

Fonaments de computadors

TEMA 4. CIRCUITS SEQÜENCIALS

Objectius

- Estudiar els circuits seqüencials més senzills.
- Introduir el concepte de cronograma.
- Comprendre el funcionament bàsic dels biestables.
- Conèixer els sistemes sequencials bàsics més importants.
 - Registres, Banc de Registres, Memòria, Comptador

Índex

- Introducció
 - Circuits seqüencials, rellotge, cronogrames, símbols lògics.
- Biestables
 - Biestable S-R
 - Biestable D
 - Actiu per nivell
 - Actiu per flanc
 - Amb entrades asíncrones
 - Biestable J-K
 - Biestable T

Índex

- Blocs seqüencials bàsics
 - Registres d'emmagatzemament
 - Banc de registres, Memòria
 - Registres de desplaçament
 - Comptadors
- Anàlisi de SS per cronograma

- Circuits seqüencials:
 - Les eixides del circuit en l'instant actual S(t) depenen no tan sols del valor actual de les entrades del circuit E(t), sinó també de la "memòria" o "estat emmagatzemat" Q(t)
 - Els circuit seqüencials estan formats per:
 - un bloc combinacional
 - un bloc d'elements de memòria per emmagatzemar l'estat Q
 - una entrada de rellotge que decideix quan passem del temps t al temps t+1, i que marca quan s'emmagatzema interiorment l'estat del sistema

 El senyal de rellotge indica als elements de memòria quan cal que canvien el seu estat

- Cronograma: Representació de l'evolució temporal de les entrades i eixides d'un circuit.
 - El valor desconegut es representa amb una ombra

- Símbols lògics
 - Entrades i eixides

Senyal de rellotge

Biestables

 Biestable: Circuit seqüencial amb dos estats estables (0 i 1)

Podem emmagatzemar un bit en el circuit i fer que done voltes i voltes, de manera que la informació recircule indefenidament.

Biestables

FCO

Com canviar l'estat del biestable?

Biestable S-R amb portes NOR

- Com es pot determinar el seu comportament?
 - Obtenint una taula am tots els casos.
 - Des de les equacions (sense realimentació)
 - Les entrades externes i l'estat actual (t) són les entrades, i l'estat següent (t+1) són les eixides
 - 2. Anàlisi de la taula amb tots el casos.
 - a) Els casos s'agrupen per a cadascuna de les combinacions de valors de les entrades externes (sense l'estat actual)
 - b) Obtenim les eixides aplicant la taula una i altra vegada fins que l'estat es manté estable, es a dir, estat següent és l'estat actual.
 - Aquest mètode serveix per a qualsevol biestable actiu per nivell.

• Taula: equacions Q(t+1) = R + Q(t) i Q(t+1) = S + Q(t)

F

S	R	Q(t)	/Q(t)	Q(t+1)	/Q(t+1)
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

• Anàlisi: fem grups segons els valors d'S i R

	S	R	Q(t)	/Q(t)	Q(t+1)	/Q(t+1)		Q(t+1)	/Q(t+1)
A0	0	0	0	0	1	1	→ A3 (Oscil·la)		
A1	0	0	0	1	0	1	→ A1 (Estable)	Q(t)	/O(t)
A2	0	0	1	0	1	0	→ A2 (Estable)	Q(t)	/Q(t)
А3	0	0	1	1	0	0	→ A0 (Oscil·la)		
В0	0	1	0	0	0	1	→ B1		
B1	0	1	0	1	0	1	→ B1 (Estable)	0	1
B2	0	1	1	0	0	0	→ B0	U	ı
В3	0	1	1	1	0	0	→ B0		
C0	1	0	0	0	1	0	→ C2		
C1	1	0	0	1	0	0	→ C0	1	\cap
C2	1	0	1	0	1	0	→ C2 (Estable)	ı	
C3	1	0	1	1	0	0	→ C0		
D0	1	1	0	0	0	0	→ D0 (Estable)		
D1	1	1	0	1	0	0	→ D0	0*	0*
D2	1	1	1	0	0	0	→ D0	U	
D3	1	1	1	1	0	0	→ D0		

Biestable S-R amb portes NOR

- Comentaris als valors de resum de l'anàlisi
 - Quan l'estat següent (els valors de Q(t+1) i /Q(t+1)) és el mateix per tots els casos agrupats, resumir és fàcil
 - Indiquem el valor numèric (casos Bn, Cn i Dn)
 - El cas (Dn) en el qual els valors resum són Q(t+1) = /Q(t+1) indiquem amb un * que la situació és "no volguda" perquè no es compleix la condició habitual /Q(t+1) = Q(t+1)
 - 2. Quan els valors d'estat següent són diferents per els casos agrupats, (casos An), el resum és més difícil
 - Expressem Q(t+1) i /Q(t+1) a partir dels valors de Q(t) i /Q(t)
 - L'oscil·lació (l'estat següent passa de 00 a 11 i de 11 a 00 de manera indefinida) no apareix en el resum(cassos A0 i A3)

Biestable S-R amb portes NOR

S	R	Q(t+1)	/Q(t+1)
0	0	Q(t)	/Q(t)
0	1	0	1
1	0	1	0
1	1	0*	0*

Taula de funcionament

* =situació no volguda

 El cronograma s'utilitza per conéixer l'evolució temporal de l'estat quan canvien les entrades

Valor inicial de Q i /Q (suposat)

 S'utilitzen per la implementació d'elements de memòria, amb la finalitat d'emmagatzemar el valor d'una línia d'informació (un bit)

C	D	Q(t+1)	/Q(t+1)
0	X	Q(t)	/Q(t)
1	1	1	0
1	0	0	1

Taula de funcionament

FCO

Podem construir un biestable D partint d'un S-R.

- Especificació del circuit combinacional
 - Si C=0, volem que Q(t+1) = Q(t),
 per tant l'eixida cal que siga S=R=0
 - Si C=1 i D=0, volem que Q(t+1) = 0,
 per tant l'eixida cal que siga S=0 y R=1
 - Si C=1 y D=1, volem que Q(t+1) = 1,
 per tant l'eixida cal que siga S=1 y R=0

C	D	S	R
0	0	0	0
0	1	0	0
1	0	0	1

eixides

Entrades

Q(t+1)	/Q(t+1)					
Q(t)	/Q(t)					
Q(t)	/Q(t)					
0	1					
1	0					

Efecte en S-R

 De la taula del circuit combinacional s'obté S=C-D i R=C-D

FCO

• Altra possible implementació:

Si el biestable és actiu per nivell les produeix un impuls no volgut en l'entrada de dades...

L'impuls no volgut es traslladarà a l'eixida

Biestable D actiu per flanc de baixada

Taula de funcionament

Per implementar biestables que s'activen per flanc s'utilitzen frequentment dos biestables actius per nivell en una configuració mestre-esclau (MASTER-SLAVE)

Biestable D actiu per flanc de baixada

Biestable D actiu per flanc de baixada

FCO

- Com es pot observar:
 - La línia interna Qm canvia quan CLK = 1, seguint l'evolució de l'entrada D
 - L'eixida Q només canvia en els flancs de CLK
- L'efecte final de la configuració mestre-esclau és que l'últim valor de l'entrada D just abans del flanc és el valor que apareix en l'eixida Q

Biestable D actiu per flanc de pujada

Implementació (mestre actiu a nivell baix, esclau a nivell alt)

- Al biestable D actiu per nivell (alt o baix) se li poden afegir entrades asíncrones del tipus:
 - CLEAR (CL): posada a zero asíncrona
 - PRESET (PR): posada a un asíncrona
- Les entrades asíncrones:
 - Tenen prioritat sobre els altres senyals
 - Permeten canviar l'estat del biestable en qualsevol moment, independentment del valor de la resta de les entrades

FCO

- Si CLEAR=PRESET=0 ⇒ Q = Q', /Q = /Q'
- Si CLEAR=1,PRESET= $0 \Rightarrow Q = 1 \Rightarrow Q' = 0 \Rightarrow Q = 0$
- Si CLEAR=0,PRESET=1 \Rightarrow Q = 1 \Rightarrow /Q' = 0 \Rightarrow /Q = 0
- Si CLEAR=1,PRESET=1 ⇒ Q=/Q=1*

FCO

Taula de funcionament

PR	CL	C	D	Q(t+1)	/Q(t+1)
0	1	X	X	0	1
1	0	X	X	1	0
1	1	X	X	1*	1*
0	0	1	1	1	0
0	0	1	0	0	1
0	0	0	X	Q(t)	/Q(t)

FCO

- Al biestable D actiu per flanc (pujada o baixada) també se li poden afegir entrades asíncrones:
 - En aquest cas, tant el mestre com l'esclau han de tenir entrades asíncrones
- Exemple: Biestable D actiu per flanc de pujada amb entrades asíncrones de PRESET i CLEAR

Biestable J-K

- El biestable S-R presenta problemes en activar-se simultàniament les dues entrades S i R
- El biestable J-K té un funcionament semblant al S-R, però evita el problema anterior invertint l'estat quan J i K estan actives simultàniament

CLK	J	K	Q(t+1)	/Q(t+1)
0	X	X	Q(t)	/Q(t)
1	X	X	Q(t)	/Q(t)
1	0	0	Q(t)	/Q(t)
↑	0	1	0	1
↑	1	0	1	0
1	1	1	/Q(t)	Q(t)

Taula de funcionament

Biestable T

FCO

- Només té una entrada anomenada T (toggle)
- Manté l'estat (si T=0) o el canvia (si T=1) cada vegada que arriba un flanc actiu de rellotge
- No es construeix comercialment, però es pot construir fàcilment amb un J-K

Clk	T	Q(t)	Q(t+1)
1	0	0	0
\uparrow	0	1	1
\uparrow	1	0	1
\uparrow	1	1	0
↓/0/1	X	Q(t)	Q(t)

Taula de funcionament

 De manera anàloga, es pot construir un biestable T actiu per flanc de baixada emprant un biestable J-K actiu per flanc de baixada

Blocs sequencials bàsics

- Hi ha sistemes sequencials tan importants i d'ús tan comú que se'ls ha donat nom
 - Registre d'emmagatzemament
 - Emmagatzema una dada d'N bits
 - Banc de Registres i Memòria
 - Agrupació de diversos registres d'emmagatzemament
 - Mateixa funcionalitat bàsica. Difereixen fonamentalment en aspectes de capacitat, velocitat de funcionament i disseny

Blocs sequencials bàsics

- Hi ha sistemes sequencials tan importants i d'ús tan comú que se'ls ha donat nom (cont.)
 - Registre de desplaçament
 - Emmagatzema una dada d'*N* bits. Es necessiten *N* cicles de rellotge perquè la informació entre (escriptura) i/o isca (lectura)
 - Comptador
 - Circuit que canvia de valor de forma autònoma en cada cicle de rellotge que segueix una seqüència de valors predeterminada
 - Generalment el compte és binari (ascendent o descendent)

Registres d'emmagatzemament

- Agrupació síncrona de biestables D actius per flanc
 - Tants biestables D com a bits vulguem emmagatzemar
 - Cada biestable D emmagatzema un bit
 - Les entrades/eixides de dades del registre coincideixen amb les dels biestables D
 - Un únic rellotge (sistema síncron) interconnecta les entrades de rellotge de tots els biestables
 - Tots els biestables han de ser actius en el mateix flanc de rellotge

Registres d'emmagatzemament

FCO

• Exemple: Registre d'emmagatzemament de 4 bits

actiu per flanc de baixada

Símbols lògics possibles

Esquema intern

Registres d'emmagatzemament

FCO

Circuit integrat '175

 4 biestables tipus D, actius per flanc de pujada amb entrada asíncrona de posada a 0

Function Table

(Each Flip-Flop)

Inputs			Outputs	
Clear	Clock	D	Q	Q†
L	X	X	L	Н
Н	1	Н	Н	L
н	1	L	L	Н
Н	L	X	Q_0	\overline{Q}_0

H = HIGH Level (steady state) L = LOW Level (steady state)

Registres d'emmagatzemament

- Senyal d'escriptura en paral-lel (parallel load)
 - Permet habilitar o deshabilitar l'escriptura en el registre durant el flanc actiu de rellotge

Registres d'emmagatzemament

- Operació d'escriptura
 - Operació destructiva
 - La dada (prèviament) emmagatzemada desapareix i és sobreescrita amb la dada de l'operació d'escriptura
 - Operativa
 - 1) Establir el valor de les entrades D dels biestables
 - 2) Activar el senyal d'escriptura
 - 3) L'escriptura es farà efectiva en el flanc actiu del senyal de rellotge
- Operació de lectura
 - Operació no destructiva
 - La dada emmagatzemada roman inalterada
 - Operativa
 - Examinar les eixides Q dels biestables

Banc de Registres

FCO

- Agrupació de registres
 - Permet l'escriptura d'una dada sobre un registre
 - Cal seleccionar quin registre volem escriure
 - Aquesta informació és l'adreça d'escriptura
 - Internament, un descodificador selecciona quin registre treballa
 - Permet la lectura d', almenys, una dada emmagatzemada
 - Cal seleccionar quin registre volem llegir
 - Aquesta informació és l'adreça de lectura
 - Internament, un multiplexor selecciona quina dada s'obté
 - Per a permetre la lectura simultània de dues o més dades és necessari disposar de tantes entrades d'adreça de lectura i multiplexors interns com a dades es vulguen llegir

- Exemple: Banc de registres de 4 registres de 8 bits amb un port (via d'accés) d'escriptura i un altre de lectura
 - 4 registres => 2 Bits d'adreça
 - Dades d'entrada/eixida de 8 bits
 - Símbol lògic

Banc de Registres

- Exemple (cont):
 - Esquema intern

Banc de Registres

FCO

Operació d'escriptura

- Operativa
 - 1) Establir el valor de la dada d'escriptura
 - 2) Establir el valor de l'adreça d'escriptura
 - 3) Activar el senyal d'escriptura
 - 4) L'escriptura es farà efectiva en el flanc actiu del senyal de rellotge

Operació de lectura

- Operativa
 - 1) Establir el valor de l'adreça de lectura
 - 2) Examinar el valor de la dada de lectura

Memòria

- Mateixa funcionalitat que un Banc de Registres, però
 - Molta més capacitat (Kbytes, Mbytes, Gbytes, ...)
 - Molt més lenta
 - Tecnologia diferent
- Una única operació (lectura/escriptura) en un moment donat
 - Una única entrada d'adreça i una altra de dada
 - Línies d'ordres de lectura i escriptura
 - Perquè la memòria sàpiga què fer en cada moment
 - Llegir, escriure o no res (si no s'activa ni lectura ni escriptura)

1

- Agrupació síncrona de biestables D per flanc
 - Tants biestables D com bits vulguem emmagatzemar
 - La informació necessita diversos cicles de rellotge per a entrar (escriptura) o eixir (lectura)
 - Es coneixen com a entrada sèrie i eixida sèrie, respectivament
 - Quan tots els bits entren o ixen en el mateix cicle de rellotge es diu que el registre té entrada o eixida paral·lela
 - Estructura amb entrada sèrie
 - El primer biestable connecta la seua entrada amb l'única entrada de dades
 - La resta, cada entrada amb l'eixida del biestable anterior
 - Estructura amb eixida sèrie
 - Només és accessible l'eixida de l'últim biestable

- Entrada sèrie, eixida paral-lela
 - Esquema intern

- Funcionament
 - Un bit (el valor de l'entrada sèrie) entra per l'esquerra i desplaça la informació emmagatzemada una posició cap a la dreta
 - El bit emmagatzemat en l'extrem dret es perd

- Entrada sèrie, eixida paral-lel (cont.)
 - Exemple de funcionament
 - Estat inicial Q3Q2Q1Q0 = 0000
 - L'entrada sèrie pren els valors indicats en el cronograma (com a exemple de seqüència de valors)

- Entrada sèrie, eixida sèrie
 - Mateix circuit intern que amb eixida paral·lela, excepte que l'única eixida disponible és la de l'últim biestable

- Entrada paral-lela, eixida sèrie
 - Necessitem una entrada addicional (que podem anomenar, per exemple, LOAD) per a determinar si el sistema ha de carregar la dada d'entrada (LOAD=1) o desplaçar (LOAD=0)

FCO

- Registres de desplaçament (resum)
 - Un registre de desplaçament pot desplaçar
 - A esquerres o a dretes
 - No hi ha unanimitat en el que significa "a esquerres" o "a dretes"
 - Millor indicar el sentit explícitament
 - Fins i tot pot desplaçar en ambdós sentits
 - No simultàniament, de vegades a esquerres i de vegades a dretes
 - Amb una entrada de control addicional que indique el sentit
 - En aquest cas pot disposar d'
 - » Una única entrada de dades sèrie
 - » Una entrada de dades sèrie per a cada un dels sentits de desplaçament (entrada sèrie per l'esquerra, entrada sèrie per la dreta)

- Registres de desplaçament (resum, cont.)
 - L'entrada de dades pot ser
 - Sèrie: quan l'entrada de dades és d'un bit per cicle de rellotge
 - Paral-lela: quan tot el registre s'escriu en un únic cicle de rellotge
 - L'eixida pot ser
 - Sèrie: quan per a observar el valor emmagatzemat en el registre necessitem tants cicles de rellotge com biestables
 - Paral-lela: quan podem observar el valor de tots els biestables en un únic cicle de rellotge

FCO

Qüestions:

- Com fer un registre de desplaçament amb entrada i eixida sèrie, amb desplaçament de Q3 a Q0?
- I que es puga triar el sentit del desplaçament amb un senyal anomenat "sentit" i amb dues entrades sèrie?
- Ara, con li afegim càrrega paral·lela?
- I fer-lo cíclic de vegades sí i de vegades no?

Comptadors

FCO

- Comptadors síncrons
 - Circuit que canvia de valor <u>de forma autònoma</u> en cada cicle de rellotge seguint una seqüència, generalment un compte binari (ascendent o descendent)
 - El compte pot ser ascendent o descendent
 - El compte també pot ser ascendent/descendent (reversible)
 - No simultàniament, de vegades ascendent i de vegades descendent
 - Una entrada de control addicional indica el sentit

- Comptadors síncrons
 - Solen estar construïts amb biestables T o J-K (amb J=K)
 - El circuit resultant utilitza menys portes lògiques que si s'utilitzen biestables D
 - Exemple: Comptador síncron ascendent de 4 bits
 - Eixida 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, ...

Comptadors

- Comptadors: classificació pel tipus de compte
 - Binaris
 - Fan tots els comptes possibles entre 0 i 2^{variables d'estat}-1
 - De mòdul N
 - Fan N comptes distints, sent N < 2^{variables} d'estat
 - Solen incloure el compte 0...00, comptant llavors de 0 a N-1
 - Exemple
 - Un comptador de dècades és un comptador de mòdul 10 que compta de 0 a 9

Comptadors

Qüestions:

- Com fer un comptador síncron descendent de 4 bits amb biestables T?
- I ara, com fer un comptador síncron de vegades ascendent i de vegades descendent, controlant el sentit amb un senyal anomenat "PUJA"?

Anàlisi d'SS: Introducció

- Anàlisi de sistemes sequencials
 - Consisteix a obtenir l'eixida del sistema a partir del circuit
 - Es poden emprar diferents mètodes
 - Cronograma
 - Obté l'eixida del sistema per a una seqüència d'entrades particular
 - Altre mètode: al tema següent

Anàlisi d'SS: Cronograma

Anàlisi per cronograma

- Diagrama temporal
 - Incorpora totes les entrades i eixides del sistema
 - Pot ser d'utilitat per a simplificar l'anàlisi, l'afegir també senyals interns del circuit
- Necessitem
 - El circuit
 - L'estat inicial del sistema (si no es pot deduir des de les entrades)
 - Una seqüència d'entrades
- Obtenim
 - La seqüència d'eixides del sistema per a la seqüència d'entrades concreta que hem emprat en l'anàlisi

Anàlisi d'SS: Cronograma (ii)

- Anàlisi per cronograma
 - Per a realitzar l'anàlisi hem de recórrer a les taules de veritat
 - De cada biestable del circuit
 - Per a cadascuna de les combinacions d'entrada que tinga al llarg del temps
 - Hem d'aplicar les combinacions d'entrada una per una en el temps
 - Perquè el nou valor (d'un biestable) pot influir en el comportament futur (del mateix biestable o d'un altre)

Anàlisi d'SS: Cronograma (ii)

FCO

- Exemple
 - Analitzar

- Valor inicial Q1Q0 = 00_2
- Seqüencia d'entrada I = 1 0 1 1 0
- Cronograma

Fonaments de computadors

TEMA 4. CIRCUITS SEQÜENCIALS