# Migration from Redshift to Spark

Sky Yin

Data scientist @ Stitch Fix



#### What's Stitch Fix?

An online personal clothes styling service

since 2011







#### A loop of recommendation

 We recommend clothes through a combination of human stylists and



Inventory







STITCH FIX



#### What do I do?

 As part of a ~80 people data team, I work on inventory data infrastructure and analysis

 The biggest table I manage adds ~500-800M rows per day

Inventory





#### Data infrastructure: computation

 Data science jobs are mostly done in Python or R, and later deployed through Docker





#### Data infrastructure: computation

- Data science jobs are mostly done in Python or R, and later deployed through Docker
  - Gap between data scientist daily work flow and production deployment
  - Not every job requires big data





#### Data infrastructure: computation

- Data science jobs are mostly done in Python or R, and later deployed through Docker
- As business grows, Redshift was brought in to help extract relevant data





#### Redshift: the good parts

- Can be very fast
- Familiar interface: SQL
- Managed by AWS
- Can scale up and down on demand
- Cost effective\*





 Congestion: too many people running queries in the morning (~80 people data team)





- Congestion: too many people running queries in the morning
  - Scale up and down on demand?





- Congestion: too many people running queries in the morning
  - Scale up and down on demand?
  - Scalable =/= easy to scale





- Congestion: too many people running queries in the morning
- Production pipelines and exploratory queries share the same cluster





- Congestion: too many people running queries in the morning
- Production pipelines and ad-hoc queries share the same cluster
  - Yet another cluster to isolate dev from prod?





- Congestion: too many people running queries in the morning
- Production pipelines and dev queries share the same cluster
  - Yet another cluster to isolate dev from prod?
    - Sync between two clusters
    - Will hit scalability problem again (even on prod)





- Congestion: too many people running queries in the morning
- Production pipelines and ad-hoc queries share the same cluster
- There's no isolation between computation and storage
  - Can't scale computation without paying for storage
  - Can't scale storage without paying for unneeded CPUs





## Data Infrastructure: storage

- Single source of truth: S3, not Redshift
- Compatible interface: Hive metastore
- With the foundation in storage, the transition from Redshift to Spark is much easier







## Journey to Spark

 Netflix Genie as a "job server" on top of a group of Spark clusters in EMR

> Manual job submission

Internal Python/R libs to return DF

Job execution service: Flotilla















On-demand





- Heavy on SparkSQL with a mix of PySpark
- Lower migration cost and gentle learning curve
- Data storage layout is transparent to users
  - Every write we create a new folder with timestamp as batch\_id, to avoid consistency problem in S3





- Difference in functions and syntax
  - Redshift

```
SELECT number :: float, BTRIM(string)
FROM foo
JOIN bar USING (buzz)
```

SparkSQL

```
SELECT CAST(number AS double), TRIM(string)
FROM foo
JOIN bar ON foo.buzz = bar.buzz
```





- Difference in functions and syntax
- Partition
  - In Redshift, it's defined by dist\_key in schema
  - In Spark, the term is a bit confusing
    - There's another kind of partition on storage level
    - · In our case, it's defined in Hive metastore
      - S3://bucket/table/country=US/year=2012/





- Functions and syntax
- Partition
- SparkSQL

```
SET spark.sql.shuffle.partitions = 2
SELECT * FROM dataframe DISTRIBUTE BY key
```

DataFrame API

```
df.repartition(10, "column")
```





- Functions and syntax
- **Partition**
- Sorting
  - Redshift defines sort key in schema
  - Spark can specify that in runtime

```
SELECT * FROM dataframe SORT BY key
OR
df.sortWithinPartitions("column")
```







 There's a price in performance if we naively treat Spark as yet another SQL data warehouse





 Key difference: Spark is an in-memory computing platform while Redshift is not





- Key difference: Spark is an in-memory computing platform while Redshift is not
- FAQ #2: "Why is my Spark job so slow?"





- Key difference: Spark is an in-memory computing platform while Redshift is not
- FAQ #2: "Why is my Spark job so slow?"
  - Aggressive caching



sonyaberg 10:36 PM

@sky i got a query down from about 2 hours to 4 minutes by simply caching the temp tables. thanks!





**sky** 10:42 PM awesome 30x speed boost!





- Key difference: Spark is an in-memory computing platform while Redshift is not
- FAQ #2: "Why is my Spark job so slow?"
  - Aggressive cache
  - Use partition and filtering
  - Detect data skew
  - Small file problem in S3





 FAQ #1: "Why did my job fail? Hmm, the log says some executors were killed by

YARN???"







- FAQ #1: "Why did my job fail?"
  - Executor memory and GC tuning
    - Adding more memory doesn't always work





- FAQ #1: "Why did my job fail? "
  - Executor memory and GC tuning
  - Data skew in shuffling
    - Repartition and salting





- FAQ #1: "Why did my job fail? "
  - Executor memory and GC tuning
  - Data skew in shuffling
    - Repartition and salting
    - spark.sql.shuffle.partitions
      - On big data, 200 is too small: 2G limit on shuffle partition
      - On small data, 200 is too big: small file problem in S3





- FAQ #1: "Why did my job fail? "
  - Executor memory and GC tuning
  - Data skew in shuffling
  - Broadcasting a large table unfortunately
    - Missing table statistics in Hive metastore





- SQL, as a language, doesn't scale well
  - Nested structure in sub-queries
  - Lack of tools to manage complexity





- SQL, as a language, doesn't scale well
- CTE: one trick pony

```
WITH

A AS (...)
B AS (...)
SELECT *
FROM A JOIN B ON ...
```





- SQL, as a language, doesn't scale well
- CTE: one trick pony

```
WITH
A AS (...)
B AS (...)
SELECT *
FROM A JOIN B ON ...
```

=> Spark temp tables





- Inspiration from data flow languages
  - Spark DataFrames API
  - dplyr in R
  - Pandas pipe
- Need for a higher level abstraction





Dataset.transform() to chain functions

```
def withActiveClient(df: DataFrame): DataFrame = {
    // complicated logic to define active client
}

def withLTV(df: DataFrame): DataFrame = {
    // complicated logic to calculate life time value
}

val activeClientLTV = client
    .transform(withActiveClient)
    .transform(withLTV)
```





## Thank You.

Contact me @piggybox or syin@stitchfix.com

