계산력 연습

[영역] 5.기하

중 2 과정

5-3-2.평행사변형이 되는 조건과 평행사변형의 넓이

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2016-10-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

○「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 평행사변형이 되는 조건

다음 조건 중 어느 하나를 만족시키 사각형은 평행사변형이다.

- 1) 두 쌍의 대변이 각각 평행하다.
- $\Rightarrow \overline{AB}//\overline{DC}, \overline{AD}//\overline{BC}$
- 2) 두 쌍의 대변의 길이가 각각 같다.
- $\Rightarrow \overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$
- 3) 두 쌍의 대각의 크기가 각각 같다.
- $\Rightarrow \angle A = \angle C, \angle B = \angle D$
- 4) 한 쌍의 대변이 평행하고, 그 길이가 같다.
- $\Rightarrow \overline{AB}/\overline{DC}, \overline{AB} = \overline{DC} (\underline{\Xi} + \overline{AD}/\overline{BC}, \overline{AD} = \overline{BC})$
- 5) 두 대각선은 서로를 이등분한다.
- $\Rightarrow \overline{AO} = \overline{CO}, \overline{BO} = \overline{DO}$

2. 평행사변형의 넓이

- 1) 평행사변형의 넓이는 한 대각선에 의해서 이등분 된다.
- $\Rightarrow \triangle ABC = \triangle BCD = \triangle CDA = \triangle DAB = \frac{1}{2} \Box ABCD$
- 2) 평행사변형의 넓이는 두 대각선에 의해서 사등분 된다.
- $\Rightarrow \triangle ABO = \triangle BCO = \triangle CDO = \triangle DAO = \frac{1}{4} \square ABCD$
- 3) 평행사변형 ABCD의 내부의 임의의 점 P에 대하여
- $\Rightarrow \triangle PAB + \triangle PCD = \triangle PDA + \triangle PBC = \frac{1}{2} \Box ABCD$

평행사변형이 되는 조건

☑ 빈 칸에 알맞은 용어를 순서대로 써라.

- 1. 두 쌍의 대변이 각각 ()하다.
- 2. **두 쌍의 ()의 길이가 각각 같다.**

- 3. **두 쌍의** ()의 크기가 각각 같다.
- 4. 두 대각선이 서로 다른 것을 ()한다.
- 5. 한 쌍의 ()이 평행하고 그 길이가 같다.

□ 다음 조건을 만족시키는 □ABCD가 평행사변형이 되는 것
 에 ○, 되지 않는 것에 ×를 표시하여라. (단, 점 ○는 AC와 BD의 교점이다.)

6. $\overline{AB} = 6 \text{cm}, \overline{BC} = 6 \text{cm}, \overline{CD} = 8 \text{cm}, \overline{DA} = 8 \text{cm}$

()

7. $\overline{AO} = 3 \text{cm}, \overline{BO} = 3 \text{cm}, \overline{CO} = 5 \text{cm}, \overline{DO} = 5 \text{cm}$

()

8. $\angle A = 120^{\circ}, \angle B = 60^{\circ}, \overline{AD} = \overline{BC}$

(

)

)

)

9. $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC}$

(

10. $\overline{AO} = 5 \text{cm}$, $\overline{BO} = 5 \text{cm}$, $\overline{CO} = 6 \text{cm}$, $\overline{DO} = 6 \text{cm}$

11. $\overline{AB}//\overline{DC}$, $\overline{AB} = 5 \text{cm}$, $\overline{AD} = 5 \text{cm}$

()

12. $\angle A = 100^{\circ}$, $\angle B = 80^{\circ}$, $\angle C = 100^{\circ}$

()

13. $\angle B = \angle C$, $\overline{AB} = 6 \text{cm}$, $\overline{DC} = 6 \text{cm}$

()

14. $\overline{AB}//\overline{CD}$, $\overline{AD}//\overline{BC}$

(

)

15. $\overline{AB} = \overline{CD}$, $\overline{AD} = \overline{BC}$

()

16. $\angle A = \angle C$, $\angle B = \angle D$

()

17. $\overline{AB} = \overline{CD}$, $\overline{AD}//\overline{BC}$

)

18. $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

()

19. $\overline{AB} = 4 \text{cm}$, $\overline{BC} = 6 \text{cm}$, $\overline{CD} = 4 \text{cm}$, $\overline{DA} = 6 \text{cm}$

)

20. $\angle A = \angle B = 80^{\circ}$, $\angle C = \angle D = 100^{\circ}$

)

(

(

21. $\angle A = 60^{\circ}$, $\angle B = 120^{\circ}$, $\overline{AD} = 5$, $\overline{BC} = 5$

)

22. $\overline{AB}//\overline{DC}$, $\overline{AD}//\overline{BC}$

)

23. $\overline{AB} = 5$, $\overline{BC} = 7$, $\overline{CD} = 5$, $\overline{AD} = 7$

)

24. $\overline{OA} = 4$, $\overline{OB} = 4$, $\overline{OC} = 5$, $\overline{OD} = 5$

()

25. $\overline{AB}//\overline{DC}$, $\overline{AB} = 8$, $\overline{DC} = 8$

)

26. $\angle A = 70^{\circ}, \angle B = 110^{\circ}, \angle C = 70^{\circ}$

()

☑ 다음 사각형 ABCD가 평행사변형이 되기 위한 조건을 [안에 알맞게 써넣어라.

- 27. $\overline{AB}//[$], $\overline{AD}//[$
- 28. $\overline{AB} = [$], $\overline{AD} = [$
- 29. $\angle A = [$], $\angle B = [$
- 30. $\overline{OA} = [$], $\overline{OB} = [$
- 31. $\overline{AB} = [], \overline{AB}//[]$
- □ 다음 그림의 □ABCD가 평행사변형이 되는 것에 ○, 되지 않는 것에 ×를 표시하여라.

32. ()

33. ()

34. ()

35. ()

36. ()

37. ()

38. ()

- ☑ 다음 물음에 답하여라.
- 39. 다음 그림의 평행사변형 ABCD에서 두 대각선의 교점을 O라 하자. $\overline{AE} = \overline{CG}$, $\overline{BF} = \overline{DH}$ 일 때, $\Box EFGH$ 는 어떤 사 각형인지 말하여라.

40. 다음 그림과 같이 평행사변형 ABCD의 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 P, Q라 할 때, □APCQ는 어떤 사각형인지 말하여라.

☑ 다음 그림과 같은 평행사변형 ABCD에서 색칠한 사각형이 어떤 사각형인지 구하는 과정이다. 만에 알맞은 것을 써 넣어라.

41.

사각형 ABCD가 평행시변형이므로

<u>EB</u>//<u></u> ⊙

 $\overline{EB} = \overline{AB} - \overline{AE} = \overline{DC} - \overline{DF} = \overline{DF}$

①, ⓒ에서 □EBFD는 한 쌍의 대변이 평행하고 그 길이가

같으므로 이다.

42.

 \square ABCD가 평행사변형이므로 $\overline{AD}//\overline{BC}$ 이고. $\overline{AD} = \square$ 이다.

점 N, M은 각각 \overline{AD} , \overline{BC} 의 중점이므로

 $\overline{AN}//$ 이고, $\overline{AN}=$ 이다.

따라서 □AMCN은 「 이다.

43.

즉, 🖳

사각형 ABCD가 평행시변형이므로

 $\overline{AO} = \overline{\overline{BO}} = \overline{\overline{\overline{BO}}}$

 $\overline{AE} = \overline{CG}$, $\overline{BF} = \overline{DH}$ 이므로

 $\overline{EO} = \overline{AO} - \square = \overline{CO} - \overline{CG} = \square$ \bigcirc

 $\overline{FO} = \overline{BO} - \square = \overline{DO} - \overline{DH} = \square$

⑤, ⑥에서 ☐ EFGH는 두 대각선이 서로 다른 대각선을

이등분하므로 이다.

☑ 다음 평행사변형 ABCD에 대하여 색칠한 사각형이 평행사 변형이 되는 설명의 []을 알맞게 채워라.

44.

(설명) $\overline{\rm AD}//\overline{\rm BC}$ 이므로

$$\overline{\mathrm{ED}}$$
 [] $\overline{\mathrm{BF}}$ ---- \bigcirc

$$\overline{AD} = \overline{BC}$$
이므로

$$\frac{1}{2} \overline{AD} = \frac{1}{2} [$$

$$\therefore \overline{\mathrm{ED}} = [\qquad] \qquad ---- \bigcirc$$

③, ©에서 □EBFD는

] 평행사변형이다.

45.

(설명) △AEH와 △CGF에서

$$\overline{AE} = \frac{1}{2} [$$
] = $\frac{1}{2} \overline{DC} = [$],

$$\overline{AH} = \frac{1}{2} \overline{AD} = \frac{1}{2} [] = []$$

∠A = []이므로

∴ <u>EH</u>=[] ---- ⊙

같은 방법으로 $\triangle BFE \equiv [$

 $\therefore \overline{\mathrm{EF}} = [$] —— \bigcirc

③, ©에서 □EFGH는

] 평행사변형이다.

46.


```
(설명) ∠ABC = ∠ADC이므로
             ] ---- 🗇
   \angle EBF = [
   ∠AEB = [ ] (엇각),
   ∠DFC = ∠EDF([ ])이므로
   \angle AEB = [
   \therefore \angle DEB = [ ] ---- ©
   ③, ©에서 □EBFD는
                        ] 평행사변형이다.
```

48.


```
(설명) 평행사변형 ABCD에서
    <u>OB</u>=[ ] ---- ⊙
    \overline{OA} = [ 이고 \overline{AE} = \overline{CF}이므로
    <u>OE</u>=[ ] ---- ⊜
    ③, ©에서 □BFDE는
                                ] 평행사변형이다.
```

47.


```
(설명) △ABE와 △CDF에서
     \overline{AB} = [ ],
     \angle BEA = \angle DFC = [ ],
     \triangle ABE \equiv \triangle CDF ( [ ]합동)
    ∴ BE=[ ] ---- つ
    \angle \, \mathrm{BEF} = \angle \, \mathrm{DFE} = [ (엇각)이므로
    \overline{BE} [ \overline{DF} ---- \bigcirc
    ③, ©에서 □BFDE는
                                ] 평행사변형이다.
```

49.


```
(설명) □ AFCH에서 AH //[
     AH = [ ]이므로
     □ AFCH는 [ ]이다.
     \therefore \overline{AF}//\overline{HC}, \stackrel{\sim}{\rightarrow} \overline{AP}//[ ] ---- \bigcirc
     또, \square AECG에서
     \overline{AE} //[ ], \overline{AE} =[ ]이므로
     □AECG는 [
                                 ]이다.
     \therefore \overline{AG}//\overline{EC}, \tilde{\neg} \boxed{}//\overline{PC} ---- \bigcirc
     ③, ⓒ에서 □APCQ는
                                        ] 평행사변형이다.
```


평행사변형의 넓이

□ 다음 평행사변형 ABCD의 넓이가 52cm²일 때, 색칠한 부분
 의 넓이를 구하여라.(단, 점 ○는 두 대각선 AC와 BD의 교점이다.)

50.

51.

52.

- □ 다음 그림과 같은 평행사변형 ABCD에서 조건이 주어질 때, 색칠한 부분의 넓이를 구하여라.(단, 점 ○는 두 대각선 AC와 BD의 교점이다.)
- 53. $\triangle ABD = 15 \text{ cm}^2$

54. $\square ABCD = 36 \text{ cm}^2$

55. $\triangle AOB = 5 \text{ cm}^2$

56. $\square ABCD = 56 \text{ cm}^2$

☐ 다음 그림과 같은 평행사변형 ABCD의 넓이가 48cm²일 때, 다음 도형의 넓이를 구하여라.(단, 점 ○는 두 대각선 AC와 BD의 교점이다.)

- **57**. △OAB
- **58.** △OCD
- 59. △ABC
- 60. $\triangle AOD + \triangle BOC$
- □ 다음 평행사변형 ABCD에서 △OCD의 넓이가 12cm²일
 때, 다음 도형의 넓이를 구하여라.(단, 점 ○는 두 대각선 AC와 BD의 교점이다.)

- **61**. △AOD
- **62**. □ABCD

☑ 다음 평행사변형 ABCD에서 △AOD의 넓이가 8cm²일 때, 다음 도형의 넓이를 구하여라.(단, 점 O는 두 대각선 AC와 BD**의 교점이다.)**

- 63. ΔABO
- 64. $\triangle ABC$
- **65**. □ABCD
- ☑ 다음 평행사변형 ABCD의 넓이가 30cm²일 때, 색칠한 부분 의 넓이를 구하여라.
- 66.

67.

68.

- ☑ 다음 그림과 같은 평행사변형 ABCD에서 조건이 주어질 때, 색칠한 부분의 넓이를 구하여라.
- \square ABCD = 42cm²

70. $\square ABCD = 60 \text{cm}^2$

71. \square ABCD = 16cm², \triangle PAB = 2cm²

 \square ABCD = 80cm², \triangle PAD = 18cm² 72.

73. $\triangle PAB = 18 \text{cm}^2$, $\triangle PCD = 21 \text{cm}^2$

74. $\triangle PBC = 20 \text{cm}^2$, $\triangle PCD = 12 \text{cm}^2$, $\triangle PDA = 10 \text{cm}^2$

 $\triangle PAB = 26 \text{cm}^2$, $\triangle PBC = 12 \text{cm}^2$, $\triangle PCD = 14 \text{cm}^2$ 75.

76. $\triangle APD = 12 \text{cm}^2$, $\triangle BPC = 25 \text{cm}^2$, $\triangle CPD = 13 \text{cm}^2$

77. $\square ABCD = 60 \text{cm}^2$, $\triangle PBC = 14 \text{cm}^2$

 $\triangle PAB = 8cm^2$ 78.

 $\Delta PBC = 5cm^2$ 79.

80. $\triangle CDP = 9cm^2$

- ☑ 다음 평행사변형 ABCD에서 색칠한 부분의 넓이를 구하여 라.
- 81.

82.

83.

☑ 다음 평행사변형 ABCD에서 색칠한 부분의 넓이를 구하여 라.(단, 점 O는 두 대각선 AC와 BD의 교점이다.)

84. $\square ABCD = 100 cm^2$

85. \square ABCD=40cm²

86. \square ABCD=28cm²

87. \square ABCD=60cm²

88. \triangle ABC = 100cm²

정답 및 해설 ૽

- 1) 평행
- 2) 대변
- 3) 대각
- 4) 이등분
- 5) 대변
- 6) ×
- ⇒ 두 쌍의 대변의 길이가 각각 같아야한다.
- 7) ×
- ⇒ 두 대각선은 서로 다른 것을 이동분해야한다.
- 8) (
- 9) (
- 10) ×
- 11) ×
- 12) 🔾
- 13) ×
- 14) 🔾
- 15) 🔾
- 16) 🔾
- 17) ×
- 18) 🔾
- 19) 🔾
- 20) ×
- 21) 🔾
- 22) O, 두 쌍의 대변이 각각 평행하다.
- 23) O, 두 쌍의 대변의 길이가 각각 같다.
- 24) X
- 25) 0, 한 쌍의 대변이 평행하고 그 길이가 같다.
- 26) 0, 두 쌍의 대각의 크기가 각각 같다.
- 27) \overline{DC} , \overline{BC}

- 28) \overline{DC} , \overline{BC}
- 29) ∠C, ∠D
- 30) \overline{OC} , \overline{OD}
- 31) \overline{DC} , \overline{DC}
- 32) 🔾
- ⇒ 두 쌍의 대변의 길이가 각각 같다.
- 33) ×
- 34) (
- ⇒ 두 대각선이 서로 다른 것을 이동분한다.
- $35) \times$
- 36) (
- ⇒ 두 쌍의 대변이 평행하다.
- 37) (
- ⇒ 한 쌍의 대변이 평행하고 그 길이가 같다.
- 38) 🔾
- ⇒ 두 쌍의 대각의 크기가 각각 같다.
- 39) 평행사변형
- ⇒ 평행사변형 ABCD에서

 $\overline{OA} = \overline{OC}$ 이고 $\overline{AE} = \overline{CG}$ 이므로

 $\overline{OE} = \overline{OG}$ ---- \bigcirc

또, $\overline{OB} = \overline{OD}$ 이고, $\overline{BF} = \overline{DH}$ 이므로

 $\overline{OF} = \overline{OH}$ ---- \bigcirc

- ○, ○에서 □EFGH는 두 대각선이 서로 다른 것을 이 등분하므로 평행사변형이다.
- 40) 평행사변형
- 41) DF, CF, 평행사변형
- 42) \overline{BC} , \overline{MC} , \overline{MC} , 한 쌍의 대변이 서로 평행하고, 그 길이가 서로 같다., 평행사변형
- 43) $\overline{\text{CO}}$, $\overline{\text{DO}}$, $\overline{\text{AE}}$, $\overline{\text{GO}}$, $\overline{\text{BF}}$, $\overline{\text{HO}}$, 평행사변형
- 44) //, \overline{BC} , \overline{BF} , 한 쌍의 대변이 평행하고 그 길이가 같으므로
- 45) AB, CG, BC, CF, ∠C, SAS, GF, △DHG, GH, 두 쌍의 대변의 길이가 각각 같으므로
- 46) ∠EDF, ∠EBF, 엇각, ∠DFC, ∠DFB, 두 쌍의 대 각의 크기가 각각 같으므로

- 47) $\overline{\text{CD}}$, 90°, ∠DCF, RHA, $\overline{\text{DF}}$, 90°, //, 한 쌍의 대 변이 평행하고 그 길이가 같으므로
- 48) $\overline{\rm OD}$, $\overline{\rm OC}$, $\overline{\rm OF}$, 두 대각선이 서로 다른 것을 이등분 하므로
- 49) \overline{FC} , \overline{FC} , 평행사변형, \overline{QC} , \overline{GC} , \overline{GC} , 평행사변형, \overline{AQ} , 두 쌍의 대변이 각각 평행하므로
- 50) 26cm²
- 51) 13cm²
- 52) 26cm²
- 53) 30cm²
- $\Rightarrow \Box ABCD = 2\triangle ABD = 2 \times 15 = 30 \text{ (cm}^2)$
- 54) 18cm²
- $\Rightarrow \triangle ABC = \frac{1}{2} \square ABCD = \frac{1}{2} \times 36 = 18 (cm^2)$
- 55) 20cm²
- $\Rightarrow \Box ABCD = 4\triangle AOB = 4 \times 5 = 20 \text{ (cm}^2\text{)}$
- 56) 14cm²
- \Rightarrow $\triangle OAB = \frac{1}{4} \square ABCD = \frac{1}{4} \times 56 = 14 (cm^2)$
- 57) 12cm²
- 58) 12cm²
- 59) 24cm²
- 60) 24cm²
- 61) 12cm²
- 62) 48cm²
- 63) 8cm²
- 64) 16cm²
- 65) 32cm²
- 66) 15cm²
- 67) 15cm²
- 68) 8cm²

- $\Rightarrow \Delta PCD = \frac{1}{2} \Box ABCD \Delta PAB = \frac{1}{2} \times 30 7 = 8(cm^2)$
- 69) 21cm²
- $\Rightarrow \Delta PDA + \Delta PBC = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 42 = 21 (cm^2)$
- 70) 30cm²
- 71) 6cm²
- $ightharpoonup \Delta PAB + \Delta PCD = \frac{1}{2} \square ABCD이므로$ $2 + \Delta PCD = \frac{1}{2} \times 16 \qquad \therefore \Delta PCD = 6 (cm^2)$
- 72) 22cm²
- \triangle \triangle PAD + \triangle PBC = $\frac{1}{2}$ \square ABCD이므로 $18 + \triangle$ PBC = $\frac{1}{2} \times 80 \qquad \therefore \triangle$ PBC = $22 \text{ (cm}^2)$
- 73) 78cm²
- \Rightarrow $\triangle PAB + \triangle PCD = \frac{1}{2} \square ABCD$ 이므로 $18 + 21 = \frac{1}{2} \square ABCD \qquad \therefore \square ABCD = 78 (cm^2)$
- 74) 18cm²
- \triangle \triangle PAB + \triangle PCD = \triangle PBC + \triangle PDA이므로 \triangle PAB + 12 = 20 + 10 \therefore \triangle PAB = $18(cm^2)$
- 75) 28cm²
- \Rightarrow \triangle PAB + \triangle PCD = \triangle PDA + \triangle PBC 이므로 $26+14=\triangle$ PDA + 12 \therefore \triangle PDA = $28(cm^2)$
- 76) 24cm²
- 77) 16cm²
- 78) 17cm²
- \Rightarrow \square ABCD = $10 \times 5 = 50$ (cm) \triangle PAB + \triangle PCD = $\frac{1}{2}$ \square ABCD이므로 $8 + \triangle$ PCD = $\frac{1}{2} \times 50$

 $\therefore \triangle PCD = 17(cm^2)$

79)

 \Rightarrow (\square ABCD의 넓이)= $7 \times 4 = 28 \, (\text{cm}^2)$ 이고, \triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC 이므로 \triangle PAD + \triangle PBC = $\frac{1}{2} \times 28 = 14 \, (\text{cm}^2)$ 이다.

이 때, $\triangle PBC = 5cm^2$ 이므로 $\triangle PAD = 9cm^2$ 이다.

- 80) 12cm²
- 81) 19cm²
- ⇒ (색칠한 부분의 넓이) = 13+6=19(cm²)
- 82) 12cm²

$$\Rightarrow 8+9=5+\Delta PBC$$

$$\therefore \triangle PBC = 12(cm^2)$$

- 83) 14cm²
- $\Rightarrow \Box ABCD = 8 \times 6 = 48 \text{ (cm}^2\text{)}$

$$\therefore \Delta PAB = \frac{1}{2} \Box ABCD - \Delta PCD$$
$$= \frac{1}{2} \times 48 - 10 = 14 (cm^{2})$$

- 84) 25cm²
- △AOF와 △COE에서 ĀŌ= ŪŌ,
 ∠FAO = ∠ECO(엇각), ∠AOF = ∠COE(맞꼭지각)이므로

 $\triangle AOF = \triangle COE(ASA합동)이다.$

따라서 색칠한 부분의 넓이는 △BCO와 같고,

$$\Delta BCO = \frac{1}{4} \square ABCD$$
이므로 $\square ABCD = 100 \text{cm}^2$ 일 때,

 $\triangle BCO = 25 \text{cm}^2 \text{O} | \Box \text{H}.$

85) 10 cm²

 $\triangle AOP = \triangle COQ(ASA 합동)$

 $\triangle COQ = \triangle AOP$

: (색칠한 부분의 넓이)

$$= \triangle OBC = \frac{1}{4} \square ABCD = \frac{1}{4} \times 40 = 10 (cm^2)$$

- 86) 7 cm²
- \triangle \triangle OBF와 \triangle ODE에서 $\overline{OB} = \overline{OD}$, \angle OBF = \angle ODE (엇각), \angle BOF = \angle DOE(맞꼭지각)이므로

 \triangle OBF = \triangle ODE(ASA 합동)이다.

따라서 색칠한 부분의 넓이는 △AOD의 넓이와 같다.

즉, □ABCD=28cm²일 때,

(색칠한 부분의 넓이)= $\frac{1}{4} \times 28 = 7 \text{ (cm}^2)$

- 87) 15cm²
- □ △OBF와 △ODE에서 ○B = ○D,
 □ ∠OBF = ∠ODE(엇각), ∠BOF = ∠DOE(맞꼭지각)이므로

△OBF ≡ △ODE(ASA합동)이다. 이 때, △AOE+△BOF = △AOD이므로 □ABCD = 60cm²이면

 $\triangle AOE + \triangle BOF = \frac{1}{4} \times 60 = 15 \text{cm}^2 \text{O} | \text{C}|.$

- 88) 50cm²
- \triangle \triangle AOE \equiv \triangle COF(\because $\overline{AO} = \overline{CO}$, \angle OAE = \angle OCF(엇각), \angle AOE = \angle COF(맞꼭지각)이므로 ASA 합동이다.) 이다. 따라서 빗금 친 두 삼각형의 넓이는 \triangle AOD와 같고, \triangle AOD = $\frac{1}{4}$ \Box ABCD이다.

 \triangle ABC = 100cm 2 일 때, \square ABCD = 200cm 2 이므로 빗금 친 두 삼각형의 넓이는 $\frac{1}{4} \times 200 = 50 \, (\mathrm{cm}^2)$ 이다.