GP modellek II.

Fegyverneki Sándor Miskolci Egyetem Alkalmazott Matematikai Intézeti Tanszék _{matfs}@uni-miskolc.hu

2021. február 15.

1 Kamatláb (rate of interest)

P – tőke (principal)

r – kamatláb

$$P + rP = P(1+r)$$

Kamatos kamat (compound interest)

Megjegyzés:

 $\overline{\text{1. Félévenkénti.}}$ 2. Havi 3. P_1 az évvégi tőke.

Effektív kamatláb:

$$r_{eff} = \frac{P_1 - P}{P}$$

Folytonos kamatos kamat:

$$P\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n = Pe^r.$$

Megjegyzés:

Duplázási szabály:

$$r = 0.01 \ (n \approx 70), \ 0.02 \ (35), \ 0.07 \ (10).$$

$$n \approx \frac{\ln(2)}{r}.$$

LOGRETURN

$$\varrho = \ln\left(\frac{P_1}{P}\right)$$

 $\ln\left(\frac{P_1}{P}\right) = \ln(1+r) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{r^n}{n!} \approx r$

Ha $ln(\xi) \sim N(\mu, \sigma^2)$, akkor ξ lognormális eloszlású. LOGNORMÁLIS FLOSZLÁS:

2 Jelenérték (present value)

Kölcsön felvétel és adás esetén a kamatláb r és a kamatos kamat periódikusan. Mennyi a jelenlegi értéke i periódus (időtartam) után a v kifizetésnek (összeg)?

$$PV = v(1+r)^{-i}.$$

Legyen $a=(a_0,a_1,\dots,a_n)$ és $b=(b_0,b_1,\dots,b_n)$ kifizetési sorozatok. Tegyük fel, hogy

$$PV(a) = \sum_{i=0}^{n} a_i (1+r)^{-i} \ge \sum_{i=0}^{n} b_i (1+r)^{-i} = PV(b).$$

Kérdés: Milyenek legyenek a kifizetési sorozatok?

Példa: Adottak a következő kifizetési sorozatok.

A. 12, 14, 16, 18, 20; (80)

B. 16, 16, 15, 15, 15; (77) **C.** 20, 16, 14, 12, 10; (72)

C. 20, 16, 14, 12, 10; (72)

JELENÉRTÉK TÁBLÁZAT

r	Α	В	С
0.1	59.21	58.60	56.33
0.2	45.70	46.39	45.69
0.3	36.49	37.89	38.12

Jelzálog kölcsön (mortgage loan):

$$L$$
 – az összeg (amount)

$$n$$
 – a hónapok száma

$$r$$
 – kamatláb

A jelenérték:

$$\frac{A}{1+r} + \frac{A}{(1+r)^2} + \dots + \frac{A}{(1+r)^n} = \frac{A}{r} \left[1 - (1+r)^{-n} \right] = L.$$

A

Megjegyzés:

- 1. Számítsuk ki a j-edik hónap után maradó jelzálog összeget!
- 2. Mennyivel csökken a j-edik hónapban a jelzálog?

Legyen $b=(b_1,\ldots,b_n)$ és $c=(c_1,\ldots,c_n)$ pénz kifizetési sorozatok és r a kamatláb. Milyen feltételek mellett teljesül minden pozitív r kamatláb esetén, hogy

$$PV(b) = \sum_{i=1}^{n} b_i (1+r)^{-i} \ge \sum_{i=1}^{n} c_i (1+r)^{-i} = PV(c)$$
?

Elégséges feltételek:

- 1. $b_i \geq c_i, (i = 1, 2, \dots, n).$
- 2. Legyen

$$B_i = \sum_{j=1}^r b_j$$
 és $C_i = \sum_{j=1}^r c_j$, ha $(i=1,2,\ldots,n)$.

Ekkor elegendő $B_i \geq C_i$, (i = 1, 2, ..., n).

3. Ha $B_n \ge C_n$, akkor elegendő, hogy

$$\sum_{i=1}^k B_i \geq \sum_{i=1}^k C_i, \quad \mathsf{ha} \quad (k=1,2,\dots,n).$$

Megiegyzés:

Bizonyítás a Descartes-féle előjelszabály alapján.

Legyen $a_i = b_{i+1} - c_{i+1}, (i = 0, 1, \dots, n-1).$

1.
$$a_i \geq 0, (i = 0, 1, \dots, n - 1).$$

2. $\sum a_i = B_k - C_k \ge 0, (k = 1, \dots, n).$

Legyen

 $a_n = -\sum_i a_i,$

 $P(x) = a_0 + a_1 x + \dots + a_n x^n$.

Ekkor P(1) = 0, és a

Ekkor
$$P(1) = 0$$
, és a

Továbbá, a P(x) polinomnak csak egy pozitív zérushelye van, és P(x) előjele megegyezik (1-x) előjelével. Tehát

$$a_0 + a_1 x + \dots + a_n x^n > 0$$
, ha $0 < x < 1$,

 $a_0 + a_1 x + \dots + a_{n-1} x^{n-1} > \sum_{i=1}^{n} a_i x^n = x^n (B_n - C_n) \ge 0.$

Legyen $x = \frac{1}{1+r}$. Tehát ha 0 < x < 1, akkor r > 0.

3. Felhasználva az előzetes jelöléseket legyen

$$\sum_{i=1}^{k-1} a_i = A_{k-1} = B_k - C_k, \qquad (k = 1, \dots, n).$$

A feltételek szerint
$$A_{n-1} \geq 0$$
, és $\sum_{i=0} A_k \geq 0$, $(k=0,1,\ldots,n-1)$.

Alkalmazzuk az előző bizonyítást az A_k $(k=0,1,\ldots,n-1)$ esetre. Ekkor azt kapjuk, hogy

3 DESCARTES

Tétel:

Ha az $a_0,\,a_1,\ldots,\,a_n$ véges sorozatnak C jelváltása van és $p_0>0,\,p_1>0,\ldots,\,p_n>0,$ akkor a

$$p_0a_0, p_1a_1, \ldots, p_na_n$$

jelváltásainak a száma C.

Tétel:

Ha az a_0, a_1, \ldots, a_n véges sorozatnak C jelváltása van, akkor a belőle képzett

$$a_0, a_1 - a_0, \dots, a_n - a_{n-1}, -a_n$$

sorozatnak legalább C+1 előjelváltása van $(\exists a_k \neq 0)$.

Tétel:

A P(x) és $P(\alpha x)$ polinomoknak egyenlő számú előjelváltása van. ha α pozitív.

Tétel:

Legyen $\alpha > 0$, Áttérve a P(x) polinomról az

$$(\alpha - x)P(x)$$

polinomra az együttható-jelváltások száma nő, mégpedig páratlan számmal.

Bizonyítás: Helyettesítsük x-et αx -szel és alkalmazzuk a 2. állítást.

Tétel:

(Descartes-féle előjelszabály.) Legyen Z a P(x) pozitív zérushelyeinek a száma, C pedig a jelváltások száma. Ekkor

$$C-Z \ge 0$$
.

Megjegyzés:

- $\overline{1. C-Z}$ páros szám.
- 2. Ha C=1, akkor Z=1.

Tétel:

Legyen C az

$$a_0, a_0 + a_1, a_0 + a_1 + a_2, \dots, a_0 + a_1 + \dots + a_n$$

véges sorozat jelváltásainak a száma. Tegyük fel, hogy P(1)=0. Ekkor a P(x) polinomnak legfeljebb C+1 pozitív zérushelye van.

Bizonyítás:

$$P(x) = [a_0 + (a_0 + a_1)x + \dots + (a_0 + a_1 + \dots + a_{n-1})x^{n-1}](1 - x)$$

Tétel:

Legyen ${\cal C}$ az

$$a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots, a_1 + a_2 + \dots + a_n$$

véges sorozat jelváltásainak a száma és legyenek

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n$$

Továbbá, legyen

$$D(x) = a_1 e^{-\lambda_1 x} + \dots + a_n e^{-\lambda_n x},$$

ahol feltesszük, hogy D(0)=0. Ekkor a D(x) függvénynek legfeljebb C+1 pozitív zérushelye van.

Bizonyítás:

$$\varphi(\lambda) = a_1 + a_2 + \dots + a_k$$
, ha $\lambda_k \le \lambda_{k+1}$, $(k = 1, 2, \dots, p_k)$

D(0) = 0 miatt

$$x^{-1}D(x) = \int_{-\infty}^{\lambda_n} \varphi(\lambda)e^{-\lambda x}d\lambda.$$

4 Megtérülési ráta (rate of return)

Legyen a kezdeti befektetés $a\ (a>0)$ és b a visszakapott összeg egy periódus után. A megtérülési ráta (hozam) r,

$$\frac{b}{1+r} = a \quad \text{vagy} \quad r = \frac{b}{a} - 1.$$

Egy periódusra jutó hozam (belső megtérülési ráta): Legyen $b_i \geq 0$ a kapott összeg az i-edik periódus végén $(i=1,2,\ldots,n)$. és $b_n>0$.

Legven

ha

$$P(r) = -a + \sum_{i=1}^{n} b_i (1+r)^{-i}.$$

Az egy periódusra jutó hozam $r^\star,$ ha $P(r^\star)=0$ és $r^\star>-1.$

Megjegyzés:

1. r^{\star} egyértelműen létezik, mert P(r) monoton csökkenő függvény, ha r>-1. Továbbá,

$$\lim_{r \to -1} P(r) = \infty, \qquad \lim_{r \to \infty} P(r) = -a < 0.$$

2. r^{\star} előjele megegyezik P(0) előjelével.

5 Folytonosan változó kamatláb

r(s) – pillanatnyi kamatláb az s időpontban.

D(t) – az összeg a t időpontban, ha a kezdeti betét (deposit) 1 egység a 0 időpontban.

Legyen $0 \leq s \leq t,$ és h kicsi, ekkor feltehetjük, hogy

$$D(s+h) \approx D(s)(1+r(s)h)$$

$$\frac{D(s+h) - D(s)}{r} \approx D(s)r(s)$$

Ha létezik a határérték, amikor $h \to 0$, akkor

$$D'(s) = D(s)r(s).$$

$$\frac{D'(s)}{D(s)} = r(s).$$

Mivel D(0) = 1, így

$$D(t) = \exp\left[\int_{0}^{t} r(s)ds\right].$$

Legyen P(t) a jelenérték (0 időpontbeli érték), ha 1 egységnyi összeget kapunk a t időpontban. Ekkor

$$P(t) = \frac{1}{D(t)}.$$

Megjegyzés:

 $\overline{\operatorname{Ha}\ r(s) = r\ (0 \le s \le t)},\ \operatorname{akkor}$

 $P(t) = e^{-rt}$.

Jelölje $\overline{r}(t)$ az átlagos kamatlábat a t időpontig, azaz

$$\overline{r}(t) = \frac{1}{t} \int_{0}^{t} r(s)ds.$$

Az $\overline{r}(t)$ $(t \geq 0)$ függvényt hozamgörbének (jövedelemgörbe) nevezzük.

Köszönöm a figyelmet!

References

[1] Deák I.: Véletlenszámgenerátorok és alkalmazásaik, Akadémiai Kiadó, Budapest, 1986.

[FR11] Fegyverneki Sándor, Raisz Péter: Sztochasztikus modellezés, elektronikus jegyzet, 2011, TÁ-MOP 4.1.2-08/1/A-2009-0001 project, https://www.uni-miskolc.hu/~ matfs/

[FS11] Fegyverneki Sándor: Valószínűség-számítás és matematikai statisztika, elektronikus jegyzet, Kempelen Farkas elktronikus könyvtár, 2011, TÁMOP 4.1.2-08/1/A-2009-0001 project, https://www.uni-miskolc.hu/~ matfs/

[FE78] W. Feller: Bevezetés a valószínűségszámításba és alkalmazásaiba, Műszaki Könyvkiadó, Budapest, 1978.

[2] I.M. Szobol: A Monte-Carlo módszerek alapjai, Műszaki Könyvkiadó, Budapest, 1981.

