Intégration L3 Actuariat

Chapitre I: Tribu, mesure et applications mesurables

Pierre-Olivier Goffard

Université de Lyon 1 ISFA pierre-olivier.goffard@univ-lyon1.fr

> ISFA September 29, 2021

I. Tribus

 $\frac{1. \ \, \text{Tribus sur un ensemble quelconque}}{\text{Soit } \Omega \text{ un ensemble}.}$

Exemple 1

On considère l'expérience aléatoire qui consiste à jeter une pièce en l'air. Il est possible de proposer les espaces suivants

- $\Omega_1 = \{\text{Pile, Face}\}\$
- $\Omega_2 = \mathbb{R}^3$ correspondant à la localisation du centre de gravité de la pièce à l'issu du lancer
- $\Omega_3 = \left(\mathbb{R}^3\right)^{[0,T]}$ correspondant à la suite des positions de la pièces à tout instant entre 0 et T

La définition de l'espace d'état va dépendre de ce qui nous intéresse. Ω_3 est un espace fonctionnelle, espace des fonctions continues sur [0,T] à valeurs dans \mathbb{R}^3 !

Une fois l'ensemble Ω définit, on introduit les évènements A comme des parties de Ω . On a $A \in \mathcal{P}(\Omega)$, il s'agit de l'ensemble des résultats ω de l'expérience qui conduisent à la réalisation de A.

Definition 1 (Terminologie)

- $oldsymbol{0}$ Ω est un évènement certain, \emptyset correspond à un évènement impossible.
- 2 Pour $A, B \subset \Omega$ deux évènements,

 $A \cup B$ se réalise si A ou B se réalisent

et

 $A \cap B$ se réalise si A et B se réalisent simultanément

1 Pour tout $A \subset \Omega$, on définit par

$$A^c = \{x \in \Omega \ ; \ x \notin A\}$$

son complément dans Ω , appelé aussi évènement contraire de A.

• Soit $B \subset A$, on définit par

$$A/B = A \cap B^c$$

la différence entre A et B qui se réalise en cas de réalisation de A mais pas de B.

5 Deux évènements sont incompatibles si $A \cap B = \emptyset$

Exemple 2 (Discret/Continu)

- Lancer d'un dé à 6 faces,
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - w = 6 est un évènement élémentaire
 - A = 'Le dé prend une valeur paire' = {2,4,6}
- 2 Lancer d'une balle de ping-pong sur une table,
 - $\Omega \subset \mathbb{R}^2$
 - w = x, y est un évènement élémentaire
 - A = 'La balle tombe dans un gobelet placé au bout de la table'

Definition 2 (Suite d'évènements)

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements.

1 Si $A_1 \subset A_2 \subset ...$ alors $(A_n)_{n \in \mathbb{N}}$ est une suite croissante d'évènements et

$$\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n.$$

② Si $A_1 \supset A_2 \supset ...$ alors $(A_n)_{n \in \mathbb{N}}$ est une suite décroissante d'évènements et

$$\lim_{n\to\infty}A_n=\bigcap_{n=1}^\infty A_n$$

Definition 3 (Limite supérieure et inférieure)

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements de Ω , on définit les limites sup et inf par

$$\overline{\lim_{n \to +\infty}} A_n = \bigcap_{k=1}^{+\infty} \bigcup_{n \ge k} A_n \text{ et } \underline{\lim_{n \to +\infty}} A_n = \bigcup_{k=1}^{+\infty} \bigcap_{n \ge k} A_n.$$

Pour écrire qu'une infinité de A_n se réalisent, on écrit qu'à partir de n'importe quel rang, il existe des évènements qui se réalisent ce qui correpond à la limite sup de (A_n)

$$\overline{\lim_{n\to+\infty}}A_n=\bigcap_{k=1}^{+\infty}\bigcup_{n\geq k}A_n.$$

Pour écrire que seul un nombre fini de A_n se réalisent, on écrit qu'il existe un rang à partir duquel seul les évènements contraires aux A_n se réalisent. Cela correspond à la limite inf de la suite (A_n^c)

$$\underline{\lim}_{n\to+\infty}A_n^c=\bigcup_{k=1}^{+\infty}\bigcap_{n\geq k}A_n^c.$$

Le signe intersection s'interprète de la même façon que "pour tout" et le signe union joue le rôle d'"il existe"

Exemple 3

Soit $\Omega = \{1, 2, 3\}$, on définit une suite d'évènements $(A_n)_{n \in \mathbb{N}^*}$ avec

$$A_{2n-1} = \{1, 2\}$$
 et $A_{2n} = \{2, 3\}$

alors on a

$$\overline{\lim}_{n \to +\infty} A_n = \{1, 2, 3\} \text{ et } \underline{\lim}_{n \to +\infty} A_n = \{2\}.$$

Ce concept de limite sup et inf provient de l'analyse réelle pour construire des suites numériques convergentes à partir de suites qui ne sont pas monotones. Toute suite croissante (resp. décroissante) $(a_n)_{n\in\mathbb{N}}$ de $\mathbb{R}=\mathbb{R}\cup\{-\infty,+\infty\}$, est convergente dans \mathbb{R} et

$$\lim_{n \to +\infty} a_n = \sup\{a_n \ ; \ n \ge 1\} \left(\text{ resp. } \lim_{n \to +\infty} a_n = \inf\{a_n \ ; \ n \ge 1\} \right)$$

Definition 4 (lim et lim)

On appelle limite supérieure (resp. limite inférieur) d'une suite de $\overline{\mathbb{R}}$ l'élement de $\overline{\mathbb{R}}$, notée et définie par

$$\overline{\lim_{n \to +\infty}} a_n = \lim_{k \to +\infty} \left(\sup_{n \ge k} a_n \right) = \inf_{k \ge 0} \left(\sup_{n \ge k} a_n \right) \left(\text{ resp. } \underline{\lim_{n \to +\infty}} a_n = \lim_{k \to +\infty} \left(\inf_{n \ge k} a_n \right) = \sup_{k \ge 0} \left(\inf_{n \ge k} a_n \right) \right)$$

A la différence de la limite d'une suite, les limites sup et inf existent toujours. Ces notions sont symétriques au sens où

$$\underline{\lim}_{n\to+\infty}a_n=-\overline{\lim}_{n\to+\infty}(-a_n).$$

Des exemples de suites qui ne convergent pas au sens habituelle incluent

•
$$((-1)^n)_{n\in\mathbb{N}}$$

•
$$\left(\sin\left(\frac{n\pi}{4}\right)\right)_{n\in\mathbb{N}}$$

pour lesquels

$$\overline{\lim}_{n \to +\infty} a_n = 1 \text{ et } \underline{\lim}_{n \to +\infty} a_n = -1$$

Proposition 1 (Lien avec la limite classique, monotonie des limites inf et sup)

1 Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}$ et $a\in\mathbb{R}$ alors

$$\frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} a_n} \leq \lim_{n \to +\infty} a_n$$

$$\frac{\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_n = a}{\lim_{n \to +\infty} a_n = +\infty} \Leftrightarrow \lim_{n \to +\infty} a_n = +\infty$$

$$\lim_{n \to +\infty} a_n = -\infty \Leftrightarrow \lim_{n \to +\infty} a_n = -\infty$$

② Les limites inf et sup sont monotones au sens où, pour deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifiant $a_n \le b_n, \forall n \ge n_0$,

$$\varliminf_{n \to +\infty} a_n \leq \varliminf_{n \to +\infty} b_n \ \varlimsup_{n \to +\infty} a_n \leq \varlimsup_{n \to +\infty} b_n$$

Remarque 1

$$\overline{\lim}_{n \to +\infty} a_n \leq \underline{\lim}_{n \to +\infty} a_n \Leftrightarrow (a_n)_{n \in \mathbb{N}} \text{ converge dans } \overline{\mathbb{R}}$$

Proposition 2

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de $\overline{\mathbb{R}}$. On a

$$\frac{\lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n}{\lim_{n \to +\infty} (a_n + b_n)} \leq \frac{\lim_{n \to +\infty} (a_n + b_n)}{\lim_{n \to +\infty} (a_n + b_n)}$$

$$\leq \frac{\lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n}{\lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n} \tag{2}$$

Chacune des inégalités (1) et (2) devient une égalité si l'une des suites converge.

Exemple 4

Soit $\Omega = \mathbb{R}$, considérons une suite d'intervalles fermés définit par

$$A_n = [(-1)^n, 1 + 2^{-n}]$$

on a

$$\overline{\lim}_{n \to +\infty} A_n = [-1, 1]$$
 et $\underline{\lim}_{n \to +\infty} A_n = \{1\}.$

Pour la limite supérieur on constate que le fait que k soit pair ou impair ne change rien car

• si k est pair alors

$$\bigcup_{n>k} \left[(-1)^n, 1+2^{-n} \right] = \left[1, 1+2^{-k} \right] \cup \left[-1, 1+2^{-(k+1)} \right] \cup \dots = \left[-1, 1+2^{-k} \right]$$

• si k est impair alors $\bigcup_{n \ge k} [(-1)^n, 1 + 2^{-n}] = [-1, 1 + 2^{-k}]$

Definition 5 (Tribu, espace mesurable)

Un sous-ensemble \mathscr{A} de $\mathscr{P}(\Omega)$ est une tribu sur Ω si

- 2 A est stable par passage au complémentaire,

$$A\in\mathcal{A}\Rightarrow A^c=\Omega/A\in\mathcal{A}.$$

3 « est stable par réunion dénombrable,

$$(A_n)_{n\in\mathbb{N}^*}\in\mathcal{A}\Rightarrow\bigcup_{i\in\mathbb{N}^*}A_i\in\mathcal{A}.$$

 ${\mathscr A}$ est parfois appelée σ -algèbre.

Exemple 5 (Exemples de tribus)

- $\{\Omega, \emptyset\}$ est la tribu triviale
- $\mathscr{P}(\Omega)$ est une tribu
- Soit $\Omega = \{a, b, c, d\}$ alors $\{\Omega, \emptyset, a, \{b, c, d\}\}$ est la plus petite tribu contenant a.

Les propriétés de stabilité de cette classe permettent de combiner des évènements pour en créer des nouveaux qui appartiendront eux aussi à la tribu.

Exemple 6

On reprend l'expérience du pile ou face, soit

A = "Le nombre de lancer nécessaire pour obtenir Pile est pair"

A est la réunion dénombrable des évènements

 A_p = "Pile apparaît pour la première fois au 2p-ième lancer".

Proposition 3

Soit $\mathscr A$ une tribu de Ω et (A_n) une suite d'éléments de $\mathscr A$, on a

- $0 \emptyset \in \mathcal{A}$
- \bigcirc $\bigcap_{i\in\mathbb{N}^*} A_i \in \mathcal{A}$
- $\bullet \cap_{i=1}^n A_i \in \mathcal{A}$
- $\bigcirc_{i=1}^n A_i \in \mathcal{A}$
- $\underbrace{\overline{\lim}}_{n\to+\infty}A_i\in\mathscr{A}$
- $\underbrace{\lim_{n\to+\infty}} A_i \in \mathscr{A}$

Il s'agit de conséquences assez immédiates des axiomes des bases

Definition 6 (Sous-tribus)

Une sous-tribu \mathscr{B} de \mathscr{A} est une tribu de Ω telle que $\mathscr{B} \subset \mathscr{A}$.

Proposition 4

L'intersection de deux tribus de Ω est une tribu.

Definition 7 (Tribu engendrée)

La tribu engendrée par $\mathscr{E} \subset \mathscr{P}(\Omega)$ (famille de parties de Ω), notée $\sigma(\mathscr{E})$ est l'intersection de toute les tribus contenant \mathscr{E} .

 $\sigma(\mathscr{E})$ est la plus petite tribu (au sens de l'inclusion) contenant \mathscr{E} .

Exemple 7

- **1** Soit $A \in \Omega$ alors $\sigma(A) = \{A, A^c, \emptyset, \Omega\}$
- **2** Soit $\mathcal{S} = \{S_1, ..., S_n\}$ une partition de Ω , c'est à dire que

$$\bigcup_{k=1}^n S_k = \Omega, \text{ et } S_i \cap S_j = \emptyset \text{ pour } i \neq j$$

Alors
$$\sigma(\mathscr{S}) = \{\bigcup_{k \in T} S_k ; T \subset \{1, 2, ..., n\} \}$$

2. Tribu Borélienne

Definition 8 (Espace topologique)

Soit E un ensemble. Soit $\mathscr O$ une famille de parties de E, appelée ouverts de E, vérifiant

- \emptyset , $E \in \mathcal{O}$,
- Stable par réunion quelconque (dénombrable ou pas),
- Stable par intersection finie.

Le couple (E, \mathcal{O}) est un espace topologique

Exemple 8 (Ouvert dans un espace métrique)

Si E est un espace métrique alors on peut définir une distance entre $x \in E$ et $y \in E$ par d(x,y). Un ouvert O est une partie de E dont la frontière est vide, ou dont tout les point apartiennent à l'intérieur de O. Concrètement,

$$\forall x \in O, \exists r > 0 \text{ tel que } B(x,y) = \{y \in E ; d(x,y) < r\} \subset O$$

Pour $E = \mathbb{R}$, les ouverts sont les parties qui pour chaque point x contiennent un intervalle du type $]x - \epsilon, x + \epsilon[$. On note

$$\mathscr{I}_{\mathbb{R}} = \{ a, b[, -\infty < a \le b < +\infty \},$$

l'ensemble des intervalles ouverts bornées. Il contient \emptyset (cas a=b).

Definition 9 (Tribu borélienne, borélien)

La tribu borélienne est la tribu $\mathcal{B}(E)$ engendré par les ouverts de E. On appelle borélien un ensemble appartenant à cette tribu.

La tribu borélienne $\mathscr{B}(E)$ contient tout les ouverts de E, ainsi que tout les fermés (par passage au complémentaire), les intersections et réunions de suites d'ouverts et de fermés. La tribu borélienne $\mathscr{B}(\mathbb{R})$ est engendrée par intervalles ouverts de \mathbb{R} , c'est la conséquence du lemme suivant.

Lemme 1

Tout ouvert de ℝ est la réunion d'une suite d'intervalles ouverts

preuve:

Remarquons que l'ensemble

$$\mathscr{I}^* = \left\{ \left| r - \frac{1}{n}, r + \frac{1}{n} \right| ; r \in \mathbb{Q}, n \in \mathbb{N}^* \right\}$$

est dénombrable puisqu'il existe une bijection de $\mathbb{Q} \times \mathbb{N}^*$ sur \mathscr{I}^* . Soit U un ouvert de \mathbb{R} , supposé non vide, et soit $x \in U$. Il existe un $\varepsilon > 0$ tel que $]x - \varepsilon, x + \varepsilon[\subset U$, puis $\exists n \ge 0$ tel que $\frac{1}{n} \le \frac{\varepsilon}{2}$ et enfin un

$$r \in \mathbb{Q} \cap \left] x - \frac{1}{n}, x + \frac{1}{n} \right[.$$

On voit alors que

$$x \in \left] r - \frac{1}{n}, r + \frac{1}{n} \right[.$$

A chaque $x \in U$ est associé un intervalle $I_X \in \mathscr{I}^*$ tel que $x \in \mathscr{I}_X \subset U$ si bien que $U = \bigcup_{X \in U} \{x\} \subset \bigcup_{X \in U} I_X \subset U$ et , par suite $\bigcup_{X \in U} I_X = U$. On écrit donc U comme la réunion d'une suite $(I_n) \in \mathscr{I}^*$ qui est aussi une suite de $\mathscr{I}_\mathbb{R}$ puisque $\mathscr{I}^* \subset \mathscr{I}_\mathbb{R}$.

La tribu borélienne $\mathscr{B}(\mathbb{R})$ peut donc être généré par différents type d'intervalles dont

- [a, b]
- [a, +∞[
-]a, +∞[
-]a,b]

Definition 10

Soient Ω et Ω' deux ensembles. La tribu engendrée par les ensembles $A \times B \in \mathscr{A} \times \mathscr{B}$, où \mathscr{A} et \mathscr{B} sont des tribus de Ω et Ω' respectivement, est la tribu produit $\mathscr{A} \otimes \mathscr{B}$

Proposition 5

• Si
$$\mathscr{A} = \sigma(A_i, i \in I)$$
 et $\mathscr{B} = \sigma(B_i, j \in J)$ alors

$$\mathcal{A} \otimes \mathcal{B} = \sigma(A_i \times B_j \ , \ (i,j) \in I \times J)$$

- II. Mesures
- 1. Définition et propriétés

Le couple (Ω, \mathcal{A}) est un espace mesurable.

Definition 11 (Mesure (positive))

On appelle mesure (positive) une application $\mu: \mathscr{A} \mapsto \overline{R}_+$ telle que:

- (i) $\mu(\emptyset) = 0$,
- (ii) pour toute suite $(A_n)_{n\in\mathbb{N}^*}$ de parties disjointes de \mathscr{A} , on a

$$\mu\left(\bigcup_{n\in\mathbb{N}^*}A_n\right)=\sum_{n\in\mathbb{N}^*}\mu(A_n).\ (\ \sigma\text{-additivit\'e})$$

Le tripet $(\Omega, \mathcal{A}, \mu)$ est un espace mesuré.

Definition 12 (Terminologie)

- Si $\mu(\Omega) < +\infty$ alors μ est une mesure finie
- ② Si $(A_n)_{n\geq 1} \in \mathcal{A}$, disjoints, vérifient

$$n \ge 1$$
, $\mu(A_n) < \infty$ et $\bigcup_{n \ge 1} A_n = \Omega$

alors μ est σ -finie.

- **③** Si $\mu(\Omega) = 1$ alors μ est une mesure de probabilité. D'ailleurs on désigne parfois (Ω, \mathscr{A}) comme un espace probabilisable.
- Le triplet $(\Omega, \mathcal{A}, \mu)$ est appelé espace mesuré (ou probabilisé si μ est une mesure de probabilité).
- Une mesure signée est une mesure définie comme la différence de deux mesures positives.
- $\textbf{0} \ \ \mathsf{Une} \ \mathsf{propriét\'e} \ \mathscr{P} \ \mathsf{est} \ \mathsf{vraie} \ \mu\mathsf{-presque} \ \mathsf{partout} \ \mathsf{s'il} \ \mathsf{existe} \ A \in \mathscr{A} \ \mathsf{tel} \ \mathsf{que}$

$$\forall x \in \Omega/A$$
, $\mathscr{P}(x)$ est vraie et $\mu(A) = 0$

- **②** Soit $A \in \mathcal{A}$, on dit que μ est portée par A si $\mu(A^c) = 0$.
- **1** μ est une mesure atomique si elle est portée par les atomes $\{\omega \in \Omega\}$
- **②** μ est une mesure diffuse si $\mu(\{\omega\}) = 0$ (les atomes $\{\omega\}$ sont des parties négligeables)

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

Proposition 6 (Propriété d'un mesure)

Soient $(A_n)_{n\in\mathbb{N}^*}$ une suite d'évènements de \mathscr{A} .

- ② Si $A_1 \subset A_2$ alors $\mu(A_1) \leq \mu(A_2)$ (monotonie de μ), de plus, si $\mu(A_1) < \infty$, on a

$$\mu(A_2/A_1) = \mu(A_2) - \mu(A_1)$$

- $\bullet \quad \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \mu(A_1 \cap A_2) \text{ (formule inclusion-exclusion)}$
- •

$$\mu\left(\bigcup_{k=1}^{+\infty} A_k\right) \le \sum_{k=1}^{\infty} \mu(A_k) \text{ (sous σ-additivité)}$$

- ② Si (A_n) est une suite croissante $(A_i \subset A_{i+1}, i \in \mathbb{N}^*)$ et que $\cup_{n \in \mathbb{N}^*} A_n = A$, alors $(\mu(A_i))_{i \in \mathbb{N}^*}$ est une suite croissante qui converge vers $\mu(A)$.
- ② Si (A_n) est une suite décroissante $(A_{i+1} \subset A_i, i \in \mathbb{N}^*)$ telle que $\mu(A_1) < \infty$ et que $\cap_{n \in \mathbb{N}^*} A_n = A$, alors $(\mu(A_i))_{i \in \mathbb{N}^*}$ est une suite décroissante qui converge vers $\mu(A)$.

preuve:

- **①** On suppose que $A_i = \emptyset$ pour tout i > 2 et on exploite la σ -additivité de μ .
- ② Soit $A_1 \subset A_2 \subset \mathcal{A}$, on a

$$\mu(A_2) = \mu(\{A_2/A_1\} \cup A_1) = \mu(A_2/A_1) + \mu(A_1) \geq \mu(A_1) \text{ (car μ est une mesure positive)}$$

On déduit immédiatement de ce qui précède que $\mu(\{A_2/A_1\}) = \mu(A_2) - \mu(A_1)$

3 Soit $A_1, B_2 \in \mathcal{A}$, on a

$$\begin{array}{lcl} \mu(A_1 \cup A_2) & = & \mu\{A_1 \cup [A_2/(A_1 \cap A_2)]\} \\ & = & \mu(A_1) + \mu[A_2/(A_1 \cap A_2)] \\ & = & \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2) \end{array}$$

Examen

o On définit la suite $(B_n)_{n\geq 1}\in \mathscr{A}$ telle que

$$B_{1} = A_{1},$$

$$B_{2} = A_{2} \cap A_{1}^{c}$$

$$\vdots \quad \vdots \quad \vdots$$

$$B_{n} = A_{n} \cap A_{n-1}^{c} \cap \dots \cap A_{1}^{c}$$

Les B_n sont disjoints et vérifient $B_n \subset A_n$. On vérifie que

$$\bigcup_{k=1}^{+\infty} B_k = \bigcup_{k=1}^{+\infty} A_k$$

par double inclusion. On a d'une part

$$\bigcup_{k=1}^{+\infty} B_k \subset \bigcup_{k=1}^{+\infty} A_k$$

et de plus pour $\omega\in \bigcup_{k=1}^{+\infty}A_k$, il existe un plus petit n_0 tel que $\omega\in A_{n_0}$ puis $\omega\in B_{n_0}$ et $\omega\in \bigcup_{k=1}^{+\infty}B_k$. On en déduit que

$$\bigcup_{k=1}^{+\infty} B_k \supset \bigcup_{k=1}^{+\infty} A_k$$

puis l'égalité. On peut alors écrire

$$\mu\left(\bigcup_{k=0}^{+\infty}A_k\right) = \mu\left(\bigcup_{k=0}^{+\infty}B_k\right) = \sum_{k=0}^{+\infty}\mu(B_k) \le \sum_{k=0}^{+\infty}\mu(A_k).$$

⊙ Comme $\mu(A_{i+1}) \ge \mu(A_i)$ et $\mu(A_i) < \mu(A)$ alors $(\mu(A_n))_{n \in \mathbb{N}}$ est une suite croissante bornée, donc qui converge. Soit $B_1 = A_1$ et $B_n = A_n/A_{n-1}$ pour $k \ge 2$, les B_k sont disjoints et vérifient $\bigcup_{k=1}^n B_k = A_n$ (on peut vérifier cela par récurrence). On a

$$\mu(A) = \mu\left(\bigcup_{k=1}^{+\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to +\infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to +\infty} \mu\left(\bigcup_{k=1}^{n} B_k\right) = \lim_{n \to +\infty} \mu(A_n).$$

Considérons la suite définit par

$$A'_n = A_1/A_n$$
, pour $n \in \mathbb{N}^*$.

La suite $(A'_n)_{n\in\mathbb{N}^*}$ est une suite croissante de limite

$$A' = \bigcup_{n \in \mathbb{N}^*} A'_n = \bigcup_{n \in \mathbb{N}^*} A_1 \cap A^c_n = A_1 \cap \bigcup_{n \in \mathbb{N}^*} A^c_n = A_1 \cap \left(\bigcap_{n \in \mathbb{N}^*} A_n\right)^c = A_1 \cap A^c = A_1 \cap A$$

On a donc

$$\lim \mu(A'_n) = \mu(A') \Leftrightarrow \lim \mu(A_1) - \mu(A_n) = \mu(A_1) - \mu(A) \Leftrightarrow \lim \mu(A_n) = \mu(A)$$

A noter que l'on a besoin que $\mu(A_1) < \infty$, pour pouvoir considérer la suite des $A'_n = A^c_n$, on aurait besoin de $\mu(\Omega) < \infty$.

Tribus Mesure Applications mesurables

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

Proposition 7

Soient μ et ν deux mesures définies sur un espace mesurable (Ω, \mathscr{A}) et $\alpha > 0$ alors

- \bullet $\mu + \nu$ est une mesure
- $\alpha \times \mu$ est une mesure

2. Mesure de comptage Soient (Ω, \mathcal{A}) un espace mesurable,

Definition 13 (Mesure de Dirac)

Soient $x \in \Omega$ et $A \in \mathcal{A}$. La mesure définie par

$$\delta_X(A) = \begin{cases} 1, & x \in A, \\ 0, & \text{sinon.} \end{cases}$$

est appelée mesure de Dirac en x.

Montrons que $A \mapsto \delta_X(A)$ définit bien une mesure.

- ② Soit $(A_i)_{i\geq 0}$ une suite d'évènements disjoints de \mathscr{A} .
 - S'il existe i tel que x∈A_i alors x∈∪_jA_j et δ_x(∪_jA_j) = 1. De plus, comme les A_i sont disjoints alors x∉A_i pour j≠i. On a donc

$$\sum_{j} \delta_{X}(A_{j}) = \delta_{X}(A_{i}) = \delta_{X}\left(\bigcup_{i} A_{i}\right) = 1.$$

• Si $x \notin A_i$, $\forall i$ alors $x \notin \bigcup_i A_i$ et

$$\delta_{\times}\left(\bigcup_{i}A_{i}\right)=\sum_{i}\delta_{\times}(A_{i})=0.$$

Definition 14 (Mesure de comptage)

Si Ω est un ensemble dénombrable alors

$$C(A) = Card(A)$$
, $A \in A$

définie une mesure appelée mesure de comptage. Il est possible d'écrire

$$C(A) = \sum_{x \in \Omega} \delta_x(A).$$

2. Mesure de probabilité

Une expérience aléatoire est répétée n fois, supposons que A s'est réalisé $k \le n$ au cours de ces expériences. k est la fréquence absolue d'occurence de A et k/n est sa fréquence d'occurence relative. Lorsque n devient grand, la fréquence relative se stabilise autour d'un nombre $\mathbb{P}(A)$ appelé probabilité de A. A partir des fréquences relatives on constate que

•
$$0 \le \mathbb{P}(A) \le 1$$

•
$$\mathbb{P}(\Omega) = 1$$

• Si
$$A \subset B$$
 alors $\mathbb{P}(A) \leq \mathbb{P}(B)$

•
$$A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

propriétés cohérentes avec la définition d'une mesure. Il s'agit de l'interprétation dite fréquentiste des probabilités.

Exemple 9 (Evènements élémentaires équiprobables)

Soit une expérience aléatoire dont les résultats ω sont équiprobable et forment un ensemble Ω fini. L'application $\mathbb{P}:\mathcal{P}(\Omega)\mapsto [0,1]$ définie par

$$\mathbb{P}(A) = \frac{Card(A)}{Card(\Omega)}$$

est une mesure de probabilité. On a

$$\mathbb{P}\big(\{\omega\}\big) = \frac{1}{Card(\Omega)}$$

et le calcul des probabilités se résume à des problèmes de dénombrement.

Montrer que $\mathbb{P}(A) = \frac{Card(A)}{Card(\Omega)}$ est une mesure de probabilité \Rightarrow Examen.

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

Lemme 2 (Borel-Cantelli, première partie)

Si $(A_n)_{n\geq 1}$ est une suite d'évènements telle que $\sum_{n\geq 1}\mathbb{P}(A_n)<\infty$ alors

$$\mathbb{P}\left(\overline{\lim}_{n\to+\infty}A_n\right)=0.$$

preuve:

Notons que

$$\mathbb{P}(\bigcup_{n\geq i} A_n) \leq \sum_{n\geq i} \mathbb{P}(A_n)$$
, pour tout $i\geq 1$,

d'après la Proposition 5. De plus, $\varlimsup_{n\to+\infty} A_n = \bigcap_{k\geq 1} \bigcup_{n\geq k} A_n \subset \bigcup_{n\geq i} A_n$ pour tout $i\geq 1$. Donc

$$0 \le \mathbb{P}\left(\overline{\lim_{n \to +\infty}} A_n\right) \le \sum_{n \ge i} \mathbb{P}(A_n)$$
, pour tout $i \ge 1$.

Le membre de droite tend vers 0 comme reste d'une série convergente. $\hfill\Box$

La probabilité qu'une infinité d'évènements se réalisent est nulle. $\varlimsup_{n \to +\infty} A_n$ est un évènement presque impossible (ou de mesure de probabilité négligeable). On a de manière équivalente

$$\mathbb{P}\left(\underbrace{\lim_{n\to+\infty}A_n^c}\right)=1$$

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

 $\varliminf_{n \to +\infty} A_n^c$ est un évènement presque certain.

Definition 15 (Probabilité conditionnelle)

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé. Soit A et B deux évènements, tel que $\mathbb{P}(B) > 0$, alors on définit la probabilité conditionnelle de A sachant B par

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

L'application $\mathbb{P}(.|B)$ définit bien une probabilité sur (Ω, \mathcal{A}) , en effet,

$$\mathbb{P}(\Omega|B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.$$

3 Soit $(A_n)_{n\geq 1}$ une suite d'évènements disjoints alors

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n|B\right) = \frac{\mathbb{P}\left(\bigcup_{n\geq 1}A_n\cap B\right)}{\mathbb{P}(B)} = \sum_{n\geq 1}\frac{\mathbb{P}(A_n\cap B)}{\mathbb{P}(B)} = \sum_{n\geq 1}\mathbb{P}(A_n|B).$$

On peut montrer que l'ensemble $\mathscr{A}_B = \{A \cap B, \ A \in \mathscr{A}\}$ est une tribu, appelée tribu trace, et définir un nouvel espace probabilisé avec $(\Omega, \mathscr{A}_B, \mathbb{P}(.|B))$

Theoreme 1 (Loi des probabilités totales)

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé, soit $(A_i)_{1 \leq i \leq n}$ une partition de Ω , telle que $\mathbb{P}(A_i) > 0$, $\forall i \geq 1$, alors

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i), \text{ pour tout } B \in \mathcal{A}.$$

preuve: On a, pour tout $B \in \mathcal{A}$,

$$\mathbb{P}(B) = \mathbb{P}(B \cap \Omega) = \mathbb{P}\left(B \cap \bigcup_{i=1}^{n} A_i\right) = \mathbb{P}\left(\bigcup_{i=1}^{n} B \cap A_i\right) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(B | A_i)\mathbb{P}(A_i).$$

Theoreme 2 (Bayes)

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé, soit $(A_i)_{1 \leq i \leq n}$ une partition de Ω , telle que $\mathbb{P}(A_i) > 0 \ \forall i \geq 1$, et $B \in \mathscr{A}$ un évènement de probabilité non nulle. Alors,

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i)}, \text{ pour tout } i = 1,...,n.$$

preuve:

examen.

Exemple 10

Rey tente de s'échapper des griffes de Kylo Ren et de l'empire. Elle choisit au hasard un véhicule parmi

- le Millenium Falcon (MF)
- Le TIE fighter (TIE)
- Le X-Wing starfighter (XW)

La probabilité qu'elle s'échappe (E) est de

- 0.4 si elle opte pour le Millenium Falcon
- 0.6 si elle opte pour Le TIE fighter
- 0.7 si elle opte pour Le X-Wing starfighter

Quelle est la probabilité qu'elle s'échappe si elle a choisit le Millenium Falcon?

D'après l'énoncé,
$$\mathbb{P}(MF) = \mathbb{P}(TIE) = \mathbb{P}(XW) = 1/3$$
 et

$$\mathbb{P}(E|MF) = 0.4$$
, $\mathbb{P}(E|TIE) = 0.6$, et $\mathbb{P}(E|XW) = 0.7$

On applique la formule de Bayes pour obtenir

$$\mathbb{P}(MF|E) = \frac{\mathbb{P}(E|MF)\mathbb{P}(MF)}{\mathbb{P}(E|MF)\mathbb{P}(MF) + \mathbb{P}(E|TIE)\mathbb{P}(TIE) + \mathbb{P}(E|XW)\mathbb{P}(XW)}$$

Mesure de comptage Mesure de probabilité Mesure de Lebesgue

et on remplace.

Definition 16 (Evènements indépendants)

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, Les évènements $A, B \in \mathcal{A}$ sont indépendants sous la probabilité B si et seulement si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B).$$

On observe directement que

$$\mathbb{P}(A|B) = \mathbb{P}(A).$$

Proposition 8

Si A et B sont indépendants sous ₱ alors

- A^c et B sont indépendants
- 2 A et B^c sont indépendants

preuve:

On note que

$$A = (A \cap B^c) \cup (A \cap B)$$

puis

$$\mathbb{P}(A) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A)\mathbb{P}(B)$$

et finalement

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A)\mathbb{P}(B^c),$$

d'où l'indépendance de A et de B^c .

- Ø Même raisonnement
- idem

Definition 17 (Evènements mutuellement indépendants)

La suite $(A_n)_{n\geq 1}\in \mathscr{A}$ est une suite d'évènement mutuellement indépendants si pour tout sous ensemble (A_{i_1},\ldots,A_{i_k}) d'évènement, avec $(i_1,\ldots,i_k)\in \mathbb{N}^k$ un ensemble d'indices, on a

$$\mathbb{P}(A_{i_1}\cap\ldots\cap A_{i_k})=\mathbb{P}(A_{i_1})\times\ldots\mathbb{P}(A_{i_k}).$$

Exemple 11

Il ne faut pas confondre mutuellement indépendant et indépendant deux à deux ! En effet, soit l'espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ avec

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \ \mathscr{A} = \mathscr{P}(\Omega) \ \text{et} \ \mathbb{P}(\omega_i) = 1/4, \forall i = 1, 2, 3, 4.$$

On définit les évènements $A_1 = \{\omega_1, \omega_4\}$, $A_2 = \{\omega_2, \omega_4\}$ et $A_3 = \{\omega_3, \omega_4\}$ alors on observe que A_1 et A_2 sont indépendants, A_1 et A_3 sont indépendants et A_2 et A_3 sont indépendants. Cependant,

$$\mathbb{P}(A_1\cap A_2\cap A_3)\neq \mathbb{P}(A_1)\times \mathbb{P}(A_2)\times \mathbb{P}(A_3).$$

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, et une suite $(A_n)_{n\geq 1}$ d'évènements mutuellement indépendants.

Proposition 9

$$\mathbb{P}\left(\bigcap_{n\geq 1}A_n\right)=\lim_{n\to+\infty}\prod_{k=1}^n\mathbb{P}(A_k).$$

preuve:

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

La suite d'évènement $\left(\bigcap_{k=1}^{n} A_k\right)_{n>1}$ est décroissante, on a donc

$$\mathbb{P}\left[\left(\bigcap_{k=1}^{\infty}A_{k}\right)\right]=\lim_{n\to\infty}\mathbb{P}\left(\bigcap_{k=1}^{n}A_{k}\right)=\lim_{n\to\infty}\prod_{k=1}^{n}\mathbb{P}\left(A_{k}\right).$$

Lemme 3 (Borel-Cantelli deuxième partie)

Si
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$
, alors

$$\mathbb{P}\big(\overline{\lim_{n\to+\infty}}A_n\big)=1.$$

preuve:

 $\overline{\text{Notons}}$ que (pour exploiter l'indépendance des A_n)

$$\overline{\lim_{n\to +\infty}} A_n = \bigcap_{k\geq 1} \bigcup_{n\geq k} A_n = \left(\bigcup_{k\geq 1} \bigcap_{n\geq k} A_n^c\right)^c = \left(\underline{\lim_{n\to +\infty}} A_n^c\right)^c.$$

Comme les évènement A_n^c sont indépendants alors

$$\mathbb{P}\left(\bigcap_{n\geq k}A_n^c\right)=\prod_{n\geq k}\mathbb{P}(A_n^c)=\prod_{n\geq k}(1-\mathbb{P}(A_n)).$$

Comme $1-x \le e^{-x}$ pour $0 \le x \le 1$, alors

$$\mathbb{P}\left(\bigcap_{n\geq k}A_n^c\right)\leq \exp\left(-\sum_{n\geq k}\mathbb{P}(A_n)\right)=0.$$

On en déduit que

$$\mathbb{P}\left(\bigcup_{n\geq k}A_n\right)=1-\mathbb{P}\left(\bigcap_{n\geq k}A_n^c\right)=1$$

pour tout $k \geq 1$ et donc valable lorsque $k \to \infty$. Or $(\bigcup_{n \geq k} A_n)_{k \geq 1}$ est une suite décroissante et donc $\mathbb{P}(\overline{\lim_{n \to +\infty}} A_n) = \mathbb{P}(\bigcap_{k \geq 1} \bigcup_{n \geq k} A_n) = \lim_{k \to \infty} \mathbb{P}(\bigcup_{n \geq k} A_n) = 1$.

En combinant les deux partie du lemme de Borel-Cantelli, on parvient au résultat suivant

Theoreme 3 (Loi du 0-1)

Pour $(A_n)_{n\geq 1}$ une suite d'évènements mutuellement indépendants, on a

$$\mathbb{P}\left(\overline{\lim}_{n \to +\infty} A_n\right) = \begin{cases} 1, & \text{si } \sum_{k=1}^{\infty} \mathbb{P}(A_n) = \infty \\ 0, & \text{si } \sum_{k=1}^{\infty} \mathbb{P}(A_n) < \infty \end{cases}$$

Tribus produits Mesure de comptage Mesure de probabilité Mesure de Lebesgue

Exemple 12

Admettons qu'on lance une pièce un nombre infini de fois, si on note

$$A_n$$
 = "le n-ième lancer est pile"

alors $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \frac{1}{2} = \infty$ et donc $\mathbb{P}(\overline{\lim_{n \to +\infty}} A_n) = 1$, ce qui revient à obtenir de façon certain un nombre infini de pile.

3. Mesure de Lebesgue

Definition 18 (Mesure de Lebesgue)

On appelle mesure de Lebesgue sur $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, la mesure λ telle que, pour tout intervalle]a, b],

$$\lambda(]a,b])=b-a.$$

La mesure de Lebesgue est la seule mesure sur $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ qui mesure un intervalle par sa longueur. Une idée de la preuve est donné en appendice. Conséquence:

- λ est une mesure σ -finie
- $\lambda(\{a\}) = 0$ pour tout $a \in \mathbb{R}$, λ est une mesure diffuse.
- La mesure de Lebesgue d'un ensemble dénombrable est nulle
- Pour tout $a, b \in \mathbb{R}$, on a

$$\lambda(]a,b]) = \lambda(]a,b[) = \lambda([a,b]) = \lambda([a,b[)$$

 La mesure de Lebesgue est invariante par symétrie et translation, précisément si on pose

$$A^{-} = \{y \in \mathbb{R} : -y \in A\} \text{ et } A + x = \{y \in \mathbb{R} : y = x + z, z \in A\}$$

alors
$$\lambda(A) = \lambda(A^-) = \lambda(A + x)$$

Definition 19 (Mesure de Lebesgue sur les pavés)

On appelle mesure de Lebesgue sur $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$ la mesure λ_k telle que, pour $A = \prod_{i=1}^k a_i, b_i$,

$$\lambda_k(A) = \prod_{i=1}^k (b_i - a_i).$$

Exemple 13 (Discret/Continu)

- Lancer d'un dé à 6 faces,
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Card(Ω) = 6
 - w = 6 est un évènement élémentaire
 - A = 'Le dé prend une valeur paire' = {2,4,6}
 - Card(A) = 3
 - La probabilité de A est donnée par $P(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)} = \frac{1}{2}$
- 2 Lancer d'une balle de ping-pong sur une table,
 - $\bullet \ \Omega \subset \mathbb{R}^2$
 - $\mu(\Omega) = I * L$
 - w = x, y est un évènement élémentaire
 - A = 'La balle tombe dans un gobelet placé au bout de la table'
 - μ(A) = "Aire couverte par les gobelets"
 - La probabilité de A est donnée par $P(A) = \frac{\mu(A)}{\mu(\Omega)}$. Il s'agit d'un cas particulier dans lequel la balle atteint n'importe quel point de la table avec la même probabilité.

III. Applications mesurables

1. Rappels et définition

Soit (Ω, \mathscr{A}) et (E, \mathscr{B}) deux espaces mesurables, et $f: \Omega \to E$ une application. On définit l'application inverse de f par $f^{-1}: \mathscr{P}(E) \mapsto \mathscr{P}(\Omega)$ par

$$f^{-1}(B) = \{\omega \in \Omega : f(\omega) \in B\}, \text{ pour } B \in \mathcal{P}(E).$$

On écrit aussi $f^{-1}(B) = \{f \in B\}$. Elle vérifie, ,

•
$$f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i)$$
,

•
$$f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i)$$

•
$$f^{-1}(B^c) = f^{-1}(B)^c$$

où $B,(B_i)_{i\in I}\in E$ et I est un ensemble d'indice.

Proposition 10 $((g \circ f)^{-1})$

Considérons trois ensembles non vides E_1, E_2 et E_3 , et deux fonctions $f: E_1 \mapsto E_2$ et $g: E_2 \mapsto E_3$. Alors pour tout $A_3 \subset E_3$, on a

$$(g \circ f)^{-1}(A_3) = f^{-1}[g^{-1}(A_3)].$$

Definition 20 (Application mesurable)

Soient (Ω, \mathscr{A}) et (E, \mathscr{B}) deux espaces mesurables. $f: \Omega \mapsto E$ une application mesurable si

$$f^{-1}(B) \in \mathcal{A}$$
 pour tout $B \in \mathcal{B}$.

Definition 21 (Variable aléatoire réelle)

Une variable aléatoire réelle est une application mesurable $X:(\Omega,\mathscr{A})\mapsto (\mathbb{R},\mathscr{B}_{\mathbb{R}})$.

Les variables aléatoires réelles permettent de quantifier les évènements d'une expérience aléatoire. On peut définir des vecteurs aléatoires $(X_1,...,X_p)$ comme applications mesurables de (Ω,\mathscr{A}) vers $(\mathbb{R}^p,\mathscr{B}_{\mathbb{R}^p})$.

Exemple 14 (Fonction indicatrice)

Soient $A \subset \Omega$ l'application $\mathbb{I}_A : \Omega \mapsto \{0,1\}$, définie, par

$$\mathbb{I}_{A}(\omega) = \begin{cases} 1, & \text{si } \omega \in A \\ 0, & \text{sinon.} \end{cases}$$

Ici $\mathcal{B} = \mathcal{P}(\{0,1\})$. Soit $B \in \mathcal{B}$, on a

- $\mathbb{I}_{\Delta}^{-1}(B) = \emptyset$ si B ne contient ni 0, ni 1. En fait $B = \emptyset$
- $\mathbb{I}_A^{-1}(B) = A$ si B contient 1 et pas 0
- $\mathbb{I}_A^{-1}(B) = A^c$ si B contient 0 mais pas 1
- $\mathbb{I}_{\Lambda}^{-1}(B) = \Omega$ si B contient 0 et 1

Si $A \in \mathcal{A}$ alors l'application \mathbb{I}_A , aussi appelé fonction indicatrice sur A est mesurable. Si $A_1, A_2, \ldots, A_n \in \mathcal{A}$ forment une partition de Ω alors l'application

$$f = \sum_{i=1}^n x_i \mathbb{I}_{A_i}$$

où $x_1,...,x_n \in \mathbb{R}$ est une application mesurable de (Ω, \mathcal{A}) vers $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Theoreme 4

Soit Ω un ensemble. Soit (E,\mathcal{B}) un espace mesurable et soit $f:\Omega\mapsto E$ une application. On a

- **2** Pour tout $\mathscr{C} \subset \mathscr{P}(E)$: $f^{-1}(\sigma(\mathscr{C})) = \sigma(f^{-1}(\mathscr{C}))$

preuve:

- **1** On exploite les propriétés ensemblistes de f^{-1} ,
 - (i) $f^{-1}(E) = \Omega$ donc $\Omega \in f^{-1}(\mathscr{B})$
 - (ii) Soit $A \in f^{-1}(\mathcal{B})$. Il existe $B \in \mathcal{B}$ tel que $A = f^{-1}(B)$. On a

$$A^{c} = f^{-1}(B)^{c} = f^{-1}(B^{c}) \in f^{-1}(\mathcal{B})$$

(iii) Soit $(A_n)_{n\in\mathbb{N}}\in f^{-1}(\mathscr{B})$. Il existe $B_n\in\mathscr{B}$ tel que $A_n=f^{-1}(B_n),\ \forall n\in\mathbb{N}$. On a $\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}f^{-1}(B_n)=f^{-1}(\bigcup_{n\in\mathbb{N}}B_n)\in f^{-1}(\mathscr{B})$.

② On remarque que $f^{-1}(\sigma(\mathscr{C}))$ est une tribu qui contient $f^{-1}(\mathscr{C})$ donc

$$\sigma(f^{-1}(\mathcal{C})) \subset f^{-1}(\sigma(\mathcal{C})).$$

On définit

$$\mathcal{F} = \left\{ B \subset E \ ; \ f^{-1}(B) \in \sigma \left(f^{-1}(\mathcal{C}) \right) \right\}$$

et on montre qu'il s'agit d'une tribu sur E qui contient \mathscr{C} .

- (i) $E \in \mathscr{F}$ puisque $f^{-1}(E) = \Omega \in \sigma(f^{-1}(\mathscr{C}))$
- (ii) Soit $B \in \mathcal{F}$, on a $f^{-1}(B^c) = f^{-1}(B)^c \in \sigma(f^{-1}(\mathscr{C}))$ donc $B^c \in \mathscr{F}$.
- (iii) Soit $(B_n)_{n\in\mathbb{N}}$, on a $f^{-1}(\bigcup_{n\in\mathbb{N}}B_n)=\bigcup_{n\in\mathbb{N}}f^{-1}(B_n)\in\sigma(f^{-1}(\mathscr{C}))$ donc $\bigcup_{n\in\mathbb{N}}B_n\in\mathscr{F}$

On observe ainsi que $\mathscr F$ est une tribu sur E contenant $\mathscr C$ et par consequent $\sigma(\mathscr C)\subset \mathscr F$. On observe alors que

$$f^{-1}(\sigma(\mathscr{C})) \subset f^{-1}(\mathscr{F}) \subset \sigma(f^{-1}(\mathscr{C})).$$

Definition 22 (Tribu engendrée par f)

 $f^{-1}(\mathcal{B})$ est la tribu engendrée par f. Il s'agit de la plus petite tribu \mathcal{F} de Ω pour laquelle f est une application mesurable de (Ω,\mathcal{F}) vers (E,\mathcal{B}) .

Corollaire 1 (Caractérisation de la mesurabilité)

Soit $\mathscr{C} \subset \mathscr{P}(E)$ vérifiant $\sigma(\mathscr{C}) = \mathscr{B}$. Soit $f: (\Omega, \mathscr{A}) \mapsto (E, \mathscr{B})$ une application.

$$f$$
 est mesurable $\Leftrightarrow f^{-1}(\mathscr{C}) \subset \mathscr{A}$.

preuve:

- \Rightarrow Supposons que f soit mesurable, alors $f^{-1}(\mathscr{C}) \subset \mathscr{A}$ découle de la définition de la mesurabilité.
- \leftarrow Supposons que $f^{-1}(\mathscr{C}) \subset \mathscr{A}$ alors on a

$$f^{-1}(\mathcal{B}) = f^{-1}(\sigma(\mathcal{C})) = \sigma(f^{-1}(\mathcal{C})) \subset \mathcal{A}$$

car $f^{-1}(\mathscr{C}) \subset \mathscr{A}$ et $\sigma(f^{-1}(\mathscr{C}))$ est la plus petite tribu de Ω contenant $f^{-1}(\mathscr{C})$. Cela implique que f est mesurable.

Proposition 11 (Mesurabilité de $g \circ f$)

La composée de deux fonctions mesurables est mesurable.

preuve:

Soit $(\Omega_i, \mathcal{A}_i)$, i = 1, 2, 3 des espaces mesurables et $f : \Omega_1 \mapsto \Omega_2$ et $g : \Omega_2 \mapsto \Omega_3$. Pour tout $A_3 \in \mathcal{A}_3$, on a

$$(g \circ f)^{-1}(A_3) = f^{-1}(g^{-1}(A_3))$$

avec $g^{-1}(A_3) \in \mathcal{A}_2$ puis $f^{-1}(g^{-1}(A_3)) \in \mathcal{A}_1$, ce qui permet de conclure que $(g \circ f)$ est mesurable.

Theoreme 5 (μ_f)

Soit (Ω, \mathcal{A}) et (E, \mathcal{B}) deux espaces mesurables, et $f: (\Omega, \mathcal{A}) \mapsto (E, \mathcal{B})$ une application mesurable. A toute mesure μ sur (Ω, \mathcal{A}) on peut associer une mesure μ_f sur (E, \mathcal{B}) définie par

$$\mu_f(B) = \mu[f^{-1}(B)], B \in \mathcal{B}.$$

preuve:

 $\overline{\mu_f}$ est à valeurs positives, comme μ . De plus,

$$\mu_f(\emptyset) = \mu \left[f^{-1}(\emptyset) \right] = \mu(\emptyset) = \emptyset.$$

Soit $(B_n)_{n\geq 0}$ une suite d'évènements de $\mathscr B$ deux à deux disjoints. La suite d'évènements $\left\{f^{-1}(B_n)\right\}_{n\geq 0}$ est une suite d'évènements disjoints de $\mathscr A$. En effet, supposons l'existence de $\omega\in f^{-1}(B_1)\cap f^{-1}(B_2)$, alors $f(\omega)\in B_1$ et $f(\omega)\in B_2$ ce qui contredit l'hypothèse $B_1\cap B_2=\emptyset$. Par suite,

$$\mu_f\left(\bigcup_{n\geq 0}B_n\right)=\mu\left[f^{-1}\left(\bigcup_{n\geq 0}B_n\right)\right]=\mu\left[\bigcup_{n\geq 0}f^{-1}\left(B_n\right)\right]=\sum_{n\geq 0}\mu\left[f^{-1}\left(B_n\right)\right]=\sum_{n\geq 0}\mu_f\left(B_n\right).$$

Definition 23 (Mesure image)

 μ_f est appelée mesure image de μ par f.

Une application permet de passer d'un espace mesuré $(\Omega, \mathscr{A}, \mu)$ à un autre espace mesuré (E, \mathscr{B}, μ_f)

Definition 24 (Loi de probabilité d'une variable aléatoire réelle)

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé. La loi de probabilité \mathbb{P}_X de la variable aléatoire $X: (\Omega, \mathscr{A}, \mathbb{P}) \mapsto (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ est une mesure de probabilité définie par

$$P_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(X^{-1}(B)), \ \forall B \in \mathscr{B}_{\mathbb{R}}.$$

Il s'agit de la mesure image de \mathbb{P} par X.

Corollaire 2 (Continuité et mesurabilité)

Soient que (E_1, \mathcal{O}_1) et (E_2, \mathcal{O}_2) deux espaces topologiques et \mathcal{B}_1 et \mathcal{B}_2 leur tribu borélienne associée, et $f: E_1 \mapsto E_2$ une application. On a

f est continue $\Rightarrow f$ est mesurable.

preuve:

On note simplement que $\mathcal{O}_2 \subset \mathcal{B}_2$ et $\sigma(\mathcal{O}_2) \subset \mathcal{B}_2$ puis

$$f^{-1}(\mathcal{O}_2) \subset \mathcal{O}_1 \subset \mathcal{B}_1$$

f est mesurable d'après le corollaire 1. \square

2. Produits d'espace mesurable

Soit Ω un ensemble, et $(E_i, \mathcal{B}_i)_{i \in I}$ une famille d'espace mesurable et $(f_i)_{i \in I}$ une famille d'applications

$$f_i: \Omega \mapsto (E_i, \mathscr{B}_i).$$

Definition 25

La tribu engendrée par la famille $(f_i)_{i\in I}$ est la plus petite tribu sur Ω pour laquelle les f_i sont mesurables.

Il s'agit de la plus petite tribu contenant $\left\{f_i^{-1}(B) \; ; \; i \in I, \; B \in \mathcal{B}_i\right\}$. On la notera \mathcal{T} . Soit $g:(F,\mathcal{F}) \mapsto (\Omega,\mathcal{T})$.

Theoreme 6

Une condition nécéssaire et suffisante pour que g soit mesurable est que, pour tout $i \in I$, $f_i \circ g$ soit mesurable.

preuve:

 $\overline{\text{Si }g}$ est mesurable alors les composées $f_i \circ g$ sont mesurables puisque $\mathcal F$ rend les f_i mesurable.

Réciproquement, considérons

$$\mathcal{G} = \left\{ f_i^{-1}(B) \; ; \; i \in I \; , \; B \in \mathcal{B}_i \right\}$$

et supposons que pour tout $i \in I$, $f_i \circ g$ soit mesurable. Alors, pour tout $B \in \mathcal{B}_i$

$$(f_i \circ g)^{-1}(B) \in \mathscr{F}$$

puis

$$g^{-1}(f_i^{-1}(B)) \in \mathcal{F}$$

On en déduit que $g^{-1}(\mathcal{G}) \subset \mathcal{F}$ et finalement

$$\sigma\left[g^{-1}(\mathscr{G})\right]=g^{-1}\left[\sigma(\mathscr{G})\right]=g^{-1}(\mathscr{T})\subset\mathscr{F}.$$

g est bien mesurable.

Soient (Ω_1,\mathscr{A}_1) et (Ω_2,\mathscr{A}_2) deux espaces mesurables. On désigne par

$$p_1: (\omega_1, \omega_2) \mapsto \omega_1 \text{ et } p_2: (\omega_1, \omega_2) \mapsto \omega_2, \ (\omega_1, \omega_2) \in \Omega_1 \times \Omega_2.$$

les applications projections canoniques.

Definition 26

La tribu produit $\mathscr{A}_1 \otimes \mathscr{A}_2$ sur $\Omega_1 \times \Omega_2$ est la tribu engendré par les applications p_1 et p_2 , c'est à dire la plus petite tribu rendant mesurables les applications projections.

Proposition 12

Soit g une application définie sur un espace mesurable (F,\mathcal{F}) , à valeur dans un espace produit $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$. Une condition nécessaire et suffisante pour que g soit mesurable est que

$$p_1 \circ g : (F, \mathscr{F}) \mapsto (\Omega_1, \mathscr{A}_1)$$
 et $p_2 \circ g : (F, \mathscr{F}) \mapsto (\Omega_2, \mathscr{A}_2)$

soient mesurable.

Deux conséquences immédiates:

- Une application mesurable de (Ω, \mathscr{A}) à valeurs dans $(\mathbb{R}^2, \mathscr{B}_{\mathbb{R}^2})$ n'est rien d'autre qu'un couple d'applications mesurables de (Ω, \mathscr{A}) à valeur dans $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$.
- Une application de (Ω, \mathscr{A}) à valeur dans $(\mathbb{C}, \mathscr{B}_{\mathbb{C}})$ est mesurable si et seulement si $\Re f$ et $\Im f$ sont mesurables de (Ω, \mathscr{A}) dans $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$

3. Propriétés des applications mesurables (numériques)

Soient f et g sont deux applications mesurables de (Ω, \mathscr{A}) dans $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$

Proposition 13

0

f est mesurable $\Leftrightarrow \forall a \in \mathbb{R}, \{f < a\} \in \mathcal{A}$

Valide aussi avec $\{f \le a\}$, $\{f > a\}$, et $\{f \ge a\}$.

2

$$f,g \;\; mesurables \; \Rightarrow \{f < g\}, \{f \leq g\}, \{f = g\}, \{f \neq g\} \in \mathcal{A}$$

preuve:

1 On remarque simplement que $\{f < a\} = f^{-1}(]-\infty, a[)$

② Soit $\omega \in \{f < g\}$ alors

$$\begin{split} f(\omega) < g(\omega) & \Leftrightarrow & \exists r \in \mathbb{Q}, \ f(\omega) < r < g(\omega) \\ & \Leftrightarrow & \exists r \in \mathbb{Q} \ \omega \in \{f < r\} \cap \{g > r\} \\ & \Leftrightarrow & \omega \in \bigcup_{r \in \mathbb{Q}} \{f < r\} \cap \{g > r\} \end{split}$$

On en déduit que $\{f < g\} = \bigcup_{r \in \mathbb{Q}} \{f < r\} \cap \{g > r\} \in \mathcal{A}$. Les autres propriétés se déduisent des observations suivantes

$$\{f \le g\} = \Omega/\{f > g\}, \ \{f = g\} = \{f \ge g\} \cap \{f \le g\} \ \text{et} \ \{f \ne g\} = \Omega/\{f = g\}$$

Proposition 14 (Vecteur de fonctions mesurables)

 $h: \omega \in \Omega \mapsto (f(\omega), g(\omega))$ est une fonction mesurable de (Ω, \mathscr{A}) dans $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2))$

preuve:

Soit $A \times B$ un pavé dans $\mathscr{B}(\mathbb{R}^2)$, on a

$$h^{-1}(A\times B)=f^{-1}(A)\cap g^{-1}(B)\in\mathcal{A}$$

Comme $\sigma(A \times B) = \mathcal{B}(\mathbb{R}^2)$ alors h est mesurable par application du corollaire 1. \square

Proposition 15 (Opérations sur les fonctions mesurables)

Les applications

$$f + g$$
; $\alpha \times f$, avec $\alpha \in \mathbb{R}$; $f \times g$;

sont mesurables.

2 Les applications

$$\inf(f,g); \sup(f,g); f^+ = \sup(f,0); f^+ = \inf(f,0); |f|$$

sont mesurables.

3 Soit $(f_n)_{n\geq 0}$ une suite d'applications mesurables de (Ω, \mathcal{A}) à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Si $\sup_{n>0} f_n$ et $\inf_{n\geq 0} f_n$ sont finies alors

$$\sup_{n\geq 0} f_n; \ \inf_{n\geq 0} f_n; \ \varlimsup_{n\rightarrow +\infty} f_n; \ \varliminf_{n\rightarrow +\infty} f_n.$$

sont mesurables. En particulier, si $\lim_{n\to+\infty} f_n = f$ alors f est mesurable.

preuve:

- L'application $\Psi: \mathbb{R}^2 \to \mathbb{R}$ définie par $\Psi(x,y) = x+y$ est continue donc mesurable. On remarque que l'application f+g est la composée de $\Psi \circ h$, où $h: (x,y) \mapsto (f(x),g(x))$, ce qui la rend mesurable. Le raisonnement est similaire pour αf et fg.
- ② On remarque simplement que $\{\sup(f,g)>a\}=f^{-1}([a,+\infty[)\cup g^{-1}([a,+\infty[)\in \mathcal{A}: Le raisonnement est similaire pour <math>\inf(f,g), \sup(f,0) \text{ et } \inf(f,0).$ On garde |f| pour l'examen :).

De même $\varliminf_{n \to +\infty} f_n$. Enfin si f_n tend vers f alors

$$f = \lim_{n \to +\infty} f_n = \overline{\lim}_{n \to +\infty} f_n = \underline{\lim}_{n \to +\infty} f_n.$$

est mesurable.

A.1 Existence et unicité de la mesure de Lebesgue

 $\overline{\mathsf{II}}$ est naturel de mesurer un intervalle de $\mathbb R$ par sa longueur ou une union d'intervalles disjoints par la somme de leur longueur respective.

Definition 27 ($\mathscr{I}_{\mathbb{R}}$, application longueur)

L'application longueur $I: \mathscr{I}_{\mathbb{R}} \mapsto \mathbb{R}_+$ définie par

$$I(]a, b[) = b - a$$
, et $I(\emptyset) = 0$.

L'objectif est de définir une application permettant de mesurer une partie quelconque de $\mathbb R$ ou pour être précis les ouverts de $\mathbb R$. Comme $\mathbb R = \bigcup_{k=1}^{+\infty}]-k,k[$ alors toute partie de $\mathbb R$ peut être recouverte. Cette application sera une mesure sur $\mathscr B(\mathbb R)$ coincidant avec l'application longueur sur les intervalles ouverts.

Theoreme 7 (Caratheodory)

Il existe une et une seule mesure sur $\mathscr{B}(\mathbb{R})$, notée λ , appelée mesure de Lebesgue, telle que

$$\lambda(]a,b[)=b-a$$
, pour tout $-\infty < a < b < +\infty$.

preuve (synthétique):

Existence:

Pour une partie $A \subset \mathscr{P}(\mathbb{R})$ on introduit l'instrument de mesure suivant.

Definition 28 (Mesure extérieure de Lebesgue)

On appelle mesure extérieure de Lebesgue dans $\mathbb R$ l'application $\lambda^*:\mathbb R\mapsto\overline{\mathbb R}^+$ définie, pour tout $A\in\mathscr P(\mathbb R)$, par

$$\lambda^* = \inf \left\{ \sum_{n=0}^{+\infty} I(I_n) \ ; \ (I_n)_{n \in \mathbb{N}} \in \mathscr{I}_{\mathbb{R}} \ \text{et} \ A \subset \bigcup_{n=1}^{\infty} I_n \right\}$$

Proposition 16 (Propriétés de λ^*)

L'application λ^* vérifie les propriétés suivantes

- $\lambda^*(A) \le \lambda^*(B)$ pour $A, B \subset \mathbb{R}$ telles que $A \subset B$ (λ^* est monotone).
- **3** Soit $(A_n)_{n\in\mathbb{N}}\in\mathbb{P}(\mathbb{R})$ et $A=\bigcup_{n\in\mathbb{N}}A_n$ alors

$$\lambda^*(A) \leq \sum_{n \in \mathbb{N}} \lambda^*(A_n).$$

 $(\lambda^* \text{ est sous } \sigma\text{-additive})$

 λ^* n'est pas σ -additive et n'est donc pas une mesure sur $\mathscr{P}(\mathbb{R})$ On va montrer que λ^* est une mesure si on restreint l'application à $\mathscr{B}(\mathbb{R})$. Concrètement , on montre que λ^* est une mesure sur une tribu \mathscr{L} qui englobe $\mathscr{B}(\mathbb{R})$

Definition 29 (La tribu de Lebesgue \mathcal{L})

Soit

$$\mathscr{L} = \left\{ E \in \mathscr{P}(\mathbb{R}) \; ; \; \lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c) \right\}, \text{pour tout } A \subset \mathscr{P}(\mathbb{R}),$$

un sous-ensemble de $\mathscr{P}(\mathbb{R})$, appelé tribu de Lebesgue.

Proposition 17 (Propriétés de \mathscr{L})

- \bigcirc \mathscr{L} est une tribu sur \mathbb{R} ,
- $\lambda_{|\varphi}^*: \mathscr{L} \mapsto \overline{\mathbb{R}}_+$ est une mesure.

Les membres de la tribu ${\mathscr L}$ réalisent un bon partage des parties de ${\mathbb R}.$ preuve:

 $\overline{\mathbb{I}}$ est immédiat que $\mathbb{R} \in \mathcal{L}$ et que \mathcal{L} est stable par passage au complémentaire. De même, on remarque que $\lambda^*(\emptyset) = 0$.

Etape 1. On va montrer que \mathcal{L} est stable par réunion finie et que λ^* vérifie, pour $(E_i)_{i=1,\dots,n}$ telles que $E_i \cap E_j = \emptyset$ pour $i \neq j$,

$$\lambda^* \left(A \cap \bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n \lambda^* (A \cap E_i).$$

Soit $E_1, E_2 \subset \mathcal{L}$ et $E = E_1 \cup E_2$. On rappelle que $E \subset \mathcal{L}$ si

$$\lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c)$$

Nous savons que $\lambda^*(A) \le \lambda^*(A \cap E) + \lambda^*(A \cap E^c)$ du fait de la σ sous-additivé de λ^* . Notons que

$$\lambda^{*}(A \cap E) = \lambda^{*}[A \cap (E_{1} \cup E_{2})]$$

$$= \lambda^{*}[(A \cap E_{1}) \cup (A \cap E_{2})]$$

$$= \lambda^{*}[(A \cap E_{1}) \cup (A \cap E_{2} \cap E_{1}^{c})]$$

$$\leq \lambda^{*}(A \cap E_{1}) + \lambda^{*}(A \cap E_{2} \cap E_{1}^{c}). \tag{3}$$

Comme $E_2 \subset \mathcal{L}$ et $A \cap E_1^c \in \mathcal{P}(\mathbb{R})$ alors

$$\lambda^*(A \cap E_1^c) = \lambda^*(A \cap E_1^c \cap E_2) + \lambda^*(A \cap E_1^c \cap E_2^c) = \lambda^*(A \cap E_1^c \cap E_2) + \lambda^*(A \cap E^c). \tag{4}$$

On a également

$$\lambda^*(A) = \lambda^*(A \cap E_1) + \lambda^*(A \cap E_1^c). \tag{5}$$

puisque $E_1 \subset \mathcal{L}$. En ré-injectant (4) et (5) dans l'inégalité (3), on obtient

$$\lambda^*(A) \geq \lambda^*(A \cap E) + \lambda^*(A \cap E^c).$$

Supposons que $E_1 \cap E_2 = \emptyset$ alors

$$\begin{array}{rcl} \lambda^*(A \cap E) & = & \lambda^*[A \cap (E_1 \cup E_2)] \\ & = & \lambda^*[(A \cap E_1) \cup (A \cap E_2)] \\ & = & \lambda^*\{[(A \cap E_1) \cup (A \cap E_2)] \cap E_1\} + \lambda^*\{[(A \cap E_1) \cup (A \cap E_2)] \cap E_1^c\} \\ & = & \lambda^*(A \cap E_1) + \lambda^*(A \cap E_2) \end{array}$$

Les deux propriétés se généralisent pour une suite $(E_n)_{n=1,\dots,n}$ par récurrence.

Etape 2.

Considérons $(E_n)_{n\in\mathbb{N}}\subset\mathcal{L}$ et $E=\cup_{n\in\mathbb{N}}E_n$. Soit

$$F_0 = E_0 \text{ et } F_n = E_n | (E_n \cap \bigcup_{p=0}^{n-1} F_p)$$

de sorte que F_0, F_1, \ldots appartienent à \mathcal{L} , soient disjoints, et vérifient $E = \bigcup_{n \in \mathbb{N}} F_n$. On a

$$\lambda^{*}(A) = \lambda^{*}(A \cap \bigcup_{p=0}^{n} F_{p}) + \lambda^{*} \left[A \cap \left(\bigcup_{p=0}^{n} F_{p} \right)^{c} \right]$$

$$\geq \lambda^{*}(A \cap \bigcup_{p=0}^{n} F_{p}) + \lambda^{*} [A \cap E]$$

$$\geq \sum_{p=0}^{n} \lambda^{*}(A \cap F_{p}) + \lambda^{*} [A \cap E]$$

En passant à la limite lorsque $n \to +\infty$, on obtient

$$\lambda^*(A) \geq \sum_{p=0}^{+\infty} \lambda^*(A \cap F_p) + \lambda(A \cap E^c)$$

$$\geq \lambda^*(A \cap E) + \lambda(A \cap E^c) \text{ sous } \sigma\text{-additivit\'e}.$$

ce qui prouve que $E \subset \mathcal{L}$.

On montre maintenant que λ^* est bien une mesure sur \mathscr{L} . Soit $(E_n)_{n\in\mathbb{N}}$ telle que $E_n\cap E_m=\emptyset$ si $n\neq m$. Comme $\bigcup_{p=0}^n E_p\subset E$ alors

$$\lambda^*(A \cap E) \geq \lambda \left(\bigcup_{p=0}^n A \cap E_p \right)$$
$$= \sum_{p=0}^n \lambda(A \cap E_p).$$

On obtient $\lambda^*(E) \ge \sum_{p=0}^{+\infty} \lambda^*(E_p)$ en choisissant A=E puis en passant à la limite lorsque $n \to +\infty$. De plus $\lambda^*(E) \le \sum_{p=0}^{\infty} \lambda^*(E_p)$ en vertu de la sous σ -additivité. On a donc

$$\lambda^*(E) = \sum_{p=0}^{+\infty} \lambda^*(E_p).$$

Pour montrer l'existence du théorème (7), il suffit de montrer que $]a,+\infty[\subset \mathcal{L}$ pour tout $a\in\mathbb{R}$ car dans ce cas $\mathscr{B}(\mathbb{R})\subset \mathcal{L}$ puisque $]a,+\infty[$ engendre $\mathscr{B}(\mathbb{R})$. Soit $E=]a,+\infty[$, pour $a\in\mathbb{R}$ et $A\in\mathbb{P}(\mathbb{R})$, on veut montrer que

$$\lambda^*(A) = \lambda^*(A \cap E) + \lambda^*(A \cap E^c). \tag{6}$$

D'après la définition de λ^* , il existe $(I_n)_{n\in\mathbb{N}}\in\mathscr{I}_{\mathbb{R}}$, telle que $A\subset\bigcup_{n\in\mathbb{N}}I_n$ et $\lambda^*(A)=\sum_{n\in\mathbb{N}}I(I_n)-\epsilon$. Comme

$$\begin{cases} A \cap E \subset \bigcup_{n \in \mathbb{N}} I_n \cap E, \\ A \cap E^c \subset \bigcup_{n \in \mathbb{N}} I_n \cap E^c, \end{cases}$$

alors la σ sous-additivité implique que

$$\begin{cases} \lambda^*(A \cap E) \leq & \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E), \\ \lambda^*(A \cap E^c) \leq & \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E^c). \end{cases}$$

On a

$$\lambda^*(A \cap E) + \lambda^*(A \cap E^c) \leq \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E) + \lambda^*(I_n \cap E^c)$$
$$= \sum_{n \in \mathbb{N}} I(I_n),$$

puis $\lambda^*(A\cap E)+\lambda^*(A\cap E^c)\leq \lambda^*(A)+\varepsilon$, où ε peut être choisi arbitrairement petit. Finalement, $\lambda^*(A)\leq \lambda^*(A\cap E)+\lambda^*(A\cap E^c)$ est une conséquence de la σ sous-additivité, ce qui permet de conclure à l'égalité (6).

Pour l'unicité, on montre que s'il existe une autre mesure m sur $\mathscr{B}(\mathbb{R})$ telle que m(]a,b[)=b-a alors elle coincide avec λ^* . La proposition suivante est dès lors très utile.

Proposition 18 (Condition suffisante pour l'égalité de deux mesures)

Soit (Ω, \mathcal{A}) un espace mesurable et m, μ deux mesures sur \mathcal{A} . Supposons qu'il existe $\mathscr{C} \subset \mathcal{A}$ tel

- \[
 \mathcal{C}
 \mathcal{C}
 \text{ engendre } \mathcal{A}
 \]
- 2 % est stable par intersection fini

On a alors $m = \mu$

La preuve se termine en appliquant la proposition (18), avec $\mathscr{C} = \{ [a,b] \ , \ -\infty < a < b < +\infty \}$. On vérifie que

- $\sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R})$
- ullet $\mathscr C$ est stable par intersection
- Considérons la suite

$$F_n =]n, n+1], n \in \mathbb{Z}$$

est dénombrable, disjointe et telle que $\bigcup_{n\in\mathbb{Z}} F_n = \mathbb{R}$

• On a par continuité décroissante

$$m(]a,b]) = \lim_{n \to +\infty} m(]a,b + \frac{1}{n})$$
$$= \lim_{n \to +\infty} b - a + \frac{1}{n}$$
$$= b - a$$
$$= \lambda^*(]a,b])$$

On définit alors $\lambda := \lambda^*_{|\mathbb{B}(\mathbb{R})}$

$$\lambda^*: \mathscr{P}(\mathbb{R}) \mapsto \overline{\mathbb{R}}^+ \quad \Rightarrow \quad \lambda_{|\mathscr{L}}^*: \mathscr{L} \mapsto \overline{\mathbb{R}}_+ \text{ est une mesure}$$

$$\Rightarrow \quad \lambda := \lambda_{\mathscr{B}(\mathbb{R})}^* : \mathscr{B}(\mathbb{R}) \mapsto \overline{\mathbb{R}}_+ \text{ est la seule mesure telle que } \lambda(]a,b[) = b-a$$

⇒ La mesure de Lebesgue

Références bibliographiques I

Mes notes se basent sur les documents suivants [1, 3, 2]

Michel Carbon.

Probabilités 1 et 2.

Note de cours ENSAI, 2009.

Olivier Garet and Aline Kurtzmann.

De l'intégration aux probabilités, volume 470.

Ellipses, 2011.

Jean-François Le Gall.

Intégration, probabilités et processus aléatoires.

Ecole Normale Supérieure de Paris, 2006.