Course Structure: Introduction to Data Structures and Algorithms

Purushottam

November 8, 2023

Course Overview

This course is designed to provide solid foundation to Data structure and algorithm. To provide a goof command over STL. To provide subject knowledge required to solve questions in internship and placement coding rounds.

Course Duration

• Course Type: Semester-long

• Duration: 8 weeks

Course Objectives

- $1. \ \ Understand \ \ Fundamental \ \ Concepts.$
- 2. Implement Data Structures.
- 3. Analyze Algorithms.
- 4. Problem Solving.
- 5. Real-World Applications.

Course Outline

Day 1: Vectors

- Declaring and Initializing vector
- Initializing by size and dafault value
- Index based looping , and range based looping
- Iterators and iterator based looping

- push_back , insert and erase method
- vectors as arugument to functinos and as return type
- pass by value and pass by reference

Day 2: Fundamentals of data structures

- Pointers
- Structures
- Classes

Day 3: Time and Space Complexity

- Meaning of time complexity
- loop time complexity, recursion time complexity
- linear time complexity
- exponential time complexity
- logarithmic time complexity
- loglinear time complexity
- Space complexity

Day 4: Linked List

- Node and Linked List meaning
- Insert Function implementation
- Print function implementation
- Erase function implementation
- doubly linked list implementation
- circular linked list implementation
- use and time complexity analysis

Day 5: std::algorithm

- Linear Search algorithm
- Binary search algorithm
- in-built searching for vector
- Bubble Sort algorithm
- Selection Sort algorithm
- Insertion Sort algorithm

Day 6: std::algorithm

- Merge Sort algorithm
- Quick Sort algorithm
- Count Sort algorithm
- In-built sorting
- pair
- comparator based sorting

Day 7: Sets

- Meaning of sets
- \bullet std::set and its methods
- std::multiset and its methods

Day 8: Wrappers

- Stack implementation
- std::stack
- Queue implementation
- std::queue

Day 9: Binary Trees

- Implementation
- \bullet dfs
- \bullet bfs

Day 10: Binary Trees

- Height of a node
- Diameter
- Inorder traversal
- Preorder Traversal
- Postorder Traversal

Day 11: AVL Trees

- Balance of a node
- Balanced Binary Trees
- Rotations
- AVL Trees

Day 12: Red Black Trees

- $\bullet\,$ Red Black Trees concept
- Red Black Trees implementation

Day 13: Dynamic Programming

- Recursion vs loops
- Memoization
- Dynamic Programming top to bottom and bottom to top
- Space reducing DP

Day 14: Graphs

- Graph Meaning, related terms
- Adjacency Matrix representation
- Adjacency List Representation

Day 15: Graphs

- \bullet Depth-First-Search
- Breadth-First-Search
- Number of component

Day 16: Graph

- Cycle Detetion in graphs
- Diameter of graph

Day 17: Graph

- \bullet Trees
- Minimum Spanning Trees
- $\bullet\,$ Prim's algorithm
- Kruskal's algorithm

Day 18: Graph

- Minimum Distance
- \bullet Djkastra's algorithm
- Bellman-Ford Algorithm
- Negative weight cycle detection

Day 19: Graph

- Topological Sorting concept
- Sort using dfs

Day 20: Hashing and Hash Table

- Hash Function
- Hash Table
- Hashing

Day 21: String Algorithms

- KMP algorithm
- $\bullet\,$ robin algorithm

Day 22: 2D- DP

- Coin Problem
- •

Day 23: Skip List

ullet skip-list implementation

Day 24: Heaps

- Heap implementation
- HeapSort
- Priority queue
- minheap and maxheap

Teaching Methods

- Pre-lecture notes to give intution
- Lectures to introduce concepts
- Coding examples and demonstrations
- Homework practice problems
- Assignments
- Placement round question banks

Textbooks and Resources

- A competitive Programmer's Handbook
- Class Notes

Prerequisites

• Basic programming knowledge and understanding of fundamental mathematics.

Final Thoughts

Data structures and algorithms are a crucial part of any computer science curriculum. Ensure that the course offers a balance between theory and practical implementation. Students should leave the course with a strong foundation in these core concepts, ready to tackle more advanced topics in the future.