

Modeling VIII

Introduction

- Big Data
 - Large Sample Size
 - Large Number of Variables
 - Traditional Methods are Difficult to Implement
 - Depends on the Available Technology
- Goal: Explore Approaches for Quick Filtering of Predictors
- Tutorial 15
 - Download Rmd
 - Install Package > library(glmnet)
 - Knit the Document
 - Read the Introduction

Introduction

My Data is Bigger than Your Data

Linear Model

Consider the Following:

$$y_i = \beta_0 + X_{1i}\beta_1 + ... + X_{pi}\beta_p + \epsilon_i$$

where $i = 1, 2, 3, ..., n$

Matrix Representation

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
 where $\mathbf{y} = [y_1, y_2, ..., y_n]',$
$$\boldsymbol{\beta} = [\beta_1, \beta_2, ..., \beta_p]',$$

$$\boldsymbol{\epsilon} = [\epsilon_1, \epsilon_2, ..., \epsilon_n]',$$

and

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \dots & X_{pn} \end{bmatrix}$$

Linear Model

Information About Model Matrix

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \dots & X_{pn} \end{bmatrix}$$

This Matrix Should Be Standardized

- Once Standardized, The Intercept β_0 is Unnecessary in the Model
- For Interpretability, the Response
 Vector y Can Also Be Standardized

- Run Chunk 1
 - Simulating Response From a Linear Model
 - All Predictor Variables in X are Standardized > rnorm()
 - What is n?
 - What is p?
 - What do We Know About the True Signal We Want to Detect?

- Run Chunk 2
 - Fitting Naïve Linear Model
 - Obtaining Confidence Intervals
 for Parameters > confint(lm.model)
 - Figure Info
 - Show the Estimated Coefficients of Linear Model
 - Show Confidence Intervals for These Coefficients
 - What Does the Color Aesthetic Being Used For?

- Chunk 2 (Continued)
 - Knit the Document and Observe the 3 Graphics
 - Figure 1

Part 1: Simulate and Meditate

Chunk 2 (Continued)

• Figure 2

What is the Problem?

Part 1: Simulate and Meditate

- Chunk 2 (Continued)
 - Figure 3

What is the Problem?

Run Chunk 3

- Regression for Each Predictor
- Obtaining Coefficients

```
> coef(individual.mod)
(Intercept) X.200
0.1257668 -0.3200960 Save
```

Obtaining P-Values

```
> summary(individual.mod)
call:
lm(formula = y \sim ., data = SIM.DATA[, c(1, j + 1)])
Residuals:
            10 Median
    Min
                             3Q
                                   Max
-47.252 -11.318   0.035   10.759   45.336
                                                   Save
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1258
                        0.7021
                                 0.179
                                           0.858
X.200
            -0.3201
                        0.7230 -0.443
                                          0.658
Residual standard error: 15.66 on 498 degrees of freedom
Multiple R-squared: 0.0003934, Adjusted R-squared:
F-statistic: 0.196 on 1 and 498 DF, p-value: 0.6582
```


Run Chunk 3

 Figure Plots P-Values Against Coefficients

Run Chunk 3

- Suppose We Were to Keep Only the Predictor Variables that Had P-Values<0.01
- Observe the Table

	P-Val > 0.01	P-Val < 0.01	
Non-Zero	1%)	4%	
Zero	94%	1%)—	

- 95% of Variables Ignored
- 5% of Variables Included
- Errors (What is Worse?)
 - We Will Ignore Variables that Are Important
 - We Will Include Variables that Are Irrelevant

Chunk 4

- Try to Find the Smallest Cutoff Value So That We are Not Missing Important Variables
- To Ensure We are Not Missing Important Variables, Should we Increase or Decrease the Original Cutoff (0.01)
- What Cutoff Works?
- Try Multiple Cutoffs and Observe the Table
- Run the Code Inside the Chunk Until All 10 Important Variables are Retained for the Futre

- Chunk 4 (Continued)
 - Traditional Choice: 0.20
 - Output in Table

	P-Val > 0.01	P-Val < 0.01
Non-Zero	0%)	5%
Zero	71%	24%

None of the Non-Zero Parameters Will Be Ignored

Fit Linear Model for Variables
 Kept in Consideration

> lm(y~.,data=SIM.DATA[,c(1,which(KEEP)+1)])

Part 2: Shrinkage Estimation

- Chunk 4 (Continued)
 - Suppose Cutoff is 0.2
 - Figure 1

Part 1: Simulate and Meditate

- Chunk 4 (Continued)
 - Figure 2

Part 1: Simulate and Meditate

Chunk 4 (Continued)

• Figure 2

Recap

- Before Building Complex
 Models We are Performing a Simple Screening Procedure
- Quick and Logical Approach
- Problems
 - We May Lose Variables with Significant Interactions
 - We May Still Have Too Many
 - We May Retain Variables that are Highly Correlated
- Other Approach: Fit Full Model and Retain Variables with Sufficiently Small P-Values (<0.2)

Part 2: Shrinkage Estimation and More Meditation

- Classic Linear Model Estimation
 - Minimize Sum of Squared Error

$$SSE = \sum [y_i - (\beta_0 + x_i' \boldsymbol{\beta})]^2$$

- Optimization: Find $\widehat{\beta}_0$ and $\widehat{\beta}$ that Make SSE as Small as Possible
- $\widehat{\beta_0}$ and $\widehat{\beta}$ are Easily Found Using Matrix Representation
- Regularized Estimation
 - Produces Biased Estimates
 - Shrinks Coefficients Toward 0
 - Favors Smaller Models
 - May Lead to a Better Model for Out-of-Sample Prediction

Part 2: Shrinkage Estimation and More Meditation

- Three Popular Methods
 - Download R Package> library(glmnet)
 - Penalized SSE

$$PSSE = SSE + \lambda[(1 - \alpha)\sum_{i=1}^{p} \beta_i^2 + \alpha \sum_{i=1}^{p} |\beta_i|]$$

- Variations
 - Ridge (1970): $\lambda = 1 \& \alpha = 0$
 - Lasso (1996): $\lambda = 1 \& \alpha = 1$
 - Elastic Net (2005)

$$\lambda = 1 \& 0 < \alpha < 1$$

- Notice When
 - $\lambda = 0 \rightarrow PSSE=SSE$
 - As λ Gets Bigger, the Coefficients Approach 0

Part 2: Shrinkage Estimation and More Meditation

Run Chunk 1

Ridge Penalty

Part 2: Shrinkage Estimation and More Meditation

- Chunk 1 (Continued)
 - Lasso Penalty

Part 2: Shrinkage Estimation and More Meditation

- Chunk 1 (Continued)
 - Elastic Net Penalty

Irrelevant Nonsense

Watch Me Whip Watch Me Lasso

Part 2: Shrinkage Estimation and More Meditation

- Tuning Parameters
 - Use Cross-Validation to Choose Tuning Parameters $\lambda \& \alpha$
 - Constraints
 - $\lambda > 0$
 - $0 \le \alpha \le 1$
 - Best Approach:
 - Divide Data Into Train & Test
 - Loop Over a Vector of Alpha
 - Find Best Lambda for Each Alpha Considered Using CV in Train
 - For Each Alpha and Best Lambda, Predict on Test and Select Alpha and Lambda that Minimize MSE

Part 2: Shrinkage Estimation and More Meditation

Chunk 2

- Illustration of 10 Fold CV
- Finding Best Combination of Alpha and Lambda

```
alpha
               lambda
                          MSE
       0.0 25.073407 186.1875
[1,]
       0.1 8.601355 149.4262
       0.2 4.719988 137.4652
       0.3 3.453454 133.7793
[5,]
       0.4 2.590091 130.7873
       0.5 2.274097 130.5494
[6,]
       0.6 1.895081 129.1495
[8,]
       0.7 1.782728 130.0287
[9,]
       0.8
            1.559887 129.2083
10,]
       0.9
            1.521754 131.2262
            1.247909
                     128.085
```


Best: $\lambda = 1 \& \alpha = 1.24$

- Built-In Data > mpg
 - n=234
 - Focus is on Modeling Hwy MPG
 - Subset Data to Include Only Wanted Covariates

year <int></int>	displ <dbl></dbl>	cyl dr <int> <cl< th=""><th></th><th>hwy fl</th><th>class chr> <chr></chr></th></cl<></int>		hwy fl	class chr> <chr></chr>
1999	1.8	4 f	18	29 p	compact
1999	1.8	4 f	21	29 p	compact
2008	2.0	4 f	20	31 p	compact
2008	2.0	4 f	21	30 p	compact
1999	2.8	6 f	16	26 p	compact
1999	2.8	6 f	18	26 p	compact

- There are p=7 Covariates
- Difficulty
 - Fitting all Combinations
 - Considering All 2-Way Interaction Terms

- Run Chunk 1
 - Creating Model Matrix
 - Up to 2-Way Interactions
 - Now, p=115
 - Model Selection is Difficult
 - Dividing Data into Train & Test is Not Advised (n=234)
- Run Chunk 2
 - Only a Few Options

alpha <dbl></dbl>	lambda <dbl></dbl>	CV.Error <dbl></dbl>
0.00	1.44063441	1.722966
0.25	0.55006214	1.620769
0.50	0.18956825	1.488094
0.75	0.10492193	1.456773
1.00	0.04942052	1.411025

Lowest Estimation of Prediction Error

- Chunk 2 (Continued)
 - Understanding cv.glmnet Object
 - \$lambda = Contains Vector of Lambda Auto-Generated
 - \$cvm = Cross Validated
 Estimate of Error for Each
 Lambda in \$lambda
 - \$lambda.min = The Lambda that Leads to Smallest CV Measure of Error
 - \$lambda.1se = The Largest Value of Lambda Such That Error is Within 1 SD of the Error Using \$lambda.min

- Run Chunk 3
 - Next
 - Use Best Alpha and Lambda
 - Observe the Non-Zero Coefficients
 - Plot Predictions and Errors
 - Table of Non-Zero Coefficients
 - Before p=115
 - Now p=28

##	# 1	A tibble: 29 x 2	
##		Parameter	Estimate
##		<chr></chr>	<dbl></dbl>
##	1	Int	-123.
##	2	year	0.0660
##	3	cty	0.799
##	4	fle	-1.37
##	5	flr	-0.0629
##	6	classpickup	-0.104
##	7	classsuv	-1.37
##	8	year:cyl	-0.0000392
##	9	year:drvf	0.0000955
##	10	year:cty	0.0000565
##	11	year:classmidsize	0.0000259
##	12	year:classpickup	-0.000659
##	13	displ:drvr	0.127
##	14	displ:classmidsize	0.0317
##	15	displ:classsuv	-0.178
##	16	cyl:fle	-0.143
##	17	cyl:flr	-0.0973
##	18	cyl:classcompact	0.0462
##	19	cyl:classsuv	-0.0262
##	20	drvf:cty	0.0466
##	21	drvr:cty	0.0282
##	22	drvf:fld	2.54
##	23	<pre>drvr:classsubcompact</pre>	-0.0754
##	24	cty:classminivan	-0.0574
##	25	cty:classpickup	-0.106
##	26	flr:classmidsize	0.488
##	27	flp:classsubcompact	-1.42
##	28	fld:classsuv	-0.552
##	29	flp:classsuv	-0.431

- Chunk 3 (Continued)
 - Comparing Predict and Actual

- Chunk 3 (Continued)
 - Distribution of Residuals

Closing

Disperse and Make Reasonable Decisions