Lab report for the course of 'Robot Planning and it's Application'

Ayushi Shah Vallabh Ansingkar

25th October 2020

1 Introduction

This report summarizes the work performed by Ayushi Shah and Vallabh Ansingkar on the lab assignments for the course of 'Robot Planning and it's Application'

2 Generic Image listener

This function takes an input image from the image listener node which is the image of the arena as seen by the camera. The image can be saved in a local folder by pressing the button 's'.

Figure 1: Raw Image

3 Intrinsic Calibration

In order to calculate the intrinsic camera parameters we provide a particular set of images to the file 'cameracalibration.cpp'. The images are specifically of a chessboard oriented in multiple ways along each axis and also at different positions in the frame.

After the calibration is performed we get the following data:

Figure 2: Intrinsic calibration using chessboard images

Camera focal lengths:

fx=1.3214280543679899e+03

fy=1.3214280543679899e+03

Image center:

cx=5.9881594712190906e+02

cy=3.3456704569178942e+02

Distortion coefficients:

k1=-3.8003885491418415e-01

k2=1.6491935276593886e-01

k3 = 0

p1=-7.2969684041836462e-04

p2=-8.3850194278408752e-04

4 Extrinsic calibration

This function is responsible to create a 2D Arena pose from the input 3D object points, also called as Extrinsic calibration. The Extrinsic calibration is performed in the following steps:

- 1. Initially a new config folder containing a file called 'extrinsicCalib.csv' is created in order to store the extracted 2D image points.
- 2. Using the function 'pickNPoints', the user specifies the 4 corner points of the arena on the input arena image.
- 3. From these image points the 'x' and 'y' values are extracted and stored inside 'extrinsicCalib.csv'.
- 4. In case the file already exists, the above steps are skipped and the 'x' and 'y' values of the image points are read from the file.
- 5. Finally using the 'cv::solvePnP()' method this function finds the arena pose from 3D-2D point correspondences and Extrinsic calibration is finally complete.

Figure 3: Picking up 4 corner points

5 Image Undistortion

This image provided by the camera is a distorted one due to the shape of the lens. This function is reponsible to undistort that image using the following inputs:

- 1. Distorted image
- 2. Camera matrix
- 3. Distortion coefficients

The method 'cv::initUndistortRectifyMap()' is used for the undistortion and rectification and 'cv::remap()' is used to put the undistorted pixels in the right place in the new image.

Figure 4: Undistorted Image

6 Image Unwarp

This function takes the input image and the perspective plane transform matrix in order to generate the unwarped image.

Figure 5: Unwarped Image

- 7 Process map
- 8 Find Robot