

Sensor test dongle

Table of Contents

Change log (Added or modified)	3	
Chapter - 1 General information	4	
Chapter - 2 Using the dongle 4		
ET0-200 - Using the dongle in cor	nsole	.4
	Python	
ET0-281 - Batch configuration of t	he devices with dongle	.5
Chapter - 3 Available commands	5	
FT0-118 - Scan		5
	period	
	od	
ET0-124 - Set sensor's time		.7
ET0-125 - Get sensor's time		.7
ET0-126 - Restore defaults		.7
	hannels	
ET0-128 - Get sensor models		.8
•		
	date	
• • • • • • • • • • • • • • • • • • • •		
· · · · · · · · · · · · · · · · · · ·		
•	r	
·	er	
	me1	
	1 tistics1	
	1	
	1	
	1	
	1	
	tion with server1	
	11	
•	n1	
	1	
	1	
	al1	
	al1	
	1	

ET0-157 - Get transfer limit	
ET0-158 - Set supervision period	
ET0-159 - Get supervision period	17
ET0-162 - Set rule	18
ET0-163 - Get rule	20
ET0-180 - Collect memory statistics	
ET0-181 - Get memory statistics	21
ET0-182 - Get runtime errors	21
ET0-184 - Set CoAP endpoints	
ET0-185 - Get CoAP endpoints	
ET0-195 - Ping notification event	23
ET0-207 - Set modem AT log state	
ET0-208 - Get modem AT log state	
ET0-211 - Set DNS server	
ET0-212 - Get DNS server	
ET0-213 - Set DNS configuration	
ET0-214 - Get DNS configuration	
ET0-224 - Get rule calendar	
ET0-225 - Set rule calendar	
ET0-230 - Get last update status	
ET0-231 - Set slot output	
ET0-233 - Get NVM statistics	
ET0-248 - Get time synchronization period	
ET0-249 - Set time synchronization period	
ET0-252 - Set Bluetooth connection parameters	
ET0-253 - Connect low power	
ET0-258 - Send any command	
ET0-263 - Get time since event	
ET0-266 - Gateway hello	
ET0-267 - Gateway goodbye	
ET0-268 - Socket attach	
ET0-269 - Socket detach	30
ET0-270 - Socket send to	
ET0-271 - Fetch time	
ET0-272 - Set led configuration	
ET0-273 - Get led configuration	
ET0-279 - Set network troubleshooting	
ET0-280 - Get network troubleshooting	
ET0-283 - Set cellular configuration parameters	
ET0-284 - Get cellular configuration parameters	
ET0-286 - Set modem log state	
ET0-287 - Get modem log state	35

Change log (Added or modified)

Chapter - 1 General information

USB dongle allows users to communicate with Efento sensors over Bluetooth. All sensors Bluetooth features are available using the dongle.

Chapter - 2 Using the dongle

- All the commands start with "sensor" (e.g. "sensor scan 28:2C:02:4F:FF:90")
- If you want to repeat the recent commands, press the arrow up key on the keyboard until you find the command you want to repeat
- If you want to use another command with the same sensor, can use "-" dongle will put in its place the recently used sensor's MAC address and PIN (e.g. "sensor scan -")
- Sensor's MAC address needs to have ":" between each segment
- If you press TAB key while writing a command you will list all the commands, starting with the keyed in letters (e.g. typing "get" and pressing TAB will list all the commands starting with "get")
- If you want to list all the available commands along with the list of their parameters, type "sensor"
- Dongle's response is a YAML message, which always contains two fields: serial number and result

ET0-200 - Using the dongle in console

Dongle can be used with any operating system. Once connected to the computer connect to it over COM port.

- Windows: we recommend using PuTTY and open a serial connection with speed set to 115200
- MacOS: use "screen" command to connect to the dongle on the selected serial port

ET0-202 - Using the dongle with Python

- Make sure you have Python 3 and pip installed
- install pyyaml using command:

```
pip install PyYAML(Windows)
pip install pyyaml(Linux)
```

install pyserial using command:

pip install pyserial (both Windows and Linux)

ET0-281 - Batch configuration of the devices with dongle

Chapter - 3 Available commands

All the variables in "<>" indicate the name of the variable that needs to be used in the command. For instance if the command description contains "<MAC_ADDRESS>" it means that this part of the command has to be replaced to the sensor's mac address.

Note that some of the commands are only available for cellular sensors.

Commands listed below are available for sensors with software version 6.0 or higher.

ET0-118 - Scan

Command used to perform scanning for BLE device around the dongle. Return data from the BLE advertisement mode of a sensor with selected serial number

```
sensor scan <MAC ADDRESS>
```

Optional parameters:

- -t<TIMEOUT VALUE> defines the time of the scanning (e.g. 10 seconds)
- -d converts the measurement values to decimal (by default they are in HEX)

Examples

```
sensor scan 28:2C:02:4F:FF:90
sensor scan 28:2C:02:4F:FF:90 -t10
sensor scan 28:2C:02:4F:FF:90 -t10 -d
```


ET0-119 - Get software version

Returns sensor's software version

sensor get_sw_version <MAC_ADDRESS>

ET0-120 - Enter Bootloader

Enters devices bootloader in order to perform software update

sensor_enter_bootloader <MAC_ADDRESS> <BOOTLOADER_PIN>

ET0-121 - Data Transfer

Returns measurements from sensor's memory for the selected time period. Time period is defined by two epoch times.

sensor data transfer <START TIMESTAMP> <END TIMESTAMP>

Example

sensor data_transfer 28:2C:02:4F:FF:90 1608070309 1608073937

ET0-122 - Change measurement period

Sets new measurement's period base and factor. Measurement period = base*factor (e.g base = 10s, factor = 6, measurement period will be set to 60s. The value of "base" is in seconds, the value of "factor" is a number. Changing the measurement period does not clear sensor's memory as long as the optional "-r"parameter is not used

sensor change period <MAC ADDRESS> <PIN> <BASE> <FACTOR>

Optional parameters:

-r - removes all the measurements from sensor's memory

Examples

sensor change_period 28:2C:02:4F:FF:90 1111 10 6 sensor change_period 28:2C:02:4F:FF:90 1111 10 6 -r

ET0-123 - Get measurement period

Returns the current measurement's period "base" and "factor" values. Measurement period = base*factor

sensor get_period <MAC_ADDRESS>

ET0-124 - Set sensor's time

Sets the time of the sensor's internal clock. Timestamp in epoch time

sensor set time <MAC ADDRESS> <PIN> <TIME STAMP>

Example

sensor set_time 28:2C:02:4F:FF:90 1111 1608070309

ET0-125 - Get sensor's time

Returns the current time of the sensor's internal clock.

sensor get_time <MAC_ADDRESS> <PIN>

ET0-126 - Restore defaults

Restores the default (factory) settings of the sensor.

sensor restore_defaults <MAC_ADDRESS> <PIN>

ET0-127 - Get types of sensor's channels

Returns the types of sensor's channels (values measured by the sensor)

sensor get_channel_types <MAC_ADDRESS>

ET0-128 - Get sensor models

Returns the models of the sensors assigned to each slot

sensor get channel models <MAC ADDRESS>

ET0-129 - Get factory descriptor

Returns the information about the hardware version and variant

sensor get_factory_descriptor <MAC_ADDRESS> <PIN>

ET0-130 - Get self test results

Returns the results of the self test performed on the device's boot up

sensor get selftest data <MAC ADDRESS> <PIN>

ET0-131 - Get battery status

Returns the battery status including the voltage and the battery reset date

sensor get_battery_status <MAC_ADDRESS> <PIN>

ET0-132 - Reset battery status

Resets the battery status and sets the battery reset day. Battery rest timestamp in epoch time

sensor reset_battery_status <MAC_ADDRESS> <PIN> <RESET_TIMESTAMP>

ET0-133 - Set sensor name

Sets sensor's name. Name is used in Bluetooth advertisement frames

sensor set_name <MAC_ADDRESS> <PIN> <NAME>

ET0-134 - Get sensor name

Returns sensor's name

sensor get name <MAC ADDRESS> <PIN>

ET0-135 - Set sensor calibration date

Sets the date, when the sensor was calibrated (date1) and the date, when it should be calibrated again (date2). Dates are epoch times

sensor write_calibraiton_date <MAC_ADDRESS> <MANUFACTURER_KEY> <DATE1> <DATE2>

Example

sensor write calibraiton date 28:2C:02:4F:FF:90 111111 1608070309 1609070309

ET0-136 - Set encryption key

Sets encryption key used to encrypt the BLE communication

sensor set_encryption_key <MAC_ADDRESS> <ENCRYPTION_KEY>

ET0-137 - Get encryption counter

Returns the value of the encryption counter

sensor get_encryption_counter <MAC_ADDRESS>

ET0-138 - Set Bluetooth TX power

Sets the value of the Bluetooth TX power. Value in dBm. Maximum TX power value 4

sensor set_bluetooth_tx_power <MAC_ADDRESS> <PIN> <TX_POWER>

ET0-139 - Get Bluetooth TX power

Returns the value of Bluetooth TX power

sensor get bluetooth tx power <MAC ADDRESS> <PIN>

ET0-140 - Set Bluetooth turn off time

Sets time period, after which BLE interface will switch off. BLE will automatically turn off after this time period each time the device is turned on. Turn off time in seconds - e.g. if set to 600, BLE will turn off 600 seconds after the device boots up. To disable BLE turn off time (keep BLE interface always on), set the BLE turn off time to 0xFFFFFFFF.

sensor set_bluetooth_turn_off_time <MAC_ADDRESS> <PIN> <TURN_OFF_TIME>

ET0-141 - Get cellular status

Returns the status of the cellular communication (signal strength, registration status, etc.)

sensor get_cellular_network_status <MAC_ADDRES> <PIN>

ET0-142 - Get cellular module statistics

Returns the statistics of the cellular module (tx power, ecl, snr, pci, rsrq, etc.)

sensor get cellular module stats <MAC ADDRES> <PIN>

ET0-143 - Enter installation mode

Enters the installation mode

sensor enter_installation_mode <MAC_ADDRESS> <PIN>

ET0-144 - Exit installation mode

Exits the installation mode (if not used, sensor automatically exits the installation mode 5 minutes after it entered it)

sensor exit_installation_mode <MAC_ADDRESS> <PIN>

ET0-145 - Set APN

There are two commands used to configure APN on the device:

- For sensor's firmware >=6.11.0 use command "set_apn" (supports user name and password)
- For sensor's firmware <6.11.0 use command "legacy_set_apn" ** (does not support user name and password)
- 1) set_apn (sensor's fw 6.11.0 or newer):

Sets the APN, user name and password values.

sensor set_apn <MAC_ADDRESS> <PIN> ([--hex] <APN> [<USER_NAME>] [<PASSWORD>]) | (-a)

- -a used to set all values to "auto"
- --hex used to insert values in hex format (if not added, the default option is "string") Possible valid configurations:
 - o All empty sets APN value to "automatic":

All values are empty (special character 0x7F inserted into APN, user name, password):

```
<MAC_ADDRESS> <PIN> (-a) example:
```

sensor set_apn 28:2C:02:4F:FF:90 1111 -a

O Hex option:

All values in hex (special character 0x7F is inserted into not used parameters):

<MAC ADDRESS> <PIN> (-hex) <APN>


```
<MAC_ADDRESS> <PIN> (-hex) <APN> <USER NAME>
<MAC ADDRESS> <PIN> (-hex) <APN> <USER NAME> <PASSWORD>
examples:
sensor set apn 28:2C:02:4F:FF:90 1111 --hex 746573742E61706E
sensor set_apn 28:2C:02:4F:FF:90 1111 --hex 746573742E61706E 75736572
sensor set apn 28:2C:02:4F:FF:90 1111 --hex 746573742E61706E 75736572
717765727479
        o String option:
All values are strings (special character 0x7F inserted into not used parameters):
<MAC ADDRESS> <PIN> <APN>
<MAC ADDRESS> <PIN> <APN> <USER NAME>
<MAC ADDRESS> <PIN> <APN> <USER NAME> <PASSWORD>
examples:
sensor set apn 28:2C:02:4F:FF:90 1111 test.apn
sensor set apn 28:2C:02:4F:FF:90 1111 test.apn user
```

1) legacy_get_apn (sensor's fw <6.11):

Sets the APN value. To set APN value to "auto" use the optional "-a" parameter

sensor set apn 28:2C:02:4F:FF:90 1111 test.apn user qwerty

sensor legacy_set_apn <MAC_ADDRESS> <PIN> ([--hex] <APN_VALUE>) | (-a)

Optional parameters:

- -a used to set APN value to "auto"
- --hex used to insert value in hex format

Examples:

set APN value (string option) to "test.apn"

sensor legacy_set_apn 28:2C:02:4F:FF:90 1111 test.apn set APN value (hex option) to "test.apn"

sensor legacy_set_apn 28:2C:02:4F:FF:90 1111 --hex 746573742E61706E set APN value to "auto"

sensor legacy_set_apn 28:2C:02:4F:FF:90 1111 -a

ET0-146 - Get APN

There are two commands used to get the APN set on the device:

- For sensor's firmware >=6.11.0 use command "get_apn"
- For sensor's firmware <6.11.0 use command "legacy_get_apn"

1) get_apn (sensor's fw 6.11.0 or newer):

Gets the APN, user name and password values.

sensor get apn <MAC ADDRESS> <PIN>

Responses:

Example 1: APN, user name and password are filled:

sensor get_apn 28:2C:02:4F:FF:11 1111

apn: "test.apn" userName: "user" password: "qwerty"

Example 2: APN, user name are filled, password is configured as automatic:

sensor get apn 28:2C:02:4F:FF:11 1111

apn: "test.apn"
userName: "user"
password: ""

Example 3: APN is filled, user name and password are configured as automatic:

sensor get_apn 28:2C:02:4F:FF:11 1111

apn: "test.apn" userName: ""

password: ""

Example 4: APN, user name and password are configured as automatic:

sensor get_apn 28:2C:02:4F:FF:11 1111

apn: ""

userName: "" password: ""

1) legacy_get_apn (sensor's fw <6.11.0):

Gets the APN value.

sensor legacy_get_apn <MAC_ADDRESS> <PIN>

ET0-147 - Set PLMN

Sets the value of PLMN. To set the value to "auto" use the optional "-a" parameter

sensor set_plmn <MAC_ADDRESS> <PIN> <PLMN>

Optional parametrers

-a - used to set PLMN value to "auto"

Examples

set PLMN value to 12345

sensor set plmn 28:2C:02:4F:FF:90 1111 12345

set PLMN value to "auto"

sensor set_plmn 28:2C:02:4F:FF:90 1111 -a

ET0-148 - Get PLMN

Returns the value of PLMN

sensor get_plmn <MAC_ADDRESS> <PIN>

ET0-149 - Trigger the communication with server

Triggers the communication with server over cellular network

sensor trigger_communication_with_server <MAC_ADDRESS> <PIN>

ET0-150 - Set server configuration

Sets data and update servers configuration

Data server:

sensor set_server_configuraiton <MAC_ADDRESS> <PIN> 0 <SERVER_IP_ADDRESS> <PORT>

Update server:

sensor set_server_configuration <MAC_ADDRESS> <PIN> 1 <SERVER_IP_ADDRESS> <UDP_PORT> <COAP_PORT>

Examples

Set the data server

sensor set_server_configuraiton 28:2C:02:4F:FF:90 1111 0 127.0.0.1 5683

Set the update server

sensor set_server_configuraiton 28:2C:02:4F:FF:90 1111 1 127.0.0.1 6000 5683

ET0-151 - Get server configuration

Returns the configuration of data and update servers

Data server:

sensor get_server_configuration <MAC_ADDRESS> <PIN> 0

Update server:

sensor get_server_configuration <MAC_ADDRESS> <PIN> 1

ET0-152 - Set cloud token

Sets the cloud token value (can be used to disable cloud token, set cloud token to user specified value or set cellular module's IMEI as cloud token)

Cloud token value

sensor set_cloud_token <MAC_ADDRESS> <PIN> 1 <TOKEN_VALUE>

Set IMEI as cloud token

sensor set_cloud_token <MAC_ADDRESS> <PIN> 2 0

Do not set cloud token

sensor set_cloud_token <MAC_ADDRESS> <PIN> 255 0

ET0-153 - Get cloud token

Returns the value and type of the cloud token

sensor get_cloud_token <MAC_ADDRESS> <PIN>

ET0-154 - Set transmission interval

Sets sensor's transmission and ACK interval. To set ACK interval to always set its value to "0xFFFFFFFF"

sensor set_transmission_config <MAC_ADDRESS> <PIN> <TRANSMISSION_INTERVAL> <ACK_INTERVAL>

ET0-155 - Get transmission interval

Returns sensor's transmission and ACK intervals

sensor get_transmission_config <MAC_ADDRESS> <PIN>

ET0-156 - Set transfer limit

Sets the transfer limit and transfer limit timer

sensor set_transfer_limit <MAC_ADDRESS> <PIN> <TRANSFER_LIMIT> <TRANSFER_LIMIT_TIMER>

ET0-157 - Get transfer limit

Returns the transfer limit and transfer limit timer

sensor get_transfer_limit <MAC_ADDRESS> <PIN>

ET0-158 - Set supervision period

Sets supervision period. Supervision period value should be in seconds. To disable set to "0xFFFFFFFF"

sensor set supervision period <MAC ADDRESS> <PIN> <SUPERVISION PERIOD>

ET0-159 - Get supervision period

Returns supervision period

sensor get_supervision_period <MAC_ADDRESS> <PIN>

ET0-162 - Set rule

Creates a new rule configuration / updates a rule with selected rule ID.

sensor set_rule <MAC_ADDRESS> <PIN> <RULE_ID> <CHANNEL_MASK> <CONDITION>
<ACTION> [<PARAM1> <PARAM2> <PARAM3> <PARAM4> <PARAM5>]

- RULE_ID Id of the rule. Up to 12 rules can be defined. Range [0:11]
- CHANNEL_MASK Channels to which the rule is assigned. One rule can be assigned to
 multiple channels as long as those are of the same type. Bit mask on bits [0:5]. E.g. To assign
 the rule for channel 1: "000001", to assign rule to channels 2 and 4: "001010"
- CONDITION Condition to be checked by the device. If the condition is true, an action is triggered. Possible values:
 - o 0 Unspecified
 - 1 Disabled
 - o 2 High Threshold
 - o 3 Low threshold
 - o 4 Differential threshold
 - o 5 Change of state (Binary sensors only)
 - o 6 Logic operator
 - o 7 On measurement
- ACTION Action to be triggered. Currently the only possible action is to trigger the transmission. Other actions will be available in next SW releases. Possible values
 - o 0 Unspecified
 - o 1 Trigger the transmission
 - o 2 No action
 - o 3 Trigger the transmission with ACK
- PARAM1..5 parameters of CONDITION. Available params depend on the type of condition

CONDITION: High Threshold

Available for continuous sensors only. If the measurement (or average from a few measurements) is over the threshold, an action is triggered.

- PARAM1 Threshold value. Must match channel type
- PARAM2 Hysteresis value. Must much channel type. Set to "0" to disable
- PARAM3 Average calculation mode:
 - o 1 moving average (a1=(n1+n2+n3)/3, a2=(n2+n3+n4)/3, etc.)
 - o 2 window mode (a1=(n1+n2+n3)/3, a2=(n4+n5+n6)/3, etc.)
 - o 3 consecutive samples mode
- PARAM4 Number of measurements for average value calculating. E.g PARAM4 equals 3, average value from three samples will be calculated and compared to the threshold value.
- PARAM5 Type of measurement (as described in MeasurementType).

CONDITION: Low Threshold

Available for continuous sensors only. If the measurement (or average from a few measurements) is below the threshold, an action is triggered.

- PARAM1 Threshold value. Must match channel type
- PARAM2 Hysteresis value. Must much channel type. Set to "0" to disable
- PARAM3 Average calculation mode:
 - o 1 moving average (a1=(n1+n2+n3)/3, a2=(n2+n3+n4)/3, etc.)
 - o 2 window mode (a1=(n1+n2+n3)/3, a2=(n4+n5+n6)/3, etc.)
 - o 3 consecutive samples mode
- PARAM4 Number of measurements for average value calculating. E.g PARAM4 equals 3, average value from three samples will be calculated and compared to the threshold value.
- PARAM5 Type of measurement (as described in MeasurementType).

CONDITION: Differential Threshold

Continuous sensors only. If the absolute value of the difference between the last value sent to the server and the measurement value (or average from a few measurements) is greater or equal to the value of the threshold set, an action is triggered.

- PARAM1 Threshold value. Must match channel type
- PARAM2 Average calculation mode:
 - o 1 moving average (a1=(n1+n2+n3)/3, a2=(n2+n3+n4)/3, etc.)
 - o 2 window mode (a1=(n1+n2+n3)/3, a2=(n4+n5+n6)/3, etc.)
 - 3 consecutive samples mode
- PARAM3 Number of measurements for average value calculating. E.g PARAM3 equals 3, average value from three samples will be calculated and compared to the threshold value.
- PARAM4 Type of measurement (as described in MeasurementType).

CONDITION: Logic operator

Used for combining multiple rules into more complex conditions. If the logic condition specified by parameters (logic operator and selected rules) is met, an action is triggered.

- PARAM1 Logic operator: EVERY selected rule must be active or AT LEAST ONE of the selected rules must be active
- PARAM2 Rule selector. Bitmask of rule IDs that will be used while determining the result.
- PARAM3 Rule negation. Bitmask of rule IDs that will be used while determining the result. State
 of those rules will be used negated.
- PARAM4 Rule action delay [s]. Specifies time delay between the rule activation and the rule action being triggered.
- PARAM5 Rule return delay [s]. Specifies time delay between the rule deactivation and the rule action being triggered

CONDITION: On measurement

The basic function is to trigger communication after measurement if at least 60s have passed since the last one. Transmission may occur every x measurement. Optionally dependency on the other rule can be configured, then, when all conditions are met, transmission is triggered.

- PARAM1 Send every x measurement. This parameter specifies every which measurement transmission will be triggered if all other conditions are met. If parameter[0] equals 1, transmission will occur after every measurement.
- PARAM2 Optional. Rule selector. Bitmask of rule IDs that will be used while determining the result.
- PARAM3 Optional. Rule negation. Bitmask of rule IDs that will be used while determining the result. State of those rules will be used negated.

Examples

Set a rule, which will trigger the transmission, if the temperature measured on channel 1 is over 10 C. Rule will be assigned to Rule ID = 0

sensor set_rule 28:2C:02:4F:FF:90 1111 0 000001 2 1 100 0 1 1 1
Set a rule, which will trigger the transmission, if the humidity measured on channel 2 or 3 is below 40%.
Rule will be assigned to Rule_ID = 1

sensor set rule 28:2C:02:4F:FF:90 1111 1 000110 3 1 40 0 1 1 2

ET0-163 - Get rule

Returns a rule configuration for the selected rule ID.

sensor get rule <MAC ADDRESS> <PIN> <RULE ID>

ET0-180 - Collect memory statistics

Triggers a restart of collecting memory statistics.

sensor collect memory statistics <MAC ADDRESS> <PIN>

ET0-181 - Get memory statistics

Returns a memory statistics.

```
sensor get memory statistics <MAC ADDRESS> <PIN>
```

ET0-182 - Get runtime errors

Returns a table of runtime errors, and can clear it.

```
sensor get_runtime_errors <MAC_ADDRESS> <PIN>
```

Optional parameters:

- -r removes all errors from the table
- -d decode runtime errors to human readable information

Examples

```
sensor get_runtime_errors 28:2C:02:4F:FF:90 1111
sensor get_runtime_errors 28:2C:02:4F:FF:90 1111 -d
sensor get_runtime_errors 28:2C:02:4F:FF:90 1111 -r -d
```

ET0-184 - Set CoAP endpoints

Sets chosen CoAP endpoint (ASCII string).

Data endpoint:

sensor set_coap_endpoints <MAC_ADDRESS> <PIN> 0 <ENDPOINT>

Configu	ıration	end	point:
00111191	a. a	0110	P O t.

sensor set_coap_endpoints <MAC_ADDRESS> <PIN> 1 <ENDPOINT>

Device info endpoint:

sensor set_coap_endpoints <MAC_ADDRESS> <PIN> 2 <ENDPOINT>

Time endpoint:

sensor set_coap_endpoints <MAC_ADDRESS> <PIN> 3 <ENDPOINT>

All occurrences of '#' symbol in <ENDPOINT> field will be parsed into '\x1B' (ESC) character.

ET0-185 - Get CoAP endpoints

Returns chosen CoAP endpoint.

Data endpoint:

sensor get coap endpoints <MAC ADDRESS> <PIN> 0

Configuration endpoint:

sensor get_coap_endpoints <MAC_ADDRESS> <PIN> 1

Device info endpoint:

sensor get_coap_endpoints <MAC_ADDRESS> <PIN> 2

Time endpoint:

sensor get_coap_endpoints <MAC_ADDRESS> <PIN> 3

ET0-195 - Ping notification event

Command used to create a ping notification event. The result of the request will be transmitted on Notify characteristic.

sensor ping_notification_event <MAC_ADDRESS> <PING_NUMBER>

Example

sensor ping notification event 28:2C:02:4F:FF:90 1

ET0-207 - Set modem AT log state

Sets the modem AT log state:

sensor set_modem_at_log_state <MAC_ADDRESS> <PIN> <STATE> Enable log:

sensor set_modem_at_log_state <MAC_ADDRESS> <PIN> 1 Disable log:

sensor set_modem_at_log_state <MAC_ADDRESS> <PIN> 0

ET0-208 - Get modem AT log state

Gets the modem AT log state:

sensor get_modem_at_log_state <MAC_ADDRESS> <PIN>

ET0-211 - Set DNS server

Sets the DNS server

sensor set_dns <MAC_ADDRESS> <PIN> <IP_V4> Custom DNS server:

sensor set_dns <MAC_ADDRESS> <PIN> 8.8.8.8 Use network DNS server:

sensor set_dns <MAC_ADDRESS> <PIN> 255.255.255.255

ET0-212 - Get DNS server

Gets the DNS server:

sensor get_dns <MAC_ADDRESS> <PIN>

ET0-213 - Set DNS configuration

Sets the DNS configuration.

sensor set_dns_configuration <MAC_ADDRESS> <PIN> <TTL>

Optional parameters

-d - accept TTL from the DNS server

-cf - DNS request is only after communication failed

Examples

set the custom TTL to 86000 seconds:

sensor set_dns_configuration 28:2C:02:4F:FF:90 1111 86000

set the DNS TTL:

sensor set_dns_configuration 28:2C:02:4F:FF:90 1111 -d set the DNS request on communication failed:

sensor set_dns_configuration 28:2C:02:4F:FF:90 1111 -cf

ET0-214 - Get DNS configuration

Returns the configuration of DNS:

sensor get_dns_configuration <MAC_ADDRESS> <PIN>

ET0-224 - Get rule calendar

Returns a calendar configuration for the selected calendar ID.

sensor get_rule_calendar <MAC_ADDRESS> <PIN> <CALENDAR_ID>

ET0-225 - Set rule calendar

Creates a new calendar configuration / updates an existing calendar with selected ID.

sensor set_rule_calendar <MAC_ADDRESS> <PIN> <CALENDAR_ID> <TYPE>
<RULES MASK> [<PARAM1> <PARAM2> <PARAM3> <PARAM4>]

- CALENDAR ID- Id of the calendar (up to 6 calendars possible). Range [0:5]
- TYPE- Calendar type:
 - o 0 Unspecified
 - o 1 Disabled
 - o 2 Week
- RULES MASK- Bitmask of rules that should be driven by currently set calendar.
- PARAM1-4 Parameters of TYPE. Available parameters depend on the type

TYPE: Week

- PARAM1 Day mask. Bitmask of week days (sunday at index 0)
- PARAM2 'From time'. Timestamp in minutes from midnight (UTC) specifiyng the starting point from where a rule is enabled.
- PARAM3 'To time'. Timestamp in minutes from midnight (UTC) specifying the ending point where a rule is disabled.
- PARAM4 Timezone. In 15 minutes offsets (see ES6-580)

Examples

Set a WEEK calendar with ID = 0, which will enable only rule with ID = 0. It will be enabled on Mondays from 1:00 AM (UTC+2) to 2:00 AM (UTC+2).

sensor set rule calendar 28:2C:02:4F:FF:FA 1111 0 1 1 2 60 120 8

ET0-230 - Get last update status

Returns a timestamp and a result of the last update

sensor get_last_update_status <MAC_ADDRESS> <PIN>

ET0-231 - Set slot output

Sets the output pin of the given slot.

sensor set_slot_output <MAC_ADDRESS> <PIN> <SLOT_NUMBER> <PIN_STATE>

- SLOT_NUMBER- Slot must be of IO Control type. Range [1:6]
- PIN STATE:
 - o 0 Low
 - O 1 High

ET0-233 - Get NVM statistics

ET0-248 - Get time synchronization period

Returns time synchronization period in seconds.

sensor get_time_synchronization_period <MAC_ADDRESS> <PIN>

ET0-249 - Set time synchronization period

Sets the time synchronization period of the sensor's internal clock. SYNC_PERIOD time should be given in seconds and should be in range from 14 400 to 2 592 000 seconds.

sensor set_time_synchronization_period <MAC_ADDRESS> <PIN> <SYNC_PERIOD>

ET0-252 - Set Bluetooth connection parameters

Sets sensor's low power Bluetooth connection's parameters.

sensor set_bluetooth_conn_params <address> <min_conn_interval> <max_conn_interval> <slave_latency> <conn_sup_timeout>

Default connection parameters and conversion details:

Parameter	DMCU
	euon
	fltnit
	ai v
	upe
	lt li r
	ret
	are
	w d
	v d
	a e
	l f
	u a
	e u
	lt
	V
	а
	I
	u
	е
min_conn_i	718m
nterval	il
	2 7 li
	55s
	[e
	m c
	s 0

n d s


```
max_conn_i 111m
nterval
            2.5il
            020li
             5 s
             [
                е
                0
                n
                d
slave_latenc 010c
у
                n
                n
                е
                С
                ti
                0
                n
                е
                ٧
                е
                n
                t
conn_sup_ti 414 m
            000il
meout
             [ 0 li
             m s
             s
                е
                С
                0
                n
                d
                s
```

ET0-253 - Connect low power

Connects to the sensor with a low power type of Bluetooth connection. Once the connection is established, all the other commands supported by the dongle can be issued

sensor connect_low_power <MAC_ADDRESS>

To disconnect, issue command
sensor disconnect
See ET0-252 for details and information about this kind of connection's parameters.
ET0-258 - Send any command
Implements a possibility to send any command with parameters. Note, that the payload data has to be right-padded to the length of 16 bytes.
Usage scheme:
<pre>sensor send_any_command <address> <cmd_id> [[<pin>] <payload>]</payload></pin></cmd_id></address></pre>
Usage examples: • get_public_key (0x23):
sensor send_any_command 28:2C:02:40:28:3C 0x23
• set_coap_endpoint (0xAC) - Set data endpoint to \x1Bs:
sensor send_any_command 28:2C:02:40:28:3C 0xAC 3925 001b730000000000000000000000000000000000
ET0-263 - Get time since event
Gets passed time since the given event.
Usage scheme:

sensor get time since event <MAC ADDRESS> <PIN> <EVENT>

- EVENT:
 - o 0 Time synchronization
 - o 1 Last communication
 - o 2 Last configuration

ET0-266 - Gateway hello

sensor gateway_hello <MAC_ADDRESS> <API_VERSION> <CONFIG_HASH>

ET0-267 - Gateway goodbye

sensor gateway_goodbye <MAC_ADDRESS> <STATUS>

ET0-268 - Socket attach

sensor socket_attach <MAC_ADDRESS> <SOCKET>

ET0-269 - Socket detach

sensor socket_detach <MAC_ADDRESS> <SOCKET>

ET0-270 - Socket send to

sensor socket_send_to <MAC_ADDRESS> <SOCKET> <RRC_RELEASE> <DATA>

ET0-271 - Fetch time

sensor fetch_time <MAC_ADDRESS>

ET0-272 - Set led configuration

Sets led configuration.

sensor set_led_configuration <MAC_ADDRESS> <PIN> <GREEN_PERIOD> <COMM_ERR_OFF_TIME> <SENS_ERR_OFF_TIME> <LOW_PWR_OFF_TIME> <NEW MEAS OFF TIME> <TRANSMISSION OFF TIME> <SENS OK OFF TIME> <BLINK TIME>

- GREEN_PERIOD- period of flashing green led. Multiple of 5 seconds (from 1 to 120).
- RED_PERIOD- period of flashing red led. Multiple of 5 seconds (from 1 to 120).
- COMM_ERR_OFF_TIME time in minutes after transition to normal state, after which red led won't blink if there is communication error. (from 0 to 240 or 255 for always on)
- SENS_ERR_OFF_TIME- time in minutes after transition to normal state, after which red led won't blink if there is sensor error. (from 0 to 240 or 255 for always on)
- LOW_PWR_OFF_TIME time in minutes after transition to normal state, after which red led won't blink if battery is low. (from 0 to 240 or 255 for always on)
- NEW_MEAS_OFF_TIME time in minutes after transition to normal state, after which green led won't blink on new measurement. (from 0 to 240 or 255 for always on)
- TRANSMISSION_OFF_TIME time in minutes after transition to normal state, after which green led won't blink on transmission. (from 0 to 240 or 255 for always on)
- SENS_OK_OFF_TIME time in minutes after transition to normal state, after which green led won't blink if sensor is ok. (from 0 to 240 or 255 for always on)
- BLINK_TIME duration of single blink. Multiple of 5 ms (from 4 to 200).

Example

Set following configuration:

Period of flashing green led = 5s.

Period of flashing red led = 10s.

Flashing on communication error, sensor error, low power turned off.

Flashing on new measurement, transmission always turned on.

Flashing if sensor ok for 5 minutes from transition to normal mode.

Single blink duration = 100ms.

sensor set led configuration 28:2C:02:4F:FF:90 1111 1 2 0 0 0 255 255 5 20

ET0-273 - Get led configuration

Returns led configuration

sensor get_led_configuration <MAC_ADDRESS> <PIN>

ET0-279 - Set network troubleshooting

Sets network troubleshooting functionality.

sensor set_network_troubleshooting <MAC_ADDRESS> <PIN> <STATUS>

STATUS - Possible values:

- 1 Disabled
- 2 Enabled

ET0-280 - Get network troubleshooting

Returns network troubleshooting functionality status.

sensor get network troubleshooting <MAC ADDRESS> <PIN>

Possible values at return:

- networkTroubleshooting: "Deactivated" Network troubleshooting is disabled
- networkTroubleshooting: "Activated" Network troubleshooting is enabled
- networkTroubleshooting: "Unknown" Network troubleshooting status is unrecognized

ET0-283 - Set cellular configuration parameters

Sets cellular configuration parameters.

sensor set_cellular_configuration_parameters <MAC_ADDRESS> <PIN>
<MODEM_MODEL> [<PARAM1> <PARAM2> <PARAM3> <PARAM4> <PARAM5> <PARAM6>
<PARAM7> <PARAM8> <PARAM9> <PARAM10> <PARAM11>]

- MODEM MODEL Modem of cellular modem:
 - o 1 BC66
 - o 2 BC66NA
- PARAM1..11 configuration parameters of cellular modem. The number of parameters can be from 1 to 11. The number and value of parameters depends on the modem type.

MODEM MODEL: BC66 or BC66NA

- PARAM1 EPCO:
 - o 1 Disable EPCO
 - o 2 Enable EPCO
- PARAM2 COMBINEDATTACH:
 - o 1 Disable combined attach
 - o 2 Enable combined attach
- PARAM3 UP:
 - o 1 Disable user plane function
 - o 2 Enable user plane function
- PARAM4 AUTOPDN:
 - o 1 Disable PDN auto activation
 - o 2 Enable PDN auto activation
- PARAM5 RIPIN:
 - o 1 Default output level is high for the RI pin
 - o 2 Default output level is low for the RI pin
- PARAM6 INIT LOCK TIME:
 - Range: [2:31]. Configure the initial Sleep Lock duration. Unit: second with static offset 1.
 P5=2 -> 1 sec ... P5=31 -> 30 sec.
- PARAM7 DSEVENT:
 - o 1 Disable the URC for the deep sleep event
 - o 2 Enable the URC for the deep sleep event.
- PARAM8 AT LOCK TIME:
 - Range: [1:11]. Configure the Sleep Lock duration by AT commands. Unit: second with static offset 1. P7=1 -> 0 sec ... P7=11 -> 10 sec.

Examples

For BC66 modem model

sensor set_cellular_configuration_parameters 28:2C:02:4F:FF:90 1111 1 1 1 1 1 1 20 1 10

ET0-284 - Get cellular configuration parameters

Returns modem model and configuration parameters, the number of parameters can be from 1 to 11. The number and value of parameters depends on the modem type.

sensor get cellular configuration parameters <MAC ADDRESS> <PIN>

List of parameters for BC66 / BC66NA

- configurationParam1 EPCO:
 - 0 1 Disable EPCO
 - o 2 Enable EPCO
- configurationParam2 COMBINEDATTACH:
 - 1 Disable combined attach
 - o 2 Enable combined attach
- configurationParam3 UP:
 - o 1 Disable user plane function
 - 2 Enable user plane function
- configurationParam4 AUTOPDN:
 - o 1 Disable PDN auto activation
 - o 2 Enable PDN auto activation
- configurationParam5 RIPIN:
 - o 1 Default output level is high for the RI pin
 - o 2 Default output level is low for the RI pin
- configurationParam6 INIT_LOCK_TIME:
 - Range: [2:31]. Configure the initial Sleep Lock duration. Unit: second with static offset 1.
 P5=2 -> 1 sec ... P5=31 -> 30 sec.
- configurationParam7 DSEVENT:
 - 1 Disable the URC for the deep sleep event
 - o 2 Enable the URC for the deep sleep event.
- configurationParam8 AT_LOCK_TIME:
 - o Range: [1:11]. Configure the Sleep Lock duration by AT commands. Unit: second with static offset 1. P7=1 -> 0 sec ... P7=11 -> 10 sec.

ET0-286 - Set modem log state

Sets the modem log state:

sensor set modem log state <MAC ADDRESS> <PIN> <STATE> [<INTERFACE ID>]

- STATE Modem logging state:
 - o 0 Disable request
 - o 1 Enable request
- INTERFACE ID Interface identification number (required only when STATE = Enable request):
 - o 0 USB Interface (BC66 and BC66NA)

sensor set_modem_log_state <MAC_ADDRESS> <PIN> 1 0 Disable log:

sensor set_modem_log_state <MAC_ADDRESS> <PIN> 0

ET0-287 - Get modem log state

Gets the modem log state:

sensor get_modem_log_state <MAC_ADDRESS> <PIN> Returns:

- 0 Disabled Modem logging is disabled
- 1 Enabled Modem logging is enabled
- 2 Incomplete Modem logging state is unknown, the disable or enable request was not successful