NUMERICAL SIMULATION OF SDES WITH DISTRIBUTIONAL DRIFT

Maximilien Germain

May 2018

1 Introduction

We would like to simulate numerically sample paths of the solution of the stochastic differential equation

$$dX_t = b(X_t) dt + dW_t$$
 (1)

where $b \in H_q^s(\mathbb{R})$, $s \in]-\frac{1}{2},0[$, $t \in [0,T]$, and W_t is a standard Brownian motion. This equation is studied in [1] in which the authors prove existence and unicity in law of a virtual solution for equation (1).

Example 1.1. An example of such drift b is given by the derivative of a sample path of a fractional Brownian motion B_x^H with Hurst index 1/2 < H < 1. These stochastic processes are gaussian processes verifying

$$\mathbb{E}\left[B_t^H B_s^H\right] = \frac{1}{2} \left(t^{2H} + s^{2H} + |t-s|^{2H}\right).$$

We note s = H - 1. Given $B_x^H(\omega) \in H_q^{s+1}(\mathbb{R})$, we can take $b(x) = \frac{\partial}{\partial x} B_x^H(\omega) \in H_q^s(\mathbb{R})$. We will use this in our numerical simulations.

As far as the drift b is not a function but a distribution, it must be approximated if we want to evaluate it at points. In order to do so, we will use a series representation of b and truncate it. That is why we will consider two steps in our algorithm:

- 1. approximate the drift b by b^N .
- 2. approximate the solution X_t^N of the approximated SDE:

$$dX_t^N = b^N \left(X_t^N \right) dt + dW_t \tag{2}$$

by $\boldsymbol{X}_{t}^{N,n}$ with a Euler-Maruyama scheme.

2 Numerical simulation of fractional Brownian motion

To simulate a sample path of a fractional brownian motion B_x^H on a finite grid $(x_k)_{k \in [\![1,n]\!]}$, we simulate n independent standard gaussian random variables $(X_k)_{k \in [\![1,n]\!]}$ and then correlate them with the definite positive correlation matrix

$$C_{k,s} = \mathbb{E}\left[B_{x_k}^H B_{x_s}^H\right] = \frac{1}{2} \left(x_k^{2H} + x_s^{2H} + |x_k - x_s|^{2H}\right).$$

To do so, we use the Cholesky decomposition method and calculate the triangular matrix M such that $C = MM^{\top}$. Therefore, defining

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 and $B^H = MX$,

 B^H contains the values of a fractional brownian motion evaluated on the grid $(x_k)_{k\in \llbracket 1,n\rrbracket}.$

3 Approximation of the drift

3.1 Series representation

We use Haar wavelets to give a series representation of b. By doing so, we will be able to approximate it numerically by truncating the series.

Definition 3.1 (Haar wavelets). We define the Haar wavelets $h_{j,m}$ on \mathbb{R} with $j \in \mathbb{N} \cup \{-1\}$ and $m \in \mathbb{Z}$ by:

$$\begin{cases} h_M &: x \longmapsto \left(\mathbb{1}_{\left[0, \frac{1}{2}\right[} - \mathbb{1}_{\left[\frac{1}{2}, 1\right[}\right)(x) \right. \\ h_{-1, m} &: x \longmapsto \sqrt{2} |h_M(x - m)| \\ h_{j, m} &: x \longmapsto h_M(2^j x - m) \end{cases}$$

Theorem 3.1 (See [2]). Let $b \in H_q^s(\mathbb{R})$ for $2 \le q \le \infty$, and $s \in \left] -\frac{1}{2}, \frac{1}{q} \right[$. Therefore,

$$b = \sum_{j=-1}^{+\infty} \sum_{m \in \mathbb{Z}} \mu_{j,m} h_{j,m} \tag{3}$$

where $\mu_{j,m} = 2^j \int_{\mathbb{R}} b(x) h_{j,m}(x) dx$ in the sense of dual pairing.

Definition 3.2. Let $b \in H_q^s(\mathbb{R})$ for $2 \le q \le \infty$, and $s \in \left] -\frac{1}{2}, 0\right[$. For $N \in \mathbb{N}$ we define $b^N \in H_q^s(\mathbb{R})$ by:

$$b^{N} = \sum_{j=-1}^{N} \sum_{m=-N2^{j}}^{N2^{j}-1} \mu_{j,m} h_{j,m}.$$
 (4)

Remark 3.1. We can note that Supp $b^N \subset [-N, N]$. Moreover, we have:

$$||b-b^N||_{H_q^s(\mathbb{R})} \underset{N \to +\infty}{\longrightarrow} 0.$$

3.2 Computation of the coefficients $\mu_{j,m}$ when b is the derivative of a fractional brownian motion

Faber

4 Numerical results

5 Convergence

5.1 Convergence of the Euler-Maruyama scheme

Ngo and Taguchi proved in [3] the convergence of the Euler-Maruyama scheme for SDE (2) in the following case which applies to our problem.

Theorem 5.1 (Corollary 2.9. in [3]). Assume that $b \in L^1(\mathbb{R}) \cap H^{\beta}$ for some $\beta \in (0,1]$ and the diffusion coefficient σ is Lipschitz continuous and uniformly elliptic. Then for any $p \geq 1$, there exists positive constant C which depends on K_{σ} , $\|b\|_{\beta}$, $\|b\|_{L^1(\mathbb{R})}$, T, x_0 , α , β and p such that

$$\mathbb{E}\left[\sup_{0 \le s \le T} \left| X_s^N - X_s^{N,n} \right|^p \right] \le \frac{C}{n^{p\beta/2}} \tag{5}$$

TO DO: make explicit the dependance of C in N.

5.2 Convergence of X_s^N to X_s

References

- [1] F. Flandoli, E. Issoglio, and F. Russo. Multidimensional stochastic differential equations with distributional drift. *Transactions of the American Mathematical Society*, 369 (3):1655–1688, 3 2017.
- [2] E. Issoglio and F. Russo. On a class of markov bsdes with generalized driver. soumis.
- [3] H.-L. Ngo and D. Taguchi. On the Euler-Maruyama approximation for onedimensional stochastic differential equations with irregular coefficients. *IMA Journal of Numerical Analysis*, 2017.