COMMUTATIVE ALGEBRA HOMEWORK III

HOJIN LEE 2021-11045

Problem 1. Let (A, \mathfrak{m}) be a Noetherian local ring. Show that a finitely generated A-module M is flat if and only if $M/\mathfrak{m}^n M$ is flat as an A/\mathfrak{m}^n -module for every n.

Proof. Suppose M is flat. It suffices to show that for A/\mathfrak{m}^n -modules, we have $-\otimes_{A/\mathfrak{m}^n}(M/\mathfrak{m}^nM)$ exact. Suppose we have some A/\mathfrak{m}^n -module N. Then $N\otimes_A M\cong N\otimes_{A/\mathfrak{m}^n}A/\mathfrak{m}^n\otimes_A M\cong N\otimes_{A/\mathfrak{m}^n}(M/\mathfrak{m}^nM)$, where since $-\otimes_A M$ is exact, this is also exact.

Now suppose $M/\mathfrak{m}^n M$ is flat for all n, and let I be an arbitrary ideal of A. Consider the following diagram in Mod_A

where the maps in the bottom row are given by $a \mapsto (a, a)$ and $(a, b) \mapsto a - b$, respectively. The top row is defined by extending these maps, and exactness is obvious. Then from the Snake Lemma, we may obtain an SES

$$0 \to I/(I \cap \mathfrak{m}^n) \to A/\mathfrak{m}^n \to A/(I + \mathfrak{m}^n) \to 0.$$

Note that each term is annihilated by \mathfrak{m}^n , hence naturally a A/\mathfrak{m}^n -module. By assumption $-\otimes_{A/\mathfrak{m}^n} M/\mathfrak{m}^n M$ is exact, so by applying this we obtain

$$0 \to (I/I \cap \mathfrak{m}^n) \otimes_{A/\mathfrak{m}^n} M/\mathfrak{m}^n M \to M/\mathfrak{m}^n M \to A/(I+\mathfrak{m}^n) \otimes_{A/\mathfrak{m}^n} M/\mathfrak{m}^n M \to 0$$

where since $M/\mathfrak{m}^n M \cong A/\mathfrak{m}^n \otimes_A M$, the first part of the sequence is equivalent to

$$0 \to I/(I \cap \mathfrak{m}^n) \otimes_A M \to M/\mathfrak{m}^n M.$$

Now consider another SES

$$0 \to \mathfrak{m}^n \cap I \to I \to I/(I \cap \mathfrak{m}^n) \to 0$$

and apply $- \otimes_A M$ to get

$$(\mathfrak{m}^n \cap I) \otimes_A M \to I \otimes_A M \to I/(I \cap \mathfrak{m}^n) \otimes_A M \to 0.$$

Date: April 27, 2024.

Now we show the kernel of $\varphi: I \otimes_A M \to M$ is trivial. Suppose k maps to zero under this map. Then considering the following diagram

it must also map to zero in $M/\mathfrak{m}^n M$, hence by injectivity, must map to zero in $I/(I\cap\mathfrak{m}^n)\otimes_A M$ via the top right horizontal arrow. By exactness of the top row, we conclude that k is in the image of $\mathfrak{m}^n\cap I\otimes_A M\to I\otimes_A M$. Since this holds for all n, an element that maps to k must be in $\mathfrak{m}^n\cap I\otimes_A M$ for all n. By Artin-Rees, we have $\mathfrak{m}^{n+N}\cap I=\mathfrak{m}^n(\mathfrak{m}^N\cap I)\subset\mathfrak{m}^n I$ for $n\geq 0$ and some large enough N. Hence $\ker\varphi\subset\bigcap_{n>>0}\operatorname{im}((\mathfrak{m}^n I)\otimes_A M\to I\otimes_A M)=\bigcap_{n>>0}\mathfrak{m}^n(I\otimes_A M)=0$ by Krull's intersection theorem. Since I was an arbitrary ideal, it follows that M is flat.

Problem 2. Let \mathfrak{m} be a maximal ideal of A. Show $A \to \widehat{(A,\mathfrak{m})}$ factors through the localization map $A \to A_{\mathfrak{m}}$.

Proof. It suffices to show that the map $A \to \widehat{(A,\mathfrak{m})}$ sends every element of $A - \mathfrak{m}$ to units. Suppose $s \in A - \mathfrak{m}$. This element is sent to $(s_0, s_1, s_2, \ldots) \in \widehat{A}$ where $s_i \equiv s \mod \mathfrak{m}^i$, and $s_0 = s$. Since \mathfrak{m} is maximal, we may find some $a \in A$ such that $as \equiv 1 \mod \mathfrak{m}$, hence $as \mapsto (1, as_1 + as_0 - 1, as_2, as_3, \ldots) = (1, as_1, as_2, as_3, \ldots)$, which is a unit since each term must be units. This is due to the compatibility conditions of the completion. Since as maps to a unit, it follows that s maps to a unit. Hence elements in $A - \mathfrak{m}$ are sent to units in \widehat{A} , thus the completion map factors through the canonical localization map $A \to A_{\mathfrak{m}}$.

Problem 3.

Problem 4. Let M, N be finitely generated modules over a Noetherian local ring A, such that $\widehat{M} \cong \widehat{N}$ as \widehat{A} -modules.

- (1) Show that $\widehat{\operatorname{Hom}}_{A}(\widehat{M}, N) \cong \operatorname{Hom}_{\widehat{A}}(\widehat{M}, \widehat{N})$.
- (2) Let $\widehat{\mathfrak{m}} \leq \widehat{A}$ be the maximal ideal. Show that $\widehat{\mathfrak{m}} \operatorname{Hom}_{\widehat{A}}(\widehat{M}, \widehat{N})$ consists of maps $\widehat{M} \to \widehat{\mathfrak{m}} \widehat{N} \subset \widehat{N}$.
- (3) Let $\varphi \in \operatorname{Hom}_{\widehat{A}}(\widehat{M}, \widehat{N})$ be an isomorphism. Use Nakayama and (2) to show that if $\varphi' \in \operatorname{Hom}_A(M, N)$ differs from φ by an element of

$$\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N}),$$

then φ' is surjective.

(4) Show that there exists $\varphi' \in \operatorname{Hom}_A(M, N)$ and $\varphi'' \in \operatorname{Hom}_A(N, M)$ that are surjective. Conclude that φ' is an isomorphism.

Proof. (1) We first show that $\operatorname{Hom}_A(M,N)$ is finitely generated. Since M is finitely generated, we have $A^n \to M \to 0$ for some n. Apply $\operatorname{Hom}_A(-,N)$ to obtain $0 \to \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(A^n,N) \cong N^n$. Since $\operatorname{Hom}_A(M,N)$ is isomorphic to a submodule of a finitely generated module over a noetherian ring, it is also finitely

generated. Thus we may conclude $\widehat{\operatorname{Hom}}_{A}(\widehat{M},N) \cong \widehat{A} \otimes_{A} \operatorname{Hom}_{A}(M,N)$. Also using Eisenbud, Proposition 2.10, since M is finitely presented (since noetherian and finitely generated; consider kernel of $A^{n} \to M$) and since \widehat{A} is flat over A, we may conclude that $\widehat{A} \otimes_{A} \operatorname{Hom}_{A}(M,N) \cong \operatorname{Hom}_{\widehat{A}}(\widehat{A} \otimes_{A} M, \widehat{A} \otimes_{A} N)$ which again is isomorphic to $\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N})$.

Proof. (2) Elements of $\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N})$ are \widehat{A} -module homomorphisms from \widehat{M} to \widehat{N} , so obviously the elements of $\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N})$ are the maps $\widehat{M}\to\widehat{\mathfrak{m}}\widehat{N}$.

Proof. (3) I will assume the typo actually means $\varphi' \in \operatorname{Hom}_{\widehat{A}}(\widehat{M}, \widehat{N})$. Suppose we have $\varphi' - \varphi \in \widehat{\mathfrak{m}} \operatorname{Hom}_{\widehat{A}}(\widehat{M}, \widehat{N})$. By (2), this implies that $\varphi' - \varphi$ maps into $\widehat{\mathfrak{m}} \widehat{N}$. Thus, the induced maps $\overline{\varphi}, \overline{\varphi'} : \widehat{M}/\widehat{\mathfrak{m}} \widehat{M} \to \widehat{N}/\widehat{\mathfrak{m}} \widehat{N}$ agree, and since φ is an isomorphism, we must have $\overline{\varphi'}$ surjective. Consider the exact sequence $\widehat{M} \to \widehat{N} \to \operatorname{coker} \varphi' \to 0$, and apply $- \otimes_{\widehat{A}} \widehat{A}/\widehat{\mathfrak{m}}$ to get $\widehat{M}/\widehat{\mathfrak{m}} \widehat{M} \to \widehat{N}/\widehat{\mathfrak{m}} \widehat{N} \to \operatorname{coker} \varphi' \otimes_{\widehat{A}} \widehat{A}/\widehat{\mathfrak{m}} \to 0$ where $\operatorname{coker} \varphi' \otimes_{\widehat{A}} \widehat{A}/\widehat{\mathfrak{m}} \cong \operatorname{coker} \overline{\varphi'} = 0$. Thus $\operatorname{coker} \varphi' = \widehat{\mathfrak{m}} \operatorname{coker} \varphi'$, and we may apply Nakayama to conclude that φ' is surjective.

Proof. (4) Since \widehat{M} and \widehat{N} are isomorphic, let $f:\widehat{M}\to \widehat{N}$ be an isomorphism. We claim that there exists some $g:M\to N$ such that $\widehat{g}-f\in\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N})$. Consider the ring $\operatorname{Hom}_{\widehat{A}}(\widehat{M},N)/\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},N)$. This is isomorphic to $\widehat{A}/\widehat{\mathfrak{m}}\otimes_{\widehat{A}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},N)$. Again, this is isomorphic to $\widehat{A}/\widehat{\mathfrak{m}}\otimes_{\widehat{A}}\widehat{A}\otimes_{A}\operatorname{Hom}_{A}(M,N)\cong \widehat{A}/\widehat{\mathfrak{m}}\otimes_{A}\operatorname{Hom}_{A}(M,N)$ since hom is finitely generated, as we have shown in (1). By Atiyah & Macdonald, Theorem 10.15 (iii), we have $\widehat{A}/\widehat{\mathfrak{m}}\cong A/\mathfrak{m}$, so this is isomorphic to $A/\mathfrak{m}\otimes_{A}\operatorname{Hom}_{A}(M,N)\cong \operatorname{Hom}_{A}(M,N)/\mathfrak{m}\operatorname{Hom}_{A}(M,N)$. Therefore, we have a surjection from $\operatorname{Hom}_{A}(M,N)$ to $\operatorname{Hom}_{\widehat{A}}(M,N)/\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(M,N)$. Also, since f is induced by some element of $\operatorname{Hom}_{A}(M,N)$ by how we constructed the isomorphism in (1), we conclude that there exists some $g\in\operatorname{Hom}_{A}(M,N)$ such that $\widehat{g}-f\in\widehat{\mathfrak{m}}\operatorname{Hom}_{\widehat{A}}(\widehat{M},\widehat{N})$. By (3), it follows that $\widehat{g}:\widehat{M}\to\widehat{N}$ is surjective. By considering the exact sequence $M\to N\to\operatorname{coker} g\to 0$ and taking inverse limits to get $\widehat{M}\to\widehat{N}\to\operatorname{coker} g\to 0$, we have $\operatorname{coker} g=0$, which means that $\mathfrak{m}\operatorname{coker} g=\operatorname{coker} g$. Apply Nakayama to conclude that $\operatorname{coker} g=0$, i.e. g is surjective. Take $\varphi'=g$.

For φ'' , repeat the exact same process above, in the other direction, to obtain a surjective morphism $\varphi'' \in \operatorname{Hom}_A(N,M)$. By Eisenbud, Corollary 4.4a, surjective endomorphisms of finitely generated modules are isomorphisms. In this case $\varphi'' \circ \varphi'$ is a surjective endomorphism of M, where since M is a finitely generated A-module, it is an isomorphism. Then φ' must be injective, and since φ' was surjective to begin with, M and N are isomorphic.

Problem 5. Let A be a Noetherian ring, and let $\mathfrak{m} = (f_1, \ldots, f_n) \leq A$. Show that

$$\widehat{(A,\mathfrak{m})} \cong A[[x_1,\ldots,x_n]]/(x_1-f_1,\ldots,x_n-f_n).$$

Proof. The ring $A[[x_1,\ldots,x_n]]/(x_1-f_1,\ldots,x_n-f_n)$ is isomorphic to

$$A[x_1,\ldots,x_n]/(x_1-f_1,\ldots,x_n-f_n)\otimes_{A[x_1,\ldots,x_n]}A[[x_1,\ldots,x_n]].$$

Recall that if M is a finite A-module where A is noetherian, we have $\widehat{M} \cong M \otimes_A \widehat{A}$. Here, $A[[x_1, \dots, x_n]]$ is the completion of $A[x_1, \dots, x_n]$ with respect to (x_1, \dots, x_n) , hence the original ring is isomorphic to the completion of $A[x_1,\ldots,x_n]/(x_1-f_1,\ldots,x_n-f_n)$ at (x_1,\ldots,x_n) , i.e. the completion of A at $(f_1,\ldots,f_n)=\mathfrak{m}$. \square

Problem 6.