

DC to 2.0 GHz Symmetric Multiplier

Preliminary Technical Data

ADL5391

FEATURES

Ultra-Fast Symmetric Multiplier Function: $V_W = \alpha \times (V_X \times V_Y) / 1V + V_Z$ **Unique Design Ensures Absolute XY-Symmetry** Identical X and Y Amplitude/Timing Responses Adjustable Gain Scaling, a DC coupled Throughout, 3-dB Bandwidth of 2 GHz Fully-Differential Inputs, may be used Single-Ended Low Noise, High Linearity, **Accurate, Temperature Stable Gain Scaling** Single-Supply Operation (4.5 to 5.5 V @ 130mA) **Low Current Power Down Mode** 16-lead Chip-Scale Package

APPLICATIONS

Wideband Multiplication and Summing High-Frequency Analog Modulation Adaptive Antennas (Diversity/Phased-Array) Square-Law Detector and True RMS Detector **Accurate Polynomial Function Synthesis**

GENERAL DESCRIPTION

The ADL5391 draws on three decades of experience in advanced analog multiplier products. It provides the same general mathematical function that has been field-proven to provide an exceptional degree of versatility in function synthesis:

$V_W = \alpha \times (V_X \times V_Y)/1V + V_Z$

The most significant advance in the ADL5391 is the use of a new multiplier core architecture, which differs markedly from the conventional form that has been in use since 1970. The conventional structure, employing a current-mode, trans-linear core, is fundamentally asymmetric with respect to the X and Y inputs, leading to relative amplitude and timing misalignments that are problematic at high frequencies. The new multiplier core eliminates these misalignments by offering absolutely symmetric signal paths for both X and Y inputs. The Z input allows a signal to be added directly to the output. This can be used to cancel a carrier or to apply a static offset voltage.

The fully differential X, Y and Z input interfaces are operational over a ±2V range-and they can be used in single-ended fashion as well. A user applied input common-mode can be varied from

Rev. PrB. 6/1/06

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

the internally set V_{PS}/2 down to ground. These input interfaces each present a differential 500 Ω input impedance up to approximately 700 MHz, decreasing to 50 Ω at 2 GHz. The gain scaling input, GADJ, can be used for fine adjustment of the gain scaling constant (a) about unity.

The differential output can swing $\pm 2V$ about the Vps/2 common-mode and can be taken in a single-ended fashion as well. The output common-mode is designed to interface directly to the inputs of another ADL5391. Light DC loads can be ground referenced; however, AC-coupling of the outputs is recommended for heavy loads.

The ENBL pin allows the ADL5391 to be disabled quickly to a standby mode. The ADL5391 operates off supply voltages from 4.5 V to 5.5 V while consuming approximately 130 mA.

The ADL5391 is fabricated on Analog Devices' proprietary, high performance 65 GHz SOI complementary SiGe bipolar IC process. It is available in a 16-lead Pb-free LFCSP package and operates over a -40°C to +85°C temperature range. Evaluation boards are available.

Fax: 781.461.3113 © 2006 Analog Devices, Inc. All rights reserved.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration- 16-Lead Lead Frame Chip Scale Package (LFCSP)

Table 1. Pin Function Descriptions

Pin No.	Mnemonic	Function
1,7	COMM	Device Common. Connect via lowest possible impedance to external circuit common.
2, 3, 4	VPOS	Positive Supply Voltage. 4.5 V – 5.5 V.
5,6	WPLS, WMNS	Differential Outputs. (Is pull-up required?)
8	GADJ	Denominator Scaling Input
9, 10	ZMNS, ZPLS	Differential Intercept Inputs. Must be ac-coupled. Differential impedance 50 Ω nominal.
11, 12	YPLS, YMNS	Differential X-Multiplicand Inputs.
13, 14	XPLS, XMNS	Differential Y-Multiplicand Inputs.
15	ENBL	Chip Enable. Pull high to enable.
16	VMID	Vpos/2 Reference Output. Connect decoupling capacitor to circuit common.

SPECIFICATIONS

 $V_S = 5 \text{ V}, T_A = 25^{\circ}\text{C}, Z_L = 50 \Omega, ZPLS = ZMNS = Open, GADJ = Open, unless otherwise noted Transfer Function: } \mathbf{W} = \mathbf{XY/1V} + \mathbf{Z}, Common mode internally set to 2.5V nonimal$

Table 2.

Parameter	Conditions	Min	Тур	Max	Unit
MULTIPLICAND INPUTS (X,Y)	XPLS, XMNS, YPLS, YMNS				
Differential Voltage Range	differential, Common Mode = 2.5V		2		Vpp
Common Mode Range	For Full Differential Range	0		2.5	V
Offset Voltage	DC		TBD		mV
Differential Input Impedance	f=DC		500		Ω
	f = 2 GHz		50		
Feedthrough, X or Y	f = 10MHz, $X(Y) = 0V$, $Y(X) = 0dBm$, relative to condition where $X(Y) = +1V$		TBD	-35	dB
	f = 100MHz			-35	
Gain	X=100 MHz and 0dBm, Y=1V		0		dB
CMRR	±1Vp-p, f<1MHz		TBD		dB
INTERCEPT OUTPUT OFFSET INPUT (Z)	ZPLS, ZMNS				
Differential Voltage Range	Common Mode from 2.5 V down to COMM		2		Vpp
Common Mode Range	For Full Differential Range	0		2.5	V
Gain	From Z to W, F≤10MHz		0		dB
-3 dB Small-Signal Bandwidth			TBD		
Differential Input Impedance	f = DC		500		Ώ
	f = 2GHz		50		
CMRR	±1Vp-p, f<1 MHz		TBD		dB
OUTPUTS (W)	WPLS, WMNS				
Differential Voltage Range	No External Common Mode		±2		V
Common Mode Output			2.5		V
Noise Power Spectral Density	X=Y=1V,		2.3		dBm/Hz
rioise romer spectru. Sensity	f= 10 MHz		-133		0.51.1,11.2
	f= 100 MHz		-133		
	1 100 11112		.55		
	X=Y=0				
	f = 10 MHz		-138		
	f= 100 MHz		-138		
Noise Voltage Spectral Density	X=Y=0, F =10 MHz		10		nV/√Hz
Differential Output Impedance	f=DC		TBD		Ώ
Differential output impedance	f = 2GHz		50		
Maximum Current	Sink or source		TBD		mA
DYNAMIC CHARACTERISTICS	Silik or source				
Frequency Range	X, Y, Z to W,	0		2	GHz
rrequeries narige	X and Y to W, Z=0			_	O. I.E
DC Non-linearity	$X(Y) = \pm 1V, Y(X) = 1V$		TBD		%FS
Slew Rate	W from -2.0V to 2.0V		TBD		V/µs
Settling Time	W 110111 = 2.0V to 2.0V		טטו		ν/μ3
OIP3	Two tone IP3 test. $X(Y) = 100 \text{mVp/tone}$ (-10 dBm into 50				dBm
OIF 3	ohms), $Y(X)=1$,				ubiii
	f1= 9.9 MHz, f = 10 MHz		20		
	f1= 99 MHz, f2= 100 MHz,		29 29		
Output 1 dP Compression Point					dDm
Output 1 dB Compression Point	X(Y) to W, $Y(X) = 1V$, 10MHz		TBD		dBm
	100MHz				

Parameter	Conditions	Min	Тур	Max	Unit
REFERENCE VOLTAGE	VMID				
Set-point			$V_{\text{POS}}/2$		V
Maximum Source Current	Common-mode for $X, Y, Z = 2.5V$		50		mA
Output Impedance			TBD		Ώ
POWER AND ENABLE	VPOS, COMM, ENBL				
Supply Voltage Range		4.5		5.5	V
Total Supply Current	Common-mode for X, Y, $Z = 2.5V$		130		mA
PSRR					
Disable Current	ENBL = 0V		TBD		mA

ADL5391 EVALUATION BOARD

Figure 3. ADL5391-EVALZ Evaluation Board Schematic

Table 3. Evaluation Board Configuration Options

	on Board Configuration Options	I	
Component	Function	Part Number	Default Value
J1, J5, J6, J8	SMA connectors for single ended high frequency operation. If J5 and J6 are used, R9, R10. R14 and R15 should be removed. R2 and R3 should also be populated in order to match the inputs. If used in broadband operation, C4, C7, C8, and C2 need to be replaced with 0-ohm resistors.		
J2, J4, J7, J9	SMA connectors for broadband differential operation. If these are to be used, baluns should be removed and jumped over using 0-ohm resistors, and C14, C15, C18, and C20 should be removed		
T1, T2, T3, T4	Single ended to differential transformation for high frequency AC operation. If broadband operation is necessary, the baluns can be removed and jumped over using 0-ohm resistors. DC Block capacitors	TC1-1-13M+ (Mini-Circuits)	T3 and T4 are populated but the Y and Z inputs are set up for DC operation. 1 µF 0603 capacitor
C2, C8, C7, C4, C14, C17, C18, C20	DC Block capacitors		.1 μF 0402 capacitor
C5, C9, C6, C1, C13, C15, C16, C19	Not installed DC Block capacitors		Open 0402 capacitor
R18, R15, R14, R10, R9	Snubbing Resistors		0 Ώ 0402 Resistors
R19, R20	Snubbing Resistors		0 Ώ 0603 Resistors
R16, R17, R7, R13,	Snubbing Resistors		Open 0402 Resistors
C10	Filter Capacitor		100 pF 0402 Capacitor
C12	Filter Capacitor		.1 μF 0402 capacitor
C3	Filter Capacitor		.1 μF 0603 capacitor
C11	Filter Capacitor		4.7 μF 3216 capacitor
R1	Matching Resistor		56.2 'Ω 0603 Resistor
R2, R3, R12	Matching Resistor. Input impedance to X, Y, and Z inputs are the same. For the same frequency R1, R2, and R3 should be the same.		Open 0603 Resistor
R6, R5	Matching Resistor		24.9 Ώ 0402 Resistor
R4	Matching Resistor		100 Ώ 0603 Resistor
R8, R11	Can be used for voltage divider or filtering		Open 0603 Resistor
SW1	Enable switch: Enable = 5V, Disable = 0V		SW1 installed
WM_DC, WP_DC, XM_DC, XP_DC, YM_DC, YP_DC, ZM_DC, ZP_DC	Green Testloop		
VPOS	Red Testloop		
COMM, COMM2	Black Testloop		
ENBL_DC, GADJ_DC, VMID	Yellow Testloop		
DUT	ADL5391	ADL5391ARUZ	