Apprentissage et résultats

Clément Legrand

June 27, 2018

Base de départ

Les solutions données par CW.

- Tirage au sort de N triplets (λ, μ, ν) ;
- Calcul de toutes les solutions possibles.

Base d'apprentissage

On peut ne garder qu'une partie de la base générée pour apprendre

- On garde x% des meilleurs solutions (quantité privilégiée, Quan_x);
- On garde les solutions qui ont un coût inférieur à $c_{min} + (c_{max} c_{min}) \frac{x}{100}$ (qualité privilégiée, Qual_x).
- On choisit d'utiliser toute la base générée pour apprendre (Tout)

Protocole

Protocole

- Génération de la base de départ
- Calcul de la base d'apprentissage
- On initialise une matrice MAT de taille n^2
- Pour chaque arête (a,b) on incrémente la valeur MAT[a][b] (si a>b, on commence par échanger a et b)
- On regarde si les arêtes obtenues sont effectivement dans la solution optimale.

Choix des arêtes

- On conserve (a,b) si MAT[a][b] dépasse une certaine valeur (Seuil);
- On conserve les k premières arêtes en triant selon les valeurs

Instance test

3 instances ont été choisies pour réaliser ces tests: A-n37-k06, A-n65-k09 et P-n101-k04.

La solution employée pour comparer les résultats est celle de la littérature.

Pour chaque test on effectue 5 itérations.

Résultats avec critère Seuil et Quan₁₀

 L_{lb} est la taille de la base d'apprentissage.

La meilleure solution comporte 42 arêtes.

On utilise la méthode Quan₁₀ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{1b} /2	34	21	0.5
100	L _{Ib} /2	30	21	0.5
500	L _{Ib} /2	32	24	0.57
1000	L _{Ib} /2	33	24	0.57
50	3L _{Ib} /4	23	14	0.33
100	3L _{Ib} /4	16	15	0.36
500	3L _{Ib} /4	15	14	0.33
1000	3L _{Ib} /4	16	14	0.33

Résultats Seuil avec Qual₁₀

On utilise la méthode Qual₁₀ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{Ib} /2	33	21	0.50
100	L _{1b} /2	31	23	0.55
500	L _{1b} /2	31	22	0.52
1000	L _{Ib} /2	31	23	0.53
50	3L _{Ib} /4	17	12	0.28
100	3L _{Ib} /4	17	14	0.33
500	3L _{Ib} /4	20	16	0.38
1000	3L _{Ib} /4	19	16	0.38

Résultats Seuil avec Tout

On utilise la méthode Tout avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{1b} /2	23	15	0.35
100	L _{1b} /2	24	17	0.40
500	L _{Ib} /2	22	15	0.36
1000	L _{Ib} /2	23	16	0.38
50	3L _{Ib} /4	10	7	0.16
100	3L _{Ib} /4	6	6	0.14
500	3L _{Ib} /4	7	7	0.18
1000	3L _{Ib} /4	6	6	0.14

Résultats avec critère Rang et Quan₁₀

On utilise la méthode $Quan_{10}$ avec certaines valeurs de rang.

		10	
Taille base	Rang max	Nb correctes	Proportion
50	10	6	0.14
100	10	9	0.21
500	10	9	0.21
1000	10	9	0.21
50	20	13	0.31
100	20	16	0.38
500	20	16	0.38
1000	20	17	0.40
50	n/2	12	0.28
100	n/2	13	0.3
500	n/2	13	0.3
1000	n/2	13	0.3

Résultats avec critère Rang et Qual₁₀

On utilise la méthode $Qual_{10}$ avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	6	0.14
100	10	9	0.21
500	10	10	0.24
1000	10	10	0.24
50	20	13	0.32
100	20	16	0.38
500	20	16	0.38
1000	20	16	0.38
50	n/2	13	0.3
100	n/2	13	0.3
500	n/2	13	0.3
1000	n/2	12	0.29

Résultats avec critère Rang et Tout

On utilise la méthode Tout avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	7	0.16
100	10	10	0.24
500	10	9	0.21
1000	10	10	0.24
50	20	13	0.31
100	20	15	0.36
500	20	15	0.36
1000	20	15	0.36
50	n/2	12	0.28
100	n/2	12	0.29
500	n/2	12	0.28
1000	n/2	12	0.28

Résultats avec toutes les SI

Temps de calcul pour avoir la base : 37.5 s

Requis	Rés Quan ₁₀	Rés Qual ₁₀	Time (s)
$L_{lb}/2$	33 - 24 - 0.57	30 - 23 - 0.55	0.076
3L _{Ib} /4	15 - 14 - 0.33	18 - 16 - 0.38	0.077

 $\label{eq:Quan_10} \mbox{Quan}_{10} \mbox{ reste la base la plus performante pour le critère } \mbox{Requis}.$

Rang max	Rés Quan ₁₀	Rés Qual ₁₀	Time (s)
10	9 - 0.21	10 - 0.24	0.074
20	17 - 0.40	17 - 0.40	0.076
n/2	12 - 0.30	12 - 0.30	0.076

 $Qual_{10}$ reste la base la plus performante pour le critère Rang.

Instance test

La solution employée pour comparer les résultats est celle de la littérature.

La meilleure solution comporte 73 arêtes.

Pour chaque test on effectue 5 itérations.

100

Résultats avec critère Seuil et Quan₁₀

 L_{lb} est la taille de la base d'apprentissage.

On utilise la méthode $Quan_{10}$ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{Ib} /2	73	43	0.59
100	L _{Ib} /2	70	44	0.6
500	L _{1b} /2	71	43	0.59
1000	L _{Ib} /2	71	43	0.59
50	3L _{Ib} /4	61	40	0.55
100	3L _{Ib} /4	63	41	0.56
500	3L _{Ib} /4	60	40	0.55
1000	3L _{Ib} /4	57	40	0.54

Résultats Seuil avec Qual₁₀

On utilise la méthode $Qual_{10}$ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{Ib} /2	64	44	0.60
100	L _{1b} /2	58	42	0.58
500	L _{1b} /2	56	41	0.56
1000	L _{Ib} /2	55	41	0.56
50	3L _{Ib} /4	39	29	0.40
100	3L _{Ib} /4	36	28	0.39
500	3L _{Ib} /4	35	28	0.39
1000	3L _{Ib} /4	35	27	0.38

Résultats Seuil avec Tout

On utilise la méthode Tout avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{1b} /2	40	31	0.43
100	L _{1b} /2	43	33	0.45
500	L _{1b} /2	45	35	0.48
1000	L _{Ib} /2	45	35	0.48
50	3L _{Ib} /4	14	9	0.13
100	3L _{Ib} /4	15	10	0.14
500	3L _{Ib} /4	14	9	0.13
1000	3L _{Ib} /4	13	9	0.13

Résultats avec critère Rang et Quan₁₀

On utilise la méthode Quan₁₀ avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	6	0.08
100	10	6	0.08
500	10	7	0.1
1000	10	7	0.1
50	20	14	0.2
100	20	16	0.22
500	20	17	0.23
1000	20	17	0.23
50	n/2	23	0.32
100	n/2	26	0.36
500	n/2	27	0.36
1000	n/2	26	0.36

Résultats avec critère Rang et Qual₁₀

On utilise la méthode $Qual_{10}$ avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	7	0.1
100	10	7	0.1
500	10	7	0.1
1000	10	7	0.1
50	20	15	0.21
100	20	16	0.22
500	20	15	0.21
1000	20	15	0.21
50	n/2	26	0.36
100	n/2	26	0.36
500	n/2	26	0.36
1000	n/2	26	0.36

Résultats avec critère Rang et Tout

On utilise la méthode Tout avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	7	0.1
100	10	7	0.1
500	10	6	0.08
1000	10	6	0.08
50	20	14	0.19
100	20	14	0.19
500	20	13	0.18
1000	20	13	0.18
50	n/2	24	0.33
100	n/2	25	0.34
500	n/2	25	0.34
1000	n/2	25	0.34

Résultats avec toutes les SI

Temps de calcul pour avoir la base : 110 s

	Rés Quan ₁₀	Rés Qual ₁₀	Tout
$L_{lb}/2$	73 - 45 - 0.62	56 - 40 - 0.55	45 - 35 - 0.48
$3L_{lb}/4$	62 - 41 - 0.56	35 - 28 - 0.38	13 - 9 - 0.12

 $Quan_{10}$ reste la base la plus performante pour le critère Requis.

Rang max	Rés Quan ₁₀	Rés Qual ₁₀	Tout
10	7 - 0.1	7 - 0.1	6 - 0.08
20	17 - 0.23	17 - 0.23	13 - 0.18
n/2	27 - 0.37	27 - 0.37	25 - 0.34

Qual₁₀ reste la base la plus performante pour le critère Rang.

Instance test

La solution employée pour comparer les résultats est celle de la littérature.

La meilleure solution comporte 104 arêtes.

Pour chaque test on effectue 5 itérations.

Résultats avec critère Seuil et Quan₁₀

 L_{lb} est la taille de la base d'apprentissage.

On utilise la méthode $Quan_{10}$ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{1b} /2	93	65	0.62
100	L _{1b} /2	80	66	0.64
500	L _{Ib} /2	83	69	0.67
50	3L _{Ib} /4	54	44	0.42
100	3L _{Ib} /4	45	41	0.39
500	3L _{Ib} /4	43	39	0.37

Résultats Seuil avec Qual₁₀

On utilise la méthode $Qual_{10}$ avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{Ib} /2	83	66	0.64
100	L _{Ib} /2	79	66	0.63
500	L _{Ib} /2	81	68	0.66
50	3L _{Ib} /4	42	37	0.36
100	3L _{Ib} /4	42	39	0.37
500	3L _{Ib} /4	39	36	0.35

Résultats Seuil avec Tout

On utilise la méthode Tout avec certaines valeurs de seuil.

Taille base	Seuil	Nb arêtes	Nb correctes	Proportion
50	L _{1b} /2	71	61	0.59
100	L _{1b} /2	72	62	0.60
500	L _{Ib} /2	72	63	0.60
50	3L _{Ib} /4	24	21	0.20
100	3L _{Ib} /4	24	22	0.21
500	3L _{Ib} /4	22	20	0.19

Résultats avec critère Rang et Quan₁₀

On utilise la méthode $Quan_{10}$ avec certaines valeurs de rang.

on anner in membra quanto avec contames raisans a					
Taille base	Rang max	Nb correctes	Proportion		
50	10	8	0.08		
100	10	8	0.08		
500	10	8	0.08		
50	20	18	0.17		
100	20	18	0.17		
500	20	18	0.17		
50	n/2	43	0.41		
100	n/2	45	0.43		
500	n/2	46	0.44		

Résultats avec critère Rang et Qual₁₀

On utilise la méthode Qual₁₀ avec certaines valeurs de rang.

on annes in mesheur qualify area consumes various as					
Taille base	Rang max	Nb correctes	Proportion		
50	10	8	0.08		
100	10	8	0.08		
500	10	8	0.08		
50	20	17	0.16		
100	20	18	0.17		
500	20	18	0.17		
50	n/2	44	0.43		
100	n/2	45	0.43		
500	n/2	46	0.44		

Résultats avec critère Rang et Tout

On utilise la méthode Tout avec certaines valeurs de rang.

Taille base	Rang max	Nb correctes	Proportion
50	10	8	0.08
100	10	8	0.08
500	10	8	0.08
50	20	18	0.17
100	20	18	0.17
500	20	18	0.17
50	n/2	44	0.43
100	n/2	46	0.44
500	n/2	46	0.44

Résultats avec toutes les SI

Temps de calcul pour avoir la base : 110 s

Requis	Rés Quan ₁₀	Rés Qual ₁₀	Tout
$L_{Ib}/2$	73 - 45 - 0.62	56 - 40 - 0.55	45 - 35 - 0.48
3L _{Ib} /4	62 - 41 - 0.56	35 - 28 - 0.38	13 - 9 - 0.12

Quan₁₀ reste la base la plus performante pour le critère Requis.

Rang max	Rés Quan ₁₀	Rés Qual ₁₀	Tout
10	7 - 0.1	7 - 0.1	6 - 0.08
20	17 - 0.23	17 - 0.23	13 - 0.18
n/2	27 - 0.37	27 - 0.37	25 - 0.34

Qual₁₀ reste la base la plus performante pour le critère Rang.

Algorithme actuel

```
Base \leftarrow []
 2 for i \leftarrow 1 to 10 do
         \lambda \leftarrow random(0.9, 1.1)
        \mu \leftarrow random(0, 1.8)
 4
         \nu \leftarrow random(0.5, 1.5)
 5
         if i = 1 then
 6
              Sol \leftarrow Heuristique(Init, I, D, \lambda, \mu, \nu)
 7
              Base \leftarrow Base \cup Sol
 8
 q
         else
              Déterminer Init avec les connaissances de Base
10
              Sol \leftarrow Heuristique(Init, I, D, \lambda, \mu, \nu)
11
              Base \leftarrow Base \cup Sol
12
```

13 return Lameilleuresolution

Premiers résultats

Méthode	A-n34-k05 (779)	Time (s)	A-n37-k06 (952)	Time (s)
Sans	781.96	614	950.85	1325
Quan ₁₀	795.88	56	950.85	1158
Qual ₁₀	788.98	495	951.85	601
Méthode	A-n65-k09 (118	32) Time	(s)	

Méthode	A-n65-k09 (1182)	l ime (s)
Quan ₁₀	1189.64	2085
Qual ₁₀₋₁₀	1200.11	2442
Qual _{10—half}	1183.31	2541

Modifications

- Changement Algorithme ?
- Nouveau choix des paramètres ?

