Proyecto 3: Reemplazo de Equipos

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

25 de septiembre de 2025

Problema de Reemplazo de Equipos

El problema consiste en determinar el momento óptimo para reemplazar un equipo durante un período de planificación.

Fórmula del costo: $C_{t,j} = \text{Compra} + \sum_{k=1}^{j-t} \text{Mantenimiento}_k - \text{Venta}_{j-t}$ Algoritmo: Programación Dinámica hacia atrás

 $\min_{\substack{\text{min}(t+\text{vida útil},n)\\ \text{min}}} \{C_{t,j} + g(j)\} \text{ con } g(n) = 0$ Función recursiva: g(t) =

Datos del Problema

• Costo inicial (compra): \$650,00

■ Plazo del proyecto: 6 años

• Vida útil del equipo: 4 años

Cuadro 1: Datos del equipo por año de uso

	1 1 1	
Año de Uso	Mantenimiento	Valor Residual
1	\$50,00	\$550,00
2	\$65,00	\$450,00
3	\$75,00	\$350,00
4	\$95,00	\$250,00

Cálculo de Costos $C_{t,j}$

Cuadro 2: Cálculo detallado de costos por período

Período (t-j)	Duración	Fórmula	Costo
0-1	1 año	650 + 50 - 550	\$150,00
0-2	2 años	650 + 50 + 65 - 450	\$315,00
0-3	3 años	650 + 50 + 65 + 75 - 350	\$490,00
0-4	4 años	650 + 50 + 65 + 75 + 95 - 250	\$685,00
1-2	1 año	650 + 50 - 550	\$150,00
1-3	2 años	650 + 50 + 65 - 450	\$315,00
1-4	3 años	650 + 50 + 65 + 75 - 350	\$490,00
1-5	4 años	650 + 50 + 65 + 75 + 95 - 250	\$685,00
2-3	1 año	650 + 50 - 550	\$150,00
2-4	2 años	650 + 50 + 65 - 450	\$315,00
2-5	3 años	650 + 50 + 65 + 75 - 350	\$490,00
2-6	4 años	650 + 50 + 65 + 75 + 95 - 250	\$685,00
3-4	1 año	650 + 50 - 550	\$150,00
3-5	2 años	650 + 50 + 65 - 450	\$315,00
3-6	3 años	650 + 50 + 65 + 75 - 350	\$490,00
4-5	1 año	650 + 50 - 550	\$150,00
4-6	2 años	650 + 50 + 65 - 450	\$315,00
5-6	1 año	650 + 50 - 550	\$150,00

Cálculo de g(t) (Programación Dinámica)

- g(6) = 0 (caso base)
- $g(5) = \min\{C_{5,6} + g(6) = 150,00\} = \$150,00$
- $g(4) = \min\{C_{4,5} + g(5) = 300, 00, C_{4,6} + g(6) = 315, 00\} = \$300, 00$
- $g(3) = \min\{C_{3,4} + g(4) = 450, 00, C_{3,5} + g(5) = 465, 00, C_{3,6} + g(6) = 490, 00\} = \$450, 00$
- $g(2) = \min\{C_{2,3} + g(3) = 600, 00, C_{2,4} + g(4) = 615, 00, C_{2,5} + g(5) = 640, 00, C_{2,6} + g(6) = 685, 00\} = $600, 00$
- $g(1) = \min\{C_{1,2} + g(2) = 750, 00, C_{1,3} + g(3) = 765, 00, C_{1,4} + g(4) = 790, 00, C_{1,5} + g(5) = 835, 00\} = \$750, 00$
- $g(0) = \min\{C_{0,1} + g(1) = 900, 00, C_{0,2} + g(2) = 915, 00, C_{0,3} + g(3) = 940, 00, C_{0,4} + g(4) = 985, 00\} = $900, 00$

Solución Óptima

Costo mínimo total: \$900,00 Planes óptimos:

0-1-2-3-4-5-6

Cua<u>dro 3: Resumen de costos míni</u>mos

Año (t)	Costo Mínimo $g(t)$
5	\$150,00
4	\$300,00
3	\$450,00
2	\$600,00
1	\$750,00
0	\$900,00