Zusammenfassung: Logik für die Informatik

Rico Klimpel

January 29, 2020

Contents 2 Aussagenlogik \mathbf{II} 3 Prädikatenlogik Syntax & Semantik 3 1.1 1.3 1.4 1.5 Interpretation von Termen 1.6 Interpretation von Formlen 1.7 1.8 3 2 Modelierung Relationen in Strukturen defnieren? 3 Erfüllbarkeit einer Formel 3 Äquivalenz 3 3.1 Äquivalenz von Formeln 3.2 Regeln der Prädikatenlogik 3.3 3.4 Umbenennen von gebundenen Variablen 3.5 4 3.6 4 Boolsche Normalform 3.6.1 4 3.6.2 Plenex Normalform 4 3.6.3 Konjunktive Normalform Folgerungsbeziehungen (Entailment) 4 4.1 Folgerungsbeziehung 4 Beziehung zwischen Erfüllbarkeit und Folgerungsbeziehung 4 Beweissysteme 4 Natürliches Beweissystem 4 5.1.1 Beweisregeln Korrektheit & Vollständigkeit 5.1.2 4 4 5.2.1 Korrektheit & Vollständigkeit 4 5.2.2 Verbindung zwischen Resolution und

Logik-Programmierung

Kompaktheit

4

4

1

	Informationen
)	Zusammenfassung der Vorlesung Logik für die Informatik an der CAU Kiel aus dem Wintersemester 2019/2020, gehalten von Prof. Dr. Thomas Wilke. Ein Versuch die wichtigsten
3	Aussagen ohne enorm lange Formalitäten drum herum knapp zu Papier zu bringen. Kein Anspruch auf Vollständigkeit. Geschrieben in IATEX.
3	<u>.</u>
3	
3	
3	
3	
3	
3	
3	
}	
1	

Part I Aussagenlogik

Part II

Prädikatenlogik

1 Syntax & Semantik

1.1 Signatur

Eine Signatur S besteht aus eine Menge S von Symbolen und einer Funktion $\Sigma \colon S \to \mathbb{N} \cup \mathbb{N} \times \{1\}$.

The Elemente von S werden Symbole genannt und wie folgt eingeteilt:

• Ein Symbol f mit $\Sigma(f) = \langle n, 1 \rangle$ für n > 0 ist eine Funktionssymbol.

Menge dieser Symbole: \mathcal{F}_{Σ} oder einfach \mathcal{F} .

• Ein Symbol R mit $\Sigma(R)=n$ für n>0 ist ein Relationssymbol.

Menge dieser Symbole: \mathcal{R}_{Σ} oder \mathcal{R} .

• Ein Symbol c mit $\Sigma(c) = \langle 0, 1 \rangle$ ist ein Symbol für eine Konstante.

Menge dieser Symbole: \mathcal{C}_{Σ} oder \mathcal{C} .

- Symbol b mit $\Sigma(b)=0$ ist ein Symbol für einen boolschen Wert.

Menge dieser Symbole: \mathcal{B}_{Σ} or simply \mathcal{B} .

Im allgemeinen werden Signaturen mit $\mathcal{B} \neq \emptyset$ ignoriert (Signaturen ohne boolsche Werte). Keine Ahnung warum er das sagt.

Beispiele:

 $S = \{\text{zero, one, add, mult}\}$

$$\Sigma = \{ \text{zero} \mapsto \langle 0, 1 \rangle, \text{one} \mapsto \langle 0, 1 \rangle, \text{add} \mapsto \langle 2, 1 \rangle, \text{mult} \mapsto \langle 2, 1 \rangle \}$$

Vereinfacht aufgeschrieben sieht das ganze so aus:

$$S = \{\text{zero, one, add}//2, \text{mult}//2\}$$

1.2 Struktur

Sei S eine Signatur. Eine S-Struktur A besteht aus:

- Univserum A mit $A \neq \emptyset$
- Für jedes Symbol eine Konstanten $c \in \mathcal{S}$ eine Interpretation $c^{\mathcal{A}} \in A$ von c.
- Für jedes Funktionssymbol $f/\!/n \in \mathcal{S}$ eine Interpretation $f^{\mathcal{A}} \colon A^n \to A$
- Für jedes Relationssymbol $R/n \in \mathcal{S}$ eine Interpretation $R^{\mathcal{A}} \subset A^n$

Hier ein Beispiel das ungefähr zu der Signatur oben passt:

$$A = \{0, 1, 2, 3\}$$

$$zero^{A} = 3$$

$$one^{A} = 2$$

$$add^{A}(a, b) = 0 for a, b \in A$$

$$mult^{A}(a, b) = a + b \text{ rest } 4 for a, b \in A$$

$$Lt^{N} = \{\langle a, a \rangle \colon a \in A\}$$

1.3 Terme

https://lili.informatik.uni-kiel.de/llocs/Syntax_of_first-order_logic#

Induktive Defintion für alle Terme über eine Signatur \mathcal{S} , die auch \mathcal{S} -terms genannt wird: Basiselemente:

- Ein Baum mit nur einem Element das eine Variable der Prädikatenlogik enthält ist ein S-term.
- Ein Baum mit nur einem Element das eine Konstante $c \in \mathcal{S}$ enthält ist ein \mathcal{S} -term.

1.4 Formeln

1.5 Interpretation von Termen

1.6 Interpretation von Formlen

1.7 Freie Variablen

1.8 Koinzidenzlemma

2 Modelierung

2.1 Relationen in Strukturen defnieren?

2.2 Erfüllbarkeit einer Formel

3 Äquivalenz

3.1 Äquivalenz von Formeln

3.2 Regeln der Prädikatenlogik

3.3 Quantorenregeln	5.2 Resolutions beweise
3.4 Umbenennen von gebundenen Variablen	5.2.1 Korrektheit & Vollständigkeit
3.5 Scope von Quantoren	5.2.2 Verbindung zwischen Resolution und Logik- Programmierung
3.6 Normalformen 3.6.1 Boolsche Normalform	6 Kompaktheit
3.6.2 Plenex Normalform	
3.6.3 Konjunktive Normalform	
4 Folgerungsbeziehungen (Entailment)	
4.1 Folgerungsbeziehung	
4.2 Beziehung zwischen Erfüllbarkeit und Folgerungsbeziehung	
5 Beweissysteme	
5.1 Natürliches Beweissystem	
5.1.1 Beweisregeln	
5.1.2 Korrektheit & Vollständigkeit	