Testing of Hypothesis of Difference of Two [LARGE SAMPLE] Q.1 Intelligence test of two groups of boys and girls gave the following results Girls X1=75 S1=15 N1=150 Boys X=70 5=20 n=250 Is there a Significant difference between mean score of boys & girls at 1 % level of significance? Null Hypothesis, Ho: There is no Significance difference between mean stores of boys and girls. Ho: MI=NZ [Two-Tailed] Test statistic Z = X1-X2

Sample Means
where $\sqrt{x_1-x_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\sqrt{x_1 - x_2} = \sqrt{\frac{225}{150} + \frac{400}{250}}$
$\sqrt{5}$ \sqrt{x} = $\sqrt{1.5 + 1.6} = 1.761$
$Z = \frac{75 - 70}{1.761} = 2.84$

(ritical value(Zx)

LOS(K)>	1 %	5%	10 %
Two-Tailed	Zx =2.58	12x1=1.96	121=1.643
Right- Tailed Test	Zx=2.33	ZK=1.645	Zx=1.28
Left Tailed Test		Zx = -1.645	Zx=-1.28

Testing of Hypothesis of Difference of Two [LARGE SAMPLE] Q.1 Intelligence test of two groups of boys and girls gave the following Girls X1=75 S1=15 N1=150 Boys X2=70 5=20 n3=250 Is there a Significant difference between mean score of boys & girls at 1°10 level of significance? Null Hypothesis, Ho: There is no Significance difference between mean scores of boys and girls Test statistic Z= X1-X2 0x1-x2

|z|= 2.84 2 = 0.01 or 1 % Level of sig. Critical value, Zx = 2.58 at 1% LOS and for Two-tailed 1-10 reject.

1-x=0.99

RéjectHo

0.005

-Z1=-250 (ritical value(Zx) LOS(2) 1.6 5% 10% Ho. MI=12 Two-Tailed Two-Tailed IZXI=2.58 IZXI=1.96 IZXI=1.645

HI. MI + 12 [Two-Tailed Test]

Didd

Order Right-Tailed Test Zx=2.33 Zx=1.645 Zx=1.28 Left
Tailed Test Zx = -1.645 Zx = -1.28

Testing of Hypothesis of Difference of Two [LARGE SAMPLE]

P? The mean of two single large Samples of 1000 & 2000 members are 67.5 inches and 68 inches respectively. Can the samples be regarded as taken from Bame population of Standard deviation 2.5 inches? (Test at 5% LOS)

$$n_1 = 1000$$
 $\overline{X}_1 = 67.5$

Ho: The sample has taken from Same population having S.D.

Ho: MI=M2 (Two Tailed Hi! MI # M2 (Two Tailed

$$Z = \frac{\bar{\chi}_1 - \bar{\chi}_2}{\bar{\sigma}_{\bar{\chi}_1} - \bar{\chi}_2} = \frac{67.5 - 68}{0.09675}$$

where ox, -x2 = S.E. of difference of two mean

$$\sqrt{x_1 - x_2} = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$G_{X_1-X_2} = 2.5 \int \frac{1}{1000} + \frac{1}{2000}$$

$$=2.5 \times \sqrt{\frac{3}{2000}} = 2.5 \times 0.0387$$

Critical value (Zx)

LOS(4)>		5%	10 %
Two-Tailed	12x1=2.58	1221 30	121=1.645
Right- Tailed Test	Zx=2.33	ZX=1.648	
Left Tailed Test	Zx = 2.33	Zx = -1.645	Zx=-1.28

Testing of Hypothesis of Difference of Two LA Sample means

Samples of 1000 & 2000 members are 67.5 inches and 68 inches respectively. Can the samples be regarded as taken from Bame Population of Standard deviation 2.5 inches? (Test at 5% LOS)

$$n_1 = 1000$$
 $\overline{X}_1 = 67.5$

$$n_2 = 2000 \quad \overline{X}_2 = 68$$

Ho: The Sample has taken from Same population having S.D.

Ho: MI=M2 (Two Tailed

 $Z = \frac{\overline{x}_1 - \overline{x}_2}{6\overline{x}_1 - \overline{x}_2} = \frac{67.5 - 68}{0.09675}$

LOS, $\alpha = 5\%$.
Critical value, $Z_{\chi} = 1.96$ 5%. Los and for two test

121 > Zx 5.16 > 1.96 Horget

critical value (Zx)

LOS(K)>	- I The same of th	5%	
Two-Tailed Test	1221-		
Right- Tailed Test	Zx=2.33	ZX=1-645	
Left Tailed Test	-7	Zx = -1.645	Z

Testing of Hypothesis for the Difference of Standard Deviations [Large Sample]

$$SD = G,$$

$$S - I$$

$$S_1 = SD$$

$$S_1 = SD$$

$$S_2 = SD$$

$$S_3 = SD$$

$$S_4 = SD$$

$$S_4 = SD$$

$$S_5 = SD$$

$$S_7 = SD$$

$$S_$$

$$Z = \frac{S_1 - S_2}{\sigma_{S_1 - S_2}}$$

$$\sigma_{S_1 - S_2} = S. \in . \text{ of diff. of S.D.}$$

$$Samp$$

6 If Popin S.D. is un known

$$o_{S_1-S_2} = \int \frac{S_1^2}{2n_1} + \frac{S_2^2}{2n_2}$$

Cal |z| > tab z x

Ho reject.

Cal |z| < tab z x

Ho accept

(ritical va	lue (Zx)	
LOS(x)	10/0	5 %	To.1.
Two Tailed	Z ₄ =2.58	$ Z_{x} = 1.96$ $Z_{x} = 1.645$ $Z_{x} = -1.645$	ZX = 1.28

Example 14-30. Random samples drawn from two countries gave the following data relating to the heights of adult males:

	Country A	Country B
Mean height (in inches)	67-42	67-25
Standard deviation (in inches)	2.58	2.50
Number in samples	1,000	1,200

- (i) Is the difference between the means significant?
- (ii) Is the difference between the standard deviations significant?

Testing of Hypothesis for the Difference of Standard Deviations [Large Deviations [Sample

$$\frac{Q.1}{N_1 = 1000}$$
 $\overline{X}_1 = 67.42$, $\overline{S}_1 = 2.58$ $\overline{X}_2 = 1200$ $\overline{X}_2 = 67.25$, $\overline{S}_2 = 2.50$

Ho: $\sigma_1 = \sigma_2$. There is no Significance diff blue two s.D.

Hi: $\sigma_1 \neq \sigma_2$ (two-tailed)

$$Z = \frac{S_1 - S_2}{5S_1 - S_2}$$

$$\frac{S_1 - S_2}{5S_1 - S_2} = \frac{S_1^2}{2N_1} + \frac{S_2^2}{2N_1} + \frac{S_2^2}{2N_1}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1000} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1200} + \frac{(2.50)^2}{2 \times 1200}$$

$$\frac{S_1 - S_2}{2 \times 1000} = \frac{(2.58)^2}{2 \times 1200} + \frac{(2.50)^2}{2 \times 1200}$$

Cal. Z = 1.03
LOS, d = 5 % or 0.05
tab. Z = Zo.or = 1.96 for two - tailed text
(al IzI < tab. z 1.03 < 1.96

	critical va	lue (Zx)	
Los(x)	+ 1°/0	510/	10.1
Two Tailed	Z1=2.58		Zx = 1.645
Right Tailed	-4		Zx = -1.28

Population

one class Second class

Possessing Not Possessing Attribute A Attribute A

Presence of attribute in Sampled unit = Success Absence of attribute in Sampled unit = failure A Sample of 'n' observation is identified with a Series of 'n' independent Bernoulli trials with Constant Probability P of Success in each trial

The probability of 'x' success

in 'x' trial is given by

(Binomial distribution) $p(x) = n_{(x)} p^{x} Q^{3-x}; x=0,-n$ mean = np

Variance = nPQ

If X=no. of success
in 'n' independent trials
with Probability P of
Success for each trial
then

E(x) = nP V(x) = nPQmean variance Q = 1 - P

We know that for largen,

Binomial distribution Lends to Normal distribution.

.. for large n, (nP, nPQ)

P Population = a2 var(x)

Sample P X = no. of Person

Size = n Possessing

Attribute A

Then,

Propostion of Success

in Sample, $p = \frac{X}{n}$

 $E(p) = E(x) = \frac{1}{n} E(x) = \frac{1}{n} P$

P is unbiased estimate of P

V(p)= V(X)= 12 V(X)= 12 MPQ

follow N(P, JPQ)

test statistic for largen in case of proportion (single)

$$Z = \frac{P - P}{S \in (P)}$$

$$Z = \frac{P - P}{S \in (P)} \sim SND(0, 1)$$

3 test statistic
$$Z = \frac{P - P}{SE(P)} - SND(0,1)$$

A wholesaler in apples claims that only 4% of the apples supplied by him are defective. A random sample of 600 apples contained 36 defective apples. Test the claim of wholesaler at 5% level of significance.

Sampling of Attributes

Test of Significance for Single Proportion

Q.1 Given n= 600 X = no. of defective apple = 36

P= proportion of defective = Z= 0.06-0.04 = 2.5 apple in population P= 410000.04

Q = 1-P = 1-0.04=0.96

Sample Proportion, P= X = 36

P = 0.06

Ho: P= 0.04

Hs: P>0.04 (Right tailed)

Test statistic

Z = P-P S.E. (p) where S.E.(p) = \ \frac{PQ}{n} = \sqrt{0.04x0.96} \\ 600 S.E.(p) = 0.08

LOS, x = 5 %

Critical Value of Zx = 1.645

(ritical Level of significance (x) value (zx) 1% 5% 10%			
value (Zx)	1 %	5%	10 %
Two-Tailed	Zx = 2.58	Zx =1.96	Zx = 1.645
Right Tailed	Zx= 2.33	Z=1.645	Zx=1.28
Left Tailed	ZA=-2.33	Zx=-1.645	Zd=-1-28

Decision

cal Z > critical z 2.5 > 1.645

Ho reject.

P=0.06 Ho: P=0.04 Hs: P>0.04 (Right tailed) Test statistic

 $Z = \frac{P - P}{S.E.(p)} \sim SNO(0,1)$

$Z = \frac{0.06 - 0.04}{0.08} = 2.5$	where	S.E.(p) = \ \frac{PQ}{D} = \[\frac{1}{2} \]	0.04×0.96
$Z = \frac{0.06 - 0.04}{0.08} = 2.5$			600
	Z = 0	0.08 = 2.5	
LOS, x = 5%. Critical Value of Zx = 1.645		= 5 %	

Critical Level of significance (a			
value (Zx)	1 %	5%	10 %
Two-Tailed	Zx = 2.58	Zx = 1.96	Zx = 1.645
Right Tailed	Zx= 2.33	Z=1.645	Zx=1.28
Left Tailed	Zx=-2.33	Zz=-1.645	Zd=-1.28

A die is thrown 9000 times and a throw 3 or 4 is observed 3240 times. Check whether the die cannot be regarded as an unbiased one. Use 5% level of significance.

Sampling of Attributes

Test of Significance for Single Proportion

n= 9000, X= 3240

P=Probability of getting | Cal. 0.005

30x4= ++======0.333 Los. x=5.1.

Sample proportion

 $P = \frac{X}{N} = \frac{3740}{9000} = 0.36$

Ho: P= =

Hi: P = 1 (two tailed)

Z= p-P S.CLP)

where scapl= JPQ

S.E.(p)= 3x3x9000 = 0.005

Z = 0.36 - 0.333 _ 5.4

Critical value of Zx = 1.96

(al Z > CriticalZ) 5.471.96 Horgect

C Feel 1	Leve	l of signific	ance (d)
(ritical value(zx)	1 %	5%	10 %
Two-Tailed	Zx = 2.58	Zx 1=1.96	Zx = 1.645
Right Tailed	Zx=2.33	Z=1.645	Zx=128
Left Tailed	Zx=-2.33	Ze=-1.645	Zd=-1.28