Coloration des arêtes des graphes planaires

Antonio Gallastegui František Kardoš

Laboratoire Bordelais de Recherche Informatique Université de Bordeaux

Bordeaux, 10 juin, 2016

Introduction

Le degré $d_G(v)$ de $v \in V(G)$ est le nombre de sommets voisins de v.

- ∆(G) degré maximum
- \bullet $\delta(G)$ degré minimum

FIGURE – Un exemple d'un graphe de $\delta(G) = 2$ et $\Delta(G) = 4$

La maille g(G) d'un graphe G est la longueur du plus petit cycle dans G, s'il en existe un. Sinon g(G) est infinie.

Introduction

Soit un graphe *G*. Un *couplage M* est un ensemble d'arêtes deux à deux non-adjacentes.

FIGURE – Un exemple d'un couplage maximal (gauche) et un couplage maximum que dans ce cas là c'est aussi un couplage parfait (droite)

Notions de Base

Le graphe G est *planaire* ssi il peut être dessiné sur le plan sans croisement des arêtes. Une face f, est une région connexe délimitée par des arêtes. Il y a toujours une face infinie.

Introduction

Le graphe G est *planaire* ssi il peut être dessiné sur le plan sans croisement des arêtes. Une face f, est une région connexe délimitée par des arêtes. Il y a toujours une face infinie.

Theorem (Euler, 1750)

Soit G un graphe planaire connexe à n sommets, m arêtes et f faces. Alors,

$$n-m+f=2$$

Coloration de Graphes

Introduction ••••

Soit *G* graphe, une *coloration propre* de *G* est application $\varphi: V(G) \to C$ où $C = \{1, 2, ..., k\}$ ensemble d'entiers, t.q. $\forall uv \in E(G) \implies \varphi(u) \neq \varphi(v)$.

Le nombre chromatique $\chi(G)$ est le nombre de couleurs minimum pour colorier G.

FIGURE – Un exemple d'une coloration propre d'un graphe G avec $\chi(G)=3$.

Coloration de Graphes

Introduction

Soit G un graphe. Une coloration d'arêtes de G est une application $\varphi: E(G) \to C$, où $C = \{1, 2, ..., k\}$ t.q. $\forall e$, $e' \in E(G)$ adjacentes $\implies \varphi(e) \neq \varphi(e')$.

L'indice chromatique $\chi'(G)$ est le nombre de couleurs minimum qu'on nécessite pour colorier les arêtes de G.

FIGURE – Un exemple d'une coloration d'arêtes d'un graphe G avec $\chi'(G) = 3$.

Introduction

0000

Theorem (Vizing)

Soit G un graphe simple. Alors $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Si
$$\chi'(G) = \Delta(G)$$
, G est de classe 1.

Coloration de Graphes

Introduction

0000

Theorem (Vizing)

Soit G un graphe simple. Alors $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Si $\chi'(G) = \Delta(G)$, G est de classe 1.

Quels graphes planaires sont de classe 1?

- $\Delta(G) \ge 8 \implies \chi'(G) = \Delta$ (Vizing 1965).
- $lack \Delta(G) = 7 \implies \chi'(G) = 7$ (Sanders, Zhao 2001).
- $\Delta(G) = 5 \ g(G) \ge 4 \implies \chi'(G) = 5 \ (Li, Luo 2003).$
- $\Delta(G) = 4 \ g(G) \ge 5 \implies \chi'(G) = 4 \ (\text{Li, Luo 2003}).$

Conjecture

Soit G un graphe planaire. Alors,

$$\Delta(G) = 4 g(G) \ge 4 \implies \chi'(G) = 4$$

Coloration de Graphes

Introduction

0000

Tableau des résultats connus pour des graphes de classe 1.

Δ	3	4	5	6	7	≥8
$g \geq 3$	X	X	X	?	\checkmark	√
$g \ge 4$	X	?:	✓			
$g \geq 5$	X	\checkmark				

$$\Delta(G) = 5, g(G) \ge 4 \implies \chi'(G) = 5$$

Proposition

Soit G un graphe planaire avec $\Delta(G) = 5$ et $g(G) \ge 4$. Alors $\chi'(G) = 5$.

Propriétés structurelles de un contre-exemple minimal *G* :

- Il n'existe pas de sommet v de G tel que $d_G(v) = 1$.
- Soit $v \in V(G)$ tel que $d_G(v) = 2$. Alors $\forall u \in N(v)$, $d_G(u) = 5$.
- Soit $v \in V(G)$ tel que $d_G(v) = 3$. Alors, $\forall u \in N(v)$, $4 \le d_G(u) \le 5$.
- Soit $v \in V(G)$ tel que $d_G(v) = 3$. Alors, au moins deux voisins de v sont de degré 5.
- Soit $uv \in E(G)$ tel que $d_G(u) = 2$ et $d_G(v) = 5$. Alors, tous les voisins de v sauf u sont de degré 5.
- Soit $v \in V(G)$ tel que $d_G(v) = 5$. Alors, v a au plus deux voisins de degré 3.

$$\Delta(G) = 5, g(G) \ge 4 \implies \chi'(G) = 5$$

00000

Déchargement :

La charge initiale est définie par

$$w(v) = d_G(v) - 4$$
 pour tout $v \in V(G)$,
 $w(f) = d_G(f) - 4$ pour tout $f \in F(G)$,

$$w(v) = -2$$
 pour tout $v \in V(G)$, tel que $d_G(v) = 2$, $w(v) = -1$ pour tout $v \in V(G)$, tel que $d_G(v) = 3$, $w(v) = 0$ pour tout $v \in V(G)$, tel que $d_G(v) = 4$, pour tout $v \in V(G)$, tel que $d_G(v) = 5$.

La charge initiale de toutes les faces est positive puisque g(G) > 4.

$$\Delta(G) = 5, g(G) \ge 4 \implies \chi'(G) = 5$$

Lemme

Soit G un graphe planaire connexe. Alors,

$$\sum_{v \in V(G)} (d_G(v) - 4) + \sum_{f \in F(G)} (d_G(f) - 4) = -8.$$

Preuve.

$$\sum_{v \in V(G)} (d_G(v) - 4) + \sum_{f \in F(G)} (d_G(f) - 4) = 2m - 4n + 2m - 4f =$$

$$= -4(n - m + f) = -4 \cdot 2 = -8.$$

Les règles de déchargement :

- (R1) Tout sommet de degré 5 donne une unité de charge à chacun de ses voisins de degré 2.
- (R2) Tout sommet de degré 5 donne 1/2 de charge à chaque voisin de degré 3.

$$\Delta(G) = 4$$
, $\alpha(G) > 5 \implies \chi'(G) = 4$

Proposition

Soit G un graphe planaire avec $\Delta(G) = 4$ et $g(G) \geq 5$. Alors G est 4-arête-coloriable.

Propriétés structurelles d'un contre-exemple minimal G:

- Il n'existe pas de sommet v de G tel que $d_G(v) = 1$.
- Soit $v \in V(G)$ tel que $d_G(v) = 2$. Alors $\forall u \in N(v)$, $d_G(u) = 4$.
- Soit $uv \in E(G)$ tel que $d_G(u) = 2$ et $d_G(v) = 4$. Alors, tous les voisins de v sauf u sont de degré 4.
- Soit $v \in V(G)$ tel que $d_G(v) = 3$. Alors, v a au moins deux voisins de degré 4.

$$\Delta(G) = 4, q(G) > 5 \implies \chi'(G) = 4$$

Déchargement :

La charge initiale est définie par,

$$w(v) = \frac{3}{2}d_G(v) - 5$$
 pour tout $v \in V(G)$,
 $w(f) = d_G(f) - 5$ pour tout $f \in F(G)$.

Les règles de déchargement :

- (R1) tout sommet de degré 4 donne 1 de charge à chacun de ses voisins de degré 2.
- (R2) tout sommet de degré 4 donne 1/4 de charge à chaque voisin de degré 3.

Soit *H* un graphe étiqueté avec une fonction $\gamma: V(G) \to \mathbb{N}$ telle que $\forall v \in V(H)$ on a $\gamma(v) \geq d_H(v)$. Le graphe H est une configuration dans G s'il existe un sous-graphe X de G et un isomorphisme $\xi: H \to X$ tel que $\forall v \in V(H), \gamma(v) = d_G(\xi(v)).$

Soit *H* un graphe étiqueté avec une fonction $\gamma: V(G) \to \mathbb{N}$ telle que $\forall v \in V(H)$ on a $\gamma(v) > d_H(v)$. Le graphe H est une configuration dans G s'il existe un sous-graphe X de G et un isomorphisme $\xi: H \to X$ tel que $\forall v \in V(H), \gamma(v) = d_G(\xi(v)).$ Soit *H* une configuration de *G*. Notons

$$\partial_G(H) = \{e = uv \in E(G) : u \in V(H) \text{ et } v \in V(G \setminus H)\}.$$

Notons $H^* = H \cup \partial_G(H)$ et $G' = G \setminus H \cup \partial_G(H)$.

- *G* un graphe avec $\Delta(G) = 4$ et *H* une configuration de *G*,
- $\varphi: E(G') \to \{1,2,3,4\}$ une 4-arête-coloration de G',
- $c, c' \in \{1, 2, 3, 4\}, c \neq c' \text{ deux couleurs quelconques.}$

Une coloration $\varphi': E(G) \setminus E(H) \rightarrow \{1,2,3,4\}$ est adjacente à φ , si φ' peut être obtenu à partir de φ en alternant les couleurs d'une (c, c')-chaîne de Kempe de e pour un choix d'une arête $e \in \partial_G(H)$ et des couleurs $c, c' \in \{1, 2, 3, 4\}$.

- *G* un graphe avec $\Delta(G) = 4$ et *H* une configuration de *G*,
- $\varphi: E(G') \to \{1,2,3,4\}$ une 4-arête-coloration de G',
- $c, c' \in \{1, 2, 3, 4\}, c \neq c' \text{ deux couleurs quelconques.}$

Une coloration $\varphi': E(G) \setminus E(H) \rightarrow \{1, 2, 3, 4\}$ est adjacente à φ , si φ' peut être obtenu à partir de φ en alternant les couleurs d'une (c, c')-chaîne de Kempe de e pour un choix d'une arête $e \in \partial_G(H)$ et des couleurs $c, c' \in \{1, 2, 3, 4\}$.

Le graphe résiduel $\mathcal{X}_{c,c'}^{\varphi}$ est défini par

- $V(\mathcal{X}_{CC'}^{\varphi}) = \partial_{G}(H),$
- $\mathbf{E}(\mathcal{X}_{\mathbf{c},\mathbf{c}'}^{\varphi}) = \{e_i e_i \text{ tels que } (\mathbf{c},\mathbf{c}') \text{-chaîne de Kempe de } e_i \text{ est } \}$ la même que la (c, c')-chaîne de Kempe de e_i }.

Le graphe résiduel est donc un couplage planaire de $\partial_G(H)$.

Proposition

Soit

- G avec $\Delta(G) = 4$ et H une configuration de G,
- $ullet \varphi: E(G') o \{1,2,3,4\}$ 4-arête-coloration de G',
- $ullet \varphi' \in \mathcal{N}(\varphi)$ une coloration adjacente à φ ,
- lacksquare $\beta = \varphi|_{\partial_G(H)}$ et $\beta' = \varphi'|_{\partial_G(H)}$.

Alors,

$$|\{e \in \partial_H(G) : \beta(e) \neq \beta'(e)\}| \in \{1,2\},\$$

de plus, on a

$$|\{e \in \partial_H(G) : \beta(e) \neq \beta'(e)\}| = 1 \Leftrightarrow d_{\mathcal{X}^{c,c'}_{\omega}}(e) = 0, et$$

$$|\{e \in \partial_H(G) : \beta(e) \neq \beta'(e)\}| = 2 \Leftrightarrow d_{\chi^c,c'}(e) = 1.$$

Considérons des coloration de H.

Soit H une configuration de G et β une coloration de $\partial_G(H)$. Alors, β s'étend vers H si $\exists \psi$ de H^* t.q. $\psi|_{\partial_{\alpha}(H)} = \beta$

$$\Phi_0 = \{ \beta : \exists \psi : E(H^*) \to \{1, 2, 3, 4\} \text{t.q.} \psi |_{\partial_G(H)} = \beta \}.$$

Pour $i \in \mathbb{N}$, soit

$$\Phi_{i+1} = \{ \beta : \beta \in \Phi_i \text{ ou } \exists c, c' \in \{1, 2, 3, 4\}, \\ \forall X \text{ couplage planaire de } \partial_G(H), N_{c,c'}^X(\beta) \cap \Phi_i \neq \emptyset \}, \\ \Phi(H) = \bigcup_{i \in \mathbb{N}} \Phi_i(H).$$

Theorem

Soit

- H une configuration de G.
- H' une autre configuration t.g. $\partial_G(H) = \partial_G(H')$.
- G' le graphe obtenu à partir de G en remplaçant H par H'.

Si $\Phi_0(H') \subseteq \Phi(H)$, alors, pour toute 4-arête-coloration φ' de G'il existe une 4-arête-coloration φ de G.

Preuve. il suffit de modifier la coloration φ' le long des chaînes de Kempe un nombre fini de fois afin d'obtenir une coloration qui s'étend directement vers H.

- **E**ntrée : Une configuration H et sa réduction potentielle H'.
- Sortie : Une réponse de OUI/NON à la question de réductibilité

Ensuite, nous décrivons l'outil de la manière suivante,

- Pré-calcul.
- Traitement.
- Implémentation.

Pré-calcul

- Génération de Couplages de *r* sommets, pour *r* allant de 1 à MAXRING.
- Variation entre deux codes adjacents (Plus Tard).

Traitement

Partant d'une configuration H de G et H' sa réduction potentielle,

■ On génère l'ensemble des colorations ψ de H^* t.g. $\psi|_{\partial_G(H)}=\beta$, constituent Φ_0 ,

•0

- Tant que $\Phi_i \subset \Phi_{i+1}$ pour $i \geq 0$, on génère des colorations adiacentes à $\beta \in \Phi_i$.
- L'ensemble totale des colorations qui s'étendent vers H est $\Phi(H) = \bigcup_{i \in \mathbb{N}} \Phi_i(H),$
- On génère l'ensemble Φ'_0 des colorations ψ' de H' t.g. une coloration de G' s'étend vers H' et
- On regarde si $\Phi'_0(H') \subseteq \Phi(H)$.

Traitement

Alors, pour β' quelconque qui ne s'étend pas, s'il existe une paire de couleurs c, c' tel que pour n'importe quel couplage des arêtes coloriées avec c ou c' il existe un code β adjacent à β' , β' s'étend.

Lecture de H et H':

- Lecture de configuration H et sa réduction potentielle H'présentées sous forme d'une liste d'adjacence.
- Les deux seront stockées dans deux matrices différentes.

Coloration de *H* :

Nous commençons par numéroter les arêtes du graphe H. commencant par les arêtes sortantes et nous continuons vers l'intérieur.

Nous colorions les arêtes de *H* partant de la dernière arête vers l'extérieur à l'aide de la méthode de retour sur le trace (Backtrack).

Nous n'allons stocker que la coloration $\beta = \psi|_{\partial_G(H)}$ sous forme de code suivant.

$$k = \sum_{e=0}^{r-1} c(\beta(e)) \cdot 4^e$$
 tel que $c(i) \in \{0, 1, 2, 3\}$ pour $i \in \{1, 2, 3, 4\}$

 $\Phi_0(H)$ est un ensemble de k.

Colorations voisines:

Soit H une configuration, une coloration β avec son code k de $\partial_{G}(H)$ et deux couleurs c et c'.

Alors \mathcal{M} est l'ensemble de tous les couplages M possibles des arêtes de $\partial_G(H)$ coloriées avec c ou c'.

Colorations voisines:

Soit H une configuration, une coloration β avec son code k de $\partial_G(H)$ et deux couleurs c et c'.

Alors \mathcal{M} est l'ensemble de tous les couplages M possibles des arêtes de $\partial_G(H)$ coloriées avec c ou c'.

Alors, il existe des colorations β' de $\partial_G(H)$ avec code de coloration k' adjacentes de β si pour une paire de couleurs c et c'.

$$\begin{cases} k' = k + (-2\beta'(e) + c + c') \cdot 4^e \text{ si } d_M(e) = 0 \\ k' = k + (-2\beta'(e) + c + c') \cdot 4^e + (-2\beta'(e') + c + c') \cdot 4^{e'} \text{ si } d_M(e) = 0 \end{cases}$$

Cet ensemble de codes de coloration k' forment Φ_{i+1} pour tout $i \in \mathbb{N}$

Soit *G* un graphe planaire. V(G) ensemble de sommets et F ensemble de faces de G.

La charge initiale des sommets et des faces,

$$w: V(G) \cup F(G) \rightarrow \mathbb{R},$$

 $w(x) = d_G(x) - 4.$

Lemme

Soit G un graphe planaire et w la application de la charge initiale. Alors la charge initiale totale du graphe est -8.

Preuve.

$$\sum_{u \in V(G)} (d_G(v) - 4) + \sum_{f \in F} (d_G(f) - 4) = 2m - 4n + 2m - 4f =$$

$$= -4(n - m + f) = -4 \cdot 2 = -8.$$

Alors les charges pour chaque sommet et face,

$$w(v) = -2$$
 $\forall v \in V(G)$, t.q. $d_G(v) = 2$,

$$w(v) = -1$$
 $\forall v \in V(G)$, t.q. $d_G(v) = 3$,

$$w(v) = 0$$
 $\forall v \in V(G)$, t.q. $d_G(v) = 4$

et

$$w(f) = 0$$
 $\forall f \in F(G)$, t.q. $d_G(f) = 4$,

$$w(f) = 1$$
 $\forall f \in F(G), \text{ t.q. } d_G(f) = 5,$

$$w(f) \geq 2$$
 $\forall f \in F(G)$, t.q. $d_G(f) \geq 6$.

(R) Toute face de taille au moins 5 donne une unité de charge à chaque sommet incident de degré 2 ou 3.

(R) Toute face de taille au moins 5 donne une unité de charge à chaque sommet incident de degré 2 ou 3.

Objectifs:

L'objectif est de réduire les configurations suivantes,

- Un sommet de degré 2 avec 1 pentagone autour de lui.
- Les sommets de degré 3 avec un pentagone autour d'eux.
- Une face de grande taille avec beaucoup de sommets de petit degré autour d'elle.

Sommet de degré 3

3-3-4-3:

FIGURE – La configuration 3-3-4-3 (gauche) et sa réduction (droite).

Sommet de degré 3

Pair de sommets avec 4 carrées :

FIGURE – La configuration 3-3 avec 4 carrés autour de ce pair (gauche) et sa réduction (droite).

3-3 1 pentagone en haut :

FIGURE – La configuration 3-3 avec un pentagone en haut (gauche) et sa réduction (droite).

3-3 1 pentagone de coté :

FIGURE – La configuration 3-3 avec un pentagone de coté (gauche) et sa réduction (droite).

Sommet de degré 2

2 carrés :

FIGURE - La configuration 2 avec deux carrés (gauche) et sa réduction (droite).

Réussi :

- Développement d'un outil de vérification.
- 3 nouvelles configurations réductibles parmi plus de 50 essais des paires H, H'.
- En cours de travail :
 - Réduction pour *v* de degré 2.
 - Réduction pour v de degré 3.
 - Vérification de connexité et aucune présence des triangles autour des réductions

Conclusion

Merci pour votre attention!