Exemple de l'algorisme de Dantzig

Donat el graf dirigit G=(N, A)

 c_{ij} cost unitari de l'arc (i,j)

 t_{ij} temps unitari de recorregut de l'arc (i,j)

 p_l flux de sortida del node ℓ

s origen del flux

 x_{ij} flux a l'arc (i,j)

$$Z^* = Min_x \qquad \sum_{(i,j) \in A} c_{ij} \cdot x_{ij}$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} \sum_{\ell \neq s} P_{\ell} & \text{si } i = s \\ -P_{i} & \text{si } i \in \text{destins} \\ 0 & \text{altres casos} \end{cases} \quad \forall i \in N$$

$$\sum_{(i,j) \in A} t_{ij} \cdot x_{ij} \leq T$$
 restricció complicada
$$x_{i,j} \geq 0$$

Exemple:

Trobar el flux del node 1 als nodes 4 i 6, que minimitzi el cost, amb un temps màxim de 110 unitats.

$$X = \left\{ x \in \mathbb{R}_+^{|A|} \mid \sum_{j \in E(i)} x_{ij} - \sum_{j \in J(i)} x_{ij} = \left\{ \begin{array}{ll} \sum_{\ell \neq s} P_\ell & \text{si } i = s \\ -P_i & \text{si } i \in \text{destins} \\ 0 & \text{altres casos} \end{array} \right\}$$

$$g(x) \stackrel{\triangle}{=} -\sum_{(i,j)\in A} t_{ij} x_{ij} + T \ ; \ g(x) \ge 0$$

0) Determinar $x_0 \in X$ factible $(h(x_0) = 0, g(x_0) \ge 0)$ k=0.

$$x_{1,3} = 10$$

$$x_{2,4} = 10$$

$$x_{3,2} = 10$$

$$x_{4,5} = 6$$

$$x_{5,6} = 6$$

$$\sum_{(i,j)\in A} t_{ij} \cdot x_{ij} = 78$$

1-2) Les solucions obtingudes són:

	X_{ij}									
	(1,2)	(1,3)	(2,4)	(2,5)	(3,2)	(3,4)	(4,5)	(4,6)	(5,6)	(3,5)
Sol. 0	0	10	10	0	10	0	6	0	6	0
Sol. 1	10	0	10	0	0	0	0	6	0	0
Sol. 2	0	10	4	6	10	0	0	0	6	6
Sol. 3	10	0	4	6	0	0	0	0	6	0

Amb la generació de solucions primals, la solució obtinguda és el punt ressaltat en el gràfic.

$$\widetilde{x}_{1,2} = 5,2
\widetilde{x}_{1,3} = 4,8
\widetilde{x}_{2,4} = 4
\widetilde{x}_{2,5} = 6
\widetilde{x}_{5,6} = 6$$

$$\alpha_3 = 0.48 , \alpha_4 = 0.52$$

$$\sum_{(i,j)\in A} t_{ij} \cdot \widetilde{x}_{ij} = 110$$

$$\sum_{(i,j)\in A} c_{ij} \cdot \widetilde{x}_{ij} = 86$$