NOTES ON THE THEORY OF COMPUTATION

YANNAN MAO

13TH SEPTEMBER 2022

CONTENTS

1	Automata and Formal Languages	1
1.1	Finite-State Automata and Regular Languages	1

AUTOMATA AND FORMAL LANGUAGES

An alphabet is a finite set Σ , and a word over the alphabet Σ is a finite sequence or string of the elements of Σ . If a word w is the sequence $(w_0, ..., w_n)$ for some $n \in \mathbb{N}$, we may write the word as $w_0 \cdots w_n$. The empty word is denoted by ε . The set of all words over Σ is Σ^{*1} . A formal language over the alphabet Σ is a subset of Σ^* .

An **automaton** is an ordered sequence that **accepts** some words over an alphabet. The set of words an automaton accepts forms a language, which is unique, in which case we say the automaton **recognises** the language. Given an automaton M, we may speak of the unique language recognised by M as the **language of the automaton** M and denote it by L(M). An automaton may accept no string, in which case the language thereof is \emptyset .

1.1 Finite-State Automata and Regular Languages

Definition 1. A **deterministic finite-state automaton** is an ordered quintuple $(\Sigma, S, \delta, s_0, F)$ wherein

- (a) Σ is an alphabet,
- (b) *S* is a finite set of **states**,
- (c) $\delta: S \times \Sigma \to S$ is the transition function,
- (d) $s_0 \in S$ is the initial state, and
- (e) $F \subseteq S$ is the set of final states or accept states.

Let $M = (\Sigma, S, \delta, s_0, F)$ be a deterministic finite-state automaton and let $w = w_0 \cdots w_n$ wherein $n \in \mathbb{N}$ be a word over Σ . Then M accepts w if there exists a finite sequence of states (r_0, \dots, r_n) in S such that

- (a) $r_0 = s_0$,
- (b) $\delta(r_i, w_i) = r_{i+1}$ for i = 0, ..., n-1, and
- (c) $r_n \in F$.

 $^{^{1*} \}text{ is the unary operator of Kleene star, defined as } A^* = \{a_0 \cdots a_n \ : \ n \in \mathbb{N} \ \land \ \forall i \in \mathbb{N}_{< n+1} (a_i \in A)\}.$

Definition 2. Let Σ be an alphabet, and let $a \in \Sigma$. Then some $R \subseteq \Sigma^*$ is a regular language if

- (a) $R = \emptyset$,
- (b) $R = \{\varepsilon\},\$
- (c) $R = \{a\},\$
- (d) $R = R_1 \cup R_2$ wherein R_1 and R_2 are regular languages over Σ ,
- (e) $R = R_1 R_2^2$ wherein R_1 and R_2 are regular languages over Σ , or
- (f) $R = R_0^*$ wherein R_0 is a regular language over Σ .

An expressed used to characterise a regular language is a regular expression.

Definition 3. A **nondeterministic finite-state automaton** is an ordered quintuple $(\Sigma, S, \delta, s_0, F)$ wherein

- (a) Σ is an alphabet,
- (b) *S* is a finite set of states,
- (c) $\delta: S \times \Sigma_{\varepsilon} \to \mathcal{P}(S)^3$ is the transition function,
- (d) $s_0 \in S$ is the initial state, and
- (e) $F \subseteq S$ is the set of final or accept states.

Let $M = (\Sigma, S, \delta, s_0, F)$ be a nondeterministic finite-state automaton and let w be a word over Σ . Then M accepts w if $w = w_0 \cdots w_n$ wherein $n \in \mathbb{N}$ such that each $w_i \in \Sigma_{\varepsilon}$, $i \in \mathbb{N}_{< n+1}$, and that there exists a finite sequence of states (r_0, \dots, r_n) in S such that

- (a) $r_0 = s_0$,
- (b) $r_{i+1} \in \delta(r_i, w_i)$ for i = 0, ..., n 1, and
- (c) $r_n \in F$

We say that two automata are equivalent if they recognise the same language.

Theorem 1. Every nondeterministic finite-state automaton has an equivalent finite-state automaton.

 $^{^{2}}R_{1}R_{2}$ is the concatenation of R_{1} and R_{2} , defined as $R_{1}R_{2} = \{xy : x \in R_{1} \land y \in R_{2}\}$

 $^{^3\}varSigma_{\varepsilon}$ denotes the union of \varSigma and $\{\varepsilon\}$.

Proof. Let $N=(\Sigma,S,\delta,s_0,F)$ be the nondeterministic finite-state automaton recognising some language A. We construct a deterministic finite-state automaton $M=(\Sigma,S',\delta',s_0',F')$ recognising A.

First,
$$S' = \mathcal{P}(S)$$
.

TODO