H20T2A5

Beweisen oder widerlegen Sie jeweils die Aussage: Die konstante Funktion $h: \mathbb{C} \to \mathbb{C}; z \to 1$ ist die einzige unter den holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$ mit

a)
$$f\left(\exp\left(\frac{\pi i n}{2020}\right)\right) = 1$$
 für alle $n \in \mathbb{N}$.

b)
$$f(z) = 1$$
 für alle $z \in \mathbb{C}$ mit $|z| = 1$.

c)
$$f\left(\exp\left(\frac{in}{2020}\right)\right) = 1$$
 für alle $n \in \mathbb{N}$.

Zu a)

FALSCH. Gegenbeispiel:

 $g: \mathbb{C} \to \mathbb{C}; z \to z^{4040}$ erfüllt $g\left(\exp\left(\frac{\pi i n}{2020}\right)\right) = \exp(2\pi i n) = 1$ für alle $n \in \mathbb{N}$. Und g nicht konstant, da z.B. g(0) = 0

Beachte: mit $\xi := e^{\frac{i\pi}{2020}}$ ist $\left\{ \exp\left(\frac{i\pi n}{2020}\right) : n \in \mathbb{N} \right\} = \left\{ \xi^n : n \in \mathbb{N} \right\} = \left\{ 1, \xi, \dots, \xi^{4039} \right\}$ eine endliche Menge, hat also keinen Häufungspunkt, sodass der Identitätssatz nicht anwendbar ist.

Alternatives Beispiel: $\tilde{g}: \mathbb{C} \to \mathbb{C}; z \to 1 + (z-1)(z-\xi)(z-\xi^2) \dots (z-\xi^{4039}).$

Zu b)

WAHR.

f(z) = 1 = h(z) für alle $z \in \mathbb{C}$ mit |z| = 1. Also $\{z \in \mathbb{C} : f(z) = h(z)\} \supseteq \{z \in \mathbb{C} : |z| = 1\}$, diese hat einen Häufungspunkt¹ in \mathbb{C} . Somit folgt f = g nach dem Identitätssatz, d.h. h ist die einzige holomorphe Funktion mit diesen Eigenschaften.

Zu c)

Da $e^z = e^w$ genau dann gilt, wenn z-w = $2k\pi i$, $k\in\mathbb{Z}$, und da für alle $m,n\in\mathbb{N}$ mit $m\neq n$ gilt $\frac{in}{2020} - \frac{im}{2020} \neq 2k\pi i$ (weil π irrational ist), sind alle Folgenglieder von $\left(e^{\frac{in}{2020}}\right)_{n\in\mathbb{N}}$ paarweise verschieden. Damit ist jeder Häufungspunkt dieser Folge auch ein Häufungspunkt der Menge aller Folgenglieder $\left\{e^{\frac{in}{2020}}:n\in\mathbb{N}\right\}$.

 $\operatorname{Da}\left(e^{\frac{in}{2020}}\right)_{n\in\mathbb{N}}$ eine Folge in der kompakten² Menge $\{z\in\mathbb{C}:|z|=1\}$ ist (*), besitzt sie nach der Charakterisierung kompakter Teilmengen eines metrischen Raums eine konvergente Teilfolge, also

¹ Dass der Rand des Einheitskreises einen Häufungspunkt besitzt, darf normalerweise als bekannt vorausgesetzt werden; zur Vollständigkeit hier ein kurzer Beweis: Für $z \in \mathbb{C}$: |z| = 1 sei U eine Umgebung von z, dann gibt es r > 0 mit $\{w \in \mathbb{C} : |z - w| < r\} \subseteq U$, also ist $\emptyset \neq \{w \in \mathbb{C} : 0 < |z - w| < r\} \cap \{w \in \mathbb{C} : |w| = 1\} \subseteq (U \setminus z) \cap \{w \in \mathbb{C} : |w| = 1\}$, weshalb z ein Häufungspunkt ist.

² Dass der Rand des Einheitskreises kompakt ist, darf normalerweise als bekannt vorausgesetzt werden; zur Vollständigkeit hier ein kurzer Beweis: Sei $\varphi : \mathbb{C} \to \mathbb{R}_0^+; z \to |z|$; diese Abbildung ist stetig und es gilt $\{z \in \mathbb{C} : |z| =$

