TYPE YOUR NAME HERE

HW 19: 3.27-3.29 M328K April 3th, 2012

3.27 Theorem. Let a, b, m, and n be integers with m > 0 and n > 0. Then the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

has a solution if and only if (n, m)|a - b.

Proof. Let a, b, m, and n be integers with m > 0 and n > 0.

First assume that the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

has a solution x. So by definition of congruence mod n we have $n \mid x-a$ and $m \mid x-b$. And since (n,m) divides both n and m, we have $(n,m) \mid x-a$ and $(n,m) \mid x-b$. Therefore by theorem 1.2 $(n,m) \mid x-b-(x-a)$, or $(n,m) \mid a-b$.

Now assume that $(n, m) \mid a - b$.

3.28 Theorem. Let a, b, m, and n be integers with m > 0, n > 0, and (m, n) = 1. Then the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

has a unique solution modulo mn.

Proof. Let a, b, m, and n be integers with m > 0, n > 0, and (m, n) = 1. Since $1 \mid a - b$, then by theorem 3.27 there must be a solution to the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

Let x_0 be a solution to this system. Let x_0' be the integer such that $x_0 \equiv x_0' \pmod{mn}$.

Г

3.29 Theorem (Chinese Remainder Theorem). Suppose n_1, n_2, \ldots, n_L are positive integers that are pairwise relatively prime, that is, $(n_i, n_j) = 1$ for $i \neq j$, $1 \leq i, j \leq L$. Then the system of L congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_L \pmod{n_L}$

has a unique solution modulo the product $n_1n_2n_3\cdots n_L$.

Proof. Type your proof here!