ЛЕКЦІЯ 5

МЕТОДИ ЧИСЕЛЬНОГО ДИФЕРЕНЦІЮВАННЯ ТА ІНТЕГРУВАННЯ

Чисельне диференціювання

Постановка задачі

При розв'язуванні практичних задач часто доводиться обчислювати похідні різних порядків

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \dots$$

від деякої функції

$$y = f(x)$$
.

Якщо функція задана аналітично, то задача вирішується звичайними методами математичного аналізу.

Приклад.
$$y(x) = x^3 + 2x^2 + 4 \Rightarrow \frac{dy(x)}{dx} = 3x^2 + 4x$$

Основні правила аналітичного диференціювання

- 1. Похідна від функції з константою: (kf(x))' = kf'(x)
- 2. Похідна від суми функцій: (f(x)+g(x))'=f'(x)+g'(x)
- 3. Похідна степеневої функції: $(x^p)' = px^{p-1}$
- 4. Похідна добутку двох функцій: (uv)' = u'v + uv'
- 5. Похідна частки функцій: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$
- 6. Похідна від складної функції:

Нехай u=g(x), де $x\in X$ і $u\in U$, y=f(u), де $u\in U$ і $y\in Y$,

Ланцюгове правило:
$$y' = (f(g(x)))' \Rightarrow \frac{dy}{dx} = \frac{df}{du}\frac{du}{dx}$$

Приклад.

Знайти похідну складної функції $y = \left(\frac{x+1}{x-1}\right)^3$

Розв'язок. Нехай $u = \frac{x+1}{x-1}$. Тоді $y'(x) = y'(u) \cdot u'(x)$

$$y'(x) = \left[\left(\frac{x+1}{x-1} \right)^3 \right]' = \left(u^3 \right)' \cdot u' = 3 \left(\frac{x+1}{x-1} \right)^2 \cdot \left(\frac{x+1}{x-1} \right)'$$

$$y'(x) = 3\left(\frac{x+1}{x-1}\right)^2 \cdot \frac{(x+1)'(x-1) - (x+1)(x-1)'}{(x-1)^2} =$$

$$= 3\left(\frac{x+1}{x-1}\right)^{2} \cdot \frac{1 \cdot (x-1) - (x+1) \cdot 1}{(x-1)^{2}} =$$

$$y'(x) = 3\left(\frac{x+1}{x-1}\right)^{2} \cdot \frac{(x-1)-(x+1)}{(x-1)^{2}} =$$

$$= 3\left(\frac{x+1}{x-1}\right)^{2} \cdot \frac{\cancel{x}-1-\cancel{x}-1}{(x-1)^{2}} =$$

$$= 3\left(\frac{x+1}{x-1}\right)^{2} \cdot \frac{(-2)}{(x-1)^{2}} = -6\frac{(x+1)^{2}}{(x-1)^{4}} (x \neq 1)$$

$$f(x) = \arcsin\left(\frac{\cos\left(\frac{\ln\cos\left(\sqrt[3]{x^3 + 43}\right)}{\tan\left(\cos x\right)}\right)}{\sin\left(\frac{\sqrt{23x^2 - \ln x}}{\tan\left(x^8\right)}\right)} - \ln\left(\sqrt{x - 2}\right)$$

 $f(x) = \arcsin \left(\frac{\cos \left(\frac{\ln \cos \left(\sqrt[3]{x^3 + 43} \right)}{\tan \left(\cos x \right)} \right)}{\sin \left(\frac{\sqrt{23x^2 - \ln x}}{\tan \left(x^8 \right)} \right)} \right) - \ln \left(\sqrt{x - 2} \right)$ Отже, коли аналітично задана функція представлена складним виразом, то обчислення її похідної може мати велику трудомісткість

Коли використовують чисельне диференціювання?

До чисельного диференціювання звертаються тоді

1. Коли функція задана таблицею.

x	1	2	3	4	6
f(x)	0.01745	0.03490	0.05234	0.06976	0.10453

цьому випадку методи математичного аналізу незастосовні.

2. Коли залежність y = f(x) представлена складним аналітичним виразом.

$$f(x) = \arcsin \left(\frac{\left(\frac{\ln \cos \left(\sqrt[3]{x^3 + 43} \right)}{\tan \left(\cos x \right)} \right)}{\sin \left(\frac{\sqrt{23x^2 - \ln x}}{\tan \left(x^8 \right)} \right)} \right) - \ln \left(\sqrt{x - 2} \right)$$
 У цьому випадку обчислення похідних пов'язане зі значними труднощами.

Загальний порядок застосування чисельного диференціювання

1. Проводять заміну даної функції, найчастіше інтерполяційним многочленом, користуючись виразом:

$$f(x) = P_n(x) + R_n(x) \tag{1}$$

де $P_n(x)$ – інтерполяційний багаточлен,

 $R_n(x)$ – залишковий член інтерполяційної формули.

Примітка.

- А. Якщо функція задана аналітично, то необхідно побудувати таблицю значень функції на заданому відрізку.
- Б. Проаналізувати неперервність функції на відрізку.

2. Нехай функція f(x) має похідні аж до порядку k включно. Тоді диференціюють вираз (1) і знаходять похідні:

$$f'(x) = P'_n(x) + R'_n(x)$$

$$f''(x) = P''_n(x) + R''_n(x)$$

$$f^{(k)}(x) = P_n^{(k)}(x) + R_n^{(k)}(x)$$
(2)

де $P_n(x)$ – довільний з відомих нам інтерполяційних поліномів.

 $R_n(x)$ – похибка представлення функції поліномом n – го порядку.

3. Наближені значень цих похідних обчислюють як перші доданки в правій частині рівнянь, відкинувши залишкові члени:

$$f'(x) \approx P_n'(x)$$

$$f''(x) \approx P_n''(x)$$

$$f^{(k)}(x) \approx P_n^{(k)}(x)$$
(3)

Залишкові члени $R'_n(x), R''_n(x), ..., R_n^{(k)}(x)$ виражають погрішність цих наближених рівнянь.

4.При заміні функції f(x) інтерполяційним многочленом $P_n(x)$ необхідно вибирати кількість вузлів інтерполяції так, щоб залишковий член $R_n(x)$ був меншим заданої похибки представлення функції.

Але з попереднього факту **не випливає той факт**, що $R'_n(x), R''_n(x), ..., R_n^{(k)}$ будуть також малими.

Погрішності, одержувані при обчисленні похідних (особливо вищих порядків), можуть виявитися значними.

Для зменшення похибки чисельного представлення похідної необхідно зменшувати крок дискретизації функції

Застосування формули чисельного диференціювання на основі інтерполяційного полінома Ньютона з нерівновіддаленими вузлами

Нехай функція задана в певних вузлах:

$$x_i = x_0 + ih$$
, $h > 0$, $i = 0, \pm 1, \pm 2, \dots$

Значення функції та значення її похідних у вузлах будемо позначати так:

$$f(x_i) = f_i, f'(x_i) = f_i', f''(x_i) = f_i'', \dots$$

Будемо використовувати поліном Ньютона:

$$\begin{split} N_n\left(x\right) &= f\left(x_0\right) + \\ &+ f\left(x_0; x_1\right) \left(x - x_0\right) + \\ &+ f\left(x_0; x_1; x_2\right) \left(x - x_0\right) \left(x - x_1\right) + \dots \\ &\dots + f\left(x_0; x_1; \dots; x_n\right) \left(x - x_0\right) \left(x - x_1\right) \dots \left(x - x_{n-1}\right) \end{split}$$

Чисельне диференціювання по двох вузлах

Нехай функція f(x) задана у двох вузлах x_0 і $x_1 = x_0 + h$, а її значення f_0, f_1 .

Побудуємо інтерполяційний поліном першого степеня:

$$N_1(x) = f_0 + (x - x_0) f(x_0; x_1)$$

Похідна $N_1'(x)$ дорівнює

$$N_1'(x) = f(x_0; x_1) = \frac{f_1 - f_0}{h}$$
.

Наступний крок полягає у заміні похідної від функції f(x) в точці

 x_0 відповідною похідною полінома. Отже

$$f_0'(x) pprox rac{f_1 - f_0}{h}$$
 - перша різницева похідна .

Чисельне диференціювання по трьох вузлах з центральною симетрією

Нехай функція f(x) задана в трьох вузлах:

$$x_0, x_1 = x_0 + h, x_{-1} = x_0 - h$$

Інтерполяційний поліном Ньютона другого степеня має вигляд:

$$\begin{split} N_2(x) &= f(x_{-1}) + \\ &+ f(x_{-1}; x_0)(x - x_{-1}) + \\ &+ f(x_{-1}; x_0; x_1)(x - x_{-1})(x - x_0) \end{split}$$

 $\frac{|x_1|}{h}$.Похідна $N_2'(x)$ дорівнює

$$N_2'(x) = f(x_{-1}; x_0) + (2x - x_0 - x_{-1})f(x_{-1}; x_0; x_1)$$

Визначимо чисельне значення похідної в точці x_{0}

Перша розділена різниця:
$$f(x_{-1};x_0) = \frac{f_0 - f_{-1}}{x_0 - x_{-1}} = \frac{f_0 - f_{-1}}{h}$$

Друга розділена різниця:

$$f(x_{-1};x_0;x_1) = \frac{\left(\frac{f_1 - f_0}{x_1 - x_0} - \frac{f_0 - f_{-1}}{x_0 - x_{-1}}\right)}{\left(x_1 - x_{-1}\right)} =$$

$$=\frac{f_{1}}{(x_{1}-x_{0})(x_{1}-x_{-1})}-\frac{f_{0}}{(x_{1}-x_{0})(x_{1}-x_{-1})}-\frac{f_{0}}{(x_{0}-x_{-1})(x_{1}-x_{-1})}+\frac{f_{-1}}{(x_{0}-x_{-1})(x_{1}-x_{-1})}=$$

$$=\frac{f_1}{(h)(2h)} - \frac{f_0}{(h)(2h)} - \frac{f_0}{(h)(2h)} + \frac{f_{-1}}{(h)(2h)} + \frac{f_{-1}}{(h)(2h)} = \frac{f_1}{2h^2} - \frac{f_0}{2h^2} - \frac{f_0}{2h^2} + \frac{f_{-1}}{2h^2} = \frac{f_1 - 2f_0 + f_{-1}}{2h^2}$$

Підставимо скінченні різниці у вираз похідної:

$$\begin{split} N_2'(x) &= f(x_{-1}; x_0) + (2x - x_0 - x_{-1}) f(x_{-1}; x_0; x_1) \\ N_2'(x_0) &= \frac{f_0 - f_{-1}}{h} + (2x_0 - x_0 - x_{-1}) \frac{f_1 - 2f_0 + f_{-1}}{2h^2} = \\ &= \frac{f_0 - f_{-1}}{h} + h \frac{f_1 - 2f_0 + f_{-1}}{2h^2} = \\ &= \frac{2f_0 - 2f_{-1} + f_1 - 2f_0 + f_{-1}}{2h} = \frac{f_1 - f_{-1}}{2h} \end{split}$$

Одержуємо центральну різницеву похідну: $f_0' \approx \frac{f_1 - f_{-1}}{2h}$

Друга різницева похідна на трьох вузлах

Нехай функція f(x) задана в трьох вузлах:

$$x_0, x_1 = x_0 + h, x_{-1} = x_0 - h$$

Похідна $N_2''(x) = (N_2')'$ дорівнює

$$N_2''(x) = \left(f(x_{-1}; x_0) + (2x - x_0 - x_{-1})f(x_{-1}; x_0; x_1)\right)' = 2f(x_{-1}; x_0; x_1)$$

$$= \frac{2f_1}{(x_1 - x_0)(x_1 - x_{-1})} - \frac{2f_0}{(x_1 - x_0)(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_{-1}}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_{-1}}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} = \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} - \frac{2f_0}{(x_0 - x_{-1})(x_1 - x_{-1})} + \frac{2f_0}{(x_0 - x_{-1})(x_$$

$$=\frac{2f_1}{(h)(2h)}-\frac{2f_0}{(h)(2h)}-\frac{2f_0}{(h)(2h)}+\frac{2f_{-1}}{(h)(2h)}+\frac{2f_{-1}}{(h)(2h)}=\frac{2f_1}{2h^2}-\frac{2f_0}{2h^2}-\frac{4f_0}{2h^2}+\frac{2f_{-1}}{2h^2}=\frac{f_1-2f_0+f_{-1}}{2h^2}$$

В результаті одержуємо другу різницеву похідну:

$$f_0'' \approx \frac{f_1 - 2f_0 + f_{-1}}{h^2}$$

Оцінки похибок чисельного диференціювання

1. Оцінка (перша різницева похідна):

$$\left| f_0' - \frac{f_1 - f_0}{h} \right| \le \frac{h}{2} \max_{[x_0, x_1]} \left| f''(x) \right|$$

2. Оцінка (перша центральна різницева похідна):

$$\left| f_0' - \frac{f_1 - f_{-1}}{2h} \right| \le \frac{h^2}{6} \max_{[x_{-1}, x_1]} \left| f'''(x) \right|$$

3. Оцінка (друга різницева похідна):

$$\left| f_0'' - \frac{f_1 - 2f_0 + f_{-1}}{h^2} \right| \le \frac{h^2}{12} \max_{[x_{-1}, x_1]} \left| f^{IV}(x) \right|$$

Приклад 1. Нехай дано функцію $y = \ln(x)$. Знайти точне значення першої похідної та її наближене значення шляхом обчислення першої різницевої похідної в точці $x_0 = 4$ при h = 1 . Оцінити похибку наближеного обчислення. Розв'язок.

Етап1. Знаходимо похідну аналітично: $y' = (\ln(x))' = \frac{1}{x}$

Етап2. Обчислюємо значення при $x_0 = 4$: $y'(4) = \frac{1}{4} = 0.25$

Етап3. Обчислюємо різницеву похідну:

$$y'(4) = \frac{f_5 - f_4}{h} = \frac{\ln(5) - \ln(4)}{1} = \frac{1.6094 - 1.3863}{1} = 0.2231$$
 Етап 4. Похибка $\Delta = |0.25 - 0.2231| = 0.0269 \approx 0.03$ Оцінка:

$$\Delta \le \frac{h}{2} \max_{h} |f''(x)|; \ \Delta \le \frac{1}{2} \left| \left(\frac{1}{x} \right)' \right| = \frac{1}{2x^2} = \frac{1}{2 \cdot 16} = 0.03125 \approx 0.03$$

Приклад 2. Нехай дано функцію $y=e^{1/x}$. Знайти точне значення першої похідної та її наближене значення шляхом обчислення центральної різницевої похідної в точці $x_0=3$ при h=1. Оцінити похибку наближеного обчислення.

Розв'язок.

Етап1. Знаходимо похідну аналітично:
$$y' = \left(e^{1/x}\right)' = -\frac{e^{1/x}}{x^2}$$

Етап2. Обчислюємо значення при
$$x_0 = 3$$
: $y'(3) = -\frac{1.396}{9} = -0.155$

Етап3. Обчислюємо центральну різницеву похідну:

$$y'(3) = \frac{f_4 - f_2}{2h} = \frac{e^{1/4} - e^{1/2}}{2} = \frac{1.284 - 1.649}{2} = -0.183$$

Етап 4. Похибка $\Delta = \left| -0.155 + 0.183 \right| = 0.028 \approx 0.03$

Оцінка:
$$\Delta \le \frac{h^2}{6} \max_h \left| f'''(x) \right|; \Delta \le \frac{1}{6} \left| -6\frac{e^{1/x}}{x^4} \right| = \frac{e^{1/x}}{x^4} = \frac{1,64}{16} \approx 0.1$$

Приклад 3. Нехай дано функцію $y = \sqrt[5]{x} - x$. Знайти точне значення другої похідної та її наближене значення шляхом обчислення другої різницевої похідної в точці $x_0 = 3$ при h = 1. Оцінити похибку наближеного обчислення.

Розв'язок.

Етап1. Знаходимо похідну аналітично:
$$y'' = -\frac{4}{25\sqrt[5]{x^9}}$$

Етап2. Обчислюємо значення при
$$x_0=3$$
: $y''(3)=-\frac{4}{25\cdot 7.225}=-0.022$

Етап3. Обчислюємо різницеву похідну:

$$y''(3) = \frac{f_4 - 2f_3 + f_2}{h^2} = \frac{-2,680 - 2(-1.754) - 0.851}{1} = \frac{3.508 - 3.531}{1} = -0.023$$

Етап 4. Похибка $\Delta = \left| -0.022 + 0.023 \right| = 0.001$ Оцінка:

$$\Delta \le \frac{h^2}{12} \max_{h} \left| f^{IV}(x) \right|; \ \Delta \le \frac{1}{12} \left| -\frac{468}{625 \sqrt[5]{x^{18}}} \right| = \frac{1}{12} \cdot \frac{0,749}{12.126} \approx 0.005$$

Чисельне диференціювання з поліномом Ньютона з рівновіддаленими вузлами

Постановка задачі

Нехай функція f(x) задана на відрізку [a,b] таблицею значеннями в (n+1) рівновіддалених вузлах:

x_i	$x_0 = a$	$ x_1 $	x_2		$x_n = b$
y_i	y_0	y_1	y_2	• • •	y_n

де
$$x_i = x_0 + ih$$
 при $i = 0,1,2,...,n$,

Необхідно обчислити значення похідної для значень функції f(x) .

Вивід формули для чисельного диференціювання

Функцію f(x) замінимо наближено першим інтерполяційним поліномом Ньютона:

$$f(x) = y_0 + m\Delta y_0 + \frac{m(m-1)}{2!} \Delta^2 y_0 + \frac{m(m-1)(m-2)}{3!} \Delta^3 y_0 + \frac{m(m-1)(m-2)(m-3)}{4} \Delta^4 y_0 + \dots$$

де
$$m=\frac{x-x_0}{h}$$
, $h=x_{i+1}-x_i$. Звідси $\frac{dm}{dx}=\frac{1}{h}(x-x_0)'=\frac{1}{h}$

Розкривши дужки в чисельнику, формулу можна записати у вигляді:

$$f(x) = y_0 + m\Delta y_0 + \frac{m^2 - m}{2}\Delta^2 y_0 + \frac{m^3 - 3m^2 + 2m}{6}\Delta^3 y_0 + \frac{m^4 - 6m^3 + 11m^2 - 6m - 3}{24}\Delta^4 y_0 + \dots$$

Враховуючи, що
$$\frac{df(x)}{dx} = \frac{df(x)}{dm} \cdot \frac{dm}{dx} = \frac{1}{h} \cdot \frac{df(x)}{dm}$$

Диференціюючи рівність поліном Ньютона, одержимо:

$$y_0 \to \frac{y_0}{dx} = 0$$

$$m\Delta y_0 \rightarrow \frac{d(m\Delta y_0)}{dx} = \frac{1}{h}\Delta y_0$$

$$\frac{m^2 - m}{2} \Delta^2 y_0 \to \frac{d \left(\frac{m^2 - m}{2} \Delta^2 y_0 \right)}{dx} = \frac{1}{h} \frac{2m - 1}{2} \Delta^2 y_0$$

$$\frac{m^3 - 3m^2 + 2m}{6} \Delta^3 y_0 \to \frac{d\left(\frac{m^3 - 3m^2 + 2m}{6}\Delta^3 y_0\right)}{dx} = \frac{1}{h} \frac{3m^2 - 6m + 2}{6} \Delta^3 y_0$$

$$\frac{m^{4} - 6m^{3} + 11m^{2} - 6m - 3}{24} \Delta^{4} y_{0} \rightarrow \frac{d\left(\frac{m^{4} - 6m^{3} + 11m^{2} - 6m - 3}{24} \Delta^{4} y_{0}\right)}{dx} = \frac{1}{h} \frac{4m^{3} - 18m^{2} + 22m - 6}{24} \Delta^{4} y_{0}$$

Отже перша похідна полінома Ньютона має вигляд:

$$f'(x) = \frac{1}{h} \left(\Delta y_0 + \frac{2m-1}{2} \Delta^2 y_0 + \frac{3m^2 - 6m + 2}{6} \Delta^3 y_0 + \frac{2m^3 - 9m^2 + 11m - 3}{12} \Delta^4 y_0 + \dots \right)$$

Аналогічно одержимо другу похідну полінома Ньютона:

$$f''(x) = \frac{1}{h^2} \left(\Delta^2 y_0 + (m-1)\Delta^3 y_0 + \frac{6m^2 - 18m + 11}{12} \Delta^4 y_0 + \dots \right)$$

У такий же спосіб можемо обчислити похідні будь-якого порядку.

Скорочені формули наближеного диференціювання

Формули наближеного диференціювання значно спрощуються, якщо значення похідних обчислюються у вузлах інтерполяції. Поклавши m=0 ($x=x_0$), одержимо:

$$f'(x_0) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \frac{\Delta^5 y_0}{5} - \dots \right)$$

$$f''(x_0) = \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \dots \right)$$

Залишковий член при обчисленні першої похідної

визначають за формулою:
$$R_k'(x_0) \approx \frac{\left(-1\right)^k}{h} \frac{\Delta^{k+1} y_0}{k+1}$$

Приклад 1. Знайти y'(50) для функції $y = \lg x$, яка задана таблично:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
50	1.6990	0.0414	-0.0036	0.0005
55	1.7404	0.0378	-0.0031	
60	1.7782	0.0347		
65	1.8129			

Розв'язок.

Виходячи з таблиці $x_{i+1} - x_i = h = 5$.

Доповнимо таблицю скінченними різницями. Використаємо перший рядок таблиці та на основі формули

$$f'(x_0) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \frac{\Delta^5 y_0}{5} - \dots \right)$$

запишемо:

$$y'(50) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} \right) = \frac{1}{5} \left(0.0414 - \frac{-0.0036}{2} + \frac{0.0005}{3} \right) =$$

$$= \frac{1}{5} \left(0.0414 + 0.0018 + 0.000017 \right) = 0.00864$$

Оцінимо точність обчислення похідної:

Оскільки ми обчислювали похідну таблично заданої функції $y = \lg x$, то

$$y' = (\lg x)' = \frac{1}{x \cdot \ln 10} = \frac{0.43429}{x}$$
. Звідки $y'(50) = \frac{0.43429}{50} = 0.00869$

Результати співпадають з точністю до четвертого десяткового знаку.

Приклад 2. Нехай y = f(t) - шлях, який пройшла рухома точка за час t. Відповідна функція задана таблично.

i	Час t_i в сек.	Шлях $y(t_i)$ в см.
0	0.00	0.000
1	0.01	1.519
2	0.02	6.031
3	0.03	13.397
4	0.04	23.396
5	0.05	35.721
6	0.05	50.000
7	0.07	65.798
8	0.08	82.635
9	0.09	100.000

Використовуючи скінченні різниці до 5-го порядку включно, наближено знайти швидкість V = dy/dt та прискорення $W = d^2y/dt^2$ для моментів часу t = 0; 0.01; 0.02; 0.03; 0.04.

Розв'язок. Складемо таблицю скінченних різниць.

Скінченні різниці функції y = f(t)

l	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$
0	1.519	2.993	-0.139	-0.082	-0.004
1	4.512	2.854	-0.221	-0.086	0.021
2	7.366	2.633	-0.307	-0.065	0.002
3	9.999	2.326	-0.372	-0.063	0.018
4	12.325	1.954	-0.435	-0.045	0.014
5	14.279	1.519	-0.480	-0.031	-
6	15.798	1.039	-0.511	-	
7	16.837	0.528	-		
8	17.365	-			
9	-				

Приймемо h = 0.01 та застосуємо формули:

$$f'(x_0) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \frac{\Delta^5 y_0}{5} - \dots \right)$$

$$f''(x_0) = \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \dots \right)$$

Одержимо наближені значення величин швидкості V (см./сек) та величини прискорення W (см/сек 2). Наприклад:

$$V\big(0\big) = 100\big(1.519 - 1.496 - 0.046 + 0.020 - 0.001\big) = -0.4$$
 см/сек.

$$W(0) = 10000(2.993 + 0.139 - 0.075 + 0.003) = 30600$$
 см/сек.

Відповідні значення V та W занесемо в таблицю:

Значення швидкості V і прискорення W для закону руху y=f(t)

Представлений таблицею закон руху задано виразом:

$$y = 100 \left(1 - \cos \frac{50\pi t}{9} \right)$$

Звідси

$$\widetilde{V} = \frac{dy}{dt} = \frac{5000\pi}{9} \sin \frac{50\pi t}{9}$$
 ta

$$\tilde{W} = \frac{d^2y}{dt^2} = \frac{250000\pi^2}{81}\cos\frac{50\pi t}{9}$$

Для порівняння точні значення $ilde{V}$ і $ilde{W}$ наведено в таблиці.

t	V	W	$ \tilde{V} $	$ \tilde{W} $
0.00	0.4	30600	0.00	30462
0.01	303.6	29780	303.08	30001
0.02	596.3	28780	596.98	28625
0.03	873.2	26250	872.66	26381
0.04	1121.7	23360	1121.9	23340

МЕТОДИ ЧИСЕЛЬНОГО ІНТЕГРУВАННЯ

Однокрокові методи

Прямий спосіб обчислення визначеного інтеграла

Прямий спосіб обчислення визначеного інтеграла полягає у використанні основної формули інтегрального числення:

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

де f(x) – неперервна на $\left[a,b\right]$ функція,

F(x) – $\ddot{\mathbf{n}}$ первісна.

Однак такі обчислення утруднені тим, що фактичне знаходження значень $F\left(x\right)$ можливо лише в незначній кількості випадків.

Із цієї причини велике значення мають формули для наближеного обчислення інтегралів.

Методи наближеного обчислення інтегралів 1. Методи Ньютона-Котеса

Методи засновані на апроксимації функції f(x) поліномом степеня n.

Алгоритми цього класу відрізняються тільки степенем полінома.

Як правило, вузли апроксимуючого полінома – рівновіддалені.

2. Методи сплайн-інтегрування

Методи сплайн-інтегрування базуються на апроксимації функції f(x) сплайном.

3. Методи Монте-Карло

Методи Монте-Карло використовують найчастіше при обчисленні кратних інтегралів, вузли вибирають випадковим чином, відповідь носить імовірнісний характер.

Методи Ньютона-Котеса Постановка задачі

Нехай $y=f\left(x\right)$ – неперервна функція на відрізку $\left[a;b\right]$.

Потрібно обчислити
$$\int_{a}^{b} f(x) dx$$
.

Розіб'ємо відрізок інтегрування на n рівних частин точками

так, що
$$x_{i+1}-x_i=rac{b-a}{n}=h, \ i=0,1,2,...,n$$
 і нехай

$$y_i = f ig(x_i ig)$$
 – значення $f ig(x ig)$ в точках розбиття.

Метод прямокутників

Ha

відрізку
$$\left[x_{i}; x_{i+1}\right]$$
 беремо довільну точку

Інтерполяційним многочленом у випадку одного вузла є f(c).

$$\int_{x_{i}}^{x_{i+1}} f(x) dx = h \cdot f(c), \ h = x_{i+1} - x_{i}.$$
 (1)

Геометрична інтерпретація формули (1) представлена трьома можливими варіантами, показаними на рис.1-3.

На рис. 1 – наближення лівим прямокутником,

на рис. 2 – наближення правим прямокутником,

на рис. 3 – наближення середнім прямокутником.

Загальний вигляд формули прямокутників

$$\int_{a}^{b} f(x)dx = h \sum_{k=0}^{n-1} f(c+kh).$$

- 1) Формула лівих прямокутників: $c=x_0$.
- 2) Формула правих прямокутників: $c=x_1$.
- 3) Формула середніх прямокутників: $c = x_0 + \frac{h}{2}$.

Чисельне інтегрування методом прямокутників

Обчислення наближеного інтеграла від функції y = f(x) на відрізку a;b.

На рисунку показано графічне представлення порядку обчислення $\int\limits_{a}^{b}f\left(x\right) dx\approx h{\sum\limits_{i}^{n}}\tilde{y}_{i}$.

Алгоритм обчислень методом прямокутників

1. Поділимо відрізок $\left[a,b\right]$ на n частин

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$
. Тоді крок дискретизації

$$h = \frac{b-a}{n} = x_{i+1} - x_i.$$

2. На кожному відрізку $\left[x_{i}^{\cdot}, x_{i+1}^{\cdot}\right]$ вибираємо точку c_{i}

$$c_i = \frac{x_i + x_{i+1}}{2}.$$

- 3. Прийнявши ординату $\tilde{y}_i = f \left(c_i \right)$ за висоту, будуємо прямокутники площею $s_i = h \cdot \tilde{y}_i$.
- 4. Тоді $\sum_{i=1}^{n} s_i$ дає площу східчастої фігури, що є наближеним значенням шуканого визначеного інтеграла.

Загальна формула обчислень методом прямокутників

$$\begin{split} & \int\limits_a^b f\left(x\right)\!dx \approx \\ & \approx h\left(\tilde{y}_1 + \tilde{y}_2 + \ldots + \tilde{y}_{i-1} + \tilde{y}_i + \ldots + \tilde{y}_n\right) = \\ & = \frac{b-a}{n} \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \end{split}$$

Цю формулу називають формулою середніх прямокутників.

Похибки методів прямокутників

1. Ліві:
$$R_n\left(f,a\right) = \frac{\left(b-a\right)^2}{2n} f'\left(x^*\right), \; x^* \in \left[a;b\right],$$

2. Праві:
$$R_n\left(f,a+h\right)=-rac{\left(b-a
ight)^2}{2n}f'\Big(x^*\Big),\;x^*\in \left[a;b
ight],$$

1. Середні:
$$R_n\left(f,a+rac{h}{2}
ight)=-rac{\left(b-a
ight)^2}{24n^2}f''\Big(x^*\Big),\;x^*\in \left[a;b
ight],$$

Для оцінки похибки приймаємо:

$$f'\Big(x^*\Big) = \max f'\Big(x\Big), f''\Big(x^*\Big) = \max f''\Big(x\Big), x, x^* \in \big[a;b\big].$$

Метод трапецій Постановка задачі

Нехай $y=f\left(x\right)$ – неперервна функція на відрізку $\left[a;b\right]$.

Потрібно обчислити
$$\int_{a}^{b} f(x) dx$$
.

Розіб'ємо відрізок інтегрування на n рівних частин точками

так, що
$$x_{i+1}-x_i=\frac{b-a}{n}=h,\ i=0,1,2,...,n$$
 і нехай $y_i=f\left(x_i\right)$ – значення $f\left(x\right)$ в точках ділення.

Чисельне інтегрування методом трапецій

На рисунку показаний спосіб обчислення наближеного інтеграла від функції $y=f\left(x\right)$ на відрізку $\left[a;b\right]$ методом трапецій

$$h = x_{i+1} - x_i,$$

$$h = \frac{b - a}{n},$$

$$i = 0, 1, 2, ..., n$$

$$y_0 = f(x_0),$$

$$y_1 = f(x_1),$$

$$...$$

$$y_i = f(x_i),$$

$$y_n = f(x_n)$$

Формула методу трапецій

На відрізку $\left[x_i;x_{i+1}\right]$ утворюємо трапецію, обмежену віссю абсцис, ординатами y_i і y_{i+1} й відрізком, що з'єднує точки $\left(x_i,y_i\right)$ і $\left(x_{i+1},y_{i+1}\right)$.

Визначимо площу цієї трапеції як наближене значення інтеграла від функції $f\left(x\right)$ на відрізку $\left[x_{i};x_{i+1}\right]$.

$$\int_{x_{i}}^{x_{i+1}} f(x) dx \approx h \frac{y_{i} + y_{i+1}}{2}, h = x_{i+1} - x_{i}.$$

У випадку рівновіддалених вузлів:

$$h = \frac{b-a}{n}$$
, $x_i = a + h \cdot i$, $y_i = f(x_i)$, $i = 0, 1, 2, ..., n$.

Замінимо криву $y=f\left(x\right)$ ламаною лінією, ланки якої з'єднують кінці ординат y_i і y_{i+1} $\left(i=0,1,2,...,n\right)$.

Тоді одержимо множину трапецій з основами y_i , y_{i+1} і висотою $h=\frac{b-a}{n}$. Загальна формула трапецій:

$$\int_{a}^{b} f(x)dx \approx \frac{y_0 + y_1}{2}h + \frac{y_1 + y_2}{2}h + \dots + \frac{y_{n-1} + y_n}{2}h = \frac{b - a}{n} \left(\frac{y_0 + y_n}{2} + y_1 + y_2 + \dots + y_{n-1} \right)$$

Абсолютну оцінку похибки R_n наближення, отриманого за формулою трапецій, оцінюють за допомогою формули

$$\left|R_n
ight| \leq rac{\left(b-a
ight)^3}{12n^2} M_2$$
, де $M_2 = \max_{a \leq x \leq b} \left|f''ig(xig)
ight|$

Формула парабол (Симпсона)

Формула парабол (Симпсона)

Замінимо графік функції $y=f\left(x
ight)$ на кожному

відрізку
$$\left[x_{i-1};x_i\right]$$
 дугами парабол: $\int\limits_a^b f(x)dx$.

Знайдемо площу S криволінійної $\stackrel{``}{m}$ рапеції,

обмеженої зверху графіком параболи $y=ax^2+bx+c$, збоку – ординатами y_0 , y_2 і знизу – відрізком $\left[-h,h\right]$.

Нехай парабола проходить через три точки:

$$m_{0}\left(-h,y_{0}
ight),\;m_{1}\left(0,y_{1}
ight),\;m_{2}\left(h,y_{2}
ight)$$
, де

$$y_0 = ah^2 - bh + c$$
 – ордината параболи в точці $x = -h$;

$$y_1 = c$$
 – ордината параболи в точці $x = 0$;

$$y_2 = ah^2 + bh + c$$
 – ордината параболи в точці $x = h$.

Площа S дорівнює

$$S = \int_{-h}^{h} \left(ax^2 + bx + c \right) dx = \left[a \frac{x^3}{3} + b \frac{x^2}{2} + cx \right]_{-h}^{h} =$$

$$= \left[\frac{ah^3}{3} + \frac{bh^2}{2} + ch \right] - \left[-\frac{ah^3}{3} + \frac{bh^2}{2} - ch \right] = 2 \frac{ah^3}{3} + 2ch.$$

Виразимо цю площу через h, y_0, y_1, y_2 :

1)
$$y_0 = ah^2 - bh + c$$
,

2)
$$y_1 = c$$
,

3)
$$y_2 = ah^2 + bh + c$$
.

Додамо перший та третій вираз й зведемо подібні члени:

$$y_0 + y_2 = 2ah^2 + bh - bh + 2c = 2ah^2 + 2c$$

Підставимо 2) в отриманий вираз:

$$y_0 + y_2 = 2ah^2 + 2y_1.$$

З отриманого співвідношення $y_0 + y_2 = 2ah^2 + 2y_1$ виразимо

значення
$$a$$
: $a = \frac{1}{2h^2} (y_0 - 2y_1 + y_2)$

Підставляючи значення c й a в отриманий вираз для площі:

$$\begin{split} S &= \frac{2ah^3}{3} + 2ch = \frac{2h^3}{3} \cdot \frac{1}{2h^2} \Big(y_0 - 2y_1 + y_2 \Big) + 2hy_1 = \\ &= \frac{h}{3} \Big(y_0 - 2y_1 + y_2 \Big) + 2hy_1 = \frac{h}{3} \Big(y_0 + 4y_1 + y_2 \Big). \end{split}$$

Розглянемо відрізок $\left[a;b\right]$. Розіб'ємо його на 2n рівних

частин (відрізків) довжиною $h=\frac{a-b}{2n}$. Заміняємо кожну пару сусідніх елементарних криволінійних трапецій з основами, рівними h, однією елементарною параболічною трапецією з основою, що дорівнює 2h.

На відрізку $\left[x_0;x_2\right]$ парабола проходить через **три точки** $m_0\left(x_0,y_0\right),m_1\left(x_1,y_1\right),m_2\left(x_2,y_2\right).$

Використовуючи формулу $S=rac{h}{3}ig(y_0+4y_1+y_2ig)$, знаходимо

$$S_1 = \int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (y_0 + 4y_1 + y_2).$$

Аналогічно знаходимо:

$$S_2 = \int\limits_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_2 + 4y_3 + y_4),$$

$$S_n = \int_{x_{2n-2}}^{x_{2n}} f(x) dx = \frac{h}{3} (y_{2n-2} + 4y_{2n-1} + y_{2n}).$$

Додамо отримані рівності і одержимо:

$$\int\limits_a^b f(x) \! dx = \\ \frac{h}{3} \big(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 2y_{2n-2} + 4y_{2n-1} + y_{2n} \big)$$
 або

$$\begin{split} & \int\limits_{a}^{b} f \Big(x \Big) dx = \\ & = \frac{b-a}{6n} \Big(\Big(y_0 + y_{2n} \Big) + 4 \Big(y_1 + y_3 + \ldots + y_{2n-1} \Big) + 2 \Big(y_2 + y_4 + \ldots + y_{2n-2} \Big) \Big) \end{split}$$

Формулу називають формулою парабол або формулою Симпсона.

Абсолютну оцінку похибки обчислень за формулою Симпсона оцінюють співвідношенням:

$$\left|R_n
ight| \leq rac{\left(b-a
ight)^5}{180\cdot\left(2n
ight)^4}\cdot M_4, \ \ \mathrm{дe}\ M_4 = \max_{a\leq x\leq b}\left|f^{IV}\left(x
ight)\right|.$$

Слід зазначити, що формула дає точне значення інтеграла $\int_a^b f(x) dx$ у всіх випадках, коли f(x) – многочлен, степінь якого менше або дорівнює трьом.

Сплайн-квадратура

Нехай потрібно обчислити $I = \int_{a}^{b} f(x) dx$.

Розіб'ємо $\left[a;b\right]$ на відрізки довжини

$$h_j = x_j - x_{j-1}$$
, $j = 1, 2, ..., n$, $x_0 = a$, $x_n = b$.

На кожному з відрізків замінимо підінтегральну функцію кубічним сплайном $\varphi_{_i}(x)$.

$$\begin{split} \varphi_{j}\left(x\right) &= \\ &= a_{j} + b_{j}\left(x - x_{j}\right) + c_{j}\left(x - x_{j}\right)^{2} + d_{j}\left(x - x_{j}\right)^{3}, \; x \in \left[x_{j-1}, x_{j}\right] \end{split}$$

Тоді початкова задача набуде вигляду:

$$I = \int_{a}^{b} f(x)dx = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} \varphi_{j}(x)dx.$$

Обчислимо інтеграл від функції φ_j на довільному відрізку $\left[x_{i-1};x_i\right]$:

$$\int_{x_{j-1}}^{x_j} \varphi_j(x) dx = a_j h_j + \frac{b_j}{2} h_j^2 + \frac{c_j}{3} h_j^3 + \frac{d_j}{4} h_j^4.$$

Початкова задача набуде вигляду:

$$I = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} \varphi_{j}(x) dx = \sum_{j=1}^{n} \left(a_{j}h_{j} + \frac{b_{j}}{2}h_{j}^{2} + \frac{c_{j}}{3}h_{j}^{3} + \frac{d_{j}}{4}h_{j}^{4} \right)$$

Коефіцієнти сплайнів a_j, b_j, d_j виражають через коефіцієнти c_j й значення підінтегральної функції $f_i\left(x\right)$, застосувавши умови зшивання сусідніх сплайнів:

$$a_{j} = f_{j-1}, b_{j} = \frac{f_{i} - f_{j-1}}{h_{j}} - \frac{\left(c_{j+1} + 2c_{j}\right)h_{j}}{3},$$

$$d_{j} = \frac{c_{j+1} - c_{j}}{3h_{i}}$$

$$(10)$$

Значення коефіцієнтів c_i можна одержати, розв'язавши систему лінійних алгебраїчних рівнянь.

$$\begin{split} x_1c_1 + 2\left(x_1 + x_2\right)c_2 + x_2c_3 &= \left(\frac{f_2 - f_1}{x_2} - \frac{f_1 - f_0}{x_1}\right), \\ x_2c_2 + 2\left(x_2 + x_3\right)c_3 + x_3c_4 &= \left(\frac{f_3 - f_2}{x_3} - \frac{f_2 - f_1}{x_2}\right). \\ x_{i-1}c_{i-1} + 2\left(x_{i-1} + x_i\right)c_i + x_ic_{i+1} &= \left(\frac{f_i - f_{i-1}}{x_i} - \frac{f_{i-1} - f_{i-2}}{x_{i-1}}\right), \\ 2 &\leq i \leq n \,. \end{split}$$

Матриця для розв'язування системи – це трьохдіагональна матриця. Тому для одержання розв'язку доцільно використовувати метод прогонки.

Коефіцієнти c_1 й c_{n+1} отримані із умов вільних кінців сплайна. Зазвичай вимагають нульової кривизни на кінцях сплайна. Тому беруть $c_1=c_{n+1}=0$.

Підставимо у вираз

$$I = \sum_{j=1}^{n} \left(a_j h_j + \frac{b_j}{2} h_j^2 + \frac{c_j}{3} h_j^3 + \frac{d_j}{4} h_j^4 \right)$$

значення коефіцієнтів:

$$a_{j} = f_{j-1}, \ b_{j} = \frac{f_{i} - f_{j-1}}{h_{j}} - \frac{\left(c_{j+1} + 2c_{j}\right)h_{j}}{3}, d_{j} = \frac{c_{j+1} - c_{j}}{3h_{j}}$$

$$I = \sum_{j=1}^{n} \left(f_{j-1} h_j + \frac{f_j - f_{j-1}}{2} h_j - \frac{c_{j+1} + 2c_j}{6} h_j^3 + \frac{c_j}{3} h_j^3 + \frac{c_{j+1} - c_j}{12} h_j^3 \right)$$

$$I = \sum_{j=1}^{n} \frac{f_j + f_{j-1}}{2} h_j - \sum_{j=1}^{n} \frac{h_j^3 \left(c_{j+1} + c_j \right)}{12}.$$