

FCC TEST REPORT

For

Shenzhen Nokelock Technology Co., Ltd.

Smart Padlock

Model No.: O02, O03, O06, O07, O08, O09

Prepared For Shenzhen Nokelock Technology Co., Ltd.

Address 9th Floor, B Block, Fuhua Technology Building, Nanshan Science Park,

Nanshan District, Shenzhen, China

Prepared By Shenzhen Anbotek Compliance Laboratory Limited

Address 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number SZAWW180820002-01

Date of Receipt Aug. 20, 2018

Date of Test Aug. 20~30, 2018

Date of Report Aug. 30, 2018

Contents

. General Information					
1.1. Client Information	stek A	mbo	w.	Vupote,	Anv
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During	wote ^k	Pupote.	Anv tek	,,botek	Ambo
1.3. Auxiliary Equipment Used During	Test	hotek	Anbo	./r	k pobote.
1.4. Description of Test Modes	Anbo.	6bes	ek vupo,	Anb	1001111111111
1.5. List of channels	Anboile	An		potek Anb	o, by,
1.7 Test Equipment List					
1.8. Description of Test Facility Summary of Test Results	V	otek	Vupore,	Yun,	botek
Summary of Test Results	Ke. K	ur rek	abotek	Anbo	Ar. otek
. Conducted Emission Test	,botek	Anbo	w. otek	Anbote.	Anu rek
. Conducted Emission Test	Lotek.	Anbore	Anv	ek "botel	Aupor
3.2. Test Setup	Ann	obot	ek Yupo,	. Pos.	stek Anbott
3.2. Test Setup	Anbo	V	otek An	pole. And	Ya
3.4. Test Data	Anbo	te Vu	rek	abotek A	upo, bu.
Radiation Spurious Emission and Band Education Standard and Limit	dge	potek	Anbo	worek.	Ambole
4.1. Test Standard and Limit		notek	Anbole	Yur.	abotek
4.2. Test Setup	poro	Alle	anbotek	Anbo	wotek.
4.2. Test Setup	Anbotek	Anbo	NO.	k Anbole	Am
4.4. Test Data	-botek	Anbor	Nu.	dek abo	tek Anbo
. Maximum Peak Output Power Test 5.1. Test Standard and Limit	br.	ek ont	oter Ani	50Ve	notek Anb
5.1 Test Standard and Limit	And	You	.hotek	Anboto A	10K
5.2. Test Setup	ek Pu	Por	All	Anbotek	Anbo
5.2. Test Setup	otek	Anboten	AUDO	.botek	Anbolo
5.4. Test Data	re/r	abotek.	Anbor	blo.	anboten
6DB Occupy Bandwidth Test	Aupor	br.	k Anbote	Anbo	ek botel
6.1 Test Standard and Limit	Anbole	AITE	Ve. No.	otek Anbo	N. Pri
6.1. Test Standard and Limit	dode	ek Anb	O. Pr.	otek N	boten And
6.3. Test Procedure	r bo	-otek	nbote P	'Up	botek P
Power Spectral Density Test	otek	Anbo	Kr	Anbole	Ann
7.1 Test Standard and Limit	-otek	Anbote	Am	k botek	Anbot
7.1. Test Standard and Emiliary	AMP	abote	Anbow	V 0	ek Anbote
7.2. Test Brocadura	Aupor		otek anb	PLO,	nd. 40.
7.4. Test Date	anbott	V. VIII	.aV	-botek An	oots
100kHz Pandwidth of Fraguency Pand E.	daa Daguir	ramant	'upoy	otek	Ambolek A
2.1 Test Standard and Limit	age Kequii	ement	Anbolok	Augu	notek.
o.1. Test Standard and Limit	0,01	Anbo	hotek	Anbole	, tek
6.4. Test Data	abotek	Aupole	- AM	, hototok	AMBO*
8.5. 1est Procedure	w. otek	, nbotol	Pupo	not you	sk Aupoter
8.4. lest Data	KARO	K MC	stek Anbe	120 brus	atek - nbo
. Antenna Requirement.	Anbote	·····	otek	hotek Au	No. Di
9.1. Test Standard and Requirement	40	Of Of			vupote, vi

TEST REPORT

Applicant : Shenzhen Nokelock Technology Co., Ltd.

Manufacturer : Shenzhen Nokelock Technology Co., Ltd.

Product Name : Smart Padlock

Model No. : O02, O03, O06, O07, O08, O09

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 130mA(with DC 3.7V, 120mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v04

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

Reviewer

(Supervisor / Calvin Liu)

Approved & Authorized Signer

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Nokelock Technology Co., Ltd.
Address	÷	9th Floor, B Block, Fuhua Technology Building, Nanshan Science Park, Nanshan District, Shenzhen, China
Manufacturer	:	Shenzhen Nokelock Technology Co., Ltd.
Address	:	9th Floor, B Block, Fuhua Technology Building, Nanshan Science Park, Nanshan District, Shenzhen, China

1.2. Description of Device (EUT)

Product Name	: ,	Smart Padlock	Anbotek	Anbotek	Anbotek	Anbotek	K Anbole
Model No.	: 5%	O02, O03, O06, O(Note: All sample test only.)			del colour, so	we prepare	"O02" for
Trade Mark	:]]	N.A.	otek Ann	hbotek Anb	otek An	botek	Anbotek
Test Power Supply	: .	AC 240V, 60Hz 1	for adapter/ AC	C 120V, 60Hz fo	r adapter/ De	C 3.7V batte	ery inside
Test Sample No.	: (S1, S2	Anbotek	Anbore	Anbotek	Anbote	rek Aupo
	100	Operation Freque	ency:	2402MHz~2	2480MHz	FEK AUD	abotek A
		Transfer Rate:	otek Ans	1 Mbits/s	otek An	botek P	Anbotek
Product		Number of Chan	nel:	40 Channels	hotek	Anbotek Anbotek	Anboten
Description		Modulation Type	Anbotek	GFSK	Anbotek	Anbote	tek Anbo
	10	Antenna Type:	Anboro wo	PCB Antenr	ia Ambote	Kek Vup.	abotek Ar
	P	Antenna Gain(Pe	ak):	0 dBi	itek Ant	hotek b	Anbotek

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

o'	Adapter	:	Manufacturer: ZTE	
			M/N: STC-A2050I1000USBA-C	1
			S/N: 201202102100876	
			Input: 100-240V~ 50/60Hz, 0.3A	
			Output: DC 5V, 1000mA	30.5

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH19 Anbotek Anbotek Anbotek
Mode 3	CH39
Mode 4	Keeping TX+ Charging Mode

	For Conducted Emission	
Final Test Mode	Description	
Mode 4	Keeping TX+ Charging Mode	Anbo

			Fo	or Radiated Em	ission			
F	inal Test Mo	de			Description			
Aupor	Mode 1	otek Ar	boten	Anboatek	CH00	Oto Vu	notek	Anbotek
Anbo	Mode 2	nbotek	Anbote	Anbanotek	CH19	inpos	Am	Anbo
CON AL	Mode 3	anbotek	Anbote	k Anv hotek	СН39	Anbor	Air	k AT
boter	Mode 4	Anbotek	Anbore	Ke	eping TX+ Charg	ing Mode	ak nb	

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	09	2420	18	2438	27	2456	36	2474
01	2404	10	2422	19	2440	28	2458	37	2476
02	2406	ek 11 An	2424	20	2442	29	2460	38	2478
03	2408	12	2426	21	2444	30	2462	39	2480
04	2410	13	2428	22	2446	31	2464		
05	2412	14	2430	23	2448	32	2466		
06	2414	15	2432	24	2450	33	2468		
07	2416	16	2434	25	2452	34	2470		
08	2418	ote ^k 17	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

RE

FCC ID: 2AJGT-D-WM

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
itek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3. An	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
P7.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
8.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
11.	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
20.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Test Item	Result
Antenna Requirement	PASS
Conducted Emission	PASS
Spurious Emission	PASS
Conducted Peak Output Power	PASS
6dB Occupied Bandwidth	PASS
Power Spectral Density	PASS
Band Edge	PASS
	Antenna Requirement Conducted Emission Spurious Emission Conducted Peak Output Power 6dB Occupied Bandwidth Power Spectral Density

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.207	Anbote Amb	Anbotek Anbo. Atek
	Erraguanav	Maximum RF	Line Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60	50 50 AM
Remark: (1) *Dec	creasing linearly with logarithm	of the frequency	notek anbote p

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 22.2°C Hum.: 59%

1.4580

1.4660

1.9220

2.0900

2.6420

9

10

11

12

19.94

-0.77

20.06

-1.52

20.13

20.14

20.14

20.15

40.07

19.37

40.20

18.63

56.00

46.00

56.00

46.00

-15.93

-26.63

-15.80

-27.37

QP AVG

QP

AVG

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode AC 240V, 60Hz for adapter Test Specification:

Comment: Neutral Line

Tem.: 22.2°C Hum.: 59%

1.7780

1.8900

2.4620

10

11

12

11.46

-2.32

10.97

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22.2°C Hum.: 59%

-24.40

-28.18

-24.88

QP

AVG

QP

31.60

17.82

31.12

56.00

46.00

56.00

20.14

20.14

20.15

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.2°C Hum.: 59%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	09 and 15.205				
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz~0.490MHz	2400/F(kHz)	tek Anbo. Ar.		300	
	0.490MHz-1.705MHz	24000/F(kHz)	hbotek Anbo	rek who	30	
	1.705MHz-30MHz	30	Anbotek A	lpo stek	30	
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	Ambote's	
	88MHz~216MHz	150	43.5	Quasi-peak	3.04	
	216MHz~960MHz	200	46.0	Quasi-peak	3 potek	
	960MHz~1000MHz	500	54.0	Quasi-peak	tek 3 Anbote	
	1000 41	500	54.0	Average	botek 3 Anb	
	Above 1000MHz	Ann hotek	74.0	Peak	abote'3	

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (30~1000MHz)

Job No.: SZAWW180820002-01 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 24.3°C/55%RH

FCC PART 15C Standard: Power Source: DC 3.7V Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

Product Safety FCC ID: 2AJGT-D-V

Test Results (30~1000MHz)

Job No.: SZAWW180820002-01 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	Test Channel: Lowest							
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.70	34.04	6.58	34.09	45.23	74.00	-28.77	botek V
7206.00	32.75	37.11	7.73	34.50	43.09	74.00	-30.91	AnbV
9608.00	32.29	39.31	9.23	34.79	46.04	74.00	-27.96	V
12010.00	tek *	otek P	upoton k	hpotek	Anbotek	74.00	Andabotek	V
14412.00	tek*	nbotek	Anbote	Vu. Polek	Anbotek	74.00	k nbo	e ^V V
4804.00	43.27	34.04	6.58	34.09	49.80	74.00	-24.20	po ^{teK} H
7206.00	34.63	37.11	7.73	34.50	44.97	74.00	-29.03	Anb He
9608.00	31.84	39.31	9.23	34.79	45.59	74.00	-28.41	Н
12010.00	* *	stek A	ibotel P	nbonotek	Anbotek	74.00	Andotek	Н
14412.00	***	abotek	Anboles	Anbe	Anbotek	74.00	A Pur	e [¥] H
W	- 00-		A	verage Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	27.25	34.04	6.58	34.09	33.78	54.00	-20.22	V
7206.00	21.28	37.11	7.73	34.50	31.62	54.00	-22.38	V
9608.00	20.27	39.31	9.23	34.79	34.02	54.00	-19.98	V
12010.00	Anbote*	Aupo Olek	Napotek	Aupor	Vok Vu	54.00	Jek Wu	V
14412.00	**	Aupr	ok Anbo	lek Vul	Ope Brus	54.00	nbotek	V
4804.00	31.63	34.04	6.58	34.09	38.16	54.00	-15.84	Anbu H
7206.00	23.55	37.11	7.73	34.50	33.89	54.00	-20.11	H
9608.00	20.12	39.31	9.23	34.79	33.87	54.00	-20.13	H
12010.00	Anbote*	Anboro	An	Anbore	K Vupo	54.00	Hek Ant	H
14412.00	Ant*tek	Vupor	k Vupo,	ek Anb	oten Vup	54.00	potek F	H H

FCC ID: 2AJGT-D-WM

Test Results (1GHz-25GHz)

Test Mode: C	CH19			Test	channel: Midd	le		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	37.06	34.38	6.69	34.09	44.04	74.00	-29.96	botek
7320.00	31.67	37.22	7.78	34.53	42.14	74.00	-31.86	AnbVek
9760.00	31.32	39.46	9.35	34.80	45.33	74.00	-28.67	V
12200.00	tek *	otek P	upoto l	in hotek	Anbotek	74.00	Anabotek	V
14640.00	**	nbotek	Anboten	Am	Anbotek	74.00	k anboi	e ^K V
4880.00	41.30	34.38	6.69	34.09	48.28	74.00	-25.72	pote ^K H
7320.00	33.40	37.22	7.78	34.53	43.87	74.00	-30.13	AnbHek
9760.00	30.72	39.46	9.35	34.80	44.73	74.00	-29.27	Hot
12200.00	*	otek A	ipotek k	nbo	Aupotek	74.00	Am	HAD
14640.00	*	abotek	Anboles	Andwork	Anbotek	74.00	An-	е⊁ Н
			A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	25.93	34.38	6.69	34.09	32.91	54.00	-21.09	V
7320.00	20.39	37.22	7.78	34.53	30.86	54.00	-23.14	V
9760.00	19.48	39.46	9.35	34.80	33.49	54.00	-20.51	V
12200.00	Aupot*	Anbe	Anbotek	Anbote	rok bu	54.00	Ani	V
14640.00	***	And	ek Anbo	iek Aut	or by	54.00	hotek	V
4880.00	30.14	34.38	6.69	34.09	37.12	54.00	-16.88	H
7320.00	22.55	37.22	7.78	34.53	33.02	54.00	-20.98	H
9760.00	19.19	39.46	9.35	34.80	33.20	54.00	-20.80	H
12200.00	Anbotek	Anbore	Anbotek	Anbote	Y Vup.	54.00	lek Vup	H
14640.00	*	Pupo.	K Aupo	ek Anb	oto. Aup	54.00	potek I	H ,

FCC ID: 2AJGT-D-WM

Test Results (1GHz-25GHz)

Test Mode: C	CH39			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.64	34.72	6.79	34.09	44.06	74.00	-29.94	botek
7440.00	31.39	37.34	7.82	34.57	41.98	74.00	-32.02	AnbVen
9920.00	31.07	39.62	9.46	34.81	45.34	74.00	-28.66	Voc
12400.00	tek *	ote ^K A	upolo. I	inn hotek	Anbotek	74.00	An abotek	V
14880.00	***	nbotek	Anboten	Aur Potek	Anbotek	74.00	k anbo	e ^k V
4960.00	40.79	34.72	6.79	34.09	48.21	74.00	-25.79	pote ^K H
7440.00	33.08	37.34	7.82	34.57	43.67	74.00	-30.33	Anb Hek
9920.00	30.43	39.62	9.46	34.81	44.70	74.00	-29.30	Ho
12400.00	*	otek A	ibotel P	nbo	Anbotek	74.00	Ann	H
14880.00	*	obotek	Anbores	Anbo	Anbotek	74.00	k hot	ъ№ Н
.,		In-	A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.64	34.72	6.79	34.09	33.06	54.00	-20.94	V
7440.00	20.19	37.34	7.82	34.57	30.78	54.00	-23.22	V
9920.00	19.31	39.62	9.46	34.81	33.58	54.00	-20.42	V
12400.00	*	Anbo	Anbotek	Anbore	Vak Vin	54.00	Sek Wur	V
14880.00	*	Anbe	ok Anbo	lek Vul	Or Pur	54.00	abotek	V
4960.00	29.81	34.72	6.79	34.09	37.23	54.00	-16.77	Anbo.
7440.00	22.33	37.34	7.82	34.57	32.92	54.00	-21.08	, H
9920.00	18.99	39.62	9.46	34.81	33.26	54.00	-20.74	Н
12400.00	*	Anboto	An	Anbote	k Aupo	54.00	kek Aup	H
14880.00	Ant*lek	Aupor	K Anbol	ek Anb	ofer Wup,	54.00	potek	nbote H

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

tek abo, tun, " stok

Radiated Band Edge:

Test Mode: 0	CH00			Test	Test channel: Lowest					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	47.01	29.15	3.41	34.01	45.56	74.00	-28.44	botek H		
2400.00	64.39	29.16	3.43	34.01	62.97	74.00	-11.03	AnhHick		
2390.00	47.96	29.15	3.41	34.01	46.51	74.00	-27.49	Voote		
2400.00	66.87	29.16	3.43	34.01	65.45	74.00	-8.55	VAnt		
			A	verage Valu	e					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	36.63	29.15	3.41 And	34.01	35.18	54.00	-18.82	Hote		
2400.00	48.11	29.16	3.43	34.01	46.69	54.00	-7.31	H		
2390.00	36.87	29.15	3.41	34.01	35.42	54.00	-18.58	v V		
2400.00	45.15	29.16	3.43	34.01	43.73	54.00	-10.27	V		

Test Mode: C	СН39			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	49.61	29.28	3.53	34.03	48.39	74.00	-25.61	nboH ^k
2500.00	47.99	29.30	3.56	34.03	46.82	74.00	-27.18	Hotel
2483.50	51.14	29.28	3.53	34.03	49.92	74.00	-24.08	V
2500.00	49.39	29.30	3.56	34.03	48.22	74.00	-25.78	V
			A	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	39.51	29.28	3.53	34.03	38.29	54.00	-15.71	Anbo H
2500.00	36.92	29.30	3.56	34.03	35.75	54.00	-18.25	\mathbf{H}_{up}
2483.50	41.06	29.28	3.53	34.03	39.84	54.00	-14.16	V
2500.00	37.18	29.30	3.56	34.03	36.01	54.00	-17.99	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.24	7 (b)(3)	Ambotek	Anbotek	Anbo	þ.
Test Limit	30dBm	Anbotek	Anboro	Air	Anbotek	Anbo	· 1

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span \geq 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24℃
Test Result	÷	PASS	Humidity :	55%RH

	Channel Frequency	Peak Power output	Limit	D 1	
	(MHz)	(dBm)	(dBm)	Results	
6	2402	-4,393	30	PASS	
YSY	2440	-5.062	30 Andotes	PASS	
npoteV	2480	-5.042	Anbotek 30 Anbotek	PASS	

CH: Low

CH: Middle

CH: High

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.24	17 (a)(2)	Ann	Anbotek	Anbo.	p.
Test Limit	>500kHz	Anbotek	Anboto	Air	Anbotek	Anbo	

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW \geqslant 3*RBW = 300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item	:	6dB Bandwidth	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	676.8	An botek	PASS
Middle	2440	680.0	>500	PASS
ntek High Nabote	2480	677.4	hoors An abote	PASS

CH: Low

CH: Middle

CH: High

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 (C Section 15.24	7 (e)	Am	Anbotek	Anbo stek
Test Limit	8dBm	Anbotek	Anboro	An. botek	Anbotek	Anboatek

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density : CH Low \sim CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24°C

Test Result : PASS Humidity : 55%RH

Channel	Frequency	PPSD	Limit	Results
	(MHz)	(dBm/KHz)	(dBm/KHz)	
Low	2402	-15.591	8.00	PASS
Middle	2440	-18.569	8.00	PASS
his Anbote	2480	-19.830	8.00	PASS

CH: Low

CH: Middle

CH: High

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24°C

Test Result : PASS Humidity : 55%RH

Frequency Band	Delta Peak to Band Emission	Limit	Results
(MHz)	(dBc)	(dBc)	
2400	43.801	>20	PASS
2483.5	47.376	>20	PASS

CH: Low

CH: High

Conducted Emission Method

CH: Low

CH: Middle

CH: High

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by
	the responsible party shall be used with the device. The use of a permanently attached
	antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufactures
	may design the unit so that a broken antenna can be replaced by the user, but the use of a
Requirement	standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater than
	6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1
	dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The bluetooth antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

-- End of Report ---