Mean-Field Neural Networks and Transformers

September 17, 2025

Mean-field Neural Networks

Two-Layer Neural Network: Definition

The output $f(x; \theta)$ is given by:

$$f(x; \theta) = \frac{1}{m} \sum_{i=1}^{m} a_{j} \sigma(\langle w_{j}, x \rangle + b_{j})$$

- $\theta = \{(a_j, w_j, b_j)\}_{j=1}^m$ are the parameters.
- *m* is the number of neurons.

1

The Optimization Problem: Non-Convexity

Data
$$(X_1, Y_1)$$

$$(X_1, Y_1)$$

$$(X_i, Y_i)$$

$$\vdots$$

$$(X_n, Y_n)$$

$$W_j, b_j$$

$$Hidden$$

$$a_j$$

$$f(X_i; \theta)$$

$$L$$

Loss function (e.g., squared loss): $L(\theta) = \sum_{i=1}^{n} (Y_i - f(X_i; \theta))^2$

$$L(\theta) = \sum_{i=1}^{n} \left(Y_i - \frac{1}{m} \sum_{j=1}^{m} a_j \sigma(\langle w_j, X_i \rangle + b_j) \right)^2$$

This loss function $L(\theta)$ is highly **non-convex**.

Lifting to Measure Space

Let
$$\mu = \frac{1}{m} \sum_{j=1}^{m} \delta_{(a_j, w_j, b_j)}$$
.

Network output becomes an integral:

$$f(x; \mu) = \int_{\Omega} a\sigma(\langle w, x \rangle + b) \, \mu(d\omega) = \int_{\Omega} \rho(x; \omega) \, \mu(d\omega)$$

The loss becomes a functional on the space of measures:

$$L: \mathcal{P}_2(\Omega) \to \mathbb{R}$$

$$L(\mu) = \sum_{i=1}^{n} \left(Y_i - \int_{\Omega} \rho(X_i; \omega) \mu(d\omega) \right)^2$$

3

Gradient Flows: Euclidean vs. Wasserstein

Correspondence Proposition

The Wasserstein gradient flow $(\mu_t)_{t\geq 0}$ of $L(\mu)$, when initialised at an empirical measure $\mu_0 = \mu_\theta$ (where $\theta = \{(a_j, w_j, b_j)\}_{j=1}^m$ and $\mu_\theta = \frac{1}{m} \sum_{j=1}^m \delta_{(a_j, w_j, b_j)}$), satisfies $\mu_t = \mu_{\theta_t}$ for all $t \geq 0$. Here $(\theta_t)_{t\geq 0}$ is the (time-rescaled) Euclidean gradient flow of $L(\theta)$ initialised at θ .

State Represents:	State Represents:					
$ heta_{t}$	$\mu_t = \mu_{ heta_t}$					
Loss Function:	Loss Functional:					
$L(\theta_t)$	$L(\mu_t) = L(\mu_{\theta_t})$					
Optimization Dynamics:	Optimization Dynamics:					
Euclidean Gradient Flow	Wasserstein Gradient Flow (PDE)					
$\dot{\theta}_t = -\nabla_{\theta} L(\theta_t)$	$\partial_t \mu_t = \nabla \cdot \left(\mu_t \nabla \frac{\delta L}{\delta \mu_t} \right)$					

4

Geodesic Non-Convexity Remains!

The lifted loss functional $L(\mu)$:

$$L(\boldsymbol{\mu}) = \sum_{i=1}^{n} \left(Y_{i} - \int_{\Omega} \rho(x; \omega) \boldsymbol{\mu}(\mathrm{d}\omega) \right)^{2}$$

- $L(\mu)$ is "convex" for linear combinations $\lambda \mu_1 + (1 \lambda)\mu_2$.
- But convex combinations (geodesics) in Wasserstein space $\mathcal{P}_2(\Omega)$ are defined via optimal transport, not linear mixing of measures.
- $L(\mu)$ is generally **not** geodesically convex.

Geodesic Non-Convexity Remains!

Wasserstein Geodesics vs. Linear Interpolation:

Particle Path
$$X_t = (1-t)X_0 + tX_1$$

$$X_0 \sim \mu_0 \qquad X_t \sim \mu_t \qquad X_1 \sim \mu_1$$

Advantages of the Measure Perspective

Allows considering measures other than the empirical $\frac{1}{m} \sum_{i=1}^{m} \delta_{\omega_i}$ and provides analytical benefits:

- Chizat & Bach '18, "On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
- Mei et al. '18, "A Mean Field View of the Landscape of Two-Layers Neural Networks"

Transformers

Transformer Architecture

Self-Attention Example: QKV Calculation

Self-Attention Example: Scores and Normalization

Unnormalized Attention Pattern							Normalized Attention Pattern						
+3.53	+0.80	+1.96	+4.48	+3.74	-1.95	→ softmax	1.00	0.75	0.69	0.92	0.46	0.00	
-00	-0.30	-0.21	+0.82	+0.29	+2.91		0.00	0.25	0.08	0.02	0.01	0.46	
-00	+0.89	+0.67	+2.99	-0.41			0.00	0.00	0.24	0.02	0.22	0.02	
- 60	-00	+1.31	+1.73	-1.48			0.00	0.00	0.00	0.04	0.06	0.01	
-00	-00	-00	+3.07	+2.94			0.00	0.00	0.00	0.00	0.24	0.48	
-00	-00	-00	-00	+0.31			0.00	0.00	0.00	0.00	0.00	0.03	

Self-Attention Example: Weighted Value Sum

а	fluffy	blue	creature	roamed	t	he	verdant	forest
1	1	1	1	1		Į.	1	1
E ₁	E ₂	E ₃	E ₄	E ₅		E ₆	E ₇	E ₈
1	1	1	1	1		1	1	1
W _V	W _V	W _V	W _V	W _V		V _V	W _V	W_V
1	1	1	1	1		1	1	1
V ₁	V ₂	V ₃	V ₄	V ₅	,	V ₆	V ₇	V ₈
$a \to E_1 \to \ \textit{W}_{\textit{v}} \to V_1$	1.00 V ₁	0.00 V ₁						
fluffy \rightarrow E ₂ \rightarrow $W_{\nu} \rightarrow$ V ₂	0.00 V ₂	1.00 V ₂	0.00 V ₂	0.42 V ₂	0.00 V ₂	0.00 V ₂	0.00 V ₂	0.00 V ₂
$blue \to E_3 \to \ \mathit{W}_{\mathit{v}} \! \to V_3$	0.00 V ₃	0.00 V ₃	1.00 V ₃	0.58 V ₃	0.00 V ₃	0.00 V ₃	0.00 V ₃	0.00 V ₃
creature $\rightarrow E_4 \rightarrow W_{\nu} \rightarrow V_4$	0.00 V ₄							
roamed $\rightarrow E_5 \rightarrow W_{\nu} \rightarrow V_5$	0.00 V ₅	0.01 V ₅	0.00 V ₅	0.00 V ₅				
the \rightarrow E ₆ \rightarrow $W_{\nu} \rightarrow$ V ₆	0.00 V ₆	0.00 V ₆	0.00 V ₆	0.00 V ₆	0.99 V ₆	1.00 V ₆	0.00 V ₆	0.00 V ₆
$verdant \rightarrow E_7 \rightarrow \ W_{\nu} \rightarrow V_7$	0.00 V ₇	1.00 V ₇	0.00 V ₇					
$forest \rightarrow E_8 \rightarrow \ \textit{W}_{\textit{\tiny V}} \rightarrow \ \textit{V}_8$	0.00 V ₈	1.00 V ₈						
	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ
	1	1	1	1	1	- 1	1	1
	ΔE ₁	ΔE ₂	ΔE ₃	ΔE ₄	ΔE ₅	ΔE_6	ΔE ₇	ΔE ₈

Self-Attention as Dynamics (1/4): Iterative Scheme

Consider applying the attention update iteratively, like residual connections in deep networks:

$$x_{t+1}^{i} = x_{t}^{i} + \left(V \frac{\sum_{j=1}^{N} x_{t}^{j} e^{\langle Q x_{t}^{i}, K x_{t}^{j} \rangle}}{\sum_{l=1}^{N} e^{\langle Q x_{t}^{i}, K x_{t}^{l} \rangle}}\right)$$

Self-Attention as Dynamics (2/4): Continuous ODE

Consider applying the attention update iteratively, like residual connections in deep networks:

$$\dot{x}_t^i = V \frac{\sum\limits_{j=1}^N x_t^j e^{\langle Qx_t^i, Kx_t^j \rangle}}{\sum\limits_{l=1}^N e^{\langle Qx_t^i, Kx_t^l \rangle}}$$

Self-Attention as Dynamics (3/4): Mean-Field Limit

Consider applying the attention update iteratively, like residual connections in deep networks:

$$\dot{x}_t^i = V \frac{\int y e^{\langle Q x_t^i, K y \rangle} \mu_t(\mathrm{d}y)}{\int e^{\langle Q x_t^i, K y \rangle} \mu_t(\mathrm{d}y)}$$

Assume Q = K = V = I for simplicity:

$$\dot{x}_t^i = \frac{\int y e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y)}{\int e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y)} = \nabla_x \left[\log \int e^{\langle x, y \rangle} \mu_t(\mathrm{d}y) \right]_{x = x_t^i}$$

Self-Attention as Dynamics (4/4): WGF Connection?

Recall: Particle Interpretation of WGF:

$$\dot{X}_t = -\nabla \frac{\delta \mathcal{F}}{\delta \mu} (X_t)$$

From the previous slide (with Q = K = V = I):

$$\dot{x}_t^i = \nabla \underbrace{[\log \int e^{\langle x, y \rangle} \mu_t(\mathrm{d}y)](x_t^i)}_{\Psi(x; \mu_t)}$$

Question

 $\Psi(x; \mu_t) \stackrel{?}{=} -\frac{\delta \mathcal{F}}{\delta \mu_t}(x)$ for some energy functional \mathcal{F} describing the self-attention dynamics?

Self-Attention as Dynamics: WGF Connection? (Cont.)

No!

- **Reference:** Sander et al. '22, "Sinkformers: Transformers with Doubly Stochastic Attention".
- **Issue:** Asymmetry.

Unnormalised Self-Attention (1/2)

Remedy: What if we remove the denominator (the Softmax normalization)?

Consider the unnormalised dynamics (assuming Q = K = V = I for now):

$$\dot{x}_t^i = \int y e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y) = \nabla_x \left[\int e^{\langle x, y \rangle} \mu_t(\mathrm{d}y) \right]_{x = x_t^i}$$

Unnormalised Self-Attention (2/2)

Remedy: What if we remove the denominator (the Softmax normalization)?

Consider the unnormalised dynamics (assuming Q = K = V = I for now):

$$\dot{x}_t^i = \int y \mathrm{e}^{\langle x_t^i, y \rangle} \mu_t(dy) = \nabla_{\!\scriptscriptstyle X} \left[\underbrace{\int \mathrm{e}^{\langle x, y \rangle} \mu_t(dy)}_{\delta \mathcal{F}(\mu_t)} \right]_{x = x_t^i}$$

where

$$\mathcal{F}(\mu) = -\int\int e^{\langle x,y
angle} \mu(dx) \mu(dy)$$

Unnormalised Attention as WGF

Proposition

The unnormalised self-attention dynamics (with Q=K=V=I, after time rescaling):

$$\dot{x}_t^i = \int y e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y)$$

is the Wasserstein gradient flow of the interaction energy:

$$\mathcal{F}(\mu) = -\int \int \mathsf{e}^{\langle x,y \rangle} \mu(\mathrm{d}x) \mu(\mathrm{d}y)$$

defined on $\mathcal{P}_2(\mathbb{R}^d)$.

Implication: Divergence

$$\mathcal{F}(\delta_z) = -e^{\langle z,z\rangle} = -e^{\|z\|^2}$$
. As $\|z\| \to \infty$, $\mathcal{F}(\delta_z) \to -\infty$.

Adding Layer Normalisation

Corresponds to the dynamics

$$\dot{x}_t^i = P_{x_t^i} \left(\int y e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y) \right)$$

where P_x is the projection onto $T_x(S^{d-1})$

Layer-Normalised Unnormalised Attention as WGF

Proposition

The layer-normalised unnormalised self-attention dynamics:

$$\dot{x}_t^i = P_{x_t^i} \left(\int y e^{\langle x_t^i, y \rangle} \mu_t(\mathrm{d}y) \right)$$

is the Wasserstein gradient flow of the same interaction energy:

$$\mathcal{F}(\mu) = -\int \int e^{\langle x,y \rangle} \mu(\mathrm{d}x) \mu(\mathrm{d}y)$$

but now considered on the space of probability measures on the sphere, $\mathcal{P}_2(S^{d-1})$.

Implication: Concentration

Minimizers are Dirac masses δ_z for $z \in S^{d-1}$

The dynamics tend to form a single cluster on the sphere.

Clustering and Convergence

The interaction energy on the sphere:

$$\mathcal{F}(\mu) = -\int_{\mathcal{S}^{d-1}} \int_{\mathcal{S}^{d-1}} e^{\langle x, y \rangle} \mu(\mathrm{d}x) \mu(\mathrm{d}y)$$

- This functional $\mathcal{F}(\mu)$ is **not** geodesically convex on $\mathcal{P}_2(S^{d-1})$.
- It admits many stationary points where the Wasserstein gradient vanishes

Clustering and Convergence

The interaction energy on the sphere:

$$\mathcal{F}(\mu) = -\int_{S^{d-1}} \int_{S^{d-1}} e^{\langle x, y \rangle} \mu(\mathrm{d}x) \mu(\mathrm{d}y)$$

 Geshkovski et al. '24, "A Mathematical Perspective on Transformers": These points are in fact saddle points, guaranteeing asymptotic convergence to a single cluster when dynamics are initialized in a generic position.