Multivariate Expectation Applications

YOUR NAME

24 June, 2020

Exercises

1. Let X and Y be continuous random variables with joint pmf:

$$f_{X,Y}(x,y) = x + y$$

where $0 \le x \le 1$ and $0 \le y \le 1$.

- a) Find E(X) and E(Y).
- b) Find Var(X) and Var(Y).
- c) Find Cov(X, Y) and ρ . Are X and Y independent?
- d) Find Var(3X + 2Y).

2. Let X and Y be continuous random variables with joint pmf:

$$f_{X,Y}(x,y) = 1$$

where $0 \le x \le 1$ and $0 \le y \le 2x$.

- a) Find E(X) and E(Y).
- b) Find Var(X) and Var(Y).
- c) Find Cov(X, Y) and ρ . Are X and Y independent?
- d) Find $Var\left(\frac{X}{2} + 2Y\right)$.
- 3. Suppose X and Y are independent random variables. Show that E(XY) = E(X)E(Y).
- 4. You are playing a game with a friend. Each of you roll a fair sided die and record the result.
- a) Write the joint probability mass function.
- b) Find the expected value of the product of your score and your friends score.
- c) Verify the previous part using simulation.

- d) Using simulation, find the expected value of the maximum number on the two roles. In the next lesson, we will show how to find this using a transformation method.
- 5. A miner is trapped in a mine containing three doors. The first door leads to a tunnel that takes him to safety after two hours of travel. The second door leads to a tunnel that returns him to the mine after three hours of travel. The third door leads to a tunnel that returns him to his mine after five hours. Assuming that the miner is at all times equally likely to choose any one of the doors, yes a bad assumption but it makes for a nice problem, what is the expect length of time until the miner reaches safety?

6. ADVANCED: Let $X_1, X_2, ..., X_n$ be independent, identically distributed random variables. (This is often abbreviated as "iid"). Each X_i has mean μ and variance σ^2 (i.e., for all i, $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$).

Let
$$S = X_1 + X_2 + ... + X_n = \sum_{i=1}^n X_i$$
. And let $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$.

Find E(S), Var(S), $E(\bar{X})$ and $Var(\bar{X})$.