Machine Learning

Lecture 7
Logistic Regression

Chen-Kuo Chiang (江 振 國) *ckchiang@cs.ccu.edu.tw*

中正大學 資訊工程學系

The Storyline

How Can Machines Learn?

Logistic Regression

- Logistic Regression Problem
- Logistic Regression Error
- Gradient of Logistic Regression Error
- Gradient Descent

Heart Attack Prediction Problem (1/2)

Heart Attack Prediction Problem (2/2)

Soft Binary Classification

target function $f(\mathbf{x}) = P(+1|\mathbf{x}) \in [0,1]$ 得到正一的機率多少

ideal (noiseless) data

$$\begin{pmatrix} \mathbf{x}_{1}, y'_{1} &= 0.9 &= P(+1|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y'_{2} &= 0.2 &= P(+1|\mathbf{x}_{2}) \\ \vdots \\ (\mathbf{x}_{N}, y'_{N} &= 0.6 &= P(+1|\mathbf{x}_{N}) \end{pmatrix}$$

actual (noisy) data

$$\begin{pmatrix} \mathbf{x}_{1}, y_{1} &= \circ & \sim P(y|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y_{2} &= \times & \sim P(y|\mathbf{x}_{2}) \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} \mathbf{x}_{N}, y_{N} &= \times & \sim P(y|\mathbf{x}_{N}) \end{pmatrix}$$

same data as hard binary classification, different target function

Logistic Hypothesis

age	40 years	
gender	male	
blood pressure	130/85	
cholesterol level	240	

• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of patient', calculate a weighted 'risk score':

$$s = \sum_{i=0}^d w_i x_i$$

• convert the score to estimated probability by logistic function $\theta(s)$

logistic hypothesis: $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$ 帶到data裡

Logistic Function

$$\theta(-\infty)=0$$
;

$$\theta(0) = \frac{1}{2}$$
;

$$\theta(\infty)=1$$

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

smooth, monotonic, sigmoid function of s

logistic regression: use

$$h(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

to approximate target function $f(\mathbf{x}) = P(+1|\mathbf{x})$

Fun Time

Logistic Regression and Binary Classification

Consider any logistic hypothesis $h(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$ that approximates $P(y|\mathbf{x})$. 'Convert' $h(\mathbf{x})$ to a binary classification prediction by taking sign $(h(\mathbf{x}) - \frac{1}{2})$. What is the equivalent formula for the binary classification prediction?

- **1** sign $(\mathbf{w}^T \mathbf{x} \frac{1}{2})$
- \mathbf{g} sign $(\mathbf{w}^{\mathsf{T}}\mathbf{x})$
- 3 sign $\left(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \frac{1}{2}\right)$
- 4 none of the above

Three Linear Models

linear scoring function: $s = \mathbf{w}^T \mathbf{x}$

logistic regression

how to define $E_{in}(\mathbf{w})$ for logistic regression?

Likelihood

target function
$$f(\mathbf{x}) = P(+1|\mathbf{x})$$

$$\Leftrightarrow$$

$$P(y|\mathbf{x}) = \begin{cases} \frac{f(\mathbf{x}) & \text{for } y = +1}{1 - f(\mathbf{x}) & \text{for } y = -1} \end{cases}$$

consider
$$\mathcal{D} = \{(\mathbf{x}_1, \circ), (\mathbf{x}_2, \times), \dots, (\mathbf{x}_N, \times)\}$$

probability that f generates \mathcal{D}

$$P(\mathbf{x}_1)P(\circ|\mathbf{x}_1) \times P(\mathbf{x}_2)P(\times|\mathbf{x}_2) \times \dots$$

$$P(\mathbf{x}_N)P(\times|\mathbf{x}_N)$$

likelihood that h generates ${\cal D}$

$$P(\mathbf{x}_1)h(\mathbf{x}_1) \times P(\mathbf{x}_2)(1-h(\mathbf{x}_2)) \times \dots$$

$$P(\mathbf{x}_N)(1-h(\mathbf{x}_N))$$

- if $h \approx f$, then likelihood(h) \approx probability using f
- probability using f usually large 乘出來機率很大

Likelihood of Logistic Hypothesis

Likelihood of Logistic Hypothesis

likelihood(
$$h$$
) $pprox$ (probability using f) $pprox$ large
$$g = \underset{h}{\operatorname{argmax}} \quad \text{likelihood}(h)$$

when logistic: $h(\mathbf{x}) = \theta(\mathbf{w}^\mathsf{T}\mathbf{x})$

$$1 - h(\mathbf{x}) = h(-\mathbf{x})$$

likelihood(
$$h$$
) = $P(\mathbf{x}_1)h(+\mathbf{x}_1) \times P(\mathbf{x}_2)h(-\mathbf{x}_2) \times \dots P(\mathbf{x}_N)h(-\mathbf{x}_N)$

likelihood(logistic
$$h$$
) $\propto \prod_{n=1}^{N} h(y_n \mathbf{x}_n)$

Cross-Entropy Error

$$\max_{h} \quad \text{likelihood(logistic } h) \propto \prod_{n=1}^{N} h(y_n \mathbf{x}_n)$$

$$\max_{\mathbf{w}} \quad \text{likelihood(} \mathbf{w}) \propto \prod_{n=1}^{N} \theta \left(\underbrace{y_n \mathbf{w}}_{n} \mathbf{x}_n \right)$$

$$\max_{\mathbf{w}} \quad \ln \prod_{n=1}^{N} \theta \left(y_n \mathbf{w}^T \mathbf{x}_n \right)$$

Cross-Entropy Error

$$\theta(s) = \frac{1}{1 + \exp(-s)}$$
 : $\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \ln\left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)\right)$ 最大值
$$\implies \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(\mathbf{w}, \mathbf{x}_n, y_n)$$
 最小誤差

$$err(\mathbf{w}, \mathbf{x}, y) = ln(1 + exp(-y\mathbf{w}\mathbf{x}))$$
: **cross-entropy error**

Fun Time

The four statements below help us understand more about the cross-entropy error $err(\mathbf{w}, \mathbf{x}, y) = ln(1 + exp(-y\mathbf{w}^T\mathbf{x}))$. Consider $\mathbf{w}^T\mathbf{x} \neq 0$. Which statement is not true?

- 1 For any \mathbf{w} , \mathbf{x} , and y, $err(\mathbf{w}, \mathbf{x}, y) > 0$.
- 2 For any \mathbf{w} , \mathbf{x} , and \mathbf{y} , $\operatorname{err}(\mathbf{w}, \mathbf{x}, \mathbf{y}) < 1126$.
- **3** When $y = \text{sign}(\mathbf{w}^T\mathbf{x})$, $\text{err}(\mathbf{w}, \mathbf{x}, y) < \text{ln 2. 相同}$
- 4 When $y \neq \text{sign}(\mathbf{w}^T\mathbf{x})$, $\text{err}(\mathbf{w}, \mathbf{x}, y) \geq \ln 2$.

Minimizing $E_{in}(\mathbf{w})$

$$\min_{\mathbf{w}} \quad E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n) \right)$$

- E_{in}(w): continuous, differentiable, twice-differentiable, convex
- how to minimize? locate valley

微分為0的解 want
$$\nabla E_{\text{in}}(\mathbf{w}) = \mathbf{0}$$

first: derive $\nabla E_{in}(\mathbf{w})$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\underbrace{1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)}_{\square} \right)$$

$$\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_{i}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\partial \ln(\square)}{\partial \square} \right) \left(\frac{\partial (1 + \exp(\bigcirc))}{\partial \bigcirc} \right) \left(\frac{\partial - y_{n} \mathbf{w}^{T} \mathbf{x}_{n}}{\partial w_{i}} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{1}{\square} \right) \left(\exp(\bigcirc) \right) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\exp(\bigcirc)}{1 + \exp(\bigcirc)} \right) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\exp(\bigcirc)}{1 + \exp(\bigcirc)} \right) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}$$

$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$

Minimizing $E_{in}(\mathbf{w})$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n) \right)$$

want
$$\nabla E_{\text{in}}(\mathbf{w}) = \left| \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right) \right| = \mathbf{0}$$

scaled θ -weighted sum of $-y_n \mathbf{x}_n$

- all $\theta(\cdot) = 0$: only if $y_n \mathbf{w}^T \mathbf{x}_n \gg 0$ —linear separable \mathcal{D}
- weighted sum = 0:
 non-linear equation of w

closed-form solution? no :-(

PLA Revisited: Iterative Optimization

PLA: start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

 \bigcirc (equivalently) pick some n, and update \mathbf{w}_t by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \left[\operatorname{sign} \left(\mathbf{w}_t^\mathsf{T} \mathbf{x}_n \right) \neq y_n \right] y_n \mathbf{x}_n$$

when stop, return last \mathbf{w} as g

PLA Revisited: Iterative Optimization

PLA: start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For
$$t = 0, 1, ...$$

 \bullet (equivalently) pick some n, and update \mathbf{w}_t by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \underbrace{\mathbf{1}}_{\eta} \cdot \underbrace{\left(\left[\operatorname{sign} \left(\mathbf{w}_t^\mathsf{T} \mathbf{x}_n \right) \neq y_n \right] \cdot y_n \mathbf{x}_n \right)}_{\mathbf{v} = \frac{1}{2} - \hat{n} = \hat{p} \hat{p} \hat{p}}$$

when stop, return last w as g

choice of (η, \mathbf{v}) and stopping condition defines iterative optimization approach

Fun Time

Consider the gradient $\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$. That is, each example (\mathbf{x}_n, y_n) contributes to the gradient by an amount of $\theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right)$. For any given \mathbf{w} , which example contributes the most amount to the gradient?

- 1 the example with the smallest $y_n \mathbf{w}^T \mathbf{x}_n$ value
- 2 the example with the largest $y_n \mathbf{w}^T \mathbf{x}_n$ value
- 3 the example with the smallest $\mathbf{w}^T \mathbf{x}_n$ value
- 4 the example with the largest $\mathbf{w}^T \mathbf{x}_n$ value

Iterative Optimization

```
For t=0,1,\dots \mathbf{W}_{t+1} \leftarrow \mathbf{W}_t + \boxed{\eta \mathbf{V}} 純量\mathbf{x}向量方向
```

when stop, return last \mathbf{w} as g

- PLA: v comes from mistake correction
- smooth E_{in}(w) for logistic regression: choose v to get the ball roll 'downhill'?
 - direction v: (assumed) of unit length
 - step size η:
 (assumed) positive

a greedy approach for some given $\eta > 0$:

讓向量最小
$$\min_{\|\mathbf{v}\|=1} E_{\mathrm{in}}(\underbrace{\mathbf{w}_t + \eta \mathbf{v}}_{\mathbf{w}_{t+1}})$$

Linear Approximation

a greedy approach for some given $\eta > 0$:

沒有辦法一次到位

$$\min_{\|\mathbf{v}\|=1} \quad E_{in}(\mathbf{w}_t + \mathbf{\eta v})$$

- still non-linear optimization, now with constraints
 —not any easier than min_w E_{in}(w)
- local approximation by linear formula makes problem easier

$$E_{\text{in}}(\mathbf{w}_t + \frac{\eta \mathbf{v}}{\mathbf{v}}) \approx E_{\text{in}}(\mathbf{w}_t) + \frac{\eta \mathbf{v}}{\mathbf{v}}^T \nabla E_{\text{in}}(\mathbf{w}_t)$$

if η really small (Taylor expansion)

an approximate greedy approach for some given small η :

$$\min_{\|\mathbf{v}\|=1} \quad \underbrace{E_{\text{in}}(\mathbf{w}_t)}_{\text{known}} + \underbrace{\eta}_{\text{given positive}} \mathbf{v}^{\mathsf{T}} \underbrace{\nabla E_{\text{in}}(\mathbf{w}_t)}_{\text{known}}$$

Gradient Descent

an approximate greedy approach for some given small η :

$$\min_{\|\mathbf{v}\|=1} \underbrace{E_{\text{in}}(\mathbf{w}_t)}_{\text{known}} + \underbrace{\eta}_{\text{given positive}} \underbrace{\nabla E_{\text{in}}(\mathbf{w}_t)}_{\text{known}}$$

• optimal **v**: opposite direction of $\nabla E_{in}(\mathbf{w}_t)$

$$\mathbf{v} = egin{array}{c} -rac{
abla E_{\mathsf{in}}(\mathbf{w}_t)}{\|
abla E_{\mathsf{in}}(\mathbf{w}_t)\|} \end{array}$$
單位向量

• gradient descent: for small η , $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \frac{\nabla E_{\text{in}}(\mathbf{w}_t)}{\|\nabla E_{\text{in}}(\mathbf{w}_t)\|}$

gradient descent:
a simple & popular optimization tool

Choice of η

 η better be **monotonic of** $\|\nabla E_{in}(\mathbf{w}_t)\|$

Simple Heuristic for **Changing** η

 η better be monotonic of $\|\nabla E_{in}(\mathbf{w}_t)\|$

• if red $\eta \propto \|\nabla E_{in}(\mathbf{w}_t)\|$ by ratio purple η

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \frac{\nabla E_{\mathsf{in}}(\mathbf{w}_t)}{\|\nabla E_{\mathsf{in}}(\mathbf{w}_t)\|}$$
 \parallel
 $\mathbf{w}_t - \eta \nabla E_{\mathsf{in}}(\mathbf{w}_t)$

• call purple η the fixed learning rate

fixed learning rate gradient descent:

$$\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t - \eta \nabla E_{\text{in}}(\mathbf{W}_t)$$

Putting Everything Together

Logistic Regression Algorithm

initialize \mathbf{w}_0 For $t = 0, 1, \cdots$

1 compute

$$\nabla E_{\text{in}}(\mathbf{w}_t) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$

2 update by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla \mathbf{\mathcal{E}}_{in}(\mathbf{w}_t)$$
 更新

微分等於0

...until $\nabla E_{in}(\mathbf{w}_{t+1}) = 0$ or enough iterations return last \mathbf{w}_{t+1} as g

similar time complexity to **pocket** per iteration

Fun Time

If $\mathbf{w}_0 = \mathbf{0}$, and take $\eta = 0.1$. What is \mathbf{w}_1 in the logistic regression algorithm?

$$\bullet$$
 +0.1 · $\frac{1}{N} \sum_{n=1}^{N} y_n \mathbf{x}_n$

2
$$-0.1 \cdot \frac{1}{N} \sum_{n=1}^{N} y_n \mathbf{x}_n$$

3 +0.05
$$\cdot \frac{1}{N} \sum_{n=1}^{N} y_n \mathbf{x}_n$$

4
$$-0.05 \cdot \frac{1}{N} \sum_{n=1}^{N} y_n \mathbf{x}_n$$

$$\nabla E_{\text{in}}(\mathbf{w}_t) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla E_{\text{in}}(\mathbf{w}_t)$$

Summary

How Can Machines Learn?

Linear Regression Logistic Regression Logistic Regression Problem $P(+1|\mathbf{x})$ as target and $\theta(\mathbf{w}^T\mathbf{x})$ as hypotheses Logistic Regression Error cross-entropy (negative log likelihood) Gradient of Logistic Regression Error θ -weighted sum of data vectors Gradient Descent roll downhill by $-\nabla E_{in}(\mathbf{w})$