TRIWAVE SYSTEMS

Jerry Liu Ryne Waterson Keith Leung Jeffery Yeung Scott Checko

Team 5: TRIWAVE SYSTEMS

- Jerry Liu (CEO)
- Ryne Watterson (CIO)
- ❖ Keith Leung (CTO)
- Jeffery Yeung (CCO)
- Scott Checko (COO)

Presentation Overview

- Background & Motivation
- 2. Business & Market Analysis
- 3. Technical System Overview
- 4. Risk Assessment
- 5. Engineering Standards
- 6. Self Reflection
- 7. Scheduled 440 Timeline
- 8. Summary & Concluding Remarks
- 9. Demo
- 10. Questions

Introduction

Background

- Approx. 500,000 commercial buildings in Canada (1)
- Modern emergency response methods could be optimized
 - Limited information on arrival
 - Victim location based on witness accounts
 - Unreliable and creates room for human error
- 135 fire deaths per year from 2010-2014 (2)

Motivation

- Modernize safety in urban/industrial environments
 - More buildings & people in small areas
 - Access to these areas more difficult
 - What happens when disaster strikes?
- Increase efficiency of emergency response teams
 - More information
 - On-the-fly changes
 - Limit human error
 - Safer for first responders

Akriveia Beacon System

- Indoor Positioning System (IPS)
- Designed for Disaster Search & Rescue Operations
- System of Anchor Beacons and Wearable ID Tags
- Integrated with Advance Ultra-Wideband (UWB) Technology
- Trilateration Methods for Tracking
- Near Real-Time Indoor Tracking

Indoor Positioning Systems (IPS) Attributes (3)

- 1. System accuracy and precision
- 2. Coverage and resolution
- 3. Latency in making location updates
- 4. Building's infrastructure impact
- 5. Effect of errors on the system such as signal interference and reflection

Business & Market Analysis

Business & Market

Search and Rescue (SAR) Equipment Market in 2017: \$113.62 billion (4)

Projected in 2022: **\$125.66 billion**

Global Indoor Location (GIL) Market in 2015: \$3.43 billion (5)

Projected in 2022: \$29.4 billion

Target Markets

Ideal Customers

- Commercial Building owners or property management companies
- Need for GIL for occupants in emergencies

Government Incentives

- System increases occupant safety in emergency situations
- Easily integrated into Building Code Fire Safety
- Reduces risk to emergency personnel

Competition

Same Technology, Different Application

Production	& Logistics	Medical & SAR		
Pozyx	Infsoft	KAUST Innovation		
 UWB Tag + Node Expensive	 UWB/BLE Tag + Node Privacy issue	 UWB Handheld Device Operator Dependency		

Project Budget and Funding

Current Expenses (Up-to-Date)

• \$461.46

Expected Project Total Budget

• \$1000

Funding Estimates

\$500

Project Pricing

System Price for 3 beacons & 10 ID tags

\$930.00

Additional Beacon & ID tag unit costs

\$45/Beacon & \$44/ID tag

Software Cost

\$200/year

Cost of materials

 $+ 10 \times ID Tag$

 $+3 \times Beacon$

+ Cost of labor

+ Overhead

= Total cost

+ Desired profit (20% on sales)

\$155.00

= Required sale price

\$930.00

\$440.00

\$135.00

\$100.00

\$100.00

\$775.00

Technical System Overview

System Layout

Akriveia Beacon Consists of:

- Locator Beacons
- Wearable Tracker ID Tags
- Data Processing Unit (DPU)

System Operation Modes

ID Tags & Beacons Architecture

Composed of:

- Espressif ESP32
- Decawave DWM1000
- Communicate via SPI

ESP32 Microcontroller Unit

- Tensilica Xtensa 32-bit LX6 microprocessor
- Operate @ 160/240 MHz
- Integrated WiFi/Bluetooth
- Touch sensor pins
- Deep sleep low-power modes
- Low-cost

Decawave DWM1000 UWB Module

- Operation Frequency Range of 3.5 to 6.5 GHz
- 802.15.4-2011 UWB compliant
- FCC/ETSI Certified
- Precision of up to 10 cm indoors
- Excellent ranges of up to 300m
- High range of communications data rates

Anchor Beacons

- Stationary transceiver devices
- Communicate via UWB transceivers
- Battery Backups
- Requires minimum of 3 for tracking
- Communicate with DPU via private WiFi network

ID Tags

- Small wearable electronic tagging devices
- Uses similar UWB transceivers
- Light and Durable
- Efficient Power saving modes
- Touch sensor activation
- Integration with access cards or key fobs

Power Management

Beacon Power Management

Beacons

- Switching circuitry
 - Main power
 - Battery power
- 9V 4000 mAH backup

ID Tag Power Management

- Long battery life
 - o Rechargeable 2000 mAH Li-ion
 - Deep-sleep mode
- RF Harvester

ESP32 Activity Modes

Active

- Much higher power
- Only during emergency
- Activated via button

Deep Sleep

- Low Power mode
- Extended Battery Life
- Low maintenance cost
- Preserves user privacy

Battery Life Calculations

Active

$$\frac{2000mAH}{260mA} \approx 8 \text{ hours}$$

Deep Sleep

$$\frac{2000mAH}{10\mu A}$$
 = 200,00 hours $\approx 8000 \, days \approx 22 \, years$

RF Ranging & Trilateration

RF Ranging Method

Received Signal Strength Indicator (RSSI) Based Approach

- Conversion of RSSI to distance
- Employed in PoC phase
- Bluetooth Low Energy (BLE)
- Inverse Square Law
- Prone to multipath fading and interference

Time-of-Flight (ToF) Based Approach

- Employed in Prototype phase
- Ultra-Wideband (UWB)
- Signal propagation time
- Distance Speed Time Formula
- Effective against noise and multipath

Ultra-Wideband Spectrum

- Short duration pulses
- Low transmit power
- Minimal interference
- High data rate

Trilateration Method

Standard Form of a Circle:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

where,

 (x_0, y_0) are the cartesian coordinates of a beacon

r is the distance derived from RF ranging

Trilateration Method

Two Dimensional Trilateration:

$$(x - x_0)^2 + (y - y_0)^2 = r_0^2$$

$$(x - x_1)^2 + (y - y_1)^2 = r_1^2$$

$$(x - x_2)^2 + (y - y_2)^2 = r_2^2$$

Software

Software Overview

	Client	Web Server	Data Processing	Beacons	ID Tags
Language	Rust	Rust	Rust	C++	C++
Location	Browser	DPU	DPU	Throughout the building	Employees
Major Framework	Yew	Actix Web	Actix	Arduino Runtime	Arduino Runtime
Purpose	Display data and maps, user interaction	Respond to requests from client	Trilateration calculations	TOF and RSSI calculations	Reply to beacons

DPU Software Architecture

DPU Framework - Actix

- Server side
- Actor framework
 - Inter-thread communication via message passing
 - Multithreading out of the box no deadlocks
- Base for Web Server library "Actix Web"
- Asynchronous single threaded execution
 - Supports non blocking IO for files and database operations
- Data processing
 - Trilateration computation
 - User request handling
 - Database interaction
 - Beacon request handling

DPU Framework - Yew

- Client side browser
- Makes use of Rust to Web-Assembly cross compilation
 - Faster than plain Javascript
- Similar to Actix
 - unified codebase
- Generates HTML on the browser to build dynamic web pages
 - Easy to develop against
 - Performant enough for a 2D application
- User interaction
 - System configuration
 - Map viewing
 - Login/Logout

Software Costs

Software	Cost	License
Rustc Compiler	Free	Apache & MIT [6]
ESP32	Free	GNU Lesser General Public [7]
Actix	Free	Apache or MIT [8]
Actix Web	Free	Apache or MIT [9]
Yew	Free	Apache or MIT [10]
GCC Compiler	Free	GPLv3 [11]

Note: List is non-exhaustive.

Risk Assessment

Risk

Categories of Potential Risks

Management Risks	Technological Risks	External Risks
• Cost	System Failure	Market
 Schedule 	Software Bugs	• Legal
 Logistical 	 Performance 	External Hazards

Remediation

1. Stakeholders incoherent with project definition/scope

Solution: Clarify project scope

Project schedule is delayed due to logistical issues

Solution: Prioritize project timeline

1. Beacons are destroyed or rendered offline during emergency

Solution: Multiple redundant backups

System generates inaccurate data which increases SAR times
 Solution: Calibration

Engineering Standards

Adherence to Standards

Factors to consider:

- 1. UWB in commercial environments
- 2. Wearable Technologies
- 3. Software Security/Design
- 4. Emergency Equipment Standards

Adherence to Standards

Standard	Purpose
ISO/IEC 26907:2009	Information technology Telecommunications and information exchange between systems High-rate ultra-wideband PHY and MAC standard
ISO/IEC 24730- 62:2013	Information technology Real time locating systems (RTLS) Part 62: High rate pulse repetition frequency Ultra Wide Band (UWB) air interface
IEEE 1621-2004	User Interface Elements in Power Control of Electronic Devices Employed in Office/Consumer Environments
IEEE P360	Standard for wearable consumer electronic devices
IEC 62366-1	Guidance on Usability engineering for software
C22.2 NO.0.23-15	General Requirements for Battery-Powered Appliances
IEEE 802.15.4	Low-Rate Wireless Personal Area Networks

Sustainability Considerations

Cradle to Cradle Philosophy

- Repurposable or recyclable
- Manufactured with biodegradable non-toxic Polylactic acid plastics
- Long-term Power sustainability

Self Reflection

Reflection

- Weekly meetings with agenda and minutes
- Clear communication is critical
- Time management is vital to success.
- Good use of online collaboration GitLab
- Overall our team's skills and attitudes complement each other

Progress

Brief Plan for ENSC 440

Beta Prototype

- To be completed mid-semester (OCT-NOV)
- Integration of UWB
- Development of software stack
- Improve all hardware aspect to meet requirements

Production Ready Prototype

- To be complete by end of ENSC 440 (DEC)
- Final Version of Akriveia Beacon
- Usability testing

ENSC 440 Milestones

Summary & Concluding Remarks

- Indoor Positioning System
 - UWB ToF vs. BLE RSSI.
 - DPU to crunch numbers
 - Simplistic UI to reduce learning curve
- Increasing efficiency of search and rescue efforts
 - More precise information
 - Better communication abilities
 - Modernizing safety in urban environments

Acknowledgements

Quick Thank you to:

- Scott's Dad (Retired Firefighter/Fire Prevention)
- Ryne's Girlfriend's Dad (Fire Chief)
- Raymond Messier (North Shore SAR)
- Royce Ng (Amazon Warehouse Safety/SAR)
- Andrew Rawicz
- Mohammad Akbari
- Craig Scratchley

Demo

Technical Design Exploration Research

Technologies Considered

- Ultrasonic
- Infrared
- GPS
- BlueTooth Low Energy (BLE)
- WiFi
- 2.4 GHz ISM band
- Ultra-Wideband (UWB)

RF Ranging Techniques Considered

- Time Difference Of Arrival (TDOA)
- Received Signal Strength Indicator (RSSI)

$$Distance = 10^{(Measured_Power-RSSI)/(10*N)}$$

Time of Flight (ToF)

$$Distance = Speed \ of \ light * ToF$$

Localization Methods Considered

- Triangulation
- 2D Trilateration
- 3D Trilateration
- Multilateration

Trilateration Cases

RSSI Optimization Methods

- Value Averaging
- Rolling Averaging buffer
- Particle filter
- Swarm optimization
- Monte carlo Methods
- Finite Impulse Response (FIR) filter

Questions?

References

- 1. Statistics Canada. Survey of Commercial and Institutional Energy Use, 2014. (online) Available at: https://www150.statcan.gc.ca/n1/daily-quotidien/160916/dq160916c-eng.htm (Accessed 26 July. 2019).
- 2. Statistics Canada, "Fire-related deaths and persons injured, by type of structure", *Www150.statcan.gc.ca*, 2019. (Online). Available: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3510019501. (Accessed: 26- July- 2019).
- 3. S. A.-H. M. A.-A. A. Alarifi A. Al-Salman M. Alsalem A. Alnafessah and H. Al-Khalifa. (2016) Ultra wideband indoor positioning technologies: Analysis and recent advances. (Online) Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883398/pdf/sensors-16-00707.pdf.(Accessed:14-Jun-2019)
- 4. BusinessWire. (2017) Elbit systems, general dynamics corporation, honeywell, leonardo ... research and markets. (Online). Available: (Online). Available: https://www.businesswire.com/news/home/20170901005591/en/ Search-Rescue-SAR-Equipment-Market---Forecast. (Accessed: 14-Jun-2019)
- 5.Reuters. (2018) Indoor location market 2018 global trends, market share, industry size, growth, opportunities and forecast to 2023. (Online). Available: (Online). Available: https://www.reuters.com/brandfeatures/venture-capital/article?id=50849. (Accessed:14-Jun-2019)
- 6.https://github.com/rust-lang/rust
- 7. https://github.com/espressif/arduino-esp32/blob/master/LICENSE.md
- 8.https://github.com/actix/actix
- 9.https://github.com/actix/actix-web
- 10.https://github.com/DenisKolodin/yew
- 11.https://en.wikipedia.org/wiki/GNU_Compiler_Collection

Backup Slides

System Block Diagram

DPU - Raspberry Pi 3 B+

- Arm Cortex-A53 Quad-core processor
- 64-Bit SoC @ 1.4 GHz
- Dual-band wireless LAN
- Linux Based OS
- In Theory any SBC can be DPU

Beacons to DPU

Heisenberg Uncertainty Principle

The timing and frequency of a signal cannot be localized simultaneously

$$\sigma_{\rm t}\sigma_{\rm f} \geq 1/4\pi$$

 σ_{t} : width of a pulse

 σ_{f} : range of frequencies (Bandwidth)

∴ Narrow pulse ⇒ Larger Bandwidth

Demo: Deep Sleep Mode

Future Development

WiFi Mesh

Cloud Management System

