Introduction to Analysis Homework 7

October, 24, 2024

- 1. (a) Let $\mathbf{x} \in \mathbb{R}^k$. Show that for any r > 0, $B_r(\mathbf{x})$ is arcwise connected.
 - (b) Let $S \subset \mathbb{R}^k$. Show that if S is open and connected, then S is arcwise connected.
- 2. Let $S \subset \mathbb{R}^k$. Show that if S is connected and $S \subset T \subset \overline{S}$, then T is connected.
- 3. Let M be a metric space. Show that M is disconnected if and only if $\exists E \subsetneq M$ and $E \neq \emptyset$ such that E is both open and closed.
- 4. (a) Show that the image of a Cauchy sequence under a uniformly continuous function is a Cauchy sequence.
 - (b) Let $f(x) = \sin(\frac{1}{x})$ for x > 0. Prove or disprove that f is uniformly continuous.