- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	Total
Puntos	13	6	19
Puntaje			

Nombre:

- 1. Consideremos un sistema de coordenadas fijo S. Sea Γ el círculo de rádio 1 y centro en el origen. Sea $P_t = (t,0)$ un punto sobre el primer eje del sistema S y que se encuentra a distancia menor que 1 del origen pero que es distinto del origen. (es decir, -1 < t < 1 y $t \neq 0$).
 - (a) (1 Punto) Sea \mathcal{E}_t la recta vertical que pasa por P_t . Encuentra la ecuación cartesiana de \mathcal{E}_t .
 - (b) (2 Puntos) La recta ℓ_t corta al círculo Γ en exáctamente dos puntos. Al punto cuya coordenada y es positiva, le llamaremos Q_t y al punto cuya coordenada y es negativa R_t . Encuentra las coordenadas de dichos puntos.
 - (c) (2 Puntos) Sea \mathcal{F}_t la recta que pasa por el origen y el punto Q_t . Encuentra la ecuación cartesiana y paramétrica de la recta \mathcal{F}_t .
 - (d) (2 Puntos) Sea p_t la recta perpendicular a la recta r_t y que pasa por el punto Q_t . Encuentra la ecuación cartesiana de dicha recta.

- (e) (2 Puntos) Sea I_t la intersección de la recta p_t con el eje horizontal. Encuentra las coordenadas de dicho punto.
- (f) Describe el comportamiento del punto I_t cuando:
 - i. (1 Punto) t > 0 y se aproxima a 0
 - ii. (1 Punto) t < 0 y se aproxima a 0
 - iii. (1 Punto) t > 0 y se aproxima a 1
 - iv. (1 Punto) t < 0 y se aproxima a -1

Ver la figura en la página siguiente.

- 2. Sea $\vec{v} = (a, b)$ un vector no nulo arbitrario pero fijo. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ la función dada por $f(\vec{w}) = \langle \vec{v}, \vec{w} \rangle$ (es decir, el producto interior de los dos vectores).
 - (a) (3 Puntos) Demuestra que la función f es lineal.
 - (b) (3 Puntos) Recuerda que el conjunto de puntos $\{(x,y)|f(x,y)=0\}$ es una recta. Encuentra la ecuación paramétrica vectorial y cartesiana de dicha recta.

Geometría Analítica I 18 de enero de 2018

Fin del exámen