定积分测试题

(A)
$$\frac{\pi}{8(\pi+1)}$$
; (B) $\frac{\pi}{4(\pi+1)}$; (C) $\frac{\pi}{8(\pi-1)}$; (D) $\frac{\pi}{\pi-1}$.

(B)
$$\frac{\pi}{4(\pi+1)}$$

(C)
$$\frac{\pi}{8(\pi-1)}$$

(D)
$$\frac{\pi}{\pi-1}$$

2.
$$\int_{\frac{1}{2}}^{1} e^{\sqrt{2x-1}} dx = ($$
) (A) 0; (B) 1; (C) -1; (D) 2.

3、设
$$f(x) > 0$$
; $f'(x) > 0$; $f''(x) < 0$. 又 $I_1 = \int_0^1 f(x) dx$; $I_2 = \frac{f(0) + f(1)}{2}$; $I_3 = f(1)$; 则它们的大小关系为()

(A)
$$I_1 < I_2 < I_3$$
; (B) $I_2 < I_1 < I_3$; (C) $I_3 < I_2 < I_1$; (D) $I_2 < I_3 < I_1$

4、已知
$$\int_{2x^3-1}^0 f(t)dt = \sin(\frac{\pi}{4}x)$$
,则 $f(1) = ($)

(A)
$$\frac{\sqrt{2}\pi}{48}$$
; (B) $-\frac{\sqrt{2}\pi}{48}$; (C) $\frac{\sqrt{2}\pi}{24}$;

(B)
$$-\frac{\sqrt{2}\pi}{48}$$
;

(C)
$$\frac{\sqrt{2}\pi}{24}$$
;

(D)
$$\sqrt{2}\pi$$
 .

5.
$$\lim_{n\to\infty} n(\frac{1}{4n^2+1} + \frac{1}{4n^2+2} + \dots + \frac{1}{4n^2+n}) = ($$

$$(A) \infty;$$

$$(B)$$
 0

(C)
$$\frac{1}{2}$$
;

(D)
$$\frac{1}{4}$$
.

6.
$$\lim_{n\to\infty} n(\frac{1}{4n^2+1} + \frac{1}{4n^2+2^2} + \dots + \frac{1}{4n^2+n^2}) = ($$

(B)
$$\frac{\pi}{4}$$

(B)
$$\frac{\pi}{4}$$
; (C) $\frac{1}{2}\arctan\frac{1}{2}$;

(D)
$$\frac{1}{4}$$
.

7、 己知
$$f'(x) \cdot \int_0^2 f(x) dx = 50$$
, 且 $f(0) = 0$, 则 $f(x) = ($)

(A)
$$\pm 5x$$
;

(B)
$$25x$$
;

(C)
$$5x^2$$
:

(D)
$$50x$$
.

(A)
$$\int_{-a}^{a} f(x)dx = \int_{a}^{-a} f(-x)dx$$
; (B) $\int_{0}^{\frac{\pi}{2}} \sin^{3} x \cdot \sqrt{1 + \sin x} dx = \int_{0}^{\frac{\pi}{2}} \cos^{3} x \sqrt{1 + \cos x} dx$;

(C)
$$\int_0^{\pi} \sin 2x dx = 2 \int_0^{\frac{\pi}{2}} \sin x dx$$
; (D) $\int_0^{\pi} \cos x dx = 2 \int_0^{\frac{\pi}{2}} \cos x dx$

9、
$$x \to 0^+$$
时三个无穷小 $\alpha = \int_0^{x^2} \sin t dt$; $\beta = \int_0^{\sqrt{x}} \tan(t^2) dt$; $\gamma = \int_0^{\sin x} t(e^t - 1) dt$ 阶数

最高的是() (A)
$$\alpha$$
; (B) β ; (C) γ ; (D) 相同的。

$$(\Lambda) \alpha$$

$$(B)$$
 β

$$(\mathbf{C})$$
 γ

(A)
$$\Re \int_0^2 \sqrt[3]{1-x^2} dx$$
 H , $\operatorname{P} = \sin t$ $\operatorname{E} = \cos t$; (B) $\int_{-1}^1 \frac{dx}{x^2} = (-\frac{1}{x}) \Big|_{-1}^1 = -2$;

(C) 设 f(x) 连续, $\int_0^1 t f(tx) dx$ 与 t 无关; (D) 设 f(x) 连续, $\int_0^1 x t f(t^2x) dt$ 与 x 无

11,
$$\frac{d}{dx} (\int_0^{x^2} f(x^2 - t) dt) = ($$
)

(A)
$$f(x^2)$$

(C)
$$xf(x)$$

(A)
$$f(x^2)$$
; (B) 0; (C) $xf(x)$; (D) $2xf(x^2)$.

12、设
$$f(x) = \int_0^x \frac{dt}{1+t^2} + \int_0^{\frac{1}{x}} \frac{dt}{1+t^2}$$
 $(x > 0), 则 f(x) = ($)

(A) 0; (B)
$$\frac{\pi}{2}$$
;

(C) $2\arctan x$;

(D) $\arctan x$.

(A)
$$\frac{1}{2}(\sin 1 - 1)$$

(B)
$$\frac{1}{2}(\cos 1 - 1)$$

(C)
$$\frac{1}{2}$$

(A) $\frac{1}{2}(\sin 1 - 1)$; (B) $\frac{1}{2}(\cos 1 - 1)$; (C) $\frac{1}{2}$; (D) $\frac{1}{2}(\sin 1 + \cos 1)$.

14、设
$$f''(x)$$
在[0,2]连续, $f(0) = 1$, $f(2) = 2$, $f'(2) = 3$, 则 $\int_0^1 x f''(2x) dx($)

(B)
$$\frac{1}{2}$$
;

(A) 1; (B)
$$\frac{1}{2}$$
; (C) $\frac{3}{4}$;

(D) $\frac{5}{4}$.

15、 己知
$$\int_{a}^{2\ln 2} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}$$
 ,则 $a = ($)

(D) $\frac{\pi}{12}$.

(A)
$$2e^{-1}-1+\ln 3$$
; (B) $2e+1-\ln 3$; (C) $2e^{-1}-\ln 3$; (D) $2e-\ln 3-1$.

17.
$$\int_{-\pi}^{\pi} \frac{x \sin x dx}{1 + \sin^2 x} = ($$
) (A) $\frac{\pi}{4}$; (B) 0; (C) $\frac{\pi^2}{2}$; (D) $\frac{\pi^2}{3}$ o

(A)
$$\frac{\pi}{4}$$
;

(C)
$$\frac{\pi^2}{2}$$
;

(D)
$$\frac{\pi^2}{3}$$
.

(A)
$$\int_0^{+\infty} xe^{-x} dx$$
; (B) $\int_1^{+\infty} \sin^2 x dx$, (C) $\int_{-\infty}^1 \frac{1}{x^2} dx$ (D) $\int_0^{+\infty} \sqrt{x+1} dx$

$$19. \int_{2}^{2+10\pi} \left| \sin x \right| dx$$

$$20 \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^4 x dx}{1 + e^{-x}} = ()$$

(A) $\frac{3\pi}{8}$; (B) $\frac{3\pi}{16}$; (C) $\frac{3\pi}{4}$; (D) $\frac{3\pi}{2}$.

答案: ABBBD CABAC DBBDA

ACADB