Question 1

1.1 The speed of light is exactly 299792456 m/s, which rounded to 1% give us $c \approx 3.00 \times 10^8$. We also know $\hbar \approx 1.05 \times 10^{-34} \,\mathrm{m^2 kg/s} = 6.58 \times 10^{-16} \,\mathrm{eV} \cdot \mathrm{s}$ up to 1% error.

1.2

(1.2.1) The given mass is only in units of energy, and we want a dimension of mass. So, we recall that energy is $\frac{[M][L]^2}{[T]^2}$, where [M], [L], [T] are dimensions of mass, length and time respectively. Then, we see that we only need to get rid of the length/time dimensions twice, which is just our dimensions for c, so

$$938\,\mathrm{MeV} \rightarrow \frac{938\,\mathrm{MeV}}{c^2}$$

will be the true mass.

(1.2.2) We recall that a unit of energy is the eV, so to get a length from this quantity that has units of energy, we recognize \hbar has units of energy-time and we can get length from the speed of light. That is,

$$\lambda = \frac{2\pi}{E_{\gamma}} \to \frac{2\pi}{E_{\gamma}} \cdot \frac{\hbar}{c}$$

will be the true wavelength.

(1.2.3) We recall that the dimensions of the inverse square-root gravitational constant are $\frac{[M]^{1/2}[T]}{[L]^{3/2}}$, and we want dimensions of [M]. So, we can see that the corresponding factor we need to multiply by to get the units back is $\sqrt{\hbar c}$, since this will have dimensions of $\frac{[M]^{1/2}[L]^{3/2}}{[T]}$ and thus

$$m_{Pl} = \frac{1}{\sqrt{G}} \to \sqrt{\frac{\hbar c}{G}}$$

as required.

Question 2

2.1 We first draw what our spherical coordinates will look like relative to the standard euclidean $\{x, y, z\}$ coordinates:

which we will convert into the (r, θ, φ) spherical coordinates. Notice we get

$$x = r \sin(\varphi) \cos(\theta)$$
 $y = r \sin(\varphi) \sin(\theta)$ $z = r \cos(\varphi)$

for our conversion. Then, we recall that the metric is $ds^2 = dx^2 + dy^2 + dz^2$, so checking each component, we get

$$dx = \sin(\varphi)\cos(\theta)dr + r\cos(\varphi)\cos(\theta)d\varphi - r\sin(\varphi)\sin(\theta)d\theta$$
$$dy = \sin(\varphi)\sin(\theta)dr + r\cos(\varphi)\sin(\theta)d\varphi + r\sin(\varphi)\cos(\theta)d\theta$$
$$dz = \cos(\varphi)dr - r\sin(\varphi)d\varphi$$

and we can compute the square to get

$$\begin{split} dx^2 &= \sin^2(\varphi) \cos^2(\theta) dr^2 + r \sin(\varphi) \cos(\varphi) \cos^2(\theta) dr d\varphi - r \sin^2(\varphi) \cos(\theta) \sin(\theta) dr d\theta \\ &+ r \cos(\varphi) \sin(\varphi) \cos^2(\theta) dr d\varphi + r^2 \cos^2(\varphi) \cos^2(\theta) d\varphi^2 - r^2 \cos(\varphi) \sin(\varphi) \cos(\theta) \sin(\theta) d\varphi d\theta \\ &- r \sin^2(\varphi) \sin(\theta) \cos(\theta) dr d\theta - r^2 \sin(\varphi) \cos(\varphi) \sin(\theta) \cos(\theta) d\varphi d\theta + r^2 \sin^2(\varphi) \sin^2(\theta) d\theta^2 \\ dy^2 &= \sin^2(\varphi) \sin^2(\theta) dr^2 + r \sin(\varphi) \cos(\varphi) \sin^2(\theta) d\varphi dr + r \sin^2(\varphi) \sin(\theta) \cos(\theta) dr d\theta \\ &+ r \cos(\varphi) \sin(\varphi) \sin^2(\theta) dr d\varphi + r^2 \cos^2(\varphi) \sin^2(\theta) d\varphi^2 + r^2 \cos(\varphi) \sin(\varphi) \sin(\theta) \cos(\theta) d\varphi d\theta \\ &+ r \sin^2(\varphi) \cos(\theta) \sin(\theta) dr d\theta + r^2 \sin(\varphi) \cos(\varphi) \cos(\varphi) \cos(\theta) \sin(\theta) d\varphi d\theta + r^2 \sin^2(\varphi) \cos^2(\theta) d\theta^2 \\ dz^2 &= \cos^2(\varphi) dr^2 - 2r \sin(\varphi) \cos(\varphi) dr d\varphi + r^2 \sin^2(\varphi) d\varphi^2 \,. \end{split}$$

So, adding these together and simplifying

$$ds^{2} = dx^{2} + dy^{2} + dz^{2}$$
$$= dr^{2} + r^{2}d\varphi^{2} + r^{2}\sin^{2}(\varphi)d\theta^{2}$$

and the matrix will be

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2(\varphi) \end{bmatrix}.$$

2.2 To see this, we recall how the vectors will change under a lorentz transform

$$A^\mu \to \bar{A}^\mu = \Lambda^\mu_{\ \nu} A^\nu \quad A_\mu \to \bar{A}_\mu = g_{\mu\nu} \bar{A}^\nu = g_{\mu\nu} \Lambda^\nu_{\ \eta} A^\eta \,.$$

Then, we see that

$$A^{\mu}B_{\mu} \rightarrow \bar{A}^{\mu}\bar{B}_{\mu} = \Lambda^{\mu}_{\ \nu}A^{\nu}g_{\mu\sigma}\Lambda^{\sigma}_{\ \eta}B^{\eta} = \underbrace{\Lambda^{\mu}_{\ \nu}g_{\mu\sigma}\Lambda^{\sigma}_{\ \eta}}_{g_{\nu\sigma}}A^{\nu}B^{\eta} = A^{\nu}B_{\nu}$$

and hence we have that the contraction is indeed Lorentz invariant. Moreover, we see

$$A^{\mu}B_{\mu} = A_{\nu}g^{\nu\mu}B_{\mu} = A_{\nu}B^{\nu}$$

and so the two quantities are the same, as we would expect.

Question 3

3.1 Consider the following table, as required.

	mass MeV	Composition
p	938.27	uud
Λ	1115.68	uds
π^-	139.57	$dar{u}$

3.2

3.2.1 In the Lab Frame we will see

but in the COM frame we would see

3.2.2 In the COM frame, we know that $\vec{p}_p = \vec{p}$ and $\vec{p}_{\pi^-} = -\vec{p}$, and that $\vec{p}_{\Lambda} = \vec{0}$. Using this, we see that

$$\begin{split} s_i &= \left(P_{\Lambda}\right)^{\mu} \left(P_{\Lambda}\right)_{\mu} = E_{\Lambda}^2 \\ s_f &= \left(P_p + P_{\pi^-}\right)^{\mu} \left(P_p + P_{\pi^-}\right)_{\mu} = \left(E_p + E_{\pi^-}\right)^2 - (\vec{p} - \vec{p})^2 = \left(E_p + E_{\pi^-}\right)^2 \;. \end{split}$$

Moreover, we know that

$$E_p^2 = m_p^2 + p^2 \quad \& \quad E_{\pi^-}^2 = m_{\pi^-}^2 + p^2$$

which gives

$$E_p^2 - E_{\pi^-}^2 = m_p^2 - m_{\pi^-}^2$$

$$(E_p - E_{\pi^-})(E_p + E_{\pi^-}) = m_p^2 - m_{\pi^-}^2$$

$$(E_p - m_{\Lambda} + E_p)m_{\lambda} = m_p^2 - m_{\pi^-}^2$$

$$E_p = \frac{m_p^2 - m_{\pi^-}^2 + m_{\Lambda}^2}{2m_{\Lambda}}$$

and in a similar manner we get

$$E_{\pi^-} = \frac{-m_p^2 + m_{\pi^-}^2 + m_{\Lambda}^2}{2m_{\Lambda}} \, .$$

The expressions for our momentum come from the relationship used before, that is

$$p_p = \sqrt{E_p^2 - m_p^2}$$
 & $p_{\pi^-} = \sqrt{E_{\pi^-}^2 - m_{\pi^-}^2}$.

Pluggin in some numbers, we get

$$E_p = 943.645\,{\rm MeV} \quad E_{\pi^-} = 172.035\,{\rm MeV} \quad p_p = 100.58\,{\rm MeV} = p_{\pi^-} \,.$$

Question 4

4.1 To show that $\mathbf{O}(n)$ is a group under multiplication, we need only show the definition of a group is satisfied. In particular, if $M, N \in \mathbf{O}(n)$, notice

$$MN(MN)^t = MN(N^tM^t) = MNN^tM^t = MM^t = I \implies MN \in \mathbf{O}(n)$$
,

which is closure (Notice we don't have to show $(MN)^tMN = I$ since we showed the inverse of MN is it's transpose and inverses are unique from linear algebra). Next, since $II^t = II = I$, we have an identity $I \in \mathbf{O}(n)$. Matrix multiplication is associative, and since $\mathbf{O}(n) \subset M_{n \times n}(\mathbb{R})$, we have associativity for free. Finally, we show inverses are also orthogonal. We know they exist, since

$$\det(MM^t) = \det(I) \implies (\det(M))^2 = 1 \implies \det(M) = \pm 1$$
.

But, since M is orthogonal, by definition $M^{-1} = M^t$, so

$$M^{-1}(M^{-1})^t = M^t(M^t)^t = M^tM = I \implies M^{-1} \in \mathbf{O}(n)$$
.

So, we can conclude that O(n) is indeed a group.

4.2 To show that SO(n) is a group, we need only show that it is a subgroup, so our criterion aren't as restrictive. In particular, we get associativity for free, since $SO(n) \subset O(n)$, and since det(I) = 1, $I \in SO(n)$, and so we have the identity as well. All we need is closure and inverses. Well, notice if $M, N \in SO(n)$, then

$$\det(MN) = \underbrace{\det(M)}_{1} \underbrace{\det(N)}_{1} = 1 \implies MN \in \mathbf{SO}(n).$$

For inverses, we note

$$\det(M^{-1}) = \det(M^t) = \det(M) = 1 \implies M^{-1} \in \mathbf{SO}(n).$$

Thus, we have shown SO(n) is indeed a subgroup of O(n).