Facultad de Ciencias Puras - UMSA

MESA DE EXAMEN. ESTADISTICA - I (c). Lic. Chirino 2020-08-10

Datos person	ales			Núm	ero de	e matrí	cula		
Apellidos:									
		0						 1	 0
Nombre:								」 □	4
Firma:		'						」 □	1
Firma:		2							2
		3							3
	Controlado	4							4
		5							5
Este campo no se debe modifi	car.	6		Ш	Ш				6
Tipo Identificación del exa	men(EST-133)	7							7
125 20081000		8							8
		9							9
Marque de una forma clara. Ejem	plo: 🔀 No marcado: [0							
Este examen será corregido por u la hoja. Para marquear, por favor			que no s	e ha d	e arru	gar, do	oblar ni	ensuc	iar
Solo las marcas legibles y bien			s.						
Respuestas 1 - 15	Respuestas								
	a b c 16	d (e ¬						
	17 🗌 🗎 🖂		 						
			⊣ ¬						
	18		_ 						
	19 📗 📗		_						
5	20								
6 🔲 🗎 🔲 🔲	21 🔲 🔲								
7 🔲 🔲 🔲 🔲	22 🔲 🔲 🔲								
8 🗌 🗎 🗎 🗎	23 🔲 🔲 🔲								
9	24 🔲 🕅 🗍		_						
10	25 🗍 🦳		_ 						
	a b c	d (e e						
11 🗌 📗 📗 🔲									
12 🔲 🔲 🔲									
13 🔲 🔲 🔲									
14 🔲 🔲 🔲 🔲									
15 🔲 🔲 🔲 🔲									
0 h 0 d 0	1								

1

- 1. *(4 puntos)* Identifique a las variables que son cualitativas ordinales
 - a) Color de los ojos
 - b) Carrera de estudio
 - c) Semestre en la universidad
 - d) Sexo
 - e) Rango militar
- 2. (4 puntos) Identifique las sentencias correctas
 - a) La media aritmética es un estadístico de tendencia central
 - b) La varianza puede ser negativa
 - c) El coeficiente de variación es una medida de dispersión absoluta
 - d) La mediana siempre es mayor a la moda
 - e) El coeficiente de Kurtosis sirve para evaluar la simetría de los datos
- 3. (4 puntos) En una empresa donde los salarios tienen un promedio de 4500 Bs. al mes y una desviación estandar $\sigma = 500$, el sindicato solicita que cada salario x_i se transforme en y_i , mediante la siguiente relación:

$$y_i = 1.5 * x_i + 300$$

El director acepta parcialmente la peticion rebajando en un 20 % la propuesta del sindicato. A partir del nuevo salario, la media y desviacion estandar es:

a)
$$\bar{y} = 4500$$
, $\sigma_V = 500$

b)
$$\bar{y} = 7050$$
, $\sigma_v = 750$

c)
$$\bar{y} = 5640$$
, $\sigma_v = 500$

d)
$$\bar{y} = 4500$$
, $\sigma_V = 500$

e)
$$\bar{v} = 5640$$
, $\sigma_v = 600$

(4 puntos) De la siguiente serie de números:

Determine para la asimetria (Fisher) y kurtosis:

- a) Es simetrica positiva
- b) Es simetrica
- c) Es platicurtica
- d) Es simetrica negativa
- e) Es leptocurtica

- 5. (4 puntos) Identifique las sentencias correctas:
 - a) Si la Media, la moda y la mediana son iguales, entonces, los datos son simétricos
 - b) El segundo cuartil es la mediana
 - c) La media cuadrática siempre es mayor o igual a la media geométrica
 - d) Los quintiles divide a la población en 4 partes
 - e) Los percentiles divide a la población en 100 partes
- (4 puntos) Un número es seleccionado al azar entre los numeros 2 al 20. Sean los eventos:
 - A: El número es par
 - B: El número es primo
 - C: El número elegido es múltiplo de 5

Marque en caso de que sean verdaderas las siguientes afirmaciones:

a)
$$(A \cup B) \cap C^c = 5, 10$$

b)
$$A \cap B = 2$$

c)
$$A \cup B = 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20$$

d)
$$A^c \cap B = 3, 5, 7, 11, 13, 17, 19$$

e)
$$A^c \cap B^c = \emptyset$$

- (4 puntos) Se lanzan un par de dados correctos simultaneamente. Determinar si las siguientes probabilidades son correctas (Marcar en caso de ser correctas):
 - a) P(suma sea 2)=1/36
 - b) P(suma sea 7)=6/36
 - c) P(suma sea 9)=1/8
 - d) P(suma sea 4)=1/12
 - e) P(suma sea 12)=1/36
- 8. (4 puntos) Dado que P(A) = 1/2, P(B) = 1/3 y $P(A \cap B) = 1/8$, a que es igual P(A/B):
 - a) 1/3
 - b) 1
 - *c*) 1/8
 - d) 3/8
 - *e*) 1/2

9. (4 puntos) Cuando se envían mensajes codificados, estos aveces presentan errores de transmisión. En particular, la clave Morse usa puntos "." y rayas "-". Suponga que ocurren en una proporción de 3:2 (punto:raya). Suponer que la interferencia sobre la transmisión ocurre con una probabilidad 1/11 tanto para puntos como para rayas. Calcular:

P(Enviar punto/recibio punto)

Determinar cual es el valor correcto entre:

- a) 0.938
- b) 0.4
- c) 0.6
- d) 0.545
- e) 0.582
- 10. (4 puntos) En una carrera de la UMSA los estudiantes se dividen en 3 grupos; los acádemicos (25%), los políticos (40%) y el resto (35%). El 2020 se realiza una elección para la dirección de carrera y se obtuvo mediante una encuesta que para el candidato X el 70% de los académicos lo apoyan, el 50% de los políticos y el 40% del resto de los estudiantes. Según la encuesta, que probabilidad de apoyo se espera que tenga el candidato X
 - a) 0,400
 - b) 0,548
 - c) 0,450
 - d) 0,525
 - e) 0,515
- 11. *(4 puntos)* Sea *X* una variable aleatoria continua con:

$$f(x) = K * x$$

, identifique las sentencias correctas:

- a) El valor de K = 1/6
- b) E[X] = 3,11
- c) El valor de K = 1/9
- d) El valor de K = 2/7
- e) La función esta definida para $2 \le X \le 4$

- 12. (4 puntos) Juan y Maria juegan el siguiente juego. Juan arroja dos dados legales y Maria le paga k bolivianos, donde k es el producto de los dos números que muestran los dados. ¿Cuánto debe pagar Juan a Maria por cada juego para que este sea parejo?
 - a) 15
 - b) 6
 - c) 7
 - d) 12.25
 - e) 0
- 13. *(4 puntos)* Sea *X* una v.a. con función de distribución acumulada:

$$F(x) = \frac{x}{x+1} \quad ; x \ge 0$$

La función de densidad es:

- a) $\frac{1}{(x+1)^2}$
- b) $\frac{1}{(x-1)^2}$
- c) $\frac{x}{(x-1)^2}$
- d) $\frac{x}{(x+1)^2}$
- e) $\frac{1}{(x+1)} + \frac{1}{(x+1)^2}$
- 14. *(4 puntos)* Sea *X* una variable aleatoria con función de densidad:

$$f(x) = \frac{b}{2} * e^{-b*|x|}$$

, identifique las sentencias correctas:

- a) La función esta definida para b>0 y $-\infty < X < \infty$
- b) La funcion generatriz de momentos es $M_x(t) = \frac{b^2}{b^2 t^2}$
- c) La esperanza en E[X] = 0
- *d*) La funcion generatriz de momentos es $M_x(t) = \frac{b^2}{b^2 + t^2}$
- e) La función esta definida para $b \ge 0$ y $-\infty < X < \infty$
- 15. (4 puntos) Sea X una variable aleatoria que denota el numero que aparece al lanzar un dado legal. Para la desigualdad de Chebyshev:

$$P(|X - E(X) \ge 2.5|) \le \theta$$

el valor de θ es:

- a) 2,50
- b) 1,70
- c) 0,40
- d) 0,47
- *e*) 1/6
- 16. (4 puntos) Suponiendo que los nacimientos de niño y niña son iguales, calcular la probabilidad de que en un matrimonio de 5 hijos, tenga 3 niños y 2 niñas.
 - a) 0,2344
 - b) 0,1512
 - c) 0,2780
 - d) 0,5346
 - *e*) 0,3125
- 17. (4 puntos) Las calculadoras producidas por una fabrica son 40 % verdes, 35 % azules y 25% amarillas. En 10 calculadoras, encuentre la probabilidad de que 3 sean verdes, 2 azules y 5 amarillas.
 - a) 0,01929
 - b) 0,05330
 - c) 0,03456
 - d) 0,01456
 - e) 0,13305
- 18. (4 puntos) El promedio de llamadas telefónicas a la secretaria de la carrera de informática en una hora es 7. ¿Cuál es la probabilidad de recibir 6 o más llamadas en 90 minutos?.
 - a) 0.149
 - b) 0.799
 - c) 7
 - d) 0.6993
 - e) 0.9496

19. (4 puntos) Una caja contiene 4 tuercas defectuosas y 6 tuercas no defectuosas. Se extraen 2 tuercas aleatoriamente y sin reposición. La función de probabilidad de la variable aleatoria X: Número de tuercas no defectuosas que se obtiene en la extracción es:

a)	Χ	0		1		Τ	2	
	P(X=x)	15/45		24/45			6/45	
<i>b</i>)	Χ	0	1		2			
	P(X=x)	2/9	5	/9	2/9)		
<i>c</i>)	Χ	0		1		T	2	
	P(X=x)	10/45		25/45			10/45	
d)	Χ	0		1		2	2	
	P(X=x)	6/45		24/	45	1	15/45	
e)	Χ	0	1		2			
	P(X=x)	5/9	2	/9	2/9)	1	

- 20. (4 puntos) Una moneda correcta es lanzada sucesivamente hasta que aparezca cara por decima vez. Sea X la v.a. que denota el numero de sellos que ocurre. La función de probabilidad de X es:
 - a) $X \sim geometrica(p = 0.5)$
 - b) $X \sim BinomialNegativa(r = 10, p =$ 0,5)
 - c) $X \sim binomial(n = 10, p = 0.5)$
 - d) $X \sim bernoulli(p = 0.5)$
 - e) $X \sim hipergeometrica(N = 10, r =$ 5, n = 5
- 21. (4 puntos) Sea $X \sim Uniforme(a = 10, b =$ 3), identifique a la función generatriz de momentos
 - a) Ninguna

 - b) $M_X(t) = \frac{169t}{12}$ c) $M_X(t) = \frac{e^{3t} e^{10t}}{7t}$ d) $M_X(t) = \frac{e^{10t} e^{3t}}{7t}$ e) $M_X(t) = \frac{e^{10t} e^{3t}}{13t}$
- 22. (4 puntos) El número de minutos requeridos por un estudiante para terminar un examen se distribuye como una exponencial, con un promedio de 70 minutos. Suponga que el examen inicia a las 8:00am. ¿Cuál es la probabilidad que termine antes de las 8:45am?
 - a) 0,0200
 - b) 0,5368
 - c) 0,0153
 - d) 0,4742
 - e) 1,0000

- 23. $(4 \ puntos)$ La duración de vida (en horas) de dos equipos de distintas marcas X e Y tienen distribución Normal de la forma $X \sim N(\mu = 35, \sigma^2 = 16), \ Y \sim N(\mu = 35, \sigma^2 = 25)$. Si los equipos tuvieran que ser usados por un periodo de 42 horas. ¿Cuál debe ser preferido?
 - a) Y
 - b) No existe suficiente información
 - c) Ninguno
 - d) Ambos
 - *e*) X
- 24. *(4 puntos)* La duración de vida (en horas) de dos equipos de distintas marcas X e Y tienen distribución Normal de la forma $X \sim N(\mu = 35, \sigma^2 = 16), Y \sim N(\mu = 35, \sigma^2 = 25)$. Si los equipos tuvieran que ser usados por un periodo de 42 horas. ¿Cuál debe ser preferido?
 - a) Y
 - b) Ambos
 - c) No existe suficiente información
 - d) Ninguno
 - *e*) X
- 25. (4 puntos) Sea $X \sim gamma(\alpha = 2, \beta = 6)$, encontrar el valor de $E[X^2]$
 - a) 0,3889
 - b) 0,1667
 - c) 10,5
 - d) 0,0555
 - e) 0,3333