abs(x)	abs(x)
min(x1,x2,)	$\min(x_1, x_2, \ldots)$
max(x1,x2,)	$\max(x_1, x_2, \ldots)$
max(x1,x2,)	$\frac{\max(x_1, x_2, \dots)}{1 \text{si } x < 0}$
signum(x)	$signo(x) = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$
Signum(x)	$\begin{cases} \operatorname{signo}(x) = \\ 1 & \operatorname{si}(x > 0) \end{cases}$
x!	
x!!	x: x!!
binomial(m,n)	$\binom{n}{n} = \frac{m(m-1)m[m-(m-1)]}{n!}$
genfact(m,n,p)	$\binom{m}{n} = \frac{m(m-1)\dots[m-(n-1)]}{n!}$ $m(m-p)(m-2p)\dots[m-(n-1)p]$ \sqrt{x} e^{x}
sqrt(x)	\sqrt{x}
exp(x)	e^x
log(x)	$\ln(x)$
sin(x)	$\sin(x)$
cos(x)	$\cos(x)$
tan(x)	$\tan(x)$
csc(x)	$\csc(x)$
sec(x)	sec(x)
cot(x)	$\cot(x)$
asin(x)	$\arcsin(x)$
acos(x)	$arc \cos(x)$
atan(x)	$\arctan(x)$
atan2(x,y)	$\arctan(\frac{x}{y}) \in (-\pi, \pi)$
sinh(x)	$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$
cosh(x)	$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$ $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$
tanh(x)	$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$
asinh(x)	$\operatorname{arcsinh}(x)$
acosh(x)	$\operatorname{arccosh}(x)$
atanh(x)	$\operatorname{arctanh}(x)$
gamma(x)	$\Gamma(x) = \int_0^\infty e^{-u} u^{x-1} du, \forall x > 0$
<pre>gamma_incomplete(a,x)</pre>	$\Gamma(a,x) = \int_x^\infty e^{-t} t^{a-1} dt$
beta(a,b)	$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$
beta_incomplete(a,b,x)	$B(a,b,x) = \int_0^x (1-t)^{b-1} t^{a-1} dt$
erf(x)	$\Gamma(x) = \int_0^\infty e^{-u} u^{x-1} du, \forall x > 0$ $\Gamma(a, x) = \int_x^\infty e^{-t} t^{a-1} dt$ $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ $B(a, b, x) = \int_0^x (1-t)^{b-1} t^{a-1} dt$ $\operatorname{erf}(x) = \int_0^x \frac{2}{\sqrt{\pi}} e^{-u^2} du$

Figura 6.1: Algunas funciones de Maxima.