GPT

GPT (**G**enerative **P**retrained **T**ransformer)

O Transformerベースの学習済み大規模言語モデル

― 教師なし学習と教師あり学習を組み合わせた学習手法(半教師あり学習)

教師なし学習フェーズ

大容量言語モデル学習

$$h_0 = UW_e + W_p$$

$$h_l = transformer_block(h_{l-1}) \forall i \in [1, n]$$

 $P(u) = softmax(h_n W_e^T)$

P(u)はTransformerデコーダで計算される

$$L_1(U) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \theta)$$

尤度 $L_1(U)$ を最大化する θ を求める 確率的勾配降下法を用いて探索

教師あり学習フェーズ

ファインチューニング

対象データセット $C = \{x^1, ..., x^m\}$ を想定

$$P(y|x^1, ..., x^m) = softmax(h_l^m W_y)$$

事前学習済みモデルによって出力を得る

$$L_2(C) = \sum_{(x,y)} \log P(y|x^1, ..., x^m)$$

$$L_3(C) = L_2(C) + \lambda * L_1(C)$$

教師なしフェーズと同等の目的関数 $L_2(C)$ 学習済みのパラメータも含めて学習する

GPT (**G**enerative **P**retrained **T**ransformer)

O Transformerベースの学習済み大規模言語モデル

― 教師なし学習と教師あり学習を組み合わせた学習手法(半教師あり学習)

事前学習用データセットについて

- **O** 教師なし学習用データセット $U = \{u_0, u_1, ..., u_{n-1}, u_n\} (n < k)$
 - BookCorpus
 - … 未発表著者による全16ジャンルの無料小説本(11038冊分)に関する大規模テキストコーパス
 - … 自費出版電子書籍プラットフォーム「Smashwords」から作成され、公式バージョンは非公開

Text

約7400万行 (約4.5GB) his platinum blond hair and blue eyes were completely hers.

it was only his build that he was taking after his father.

where megan was a diminutive 5'3", davis was 6'1" and two hundred pounds.

mason was already registering off the charts in height and weight according to his pediatrician.

… テキストデータ内のUnicord関連の問題を修正するライブラリ

SpaCy 3.0

… PythonとCythonベースのオープンソーステキスト解析用トークナイザー

Smashwords
your ebook. your way.

"キャラクターの<u>心情変化</u>" "ストーリーの状況変化"

本は**貴重な情報源**であり, **豊富な説明力**を学習可能

GPT (**G**enerative **P**retrained **T**ransformer)

O Transformerベースの学習済み大規模言語モデル

― 教師なし学習と教師あり学習を組み合わせた学習手法(半教師あり学習)

GPT-1の性能評価

O <u>自然言語推論(NLI)タスク</u>に対するモデル性能比較

- 5種類のデータセットで評価
 - ・MNLI(Multi-Genre Natural Language Interface Matched / MultiNLI Mismatched) … フィクション, 政府の報告書
 - ・SNLI(Standard Natural Language Interface) … 画像のキャプションから作成
 - ・SciTail … 多肢選択式の科学試験とWeb文章から作成
 - ・QNLI(Question NLI) … Wikipediaの一連の記事から作成
 - ・RTE(Recognizing Textual Entailment) … ニュース記事から作成

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM+ELMo(5x)	-	-	<u>89.3</u>	-	-	-
CAFE(5x)	80.2	79.0	<u>89.3</u>	-	-	-
Stohastic Answer Network(3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE	78.7	77.9	88.5	<u>83.3</u>	-	-
GenSen	71.4	71.3	-	-	<u>82.3</u>	59.2
Multi-task BiLSTM+Attn	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM	82.1	81.4	89.9	88.3	88.1	56.0

GPT-1の性能評価

O 質問応答(Question Answering)タスクに対するモデル性能比較

- ― 2種類のデータセットで評価
 - ・Story Cloze Test … 複数文から成るストーリーに対して、2つの選択肢の内, 正しい結末を当てるテスト

例)

Karen was assigned a roommate her first year of college. Her roommate asked her to go to a nearby city for a concert. Karen agreed happily. The show was absolutely exhilarating.

- A. Karen became good friends with her roommate.
- B. Karen hated her roommate.
- ・RACE(ReAding Comprehension Dataset From Examinations) … 中学, 高校の試験問題から作成

Method	Story Cloze	RACE-m	RACE-h	RACE
Val-LS-skip	76.5	-	-	-
Hidden Coherence Model	<u>77.6</u>	-	-	-
Dynamic Fusion Net	-	55.6	49.4	51.2
BiAttention MRU	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM	86.5	62.9	57.4	59.0

GPT-1の性能評価

〇 テキスト分類・意味的類似性タスクに対するモデル性能比較

- [テキスト分類]2種類, [意味的類似性]3種類のデータセット + GLUEテストで評価
 - ・CoLA(The Corpus of Linguistic Acceptability) … 全23種類の言語学出版物から作成
 - ・SST2(The Stanford Sentiment Treebank) … ネガポジ判定用(2値分類)
 - ・MRPC(Microsoft Research Paraphrase Corpus) … Web上のニュース記事から作成
 - ・STS-B(Semantic Textual Similarity Benchmark) … 計算意味解析システム評価会「SemEval」によって作成
 - ・QQP(Quora Question Pairs) … Q&Aサイト「Quora」の質問から作成

Method	Classification		Semantic Similarity			GLUE
	CoLA	SST2	MRPC	STS-B	QQP	GLUL
Sparse byte mLSTM	-	93.2	-	-	-	-
TF-KLD	-	-	86.0	-	-	-
ECNU(mixed ensemble)	-	-	-	<u>81.0</u>	-	-
Single-task BiLSTM+ELMo+Attn	<u>35.0</u>	90.2	80.2	55.5	<u>66.1</u>	64.8
Multi-task BiLSTM+ELMo+Attn	18.9	91.6	83.5	72.8	63.3	68.9
Finetuned Transformer LM	45.4	91.3	82.3	82.0	70.3	72.8

GPT-2への進化

GPT-1 → **GPT-2**で何が変わったのか

〇 多様なタスクに対応可能な汎用的な言語モデルを構築

一 従来のマルチタスクモデルの構築は、"特定のタスクに対して教師ありデータを用いたアプローチ"が主流

GPT-1

推論タスク

翻訳タスク

要約タスク

わずかなデータの分布, タスク仕様の変化に対して脆弱

推論データ

推論モデル

翻訳データ 翻訳モデル

要約データ

要約モデル

GPT-2

推論・翻訳・要約タスク

推論・翻訳・要約モデル

- モデルの構造はあまり変化していない (規模は増加)
- ― 学習データとパラメータ数が大幅に増加
 - … 学習データ: 4.5GB → 40GB (WebText)
 - … パラメータ数:1億1700万 → 15億4200万

 $P(x) = \prod_{i=1}^{n} p(s_n | s_1, \dots, s_{n-1})$

 $\rightarrow P(s_{n-k}, \dots, s_n | s_1, \dots, s_{n-k-1})$

 $\rightarrow P(output|input)$

複数のタスクを単一モデルで解く

P(output|input, task)

9

GPT-2への進化

GPT-2のZero-Shot学習用データについて

- 〇 事前学習用データセット
 - Webのクローリングデータ (WebText)
 - … 掲示板型ソーシャルニュースサイト「Reddit」から作成
 - … 3 karma(高評価のようなモノ)以上獲得している投稿のみに限定
 - … Wikipediaは、評価用データセットと重複しているため避ける (リーケージ回避)

Text

約800万文書分 (約40GB) "I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile[I'm not a fool].

"I hate the work 'perfume, "" Burr says. 'It's somewhat better in French: 'parfum.'

"Brevet Sans Garantie Du Gouvernement", translated to English: "Patented without government warranty".

O byte-level BPE(Byte Pair Encording)

一 文字列をByte文字列に変換した後BPE圧縮を適用し, 低頻度 / 未知語に対して効率的に対応

例)

 $\mathsf{ABBBBCCBBCC} \to \mathsf{AZZCCZCC} \to \mathsf{AZZYZY} \to \mathsf{AZXX}$

GPT-2への進化

GPT-2の性能評価

○ 読解, 翻訳, 要約, 質疑応答タスクに関するモデル性能比較

- 一 各タスクの評価用データセット
 - [読解] CoQA(Conversation Question Answering) … 7種類の会話テキストデータ
 - ・[翻訳] WMT2014 English-German / German-English … 2014年度統計的機械翻訳ワークショップで使用
 - ・「要約] CNN Daily Mail Dataset … ニュース記事や新聞記事から本文と要約のペアを作成
 - ・[質疑応答] **SQuAD**(The <u>Stanford Question Answering Dataset</u>) … Wikipedia記事から作成

GPT-3への進化

GPT-2 → GPT-3で何が変わったのか

O GPT-2より大容量データで、より大規模モデルを学習

― **タスク特化モデルより性能が良いマルチタスクモデル**の構築が目的

GPT-2

GPT-3

- 一学習データとパラメータ数が大幅に増加
 - … 学習データ: 40GB (WebText) → 570GB (Common Crawl, 書籍, WebText等)
 - … パラメータ数: 15億4200万 → 1750億
- 当然, GPT-3をファインチューニングすれば, 非常に高い精度が期待できる (本来の趣旨ではない)

GPT-3への進化

GPT-3の性能評価

O PTB, LAMBADAデータセットを用いて, 言語モデル精度評価

一 評価指標: PPL … 言語モデルの良し悪しを評価する指標の一つ

 $ppl = \exp(-\log("True\ Word\ Prediction\ Probability"))$ $= \frac{1}{"True\ Word\ Prediction\ Probability"}$

正解単語の選択肢数が 何択まで絞れているのかを 表す指標とも解釈可能

一 任意の文の**最後の単語を予測**するタスク

Setting	PTB (PPL)	LAMBADA (PPL)	LAMBADA (ACC)
SOTA (GPT-2)	35.8	8.63	68.0
GPT-3 (Zero-Shot)	20.5	3.00	76.2
GPT-3 (One-Shot)	-	3.35	72.5
GPT-3 (Few-Shot)	-	1.92	86.4

単語予測タスクにおいてGPT-2を超え, SOTAを達成 このタスクは, Zero-Shotと相性が良い?(データ量でゴリ押せる)

縦軸: Accuracy, 横軸: パラメータ数

GPT-3への進化

O 質問応答タスク

Setting	NaturalQS	NaturalQS WebQS	
SOTA	44.5	45.5	68.0
T5-11B+SSM	36.6	44.7	60.5
T5-11B	34.5	37.4	50.1
GPT-3 (Zero-Shot)	14.6	14.4	64.3
GPT-3 (One-Shot)	23.0	25.3	68.0
GPT-3 (Few-Shot)	29.9	41.5	71.2

TriviaQA データセットに対して, SOTAを達成 質問応答に特化したモデルを超えている、、

··· Fine-tuned, Open-Domainモデル

○ 翻訳タスク

注) 翻訳の<u>やり方は学んでいない</u> (あくまで確率)

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA	45.6	<u>35.0</u>	41.2	<u>40.2</u>	38.5	39.9
XLM	33.4	33.3	26.4	34.3	33.3	31.8
MASS	<u>37.5</u>	34.9	28.3	35.2	<u>35.2</u>	33.1
mBART	-	-	<u>29.8</u>	34.0	35.0	30.5
GPT-3 (Zero-Shot)	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 (One-Shot)	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 (Few-Shot)	32.6	39.2	29.7	40.6	21.0	<u>39.5</u>

フランス語/ドイツ語 → 英語への翻訳でSOTAを達成 英語 → 多言語への翻訳には弱い、、

… 事前学習データが英語が93%を占めているため

GPT-3.5への進化

GPT-3 → **GPT-3.5で何が変わったのか**

O Chat形式のUIと強化学習(RLHF)による改良

- 一 Chat形式のUI/UXによって, GPTの存在が広く社会に広がる
- RLHF (Reinforcement Learning from Human Feedback)

✓ <u>Step1</u>: 人間の解答データを用意してファインチューニング

✓ <u>Step2</u>: Step1のモデルの複数の**解答を人間が評価**

Chat UI

✓ <u>Step3</u>: Step2の評価に基づく報酬モデルで強化学習