Math185Notes

Trustin Nguyen

January 24, 2024

Contents

_	Week 1		2
	1.1	Complex Numbers	2
		Complex Numbers: Algebra, Geometry, and Applications	
_	Week 2		
	2.1	Applications Continued	6
	2.2	Complex Differentiation	7
	2.3	Complex vs Real Differentiability	(

Chapter 1

Week 1

1.1 Complex Numbers

Complex numbers are defined by pairs: $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. Addition:

$$(x,y) + (u,v) = (x + u, y + v)$$

and multiplication:

$$(x,y) \cdot (u,v) = (xu - yv, xv + yu)$$

Theorem 1.1.1

Addition is commutative, associative and \mathbb{R} - linear. Multiplication is commutative, associative and distributive for addition.

Notation, definitions, and observations:

- 0 stands for (0,0)
- 1 stands for (1,0)
- \mathbb{R} can be identified with $\mathbb{R} \times 0 \subseteq \mathbb{C}$, operations match.
- i stands for (0,1). Note that $i^2 = (-1,0)$
- Can write (x, y) = x + iy, (u, v) = u + iv with multiplication as:

$$(x + iy)(u + iv) = xu + i^2uv + ixv + iuy$$

- If z = x + iy, then x = Re(z) and y = Im(z).
- We have the conjugate $\overline{z} = x iy$.

Proposition:

- Re($\overline{z}w$) is the real dot product of z = (x, y) and w = u, v
- $Im(\overline{z}w)$ is the cross product also.
- $\overline{z}z$ is the squared length of (x, y).

Modulus and argument

Definition 1.1.1

The length of z = x + iy or $\sqrt{z\overline{z}}$. The argument, arg(z), is the angle formed with the x axis and undefined when z = 0.

Corollary: Every complex number is invertible.

Geometric Interpretation:

$$|z_1 \cdot z_2| = |z_1||z_2|$$

 $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$

and

$$z = (x, y) = x + iy = r(\cos \theta + i \sin \theta)$$

with r = |z|. Notice that

$$(\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi) = \cos (\varphi + \psi) + i \sin (\varphi + \psi)$$

So angles are added for unit vectors.

More Facts:

- Triangle Inequality: $|z + w| \le |z| + |w|$ or $|\sum_{i=1}^k z_i| \le \sum_{i=1}^k |z_i|$.
- Parallelogram law: $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$.

Complex exponential: Define the function $\exp(): \mathbb{C} \to \mathbb{C}$.

$$\exp(z) = e^{x}(\cos y + i \sin y)$$

for z = x + iy. It follows that $|\exp(z)| = e^{\operatorname{Re}(z)}$ and $\operatorname{arg}(\exp(z)) = \operatorname{Im}(z)$.

Theorem 1.1.2

$$\exp(z + w) = \exp(z) \cdot \exp(w)$$

Complex Numbers: Algebra, Geometry, and Appli-1.2 cations

Integral powers of complex numbers from geometry: If $z = r \cdot e^{i\theta}$, so |z| = r and $arg(z) = \theta$.

$$z^{n} = r^{n} \cdot (e^{i\theta})^{n} = r^{n} \cdot e^{in\theta}$$

so

$$|z|^n = |z|^n$$
, $arg(z^n) = n \cdot arg(z)$

If we consider the map $z \mapsto z^n$, then 0 and 1 are fixed points. This map takes polar grid to polar grid.

Example 1.2.1: $z \mapsto z^2$ in the cartesian grid. Look at action on real and imaginary axis:

$$z = x + 0 \cdot i$$

then

$$(x,0) \mapsto (x^2,0)$$

while

$$z = 0 + iy$$

and

$$(0,y) \mapsto (0,-y^2)$$

Consider a line that does not pass through the origin: $z = a + iy \mapsto a^2 - y^2 + 2ay \cdot i$.

$$(a, y) \mapsto (a^2 - y^2, 2ay)$$

In the image, we have (u, v), so $v = 2\alpha y$ and $u = \alpha^2 - \frac{v^2}{4\alpha^2}$.

n-th roots of unity are solutions to $w^n = z$. Modulus $\sqrt[n]{|z|}$ and n possible values for modulus.

De Moivre formulas:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Proposition:

$$x^{n} - 1 = (x - 1)(x - \zeta_{n})(x - \zeta_{n}^{2}) \cdots (x - \zeta_{n}^{n-1})$$

into linear terms.

Primitive roots of unity are roots of unity ζ_n^k such that $\zeta_n^{kj} \neq 1$ for any $1 \leq j < n$

Theorem 1.2.1

The set of n-th root of unity break up into primitive d-th roots of unity for the group of divisors d of n.

Theorem 1.2.2

Grouping the factors of

$$x^{n} - 1 = (x - 1)(x - \zeta_{n})(x - \zeta_{n}^{2}) \cdots (x - \zeta_{n}^{n-1})$$

according to divisors of n with primitive roots gives a factorization

$$x^{n} - 1 = \prod_{d \mid n} \Phi_{d}(x)$$

and $\Phi_{\rm d}(x)$ are the d-th cyclotomic polynomials which has integer coefficients.

Example 1.2.2: n = 3, we have

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

then

$$\Phi_1(x) = (x-1)$$

$$\Phi_3(x) = x^2 + x + 1$$

Example 1.2.3: n = 6,

$$x^6 - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)$$

Aside: Cyclotomic integers and fake proofs of FLT. Cyclotomic integers are $\mathbb{Z}[\zeta_2, \zeta_3, \ldots]$, adjoin all roots of unity of order to \mathbb{Z} . Recall FLT:

$$x^n + y^n = z^n$$
 for $n > 2$ has no integer solutions

or

$$x^n - y^n = z^n$$

Factor:

$$(x-y)(x-\zeta_n\cdot y)(x-\zeta_n^2\cdot y)\cdots (x-\zeta_n^{n-1}y)=z^n$$

Relies on $\mathbb{Z}[\zeta_n]$ being a UFD.

Chapter 2

Week 2

2.1 Applications Continued

Cardano's formula: $f(x) = x^3 - 3px - 2q = 0$ has solutions

$$(q+\sqrt{q^2-p^3})^{1/3}+(q-\sqrt{q^2-p^3})^{1/3}$$

where

$$\Delta = \sqrt{q^2 - p^3}$$

Cases:

- p < 0 there is a unique real root
- p > 0 then there is extrema at $3x^2 3p = 0$, $x = \pm \sqrt{p}$, value : $\pm 2p\sqrt{p} 2q$. If $|q| > p\sqrt{p}$, there is a unique solution. If $|q| < p\sqrt{p}$, there are 3 solutions.

Geometry:

- Translation: $a \in \mathbb{C}$: $z \mapsto z + a$
- Rotation: Multiplication by $e^{i\theta}$: $z \mapsto e^{i\theta}z$
- Scaling by $r \in \mathbb{R}$: $z \mapsto r \cdot z$.

Observation: $\begin{bmatrix} p & -q \\ q & p \end{bmatrix}$ acts as rotation on \mathbb{R}^2 by θ where $p \pm iq = r \cdot e^{i\theta}$.

Areas of Polygons: The area of a polygon with vertices located at z_1, \ldots, z_n ordered anti-clockwise is

$$\frac{1}{2}(\operatorname{Im}(\overline{z_1}z_2 + \overline{z_2}z_3 + \dots + \overline{z_{n-1}}z_n + \overline{z_n}z_1))$$

Proof. The formula is invariant under translations and rotations:

$$z_k \mapsto e^{i\theta} \cdot z_k$$

and

$$\overline{z_k}z_{k+1} \mapsto \overline{z_k}e^{-i\theta} \cdot e^{i\theta}z_{k+1} = \overline{z_k}z_{k+1}$$

Do the same for translation. Additive check:

$$(\overline{z_1}z_2 + \overline{z_2}z_3 + \overline{z_3}z_1) + (\overline{z_1}z_3 + \overline{z_3}z_4 + \overline{z_4}z_1)$$

Complex Inversion: This is the map

$$z \mapsto \frac{1}{z}$$

Bijection of \mathbb{C}^{\times} . Real inversion sends $(r,\theta)\mapsto (\frac{1}{r})$. Complex inversion: $(r,\theta)\mapsto (\frac{1}{r},-\theta)$. Fixed points: $z=\frac{1}{z},z^2=1$.

Inversion

Theorem 2.1.1

Inversions maps clircles to clircles. Clircles are circles or lines.

Note: Equation of a line in \mathbb{C} is $\alpha z + \overline{\alpha z} = c$, where α is in $\mathbb{C} \setminus \{0\}$ and c is a real number. Equation of a circle is $|z - p|^2 = r^2$.

Definition

2.1.1

Mobius Transformations

$$z \mapsto \frac{az+b}{cz+d} = \mu(z)$$

where $ad - bc \neq 0$.

The map

Theorem 2.1.2

- μ is a bijection from $\mathbb{C}\setminus\{-\frac{d}{c}\}$ to $\mathbb{C}\setminus\{\frac{a}{c}\}$.
- Composition of maps μ is matrix multiplication:
- Every Mobius transformation is a composition of rotations, scalings, translations and inversions. So these take clircles to clircles.

Riemann sphere

Definition 2.1.2

 $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. This has a topology as

- $\mathbb{C} \cong \mathbb{R}^2$
- neighborhood of ∞ sets containing the exterior of some large disk in \mathbb{C} .

Corollary: We say that a sequence of F_{κ} diverges to ∞ if $\lim |z_n| = \infty$.

We get $\hat{\mathbb{C}}$ as a unit sphere in \mathbb{R}^3 by stereographic projection. The point at the north pole corresponds to ∞ .

2.2 Complex Differentiation

Functions are defined on open sets in \mathbb{C} which will be continuous in this course. Functions might have singularities $z \mapsto \frac{1}{z}$.

Definition 2.2.1

Let $I\subseteq\mathbb{R}$ be an open interval. A function $f:I\to\mathbb{R}$ is differentiable at a point $x_0\in I$ if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. $f(x_0) + (x - x_0) \cdot f'(x_0)$ is the best linear approximation of f for x_0 .

Definition

2.2.2

Let $U \subseteq \mathbb{R}^2$ be an open subset. A function $f: U \to \mathbb{R}$ is differentiable at $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \in U$ if there exists a linear map $Df: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\frac{|f(x) - f(p) - Df(x - p)}{\|x - p\|\|} \rightarrow 0$$

Remark: If $f = \begin{bmatrix} u \\ v \end{bmatrix}$, then Df is the Jacobian matrix: $\begin{bmatrix} U_x & U_y \\ V_x & V_y \end{bmatrix}$.

$$f\begin{bmatrix} u \\ v \end{bmatrix}(x,y) = \begin{bmatrix} u \\ v \end{bmatrix}(x,y) + \begin{bmatrix} U_x & U_y \\ V_x & V_y \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} + (error)$$

Differentiability Theorem

Theorem 2.2.1

If the partial derivatives are everywhere defined and continuous in U, then f is differentiable in U.

Remark: For limits and convergence in \mathbb{C} , use \mathbb{R}^2 . The formula $z \mapsto \frac{1}{z}$ can be rewritten as $z \mapsto \frac{\overline{z}}{\|z\|}$ which is continuous away from 0. So algebra and limits interact similar to real case.

Definition 2.2.3

f is complex differentiable at $z_0 \in U$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 exists

$$f(z) = z^n,$$

$$\frac{z^{n}-z_{0}^{n}}{z-z_{0}}=z^{n-1}+z^{n-2}z_{0}+\cdots+z^{1}z_{0}^{n-2}+z_{0}^{n-1}$$

Right hand side goes to nz^{n-1} , so $f'(z) = nz^{n-1}$.

Theorem 2.2.2

If f, g are complex differentiable at z_0 , so are their products, sum, quotient.

Corollary: We can differentiable rational functions also:

$$z \mapsto \frac{P(z)}{Q(z)}$$

for P, Q polynomials, when $Q(z) \neq 0$.

$$f(z) = \frac{1}{z}, f'(z) = \frac{-1}{z^2}$$

Holomorphic

Definition 2.2.4

A function $f: U \to \mathbb{C}$ is holomorphic if it is complex differentiable everywhere in U.

Complex vs Real Differentiability 2.3

Proposition: f is complex differentiable at $z_0 = x_0 + iy_0$ means the map $\begin{bmatrix} Re(f) \\ Im(f) \end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$.

Cauchy-Riemann

Theorem 2.3.1

 $z \mapsto f(z)$ is complex differentiable at z_0 iff the map $(x,y) \mapsto (u,v)$ is real differentiable at (x_0, y_0) and satisfies $u_x = v_y$, $u_y = -v_x$.

Example 2.3.1: The complex exponential map is holomorphic in \mathbb{C} .

$$z \mapsto \exp(z)$$

(x,y) \mapsto ($e^x \cos y$, $e^x \sin y$)

and

$$\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} = \begin{bmatrix} p & -q \\ q & p \end{bmatrix}$$

The derivative is $p + iq = e^{x}(\cos y + i \sin y) = e^{z}$

Example 2.3.2: The map $(x,y) \mapsto (x^2 + y^2, 2xy)$ is differentiable at y = 0 but not holomorphic in \mathbb{C} .

Example 2.3.3: $(x, y) \mapsto (\frac{1}{2} \log(x^2 + y^2), \arctan \frac{y}{x})$ for x > 0.

General properties of holomorphic maps:

The set of holomorphic maps $f:U\to\mathbb{C}$ is an algebra. Set is closed under addition and multiplication. Also closed under multiplication by inverse.

Theorem 2.3.2

If $f: U \to \mathbb{C}$ is holomorphic and twice real differentiable, then f' is also holomorphic.

Proof. We have

$$f' = u_x + iv_x$$

and checking CR for f', we need $(u_x)_x = (v_x)_y$ and $(u_x)_y = -(v_y)_x$. Flip the subscripts by Clairant theorem and we see that f' is holomorphic.