P425/2
APPLIED MATHEMATICS
PAPER 2
July/August 2017
3hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education APPLIED MATHEMATICS

Paper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt all questions in section A and any five questions from section B.
- Any additional question(s) answered will **not** be marked.
- All working must be shown clearly.
- Begin each answer on a fresh sheet of paper.
- Silent non programmable scientific calculators and mathematical tables with a list of formulae may be used.
- In numerical work, take **g** to be 9.8ms⁻².
- State the degree of accuracy at the end of the answer to each question attempted using a calculator or table and indicate Cal for calculator, or Tab for mathematical tables.

Turn Over

SECTION A (40 MARKS)

. Answer all questions in this section.

SECTION A

- Events A and B are such that $P(A) = \frac{2}{5}$ and $P(\overline{B}/A) = \frac{1}{2}$. Find $P(A \cup B)$. 1.
- The table below shows the values of x and f(x). 2.

(5marks)

				, .		
	X	75.01	75.22			
			75.22	75.40	75.60	
	f (x)	1.8751			75.00	
			1.8762	1.8774	1.8785	
ح	liman :				1.0/00	

Use linear interpolation or linear extrapolation to find

- (i) f(75.70).
- x when f(x) = 1.8768. (ii)

(3 marks)

(2 marks)

- A particle moving in a straight line with constant acceleration has an initial velocity 3. of 18kmh⁻¹. After 4 seconds, its velocity was 15ms⁻¹. Calculate the distance covered by the particle in the fourth second. (5 marks)
- The table below shows the marks awarded to eight competitors by two judges during a 4. competition.

	A	В	С	D	E	F	G	Н
Judge I	63	65	55	63	63	55	60	58
Judge II	77	70	60	75	68	58	54	68

- (a) Calculate the rank correlation coefficient between the two judges. (4 marks)
- Comment on the relationship between the two judges at 5% level of significance. (b)
- The figure below shows a uniform rod AB of weight 5N and length 4m freely hinged at 5. A to a vertical wall.

The rod is maintained in equilibrium by a string attached at B to a point C on the wall vertically above A. If AC = BC = 6m, calculate the

tension in the string. (i)

(3 marks)

magnitude of normal reaction at A. (ii)

(2 marks)

Use trapezium rule with 6-ordinates to estimate the value of $\int (t + \sin t) dt$ correct 6.

to three decimal places.

For every 20 glasses produced by a machine. 11 are non-defective. If a random sample of 15 glasses are selected, find the probability that: 7.

(2 marks)

exactly 8 glasses are defective. (i)

(3 marks)

at most 7 glasses are defective.

A particle of weight 78.4N is released from rest at the top of a plane inclined at 30° to the horizontal. If the coefficient of friction between the particle and the plane is 0.2. 8. (5 marks) Find the acceleration of the particle.

SECTION B

Answer any five questions from this section.

A train moving between two cities departs every day at 8:28am. The table below shows the distribution of time taken for the train to travel between the cities. 9.

Time (min)	Frequency
80 - < 85	6
85 - < 90	12
90 - < 95	22
95 - < 100	31
100 - < 105	15
105 - < 110	7
110 - < 115	4
115 - < 120	2
120 - < 125	1

Calculate the average arrival time for the train. (a)

(6 marks)

Draw a cumulative frequency curve and use it to estimate the median (b) arrival time.

(6 marks)

- Derive the simplest iterative formula based on Newton-Raphson method 10. that can be used to find a better approximation to the root of the equation (3 marks) $e^{3x} - 3 = 0$
 - Draw a flow chart that: (b)
 - reads the initial approximation x_o. (i)
 - computes and prints the root of the equation correct to 3 decimal places. (ii)

(5 marks)

Taking 0.3 as an initial approximation, perform a dry run of the flow chart. (c)

(4 marks)

- A cyclist and his machine together weighing 800N have maximum speed of 5ms⁻¹ when 11. working at a constant rate of 75W along a level road. If the resistance to motion is proportional to the speed, find the:
 - (i) expression of the resistance in terms of speed.

(4 marks)

(ii) maximum speed of the cyclist when moving down a hill of 1 in 40 with power output of 25W.

(8 marks)

Turn Over

- In a jumping competition, the probability that a player can jump above a point at least 1.68m high is 0.2 and the probability that a player can jump above a point at least 1.52m high is 0.9. If the height jumped is normally distributed,
 - (i) find the mean and standard deviation of the heights jumped,

 (8 marks)
 - (ii) If x is the height jumped find P(1.6 < x < 1.72). (8 marks) (4 marks)
- 13. At 11:45am, a ship A was located at a point with position vector $(-2\mathbf{i} + 3\mathbf{j})$ km while moving with velocity $(12\mathbf{i} 4\mathbf{j})$ kmh⁻¹ and at 12:00pm, another ship moving with velocity $(2\mathbf{i} 14\mathbf{j})$ kmh⁻¹was located at a point with position vector $(8\mathbf{i} + 7\mathbf{j})$ km. If the ships maintained their velocities, Find the:-
 - (a) least distance between the ships in the subsequent motion, (8 marks)
 - (b) length of time that elapsed when the ships are within 2km from each other.

(4 marks)

14. The probability distribution function f(x) of a continuous random variable x is represented graphically as shown.

- Find the;
- (a) value of the constant k,

(3 marks)

(b) equations of f(x),

(6 marks)

(c) mean of X

- (3 marks)
- 15. (a) The quantities X and Y have been estimated using x and y with errors Δx and ΔY respectively. Show that the relative error in using $x\sqrt{y}$ to approximate $x\sqrt{Y}$ is given by

$$\left| \frac{\Delta x}{x} \right| + \frac{1}{2} \left| \frac{\Delta Y}{v} \right|. \tag{7 marks}$$

- (b) Given that x = 2.5 and y = 4.6 have been rounded off with corresponding percentage error of 4 and 5, calculate the percentage error in $x\sqrt{y}$ correct to 2 significant figures.
- Particles of masses 3kg, 2kg, 5kg and 1kg are placed at points with coordinates (2, -1), (3, 5), (-2, -1) and (1, -3) respectively. Find the position vector of center (6 marks) of mass of the system of particle.
 - (b) A uniform square lamina ABCD of side 2m has a triangular lamina CDE cut off.

 If DE = 0.5m find the distance of center of gravity of the remaining laminar from the side AB.

END