

Algoritmos Genéticos

Prof. Sandro Jerônimo de Almeida sandro.j@pucminas.br

Algoritmo Genético

John Holland (1975) e David Goldberg (1989)

 Inspirado na Teoria da Evolução de Evolução das espécies: as populações mais adaptadas sobrevivem

Introdução

Um Algoritmo genético (AG), conceitualmente, segue passos inspirados no processo biológico de evolução natural segundo a teoria de Darwin

 Algoritmos Genéticos seguem a idéia de sobrevivência do mais forte em cada geração

Fundamentos

 Sua técnica de busca é baseada na seleção natural e reprodução genética

 Trabalham com uma população de soluções simultaneamente

Para que servem?

Busca e Otimização

 Amplamente utilizados, com sucesso, em problemas de difícil manipulação pelas técnicas tradicionais de otimização

Eficiência X Flexibilidade

Funcionamento geral (1)

- Começar com um conjunto de soluções
 - □ Representado por cromossomos
 - □ Chamado população
- Soluções de uma população são escolhidas e usadas para formar uma nova população (reprodução)

Funcionamento geral (2)

 Espera-se que a nova população seja "melhor" que a anterior

 Soluções que são escolhidas para formar novas soluções

 São escolhidas de acordo com uma função de adaptação (função objetivo)

Funcionamento geral (3)

 O processo é repetido até que uma condição seja satisfeita

Algoritmo

Opera em ciclos

Problema da Mochila com AG

- Um ladrão irá assaltar uma casa que tem n objetos que lhe interessam
- Cada objeto i possui um valor v_i e um peso W_i
- Sabendo que sua mochila poderá levar no máximo um peso K, o ladrão terá que determinar qual o objeto que irá levar, buscando maximizar o valor do assalto.

Etapas importantes

- 1. Definição do Cromossomo
- 2. Geração da População Inicial
- 3. Função de Aptidão
- 4. Método de Seleção
- 5. Método de Reprodução
- 6. Método de Mutação
- 7. Condição de Parada

Cromossomo

- Todo organismo vivo consiste de células
- Em cada célula, existe o mesmo conjunto de cromossomos.
- Cromossomos consistem de genes seqüências de DNA- que servem para determinar as características de um indivíduo

1. Definição do Cromossomo

- Cromossomo deve representar uma solução do problema
- Como realizar a codificação de cromossomos?
- É a primeira pergunta que deve ser feita ao resolver um problema com AG

Codificação

- A codificação dependerá fortemente do problema
- Tipos de codificação de variáveis:
 - □ Codificação Binária
 - □ Codificação por Permutação
 - □ Codificação de Valores
 - □ Codificação em Árvore

Cenário

Item	Valor (\$)	Peso (Kg)
1	100	1,2
2	200	2
3	300	3,1
4	400	4,2
5	500	4,8
6	600	5,9
7	700	6,9

Capacidade máxima: K = 11 kg

Codificação binária

- É a mais comum devido a sua simplicidade
- Cada cromossomo é uma string de bits 0 ou 1
 - \square Crom: A = 1 0 1 1 0 0 1
 - \square Crom: B = 1 1 0 1 0 0 0
- Exemplo de uso: problema da mochila
- Codificação: Cada bit diz se um elemento está ou não na mochila

Codificação por permutação

- Mais usado em problemas de ordenação
- Cada cromossomo é uma string de números que representa uma posição numa seqüência
 - □ Crom A: 1 5 3 2 6 4 7 9 8
 - □ Crom B: 8 5 6 7 2 3 1 4 9
- Exemplo de uso: problema do caxeiro viajante
- Codificação: os cromossomos descrevem a ordem em que o caxeiro irá visitar as cidades

Codificação por valor

- Usado em problemas onde valores mais complicados são necessários
- Cada cromossomo é uma seqüência de valores
 - □ Crom A: 1.2324 5.3243 0.4556 2.3293 2.4545
 - □ Crom B: ABDJEIFJDHDIERJFDLDFLFEGT
 - □ Crom C: (back), (back), (right), (forward), (left)

Codificação por valor (Cont.)

 Exemplo de uso: dada uma estrutura, encontrar pesos para uma rede neural

 Codificação: Valores reais num cromossomo representam pesos em uma rede neural

2. População Inicial

- Tamanho
 - Geralmente tamanho par
 - □ Tamanho base 2 é interessante Exemplos: 4, 8, 16, 32 indivíduos
- Forma de geração
 - □ Aleatoriamente
 - □ Baseado se em soluções anteriores (previamente conhecidas)

- Mede o quão um indivíduo é adaptado
- Em problemas de otimização, geralmente é representada pela função objetivo
- Simulação vs. Equação

$$erro = d - \frac{v^2 \cdot \sin 2a}{g}$$

4. Seleção

- Consiste em selecionar os indivíduos (reprodutores) que irão ser utilizados para gerar os indivíduos da nova população
- Seleção feita com base na <u>aptidão</u>
- Alguns métodos
 - Método elitista
 - Método da roleta
 - Método torneio

$$f(individuo X) = ...$$

- Define-se um parâmetro k, cujo valor é menor que a metade do tamanho da população (ex. k = 2)
- Copia-se os k melhores indivíduos na nova população
- Elimina-se os k piores indivíduos
- Realiza-se cruzamento entre os demais (incluindo os melhores)

Seleção: método da roleta

 Consiste em sortear os indivíduos com probabilidade associada a aptidão

	Indivíduo S _i	Aptidão $f(S_i)$	Aptidão Relativa	
Sı	10110	2.23	0.14	1
S_2	11000	7.27	0.47	
Sз	11110	1.05	0.07	٨
S4	01001	3.35	0.21	
S5	00110	1.69	0.11	

Seleção: método do torneio

Reprodução

Durante o processo de reprodução ocorrese a recombinação (ou crossover – cruzamento-). Genes dos pais se combinam para formar novos cromossomos.

Crossover

- Opções
 - □ Ponto fixo
 - □ Ponto aleatório
 - Multipontos

Filhos

Mutação

 Aleatorização do código genético do indivíduo/população

- Mantém diversidade da população
- Sugestão de taxa de mutação: 0,5 à 1%

Mutação

 Mutação evita que as soluções na população fiquem apenas num mínimo local

Condição de Parada

- Número de gerações/iterações
- Encontrada a solução
 - Quando conhecida
- Perda de diversidade
- Convergência
 - □nas últimas k gerações não houve melhora da na aptidão

Avaliação

- Vantagens
 - □ Técnica de busca robusta
 - Otimização de problemas mal estruturados
- Limitações
 - □ Dificuldades na representação da solução
 - Dificuldades em determinar a função de avaliação do problema

Problemas propostos

Modelagem

- 1. Definição do Cromossomo
- □ 2. População Inicial
- □ 3. Função de Aptidão
- ☐ 4. Método de Seleção
- 5. Método de Reprodução
- ☐ 6. Método de Mutação
- ☐ 7. Condição de Parada

Problemas

- □ 8-rainhas
- Mochila
- Caixeiro Viajante
- □ Grade de horário
- Mochila Múltipla

Problema de Balística

Que ajustes podemos fazer para acertar o alvo?

