This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INFO #: 11459539 SIERRA PATENT GROUP, LTD **ANDREW SMITH**

SHIP VIA:

Mail

FedEx 1769-7425-7

FILLED ON:

5/24/2001

Infotrieve, Inc. 41575 Joy Rd. Canton, MI 48187

Phone (800) 422-4633 or (800) 422-4633 ext. 8

Fax (734) 459-5280

Foreign Patent

SHIP TO: 8240 / 147237

SIERRA PATENT GROUP, LTD ANDREW SMITH PO BOX 6149 **295 HIGHWAY 50, SUITE 20 STATELINE, NV 89449**

Please contact us if you have questions or comments regarding this article

Email: service@infotrieve.com

Phone: (800) 422-4633

CUSTOMER INFO

FAX: 775-586-9550

COURIER: 1769-7425-7

ARIEL:

PHONE: 775-586-9500X124

NOTES:

ARTICLE INFORMATION

FOREIGN PATENT

JP 61 116889():* 1986

6/4/86, H01S 3/04

CCD

2000

SHIP VIA Mail

ORDER# **BILLING REF**

ORDERED ON

5/23/2001

FILLED ON

5/24/2001

NEED BY

ATTENTION

ANDREW SMITH

INFO#

11459539

This document is protected by U.S. and International copyright laws. No additional reproduction is authorized. Complete credit should be given to the original source.

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-116889

(i) Int.Cl.4

識別記号

庁内整理番号

43公開 昭和61年(1986)6月4日

H 01 S 3/04

6370-5F

審査請求 未請求 発明の数 1 (全7頁)

9発明の名称 放電励起型短パルスレーザ装置

②特 願 昭59-239268

②出 願 昭59(1984)11月13日

⑫発 明 者 春 田 健 雄 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機 器研究所内

⑫発明者 若田 仁志 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機

器研究所内

⑫発 明 者 佐 藤 行 雄 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機

器研究所内

⑫発 明 者 永 井 治 彦 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機

器研究所内

⑪出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

邳代 理 人 弁理士 大岩 増雄 外2名

最終頁に続く

明 細 書

1. 発明の名称

放電励起型短パルスレーザ装置

2. 特許請求の範囲

(2) 放然フィンはレーザガス流中に配設されている特許請求の範囲第1項記載の放電励起型短パルスレーザ装置。

3. 発明の辞細な説明

〔産業上の利用分野〕

この発明は、気体レーザのうち放電励起型短バルスレーザを対象とするものであつて、特にその 電極部の冷却に関するものである。

〔従来の技術〕

また、第5凶は上記開孔電極(8)を主放電空間切 から見た平面図であり、図において、明は開孔部 を示す。

次に動作について説明する。

まず、回路系について述べる。高電圧電源川か **ら供給される電荷は、まずキャパシタ(2)に蓄積さ** れる。次いてスイツチ(4)が導迪状態になるとキャ パシタ(2)からスイツチ(4)、さらにアースラインを 介してキャパシタ(5),コイル(6)を経てキャパシタ (2)にもどるという選侃ループによつて、キャパシ タ(2)に蓄積されていた電荷はキャパシタ(6)に移行 される。この迅速な電荷の移行に伴つて開孔電板 (8)と第1の主電板(9)の間(以下主放電々機間と呼 が)および開孔電極(B)と補助電極(III)との間(以下 補助放進々値間と呼ぶ)の電圧が急峻に上昇する。 補助放電の開始電圧は主放電の開始電圧より低い ので、まず開孔確極(8)に設けられた明孔出(19にか いて誘電体(11) 表面に補助放催(沿面放電)が起こ る。この補助放電で生成する他子の一部およびと の放電場からの架外光で光視離されて生する電子

この従来例においては、開孔電極(8)および勝電 体別の冷却は、上記ガス流域による乱流熱伝達と 背面の補助電優間を介して、背面空間で形成され る自然対תによる熱伝達によつてしか行なわれな い。しかも、網孔電極(8)側は沿面補助放電および 主放電が起つている間は、逆に熱入力面となる。

エキシマレーザを例として、熱人力のオーダを 試算してみると、レーサパルスエネルギ 200mJ/ パルス,くり返し選度 1kHz で平均出力 200W の機 種を考えると、通常レーザ発版効率は1分である から、キャパシタ(2)に答えられるエネルギは 20kW となる。凹路系におけるオーミックな損失が半分 とすれば 10kW がガスに投入される。その内わず か数るが明孔暄極(8)部の加熱原になるとしても数 百wのオーダに達する。

一方、乱流熱伝建窓を試算してみると、例えば (甲胺好郎, 伝熱概論, 姿質鑑版, 116p(1982)) から、カルマンのアナロジ式を用いれば、ダツセ ルト数(N,* と記す),レイノルズ数(Ra* と記す), プラントル教(Preと記す),局所熱伝速率(hxee

が、主放電をグロー状の均一を放電とするための 確となり、次いで主放 鷲空間切においてパルス的 化主放電が起つてレーザ供質が励起 され、その結 果、レーザ光が取り出される。このレーザ光のパ ルス幅は主放電のパルス幅によるが、一例をあげ れば、短パルスレーザの1つであるところのエキ シマレーザにおいては数十 nsec である。スイツ チ川としては通常サイラトロンが用いられ、上記 のレーザパルス発版が数 Hz ないし数 kHz、通常 は教百Hzのくり返し速度でくり返し行なわれる。

次に硫体系について述べる。一般にパルス的に 主放電が起つた後は主放電空間切は、熱的にも電 荷分布の点からも不均一な状態になつており、次 のパルス主放電がアークになり易いため、次のパ ルス主放電が配る前に主放電空間切のレーザガス を置き換えておく必要がある。このため、ファン 04や硫体ガイド心なよびレーザガスの放電による **温度上昇を防ぐための熱交換器四が配設されてお** り、通常主放電空間における流速が毎秒攻十四と いう高速なガス流ぬが達成されている。

記す)、ת体(一般のエキシャレーザのガス組成 はヘリウムが 90%以上であるので、試算において はへりウムガスとする)の熱伝導率 (¹Re と記す)。 朗孔電極(8)のガス硫上硫側の端から、今、局所熱 伝達率を試算しようとしている開孔電板(8)上のあ る部分までの距離 (xと記す)の諸 変数を用いて

$$N_{u}^{x} = \frac{h^{x} \cdot x}{l_{He}} = 0.0296 R_{\theta}^{x^{0.8}} \cdot P_{r} / \left\{ 1 + B(R_{\theta}^{x^{-0.1}})(P_{r} - 1) \right\}$$

$$B = 0.86 \left(1 + \frac{\ln((1 + 5P_{r})/6)}{(P_{r} - 1)} \right)$$
(2)

(2)

と書くことができる。

He の圧力を通常のエキシマレーザの動作圧 3 気圧とし、ガス流速を通常のエキシマレーザでの。 流速から 20m/sec とし、崩孔電極(8) 形状を幅 0.06m. レーザ光軸方向の長さ O.6m とする。 今、 距離 x のポイントとして 0.03m。 すなわち 盤板幅の中央 を設定すると、レイノルズ数 (Rax) は 1.6×10'と なり、また気体のプラントル数は約 0.7 ヘリウム の熱伝導率は 0.13kcal/m brで であるから、局所熱

伝送係数 n* は 2.6×10² kca L/m² hrで と野出される。 今、ヘリウムガス強度と明孔磁板(8) 温度との幾を 20℃とすると、敗り去られる熱量は、約 200W と なり、先述の終入力と同等もしくはそれ以下にし か額たない。

また、上記改定温度差 20℃においては、例えば 開孔電視(8) がニッケル(エキシマレーザではもつ とも記ましい材料とされている)製 であるとする と、その破膨張率 0.15×10⁻⁴ から 開孔電板(8) は 0.2mm も伸びることになる。 一般に開孔電板は助 で体山) に密程させる構造がとられているので、 誘 では山上を開孔 環域(8) がスムーズにすべらず、上記の伸びは明孔電板(8) の " そり " となつて安われることが多い。

[発明が解決しようとする問題点]

印加する凹略を備えたものである。

(作用)

この発別における放然フインは、以下で呼述するように、明孔電板および跨媒体を効率良く冷却する。

〔 災 施 例 〕

以下、この発明の一実施例を図をもとに説明する。第1図ではこの発明の一実施例を示す断面図、第1図では第1図での主要部をイーイ方向から見た断面図である。図において、四は放然フインであり、この例では補助 電極(間に改けられている。

次に作用について詳細に説明する。明孔電極(8), 誘電体(1)、および補助電磁(10)は、熱的には三層の 摂脳板を形成している。例えば、開孔電像(8)と補助電極(10)の材質をニッケルとし、勝敏体(4)の材質 をアルミナとすると、総括的な熱伝達率の値は、 10⁴ kcale m² hr C のオーダとなり、先述の開孔電板 (8) からヘリウムガスへの熱伝達率より二桁大きい。 したがつて、冷却の都速段階は、レーザガス(先 述したように例えばエキシマレーザでは90%以上 極間のギャップ長が局部的に不ぞろいになり、主 放成がアークになりやすいなどの問題点があつた。

この発明は上記のような問題点を解消するため になされたもので、簡易な方法で開孔電域および 誘電体を冷却し、これによつてレーザ発展のくり 返し速度を増しても安定に動作する放電励起型短 パルスレーザ装備を得ることを目的とする。

[問題点を解決するための手段]

がヘリウム)への熱伝建過程であり、この過程を速めてやればより効率の良い冷却が可能となる。しかも、より簡易な方法で及與はではないには、かつ熱度され、かつ無限の冷媒とするのに対し、ないの。まず、ガス流速を n 倍にないにない にない n 倍になり、 結果として熱伝達率も約にといるが、その一方では主放性空間切になける圧力損失が(低速の2乗に比例するので) n² 倍に カ な り 間 題である。

そこで補助電極(III)を脅却する事を考える。先述したように、開孔 寝機(B) と勝健体(III)と補助磁械(III)の機
層板間の熱 伝達器は大きいので、補助地械(III)を冷却することにより開孔地域(B) および誘戦体(III)の効果的友倫却は十分行なえる。

このために補助 遺極(間に依然フイン以)を改け、 この放然フイン以にレーザガスを流すようにした。 今、補助 範値(間の面積を A 、 この A の うち フイン 20 を 設けた際に フイン 20 が ついていない 残りの 部分の 3 間 後を A 。 , フイン 20 の 全面 像を A 1 , フィ ン 表面の熱 伝達率 を ho と すると、 熱 伝達係 数 は 次式 で与えられる。

$$h = \frac{A \circ + 7Af}{A} h_0 \tag{3}$$

ことで、りはフイン効率と呼ばれ、フインの要面の糸伝達率とフイン切材料の糸伝導率,フインのの厚み,フインのの届さによつて決まる値である。(3) 式から明らかをように 7Axt を大きくするようにフイン形状を選ぶことによつて L を値めて大きくすることができる。一例を以下に示す。

補助電極(10)の断面積を先述の開孔電極(8)と同様に、幅 0.06m, レーザ光軸方向の長さ 0.6m とし、これに高さ 0.02m で厚み 0.5mm の放電フイン公を 2.5mm 間隔でレーザ光軸と値交する方向に 200 枚設けたとすると、 A。は 0.03m², Afは 0.48m² となる。 また、フイン材料をニッケルとし、フイン公部を通過するガス低速を 20m/sec とすると (甲酸好郎, 伝熱概論, 養賢堂版, 27p (1982)) よりフィン効率 7は 0.86, フィン公表面の 熱 伝達率 h に 2.6×10²kcaℓm² h r C となるから、 熱 伝達率 h

つた場合は、くり返し選皮 300Hz の敗階で、開孔 を は 81 の 約 形 張 に と ら 反 り に 起 因 主 立 な と は と ら な が に と の か が に と の か が に と の か が に と の か が に と の か が に と の か が に と の か が に と の か が に と の か が に ま の か か な か が に ま か の か な か な な か が に ま か が に ま か が に ま か が に ま か が に ま か が に ま な ら で の き は さ ら に 顕著 な と の き は さ な い 。 と は ち な い 。 と は ち な い 。 き で も な い 。

第2図はこの発明による他の実施例を示示した。 実施例においては、ガス硫路のではないでは、ガス硫路がに配数には、ガス硫酸がに配数がに配数ができる。 では、ガスのように、では、カインののができる。 では、カインののができるができる。 ないのに、カインののは、カインのでは、カイ は(3)式より 3.2×10³ kcal/m²hrCとなり、従来例に 比べて 1 桁も大きくなる。

次に動作について説明する。 回路 系の動作は第 4 図にないて説明したので第1 図にないては省略 した。

まず、レーザガスはファンWによって循環されている。主放電空間切を出たガスは熱交換器以で所定の温度に冷却され再び主放電空間切に戻されるが、その一部は補助電値(40)の背面に設けられた放熱フィン(4)部に送られ補助電値(40)を介して誘電体叫かよび放熱フィン(4)部を通過したガスは再び混合され、熱交換器(4)へと導かれてゆく。

この実施例においては開孔電極(8)の厚み 0.5mm 誘電体(1)の厚み 2mm,補助電極(10)の厚み 1mm であ り、各電極の断面積,フイン(2)の大きさ,ガス施 速は先述の熱 伝達率の試算で用いた個 と同じであ る。エキシマガス 3 気圧 (He:Xe:CL=0.15:0.75: 99.1) を用いてレーザパルスエネルギ 100mJ/パ ルスの発振を行つた際、放熱フイン(2)を設けなか

第3図はこの発明のさらに他の実施例に係る放 熱フイン部を示す断面図であり、この実施例に係る放 いては補助 電徳 (10) が誘電体 (11) 内部に埋め込まれた 構造となつているため、放熱フイン 20 は誘電体 UI に設けられている。この場合の放熱フイン 20 の材料は、誘電体であつても金属であつてもよい。

なか、上記実施例では何れもエキシマレーザの場合について主に説明したが、この発明は例えば TBA CO2 レーザなど他の放電励起型短パルスレーザにも適用でき、上記実施例と同様の効果を奏する。

また、開孔電板(8)としてはパンチングメタルや メッシュなどを用いることができ、開孔部 09 の形 状は円形の他、だ円形や多角形などであつてもよ

[発明の効果]

以上のように、 との 発明によれば、 レーザガス 流中に配置され、 レーザ光軸方向 を 長手方向 とす る第1の主電極、 第1の主電極と対向して配設され、 複数個の 開孔部を有する 第2の 主電極、 第2

特開昭61-116889 (5)

4. 図面の簡単な説明

第1図のはこの発明の一突施例を示す断面図、 第1図のは第1図のの主要部をイーイ方向から見た断面図、第2図はこの発明の他の実施例を示す断面図、第3図はこの発明のさらに他の実施例に係る放急フィン部を示す断面図、第4図は従来の放電励起型短パルスレーザ装置を示す断面図、第 5 図は第4 図に示す第2 の主電機を主放電空間から見た平面図である。

図において、(8) は第2の主電値、(9) は第1の主電極、(10) は補助電極、四は誘電体、四は一サガス 死を示す矢印、四は開孔部、四は放剤フィンである。

なお、各凶中、同一符号は同一または相当部分 を示すものとする。

代埋人 大岩増雄

第 1 図

O: 才2n主 會 極

9: 710 主電極

10: 補助電極

11: 誘 電 体 18: レーザー かス 流

20: 放然 フィン

第 2 図

第 4 図

第3図

第5网

第1頁の続き 切発 明 者 中

元 尼崎市塚口本町8丁目1番1号 三菱電機株式会社伊丹製 作所内 手統補 iĿ (議自)告

。特許庁長官殿

1. 事件の表示

特與昭 59-239268号

2. 発明の名称

放電励起型短パルスレーザ装置

3. 補正をする者

事件との関係 特許出願人

任 所

東京都千代団区丸の内二丁目2番3号

名 称 (601)三菱電機株式会社

代表者 片 山 仁 八 郎

4. 代 理 人

化所

東京都千代田区丸の内二丁目2番3号

三菱電機株式会社内

氏 名 (7375) 弁理士 人 岩 增 雄

(刑法(2) (37(213))24(21特計(28)

補正の対象

山明細御の発明の詳細な説明の欄

(2) 図面

6. 補正の内容

(1)明細铅第3頁第16行に「補助放電の開始電 圧は主放電の崩始配圧より低い」とあるのを「補 助放電の放電開始電圧は主放電の放電開始電圧よ り似い」と訂正する。

あるのを「スイツチ41」と訂正する。

奺」とあるのを「ヌツセルト数」と訂正する。

(4) 図面の射 4 図を別紙のとおり訂正する。

7. 添付磐類の目録

図面(第4図)

以

万式 (高)

第 4 図

(19) JAPANESE PATENT OFFICE (JP)

(12) PUBLICATION OF UNEXAMINED (KOKAI) PATENT APPLICATION (A)

(11) Kokai (Unexamined Patent) Number: 61-116889

(43) Date of Disclosure: June 4, 1986

(51) Int. Cl.⁴ H 01 S 3/04

Identif. Symbol

Intra-Office Number

6370-5F

Number of Inventions: 1

Examination Requested: Not yet requested.

(Total of 7 Pages)

- (54) Title of the Invention: DISCHARGE EXCITATION SHORT-PULSE LASER DEVICE
- (21) Application Number: 59-239268
- (22) Filing Date: October 13, 1984
- (72) Inventor: Takeo Haruta c/o Mitsubishi Electric Corporation, Itami Plant Amasaki-shi, Tsukaguchi Honcho, 8-chome, 1-ban, 1-go
- (72) Inventor: Hitoshi Wakata c/o Mitsubishi Electric Corporation, Itami Plant Amasaki-shi, Tsukaguchi Honcho, 8-chome, 1-ban, 1-go
- (72) Inventor: Yukio Sato c/o Mitsubishi Electric Corporation, Itami Plant Amasaki-shi, Tsukaguchi Honcho, 8-chome, 1-ban, 1-go
- (72) Inventor: Haruhiko Nagai c/o Mitsubishi Electric Corporation, Itami Plant Amasaki-shi, Tsukaguchi Honcho, 8-chome, 1-ban, 1-go
- (74) Representative: Masuo Oiwa, patent attorney
 Continues on the last page.

Specifications

- 1. Title of the Invention: Discharge Excitation Short-Pulse Laser Device
- 2. Scope of the Claim of the Invention
- (1) A discharge excitation type of a short pulse laser device, characterized by the fact that a first main discharge electrode is mounted in the longitudinal direction to the axial direction of the laser light in the laser gas current,

a second main discharge electrode having a plurality of perforated parts is mounted opposite the first main discharge electrode,

a dielectric layer is deployed tightly attached to the back surface of the second main discharge electrode,

and an auxiliary electrode is deployed opposite the second main discharge electrode tightly attached to this dielectric;

wherein a heat radiating fin is deployed at least for said auxiliary electrode or said dielectric,

using a construction comprising a pulse circuit enabling to apply a pulse voltage between said main discharge electrodes, wherein said pulse circuit is formed as a part of this construction, or this pulse circuit is formed independently;

equipped with a circuit enabling to apply voltage between said auxiliary electrode and said second main discharge electrode.

- (2) The discharge excitation type of a short pulse laser device described in claim 1, characterized by the fact that a heat radiating fin is mounted in the laser gas current.
- 3. Detailed Explanation of the Invention

(Sphere of Industrial Use)

The subject of this invention is a discharge excitation type of a short pulse laser, in particular it relates to cooling of the electrode part of the laser.

(Prior Art Technology)

Figure 4 shows a profile view explaining one example of an excimer laser device according to a conventional discharge excitation type of a short pulse laser device. As shown in the figure, (1) is a source of high voltage, numbers (2), (5), and (7) indicate capacitors, (3) is a

high resistance resistor, (4) is a switch, (6) is a coil, (9) is a first main discharge electrode mounted in the longitudinal direction of the axis of the laser light (vertical direction to paper surface) deployed in a current of laser gas, (8) is a second main discharge electrode, that is to say a perforated electrode provided with openings which has a part provided with multiple openings and which is mounted opposite the first main discharge electrode (9), (11) is a dielectric which deployed so that it is tightly attached to the back surface of perforated electrode (8), (10) is an auxiliary electrode positioned opposite perforated electrode (8), mounted so that it is tightly attached to this dielectric (11), (12) is a heat exchanger, (13) is a fluid guide, (14) is a fin, (15) is a laser housing unit, (16) is an insulator, (17) is a space for the main discharge, and arrow (18) indicates the direction of the laser gas.

[page 452]

In addition, Figure 5 shows a top view of said perforated electrode (8) seen from the main discharge space (17). Number (19) indicates in this figure the perforated part.

The following is an explanation of the operation.

The circuit system will be explained first. When a charge is furnished from a high-voltage source (11), the charge will be first stored in capacitor (2). Next, switch (4) is activated so that the electric charge which has been stored in capacitor (2) will be transferred to capacitor (5) through switch (4) setting the conductive state from capacitor (2) continuing through a grounding line to capacitor (5) and coil (6), and furnishing charge stored in capacitor (2) to capacitor (5). Accompanying this prompt transfer of the electric charge will be a sudden increase of the voltage in the space between perforated electrode (8) and the first main discharge electrode (9) (hereinafter referred to as the electrode space between the main discharge electrodes) and perforated electrode (8) and auxiliary electrode (10) (hereinafter referred to as the electrode space between the auxiliary electrodes). Because the initial voltage of the auxiliary electrodes is lower than the initial voltage of the main discharge electrodes, first, an auxiliary discharge will be initiated on the surface (electric discharge along the surface area) of dielectric (11) in the perforated part (19) created in perforated electrode (8). One part of the electrons generated by this auxiliary electrode and electrons generated by ionization with ultraviolate light rays emitted from the field of the electric discharge will be used to create a homogenous glow state of the main discharge. Next, the main discharge generated in the main discharge space (17) in a pulse form will excite a laser medium and laser light rays will be fetched as a result of this. The pulse width of this laser light is determined by the pulse width of the main discharge. To give an example, this will correspond to several tens of nsec in an excimer laser at the point when 1 short pulse of the laser is created. A common thyratron type can be used for switch (11) with a laser pulse oscillation frequency in the range of several Hz to several kHz. Normally, a repeating speed of several hundred Hz can be used.

The fluid system will be explained next. Because the main discharge electrode space (17) in which the main discharge is generated in a pulse form will be generally in an unstable state from the viewpoint of thermal energy and from the viewpoint of the distribution of the electric charge, the next pulse main discharge can easily create an arc and the laser gas thus must be replaced in the main discharge space (17) before the main pulse discharge is generated. Because of that, a heat exchanger (12) is deployed in order to prevent increased temperature caused by the discharge of laser gas, together with a fluid guide (13) and fin (14), creating a construction wherein the flow rate in the space of the discharge enables a high speed of the gas current (18), normally several tens m every second.

The cooling of perforated electrode (8) and dielectric (11) can be accomplished in this prior art example only by the heat transfer with natural convection in back face space (12) via the back face of auxiliary electrode (10) and with the turbulence heat transfer in said gas current (18). On the other hand, the space in which the auxiliary discharge and the main discharge is generated along the surface on the side of perforated electrode (8) will form a surface to which heat will be input.

If one attempts to calculate the order of heat input by using excimer lasers as an example while taking into account a laser pulse energy of 200 mJ/pulse and a machine type which has a mean output of 200 W with a repeating speed of 1 kHz, the normal laser oscillation efficiency will be 1%. Therefore, the energy stored in capacitor (2) will correspond to 20 kW. If the ohmic loss in the circuit system is about a half, 10 kW will be input to the gas. This means that the result will be on the order of several hundred W even if the heating source is formed in the part of perforated electrode (3), which means that barely several % of the total is achieved.

On the other hand, if one attempts to calculate also the turbulence heat transfer conditions (for instance as described by Yoshiro [illegible last name], in Heat Transmission Equipment, published by [illegible name of the publishing house], p. 116 (1982)), by using Kalman's analog method based on Nusselt's number (expressed as N_u^x), Reynold's number (expressed as R_e^x), Prandtl's number (expressed as P_r), local heat transmission rate (called h^x), heat conductivity of fluids (expressed as λ_{He}) with helium gas can be used for test calculations (because helium composition represents at least 90% of a common excimer laser), at the end of the gas current flow period of perforated electrode (8), the local heat transmission rate can be calculated by using all the following variables with the distance (expressed as x) up to upper part of perforated electrode (8):

[insert Formula (1) and formula (2) at the bottom of page 452]

The pressure of He can be set to 3 atmospheres, which corresponds to normal operating pressure of excimer lasers, and the gas flow rate can be set to a normal flow rate of 20 m/sec for an excimer laser, the width of the shape of perforated electrode (8) can be set to 0.06 m, and the length in the direction of the optical axis of the laser rays to 0.6 m. Assuming a distance x of 0.03 m, that is to say when a central point is set for the electrode with, Reynold's number (R_e^x) will

correspond to 1.6×10^4 .

[page 453]

In addition, because Prandtl's number (expressed as P_r) for gases corresponds to 0.7 for helium, resulting in heat conductivity of 0.13 kcal/mhr °C, this means that local heat transmission rate n^x can be calculated as 2.8×10^2 kcal/m² °C.

Assuming that the difference between the temperature of helium gas and the temperature of perforated electrode (8) is for example 20°C, the quantity of heat that will be removed will correspond to about 200 W, which is only about the same or less than the above described heat input.

In addition, if this set temperature difference is 20°C and perforated electrode (8) is manufactured for instance from nickle (because this is the most desirable material for excimer lasers), since its linear expansion coefficient is 0.15 x 10⁻⁴, perforated electrode (8) will be also expanded by 0.2 mm. Since a perforated electrode is generally used with a construction wherein it is tightly attached to dielectric (11), so called "cambering" will be displayed due to this elongation in perforated electrode (8) and dielectric (11) as the attachment of dielectric (11) to perforated electrode (8) will not occur smoothly.

(Problems To Be Solved By This Invention)

Because discharge excitation laser devices of the short-pulse type according to prior art were characterized by the above described construction, when the repeating speed was increased in order to increase the mean laser output and heating was applied to perforated electrode (8) and dielectric (11), this would result in rupturing of dielectric (11) due to thermal stress and cambering of perforated electrode (8). And because this in turn resulted in an uneven length of the gap between the main discharge electrodes, the problem was that an arc of the main discharge electrode could easily occur in this manner.

The purpose of this invention is to resolve the above mentioned problem area with a simple method enabling cooling of the perforated electrode and of the dielectric to make it possible to obtain a discharge excitation type short-pulse laser device enabling stable operations even when the repeating speed of laser oscillations is increased.

(Means To Solve Problems)

According to the discharge excitation short-pulse laser device of this invention, a first main discharge electrode is mounted in the longitudinal direction to the axial direction of the laser light in the laser gas current, a second main discharge electrode having a plurality of

perforated parts is mounted opposite the first main discharge electrode, a dielectric layer is deployed tightly attached to the back surface of the second main discharge electrode, and an auxiliary electrode is deployed opposite the second main discharge electrode tightly attached to this dielectric; wherein a heat radiating fin is deployed at least for said auxiliary electrode or said dielectric, using a construction comprising a pulse circuit enabling to apply a pulse voltage between said main discharge electrodes, wherein said pulse circuit is formed as a part of this construction, or this pulse circuit is formed independently; equipped with a circuit enabling to apply voltage between said auxiliary electrode and said second main discharge electrode.

(Operation)

The heat radiating fin of this invention, which will be described in more detail later, provides an optimal cooling effect for the perforated electrode and for the dielectric.

(Embodiment)

The following is an explanation of one embodiment of this invention based on the enclosed figures. Figure 1 (a) [on the left side] shows a profile view indicating one embodiment of this invention, while Figure 1 (b) [on the right side] shows a profile view of a section of the main part of Figure 1 (a) indicated in the upper part of the figure. As shown in the figure, [illegible number] is a heat radiated fil mounted in this example on auxiliary electrode (10).

The operation will be explained in detail next. Perforated electrode (8), dielectric (11) and auxiliary electrode (1) form from the viewpoint of thermal structure a layered construction consisting of 3 layers. If for example nickle is used for perforated electrode (8) and auxiliary electrode (10) and aluminum is used for dielectric (10), the value of the overall coefficient of thermal conductivity will be on the order of 10⁴ kcal.m² hr°C. As was explained above, this is greater by two digits than the thermal conductivity of the helium gas in perforated electrode (8). Accordingly, the cooling accelerating stage enables to provide an optimal effect thanks to the thermal conductivity transition of the laser gas, as was explained above, more than 90% when for example helium is used in an excimer laser. Moreover, to make it possible to realize a simpler method, it is desirable to use a coolant in the electrode containing a laser gas, while the temperature can be also controlled with heat exchanger (12). First, if a ratio n is set for the gas flow rate and Reynold's number is multiplied n times, even if the resulting thermal conductivity equals approximately n, the problem is that the pressure loss in the discharge space (17) equals n² (because it will be proportional to the square of the flow velocity).

An example of the cooling of auxiliary electrode (10) will now be considered. As was explained above, due to a high thermal conductivity in the space of [illegible] plates of auxiliary electrode (10) and dielectric (11) and perforated electrode (8), a sufficient cooling effect can be achieved in perforated electrode (8) and dielectric (11) when cooling is applied to auxiliary electrode (10).

In order to do that, a heat radiating fin (20) is mounted on auxiliary electrode (10), so as to conduct the current of laser gas to this laser radiating fin (20). Assuming a surface area A of the auxiliary electrode (10), the surface area of the remaining part which is not provided with a fin (i) is expressed as A_0 , while a part of A is provided with fin (20), while the total surface area of fin (20) is expressed as A_f and the thermal conductivity of the surface of the fin is expressed as A_0 , then the thermal conductivity coefficient can be expressed according to the following formula:

[page 454]

[see Formula (3) in the left top corner of page 454]

The value of the fin effect, which will be called η here, will be determined by the thermal conductivity coefficient of the material of fin (2) and by the thermal conductivity coefficient on the surface of fin (2), by the thickness of fin (20) and by the height of fin (20). As one can see from Formula (3), when the shape of the fin is chosen so as to increase ηA_f , this will make it possible to maximize the value h. An example of this concept will now be explained.

If the profile surface area of auxiliary electrode (10) is selected similarly to the surface area of perforated electrode (8) with a width of 0.06 m, a length of 0.6 m is selected in the axial direction of the laser light, and 200 plates of discharge fins (20) which are 0.02 m high and 0.5 mm thick are deployed at an interval of 2.5 mm in a direction orthogonal to the laser light, A_o corresponding to 0.03 m² and A_f corresponding to 0.48 m² will be created. In addition, if nickle is used as the material of this fin and the gas flow velocity of the gas passing through the fin part (20) is 20 m/sec, according to Yoshiro Kodo, (Theory of Thermal Conductivity, [illegible name of the publishing house], p. 27 (1982), the thermal conductivity coefficient of the surface of fin (20) will be created with a fin efficiency η of 0.86 and it will thus be determined as 2.6 x 10^2 kcla/m². Therefore, since the thermal conductivity ratio h will be determined in accordance with formula (3) as 3.2×10^3 kcal/m², this means that the prior art example is improved by as much as 1 digit.

The operation will be explained next. Since the operation of the circuit system has been already explained in Figure 4, this part will be omitted from the explanation provided for Figure 1.

First, laser gas will be circulated with fin (14). The gas discharged into the main discharge space (17) is cooled to a specified temperature by heat exchanges (12) and then it is returned again to the main discharge space (17). However, one part of this gas will be supplied to the part of heat radiating fin (20) which is deployed on the back surface of auxiliary electrode (10) so that cooling will be applied via auxiliary electrode (10) in dielectric (11) and perforated electrode (8). The gas will be mixed again with the gas which has passed through main discharge space (17) and discharge fin part (20) and it will be conducted to heat exchanger (12).

In this embodiment, the thickness of perforated electrode (8) was 0.5 mm, the thickness of the dielectric (11) was 2 mm, and the thickness of the auxiliary electrode (10) was 1 mm, while the values used for the profile surface area of each electrode, for the size of fin (20), and for the gas flow velocity were calculated according to the above explained method for calculation of thermal conductance coefficient.

When no heat radiating fin (20) was deployed while oscillations were generated with a laser pulse energy of 100 mJ/pulse by using an excimer laser with 3 atmospheres (He: Xe: Cl = 0.15: 0.75: 99.1), an irregular gap length was obtained between the main discharge electrodes due to cambering caused by the thermal expansion of perforated electrode (8) at the stage when the repeating speed was 300 Hz. While a glow form of the discharge and a filament form of the discharge occurred, the filament shape of the discharge was not generated in this example until the repeating speed of 400 Hz, which proved the efficiency of this cooling method. Needless to say, this difference is likely to be even more conspicuous when the repeating speed is increased again on the order of a kHz.

Figure 2 shows another embodiment of this invention. In this embodiment, main discharge space (17) and heat radiating fin (20) parts are arranged in series in the gas flow channel. Accordingly, while in the case in which both parts were arranged in parallel as shown in Figure 1, the gas current quantity of fin (14) had to be increased only by an amount corresponding to the gas current passing through the heat radiating part (20), the gas current quantity can be left as is in the present embodiment form and the discharge pressure of fin (14) must be increased. The type of mode that is used will be more or less determined by the capability of fin (14).

Figure 3 shows a profile view indicating a heat radiating part according to yet another embodiment of this invention. Auxiliary electrode (10) is embedded in this embodiment in the inner part of dielectric (11). Because this construction is used, heat radiating fin (20) is mounted in dielectric (11). Metal can be used in this case as the material of heat radiating fin (20) in spite of the dielectric.

Furthermore, although the explanation of each of the excimer lasers above pertained to an excimer laser, this invention is applicable also to for instance to TEA Co₂ lasers or other discharge excitation types of short-pulse lasers, while the same effect will be achieved as in the above explained examples.

Further, so called punching metal or mesh, etc., can be used for perforated electrode (8) and in addition to the circular shape of the perforated part (19) it is also possible to use an elliptical shape, or a polygon shape, etc.

(Effect of the Invention)

As was explained above, according to this invention, a first main discharge electrode is

arranged in the longitudinal direction to the axial direction of laser rays in a laser gas current, a second main discharge electrode having a plurality of perforated parts is arranged opposite the first main discharge electrode, a dielectric is arranged closely attached to the back surface of this second main discharge electrode, an auxiliary electrode is deployed opposite this second main discharge electrode and a heat radiating fin is deployed at least for said dielectric or auxiliary electrode;

[page 455]

using a construction comprising a pulse circuit enabling to apply a pulse voltage between said main discharge electrodes, wherein said pulse circuit is formed as a part of this construction, or this pulse circuit is formed independently; equipped with a circuit enabling to apply voltage between said auxiliary electrode and said second main discharge electrode, which makes it possible to cool with optimal efficiency said dielectric and second discharge electrode with a simple method. The resulting effect is that stable operations can be achieved with a discharge excitation type of a short-pule laser device even when the repeating speed of the laser oscillations is increased.

4. Brief Description of Figures

Figure 1 shows a profile view explaining one embodiment of this invention, wherein Figure 1 (a) [on the left] shows a profile view indicating one embodiment of this invention, while Figure 1 (b) [on the right] shows a profile view of a section of the main part of Figure 1 (a) indicated in the upper part of the figure. Figure 2 shows a profile view explaining another embodiment of this invention, Figure 3 shows a profile view indicating a heat radiating fin part according to yet another embodiment of this invention, Figure 4 shows a profile view explaining a discharge excitation type of a short-pule type of an excimer laser device according to prior art, and Figure 5 shows a top view of the second main discharge electrode shown in Figure 4 shown from the main discharge space.

In these figures, (8) is a second main discharge electrode, (9) is a first main discharge electrode, (10) is an auxiliary electrode, (11) is a dielectric, (18) is an arrow indicating the direction of the current of a laser gas, (19) is a perforated part, and (20) is a heat radiating fin.

Also, the same codes are assigned to the same or corresponding parts in each figure.

Representative: Masuo Oiwa, patent attorney.

[page 456]

Figure 2, Figure 3, Figure 4, and figure 5

Continuation from page 1:

(72) Inventor: Gen Nakatani c/o Mitsubishi Electric Corporation, Itami Plant Amasaki-shi, Tsukaguchi Honcho, 8-chome, 1-ban, 1-go [page 457]

Procedural Amendment (Voluntary)

Date: March 6, 1985

To: Commissioner of the Japanese Patent Office

1. Indication of the Item: Patent Application Number Sho 59-239268

2. Title of the Invention: Discharge Excitation Short Pulse Laser Device

3. Amending Party

Relationship to the Item: Patent Applicant

Address:

Tokyo-to, Chiyoda-ku, Marunouchi ni-chome, 2-ban, 3-go

Name:

Mitsubishi Electric Corporation (601)

Representative:

Jinpachiro Katayama

4. Representative

Address:

c/o Mitsubishi Electric Corporation

Tokyo-to, Chiyoda-ku, Marunouchi ni-chome, 2-ban, 3-go

Name:

Masuo Oiwa, patent attorney [personal seal]

[illegible line]

[illegible date stamp]

- 5. Subject of the Amendment
- (1) The column "Detailed Explanation of the Invention"
- (2) Figures
- 6. Content of the Amendment
- (1) Line 16 on page 3 of the Specifications, which reads "the initial voltage of the auxiliary electrode is lower than the initial voltage of the main discharge electrode" is corrected to "the voltage at the beginning of the discharge of the auxiliary electrode is lower than discharge voltage at the beginning of the main discharge electrode".
- (2) Line $7 \sim \text{line } 8$ on page 4 of the Specifications, which reads "switch (11)" is corrected to "switch (4).

- (3) Line 18 ~ line 19 on page 5 of the Specifications, which reads "Tusselt's number is corrected to "Nusselt's number".
- (4) Figure 4 is amended as per a separate appendix.
- 7. List of Enclosed Documents

Figure (Figure 4)

1 copy

THAT IS ALL

⑩ 公 開 特 許 公 報 (A) 昭61 - 116889

@Int_Cl_4

識別記号

庁内整理番号

匈公開 昭和61年(1986)6月4日

H 01 S 3/04

6370-5F

審査請求 未請求 発明の数 1 (全7頁)

公発明の名称 放電励起型短パルスレーザ装置

②特 頭 昭59-239268

20出 顋 昭59(1984)11月13日

仰発 明 者 春 田 健 雄 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機 器研究所内 70発 明 渚 若 \blacksquare 仁 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機 志 器研究所内 行·雄 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機 佐 勿発 明 者 藤 器研究所内 尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機 明 永井 治 彦 72)発 器研究所内 東京都千代田区丸の内2丁目2番3号 ⑦出 願 人 三菱電機株式会社 弁理士 大岩 増雄 外2名 四代 理 人

明 檘 書

′」。 発明の名称

放電励起型短パルスレーザ装置

2. 特許請求の範囲

最終頁に続く

(2) 放然フィンはレーザガス統中に配飲されている特許請求の範囲第1項配戦の放電励起型短パルスレーザ装置。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、気体レーザのうち放電励起型短パ ルスレーザを対象とするものであつて、特にその 電低部の冷却に関するものである。

〔従来の技術〕

第4 図はだます。 (2) ・(1) はでいるかができます。 (2) ・(1) はでいるができませばいった。 (3) はでははないのかができませばない。 (4) はのでははないののでははないののでははないののでははないののでははないののではは、 (4) はのののでははないののではは、 (5) では、 (5) で

また、第5図は上記開孔電板(8)を主放電空間のから見た平面図であり、図において、QPは開孔部を示す。

次に動作について説明する。

まず、凹路系について述べる。高電圧電線川か ら供給される頂荷は、まずキャパシタ以に客後さ れる。次いでスイッチ(4)が専曲状態になるとキャ パシタ(2)からスイッチ(1)、さらにアースラインを 介してキャパシタ(6)。コイル(6)を経てキャパシタ (2)にもどるという電流ループによつて、キャパシ タ(2)に蓄積されていた電荷はキャパシタ(6)に移行 される。この迅速な電荷の移行に伴つて開孔電板 (8)と第1の主催帳(8)の間(以下主放電々機間と呼 お)および開孔電帳(8)と補助電帳(10)との間(以下 補助放進々権間と呼ぶ)の電圧が急峻に上昇する。 補助放電の開始成圧は主放電の開始配圧より低い ので、まず開孔確依(8)に赴けられた明孔が(19)にむ いて防電休(11) 長面に補助放准(沿面放電)が起こ る。この補助放電で生成する電子の一部およびと の放電場からの紫外光で光視点されて生ずる電子

この従来例においては、開孔電極(8)および勝電体側の冷却は、上記ガス焼衂による乱焼熱 伝達と背面の補助電板間を介して、背面空間で形成される自然対処による熱 伝達によつてしか 行なわれない。しかも、開孔電極(8) 側は沿面補助 放電および主放 戦が起つている間は、逆に熱入力面となる。

エキシャレーザを別として、熱人力のオータを 試算してみると、レーザパルスエネルギ 200mJ/ パルス、くり返し速度 1kHz で平均出力 200W の設 権を考えると、通常レーザ発張効率は 1% である から、キャパンタ(2) に客えられるエネルギは 20kW となる。回路系におけるオーミンクを損失が半分 とすれば 10kW がガスに投入される。 その内わず か数多が開孔 旺極(3) 部の加熱値になるとしても数 百 W のオータに連する。

一方、乱流熱伝選絡を試算してみると、例えば (甲酸好郎、伝熱微韻、姿質悠散、 116p(1962)) から、カルマンのアナロジ式を掛いれば、タンセルト数(Nu*と起す)、レイノルズ数(Re*と起す)、 ブラントル数(Prと記す)、局所熱伝送半(h*と が、主放電をグロー状の均一な放電とするための をとなり、次で主放電空間切においてパルス的 に主放電が起つてレーザ供質が励起され、そのの 果、レーザ光が取り出される。このレーザ光の ルス 幅は主放電のパルス幅によるが、一例をあげ れば、短パルスレーザの1つであるところのはキ シマレーザにおいては数十 neec である。スイッ チリとしては通常サイラトロンが用いられ、上記 のレーザパルス発展が数 Hz ないし数 kHz、通常 は数百 Hz のくり返し速度でくり返し行なわれる。

$$N_{u}^{x} = \frac{h^{x} \cdot x}{\lambda_{He}} = 0.0296 R_{\theta}^{x^{0.8}} \cdot P_{r}$$

$$\{1+B(R_0^{x^{-0.1}})(P_T-1)\}$$
 (1)

$$B = 0.86(1 + \frac{\ln((1+5P_r)/6)}{(P_r - 1)})$$
 (2)

と掛くことができる。

He の圧力を通常のエキシマレーザの動作圧 3 気圧とし、ガス旅選を通常のエキシマレーザでの流速から 20m/e ec とし、朗孔電極(8) 形状を幅 0.06m,レーザ光軸方向の長さ 0.6m とする。今、距離 x のポイントとして 0.03m、 すなわち 電極幅の中央を設定すると、レイノルズ数 (Rex) は 1.6×10 となり、また気体のプラントル数は約 0.7 へりウムの熱伝導率は 0.13kcal/m hrでであるから、局所熱

伝連係数 nx は 2.6×10² kca L/n² hr℃と解出される。 今、ヘリウムガス 随度と明孔 唯頓(8) 温度との発を 20℃とすると、敗り去られる熱質は、約 200♥と なり、先述の熱入力と同等もしくはそれ以下にし か湖たない。

また、上心改定値度差 20℃にないでは、例えば明孔は徳(8)がニッケル(エキシマレーザではもつとも聞きしい材料とされている)製 であるとすると、その破膠張路 0・15×10⁻⁴ から明孔堪徳(8)は0・2nm も伸びることになる。一般に明孔U版は時間休山)に密程させる確違がとられているので、跨性休山)上を開孔は破(8)がスムーズにすべらず、上記の伸びは明孔健極(8)の"そり"となつて安われることが多い。

[発明が解放しようとする問題点]

従来の放電励起型短パルスレーザ装置は以上のように構成されているので、レーザ半均出力を向上させるためにくり返し速度を開すと、明孔破極(3) 中時唯体叫が加熱され、熱応力による時間体型の破損や、明孔破極(8) の反りによつて、主放彼々

印加する凹路を備えたものである。

(作用)

この発別における放然フインは、以下で辞述するように、明孔電振および誘収体を効率良く冷却する。

〔災施例〕

以下、この発明の一実船例を図をもとに説明する。群1以下はこの発明の一実船例をボナ町面図、
群1凶イは群1凶アの主要部をイーイカ同から見た断面図である。凶にないて、凶は放然フィンであり、この例では補助な振いに設けられている。

次に作用について詳細に脱掛する。明孔雄(18), 誘題体(11)、および補助電磁(11)は、熱的には三層の 復脳板を形成している。例えば、崩孔磁(18)と補助磁値(11)の材質をニッケルとし、勝敗体(11)の材質 をアルミナとすると、総括的な熱伝递率の値は、 10 * xca 2/m² hr C のオーダとなり、先述の開孔磁体 (8) からヘリクムガスへの熱伝速率より二桁大きい。 したがつて、冷却の微速的階は、レーザカス(先 述したように例えばエキンマレーザでは 905 以上 係間のギャップ長が局部的に不ぞろいになり、主 放送がアークになりやすいなどの問題点があつた。

この発明は上記のような問題点を解消するためになされたもので、簡易な方法で明孔確係かよび 誘電体を冷却し、これによつてレーザ発振のくり 返し速度を増しても安定に動作する放電励起型短 パルスレーザ装備を得ることを目的とする。

(問題点を解決するための手段)

がヘリウム)への然伝連過程であり、この過程を 速めてやればより効率の良い冷却が可能となる。 しかも、より間易な力法でこれを実現するには、 西速で循環され、かつ然交換器間で協展問題され でいるレーザガスを確感部の冷媒とするのが望ま しい。まず、ガス促速を n 倍にすれば、レイノル ズ教がn 倍になり、結果として熱伝連率も約 n 倍 になるが、その一方では主放植空間切にかける圧 力損失が(促退の2粒に比例するので) n² 倍に もなり問題である。

そこで補助 電極(10) を介却する事を考える。 先述したように、 開孔電板(8) と 勝電体即と 補助電板(10) の問題 板間の 私 伝達器 は大き いので、 補助 電板(10) を冷却することにより 開孔 職械(8) かよび 勝戦体(10) の 効果的 な冷却は十分行 なえる。

このために補助財優側に放然フイン凶を設け、 この放然フイン凶にレーザガスを流すようにした。

今、補助能値間の面積をA、このAのうちフィンのを設けた際にフィン切がついていない残りの部分の面積をA。,フィンのの全面積をA、フィ

ン要面の熱伝連帯を ho とすると、熱伝連係数は 次式で与えられる。

$$h = \frac{Ao + 7Af}{A} h_o$$
 (3)

ここで、りはフイン効率と呼ばれ、フィン切袋面の熱伝選率とフィン側材料の熱伝導率、フィン側の厚み、フィン側の高さによつて快まる組である。 (3) 式から明らかなように 7Ax を大きくするように フィン形状を選ぶことによつて h を構めて大きく することができる。一例を以下に示す。

補助電極(10)の断面積を先述の朗孔電極(8)と同様に、幅 0.06m, レーザ光軸方向の長さ 0.6m とし、これに高さ 0.02m で厚み 0.5mm の放電フイン 20 を 2.5mm 間隔でレーザ光軸と値交する 方向に 200 枚 設けたとすると、 A。は 0.03m², A r は 0.48m² となる。 また、 フイン材料をニッケルとし、 フイン 20) 部を通過する ガス ת速を 20m/sec とすると (甲腺好郎, 伝熱 概論, 要賢堂版, 27p (1982)) よりフィン効率では 0.86,フィン(2) 表面の熱 伝递率 n。は 2.6 × 10² kca √m² hrC となるから、熱伝 選率 n

第2図はこの発明による他の実施例を示し、 の実施例においては、ガス硫略において、主放の 空間切と放然フィン四部が直列に配数列に配数列に したがつて、第1図のように両者が並列に配数列に れている場合には、ファン四のガス硫量を放松フィン四部通過ガス硫に相当する量だけ ちないのに対し、この実施例ではガス硫量はその まないのに対し、ファン四の吐出 圧力を増してやら ないならない。何れの形態を取るかは、むしろファン四性 ないのにない。 は(a)式より 3.2×10³ kca L/n² hrC となり、従来例に 比べて 1 桁も大きくなる。

次に物作について税労する。 凹路系の物作は集 4 図にかいて税労したので第1 図にかいては省略 した。

まず、レーザガスはファン144によって循環されている。主放電空間切を出たガスは熱交換器は3で所定の温度に冷却され再び主放電空間切に戻されるが、その一部は補助電極間の背面に設けられた放熱フィン201部に送られ補助電極間を介して誘電体に3とび期孔電極(8)の冷却を行う。主放電空間切かよび放熱フィン201部を通過したガスは再び混合され、熱交換器は3へと導かれてゆく。

この実施例にないては開孔電極(8)の厚み 0.5mm 誘電体(11)の厚み 2mm, 補助電極(10)の厚み 1mm であり、各電極の断面積、フイン(3)の大きさ、ガス促速は先述の熱伝速率の試算で用いた値と同じである。エキシマガス 3 気圧 (He:Xe:CL=0.15:0.75:99.1) を用いてレーザバルスエネルギ 100mJ/ パルスの発張を行つた祭、放糸フイン(4)を設けなか

那3 図はこの発明のさらに他の実施例に係る放 熱フィン部を示す断面図であり、この実施例にかいては補助電極間が誘電体側内部に埋め込まれた 構造となつているため、放魚フィン叫は誘電体側 に設けられている。この場合の放魚フィン叫の材料は、誘電体であつても金属であつてもよい。

なお、上記実施例では何れもエキシマレーザの 場合について主に説明したが、この発明は例えば TEA 00 ** レーザなど他の放電励起型短パルスレー ザにも適用でき、上記実施例と同様の効果を奏す る。

また、開孔な板(8)としてはパンチングメタルやメッシュなどを用いることができ、開孔部四の形状は円形の他、だ円形や多角形などであつてもよい。

[発明の効果]

4. 図面の簡単な説明

第180円はこの発明の一実施例を示す断面図、 第18円は第18円の主要部をイーイ方向から見た断面図、第28日との発明の他の実施例を示す 断面図、第38日との発明の他の実施例を示す 係る放然フイン部を示す断面図、第48日は従来の 放電励起型短パルスレーザ装置を示す断面図、第 5 図は第4 図に示す 第2 の主電板を主放電空間から見た平面図である。

図において、(8) は第2の主題値、(9) は第1の主 関値、(9) は補助電値、(1) は勝電体、 四は レーザガ ス 侃を示す矢印、四は開孔部、 20) は 放然 フィンで ある。

たか、各凶中、同一符号は同一または相当部分 を示すものとする。

代埋人 大岩増 堆

第 1 図

8 72n主电租

9: 71n 主电碰 10: 補助电極

//: 誘電体

18: レーザーガス流

20: 放然 7/2

第4図

第3図

第1頁の続き 砂発 明 者 中 谷

元 尼崎市塚口本町8丁目1番1号 三菱電機株式会社伊丹製 作所内 手 続 補 近 次(自発)

IIST 60 3 6

。特許庁長官殿

1. 事件の設示

待與昭 59-289268号

2. 発明の名称

放電励起型短パルスレーザ装置

3.加正をする者

事件との関係 特許出願人

佳 斯

東京都千代田区丸の内二丁目2番3号

名 称 (601) 三菱電機株式会社

代製者 片 山 仁 八 郎

4.代 即 人

住所

東京都千代田区丸の内二丁目2番3号

三菱電機株式会社内

氏 名 (7375) 弁理士 大 岩 増 雄

(連結集 のつつのの知る)

5. 細正の対象

⑴ 明細苷の発明の詳細な説明の欄

(2) 図面

6. 組正の内容

山明細盤第3頁第16行に「補助放電の開始電 圧は主放電の開始電圧より低い」とあるのを「補助放電の放電開始電圧は主放電の放電開始電圧は り低い」と訂正する。

(3) 関新 6 其第 1 8 行~第 1 8 行に「タツセルト 数」とあるのを「ヌツセルト数」と訂正する。

(4)図面の射4図を別紙のとおり訂正する。

7. 添付書類の目録

図面(第4図)

1 illi

以上

万式 (高)

郑 4 図

