

Kubernetes

In Practice

Manage Stateful Workload

- 1. Cloud Native Application
- 2. Kubernetes architecture
- 3. Key-features
- 4. Pods and Containers
- 5. Service
- 6. Replication Controller (RC)
- 7. Deployment and ReplicaSet (RS)
- 8. Volume

https://github.com/up1/course-kubernetes-in-practice

Kubernetes Volume Management

Default

Use a **local disk** by default Log data, temporary file, app data When container terminate/exit/crash the data will be lost

Share volume between containers

Use a **local disk** by default Log data, temporary file, app data When container terminate/exit/crash the data will be lost

Using Persistence volume

Public cloud storage (AWS EBS, google persistent disk)

Network File System (NFS, GlusterFS, Ceph)
Block device (iSCSI, Fibre Channel)

Using Persistence volume

Using Persistence volume

Problem:: Tight coupling with infrastructure

Pods should not be locked into specific env.

Persistence Volume Claim (PVC)

Dynamic Provisioning with Storage class

