Logisim新手实验

实验目的——Logisim快速入门

- ➤ 熟悉Logisim基本功能,常用操作;
- ➤ 熟悉Logisim基本组件库;
- ➤ 掌握Logism自动生成电路的方法

实验任务

基础任务: 绘制LED计数电路 (30)

构建数据编码器 (30)

进阶任务: 设计7段数码管显示驱动电路 (40)

(一):绘制LED计数电路

LED计数电路外部特性

- ▶ 5个输入引脚,5个输出引脚
- ➤ LED计数电路功能:根据按下的输入按钮的编号值,点亮对应数量的LED

设计方法

- 1. 参照右图,原样绘制电路。
- 2. 熟悉I/O引脚、逻辑门:给出引脚标签,熟悉 快捷键,熟悉引脚和逻辑门的属性;
- 3. 功能测试: 熟练运用戳工具

设计方法(续)

- 4. 封装子电路:
- **修改封装外观**
- > 调整引脚位置、增加说明
- >熟练快捷键——Ctrl shift + 鼠标拖拽

- 子电路调用与功能测试
 - 产在测试电路中添加已封装好的LED计数子电路
 - 按钮输入、LED指示灯(发光二极管)
 - > 功能测试

(二):5输入按键编码器的设计

编码器外部特性

- ▶ 输入: 5个不同编码的按钮; 输出: 3位按键编号值;
- > 编码器功能:显示按下的请求按钮的二进制编号

设计方法: 真值表 > 表达式 > 自动生成电路

- 1. 借助Excel真值表,自动生成逻辑表达式
- 2. 利用Logisim的"电路分析"自动生成电路 设置输入、输出;填入1中已生成的逻辑表达式
- 3、封装子电路

Excel真值表自动生成逻辑表达式

打开资源包中的"真值表自动生成表达式.xlsx"

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	
输入(填1或0,不填为无关项x)												输出 (只填写为1的情况)											
In1	In2	In3	In4	In5	In6	In7	In8	In9	In10	In11	In12	Out1	Out2	Out3	Out4	Out5	Out6	Out7	Out8	Out9	Out10	Out11	
				1								1		1									
			1	0										1									
		1	0	0								1	1										
	1	0	0	0									1										
1	0	0	0	0								1											

只填写为0和为1的情况,无关项不填, 注意输入输出变量名可自行更改,不用的列不填或隐藏,行数不够上方还有隐藏行,所有表格都有帮助提示,哪里不懂点哪里

利用电路分析自动生成电路

总结: 自动生成组合逻辑电路的一般流程

5输入编码器电路的测试

1. 修改LED计数测试电路

- > 增加编码器
- > 分线器
- > 探针
- > 接地和电源

2. 进行功能测试

(三) 进阶任务: 7段数码管显示驱动

7段数码管显示驱动的外部特性

▶ 输入: 4位二进制

▶ 输出: 7段显示管的7个输出控制信号

▶ 功能: 利用7段数码管显示4位二进制的16进制值

设计方法: 真值表 > 自动生成电路

1、对照右侧图,整理出4位二进制的7段数码管显示驱动的真值表。其中,注意区分b和6,d和0;

2、在Logisim中利用"电路分析"自动生成电路

数码管驱动的测试

- ▶ 在"数码管驱动测试" 电路中构建如右图所 示的测试电路
- ➤ Ctrl+T时钟单步,Ctrl +k时钟自动,开启测 试

Ctrl+T驱动时钟单步运行测试

集成到LED计数测试电路

- 1. 修改LED计数测试电路
 - > 增加数码管驱动
 - ➢ 完成输入、输出的连接

2. 进行功能测试

新手实验成果展示

- 1、将完成的"LED计数测试"的电路图导出为图片
- 2、实验后,将最终的"Logisim.circ"文件以"学号.circ"命名另存
- 3、在福大课程中心平台中,本门课程的"作业"中,相应提交1和2 所要求的实验成果