Examples on Periodic Function

Created by Mr. Francis Hung on 20220212.

Last updated: 12 February 2022

Example 1

 $y = |\sin x|$ is periodic with period = π

 $G(x) = \int_0^x |\sin t| dt$, Show that G(x) is not a periodic function.

If $0 \le x \le \pi$, then for all t such that $0 \le t \le x$, $|\sin t| = \sin t$.

$$G(x) = \int_0^x |\sin t| dt = \int_0^x \sin t dt = -\cos x + \cos 0 = 1 - \cos x$$

$$G(\pi) = \int_0^{\pi} |\sin t| dt = 1 - \cos \pi = 2$$

$$G(2\pi) = \int_0^{\pi} |\sin t| dt + \int_{\pi}^{2\pi} |\sin t| dt = 2 + 2 = 4$$

 $G(3\pi) = 6$, $G(4\pi) = 8$, ..., $G(n\pi) = 2n$ where *n* is any integer.

If G(x) is a periodic function, then there is a positive constant T such that G(x + T) = G(x)

If T > π , let m be the greatest positive integer such that T = $m\pi + a$, where $0 \le a < \pi$

Let
$$x = \pi - a$$
, $G(x + T) = G(x) \Rightarrow G(\pi - a + m\pi + a) = G(\pi - a)$

$$G((m+1) \pi) = G(\pi - a)$$

$$2(m+1) = 1 - \cos(\pi - a)$$

$$2m + 2 = 1 + \cos a$$

$$2m + 1 = \cos a$$

contradict to the fact that $-1 \le \cos a \le 1$

If the period T $< \pi$

However, let
$$x = \pi - T$$
, $G(x + T) = G(x) \Rightarrow G(\pi - T + T) = G(\pi - T)$

$$G(\pi) = G(\pi - T)$$

$$2 = 1 - \cos T$$

$$\cos T = -1$$

$$T = \pi$$

contradict to the fact that $T < \pi$

If
$$T = \pi$$
, let $x = \pi$, then $G(x + T) = G(x)$

$$\Rightarrow$$
 G($\pi + \pi$) = G(π) \Rightarrow 4 = 2, contradiction

Therefore G cannot be a periodic function.

Example 2 (Advanced Level Pure Mathematics Calculus and Analytical Geometry II by K.S.Ng, Y.K. Kwok p.86 Q7)

- (a) If f is a continuous periodic function of period 2c, show that $\int_{-c}^{c} f(x) dx = \int_{-c+a}^{c+a} f(x) dx$, where a is a real constant.
- (b) If f is an even periodic function of period 2π , evaluate the definite integral $\int_0^{2\pi} f(x) \sin x dx$.
- (a) $\int_{-c+a}^{c+a} f(x) dx = \int_{-c+a}^{c} f(x) dx + \int_{c}^{c+a} f(x) dx, \text{ for the 2}^{\text{nd}} \text{ integral, let } u = x 2c$ $= \int_{-c+a}^{c} f(x) dx + \int_{-c}^{-c+a} f(u+2c) du = \int_{-c+a}^{c} f(x) dx + \int_{-c}^{-c+a} f(u) du$ $= \int_{-c+a}^{c} f(x) dx + \int_{-c}^{-c+a} f(x) dx = \int_{-c}^{c} f(x) dx$
- (b) $\int_0^{2\pi} f(x) \sin x dx = \int_0^{\pi} f(x) \sin x dx + \int_{\pi}^{2\pi} f(x) \sin x dx, \text{ for the } 2^{\text{nd}} \text{ integral, let } v = 2\pi x$ $= \int_0^{\pi} f(x) \sin x dx + \int_{\pi}^0 f(2\pi v) \sin(2\pi v) (-dv)$ $= \int_0^{\pi} f(x) \sin x dx + \int_0^{\pi} f(-v) (-\sin v) dv \quad \therefore \text{ f is periodic with period } 2\pi$ $= \int_0^{\pi} f(x) \sin x dx \int_0^{\pi} f(v) \sin v dv \quad \therefore \text{ f is even}$ = 0