## SYCL Backend for Llama.cpp

Meng Hengyu



#### **Outlines**

• Ilama.cpp brief introduction

Ecosystem

**GEMM Operators: Innovation WOQ** 

Other GenAl Operators

Static graph and memory management

New backend registration

• Status

**GEMM Operators dispatch** 

Cross-vendor(NVIDIA/AMD) support by codeplay

Future work

Performance – Flash attention / Lower-level API



Llama.cpp – Innovation WOQ(Weight-only-quantization)



#### **Ultra compression Innovation**

1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit WOQ GEMM for faster inference and reduced memory usage to fit into consumer GPUs. For example, it would be quite helpful if Ilama3-70B with 10K context could be fit into 24G customer GPU.

- QX\_0, block\_size=32, no zero points: Q4\_0, Q5\_0, Q8\_0
- QX\_1, block\_size=32, with zero points: Q4\_1, Q5\_1, Q8\_1
- QX\_K, block\_size=256, quantized scales: Q2\_K, Q3\_K, Q4\_K, Q5\_K, Q6\_K
- IQX\_XXS, block\_size=256, with important matrix, super block scales: IQ2\_XXS, IQ3\_XXS
- IQX\_XS, block\_size=256, with import matrix: IQ2\_XS
- Others: IQ2\_S, IQ4\_NL, IQ1\_M

#### Llama.cpp - Operators Focus on GenAl



|           | Operators<br>number |
|-----------|---------------------|
| PyTorch   | >2000               |
| Llama.cpp | 107                 |

Llama.cpp/GGML focuses on 107 operators, enough for LLM and stable-diffusion

## Llama.cpp –Static Graph



#### Llama.cpp - New backend registration

GGML has abstracted the heterogeneous computing as the basic functions, you can easily add a new backend via implementing the following functions:

- memcpy
- alloc/free
- Synchronize
- Compute
- Op support query (for fallback to host)
- Events

1<sup>st</sup> Step Enabling effort: SYCL backend in 1 month

```
static ggml_backend_i ggml_backend_sycl_interface = {
 /* .get_name
                            = */ ggml_backend_sycl_name,
 /* .free
                           = */ ggml backend sycl free,
 /* .get default buffer type = */
ggml backend sycl get default buffer type,
                              = */ ggml_backend_sycl_set_tensor_async,
 /* .set_tensor_async
 /* .get tensor async
                             = */ ggml_backend_sycl_get_tensor_async,
 /* .cpv tensor async
                              = */ NULL
                             = */ ggml_backend_sycl_synchronize,
 /* .synchronize
 /* .graph plan create
                             = */ NULL.
 /* .graph plan free
                             = */ NULL.
 /* .graph plan update
                              = */ NULL.
 /* .graph_plan_compute
                              = */ NULL.
 /* .graph compute
                             = */ ggml_backend_sycl_graph_compute,
 /* .supports op
                             = */ ggml backend sycl supports op,
 /* .supports_buft
                             = */ ggml_backend_sycl_supports_buft,
                             = */ ggml_backend_sycl_offload_op,
 /* .offload op
 /* .event new
                             = */ NULL.
                             = */ NULL.
 /* .event free
 /* .event record
                             = */ NULL.
 /* .event wait
                             = */ NULL.
 /* .event synchronize
                              = */ NULL.
};
```

Status – Cross-vendor support



| Vendor               | Intel                | Nvidia               | AMD |
|----------------------|----------------------|----------------------|-----|
| Basic functionality  | Yes                  | Yes                  | Yes |
| HW List              | Gen11+               | Ampere+              | TBD |
| Workloads            | llama/qwen/deepseek+ | llama/qwen/deepseek+ | TBD |
| Ollama               | Yes                  | Yes                  | TBD |
| Stable-diffusion.cpp | Yes                  | TBD                  | TBD |

### WOQ Implementation based on SYCL and Libraries



### Future work – Performance optimization

#### Flash Attention to be implemented



GGML CUDA Flash attention is implemented in WMMA.

SYCL may provide a similar low-level API:

 There are several alternatives for SYCL: jointmatrix/assembly

Or OneDNN library may provide support for advanced LLM computation offload.

### Summary

- llama.cpp is a bare metal, pure c/c++ inference framework and its main innovation: different kinds of WOQ GEMM
- we need programmable HWs and languages for these innovations, and SYCL can provide such capabilities.
- we think there are some opens of SYCL, for example, we need a low-level API for performancewise kernels like flash attention.

#