Functional analysis

Mostly operator theory for now

Sudip Sinha

February 3, 2020

i

CONTENTS

Part 1 Operator theory	1
1.1 Elementary ideas	2
1.1.1 Weak and weak* convergence	2
1.1.2 Definitions	3
1.1.3 Inclusions: $\mathcal{D} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{K} \subset \mathcal{B}^{\infty}$	3
1.1.4 For $T \in \mathcal{B}^{\infty}$, $ T _{\infty} = \sup\{ \langle Tx, y \rangle \} : x = 1, y = 1$	3
$1.1.5 P _{\infty} \le 1$	3
1.1.6 Projection operator is compact iff its image is finite dimensional	4
1.2 Optimization	5
1.2.1 Duality in optimization is the same as duality in functional analysis	5
Bibliography	6

Part 1

OPERATOR THEORY

1.1 Elementary ideas

1.1.1 Weak and weak* convergence

Disclaimer: This section is shamelessly copied from Christopher Heil's notes.

Definition 1.1 Let X be a normed vector space, and $x_n, x \in X$. We define the following convergences as $n \to \infty$.

$$(strong) \qquad x_n \to x \qquad \Longleftrightarrow \qquad \|x_n - x\| \to 0$$

$$(weak) \qquad x_n \xrightarrow{w} x \qquad \Longleftrightarrow \qquad \forall \phi \in X^*, \quad (x_n - x, \phi) \to 0$$

Definition 1.2 Let X be a normed vector space, and $\phi_n, \phi \in X^*$. We define the following convergences as $n \to \infty$.

$$\begin{array}{lll} (strong) & \phi_n \to \phi & \Longleftrightarrow & \|\phi_n - \phi\| \to 0 \\ \\ (weak) & \phi_n \overset{w}{\to} \phi & \Longleftrightarrow & \forall \xi \in X^{**}, & (\phi_n - \phi, \xi) \to 0 \\ \\ (weak^*) & \phi_n \overset{w^*}{\to} \phi & \Longleftrightarrow & \forall x \in X, & (x, \phi_n - \phi) \to 0 \end{array}$$

Remark 1.3 *Weak* convergence is simply* pointwise convergence *for the functionals* ϕ_n .

Proposition 1.4 (strong \Rightarrow weak \Rightarrow weak* for convergence) Suppose ϕ_n , $\phi \in X^*$.

Then
$$\phi_n \to \phi \Longrightarrow \phi_n \stackrel{w}{\to} \phi \Longrightarrow \phi_n \stackrel{w^*}{\to} \phi$$
.

The second implication reverses if X is reflexive.

Proof. strong
$$\Longrightarrow$$
 weak: $(x_n - x, \phi) \le ||x_n - x|| ||\phi|| \to 0.$ weak \Longrightarrow weak*: $(x, \phi_n - \phi) = (\phi_n - \phi, x^{**}) \to 0.$

The claim about the reverse implication is now obvious.

Counterexample for converse of the first implication: Suppose $X = \ell^2(\mathbb{N})$. Then $e_n \stackrel{w}{\to} 0$, but $||e_n - 0|| = 1 \nrightarrow 0$.

Proposition 1.5 In Hilbert spaces, weak convergence plus convergence of norms $(\|x_n\| \to \|x\|)$ is equivalent to strong convergence.

Proof.
$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle = \langle x_n - x, x_n \rangle - \langle x_n - x, x \rangle \to 0.$$

Proposition 1.6 Let H and K be Hilbert spaces, and let $T \in B(H, K)$ be a compact operator.

Show that
$$x_n \xrightarrow{w} x \Longrightarrow Tx_n \to Tx$$
.

Thus, a compact operator maps weakly convergent sequences to strongly convergent sequences.

5

Proof. Disclaimer: Stolen from MSx1142451.

 $Tx_n \stackrel{w}{\to} Tx$ by continuity. Thus if any subsequence has a strong limit, it certainly is Tx. But compactness guarantees every subsequence has a subsequence that converges to something: that something is Tx by uniqueness, and so by our above equivalence with convergence, we have $Tx_n \to Tx$.

1.1.2 Definitions

Compact $T \in \mathcal{K} \iff \lambda \to 0$

Hilbert-Schmidt $T \in \mathcal{B}^2 \iff \lambda \in \ell^2$

Trace-class $T \in \mathcal{B}^1 \Longleftrightarrow \lambda \in \ell^1$

1.1.3 Inclusions: $\mathcal{D} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{K} \subset \mathcal{B}^{\infty}$

 $\mathcal{K} \subseteq \mathcal{B}^{\infty}$ ((<BMC2009>), Proposition 4.6) If T is unbounded, we can find a sequence of unit vectors (e_n) such that $||Te_n|| \nearrow \infty$. So Te_n cannot have a convergent subsequence, for if $Te_n \to x$, then $||Te_n|| \to ||x||$.

 $\mathcal{K} \neq \mathcal{B}^{\infty}$ The identity operator $I \in \mathcal{B}^{\infty}$ is not compact because for the bounded sequence of unit vectors (e_n) , $Ie_n = e_n$ does not converge as $||e_n - e_m|| = \sqrt{2} \ \forall n \neq m$.

 $\mathcal{B}^2 \subseteq \mathcal{K}$ TODO

 $\mathcal{B}^2 \neq \mathcal{K}$ $T: \ell^2 \to \ell^2, Te_n = \frac{1}{\sqrt{n}}e_n; T \in \mathcal{K} \setminus \mathcal{B}^2.$

 $\mathcal{B}^1 \subseteq \mathcal{B}^2$ TODO

 $\mathcal{B}^1 \neq \mathcal{B}^2$ $T: \ell^2 \to \ell^2, Te_n = \frac{1}{n}e_n; T \in \mathcal{B}^2 \setminus \mathcal{B}^1.$

1.1.4 For $T \in \mathcal{B}^{\infty}$, $||T||_{\infty} = \sup\{|\langle Tx, y \rangle|\} : ||x|| = 1$, ||y|| = 1

- (\leq) Since $||Tx|| = \frac{||Tx||^2}{||Tx||} = \frac{\langle Tx, Tx \rangle}{||Tx||} = \langle Tx, \frac{Tx}{||Tx||} \rangle$, we have $||T||_{\infty} = \sup\{||Tx|| : ||x|| = 1\} \le \sup\{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\}.$
- (\geq) On the other hand, $\langle Tx, y \rangle \leq ||Tx|| ||y|| \leq ||T||_{\infty} ||x|| ||y||$, so $\sup\{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\} \leq ||T||_{\infty}$.

$1.1.5 ||P||_{\infty} \leq 1$

Since $||Px||^2 = \langle Px, Px \rangle = \langle P^*Px, x \rangle = \langle PPx, x \rangle = \langle Px, x \rangle \leq ||Px|| \, ||x||$, we have $||P||_{\infty} \leq 1$.

1.1.6 Projection operator is compact iff its image is finite dimensional

- (⇒) Let $P: H \to H$ be a projection operator, so that $P^2 = P$, or P(P I) = 0.
- (\Leftarrow) Since the image is finite dimensional, fix an orthonormal basis $e_1,...,e_n$ of im T.

1.2 Optimization

1.2.1 Duality in optimization is the same as duality in functional analysis

For an various intuitions of duality in optimization, see MSx223235.

Let X and Y be Banach spaces, and X^* and Y^* be their (algebraic?) duals. Consider the two problems, with ϕ_0 , y_0 fixed. Here (\cdot, \cdot) denotes the canonical duality pairing.

See the following diagram for more details.

$$x \longmapsto \begin{array}{c} x \longmapsto T \\ x \in X & \xrightarrow{T} & y_0 \\ \downarrow & \downarrow \\ \phi_0, T^* \psi \in X^* & \xrightarrow{T^*} & y_0^* \\ & & \uparrow \\ T^* \psi & \xrightarrow{T^*} & \psi \end{array} \Rightarrow \psi$$

BIBLIOGRAPHY