Scripps's Murrelet Egg Size Model

Amelia J. DuVall & Marcela Todd Zaragoza

This is v.2022-11-30

Introduction

This document includes code for likelihood ratio tests to test inclusion of random effects, model selection, and model diagnostics for a linear-mixed model of Scripps's Murrelet *Synthliboramphus scrippsi* egg size as a function of laying sequence and oceanographic indices at Santa Barbara Island, Channel Islands National Park, USA from 2009-2017.

```
knitr::opts_chunk$set(echo = TRUE)
## load libraries
library(here)
library(tidyverse)
library(janitor)
library(ggplot2)
library(lubridate)
library(viridis)
library(lme4)
library(RLRsim)
library(faraway)
library(sjPlot)
library(forecast)
## load egg size data and covariate data
egg <- read.csv(here("data", "SCMU_egg_data.csv"))</pre>
covars <- read.csv(here("data", "covariates", "covars.csv"))</pre>
## join covariate data with egg size data
SCMUdf <- left_join(egg, covars, by = "Year") %>% # join by year
  filter(Size > 1210) %>% # remove the outliers
  dplyr::select(Year, Observer, Plot, Size, LayingSequence, ANCHL, BEUTI, NPGO, ONI, PDO, SST)
```

Global Model

```
## create data frame specifying predictors to include
predictors <- as.data.frame(matrix(c(FALSE, TRUE), 2, 7))
# 7 potential predictors (includes LayingSequence)

## add column names
cov_names <- colnames(predictors) <- colnames(SCMUdf[,5:11])</pre>
```

```
## create set of all possible combinations
full_set <- expand.grid(predictors)</pre>
## select models with correlated predictors
ii <- which(full_set$ANCHL + full_set$NPGO == 2 |</pre>
              full_set$ANCHL + full_set$ONI == 2 |
              full_set$ANCHL + full_set$PDO == 2 |
              full set$BEUTI + full set$ONI == 2 |
              full_set$BEUTI + full_set$PD0 == 2 |
              full_set$NPGO + full_set$PDO == 2 |
              full_set$NPGO + full_set$SST == 2 |
              full_set$ONI + full_set$PDO == 2)
## create reduced set of models and convert to a matrix for easier indexing
use_set <- as.matrix(full_set[-ii,])</pre>
## number of models in set
(n_mods <- nrow(use_set))</pre>
## [1] 30
## find max number of predictors in a model
max(rowSums(use_set))
## [1] 4
## covariates in global model
cov_names[use_set[which.max(rowSums(use_set)),]]
## [1] "LayingSequence" "ANCHL"
                                           "BEUTI"
                                                             "SST"
```

Likelihood Ratio Tests

We used likelihood ratio tests using the RLRsim package on the global model to test the support for inclusion of two random effects:

- 1) Plot: the monitoring plot from which the egg was obtained and measured (n = 8)
- 2) Observer: the person who measured the egg (n = 27)

```
(1 | Observer), data = SCMUdf2, REML = FALSE)
## boundary (singular) fit: see help('isSingular')
# Error "(boundary(singular) fit: see ?isSingular" due to very small or zero variance; does not affect
## Exact RLRT test
# m is the reduced model containing only the RE to be tested with
# the random effect set to zero under the null hypothesis.
# mA and Mo are the models under the alternative and the null, respectively.
# observer set to zero under the null hypothesis
exactRLRT(m = bm_obs, mA = bm_both, m0 = bm_plot, seed = 16)
## Using restricted likelihood evaluated at ML estimators.
## Refit with method="REML" for exact results.
##
##
   simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.52989, p-value = 0.1836
# plot set to zero under the null hypothesis
exactRLRT(m = bm_plot, mA = bm_both, m0 = bm_obs, seed = 16)
## Using restricted likelihood evaluated at ML estimators.
## Refit with method="REML" for exact results.
##
  simulated finite sample distribution of RLRT.
##
##
##
   (p-value based on 10000 simulated values)
## data:
## RLRT = 1.6371, p-value = 0.0598
```

Model Diagnostics

These diagnostics are done for the global model.

Predicted Egg Size Values

```
## extract predicted egg size values and plot
preds <- predict(global_mod)
p1 <- ggplot() +
  geom_histogram(mapping = aes(preds), bins = 15) + # set bins
  theme_minimal() +</pre>
```


Residuals

Model Coefficients

```
## extract coeffs and random effects
coef(global_mod) # this include fixed and random effects
## $Plot
        (Intercept) LayingSequenceEgg2
##
                                                     BEUTI
                                                                 SST
                                           ANCHL
## APNC
           1893.779
                               36.17656 4.813278 -14.30913 8.977387
## BH
           1898.347
                               36.17656 4.813278 -14.30913 8.977387
## BT
           1855.839
                               36.17656 4.813278 -14.30913 8.977387
## CC
           1901.490
                               36.17656 4.813278 -14.30913 8.977387
## DO
           1882.390
                               36.17656 4.813278 -14.30913 8.977387
## ESC
           1883.689
                               36.17656 4.813278 -14.30913 8.977387
## LC
           1881.975
                               36.17656 4.813278 -14.30913 8.977387
## WC
           1875.124
                               36.17656 4.813278 -14.30913 8.977387
##
## attr(,"class")
## [1] "coef.mer"
ranef_pl <- ranef(global_mod)$Plot # plot random effect only</pre>
## look at data going into random effects
table(SCMUdf$Plot)
##
## APNC
                    CC
                             ESC
                                    LC
                                         WC
          BH
               BT
                         DO
```

```
## 115 31 16 275 192 1 238 4
```

Q-Q Plots

```
qqresids <- as.data.frame(resids)
p3 <- ggplot(qqresids, aes(sample = resids)) +
    geom_qq() + geom_qq_line() +
    theme_minimal() +
    xlab("Theoretical Quantiles") + ylab("Sample Quantiles") +
    theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        plot.title = element_text(hjust = 0.5)) +
    ggtitle("QQ Plot (Residuals)")
p3</pre>
```

QQ Plot (Residuals)

Fitted Values Versus Residuals

Residuals vs fitted

Levene's Test

We can formally test the assumption of homogenous variance via the Levene's Test, which compares the absolute values of the residuals among groups.

```
## split residuals into 2 groups
g1 <- resids[yh <= median(yh)]</pre>
g2 <- resids[yh > median(yh)]
## Levene's test
var.test(g1, g2)
##
##
   F test to compare two variances
##
## data: g1 and g2
## F = 1.1289, num df = 437, denom df = 433, p-value = 0.2066
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
    0.9352029 1.3626040
## sample estimates:
## ratio of variances
##
               1.1289
```

Fit Candidate Models

```
## create empty matrix for storing results
mod_res <- matrix(NA, n_mods, 1)</pre>
colnames(mod_res) <- c("AIC")</pre>
## fit models and store AIC
for(i in 1:n mods) {
  if(i == 1) {
    fmla <- "Size ~ 1 + (1 | Plot)"
  } else {
    fmla <- paste("Size ~ (1 | Plot) +", paste(cov_names[use_set[i,]], collapse = " + "))</pre>
  mod_fit <- lmer(as.formula(fmla), data = SCMUdf, REML = TRUE)</pre>
  mod_res[i,"AIC"] <- AIC(mod_fit)</pre>
## create empty matrix for storing results
delta_res <- matrix(NA, n_mods, 1)</pre>
colnames(delta_res) <- c("deltaAIC")</pre>
## convert IC to deltaIC
delta_res[,"deltaAIC"] <- mod_res[,"AIC"] - min(mod_res[,"AIC"])</pre>
(delta_res <- round(delta_res, 2)) # round results</pre>
##
         deltaAIC
## [1,]
            58.26
## [2,]
            37.82
## [3,]
            40.37
## [4.]
           19.37
## [5,]
            42.07
## [6,]
            21.23
## [7,]
            32.89
## [8,]
           11.79
## [9,]
           31.76
## [10,]
           10.78
## [11,]
          21.25
## [12,]
            0.00
## [13,]
            37.23
## [14,]
            15.70
## [15,]
            22.94
## [16,]
            1.37
## [17,]
            29.14
## [18,]
             7.92
## [19,]
            44.95
## [20,]
            24.26
## [21,]
            35.55
## [22,]
            14.56
## [23,]
           29.63
## [24,]
            8.54
## [25,]
            25.68
## [26,]
            4.54
## [27,]
            31.55
## [28,]
            10.07
```

```
## [29,]
            25.99
## [30,]
             4.78
# top 5 models
top6 <- order(delta_res)[1:6]</pre>
## "best" models from our set
cov_names[use_set[top6[1],]] # LayingSequence, BEUTI, NPGO
## [1] "LayingSequence" "BEUTI"
                                          "NPGO"
cov_names[use_set[top6[2],]] # LayingSequence, NPGO, ONI
## [1] "LayingSequence" "NPGO"
                                          "ONI"
cov_names[use_set[top6[3],]] # LayingSequence, ANCHL, BEUTI, SST (>2 AIC)
                                          "BEUTI"
## [1] "LayingSequence" "ANCHL"
                                                            "SST"
cov_names[use_set[top6[4],]] # LayingSequence, PDO, SST (>2 AIC)
## [1] "LayingSequence" "PDO"
                                          "SST"
cov_names[use_set[top6[5],]] # LayingSequence, PDO (>2 AIC)
## [1] "LayingSequence" "PDO"
cov_names[use_set[top6[6],]] # LayingSequence, BEUTI, SST (>2 AIC)
## [1] "LayingSequence" "BEUTI"
                                          "SST"
## run top models
topmod1 <- lmer(Size ~ LayingSequence + BEUTI + NPGO + (1 | Plot),
                data = SCMUdf, REML = TRUE)
topmod2 <- lmer(Size ~ LayingSequence + NPGO + ONI + (1 | Plot),</pre>
                data = SCMUdf, REML = TRUE)
topmod3 <- lmer(Size ~ LayingSequence + ANCHL + BEUTI + SST + (1 | Plot),
                data = SCMUdf, REML = TRUE)
topmod4 <- lmer(Size ~ LayingSequence + PDO + SST + (1 | Plot),</pre>
                data = SCMUdf, REML = TRUE)
topmod5 <- lmer(Size ~ LayingSequence + PDO + (1 | Plot),</pre>
                data = SCMUdf, REML = TRUE)
topmod6 <-lmer(Size ~ LayingSequence + BEUTI + SST + (1 | Plot),</pre>
               data = SCMUdf, REML = TRUE)
## Model selection table
AIC.tab <- matrix(NA, nrow = 6, ncol = 3) # 6 rows for 6 top models
AIC.tab[1,1] <- AIC(topmod1) # AIC for topmod1 in first row, first column
AIC.tab[2,1] <- AIC(topmod2) # AIC for topmod2 in second row, first column
AIC.tab[3,1] <- AIC(topmod3) # AIC for topmod3 in second row, first column
AIC.tab[4,1] \leftarrow AIC(topmod4) \# AIC for topmod4 in second row, first column
AIC.tab[5,1] <- AIC(topmod5) # AIC for topmod5 in second row, first column
AIC.tab[6,1] <- AIC(topmod6) # AIC for topmod6 in second row, first column
AIC.tab[,2] <- AIC.tab[,1] - min(AIC.tab[,1]) # calculate delta AIC
AIC.tab[,3] \leftarrow \exp(-0.5*AIC.tab[,2])/
  (sum(exp(-0.5*AIC.tab[,2]))) # calculate model weights
colnames(AIC.tab) <- c("AIC", "deltaAIC", "model_weights")</pre>
print(AIC.tab)
```

```
AIC deltaAIC model_weights
## [1,] 10558.27 0.000000 0.577498180
## [2,] 10559.64 1.372339
                          0.290770975
## [3,] 10562.81 4.539334
                          0.059682453
## [4,] 10563.05 4.778723
                          0.052949771
## [5,] 10566.19 7.915187
                           0.011035437
## [6,] 10566.81 8.542793
                           0.008063185
```

Top Models

Top Model 1

```
topmod1 <- lmer(Size ~ LayingSequence + BEUTI + NPGO + (1 | Plot),</pre>
               data = SCMUdf, REML = TRUE)
summary(topmod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Size ~ LayingSequence + BEUTI + NPGO + (1 | Plot)
     Data: SCMUdf
##
##
## REML criterion at convergence: 10546.3
##
## Scaled residuals:
           1Q Median
      Min
                                3Q
                                       Max
## -3.8401 -0.6528 0.0465 0.6904 2.4192
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
## Plot
             (Intercept)
                         161.8
                                 12.72
## Residual
                        10701.0 103.45
## Number of obs: 872, groups: Plot, 8
## Fixed effects:
                     Estimate Std. Error t value
##
## (Intercept)
                     1888.337
                                    7.019 269.047
## LayingSequenceEgg2
                     36.179
                                    8.713
                                          4.152
## BEUTI
                      -13.338
                                    4.713 -2.830
## NPGO
                       -15.613
                                    3.522 -4.433
##
## Correlation of Fixed Effects:
##
               (Intr) LynSE2 BEUTI
## LyngSqncEg2 -0.258
## BEUTI
               0.086 - 0.004
## NPGO
               -0.063 0.000 -0.230
confint(topmod1)
## Computing profile confidence intervals ...
##
                           2.5 %
                                      97.5 %
## .sig01
                        0.00000
                                   35.186121
## .sigma
                        98.63360 108.388816
## (Intercept)
                     1869.66658 1901.989483
## LayingSequenceEgg2 19.19568
                                 53.351177
## BEUTI
                      -22.91441
                                 -4.318019
```

Top Model 2

```
topmod2 <- lmer(Size ~ LayingSequence + NPGO + ONI + (1 | Plot),
               data = SCMUdf, REML = TRUE)
summary(topmod2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Size ~ LayingSequence + NPGO + ONI + (1 | Plot)
     Data: SCMUdf
## REML criterion at convergence: 10547.6
##
## Scaled residuals:
               1Q Median
                               ЗQ
      Min
                                      Max
## -3.8019 -0.6556 0.0455 0.6769 2.5062
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## Plot
            (Intercept)
                         178.4
                                 13.36
                        10715.2 103.51
## Residual
## Number of obs: 872, groups: Plot, 8
## Fixed effects:
##
                     Estimate Std. Error t value
                                   7.238 260.899
## (Intercept)
                     1888.353
## LayingSequenceEgg2 36.542
                                   8.721 4.190
## NPGO
                      -13.431
                                   3.847 -3.492
## ONI
                       12.399
                                   4.855
                                          2.554
## Correlation of Fixed Effects:
              (Intr) LynSE2 NPGO
## LyngSqncEg2 -0.252
## NPGO
              -0.078 0.009
## ONI
              -0.082 0.022 0.452
confint(topmod2)
## Computing profile confidence intervals ...
##
                           2.5 %
                                      97.5 %
## .sig01
                        0.000000
                                   37.370181
## .sigma
                       98.718950 108.487913
## (Intercept)
                     1868.448016 1902.242601
## LayingSequenceEgg2 19.565650 53.761071
## NPGO
                      -21.088561 -6.037404
## ONI
                        3.152548
                                   22.321170
Top Model 3
```

topmod3 <- lmer(Size ~ LayingSequence + ANCHL + BEUTI + SST + (1 | Plot),

data = SCMUdf, REML = TRUE)

summary(topmod3)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Size ~ LayingSequence + ANCHL + BEUTI + SST + (1 | Plot)
     Data: SCMUdf
##
## REML criterion at convergence: 10548.8
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -3.7095 -0.6318 0.0537 0.6870 2.4419
##
## Random effects:
## Groups
                         Variance Std.Dev.
            Name
## Plot
             (Intercept)
                           393.6
                                  19.84
                         10772.4 103.79
## Residual
## Number of obs: 872, groups: Plot, 8
##
## Fixed effects:
##
                      Estimate Std. Error t value
## (Intercept)
                      1884.079
                                    9.530 197.700
## LayingSequenceEgg2
                        36.177
                                    8.744
                                           4.137
## ANCHL
                         4.813
                                    5.457
                                            0.882
## BEUTI
                       -14.309
                                    5.455 -2.623
## SST
                         8.977
                                    4.213
                                           2.131
## Correlation of Fixed Effects:
               (Intr) LynSE2 ANCHL BEUTI
## LyngSqncEg2 -0.192
                0.094 0.007
## ANCHL
## BEUTI
                0.090 -0.001 0.532
               -0.062 -0.002 -0.579 -0.273
## SST
confint(topmod3)
## Computing profile confidence intervals ...
##
                             2.5 %
                                        97.5 %
## .sig01
                         0.0000000
                                     47.030247
## .sigma
                        99.0003359
                                    108.841747
## (Intercept)
                      1859.7243438 1901.850097
## LayingSequenceEgg2
                      19.1992218
                                    53.500458
## ANCHL
                        -5.6373662
                                     15.756027
## BEUTI
                       -25.5857618
                                     -4.011488
## SST
                         0.7582154
                                     17.270787
Top Model 4
topmod4 <- lmer(Size ~ LayingSequence + PDO + SST + (1 | Plot),</pre>
                data = SCMUdf, REML = TRUE)
summary(topmod4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Size ~ LayingSequence + PDO + SST + (1 | Plot)
##
     Data: SCMUdf
##
## REML criterion at convergence: 10551.1
```

```
##
## Scaled residuals:
             1Q Median
      Min
## -3.7474 -0.6550 0.0462 0.6908 2.4459
## Random effects:
## Groups Name
                        Variance Std.Dev.
          (Intercept) 186.8 13.67
## Plot
                        10753.9 103.70
## Residual
## Number of obs: 872, groups: Plot, 8
## Fixed effects:
                     Estimate Std. Error t value
## (Intercept)
                                7.318 257.919
                     1887.528
## LayingSequenceEgg2
                       36.222
                                  8.735
                                         4.147
## PDO
                                         4.256
                       19.275
                                  4.528
## SST
                       2.893
                                  4.025
                                         0.719
##
## Correlation of Fixed Effects:
             (Intr) LynSE2 PD0
## LyngSqncEg2 -0.248
## PDO
              0.003 0.003
## SST
              -0.020 0.001 -0.525
confint(topmod4)
## Computing profile confidence intervals ...
##
                           2.5 %
                                    97.5 %
                        0.000000
## .sig01
                                  38.14533
## .sigma
                       98.899099 108.68695
## (Intercept)
                    1867.226202 1901.54131
```

53.45492

28.75875

10.65872

10.736526

-5.125251

LayingSequenceEgg2 19.206046

PDO

SST