SEMICONDUCTOR DEVICES

p-n Junctions: Part 2

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* With $V_a \approx 0.6\,\mathrm{V}$ a substantial current flows. When V_a is increased further, the current increases rapidly.

- * With $V_a \approx 0.6 \, \text{V}$ a substantial current flows. When V_a is increased further, the current increases rapidly.
- * When a reverse bias (i.e., $V_a < 0$,V) is applied, the diode blocks conduction, i.e., the current is negligibly small.

- * With $V_a \approx 0.6 \, \text{V}$ a substantial current flows. When V_a is increased further, the current increases rapidly.
- * When a reverse bias (i.e., $V_a < 0$,V) is applied, the diode blocks conduction, i.e., the current is negligibly small.
 - We want to understand this "rectifying" behaviour.

- * With $V_a \approx 0.6 \, \text{V}$ a substantial current flows. When V_a is increased further, the current increases rapidly.
- * When a reverse bias (i.e., $V_a < 0$,V) is applied, the diode blocks conduction, i.e., the current is negligibly small.
 - We want to understand this "rectifying" behaviour.
- * As we increase the forward bias, the current increases rapidly, and at some point, the device will get damaged because of overheating. For silicon diodes used in low-power applications, the forward voltge must be restricted to about 0.8 V.
 - (Note: Although we will show an applied forward/reverse bias with a battery, in practice, a battery is generally not connected directly across a diode.)

Consider a pn junction in equilibrium ($V_a = 0 \text{ V}$).

* V_{contact}^{p} and V_{contact}^{n} are the voltage drops across the contact regions (which generally include heavily doped regions).

- * V_{contact}^{p} and V_{contact}^{n} are the voltage drops across the contact regions (which generally include heavily doped regions).
- * V_{contact}^p and V_{contact}^n remain constant irrespective of the applied voltage (to be discussed later).

- * V_{contact}^{p} and V_{contact}^{n} are the voltage drops across the contact regions (which generally include heavily doped regions).
- * V_{contact}^p and V_{contact}^n remain constant irrespective of the applied voltage (to be discussed later).
- * V_{neutral}^{p} and V_{neutral}^{n} are the voltage drops across the neutral p and n regions. In equilibrium, they are both zero.

- * V_{contact}^{p} and V_{contact}^{n} are the voltage drops across the contact regions (which generally include heavily doped regions).
- * V_{contact}^{p} and V_{contact}^{n} remain constant irrespective of the applied voltage (to be discussed later).
- * V_{neutral}^p and V_{neutral}^n are the voltage drops across the neutral p and n regions. In equilibrium, they are both zero.
- * Even with current flow, V_{neutral}^{p} and V_{neutral}^{n} remain negligibly small since a very small electric field is sufficient to create the required $J_{p}^{\text{drift}} = qp\mu_{p}\mathcal{E}$ or $J_{n}^{\text{drift}} = qn\mu_{n}\mathcal{E}$ (note that p and n in these equations represent the *majority* carrier densities).

* V_j is the voltage across the junction and is equal to $V_{\rm bi}$ in equilibrium. We have shown, using Poisson's equation, that $V_j \propto W^2$ where W is the depletion width.

- * V_j is the voltage across the junction and is equal to $V_{\rm bi}$ in equilibrium. We have shown, using Poisson's equation, that $V_j \propto W^2$ where W is the depletion width.
- * In equilibrium, $V_p = V_n$, and we get
 - (1): $V_{
 m contact}^p V_{
 m bi} + V_{
 m contact}^n =$ 0, taking voltage drop as positive.

(We assume that the signs of $V_{\rm contact}^p$ and $V_{\rm contact}^n$ are taken into account.)

- * V_j is the voltage across the junction and is equal to $V_{\rm bi}$ in equilibrium. We have shown, using Poisson's equation, that $V_j \propto W^2$ where W is the depletion width.
- * In equilibrium, $V_p = V_n$, and we get
 - (1): $V_{\text{contact}}^p V_{\text{bi}} + V_{\text{contact}}^n = 0$, taking voltage drop as positive.

(We assume that the signs of V_{contact}^p and V_{contact}^n are taken into account.)

* When a bias is applied, we have

(2):
$$V_{\text{contact}}^p - V_i + V_{\text{contact}}^n = V_p - V_n = V_a$$
.

- * V_j is the voltage across the junction and is equal to $V_{\rm bi}$ in equilibrium. We have shown, using Poisson's equation, that $V_j \propto W^2$ where W is the depletion width.
- * In equilibrium, $V_p = V_n$, and we get
 - (1): $V_{\text{contact}}^p V_{\text{bi}} + V_{\text{contact}}^n = 0$, taking voltage drop as positive.

(We assume that the signs of V_{contact}^p and V_{contact}^n are taken into account.)

- * When a bias is applied, we have
 - (2): $V_{\text{contact}}^p V_j + V_{\text{contact}}^n = V_p V_n = V_a$.
- * (1)-(2) gives $-V_{bi} + V_j = -V_a$, i.e., $V_j = V_{bi} V_a$

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=0.6\,\rm V$, respectively. What is W_1/W_0 ?

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=0.6\,\rm V$, respectively. What is W_1/W_0 ?

Solution: $V_j \propto W^2 \rightarrow V_j = kW^2$.

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi} = 0.85 \, \rm V$. Let W_0 and W_1 denote the depletion widths for $V_a = 0 \, \rm V$ and $V_a = 0.6 \, \rm V$, respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\text{bi}} = kW_0^2 \quad \text{(for } V_a = 0 \text{ V)}$$

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=0.6\,\rm V$, respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\text{bi}} = kW_0^2 \quad \text{(for } V_a = 0 \text{ V)}$$

$$V_{\rm bi} - 0.6 \, {\rm V} = kW_1^2$$
 (for $V_a = 0.6 \, {\rm V}$)

metal

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=0.6\,\rm V$, respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\rm bi} = kW_0^2$$
 (for $V_a = 0 \,\mathrm{V}$)

$$V_{\rm bi} - 0.6 \, {\rm V} = kW_1^2 \quad \text{(for } V_a = 0.6 \, {\rm V}\text{)}$$

$$\rightarrow \frac{0.85-0.6}{0.85} = \left(\frac{W_1}{W_0}\right)^2 \rightarrow \frac{W_1}{W_0} = 0.54.$$

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,{\rm V}$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,{\rm V}$ and $V_a=0.6\,{\rm V}$, respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\rm bi} = kW_0^2$$
 (for $V_a = 0 \,\mathrm{V}$)

$$V_{\rm bi} - 0.6 \, {\rm V} = kW_1^2 \quad \text{(for } V_a = 0.6 \, {\rm V}\text{)}$$

$$\rightarrow \frac{0.85-0.6}{0.85} = \left(\frac{W_1}{W_0}\right)^2 \rightarrow \frac{W_1}{W_0} = 0.54.$$

Application of a forward bias of 0.6V causes the depletion regoin to shrink by a factor 0.54.

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=-2\,\rm V$ (i.e., a reverse bias V_R of $2\,\rm V$), respectively. What is W_1/W_0 ?

For an abrupt silicon pn junction, the built-in voltage is $V_{bi}=0.85\,\text{V}$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\text{V}$ and $V_a=-2\,\text{V}$ (i.e., a reverse bias V_R of $2\,\text{V}$), respectively. What is W_1/W_0 ?

Solution: $V_j \propto W^2 \rightarrow V_j = kW^2$.

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,\rm V$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,\rm V$ and $V_a=-2\,\rm V$ (i.e., a reverse bias V_R of $2\,\rm V$), respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\text{bi}} = kW_0^2$$
 (for $V_a = 0 \text{ V}$)

metal

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,{\rm V}$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,{\rm V}$ and $V_a=-2\,{\rm V}$ (i.e., a reverse bias V_R of $2\,{\rm V}$), respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\text{bi}} = kW_0^2 \quad \text{(for } V_a = 0 \text{ V)}$$

$$V_{\text{bi}} - (-2) V = kW_1^2$$
 (for $V_a = -2 V$)

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,{\rm V}$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,{\rm V}$ and $V_a=-2\,{\rm V}$ (i.e., a reverse bias V_R of $2\,{\rm V}$), respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{\text{bi}} = kW_0^2$$
 (for $V_a = 0 \text{ V}$)

$$V_{\text{bi}} - (-2) V = kW_1^2$$
 (for $V_a = -2 V$)

$$\rightarrow \frac{0.85 + 2}{0.85} = \left(\frac{W_1}{W_0}\right)^2 \rightarrow \frac{W_1}{W_0} = 1.83.$$

For an abrupt silicon pn junction, the built-in voltage is $V_{\rm bi}=0.85\,{\rm V}$. Let W_0 and W_1 denote the depletion widths for $V_a=0\,{\rm V}$ and $V_a=-2\,{\rm V}$ (i.e., a reverse bias V_R of $2\,{\rm V}$), respectively. What is W_1/W_0 ?

Solution:
$$V_j \propto W^2 \rightarrow V_j = kW^2$$
.

$$V_{bi} = kW_0^2$$
 (for $V_a = 0 \text{ V}$)
 $V_{bi} - (-2) \text{ V} = kW_1^2$ (for $V_a = -2 \text{ V}$)

$$\rightarrow \frac{0.85+2}{0.85} = \left(\frac{W_1}{W_0}\right)^2 \rightarrow \frac{W_1}{W_0} = 1.83.$$

Application of a reverse bias of 2V causes the depletion regoin to expand by a factor 1.83.

Forward bias Ec qV_{bi} $\Delta_{\mathsf{p}} \frac{1}{\mathsf{E}_{\mathsf{v}}} = \mathsf{E}_{\mathsf{v}}$ P qN_d p n (n) $-qN_a$ $V_{-\mathcal{E}_{\mathsf{m}}}$

ψ

Forward bias

 V_{bi}

Equilibrium

 $(V_{bi} - V_a)$

* The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under forward bias are similar to the equilibrium situation except for a reduced junction voltage $(V_{\rm bi}-V_a)$.

- * The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under forward bias are similar to the equilibrium situation except for a reduced junction voltage $(V_{\rm bi}-V_a)$.
- * The depletion width, the maximum electric field, and the junction voltage drop decrease with forward bias.

- * The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under forward bias are similar to the equilibrium situation except for a reduced junction voltage ($V_{\rm bi}-V_a$).
- * The depletion width, the maximum electric field, and the junction voltage drop decrease with forward bias.
- * Solving Poisson's equation using the depletion approximation, we get

$$W = \sqrt{rac{2\epsilon}{q}\left(rac{N_a + N_d}{N_a N_d}
ight)(V_{
m bi} - V_a)},$$

$$W_n = \frac{N_a}{N_a + N_d} W, \ W_p = \frac{N_d}{N_a + N_d} W.$$

Forward bias Ec qV_{bi} $\Delta_{\mathsf{p}} \frac{1}{\mathsf{E}_{\mathsf{v}}} = \mathsf{E}_{\mathsf{v}}$ P qN_d p n (n) $-qN_a$ $V_{-\mathcal{E}_{\mathsf{m}}}$ ψ $(V_{bi} - V_a)$

 V_{bi}

Forward bias

Equilibrium

 Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- * We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_C e^{-(E_C - E_{Fn})/kT}$ on the *n*-side.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_C e^{-(E_C - E_{Fn})/kT}$ on the *n*-side.
- The Fermi levels are called "quasi Fermi levels" since the situation is almost like equilibrium.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_c e^{-(E_c - E_{Fn})/kT}$ on the *n*-side.
- * The Fermi levels are called "quasi Fermi levels" since the situation is *almost* like equilibrium.
- * From the band diagram, we see that $E_g = \Delta_p + \Delta_p + qV_{\rm bi}$.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- * We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_c e^{-(E_c - E_{Fn})/kT}$ on the *n*-side.
- * The Fermi levels are called "quasi Fermi levels" since the situation is *almost* like equilibrium.
- * From the band diagram, we see that $E_g = \Delta_p + \Delta_n + qV_{\rm bi},$ $E_g = \Delta_p + (E_{Fn} E_{Fp}) + \Delta_n + q(V_{\rm bi} V_a)$

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- * We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_C e^{-(E_C - E_{Fn})/kT}$ on the *n*-side.
- * The Fermi levels are called "quasi Fermi levels" since the situation is *almost* like equilibrium.
- * From the band diagram, we see that $E_g = \Delta_p + \Delta_n + qV_{\rm bi},$ $E_g = \Delta_p + (E_{Fn} E_{Fp}) + \Delta_n + q(V_{\rm bi} V_a)$ $\rightarrow E_{Fn} E_{Fp} = qV_a.$

* The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under reverse bias are similar to the equilibrium situation except for an increased junction voltage $(V_{\rm bi}+V_R)$.

- * The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under reverse bias are similar to the equilibrium situation except for an increased junction voltage $(V_{\rm bi}+V_R)$.
- The depletion width, the maximum electric field, and the junction voltage drop increase with reverse bias.

- * The electrostatic conditions (viz., $\rho(x)$, $\mathcal{E}(x)$, $\psi(x)$) under reverse bias are similar to the equilibrium situation except for an increased junction voltage ($V_{\rm bi} + V_R$).
- * The depletion width, the maximum electric field, and the junction voltage drop increase with reverse bias
- * Solving Poisson's equation using the depletion approximation, we get

$$W = \sqrt{rac{2\epsilon}{q} \left(rac{ extsf{N}_{ extsf{a}} + extsf{N}_{ extsf{d}}}{ extsf{N}_{ extsf{a}} extsf{N}_{ extsf{d}}}
ight) (V_{ extsf{bi}} + V_{ extsf{R}})},$$

$$W_n = \frac{N_a}{N_a + N_d} \ W, \ \ W_\rho = \frac{N_d}{N_a + N_d} \ W.$$

* Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the p-side, $n = N_C e^{-(E_C - E_{Fn})/kT}$ on the n-side.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- * We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_v e^{-(E_{Fp} E_v)/kT}$ on the *p*-side, $n = N_c e^{-(E_c - E_{Fn})/kT}$ on the *n*-side.
- The Fermi levels are called "quasi Fermi levels" since the situation is almost like equilibrium.

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_v e^{-(E_{Fp} E_v)/kT}$ on the *p*-side, $n = N_c e^{-(E_c - E_{Fn})/kT}$ on the *n*-side.
- The Fermi levels are called "quasi Fermi levels" since the situation is almost like equilibrium.
- * From the band diagram, we see that $E_{\rm g} = \Delta_{\rm p} + \Delta_{\rm n} + q V_{\rm bi},$

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_V e^{-(E_{Fp} E_V)/kT}$ on the *p*-side, $n = N_C e^{-(E_C - E_{Fn})/kT}$ on the *n*-side.
- The Fermi levels are called "quasi Fermi levels" since the situation is almost like equilibrium.
- * From the band diagram, we see that $E_g = \Delta_p + \Delta_n + qV_{\rm bi},$ $E_g = \Delta_p (E_{Fp} E_{Fn}) + \Delta_n + q(V_{\rm bi} + V_R)$

- Although the equilibrium condition is disturbed with an applied bias, the situation sufficiently far from the depletion region is hardly different.
- We can extend the Fermi level concept to describe carrier concentrations sufficiently far from the depletion region.
- * $p = N_v e^{-(E_{Fp} E_v)/kT}$ on the *p*-side, $n = N_c e^{-(E_c - E_{Fn})/kT}$ on the *p*-side.
- * The Fermi levels are called "quasi Fermi levels" since the situation is *almost* like
- * From the band diagram, we see that

$$E_g = \Delta_p + \Delta_n + qV_{bi},$$

 $E_g = \Delta_p - (E_{Fp} - E_{Fn}) + \Delta_n + q(V_{bi} + V_R)$
 $\rightarrow E_{Fp} - E_{Fp} = qV_R.$

equilibrium.

Current densities in forward bias

Near the junction,

Current densities in forward bias

Near the junction,

* Although the equilibrium condition is disturbed, we still have $J_p^{\text{diff}} \approx -J_p^{\text{drift}}$, and $J_n^{\text{diff}} \approx -J_n^{\text{drift}}$.

Current densities in forward bias

Near the junction,

- * Although the equilibrium condition is disturbed, we still have $J_p^{\rm diff} \approx -J_p^{\rm drift}$, and $J_n^{\rm diff} \approx -J_n^{\rm drift}$.
- * The net current densities J_n and J_p are much smaller than the drift and diffusion components.

$N_d = 2 \times 10^{17} \text{cm}^{-3}$	$ au_{n} = 1ns$
$N_a = 10^{17} \ \text{cm}^{-3}$	$ au_{p} \! = \! 1ns$
μ_{n} $=$ 1400 cm $^2/\mathrm{V}$ -s	T = 300 K
$\mu_{ m p}$ $=$ $500{ m cm}^2/{ m V}$ -s	$V_a = -1 V$

Near the junction,

Near the junction,

* Although the equilibrium condition is disturbed, we still have $J_p^{\text{diff}} \approx -J_p^{\text{drift}}$, and $J_n^{\text{diff}} \approx -J_n^{\text{drift}}$.

Near the junction,

- * Although the equilibrium condition is disturbed, we still have $J_p^{\rm diff} \approx -J_p^{\rm drift}$, and $J_n^{\rm diff} \approx -J_n^{\rm drift}$.
- * The net current densities J_n and J_p are much smaller than the drift and diffusion components.

Near the junction,

- * Although the equilibrium condition is disturbed, we still have $J_p^{\rm diff} \approx -J_p^{\rm drift}$, and $J_n^{\rm diff} \approx -J_n^{\rm drift}$.
- * The net current densities J_n and J_p are much smaller than the drift and diffusion components.
- * Note that J_{total} in reverse bias is negligibly small compared to the forward bias case (0.7 A/cm² for $V_a = 0.6 \,\text{V}$). For all practical purposes, we can say that the current is zero for reverse bias.

M. B. Patil, IIT Bombay

Definitions:

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region n_{p0} : equilibrium electron density in the neutral p-region

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region n_{p0} : equilibrium electron density in the neutral p-region n_{p0} : equilibrium electron density in the neutral n-region

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region n_{p0} : equilibrium electron density in the neutral p-region n_{n0} : equilibrium electron density in the neutral n-region p_{p0} and n_{n0} are majority carrier densities.

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region n_{p0} : equilibrium electron density in the neutral p-region n_{n0} : equilibrium electron density in the neutral n-region p_{p0} and n_{n0} are majority carrier densities. p_{n0} and n_{n0} are minority carrier densities.

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region

 p_{n0} : equilibrium hole density in the neutral n-region

 n_{p0} : equilibrium electron density in the neutral p-region

 n_{n0} : equilibrium electron density in the neutral n-region

 p_{p0} and n_{n0} are majority carrier densities.

 p_{n0} and n_{p0} are minority carrier densities.

Example: $N_a = 5 \times 10^{16} \, \mathrm{cm}^{-3}$, $N_d = 10^{18} \, \mathrm{cm}^{-3}$ ($T = 300 \, \mathrm{K}$).

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region

 p_{n0} : equilibrium hole density in the neutral *n*-region

 n_{p0} : equilibrium electron density in the neutral p-region

 n_{n0} : equilibrium electron density in the neutral n-region

 p_{p0} and n_{n0} are majority carrier densities.

Example:
$$N_a = 5 \times 10^{16} \, \text{cm}^{-3}$$
, $N_d = 10^{18} \, \text{cm}^{-3}$ ($T = 300 \, \text{K}$).

$$ightarrow$$
 $p_{p0}pprox$ $N_a=5 imes10^{16}\,\mathrm{cm}^{-3}$,

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region n_{p0} : equilibrium electron density in the neutral p-region n_{n0} : equilibrium electron density in the neutral n-region

 p_{p0} and n_{n0} are majority carrier densities.

Example:
$$N_a = 5 \times 10^{16} \, \text{cm}^{-3}$$
, $N_d = 10^{18} \, \text{cm}^{-3}$ ($T = 300 \, \text{K}$).

$$\rightarrow p_{p0} \approx N_a = 5 \times 10^{16} \,\mathrm{cm}^{-3},$$

 $n_{p0} \approx N_d = 10^{18} \,\mathrm{cm}^{-3}.$

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region p_{n0} : equilibrium hole density in the neutral n-region

 n_{p0} : equilibrium electron density in the neutral p-region

 n_{n0} : equilibrium electron density in the neutral n-region

 p_{p0} and n_{n0} are majority carrier densities.

Example:
$$N_a = 5 \times 10^{16} \, \text{cm}^{-3}$$
, $N_d = 10^{18} \, \text{cm}^{-3}$ ($T = 300 \, \text{K}$).

$$ightarrow$$
 $ho_{
ho0}pprox$ $ho_a=5 imes10^{16}\,
m cm^{-3}$,

$$n_{n0} \approx N_d = 10^{18} \, \mathrm{cm}^{-3}$$

$$n_{p0} = \frac{n_i^2}{p_{p0}} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{16}} = 4.5 \times 10^3 \,\mathrm{cm}^{-3},$$

Definitions:

 p_{p0} : equilibrium hole density in the neutral p-region

 p_{n0} : equilibrium hole density in the neutral n-region

 n_{p0} : equilibrium electron density in the neutral p-region

 n_{n0} : equilibrium electron density in the neutral n-region

 p_{p0} and n_{n0} are majority carrier densities.

Example:
$$N_a = 5 \times 10^{16} \,\mathrm{cm}^{-3}$$
, $N_d = 10^{18} \,\mathrm{cm}^{-3}$ ($T = 300 \,\mathrm{K}$).

$$ightarrow$$
 $p_{p0}pprox$ $N_a=5 imes10^{16}\,\mathrm{cm}^{-3}$,

$$n_{n0} \approx N_d = 10^{18} \, \mathrm{cm}^{-3}$$

$$n_{p0} = rac{n_i^2}{p_{p0}} = rac{(1.5 imes 10^{10})^2}{5 imes 10^{16}} = 4.5 imes 10^3 \, \mathrm{cm}^{-3},$$

$$p_{n0} = \frac{n_i^2}{n_{n0}} = \frac{(1.5 \times 10^{10})^2}{10^{18}} = 2.25 \times 10^2 \,\mathrm{cm}^{-3}.$$

* Since $V_j = V_{\rm bi} - V_a$ and $W \propto \sqrt{V_j}$, the depletion is region is narrower under forward bias, wider under reverse bias.

- * Since $V_j = V_{\rm bi} V_a$ and $W \propto \sqrt{V_j}$, the depletion is region is narrower under forward bias, wider under reverse bias.
- * Equilibrium concentrations (note: log scale for n and p): $p = p_{p0}$, $n = n_{p0}$ in the neutral p-region.

- * Since $V_j = V_{\rm bi} V_a$ and $W \propto \sqrt{V_j}$, the depletion is region is narrower under forward bias, wider under reverse bias.
- * Equilibrium concentrations (note: log scale for n and p): $p = p_{p0}$, $n = n_{p0}$ in the neutral p-region. $n = n_{p0}$, $p = p_{p0}$ in the neutral p-region.

$$J_p^{
m diff} pprox - J_p^{
m drift}$$

$$J_p^{
m diff} pprox - J_p^{
m drift} \ o q \, \mu_p \, p \, {\cal E} = q D_p rac{dp}{dx},$$

$$\label{eq:Jpdiff} \mathcal{J}_{p}^{\rm diff} \approx -\mathcal{J}_{p}^{\rm drift} \ \, \rightarrow q\,\mu_{p}\,p\,\mathcal{E} = qD_{p}\frac{dp}{dx}, \ \, {\rm i.e.,} \ \, \mathcal{E} = -\frac{d\psi}{dx} = \frac{D_{p}}{\mu_{p}}\frac{1}{p}\frac{dp}{dx}.$$

$$J_{\rho}^{\rm diff} \approx -J_{\rho}^{\rm drift} \ \, \rightarrow q \, \mu_{\rho} \, p \, \mathcal{E} = q D_{\rho} \frac{d\rho}{dx}, \; {\rm i.e.,} \ \, \mathcal{E} = -\frac{d\psi}{dx} = \frac{D_{\rho}}{\mu_{\rho}} \frac{1}{\rho} \frac{d\rho}{dx}. \label{eq:definition}$$

$$rac{D}{\mu} = rac{kT}{q}
ightarrow \int d\psi = -V_T \, \int rac{1}{p} \, dp$$

$$J_{p}^{\rm diff}\approx -J_{p}^{\rm drift} \ \rightarrow q\,\mu_{p}\,p\,\mathcal{E}=qD_{p}\frac{dp}{dx}, \ {\rm i.e.,} \ \ \mathcal{E}=-\frac{d\psi}{dx}=\frac{D_{p}}{\mu_{p}}\frac{1}{p}\frac{dp}{dx}.$$

$$rac{D}{\mu} = rac{kT}{q}
ightarrow \int d\psi = -V_T \int rac{1}{
ho} d
ho
ightarrow \psi igg|_{x_1}^{x_2} = -V_T \log rac{
ho(x_2)}{
ho(x_1)}$$

$$J_{p}^{\rm diff} \approx -J_{p}^{\rm drift} \ \, \rightarrow q \, \mu_{p} \, p \, \mathcal{E} = q D_{p} \frac{dp}{dx}, \ \, {\rm i.e.,} \ \, \mathcal{E} = -\frac{d\psi}{dx} = \frac{D_{p}}{\mu_{p}} \frac{1}{p} \frac{dp}{dx}.$$

$$\frac{D}{\mu} = \frac{kT}{q} \rightarrow \int d\psi = -V_T \int \frac{1}{p} dp \rightarrow \psi \Big|_{x_1}^{x_2} = -V_T \log \frac{p(x_2)}{p(x_1)} \rightarrow \frac{p(x_n)}{p(x_p)} = \exp \left(\frac{\psi(x_p) - \psi(x_n)}{V_T}\right).$$

$$J_p^{ ext{diff}} pprox - J_p^{ ext{drift}}
ightarrow rac{p(x_n)}{p(x_p)} = \expigg(rac{\psi(x_p) - \psi(x_n)}{V_T}igg).$$

$$J_p^{\text{diff}} \approx -J_p^{\text{drift}} \to \frac{p(x_n)}{p(x_p)} = \exp\bigg(\frac{\psi(x_p) - \psi(x_n)}{V_T}\bigg).$$

$$J_n^{\mathrm{diff}} pprox - J_n^{\mathrm{drift}}
ightarrow rac{n(x_n)}{n(x_p)} = \exp\left(rac{\psi(x_n) - \psi(x_p)}{V_T}
ight).$$

* When a bias is applied, the minority carrier concentrations in the neutral regions can change substantially.

- * When a bias is applied, the minority carrier concentrations in the neutral regions can change substantially.
- * There is a corresponding change in the majority carrier concentrations as well, and it serves to keep these regions charge-neutral.

- * When a bias is applied, the minority carrier concentrations in the neutral regions can change substantially.
- * There is a corresponding change in the majority carrier concentrations as well, and it serves to keep these regions charge-neutral.
- * Low-level injection: $\Delta n \approx \Delta p \ll p_{p0}$ in the neutral p-region $\to p(x) \approx p_{p0}$ for $x \le x_p$ $\Delta p \approx \Delta n \ll n_{n0}$ in the neutral n-region $\to n(x) \approx n_{n0}$ for $x \ge x_n$

*
$$\frac{p(x_n)}{p(x_p)} = \exp\left(\frac{\psi(x_p) - \psi(x_n)}{V_T}\right)$$
, $\frac{n(x_n)}{n(x_p)} = \exp\left(\frac{\psi(x_n) - \psi(x_p)}{V_T}\right)$. Also, $\psi(x_n) - \psi(x_p) = V_j$.

$$* \frac{p(x_n)}{p(x_p)} = \exp\left(\frac{\psi(x_p) - \psi(x_n)}{V_T}\right), \quad \frac{n(x_n)}{n(x_p)} = \exp\left(\frac{\psi(x_n) - \psi(x_p)}{V_T}\right). \text{ Also, } \psi(x_n) - \psi(x_p) = V_j.$$

* Low-level injection: $p(x) \approx p_{p0}$ for $x \le x_p$, and $n(x) \approx n_{p0}$ for $x \ge x_p$.

$$* \frac{p(x_n)}{p(x_p)} = \exp\left(\frac{\psi(x_p) - \psi(x_n)}{V_T}\right), \quad \frac{n(x_n)}{n(x_p)} = \exp\left(\frac{\psi(x_n) - \psi(x_p)}{V_T}\right). \text{ Also, } \psi(x_n) - \psi(x_p) = V_j.$$

* Low-level injection: $p(x) \approx p_{p0}$ for $x \le x_p$, and $n(x) \approx n_{n0}$ for $x \ge x_n$.

$$ightarrow rac{p(x_n)}{p_{p0}} = e^{-V_j/V_T}
ightarrow p(x_n) = p_{p0}e^{-V_j/V_T}$$

$$* \frac{p(x_n)}{p(x_p)} = \exp\left(\frac{\psi(x_p) - \psi(x_n)}{V_T}\right), \quad \frac{n(x_n)}{n(x_p)} = \exp\left(\frac{\psi(x_n) - \psi(x_p)}{V_T}\right). \text{ Also, } \psi(x_n) - \psi(x_p) = V_j.$$

* Low-level injection: $p(x) \approx p_{p0}$ for $x \le x_p$, and $n(x) \approx n_{p0}$ for $x \ge x_p$.

Equilibrium:
$$p(x_n) = p_{n0} = p_{p0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$$
, $n(x_p) = n_{p0} = n_{n0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$.

Equilibrium:
$$p(x_n) = p_{n0} = p_{p0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$$
, $n(x_p) = n_{p0} = n_{n0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$.
With bias: $p(x_n) = p_{p0} \exp\left(\frac{-V_{\text{bi}} + V_a}{V_T}\right)$, $n(x_p) = n_{n0} \exp\left(\frac{-V_{\text{bi}} + V_a}{V_T}\right)$.

Equilibrium:
$$p(x_n) = p_{n0} = p_{p0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$$
, $n(x_p) = n_{p0} = n_{n0} \exp\left(\frac{-V_{\text{bi}}}{V_T}\right)$.
With bias: $p(x_n) = p_{p0} \exp\left(\frac{-V_{\text{bi}} + V_a}{V_T}\right)$, $n(x_p) = n_{n0} \exp\left(\frac{-V_{\text{bi}} + V_a}{V_T}\right)$.
 $p(x_n) = p_{n0} \exp\left(\frac{V_a}{V_T}\right)$, $n(x_p) = n_{p0} \exp\left(\frac{V_a}{V_T}\right)$.

Example: Consider an abrupt, uniformly doped silicon pn junction at $T=300\,\mathrm{K}$, with $N_a=5\times10^{16}\,\mathrm{cm}^{-3}$ and $N_d=10^{18}\,\mathrm{cm}^{-3}$. Compute the depletion width and the minority carrier densities at the depletion region edges (x_p and x_n) for an applied bias of $+0.3\,\mathrm{V}$, $+0.6\,\mathrm{V}$, $-1\,\mathrm{V}$, $-5\,\mathrm{V}$.

 $(n_i = 1.5 \times 10^{10} \, \text{cm}^{-3} \text{ for silicon at } T = 300 \, \text{K.})$

Solution:
$$p_{p0} \approx N_a = 5 \times 10^{16} \, \mathrm{cm}^{-3} \rightarrow n_{p0} = \frac{n_i^2}{p_{p0}} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{16}} = 4.5 \times 10^3 \, \mathrm{cm}^{-3}.$$

Solution:
$$p_{\rho 0} \approx N_a = 5 \times 10^{16} \,\mathrm{cm}^{-3} \rightarrow n_{\rho 0} = \frac{n_i^2}{p_{\rho 0}} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{16}} = 4.5 \times 10^3 \,\mathrm{cm}^{-3}.$$

$$n_{n 0} \approx N_a = 1 \times 10^{18} \,\mathrm{cm}^{-3} \rightarrow p_{n 0} = \frac{n_i^2}{n_{n 0}} = \frac{(1.5 \times 10^{10})^2}{1 \times 10^{18}} = 2.25 \times 10^2 \,\mathrm{cm}^{-3}.$$

Solution:
$$p_{p0} \approx N_a = 5 \times 10^{16} \,\mathrm{cm}^{-3} \rightarrow n_{p0} = \frac{n_i^2}{p_{p0}} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{16}} = 4.5 \times 10^3 \,\mathrm{cm}^{-3}.$$
 $n_{n0} \approx N_a = 1 \times 10^{18} \,\mathrm{cm}^{-3} \rightarrow p_{n0} = \frac{n_i^2}{n_{n0}} = \frac{(1.5 \times 10^{10})^2}{1 \times 10^{18}} = 2.25 \times 10^2 \,\mathrm{cm}^{-3}.$

$$V_{\text{bi}} = V_T \log \left(\frac{N_a N_d}{n_c^2} \right) = (0.0259 \,\text{V}) \log \left(\frac{5 \times 10^{16} \times 10^{18}}{(1.5 \times 10^{10})^2} \right) = 0.86 \,\text{V}.$$

$$V_a = 0.3 \, \mathrm{V}$$
: $W = \sqrt{rac{2\epsilon}{q} \, rac{N_a + N_d}{N_a N_d} \, (V_{\mathrm{bi}} - V_a)} = 0.12 \, \mathrm{\mu m}$.

$$V_a = 0.3 \,\mathrm{V}$$
: $W = \sqrt{\frac{2\epsilon}{q} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\mathrm{bi}} - V_a)} = 0.12 \,\mathrm{\mu m}$.
 $n(x_p) = n_{p0} \, \exp\left(\frac{V_a}{V_T}\right) = 4.5 \times 10^3 \times \exp\left(\frac{0.3}{0.0259}\right) = 4.83 \times 10^8 \,\mathrm{cm}^{-3}$.

$$V_a = 0.3 \, \text{V}$$
: $W = \sqrt{\frac{2\epsilon}{q} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\text{bi}} - V_a)} = 0.12 \, \mu \text{m}$.

$$n(x_p) = n_{p0} \exp\left(\frac{V_a}{V_T}\right) = 4.5 \times 10^3 \times \exp\left(\frac{0.3}{0.0259}\right) = 4.83 \times 10^8 \,\mathrm{cm}^{-3}.$$

$$p(x_n) = p_{n0} \exp\left(\frac{V_a}{V_T}\right) = 2.25 \times 10^2 \times \exp\left(\frac{0.3}{0.0259}\right) = 2.41 \times 10^7 \,\mathrm{cm}^{-3}.$$

V _a (V)	<i>W</i> (μm)	\mathcal{E}_m (kV/cm)	$n(x_p)$ (cm ⁻³)	$p(x_n)$ (cm ⁻³)
0.6	0.08	61.3	5.18×10^{13}	2.59×10^{12}
0.3	0.12	90.4	4.83×10^{8}	2.41×10^{7}
0.0	0.15	112.2	4.50×10^{3}	2.25×10^{2}
-1.0	0.22	165.3	$7.68\times10^{-14}\approx0$	$3.84\times10^{-15}\approx0$
-5.0	0.40	293.6	≈ 0	≈ 0

$V_a(V)$	W (μm)	\mathcal{E}_m (kV/cm)	$n(x_p)$ (cm ⁻³)	$p(x_n)$ (cm ⁻³)
0.6	0.08	61.3	5.18×10^{13}	2.59×10^{12}
0.3	0.12	90.4	4.83×10^{8}	2.41×10^7
0.0	0.15	112.2	4.50×10^{3}	2.25×10^2
-1.0	0.22	165.3	$7.68\times10^{-14}\approx0$	$3.84\times10^{-15}\approx0$
-5.0	0.40	293.6	≈ 0	≈ 0

 With forward bias, the minority carrier concentrations can increase by several orders of magnitude.

$V_{a}\left(V\right)$	W (μm)	\mathcal{E}_m (kV/cm)	$n(x_p)$ (cm ⁻³)	$p(x_n)$ (cm ⁻³)
0.6	0.08	61.3	5.18×10^{13}	2.59×10^{12}
0.3	0.12	90.4	4.83×10^{8}	2.41×10^7
0.0	0.15	112.2	4.50×10^{3}	2.25×10^2
-1.0	0.22	165.3	$7.68\times10^{-14}\approx0$	$3.84\times10^{-15}\approx0$
-5.0	0.40	293.6	≈ 0	≈ 0

- With forward bias, the minority carrier concentrations can increase by several orders of magnitude.
- * With reverse bias, the minority carrier concentrations become very small and can be replaced with zero for all practical purposes.