Códigos y criptografía

Jos<u>é</u> Carlos García

7 de marzo de 2016

Índice general

1.	Introducción			
	1.1.	Cuerpos finitos	5	
2.	Cód	ligos autocorrectores	7	
	2.1.	Parámetros de un código	7	
		Códigos lineales		
		2.2.1. Códigos de Hamming	11	
	2.3.	Algunos códigos buenos	13	
		2.3.1. Códigos de Golay. Ternarios y binario	13	
		2.3.2. Códigos de Hadamard	16	
	2.4.	Códigos cíclicos	16	
3.	Criptografía 1			
	3.1.	Criptosistemas simétricos	17	
	3.2.	Criptosistemas de clave pública	17	

4 ÍNDICE GENERAL

Capítulo 1

Introducción

1.1. Cuerpos finitos

Definición 1 (Cuerpo). Un cuerpo es un anillo conmutativo con unidad en el que todo elemento distinto de 0 tiene inverso.

Ejemplo 1. $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es anillo conmutativo con unidad, además, si n es primo entonces $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un cuerpo.

La suma y el producto de $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ se define como el resto de la suma de los elementos, para el producto de forma análoga.

Teorema 1. Si un K es finito, entonces $card(K) = p^r \ con \ p \in \mathbb{P} \ y \ r \in \mathbb{N}$

Teorema 2. Dado $p \in \mathbb{P}, r \in \mathbb{N}$ entonces existe un cuerpo K tal que $card(K) = p^r$. Además, dos cuerpos finitos con el mismo cardinal son isomorfos.

Definición 2 (Cuerpo finito de q elementos). Si $q = p^r$ denotamos por \mathbb{F}_q el cuerpo finito de q elementos.

Ejemplo 2. Construir un cuerpo con 4 elementos.

Consideremos $\mathbb{F}_2[x]$ y el ideal $< x^2 + x + 1 >$, claramente $< x^2 + x + 1 >$ es irreducible en $\mathbb{F}_2[x]$, además $\mathbb{F}_2[x]$ es D.I.P., no existe ningún ideal I, $< x^2 + x + 1 > \subset I \subset \mathbb{F}_2[x]$, por tanto $< x^2 + x + 1 >$ es maximal, de aquí, se tiene que $\mathbb{F}_2[x]/< x^2 + x + 1 >$ es cuerpo. Hacemos $\alpha = x + (x^2 + x + 1)$. Los elementos de $\mathbb{F}_2[x]/< x^2 + x + 1 >$ son:

$$\alpha = x + (x^2 + x + 1)$$

$$\alpha + 1 = (x + 1) + (x^2 + x + 1)$$

$$1 = 1 + (x^2 + x + 1)$$

$$0 = 0 + (x^2 + x + 1)$$

 $card(\mathbb{F}_2[x]/< x^2+x+1>)=4$ de la observación anterior.

Algoritmo 1 (Algoritmo de Euclides). Se define el algoritmo de Euclides para calcularmáximo

común divisor, de forma que sean $a, b \in \mathbb{N}$, con $a \ge b$ hacemos:

$$a = c_1b + r_1$$

$$b = c_2r_1 + r_2$$

$$r_1 = c_3r_2 + r_3$$

$$r_2 = c_4r_3 + r_4$$
...
$$r_{s-2} = c_s + r_{s-1} + r_s$$

$$r_{s-1} = c_{s+1} + r_s$$

Podemos obtener $r_s = mcd(a, b)$ del modo siguiente:

$$r_1 = a - c_1 b$$

$$b = c_2 (a - c_1 b) + r_2$$

$$r_2 = -c_2 a + (1 + c_1) b$$

De este modo, podemos obtener r_s como continuación de a,b, de modo: $mcd(a,b)=r_s=\lambda a+\mu b$

Observación 1. λ, μ se obtienen de modo efectivo a partir de las divisiones anteriores.

Ejemplo 3. $Calcular \ mcd(139, 20)$.

Y además, $\lambda, \mu \in \mathbb{Z}$ tales que $\lambda 139 + \mu 20 = mcd(139, 20)$. Aplicando el algoritmo de Euclides:

$$139 = 6 \cdot 20 + 19$$

$$20 = 1 \cdot 19 + 1$$

$$19 = 139 - 6 \cdot 20$$

$$1 = 20 - 1 \cdot 19 = 20 - 1(139 - 6 \cdot 20) = 7 \cdot 20 - 1 \cdot 139$$

Observación 2. El inverso de 20 en \mathbb{F}_{139} :

$$7 \cdot 20 - 1 \cdot 139 = 1$$
.
Si reducimos mód 139:

$$7 \cdot 20 = 1 \mod 139$$

El inverso de 20 en \mathbb{F}_{139} es 7

Capítulo 2

Códigos autocorrectores

2.1. Parámetros de un código

Definición 3 (Alfabeto finito). Decimos que A es un **alfabeto finito** si A es conjunto finito de q símbolos.

Definición 4 (Código). Decimos que C es un código si $C \subset A^n$, $C \neq \emptyset$

Definición 5 (Palabra). Decimos que x es una palabra si $x \in A$.

Definición 6 (Palabra-código). Decimos que c es una palabra-código si $c \in C$.

Ejemplo 4. $A = \mathbb{F}_2$. Tomamos C = A, aquí hay más probabilidad de error. $C_2 = \{(000), (111)\} \subset \mathbb{F}_2^3$ código.

Definición 7 (Parámetros de un código). Los parámetros de un código son:

- lacktriangledown Longitud: n.
- Razón de información: $\frac{\log_q \# \mathcal{C}}{n}$
- **Distancia de Hamming:** Sean $x = (x_1, x_2, ..., x_n) \in \mathcal{A}^n$, $y = (y_1, y_2, ..., y_n) \in \mathcal{A}^n$ se define $d(x, y) = \#\{i : x_i \neq y_i\}$. Define una distancia métrica.
- **Distancia mínima:** $d(C) = \min\{d(c,c') : c,c' \in C,c' \neq c\}$

Observación 3. Sea C un código con distancia mínima 2d(C) + 1. Además:

$$d(x, c_1) \le d(\mathcal{C})$$

$$d(x, c_2) \le d(\mathcal{C})$$

Ahora, por la desigualdad triangular

$$d(c_1, c_2) \le d(c_1, x) + d(c_2, x) \le d(C) + d(C)$$

Por tanto, el código se decodificará con mayor facilidad.

Observación 4. Si d(C) = 2d(C) + 1, dos bolas cualesquiera $B(c_1, d(C))$, $B(c_2, d(C))$, $c_1 \neq c_2 \in C$ son disjuntos.

Definición 8 (Código perfecto). Un código perfecto es un código con d(C) = 2d(C) + 1 y tal que $\{B(c, d(C) : c \in C)\} = A^n$

El **Ejemplo 4** corresponde a un código perfecto.

Notación 1. Escribimos [n, M, d] – código si queremos representar un código de longitud n, M elementos y diistancia mínima d.

Ejemplo 5. Sea $C_1 = \{0, 1\}$ $y C_2 = \{(000), (111)\} \subset \mathbb{F}_2^3$.

Sea 0 la probabilidad de que se produzca un error al trasmitir un bit.

Como $p < \frac{1}{2}$ proponemos un algoritmo de decodificación, por **máximo verosimilitud**, lo más probable es que la palabra enviada del código sea la palabra de las del código que está más cercana a la palabra recibida.

Para C_1 , la probabilidad de decodificar correctamente la palabra recibida es 1-p.

Para C_2 : (000) la decodificamos correctamente si al enviarla nos llega (000), la probabilidad de que sea correcta sería $(1-p)^3$, (100), la probabilidad de que sea correcta sería $p(1-p)^2$, (010), la probabilidad de que sea correcta sería $p(1-p)^2$ y (001) la probabilidad de que sea correcta sería $p(1-p)^2$.

Por tanto, la probabilidad sería $(1-p)^3 + 3p(1-p)^2$.

Si tomamos p = 0,1, tendríamos para $C_1 : 0,9$ y para $C_2 : 0,972$.

Ejemplo 6. Sea $C = \{(000), (111)\} \subset \mathbb{F}_2^3$.

Recibida	Decodificar
(000)	(100)
(100)	(100)
(110)	(100)
(101)	(100)
(010)	(100)
(001)	(100)
(011)	(111)
(111)	(111)

De los que decodificamos como (100) tenemos una probabilidad de acierto de $(1-p)^3 + 3p(1-p)^2 + 2p^2(1-p)$, en el otro caso tenemos $(1-p)^3 + p(1-p)^2$.

2.2. Códigos lineales

Definición 9 (Código lineal). Un código lineal $\mathcal{C} \subset \mathbb{F}_q^n$ donde \mathcal{C} es un subespacio vectorial de \mathbb{F}_q^n

Gracias a que es una estructura lineal, el código podemos simplificarlo teniendo en cuenta la base del subespacio vectorial.

Definición 10 (Peso de x). Sea $x = (x_1, x_2, ..., x_n) \in \mathbb{F}_q^n$. El **peso** de x es $w(x) = \#\{i : x_i \neq 0\}$

Notación 2. $\mathcal{C} \subset \mathbb{F}_q^n$. Se define $W(\mathcal{C}) = \min\{w(x) : x \in \mathcal{C}/\{0\}\}$

Proposición 1. Si C es lineal, entonces d(C) = W(C)

Demostración. Sean $c_1 \neq c_2 \in \mathcal{C}$ que cumplen que $d(c_1, c_2) = d(\mathcal{C})$

Dado que $d(\mathcal{C}) = d(c_1, c_2) = w(c_1 - c_2)$, pero dado que $c_1 - c_2 \neq 0$, tenemos que $w(c_1 - c_2) \geq W(\mathcal{C})$, por tanto, $d(\mathcal{C}) \geq W(\mathcal{C})$.

Sea $c \in \mathcal{C} - \{0\}$, tal que cumple que $w(c) = W(\mathcal{C})$.

$$W(\mathcal{C}) = w(c) = w(c-0) = d(c,0) \ge d(c)$$

Notación 3. Si $\mathcal{C} \subset \mathbb{F}_q^n$ lineal, $dim_{\mathbb{F}_1}\mathcal{C} = k$ decimos que \mathcal{C} es un [n,k] – código.

Definición 11 (Matriz generadora). *Matriz generadora* de un [n,k] – código es un matriz G, con dimensiones $k \times n$ cuyas filas forman una base de C

Ejemplo 7. Si $\mathcal{C} = \{(000), (111)\}$, la matriz generadora es (111)

Definición 12 (Matriz de control de paridad). *Matriz de control de paridad* de un [n,k] – código lineal es una matriz H de orden $(n-k) \times n$ tal que:

$$\mathcal{C} = \{ x \in \mathbb{F}_q^n : xH^t = 0 \}$$

Observación 5. Si $\mathcal{G} = (I_k|P)$ es generadora, con P con n-k columnas, entonces $H = (-p^t|I_{n-k})$ es de control de paridad.

Ejemplo 8. En \mathbb{F}_3^5 consideramos el código con matriz generadora:

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Tratemos de dar una base de la matriz:

$$\mathcal{C} = \{\lambda_1 \vec{u_1} + \lambda_2 \vec{u_2} + \lambda_3 \vec{u_3} : \lambda_i \in \mathbb{F}_3\}$$

$$= \{(\lambda_1, \lambda_2, \lambda_3, \lambda_1 + \lambda_2, \lambda_1 + \lambda_3) : \lambda_i \in \mathbb{F}_3\} =$$

$$= \{(x_1, x_2, x_3, x_4, x_4) \in \mathbb{F}_3^5 : (-x_3 - x_2 + x_4 = 0, x_4 = x_1 + x_2, x_5 = x_1 + x_3)\} =$$

La matriz de las ecuaciones anterior es:

$$\begin{pmatrix} -1 & -1 \\ -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = (0,0)$$

La transpuesta de la matriz anterior es la matriz de control de paridad de $\mathcal C$

Algoritmo 2 (Algoritmo de decodificación usando el síndrome). Supongamos que $\mathcal{C} \subset \mathbb{F}_q$ es un código lineal, sea $x \in \mathbb{F}_q^n$, podemos decodificar x usando el código \mathcal{C} comparando x con cada una de las palabras del código.

Consideramos:

$$x - \mathcal{C} = \{x - c : c \in \mathcal{C}\} = x + \mathcal{C}$$

 $x+\mathcal{C}$ es el conjunto de elementos que están en la misma clase $\mathbb{F}_q^n/\mathcal{C}$.

En el conjunto x - C consideramos un elemento e que tenga peso mínimo.

Si $e \in \mathcal{C}$ será de la forma e = x - c. Entonces $c \in \mathcal{C}$ está a la menor distancia de la palabra x.

Podemos decodificar la palabra x por la palabra c, que es c = x - e.

A la palabra e se le llama **vector error** (asociado a x).

Definición 13 (Sindrome de x). Sea H la matriz de control de paridad del código C, consideramos $x \in \mathbb{F}_q^n$, se define **el síndrome** de x como $xH \in \mathbb{F}_q^{n-k}$.

Observación 6. Dos palabras $x, x' \in \mathbb{F}_q^n$ tienen el mismo síndrome si y sólo si $x + \mathcal{C} = x' + \mathcal{C}$. En efecto, si $x + \mathcal{C} = x' + \mathcal{C} \iff xH^t - x'H^t = 0 \iff xH^t = x'H^t$

Algoritmo 3 (Algoritmo de decodificación usando síndrome). A continuación se nuestra el algoritmo de decodificación usando síndrome

- 1. Para cada clase x + C de \mathbb{F}_q^n/C consideramos un $e \in x + C$ de peso mínimo.
- 2. Para cada clase x + C calculamos el síndrome xH^t . Asociamos a ese síndrome el vector error e.
- 3. Cuando recibimos una palabra x, calculamos su síndrome, que tiene asociado un vector error e, y decodificamos x por c = x e.

Ejemplo 9. En \mathbb{F}_2^5 consideramos el código \mathcal{C} con matriz generadora:

$$G = \left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{array}\right)$$

Para calcular $\mathbb{F}_2^5/\mathcal{C}$, ampliamos la matriz G de modo que sea una base de \mathbb{F}_2^5 , de este modo la base de $\mathbb{F}_2^5/\mathcal{C}$ sería lo que se 'amplia'.

Es fácil ver que entonces que $\{(00010) + C, (00001) + C\}$ es una base de \mathbb{F}_2^5/C .

De esta definición, las distintas clases de $\mathbb{F}_2^5/\mathcal{C}$ son:

- 1. (00000) + C
- 2. (00010) + C
- 3. (00001) + C
- 4. (00011) + C

En el caso 1, dado que el (00000) está en el código, es fácil ver que el vector de error es e = (00000).

Por otro lado, al sumar a 2 ella misma, tenemos (00000), por tanto, e = (00010).

Para 3 es análogo, e = (00001).

Finalmente, para el último tenemos e = (10000).

Calculamos ahora los síndromes para cada clase; empezamos calculando una matriz de control de pariedad H del código C, transponiendo G, tenemos:

$$H = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

Ahora, para cada clase calculamos xH^t .

- 1. $(0,0) \longleftrightarrow e = (00000)$
- $2. (1,0) \longleftrightarrow e = (00010)$
- 3. $(0,1) \longleftrightarrow e = (00001)$

4.
$$(1,1) \longleftrightarrow e = (10000)$$

Se puede ver que las últimas componentes de los vectores x coinciden con el valor del síndrome, esto no es una casualidad.

Ahora tomamos cualquier palabra x = (01101) calculamos su síndrome:

$$xH^t = (1,0) \longleftrightarrow e = (00010)$$

Entonces,

$$c = x - e = (01101) - (00010) = (01111)$$

2.2.1. Códigos de Hamming

Supongamos que estamos \mathbb{F}_q^r , y queremos un conjunto maximales de vectores de \mathbb{F}_q^r , con la condición de que cualesquiera dos vectores del conjunto sean linealmente independientes. En $\mathbb{F}_q^r - \{0\}$, consideramos la relación de equivalencia:

$$(b_1,...,b_r) \equiv (a_1,...,a_r) \Longleftrightarrow (b_1,...,b_r) = \lambda(a_1,...,a_r), \lambda \in \mathbb{F}_q$$

Cada clase de equivalencia tiene q-1 elemento = $(\#(\mathbb{F}_q-\{0\}))$. Ahora, $\#\{\mathbb{F}_q^r-\{0\}\}=q^r-1$. Luego

$$\#\mathbb{F}_q^r - \{0\}/\sim = \frac{q^r - 1}{q - 1}$$

Al espacio $\mathbb{K}^r - \{0\}/\sim$ se le llama **espacio proyectivo**.

Definición 14 (Código de Hamming). Consideremos $r \in \mathbb{N}$, $n = \frac{q^r - 1}{q - 1}$. Consideremos una matriz H $r \times n$ cuyas columnas son los representantes de cada una de las clases de equivalencia de $\mathbb{F}_q^r - \{0\}/\sim$.

Denotamos por $\mathcal{H}(q,r)$ el código cuya matriz de pariedad es H.

A este código se le denomina Código de Hamming asociado a r,n

Ejemplo 10. \mathbb{F}_{3}^{2} , r = 2, q = 3, entonces $n = \frac{3^{2} - 1}{3 - 1} = 4$. Además,

$$H = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right)$$

La matriz de paridad de $\mathcal{H}(3,2)$, entonces

$$\mathcal{H}(3,2) = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}_3^4 : (x_1, x_2, x_3, x_4) \cdot H^t = 0\} =$$

$$= \{(x_1, x_2, x_3, x_4) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = (0,0)\} =$$

$$= \{x_1 + x_3 + x_4 = 0, x_2 + x_3 - x_4 = 0\} =$$

$$= \{(-\lambda \mu, -\lambda + \mu, \lambda, \mu) : \lambda, \mu \in \mathbb{F}_3\}$$

Observación 7 (Parámetros del código $\mathcal{H}(q,r)$). De la definición del código de Hamming, se tiene:

- Longitud: $n = \frac{q^r 1}{q 1}$
- Dimensión: n-r pues rango(H) = r, dado que $(a_1, 0, ..., 0), (0, a_2, ..., 0), (0, 0, ..., a_r)$ con $a_i \neq 0$.
- Distancia mínima: 3.

Proposición 2. $d(\mathcal{H}(q,r)) = 3$

Demostración. Vemos que $\mathcal{H}(q,r)$ no tiene vectores de peso 1 ni 2: Peso 1: $(0,...,0,a_i,0,...,0) \in \mathcal{H}(q,r)$.

Si consideramos el siguiente producto:

$$(0, ..., 0, a_i, 0, ..., 0) \cdot \begin{pmatrix} a_{11} & ... & a_{1r} \\ a_{21} & ... & a_{2r} \\ ... & ... & ... \\ ... & ... & ... \\ a_{r1} & ... & a_{nr} \end{pmatrix} = (0, ..., 0)$$

Además, $a_i \neq 0$, entonces la fila i de H^t es nula. $\longrightarrow \longleftarrow$ Peso 2: Análogo.

Observación 8 (Vector de peso 3 en $\mathcal{H}(q,r)$). Consideremos las filas 1,2 de H^t . Ahora sean $a = (a_1, ..., a_r), b = (b_1, ..., b_r)$, dado que a, b son linealmente independientes se concluye que a + b es linealmente independiente de a y b. Es decir, alguna fila de la matriz de H^t es proporcional a a + b, de aqui,

$$(a_1 + b_1, ..., a_r + b_r) = \lambda(c_1, ..., c_r)$$

Consideremos $(1,1,0,...,-\lambda,0,...,0) \in \mathcal{H}(q,r)$, como tiene 3 componentes distintas de cero, tenemos que claramente es de peso 3.

Definición 15 (Código perfecto). Sea $\mathcal{H}(q,r)$ en un $[\frac{q^r-1}{q-1}, \frac{q^r-1}{q-1}-r, 3]$ – código lineal. Un código con estos parámetros se dice que es un **código perfecto**.

Consideremos \mathbb{F}_q^n , $\sharp \#B(x,e)$? $e \leq n$.

- 1. Hay n(q-1) palabras a distancia 1.
- 2. Hay $C(n,2)(q-1)^2$ palabras a distancia 2.
- 3. En general, $C(n,r)(q-1)^r$

De este modo,

$$\#B(x,e) = \sum_{r=0}^{e} C(n,r)(q-1)^{r}$$

Proposición 3. $\mathcal{H}(q,r)$ es perfecto.

Demostración. $d = 3 = 2 \cdot 1 + 1, e = 1$, de este modo:

$$\sum_{c \in \mathcal{H}(q,r)} \#B(c,1) = \#\mathcal{H}(q,r)(1+n(q-1)) = q^{n-r}(1+n(q-1)) = q^{n-r}(1+\frac{q^r-1}{q-1}) = q^{n-r}(q^r) = q^n$$

Al ser perfecto, sólo existe una palabra en el código con distancia mínima.

Ejemplo 11. $\mathcal{C} \subset \mathbb{F}_2^7$ que cumpla que $\#\mathcal{C} = 8$, $y \ d(\mathcal{C}) = 4$.

Para ello empezamos de:

(0000000)

(1111000)

(1011111)

(0110000)

¿?

Ejemplo 12. Sea $\mathcal{C} \subset \mathbb{F}_2^n$ código perfecto con $d(\mathcal{C}) = 7$. Entonces $n \in \{7, 23\}$

2.3. Algunos códigos buenos

2.3.1. Códigos de Golay. Ternarios y binario

Veremos que los parámetros de los códigos de Golay son los siguientes:

1. **Ternario**: $[11, 6, 5] - c\'{o}digo$

2. **Binario**: $[23, 12, 7] - c\'{o}digo$

Definición 16 (Producto espacio vectorial). Supongamos que $x, y \in \mathbb{F}_q^n$. Definimos el producto de $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ como

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Definición 17 (Código dual). $\mathcal{C} \subset \mathbb{F}_q^n$ código lineal. El código dual de \mathcal{C} es:

$$\mathcal{C}^{\perp} = \{ x \in \mathbb{F}_q^n : \langle x, c \rangle = 0, \forall c \in \mathcal{C} \}$$

Ejemplo 13. En \mathbb{F}_2^6 consideremos \mathcal{C} con matriz generadora:

$$\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)$$

 $\mathcal{C}^{\perp} = \{x = (x_1, x_2, x_3, x_4, x_5, x_6) : x \cdot c_1 = 0, x \cdot c_2 = 0, x \cdot c_3\} = \{x_1 + x_4 + x_5 = 0, x_2 + x_4 + x_6 = 0, x_3 + x_5 + x_6 = 0\},\$ $donde\ c_i\ son\ los\ elementos\ de\ la\ base,\ y \cdot denota\ el\ producto\ espacio\ vectorial.$

Observación 9. Una matriz generadora del código \mathcal{C} es una matriz de control de paridad \mathcal{C}^{\perp} . Por tanto, $\dim \mathcal{C}^{\perp}_{\mathbb{F}_q} = n - \dim \mathcal{C}_{\mathbb{F}_q}$

Definición 18 (Código autodual). Un código lineal $\mathcal{C} \subset \mathbb{F}_q^n$ es autodual si $\mathcal{C}^{\perp} = \mathcal{C}$

Definición 19 (Código extendido). $\mathcal{C} \subset \mathbb{F}_q^n$ lineal. El código extendido $\mathcal{C} \subset \mathbb{F}_q^{n+1}$ es el código:

$$\hat{\mathcal{G}} = \{(x_1, x_2, ..., x_n, x_{n+1}) : (x_1, ..., x_n) \in \mathcal{C}, x_1 + x_2 + ... + x_n + x_{n+1} = 0\}$$

Definición 20 (Código de Golay Ternario). *Empezamos de* \mathbb{F}_3^{11} , k = 6, d = 5. *Sea* \mathcal{G}_3 *una matriz generadora.*

El código extendido $\hat{\mathcal{G}}_3$ tiene matriz generadora:

 $\hat{\mathcal{G}}_3$ es autodual, para cualquiera c, c' elementos de la matriz se tiene que < c, c' >= 0. Por linealidad, para cualquier elemento del código también cumple esto. Se concluye entonces que toda palabra de $\hat{\mathcal{G}}_3$ tiene peso múltiplo de 3. En efecto, si $x = (x_1, ..., x_{12})$, entonces:

$$0 = \langle x, x \rangle = x_1^2 + \dots + x_1 2^2$$

. Veamos que obviamente $d(\hat{\mathcal{G}}_3)=6$. Veamos que $\hat{\mathcal{G}}\neq 0$ tiene peso ≥ 6 . Combinaciones de 1 vector de la base. Combinaciones de 2 vectores

$$\hat{\mathcal{G}} = \{(x_1, x_2, ..., x_n, x_{n+1}) : (x_1, ..., x_n) \in \mathcal{C}, x_1 + x_2 + ... + x_n + x_{n+1} = 0\}$$

De aquí el peso debe cumplir $4 \le peso \le 8$, por tanto, necesariamente peso = 6.

Combinaciones de tres vectores: $peso \ge 4$ entonces $peso \ge 6$.

Combinaciones de cuatro, cinco, seis vectores: $peso \ge 4, peso \ge 6$.

Luego, $d(\hat{\mathcal{G}}_3) \geq 6$. Como los vectores de la matriz ampliada tiene peso 6, concluimos que $d(\hat{\mathcal{G}}_3) = 6$ Conclusión: $d(\mathcal{G}_3) \geq 5$, pero en la matriz \mathcal{G} hay vectores de peso 5, por tanto, $d(\mathcal{G}_3) = 5$

Proposición 4. \mathcal{G}_3 es perfecto.

Demostración.
$$(\#\mathcal{G}_3) \cdot (\#B(x,2)) = 3^6(1+C(11,1)(q-1)+C(11,2)(q-1)^2 = 3^6(1+22+220) = 3^6(243) = 3^63^5$$

Definición 21 (Código de Golay binario). Sea $n=23, k=12, d=7, y \mathcal{G}_2 \subset \mathbb{F}_2^{23}$. Consideramos el código de Hamming con matriz de control de paridad:

$$\mathcal{H} = \left(\begin{array}{ccccccc} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}\right)$$

Una matriz generador de G_2 de H:

$$\mathcal{G} = \left(\begin{array}{cccccccc} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

$$\mathcal{G}^* = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

Consideramos $\hat{\mathcal{H}}, \hat{\mathcal{H}}^*$

$$\hat{\mathcal{G}} = \left(\begin{array}{ccccccccc} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

$$\hat{\mathcal{G}}^* = \left(\begin{array}{ccccccccccc} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{array}\right)$$

Observación 10. Usando la misma notación que antes:

- $\hat{\mathcal{H}} \cap \hat{\mathcal{H}}^* = \{0, 1\}$
- $\hat{\mathcal{H}}, \hat{\mathcal{H}}^*$ son autoduales.
- Las palabras de $\hat{\mathcal{H}}$ y $\hat{\mathcal{H}}^*$ tienen peso múltiplo de 4.
- $\bullet \ d(\hat{\mathcal{H}}) = d(\hat{\mathcal{H}}^*) = 4$

Consideramos el código $\hat{\mathcal{C}} \subset \mathbb{F}_2^{24}$:

$$\hat{\mathcal{C}} = \{(a+x,b+x,a+b+x): a,b \in \hat{\mathcal{H}}, x \in \hat{\mathcal{H}^*}\}$$

Proposición 5. Sean $\{a_1, a_2, a_3, a_4\}, \{b_1, b_2, b_3, b_4\}$ base de $\hat{\mathcal{H}}$ y $\{x_1, x_2, x_3, x_4\}$ base $\hat{\mathcal{H}}^*$ entonces:

$$\{(a_i, 0, a_i)\}_{i=1,2,3,4} \cup \{(0, b_i, b_i)\}_{i=1,2,3,4} \cup \{(x_i, x_i, x_i)\}_{i=1,2,3,4}$$

 $son\ base\ de\ \hat{\mathcal{C}}$

Observación 11. Sea $D \subset \mathbb{F}_2^{23}$ entonces

$$\mathcal{G}_2 = D = \{(c_1, ..., c_{23}) \in \mathbb{F}_2^{23} : (c_1, ..., c_{23}, c_{24}) \in \hat{\mathcal{C}}\}\$$

 G_2 tiene dimensión 12 también.

Observación 12. El código \hat{C} es autodual.

Observación 13. Como \hat{C} es autodual, y tiene una base cuyos elementos tienen peso múltiplo de 4, se concluye que todos las palabras de \hat{C} tienen peso múltiplo de 4.

Proposición 6.

$$d(\hat{\mathcal{C}}) = 8$$

16

2.3.2. Códigos de Hadamard

Definición 22 (Matriz de Hadamard). La matriz de Hadamard es una matriz \mathcal{H} $m \times n$ cuyas entradas son 1 o -1, y tal que

$$HH^t = nI_n$$

Observación 14. De la definición, se ve:

- 1. Cualesquiera 2 filas distintas de una matriz de Hadamard, tienen n/2 coordenadas iguales, y n/2 distintas.
- 2. Código de Hadamard. Consideramos una matriz \mathcal{H}_n de Hadamard y los 1 los dejamos como están y los -1 los sustituimos por 0. Obtenemos n palabras en \mathbb{F}_2^n a partir de las filas de la matriz \mathcal{H}_n .

Añadimos a estas palabras n palabras en \mathbb{F}_2^n otras n palabras que obtenemos al sumar en \mathbb{F}_2^n la palabra (1,1,...,1) a las n palabras anteriores. El **código de Hadamard** a partir de \mathcal{H}_n es la unión de esas 2n palabras, los parámetros de este código son:

- a) Longitud: n.
- b) Cardinal: 2n.
- c) Distancia mínima:
- 3. Si \mathcal{H}_n es Hadamard, podemos considerar:

$$\hat{\mathcal{H}} = \left(\begin{array}{c|c} \mathcal{H}_n & \mathcal{H}_n \\ \hline \mathcal{H}_n & -\mathcal{H}_n \end{array}\right)$$

Observemos:

$$\hat{\mathcal{H}}\hat{\mathcal{H}}^t = \left(\begin{array}{c|c} \mathcal{H}_n & \mathcal{H}_n \\ \hline \mathcal{H}_n & -\mathcal{H}_n \end{array}\right) \cdot \left(\begin{array}{c|c} \mathcal{H}_n^t & \mathcal{H}_n^t \\ \hline \mathcal{H}_n^t & -\mathcal{H}_n^t \end{array}\right) = 2nI_{2n}$$

Proposición 7. Si $n \ge 4$, entonces una matriz de Hadamard tiene orden múltiplo de 4.

Observación 15. Si $n \ge 4$ es múltiplo de 4, ¿existe una matriz de Hadamard de orden n?

2.4. Códigos cíclicos

Capítulo 3

Criptografía

- 3.1. Criptosistemas simétricos
- 3.2. Criptosistemas de clave pública

Autoría

Estas notas se han realizado en base a los apuntes de clase del profesor **Bartolomé López Jiménez** de la Universidad de Cádiz.