Assessing accuracy of the LSR line

Feb 13, 2025

Chris Cornwell

Assuming the data does have a linear relationship

Assuming the data does have a linear relationship

Underlying assumption

Modeled points in a plane as being from a line, but with noise in the y-coordinate direction. In other words, we assumed an underlying relationship

$$y = mx + b + \varepsilon$$

for some m and b, and a random variable ε^1 that has expected value 0. Alternatively, among the "entire population" there is an LSR line mx+b.

 $^{^{1}\}varepsilon$ is called the error term.

Underlying assumption

Modeled points in a plane as being from a line, but with noise in the y-coordinate direction. In other words, we assumed an underlying relationship

$$y = mx + b + \varepsilon$$

for some m and b, and a random variable ε^1 that has expected value 0. Alternatively, among the "entire population" there is an LSR line mx+b.

Assumption: ε is independent of x.

When we have a data set $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, from the population, our procedure determines an LSR line $\hat{m}x + \hat{b}$. However, \hat{m} and \hat{b} are not the slope and intercept for the population curve m and b.

 $^{^{1}\}varepsilon$ is called the error term.

Simulate noisy linear data: make 30 points, using a standard deviation $\sigma=0.5$. We'll use slope -1.6 and intercept 0.8.

Simulate noisy linear data: make 30 points, using a standard deviation $\sigma=0.5$. We'll use slope -1.6 and intercept 0.8.

Simulate noisy linear data: make 30 points, using a standard deviation $\sigma=0.5$. We'll use slope -1.6 and intercept 0.8.

```
1  | x = np.random.uniform(0, 2, size=30)
2  |
3  | def simulate_data(x, std):
4  | return -1.6*x + 0.8 + np.random.normal(0, std, size=len(x))
5  | y = simulate_data(x, 0.5)
```

In groups, compute slope and intercept of the LSR line for a size 30 simulated data set; store \hat{m} and \hat{b} (in two lists). Iterate this 1000 times \rightarrow a list of 1000 slopes and intercepts.

Simulate noisy linear data: make 30 points, using a standard deviation $\sigma=0.5$. We'll use slope -1.6 and intercept 0.8.

```
1  x = np.random.uniform(0, 2, size=30)
2
3  def simulate_data(x, std):
4    return -1.6*x + 0.8 + np.random.normal(0, std, size=len(x))
5  y = simulate_data(x, 0.5)
```

In groups, compute slope and intercept of the LSR line for a size 30 simulated data set; store \hat{m} and \hat{b} (in two lists). Iterate this 1000 times \rightarrow a list of 1000 slopes and intercepts.

What is the mean of the slopes and of the intercepts?

Sample statistic, relation to population statistic

This fundamental to statistics.

Say that a sample of 2000 people are selected from around the country and their height is measured. Mean of these 2000 heights: sample mean.

Sample statistic, relation to population statistic

This fundamental to statistics.

- Say that a sample of 2000 people are selected from around the country and their height is measured. Mean of these 2000 heights: sample mean.
- Sample mean differs from the true mean height of the entire population of the country. (Perhaps, not by much.)
 - ▶ Weak Law of Large Numbers: if s random samples of 2000 people taken, and each sample mean calculated, as $s \to \infty$, mean of the sample means limits to population mean.

Sample statistic, relation to population statistic

This fundamental to statistics.

- Say that a sample of 2000 people are selected from around the country and their height is measured. Mean of these 2000 heights: sample mean.
- Sample mean differs from the true mean height of the entire population of the country. (Perhaps, not by much.)
 - ▶ Weak Law of Large Numbers: if s random samples of 2000 people taken, and each sample mean calculated, as $s \to \infty$, mean of the sample means limits to population mean.
- Analogous thing happens with data from linear relationship with noise think of parameters \hat{m} and \hat{b} as sample statistics (like sample mean).

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Standard error (SE): Suppose that for our error term $\pmb{\varepsilon}$, we have $\mathrm{Var}(\pmb{\varepsilon}) = \pmb{\sigma}^2$. Sample size: n.

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Standard error (SE): Suppose that for our error term ε , we have

$$\mathrm{Var}(oldsymbol{arepsilon}) = \sigma^2$$
. Sample size: n .

Using \bar{x} for the average of x_1, \ldots, x_n ,

$$\begin{split} \mathrm{SE}(\hat{m})^2 &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2};\\ \mathrm{SE}(\hat{b})^2 &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right). \end{split}$$

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Standard error (SE): Suppose that for our error term ε , we have

$$\mathrm{Var}(oldsymbol{arepsilon}) = \sigma^2$$
. Sample size: n .

Using \bar{x} for the average of x_1, \ldots, x_n ,

$$\begin{split} \mathrm{SE}(\hat{m})^2 &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}; \\ \mathrm{SE}(\hat{b})^2 &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right). \end{split}$$

Roughly, these are the amount, on average, that \hat{m} (resp. \hat{b}) differs from true slope m (resp. true intercept b).

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Standard error (SE): Suppose that for our error term ε , we have

$$\mathrm{Var}(oldsymbol{arepsilon}) = \sigma^2$$
. Sample size: n .

Using \bar{x} for the average of x_1, \ldots, x_n ,

$$\begin{split} \text{SE}(\hat{m})^2 &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}; \\ \text{SE}(\hat{b})^2 &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right). \end{split}$$

Roughly, these are the amount, on average, that \hat{m} (resp. \hat{b}) differs from true slope m (resp. true intercept b).

 σ is unknown, but can estimate it with **residual standard error**:

$$\hat{\sigma}^2 = RSE^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}.$$

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Formulae:

$$\begin{split} \mathrm{SE}(\hat{\mathbf{m}})^2 &= \frac{\sigma^2}{\sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})^2}; \\ \mathrm{SE}(\hat{b})^2 &= \sigma^2 \left(\frac{1}{\mathbf{n}} + \frac{\bar{\mathbf{x}}^2}{\sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})^2} \right). \end{split}$$

Estimate:

$$\sigma^2 \approx \mathsf{RSE}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}.$$

 $^{^{2}}$ 95% of the time, these intervals contain m, b.

How close do we suspect \hat{m} and \hat{b} to be to the "true" (population) slope and intercept?

Formulae:

$$\begin{aligned} \mathrm{SE}(\hat{m})^2 &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}; \\ \mathrm{SE}(\hat{b})^2 &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right). \end{aligned}$$

Estimate:

$$\sigma^2 \approx RSE^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}.$$

Can get (roughly) 95% confidence interval² with $\pm 2SE$:

$$(\hat{m} - 2SE(\hat{m}), \hat{m} + 2SE(\hat{m}))$$

and

$$(\hat{b} - 2SE(\hat{b}), \hat{b} + 2SE(\hat{b})).$$

 $^{^{2}}$ 95% of the time, these intervals contain m, b.