Method of inductive transfer of electrical power to several moving loads

Patent number:

DE19735624

Publication date:

1998-12-10

Inventor:

SEELIG ANTON (DE); SALAMA SAMIR DR (DE);

LINDIG ERIK (DE); KAUS EBERHARD (DE)

Applicant:

DAIMLER BENZ AG (DE)

Classification:

- international:

H02J5/00; H02M7/04

- european:

H02J5/00T

Application number: DE19971035624 19970818 Priority number(s): DE19971035624 19970818 Also published as:

WO9909634 (A1) EP0968559 (A1)

US6462432 (B1)

CA2300887 (A1)

AU748413 (B2)

Report a data error here

Abstract of **DE19735624**

The method transfers power from a medium frequency current source to moving loads via an elongated transmission line and inductive pickups (IAX.IAY) associated with the moving loads. current rectifier elements and buffers. The transmission line is supplied with a medium frequency current of constant effective value during power transfer. The output voltage (UL) of the current source is continuously adjusted during a maximum setting time, which only lasts for a few half periods of the medium frequency, to a value corresp. to the variable total power input to the transmission line. Each current rectifier element switched between the buffer and the pick-up adjusts the mean power acquired from the transmission line and passed to the buffer within a time greater than the power supply setting time, continuously and with a limited rate of change.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Patentschrift

_® DE 197 35 624 C 1

(1) Aktenzeichen: 197 35 624.9-32

② Anmeldetag: 18. 8.97

43 Offenlegungstag: (45) Veröffentlichungstag

der Patenterteilung: 10. 12. 98

(旬) Int. Cl.⁶: H 02 J 5/00 H 02 M 7/04

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Daimler-Benz Aktiengesellschaft, 70567 Stuttgart,

(72) Erfinder:

Seelig, Anton, 65439 Flörsheim, DE; Salama, Samir, Dr., 13591 Berlin, DE; Lindig, Erik, 65795 Hattersheim, DE; Kaus, Eberhard, 64287 Darmstadt,

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

WO 96 20 526 A1 = DE444 6779c2 WO 92 17 929 A1

GREEN, A.W., BOYS, T.: "10 KHz inductively coupled power transfer..." in: "Power Electronics and variable-Speed Drives", 26-28 October 1994, Conference Publication No.399, CIEE, 1994, S.694-698;

Werfahren und Anordnung zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher

Die Erfindung betrifft ein Verfahren und eine Anordnung zur induktiven Übertragung elektrischer Leistung aus einer Mittelfrequenzquelle mit einer Frequenz f_M auf einen oder mehrere bewegte, induktiv an die Übertragungsleitung angekoppelte Verbraucher über die langgestreckte Übertragungsleitung.

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Anordnung zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher nach dem Oberbegriff des Anspruchs 1, wie sie aus der gattungsbildend zugrundeglegten Schrift WO 96/20526 A1 als bekannt hervorgeht.

In der Schrift WO 96/20526 A1 (entsprechend der DE 44 46 779 C2) ist ein Verfahren zur induktiven Übertragung elektrischer Leistung aus einer Mittelfrequenzstromquelle mit einer Frequenz f_M auf einen oder mehrere bewegte Verbraucher über eine langgestreckte Übertragungsleitung und den bewegten Verbrauchern zugeordneten induktiven Aufnehmern IA_x , IA_Y mit nachgeschalteten Stromrichterstellgliedern zum Einstellen der von der Übertragungsleitung aufgenommenen und Pufferspeichern, an welche die bewegten Verbraucher angeschlossen sind, zugeführten Leistung P_{LX} , P_{LY} offenbart, wobei die Übertragungsleitung von einer Stromquelle mit einem während der Leistungsübertragung in seinem Effektivwert konstanten Mittelfrequenzstrom (I_L) gespeist wird.

Aus der Anmeldung WO 92/17929 A1 sowie der Veröffentlichung von A. W. Green und T. Boys, Power Electronics and Variable-Speed Drives, 26–28 October 1994, Conference Publication No. 399, C IEE, 1994, Seite 694 bis 698, welche die Erfindung entsprechend der WO 92/17929 A1 beschreibt, ist ein Verfahren und eine Anordnung zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher bekannt.

Hierbei wird, wie an Hand der $\mathbf{Fig.}$ 1 bis 3 der Veröffentlichung beschrieben ist, der einem Drehstromnetz entnommene Strom gleichgerichtet und über ein aus den IGBTs S1, S2, den Dioden D1, D2 und einer Speicherdrossel L_d bestehendem Stromstellglied einem aus den IGBTs S3 und S4 und den magnetisch gekoppelten Induktivitäten L2a und L2b bestehenden Wechselrichter zugeführt. Dieser erzeugt einen Mittelfrequenz-Wechselstrom von 10 kHz und speist diesen in einen aus einer Induktivität L1 und einer Kapazität C1 gebildeten Parallelschwingkreis ein. Die Induktivität L1 ist dabei die als langgestreckte Doppelleitung ausgebildete Übertragungsleitung eines Systems zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher. Die bewegten Verbraucher sind über induktive Aufnehmer, wie in Fig. 8 der Veröffentlichung gezeigt, an die Übertragungsleitung magnetisch gekoppelt. Die Spule des induktiven Aufnehmers bildet, wie in den Fig. 1, 2 und 10 der Veröffentlichung dargestellt, wiederum mit einem Kondensator einen Parallelschwingkreis.

Der von der Übertragungsleitung auf den Parallelschwingkreis des bewegten Aufnehmers übertragene Strom wird entsprechend der Fig. 10 in einem als Aufnehmer-Controller bezeichneten Stromrichterstellglied gleichgerichtet, mit einer Drossel geglättet und je nach dem Leistungsbedarf der an den Controller angeschlossenen Verbraucher entweder dem die Ausgangsspannung V₀ des Controllers puffernden Kondensator zugeführt oder an diesem Pufferkondensator vorbeigeleitet. Die Entscheidung hierzu wird von dem Schmittrigger des Controllers getroffen, der die Ausgangsspannung V₀ mit einer entsprechenden Referenzspannung vergleicht und den IGBT sperrt, wenn die Ausgangspannung zu klein ist, so daß der Strom den Ausgangspufferkondensator nachlädt, oder den IGBT in den leitenden Zustand steuert, damit der Strom am Ausgangspufferkondesator vorbeifließt, wenn die Ausgangspannung V₀ einen oberen Grenzwert überschritten hat.

Bei diesem Verfahren der Leistungsübertragung kommt es, wie in Spalte 1, Seite 697 und an Hand von Fig. 7 der Veröffentlichung beschrieben ist, bei plötzlichen Lastwechseln zu unerwünschten Einschwingvorgängen im gesamten Übertragungssystem, was mit der gegenseitigen Beeinflussung der Energieübertragung von mehreren Fahrzeugen verbunden ist und zusätzliche Dämpfungsmaßnahmen erforderlich macht.

Diese unerwünschten Einschwingvorgänge haben folgende Ursachen:

40

45

60

- Mit dem Schalten des Aufnehmer-Controllers, der keine stufenlose Änderung der von dem induktiven Aufnehmer aufgenommenen Leistung und der dabei in die Übertragungsleitung eingekoppelten Spannung ermöglicht, wird eine starke Anregung des aus der Übertragungsleitung und dem Kondsator C1 in Fig. 3 gebildeten Parallelschwingkreises wirksam

 Die aus der Übertragungsleitung aufgenommene Energie wird zunächst dem Parallelschwingkreis entzogen und über den einspeisenden Stromrichter wegen der in diesem enthaltenen Induktivitäten nur verzögert und nachdem eine Spannungsänderung am Kondensator C1 erfaßt wurde, nachgeliefert.

Die Erfindung hat die Aufgabe, ein Verfahren zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher anzugeben, das keine Einschwingvorgänge in dem allen bewegten Verbrauchern gemeinsamen Strom der Übertragungsleitung aufweist.

Die Aufgabe wird durch die Merkmale des Anspruches 1 gelöst. Weiterführende und vorteilhafte Ausgestaltungen sind den Unteransprüchen und der Beschreibung zu entnehmen.

Das Wesen der Erfindung wird in der Schaffung eines Verfahrens und einer Anordnung zur induktiven Übertragung elektrischer Leistung von einer stationären Übertragungsleitung auf bewegte Verbraucher gesehen, wobei

- die Übertragungsleitung von einer Mittelfrequenz-Stromquelle, deren Ausgangsspannung U_L sich in einer kurzen nur wenige Halbperioden der Mittelfrequenz dauernden Einstellzeit T_S auf den variablen der Verbraucherleistung entsprechenden Wert stufenlos einstellt, mit einem konstanten Mittelfrequenzstrom I_L gespeist wird
- und die Änderungsgeschwindigkeit der von der Übertragungsleitung über die induktiven Aufnehmer der bewegten Systeme aufgenommenen Leistung durch Stromrichterstellglieder, deren Einstellzeit TA größer als die Einstellzeit TS der Mittelfrequenz-Stromquelle ist, so begrenzt wird, daß die Mittelfrequenz-Stromquelle mit der entsprechenden Leistungsabgabe problemlos folgen kann.
- 5 Die Erfindung hat den Vorteil, daß Einschwingvorgänge zuverlässig vermieden werden. Ein weiterer Vorteil liegt darin, daß gleichzeitig auch eine gegenseitige Beeinflussung bewegter Verbraucher untereinander ausgeschlossen werden kann.

Das erfindungsgemäße Verfahren hat gegenüber dem Stand der Technik noch folgende weiteren Vorteile:

- Die Übertragungsfrequenz ist leistungsunabhängig und konstant, die induktiven Aufnehmer werden stets in ihrem Resonanzpunkt, d. h. im ihrem Betriebspunkt der optimalen Ausnutzung betrieben.
- Ein Zu- oder Abschalten von Teilkapazitäten bei Belastungsänderungen, wie beispielsweise die zum Stand der Technik zitierte Veröffentlichung auf Seite 698 und auch anhand der Fig. 12 zeigt, ist nicht erforderlich.

Im folgenden sind die Merkmale, soweit sie für die Erfindung wesentlich sind, eingehend erläutert und anhand von Figuren näher beschrieben. Es zeigen

- Fig. 1: einen Blockschaltplan des Gesamtsystems zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher,
 - Fig. 2a: den zeitlichen Verlauf des in die Übertragungsleitung eingeprägten Stromes IL,
- Fig. 2b: den zeitlichen Verlauf der von einem induktiven Aufnehmer eines bewegten Systems in die Übertragungsleitung eingekoppelten Spannung U_H,
- Fig. 2c: den zeitlichen Verlauf der Verbraucherleistung P_V und des Mittelwertes der von der Übertragungsleitung abgenommenen Leistung P_L,
 - Fig. 3: das Schaltprinzip der erfindungsgemäßen Anordnung,
- Fig. 4: den zeitlichen Verlauf der pulsförmigen Ausgangsspannung u,, des NF/MF-Umrichters und der zugehörigen Spannungsgrundschwingung U₁
 - Fig. 5a: ein Ersatzschaltbild zur Bildung eines eingeprägten MF-Stromes,
 - Fig. 5b: ein Zeigerdiagramm zum Ersatzschaltbild nach Fig. 4a für den Belastungsfall,
 - Fig. 5c: ein Zeigerdiagramm zum Ersatzschaltbild nach Fig. 4a für den Leerlauffall,
 - Fig. 6a: ein Ersatzschaltbild der Übertragungsleitung mit Stromeinprägung und mehrern angekoppelten Verbrauchern,
 - Fig. 6b: ein Zeigerdiagramm zum Ersatzschaltbild nach Fig. 5a,
- Fig. 7a: den zeitlichen Verlauf der Gleichrichterausgangsspannug u_B und der pulsweitenmodulierten Schalterspannung u_S des erfindungsgemäßen Stromrichterstellgliedes auf einem bewegten System bei großer Verbraucherleistung,
- Fig. 7b: Spannungsverläufe entsprechend Fig. 7a bei kleiner Verbraucherleistung.

Das erfindungsgemäße Verfahren wird zunächst allgemein an Hand des in Fig. 1 gezeigten Blockschaltplanes und der Diagramme in Fig. 2a bis 2c erläutert.

Der Blockschaltplan zeigt schematisch eine beispielsweise als Doppelleitung ausgebildete Übertragungsleitung, die über einen in Reihe geschalteten Kondensator C_L an eine sich schnell und stufenlos einstellende Mittelfrequenz-Stromquelle angeschlossen ist. Die Erfindung ist unabhängig von der Ausbildung der Übertragungsleitung und daher auch auf die koaxiale Leiteranordnung nach der DE 44 46 779 C2 anwendbar. Die aus einem weiter unten näher erläuterten Niederfrequenz-Mittelfrequenz-Umrichter mit nachgeschaltetem Ankopplungsnetzwerk realisierte schnelleinstellende Mittelfrequenz-Stromquelle prägt einen sinusförmigen, in seinem Effektivwert konstanten Mittelfrequenzstrom I_L mit der Frequenz f_M in die Übertragungsleitung ein. Eine bevorzugte Frequenz f_M liegt im Bereich um 20 kHz.

An die Übertragungsleitung sind die induktiven Abnehmer IA_X und IA_Y von beispeilsweise zwei bewegten Systemen X und Y magnetisch bzw. induktiv gekoppelt. Diese Kopplung erfolgt durch die in **Fig.** 1 dargestellten magnetischen Hauptflüsse Φ_{HX} und Φ_{HY} , welche die Leiterschleife der Übertragungsleitung und die Wicklung der induktiven Aufnehmer gemeinsam durchsetzen. Diese magnetischen Flüsse haben dieselbe Frequenz wie der Strom I_L des Übertragungsleiters und induzieren in diesem entsprechende Spannungen. Außerdem erzeugt der Strom I_L über die gesamte Länge der Übertragungsleitung zusätzlich den Leiterfluß Φ_L , der einen hohen induktiven Spannungsabfall auf der Übertragungsleitung induziert.

Der mit der Übertragungsleitung in Reihe geschaltete Kondensator C_L ist insbesondere so bemessen, daß der induktive Spannungsabfall auf der Übertragungsleitung durch die Spannung am dem Kondensator C_L vollständig kompensiert wird. Bei Vernachlässigung des ohmschen Spannungsabfalls auf der Leitung ist dann die am Ausgang der Stromquelle auftretende Spannung U_L gleich der Summe der von den magnetischen Hauptflüssen Φ_{HX} und Φ_{HY} in der Leiterschleife induzierten Spannungen. Das Produkt dieser Spannungen mit dem Strom I_L und dem Cosinus einer eventuell zwischen beiden Größen bestehenden Phasenverschiebung ist die über die induktiven Aufnehmer auf die bewegten Systeme übertragene Leistung.

Eine sich schnell und stufenlos einstellende Stromquelle gemäß der Erfindung bedeutet, daß sich die Stromquelle mindestens genau so schnell oder schneller und stufenlos auf Leistungsänderungen d. h. auf die erforderliche Ausgangspannung U_L einstellen kann, als diese über die induktiven Aufnehmer in die Übertragungsleitung eingekoppelt werden.

Unter dieser Voraussetzung ist vorteilhafterweise die Spannung U_L am Ausgang der Mittelfreduenz-Stromquelle auch bei dynamischen Leistungsänderungen in jedem Augenblick gleich der Summe der von den induktiven Aufnehmern in der Übertragungsleitung induzierten Spannungen, d. h. die Spannungen an der Leitungsinduktivität und an der in Reihe geschalteten Kapazität C_L ändern sich nicht, und es kommt zu keinen Einschwingvorgängen.

Da die Einstellzeit T_S der Mittelfrequenz-Stromquelle nicht beliebig klein werden kann, wird auf den bewegten Systemen die über die induktiven Abnehmer von der Übertragungsleitung aufgenommene Leistung erfindungsgemäß stufenlos und mit begrenzter Änderungsgeschwindigkeit eingestellt, so daß sich für die übertragene Leistung eine Einstellzeit T_A ergibt, die größer als die Einstellzeit T_S der Mittelfrequenz-Stromquelle ist.

Die Mittelfrequenz-Stromquelle weist eine maximale Einstellzeit (T_S) ihres Ausgangssignals auf, die kleiner ist als die Einstellzeit (T_A) der Leistungsaufnahme am Verbraucher. Die zwischen Mittelfrequenz-Stromquelle und Verbraucher liegende Übertragungsleitung ist als Serienschwingkreis für diese Mittelfrequenz ausgebildet.

Zu diesem Zweck ist vorzugsweise, wie Fig. 1 zeigt, auf den bewegten Systemen zwischen einen Energiepufferspeicher, aus dem die angeschlossenen Verbraucher Leistung mit beliebiger Anstiegsgeschwindigkeit entnehmen können, und den induktiven Aufnehmer IA ein Stromrichterstellglied geschaltet, das von einem Signal S_B in der Weise angesteuert wird, daß die Leistungsaufnahme von der Übertragungsleitung stufenlos und mit begrenzter Änderungsgeschwindigkeit erfolgt. Die in dem Signal S_B enthaltene Information zur Begrenzung der Änderungsgeschwindigkeit der Leistungsaufnahme kann vorzugsweise in einer eigens dafür vorgesehenen Begrenzungsstufe oder in einer anderen Ausführung

10

15

vorteilhaft in der Regelungsstufe, welche die dem Verbraucher zugeführte Ausgangsspannug U_A des Energiepufferspeichers auf den Sollwert U_{ASOLL} regelt, gebildet werden.

Der zu dem induktiven Aufnehmer IA am Eingang des Stromrichterstellgliedes parallel geschaltete Kondesator C_K bildet mit der Induktivität des Aufnehmers einen Parallelschwingkreis, der bei der Frequenz f_M des Übertragungsleiterstromes I_L in Resonanz kommt. Bei dieser Resonanz liefert der Kondensator C_K den gesamten Magnetisierungsstrom des induktiven Aufnehmers, und die Übertragungsleitung wird, wie die Phasengleichheit des in Fig. 2a dargestellten Übertragungsleiterstromes I_L und der in Fig. 2b dargestellten vom induktiven Aufnehmer IA in den Übertragungsleiter eingekoppelten Spannungen U_{H1} und U_{H2} zeigt, mit reiner Wirkleistung belastet. In Fig. 2c sind beispielhaft zwei unterschiedlich große, sich sprungförmig ändernden Verbraucherleistungen P_{V1} und P_{V2} mit der Dauer T_V sowie die von der Übertragungsleitung aufgenommenen und durch das Stromrichterstellglied im Anstieg begrenzten Leistungen P_{L1} und P_{L2} dargestellt. Entsprechend diesem Leistungsverlauf ändern sich auch die in die Übertragungsleitung eingekoppelten Spannungen während der Anstiegszeit T_A stetig.

In Betriebszeiten, in denen alle bewegten Verbraucher gleichzeitig einen geringeren Leistungsbedarf haben, insbesondere in gemeinsamen Stillstandszeiten der die Bewegung bewirkenden Antriebe, oder während des Inbetriebnehmens und Stillsetzens des Gesamtsystems, ist die Einspeisung kleinerer Ströme I_L in den Übertragungsleiter vorteilhaft. Der Niederfrequenz/Mittelfrequenz-Umrichter (NF/MF-Umrichter) weist daher, wie in Fig. 1 dargestellt ist, ein Eingangssignal IL_{SOLL} auf, das die Vorgabe beliebiger Ströme I_L zwischen dem Wert Null und einem Maximalwert ermöglicht. Die Anforderungen an die Änderungsgeschwindigkeit dieses Signals sind gering. Sie ist wesentlich kleiner zu bemessen als die Änderungsgeschwindigkeit der von der Übertragungsleitung abgenommenen Leistung.

Für viele Anwendungen ist ein ungeregeltes Einstellen des Übertragungsleiterstromes hinreichend genau. Beim Einwirken von starken Störgrößen sind jedoch höhere Genauigkeiten des Übertragungsleiterstromes vorteilhaft erreichbar, wenn dieser gemessen und die Meßgröße I_{LM}, wie in Fig. 1 gestrichelt dargestellt ist, dem NF/MF-Umrichter zum Zecke der Regelung des Übertragungsleiterstromes I_L auf den Sollwert IL_{SOLL}, zugeführt wird.

Das Schaltprinzip einer besonders vorteilhaften Anordnung zur Realisierung des erfindungsgemäßen Verfahrens zeigt die Fig. 3. Im ihrem linken Teil ist die aus dem NF/MF-Umrichter und dem Ankopplungsnetzwerk bestehende schnell einstellende Mittelfrequenz-Stromquelle dargestellt. Sie speist über einen Transformator TR die Übertragungsleitung mit einem bewegten System im rechten Teil der Fig. 3. Grundsätzlich ist davon auszugehen, daß eine Vielzahl, beispielsweise 10 oder mehr, in ihrem Prinzip gleiche Systeme an dieselbe Übertragungsleitung induktiv angekoppelt sind.

Der NF/MF-Umrichter besteht aus einem Drehstrom-Brückengleichrichter G1 mit einem nachgeschalteten Einphasen-Pulswechselrichter W. Die beiden Stromrichter sind über einen Gleichspannungszwischenkreis mit der Gleichspannung U_G und dem Pufferkondensator C_G miteinander verbunden. Die IGBTs T1 bis T4 des Wechselrichters werden über die in einer Pulsdauermodulationsstufe PM1 generierten Signale S1 bis S4 in der Weise ein- und ausgeschaltet, daß an dem an den Wechselrichter angeschlossenen Ankopplungsnetzwerk die in Fig. 4 dargestellte pulsförmige Wechselspannung u_W entsteht. Die Frequenz f_M dieser Wechselspannung ist konstant und wird der Modulationsstufe von einem Frequenzgenerator zugeführt. Über das ebenfalls der Modulationsstufe zugeführte Signal SD ist die Pulsdauer T_D der Wechselspannung u_W von Null bis auf den Maximalwert $T_M/2$, d. h. der halben Periodendauer der Frequenz f_M stufenlos einstellbar. Dabei ändert sich die ebenfalls in Fig. 4 dargestellte Grundschwingung U1 in ihrem Effektivwert von Null bis auf ihren maximalen Wert.

Das Ankopplungsnetzwerk besteht im wesentlichen aus einem Reihenschwingkreis mit einer Induktivität L_1 und einer Kapazität C_1 , wobei die Übertragungsstrecke an die Kapazität C_1 angekoppelt ist. Das Netzwerk wirkt als Filter, das die in der pulsförmigen Wechselspannung u_w enthaltenen Oberschwingungen unterdrückt und die Grundschwingung auf die Übertragungsleitung überträgt. Die weiteren Betrachtungen des erfindungsgemäßen Ankopplungsnetzwerkes beschränken sich daher auf sein Grundschwingungsverhalten. Sie werden an Hand des Ersatzschaltbildes in Fig. 5a und der Zeigerdiagramme in den Fig. 5b und 5c durchgeführt.

Mit Hilfe komplexer Größen berechnet sich die Ausgangsspannung U2 des Ersatzschaltbildes zu:

$$U_2 = \frac{U_1}{j\omega L_1} \cdot \frac{1}{j\sqrt{\frac{C_1}{L_1}\left(\frac{\omega}{\omega_1} - \frac{\omega_1}{\omega}\right) + \frac{1}{Z}}},$$

Darin ist

$$\omega = 2\pi f_M \text{ und } \omega_1 = \frac{1}{\sqrt{(L_1 C_1)}}.$$

Bei der erfindungsgemäßen Auslegung des Reihenschwingkreises für den Resonanzfall $\omega_1 = \omega$ berechnen sich die am Kondensator C_1 abzugreifende Ausgangsspannung U_2 und der einer beliebigen Impedanz Z zugeführte Ausgangsstrom I_2 zu:

$$U_{2} = -j \frac{U_{1}}{\sqrt{\frac{L_{1}}{C_{1}}}} \cdot Z, \qquad I_{2} = -j \frac{U_{1}}{\sqrt{\frac{L_{1}}{C_{1}}}}$$

Diese Zusammenhänge zeigen, daß der in Fig. 3 dargestellte NF/MF-Umrichter und der angeschlossene Reihenschwingkreis bei Resonanz eine Mittelfrequenz-Stromquelle bilden, die in eine beliebige Impedanz Z und somit auch in die Übertragungsleitung, die in Fig. 3 über den Transformator TR an die Kapazität C₁ angeschlossen ist, einen nur von der Grundschwingungsspannung U₁ sowie der Dimensionierung des Reihenschwingkreises abhängenden Strom I₂ treibt.

Die Spannung U_2 , die sich an der Kapazität C_1 , d. h. am Ausgang der Mittelfrequenz-Stromquelle einstellt, ist gleich dem Produkt des Stromes I_2 und der angeschlossenen Impedanz Z. Für die vom Ankopplungsnetzwerk übertragene Leistung P_1 gilt allgemein:

$$P_{i} = \frac{U_{i}^{2}}{\sqrt{\frac{L_{i}}{C_{i}}}} \cdot \frac{R}{\sqrt{\frac{L_{i}}{C_{i}}}}$$

Hierbei ist R ein im Strompfad von I2 gedachter ohmscher Widerstand.

Die Gleichung für den Ausgangsstrom der Stromquelle I_2 zeigt, daß dieser über die Spannungsgrundschwingung U_1 und somit über die Pulsdauer T_D durch das der Pulsdauermodulationsstufe PM1 zugeführte Signal SD einstellbar ist. Das Signal SD kann, wie Fig. 3 zeigt, mit dem Sollwert des Übertragungsleiterstromes I_{LSOLL} übereinstimmen. In diesem Fall steuert der Sollwert den Übertragungsleiterstrom I_L .

Bei der Vorgabe der Pulsdauer T_D schwankt jedoch die Spannungsgrundschwingung U1 und somit auch der Übertragungsleiterstrom I_L mit der Zwischenkreisspannung U_G bzw. der Netzspannung. Darüber hinaus können Bauelementetoleranzen, die beispielsweise auch von der Temperatur abhängen, weitere Abweichungen des Übertragungsleiterstromes I_L vom Sollwert verursachen. Es ist daher bei höheren Anforderungen an die Genauigkeit der zu übertragenden Leistung vorteilhaft, wie in **Fig.** 3 gestrichelt dargestellt ist, den Übertragungsleiterstrom zu messen und die Abweichung der Messgröße I_{LM} vom Sollwert I_{LSOLL} mit einem Regler KOR, der ein Signal SDR als weitere Komponente des die Pulsdauer T_D steuernden Signals SD erzeugt, auf Null zu regeln. Diese Regelung bewirkt jedoch nur eine Korrektur des Übertragungsleiterstromes I_L , um eine höher Genauigkeit zu erreichen und beeinflußt das schnelle Einstellen dieses Stromes bei Änderungen der übertragenen Leistung nicht nachteilig.

Die Zeigerdiagramme in Fig. 5b und 5c veranschaulichen zwei Sonderfälle der Belastung der erfindungsgemäßen Stromquelle. In Fig. 5b ist die Impedanz Z ein ohmscher Widerstand R, der in seinem Betrag mit dem Schwingwiderstand $\sqrt{(L_{1/C1})}$ des Reihenschwingkreises übereinstimmt. In diesem Fall sind der Ausgangstrom I₂ und der Kondensatorstrom I_{C1} gleich groß, und der Wechselrichter-Ausgangsstrom I₁ eilt gegenüber der Spannungsgrundschwingung U₁ um den Phasenwinkel ϕ_1 = 45° nach. Es ist nachgewiesen, daß bei diesem Belastungsfall die auf die Leistung P₁ bezogene Blindleistung der Induktivität L₁ und damit deren Abmessungen ein Minimum haben. Das erfindungsgemäße Ankopplungsnetzwerk wird daher für die Übertragung einer gegebenen Leistung P₁ vorteilhaft so dimensioniert, daß die Leistung P₁ bei der Bedingung R = $\sqrt{(L_{1/C1})}$ erreicht wird. Im Leerlauffall ist R = 0. Für den Fall, daß alle Leitungsinduktivitäten kompensiert sind, ist auch Z = 0. Das entspricht einem kurzgeschlossenen Kondensator C₁ und dem Zeigerdiagramm in Fig. 5c.

Das erfindungsgemäße Ankopplungsnetzwerk hat in dem betriebsmäßig bevorzugten Belastungsbereich von $0 < R \le \sqrt{(L_{I/C1})}$ ausgezeichnete Dämpfungseigenschaften und schwingt bei sprunghaften Änderungen des Belastungswiderstandes R in wenigen Halbperioden der Mittelfrequenz f_M überschwingungsfrei auf den neuen stationären Zustand ein. Daraus folgt für die erfindungsgemäße Mittelfrequenz-Stromquelle, bestehend aus dem an Hand der Fig. 3 und 4 beschriebenen NF/MF-Umrichter und dem an Hand der Fig. 3 und 5a bis 5c beschriebenen Ankopplungsnetzwerk, eine wesentlich kürzere Einstellzeit T_S als diese mit einer Mittelfrequenz-Stromquelle nach dem Stand der Technik erreichbar ist.

Durch die Wahl des Übersetzungsverhältnisses w_1/w_2 des Transformators TR in Fig. 3 werden die auf der Übertragungsleitung bei Nennleistungsaufnahme der bewegten Systeme wirksamen Ersatzwiderstände R_{XN} ' so angepaßt, daß ihre Summe am Kondensator C_1 die Bedingung ΣR_{XN} ' = $\sqrt{(L_{1/C1})}$ erfüllt.

Fig. 6a zeigt ein Ersatzschaltbild der erfindungsgemäßen Änordnung mit Übertragungleitung und drei bewegten Systemen. Der an die Mittelfrequenz-Stromquelle angekoppelte Teil der Anordnung wird durch die auf die Stromquellenseite transformierten Schaltungsgrößen repräsentiert. Das sind die Induktivität der Übertragungsleitung L_L , die Kapazität C_L , welche die Spannung an der Induktivität L_L weitgehend kompensiert, und von den bewegten Systemen die transformierten Hauptinduktivitäten L_{HX} der induktiven Aufnehmer mit den Kapazitäten C_{KX} und den Ersatzwiderständen R_X für beliebige übertragene Leistungen. Bei langen Übertragungsleitungen von z. B. 200 m ist im allgemeinen, wie das Zeigerdiagramm in Fig. 6b zeigt, die Spannung U_{LL} an der Induktivität L_L größer als die Summe aller den übertragenen Teilleistungen entsprechenden Spannungen U_{HX} . Wegen der nahezu vollständigen Kompensation der Spannung U_{LL} durch die Kondensatorspannung U_{CL} geht nur die Differenz beider Spannungen in die Ausgangsspannung U_2 der Stromquelle ein. Die Ausgangsspannung U_2 ist im wesentlichen durch den resultierenden Zeiger der Teilspannungen von U_{H1} , U_{H2} und U_{H3} gegeben.

Die Induktivität L_L ' der Übertragungsleitung und die Kapazität C_L ' sind der Länge der Spannungszeiger U_{LL} ' und U_{CL} ' entsprechend große Energiespeicher, die zwischen den Ausgang der Mittelfrequenz-Stromquelle und die induktiven Aufnehmer der bewegten Systeme geschaltet sind. Diese Energiespeicher beeinflussen jedoch das dynamische Verhalten der Leistungsübertragung nicht, weil sie wegen der Konstanz des Stromes I_2 bei Änderungen der übertragenen Leistung nicht ihren Energieinhalt und somit auch nicht ihre Spannungen ändern, und die Änderungsgeschwindigkeit der von den induktiven Aufnehmern erzeugten Spannungen U_{HX} ' durch die erfindungsgemäßen Stromrichter-Stellglieder auf den bewegten Systemen so begrenzt ist, daß die sich schnell einstellende Mittelfrequenz-Stromquelle diesen Spannungsänderungen ohne Abweichungen folgt.

An Hand der im rechten Teil der Fig. 3 dargestellten Anordnung des erfindungsgemäßen Stromrichterstellgliedes mit der erfindungsgemäßen Regelung wird nun erläutert, wie diese die Änderungsgeschwindigkeit der über die induktiven

Aufnehmer aufgenommene Leistung begrenzt, so daß deren Einstellzeit T_A größer als die Einstellzeit T_S der Mittelfrequenz-Stromquelle ist. Der induktive Aufnehmer IA, ist als Transformator dargestellt, dessen sekundärseitige Induktivität L_H " mit einem Kondensator C_K einen Parallelschwingkreis bildet. Dabei liefert der Kondensator C_K den in der Regel hohen Magnetisierungsstrom des als Luftspalttransformator ausgeführten induktiven Aufnehmers. Der Parallelschwingkreis ist an den Eingang des Gleichrichters G2 des Stromrichterstellgliedes angeschlossen. Ein Hochsetzsteller, bestehend aus einer Induktivität L_Z , einem steuerbaren Leistungshalbleiter TS, einer Diode D sowie einem als Pufferspeicher wirkender Kondensator C_P sind dem Gleichrichter nachgeschaltet.

Dieser Leistungsteil des erfindungsgemäßen Stromrichterstellgliedes unterscheidet sich von dem Leistungsteil, der in Fig. 10 der zum Stand der Technik zitierten Veröffentlichung gezeigt ist, lediglich durch einen Meßwiderstand R_z zum Erfassen des Zwischenkreisgleichstromes I_z und einem Meßwiderstand R_a zum Erfassen des Verbraucherstromes I_a. An die niederohmigen Meßwiderstände sind Stromerfassungsstufen I_z-EF, I_a-EF angeschlossen, die aus den abgegriffenen kleinen Spannungsmeßwerten Stromsignale I_{zm}, I_{am} für die Verarbeitung in der Regelelektronik aufbereiten. Diese Stromsignale sind, wie weiter unten beschrieben ist, erst für Weiterbildungen der erfindungsgemäßen Anordnung erforderlich

Der wesentliche Unterschied zu dem Stromrichterstellglied nach dem Stand der Technik besteht in dem Informationsinhalt und somit in der Bildung des den steuerbaren Leistungshalbleiter TS ein- und ausschaltenden Signals SB. In der erfindungsgemäßen Anordnung wird dem steuerbaren Leistungshalbleiter TS das Signal SB aus einer Pulsdauermodulationsstufe PM2 zugeführt, welche ein Eingangssignal EM der Modulationsstufe in das pulsförmige Signal SB in der Weise
wandelt, daß das Verhältnis der Ausschaltzeit Tw des steuerbaren Leistungshalbleiters TS zur Zykluszeit Tz zum Wert
des Eingangssignals EM proportional ist und die Zykluszeit Tz in der Größenordnung der halben Periodendauer Tm/2 der
Mittelfrequenz fm liegt.

Die Pulsdauermodulationsstufe PM2, der ein Signal SY zur Vorgabe der Zykluszeit T_Z und das Signal EM zur Vorgabe des Schaltzeitenverhältnisses T_W/T_Z zugeführt sind, ermöglicht die stufenlose Einstellung der von der Übertragungsleitung aufgenommenen Leistung P_L. Eine hohe Frequenz des Signals SY, die beispielsweise in der Größe der doppelten Mittelfrequenz f_M liegt, führt zu einem kleinen Wert der Induktivität L_Z im Hochsetzsteller und ermöglicht schnelle Änderungen der übertragenen Leistung. Andererseits darf, um Einschwingvorgänge auf der Übertragungsleitung zu vermeiden, die Änderungsgeschwindigkeit der übertragenen Leistung nicht schneller sein, als die mögliche Änderungsgeschwindigkeit der von der Stromquelle in die Übertragungsleitung eingespeisten Leistung.

Unzulässig hohe Änderungsgeschwindigkeiten der übertragenen Leistung treten bei Reglerstufen zum Regeln der Verbraucherspannung U_A auf einen Sollwert U_{ASOLL} auf, wenn die Reglerstufen die dem Pufferkondensator zugeführte übertragene Leistung nur zwischen wenigen Werten umschalten oder die übertragene Leistung P_L bei stufenloser Veränderung zu schnell wechselnden Verbraucherleistungen folgen lassen.

Bei der erfindungsgemäßen Anordnung führt eine Spannungsreglerstufe RU dem Eingangssignals EM der Pulsdauermodulationsstufe PM2 eine Signalkomponente EMU zu, deren Änderungsgeschwindigkeit durch die Kapazität des Pufferkondensators Cp und die Übertragungsfunktion FU der Spannungsreglerstufe so bemessen ist, daß die Signalkomponente EMU bei einer sprungförnigen Änderung des Ausgangsstromes I_A erst nach der gegenüber der Einstellzeit T_S der
Mittelfrequenz-Stromquelle länger dauernden Einstellzeit T_A des Stromrichterstellgliedes ihren neuen Endwert erreicht.

Mittelfrequenz-Stromquelle länger dauernden Einstellzeit T_A des Stromrichterstellgliedes ihren neuen Endwert erreicht. Die in Fig. 3 gezeigte Spannungserfassungsstufe U_A-EF dient zur Umsetzung der hohen Verbraucherspannung U_A von z. B. 320 V in das der Reglerstufe zugeführte Spannungmessignal U_{AM} und hat für die Erfindung keine Bedeutung. Unerwünschte Einschwingvorgänge und Schwingungen sind auf dem bewegten System auch ohne Mitwirkung der Theorem auch ohne Mitwirkung der

Übertragungsleitung und der Mittelfrequenz-Stromquelle möglich. So bildet der Parallelschwingkreis aus der Induktivität $L_{\rm H}^{\rm H}$ des induktiven Aufnehmers und der Kapazität $C_{\rm K}$ über den Gleichrichter G2 mit der Induktivität $L_{\rm Z}$ des Hochsetzstellers ein nahezu ungedämpftes schwingungsfähiges System mit einer Eigenfrequenz $f_{\rm Z}$, die je nach der Größe der Induktivität $L_{\rm Z}$ etwa in dem Bereich 0,15 $f_{\rm M}$ bis 0,3 $f_{\rm M}$ liegt. Eigenschwingungen in diesem System werden erfindungsgemäß dadurch gedämpft, daß eine aktive Dämpfungsstufe AD diese Schwingungen im Zwischenkreisstrom $I_{\rm Z}$ erfaßt, mittels eines Bandpasses BP und eines Verstärkers VD daraus ein Signal EMD bildet und dieses als weitere Komponente des Eingangssignals EM der Pulsdauermodulationsstufe PM2 zuführt. Der Bandpaß bewirkt, daß nur im Zwischenkreisstrom enthaltene Schwingungen in einem Frequenzbereich um die Eigenfrequenz $f_{\rm Z}$ zur Bildung des Signals EMD beitragen. Überlagert sich dem Zwischenkreisstrom $I_{\rm Z}$ eine Schwingung der Frequenz $f_{\rm Z}$, dann bewirkt eine dadurch hervorgerufene Änderung des Zwischenkreisstromes eine Modulation der Sperrzeit $I_{\rm W}$ und damit der Spannung $I_{\rm S}$ im Zwischenkreis in der Weise, daß die Spannung $I_{\rm S}$ einem Aufschwingen des Zwischenkreisstromes zu höheren Amplituden entgegenwirkt.

Eine Reduzierung der dynamischen Abweichungen der Ausgangsspannung U_A von ihrem Sollwert U_{ASOLL} bei großen und sprungförmigen Änderungen der Verbraucherleistung ist erreichbar, wenn eine in Fig. 3 gestrichelt dargestellte Stromaufschaltungsstufe SA die Regelung der Ausgangsspannung unterstützt. Zu diesem Zweck wird aus dem Strommessignal I_{AM} über eine Verzögerungsstufe VI eine weitere Signalkomponente EMA dem Eingangssignal EM der Pulsdauermodulationsstufe PM2 zugeführt. Das Signal EMA ist so bemessen, daß es im stationären Zustand über die Modulationsstufe ein Verhältnis der Ausschaltzeit T_W des steuerbaren Leistungshalbleiters zur Zykluszeit T_Z einstellt, bei dem die von der Übertragungsleitung aufgenommene Leistung P_L annähernd mit der Verbraucherleistung P_V übereinstimmt. Sprunghafte Änderungen des Verbraucherstromes I_A werden über die Verzögerungsstufe VI mit einer Zeitkonstanten T_I auf die Signalkomponente EMA übertragen, so daß die gegenüber der Einstellzeit T_S der Mittelfrequenzstromquelle länger dauernde Einstellzeit T_A des Stromrichterstellgliedes eingehalten wird.

Für das Stromrichterstellglied auf dem bewegten System werden in der Regel ein kleiner Raumbedarf und ein kleines Gewicht angestrebt. Für die Induktivität L_Z ist nachgewiesen, daß diese Größen bei einer gegebenen Welligkeit des Zwischenkreisstromes I_Z ein Minimum erreichen, wenn, wie die Fig. 7a und 7b für zwei verschieden lange Sperrzeiten T_W und damit für zwei verschiedene Werte der übertragenen Leistung P_L zeigen, die Halbschwingungen der Gleichrichterausgangsspannung u_B symmetrisch zu den Spannungspulsen der Schalterspannung u_B liegen. Um diese symmetrische Lage der Spannungen u_S und u_B zuerreichen, ist der Pulsdauermodulationsstufe PM2 ein Synchronisationssignal SY, das

eine Synchronisationsstufe SS aus dem mittelfrequenten Eingangsstrom I_E oder der Eingangsspannung U_E des Stromrichterstellgliedes generiert, zugeführt, welches die Bildung des Ausgangssignals SB der Pulsdauermodulationsstufe in der Weise beeinflußt, daß die Zykluszeit T_Z des Signals SB mit der Dauer einer Halbperiode $T_M/2$ der Mittelfrequenz f_M genau übereinstimmt und die Ausschaltzeit T_W des steuerbaren Leistungshalbleiters TS etwa je zur Hälfte vor und hinter dem Scheitelwert der Ausgangsspannung u_B des Gleichrichters G2 liegt.

Patentansprüche

- 1. Verfahren zur induktiven Übertragung elektrischer Leistung aus einer Mittelfrequenzstromquelle mit einer Frequenz f_M auf einen oder mehrere bewegte Verbraucher über eine langgestreckte Übertragungsleitung und den bewegten Verbrauchern zugeordneten induktiven Aufnehmern IA_x , IA_Y mit nachgeschalteten Stromrichterstellgliedern zum Einstellen der von der Übertragungsleitung aufgenommenen und Pufferspeichern, an welche die bewegten Verbraucher angeschlossen sind, zugeführten Leistung P_{LX} , P_{LY} , wobei die Übertragungsleitung von einer Stromquelle mit einem während der Leistungsübertragung in seinem Effektivwert konstanten Mittelfrequenzstrom (L) gespeist wird, **dadurch gekennzeichnet**, daß sich die Ausgangspannung (U_L) der Mittelfrequenz-Stromquelle innerhalb einer maximalen Einstellzeit (T_S), die nur wenige Halbperioden der Mittelfrequenz (f_M) dauert, stufenlos auf den Wert einstellt, welcher der von der Übertragungsleitung insgesamt abgenommenen veränderlichen Leistung entspricht, und daß das zwischen den Pufferspeicher und den induktiven Leistungsaufnehmer (IA) jedes bewegten Verbrauchers geschaltete Stromrichterstellglied die von der Übertragungsleitung abgenommene und dem Pufferspeicher zugeführte mittlere Verbraucherleistung (P_L) innerhalb einer Einstellzeit (T_A), die größer als die Einstellzeit (T_A) der Mittefrequenzstromquelle ist, stufenlos und mit begrenzter Änderungsgeschwindigkeit einstellt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Information zur stufenlosen Einstellung der durch den induktiven Aufnehmer (IA) von der Übertragungsleitung aufgenommenen und dem Pufferspeicher zugeführten Leistung (P_L) sowie die Information zur Änderungsgeschwindigkeit dieser Leistung und somit auch die Information zur Realisierung der Einstellzeit (T_A) des Stromrichterstellgliedes in einem das Stromrichterstellglied steuernden Signal (SB) enthalten sind.
- 3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die den bewegten Verbrauchern zugeführte Ausgangsspannung (U_A) des Pufferspeichers auf einen vorgegebenen Sollwert (U_{ASOLL}) geregelt ist und die in dem Steuersignal (SB) des Stromrichterstellgliedes enthaltene Information zur Einstellung der von der Übertragungsleitung aufgenommen Leistung (P_L) sowie deren Änderungsgeschwindigkeit durch die vom Verbraucher aufgenommene Leistung (P_V) und die Dimensionierung des Zeitverhaltens dieser Regelung gegeben sind.
- 4. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß der Effektivwert des von der Mittelfrequenz-Stromquelle in die Übertragungsleitung eingespeisten Stromes (I_L) während der Leistungsübertragung auf die bewegten Systeme einen konstanten Wert hat und in Zeitbereichen, in denen keine oder nur eine gegenüber der maximal übertragbaren Leistung kleine Leistung übertragen wird, mit einer Änderungsgeschwindigkeit, die wesentlich unter der zulässigen Änderungsgeschwindigkeit der von der Übertragungsleitung abnehmbaren Leistung liegt, stufenlos steuerbar ist.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Effektivwert des in die Übertragungsleitung eingespeisten Mittelfrequenzstromes (I_L) auf einen vorgegebenen Sollwert (I_{LSOLL}) geregelt wird.
- 6. Anordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1–5 dadurch gekennzeichnet, daß die Anordnung einen Niederfrequenz-Mittelfrequenz-Umrichter mit einer durch einen Kondensator (C_G) gepufferten Zwischenkreisgleichspannung (U_G) und einen aus steuerbaren Leistungshalbleitern (T1, T2, T3, T4) gebildeten und durch einen Frequenzgenerator mit einer konstanten Mittelfrequenz (f_M) gesteuerten Wechselrichter (W) zum Erzeugen einer pulsförmigen Ausgangswechselspannung (u_W) sowie einen an die Ausgangswechselspannung (u_W) des Umrichters angeschlossenen Ankopplungsnetzwerk, das einen von einer Induktivität (L_1) und einer Kapazität (C_1) gebildeten Reihenschwingkreis aufweist, dessen Resonanzfrequenz $1/(2\pi\sqrt{L_{1/C1}})$ mit der Frequenz (f_M) des Umrichters übereinstimmt und bei dem die Anschlüsse des Kondensators (C_1) die Ausgänge der Mittelfrequenz-Stromquelle sind.
- 7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß Induktivität (L_1) und Kapazität (C_1) des Ankopplungsnetzwerkes zum Erreichen einer übertragbaren Nennleistung (P_N) nach der Beziehung $\sqrt{(L_{1/C1})} \approx U_{1N}^2/P_N$ bemessen sind, wobei U_{1N} die effektive Nennspannung der Grundschwingung der pulsförmigen Ausgangsspannung (u_w) eines NF/MF-Umrichters ist.
- 8. Anordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß ein zwischen den Kondensator (C_1) des Ankopplungsnetzwerkes und eine Übertragungsleitung geschalteter Transformators (TR) ein Übersetzungsverhältnis (w_1/w_2) aufweist, welches die Summe von Ersatzwiderständen (R_{XN}), die von den induktiven Aufnehmern (IA_X) bei der Aufnahme der Nennleistung in der Übertragungsleitung eingekoppelt werden, auf einen am Kondensator (C_1) wirksamen Wert (ΣR_{XN}), der gleich dem Schwingwiderstand $\sqrt{(L_{1/C1})}$ des Ankopplungsnetzwerkes ist, übersetzt.
- 9. Anordnung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Ein- und Ausschalten eines steuerbaren Leistungshalbleiters (T1, T2, T3, T4) eines NF/MF-Umrichters durch eine Pulsdauermodulationsstufe (PM1) erfolgt, so daß eine pulsförmige Ausgangswechselspannung (uw) mit variabler Pulsdauer (T_D) entsteht, und der Pulsdauermodulationsstufe ein Signal (SD) zum Einstellen der Pulsdauer (T_D) und damit des Effektivwertes (U₁) der Grundschwingung einer Ausgangswechselspannung (uw) zugeführt ist.
- 10. Anordnung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß ein Regler (KOR) vorhanden ist, welchem der Sollwert (I_{LSOLL}) des in die Übertragungsleitung einzuspeisenden Mittelfrequenz-Stromes und der Meßwert (I_{LM}) des tatsächlich eingespeisten Mittelfrequenz-Stromes (I_L) zugeführt sind, und daß der Regler eine Komponente (SDR) des die Pulsdauer (T_D) einstellenden Eingangssignals (SD) einer Pulsdauermodulationsstufe (PM1) bildet.

- 11. Anordnung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß zu der Übertragungsleitung ein Kondensator (C_L) in Reihe geschaltet und in seiner Kapazität so bemessen ist, daß er den an der Induktivität (L_L) der Übertragungsleitung auftretenden induktiven Spannungsabfall (U_L) kompensiert.
- 12. Anordnung nach einem der Ansprüche 6 bis 11 dadurch gekennzeichnet, daß eine zweite Pulsdauer-Modulationsstufe (PM2) ein an ihr anliegendes Eingangssignal (EM) in ein einem steuerbaren Leistungshalbleiter zugeführtes pulsförmiges Signal (SB) in der Weise wandelt, daß das Verhältnis der Ausschaltzeit (T_W) des steuerbaren Leistungshalbleiters (TS) zur Zykluszeit (T_Z) dem Wert des Eingangssignals (EM) proportional ist und die Zykluszeit (T_Z) in der Größenordnung der halben Periodendauer (T_M/2) der Mittelfrequenz (f_M) liegt.
- 13. Anordnung nach Anspruch 12, dadurch gekennzeichnet, daß eine Spannungsreglerstufe (RU), welche die Ausgangsspannung (U_A) eines Pufferkondensators (C_P) auf ihren Sollwert (U_{ASOLL}) regelt, vorhanden ist und eine Signalkomponente (EMU) des Eingangssignals (EM) der zweiten Pulsdauermodulationsstufe (PM2) zuführt und daß die Änderungsgeschwindigkeit der Signalkomponenten (EMU) durch die Kapazität des Pufferkondensators (C_P) und die Übertragungsfunktion (FU) der Spannungsreglerstufe (RU) so bemessen ist, daß die Signalkomponente (EMU) bei einer sprungförmigen Änderung des Ausgangsstromes (I_A) des Pufferkondensators erst nach der gegenüber der Einstellzeit (T_S) der Mittelfrequenz-Stromquelle länger dauernden Einstellzeit (T_A) des Stromrichterstellgliedes ihren neuen Endwert erreicht.
- 14. Anordnung nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß eine aktive Dämpfungsstufe (AD) eine weitere Signalkomponente (EMD) des Eingangssignals (EM) der zweiten Pulsdauermodulationsstufe (PM2) zur Dämpfung von Eigenschwingungen des Zwischenkreisstromes (I_Z) in der aus dem Parallelschwingkreis (L_H", C_K) des induktiven Aufnehmers, dem Gleichrichter (G2) und der Zwischenkreisinduktivität (L_Z) bestehenden schwingungsfähigen Teilschaltung zuführt.
- 15. Anordnung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß eine Strombeaufschaltungsstufe (SA) mit einer Verzögerungsstufe (V1) vorhanden ist, die der zweiten Pulsmodulationsstufe (PM2) eine Signalkomponente (EMA) des Eingangssignals (EM) zuführt, welche im stationären Zustand zum Verbraucherstrom (I_A) proportional und so bemessen ist, daß sie über die zweite Pulsmodulationsstufe (PM2) ein Verhältnis der Ausschaltzeit (I_W) eines steuerbaren Leistungshalbleiters zu einer Zykluszeit (I_Z) einstellt, bei dem die von der Übertragungsleitung aufgenommene Leistung (I_Z) annähernd mit der Verbraucherleistung (I_Z) übereinstimmt, und welche sprunghafte Änderungen des Verbraucherstromes (I_Z) verzögert auf die Signalkomponente (EMA) überträgt, so daß die gegenüber der Einstellzeit (I_Z) der Mittelfrequenzstromquelle länger dauernde Einstellzeit (I_Z) des Stromrichterstellgliedes eingehalten ist.
- 16. Anordnung nach einem der Anspruch 12 bis 15, dadurch gekennzeichnet, daß der zweiten Pulsdauermodulationsstufe (PM2) ein Synchronisationssignal (SY), das eine Synchronisationsstufe (SS) aus einem mittelfrequenten Eingangsstrom (I_E) oder einer Eingangsspannung (U_E) des Stromrichterstellgliedes generiert, zugeführt ist, welches die Bildung eines Ausgangssignals (SB) einer Pulsdauermodulationsstufe in der Weise beeinflußt, daß die Zykluszeit (T_Z) des Signals (SB) mit der Dauer einer Halbperiode ($T_M/2$) der Mittelfrequenz (f_M) genau übereinstimmt und die Ausschaltzeit (T_W) eines steuerbaren Leistungshalbleiters (T_W) eines Hälfte vor und hinter dem Scheitelwert der Ausgangsspannung (T_W) eines Gleichrichters (T_W) liegt.

Hierzu 7 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 35 624 C1 H 02 J 5/00

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 35 624 C1 H 02 J 5/00

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 197 35 624 C1 H 02 J 5/00

Nummer:

Int. Cl.⁶: Veröffentlichungstag: DE 197 35 624 C1 H 02 J 5/00

Nummer: Int. Cl.⁶: Veröffentlichungstag: DE 197 35 624 C1 H 02 J 5/00 10. Dezember 1998

Fig.5a

Fig.5c

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 197 35 624 C1 H 02 J 5/00

Nummer:

Int. Cl.⁶:

Veröffentlichungstag:

DE 197 35 624 C1 H 02 J 5/00

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.