$D_k(c)=D\left(k,c
ight)$ אזי $c\in\mathcal{C}$ איזי אוני סימטרית יהי $k\in\mathcal{K}$ היהי סימטרית הצפנה סימטרית יהי

 $\mathbb{Z}_n^{\leq m} = igcup_{i=0}^m \mathbb{Z}_n^i$ נגדיר $n,m \in \mathbb{N}_+$ סימון: יהיו

בופן קיסר: $D: \mathbb{Z}_n imes \mathbb{Z}_n^{\leq m} o \mathbb{Z}_n^{\leq m}$ נגדיר $n,m \in \mathbb{N}_+$ יהיו צופן קיסר:

- $i \in [|x|]$ לכל $(E_k(x))_i = (x_i + k) \% n$
- $i \in [|c|]$ לכל $(D_k(c))_i = (c_i k) \% n$

. טענה: יהיו $n,m\in\mathbb{N}_+$ אזי צופן קיסר הינה הצפנה סימטרית טענה:

צופן הצבה: יהיו $m,m\in\mathbb{N}\setminus\{0,1\}$ ותהיינה [n] אותהיינה [n] הפיכות שונות נגדיר ותהיינה $n,m\in\mathbb{N}\setminus\{0,1\}$ בך

- $.i \in [|m|]$ לכל $(E_k(x))_i = f_k(x_i)$
- $.i\in \left[\left| c\right|
 ight]$ לכל $\left(D_{k}\left(c
 ight)
 ight) _{i}=f_{k}^{-1}\left(c_{i}
 ight)$

טענה: יהיו צופן הצבה הינה הצפנה סימטרית. $f_1,\dots,f_{n!}:[n] o [n]$ ותהיינה $n,m\in\mathbb{N}\setminus\{0,1\}$ יהיו איי צופן ויז'נר: יהיו $n,m\in\mathbb{N}\setminus\{0,1\}$ נגדיר $m,m\in\mathbb{N}$ גגדיר $m,m\in\mathbb{N}$ כך דו יוז'נר: יהיו $m,m\in\mathbb{N}$

- $i \in [|x|]$ לכל $(E_k(x))_i = (x_i + k_i) \% n$
- $i \in [|c|]$ לכל $(D_k(c))_i = (c_i k_i) \% n$

נגדיר $m'\in\mathcal{M}$ ותהא $k'\in\mathcal{K}$ ותהא המילים שכיחויות המילים שכיחויות המילים ותהא ותהא $\mu:\mathcal{M}\to[0,1]$ הצפנה סימטרית הא $c=E_{k'}\left(m'\right)$

```
 \begin{array}{c|c} \text{function GenericAttack}(\left(E,D\right),\mu,c) \text{:} \\ & \ell \leftarrow \mathcal{M} \\ & p \leftarrow [0,1] \\ & \text{for } k \leftarrow \mathcal{K} \text{ do} \\ & & m \leftarrow D(k,c) \\ & & \text{if } \mu(m) > p \text{ then } (\ell,p) \leftarrow (m,\mu(m)) \\ & \text{end} \\ & \text{return } \ell \end{array}
```

 $\mathbb{P}_{a\leftarrow\mu}\left(a
ight)=\mu\left(a
ight)$ אזי התפלגות הא $\mu:\Omega
ightarrow\left[0,1
ight]$ סימון: תהא Ω קבוצה סופית תהא

 $\mathbb{P}_{a\leftarrow\Omega}\left(a
ight)=rac{1}{\left|\Omega
ight|}$ אזי קבוצה קבוצה Ω קבוצה סופית

 $c\in\mathcal{C}$ ולכל $\mu:\mathcal{M} o [0,1]$ אבורה לכל התפלגות עבורה פימטרית. הצפנה סימטרית בעלת מודיות מושלמת: הצפנה סימטרית עבורה לכל התפלגות $\mu:\mathcal{M} o [0,1]$ אבורה לכל התפלגות בעלת מושלמת: הצפנה סימטרית מושלמת: $\mathbb{P}_{m\leftarrow\mu}\left(m=a\right)=\mathbb{P}_{(m,k)\leftarrow(\mu,\mathcal{K})}\left(m=a\mid c=E_k\left(m\right)\right)$ מתקיים

מתקיים מושלם: הצפנה חוסר $a,b\in\mathcal{M}$ אבורה לכל עבורה חוסר הצפנה מושלם: הצפנה מושלם: הצפנה חוסר הבחנה מושלם:

 $\mathbb{P}_{k \leftarrow \mathcal{K}} \left(E_k \left(a \right) = c \right) = \mathbb{P}_{k \leftarrow \mathcal{K}} \left(E_k \left(b \right) = c \right)$

משפט: תהא ((E,D)) בעלת חוסר הבחנה מושלם). בעלת סודיות מושלמת סימטרית אזי ((E,D)) בעלת הבחנה משפט: תהא

בום פנקט חד־פעמי: יהי $E,D:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ נגדיר צופן פנקט חד־פעמי: יהי והי ת

- $E_k(m) = m \oplus k \bullet$
 - $D_k(c) = c \oplus k \bullet$

. משפט: יהי $n\in\mathbb{N}$ אזי צופן פנקס חד־פעמי הינה הצפנה סימטרית בעלת סודיות מושלמת משפט

 $|\mathcal{M}| \leq |\mathcal{K}|$ משפט שאנון: תהא (E,D) הצפנה סימטרית בעלת סודיות מושלמת אזי

טענה: יהי בעלת סודיות מושלמת. הינה הצפנה סימטרית צופן אזי צופן אזי אי יהי $m\in\mathbb{N}_+$ יהי

```
\mathcal{W} samples key k \leftarrow \mathcal{K}
     \mathcal{W} samples bit b \leftarrow \{0,1\}
     \mathcal{W} sends E(k, m_b) to \mathcal{A}
     \mathcal{A} prints a bit b'
     if b' = b then
      \vdash return \mathcal{A} won
     return \mathcal{A} lost
  (E,D) משפט: תהא (E,D) הצפנה סימטרית אזי ו(E,D) בעלת חוסר הבחנה מושלם)\Longleftrightarrow (הא
                                                                                                                                    \mathcal{A} יריב: משפחת מעגלים בוליאניים
                                                                                                                                                    \hat{\mathbb{N}} = \mathbb{N} \cup \{\infty\} סימון:
                                                                      .Size (\mathcal{A})=\mathcal{O}\left(t\left(n
ight)
ight) עבורו \mathcal{A} אזי יריב בעל כוח חישוב: תהא \hat{\mathbb{N}}
            \Delta_{\mathcal{A}}\left(X,Y
ight)=\left|\mathbb{P}_{x\leftarrow X}\left(\mathcal{A}\left(x
ight)=1
ight)-\mathbb{P}_{y\leftarrow Y}\left(\mathcal{A}\left(y
ight)=1
ight)
ight| אזי \left\{0,1\right\}^{*} אזי \left\{0,1\right\}^{*} אזי ותהיינה X,Y התפלגויות על
התפלגויות בלתי ניתנות להבחנה (בנ"ל): יהי arepsilon \geq 0 ותהא t: \mathbb{N} 	o \hat{\mathbb{N}} אזי התפלגויות להבחנה (בנ"ל): יהי arepsilon \geq 0 ותהא arepsilon \geq 0 אזי התפלגויות בלתי ניתנות להבחנה (בנ"ל): יהי
                                                                                                                                     \Delta_A(X,Y) < \varepsilon חישוב מתקיים
                                                                   X pprox_{t,arepsilon} Y תהא בנ"ל אזי t: \mathbb{N} 	o \hat{\mathbb{N}} תהא בנ"ל אזי יהי arepsilon \geq 0 תהא
                         באשר f\left(X\right) אזי איזי f\left(X\right) אזי אזי f:\left\{0,1\right\}^{*} 	o \left\{0,1\right\}^{*} ותהא \left\{0,1\right\}^{*} ותהא איזי ותהא איזי לימון: תהא
                                                                                                                                      f(X)(c) = \mathbb{P}_{x \leftarrow X} (f(x) = c)
בעלי m,m'\in\mathcal{M} בעלת סודיות בעלת סימטרית בעלת t:\mathbb{N}\to\hat{\mathbb{N}} ותהא ותהא arepsilon\geq 0 אזי הצפנה הימטרית בעלת סודיות חישובית: יהי
                                                                                                                   .E\left(\mathcal{K},m
ight)pprox_{t,arepsilon}E\left(\mathcal{K},m'
ight) אורך שווה מתקיים
              (\infty,0) בעלת סודיות חישובית (E,D) בעלת סודיות מושלמת) בעלת סודיות חישובית סטענה: תהא
                                                                                                                          U_n = U\left(\left\{0,1\right\}^n\right) אזי n \in \mathbb{N} סימון: יהי
ניתנת לחישוב G:\{0,1\}^n	o\{0,1\}^\ell אזי \ell>n באשר בשר \ell,n\in\mathbb{N} ויהיו וויהי t:\mathbb{N}	o\hat{\mathbb{N}} תהא arepsilon\geq 0 ניתנת לחישוב (PRG) גנרטור פסודאו אקראי
                                                                                                                         G(\{0,1\}^n) \approx_{t,\varepsilon} U_\ell בזמן פולינומי עבורה
                                                            . טענה: אם גנרטור פסודאו אקראי. באשר \ell>n באשר לכל אזי לכל \mathcal{P}=\mathcal{NP} אזי אקראי.
                                נגדיר (t,arepsilon) גנרטור פסודאו אקראי ויהי G:\{0,1\}^n	o\{0,1\}^\ell נגדיר ויהי ויהי n,\ell\in\mathbb{N} נגדיר
                                                                                                                            כך E, D: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell
                                                                                                                                           .E_k(m) = m \oplus G(k) \bullet
                                                                                                                                              .D_{k}\left( c\right) =c\oplus G\left( k\right)  \bullet
m\in\{0,1\}^\ell טענה: יהיו צופן פנקס חד־פעמי חישובי ויהי G:\{0,1\}^n	o\{0,1\}^\ell גנרטור פסודאו אקראי G:\{0,1\}^n	o\{0,1\}^\ell יהי
                                                                                                                                           E\left(\left\{0,1\right\}^{n},m\right)\approx_{t,\varepsilon}U_{\ell} אזי
משפט: יהיו n,\ell\in\mathbb{N} ויהי G:\{0,1\}^n	o\{0,1\}^\ell גנרטור פסודאו אקראי איז צופן פנקס חד־פעמי חישובי הינה בעלת סודיות משפט: יהיו
                                                                                                                                                       (t-\ell,2\varepsilon) חישובית
                         טענה: יהי f:\{0,1\}^*	o \{0,1\}^* תהא Xpprox_{t,arepsilon}Y התפלגויות עבורן X:\mathbb{N}	o \hat{\mathbb{N}} תהא t:\mathbb{N}	o \hat{\mathbb{N}}
                                                                                                                                                f(X) \approx_{t-\operatorname{Size}(f),\varepsilon} f(Y)
               X pprox_{t,arepsilon+\delta} Z אזי אזי Y pprox_{t,\delta} Z וכן וכן X pprox_{t,\varepsilon} Y התפלגויות עבורן X pprox_{t,\varepsilon+\delta} Z אזי ותהיינה t: \mathbb{N} \to \hat{\mathbb{N}} אזי arepsilon
         Xpprox_{\min(t,s),arepsilon+\delta}Z אזי Ypprox_{s,\delta}Z וכן Xpprox_{t,arepsilon}Y התפלגויות עבורן Xpprox_{t,\varepsilon}Y ותהיינה x,y,z ותהיינה x,y,z ותהיינה x,y,z ויהי x,z
```

(E,D) אזי הצפנה סימטרית בעלת סודיות חישובית למספר הודעות: יהי $n\in\mathbb{N}_+$ יהי $n\in\mathbb{N}_+$ אזי הצפנה סימטרית הצפנה סימטרית מספר הודעות:

טענה: יהי $\mathbb{N} = \mathbb{N} \setminus \{0,1\}$ יהי לא קיימת הצפנה אזי לא קיימת הצפנה חישובית למספר הודעות. $\epsilon > 0$ יהי ותהא $\epsilon > 0$ יהי

 $E\left(\mathcal{K},x
ight)pprox_{t,arepsilon}E\left(\mathcal{K},y
ight)$ מתקיים $i\in\left[n
ight]$ לכל $\left|x_{i}\right|=\left|y_{i}\right|$ באשר $x,y\in\mathcal{M}^{n}$

game IndistinguishabilityGame($(E, D), \mathcal{W}, \mathcal{A}$):

 \mathcal{A} chooses messages $m_0, m_1 \in \mathcal{M}$

```
D:\mathcal{L}	imes\mathcal{C}	o\mathcal{M} ותהא E:\mathcal{L}	imes\mathcal{M}	o\mathcal{C} תהא G:\mathcal{K}	o(\mathbb{N}	o\mathcal{L}) תהא קבוצות סופיות תהא קבוצות סופיות תהא
                                                                                              (\mathcal{K}, \mathcal{M}, \mathcal{C}, \mathcal{L}, E, D, G) באשר שלמות שלמות שלמות מקיימות באשר
                                                                                 \mathcal{L} אזי אופן זרם סינכרוני אזי (\mathcal{K}, \mathcal{M}, \mathcal{C}, \mathcal{L}, E, D, G) מרחב הצפנים: יהי
                                                                                 G גנרטור צפנים: יהי (\mathcal{K},\mathcal{M},\mathcal{C},\mathcal{L},E,D,G) צופן זרם סינכרוני אזי
ותהא E:\mathcal{L}	imes\mathcal{M}	o\mathcal{C} תהא G:\mathcal{K}	o(\mathcal{L}	o\mathcal{L}) ותהא קפוצות סופיות תהא \mathcal{M},\mathcal{K},\mathcal{C},\mathcal{L} תהינה תהינה
                                                                      (\mathcal{K}, \mathcal{M}, \mathcal{C}, \mathcal{L}, E, D, G) אזי שלמות שלמות באשר E, D באשר D: \mathcal{L} \times \mathcal{C} \to \mathcal{M}
                                                                               \mathcal{L} מרחב הצפנים: יהי (\mathcal{K},\mathcal{M},\mathcal{C},\mathcal{L},E,D,G) צופן זרם אסינכרוני אזי
                                                                               G אופן זרם אסינכרוני אזי (\mathcal{K},\mathcal{M},\mathcal{C},\mathcal{L},E,D,G) יהי
לכל s_j=igoplus_{i=1}^Lc_is_{j-i} אזי s_0,\ldots,s_{L-1} ויהיו c_L=1 באשר באשר c\in\{0,1\}^L יהי יהי ויהי (LFRS): אוגר הזזה בעל משוב ליניארי
                                                                                                                                                                  .j \geq L
                                    טענה: יהי צפנים בצופן זרם אסינכרוני. LFRS אזי c_L=1 באשר בc\in \{0,1\}^L יהי L\in \mathbb{N}_+ יהי יהי
                                                                                                                    אזי k \in \left\{0,1\right\}^{256} יהי :RC4 גנרטור צפנים
function RC4(k):
     (j,i) \leftarrow 0
     S \leftarrow \mathrm{Id}_{\{0...255\}}
     for i \leftarrow [0 \dots 255] do
         j \leftarrow (j + S_i + k_i) \mod 256
         (S_i, S_j) \leftarrow (S_j, S_i)
     end
     return function RC4Inner(S):
          i \leftarrow (i+1) \mod 256
          j \leftarrow (j + S_i) \mod 256
          (S_i, S_j) \leftarrow (S_j, S_i)
          r \leftarrow (S_i + S_j) \mod 256
          return S_r
                                                                                                      טענה: RC4 הינו גנרטור צפנים בצופן זרם אסינכרוני.
\mathcal A משפט: יהי arepsilon \geq 0 תהא (t,arepsilon) ותהא וותהא (t,arepsilon) הצפנה סימטרית אזי וותהא (t,arepsilon) וותהא וותהא (t,arepsilon)
                                                                         בעל כוח חישוב t מתקיים arepsilon \leq rac{1}{2} + arepsilon מנצחת במשחק חוסר ההבחנה) \mathbb{P}(z).
                            משחק חוסר ההבחנה תחת התקפת גלוי־נבחר (Chosen plaintext attack): יהי \mathcal{N},\mathcal{A} ויהיו שחקנים אזי
game CPA((E, D), W, A):
     \mathcal{W} samples key k \leftarrow \mathcal{K}
     for i \in [1 \dots n] do
           \mathcal{A} chooses message x_i \in \mathcal{M}
          \mathcal{W} sends E_k(x_i) to \mathcal{A}
     end
     \mathcal{A} chooses messages m_0, m_1 \in \mathcal{M}
     \mathcal{W} samples bit b \leftarrow \{0,1\}
     \mathcal{W} sends E_k(m_b) to \mathcal{A}
     \mathcal{A} prints a bit b'
     if b' = b then
```

הצפנה סימטרית בעלת סודיות תחת התקפת גלוי־נבחר: יהי $n\in\mathbb{N}$ אזי הצפנה סימטרית בעלת סודיות תחת התקפת גלוי־נבחר: יהי $n\in\mathbb{N}$ אזי הצפנה סימטרית בעלת סודיות תחת התקפת גלוי־נבחר) $\mathbb{P}\left(\mathbb{R},D\right)$ מתקיים \mathcal{A}

| return \mathcal{A} won return \mathcal{A} lost

משפט: יהי $n\in\mathbb{N}$ יהי $n\in\mathbb{N}$ יהי ותהא (t,arepsilon) תחת העפנה חימטרית בעלת היהי ותהא (t,arepsilon) תחת התקפת גלוי־נבחר אזי ותהא (t,arepsilon) בעלת סודיות חישובית (t,arepsilon) למספר הודעות.

ונגדיר $E: \varnothing \times \{0,1\}^n \to \{0,1\}^n \times \{0,1\}^n$ אום הפיכה אזי נגדיר הפיכה אוי ותהא חותהא הוהא חותהא הפיכה אזי נגדיר הפיכה אזי נגדיר וותהא חותהא חותהא וותהא בו וועדיר וועדיר

- $.r \leftarrow \left\{0,1\right\}^n$ עבור $E\left(m\right) = \left(r,F\left(r \oplus m\right)\right)$
 - $.D\left(\left(r,c\right)
 ight) =r\oplus F^{-1}\left(c\right) \ ullet$

משפט: יהי (t,arepsilon) תחת התקפת גלוי־נבחר אזי צופן רנדומלי גנרי הינו בעל סודיות (t,arepsilon) תחת התקפת גלוי־נבחר $F:\{0,1\}^n o\{0,1\}^n$ תחת התקפת גלוי־נבחר באשר $arepsilon=\mathcal{O}\left(rac{t(n)}{2^n}
ight)$

 $k\in\{0,1\}^n$ משפחת תמורות: יהי $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n o\{0,1\}^n$ אזי פונקציה $n\in\mathbb{N}$ אזי פונקציה poly (n) חשיבה בזמן $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n o\{0,1\}^n$ אזי פונקציה $n\in\mathbb{N}$ אזי פונקציה משפחת פונקציות פסודאו אקראיות: יהי $n\in\mathbb{N}$ אזי פונקציה אזי פונקציה פונקציה חשיבה בזמן $n\in\mathbb{N}$

- $.k \in \left\{0,1\right\}^n$ הפיכה לכל F_k
- $k \in \left\{0,1\right\}^n$ לכל poly(n) הזמן חשיבה F_k^{-1}
- $\|\mathbb{P}_{k\leftarrow\{0,1\}^n}\left(\mathcal{A}^{F_k(\cdot)}\left(1^n
 ight)=1
 ight)-\mathbb{P}_{f\leftarrow(\{0,1\}^n o\{0,1\}^n)}\left(\mathcal{A}^{f(\cdot)}\left(1^n
 ight)=1
 ight)\Big|\leq arepsilon$ משמעות הביטוי $\mathcal{A}^{f(\cdot)}$ היא שלמעגל \mathcal{A} יש אורקל לחישוב $\mathcal{A}^{f(\cdot)}$ היא שלמעגל $\mathcal{A}^{f(\cdot)}$ יש אורקל לחישוב $\mathcal{A}^{f(\cdot)}$

. משפחת תמורות פסודאו אקראיות יהי $n\in\mathbb{N}$ אזי משפחת פונקציות פסודאו אקראיות אשר הינה משפחת תמורות.

 \mathcal{W},\mathcal{A} ויהיו $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ תהא תהא תהא ההבחנה עבור משפחת פונקציות פסודאו אקראיות: יהי והי אחקנים אזי

```
game PRF ((E,D),\mathcal{W},\mathcal{A}):

\mathcal{W} samples key k\leftarrow\mathcal{K}

\mathcal{W} samples bit b\leftarrow\{0,1\}

if b=0 then

|R\leftarrow F_k|

else

|R\leftarrow (\{0,1\}^n\rightarrow\{0,1\}^n)

for i\in[1\dots m] do

|\mathcal{A} chooses message x_i\in\mathcal{M}

|\mathcal{W} sends E_k(x_i) to \mathcal{A}

end

\mathcal{A} prints a bit b'

if b'=b then

| return \mathcal{A} won

return \mathcal{A} lost
```

 $\mathcal A$ טענה: יהי $\mathbb R \in \mathbb N$ ותהא $(t, arepsilon) \Longrightarrow ((t, arepsilon)$ אזי $(t, arepsilon) \bowtie (t, arepsilon)$ ותהא $(t, arepsilon) \bowtie (t, arepsilon)$ אזי $(t, arepsilon) \bowtie (t, arepsilon)$ ותהא $(t, arepsilon) \bowtie (t, arepsi$

```
\begin{array}{c|c} \mathbf{game} \ \mathsf{PRP}\left(\left(E,D\right),\mathcal{W},\mathcal{A}\right) \text{:} \\ & \mathcal{W} \ \mathsf{samples} \ \mathsf{key} \ k \leftarrow \mathcal{K} \\ & \mathcal{W} \ \mathsf{samples} \ \mathsf{bit} \ b \leftarrow \{0,1\} \\ & \mathbf{if} \ b = 0 \ \mathbf{then} \\ & \mid \ R \leftarrow F_k \\ & \mathbf{else} \\ & \mid \ R \leftarrow S\left(\{0,1\}^n\right) \\ & \mathbf{for} \ i \in [1 \dots m] \ \mathbf{do} \\ & \mid \ \mathcal{A} \ \mathsf{chooses} \ \mathsf{message} \ x_i \in \mathcal{M} \\ & \mid \ \mathcal{W} \ \mathsf{sends} \ E_k(x_i) \ \mathsf{to} \ \mathcal{A} \\ & \mathbf{end} \\ & \mathcal{A} \ \mathsf{prints} \ \mathsf{a} \ \mathsf{bit} \ b' \\ & \mathbf{if} \ b' = b \ \mathbf{then} \\ & \mid \ \mathbf{return} \ \mathcal{A} \ \mathsf{won} \\ & \mathbf{return} \ \mathcal{A} \ \mathsf{lost} \\ \end{array}
```

 (t, ε) טענה: יהי $n \in \mathbb{N}$ ותהא אקראיות $f: \{0,1\}^n imes \{0,1\}^n imes \{0,1\}^n$ משפחת תמורות פסודאו אקראיות $f: \{0,1\}^n imes \{0,1\}^n imes \{0,1\}^n$ מנצחת במשחק חוסר ההבחנה עבור משפחת תמורות פסודאו אקראיות). $A = \{0,1\}^n imes \{0,1\}^n$

 $E:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n imes\{0,1\}^n$ אזי נגדיר $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ ותהא ותהא $n\in\mathbb{N}$ ותהא והא ונגדיר $D: \{0,1\}^n imes (\{0,1\}^n imes \{0,1\}^n) o \{0,1\}^n$ כך

- $.r \leftarrow \left\{0,1
 ight\}^n$ עבור $E_k\left(m
 ight) = \left(r,F_k\left(r \oplus m
 ight)
 ight)$

 $D\left((r,c)
ight)=r\oplus F_k^{-1}\left(c
ight)$ ם איז צופן פסודאו רנדומלי $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ איז צופן פסודאו רנדומלי $n\in\mathbb{N}$ איז צופן פסודאו רנדומלי $n\in\mathbb{N}$ איז צופן פסודאו רנדומלי $\Omega\left(\frac{t(n)}{n}\right),2arepsilon+\frac{t}{2^n}$ איז איז איז איז איז איז איז איז $\Omega(t,t)$ איז איז איז $\Omega(t,t)$ איז איז $\Omega(t,t)$ $\Omega(t,t)$ איז $\Omega(t,t)$ $\Omega(t,t)$

 $MAC_k:\mathcal{M} o \{0,1\}^\ell$ אזי אותהא $k\in\{0,1\}^n$ ותהא אוי הייו איזי איזי איזי איזי $n,\ell\in\mathbb{N}$ אזי איזי קוד אימות מסרים: יהיו \mathcal{M} אזי מסרים אזי ($\mathcal{M},k,\mathsf{MAC}$) יהי מסרים: אימות מסרים אזי

k אזי אימות סדים קוד אימות ($\mathcal{M}, k, \mathsf{MAC}$) יהי אימות מסרים אזי קוד אימות סדים אזי

.MAC אלגוריתם אימות מסרים יהי ($\mathcal{M}, k, \mathsf{MAC}$) אלגוריתם אימות מסרים איזי