EDA more - Jupyter Notebook 2024-07-28, 09:02

```
In [1]: import pandas as pd

# Load the datasets
bbc = pd.read_csv("/kaggle/input/tv-commercial-nithi/BBC_Cleaned.cs
cnn = pd.read_csv("/kaggle/input/tv-commercial-nithi/CNN_Cleaned.cs
cnnibn = pd.read_csv("/kaggle/input/tv-commercial-nithi/CNNIBN_Clea
ndtv = pd.read_csv("/kaggle/input/tv-commercial-nithi/NDTV_Cleaned.
timesnow = pd.read_csv("/kaggle/input/tv-commercial-nithi/TIMESNOW_

# Combine the datasets into one
df = pd.concat([bbc, cnn, cnnibn, ndtv, timesnow], ignore_index=Tru

# Display the first few rows of the combined dataframe
df.head()
```

Out[1]:

	1	2	3	4	5	6	7	8	9	
0	123	1.316440	1.516003	5.605905	5.346760	0.013233	0.010729	0.091743	0.050768	3
1	124	0.966079	0.546420	4.046537	3.190973	0.008338	0.011490	0.075504	0.065841	3
2	109	2.035407	0.571643	9.551406	5.803685	0.015189	0.014294	0.094209	0.044991	3
3	86	3.206008	0.786326	10.092709	2.693058	0.013962	0.011039	0.092042	0.043756	3
4	76	3.135861	0.896346	10.348035	2.651010	0.020914	0.012061	0.108018	0.052617	3

5 rows × 215 columns

```
In [2]: # Check for missing values
    df.isnull().sum()
```

```
Out[2]: 1 0
2 0
3 0
4 0
5 0
519 126637
1028 128815
137 129377
689 129592
```

128

Length: 215, dtype: int64

129588

```
In [3]: # Fill missing values with column mean
df.fillna(df.mean(), inplace=True)
```

EDA more - Jupyter Notebook 2024-07-28, 09:02

```
In [4]: from sklearn.preprocessing import StandardScaler

# Separate features and labels
X = df.drop('Label', axis=1)
y = df['Label']

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

```
In [5]: import warnings
warnings.filterwarnings("ignore")
```

Exploratory Data Analysis (EDA): More

```
In [6]: import matplotlib.pyplot as plt
        import seaborn as sns
        # Check the column names
        print(df.columns)
        # Plot the distribution of the label
        sns.countplot(x='Label', data=df)
        plt.title('Distribution of Labels')
        plt.show()
        # Plot the distribution of a few selected features
        selected_features = ['1', '2', '4'] # Replace with actual column n
        df[selected features].hist(bins=30, figsize=(15, 5))
        plt.suptitle('Feature Distributions')
        plt.show()
        # Boxplot to identify outliers
        plt.figure(figsize=(12, 6))
        sns.boxplot(data=df[selected_features])
        plt.title('Boxplot of Selected Features')
        plt.show()
        # Pairplot to visualize relationships between features
        sns.pairplot(df[selected_features + ['Label']], hue='Label')
        plt.suptitle('Pairplot of Selected Features')
        plt.show()
        # Violin plot to visualize distribution of data across different ca
        plt.figure(figsize=(12, 6))
        sns.violinplot(x='Label', y='1', data=df) # Replace '1' with actua
        plt.title('Violin Plot of Feature 1 by Label')
        plt.show()
        # Plot correlation matrix
```

EDA more - Jupyter Notebook 2024-07-28, 09:02

```
corr_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```

Distribution of Labels

In []:

In []: