Diskrete Strukturen Nachbereitungsaufgabe 12

Khmelyk Oleh

2023

(a) Aequivalenzrelationen

- (i) $R_1 := \{(1,1), (1,2), (2,2), (3,3), (2,1), (2,3), (3,2)\} \subseteq \{1,2,3\}^2$ Reflexiv: $1,2,3 \in \{1,2,3\}$ und $(1,1), (2,2), (3,3) \in R_1$ Symmetrie: (1,2) und $(2,1) \in R_1$ (2,3) und $(3,2) \in \{1,2,3\}$ Transitiv: $(1,2), (2,3) \in R_1$ aber $(1,3) \notin R_1 \Rightarrow R_1$ ist keine Aequivalenzrelationen
- (ii) $R_2 := \{(1,1)\} \cup \{(n,m) \in \mathbb{N}^2 | \text{ es existiert p prim mit p teilt n und p teilt m} \}$ Reflexiv: $n_1 \in \mathbb{N}$ und $n_1 > 1 \Rightarrow \exists p$ -prim: p teilt $n_1 \Rightarrow (n_1,n_1) \in R_2$ Sei $n_1 = 1$: $(1,1) \in R_2$ Symmetrie: Sei $(n_2,n_3) \in R_2 \Rightarrow \exists p_1 : p_1 | n_2 \quad p_1 | n_3 \Rightarrow (n_3,n_2) \in R_2$, da $p_1 | n_3 \quad p_1 | n_2$ Transitiv: Gegenbeispiel: $(2,6) \in R_2$, da 2 teil 2 und 2 teilt 6 $(6,3) \in R_2$, da 3 teil 6 und 3 teil 6, aber $(2,3) \notin R_2$, da $ggT(2,3) = 1 \Rightarrow R_2$ ist keine Aequivalenzrelationen
- (iii) $R_G := \{(g_1, g_2) \in G^2 | \text{ es existiert } h \in S_3 \text{ mit } h \cdot g_1 \cdot h^{-1} = g_2 \}$ **Reflexiv:** h kann einfach neutrale element sein. **Symmetrie:** $(g_1, g_2) \in R_G \Rightarrow \exists h_1 \in S_3 \text{ mit } h_1 \cdot g_1 \cdot h_1^{-1} = g_2 \Rightarrow h_1^{-1} \cdot h_1 \cdot g_1 \cdot h_1^{-1} = h_1^{-1} g_2 \Rightarrow g_1 \cdot h_1^{-1} = h_1^{-1} \cdot g_2 \Rightarrow g_1 \cdot h_1^{-1} \Rightarrow g_1 \Rightarrow g_1 \Rightarrow g_1 \cdot h_1^{-1} \Rightarrow g_1 \Rightarrow g$

(b) ≤