Lycée Berthollet MPSI² 2023-24

DS3 de mathématiques, partie raisonnement, vendredi 10 novembre 2023 (2h00)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

Sauf mention explicite, toute réponse à une question devra être argumentée.

Exercice 1 Calculer
$$\int_{-\sqrt{2}}^{\sqrt{2}} \frac{\tan(x)}{42 + \cos^{1966}(x) + \cosh^{2024}(x)} dx$$
.

Exercice 2

- 1. Montrer que $\forall u \in \mathbb{R}_+, \sin(\operatorname{Arctan}(u)) = \frac{u}{\sqrt{1+u^2}}$.
- 2. Calculer $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dt}{\sin^4(t)}$ par un changement de variables judicieux.
- 3. En déduire que $\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{dx}{\sin^4(x)\cos^4(x)} = \frac{352\sqrt{3}}{27}.$

Exercice 3 On considère l'équation différentielle (E): $x^2y' + (1-x)y = 1$.

- 1. Résoudre l'équation homogène sur les intervalles \mathbb{R}_{-}^{\star} et \mathbb{R}_{+}^{\star} .
- 2. Calculer $\int t^{-3} \exp\left(-\frac{1}{t}\right) dt$.

Pour cela, par une intégration par parties, on l'exprimera en fonction de $\int t^{-2} \exp\left(-\frac{1}{t}\right) dt$.

- 3. Résoudre l'équation (E) sur les intervalles \mathbb{R}_{-}^{\star} et \mathbb{R}_{+}^{\star} .
- 4. \star Résoudre l'équation (E) sur \mathbb{R} .

Problème

On considère la fonction

$$f: x \longmapsto \operatorname{Arcsin} \frac{2x}{1+x^2} + \operatorname{Arccos} \frac{1-x^2}{1+x^2}.$$

On définit la fonction "signe"

$$\operatorname{sgn}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & \\ x & \longmapsto & \left\{ \begin{array}{ccc} -1 & \operatorname{si} x < 0 \\ 0 & \operatorname{si} x = 0 \\ 1 & \operatorname{si} x > 0. \end{array} \right. \right.$$

Enfin, on rappelle que deux fonctions ayant la même dérivée sur un intervalle diffèrent d'une constante.

- 1. Montrer soigneusement que la fonction f est définie sur \mathbb{R} .
- 2. La fonction f est-elle paire? impaire? Justifier les réponses.
- 3. La fonction f est-elle continue sur \mathbb{R} ?
- 4. Déterminer trois réels a < b < c tels que la fonction f soit dérivable sur les intervalles $] \infty, a[$,]a,b[,]b,c[et $]c,+\infty[$ et prouver soigneusement cette dérivabilité.

5. Montrer que

$$\forall x \in \mathbb{R} \setminus \{a, b, c\}, \quad f'(x) = \frac{2}{1 + x^2} \left(\operatorname{sgn}(1 - x^2) + \operatorname{sgn}(x) \right).$$

- 6. En déduire une expression simple de f sur chacun des intervalles $]-\infty,a],[a,b],[b,c]$ et $[c,+\infty[$.
- 7. Déduire de ce qui précède les variations de f ainsi que ses limites aux bornes. Le graphe de f admet-il des asymptotes?
- 8. Tracer l'allure du graphe de f.
- 9. Soit $t \in \left[0, \frac{\pi}{2}\right]$ et $u = \tan \frac{t}{2}$.
 - (a) Montrer que $u = \frac{e^{it} 1}{i(e^{it} + 1)}$.
 - (b) Exprimer e^{it} , puis $\cos(t)$ et $\sin(t)$, en fonction de u.
 - (c) Retrouver ainsi l'expression de f sur l'intervalle [b,c].
 - (d) Retrouver de la même manière les expressions de f sur les trois autres intervalles.