

Learning Sparsely-Coupled Signaling Networks from Data

Matt Karikomi ^{1 2}

Qing Nie 12

¹Deptartment of Mathematics, University of California, Irvine

²The NSF-Simons Center for Multiscale Cell Fate

Juxtacrine Signaling via First-Neighbor Interactions

Lateral inhibition feedback networks form boundaries and repeating patterns by destabilizing symmetric expression of fate-genes in the embryo:

Figure 1. Notch-Delta signaling controls patterning in neuronal lineages [1]

Figure 2. Delta from neighboring cells

The network representation may be implicit (population model) or explicit (graph):

- Non-destructive measurements allow explicit reconstruction of the network by fitting dynamic models to longitudinal data
- Destructive measurements require assumptions about pattern geometry to convert the explicit model to population-level representation
- Fully Coupled Model requires a regularized fitting scheme.
- **Regularization** is based on the assumption that a fully connected network is unlikely (also impossible in the case of juxtacrine signaling) so a **sparse representation** of the network is enforced via regularization.

Regularized Dictionary Learning

 $\frac{\mathrm{d}H1_i}{\mathrm{d}t} = F(H1_i(t)) \text{ is a linear combination of (trans) growth and (cis) inhibition.}$ $F(H1_i(t)) = \text{the interpolant of } H1_i(t)$ $\Phi(d(t)) = \text{Hill-type transformations over Delta protein levels}$ $\Psi(t) = [\Phi(d(t)), H1(t)]$ $F(H1_i(t)) \approx \Psi(t)\beta_i$ (1) Find the cross-validated Elastic Net estimate [2] of β for each cell.

$$\begin{array}{l} Adj \leftarrow zeros(|Cells|) \\ \text{for cell i in Cells do} \\ \hat{\beta}_{iCV} \leftarrow \operatorname*{argmin}_{\beta} \left(\left| F(H1_i(t)) - \Psi(t)\beta \right|^2 + \lambda_2 \big|\beta\big|^2 + \lambda_1 \big|\beta\big|_1 \right) \\ \text{for cell j in Cells do} \\ \text{if } sum[\hat{\beta}_{iCV}(1:j:end)] > 0 \text{ then} \\ Adj(i,j) = 1 \\ \text{end if} \\ \text{end for} \\ \text{end for} \end{array}$$

Simulate Non-Destructive Time Series Measurement

$$\frac{\mathrm{d}d_i}{\mathrm{d}t} = \nu \left(\frac{\beta_{d,i}}{1 + H1_i^h} - d_i \right) \tag{2}$$

$$\frac{\mathrm{d}H1_i}{\mathrm{d}t} = \sum_{j \neq i}^{\Gamma(i)} \frac{\beta_{H1,i} \Delta d_j^m}{1 + \Delta d_j^m} - H1_i \tag{3}$$

Symbol	Description	Value
$\overline{d_i}$	Delta protein	
$H1_i$	Hes1 protein	
$H1_i^{obs}$	Hes1 protein, noisy observation: $\mathcal{N}\left(\gamma H1_{i}(t),0.1\right)$	
γ	scaling for Gaussian noise on $H1_i^{obs}$	0.01-0.1
$d_i(0), H1_i(0)$) randomly perturbed initial state	
$eta_{d,i}$	intrinsic Delta ligand production	5
$eta_{H1,i}$	trans-activation strength	20
Δ	scaled shared cell membrane for unit grid tesselation	0-1
m,h	activation and repression cooperativity	3, 3
ν	timescale ratio: repressor/ligand dynamics	1
t	unitless time	1:30 (model fitted on 1:15)
$\Gamma(i)$	neighbors of cell i	

Accuracy of the Explicit Solution

Figure 6. True adjacency vs. Estimated adjacency ($\alpha = 1, \gamma = 0.01$)

Figure 7. Classification accuracy for $\Psi(d(t)) = \left[H1(t), \frac{d^3}{1+d^3}, \frac{d^4}{1+d^4}\right]$

References

- [1] O Shaya and D Sprinzak. From Notch signaling to fine-grained patterning: Modeling meets experiments. Current Opinion in Genetics & Development, 21(6):732–739, December 2011.
- [2] Hui Zou and Trevor Hastie.
 Regularization and variable selection via the elastic net.

 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, April 2005.