

3 TRANSITIVITY: (a,b) ER and (b,c) ER,
then (a,c) ER as well
in the directional aroth every 2 step journey can be done in a single step.
* If there are no 2 step journies - transitive by default.
TYPES OF RELATIONS
1 Equivalence RELATIONS + Reflexive, symmetric, transitive
@ PARTIAL ORDER - Reflexive, antisymmetric, transitive.
(3) LINEAR DOGGE - Purchal order & auben ether (a, b) ER or (E, a) ER
Name is so because the Hasse Diagram of a linear order disa line HASSE DIAGRAM - Omit the loops, remove all arrows other than I steps, rearrange the
dots so the arrows are only pointing upwards, replace arrow with lines.
FUNCTIONS rule W which associates elements of 2 sets. A Range
* Every element of the domain has to be mapped
* One element cannot be mapped to 2 different places
$f: a \rightarrow b = \mathcal{E}(a \times b) \in A \times B \mid f(a) = b3$ Domain Godomain
PROPERTIES OF FUNCTIONS
(DONE-TO-ONE (INJECTIVE) - Each element of the domain is mapped to a distinct
element of the codomain. \\ \(\times \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3 ONTO (SURJECTIVE) - If the range is the same as the codomain.
3 BIJECTION - When the function is both one-to-one and onto.
COUNTING * Size of a set (Cardinality) = [15] + [10] = 0
Com RUE - IF A and B are disjoint sets - AUB = 1A1 + 1B1
INCLUSION EXCLUSION PRINCIPLE - TAUBI = IAI + IBI - IA OB
L. for non disjoint sets, ie sets which have elements in common.
PRODUCT RULE - K tasks, number to do the ith task, then total number
of ways to do each all tasks - nixnixnixnix
PIGEONHOLE PRINCIPLE - If there are KENT and K+1 or more objects are
placed in k boxes, then there is at least I box with 2 or more objects.
IF n objects are placed into k boxes then there will be atleast 1 be
containing at least [n/k] objects (17 depicts ceiling function).
COUNTING SELECTIONS: Ways of selecting kitems from a sets of nitems ORDER MATTERS ORDER DESN'T MATTER PROPERTIES OF CHOOSE
(COM CINATIONS)
REPETITIONS NOT n.(n-1)(n-k+1) (n) or "Ck (k) = n.(n-1) n(k+1)
REPETITIONS ALLOWED $n^{k} = \binom{n}{n-1} \text{ or } \binom{k+n-1}{k} = \binom{n}{n-k}$
PASCAL'S IDENTITY: (n+1) = (n)+(n) + Counting of rows and colomns
entries start from 0

Favorrable State For R _ Favourable State language_of (R*) Initial State for 2 FavourableState of R Initial State of R DFAs VS LANGUAGE ⇒ In an NFA there can be more than I computation on a word. => A word is accepted by an NFA if there is a computation that ends in a tavourable => NFA's reject words (if) --- every computation is stuck - or ends up in a non-favourable state. ⇒ NFA does not increase computational power of finite automata. = SUBSET CONSTRUCTION: Converting NFAs to equivalent DFAS * In DFA's - no choice, no 'getting stuck', no E-jumps are allowed. Things to Define:-New States: Named after the subsets of the original NFA's states. - New Initial States: Set containing the original NRA's sabel initial state and all states that are reachable from it by E-jumps. - New Favourable States: Those subsets that contain at least one of the original NFA's Favourable states. → Start from the initial state (new) - Make \$ 2 arrows a and 6 from the state and map them to new states. - Repeat for all states until no new arrows can be formed. number of States in original NFA * Worst case for increase in number of states when converting to DFA Other topics to Revise: -- Warshall's Algorithm Tree Transversal →Monty Hall 3 door puzzle - Bayesian Span Filters - Composition Functions