Álgebra

Anillos

Generalidades

Definición 1.1 (Anillo) Un **anillo** es una estructura $(A, +, \cdot)$ con las propiedades:

- (A, +) es un grupo conmutativo
- Asociatividad: (xy)z = x(yz)
- Distributividad: (x + y)z = xz + yz x(y + z) = xy + xz

Se denota al elemento unitario de (A, +) por 0_A y al unitario de $(A, +, \cdot)$, si existe, por 1_A . $A^* = A$ $\{0\}$. $0_A = 1_A \iff A = \{0\}$.

Definición 1.6 Si $1_A \in A$, entonces A es un **anillo unitario**. Una **unidad** de A es un elemento x que tiene su inverso y: xy = 1. El conjunto de unidades es U(A). El inverso, si existe, se puede denotar por x^{-1} y $x/y = xy^{-1}$.

Definición 1.8 Un **cuerpo** es un anillo K tal que K^* es un grupo. O, un anillo unitario con inverso.

Definición 1.10 Un **divisor de cero** es un elemento $x \in A^*$ tal que, para algún $y \in A^*$, $xy = 0_A$. Un cuerpo nunca tiene divisores de cero: $x = x(yy^{-1}) = (xy)y^{-1} = 0y^{-1} = 0$

Definición 1.11 Se denomina **dominio de integridad** a un anillo unitario sin divisores de cero. El producto de dos anillos conmutativos $C = A \times B$ nunca es un dominio de integridad, pues $(a,0) \neq 1_A, (0,b) \neq 1_B$ y $(a,0) \times (0,b) = (0,0) = 0_C$.

A un dominio de integridad se le puede asociar un cuerpo mediante el **cuerpo de fracciones de un dominio**. Dada la relación $(x, y)R(x', y') \iff xy' = x'y$, para el producto de dominios $A \times A^*$ entonces para la clase de equivalencia [x, y], las operaciones [x, y] + [x', y'] = [xy' + y'x, yy'], $[x, y] \cdot [x', y'] = [xx', yy']$ forman un cuerpo, K, con $0_K = [0, 1]$, $1_K = [1, 1]$, Y, Y, Y, Y.

Definición 1.14 (Ideal) Un **ideal** es un subconjunto $I \subset A$ tal que

- *I* es subgrupo de *A*
- $\forall i \in I, a \in A, ia \in I$.

A, $\{0\}$ son los **ideales triviales**, y si $I \neq A$, I es un **ideal propio**. Si $1_A \in I$, I = A: $\forall a \in A$, $a = a \cdot 1$, y como $1 \in I$, $a \in I$.

Definición 1.16 Dado un ideal I de A, dada la relación $xRy \iff x - y \in I$, se forma el **anillo cociente** A/I con las clases de equivalencia $[x] = x + I = \{x + a \mid a \in I\}$. Las operaciones suma y producto definidas por (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = xy + I, son inyectivas.