T.R. Dhuwarakesh

Chronic Kidney Disease (CKD) – Assignment – Classification – ML

> Problem Statement

We have 3 stages in problem statement identification.

- 1. Stage 1: Domain Selection
- 2. Stage 2: Learning Selection
- 3. Stage 3: Classification/Regression

Stage 1 (Domain Selection): Machine Learning the datasets in excel are mostly having numeric values has input.

Stage 2 (Learning Selection): Supervised Learning

- Requirements are clear.
- Input and Output data are well defined.

Stage 3 (Classification/Regression): It is a "Classification". All the output data are in "Categorical" values.

Basic information about the dataset

Total Columns - 25

Total Rows - 399

Input Values – 24 columns

Output Value - 1 column

➤ About Pre-Processing Method (Categorical Column Data)

Nominal Data – We have inputs columns with string values. So, we need to change the string data into numeric values (Binary digits – Nominal Data (One Hot Encoding)) for further processing.

- Developing the "Best Model" below using the Classification
 Machine Learning Algorithms. All the models with best values using Data Pre-Processing, GridSearchCV & (Hyper Tunning Parameters).
- > All the research values are below documented.

Classification Algorithms – Machine Learning Process with best values:

 SVM – Support Vector Machine – Classification – Pre-Processing & GridSearchCV:

confusion_matrix & classification_report values are below:

[[<mark>73 2]</mark> [Ø 45 <mark>]</mark>]				
100	precision	recall	f1-score	support
0	1.000000	0.973333	0.986486	75.000000
1	0.957447	1.000000	0.978261	45.000000
accuracy	0.983333	0.983333	0.983333	0.983333
macro avg	0.978723	0.986667	0.982374	120.000000
weighted avg	0.984043	0.983333	0.983402	120.000000

The best f_score value from parameter {'C': 10, 'gamma': 'scale', 'kernel': 'sigmoid'}: 0.982373678025852

roc_auc_score à np.float64(0.9997037037037038)

 DT – Decision Tree – Classification – Pre-Processing & GridSearchCV: confusion_matrix & classification_report values are below:

	precision	recall	f1-score	support
0	1.0	1.0	1.0	75.0
1	1.0	1.0	1.0	45.0
accuracy	1.0	1.0	1.0	1.0
macro avg	1.0	1.0	1.0	120.0
weighted avg	1.0	1.0	1.0	120.0

roc_auc_score à np.float64(0.98222222222222)

 RF – Random Forest – Classification – Pre-Processing & GridSearchCV: confusion_matrix & classification_report values are below:

The best f_score value from parameter {'criterion': 'log_loss', 'max_features': 'log2', 'n_estimators': 100}: 0.9911497898075079

roc_auc_score à np.float64(0.9997037037037038)

Logistic Regression – Classification – Pre-Processing & GridSearchCV:
 confusion_matrix & classification_report values are below:

	precision	recall	f1-score	support
0	1.000000	0.986667	0.993289	75.000000
1	0.978261	1.000000	0.989011	45.000000
accuracy	0.991667	0.991667	0.991667	0.991667
macro avg	0.989130	0.993333	0.991150	120.000000
weighted avg	0.991848	0.991667	0.991684	120.000000

The best **f_score** value from the parameter **('penalty': 'I2', 'solver': 'lbfgs'):** 0.9916844900066377

roc_auc_score à np.float64(1.0)

K Nearest Neighbors (KNN) – Classification – Pre-Processing & GridSearchCV:

confusion_matrix & classification_report values are below:

in the last	precision	recall	f1-score	support
0	1.000000	0.92	0.958333	75.00
1	0.882353	1.00	0.937500	45.00
accuracy	0.950000	0.95	0.950000	0.95
macro avg	0.941176	0.96	0.947917	120.00
weighted avg	0.955882	0.95	0.950521	120.00

The best f_score value from parameter {'algorithm': 'auto', 'metric': 'minkowski', 'n_neighbors': 5, 'p': 2, 'weights': 'distance'}: 0.9505208333333334

roc_auc_score à np.float64(1.0)

 Naive_Bayes (NB) – BernoulliNB – Classification – Pre-Processing & GridSearchCV:

confusion_matrix & classification_report values are below:

	precision	recall	f1-score	support
0	1.000000	0.960	0.979592	75.000
1	0.937500	1.000	0.967742	45.000
accuracy	0.975000	0.975	0.975000	0.975
macro avg	0.968750	0.980	0.973667	120.000
weighted avg	0.976562	0.975	0.975148	120.000

The best f_score value from parameter {}: 0.9736668861092824

roc_auc_score à np.float64(1.0)

➤ Final Model – Take Away:

Based on my research & development process, I got the best model using "Logistic Regression" Classification Algorithm – Machine Learning.

The confusion_matrix output is well defined and constant while running the process several times and gave me the same output without any changes in every run.

The classification_report with 0.99 accuracy.

The f1_score value is also 0.99 f1_score.

The roc_auc_score value is 1.0 score.