Language Model

Introduction

This project focuses on training a **word-level language model** using text from *Poirot Investigates* by Agatha Christie. The goal is to develop a model that can predict the next word in a given sequence and generate text that mimics the author's writing style. The dataset was preprocessed, tokenized, and used to train a **Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) layers**. The final model was evaluated based on accuracy and text generation quality, demonstrating its ability to generate contextually relevant and stylistically consistent text.

Data Processing

- The dataset was extracted from the Project Gutenberg text file of *Poirot Investigates*.
- **Text Cleaning**: All special characters and punctuation marks were removed, and the text was converted to lowercase to ensure uniformity.
- **Metadata Removal**: Header and footer information from the Project Gutenberg file were stripped to retain only the main book content.
- Tokenization: The text was broken down into individual words using TensorFlow's Tokenizer, and a vocabulary size of 30,000 words was set to limit memory usage while preserving important words.
- Pretrained Word Embeddings: GloVe 100-dimensional embeddings were incorporated to improve word representation by leveraging knowledge from large-scale corpus training.
- Sequence Creation: The text was split into sequences of words, where each sequence was padded to a maximum length of 100 words, ensuring consistent input size for training.

Model Architecture & Training

The language model was built using an **RNN with LSTM layers**, which is well-suited for sequential text prediction. The architecture consisted of:

- Embedding Layer: Converts tokenized words into dense vector representations, initialized with GloVe embeddings.
- LSTM Layers:
 - First **LSTM layer with 256 units**, responsible for capturing long-term dependencies.
 - Second **LSTM layer with 128 units**, refining learned patterns from the first LSTM layer.
- LayerNormalization & Dropout:
 - **LayerNormalization** stabilizes training and speeds up convergence.
 - 30% dropout was applied to reduce overfitting and improve generalization.
- Dense Layers:
 - A fully connected **128-unit ReLU layer** enhances feature extraction.
 - A **softmax output layer** predicts the next word from the vocabulary.

- Loss Function: Categorical cross-entropy was used since the model is predicting a probability distribution over words.
- Optimizer: Adam (learning rate: 0.0003, clipnorm: 1.0) was chosen due to its efficient adaptive learning.
- Training Setup:
 - The model was trained for **250 epochs**.
 - Early stopping was applied to halt training if no improvement was observed.
 - Learning rate reduction was used to fine-tune the model during training.

Hyperparameters

Choosing the right hyperparameters was essential for ensuring optimal model performance. The following values were selected:

- Optimizer: Adam (learning rate = 0.0003) was chosen for its adaptive learning rate and robust performance in deep learning models.
- Batch Size: 64 a balanced choice between learning stability and computational efficiency.
- Sequence Length: 100 this captures sufficient context for text generation while maintaining efficient memory usage.
- **Epochs**: **250** model performance stabilized within this range, ensuring adequate training without overfitting.
- **Dropout Rate**: 30% to reduce overfitting and improve generalization.
- **Temperature for Text Generation**: **0.8** controls randomness in the model's predictions, ensuring variability in generated text while maintaining coherence.

Results

- Final Training Accuracy: 79.86%
- Final Training Loss: 0.6725
- Generated Text Example:

"The great financier was perfectly right in the afternoon Poirot gave a policeman getting of his own flesh and cry the nephew."

• Model, tokenizer, and best weights have been saved to Google Drive for future testing and fine-tuning.

Alternative Approaches Considered

While an LSTM-based approach was chosen, other methods could have been explored:

- **GRU-Based RNN**: Using **Gated Recurrent Units (GRUs)** instead of LSTMs for faster training while maintaining sequence modeling capabilities.
- Transformer-Based Models: Implementing architectures such as GPT-2, BERT, or T5 for improved long-term dependency handling.

- **Hybrid Models**: Combining **CNN + LSTM** to enhance feature extraction and sequential learning.
- Pretrained Language Models: Fine-tuning larger pretrained transformer models like GPT-3.5/4.
- Character-Level Models: Instead of word-level tokenization, predicting text at the character level for increased flexibility in handling unknown words.

Performance Enhancement Techniques

To improve text prediction, the following techniques could be applied in order of expected effectiveness:

- **1.** Use a Transformer-Based Model: LSTMs struggle with long-range dependencies, while transformers handle them efficiently.
- **2. Increase Training Data**: Using multiple books by Agatha Christie to train a more diverse and robust model.
- **3.** Hyperparameter Optimization: Conducting a thorough grid search or using Bayesian optimization for better model tuning.
- **4. Augment the Training Data**: Introducing **sentence paraphrasing** and restructured text data to improve generalization.
- **5.** Larger Embedding Size: Increasing from 100D GloVe embeddings to 300D could improve word representation.

Comparison with Large Language Models (LLMs)

- LLMs such as GPT-3 and GPT-4 are trained on massive datasets and use transformers, making them superior in generating human-like text.
- **Our model is domain-specific**, trained exclusively on *Poirot Investigates*, while LLMs are general-purpose.
- **Prompt Engineering** can be used to guide LLMs in generating more Christie-like text without additional fine-tuning.
- **Bridging the Gap**: Fine-tuning a smaller transformer model like **GPT-2** could help our model generate more realistic sentences while maintaining computational efficiency.
- **Efficiency Considerations**: Our approach is lightweight and can be trained and deployed on local machines, unlike massive LLMs that require cloud-based infrastructure.

Conclusion

This project successfully trained an **LSTM-based language model** capable of generating text in the style of Agatha Christie. While LSTMs work well for sequential text modeling, **transformer-based architectures remain superior** in handling long-range dependencies and generating highly coherent text. The **trained model**, **tokenizer**, **and best weights**have been stored for potential future refinements, fine-tuning, or comparisons with more advanced architectures.