Øving 6

Utlevering: Mandag 21. februar.

Innlevering: Tirsdag 14. mars kl 16:00.

Merk øvingen med fullt navn, epostadresse og linje eller linjekode.

Bode-diagram, Avviks- og følgeforhold (N og M), Nichols-diagram Oppgave 1

Gitt prosessmodellen h_p og regulatoren h_r der

$$h_p(s) = \frac{1 - T_1 s}{1 + 2\zeta \left(\frac{s}{\omega_0}\right) + \left(\frac{s}{\omega_0}\right)^2}$$
, $T_1 = 0.2$, $\zeta = 0.5$, $\omega_0 = 2$
 $h_r(s) = PI - regulator = K_p \frac{1 + T_i s}{T_i s}$, $K_p = 1$, $T_i = 5$

$$h_r(s) = PI - regulator = K_p \frac{1 + T_i s}{T_i s}$$
, $K_p = 1$, $T_i = 5$

Figur 1: Blokkdiagram

I systemet ovenfor er y_0 referanse (figur 1), y er måling og v er forstyrrelse. Prosessen $h_p(s)$ ønskes regulert vha. regulatorfunksjonen $h_r(s)$. Sett inntil videre $\tau = 0$, dvs ingen tidsforsinkelse.

- a) Tegn inn asymptoter for $|h_0|$ og $\angle h_0$ i de respektive vedlagte diagrammene, der $h_0(s) = h_p h_r(s)$. Det skal ved påtegning i diagrammene framgå hvordan du har fastlagt knekkpunkter, helninger, $\omega_{c,as}$ o.l. (Tips: se læreboka s. 209-216. Du trenger ikke beregne $|h_0|$ og $\angle h_0$ matematisk for å kunne skissere assymptotisk AFF diagram)
- b) Skisser asymptotisk forløp for $|N(j\omega)|$ og $|M(j\omega)|$ på det ene vedlagte Bode-diagrammet som har amplitudekurve for $|h_0(j\omega)|$. Se side 245–247 i læreboka for tips til skisseringen, samt definisjon av $N(j\omega)$ og $M(j\omega)$ og hvordan disse funksjonene er relatert til $|h_0(j\omega)|$ for forskjellige frekvenser.

Figur 2: Et generelt reguleringssystem

- c) Tegn $h_0(j\omega)$ i Nichols-diagram på et av de vedlagte arkene og bruk dette til å tegne det "eksakte" forløpet for $|N(j\omega)|$ i bode-diagrammet ved siden av. Bruk gjerne metoden i boka, appendix D.
- d) Sett nå tidsforsinkelsen $\tau = 0.1$. Tegn $h_0(j\omega)$ i Nichols-diagram og bruk resultatet til å tegne "eksakt" forløp for $|N(j\omega)|$ i Bode-diagramet hvor $|h_0(j\omega)|$ allerede er inntegnet. (Tips: $|e^{-j\omega\tau}| = 1$). Hva blir nå $|N(j\omega)|_{\max}$? Hvordan går det om τ økes ytterligere?

Oppgave 2 Standard-struktur med r, v og y. Transferfunksjon fra vilkårlig inngang til utgang. å finne $h_v(s)$.

Gitt blokkdiagrammet i figur 2.

- a) Sett $h_0 = h_r h_u$ og finn transferfunksjonene $\frac{u}{r}(s)$ og $\frac{u}{n}(s)$.
- b) Med utgangspunkt i blokkdiagrammet for likestrømsmotoren i fig. 7.1 (s. 237) i boka, finn $h_v(s)$ for dette tilfellet. Vi forutsetter B = 0. (Tips: Du kan ha nytte av den åpne sløyfes transferfunksjon (4.128) på side 154.)

Oppgave 3 Stabilitet, algebraisk metode

Gitt et 2. ordens system med karakteristisk polynom (nevnerpolynom i en transferfunksjonen h(s))

$$a_2s^2 + a_1s + a_0, (1)$$

Vis at dersom a_2, a_1 og a_0 har samme fortegn, så er systemet asymptotisk stabilt.

Tips: Sett opp polynomet på formen $a_2(s-\lambda_1)(s-\lambda_2)=0$ og sammelikn røttene med polynomet (1).

Oppgave 4 Stabilitet, grafisk metode

(Fra eksamen august 1999)

Figur 3: Nyquistdiagram

Figur 3 viser Nyquist-kurver (polardiagrammer) for to prosesstransferfunksjoner,

$$h_1(s) = \frac{1}{s+a}$$
 og $h_2(s) = \frac{1}{s-a}$, der $a = 2, \omega \in \langle -\infty, \infty \rangle$

Anta regulering med proporsjonalregulator, $h_r(s) = K_P$. Finn ved hjelp av Nyquists stabilitetskriterium (les av) hvilke verdier av K_p som gir stabilitet for hhv. h_1 og h_2 . (Tips: se s. 203 og 212 for å forstå hvordan Nyquist-kurven endrer seg med økende K_p . Les om den grafiske tolkningen av Nyquists stabilitetskriterium i starten av avsnitt 8.4.)

