Практическая работа 5. Электрохимические реакции в растворах.

Опыт 1. Гальванический элемент

Реактивы

Zn пластина, Cu пластина, растворы ZnSO₄ (1M), CuSO₄ (1M) и NaCl.

Оборудование

Наждачная бумага, стаканы 100 мл (3 шт), мерные колбы 100 мл (2 шт), пипетки 10 мл (2 шт), милливольтметр с проводами и клеммами, шпатель для реактивов, стеклянная палочка.

Порядок работы

Очистите цинковую и медную пластинки наждачной бумагой. В один стакан на 100 мл налейте 2/3 объема 1М раствора сульфата цинка, в другую 1М раствор сульфата меди. Соедините стаканы солевым мостиком (трубочкой из фильтровальной бумаги, смоченной раствором хлорида натрия), а пластинки подсоедините к клеммам милливольтметра и опустите в растворы соответствующих солей.

Что наблюдается? Составьте схему гальванического элемента. Какие процессы происходят на катоде и аноде? Рассчитайте ЭДС данного гальванического элемента. Сравните теоретическое и экспериментально полученное значение ЭДС. До каких пор может работать данный гальванический элемент?

Повторите эксперимент, приготовив с помощью пипетки и мерной колбы на 100 мл 0,1М и 0,01М растворы сульфата меди.

Постройте график зависимости ЭДС гальванического элемента от десятичного логарифма концентрации ионов Cu^{2+} . Аппроксимируйте точки прямой в полулогарифмических координатах, найдите ее наклон и сравните получившееся значение с теоретическим.

Опыт 2. Электролиз растворов электролитов

Реактивы

Растворы NaCl (1M), KI, $K_3[Fe(CN)_6]$, фенолфтатеина.

Оборудование

Инертные электроды (2 шт), железный электрод, электролизеры (2 шт), источник питания, фильтровальная бумага, шпатель для реактивов, стеклянная палочка, штатив.

Порядок работы

а) Электролиз растворов солей электролитов

Заполните электролизер раствором 1М хлорида натрия и погрузите в него два инертных электрода (рис. 1). В раствор добавьте 2-3 капли фенолфталеина. Включите источник питания и установите ток электролиза 80-100 мА. Поднесите к выделяющимся на электродах газам фильтровальную бумажку, смоченную раствором иодида калия.

Какие газы выделяются на аноде, на катоде? Опишите наблюдения. Напишите катодный и анодный процессы, а также реакцию, объясняющую появление окраски фильтровальной бумаги.

- 1 Электролизер;
- 2 инертные (графитовые) электроды;
- 3 источник постоянного тока.

Рис. 1. Схема проведения электролиза растворов электролитов

б) Анодное растворение металла

К источнику постоянного тока присоедините электроды, причем инертный электрод нужно присоединить к отрицательному полюсу, а железный электрод – к положительному полюсу. В качестве электролита возьмите 1М раствор хлорида натрия. В раствор добавьте 3-5 капель гексацианоферрата (III) калия (красной кровяной соли К₃[Fe(CN)₀]).

Что наблюдается во время электролиза? Опишите наблюдения и подтвердите наблюдаемое соответствующими уравнениями реакций.

Практическая работа 6. Химические свойства галогенов и их соединений.

Опыт 3. Получение бромной воды и йодной воды

Реактивы

Сухие соли KBr и KI, растворы HCl (1M) и NaClO.

Оборудование

Пробирка, стеклянная палочка, шпатель для реактивов.

Порядок работы

В пробирку поместите 2-3 микрошпателя твердого бромида калия, добавьте к нему 1 мл 1М соляной кислоты. Перемешайте до растворения, а затем осторожно по каплям добавьте раствор гипохлорита натрия (NaClO). Выполните аналогичный опыт, заменив бромид калия йодидом калия.

Как изменяется окраска растворов при добавлении NaClO? Запишите уравнения протекающих реакций.

Полученные бромную и йодную воду сохраните для дальнейших опытов. В случае слишком интенсивной окраски разведите растворы водой до соломенного цвета.

Опыт 4. Сравнение окислительных свойств галогенов

Реактивы

Раствор KI, Br₂-вода, гексан (орграстворитель).

Оборудование

Пробирки, стеклянная палочка, стакан.

Порядок работы

В пробирку налейте 1 мл раствора йодида калия. Добавьте 1 мл органического растворителя. Прилейте 1 мл бромной воды. Перемешайте раствор и по окраске слоя органического растворителя определите, какой галоген выделяется в свободном виде.

Составьте уравнение реакциии.

Опыт 5. Восстановительная активность галогенид-ионов (*опыт выполняется в вытяжном шкафу!*)

Реактивы

Сухие соли KBr и KI, H_2SO_4 конц., гексан (орграстворитель).

Оборудование

Пробирка, шпатель, стеклянная палочка, пипетка, стакан.

Порядок работы

Поместите в одну пробирку несколько <u>кристаллов</u> бромида калия, а в другую – йодида калия. В каждую пробирку добавьте по 2-3 капли концентрированной серной кислоты. Начнется бурная реакция. Осторожно добавьте воды и наслоите органический растворитель. Обратите внимание на цвет и запах продуктов обеих реакций.

На основании этого и предыдущего опытов сравните восстановительную активность галогенид-ионов. Составьте уравнения соответствующих окислительновосстановительных реакций.

Опыт 6. Качественные реакции на галогенид-ионы

Реактивы

Растворы NaCl, KBr, KI, $Pb(NO_3)_2$.

Оборудование

Пробирки.

Порядок работы

В три пробирки поместите по 3-5 капель растворов солей: в первую пробирку — хлорида натрия, во вторую — бромида калия, в третью — йодида калия. В каждую пробирку прилейте раствор нитрата свинца ($Pb(NO_3)_2$).

Отметьте окраски образовавшихся осадков. Напишите уравнения реакций и сделайте вывод о возможности качественного обнаружения йодид-ионов.

Опыт 7. Взаимодействие брома и йода со щелочами

Реактивы

 Br_2 -вода, I_2 -вода, растворы NaOH и H_2SO_4 (1M), индикаторная бумага.

Оборудование

Пробирки, пипетка.

Порядок работы

К 5-6 каплям бромной воды добавьте по каплям 1M раствор гидроксида натрия до обесцвечивания раствора. Полученный раствор подкислите несколькими каплями 1M серной кислоты до образования кислой среды. Проведите аналогичный опыт с йодной водой.

Почему изменяется окраска растворов? Составьте уравнения окислительновосстановительных реакций.

Опыт 8. Взаимодействие галогенов с металлами

Реактивы

 Br_2 -вода, I_2 -вода, Fe порошок, растворы $K_4[Fe(CN)_6]$ и $K_3[Fe(CN)_6]$, гексан (орграстворитель).

Оборудование

Пробирки, пипетки, стакан 100 мл.

Порядок работы

Налейте в пробирку 1-2 мл бромной воды и наслоите сверху 1 мл органического растворителя. Интенсивно встряхивая пробирку, экстрагируйте бром в органический растворитель, обратите внимание на окраску органического растворителя после экстрагирования. Внесите в чистую сухую пробирку небольшое количество порошка железа, а затем отберите с помощью пипетки наслоенный растворитель с бромом из первой пробирки и перенесите его в пробирку с порошком. Интенсивно встряхивайте пробирку до обесцвечивания растворителя.

Добавьте в полученную смесь небольшое количество воды и перемешайте. С помощью желтой кровяной соли покажите наличие ионов железа (III) в водном растворе.

Повторите эксперимент с йодной водой. Показывает ли желтая кровяная соль присутствие ионов железа (III) в данном случае? Почему? Как обнаружить продукт взаимодействия йода с железом? Проведите соответствующий эксперимент.

Запишите все наблюдения и соответствующие уравнения реакций.

Практическая работа 7. Свойства неметаллов IV-VI групп и их соединений.

Опыт 1. Осаждение сульфидов и их свойства (опыт проводят в вытяжном шкафу!).

Реактивы

Pастворы ZnCl₂, CuSO₄, FeCl₂, FeCl₃, MnCl₂, Na₂S, HCl.

Оборудование

Пробирки.

Порядок работы

Налейте в пробирки по 1 мл растворов солей цинка, меди(II), железа(II), марганца(II). В каждую пробирку добавьте по несколько капель раствора сульфида натрия. К каждому из полученныйх осадков прилейте раствор соляной кислоты.

Отметьте цвета образующихся осадков, напишите уравнения реакций в молекулярной и ионно-молекулярной формах. Что наблюдается при добавлении соляной кислоты? Сравните сульфиды по их отношению к кислотам.

Опыт 2. Восстановительные свойства сульфидов (опыт проводят в вытяжном шкафу!).

Реактивы

Раствор Na_2S , Br_2 -вода, I_2 -вода.

Оборудование

Пробирки.

Порядок работы

В две пробирки налейте по 1 мл раствора сульфида натрия. В одну пробирку добавьте 1 мл бромной воды, в другую – столько же йодной воды.

Что Вы наблюдаете? Напишите уравнения реакций.

Опыт 3. Получение серы и растворение ее в щелочи

Реактивы

Pастворы Na₂S₂O₃, H₂SO₄, NaOH.

Оборудование

Пробирки, стеклянная палочка, спиртовка.

Порядок работы

Налейте в пробирку 1 мл раствора тиосульфата натрия и добавьте к нему несколько капель разбавленной серной кислоты. Подождите некоторое время до выпадения осадка серы. Ускорить выпадение осадка можно, потерев по стенке пробирки стеклянной палочкой. Прибавляйте в раствор с осадком по каплям раствор гидроксида натрия до полного растворения осадка. Если осадок сразу не растворяется, нагрейте пробирку.

Напишите уравнения протекающих реакций.

Опыт 4. Свойства тиосульфатов

Реактивы

Растворы $Na_2S_2O_3$, HCl, Br_2 -вода, I_2 -вода.

Оборудование

Пробирки.

Порядок работы

Возьмите 3 пробирки и налейте в каждую по 1 мл раствора тиосульфата натрия. В первую пробирку добавьте раствор соляной кислоты, во вторую – бромной воды, в третью – йодной воды.

Запишите наблюдения в каждой из пробирок и соответствующие уравнения реакций.

Опыт 5. Свойства солей аммония (опыт проводят в вытяжном шкафу!)

Реактивы

Сухие соли $(NH_4)_2CO_3$ и NH_4CI .

Оборудование

Пробирки, спиртовка.

Порядок работы

В сухую пробирку поместите немного карбоната аммония и нагрейте вещество на пламени. Проделайте аналогичный опыт с хлоридом аммония.

Что наблюдается? Запишите уравнения реакций. Объясните различие в поведении солей.

Опыт 6. Разложение нитрата калия

Реактивы

Сухая соль KNO_3 , растворы H_2SO_4 и $KMnO_4$.

Оборудование

Пробирки, шпатель, лучинка, спиртовка.

Порядок работы

В сухую пробирку внесите 1-2 микрошпателя твердого нитрата калия. Нагрейте пробирку на пламени спиртовки до расплавления и кипения соли. Внесите в пробирку тлеющую лучинку. Остаток растворите в 1 мл дистиллированной воды с добавлением небольшого количества 1М серной кислоты и внесите 1-2 капли раствора перманганата калия.

Запишите наблюдения и уравнение протекающих реакций.

Опыт 7. Качественная реакция на анионы

1) Качественное обнаружение соединений серы

Реактивы

Растворы Na₂S, HCl (1M), PbSO₄, BaCl₂, Na₂SO₃, KMnO₄, KI, Na₂S₂O₃, FeCl₃.

Оборудование

Пробирки, фильтровальная бумага.

Порядок работы

- а) В пробирку внесите раствор сульфида натрия и добавьте раствор 1М соляной кислоты и накройте пробирку фильтровальной бумажкой, смоченной нитратом свинца. Окрашивание бумажки в черный цвет свидетельствует о наличии сульфид ионов.
- б) В пробирку внесите несколько капель сульфата натрия, подкислите раствор 1М соляной кислотой и прибавьте несколько капель хлорида бария. Выпадение белого кристаллического осадка свидетельствует о наличии сульфат ионов.
- в) В две пробирке налейте по 1 мл сульфита натрия и подкислите 2 каплями 1М соляной кислоты. В первую пробирку добавьте 2-3 капли раствора перманганата калия. Наблюдайте за обесцвечиванием раствора. Во вторую пробирку внесите 2-3 капли йодида калия. Наблюдайте за изменением окраски раствора. В первую пробирку внесите хлорид бария. Совокупность этих реакций свидетельствует о наличие сульфит ионов в растворе.
- г) В пробирку внесите раствор тиосульфата натрия и добавьте раствор хлорида железа (III). Как изменится окраска раствора?

遂 Запишите наблюдения и уравнения реакций в опытах а)-г).

2) Качественное обнаружение соединений азота

Реактивы

Растворы KNO₃, NaOH (1M), NaNO₂, HCl (1M), KMnO₄, KI, BaCl₂, NH₄Cl; порошок Zn.

Оборудование

Пробирки, шпатель, спиртовка, индикаторная бумага, фильтровальная бумага.

Порядок работы

- а) В пробирку внесите натриевую или калиевую соль азотной кислоты 1-2 микрошпателя порошка цинка и 1 мл 1М раствора гидроксида натрия. Содержимое пробирки нагрейте. Из пробирки начнет выделяться газ с резким запахом. С помощью универсальной индикаторной бумажки, смоченной дистиллированной водой, определите выделяющийся газ.
- б) В пробирку внесите нитрит натрия и проделайте опыты аналогичные опыту 7.1в, а затем добавьте в обе пробирки хлорид бария. Сделайте вывод о том, как различить сульфит и нитрит натрия.
- в) В пробирку внесите 1 мл раствора хлорида аммония и добавьте 2-3 капли 1М раствора гидроксида натрия. Нагрейте пробирку и поднесите к ней универсальную индикаторную бумажку, смоченной дистиллированной водой. Выделяющийся газ свидетельствует о наличие ионов аммония.

Запишите наблюдения и соответствующие уравнения реакций в опытах а)-в).