Sean Kunz

CS 575 HW #1

1. Prove the following using the original definitions of O, Ω , θ , and ω .

1.1.
$$15n^2 + 5n + 8 = O(n^2)$$

 $g(n)$ is $O(f(n))$ if for positive constants c and N, $0 \le g(n) \le cf(n)$ for all $n >= N$
 $g(n) = 15n^2 + 5n + 8$
 $f(n) = n^2$
 $0 \le 15n^2 + 5n + 8 \le cn^2$
 $0 \le 15 + 5/n + 8/n^2 \le c$ (Divide both sides by n^2)

For N = 1, c = 28, $0 \le 28 \le 28$

Expression is satisfied.

1.2.
$$n^3 + 2n + 5 = \Omega(n^3)$$

 $g(n)$ is $\Omega(f(n))$ if for positive constants c and N , $0 <= cf(n) <= g(n)$ for all $n >= N$
 $g(n) = n^3 + 2n + 5$
 $f(n) = n^3$
 $0 <= cn^3 <= n^3 + 2n + 5$
 $0 <= c <= 1 + 2/n^2 + 5/n^3$ (Divide both sides by n^3)
For $N = 1$, $c = 8$, $0 <= 8 <= 8$

Expression is satisfied.

1.3.
$$\sum_{i=1}^k a_i n^i = \Omega(n^k)$$
 for $k > 1$. Assume that $a_i > 0$ for all i . $g(n)$ is $\Omega(f(n))$ if for positive constants c and N , $0 <= cf(n) <= g(n)$ for all $n >= N$ $g(n) = \sum_{i=1}^k a_i n^i$ $f(n) = n^k$ $0 <= cn^k <= \sum_{i=1}^k a_i n^i$ $0 <= cn^k <= a(1-n^k)/(1-n)$ (Geometric Series) $0 <= cn^k <= a/(1-n) - an^k/(1-n)$ (Separate terms) $0 <= c <= a/n^k(1-n) - a(1-n)$ (Divide both sides by n^k) For $N = 2$, $k = 1$, $a = 1$, $c = \frac{1}{2}$, $0 <= \frac{1}{2} <= \frac{1}{2}$

1.4.
$$n^7 + 3n^2 = \theta(n^7)$$

g(n) is $\theta(f(n))$ if for positive constants c, d, and N, $0 <= cf(n) <= g(n) <= df(n)$ for all $n >= N$
 $0 <= cn^7 <= n^7 + 3n^2 <= dn^7$
 $0 <= cn^7 <= n^7 + 3n^2$
 $0 <= c <= 1 + 3/n^5$
For $N = 1$, $c = 4$, $0 <= 4 <= 4$

Expression is satisfied.

$$n^7 + 3n^2 \le dn^7$$

For N = 1, d = 4, 4 <= 4
Expression is satisfied.

2. Prove the following using limits.

$$\{\text{c then } f(\mathbf{n}) = \theta(\mathbf{g}(\mathbf{n})) \text{ if } \mathbf{c} > 0 \}$$
Master Theorem = $\lim_{n \to \infty} f(n)/g(n) = \{0 \text{ then } f(\mathbf{n}) = o(\mathbf{g}(\mathbf{n})) \}$

$$\{\infty \text{ then } f(\mathbf{n}) = o(\mathbf{g}(\mathbf{n})) \}$$

$$\{\infty \text{ then } f(\mathbf{n})$$

 $m \mod n = m - n \operatorname{floor}(m / n)$

Base: For n = 1

$$7^{n} - 1 = 7^{1} - 1 = 6.6 - 6$$
 floor(1) = 0. Satisfied.

Hypothesis: Assume true for (n+1).

Induction: 7^{n+1} - 1 is divisible by 6.

 $7*7^n$ - 1 - $(7^n$ - 1). If we subtract a multiple of 6 from a value, we should get another multiple of 6.

6*7ⁿ is a multiple of 6 as it is multiplied by 6.

- 4. Analyze the worst-case time complexity in terms of Big Oh notation. Briefly, yet clearly explain your answer.
- 4.1. O(lg(n)). By instruction count, we see that lg(n) + 1 instructions are performed in the loop due to the statement i=2*i.

- 4.2. $O(n \lg(n))$. By instruction count, the outer for loop executes n times. The three function calls have time complexities of O(1), $O(\lg(n))$, and O(1), respectively. Since each of these are called n times, the highest order term is then $n \lg(n)$.
- 4.3. O(2^s), where s is the number of bits for a value n. When the value computed for a factorial gets large enough, it will no longer fit in a word and multiplication will no longer be a constant time operation.