

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

RESEARCH

REPORT

N° 123456789

October 9, 2017

Project-Team Bipop

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

Project-Team Bipop

Abstract: TBW

Key-words: Multibody systems, nonsmooth Mechanics, unilateral constraints, Coulomb friction, impact, numerical methods

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallee

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Sur la résolution du problème de frottement tridimensionnel. Formulations and comparaisons des méthodes numériques.

Résumé: TBW

Mots-clés : Systèmes multi-corps, Mécanique non régulière, contraintes unilatérales, frottement de Coulomb, impact, Schémas numériques de résolution

Contents

1	Numerical methods for VI: FP-DS, FP-VI-* and FP-EG-*	5	
2	Splitting based algorithms: NSGS- \star and PSOR- \star		
	2.1 Comparison of NSN-* algorithms	5	
	2.2 Comparison of PPA-NSN-AC algorithm with respect to the step-size parameter σ,μ	5	
	2.3 Comparison of optimization-based algorithms	5	
3	Comparison of different families of solvers.	5	
4	LMGC_100_PR_PerioBox precision 1.0e-04 timeout 100	20	
5	LMGC_945_SP_Box_PL precision 1.0e-04 timeout 100	29	
6	LMGC Aqueduc PR precision 1.0e-04 timeout 200	38	
7	LMGC Bridge PR precision 1.0e-04 timeout 100	47	
8	LMGC Bridge PR precision 1.0e-08 timeout 400	56	
9	LMGC LowWall FEM precision 1.0e-04 timeout 400	65	
10	LMGC LowWall FEM precision 1.0e-08 timeout 400	74	
11	LMGC Cubes H8 precision 1.0e-04 timeout 100	83	
12	2 Capsules precision 1.0e-08 timeout 50	92	
13	3 Chain precision 1.0e-08 timeout 50	101	
14	BoxesStack1 precision 1.0e-08 timeout 100	110	
15	KaplasTower precision 1.0e-04 timeout 100	119	
16	Chute_1000 precision 1.0e-04 timeout 200	12 8	
17	Chute_4000 precision 1.0e-04 timeout 200	137	
18	3 Chute_local_problems precision 1.0e-04 timeout 10	146	
19	Chute local problems precision 1.0e-08 timeout 10	155	

Figure 1: Comparison of numerical method for VI FP-DS, FP-VI-⋆ and FP-EG-⋆

- 1 Numerical methods for VI: FP-DS, FP-VI-⋆ and FP-EG-⋆
- 2 Splitting based algorithms: NSGS- \star and PSOR- \star

Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-VI-UPK algorithms

Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-AC-GP algorithms.

Influence of the choice of the parameters $\rho_{\rm N}, \rho_{\rm T}$ in the local solver of the NSGS-AC algorithms

Influence of the contacts order in NSGS algorithms

Comparison of PSOR algorithm with respect to the relaxation parameter ω

- 2.1 Comparison of NSN-★ algorithms
- 2.2 Comparison of PPA-NSN-AC algorithm with respect to the step-size parameter $\sigma,\,\mu$
- 2.3 Comparison of optimization-based algorithms
- 3 Comparison of different families of solvers.

Figure 2: Influence of the local solver in NSGS-⋆ algorithms.

Figure 3: Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-VI-UPK algorithms.

Figure 4: Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-NSN-AC-GP algorithms.

Figure 5: Influence of the choice of the parameters $\rho_{\text{\tiny N}}, \rho_{\text{\tiny T}}$ in the local solver of the NSGS-AC algorithms

Figure 6: Influence of the contacts order in NSGS algorithms.

Figure 7: Effect of relation coefficient ω in PSOR-AC-GP algorithm.

Figure 8: Comparison of $NSN-\star$ algorithms.

Figure 9: Comparison of internal solvers in PPA-* algorithms.

Figure 10: Effect of the step-size parameter σ , μ in PPA-NSN-AC algorithm

Figure 11: Effect of the step-size parameter $\sigma,\,\mu$ in PPA-NSN-AC algorithm

Figure 12: Effect of the step-size parameter $\sigma,\,\mu$ in PPA-NSN-AC algorithm

Figure 13: Comparison of the optimization based solvers

Figure 14: Comparison of the solvers between families

Figure 15: Comparison of the solvers between families

$4 \quad LMGC_100_PR_PerioBox\ precision\ 1.0e\text{-}04\ timeout\ 100$

Figure 16: LMGC_100_PR_PerioBox time VI/UpdateRule

Figure 17: LMGC_100_PR_PerioBox time NSGS/LocalSolver

Figure 18: LMGC_100_PR_PerioBox time NSGS/LocalSolverHybrid

Figure 19: LMGC_100_PR_PerioBox time NSGS/LocalTol

Figure 20: LMGC_100_PR_PerioBox $\,$ time NSGS/LocalTol-VI

Figure 21: LMGC_100_PR_PerioBox $\,$ time NSGS/Shuffled

Figure 22: LMGC_100_PR_PerioBox time PSOR

 $Figure~24:~LMGC_100_PR_PerioBox~time~PROX/NSN/InternalSolvers$

 $Figure~25:~LMGC_100_PR_PerioBox~time~PROX/NSGS/InternalSolvers$

Figure 26: LMGC 100 PR PerioBox time PROX/Parametric studies $\nu=0.5$

Figure 27: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=1.0$

Figure 28: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=2.0$

Figure 29: LMGC_100_PR_PerioBox time PROX/Regularized problem

Figure 30: LMGC_100_PR_PerioBox time OPTI

Figure 32: LMGC_100_PR_PerioBox $\,$ time COMP/zoom

$5 \quad LMGC_945_SP_Box_PL \ precision \ 1.0e\text{-}04 \ timeout \ 100$

Figure 33: LMGC_945_SP_Box_PL time VI/UpdateRule

Figure 34: LMGC_945_SP_Box_PL time NSGS/Local Solver

Figure 35: LMGC_945_SP_Box_PL time NSGS/LocalSolver Hybrid

Figure 36: LMGC_945_SP_Box_PL time NSGS/LocalTol

Figure 37: LMGC_945_SP_Box_PL time NSGS/LocalTol-VI

 $Figure~38:~LMGC_945_SP_Box_PL~time~NSGS/Shuffled$

Figure 39: LMGC_945_SP_Box_PL time PSOR

 $Figure~41:~LMGC_945_SP_Box_PL~time~PROX/NSN/Internal Solvers$

 $Figure~42:~LMGC_945_SP_Box_PL~time~PROX/NSGS/InternalSolvers$

Figure 43: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=0.5$

Figure 44: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=1.0$

Figure 45: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=2.0$

Figure 46: LMGC_945_SP_Box_PL time PROX/Regularized problem

Figure 47: LMGC_945_SP_Box_PL time OPTI

6 LMGC Aqueduc PR precision 1.0e-04 timeout 200

Figure 50: LMGC Aqueduc PR $\,$ time $\,$ VI/UpdateRule

Figure 51: LMGC Aqueduc PR $\,$ time NSGS/LocalSolver

 $Figure \ 52: \ LMGC \ Aqueduc \ PR \quad time \ NSGS/LocalSolverHybrid \\$

Figure 53: LMGC Aqueduc PR time NSGS/LocalTol

 $Figure \ 54: \ LMGC \ Aqueduc \ PR \quad time \ NSGS/LocalTol-VI$

Figure 55: LMGC Aqueduc PR $\,$ time NSGS/Shuffled

Figure 56: LMGC Aqueduc PR time PSOR

 $\label{eq:Figure 58: LMGC Aqueduc PR time PROX/NSN/InternalSolvers} Figure \ 58: \ LMGC \ Aqueduc \ PR \ time \ PROX/NSN/InternalSolvers$

Figure~59:~LMGC~Aqueduc~PR~time~PROX/NSGS/Internal Solvers

Figure 60: LMGC Aqueduc PR $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 61: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=1.0$

Figure 62: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 63: LMGC Aqueduc PR time PROX/Regularized problem

Figure 64: LMGC Aqueduc PR time OPTI

Figure 66: LMGC Aqueduc PR $\,$ time COMP/zoom

7 LMGC Bridge PR precision 1.0e-04 timeout 100

Figure 67: LMGC Bridge PR time VI/UpdateRule

Figure 68: LMGC Bridge PR time NSGS/LocalSolver

Figure 69: LMGC Bridge PR time NSGS/LocalSolverHybrid

Figure 70: LMGC Bridge PR time NSGS/LocalTol

Figure 71: LMGC Bridge PR $\,$ time NSGS/LocalTol-VI

Figure 72: LMGC Bridge PR time NSGS/Shuffled

Figure 73: LMGC Bridge PR time PSOR

Figure~75:~LMGC~Bridge~PR~~time~PROX/NSN/Internal Solvers

Figure 76: LMGC Bridge PR time PROX/NSGS/InternalSolvers

Figure 77: LMGC Bridge PR $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 78: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=1.0$

Figure 79: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 80: LMGC Bridge PR time PROX/Regularized problem

Figure 81: LMGC Bridge PR time OPTI

Figure 83: LMGC Bridge PR $\,$ time COMP/zoom

8 LMGC Bridge PR precision 1.0e-08 timeout 400

Figure 84: LMGC Bridge PR time VI/UpdateRule

Figure 85: LMGC Bridge PR time NSGS/LocalSolver

Figure 86: LMGC Bridge PR time NSGS/LocalSolverHybrid

Figure 87: LMGC Bridge PR time NSGS/LocalTol

Figure 88: LMGC Bridge PR $\,$ time NSGS/LocalTol-VI

Figure 89: LMGC Bridge PR time NSGS/Shuffled

Figure 90: LMGC Bridge PR time PSOR

Figure~92:~LMGC~Bridge~PR~~time~PROX/NSN/Internal Solvers

Figure 93: LMGC Bridge PR time PROX/NSGS/InternalSolvers

Figure 94: LMGC Bridge PR $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 95: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=1.0$

Figure 96: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 97: LMGC Bridge PR time PROX/Regularized problem

Figure 98: LMGC Bridge PR time OPTI

Figure 100: LMGC Bridge PR $\,$ time COMP/zoom

9 LMGC LowWall FEM precision 1.0e-04 timeout 400

Figure 101: LMGC LowWall FEM $\,$ time $\,$ VI/UpdateRule

Figure 102: LMGC LowWall FEM $\,$ time NSGS/LocalSolver

Figure 103: LMGC LowWall FEM $\,$ time NSGS/LocalSolverHybrid

Figure 104: LMGC LowWall FEM time NSGS/LocalTol

Figure 105: LMGC LowWall FEM $\,$ time NSGS/LocalTol-VI

Figure 106: LMGC LowWall FEM time NSGS/Shuffled

Figure 107: LMGC LowWall FEM time PSOR

Figure 109: LMGC LowWall FEM $\,$ time PROX/NSN/Internal Solvers

Figure 110: LMGC LowWall FEM $\,$ time PROX/NSGS/Internal Solvers

Figure 111: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 112: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 113: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=2.0$

Figure 114: LMGC LowWall FEM $^{\circ}$ time PROX/Regularized problem

Figure 115: LMGC LowWall FEM time OPTI

Figure 117: LMGC LowWall FEM $\,$ time COMP/zoom

10 LMGC LowWall FEM precision 1.0e-08 timeout 400

Figure 118: LMGC LowWall FEM $\,$ time $\,$ VI/UpdateRule

Figure 119: LMGC LowWall FEM $\,$ time NSGS/LocalSolver

Figure 120: LMGC LowWall FEM $\,$ time NSGS/LocalSolverHybrid

Figure 121: LMGC LowWall FEM $_{\rm time\ NSGS/LocalTol}$

Figure 122: LMGC LowWall FEM $\,$ time NSGS/LocalTol-VI

Figure 123: LMGC LowWall FEM $\,$ time NSGS/Shuffled

Figure 124: LMGC LowWall FEM time PSOR

Figure 126: LMGC LowWall FEM $\,$ time PROX/NSN/Internal Solvers

Figure 127: LMGC LowWall FEM $\,$ time PROX/NSGS/Internal Solvers

Figure 128: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 129: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 130: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=2.0$

Figure 131: LMGC LowWall FEM $^{\circ}$ time PROX/Regularized problem

Figure 132: LMGC LowWall FEM time OPTI

Figure 134: LMGC LowWall FEM $\,$ time COMP/zoom

11 LMGC Cubes H8 precision 1.0e-04 timeout 100

Figure 135: LMGC Cubes H8 time VI/UpdateRule

Figure 136: LMGC Cubes H8 $\,$ time NSGS/Local Solver

Figure 137: LMGC Cubes H8 time NSGS/LocalSolverHybrid

Figure 138: LMGC Cubes H8 $\,$ time NSGS/LocalTol

Figure 139: LMGC Cubes H8 $\,$ time NSGS/LocalTol-VI

Figure 140: LMGC Cubes H8 $\,$ time NSGS/Shuffled

Figure 141: LMGC Cubes H8 time PSOR

Figure 143: LMGC Cubes H8 $\,$ time PROX/NSN/Internal Solvers

Figure 144: LMGC Cubes H8 $^{\circ}$ time PROX/NSGS/InternalSolvers

Figure 145: LMGC Cubes H8 time PROX/Parametric studies $\nu=0.5$

Figure 146: LMGC Cubes H8 time PROX/Parametric studies $\nu=1.0$

Figure 147: LMGC Cubes H8 time PROX/Parametric studies $\nu=2.0$

Figure 148: LMGC Cubes H8 time PROX/Regularized problem

Figure 149: LMGC Cubes H8 time OPTI

Figure 151: LMGC Cubes H8 $\,$ time COMP/zoom

12 Capsules precision 1.0e-08 timeout 50

Figure 152: Capsules time VI/UpdateRule

Figure 153: Capsules time NSGS/LocalSolver

Figure 154: Capsules time NSGS/LocalSolverHybrid

Figure 155: Capsules time NSGS/LocalTol

Figure 156: Capsules time NSGS/LocalTol-VI

Figure 157: Capsules time NSGS/Shuffled

Figure 158: Capsules time PSOR

Figure~160:~Capsules~~time~PROX/NSN/Internal Solvers

Figure 161: Capsules time PROX/NSGS/InternalSolvers

Figure 162: Capsules time PROX/Parametric studies $\nu=0.5$

Figure 163: Capsules time PROX/Parametric studies $\nu=1.0$

Figure 164: Capsules time PROX/Parametric studies $\nu=2.0$

Figure 165: Capsules time PROX/Regularized problem

Figure 166: Capsules time OPTI

13 Chain precision 1.0e-08 timeout 50

Figure 169: Chain time VI/UpdateRule

Figure 170: Chain time NSGS/LocalSolver

Figure 171: Chain time NSGS/LocalSolverHybrid

Figure 172: Chain time NSGS/LocalTol

Figure 173: Chain $% \left(1,0\right) =1$ time NSGS/LocalTol-VI

Figure 174: Chain time NSGS/Shuffled

Figure 175: Chain time PSOR

Figure 178: Chain time PROX/NSGS/InternalSolvers

Figure 179: Chain time PROX/Parametric studies $\nu = 0.5$

Figure 180: Chain time PROX/Parametric studies $\nu=1.0$

Figure 181: Chain time PROX/Parametric studies $\nu = 2.0$

Figure 182: Chain time PROX/Regularized problem

Figure 183: Chain time OPTI

14 BoxesStack1 precision 1.0e-08 timeout 100

Figure 186: BoxesStack1 time VI/UpdateRule

Figure 187: BoxesStack1 time NSGS/LocalSolver

Figure 188: BoxesStack1 time NSGS/LocalSolverHybrid

Figure 189: BoxesStack1 time NSGS/LocalTol

Figure 190: BoxesStack1 time NSGS/LocalTol-VI

Figure 191: BoxesStack1 time NSGS/Shuffled

Figure 192: BoxesStack1 time PSOR

Figure~194:~BoxesStack1~time~PROX/NSN/InternalSolvers

Figure~195:~BoxesStack1~time~PROX/NSGS/InternalSolvers

Figure 196: BoxesStack1 time PROX/Parametric studies $\nu=0.5$

Figure 197: BoxesStack1 time PROX/Parametric studies $\nu=1.0$

Figure 198: BoxesStack1 time PROX/Parametric studies $\nu=2.0$

Figure 199: BoxesStack1 time PROX/Regularized problem

Figure 200: BoxesStack1 time OPTI

Figure 202: BoxesStack1 $\,$ time COMP/zoom

15 KaplasTower precision 1.0e-04 timeout 100

Figure 203: Kaplas Tower $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

Figure 204: KaplasTower time NSGS/LocalSolver

Figure 205: KaplasTower time NSGS/LocalSolverHybrid

Figure 209: KaplasTower time PSOR

 $Figure\ 211:\ Kaplas Tower\ \ time\ PROX/NSN/Internal Solvers$

Figure~212:~KaplasTower~time~PROX/NSGS/InternalSolvers

Figure 213: Kaplas Tower time PROX/Parametric studies $\nu=0.5$

Figure 214: Kaplas Tower time PROX/Parametric studies $\nu=1.0$

Figure 215: Kaplas Tower time PROX/Parametric studies $\nu=2.0$

Figure 216: Kaplas Tower $\,$ time PROX/Regularized problem

Figure 217: KaplasTower time OPTI

Figure 219: Kaplas Tower $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

16 Chute_1000 precision 1.0e-04 timeout 200

Figure 220: Chute_1000 time VI/UpdateRule

Figure 221: Chute_1000 time NSGS/LocalSolver

 $Figure~222:~Chute_1000~time~NSGS/LocalSolverHybrid$

Figure 223: Chute_1000 time NSGS/LocalTol

 $Figure~224:~Chute_1000~time~NSGS/LocalTol-VI$

Figure 225: Chute_1000 $\,$ time NSGS/Shuffled

Figure 226: Chute_1000 time PSOR

 $Figure~228:~Chute_1000~~time~PROX/NSN/Internal Solvers$

 $Figure~229:~Chute_1000~time~PROX/NSGS/Internal Solvers$

Figure 230: Chute_1000 time PROX/Parametric studies $\nu=0.5$

Figure 231: Chute_1000 time PROX/Parametric studies $\nu=1.0$

Figure 232: Chute_1000 time PROX/Parametric studies $\nu=2.0$

Figure 233: Chute_1000 $\,$ time PROX/Regularized problem

Figure 234: Chute_1000 time OPTI

Figure 236: Chute_1000 time COMP/zoom

17 Chute_4000 precision 1.0e-04 timeout 200

 $Figure~237:~Chute_4000~time~VI/UpdateRule$

Figure 238: Chute $_4000$ time NSGS/LocalSolver

 $Figure~239:~Chute_4000~time~NSGS/LocalSolverHybrid$

Figure 240: Chute $_4000$ time NSGS/LocalTol

Figure 241: Chute $_4000$ time NSGS/LocalTol-VI

 $Figure~242:~Chute_4000~time~NSGS/Shuffled$

Figure 243: Chute $_4000$ time PSOR

 $Figure~245:~Chute_4000~time~PROX/NSN/Internal Solvers$

 $Figure~246:~Chute_4000~time~PROX/NSGS/Internal Solvers$

Figure 247: Chute_4000 time PROX/Parametric studies $\nu=0.5$

Figure 248: Chute_4000 time PROX/Parametric studies $\nu=1.0$

Figure 249: Chute_4000 time PROX/Parametric studies $\nu=2.0$

Figure 250: Chute $_4000$ time PROX/Regularized problem

Figure 251: Chute_4000 time OPTI

Figure 253: Chute $_4000$ time COMP/zoom

18 Chute_local_problems precision 1.0e-04 timeout 10

Figure 254: Chute_local_problems time VI/UpdateRule

 $Figure~255:~Chute_local_problems~time~NSGS/LocalSolver$

 $Figure~256:~Chute_local_problems~time~NSGS/LocalSolverHybrid$

Figure 257: Chute_local_problems time NSGS/LocalTol

Figure 258: Chute_local_problems $% \frac{1}{2}$ time NSGS/LocalTol-VI

Figure 259: Chute_local_problems $% \frac{1}{2}$ time NSGS/Shuffled

Figure 260: Chute_local_problems time PSOR

 $Figure~262:~Chute_local_problems~time~PROX/NSN/InternalSolvers$

 $Figure~263:~Chute_local_problems~time~PROX/NSGS/InternalSolvers$

Figure 264: Chute local problems time PROX/Parametric studies $\nu=0.5$

Figure 265: Chute_local_problems time PROX/Parametric studies $\nu=1.0$

Figure 266: Chute_local_problems time PROX/Parametric studies $\nu=2.0$

Figure 267: Chute_local_problems time PROX/Regularized problem

Figure 268: Chute_local_problems time OPTI

Figure 270: Chute_local_problems time COMP/zoom

19 Chute_local_problems precision 1.0e-08 timeout 10

Figure 271: Chute_local_problems time VI/UpdateRule

Figure 272: Chute_local_problems time NSGS/LocalSolver

 $Figure~273:~Chute_local_problems~time~NSGS/LocalSolverHybrid$

Figure 274: Chute_local_problems time NSGS/LocalTol

Figure 275: Chute_local_problems $% \frac{1}{2}$ time NSGS/LocalTol-VI

Figure 276: Chute_local_problems $% \frac{1}{2}$ time NSGS/Shuffled

Figure 277: Chute_local_problems time PSOR

 $Figure~279:~Chute_local_problems~time~PROX/NSN/InternalSolvers$

 $Figure~280:~Chute_local_problems~time~PROX/NSGS/InternalSolvers$

Figure 281: Chute_local_problems time PROX/Parametric studies $\nu=0.5$

Figure 282: Chute_local_problems time PROX/Parametric studies $\nu=1.0$

Figure 283: Chute_local_problems time PROX/Parametric studies $\nu=2.0$

Figure 284: Chute_local_problems $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =$

Figure 285: Chute_local_problems time OPTI

Figure 287: Chute_local_problems time COMP/zoom

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Publisher Inria Domaine de Voluceau - Rocquencourt BP 105 - 78153 Le Chesnay Cedex inria.fr