

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு நான்காம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

4th Term Examination - 2024

இரசாயனவியல்	-	II	
Chamistry	_	II	

Gr -13 (2024)

02

T

В

பகுதி B – கட்டுரை

- இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு விடையளிக்குக. (ஒவ்வொரு வினாவிற்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)
- 05) (a) (i) $1 \, mol \, HCl_{(aq)}$ உடன் $Na_2CO_{3}{}_{(s)}$ முற்றாக தாக்கி $NaCl_{(aq)}CO_{2}{}_{(g)}H_2O_{(l)}$ ஆகியனவற்றை நியம நிலையில் விளைவுகளாக கொடுக்கும் போது 22kJ வெப்பசக்தி விடுவிக்கப்பட்டது.
 - (ii) $21g\ NaHCO_{3(s)}$ முற்றாக வெப்ப பிரிகை அடைந்து $Na_2CO_{3(s)}\ CO_{2(g)}H_2O_{(l)}$ ஆக மாறும் போது நியம நிலையில் 3kJ சக்தி விடுவிக்கப்பட்டது.
 - i. $1mol\ Na_2CO_{3(s)}$ மிகை HCl உடன் முற்றாக தாக்கமடைவதற்கான நியம வெப்பவுள்ளுறை மாற்றத்தை துணிக.
 - 1mol NaHCO_{3(s)} HCl உடன் முற்றாக தாக்கமடைவதற்கான நியம வெப்பவுள்ளுறை மாற்றத்தை துணிக.
 - (iii) $NaHCO_{3(s)}, Na_2CO_{3(s)}, CO_{2(g)}, H_2O_{(l)}$ ஆகியனவற்றில் சியம எந்திரப்பி பெறுமுானங்கள் முறையே $102, 136, 214, 70 \ Jk^{-1} \ mol^{-1}$ எனின் $1 \ mol \ NaHCO_{3(s)}$ இன் பிரிகை தாக்கத்தின் எந்திரிப்பி மாற்றத்தை கணிக்குக.
 - (iv) 300k வெப்பநிலையில் பிரிகை தாக்கத்தின் சுய இயல்பு பற்றி எதிர்வு கூறுக.
 - (b) மேலே குறிப்பிட்டப்பட்ட $2 \ mol \ NaHCO_{3(s)}$ மாதிரி $10 dm^3$ பாத்திரத்தில் எடுக்கப்பட்டு 601k வெப்நிலையில் வெப்பமாக்கப்பட்டு சமநிலை அடைந்த பின்னர் $NaHCO_{3(s)}$ இன் சிறிதளவு எஞ்சி இருந்தது கொள்கலத்தில் $0.5 \ mol \ CO_2$ இருக்க காணப்பட்டது. $[601 \ k \ \$ இல் $RT = 5000 \ J \ mol^{-1}] \ [H_2O \ \ ($ முழுவதும் $H_2O_{(a)}$ ஆக காணப்பட்டது.] எனின்
 - (i) தொகுதியின் மொத்த அமுகத்தை துணிக.
 - (ii) மேற்குறிப்பிட்ட சமனிலைகான K_p, K_c ஆகியவற்றை துணிக.
 - (iii) மேலே விபரிக்கப்பட்ட சமனிலை தொகுதியினுள் $H_2 O_{(g)}$ ன் $0.1 \mathrm{mol}$ வெளியே இருந்து சேர்க்கப்பட்ட போது தாக்க ஈவு (Qc) ஐ கணிக்குக.
 - (iv) மேலதிக $H_2O_{(a)}$ சேர்க்கப்பட்ட போது சமனிலையில் ஏற்படும் மாற்றத்தை விளக்குக.
 - (v) மேலதிக $H_2O_{(g)}$ சேர்க்கப்பட்ட போது நேரத்துடன் சமநிலை கலவையில் உள்ள H_2O, CO_2 ஆகியவற்றின் செறிவுகளின் மாறலை ஒரு பரும்படியாக படத்தில் காட்டுக.

06)

(a)
$$2NOBr_{(g)} \longrightarrow 2NO_{(g)} + Br_{2(g)} \Delta H > \odot$$

- (i) எனும் தாக்கம் இரு மூலக்கூற்று முதன்மைத்தாக்கம் ஆகும். சரியான சார் நிலையில் மோதி விளைவுகளைத் தரும் ஏவப்பட்ட சிக்கலின் கட்டமைப்பை பருமட்டாக வரைந்து அதில் உடையும் பிணைப்பு, உருவாகும் பிணைப்பு ஆகியனவற்றை குறிப்பிடுக.
- (ii) சரியான சார்நிலையில் மோதலுறும் மூலக்கூறுகள் யாவும் விளைவுகளாக மாறுமா? விளக்குக.
- (iii) இத்தாக்கத்திற்கு M எனும் பதார்த்தத்தை பயன்படுத்திய போது ஓரலகு நேரத்தில் பெறப்படும் விளைவின் அளவு அதிகரித்தது. M இல் இரசாயன மாற்றம் ஏற்படவில்லை எனின் M இன் வகிபாகத்தை விளக்குக.
- (iv) தாக்க ஆள்கூறுக்கும் சக்திக்குமான இரு வரைபினை வரைவதன் மூலம் *M* இல்லாத போதும் , *M* உள்ளபோதும் சக்திமாற்றத்தை ஒப்பிடுக.

$$A_{(aq)} + B_{(aq)} \longrightarrow 2C_{(aq)}$$

எனும் தாக்கத்தை கருதுக. இதில் A,B யின் வெவ்வேறு செறிவுடைய கரைசல்கள் குறித்த கனவளவுகள் எடுக்கப்பட்டு 30s இல் உருவான C யிக் மூல் அளவுகள் துணியப்பட்டது.

$A_{(aq)}$	$B_{(aq)}$	ΔC
$0.3M,50cm^3$	$0.3M, 50cm^3$	$7.5\times10^{-3}mol$
$0.6M, 50cm^3$	$0.3M, 50cm^3$	$1.5 \times 10^{-2} mol$
$0.4M,75cm^3$	$1.2M, 25cm^3$	$1.5 \times 10^{-2} mol$

- (i) தாக்கவீதமாறிலி K எனவும் A,B யின் வரிசைகள் m,n ஆகவும் கொண்டு தாக்கவீதத்திற்கான கோவையை எழுதுக.
- (ii) தாக்கிகள் இரண்டையும் ஒன்றுடன் ஒன்று கலந்த பின் அவற்றின் தொடக்க செறிவையும், சராசரி தாக்க வீதத்தையும் $moldm^{-3}s^{-1}$ காண்க.
- (iii) m,n இன் பெறுமானங்களைக் காண்க.
- (iv) தாக்கவீத மாறிலி K இன் பருமனைக் காண்க.
- (v) தாக்கி A செறிவு நேரத்துடன் மாறும் முறையை பருமட்டாக வரைபுபடுத்துக. [அத்துடன் வேறொரு வரைபில் [B] நேரத்துடன் மாறுவதை வரைபுபடுத்துக.] ([A] மாறாத போது)
- (vi) Aயின் அரைவாழ்க்கைக் காலத்தை காண்க.
- (vii) Aயின் ஆரம்ப அளவின் 93.75% தாக்கமடைய எவ்வளவு நேரம் தேவை எனக் காண்க.
- (viii) விளைவு *C* உருவாகும் வீதத்தை குறைப்பதற்கு பௌதீக காரணிகளில் எத்தகைய மாற்றத்தை நிகழ்த்தலாம் அதனை விளக்குக.
- (ix) தாக்கம் 1 சார்பாக, தாக்கிகள் இரண்டினதும் செறிவுகளை 4 மடங்காக அதிகரித்தால் தாக்கவீதத்தில் எத்தகைய மாற்றம் நிகழும்?

07) (a) வெப்ப இரசாயன தரவுகளைப் பயன்படுத்தி பின்வரும் வினாக்களுக்கு விடையளிக்குக.

	நியமதோன்றல்	வெப்பவுள்ளுறை	மாற்றம்
	$\Delta H_f^o(kJmol^{-1})$		
$H_2O_{(g)}$		-240	
$H_2O_{2(l)}$		-192	
$O_{(g)}$		250	
$H_{(g)}$		216	

- H_2O H_2O பிணைப்பின் கூட்டற்பிரிகை வெப்பவுள்ளுறையை கணிக்குக.
- (ii) $H_2O_{2(l)} \to H_2O_{2(g)}$ $\Delta H^o = +62 K J mol^{-1}$ எனின் $H_2O_{2(g)}$ தரவில் O-O பிணைப்பின் கூட்டற்பிரிகை வெப்பவுள்ளுறையை கணிக்குக.
- (iii) $H_2O_{(g)} \to H_2O_{(l)}$ $\Delta H^o = 44 K J mol^{-1}$, எனின் $H_2O_{(l)} + \frac{1}{2}O_{2(g)} \to H_2O_{2(l)}$, $\Delta S^o = -220 J mol^{-1} K^{-1}$ என்ற தாக்கத்தின் நியம வெப்பவுள்ளுறை மாற்றம் ΔH^o_R ஐ துணிக.
- (iv) மேலே குறிப்பிட்ட தாக்கம் 27°C இல் சுயமாக நடைபெறுமா என எதிர்வு கூறுக.
- (b) பின்வரும் தரவுகளில் இரு<u>ந்து</u>
- $CH_3COCl_{(l)} + H_2O_{(l)} \to CH_3COOH_{(aq)} + HCl_{(aq)}$ என்ற தாக்கத்தின் நியம வெப்பவுள்ளுறை மாற்றத்தைக் கணிக்குக.

$$\begin{split} CH_{3}COCl_{(l)} + 2NaOH_{(aq)} &\to CH_{3}COO^{-}Na^{+}{}_{(aq)} + NaCl_{(aq)} + H_{2}O_{(l)} \, \Delta H^{o}_{R} = -227KJmol^{-1} \\ CH_{3}COOH_{(aq)} &\to CH_{3}COO^{-}{}_{(aq)} + \ H^{+}_{(aq)} \, \Delta H^{o}_{R} = +6KJmol^{-1} \\ H^{+}_{(aq)} + OH^{-}{}_{(aq)} &\to H_{2}O_{(l)} \, \Delta H^{o}_{N} = -57KJmol^{-1} \\ \text{(c)} \end{split}$$

- (I) தாற்றனின் பகுதி அமுக்க விதியை தருக.
- (II) $\mathit{KClO}_{3(s)}$ கீழே காட்டியவாறு வெப்பப்பிரிகை அடைகின்றது. $\mathit{KClO}_{3(s)} o \mathit{KCl}_{(s)} + \mathit{O}_{2(g)}$

1g மாசுக்களுடன் கூடிய $KClO_3$ வன்மையாக சூடாக்கப்பட்டு முற்றான வெப்பப்பிரிகைக்கு உட்படுத்தப்பட்டு வெளிவரும் O_2 நீரின் கீழ்முக இடப்பெயர்ச்சி மூலம் நீரின் மேல் சேகரிக்கப்பட்டது. இதன் போது தொகுதியின் மொத்த அமுக்கம் $1.03 \times 10^5 \ Pa$, O_2 வாயுவின் 10% நீரில் கரைந்திருந்தது. வெப்பநிலை 27° C, கனவளவு $200cm^3$ ஆகக் காணப்பட்டது. 27° C இல் நீராவியின் நிரம்பல் ஆவி அமுக்கம் $0.03 \times 10^5 \ Pa$

- i) O_2 இன் பகுதி அமுக்கத்தைக் காண்க.
- ii) வெளிவந்த O_2 மூல் அளவைக் காண்க.
- iii) KClO₃ இன் மூல் அளவைக் காண்க.
- iv) $KClO_3$ இன் தூய்மை சதவீதத்தை துணிக. [K-39, Cl-35.5, O-16]
- m v) இப்பரிசோதனையை $30^{\circ}{
 m C}$ மேற்கொண்டிருந்தால் நீரில் கரைந்த O_2 ன் அளவில் எத்தகைய மாற்றம் ஏற்பட்டிருக்கும் விளக்குக.

- ❖ இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு விடையளிக்குக. (ஒவ்வொரு வினாவிற்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)
- 08) (a) $C_6H_5CONH_2$ ஆனது கீழே தரப்பட்டுள்ள தாக்க ஒழுங்கு முறையைப் பயன்படுத்தி சேர்வை I ஆக மாற்றப்பட்டது.

$$C_6H_5CONH_2$$
 $\xrightarrow{\text{தாக்கம் 1}}$ A $\xrightarrow{\text{தாக்கம் 2}}$ B $\xrightarrow{\text{தாக்கம் 3}}$ C $\xrightarrow{\text{தாக்கம் 4}}$ D
$$\downarrow_{\text{தாக்கம் 5}}$$
 $\downarrow_{\text{தாக்கம் 6}}$ F $\xrightarrow{\text{தாக்கம் 7}}$ G $\xrightarrow{\text{D}}$ H $\xrightarrow{\text{தாக்கம் 8}}$ I $CH_2C_6H_5$

A, B, C, D, E, F, G, H, ஆகியனவற்றின் கட்டமைப்புக்களையும் தாக்கங்கள் 1-8 வரையானவற்றிற்கு தேவையான சோதனை பொருட்களையும் தந்து மேற்குறித்த தாக்க ஒழுங்கு முறையை பூரணப்படுத்துக. சோதனை பொருட்களை கீழே தரப்பட்டுள்ள பட்டியலில் இருந்து மாத்திரம் தேர்வு செய்து (தனித்து அல்லது சேர்த்து) பயன்படுத்துக. இரசாயனப்பொருட்கள் :-

NaOH, $Con\ H_2SO_4$, $dil\ HCl,\ NaNO_2$, HBr, CH_3OH , உலர்ஈதர், $LiAlH_4$, Mg

(b)

- (I) கீழே காட்டப்பட்டுள்ள மாற்றீடு எங்ஙனம் 4ற்கு மேற்படாத படிமுறைகளில் நிகழ்த்தலாம் எனக் காட்டுக.
 - i) $CH_3COOH \rightarrow C_2H_2$

ii)
$$O$$
 Br
 Br
 O
 Br

(II) $CH_3-CH=CH_2$ ஐ ஒரே ஒரு தொடக்க சேதன சேர்வையைப் பயன்படுத்தி $C_2H_5-CH_2-O-CH(CH_3)_2$ ஐ 4இற்கு மேற்படாத படிமுறைகளில் நிகழ்த்தி காட்டுக.

எனும் தாக்க பொறிமுறையை பின்வரும் படிமுறை ஊடாக தருக.

- (I) $CH_3CHO \xrightarrow{\overline{O}H} P$ (கருநாடி) $CH_3CHO \overline{O}H$ உடன் தாக்கி P எனும் கருநாடி உருவாதல்.
- (II) $CH_3CHO + P \longrightarrow$ விளைவு (T)
- $({
 m III})$ கருநாடி P பரிவினால் உறுதியடையும் முறையை விளக்குக.
- $({
 m IV})$ T \longrightarrow W மூலம் பெறப்படும் விளைவின் கட்டமைப்பை தருக.

- 09) (a) Na_2CO_3, NH_4NO_3, Mg $(NO_3)_2, KNO_3, (NH_4)_2Cr_2O_7$ எனும் சேர்வைகளின் திண்ம மாதிரிகள் A, B, C, D, E (இதே வரிசையில் இன்றி) எனச் சுட்டி துண்டிடப்பட்ட 5 மாதிரிகள் வெப்பமாக்கப்பட்டு பெறப்பட்ட அவதானிப்புக்கள் கீழே தரப்பட்டுள்ளது.
 - A => திண்ம மீதி எதுவும் எஞ்சவில்லை
 - B => நிறைமாற்றம் ஏற்படவில்லை
 - C => பச்சைந நிற திண்ம மீதி எஞ்சியது
 - D => நிறமுடைய வாயு வெளியேறி திண்ம மீதி எஞ்சியது.
 - E => நிறைக்குறைவு ஏற்பட்டு திண்ம மீதி எஞ்சியது
 - (i) எனின் A, B, C, D, E இற்கு பொருத்தமானவற்றை இனங்காண்க.
 - (ii) A, C, D, E ஆகியனவற்றின் வெப்பபிரிகை தாக்கத்தை தருக.
 - (b) 3 கற்றயன்களை கொண்ட நீர்க்கரைசல் உள்ளன. இக்கற்றயன்களை இனங்காண பின்வரும் சோதனைகள் நிறைவேற்றப்பட்டன.

சோதனை	சோதனை	அவதானிப்பு
எண்		
1	கரைசல் உடன் ஐதான <i>HCl</i>	வெள்ளை நிற வீழ்படிவு P_{1}
	சேர்க்கப்பட்டது.	பெறப்பட்டது
2	P_1 வடித்து அகற்றப்பட்டு கரைசல் ஊடாக	கறுப்பு நிற வீழ்படிவு P_2
	H_2S வாயு செலுத்தப்பட்டது	பெறப்பட்டது
3	எல்லா H_2S உம் அகற்றப்படும் வரை	வெள்ளை நிற வீழ்படிவு P_3
	கரைசல் கொதிக்க வைக்கப்பட்டு பின்	பெறப்பட்டது
	குளிர விடப்பட்டு செறி HNO_3 சேர்த்து	
	மீண்டும் கொதிக்க விடப்பட்டு	
	குளிரவிடப்பட்டு NH_4Cl/NH_4OH	
	சேர்க்கப்பட்டது.	
4	வீழ்படிவு P_3 வடித்து அகற்றப்பட்டு	மென்சிவப்பு நிற வீழ்படிவு P_4
	கரைசல் ஊடு H_2S வாயு செலுத்தப்பட்டது.	பெறப்பட்டது.

P_{1},P_{2},P_{3},P_{4} ஆகிய வீழ்படிவுகளுக்கு பின்வரும் சோதனைகள் மேற்கொள்ளப்பட்டது.

சோதனை	அவதானிப்பு
P_1 இற்கு நீர் சேர்க்கப்பட்டு கலவை	P_1 முழுவதும் கரைந்தது
கொதிக்க வைக்கப்பட்டது	
P_2 சூடான ஐதான HNO_3 இல்	ஒரு மஞ்சள் நிற வீழ்படிவு பெறப்பட்டது
கரைக்கப்பட்டு $K_2 \mathit{CrO}_4$ கரைசல்	
சேர்க்கப்பட்டது	
P_3 இற்கு $NaOH$ கரைசல் சேர்க்கப்பட்டது	வீழ்படிவு கரைந்தது ஆனால் ஐதான <i>HCl</i>
	சிறிது சிறிதாக சேர்க்க மீண்டும் வீழ்படிவு
	P_3 தோன்றியது.
P_4 ஐதான HNO_3 இல் கரைக்கப்பட்டு மிகை	வெள்ளை நிற வீழ்படிவு பெறப்பட்டு குறித்த
NaOH கரைசல் சேர்க்கப்பட்டது.	நேரத்தின் பின் கபில நிறமாக மாறியது.

- (i) கரைசலில் உள்ள 3 கற்றயன்களை இனங்காண்க.
- (ii) P_1 , P_2 , P_3 , P_4 ஆகிய வீழ்படிவுகளை இனங்காண்க.
- (iii) P_5 வளியால் ஒட்சியேற்றப்படும் தாக்கத்தை தருக.

(c) NH_4NO_3 ஐயும், $CO(NH_2)_2$ (யூரியா) ஐயும் கொண்ட வர்த்தக உர மாதிரி ஒன்றின் 0.4g மிகை NaOH கரைசல் சேர்த்து கொதிக்க வைக்கப்பட்டது. வெளிவந்த NH_3 வாயு முழுவதும் 0.15M HCl இன் $50cm^3$ ஆல் உறிஞ்சப்பட்டது. எஞ்சிய HCl ஐ முற்றாக நியமிக்க 0.1M NaOH இன் $20cm^3$ தேவைப்பட்டது. குடுவையில் எஞ்சிய கரைசலிற்கு Al தூள் சேர்க்கப்பட்டு வன்மையாக வெப்பமாக்கப்பட்டது. இதன் போது வெளிவந்த வாயு வேறொரு 0.15M HCl இன் $50cm^3$ ஆல் உறிஞ்சப்பட்டு எஞ்சிய HCl ஐ முற்றாக நியமிக்க 0.1M NaOH இன் $40cm^3$ தேவைப்பட்டது.

 $CO(NH_2)_2 + NaOH \rightarrow Na_2CO_3 + NH_3$

- (i) மேலே விபரிக்கப்பட்ட செயன்முறைகளிற்கான சமன் செய்த சமன்பாடுகளைத் தருக.
- (ii) உரு மாதிரியில் உள்ள இரு கூறுகளினதும் திணிவு சதவீதத்தை காண்க. [H=1,C=12,O=16,N=14]
- 10) (a) 3d மூலகம் M ஆனது ஐதான HCl இல் கரைக்கப்பட்ட போது கரைசல் A யும் வாயு Xஉம் பெறப்பட்டது. கரைசல் Aயிற்கு NaOH நீர்க்கரைசல் சேர்த்த போது B எனும் வீழ்படிவு பெறப்பட்டது. மிகை NaOH சேர்க்க B கரைந்து கரைசல் C பெறப்பட்டது. கரைசல் A யிற்கு NH₃ நீர்க்கரைசல் சேர்க்கப்பட்ட போது B பெறப்பட்டது. Bயிற்கு மிகை NH₃ நீர்க்கரைசல் சேர்த்த போது D என்ற தெளிவான கரைசல் பெறப்பட்டது. Bஐ வன்மையாக வெப்பமாக்கிய போது சூடான நிலையில் மஞ்சள் நிற திண்ம மீதி E பெறப்பட்டது. ஆனால் குளிர விட வெண்ணிறமாக மாறியது.
 - (i) மூலகம் M ஐயும்இ A, B, C, D, E ஐயும் இனங்காண்க.
 - (ii) வாயு X ஐ இனங்காண்க.
 - (iii) A NaOH உடனும், B மிகை NaOH உடனும் புரியும் தாக்கங்களை தருக.
 - (iv) B மிகை NH_3 உடன் புரியும் தாக்கத்தை தருக.
 - (b) A,B,C,D என்பன எண்முகக் கேத்திர கணிதத்தைக் கொண்ட Cr இன் இணைப்பு சேர்வைகள் ஆகும். இவற்றின் மூலக்கூற்று சூத்திரங்கள் $CrH_{15}N_3O_3Cl_3$, $CrH_{13}N_3O_2Cl_3$, $CrH_{10}N_2O_2Cl_3$, $CrH_7O_2NCl_3$ (இதே ஒழுங்கில் அன்றி) சேர்வை A-3 வகையான இணையிகள் காணப்படுகின்றன. Aயின் நீர்க்கரைசலிற்கு $AgNO_3$ சேர்க்கும் போது வீழ்படிவு பெறப்படவில்லை.
 - சேர்வை B-2 வகையான இணையிகள் காணப்படுகின்றன. Bயின் நீர்க்கரைசலின் ஒரு மூலுடன் $AgNO_{3}$ சேர்க்கப்படும் போது AgCl வீழ்படிவின் 3 மூல் பெறப்பட்டது.
 - சேர்வை C 3 வகையான இணையிகளை கொண்டது. இதன் நீர்க்கரைசலின் ஒரு மூலுடன் $AgNO_{3(aq)}$ சேர்த்த போது 2 mol AgCl வீழ்படிவு பெறப்பட்டது.
 - சேர்வை D 3 வகையான இணையிகளைக் கொண்டது. இதன் ஒரு மூலுடன் $AgNO_{3(aq)}$ சேர்த்த போது AgCl இன் 1 மூல் வீழ்படிவு பெறப்பட்டது.

- (i) A, B, C, D ஆகியனவற்றின் கட்டமைப்புக்களை தருக.
- (ii) A, B, C, D இல் Cr இன் ஒட்சியேற்ற நிலை யாது?
- (iii) AgCl வீழ்படிவு எவ்வாறு உறுதிப்படுத்தலாம்?
- (iv) *A, B, C, D* ஒவ்வொன்றிலும் உலோக அயனுடன் இணைந்த இணையிகளை இனங்காண்க.
- (v) இவற்றில் ${\cal C}r$ இன் இலத்திரன் நிலையமைப்பை தருக.

(c)

- (i) CO_3^{2-} ஐயும் $C_2O_4^{2-}$ ஐயும் 1:2 என்ற மூல் விகிதத்தில் கொண்ட கரைசல் ஒன்றின் $100cm^3$ மாதிரியில் மிகை $Ca(NO_3)_2$ கரைசல் சேர்த்த போது பெறப்பட்ட வீழ்படிவின் உலர் நிறை 0.712g எனின் கரைசலில் காணப்பட்ட இரு அயன்களினதும் செறிவுகளையும் காண்க.
- (ii) மேலே கூறப்பட்ட கரைசலின் வேறொரு $50cm^3$ மாதிரி ஒன்றினை $65^{\circ}\mathrm{C}$ வெப்பநிலையில் 0.12M அமில $KMnO_4$ இனால் நியமித்த போது அதன் என்ன கனவளவு தேவைப்படும்?
- (iii) $C_2 O_4^{2-}$ அயன்கள் Cr^{3+} உடன் இருவலுவளவு இணையியாக இணைந்து சிக்கல் அயன்களை உருவாக்க கூடியது. Cr^{3+} உடன் இது எண்முகி சிக்கல் ஒன்றை உருவாக்கும் எனின் அந்த சிக்கலயனின் சூத்திரத்தையும் கட்டமைப்பையும் வரைந்து காண்பிக்குக.