Enrichment stage 1: (other special trig)

- 1. Given that $\sin 15^\circ = \frac{\sqrt{6} \sqrt{2}}{4}$, find the exact value of:
 - (a) sin195°

(b) cos ec345°

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

- (c) cos 75° JE MATHS
- (d) cos15° by using Pythagorean identity.

- JE MATHS

JE MATHS

JE MATHS

JE MATHS

(e) $\cos ec^2 15^\circ - \cot^2 15^\circ$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 2: (trig expression and equation)

1. If $a = \tan\theta + \cot\theta$ and $b = \sin\theta + \cos\theta$, prove that $a(b^2 - 1) = 2$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

2. If $a = \sec\theta + \tan\theta$, find $\sin\theta$ in terms of a.

JE MATHS

TO MATHS

JB MATHS

JE MATHS

JE MATHS

TE MATHS

3. Solve for x in $81^{\cos^2 x} + 81^{\sin^2 x} = 30$ for $0^{\circ} \le x \le 180^{\circ}$.

JE MATHS

JB MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 3: (trig function)

- 1. Given that $f(\tan x) = \cos^2 x$.
 - (a) Find f(x).

JE MATHS

(b) Sketch y = f(x).

(c) Hence, find the exact value(s) of $f^{-1}(\frac{1}{4})$.

Enrichment stage 4: (trig application)

1. The diagram below shows a circle with centre O and diameter AB. P is the point on the circumference of the circle. PN is drawn perpendicular to AB and AP is perpendicular to PB.

Let $\angle POB = 2x$.

(a) Explain why △APO is isosceles.

JE MATHS

(b) Explain why $\angle OAP = \angle OPA = x$.

JE MATHS

JE MATHS

(c) Show that $\sin 2x = \frac{2PN}{AR}$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(d) Use \triangle APN and \triangle PAB to show that $2\sin x \cos x = \sin 2x$.

JE MATHS

JE MATHS

JE MATHS

2.	The horizontal range (R m) of a rocket varies directly with the square of the velocity of projection (v m/s) and the sine of twice the angle of elevation (A) for $0^{\circ} \le A \le 90^{\circ}$. That is: $R \propto v \sin(2A)$. When a rocket is projected with an angle of elevation of 15 ° and a velocity of 10m/s it reaches a range of 5m. (a) Write a formula for the range of the rocket in terms of R, v and A.					
		JE MATHS	JE MATH	S		
			JE MATHS			
	JE MATHS			JE MATHS		
	(b) Calculate the angle of elevation required for a rocket projected at 12 m/s to reach a range of 10 m. Correct your answer to the nearest degree.					
	JE MATHS		JB MATH	S		
		JE MATHS				
			JE MATHS			
	JE MATHS					
	JE MATHS	JE MATHS		JE MATHS		

Enrichment stage 1: (other special trig)

1. (a)

$$\sin 195^{\circ} = \sin(180^{\circ} + 15^{\circ})$$

= $-\sin 15^{\circ}$
= $-(\sqrt{6} - \sqrt{2})/4$
= $-(\sqrt{2} - \sqrt{6})/4$

(b)

cosec345°= cosec(360°-15°)
= -cosec15°
= -1/sin15°
= -4/(
$$\sqrt{6}$$
- $\sqrt{2}$)
= -4×($\sqrt{6}$ + $\sqrt{2}$)/4
= - $\sqrt{6}$ - $\sqrt{2}$

(c)

$$\cos 75^\circ = \sin(90^\circ - 15^\circ)$$
$$= \sin 15^\circ$$
$$= (\sqrt{6} - \sqrt{2})/4$$

(d)

$$\sqrt{(1-\sin^2 15)} = \sqrt{[1-(\sqrt{6}-\sqrt{2})^2/4^2]^{1/3}}
= \sqrt{\{[16-(\sqrt{6}-\sqrt{2})^2]/4^2\}}
= \sqrt{(6+2\sqrt{12}+2)/4}
= \sqrt{(\sqrt{6}+\sqrt{2})^2/4}
= (\sqrt{6}+\sqrt{2})/4$$

(e)

since 1+cot θ =cosec θ , then cosec θ - cot θ =1 ie, ans is 1.

JE MATHS

Enrichment stage 2:

- 1. If $a = \tan\theta + \cot\theta$ and $b = \sin\theta + \cos\theta$, prove that $a(b^2 1) = 2$. $a(b^2 1) = (\tan\theta + \cot\theta)[(\sin\theta + \cos\theta)^2 1]$ $= (\tan\theta + \cot\theta)(\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta 1)$ $= 2\sin\theta\cos\theta(\sin\theta/\cos\theta + \cos\theta/\sin\theta)$ $= 2(\sin^2\theta + \cos^2\theta)$ $= 2\sin^2\theta + \cos^2\theta$
- 2. If $a = \sec\theta + \tan\theta$, find $\sin\theta$ in terms of a.

- (1) (2): $2\tan\theta = a 1/a$ $\tan\theta = (a - 1/a)/2^{1/3}$ (4) (3)×(4): $\sin\theta = (a - 1/a)/(a + 1/a)$
- $= (a^{2}-1)/(a^{2}+1)$ 3. $81^{\cos x} + 81^{1-\cos x} = 30$ IB MATHS

$$81^{\cos x} + 81^{1 - \cos x} = 30$$

 $81^{\cos x} + 81 / 81^{\cos x} = 30$
Let $u = 81^{\cos x}$.
 $u + 81/u = 30$
 $u^2 + 81 = 30u$
 $u^2 - 30u + 81 = 0$
 $(u - 27)(u - 3) = 0$

$$(u - 27)(u - 3) = 0$$

 $u = 3, 27$
 $81^{\cos x} = 3 = 81^{1/4}$
 $\cos x = 1/4$
 $\cos x = \pm 1/2$

$$x = 60$$
 ° or 120 °
 $81^{\cos x} = 27 = 81^{3/4}$
 $\cos x = 3/4$
 $\cos x = \pm \sqrt{3/2}$

$$x = 30 \,^{\circ} \text{ or } 150 \,^{\circ}$$

 $\therefore x = 30 \,^{\circ}, 60 \,^{\circ}, 120 \,^{\circ}, 150 \,^{\circ}$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 3:

1. (a)

 $\cos x=1/\sec x$ $=1/(1+\tan x)$ $f(\tan x)=1/(1+\tan x)$ $\tan x \rightarrow x, \text{ for } x \in R$

 $f(x)=1/(1+x^2)$, for $x \in \mathbb{R}$

JE MATHS

JE MATHS

 $(-\sqrt{3},1/4)$

JE MATHS

(b)

when $x \rightarrow -\infty$, $y \rightarrow 0$ ie, when x=-99, y=0.0001when $x \rightarrow +\infty$, $y \rightarrow 0$ ie, when x=99, y=0.0001 JE MATHS

JE MATHS

ı

JE MATH

JE MATHS

JE MATHS

 $(\sqrt{3}, 1/4)$

(c)

 $f(\tan x) = \cos x$ $f^{-1}(\cos x) = \tan x$

cos 3x=1/4

 $\cos x=1/2$

x=-60°, 60°,

when $x = -60^{\circ}$, $\tan(-60^{\circ}) = -\sqrt{3}$

when $x = 60^{\circ}$, $tan(60^{\circ}) = \sqrt{3}$

ans: $f^{-1}(1/4) = \pm \sqrt{3}$

Notice that the original two points are $(-\sqrt{3}, \frac{1}{3})$ and $(\sqrt{3}, \frac{1}{3})$

 $(-\sqrt{3}, \frac{1}{4})$ and $(\sqrt{3}, \frac{1}{4})$.

JE MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 4:

```
1. (a)
    OA = OP (Both are radii)
    △PAO is isosceles (Two equal sides)
                                                                                                  JE MATHS
    (b)
    (b) \angle OAP = \angle OPA (Equal sides are opposite equal sides in \triangle APO)
    \angle POB = \angle OAP + \angle OPA (Exterior angle equals sum of two interior opposite angles)
    2x = 2 \angle OAP
    \angle OAP = x
                                                                                    JE MATHS
                                       JE MATHS
    \therefore \angle OAP = \angle OPA = x
    (c)
    OP = AB/2 (Diameter is twice the radius)
    In \triangle PON,
                                                                       JE MATHS
    \sin 2x = PN/OP
      = PN/(AB/2)
                                                                                                  JE MATHS
                       JE MATHS
      = 2PN/AB
    (d)
    In \triangle APN,
                                                       JE MATHS
    sinx = PN/AP
    In \triangle PAB,
                                                                                    JE MATHS
    \cos x = AP/AB
    2\sin x \cos x = 2PN/\Lambda P \times \Lambda P/\Lambda B
           = 2PN/AB
           = \sin 2x
                                       JE MATHS
2. (a)
    R = kv \sin(2A)
    5 = k \times 10^{2} \times \sin(2 \times 15^{\circ})
    5 = 100k \times 1/2
                                                                       JE MATHS
    k = 1/10
    R = v \sin(2A)/10
\text{JB MATHS}
    (b)
    10 = 1/10 \times 12^{2} \times \sin(2A)
    \sin(2A) = 25/36
    2A = 43.982 ° or 136.017 °
                                                                                                  JE MATHS
                                                       JE MATHS
    A = 22 or 68 o(nearest degree)
```