Source data

Data presented in Chapter 4 is based on analyses of the same 1000 genomes project phase 3 dataset of 2533 low coverage WGS samples as used in Chapter 3. For alignment pipeline details, pileup parsing and reference & non-reference read frequency calculation see codebase for Chapter 3.

Pipeline for context dependent sequencing error rate measurement: MATLAB

All inputs used in the key scripts associated with Chapter 4 were generated as part of the analyses described in Chapter 3, for details see the codebase for Chapter 3.

Step 1: Generate motif spaces of interest

'Motif space' refers to the complete set of all possible sequence motifs of a given length. In our analyses we are assess sequencing error rate association for 2bp to 8bp motifs. This step generates the required motif spaces.

Code: SCRIPT_1_Motif_space_generator.m

Outputs		Dimensions	s & data type	
Motif_spaces.mat	N2	16 x 1 strings (length: 2)		Struct with 7 fields, each containing full set of
	N3	64 x 1	strings (length: 3)	motifs representing one motif space of a given
	N4	256 x 1	strings (length: 4)	length from 2bp ('N2') to 8bp ('N8').
	N5	1024 x 1	strings (length: 5)	
	N6	4096 x 1	strings (length: 6)	
	N7	16384 x 1	strings (length: 7)	
	N8	65536 x 1	strings (length: 8)	

Algorithm structure

^ >>

>>>

Step 2: Find sequence motif locations in MT genome sequences

Find all locations of each motif from a specific motif space within our analysed sample MT consensus sequences. Each location represents the sequence position of the 3'-most base of that motif instance. Script input variable motif_spaces is generated in the previous step (step 1), whereas the other inputs SampleIDs and MT_consensus_sequences were produced as part of the analysis described in chapter 3.

Code: SCRIPT_2_Motif_location_finder

Inputs		Dimensions & data type		
Motif_spaces	N2 to N8	4 ^N x 1	string	Sets of all possible 2bp to 8bp motifs
MT_consensus_sequences		2533 x 16569	char	MT consensus sequences of 2535 samples
SampleIDs		2533 x 1	string	List of sample IDs

Outputs for each motif space			Dimensions & data type		
Motif_counts	L_strand		4 ^N x 2533	double	Number of instances of each motif (row) that
	H_strand				were found in mtDNA of each sample (column)
	Total				N – motif length
Motif_locations	L_strand	[motif]	Structure with 4 ^N fields		Motif-specific cell arrays contain indices of L or H
	H_strand	[motif]	Each field: 25	533 x 1 cell	strand locations of that motif in each sample
Motif_table		Table with 4 ^N rows,		Full motif list, samples each motif was found in	
			1 row per motif		& total motif instances found across all samples

Algorithm structure

>>

>>>

Step 3: Calculate sequencing error rates associated with different motifs

Using motif locations generated in the previous step, extract the read counts for reference base matches and mismatches in forward and reverse sequencing directions relative to the motif orientation, and calculate the sum forward and reverse match and mismatch counts across all motif instances, and calculate the motif associated error rates as the difference between forward and reverse read mismatch fractions. Thus motif error rate measurement approach is based on research by Allhoff et al., 2010. For details see the main thesis text.

Script input variable motif_spaces is generated in the earlier step 1 and variables Motif_locations and Motif_table are generated in step 2, whereas inputs SampleIDs, Reads, Reads_Ref and Reads_NonRef were produced as part of the analysis described in Chapter 3.

Code: SCRIPT_3_motif_error_rate_calculator

Inputs		Dimensions & data type		
SampleIDs	SampleIDs		string	List of sample IDs
Motif_spaces	N2 to N8	4 ^N x 1	string	Sets of all possible 2bp to 8bp motifs
Motif table		Table with 4 ^N rows,		Full motif list, samples each motif was found in &
(for each motif space)		1 row per motif		total motif instances found across all samples
Motif_locations	L_strand	Structure with	4 ^N fields	Motif-specific cell arrays contain indices of L or H
(for each motif space)	H_strand	Each field: 253	3 x 1 cell	strand locations of that motif in each sample
Reads	Forward	2533 x 16569	double	Total A + C + G + T base call counts in each
	Reverse			sequencing direction
Reads Ref	Forward	2533 x 16569	double	Number of reads in each sequencing direction that
_	Reverse			match the consensus sequence base type
Reads_NonRef	Forward	2533 x 16569	double	Total reads in each sequencing direction supporting
_	Reverse			base types other than the consensus sequence base

Outputs for each motif space		Dimensions 8	& data type	
Motif_counts	L_strand	4 ^N x 2533	double	Analysed motif instances in each sample on L and H
	H_strand			strands and in total across both strands.
	Total			Rows – motifs, columns – samples
Readcount_totals	FM	4 ^N x 2533	double	Sample-level FM/FMM/RM/RMM read count totals
	FMM			across all analysed instances of each motif within
	RM			each sample. Rows – motifs, columns – samples
	RMM			
Sample_MER	•	4 ^N x 2533	table	Calculated motif sample-level error rates.
				Rows – motifs, columns – samples
Population_MER		4 ^N x 14	table	Total motif instances analysed across samples,
				population-level FM/FMM/RM/RMM read count
				totals and the overall calculated motif error rate.

FM (\underline{F} orward \underline{M} atch) – reads in the same orientation as the motif that support reference base FMM (\underline{F} orward \underline{M} is \underline{M} atch) – reads in the same orientation as the motif that support a non-reference base. RM (\underline{R} everse \underline{M} atch) – reads in the opposite orientation to the motif that support reference base RMM (\underline{R} everse \underline{M} is \underline{M} atch) – reads in the opposite orientation to the motif that support a non-reference base.

RER (\underline{R} everse \underline{E} rror \underline{R} ate) = RMM / (RM + RMM) – mismatch fraction in reverse direction (relative to motif orientation) FER (\underline{F} orward \underline{E} rror \underline{R} ate) = FMM / (FM + FMM) – mismatch fraction in forward direction (relative to motif orientation) ERD (\underline{E} rror \underline{R} ate \underline{D} ifference) = FER - RER – difference between forward and reverse mismatch fractions

MER (Motif Error Rate) – term used instead of ERD in thesis text. Both terms are used interchangeably.

'F' and 'R' used in the FM/FMM/RMM notation refer to the read direction <u>relative to the motif orientation</u>, whereas 'L' and 'H' strand notation is used for distinguishing between forward and reverse sequencing directions relative to the mtDNA reference sequence orientation.

Algorithm structure

>

Step 4: Determine whether sequencing error rates associated with different motifs

For each analysed motif, determine the statistical significance of the association between the reference base mismatch rates and the sequencing read direction relative to motif orientation using Fisher's exact and Chi squared tests. Testing is performed on 2x2 contingency tables consisting of FM/FMM/RM/RMM read counts. Fishers exact test is used preferentially, except where contingency table values exceed 10⁷. Due to the limitations of Matlab fishertest() function, Chi squared test is used for contingency tables with values above 10⁷ instead.

All script inputs are variables generated in the previous step (step 3) described above.

Code: SCRIPT_4_Motif_error_rate_significance

Inputs for each motif space	Dimensions	& data type		
Readcount_totals	FM	4 ^N x 2533	double	Sample-level FM/FMM/RM/RMM read count
_	FMM			totals across motif instances in each sample
	RM			Rows – motifs, columns – samples
	RMM			·
Sample_MER		4 ^N x 2533	table	Calculated sample-level motif error rates
Population_MER		4 ^N x 14	table	Population-level FM/FMM/RM/RMM read count
				and the overall calculated motif error rate

Outputs for each motif space	Dimensions & data type			
MER_stats_summary	4 ^N x 2533	table	Population-level MER and its significance testing	
				results, plus sample MER summary statistics and
				sample-level significance test result summary
MER_Sample_level_stats	Result	4 ^N x 2533	double	Sample-level MER significance testing results:
	P_values	4 ^N x 2533	double	Whether the motif was analysed (TRUE/FALSE),
	Test_type	4 ^N x 2533	string	test type (FT/X2) and significance level used, test
	Analysed	4 ^N x 2533	logical	result (1/0/NaN) and the calculated p values.
	Alpha	1 x 1	double	Rows – motifs, columns – samples
MER_Global_stats	Result	4 ^N x 1	double	Population-level MER significance testing results:
	P_values	4 ^N x 1	double	Whether motif was analysed (TRUE/FALSE), test
	Test_type	4 ^N x 1	string	type (FT/X2) and significance level used, test
	Analysed	4 ^N x 1	logical	result (1/0/NaN) and the calculated p values.
	Alpha	1 x 1	double	Rows – motifs

Algorithm structure

>>

>>>