Appendix: Proofs

Proof of Proposition 1

Proof. Our greedy algorithm is as follows. For the case when F(x) = 1, start with $t=t_x$, and iterate over the literals ℓ of t by checking whether t deprived of ℓ is a UPimplicant given Th of at least $\lfloor \frac{m}{2} \rfloor + 1$ decision trees of F. If so, remove ℓ from t and proceed to the next literal. Once all literals in t_x have been examined, the final term tis by construction a UP-implicant given Th of a majority of decision trees in F, such that removing any literal from it would lead to a term that is no longer a UP-implicant given Th of this majority. So, t is by construction a UP-majoritary reason. The case when F(x) = 0 is similar, by simply replacing each T_i by its negation (which can be obtained in linear time by replacing every 0-leaf in T_i by a 1-leaf and vice-versa). This greedy algorithm runs in time polynomial in the size of the input t_x , F and Th since on each iteration, checking whether t is a UP-implicant given Th of T_i (for each $i \in [m]$) can be done in time polynomial in the size of t, T_i , and Th. Indeed, in order to decide whether t is a UP-implicant given Th of a decision tree T_i of F, it is enough to test that for every clause $\delta \in CNF(T_i)$, δ contains a literal derivable by unit propagation from $t \wedge Th$. The fact that this set can be derived in time linear in the size of $t \wedge Th$ completes the proof.