

Lecture #4

Images and Image Points

Object Points Calibration

Distortion Correction

Assignment Preview

x = PX

ranslates 3D homogeneous to 4D homogeneous

x = PX

ranslates image to world coordinates

Lecture #4
-Review
-Review ** translates image to world coordinates Review

x = PX

Review

R[I|-C]

$$P = KR[I|-C]$$

intrinsic matrix: image plane → camera/virtual image plane

extrinsic matrix: camera → world coordinate

rotation

translation

1. **Goal:** find distortion coefficients, intrinsic parameters, extrinsic parameters

```
\blacktriangleright (k_1, k_2, p_1, p_2, k_3)
```

- f_{x}, f_{y}
- $\triangleright p_x, p_y$
- 2. **Process:** images of known pattern → find reference points → calculate distortion coefficients

1. **Goal:** find distortion coefficients, intrinsic parameters, extrinsic parameters

- \blacktriangleright $(k_1, k_2, p_1, p_2, k_3)$
- f_x, f_y
- $\triangleright p_x, p_y$
- 2. **Process: images of known pattern** → find reference points → calculate distortion coefficients

1. **Goal:** find distortion coefficients, intrinsic parameters, extrinsic parameters

- $(k_1, k_2, p_1, p_2, k_3)$
- $\triangleright p_x, p_y$
- 2. **Process:** images of known pattern → **find reference points** → calculate distortion coefficients

1. **Goal:** find distortion coefficients, intrinsic parameters, extrinsic parameters

- \blacktriangleright $(k_1, k_2, p_1, p_2, k_3)$
- $ightharpoonup f_X, f_V$
- $\triangleright p_x, p_y$
- 2. **Process:** images of known pattern → find reference points → **calculate distortion coefficients**

Calibration Patterns

► OpenCV calibration patterns [1]

Figure: Chessboard Corners [2] Figure: Circles [3]

Lecture #4

Camera Calibration in OpenCV

Calibration Patterns

Calibration Patterns

- 1. Note that each calibration pattern includes note(bottom left) describing what the image size should be at 1 : 1 scale when used for calibration.
- 2. The OpenCV tutorial for camera calibration [4], doesn't say much about *why* users might want to use the chessboard pattern over circles. It does say, however, that circles require fewer calibration images to produce good results.

OpenCV Calibration Patterns

Key Factors

Lecture #4

Camera Calibration in OpenCV

Calibration Patterns

OpenCV Calibration Patterns

OpenCV Calibration Patterns Key Factors

1. We know the size of the pattern and number of elements in the pattern.

- 1. We know the size of the pattern and number of elements in the pattern.
- 2. Approx. 10 images are needed for best results [4].

OpenCV Calibration Patterns Key Factors

1. We know the size of the pattern and number of elements in the pattern.

- 2. Approx. 10 images are needed for best results [4].
- 3. Pattern is easily distinguishable, not naturally occurring in environment.

V Calibration Patterns

1. We know the size of the pattern and number of elements in the pattern

Approx. 10 images are needed for best results [4].

Pattern is easily distinguishable, not naturally occurring

OpenCV Calibration Patterns Key Factors

- 1. We know the size of the pattern and number of elements in the pattern.
- 2. Approx. 10 images are needed for best results [4].
- 3. Pattern is easily distinguishable, not naturally occurring in environment.
- 4. Either pattern or camera needs to move between frames, but not both.

nCV Calibration Patterns

- 1. We know the size of the pattern and number of elements in the
- . Approx. 10 images are needed for best results [4].
- 3. Pattern is easily distinguishable, not naturally occurring in env
- Either pattern or camera needs to move between frames, but n both.

Mounting the Calibration Pattern

8.5"x11" Cardboard! or any rigid & flat surface

Figure: Example Setup

Image Capture

- 1. Use camera to capture multiple images of the calibration pattern.
- 2. Use OpenCV to get the *image points(2D)* and *object points(3D)*

Use camera to capture multiple images of the calibration pattern.
 Use OpenCV to get the image points(2D) and object points(3D)

- 1. Remember, keep the camera **or** the pattern stationary, move the unfixed one between images
- 2. If using a webcam, likely easiest to have the camera be stationary

Finding Image Points

Example

cv.findChessboardCorners(image, (x_size, y_size), None)

Lecture #4 Camera Image -Camera Calibration in OpenCV └─Images and Image Points Finding Image Points

Finding Image Points

Example

cv.findChessboardCorners(image, (x_size, y_size), None)

- 1. 1 set per calibration image
- Chessboard Pattern Image Point → contact point between two black squares

Finding Image Points

Example

cv.findChessboardCorners(image, (x_size, y_size), None)

- 1. 1 set per calibration image
- Chessboard Pattern Image Point → contact point between two black squares
- 3. Save points for calibration

Object Points

Object Point

An object point is has fixed location and size based on our calibration pattern.

Lecture #4
Camera Calibration in OpenCV
Object Points
Colored Colored

Object Point
An object point is has fixed location and size based on our calibration pattern.

Object Points

Object Point

An object point is has fixed location and size based on our calibration pattern.

☐ OpenCV makes this easy, just pass in list of points

Object Points

Object Point

An object point is has fixed location and size based on our calibration pattern.

- OpenCV makes this easy, just pass in list of points
- Since calibration pattern doesn't change, same points apply to each image

An object point is has fixed location and size based on our calibration pattern

** Since calibration pattern doesn't change, same points apply to each

Calibration

Example

cv.calibrateCamera(obj_pts, img_pts, ...)

```
Returns:
```

- ⇒ camera matrix (*P*)
- distortion coefficients
- → rotation params

Undistorting An Image

The final step...

OpenCV provides two methods for doing this:

- ▶ using camera matrix, dist. coefficients, etc, to correct image (easv)
- using remapping (more complex)

1. Remap specifies a pixel location (x, y) to map every input pixel to in the output.

► Is there potential error?► yes

-Distortion Correction └─Validation

- ► Is there potential error?
- ► Reprojection Error

- ► Is there potential error?
- ► Reprojection Error
 - ► We can use transform/**reproject** object points into image points

➤ We can use transform/reproject object points into image points

- ► Is there potential error?
- ► Reprojection Error
 - We can use transform/reproject object points into image points
 - Calculates the difference between an image generated from our object points and the distortion corrected image

- ► Is there potential error?
- ► Reprojection Error
 - ► We can use transform/**reproject** object points into image points
 - Calculates the difference between an image generated from our object points and the distortion corrected image

Assignment #3 Preview

Calibrate a Camera

Use an OpenCV calibration pattern to calibrate your camera.

- 1. Print out and mount a calibration pattern
- 2. Obtain 10 images of the pattern using your camera
- 3. Save your parameters to JSON file
- 4. Load parameters from file
- 5. Use them to correct distortion in an image from your camera

Extra Credit

Lecture #4

Assignm

Ext ∟Extra Credit

-Assignment Preview

50-75 pts for building Camera Obscura/Pinhole Camera Due before December 1st.

on 08/24/2024).

//github.com/opency/opency/blob/4.x/doc/pattern.png (visited on 08/24/2024). "Opency/doc/acircles pattern.png at 4.x · opency/opency," GitHub. (),

[Online]. Available: https://github.com/opency/opency/blob/4. x/doc/acircles_pattern.png (visited on 08/24/2024).

"OpenCV: Camera Calibration," (), [Online]. Available: https://docs. opency.org/4.x/dc/dbb/tutorial_py_calibration.html (visited Lecture #4 Available https://docs.onency.org/4.x/d9/d8c/group calib3d.html#ga93efa9b8aa89@de24@ca32b11753rld4a (visited Assignment Preview

Bibliography

//github.com/opency/opency/blob/4.x/doc/pattern.png (visited on 08/24/2024). 131 "Opency/doc/acircles pattern.png at 4.x · opency/opency." GitHub. (1)

[Online]. Available: https://github.com/opency/opency/blob/4 x/doc/acircles_pattern.png (visited on 08/24/2024).

[4] "OpenCV: Camera Calibration." (). [Online]. Available: https://docs

opency org/4 x/dc/dbh/tutorial by calibration btml (visite)

121 "Opency/doc/pattern ppg at 4 x - opency/opency " GitHub. (). [Online