

Topological Spaces

Why

We want to generalize the notion of continuity.

Definition

A topological space is a base set and a set distinguished subsets of this set for which: (1) the empty set and the base set are distinguished, (2) the intersection of a finite family of distinguished subsets is distinguished, and (3) the union of a family of distinguished subsets is distinguished. We call the set of distinguished subsets the topology. We call the distinguished subsets the open sets.

Notation

Let A be a non-empty set. For the set of distinguished sets, we use \mathcal{T} , a mnemonic for topology, read aloud as "script T". We denote elements of \mathcal{T} by O, a mnemonic for open. We denote the topological space with base set A and topology \mathcal{T} by (A, \mathcal{T}) . We denote the properties satisfied by elements of \mathcal{T} :

1.
$$X, \emptyset \in \mathcal{T}$$

2.
$$\{O_i\}_{i=1}^n \subset \mathcal{T} \longrightarrow \bigcap_{i=1}^n O_i \in \mathcal{T}$$

3.
$$\{O_{\alpha}\}_{{\alpha}\in I}\subset\mathcal{T}\longrightarrow \cup_{{\alpha}\in I}\in\mathcal{T}$$

Examples

R with the open intervals as the open sets is a topological space.

