Working With Images

Part 2: Image Data And Its Challenges

Let's start with a question! Can you use a multilayer perceptron on image data?

Let's start with a question! Can you use a multilayer perceptron on image data?

YESI

14x14-dimensional image

Consider the rows in this image

Let's shrink it to fit it better on the slide

Concatenate the rows

Concatenate the rows

Concatenate the rows

We get a 196-dimensional row vector

We get a 196-dimensional row vector

This is a single training example

Sebastian Raschka

Deep Learning Fundamentals, Unit 7

Sebastian Raschka

Deep Learning Fundamentals, Unit 7

We now have 3 training examples

This is now a tabular dataset

Sepal length	Sepal width	Petal length	Petal length
5.1	3.5	1.4	0.3
4.9	3	1.4	0.2
5.9	3	5.1	1.8
***	***	***	***

Sebastian Raschka

Deep Learning Fundamentals, Unit 7

Position 1	Position 2	Position 3	Position 4
0	0	0	0
О	0	0	O
О	0	0	O
•••	•••	•••	•••

Position 196	
O	
0	
О	
•••	

- - -

Sebastian Raschka

Deep Learning Fundamentals, Unit 7

Unnormalized pixel values range from 0 to 255

Position 1	Position 2	Position 3	Position 4
0	0	0	0
O	O	0	O
О	0	0	O
•••	•••	•••	•••

Sebastian Raschka

Deep Learning Fundamentals, Unit 7

We have already seen this in Unit 4!


```
class PyTorchMLP(torch.nn.Module):
    def __init__(self, num_features, num_classes):
        super().__init__()
        self.all_layers = torch.nn.Sequential(
            # 1st hidden layer
            torch.nn.Linear(num_features, 50),
            torch.nn.ReLU(),
            # 2nd hidden layer
            torch.nn.Linear(50, 25),
            torch.nn.ReLU(),
            # output layer
            torch.nn.Linear(25, num_classes),
    def forward(self, x):
        x = torch.flatten(x, start_dim=1)
        logits = self.all_layers(x)
        return logits
```

```
train_acc = compute_accuracy(model, train_loader)
val_acc = compute_accuracy(model, val_loader)
test_acc = compute_accuracy(model, test_loader)
print(f"Train Acc {train_acc*100:.2f}%")
print(f"Val Acc {val_acc*100:.2f}%")
print(f"Test Acc {test_acc*100:.2f}%")
```

We have already seen this in Unit 4!


```
class PyTorchMLP(torch.nn.Module):
   def __init__(self, num_features, num_classes):
       super().__init__()
       self.all_layers = torch.nn.Sequential(
           # 1st hidden layer
           torch.nn.Linear(num_features, 50),
           torch.nn.ReLU(),
           # 2nd hidden layer
           torch.nn.Linear(50, 25),
           torch.nn.ReLU(),
           # output layer
           torch.nn.Linear(25, num_classes),
                                                Reshapes the
   def forward(self, x):
                                              28x28 images to
       x = torch.flatten(x, start_dim=1)
                                              784-dimensional
       logits = self.all_layers(x)
       return logits
                                                    vectors
```

```
train_acc = compute_accuracy(model, train_loader)
val_acc = compute_accuracy(model, val_loader)
test_acc = compute_accuracy(model, test_loader)

print(f"Train Acc {train_acc*100:.2f}%")
print(f"Val Acc {val_acc*100:.2f}%")
print(f"Test Acc {test_acc*100:.2f}%")
```

A potential problem with this approach

Suppose the MLP neural network relies on these pixels

Deep Learning Fundamentals, Unit 7

A potential problem with this approach

An MLP will not recognize the digit if it is in slightly different position

Deep Learning Fundamentals, Unit 7

Multilayer perceptrons: Independence among features

Convolutional networks: Take locality into account

Multilayer perceptrons: Independence among features

Next: The Convolutional Network Architecture