Architektur der Beispielmaschine

[Aka VizMachine]

- Die Maschine besitzt 16 general-purpose Register die von 0 bis F nummeriert sind.
- Jedes Register ist ein Byte breit.
- Das jeweilige Register wird innerhalb der Instruktionen durch 4 Bit angegeben (0000 entspricht Register 0, 0100 Register 4, 1111 Register F, ...)
- Die Maschine hat einen Hauptspeicher von 256 Byte.
- Jede Speicherzelle (ein Byte) wird durch eine Adresse von 0 bis 255 (00 bis FF hexadezimal) angesprochen.
- Floating-point Werte werden wie folgt dargestellt (vom höchstwertigen Bit abwärts): 1 Bit Vorzeichen, 3 Bit Exponent, 4 Bit Mantisse.
- Jede Maschineninstruktion ist 2 Byte lang und besteht aus einem op-code mit 4 Bit und einem Operanden-Feld von 12 Bit.
- In der folgenden Beschreibung stehen die Buchstaben R,S,T im Operanden für eine Hexadezimalziffer, die die Nummer eines Registers darstellt.
- Die Buchstaben X und Y stehen im Operanden für Hexadezimalziffern, die kein Register angeben. Sie repräsentieren einen Hexadezimalen Wert oder eine Speicheradresse zwischen 0 und FF.

Op-code	Operand	Beschreibung
1	RXY	LOAD Register R mit dem Inhalt der Speicherzelle
		mit Adresse XY.
_		(Register/Memory Direct Addressing)
2	RXY	LOAD Register R mit dem Wert (Bitmuster) XY.
	5)04	(Immediate Value)
3	RXY	STORE Inhalt aus Register R in Speicherzelle mit Adresse XY.
4	0RS	MOVE Inhalt aus Register R ins Register S.
5	RST	ADD Inhalt aus Register S und Register T (2-er
		Komplement Interpretation), Ergebnis wird in Register R gespeichert.
	DOT	100 I I I I I I I I I I I I I I I I I I
6	RST	ADD Inhalt aus Register S und Register T (Floating-Point Interpretation), Ergebnis wird in Register R gespeichert.
7	RST	OR der Bitmuster der Registern S und T, speichere Ergebnis in Register R.
8	RST	AND der Bitmuster der Registern S und T, speichere Ergebnis in Register R.
9	RST	XOR der Bitmuster der Registern S und T, speichere Ergebnis in Register R.
A	R0X	ROTATE das Bitmuster in Register R ein Bit nach rechts, X-mal.
В	RXY	JUMP zur Instruktion in der Speicherzelle mit Adresse XY, falls Inhalt von Register R gleich dem Inhalt von Register 0 ist.
С	000	HALT.

Zusätzliche Operationen

Op-code	Operand	Description
D	XYZ	WAIT in Millisekunden angegeben durch XYZhex Wert.
E	RST	WRITE Daten von Register R in die Speicherzelle, deren Adresse in Register T angegeben ist. (Register Indirect)