Vijay, Nipun, Nisarg Unified Sprint: "BHIV Core + Reinforcement Intelligence Layer" 6 Day Plan

Goal: Build the full multimodal, agentic BHIV pipeline and embed a lightweight reinforcement layer that logs decisions, tracks rewards, and enables learning from Day 1 — with no friction to normal flow.

What Changes?

- We don't replace anything we augment it.
- RL acts like a learning observer, recording every decision (agent, model, retry) and tagging it with rewards (clarity, success, cost, etc.).
- At first, the RL layer only tracks and logs. Later, it starts making suggestions like a junior intern learning from experience.

Final Unified 6-Day Sprint Plan with RL Integration

Da	Focus	Key Outcomes	RL Layer
Da	Final Registry + RL Logging	Agent/LLM registries, standard	RL context + log_action(),
y 1	Infra	run interface, RL stubs	get_reward()
Da	$MCP \leftrightarrow Agent Loop + Action$	Agent/LLM routing, fallback	Define ActionSpace, add
y 2	Space Defined	handling, reward schema	reward_fn() stubs
Da	PDF/Image/Audio Input +	Multimodal routing complete,	Add replay_buffer,
y 3	Replay Memory	reward logging live	log_run(input, result)
Da	Retry/Fallback + RL Hooks in	Full input-agent-tool-adapter	RL selector stub runs if
y 4	MCP	flow, retry logic	confidence > threshold
Da	End-to-End Runs + Simulated	10 sample tasks logged, reward	Store reward + decisions in
y 5	Feedback	trends observed	learning_log.json
Da	Cleanup + Alpha Review +	Final FastAPI/CLI runs, docs,	RL toggle + notes for future
y 6	RL Toggle	Loom demo	model training

Component-Wise Integration

Nisarg (Agent Router)

- Add rl agent selector.select agent(task) fallback
- Track selected agent, fallback used, and log to rl context.json
- Simulate exploration by randomizing fallback agent 10% of the time

Vijay (LLM Selector)

- Add rl_model_selector.select_model(input) suggestion hook
- Track model choice, estimated cost, simulated quality score
- Implement lightweight bandit logic (e.g., random → best performing model)

Nipun (Learning Adapter)

- Add get_reward_from_output(output) scoring
- Track tag count, clarity score, relevance → reward score
- Feed these back into RL context and learning_log.json

RL Core Files (Shared Among Devs)

File	Purpose	
rl_context.py	Central logging and action/reward tracking	
agent_selector.py	Random → RL-based agent suggestions	
model_selector.py	Bandit/softmax-based model selector	
reward_functions.p	Reward logic from adapter and logs	
replay_buffer.py	Stores past inputs, outputs, decisions	
learning_log.json	JSON file for analysis and future training	

Deliverables Recap by Day 6

- BHIV Core: CLI + FastAPI, agent registry, LLM router, adapter, toolchains, logging
- RL Layer: Context logger, stub selectors, reward estimators, memory log, toggle flag
- MongoDB: Logs agent chains, token use, retry paths, reward scores
- Docs: Final schema, adapter fields, reward function docs, README for RL toggle
- Loom: Show run with/without RL advice on same task, compare output

Day-by-Day Breakdown

Objective: Complete and integrate all components of the Agentic LLM system – including MCPs, multimodal agents, toolchains, adapters, memory, token logging, and full input/output routing – for Alpha readiness.

Collective Sprint Outcome by End of Day 6:

- One-click task: audio/text/image/PDF input
- Dynamically routed via MCP → correct agent/tool/LLM
- Result passed to Nipun Adapter → Learning Object JSON
- MongoDB logs: agent chain, token cost, memory
- Retry/fallback logic and lightweight memory
- CLI and FastAPI triggers tested and working
- Integration with all 3: LLMs, Vision (img), Speech (audio), PDF, Text

Day 1 – Final Pipeline Mapping and Registry Extensions

Goal: Set up the complete registry, base agent, and interface for all inputs and agents.

Nisarg:

- Refactor agent registry.py to support:
 - ImageAgent
 - AudioAgent
 - TextAgent
 - ArchiveAgent
- Enable model preference tags and fallback logic
- Confirm all agents implement a consistent .run(payload) interface

Vijay:

- Extend llm_router.py:
 - Add working stubs for OpenAI Vision, Whisper
 - Add run_with_model() for: gpt, gemini, claude, grok
- Begin building StreamTransformerAgent for real-time input merging

Nipun:

- Finalize schema for Learning Object
- Document all required fields
- Scaffold final version of nipun_adapter.py

Integration Check:

- All agents return response in a unified format: { agent_name, output, metadata }
- Ensure MCP can dynamically pick agents from registry

Q&A:

Q: How are agent inputs unified?
A: The MCP accepts a payload: {input_type, content, model, tags} and dispatches via the registry.

Side Note: Assume all input comes from learners. Focus on reliability over speed. Handle missing fields gracefully.

Day 2 – MCP ↔ Agent Bridge and Tooling Chain

Goal: MCP runs full input-agent-tool-adapter loop.

Nisarg:

- Extend mcp bridge.py to:
 - Accept payloads with file-type hints
 - Dispatch to relevant agent via registry
 - Log task UID, timestamp, agent used, fallback (if any)

Vijay:

- Finalize token tracking stub:
 - Track input word count, output chars
 - Estimate cost based on model
- Add simple calculator and RAG tool as callable functions

Nipun:

- Begin writing adapter tests:
 - Feed dummy outputs from all agents
 - Map to learning object
 - Add error handling for missing metadata

Integration Check:

- MCP \rightarrow Agent \rightarrow Tool/LLM \rightarrow Adapter \rightarrow Output log
- Mongo logging active with { input, agent_chain, final_output, timestamp }

Q&A:

• Q: What happens if the agent fails?

A: The MCP should retry with a fallback model or return "status": "error" with a log entry.

Side Note: Keep each layer stateless except for memory logs. Retry logic should not loop infinitely.

Day 3 – Multimodal Chain Handling and Memory Layer

Goal: Enable audio, image, and PDF inputs across the entire chain.

Nisarg:

- Create cli runner.py to accept inputs via CLI
- Test chain: PDF \rightarrow ArchiveAgent \rightarrow GPT \rightarrow Adapter
- Add fallback if ArchiveAgent fails

Vijay:

- Integrate Whisper (stub or real) to convert audio to text
- Integrate Vision model (OpenAI Vision API or stub)
- Add stream handler.py to simulate multimodal merging

Nipun:

- Extend adapter schema:
 - Include content type, confidence, difficulty, subject tag
- Begin adapter endpoint in FastAPI for standalone testing

Integration Check:

• All 4 input types (Text, PDF, Image, Audio) should return a JSON via the MCP

O&A:

- Q: How do we unify all inputs?
 - A: The input_type field determines the preprocessing step before routing to the agent.

Side Note: Prioritize education-friendly outputs. Every tool must return something usable to a learner.

Day 4 – Retry + Fallback Logic, Token Tracker, and Logging

Goal: Add reliability, observability, and cost-awareness to the system.

Nisarg:

- Implement agent memory handler.py:
 - Cache recent inputs and outputs per agent
 - Store as short-term memory logs

Vijay:

• Extend logging to include:

- Tokens used
- Model used
- Retry attempts
- Add fallback transformer logic (e.g., if GPT fails \rightarrow use Gemini)

Nipun:

- Finalize FastAPI endpoint:
 - POST input → return adapter-mapped JSON
 - Validate request schema and response fields

Integration Check:

- Logs include: UID, retries, fallback path, output, token cost, agent chain
- Adapter handles edge-case failures gracefully

Q&A:

- Q: How is token cost calculated?
 - A: Input word count + output char count × model rate (mocked for now)

Side Note: Use mocks for now. Real token tracking can be integrated once the core is stable.

Day 5 – End-to-End Tests, Pipeline Demos, and CLI Wrapping

Goal: Full pipeline test and dry-run of Alpha test cases.

Nisarg:

- Finalize CLI: python cli runner.py --input image.jpg --model gpt
- Ensure result logs as JSON in /logs/ with full trace

Vijay:

- Refactor LLM router and agents for clean output structure
- Ensure all models (gpt, gemini, claude) are callable via a common router

Nipun:

- Sync with agent outputs and finalize adapter mappings
- Push adapter usage.md, nlo schema.md, and FastAPI test guide

Integration Check:

- CLI and FastAPI both work end-to-end for:
 - \circ Text \rightarrow GPT
 - \circ Image \rightarrow Vision \rightarrow GPT
 - \circ Audio \rightarrow Whisper \rightarrow GPT
 - \circ PDF \rightarrow Archive \rightarrow GPT

Q&A:

Q: Can we trigger this from a simple UI or chatbot later?
A: Yes, CLI + API is the foundation. Frontend can wrap this post-Alpha.

Side Note: This sprint is to stabilize the mind of the system. UX will follow only after agent sanity is confirmed.

Day 6 - Buffer, Code Cleanup, Docs, and Alpha Review

Goal: Final cleanup, Loom demo, and Alpha readiness check.

Everyone:

- Clean up folders, remove unused files, push final docs
- Record Loom of:
 - ∘ Input \rightarrow agent route \rightarrow output (JSON log)
 - CLI and FastAPI both
- Alpha checklist:
 - 4 input types work?
 - Retry/fallback working?

- Logs captured?
- Output learning object consistent?

ADDING RL COMPONENTS

Day 1 — Add RL Infrastructure

All Devs

- Add reinforcement/rl_context.py centralized context for logging actions, results, and rewards
- Add utils/task_reward.py with get_reward_from_log(output_json) stub

Nisarg (Agent Router)

- Log agent selection per task to RL context
- Add routing fallback tracking

Vijay (LLM Router)

- Log LLM selection and mock "response quality" score
- Add dummy estimate_cost() and estimate_usefulness() for RL

Nipun (Learning Adapter)

• Add reward feedback into NLOs (agent score, clarity score, etc.)

Side Note:

Let's not train RL from Day 1 — just start recording everything.

Day 2 — **Define Action Space + Rewards**

All Devs

• Define ActionSpace: agent choice, LLM choice, retry, cost path, token budget

Nisarg

• Add random fallback agent routing (for exploration)

Vijay

• Implement bandit-style model selector (random → reward-based)

Nipun

• Simulate scoring of learning output quality (reward = tag_count + summary_clarity)

Q&A

Q: How is reward collected?
A: Via task log.json → reward function()

Day 3 — Log → Learn Stub

New file: reinforcement/agent selector.p

- Add stub: select agent(task input, history)
- Start with random choice, track result
- Same for select model()

Add reinforcement/replay_buffer.py

• Store past runs with: input, selected agent/LLM, reward

Side Note:

Use RL as advice layer — agent still runs if RL fails or is unsure

Day 4 — RL-Driven Selection Test

Nisarg

• Modify MCP routing to try rl selector.select agent() if available

Vijay

• Same for LLM router — let RL suggest which model to pick

Nipun

• Log all adapter evaluations into reinforcement/learning log.json

Day 5 — Self-Improving Feedback Loop

- Simulate 10 sample tasks from CLI (across Archive, PDF, Search)
- Run pipeline with and without RL advice
- Compare output quality

• Save best runs as "mentor logs" for fine-tuning RL later

Day 6 — Integrate + Modularize

- Push RL into bhiv core/reinforcement module
- Add settings flag: use rl: true/false
- Document all:
 - agent selector.py
 - reward functions.py
 - learning_log.json
- Add notes for future upgrade to full policy-based learning

Deliverables by Day 6:

Nisarg – Agent Orchestration & RL Integration

- 1. Agent Registry updated for text, PDF, image, and audio agents with dynamic loading
- 2. MCP Bridge handles multimodal payloads and routes correctly
- 3. Retry/fallback logic implemented with short-term agent memory
- 4. Agent-level RL hooks: actions logged to agent log.json with task metadata

Vijay – LLM Routing, Token Logging & RL Hooks

- 1. LLM Router built with support for GPT, Gemini, Claude, Grok
- 2. Token/cost estimator logs tokens used, estimated costs per call
- 3. RL model resolver: model selections logged to model_log.json
- 4. Tool integration (e.g. calculator or RAG stub) and LLM chain test

Nipun - Learning Adapter & Reward Layer

1. Learning Adapter returns structured Learning Objects (NLO schema)

- 2. Schema validation ensures outputs include necessary educational metadata
- 3. FastAPI preview endpoint for returning NLO JSON
- 4. Reward function integrates into RL pipeline, computing reward per output

Collective Deliverables by End of Day 6

- CLI runner and FastAPI endpoint triggers complete agent+LLM+adapter pipeline
- Agent Registry supports multimodal agents: text, PDF, image, audio
- LLM Router logs token usage and model decisions
- Learning Adapter returns structured Learning Object JSONs
- MongoDB logging captures full activity, costs, and retry metadata
- RL components operational:
 - agent selector.py with random + logging logic
 - model_selector.py with bandit-style selection and logging
 - Reward integration via reward functions.py
- Retry/fallback mechanism in MCP for failed or low-confidence tasks
- Logs files: agent log.json, model log.json, and learning log.json
- Learning Dashboard CLI displays top agents/models and reward heatmaps
- Final documentation including README RL.md and sample payload specs
- Loom walkthrough demonstrating input \rightarrow agent/LLM \rightarrow adapter \rightarrow logs flow

These deliverables will provide a fully operational BHIV Core, complete with multimodal inputs, adaptive intelligence via RL, and structured educational outputs — ready for Alpha testing and future integration.

Final Integration Strategy

- RL doesn't block or replace current architecture
- It layers intelligence, memory, and tuning over time
- Makes BHIV Core adaptive, not static

Final Note

By starting with logging, not training, we make the RL layer:

- Lightweight
- Optional
- Evolvable

Then later — once data is rich — we can switch from logging intern to learning strategist.

Best of Luck!