

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal

Warangal

Fields

Fields:

- ❖ A **Field**, **denoted** {**F**,+,×}, is an **integral domain** whose elements satisfy the following additional property:
 - ✓ For every element **a** in **F**, except the **element designated 0** (which is the identity element for the '+' operator), there must also exist in **F** its multiplicative inverse.

Fields:

✓ In Other Words, if $\mathbf{a} \in \mathbf{F}$ and $\mathbf{a} \neq \mathbf{0}$, then there must exist an element $\mathbf{b} \in \mathbf{F}$ such that

$$ab = ba = 1$$

- ✓ where '1' symbolically denotes the element which serves as the identity element for the multiplication operation.
- ✓ For a given **a**, such a **b** is often designated a^{-1} .

Fields

- ❖ A field is a non-empty set F with **two binary operators** which are usually denoted by + and *, that satisfy the usual arithmetic properties:
 - \checkmark (F, +) is an Abelian group with (additive) identity denoted by 0.
 - \checkmark (F, *) is an Abelian group with (multiplicative) identity denoted by 1.
 - ✓ The distributive law holds: (a+b)*c = a*c+b*c for all a, b, c ∈ F.

Summary

Algebraic Structure	Supported Typical Operations	Supported Typical Sets of Integers
Group	$(+ -) \text{ or } (\times \div)$	\mathbf{Z}_n or \mathbf{Z}_n^*
Ring	(+ -) and (×)	Z
Field	$(+ -)$ and $(\times \div)$	\mathbf{Z}_{p}

- ❖ If the set F is finite, then the field is said to be a **finite field**.
- ❖ The order of a finite field is the **number of elements** in the finite field.

- \clubsuit By definition, (Z, +, *) does not form a field because (Z, *) is **not** a **multiplicative group**.
 - \checkmark $\mathbf{Z_n}$ is not a finite field is because not every element in $\mathbf{Z_n}$ is guaranteed to have a **multiplicative inverse**
 - \checkmark (Z_n , +, *) in general is **not** a finite field
- ❖ In particular, An element 'a; of **Z**_n does not have a multiplicative

inverse if 'a' is **not relatively prime** to the modulus n.

Prime Finite Fields

- \clubsuit For prime n, every element $a \in \mathbb{Z}_n$ will be **relatively prime** to n
 - ✓ There will exist a multiplicative inverse for every $a \in Z_n$ for prime n
- \Leftrightarrow If Z_p is a **finite field**,
 - ✓ when we assume p denotes a prime number.
 - \checkmark Z_p is referred as a **prime finite field.**

Prime Finite Fields

* A Prime Finite Field is also called a Galois Field, which is

named in honour of Évariste Galois

Galois Field

❖ A Galois field, **GF(pⁿ), is a finite field** with **pⁿ elements.**

 \clubsuit When $\mathbf{n} = \mathbf{1}$, we have GF(p) field.

arithmetic operations

✓ This field can be the set $\mathbf{Z}_p = \{0, 1, ..., p - 1\}$, with two

Example

A very common field of Galois field is GF(2) with the set {0, 1} and two operations- addition and multiplication,

AND

Example

 \Leftrightarrow GF(5) on the set \mathbb{Z}_5 (5 is a prime) with addition and

multiplication operators

$$GF(5)$$
 {0, 1, 2, 3, 4} $+ \times$

+	0	1	2	3	4
0	0	1	2 3	3	4
$\frac{1}{2}$	1	2	3	4	0
3	3	3	0	1	2
4	4	0	1	2	3
Addition					

Multiplication

Additive inverse

Multiplicative inverse

GF(2ⁿ) FIELDS

Why GF(2ⁿ) Fields is used

- ❖ Using Modulo Arithmetic will **not construct** a finite field with order of p^m for m > 1.
- For Example,
 - ✓ $2^3 = 8$, and we've already known (\mathbb{Z}_8 , +, *) is **not a field.**

Why GF(2ⁿ) Fields is used

- \clubsuit We need to work in $GF(2^n)$ that uses a **set of 2^n elements.**
 - \checkmark The elements in this set are **n-bit words**.
- \clubsuit Let us define a **GF(2²) field** in which the set has **four 2-bit**

words: {00, 01, 10, 11}.

GF(2²) Fields

Addition

\bigoplus	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Identity: 00

Multiplication

	00			
00	00	00	00	00
01	00	01	10	11
10	00	10	11	01
11	00	11	01	10

Identity: 01

GF(2ⁿ) Fields is used

 \diamond One way to work with **GF(2ⁿ)** is by using the **polynomial basis**.

Thank U