第6章 习题答案

6.13 题图 6.13 所示电路是以 PMOS 镜像电流源作负载的共栅极放大器电路,基于 0.18μm 工艺,晶体管 M_1 、 M_2 、 M_3 的宽长比均为 W/L=1/0.2。 $V_{DD}=1.8$ V,

 $V_{\rm B}$ =0.7V,并设输出负载 $C_{\rm L}$ =1pF。

- (1) 利用 Hspice 对该电路进行直流仿真,并选择合适的输入直流偏置电压:
 - (a) 电压转移特性 Vour-Vin;
 - (b) M₁直流工作点: V_{DS1}、V_{GS1}、I_{D1};
- (c) M_1 小信号等效电路参数跨导 g_{m1} 、漏源电导 g_{ds1} 、栅源电容 C_{gs1} 、栅漏电容 C_{gd1} ,从 M_1 漏极往 PMOS 电流镜看入的等效电阻。
- (2)继续进行瞬态仿真,给出瞬态特性仿真结果(输入、输出电压波形)。
- (3)继续进行交流仿真,给出交流特性仿真结果。

解:

参考本书电子版资料提供的 CMOS 共源放大器仿真文件 (对应教材节 6.4.2),在此基础上进行仿真研究。详见附录代码。

(1)

(a)电压转移特性如下图所示;(b)根据电压转移特性,确定 M_1 直流工作点: V_{GSI} =0.58V,则 V_{DSI} 与 I_{DI} 可利用 OP 仿真得到;(c)利用 OP 仿真,可以得到各小信号等效电路参数。

(2) 瞬态特性仿真结果

• 2 • 习题答案

(3) 交流特性仿真结果

- 6.14 电路仍然如题图 6.13 所示, 在题 6.13 直流仿真结果的基础上, 完成以下内容:
- (1) 构建该放大器低频小信号电路模型, 计算低频小信号增益。
- (2) 构建该放大器高频小信号电路模型, 计算该电路增益频率特性。

与题 6.13 的结果比较,并作出分析。

解:

根据电压转移特性,取 V_{in} =0.12V,即 V_{GS1} =0.58V。

(1) 低频小信号电路模型基本与图 6.5.3 相同,但是需去掉 R_s 。

根据 g_{ml} =141 μ S、 g_{mbl} =34 μ S、 g_{ds1} =3.7 μ S、 g_{ds2} =1.63 μ S,利用式(6.5.4),可以得到低频小信号增益 A_0 =(g_{ml} + g_{mbl} + g_{ds1})/(g_{ds1} + g_{ds2})= 33.5 (=30.5dB),与仿真结果一致。

- 6.15 题图 6.15 所示源极跟随器电路,以 NMOS 电流阱作负载,基于 0.18 μ m 工艺,晶体管尺寸 W/L=0.4/0.2, $V_{DD}=1.8V$, $V_{SS}=-1.8V$, $V_{b}=-1.22V$,并设输出负载 $C_{I}=1$ pF。
 - (1) 利用 Hspice 对该电路进行直流仿真,并选择合适的输入直流偏置电压:
 - (a) 电压转移特性 Vout-Vin;
 - (b) M_1 直流工作点: V_{DS1} 、 V_{GS1} 、 I_{D1} ;
- (c) M_1 小信号等效电路参数跨导 g_{ml} 、漏源电导 g_{ds1} 、栅源电容 C_{gs1} 、栅漏电容 C_{gd1} ,从 M_1 源极往 NMOS 看入的等效电阻。
 - (2)继续进行瞬态仿真,给出瞬态特性仿真结果(输入、输出电压波形)。
 - (3) 继续进行交流仿真,给出交流特性仿真结果。

解:

参考本书电子版资料提供的 CMOS 共源放大器仿真文件 (对应教材节 6.4.2),在此基础上进行仿真研究。详见附录代码。

(1)

(a) 电压转移特性如下图所示;(b) 根据电压转移特性,确定 M_1 直流工作点:取 $V_{\rm in}$ =0.3V,则 $V_{\rm GS1}$ 、 $V_{\rm DS1}$ 与 $I_{\rm D1}$ 可利用 OP 仿真得到;(c)利用 OP 仿真,可以得到各小信号等效电路参数。

(2) 瞬态特性仿真结果

(3) 交流特性仿真结果

・4・ 习题答案

- 6.16 电路仍然如题图 6.15 所示, 在题 6.15 直流仿真结果的基础上, 完成以下内容:
- (1) 构建该放大器低频小信号电路模型, 计算低频小信号增益。
- (2) 构建该放大器高频小信号电路模型,计算该电路增益频率特性。 与题 6.15 的结果比较,并作出分析。

解:

根据电压转移特性,取 $V_{in}=0.3V$ 。

(1) 低频小信号电路模型与图 6.6.3 相同。

根据 g_{ml} =96 μ S、 g_{mbl} =11 μ S、 g_{ds1} =3.3 μ S、 g_{ds2} =1.78 μ S,利用式(6.6.5),可以得到低频 小信号增益 A_0 = $g_{ml}/(g_{ml}+g_{mbl}+g_{ds1}+g_{ds2})$ = 0.86 (=-1.31dB),与仿真结果一致。

- 6.17 题图 6.17 所示共源共栅电路,基于 0.18μm 工艺,晶体管尺寸均为 W/L=0.4/0.2, $V_{\rm DD}$ =1.8V,并设输出负载 $C_{\rm L}$ =1pF。
 - (1) 利用 Hspice 对该电路进行直流仿真,并选择合适的输入直流偏置电压:
 - (a) 电压转移特性 Vour-Vin;
 - (b) 晶体管直流工作点:
 - (c) 小信号等效电路参数。
 - (2)继续进行瞬态仿真,给出瞬态特性仿真结果(输入、输出电压波形)。
 - (3)继续进行交流仿真,给出交流特性仿真结果。

解:

参考本书电子版资料提供的 CMOS 共源放大器仿真文件 (对应教材节 6.4.2), 在此基础上进行仿真研究。详见附录代码。

(1)

(a) 电压转移特性如下图所示;(b) 根据电压转移特性,确定 M_1 直流工作点: 取 $V_{\rm in}$ =0.64V,则直流工作点可利用 OP 仿真得到;(c)利用 OP 仿真,可以得到各小信号等效电路参数。

(2) 瞬态仿真仿真结果

• 6 • 习题答案

(3) 交流仿真仿真结果

- 6.19 题图 6.19 所示 PMOS 电流镜作负载的差分放大器,基于 0.18μm 工艺,晶体管尺寸为 W_1/L_1 = W_2/L_2 =3/1, W_3/L_3 = W_4/L_4 =14/1, W_5/L_5 =6/1, V_{DD} =1.8V, V_b =0.5V,并设输出负载 C_1 =1pF。
 - (1) 利用 Hspice 对该电路进行直流仿真,并选择合适的输入共模电压:
 - (a) 电压转移特性 Vout-Vid, 其中 Vid=Vip-Vin;
 - (b) 晶体管直流工作点;
 - (c) 小信号等效电路参数。
- (2)继续进行瞬态仿真,给出瞬态特性仿真结果 (输入、输出电压波形)。
- (3)继续进行交流仿真,给出交流特性仿真结果。

解:

参考本书电子版资料提供的 CMOS 共源放大器 仿真文件 (对应教材节 6.4.2),在此基础上进行仿真研究。详见附录代码。

- (1)输入共模电压取 V_{CM} =0.9V (在输入共模范围内取值即可)。
- (a) 电压转移特性如下图所示; (b) 输入共模电压确定之后,则直流工作点可利用 OP 仿真得到; (c) 利用 OP 仿真,可以得到各小信号等效电路参数。

(2) 瞬态仿真仿真结果

(3) 交流仿真仿真结果

6.21 说明题图 6.21(a)所示电路的反馈类型,并求该电路的传递函数 $V_{\rm out}/V_{\rm in}$ 。 提示: 题图 6.21(a)可用图(b)电路等效(忽略 $r_{\rm ds1}$ 与 $r_{\rm ds2}$)。围绕节点 Y、X 列写 KCL 方程,联立求解该方程即可得系统函数。

解:

电路反馈类型为电压并联反馈。