14 Chapter

Definition 14.1. Ideal

A subring A of a ring R is called a (two-sided) ideal of R if for every $r \in R$ and every $a \in A$ both ra and ar are in A.

Theorem 14.1. Ideal Test

A nonempty subset A of a ring R is an ideal of R if

- 1. $a b \in A$ whenever $a, b \in A$.
- 2. ra and ar are in A whenever $a \in A$ and $r \in R$.

EXAMPLE 1 For any ring R, $\{0\}$ and R are ideals of R. The ideal $\{0\}$ is called the *trivial* ideal.

EXAMPLE 2 For any positive integer n, the set $nZ = \{0, \pm n, \pm 2n, \dots\}$ is an ideal of \mathbb{Z} .

EXAMPLE 3 Let R be a commutative ring with unity and let $a \in R$. The set $\langle a \rangle = \{ra \mid r \in R\}$ is an ideal of R called the principal ideal generated by a. (Notice that $\langle a \rangle$ is also the notation we used for the cyclic subgroup generated by a. However, the intended meaning will always be clear from the context.) The assumption that R is commutative is necessary in this example.

EXAMPLE 4 Let $\mathbb{R}[x]$ denote the set of all polynomials with real coefficients and let A denote the subset of all polynomials with constant term 0. Then A is an ideal of $\mathbb{R}[x]$ and $A = \langle x \rangle$.

EXAMPLE 5 Let R be a commutative ring with unity and let a_1, a_2, \ldots, a_n belong to R. Then $I = \langle a_1, a_2, \ldots, a_n \rangle = \{r_1 a_1 + r_2 a_2 + \cdots + r_n a_n | r_i \in R\}$ is an ideal of R called the ideal generated by a_1, a_2, \ldots, a_n . The verification that I is an ideal is left as an easy exercise.

EXAMPLE 6 Let $\mathbb{Z}[x]$ denote the ring of all polynomials with integer coefficients and let I be the subset of $\mathbb{Z}[x]$ of all polynomials with even constant terms. Then I is an ideal of $\mathbb{Z}[x]$ and $I = \langle x, 2 \rangle$ (see Exercise 39).

EXAMPLE 7 Let R be the ring of all real valued functions of a real variable. The subset S of all differentiable functions is a subring of R but not an ideal of R.

Theorem 14.2. Existence of Factor Rings Let R be a ring and let A be a subring of R. The set of cosets $\{r+A\mid r\in R\}$ is a ring under the operations (s+A)+(t+A)=s+t+A and (s+A)(t+A)=st+A if and only if A is an ideal of R.

Definition 14.2. Prime Ideal, Maximal Ideal A prime ideal A of a commutative ring R is a proper ideal of R such that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$. A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of integers, the ideal $\langle n \rangle$ is prime if and only if n is prime (Exercise 9). (0 is also a prime ideal of \mathbb{Z} .)

EXAMPLE 14 The lattice of ideals of \mathbb{Z}_{36} (Figure 14.1) shows that only $\langle 2 \rangle$ and $\langle 3 \rangle$ are maximal ideals. **EXAMPLE** 15 The ideal $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$. To see this, assume that A is an ideal of $\mathbb{R}[x]$ that properly contains $\langle x^2 + 1 \rangle$. We will prove that $A = \mathbb{R}[x]$ by showing that A contains some nonzero real number c. [This is the constant polynomial h(x) = c for all x.] Then 1 = (1/c) $c \in A$ and therefore, by Exercise 15, $A = \mathbb{R}[x]$. To this end, let $f(x) \in A$, but $f(x) \in \langle x^2 + 1 \rangle$. Then $f(x) = g(x)(x^2 + 1) + r(x)$,

Where $r(x) \neq 0$ and the degree of r(x) is less than 2. It follows that r(x) = ax + b, where a and b are not both 0, and

$$ax + b = r(x) = f(x) - q(x)(x^{2} + 1) \in A.$$

EXAMPLE 16 The ideal $\langle x^2 + 1 \rangle$ is not prime in $\mathbb{Z}_2[x]$, since it contains $(x+1)^2 = x^2 + 2x + 1 = x^2 + 1$ but does not contain x+1.

Theorem 14.3. R/A Is an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is an integral domain if and only if A is prime.

Theorem 14.4. R/A Is a Field If and Only if A is Maximal Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is a field if and only if A

 $is\ maximal.$

EXAMPLE 17 The ideal $\langle x \rangle$ is a prime ideal in $\mathbb{Z}[x]$ but not a maximal ideal in $\mathbb{Z}[x]$. To verify this, we begin with the observation that $(x) = \{f(x) \in \mathbb{Z}[x] \mid f(0) = 0\}$ (see Exercise 31). Thus, if $g(x)h(x) \in \langle x \rangle$, then g(0)h(0) = 0. And since g(0) and h(0) are integers, we have g(0) = 0 or h(0) = 0. To see that $\langle x \rangle$ is not maximal, we simply note that $\langle x \rangle \subseteq \langle x, 2 \rangle \subseteq \mathbb{Z}[x]$ (see Exercise 39).