eRum exercises

Mateusz Staniak

Exercises

Exercise 1

Run the following code to fit random forest, linear regression and SVM to the housing prices data.

```
library(tidyverse)
library(DALEX)
library(randomForest)
library(e1071)
library(auditor)
load("./rda_files/houses.rda")

set.seed(33)
house_rf <- randomForest(sqm_price ~., data = houses)
house_svm <- svm(sqm_price ~., data = houses)
house_lm <- lm(sqm_price ~., data = houses)</pre>
```

Create DALEX explainer object for each of the models. Create and compare boxplots of residuals for all the models (model_performance).

- Which model is the best?
- Are there any outlying predictions?
- Find the observation with the largest absolute value of residual among houses cheaper than 7000 PLN.

TIP: object returned by model_performance function is a data frame with colnames predicted, observed, diff and label.

Exercise 2

Create single prediction explainers for the instance chosen in **Exercise 1**. Create Break Down plots for each of the observations. What are the keys factors that drive the prediction? Are they the same for every model?

Exercise 3

Run the following code to train model random forest model using mlr interface (this is necessary for shapleyR package).

```
library(mlr)
load("./rda_files/houses.rda")
n_obs <- 1189

house_task <- makeRegrTask(data = houses, target = "sqm_price")
house_rf_mlr <- train("regr.randomForest", house_task)</pre>
```

Use shapleyR package to calculate Shapley values for prediction chosen in **Exercise 1** (its index is in n_obs object). Are the results consistent with Break Down results from **Exercise 2**? Draw a plot of Shapley values.

TIP: remember to set class of the object returned by shapley function to shapley.singleValue before using plot.

Bonus 1:

Draw plots of fitted vs observed values for each of these models. Can you spot any problems with the predictions? Are the prices usually underestimated of overestimated?

Bonus 2:

Create variable importance explainer. Compare global variable importance to scores obtained in **Exercise 2** and **Exercise 3**.

Exercise 4

```
n_obs <- 1189
```

Simulate new data around the observation from Exercise 1 (its index is in the n_{obs} object.) and the add random forest predictions. Then fit a linear model locally.

TIP: remember to load mlr package. TIP2: don't use too small size for the simulated dataset. I recommend at least 1000.

Exercise 5

Visualize approximation created in **Exercise 4**. Use plot_explanation2 function to create a forest plot of the linear model and then the Break Down plot.

Exercise 6

Use lime package to approximate random forest model around prediction chosen in **Exercise 1** (its index is in n_obs object). Follow the lime work flow: 1. Create an explainer. 2. Approximate the model around the explained instance. 3. Use plot_features function to see, how features influence this prediction.

TIP: use house_rf_mlr object from Exercise 5, because lime works well with mlr objects.

Bonus 3

Use add_predictions function to add SVM and LM predictions to the simulated dataset. Compare plots for all three models.

Bonus 4

Run the following code to see largest residuals for *Psie Pole* district.

```
library(tidyverse)
houses %>%
  mutate(id = 1:n()) %>%
  mutate(rf_pred = predict(house_rf)) %>%
  mutate(abs_res = abs(sqm_price - rf_pred)) %>%
```

```
arrange(desc(abs_res)) %>%
 filter(sqm_price < 7000,</pre>
        district == "Psie Pole") %>%
 head(5)
## # A tibble: 5 x 10
    rooms_num area sqm_price year floor max_floor district
                                                                id rf_pred
##
        <int> <dbl>
                       <int> <int> <int>
                                             <int> <fct>
                                                             <int>
                                                                     <dbl>
## 1
           2 46.0
                         2174 2005 2
                                                 5 Psie Pole 5830
                                                                     6541.
            2 46.0
                         1957 2001
## 2
                                        4
                                                 5 Psie Pole
                                                               942
                                                                     5829.
                         1877 2001
## 3
            3 65.0
                                                10 Psie Pole 4303
                                       8
                                                                     5663.
## 4
            3 75.0
                         4267 2013
                                       0
                                                 O Psie Pole 4308
                                                                     6388.
## 5
            4 88.4
                         3394 2004
                                        4
                                                 5 Psie Pole 3489
                                                                     5495.
## # ... with 1 more variable: abs_res <dbl>
```

Using live package, fit a linear model around the top observation. Compare waterfall plots for this prediction and the prediction from **Exercise 5**. How are they different?

Solutions

n_obs2 <- 5830


```
mutate(id = 1:n()) %>%
  arrange(desc(abs(diff))) %>%
  filter(observed < 7000) %>%
  head(5)
##
     predicted observed
                            diff
                                        label
                                                id
## 1 4338.774
               1585 2753.774 randomForest 1189
## 2 4842.923
                   2174 2668.923 randomForest 5830
## 3 7399.405
                   4750 2649.405 randomForest 4824
## 4
     6326.248
                   3742 2584.248 randomForest 4419
## 5 8345.797
                   6000 2345.797 randomForest 4005
svm_perf %>%
  mutate(id = 1:n()) %>%
  arrange(desc(abs(diff))) %>%
  filter(observed < 7000) %>%
 head(5)
##
                            diff label
                                         id
     predicted observed
## 1 5771.421
                   1585 4186.421
                                   svm 1189
## 2 7983.699
                   4063 3920.699
                                        356
                                   svm
## 3 5722.197
                   1957 3765.197
                                   svm
                                        942
## 4 5907.319
                   2174 3733.319
                                   svm 5830
                   1877 3667.827
## 5 5544.827
                                   svm 4303
lm_perf %>%
 mutate(id = 1:n()) %>%
```

```
arrange(desc(abs(diff))) %>%
  filter(observed < 7000) %>%
  head(5)
##
     predicted observed
                            diff label
                                          id
     6272.608
## 1
                   1585 4687.608
                                     lm 1189
## 2
      8325.985
                   3702 4623.985
                                     lm 1208
## 3
      8250.050
                   4267 3983.050
                                     lm 5726
## 4 6466.103
                   2638 3828.103
                                     lm 5751
## 5 5744.796
                   1957 3787.796
                                     lm 942
n_obs <- which(houses$sqm_price == 1585)</pre>
```



```
library(shapleyr)
## Loading required package: checkmate
## Loading required package: combinat
##
## Attaching package: 'combinat'
## The following object is masked from 'package:utils':
##
##
       combn
## Loading required package: shiny
## Loading required package: shinydashboard
## Attaching package: 'shinydashboard'
## The following object is masked from 'package:graphics':
##
##
       box
## Loading required package: reshape2
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
## Welcome to the ShapleyR package!
shapley_vals <- shapley(n_obs, house_task, house_rf_mlr)</pre>
gather(shapley_vals$values, "colname", "contribution") %>%
 filter(colname %in% colnames(houses)) %>%
 mutate(contribution = as.numeric(contribution)) %>%
 arrange(desc(abs(contribution)))
##
       colname contribution
## 1 district -535.795
## 2 rooms_num
                  -292.509
## 3 max floor
                 -250.853
## 4
        year
                   211.827
## 5
                   -206.529
         area
        floor
## 6
                   -85.600
# alternatively use just
shapley_vals
## $task.type
## [1] "regr"
##
## $feature.names
                                                        "max_floor" "district"
## [1] "rooms_num" "area"
                               "year"
                                           "floor"
##
```

```
## $predict.type
## [1] "response"
## $prediction.response
## [1] 4310.482
##
## $data.mean
## [1] 6165.112
##
## $values
                                       year floor max_floor district
      _Id _Class rooms_num
                               area
             NA -292.509 -206.529 211.827 -85.6 -250.853 -535.795
## 1 1189
class(shapley_vals) <- c("shapley.singleValue", "list")</pre>
plot(shapley_vals)
                                                   district
                                                                                 year
                    floor
                             max_floor
                                                                          0
                                      rooms_num
                        area
```

Bonus 1

4500

```
rf_audit <- audit(rf_expl)
svm_audit <- audit(svm_expl)
lm_audit <- audit(lm_expl)
plotPrediction(rf_audit)</pre>
```

values

5500

6000

5000

Predicted vs Observed response

plotPrediction(svm_audit)

Predicted vs Observed response

plotPrediction(lm_audit)

Predicted vs Observed response

Bonus 2

rf_global <- variable_importance(rf_expl)
plot(rf_global)</pre>


```
library(live)
library(mlr)
houses_similar <- sample_locally2(houses, houses[n_obs, ], "sqm_price", 1000)
houses_similar2 <- add_predictions2(houses_similar, house_rf)</pre>
lm_approx <- fit_explanation2(houses_similar2, "regr.lm")</pre>
lm_approx
## Warning in summary.lm(model_tmp): essentially perfect fit: summary may be
## unreliable
## Dataset:
## Observations: 1000
## Variables: 7
## Response variable: sqm_price
## Explanation model:
## Name: regr.lm
## Variable selection wasn't performed
## Weights present in the explanation model
## R-squared: 0.8633
```

```
plot_explanation2(lm_approx, regr_plot_type = "forest")

## Warning in summary.lm(x): essentially perfect fit: summary may be
## unreliable

## Warning in summary.lm(object): essentially perfect fit: summary may be
## unreliable

## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its
## heading; consider a smaller text size
```

Variable		N	Estimate		р		
rooms_r	num 1	000		1008.95 (935.05, 1082.85)	<0.001		
area	1	000		-117.49 (-308.33, 73.35)	0.2		
year	1	000	Ļ	263.11 (115.35, 410.88)	<0.001		
floor	1	000	H	316.01 (236.02, 395.99)	<0.001		
max_floor 1000		Ļ	4.75 (-88.67, 98.18)	0.9			
district	Fabryczna	895	 	Reference			
	Krzyki	48		1351.43 (1255.57, 1447.28)	<0.001		
	Psie Pole	18		973.57 (820.42, 1126.71)	<0.001		
	Srodmieso	ci @ 6		2309.32 (2181.13, 2437.50)	<0.001		
	Stare Mias	st o 3		5224.04 (5044.50, 5403.57)	<0.001		
(Intercept)				-519572.20 (-816320.12, - 2	22208000112		
-8 -69300000 0							

plot_explanation2(lm_approx, regr_plot_type = "waterfall")


```
library(lime)
```

```
##
## Attaching package: 'lime'
## The following object is masked from 'package:DALEX':
##
## explain
## The following object is masked from 'package:dplyr':
##
## explain
lime_rf <- lime(houses, house_rf_mlr)
lime_explanation <- lime::explain(houses[n_obs, ], lime_rf, n_features = 5)
plot_features(lime_explanation)</pre>
```

Case: 1 Prediction: 4310.48215867098 Explanation Fit: 0.079

Bonus 3

```
houses_similar3 <- add_predictions2(houses_similar, house_svm)
houses_similar4 <- add_predictions2(houses_similar, house_lm)
lm_approx2 <- fit_explanation2(houses_similar3)
lm_approx3 <- fit_explanation2(houses_similar4)

plot_explanation2(lm_approx2, "waterfall")
```


plot_explanation2(lm_approx2, "forest")

heading; consider a smaller text size

```
## Warning in summary.lm(x): essentially perfect fit: summary may be
## unreliable
## Warning in summary.lm(object): essentially perfect fit: summary may be
## unreliable
## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its
```

Variable		N E	stimate		р	
rooms_n	um 100	00	.=.	340.55 (338.46, 342.63) <	0.001	
area	100	00	Ė	-25.06 (-30.44, -19.69) <	:0.001	
year	100	00	Ė	7.14 (2.98, 11.31)	:0.001	
floor	100	00	-	12.78 (10.53, 15.04)	0.001	
max_floo	or 100	00	-	66.82 (64.19, 69.45)	0.001	
district	Fabryczna 89)5	-	Reference		
	Krzyki 4	8		435.03 (432.33, 437.73) <	0.001	
	Psie Pole 1	8	-	24.88 (20.57, 29.20)	0.001	
	Srodmiescie 2	26	1	755.27 (751.66, 758.88) <	:0.001	
	Stare Miasto1	3		1079.09 (1074.04, 1084.14	50) .001	
(Intercept)				-8180.41 (-16540.47, 179	0.604)06	
-15 000 0000000						

plot_explanation2(lm_approx3, "forest")

```
## Warning in summary.lm(x): essentially perfect fit: summary may be
```

unreliable

Warning in summary.lm(object): essentially perfect fit: summary may be

unreliable

Warning in recalculate_width_panels(panel_positions, mapped_text =

mapped_text, : Unable to resize forest panel to be smaller than its

heading; consider a smaller text size

Variable		N Estimate	р	,
rooms_r	num 100	00	-439.23 (-439.23, -439.23)<0.001	
area	100	00 =	9.38 (9.38, 9.38) <0.001	
year	100	00 🛓	12.38 (12.38, 12.38) <0.001	
floor	100	00 🛓	4.54 (4.54, 4.54) <0.001	
max_floor 1000		00 岸	17.12 (17.12, 17.12) <0.001	
district	Fabryczna89	95	Reference	
	Krzyki	18	277.96 (277.96, 277.96) <0.001	
	Psie Pole '	18	-412.57 (-412.57, -412.57) < 0.001	
	Srodmiescie	26	569.83 (569.83, 569.83) <0.001	
	Stare Miasto	13	1956.82 (1956.82, 1956.82)<0.001	
(Intercept)			-18275.81 (-18275.81, -18 275) 81)
		-1500 950 00		

Bonus 4

```
library(live)
library(mlr)
n_obs2 <- 5830
houses_similar <- sample_locally2(houses, houses[n_obs2, ], "sqm_price", 1000)
houses_similar2 <- add_predictions2(houses_similar, house_rf)</pre>
n_obs2expl <- fit_explanation2(houses_similar2)</pre>
n_obs2expl
## Warning in summary.lm(model_tmp): essentially perfect fit: summary may be
## unreliable
## Dataset:
## Observations: 1000
## Variables: 7
## Response variable: sqm_price
## Explanation model:
## Name: regr.lm
## Variable selection wasn't performed
## Weights present in the explanation model
## R-squared: 0.8071
plot_explanation2(n_obs2expl, "waterfall")
```


