Test sur les différentes instances

Configuration

Paramètres:

• nombre de neurones : 100

• profondeur:1

• nombre de epoch par default : 5000

• loss fonction : categorical crossentropy :

$$L_i = -\sum_j \hat{y}_{i,j} \log(y_{i,j})$$

 \hat{y} sont les prédictions, y sont les varies valeurs, i désigne le point de données et j désigne la classe.

• adam : Cet algorithme est un moyen de calculer le taux d'apprentissage adaptatif pour chaque paramètre.

Définition:

• Ctime: Completion time

• loss : Denière valeur de loss fonction

• acc: précision finale

• winAcc: précision finale pour la fenêtre

• outWinAcc : précision finale pour hors de la fenêtre

Tests

Test sénarios	Résultats
1 instance 3 données	loss=0.1798 winAcc=0.3333 outWinAcc=0.0000e+00
1 instance 4 données	loss=0.1714 winAcc=0.5962 outWinAcc=0.2091
2 instances 4 données	loss=0.1685 winAcc=0.8885 outWinAcc=0.4781
2 instances 6 données	loss=0.2294 winAcc=0.3646 outWinAcc=0.2039
2 instances 8 données	loss=0.1929 winAcc=0.4675 outWinAcc=0.2400
3 instances 3 données	loss= 4.5206e-05 winAcc= 1.0000 outWinAcc= 0.0000e+00
3 instances 6 données	loss=0.1844 winAcc=0.5926 outWinAcc=0.4438
3 instances 9 données	loss=0.1721 winAcc=0.5926 outWinAcc=0.2904

1. 2 instances 4 données

2. 1 instance 3 données

model OutWinAcc

3. 2 instances 6 données

4. 1 instance 4 données

5. 2 instance 8 données

6. 3 instance 3 données

model OutWinAcc

7. 3 instance 6 données

model WinAcc

model OutWinAcc

8. 3 instance 9 données

epoch

