可以按标准的思路直接来做,大家可以是尝试一下,但不是 最简便的方法。行或者列中的元素不计次序的话都是一样的,即 它们的和相同。

$$D = \left| \begin{array}{cccc} 1 & x & x & \cdots & x \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & x & 1 \end{array} \right|.$$

解:可以按标准的思路直接来做,大家可以是尝试一下,但不是最简便的方法。行或者列中的元素不计次序的话都是一样的,即它们的和相同。

$D = \frac{r_1 + r_j}{j = 2, 3, \cdots, n}$				
	1 + (n-1)x	1 + (n-1)x		1+(n-1)x
x	1	X	• • •	X
x	X	1		X
:	:	:	٠	:
x	X	X	X	1

$$\frac{r_1 \div (1 + (n-1)x)}{} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{vmatrix}$$

$$\frac{r_1 \div (1 + (n-1)x)}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & x & 1 \end{vmatrix}$$

$$\frac{r_j - xr_1}{j = 2, 3, \cdots, n} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 - x & 0 & \cdots & 0 \\ 0 & 0 & 1 - x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 - x \end{vmatrix}$$

$$\frac{r_1 \div (1 + (n-1)x)}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & 1 \end{vmatrix}$$

$$\frac{r_j - x r_1}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 - x & 0 & \cdots & 0 \\ 0 & 0 & 1 - x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 - x \end{vmatrix}$$

$$= [1 + (n-1)x](1 - x)^{n-1}$$

$$\frac{r_1 \div (1 + (n-1)x)}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & x & 1 \end{vmatrix}$$

$$\frac{r_j - xr_1}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 - x & 0 & \cdots & 0 \\ 0 & 0 & 1 - x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 - x \end{vmatrix}$$

$$= [1 + (n-1)x](1 - x)^{n-1}$$

也可以对列进行相同的操作

$$\frac{r_1 \div (1 + (n-1)x)}{\prod_{j=2,3,\cdots,n} (1 + (n-1)x)} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 & x & \cdots & x \\ x & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & x & x & 1 \end{vmatrix}$$

$$\frac{r_j - xr_1}{j=2,3,\cdots,n} (1 + (n-1)x) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 - x & 0 & \cdots & 0 \\ 0 & 0 & 1 - x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 - x \end{vmatrix}$$

$$= [1 + (n-1)x](1 - x)^{n-1}$$

$$= [1 + (n-1)x](1-x)^{n-1}$$

也可以对列进行相同的操作

很常用的方法,考试一定会考到。

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

例: 计算4阶行列式.

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

$$D = \begin{bmatrix} c_1 \div a \\ \hline c_2 - bc_1 \\ c_3 - cc_1 \\ c_4 - dc_1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & a & a+b & a+b+c \\ 1 & 2a & 3a+2b & 4a+3b+2c \\ 1 & 3a & 6a+3b & 10a+6b+3c \end{bmatrix}$$

$$D = \frac{c_1 \div a}{\frac{c_2 - bc_1}{c_3 - cc_1}} a \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & a & a + b & a + b + c \\ 1 & 2a & 3a + 2b & 4a + 3b + 2c \\ 1 & 3a & 6a + 3b & 10a + 6b + 3c \end{vmatrix}$$

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

$$D \xrightarrow[\substack{c_1 \div a \\ c_3 - cc_1 \\ c_4 - dc_1}^{c_1 \div a} a \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & a & a+b & a+b+c \\ 1 & 2a & 3a+2b & 4a+3b+2c \\ 1 & 3a & 6a+3b & 10a+6b+3c \end{vmatrix}$$

$$\frac{c_2 \div a}{c_3 - cc_2 \atop c_4 - dc_2} a^2 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & a & a+b \\ 1 & 2 & 3a & 4a+3b \\ 1 & 3 & 6a & 10a+6b \end{vmatrix}$$

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

$$D = \begin{bmatrix} c_1 \div a \\ \hline c_2 - bc_1 \\ c_3 - cc_1 \\ c_4 - dc_1 \end{bmatrix} a \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & a & a+b & a+b+c \\ 1 & 2a & 3a+2b & 4a+3b+2c \\ 1 & 3a & 6a+3b & 10a+6b+3c \end{vmatrix}$$

$$\frac{c_2 \div a}{\frac{c_3 - c_2}{c_4 - dc_2}} a^2 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & a & a + b \\ 1 & 2 & 3a & 4a + 3b \\ 1 & 3 & 6a & 10a + 6b \end{vmatrix} = \frac{c_3 \div a}{c_4 - bc_3} a^3 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & a \\ 1 & 2 & 3 & 4a \\ 1 & 3 & 6 & 10a \end{vmatrix}$$

$$\frac{c_4 \div a}{2} = a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \end{vmatrix} = \frac{c_3 - c_2}{c_4 - c_2} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 3 & 3 & 7 \end{vmatrix}$$

$$\frac{c_4 \div a}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10
\end{vmatrix}
\frac{c_3 - c_2}{c_4 - c_2} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 2 \\
1 & 3 & 3 & 7
\end{vmatrix}$$

$$\frac{c_4 - 2c_3}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{vmatrix}$$

$$\frac{c_4 \div a}{=} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \end{vmatrix} = \frac{c_3 - c_2}{c_4 - c_2} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 3 & 3 & 7 \end{vmatrix} = \frac{c_4 - 2c_3}{a^4} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{vmatrix} = a^4$$

$$\frac{c_4 \div a}{a} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \end{vmatrix} = \begin{bmatrix} c_3 - c_2 \\ c_4 - c_2 \end{bmatrix} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 3 & 3 & 7 \end{vmatrix} = a^4$$

$$\frac{c_4 - 2c_3}{a} a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{vmatrix} = a^4$$

运算还是很复杂。

$$\frac{c_4 \div a}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10
\end{vmatrix}
\begin{vmatrix}
c_3 - c_2 \\
c_4 - c_2
\end{vmatrix} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 2 \\
1 & 3 & 3 & 7
\end{vmatrix}$$

$$\frac{c_4 - 2c_3}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{vmatrix} = a^4$$

运算还是很复杂。是否还有更简便的办法?

$$\frac{c_4 \div a}{a^4} = a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \end{vmatrix} = \frac{c_3 - c_2}{c_4 - c_2} = a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 3 & 3 & 7 \end{vmatrix} = a^4$$

$$\frac{c_4 - 2c_3}{a^4} = a^4 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{vmatrix} = a^4$$

运算还是很复杂。是否还有更简便的办法?

事实上, 用第1行或者第1列化简其他行和列仅仅是一种习惯;

$$\frac{c_4 \div a}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10
\end{vmatrix} = \frac{c_3 - c_2}{c_4 - c_2} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 2 \\
1 & 3 & 3 & 7
\end{vmatrix} = a^4$$

$$\frac{c_4 - 2c_3}{=} a^4 \begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{vmatrix} = a^4$$

运算还是很复杂。是否还有更简便的办法?

事实上,用第1行或者第1列化简其他行和列仅仅是一种习惯;我 们完全可以反过来。

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

解法二:

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

			-	
r_4-r_3	0	a	a + b	a+b+c $3a+2b+$ $6a+3b+$
r_3-r_2	0	a	2a + b	3a + 2b +
r_2-r_1	0	a	3a + b	6a + 3b +

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

$$\frac{r_4 - r_3}{r_3 - r_2} \begin{vmatrix} a & b & c & d \\ 0 & a & a + b & a + b + c \\ 0 & a & 2a + b & 3a + 2b + c \\ 0 & a & 3a + b & 6a + 3b + c \end{vmatrix}$$

继续进行类似的操作,第4行减第3行,第3 行减第2行:

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

$$\frac{r_4 - r_3}{r_3 - r_2} \begin{vmatrix} a & b & c & d \\ 0 & a & a + b & a + b + c \\ 0 & a & 2a + b & 3a + 2b + c \\ 0 & a & 3a + b & 6a + 3b + c \end{vmatrix}$$

继续进行类似的操作,第4行减第3行,第3 行减第2行:

$$\frac{r_3 - r_2}{r_4 - r_3} \begin{vmatrix} a & b & c & d \\ 0 & a & a+b & a+b+c \\ 0 & 0 & a & 2a+b \\ 0 & 0 & a & 3a+b \end{vmatrix}$$

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

继续进行类似的操作,第4行减第3行,第3 行减第2行:

$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

从第4行开始,后行减前行:

继续进行类似的操作, 第4行减第3行, 第3行减第2行:

这样的解法我们下一节中还会遇到,也很重要。

$$D = \left| \begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{array} \right|.$$

$$D = \left| \begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{array} \right|.$$

解:

$$D = \left| \begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{array} \right|.$$

解:注意观察,行列式中已经有很多零,接近上三角或下三角行列式。

$$D = \left| \begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{array} \right|.$$

解:注意观察,行列式中已经有很多零,接近上三角或下三角行 列式。如果用第1行的k倍消去其他行第1列上的元素,反倒增加 了很多非零项。

$$D = \left| \begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{array} \right|.$$

解:注意观察,行列式中已经有很多零,接近上三角或下三角行列式。如果用第1行的k倍消去其他行第1列上的元素,反倒增加了很多非零项。

在这样特殊的情况下,逆向考虑,只要能把第1行的2至n列的元素消去即可。

将第2行的 $-\frac{1}{2}$ 倍,

将第2行的 $-\frac{1}{2}$ 倍,将第3行的 $-\frac{1}{3}$ 倍,

将第2行的 $-\frac{1}{2}$ 倍,将第3行的 $-\frac{1}{3}$ 倍,...,将第n行的 $-\frac{1}{n}$ 倍加到第一行得到,

将第2行的 $-\frac{1}{2}$ 倍,将第3行的 $-\frac{1}{2}$ 倍, \cdots ,将第n行的 $-\frac{1}{2}$ 倍加到第 一行得到.

$$D \xrightarrow{\frac{r_1 - \frac{1}{i}r_i}{i=2,3,\cdots n}} \begin{vmatrix} 1 - \sum_{i=2}^n \frac{1}{i}2^{i-1} & 0 & 0 & \cdots & 0 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{vmatrix}$$
$$= (1 - \sum_{i=2}^n \frac{1}{i}2^{i-1}) \times 2 \times 3 \times \cdots \times n$$
$$= - \sum_{i=3}^n \frac{1}{i}2^{i-1} \cdot n!.$$

$$D = \frac{r_1 - \frac{1}{i}r_i}{i = 2, 3, \dots n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$2^{n-1} \qquad 0 \qquad 0 \qquad 0$$

将第2行的 $-\frac{1}{2}$ 倍,将第3行的 $-\frac{1}{3}$ 倍,…,将第n行的 $-\frac{1}{n}$ 倍加到第一行得到。

$$D \xrightarrow[i=2]{r_1 - \frac{1}{i}r_i} \begin{vmatrix} 1 - \sum_{i=2}^{n} \frac{1}{i}2^{i-1} & 0 & 0 & \cdots & 0 \\ 2 & 2 & 0 & \cdots & 0 \\ 4 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{n-1} & 0 & 0 & 0 & n \end{vmatrix}$$

$$= \left(1 - \sum_{i=2}^{n} \frac{1}{i}2^{i-1}\right) \times 2 \times 3 \times \cdots \times n$$

$$= -\sum_{i=3}^{n} \frac{1}{i}2^{i-1} \cdot n!.$$

也可以对列做类似操作

例: 计算n+1阶行列式,

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_n & a_n \end{vmatrix}$$

例: 计算
$$n+1$$
阶行列式,

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_n & a_n \end{vmatrix}$$

解:

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_n & a_n \end{vmatrix}$$

解: 涉及到a的部分比较简单, 可以先化简

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 & a_1 & a_1 & \cdots & a_1 & a_1 \\ b_1 & b_2 & a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_n & a_n \end{vmatrix}$$

解: 涉及到a的部分比较简单, 可以先化简

$$D \xrightarrow{\frac{r_i - a_{i-1}r_1}{i=2,\cdots,n+1p}} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \end{vmatrix}$$

$$D = \frac{\sum_{i=1,\dots,n}^{i=1,\dots,n}}{\sum_{c_i-c_{n+1}}^{i=1,\dots,n}} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ b_1-a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1-a_2 & b_2-a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1-a_n & b_2-a_n & b_3-a_n & \cdots & b_n-a_n & 0 \end{vmatrix}$$

$$D \stackrel{i=1,\cdots,n}{\stackrel{i=1,\cdots,n}{=}} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ b_1-a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1-a_2 & b_2-a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1-a_n & b_2-a_n & b_3-a_n & \cdots & b_n-a_n & 0 \end{vmatrix}$$

$$= (-1)^n (b_1-a_1)(b_2-a_2)\cdots (b_n-a_n)$$

 $=(a_1-b_1)(a_2-b_2)\cdots(a_n-b_n)$

$$D \stackrel{i=1,\cdots,n}{\stackrel{i=1,\cdots,n}{\stackrel{c_{i}-c_{n+1}}{=}}} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ b_{1}-a_{1} & 0 & 0 & \cdots & 0 & 0 \\ b_{1}-a_{2} & b_{2}-a_{2} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{1}-a_{n} & b_{2}-a_{n} & b_{3}-a_{n} & \cdots & b_{n}-a_{n} & 0 \end{vmatrix}$$

$$= (-1)^{n}(b_{1}-a_{1})(b_{2}-a_{2})\cdots(b_{n}-a_{n})$$

$$= (-1)^n (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

$$= (a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$$

$$= (-1)^n (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

$$= (a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$$
注意: 我们可以引入连乘符号: $\prod_{i=1}^n (a_i - b_i)$ 来记乘

积 $(a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$

$$= (-1)^n (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

$$= (a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$$

$$D \stackrel{\underline{i=1,\cdots,n}}{\stackrel{c_{i}-c_{n+1}}{=}} \begin{vmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ b_{1}-a_{1} & 0 & 0 & \cdots & 0 & 0 \\ b_{1}-a_{2} & b_{2}-a_{2} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{1}-a_{n} & b_{2}-a_{n} & b_{3}-a_{n} & \cdots & b_{n}-a_{n} & 0 \end{vmatrix}$$

 $= (-1)^n (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ = $(a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$

注意:我们可以引入连乘符号:
$$\prod_{i=1}^n (a_i - b_i)$$
来记乘积 $(a_1 - b_1)(a_2 - b_2) \cdots (a_n - b_n)$

中间过程还可以怎样化简?

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \end{vmatrix}$$

$$= \frac{\sum_{\substack{r_1 \leftrightarrow r_2 \\ r_2 \leftrightarrow r_3}}}{\sum_{\substack{r_1 \leftrightarrow r_{n+1}}}} (-1)^n \begin{vmatrix} b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \end{vmatrix}$$

$$\xrightarrow[r_1 \leftrightarrow r_2]{r_2 \leftrightarrow r_3} (-1)^n \begin{vmatrix} b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

这道题目还可以如何求解?

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \end{vmatrix}$$

$$= \frac{\sum_{\substack{r_1 \leftrightarrow r_2 \\ r_2 \leftrightarrow r_3 \\ \cdots}}}{\sum_{\substack{r_n \leftrightarrow r_{n+1} \\ n \rightarrow r_{n+1}}}} (-1)^n \begin{vmatrix} b_1 - a_1 & 0 & 0 & \cdots & 0 & 0 \\ b_1 - a_2 & b_2 - a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1 - a_n & b_2 - a_n & b_3 - a_n & \cdots & b_n - a_n & 0 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

这道题目还可以如何求解?

这几个例题都很典型, 大家一定要熟练掌握

利用性质进行行列式计算的一些注意事项

- 1. 熟练之后可不用写行列操作的记号r, c;
- 2. 注意观察行列式自身的特点,灵活运用性质。特别要注意的是: r_j k_{r1}, r₁就是我们的"斧子",工欲善其事,必先利其器:先想办法改进第一行的形式.再利用其化简其他行。

习题1,P25

11(3)(5)(6)

习题1,P25

11(3)(5)(6) 12(1)(2)(3)

练习题

1. 计算n阶行列式:

$$\begin{vmatrix} a_1 + b_1 & a_1 + b_2 & \cdots & a_1 + b_n \\ a_2 + b_1 & a_2 + b_2 & \cdots & a_2 + b_n \\ \cdots & \cdots & \cdots & \cdots \\ a_n + b_1 & a_n + b_2 & \cdots & a_n + b_n \end{vmatrix}$$

2. 计算行列式:

$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix}$$