Title

D. Zack Garza

Monday 12th October, 2020

Contents

1	Monday, October 12												1				
	1.1	Summary															3
	1.2	2 Linearizing the Morse Equation															3
		1.2.1 Showing L_u is Fredholm															4
		1.2.2 Computing Ind L_u															4
		1.2.3 Smale Condition															5
	1.3	3 10.4: Morse and Floer Trajectories Coinci	ide														5
		1.3.1 Comparing Kernels															5
		1.3.2 Trajectories are Independent of <i>t</i>															5

Monday, October 12

Chapter 10: From Floer to Morse

- To be precise with notation, define
 - $CM_*(H,J)$ will be the Morse complex associated with a Morse function H, its vector field ∇H the gradient for the metric defined by J, ω .
 - $CF_*(H, J)$ will be the Floer complex

Theorem 1.0.1(Main Goal).

There exists a nondegenerate Hamiltonian that is sufficiently small in the C^2 topology for which both the Floer and Morse complexes are well-defined, and

$$CF_*(H,J) \cong CM_{*+n}(H,J) = CM_*(H,J)[n].$$

• Can start with an H_0 and rescale to define $H := H_0/k$

Why?

- · When sufficiently small, periodic trajectories are constant
 - Thus $crit(A_H) = crit(H)$
 - Implies that *H* is a Morse function
 - Implies that for the Hessian Spec $(\nabla^2 H) \cap 2\pi \mathbb{Z} = \emptyset$

 Allows comparing Morse index of critical point to Maslov index of corresponding constant trajectory using

$$Ind_H(x) = \mu(x) + n.$$

- Gives an isomorphism of vector spaces, up to a dimension shift.
- Next need to show both differentials ∂_M , ∂_F can be defined, and they coincide
- Defining ∂_M :
 - Need a vector field $X \in \Gamma(T * M)$ adapted to H
 - X needs to satisfy Smale condition

What is the Smale condition?

• Then relate trajectories of X to solutions of Floer equation, i.e. relate

$$\left\{ \begin{array}{l} \text{Solutions to} \\ \frac{\partial u}{\partial s} + X(u) = 0 \right\} \iff \left\{ \begin{array}{l} \text{Solutions to} \\ \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial t} + \nabla H(u) = 0 \end{array} \right\}.$$

In other words: want $X = \nabla H$ for the metric induced by J, ω .

Theorem 1.0.2(Theorem to Prove).

Let H be Morse on (W, ω) . Then there exists a dense subset $\mathcal{J}_{reg}(H)$ of almost complex structures J calibrated by ω such that $(H, -JX_H)$ is Morse-Smale.

Note: transversality result analogous to ones in 8.5

What is Morse-Smale?

- Big idea: running ideas backwards, getting theorems for Morse functions similar to what we did when linearizing the Floer operator
- Proof in two steps:
 - Step 1: Morse Side, arbitrary morse functions

Linearize the Morse equation $\frac{\partial u}{\partial s} + X(u) = 0$ of the flow of -X along one of its solutions $L_u Y = 0$.

Show that whenever H is Morse and u is a trajectory connecting critical points, L_u is Fredholm and $Ind(L_u) = Ind_H(y) - Ind_H(x)$.

Show that for H a nondegenerate Hamiltonian and u a trajectory of JX_H , the operators $(d\mathcal{F})_u$ and L_u are Fredholm of equal index.

Show that X is Smale $\iff L_u$ is surjective.

- Step 2: Floer Side, specific case of Hamiltonian
 Prove the actual result.
- Now fix an almost complex structure to obtain a Smale vector field X
- Compare solutions to Floer equation and trajectories of *X*
 - Solutions to Floer equation that do not depend on t are precisely trajectories of $X = -\nabla H$.

- Next show that elements in $ker(d\mathcal{F}_u)$ do not depend on t.
- Corollary: $d\mathcal{F}_u$ is surjective along every trajectory of ∇H .
- Then show that replacing $H_k := H/k$ for $k \gg 0$ preserves all critical points and all indices
- Punch line: all the solutions of the Floer equation that we need are time-independent.
 - Statement: For $k \gg 0$, solutions to the Floer equation for H_k connecting $x \to y$ with $\operatorname{Ind}(x) \operatorname{Ind}(y) \le 2$ are independent of t.

Goal by end of Ch. 10:

- Show that all Floer solutions connecting two consecutive critical points are *also* Morse trajectories, and $d\mathcal{F}_v$ is surjective along these trajectories
- Yields equality of complexes

1.1 Summary

What is X_H

- Take H_k for $k \gg 0$ and $J \in \mathcal{J}_{reg}$ (dense)
- Then when $\operatorname{Ind}(x) \operatorname{Ind}(y) \le 2$, trajectories of Floer equation for (H, J) connecting critical points x, y are trajectories of the Smale vector field $X = -JX_H$.
 - x, y will be critical points for both H and A_H
- Regularity? The linearized Floer operator is surjective along these trajectories
- Implies that $\mathcal{M}^{(H,J)}(x,y)$ is a manifold, so CF_* can be defined.
- Claim: this shows the differentials coincide, and we're done.

1.2 Linearizing the Morse Equation

• Let f be morse on $V \hookrightarrow \mathbb{R}^m$ $(m \gg 0)$ with adapted pseudo-gradient field X, then

- Fix a metric g on V such that $X = \nabla_g f$.
- Define the space of solutions of finite energy:

$$E(u) := \int_{\mathbb{R}} \left\| \frac{\partial u}{\partial s} \right\|^2 ds$$

$$\mathcal{M} := \left\{ u \in C^{\infty}(\mathbb{R}, V) \mid \frac{\partial u}{\partial s} + \nabla f = 0, \quad E(u) < \infty \right\}.$$

• Then \mathcal{M} is compact and equal to $\bigcup_{x,y} \mathcal{M}(x,y)$, using the fact that if V is compact, *all* trajectories are of finite energy

- Now go to coordinates and linearize the equation of the flow along the solution *u* to get a linear differential equation
- · Yields an equation

$$L_u: W^{1,2}(\mathbb{R}, \mathbb{R}^n) \to L^2(\mathbb{R}, \mathbb{R}^n)$$

$$Y \mapsto \frac{\partial Y}{\partial s} + A(s)Y := L_u Y,$$

where *A* is a matrix limiting to $\nabla_v^2 f$ and $\nabla_x^2 f$ at $s = \pm \infty$

- Limiting to Hessians of nondegenerate critical points will yield symmetric invertible matrices
- We then consider $\ker L_u \subseteq \ker(d\mathcal{F}_u)$. Note: we have exponential decay.
- Note: the space of solutions to equation linearized at u is $T_u \mathcal{M}(x, y)$.

1.2.1 Showing L_u is Fredholm

- Bootstrapping: $Y \in \ker(L_u)$ in $W^{1,2}$ is continuous, thus C^1 , this C^{∞} and form a finite-dimensional vector space.
- Behavior at infinity: reduces to $L_u Y = 0 \iff \frac{\partial Y}{\partial s} = -AY$ where A is a constant diagonal matrix
 - This is a linear system, so solutions are

$$Y(s) = e^{-As}Y(0)$$
 i.e. $y_i(s) = y_i e^{-\lambda_i s}$.

- Will prove that if u is a trajectory of ∇f connecting $x \to y$ then L_u is Fredholm
 - Proof: involves bounding $W^{1,2}$ norm of Y by L^2 norms of Y, L_uY .
 - Lots of integral estimates: Fourier transform, Plancherel, Cauchy-Schwarz
- Integral bound yields: dim ker $L_u < \infty$ and im $(L)_u$ is closed.
- Lemma: $\dim \operatorname{coker} < \infty$.
 - Proof: computer kernel of adjoint $L_u^* = -\frac{\partial}{\partial s} + A^*$ where the matrix is transposed.
 - Use the fact that $Z \in \operatorname{coker}(L_u) \iff Z \in \ker(L_u^*)$, i.e. $L_u^*Z = 0$ in the sense of distributions

1.2.2 Computing Ind L_u

- Unsurprisingly, will show $\operatorname{Ind}(L_u) = \operatorname{Ind}_f(x) \operatorname{Ind}_f(y)$.
- Ideas in proof:
 - Will choose two real numbers σ , s to plug into u, and consider *resolvent*: map between tangent spaces to V at $u(\sigma)$, u(s).
 - Look at the tangent spaces at $u(\sigma)$ of the stable and unstable manifolds will be the Floer complex

$$E^{\mathbf{u}}(\sigma) := T_{u(\sigma)} W^{\mathbf{u}}(x)$$

$$E^{\mathbf{s}}(\sigma) := T_{u(\sigma)} W^{\mathbf{s}}(x)$$

.

– Then $\ker L_u$ is isomorphic to the intersection for all σ .

1.2.3 Smale Condition

- Recall $X = \nabla_g f$ for g a metric.
- Statement: the vector field X satisfies the Smale condition \iff all L_u are surjective.

Proof.

- L_u is surjective \iff coker $(L_u) = 0 \iff$ ker (L_u^*) is injective
- This is equivalent to

$$T_{u(\sigma)}W^{\mathrm{u}}(x) + T_{u(\sigma)}W^{\mathrm{s}}(x) = T_{u(\sigma)}V.$$

- This is exactly the transversality condition for the stable and unstable manifolds
 - We want this for all critical points

1.3 10.4: Morse and Floer Trajectories Coincide

1.3.1 Comparing Kernels

• Note $\ker(L_u) \subset \ker(d\mathcal{F}_u)$ since

$$\left(\frac{\partial}{\partial s} + S(s)\right)Y = 0 \implies \left(\frac{\partial}{\partial s} + J\frac{\partial}{\partial t} + S(s)\right)Y = 0,$$

so just need to show reverse inclusion.

• Use a lemma: for $f:[0,1]\to\mathbb{R}$,

$$||f||_{L^p([0,1])} \le \left\| \frac{\partial f}{\partial t} \right\|_{L^p([0,1])},$$

then apply this to f(t) := Y(s, t) and p = 2.

· Yields an equation

$$\left\| \frac{\partial Y}{\partial s} \right\|_{L^{2}}^{2} + \left\| \frac{\partial Y}{\partial t} \right\|_{L^{2}}^{2} \leq \sup_{s} \left\| S(s) \right\|_{\text{op}}^{2} \left\| Y \right\|_{L^{2}}^{2} \implies \left\| Y \right\|_{L^{2}}^{2} \leq \sup_{s} \left\| S(s) \right\|_{\text{op}} \left\| Y_{L^{2}}^{2} \right\|$$

where the sup term being small forces Y = 0.

1.3.2 Trajectories are Independent of t

WTS: Trajectories of H_k appearing in the Floer complex are exactly those appearing in the Morse complex. I.e. proving 10.1.9

Idea of proof:

- Contradiction: suppose there exists a sequence $n_k \to \infty$ with time-dependent solutions u_{n_k} connecting $x \to y$ which solve the Floer equation
- Consider case where indices differ by 1: using broken trajectories theorem, extract a subsequence converging to some $v \in \mathcal{M}(x, y, H)$.
 - Show v doesn't depend on t
 - Since $d\mathcal{F}_v$ is surjective, v is in a 1-dim component, and thus an isolated point of $\mathcal{L}(x,y)$
 - Get a contradiction from taking $k \gg 0$ and using $v_{n_k}(s,t) = v(s+\sigma_k,t) = v(s+\sigma_k)$, which does *not* depend on time
- Consider case where indices differ by 2
 - Use Smale property of the gradient $-JX_H$ of H: trajectories $x \to y$ form a 2-manifold
 - Since trajectories are also in $\mathcal{M}(x, y, H)$, parameterizes a submanifold in a neighborhood of v.
- Show that convergence toward broken orbits in Morse setting corresponds to converges toward broken trajectories in Floer setting
- Use gluing from last chapter: $\hat{v}_{n_k} \in \operatorname{im}(\hat{\phi})$ for $k \gg 0$, contradicting the fact that v_{n_k} doesn't depend on t