Collections Of Math

数学收集箱

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.

整理: Huyi Chen

整理时间: September 16, 2018 Email: hooyuser@outlook.com

Version: 1.00

目 录

1	数论		1
	1.1	中国剩余定理	1
		1.1.1 历史背景	1
		1.1.2 定理陈述	1
2	代数		_
2	1人致		5
	2.1	基础概念	5
		2.1.1 等价关系	5
	2.2	基本定理	7
		2.2.1 同态基本定理	7
参考文献			

第1章 数论

1.1 中国剩余定理

1.1.1 历史背景

《孙子算经》是中国南北朝时期(公元5世纪)的数学著作[1]. 其卷下第二十六题,叫做"物不知数"问题,原文如下:

有物不知其数, 三三数之剩二, 五五数之剩三, 七七数之剩二。问物几何?

翻译成白话文,即一个整数除以三余二,除以五余三,除以七余二,求这个整数.《孙子算经》中首次提到了同余方程组问题,并给出了以上具体问题的解法,因此在一些中文数学文献中,中国剩余定理也会被称为孙子定理.

宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对"物不知数"问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》[2]:

三人同行七十希, 五树梅花廿一支, 七子团圆正半月, 除百零五使得知.

这个歌诀给出了模数为 3、5、7 时候的同余方程的秦九韶解法。意思是:将除以 3 得到的余数乘以 70,将除以 5 得到的余数乘以 21,将除以 7 得到的余数乘以 15,全部 加起来后除以 105,得到的余数就是答案。比如说在以上的物不知数问题里面,使用以上的方法计算就得到

$$70 \times 2 + 21 \times 3 + 15 \times 2 = 233 = 2 \times 105 + 23$$
.

因此按歌诀求出的结果就是23.

1.1.2 定理陈述

中国剩余定理有三种常见的表述方式,将在下面一一给出.第一种是以余数的形式.我们首先引入带余除法的概念.

Proposition 1.1 带余除法

设 $a \in \mathbb{Z}$, $b \in \mathbb{N}^+$. 一定存在唯一的整数对 (q,r), 使 a = bq + r, 且 $0 \le r < b$. 其中 $b = \left[\frac{a}{b}\right]$ 称作 a 除以 b 的不完全商, $r = a - b\left[\frac{a}{b}\right]$ 称作 a 除以 b 的余数, r 也常常被记作 $a \mod b$.

命题的证明是平凡的,这里略去.在下面定理的叙述中,我们总是假定 n_1, n_2, \cdots, n_k 是大于 1 的整数,而 n_i 常常称作模.同时,我们记 $N = n_1 n_2 \cdots n_k$ 为所有模的积.现在给出中国剩余定理的第一种表述.

Theorem 1.1 中国剩余定理 I

如果 n_i 两两互素, 且整数 r_i 满足 $0 \le r < n_i$, 则存在唯一满足 $0 \le x < N$ 的整数 x, 使得对每一个 $i(1 \le i \le k)$, 都有 $x \mod n_i = r_i$.

上述表述是《孙子算经》中具体问题的一般化描述,但直接处理余数往往并不方便.若引入同余记号,这个问题实际上就变成如何去求解一个一元一次同余方程组,这也是中国剩余定理的第二种表述,而它与第一种描述是完全等价的.

Theorem 1.2 中国剩余定理Ⅱ

如果 n_1, n_2, \cdots, n_k 两两互素, 且 $r_1, r_2, \cdots, r_k \in \mathbb{Z}$, 则同余方程组

$$\begin{cases} x \equiv r_1 \pmod{n_1} \\ x \equiv r_2 \pmod{n_2} \\ \vdots \\ x \equiv r_k \pmod{n_k} \end{cases}$$

有无穷多解,且任意两个解模 N 同余.

Proof: 先证存在性. 记除了 n_i 外所有模的乘积为 $N_i = \frac{N}{n_i}$. 因为 n_i 两两互素, 故 N_i 也与 n_i 互素. 由 Bézout 等式, 存在整数 M_i , m_i , 使得

$$M_iN_i + m_in_i = 1.$$

因此

$$N_i M_i \equiv 1 \pmod{n_i}$$
.

记 $M_i=N_i^{-1}$ 为 N_i 的数论倒数,则 x 可以构造为 $\sum\limits_{i=1}^k r_i N_i N_i^{-1}$. 事实上,只要注意到 $j\neq i$ 时

1.1 中国剩余定理 -3/13-

 $n_i|N_i$, 于是有

$$x \equiv \sum_{i=1}^k r_i N_i N_i^{-1} \equiv r_i N_i N_i^{-1} \equiv r_i \pmod{n_i}.$$

再证唯一性. 若 y 也是一个解, 则 $x \equiv y \equiv r_i \pmod{n_i}$. 又因为 n_i 两两互素, 由算术基本定理知 $x \equiv y \pmod{N}$. 综上可得, 同余方程组的通解是

$$x = \sum_{i=1}^{k} r_i N_i N_i^{-1} + mN \quad (m \in \mathbb{Z}).$$
 (1.1)

因为模 n_i 的剩余类构成一个环 $\mathbb{Z}_{n_i} = \mathbb{Z}/n_i\mathbb{Z}$, 运用抽象代数的语言, 中国剩余定理可以描述成一个环同构. 在此之前, 我们有必要先明确环的直积的定义.

Definition 1.1 环的直积

给定两个环 (G,+,*) 和 (H,\oplus,\odot) , 它们的直积仍是一个环 $(G\times H,+,\cdot)$, 其中集合 $G\times H=\{(g,h)|g\in G,h\in H\}$ 是 G 与 H 的笛卡儿积;环上的运算 $+,\cdot$ 定义为

- $(g_1, h_1) + (g_2, h_2) = (g_1 + g_2, h_1 \oplus h_2)$
- $(g_1, h_1) \cdot (g_2, h_2) = (g_1 * g_2, h_1 \odot h_2)$

在不会引起误解的情形下,环 $(G \times H, +, *)$ 可简记 $G \times H$, 其乘法单位元为 $(1_G, 1_H)$. 类似地,对于可数个环,我们也可通过这种分量加法和分量乘法的方式,定义 $\{R_i\}_{i \in I}$ 的直积 $\prod R_i$.

有了环的直积这一个概念后,就可以正式介绍定理的第三种表述了. 这将为我们提供一个更加清晰的视角.

Theorem 1.3 中国剩余定理 Ⅲ

若 $n_1 n_2 \cdots n_k$ 两两互素, 则映射

 $\varphi: (x \bmod n_1, x \bmod n_2, \cdots, x \bmod n_k) \longmapsto x \bmod N$

确定一个环同构

 $\varphi: \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \longrightarrow \mathbb{Z}/N\mathbb{Z}.$

Proof: 在下面的证明中为了书写简便, 对于模 m 剩余类 $\bar{x} = x + m\mathbb{Z} = \{x + km | k \in \mathbb{Z}\} \in \mathbb{Z}/m\mathbb{Z}$, 我们将它与剩余类的代表元 x 不做区分. 首先证明 φ 是一个双射. 事实上, 如果

$$\varphi(r_{1}, r_{2}, \cdots, r_{k}) = \varphi(r_{1}^{'}, r_{2}^{'}, \cdots, r_{k}^{'}) = R,$$

-4/13- 第1章 数论

则有 $r_i \equiv r_i^{'} \equiv R \pmod{n_i}$, 或 $(r_1, r_2, \dots, r_k) = (r_1^{'}, r_2^{'}, \dots, r_k^{'})$. 这说明 φ 是单射. 又注意到基数 $|\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \dots \times \mathbb{Z}/n_k\mathbb{Z}| = |\mathbb{Z}/N\mathbb{Z}| = N$, 所以 φ 一定是双射. 此外, 我们还需验证双射 φ 保持运算。根据环的直积的定义, 我们有

$$\varphi(a_1, a_2, \dots, a_k) + \varphi(b_1, b_2, \dots, b_k) = \sum_{i=1}^k a_i N_i N_i^{-1} + \sum_{i=1}^k b_i N_i N_i^{-1} = \sum_{i=1}^k (a_i + b_i) N_i N_i^{-1}$$

$$= \varphi(a_1 + b_1, a_2 + b_2, \dots, a_k + b_k)$$

$$= \varphi[(a_1, a_2, \dots, a_k) + (b_1, b_2, \dots, b_k)].$$

$$\varphi(a_1, a_2, \dots, a_k) \cdot \varphi(b_1, b_2, \dots, b_k) = \left(\sum_{i=1}^k a_i N_i N_i^{-1}\right) \cdot \left(\sum_{i=1}^k b_i N_i N_i^{-1}\right) \\
= \sum_{i=1}^k a_i b_i (N_i N_i^{-1})^2 + \sum_{i \neq j} a_i N_i N_i^{-1} b_j N_j N_j^{-1} \\
= \sum_{i=1}^k a_i b_i N_i N_i^{-1} \\
= \varphi(a_1 \cdot b_1, a_2 \cdot b_2, \dots, a_k \cdot b_k) \\
= \varphi[(a_1, a_2, \dots, a_k) \cdot (b_1, b_2, \dots, b_k)].$$

这就证明了 φ 是 $\mathbb{Z}/n_1\mathbb{Z}\times\mathbb{Z}/n_2\mathbb{Z}\times\cdots\times\mathbb{Z}/n_k\mathbb{Z}$ 到 $\mathbb{Z}/N\mathbb{Z}$ 上的环同构.

从环同构的观点出发,我们可以将定理自然地推广到一般的 PID (主理想整环)上,这时 R 模掉极大理想 I 得到的的商环 R/I 代替了原先的剩余类环 $\mathbb{Z}/m\mathbb{Z}$. 原因是证明中用到的 Bézout 等式在 PID 上有对应的推广,而算术基本定理(唯一分解定理)在更一般的 UFD(唯一分解整环)上也成立. 进一步地,通过定义互素理想,我们还可以将定理推广到任意环上.

第2章 代数

2.1 基础概念

2.1.1 等价关系

Definition 2.1 二元关系

设 X,Y 是任意两个集合, 其任意子集 $\mathcal{R} \in X \times Y$ 叫做 X 与 Y 之间的一个二元关系. 若 X = Y, 则简称为 X 上的一个二元关系.

 \Diamond

有序对 $(x,y) \in \mathcal{R}$ 可简记为 $x\mathcal{R}y$.

Definition 2.2 等价关系

集合 X 上的二元关系 \sim 叫作等价关系, 如果任取 $x,x',x'' \in X$, 满足:

- 1. 反身性: $x \sim x$;
- 2. 对称性: $x \sim x' \implies x' \sim x$;
- 3. 传递性: $x \sim x'$ 且 $x' \sim x'' \implies x \sim x''$.

元素 $a,b \in X$ 不具有等价关系记作 $a \nsim b$.

Definition 2.3 等价类

在集合 X 中, 与给定元素 x 等价的所有元素的集合, 叫作包含 x 的等价类, 记为

$$\overline{x} := \{ x' \in X | x' \sim x \} \subset X.$$

任意元素 $x' \in \overline{x}$ 叫作 \overline{x} 的代表元.

我们将在下述两个对偶的命题中看到,等价关系与集合的分类有着密切的联系. 先叙述一下记号. 集合 *X* 的所有子集组成的集合称为 *X* 的幂集,记作

$$\mathcal{P}(X) := \{S | S \subset X\} = \bigcup_{S \subset X} \{S\}.$$

如果集合 X 能够表示成其若干非空子集的不交并, 那么这些称这些子集的集合为 X 的一个划分, 并记作 $\pi(X)$.

Proposition 2.1

由关系 \sim 确定的所有等价类的集合是集合 X 的一个划分, 即 X 是这些等价类的不交并, 记作

$$\pi_{\sim}(X) := \{ \overline{x} \in \mathcal{P}(X) | x \in X \}.$$

Proof: 注意到 $x \in \overline{x}$, 因此 $\bigcup_{x \in X} \overline{x} = X$. 如果存在两个不同的等价类 $\overline{x_1}$, $\overline{x_2}$, 使得 $\overline{x_1} \cap \overline{x_2} = x'$, 那么有 $x' \sim x_1$ 和 $x' \sim x_2$. 由等价关系的传递性知 $x_1 \sim x_2$, 即 $\overline{x_1} = \overline{x_2}$, 矛盾! 故对任意两个不同的等价类 $\overline{x_1}$, $\overline{x_2}$, 都有 $\overline{x_1} \cap \overline{x_2} = \emptyset$.

Proposition 2.2

如果 $\pi(X)$ 是将集合 X 分成不相交子集的一个划分,则这些子集是由某一等价关系 \sim 确定的全部等价类.

Proof: 根据划分的定义,集合 $X = \bigcup_{C_t \in \pi(X)} C_t$. 且每个元素 $x \in X$ 仅被包含在一个子集 C_a 中. 定义 $x \sim x'$ 当且仅当 x 与 x' 属于同一个集合 C_a . 容易验证这个关系是反身、对称且传递的,即 \sim 是一个等价关系. 进一步根据等价类的定义,若 $x \in C_a$,则 C_a 就是等价类 \overline{x} . 所以对于我们定义的这种等价关系 \sim ,有 $\pi(X) = \pi_{\sim}(X)$.

由于等价关系与集合的划分是一一对应的, 因此对应于等价关系 \sim 的划分 $\pi_{\sim}(X)$ 通常记作 X/\sim , 也叫作 X 关于 \sim 的商集. 定义满射 $\pi:x\longmapsto \overline{x}$, 并称之为 X 到商集 X/\sim 上的自然映射 (natural map) 或典范映射 (canonical map) 或自然投影 (natural projection).

方便起见, 我们引入交换图 (commutative diagram) 作为工具. 例如下图:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g \downarrow & & \downarrow \varphi \\
C & \xrightarrow{\psi} & D
\end{array}$$

我们称这个图表交换,当且仅当 $\varphi \circ f = \psi \circ g$,即 A 中的元沿着图中两条路到达 D 得到同一个元.

2.2 基本定理 -7/13-

Proposition 2.3

给定映射 $f: X \longrightarrow Y$. 在 X 上定义等价关系 ω_f 如下

$$a\omega_f b \iff f(a) = f(b).$$

设 $\pi: X \longrightarrow X/\omega_f$ 为自然映射. 则存在唯一映射 $\overline{f}: X/\omega_f \longrightarrow Y$, 使得下图交换, 并且 \overline{f} 是单射.

Proof: 令 $\overline{f}: \overline{x} \longmapsto f(x)$. 首先验证 \overline{f} 是良定义的, 即无论 \overline{x} 的代表元如何选取, $f(\overline{x})$ 的值是唯一确定的. 事实上, 若 x_1, x_2 属于同一等价类, 则 $\overline{x_1} = \overline{x_2}$. 由 ω_f 的定义立知 $f(x_1) = f(x_2)$. 接着说明这样构造的 \overline{f} 的确使得 $f = \overline{f} \circ \pi$. 因为对任意 $x \in X$, 都有

$$\overline{f} \circ \pi(x) = \overline{f}(\pi(x)) = \overline{f}(\overline{x}) = f(x).$$

 \overline{f} 的存在性也得到了证明. 若存在一个映射 $\overline{\phi}$ 满足 $\overline{\phi}\circ\pi=f$, 则对任意 $\overline{x}\in X/\omega_f$, 有

$$\overline{\phi}(\overline{x}) = \overline{\phi}(\pi(x)) = \overline{\phi} \circ \pi(x) = f(x) = \overline{f}(\overline{x}),$$

即 $\overline{\phi} = \overline{f}$, 因此 \overline{f} 是唯一的. \overline{f} 是单射由下述事实给出: $\forall \overline{x_1}, \overline{x_2} \in X/\omega_f$,

$$\overline{f}(\overline{x_1}) = \overline{f}(\overline{x_2}) \iff f(x_1) = f(x_2) \iff \overline{x_1} = \overline{x_2}.$$

现在我们知道,这个交换图直观地描述了一个分解式

$$f = \overline{f} \circ \pi, \tag{2.1}$$

映射 f 总可以写成一个满射 $\pi:x\longmapsto \overline{x}$ 和一个单射 $\overline{f}:\overline{x}\longmapsto f(x)$ 的乘积.

2.2 基本定理

2.2.1 同态基本定理

同态基本定理在幺半群,群,环,模,线性空间上都成立.这里给出的是线性空间上的版本,也叫做线性映射基本定理.但在叙述时,对同态和线性映射不做区分.

第2章 代数

Theorem 2.1 同态基本定理 Fundamental Homomorphism Theorem

设 V, V' 是域 F 上的线性空间, $f \in \text{Hom}(V, V')$. 定义自然同态

$$\pi: V \longrightarrow V/\operatorname{Ker} f, \ \alpha \longmapsto \alpha + \operatorname{Ker} f.$$

则存在唯一同态 $\overline{f}:V/\operatorname{Ker}f\longrightarrow V'$, 使得 $f=\overline{f}\circ\pi$, 即下图交换. 且 \overline{f} 是一个单同态.

Proof: 首先证明由商空间 $V/{\rm Ker}\ f$ 确定的等价关系 $\alpha_1 \sim \alpha_2 \iff \alpha_1 - \alpha_2 \in {\rm Ker}\ f$ 满足 $\alpha_1 \sim \alpha_2 \iff f(\alpha_1) = f(\alpha_2)$. 若 $\alpha_1 - \alpha_2 \in {\rm Ker}\ f$, 设 $\alpha_1 = \alpha_2 + k\ (k \in {\rm Ker}\ f)$, 则有

$$f(\alpha_1) = f(\alpha_2 + k) = f(\alpha_2) + f(k) = f(\alpha_2).$$

反之, 若 $f(\alpha_1) = f(\alpha_2)$, 则

$$f(\alpha_1 - \alpha_2) = f(\alpha_1) - f(\alpha_2) = 0.$$

于是 $\alpha_1 - \alpha_2 \in \text{Ker } f$. 这就证明了 $\alpha_1 - \alpha_2 \in \text{Ker } f \iff f(\alpha_1) = f(\alpha_2)$. 结合 Proposition 2.3, 只需验证 \overline{f} 是一个线性映射. 对任意 $k, l \in F, \overline{\alpha}$ 和 $\overline{\beta} \in V/\text{Ker } f$, 有

$$\overline{f}(k\overline{\alpha} + l\overline{\beta}) = \overline{f}(\overline{k\alpha + l\beta})$$

$$= kf(\alpha) + lf(\beta)$$

$$= f(k\alpha + l\beta)$$

$$= k\overline{f}(\overline{\alpha}) + l\overline{f}(\overline{\beta}).$$

因此定理成立.

一个自然的问题是:如果V模去的子空间不是Kerf,是否也有类似的交换图?下面的Proposition 2.4回答了这个问题.作为预备,我们先证明一个引理.

2.2 基本定理 -9/13-

Lemma 2.1

设 W,U 都是域 F 线性空间上 V 的子空间, 且 $W \subset U \subset V$. 定义

$$\eta: V/W \longrightarrow V/U$$

$$v+W \longmapsto v+U.$$

则 η 是一个满同态.

Proof: 证明 η 是良定义的. 由 $W \subset U \subset V$ 知: 对任意 $v_1, v_2 \in V$, 若 $v_1 - v_2 \in W$, 则 $v_1 - v_2 \in U$. 这表明

$$\eta(v_1 + W) = v_1 + U = v_2 + U = \eta(v_2 + W),$$

即v+W的像与代表元v的选取无关.

证明 η 是线性映射. 对任意 $v_1, v_2 \in V$ 和 $k \in F$, 有

$$\eta(v_1 + v_2 + W) = (v_1 + v_2) + U = (v_1 + U) + (v_2 + U) = \eta(v_1 + W) + \eta(v_2 + W).$$

$$\eta(kv_1 + W) = kv_1 + U = k(v_1 + U) = k\eta(v_1 + v_2 + W).$$

证明 η 是满射. 对任意 $v + U \in V/U$, 有 $\eta(v + W) = v + U$.

综上所述,η是一个满同态.

Proposition 2.4

设 V, V' 是域 F 上的线性空间, $f \in \text{Hom}(V, V')$, W 是 V 的一个子空间. 记 $\pi_1 : \alpha \longmapsto \alpha + W$ 为 V 到 V/W 上的自然同态. 当且仅当 $W \subset \text{Ker } f$ 时, 存在唯一同态 $\overline{f_1} : V/W \longrightarrow V'$, 使得 $f = \overline{f_1} \circ \pi_1$, 即下图交换.

Proof: 若 $W \subset \text{Ker } f$, 考虑如下图表

其中 π 与 \overline{f} 的定义继承于 Theorem 2.1, η 则依照 Lemma 2.1 定义为 $\eta: v+W \mapsto v+\mathrm{Ker}\ f$. 为了确定该图交换, 只需验证 $\eta\circ\pi_1=\pi$. 事实上, 对任意 $\alpha\in V$,

$$\eta \circ \pi_1(\alpha) = \eta(\pi_1(\alpha)) = \eta(\alpha + W) = \alpha + \text{Ker } f = \pi(\alpha).$$

令 $\overline{f_1} = \overline{f} \circ \eta$,则有

$$\overline{f_1} \circ \pi_1 = (\overline{f} \circ \eta) \circ \pi_1 = \overline{f} \circ (\eta \circ \pi_1) = \overline{f} \circ \pi = f.$$

注意到 $\overline{f_1}(\alpha+W)=\overline{f_1}(\pi_1(\alpha))=\overline{f_1}\circ\pi_1(\alpha)=f(\alpha)$,即 $\overline{f_1}$ 若存在,其在任意点处的取值是确定的. 这说明 $\overline{f_1}$ 是唯一的. 特别地, $\overline{f_1}(W)=f(0)=0$.

反之, 若存在同态 $\overline{f_1}: V/W \longrightarrow V'$, 使得 $f = \overline{f_1} \circ \pi_1$, 则对任意 $\alpha \in W$, 有 $f(\alpha) = \overline{f_1}(\pi_1(\alpha)) = \overline{f_1}(W) = 0$, 即 $W \subset \operatorname{Ker} f$.

完成同态基本定理的推广后, 再来看它的一个特例. 若将 f 看成 V 到 Imf 上的同态, 则 f 为满射. 由 $Imf = Im\overline{f}$ 知 \overline{f} 此时也是满射. 于是下面的定理成立.

Theorem 2.2 第一同构定理 First Isomorphism Theorem

设 V, V' 是域 F 上的线性空间, $f \in \text{Hom}(V, V')$, 则 $V/\text{Ker } f \cong \text{Im} f$. 即下图交换.

$$V \xrightarrow{f} \operatorname{Im} f$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

第一同构定理的应用相当广泛, 下面的 Proposition 2.5 就是一个例子. 在此之前, 先证明一个引理是有帮助的. 在后文中会用到以下记号. 设 f 是 V 到 V' 的映射, $U \subset V$, $H \subset V'$. $f|_U$ 的像集记作 $f(U) := \{f(u) \in V'|_{U} \in U\}$. H 中各元素的所有原像构成的集合记作 $f^{-1}(H) := \{v \in V|_{f}(v) \in H\}$. 对于单元素集 $\{a\}$, $f(\{a\})$, $f^{-1}(\{a\})$ 可简记为 f(a), $f^{-1}(a)$.

Lemma 2.2

设 V, V' 是域 F 上的线性空间, f 是 V 到 V' 上的线性映射. 记

$$S_f(V) = \{U | U \in V$$
的子空间,Ker $f \subset U\}$,

 $S_f(V') = \{U' | U' \notin f(V)$ 的子空间},

则映射 $\sigma: S_f(V) \to S_f(V'), U \mapsto f(U)$ 是双射.

 \Box

2.2 基本定理 -11/13-

Proof:

$$\begin{array}{cccc}
\operatorname{Ker} f &\subset & U &\subset & V \\
f \middle\downarrow & & f \middle\downarrow & & f \middle\downarrow \\
0 &\subset & f(U) &\subset & f(V)
\end{array}$$

先证 σ 是满的. 设 $U \in S_f(V')$, 只需证 $f^{-1}(U) \in S_f(V)$. 任取 $\alpha, \beta \in f^{-1}(U), k, l \in F$, 因为 $f(\alpha), f(\beta) \in U$, 所以

$$f(k\alpha + l\beta) = kf(\alpha) + lf(\beta) \in U$$
,

即 $k\alpha+l\beta\in f^{-1}(U)$. 这说明 $f^{-1}(U)$ 是 V 的子空间. 又因为 $f(\operatorname{Ker}\ f)=\{0\}\subset f(U)$, 故 $\operatorname{Ker}\ f\subset f^{-1}(U)$, 从而有 $f^{-1}(U)\in S_f(V)$.

再证 σ 是单的. 若 $\sigma(U_1) = \sigma(U_2)$, 即 $f(U_1) = f(U_2)$, 则对任意 $u_1 \in U_1$, $f(u_1) \in f(U_1) = f(U_2)$, 因此存在 $u_2 \in U_2$, 使得 $f(u_2) = f(u_1)$. 于是 $f(u_1) - f(u_2) = f(u_1 - u_2) = 0$, $u_1 - u_2 \in \operatorname{Ker} f \subset U_2$. 从而 $u_1 = u_2 + (u_1 - u_2) \in U_2$, 故 $U_1 \subset U_2$. 同理可得 $U_2 \subset U_1$. 因此 $U_1 = U_2$.

Proposition 2.5

设 V,V' 是域 F 上的线性空间, $f:V\longrightarrow V'$ 是满同态, V 的子空间 U 满足 Ker $f\subset U$. 则

Proof: 设 $\pi': V' \to V'/f(H)$ 是自然同态. 因为 f 和 π' 都是满射, 复合同态

$$\pi' \circ f : V \xrightarrow{f} V' \xrightarrow{\pi'} V'/f(U)$$

显然是满射. 由 Lemma 2.2 知

$$\operatorname{Ker} (\pi' \circ f) = (\pi' \circ f)^{-1}(0 + f(U)) = f^{-1} \circ \pi'^{-1}(0 + f(U)) = f^{-1}(f(U)) = U.$$

运用第一同构定理, 就得到了 $V/U \cong V'/f(U)$. 同构映射 \overline{g} 满足交换图

$$V \xrightarrow{f} V' \xrightarrow{\pi'} V'/f(U)$$

$$\downarrow \\ V/U$$

我们继续运用第一同构定理证明第二同构定理和第三同构定理.

Proof: 设 i 是嵌入映射, $\pi': U+W \to (U+W)/W$ 是自然同态. 复合同态

$$\pi' \circ i : U \xrightarrow{i} U + W \xrightarrow{\pi'} (U + W)/W$$

Theorem 2.3 第二同构定理 Second Isomorphism Theorem

设U和W是域F上线性空间V的子空间,则

 $(U+W)/U=W/(U\cap W).$

d

是满射. 记 $f = \pi' \circ i$,

Ker
$$f = (\pi' \circ i)^{-1}(0+W) = i^{-1} \circ \pi'^{-1}(0+W) = i^{-1}(W) = U \cap W$$
.

运用第一同构定理, 就得到了 $U/\mathrm{Ker}\ f = U/U \cap W \cong (U+W)/W$. 同构映射 \overline{f} 满足交换图

$$U \xrightarrow{i} U + W \xrightarrow{\pi'} (U + W)/W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Theorem 2.4 第三同构定理 Third Isomorphism Theorem

设 W, U 都是域 F 上线性空间 V 的子空间, 且 $W \subset U \subset V$, 则

 $V/U \cong (V/W)/(V/W)$

Proof: 由 Lemma 2.1 知 $\eta:V/W\longrightarrow V/U,\,v+W\longmapsto v+U$ 是满同态. 下证 Ker $\eta=\eta^{-1}(0+U)=U/W.$

任取 $u + W \in U/W$,

$$\eta(u+W) = u + U = 0 + U \in V/U$$

即 $u+W\in \operatorname{Ker}\eta$, 故 $U/W\subset \operatorname{Ker}\eta$. 任取 $x+W\in \operatorname{Ker}\eta$, 有 $\eta(x+W)=x+U=0+U$, 故 $x\in U$, 从而有 $x+W\in U/W$. 于是 $\operatorname{Ker}\eta\subset U/W$. 因此有 $\operatorname{Ker}\eta=U/W$.

由第一同构定理, 得到 $(V/W)/Ker \eta = (V/W)/(U/W) \cong V/U$. 同构映射 $\overline{\eta}$ 满足交换图

参考文献

- [1] J. W. Dauben, "The mathematics of egypt, mesopotamia, china, india and islam: A sourcebook," 2007.
- [2] 李俨,"大衍求一术的过去和未来,"1998.