实验 4: ALU 设计

一、实验目的

- 1、掌握快速加法器 CLA 和先行进位逻辑 CLU 的设计方法。
- 2、掌握32位先行进位加法器及相关标志位的实现方法。
- 3、掌握 ALU 的设计方法,根据指令要求实现 6 种操作的 ALU 器件。

二、实验环境

Logisim-ITA V2.16.1.0。

三、实验内容

1、 根据下图给出的电路原理图(参照其他原理图亦可),实现 并验证 4 位快速加法器 CLA。

- 1) 电路原理图如图
- 2) 实验器材 2输入与非门*4、2输入或非门*4、非门*6、或门、2345输入与门各一个、异或门*4
- 3) 实验步骤 连接电路

4) 仿真检测

2、 根据给出的逻辑表达式,选择合适的逻辑门,实现并验证 4 位先行进位逻辑单元 CUJ。

 $C_1 = G_0 + P_0C_0$

 $C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

 $C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

1) 电路原理图

2) 实验器材

2输入与门*4、3输入与门*3、4输入与门*2、5输入与门*1、2345输入或门各一个

3) 实验步骤

放置器材并连线

3、 根据给出的逻辑表达式和电路原理图,在 4 位快速加法器中增加支持组件并联的 Gg、

Pg 输出端,加上 4 位先行进位逻辑部件,设计并实现 16 位先行进位加法器。

$Gg = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0$ $Pg = p_3 \cdot p_2 \cdot p_1 \cdot p_0$

1) 电路原理图如图以及 4 位 CLA

- 2) 实验器材
 - 4-bit adder * 4、4-bit CLU、分线器 * 4
- 3) 实验步骤
 - a) 全加器连接并封装

b) 4-bit adder (4-bit CLU * 1, FullAdder * 4)

c) 16-bit-CLA

4) 仿真检测

4、 根据给出的标志位生成电路原理图,利用两片 16 位先行进位加法器实现 32 位快速加 法器,及 CF、SF、0F、ZF 等标志位。

带标志加法器的逻辑电路

- 1) 电路原理图如图
- 2) 实验器材 16-bit-CLA * 2、2 输入异或门 * 2、分线器 * 1、32 位与门 * 1
- 3) 实验步骤连线

4) 电路仿真检测

5、 根据给出的电路原理图和 ALU 引脚定义要求,设计并验证支持 9 条指令 6 种操作的 32 位算术逻辑运算单元 ALU,6 种运算包括:add、or、slt、sltu、srcB,判 0(sub)。

ALU 设计原理图

对应的 ALU 操作控制信号取值

为应的 ICO 朱 [4] [4] [4] [4] [4] [4] [4] [4] [4] [4]									
指令	功能	运 算 类型	SUBctr	SIGctr	0Pctr<1:0>				
add rd, rs1, rs2	$R[rd] \leftarrow R[rs1] + R[rs2]$	加	0	×	00				
slt rd, rs1, rs2	if $(R[rs1] < R[rs2])$ $R[rd] \leftarrow 1$ else $R[rd] \leftarrow 0$	减,带符号整数比较大小	1	1	11				
sltu rd, rs1, rs2	if $(R[rs1] < R[rs2])$ $R[rd] \leftarrow 1$ else $R[rd] \leftarrow 0$	减,无符号数 比较大小	1	0	11				
ori rt, rs1, imm12	R[rt]←R[rs1] SEXT(imm12)	按位或	×	×	01				
lui rd, imm20	R[rt]←imm20 000H	选择操作数 B	×	×	10				
lw rd, rs1, imm12	Addr←R[rs1] + SEXT(imm12) R[rd]←M[Addr]	加	0	×	00				
sw rs1, rs2, imm12	Addr←R[rs1] + SEXT(imm12) M[Addr]←R[rs2]	加	0	×	00				
beq rs1, rs2, imm12	Cond←R[rs1] - R[rs2]	减 (判 0)	1	×	××				
	if (Cond eq 0) PC←PC+(SEXT(imm12)×2)	加	0	×	00				
jal rd, imm20	$R[rd] \leftarrow PC + 4$ $PC \leftarrow PC + (SEXT(imm20) \times 2)$	加	0	×	00				

ALUctr 的一种四位编码方案

ALUctr<3:0>	操作类型	SUBctr	SIGctr	OPctr<1:0>	OPctr 的含义
0 0 0 0	add	0	×	0 0	选择加法器的结果输出
0 0 0 1	(未用)				
0 0 1 0	s1t	1	1	1 1	选择小于置位结果输出
0 0 1 1	sltu	1	0	1 1	选择小于置位结果输出
0 1 0 0	(未用)				
0 1 0 1	(未用)				
0 1 1 0	or	×	×	0 1	选择"按位或"结果输出
0 1 1 1	(未用)				
1 0 0 0	sub	1	×	0 0	选择加法器的结果输出
其余	(未用)				
1 1 1 1	srcB	×	×	1 0	选择操作数 B 直接输出

1) 电路原理图如图

2) 实验器材

32 位带标志加法器 * 1、或门阵列 * 1、异或门阵列 * 1、位扩展器 * 2、2 输入异或 门 * 2、多路选择器 * 2、ALUCtr * 1

3) 实验步骤

a) ALUCtr

b) ALU 连接

