Converse, conjugate and repeated compose

- converse
 - $x R^{-1} y \Leftrightarrow y R x$
- conjugate

$$- Q \setminus P = P^{-1}; Q; P$$

- repeated series composition
 - $R^0 = id$ $- R^{n+1} = R : R^n$

We need various combinators to describe different patterns of computation; they would all seem natural once you get used to them... be patient, just like playing Lego!

- repeated parallel composition
 - $map_0 R = []$ $- map_{n+1} R = apl_n^{-1}; [R, map_n R]; apl_n$
- binary tree (not in prelude)
 - btree₁ R = R
 - $btree_{n+1} R = half_m$; [$btree_n R$, $btree_n R$]; R, $m=2^n$

Converse

• $x R^{-1} y \Leftrightarrow y R x$ - Rebecca: R^{-1}

$$x - R^{-1} - y = y - R - x$$

expressed using wiring relations

Dealing with constants

• $x c y \Leftrightarrow x = y = c$ $x \leftarrow c \rightarrow y$ x = y = c

• example: x add2(x+2)

add2 = π_1^{-1} ; snd 2; add

• Rebecca:

-
$$add2 = VAR x . x $rel (`add` < x, 2>).$$

 $- \text{ or add2} = \text{pi1}^2 \text{ ; snd 2 ; add.}$

Laws of converse

•
$$(R^{-1})^{-1} = R$$

•
$$(Q; R)^{-1} = R^{-1}; Q^{-1}$$

•
$$[Q, R]^{-1} = [Q^{-1}, R^{-1}]$$

• R; $R^{-1} \neq id$ in general, it usually denotes a constraint (e.g. when R = add)

Note: add; add-1 is not supported by the rc compiler

Conjugate

- the pattern P^{-1} ; Q; P occurs often: abbreviates to $Q \setminus P$
- "Q conjugated by P"
- examples:
 - Q is word-level design, P maps word-level data to bit-level,
 Q\P is bit-level design
 - P converts rectangular to polar co-ordinates
 - P describes interface constraints
- $P \setminus (Q; R) = ?$ [P, Q] \ [R, S] = ?

Repeated series composition

- recursive definition:
 - $R^0 = id, R^{n+1} = R; R^n$
- Rebecca:
 - $R^n = IF (n \$eq 0) THEN id ELSE (R ; R^(n-1)).$
 - defined in prelude.rby, which contains useful definitions
- recursion unfolds at compile time
 - IF THEN ELSE, \$eq, +, -: compile time operators
 (LET or WHERE are not supported)

Wiring patterns

• append_{m n}

• other examples (some defined recursively: see prelude)

Repeated parallel composition

- recursive description:
 - base case: $map_0 R = []$
- induction

Types

- key to getting descriptions correct: shape of variables
- primitive types: bit, uint /sint (unsigned/signed integer), ureal / sreal (unsigned/signed real number)
- composite types: tuple or list
 - <<1,2>,3>: <<uint,uint>,int>
 - $<2.31, -3.56, 7.08>: < sreal>_3$
- types for primitive blocks
 - uadd: <uint,uint> ~ uint
 - Rebecca simulator: **add** can work out the type from data
- types for composite blocks
 - given Q: $(A \sim B)$ and R: $(B \sim C)$, (Q; R): $(A \sim C)$
 - given Q: (A ~ B) and R: (C ~ D), [Q, R]: $\langle A,C \rangle \sim \langle B,D \rangle$

Types: repeated compositions

• in series:

$$-R$$
 R R R R R

given $R: X \sim X$, $R^n: X \sim X$

given $R: X \sim Y$, map, $R: \langle X \rangle_n \sim \langle Y \rangle_n$

- wiring patterns: append_{m n}: $\langle \langle X \rangle_m, \langle X \rangle_n \rangle \sim \langle X \rangle_{m+n}$
- Rebecca: no compile-time typechecker yet...

Tree-shaped array

- $btree_1 R = R$ $btree_{n+1} R = [btree_n R, btree_n R]; R$
- type of btree_n R, given R: $\langle X, X \rangle \sim X$?

Tree: definition and examples

- given R: $\langle X, X \rangle \sim X$, want btree_n R: $\langle X \rangle_m \sim X$, m=2ⁿ
- need wiring component
 - $\text{ half: } \langle x \rangle_{2n} \sim \langle \langle x \rangle_{n}, \langle x \rangle_{n}$ in prelude.rby
- $btree_1 R = R$ $btree_{n+1} R = half_m$; [$btree_n R$, $btree_n R$]; R
- examples: find the sum or maximum of a list of numbers, use btree, add or btree, max
- example: inner product $z = \sum_{i < m} x_i \times y_i$
 - innerprod: < <uint,uint>_m> ~ uint
 - innerprod = map_m mult; btree, add where $m=2^n$

Triangular array

•
$$\Delta_n R = [R^0, R^1, R^2, ..., R^{n-1}]$$

= if n=0 then []
else $[\Delta_{n-1} R, R^{n-1}] \setminus apr_{n-1}$

flipped triangle

$$-\Delta_{n}^{R} = [R^{n-1}, R^{n-2}, ..., R^{0}]$$

- $\Delta_1 R = ?$ $\Delta_2 R = ?$
- example: polynomial evaluation $y = \sum_{i < m} a_i \times x^i$
 - − polyeval: <sreal>_m ~ sreal
 - polyeval = Δ_m (mult1 x); btree_n add where m=2ⁿ

take x from external? See coursework...

Hints

- create directory, go there, follow the link Rebecca setup in https://www.doc.ic.ac.uk/~wl/teachlocal/cuscomp
- remember: include *prelude*, and *full stop* at end of definition
 - understand the idea behind each definition
- get brackets and domain/range variables right:
 - check domain and range data structures by compiling components in turn and inspect "current.rbs"
- note: R^~1 and not R^-1,
 `add` <x,y> and not 'add' <x,y>
- distinguish
 - compile-time operators: **IF**, \$eq, ... (begin with capital or \$)
 - run-time operators: xor, add, ... (begin with lower case)
- error location (line no.) produced by rc may be incorrect
- recursive definition: compilation may not terminate

Answer to Unassessed Coursework 1

```
1. FAM = VAR x y . \langle x, y \rangle
                           $rel
                         <`add` <x,y>, `mult` <x,y>>.
   or FAM = fork ; [add, mult].
2. AM = VAR u v x y . << u, v>, <x, y>> $rel
                      <`add` <u,v>, `mult` <x,y>>.
   or AM = [add, mult].
   FAM4 = AM ; FAM ; FAM ; FAM = AM ; FAM^3.
3. fork3 = x $wire \langle \langle x, x, x \rangle, x \rangle.
       rsh = \langle x, \langle y, z \rangle \rangle $\forall wire \langle \langle x, y \rangle, z \rangle.
       twoadd = VAR \times y z \cdot \langle x, \langle y, z \rangle \rangle
                            $rel (`add` <`add` <x,y>,z>).
```

Unassessed Coursework 2

1. Describe the following without \$rel. What are the types?

- 2. What are the types for conjugate, append, and triangle?
- 3. Develop a wiring block such that: $\langle X, \langle A \rangle_n \rangle \sim \langle \langle X, A \rangle_n$

then develop a design for computing polynomial evaluation: $y = \sum_{i < n} a_i \times x^i$

simulate symbolically the design for n=8.