SECOND MIDTERM SOLUTION MATH H54, FALL 2021

Problem 1: (20 points) Let A be a real $n \times n$ matrix. Let $||\vec{v}||$ be the length of $\vec{v} \in \mathbb{R}^n$ with respect to the standard inner product on \mathbb{R}^n . Suppose that $||A\vec{v}|| = ||\vec{v}||$ for any $\vec{v} \in \mathbb{R}^n$. Prove that A is an orthogonal matrix.

Solution: For any $\vec{v} \in \mathbb{R}^n$, we have

$$\vec{v}^T A^T A \vec{v} = (A \vec{v})^T A \vec{v} = ||A \vec{v}||^2 = ||\vec{v}||^2 = \vec{v}^T \vec{v}.$$

(This does not directly imply that $A^TA = \mathbb{I}_n$; see the remark below.) Notice that A^TA is a symmetric matrix, therefore, there exists an orthogonal matrix P and a diagonal matrix D such that $A^TA = PDP^T$. Note that the diagonal entries of D are the eigenvalues of A^TA . Suppose λ is an eigenvalue of A^TA with an eigenvector $\vec{w} \neq \vec{0}$, then we have

$$||\vec{w}||^2 = \vec{w}^T \vec{w} = \vec{w}^T A^T A \vec{w} = \vec{w}^T (\lambda \vec{w}) = \lambda ||\vec{w}||^2,$$

hence $\lambda=1$ (since $||\vec{w}||>0$). This proves that 1 is the only eigenvalue of A^TA , therefore $D=\mathbb{I}_n$. Hence $A^TA=PDP^T=P\mathbb{I}_nP^T=PP^T=\mathbb{I}_n$. Thus A is orthogonal.

Remark: Note that " $\vec{v}^T B \vec{v} = \vec{v}^T \vec{v}$ holds for any $v \in \mathbb{R}^n$ " does *not* imply that B is the identity matrix. For instance, $B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ also satisfies this property.

Problem 2: (20 points) Let B be a real symmetric positive definite $n \times n$ matrix. Recall that $\langle \vec{v}_1, \vec{v}_2 \rangle_B = \vec{v}_1^T B \vec{v}_2$ defines an inner product on \mathbb{R}^n . For $\vec{v} \in \mathbb{R}^n$, let $||\vec{v}||_B$ be the length of \vec{v} with respect to the inner product $\langle -, - \rangle_B$, and let $||\vec{v}||$ be the length of \vec{v} with respect to the standard inner product on \mathbb{R}^n .

Prove that there exists an eigenvalue λ of B such that $||\vec{v}||_B \geq \sqrt{\lambda}||\vec{v}||$ holds for any $\vec{v} \in \mathbb{R}^n$.

Solution: Since B is a real symmetric positive definite matrix, all of its eigenvalues are positive real numbers. We choose $\lambda > 0$ to be the *smallest* eigenvalue of B, and claim that $||\vec{v}||_B^2 \ge \lambda ||\vec{v}||^2$ holds for any $\vec{v} \in \mathbb{R}^n$.

Since B is symmetric, there exists an orthonormal eigenbasis of B, say $\{\vec{v}_1,\ldots,\vec{v}_n\}$. For each $1 \leq i \leq n$, there is an eigenvalue λ_i of B such that $B\vec{v}_i = \lambda_i\vec{v}_i$. For any $\vec{v} \in \mathbb{R}^n$, there exists $c_1,\ldots,c_n \in \mathbb{R}$ such that $\vec{v} = c_1\vec{v}_1 + \cdots + c_n\vec{v}_n$. Then

$$||\vec{v}||_B^2 = \vec{v}^T B \vec{v}$$

$$= \vec{v}^T B (c_1 \vec{v}_1 + \dots + c_n \vec{v}_n)$$

$$= \vec{v}^T (\lambda_1 c_1 \vec{v}_1 + \dots + \lambda_n c_n \vec{v}_n)$$

$$= (c_1 \vec{v}_1 + \dots + c_n \vec{v}_n)^T (\lambda_1 c_1 \vec{v}_1 + \dots + \lambda_n c_n \vec{v}_n)$$

$$= \lambda_1 c_1^2 + \dots + \lambda_n c_n^2$$

$$\geq \lambda (c_1^2 + \dots + c_n^2)$$

$$= \lambda ||\vec{v}||^2.$$

Note that the last two equalities follow from the fact that $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is an orthonormal set.

Problem 3: (20 points) Let $T: V \to V$ be a linear transformation of an n-dimensional vector space V. Recall that for any basis \mathcal{B} of V, the coordinate mapping $[-]_{\mathcal{B}}: V \to \mathbb{R}^n$ is a bijective linear map. One can then define a linear transformation $T_{\mathcal{B}}: \mathbb{R}^n \to \mathbb{R}^n$ by considering the composition $T_{\mathcal{B}}:=[-]_{\mathcal{B}}\circ T\circ [-]_{\mathcal{B}}^{-1}$:

$$T_{\mathcal{B}} \colon \mathbb{R}^n \xrightarrow{[-]_{\mathcal{B}}^{-1}} V \xrightarrow{T} V \xrightarrow{[-]_{\mathcal{B}}} \mathbb{R}^n.$$

Recall that there exists a unique $n \times n$ matrix, say denoted by $M_{T,\mathcal{B}}$, that represents the linear transformation $T_{\mathcal{B}}$ (i.e. $T_{\mathcal{B}} = T_{M_{T,\mathcal{B}}}$).

Let \mathcal{B}_1 and \mathcal{B}_2 be any two basis of V. Prove that the characteristic polynomial of M_{T,\mathcal{B}_1} coincides with the characteristic polynomial of M_{T,\mathcal{B}_2} .

Solution: We claim that M_{T,\mathcal{B}_1} and M_{T,\mathcal{B}_2} are similar, therefore have the same characteristic polynomial. Define $S: \mathbb{R}^n \to \mathbb{R}^n$ to be the composition $S := [-]_{\mathcal{B}_1} \circ [-]_{\mathcal{B}_2}^{-1}$, which is a bijective linear transformation. Then we have

$$T_{\mathcal{B}_2} = [-]_{\mathcal{B}_2} \circ T \circ [-]_{\mathcal{B}_2}^{-1}$$

$$= (S^{-1} \circ [-]_{\mathcal{B}_1}) \circ T \circ ([-]_{\mathcal{B}_1}^{-1} \circ S)$$

$$= S^{-1} \circ T_{\mathcal{B}_1} \circ S.$$

Also, since $S: \mathbb{R}^n \to \mathbb{R}^n$ is a bijective linear map, it can be represented by an invertible matrix P (i.e. $S = T_P$). Hence we have $M_{T,\mathcal{B}_2} = P^{-1}M_{T,\mathcal{B}_1}P$.

Remark: Since $T: V \to V$ is a linear transformation of a general vector space (not necessarily \mathbb{R}^n), it doesn't make sense to "represent T by a matrix" without choosing a basis of V.

Problem 4: (20 points) Continue the notations in the previous problem. One defines the characteristic polynomial of T to be the characteristic polynomial of $M_{T,\mathcal{B}}$ for any basis \mathcal{B} of V.

Let $V=M_{2\times 2}(\mathbb{R})$ be the vector space of all real 2×2 matrices. Consider the linear transformation $T\colon V\to V$ defined by $T(A)=\begin{bmatrix}1&1\\0&1\end{bmatrix}A\begin{bmatrix}1&0\\2&1\end{bmatrix}$ for $A\in V$. Find the characteristic polynomial of T.

Solution: Choose
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
. Then
$$M_{T,\mathcal{B}} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Hence the characteristic polynomial of T is $(\lambda - 1)^4$.

Problem 5: (20 points) Let $V = \mathcal{C}[-1,1]$ be the inner product space of real-valued continuous function defined on the interval [-1,1], with inner product given by

$$\langle f, g \rangle = \int_{-1}^{1} x^2 f(x) g(x) dx.$$

Find the orthogonal projection of $x^4 \in V$ onto the subspace $W = \text{Span}\{1, x, x^2\} \subseteq V$.

Solution: First, we find an orthogonal basis of W by Gram–Schmidt. The set $\{1, x\}$ is orthogonal since x^3 is an odd function.

$$x^2 - \frac{\left\langle 1, x^2 \right\rangle}{\left\langle 1, 1 \right\rangle} 1 - \frac{\left\langle x, x^2 \right\rangle}{\left\langle x, x \right\rangle} x = x^2 - \frac{3}{5}.$$

Hence $\{1,x,x^2-\frac35\}$ is an orthogonal basis of W. The orthogonal projection of x^4 onto the subspace W is therefore

$$\frac{\left\langle 1, x^4 \right\rangle}{\left\langle 1, 1 \right\rangle} 1 + \frac{\left\langle x, x^4 \right\rangle}{\left\langle x, x \right\rangle} x + \frac{\left\langle x^2 - \frac{3}{5}, x^4 \right\rangle}{\left\langle x^2 - \frac{3}{5}, x^2 - \frac{3}{5} \right\rangle} \left(x^2 - \frac{3}{5} \right) = \frac{3}{7} + \frac{10}{9} \left(x^2 - \frac{3}{5} \right) = \frac{10}{9} x^2 - \frac{5}{21}.$$

Remark: The projection formula

$$\operatorname{proj}_{W} \vec{v} = \frac{\langle \vec{v}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1} + \dots + \frac{\langle \vec{v}, \vec{w}_{n} \rangle}{\langle \vec{w}_{n}, \vec{w}_{n} \rangle} \vec{w}_{n}$$

works only if $\{w_1, \ldots, w_n\}$ is an *orthogonal* basis of W. In this problem, $\{1, x, x^2\}$ is not an orthogonal set, so the projection formula doesn't apply to this basis.