In this lecture, we give a brief introduction to stable homotopy theory and spectra.

From this lecture on, we use the notation

$$Spc := Grpd_{\infty}$$
.

1. Stable homotopy groups

1.1. Let Top, be the ordinary category of pointed spaces. There is an adjunction

$$\Sigma : \mathsf{Top}_* \Longrightarrow \mathsf{Top}_* : \Omega,$$

where

• The left adjoint Σ is the (based) suspension functor given by

$$\Sigma X := \mathbb{S}^1 \wedge X := (\mathbb{S}^1 \times X) / ((\{*\} \times X) \cup (\mathbb{S}^1 \times \{*\})).$$

• The right adjoint Ω is the **loop functor** given by

$$\Omega Y := \underline{\mathsf{Hom}}_{\mathsf{Top}_*}(\mathbb{S}^1, Y),$$

where the RHS is equipped with the compact-open topology.

1.2. In fact, this adjunction is compatible with Quillen's classical model structure¹. Taking derived functors, we obtain an adjunction

$$\mathbb{L}\Sigma:\mathsf{hTop}_* \ensuremath{\longleftarrow} \mathsf{hTop}_*: \mathbb{R}\Omega.$$

Since pointed CW complexes are bifibrant, we have

$$[\Sigma X, Y] \simeq [X, \Omega Y]$$

where [-,-] is the set of homotopy classes of continuous maps.

Exercise 1.3. Show that $\Sigma \mathbb{S}^n \simeq \mathbb{S}^{n+1}$.

Exercise 1.4. For $Y \in \mathsf{Top}_*$, there is a canonical isomorphism $\pi_{n+1}(Y) \simeq \pi_n(\Omega Y)$ where the group structure on the RHS is induced by the concaternation map $\Omega Y \times \Omega Y \to \Omega Y$.

Date: Nov. 8, 2024.

¹For this to be true, we have to replace Top by the category of *compactly generated topological spaces* (to make sure it is Cartesian closed). Any CW complex is compactly generated.

1.5. For pointed CW complexes X and Y, define

$$[X,Y]_{s} \coloneqq \operatorname{colim}_{k} [\Sigma^{k} X, \Sigma^{k} Y].$$

Exercise 1.6. Show that $[X,Y]_s$ is naturally an abelian group. Hint:

$$[\Sigma^{k+2}X, \Sigma^{k+2}Y] \simeq [\Sigma^k X, \Omega^2 \Sigma^{k+2}Y].$$

Definition 1.7. Let Y be a pointed CW complex, the n-th stable homotopy group of Y is defined to be

$$\pi_n^{\mathsf{s}}(Y) \coloneqq \operatorname{colim}_k \pi_{n+k}(\Sigma^k Y).$$

Example 1.8. The group $\pi_n(\mathbb{S}) := \pi_n^{\mathsf{s}}(\mathbb{S}^0)$ is called the *n*-th stable homotopy group of the sphere (spectum). Up to today, people have calculated them for $n \leq 90$.

1.9. **Stable homotopy theory** studies the stable homotopy groups of spaces, and more generally, the limit behavior of various homotopy invaraints under the suspension functor Σ^k , $k \to \infty$. In constrast, the usual homotopy theory is referred as the **unstable homotopy theory**. Our guiding philosephy is

Slogan 1.10. Stable homotopy theory is the linearization of unstable homotopy theory:

stable homotopy theory = linear algebra in homotopy theory.

2. Spectra

2.1. In previous lectures, we have explained the following philosephy. In order to capture all the homotopy invariant information in Top, we need to word with the ∞ -category Spc of spaces rather than its homotopy 1-category hSpc \simeq hTop. Similarly, the homotopy invariant information of *pointed* spaces should be captured by the coslice ∞ -category

$$Spc_* := Spc_{\{*\}/}.$$

It follows that the "correct" playground for *stable* homotopy theory should be an ∞ -categorical *stablization* or *linearization* Spc_* . For instance, we hope for (good) objects $X,Y \in \mathsf{Spc}_*$, the corresponding mapping space in this stablized ∞ -category is given by

$$\operatorname{colim}_{k}\operatorname{\mathsf{Maps}}_{\operatorname{\mathsf{Spc}}_*}(\Sigma^kX,\Sigma^kY).$$

Let us first define the ∞ -categorical version of Σ and Ω .

Definition 2.2. We say an ∞ -category C is **pointed** if it admits an object $0 \in C$ which is both initial and final. We call it the **zero object** of C.

Exercise 2.3. Let C be an ∞ -category that admits a final object *, show that $C_{*/}$ is pointed. In particular, Spc_* is pointed.

Definition 2.4. Let C be a pointed ∞ -category that admits finite colimits. The suspension functor on $\mathbb C$ is defined as

$$\Sigma:\mathsf{C}\to\mathsf{C},\;X\mapsto 0\mathrel{\mathop\sqcup}_X 0.$$

Definition 2.5. Let C be an ∞ -category that admits finite limits. The **loop functor** on C is defined as

$$\Omega:\mathsf{C}\to\mathsf{C},\;Y\mapsto *\underset{Y}{\times}*,$$

where $* \in C$ is the final object.

3

Exercise 2.6. Let C be a pointed ∞ -category that admits both finite limits and colimits. Construct an adjunction:

$$\Sigma : \mathsf{C} \longrightarrow \mathsf{C} : \Omega.$$

Exercise 2.7. For $C := \mathsf{Spc}_*$, the above adjunction induces an adjunction for homotopy categories:

$$h\Sigma : hSpc_* \longrightarrow hSpc_* : h\Omega.$$

Show that this adjunction can be identified with (1.1) via the equivalence $\mathsf{hSpc}_* \simeq \mathsf{hTop}_*$.

2.8. The construction

$$\mathsf{Maps}(-,-) \mapsto \mathsf{colim}_k \, \mathsf{Maps}(\Sigma^k(-),\Sigma^k(-)).$$

can be viewed as formally inverting the functor Σ .

Exercise 2.9. Let A be a commutative ring and $f \in A$ be an element. Show that

$$A_f \simeq \operatorname{colim} \left[A \xrightarrow{f} A \xrightarrow{f} \cdots \right]$$

2.10. Let C be a pointed ∞ -category that admits both finite limits and colimits. Motivated by the above construction, we would like to define the stablization of C to be

$$\operatorname{colim} \left[\mathsf{C} \xrightarrow{\Sigma} \mathsf{C} \xrightarrow{\Sigma} \cdots \right].$$

However, we need to be careful about where this colimit is taken inside. For instance, when C is presentable, such as Spc_* , we would like to obtain a presentable ∞ -category.

Exercise 2.11. Let C be a pointed presentable ∞ -category. Show that the colimit

$$\mathsf{colim} \left[\mathsf{C} \xrightarrow{\Sigma} \mathsf{C} \xrightarrow{\Sigma} \cdots \right] \in \mathsf{Pr}^\mathsf{L}$$

corresponds to the limit

$$\lim \left[\mathsf{C} \overset{\Omega}{\leftarrow} \mathsf{C} \overset{\Omega}{\leftarrow} \cdots \right] \in \mathsf{Pr}^\mathsf{R}$$

$$via \ \mathsf{Pr}^{\mathsf{L}} \simeq (\mathsf{Pr}^{\mathsf{R}})^{\mathsf{op}}.$$

2.12. Recall limits in Pr^R can be calculated as limits in $\widehat{\mathsf{Cat}}_\infty$. This motivates the following definition.

Definition 2.13. *Let* C *be an* ∞-*category that admits finite limits. Define*

$$\mathsf{Sptr}(\mathsf{C}) \coloneqq \mathsf{lim}\left[\mathsf{C} \xleftarrow{\Omega} \mathsf{C} \xleftarrow{\Omega} \cdots\right]$$

and call it the ∞ -category of **spectum objects** of C. We denote the evaluating morphism for the (k+1)-term by

$$\Omega^{\infty-k}: \operatorname{Sptr}(\mathsf{C}) \to \mathsf{C}.$$

Example 2.14. For $C := Spc_*$, write

$$Sptr := Sptr(Spc_{\star})$$

and call it the ∞ -category of spectra.

Exercise 2.15. Show that $\Omega: \mathsf{C} \to \mathsf{C}$ preserves finite limits. Deduce that $\mathsf{Sptr}(\mathsf{C})$ admits finite limits and the functors $\Omega^{\infty-k}$ preserve and detect them.

Exercise 2.16. Show that Sptr(C) is pointed.

Exercise 2.17. Let $\Omega_{\mathsf{Sptr}(\mathsf{C})}$ be the loop functor on $\mathsf{Sptr}(\mathsf{C})$. Show that

$$\Omega^{\infty-k} \circ \Omega_{\mathsf{Sptr}(\mathsf{C})}(E) \simeq \Omega^{\infty-k+1}(E).$$

Deduce that $\Omega_{\mathsf{Sptr}(\mathsf{C})}$ is an equivalence. Hint:

$$\begin{array}{cccc}
C & \stackrel{\Omega}{\longleftarrow} & C & \stackrel{\Omega}{\longleftarrow} & \cdots \\
\downarrow^{\Omega} & & \downarrow^{\Omega} & & \\
C & \stackrel{\Omega}{\longleftarrow} & C & \stackrel{\Omega}{\longleftarrow} & \cdots
\end{array}$$

Exercise 2.18. Show that

$$\Omega^{\infty-k}: \operatorname{Sptr}(\operatorname{Sptr}(\mathsf{C})) \to \operatorname{Sptr}(\mathsf{C}).$$

is an equivalence.

Remark 2.19. In the next lecture, we will define and study stable ∞ -categories, which are exactly those pointed ∞ -category admitting finite limits such that Ω is an equivalence.

Exercise 2.20. Show that hSptr(C) is an additive category. Hint:

$$\mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(E,E') \simeq \Omega^2 \mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(E,\Sigma^2 E').$$

- 3. Spectra and infinite loop spaces
- 3.1. Informally speaking, knowing an object $X \in \mathsf{Sptr}(\mathsf{C})$ is equivalent to knowing the following datum
 - For any $n \ge 0$, an object $X_n \in \mathsf{C}$;
 - For any $n \ge 0$, an equivalence $X_n \simeq \Omega X_{n+1}$.

Here we take X_n to be $\Omega^{\infty-k}X$.

Note that X_{n+1} , equipped with the equivalence $X_n \simeq \Omega X_{n+1}$, gives a **delooping** of X_n . As a consequence, we obtain the following slogan.

Slogan 3.2. A spectrum is a space **equipped** with infinite deloopings.

Warning 3.3. For a space $Y \in \operatorname{Spc}_*$, its delooping is not unique even up to homotopy. Hence in above, it is crucial to remember all the deloopings.

3.4. Note that a loop space ΩZ is equipped with a homotopy coherent multiplicative structure, which makes $\pi_0(\Omega Z)$ an abstract group. In future lectures, we will rigorously define such a structure, and call it a *grouplike* \mathbb{E}_1 -structure. Moreover, given a grouplike \mathbb{E}_1 -space Y, there is an essentially unique connected delooping of Y, denoted by $\mathbb{B}Y$, such that $Y \simeq \Omega \mathbb{B}Y$ is compatible with the grouplike \mathbb{E}_1 -structures.

Moreover, we will generalize the above to iterated loop spaces $\Omega^n Z$ and grouplike \mathbb{E}_n -spaces. In fact, this even works for $n = \infty$, and we will explain the following slogan.

Slogan 3.5. A connective spectrum² is a grouplike \mathbb{E}_{∞} -space.

²We say a spectrum $E \in Sptr$ is **connective** if $\pi_n E \simeq 0$ for n < 0. See Definition 4.7 below.

4. Spaces vs. spectra

4.1. In this section, we focus on the case when C is pointed and presentable, such as $C := \mathsf{Spc}_*$. By definition, we have a colimit diagram

$$\left[\mathsf{C} \xrightarrow{\Sigma} \mathsf{C} \xrightarrow{\Sigma} \cdots\right] \to \mathsf{Sptr}(\mathsf{C}) \in \mathsf{Pr}^\mathsf{L}$$

and a limit diagram

$$\left[\mathsf{C} \overset{\Omega}{\leftarrow} \mathsf{C} \overset{\Omega}{\leftarrow} \cdots\right] \leftarrow \mathsf{Sptr}(\mathsf{C}) \in \mathsf{Pr}^\mathsf{R}.$$

It follows that we have an adjunction

$$\Sigma^{\infty-k}: \mathsf{C} \Longrightarrow \mathsf{Sptr}(\mathsf{C}): \Omega^{\infty-k}$$

with $\Sigma^{\infty-k}$ given by the evaluating morphism for the (k+1)-term.

Example 4.2. The object

$$\mathbb{S} := \Sigma^{\infty} \mathbb{S}^0 \in \mathsf{Sptr}$$

is called the **sphere spectrum**. It plays the role of \mathbb{Z} in homotopical algebra.

Example 4.3. Let A be an abstract abelian group. For each n, choose an Eilenburg–Maclane space K(A,n), which is characterized up to homotopy by $\pi_n K(A,n) \cong A$ and $\pi_m K(A,n) \cong 0$ for $m \neq n$. We can also choose weak homotopy equivalences

$$K(A, n) \xrightarrow{\sim} \Omega K(A, n+1).$$

These choices give an object $\mathbb{H}A \in \mathsf{Sptr}$, which is well-defined up to homotopy. We call it an **Eilenburg-Maclane spectrum** for A.

Remark 4.4. In future lectures, we will characterize $\mathbb{H}A$ up to a contractible space of choices.

Exercise 4.5. Let $E \in Sptr(C)$, show that

$$\operatorname{colim}_{k} \Sigma^{\infty - k} \Omega^{\infty - k} E \xrightarrow{\cong} E.$$

Exercise 4.6. Suppose C is compactly generated, show that for any $X \in C$ and $j \ge 0$,

$$\operatorname{colim}_{k > j} \Omega^{k-j} \Sigma^k X \xrightarrow{\simeq} \Omega^{\infty-j} \Sigma^{\infty} X.$$

Deduce that if $X \in C$ is compact, then for any $Y \in C$, we have

$$\mathsf{Maps}_{\mathsf{Sptr}(\mathsf{C})}(\Sigma^{\infty}X,\Sigma^{\infty}Y)\simeq \mathsf{colim}_{h}\,\mathsf{Maps}_{\mathsf{C}}(\Sigma^{k}X,\Sigma^{k}Y).$$

Definition 4.7. Let $E \in \mathsf{Sptr}$ be a spectrum. For any $n \in \mathbb{Z}$, we define the n-th homotopy group of E to be

$$\pi_n(E) := \pi_0 \mathsf{Maps}(\mathbb{S}, \Omega^n E),$$

where $\Omega^n := \Sigma^{-n}$ for n < 0.

Remark 4.8. $\pi_n(E)$ is an abelian group because hSptr is additive.

Exercise 4.9. For $Y \in Spc_*$, show that

$$\pi_n(\Sigma^{\infty}Y) \simeq \pi_n^{\mathsf{s}}(Y).$$

In particular, it vanishes for n < 0.

Remark 4.10. The above exercise implies all the stable homotopy groups of the spheres are encoded as the usual homotopy groups of the space $\mathsf{Maps}_{\mathsf{Sptr}}(\mathbb{S},\mathbb{S})$. Note that this space admits a homotopy coherent multiplication structure³.

Exercise 4.11. Let $E \in \mathsf{Sptr}$ be a spectrum. Show that $\Omega^{\infty}E \simeq \{*\}$ iff $\pi_nE \simeq 0$ for $n \geq 0$.

5. Finite spectra

Exercise 5.1. Let $C := Ind(C_0)$ be the ind-completion of an essentially small pointed ∞ -category that admits finite limits and colimits. Show that

$$\operatorname{Sptr}(\mathsf{C}) \simeq \operatorname{Ind}(\operatorname{colim}\left[\mathsf{C}_0 \xrightarrow{\Sigma} \mathsf{C}_0 \xrightarrow{\Sigma} \mathsf{C}_0 \cdots\right]),$$

where the colimit is taken inside Cat_{∞} . Deduce that Sptr(C) is compactly generated.

Example 5.2. For $C = \mathsf{Spc}_*$, we can take $C_0 := \mathsf{Spc}_*^\mathsf{fin}$, where $\mathsf{Spc}^\mathsf{fin} \subset \mathsf{Spc}$ is the smallest full $sub-\infty$ -category that contains * and admits all finite colimits⁴. Write

$$\mathsf{Sptr}^{\mathsf{fin}} \coloneqq \mathsf{colim} \left[\mathsf{Spc}^{\mathsf{fin}}_{\star} \xrightarrow{\Sigma} \mathsf{Spc}^{\mathsf{fin}}_{\star} \xrightarrow{\Sigma} \mathsf{Spc}^{\mathsf{fin}}_{\star} \cdots \right]$$

and call it the ∞ -category of **finite spectra**. We obtain an equivalence

$$Ind(Sptr^{fin}) \simeq Sptr,$$

which allows us to identify $\operatorname{Sptr}^{\operatorname{fin}}$ as a full $\operatorname{sub-\infty-category}$ of Sptr .

Remark 5.3. In above, we can also take C_0 to be $\operatorname{Spc}^{cpt}_*$, which is the idempotent completion of Spc^{fin} . The obtained colimit would be $\operatorname{Sptr}^{cpt}$.

APPENDIX A. SPECTRA AND COHOMOLOGY THEORIES

Construction A.1. Let $E \in \text{Sptr } be \ a \ spectrum.$ For any CW pair (X,Y), define $E^n(X,Y) := \pi_{-n}(\text{Maps}(\Sigma^{\infty}(X/Y),E)).$

Write $E^n(X) := E^n(X, \emptyset)$.

Exercise A.2. For any CW pair (X,Y), construct a long exact sequence

$$\cdots E^n(X,Y) \to E^n(X) \to E^n(Y) \to E^{n+1}(X,Y) \to E^{n+1}(X) \to E^{n+1}(Y) \to \cdots.$$

Exercise A.3. Assign a (generalized) cohomology theory (on CW pairs) to a spectrum E. What do you get for $E := \mathbb{H}A$ or \mathbb{S} ?

Exercise A.4. Show that any cohomology theory is represented (in the above sense) by a spectrum, which is unique up to homotopy.

Warning A.5. Nonzero morphisms between spectra could induce zero transformations between cohomology theories. Such maps are called **phantum maps**. See this MathOverflow question.

Remark A.6. We also have similar story for homology theories. However, such construction uses the smash products on spectra, which we have not defined yet.

A.7. Suggested readings. HA.1.4.1.

³We have not yet defined what this means!

⁴An object is contained in Spc^{fin} iff it can be represented by a finite CW complex.