Devoir nº 2*

Jeanne LAFLAMME

Alexandre PACHOT

16 février 2020

Table des matières

1	Question 1	1
2	Question 2	1
3	Question 3	1
4	Question 4	1
5	Question 5	2

- 1 Question 1
- 2 Question 2
- 3 Question 3
- 4 Question 4

Soit le problème :

Lorsqu'on résout ce problème avec l'algorithme du simplexe. Le premier tableau est :

Variables							Termes
dépendantes	x_1	x_2	x_3	x_4	x_5	-z	de droite
x_3	-6		1	-2	2		6
x_2	-3	1		5	3		15
-z	5			3	-2	1	0

Initialement, les variables dépendantes sont x_3 et x_2 , ce sont les deux variables qui n'apparaissent pas dans la fonction à minimiser. La matrice R est composé des vecteurs colonne x_3 et x_2 . L'ordre est important, afin d'avoir la matrice R qui est égale à la matrice identité.

Ainsi, pour trouver B^{-1} , il suffit de regarder les valeurs de x_3 et x_2 dans le tableau optimal. On a :

$$B^{-1} = \begin{pmatrix} -1/4 & 1/2 \\ -1/4 & 1/6 \end{pmatrix}$$

Ainsi, une nouvelle variable qui a des coefficients de -2 et 6 dans la première et deuxième contrainte aura pour valeur dans le tableau optimal :

$$\begin{pmatrix} -1/4 & 1/2 \\ -1/4 & 1/6 \end{pmatrix} \begin{pmatrix} -2 \\ 6 \end{pmatrix} = \begin{pmatrix} 7/2 \\ 3/2 \end{pmatrix}$$

On agit de la même façon pour la valeur de z. On prend les valeurs de z des x_3 et x_2 dans le tableau optimal. Ainsi, on a :

$$(3/4 \quad 1/6) \binom{-2}{6} = -\frac{1}{2}$$

Il faut ajouter ce nombre au cout dans l'objectif:

$$1 - \frac{1}{2} = \frac{1}{2}$$

Ainsi, le tableau optimal avec la nouvelle variable est :

^{*}IFT 1575 - Modèles de recherche opérationnelle - Université de Montréal - Jean-Yves POTVIN

Variables								Termes
dépendantes	x_1	x_2	x_3	x_4	x_5	x_6	-z	de droite
x_3		1/2	-1/4	3	1	7/2		6
x_2	1	1/6	-1/4	4/3		3/2		1
-z		1/6	3/4	7/3		1/2	1	7

5 Question 5

L'algorithme de branch-and-bound est représenté à la figure 1.

La solution optimale ① est x=(0.2,1,0) et la valeur de la fonction à minimiser est égale à -82.80. Étant donné que x n'est pas une solution entière et que x_1 est la seule valeur non entière, nous allons appliquer une contrainte sur sur x_1 . Soit $x_1=1$, soit $x_1=0$. En contraignant x à être égale à 1, on trouve une solution entière : x=(0.2,1,0) ②. Le meilleur minimum avec une solution passe ainsi de $+\infty$ (pas de solution) à -74.00. Étant donné qu'on a trouvé une solution entière, on arrête l'exploration de cette branche pour passer à la contrainte $x_1=0$ x. Sur cette branche, on trouve une nouvelle solution x=(0,1,0.67) ③. x_3 étant la seule valeur non entière de la solution on va appliquer la contrainte à cette variable. Et ainsi de suite. Il y a trois raisons pour lesquelles on peut arrêter l'exploration d'une branche :

- la solution n'est pas réalisable (6);
- la solution est entière (2)(5)(7);
- la solution prend une valeur supérieure à une solution entière déjà trouvée $(z \ge \bar{z})$: cela ne sert à rien d'explorer la branche plus en avant, toutes les solutions entières trouvées seront moins optimales que l'actuelle meilleure solution entière.

FIGURE 1 – Algorithme par séparation et évaluation, branch and bound

