ЗАДАНИЕ на лабораторную работу №2

Тема: Программно- алгоритмическая реализация методов Рунге-Кутта 1-го (Эйлера), 2-го и 4-го порядков точности при решении системы ОДУ в постановке Коши.

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием методов Рунге-Кутта 1-го, 2-го и 4-го порядков точности.

Исходные данные.

1. Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление $R_{_{\! p}}(I)$, зависящее от тока I, индуктивность $L_{_{\! k}}$ и емкость $C_{_{\! k}}$.

$$\begin{cases}
\frac{dI}{dt} = \frac{U - (R_k + R_p(I))I}{L_k}, \\
\frac{dU}{dt} = -\frac{I}{C_k}.
\end{cases}$$
(1)

Начальные условия:

$$t = 0, I = I_o, U = U_o.$$

Здесь I, U - ток и напряжение на конденсаторе.

Сопротивление R_p рассчитать по формуле

$$R_{p} = \frac{l_{p}}{2\pi R^{2} \int_{a}^{1} \sigma(T(z)) z dz}.$$
(2)

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0) z^m$.

Параметры T_0 , m находятся интерполяцией из табл. 1 при известном токе I .

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

I, A	To, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

T, K	σ , 1/Om cm
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура (для отладки):

R=0.35 см

 $L_{\rm s}=12~{\rm cm}$ $L_{\rm k}=187~10^{-6}~{\rm \Gamma H}$ $C_{\rm k}=268~10^{-6}~{\rm \Phi}$

 $R_k = 0.25 \ Om$

 $U_{co} = 1400 \text{ B}$

 $I_0 = 0..3 A$

 T_w =2000 K

Для справки: при указанных параметрах длительность импульса около 600 мкс, максимальный ток – около 800 А

Результаты

- 1. Разработать программу, провести выбор шага по времени, обеспечивающего относительную погрешность 0.001.
- 2. Построить графики зависимости от времени импульса t: $I(t),\ U(t),\ R_{_p}(t),\ npoussedehue\ I(t)\cdot R_{_p}(t),\ T_{_0}(t)$ при заданных выше параметрах. Продемонстрировать, как влияет выбор метода на шаг сетки.
- 3. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут не затухающими. Сравнить с аналитическим решением.
- 4. График зависимости I(t) при больших сопротивлениях, например, $R_k = 200\,$ Ом в интервале значений $t\,$ 0-20 мкс.

Вопросы при защите лабораторной работы.

- 1. Какие способы тестирования программы можно предложить?
- 2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.
- 3. Из каких соображений проводится выбор того или иного численного метода, учитывая, что чем выше порядок точности метода, тем он более сложен в реализации и требует больших затрат времени при счете?
- 4. Какие изменения надо внести в программу, чтобы перейти на использование многошагового метода Адамса?
- 5. Напишите формулы метода Рунге-Кутта 4-го порядка точности для численного решения системы уравнений

$$u'(x) = v,$$

$$v'(x) = u,$$

$$u(\xi) = \eta_1, \quad v(\xi) = \eta_2$$

- 6. Приведите оценку погрешности использованных методов на примере дифференциального уравнения со специальной правой частью u'(x) = f(x).
- 7. Какие можно предложить способы ускорения процедуры интерполяции по таблицам 1.2?
- 8. Какие можно предложить способы ускорения расчета интеграла в (2).

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны удовлетворительные ответы на вопросы тах 10 баллов.