Application No. 10/748,396

Case No.: 57654US002

Amendments to the Claims:

Please amend claim 1 as shown in the following claim listing in accordance with 37 CFR § 1.121(c):

- 1 (Currently amended). A multilayer reflective film comprising a plurality of six-layer optical repeat units, at least some of the optical repeat units each comprising individual layers A, B, C, D arranged in a six-layer sequence CACDBD, or a cyclic permutation thereof, the A and B layers being optically thicker than the C and D layers, and where the individual layers have refractive indices that satisfy the relationship $n_A \ge n_D > n_C > n_B$ or the relationship $n_A > n_D > n_C \ge n_B$.
- 2 (Original). The film of claim 1, wherein the individual layers each have isotropic refractive indices.
- 3 (Original). The film of claim 1, wherein at least one of the individual layers is birefringent, and wherein the refractive indices n_A , n_B , n_C , n_D are measured along an axis in the plane of the film at a design wavelength.
- 4 (Original). The film of claim 3, wherein the individual layers have refractive indices measured along an axis perpendicular to the plane of the film that are substantially matched.
- 5 (Original). The film of claim 1, wherein at least one of the optical repeat units has an optical thickness of one-half of a design wavelength $\lambda_0/2$, so as to reflect light at the design wavelength λ_0 .
- 6 (Original). The film of claim 5, wherein λ_0 is between about 700 and 2000 nm.

Application No.: 10/748,396

Case No.: 57654US002

7 (Original). The film of claim 5, wherein the thicknesses and refractive indices of the individual layers are selected to suppress reflection of light at least at wavelengths of $\lambda_0/2$, $\lambda_0/3$, and $\lambda_0/4$.

- 8 (Original). The film of claim 5, wherein the individual layers have refractive indices that satisfy the relationship $n_A > n_D > n_C > n_B$.
- 9 (Original). The film of claim 8, wherein the refractive indices of the individual layers further satisfy the relationship $n_A + n_B = n_C + n_D$, wherein the A layer has an optical thickness t_A and the B layer has an optical thickness t_B , and $t_A = t_B$; wherein each C layer has an optical thickness t_C and each D layer has an optical thickness t_D , and $t_C = t_D$; and wherein the relationship

$$\frac{3\pi X_3}{2} = \pi - \arcsin\left(\frac{-\Delta n_{DC}}{2\Delta n_{AB} + \Delta n_{DC}}\right)$$

is satisfied, where $X_3 = t_A/(t_A + 2t_C)$, where $\Delta n_{AB} = n_A - n_B$, and where $\Delta n_{IXC} = n_D - n_C$.

- 10 (Original). The film of claim 5, wherein the individual layers have refractive indices that satisfy the relationship $n_A = n_D > n_C > n_B$ or the relationship $n_A > n_D > n_C = n_B$.
- 11 (Original). The film of claim 1, wherein the individual layers are composed of polymeric materials.
- 12 (Original). The film of claim 1, wherein the layers are composed of inorganic materials.
- 13 (Original). The film of claim 1, wherein the optical repeat units are arranged to have a thickness profile that changes along a thickness axis of the film.