江西财经大学 2021-2022 第一学期期末考试试卷

课程名称:	1004100554A 概率论与数理统计 	授课课时: (主干课程)	64	考试用时: 适用对象: 试卷审核人	2020 级
一、单	项选择题 (从下列名	小腿的四个	各选答案中	选出一个正确	角答案。

	在名称: 做举论与数理统计(主干成 整命愿人 <u>江绍玫</u>	试卷审核人_ 谭利				
在		四个备选答案中选出一个正确答案。请将正确答案写题错选观未选者,该题不得分。每小题3分,共15分。)				
١.	设 A, B 为随机事件,则 0 < P(A) < 1,	$0 < P(B) < 1$,则 $P(A B) > P(A \overline{B})$ 的充分必要条件是				
()					
	. , , , , ,	B. $P(B A) > P(B \overline{A})$ D. $P(\overline{B} A) > P(B \overline{A})$				
2.	已知随机变量 X 和 Y 相互独立, $X \sim$ A. $X - Y \sim N(0,3)$	$N(2,4)$, $Y \sim N(2,1)$, 则 () B. $X + Y \sim N(2,5)$				
	C. $X - Y \sim N(0, 5)$	D. $X + Y \sim N(4, 3)$				
3.	设随机变量 X, Y 不相关,且 $EX = 2$.	$EY = 1$, $DX = 3$, \emptyset $E[X(X + Y - 2)] = ($				
	A. 5 B. 3	C3 D5				
4.	设总体 X ~ N(1,5), X ₁ , X ₂ ,, X ₁₀ 分 A. l B. 5	是来自总体 X 的简单随机样本,则 $D(\overline{X}) = ($) C. 0.1 D. 0.5				
5.	设 $X_1, X_2, \ldots, X_n (n \ge 2)$ 为来自总体 N	$V(\mu, 1)$ 的简单随机样本。记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列结论				
中不正确的是()						
	A. $\sum_{i=1}^{n} (X_i - \mu)^2$ 服从 χ^2 分布	B. $\sum_{i=1}^{n} (X_i - \overline{X})^2$ 服从 χ^2 分布				
	C. 2(X _n -X ₁) ² 服从 2 分布 - 填空题 (请然下列名小题的正)	D. $n\left(ar{X}-\mu ight)^2$ 服从 χ^2 分布 确答案写在答题卷上,并在答案前标明题号。每空 3				
分,	,共15分。)	为古米刁任合处心上,月任合然即称为处了。 安工 0				
	1. 己知 $P(\bar{A}) = 0.3$. $P(B) = 0.4$, $P(B) = 0.4$	$P(A\bar{B}) = 0.5 P(B/AU\bar{B}) = \underline{\qquad}$				
	2. 设随机变量 X 和 Y 的数学期望分	别为-2 和 2. 方差分别为 1 和 4, 相关系数为-0.5, 则				
_						

根据契比雪夫不等式 P(|X+Y|≥6)≤_____

3. 设随机变量 X 和 Y 相互独立,且均服从参数为 λ 的指数分布, $P(X>2)=e^4$,则 $P[\max(X,$ $Y) \leq 1)$] _______.

第1页共3页

4. 设($X_1, X_2, ... X_9$)为来自总体 $N \sim (\mu.81)$ 的样本,由一组观测值得到样本均值为 580.15,则总体未知参数 μ 的 0.95 的置信区间为______。

 $[\mathcal{O}(1.96) = 0.975 \quad \mathcal{O}(1.645) = 0.95]$

5. 设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)$ $(\sigma > 0)$ 的简单随机样本,则统计量 $S = \frac{X_1 - X_2}{|X_3 + X_4 - 2|}$ 服从的分布为 _____。

三、计算题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 15 分。)

设随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} k e^{-(3x+4y)}, & x > 0, y > 0, \\ 0, & \text{if the.} \end{cases}$$

试求:

- (1) 富数 k;
- (2) (X, Y) 的联合分布函数 F(x, y);
- (3') $P\{0 < X \le 1, 0 < Y \le 2\}$.

四、计算题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 15 分。)

设总体 X 的概率密度为 $f(x) = \begin{cases} (\theta+1)x^{\theta}, 0 < x < 1 \\ 0, 其它 \end{cases}$, 其中 $\theta > -1$ 为未知参数。

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的极大似然估计量。

五、应用题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 10分。)

中国大豆、玉米两类农作物的单产不及美国的 60%,而品种抗病性低是影响中国大豆产 为主要因素之一。某大豆专家拟对国内所有大豆品种进行抗病性鉴定,以期筛选到高抗品 现有三小袋编号 1、2、3 的大豆种子,以往数据显示,其植株感病率分别为 0.8、0.9、 专家随机地从一袋种子中抽出 3 粒进行感病性验证,试问这 3 粒种子植株感病的概率多

第2页共3页

六、应用题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 10 分。)

水稻干粒重是以克为单位表示的一干粒种子的重量,是体现种子大小与饱满程度的一项指标,也是田间预测产量时的重要依据。某水稻专家经多年努力,成功选育成出一超级稻品种,该品种每亩可分蘖 2.0×10⁵ 支有效穗,每支有效穗可结实种子 200 粒。假设每粒种子生长过程相互独立,且成熟后重量(单位:克)是 0.02、0.025 和 0.03 的概率分别为 0.2、0.6 和 0.2。试预测该超级稻品种每亩产量超 1000 千克(公斤)的可能性多大?

【注:水稻产量(千克/亩) = 每亩有效穗数 × 每穗粒数 × 千粒重 × 10-6)】

七、应用题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共10分。)

蛋白质含量高低是决定奶制品品质优劣的重要指标。某奶制品厂家申请备案的企业标准规定,250 mL 规格盒装纯牛奶,每盒蛋白质含量不低于8.0克,标准差不超过0.5克。现企业某质检员抽取16盒该规格牛奶,测得其平均蛋白含量7.8克,样本修正标准差0.6克。假定盒装牛奶蛋白质含量服从正态分布,试问在显著性水平0.05下,该企业盒装纯牛奶的蛋白质含量均值与方差是否符合其企业标准?

$$(t_{0.05}(15) = 1.753, \chi^2_{0.95}(15) = 7.261, \chi^2_{0.05}(15) = 24.996)$$

八、证明题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的证明步骤。 10分。)

若随机变量 X、Y 相互独立,且 $X \sim N$ (1,2) , $Y \sim N$ (1,4) , 证明: D(XY) = 14。

江西财经大学 2021-2022 第二学期期末考试试卷

试卷代码: 1004100554A

授课课时:64

考试用时: 110 分钟

课程名称: 概率论与数理统计(主干课程)

适用对象: 2020 级

试卷命题人___丁飞鹏

试卷审核人 彈利

一、单项选择题(从下列各小题的四个备选答案中选出一个正确答案。请将正确答案写 在答题卷上,并在答案前标明题号。答案错选或未选者,该题不得分。每小题 3 分,共 15 分。》

1. 对于任意二事件 A 和 B ,若 P(AB) = 0 ,则必有______

A.
$$\overline{A}\overline{B} = AE$$

B.
$$P(A\overline{B}) = P(A)$$

$$C. P(A)P(B) = 0$$

D.
$$\overline{A}\overline{B} \neq AE$$

2. 设随机变量 X 的概率密度为 f(x) ,则 f(x) 一定满足_____

$$A. \ 0 \le f(x) \le 1$$

B.
$$P(X > x) = \int_{-\infty}^{x} f(x) dx$$

C.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

D.
$$f(+\infty) = 1$$

3. 已知随机变量 X 服从 B(n, p), E(X)=4, D(X)=3.6, 则_____

A.
$$n = 20, p = 0.2$$

B.
$$n = 40, p = 0.9$$

C.
$$n = 10$$
, $p = 0.4$

D.
$$n = 40, p = 0.1$$

4. 若二维随机变量(X,Y)的协方差cov(X,Y)=0,则以下结论正确的是____

$$A. X 与 Y$$
相互独立 B. $D(X-Y) = D(X) - D(Y)$

C.
$$D(X + Y) = D(X) + D(Y)$$
 D. $D(XY) = D(X)D(Y)$

D.
$$D(XY) = D(X)D(Y)$$

5. X 服从正态分布,E(X) = -1, $E(X^2) = 4$, $X_1, ..., X_n$ 是来自总体 X 的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 为样本

均值,则 \overline{X} 服从的分布是___

A.
$$N(-1, \frac{3}{4})$$

B.
$$N(-1, \frac{4}{3})$$

A.
$$N(-1, \frac{3}{n})$$
 B. $N(-1, \frac{4}{n})$ C. $N(-\frac{1}{n}, 4)$ D. $N(-\frac{1}{n}, \frac{3}{n})$

第1页共3页

- 1. $\mathcal{C}_{A}P(A) = 0.5$, P(B) = 0.3, $P(A \cup B) = 0.6$, $\mathcal{M}_{A}P(A B) = \underline{\hspace{1cm}}$.
- 2. 设随机变量 X 在 (1,6) 上服从均匀分布,则关于 t 的一元二次方程 $t^2 Xt + 1 = 0$ 有实根的概率为_____。
- 3. 设随机变量 X_1, X_2, X_3 相互独立,其中 X_1 服从区间 [0, 6] 上的均匀分布, X_2 服从正态分布 $N(0, 2^2)$, X_3 服从参数为3 泊松分布 P(3),记 $Y=X_1-2X_2+4X_3$,则 D(Y)=______。
- 4. 若 X ~ N(0,1), Y ~ N(0,1), 且 X 与 Y 相互独立,则 Z = X + Y 服从_____。
- 5. 设 S_0^2 是从N(0,1)中抽取容量为 16 的未修正样本方差,则 $E(S_0^2) = _____$ 。

三、计算题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 15 分。)

已知连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x \le 0 \\ A + Be^{-\frac{x^2}{2}}, & x > 0 \end{cases}$

(1) 求常数 A, B 的值; (2) 求随机变量 X 的密度函数 f(x); (3) 求 $P(\sqrt{2} < X < 2)$ 。

四、计算题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 15 分。)

已知某随机变量 X 服从参数为 λ 的指数分布,设 X_1, X_2, \cdots, X_n 是来自总体的样本,求 λ 的极大似然估计和矩估计。

设随机变量 X 在区间[1,6]上服从均匀分布,现在对 X 进行 3 次独立观察,求这 3 次观察至少有两次观察值大于 4 的概率。

8

六、应用**应**(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 10 分。)

某保险公司多年统计资料表明,在索赔户中,被盗索赔户占 20%,以 X 表示在随机抽查的 100 个索赔户中,因被盗向保险公司索赔的户数,求被盗索赔户不少于 14 户且不多于 30 户的概率近似值(保留至小数点后四位)。($\Phi(1.5)=0.9332$, $\Phi(2.5)=0.9938$)

七、应用题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的计算步骤。 共 10 分。)

一批矿砂的5个样品中的镍含量经测定数据如下(%):

3.24 3.27 3.23 3.26 3.24

今算得样本均值 $\bar{x}=3.248$,修正的样本标准差s=0.0164,设镍含量总体服从正态分布,问在显著性水平 $\alpha=0.01$ 下可否认为这批矿砂的镍含量的均值为 3.25? ($\iota_{0.005}(4)=4.6041$)

八、**证明**题(请将正确答案写在答题卷上,并在答案前标明题号,保留必要的证明步骤。 共 10 分。)

设总体X 服从参数为 λ 的泊松分布, $X_1,...,X_n$ 是样本, \bar{X},S^2 分别是样本均值和修正样本方差。证明:对于任意常数 $c(0 \le c \le 1)$, $c\bar{X}+(1-c)S^2$ 是 λ 的无偏估计量。

