Group quiz

EE24BTECH11038 - M.B.S Aravind

Fourier series:- The Fourier Series is a way to represent any periodic function as a sum of sines and cosines.

For a function f(x) that is periodic with period T, its Fourier Series is given by:

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right) \right]$$
 (0.1)

or
$$f(x) = \sum_{n=-\infty}^{\infty} C_n e^{j\omega_0 t}$$
 (0.2)

 a_0 is the DC component

 a_n,b_n are the fourier coefficients given by

$$a_0 = \frac{1}{T} \int_T f(x) dx \tag{0.3}$$

$$a_n = \frac{2}{T} \int_T f(x) \cos\left(\frac{2\pi nx}{T}\right) dx \tag{0.4}$$

$$b_n = \frac{2}{T} \int_T f(x) \sin\left(\frac{2\pi nx}{T}\right) dx \tag{0.5}$$

Calculating the coefficients

Given voltage function is

$$V(t) = \begin{cases} 10, & 0 < t < \alpha T \\ 0, & \alpha T < t < T \end{cases}$$

1.DC coefficient a_0

$$a_0 = \frac{1}{T} \left[\int_0^{\alpha T} 10 \, dt + \int_{\alpha T}^T 0 \, dt \right] \tag{0.6}$$

$$a_0 = 10\alpha \tag{0.7}$$

2.Cosine coefficient a_n

$$a_n = \frac{2}{T} \int_0^{\alpha T} 10 \cos\left(\frac{2\pi nt}{T}\right) dt \tag{0.8}$$

$$a_n = \frac{20}{T} \cdot \frac{T}{2\pi n} \left[\sin(2\pi n\alpha) - \sin(0) \right] \tag{0.9}$$

$$a_n = \frac{10}{\pi n} \sin(2\pi n\alpha) \tag{0.10}$$

1

3.sine function b_n

$$b_n = \frac{2}{T} \int_0^{\alpha T} 10 \sin\left(\frac{2\pi nt}{T}\right) dt \tag{0.11}$$

$$b_n = \frac{2 \cdot 10}{T} \left[\frac{-T}{2\pi n} \cos\left(\frac{2\pi nt}{T}\right) \right]_0^{\alpha T}$$
 (0.12)

$$b_n = \frac{-20}{2\pi n} \left[\cos(2\pi n\alpha) - \cos(0) \right]$$
 (0.13)

$$b_n = \frac{-10}{\pi n} \left[\cos(2\pi n\alpha) - 1 \right] \tag{0.14}$$

$$b_n = \frac{10}{\pi n} \left[1 - \cos(2\pi n\alpha) \right] \tag{0.15}$$

Thus the fourier series for V(t) is given by

$$V(t) = 10\alpha + \sum_{n=1}^{\infty} \left(\frac{10}{\pi n} \sin(2\pi n\alpha) \cos\left(\frac{2\pi nt}{T}\right) + \frac{10}{\pi n} (1 - \cos(2\pi n\alpha)) \sin\left(\frac{2\pi nt}{T}\right) \right)$$
(0.16)

Calculating I(t)

Given differential equation is

$$L\frac{di}{dt} + iR = 10\alpha + \sum_{n=1}^{\infty} \left(\frac{10}{\pi n} \sin(2\pi n\alpha) \cos\left(\frac{2\pi nt}{T}\right) + \frac{10}{\pi n} (1 - \cos(2\pi n\alpha)) \sin\left(\frac{2\pi nt}{T}\right)\right) \quad (0.17)$$

Since the system is linear, we solve for each harmonic component separately: Assume a solution of the form:

$$I_n = A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t). \tag{0.18}$$

Substituting into the differential equation and solving for and , we obtain:

$$A_n = \frac{b_n R}{R^2 + (n\omega_0 L)^2}, \quad B_n = \frac{b_n n\omega_0 L}{R^2 + (n\omega_0 L)^2}.$$
 (0.19)

Thus, the total current response is given by:

$$I(t) = \frac{10\alpha}{R} \left(1 - e^{-\frac{R}{L}t} \right) + \sum_{n=1}^{\infty} \frac{10}{n\pi} \sin(2\pi\alpha n) \left[\frac{R\cos(n\omega_0 t) + n\omega_0 L\sin(n\omega_0 t)}{R^2 + L^2(n\omega_0)^2} - \frac{R}{R^2 + L^2(n\omega_0)^2} e^{-\frac{R}{L}t} \right]$$
(0.20)

$$+\sum_{n=1}^{\infty} \frac{10}{n\pi} (1 - \cos(2\pi\alpha n)) \left[\frac{R \sin(n\omega_0 t) - Ln\omega_0 \cos(n\omega_0 t)}{R^2 + L^2(n\omega_0)^2} + \frac{n\omega_0 L}{R^2 + L^2(n\omega_0)^2} e^{-\frac{R}{L}t} \right]$$
(0.21)

Effect of time constant

- 1) $\tau \ll T$
 - a) since $e^{-\frac{R}{L}t}$ approaches zero quickly, the transient terms in the Fourier series expression disappear.

b) After simplifying the terms A_n and B_n by assuming $\frac{L}{R} \to 0$, the final i(t) will be

$$\approx \frac{10\alpha}{R} + \frac{10}{\alpha R} \sum_{n=1}^{\infty} \left(\frac{\sin\left((2\pi\alpha - \omega_0 t)n\right)}{n} \right)$$
 (1.1)

- 2) $\tau = \mathbf{T}$
 - a) For τ =T the transient and steady-state components coexist with significant contributions. The full Fourier expression is used without approximation
- 3) $\tau >> \mathbf{T}$
 - a) Assuming $\frac{R}{L} \to 0$
 - b) I(t) simplifies to

$$\approx \frac{10}{\pi\omega_0 L} \sum_{n=1}^{\infty} \frac{\cos((2\pi\alpha - \omega_0 t)n)}{n^2}$$
 (3.1)