Національний технічний університет України «Київський політехнічний інститут»

Науково-навчальний комплекс «Інститут прикладного системного аналізу»

Кафедра математичних методів системного аналізу

Розрахункова робота №1

3 курсу «Математична логіка і теорія алгоритмів» На тему «Машина Тьюрінга»

Виконав:

Барзій Ілля, КА-41

Прийняв:

Спекторський І.Я.

3міст

Постановка задачі	.3
Обґрунтування алгоритму	.3
Схема алгоритму	3
Список команд	.4
Графічне зображення	.7
Табличне зображення	8
Результати поботи програми	9

Постановка задачі

На вхід дані числа х у z двійковій системі. Необхідно обчислити x^{y^z} .

Обрґунтування алгоритму

Алгоритм полягає в тому, щоб розкласти число в степені на добуток чисел та порахувати його почерговим множенням. На початку роботи алгоритм перевіряє введену комбінацію чисел на тривіальні випадки (наявні числа 0) і, якщо такі є, одразу ж виводить відповідь. Інакше, розкладає спочатку у^z як добуток та рахує попарно. Потім зводить стрічку до вигляду, коли можна застосувати цю ж саму дію для х^(y^z) та виконує її. Після чого виводить результат.

Схема алгоритму

Список команд

Машина перевірки нулів та одиниць

start 0_ r s0	s20 * _ r s20	s221 r p1
start 1 1 r s1	s200 I s200	s221 * * s221
s0_1 *!	s200 * _ I s201	s220 ^ _ I s2200
s0 * _ r s0	s201_1 *!	s2200 ^ _ l s2201
s1 ^ ^ r s2	s201 *_ l s201	s2200 *_ l s2200
s1 * * r s1	s21 ^ ^ r s22	s2201r!
s2 0 0 r s20	s21 * * r s21	s2201 * * I s2201
s2 1 1 r s21	s22 1 1 s221	
s201s200	s22 0_1 s220	

Машина розкладання степеня у множники

0c 0 8 I 0c0	g1 * *
0c 1 7 l 0c1	g2_ ^
0c0 ^ ^ r 0c00	g2 * * I g2
0c0 1 1 r 0c00	g3_0 * end4
0c0 0 0 r 0c00	; Unchanged road
0c0 * * 1 0c0	o2 * * l 1p2
0c1 ^ ^ r 0c11	1p2 _ = r 1p3
0c1 1 1 r 0c11	1p3 ^ ^ r 1p4
0c1 0 0 r 0c11	1p3 * * r 1p3
0c1 * * 0c1	1p4 ^ ^ r 1p5
0c00_ 0 r 0e	1p4 * * r 1p4
0c11 _ 1 r 0e	1p5 l 1pa
0e 7_ r 0c	1p5 * * r 1p5
0e 8_ r 0c	; Here Ive reached the last
0e * * r 0e	symbol and begin to rewrite
g1 ^ ^ g2	1pa 0 0 l 1pa
	0c 17 0c1 0c0 ^ r 0c00 0c0 1 1 r 0c00 0c0 0 0 r 0c00 0c0 * * 0c0 0c1 ^ r 0c11 0c1 1 1 r 0c11 0c1 0 0 r 0c11 0c1 * * 0c1 0c00 _ 0 r 0e 0c11 _ 1 r 0e 0e 7 _ r 0c 0e * * r 0e

1pa 1 0 r 1pa1	1pad1 * *	1pf * * 1pf
1pa ^ ^ 1pf	1padr 8 0 l 1pad*?	1pf1 # = r 1pf2
1pa1 0 1 r 1pa1	1padr 7 1 l 1pad*?	1pf2 # # r 1pf3
1pa1 1pa2	1padr * * r 1padr	1pf2 * * r 1pf2
1pa2 ^ ^ 1pad	1pad*? ^ ^ 1pad*	1pf3 # # l end1
1pa2 * * l 1pa2	1pad*? * * * 1pad	1pf3 = = l end1
;8 is an alternative 0 7 is	1pad*_ # r 1padb	1pf3 * * r 1pf3
an alternative 1	1pf2 = = 1pf0	1pf0 = _ r end32
1pad 0 8 r 1pad0	1pad* * * 1pad*	1pf0 * * l 1pf0
1pad 1 7 r 1pad1	1padb	
1pad0 _ 0 r 1padr	1padb * * r 1padb	
1pad0 * * l 1pad0	1pf r 1pf1	
1pad1 _ 1 r 1padr		
	<u>Машина множення</u>	
end1 1 7 l q1	21713	14 0 0 r 14
end1 0 8 l 15	20816	14 # # r 14
end1 # # l 17	; Describing == line in 2	14 * * * 1
;Describing line of 0	1090110	171lend1
15 * 16	10 6 1 / 10	180lend1
15 7 7 / 16	1077110	;Describing 1 line in 2
15 8 8 16	1088/10	3 = = 14
15 * * 15	10 * * r 11	3 * * 1 3
16 1 7 r 13	11 1 1 r 11	41915
1608r13	11 0 0 r 11	4_6r8
16_8r13	11 * * / 12	406r8
16 * * 16	1208r13	4 * * 4
;Describing line of 1	12 1 7 r 13	51015
q1##I2	13 = = r 14	501r8
q1 * *	13 * * r 13	5_1r8
2 = = 1 10	14 1 1 r 14	8 = = r 9

8 * * r 8	7_9r8	1780117
97112	709r8	17 * * 17
98012	716r8	
9 * * r 9	7 * * 1 7	
; Describing 0 line in 2	;Describing exit from 17	
6 = = 17	17 r end2	
6 * * 1 6	1771117	

Машина перенесення множника та вибору подальших дій

end2 * * I 3q1	3q51 * * I 3q53	3qe3 _ = r 3qe4
3q1_=r3q2	3q53 _ 1	3qe4 # # r 3qen1
3q2 # # r 3q3	3q50 r 3q50	3qe4 = = I 3qen2
3q2 * * r 3q2	3q50 * * I 3q52	3qe4 * * r 3qe4
3q3 = = I 3q4	3q52_013qe	3qen1 # # l end31
3q3 # # l 3q4	3qe 1 1 * 3q5	3qen1 = = I end31
3q3 * * r 3q3	3qe 0 0 * 3q5	3qen1 * * r 3qen1
3q4 = _ l 3q5	3qe	3qen2 = _ r end32
3q4 *_	3qe = _ r 3qe2	3qen2 * * I 3qen2
3q5 1 _ r 3q51	3qe2 1 1 l 3qe3	
3q5 0 _ r 3q50	3qe2 0 0 I 3qe3	
3q51 r 3q51	3qe2 * * r 3qe2	

Машина вибору подальших дій

end32 = = r tq=	tq= 1 1 tq1	tq0 r endp2
end32 * * r end32	tq1 r endp1	tq0 * * tq0
tq= 0 0 l tq0	tq1 * * tq1	

<u>Машина підготовки стрічки до повторного піднесення до</u> <u>степеня</u>

endp1 * *	4q2 * * r 4q2	4q4 = + I 4q5
4q1_ = r 4q2	4q314q4	4q4 * * 4q4
4q2 ^ ^ r 4q3	4q3 * _ r 4q3	4q5 = = r 4qp

4q5 * * 4q5	4qp1_1 4q5	4qd1 = ^ I 4qd2
4qp + = I 4qd	4qp1 * * r 4qp1	4qd1 r 4qd1
4qp 8 8 r 4qp	4qp0_014q5	4qd2_ 0 * end4
4qp 7 7 r 4qp	4qp0 * * r 4qp0	
4qp 0 8 r 4qp0	4qd r 4qd1	
4qp 1 7 r 4qp1	4qd * _ I 4qd	

Машина підготовки стрічки до виводу відповіді

endp2 * * l eo1	eo2 * * r eo2	eq2 = _ r !
eo1_=reo2	eq1	eq2 * * l eq2
eo2 = _ r eq1	eq1 * _ r eq1	

Графічне зображення

Зображення машини Тьюрінга у вигляді орієнтованого міченого графу зобразимо на прикладі перевірки x,y,z на наявність 0.

Табличне зображення

Зображення машини Тьюрінга у вигляді таблиці покажемо на прикладі перевірки х,у,z на наявність 0. 2

	1	0	^	λ
start	λ s0 R	1 s1 R		
s0	λ s0 R	λ s0 R	λ s0 R	1 ! S
s1	1 s1 R	0 s1 R	^ s2 R	
s2	1 s21 R	0 s20 R		
s20	λ s20 R	λ s20 R	λ s20 R	λ s200 L
s200	1 s201 λ	0 s201 λ	^ s201 λ	λ s200 L
s201	λ s201 L	λ s201 L	λ s201 L	1 ! S
s21	1 s21 R	0 s21 R	^ s22 R	
s22	1 s221 L	0 s220 L		
s221	1 s221 L	0 s221 L	^ s221 L	λp1 R
s220				λ s2200 L
s2200	λ s2200 L	λ s2200 L	λ s2201 L	
s2201	1 s2201 L	0 s2201 L		λ! R
p1				
!				

Результати роботи програми

Вхідні дані: 111^11^0

Вихідні дані: 111

Кількість команд: 17

Вхідні дані: 101^0^11

Вихідні дані: 1

Кількість команд: 11

Вхідні дані: 10^10^10

Вихідні дані: 10000

Кількість команд: 1436

Вхідні дані: 101^11^11

Кількість команд: 260529