STAT 201 Exam 3

You can do it!

Question break down (40 Questions total)

- 13 CI questions (Ch 13 & 14) (1 of them interpretation)
- 12 Chapter 15&16 Qs (1 of them interpretation)
- 6 Chapter 17 Qs (1 of them interpretation)
- 7 Chapter 19 Qs (1 of them interpretation)
- 2 Choose the right tool Qs

Confidence intervals

"We are 95% confident the true population proportion is in the range (0.4, 0.7)."

$$\hat{p} \pm z * SE(\hat{p})$$

$$\bar{y} \pm t_{df} * SE(\bar{y})$$

- Sample statistic
 - the actual observed value of the proportion (\hat{p}) or the mean (\bar{y})
 - We use this as the best guess of the population parameter and add some give or take (aka Margin of Error)
- Critical value
 - A value looked up based on how confident we want to be
 - z is looked up based on normal distribution; t_{df} is looked up based on t-distribution and df
 - df is "degrees of freedom", here df = n 1
 - Bigger confidence -> bigger critical value -> bigger margin of error -> wider Cl
- Standard error
 - More evidence (aka smaller n) -> lower SE -> smaller margin of error
 - More variation -> higher SE -> larger margin of error

Confidence intervals

"We are 95% confident the true population mean is in the range (4, 10)."

$$\hat{p} \pm z * SE(\hat{p})$$
 $\bar{y} \pm t_{df} * SE(\bar{y})$
"Margin of Error"

- Affected by level of confidence (bigger confidence, bigger interval, 🛒 🍕)
- Affected by sample size (more evidence -> smaller ME -> smaller interval)

- Cls are the sample stat plus or minus ME, this means that the width of the Cl is 2*ME (start at middle and take 1 ME sized step in both directions)
 - Given CI of (5, 15) we can find ME and sample stat with:
 - 2*ME = Cl_{hi} Cl_{low} -> 2*ME = 15 5 -> 2*ME = 10 -> ME = 5
 - sample stat = Cl_{hi} ME -> sample stat = 15 5 = 10

CI for population proportion

Assumptions

- Success/failure
 - at least 10 successes (\hat{p}) and 10 failures $(\hat{q} \rightarrow aka 1 \hat{p})$

CI for population mean

Assumptions

- Nearly normal
- Distribution should resemble the normal distribution. When sample size is larger (40ish) we can have larger skew without worry.

Shared Assumptions

- Randomization
 - Sample is a random sample (we want to be representative, not biased)
- 10%
 - sample size (n) must be less than or equal to 10% of population

Hypothesis testing - steps

 $\overline{H_0}$ & $\overline{H_a}$

- Hypotheses
 - State the hypotheses (aka the 2 possible outcomes of the test)
- · Model / 🗸 //
 - Check your assumptions (use the right tool for the job)
- Mechanics
 - Formula time! (or JMP time)
- Conclusions

- Read the p-value "If p is low, H_0 must go"
 - If p < alpha (aka "level of significance") reject null hypothesis; there is evidence supporting ${\cal H}_a$
 - If p > alpha (aka "level of significance") fail to reject null hypothesis; there is not enough evidence supporting H_a

Hypothesis testing - hypotheses

"We reject the hypothesis that the population mean is 0."

- Example "null" hypotheses (H_0) :
 - $\mu = 10$ "the true population mean is 10"
 - p = 0.4 "the true population proportion is 0.4"
 - $\mu_a \mu_b = 0$ "the true difference in population means is 0"

- Example "alternative" hypotheses (H_a) :
 - "Two-tailed" tests use both "tails" of distribution to measure probability
 - $\mu \neq 10$; $p \neq 0.4$; $\mu_a \mu_b \neq 0$
 - "One-tailed" tests use only 1 "tail" of distribution to measure probability
 - $\mu > 10$; p > 0.4; $\mu_a \mu_b > 0$
 - μ < 10; p < 0.4; $\mu_a \mu_b$ < 0

Tests and Confidence Intervals will agree*

• *requires alpha and confidence to match (eg alpha = 0.05 & 95% CI or alpha = 0.01 and 99% CI)

·If the test rejects a possible value -> CI won't have that value in it's range

- If we reject null that mean is 10 then the CI's range will not include 10, maybe (5, 8)
- If we fail to reject that the mean is 10 then the Cl's range will include 10, maybe (7, 13)

Hypothesis testing - errors

- The probability of making a Type I is denoted as α (aka alpha or "level of significance")
 - When $p < \alpha$ we're saying "the probability of this happening is very low if the null hypothesis is indeed true", but rare events can just happen \P and this can lead to type I errors
- The probability of making Type ${
 m II}$ is denoted as eta (aka beta)
- Managing the errors is a balancing act
 - If you lower P(Type I) you raise P(Type II)
 - If you raise P(Type I) you lower P(Type II)

Hypothesis test utility belt

test	data	example null (fail to reject null if p-value > alpha)	example alts (reject null if p-value < alpha)	p-value comes from
Proportion z-test	1 categorical var w/2 categories	p = 0.5	p ≠ 0.5 p > 0.5 p < 0.5	normal dist (z)
1-sample t-test	1 numeric var	μ = 10	μ ≠ 10 μ > 10 μ < 10	student's t-dist (t _{df})
2-sample t-test	1 numeric var & 1 categorical var w/2 categories	$\mu_{\text{group1}} - \mu_{\text{group2}} = 0$	μgroup1 - μgroup2 ≠ 0 $ μgroup1 - μgroup2 > 0 $ $ μgroup1 - μgroup2 < 0$	student's t-dist (t _{df})
Chi-square test	2 categorical vars	Counts are independent	Counts are not independent	Chi-Square dist (χ^2_{df})

Make sure to review the assumptions of each!

- For all tests: Random & 10%
- For prop z test: Success/failure
- For t-tests: nearly normal (both groups for 2 sample) & independence (for 2 sample)
- For chi-square: expected cell frequency

If p is low H_0 must go!

- 1. Hypotheses
- 2. Model
- 3. Mechanics
- 4. Conclusions

