Diszkrét matematika I. középszint

11. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Gyors hatványozás

Legyenek m, a, n pozitív egészek, m > 1. Szeretnénk kiszámolni aⁿ mod m maradékot hatékonyan.

Ábrázoljuk *n*-et 2-es számrendszerben:

$$n = \sum_{i=0}^{\kappa} \varepsilon_i 2^i = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_1 \varepsilon_0)_{(2)}, \text{ ahol } \varepsilon_0, \, \varepsilon_1, \dots, \, \varepsilon_k \in \{0, 1\}.$$

Legyen n_i ($0 \le i \le k$) az első i + 1 jegy által meghatározott szám:

$$n_j = \lfloor n/2^{k-j} \rfloor = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_{k-j})_{(2)}$$

Ekkor meghatározzuk minden j-re az $x_i \equiv a^{n_j} \pmod{m}$ maradékot: $n_0 = \varepsilon_k = 1$. $x_0 = a$.

$$n_i = 2 \cdot n_{i-1} + \varepsilon_{k-i} \Rightarrow$$

$$x_j = a^{\varepsilon_{k-j}} x_{j-1}^2 \mod m = \left\{ \begin{array}{ll} x_{j-1}^2 \mod m, & \text{ha } \varepsilon_{k-j} = 0 \\ a x_{j-1}^2 \mod m, & \text{ha } \varepsilon_{k-j} = 1 \end{array} \right. \Rightarrow$$

 $x_k = a^n \mod m$.

Az algoritmus helyessége az alábbi formulábol következik (Biz.: HF):

$$a^{n} = a^{\sum_{i=0}^{k} \varepsilon_{i} 2^{i}} = \prod_{i=0}^{k} \left(a^{2^{i}}\right)^{\varepsilon_{i}}$$

Példa

Mi lesz $3^{111} \mod 10$? (Euler-Fermat $\Rightarrow 7$)

$$111_{(10)} = 1101111_{(2)}$$
 itt $k = 6$, $a = 3$, $m = 10$.

j	n_j	$x_j = a^{\varepsilon_{k-j}} \cdot x_{j-1}^2$	<i>x_j</i> mod 10
0	1	_	3
1	11	$x_1 = 3 \cdot 3^2$	7
2	110	$x_2 = 7^2$	9
3	1101	$x_3 = 3 \cdot 9^2$	3
4	11011	$x_4 = 3 \cdot 3^2$	7
5	110111	$x_5 = 3 \cdot 7^2$	7
6	1101111	$x_6 = 3 \cdot 7^2$	7

Gyors hatványozás

Példa

Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruenciát! Euler-Fermat $\Rightarrow x \equiv 4 \cdot 23^{209} \equiv \dots \pmod{211}$.

Mi lesz 23²⁰⁹ mod 211? $209_{(10)} = 11010001_{(2)}$ itt k = 7, a = 23.

j	n _j	$x_j = a^{\varepsilon_{k-j}} \cdot x_{j-1}^2$	<i>x_j</i> mod 211
0	1	_	23
1	11	$x_1 = 23 \cdot 23^2$	140
2	110	$x_2 = 140^2$	188
3	1101	$x_3 = 23 \cdot 188^2$	140
4	11010	$x_4 = 140^2$	188
5	110100	$x_5 = 188^2$	107
6	1101000	$x_6 = 107^2$	55
7	11010001	$x_6 = 23 \cdot 55^2$	156

 $x \equiv 4 \cdot 23^{209} \equiv 4 \cdot 156 \equiv 202 \pmod{211}$.

Generátor

Tétel (NB)

Legyen p prímszám. Ekkor \mathbb{Z}_p^* -ban van generátor (primitív gyök): van olyan 1 < g < p egész, mely hatványaiként előáll minden redukált maradékosztály: $\{g^{\overline{0}} = \overline{1}, \overline{g}^{\overline{0}}, \overline{g^2}, \dots, \overline{g^{p-2}}\} = \mathbb{Z}_p^*$, azaz $\{1 = g^0, g \mod p, g^2 \mod p, \dots, g^{p-2} \mod p\} = \{1, 2, \dots, p-1\}$.

Példa

3 generátor modulo 7:

$$3^{0} = 1 = 1 \equiv 1 = 1 \equiv 1 \pmod{7}$$
 $3^{1} = 3 = 3^{0} \cdot 3 \equiv 1 \cdot 3 = 3 \equiv 3 \pmod{7}$
 $3^{2} = 9 = 3^{1} \cdot 3 \equiv 3 \cdot 3 = 9 \equiv 2 \pmod{7}$
 $3^{3} = 27 = 3^{2} \cdot 3 \equiv 2 \cdot 3 = 6 \equiv 6 \pmod{7}$
 $3^{4} = 81 = 3^{3} \cdot 3 \equiv 6 \cdot 3 = 18 \equiv 4 \pmod{7}$
 $3^{5} = 243 = 3^{4} \cdot 3 \equiv 4 \cdot 3 = 12 \equiv 5 \pmod{7}$

Generátor

Példa

2 generátor modulo 11:

n	0	1	2	3	4	5	6	7	8	9
2 ⁿ mod 11	1	2	4	8	5	10	9	7	3	6

2 nem generátor modulo 7:

n	0	1	2	3	4	5
2 ⁿ mod 7	1	2	4	1	2	4

Diszkrét logaritmus

Definíció

Legyen p prímszám, g generátor modulo p. Ekkor az $a \in \mathbb{Z}$ $(p \nmid a)$ g alapú diszkrét logaritmusa (indexe):

$$\log_g a = n$$
: $a \equiv g^n \pmod{p}$, $0 \le n < p$.

Példa

3 generátor modulo 7:

n	0	1	2	3	4	5
3 ⁿ	1	3	2	6	4	5

azaz

а	1	3	2	6	4	5
log ₃ a	0	1	2	3	4	5

Diszkrét logaritmus

Példa

2 generátor modulo 11:

n	0	1	2	3	4	5	6	7	8	9
2 ⁿ mod 11	1	2	4	8	5	10	9	7	3	6

Logaritmus-táblázat:

а	1	2	3	4	5	6	7	8	9	10
log ₂ a	0	1	8	2	4	9	7	3	6	5

Tétel (HF)

Legyen p prímszám, g generátor modulo p, $1 \le a, b < p$, $n \in \mathbb{Z}$. Ekkor

$$\log_g(a \cdot b) \equiv \log_g a + \log_g b \pmod{p-1}$$
$$\log_g(a^n) \equiv n \cdot \log_g a \pmod{p-1}$$

Alkalmazások

Számelmélet alkalmazási területei:

- Kriptográfia
 - üzenetek titkosítása;
 - digitális aláírás;
 - azonosítás, . . .
- Kódelmélet
- . . .

2014. ősz

Caesar kód

Julius Caesar katonáival a következő módon kommunikált: Feleltessük meg az (angol) ábécé betűit a $\{0, 1, ..., 25\}$ halmaznak:

```
\begin{array}{lll} \mathbf{a} \mapsto \mathbf{0} & \mathbf{Titkos \; kulcs:} \; s \in \{0,1,\dots,25\}. \\ \mathbf{b} \mapsto \mathbf{1} & \mathbf{Titkos\acute{t}\acute{a}s:} \; \mathrm{adott} \; a \in \{0,1,\dots,25\} \; \mathrm{eset\acute{e}n} \; a \; \mathrm{titkos\acute{t}\acute{a}sa} \\ \mathbf{a} \mapsto \mathbf{a} + s \; \mathrm{mod} \; 26. \; \ddot{\mathsf{U}}\mathrm{zenet} \; \mathrm{titkos\acute{t}\acute{a}sa} \; \mathrm{bet\~{u}nk\acute{e}nt.} \\ & \vdots & \mathbf{Kititkos\acute{t}\acute{a}s:} \; \mathrm{adott} \; b \in \{0,1,\dots,25\} \; \mathrm{eset\acute{e}n} \; b \\ \mathbf{z} \mapsto 25 & \mathrm{kititkos\acute{t}\acute{a}sa} \; b \mapsto b - s \; \mathrm{mod} \; 26. \; \ddot{\mathsf{U}}\mathrm{zenet} \; \mathrm{kititkos\acute{t}\acute{a}sa} \\ \mathrm{bet\~{u}nk\acute{e}nt.} & \end{array}
```

Példa

```
hello titkosítása az s=13 kulccsal: hello \rightarrow 7 4 11 11 14 \stackrel{\text{titkosítás}}{\rightarrow} 20 17 24 24 1 \rightarrow uryyb uryyb kititkosítása az s=13 kulccsal: uryyb \rightarrow 20 17 24 24 1 \stackrel{\text{kitikosítás}}{\rightarrow} 7 4 11 11 14 \rightarrow hello
```

```
Ha s = 13 kulcsot választjuk: Rot13.
```

Titkosítás és kititkosítás ugyanazzal a kulccsal: $-13 \equiv 13 \pmod{26}$.

A titkosítás nem biztonságos: betűgyakoriság vizsgálattal törhető (al-Kindi i.sz. 9 sz.)

Ha a különböző pozíciókban különböző kulcsokat választhatunk (véletlenszerűen) \Rightarrow bizonyítottan biztonságos

Gyakorlatban: One Time Pad - OTP

 Üzenetek: bináris formában:
 m=100100101

 Kulcs: bináris sorozat:
 s=010110110

Titkosítás: bitenkénti XOR (mod2 összeadás):

m=100100101 XOR s=010110110 c=110010011

Kritikus pont: az s titkos kulcs átadása.

RSA

Ron **Rivest**, Adi **Shamir** és Leonard **Adleman** 1977-ben a következő eljárást javasolták:

Kulcsgenerálás: Legyen p, q két (nagy, 1024 bites) prím, $n = p \cdot q$. Legyen $e \in \{1, \ldots, \varphi(n)\}$ olyan, hogy $(e, \varphi(n)) = 1$. Legyen d az $ex \equiv 1 \pmod{\varphi(n)}$ kongruencia megoldása.

Kulcsok: - nyilvános kulcs (n, e),

- titkos kulcs d.

Titkosítás: Adott $0 \le m < n$ üzenet titkosítása:

 $c = m^e \mod n$.

Kititkosítás Adott $0 \le c < n$ titkosított üzenet kititkosítása: $m = c^d \mod n$.

Algoritmus helyessége:

$$c^d = (m^e)^d = m^{e \cdot d} = m^{k \cdot \varphi(n) + 1} \stackrel{\mathsf{E-F}}{\equiv} m \pmod{n}$$

Valóságban az m üzenet egy titkos kulcs további titkosításhoz.

Az eljárás biztonsága azon múlik, hogy nem tudjuk hatékonyan faktorizálni az $n = p \cdot q$ szorzatot.

Feladat

Találjuk meg a következő szám osztóit.

RSA-100 =

5226050279225333605356183781326374297180681149613806886 57908494580122963258952897654000350692006139

RSA-2048=

25195908475657893494027183240048398571429282126204032027777137836043662020707595556 26401852588078440691829064124951508218929855914917618450280848912007284499268739280 72877767359714183472702618963750149718246911650776133798590957000973304597488084284 01797429100642458691817195118746121515172654632282216869987549182422433637259085141 86546204357679842338718477444792073993423658482382428119816381501067481045166037730 60562016196762561338441436038339044149526344321901146575444541784240209246165157233 50778707749817125772467962926386356373289912154831438167899885040445364023527381951 378636564391212010397122822120720357

RSA

RSA-2048 faktorizálása:

Próbaosztás (Eratoszthenész szitája): n szám esetén $\sim \sqrt{n}$ osztást kell végezni:

RSA-2048 $n\sim 2^{2048}$, $\sqrt{n}\sim 2^{1024}$ próbaosztás.

Ha 1 másodperc alatt $\sim 10^9 \approx 2^{30}$ osztás $\Rightarrow 2^{1024}/2^{30}=2^{994}$ másodperc kell a faktorizáláshoz.

 2^{994} másodperc $\approx 2^{969}$ év.

Ugyanezt 2 db géppel: 2⁹⁶⁸ év.

Univerzum életkora: 1,38 · 10¹⁰ év.

Példa

Kulcsgenerálás:

Legyen p = 61, q = 53 és $n = 61 \cdot 53 = 3233$, $\varphi(3233) = 3120$.

Legyen e = 17. Bővített euklidészi algoritmussal: d = 2753.

Nyilvános kulcs: (n = 3233, e = 17);

Titkos kulcs: d = 2753.

Titkosítás: Legyen m = 65.

 $c = 2790 \equiv 65^{17} \pmod{3233}$

Kititkosítás: Ha c = 2790:

 $2790^{2753} \equiv 65 \; (\bmod \; 3233)$

Digitális aláírást is lehet generálni: *e* és *d* felcserélésével:

(Ekkor külön n', e', d' kell a titkosításhoz!)

Aláírás Legyen $s = m^d \mod n$, ekkor az aláírt üzenet: (m, s).

Ellenőrzés $m \stackrel{?}{\equiv} s^e \pmod{n}$.

Diffie-Hellman kulcscsere protokoll

Az első nyilvános kulcsú kriptográfiai rendszert Whitfield **Diffie** és Martin **Hellman** 1976-ban publikálta.

em megbízható	Bob
csatorna	
	választ
$b \in$	$\in_R \{0,1,\ldots,p-2\}$
$\xrightarrow{g^a}$	
$\stackrel{g^b}{\longleftarrow}$	
	kiszámolja $(g^a)^b$
	$ \begin{array}{c} g^a \\ \xrightarrow{g^b} \end{array} $

16.

Diffie-Hellman kulcscsere protokoll

Nyilvános paraméterek: p (nagy) prím, g generátor mod p.

Kulcsok: Alice titkos kulcsa a: $1 \le a , nyilvános kulcsa <math>g^a \mod p$,

Bob titkos kulcsa b: $1 \le a < p-1$, nyilvános kulcsa $g^b \mod p$.

Közös kulcs: $g^{ab} \mod p$.

A protokoll biztonsága azon múlik, hogy a diszkrét logaritmus kiszámítás nehéz.

Ha $p\sim 2^{2048}$ (2048 bites), diszkrét logaritmus számolása $\sim 10^{30}$ év.

Példa

Nyilvános paraméterek: Legyen p = 11, g = 2.

Kulcsok: Alice titkos kulcsa a = 4, nyilvános kulcsa $2^4 \mod p = 5$.

Bob titkos kulcsa b = 8, nyilvános kulcsa $2^8 \mod p = 3$.

Közös kulcs: $(g^b)^a = 3^4 \mod p = 4$, $(g^a)^b = 5^8 \mod 4$.