

高等数学(上)

数学与统计学院 公共数学教学部

● 高等数学教学团队 ●

第二节 数列的极限

- 1 引例
- 2 数列极限的定义
- 3 数列极限的性质
- 4 数列的子列
- 5 内容小结与思考题

定积分的概念与性质

理解: 数列极限的概念

与几何意义

掌握: 数列极限的性质

知识目标 ---

重点:数列极限的概念,几何

意义,数列极限的性质

难点: 数列极限的概念,几何

意义

一、引例

例1一尺之锤, 日取其半, 万世不竭.(庄子天下篇)

解 根据题意可得木棒的长度与经过天数的关系如下表:

天数	1	2	3		n	
剩下木 棒的长 度	$\frac{1}{2}$	$\frac{1}{2^2}$	$\frac{1}{2^3}$	•••••	$\frac{1}{2^n}$	•••••

因此剩下木棒的长度构成了一个数列: $\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, \dots \longrightarrow 0$

二、数列极限的定义

1、数列

按一定顺序排列起来的一列数 $x_1, x_2, x_3, \dots, x_n, \dots$ 称为

数列,记为 $\{x_n\}$ 或 $x_n(n=1,2,\cdots)$,其中n表示数列的项数,

第 n 项 x_n 称为数列的**通**项.

注: 1) 数列的几何意义: 数列 $\{x_n\}$ 对应着数轴上的一个点列,

2) **数列与函数的关系**:数列 $\{x_n\}$ 可以看作自变量为正整数

n 的函数 $x_n = f(n)$.

$$t (1) 2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, \dots, \frac{n+(-1)^n}{n}, \dots$$

$$(2) 1, -1, 1, -1, \cdots, (-1)^{n-1}, \cdots$$

$$(3) 2, 4, 8, \dots, 2^n, \dots$$

问题: 当n越来越大时, x_n 的变化趋势如何呢?

图1-1: 数列 $\left\{\frac{n+(-1)^n}{n}\right\}$ 随着n越来越大,动点在x=1 的附近跳

跃变化,但与x=1的距离越来越小,即其值越来越靠近于1.

图1-2:数列 $\{(-1)^n\}$ 随着n越来越大,动点在1与-1之间交替

变化,不与任何一个定常数靠近.

图1-3:数列 $\{2^n\}$ 随着n越来越大,动点的值不断地增大,即

其值不与任何一个定常数靠近.

分析: 观察数列 $\left\{\frac{n+(-1)^n}{n}\right\}$ 的图像,可以发现: 当n 越来越大

时, x_n 越来越靠近于1, 即当 $n \to \infty$ 时, x_n 与 1 的距离 $|x_n-1|$

越来越小,那么数学上如何刻画

"当 $n \to \infty$ 时,距离 $|x_n-1|$ 越来越小呢?"

若取
$$\varepsilon_1 = \frac{1}{100.1}$$
, 即希望 $|x_n - 1| = \left| \frac{n + (-1)^n}{n} - 1 \right| = \frac{1}{n} < \frac{1}{100.1}$,

则取 $N_1 = 100$,显然只要 $n > N_1$,即从第101项开始,均有

$$|x_n - 1| < \varepsilon_1$$
 若取 $\varepsilon_2 = \frac{1}{1000.1}$, 即希望 $|x_n - 1| = \frac{1}{n} < \frac{1}{1000.1}$,

则取 $N_2=1000$,显然只要 $n>N_2$,即从第1001项开始,均有 $|x_n-1|<\varepsilon_2$

以此类推,只要选定一个正数 ε ,无论它多么的小, 我们都能找到一个正整数N,使得当n>N时,都有 $|x_n-1|<\varepsilon$

这里的数"1"就称为数列 $\{x_n\}$ 的极限.

2、数列的极限

定义1 设 $\{x_n\}$ 是一个数列,A是某个常数,如果对任意给定 的正数 ε (不论它多么的小), 总存在正整数 N, 使得当n > N时,不等式 $|x_n - A| < \varepsilon$ 都成立,那么称常数 A 为数列 $\{x_n\}$ 当 $n \to \infty$ 时的极限, 记作 $\lim x_n = A$ 或 $x_n \to A(n \to \infty)$. 此时也称

数列 $\{x_n\}$ 收敛到A,否则称数列 $\{x_n\}$ 发散.

如 数列 $\left\{\frac{n+(-1)^n}{n}\right\}$ 收敛到1. 数列 $\left\{(-1)^n\right\}$ 与 $\left\{2^n\right\}$ 均发散.

- 注: 1) ε 的大小可任意给定,它刻画 x_n 与 A 的接近程度;
 - 2) N 是由 ε 确定的,一般地, ε 越小,N 越大.
 - 3) N如何确定?
- 一般地,N由不等式 $|x_n A| < \varepsilon$ 解得,通常满足不等式的正整数 N有很多个,只需选其中之一,故 N不唯一.

 $\varepsilon - N$ 语言: $\lim_{n \to \infty} x_n = A \Leftrightarrow$ 对任意 $\varepsilon > 0$, $\exists N > 0$ 且 $N \in N^+$,使

得当n>N时,均有 $|x_n-A|<\varepsilon$.

几何意义: 当 n > N时,所有的点 x_n 都落在了 $(A - \varepsilon, A + \varepsilon)$ 内,只有有限个(至多只有N个)点落在其外.

例2 证明
$$\lim_{n\to\infty} \frac{n+(-1)^n}{n} = 1$$
.

解 对
$$\forall \varepsilon > 0$$
,因为 $\left| \frac{n + (-1)^n}{n} - 1 \right| = \frac{1}{n}$,要使 $\left| \frac{n + (-1)^n}{n} - 1 \right| < \varepsilon$,只要 $\frac{1}{n} < \varepsilon$,即 $n > \frac{1}{\varepsilon}$ 成立.
因此取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$,则当 $n > N$ 时,有 $\left| \frac{n + (-1)^n}{n} - 1 \right| < \varepsilon$.

$$\therefore \lim_{n\to\infty}\frac{n+(-1)^n}{n}=1.$$

例3 证明
$$\lim_{n\to\infty}\frac{2n-1}{3n+1}=\frac{2}{3}$$
.

证明:
$$\forall \varepsilon > 0$$
, 考察 $\left| \frac{2n-1}{3n+1} - \frac{2}{3} \right| = \frac{5}{3(3n+1)} < \frac{5}{9n} < \varepsilon$, (充分条件) 要使 $\left| \frac{2n-1}{3n+1} - \frac{2}{3} \right| < \varepsilon$, 只要 $\frac{5}{9n} < \varepsilon$, 即只要 $n > \frac{5}{9\varepsilon}$ 成立.(正整数?)

因此取
$$N = \left[\frac{5}{9\varepsilon}\right]$$
 则当 $n > N$ 时,有 $\left|\frac{2n-1}{3n+1} - \frac{2}{3}\right| < \varepsilon$

$$\therefore \lim_{n\to\infty}\frac{2n-1}{3n+1}=\frac{2}{3}.$$

例4 证明 $\lim_{n\to\infty}q^n=0(|q|<1)$.

解 当
$$q=0$$
时,显然 $\lim_{n\to\infty}q^n=\lim_{n\to\infty}0=0$.

当
$$0<|q|<1$$
时,对 $\forall \varepsilon>0$ (设 $\varepsilon<1$),

要使
$$|x_n - 0| = |q^n| = |q|^n < \varepsilon$$
, 只要 $n \ln |q| < \ln \varepsilon$, 即 $n > \frac{\ln \varepsilon}{\ln |q|}$.

取
$$N = \left\lceil \frac{\ln \varepsilon}{\ln |q|} \right\rceil$$
, 则当 $n > N$ 时,有 $\left| q^n - 0 \right| < \varepsilon$.

$$\therefore \quad \lim q^n = 0.$$

例5 证明 $\lim \sqrt[n]{a} = 1$.

(1) 当
$$a=1$$
时,显然 $\lim \sqrt[n]{a}=1$.

(2) 当
$$a > 1$$
 时, 令 $\sqrt[n]{a} - 1 = h$,则 $h > 0$.

且
$$a = (1+h)^n > 1+nh$$
,所以 $h < \frac{a-1}{n}$.

対
$$\forall \varepsilon > 0$$
, 要使 $|\sqrt[n]{a} - 1| < \varepsilon$, 只要 $h < \frac{a - 1}{n} < \varepsilon$, 即 $n > \frac{a - 1}{\varepsilon}$.

因此取
$$N = \left[\frac{a-1}{\varepsilon}\right]$$
, 则当 $n > N$ 时,有 $\left|\sqrt[n]{a}-1\right| < \varepsilon$. $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

注: 题中a 的取值可推广至a > 0.对0 < a < 1的证明需要用到

1.5节中极限的运算法则. 即
$$\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{1/a}} = \frac{1}{\lim_{n\to\infty} \sqrt[n]{\frac{1}{a}}} = 1$$
.

小结: 几个常用的数列极限:
$$\lim_{n\to\infty} \sqrt[n]{a} = 1 (a > 0)$$

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

$$\lim_{n\to\infty} q^n = 0 (|q| < 1)$$

三、数列极限的性质

定理1 (唯一性) 如果数列 $\{x_n\}$ 收敛,那么它的极限是唯一的.

证(反证法) 假设 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} x_n = B$ 且 $A \neq B$.

不妨设A < B,取 $\varepsilon = \frac{B - A}{2}$.

由 $\lim x_n = A$ 知: $\exists N_1 > 0$,使得当 $n > N_1$ 时,有

$$\left|x_n - A\right| < \frac{B - A}{2} \quad , \quad \exists P \quad x_n < \frac{A + B}{2} \quad .$$

--.

由 $\lim_{n\to\infty} x_n = B$ 知: $\exists N_2 > 0$,使得当 $n > N_2$ 时,有

$$\left|x_{n}-B\right|<\frac{B-A}{2}$$
, $\mathbb{R}^{n} \times \frac{A+B}{2}$.

取 $N = \max\{N_1, N_2\}$,则当 n > N 时上述两个不等式

都成立,矛盾.

所以数列 $\{x_n\}$ 的极限是唯一的.

数列的极限

定理2 (有界性) 如果数列 $\{x_n\}$ 收敛,那么 $\{x_n\}$ 是有界的.

证 因为数列 $\{x_n\}$ 收敛,设 $\lim x_n = A$. 取 $\varepsilon = 1$.

则 $\exists N > 0$, 使得当 n > N 时, 有 $|x_n - A| < 1$.

于是当n > N时,有 $|x_n| = |x_n - A + A| \le |x_n - A| + |A| < 1 + |A|$

 $\mathbb{R} M = \max\{|x_1|, |x_2|, \dots, |x_N|, 1 + |A|\}$

那么数列 $\{x_n\}$ 中的一切 x_n 都满足不等式 $|x_n| \leq M$. 即 $\{x_n\}$ 有界.

注:数列有界是数列收敛的必要条件,有界数列不一定收敛. 如数列 $\{(-1)^n\}$ 有界但该数列不收敛.

推论1: 无界数列必定发散.

定理3 (保号性) 如果 $\lim_{n\to\infty} x_n = A$,且 A > 0 或(A < 0),

则存在正整数 N, 当 n > N 时,都有 $x_n > 0$ 或 $(x_n < 0)$.

证 以 A > 0 为例. 取 $\varepsilon = \frac{A}{2}$, 则 $\exists N > 0$, 使得当 n > N 时,

有
$$|x_n - A| < \frac{A}{2}$$
. 从而 $x_n > A - \frac{A}{2} = \frac{A}{2} > 0$.

推论2: 如果数列 $\{x_n\}$ 从某项起有 $x_n \ge 0$ (或 $x_n \le 0$)且 $\lim_{n\to\infty} x_n = A$,则 $A \ge 0$ (或 $A \le 0$).

四、数列的子列

定义2 将数列 $\{x_n\}$ 在保持原有顺序情况下,任取其中无穷 多项构成的新数列称为 $\{x_n\}$ 的**子数列**,简称**子列**.

如数列 $x_1, x_2, \dots, x_n, \dots$ 中依次取出 $x_{n_1}, x_{n_2}, \dots, x_{n_k}, \dots$,记为 $\{x_{n_k}\}$.

注: 在子数列 $\{x_{n_k}\}$ 中,一般项 x_{n_k} 是第k项,而 x_{n_k} 是在原 数列 $\{x_n\}$ 的第 n_k 项,显然 $n_k \ge k$.

关于数列极限与其子列的极限有如下结论:

结论1: 如果数列 $\{x_n\}$ 收敛于A,则 该数列的任何子列也收敛,且收敛于A.

结论2: 若数列 $\{x_n\}$ 的某子列发散,或存在 $\{x_n\}$ 的某两个子列收敛但极限不相等,则数列 $\{x_n\}$ 发散.

如 数列 $\{a_n = (-1)^n\}$,显然 $\lim_{n \to \infty} a_{2n} = 1$, $\lim_{n \to \infty} a_{2n+1} = -1$. 注: 一个发散的数列也可能有收敛的子数列.

一般地,仅有 $\{x_n\}$ 的某两子列收敛且极限相等,不能判断数

列 $\{x_n\}$ 收敛,但若这两子列为 $\{x_{2n}\}$ 和 $\{x_{2n+1}\}$,则有以下结论:

结论3:
$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = A \iff \lim_{n\to\infty} x_n = A$$

五、内容小结

- ▶ 数列极限: 极限思想,精确定义,几何意义;
- ▶ 收敛数列的性质: 有界性、唯一性、保号性.
- ▶ 数列极限与其子极限: 有关结论.

思考题:

1、证明: 若 $\lim_{n\to\infty} x_n = A$,则 $\lim_{n\to\infty} |x_n| = |A|$,反之不然.

【提示:利用极限定义.如 {(-1)ⁿ} 】

2、 求证: $\lim_{n\to\infty} x_n = 0 \Leftrightarrow \lim_{n\to\infty} |x_n| = 0$ 【提示: 利用极限定义】

数学是无穷的科学。

---赫尔曼外尔

