Міністерство освіти і науки, молоді та спорту України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра систем штучного інтелекту

3ВІТ
Про виконання лабораторної роботи № 1
«Моделювання основних логічних операцій.»
з дисципліни «Дискретна математика»

Виконав:

студ. групи КН-112 Кадоб'янський І.І.

Викладач:

Мельникова Н.І.

«___» ____ 2019 p. $\Sigma =$ ____

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант 7

Індивідуальне завдання

- 1) Формалізувати речення. Багато непорозумінь між урядами України та Польщі, але ні Україна, ні Польща не втратили економічної співпраці.
- Р багато непорозумінь;
- х Україна;
- у Польща;
- Q втрата економічної співпраці;

Відповідь:
$$\neg P(x, y) \rightarrow (\neg Q(\neg x, \neg y))$$

2) Побудувати таблицю істинності для висловлювань: $((\neg x \leftrightarrow \neg y) \leftrightarrow ((z \to (x \lor y)) \to (\neg z))$

$$1 = \neg x \leftrightarrow \neg y;$$

$$2 = x \lor y;$$

$$3 = z \to (x \lor y);$$

$$4 = (z \to (x \lor y)) \to (\neg z);$$

$$5 = ((\neg x \leftrightarrow \neg y) \leftrightarrow ((z \to (x \lor y)) \to (\neg z)).$$

X	y	Z	$\neg_{\mathbf{X}}$	$\neg y$	$\neg z$	(1)	(2)	(3)	(4)	(5)
1	1	1	0	0	0	1	1	1	0	0
1	1	0	0	0	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	0
1	0	1	0	1	0	0	1	1	0	1
0	1	1	1	0	0	0	1	1	0	1
0	0	1	1	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1	1	1	0
0	0	0	1	1	1	1	0	1	1	1

- 3) Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологією або протиріччям: $(\neg(p\lor q)^{\wedge}(\neg(q^{\wedge}r)) \rightarrow (p\lor r);$
 - 1) $\neg (p \lor q)$;
 - $2) \neg (q^r);$
 - 3) p∨r;
 - 4) $\neg (p \lor q) \land (\neg (q \land r);$
 - 5) $(\neg(p\lorq)\land(\neg(q\land r))\rightarrow(p\lor r);$

р	q	r	(1)	(2)	(3)	(4)	(5)
1	1	1	0	0	1	0	1
1	1	0	0	1	1	0	1
1	0	0	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	0	0	1	0	1
0	0	1	1	1	1	1	1
0	1	0	0	1	0	0	1
0	0	0	1	1	0	1	0

Відповідь: Функція не ϵ тавтологією і не ϵ протиріччям.

4)За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $((\mathbf{p} \rightarrow \mathbf{q})^{\wedge} (\mathbf{q} \rightarrow \mathbf{r})) \rightarrow (\neg \mathbf{p} \rightarrow \mathbf{q})$.

Будемо іти за методом «від протилежного», тоді:

- 1) $(p \rightarrow q)^{\wedge}(q \rightarrow r) = T; \neg p \rightarrow q = F;$
- 2) $\neg p \rightarrow q = F$ тоді, коли $\neg p = T$, а q = F, тоді маємо: p = F; q = F;
- 3) $((F \rightarrow F)^{\wedge}(F \rightarrow F)) \rightarrow F$;
- 4) $(T^T) \rightarrow F$;
- 5) T→F;
- 6) F

Відповідь: не тавтологія.

5) Довести, що формули еквівалентні: $\mathbf{p} \leftrightarrow (\mathbf{q} \lor \mathbf{r})$ та $\mathbf{p}^{\wedge}(\mathbf{q} \rightarrow \mathbf{r})$. Припустимо, що $\mathbf{p} \leftrightarrow (\mathbf{q} \lor \mathbf{r})$ та $\mathbf{p}^{\wedge}(\mathbf{q} \rightarrow \mathbf{r})$ рівні. Тоді для них буде виконуватись така рівність:

$$p \leftrightarrow (q \lor r) \leftrightarrow p^{\land}(q \rightarrow r).$$
1) $q \lor r$;
2) $p \leftrightarrow (q \lor r)$;
3) $q \rightarrow r$;
4) $p^{\land}(q \rightarrow r)$;
5) $p \leftrightarrow (q \lor r) \leftrightarrow p^{\land}(q \rightarrow r).$

р	q	r	(1)	(2)	(3)	(4)	(5)
1	1	1	1	1	1	1	1
1	1	0	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	1	1	1	1	1	1
0	1	1	1	0	1	0	1
0	0	1	1	0	1	0	1
0	1	0	1	0	0	0	1
0	0	0	0	0	1	0	1

Відповідь: формули не еквівалентні.

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування (C) програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступної формули: $((\neg x \leftrightarrow \neg y) \leftrightarrow ((z \to (x \lor y)) \to (\neg z))$.

Протокол програми: Трьом змінним в програмі задаються значиння істини або фальші. В залежності від значень програма виконує певні обчислення, задані такою формулою: $((\neg x \leftrightarrow \neg y) \leftrightarrow ((z \to (x \lor y)) \to (\neg z))$. В кінці, програма виводить на екран значення для цілого виразу (True aбо False).

Код програми:

```
#include <stdio.h>
#include <stdlib.h>
```

```
int main()
    int x, y, z, not_x, not_y, not_z,
    left_part, right_part;
    printf("Input for x(0 or 1): ");
    scanf("%d", &x);
    if (x != 1 && x != 0){
        printf("Error!\n");
    }
    else{
        printf("Input for y(0 or 1): ");
        scanf("%d", &y);
        if (y != 1 \&\& y != 0){
            printf("Error!\n");
        else{
            printf("Input for z(0 or 1): ");
            scanf("%d", &z);
            if (z != 1 && z != 0){
                printf("Error!\n");
                }
            else{
                if (x == 1){
                    not x = 0;
                }
                else{
                    not_x = 1;
                if (y == 1){
                    not_y = 0;
                }
                else{
                    not_y = 1;
                if (z == 1){
                     not_z = 0;
                }
                else{
                     not_z = 1;
                }
                if (not_x == not_y){
                     left_part = 1;
                     }
                else{
                     left_part = 0;
                if (z == 1){
                     if (x || y == 1){
                         right_part = 0;
                     }
```

```
else{
                         right_part = 1;
                 }
                else{
                     right_part = 1;
                printf("\n");
                 if (right_part == left_part){
                     printf("Answer: True\n");
                 }
                 else{
                     printf("Answer: False\n");
                 }
            }
    return 0;
}
}
```

Вивід програми:

```
■ "D\\=|TxE\—шёьЁхЄэр ырЄхырЄшър\үрсюЁрЄюЁэр 1\main.exe" — X

Input for x(0 or 1): 1

Input for y(0 or 1): 0

Input for z(0 or 1): 1

Answer: True

Process returned 0 (0x0) execution time: 11.061 s

Press any key to continue.
```

Висновок

На лабораторній роботі розглянуто та досліджено основні поняття та елементарні дії в дискретній математиці, розлянули основні логічні операції, використовували закони логіки висловлювань, а також один з методів доведення істинності або хибності. Виконано 5 завдань і написано програму по визначенню правдивості чи хибності виразу.