Exercici 18 (*El grup dels quaternions*) Sigui H_8 el subgrup de $\mathrm{GL}(2,\mathbb{C})$ generat per les matrius

$$\mathrm{Id} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \, \mathbf{i} := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \, \mathbf{j} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \, \mathbf{k} := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- (a) Demostreu que H_8 és un grup tal que Id és l'element neutre, $\mathbf{i}^4 = \mathrm{Id}$, $\mathbf{i}^2 = \mathbf{j}^2$ i $\mathbf{ij} = \mathbf{ji}^3$.
- (b) Calculeu l'ordre de cadascun dels elements de H_8 .
- (c) Demostreu que, si H és un grup qualsevol generat per dos elements a, b tals que $a^4 = 1$, $a^2 = b^2$ i $ab = ba^3$, llavors H es isomorf a H_8 .

Solució:

(a) Com que H_8 és un subgrup, les propietats de grup les heredem del grup en el qual esta inclós. Ara veiem que se satisfan les igualtats mencionades en l'apartat.

Identitat és el neutre del grup H_8 trivialment, ja que és l'elelment neutre del grup en el que esta inlcós.

$$i^{2} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$i^{4} = i^{2} \cdot i^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Id,$$

$$j^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = i^{2} \text{ (vist anteriorment)},$$

$$i \cdot j = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

$$j \cdot i^{3} = j \cdot i \cdot i^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

(b) L'orde del grup és Ord $(H_8) = 8$, ya que el grup està format per 8 elements.

L'orde de l'element Id és Ord (Id) =1.

L'orde de l'element -Id és Ord (Id) =2.

L'orde dels elements \pm i és Ord (i) = 4, ja que i^4 = 1 i $i^2 \neq 1$.

L'orde dels elements \pm j és Ord (j) = 4, ja que $j^2 = i^2 \Rightarrow j^4 = 1$ i $j^2 \neq 1$.

L'orde dels elements \pm k és Ord (k) = 4.

$$k^2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow k^4 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Id$$

(c) Tenim que el grup H_8 esta generat per $\{i,j\}$ aixo vol dir que tot element del grup el podem expresar de la forma $i^{\epsilon}j^{\delta}$ utilitzant les condicions demostrades a l'apartat (a) per transformar qualsevol element en la forma mencionada. Ara conciderem l'aplicació següent:

$$H_8 \longrightarrow A = \{a, b, \ldots\}$$

 $i^{\epsilon} j^{\delta} \rightarrow a^{\epsilon} b^{\delta}$

amb $0 \le \epsilon \le 3$ i $0 \le \delta \le 1$. Tenim que H_8 i A tenen la mateixa quantitat d'elements, que el producte va al producte i que és injectiva, per tant és un isomorfisme de grups.