主管 领导 审核 签字

哈尔滨工业大学(深圳) 2017 学年秋季学期

高等数学 A 试 颢

题号	_	=	Ш	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范

遵守考场纪律

一、填空题(每小题2分,共4小题,满分8分)

- 1. 曲线 $y = x^2 6x + 10$ 在点 (3,1) 处的曲率 K =______
- 2. 不定积分 $\int \sin x e^{2\cos x} dx = \underline{\qquad} + C$.
- 3. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (|x| + \frac{(\sin x)^{99}}{\sqrt{1+x^6}}) dx = \underline{\hspace{1cm}}$
- 4. 极限 $\lim_{n \to \infty} \frac{e^{\frac{1}{n}} + e^{\frac{2}{n}} + \dots + e^{\frac{n}{n}}}{e^{\frac{n}{n}}} = \underline{\qquad}$
- 二、选择题(每小题2分,共4小题,满分8分,每小题中给出的四个选项中只 有一个是符合题目要求的, 把所选项的字母填在题后的括号内)
 - 1. 设 $I = \int_0^{\frac{\pi}{4}} \ln \sin x dx$, $J = \int_0^{\frac{\pi}{4}} \ln \cos x dx$, $K = \int_0^{\frac{\pi}{4}} \ln \cot x dx$, 则 I, J, K 的大小关系是 (). (A) I < J < K; (B) I < K < J; (C) J < I < K; (D) K < J < I.
 - 2. 曲线 $\begin{cases} x = t^3 + 1 \\ y = \frac{3}{2}t^2 1 \end{cases}$ 上相应于 $0 \le t \le 1$ 的一段弧的长度等于().
 - (A) $\frac{1}{3}$; (B) $3\sqrt{3} 2\sqrt{2}$; (C) $3\sqrt{3} 1$; (D) $2\sqrt{2} 1$.
 - 3. 若连续函数 f(x) 满足关系式 $f(x) = \int_0^{2x} f(\frac{t}{2}) dt + \ln 2$,则 f(x) 等于(
 - (A) $e^{x} \ln 2$; (B) $e^{2x} \ln 2$; (C) $e^{x} + \ln 2$; (D) $e^{2x} + \ln 2$.
 - 4. 一个物质的物体,高4m,水平截面面积S是高度h(从底部算起)的函数

 $S = 20 + 3(4 - h)^2$ (高度 h 的单位是 m, 面积 S 的单位是 m^2), 已知物体的密度与水的密度同为 10^3 kg/ m^3 , 此物体沉在水中,上表面与水面平齐,设重力加速度 g = 10 m/s 2 , 则将此物体水平打捞出水所需作的功为 ().

- (A) 1940000 焦耳; (B) 2240000 焦耳; (C) 2960000 焦耳; (D) 3520000 焦耳. 三、(6 分) 已知函数 $f(x) = \frac{(x-3)^2}{4(x-1)}$,
 - (1) 求函数 f(x) 的单调区间与极值;
 - (2) 求曲线 y = f(x) 的凸凹区间;
 - (3) 求曲线 y = f(x) 的渐近线;
 - (4) 作函数 f(x) 的图形.

四、计算下列各题(每小题3分,共三小题,满分9分)

1. 计算不定积分 $\int \frac{\arctan x}{x^2} dx$.

2. 计算定积分 $\int_0^1 \frac{1}{(2x^2+1)\sqrt{x^2+1}} dx$.

3. 计算极限 $\lim_{x\to 0^+} \frac{\int_0^x (\sqrt{x-t})(e^t)dt}{\sqrt{x^3}}$.

- 五、解答下列各题(每小题3分,共两小题,满分6分)
- 1. 求微分方程 $yy'' = 2[(y')^2 y']$ 满足初值条件 $y|_{x=0} = 1$, $y'|_{x=0} = 2$ 的特解.

2. 设抛物线 $y = ax^2 + bx + c$ 过坐标原点,当 $0 \le x \le 1$ 时, $y \ge 0$,又已知该抛物线与 x 轴及直线 x = 1 所围图形的面积为 $\frac{1}{3}$,试确定常数 a,b,c 使此图形绕 x 轴旋转一周而成的旋转体的体积最小.

八、(3 分) 设函数 f(x) 在区间 [0,1] 上有二阶导数,且满足条件 $|f(x)| \le a$, $|f''(x)| \le b$,其中 a ,b都是非负实数, c是(0,1)内任一点,证明 $|f'(c)| \le 2a + \frac{b}{2}$.