## **Collaborative Filtering Algorithms Evaluation**

**Gradient Descent with Probabilistic Assumptions VS Alternating Least Squares** 

Ting Cai, Qichao Chen, Lulu Dong, Kangkang Zhang

Home TV Shows Movies Recently Added My List

KIDS DVD



8





#### **New Releases**

















#### **Top Picks for Lulu**

















#### **Objectives**

- Algorithms:
  - Gradient Descent with Probabilistic Assumptions
  - Alternating Least Squares
- Compare Prediction Accuracy for those two algorithems before postprocessing
- Postprocessing:
  - SVD with kernel ridge regression
- Compare Prediction Accuracy for those two algorithems after postprocessing

### **Gradient Descent with Probabilistic Assumptions**

user vector and movie vector follow gaussian distributions,  $p_u \sim N(0, \sigma_p^2)$   $q_i \sim N(0, \sigma_q^2)$ 

the conditional distribution over the observed ratings:

$$r_{iu}|q_i, p_u, \sigma^2 \sim N(q_i^T p_u, \sigma^2)$$

According to Bayes theroem,

$$f(p,q|r) = \frac{f(p,q,r)}{f(r)}$$
$$= \frac{f(r|p,q)f(p)f(q)}{f(r)}$$
$$\propto f(r|p,q)f(p)f(q)$$

## **Gradient Descent with Probabilistic Assumptions (PMF)**

Log-likelihood function:

$$\log f(p, q|r) \propto \log \left( f(r|p, q) f(p) f(q) \right)$$

$$= \log f(r|p, q) + \log f(p) + \log f(q)$$

$$= -\frac{1}{\sigma^2} \sum_{i=1}^{M} \sum_{u=1}^{N} I_{iu} (r_{iu} - q_i^T p_u)^2 - \frac{1}{\sigma_q^2} \sum_{i=1}^{M} ||q_i||^2 - \frac{1}{\sigma_p^2} \sum_{u=1}^{N} ||p_u||^2 + C$$

Can be converted to a minimum objective function by multiplying  $-\frac{\sigma^2}{2}$ 

$$\frac{1}{2} \sum_{i=1}^{M} \sum_{u=1}^{N} I_{iu} (r_{iu} - q_i^T p_u)^2 + \frac{\sigma^2}{2\sigma_q^2} \sum_{i=1}^{M} ||q_i||^2 + \frac{\sigma^2}{2\sigma_p^2} \sum_{u=1}^{N} ||p_u||^2$$

## **Gradient Descent with Probabilistic Assumptions**

Update with learning rate  $\alpha$ 

$$p_u^{(t+1)} = p_u^{(t)} + \alpha \left(\sum_{i=1}^M I_{iu} (r_{iu} - q_i'^{(t)} p_u^{(t)}) q_i^{(t)} - \frac{\sigma^2}{\sigma_p^2} p_u^{(t)}\right)$$

$$q_i^{(t+1)} = q_i^{(t)} + \alpha \left(\sum_{u=1}^N I_{iu} (r_{iu} - q_i^{\prime(t)} p_u^{(t)}) p_u^{(t)} - \frac{\sigma^2}{\sigma_q^2} q_i^{(t)}\right)$$

However, for non-convex function, gradient descent might only find local minimum and cost lots of iterations.



### **Alternating Least Squares**

$$\min_{q^*p^*} \sum_{(u,i) \in K} (r_{ui} - q_i^T p_u)^2 + \lambda (\sum_i n_{q_i} ||q_i||^2 + \sum_u n_{p_u} ||p_u||^2)$$

- Step 1 Initialize matrix q by assigning the average rating for that movie as the first row, and small random numbers for the remaining entries.
- Step 2 Fix q, solve p by minimizing the objective function;
- Step 3 Fix p, solve q by minimizing the objective function similarly;
- Step 4 Repeat Steps 2 and 3 until a stopping criterion is satisfied.

$$pi = (Q_{Ii}Q_{Ii}^{T} + lambda * n_{pi} * E)^{-1} * Q_{Ii}R^{T}(i, Ii)$$
$$qj = (P_{Ij}P_{Ij}^{T} + lambda * n_{qj} * E)^{-1} * P_{Ij}R(Ij, j)$$

## Postprocessing SVD with kernel ridge regression

Discard all weights  $p_{uk}$ 

Define y as vector of ratings by users u;

X: for each row of X, normalized vector of factors for movie rated by user u

$$X_{i} = \frac{q_{i}}{||q_{i}||}$$
$$y_{n \times 1} = X_{n \times f} \cdot \beta_{f \times 1}$$

Solve ridge regession:

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y$$

Prediction:

$$\hat{r_i} = K(x_i^T, X)(K(X, X) + \lambda I)^{-1}y$$

#### **Experiment**

## **Gradient Descent with Probabilistic Assumptions**

18 different parameter sets for 5-Fold CV

#### Result:

$$\lambda_p$$
 = 0.001

$$\lambda_q$$
 = 0.1

# feature = 5



#### **Experiment**

#### **Alternating Least Squares**

4 different parameter sets for 5-Fold CV

Result:

$$\lambda$$
 = 0.01

# feature = 2



Type — Test RMSE — Train RMSE

#### **Experiment**

#### Postprocessing SVD with kernel ridge regression

Gaussian radial basis function with sigma = 0.05

$$k(x, x') = \exp(-\sigma ||x - x'||^2)$$

For each user, build a kernel ridge regression using normalized movie vectors in train set as predictors

#### **Evaluation**

#### **Root Mean Square Error (RMSE)**

RMSE = 
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(d_i-\hat{d}_i)^2}$$

 $d_i$  is the actual rating  $\hat{d}_i$  is the predicted rating n is the amount of ratings

#### **Evaluation Result**

|                            | Gradient Descent with Probabilistic Assumptions | Alternative Least Squares    |
|----------------------------|-------------------------------------------------|------------------------------|
| RMSE before postprocessing | train: 0.974<br>test: 1.305                     | train: 0.770<br>test: 0.896  |
| RMSE after postprocessing  | train: 0.847<br>test: 0.924                     | train: 0.884<br>test : 0.956 |
| Model training time        | 38 min 51 sec                                   | 9 min 15 sec                 |

#### Conclusion

- Gradient descent with Probabilistic Assumptions
  - much more time-consuming than ALS
  - hard to find the global minimum
- RDF Kernel ridge regression
  - improves the accuracy of Gradient descent, while it decreases the accuracy of ALS
- Given RDF Kernel ridge regression:
  - o gradient descent has better accuracy performance on both train and test sets
- Without RDF Kernel ridge regression
  - ALS has better accuracy performance on both train and test sets

# Thanks for listening!