

6.6.2 Radiated Emission Method

0.0.2	Nadiated Lilission Wi									
	Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
	Test Method:	ANSI C63.10: 2	009 and KDE	3 558074v03r0	03 section '	12.1				
	Test Frequency Range:	2.3GHz to 2.5G	Hz							
	Test site:	Measurement D	istance: 3m							
	Receiver setup:									
		Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	129		RMS	1MHz	3MHz	Average Value				
	Limit:	Frequency Limit (dBuV/m @3m) Remark								
			Average Value							
		Above 1	0	Peak Value						
	Test setup:	to determin 2. The EUT wantenna, wantenna, wantenna, wantenna and the ground Both horizon make the make the make and to find the store Specified E 6. If the emission the limit spof the EUT have 10dB	ne the position yas set 3 meter which was mount and height is various to determine that and vertine as when the antendent the rota table maximum reactiver system and width with sion level of the cified, then the would be reperious margin would the set of the county would be reperious and maximum that would be reperious and margin would set of the set of the county would set of the s	of the highesers away from unted on the to aried from one the maximum cal polarizationssion, the EU na was turned for ding. In was set to Pon Maximum Hone EUT in peal esting could borted. Otherwood be re-tested	eak Detect old Mode. k mode was e stopped ise the emi one by one	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 hees to 360 degrees				
		SOCM (TO	Test Receive	Horn Ante	Antenna To	wer				
	Test Instruments:	Refer to section	5.6 for detail	s						
	Test mode:	Refer to section	5.3 for detail	s						
	Test results:	Passed								

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Phone Condition

EUT : FTU152B Model Test mode : Wifi-b-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

rar	n .								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜		<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
	2390.000	20.63	23.68	6.63	0.00	50.94	74.00	-23.06	Peak
2	2390.000	7.24	23.68	6.63	0.00	37.55	54.00	-16.45	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Phone Condition

Smart Phone FTU152B EUT Model Test mode : Wifi-b-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT Remark :

marı	к :	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor						Remark	
-	MHz	dBu∜	<u>dB</u> /m	dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2390.000									
2	2390,000	7.12	2.5. hX	h. h.i	11. 1111	37.43	54. 1111	-1b. 57	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone Model : FTU152B Test mode : Wifi-b-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

	Freq		Antenna Factor					
_	MHz	dBu∇	— <u>d</u> B/m	 <u>d</u> B	$\overline{dB} \overline{uV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500			0.00 0.00				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : FTU152B EUT Model Test mode : Wifi-b-H mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: MT

Remark

ları									
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	—dBu∇	— <u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
e.	2483.500	20.74	23.70	6.85	0.00	51.29	74.00	-22.71	Peak
)	2483.500	7.65	23.70	6.85	0.00	38.20	54.00	-15.80	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone : FTU152B Model Test mode : Wifi-G-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: MT Remark:

mar	к :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	20.01	23.68	6.63	0.00	50.32	74.00	-23.68	Peak
2	2390, 000	7.29	23, 68	6, 63	0.00	37, 60	54,00	-16.40	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Model : FTU152B Test mode : Wifi-G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark

	Freq		Antenna Factor						
-	MHz	dBu₹	— <u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000			100000000000000000000000000000000000000			VENTOR TOTAL		
2	2390.000	7.15	23.68	6.65	0.00	37.46	54.00	-16.54	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : FTU152B EUT Model Test mode : Wifi-G-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT

Remark

Freq			Antenna Factor						
	MHz	dBu₹	$\overline{dB}/\overline{m}$	 <u>d</u> B	$\overline{dB} \overline{uV/m}$	dBuV/m	dB		+
	2483,500 2483,500	The Table 11 (1977)		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart Phone Model : FTU152B
Test mode : Wifi-G-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Rem:

narl	κ :								
	42		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
-	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	20.73	23.70	6.85	0.00	51.28	74.00	-22.72	Peak
)	2483 500	7 64	23 70	6 85	0.00	38 10	54 00	-15 81	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Phone
Model : FTU152B
Test mode : Wifi-N20-L mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark

Freq					Limit Line		
MHz	−dBuV	<u>dB</u> /m	 <u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2390.000 2390.000							

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart I : FTU152B Phone EUT

Model Test mode : Wifi-N20-L mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

"CTL										
	Freq		Antenna Factor						Remark	
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB		
er:	2390.000	18.75	23.68	6.63	0.00	49.06	74.00	-24.94	Peak	
)	2300 000	7 18	23 68	6 63	0.00	37 /0	54 00	-16 51	Amerade	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone : FTU152B Model

Test mode : Wifi-N20-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remai

aı	rk :									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m		<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500	19.95	23.70	6.85	0.00	50.50	74.00	-23.50	Peak	
	2483, 500	7, 82	23, 70	6, 85	0.00	38, 37	54,00	-15.63	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone : FTU152B Model

Test mode : Wifi-N20-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT

Remark

-		Read	Ant enna	Cable	Preamp		Limit	Ower		
	Freq		Factor							
,	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>		2
	2483.500 2483.500		777 V77 UT V D V ST UV		0.00 0.00				Peak Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smart Phone : FTU152B Model

Test mode : Wifi-N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark

11	LA	Frea	Antenna Factor				
			 <u>d</u> B/m	 	 		-
			23.68 23.68	0.00 0.00		Peak Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone

Model : FTU152B Test mode : Wifi-N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT Remark :

mari	к									
			Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1	2390.000	18.48	23.68	6.63	0.00	48.79	74.00	-25.21	Peak	
2	2390,000	7.54	23.68	6.63	0.00	37.85	54.00	-16.15	Average	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Phone : FTU1528 Condition

EUT

Model Test mode : Wifi-N40-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT Remark :

CHLAI.									
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2483.500	19.06	23.70	6.85	0.00	49.61	74.00	-24.39	Peak
2	2483 500	7 84	23 70	6 25	0.00	32 30	54 00	-15 61	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone EUT

: FTU152B

Test mode : Wifi-M40-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark :

CMAL	275		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB	<u>d</u> B	$\overline{dB} \overline{uV/m}$	dBuV/m	dB	
1 2	2483.500 2483.500					50.27 38.24			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer							
	E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 1.MAR.2016 12:59:37

30MHz~25GHz

Middle channel

Date: 1.MAR.2016 13:03:22

30MHz~25GHz

Date: 1.MAR.2016 13:03:54

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 1.MAR.2016 13:07:53

30MHz~25GHz

Date: 1.MAR.2016 13:08:30

30MHz~25GHz

Highest channel

Date: 1.MAR.2016 13:17:12

30MHz~25GHz

Page 55 of 66

Test mode: 802.11n(H20)

Lowest channel

Date: 1.MAR.2016 13:15:17

30MHz~25GHz

Middle channel

Date: 1.MAR.2016 13:13:02

30MHz~25GHz

Date: 1.MAR.2016 13:23:46

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 1.MAR.2016 13:24:55

30MHz~25GHz

Date: 1.MAR.2016 13:26:17

30MHz~25GHz

Highest channel

Date: 1.MAR.2016 13:28:21

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2	009					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 10112	RMS	1MHz	3MHz	Average Value		
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark		
	30MHz-88MHz 40.0 Quas						
	88MHz-216MHz 43.5 Quasi-peak V						
	216MHz-960MHz 46.0 Quasi-peak Valu						
	960MHz-1GHz 54.0 Quasi-peak Value						
	Above 1GHz 54.0 Average						
	74.0 Peak Value						
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antendate ground Both horized make their 4. For each so case and to find the some to find the specified If the emist the limit specified EUT have 10dE	I at a 3 meters determine the vas set 3 meters which was more than the ight is various and the rota tab maximum respected embers and width with the ight is in level of the rotal than the anterest is since the rotal tab maximum respected to the rotal tab maximum respected to the rotal table and the rotal table respected to the rotal table respected	chamber. The position of the maximum of the position of the po	e table was he highest in the interference of a varie meter to fund a value of the consofthe a late was arrand to heights from 0 degrated Mode. The consofthe a late was be stopped wise the emit one by one	rotated 360 radiation. rence-receiving table-height antenna our meters above ne field strength. Intenna are set to mged to its worst from 1 meter to 4 rees to 360 degrees		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Smart Phone Test mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
Remark Model : FTU152B

Remark

	Freq		Antenna Factor						Remark
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	40.559	35.16	16.98	1.22	29.90	23.46	40.00	-16.54	QP
1 2 3 4	46.178	33.33	17.08	1.28	29.85	21.84	40.00	-18.16	QP
3	126.329	34.04	12.12	2.24	29.35	19.05	43.50	-24.45	QP
4	194.453	36.94	9.93	2.83	28.87	20.83	43.50	-22.67	QP
5 6	338.400	41.70	13.80	3.06	28.53	30.03	46.00	-15.97	QP
6	463.970	37.56	16.38	3.32	28.89	28.37	46.00	-17.63	QP

Site 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: Smart Phone : FTU152B EUT Model Test mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

Remark

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∇	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	41.860	33.76	17.17	1.24	29.88	22.29	40.00	-17.71	QP
2	188.413	41.48	9.62	2.79	28.91	24.98	43.50	-18.52	QP
3	275.157	41.17	12.15	2.87	28.49	27.70	46.00	-18.30	QP
1 2 3 4	315.481	42.65	13.17	2.99	28.49	30.32	46.00	-15.68	QP
5	463.970	36.13	16.38	3.32	28.89	26.94	46.00	-19.06	QP
6	649.660	33.46	18.80	3.86	28.78	27.34	46.00	-18.66	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	
4824.00	46.85	36.12	10.60	40.22	53.35	74.00	-20.65	Vertical
4824.00	47.28	36.12	10.60	40.22	53.78	74.00	-20.22	Horizontal
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.51	36.12	10.60	40.22	44.01	54.00	-9.99	Vertical
4824.00	38.15	36.12	10.60	40.22	44.65	54.00	-9.35	Horizontal

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.17	36.32	10.64	40.15	55.98	74.00	-18.02	Vertical	
4874.00	49.77	36.32	10.64	40.15	56.58	74.00	-17.42	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.75	36.32	10.64	40.15	47.56	54.00	-6.44	Vertical	
4874.00	40.26	36.32	10.64	40.15	47.07	54.00	-6.93	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.48	36.58	10.70	40.08	52.68	74.00	-21.32	Vertical	
4924.00	45.80	36.58	10.70	40.08	53.00	74.00	-21.00	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	37.55	36.58	10.70	40.08	44.75	54.00	-9.25	Vertical	
4924.00	36.15	36.58	10.70	40.08	43.35	54.00	-10.65	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.68	36.12	10.60	40.22	52.18	74.00	-21.82	Vertical	
4824.00	47.25	36.12	10.60	40.22	53.75	74.00	-20.25	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.62	36.12	10.60	40.22	43.12	54.00	-10.88	Vertical	
4824.00	36.47	36.12	10.60	40.22	42.97	54.00	-11.03	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.87	36.32	10.64	40.15	55.68	74.00	-18.32	Vertical	
4874.00	49.23	36.32	10.64	40.15	56.04	74.00	-17.96	Horizontal	
Test mode: 80	02.11g		Test char	t channel: Middle Remark: Average					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.65	36.32	10.64	40.15	46.46	54.00	-7.54	Vertical	
4874.00	40.17	36.32	10.64	40.15	46.98	54.00	-7.02	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.32	36.58	10.70	40.08	53.52	74.00	-20.48	Vertical
4924.00	45.75	36.58	10.70	40.08	52.95	74.00	-21.05	Horizontal
Test mode: 8	mode: 802.11g Test channel: Highest Re			Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.54	36.58	10.70	40.08	43.74	54.00	-10.26	Vertical
4924.00	35.47	36.58	10.70	40.08	42.67	54.00	-11.33	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.03	36.12	10.60	40.22	52.53	74.00	-21.47	Vertical	
4824.00	47.58	36.12	10.60	40.22	54.08	74.00	-19.92	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	37.13	36.12	10.60	40.22	43.63	54.00	-10.37	Vertical	
4824.00	36.95	36.12	10.60	40.22	43.45	54.00	-10.55	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.02	36.32	10.64	40.15	55.83	74.00	-18.17	Vertical	
4874.00	48.15	36.32	10.64	40.15	54.96	74.00	-19.04	Horizontal	
Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	39.67	36.32	10.64	40.15	46.48	54.00	-7.52	Vertical	
4874.00	39.11	36.32	10.64	40.15	45.92	54.00	-8.08	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.58	36.58	10.70	40.08	52.78	74.00	-21.22	Vertical
4924.00	46.01	36.58	10.70	40.08	53.21	74.00	-20.79	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.71	36.58	10.70	40.08	43.91	54.00	-10.09	Vertical
4924.00	35.58	36.58	10.70	40.08	42.78	54.00	-11.22	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	45.74	36.12	10.60	40.22	52.24	74.00	-21.76	Vertical	
4844.00	45.62	36.12	10.60	40.22	52.12	74.00	-21.88	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	38.15	36.12	10.60	40.22	44.65	54.00	-9.35	Vertical	
4844.00	36.91	36.12	10.60	40.22	43.41	54.00	-10.59	Horizontal	

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.17	36.32	10.63	40.15	54.97	74.00	-19.04	Vertical	
4874.00	49.02	36.32	10.64	40.15	55.83	74.00	-18.17	Horizontal	
Test mode: 8	02.11n(H40)		Test char	nnel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.47	36.32	10.64	40.15	45.28	54.00	-8.72	Vertical	
4874.00	39.21	36.32	10.64	40.15	46.02	54.00	-7.98	Horizontal	

Test mode: 8	02.11n(H40)		Test char	nnel: Highest		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	46.01	36.58	10.70	40.08	53.21	74.00	-20.79	Vertical	
4904.00	45.58	36.58	10.70	40.08	52.78	74.00	-21.22	Horizontal	
Test mode: 8	02.11n(H40)		Test char	nnel: Highest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.52	36.58	10.70	40.08	43.72	54.00	-10.28	Vertical	
4904.00	36.69	36.58	10.70	40.08	43.89	54.00	-10.11	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

-----End of report-----

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366