

<script src="./themes/cycle.js"></script>

Tutorial 9: Graph Algorithms II

CAB301 - Algorithms and Complexity

School of Computer Science, Faculty of Science

Agenda

- 1. Lecture Recap: Graph Algorithms II
 - Shortest Path Problem
 - Dijkstra's Algorithm
 - Floyd's Algorithm
- 2. Tutorial Questions + Q&A

The Shortest Path Problem

What's the shortest path from A to B?

It's actually $A \rightarrow E \rightarrow C \rightarrow B$, with a total weight of 6 units, instead of $A \rightarrow B$ with a total weight of 8 units.

EQSA Provider ID PRV12079 Australian University | CRICOS No. 00213J

Dijkstra's Algorithm

<small>

Find the shortest path from a **start node to all other nodes** in a weighted graph, by 1) visit nearest node, and 2) update the distances of unvisited nodes, via the selected node.

</small> <div style="display: flex"> <div style="flex: 0.5">

QUT

Floyd's Algorithm

<small>

Find the shortest path between **all pairs of nodes** in a weighted graph, by 1) consider all nodes as **intermediate nodes**, and 2) update the shortest path if a shorter path is found.

</small> <div style="display: flex"> <div style="flex: 0.6">

QUT