

네트워크 모델

쉽게 배우는 데이터 통신과 컴퓨터 네트워크

학습목표

- ✓ 모듈 개념을 알아보고 계층 구조의 필요성을 이해
- ✓ 프로토콜을 설계할 때 고려할 사항
- ✓ 서비스 프리미티브의 필요성과 동작원리
- ✓ OSI 7 계층 모델의 동작 원리와 데이터 전달 방법을 이해
- ✓ TCP/IP의 계층 구조와 관련 프로토콜

- ✓ 내용
 - 계층 구조의 개념
 - OSI 참조 모델
 - TCP/IP 모델

□계층적 모듈 구조

- 모듈화 [그림 2-1]
 - 프로토콜 설계 과정을 모듈화
 - 크고 복잡한 시스템을 기능별로 여러 개의 작고 단순한 모듈로 독립화
 - 함수별로 특정 기능을 독립적으로 수행하도록 함
 - 예: C 프로그래밍 언어의 함수 개념
 - 모듈 사이의 적절한 인터페이스가 필요
 - 고장난 부분을 모듈단위로 수정하거나 교체하기 용이함

[그림 2-1] 모듈화

□계층적 모듈 구조

- 계층 구조 [그림 2-2]
 - 상위 모듈이 하위 모듈에게 서비스를 요청
 - 하위 모듈은 서비스를 실행하고 그 결과를 상위 모듈에 통보

[그림 2-2] 계층 구조

- □계층적 모듈 구조
 - 모듈화된 계층 구조의 장점
 - 전체 시스템을 이해하기 쉽고, 설계 및 구현이 용이
 - 모듈간의 표준 인터페이스가 단순하면 모듈의 독립성을 향상시킬 수 있으며, 이는
 시스템 구조를 단순화시키는 장점이 됨
 - 대칭 구조에서는 동일 계층 사이의 인터페이스인 프로토콜을 단순화시킬 수 있음
 - 고장 시 특정 모듈만 수정하므로 특정 모듈의 외부 인터페이스가 변하지 않으면 내부 기능의 변화가 전체 시스템의 동작에 영향을 미치지 않음

- □ 프로토콜 설계 시 고려 사항
 - 1) 주소 표현, 2) 오류 제어, 3) 흐름 제어, 4) 데이터 전달 방식
 - 1) 주소 표현(Addressing)
 - 주소의 역할 : 서로를 구분
 - 주소의 활용도를 높이기 위하여 구조적 정보를 포함
 - 전화번호: 국가 코드 지역 코드 번호
 - 주민번호: yymmdd-abcdefg
 - 인터넷 주소?
 - 1:다 통신을 지원
 - 브로드캐스팅(Broadcasting): 모든 호스트에 데이터 전달
 - 멀티캐스팅(Multicasting): 특정 호스트에게 데이터 전달

□프로토콜 설계 시 고려 사항

- 2) 오류 제어(Error Control) [그림 2-3]
 - 데이터 링크 계층 : 인접 링크와의 물리적 오류 제어
 - 전송 계층 : 상위 계층의 종단에서 논리적인 오류 제어
 - 오류 종류: 데이터 변형 오류: 데이터가 변경되어 수신자에게 도착
 - 데이터 분실 오류: 데이터가 수신자에게 도착하지 못함
 - 물리적 오류 외에 데이터의 수신 순서가 변경되는 오류도 있음=> 순서 번호 필요
 - 오류 검출시 일반적으로 송신측에서 재전송(retransmission)하는 방식을 사용
 - 특별히, 수신측에서 오류 복구 기법을 사용할 수도 있음

□프로토콜 설계 시 고려 사항

- 3) 흐름 제어 (Flow Control) [그림 2-4]
 - 수신 호스트의 버퍼 처리 능력에 비해 송신 호스트가 너무 빨리 데이터를 전송하면 논리적인 데이터 분실 오류가 발생
 - 송신 호스트의 전송속도를 조절하는 흐름제어 기능이 필요
 - 흐름 제어 기능은 보통 수신 호스트에서 이루어짐

□프로토콜 설계 시 고려 사항

- 4) 데이터 전달 방식
 - 단방향(Simplex): 데이터를 한쪽 방향으로만 전송
 - 방송망(라디오, TV)
 - 반이중(Half Dulpex): 양방향으로 전송할 수 있지만, 특정 시점에서는 한쪽 방향으로만 전송
 - 무전기(워키토키)
 - 전이중(Duplex): 데이터를 양쪽에서 동시에 전송
 - 일반적인 양방 통신
 - 데이터 전달 방식에는 전송 우선 순위를 정하거나 긴급 데이터를 처리하는 방법 등도 고려해야 함
 - (참고) 방송망이 아닌 네트워크에서 단방향 통신의 장점?
 - 보안 측면에서의 장점
 - 사용되는 곳….

□서비스 프리미티브

- 프리미티브의 종류(3가지)와 기능(4가지)
 - 프리미티브(primitive)란 : 상위 계층이 하위 계층을 사용하는 방법을 정형화한 것 서비스를 구성하는 정형화된 기본적(원시적)인 요소라고 이해
 - 연결형 서비스: 데이터 전송 전에 미리 연결을 설정하여 전송하는 방식
 - CONNECT: 연결 설정 프리미티브
 - DATA: 데이터 전송 프리미티브
 - DISCONNECT: 연결 해제 프리미티브

표 2-1 연결형 서비스의 프리미티브 종류

종류	용도
CONNECT	연결 설정
DATA	데이터 전송
DISCONNECT	연결 해제

- 비연결형 서비스 : 전송할 데이터가 있으면 각 데이터를 독립적으로 목적지 호스트로 전송하는 방식
 - DATA: 데이터 전송 프리미티브

□서비스 프리미티브

• 각 서비스 프리미티브의 기능

표 2-2 서비스 프리미티브의 기능

기능	설명
Request	클라이언트가 서버에 서비스를 요청함
Indication	서버에 서비스 요청이 도착했음을 통지함
Response	서버가 클라이언트에 서비스 응답을 회신함
Confirm	클라이언트에 응답이 도착했음을 통지함

서비스 프리미티브의 동작 순서 [그림 2-5]

Request 기능 : 연결 설정 요청 CONNECT.Request
 데이터 전송 요청 DATA.Request
 연결 해제 요청 DISCONNECT.Request 형식으로 사용

→ (프리미티브.기능) 형식

■ Indication 기능 : 연결 설정, 데이터 전송, 연결 해제에 사용

▪ Response 기능 : 연결 설정, 데이터 전송, 연결 해제에 사용

• Confirm 기능: 연결 설정, 데이터 전송, 연결 해제에 사용

□서비스 프리미티브

연결형 프리미티브의 동작 원리 [그림 2-5]

CONNECT.Request,

CONNECT.Indication, DATA.Indication,

CONNECT.Response, DATA.Response,

CONNECT.Confirm,

DATA.Request, , DATA.Indication DATA.Response,

DATA.Confirm,

DISCONNECT.Request
DISCONNECT.Indication
DISCONNECT.Response
DISCONNECT.Confirm

그림 2-5 서비스 프리미티브의 동작 원리

□서비스 프리미티브

- 비연결형 프리미티브의 동작 원리 [그림 2-5]
 - DATA.Request
 - DATA.Indication
 - DATA.Response
 - DATA.Confirm

그림 2-5 서비스 프리미티브의 동작 원리

2절. OSI 참조 모델

□OSI 7 계층 모델 [그림 2-6]

2절. OSI 참조 모델

□OSI 7 계층 모델

- 용어정의
 - 계층 n 프로토콜: 계층 n 모듈끼리 사용하는 통신 규칙
 - 동료 프로세스(peer process): 동일 계층에 위치한 통신 양단 프로세스
 - · 인터페이스: 상하위 계층 사이의 접속 방법
 - 서비스: 하위 계층이 상위계층에 제공하는 기능
- 헤더 정보
 - 송신 호스트: 데이터가 상위 계층에서 하위 계층으로 갈수록 헤더 추가
 - 수신 호스트: 데이터가 하위 계층에서 상위 계층으로 갈수록 헤더 제거

