El qubit

Las dos posibilidades del gubili

Estados de superposición:
$$|\Psi\rangle = \ll |0\rangle + \beta |1\rangle = \begin{bmatrix} 4 \\ \beta \end{bmatrix}$$

arb: amplitudes de probabilidad e C

147 se utiliza para obtener toda la información del sistema

Ejemples de estades cuanticos:

•
$$|x_{i+}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 | Prio = Pri1 = $\frac{1}{2}$
 $|x_{i-}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

•
$$|y; +\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ \vdots \end{bmatrix}$$

$$|y; -\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ \vdots \end{bmatrix}$$

$$|r|_0 = |r|_1 = \frac{1}{2}$$

· Un estado debe estar normalizado, esto es, |4|2+ |B|2=1

$$| \dot{\phi} \rangle = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \longrightarrow | \dot{\psi} \rangle = \frac{1}{\sqrt{13}} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$|2|^2 + |3|^2 = 13$$
 $\frac{|2|^2 + |3|^2}{2} = 1$

$$\frac{|2|^2+|3|^2}{|3|}=1$$

La esfera de Bloch

una representación geométrica del estado 14> = [or | se obtiene con la siguiente parametrización:

$$\alpha \longrightarrow cos\left(\frac{\theta}{2}\right) \qquad \beta \in [0, \pi]$$

$$\beta \longrightarrow e^{i \frac{1}{2}} sin\left(\frac{\theta}{2}\right) \qquad \phi \in [0, 2\pi]$$

$$\beta \rightarrow e^{i \phi} \sin \left(\frac{\theta}{2} \right)$$

Esta parametrización satisface $|x|^2 + |y|^2 = 1$:

$$|\cos(\frac{9}{2})|^2 + |e^{i\phi}\sin(\frac{9}{2})|^2 = \cos^2(\frac{9}{2}) + \sin^2(\frac{9}{2}) = 1$$

$$\bullet (0, \phi) = (0, \phi) \longrightarrow 0$$

•
$$(0, \phi) = (\pi, \phi) \longrightarrow (1)$$

•
$$(0, b) = (\frac{\pi}{3}, 0) \longrightarrow |x;+\rangle$$

•
$$(\theta, \phi) = \left(\frac{\pi}{2}, \pi\right) \longrightarrow |x; -\rangle$$

Ejemplo: Para
$$\theta=0$$
,
$$|\psi\rangle = \cos(0)|0\rangle + e^{i\phi}\sin(0)|1\rangle = |0\rangle$$

Compuertas lógicas

Proceso en el que se utilizan una o más señales de entrada para generar otras de salida.

Ejemplos de compuertas lógicas:

• AND
$$x_1$$
 y (Irreversible)

Input 1 (x1)	Input 2 (Xz)	Output (y)
D	0	0
	1	0
1	O	0
	1	1

En general, les compuertes lógices elésices son irreversibles.

Conjunto universal de compuertas: Conjuntos finitos de compuertas que permiten generar cualquier algoritmo con precisión arbitraria.

Ejemplos: IAND, OR, NOT , INANO , INOR).

Compuertas cuanticas

$$|\psi\rangle \xrightarrow{\hat{\mathcal{U}}} |\psi_2\rangle \qquad |\psi_1\rangle = |\psi_1\rangle$$

$$|\psi_2\rangle = |\psi_1\rangle$$

- De un qubit: $\hat{\mathbf{I}}, \hat{\mathbf{x}}, \hat{\mathbf{H}}, \hat{\mathbf{P}}|\mathbf{0}$). Se pueden interpretar como rotaciones en la esfera de Bloch.

NoT
$$\hat{x}$$
 \hat{x} $\hat{x$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\hat{H}|o\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix} = |x_i+\rangle$$
 $\hat{H}|1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix} = |x_i-\rangle$

Todos los estados que no sean los polos son estados de superposición.

El ecuador contiene superposiciones balanceadas. Pr/ol = Pr/1 = 1/2.

Si el estado se encuentra más cerca del Polo norte,
Prío) > Prío)

• De 2 qubits:

controlada cNOT cuántica	•	c NOT
--------------------------	---	-------

	(Control)	(Blanco)			
_	Input 1	Input 2	Output (X1)	Output (X2)	
δ	0	D	D	•	
	1	o	1		
1	0	1	1		
	1	1	0		

· Todas las compuertas cuánticas son reversibles.

$$|\psi_{i}\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 $|\psi_{f}\rangle = \hat{u}|\psi_{i}\rangle = \begin{bmatrix} \alpha^{1} \\ \beta^{1} \end{bmatrix}$

Antes de aplicar una compuerta, se debe cumplir:

Después de aplicar la compuerta, se debe cumplir:

Los operadores que permiten esto son los operadores unitarios. Éstos amplen que: $\hat{\mathcal{U}}^{-1}=\hat{\mathcal{U}}^{\dagger},$

donde û-1 es el operador inverso a û y ût, su transpuesto conjugado.

• Todas las compuertas de N qubits se pueden descomponer en una secuencia de compuertas de 1 y 2 gubits:

Esto es consecuencia de que existan conjuntos universales de compuertas cuánticas que contienen a lo más compuertas de 2 qubits.