

Non-equilibrium pattern formation with extended particles or

Microscopic models for morphological computation

Norman Packard European Center for Living Technology ProtoLife Inc.

(work with Rob Shaw)

Morphological computation and the origin of life

 Morphological computation on a molecular scale coincides with the origin of life:

Concentrate on programmability for now...

Morphological computation requires a physical instantiation with...

- ♦ I/O
- Programmability
- Function, purpose

Through design of complex dynamics

How do you control Macro by designing Micro??

- Decorations on vescicles
- Embedded magnets
- **♦** ...

Goal: engineer micro to get desired emergent macro

Reaction diffusion

How do you make local rules that can create complexity? Computation???

Conway's game of Life: Zigzag wikistretcher

Want the "Ising model" for morphological computation

- ◆ For phase transitions, the Ising magnet: lattice of ones and zeros with nearest neighbor interactions (tending to align).
- For morphological computation: consider lattice gas of particles with hard core exclusion
 - Hard sphere gas (3d) / hard disk gas (2d)
 - Simple exclusion processes (SEP), Asymmetric SEP (ASEP)
 - Hard square gas
 - Kob Anderson
 - Domino gas

Domino gas

- Model diffusion through membranes
- Simple particles: Fickian diffusion across a membrane

$$J = -D\nabla\rho \qquad \qquad \frac{d\rho}{dt} = D\nabla^2\rho$$

- Spatially extended particles:
 - Nonlinear diffusion properties.
 - Blocking reduces exploration of microstates
- ◆ For lattice models, use Kawasaki update
 - Choose a particle at random
 - Choose a possible move at random
 - Execute the move if possible (not blocked)

Macroscopic states of nonequilibrium systems are typically attractors

- Consider two types of departure from equilibrium:
 - Concentration gradient (chemical potential)
 - Applied field = bias in probability of moving in different directions
- Simplest example (?)
 Dominos falling against a semi-permeable membrane.

Fixed point attractor in the clogged state, with fluctuations caused by leaks.

Membranes with structure can rectify

FIG. 1: Blocking of membrane pores with different pore geometries and different particle types. (a) Large and small disks moving in continuous space. (b) Large and small squares moving on a lattice, with a spacing of the size of the small squares. (c) Dominos moving on a lattice; while in a pore, a domino cannot rotate. (d) Single species of square, moving on a lattice with spacing one-half the size of the square. (e) Single species of disk, in the continuum. In all cases, blockers must move upward to re-establish flow. In model simulations, particles in (a) and (e) move in continuous two-dimensional space, governed by Hamiltonian dynamics. Particles in (b-d) move on a lattice, with Monte Carlo updates.

FIG. 4: Steady-state flow of small disks through a membrane pore with the geometry of Fig. 1(a), as a function of pressure in the chamber. The dots are data points from a simulation, and the curves are generated by the steady-state equation above. The relative pore lengths are 2, 3, 5, and 10 (from the top curve down). Flows through the reversed pore geometry are plotted as negative values.

Study the microstates

Blocked

Unblocked

Flow

Construct states x_i , with i ranging over all cells in the chamber

$$x_i = \begin{cases} 0 \text{ if empty} \\ 1 \text{ if bottom V} \\ 2 \text{ if top V} \\ 3 \text{ if right H} \\ 4 \text{ if left H} \end{cases}$$

Microstate structure

- Keystone states: states that must be traversed to move from blocking state to nonblocking state.
- Backing up required to unblock
- Full state space ~ product structure
- Membrane clogging ~ critical probability of clogging.

Lesson: keystone states cause complex macrostates

Rush hour gas

- Children's game
- Can be difficult!
- ◆ PSPACE hard
- ◆ Logic gates may be constructed.

Form a "rush hour gas" by enlarging lattice, applying Kawasaki dynamics.

Add a field

- Downward and to the left
- ◆ Physics literature: 2-d asymmetric exclusion process
 - Cf. also traffic models

Phase diagram

FIG. 2: A sequence of macroscopic states obtained for a gas of 5-mers after a transient from a random initial condition, as density is varied from 0.1 to 0.125, with G=3. The 5-mers are biased to move preferentially downward and to the left. The grid-like structures translate in the opposite direction (upward and to the right); i.e. they have a wave velocity in the opposite direction to the direction of the flux. Note that if 5-mers are added gradually, the intermediate translating grid states persist to much higher densities.

Long transient to traveling wave

Length 5 polymers

Counting local states

$$(x_1, \dots, x_9) = (0,1,2,5,0,0,6,0,0)$$

Future state distributions

Dilute system, simple diffusive dynamics

Traveling waves, complex dynamics

Lesson

 As parameter variation changes the number of future local states, complexity of dynamics goes through a maximum

Small number of future states; overconstrained

Large number of future states; unconstrained

Ways to stabilize, robustify structures

- Add (small) periodic driving
- Annealed preparation
- Modulating mixtures

Future directions

- Further engineering guidelines
- Quantify dynamics with information theory (topological version?)
- Connections with thermodynamics (should be simple!)
 - Chemical potential
 - Field strength
- Make contact with physical systems.