Notation

Mengen

Jeder dieser Beispielmengen enthält alle Elemente der Mengen, die in der Tabelle darüber liegen.

Notation	Beschreibung
{}	Eine leere Menge
{1; 4; 7}	Eine Menge, welche die Zahlen $1,4\mathrm{und}~7$ enthält
N	Alle ganzen positiven Zahlen $(1;2;3\ldots)$
\mathbb{N}_0	Alle ganzen positiven Zahlen inklusive $0\ (0;1;2\ldots)$
\mathbb{Z}	Alle ganzen Zahlen $(-2;-1;0;1;2\ldots)$
Q	Alle Zahlen, die durch einen Bruch dargestellt werden können $(rac{1}{2}; -rac{5}{6}; rac{23}{14}\dots)$
\mathbb{R}^+	Alle positiven reellen Zahlen: $]0;\infty[$
\mathbb{R}_0^+	Alle positiven reelen Zahlen inklusive 0 : $[0;\infty[$
\mathbb{R}	Alle Zahlen auf der Zahlengeraden $(\sqrt{2};\pi\ldots)$

Ob bei \mathbb{N}/\mathbb{R}^+ die 0 enthalten ist, ist nicht klar definiert. Ich werde daher immer $\mathbb{N}_0/\mathbb{R}_0^+$ verwenden, um die Null klar zu kennzeichnen. Im Abitur wird es klar gekennzeichnet sein, ob die 0 enthalten ist oder nicht.

Was genau Mengen sind und welche Zahlenmengen (\mathbb{N} , \mathbb{R} , etc.) es gibt, ist nicht direkt abiturrelevant. Ich werde sie allerdings in manchen Notationen verwenden.

Intervalle

Intervalle sind ebenfalls Mengen. So enthält [0;1] alle reellen Zahlen von 0 bis 1.

Notation	Beschreibung
[0; 1]	Intervall von inklusive 0 bis inklusive 1
$[0;1[ext{ oder }[0;1)$	Intervall von inklusive 0 bis exklusive 1
]0;1[oder $(0;1)$	Intervall von exklusive 0 bis exklusive 1
$]-\infty;\infty[$ oder $(-\infty;\infty)$	Unendlichkeiten sind niemals Teil eines Intervalls

Mengennotation

Notation	Beschreibung
$a\in\mathbb{Z}$	a ist ein Element der ganzen Zahlen. Das heißt a ist eine ganze Zahl.
$b\in \mathbb{R}\setminus\{0\}$	b ist ein Element der reellen Zahlen ohne die Zahl $0.b$ kann also jeden reellen Wert außer 0 annehmen.
$[0;1]=\{x\in\mathbb{R}\mid 0\leq x\leq 1\}$	Das Intervall $[0;1]$ enthält alle Werte x der reellen Zahlen, für die $0 \leq x \leq 1$ gilt.
$]{-\infty}; c[= \{x \in \mathbb{R} \mid x < c\}$	Das Intervall $]-\infty;c]$ enthält alle reellen Zahlen, welche kleiner gleich c sind.
$\{x\mid x=2k, k\in\mathbb{Z}\}$	Die Menge enthält alle geraden Zahlen.

Definitionsbereiche

Notation	Beschreibung
$y=rac{1}{x}, x eq 0$	Die Gleichung ist für alle reelen Zahlen außer 0 definiert.
$f(x)=\sqrt{x}, x\in [0;\infty[$	Die Funktion f ist für alle positiven reellen Zahlen inklusive 0 definiert.
$g(x) = \ln(x), x > 0$	Die Funktion g ist für alle positiven reellen Zahlen definiert.

Limes

	Notation	Beschreibung	
	$\lim_{x o +\infty} rac{1}{x} = 0$	Je mehr sich x an ∞ annähert, desto mehr nähert geht $\frac{1}{x}$ gegen 0 .	
	$\lim_{x \to 0} \frac{1}{x^2} = +\infty$	$rac{1}{x^2} ightarrow +\infty$ für $x ightarrow 0$	
	$f(x) \stackrel{x o -\infty}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} \infty$	$f(x) o +\infty$ für $x o -\infty$	

Summenzeichen

Beispiele

$$\sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n$$

$$\sum_{i=1}^n i \cdot \ln(i) = 1 \cdot \ln(1) + 2 \cdot \ln(2) + \ldots + n \cdot \ln(n)$$

Vektoren

Schreibweise

$$ec{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} \qquad ec{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

Addition

$$ec{a} + ec{b} = egin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + egin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = egin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

Skalarprodukt

$$ec{a} \circ ec{b} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} \circ egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

Kreuzprodukt

$$ec{a} imes ec{b} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} imes egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

Länge

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Einheitsvektor

$$ec{a}_0 = rac{1}{|ec{a}|} \cdot egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}$$