MATH 312 Spring 2025

Homework #3 – Key

HW due Sunday 2/9 by pdf upload to Canvas; .tex source on the MATH 312 github repo.

Stuff about permutation groups and S_n

Problem 1. (Omitted from key bc any reasonable explanation is correct.)

Problem 2. Suppose that $g, h \in G$. We mentioned in class that the *conjugate* of h by g is the element ghg^{-1} . The *conjugacy class* of h is the set of all the possible conjugates of h: $\{ghg^{-1} \mid g \in G\}$.

- Find the conjugacy classes of all six elements of S_3 . (If you use the permutation calculator, make sure you're multiplying left-to-right!)
 - Identity: $\{e\}$
 - Transpositions: {(1 2), (1 3), (2 3)}
 - 3-cycles: {(1 2 3), (1 3 2)}
- If you are having fun, find the conjugacy classes of all 24 elements of S_4 .
 - Identity: $\{e\}$
 - Transpositions: {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)}
 - Double transpositions: $\{(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$
 - 3-cycles: {(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)}
 - 4-cycles: {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}

Problem 3. Suppose $\sigma \in S_n$, and that $|\sigma| = k$.

• Explain why σ^k is an even permutation.

Since $|\sigma| = k$, $\sigma^k = e$. The identity permutation e is an even permutation, as it takes 0 transpositions to write. Therefore, σ^k is an even permutation.

• Suppose that σ is an odd permutation. Is k even or odd? How do you know?

Let t be the number of transpositions it takes to write σ . Since σ is an odd permutation, we know that t is odd.

Now consider $\sigma^k = \underbrace{\sigma \cdot \sigma \cdot \ldots \cdot \sigma}_{k \text{ times}}$. How many total transpositions is that? Since each copy

of σ represents t transpositions, σ^k represents $t \cdot k$ total transpositions.

But $\sigma^k = e$ is an even transposition, so $t \cdot k$ must be even. Therefore, since t is odd, k must be even.

MATH 312 Spring 2025

• Conclude that a cycle of odd length is an even permutation. Feel moderate annoyance.

Let's remind ourselves what a "cycle of odd length" looks like. Here is a cycle of length 3: $(1\ 3\ 2)$. What is the order of this beast? Certainly it has order 3. Indeed, a general fact we learned earlier is that a cycle of length k must have order k.

So say σ is a cycle of odd length. Therefore its order must also be odd – in the language we've been using, where $|\sigma| = k$, we have that k is odd.

By the previous bullet, if σ is an odd permutation, then its order k must be even. How shall we reach the conclusion of this bullet? Ah ha, with the contrapositive: if k is not odd, then σ is not an odd permutation. Or, reworded slightly: if k is even, then σ is an even permutation.

We have reached our conclusion: a cycle of odd length (and therefore odd order) must be an even permutation.

Problem 4. Play a bit more with Cayley's theorem:

- Extract from the Cayley diagram of $C_4 \times C_2 = \langle r, b \rangle$ the two permutations that describe its arrows, and therefore describe $C_4 \times C_2$ as a subgroup of a symmetric group.
- Do the same for $Q_8 = \langle i, j, -1 \rangle$.

Stuff about direct products

Problem 5. I want to make the relationship between the inflate-the-Cayley-diagram description and the ordered-pairs description of a direct product a bit more evident. Say that $C_4 = \langle r \mid r^4 = 1 \rangle$ and $C_3 = \langle b \mid b^3 = 1 \rangle$.

- Write out all 12 elements of $C_4 \times C_3$ as ordered pairs. (They will all look like (r^k, b^j) .)
- Use the inflation procedure to draw the Cayley diagram of $C_4 \times C_3$.
- Label each node in your Cayley diagram with the corresponding ordered pair.
- (Bonus problem: Is $C_4 \times C_3$ "secretly cyclic"?)

Problem 6. Explore $C_2 \times C_2 \times C_2$.

• Figure out how to repeat the inflation process to draw a Cayley diagram.

MATH 312 Spring 2025

- Compute the orbits of each of the 8 elements and draw a cycle graph.
- Is this a new group? Groups of order 8 we already know are C_8 , $C_4 \times C_2$, D_4 , and Q_8 .

Problem 7. Prove using algebra that $A \times B$ is abelian if and only if both A and B are abelian. Hint: Remember that an "if and only if" statement is actually looking for two proofs. I will provide you with the proof frames for each one:

(\Rightarrow) Suppose that A and B are both abelian. (\Leftarrow) Suppose that $A \times B$ is abelian. ... Therefore, $A \times B$ is abelian. Therefore, A and B are both abelian.

Remember that filling in the second line and the second-to-last line, usually by unpacking a definition (here: what does "abelian" mean again?), is a good way to proceed after writing the proof frame.

Problem 8. Here we'll explore when the product of cyclic groups is "secretly cyclic".

- (a) Say you have a generic group G such that |G| = n. Suppose further that you found an element $g \in G$ such that |g| = n. Prove that G is cyclic. (Hint: look at the orbit of g, and think about the definition of |g|.)
- (b) Suppose that $a, b \in \mathbb{Z}$ are relatively prime. (Google it if you don't remember what this means.) Fact: lcm(a, b) = ab. Optional challenge: prove it.
- (c) Consider the direct product $\mathbb{Z}_a \times \mathbb{Z}_b$, with a and b relatively prime. What is |(1,1)|? (NOTE TYPO FIX: I had previously written $C_a \times C_b$, in which the element (1,1) would represent the identity. I could also have said, suppose that $C_a = \langle g \rangle$ and $C_b = \langle h \rangle$ and then think about the element $(g,h) \in C_a \times C_b$, but I think it's cleaner this way.)
- (d) Conclude that $\mathbb{Z}_a \times \mathbb{Z}_b \cong \mathbb{Z}_{ab}$.