Limits of Sequences

Chase Mathison¹

Shenandoah University

2 April 2024

Announcements

- 4 Homework!
- Exam Corrections!
- Project!

The Limit of a Sequence

With sequences, we are usually interested in what happens in what's known as the of the sequence (i.e. end behaviour):

Definition (Limit of a Sequence)

Suppose $\{a_n\}$ is a sequence of real numbers. When we say

$$\lim_{n\to\infty}a_n=L$$

we mean that we can make a_n as close to L as we like by taking n to be "large enough". If such an L exists, we call the sequence a_n . If no such L exists, we call the sequence

Let's make some of these ideas a little more precise.

The Limit of a Sequence

Limit Law

If $a_n=f(n)$ for some function f for all $n\geq 1$ (or some starting index) then if there exists L such that $\lim_{x\to\infty} f(x)=L$, then it must be the case that $\lim_{n\to\infty} a_n=$.

Evaluate the limits of the sequences:

1
$$a_n = \frac{1}{2^n}$$

1
$$a_n = \frac{1}{2^n}$$

2 $b_n = (-1)^n$

Limit Laws

Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $\lim_{n\to\infty}a_n=A$ and $\lim_{n\to\infty}b_n=B$, where A and B are real numbers. Let c be a real number. Then the following limit laws hold:

Evaluate

$$\lim_{k\to\infty}\frac{1-r^k}{1-r}$$

(Your answer will depend on the value of r.)

Evaluate

$$\lim_{m\to\infty}\left(1-\frac{2}{m}\right)^m.$$

2 More Important Theorems

We'll take the following theorems without proof:

Theorem (Continuous Functions and Convergent Sequences)

Suppose $\{a_n\}$ is a convergent sequence that converges to L and f is a function of a real variable that is continuous at L. Then, the sequence $\{f(a_n)\}$ is _____ with limit ____.

2 More Important Theorems

Theorem (Squeeze Theorem)

Suppose $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are all sequences that satisfy

$$a_n \leq b_n \leq c_n$$

for all $n \ge 1$ (or for all n greater than some initial index). If

$$\lim_{n\to\infty}a_n=L$$

and

$$\lim_{n\to\infty} c_n = L$$

Then

$$\lim_{n\to\infty}b_n=$$

Use the squeeze theorem to show

$$\lim_{k\to\infty}\frac{\sin k}{k}=0$$

Let

$$S_k = 1 + \frac{1}{2} + \ldots + \frac{1}{2^k}$$

Let's try to find

- lacktriangle A "nicer" way to write S_k and