

Good Evening

* Content

Or. Rat in a maze

Oz Permutations - I & II

O3. Subset

Recursion: Solving Problems using subproblem

Backtracking: An algorithmic technique by (Brute force) which we can try out all possibilities using Recursion.

Rat in a Maze

Check if it is possible to go from top-left to bottom-right cell in a maze with blocked cell.

	0	1	2	3	4	ی	6
0	0	٥	0	1	0	0	0
1	0	1	٥	1	٥	-	O
2	0	1	٥	O	ı	٥	Q
3	O	0	1	D	1	0	ı
4	١	D	١	0	0	0	Q
ئ	D	0	٥	ı	Q	ı	0

or (i) (j)=0 empty

boolean check (arr [) (), i, j)

of (i==n-1 48 j==m-1) return tove:

% (i<0 || j<0 || $i \ge N$ || $j \ge M$ || ar(i)(j) = 2) return false,

arr(i)[i] = 2: // ar(i)(j) is visited

return (check (ar, i-1, j) | | check (ar, i, j-1))

(0,0) (0,-1) (0,0) (0,-1) (0,-1) (0,-1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

	O	1	2	3	4	ڪ	6
0	0	٥	0	1	0	0	0
1	0	1	٥	1	٥	(O
2	0	1	٥	٥	ı	٥	Q
3	O	0	1	O	1	0	l
4	ı	O	١	0	0	ට	Q
ئ	D	0	٥	l	ρ	ı	O

	0	١	2	3	4	ڪ	6
0	2	٥	0	1	0	0	0
1	2	1	٥	1	٥	ſ	Q
2	25	1	٥	٥	ı	٥	Q
3	1 2	2	1	O	١	0	ı
4	1	٥	١	0	0	O	Q
<u>5</u>	Q	0	O	1	Q	1	C

* Pseudocode

booken check (int [][]ar, inti, intj)

if (i== n-1 && j = = m-1) return true:

ar (1) (j) = 2;

dx = [-1,0,1,0)

dy = [0, -1,0,1]

for (K=0; K<4; K++)

ni = i + dx(k)

nj = j + dy [12]

it (ni 20 & & nj 20 & ni < n & & nj < m

boolean ons = check (ar, ni, nj)

If (ans = = tove) redum tove:

return false:

TC: 0(n*m)

sc : 0(n*m)

* Permutations -1

Given a character array with distinct elements. Print all permutations of it without modifying is.

$$N * (N-1) * (N-2) \cdot \cdot \cdot \cdot 1 = N_0^1$$

× 2 1=0 1=0 2 × × (2)

abc

Permutations 2

Print all permutations of given char array

Str: [a,b,a] - O/p] aba, aab, baa]

MISSISSIPI
$$\Rightarrow$$
 N!
$$f(0)! f(0)! --- f(2)!$$


```
1
```

```
void permute (for [26], N, cns (N), ida)
      if (idx = = N) } print (ons), return; }
      for ( i= 0; i<26; i++)
           "if (freg [:] > 0)
               freq [1] -=1;
                ans [ida] = (char) (1+'a');
               permute (form, N, ons, idx+1);
                 freq (1) + = 1;
                                TC = 0(N!)
                                Sc = O(N)
```

* Subsets

Given an array with distinct integers. Print all subsets using recursion

subsets = 2

$$\{1,2,3\}$$
, ans $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2,3\}$, 1
 $\{1,2$

```
subsets (arr (), idx, AL (I) ans)

if (idx == arr. length) { print (ans) return;}

subsets (arr, idx+1, ans); // Not Include

ans. insert (ar (idx));

subsets (arr. idx+1, ans); // Include

ans. remove (ans. size()-1);

TC = O(2)+1
```

Sc = 0(n)