Your Document Title

Your Name

March 23, 2024

Contents

P	roof Methods	2
	If then statements	2
	If then types	2
	Induction Proof	2
	Proof by contradiction	3

Proof Methods

If then statements

Format:

Proof. If A, then B:

- 1. Assume A.
- 2. Show that assuming A leads to B.
- 3. Therefore, B is concluded from A.

Example:

Proof. If m = 1, then m + 0 = 1.

- 1. **Assume** m = 1.
- 2. Considering m = 1, we have 1 + 0 = 1.
- 3. This simplifies to 1 = 1, which is true.

If then types

Different types of implications and their meaning:

- $A \Rightarrow B$: "If it is Wednesday, Dr. Beck will get a cup of coffee from the student union."
- $B \Rightarrow A$ (Converse): "If Dr. Beck got a cup of coffee from the student union, then it is Wednesday."
- $A \Leftrightarrow B$ (Bi-conditional): "It is Wednesday if and only if Dr. Beck got a cup of coffee from the student union."
- $\neg B \Rightarrow \neg A$ (Contrapositive): "If Dr. Beck did not get a cup of coffee from the student union, then it is not Wednesday."

Induction Proof

Format:

Proof. Prove that F(x) is true for all $x \in A$:

- 1. Base case: Show F(a) is true, where a is the smallest element in set A.
- 2. **Induction step:** Assume F(k) is true for an arbitrary $k \in A$. Show that $F(k) \Rightarrow F(k+1)$.
- 3. Therefore, F(x+1) is true for all $x \in A$.

Example:

Proof. For all $n \in \mathbb{N}$, n = n:

- 1. Base case (n = 1): 1 = 1 is true.
- 2. **Induction step:** Assume n = n is true for an arbitrary natural number n. Show that this implies n + 1 = n + 1.
- 3. By the induction hypothesis, n = n. Adding 1 to both sides, n + 1 = n + 1, which holds true.

Proof by contradiction

Format:

Proof. Prove that A is true by contradiction:

- 1. Assume **not** A.
- 2. Show that this assumption leads to a contradiction (something that we know is false).
- 3. Therefore, A must be true.

Different Negations

1. **AND** \Rightarrow **OR:** If A and B, then **not** A or **not** B.

Example: Dr. Beck is 5 ft tall and single \Rightarrow Dr. Beck is **not** 5 ft tall or is **not** single.

2. **OR** \Rightarrow **AND**: If *A* or *B*, then **not** *A* and **not** *B*.

Example: Dr. Beck will drink a coffee or it is Wednesday \Rightarrow Dr. Beck will **not** drink a coffee and it is **not** Wednesday.

3. If, then \Rightarrow AND: If A, then B implies not A and not B.

If it is Monday, then Dr. Beck is on campus \Rightarrow It is **not** Monday and Dr. Beck is **not** on campus.

4. For all \Rightarrow There exists: For all m, A is true implies there exists an m, A is not true.

For all $m \in \mathbb{Z}$, m is even \Rightarrow There exists $m \in \mathbb{Z}$, m is **not** even.

5. There exists \Rightarrow For all: There exists an m, A is true implies for all m, A is not true.

There exists an $m \in \mathbb{Z}$, $m+1=0.5 \Rightarrow For \ all \ m \in \mathbb{Z}$, $m+1 \neq 0$.

Example:

Proof. There is no $x \in \mathbb{N}$ that satisfies the equation $1 - x = 0 \cdot x$.

- 1. Assume by way of contradiction that such an x exists in \mathbb{N} .
- 2. Since $x \neq 0$ for any $x \in \mathbb{N}$, cancelling x from both sides of the equation $1 x = 0 \cdot x$ leads to 0 = 1.
- 3. Since $0 \neq 1$ is a true mathematical contradiction, the initial statement is proven to be true by contradiction.

3