Electric Circuits

Matthew Pan

March 2025

Pan 1

11.1 Electric Current

Electric Current

Electric current is the movement of charge carries, such as electrons, through a material. It measures the number of coulombs of charge that move through an area in a given time. The unit of electric current is the ampere, or coulombs per second.

$$I = \frac{Q}{\Delta t} = \frac{dq}{dt}$$

In a wire, each of the charge carriers move with many different velocities, with the net movement of charge carriers being represented by the drift velocity, v_d . We can also calculate electric current through the formula

$$I = nqv_dA$$

Where:

- n is the number of charged particles per cubic meter of volume
- q is the quantity of of the charge
- A is the cross-sectional area of the wire

To create a movement of a fluid in a pipe, there must be a pressure difference between the ends of a pipe. Likewise, to create an electric current, there must be a potential difference between the ends of the wire. This electric potential difference is also referred to as an electromotive force, or ϵ . We can create this force through a battery or generator.

Electric Current Density

Recall that the electric current directly depends on the cross sectional area of the wire. If we were to measure a smaller cross sectional area within the wire, we would get a smaller value. The quantity that stays the same for both areas is the electric current density, which is a vector quantity. This can be intuitively derived:

$$J = \frac{I}{A} = nqv_d$$

Pan 2

Current is the dot product of current density and area.

$$I = \vec{J} \cdot \vec{A} = ||\vec{J}|| \, ||\vec{A}|| \cos \theta$$

And if electric current density is not constant throughtout the cross section of a wire:

 $I = \int \vec{J} \cdot d\vec{A}$

The idea of charge flow as current implies that electric current has a direction, which contradicts the idea of current being a dot product. Despite this, current does have a direction, but not like a traditional vector quantity. Electric current is relative to the charge carriers and does not obey the laws of vector addition. By convention, the direction of current in a wire is based on the movement of positive charges, however, the charge carriers in a wire are electrons, which have a negative charge. Therefore, electrons in a wire move in the opposite direction as conventional current.

Problem

Suppose a wire with a radius of 2mm has an electric current density that varies with radial distance r as $J = ar^2$, where $a = 1.5 \times 10^{10}$ and r is in meters. What is the current flowing through the outer portion of the wire between $\frac{R}{2}$ and R?

Solution. We can sum together concentric rings with an infinitely small thickness dr to find dA. Find the area of a infinitely thin ring at radius r with an area dA by imagining bending the ring into an infinitely thin rectangle with width dr. Since we bent the rectangle from a circle, the length of the rectangle is the circumfrence of the circle. The area of the rectangle is thus

$$dA = 2\pi r dr$$

With the limits of integration being $\frac{R}{2}$ and R, we can replace J with the given equation and dA. Since J and A are in the same direction, there is no need for additional consideration.

Pan 3

$$I = \int JdA$$

$$= \int_{\frac{R}{2}}^{R} ar^{2} \cdot 2\pi r dr$$

$$= \frac{15}{32} \pi a R^{4}$$

$$= \frac{15}{32} \pi (1.5 \times 10^{10}) (0.002)^{4} = 0.35A$$

Current and Electric Field

Recall that an electric field causes charge carriers to move through a wire. An increase in electric field strength causes an increase in electromotive force, which increases the current density. Current density and electric field are proportionally related to each other.

10.2 Simple Electric Circuits

An electric circuit is a complete loop through which current can flow. A simple electric circuit is composed of electrical loops, which can include the following individually or in combinations.

- Wires
- Batteries
- Resistors
- Lightbulbs
- Capacitors

- Inductors
- Switches
- Ammeters
- Voltmeters