### II.6. Application : Le dipôle électrique

On appelle dipôle électrique un système de deux charges électriques +q et -q, placées respectivement aux  $M_+$  et  $M_-$  et séparées par une distance  $d=M_-M_+$  très petite par rapport à la distance d'observation r (d << r); exemple 0.1 mm observé à 1m.

Le dipôle électrique est entièrement déterminé par la donnée de son moment dipolaire  $\vec{p}$  définit par :





où:

• Direction : la droite joignant les deux charges.

• Sens : dirigé de la charge  $q_{-}$  vers la charge  $q_{+}$ .

• Module:  $\|\vec{p}\| = q \|\overrightarrow{\mathbf{M}_{\cdot}\mathbf{M}_{+}}\|$ .

#### Remarque:

Un dipôle électrique peut être rigide ( $\vec{p}$  constant) ou non rigide ( $\vec{p}$  variable).

#### Exemple 1:

Un atome placé dans un champ électrique extérieur  $\vec{E}$  subit une déformation : le barycentre des charges positives (noyau) et le barycentre des charges négatives (nuage électronique) ne coïncident pas. Ainsi, on obtient un dipôle électrique induit non rigide dont la valeur dépend de  $\vec{E}$ .

#### Exemple 2:

Certaines molécules (H<sub>2</sub>O, HCl, ...) présentent un moment dipolaire permanent et rigide à température constante.

# Potentiel électrique et champ électrique créés par un dipôle électrique à grande distance

Le potentiel électrique  $V_{\scriptscriptstyle M}$  créé au point M par le dipôle électrique  $\vec{p}$  est donné par :

$$V_{M} = V_{M}(-q) + V_{M}(+q) = \frac{-Kq}{r_{1}} + \frac{Kq}{r_{2}} = Kq\left(\frac{r_{1} - r_{2}}{r_{1}r_{2}}\right).$$



# **Approximations:**

$$d \ll r \implies \begin{cases} r_1 r_2 \approx r^2 , \\ r_1 - r_2 \approx d \cos \theta \left( d = \left\| \overrightarrow{M_- M_+} \right\| \right) . \end{cases}$$

Ainsi, on obtient:

$$V_{M} = \frac{K p \cos \theta}{r^{2}} = \frac{K \vec{p} \cdot \vec{r}}{r^{3}}$$

Le champ électrique  $\vec{E}_{\scriptscriptstyle M}$  créé au point  ${\it M}$  par le dipôle électrique  $\vec{p}$  est donné par :

$$\vec{E}_{\scriptscriptstyle M} = -\vec{\nabla} V_{\scriptscriptstyle M} = -\frac{\partial V_{\scriptscriptstyle M}}{\partial r} \vec{u}_{\scriptscriptstyle r} - \frac{1}{r} \frac{\partial V_{\scriptscriptstyle M}}{\partial \theta} \vec{u}_{\scriptscriptstyle \theta} = E_{\scriptscriptstyle Mr} \vec{u}_{\scriptscriptstyle r} + E_{\scriptscriptstyle M\theta} \vec{u}_{\scriptscriptstyle \theta} \,.$$

$$\Rightarrow \begin{cases} E_{Mr} = -\frac{\partial V_M}{\partial r} = \frac{2Kp\cos\theta}{r^3} \\ E_{M\theta} = -\frac{1}{r}\frac{\partial V_M}{\partial \theta} = \frac{Kp\sin\theta}{r^3} \end{cases}.$$

### Remarque:

Le dipôle électrique ne peut pas créer un potentiel électrique et un champ électrique dans la position où il se trouve (ne sont pas définis).

# Energie potentielle d'un dipôle électrique en présence d'un champ électrique extérieur uniforme $\vec{E}_0$

L'énergie potentielle  $E_p$  acquise par un dipôle électrique  $\vec{p}$  en présence d'un champ électrique extérieur uniforme  $\vec{E}_{ev}$  est donnée par :



$$\begin{split} dE_{p} &= -\vec{F}_{+}.d\overrightarrow{OM}_{+} - \vec{F}_{-}.d\overrightarrow{OM}_{-} = -\Big( + q\vec{E}_{ext} \Big).d\overrightarrow{OM}_{+} - \Big( - q\vec{E}_{ext} \Big).dOM_{-} \\ &= - q\vec{E}_{ext}.d\Big( \overrightarrow{OM}_{+} - \overrightarrow{OM}_{-} \Big) = - q\vec{E}_{ext}.d\overrightarrow{M}_{-}\overrightarrow{M}_{+} = - d\Big( \vec{E}_{ext}.q\overrightarrow{M}_{-}\overrightarrow{M}_{+} \Big) \\ &= - d\Big( \vec{p}.\vec{E}_{ext} \Big) \end{split}$$

Ainsi, on obtient:

$$E_p = -\vec{p}.\vec{E}_{ext} = -\|\vec{p}\| \|\vec{E}_{ext}\| \cos\left(\vec{p}, \vec{E}_{ext}\right).$$

• La position d'équilibre stable est définie par  $E_p$  minimum

$$\Rightarrow \cos(\vec{p}, \vec{E}_{ext}) = 1 \Rightarrow (\vec{p}, \vec{E}_{ext}) = 0.$$

• La position d'équilibre instable est définie par  $E_p$  maximum

$$\Rightarrow \cos(\vec{p}, \vec{E}_{ext}) = -1 \Rightarrow (\vec{p}, \vec{E}_{ext}) = \pi . \qquad \vec{p} \qquad \vec{E}_{ext}$$

Moment du couple de forces exercé sur un dipôle électrique en présence d'un champ électrique extérieur uniforme  $\vec{E}_0$ 

 $\vec{\tau} = \overrightarrow{OM}_+ \wedge \vec{F}_+ + \overrightarrow{OM}_- \wedge \vec{F}_- = q \overrightarrow{OM}_+ \wedge \vec{E}_{ext} - q \overrightarrow{OM}_- \wedge \vec{E}_{ext} = q \left( \overrightarrow{OM}_+ - \overrightarrow{OM}_- \right) \wedge \vec{E}_{ext} = q \overrightarrow{M}_- \overrightarrow{M}_+ \wedge \vec{E}_{ext}$  Ainsi, on obtient :







# Cas particuliers:

