Эконометрика.

Цель курса.

Цель курса — дать понятие об основных методах современной эконометрики в строгом математическом изложении. Предполагается, что слушатель по окончанию курса будет обладать двумя компетенциями: (i) уметь самостоятельно проводить анализ экономических данных в эмпирическом исследовании, (ii) обладать достаточным арсеналом методов и понятий, чтобы понимать эконометрический анализ в экономических статьях.

Организация курса.

В курсе предполагается интенсивная лекционная нагрузка в соотношении 2:1 к семинарским занятиям. Задания на самостоятельную и домашнюю работу будут включать в себя как аналитические задачи, так и задачи на компьютере на языке с открытым кодом R. Задачи будут как теоретическими, так и практическими с использованием реальных данных.

Основная литература.

- 1. Hansen B.E. Econometrics. University of Wisconsin, Department of Economics, 2016. http://www.ssc.wisc.edu/~bhansen/econometrics
- 2. Anatolyev S. Intermediate and Advanced Econometrics: Problems and Solutions. 3rd edition, New Economical School, 2009.
- 3. Анатольев С.А. Курс лекций по эконометрике для продолжающих. М.: Российская экономическая школа, 2002.
- 4. Анатольев С.А. Курс лекций по эконометрике для подготовленных. М.: Российская Экономическая Школа, 2006.
- 5. Hayashi F. Econometrics, Princeton University Press, 2000.
- 6. Baltagi B. Econometric Analysis of Panel Data, John Wiley & Sons, 2008.

Программа курса

- 1. Основные понятия.
 - Условное распределение и условное математическое ожидание.
 - Закон повторных математических ожиданий.
 - Регрессия среднего, медианная и квантильная регрессии.
 - Наилучший линейный предиктор. Линейная проекция.
 - Случайные и неслучайные выборки. Принцип аналогий.

2. Асимптотические методы в эконометрике.

- Точные и асимптотические подходы. Их преимущества и недостатки.
- Закон больших чисел, центральная предельная теорема, дельта-метод, теорема о непрерывном отображении.
- Асимптотические доверительные интервалы.
- Асимптотические методы проверки гипотез о случайных выборках.
- Временные ряды: стационарность, эргодичность, эргодическая теорема, центральная предельная теорема, долгосрочная дисперсия и ее оценка.

3. Бутстрап.

- Бутстрап для случайных выборок. Эмпирическая функция распределения, аппроксимация распределения статистик с помощью бутстрапа.
- Бутстраповские доверительные интервалы. Бутстраповская корректировка смещения оценок. Тестирование гипотез с помощью бутстрапа.
- Бутстрап для временных рядов.

4. Линейная регрессия.

- Метод наименьших квадратов: обычный и обобщенный.
- Асимптотические свойства МНК-оценок. Проверка гипотез об МНКоценках.

5. Нелинейная регрессия.

- Нелинейный метод наименьших квадратов: обычный и обобщенный.
- Асимптотические свойства НМНК-оценок.
- Модель бинарного выбора и ее НМНК-оценка.
- Проверка гипотез об НМНК-оценках в случае, когда часть параметров не идентифицируется при нулевой гипотезе.

6. Непараметрическая регрессия.

- Непараметрическая регрессии: дискретные и непрерывные регрессоры.
- Непараметрическая ядерная оценка и ее асимптотические свойства.
- Методы выбора ширины окна в ядерных оценках.
- Многомерная непараметрическая ядерная оценка.
- Неядерные непараметрические методы.

7. Экстремальные оценки и метод максимума правдоподобия (ММП).

- Экстремальные оценки и их асимптотические свойства.
- о Функция правдоподобия и основное информационное неравенство.
- ММП-оценка и НМНК-оценка как экстремальные оценки.
- Асимптотические свойства ММП-оценок.
- Условный, совместный и маржинальный ММП.
- Тестирование гипотез о ММП-оценках: тесты Вальда, множителей Лагранжа и отношения правдоподобия.
- ММП-оценивание моделей бинарного выбора.
- ММП-оценивание моделей временных рядов.

8. Метод моментов.

- Моментные ограничения и моментные функции. Точная идентификация и сверхидентификация.
- Классический и обобщенный метод моментов (ОММ).
- Асимптотические свойства ОММ-оценок. Эффективность ОММ-оценок.
- Тесты Вальда, множителей Лагранжа и разности расстояний.
- *J*-тест о сверхидентифицирущих ограничениях.
- Метод инструментальных переменных.
- Обобщенный метод моментов для временных рядов. Примеры применения.
- Бутстрапирование ОММ-оценок.
- Тест Хаусмана о спецификации модели.

9. Панельные данные.

- Оценка панельной регрессии методом наименьших квадратов.
- Асимптотические свойства МНК-оценок.
- Случайные и фиксированные эффекты. Тест Хаусмана.
- Динамическая панельная регрессия и ее оценка методом инструментальных переменных.
- Панельные модели бинарного выбора: логит-модель с фиксированными эффектами и пробит-модель со случайными эффектами. Их оценка.

Типовые задачи к курсу.

Далее $\alpha, \beta, \sigma, \rho, \ldots$ — параметры статистической модели; $\widehat{\alpha}_n, \widehat{\beta}_n, \widehat{\sigma}_n, \widehat{\rho}_n, \ldots$ — оценки параметров, построенные по выборке или временному ряду длины $n; x, y, z, e, \ldots$ — случайные величины или вектора, имеющие все необходимые моменты; f(y|x) — функция плотности условного распределения y при фиксированном x; Med(y|x) — условная медиана; E(y|x) — условное среднее; Var(y|x) — условная дисперсия.

Тема «Основные понятия».

- 1. Пусть распределение (x, y) является смесью распределений $\mathcal{N}((0, 0)', I_2)$ с весом 1/2 и $\mathcal{N}((1, 1)', I_2)$ с весом 1/2, где I_2 есть 2×2 единичная матрица. Найти $\mathsf{E}(y|x)$, $\mathsf{Var}(y|x)$ и f(y|x).
- 2. Верно ли, что E(y|x) = E(y|x,z) п.н., если (i) y и z независимы, (ii) (x,y) и z независимы?
 - 3. Найти функцию f, реализующую минимум выражения E|y-f(x)|.
- 4. Установить, что минимум выражений $E|y-(ax+b)|^2$ и $E|E(y|x)-(ax+b)|^2$ достигается при одних и тех же $a,b\in\mathbb{R}$.
- 5. Пусть $\{(x_i,y_i)\}_{i=1}^n$ случайная выборка. Из нее выбрали все элементы (x_i,y_i) , у которых $y_i>0$, получив новый набор данных $\{(x_j^*,y_j^*)\}_{j=1}^m$, где m число элементов, у которых $y_i>0$. Показать, что $\{(x_i^*,y_i^*)\}_{i=1}^m$ случайная выборка.

Тема «Асимптотические методы в эконометрике».

- 6. Пусть $\{x_i\}_{i=1}^n$ случайная выборка. Показать, что (i) $\sqrt{n}(\overline{x}_n \alpha) \sim \mathcal{N}(0, \sigma^2)$ при любом $n \geqslant 1$, если $x_1 \sim \mathcal{N}(\alpha, \sigma^2)$; (ii) $\sqrt{n}(\overline{x}_n \alpha) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$ при $n \to \infty$, если $\mathsf{E} x_1 = \alpha$, $\mathsf{Var}(x_1) = \sigma^2$.
- 7. Пусть $\sqrt{n}(\widehat{\rho}_n \rho) \stackrel{d}{\to} \mathcal{N}((0,0)',I_2)$. Найти асимптотическое распределение $\|\widehat{\rho}_n\|^2$ при всех значениях $\rho \in \mathbb{R}^2$.
- 8. В условиях предыдущей задачи построить 5% асимптотический доверительный интервал для $\|\rho\|^2$.
 - 9. В условиях предыдущей задачи проверить гипотезу $H_0: \|
 ho \|^2 = 0.$
- 10. Пусть $(e_t)_{t\in\mathbb{Z}}$ н.о.р. случайные величины с $\mathsf{E} e_t = 0$, $\mathsf{E} e_t^2 = 1$. Для каких $\beta_1, \beta_2 \in \mathbb{R}$ существует единственное стационарное решение реккурентного уравнения $x_t = \beta_1 x_{t-1} + \beta_2 x_{t-2} + e_t$, $t \in \mathbb{Z}$? Будет ли это решение эргодичным? Найти $\sigma > 0$, для которого $\sqrt{T} \overline{x}_T \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$ при $T \to \infty$. Построить состоятельную оценку σ^2 .

Тема «Бутстрап».

- 11. Пусть $(x_1, x_2, x_3) = (1, 1, 2)$. Построить эмпирическую функцию распределения по $\{x_i\}_{i=1}^3$. Найти бутстраповское распределение статистики $T = \overline{x}_3 Ex$. Сколько значений с ненулевой вероятностью принимает бутстраповский аналог статистики T?
- 12. Пусть $\rho = \operatorname{Corr}(x,y)$ и $\widehat{\rho}$ выборочный коэффициент корреляции, отвечающий случайной выборке $\{(x_i,y_i)\}_{i=1}^n$. Скорректировать смещение оценки $\widehat{\rho}$ с помощью бутстрапа. Построить бутстраповский доверительный интервал для ρ . Проверить гипотезу $H_0: \rho = 0$ против $H_1: \rho \neq 0$ с помощью бутстрапа.
- 13. В условиях предыдущей задачи сделать все то же самое, предполагая, что $\{(x_t, y_t)\}_{t\geqslant 1}$ стационарный эргодичный временной ряд.

Тема «Линейная регрессия».

- 14. Пусть в популяции $y=\alpha+\beta x+e$, где $\mathrm{E}(e|x)=0$ и $\mathrm{E}(e^2|x)=\sigma^2$. Имеется две случайные выборки $\{(x_i^{(1)},y_i^{(1)})\}_{i=1}^n$ и $\{(x_i^{(2)},y_i^{(2)})\}_{i=1}^n$ из подпопуляций с $y\geqslant 0$ и y<0 соответственно. Как оценить (α,β) наиболее эффективным образом с помощью взвешенного метода наименьших квадратов по выборке $\{(x_i,y_i)\}_{i=1}^{2n}=\bigcup_{i=1}^2\{(x_i^{(j)},y_i^{(j)})\}_{i=1}^n$?
- 15. Пусть y^* зависимая переменная, а x^* объясняющий фактор. Наблюдается зашумленное значение (x,y) вектора (x^*,y^*) , т.е. $x=x^*+u$, $y=y^*+v$, где u,v –

ошибки измерения. Пусть $y^* = \beta x^*$ для некоторого $\beta \in \mathbb{R}$, а x^* , u, v – независимые нормальные величины со средним нуль. Имеется случайная выборка $\{(x_i, y_i)\}_{i=1}^n$.

- (i) Найти предел $\widehat{\beta} \beta$ при $n \to \infty$, где $\widehat{\beta} \mathsf{MHK}$ -оценка в регрессии y на x.
- (ii) Показать, что, вообще говоря, β невозможно оценить по данным $\{(x_i, y_i)\}_{i=1}^n$.
- (iii) Проверить гипотезу $H_0: \beta = 0$ против альтернативы $H_1: \beta > 0$ с помощью асимптотических методов и с помощью бутстрапа наиболее эффективным образом.

Тема «Нелинейная регрессия».

- 16. Пусть $y \in \{0,1\}$ и $P(y=1|x)=p(x,\beta)$ для некоторой гладкой функции p и $\beta \in \mathbb{R}$. Как оценить β наиболее эффективным образом с помощью взвешенного нелинейного метода наименьших квадратов?
- 17. Рассмотрим модель $\mathsf{E}[c_t|y_{t-1},y_{t-2},\ldots] = \alpha + \beta I(y_{t-1}>\Delta) + \delta y_{t-1}^\gamma$, где c_t потребление агента в момент t, а y_t его доход в момент t. Пары $\{(c_t,y_t)\}_{t=1}^T$ имеют непрерывное распределение, стационарны и эргодичны по t (при $T\to\infty$). Параметр Δ представляет собой нормальный уровень дохода и является известным.
 - (i) Опишите не менее 3х ситуаций, когда параметры модели не идентифицируются.
- (ii) Как численно посчитать НМНК-оценки параметров модели на компьютере с помощью метода концентрации?
- (iii) Проверить на 5% уровне значимости гипотезу $H_0: \gamma = 1$ против $H_1: \gamma < 1$ с помощью асимптотических методов и с помощью бутстрапа.
- (iv) Некто проводит линейную регрессию c_t на $(1, y_{t-1}, y_{t-2})$, получая соответствующие оценки коэффициентов $(\widehat{\alpha}, \widehat{\beta}_1, \widehat{\beta}_2)$. Какие величины состоятельно оценивают $(\widehat{\alpha}, \widehat{\beta}_1, \widehat{\beta}_2)$?
- (v) Рассмотрим гипотезу H_0 : $\delta=0$ против H_1 : $\delta\neq0$. При H_0 параметр γ не идентифицируется. Как проверить гипотезу H_0 на 5% уровне значимости?

Тема «Непараметрическая регрессия».

- 18. Пусть $f(x) = \mathsf{E}(y|x)$ и $x \in \{0,1,2\}$. Оцените вектор параметров $(f(k))_{k=0}^2$ и выпишите асимптотическое распределение соответствующей оценки.
- 19. Имеются реальные данные $\{r_t\}_{t=1}^T$ по доходностям 3-месячных казначейских облигаций США. По этим данным требуется на компьютере в пакете R выполнить следующие задания, где в качестве оценок следует брать оценки Надарая-Ватсона с ядром Епанечникова.
- (i) Оцените непараметрически плотность r_t . Сделайте это для 3x значений ширины окна, которые на глаз приводят к излишнему, недостаточному и оптимальному сглаживанию. Постройте графики полученных оценок, отложив на оси абсцисс значения доходностей r_t .
- (ii) Оцените непараметрически условное среднее $\mathsf{E}(\Delta r_t|r_{t-1})$ с $\Delta r_t = r_t r_{t-1}$. Сделайте это для $3\mathsf{x}$ значений ширины окна по аналогии с пунктом (i). Постройте графики полученных оценок на плоскости $(r_{t-1}, \Delta r_t)$, отметив на этой плоскости изначальные данные. Постройте аналогичный график для ширины окна, выбранного по правилу Сильвермана.
- (ііі) Оцените непараметрически условную дисперсию $Var(\Delta r_t|r_{t-1})$. Сделайте это для 3x значений ширины окна по аналогии с пунктом (і). Постройте графики полученных оценок.

(iv) В пункте (ii) для оптимального значения ширины окна вычислите и нарисуйте асимптотические границы 5% доверительного интервала вокруг оценки регрессионной функции $f(r) = \mathsf{E}(\Delta r_t | r_{t-1} = r)$.

Тема «Экстремальные оценки и метод максимального правдоподобия».

20. Пусть $\{r_t\}_{t\geqslant 1}$ — доходности некоторых финансовых активов. Предполагается, что r_t стационарно и эргодично во времени. Рассмотрим модель $r_t = \alpha + \beta r_{t-1} + e_t$ при $\mathsf{E}(\exp\{\theta e_t\}|I_{t-1}) = 1$ для некоторого известного $\theta \in \mathbb{R}$, где $I_{t-1} = \{r_{t-1}, r_{t-2}, \ldots\}$. Пусть также $(\widehat{\alpha}_T, \widehat{\beta}_T)$ — экстремальные оценки параметров (α, β) , для которых

$$(\widehat{\alpha}_T, \widehat{\beta}_T) = \arg\min_{a,b} \sum_{t=1}^T L_{\theta}(r_t - a - br_{t-1}),$$

где $L_{\theta}(u) = \exp\{\theta u\} - \theta u - 1$ – линейно-экспоненциальная функция потерь.

- (i) Доказать, что $\widehat{\alpha}_{\mathcal{T}},\widehat{\beta}_{\mathcal{T}}$ являются состоятельными оценками параметров α,β .
- (ii) Посчитать асимптотическое распределение и стандартные ошибки $(\widehat{\alpha}_T,\widehat{eta}_T)$.
- (ііі) Проверить гипотезу $H_0: \beta = 0$ против $H_1: \beta \neq 0$ на 5% уровне значимости с помощью бутстрапа.
- (iv) Некто оценивает параметры α, β с помощью обычного метода наименьших квадратов. Получатся ли таким методом состоятельные оценки для α и β ?

Предположим далее, что $\exp\{\theta r_t\}$ имеет экспоненциальное распределение условно на I_{t-1} .

- (v) Выпишите экстремальную задачу, которая возникает в методе максимального правдоподобия, и вычислите асимптотическое распределение ММП-оценок.
- (vi) Использую ММП-оценки, проверьте гипотезу $H_0: \beta = 0$ против $H_0: \beta \neq 0$ с помощью тестов Вальда, отношения правдоподобия и множителей Лагранжа.
- (vii) Допустим, что параметр θ изначально неизвестен. Можно ли получить состоятельные оценки параметров (α, β, θ) , решая экстремальную задачу из пункта (v), в которой оптимизация ведется в том числе и по θ ?

Тема «Метод моментов».

21. Дана система уравнений

$$egin{cases} q = lpha(p+w) + u, & ext{ уравнение спроса на рыбу,} \ q = eta_1 p + eta_2 z + v, & ext{ уравнение предложения рыбы на рынке,} \end{cases}$$

где q — количество проданной рыбы, p — равновесная цена рыбы, z — погода в море (z=0 плохая/z=1 хорошая), w — налог, который взимает администрация рынка за каждую купленную рыбу, u, v — какие-то остатки (все другие факторы). Пусть Ezu=Ezv=Ewu=Ewv=0. Пусть также имеется случайная выборка $\{(p_i,q_i,w_i,z_i)\}_{i=1}^n$ за n периодов.

- (i) Какие параметры модели можно состоятельно оценить, если z ненаблюдаемо? Как это сделать?
 - (ii) Можно ли оценить параметр α с помощью МНК? Тот же вопрос для β_1,β_2 .
- (ііі) Как оценить параметры модели наиболее эффективным образом с помощью обобщенного метода моментов.

- (iv) Предполагая, что $\mathsf{E}[uv|z,w]=0$, $\mathsf{E}[u^2|z,w]=\sigma_u^2$, $\mathsf{E}[v^2|z,w]=\sigma_v^2$, выписать явную формулу оценок из пункта (iii).
 - (v) Выписать асимптотические распределения полученных оценок.
- (vi) Как проверить гипотезу $H_0: \beta_2 = 0$ против $H_1: \beta_2 > 0$ на 5% уровне значимости с помощью асимптотических методов? С помощью бутстрапа?
- (v) Проверить спецификацию модели с помощью J-теста. Какие моментные условия в действительности проверяет J-тест, когда $\mathsf{E}[uv|z,w]=0$, $\mathsf{E}[u^2|z,w]=\sigma_u^2$, $\mathsf{E}[v^2|z,w]=\sigma_v^2$?

Тема «Панельные данные».

- 22. Имеются данные за 10 периодов $t=1,\ldots,10$ по избыточным доходностям рыночного портфеля r_t и по избыточным доходностям $\{r_{it}\}_{i=1}^n$ для n случайно выбранных акций рынка США.
- (i) Опишите подлежащую популяцию и объясните, почему величины r_t^m могут считаться неслучайными в данной постановке.

Рассмотрим модель вида $r_{it}=\alpha_i+\beta_i r_t+u_{it}$, где $\{u_{it}\}$ – н.о.р. случайные величины по (i,t) с $Eu_{it}=0$ и $Eu_{it}^2=\sigma^2$. Пусть вначале $\alpha_i\equiv\alpha$.

- (ii) Предложите какое-нибудь преобразование уравнений модели, которое уберет шумовые величины β_i и позволит оценить α состоятельно.
- (iii) Оцените α наиболее эффективным образом, использую преобразованные уравнения из пункта (ii). Приведите вашу оценку $\hat{\alpha}$ к наиболее компактному виду.
 - (iv) Является ли $\widehat{\alpha}$ несмещенной оценкой? Состоятельной оценкой?
- (v) Выпишите асимптотическую дисперсию $\widehat{\alpha}$ и отвечающую ей стандартную ошибку.
 - (vi) Проверьте на 5% уровне значимости гипотезу H_0 : $\alpha = 0$ против H_1 : $\alpha \neq 0$.
- (vii) Найдите наилучшую несмещенную линейную (по r_{it}) оценку α на основе первоначальных уравнений модели.

Пусть теперь $\{\alpha_i\}_{i=1}^n$ – н.о.р. случайные величины.

- (viii) Какую величину состоятельно оценивает $\widehat{\alpha}$ из пункта (iii)?
- (ix) Какую гипотезу H_0 в действительности проверяет ваш тест из пункта (vi)? На каком уровне значимости?