

#### Vorteile:

#### Höhere Verfügbarkeit von Daten:

- Bei Ausfall eines lokalen Datenbank-Teils stehen die anderen Teile einer verteilten Datenbank noch zur Verfügung.
- Wenn Daten über mehrere Server dupliziert (repliziert) sind, stehen sie bei Ausfall eines lokalen Datenbank-Teils immer noch zur Verfügung.

Eine zentrale Datenbank ist bei Ausfall des Rechners, auf dem sie läuft, zur Gänze nicht mehr verfügbar.

#### Kürzere Zugriffszeiten auf Daten:

- Die lokalen Datenbank-Teile sind kleiner als die gesamte verteilte Datenbank, und daher laufen Anfragen und Transaktionen auf ihnen, solange sie sich auf den lokalen Datenbank-Teil beschränken, schneller.
- Daten, die nur lokal von einem Client benötigt werden, können auf einem Server in seiner (unmittelbaren) geografischen Nähe gehalten werden.

Eine zentrale Datenbank ist in der Regel groß und für viele ihrer Clients geografisch weit entfernt.

#### Nachteile:

Notwendigkeit einer Kommunikationsstruktur zwischen den einzelnen Rechnern, auf denen die Datenbank installiert ist.

Bei Zugriff zunächst Lokalisierung der gewünschten Daten notwendig.

Komplexe Ausführungsstrategien für Anfragen und Transaktionen.

Komplexere Concurrency- und Recovery-Algorithmen notwendig.

Replikate-Verwaltung notwendig, insbesondere Konsistenz-Erhaltung bei schreibenden Zugriffen.

#### **Mitarbeiter**

| <u>manr</u> | vname  | nname     | gebdat   | adresse                     | gehalt | chefnr | anr  |
|-------------|--------|-----------|----------|-----------------------------|--------|--------|------|
| 111111      | Lore   | Kaiser    | 30.01.60 | Badstr. 83, 42651 Solingen  | 100000 | Null   | Null |
| 200200      | Frank  | Schmidt   | 15.02.61 | Ilmstr. 14, 42327 Wuppertal | 80000  | 111111 | 1    |
| 246246      | Gregor | Gordon    | 15.11.80 | Seeweg 4, 51379 Opladen     | 60000  | 200200 | 1    |
| 500500      | Hanni  | Saalfeld  | 13.09.64 | Baude 17, 42349 Wuppertal   | 85000  | 111111 | 2    |
| 753753      | Birgit | Meier     | 19.03.86 | Stiege 9, 42349 Wuppertal   | 80000  | 500500 | 2    |
| 300300      | Rainer | Rilke     | 17.04.70 | Ahrweg 6, 42853 Remscheid   | 75000  | 111111 | 3    |
| 157157      | Birgit | Zweistein | 24.08.92 | Wies 29, 42855 Remscheid    | 50000  | 300300 | 3    |
| 941941      | Anne   | Droste    | 01.05.98 | Turmweg 9, 42653 Solingen   | 40000  | 500500 | 2    |
| 864864      | Daniel | Littmann  | 16.01.95 | Jostr. 23, 40822 Mettmann   | 90000  | 200200 | 1    |
| 303303      | Martin | Hallauer  | 05.11.94 | Romallee 7, 42655 Solingen  | 40000  | 500500 | 2    |

|         | ı               |                |           |      |
|---------|-----------------|----------------|-----------|------|
| Projekt | pname           | <u>pnummer</u> | pstandort | anum |
|         | Solarzellen     | 10             | Remscheid | 2    |
|         | Optimierung     | 20             | Solingen  | 1    |
|         | Speicherchip    | 30             | Wuppertal | 2    |
|         | Digitalisierung | 40             | Wuppertal | 1    |
|         | Gateways        | 50             | Solingen  | 2    |
|         | Hybridantriebe  | 60             | Wuppertal | 2    |
|         | NeueSoftware    | 70             | Wuppertal | 2    |
|         | UnitTests       | 80             | Remscheid | 3    |

| Arbeitet_an | mnr    | pnr | stunden |
|-------------|--------|-----|---------|
|             | 246246 | 10  | 30,0    |
|             | 246246 | 20  | 2,5     |
|             | 246246 | 30  | 7,5     |
|             | 753753 | 70  | 20,0    |
|             | 753753 | 80  | 20,0    |
|             | 157157 | 70  | 40,0    |
|             | 500500 | 40  | 10,0    |
|             | 941941 | 50  | 20,0    |
|             | 941941 | 60  | 10,0    |
|             | 941941 | 70  | 10,0    |
|             | 864864 | 60  | 30,0    |
|             | 864864 | 80  | 10,0    |
|             | 303303 | 10  | 5,0     |
|             | 303303 | 50  | 35,0    |

| Abteilung | aname       | anummer | leitnr |
|-----------|-------------|---------|--------|
|           | Verwaltung  | 1       | 200200 |
|           | Entwicklung | 2       | 500500 |
|           | Revision    | 3       | 300300 |

| Standorte | anr | astandort |
|-----------|-----|-----------|
|           | 1   | Solingen  |
|           | 1   | Wuppertal |
|           | 2   | Remscheid |
|           | 2   | Solingen  |
|           | 2   | Wuppertal |
|           | 3   | Remscheid |

| Angehöriger | mnum   | agname | gebdat   | verwgrad |
|-------------|--------|--------|----------|----------|
|             | 246246 | Jochen | 14.04.02 | Sohn     |
|             | 246246 | Trude  | 13.09.04 | Tochter  |
|             | 300300 | Jochen | 25.10.01 | Sohn     |
|             | 500500 | Sabine | 11.01.03 | Tochter  |
|             | 500500 | Hanni  | 13.09.05 | Tochter  |
|             | 500500 | Karl   | 24.11.99 | Sohn     |
|             | 157157 | Karl   | 06.10.12 | Sohn     |

(adaptiert von Elmasri/Navathe: Grundlagen von Datenbanksystemen) Die FIRMA-Datenbank ist an den Standorten A (Verwaltung = Abteilung 1), B (Entwicklung = Abteilung 2) und C (Revision = Abteilung 3) positioniert.

Die Verwaltung kann am Standort A auf die gesamte Datenbank lokal zugreifen (Ist das wirklich sinnvoll?).

An den Standorten B und C der Abteilungen 2 bzw. 3 werden alle Informationen über die jeweilige Abteilung lokal vorgehalten. Bzgl. der Mitarbeiter interessieren an den Abteilungsstandorten nur die Mitarbeiterinformationen Mitarbeiter-Nummer, Name und Chef (und nicht Gehalt, Geburtsdatum und Adresse). Auch die Informationen über die Verwandten von Mitarbeitern interessieren an den Abteilungsstandorten nicht.

Und natürlich interessiert an einem einzelnen Standort nicht die Nummer dieses Standorts, die kennen dort alle. Auch die weiteren Informationen über diese Abteilung (Abteilungsname, Leiter der Abteilung) sind dort bekannt.

# FIRMA Datenbank: Anforderungen an Verteilung

### Standort A (gesamte FIRMA-Datenbank, Abteilung 1): MA1, ABT1, STANDORTE1, PROJ1, ARBEITET\_AN1, ANGEHÖRIGER1

#### Standort B (Abteilung 2):

| MA2 | MANR   | VNAME  | NNAME    | CHEFNR |
|-----|--------|--------|----------|--------|
|     | 500500 | Hanni  | Saalfeld | 111111 |
|     | 753753 | Birgit | Meier    | 500500 |
|     | 941941 | Anne   | Droste   | 500500 |
|     | 303303 | Martin | Hallauer | 500500 |

| PROJ2 | PNAME          | <u>PNUMMER</u> | PSTANDORT |
|-------|----------------|----------------|-----------|
|       | Solarzellen    | 10             | Remscheid |
|       | Speicherchip   | 30             | Wuppertal |
|       | Gateways       | 50             | Solingen  |
|       | Hybridantriebe | 60             | Wuppertal |
|       | Neue Software  | 70             | Wuppertal |

|              |        |            | STAND   | ORTE2 | ASTANDORT |
|--------------|--------|------------|---------|-------|-----------|
|              |        | _          |         | _     | Remscheid |
| ARBEITET_AN2 | MNR    | <u>PNR</u> | STUNDEN |       | Solingen  |
|              | 246246 | 10         | 30,0    |       | Wupperal  |
|              | 246246 | 30         | 7,5     |       |           |
|              | 753753 | 70         | 20,0    |       |           |
|              | 753753 | 80         | 20,0    |       |           |
|              | 157157 | 70         | 40,0    |       |           |
|              | 500500 | 40         | 10,0    |       |           |
|              | 941941 | 50         | 20,0    |       |           |
|              | 941941 | 60         | 10,0    |       |           |
|              | 941941 | 70         | 10,0    |       |           |
|              | 864864 | 60         | 30,0    |       |           |

10

50

5,0

35,0

Standort C (Abteilung 3, analog zu Standort B mit Abteilung 2): MA3, STANDORTE3, PROJ3, ARBEITET\_AN3

303303

303303

#### Schema:

| Wi            | MNR | <u>PNR</u> | STUNDEN |  |  |
|---------------|-----|------------|---------|--|--|
| mit i = 1,2,9 |     |            |         |  |  |

#### Fragmentation:

W1: Mitarbeiter der Abteilung 1, Projekt der Abteilung 1
W2: Mitarbeiter der Abteilung 1, Projekt der Abteilung 2
W3: Mitarbeiter der Abteilung 1, Projekt der Abteilung 3
W4: Mitarbeiter der Abteilung 2, Projekt der Abteilung 1
W5: Mitarbeiter der Abteilung 2, Projekt der Abteilung 2
W6: Mitarbeiter der Abteilung 3, Projekt der Abteilung 3
W7: Mitarbeiter der Abteilung 3, Projekt der Abteilung 1
W8: Mitarbeiter der Abteilung 3, Projekt der Abteilung 2
W9: Mitarbeiter der Abteilung 3, Projekt der Abteilung 3

#### Allokation:

Standort A (Abteilung 1)

ARBEITET\_AN1 = ARBEITET\_AN = W1 ∪ ... ∪ W9

Standort B (Abteilung 2):

ARBEITET\_AN2 = W2∪ W4 ∪ W5 ∪ W6 ∪ W8

Standort C (Abteilung 3): ARBEITET\_AN3 = W3  $\cup$  W6  $\cup$  W7  $\cup$  W8  $\cup$  W9

#### Replikation:

W6 und W8 sind zwischen den Standorten B und C repliziert. Weitere Replikationen existieren zwischen Standort A einerseits und den Standorten B und C andererseits.

# Relation ARBEITET\_AN: Fragmentierung, Allokation, Replikation VS 5.6

Standort A (gesamte Datenbank, Abteilung 1, also für jede

Tabelle: Attribute-Liste: \*, Guard Condition: true):

Tabellen: MA1, ABT1, ABT1\_STANDORTE, PROJ1,

ARBEITET\_AN1, ANGEHÖRIGER1

#### Standort B (Abteilung 2):

**MA2**:

Attribute-Liste: MANR, VNAME, NNAME, CHEFNR

Guard Condition: ANR = 2

STANDORTE2:

Attribute-Liste: ASTANDORT

Guard Condition: ANR = 2

PROJ2:

Attribute-Liste: PNAME, PNUMMER, PSTANDORT

Guard Condition: ANUM = 2

ARBEITET\_AN2:

Attribute-Liste: \*

Guard Condition: MNR IN  $(\pi_{MANR}(MA2))$ 

OR PNR IN( $\pi_{PNIIMMER}$ (PROJ2))

#### Standort C (analog für Abteilung 3)

## Fragmentation, Allokation von FIRMA: Attribute-Listen und Guard Conditions VS 5.7

<sup>\*:</sup> alle Attribute der zugrunde liegenden Relation

#### MITARBEITER an Standort X:

MANR VNAME NNAME GEBDAT ...

... | ADRESSE | GEHALT | CHEFNR | ANR

10000 Tupel von je 10+10+10+10+35+10+10+5 = 100 Bytes ( $\Rightarrow$  1 000 000 Bytes).

#### ABTEILUNG an Standort Y:

ANAME ANUMMER LEITNR

10 Tupel von je 10+5+10 = 25 Bytes ( $\Rightarrow$  250 Bytes).



Anfrage an Standort Z (Name und Abteilungsname aller Mitarbeiter):

 $\pi$  VNAME, NNAME, ANAME (MITARBEITER |X| ANR=ANUMMER ABTEILUNG).

#### RESULTAT

| VNAME | NNAME | ANAME |
|-------|-------|-------|
|-------|-------|-------|

10000 Tupel von je 10+10+10 = 30 Bytes ( $\Rightarrow$  300 000 Bytes).

#### Strategie 1:

Übertragung von MITARBEITER und ABTEILUNG nach Standort Zund dortige Ausführung des Joins.

Kosten: Übertragung von 1 000 000 + 250 = 1 000 250 Bytes.

#### Strategie 2:

Übertragung von MITARBEITER nach Standort Y, dortige Ausführung des Joins und Übertragung des Resultats nach Standort Z.

Kosten: Übertragung von 1 000 000 + 300 000 = 1 300 000 Bytes.

#### **Strategie 3:**

Übertragung von ABTEILUNG nach Standort X, dortige Ausführung des Joins und Übertragung des Resultats nach Standort Z.

Kosten: Übertragung von 250 + 300 000 = 300 250 Bytes.

# Kommunikationskosten bei verteilten DB-Abfragen I

#### MITARBEITER an Standort X:

MANR VNAME NNAME GEBDAT ...

... | ADRESSE | GEHALT | CHEFNR | ANR

10000 Tupel von je 10+10+10+10+35+10+10+5 = 100 Bytes ( $\Rightarrow$  1 000 000 Bytes).

#### ABTEILUNG an Standort Y:

ANAME ANUMMER LEITNR

10 Tupel von je 10+5+10 = 25 Bytes ( $\Rightarrow$  250 Bytes).



#### Anfrage an Standort Z (Name und Abteilungsname aller Mitarbeiter):

 $\pi_{\text{VNAME. NNAME. ANAME}}$  (MITARBEITER |X| ANR=ANUMMER ABTEILUNG).

#### RESULTAT

| NNAME | ANAME |
|-------|-------|
|       |       |

10000 Tupel von je 10+10+10 = 30 Bytes ( $\Rightarrow$  300 000 Bytes).

#### Strategie 1\* (Optimierung von Strategie 1):

Übertragung von  $\pi_{VNAME,NNAME,ANR}$  (MITARBEITER) und

 $\pi_{\text{ANAME,ANUMMER}}$  (ABTEILÚNG) nach Standort Z und dortige Ausführung des Joins.

Kosten: Übertragung von 250 000 + 150 = 250 150 Bytes.

#### Strategie 2\* (Optimierung von Strategie 2):

Übertragung von  $\pi_{\text{VNAME,NNAME,ANR}}$  (MITARBEITER) nach Standort Y, dortige Ausführung des Joins und Übertragung des Resultats nach Standort Z.

Kosten: Übertragung von 250 000 + 300 000 = 550 000 Bytes.

#### Strategie 3\* (Optimierung von Strategie 3):

Übertragung von  $\pi_{\text{ANAME,ANUMMER}}$  (ABTEILUNG) nach Standort X, dortige Ausführung des Joins und Übertragung des Resultats nach Standort Z.

Kosten: Übertragung von 150 + 300 000 = 300 150 Bytes.

# Kommunikationskosten bei verteilten DB-Abfragen II



Einfügen am Standort B (Abteilung 2) durch einen Benutzer:

#### **INSERT INTO MITARBEITER VALUES**

(898898', 'Tamara', 'Sonderburg', '17.08.99', Erbsenweg 13, 51379 Opladen', 21000, '500500', 2)



an Standort A (Abteilung 1):

**INSERT INTO MA1 VALUES** 

(898898', 'Tamara', 'Sonderburg', '17.08.99', Erbsenweg 13, 51379 Opladen', 21000, '500500', 2)

an Standort B (Abteilung 2):

INSERT INTO MA2 VALUES (898898', Tamara', Sonderburg', 500500')

an Standort C (Abteilung 3): kein INSERT



Anfrage an Standort B (Abteilung 2):

Namen und Stunden pro Woche für jeden Mitarbeiter, der an einem Projekt der Abteilung 2 mitarbeitet.

SQL-Query an Standort B (Abteilung 2):

**VNAME, NNAME, STUNDEN** SELECT

MITARBEITER, ARBEITET AN, PROJEKT FROM

WHERE MANR=MNR AND PNR=PNUMMER AND ANUM=2

Relationale Algebra an Standorten A und B

Ausführung an

T1  $\leftarrow \pi_{MNR}$  (PROJ2 |x| PNUMMER=PNR ARBEITET\_AN2)

Standort B

(T1 wird an Standort A geschickt)

Standort A

T2  $\leftarrow \pi_{MNR, VNAME,NNAME}$  (T1 |x|  $_{MNR=MANR}$  MA1)

(T2 wird an Standort B geschickt)

 $RS \leftarrow \pi_{VNAME,NNAME,STUNDEN}$  (T2 |x|  $_{MNR=MNR}$  ARBEITET\_AN2)

Standort B

Beispiel aus Elmasri/Navathe: Grundlagen von Datenbanksystemen

T1: Nummern der Mitarbeiter, die an Projekten der Abteilung 2 arbeiten (diese Mitarbeiter können auch anderen Abteilungen angehören, deren Namen müssen an Standort A erfragt werden)

T2: Nummern und Namen dieser Mitarbeiter

**RS: Namen und Stunden pro Woche dieser Mitarbeiter** 



verteiltes System mit n Standorten

Ein zentraler Lock Manager verwaltet alle Sperren im verteilten System an einem einzigen Standort.

# Managerkommunikation bei zentralisiertem 2PL (keine Replikate vorhanden) vs 5.12



verteiltes System mit n Standorten

Ein zentraler Lock Manager verwaltet alle Sperren im verteilten System an einem einzigen Standort.

# Managerkommunikation bei zentralisiertem 2PL (Replikate vorhanden) vs 5.13



asynchron: auf Veranlassung durch den Transaktions-Koordinator aktualisiert der Replication Manager alle Slave Copies

- (\*) Für jede pCopy im verteilten System ist ein bestimmter Lock Manager zuständig.
- (\*\*) Die pCopy ist dem Transaktionskoordinator, jedoch nicht den Transaktionsmanagern bekannt.

# Managerkommunikation bei primary copy 2PL



verteiltes System mit n Standorten

Auf jeder Komponente des verteilten Systems arbeitet ein lokaler Lock-Manager mit Verantwortung für die auf dieser Komponente gespeicherten Datenbankelemente.

## Managerkommunikation bei verteiltem 2PL



zeitliche Reihenfolge: Prepare to Commit Ready to Commit Commit Ack

Prepare to Commit Poting Phase

Commit Ack

Prepare to Commit Poting Phase

2PC-Protokoll (positiver Fall)





Client: Anwender der verteilten Transaktion

Resource: Participant (Worker), lokaler Transaktionsmanager

Current +

**Coordinator: Transaktions-Koordinator** 

Transaktionsabschluss durch 2PC: Voting-Phase: Vote prepare();

Decision-Phase: void commit()