

Restaurant Recommendation System

Prepared For

Smart-Internz Applied DataScience Guidedproject

By

Shahrukh Dilawar Sanadi D.Y.Patil Agricultureand Technical University, Talsande

On 25 July 2025

Abstract

This project develops a personalized restaurant recommendation system based on user preferences, location, and dining history. It analyzes factors such as cuisine, price, and ratings to suggest suitable diningoptions. Machinelearning techniques like collaborative and content-based filtering are used for accurate suggestions. The system enhances the dining experience by offering relevant and location- aware recommendations

Final Project Report

Contents

1. Introduction ProjectOverviews

Objectives

2. **ProjectInitializationandPlanning Phase** DefineProblem Statement

ProjectProposal(Proposed Solution) InitialProjectPlanning

3. DataCollectionandPreprocessing Phase

DataCollectionPlanand RawDataSourcesIdentified DataQuality Report Data Preprocessing

4. ModelDevelopmentPhase ModelSelectionReport

Initial Model Training Code, Model Validation and Evaluation Report

5. ModelOptimizationandTuningPhase

Tuning Documentation
FinalModelSelectionJustification

6. Results

Output Screenshots

7. Advantages & Disadvantages

Advantages Disadvantages

- 8. Conclusion
- 9. FutureScope
- 10. **Appendix** SourceCode

GitHub&ProjectVideoDemo Link

1. Introduction

1.1Projectoverviews

The **Restaurant Recommendation System** is a smart, data-driven solution designed to help usersefficiently discoverrestaurants that align with their unique preferences and situation alcontexts. As urbanization and mobile technologies continue to reshape consumer behavior, users are often overwhelmed by the sheer volume of available dining choices across platforms such as Google, Yelp, and Zomato. This leads to **decision fatigue** and suboptimal dining experiences. To solve this, the proposed system leverages a **hybrid recommendation model** combining collaborative filtering, content-based filtering, and geolocation-aware services. The **collaborative filtering component** analyzes historical user behavior, including pastrestaurant visits, ratings, and interaction patterns, to identify users with similar tastes and recommend restaurants favored by like-minded individuals. Meanwhile, the **content-based filtering module** evaluates restaurant attributes—such ascuisine type, price range, ambiance, and dietary offerings—to match them with explicit user preferences.

To enhance practicality, **geolocation data** is integrated using GPS APIs or IP-based location tracking. This allows the system to dynamically adaptits recommendations based on the user's current position or aspecified location, ensuring that results are both **relevant and accessible**. For example, a user seeking budget friendly vegan food in a new city would receive highly localized and personalized recommendations.

Furthermore, the system is designed with **adaptive learning capabilities**. Using techniques like reinforcementlearningorpreferencefeedbackloops,therecommendationengineimprovesovertimeby understanding user behavior patterns, modifying weightage of features, and incorporating real-time feedback such as likes, bookmarks, or direct reviews.

1.2 Objectives

- 1.**To design and implement a recommendation engine** that effectively filters and ranks restaurantsbasedonindividualuserpreferences,includingfoodtype,cost,ambiance,anddietary needs.
- 2. **Toapplymachinelearningmodels**, such as collaborative filtering (user-based and item-based) and content-based filtering, to identify patterns in user behavior and restaurant attributes.
- 3. **Toincorporatelocation-awarefeatures** using GPS or user-inputted location data, ensuring that recommended restaurants are conveniently accessible to the user.
- 4. **Togatherandanalyzerestaurantreviewsandratings** from publics ources (e.g., Yelp, Google Reviews, or internal datasets) to improve the trustworthiness and relevance of suggestions.
- 5. **Tocreateauser-friendlyinterface**thatallowsuserstoinputpreferences, viewrecommended restaurants, and interact with the system seamlessly.
- 6. **Todevelopafeedbackmechanism** that collects users at is faction datapost-visit to refine future recommendations and enhance personalization over time.
- 7. **Toensurescalabilityandadaptability**ofthesystemforuseindifferentgeographicregionsor for integration into existing food delivery or travel applications.

2. Project Initialization and Planning Phase

2.1 Define Problem Statement 2ProjectInitializationandPlanningPhase

ProblemStatements(RestaurantRecommendationsystem):

PS	I am	I'mtryingto	But	Because	Whichmakesme
No.	(Customer)				feel

PS-1		8		Idon'tknowthe area well I lack local knowledge or reviews	
PS-2	Avegetarian diner	Get recommendations for veg-only restaurants	Most apps showmixed cuisineplaces	I want strict dietaryoptions	Frustratedand unsupported
PS-3	Arestaurant owner	Attractmore customers through recommendation platforms	Myrestaurantis not being recommended often	The system doesn't promote new or small businesses	Invisibleand discouraged
PS-4	A student on a tight budget	Findaffordable but tasty restaurants	Expensive optionsare shownfirst	Filters don't prioritizepriceor value	Overwhelmedand discouraged
PS-5	Adeliveryapp user	Getsuggestions based on past orders	It doesn't adapt to my taste	Thesystemlacks learning	Frustratedby repetition
	youngkids	Findkid-friendly and hygienic restaurants	No way to filter forchild-friendly	Lackofsafetyand family-focused featuresamenities	Anxiousabout experience

PS-		Increase	Mybusinessis		
7	A small restaurant owner	customer footfallvia platforms	buriedunder chainlistings	Ranking algorithms favorlarge brands	Discouragedand invisibleguide
PS-8	Anew-in-town resident	Explore culturally diversefood options	Unaware of hiddengemsin my area	No cultural/ethnic tagsoruserreviews	Disconnectedand bored of same cuisine
PS-9	Afooddelivery platformanalyst	Monitorfood safety and restaurant quality	Can'tverify ingredientsafety from menus	Platforms lack A food item scanner or trackers	IConcernedabout s consumer trust
PS-10	Adatascientist	Analyzefood trends from reviews	Datasets are messy,biased,or unavailable	Lack of structure sentimen an metadata	lBlockedinmodel lbuilding and research
PS-11	A foodie traveler	Findtop- rated local restaurants in new cities	Recommendations don'tmatchmy tasteor location	Generic,irrelevant suggestions	Frustrated and unsurewhereto eat
PS-12	Arestaurant	Improvemy visibilityon food apps	My reviews are outdatedorlow-rated	I can't easily respondorupdate info	Powerlessand misrepresented
PS-13	A health- conscious customer	_	Menusandcalorie info are missing	I can't make informeddecisions	Disconnected frommyhealth goals

	A			T1	Disappointed and
PS-14	healthconscious individual	Track the health benefits of different mushrooms	I can't identifywhat'sin the store or dish	There'snoeasyapp forinstant scanning	disconnected frommyhealth goals

Project Proposal (Proposed Solution)

ProjectProposal(Proposed Solution)

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, keyfeatures, and resource requirements, including hardware, software, and personnel

Project Overview			
Objective	Todevelopasystemthatprovidespersonalizedandefficientrestaurant recommendationsby analyzing user preferences, dietary requirements, location, and budget.		
Scope	The project aims to serve users seeking restaurant suggestions that match their individual lifestyle choices and dining preferences. It will operate acrossvariousregions, considering real-time data and qualitative reviews.		
Problem Statement			
Description	Finding restaurants tailored to specific needs is often time-consuming and inefficient. Users frequently revisit the same places, missing diverse options that better match their preferences.		
Impact	Solvingthisproblemimprovesusersatisfaction, encourages exploration of new dining options, and reduces time spent on decision-making.		
Proposed Solution			
Approach	The solution employs innovative recommendation algorithms that factor in both user input and external data like ambiance, ratings, and reviews. It adapts dynamically to user feedback and real-time changes.		
Key Features	Personalized recommendations Real-timedata analysis Integration of user reviews Consideration of dietary and budget constraints Scalable infrastructure		

Resource Requirements

ResourceType	Description	Specification/Allocation
Hardware		
ComputingResources	8-coreCPUsandoptional GPU	2xNVIDIAV100GPUs
Memory	RAM	Minimum8GBRAM
Storage	SSD	1TBSSDforstoringuserdata and restaurant metadata
Software		
Frameworks	Python frameworks	Python, Flask
Libraries	Additionallibraries	Pandas, NumPy, Scikit-learn, TensorFlow,BeautifulSoup(for scraping), and NLTK (for review analysis)
DevelopmentEnvironment	IDE, version control	Jupyter Notebook
Data		
Data	Size:-Approx.50,000–100,000 recordsinitially;scalablebased on user growth, Format:-CSVfortabular datasets, Text/HTML for scraped reviews	Aggregatedfromcrowdsourced restaurantplatforms(e.g., Yelp, Zomato APIs), user feedback, and public review datasets

InitialProjectPlanning

Product Backlog, Sprint Schedule, and Estimation

Spri	Functional	User	UserStory/	Story	Priority	Sprint	Sprint
nt	Requirement	Story	Task	Points		StartDate	EndDate
	(Epic)	Number					(Planned)

Spri nt-1	User Preferences Input	USN-1	As a user, I can enter my foodor Hotel preferences.	2	High	01 June 2025	02 June 2025
Spri nt-1	Recommendation Engine	USN-2	As a user, I can get restaurant recommendati ons based on my preferences.	3	High	02 June 2025	02 June 2025
Spri nt-2	Review &Rating Integration	USN-3	As a user, I can view restaurant reviews and ratings fetchedfrom the dataset.	2	Medium	03 June 2025	04 June 2025
Spri nt-2	UI/UX Enhancement	USN-4	As a user, I can view results in a user-friendly interfacewith filters and sorting.	2	Medium	04 June 2025	05 June 2025

2. Data Collection and Preprocessing Phase

Data Collection Planand Raw Data Sources Identified

Source Name	Description	Location/URL	Format	Size	Access Permissions
SmartInterz Provided Dataset	Restaurant- leveldata including name, location, cuisines, rating and cost.	Data-Set zomatobangalorerestaurants	CSV	~ 93MB	Public

DataCollection Plan

Section	Description

Project Overview	Developarestaurantrecommendationsystemtoassistusersinfinding dining options based on their preferences, location, and other relevant factors. Byanalyzinguserpreferences, restaurantratings, and location data, this project aims to provide personalized recommendations that enhance the dining experience for users.
DataCollection Plan	The dataset used for this project was sourced from Kaggle and contains detailed information on over 9,000 restaurants in Bangalore, including attributeslikename,location,cuisine,ratings,andpricing. This publicly available dataset was collected to support analysis and predictive modeling related to restaurant ratings and customer preferences.
RawDataSources Identified	Therawdataforthisproject wasobtainedfromtheKaggledataset titled "ZomatoBangaloreRestaurants" by HimanshuPoddar. The dataset is publicly available at https://www.kaggle.com/datasets/himanshupoddar/zomato-bangalore-restaurants and includeskey restaurant-related attributes such as restaurant names, locations, cuisines, average costs, online delivery availability, and user ratings.

RawDataSources

2.2 Data Quality Report

DataSource	DataQualityIssue	Severity	ResolutionPlan	
Dataset (Restaurant reviewsand metadata)	Missingvaluesinfields like restaurant name, location, or ratings	Moderate	Performdataimputationusingtechniques like mean/mode for numeric values and most frequent value for categorical data. Alternatively, remove rows with critical missing fields.	
Dataset(User reviews)	Duplicateuserreview entries	Low	Remove duplicate records using drop_duplicates() in pandas or SQL DISTINCT queries. Usedate time parsing libraries (e.g., pandas.to_datet ime) to standardize all date/time fields.	
Dataset (Restaurant metadata	Inconsistent formats (e.g.,locationwrittenin different ways like "NY", "New York")	Moderate	Apply data standardization techniques, usingstringfunctionsorregexpatternsto unify the format.	
Dataset(User preferenc es)	Sparse data or insufficientuserhistory	High	Implement fallback strategies such as popularity-based or content-based recommendationswhenuserdataislacking.	

2.3 Data Preprocessing

DataPreprocessing

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detectingedges, converting colorspace, cropping, batchnormalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergenceduring neural network training, ensuring robust and efficient performance across various computer vision tasks.

Section	Description	
Data Overview	The dataset contains restaurant information from Zomato, includingname,reviews,ratings,cuisines,cost,andmore. The data is cleaned, deduplicated, and preprocessed for building a content-based recommendation system.	
Resizing	Notapplicablefortext data.	
Normalization	Ratingsarenormalizedtoa1-5scaleusingMinMaxScaler. Text is lowercased and punctuation is removed.	
Data Augmentation	Notapplicablefortextdata.	
Denoising	Textiscleanedbyremovingnewlinecharactersand punctuation.	
Edge Detection	Notapplicablefortextdata.	
ColorSpace Conversion	Notapplicablefortextdata.	
ImageCropping	Notapplicablefortextdata.	
BatchNormalization	Notapplicablefortextdata.	

DataPreprocessingCode Screenshots

LoadingData	<pre># Mounting Google Drive #from google.colab import drive #drive.mount('/content/drive') import csv # Specifying the path to the dataset file file_path = '/content/zomato.csv' # Reading the dataset into a Pandas DataFrame #df = pd.read_csv(file_path,encoding = 'ISO-8859-1', low_memory = False) df = pd.read_csv(file_path, encoding='ISO-8859-1', on_bad_lines='skip', engine='pythom') # Displaying the first few rows of the dataset to ensure it's loaded correctly df.head()</pre> Python
Resizing	Not applicable
Normalization	<pre># Computing Mean Rating restaurants = list(df['name'].unique()) df('Mean Rating'] = 0 for i in range(len(restaurants)): df('Mean Rating'][df['name'] == restaurants[i]] = df['rate'][df['name'] == restaurants[i]].mean() #Scaling the mean rating values from sklearn_preprocessing import MinMaxScaler scaler = MinMaxScaler (feature_range = (1,5)) df[['Mean Rating']] = scaler.fit_transform(df[['Mean Rating']]).round(2)</pre>
Data Augmentation	Not applicable
Denoising	<pre>## Lower Casing df["reviews_list"] = df["reviews_list"].str.lower() ## Removal of Puctuations import string PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df["reviews_list"] = df["reviews_list"].apply(lambda text: remove_punctuation (text))</pre>
Edge Detection	Not applicable
ColorSpace Conversion	Not applicable
ImageCropping	Not applicable
BatchNormalization	Not applicable

4. Model Development Phase

2.4 Model Selection Report

Model	Description		
Content-Based	Content-basedfilteringrecommendsrestaurantsbycomparinguserpreferences		
Filtering	(e.g.,cuisinetype,pricerange,dietaryrestrictions)withrestaurantattributes.It focuses		
	on similarities between items and the user's profile without relying on other users'		
	data. Thismethod iseffective for users with unique tastes butmay strugglewithlimiteduserprofiles(coldstart).		
Collaborative	Collaborative filtering leverages the preferences of similar users to make		
Filtering	recommendations. Ituses historical ratingsandreviews toidentify patterns. This		
	modeliseffectiveindiscoveringnewitemsbutcansufferfromsparsityandcold		
	startproblemsifdataislimited.		
Hybrid	This combines content-based and collaborative filtering to overcome the		
Recommendatio	limitationsofeachmethod.Byintegratingbothuserpreferencedataandbehavior		
n Model	of similar users, hybrid model simprover ecommendation accuracy, diversity, and		
	scalability. It is particularly useful in scenarios with large, sparse datasets like		
	restaurantrecommendations.		
Matrix	Matrix factorization techniques decompose the user-item interaction matrix into		
Factorization	latentfeatures,capturingunderlyingpatternsin user preferences. SingularValue		
	Decomposition(SVD)isacommonapproach.Itiscomputationallyefficientand		
	workswellforlargedatasetsbutrequiresenoughratings.		
DeepLearning	Neural networks can be used to build recommendation systems by learning		
(Neural	complex,non-linearrelationshipsbetweenusersandrestaurantsfromrichfeature sets		
Networks)	including reviews, preferences, and metadata. While powerful, they require large		
	datasets and are computationally intensive.		

ModelSelected			
Hybrid	The hybrid model was selected because it addresses the limitations of both content-		
Recommenda	basedandcollaborativefilteringapproaches.Iteffectivelyhandlesthecoldstartand		
tion Model	sparsity issues by integrating multiple data sources such as user profiles, restaurant		
	attributes, and behavioral data. This results in more personalized, diverse, and		
	accurate recommendations, making it highly suitable for a restaurant		
	recommendationsystemwithvaryinguserpreferencesanddataavailability.		

Conclusion:

2.5 Initial Model Training Code, Model Validation and Evaluation Report

InitialModelTrainingCode,ModelValidationandEvaluationReport Initial Model Training Code (5 marks):

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
df_percent.set_index('name', inplace=True)
indices = pd.Series(df_percent.index)

# Creating tf-idf matrix
tfidf = TfidfVectorizer(analyzer='word', ngram_range=(1, 2), min_df=0, sto
tfidf_matrix = tfidf.fit_transform(df_percent['reviews_list'])

cosine_similarities = linear_kernel(tfidf_matrix, tfidf_matrix)
```

ModelValidationandEvaluationReport(5marks):

Model	Summary	TrainingandValidationPerformance Metrics
Model1	Content-basedRecommendation	TrainingMetrics-None(unsupervised,no explicit training phase) Validation Metrics - None (recommendationsareinspectedmanually)

3. Model Optimization and Tuning Phase

3.1 Tunning Documentation

Hyperparameter Tuning

Model	- SimilarityMetric:Cosinesimilaritywasusedastheprimarymetricto compute similarity between restaurants based on features like cuisines, rating, and cost TopNRecommendations:Thenumberoftopsimilarrestaurants returned was tested with values like 5, 10, and 15.		
Model 1: Content-Based Filtering	rating, and cost. TopNRecommendations: Thenumber of topsimilar restaurants returned was tested with values like 5, 10, and 15. def recommend(name, cosine_similarities = cosine_similarities): """ """ """ """ """ """ """ """ """		

	- Algorithm: SVD (Singular Value Decomposition) from the Surprise		
	library.		
Model 2:	- LearningRate: Tuned valuessuchas0.005,0.01,and0.02weretested.		
Collaborative	- Regularization: Parameters such as 0.02, 0.05 were tried to avoid		
Condociative	overfitting.		
Filtering	- NumberofEpochs: Adjustedbetween20 and 100 epochs.		

FinalModelSelectionJustification

FinalModelSelection Justification:

Final Model	Reasoning
Model1:Content- Based Filtering	Selectedduetoitssimplicityandgoodperformancewithoutrequiring detailed user history. It gave interpretable and relevant results using restaurant features like cuisines, ratings, and cost.

4. Results

4.1 Output Screenshots

Home Page:

Restaurant Recommendation System

ome

Recommend

Build Recommendation System with ease!!

In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even where to go. Recommender systems automate some of these strategies with the goal of providing affordable food items. The aim is to create a content-based recommender system in which when we write a restaurant name, the recommender system will look at the reviews of other restaurants, and the system will look at the reviews of other restaurants, and the system will recommend us other restaurants with similar reviews and sort them from the highest-rated.

Test the System

Recommend

InputPage:

Restaurant Name

Jalsa

Click to see the recommendation

Example:-

Restaurant Recommendation System

lome

Recommend

Here are the top recommended restaurants

Name	Cuisines	Mean Rating (out of 5)	Cost (in thousands)
The Black Pearl	north indian european mediterranean bbq	4.85	1.5
Barbeque Nation	north indian european mediterranean bbq kebab	4.7	1.6
Hunger Camp	north indian south indian chinese seafood	4.56	1.3
Hakuna Matata	north indian asian seafood chinese	4.41	1.2
Jalsa Gold	north indian mughlai italian	4.41	1.3
Deja Vu Resto Bar	north indian italian	4.26	900.0
Tipsy Bull - The Bar Exchange	north indian chinese continental mexican	4.26	1.4
Dhaba Estd 1986 Delhi	north indian	4.26	1.1
Float	north indian japanese	4.26	1.5
nu.tree	north indian healthy food beverages	4.26	400.0

5. Advantages & Disadvantages

Advantages:

- **PersonalizedUserExperience**: Tailorsdiningoptionsbasedonuserpreferences, dietaryneeds, and previous behaviour.
- **Time-saving**:Reduces the effort needed to sear chandchoose a restaurant.
- Improved Discoverability: Helps smaller or new restaurants gain visibility through recommendations.
- **Data-DrivenDecisions**:Usesuserratings,reviews,andlocationdatatomakeinformed suggestions.
- EnhancedCustomerSatisfaction:Usersaremorelikelytoenjoytheirmealswhen recommendations align with their preferences

Disadvantages:

- **PrivacyConcerns**:Collectingandanalyzinguserdata(location,preferences)canraiseprivacy issues.
- **BiasinRecommendations**: Algorithms might favor sponsored listings or high-traffic restaurants, reducing diversity.
- **DependenceonUserData**:Inaccurateorlimiteddatacanleadtopoorrecommendations.
- Over-Personalization: Usersmight beconfined to similar choices, missing outon new or diverse dining experiences.
- **ScalabilityIssues**:Maintainingsystemaccuracyandperformancecanbecomechallenging as the user base grows.

6. Conclusion

A restaurant recommendation system is a powerful tool for enhancing the dining experience by delivering tailored suggestions based on user behavior, preferences, and location. While it offers significant benefits such as convenience, personalization, and efficient decision-making, it also presentschallengesincludingdataprivacy, systembias, and theriskofuser datadependency. Future advancements in AI, real-time analytics, and user interface technologies promise to make such systems more intelligent, inclusive, and immersive. With careful implementation and ethical considerations, this system can transform how users explore and enjoy culinary option

7. Future Scope

- IntegrationwithAR/VR:Inthefuture, users could take virtual tours of restaurants or view their ambiance in AR before booking.
- **VoiceAssistantCompatibility**:IntegrationwithSiri,Alexa,orGoogleAssistanttoprovide hands-free restaurant suggestions.
- EnhancedPersonalization:Usedeeplearningandbehavioralanalyticstorefine suggestions based on dietary restrictions, allergies, and eating habits.
- **Real-timeDataUtilization**:Incorporatingreal-timefactorslikewaittimes,specialoffers, and crowd density for more dynamic recommendations.
- **MultilingualSupport**: Expanding the system to support various languages to catertoa global audience.
- **SocialMediaIntegration**:Useofsocialmediatrendsandcheck-instoimprove recommendation relevance.
- **SustainabilityPreferences**:Factoringineco-consciousdiningchoices(e.g.,locally sourced, plant-based, or low-waste restaurants).

8. Appendix

8.1SourceCode

[Restaurant-Recommendation-System]

${\bf 8.2 Project Video DemoLink:}$

VideoDemoLink: [Demo Link]