BTS SIO - Exercices Calcul Matriciel

Exercice 1:

Se repérer dans une matrice

a) On considère les matrices

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & -3 \\ 0 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 5 & 8 \\ 3 & -1 & 4 \end{pmatrix}$$

On note $a_{i,j}$ (resp. $b_{i,j},\,c_{i,j}$) le terme général de la matrice A (resp. $B,\,C$).

i. Quelles sont les tailles des trois matrices ?

ii. Donner les valeurs de $a_{1,2}$, $a_{2,1}$, $b_{3,1}$, $b_{1,3}$, $c_{2,1}$, et $c_{1,2}$.

iii. Remplacer les points des relations ci-dessous par les indices convenables (trouver toutes les bonnes réponses) :

$$b_{.,.} = 1,$$
 $a_{1,.} = 1,$ $c_{1,.} + c_{.,1} = 4$

b) Écrire la matrice à 2 lignes et 3 colonnes définie par la formule : $a_{i,j}=i^2+j^2$.

Exercice 2:

Calculer les matrices suivantes :

$$A = 3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$B = 2 \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} - 3 \begin{pmatrix} 5 & 4 \\ 2 & -1 \end{pmatrix}$$

$$C = 2 \begin{pmatrix} 0 & 1 & 3 \\ 3 & 0 & 1 \\ 4 & 1 & 0 \end{pmatrix} - 2 \begin{pmatrix} -1 & 2 & 1 \\ 0 & 0 & 5 \\ 1 & 5 & 0 \end{pmatrix}$$

Exercice 3:

On pose
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 0 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -3 & 1 \\ 1 & -3 \\ 1 & 2 \end{pmatrix}$

Calculer d'abord à la main, puis en vérifiant à la calculatrice : A + B; 2A - 3B; 3A - 2B

Exercice 4:

1. $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ 1 & 5 & -3 \end{pmatrix}$

2. $\left(\begin{array}{ccc} 1 & -1 & 2 \end{array}\right) \times \left(\begin{array}{ccc} 2 & 5 \\ 0 & 1 \\ 0 & -1 \end{array}\right)$

3. $\begin{pmatrix} -1 & 0 & 2 \\ 1 & 5 & -3 \end{pmatrix} \times \begin{pmatrix} 2 & 5 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$

4. $\begin{pmatrix} 1 & 2 & 4 \\ -1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} -1 & 1 & 3 \\ 2 & 0 & 1 \\ 0 & 4 & -1 \end{pmatrix}$

Exercice 5:

Produit de matrices

a) Soit les matrices $M = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}$, $u = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$. Calculer MB, BM, Mu, uM et uv.

b) Calculer les produits matriciels suivants :

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -2 \\ 3 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 4 \\ 2 & -5 & 2 \\ -3 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 & 1 \\ 3 & 0 & 6 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & -1 \\ -2 & 1 & 7 \\ 1 & 0 & 1 \end{pmatrix}$$

Exercice 6:

On pose
$$M = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 2 \\ 3 & -14 \\ 1 & -1 \end{pmatrix}$; $X = \begin{pmatrix} 1 & 2 \end{pmatrix}$; $U = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

Calculer d'abord à la main, puis en vérifiant à la calculatrice : $X \times M$; $M \times U$; $M \times B$; $B \times M$

Exercice 7:

On pose
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}$

Calculer à la main : A^2 ; B^2 ; $A \times B$; $B \times A$; A + B

Saisir A et B dans la calculatrice, vérifiez les résultats précédents puis déterminer avec la calculatrice :

$$A^{2} + 2 \cdot A \times B + B^{2}$$
; $A^{2} + A \times B + B \times A + B^{2}$; $(A + B)^{2}$

Une remarque?

Exercice 8:

On pose
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} -3 & -6 \\ 1 & 2 \end{pmatrix}$.

Calculer $A \times B$ et $B \times A$.

Exercice 9:

Calculer

$$\begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$$
 et
$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

Qu'observe-t'on?

Exercice 10:

Une entreprise assure la production de deux types de calculatrices C_1 et C_2 en quantités (hebdomadaires) respectives x et y.

Le coût des éléments installés et le nombre d'heures de travail sont donnés pour chaque calculatrice dans le tableau suivant :

	C_1	C ₂
Coût des éléments (en €)	6	8
Nombre d'heures de travail	1	1,5

Un programme de production hebdomadaire peut se représenter par la matrice $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

Cette production occasionne un coût c et un nombre t d'heures de travail. Ces deux éléments sont donnés dans la matrice $Y = \begin{pmatrix} c \\ t \end{pmatrix}$. Enfin on appelle A la matrice issue

du tableau :
$$A = \begin{pmatrix} 6 & 8 \\ 1 & 1,5 \end{pmatrix}$$
.

Partie A

- Écrire une égalité matricielle reliant A, X et Y qui traduit la production de l'entreprise.
- 2. Durant une semaine, l'entreprise a produit 200 calculatrices C₁ et 800 calculatrices C₂. Par un calcul matriciel, déterminer le coût total et le nombre d'heures de travail pour la production de cette semaine.

Partie B

On note *B* la matrice :
$$B = \begin{pmatrix} 1, 5 & -8 \\ -1 & 6 \end{pmatrix}$$

- 1. Effectuer le produit $B \times A$.
- 2. Montrer en transformant l'égalité $Y = A \times X$ que $B \times Y = X$.
- Durant une autre semaine, l'entreprise fait face à un coût total de 8 400 € et 1 450 heures de travail.

Déterminer par le calcul matriciel le nombre de calculatrices de chaque type fabriquées au cours de cette semaine.

Exercice 11:

On donne les matrices suivantes (α et β désignant des réels) :

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 1 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ \alpha & 0 & 2 & 1 \\ \beta & 0 & 1 & 0 \end{pmatrix}$$

1. On admet que BC =
$$\begin{pmatrix} \dots & 0 & 1 & 1 \\ \dots & 1 & 0 & 1 \\ \dots & 0 & 1 & 0 \\ \dots & 0 & 1 & 0 \end{pmatrix}.$$

Calculer les coefficients de la première colonne, en fonction de α et β .

- 2. Déterminer α et β tels que B C = A.
- Calculer A². Que remarque-t-on vis-à-vis de la matrice C?

Exercice 12:

Une entreprise fabrique des appareils de trois types différents : L, C et V. Pour un appareil de type L, on a besoin de 10kg d'acier, 2kg de peinture et 10 heures de travail. Pour un appareil de type C, il faut 4kg d'acier, 1kg de peinture et 6 heures de travail. Pour un appareil de type V, il faut 10kg d'acier, 1kg de peinture et 12 heures de travail.

On appelle respectivement x, y et z les quantités d'appareils de types L, C et V fabriqués, et a, p et t les quantités d'acier (en kg), de peinture (en kg) et de travail (en heures) nécessaires pour leur fabrication.

1. On considère les matrices:

$$M = \begin{pmatrix} 10 & 4 & 10 \\ 2 & 1 & 1 \\ 10 & 6 & 12 \end{pmatrix} , \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} , \quad Y = \begin{pmatrix} a \\ p \\ t \end{pmatrix}$$

Montrer que Y = MX.

2. On donne la matrice

$$M' = \begin{array}{ccc} \frac{1}{12} \begin{pmatrix} 3 & 6 & -3 \\ -7 & 10 & 5 \\ 1 & -10 & 1 \end{pmatrix} ,$$

- a. Calculer le produit *M'M*
- b. En déduire la matrice *X* en fonction des matrices *M*' et *Y*.
- 3. En déduire les quantités d'appareils de chaque type L, C et V fabriqués en un mois sachant que 4200kg d'acier, 800kg de peinture et 5000 heures de travail ont été nécessaires.