1. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-20}{70x - 40} + 1 = \frac{-20}{70x - 40}$$

- A. All solutions lead to invalid or complex values in the equation.
- B. $x \in [0.57, 1.57]$
- C. $x_1 \in [0.4, 1.1]$ and $x_2 \in [0.57, 1.57]$
- D. $x \in [-1.6, 0.3]$
- E. $x_1 \in [-1.6, 0.3]$ and $x_2 \in [0.57, 1.57]$
- 2. Choose the equation of the function graphed below.

- A. $f(x) = \frac{1}{(x+3)^2} + 3$
- B. $f(x) = \frac{-1}{x-3} + 3$
- C. $f(x) = \frac{1}{x+3} + 3$
- D. $f(x) = \frac{-1}{(x-3)^2} + 3$
- E. None of the above

3. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{-1}{(x-2)^2} + 2$$

B.
$$f(x) = \frac{1}{x+2} + 2$$

C.
$$f(x) = \frac{-1}{x-2} + 2$$

D.
$$f(x) = \frac{1}{(x+2)^2} + 2$$

- E. None of the above
- 4. Choose the graph of the equation below.

A.

С.

E. None of the above.

5. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-4x}{-5x-5} + \frac{-6x^2}{-30x^2 - 60x - 30} = \frac{-2}{6x+6}$$

A. All solutions lead to invalid or complex values in the equation.

B.
$$x \in [-1.37, -0.95]$$

C.
$$x_1 \in [-0.62, -0]$$
 and $x_2 \in [-1.92, -1.48]$

D.
$$x_1 \in [-1.37, -0.95]$$
 and $x_2 \in [-1.41, -0.89]$

E.
$$x \in [-1.37, -0.95]$$

6. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-5x}{-3x-5} + \frac{-4x^2}{-9x^2 - 27x - 20} = \frac{-4}{3x+4}$$

A.
$$x_1 \in [-2.51, -1.62]$$
 and $x_2 \in [-1.47, -1.31]$

B. All solutions lead to invalid or complex values in the equation.

C.
$$x_1 \in [-1.11, -0.28]$$
 and $x_2 \in [-2.5, -1.79]$

D.
$$x \in [-1.37, -1.16]$$

E.
$$x \in [-2.51, -1.62]$$

7. Determine the domain of the function below.

$$f(x) = \frac{4}{24x^2 + 30x + 9}$$

- A. All Real numbers except x = a and x = b, where $a \in [-18.59, -17.66]$ and b = [-12.34, -11.94]
- B. All Real numbers except x=a and x=b, where $a\in[-1.29,-0.59]$ and $b\in[-0.73,0.43]$
- C. All Real numbers except x = a, where $a \in [-18.59, -17.66]$
- D. All Real numbers except x = a, where $a \in [-1.29, -0.59]$
- E. All Real numbers.
- 8. Determine the domain of the function below.

$$f(x) = \frac{6}{15x^2 - 35x + 20}$$

- A. All Real numbers except x=a and x=b, where $a\in[11.97,12.02]$ and $b\in[24.92,26]$
- B. All Real numbers except x = a and x = b, where $a \in [0.06, 1.24]$ and $b \in [1.27, 1.5]$
- C. All Real numbers except x = a, where $a \in [0.06, 1.24]$
- D. All Real numbers except x = a, where $a \in [11.97, 12.02]$
- E. All Real numbers.
- 9. Choose the graph of the equation below.

$$f(x) = \frac{-1}{x - 2} - 1$$

В.

C.

ט

E. None of the above.

10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-7}{-9x-4} + -6 = \frac{-3}{-36x-16}$$

A. $x_1 \in [-0.37, -0.32]$ and $x_2 \in [-0.3, 1.2]$

B. $x \in [0.51, 0.59]$

C. All solutions lead to invalid or complex values in the equation.

D. $x \in [-0.33, 1.67]$

E. $x_1 \in [-0.42, -0.36]$ and $x_2 \in [-1.1, 0.3]$