1	Theorem
7	
00/	Find wood siesistance across 5-a resistor, here
	find thermins equivalent circuit.
	Civcuit:
	O'COUL,
	R(L)
	24V 3 5
	PC'-1
	-> First remove 5-12 from the circuit and short
	the voltage source to find out the Penet or RTH.
	B=1 = 2 → 2×8
	R _{TH} = 3+ 2×8
	10
	= 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	= 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
-#	= 10 = 4.6-12 > Now shorting are and 8-12 as shown in fig(2)
-#	-> Now shorting 2 s and 8 s as shown in fig(2) -> Now for V+11 we semove the short and put
ŀ	> Now shorting 2 s and 8 s as shown in fig(2) > Now for VTH we semove the short and put
ŀ	= 10 = 4.6-12 = 4.6-12 = Now shorting are and 8-12 as shown in fig(2)

Assume current (I) through the cercuit conesh say)

$$\therefore \ \ T = \frac{24}{10} = 2.44$$

Thus we see therning-current is 19.2 V and gesistance is 4.6-2

. Thernius equivalent circuit:

	EXPERIMENT: No Theorem Date Date
	Therning problem using dependent source.
->	Find the thernin equivalent of the following einerit about a-b.
	eircuit about a-b. asume a current & "I". Applying KVL to find Vo
	$V_{10k} + V_{20k} + 4V_0 = 70$ $10k(I) + 20k(I) + 4V_0 = 70$
	10k(I) + 20k(I) + 4(10k)(I) = 70 I(70k) = 70
	$I = 1 A A$ 1000 $I = 100 1 \times 10^{-3} A$
	$I = 100 \times 10^{-3} A$ $V_0 = 10^{-3} \times 10 \times 10^{3}$ $V_0 = 10 \times 10^{3}$
	Vab = 70V - Vo = 70V - 10V
	hb= 60V.
	Thus, thernins equivalent voltage is 60V
	Shorting all the veltage source and finding Rnet (RTh) RTh = (20K TOK)
	= 200 K = 6.67 K 30
Ametaran	Teacher's Sign. :

- 1

They, Therviers, sesistance is 6.67k sz

Ith =
$$\frac{V_{Eh}}{R_{th}} = \frac{60}{6.67K} = \frac{9mA}{mA}$$

i. Ith = 9mA

Thus, Therrins theorem is verified

