IIC2413 - Bases de Datos

Guía Índices

Problema 1) Sea la relación R(a,b,c,d) cuyo tamaño es de 1 millón de tuplas, en que cada página contiene P tuplas. Las tuplas de R están ordenados de manera aleatoria. El atributo a es además un candidato a llave primaria, cuyos valores van del 0 al 999.999 (distribuídos uniformemente). Para cada una de las consultas a continuación, diga el número de I/O que se harán en cada uno de los siguientes casos:

- Analizar R sin ningún índice.
- Usar un B+Tree unclustered sobre el atributo a. El árbol es de altura h y cada página contiene M punteros (M>P).
- Usar un $B+Tree\ clustered$ sobre el atributo a. El árbol es de altura h y cada página de hoja está ocupada al 60%.
- Usar un $Hash\ Index\ unclustered\ con\ 1\ millón\ de buckets.$ Cada página del indice contiene M punteros (M>P).
- Usar un Hash Index clustered con 1 millón de buckets.

Las consultas son:

- 1. Encontrar todas las tuplas de R.
- 2. Encontrar todas las tuplas de R tal que a < 50.
- 3. Encontrar todas las tuplas de R tal que a = 50.
- 4. Encontrar todas las tuplas de R tal que a > 50 y a < 100.

Solución) Los costos son los siguientes:

Query	Sin índice	B+Tree - u	B+Tree - c	Hash Índex - u	Hash Índex - c
R	$\frac{10^6}{P}$	$h + (\frac{10^6}{M} - 1) + 10^6$	$h + \frac{10^6}{0.6P} - 1$	$2 \cdot 10^6$	10^{6}
a < 50	$\frac{10^6}{P}$	$h + (\frac{50}{M} - 1) + 50$	$h + (\frac{50}{0,6P} - 1)$	100	50
a = 50	$\frac{10^6}{P}$	h+1	h	2	1
50 < a < 100	$\frac{10^6}{P}$	$h + (\frac{49}{M} - 1) + 49$	$h + (\frac{49}{0.6P} - 1)$	98	48