x Prove that the set of national numbers a equipped with two binong options or Oddition and multiplication, forms a field.

Answer: Q=& P 1P, q ∈ Z, q ≠03 with ordinary addition and multiplication is a field.

Proof: We verify the field axioms.

1. Well-definess of operations:

A reational number is an equivalence class of poins (P,q) with q to under $\frac{P}{q} = \frac{P}{q_1} \Leftrightarrow$ Pq'= p'q. The usual formulas, $\frac{\rho}{q} + \frac{\pi}{s} = \frac{\rho s + \pi q}{\alpha}, \quad \frac{\rho}{q}, \quad \frac{\pi}{s} = \frac{\rho \pi}{4c}$

nespect this equivalence, so addition and multi-pication one well-defined on O.

2 closure: If q, TE Q (with 4,5 \$0), then $\frac{p}{4} + \frac{\pi}{5} = \frac{p_{s+\pi 4}}{4s} \in 0$, $\frac{p}{4}$, $\frac{p}{5} + \frac{p_{\pi}}{4s} \in 0$. Since integers are closed under + and.

3. Associativity of + and. Associativity follows from associativity in 2 and the formulas for sumproduet of fractions; e.g for addition computer both (P+Ts)+tu. and P+(Ts+tu) and simplify to the same fraction

Psu+ rigu+ tqs. Similar for multiplication.

954

4. Commutarity of 4 and : For commutarity in 2: $\frac{\rho}{q} + \frac{\pi}{s} = \frac{\rho_{s+rray}}{q_s} = \frac{\pi q_s + \rho_s}{sq} = \frac{\pi}{s} + \frac{\rho}{q_s},$ and likelimise $\frac{\rho}{q_s} = \frac{r_s}{sq} = \frac{\pi}{s} + \frac{\rho}{s}$

5. Identities:

a) Additive identity: $0 = \frac{0}{1}$. for any $\frac{p}{q}$, $\frac{p}{q} + \frac{0}{1} = \frac{p}{1+0}$, $\frac{p}{q} = \frac{p}{q}$.

b) Multiplicative Identity:
$$1=\frac{1}{7}$$
 for any $\frac{p}{q}$

$$\frac{p}{q} = \frac{1}{7} = \frac{p}{q}$$

6. Additive Inverse: For
$$\frac{f}{q} \in \Theta$$
, the odditive inverse is $\frac{f}{q} = -\frac{f}{q}$ since $\frac{f}{q} + \frac{f}{q} = \frac{f}{q} = \frac{f}{q^2} = 0$

7. Multiplicative inverse: If
$$\frac{p}{q} \in Q$$
 and $\frac{p}{q} \neq 0$, then $p \neq 0$. The inverse is $\frac{p}{q} = \frac{q}{q} = \frac{q$

8. Distributive low: for any
$$\frac{\rho}{q}$$
, $\frac{\pi}{5}$, $\frac{t}{u} \in 0$

$$\frac{\rho}{q} \left(\frac{\pi}{5} + \frac{t}{u}\right) = \frac{\rho}{q}$$
. $\frac{\pi u + ts}{su} = \frac{\rho \pi u + \rho ts}{qsu}$

$$= \frac{\rho \pi}{qs} + \frac{\rho t}{qu}$$

$$= \frac{\rho}{q} \cdot \frac{\pi}{5} + \frac{\rho}{4} \cdot \frac{t}{u}$$

So multiplication distributes over addition.

All field axioms hold, so (0, +, i) is a field.