Imfact of Orange Peel Coupling on Magnetization Switching in Nanopillar

D. Aravinthan* and M. Daniel

Centre for Nonlinear Dynamics School of Physics, Bharathidasan University Tiruchirappalli - 620 024

P. Sabareesan

School of Electrical and Electronics Engineering
SASTRA University
Thanjavur - 613 401

Introduction

- Recently magnetization switching in nanopillar devices has been a continuously growing topic, because of its potential applications in ultra-high density recording media, magnetic memory devices, magnetic sensors and read / write heads etc.
- The speed of switching of magnetization in magnetic trilayers is an issue of increasing importance for applications. Magnetocrystalline anisotropy, shape anisotropy and surface anisotropy play a vital role in reducing the switching time.
- There is an important magnetostatic coupling between the ferromagnetic layers in the nanopillar due to surface roughness referred as **Neel Coupling** or **Orange Peel Coupling** which is expected to contribute to the reduction of the switching time.
- In this work, we investigate the impact of orange peel coupling on magnetization switching time in Co/ Cu/ NiFe (Py) nanopillar device.

Geometry: Co/Cu/NiFe Nanopillar

Fig.1: Schematic sketch of the Co/Cu/NiFe nanopillar device.

Magnetization Switching Dynamics

• The magnetization switching dynamics of the free layer is governed by the Landau-Lifshitz-Gilbert-Slonczewski(LLGS) equation

$$\frac{d\mathbf{M}}{dt} = -\gamma [\mathbf{M} \times \mathbf{H}_{eff}] - \frac{\alpha \gamma}{M_s} [\mathbf{M} \times (\mathbf{M} \times \mathbf{H}_{eff})] + \gamma a_j [\mathbf{M} \times (\mathbf{M} \times \mathbf{M}_p)], \quad (1)$$

Effective field in the free layer

$$\mathbf{H}_{eff} = \mathbf{H}_{ma} + \mathbf{H}_{shape} + \mathbf{H}_{ext} + \mathbf{H}_{opc}$$
 (2)

Magnetocrystalline Anisotropy : $\mathbf{H}_{ma} = h_a M^x \mathbf{e}^x$, where, $h_a = \frac{2k_a}{\mu_0 M_s^2}$

Shape Anisotropy : $\mathbf{H}_{shape} = -[N_x M^x \mathbf{e}^x + N_y M^y \mathbf{e}^y + N_z M^z \mathbf{e}^z]$

External Magnetic Field : $\mathbf{H}_{ext} = H_e \mathbf{e}^y$

where, $a_j = \frac{pJ\hbar}{\mu_0 edM_s^2}$.

Orange Peel Coupling Field : $\mathbf{H}_{opc} = h_n M^y \mathbf{e}^y$, where $h_n = \frac{\pi^2 h^2}{\sqrt{2}\lambda d} \exp\left(\frac{-2\sqrt{2}\pi t_s}{\lambda}\right)$

Total Effective Field : $\mathbf{H}_{eff} = h_a M^x \mathbf{e}^x - N_z M^z \mathbf{e}^z + H_e \mathbf{e}^y + h_n M^y \mathbf{e}^y$.

Numerical Results

The dimensionless LLGS equation is

$$\frac{d\mathbf{m}}{d\tau} = -[\mathbf{m} \times (h_a m^x \mathbf{e}^x + (h_e + h_n m^y) \mathbf{e}^y - N_z m^z \mathbf{e}^z)]
- \alpha [\mathbf{m} \times (\mathbf{m} \times (h_a m^x \mathbf{e}^x + (h_e + h_n m^y) \mathbf{e}^y - N_z m^z \mathbf{e}^z))] + a_j [\mathbf{m} \times (\mathbf{m} \times \mathbf{m}_p)].$$
(3)

Table: Values of various parameters

Parameters / Constants	Symbol	Value
Gyromagnetic ratio of the free electron	γ	$2.21 \times 10^5 mA^{-1}s^{-1}$
Polarization factor	p	0.4
Gilbert damping parameter	α	0.001
Magnetocrystalline anisotropy coefficient	k_c	$2 \times 10^3 Jm^{-3}$
Saturation magnetization of NiFe	M_s	$0.795 \times 10^6 Am^{-1}$
Thickness of the free layer	d	$4 \times 10^{-9} m$
Thickness of the spacer layer	t_s	$2 \times 10^{-9} m$
Amplitude of the interface waviness	h	$0.8 \times 10^{-9} m$
Wavelength of the interface waviness	λ	$40 \times 10^{-9} m$

Effect of orange peel coupling

Fig.2: A plot of magnetization versus switching time for the Co/Cu/NiFe nanopillar in the presence and absence of the orange peel coupling for the applied current density $J = 4 \times 10^8 Acm^{-2}$. Presence of orange peel coupling reduces the switching time.

Effect of current density

Fig.3: A plot of magnetization versus switching time for the Co/Cu/NiFe nanopillar for different current densities. The applied current density increases from $2 \times 10^8 Acm^{-2}$ to $10 \times 10^8 Acm^{-2}$ in the interval of $2 \times 10^8 Acm^{-2}$. Switching time decreases from 78 ps to 23 ps.

Effect of spacer and free layer thicknesses

Fig.4: (a). A plot of thickness of the spacer layer versus switching time for the Co/Cu/NiFe nanopillar for the applied current density $J = 4 \times 10^8 Acm^{-2}$. (b). A plot of thickness of the free layer versus switching time for the Co/Cu/NiFe nanopillar for the applied current density $J = 4 \times 10^8 Acm^{-2}$.

Conclusions

- The spin current induced magnetization switching dynamics in Co/Cu/NiFe nanopillar with orange peel coupling is studied by solving the governing Landau-Lifshitz-Gilbert-Slonczewski equation numerically.
- The switching time of the nanopillar device reduces from 67 ps to 48 ps when there exists the orange peel coupling between the ferromagnetic layers.
- The switching time decreases, when the thickness of the spacer layer and also the free layer reduces.
- Thus, We can achieve fast switching by making the free layer and spacer layer in the nanopillar device with minimal thicknesses.

References

- 1. P. Sabareesan and M. Daniel, *Phys. Scr.* **84**, 035706 (2011).
- 2. J. Zhang, and R. M. White, *IEEE Trans. Magnetics*, **287**, 2000 (1989).
- 3. L. Néel, C. R. Acad. Sci., Paris, **255**, 1676 (1962).
- 4. J. C. S. Kools, W. Kula, D. Mauri and T. Lin, J. Appl. Phys., 85, 4466 (1999).
- 5. D. Aravinthan, P. Sabareesan and M. Daniel, Impact of Orange Peel Coupling on Magnetization Switching in Nanopillar, (Communicated for publication.)

* For Correspondence:

E-mail: d.aravinthan@gmail.com Web: www.idaravinthan.info