# Iterative Methods in Linear Algebra (part 2)

Stan Tomov

Innovative Computing Laboratory Computer Science Department The University of Tennessee

Wednesday April 18, 2012





# **Topics**

Projection in Scientific Computing

Sparse matrices, parallel implementations

PDEs, Numerical solution, Tools, etc.

**Iterative Methods** 



# Outline

■ Part I

Krylov iterative solvers

■ Part II

Convergence and preconditioning

■ Part III

Iterative eigen-solvers



### Part I

Krylov iterative solvers



# Krylov iterative solvers

### Building blocks for Krylov iterative solvers covered so far

- Projection/minimization in a subspace
  - Petrov-Galerkin conditions
  - Least squares minimization, etc.
- Orthogonalization
  - CGS and MGS
  - Cholesky or Householder based QR

# Krylov iterative solvers

# We also covered abstract formulations for iterative solvers and eigen-solvers

### What are the goals of this lecture?

- Give specific examples of Krylov solvers
- Show how examples relate to the abstract formulation
- Show how examples relate to the building blocks covered so far, specidicly to
  - Projection, and
  - Orthogonalization
- But we are not going into the details!





## Krylov iterative solvers

#### How are these techniques related to Krylov iterative solvers?

#### Projection and iterative solvers

- The problem : Solve Ax = b in
- Iterative solution: at iteration I extract an approximate
- $\mathbf{x}_i$  from just a subspace  $V = \text{span}[v_i, ..., v_m]$  of  $R^n$
- How? As on slide 22, impose constraints:
   b Ax ⊥ subspace W = span[w<sub>1</sub>,...,w<sub>m</sub>] of R<sup>n</sup>, i.e.

   (\*) (Ax, w) = (b, w) for ∀ w, cW= span[w<sub>1</sub>,...,w<sub>m</sub>]
- · Conditions (\*) known also as Petrov-Galerkin conditions
- Projection is *orthogonal*: V and W are the same (Galerkin conditions) or 
   *oblique*: V and W are different



#### Matrix representation

- $$\begin{split} \bullet \quad & \text{Let} \qquad \qquad V = [v_1,...,v_m], \ \ W = [w_1,...,w_m] \\ & \text{Find } y \in \mathbb{R}^m \ \text{ s.t. } \qquad \mathbf{x} = \mathbf{x}_0 + \mathbf{V} \ \mathbf{y} \qquad \text{solves} \quad \mathbf{A} \mathbf{X} = \mathbf{b}, \text{ i.e.} \\ & \quad \quad \mathbf{A} \ \mathbf{V} \ \mathbf{y} = \mathbf{b} \mathbf{A} \mathbf{x}_0 = \mathbf{r}_0 \end{split}$$
  - subject to the orthogonality constraints:  $\label{eq:WTAV} \mathbf{W}^T \mathbf{A} \ \mathbf{V} \ \mathbf{v} = \mathbf{W}^T \ \mathbf{r},$

TENNESSEE

Slide 27 / 39

 The choice for V and W is crucial and determines various methods (more in Lectures 4 and 5) Remember projection slides 26 & 27. Lecture 7 (left)

- Projection in a subspace is the basis for an iterative method
  - Here projection is in V
  - In Krylov methods V is the Krylov subspace

$$K_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\}$$

where  $r_0 \equiv b - Ax_0$  and  $x_0$  is an initial guess.

- Often V or W are orthonormalized
  - The projection is 'easier' to find when we work with an orthonormal basis (e.g. problem 4 from homework 5: projection in general vs orthonormal basis)
  - The orthonormalization can be CGS, MGS, Cholesky or Householder based, etc.



# Krylov Iterative Methods

To summarize, Krylov iterative methods in general

- expend the Krylov subspace by a matrix-vector product, and
- do a projection in it.

Various methods result by specific choices of the expansion and projection.



# Krylov Iterative Methods

A specific example with the

Conjugate Gradient Method (CG)





# Conjugate Gradient Method

- The method is for SPD matrices
- Both V and W are the Krylov subspaces, i.e. at iteration i

$$V \equiv W \equiv K_i(A, r_0) \equiv span\{r_0, Ar_0, \dots, A^{i-1}r_0\}$$

■ The projection  $x_i \in K_i(A, r_0)$  satisfies the Petrov-Galerkin conditions

$$(Ax_i, \phi) = (b, \phi), \text{ for } \forall \phi \in K_i(A, r_0)$$





# Conjugate Gradient Method (continued)

At every iteration there is a way (to be shown later) to construct a new search direction  $p_i$  such that

$$span\{p_0, p_1, ..., p_i\} \equiv K_{i+1}(A, r_0)$$
 and  $(Ap_i, p_i) = 0$  for  $i \neq j$ .

**Note:** A is SPD  $\Rightarrow$   $(Ap_i, p_j) \equiv (p_i, p_j)_A$  can be used as an inner product, i.e.  $p_0, \ldots, p_i$  is an  $(\cdot, \cdot)_A$  orthogonal basis for  $K_{i+1}(A, r_0)$ 

 $\Rightarrow$  we can easily find  $x_{i+1} \approx x$  as

$$x_{i+1} = x_0 + \alpha_0 p_0 + \dots + \alpha_j p_i \quad \text{s.t.}$$

$$(Ax_{i+1}, p_j) = (b, p_j) \quad \text{for } j = 0, \dots, i$$

Namely, because of the  $(\cdot,\cdot)_A$  orthogonality of  $p_0,\ldots,p_i$  at iteration i+1 we have to find only  $\alpha_i$ 

$$(Ax_{i+1}, p_j) = (A(x_i + \alpha_i p_i), p_i) = (b, p_i), \Rightarrow \alpha_i = \frac{(r_i, p_i)}{(Ap_i, p_i)}$$

**Note**:  $x_i$  above actually can be replaced by any  $x_0 + v$ ,  $v \in K_i(A, r_0)$  (Why?)





# Conjugate Gradient Method (continued)

#### Conjugate Gradient Method

```
1: Compute r_0 = b - Ax_0 for some initial guess x_0
2: for i = 0 to ... do
3: \rho_i = r_i^T r_i
4: if i = 0 then
5: \rho_0 = r_0
6: else
7: \rho_i = r_i + \frac{\rho_i}{\rho_{i-1}} \rho_{i-1}
8: end if
9: q_i = A\rho_i
10: \alpha_i = \frac{\rho_i}{\rho_i T_{q_i}}
11: x_{i+1} = x_i + \alpha_i p_i
12: r_{i+1} = r_i - \alpha_i q_i
13: check convergence; continue if necessary
```

#### Note:

- One matrix vector product/iteration (at line 9)
- Two inner-products/iteration (lines 3 and 10)
- In exact arithmetic r<sub>i+1</sub> = b Ax<sub>i+1</sub> (Apply A to both sides of 11 and subtract from b to get line 12)
- Update for  $x_{i+1}$  is as pointed out before, i.e. with

$$\alpha_i = \frac{(r_i, r_i)}{(Ap_i, p_i)} = \frac{(r_i, p_i)}{(Ap_i, p_i)}$$

since 
$$(r_i, p_{i-1}) = 0$$
 (exercise)

- Other relations to be proved (exercise)
  - $p_i s'$  span the Krylov space
  - $p_i$ s' are  $(\cdot, \cdot)_A$  orthogonal, etc.





14: end for

# Conjugate Gradient Method (continued)

#### To sum it up:

■ In exact arithmetic we get the exact solution in at most *n* steps, i.e.

$$x = x_0 + \alpha_0 p_0 + \cdots + \alpha_i p_i + \alpha_{i+1} p_{i+1} + \cdots + \alpha_{n-1} p_{n-1}$$

■ At every iteration one more term  $\alpha_j p_j$  is added to the current approximation

$$x_i = x_0 + \alpha_0 p_0 + \dots + \alpha_{i-1} p_{i-1}$$
  

$$x_{i+1} = x_0 + \alpha_0 p_0 + \dots + \alpha_{i-1} p_{i-1} + \alpha_i p_i \equiv x_i + \alpha_i p_i$$

- Note: we do not have to solve linear system at every iteration because of the A-orthogonal basis that we manage to maintain and expend at every iteration
- It can be proved that the error  $e_i = x x_i$  satisfies

$$||e_i||_A \le 2\left(\frac{\sqrt{k(A)}-1}{\sqrt{k(A)}+1}\right)^t ||e_0||_A$$



# Building orthogonal basis for a Krylov subspace

# Building orthogonal basis for a Krylov subspace

#### We have seen the importance in

- Defining projections
  - not just for linear solvers
- Abstract linear solvers and eigen-solver formulations
- A specific example
  - in CG where the basis for the Krylov subspaces is A-orthogonal (A is SPD)

#### We have seen how to build it

- CGS, MGS, Cholesky or Householder based, etc.
- These techniques can be used in a method specifically designed for Krylov subspaces (general non-Hermitian matrix), namely in the

Arnoldi's Method





## Arnoldi's Method

#### Arnoldi's method:

Build an orthogonal basis for  $K_m(A, r_0)$ A can be general, non-Hermitian

1: 
$$v_1 = r_0$$

2: for 
$$i = 1$$
 to  $m$  do

2: for 
$$j = 1$$
 to  $m$  do  
3:  $h_{ij} = (Av_j, v_i)$  for  $i = 1, ..., j$ 

4: 
$$w_i = Av_i - h_{1i}v_1 - ... - h_{ii}v_i$$

5: 
$$h_{i+1,j} = ||w_i||_2$$

6: if 
$$h_{j+1,j} = 0$$
 Stop

7: 
$$v_{j+1} = \frac{w_j}{h_{j+1,j}}$$

8: end for

#### Note:

■ This orthogonalization is based on CGS (line 4)

$$w_j = Av_j - (Av_j, v_1)v_1 - ... - (Av_j, v_j)v_j$$

■ ⇒ up to iteration j vectors

$$v_1, \ldots, v_j$$

are orthogonal

- The space of this orthogonal basis grows by taking the next vector to be Av;
- If we do not exit at step 6 we will have

$$K_m(A, r_0) = span\{v_1, v_2, \ldots, v_m\}$$

(exercise)





# Arnoldi's Method (continued)

#### Arnoldi's method in matrix notation

Denote

$$V_m \equiv [v_1, \dots, v_m], \quad H_{m+1} = \{h_{ij}\}_{m+1 \times m}$$

and by  $H_m$  the matrix  $H_{m+1}$  without the last row.

■ Note that  $H_m$  is upper Hessenberg (0s below the lower second sub-diagonal) and

$$AV_m = V_m H m + w_m e_m^T V_m^T A V_m = H_m$$

(exercise)





# Arnoldi's Method (continued)

#### Variations:

- Explained using CGS
- Can be implemented with MGS, Householder, etc.

How to use it in linear solvers?

■ Example with the Full Orthogonalization Method (FOM)





#### **FOM**

1: 
$$\beta = ||r_0||_2$$

2: Compute 
$$v_1, \ldots, v_m$$
 with Arnoldi 3:  $y_m = \beta H_m^{-1} e_1$ 

3: 
$$v_m = \beta H_m^{-1} e_1$$

4: 
$$x_m = x_0 + V_m y_m$$

■ Look for solution in the form

$$x_m = x_0 + y_m(1)v_1 + \dots + y_m(m)v_m$$
  
$$\equiv x_0 + V_m y_m$$

Petrov-Galerkin conditions will be

$$V_{m}^{T}Ax_{m} = V_{m}^{T}b$$

$$\Rightarrow V_{m}^{T}A(x_{0} + V_{m}y_{m}) = V_{m}^{T}b$$

$$\Rightarrow V_{m}^{T}AV_{m}y_{m} = V_{m}^{T}r_{0}$$

$$\Rightarrow H_{m}y_{m} = V_{m}^{T}r_{0} = \beta \mathbf{e}_{1}$$

which is given by steps 3 and 4 of the algorithm

CS 594, 04-18-2012

# Restarted FOM

What happens when m increases?

- computation grows as at least  $O(m^2)n$
- $\blacksquare$  memory is O(mn)

A remedy is to restart the algorithm, leading to restarted FOM

# FOM(m)

- 1:  $\beta = ||r_0||_2$
- 2: Compute  $v_1, \ldots, v_m$  with Arnoldi
- 3:  $y_m = \beta H_m^{-1} e_1$
- 4:  $x_m = x_0 + V_m y_m$ . Stop if residual is small enough.
- 5: Set  $x_0 := x_m$  and go to 1





### **GMRES**

### Generalized Minimum Residual Method (GMRES)

- Similar to FOM
  - Again look for solution

$$x_m = x_0 + V_m y_m$$

where  $V_m$  is from the Arnoldi process (i.e.  $K_m(A, r_0)$ )

■ The test conditions  $W_m$  from the abstract formulation (slide 27, Lecture 7)

$$W_m^T A V_m y_m = W_m^T r_0$$

are  $W_m = AV_m$ .

■ The difference results in step 3 from FOM, namely

$$y_m = \beta H_m^{-1} e_1$$

being replaced by

$$y_m = \operatorname{argmin}_{\mathbf{v}} ||\beta \mathbf{e}_1 - H_{m+1}\mathbf{v}||_2$$





## **GMRES**

### Similarly to FOM, GMRES can be defined with

- Various orthogonalizations in the Arnoldi process
- Restart

#### Note:

■ Solving the least squares (LS) problem

$$argmin_{y}||\beta e_{1} - H_{m+1}y||_{2}$$

can be done with QR factorization as discussed in Lecture 7, Slide 25



# Lanczos Algorithm

#### Can we improve on Arnoldi if A is symmetric?

- $\blacksquare$  Yes!  $H_m$  becomes symmetric so it will be just 3 diagonal
- the simplification of Arnoldi in this case leads to the Lanczos Algorithm
- Lanczos can be used in deriving CG

#### The Lanczos Algorithm

1: 
$$v_1 = \frac{r_0}{||r_0||_2}$$
,  $\beta_1 = 0$ ,  $v_0 = 0$ 

2: **for** 
$$j = 1$$
 to  $m$  **do**

2: **for** 
$$j = 1$$
 to  $m$  **do**  
3:  $w_j = Av_j - \beta_j v_{j-1}$   
4:  $\alpha_j = (w_j, v_j)$ 

4: 
$$\alpha_j = (w_j, v_j)$$

$$5: \quad w_j = w_j - \alpha_j v_j$$

6: 
$$\beta_{j+1} = ||w_j||_2$$
. If  $\beta_{j+1} = 0$  then Stop

7: 
$$v_{j+1} = \frac{w_j}{\beta_{j+1}}$$

Matrix H<sub>m</sub> here is 3-diagonal with diagonal

$$h_{ii} = \alpha_i$$

and off diagonal

$$h_{i,i+1} = \beta_{i+1}$$

In exact arithmetic v;s' are orthogonal but in reality orthogonalization gets lost rapidly





# Choice of basis for the Krylov subspace

We saw how different basis for the Krylov spaces is characteristic for various methods, e.g.

- GMRES uses orthogonal
- CG uses A-orthogonal

This is true for other methods as well

- Conjugate Residual (CR; for symmetric problems) uses  $A^TA$ -orthogonal (i.e.  $Ap_i$ 's are orthogonal)
- A<sup>T</sup>A-orthogonal basis can be generalized to the non-symmetric case as well, e.g. in the Generalized Conjugate Residual (GCR)



# Other Krylov methods

We considered various methods that construct a basis for the Krylov subspaces

Another big class of methods is based on biortogonalization (algorithm due to Lanczos)

■ For non-symmetric matrices build a pair of bi-orthogonal bases for the two subspaces

$$K_m(A, v_1) = span\{v_1, Av_1, \dots, A^{m-1}v_1\}$$
  
 $K_m(A^T, w_1) = span\{w_1, A^Tw_1, \dots, (A^T)^{m-1}w_1\}$ 

- Examples here are BCG and QMR (not to be discussed)
- These methods are more difficult to analyze





#### Part II

Convergence and preconditioning



# Convergence

#### Convergence can be analyzed by

- Exploit the optimality properties (of projection) when such properties exist
- A useful tool is Chebyshev polynomials
- Depend on the condition number of the matrix, e.g.
  - in CG it is

$$||e_i||_A \le 2\left(\frac{\sqrt{k(A)}-1}{\sqrt{k(A)}+1}\right)^i ||e_0||_A$$



Convergence can be slow or even stagnate

■ for ill-conditioned matrices (with large condition number)

But can be improved with preconditioning

$$x_{i+1} = x_i + P(b - Ax_i)$$

- Think of P as a preconditioner, an operator/matrix  $P \approx A^{-1}$
- for  $P = A^{-1}$  it takes 1 iteration





Properties desired in a preconditioner:

- Should approximate  $A^{-1}$
- Should be easy to compute, apply to a vector, and store

Iterative solvers can be extended to support preconditioning (How?)





### Extending Iterative solvers to support preconditioning

- The same solver can be used but on a modified problem, e.g.
- Problem Ax = b is transformed into

$$PAx = Pb$$

known as left preconditioning

■ Problem Ax = b is transformed into

$$APx = b, \quad x = Pu$$

known as right preconditioning

■ Convergence of the modified problem would depend on k(PA) (e.g. with left preconditioning)





#### Examples:

- Incomplete LU factorization (e.g. ILU(0))
- Jacobi (inverse of the diagonal)
- Other stationary iterative solvers (GS, SOR, SSOR)
- Block preconditioners and domain decomposition
  - Additive Schwarz (thing of Block-Jacobi)
  - Multiplicative Schwarz (think of Block-GS)



#### Examples so far:

algebraic preconditioners, i.e. exclusively based on the the matrix

Often, for problems coming from PDEs, PDE and discretization information can be used in designing a preconditioner, e.g.

- FFTs' can be involved to approximate differential operators on regular grids (as in Fourier space the operators are diagonal matrices)
- Grid and problem information to define multigrid preconditioners
- Indefinite problems are often composed of sub-blocks that are definite: used in defining specific preconditioners and even modify solvers for these needs, etc.





### Part III

Iterative eigen-solvers



# Iterative Eigen-Solvers

### How are iterative eigensolvers related to Krylov subspaces?

#### Projection and Eigen-Solvers

- · The problem : Solve  $\Delta x = \lambda x$
- · As in linear solvers: at iteration I extract an approximate
- x. from a subspace  $V = \text{span}[v_1, ..., v_n]$  of  $\mathbb{R}^n$ · How? As on slides 22 and 26, impose constraints:
- $\lambda x Ax \perp subspace W = span[w_1,...,w_n] of R^n$ , i.e.  $(Ax, w_i) = (\lambda x, w_i)$  for  $\forall w_i \in W = span[w_i,...,w_i]$
- · This procedure is known as Rayleigh-Ritz
- · Again projection can be orthogonal or oblique



#### Matrix representation

- · Lct  $V = [v_1, ..., v_n], W = [w_1, ..., w_n]$ Find  $y \in \mathbb{R}^m$  s.t. x = V y solves  $Ax = \lambda x$ , i.e.  $A V v = \lambda V v$ 
  - subject to the orthogonality constraints:  $W^TA V v = \lambda W^T V v$
- . The choice for V and W is crucial and determines various methods (more in Lectures 4 and 5)

Remember projection slides 29 & 30. Lecture 7 (left)

- Again, as in linear solvers, Projection in a subspace is the basis for an iterative eigen-solver
  - V and W are often based on Krylov subspaces

$$K_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\}$$

where  $r_0 \equiv b - Ax_0$  and  $x_0$  is an initial guess.

- Often parts of V or W are orthogonalized
  - For stability
  - The orthogonalization can be CGS, MGS, Cholesky or Householder based, etc.
  - The smaller Rayleigh-Ritz are usually solved with LAPACK routines



Slide 30 / 39

# Learning Goals

### A brief introduction to Krylov iterative solvers and eigen-solvers

- Links to building blocks that we have already covered
  - Abstract formulation
  - Projection, and
  - Orthogonalization
- Specific examples and issues (preconditioning, parallelization, etc.)

