Image filtering & object detection

Exercise 1

Dario Russo, Francesco, Pooja Jambaladinni - 23 October 2020

1. d)

An image with only central pixel as non-zero value can be used to find out impulse responses of different combinations of the Gaussian and its derivatives.

After applying the following filter combinations:

1. First Gx, then Gx^T

g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in zero derivative order.

2. First Gx, then Dx^T

d/dx g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in dx.

3. First Dx^T , then Gx

d/dx g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in dx.

4. First Dx, then Dx^T

d/dx dy g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in dx dy.

5. First Dx, then Gx^T

d/dy g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in dy.

6. First Gx^T , then Dx

d/dy g(x,y)

The filter blurs the image using an impulse response as a Gaussian. It represents a 2-Dimensional Gaussian kernel in dy.