Les estimées de décorrélations pour le modèle aléatoire dans le régime localisé

Trịnh Tuân Phong thèse encardrée par Frédéric Klopp

Laboratoire Analyse, Géométrie et Applications

08 mars 2012

Soutenances à mi-parcours des doctorants année 2011-2012 LAGA, Université de Paris 13

Considérons H_{ω} , un opérateur \mathbb{Z}^d -ergodique dans $l^2(\mathbb{Z}^d)$. Soit Σ son spectre presque sûr de H_{ω} .

• La densité d'états intégrée (D.E.I) i.e.,

$$N(E):=\lim_{|\Lambda| o +\infty} rac{\{ extstyle extstyle v. extstyle extstyle H_\omega(\Lambda) extstyle extstyle$$

οù $H_{\omega}(\Lambda)$ est l'opérateur H_{ω} restreint à un cube Λ sous des cond. périodiques.

• De plus, on suppose que la fonction N(E) possède une dérivée distributionelle $\nu(E)$ appellé la densité d'états de H_{ω} .

Considérons H_{ω} , un opérateur \mathbb{Z}^d -ergodique dans $l^2(\mathbb{Z}^d)$. Soit Σ son spectre presque sûr de H_{ω} .

• La densité d'états intégrée (D.E.I) i.e.,

$$\mathit{N}(\mathit{E}) := \lim_{|\Lambda| o + \infty} rac{\{ \mathrm{v.ps \ de} \ \mathit{H}_{\omega}(\Lambda) \ \mathrm{plus \ petites \ que \ E} \}}{|\Lambda|} \ \mathrm{for \ all} \ \mathit{E}$$

où $H_{\omega}(\Lambda)$ est l'opérateur H_{ω} restreint à un cube Λ sous des cond. périodiques.

• De plus, on suppose que la fonction N(E) possède une dérivée distributionelle $\nu(E)$ appellé la densité d'états de H_{ω} .

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

Oi

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_m$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $l^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d: |y-x|_1=1\\e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

ΟÙ

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_n$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $l^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d: |y-x|_1=1\\e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

οù

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_m$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $I^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d: |y-x|_1=1\\e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

οù

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_m$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $I^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d: |y-x|_1=1\\e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

οù

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_m$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $I^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d : |y-x|_1=1 \\ e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

• Modèle d'Anderson discret dans $I^2(\mathbb{Z}^d)$:

$$H_{\omega} = -\Delta + V_{\omega}$$

οù

$$-\Delta u(n) = \sum_{|m-n|_1=1} u_m$$

et

$$V_{\omega}u(n)=\omega_nu_n$$

où la suite ω_n est une suite des variables aléatoires i.i.d.

• Modèle de tight-binding dans $I^2(\mathbb{Z}^d)$:

$$(Mu)(x) = \sum_{\substack{y \in \mathbb{Z}^d: |y-x|_1=1\\ e=\{x,y\}}} \gamma(e)(u(x) - u(y))$$

3. Deux inégalités cruciaux

Soit I un intervalle compact dans \mathbb{R} .

• (W) une estimée de Wegner, i.e., pour $J \subset I$,

$$\mathbb{P}\big(\{\sigma(H_{\omega}(\Lambda))\cap J\neq\emptyset\}\big)\leqslant C|J||\Lambda$$

où $\sigma(H)$ est le spectre de l'opérateur H.

• (M) une estimée de Minami i.e., pour $J \subset I$,

$$\mathbb{E}\big[tr(1_J(H_{\omega}(\Lambda)))\cdot (tr(1_I(H_{\omega}(\Lambda))-1)))\big]\leqslant C|J||I||\Lambda|^2$$

Conséquence: $\mathbb{P}(\#\{\sigma(H_{\omega}(\Lambda))\cap J\} \geqslant 2) \leqslant C(|J||\Lambda|)^2$.

3. Deux inégalités cruciaux

Soit I un intervalle compact dans \mathbb{R} .

• (W) une estimée de Wegner, i.e., pour $J \subset I$,

$$\mathbb{P}(\{\sigma(H_{\omega}(\Lambda))\cap J\neq\emptyset\})\leqslant C|J||\Lambda|$$

où $\sigma(H)$ est le spectre de l'opérateur H.

• (M) une estimée de Minami i.e., pour $J \subset I$,

$$\mathbb{E}\big[tr(1_J(H_\omega(\Lambda)))\cdot (tr(1_I(H_\omega(\Lambda))-1)))\big]\leqslant C|J||I||\Lambda|^2.$$

Conséquence: $\mathbb{P}(\#\{\sigma(H_{\omega}(\Lambda))\cap J\} \geqslant 2) \leqslant C(|J||\Lambda|)^2$.

3. Deux inégalités cruciaux

Soit I un intervalle compact dans \mathbb{R} .

• (W) une estimée de Wegner, i.e., pour $J \subset I$,

$$\mathbb{P}(\{\sigma(H_{\omega}(\Lambda))\cap J\neq\emptyset\})\leqslant C|J||\Lambda|$$

où $\sigma(H)$ est le spectre de l'opérateur H.

• (M) une estimée de Minami i.e., pour $J \subset I$,

$$\mathbb{E}\big[tr(1_J(H_{\omega}(\Lambda)))\cdot (tr(1_I(H_{\omega}(\Lambda))-1)))\big]\leqslant C|J||I||\Lambda|^2.$$

Conséquence: $\mathbb{P}(\#\{\sigma(H_{\omega}(\Lambda))\cap J\}\geqslant 2)\leqslant C(|J||\Lambda|)^2$.

4.Le régime localisé

Un intervalle I est dans le régime localisé ssi le spectre de H_{ω} dans I est purement ponctuel et les fonctions propres associées sont exp. déc.

Theorem

(Loc): Il existe $\nu > 0$ tel que pour tout p > 0, il existe q > 0 et $L_0 > 0$ tels que, pour $L \ge L_0$, avec une prob. supérieure à $1 - L^{-p}$, si

- $\varphi_{n,\omega}$ est un vecteur propre normalisé de $H_{\omega}(\Lambda_L)$ associé à $E_{n,\omega} \in I_{\varepsilon}$
- ② $x_{n,\omega} \in \Lambda_L$ est un maximum de $x \mapsto |\varphi_{n,\omega}(x)|$ dans Λ_L ,

Alors, pour $x \in \Lambda_L$, on a

$$|\varphi_{n,\omega}(x)| \leqslant L^q e^{-\nu|x-x_{n,\omega}|}.$$

The point $x_{n,\omega}$ est appelé un centre de localisation de $\varphi_{n,\omega}$ ou $E_{n,\omega}$.

4.Le régime localisé

Un intervalle I est dans le régime localisé ssi le spectre de H_{ω} dans I est purement ponctuel et les fonctions propres associées sont exp. déc.

Theorem

(Loc): Il existe $\nu > 0$ tel que pour tout p > 0, il existe q > 0 et $L_0 > 0$ tels que, pour $L \ge L_0$, avec une prob. supérieure à $1 - L^{-p}$, si

- **1** $\varphi_{n,\omega}$ est un vecteur propre normalisé de $H_{\omega}(\Lambda_L)$ associé à $E_{n,\omega} \in I$,
- ② $x_{n,\omega} \in \Lambda_L$ est un maximum de $x \mapsto |\varphi_{n,\omega}(x)|$ dans Λ_L ,

Alors, pour $x \in \Lambda_L$, on a

$$|\varphi_{n,\omega}(x)| \leqslant L^q e^{-\nu|x-x_{n,\omega}|}.$$

The point $x_{n,\omega}$ est appelé un centre de localisation de $\varphi_{n,\omega}$ ou $E_{n,\omega}$.

Soit $\Lambda = [-L, L]^d$ un cube dans \mathbb{Z}^d , et E une énergie dans I. Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_N(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.

Niveaux renormalisées en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi).$$

Soit $\Lambda = [-L, L]^d$ un cube dans \mathbb{Z}^d , et E une énergie dans I. Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_N(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.

• Niveaux renormalisées en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

• Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi).$$

Theorem

(Molchanov, Minami, Combes-Germinet-Klein, Germinet-Klopp) Supposons (W), (M), (Loc). Soit E dans le régime localisé I t.q. $\nu(E) > 0$.

Quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda)$ converge faiblement vers un processus de Poisson sur \mathbb{R}^d de densité de la mesure de Lebesgue.

Soit $\Lambda = [-L, L]^d$ un cube dans \mathbb{Z}^d , et E une énergie dans I. Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_N(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.

• Niveaux renormalisées en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

• Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi).$$

Theorem

(Molchanov, Minami, Combes-Germinet-Klein, Germinet-Klopp) Supposons (W), (M), (Loc). Soit E dans le régime localisé I $t.q. \nu(E) > 0$.

Quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda)$ converge faiblement vers un processus de Poisson sur \mathbb{R}^4 de densité de la mesure de Lebesgue.

Soit $\Lambda = [-L, L]^d$ un cube dans \mathbb{Z}^d , et E une énergie dans I. Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_N(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.

• Niveaux renormalisées en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

• Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi).$$

Theorem

(Molchanov, Minami, Combes-Germinet-Klein, Germinet-Klopp) Supposons (W), (M), (Loc). Soit E dans le régime localisé I $t.q. \nu(E) > 0$.

Quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda)$ converge faiblement vers un processus de Poisson sur \mathbb{R}^d de densité de la mesure de Lebesgue.

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, deux processus dessus convergent faiblement à deux processus de Poisson indépendantes?
- Oui pour le modèle d'Anderson discret (F.Klopp, Comm. Math. Phys. (2011)).
- L'estimée de décorrélation:

Theorem

Pour $\alpha \in (0,1)$ et $\{E,E'\} \in I$ t.q. $E \neq E',$ quand $I \approx L^{\alpha},$ on a

$$\mathbb{P}\left(\left. \begin{cases} \sigma(H_{\omega}(\Lambda_{I})) \cap (E + L^{-d}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{I})) \cap (E' + L^{-d}(-1,1)) \neq \emptyset \end{cases} \right) \leqslant o\left((I/L)^{d}\right)$$

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, deux processus dessus convergent faiblement à deux processus de Poisson indépendantes?
- Oui pour le modèle d'Anderson discret (F.Klopp, Comm. Math. Phys. (2011)).
- L'estimée de décorrélation:

Theorem

Pour
$$\alpha \in (0,1)$$
 et $\{E,E'\} \in I$ t.q. $E \neq E'$, quand $I \approx L^{\alpha}$, on a

$$\mathbb{P}\left(\left. \begin{cases} \sigma(H_{\omega}(\Lambda_{I})) \cap (E + L^{-d}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{I})) \cap (E' + L^{-d}(-1,1)) \neq \emptyset \end{cases} \right) \leqslant o\left((I/L)^{d}\right)$$

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, deux processus dessus convergent faiblement à deux processus de Poisson indépendantes?
- Oui pour le modèle d'Anderson discret (F.Klopp, Comm. Math. Phys. (2011)).
- L'estimée de décorrélation:

Theorem

Pour
$$\alpha \in (0,1)$$
 et $\{E,E'\} \in I$ t.q. $E \neq E'$, quand $I \approx L^{\alpha}$, on a

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, deux processus dessus convergent faiblement à deux processus de Poisson indépendantes?
- Oui pour le modèle d'Anderson discret (F.Klopp, Comm. Math. Phys. (2011)).
- L'estimée de décorrélation:

Theorem

Pour $\alpha \in (0,1)$ et $\{E,E'\} \in I$ t.q. $E \neq E',$ quand $I \approx L^{\alpha},$ on a

$$\mathbb{P}\Big(\left.\begin{cases}\sigma(H_{\omega}(\Lambda_{I}))\cap(E+L^{-d}(-1,1))\neq\emptyset\\\sigma(H_{\omega}(\Lambda_{I}))\cap(E'+L^{-d}(-1,1))\neq\emptyset\end{cases}\Big)\leqslant o\big((I/L)^{d}\big).$$

Les résultats dans le cas 1D

Considerons le modèle de tight-binding en dimension 1.

Theorem

Soient $E \neq E'$, $t.q. \ \nu(E) > 0$, $\nu(E') > 0$. Quand $|\Lambda| \to +\infty$, deux processus de points $\Sigma(E,\omega,\Lambda)$, et $\Sigma(E',\omega,\Lambda)$ convergent faiblement vers deux processus de Poisson indépendants i.e., pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+,k_-\} \in \mathbb{N}^2$, on a

$$\mathbb{P}\left\{ \begin{array}{ll} \#\{j; \xi_{j}(E, \omega, \Lambda) \in U_{+}\} & = k_{+} \\ \#\{j; \xi_{j}(E', \omega, \Lambda) \in U_{-}\} & = k_{-} \end{array} \right\} \xrightarrow[\Lambda \to \mathbb{Z}^{d}]{} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!} e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem

Soit $E_0 \in I$ tel que la densité d'états ν est positive et cont. au vois. de E_0 . Considérons deux suites des énergies, comme $(E_{\Lambda})_{\Lambda}, (E'_{\Lambda})_{\Lambda}$ telles que

Alors, les processus de points $\Sigma(\xi, E_{\Lambda}, \omega, \Lambda)$ et $\Sigma(\xi, E'_{\Lambda}, \omega, \Lambda)$ convergent faiblement vers deux processus de Poisson indépendants.

Les résultats dans le cas 1D

Considerons le modèle de tight-binding en dimension 1.

Theorem

Soient $E \neq E'$, $t.q. \ \nu(E) > 0$, $\nu(E') > 0$. Quand $|\Lambda| \to +\infty$, deux processus de points $\Sigma(E,\omega,\Lambda)$, et $\Sigma(E',\omega,\Lambda)$ convergent faiblement vers deux processus de Poisson indépendants i.e., pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+,k_-\} \in \mathbb{N}^2$, on a

$$\mathbb{P} \left\{ \begin{array}{ll} \# \{j; \xi_j(E, \omega, \Lambda) \in U_+\} & = k_+ \\ \# \{j; \xi_j(E', \omega, \Lambda) \in U_-\} & = k_- \end{array} \right\} \xrightarrow[\Lambda \to \mathbb{Z}^d]{} e^{-|U_+|} \frac{|U_+|^{k_+}}{k_+!} e^{-|U_-|} \frac{|U_-|^{k_-}}{k_-!}.$$

Theorem

Soit $E_0 \in I$ tel que la densité d'états ν est positive et cont. au vois. de E_0 . Considérons deux suites des énergies, comme $(E_\Lambda)_\Lambda$, $(E'_\Lambda)_\Lambda$ telles que

Alors, les processus de points $\Sigma(\xi, E_{\Lambda}, \omega, \Lambda)$ et $\Sigma(\xi, E'_{\Lambda}, \omega, \Lambda)$ convergent faiblement vers deux processus de Poisson indépendants.

Continues

- Le cas multi-dimensionel pour le modèle de tight-binding.
- L'estimée de décorrélation associée à trois ou plus énergies distinctes.

Références

- [1] Michael Aizenman, Jeffrey H.Schenker, Roland M. Friedrich, and Dirk Hundertmark. Finite-volume fractional-moment criteria for Anderson localization, Comm. Math. Phys., 224(1):219-253, 2001. Dedicated to Joel L. Lebowitz.
- [2] Dong Miao, Eigenvalue statistics for lattice Hamiltonian of off-diagonal disoder, J. Stat. Phys (2011), 143: 509–522 DOI 10.1007/s10955-011-0190-2.
- [3] Frédéric Klopp, Decorrelation estimates for the eigenvalues of the discrete Anderson model in the localized regime, Comm. Math. Phys. Vol. 303, pp. 233-260 (2011).
- [4] Trinh Tuan Phong, The decorrelation estimates for a 1D tight-binding model in the localized regime (in preparation).