User's manual of Self-organizing clustering

Kou AMANO RIKEN BioResource Center

September 6, 2010

1 Outline

Self-organizing clustering (SOC) is a vector clustering machine which is based on k-means. It provides functions of: 1. conversion from DNA sequences to vectors, 2. initialization of cluster configuration, 3. clustering with an improved learning process. Above the three functions are implemented as three commands (fasta2matrix, soc-init and soc-lm).

2 Install

First, you have to obtain the tar ball of SOC. To obtain the source code, please contact <kamano@affrc.go.jp> or <amano@brc.riken.jp> . To install SOC, please execute the following steps:

```
[user]$ tar -zxvf SOC_0.5.3-00.tar.gz
[user]$ cd SOC_0.5.3-00
[user]$ ./configure.pl
[user]$ make
[user]$ su
[root]# mkdir -p /home/pub/bin
[root]# make install
[root]# exit
[user]$ PATH=$PATH:/home/pub/bin
[user]$ export PATH
```

3 Commands

The latest version of SOC is 0.5.8-05.

3.1 fasta2matrix

3.1.1 Description

The fasta2matrix command execute conversion from a set of multiple DNA sequence data to a float matrix data. The fasta2matrix needs administrative information such as memory size. Users have to specify memory sizes: <number of samples> × (<header size> + <body size>).

3.1.2 Usage

```
fasta2matrix [if=<file name>] [s=<segment size>] [g=<step size>]
   [n=<number of samples>] [hs=<header (comment) size>]
   [bs=<body (sequence) size>] [--help|-h] [--check|-c] [-H|+H]
   [-m|+m] [-p<total frequency of oligonucleotides for normalization>|+p]
```

Options:

• <file name>

To specify the input file name.

Default value: None.

• <segment size>

To specify the length of oligonucleotides.

Default value: 2.

• <step size>

To specify the window slide size.

Default value: 1.

• <number of samples>

For memory allocation.

The fasta2matrix stores all of multiple fasta sequence data on memory.

Default value: 15000.

• <header size>

For memory allocation.

Default value: 128.

• <body size>

For memory allocation. Default value: 4000.

• [--check|-c]

To print command arguments.

Default value: None.

• [-H|+H]

Where '-H' is specified, the program prints headers to the output file.

Default value: '-H'.

• [-m|+m]

Where '-m' is specified, the program prints matrix size to the output file. Default value: '-m'.

• <total count of signals>

If users need the mormalized oligonucleotide frequencies, the users can specify '-p' option.

Default value: None.

3.1.3 Examples

To print an oligonucleotide matrix with 100×64 of size from file test.fasta: fasta2matrix if=test.fasta s=3 n=100

To print an oligonucleotide matrix with 100×64 of size without header from file test.fasta:

fasta2matrix if=test.fasta s=3 n=100 +H

To print an oligonucleotide matrix with 100×64 of size without matrix size from file test.fasta:

fasta2matrix if=test.fasta s=3 n=100 +m

3.2 soc-init

3.2.1 Description

The soc-init provides several primitive types of initial cluster configuration.

3.2.2 Usage

```
soc-init if=<sample data file> of=<output data file>
[frac=<number of cluster nodes>] [<FORMAT>]
```

Options:

• <sample data file>

To specify the matrix data file made from fasta formated sample file for input.

• <output data file>

To specify the file of cluster-nodes data to output.

- <number of cluster nodes>
 - To specify the number of initial cluster-nodes.
- <FORMAT>

See below.

<FORMAT>:

• Diagonal

To array cluster-nodes on a diagonal line across the sample vector space.

• node=Central

To place cluster-nodes on the lattice points in the sample vector space.

• Grid=<tensor size>

To array cluster-nodes at network-nodes of grid.

• Axis-mean=<axis1,axis2,...>

To place cluster-nodes on coordinate axes of the sample vector space.

Where Diagonal option is specified, the cluster-nodes array as red dots.

Where node=Central option is specified, the cluster-nodes are placed on sample-nodes nearest to centroid (x).

Where **Grid** option is specified, the cluster-nodes are placed on all of the lattice points.

Where Axis-mean option is specified, the cluster-nodes array as blue dots.

Fig: Initialization patterns of cluster-nodes

3.2.3 Examples

To locate 10 cluster-nodes around the centroid and write the coordinates to the file "test.fasta.mat.cl":

soc-init if=test.fasta.mat of=test.fasta.mat.cl frac=10 node=Central

To locate 16 (4×4) cluster-nodes on the nodes of the grid and write the coordinates to the file "test.fasta.mat.cl":

soc-init if=test.fasta.mat of=test.fasta.mat.cl Grid=4,4

3.3 soc-lm

3.3.1 Description

soc-lm learns to move cluster-nodes, which represent clusters, expressing the centroids of clusters. It dynamically generates/merges cluster-nodes in the learning stage.

3.3.2 Usage

soc-lm sf=<sample file> cf=<cluster file> [loop=<loop>]
 [rate=<learning rate>] [unify=<n1>,<n2>,<n3>,<n4>]

[generate=<n1>,<n2>,<n3>,<n4>] [cutoff=<n1>,<n2>,<n3>]
[cutoff-gen=<n1>,<n2>,<n3>,<n4>] [delete=<n1>,<n2>,<n3>]
[lf=<log file>] [of=<output file>] [of_type=<output file type>]
[rf=<report file>] [dist_func=<distance function>]

Options:

• <sample file>

To specify sample file (input data).

• <cluster file>

To specify cluster file (input data) which is generated by soc-init.

• <loop>

To specify learning iterations.

• <learning rate>

To specify learning rate to align cluster-nodes.

• unify=<n1>,<n2>,<n3>,<n4>

To specify the thresholds for unifying cluster-nodes.

IF n1 is specified AND distance between given cluster-node pair is lower than n2 AND number of clusters is higher than n3, THEN the cluster-node pair whose distance is shortest is unified with interval n4.

• generate=<n1>,<n2>,<n3>,<n4>

To specify the thresholds for generating cluster-node.

IF n1 is specified AND cluster-radius is higher than n2 AND number of clusters is lower than n3, THEN the cluster-nodes whose radius is longest is divided with interval n4.

• delete=<n1>,<n2>,<n3>

To specify the threshold to delete cluster-node(s).

IF n1 is specified AND distances between cluster-node pairs is higher than n2, THEN ones of the pairs are deleted until all distances of cluster-node pair is shorter than n2 with interval n3.

-n1がセットされており、かつ、n2を上回るクラスタノード間の距離がある場合、n2を上回る距離をもつクラスタノードペアがなくなるまで、当該のクラスタノードペアの片方を delete する。-

• <log file>

To specify log file.

• <output file>

To specify output file.

• <output file type>

To specify output file type.

- <report file> To specify another (reduced) output file.
- <distance function> To specify distance function ($\cos\theta$ or euclidean).

3.3.3 Examples

To classify sample data (test.fasta.mat) with default of option: soc-lm sf=test.fasta.mat cf=t.fasta.mat.cl

To classify sample data (test.fasta.mat) under the condition - loop is 100, cluster deletion is on, cluster deletion threshold is 4 and learning rate is 0.9: soc-lm sf=test.fasta.mat cf=test.fasta.mat.cl delete=1,4,2 rate=0.9