ÜBUNGEN ZUR VORLESUNG GRUNDBEGRIFFE DER THEORETISCHEN INFORMATIK

THOMAS SCHWENTICK

GAETANO GECK, LUTZ OETTERSHAGEN, CHRISTOPHER SPINRATH, MARCO WILHELM

SOSE 2018 ÜBUNGSBLATT 10 19.06.2018

Aufgabe 10.1 [Kodierung einer Turingmaschine]

2 Punkte

Die Turingmaschine $M=(\{s,p\},\{\rhd,\sqcup,0,1\},\delta,s)$ über dem Alphabet $\Sigma=\{0,1\}$ ist ein binärer Dekrementierer: Die Binärzahl w^R wird um 1 dekrementiert, falls $\operatorname{Str2N}(w^R)>0$ gilt. Die Transitionen (q,σ,q',σ',d) aus δ sind dabei wie folgt definiert:

q	σ	q'	σ'	d
s	\triangleright	s	\triangleright	\rightarrow
s	0	s	0	\rightarrow
s	1	p	0	\leftarrow
\overline{s}	Ш	h	Ш	\downarrow
p	0	p	1	\leftarrow
p	\triangleright	h	\triangleright	\downarrow

a) Wie werden die Symbole und Zustände von M gemäß den im Abschnitt "Universelle Turingmaschinen" von Kapitel 16 genannten Konventionen kodiert, wenn M Eingabe für eine universelle Turingmaschine ist? Verwenden Sie die folgende Nummerierung der Zustände, Richtungen und Zeichen und ergänzen Sie die Tabellen:

x	num(x)	enc(x)
s	1	
h	4	
p	5	
\leftarrow	1	
\downarrow	2	
\rightarrow	3	

x	num (x)	enc(x)
\triangleright	1	
Ц	2	
0	3	
1	4	

(1 Punkt)

b) Geben Sie die Kodierungen enc(s, 1) und enc(p, 0) an.

(1 Punkt)

Lösung:

a) Wir kodieren x für $x \in (Q \cup \{h\}) \cup \{\leftarrow, \downarrow, \rightarrow\} \cup \Gamma$ gemäß $\operatorname{enc}(x) = 0^{\operatorname{num}(x)}1$:

b) Wir kodieren $\operatorname{enc}(s,1)$ und $\operatorname{enc}(p,0)$ für $\delta(q,\sigma)=(q',\sigma',d)$ gemäß

$$\operatorname{enc}(q, \sigma) = \operatorname{1enc}(q)\operatorname{enc}(\sigma)\operatorname{enc}(q')\operatorname{enc}(\sigma')\operatorname{enc}(d)$$

(die Leerstellen dienen lediglich der Lesbarkeit und sind eigentlich nicht vorhanden):

x	enc(x)		
$\overline{(s,1)}$	1 01 00001 000001 0001 01		
(p,0)	1 000001 0001 000001 00001 01		

Aufgabe 10.2 [Abschlusseigenschaften]

4 Punkte

Es seien L_1 und L_2 Sprachen über einem Alphabet Σ und M_1 bzw. M_2 Turingmaschinen für die $L_1 = L(M_1)$ und $L_2 = L(M_2)$ gilt. Beschreiben Sie anschaulich, wie sich Turingmaschinen M_a und M_b für die folgende Sprachen L_a und L_b konstruieren lassen, so dass jeweils $L_x = L(M_x)$ gilt. Bedenken Sie, dass M_x die Sprache L_x nicht entscheiden muss. Es ist also möglich, dass sie für einige Eingaben nicht terminiert.

a)
$$L_a = L_1 \cup L_2$$
 (2 Punkte)

b)
$$L_b = L_1 \circ L_2$$
 (2 Punkte)

Hinweis

 M_1 und M_2 können als 1-String-Turingmaschinen angenommen werden. Für M_a und M_b dürfen Sie Mehrstring-Turingmaschinen verwenden. Sie müssen die (Mehrstring-)Turingmaschinen M_a und M_b weder formal aufschreiben, noch als Diagramm angeben. Beschreiben Sie jedoch die Arbeitsweise hinreichend verständlich und nutzen Sie dafür die Tatsache, dass Turingmaschinen beliebige andere Turingmaschinen simulieren können.

Lösung:

- a) Eine 2-String-Turingmaschine M_a für die Sprache L_a arbeitet folgendermaßen:
 - 1. Speichere die Eingabe w (Schreibe w sowohl auf String 1 als auch auf String 2.)
 - 2. Simuliere die Turingmaschine M_1 bei Eingabe w (Verwende hierzu String 1.)

Simuliere gleichzeitig die Turingmaschine M_2 bei Eingabe w

(Verwende hierzu String 2. "Gleichzeitig" soll dabei bedeuten, dass in einem Schritt von M_a jeweils ein Schritt von M_1 (auf String 1) und ein Schritt von M_2 (auf String 2) simuliert wird.)

• Falls die Simulation von M_1 oder die von M_2 akzeptiert, lasse M_a akzeptieren.

• Falls eine der beiden Simulationen anhält und verwirft, lasse sie auf die jeweils andere warten. Hält auch die zweite und verwirft, so soll auch M_a verwerfen.

Zur Korrektheit: Falls $w \in L_1$, dann akzeptiert die Simulation von M_1 und damit auch M_a . Entsprechend akzeptiert M_a , falls $w \in L_2$. Dies zeigt $L_1 \cup L_2 \subseteq L(M_a)$. Da für Eingaben $w \notin L_1 \cup L_2$ weder M_1 noch M_2 akzeptiert (sie lehnen ab oder halten nicht), akzeptiert auch M_a nicht. Damit gilt $L(M_a) = L_1 \cup L_2 = L_a$.

Hinweis

Die Konstruktion von M_a gelingt z.B. so:

Seien $M_1=(Q_1,\Gamma_1,\delta_1,s_1)$ und $M_2=(Q_2,\Gamma_2,\delta_2,s_2)$. Dann definiere

$$M_a = ((Q_1 \cup \{\mathsf{ja},\mathsf{nein},h\}) \times (Q_2 \cup \{\mathsf{ja},\mathsf{nein},h\}), \Gamma_1 \cup \Gamma_2, \delta, (s_1,s_2))$$

mit der Transitionsfunktion

$$\delta((q_1,q_2),(\gamma_1,\gamma_2)) = \begin{cases} ((q_1',q_2'),(\gamma_1',\gamma_2'),(r_1',r_2')), & q_1 \in Q_1, \ q_2 \in Q_2 \\ (\mathrm{ja},(\gamma_1,\gamma_2),(\downarrow,\downarrow)), & q_1 = \mathrm{ja} \ \mathrm{oder} \ q_2 = \mathrm{ja} \\ ((q_1',q_2),(\gamma_1',\gamma_2),(r_1',\downarrow)), & q_1 \in Q_1, \ q_2 \in \{\mathrm{nein},h\} \\ ((q_1,q_2'),(\gamma_1,\gamma_2'),(\downarrow,r_2')), & q_1 \in \{\mathrm{nein},h\}, \ q_2 \in Q_2 \\ (\mathrm{nein},(\gamma_1,\gamma_2),(\downarrow,\downarrow)), & \mathrm{sonst} \end{cases}$$

wobei $(q_1',\gamma_1',r_1')=\delta(q_1,\gamma_1)$ und $(q_2',\gamma_2',r_2')=\delta(q_2,\gamma_2)$ gelten sollen. Dass die Transitionsfunktion wohldefiniert ist, lässt sich schnell einsehen. Solange die Turingmaschinen M_1 und M_2 beim Lesen einer Eingabe nicht in einen Haltezustand übergehen, übernimmt die Turingmaschine M_a genau deren Verhalten (jeweils voneinander unabhängig auf String 1 bzw. String 2; Fall 1 in der Definition von δ). Sobald eine der beiden Turingmaschinen M_1 und M_2 in einen Haltezustand h oder nein übergeht, tut dies auch ihre Simulation und "wartet" dort auf die jeweils andere (Fälle 3 und 4 in der Definition von δ). Geht eine der Turingmaschinen M_1 und M_2 in den Zustand ja über und akzeptiert somit die Eingabe, geschieht dies auch in der Simulation (Fall 1) und im darauffolgenden Schritt geht auch die Turingmaschine M_a in den Zustand ja über (Fall 2). Somit akzeptiert M_a alle Wörter sowohl in $L(M_1)$ als auch in $L(M_2)$. Nach Konstruktion kann sie auch keine weiteren Eingaben akzeptieren, da sie nur in den Haltezustand ja übergeht, sofern es auch M_1 oder M_2 getan hat, sodass tatsächlich $L_a=L_1\cup L_2$ gilt.

Hinweis

Die naive Idee, M_a zunächst M_1 simulieren zu lassen und erst danach M_2 , führt nicht zum Erfolg: Beispielsweise könnte es eine Eingabe w geben, auf der M_1 nicht anhält, die aber von M_2 akzeptiert. Dann würde die Turingmaschine M_a ebenfalls nicht anhalten und damit fälschlicherweise nicht akzeptieren.

b) Wenn $w \in L_1 \circ L_2$ gilt, gibt es $u_1 \in L_1$ und $u_2 \in L_2$ mit $w = u_1u_2$. Die "Aufteilung" von w in u_1 und u_2 ist dabei allerdings nicht bekannt. M_b muss dementsprechend alle möglichen "Aufteilungen" ausprobieren. Die Menge dieser Aufteilungen ist allerdings endlich. Daher ist es möglich, bei festem n die Turingmaschinen M_1 und M_2 mit allen

möglichen Aufteilungen als Eingaben zunächst auf n Schritte begrenzt zu simulieren und nach und nach die Schrittzahl n zu erhöhen. Insgesamt arbeitet M_b folgendermaßen:

1. Speichere w

(verwende dazu String 1)

2. Setze n := 1 und m := 0

(Verwende hierzu jeweils separate Strings 2 und 3. Der Wert von m gibt an, an welcher Stelle das Wort w in u_1 und u_2 aufgetrennt wird. Zu Beginn ist also $u_1 = \varepsilon$ und $u_2 = w$.)

3. Bestimme u_1 und u_2 zu gegebenem m

(z.B. durch Markierungen an w)

4. Simuliere M_1 mit Eingabe u_1 maximal n Schritte lang (verwende dazu String 4)

- 5. Simuliere M_2 mit Eingabe u_2 maximal n Schritte lang (verwende dazu String 5)
- 6. Falls M_1 und M_2 akzeptiert haben, lasse M_b akzeptieren
- 7. Prüfe, ob m = |w| gilt
 - Falls m = |w|, setze n := n + 1 und m := 0
 - Falls m < |w|, setze m := m + 1

8. Gehe zu Schritt 3

Die Turingmaschine ist so konstruiert, dass sie erst m von 0 bis |w| inkrementiert, bevor sie n inkrementiert. Damit ist sichergestellt, dass sie zu jeder Schrittzahl n alle Aufteilungen $w=u_1u_2$ betrachtet (sofern sie nicht vorher akzeptiert). Zu jedem festen n und jedem festen m simuliert sie in den Schritten 4 und 5 die Turingmaschinen M_1 und M_2 mit Eingabe u_1 bzw. u_2 , aber nur n Schritte lang. Damit ist weiterhin sichergestellt, dass M_b nur endlich viele Schritte macht, ehe n inkrementiert wird.

Falls die entsprechenden $u_1 \in L_1$ und $u_2 \in L_2$ mit $w = u_1u_2$ existieren, wird M_b die Eingabe w akzeptieren: M_1 akzeptiert u_1 in diesem Fall nach endlich vielen Schritten n_1 und M_2 akzeptiert u_2 nach endlich vielen Schritten n_2 . Folglich akzeptiert M_b mit $n = \max(n_1, n_2)$.

Falls es keine Aufteilung $w = u_1u_2$ gibt mit $u_1 \in L_1$ und $u_2 \in L_2$, so akzeptiert mindestens eine der beiden Turingmaschinen M_1 oder M_2 nicht. Da M_b nur dann akzeptiert, wenn sowohl M_1 als auch M_2 akzeptiert haben, akzeptiert M_b auch keine Eingaben w fälschlich.

Demnach gilt $L(M_b) = L_b$.

Hinweis

Diese Aufgabe zeigt, dass die semi-entscheidbaren Sprachen unter Vereinigung und Konkatenation abgeschlossen sind.

Übungsblatt 10 Übungen zur GTI Seite 5

Hinweis

Nach Satz 13.3 gibt es zu jeder Mehrstring-Turingmaschine M eine 1-String-Turingmaschine M' mit L(M')=L(M). Demnach lassen sich M_a und M_b auch als 1-String-Turingmaschinen konstruieren.

Aufgabe 10.3 [Entscheidbarkeit, Semi-Entscheidbarkeit, Unentscheidbarkeit]

7 Punkte

Geben Sie für die folgenden Probleme an, ob sie jeweils

- entscheidbar,
- nicht entscheidbar aber semi-entscheidbar oder
- unentscheidbar

sind. Beweisen Sie Ihre Behauptungen. Gehen Sie davon aus, dass jede Turingmaschine die Zeichen 0 und 1 im Eingabe- und im Arbeitsalphabet enthält.

a) Problem: A

Gegeben: Turingmaschine M und $k \in \mathbb{N}_0$

Frage: Erzeugt M bei der Eingabe 0^k die Ausgabe 1? (3 Punkte)

b) Problem: B

Gegeben: Turingmaschine M

Frage: Erzeugt M bei keiner Eingabe die Ausgabe 1? (4 Punkte)

Hinweis

Laut den Konventionen im Abschnitt "Universelle Turingmaschinen" von Kapitel 16 ist die Kodierung der Zeichen 0 und 1 eindeutig gegeben durch num(0) = 3 und num(1) = 4.

Lösung:

a) Problem A ist nicht entscheidbar aber semi-entscheidbar.

Zur Semi-Entscheidbarkeit:

Wir geben einen "Semi-Entscheidungsalgorithmus" für A an, der für alle "Ja-Eingaben" anhält und akzeptiert und für alle anderen Eingaben ablehnt oder nicht anhält. Dazu simulieren wir eine beliebige Turingmaschine M bei Eingabe von 0^k durch eine universelle Turingmaschine U:

- 1. Initialisiere U zur Simulation von M bei Eingabe 0^k
- 2. Simuliere M bei Eingabe 0^k durch U
 - \bullet Falls (Simulation von) M in Haltekonfiguration ist, prüfe ob die Ausgabe von M gleich 1 ist
 - Falls ja, akzeptiere
 - Falls nein, lehne ab

Für jedes Tupel $(M,k) \in A$ hält die Turingmaschine M nach Definition bei Eingabe 0^k

nach einer gewissen Anzahl $n \in \mathbb{N}_0$ von Schritten. In diesem Fall endet auch der angegebene Algorithmus nach n Simulationsschritten und akzeptiert. Für Turingmaschinen mit einer Ausgabe ungleich 1 lehnt U korrekterweise ab, da dann $(M,k) \notin A$ gilt. Für alle anderen Turingmaschinen, die bei Eingabe 0^k eine unendliche Berechnung besitzen, akzeptiert oder verwirft der Algorithmus niemals. Dies zeigt die Semi-Entscheidbarkeit.

Da es Fälle gibt, in denen der Semi-Entscheidungsalgorithmus niemals akzeptiert oder verwirft, zeigt er nicht die Entscheidbarkeit von A. Tatsächlich ist A sogar unentscheidbar.

Zur Unentscheidbarkeit:

Diese folgt aus der Reduzierbarkeit vom unentscheidbaren Problem TM-E-HALT auf A, d.h. wir zeigen TM-E-HALT $\leq A$. Dazu geben wir eine Reduktionsfunktion f an, die eine Turingmaschine M' auf ein zu Problem A konformes Tupel (M,k) aus Turingmaschine M und natürlicher Zahl $k \in \mathbb{N}_0$ abbildet und die Reduktionseigenschaft

$$M' \in \text{TM-E-HALT} \Leftrightarrow f(M') = (M_{M'}, k) \in A$$

erfüllt.

Konstruktion der Reduktionsfunktion

Die Reduktionsfunktion f sei derart, dass sie eine Turingmaschine M' auf $(M_{M'}, 0)$ abbildet, wobei $M_{M'}$ eine Turingmaschine ist, welche

- M' bei Eingabe von ε (= 0^0) simuliert
- und, wenn M' anhält, 1 ausgibt.

Offenbar ist die geschilderte Funktion total und berechenbar (die Kodierung der Transitionsfunktion muss entsprechend erweitert werden).

Zeige: $M' \in \text{TM-E-HALT} \Rightarrow f(M') = (M_{M'}, 0) \in A$

Es sei $M' \in \text{TM-E-HALT}$, d.h. M' hält bei Eingabe ε . Daraus folgt, dass $M_{M'}$ bei Eingabe $0^0 = \varepsilon$ ebenfalls anhält und die Ausgabe 1 erzeugt. Folglich gilt $(M_{M'}, 0) \in A$.

Zeige per Kontraposition: $M' \in \text{TM-E-Halt} \Leftarrow f(M') = (M_{M'}, 0) \in A$

Es gelte $M' \notin \text{TM-E-HALT}$, d.h. M' hält bei Eingabe von ε nicht. Folglich hält $M_{M'}$ ebenfalls nicht. Daraus folgt $f(M') = (M_{M'}, 0) \notin A$.

b) Problem B ist weder entscheidbar noch semi-entscheidbar.

Wir zeigen zunächst, dass B unentscheidbar ist, das Komplementproblem \overline{B} jedoch semi-entscheidbar ist. Daraus schlussfolgern wir mit Lemma 16.2, dass B nicht semi-entscheidbar sein kann.

Zur Unentscheidbarkeit:

Wir zeigen mit Hilfe des Satzes von Rice (Satz 15.1), dass das Problem B nicht entscheidbar ist. Dazu beobachten wir, dass B von der Form

Gegeben: Turingmaschine M

Frage: Ist $f_M \in \{ f \in \mathcal{R} \mid \text{für alle } x \in \Sigma^* \text{ gilt } f(x) \neq 1 \}$?

ist und damit für $S = \{ f \in \mathcal{R} \mid \text{für alle } x \in \Sigma^* \text{ gilt } f(x) \neq 1 \}$, was offenbar eine Menge berechenbarer partieller Funktionen ist, B = TM-Func(S) gilt.

Offensichtlich gilt weiter $S \neq \emptyset$, da etwa die berechenbare Funktion f_{ε} , die jede Eingabe auf das leere Wort abbildet, in S enthalten ist. Andererseits gilt auch $S \neq \mathcal{R}$, da etwa die

berechenbare Funktion f_1 , die jede Eingabe auf das Wort 1 abbildet, nicht in S enthalten ist. Mit dem Satz von Rice folgt daher die Unentscheidbarkeit von B.

Zur Nicht-Semi-Entscheidbarkeit:

Wir zeigen, dass das Komplementproblem \overline{B} semi-entscheidbar ist. Wäre dann auch B semi-entscheidbar, so würde mit Lemma 16.2 folgen, dass B sogar entscheidbar ist. Von B wissen wir aber schon, dass es unentscheidbar ist. Es folgt schließlich die Nicht-Semi-Entscheidbarkeit von B.

Das Komplementproblem \overline{B} lautet:

Gegeben: Turingmaschine M

Frage: Erzeugt M bei irgendeiner Eingabe die Ausgabe 1?

Folgender "Semi-Entscheidungsalgorithmus" zeigt, dass das Komplementproblem \overline{B} semientscheidbar ist:

- 1. Setze n := 0
- 2. Für jedes $w \in \Gamma^*$ mit |w| < n: (hiervon gibt es endlich viele)
 - a) Initialisiere universelle Turingmaschine U zur Simulation von M bei Eingabe w
 - b) Simuliere M bei Eingabe von w für n Schritte
 - \bullet Falls (Simulation von) M in Haltekonfiguration ist, prüfe ob die Ausgabe von M gleich 1 ist
 - Falls ja, akzeptiere
- 3. Setze n := n + 1 und gehe zu Schritt 2

Gibt es eine Eingabe, die bei der simulierten Turingmaschine zum Halten mit Ausgabe 1 führt, so wird sie auf diese Weise gefunden und U akzeptiert. Andernfalls hält U nicht an. Damit ist \overline{B} semi-entscheidbar.

Aufgabe 10.4 [Primitiv Rekursive Funktionen]

2 Punkte

Zeigen Sie: Die Funktion even $(x): \mathbb{N}_0 \to \mathbb{N}_0$ mit

$$even(x) = \begin{cases} 1, & x \text{ ist gerade} \\ 0, & x \text{ ist ungerade} \end{cases}$$

ist primitiv rekursiv.

Lösung:

Wir beobachten, dass even(x) alternierend die Werte 1 und 0 annimmt. Für die aus der Vorlesung bekannte primitiv rekursive Funktion $\tau: \mathbb{N}_0 \to \mathbb{N}_0$ mit $\tau(0) = 1$ und $\tau(x+1) = 0$ gilt insbesondere $\tau(0) = 1$ und $\tau(1) = 0$. Damit kann even(x) primitiv rekursiv definiert werden durch: even(0) = 1 (da konstante Funktionen primitiv rekursiv sind) und

$$even(x+1) = h(even(x), x)$$

wobei die Hilfsfunktion $h: \mathbb{N}_0^2 \to \mathbb{N}_0$ gegeben ist durch

$$h(x_1, x_2) = \tau(\pi_1^2(x_1, x_2))$$

und als Komposition der primitiv rekursiven Funktionen τ und π_1^2 (Projektion auf die erste Komponente) wieder primitiv rekursiv ist. In Kurzschreibweise gilt also

$$even(x+1) = \tau(\pi_1^2(even(x), x)).$$

Hinweis

Die Projektion π_1^2 ist hier von Nöten um die Definition der primitiven Rekursion einzuhalten. Die Definition von even über $\operatorname{even}(0)=1$ und $\operatorname{even}(x+1)=\tau(\operatorname{even}(x))$ würde zwar ebenfalls korrekt sein, aber nicht zeigen, dass even primitiv rekursiv ist.