

The secret to good system design

1. Understand the application

- WHAT is the customer /user trying to do?
- WHERE is the customer /user trying to do it?
- WHAT accuracy/precision /units is required (10s,1V, 10uA, 10ps...)

2. Take a holistic (wide) view of the problem

- Do not 'rush' to a solution; spend time UNDERSTANDING
- Try to consider several different approaches to the problem

3. Approach the problem systematically

- Use the 'V' Model
- Document your decisions: If you discover you were 'wrong' you can change the decision and try again.
- Always consider HOW you will VALIDATE and VERIFY the results

How to assemble the parts...

We can all access the same parts... the difference is how we use the parts to meet the customer need.

In ESD, interfaces are key...

- 1. Signal Source: Could generate voltage, current, charge, resistance (change of)...
- Question: what Specification describes the input signal?
- 2. Signal Preconditioning: Amplifying, Filtering (shaping), frequency shifting, limiting...
- Question: what Specification of output is needed?
- 3. Perform Operation: Could be analog or digital:
- Question: what Specification / accuracy / precision is needed?
- 4. Output Driver / Conditioner: What is it driving? Specification?
- 5. Output Stage: What is interface for output (current drive, voltage drive, fast, slow...)
 Specification

A good systems engineer knows their interfaces... as well as internal block functions!!

Typical Electronic System (Analog)

TP3210 (SLIM)

- Telecoms Subscriber Line Interface Circuit (SLIC)
- Millions sold in China in 1990s to connect analog telephones to network (before mobile)
- Every city had a
 Central Office that
 connected to up to
 3Million telephones

Simplified System Block Diagram

A board containing many 'systems'

A telephone switch containing many 'boards'

 A city like Chengdu might have several large switches connected to the digital network

Next Generation Cn Network: consisting many switches... One person's system is somebody else's P23 component... P8 F1.P21 Dalian Lanzhou Zhengzhou Hefei Nanjing Wuhan Hangzhou Changsha Xiamen

Groups of 4 10 minutes

Class Exercise

Working in groups of 4, discuss whether the following are systems or

components...

- 1. A wireless microphone or Headset
- 2. A mobile phone
- 3. A fighter jet
- 4. An aircraft Carrier in the Chinese navy
- 5. A Hospital

Component?	System?

Write down who you think calls it a component and who thinks it is a system (e.g. Laptop: User thinks it as a component, Intel think it as a system)

