For N samples of a signal x_n , n=0,1,...,N-1the (discrete) Fourier transform is defined as

 $\dot{x}_{k} = C \sum_{n=0}^{N-1} x_{n} e^{-i \left(\frac{2\pi k}{N} \right) n}$ K = 0, 1, ..., N-1

If the sampling rate is F_s H_z (samples), the frequencies matching the coefficients are

 $S_K = \frac{K}{N}F_S Hz$ (and $C = (NF_S)^{1/4}$)

For each K, the sum is basically the correlation of the data signal with the complex exponential signal over time n with parameter K,

 $u_n^k = e^{-\frac{1}{2}(\frac{2\pi k}{N})}$ the "kernel"

What does this definition have to do with sinusoids?

Complex numbers can be written in two equivalent ways:

$$Z = a + bi$$
 = $pe^{i\theta}$ where $i=\sqrt{-1}$
Rectangular Polar

The special case p=1 is Euler's relation $e^{z} = \cos(\theta) + i\sin(\theta)$ Looking back to the "kernel" signal $u_n^k = e^{-\frac{1}{2}(\frac{\lambda \pi K}{N})}$, we set $\theta = -(\frac{\lambda \pi K}{N})$ and then

scos(-4)=cos(4) sin(-4) = - sin(4) $U_n = \cos(\frac{2\pi k}{N}n) - i\sin(\frac{2\pi k}{N}n)$ $x_{k} = C \sum_{n=0}^{N-1} x_{n} \cos \left(\frac{2\pi k}{N} n \right) - \frac{1}{2} \left(\sum_{n=0}^{N-1} x_{n} \sin \left(\frac{2\pi k}{N} n \right) \right)$ Correlation of Xn Correlation of Xn with cosine of with sine of frequency ank frequency ank

Punchline: The complex exponential form of the Fourier transform is a compact way to simultaneously write the correlations of xn with cosine (in the real part of xk) and sine (in the imaginary part of xk).

Now each \hat{x}_k can also be written in polar form $\hat{x}_k = p_k e^{i\Theta_k}$

The power at frequency k is (by definition) $|\hat{x}_{k}|^{2} = \rho_{k}^{2}$ and the phase (or angle) is $4 \times k = \rho_{k}$

What's up with the discrete frequencies? If our sample rate is Fs, the time of the nth sample is $t_n = \frac{n}{F_n}$ sec. $e^{-\frac{i(2\pi k)n}{N}n} = e^{-\frac{i}{2}\frac{2\pi k}{N/F_s}\frac{n}{F_s}} = e^{-\frac{i}{2}2\pi(\frac{k}{N}F_s)t_n}$ = - i am fktn = cos(ansktn)-isin(ansktn) The 27 just converts physical to radian frequency: Hz = cycles

sec >xar radians

cycle ant to radians sec