* Individual chance experiments, independent trials:

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that J and K are any two subsets of indices. Then:

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that \mathbb{J} and \mathbb{K} are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - * The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that \mathbb{J} and \mathbb{K} are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - * The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \geq 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

- Individual chance experiments, independent trials:
 - Trial 1: $\mathfrak{A} = \{a_j, j \geq 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- Compound chance experiment, product space and measure:
 - $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}\ \text{of } \mathfrak{A};$
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k : k \in \mathbb{K}\}\ \text{of }\mathfrak{B}.$
 - "Rectangular" intersection: A \cap B = { $(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}$ } = $\mathfrak{S} \times \mathfrak{T}$.

$$p_j \ge 0, \qquad \sum_{j \ge 1} p_j = 1$$

$$p_j \ge 0, \qquad \sum_{j \ge 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1} q_k = 1$$

- Individual chance experiments, independent trials:
 - Trial 1: $\mathfrak{A} = \{a_j, j \geq 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- Compound chance experiment, product space and measure:
 - $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}\ \text{of } \mathfrak{A};$
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k : k \in \mathbb{K}\}\ \text{of }\mathfrak{B}.$
 - "Rectangular" intersection: A \cap B = { $(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}$ } = $\mathfrak{S} \times \mathfrak{T}$.

$$p_j \ge 0, \qquad \sum_{j \ge 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1} q_k = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1} q_k = 1$$

- Individual chance experiments, independent trials:
 - Trial 1: $\mathfrak{A} = \{a_j, j \geq 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- Compound chance experiment, product space and measure:
 - $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}.$ Atomic measure $P\{(a_j, b_k)\}:=p_jq_k$.
- Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}\ \text{of } \mathfrak{A};$
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k : k \in \mathbb{K}\}\ \text{of }\mathfrak{B}.$
 - "Rectangular" intersection: A \cap B = { $(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}$ } = $\mathfrak{S} \times \mathfrak{T}$.

$$p_j \ge 0, \qquad \sum_{j \ge 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k > 1} q_k = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1} q_k = 1$$

$$\sum_{j\geq 1} \sum_{k\geq 1} p_j q_k = \left(\sum_{j\geq 1} p_j\right) \left(\sum_{k\geq 1} q_k\right) = 1$$

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that \mathbb{J} and \mathbb{K} are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

$$p_j \ge 0,$$

$$\sum_{j \ge 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1}^{j \ge 1} q_k = 1$$

$$\sum_{j\geq 1} \sum_{k\geq 1} p_j q_k = \left(\sum_{j\geq 1} p_j\right) \left(\sum_{k\geq 1} q_k\right) = 1$$

$$\mathbf{P}(A) = \sum_{j \in \mathbb{J}} \sum_{k \ge 1} p_j q_k = \left(\sum_{j \in \mathbb{J}} p_j\right) \left(\sum_{k \ge 1} q_k\right) = \sum_{j \in \mathbb{J}} p_j$$

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that \mathbb{J} and \mathbb{K} are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - * The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

$$p_j \geq 0,$$

$$\sum_{j\geq 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k>1}^{j \ge 1} q_k = 1$$

$$\sum_{j\geq 1} \sum_{k\geq 1} p_j q_k = \left(\sum_{j\geq 1} p_j\right) \left(\sum_{k\geq 1} q_k\right) = 1$$

$$\mathbf{P}(A) = \sum_{j \in \mathbb{J}} \sum_{k \ge 1} p_j q_k = \left(\sum_{j \in \mathbb{J}} p_j\right) \left(\sum_{k \ge 1} q_k\right) = \sum_{j \in \mathbb{J}} p_j$$

$$\mathbf{P}(\mathbf{B}) = \sum_{j \ge 1} \sum_{k \in \mathbb{K}} \mathbf{p}_j \mathbf{q}_k = \left(\sum_{j \ge 1} \mathbf{p}_j\right) \left(\sum_{k \in \mathbb{K}} \mathbf{q}_k\right) = \sum_{k \in \mathbb{K}} \mathbf{q}_k$$

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that \mathbb{J} and \mathbb{K} are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

$$p_j \geq 0,$$

$$\sum_{j\geq 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k>1}^{j \ge 1} q_k = 1$$

$$\sum_{j\geq 1} \sum_{k\geq 1} p_j q_k = \left(\sum_{j\geq 1} p_j\right) \left(\sum_{k\geq 1} q_k\right) = 1$$

$$\mathbf{P}(A) = \sum_{j \in \mathbb{J}} \sum_{k \ge 1} p_j q_k = \left(\sum_{j \in \mathbb{J}} p_j\right) \left(\sum_{k \ge 1} q_k\right) = \sum_{j \in \mathbb{J}} p_j$$

$$\mathbf{P}(\mathbf{B}) = \sum_{j \ge 1} \sum_{k \in \mathbb{K}} \mathbf{p}_j \mathbf{q}_k = \left(\sum_{j \ge 1} \mathbf{p}_j\right) \left(\sum_{k \in \mathbb{K}} \mathbf{q}_k\right) = \sum_{k \in \mathbb{K}} \mathbf{q}_k$$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \sum_{\mathbf{j} \in \mathbb{J}} \sum_{\mathbf{k} \in \mathbb{K}} \mathbf{p}_{\mathbf{j}} \mathbf{q}_{\mathbf{k}} = \left(\sum_{\mathbf{j} \in \mathbb{J}} \mathbf{p}_{\mathbf{j}}\right) \left(\sum_{\mathbf{k} \in \mathbb{K}} \mathbf{q}_{\mathbf{k}}\right) = \mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$$

- * Individual chance experiments, independent trials:
 - * Trial 1: $\mathfrak{A} = \{a_j, j \ge 1\}$. Atomic mass function $\{a_j\} \mapsto p_j$.
 - * Trial 2: $\mathfrak{B} = \{b_k, k \ge 1\}$. Atomic mass function $\{b_k\} \mapsto q_k$.
- * Compound chance experiment, product space and measure:
 - * $\Omega = \mathfrak{A} \times \mathfrak{B} = \{(a_j, b_k): j \ge 1, k \ge 1\}$. Atomic measure $P\{(a_j, b_k)\} := p_j q_k$.
- * Suppose that J and K are any two subsets of indices. Then:
 - The event $A := \{(a_j, b_k): j \in \mathbb{J}, k \ge 1\}$ is completely determined by the subset $\mathfrak{S} = \{a_j: j \in \mathbb{J}\}$ of \mathfrak{A} ;
 - The event $B := \{(a_j, b_k): j \ge 1, k \in \mathbb{K}\}$ is completely determined by the subset $\mathfrak{T} = \{b_k: k \in \mathbb{K}\}$ of \mathfrak{B} .
 - * "Rectangular" intersection: $A \cap B = \{(a_j, b_k): j \in \mathbb{J}, k \in \mathbb{K}\} = \mathfrak{S} \times \mathfrak{T}.$

$$p_j \geq 0,$$

$$\sum_{j\geq 1} p_j = 1$$

$$q_k \ge 0, \qquad \sum_{k \ge 1}^{j \ge 1} q_k = 1$$

Is the product measure suitably normalised?

$$\sum_{j\geq 1} \sum_{k\geq 1} p_j q_k = \left(\sum_{j\geq 1} p_j\right) \left(\sum_{k\geq 1} q_k\right) = 1$$

$$\mathbf{P}(A) = \sum_{j \in \mathbb{J}} \sum_{k \ge 1} p_j q_k = \left(\sum_{j \in \mathbb{J}} p_j\right) \left(\sum_{k \ge 1} q_k\right) = \sum_{j \in \mathbb{J}} p_j$$

$$\mathbf{P}(\mathbf{B}) = \sum_{j \ge 1} \sum_{k \in \mathbb{K}} \mathbf{p}_j \mathbf{q}_k = \left(\sum_{j \ge 1} \mathbf{p}_j\right) \left(\sum_{k \in \mathbb{K}} \mathbf{q}_k\right) = \sum_{k \in \mathbb{K}} \mathbf{q}_k$$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \sum_{\mathbf{j} \in \mathbb{J}} \sum_{\mathbf{k} \in \mathbb{K}} \mathbf{p}_{\mathbf{j}} \mathbf{q}_{\mathbf{k}} = \left(\sum_{\mathbf{j} \in \mathbb{J}} \mathbf{p}_{\mathbf{j}}\right) \left(\sum_{\mathbf{k} \in \mathbb{K}} \mathbf{q}_{\mathbf{k}}\right) = \mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$$

Any such events A and B determined by separate trials are independent.