



**LOCOMOTIVA E401** 

CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 1 di 13

## **CONTROLLO EDIZIONE**

| MOTIVO         | DATA       |
|----------------|------------|
| Edizione       | 18-05-2016 |
| Cambio formato | 20-06-2016 |
|                |            |
|                |            |
|                |            |
|                |            |
|                |            |
|                |            |
|                |            |
|                |            |
|                | Edizione   |

Eseguito da:

Nome: F. IRASTORZA

Firma:

Data: 20-06-2016

Verificato da:

Nome: A. GARCÍA

Firma:

Data: 20-06-2016

Approvato da:

Nome: A. BALDA

Firma:

Data: 20-06-2016







**LOCOMOTIVA E401** 



CODICE: B.20.93.020.00

EDIZIONE: A

Pag. 2 di 13

## INDICE

| ١. | OGGET    | 10                                               |    |
|----|----------|--------------------------------------------------|----|
| 2. | SOFTW    | ARE ED ALTRI DOCUMENTI TENUTI PRESENTI           | 3  |
| 3. | CONSID   | DERAZIONI GENERALI                               | 3  |
|    |          | ERMINAZIONE DELLE FORZE DA APPLICARE NEL CALCOLO |    |
|    | 3.2. CAL | .COLO DELLA VITE AI SENSI DELLA VDI              | 6  |
|    | 3.2.1.   | Calcolo a fatica                                 | 6  |
|    | 3.2.2.   | Calcolo statico                                  | 6  |
|    | 3.2.3.   | Risultati del calcolo ed interpretazione         | 7  |
| 4. | CALCO    | LO DELLE VITI                                    | 8  |
|    | 4.1. ZAV | ORRE LV2. MONTAGGIO B.20.87.003.00               | 8  |
|    |          | Descrizione dell'unione                          |    |
|    | 4.1.2.   | Forze ottenute per vite                          | 10 |
|    |          | Risultato                                        |    |
|    | 4.2. ZAV | ORRE CORRIDOIO. MONTAGGIO B.20.74.007.00         | 11 |
|    |          | Descrizione dell'unione                          |    |
|    | 4.2.2.   | Forze ottenute per vite                          | 12 |
|    |          | Risultato                                        |    |





## Power & Automation

### Calcolo delle viti

**LOCOMOTIVA E401** 

CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 3 di 13

### 1. OGGETTO

Lo scopo del presente documento è di giustificare la scelta delle viti utilizzate nel fissaggio delle zavorre nei seguenti montaggi:

Montaggio zavorre corridoio. B.20.74.007.00

Montaggio zavorre LV2. B.20.87.003.00

### 2. SOFTWARE ED ALTRI DOCUMENTI TENUTI PRESENTI

Software: MDesign Bolt 2014.

Altri documenti:

Specifica Trenitalia TI 383601.

EN 12663

VDI2230

### 3. CONSIDERAZIONI GENERALI

La validazione della vite utilizzata in un'unione bullonata si realizzerà tramite calcolo rispetto alla norma VDI2230.

Per il calcolo della vite si applicheranno le accelerazioni indicate nella norma EN12663 per i casi di carichi di fatica (dinamici) che sono quelli attesi durante il normale esercizio del veicolo.

Si effettua poi una verifica applicando i carichi di prova (statici) assicurandosi che la tensione di lavoro nella vite non superi la tensione di snervamento del materiale della stessa con un coefficiente di sicurezza di 1,15.

Tensione di snervamento del materiale / tensione di lavoro attesa ≥ 1,15.

La determinazione delle forze tramite le accelerazioni richieste dalla norma si effettuerà con un calcolo semplificato teorico che trasferisce le forze sul centro di gravità a reazioni sui supporti del dispositivo con l'aiuto di una tabella di Excel appositamente creata con i vari casi da calcolare.

#### 3.1. Determinazione delle forze da applicare nel calcolo

Si considerano il peso e le accelerazioni richieste dalla EN 12663 per il veicolo oggetto di studio.

Le seguenti tabelle sono state ricavate dalla norma EN12663 ed indicano le accelerazioni da considerare su ognuno degli assi in base al tipo di veicolo





#### **LOCOMOTIVA E401**



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 4 di 13

#### Table 16 — Acceleration in y-direction

Acceleration in metres per square second

| Locomotives | Passenger rolling stock             |      |       |      |     | Freight  | wagons          |
|-------------|-------------------------------------|------|-------|------|-----|----------|-----------------|
| Category    | Category Category Category Category |      |       |      |     | Category | Category        |
| L           | P-I                                 | P-II | P-III | P-IV | P-V | F-I      | F-II            |
| ± 0,2 g     | ± 0,15 g                            |      |       |      | ± 0 | ,2 g     |                 |
|             |                                     |      |       |      |     | ± 0,4    | 4g <sup>a</sup> |

Applies to equipment attachments, but may be reduced for bogie vehicle and two-axle wagons with improved suspensions.

#### Table 17 — Acceleration in z-direction

Acceleration in metres per square second

| Locomotives             |                 | Passenger rolling stock |                   |                             |                 |                 | Freight wagons   |  |  |
|-------------------------|-----------------|-------------------------|-------------------|-----------------------------|-----------------|-----------------|------------------|--|--|
| Category<br>L           | Category<br>P-I | Category<br>P-II        | Category<br>P-III | Category<br>P-IV            | Category<br>P-V | Category<br>F-I | Category<br>F-II |  |  |
| $(1 \pm 0,25) \times g$ | (1 ± 0,15) × g  |                         |                   | (1 ± 0,15) × g <sup>a</sup> |                 | (1 ± 0,3) × g b |                  |  |  |

 $<sup>(1 \</sup>pm 0.18) \times g$  for operation on grooved rails.

#### Table 18 — Acceleration in x-direction

Acceleration in metres per square second

| Locomotives   |                 | Passenger rolling stock |                   |                  |                 |                 | Freight wagons   |  |  |
|---------------|-----------------|-------------------------|-------------------|------------------|-----------------|-----------------|------------------|--|--|
| Category<br>L | Category<br>P-I | Category<br>P-II        | Category<br>P-III | Category<br>P-IV | Category<br>P-V | Category<br>F-I | Category<br>F-II |  |  |
| ± 0,15 g      |                 | ± 0,15 g                |                   | ± 0,15 g a       | ± 0,2 g         | ± 0,3           | 3 g b            |  |  |

If vehicles interface with road traffic then they shall be designed to ±0,2 g.

Per la verifica del margine di sicurezza del materiale rispetto alla tensione di snervamento si utilizzano i carichi statici o di prova. Per calcolarlo si prendono le accelerazioni indicate dalla EN12663 per questi casi in base alla categoria del veicolo.

For freight vehicle with double stage suspension  $(1 \pm 0.25) \times g$ . If the application produces a higher dynamic load factor (e.g. due to dynamic effects or loading conditions) then a higher value shall be applied and defined in the specification.

Applies to equipment attachments only.





#### **LOCOMOTIVA E401**



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 5 di 13

#### Table 13 — Accelerations in x-direction

Acceleration in metres per square second

| Locomotives |                                             | Passe | Freight  | wagons   |       |     |      |
|-------------|---------------------------------------------|-------|----------|----------|-------|-----|------|
| Category    | ategory Category Category Category Category |       | Category | Category |       |     |      |
| L           | P-I                                         | P-II  | P-III    | P-IV     | P-V   | F-I | F-II |
| ±3g         | ±5g                                         | ±3g   | ±3g      | ± 2 g    | ± 2 g | ± ( | 5 g  |

#### Table 14 — Accelerations in y-direction

Acceleration in metres per square second

| Locomotives |          | Passe    | Freight wagons |          |          |          |          |
|-------------|----------|----------|----------------|----------|----------|----------|----------|
| Category    | Category | Category | Category       | Category | Category | Category | Category |
| L           | P-I      | P-II     | P-III          | P-IV     | P-V      | F-I      | F-II     |
| ± 1 g       |          |          |                |          |          |          |          |

#### Table 15 — Accelerations in z-direction

Acceleration in metres per square second

| Locomotives        |                                                                        | Passe |         | Freight wagons |  |                 |                  |  |
|--------------------|------------------------------------------------------------------------|-------|---------|----------------|--|-----------------|------------------|--|
| Category<br>L      | Category Category Category Category Category L P-I P-II P-III P-IV P-V |       |         |                |  | Category<br>F-I | Category<br>F-II |  |
|                    |                                                                        |       | (1 ± c) | x g a          |  |                 |                  |  |
| a $c = 2$ at the v |                                                                        |       |         |                |  |                 |                  |  |

Nelle tabelle 1 e 2 vengono riportati i valori applicabili al caso della locomotiva E401:

| Casi    | g <sub>x</sub> | g <sub>y</sub> | g <sub>z</sub> |
|---------|----------------|----------------|----------------|
| Caso E1 | +3g            | 0              | -1g            |
| Caso E3 | 0              | +1g            | -1g            |
| Caso E5 | 0              | 0              | +3g            |

| Casi    | g <sub>x</sub> | g <sub>y</sub> | g <sub>z</sub> |
|---------|----------------|----------------|----------------|
| Caso E2 | -3g            | 0              | -1g            |
| Caso E4 | 0              | -1g            | -1g            |
|         |                |                |                |

Tabella 1: Accelerazioni per il calcolo statico

Per ognuno degli scenari da E1 a E5 si ottengono le reazioni assiali e trasversali in ognuno dei fissaggi dell'elemento/dispositivo tramite un calcolo teorico di trasferimento di forze dal CDG ai fissaggi.

Il calcolo della vite si realizza con le reazioni più elevate ottenute in ognuno dei casi da E1 a E5.





#### **LOCOMOTIVA E401**



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 6 di 13

| Casi    | g <sub>x</sub> | g <sub>y</sub> | g <sub>z</sub> |
|---------|----------------|----------------|----------------|
| Caso D1 | 0,15g          | 0,2g           | 1,25g          |
| Caso D3 | 0,15g          | -0.2g          | 1,25g          |
| Caso D5 | -0,15g         | 0,2g           | 1,25g          |
| Caso D7 | 0,15g          | -0.2g          | 1,25g          |

| Casi    | g <sub>x</sub> | g <sub>y</sub> | g <sub>z</sub> |
|---------|----------------|----------------|----------------|
| Caso D2 | 0,15g          | 0,2g           | 0,75g          |
| Caso D4 | 0,15           | -0,2g          | 0,75g          |
| Caso D6 | -0,15          | 0,2g           | 0,75g          |
| Caso D8 | -0,15g         | -0.2g          | 0,75g          |

Tabella 2: Accelerazioni per il calcolo dinamico

Come nel caso precedente, per ognuno degli scenari da D1 a D8 si ottengono le reazioni in ognuno dei fissaggi dell'elemento/dispositivo.

Il calcolo della vite si realizza con la combinazione di sforzi più sfavorevole di tutti i casi.

#### 3.2. Calcolo della vite ai sensi della VDI

Una volta definite le accelerazioni ed ottenute le forze risultanti nelle unioni si passa a calcolare un'unione bullonata in base ai requisiti della norma VDI2230. A tal fine si utilizza lo strumento di software di calcolo MDESIGN.

## 3.2.1. Calcolo a fatica

Nell'Allegato 1 viene riportata una tabella di valori da inserire come parametri di ingresso del calcolo nel programma MDESIGN.

Tra i parametri fondamentali constano i carichi a fatica assiali (massimo e minimo) e quelli trasversali.

Una volta eseguito il calcolo, il software genera un rapporto dei risultati (output data-sheet) e fornisce dei grafici tra i quali risulta di particolare interesse il Clamping graphic.

#### 3.2.2. Calcolo statico

Nel calcolo statico si verifica che la tensione raggiunta nella vite rimane al di sotto della tensione di snervamento del materiale.

Ciò si realizza confrontando il valore ozmax ottenuto nei risultati del calcolo con il valore della tensione di snervamento caratteristica del materiale della vite.

Il calcolo viene considerato corretto quando: Tensione di snervamento > valore tensione nella vite

#### Rpmin > $\sigma$ zmax





**LOCOMOTIVA E401** 

EDIZIONE: A

Pag. 7 di 13

### 3.2.3. Risultati del calcolo ed interpretazione

CODICE: B.20.93.020.00

I risultati del calcolo vengono presentati in due formati:

- Scheda dei risultati o "Output data sheet". Sia per il calcolo statico che per quello dinamico.
- Grafico o "Clamping graphic" per il calcolo dinamico

Alcuni parametri indicati dal programma nei risultati sono:

- FAO: Carico di lavoro dell'unione in senso assiale.
- Fz: perdita di precarico per assestamento.
- FSAmax FSAO: parte del carico di lavoro che si perde nella vite
- FPAmax FPAO: parte del carico di lavoro che si perde nell'unione
- FMzul: precarico di montaggio (carico assiale nella vite) ammesso con la coppia di serraggio e percentuale di tensione di snervamento indicata.
- FMmin: precarico minimo di montaggio necessario per garantire che l'unione non si stacchi con il carico di lavoro definito. È la somma di FPAmax e Fz.
- FMmax: si ottiene moltiplicando FMmin per il fattore di coppia di serraggio αA.
- FVmin: è il precarico minimo dell'unione. Si calcola come [(FMzul/ αA)-Fz]
- FSmax: Massimo carico nella vite in esercizio. Si calcola come (FSAmax+ FMzul)

Per la validazione dei documenti di uscita si seguono in linea generale le seguenti regole.

- a) Output datasheet del calcolo dinamico:
  - Si verifica il valore finale del calcolo che indica la percentuale di precarico attesa nella vite che deve mostrare un valore che si avvicina al 90% per le coppie di serraggio CAF.

Nell'Allegato 2 viene riportato un estratto di un Output Datasheet ottenuto da MESIGN e vengono indicati alcuni dei valori da verificare/rivedere.

- b) Output datasheet del calcolo statico
  - 1. Si deve verificare che il valore della tensione massima nella vite in funzionamento, valore σzmax, sia inferiore al valore della tensione di snervamento del materiale della vite.
- c) Clamping graphic (del calcolo dinamico)

L'aspetto del grafico di uscita del calcolo deve avere simile al seguente.





### **LOCOMOTIVA E401**

Power & Automation

CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 8 di 13



Si deve inoltre verificare che: FMmax < FMzul – Fz

## 4. CALCOLO DELLE VITI

## 4.1. ZAVORRE LV2. Montaggio B.20.87.003.00

## 4.1.1. <u>Descrizione dell'unione</u>

Le zavorre vengono fissate tramite 4 viti M12X195.



Figura 1





### **LOCOMOTIVA E401**



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 9 di 13

Per via delle peculiarità del montaggio la distribuzione delle viti non è omogenea, infatti una delle viti risulta spostata al di fuori della matrice rettangolare, concretamente sull'asse Y della vettura.

Al fine di semplificare il calcolo, si ipotizza una distribuzione omogenea che si realizza allineando la vite su Y in modo tale da ottenere una distribuzione rettangolare con quattro vertici.



Figura 2

Nella seguente Figura 3 si illustra l'unione nel dettaglio:



Figura 3

I valori rilevanti per il calcolo sono i seguenti:

| - | Massa:                          | 120K |
|---|---------------------------------|------|
| - | Viti per fissaggio:             | 1    |
| - | Viti in totale:                 | 4    |
| _ | Filettatura metrica della vite: | M12  |





**LOCOMOTIVA E401** 

Power & Automation

CODICE: B.20.93.020.00 **EDIZIONE: A** Pag. 10 di 13

- Materiale della vite: Acciaio 8.8

## 4.1.2. Forze ottenute per vite

Le forze massime risultanti dall'applicazione delle accelerazioni nel caso statico (punto 3.1, tabella 1) vengono riportate nella tabella 3.

|    | MAX Qn | MAX VnX | MAX VnY |
|----|--------|---------|---------|
| E1 | 1306   | 883     | 0       |
| E2 | 1306   | 883     | 0       |
| E3 | 770    | 0       | 294     |
| E4 | 770    | 0       | 294     |
| E5 | 883    | 0       | 0       |

Tabella 3: Forze massime per il caso statico

MAX Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnX: Forza trasversale massima su X ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnY: Forza trasversale massima su Y ottenuta in uno qualunque dei supporti del dispositivo.

Con i dati della tabella si sceglie di eseguire i calcoli per i casi E1.

Le forze massime risultanti dall'applicazione delle accelerazioni nel caso dinamico (punto 3.1, tabella 2) vengono riportate nella tabella 4.

|    | MAX Qn: | Min Qn | Max VnX | Max VnY |
|----|---------|--------|---------|---------|
| D1 | 465     | 236    | 44      | 59      |
| D2 | 317     | 89     | 44      | 59      |
| D3 | 514     | 274    | 44      | -59     |
| D4 | 367     | 127    | 44      | -59     |
| D5 | 462     | 222    | -44     | 59      |
| D6 | 315     | 75     | -44     | 59      |
| D7 | 500     | 271    | -44     | -59     |
| D8 | 353     | 124    | -44     | -59     |
|    | Max Q   | Min Q  | Max VX  | Max VY  |
|    | 514     | 75     | 44      | 59      |

Tabella 4: Forze massime per il caso dinamico





#### **LOCOMOTIVA E401**



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 11 di 13

MAX Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo con accelerazioni positive.

Min Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo con accelerazioni negative.

MAX VnX: Forza trasversale massima su X ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnY: Forza trasversale massima su Y ottenuta in uno qualunque dei supporti del dispositivo.

Il calcolo si esegue selezionando la combinazione di forze più severe tra tutte le forze ottenute.

### 4.1.3. Risultato

Le schede del risultato vengono accluse nell'allegato 1 per il calcolo statico e nell'allegato 2 per quello dinamico. In entrambi i casi si dimostra che la scelta della vite è corretta.

### 4.2. ZAVORRE CORRIDOIO. Montaggio B.20.74.007.00

### 4.2.1. Descrizione dell'unione

Si prende il caso più sfavorevole di tutte le zavorre per analizzarlo. Questo caso corrisponde al montaggio della zavorra B.20.74.120.03.

La zavorra viene fissata tramite 8 viti M8x25:



Figura 4





**LOCOMOTIVA E401** 

CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 12 di 13

Nella seguente Figura 5 si illustra l'unione nel dettaglio:



Figura 5

I valori rilevanti per il calcolo sono i seguenti:

| - | Massa:                                                    | 73.8K                               |
|---|-----------------------------------------------------------|-------------------------------------|
| - | Viti per fissaggio:                                       | 1                                   |
| - | Viti in totale:                                           | 8                                   |
| - | Filettatura metrica della vite:                           | M8                                  |
| - | Materiale della vite:                                     | Acciaio Inossidabile                |
| - | Unione                                                    | Tassello filettato (zavorra)        |
| _ | Materiali nell'unione: 2. Alluminio (lamiera del paviment | o) ed Acciaio al carbonio (zavorra) |

## 4.2.2. Forze ottenute per vite

Forze massime per il caso statico, si veda tabella 5

|    | MAX Qn | MAX VnX | MAX VnY |
|----|--------|---------|---------|
| E1 | 100    | 271     | 0       |
| E2 | 100    | 271     | 0       |
| E3 | 98     | 0       | 90      |
| E4 | 98     | 0       | 90      |
| E5 | 271    | 0       | 0       |

Tabella 5: Forze massime per il caso statico

MAX Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnX: Forza trasversale massima su X ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnY: Forza trasversale massima su Y ottenuta in uno qualunque dei supporti del dispositivo.





**LOCOMOTIVA E401** 



CODICE: B.20.93.020.00

**EDIZIONE: A** 

Pag. 13 di 13

Con i dati della tabella si sceglie di eseguire i calcoli per i casi E1.

Le forze massime risultanti dall'applicazione delle accelerazioni nel caso dinamico (punto 3.1, tabella 2) vengono riportate nella tabella 6.

|    | MAX Qn: | Min Qn | Max VnX | Max VnY |
|----|---------|--------|---------|---------|
| D1 | 115     | 111    | 14      | 18      |
| D2 | 70      | 66     | 14      | 18      |
| D3 | 115     | 111    | 14      | 18      |
| D4 | 70      | 66     | 14      | 18      |
| D5 | 115     | 111    | 14      | 18      |
| D6 | 70      | 66     | 14      | 18      |
| D7 | 115     | 111    | 14      | 18      |
| D8 | 70      | 66     | 14      | 18      |
|    | Max Q   | Min Q  | Max VX  | Max VY  |
|    | 115     | 66     | 14      | 18      |

Tabella 6: Forzas massime per il caso dinamico

MAX Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo con accelerazioni positive.

Min Qn: Forza assiale massima ottenuta in uno qualunque dei supporti del dispositivo con accelerazioni negative.

MAX VnX: Forza trasversale massima su X ottenuta in uno qualunque dei supporti del dispositivo.

MAX VnY: Forza trasversale massima su Y ottenuta in uno qualunque dei supporti del dispositivo.

Il calcolo si esegue selezionando la combinazione di forze più severe tra tutte le forze ottenute.

## 4.2.3. Risultato

Le schede del risultato vengono accluse nell'allegato 3 per il calcolo statico e nell'allegato 4 per quello dinamico. In entrambi i casi si dimostra che la scelta della vite è corretta.

## Input data:

# Verifying calculation of high duty bolted joints according to VDI 2230 (Joints with one cylindrical bolt) - extended version

| Method of calculation Clamping Type of bolting Bolted joint Working load | Extended<br>concentric<br>tapped thread jo<br>single-bolted jo<br>transverse load<br>static |                   |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|
| Bolted joint loads                                                       |                                                                                             |                   |
| Upper limit value of the axial load                                      | FAO = 1981                                                                                  | N                 |
| Eccentrically applied axial load                                         | no                                                                                          |                   |
| Predetermine the required minimum clamp load                             | no                                                                                          | B 1 s l s         |
| Torque about the bolt axis                                               | Mt = 0                                                                                      | N*m               |
| Transverse load                                                          | FQ = 1472                                                                                   | N                 |
| Number of force-transmitting inner interfaces                            | qF 1                                                                                        | N*m               |
| Working moment Tightening technique                                      | MB = 0<br>free input                                                                        | INTILL            |
| Tightening factor                                                        | $\alpha A = 1,6$                                                                            |                   |
| Minimum coefficient of friction in the thread                            | $\mu Gmin = 0.08$                                                                           |                   |
| Minimum coefficient of friction at the interface                         | $\mu$ Tmin = 0,1                                                                            |                   |
| Minimum coefficient of friction in the head bearing area                 | μKmin = 0,08                                                                                |                   |
| Predetermine required safety against the transverse slipping             | yes                                                                                         |                   |
| Required safety against the transverse slipping                          | SGsoll = 1,2                                                                                |                   |
| Predetermine the diameter of the shearing cross section                  | no                                                                                          |                   |
| Consider the internal pressure to be sealed                              | no                                                                                          |                   |
| Working temperature of the bolt                                          | Ts = 20                                                                                     | °C                |
| Bolt                                                                     |                                                                                             |                   |
| Data Source                                                              | MDESIGN datab                                                                               | oase              |
| Strength grade                                                           | 8.8 (d <                                                                                    | •                 |
| Young's modulus of the bolt material at RT                               | ESRT = 211000                                                                               | N/mm²             |
| Minimum yield point of the bolt at RT                                    | Rpmin = 640                                                                                 | N/mm <sup>2</sup> |
| Tensile strength of the bolt at RT                                       | Rm = 800                                                                                    | N/mm²             |
| Shearing strength of the bolt as an influencing factor                   | fBS = 0,65                                                                                  |                   |
| Bolt geometry Own bolt geometry                                          | no                                                                                          |                   |
| Data Source                                                              | MDESIGN datab                                                                               | nase              |
| Thread type                                                              | standard thread                                                                             |                   |
| Bolt type                                                                | hexagon head t                                                                              |                   |
| 41 -                                                                     | shank                                                                                       |                   |
| Designation of bolt                                                      | M12 x 10                                                                                    | 00                |
| Standard                                                                 |                                                                                             | SO 4014           |
| Bolt length                                                              | ls = 195                                                                                    | mm                |
| Thread angle                                                             | $\beta$ GPW = 60                                                                            | 0                 |
| Self-locking nut                                                         | no                                                                                          |                   |
|                                                                          |                                                                                             |                   |

## **Specification of clamped parts**

| Nr. | Material | Data<br>Source              | Young's<br>modulus<br>EP<br>N/mm <sup>2</sup> | Min.<br>tensile<br>strength<br>Rmmin<br>N/mm <sup>2</sup> | fG   | fBM | Part<br>thicknes<br>s hi<br>mm | DA<br>mm | dh<br>mm | °C |
|-----|----------|-----------------------------|-----------------------------------------------|-----------------------------------------------------------|------|-----|--------------------------------|----------|----------|----|
| 1   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 2,5                            | 30       | 8        | 20 |
| 2   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 165                            | 30       | 8        | 20 |
| 3   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 4                              | 30       | 8        | 20 |
| 4   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 20                             | 30       | 8        | 20 |

| Washers Washer under head Spring washer under head Data source                                                         | no<br>yes<br>MDESIGN data                     | base (DIN |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|
| Spring washer input<br>Material<br>Number of spring washers                                                            | 6796)<br>linear spring cu<br>spring steel (1. |           |
| Inner diameter                                                                                                         | di = 13                                       | mm        |
| Outer diameter Thickness                                                                                               | da = 29<br>s = 3                              | mm<br>mm  |
| Consider the chamfer at the hole                                                                                       | no                                            |           |
| Consider counterbore depth in the screw-in part Predetermine amount of embedding                                       | no<br>yes                                     |           |
| Amount of embedding Predetermine the load introduction factor                                                          | fz = 24<br>no                                 | μm        |
| Joint types according to the type of load introduction                                                                 | SV1                                           |           |
| Distance between the preloading area and the load introduction point                                                   | ak = 0                                        | mm        |
| Predetermine the permissible assembly preload / necessary tightening torque at RT<br>Necessary tightening torque at RT | predetermine N<br>MA = 62                     | MA<br>N*m |
| Determine meffmin for partial load                                                                                     | no                                            | 14 111    |



Results: Systematic calculation of high duty bolted joints according to VDI 2230

Hexagon head bolt DIN EN ISO 4014 - M12,00 x 195,00 - 8.8

#### **General calculation values**

| Bolt geometry Bolt nominal diameter Thread pitch                                | d<br>P           | =<br>=     | 12<br>1,75         | mm<br>mm           |
|---------------------------------------------------------------------------------|------------------|------------|--------------------|--------------------|
| Hole diameter                                                                   | dh               | =          | 13,5               | mm                 |
| Outside diameter of the plane head bearing                                      | dw               | =          | 16, <del>4</del> 7 | mm                 |
| Inside diameter of the plane head bearing                                       | da               | =          | 13,7               | mm                 |
| Pitch diameter                                                                  | d2               | =          | 10,86              | mm                 |
| Minor diameter                                                                  | d3               | =          | 9,85               | mm                 |
| Shank length                                                                    | l1               | =          | 70                 | mm                 |
| Bolt length                                                                     | ls               | =          | 195                | mm                 |
| Minor diameter of the nut thread                                                | D1               | =          | 10,11              | mm                 |
|                                                                                 |                  |            |                    |                    |
| Clamping length                                                                 | lk               | =          | 174,5              | mm                 |
|                                                                                 |                  |            |                    |                    |
| Deformation cone angle                                                          | φ                | =          | 26,31              | 0                  |
| Limiting outside diameter of the deformation cone                               | DAGr             | =          | 189,02             | mm                 |
| Total height of the deformation sleeve                                          | IH               | =          | 0                  | mm                 |
| Total height of the deformation cone                                            | IV               | =          | 0                  | mm                 |
| 3                                                                               |                  |            |                    |                    |
| Elastic resiliencies of the joint Resilience of the bolt: - at room temperature | δ <b>SR</b> T    | =          | 10,2239            | E-6 mm/N           |
| resilience spring washer                                                        | OSKI             | _          | 10,2239            | L-0 IIIII/N        |
| - FV $\delta$ Spann = 0,0277                                                    | E-6 mm/N         |            |                    |                    |
| $- FVmin \qquad \delta Spann \qquad = \qquad 0,0277$                            | E-6 mm/N         |            |                    |                    |
| condition of spring washer Fymin = 27929N                                       | ,                | e snrina c | hamnfer = 4300     | 00 < Fv =44687N    |
| Resilience of the clamped parts:                                                | < pressing force | c spring c | nampici – 1500     | 70 < 1 V = 110071V |
| - at room temperature                                                           |                  |            |                    |                    |
| concentrically clamped                                                          | δPRT             | =          | 1,562              | E-6 mm/N           |
| concentration camped                                                            | OFICE            | _          | 1,302              | L 0 11111/14       |

| Tightening factor Load introduction factor Load factor Amount of embedding Minimum clamp load for sealing Required minimum clamp load Loss of preload as a result of embedding Preload change as a result of the working temp. Thermally induced preload change Axial load at the opening limit | α A<br>n<br>Φ n<br>fz<br>FKP<br>FKerf<br>Fz<br>ΔF'Vth<br>ΔFVth<br>FAab  | = = = = = = = = = = = = = = = = = = = = | 1,6<br>0,7<br>0,052<br>24<br>0<br>14720<br>1030,92<br>0<br>0<br>28376,62               | μm<br>N<br>N<br>N<br>N<br>N          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|
| Maximum additional bolt load Maximum additional plate load Permissible assembly preload at RT Permissible assembly preload at RT (MA) Minimum necessary assembly preload Maximal tolerate montage tightened load Minimum preload Minimum residual clamp load                                    | FSAmax<br>FPAmax<br>FMzul<br>FMzul<br>FMmin<br>FMmax<br>FVmin<br>FKRmin | = = = = = =                             | 103,21<br>1877,79<br>45196<br>44686,51<br>17628,71<br>28205,93<br>26898,15<br>25020,36 | N<br>N<br>N<br>N<br>N<br>N           |
| Working stress Maximum bolt load in service Thread torque Maximum tensile stress of the bolt in service Maximal torsional stress in service Comparative stress in the working state Safety against exceeding the yield point                                                                    | FSmax<br>MG<br>ozmax<br>omax<br>oredB<br>SF                             | = = = =                                 | 44789,73<br>34872,99<br>531,54<br>159,82<br>549,27<br>1,17                             | N<br>N*mm<br>N/mm²<br>N/mm²<br>N/mm² |
| Surface pressure Bearing area: - bolt head - washer (on the head side)                                                                                                                                                                                                                          | ApKmin<br>ApUmin                                                        | =<br>=                                  | 65,64<br>207,91                                                                        | mm²<br>mm²                           |
| Assembled state Surface pressure: - head bearing area - washer/first clamped part Limiting surface pressure: - washer - the first clamped part Safety margin against surface pressure:                                                                                                          | pMKmax<br>pMUmax<br>pGU<br>PG1                                          | = = =                                   | 680,82<br>214,93<br>540<br>759,5                                                       | N/mm²<br>N/mm²<br>N/mm²<br>N/mm²     |
| - washer/the first clamped part                                                                                                                                                                                                                                                                 | SpMU                                                                    | =                                       | 3,53                                                                                   |                                      |
| Working state Surface pressure:                                                                                                                                                                                                                                                                 |                                                                         |                                         |                                                                                        |                                      |
| <ul><li>head bearing area</li><li>washer/the first clamped part</li><li>Limiting surface pressure:</li></ul>                                                                                                                                                                                    | pBKmax<br>pBUmax                                                        | =<br>=                                  | 682,39<br>215,43                                                                       | N/mm²<br>N/mm²                       |
| - washer<br>- the first clamped part<br>Safety against surface pressure:                                                                                                                                                                                                                        | pGU<br>PG1                                                              | =                                       | 540<br>759,5                                                                           | N/mm²<br>N/mm²                       |
| <ul><li>- washer/the first clamped part</li><li>- between the clapmed parts</li><li>Plate1 - Plate2</li></ul>                                                                                                                                                                                   | SpBU<br>SpPl                                                            | =<br>=                                  | 3,53<br>11,134                                                                         |                                      |

| Minimum length of engagement                     |          |   |                   |                   |
|--------------------------------------------------|----------|---|-------------------|-------------------|
| Shearing cross section of the internal thread    | ASGM     | = | 560,85            | mm²               |
| Shearing cross section of the bolt               | ASGS     | = | 404,66            | mm²               |
| Strength ratio                                   | Rs       | = | 1,045             |                   |
| Correction factor                                | C3       | = | 0,897             |                   |
| Shearing strength of the screw-in part           | τΒΜ      | = | 392               | N/mm <sup>2</sup> |
| Breaking force of the bolt thread                | FmS      | = | 67411,14          | N                 |
| Stripping force of the internal thread           | FmGM     | = | 197207,1          | N                 |
| Present effective length of engagement           | mvorheff | = | 17                | mm                |
| Present length of engagement                     | mvorh    | = | 20,5              | mm                |
| Minimum length of engagement                     | meffmin  | = | 9,31              | mm                |
|                                                  |          |   |                   |                   |
| Safety margin against slipping and sharing of th | e bolt   |   |                   |                   |
| Resulting transverse load                        | FQmax    | = | 1 <del>4</del> 72 | N                 |
| Required minimum clamp load for friction grip    | FKQ      | = | 14720             | N                 |
| Safety margin against slipping                   | SG       | = | 1,7               |                   |
| Valid is: SG ≥ SGsoll!                           |          |   |                   |                   |
|                                                  |          |   |                   |                   |
| Decisive shear cross section                     | Ατ       | = | 84,26             | mm²               |
| Shearing strength of the bolt                    | τBS      | = | 520<br>520        | N/mm <sup>2</sup> |
| Safety margin against shearing                   | SA       | = | 29,77             | ,                 |
| Valid is: $SA \ge 1.1!$                          |          |   | ,                 |                   |
|                                                  |          |   |                   |                   |
| Tightening torque                                |          |   |                   |                   |
| Necessary tightening torque at RT                | MA       | = | 62                | N*m               |
| Utilization of the yield point during tightening | ν        | = | 88,99             | %                 |
|                                                  | *        |   | -0,00             | · <del>·</del>    |

## Input data:

# Verifying calculation of high duty bolted joints according to VDI 2230 (Joints with one cylindrical bolt) - extended version

| Method of calculation Clamping Type of bolting Bolted joint  Working load                                                                                                                                                                                                                                                  | Extended<br>concentric<br>tapped thread joint<br>single-bolted joint with<br>transverse load<br>dynamic                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Bolted joint loads Upper limit value of the axial load Lower limit value of the axial load Eccentrically applied axial load                                                                                                                                                                                                | FAO = 460 N<br>FAU = 128 N<br>no                                                                                                                   |
| Predetermine the required minimum clamp load Torque about the bolt axis Transverse load Number of force-transmitting inner interfaces                                                                                                                                                                                      | no<br>Mt = 0 N*m<br>FQ = 62,43 N<br>qF 1                                                                                                           |
| Working moment Tightening technique Tightening factor Minimum coefficient of friction in the thread Minimum coefficient of friction at the interface Minimum coefficient of friction in the head bearing area Predetermine required safety against the transverse slipping Required safety against the transverse slipping | $MB = 0 \qquad N*m$ free input $\alpha A = 1,6$ $\mu Gmin = 0,08$ $\mu Tmin = 0,1$ $\mu Kmin = 0,08$ $yes$ $SGsoll = 1,8$                          |
| Predetermine the diameter of the shearing cross section                                                                                                                                                                                                                                                                    | no                                                                                                                                                 |
| Consider the internal pressure to be sealed Working temperature of the bolt                                                                                                                                                                                                                                                | no<br>Ts = 20 °C                                                                                                                                   |
| Bolt Data Source Strength grade Young's modulus of the bolt material at RT Minimum yield point of the bolt at RT Tensile strength of the bolt at RT Shearing strength of the bolt as an influencing factor Bolt geometry                                                                                                   | MDESIGN database<br>8.8 (d <= M16)<br>ESRT = 211000 N/mm <sup>2</sup><br>Rpmin = 640 N/mm <sup>2</sup><br>Rm = 800 N/mm <sup>2</sup><br>fBS = 0,65 |
| Own bolt geometry Data Source Thread type Bolt type  Designation of bolt Standard Bolt length Thread angle                                                                                                                                                                                                                 | no MDESIGN database standard thread hexagon head bolt with shank M12 x 100 DIN EN ISO 4014 ls = 195 mm βGPW = 60 °                                 |
| Self-locking nut                                                                                                                                                                                                                                                                                                           | no                                                                                                                                                 |

#### Specification of clamped parts

| Nr. | Material | Data<br>Source              | Young's<br>modulus<br>EP<br>N/mm <sup>2</sup> | Min.<br>tensile<br>strength<br>Rmmin<br>N/mm <sup>2</sup> | fG   | fBM | Part<br>thicknes<br>s hi<br>mm | DA<br>mm | dh<br>mm | °C |
|-----|----------|-----------------------------|-----------------------------------------------|-----------------------------------------------------------|------|-----|--------------------------------|----------|----------|----|
| 1   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 2,5                            | 30       | 8        | 20 |
| 2   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 165                            | 30       | 8        | 20 |
| 3   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 4                              | 30       | 8        | 20 |
| 4   | S355 JO  | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8 | 20                             | 30       | 8        | 20 |

#### Washers

Washer under head no Spring washer under head yes Data source MDESIGN

Data source MDESIGN database (DIN 6796)

Spring washer input linear spring curve spring steel (1.4310)

Number of spring washers 1

Number of spring washers

Inner diameter

Outer diameter

Thickness

Inner diameter

di = 13 mm
da = 29 mm
s = 3 mm

Consider the chamfer at the hole no Consider counterbore depth in the screw-in part no Predetermine amount of embedding yes Amount of embedding fz = 24μm Predetermine the load introduction factor no Joint types according to the type of load introduction SV1 Distance between the preloading area and the load introduction point ak = 0mm Predetermine the permissible assembly preload / necessary tightening torque at RT predetermine MA Necessary tightening torque at RT MA = 62N\*mThread cutting rolled before heat

treatment

Determine meffmin for partial load no

Alternating stress within the fatigue strength range yes

Number of alternating cycles N = 2000000



Results: Systematic calculation of high duty bolted joints according to VDI 2230

## Hexagon head bolt DIN EN ISO 4014 - M12,00 x 195,00 - 8.8

| General calculation values                                                                                                                                                                                                                             |              |   |         |          |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---------|----------|--|--|--|--|--|
| Bolt geometry                                                                                                                                                                                                                                          |              |   | 40      |          |  |  |  |  |  |
| Bolt nominal diameter                                                                                                                                                                                                                                  | d            | = | 12      | mm       |  |  |  |  |  |
| Thread pitch                                                                                                                                                                                                                                           | Р            | = | 1,75    | mm       |  |  |  |  |  |
| Hole diameter                                                                                                                                                                                                                                          | dh           | = | 13,5    | mm       |  |  |  |  |  |
| Outside diameter of the plane head bearing                                                                                                                                                                                                             | dw           | = | 16,47   | mm       |  |  |  |  |  |
| Inside diameter of the plane head bearing                                                                                                                                                                                                              | da           | = | 13,7    | mm       |  |  |  |  |  |
| Pitch diameter                                                                                                                                                                                                                                         | d2           | = | 10,86   | mm       |  |  |  |  |  |
| Minor diameter                                                                                                                                                                                                                                         | d3           | = | 9,85    | mm       |  |  |  |  |  |
| Shank length                                                                                                                                                                                                                                           | l1           | = | 70      | mm       |  |  |  |  |  |
| Bolt length                                                                                                                                                                                                                                            | ls           | = | 195     | mm       |  |  |  |  |  |
| Minor diameter of the nut thread                                                                                                                                                                                                                       | D1           | = | 10,11   | mm       |  |  |  |  |  |
| Clamping length                                                                                                                                                                                                                                        | lk           | = | 174,5   | mm       |  |  |  |  |  |
| Deformation cone angle                                                                                                                                                                                                                                 | φ            | = | 26,31   | o        |  |  |  |  |  |
| Limiting outside diameter of the deformation cone                                                                                                                                                                                                      | DAGr         | = | 189,02  | mm       |  |  |  |  |  |
| Total height of the deformation sleeve                                                                                                                                                                                                                 | IH           | = | 0       | mm       |  |  |  |  |  |
| Total height of the deformation cone                                                                                                                                                                                                                   | IV           | = | 0       | mm       |  |  |  |  |  |
| Elastic resiliencies of the joint Resilience of the bolt: - at room temperature resilience spring washer                                                                                                                                               | δSRT         | = | 10,2239 | E-6 mm/N |  |  |  |  |  |
| - FV $_{\delta}$ Spann = 0,0277 E-6 mm/N<br>- FVmin $_{\delta}$ Spann = 11,4943 E-6 mm/N<br>condition of spring washer Fvmin = 27929N < pressing force spring champfer = 43000 < Fv = 44687N<br>Resilience of the clamped parts: - at room temperature |              |   |         |          |  |  |  |  |  |
| concentrically clamped                                                                                                                                                                                                                                 | $\delta$ PRT | = | 1,562   | E-6 mm/N |  |  |  |  |  |

| Tightening factor Load introduction factor Load factor Amount of embedding Minimum clamp load for sealing Required minimum clamp load Loss of preload as a result of embedding Preload change as a result of the working temp. Thermally induced preload change Axial load at the opening limit | <ul> <li>α A</li> <li>n</li> <li>Φ n</li> <li>fz</li> <li>FKP</li> <li>FKerf</li> <li>Fz</li> <li>ΔF'Vth</li> <li>ΔPVth</li> <li>FAab</li> </ul> | = = = = = = = = = = = = = = = = = = = = | 1,6<br>0,7<br>0,052<br>24<br>0<br>624,3<br>1030,92<br>0<br>0 | µm<br>N<br>N<br>N<br>N<br>N |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-----------------------------|
| Maximum additional bolt load<br>Maximum additional plate load                                                                                                                                                                                                                                   | FSAmax<br>FPAmax                                                                                                                                 | =                                       | 23,97<br>436,03                                              | N<br>N                      |
| Permissible assembly preload at RT                                                                                                                                                                                                                                                              | FMzul                                                                                                                                            | =                                       | 45196                                                        | N                           |
| Permissible assembly preload at RT (MA)                                                                                                                                                                                                                                                         | FMzul                                                                                                                                            | =                                       | 44686,51                                                     | N                           |
| Minimum necessary assembly preload  Maximal tolerate montage tightened load                                                                                                                                                                                                                     | FMmin<br>FMmax                                                                                                                                   | =                                       | 2091,25<br>3346,01                                           | N<br>N                      |
| Minimum preload                                                                                                                                                                                                                                                                                 | FVmin                                                                                                                                            | =                                       | 26898,15                                                     | N                           |
| Minimum residual clamp load                                                                                                                                                                                                                                                                     | FKRmin                                                                                                                                           | =                                       | 26462,12                                                     | N                           |
| Moulting strong                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                         |                                                              |                             |
| Working stress Maximum bolt load in service                                                                                                                                                                                                                                                     | FSmax                                                                                                                                            | =                                       | 44710,48                                                     | N                           |
| Thread torque                                                                                                                                                                                                                                                                                   | MG                                                                                                                                               | =                                       | 34872,99                                                     | N*mm                        |
| Maximum tensile stress of the bolt in service                                                                                                                                                                                                                                                   | $\sigma$ zmax                                                                                                                                    | =                                       | 530,6                                                        | N/mm²                       |
| Maximal torsional stress in service                                                                                                                                                                                                                                                             | τmax                                                                                                                                             | =                                       | 159,82                                                       | N/mm²                       |
| Comparative stress in the working state Safety against exceeding the yield point                                                                                                                                                                                                                | σredB<br>SF                                                                                                                                      | =                                       | 548,36<br>1,17                                               | N/mm²                       |
| Sarety against exceeding the yield point                                                                                                                                                                                                                                                        | 51                                                                                                                                               |                                         | 1,17                                                         |                             |
| Alternating stress                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                         | 0.4                                                          |                             |
| Continuous alternating stress acting on the bolt                                                                                                                                                                                                                                                | σa<br>ECm                                                                                                                                        | =                                       | 0,1                                                          | N/mm²                       |
| Average bolt load                                                                                                                                                                                                                                                                               | FSm                                                                                                                                              | =                                       | 44701,83                                                     | N                           |
| Stress amplitude of the endurance limit                                                                                                                                                                                                                                                         | σASV                                                                                                                                             | =                                       | 48,88                                                        | N/mm²                       |
| Safety margin against fatigue failure                                                                                                                                                                                                                                                           | SD                                                                                                                                               | =                                       | 476,18                                                       |                             |
| Surface pressure                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                         |                                                              |                             |
| Bearing area:                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                         |                                                              |                             |
| - bolt head                                                                                                                                                                                                                                                                                     | ApKmin                                                                                                                                           | =                                       | 65,6 <del>4</del>                                            | mm²                         |
| - washer (on the head side)                                                                                                                                                                                                                                                                     | ApUmin                                                                                                                                           | =                                       | 207,91                                                       | mm²                         |
| Assembled state                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                         |                                                              |                             |
| Surface pressure:                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                         |                                                              |                             |
| - head bearing area                                                                                                                                                                                                                                                                             | pMKmax                                                                                                                                           | =                                       | 680,82                                                       | N/mm <sup>2</sup>           |
| - washer/first clamped part                                                                                                                                                                                                                                                                     | pMUmax                                                                                                                                           | =                                       | 214,93                                                       | N/mm²                       |
| Limiting surface pressure: - washer                                                                                                                                                                                                                                                             | pGU                                                                                                                                              | =                                       | 5 <del>4</del> 0                                             | N/mm²                       |
| - the first clamped part                                                                                                                                                                                                                                                                        | PG1                                                                                                                                              | =                                       | 759,5                                                        | N/mm <sup>2</sup>           |
| Safety margin against surface pressure:                                                                                                                                                                                                                                                         |                                                                                                                                                  |                                         |                                                              |                             |
| - washer/the first clamped part                                                                                                                                                                                                                                                                 | SpMU                                                                                                                                             | =                                       | 3,53                                                         |                             |
| Working state Surface pressure:                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                         |                                                              |                             |
| - head bearing area                                                                                                                                                                                                                                                                             | pBKmax                                                                                                                                           | =                                       | 681,18                                                       | N/mm²                       |
| - washer/the first clamped part                                                                                                                                                                                                                                                                 | pBUmax                                                                                                                                           | =                                       | 215,04                                                       | N/mm²                       |
| Limiting surface pressure:                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                         |                                                              |                             |
| - washer                                                                                                                                                                                                                                                                                        | pGU<br>PG1                                                                                                                                       | =                                       | 540                                                          | N/mm²                       |
| <ul> <li>the first clamped part</li> <li>Safety against surface pressure:</li> </ul>                                                                                                                                                                                                            | rgi                                                                                                                                              | =                                       | 759,5                                                        | N/mm²                       |
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                         |                                                              |                             |
| , 3                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                         |                                                              |                             |
| - washer/the first clamped part                                                                                                                                                                                                                                                                 | SpBU                                                                                                                                             | =                                       | 3,53                                                         |                             |
| , -                                                                                                                                                                                                                                                                                             | SpBU<br>SpPl                                                                                                                                     | = =                                     | 3,53<br>11,154                                               |                             |

| Minimum length of engagement                     |             |   |          |       |
|--------------------------------------------------|-------------|---|----------|-------|
| Shearing cross section of the internal thread    | ASGM        | = | 560,85   | mm²   |
| Shearing cross section of the bolt               | ASGS        | = | 404,66   | mm²   |
| Strength ratio                                   | Rs          | = | 1,045    |       |
| Correction factor                                | C3          | = | 0,897    |       |
| Shearing strength of the screw-in part           | τΒΜ         | = | 392      | N/mm² |
| Breaking force of the bolt thread                | FmS         | = | 67411,14 | N     |
| Stripping force of the internal thread           | FmGM        | = | 197207,1 | N     |
| Present effective length of engagement           | mvorheff    | = | 17       | mm    |
| Present length of engagement                     | mvorh       | = | 20,5     | mm    |
| Minimum length of engagement                     | meffmin     | = | 9,31     | mm    |
| Safety margin against slipping and sharing o     | of the bolt |   |          |       |
| Resulting transverse load                        | FQmax       | = | 62,43    | N     |
| Required minimum clamp load for friction grip    | FKQ         | = | 624,3    | N     |
| Safety margin against slipping                   | SG          | = | 42,39    |       |
| Valid is: SG ≥ SGsoll!                           |             |   |          |       |
| Decisive shear cross section                     | Ατ          | = | 84,26    | mm²   |
| Shearing strength of the bolt                    | τBS         | = | 520      | N/mm² |
| Safety margin against shearing                   | SA          | = | 701,86   |       |
| Valid is: SA ≥ 1.1!                              |             |   |          |       |
| Tightening torque                                |             |   |          |       |
| Necessary tightening torque at RT                | MA          | = | 62       | N*m   |
| Utilization of the yield point during tightening | ν           | = | 88,99    | %     |



## Input data:

# Verifying calculation of high duty bolted joints according to VDI 2230 (Joints with one cylindrical bolt) - extended version

| Method of calculation Clamping Type of bolting Bolted joint Working load | Extended<br>concentric<br>tapped thread joint<br>single-bolted joi<br>transverse load<br>static | int with          |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|
| Bolted joint loads                                                       |                                                                                                 |                   |
| Upper limit value of the axial load                                      | FAO = 100                                                                                       | N                 |
| Eccentrically applied axial load                                         | no                                                                                              |                   |
| Predetermine the required minimum clamp load                             | no                                                                                              |                   |
| Torque about the bolt axis                                               | Mt = 0                                                                                          | N*m               |
| Transverse load                                                          | FQ = 271                                                                                        | N                 |
| Number of force-transmitting inner interfaces                            | qF 1                                                                                            |                   |
| Working moment                                                           | MB = 0                                                                                          | N*m               |
| Tightening technique                                                     | free input                                                                                      |                   |
| Tightening factor                                                        | $\alpha A = 1.6$                                                                                |                   |
| Minimum coefficient of friction in the thread                            | $\mu$ Gmin = 0,09                                                                               |                   |
| Minimum coefficient of friction at the interface                         | $\mu Tmin = 0.1$                                                                                |                   |
| Minimum coefficient of friction in the head bearing area                 | $\mu$ Kmin = 0,09                                                                               |                   |
| Predetermine required safety against the transverse slipping             | yes                                                                                             |                   |
| Required safety against the transverse slipping                          | SGsoll = 1,2                                                                                    |                   |
| Predetermine the diameter of the shearing cross section                  | no                                                                                              |                   |
| Consider the internal pressure to be sealed                              | no                                                                                              |                   |
| Working temperature of the bolt                                          | Ts = 20                                                                                         | °C                |
| Bolt                                                                     |                                                                                                 |                   |
| Data Source                                                              | MDESIGN datab                                                                                   | ase               |
| Strength grade                                                           | A2-70                                                                                           |                   |
| Young's modulus of the bolt material at RT                               | ESRT = 200000                                                                                   | N/mm <sup>2</sup> |
| Minimum yield point of the bolt at RT                                    | Rpmin = 450                                                                                     | N/mm²             |
| Tensile strength of the bolt at RT                                       | Rm = 700                                                                                        | N/mm <sup>2</sup> |
| Shearing strength of the bolt as an influencing factor                   | fBS = 0.72                                                                                      |                   |
| Bolt geometry                                                            |                                                                                                 |                   |
| Own bolt geometry                                                        | no                                                                                              |                   |
| Data Source                                                              | MDESIGN datab                                                                                   | ase               |
| Thread type                                                              | standard thread                                                                                 |                   |
| Bolt type                                                                | hexagon head b                                                                                  |                   |
|                                                                          | threaded to head                                                                                | d                 |
| Designation of bolt                                                      | M8 x 25                                                                                         |                   |
| Standard                                                                 | DIN EN I                                                                                        |                   |
| Bolt length                                                              | ls = 25                                                                                         | mm                |
| Thread angle                                                             | $\beta$ GPW = 60                                                                                | 0                 |
| Self-locking nut                                                         | no                                                                                              |                   |
|                                                                          |                                                                                                 |                   |

## **Specification of clamped parts**

| Nr. | Material    | Data<br>Source   | Young'<br>s<br>modul<br>us EP<br>N/mm | Min.<br>tensile<br>strength<br>Rmmin<br>N/mm² | fG   | fBM  | Part<br>thicknes<br>s hi<br>mm | DA<br>mm | dh<br>mm | T<br>°C |
|-----|-------------|------------------|---------------------------------------|-----------------------------------------------|------|------|--------------------------------|----------|----------|---------|
| 1   | AW-<br>6082 | MDESIGN database | 75000                                 | 290                                           | 0,9  | 0,59 | 3                              | 40       | 9        | 20      |
| 2   | S355 JO     | MDESIGN database | 20500<br>0                            | 490                                           | 1,55 | 0,8  | 17                             | 40       | 8        | 20      |

| Washers                                                                           |                |     |
|-----------------------------------------------------------------------------------|----------------|-----|
| Washer under head                                                                 | no             |     |
| Spring washer under head                                                          | no             |     |
|                                                                                   |                |     |
| Consider the chamfer at the hole                                                  | no             |     |
| Consider counterbore depth in the screw-in part                                   | no             |     |
| Predetermine amount of embedding                                                  | yes            |     |
| Amount of embedding                                                               | fz = 13        | μm  |
| Predetermine the load introduction factor                                         | no             |     |
| Joint types according to the type of load introduction                            | SV1            |     |
| Distance between the preloading area and the load introduction point              | ak = 0         | mm  |
| Predetermine the permissible assembly preload / necessary tightening torque at RT | predetermine M | 1A  |
| Necessary tightening torque at RT                                                 | MA = 13        | N*m |
| Determine meffmin for partial load                                                | no             |     |
|                                                                                   |                |     |



## Results: Systematic calculation of high duty bolted joints according to VDI 2230

| Hexagon head bolt DIN EN ISO 4017 - M8 x                                            | 25 - A2-70    |   |                    |          |
|-------------------------------------------------------------------------------------|---------------|---|--------------------|----------|
| General calculation values                                                          |               |   |                    |          |
| Bolt geometry                                                                       |               |   |                    |          |
| Bolt nominal diameter                                                               | d             | = | 8                  | mm       |
| Thread pitch                                                                        | Р             | = | 1,25               | mm       |
| Hole diameter                                                                       | dh            | = | 9                  | mm       |
| Outside diameter of the plane head bearing                                          | dw            | = | 11, <del>4</del> 7 | mm       |
| Inside diameter of the plane head bearing                                           | da            | = | 9,2                | mm       |
| Pitch diameter                                                                      | d2            | = | 7,19               | mm       |
| Minor diameter                                                                      | d3            | = | 6,47               | mm       |
| Bolt length                                                                         | ls            | = | 25                 | mm       |
| Minor diameter of the nut thread                                                    | D1            | = | 6,65               | mm       |
|                                                                                     |               |   |                    |          |
| Clamping length                                                                     | lk            | = | 3                  | mm       |
| Deformation cone angle                                                              | φ             | = | 26,01              | 0        |
| Limiting outside diameter of the deformation cone                                   | DAGr          | = | 12,93              | mm       |
| Total height of the deformation sleeve                                              | IH            | = | 0                  | mm       |
| Total height of the deformation cone                                                | IV            | = | 0                  | mm       |
| Elastic resiliencies of the joint                                                   |               |   |                    |          |
| Resilience of the bolt:                                                             |               |   |                    |          |
| - at room temperature                                                               | $\delta$ SRT  | = | 1,72               | E-6 mm/N |
| Resilience of the clamped parts:                                                    |               |   | •                  | •        |
| - at room temperature                                                               |               |   |                    |          |
| concentrically clamped                                                              | $\delta$ PRT  | = | 2,4195             | E-6 mm/N |
| Tightoning factor                                                                   |               | _ | 1.6                |          |
| Tightening factor Load introduction factor                                          | α <b>A</b>    | = | 1,6                |          |
|                                                                                     | n<br>A m      | = | 0,7                |          |
| Load factor                                                                         | Φn            | = | 0,409              |          |
| Amount of embedding                                                                 | fz            | = | 13                 | μm       |
| Minimum clamp load for sealing                                                      | FKP           | = | 0                  | N        |
| Required minimum clamp load                                                         | FKerf         | = | 2710               | N        |
| Loss of preload as a result of embedding                                            | Fz            | = | 3140,5             | N        |
| Preload change as a result of the working temp.                                     | ∆F'Vth        | = | 0                  | N        |
| Thermally induced preload change                                                    | ∆FVth         | = | 0                  | N        |
| Axial load at the opening limit                                                     | FAab          | = | 7903,55            | N        |
| Maximum additional bolt load                                                        | FSAmax        | = | 40,91              | N        |
| Maximum additional plate load                                                       | <b>FPAmax</b> | = | 59,09              | N        |
| Permissible assembly preload at RT                                                  | FMzul         | = | 13590,96           | N        |
| Permissible assembly preload at RT (MA)                                             | FMzul         | = | 12496,53           | N        |
| Minimum necessary assembly preload                                                  | FMmin         | = | 5909,59            | N        |
| Maximal tolerate montage tightened load                                             | FMmax         | = | 9455,34            | N        |
| Minimum preload                                                                     | FVmin         | = | 4669,83            | N        |
| Minimum residual clamp load                                                         | FKRmin        | = | 4610,75            | N        |
| Working stress                                                                      |               |   |                    |          |
| Maximum bolt load in service                                                        | FSmax         | = | 12537,45           | N        |
| Thread torque                                                                       | MG            | = | 7154,76            | N*mm     |
| Maximum tensile stress of the bolt in service                                       |               |   | 342,5              | N/mm²    |
| Maximal torsional stress in service                                                 | σzmax         | = |                    | •        |
|                                                                                     | τmax<br>-rodP | = | 114,52             | N/mm²    |
| Comparative stress in the working state<br>Safety against exceeding the yield point | σredB<br>SF   | = | 356,57<br>1,26     | N/mm²    |
| 22.25, against exceeding the field point                                            | <b>J</b> .    |   | 1,20               |          |
| Surface pressure                                                                    |               |   |                    |          |
| Bearing area:                                                                       |               |   |                    |          |
| - bolt head                                                                         | ApKmin        | = | 36,85              | mm²      |
| boil fiedd                                                                          | Ahmin         | _ | 30,03              | 111111-  |

| Assembled state Surface pressure: - head bearing area                                | pMKmax       | =   | 339,1                 | N/mm²           |
|--------------------------------------------------------------------------------------|--------------|-----|-----------------------|-----------------|
| Limiting surface pressure: - the first clamped part                                  | PG1          | =   | 261                   | N/mm²           |
| Working state Surface pressure:                                                      | n Di/many    |     | 240.21                | N1/mama 2       |
| - head bearing area Limiting surface pressure:                                       | pBKmax       | =   | 340,21                | N/mm²           |
| <ul> <li>the first clamped part</li> <li>Safety against surface pressure:</li> </ul> | PG1          | =   | 261                   | N/mm²           |
| - between the clapmed parts<br>Plate1 - Plate2                                       | SpPl         | =   | 24,836                |                 |
| Minimum laureth of annual annual                                                     |              |     |                       |                 |
| Minimum length of engagement Shearing cross section of the internal thread           | ASGM         | =   | 373,87                | mm²             |
| Shearing cross section of the bolt Strength ratio                                    | ASGS<br>Rs   | =   | 266,2<br>1,092        | mm <sup>2</sup> |
| Correction factor                                                                    | C3           | =   | 0,897                 |                 |
| Shearing strength of the screw-in part                                               | τBM          | =   | 392                   | N/mm²           |
| Breaking force of the bolt thread Stripping force of the internal thread             | FmS<br>FmGM  | =   | 25624,05<br>131461,49 | N<br>N          |
| Present effective length of engagement                                               | mvorheff     | =   | 17                    | mm              |
| Present length of engagement                                                         | mvorh        | =   | 17                    | mm              |
| Minimum length of engagement                                                         | meffmin      | =   | 5,81                  | mm              |
| Safety margin against slipping and sharing of the                                    |              |     | 274                   |                 |
| Resulting transverse load Required minimum clamp load for friction grip              | FQmax<br>FKQ | =   | 271<br>2710           | N<br>N          |
| Safety margin against slipping Valid is: SG ≥ SGsoll!                                | SG           | =   | 1,7                   | IV              |
| Decisive shear cross section                                                         | Ατ           | =   | 36,61                 | mm²             |
| Shearing strength of the bolt Safety margin against shearing Valid is: $SA \ge 1.1!$ | τBS<br>SA    | = = | 504<br>68,08          | N/mm²           |
| valiu i5. 3A ≥ 1.1!                                                                  |              |     |                       |                 |
| Tightening torque                                                                    |              |     |                       |                 |
| Necessary tightening torque at RT                                                    | MA           | =   | 13                    | N*m             |
| Utilization of the yield point during tightening                                     | ν            | =   | 82,75                 | %               |

## Input data:

# Verifying calculation of high duty bolted joints according to VDI 2230 (Joints with one cylindrical bolt) - extended version

| Method of calculation Clamping Type of bolting Bolted joint Working load                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Extended concentric tapped thread joint single-bolted joint with transverse load dynamic                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bolted joint loads Upper limit value of the axial load Lower limit value of the axial load Eccentrically applied axial load Predetermine the required minimum clamp load Torque about the bolt axis Transverse load Number of force-transmitting inner interfaces Working moment Tightening technique Tightening factor Minimum coefficient of friction in the thread Minimum coefficient of friction at the interface Minimum coefficient of friction in the head bearing area Predetermine required safety against the transverse slipping | $FAO = 115 \qquad N \\ FAU = 66 \qquad N \\ no \\ no \\ Mt = 0 \qquad N*m \\ FQ = 22,62 \qquad N \\ qF 1 \qquad MB = 0 \\ free input \\ \alpha A = 1,6 \\ \mu Gmin = 0,09 \\ \mu Tmin = 0,1 \\ \mu Kmin = 0,09 \\ yes$ |
| Required safety against the transverse slipping  Predetermine the diameter of the shearing cross section                                                                                                                                                                                                                                                                                                                                                                                                                                     | SGsoll = 1,8                                                                                                                                                                                                           |
| Consider the internal pressure to be sealed Working temperature of the bolt                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | no<br>Ts = 20 °C                                                                                                                                                                                                       |
| Bolt Data Source Strength grade Young's modulus of the bolt material at RT Minimum yield point of the bolt at RT Tensile strength of the bolt at RT Shearing strength of the bolt as an influencing factor Bolt geometry                                                                                                                                                                                                                                                                                                                     | MDESIGN database                                                                                                                                                                                                       |
| Own bolt geometry Data Source Thread type Bolt type  Designation of bolt Standard Bolt length Thread angle Self-locking nut                                                                                                                                                                                                                                                                                                                                                                                                                  | no MDESIGN database standard thread hexagon head bolt, threaded to head $M8 \times 25$ DIN EN ISO 4017 $Is = 25 \qquad mm$ $\beta GPW = 60 \qquad \circ$ no                                                            |

#### **Specification of clamped parts**

| Nr. | Material    | Data<br>Source              | Young's<br>modulus<br>EP<br>N/mm <sup>2</sup> | Min.<br>tensile<br>strength<br>Rmmin<br>N/mm <sup>2</sup> | fG   | fBM  | Part<br>thicknes<br>s hi<br>mm | DA<br>mm | dh<br>mm | 0 → |
|-----|-------------|-----------------------------|-----------------------------------------------|-----------------------------------------------------------|------|------|--------------------------------|----------|----------|-----|
| 1   | AW-<br>6082 | MDESIG<br>N<br>databas<br>e | 75000                                         | 290                                                       | 0,9  | 0,59 | 3                              | 40       | 9        | 20  |
| 2   | S355 JO     | MDESIG<br>N<br>databas<br>e | 205000                                        | 490                                                       | 1,55 | 0,8  | 17                             | 40       | 8        | 20  |

#### Washers

Number of alternating cycles

Washer under head no Spring washer under head no Consider the chamfer at the hole no Consider counterbore depth in the screw-in part no Predetermine amount of embedding yes Amount of embedding fz = 13μm Predetermine the load introduction factor no Joint types according to the type of load introduction SV1 Distance between the preloading area and the load introduction point ak = 0mm Predetermine the permissible assembly preload / necessary tightening torque at RT predetermine MA Necessary tightening torque at RT N\*mMA = 13Thread cutting rolled before heat treatment Determine meffmin for partial load no Alternating stress within the fatigue strength range

yes

N = 2000000



## Results: Systematic calculation of high duty bolted joints according to VDI 2230

Hexagon head bolt DIN EN ISO 4017 - M8 x 25 - A2-70 **General calculation values** Bolt geometry Bolt nominal diameter d 8 = mm Ρ 1,25 Thread pitch = mmHole diameter dh 9 = mm Outside diameter of the plane head bearing dw = 11,47 mm Inside diameter of the plane head bearing da 9,2 mm = Pitch diameter d2 7,19 mm Minor diameter d3 6,47 mm 25 Bolt length ls = mm Minor diameter of the nut thread D1 = 6,65 mmClamping length lk 3 mm = Deformation cone angle 26,01 Limiting outside diameter of the deformation cone DAGr 12,93 mm Total height of the deformation sleeve lΗ 0 mm Total height of the deformation cone IV 0 mm Elastic resiliencies of the joint Resilience of the bolt: - at room temperature δSRT 1,72 E-6 mm/N = Resilience of the clamped parts: - at room temperature concentrically clamped δPRT 2,4195 E-6 mm/N Tightening factor  $\alpha A$ 1,6 Load introduction factor 0,7 0,409 Load factor Φn = Amount of embedding 13 fz = μm Minimum clamp load for sealing FKP 0 Ν = Required minimum clamp load **FKerf** 226,2 Ν = Loss of preload as a result of embedding Fz 3140,5 Ν = Preload change as a result of the working temp.  $\Delta F'Vth$ 0 Ν = Thermally induced preload change ∆FVth 0 Ν Axial load at the opening limit **FAab** 7903,55 Ν Maximum additional bolt load **FSAmax** 47,05 Ν = 67,95 Maximum additional plate load **FPAmax** N = 13590,96 Permissible assembly preload at RT **FMzul** Ν = Permissible assembly preload at RT (MA) FMzul 12496,53 Ν = Minimum necessary assembly preload FMmin = 3434,65 Ν Maximal tolerate montage tightened load **FMmax** 5495,44 Ν = Minimum preload FVmin 4669,83 Ν Minimum residual clamp load **FKRmin** 4601,88 Ν **Working stress** Maximum bolt load in service **FSmax** 12543,58 = Thread torque MG 7154,76 N\*mm = N/mm<sup>2</sup> Maximum tensile stress of the bolt in service σzmax 342,67 = Maximal torsional stress in service 114,52 N/mm<sup>2</sup> τmax N/mm<sup>2</sup> Comparative stress in the working state  $\sigma$ redB 356,73 Safety against exceeding the yield point 1,26

| <b>Alternating stress</b> Continuous alternating stress acting on the bolt Average bolt load                                           | σa<br>FSm                    | =<br>=      | 0,27<br>12533,56                  | N/mm²<br>N      |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|-----------------------------------|-----------------|
| Stress amplitude of the endurance limit<br>Safety margin against fatigue failure                                                       | σASV<br>SD                   | = =         | 54,19<br>197,88                   | N/mm²           |
| Surface pressure Bearing area: - bolt head                                                                                             | ApKmin                       | =           | 36,85                             | mm²             |
| Assembled state Surface pressure: - head bearing area                                                                                  | pMKmax                       | =           | 339,1                             | N/mm²           |
| Limiting surface pressure: - the first clamped part                                                                                    | PG1                          | =           | 261                               | N/mm²           |
| Working state                                                                                                                          |                              |             |                                   |                 |
| Surface pressure: - head bearing area Limiting surface pressure:                                                                       | pBKmax                       | =           | 340,38                            | N/mm²           |
| - the first clamped part                                                                                                               | PG1                          | =           | 261                               | N/mm²           |
| Minimum length of engagement                                                                                                           |                              |             |                                   |                 |
| Shearing cross section of the internal thread Shearing cross section of the bolt Strength ratio Correction factor                      | ASGM<br>ASGS<br>Rs<br>C3     | =<br>=<br>= | 373,87<br>266,2<br>1,092<br>0,897 | mm²<br>mm²      |
| Shearing strength of the screw-in part Breaking force of the bolt thread Stripping force of the internal thread                        | τBM<br>FmS<br>FmGM           | = =         | 392<br>25624,05<br>131461,49      | N/mm²<br>N<br>N |
| Present effective length of engagement Present length of engagement Minimum length of engagement                                       | mvorheff<br>mvorh<br>meffmin | =<br>=<br>= | 17<br>17<br>5,81                  | mm<br>mm<br>mm  |
| Safety margin against slipping and sharing of the bolt                                                                                 |                              |             |                                   |                 |
| Resulting transverse load<br>Required minimum clamp load for friction grip<br>Safety margin against slipping<br>Valid is: SG ≥ SGsoll! | FQmax<br>FKQ<br>SG           | =<br>=<br>= | 22,62<br>226,2<br>20,34           | N<br>N          |
| Decisive shear cross section Shearing strength of the bolt Safety margin against shearing Valid is: $SA \ge 1.1!$                      | Aτ<br>τBS<br>SA              | =<br>=<br>= | 36,61<br>504<br>815,62            | mm²<br>N/mm²    |
| <b>Tightening torque</b> Necessary tightening torque at RT Utilization of the yield point during tightening                            | MA<br>v                      | = =         | 13<br>82,75                       | N*m<br>%        |

