数学扩展研究 I - 三角形

李宇轩

2020.03.09

目录

1	三角形					
	1.1	三角形	ジ的符号约定		3	
	1.2	三角形	ジ的第一组面积公式		4	
		1.2.1	三角形面积公式 01		4	
		1.2.2	三角形面积公式 02		4	
		1.2.3	三角形面积公式 03		5	
		1.2.4	三角形面积公式 04		5	
		1.2.5	三角形面积公式 05		6	
		1.2.6	三角形面积公式 06		7	
		1.2.7	三角形面积公式 07		7	
		128	三角形面和小式 08		δ	

1 三角形

1.1 三角形的符号约定

我们首先进行符号约定,若没有特殊说明,这些符号将在后文表达相同的含义。 我们依照下方表格的规定进行符号约定:

符号	含义	符号	含义
\overline{A}	角 A 的角度	h_a	垂线的长度(边 a 上)
В	角 B 的角度	h_b	垂线的长度(边b上)
С	角 C 的角度	h_c	垂线的长度(边c上)
а	边 a 的长度	m_a	中线的长度(边 a 上)
b	边 b 的长度	m_b	中线的长度(边 b 上)
С	边 c 的长度	m_c	中线的长度(边 c 上)
R	外接圆半径	t_a	角平分线的长度(角 a 上)
r	内切圆半径	t_b	角平分线的长度(角 b 上)
r_a	旁切圆半径(边 a 侧)	t_c	角平分线的长度(角 c 上)
r_b	旁切圆半径(边 b 侧)	p	半周长的大小
r_c	旁切圆半径(边 c 侧)		

表 1: 三角形的符号约定

我们将下方图片所示的三角形作为参考:

图 1: 三角形的示意图

除此之外,重心记为G,垂心记为H,外心记为O,内心记为I,旁心记为P。

1.2 三角形的第一组面积公式

1.2.1 三角形面积公式 01

三角形面积公式 01:

$$egin{aligned} S_{ riangle} &= rac{1}{2} \cdot a \cdot h_a \ S_{ riangle} &= rac{1}{2} \cdot b \cdot h_b \ S_{ riangle} &= rac{1}{2} \cdot b \cdot h_b \end{aligned}$$

1.2.2 三角形面积公式 02

三角形面积公式 02:

$$S_{ riangle} = rac{1}{2} \cdot a \cdot b \cdot \sin C$$
 $S_{ riangle} = rac{1}{2} \cdot b \cdot c \cdot \sin A$ $S_{ riangle} = rac{1}{2} \cdot c \cdot a \cdot \sin B$

将高用边和角的正弦表示并代入公式 01:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot h_a$$

$$= \frac{1}{2} \cdot a \cdot (b \cdot \sin C)$$
(1)
(2)

图 2: 三角形面积公式 02 示意图

1.2.3 三角形面积公式 03

三角形面积公式 03:

$$S_{\triangle} = \frac{1}{4R} \cdot a \cdot b \cdot c$$

将正弦定理代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{1}$$

$$=\frac{1}{2}\cdot a\cdot b\cdot \left(\frac{c}{2R}\right) \tag{2}$$

$$=\frac{1}{4R}\cdot a\cdot b\cdot c\tag{3}$$

1.2.4 三角形面积公式 04

三角形面积公式 04:

$$S_{\triangle} = 2R^2 \cdot \sin A \cdot \sin B \cdot \sin C$$

将正弦定理代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{4}$$

$$= \frac{1}{2} \cdot (2R \cdot \sin A) \cdot (2R \cdot \sin B) \cdot \sin C \tag{5}$$

$$=2R^2\cdot\sin A\cdot\sin B\cdot\sin C\tag{6}$$

1.2.5 三角形面积公式 05

三角形面积公式 05:

$$S_{\triangle} = r \cdot p$$

用角平分线将三角形分为三个小三角形:

$$S_{\triangle} = S_{\triangle IBC} + S_{\triangle ICA} + S_{\triangle IAB} \tag{1}$$

$$= \frac{1}{2} \cdot a \cdot r + \frac{1}{2} \cdot b \cdot r + \frac{1}{2} \cdot c \cdot r \tag{2}$$

$$=\frac{1}{2}\cdot(a+b+c)\cdot r\tag{3}$$

$$= r \cdot p \tag{4}$$

图 3: 三角形的内心

1.2.6 三角形面积公式 06

三角形面积公式 06:

$$S_{\triangle} = r^2 \cdot \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}\right)$$

将边长用内切圆半径和角的余切表示并代入公式 05:

$$S_{\triangle} = r \cdot p \tag{5}$$

$$= r \cdot \frac{1}{2} \cdot (a+b+c) \tag{6}$$

$$= r \cdot \frac{1}{2} \cdot \left(2r \cdot \cot \frac{A}{2} + 2r \cdot \cot \frac{B}{2} + 2r \cdot \cot \frac{C}{2} \right) \tag{7}$$

$$= r^2 \cdot \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}\right) \tag{8}$$

1.2.7 三角形面积公式 07

三角形面积公式 07:

$$S_{\triangle} = R \cdot r \cdot (\sin A + \sin B + \sin C)$$

将正弦定理代入公式 05:

$$S_{\triangle} = r \cdot p \tag{1}$$

$$=r\cdot\frac{1}{2}\cdot(a+b+c)\tag{2}$$

$$= r \cdot \frac{1}{2} \cdot (2R \cdot \sin A + 2R \cdot \sin B + 2R \cdot \sin C) \tag{3}$$

$$= R \cdot r \cdot (\sin A + \sin B + \sin C) \tag{4}$$

1.2.8 三角形面积公式 08

三角形面积公式 08:

$$egin{split} S_{ riangle} &= rac{1}{2} \cdot \sqrt{a^2 \cdot b^2 - \left(rac{a^2 + b^2 - c^2}{2}
ight)^2} \ S_{ riangle} &= rac{1}{2} \cdot \sqrt{b^2 \cdot c^2 - \left(rac{b^2 + c^2 - a^2}{2}
ight)^2} \ S_{ riangle} &= rac{1}{2} \cdot \sqrt{c^2 \cdot a^2 - \left(rac{c^2 + a^2 - b^2}{2}
ight)^2} \end{split}$$

将余弦定理代入公式 02:

$$S_{\triangle} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \tag{1}$$

$$= \frac{1}{2} \cdot a \cdot b \cdot \sqrt{1 - \cos^2 C} \tag{2}$$

$$=\frac{1}{2}\cdot a\cdot b\cdot \sqrt{1-\left(\frac{a^2+b^2-c^2}{2\cdot a\cdot b}\right)}\tag{3}$$

$$= \frac{1}{2} \cdot \sqrt{a^2 \cdot b^2 - \left(\frac{a^2 + b^2 - c^2}{2}\right)} \tag{4}$$

三角形面积公式 08 也被称为秦九韶公式。