2015 年第 16 屆亞洲物理奧林匹亞競賽 及第 46 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題參考解答(暫定)

壹、填充題

$$=$$
、(2) $2v$; $(\frac{2MV}{M+m}$ 給2分)

$$(3) \qquad 4\frac{mv^2}{\ell} + mg$$

$$\equiv (4) \quad Mg = (M+m)a$$

$$(5) \quad \tan\theta = (M+m)/M$$

$$\dot{\Rightarrow} \quad (9) \qquad P + \frac{mg}{\pi r^2}$$

(10)
$$\left(P + \frac{mg}{\pi r^2}\right) \frac{\rho \pi r^2 l_i}{m} - \frac{mg}{\pi r^2}$$

(12)
$$\underline{6.3 \times 10^3}$$

八、 (13)
$$\left(\sqrt{10}/2\right)v$$
 ; $\left(\frac{-v}{2},\frac{-3v}{2},0\right)$ 給 3 分

九、(14)
$$\frac{\sqrt{3}}{5}$$

$$+\cdot(15)$$
 $2\pi\sqrt{\frac{1}{2gc}}$

(16)
$$4mgc^2x_0^2$$

$$+-\cdot$$
 (17) $e^{(2n+1)\pi\mu}$

$$+ = \cdot (18) \frac{9\pi^2 - 32}{36\pi^2} MR^2$$

$$(19) \qquad \sqrt{\frac{2I_{C1}}{M}}$$

$$+ \equiv \cdot (20) \qquad M \frac{F}{M+m}$$

(21)
$$\frac{3 F - (M+m)g}{4 (M+m)L}$$

$$(23) z_0 \cos\left(\sqrt{\frac{3g}{\ell}}t\right)$$

$$+\hbar$$
 (29) $\frac{m\omega^2}{k_BT}$

(30)
$$\frac{m\omega^2}{2k_BT}(R^2 - R_1^2)$$

貳、計算題

第1題評分標準:

小題	內容	得分	備註
寫出摩	寫出方塊與圓柱體之間的接觸面之動摩擦fk,		
擦力	$\mathbb{F}_{p}: f_{k} = T\nu_{k} = 0.3T (1)$	1分	
	寫出方塊與地面的接觸面間的動摩擦力,即f'k		
	等於:	1分	
	$f'_k = (Mg - T\nu_k) \cdot \mu_k = 0.3Mg - 0.9T$ (2)		
寫出所	寫出方塊質心的運度方程式為		
有運動	$F - Mg\mu_k - T(1 - \nu_k \cdot \mu_k) = Ma$	3分	
方程	或將 $\nu_k = 0.3 \cdot \pi \mu_k = 0.3$ 代入,寫出		
式,知	$F - 0.3Mg - 0.91T = Ma \qquad (3)$ 		
道解方程式求	T - f - mq (4)	3分	
程式水 解	$T - f_s = ma$ (4) 寫出圓柱體旋轉的運動方程式: $f_s \cdot r - f_k \cdot r =$		
77	$I\alpha$,即		
	l '		
	$f_s \cdot r - T\nu_k \cdot r = \frac{1}{2}mr^2\alpha = \frac{1}{2}mra (5)$	3分	
	或		
	$f_s - 0.3T = \frac{1}{2}ma (6)$		
	知道利用三個運動方程式求解		
	$T = f_s + ma$	1 3	
	$F - 0.3Mg - 0.91f_s = (M + 0.91m)a$	1分	
	$0.7f_s = 0.8ma$ (6')		
(a)	解得		
	$a = \frac{F - 0.3Mg}{M + 1.95m}$	1分	
	$u - \frac{M}{M + 1.95m}$		
(b)	解得		
	$f_s = \frac{8}{7}m\left(\frac{F - 0.3Mg}{M + 1.95m}\right)$	1分	
	$\int_{S} -7''' \left(M + 1.95m \right)$		
(c)	解得		
	$T = \frac{15}{7}m\left(\frac{F - 0.3Mg}{M + 1.95m}\right)$	1分	
	$7 \cdots (M + 1.95m)$		

第2題評分標準:

小題	內容	得分	備註
(a)	當地面的氣溫為26℃,相對濕度為70%	3分	
共3分	時,利用相對濕度 = 空氣中的水蒸氣壓 × 當時氣溫的飽和蒸汽壓 ×		
	100% ,計算得空氣中的水蒸氣壓		
	$3.36 \times 10^3 \times 70\% = 2.35 \times 10^3 \text{ Pa}$		
(b)	寫出離地高度h處(及溫度為T位置)的水蒸	1分	
共8分	氣分壓P _{vapor} 為		
	$P_{vapor} = 2.35 \times 10^3 \left(\frac{T}{T_0}\right)^{5.23}$		
	寫出壓力P與高度h關係式	1分	
	$P = P_0 \left(\frac{T}{T_0}\right)^{5.23}$		
	寫出聯結飽和蒸汽壓和水蒸氣壓的等式	2分	
	$P_{vapor} = 2.35 \times 10^3 \left(\frac{T}{T_0}\right)^{5.23}$		
	$= P_{S}(T_{0})e^{5210\left(\frac{1}{T_{0}} - \frac{1}{T}\right)}$		
	將飽和蒸汽壓和水蒸氣壓的等式化簡	1分	
	$\frac{\frac{2.35}{3.36} \left(\frac{T}{299}\right)^{5.23}}{\frac{1}{3.36} \left(\frac{1}{299} - \frac{1}{T}\right)} = 0.7 \left(\frac{T}{299}\right)^{5.23} = e^{5210 \left(\frac{1}{299} - \frac{1}{T}\right)}$		
	知道利用取自然對數,得方程式	1分	
	$\ln T = 9.10 - \frac{966.18}{T}$		
	會利用數值解法,即代入數值之近似解	2分	計算得18±
	法,可得T ≅ 291 K,或18 °C。		1℃均給
		4 3	分。
(c) 共 4 分	寫出高度 $h = \frac{T_0 - T}{a}$ 利用(b)數值代入,並得正確解:	1分	
	利用(b)數值代入,並得正確解:	2分	計算出
	$h = \frac{T_0 - T}{a} = \frac{26.0 - (18 \pm 1)}{6.50 \times 10^{-3}}$		1080~1380
	$n = \frac{1}{a} = \frac{1}{6.50 \times 10^{-3}}$ = 1310 公尺		公尺,均可