3. Linie

1 Zadanie

Dysponujemy mapą tuneli metra. Zaimplementuj program znajdujący siatkę połączeń o najmniejszej liczbie linii, spełniającą następujące warunki:

- 1. W każdym tunelu łączącym dwie stacje musi przebiegać dokładnie jedna linia,
- 2. Żadna linia nie może dwa razy przebiegać tym samym odcinkiem tunelu, choć może kilkukrotnie odwiedzać jedno miasto.

Uwaga: Ten program można napisać w C++ z wykorzystaniem kontenerów biblioteki STL.

2 Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna dodatnia liczba całkowita Z oznaczająca liczbę zestawów danych do wczytania.

Po niej następuje Z zestawów danych który każdy składa się z:

- 1. wiersza z liczbami n i m oznaczającymi odpowiednio liczbę stacji połączonych tunelami oraz liczbę tuneli istniejących w sieci,
- 2. m wierszy z liczbami u_i , v_i oznaczające, że i-ty tunel łączy ze sobą stacje u_i i v_i (tunele sa dwukierunkowe).

W testach wartych połowę punktów (czyli pół oceny) graf będzie eulerowski lub półeulerowski.

3 Wyjście

Na standardowym wyjściu programu powinno znaleźć się Z zestawów odpowiedzi, każdy składający się z:

- 1. wiersza z liczbą l, oznaczającej liczbę potrzebnych linii,
- 2. l wierszy opisujących linie, każdy składający się z liczby k (długość trasy) i k liczb numerów kolejnych stacji przez które przejeżdża linia.

4 Przykład

Wejście	Wyjście
1 3 3	$\begin{matrix}1\\4\ 1\ 3\ 2\ 1\end{matrix}$
1 2	41321
2 3 3 1	
 1	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3	40024
4 2 5 2	
5 6	