

FIG.3A

FIG.3B

FIG.3C

FIG.4A

FIG.4B

	Part of Hexagonal Code along a 3-Row Strip					
	u x	a	d	. g	j	
1	/	/	/	/	/	
v	$oldsymbol{y}$	b	e	h	\boldsymbol{k}	
\	\	\	\	\	\	
,	w , z	c	f	i	l	

FIG.5A

One Strip of Fish-Bone Code

FIG.5B

Coherent Stack of Two Strips of Fish-Bone Code, with 3 Rows each						
	x_1	a_1	d_1			
	/	/	/	1	. /	
Strip 1	¥1	b ₁	e ₁	h_1	k_1	
	\mathcal{N}	\	\	\	\	
	^z 1		f_1	1	<i>l</i> ₁	
	./	./	<i>!</i>	/	/	
	$x_{\mathcal{Z}}$	a_2	$d_{\mathcal{Z}}$	92	j2	
	/ /	/		/	1	
Strip 2 y_2	$b_{\mathcal{Z}}$	e2	$h_{\mathcal{Z}}$	$k_{\mathcal{Z}}$		
ļ ,	\	\	•	\	\	
	z_2	c ₂	f_{2}	$i_{\mathcal{Z}}$	$l_{\mathcal{Z}}$	

FIG.6A

Stack of Two Strips of Fish-Bone Code	
{ { { { { { { { { {	
((((((

FIG.6B

Isolated Bit in Boundary Row						
Isolate Surroun	Forbidden Next Triplets					
x_{s}	$x_{\mathcal{S}}$					
/	/	1				
	. $x_{\mathcal{S}}$					
\	\	١				
	•	•				

FIG.7A

Isolated Bit in Central Row						
Isolated a Surrounde	Forbidden Next Triplets					
$x_{\mathcal{S}}$	•					
/	J	/				
x_{s} \overline{x}	x_{S} \overline{x}_{i}					
١	\	١				
x_{S}	x_{S}					

FIG.7B

STD-State without Isolated Bits							
STD-State σ_1	STD-State σ_1 STD-State σ_2 STD-State σ_3 STD-State σ_3						
x _s	x _s x _s x _s		X _S				
1	/ /		/				
x _s	Уs	Уs	x _s				
\	\	\	\				
xs	Уs	$x_{\mathcal{S}}$	Уs				

FIG.8

STD-States with a Single Isolated Bit						
(related to σ_2)		(related to σ_3) (related to σ_4)				
STD-State σ ₅	STD-State σ ₆	STD-State o7	STD-State og	STD-State 09		
x _i	x _i x _s x _s		x _s			
/	/	/	/	/		
y _s y _s		Уį	y _S	x _s		
\ \		١	\	\		
УS	x _s	x _s	Χį	y _i		

FIG.9

WO 03/092004 PCT/IB03/01255

7/28

FIG.10

M = 8-ary NRZ Channel Symbol [I] = (ijk), with $I = I + 2J + 4k$, $0 \le I \le 7$						
Current NRZI Triplet	Channel Symbol [l]	Next NRZI Triplet				
×1 /	→i→	×2 = ×1(−1) ^l /				
У1	->j->	^y 2 = y₁(−1) ^j				
z ₁	\rightarrow k \rightarrow	z ₂ = z ₁ (−1) ^k				

FIG.11

M = 8-ary NRZ Channel Symbol Example for I = 6						
Current Channel Symbol Next NRZI Triplets [I], I = 6 NRZI Triplet						
1	\rightarrow 0 \rightarrow	1				
/	→1→	1				
0	717	`\				
1	→1→	0				

FIG.12

	Flow of Channel Symbols in STD: Next States							
Starting State	Symbol [0]	Symbol [1]	Symbol [2]	Symbol [3]	Symbol [4]	Symbol [5]	Symbol [6]	Symbol [7]
σ1	σ1	σ5	07	σ4	σg	· σ ₁₀	σ2	σ1
σ_2	σ2	σ ₁	σ4	σ6	σ8	თე	σ1	σ5
σ3	σ3	σ4	σ ₁	σ ₅	σ2	σ ₁	σ9.	σ10
σ ₄	σ4	σ ₆	σ_2	σ ₁	σ1	σ5	σგ	დე
σ ₅	σ_2		σ4	σ ₆	σ8		σ ₁	σ5
σ ₆	σ3		σ1	σ5	σ2	-	თვ	σ10
07	σ3	σ ₄	_		σ2	σ1	-	
σ ₈	σ3	σ4	σ1	σ ₅	_	-	σg	σ10
<u>σ</u> 9	σ4	σ6	σ2	σ1	-	_	<u>α</u> 8	σg
σ ₁₀	03	-	σ1	σ ₅			σ9	σ ₁₀

FIG.13

2D Code with N _{nn} = 1 and N _{row} = 3						
Code Mapping $m \rightarrow 3n$	Code Rate	Efficiency $\eta = \frac{R}{C}$				
$ \begin{array}{c} 1 \rightarrow 3 \\ 2 \rightarrow 3 \\ 5 \rightarrow 6 \\ 8 \rightarrow 9 \\ 11 \rightarrow 12 \\ 25 \rightarrow 27 \end{array} $	0.333333 0.666667 0.833333 0.888889 0.916667 0.925926	0.3592 0.7184 0.8979 0.9578 0.9877 0.9977				

FIG.14

Permutation of Channel Symbols related to Mirror Symmetry						
[0] [1] [2] [3] [4] [5] [6] [7]	* * * * * * *	[0] [4] [2] [6] [1] [5] [3]				

1	Permutation of Next States related to Mirror Symmetry									
σ1	\leftrightarrow	σ1								
σ_2	\leftrightarrow	σ4								
თ ვ	\leftrightarrow	σვ								
σ4	. ↔	σ2								
σ ₅	\leftrightarrow	σ9								
σ6	\leftrightarrow	თ გ								
σ ₇	\leftrightarrow	σ7								
σ8	\leftrightarrow	σ6								
σ9	\leftrightarrow	σ5								
σ ₁₀	\leftrightarrow	σ ₁₀								

FIG.15A

FIG.15B

	6-State FSM Fish-Bone Main Code	16-State FSM Fish-Bone Main Code with 11 - to - 12 Mapping ($N_{\text{DD}} = 1$ and $N_{\text{DOW}} = 3$)	
FSM-State	Related STD-State(s)	Remark, or Limitations on Word abcd	Fan-Out
Σ	σ ₁ (A)	αbc≤172	2057
Σ_2	σ ₁ (B)	$172 \le \alpha bc \le 377$	2078
Σ_3	σ ₁ (C)	$400 \le \alpha bc \le 617$	2054
Σ4	ما (D)	$\alpha bc \ge 620$	2119
Σ5	σ2 (A), σ5 (A)	$\alpha = 0$ or $200 \le \alpha b c \le 260$	2233
Σ_{6}	σ ₂ (B), σ ₅ (B)	$260 \le \alpha bc \le 477$	2137
Σ_7	σ2 (C), σ5 (C)	$\alpha = 6 \text{ or } \alpha = 7$	2160
Σ_8	ο ₂ (D)	$\alpha = 1$ or $\alpha = 5$	2160
Σ_9	σ ₄ (A), σ ₉ (A)	via miroring from Σ_5	2233
Σ10	σ ₄ (B), σ ₉ (B)	via mirroring from Σ_6	2137
Σ11	σ ₄ (C), σ ₉ (C)	via mirroring from Σ_7	2160
Σ_{12}	α4 (D)	via mirroring from Σ_8	2160
Σ13	03 (A), 06 (A), 08 (A), 010 (A)	$a = 2$ (abc $\neq 275$, abc $\neq 277$), or $a = 3$	2121
214	σ_3 (B), σ_6 (B), σ_8 (B)	a=10ra=6	2217
245	σ3 (C), σ8 (C), σ10 (B)	a = 0 or $a = 7$ or $abc = 275$ or $abc = 277$	2053
Σ16	α ₆ (C)	via mirroring from Σ_{15}	2053

FIG. 16

11/28

****	**************************************															
****	*****	**	***		****	***	****	**	*****	**	****	***	****	***	****	**
	Σ_1 Σ_9)	Σ_{2}	,	Σ3, Σ ₁ ,	1	$\Sigma_4 \Sigma_1$	2	Σ ₅ , Σ ₁₃	3	Σ_{6} Σ_{12}	1 I	Σ ₇ / Σ ₁ !	5	Σ ₈ , Σ ₁₀	3
user	Chann Word		Chann Word	eÎ	Čhann Word	ēl	Chann Word	el	Chann Word	el	Chann Word	el	Chann Word	el	Chann Word	
Word	1	NS	1	IS	!	VS I		NS	. [YS	*****	VS.		¥Ž Į	****	VS [
****	0010	*** 5	1730				6200	9	0010	î.	2600	13	6001		1001	5
U	0040	1	2300		3004	9	4004	9	2001	5		13	0040	5	0040	5
1	0010	6		14	4001			10	0010	2		14	6001	6	1001	6
•	0040	2		14	3004		4004	10	2001	6	1001	14	0040	6	0040	. 6
2	0010	7	1730		4001		6200	11	0010	3	2600	15	6001	7	1001	7
_	0040	3		15	3004		4004	11	2001	7	1001	16	0040	7	0040	7
2	0010	8	1732	1	4002			12		4	2601	9	6003	9	1003	9
J	0040	4	2304	5	3006		4006	5	2003	9	1002	5	0040	8	0040	8
4	0012	9	1732	2	4002	-	6201	13	0011	4	2601	10	6003	10	1003	10
4	0012	9	2304	6	3006	_	4006	6	2003	10	1002	6	0044	13	0044	13
5		_	1732	3	4002	_	6201	14	0011	6	2601	11	6003	11	1003	11
5	0012		2304	7	3006	-	4006	7		11	1002	7	0044	14	0044	
6	0040		1732	4	4002	•	6201	16	0011	7	2601	12	6003	12	1003	
O	0012		2304	8	3006		4006	8		12	1002	8	0044	15	0044	
7		12	1733	5	4003	_	6202	5	0013	9	2602	1	6004	9	1004	9
,	0012	5	2302	1	3001	_	4001	5		9	1003	1	0042	9	0042	9
8		13	1733	6	4003	_	6202	6		10	2602	2		10	1004	10
U	0046	6		2	3001	6		6			1003	2		10	0042	
••••							7740	٠.	0.450		4702	 1	7705	 9	 5704	 4
2039		8		14		11	7742		2456	11	4702	4		14	7770	14
	2153	7	1702	4			5701	4		14		5 5		10	5705	5
2040		1	3760	15			7742	7		13 15		6		15	7770	15
0044	2157			9			5705 7742	9 8				6			5705	6
2041				9			5705			1	6637	7		1	7772	1
0040	2157			10		10				5	_	7	–	•	5705	7
2042				11	7703	1		•		2		9			7772	2
00.43	2130 1723			11	6174							5		_		
2043						-			3732	-	6660				7772	
2044			3761						2460				7706		5706	
2044			1701				3 5703	14	3732		6660				7772	
2045	1724		3762		6175				2460		4704		7706		5706	
2040			1701						3733				7776		7776	
20/16	1724		3762		6176				2461		4704		7707			
2040	2134		1701				5707		3733		6661					
2047	7 1724		3762		6176		-				4705					
2041	2134		1705		7707						6661	_			7776	
***	~ I U 4 *****	***			****	***	****	***	****	***	****	**	****	**	****	***

PCT/IB03/01255

FIG.21

Row-Based RDS for a Fish-Bone Code (with bipolar NRZI channel bits
$$u_j$$
 $\stackrel{(l)}{\downarrow}$ u_{i-2} u_{i-1} $u_{i-1}^{(1)}$ $u_{i}^{(1)} \rightarrow \text{RDS}_i^{(1)} = \Sigma_j^i = -\infty u_j^{(1)}$ $u_{i-2}^{(2)}$ $u_{i-1}^{(2)}$ $u_{i}^{(2)}$ $u_{i}^{(2)}$ $u_{i-1}^{(3)}$ $u_{i}^{(3)}$ $u_{i-1}^{(3)}$ $u_{i}^{(3)}$ $u_{i-1}^{(3)}$ $u_{i}^{(3)}$ $u_{i-1}^{(3)}$ $u_{i}^{(3)}$ $u_{i-1}^{(3)}$ $u_{i-1}^{(3)}$

FIG.24

Parity-Vector p for a Channel Word of 3 8-ary Symbols (with NRZ channel bits
$$\alpha_j$$
 j l)
$$\alpha_1^{(1)} \qquad \alpha_2^{(1)} \qquad \alpha_3^{(1)} \qquad \alpha_3^{(1)} \qquad p^{(1)} = \Sigma_{j=1}^3 \alpha_j^{(1)} \mod 2$$

$$\alpha_1^{(2)} \qquad \alpha_2^{(2)} \qquad \alpha_3^{(2)} \qquad \rightarrow p^{(2)} = \Sigma_{j=1}^3 \alpha_j^{(2)} \mod 2$$

$$\alpha_1^{(3)} \qquad \alpha_2^{(3)} \qquad \alpha_3^{(3)} \qquad \rightarrow p^{(3)} = \Sigma_{j=1}^3 \alpha_j^{(3)} \mod 2$$

FIG.25

18/28

Overall DC-Control 4 Pairs of Parity-Vectors for N _{row} = 3								
0 0 0 0 p=0	↔	1 1 1 p = 7						
(1 0 0 p = 1	\longleftrightarrow	0 1 1 p=6						

FIG.26

Alternation Scheme of Codes C ₁ and C ₂ for the Fish-Bone Combi-Code											
 C ₁	C ₁	c_2	C ₁	C ₁	C ₁	C ₂	C ₁				
 11 - 12	11 - 12	7-9	11 - 12	11 - 12	11 - 12	7-9	11 - 12				
 <u> </u>		₩	~	~	<u> </u>	\\\\	((((

FIG.27

	16-State FSM 7 - to - 9 Fish-Bo	16-State FSM 7 - to - 9 Fish-Bone Substitution Code (Nnn = 1 and Nrow = 3)	
FSM-State	Related STD-State(s)	Remark, or Limitations on Word abcd	Fan-Out
Σ_1	α1 (A) `	abc ≤ 177	138
Σ_2	σ ₁ (B)	177 ≤ abc ≤ 372	130
Σ_3	α ₁ (C)	372 ≤ abc ≤ 617	132
Σ4	α ₁ (D)	abc≥620	132
Σ_5	σ ₂ (A), σ ₅ (A)	$a = 0 \text{ or } 200 \le abc \le 260$	145
Σ_{6}	σ ₂ (B), σ ₅ (B)	260 ≤ abc ≤ 477	142
Σ_7	σ ₂ (C), σ ₅ (C)	a=6 or a=7	142
Σ_8	م5 (D)	a=10ra=5	141
Σ_9	σ4 (A), σg (A)	via mirroring from Σς	145
Σ_{10}	σ4 (B), σg (B)	via mirroring from Σ ₆	142
Σ11	σ4 (C), σg (C)	via mirroring from Σ_7	141
Σ 12	α4 (D)	via mlroring from Σ_8	142
Σ13	03 (A), 06 (A), 08 (A), 010 (A)	$a = 2 (abc \neq 275, abc \neq 277), or a = 3$	138
214	σ_3 (B), σ_6 (B), σ_8 (B)	a=1 ora=6	155
215	σ3 (C), σ8 (C), σ ₁₀ (B)	a = 0 or $a = 7$ or $abc = 275$ or $abc = 277$	145
2,16	α ₆ (C)	via mIrroring from Σ ₁₅	145

FIG. 28

***	**************************************																	
***	****	e ske ske ske s	,** *	***	****		to -								***	r-44	***	***
			Σ	1/	Σ	2/		3/	Σ	4	Σ	5/	Σ	6/	Σ	7/	Σ	8/
***	*****	****	***	9 ***	ب ****	10.	Σ***	11 ***	Σ***	12 ***	2 ****	13	<u>Σ</u>	14	Σ	15	Σ.	16
Syn	n-	Par-		nnel			Cha			nnel		nnel			Cha		Cha	nnel
pol		ity	Wor	_	Wor		Wor		Woi		Wo		Wor		Wor		Wor	-
***	*****	***	 ****	NS.	****	ŅŞ,	***	NS.	****	NS	***	NS ***		NS.	 '***	NS.	***	NS.
0	Σ_1 - Σ_8			5			373		620		001		260			1	100	
	Σ9-Σ16		006				404 300		627 400		006		267	13	607	1	107	1
	29-276		003				307		400		200 207		100 107	9	004 003	5 5	004 003	_
1	Σ_1 - Σ_8		001	7			373		620		001	3	260		600	3	100	. 3
	1 0	p 2	006				404		627		006		267	15	607	3	107	3
	Σ_9 - Σ_{16}	p_1	004	3			300		400	3	200		100	11	004	7	004	7
		• —	003	3	237		307		407	3	207	3	107	11	003	7	003	7
2	Σ_1 - Σ_8				201		376		621		002		261	10	601	5	101	5
		. —	004	10	206		401		626		005		266	10	606	5	106	5
	Σ_9 - Σ_{16}		002	5	234	6	304		404	9	201	5	101	13	002	1	002	1
3	77	p_2	005 003	5 12	233 201		303		403 621	9	206	_	106	13	005	1	005	1
J	Σ_1 - Σ_8	р_1 р 2	040	12	242		376 410		651	16 16	002 005		261 301	12 12		7	101	7
	Σ_9 - Σ_{16}		002	7	234		304		404	11	201	7	101	16	606 002	7 3	106 002	7 3
	-9 -10		005	7	604		303		403		206	7	153		005	3	002	3
4	Σ_1 - Σ_8	• —			202		377		622	6	003		262		603	10	103	10
	, ,		004		205		400		625				302		604	10	104	10
	Σ_9 - Σ_{16}	p_1	006	13	232	2	306	6	406		203		102		006	9	006	9
		p_2	001	13	602	2	301	6	401	6	204	10	105	6	001	9	001	9
124	Σ_1 - Σ_8	p 1	056	ii	357	 6	536	4	 756	<u></u>	 226	 1	363		 737	 15	 153	 6
	, 0	p_2	163	11	350		610			11	230	i	463			15	572	6
	Σ_9 - Σ_{16}	p_1	242	3	672	2	720	8	542	1	343	5			762	7	762	7
	_	- —	223	3	172		736		532	1	377	5		11	703	7	703	7
125	Σ_1 - Σ_8		142	2			602		750		205	5	430			14	147	10
	7. 7	p_2		2			425		757		231	5	462				577	10
	Σ_9 - Σ_{16}	h_1	264	10	672		760		560		346	9	626	1	725	15	725	15
126	Σ ₁ -Σ ₈				360	15	602	14	762	10	227	9	422	1	700	15	700	15
0	2128	p_1	177	5	367	15	605	11	765	10	246	5	402 406	9	702 711	10	573	ა ე
	Σ_9 - Σ_{16}					9	721	1	560	4	346	11	626	3	723	10	723	12
		n 2	213	10	132	Q	773	1	576	1	363	11	612	2	760	10	760	10
127	Σ_1 - Σ_8	p_1	146	9	350	8	602	10	763	13	227	7	432	11	740	13	531	5
		p_2	172	9	346	8	605	10	764	13	257	7	460	11	747	13	536	5
	Σ_1 - Σ_8 Σ_9 - Σ_{16}	p_1	260	1	160	11	714	6	564	10	340	13	627	5	166	14	766	14
***	****	p_2 ****	20/ ****] ***	1/6 ****	77 ***	/13 ****	6	572	10	347 ***-	13	613	5	770	14	770	14
								_ `						7	~ ~			

FIG.30

Begin	Sync Σ_1 Top-	Strip	Begin Sync ∑ ₂ Top-Strip				
	NRZ S 0	Symbol 4		NRZ S	Symbol 7		
1	1	. 1	1	0	1		
/	/	/	/	/	/		
1	1	1	1	0	1		
\	١	\	\	١	\		
1	1	0	1	1	0		

Begin	Sync $\Sigma_{f 3}$ Top-	Strip	Begin Sync ∑ ₄ Top-Strip			
	NRZ S 4	Symbol 7		NRZ : 7	Symbol 4	
1	1	0	1	0	0	
/	1	1	/	/	/	
1	1	0	1	0	0	
\	١	\	\	١	\	
1	0	1	1	0	1	

FIG.31A

Begin	Sync Σ_5 Top-	Strip	Begin Sync ∑6 Top-Strip			
	NRZ S	Symbol 5	·	NRZ 3	Symbol 6	
1	1 ·	0	1	0	0	
/	/	1	/	/	/	
0	0	0	0	1	0	
١	١	\	\	\	\	
0	0	1	0	Ó	1	

Begin	Sync Σ_{7} Top	-Strip	Begin Sync ∑ ₈ Top-Strip				
·	NRZ S 7	Symbol 5		NRZ 5	Symbol 7		
. 1	0	1	1	0	1		
/	/	/	/	/	/		
0	1	1	0	0	1		
\	\	\	\	١	\		
0	1	0	0	1	0		

Begin	Sync Σ_9 Top	-Strip	Begin Sync ∑ ₁₀ Top-Strip				
	NRZ S 0	Symbol 7		NRZ 6	Symbol 6		
1	1	0	1	1	1		
/	1	1	/	/	/		
1	1	0	1	0	7		
\	\	. \	١	١	\		
0	0	1	0	1	0		

FIG.31B

WO 03/092004 PCT/IB03/01255

Begin	Begin Sync Σ_{11} Top-Strip Begin Sync Σ_{12} Top			p-Strip	
*	NRZ Symbol 7 7				Symbol 5
1	0	1	1	0	1
/	/	/	1	/	· /
1	0	1	1	1	1
\	١	\	\	\	\
0	1	0	0	1	0

Begin Syr	nc ∑ ₁₃ Top	-Strip	Begin Sync ∑ ₁₄ Top-Strip			
	NRZ Sy	/mbol 5	NRZ Symbol 0 6			
1	0	1	1	1	1	
/	/	/	/	/	/	
0 1		1	0	0	1	
\	\	\	\	\	\	
1	1	0	1	1	0	

Begin	Begin Sync ∑ ₁₅ Top-Strip			Sync Σ_{16} To	p-Strip
	NRZ Symbol 7 6			NRZ 7	Symbol 6
1	0	0	1	0	0
/	1	/	/	/	/
0	1	0	0	1	0
\	١	.\	\	١	\
1	0	1	1	0	1

FIG.31C

101512117

Begin Sync ∑ ₁ Bottom-Strip						
	0	NRZ Symbol				
		(1)	(0)			
1	1	1	0			
/	1	/	/			
1	1	1	1			
\ .	١	Ì	\			
1	1	1	1			

Begin Sync Σ_2 Bottom-Strip				
NRZ Symbol 3 0 5 (7) (1)				
0	0	1		
/	/	/		
0	0	0		
١	\	\		
1	1	0		
	3 0 /	NRZ Symt 3 0 (7) 0 0		

Begin Sync ∑3 Bottom-Strip				
	. 1	IRZ Symi	ool _	
	4	(7)	5 (1)	
1	1	1	0	
/	/	/	/	
1	1	1	1	
١	١	\	\	
1	0	0	1	

Begin Sync ∑ ₄ Bottom-Strip					
	7	NRZ Sy 0 (7)	/mbol 1 (5) 5)	
1	() ()	1	
/	/	/	/		
1	0	0	0		
١	١	\	1		
1	() ()	0	

FIG.32A

PCT/IB03/01255

В	egin Sync ∑5 Bottom-Strip		В	egin Sync ∑ ₆ Bottom-Strip
	NRZ Symbol 0 0 7 (7) (3)			NRZ Symbol 3 0 3 (7) (7)
1	1 1 0		1	0 0 1
/	/ / /		1	1 1 . 1
o	0 0 1		0	1 1 0
\	\ \ \		\	\ \ \
0	0 0 1		0	0 0 0
		•	~	
В	egin Sync ∑7 Bottom-Strip		В	egin Sync ∑ ₈ Bottom-Strip
В	egin Sync ∑ ₇ Bottom-Strip NRZ Symbol 7 0 7 (7) (3)		В	egin Sync ∑ ₈ Bottom-Strip NRZ Symbol 5 0 5 (7) (1)
B	NRZ Symbol 7 0 7		B	NRZ Symbol 5 0 5
	NRZ Symbol 7 0 7 (7) (3)			NRZ Symbol 5 0 5 (7) (1)
	NRZ Symbol 7 0 7 (7) (3)			NRZ Symbol 5 0 5 (7) (1)
1	NRZ Symbol 7 0 7 (7) (3)		1	NRZ Symbol 5 (7) (1) O O 1

FIG.32B

	2	27/28
Be	egin Sync Σ_{9} Bottom-Strip	Begin Sync ∑ ₁₀ Bottom-Strip
	NRZ Symbol 0 0 5 (7) (1)	NRZ Symbol 6 0 3 (7) (7)
1	1 1 0	1 1 1 0
/	/ / /	
1	1 1 1	1 0 0 i
\	\ \ \	\ \ \ \ \
0	0 0 1	0 1 1 1
Be	egin Sync ∑ ₁₁ Bottom-Strip	Begin Sync ∑ ₁₂ Bottom-Strip
	NRZ Symbol	NRZ Symbol
	7 0 5 (7) (1)	5 0 7 (7) (3)
1	0 0 1	1 0 0 1
1	/ / /	1 1 1 1
1	0 0 0	1 1 1 0
\	\ \ \	\ \ \ \ \
. 0	1 1 0	0 1 1 0
Ве	gin Sync ∑ ₁₃ Bottom-Strip	Begin Sync ∑ ₁₄ Bottom-Strip
	NRZ Symbol	NRZ Symbol
	3 0 7 (7) (3)	
1	0 0 1	
/	/ / /	
0	1 1 0	0 0 0 1
١	\ \ \	\ \ \ \ \
1	1 1 0	

FIG.32C

Be	gin Sync∑	15 Botton	n-Strip
	7	NRZ Syml 0 (7)	3 (7)
1	0	0	1
1	/	/	/
0	1	1	0
١	\	\	\
1	0	0	0

Be	Begin Sync ∑ ₁₆ Bottom-Strip					
	1	NRZ Sym 0 (7)				
1	0	0	1			
/	/	/	/			
0	1	1	0			
\	١	\	\			
1	0	0	0			

FIG.32D

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.