Homework 6

Christopher Achenbach

Problems from 2.10

- 1. $(x \le 0) \lor (y \ge 0)$
- 2. $(x \in \mathbb{P}) \wedge (\sqrt{x} \in \mathbb{Q})$
- 3. $\exists p \in \mathbb{P}, \ \forall q \in \mathbb{P}, \ q \leq p$
- 4. $\exists \epsilon \in \mathbb{R}^+, \ \forall \delta \in \mathbb{R}^+, \ \left(|x a| < \delta\right) \land \left(|f(x) f(a)| \ge \epsilon\right)$
- 5. $\exists \epsilon \in \mathbb{R}^+, \ \forall M \in \mathbb{R}^+, \ \left(x > M\right) \land \left(|f(x) b| \le \epsilon\right)$
- 6. $\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, a + x \neq x$
- 7. I eat a thing with a face. $\exists x \in \{\text{Things that I eat}\}, x \in \{\text{Things with faces}\}.$

Problems from 4.1

1. Suppose $\neg((\neg P) \land (\neg Q))$ is true. Suppose $\neg Q$ is true.

$$\neg(\neg P \land \neg Q) = \neg(\neg P \land \text{true})$$

$$= P \lor \text{false}$$

$$= P$$

Since $\neg(\neg P \land \neg Q)$ is true, P is also true. Therefore P.

2. Suppose the statements $R, P \to R$, and $P \vee Q$ are all true. Since $\neg R$ is false, R must be true.

$$P \rightarrow R = \neg P \lor R$$
$$= \neg P \lor \text{false}$$
$$= \neg P$$

Since $\neg P$ is true, P must be false.

$$P \lor Q = \text{false} \lor Q$$
$$= Q$$

Since $P \vee Q$ is true, Q is also true. Therefore Q.