ДЕЙСТВИЯ НАД ВЕКТОРАМИ

Пример 1.

Построить векторы \overline{OA} , \overline{OB} , \overline{AB} , где A(4;1) и B(1;3) . Найти их проекции на координатные оси.

Решение. Построим точки и вектора \overline{OA} , \overline{OB} , \overline{AB} , где O - начало системы координат

Применим правило проектирования вектора на числовую ось. Проекция вектора $\overline{a}=AB$ на координатную ось OX равна разности проекций его конца и начала на эту ось, т.е. $x=x_2-x_1$.

Утверждение. Вектор $\overline{a} = \overline{AB}$ однозначно определяется тройкой (x,y,z) своих проекций на координатные оси OX , OY , OZ .

Вектор записывается в проекциях так: $\overline{a} = \overline{AB} = (x, y, z)$, где $x = x_2 - x_1$, $y = y_2 - y_1$, $z = z_2 - z_1$.

Вектор $O\!A$ называется радиус-вектором точки A . Его проекции совпадают с координатами точки A .

Поэтому $\overline{\mathit{OA}} = \big(4;1\big)$. Аналогично $\overline{\mathit{OB}} = \big(1;3\big)$

Находим вектор $\overline{AB} = B - A = B(1;3) - A(4;1) = (-3;2)$

Пример 2.

Найти модуль $|\overline{AB}|$, где A(4;1) и B(1;3) (см. пример 1).

Решение. Модуль вектора $\overline{AB}=(x,y,z)$ обозначается вектора $\left|\overline{AB}\right|$ и равен длине отрезка AB . Модуль вычисляется по формуле $\left|\overline{AB}\right|=\sqrt{x^2+y^2+z^2}$. Так как векторы расположены на плоскости, то проекция z=0 .

Подставим проекции $\overline{AB} = (-3;2) \Rightarrow |\overline{AB}| = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$

Пример 3.

Разложить \overline{OA} , \overline{OB} , \overline{AB} , где A(4;1) и B(1;3) по базису \overline{i} , \overline{j} . (см. пример 1).

Решение. Вектор n называется ортом или единичным вектором, если его модуль равен 1, т.е. n = 1. Орты числовых осей OX, OY, OZ обозначаются \overline{i} , \overline{j} , \overline{k} - это единичные векторы, лежащие на этих осях и имеющие направление этих осей.

Векторы i, j, k называют базисом трехмерного пространства, а векторы i, j - базисом двумерного пространства (плоскости XOY).

Мы говорим, что вектор \overline{a} разложен по базису \overline{i} , \overline{j} , \overline{k} , если его можно представить в виде линейно комбинации базисных векторов, т.е. $\overline{a} = x \cdot \overline{i} + y \cdot \overline{j} + z \cdot \overline{k}$, где $x,y,z \in R$.

Выражение $x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}$ называют линейной комбинацией векторов \vec{i} , \vec{j} , \vec{k} . Скаляры (числа) называют координатами вектора $\vec{a} = x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}$ в этом базисе.

Справедливо утверждение. Для прямоугольной системы координат координаты вектора совпадают с его проекциями, т.е. $\overline{a}=(x,y,z) \Leftrightarrow \overline{a}=x\cdot \overline{i}+y\cdot \overline{j}+z\cdot \overline{k}$

Поэтому верно
$$\overline{AB} = (-3; 2) \Leftrightarrow \overline{AB} = -3 \cdot \overline{i} + 2 \cdot \overline{j}$$

Найдем разложение вектора геометрически, запишем его как сумму $\overline{AB} = \overline{AC} + \overline{CB}$ по правилу многоугольника.

Выражаем $\overline{AC}=-3\cdot \overline{i}$, $\overline{CB}=2\cdot \overline{j}$. Поэтому $\overline{AB}=-3\cdot \overline{i}+2\cdot \overline{j}$

OTBET: $\overline{AB} = (-3, 2) \Leftrightarrow \overline{AB} = -3 \cdot \overline{i} + 2 \cdot \overline{j}$

Пример 4.

Вычислить координаты вектора a = AB + 2AC, где A(-1;-2), B(0;1), C(3;-1). Сделать чертеж, геометрически определить проекции вектора \overline{a} .

Решение. Построим на плоскости XOY точки A , B , C и векторы \overline{AB} , \overline{AC} , $\overline{2AC}$, сумму $\overline{a}=\overline{AB}+2\overline{AC}$.

При построении вектора $2\overline{AC}$ мы увеличили вектор \overline{AC} в два раза. Обозначим $\overline{AD}=2\overline{AC}$. Точка D будет лежать на оси абсцисс (ордината точки D равна нулю).

Производим сложение геометрических векторов AB, 2AC по правилу параллелограмма, т.е. вектор $\overline{a}=\overline{AB}+2\overline{AC}$ - это диагональ параллелограмма ABED . Находим координаты векторов \overline{AB} , \overline{AC} по правилу: "из координат конца вектора вычитаем одноименные координаты его начала".

$$\overline{AB} = (0;1) - (-1;-2) = (1;3)$$
 $\overline{AC} = (3;-1) - (-1;-2) = (4;1)$

Умножение вектора на константу и сложение векторов производим покоординатно:

$$\overline{a} = \overline{AB} + 2\overline{AC} = (1;3) + 2 \cdot (4;1) = (1;3) + (8;2) = (9;5)$$

Итак, получаем: $\overline{a} = (9; 5)$.

Переходим ко второй части задачи. Находим геометрически проекции (x; y) вектора a на координатные оси:

$$OX: x = 8 - (-1) = 9$$

$$OY: y = 3 - (-2) = 5$$

Пример 5.

Известны три последовательные вершины A(3;1), B(8;2), C(7;4) параллелограмма ABCD.

Найти координаты вершины D .

Решение. Построим параллелограмм ABDC . Применим правило: координаты радиус-вектора $\overline{OA} = (x; y)$ совпадают с координатами точки A(x; y)

Поэтому радиус вектор \overline{OA} = (3;1). Радиус-вектор \overline{OD} точки D находим по правилу многоугольника:

$$\overline{OD} = \overline{OA} + \overline{AD}$$
.

При параллельном переносе вектор не меняется, поэтому верно равенство

$$\overline{AD} = \overline{BC} = C(7;4) - B(8;2) = (-1;2)$$

Отсюда
$$\overline{OD} = \overline{OA} + \overline{AD} \Rightarrow \overline{OD} = (3;1) + (-1;2) = (2;3) \Rightarrow D(2;3)$$
. Ответ: $D(2;3)$

Пример 6.

Вычислить модуль вектора \overline{AB} , где A(2 ; -2 ; 0) , B(0 ; 2 ; 4) . Найти орт \overline{n} вектора \overline{AB} . Сделать чертеж.

Решение. Построим точки A,B и вектор \overline{AB} в пространстве

Находим проекции вектора $\overline{AB} = B(0; 2; 4) - A(2; -2; 0) = (-2; 4; 4)$

Модуль вычисляется по формуле $\left| \overline{AB} \right| = \sqrt{x^2 + y^2 + z^2} \implies \left| \overline{AB} \right| = \sqrt{\left(-2\right)^2 + 4^2 + 4^2} = 6$

Opt
$$\overline{n} = \frac{1}{|\overline{AB}|} \cdot \overline{AB} = \frac{1}{6} \cdot (-2; 4; 4) = \left(-\frac{1}{3}; \frac{2}{3}; \frac{2}{3}\right)$$

Чтобы построить орт \overline{n} нужно уменьшить вектор \overline{AB} в 6 раз (во столько раз, какова длина вектора)

Пример 7.

При каких значениях параметра x два вектора $\overline{a} = (x; 2 \cdot x - 1), \ \overline{b} = (2; x + 1)$ будут коллинеарными?

Решение. Применим признак коллинеарности векторов - " два вектора коллинеарны в том и только том случае, когда их одноименные координаты пропорциональны",

$$\bar{a} || \bar{b} \iff \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$

Для двумерных векторов $\overline{a} || \overline{b} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} \Leftrightarrow \frac{x}{2} = \frac{2 \cdot x - 1}{x + 1}$. Решаем это уравнение

$$x \cdot (x+1) = 2 \cdot (2 \cdot x - 1), \ x^2 + x = 4 \cdot x - 2, \ x^2 - 3 \cdot x + 2 = 0, \ x_1 = 1, \ x_2 = 2$$

С геометрической точки зрения векторы коллинеарны, если один вектор получается из другого растяжением (сжатием). Ответ: $x_1 = 1$, $x_2 = 2$

ПРИЛОЖЕНИЕ ВЕКТОРОВ

Пример 1.

Построить радиус-вектор точки M(2;3;4), определить его модуль и направление (т.е. его направляющие косинусы).

Решение. Построим точку M (2; 3; 4) и вектор \overline{OM} . Координаты радиуса-вектора \overline{OM} совпадают с координатами его конца M (2; 3; 4), т.е. \overline{OM} = (2; 3; 4).

Модуль вектора
$$|\overline{OM}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29} \approx 5,4$$

Направляющие углы - это углы, которые вектор образует с координатными осями. Косинусы этих углов называются направляющими косинусами. Вычислим их по формулам:

$$\cos \alpha = \frac{x}{\left| \overline{OM} \right|} = \frac{2}{\sqrt{29}}, \cos \beta = \frac{y}{\left| \overline{OM} \right|} = \frac{3}{\sqrt{29}}, \cos \gamma = \frac{z}{\left| \overline{OM} \right|} = \frac{4}{\sqrt{29}}.$$

Единичный вектор $\overline{n} = (\cos\alpha; \cos\beta; \cos\gamma) = \left(\frac{2}{\sqrt{29}}; \frac{3}{\sqrt{29}}; \frac{4}{\sqrt{29}}\right)$ определяет направление вектора \overline{OM} . (т.е. является ортом этого вектора).

Пример 2.

Вектор \overline{a} составляет с осями OX, OZ углы 60^{0} и 90^{0} . Найти угол, который этот вектор составляет с осью OY.

Решение. Сделаем чертеж. Построим вектор a произвольной длины, который с осями образует заданные направляющие углы $\alpha=60^{0}$, $\gamma=90^{0}$. Так как $\gamma=90^{0}$, то это значит, что вектор a лежит в плоскости XOY. Угол α можно откладывать в обе стороны от оси абсцисс. Для положения изображенного на чертеже находим $\beta=90^{0}-\alpha=90^{0}-60^{0}=30^{0}$

Решим эту задачу аналитически. Применим тождество для направляющих косинусов

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \Rightarrow \cos^2 60^0 + \cos^2 \beta + \cos^2 90^0 = 1, \left(\frac{1}{2}\right)^2 + \cos^2 \beta + 0 = 1, \cos^2 \beta = \frac{3}{4},$$

 $\cos\beta=\pm\frac{\sqrt{3}}{2}$. Условию задачи удовлетворяют два вектора, имеющих направляющие углы: $\beta_1=30^0$, $\beta_2=150^0$. Ответ: $\beta_1=30^0$, $\beta_2=150^0$.

Пример 3.

Построить точку C , симметричную точке $Big(-4\,;1ig)$ относительно $Aig(1\,;3ig)$

Решение. Симметричные точки B,C относительно точки A лежат на одной прямой и центр симметрии A делит отрезок BC пополам.

Применим формулы середины отрезка

$$x_A = \frac{1}{2} \cdot (x_B + x_C) \Longrightarrow 2x_A = x_B + x_C$$
, $x_C = 2x_A - x_B$. По аналогии $y_C = 2y_A - y_B$

Отсюда
$$x_C = 2 \cdot 1 - \left(-4\right) = 6$$
; $y_C = 2 \cdot 3 - 1 = 5$. Точка $C\left(6;5\right)$

Выполним точные построения

Пример 4.

Найти (геометрически и аналитически) центр масс C системы двух точек A(4;-1) , B(-1;4) , имеющих соответственно массы $m_1=2$, $m_2=3$

Решение. Координаты центра масс системы двух точек:

$$x_C = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2} = \frac{2 \cdot 4 + 3 \cdot (-1)}{2 + 3} = 1 \; ; \; y_C = \frac{m_1 \cdot y_1 + m_2 \cdot y_2}{m_1 + m_2} = \frac{2 \cdot (-1) + 3 \cdot 4}{2 + 3} = 2 \; .$$

Центр масс $\,C\!\left(1;2\right)\,$ делит отрезок $\,AB\,$ в отношении $\,\frac{m_2}{m_1}=\frac{3}{2}\,,$ считая от точки $\,A\,.$

Пример 5.

Найти равнодействующую сил $\overline{F_1}=2\cdot \overline{i}-2\cdot \overline{j}$, $\overline{F_2}$, приложенных к точке A(1;1), где $F_{2,x}=1$, $F_{2,y}=3$. Решение. Запишем силы в проекциях $\overline{F_1}=(2;-2)$, $\overline{F_2}=(1;3)$.

При построении силы, например $\overline{F_2}=(1;3)$, смещаемся из точки A горизонтально на 1 единицы вправо и на три единицы вверх. Равнодействующая равна сумме сил: $\overline{R}=\overline{F_1}+\overline{F_2}=(2;-2)+(1;3)=(3;1)$.

Пример 6.

Разложить (геометрически и аналитически) вектор $\overline{c} = (11; 4)$ по базису $\overline{a} = (2; 4), \overline{b} = (5; 1)$.

Решение. Изобразим двумерные векторы a , b . Они не коллинеарные и поэтому образуют базис плоскости $XOY=R^2$. Это значит, что любой вектор $c \in R^2$ выражается в виде линейной комбинации базисных векторов, т.е. найдутся такие скаляры $x,y \in R$, что верно разложение $c = x \cdot a + y \cdot b$.

Получим геометрически разложение вектора \overline{c} по этому базису. Проведем пунктирные оси через векторы \overline{a} , \overline{b} . Затем построим параллелограмм с диагональю \overline{c} , т.е. проецируем точку C на пунктирную ось параллельно другой оси. Получаем разложение $\overline{c}=\overline{a_1}+\overline{b_1}$, в котором слагаемые коллинеарны соответственно векторам \overline{a} , \overline{b} . Выразим приближенно слагаемые $\overline{a_1}$, $\overline{b_1}$ через базисные векторы: $\overline{a_1}=0,5\cdot\overline{a}$ и $\overline{b_1}=2\cdot\overline{b}$. Следовательно, $\overline{c}=0,5\cdot\overline{a}+2\cdot\overline{b}$.

Эту задачу можно решить аналитически так. Проецируем обе части равенства $c = x \cdot a + y \cdot b$ на координатные оси:

$$(11;4) = x \cdot (2;4) + y \cdot (5;1) \Rightarrow$$
 проекция на ось $OX: 11 = 2 \cdot x + 5 \cdot y$; на ось $OY: 4 = 4 \cdot x + y$.

Решаем систему линейных уравнений по методу Крамера $\begin{cases} 2 \cdot x + 5 \cdot y = 11 \\ 4 \cdot x + y = 4 \end{cases}.$

Вычисляем определители:
$$\Delta = \begin{vmatrix} 2 & 5 \\ 4 & 1 \end{vmatrix} = -18$$
 , $\Delta_1 = \begin{vmatrix} 11 & 5 \\ 4 & 1 \end{vmatrix} = -9$, $\Delta_2 = \begin{vmatrix} 2 & 11 \\ 4 & 4 \end{vmatrix} = -36$.

Отсюда:
$$x = \frac{\Delta_1}{\Delta} = 0,5$$
, $y = \frac{\Delta_2}{\Delta} = 2$, $\overline{c} = 0,5 \cdot \overline{a} + 2 \cdot \overline{b}$

Пример 7.

Определить угол α и силу \overline{F} , приложенную к середине C отрезка AB , такую, что система сил, изображенных на чертеже, уравновешенная.

Решение. Введем систему координат. Направим ось OX вдоль AB , точку A примем за начало отсчета. Обозначим $\overline{F} = \left(F_x; F_v\right)$.

Система сил уравновешена, если их векторная сумма равна нулю. Находим проекции сил на координатные оси:

$$\sum F_{i;x} = 0 \Rightarrow 0 + F_x + F_2 \cdot \cos 45^0 = 0;$$

$$\sum F_{i;y} = 0 \Rightarrow -F_1 + F_y - F_2 \sin 45^\circ = 0$$
.

Составим систему уравнений и решим ее.

$$\begin{cases} F_x + 3 \cdot \frac{\sqrt{2}}{2} = 0 \\ F_y - 3 \cdot \frac{\sqrt{2}}{2} = 2 \end{cases} \Rightarrow \begin{cases} F_x = -\frac{3}{2} \cdot \sqrt{2} \approx -2.1 \\ F_y = \frac{3}{2} \cdot \sqrt{2} + 2 \approx 4.1 \end{cases}; \text{ модуль } F = \sqrt{F_x^2 + F_y^2} = \sqrt{\left(-2.1\right)^2 + 4.1^2} = 4.6$$

$$\cos \alpha = \frac{F_x}{F} = -\frac{2.1}{4.6} = -0.46, \ \alpha \approx 117^0.$$

Пример 8.

Точка M движется с ускорением \overline{a} по дуге AB . Разложить геометрически ускорение \overline{a} в сумму нормального и касательного ускорений \overline{a}_n , \overline{a}_{τ} .

Решение. Проводим через точку касания M касательную к траектории AM . Далее проводим нормаль траектории, т.е. перпендикуляр к касательной, проходящий через точку M . Постоим прямоугольник на этих прямых с диагональю, равной вектору \overline{a} .

Получаем разложение ускорения $\overline{a} = \overline{a_n} + \overline{a_\tau}$

Пример 9.

Найти силу, растягивающую стержень CB кронштейна, к которому подвешен груз P . Угол $\angle ABC = \alpha$.

Решение. Укажем на чертеже силы, приложенные к точке B : вес груза - P , реакция F_1 стержня AB , реакция $\overline{F_2}$ стержня CB . Составим уравнение равновесия точки B :

$$\sum F_{i,x} = 0 \Rightarrow -F_2 + F_1 \cdot \cos \alpha = 0; \quad \sum F_{i,y} = 0 \Rightarrow -P + F_1 \cdot \sin \alpha = 0.$$

Решаем систему уравнений:

$$-P + F_1 \cdot \sin \alpha = 0 \implies F_1 = \frac{P}{\sin \alpha}$$

$$-F_2 + F_1 \cdot \cos \alpha = 0 \Rightarrow F_2 = F_1 \cdot \cos \alpha = \frac{P}{\sin \alpha} \cdot \cos \alpha = P \cdot ctg\alpha$$

Other.
$$F_1 = \frac{P}{\sin \alpha}$$
, $F_2 = P \cdot ctg\alpha$.

Пример 10.

Определить вершины и проекции центра масс M однородного треугольника ABC по данным пространственного чертежа

OTBET.
$$A(1;3;0), B(0;-3;3), C(0;3;4), M(\frac{1}{3};1;\frac{7}{3})$$

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Пример 1.

Найти угол ϕ между векторами $\overline{a} = -3 \cdot \overline{j} + 2 \cdot \overline{i}$, $\overline{b} = (5; 2)$.

Решение. Запишем векторы $\bar{a}=(2;-3)$, $\bar{b}=(5;2)$ в проекциях. Построим эти вектора

Угол ϕ между векторами определим согласно формуле $\cos \phi = \frac{\overline{a} \cdot \overline{b}}{\left| \overline{a} \right| \cdot \left| \overline{b} \right|}$.

Находим скалярное произведение векторов, модули векторов:

$$\overline{a} \cdot \overline{b} = x_1 \cdot x_2 + y_1 \cdot y_2 = 2 \cdot 5 + (-3) \cdot 2 = 4$$
;

модули
$$\left| \overline{a} \right| = \sqrt{2^2 + \left(-3 \right)^2} = \sqrt{13}$$
, $\left| \overline{b} \right| = \sqrt{5^2 + 2^2} = \sqrt{29}$.

Определим угол ф:

$$\cos φ = \frac{\overline{a} \cdot \overline{b}}{\left|\overline{a}\right| \cdot \left|\overline{b}\right|} = \frac{4}{\sqrt{13} \cdot \sqrt{29}} \approx 0, 2; \quad φ \approx \arccos 0, 2 \approx 78^{0} \quad . \text{ Ответ. } φ \approx 78^{0}$$

Пример 2.

Найти $\phi = \angle A$ в треугольнике ABC, где A(2;-1;0), B(1;-2;1), C(0;3;4)

Решение. Сделаем схематический чертеж.

Находим вектор: $\overline{AB} = B(1;-2;1) - A(2;-1;0) = (-1;-1;1)$; аналогично: $\overline{AC} = (-2;4;4)$.

Скалярное произведение этих векторов:

$$\overline{AB} \cdot \overline{AC} = (-1) \cdot (-2) + (-1) \cdot 4 + 1 \cdot 4 = 2$$
.

Угол между этими векторами:
$$\cos \phi = \frac{\overline{AB} \cdot \overline{AC}}{AB \cdot AC} = \frac{2}{\sqrt{3} \cdot 6} = \frac{\sqrt{3}}{9} \Rightarrow \phi = \arccos \frac{\sqrt{3}}{9} \approx \arccos 0, 19 \approx 79^{\circ}$$
.

Ответ. $\phi \approx 79^{\circ}$

Пример 3.

Найти проекцию вектора $\overline{a}=\left(4;1\right)$ на вектор $\overline{b}=\left(3;4\right)$

Решение. Из конца вектора a опускаем перпендикуляр на прямую, проходящую через вектор b Проекция равна длине отрезка OA, взятой со знаком «плюс», если угол ϕ - острый, в противном случае — со знаком «минус». Согласно определению проекция $\Pi \mathbf{p}_{\bar{b}} \overset{-}{a} = \begin{vmatrix} \bar{a} \\ \bar{a} \end{vmatrix} \cdot \cos \phi$

Скалярное произведение $\overline{a} \cdot \overline{b} = 4 \cdot 3 + 1 \cdot 4 = 16$, модуль вектора $\left| \overline{b} \right| = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = 5$.

Применим формулу проекции $\Pi p_{\overline{b}} = \frac{\overline{a} \cdot \overline{b}}{\left| \overline{b} \right|} = \frac{16}{5} = 3, 2$

Пример 4.

Доказать, что параллелограмм является ромбом тогда и только тогда, когда его диагонали перпендикулярны Решение. Докажем необходимость этого утверждения. Построим ромб ABCD на векторах $\overline{a} = \overline{AB}$, $\overline{b} = \overline{AD}$.

Выразим диагонали AC = a + b, DB = a - b через вектора a, b Применим признак перпендикулярности (ортогональности) векторов:

$$\overline{AC} \perp \overline{DB} \iff \overline{AC} \cdot \overline{DB} = 0$$
.

Вычислим скалярное произведение диагоналей

$$\overline{AC} \cdot \overline{DB} = \left(\overline{a} + \overline{b}\right) \cdot \left(\overline{a} - \overline{b}\right) = \overline{a}^2 - \overline{b}^2 = \left|\overline{a}\right|^2 - \left|\overline{b}\right|^2 = 0,$$

Равенство верно, так как для ромба стороны равны, т.е. $\left| {\stackrel{-}{a}} \right| = \left| {\stackrel{-}{b}} \right|$

Угол ф между диагоналями ромба прямой.

Пример 5.

Раскрыть скобки в выражении $x = (\bar{a} + 2\bar{b})^2 + (\bar{a} - 2\bar{b})^2$. Вычислить значение x при $|\bar{a}| = 1$, $|\bar{b}| = 2$. Ответ. x = 34

Решение. Применим формулы квадрат суммы и разности:

$$x = (\bar{a} + 2\bar{b})^{2} + (\bar{a} - 2\bar{b})^{2} \implies x = (\bar{a})^{2} + 2 \cdot (\bar{a} \cdot 2\bar{b}) + (2\bar{b})^{2} + (\bar{a})^{2} - 2 \cdot (\bar{a} \cdot 2\bar{b}) + (2\bar{b})^{2}$$

$$x = 2 \cdot (\bar{a})^{2} + 2 \cdot (2\bar{b})^{2}, \ x = 2 \cdot |\bar{a}|^{2} + 2 \cdot 4 \cdot |\bar{b}|^{2}, \ x = 2 \cdot 1^{2} + 2 \cdot 4 \cdot 2^{2} = 34$$

Пример 6.

Найти работу результирующей сил по перемещению точки M по прямой под действием постоянных сил $\overline{F_1}=(2\,;0)\,,\;\overline{F_2}=(3\,;2)\,$ из положения $B(0\,;1)\,$ в положение $C(2\,;4)\,.$

Решение. Построим вектора.

Находим результирующую силу $\overline{R} = \overline{F_1} + \overline{F_2} = (2;0) + (3;2) = (5;2)$.

Вектор-перемещение точки $\overline{BC} = C(2; 4) - B(0; 1) = (2; 3)$

Находим работу A силы как скалярное произведение силы на вектор-перемещение:

$$A = \overline{R} \cdot \overline{BC} = 5 \cdot 2 + 2 \cdot 3 = 16.$$

Пример 7.

Найти угол α между векторами a=m+2n , b=m-n , где m , n -единичные векторы, образующие угол $\phi=60^{\circ}$.

Решение. Построим вектора \overline{m} , \overline{n} и $\overline{a} = \overline{m} + 2\overline{n}$, $\overline{b} = \overline{m} - \overline{n}$.

Находим косинус угла α по формуле $\cos \alpha = \frac{\overline{a} \cdot \overline{b}}{\left| \overline{a} \right| \cdot \left| \overline{b} \right|}$. Координаты векторов \overline{a} , \overline{b} неизвестны, поэтому

нельзя вычислить скалярное произведение этих векторов по обычной формуле.

Находим произведение $\overline{a}\cdot \overline{b}=\left(\overline{m}+2\cdot\overline{n}\right)\cdot\left(\overline{m}-\overline{n}\right)$. Раскрываем скобки

$$\overline{a} \cdot \overline{b} = \overline{m} \cdot \overline{m} - \overline{m} \cdot \overline{n} + 2 \cdot \overline{n} \cdot \overline{m} - 2 \cdot \overline{n} \cdot \overline{n} \implies \overline{a} \cdot \overline{b} = \overline{m} \cdot \overline{m} + \overline{m} \cdot \overline{n} - 2 \cdot \overline{n} \cdot \overline{n}$$

Скалярные квадраты единичных векторов равны единице, т.е.

$$\left| \overline{m} \right| = 1 \text{ H} \left| \overline{n} \right| = 1 \implies \overline{m} \cdot \overline{m} = \left| \overline{m} \right|^2 = 1 \text{ H} \left| \overline{n} \cdot \overline{n} \right| = \left| \overline{n} \right|^2 = 1$$

Вычислим скалярное произведение орт с помощью определения $m \cdot n = |m| \cdot |n| \cdot \cos \phi = 1 \cdot 1 \cdot \cos 60^{\circ} = \frac{1}{2}$

Поэтому
$$\overline{a} \cdot \overline{b} = 1 + \frac{1}{2} - 2 \cdot 1 = -\frac{1}{2}$$

Далее аналогично находим квадраты модулей

$$\left| \overline{a} \right|^2 = \left(\overline{m} + 2 \cdot \overline{n} \right)^2 = \overline{m}^2 + 4 \cdot \overline{m} \cdot \overline{n} + 4 \cdot \overline{n}^2 = 1 + 4 \cdot \frac{1}{2} + 4 \cdot 1 = 7;$$

$$\left| \overline{b} \right|^2 = \left(\overline{m} - \overline{n} \right)^2 = \overline{m}^2 - 2 \cdot \overline{m} \cdot \overline{n} + \overline{n}^2 = 1 - 2 \cdot \frac{1}{2} + 1 = 1;$$
 Модули $\left| \overline{a} \right| = \sqrt{7}$, $\left| \overline{b} \right| = 1$

Отсюда
$$\cos \alpha = \frac{\overline{a} \cdot \overline{b}}{\left|\overline{a}\right| \cdot \left|\overline{b}\right|} \Rightarrow \cos \alpha = \frac{-\frac{1}{2}}{\sqrt{7} \cdot 1}, \quad \cos \alpha = -\frac{1}{2 \cdot \sqrt{7}}, \quad \alpha = \arccos\left(-\frac{1}{2 \cdot \sqrt{7}}\right), \quad \alpha \approx 101^{\circ}$$

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Пример 1.

Построить векторное произведение $\overrightarrow{a} \times \overrightarrow{b}$, если $\overrightarrow{a} = 3 \cdot \overrightarrow{i}$, $\overrightarrow{b} = 2 \cdot \overrightarrow{j}$. Определить направление векторного произведения с помощью правила правого буравчика.

Решение. Построим в пространстве вектора $\overline{a}=3\cdot \overline{i}$, $\overline{b}=2\cdot \overline{j}$.. Векторное произведение $\overline{c}=\overline{a}\times \overline{b}$ - это вектор, который лежит на перпендикуляре к плоскости векторов \overline{a} , \overline{b} . В нашем случае это плоскость XOY, а вектор $\overline{c}=\overline{a}\times \overline{b}$ лежит на оси OZ.

Найдем модуль $\left| \overline{c} \right| = \left| \overline{a} \times \overline{b} \right|$ как площадь $S = 2 \cdot 3 = 6$ параллелограмма, построенного на векторах $\overline{a} = 3 \cdot \overline{i}$, $\overline{b} = 2 \cdot \overline{j}$. Следовательно, $\left| \overline{c} \right| = \left| \overline{a} \times \overline{b} \right| = \left| \overline{a} \right| \cdot \left| \overline{b} \right| \cdot \sin \varphi = 3 \cdot 2 \cdot \sin 90^0 = 6$

Определим направление вектора $c=a\times b$ на оси аппликат. С конца вектора c мы видим кратчайший поворот $\bar{a}=3\cdot\bar{i}$ к вектору $\bar{b}=2\cdot\bar{j}$ в положительном направлении (против часовой стрелки). Значит, вектор \bar{c} направлен вверх по оси OZ и равен $\bar{c}=6\cdot\bar{k}$.

Направление векторного произведение $c=a\times b$ можно также найти по правилу правого буравчика: его рукоятку вращаем кратчайшим поворотом из положения вектора \overline{a} в положение \overline{b} . Поступательное движение буравчика укажет направление векторного произведения $\overline{c}=\overline{a}\times \overline{b}$.

_ .

Пример 2.

Вычислить векторное произведение $\overline{a} \times \overline{b}$, если $\overline{a} = (2;1;0)$, $\overline{b} = (1;3;-1)$.

Решение. Векторное произведение вычислим с помощью (символического) определителя третьего порядка; в его первой строке записаны орты, а остальные строки - проекции перемножаемых векторов:

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & 0 \\ 1 & 3 & -1 \end{vmatrix} = \overline{i} \cdot \begin{vmatrix} 1 & 0 \\ 3 & -1 \end{vmatrix} - \overline{j} \cdot \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} + \overline{k} \cdot \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = -\overline{i} + 2 \cdot \overline{j} + 5 \cdot \overline{k} \implies \overline{a} \times \overline{b} = (-1; 2; 5).$$

Произведем контроль: найденный вектор $\overline{c} = \overline{a} \times \overline{b} = (-1; 2; 5)$ перпендикулярен (ортогонален) векторам \overline{a} и \overline{b} . Значит, скалярные произведения $\overline{c} \cdot \overline{a}$, $\overline{c} \cdot \overline{b}$ равны нулю. Например: $\overline{c} \cdot \overline{a} = (-1) \cdot 2 + 2 \cdot 1 + 5 \cdot 0 = 0$.

Пример 3.

Вычислить площадь S параллелограмма, построенного на векторах \overline{AB} , \overline{AC} , где A(0;1) , B(4;0) , C(2;4) .

Решение. Построим параллелограмм на векторах \overline{AB} , \overline{AC}

Находим вектора: $\overline{AB} = B(4;0) - A(0;1) = (4;-1)$; $\overline{AC} = C(2;4) - A(0;1) = (2;3)$

Вычислим векторное произведение двумерных векторов, считая, что их аппликата z=0 .

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 4 & -1 & 0 \\ 2 & 3 & -0 \end{vmatrix} = \overline{i} \cdot \begin{vmatrix} -1 & 0 \\ 3 & 0 \end{vmatrix} - \overline{j} \cdot \begin{vmatrix} 4 & 0 \\ 2 & 0 \end{vmatrix} + \overline{k} \cdot \begin{vmatrix} 4 & -1 \\ 2 & 3 \end{vmatrix} = 14 \cdot \overline{k} \implies \overline{AB} \times \overline{AC} = (0;0;14).$$

Воспользуемся геометрически смыслом модуля векторного произведения.

Площадь параллелограмма $S = \left| \overline{AB} \times \overline{AC} \right| = 14$.

Пример 4.

Выполнить действия:
$$2 \cdot \overline{i} \cdot (\overline{j} \times \overline{k}) + 3\overline{j} \cdot (\overline{i} \times \overline{k}) + 4 \cdot \overline{k} \cdot (\overline{i} \times \overline{j}) + (\overline{i} \times \overline{j}) \cdot \overline{i}$$

Решение. Расположим орты в положительном направлении обхода окружности. Это мнемоническое правило помогает находить векторное произведение различных орт.

Векторное произведение двух орт равно третьему орту, взятому со знаком +, если от первого сомножителя мы передвигаемся ко второму по окружности в положительном направлении, иначе берем знак "минус". Например, $\bar{i} \times \bar{j} = +\bar{k}$, $\bar{j} \times \bar{i} = -\bar{k}$.

Отсюда

$$2 \cdot \overline{i} \cdot (\overline{j} \times \overline{k}) + 3 \overline{j} \cdot (\overline{i} \times \overline{k}) + 4 \cdot \overline{k} \cdot (\overline{i} \times \overline{j}) + (\overline{i} \times \overline{j}) \cdot \overline{i} = 2 \cdot \overline{i} \cdot \overline{i} + 3 \cdot \overline{j} \cdot (-\overline{j}) + 4 \cdot \overline{k} \cdot \overline{k} + \overline{k} \cdot \overline{i} = 2 \cdot 1 - 3 \cdot 1 + 4 \cdot 1 + 0 = 3$$
. Other, 3.

Пример 5.

Найти площадь и высоту CD треугольника ABC , если Aig(1;3;0ig) , Big(0;-3;3ig) , Cig(0;3;4ig)

Решение. Находим вектора: $\overline{AB} = B(0; -3; 3) - A(1; 3; 0) = (-1; -6; 3);$ $\overline{AC} = C(0; 3; 4) - A(1; 3; 0) = (-1; 0; 4).$

Вычислим векторное произведение двумерных векторов, считая, что их аппликата z=0 .

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -1 & -6 & 3 \\ -1 & 0 & 4 \end{vmatrix} = \overline{i} \cdot \begin{vmatrix} -6 & 3 \\ 0 & 4 \end{vmatrix} - \overline{j} \cdot \begin{vmatrix} -1 & 3 \\ -1 & 4 \end{vmatrix} + \overline{k} \cdot \begin{vmatrix} -1 & -6 \\ -1 & 0 \end{vmatrix} = -24 \cdot \overline{i} + \overline{j} - 6 \cdot \overline{k} = (-24;1;-6)$$

$$\overline{AB} \times \overline{AC} = (-24;1;-6) \Rightarrow \left| \overline{AB} \times \overline{AC} \right| = \sqrt{x^2 + y^2 + z^2} = \sqrt{613} \approx 24.8$$

Площадь треугольника ABC равна $S = \frac{1}{2} \cdot \left| \overline{AB} \times \overline{AC} \right| = \frac{1}{2} \cdot \sqrt{613} \approx 12,4$

Высота h=CD находится из другой формулы площади $S=\frac{1}{2}\cdot AB\cdot h \Rightarrow h=\frac{2\cdot S}{AB}$

$$AB = \sqrt{(-1)^2 + (-6)^2 + 3^2} = \sqrt{46} \approx 6,78; \quad h = \frac{2 \cdot S}{AB} = \frac{2 \cdot 12,4}{6,78} = 3,65$$

Пример 6.

Найти момент $\overline{M}=\overline{M}_o\left(\overline{F}\right)$ силы $\overline{F}=(-1;0;4)$ относительно начала координат O, если известно, что сила \overline{F} приложена к точке A(1;3;0). Найти модуль момента силы и направляющие косинусы момента силы. Решение. Сделаем чертеж. Построим вектор-рычаг $\overline{OA}=(1;3;0)$ и силу $\overline{F}=(-1;0;4)$, приложенную A(1;3;0).

Находим момент силы согласно формуле

$$\overline{M} = \overline{OA} \times \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{vmatrix} = \overline{i} \cdot \begin{vmatrix} 3 & 0 \\ 0 & 4 \end{vmatrix} - \overline{j} \cdot \begin{vmatrix} 1 & 0 \\ -1 & 4 \end{vmatrix} + \overline{k} \cdot \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} = 12 \cdot \overline{i} - 4 \cdot \overline{j} + 3 \cdot \overline{k} = (12; -4; 3)$$

Вычислим модуль момента:

$$\overline{M} = \overline{OA} \times \overline{F} = (12; -4; 3) \Rightarrow M = \left| \overline{OA} \times \overline{F} \right| = \sqrt{x^2 + y^2 + z^2} = \sqrt{12^2 + (-4)^2 + 3^2} = 13$$

Направляющие косинусы момента

$$\cos \alpha = \frac{M_x}{M} = \frac{12}{13}$$
; $\cos \beta = \frac{M_y}{M} = -\frac{4}{13}$; $\cos \gamma = \frac{M_z}{M} = \frac{3}{13}$

Пример 7.

Точка M движется по окружности с постоянной угловой скоростью $\omega=2\cdot i+3\cdot j$ вокруг оси, проходящей через начало координат. Найти скорость \overline{V} этой точки в момент, когда $x=1,\ y=-2$, z=1 .

Решение. Вектор угловой скорости ω перпендикулярен к плоскости окружности и его направление определяется по правилу правого буравчика при вращении его рукоятки в сторону скорости \overline{V} . Применим формулу $\overline{V} = \overline{\omega} \times \overline{OM}$, где $\overline{OM} = (1; -2; 1)$ - радиус-вектор точки M.

Запишем векторное произведение:

$$\overline{V} = \overline{\omega} \times \overline{OM} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 3 & 0 \\ 1 & -2 & 1 \end{vmatrix} = \overline{i} \cdot \begin{vmatrix} 3 & 0 \\ -2 & 1 \end{vmatrix} - \overline{j} \cdot \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} + \overline{k} \cdot \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = 3 \cdot \overline{i} - 2 \cdot \overline{j} - 7 \cdot \overline{k} = (3; -2; -7)$$