(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-239394

(43)公開日 平成10年(1998) 9月11日

(51) Int.Cl.6

識別記号

FΙ

G01R 31/28

G01R 31/28

F

G06F 17/50

G06F 15/60

672D

審査請求 有 請求項の数9 OL (全 15 頁)

(21)出願番号

特願平9-39122

(22)出願日

平成9年(1997)2月24日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72) 発明者 真田 克

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 若林 忠

(54) 【発明の名称】 LSIの故障箇所の特定化方法

(57)【要約】

【課題】 LSI内部の多重故障を、少ないデータ量で、出力端子異常に無関係に、容易にかつ高速で絞り込め、故障数および故障箇所を特定化できるLSIの故障箇所の特定化方法を提供する。

【解決手段】 テストベクタ41ごとに変化する各ブロックの論理情報48は、回路接続情報45からLSI回路検証のための論理シミュレーション46を用いてダンプ処理47によって出力される。そのテストベクタごとの各ブロックの論理情報48をテストベクタごとのIddq異常の有無の情報44と組合わせることで、各ブロックのテストベクタごとの演算処理49が実施され、故障個所を内蔵したブロックの抽出50が行なわれ、そのブロックでのIddq異常の有無における論理情報からトランジスタレベルでの異常箇所が抽出される。

【特許請求の範囲】

【請求項1】 LSIの入力端子より順次入力されるテストベクタに従って変化する、前記LSIを構成する基本的論理回路単位であるブロックごとの論理動作情報と、該テストベクタにより生成する、前記LSIの論理動作の静止状態でのリーク電流であるIddqの値が所定値を越えるテストベクタ番号とを用いて、該ブロックごとの論理演算を行うことにより故障ブロックを抽出し、次に該故障ブロックにおけるIddq異常を有する前記テストベクタ番号での論理情報を用いて多重故障個所を絞り込む、ことを特徴とするLSIの故障箇所の特定化方法。

【請求項2】 ブロックごとの前記論理動作情報は、LSIの入力端子より入力する前記テストベクタに同期して変化する各ブロックごとの前記テストベクタ番号ごとの入力論理の組合わせである、請求項1に記載のLSIの故障箇所の特定化方法。

【請求項3】 ブロックごとの論理演算を行うことによる前記故障ブロック抽出は、Iddq異常が発生する複数種類の入力論理の組合わせの全てが、Iddq値が正常なテストベクタ番号での入力論理の組合わせに存在するときのみ、該ブロックを正常ブロックとして抽出し、それ以外は該ブロックを故障ブロックとして抽出する、請求項1に記載のLSIの故障箇所の特定化方法。

【請求項4】 ブロックごとの論理演算を行うことによ る前記故障ブロック抽出は、І d d q 異常が連続したテ ストベクタ番号にて検出される複数種類の連続した入力 論理の組合わせ群の全てが、Iddq値が正常な連続し たテストベクタ番号での入力論理の組合わせ群に存在す るときのみ、該ブロックを、正常ブロックとして抽出 し、それ以外は該ブロックを故障ブロックとして抽出す る、請求項1に記載のLSIの故障箇所の特定化方法。 【請求項5】 ブロックごとの論理演算を行うことによ る前記故障ブロック抽出は、І d d q 異常が連続したテ ストベクタ番号にて検出される複数種類の入力論理の組 合わせ群、およびIdda異常が連続しないテストベク タ番号にて検出される複数種類の入力論理の組合わせの 全てが、Idda値が正常な連続したテストベクタ番号 での入力論理の組合わせ群、およびIdda値が正常な テストベクタ番号での入力論理の組合わせに存在すると きのみ、該ブロックを正常ブロックとして抽出し、それ 以外は該ブロックを故障ブロックとして抽出する、請求 項1に記載のLSIの故障箇所の特定化方法。

【請求項6】 前記故障ブロックにおける前記故障個所の絞り込みは、該故障ブロックにおける I d d q 異常が発生している前記テストベクタ番号での入力論理の組合わせで故障箇所を絞り込む、請求項1に記載のLSIの故障箇所の特定化方法。

【請求項7】 前記故障ブロックにおける前記故障個所の絞り込みは、該故障ブロックにおける Iddq異常が

発生している前記テストベクタ番号での入力論理の組合わせと I d d q 異常が発生していないテストベクタ番号での入力論理の組合わせとを用いて故障個所を絞り込む、請求項1に記載のLSIの故障箇所の特定化方法。 【請求項8】 前記ブロックごとの論理演算を行うことによる故障ブロック抽出は、組合わせ回路と順序回路とを分離して故障箇所を絞り込む、請求項1に記載のLSIの故障箇所の特定化方法。

【請求項9】 前記ブロックごとの論理演算を行うことによる故障ブロック抽出は、回路構成を複数個の基本的論理回路から順に回路規模を縮小していくことにより故障個所を絞り込む、請求項1に記載のLSIの故障箇所の特定化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はCMOSLSIの故障個所絞り込みに関し、特に静止状態電源電流の発生有無とテストベクタにおける内部回路の論理状態とを比較することにより多重故障個所を特定する、CMOS論理回路の故障個所絞り込み方法に関する。

[0002]

【従来の技術】従来のCADを利用したシミュレーションによりLSIの故障個所を絞り込む方法は、出力端子に異常が発生した情報をもととして推定する方法であった。

【0003】その第一の方法は故障辞書の作成による故障シミュレーション方法であり、この方法は内部回路の各ブロックに故障を定義しながら、異常が発覚する出力端子、出力値、そしてテストパターン番号を、実際の故障品のデータと比較することで故障個所を推定する方法であった。

【0004】図12は従来例の故障辞書作成による故障シミュレーション方法の流れブロック図であり、図中符号121はテストベクタ、122は故障定義、123、124はLSIの論理接続、125、126は論理シミュレーション、127は比較である。故障箇所の指定には具体的には図12に示すように、LSIの出力端子における論理シミュレーション126による正常論理値と、内部回路の各ノードに故障定義122を行なっ論理シミュレーション125による故障論理値とを用い、LSIの入力端子にテストベクタ121を入力した時、出力端子より出力する論理の比較127により実際の故障品と一致する故障定義位置を抽出する方法である。

【0005】第二の方法はバックトレース方法と称し、 異常が発覚した出力端子、出力値、そしてテスタパターン番号をもとに、出力端子から入力端子方向へ論理を逆にトレースする方法である。すなわち、LSIの入力端子に所定の信号を入力したとき、出力端子に出力する信号が期待値と異なっていたとき、その出力値と期待値との相違を利用して、出力端子から入力端子へ向かって内 部に拡散していく信号中から故障を伝搬している信号を抽出し、故障個所を推定し、その箇所に故障を定義して再度、論理シミュレーションを行うことにより実際の故障との一致を検証する方法である。通常、複数の出力異常箇所を調査し、それらの組合わせにより疑似故障信号を限定しながら故障個所を絞り込んでいくのが一般的であった。

[0006]

【発明が解決しようとする課題】上述した従来の方法 は、いずれも多重故障品の解析が不可能であるという 点、およびシミュレーションデータが膨大となることか ら実用的ではなかった。

【0007】まず、多重故障品の解析に関しては、多重故障数が分からねば解析できないという大きな問題点があった。すなわち、上述した各従来方式は出力端子の異常データのみでは何個の故障が存在するか不明であるため、解析者は出力端子の異常データから故障数を推定して解析を行っていた。しかしながら、故障数の推定が間違っていた時、間違った個数に対してシミュレーションを行うため、検出される結果は完全に間違った結果に終わっていた。

【0008】次に、従来方法の各々について課題を説明する。まず、第一の方法である故障辞書作成による故障シミュレーション方法は、扱える故障モデルは単一縮退故障(Stuck-at-1)のみであり、オープン故障はシミュレーションできないため、故障モードの特定化という点からは一般的ではなかった。なぜならば、故障シミュレーションにて扱う故障はモデル化された論理故障のためであり、オープン故障は論理が定まらないからである。さらに定義する故障数は回路を構成するすべての信号線に対して順次定義していかなければならないため、膨大なデータ量となり実用的ではなかった。すなわち、定義する故障数(V0)はLSIを構成する回路素子数(L)の3乗から4乗に比例すると言われている。

【0009】In(V0)∝(3~4)・In(L) 第二の方法であるバックトレース方法は出力端子異常の情報のみをデータとして使用するため、回路内部にいくつの故障が発生しているかを判断することができなかった。さらに、バックトレースの特徴は複数個の出力異常端子が存在してはじめて故障発生箇所が限定されている、その前提はあくまで単一故障の場合のみであり、また、出力端子から内部回路への方向は信号が拡大していく方向であるため、膨大な疑似故障が検出されることになり絞り込みは不可能となる欠点があった。従って、純粋にバックトレース方式のみで故障箇所を絞り込むことが困難となってきており、例えばしSIテスティングシンポジウムにて報告されているように、最近ではEBT(Electron Beam Tester)のような物理解析方法とリンクさせた、非接触による電位コン トラスト像や論理動作波形の取得により、疑似故障個所を故障候補から消していく方法がとられるような傾向に変わってきている。

【0010】本発明の目的は、LSI内部の多重故障を、少ないデータ量で、出力端子異常に無関係に、容易にかつ高速で絞り込め、故障数および故障箇所を特定化できるLSIの故障箇所の特定化方法を提供することにある。

[0011]

【課題を解決するための手段】本発明のLSIの故障箇所の特定化方法は、LSIの入力端子より順次入力されるテストベクタに従って変化する、LSIを構成する基本的論理回路単位であるブロックごとの論理動作情報と、該テストベクタにより生成する、LSIの論理動作の静止状態でのリーク電流であるIddqの値が所定値を越えるテストベクタ番号とを用いて、該ブロックごとの論理演算を行うことにより故障ブロックを抽出し、次に該故障ブロックにおけるIddq異常を有するテストベクタ番号での論理情報を用いて多重故障個所を絞り込む。

【0012】ブロックごとの論理動作情報は、LSIの 入力端子より入力するテストベクタに同期して変化する 各ブロックごとのテストベクタ番号ごとの入力論理の組 合わせであることが望ましい。

【0013】ブロックごとの論理演算を行うことによる 故障ブロック抽出は、Idda異常が発生する複数種類 の入力論理の組合わせの全てが、Idda値が正常なテ ストベクタ番号での入力論理の組合わせに存在するとき のみ、該ブロックを正常ブロックとして抽出し、それ以 外は該ブロックを故障ブロックとして抽出してもよく、 Iddq異常が連続したテストベクタ番号にて検出され る複数種類の連続した入力論理の組合わせ群の全てが、 Iddq値が正常な連続したテストベクタ番号での入力 論理の組合わせ群に存在するときのみ、該ブロックを、 正常ブロックとして抽出し、それ以外は該ブロックを故 障ブロックとして抽出してもよく、Iddq異常が連続 したテストベクタ番号にて検出される複数種類の入力論 理の組合わせ群、およびIdda異常が連続しないテス トベクタ番号にて検出される複数種類の入力論理の組合 わせの全てが、Idda値が正常な連続したテストベク タ番号での入力論理の組合わせ群、および I d d q 値が 正常なテストベクタ番号での入力論理の組合わせに存在 するときのみ、該ブロックを正常ブロックとして抽出 し、それ以外は該ブロックを故障ブロックとして抽出し てもよい。

【0014】故障ブロックにおける故障個所の絞り込みは、該故障ブロックにおける I d d q 異常が発生しているテストベクタ番号での入力論理の組合わせで故障箇所を絞り込んでもよく、該故障ブロックにおける I d d q 異常が発生しているテストベクタ番号での入力論理の組

合わせと I d d q 異常が発生していないテストベクタ番号での入力論理の組合わせとを用いて故障個所を絞り込んでもよい。

【0015】ブロックごとの論理演算を行うことによる 故障ブロック抽出は、組合わせ回路と順序回路とを分離 して故障箇所を絞り込んでもよく、回路構成を複数個の 基本的論理回路から順に回路規模を縮小していくことに より故障個所を絞り込んでもよい。

【0016】CMOS論理回路は回路内部に物理欠陥を有すると、一般的傾向として"Iddq(Quiesent Vdd Supply Current)"と称する静止状態電源電流に異常値が現れる。従って、このIddq異常は、LSI回路内部の物理故障を顕在化させるシグナルとみなすことができる。この詳細については、M. Sanada "Evaluation and Detection of CMOS-LSI with Abnormal Iddq" Microelectronics and Reliability、Vol. 35、NO. 3、pp. 619-629、1995にて明らかであり、本発明は上述した性質を利用したものである。

【0017】通常、ゲートアレイ品に代表されるASIC(Application Specific Integrated Circuits)は予め準備された"ブロック"と称する基本的な論理を構成する回路を組合わせることにより所望の電気回路を構成することにより実現される。

【0018】本発明による多重故障個所の絞り込み方法は、上述した設計方式を利用するものであり、LSIの入力端子より入力するテストベクタに従って変化する、"ブロック"と称するLSIを構成する基本的論理回路単位での論理動作情報と、そのテストベクタごとに"Iddq"と称するLSIの論理動作の静止状態でのリーク電流の値が所定値を越えるテストベクタ番号とを用いて、ブロックごとの論理演算を行うことによりはdq異常を有するテストベクタ番号での論理情報を用いて故障個所を絞り込む多重故障箇所の特定化方法であり、上述したブロックごとの論理動作情報はLSIの入力端子より入力するテストベクタに同期して変化する各ブロックごとのテストベクタに同期して変化する各ブロックごとのテストベクタ番号ごとの入力論理の組合わせでなる

【0019】上述のデータを用いたブロックごとの論理 演算を行うことによる故障ブロック抽出方法は2種類あ り、1つは、Iddq異常が発生する複数種類の入力論 理の組合わせの内の少なくとも1種類以上と同一な入力 論理の組合わせが、Iddq値が正常なテストベクタ番 号における入力論埋の組合わせに存在しないブロックを 故障ブロックとして抽出する方法であり、もう1つは、 Iddq異常が連続したテストベクタ番号にて検出され る複数種類の連続した入力論理の組合わせ群の内の1種類以上と同一の入力論理の組合わせ群が、I d d q 値が正常な進続したテストベクタ番号での入力論理の組合わせ群に存在しないブロックを故障ブロックとして抽出する多重故障箇所の特定化方法である。

【0020】さらに、上述した2種類のモード"Iddq異常が連続したテストベクタ番号にて検出される複数種類の連続した入力論埋の組合わせ群"および、"連続しないテストベクタ番号にて検出される複数種類の入力論理の組合わせ"が混在した論理の組合わせ中の1種類以上と同一な"入力論理の組合わせ群"と"入力論理の組合わせ"が、Iddq値が正常なテストベクタ番号での"入力論理の組合わせ群"と"入力論理の組合わせ"に存在しないブロックを故障ブロックとして抽出することを特徴とした多重故障箇所の特定化方法である。

【0021】次に、特定化された故障ブロック内部の故障個所の絞り込みは2種類あり、一つは、その故障ブロックにおける I d d q 異常が発生しているテストベクタ番号での入力論理の組合わせを用いて故障個所を絞り込むことを特徴としており、もう一つは、その故障ブロックにおける I d d q 異常が発生しているテストベクタ番号での入力論理の組合わせと I d d q 異常が発生していないテストベクタ番号での入力論理の組合わせを用いて故障個所を絞り込むことを特徴としている。

【0022】上述のデータを用いたブロックごとの論理 演算を行うことによる故障ブロック抽出は、組合わせ回 路と順序回路を分離したことを特徴としており、さら に、回路構成を複数個の基本的論理回路から順に回路規 模を縮小していくことにより、故障個所を絞り込むこと を特徴とする故障箇所の特定化方法である。

[0023]

【発明の実施の形態】前述のように、CMOS論理回路 は回路内部に物理欠陥を有すると、一般的傾向として

"Iddq(Quiesent Vdd Supply Current)"と称する論理の静止状態における電源電流に異常値が現れる。図1は物理故障の存在による貫通電流発生の様子を示す模式図であり、図中符号11はLSI、12はVdd、13はGND、14は物理故障箇所、15はテストベクタ、16はIddq(異常)である。すなわち、LSI11の内部に物理故障箇所14が存在すると、任意のテストベクタ15により設定された論理により、その物理故障箇所14を介して、または、物理故障箇所14の影響をうけてVdd12からGND13への貫通電流即ち異常Iddq16が発生する。

【0024】通常、ゲートアレイ品に代表されるASIC (Application Specific Integrated Circuits)の設計は、予め準備された"ブロック"と称する基本的な論理を構成する回路を組合わせることにより所望の電気回路を実現す

る設計方法である。そのようなASICのCMOS回路内部に存在する故障個所の絞り込みは、テストベクタごとに変化する各ブロックの論理シミュレーション情報と、Iddq異常を発生させるテストベクタ番号とを用いることで可能となる。

【0025】説明はまず、各ブロックの論理シミュレーション情報について説明し、次に、Iddq異常を発生させるテストベクタ番号抽出方法について説明する。その後、本発明の手順を説明し、次に故障ブロック絞り込みのための方式について説明する。

【0026】1) LS I の各ブロックの論理シミュレーション情報(図2)

図2はLSIの各ブロックの論理シミュレーション結果をアレンジし直す過程の説明図であり、(a)はLSIの入出力計理関係を示すテストベクタ表、(c)はLSIの各ブロックを示す模式図、(d)はSIM(Sistems Integration Model)上の時刻変化ごとのブロックの出力論理変化表、(e)はLSIの各ブロックからの出力を示す模式図、(f)は各ブロックがらの出力を示す模式図、(f)は各ブロックがらの出力を示す模式図、(f)は各ブロックだとのテストベクタに対する入力論理を表すダンプリストである。図中符号21はLSI、22は入力端子、23は出力端子、25はテストベクタ、26は出力、27はブロックB1、28はブロックB2、29はブロックBnである。

【0027】論理シミュレーションは、通常LSI21の入力端子22から入力するテストベクタ25に対応して出力端子23に出力する期待値を検証する論理検証のためのツールであり、通常、電気回路の動作確認と同時に、タイミングや内部遅延を検証するために用いられる。従って、必要となる検証データは各ブロックごとの出力端子に出力する論理と論理の時間変化情報のみで十分である。しかしながら、本手法に必要となるシミュレーションデータはテストベクタ番号ごとに変化する各ブロックごとの入力論理情報であり、通常の論理シミュレーション結果をアレンジし直さねばならない。

【0028】図2は論理シミュレーション結果を本手法で必要となる結果にアレンジし直しす過程を解説した説明図であり、まず、各ブロックごとの出力端子に出力する論理と論理の時間変化情報とを、各ブロックごとの出力端子に出力する論理と論理のテストベクタ番号ごとの変化情報に直し、次に各ブロックごとの出力端子が次段のブロックの入力端子に接続される関係から、ブロックごとの入力端子に入力する論理情報と論理のテストベクタ番号ごとの変化情報に直した変遷を示している。

【0029】2) I d d q 異常を発生させるテストベク タ番号(図3)

テストベクタごとの I d d q 異常の有無情報は故障品 L S I の入力端子よりテストベクタを入力し、各テストベクタでの論理の静止状態におけるリーク電流値を測定

し、規格値を越えたリーク電流値を I d d q 異常値として識別したものが、 I d d q 異常有りとして抽出されるテストベクタ情報である。図3はテストベクタごとの I d d q 異常有無情報を示すグラフであり、図中符号31は I d d q のしきい値、32は I d d q (正常)、33は I d d q (異常)である。X軸にテストベクタ番号(以降、T V n o.と記す)を Y 軸に I d d q 値を示す。正常品の I d d q 値は規格値以下(例えば、正常状態において回路に貫通電流が発生しない時は 1 μ A 以下)であるのに対して、 I d d q 異常品は規格値の数百倍から数千倍の異常な貫通電流が流れる。

【0030】3) 本発明の手順(図4)

図4は本発明の手順を示すフローチャートである。図中 符号41はテストベクタ(TV)、42はLSIへの印 加、43はIddq値の測定、44はIddq値異常の TV番号の抽出、45は回路接続情報、46は論理シミュレーション、47は内部回路ノード抽出のダンプ処理、48はTVごとの各ブロックの入力論理の抽出、49は演算処理、50は故障ブロックの抽出である。

【0031】本発明では、LSIの論理動作をテストするために準備されたテストベクタは、テストベクタごとに変化するLSIを構成する各ブロックごとの論理情報と、テストベクタごとのIddq異常の有無情報とを検出するために用いられる。

【0032】まず、テストベクタ41ごとに変化する各ブロックの入力論理情報48は上述した方式により、回路接続情報45からLSI回路検証のための論理シミュレーション46を用いて"ダンプ処理"47と称するLSIを構成する各ブロックのテキスト名を指定して出力する。そのテストベクタごとの各ブロックの入力論理情報48は上述したテストベクタごとのIddq異常の有無の情報44と組合わせることで、各ブロックのテストベクタごとの演算処理49が実施され、故障個所を内蔵したブロックの抽出50が行なわれる。

【0033】そして、抽出された故障個所を内蔵したブロック50をもとに、そのブロックでのIddq異常の有無における論理情報からトランジスタレベルでの異常箇所を抽出し完了する。

【0034】4) 故障ブロック絞り込みのための方式 (図5)

図5は本発明による故障ブロックを絞り込むための基本的な考え方を述べる説明図であり、(a)はLSI内のブロックを示す模式図、(b)は各ブロックごとのダンプリスト、(c)は(b)のダンプリストに対応させたIddq異常有無情報を示すグラフである。図中符号51はLSI、52はブロックB1、53はブロックB2、54はブロックB3、55はブロックBn、56はテストベクタ、57はIddq(異常)、58はダンプリスト、59はIddq異常箇所である。

【0035】複数のブロック(B1、B2、B3、・・

・・、Bn、・・・)にて構成されるLSI51の入力端子よりテストベクタ56を入力する。その入力論理はそれらのブロックで論理を展開しながら出力端子に至る。

【0036】上述したダンプ処理により、各ブロックのテストベクタごとの論理状態が抽出される。この様子は図5(b)に示す各ブロックごとのダンプリスト58に示される。ところで、LSIにてテストベクタごとに検出されるIddq値は、テストベクタごとの各ブロック(B1、B2、B3、・・・、Bn、・・・)に発生するIddq値の合計であり、通常、規格値以内に収まっている。しかしながら、物理故障を内蔵しているブロックがそのブロック群に存在すると、そのブロックに発生する異常電流値がLSIでのIddq値異常として検出される。

【0037】図5(c)に示された上述のIddq値異常57が発生しているテストベクタ番号TVno.a、b、cは、各ブロックごとのダンプリストにおけるTVno.a、b、cにも対応しており、従って、各ブロックにてIddq異常表示されたテストベクタと正常状態でのテストベクタの入力論理を比較する(後述する)ことによりIddq異常を内蔵するブロックを抽出することができる。

【0038】5)故障ブロックの抽出方式

次に、Iddq異常を内蔵するブロックを抽出する方法について説明する。ASICを構成するブロックは大きく2種類の回路に分類される。即ち組合わせ回路と順序回路である。組合わせ回路はそのブロックの入力端子に信号が印加されるとその論理が内部の回路を介して直接出力してくる回路形式であり、基本ゲート(AND、OR、NAND、インバータ回路等)からALUやADDER回路等の大きな規模の回路まである。また、順序回路はクロック信号に同期してデータが一旦回路内部に蓄えられ、次のクロツク信号で出力するといった出力を行う回路形式であり、フリップ・フロップ、レジスタ回路やラツチ回路等がある。これら2種類の回路の故障診断は異なった方式で実施される。

【0039】5-1)組合わせ回路に対する故障ブロックの抽出方式(図6)

まず、組合わせ回路に対する故障ブロックの抽出方式について図6にて説明する。図6は組み合せ回路の故障ブロックの抽出方法の説明図であり、(a)はダンプリストとして抽出された5入力端子を有する組合わせ回路のダンプリスト、(b)はIddq異常発生のフローチャート、(c)はダンプリストとして抽出された5入力端子を有する組合わせ回路のダンプリスト、(d)はブロックを正常と判定するためのフローチャート、(e)はダンプリストとして抽出された5入力端子を有する組合わせ回路のダンプリスト、(f)はブロックに故障内蔵の疑いがあると判断するフローチャートである。

【0040】図に示すように、Iddq異常が発生する 入力論理の組合わせは3種類(A、B、C)存在してい る。それらの種類に対するTV番号は、

入力論理の組合わせAは TV(al)、TV(a 2)、TV(a3)

 入力論理の組合わせBは TV(bl)、TV(b2)

 入力論理の組合わせCは TV(cl)、TV(c

 2)、TV(c3)

 である。

【0041】これらの3種類の入力論理の組合わせと同じ入力論理の組合わせがIddq値が正常なTVに存在するかどうかコンピュータ(PCまたはEWS)を用いて調査する。

【0042】図6(c)、(d)はブロックを正常と判 断するケースの1例である。入力論理の組合わせA、 B、Cの全てが正常なTVに存在したとき、このブロッ クを正常と判断する。即ち、このブロックにおける"入 力論理の組合わせA"と同一の入力論理の組合わせが I ddq値が正常なTVに存在したとき、このブロックに おける"入力論理の組合わせA"は故障を示唆している 入力論理ではないと判断する。次に、"入力論理の組合 わせB"と同一の入力論理の組合わせが І dda値が正 常なTVに存在したとき、上記と同様に"入力論理の組 合わせB"は故障を示唆している入力論理ではないと判 断する。以下、同様に"入力論理の組合わせC"と同一 の入力論理の組合わせがIdda値が正常なTVに存在 したとき上記と同様に"入力論理の組合わせC"は故障 を示唆している入力論理ではないと判断し、全ての I d d q 値異常の入力論理の組合わせが故障を示唆していな いので、このブロックは正常と判断してブロックの調査 を終了する。

【0043】図6(e)、(f)はブロックに故障内蔵の疑いがあると判断するケースの1例である。上述と同様な調査を行い、入力論理の組合わせA、B、Cの内の少なくとも1組合わせ以上がIddq値が正常なTVにおける入力論理の組合わせに存在していない時に、このブロックに故障内蔵の疑いがあると判断する。

【0044】その理由について説明する。多重故障は1個のブロックに故障が全て内蔵しているか、複数のブロックに故障が内蔵しているかのどちらかである。

【0045】前者は、1個のブロックに故障が全て内蔵しているため、図6(e)、(f)における"ブロックに故障内蔵の疑いがあると判断するケース"を考えた時、これら3種類のIddq異常が発生する入力論理の組合わせは、それらの組合わせがあれば必ずIddq異常を発生し、従って、Iddq値が正常なTVにおける入力論理の組合わせには存在しないはずだからである。【0046】後者は、複数のブロックに故障が内蔵しているケースであり、3種類の入力論理の組合わせ中の1種類(A)がIddq値の正常なTVにおける入力論理

の組合わせに存在する時、その入力論理の組合わせ (A)は別のブロックに内蔵された I d d g 異常の情報

(A)は別のブロックに内蔵されたIddq異常の情報が重なったものであると判断できる。そして、他の2種類がIddq異常を発生するTVであり、故障を内蔵している可能性ありと判断されるからである。

【0047】同様に、3種類の入力論理の組合わせ中の2種類(A、B)がIddq値が正常なTVにおける入力論理の組合わせに存在する時、それは別のブロックに内蔵されたIddq異常の情報が重なったものであると判断できる。そして、残った他の1種類はIddq異常を発生するTVであり、故障を内蔵している可能性ありと判断されるからである。

【0048】さらに、3種類の入力論理の組合わせ中の全て(A、B、C)がIddq値が正常なTVにおける入力論理の組合わせに存在する時、それは別のブロックに内蔵されたIddq異常の情報が重なったものであると判断できる。従ってこのブロックにはIddq異常を発生するTVはなく、正常であると判断されるからである。

【0049】5-2)順序回路に対する故障ブロックの 抽出方式(図7)

次に、順序回路に対する故障ブロックの抽出方式について図7にて説明する。図7は順序回路の故障ブロックの抽出方法の説明図であり、(a)はダンプリストとして抽出された5入力端子を有する順序回路のダンプリスト、(b)は Iddq異常発生のフローチャート、

(c)はダンプリストとして抽出された5入力端子を有する順序回路のダンプリスト、(d)はブロックを正常と判定するためのフローチャート、(e)はダンプリストとして抽出された5入力端子を有する順序回路のダンプリスト、(f)はブロックに故障内蔵の疑いがあると判断するフローチャートである。

【0050】図7 (a)、(b)に示すように、Idd q異常が発生する入力論理の組合わせは7種類 (A、B、C、D、E、F、G)存在している。それらのTV上での発生の様子には特徴があり、Iddq異常が発生する入力論理の組合わせは連続したTVにてA、B、C、Dの群とE、F、Gの群にて連続発生している。【0051】このときは、これらの群 (A、B、C、D)と群 (E、F、G)の固まりと同じ入力論理の組合わせの固まりが Iddq値が正常なTVに存在するかどうか調査する。

C、D) "は故障を示唆している入力論理ではないと判断する。次に、入力論理の組合わせ群(E、F、G)と同一の入力論理の組合わせ群がIddq値が正常なTVに存在したとき、上記と同様に"入力論理の組合わせ群(E、F、G)"は故障を示唆している入力論理ではないと判断し、全てのIddq値異常の入力論理の組合わせ群が故障を示唆していないので、このブロックは正常と判断してブロックの調査を終了する。

【0053】図7(e)、(f)はブロックに故障内蔵の疑いがあると判断するケースの1例である。上述と同様な調査を行い、入力論理の組合わせ群(A、B、C、D)および、群(E、F、G)の内の少なくとも1組合わせ群以上がIddq値が正常なTVにおける入力論理の組合わせ群に存在していない時に、このブロックに故障内蔵の疑いがあると判断する。

【0054】その理由については組合わせ回路での説明と同様である。多重故障は1個のブロックに故障が全て内蔵しているか、複数のブロックに故障が内蔵しているかのどちらかである。

【0055】前者は、1個のブロックに故障が全て内蔵しているため、図7(e)、(f)における"ブロックに故障内蔵の疑いがあると判断するケース"を考えた時、これら2種類のIddq異常が発生する入力論理の組合わせ群は、それらの組合わせ群があれば必ずIddq異常を発生し、従って、Iddq値が正常なTVにおける入力論理の組合わせ群には存在してないはずだからである。

【0056】後者は、複数のブロックに故障が内蔵しているケースであり、2種類の入力論理の組合わせ中の1種類群(A、B、C、D)がIddq値の正常なTVにおける入力論理の組合わせ群に存在する時、その入力論理の組合わせ群(A、B、C、D)は別のブロックに内蔵されたIddq異常の情報が重なったものであると判断できる。そして、他の群(E、F、G)はIddq異常を発生する入力論理の組合わせ群であり、故障を内蔵している可能性ありと判断されるからである。

【0057】以上、順序回路における診断方式を述べたが、順序回路は連続したTVの他に、単一のTVにてIddq異常が発生しているケースがあり、例えば、Iddq異常が発生する入力論理の組合わせは7種類(A、B、C、D、E、F、G)存在している。Iddq異常が発生する入力論理の組合わせは連続したTVでの(A、B、C、D)の群と単一の入力論理の組合わせE、Fおよび、Gというケースである。この場合の調査は連続したTVでの(A、B、C、D)の群、入力論理の組合わせE、Fおよび、Gの4種類を考える。さらに、連続したTVでの(A、B、C、D)の群に単一のTVの入力論理の組合わせと同一の入力論理の組合わせが存在しても(例えば、B=F)、これらは別個に考える。調査は、連続したTVでの(A、B、C、D)の群

にておこない、さらに単一のTV(F)での調査をおこなう。

【0058】この判断理由を説明するために、基本的な順序回路であるDタイプフリップ・フロップ(以降、DF/Fと記す)を用いて説明する。

【0059】図8は順序回路の診断方式の説明図であり、(a)はDタイプフリップ・フロップの回路図、(b)はDタイプフリップ・フロップの論理テーブルである。

【0060】図8(a)は、1個のインバータ回路、2個の2入力AND回路および、2個の2入力NOR回路から構成される2入力(D:Data端子、CLK:Clock端子)、2出力(Q、Q*)の端子群を有するDF/Fの回路構成である(Q*=Qの反転論理を意味する)。図8(b)はその論理テーブル(真理値表)を示す。DF/Fにおいて、Q出力側2入力NOR回路が"H"出力になった時Iddq異常が発生したとすると、この異常は図8(b)に示す論理テーブル表のテストベクタTVno.6、7、10、11、12、13においてIddq異常が発生する。

【0061】これを単一の入力論理の組合わせとして見ると、Iddq異常の発生したTVの内、TVno.7、11、13に注目したとき、同様な入力論理(D=0、CLK=0)がTVno.3、5、9においても設定されている。しかしながら、これらTVno.3、5、9の入力論理においてはIddq異常は発生していない。その理由は順序回路はクロック信号に同期してデータが一旦回路内部に蓄えられ、次のクロツク信号で出力するという回路形式のためである。

【0062】すなわち、図8(b)に示す論理テーブル 表から明らかなように、テストベクタTVno.7、1 1、13において保持されている論理はQ出力側2入力 NOR回路が"H"および、Q* 出力側2入力NOR回 路が "L" 出力となった論理であるのに対し、テストベ クタTVno. 3、5、9において保持されている論理 はQ出力側2入力NOR回路が "L" および、Q* 出力 側2入力NOR回路が "H" 出力となった論理であるた めである。従って、Q出力側2入力NOR回路が"H" 出力になった時Idda異常が発生する状態はテストベ クタTVno. 7、11、13での保持状態で異常とし て検出されている。従って、順序回路における故障箇所 検出の方式はDF/Fへの論理の設定と保持状態の入力 論理を1つの組合わせ群 {テストベクタTvno. 6、 7} および {Tvno. 10、11、12、13} とし て調査しなければならない。すなわち、順序回路の故障 箇所検出の方式は I d d q 異常の入力論理の組合わせ群 が正常なテストベクタでの入力論理の組合わせ群の中に 存在するかどうか調査しなければ、そのブロックに故障 が存在するかどうかの判定がなされない。

【0063】6)階層別分割による故障ブロック絞り込

み方式(図9)

図9はLSIを階層別に分割し、故障ブロックを絞り込む方式を示す説明図であり、図中91はLSI、92は順序回路、93、94、95は組合わせ回路、96はブロック(b1)、97はブロック(b2)、98はブロック(b3)、99は基本ブロックである。

【0064】階層別ブロック構成の場合は、設計時に使用されるライブラリと称する、予め準備されている基本的な回路構成をされたブロックの単位で解析を行う方式が一般的であるが、大規模化されたLSIにおいては膨大なブロック数となることが予測される。それに対応するために、全体を任意の大きさに再分割して、LSI内部のブロック構成を変える方式がある。その再構成で注意すべきことは、組合わせ回路と順序回路とを区別して1つの階層単位に階層分割しなければならないことである。理由は上述した組合わせ回路と順序回路での演算処理の方式が異なるためである。

【0065】図中、階層分割においては、組合わせ回路 と順序回路が混在しているため、順序回路を境にして組合わせ回路を分割しやすい階層構成(a1、a2、a3)として故障個所の絞り込みを行っている。次に、故障が発生しているとして抽出された階層ブロック(a1)93において、階層ブロック組を構成する階層構成 b1、b2、b3にて故障個所の絞り込みを行う。そして最後に最小単位である、"基本的論理回路構成"でのブロック(b2)97を抽出する。

【0066】7)トランジスタレベルの故障箇所の絞り 込み方法(図10)

次に、基本的論理回路構成"での基本ブロック99より、その回路を構成しているトランジスタレベルの故障個所を絞り込む。基本的論理回路は一般に数トランジスターから数十トランジスタで構成される、OR、NOR、NAND、AND、インバータ回路、フリップフロップ回路といった基本的な論理動作を単位とする機能回路である。故障個所の絞り込み方法は組合わせ回路、順序回路とも同じである。これらの基本的論理回路は入力論理に同期してどのトランジスタがON/OFFしているか明確に判定できるため、論理シミュレーションにより容易に故障トランジスタを抽出できる。以下に基本的論理回路の1つである、2入力NAND回路の例を用いて説明する。

【0067】図10は論理シミュレーションによる故障トランジスタの抽出の説明図であり、(a)は2入力NAND回路の ANDの回路図であり、(b)は2入力NAND回路の入力論理の全組合わせに注目した真理値表とIddq値との相関表である。2入力にて構成する4つの入力論理の組合わせ(TV1、TV2、TV3、TV4)中、TV3(入力端子IN1にLowレベル、入力端子IN2にHighレベルが入力)にてIddq異常が発生し、他の入力論理の組合わせ(TV1、TV2、TV4)は

正常であったとする。この情報を基に故障トランジスタ を抽出する手法を説明する。通常、この故障トランジス タを抽出する方法は論理シミュレーションを用いて、各 テストベクタにてどのトランジスタがON/OFFして いるかを検証することにより実施する。

【0068】図10の2入力NAND回路図において、

テストベクタ (TV1、TV2、TV3、TV4) に対 する、Pチャネルトランジスタ1、2(以降、PTrー 1、PTr-2と記す) Nチヤネルトランジスタ1、2 (以降、NTr-1、NTr-2と記す)のON/OF F状況は

TVno.	PTr-1	PTr-2	NTr-1	NTr-2	Iddq値
TV1,	OFF	OFF	ON	ON	正常
TV2,	OFF	ON	ON	OFF	正常
TV3、	ON	OFF	OFF	ON	異常
TV4、	ON	ON	OFF	OFF	正常

と記述できる。

入力NAND回路において2通りが考えられる。 【0069】さらに、 Iddq異常が発生する通路は2 [0070]

1, $Vdd \rightarrow PTr1 \rightarrow NTr1 \rightarrow Ntr2 \rightarrow GND$

2, $Vdd \rightarrow PTr2 \rightarrow NTr1 \rightarrow NTr2 \rightarrow GND$

これらの通路と上述のトランジスタのON/OFF状況 との検証から、Idda異常が発生する通路をトランジ スタのON/OFF状況で書き表してみると、Idda 異常が発生する通路1は、

1,	$V d d \rightarrow$	PTr1→	$NTr1\rightarrow$	NTr2→	GND
TV	1 、	OFF	ON	ON	正常
TV	2、	OFF	ON	OFF	正常
TV:	3、	ON	<u>OFF</u>	ON	異常
TV	4 、	ON	OFF	OFF	正常

となり、NTrlが異常となって常にON状態の時、貫 【0071】また、Iddq異常が発生する通路2は、 通電流が発生する。

2、	$V d d \rightarrow$	PTr2→	$NTr1 \rightarrow$	NTr2→	GND
TV	1,	OFF	ON	ON	正常
TV	2、	ON	ON	OFF	正常
TV3	3、	OFF	OFF	ON	異常
TV	4、	ON	OFF	OFF	正常

となり、PTr2およびNTr1が異常となって常にO N状態となった時、貫通電流が発生する。しかしなが ら、TV1はIddq値は正常なため、PTr2に物理 故障が内蔵していることと矛盾し、PTr2は正常と判 断される。

【0072】以上、通路1、2の検証によりNTrlが 異常となり常にON状態の時、貫通電流が発生すること が判明する。

【0073】以上は4トランジスタ構成である2入力N AND回路についての例であるが、数十トランジスタに て構成された基本論理回路は上述した検証と同様の操作 をコンピュータを用いた論理シミュレーションにより実 施することにより短時間で異常トランジスタを抽出でき る。

【0074】8)組合わせ回路の故障箇所絞り込み方法

図11は組合わせ回路における故障個所を絞り込む方法 を示す説明図であり、(a)は真理値表と Iddq値と の相関表、(b)は(a)のIdda異常箇所の拡大 表、(c)は故障素子絞り込みの模式図であり、図中符 号111、112はテストベクタの変化、113は絞り

込んだ故障素子である。

【0075】 Iddq異常が発生したテストベクタおよ び、正常状態でのテストベクタを用いてIdda異常が 発生したテストベクタにおける論理の変化を公知のシミ ュレーションにより抽出する方式である。特に重要とな るデータはIdda異常が発生したテストベクタであ り、組合わせ回路の場合、そのIdda異常が発生する テストベクタの前後において内部の論理の変化を用い て、公知の論理シミュレーションにより、故障内蔵素子 を簡単に抽出できる。図11は前述した故障内蔵素子を 簡単に抽出するための説明図であり、テストベクタTV no. (a-1)からTVno. (a)に変化 {F(a -1、a) } した時、 I d d q 異常が発生する。 この時 のベクタの変化は入力ピンNO5のみが "O" から "1"へ変化し、他は変化していない。この論理の変化 は論理シミュレーションにより変化素子を抽出できる。 さらにテストベクタTVno. (a)からTVno. (a+1)に変化 {F(a、a+1)} した時、正常状 態に戻る。この時のベクタの変化は入力ピンNO8のみ が"1"から"0"へ変化し、他は変化していない。前

処理にて複数個の疑似故障素子が抽出されたとき、それ

らの疑似故障素子をさらに絞り込むことができる。その 処理を I d d q 異常が発生した全テストベクタに関して 実行することにより、故障内蔵素子を抽出することがで きる。

[0076]

【発明の効果】以上説明したように、本発明は I d d q 異常が発生したという現象を用いて、多重故障箇所を絞り込む方法であり、その方法は6つの大きな効果を有する。

【0077】第1は、出力端子異常の有無に関係なく故障個所を絞り込めるという点である。これは本発明の一番大きな特徴である。

【0078】第2は、容易に故障個所を絞り込むことができるという点である。すなわち、本方法の実行はLS I 設計段階での検証ツールとして用いる論理シミュレーションを基にした各ブロックごとのダンプリストと、I d d q 異常が発生したテストベクタ番号のみのデータでよいため、回路が解らなくても簡単に故障個所を絞り込むことができる効果がある。

【0079】第3は、さらに、上述したデータは故障品のIddq異常が発生したテストベクタ番号のみでよいため、故障品がなくても解析が可能となる効果がある。

【0080】第4は、予め多重故障数が分からなくて も、故障数および、その故障数に対応した故障箇所は演 算処理にて特定化できるという点である。

【0081】第5は、高速に処理が可能である点である。本方法はコンピュータが得意とする演算処理のみでよいため、高速に処理が可能である。また、LSIが大規模になったとしても分割したブロック単位での演算が可能なため、コンピュータ容量の影響を受けないメリットがある。さらに、その演算はブロックごとにて独自に行うため、並列処理による短時間処理が可能である。

【0082】第6は、本発明の適用はIddq異常値の大きさに関係しないということである。解析に必要なデータはIddq異常が発生したテストベクタ番号であり、Iddq異常値の大きさに関係しないため、正常品とわずかな差の現れるサンプルにおいてもその発生箇所を絞り込むことが可能となる。

【図面の簡単な説明】

【図1】物理故障の存在による貫通電流発生の様子を示す模式図である。

【図2】LSIの各ブロックの論理シミュレーション結果をアレンジし直す過程の説明図である。(a)はLSIの入出力状態を示す模式図である。(b)はLSIの入出力論理関係を示すテストベクタ表である。(c)はLSIの各ブロックを示す模式図である。(d)はSIM(Sistems Integration Model)上の時刻変化ごとのブロックの出力論理変化表である。(e)はLSIの各ブロックからの出力を示す模式図である。(f)は各ブロックごとのテストベクタに

対する入力論理を表すダンプリストである。

【図3】テストベクタごとの I d d q 異常有無情報を示すグラフである。

【図4】本発明の手順を示すフローチャートである。

【図5】本発明による故障ブロックを絞り込むための基本的な考え方を述べる説明図である。(a)はLSI内のブロックを示す模式図である。(b)は各ブロックごとのテストベクタ表である。(c)は(b)のテストベクタ表に対応させたIddq異常有無情報を示すグラフである。

【図6】組み合せ回路の故障ブロックの抽出方法の説明 図である。(a)はダンプリストとして抽出された5入 力端子を有する組合わせ回路のダンプリストである。

(b)は I d d q 異常発生のフローチャートである。

(c)はダンプリストとして抽出された5入力端子を有する組合わせ回路のダンプリストである。(d)はブロックを正常と判定するためのフローチャートである。

(e)はダンプリストとして抽出された5入力端子を有する組合わせ回路のダンプリストである。(f)はブロックに故障内蔵の疑いがあると判断するフローチャートである。

【図7】順序回路の故障ブロックの抽出方法の説明図である。(a)はダンプリストとして抽出された5入力端子を有する順序回路のダンプリストである。(b)はIddq異常発生のフローチャートである。(c)はダンプリストとして抽出された5入力端子を有する順序回路のダンプリストである。(d)はブロックを正常と判定するためのフローチャートである。(e)はダンプリストである。(f)はブロックに故障内蔵の疑いがあると判断するフローチャートである。

【図8】順序回路の診断方式の説明図である。(a)は Dタイプフリップ・フロップの回路図である。(b)は Dタイプフリップ・フロップの論理テーブルである。

【図9】LSIを階層別に分割し、故障ブロックを絞り込む方式を示す説明図である。

【図10】論理シミュレーションによる故障トランジスタの抽出の説明図である。(a)は2入力NANDの回路図である。(b)は2入力NAND回路の入力論理の全組合わせに注目した真理値表とIddq値との相関表である。

【図11】組合わせ回路における故障個所を絞り込む方法を示す説明図である。(a)は真理値表と I d d q 値との相関表である。(b)は(a)の I d d q 異常箇所の拡大表である。(c)は故障素子絞り込みの模式図である。

【図12】従来例の故障辞書作成による故障シミュレーション方法の流れブロック図である。

【符号の説明】

11, 21, 51, 91 LSI

- 12 Vdd
- 13 GND
- 14 物理故障箇所
- 15、25 テストベクタ
- 16 Iddq(異常)
- 22 入力端子
- 23 出力端子
- 26 出力
- 27 ブロックB1
- 28 ブロックB2
- 29 ブロックBn
- 31 Iddqのしきい値
- 32 Iddq(正常)
- 33 Iddq(異常)
- 41 テストベクタ (TV)
- 42 LSIへの印加
- 43 Iddq値の測定
- 44 Iddq値異常のTV番号の抽出
- 45 回路接続情報
- 46 論理シミュレーション
- 47 内部回路ノード抽出のダンプ処理
- 48 TVごとの各ブロックの入力論理の抽出
- 49 演算処理

- 50 故障ブロックの抽出
- 52 ブロックB1
- 53 ブロックB2
- 54 ブロックB3
- 55 ブロックBn
- 56 テストベクタ
- 57 Iddq(異常)
- 58 ダンプリスト
- 59 Iddq異常箇所
- 92 順序回路
- 93、94、95 組合わせ回路
- 96 ブロック(b1)
- 97 ブロック(b2)
- 98 ブロック(b3)
- 99 基本ブロック
- 111、112 テストベクタの変化
- 113 絞り込んだ故障素子
- 121 テストベクタ
- 122 故障定義
- 123、124 LSIの論理接続
- 125、126 論理シミュレーション
- 127 比較

【図1】

【図3】

【図9】

【図2】

【図4】

【図5】

【図6】 【図7】

【図11】 NNNNNNNN 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 テストベクタ 番号 NNNNNNNNN 0000000000 123456789 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 正常 lddq 異常 lddq 異常 Iddq 異常 F (a - 1, a) 111 112 F (a, a+1) 正常 EFFERENCES FOR THE PROPERTY OF THE PERSON OF (a) 713数り込んだ故障案子

【図12】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.