VIKAS BHARATI PUBLIC SCHOOL

INFORMATICS PRACTICES PROJECT REPORT

SUBJECT CODE 065

SPACE MISSIONS

NAME: ADITI SINGH

CLASS: XII-E

BOARD ROLL NO:

SUBMITTED TO:

MS. ANNI KUMAR

PGT COMPUTER SCIENCE

CERTIFICATE

This is to certify that Aditi Singh of completed the project entitled "Spaguidance of Ms. Anni Kumar during 2023.	ace Missions" under the
Signature of student	Signature of teacher

DATE:

ACKNOWLDEGMENT

I am very thankful to Ms. Anni Kumar and all the faculty for assigning the project. They all provided immense support and guidance for the completion of the project undertaken by me. It is with their supervision that this work came into existence.

I would also like to appreciate the support provided by the peer group who assisted me with all the knowledge they had.

CONTENTS

SNO.	CONTENT	PAGE	SIGNATURE
1.	OBJECTIVE OF THE PROJECT	5	
2.	INTRODUCTION TO PYTHON	6	
3.	FEATURES OF PYTHON	7	
4.	CODE	8	

OBJECTIVE OF THE PROJECT

The project "Space Mission" consists the analysis of the data on the space missions conducted all around the world over a period of two decades. The aim of this project includes the use of various libraries, modules and functions in python to represent and retrieve the data. The objective is to use MatplotLib for the visual representation of the data and Pandas for statistical purposes.

INTRODUCTION TO PYTHON

Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. It was created by Guido van Rossum, and released in 1991.

Python is commonly used for developing websites and software, task automation, data analysis, data visualization, mathematics and system scripting.

Python can be used to create a variety of different programs and isn't specialized for any specific problems.

This versatility, along with its beginner-friendliness, has made it one of the most-used programming languages today.

FEATURES OF PYTHON

- 1. It has a simple syntax that mimics natural language, so it's easier to read and understand. It is versatile and can be used for many different tasks, from web development to machine learning.
- 2. It is an open-source software, which means it's free to use and distribute, even for commercial purposes.
- 3. Robust Standard Library: Python has an extensive standard library available for anyone to use. This means that programmers don't have to write their code for every single thing unlike other programming languages. There are libraries for image manipulation, databases, unittesting, expressions and a lot of other functionalities.
- 4. Python is a high-level language. When we write programs in Python, we do not need to remember the system architecture, nor do we need to manage the memory.

CODE

Importing CSV file to Python.

```
import matplotlib.pyplot as plt
from google.colab import files
import io
import pandas as pd

data = files.upload()

Choose Files Sheet1.csv
• Sheet1.csv(text/csv) - 174681 bytes, last modified: 11/27/2022 - 100% done
Saving Sheet1.csv to Sheet1.csv

[5] s = pd.read_csv(io.StringIO(data["Sheet1.csv"].decode("utf-8")))
[227] s
```

	Sno	Company Name	Location	Date And Time	Rocket Name	Rocket Status	Cost (million \$)	Mission Status	7%
0		SpaceX	LC-39A, Kennedy Space Center, Florida, USA	Fri Aug 07, 2020 05:12 UTC	Falcon 9 Block 5 Starlink V1 L9 & BlackSky	StatusActive	50.00	Success	
1		CASC	Site 9401 (SLS-2), Jiuquan Satellite Launch Ce	Thu Aug 06, 2020 04:01 UTC	Long March 2D Gaofen-9 04 & Q-SAT	StatusActive	29.75	Success	
2		SpaceX	Pad A, Boca Chica, Texas, USA	Tue Aug 04, 2020 23:57 UTC	Starship Prototype 150 Meter Hop	StatusActive	49.00	Success	
3		Roscosmos	Site 200/39, Baikonur Cosmodrome, Kazakhstan	Thu Jul 30, 2020 21:25 UTC	Proton-M/Briz-M Ekspress-80 & Ekspress-103	StatusActive	65.00	Success	
4		ULA	SLC-41, Cape Canaveral AFS, Florida, USA	Thu Jul 30, 2020 11:50 UTC	Atlas V 541 Perseverance	StatusActive	145.00	Success	
1209	1210	ILS	SLC-36B, Cape Canaveral AFS, Florida, USA	Thu Feb 03, 2000 23:30 UTC	Atlas IIAS Hispasat 1C	StatusRetired	55.00	Success	
1210	1211	Northrop	SLC-8, Vandenberg AFB, California, USA	Thu Jan 27, 2000 03:03 UTC	Minotaur I JAWSat	StatusActive	40.00	Success	
1211	1212	CASC	LC-2, Xichang Satellite Launch Center, China	Tue Jan 25, 2000 16:45 UTC	Long March 3A ChinaSat-22	StatusActive	69.70	Success	
1212	1213	Arianespace	ELA-2, Guiana Space Centre, French Guiana, France	Tue Jan 25, 2000 01:04 UTC	Ariane 42L Galaxy 10R	StatusRetired	70.00	Success	
1213	1214	Lockheed	SLC-36A, Cape Canaveral AFS, Florida, USA	Fri Jan 21, 2000 01:03 UTC	Atlas IIA DSCS IIIB-8	StatusRetired	29.00	Success	
1214 rows × 8 columns									

#1. Display the companies which have cost more than 100 million \$.

#2. Display all successful ISRO missions held under a budget of 30 million \$.

#3. Display all the failed missions.

#4. Display average cost of all missions failed by Arianespace.

#5. Display all the launches which succeeded in France.

#6. Arrange the dataframe in descending order by cost.

#7. Display all the launches held in 2010.

#8. Display all the pre-launch failures.

#9. Display all the retired missions launched in 2015.

#10. Show the latest missions held.

#11. Display the locations of all SpaceX missions that succeeded and are still active.

#12. When was SpaceX's Falcon 9 first launched?

```
Y=s.loc[(s["Rocket Name"].str.contains("Falcon 9")), "Date And Time"]
print(Y)
Z=Y.tolist()
C=Z.pop()
print("Falcon 9's first mission was held on",C)
      Fri Aug 07, 2020 05:12 UTC
      Mon Jul 20, 2020 21:30 UTC
      Tue Jun 30, 2020 20:10 UTC
    Sat Jun 13, 2020 09:21 UTC
    Thu Jun 04, 2020 01:25 UTC
613 Fri Mar 01, 2013 15:10 UTC
      Mon Oct 08, 2012 00:35 UTC
      Tue May 22, 2012 07:44 UTC
      Wed Dec 08, 2010 15:43 UTC
      Fri Jun 04, 2010 18:45 UTC
Name: Date And Time, Length: 91, dtype: object
Falcon 9's first mission was held on Fri Jun 04, 2010 18:45 UTC
```

#13. Show the contribution of various companies in the space missions visually.

#14. Find the success rates of launches conducted by ISRO and SpaceX.

```
Y=s.loc[(s["Company Name"]=="ISRO") & (s["Mission Status"]=="Success"), "Cost (million $)"]

Total=s.loc[(s["Company Name"]=="ISRO"), "Cost (million $)"]

A=len(Y.tolist())

B=len(Total)

Rate=((A/B)*100)

print("Succes rate of ISRO:", round(Rate, 2), "%")

#Success rate of launches by SpaceX.

Y1=s.loc[(s["Company Name"]=="SpaceX") & (s["Mission Status"]=="Success"), "Cost (million $)"]

Total1=s.loc[(s["Company Name"]=="SpaceX"), "Cost (million $)"]

A1=len(Y1.tolist())

B1=len(Total1)

Rate1=(A1/B1)*100

print("Succes rate of SpaceX:", round(Rate1, 2), "%")

Succes rate of ISRO: 90.48 %
Succes rate of SpaceX: 94.0 %
```

#15. Display the trends in the cost in making the rockets over the years 2015-2020 by the companies- Arianespace, ISRO, SpaceX, CASC and Blue Origin.

BIBLIOGRAPHY

- www.geeksforgeeks.org/
- www.w3schools.com/
- www.coursera.org/