

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 699 761 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
06.03.1996 Bulletin 1996/10

(51) Int. Cl.⁶: C12N 15/54, C12N 9/10

(21) Application number: 95111764.7

(22) Date of filing: 26.07.1995

(84) Designated Contracting States:
BE CH DE FR GB IT LI SE

• Koyama, Tanetoshi
Toyota-shi, Aichi (JP)

(30) Priority: 29.07.1994 JP 179336/94

(74) Representative: Bühling, Gerhard, Dipl.-Chem. et al
Patentanwaltsbüro
Tiedtke-Bühling-Kinne & Partner
Bavariaring 4
D-80336 München (DE)

(71) Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA

Aichi-ken (JP)

(72) Inventors:

- Kolke, Ayumi
Toyota-shi, Aichi (JP)
- Obata, Shusel
Toyota-shi, Aichi (JP)
- Ogura, Kyozo
Toyota-shi, Aichi (JP)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Heptaprenyl diphosphate synthesizing enzyme and DNA encoding same

(57) Heptaprenyl diphosphate (HDP)-synthetase derived from *Bacillus stearothermophilus* which enzymes have the amino acid sequences shown as SEQ ID NOs: 1 to 3; 1 and 2; 2 and 3; or 1 and 3, DNA encoding them, and a method of producing the enzymes.

According to the invention it is possible to industrially produce HDP-synthesizing enzyme and HPD.

Fig. 1

Description**BACKGROUND OF INVENTION**5 **1. Field of Invention**

The present invention relates to heptaprenyl diphosphate (hereunder sometimes abbreviated to "HDP") synthetase of *Bacillus stearothermophilus* origin, to DNA encoding the enzyme, to an expression vector containing the DNA, to a host transformed by the expression vector, to a method of producing heptaprenyl diphosphate-synthesizing enzyme by 10 the host, and to a method of producing heptaprenyl diphosphate using the enzyme or host.

15 **2. Related Art**

HDP, synthesized from condensation reaction of 4 molecules of isopentenyl diphosphate and 1 molecule of farnesyl 20 diphosphate by HDP-synthetase, is an important biosynthetic intermediate of isoprenoids such as prenylquinone. Although HDP-synthetase, which is categorized into prenyl transferase, is known to be present in some microorganisms such as *Bacillus subtilis* (J. Biol. Chem. 255, p.4539-4543 (1980)), its amino acid sequence and the DNA sequence of the gene encoding it have not been known.

Genes coding for other prenyl transferase are known, farnesyl diphosphate synthetase ([2.5.1.1.] J. Biol. Chem. 25, p.4607-4614 (1990)), geranylgeranyl diphosphate synthetase (Proc. Natl. Acad. Sci. USA, 89, p.6761-6764). However, the tertiary structures of the known prenyl transferases are homodimers which comprise of two exactly same subunits, and it is different from the peculiar heterodimer of *Bacillus subtilis* HDP synthetase (FEBA Lett. 161, 257-260 (1983)). Therefore, absolutely no data exists regarding homology between the amino acid sequences of the former two and the latter.

Consequently, the present invention is aimed at providing HDP synthetase of *Bacillus stearothermophilus* origin, which was hitherto unknown in the species, DNA encoding the enzyme, and a method of production of the recombinant HDP synthetase using the DNA.

SUMMARY OF INVENTION

With the aim of accomplishing the above-mentioned object, the present inventors have been the first to succeed in cloning an HDP synthetase gene of *Bacillus stearothermophilus* origin, by the PCR method using synthesized primers designed from a portion of the known sequence of prenyl transferase, following hybridization using PCR amplified fragments as probe and measuring the expressed activity of the gene expression products.

Thus, the present invention provides a protein of *Bacillus stearothermophilus* origin having heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; a peptide with the amino acid sequence from the 1st amino acid Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention also provides a peptide of *Bacillus stearothermophilus* origin, which has the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention further provides a peptide of *Bacillus stearothermophilus* origin, which has the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention further provides a protein of *Bacillus stearothermophilus* origin with heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention further provides a protein of *Bacillus stearothermophilus* origin with heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid

Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention further provides a protein of *Bacillus stearothermophilus* origin with heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

The present invention further provides DNA encoding the above-mentioned protein and various peptides.

The present invention further provides an expression vector comprising the above-mentioned DNA.

The present invention further provides a host transformed by the above-mentioned expression vector.

The present invention further provides a method of producing heptaprenyl diphosphate synthetase which is characterized by culturing the above-mentioned host, and collecting heptaprenyl diphosphate synthetase from the cultured product.

The present invention further provides a method of producing heptaprenyl diphosphate which is characterized by culturing the above-mentioned transformant, and collecting heptaprenyl diphosphate from the cultured product.

The present invention further provides a method of producing heptaprenyl diphosphate which is characterized by reacting the above-mentioned enzyme with a substrate.

20 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the positional relationships and restriction enzyme maps for plasmids pAC2, pPR2, pTL6, pTLD9, pTLD17 and pTLD7 of the present invention.

Fig. 2 is a thin layer radiochromatograms of the reaction mixture prepared by incubation of isopentenyl diphosphate and farnesyl diphosphate with expression product of a DNA fragment of the present invention.

DETAILED DESCRIPTION

The open reading frame portions of nucleotide sequences of DNA cloned from *Bacillus stearothermophilus* which express heptaprenyl diphosphate synthetase activity are shown as SEQ ID NOs: 1 to 3. There are 3 open reading frames (ORF). The first open reading frame (ORFI) is assumed to begin at the ATG coding for the 1st amino acid Met of SEQ ID NO: 1 and to end with the GGG coding for the 220th Gly. However, it may possibly begin at the ATG coding for the 19th amino acid Met, the ATG coding for the 20th amino acid Met, or the ATG coding for the 22nd amino acid Met.

The second open reading frame (ORFII) is assumed to begin at the ATG coding for the 1st amino acid Met of SEQ ID NO: 2 and to end with the CGG coding for the 234th amino acid Arg. However, this ORFII may possibly begin at the ATG coding for the 23rd amino acid Met of the amino acid sequence. The third open reading frame (ORFIII) is assumed to begin at the GTG coding for the 1st amino acid Val of SEQ ID NO: 3, and to end with the TAT coding for the 323rd amino acid Tyr. However, this ORFIII may possibly begin at the ATG coding for the 4th amino acid Met or the ATG coding for the 9th amino acid Met.

In the DNA containing the cloned ORFI-III, the nucleotide AACG locates between the translation termination codon TAG at the 3' end of ORFI and the translation initiation codon ATG (Met) of ORFII, and the nucleotide GTTAAG locates between the translation termination codon TGA of ORFII and the translation initiation codon GTG (Val) of ORFIII.

The full-length DNA expression product had the strongest heptaprenyl diphosphate synthetase activity and the expression products of ORFI and ORFIII, ORFI and ORFII, and ORFII and ORFIII also showed heptaprenyl diphosphate synthetase activity. Consequently, according to one embodiment of the present invention, there are provided DNA comprising all of ORFI, ORFII and ORFIII, heptaprenyl diphosphate synthetase consisting of the peptide encoded thereby, and a method for its production.

The present invention also provides DNA containing ORFI and ORFIII but not containing ORFII in its complete form, a peptide having heptaprenyl diphosphate synthetase activity which is expressed by that DNA, and a method for its production. The present invention further provides DNA containing ORFI and ORFII, or ORFII and ORFIII but not containing any other ORF in its complete form, a peptide expressed thereby, and a method for its production.

Plant-derived enzymes sometimes differ in a few amino acids depending on the variety of plants from which they are derived, and often differ in a few amino acids by natural mutations. In addition, the native activity of an enzyme is sometimes maintained even upon artificial mutation on the amino acid sequence. Consequently, the present invention also encompasses, in addition to peptides having the amino acid sequences represented by SEQ ID NOs: 1 to 3, also peptides with amino acid sequences resulting from variations of the amino acid sequences represented by SEQ ID NOs: 1 to 3 by means of a substitution, deletion and/or addition of one or a few, for example 5 or 10, amino acids, providing that the peptides are still have the enzyme activity.

The present invention further provides DNA encoding a peptide mutated in the manner described above, as well as a method of producing the mutated peptide.

As will be explained in detail by way of the examples, the DNA of the present invention may be cloned from *Bacillus stearothermophilus*. Also, DNA containing any one of ORFI, ORFII and ORFIII, all three, or ORFI and ORFIII, ORFI and ORFII or ORFII and ORFIII, and not containing any other ORF in its complete form, may be obtained by cutting full-length DNA using restriction endonucleases which cut within, for example, other ORFs outside of the aimed ORF without cutting within the latter. Alternatively, DNA encoding a mutated peptide may be obtained by the site-specific mutagenesis using, for example, a mutagenic primer.

Furthermore, once the amino acid sequence of one peptide is determined, it is possible to define a proper nucleotide sequence coding therefor, which then allows chemical synthesis of the DNA by conventional DNA synthesis methods. Each individual ORF of the present invention is not especially long, and thus may be easily synthesized by a person skilled in the art by conventional DNA synthesis methods.

The present invention further provides expression vectors comprising the DNA as described above, hosts transformed by the expression vectors, and a method of producing the enzyme or peptides of the present invention using these hosts.

The expression vector includes an origin of replication, the expression regulating sequence, etc., which differ depending on the host. The host may be a prokaryotic organism, for example a bacterium such as an *E. coli*, or *Bacillus* such as *Bacillus subtilis*; a eukaryotic organism, for example yeast, a fungus an example of which is *S. cerevisiae* belonging to the genus *Saccharomyces*, or fungus an example of which is a mold such as *A. niger* or *A. oryzae* belonging to the genus *Aspergillus*; animal cells such as cultured silk worm cells or cultured higher animal cells, for example CHO cells. Plant cells may also be used as hosts.

According to the present invention, as will be shown in the examples, it is possible to produce heptaprenyl diphosphate synthase by culturing a host transformed with DNA of the present invention, which accumulates the enzyme in the culture, and recovering it. Also, according to the present invention, heptaprenyl diphosphate may also be produced by allowing HDP synthetase produced by the method of the present invention to react with isopentenyl diphosphate and allylic diphosphate such as farnesyl diphosphate acid as substrates.

Referring to the use of *E. coli* as a host for an example, there are known gene expression regulating mechanism in the process of transcription of mRNA from DNA, the process of translation of protein from mRNA, etc. As promoter sequences which regulate mRNA synthesis, there are known, in addition to naturally occurring sequences (for example, lac, trp, bla, lpp, P_L, P_R, ter, T3, T7, etc.), also mutants thereof (for example, lacUV5) and sequences obtained by artificially fusing natural promoter sequences (for example, tac, trc, etc.), and these may also be used according to the present invention.

As sequences capable of regulating ability to synthesize protein from mRNA, the importance of the ribosome-binding site (GAGG and similar sequences) and the distance to the initiation codon ATG is already known. It is also well known that terminator sequences which govern completion of transcription at the 3' end (for example, vectors including rrnBT₁T₂) are commercially available from Pharmacia Co.) affect the efficiency of protein synthesis in recombinants.

Vectors which may be used to prepare the recombinant vectors of the present invention may be commercially available ones, or they may be any of a variety of derived vectors, depending on the purpose. As examples there may be mentioned pBR322, pBR327, pKK223-3, pKK233-2, pTrc99, etc. which carry the pMB1-derived replicon; pUC18, pUC19, pUC118, pUC119, pHSG298, pHSG396, etc. which have been modified for increased number of copies; pACYC177, pACYC184, etc. which carry the p15A-derived replicon; and plasmids derived from pSC101, ColE1, R1 or F factor.

In addition to plasmids, gene introduction is also possible by way of virus vectors such as λ-phage and M13 phage, and transposons. For gene introduction to microorganisms other than *E. coli*, there is known gene introduction to the genus *Bacillus* by pUB110 (available from Sigma Co.) and pHY300PLK (available from Takara Shuzo). These vectors are described in Molecular Cloning (J. Sambrook, E.F. Fritsch, T. Maniatis, published by Cold Spring Harbor Laboratory Press), Cloning Vector (P.H. Pouwels, B.E. Enger/Valk, W.J. Brammar, published by Elsevier), and various company catalogs.

In particular, pTrc99 (available from Pharmacia Co.) is preferred as a vector including, in addition to the ampicillin resistance gene as a selective marker, P_{trc} and lacI^q as a promoter and controlling gene, the sequence AGGA as a ribosome-binding site, and rrnBT₁T₂ as the terminator, and having an expression regulating function on the HDP-synthesizing enzyme gene.

The incorporation into these vectors of a DNA fragment coding for HDP synthetase and if necessary a DNA fragment with the function of expression regulation on the gene for the above-mentioned enzyme, may be accomplished by a known method using an appropriate restriction endonuclease and ligase. Specifically the method described below may be conveniently followed. pTL6 may be mentioned as a definite plasmid of the present invention prepared in this manner.

As microorganisms for the gene introduction by such recombinant vectors, there may be used *Escherichia coli*, as well as microorganisms belonging to the genus *Bacillus*. The transformation may also be carried out by a conventional method, for example the CaCl₂ method or protoplast method described in Molecular Cloning (J. Sambrook, E.F. Fritsch,

T. Maniatis, published by Cold Spring Harbor Laboratory Press) or DNA Cloning Vol.I-III (ed. by D.M. Glover, published by IRL PRESS), etc.

A representative transformant according to the present invention which may be obtained is pTL6/JM109.

When these transformants or recombinant microorganism cells are cultured in medium normally used for *E. coli*, heptaprenyl diphosphate synthase (HDP synthase) accumulates in the cells. The HDP in the cells may be recovered by physical treatment in the absence or presence of a cytidylyc enzyme for lysis and a conventional isolation and purification method of for enzymes.

Lysozyme is preferably used as the cytidylyc enzyme, and ultrasonic waves are preferably used for physical treatment. Most of the *E. coli*-derived protein may be removed as insoluble deposit by heating at about 55°C. For the isolation and purification of the enzyme, any or a combination of gel filtration, ion exchange, hydrophobic, reverse phase, affinity or other type of chromatography, or ultrafiltration may be available.

During the process of isolation and purification, a reagent to stabilize the desired enzyme may be combined with the treatment solution, for example, a reducing agent such as β-mercaptoethanol or dithiothreitol, protective agent against proteases, such as PMSF or BSA, or metal ion such as magnesium.

Since the above-mentioned HDP synthetase activity may be measured, for example, in the manner described hereunder, it is recommended that the isolation and purification of the enzyme be performed while confirming the activity of the enzyme using the assay reaction solution employed in f) in Example 1 hereunder.

EXAMPLES

An example of a method of preparing a DNA sequence, plasmid and transformant according to the present invention will now be described, but the scope of the invention is in no way restricted to this example.

Example 1

The experiment was carried out basically in accordance with Molecular Cloning, DNA Cloning and the Takara Shuzo Catalog, mentioned previously. Most of the enzymes used were purchased from Takara Shuzo. The *Bacillus stearothermophilus* used was the known bacterium stored at the American Type Culture Collection (ATCC). Strain ATCC 10149 was used for this experiment.

a) Preparation of chromosomal DNA of *Bacillus stearothermophilus*

Culturing was performed in LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl) at 55°C, and the cells were collected. After suspension in a lysis buffer, lysozyme (chicken albumen-derived, product of Sigma Co.) was added to 10 mg/ml. After lysis, 1/10 volume of 1M Tris·HCl (pH 8.0), 1/10 volume of 10% SDS and 1/50 volume of 5 M NaCl were added. Proteinase K (product of Sigma Co.) was added to 10 mg/ml, and the mixture was heated to 50°C.

An equivalent of phenol was added and the mixture stirred and centrifuged to remove the protein. The supernatant was taken with a wide-mouthed pipette into a beaker, and after a 2.5-fold amount of ethanol was gently layered thereon the chromosomal DNA was wound up on a glass rod. After dissolution in TE (10 mM Tris·HCl (pH 8.0), 1 mM EDTA), the DNA was treated with RNaseA (product of Sigma Co.), Proteinase K and phenol, a 2.5-fold amount of ethanol was gently layered thereon and the chromosomal DNA was wound up on a glass rod. After washing with 70% ethanol, it was dissolved in TE and used in the following experiment.

b) Acquisition of pCR64

DNA primers P1 (Sequence No. 4), P2 (Sequence No. 5), P4 (Sequence No. 6), P6 (Sequence No. 7), P8 (Sequence No. 8), P9 (Sequence No. 9), P10 (Sequence No. 10), P11 (Sequence No. 11), P12 (Sequence No. 12) and P13 (Sequence No. 13) were prepared based on the heretofore known conserved regions of the amino acid sequence of prenyl transferase.

The chromosomal DNA was subjected to partial digestion with Sau3AI, and the PCR (polymerase chain reaction) was conducted with combinations of synthetic DNA P1 and P4, P1 and P6, P1 and P8, P2 and P4, P2 and P6, P2 and P8, P9 and P11, P9 and P4, P9 and P6, P9 and P8, P9 and P13, P1 and P11, P2 and P11, P12 and P4, P12 and P6, P12 and P8, P12 and P13, P1 and P13, P2 and P13, P10 and P4, P10 and P6, P10 and P8, and P10 and P13.

The PCR product of the P10 and P8 combination was linked with the HinclI digestion product of plasmid pUC118 (purchased from Takara Shuzo) using T4DNA ligase, and *E. coli* JM109 was transformed. Plasmids were prepared by the alkali SDS method, and the DNA sequences of 27 clones were analyzed with an Applied Biosystems 373A fluorescent

DNA sequencer. One of the sequences was referred as pCR64.

Table 1

(Composition of PCR reaction solution)

Template DNA	1 µg
10 x AmpliTaq Buffer	10 µl
dNTPs mixture solution (1.25 mM each)	16 µl
Primer 1	100 pmol
Primer 2	100 pmol
Taq polymerase adjusted to 100 µl with H ₂ O	2 units
(PCR reaction conditions)	
94°C, 30 secs	
↓	
50°C, 30 secs	x 35 cycles
↓	
72°C, 1 min	
↓	
72°C, 7 mins	
↓	
4°C	

25

c) Cloning of surrounding region with pCR64 as probe

30 c-1) A DNA fragment consisting of an approximately 500 bp pCR64 digestion product by restriction endonucleases KpnI and HindIII was labelled with DIG using a DIG DNA labeling kit (purchased from BOEHRINGER MANNHEIM). The instructions in the kit manual were followed.

c-2) Preparation of library

35 The chromosomal DNA was digested with restriction endonuclease AccI, and upon Southern hybridization using the probe from c-1), a band was detected in the position of about 3 kbp. Here, the DNA fragment of about 3 kbp was isolated by agarose gel electrophoresis and treated with T4DNA polymerase. These were linked with the SmaI digestion product of plasmid pUC18 using T4DNA ligase, and *E. coli* JM109 was transformed.

c-3) Screening

40 The library prepared in c-2) was screened with the probe prepared in c-1). Detection was made using a DIG DNA detection kit (purchased from BOEHRINGER MANNHEIM) and plasmid pAC2 was obtained. The instructions in the kit manual were followed. DNA sequence of the inserted gene of about 2.5 kbp was analyzed with an Applied Biosystems 373A fluorescent sequencer.

d) Isolation of pPR2

45 The gene library of c-2) was subjected to PCR using a synthetic DNA primer P64-4 (Sequence No. 14) prepared based on the DNA sequence obtained in c-3) and M13 Primer RV (purchased from Takara Shuzo). The amplification product was inserted into pT7 Blue T-Vector (purchased from Novagen) to obtain pPR2.

50 e) Linking of pAC2 and pPR2

DNA fragments of about 1 kbp and 5 kbp as BamHI digestion products of pAC2 and pPR2, respectively, were ligated to obtain pTL6.

55 f) Measurement of isoprenoid synthetase activity

The *E. coli* JM105 transformed with pTL6 was cultured overnight in 50 ml of LB medium containing 50 µg/ml of ampicillin, and the cells were collected. These were suspended in 4 ml of lysis buffer and disrupted with ultrasonic waves. Heating was performed at 55°C for 1 hour to inactivate the *E. coli*-derived prenyl transferase, and the *E. coli*-derived

denatured protein was removed by centrifugation and the supernatant was used for the assay. The assay reaction mixture was allowed to react for 1 hour or 14 hours at 55°C. The reaction mixture was extracted with 1-butanol, and the radioactivity was measured using a liquid scintillation counter.

5

Table 2

(Composition of lysis buffer)	
Tris-HCl (pH 7.7)	50 mM
EDTA	1 mM
β-Mercaptoethanol	10 mM
PMSF	0.1 mM
(Composition of assay reaction solution (total volume: 1 ml))	
Tris-HCl (pH 8.5)	50 mM
MgCl ₂	25 mM
NH ₄ Cl	50 mM
β-Mercaptoethanol	50 mM
(all-E)-farnesyl diphosphate	25 nmoles
[1- ¹⁴ C]Isopentenyl diphosphate (product of Amersham Col., corresponding to approx. 5.5 × 10 ⁴ dpm)	25 nmoles
Cell-free extract	500 µl

25

The 1-butanol extract obtained from the above-mentioned reaction of JM105 carrying pTL6 was hydrolyzed and analyzed by thin-layer chromatography (TLC). As a result, the produced isoprenoid was identified as heptaprenyl diphosphate, thus showing that pTL6 contains the gene for heptaprenyl diphosphate synthetase (Fig. 2). Furthermore, upon investigating the specificity to allylic substrate primers in the assay system described hereunder (Table 3), particular enzyme activity was found with (all-E) farnesyl diphosphate and (all-E) geranylgeranyl diphosphate, whereas dimethylallyl diphosphate, geranyl diphosphate, (2Z, 6E)-farnesyl diphosphate, (2Z, 6E, 10E) geranylgeranyl diphosphate and (2Z, 6E, 10E, 14E) farnesylgeranyl diphosphate were not satisfactory substrates (Table 4).

35

Table 3

(Composition of assay reaction solution (total volume: 1 ml))	
Tris-HCl (pH 8.5)	50 mM
MgCl ₂	25 mM
NH ₄ Cl	50 mM
β-Mercaptoethanol	50 mM
Allylic substrate	2.5 nmoles
[1- ¹⁴ C]Isopentenyl diphosphate (product of Amersham Col., corresponding to approx. 1.1 × 10 ⁵ dpm)	0.92 nmoles
Cell-free extract	500 µl

50

55

Table 4

Substrate specificity of HDP synthetase derived from DNA sequence of the present invention	
Substrate	Enzyme activity (dpm)
Dimethylallyl diphosphate	324
Geranyl diphosphate	381
(all-E) Farnesyl diphosphate	4163
(2Z, 6E) Farnesyl diphosphate	323
(all-E) Geranylgeranyl diphosphate	1514
(2Z, 6E, 10E) Geranylgeranyl diphosphate	648
(all-E) Farnesylgeranyl diphosphate	728
(2Z, 6E, 10E, 14E) Farnesylgeranyl diphosphate	281

E. coli normally has no heptaprenyl transferase or prenyl transferase with activity at 55°C. *E. coli* transformed with pTL6 is able to synthesize heptaprenyl diphosphate. Also, the fact that the activity is present at 55°C indicates that the *Bacillus stearothermophilus*-derived prenyl transferase encoded by pTL6 is highly thermostable. This also shows that the recombinant is useful for producing stable heptaprenyl diphosphate.

g) Preparation of pTL6 deletion mutants and identification of HDP synthetase gene

pTL6 had a gene insert of about 3 kbp, which contained three ORFs. Upon cleavage of pTL6 with restriction endonuclease and preparation of plasmid pTLD9 by deletion of ORF1, plasmid pTLD17 by deletion of ORFII and plasmid pTLD7 by deletion of ORFIII, and measurement of the isoprenoid-synthetase activities, activity was found for pTL6, pTLD9 and pTLD17. 1-Butanol extracts of reaction products of pTL6 and pTLD17 were hydrolyzed and analyzed by TLC, and the produced isoprenoid was confirmed to be heptaprenyl diphosphate.

Table 5

HDP synthetase activities derived from DNA sequences of the present invention (Radioactivity of 1-butanol extracts expressed in dpm units)	
Cell-free extract solution	Enzyme activity (dpm)
<i>E. coli</i> JM105	0
<i>E. coli</i> JM105 / pT7Blue T-Vector	0
<i>E. coli</i> JM105 / pTL6	750
<i>E. coli</i> JM105 / pTLD9	16
<i>E. coli</i> JM105 / pTLD17	129(*)
<i>E. coli</i> JM105 / pTLD7	0

* = 14 hour reaction

According to the present invention there are provided DNA sequences coding for heptaprenyl diphosphate synthetase enzyme of *Bacillus stearothermophilus* origin. Recombinant microorganisms, obtained by incorporating the DNA sequences into expression vectors which are then used to transform appropriate *E. coli* strains, produce safe substances with heptaprenyl diphosphate synthetase activity and heptaprenyl diphosphate.

This effect is achieved by preparing the above-mentioned DNA sequences from chromosomes of *Bacillus stearothermophilus*, which is not so far taught in scientific literature.

5

SEQUENCE LISTINGS

Sequence No.: 1

Sequence length: 663

Sequence type: nucleic acid

Strandedness: double

Topology: linear

Molecule type: Genomic DNA

Original source:

Organism: *Bacillus stearothermophilus*

Sequence:

ATG CTC GAT GGC GCT TCA ACG GCG CCG AGT GAG GCG GAG CGG TGC ATC	45
Met Leu Asp Gly Ala Ser Thr Ala Pro Ser Glu Ala Glu Arg Cys Ile	
5 10 15	
ATC GCC ATG ATG CTC ATG CAG ATC GCC CTT GAT ACC CAC GAT GAG GTG	90
Ile Ala Met Met Leu Met Gln Ile Ala Leu Asp Thr His Asp Glu Val	
20 25 30	
ACA GAT GAC GGC GGC GAC TTG CGG GCG CGG CAG CTT GTC GTC CTG GCC	135
Thr Asp Asp Gly Gly Asp Leu Arg Ala Arg Gln Leu Val Val Leu Ala	
35 40 45	
GGC GAC TTG TAC AGC GGG CTG TAC TAT GAG TTG TTG GCG CGT TCG GGC	180
Gly Asp Leu Tyr Ser Gly Leu Tyr Tyr Glu Leu Leu Ala Arg Ser Gly	
50 55 60	
GAA ACG GCG CTC ATC CGC TCG TTC GCC GAG GCG GTC CGC GAT ATT AAC	225
Glu Thr Ala Leu Ile Arg Ser Phe Ala Glu Ala Val Arg Asp Ile Asn	
65 70 75 80	
GAG CAA AAA GTG CGG CTT TAC GAA AAA AAA GTA GAG CGG ATC GAG TCG	270
Glu Gln Lys Val Arg Leu Tyr Glu Lys Lys Val Glu Arg Ile Glu Ser	
85 90 95	
TTG TTT GCG GCG GTC GGC ACG ATC GAA TCG GCG TTG CTT GTC AAG CTC	315
Leu Phe Ala Ala Val Glu Thr Ile Glu Ser Ala Leu Leu Val Lys Leu	
100 105 110	
GCC GAC CGC ATG GCG GCG CCG CAG TGG GGG CAG TTT GCC TAT TCG TAT	360
Ala Asp Arg Met Ala Ala Pro Gln Trp Gly Gln Phe Ala Tyr Ser Tyr	
115 120 125	

55

5 TTG CTG ATG CGG CGC CTG CTG CTC GAG CAG GAA GCG TTC ATC CGC ACG 405
 Leu Leu Met Arg Arg Leu Leu Glu Gln Glu Ala Phe Ile Arg Thr
 130 135 140
 10 GGA GCT TCG GTG CTC TTT GAG CAA ATG GCG CAA ATC GCG TTC CCG CGC 450
 Gly Ala Ser Val Leu Phe Glu Gln Met Ala Gln Ile Ala Phe Pro Arg
 145 150 155 160
 15 GCG GAA ACG TTG ACG AAA GAG CAA AAG CGG CAT TTG CTC CGC TTT TGC 495
 Ala Glu Thr Leu Thr Lys Glu Gln Lys Arg His Leu Leu Arg Phe Cys
 165 170 175
 20 CGC CGC TAT ATC GAC GGC TGC CGG GAG GCG CTG TTT GCG GCG AAA CTG 540
 Arg Arg Tyr Ile Asp Gly Cys Arg Glu Ala Leu Phe Ala Ala Lys Leu
 180 185 190
 25 CCG GTC AAC GGC CTG CTG CAG CTC CGC GTG GCC GTG CTT TCC GGC GGG 585
 Pro Val Asn Gly Leu Leu Gln Leu Arg Val Ala Val Leu Ser Gly Gly
 195 200 205
 30 TTT CAA GCC ATC GCC AAA AAG ACG GTG GAA GAA GGG TAG 630
 Phe Gln Ala Ile Ala Lys Lys Thr Val Glu Glu Gly ***
 210 215 220
 35 663

Sequence No.: 2

Sequence length: 705

35 Sequence type: nucleic acid

Strandedness: double

Topology: linear

40 Molecule type: Genomic DNA

Original source:

Organism: *Bacillus stearothermophilus*

Sequence:

45 ATG CGT CAA TCG AAA GAA GAG CGA GTC CAT CGC GTA TTT GAA AAC ATT 45
 Met Arg Gln Ser Lys Glu Glu Arg Val His Arg Val Phe Glu Asn Ile
 5 10 15
 50 TCT GCG CAT TAT GAC CGG ATG AAC TCC GTC ATC AGC TTC CGC CGC CAC 90
 Ser Ala His Tyr Asp Arg Met Asn Ser Val Ile Ser Phe Arg Arg His
 20 25 30

5 TTG AAG TGG CGC AAA GAC GTG ATG CGG CGG ATG AAT GTG CAA AAA GGC 135
 Leu Lys Trp Arg Lys Asp Val Met Arg Arg Met Asn Val Gln Lys Gly
 35 40 45
 10 AAA AAA GCG CTC GAT GTG TGC TGT GGG ACG GCT GAC TGG ACG ATC GCC 180
 Lys Lys Ala Leu Asp Val Cys Cys Gly Thr Ala Asp Trp Thr Ile Ala
 50 55 60
 15 TTG GCG GAG GCG GTC GGT CCG GAA GGG AAA GTG TAC GGC CTT GAT TTC 225
 Leu Ala Glu Ala Val Gly Pro Glu Gly Lys Val Tyr Gly Leu Asp Phe
 65 70 75 80
 AGC GAA AAC ATG CTG AAA GTC GGC GAA CAG AAG GTA AAA GCG CGC GGG 270
 Ser Glu Asn Met Leu Lys Val Gly Glu Gln Lys Val Lys Ala Arg Gly
 85 90 95
 20 TTG CAT AAT GTG AAG CTC ATT CAC GGC AAT GCG ATG CAG CTG CCG TTT 315
 Leu His Asn Val Lys Leu Ile His Gly Asn Ala Met Gln Leu Pro Phe
 100 105 110
 25 CCT GAC AAT TCG TTC GAT TAT GTG ACG ATC GGC TTC GGT TTG CGC AAC 360
 Pro Asp Asn Ser Phe Asp Tyr Val Thr Ile Gly Phe Gly Leu Arg Asn
 115 120 125
 30 GTC CCT GAC TAT ATG ACC GTG CTT AAG GAA ATG CAC CGG GTG ACG AAG 405
 Val Pro Asp Tyr Met Thr Val Leu Lys Glu Met His Arg Val Thr Lys
 130 135 140
 CCG GGC GGC ATA ACC GTC TGC CTG GAA ACG TCG CAG CCG ACG CTG TTC 450
 35 Pro Gly Gly Ile Thr Val Cys Leu Glu Thr Ser Gln Pro Thr Leu Phe
 145 150 155 160
 40 GGG TTT CGC CAG CTT TAC TAT TTT TAC TTC CGG TTT ATT ATG CCG CTG 495
 Gly Phe Arg Gln Leu Tyr Tyr Phe Tyr Phe Arg Phe Ile Met Pro Leu
 165 170 175
 TTT GGC AAG CTG CTG GCG AAA AGC TAT GAG GAG TAC TCG TGG CTG CAG 540
 Phe Gly Lys Leu Leu Ala Lys Ser Tyr Glu Glu Tyr Ser Trp Leu Gln
 45 180 185 190
 GAA TCG GCG CGC GAG TTT CCG GGG CGG GAC GAG CTG GCC GAG ATG TTC 585
 Glu Ser Ala Arg Glu Phe Pro Gly Arg Asp Glu Leu Ala Glu Met Phe
 195 200 205
 50 CGC GCC GCC GGT TTT GTC GAT GTC GAG GTC AAA CCG TAC ACG TTT GGC 630
 Arg Ala Ala Gly Phe Val Asp Val Glu Val Lys Pro Tyr Thr Phe Gly
 210 215 220

5

GTC GCG GCG ATG CAC TTG GGC TAT AAA CGG TGA	675
Val Ala Ala Met His Leu Gly Tyr Lys Arg ***	
225	230

705

10 Sequence No.: 3

Sequence length: 972

Sequence type: nucleic acid

15 Strandedness: double

Topology: linear

Molecule type: Genomic DNA

Original source:

20 Organism: *Bacillus stearothermophilus*

Sequence:

GTC AAC AAC ATG AAG TTA AAG GCG ATG TAT TCG TTT TTA AGC GAT GAT	45	
Val Asn Asn Met Lys Leu Lys Ala Met Tyr Ser Phe Leu Ser Asp Asp		
5	10	15

TTA GCG GCG GTC GAA GAG GAG CTT GAG CGG GCG GTT CAG TCG GAA TAC	90	
Leu Ala Ala Val Glu Glu Glu Leu Glu Arg Ala Val Gln Ser Glu Tyr		
30 20	25	30

GGG CCG CTT GGG GAA GCG GCG CTC CAT CTG TTG CAG GCG GGC GGA AAG	135	
Gly Pro Leu Gly Glu Ala Ala Leu His Leu Leu Gln Ala Gly Gly Lys		
35 35	40	45

CGG ATC CGT CCC GTT TTT GTC TTG CTT GCC GCC CGC TTC GGC CAA TAT	180	
Arg Ile Arg Pro Val Phe Val Leu Leu Ala Ala Arg Phe Gly Gln Tyr		
40 50	55	60

GAC CTT GAG CGG ATG AAG CAT GTT GCC GTT GCG CTC GAG CTC ATT CAT	225		
Asp Leu Glu Arg Met Lys His Val Ala Val Ala Leu Glu Leu Ile His			
45 65	70	75	80

ATG GCT TCG CTC GTC CAC GAC GAT GTG ATC GAC GAC GCC GAT TTG CGC	270	
Met Ala Ser Leu Val His Asp Asp Val Ile Asp Asp Ala Asp Leu Arg		
85	90	95

CGC GGC CGG CCG ACG ATC AAG GCG AAA TGG AGC AAC CGG TTC GCC ATG	315	
Arg Gly Arg Pro Thr Ile Lys Ala Lys Trp Ser Asn Arg Phe Ala Met		
50 100	105	110

55

5 TAC ACA GCA GGG GAT TAT TTG TTT GCC CGC TCG CTC GAA CGG ATG GCG GAG 360
 Tyr Thr Gly Asp Tyr Leu Phe Ala Arg Ser Leu Glu Arg Met Ala Glu
 115 120 125
 10 CTC GGC AAC CCG CGC GCC CAT CAA GTG TTG GCG AAA ACG ATC GTG GAA 405
 Leu Gly Asn Pro Arg Ala His Gln Val Leu Ala Lys Thr Ile Val Glu
 130 135 140
 15 GTG TGC CGC GGG GAA ATT GAG CAA ATT AAA GAC AAG TAC CGG TTT GAT 450
 Val Cys Arg Gly Glu Ile Glu Gln Ile Lys Asp Lys Tyr Arg Phe Asp
 145 150 155 160
 20 CAG CCG CTG CGC ACG TAT TTG CGG CGC ATC CGT CGG AAA ACG GCG CTG 495
 Gln Pro Leu Arg Thr Tyr Leu Arg Arg Ile Arg Arg Lys Thr Ala Leu
 165 170 175
 25 CTC ATC GCC GCG AGC TGC CAG CTT GGC GCC CTC GCT GCC GGC GCG CCG 540
 Leu Ile Ala Ala Ser Cys Gln Leu Gly Ala Leu Ala Ala Gly Ala Pro
 180 185 190
 30 GAG CCG ATT GTG AAG CGG CTG TAC TGG TTC GGC CAT TAT GTC GGC ATG 585
 Glu Pro Ile Val Lys Arg Leu Tyr Trp Phe Gly His Tyr Val Gly Met
 195 200 205
 35 TCG TTT CAA ATT ACC GAC GAC ATT CTC GAT TTC ACT GGG ACG GAG GAA 630
 Ser Phe Gln Ile Thr Asp Asp Ile Leu Asp Phe Thr Gly Thr Glu Glu
 210 215 220
 40 CAG CTC GGC AAA CCG GCC GGA AGC GAC TTG CTA CAA GGA AAC GTC ACC 675
 Gln Leu Gly Lys Pro Ala Gly Ser Asp Leu Leu Gln Gly Asn Val Thr
 225 230 235 240
 45 CTT CCT GTG CTG TAT GCC TTG AGC GAT GAG CGG GTG AAG GCG GCC ATT 720
 Leu Pro Val Leu Tyr Ala Leu Ser Asp Glu Arg Val Lys Ala Ala Ile
 245 250 255
 50 GCA GCT GTC GGT CCG GAA ACG GAC GTT GCG GAA ATG GCG GCG GTC ATT 765
 Ala Ala Val Gly Pro Glu Thr Asp Val Ala Glu Met Ala Ala Val Ile
 260 265 270
 TCC GCC ATT AAG CGG ACG GAC GCC ATT GAG CGG TCG TAT GCG TTA AGC 810
 Ser Ala Ile Lys Arg Thr Asp Ala Ile Glu Arg Ser Tyr Ala Leu Ser
 275 280 285
 55 GAC CGT TAC CTT GAC AAG GCG CTT CAC CTT GAC GGA CTG CCG ATG 855
 Asp Arg Tyr Leu Asp Lys Ala Leu His Leu Leu Asp Gly Leu Pro Met
 290 295 300

5 AAT GAG GCG CGC GGC CTG TTG CGC GAC CTC GCC CTT TAC ATC GGG AAA 900
Asn Glu Ala Arg Gly Leu Leu Arg Asp Leu Ala Leu Tyr Ile Gly Lys
305 310 315 320
10 AGG GAT TAT TAA 945
Arg Asp Tyr ***
15 Sequence No.: 4
Sequence length: 30
Sequence type: nucleic acid
Strandedness: single
Topology: linear
20 Molecule type: Synthetic DNA
Sequence:
25 CTNATHCAYG AYGAYYTNCC NTCNATGGAC 30
Sequence No.: 5
Sequence length: 24
Sequence type: nucleic acid
Strandedness: single
Topology: linear
30 Molecule type: Synthetic DNA
Sequence:
35 GAYAAYGAYG AYYTNMGNMG NGGC 24
Sequence No.: 6
Sequence length: 27
Sequence type: nucleic acid
Strandedness: single
Topology: linear
40 Molecule type: Synthetic DNA
Sequence:
45 ATCRTCNCKD ATYTGRAANG CNARNCC 27
Sequence No.: 7
Sequence length: 27
Sequence type: nucleic acid
Strandedness: single
Topology: linear
50 Molecule type: Synthetic DNA
Sequence:
55

ATCNARDATR TCR TCNCKDA TYTGRAA

27

5 Sequence No.: 8
Sequence length: 21
Sequence type: nucleic acid
Strandedness: single
Topology: linear
Molecule type: Synthetic DNA
Sequence:
10 GTCRCTNCCN ACNGGYTTNC C
15 Sequence No.: 9
Sequence length: 20
Sequence type: nucleic acid
Strandedness: single
Topology: linear
Molecule type: Synthetic DNA
Sequence:
20 YTNGARGCNG GNGGNAARMG
25 Sequence No.: 10
Sequence length: 20
Sequence type:
Strandedness: single
Topology: linear
Molecule type: Synthetic DNA
Sequence:
30 TAYWSNYTNA THCAYGAYGA
35 Sequence No.: 11
Sequence length: 21
Sequence type:
Strandedness: single
Topology: linear
Molecule type: Synthetic DNA
Sequence:
40 YTCCATRTCN GCNGCYTGNC C
45 Sequence No.: 12
Sequence length: 26
Sequence type: nucleic acid
Strandedness: single

5 Topology: linear
Molecule type: Synthetic DNA
Sequence:
10 YTNGARTAYA THCAYMGNCA YAARAC 26
Sequence No.: 13
Sequence length: 18
Sequence type: nucleic acid
Strandedness: single
15 Topology: linear
Molecule type: Synthetic DNA
Sequence:
20 DATRTCNARD ATRTCRTC 18
Sequence No.: 14
Sequence length: 20
Sequence type: nucleic acid
Strandedness: single
25 Topology: linear
Molecule type: Synthetic DNA
Sequence:
30 GATCACATCG TCGTGGACGA 20

35 Heptaprenyl diphosphate (HDP)-synthetase derived
from *Bacillus stearothermophilus* which enzymes have the
amino acid sequences shown as SEQ ID NOs: 1 to 3; 1 and
2; 2 and 3; or 1 and 3, DNA encoding them, and a method
of producing the enzymes.

40 According to the invention it is possible to
industrially produce HDP-synthesizing enzyme and HPD.

45

50

55

	ACA GAT GAC GGC GGC GAC TTG CGG GCG CAG CTT GTC GTC CTG GCC		144
5	Thr Asp Asp Gly Gly Asp Leu Arg Ala Arg Gln Leu Val Val Leu Ala		
	35 40 45		
	GGC GAC TTG TAC AGC GGG CTG TAC TAT GAG TTG TTG GCG CGT TCG GGC		192
10	Gly Asp Leu Tyr Ser Gly Leu Tyr Tyr Glu Leu Leu Ala Arg Ser Gly		
	50 55 60		
	GAA ACG GCG CTC ATC CGC TCG TTC GCC GAG GCG GTC CGC GAT ATT AAC		240
	Glu Thr Ala Leu Ile Arg Ser Phe Ala Glu Ala Val Arg Asp Ile Asn		
	65 70 75 80		
15	GAG CAA AAA GTG CGG CTT TAC GAA AAA AAA GTA GAG CGG ATC GAG TCG		288
	Glu Gln Lys Val Arg Leu Tyr Glu Lys Lys Val Glu Arg Ile Glu Ser		
	85 90 95		
20	TTG TTT GCG GCG GTC GGC ACG ATC GAA TCG GCG TTG CTT GTC AAG CTC		336
	Leu Phe Ala Ala Val Gly Thr Ile Glu Ser Ala Leu Leu Val Lys Leu		
	100 105 110		
	GCC GAC CGC ATG GCG GCG CCG CAG TGG GGG CAG TTT GCC TAT TCG TAT		384
25	Ala Asp Arg Met Ala Ala Pro Gln Trp Gly Gln Phe Ala Tyr Ser Tyr		
	115 120 125		
	TTG CTG ATG CGG CGC CTG CTG CTC GAG CAG GAA GCG TTC ATC CGC ACG		432
	Leu Leu Met Arg Arg Leu Leu Glu Gln Glu Ala Phe Ile Arg Thr		
	130 135 140		
30	GGA GCT TCG GTG CTC TTT GAG CAA ATG GCG CAA ATC GCG TTC CCG CGC		480
	Gly Ala Ser Val Leu Phe Glu Gln Met Ala Gln Ile Ala Phe Pro Arg		
	145 150 155 160		
35	GCG GAA ACG TTG ACG AAA GAG CAA AAG CGG CAT TTG CTC CGC TTT TGC		528
	Ala Glu Thr Leu Thr Lys Glu Gln Lys Arg His Leu Leu Arg Phe Cys		
	165 170 175		
40	CGC CGC TAT ATC GAC GGC TGC CGG GAG GCG CTG TTT GCG GCG AAA CTG		576
	Arg Arg Tyr Ile Asp Gly Cys Arg Glu Ala Leu Phe Ala Ala Lys Leu		
	180 185 190		
45	CCG GTC AAC GGC CTG CTG CAG CTC CGC GTG GCC GTG CTT TCC GGC GGG		624
	Pro Val Asn Gly Leu Leu Gln Leu Arg Val Ala Val Leu Ser Gly Gly		
	195 200 205		
	TTT CAA GCC ATC GCC AAA AAG ACG GTG GAA GAA GGG TAG		663
50	Phe Gln Ala Ile Ala Lys Lys Thr Val Glu Glu Gly		
	210 215 220		

(2) INFORMATION FOR SEQ ID NO: 2:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 220 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

15	Met Leu Asp Gly Ala Ser Thr Ala Pro Ser Glu Ala Glu Arg Cys Ile	1	5	10	15
	Ile Ala Met Met Leu Met Gln Ile Ala Leu Asp Thr His Asp Glu Val				
		20		25	30
20	Thr Asp Asp Gly Gly Asp Leu Arg Ala Arg Gln Leu Val Val Leu Ala				
		35		40	45
	Gly Asp Leu Tyr Ser Gly Leu Tyr Tyr Glu Leu Leu Ala Arg Ser Gly				
		50		55	60
25	Glu Thr Ala Leu Ile Arg Ser Phe Ala Glu Ala Val Arg Asp Ile Asn				
		65		70	75
	Glu Gln Lys Val Arg Leu Tyr Glu Lys Lys Val Glu Arg Ile Glu Ser				
30		85		90	95
	Leu Phe Ala Ala Val Gly Thr Ile Glu Ser Ala Leu Leu Val Lys Leu				
		100		105	110
35	Ala Asp Arg Met Ala Ala Pro Gln Trp Gly Gln Phe Ala Tyr Ser Tyr				
		115		120	125
	Leu Leu Met Arg Arg Leu Leu Glu Gln Glu Ala Phe Ile Arg Thr				
		130		135	140
40	Gly Ala Ser Val Leu Phe Glu Gln Met Ala Gln Ile Ala Phe Pro Arg				
		145		150	155
	Ala Glu Thr Leu Thr Lys Glu Gln Lys Arg His Leu Leu Arg Phe Cys				
45		165		170	175
	Arg Arg Tyr Ile Asp Gly Cys Arg Glu Ala Leu Phe Ala Ala Lys Leu				
		180		185	190
50	Pro Val Asn Gly Leu Leu Gln Leu Arg Val Ala Val Leu Ser Gly Gly				
		195		200	205
	Phe Gln Ala Ile Ala Lys Lys Thr Val Glu Glu Gly				
		210		215	220

(2) INFORMATION FOR SEQ ID NO: 3:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 705 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Bacillus stearothermophilus*

15 (ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 1..705

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

	ATG CGT CAA TCG AAA GAA GAG CGA GTC CAT CGC GTA TTT GAA AAC ATT Met Arg Gln Ser Lys Glu Glu Arg Val His Arg Val Phe Glu Asn Ile 1 5 10 15	48
25	TCT GCG CAT TAT GAC CGG ATG AAC TCC GTC ATC AGC TTC CGC CGC CAC Ser Ala His Tyr Asp Arg Met Asn Ser Val Ile Ser Phe Arg Arg His 20 25 30	96
30	TTG AAG TGG CGC AAA GAC GTG ATG CGG CGG ATG AAT GTG CAA AAA GGC Leu Lys Trp Arg Lys Asp Val Met Arg Arg Met Asn Val Gln Lys Gly 35 40 45	144
35	AAA AAA GCG CTC GAT GTG TGC TGT GGG ACG GCT GAC TGG ACG ATC GCC Lys Lys Ala Leu Asp Val Cys Cys Gly Thr Ala Asp Trp Thr Ile Ala 50 55 60	192
40	TTG GCG GAG GCG GTC GGT CCG GAA GGG AAA GTG TAC GGC CTT GAT TTC Leu Ala Glu Ala Val Gly Pro Glu Gly Lys Val Tyr Gly Leu Asp Phe 65 70 75 80	240
45	AGC GAA AAC ATG CTG AAA GTC GGC GAA CAG AAG GTA AAA GCG CGC GGG Ser Glu Asn Met Leu Lys Val Gly Glu Gln Lys Val Lys Ala Arg Gly 85 90 95	288
50	TTG CAT AAT GTG AAG CTC ATT CAC GGC AAT GCG ATG CAG CTG CCG TTT Leu His Asn Val Lys Leu Ile His Gly Asn Ala Met Gln Leu Pro Phe 100 105 110	336
55	CCT GAC AAT TCG TTC GAT TAT GTG ACG ATC GGC TTC GGT TTG CGC AAC Pro Asp Asn Ser Phe Asp Tyr Val Thr Ile Gly Phe Gly Leu Arg Asn 115 120 125	384
60	GTC CCT GAC TAT ATG ACC GTG CTT AAG GAA ATG CAC CGG GTG ACG AAG Val Pro Asp Tyr Met Thr Val Leu Lys Glu Met His Arg Val Thr Lys 130 135 140	432

	CCG GGC GGC ATA ACC GTC TGC CTG GAA ACG TCG CAG CCG ACG CTG TTC	480
5	Pro Gly Gly Ile Thr Val Cys Leu Glu Thr Ser Gln Pro Thr Leu Phe	
	145 150 155 160	
	GGG TTT CGC CAG CTT TAC TAT TTT TAC TTC CGG TTT ATT ATG CCG CTG	528
	Gly Phe Arg Gln Leu Tyr Tyr Phe Tyr Phe Arg Phe Ile Met Pro Leu	
10	165 170 175	
	TTT GGC AAG CTG CTG GCG AAA AGC TAT GAG GAG TAC TCG TGG CTG CAG	576
	Phe Gly Lys Leu Leu Ala Lys Ser Tyr Glu Glu Tyr Ser Trp Leu Gln	
	180 185 190	
15	GAA TCG GCG CGC GAG TTT CCG GGG CGG GAC GAG CTG GCC GAG ATG TTC	624
	Glu Ser Ala Arg Glu Phe Pro Gly Arg Asp Glu Leu Ala Glu Met Phe	
	195 200 205	
20	CGC GCC GCC GGT TTT GTC GAT GTC GAG GTC AAA CCG TAC ACG TTT GGC	672
	Arg Ala Ala Gly Phe Val Asp Val Glu Val Lys Pro Tyr Thr Phe Gly	
	210 215 220	
	GTG GCG GCG ATG CAC TTG GGC TAT AAA CGG TGA	705
	Val Ala Ala Met His Leu Gly Tyr Lys Arg	
25	225 230 235	

30

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 4:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 234 amino acids
- (B) TYPE: amino acid
- (C) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Gln Ser Lys Glu Glu Arg Val His Arg Val Phe Glu Asn Ile
 1 5 10 15

15 Ser Ala His Tyr Asp Arg Met Asn Ser Val Ile Ser Phe Arg Arg His
 20 25 30

Leu Lys Trp Arg Lys Asp Val Met Arg Arg Met Asn Val Gln Lys Gly
 20 35 40 45

Lys Lys Ala Leu Asp Val Cys Cys Gly Thr Ala Asp Trp Thr Ile Ala
 50 55 60

25 Leu Ala Glu Ala Val Gly Pro Glu Gly Lys Val Tyr Gly Leu Asp Phe
 65 70 75 80

Ser Glu Asn Met Leu Lys Val Gly Glu Gln Lys Val Lys Ala Arg Gly
 85 90 95

30 Leu His Asn Val Lys Leu Ile His Gly Asn Ala Met Gln Leu Pro Phe
 100 105 110

Pro Asp Asn Ser Phe Asp Tyr Val Thr Ile Gly Phe Gly Leu Arg Asn
 115 120 125

35 Val Pro Asp Tyr Met Thr Val Leu Lys Glu Met His Arg Val Thr Lys
 130 135 140

40 Pro Gly Gly Ile Thr Val Cys Leu Glu Thr Ser Gln Pro Thr Leu Phe
 145 150 155 160

Gly Phe Arg Gln Leu Tyr Tyr Phe Tyr Phe Arg Phe Ile Met Pro Leu
 165 170 175

45 Phe Gly Lys Leu Leu Ala Lys Ser Tyr Glu Glu Tyr Ser Trp Leu Gln
 180 185 190

Glu Ser Ala Arg Glu Phe Pro Gly Arg Asp Glu Leu Ala Glu Met Phe
 195 200 205

50 Arg Ala Ala Gly Phe Val Asp Val Glu Val Lys Pro Tyr Thr Phe Gly
 210 215 220

Val Ala Ala Met His Leu Gly Tyr Lys Arg
 225 230

55

(2) INFORMATION FOR SEQ ID NO: 5:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 972 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Bacillus stearothermophilus*

15 (ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 1..972

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

GTG AAC AAC ATG AAG TTA AAG GCG ATG TAT TCG TTT TTA AGC GAT GAT Val Asn Asn Met Lys Leu Lys Ala Met Tyr Ser Phe Leu Ser Asp Asp 1 5 10 15	48
25 TTA GCG GCG GTC GAA GAG GAG CTT GAG CGG GCG GTT CAG TCG GAA TAC Leu Ala Ala Val Glu Glu Leu Glu Arg Ala Val Gln Ser Glu Tyr 20 25 30	96
30 GGG CCG CTT GGG GAA GCG GCG CTC CAT CTG TTG CAG GCG GGC GGA AAG Gly Pro Leu Gly Ala Ala Leu His Leu Leu Gln Ala Gly Gly Lys 35 40 45	144
35 CGG ATC CGT CCC GTT TTT GTC TTG CTT GCC GCC CGC TTC GGC CAA TAT Arg Ile Arg Pro Val Phe Val Leu Leu Ala Ala Arg Phe Gly Gln Tyr 50 55 60	192
40 GAC CTT GAG CGG ATG AAG CAT GTT GCC GTT GCG CTC GAG CTC ATT CAT Asp Leu Glu Arg Met Lys His Val Ala Val Ala Leu Glu Leu Ile His 65 70 75 80	240
45 ATG GCT TCG CTC GTC CAC GAC GAT GTG ATC GAC GAC GCC GAT TTG CGC Met Ala Ser Leu Val His Asp Asp Val Ile Asp Asp Ala Asp Leu Arg 85 90 95	288
50 CGC GGC CGG CCG ACG ATC AAG GCG AAA TGG AGC AAC CGG TTC GCC ATG Arg Gly Arg Pro Thr Ile Lys Ala Lys Trp Ser Asn Arg Phe Ala Met 100 105 110	336
55 TAC ACA GGG GAT TAT TTG TTT GCC CGC TCG CTC GAA CGG ATG GCG GAG Tyr Thr Gly Asp Tyr Leu Phe Ala Arg Ser Leu Glu Arg Met Ala Glu 115 120 125	384
55 CTC GGC AAC CCG CGC GCC CAT CAA GTG TTG GCG AAA ACG ATC GTG GAA Leu Gly Asn Pro Arg Ala His Gln Val Leu Ala Lys Thr Ile Val Glu 130 135 140	432

	GTG TGC CGC GGG GAA ATT GAG CAA ATT AAA GAC AAG TAC CGG TTT GAT		480
5	Val Cys Arg Gly Glu Ile Glu Gln Ile Lys Asp Lys Tyr Arg Phe Asp		
	145 150 155 160		
	CAG CCG CTG CGC ACG TAT TTG CGG CGC ATC CGT CGG AAA ACG GCG CTG		528
10	Gln Pro Leu Arg Thr Tyr Leu Arg Arg Ile Arg Arg Lys Thr Ala Leu		
	165 170 175		
	CTC ATC GCC GCG AGC TGC CAG CTT GGC GCC CTC GCT GCC GGC GCG CCG		576
	Leu Ile Ala Ala Ser Cys Gln Leu Gly Ala Leu Ala Ala Gly Ala Pro		
	180 185 190		
15	GAG CCG ATT GTG AAG CGG CTG TAC TGG TTC GGC CAT TAT GTC GGC ATG		624
	Glu Pro Ile Val Lys Arg Leu Tyr Trp Phe Gly His Tyr Val Gly Met		
	195 200 205		
20	TCG TTT CAA ATT ACC GAC GAC ATT CTC GAT TTC ACT GGG ACG GAG GAA		672
	Ser Phe Gln Ile Thr Asp Asp Ile Leu Asp Phe Thr Gly Thr Glu Glu		
	210 215 220		
25	CAG CTC GGC AAA CCG GCC GGA AGC GAC TTG CTA CAA GGA AAC GTC ACC		720
	Gln Leu Gly Lys Pro Ala Gly Ser Asp Leu Leu Gln Gly Asn Val Thr		
	225 230 235 240		
	CTT CCT GTG CTG TAT GCC TTG AGC GAT GAG CGG GTG AAG GCG GCC ATT		768
	Leu Pro Val Leu Tyr Ala Leu Ser Asp Glu Arg Val Lys Ala Ala Ile		
	245 250 255		
30	GCA GCT GTC GGT CCG GAA ACG GAC GTT GCG GAA ATG GCG GCG GTC ATT		816
	Ala Ala Val Gly Pro Glu Thr Asp Val Ala Glu Met Ala Ala Val Ile		
	260 265 270		
35	TCC GCC ATT AAG CGG ACG GAC GCC ATT GAG CGG TCG TAT GCG TTA AGC		864
	Ser Ala Ile Lys Arg Thr Asp Ala Ile Glu Arg Ser Tyr Ala Leu Ser		
	275 280 285		
40	GAC CGT TAC CTT GAC AAG GCG CTT CAC CTT GAC GGA CTG CCG ATG		912
	Asp Arg Tyr Leu Asp Lys Ala Leu His Leu Leu Asp Gly Leu Pro Met		
	290 295 300		
45	AAT GAG GCG CGC GGC CTG TTG CGC GAC CTC GCC CTT TAC ATC GGG AAA		960
	Asn Glu Ala Arg Gly Leu Leu Arg Asp Leu Ala Leu Tyr Ile Gly Lys		
	305 310 315 320		
	AGG GAT TAT TAA		972
	Arg Asp Tyr		
50			

(2) INFORMATION FOR SEQ ID NO: 6:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 323 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Val	Asn	Asn	Met	Lys	Leu	Lys	Ala	Met	Tyr	Ser	Phe	Leu	Ser	Asp	Asp
1				5					10					15	

15 Leu Ala Ala Val Glu Glu Glu Leu Glu Arg Ala Val Gln Ser Glu Tyr
20 25 30

Gly Pro Leu Gly Glu Ala Ala Leu His Leu Leu Gln Ala Gly Gly Lys
35 40 45

20 Arg Ile Arg Pro Val Phe Val Leu Leu Ala Ala Arg Phe Gly Gln Tyr
50 55 60

Asp Leu Glu Arg Met Lys His Val Ala Val Ala Leu Glu Leu Ile His
65 70 75 80

25 Met Ala Ser Leu Val His Asp Asp Val Ile Asp Asp Ala Asp Leu Arg
85 90 95

Arg Gly Arg Pro Thr Ile Lys Ala Lys Trp Ser Asn Arg Phe Ala Met
100 105 110

Tyr Thr Gly Asp Tyr Leu Phe Ala Arg Ser Leu Glu Arg Met Ala Glu
 115 120 125

Leu Gly Asn Pro Arg Ala His Gln Val Leu Ala Lys Thr Ile Val Glu
130 135 140

Val Cys Arg Gly Glu Ile Glu Gln Ile Lys Asp Lys Tyr Arg Phe Asp

145 150 155 160
Gia Bao Lou Ano Thru Tuy Lou Ano Ano Ulo Ano Ano Juso Thru Alo Lou

165 170 175

180 **185** **190**

195 200 205

210 215 220

225 230 235 240

Leu Pro Val Leu Tyr Ala Leu Ser Asp Glu Arg Val Lys Ala Ala Ile
245 250 255

Ala Ala Val Gly Pro Glu Thr Asp Val Ala Glu Met Ala Ala Val Ile
5 260 265 270

Ser Ala Ile Lys Arg Thr Asp Ala Ile Glu Arg Ser Tyr Ala Leu Ser
275 280 285

10 Asp Arg Tyr Leu Asp Lys Ala Leu His Leu Leu Asp Gly Leu Pro Met
290 295 300

Asn Glu Ala Arg Gly Leu Leu Arg Asp Leu Ala Leu Tyr Ile Gly Lys
305 310 315 320

15 Arg Asp Tyr

20

25

30

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 7:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

15 CTNATHCAYG AYGAYYTNC NTCNATGGAC

30

20

(2) INFORMATION FOR SEQ ID NO: 8:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

35 GAYAAYGAYG AYYTNMGNMG NGGC

24

40

(2) INFORMATION FOR SEQ ID NO: 9:

45 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

55 ATCRTCNCKD ATYTGRAANG CNARNCC

27

(2) INFORMATION FOR SEQ ID NO: 10:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 27 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (synthetic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

ATCNARDATR TCRTCNCKDA TYTGAA

27

20

(2) INFORMATION FOR SEQ ID NO: 11:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

35 GTCRCTNCCN ACNGGYTTNC C

21

40

(2) INFORMATION FOR SEQ ID NO: 12:

45 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

55 YTNGARGCNG GNNGNAARMG

20

55

(2) INFORMATION FOR SEQ ID NO: 13:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

15 TAYWSNYTNA THCAYGAYGA

20

20

(2) INFORMATION FOR SEQ ID NO: 14:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

35 YTCCATRTCN GCNGCYTGNC C

21

40

(2) INFORMATION FOR SEQ ID NO: 15:

45 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (synthetic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

55 YTNGARTAYA THCAYMGNCA YAARAC

26

55

(2) INFORMATION FOR SEQ ID NO: 16:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (synthetic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

DATRTCNARD ATRTCRTC

18

20 (2) INFORMATION FOR SEQ ID NO: 17:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (synthetic)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GATCACATCG TCGTGGACGA

20

40 Claims

1. A protein of *Bacillus stearothermophilus* origin with heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; a peptide with the amino acid sequence from the 1st amino acid Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.
2. A peptide of *Bacillus stearothermophilus* origin which has the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.
3. A peptide of *Bacillus stearothermophilus* origin, which has the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

4. A protein of *Bacillus stearothermophilus* origin with heptaprenyl diphosphate synthetase activity, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

5

5. A protein of *Bacillus stearothermophilus* origin, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 220th amino acid Gly of Sequence No. 1, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

10

6. A protein of *Bacillus stearothermophilus* origin, which comprises a peptide with the amino acid sequence from the 1st amino acid Met to the 234th amino acid Arg of Sequence No. 2, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence; and a peptide with the amino acid sequence from the 1st amino acid Val to the 323rd amino acid Tyr of Sequence No. 3, or an amino acid sequence resulting from a substitution, deletion or addition of one or a few amino acids in the amino acid sequence.

15

20 7. DNA containing a base sequence encoding the 3 peptides according to Claim 1.

8. DNA encoding the peptide according to Claim 2.

9. DNA encoding the peptide according to Claim 3.

25

10. DNA encoding the two peptides according to Claim 4.

11. DNA encoding the two peptides according to Claim 5.

30

12. DNA encoding the two peptides according to Claim 6.

13. An expression vector comprising the DNA according to Claim 7.

35

14. A host transformed by the expression vector according to Claim 13.

15. The host according to Claim 14 which is a bacterium.

40

16. The host according to Claim 15 which is *Escherichia*.

45

17. A method of producing a peptide with heptaprenyl diphosphate synthetase activity or a related peptide, comprising the steps of culturing a host according to Claim 14, and recovering from the culture a peptide with heptaprenyl diphosphate synthetase activity or a related peptide.

18. A method of producing heptaprenyl diphosphate, comprising the steps of culturing a host according to Claim 14, and recovering heptaprenyl diphosphate from the culture.

50

19. A method of producing heptaprenyl diphosphate, comprising the steps of allowing the heptaprenyl diphosphate-synthesizing enzyme according to Claim 1, or a substance containing it, to act on an isopentenyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, farnesylgeranyl diphosphate or hexaprenyl diphosphate substrate.

Fig. 1

Fig.2

pTL6

