

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT

PLANO DE ENSINO

DEPARTAMENTO: Ciência da Computação

DISCIPLINA: Projeto de Programas **SIGLA:** PPR0001

CARGA HORÁRIA TOTAL: 36 h/aula TEORIA: 18 h/aula PRÁTICA: 18 h/aula

CURSO(S): Bacharelado em Ciência da Computação

SEMESTRE/ANO: 1/2017 PRÉ-REQUISITOS: LPG0001

OBJETIVO GERAL DA DISCIPLINA: Apresentar aos alunos os métodos para projeto e modularização de programas.

EMENTA: Modularização. Coesão e acoplamento. Métodos baseados em dados. Métodos baseados no tempo. Métodos baseados em funções. Métodos baseados em objetos.

OBJETIVOS ESPECÍFICOS/DISCIPLINA:

- Entendimento dos aspectos fundamentais do projeto de programas
- Compreensão dos diferentes tipos de arquiteturas de sistemas
- Domínio das principais técnicas para projeto e modularização de sistemas
- Compreensão de padrões de projeto

CRONOGRAMA DE ATIVIDADES:

CRONOGRAMA DE ATIVIDADES.			
C.H.	CONTEÚDOS PROGRAMATICOS	AVALIAÇÃO	
4 h/a	Plano de Ensino e Método de Avaliação	Prova	
	Fundamentos de projeto de programas	Trabalho	
	1.1. Introdução e posicionamento		
	1.2. Processo de Software		
	1.3. Aspectos fundamentais do projeto de programas		
4 h/a	2. Projeto de Arquitetura	Prova	
	2.1 Organização do Sistema	Trabalho	
	2.2 Estilos de decomposição modular		
	2.3 Modelos de controle		
6 h/a	3. Projeto Orientado a Fluxo de Dados	Prova	
	3.1 Conceitos Básicos	Trabalho	
	3.2 Diagrama de Fluxo de Dados		
10 h/a	4. Projeto Orientado a Objetos	Prova	
	4.1 Conceitos preliminares: Classes e Objetos	Trabalho	
	4.2 Definição de Classes, Atributos e Métodos		
	4.3 Diagramas UML (classes, Componentes e		
	Implantação)		

4 h/a	5. Métodos de Projeto Orientado a Dados	Prova
	5.1 Tipos de Modelos de dados	Trabalho
	5.2 Conceitos básicos: Entidades, relações e atributos	
	5.3 Diagramas Entidade-Relacionamento	
2 h/a	Prova de Conhecimentos	
4 h/a	6. Desenvolvimento de Software	Trabalho
2 h/a	Apresentação de projeto e software	

METODOLOGIA PROPOSTA: Aulas expositivas com atividades práticas para fixação. Desenvolvimento de um trabalho completo envolvendo projeto e implementação de um sistema.

AVALIAÇÃO:

Os alunos serão avaliados através das seguintes atividades e pesos:

- * Exercícios: [14%]
 - Fundamentos e Introdução [2%]
 - Requisitos [2%]
 - Projeto de dados [2%]
 - Diagrama de fluxo de dados [2%]
 - Projeto arquitetural básico [2%]
 - Projeto em camadas [2%]
 - Projeto de interface [2%]
- *Pesquisa: [8%]
 - Relatório sobre UML [8%]
- *Trabalho Prático: [58%]
 - Primeira entrega (em dia) requisitos e diagramas [5%]
 - Entrega do projeto final [20%]
 - Plano de implementação e testes [2%]
 - Anotações da execução da implementação e teste [2%]
 - Entrega da implementação e apresentação [20%]
 - Avaliação do projeto e implementação da outra equipe [3%]
 - Nota da avaliação (por outra equipe) do projeto [3%]
 - Nota da avaliação (por outra equipe) da implementação [3%]
- * Prova [20%]

BIBLIOGRAFIA:

Básica

BEZERRA, E. Princípios de Análise e Projetos de Sistemas com UML. Rio de Janeiro: Campus, 2003.

PRESSMAN, R.S. Engenharia de Software. São Paulo: Makron Books, 2002.

SOMMERVILLE, I. Engenharia de Software. São Paulo: Addison Wesley, 2003.

Complementar

WARNIER, J. Lógica de Construção de Programas. Rio de Janeiro: Campus, 1984.

JACKSON, M. Princípios de Projeto de Programas. Rio de Janeiro: Campus, 1988.

PAGE-JONES, M. Projeto Estruturado de Sistemas. São Paulo: McGraw-Hill, 1988.