Schedule Report

汇报人 崔禄吉

中国海洋大学 信息科学与工程学院

December 4, 2014

- Original Plan
- Summary
- Summary
- Plan in Next Two Weeks

Original Plan

Plan A

Learn the knowledge of MAC layer and communication protocol under $60\,GHz$.

Original Plan

Plan A

Learn the knowledge of MAC layer and communication protocol under $60\,GHz$

Plan B

Understand the theory of OFDM communication model under $60\,GHz$ system, and make the Matlab code operating normally and successfully. I will need everyone's help as you smart guys. and I really appreciate your answer, and it will truly help me a lot.

Original Plan

Plan A

Learn the knowledge of MAC layer and communication protocol under $60\,GHz$

Plan B

Understand the theory of OFDM communication model under $60\,GHz$ system, and make the Matlab code operating normally and successfully. I will need everyone's help as you smart guys. and I really appreciate your answer, and it will truly help me a lot.

- Original Plan
- 2 Summary
- Summary
- Plan in Next Two Weeks

Accomplishment 1

I have browsed the PHY Layer frame structure in the document IEEE 802.15.3c, but not quite clear in my mind.

I think HSI PHY is available for communication and localization. As the High Speed Interface mode of mmWave PHY (HSI PHY) is designed for devices with low-latency, bidirectional high-speed data and uses orthogonal frequency domain multiplexing (OFDM). HSI PHY supports a variety of modulation and coding schemes (MCSs) using different frequency- domain spreading factors, modulations, and LDPC block codes.

• Table 1-Timing-related parameters

Parameters	Description	Value	Formula
f_s	Reference sampling reate/chip rate	2640MHz	
T_C	Sample/chip duration	$\sim 0.38 ns$	$1\backslash f_s$
N_{sc}	Number of subcarriers/FFT size	512	
N_{dsc}	Number of data subcarriers	336	
N_P	Number of pilot subcarriers	16	
N_G	Number of guard subcarriers	141	
N_{DC}	Number of DC subcarriers	3	
N_R	Number of reserved subcarriers	16	
N_U	Number of userd subcarriers	352	$N_{dsc} + N_P$
N_{GI}	Guard interval length in samples	64	
Δf_{sc}	Subcarrier frequency spacing	5.15625 MHz	$f_s \backslash N_{sc}$
BW	Nominal used bandwidth	1815 MHz	$N_U \times \Delta f_{sc}$
T_{FFT}	IFFT and FFT period	$\sim 193.94 ns$	$1 \backslash \Delta f_{sc}$
T_{GI}	Guard interval duration	$\sim 24.24ns$	$N_{GI} \times T_C$
T_S	OFDM Symbol duration	$\sim 218.18 ns$	$T_{FFT} + T_{GI}$
F_S	OFDM Symbol rate	$\sim 4.583MHz$	$1 \backslash T_S$
N_{CPS}	Number of samples per OFDM symbol	576	$N_{sc} + N_{GI}$

• Table 2-OFDM frame-related parameters

Parameters	Description	Value	
N_{pre}	Number of symbols in the PHY preamble(512 chips long)	Long Preamble Short Preamble	16 6.75
T_{pre}	Duration of the PHY preamble	Long Preamble Short Preamble	$\sim 3.15 \mu s$ $\sim 1.31 \mu s$
T_{HDR}	Duration of the header	Main header only for MCS 0 Main header only for MCS1-11 Main header and optional header for MCS 0 Main header and optional header for MCS1-11	$\sim 7.64 \mu s$ $\sim 0.22 \mu s$ $\sim 17.89 \mu s$ $\sim 0.44 \mu s$
N_{OSMF}	Number of OFDM symbols in the MAC frame body	variable	
T_{OSMF}	Duration of the MAC frame	$N_{OSMF} \times T_S$	
N_{frame}	Number of OFDM symbols in the frame	$N_{pre} + N_{HDR} + N_{OSMF}$	
T_{frame}	Duration of the frame	$T_{pre} + T_{HDR} + T_{OSMF}$	

- Original Plan
- 2 Summary
- Summary
- 4 Plan in Next Two Weeks

• Accomplishment 2

• Accomplishment 2

• I have read three pieces of articles. One is "A synchronization scheme for OFDM-based 60GHz WPANs" (a low-complexity synchronization and channel esti- mation scheme, a new preamble structure); one is "Research on compressed sensing in 60GHz channel estimation" (L_1, L_0 , Cluster Sparsity Compressed Sensing method); another is "Investigation of passive location techniques based on OFDM signal" (synchronization based on CP or pilot training sequence Unfinished)

• Accomplishment 2

- I have read three pieces of articles. One is "A synchronization scheme for OFDM-based 60GHz WPANs"(a low-complexity synchronization and channel esti- mation scheme, a new preamble structure); one is "Research on compressed sensing in 60GHz channel estimation"(L_1, L_0 , Cluster Sparsity Compressed Sensing method); another is "Investigation of passive location techniques based on OFDM signal"(synchronization based on CP or pilot training sequence Unfinished)
- OFDM transmitter and receiver

- Original Plan
- Summary
- Summary
- 4 Plan in Next Two Weeks

Goal

① Complete the unfinished article.

Goal

- Complete the unfinished article.
- Read other three pieces of paper on localization based on OFDM modulation, and set about writing Matlab code if possible.

Goal

- Complete the unfinished article.
- Read other three pieces of paper on localization based on OFDM modulation, and set about writing Matlab code if possible.
- 3 Web page test for bugs. ...

Acknowledgement

Hello! UWB Lab!