

TP2 - Reconocimiento de Dígitos

May 18, 2022

Métodos Numéricos

Grupo 8

Integrante	LU	Correo electrónico
Cappella Lewi, F. Galileo	653/20	galileocapp@gmail.com
Anachure, Juan Pablo	99/16	janachure@gmail.com
La Tessa, Octavio	477/16	octalate@hotmail.com

En este trabajo estudiamos una manera de calcular las temperaturas dentro de la pared de un alto horno, buscando estimar la posición de la isoterma. Utilizamos técnicas matriciales para resolver sistemas de ecuaciones lineales.

Palabras clave:

Alto Horno	Sistemas Matriciales
Eliminación Gausseana	Factorización LU

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja)

Intendente Güiraldes 2610 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

 ${\rm Tel/Fax:}\ (+{+54}\ {+11})\ 4576\text{-}3300$

https://exactas.uba.ar

Secciones

I Justificación Optimización KNN

2

I Justificación Optimización KNN

```
Siendo A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{m \times d}, quiero armar una matriz D \in \mathbb{R}^{n \times m}: D_{i,j} = ||row_i(A) - row_j(B)||_2^2. Para ello, tomo S_A \in \mathbb{R}^{n \times m}: S_{Ai,j} = ||row_i(A)||_2^2, S_B \in \mathbb{R}^{n \times m}: S_{Bi,j} = ||row_i(B)||_2^2. Y demuestro que D = S_A - 2AB^t + S_B: D = S_A - 2AB^t + 2_B \iff D_{i,j} = (S_A - 2AB^t + 2_B)_{i,j} \iff X = Y \iff X_{i,j} = Y_{i,j} = S_{Ai,j} - (2AB^t)_{i,j} + S_{Bi,j} \iff (X - Y)_{i,j} = X_{i,j} - Y_{i,j} = S_{Ai,j} - 2(AB^t)_{i,j} + S_{Bi,j} \iff (XY)_{i,j} = row_i(X)col_j(Y) = S_{Ai,j} - 2row_i(A)col_j(B^t) + S_{Bi,j} \iff (XY)_{i,j} = row_i(X)col_j(Y) = S_{Ai,j} - 2row_i(A)row_j^t(B) + S_{Bi,j} \iff row_i^t(X) = col_i(X^t) = ||row_i(A)||_2^2 - 2row_i(A)row_j^t(B) + ||row_j(B)||_2^2 \iff Definición previa = row_i^t(A)row_i(A) - 2row_i(A)row_j^t(B) + row_j^t(B)row_j(B) \iff ||v||_2^2 = v^tv = (row_i(A) - row_j(B))^t(row_i(A) - row_j(B)) \iff (v - w)^t(v - w) = v^tv - 2v^tw + w^tw = ||row_i(A) - row_j(B)||_2^2 \implies (||v||_2^2 = v^tv)
```

Figuras

Bibliografía