Variáveis aleatórias discretas

- Conceito
- Função de probabilidade e função de distribuição
- Valor esperado e variância

Distribuições de probabilidade

- Binomial
- > Hipergeométrica
- Poisson

Variáveis aleatórias

Experimento aleatório: Lançamento de uma moeda honesta três vezes e observação das faces que ocorrem.

 Ferramental matemático se amplia consideravelmente se o espaço amostral for numérico Experimento aleatório: Lançamento de uma moeda honesta três vezes e observação das faces que ocorrem.

S = {ccc, cck, ckc, kcc, kkc, kck, ckk, kkk}

X = número de caras ocorrido nos três lançamentos

Quais são os possíveis valores de X? $X = \{0, 1, 2, 3\}$

Conjunto não numérico

X é a variável que transforma um conjunto nao numérico numérico numérico numérico

Variável aleatória

Definição: É uma função (ou regra) que transforma um espaço amostral qualquer em um espaço amostral numérico, que será sempre um subconjunto do conjunto dos números reais.

Profa Lisiane Selau

Variáveis aleatórias

Discretas

Contínuas

Variáveis aleatórias discretas

Definição: São discretas todas as variáveis cujo espaço amostral S_x é **enumerável** finito ou infinito.

Se X é uma variável aleatória discreta, então S_{χ} é um subconjunto dos **inteiros**.

Exemplo: Lançamento de uma moeda honesta até que ocorra a face cara e observação das faces que ocorrem.

$$S = \{k, ck, cck, ccck, cccck, cccck, ...\}$$

X = número de **coroas** até que ocorra cara

$$S_{X} = \{0, 1, 2, 3, 4, 5, ...\}$$
 $X(k) = 0$
 $S \xrightarrow{X} S_{X}$ $X(ck) = 1$

Y = número de **lançamentos** até que ocorra cara

$$S_{Y} = \{1, 2, 3, 4, 5, 6, ...\}$$
 $Y(k) = 1$ $Y(ck) = 2$ $Y(ck) = 2$

1. Função de probabilidade

Definição: Seja X uma variável aleatória discreta e S_X o seu espaço amostral. A função de probabilidade P(X=x), ou simplesmente p(x), será a função que associa a cada valor de X a sua probabilidade de ocorrência, desde que atenda duas condições:

1.
$$p(x) \ge 0, \forall x \in S_x$$

$$\sum_{x \in S_x} p(x) = 1$$

Exemplo: Lançamento de uma moeda honesta três vezes e observação das faces que ocorrem.

S = {ccc, cck, ckc, kcc, kkc, kck, ckk, kkk}

 $X = número de caras nos três lançamentos <math>S_X = \{0, 1, 2, 3\}$

$$p(0) = 1/8$$

 $p(1) = 3/8$
 $p(2) = 3/8$
 $p(3) = 1/8$
Primeira
 $\frac{1}{8} + \frac{3}{8} + \frac{1}{8} = 1$ Segunda
condição
 $\frac{1}{8} + \frac{3}{8} + \frac{1}{8} = 1$ Segunda
condição

Prof^a Lisiane Selau

Existem três formas de representar uma função:

- □ Representação tabular: consiste em relacionar em uma tabela os valores da função de probabilidade.
- Representação gráfica: consiste em representar graficamente a relação entre os valores da variável e suas probabilidades
- □ Representação analítica: estabelece uma expressão geral para representar o valor da função de probabilidade num ponto genérico da variável

Exemplo: De uma urna com três bolas pretas e duas brancas, retiram-se duas bolas juntas. Se X é o número de bolas pretas retiradas, determine a função de probabilidade P(X=x).

$$\# S = C_5^2 = 10$$

$$S = \{B_1B_2, P_1B_1, P_1B_2, P_2B_1, P_2B_2, P_3B_1, P_3B_2, P_1P_2, P_1P_3, P_2P_3\}$$

$$S_{\mathbf{x}} = \{0, 1, 2\}$$

$$P(X = 0) = \frac{C_3^0 C_2^2}{C_5^2} = \frac{1}{10}$$

$$P(X = 1) = \frac{C_3^1 C_2^1}{C_5^2} = \frac{6}{10}$$

$$P(X = 2) = \frac{C_3^2 C_2^0}{C_5^2} = \frac{3}{10}$$

□ Representação tabular

X=x	0	1	2	Σ
P(X=x)	1 10	<u>6</u> 10	3 10	1

□ Representação gráfica

□ Representação analítica

$$P(X = 0) = \frac{C_3^0 C_2^2}{C_5^2}$$

$$P(X = 1) = \frac{C_3^1 C_2^1}{C_5^2}$$

$$P(X = 2) = \frac{C_3^2 C_2^0}{C_5^2}$$

$$P(X = x) = \frac{C_3^x C_2^{2-x}}{C_5^2}$$
, para $S_x = \{0, 1, 2\}$

2. Função de distribuição ou probabilidade acumulada

Definição: Seja X uma variável aleatória discreta e S_X o seu espaço amostral. A função de distribuição, denotada por F(x) ou $P(X \le x)$, é a função que associa a cada valor de X a probabilidade $P(X \le x)$. Desta forma, temos

$$F(x) = P(X \le x) = \sum_{X \le x} P(X = x)$$

No exemplo:

X=x	0	1	2	Σ
P(X=x)	1 10	<u>6</u> 10	3 10	1
F(x)	1/10	710	1	-

$$F(x) = P(X \le x) = \sum_{X \le x} P(X = x)$$

$$F(0) = P(X \le 0) = \sum_{x \le 0} P(X = x) = P(X = 0) = \frac{1}{10}$$

$$F(1) = P(X \le 1) = \sum_{x \le 1} P(X = x) = P(X = 0) + P(X = 1) = \frac{1}{10} + \frac{6}{10} = \frac{7}{10}$$

$$F(2) = P(X \le 2) = \sum_{x \le 2} P(X = x) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \frac{1}{10} + \frac{6}{10} + \frac{3}{10} = 1$$

3. Medidas descritivas

No exemplo:

$$S = \{B_1B_2, \, P_1B_1, \, P_1B_2, \, P_2B_1, \, P_2B_2, \, P_3B_1, \, P_3B_2, \, P_1P_2, \, P_1P_3, \, P_2P_3\}$$

$$X = \text{número de bolas pretas}$$

$$S_X = \{0, \, 1, \, 2\}$$
 em duas retiradas

	X=x	0	1	2	Σ
$S_X = \{0, 1, 2\}$	P(X=x)	1 10	<u>6</u> 10	3 10	1

■ Média ou valor esperado

Definição: Seja X uma variável aleatória discreta e S_X o seu espaço amostral. O valor médio de X, denotado por E(X), ou μ_X , ou simplesmente μ , é a média dos valores de X **ponderada** pelas suas respectivas probabilidades de ocorrência. Deste modo, tem-se

$$E(X) = \mu = \frac{\sum_{x \in S_X} x p(x)}{\sum_{x \in S_X} p(x) = 1} = \sum_{x \in S_X} x p(x)$$

No exemplo:

X=x	0	1	2	Σ
P(X=x)	1 10	<u>6</u> 10	3 10	1

$$E(X) = \mu = \sum_{x \in S_X} x p(x)$$

$$=0 \times \frac{1}{10} + 1 \times \frac{6}{10} + 2 \times \frac{3}{10} = \frac{12}{10} = 1,2$$
 bolas pretas

Significado do valor esperado: se o experimento fosse repetido um grande número de vezes, esperaríamos que o número médio de bolas pretas escolhidas fosse 1,2.

Importante!!!

 \Rightarrow Não confundir μ_x com \overline{x} .

 μ_{x} é a média de todos os valores de X (para os quais a probabilidade é conhecida)

X é a média de alguns valores de X (usualmente uma amostra de valores)

Exercício:

O tempo (em minutos) para que um operário processe certa peça é uma variável com distribuição dada na tabela abaixo.

X	2	3	4	5	6	7
p(x)	0,10	0,10	0,30	0,20	0,20	0,10

- (a) Calcule o tempo médio de processamento. (R: μ = 4,60)
- (b) Para cada peça processada o operário ganha um fixo de R\$ 1,00, mas se processa a peça em menos de 6 minutos, ganha R\$ 0,50 por cada minuto poupado. Por exemplo, se ele processa a peça em 5 minutos, recebe a quantia de R\$ 0,50. Encontre a média de G = quantia ganha por peça (fixo + comissão).

(R: μ = 1,75)

■ Variância

Definição: Seja X uma variável aleatória discreta e S_X o seu espaço amostral. A variância de X, denotada por V(X), ou σ_X^2 , ou simplesmente σ^2 , é o grau médio de dispersão dos valores de X em relação à sua média. Esta medida é definida como a média ou valor esperado dos quadrados dos desvios em relação à média. Deste modo, temos

$$V(X) = \sigma^{2} = E(X-\mu)^{2} = \sum_{x \in S_{X}} (x-\mu)^{2} p(x)$$

$$= E(X^{2}) - \mu^{2}$$

onde:

$$E(X^2) = \sum_{x \in S_X} x^2 p(x)$$

$$\mu^2 = [E(X)]^2 = [\sum x p(x)]^2$$

No exemplo:

X=x	0	1	2	Σ
P(X=x)	1 10	<u>6</u> 10	3 10	1

$$V(X) = \sigma^{2} = E(X - \mu)^{2}$$

$$= \sum_{x \in S_{X}} (x - \mu)^{2} p(x)$$

$$= \left(0 - \frac{12}{10}\right)^{2} \times \frac{1}{10} + \left(1 - \frac{12}{10}\right)^{2} \times \frac{6}{10} + \left(2 - \frac{12}{10}\right)^{2} \times \frac{3}{10} = \frac{36}{100}$$

$$V(X) = \sigma^{2} = E(X^{2}) - \mu^{2} = \frac{18}{10} - \left(\frac{12}{10}\right)^{2} = \frac{36}{100} = 0,36 \text{ bolas pretas } ^{2}$$

$$E(X^{2}) = \sum x^{2}p(x)$$

$$= 0^{2} \times \frac{1}{10} + 1^{2} \times \frac{6}{10} + 2^{2} \times \frac{3}{10} = \frac{18}{10}$$

□ Desvio padrão

Definição: Raiz quadrada positiva da variância.

$$\sigma = \sqrt{V(X)}$$

No exemplo:

$$\sigma = \sqrt{V(X)} = \sqrt{0.36} = 0.6$$
 bolas pretas

Significado do desvio padrão: se o experimento fosse repetido um grande número de vezes, a variação média do número de bolas pretas escolhidas em torno do valor esperado seria 0,6.

Importante!!!

⇒ Não confundir σ² com s².

σ² é a variância de **todos** os valores de X (para os quais a probabilidade é conhecida)

s² é a variância de **alguns** valores de X (usualmente uma amostra de valores)

⇒ Da mesma forma, não confundir σ com s.

Exercício:

Um vendedor recebe uma comissão de R\$ 100,00 por uma venda. Baseado em suas experiências anteriores ele calculou a distribuição de probabilidades das vendas semanais:

X	0	1	2	3	4
p(x)	0,10	0,20	0,40	0,20	0,10

- (a) Qual é o valor esperado de comissão por semana? R\$ 200,00
- **(b)** Qual é a probabilidade de ganhar pelo menos R\$ 300,00 por semana? 0,30
- (c) Qual o desvio padrão das vendas semanais? 1,10

Distribuições de probabilidade

O que é uma distribuição de probabilidade?

Uma distribuição de probabilidade é essencialmente um modelo de descrição probabilística de uma população.

□ Parâmetros: caracterizações numéricas que permitem a individualização de um modelo (distribuição) em determinado contexto

Distribuições discretas

- 1. Distribuição de Bernoulli
- 2. Distribuição Binomial
- 3. Distribuição Hipergeométrica
- 4. Distribuição de Poisson
- 5. Distribuição Multinomial
- 6. Distribuição Geométrica
- 7. Distribuição Binomial Negativa
- 8. Distribuição Hipergeométrica Negativa
- 9. Distribuição Uniforme Discreta

Distribuições de probabilidade de variáveis discretas

1. Distribuição de Bernoulli

Definição: Modelo que descreve probabilisticamente os resultados de um experimento de Bernoulli.

O experimento de Bernoulli é definido como o experimento aleatório que possui apenas dois resultados possíveis.

Exemplos: sexo no nascimento de um bebê, face no lançamento de uma moeda, produto perfeito ou defeituoso, satisfação ou insatisfação de um funcionário da empresa, etc.

Experimento: Um produto é avaliado quanto à qualidade

Consideramos um dos resultados como sucesso:

Se for conhecido a taxa de produtos sem defeito que é fabricada, por exemplo, 87%, concluímos que a probabilidade de o produto ser perfeito é 0,87.

O evento {defeituoso} é complemento do evento {perfeito}, então sua probabilidade será 1-0,87.

$$\pi$$
 = 0,87 = probabilidade de sucesso

$$1-\pi = 0.13 = probabilidade de fracasso$$

2. Distribuição binomial

Definição: Modelo que descreve probabilisticamente os resultados de uma sequência de experimentos de Bernoulli independentes entre si, ou seja, onde a probabilidade de sucesso é constante em todas as repetições do experimento.

Se
$$X = Y_1 + Y_2 + ... + Y_n$$

onde:

 $Y_i \sim Ber(\pi)$ e independentes;

então, a variável X tem distribuição binomial.

Distribuição binomial ⇒ processo finito de Bernoulli

- \Rightarrow n experimentos de Bernoulli independentes, com probabilidade de sucesso π constante para todos eles
- ⇒ É importante no contexto de amostragem com reposição

Experimento: As peças fabricadas por uma pequena indústria podem ser consideradas perfeitas ou defeituosas. Imagine que a chance de uma peça não ter defeito algum é de 60%. Se uma peça desta fábrica é escolhida ao acaso e sua situação é registrada, temos um experimento de Bernoulli.

onde:

p(perfeita) =
$$0.6 = \pi$$

p(defeituosa) = $1 - 0.6 = 0.4 = 1 - \pi$

Se **três** peças são escolhidas, uma a uma, e o resultado é registrado, temos uma sequência de três experimentos de Bernoulli **independentes**, pois, a cada escolha, a probabilidade de sucesso permanecerá inalterada.

$$\#S = 2^3 = 8$$

Sucesso = perfeita

A variável X é definida como o número de sucessos em \mathbf{n} experimentos de Bernoulli independentes, com probabilidade de sucesso igual a π .

$$n=3$$
 e $\pi=0,6$

$$S_{\mathbf{X}} = \{0, 1, 2, 3\}$$

Qual é a função de probabilidade P(X=x) associada a variável X?

S = {PPP, PPD, PDP, DPP, PDD, DPD, DDP, DDD}

$$S_X = \{0,1,2,3\}$$

$$P(X=x) = ?$$

P(X=x) = ? X: nº peças perfeitas

$$P(X=0) = 0.4^3 = 1 \times \pi^0 \times (1 - \pi)^3 = 0.064$$

$$P(X=1) = 3 \times 0.6^{1} \times 0.4^{2} = 3 \times \pi^{1} \times (1 - \pi)^{2} = 0.288$$

$$P(X=2) = 3 \times 0.6^2 \times 0.4^1 = 3 \times \pi^2 \times (1 - \pi)^1 = 0.432$$

$$P(X=3) = 0.6^3 = 1 \times \pi^3 \times (1 - \pi)^0 = 0.216$$

Como podemos determinar de quantas maneiras diferentes teremos **x** sucessos e **3-x** fracassos?

$$C_3^x = \frac{3!}{x!(3-x)}$$

Representação tabular

X = X	0	1	2	3	Σ
P(X = x)	0,064	0,288	0,432	0,216	1

Representação analítica

$$P(X=x) = C_3^x 0.6^x (1-0.6)^{3-x} \quad \text{, para } S_x = \{0, 1, 2, 3\}$$
 Número Probabilidade de casos de um caso

Função de probabilidade

De modo geral, se X é uma variável que tem distribuição binomial, sua função de probabilidade será:

$$P(X = x) = C_n^x \pi^x (1-\pi)^{n-x}$$
, para $S_x = \{0, 1, ..., n\}$

Parâmetros

$$P(X = x) = C_n^x \pi^x (1 - \pi)^{n-x}$$
parâmetros

A distribuição binomial tem dois parâmetros:

n = número de repetições do experimento de Bernoulli

 π = probabilidade de sucesso

$$X \sim Bin(n,\pi)$$

X tem distribuição binomial com parâmetros n e π

Medidas descritivas

Média ou valor esperado

$$E(X) = \mu = \sum_{x \in S_X} x p(x)$$

Teorema: $E(X) = \mu = n\pi$

Variância

$$V(X) = \sigma^2 = E(X^2) - \mu^2$$

Teorema:
$$V(X) = \sigma^2 = n \pi (1-\pi)$$

RESUMO - Distribuição binomial

Descrição probabilística de uma sequência de experimentos de Bernoulli independentes, ou seja, a probabilidade de sucesso é constante em todas as repetições do experimento.

Função de probabilidade

$$P(X=x)=C_n^x \pi^x (1-\pi)^{n-x}$$
, para $S_x = \{0, 1, ..., n\}$

Parâmetros

n = número de repetições no experimento

 π = probabilidade de sucesso

Medidas descritivas

$$E(X) = \mu = n \pi$$
 $V(X) = \sigma^2 = n \pi (1-\pi)$

Exercício: Num determinado processo de fabricação a chance de uma peça sair defeituosa é de 10%. As peças são acondicionadas em caixas com 5 unidades cada uma.

- (a) Qual a probabilidade de haver exatamente 1 peça defeituosa numa caixa? (32,81%)
- **(b)** Qual a probabilidade de haver duas ou mais peças defeituosas numa caixa? (8,14%)
- (c) Se a empresa paga uma multa de R\$ 10,00 por caixa em que houver alguma peça defeituosa, qual o valor esperado da multa num total de 1000 caixas? (R\$ 4.100)

3. Distribuição hipergeométrica

Definição: Modelo que descreve probabilisticamente os resultados de uma sequência de experimentos de Bernoulli **dependentes**. Refere-se a experimentos que se caracterizam por retiradas **sem reposição**, onde a probabilidade de sucesso **se altera** a cada retirada.

- → A Distribuição hipergeométrica se difere da Distribuição binomial porque a probabilidade de sucesso muda de um experimento para o outro
- ⇒ Essa distribuição é extremamente importante no contexto de amostragem sem reposição

- Como não há reposição, a probabilidade de sucesso (retirar elementos da sub-população de tamanho N₁) se altera a cada retirada.
- Do ponto de vista probabilístico não faz diferença considerar retiradas individuais sem reposição ou retirada conjunta de grupos

Experimento: Uma caixa contém 10 bolas coloridas: sete são **verdes** e três **laranjas**. Três bolas são retiradas da caixa, uma após a outra e sem reposição. Se a variável aleatória X é definida como o número de bolas verdes retiradas, construa a distribuição de probabilidade de X.

X = número de bolas **verdes**

$$S = \{L_1L_2L_3, L_1L_2V_1, L_1L_2V_2, ..., V_5V_6V_7\}$$
 $V = \text{verde}$
 $\# S = C_{10}^3 = 120$ $L = \text{laranja}$

L = laranja

X = número de bolas **verdes**

$$S_{\mathbf{X}} = \{0, 1, 2, 3\}$$

$$P(X = 0) = \frac{C_7^0 C_3^3}{C_{10}^3} = \frac{1 \times 1}{120} = \frac{1}{120} = 0,008333$$

$$P(X = 1) = \frac{C_7^1 C_3^2}{C_{10}^3} = \frac{7 \times 3}{120} = \frac{21}{120} = 0,175$$

P(X =2) =
$$\frac{C_7^2 C_3^1}{C_{10}^3} = \frac{21 \times 3}{120} = \frac{63}{120} = 0,525$$

$$P(X = 3) = \frac{C_7^3 C_3^0}{C_{10}^3} = \frac{35 \times 1}{120} = \frac{35}{120} = 0,2917$$

Representação tabular

X = x	0	1	2	3	Σ
P(X = x)	0,00833	0,175	0,525	0,2917	1

Representação analítica

$$P(X = x) = \frac{C_7^x C_3^{3-x}}{C_{10}^3}$$
, para $S_x = \{0, 1, 2, 3\}$

Função de probabilidade

De modo geral, se X é uma variável que tem distribuição hipergeométrica, sua função de probabilidade será:

$$P(X = x) = \frac{C_{N_1}^x C_{N_2}^{n-x}}{C_{N}^n} , para S_x = \{0, 1, ..., n\}$$

Prof^a Lisiane Selau

Parâmetros

$$P(X = x) = \frac{C_{N_1}^{x} C_{N_2}^{n-x}}{C_{N}}$$
 parâmetros

A distribuição hipergeométrica tem três parâmetros:

n = número de repetições do experimento

N = tamanho da população

N₁ = tamanho da sub-população de interesse (sucesso)

$$X \sim Hip (n,N,N_1)$$

X tem distribuição hipergeométrica com parâmetros n, N e N₁

Medidas descritivas

Média ou valor esperado

$$\mathsf{E}(\mathsf{X}) = \mu = \sum_{\mathsf{x} \in \mathsf{S}_\mathsf{X}} \mathsf{x} \, \mathsf{p}(\mathsf{x})$$

Teorema:
$$E(X) = \mu = n \left(\frac{N_1}{N} \right)$$
 probabilidade de sucesso

Variância

$$V(X) = \sigma^2 = E(X^2) - \mu^2$$

probabilidade de fracasso

Teorema:
$$V(X) = \sigma^2 = n \frac{N_1}{N} \left(\frac{N_2}{N} \right) \left(\frac{N-n}{N-1} \right)$$
 Fator de correção

Binomial

$$\mu = n \pi$$

$$\sigma^2 = n \pi (1-\pi)$$

RESUMO - Distribuição hipergeométrica

Descrição probabilística de uma sequência de experimentos de Bernoulli dependentes. Importante no contexto de amostragem sem reposição.

Função de probabilidade

$$P(X = x) = \frac{C_{N_1}^x C_{N_2}^{n-x}}{C_{N}^n}$$
, para $S_x = \{0, 1, ..., n\}$

Parâmetros

n = número de repetições do experimento

N = tamanho da população

N₁ = tamanho da sub-população de interesse

Medidas descritivas

$$E(X) = \mu = n \frac{N_1}{N}$$
 $V(X) = \sigma^2 = n \frac{N_1}{N} \frac{N_2}{N} \left(\frac{N-n}{N-1} \right)$

Exercício: Pequenos motores são guardados em caixas de 50 unidades. Um inspetor de qualidade examina cada caixa testando 5 motores. Se nenhum for defeituoso, a caixa é aceita. Se pelo menos 1 for defeituoso, todos 50 são testados. Há 6 motores defeituosos numa caixa. Qual a probabilidade de que seja necessário examinar todos os motores desta caixa?

R: 0,4874

Tem-se
$$N_1 = 6$$
, $N = 50$, $n = 5$, $P(X \ge 1) = ?$

$$P(X = 0) = \frac{C_6^0 C_{44}^5}{C_{50}^5} = \frac{1086008}{2118760} = 0,51257$$

$$P(examinar tudo) = 1 - P(X = 0) = 0,48743$$

4. Distribuição de Poisson

Definição: descreve probabilisticamente a sequência de um **grande número** de fenômenos **independentes** entre si, cada um com probabilidade de sucesso **muito pequena**.

 \Rightarrow Pode ser considerada como uma binomial onde o número de experimentos (**n**) é grande, **π** é pequeno (sucesso raro) e **n**π (média de sucessos) é constante.

Distribuição de Poisson ⇒ processo infinito de Bernoulli

➡ Ocorre quando se deseja contar o número de um tipo particular de eventos que ocorrem por unidade de tempo, de superfície ou de volume (num espaço contínuo).

Exemplos:

- nº de peças defeituosas observadas em uma linha de produção em um dia;
- nº de acidentes de trabalho ocorridos numa grande empresa em um ano;
- nº de ciclones ocorridos em certa região em uma estação do ano;
- nº de formigueiros por km² em uma região;
- nº de acidentes que acontecem em 300km de uma rodovia;
- nº de carros que passam em um pedágio de uma rodovia em 30 minutos;
- nº de ligações que chegam em uma central telefônica em uma manhã.
- ➡ A distribuição de Poisson tem inúmeras aplicações na simulação de sistemas modelando o número de eventos ocorridos num intervalo de tempo (exemplo: sistemas de filas).

Função de probabilidade

De modo geral, se X é uma variável que tem distribuição de Poisson, sua função de probabilidade será:

$$P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \text{ para } S_{x} = \{0, 1, 2, ...\}$$

$$espaço amostral infinito$$

onde:

X: número de sucessos

e = 2,718 (base dos logaritmos neperianos)

λ: número médio de sucessos (sempre maior que zero)

Parâmetros

$$P(X = x) = e^{-\lambda} \frac{\sqrt{X}}{x!} \leftarrow \boxed{\text{parâmetro}}$$

A distribuição de Poisson tem apenas um parâmetro:

 λ = número médio de sucessos

$$X \sim Poi(\lambda)$$

X tem distribuição de Poisson com parâmetro λ

Exercício: Em uma central telefônica de uma pequena cidade do interior chegam ligações a uma taxa de 1 a cada 30 minutos. Qual a probabilidade de que no intervalo de 1 hora:

- (a) Não chegue ligações? 13,53%
- (b) Chegue no máximo duas ligações? 67,67%
- (c) Chegue pelo menos duas ligações? 59,40%

Solução: Neste caso, tem-se:

 $\lambda = 2$ (taxa de ligações **por hora**)

X = nº de ligações **por hora**

Então:

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
, para $x = 0, 1, 2, 3, ...$

(a)
$$P(X = 0) = \frac{e^{-2}2^0}{0!} = e^{-2} = 13,53\%$$

(b)
$$P(X \le 2) = \frac{e^{-2}2^0}{0!} + \frac{e^{-2}2^1}{1!} + \frac{e^{-2}2^2}{2!} = 5e^{-2} = 67,67\%$$

(c)
$$P(X \ge 2) = 1 - P(X \le 1) = 1 - \left[\frac{e^{-2}2^0}{0!} + \frac{e^{-2}2^1}{1!} \right] = 1 - 3e^{-2} = 59,40\%$$

Medidas descritivas

• Média ou valor esperado: $E(X) = \mu = \sum_{x \in S_x} x p(x)$

Teorema:
$$E(X) = \mu = \lambda$$

• Variância: $V(X) = \sigma^2 = E(X^2) - \mu^2$

Teorema: $V(X) = \sigma^2 = \lambda$

Na Poisson média e variância são iguais!!

RESUMO - Distribuição de Poisson

Descrição probabilística da sequência de um grande número de fenômenos independentes, todos com probabilidade de sucesso constante e muito pequena.

Função de probabilidade

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
, para $S_x = \{0, 1, 2, ...\}$

Parâmetro

 λ = número médio de sucessos

Medidas descritivas

$$E(X) = \mu = \lambda \qquad \qquad V(X) = \sigma^2 = \lambda$$

Exercício:

Um dado é formado por chapas de plástico de 10x10 cm. Em média aparecem 50 defeitos por metro quadrado de plástico, segundo uma distribuição de Poisson.

- (a) Qual a probabilidade de uma determinada face apresentar exatamente 2 defeitos? (7,58%)
- (b) Qual a probabilidade de o dado apresentar no mínimo dois defeitos? (80,08%)
- (c) Qual a probabilidade de que pelo menos 5 faces sejam perfeitas? (24,36%)

(a) Qual a probabilidade de uma determinada face apresentar exatamente 2 defeitos?

Em média aparecem 50 defeitos/m² = (50/10000) defeitos/cm²

Como cada face tem $10\text{cm} \times 10\text{ cm} = 100\text{ cm}^2$, tem-se então:

 $\lambda = (50/10000)$ defeitos/cm² x 100 cm² = 0,5 defeitos por face.

A probabilidade de uma face apresentar dois defeitos será:

$$P(X = 2) = \frac{e^{-0.5}(0.5)^2}{2!} = 7.58\%$$

(b) Qual a probabilidade de o dado apresentar no mínimo dois defeitos?

No dado inteiro, a área total será a = $6x100 \text{ cm}^2 = 600 \text{ cm}^2 \text{ e o}$ número médio de defeitos será então:

$$\lambda = (50/10000)$$
 defeitos /cm² x 600 cm² = 3 defeitos

A probabilidade de o dado apresentar no mínimo 2 defeitos será:

$$P(X \ge 2) = P(X = 2) + P(X = 3) + ... = 1 - P(X \le 1)$$

$$= 1 - [P(X = 0) + P(X = 1)] =$$

$$= 1 - [\frac{e^{-3}3^{0}}{0!} + \frac{e^{-3}3^{1}}{1!}] =$$

$$= 1 - [0,0498 + 0,1494] = 80,08\%$$

(c) Qual a probabilidade de que pelo menos 5 faces sejam perfeitas?

A probabilidade de uma face ser perfeita é a probabilidade de ela não apresentar defeitos, isto é:

$$P(X = 0) = \frac{e^{-0.5}(0.5)^0}{0!} = 60.65\%$$

Tem-se então uma binomial Y com n = 6 (número de faces do dado) e p = 60,65% (probabilidade de uma face ser perfeita)

Então a probabilidade de pelo menos 5 perfeitas, será:

$$P(Y \ge 5) = P(Y = 5) + P(Y = 6)$$

$$= {6 \choose 5} \cdot (0,6065)^5 \cdot (0,3935)^1 + {6 \choose 6} \cdot (0,6065)^6 \cdot (0,3935)^0 = 24,36\%$$