Predicting Gene-Disease Associations with GNNs

Shelly Levy, Adam Bublil, Tom Saacks and Roy Efroni

GNN Recap – Core Concept

Graph Components:

- Nodes: Entities (e.g., genes, diseases)
 - Nodes can be typed (heterogeneous): e.g., Gene vs. Disease
 - Each node includes attributes: textual descriptions, ontology tags, etc.
- **Edges**: Relationships (e.g., gene–disease associations)
 - Undirected / Directed
 - Weighted (e.g., strength of association)
 - Attributed (contain metadata like relation type)

Why GNNs for Biology?

- GNNs learn from both structure & node features
- Capture complex, non-Euclidean dependencies

GNN Recap - Common Node-Level Tasks Node Classification

- Node Classification
 - Predict category/label for each node
 - Example: Is this user a bot?
- Node Regression
 - Predict a continuous value per node
 - Example: Estimate air quality at each sensor node
- Node Clustering
 - Group nodes based on structure/features
 - Example: Detect social communities

Community Detection

GNN Recap – Common Edge-Level Tasks

- Edge Classification
 - Classify relationships
 - Example: Is this relationship strong or weak?
- Link Prediction
 - Predict if an edge should exist
 - Example: Recommend a new friend

Link Prediction

Our Research Question

Can GNNs predict novel gene–disease associations from known biological interactions?

Motivation

Why Predict Gene-Disease Associations?

- Manual discovery is slow, expert-driven, and incomplete
- Novel associations critical for rare diseases and drug repurposing
- Biomedical data is graph-structured: genes, diseases, interactions
- GNNs excel at relational learning on graphs
- Goal: Automate and scale discovery using graph-based learning

Dataset overview - TBGA structure

Source:

- Text-Based Gene–Disease Association (TBGA) dataset
- Derived from curated biomedical literature (DisGeNET-like schema)

Graph Composition:

- Nodes:
 - Genes: 9,569 unique entities
 - **Diseases**: 7,499 unique entities
- **Edges** (Gene–Disease pairs):
 - 49,214 total associations

Relation Types (Labeled Edges):

- Therapeutic
- Biomarker
- Genomic Alteration

Dataset overview - TBGA structure

Node Features:

- Short textual descriptions derived from biomedical abstracts
- Used as input to various embedding strategies

Graph Characteristics:

- Undirected & Attributed
- Heterogeneous, sparse, imbalanced
- Hub nodes dominate (e.g., TP53, breast cancer) biological realism

Edge Type Distribution:

- Biomarker Indicates the gene is used to diagnose/track disease
- Therapeutic Gene targeted for treatment/intervention
- Genomic Alteration Mutation or expression change linked to disease

Problem Definition & Objectives

- Can we predict new gene-disease associations using GNNs?
- Can we also classify the biological nature of those relationships?
- How good will our model be?

Problem Definition & Objectives

- Can we predict new gene-disease associations using GNNs?
 Link Prediction
- Can we also classify the biological nature of those relationships?
 Node Classification
- Requires models that leverage both graph topology and semantic node features

Binary Link Prediction

- Task: Predict if a gene-disease edge should exist
- **Input:** Graph with known positive (labeled) and NA (unlabeled) edges
- **Output:** Binary label *Associated (1)* or *Not Associated (0)*
- Addresses the **discovery** challenge (find novel pairs)
- Evaluated using AUC, Accuracy, Precision, Recall, F1, and Confidence thresholding

Multi-Class Relation Classification

- Task: Given an edge, classify its biological role
- Classes:
 - Therapeutic
 - Biomarker
 - Genomic Alteration
- Input: Only labeled edges used
- Supports interpretability and functional understanding
- Evaluated via Accuracy, and class-wise Precision, Recall, F1

Two-Stage Prediction Pipeline

- Stage 1:
 - Binary GNN predicts candidate gene-disease links
- Stage 2:
 - Multi-class GNN assigns biological relation types
- Benefits:
 - Allows high-precision link discovery
 - Adds fine-grained interpretability via relation classification
- Modular and extendable to new biological contexts

Literature Review - Key Insights

- GCNs demonstrate high accuracy in predicting gene-trait associations in crops, outperforming classical models (Crop-GPA, Gao et al., 2024).
- **Text + graph fusion (GPA-GCN)** enables discovery of latent biological links using semantic similarity and network proximity.
- HOGCN models outperform GCNs by leveraging high-order connections, capturing indirect relationships in biomedical graphs.
- Deeper GNN architectures (e.g., MDA-HOGCN/ Transformes) improve AUC and clustering, especially in complex biological networks.
- Evidence supports GNN applicability in gene-disease prediction, motivating our use of GCN and GAT on biomedical data.

What Success Looks Like

- Similar to Prior Benchmarks (from literature)
- Generalization to Novel Associations
 Correctly predict biologically plausible links not included in the labeled dataset
- Precision–Recall Tradeoff Optimization
 Enable threshold tuning to adjust the balance between recall and precision depending on downstream needs.

EDA - Degree Distribution

- Long-tailed distribution
- Most nodes have few connections
- Small number of high-degree hubs
- Typical in biological networks (power law)

EDA - Relation Type Distribution by Node Degree

- Genomic Alterations dominate across all degree buckets
- Biomarker and Therapeutic relations are rarer
- Higher-degree nodes tend to concentrate Genomic Alterations

EDA - Hub Nodes - Diseases

- Top disease hubs (by degree):
 - Breast cancer
 - Colorectal cancer
 - Lung neoplasm
- Likely overrepresented due to research focus

EDA - Node Text Description Lengths

- Each node has a biomedical **text summary**
- Token lengths vary: mostly short (sub-200 tokens)
- Suitable for transformer-based encoders

EDA - Label Entropy Across Nodes

- Most genes have low entropy → linked to a single relation type.
- Some genes show high entropy → involved in diverse roles.
- Supports need for expressive models to capture multi-relational behavior.

EDA - Degree Buckets Reveal Structure-Label Imbalance

- Across all degree ranges, Genomic Alterations dominate
- Therapeutic links are consistently underrepresented
- Suggests class imbalance is correlated with node connectivity

Methodology - Two-Stage Framework Overview

- **Stage 1:** Binary classification → Predict whether gene–disease edge exists
- **Stage 2:** Multi-class classification → Predict type of biological relation
- Shared graph + textual embeddings as input for both stages

Trained and evaluated on TBGA biomedical graph

Methodology - Task Definition & Setup

Two main tasks:

Binary classification: Is there a gene-disease link? Multi-class classification: What is the type of link? (Therapeutic / Biomarker / Genomic alteration)

Two-stage pipeline:

Stage 1: Binary model → candidate pairs

Stage 2: Multi-class model → relation labeling

Why this setup?

Mimics real-world use: first find unknown links, then classify them

Methodology - Embeddings & Model Architectures

Node representation strategies:

Random initialization
PCA-reduced embeddings

LLM-based (pretrained on biomedical text)

LLM-based excluding NA edges

• GNN architectures tested:

GCN, GAT and Transformer

Purpose:

Identify which embedding + model combo yields best performance for each task

Methodology - Dataset Versions

Skewed class distribution → tested two setups:

Original (imbalanced)
Balanced (undersampled negatives)

Methodology - Hyperparameter Tuning

- Epoch tuning
- Threshold analysis (binary classifier)

Comparison to Prior Benchmarks

 Benchmarked against HOGCN (Kishan KC et al., 2020) and Crop-GPA (Gao et al., 2024) to assess precision and performance relative to existing GNN-based methods

False Positive Analysis

Manually reviewed top high-confidence false positives

LLM Embeddings Boost Relation Classification

- We tested 4 embedding strategies across 3 GNN models
- Best performing setup: Transformer + LLM embeddings, with an F1 score of 0.563
- Simpler embeddings (random, PCA) failed to capture semantic signals
- LLM embeddings trained on biomedical text provided richer node representations

Embedding	Model	Therapeutic	Biomarker	Genomic	Accuracy	F1
Туре				Alterations		
Random	GCN	0.428	0.444	0.546	0.489	0.476
Initialization	GAT	0.388	0.563	0.582	0.551	0.550
	Transformer	0.371	0.517	0.527	0.504	0.504
PCA on LLM	GCN	0.334	0.458	0.552	0.491	0.475
Embeddings	GAT	0.340	0.542	0.601	0.546	0.539
	Transformer	0.416	0.560	0.567	0.547	0.546
LLM	GCN	0.272	0.601	0.554	0.556	0.548
Embeddings	GAT	0.211	0.591	0.582	0.555	0.545
	Transformer	0.181	0.602	0.626	0.582	0.563
LLM w/o NA	GCN	0.347	0.276	0.510	0.408	0.361
Connections	GAT	0.367	0.516	0.575	0.527	0.519
	Transformer	0.321	0.547	0.586	0.541	0.534

LLM Embeddings Boost Relation Classification

- We tested 4 embedding strategies across 3 GNN models
- Best performing setup: Transformer + LLM embeddings, with an F1 score of 0.563
- Simpler embeddings (random, PCA) failed to capture semantic signals
- LLM embeddings trained on biomedical text provided richer node representations

Balancing Improves Recall, But Precision Wins

 We trained each model on two dataset versions: the original skewed set and a balanced set

```
Positive edges: 56115
Negative edges used: 56115 (from 122149 total NAs)
Positive edges: 4987
Negative edges used: 15206 (from 15206 total NAs)
Positive edges: 4908
Negative edges used: 15608 (from 15608 total NAs)
```

Balancing Improves Recall, But Precision Wins

- We trained each model on two dataset versions: the original skewed set and a balanced set
- Balancing helped with recall, but reduced precision significantly
- On the original data, the Transformer model achieved 0.729 precision
- For discovery tasks, fewer but reliable predictions are preferred
- Binary Classification results:

Dataset	Model	Precision (Class 1)	Recall (Class 1)	F1 (Class 1)	Accuracy	Macro F1
Original	GCN	0.575	0.213	0.311	0.809	0.600
	GAT	0.551	0.306	0.393	0.809	0.640
	Transformer	0.729	0.289	0.413	0.834	0.659
Balanced	GCN	0.435	0.616	0.510	0.766	0.678
	GAT	0.473	0.741	0.578	0.786	0.717
	Transformer	0.499	0.711	0.587	0.802	0.728

In Biomedical Discovery, Confidence > Coverage

- High precision minimizes false discoveries, which is critical in biology
- Each wrong prediction can mislead further lab work or research
- It's better to predict fewer associations, but be more confident in each
- This guided our choice of evaluation metrics and threshold tuning

Optimizing the Confidence Threshold

- We tuned the probability threshold of the binary classifier (Val 0.96, Test 0.98)
- Higher thresholds reduce the number of predicted positives (recall), but improve precision
- At threshold 0.96, the model made 240 predictions with a 98% precision
- This tuning is essential for controlling model behavior

Threshold: 0.5-0.95 (0.05 jumps)

Threshold: 0.95-0.99 (0.01 jumps)

A False Positive?

A False False Positive!

A False False Positive!

Save

New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies

A False Positive? Actually, a Hidden Truth

- One prediction was a link between the gene DNAJC19 and anemia, which was not labeled in the dataset
- However, literature confirms this gene is associated with MLASA, which includes sideroblastic anemia
- The model labeled it as "biomarker" slightly off

High Confidence Errors Reveal New Biology

On the test dataset At threshold 0.98, we reviewed 451 predictions

High Confidence Errors Reveal New Biology

- Only 27 were labeled as false positives
- The few false positives, would have a higher chance to be novel connections
- Many of those were plausible: shared disease pathways, ontology links, or semantic similarities
- Errors often resulted from dataset gaps, not model flaws

Second Stage Helps Interpret Model Outputs

- We ran a multi class classifier on the false positives from stage 1
- Even when the type wasn't always accurate, it provided useful context
- Examples include "biomarker" predictions where the gene is mentioned in literature as Genomic Alteration.

Final Setup: Optimized for Biomedical Use

- GNN architecture: Transformer
- Node features: LLM based embeddings
- Training: 200 epochs on the original dataset
- Threshold: 0.96/0.98 for high confidence outputs
- Inference pipeline: binary prediction → relation classification

```
encoder = GraphTransformerEncoder(in_channels=768, hidden_channels=64, out_channels=32)
classifier = EdgeClassifier(node_emb_dim=32, num_classes=3)
```

Results

After training on train+validation sets and inferring on test dataset:

Task	Model	Embedding	Accuracy	F1 Score	AUC
Binary	Transformer	LLM	0.89	0.83	0.926
Multi-class	Transformer	LLM	0.68	0.64	

Comparable to State of the Art

- Our model achieved AUC 0.926 on the binary-class task
- HOGCN (state of the art) reported AUC of 0.936
 on similar task and dataset
- Crop-GPA performed similarly (or even worse)
 with heavier model complexity
- Our simpler architecture still matches these strong baselines

Dataset	Method	AUPRC	AUROC
	DeepWalk	0.753 ± 0.008	0.735 ± 0.009
	node2vec	0.771 ± 0.005	0.720 ± 0.010
	L3	0.891 ± 0.004	0.793 ± 0.006
	VGAE	0.853 ± 0.010	0.800 ± 0.010
DTI	GCN	0.904 ± 0.011	0.899 ± 0.010
	SkipGNN	0.928 ± 0.006	0.922 ± 0.004
	HOGCN	$\textbf{0.937} \pm \textbf{0.001}$	0.934 ± 0.001
	DeepWalk	0.698 ± 0.012	0.712 ± 0.009
	node2vec	0.801 ± 0.004	0.809 ± 0.002
	L3	0.860 ± 0.004	0.869 ± 0.003
	VGAE	0.844 ± 0.076	0.878 ± 0.008
DDI	GCN	0.856 ± 0.005	0.875 ± 0.004
	SkipGNN	0.866 ± 0.006	0.886 ± 0.003
	HOGCN	0.897 ± 0.003	0.911 ± 0.002
	DeepWalk	0.715 ± 0.008	0.706 ± 0.005
	node2vec	0.773 ± 0.010	0.766 ± 0.005
	L3	0.899 ± 0.003	0.861 ± 0.003
	VGAE	0.875 ± 0.004	0.844 ± 0.006
PPI	GCN	0.909 ± 0.002	0.907 ± 0.006
	SkipGNN	0.921 ± 0.003	0.917 ± 0.004
	HOGCN	0.930 ± 0.002	0.922 ± 0.001
	DeepWalk	0.827 ± 0.007	0.832 ± 0.003
	node2vec	0.828 ± 0.006	0.834 ± 0.003
	L3	0.899 ± 0.001	0.832 ± 0.001
	VGAE	0.902 ± 0.006	0.873 ± 0.009
GDI	GCN	0.909 ± 0.002	0.906 ± 0.006
	SkipGNN	0.915 ± 0.003	0.912 ± 0.004
	HOGCN	0.941 ± 0.001	0.936 ± 0.001

What We've Achieved

- Built a two-stage GNN pipeline: discovery + interpretation
- Achieved high precision and strong generalization
- Leveraged biomedical LLM embeddings to improve prediction
- Outperformed or matched benchmark models
- Identified plausible new gene-disease links

What Comes Next

- Expand the graph to include proteins, drugs, pathways
- Add retrieval-based models (GNN+LLM) to validate predictions
- Fine-tune BioBERT on domain-specific gene-disease corpora
- Get more features/data in order to create better embeddings
- Explore architecture tuning: attention heads, layer depth, and pooling strategies

Under the Hood: Technical Overview

- Node embeddings: Pretrained BiomedNLP language model, optionally reduced with PCA
- Training: Models trained for 200 epochs, across both balanced and unbalanced datasets
- Classification tasks:
 - o **Binary classification** to identify whether a gene disease association exists
 - Multi-class classification to assign a relation type (therapeutic, biomarker, genomic alteration)
- Two stage pipeline: Binary classifier → Multi-class classifier applied to high confidence false positive predictions
- Threshold analysis: Model outputs analyzed post training to identify optimal confidence cutoffs
- Evaluation: Used precision, recall, F1 score, accuracy, and AUC on validation and test sets

Questions?

Breast Carcinoma

Thank You

