前回まとめ

- リレーショナルデータベースの意味記述
- 意味:制約
 - キー(主キー), キー制約
 - 外部キー, 外部キー制約
 - その他の一貫性制約

リレーショナル代数

- コッドが提案したデータ操作言語
- 理論的な言語システム
- リレーショナル代数そのものをユーザインタフェースに提供しているDBMSはない
- SQLなどの言語のもとになるもの

データベース第4回

第4章 リレーショナルデータモデル -- 操作記述 --

リレーショナル代数演算

- 集合演算
 - 和集合演算
 - 差集合演算
 - 共通集合演算
 - 直積演算

- リレーショナル代数固有の演算
 - 射影演算(Projection)
 - 選択演算(Selection)
 - 結合演算(Join)
 - 商演算

和両立

リレーション $R(A_1, A_2, \dots, A_n)$ と $S(B_1, B_2, \dots, B_m)$ が和両立とは次の2つの条件を満たしているときをいう.

- 1.RとSの次数が等しい(つまり n=m)
- 2.各i (1 \leq i \leq n)について、 $A_i \geq B_i$ のドメインが等しい(つまり dom(A_i)=dom(B_i))

5

和集合演算

RとSを和両立なリレーションとする. RとSに和 集合演算を施した結果は、RとSの和と呼ばれ、 RUSで表す、その定義は次の通りである.

 $R \cup S = \{t \mid t \in R \lor t \in S\}$

和両立な2つのリレーション

テニス部員

氏 名	所 属	連絡先
山田太郎	121 10-9	10.1120
, , , , , , , , , , , , , , , , , , , ,	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201

サッカー部員

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

ポイント:

次数が等しい

各ドメインが等しい(ここでは、列の順番を合わせている)

属性名は異なっていることもある

和集合演算するとどうなる?

テニス部員

氏 名	所 属	連絡先
山田太郎	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201

サッカー部員

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員 U サッカー部員

8

/

和集合演算するとどうなる?

テニス部員 氏名所属連絡先 山田太郎 K55 5643-3192

K55

鈴木花子 K41

佐藤一郎

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員 U サッカー部員

5591-0585

5274-5201

氏 名 山田太郎	所 属 K55	連絡先 5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201
田中桃子	K41	5989-3201

「テニス部かサッカー部に所属している人は?」に対応

差集合演算,共通集合演算

• 差集合演算

- RとSを和両立なリレーションとする. RとSに差集合 演算を施した結果は、RとSの差と呼ばれ、R-Sとあ らわす. その定義は次の通りである.

 $R - S = \{t | t \in R \land \neg(t \in S)\}$

• 共通集合演算

- RとSを和両立なリレーションとする. RとSの共通集合演算を施した結果は、RとSの共通と呼ばれ、R∩Sとあらわす. その定義は次の通りである.

 $R \cap S = \{t | t \in R \land t \in S\}$

10

差集合演算は?

テニス部員

氏 名	所属	連絡先
山田太郎	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-520

サッカー部員

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員ーサッカー部員

差集合演算は?

テニス部員

) - > III		
氏 名	所 属	連絡先
山田太郎	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201

サッカー部員

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員ーサッカー部員

テニス部員-サッカー部員

氏 名	所 属	連絡先
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201

「テニス部にしか所属していない人は?」に対応

共通集合演算は?

テニス部員

/ 一八印具		
氏 名	所属	連絡先
山田太郎	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201
佐滕一即	K55	5274-5

サッ	カー	部員
----	----	----

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員∩サッカー部員

13

直積演算

 $R(A_1, A_2, \dots, A_n)$ と $S(B_1, B_2, \dots, B_m)$ を2つのリレーションとする. このとき R と S の直積, これを R×S と書く, は次のように定義される n+m次のリレーションである.

 $R \times S = \{(r, s) \mid r \in R \land s \in S\}$

共通集合演算は?

テニス部員

ノーハ叩貝		
氏 名	所 属	連絡先
山田太郎	K55	5643-3192
鈴木花子	K41	5591-0585
佐藤一郎	K55	5274-5201

サッカー部員

部員名	所 属	電話
田中桃子	K41	5989-3201
山田太郎	K55	5643-3192

テニス部員∩サッカー部員

テニス部員○サッカー部員

氏 名	所 属	連絡先
山田太郎	K55	5643-3192

「テニス部とサッカー部の両方に所属している人は?」に対応

14

直積演算の例

従業員

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
002	2	下戸 彩	17
004	1	宇田 ヒカル	20

部門

	部門番号	部門名
	1	開発
^	2	営業

従業員. 従業員番号	従業員. 部門番号	従業員.氏名	従業員. 年齢	部門. 部門番号	部門. 部門名
001	1	尾下 真樹	27	1	開発
002	2	下戸 彩	17	1	開発
004	1	宇田 ヒカル	20	1	開発
001	1	尾下 真樹	27	2	営業
002	2	下戸 彩	17	2	営業
004	1	宇田 ヒカル	20	2	営業

直積演算とは?

R

A1	A2	АЗ
a	b	c
d	a	e
a	d	c

S

B2	вз
f	a
a	e
	f

18

直積演算結果

R

A1	A2	А3
a	b	c
d	a	e
a	d	c

S

В1	B2	вз
b	f	a
d	a	e

RXS

A1	A2	АЗ	В1	B2	вз
a	b	c	b	f	a
d	a	e	b	f	a
a	d	c	b	f	a
a	b	c	d	a	e
d	a	e	d	a	e
a	d	c	d	a	e

リレーショナル代数演算

- 集合演算
 - 和集合演算
 - 差集合演算
 - 共通集合演算
 - 直積演算

- リレーショナル代数固 有の演算
 - 射影演算(Projection)
 - 選択演算(Selection)
 - 結合演算(Join)
 - 商演算

射影演算(Projection)

 $R(A_1, A_2, \dots, A_n)$ をリレーション、Rの全属性集合 $\{A_1, A_2, \dots, A_n\}$ の部分集合を $X=\{A_{i,i}, A_{i,i}, \dots, A_{i,k}\}$ 、ここに $1 \le i_1 < i_2 < \dots < i_k \le n$ とする.このときRのX上の射影,これをR[X](あるいは $R[A_{i,i}, A_{i,i}, \dots, A_{i,k}]$)と書く,は次のように定義されるリレーションである.

$$R[X] = \{t[X] \mid t \in R\}$$

21

射影演算

- リレーションR(A₁,A₂,···,A_n)がもつ属性のうち指定したもののみを残し、他を取り除く単項演算
- {A₁',A₂',···,A_m'}⊆{A₁,A₂,···,A_n}のとき、 射影∏<sub>A₁',A₂',···,A_m' (R)は次のように定義される
 </sub>

 $\prod_{A_{1}',A_{2}',\cdots,A_{m}'} (R) = \{t[A_{1}',A_{2}',\cdots,A_{m}'] | t \in R\}$

 t[A₁',A₂',···,A_m']はタップルtから属性 A₁',A₂',···,A_m'の値のみ残し, 他の属性値を削除したタップル

23

射影演算結果

ポイント:

タップルの個数が変化している

これは、ケースバイケース(どんな時かはわかりますか?)

22

選択演算(Selection)

R(A₁, A₂, · · · , A₂)をリレーション, A₁とA₃をθ-比較可能な属性とする. このとき, RのA₁とA₃上のθ-選択, これをR[A₁θA₃]と書く, は次のように定義されるリレーションである.

$$R[A_i \theta A_j] = \{t \mid t \in R \land t[A_i] \theta t[A_j]\}$$

A,とA,がθ-比較可能とは、dom(Ai)=dom(Aj)かつR の任意のタップルtに対して、tを変数とする述語 t[Ai]θt[Aj]の真か偽が常に定まるときをいう.

 θ :>, \geq , =, \leq , <, \neq

大なり選択演算結果

商品番号	商品名	原価	売価	定価
G110	刺身	600	500	980
G120	豆腐	90	75	120
G130	明	95	100	140
G140	コーヒー豆	700	860	860
G150	ケーキ	200	250	300

(a) リレーション 商品(定休日前日の夕方5時過ぎの スーパーマーケットを想定)

商品[原価>売価]

商品番号	商品名	原価	売価	定価
G110	刺身	600	500	980
G120	豆 胺	90	75	120

(b) リレーション 商品の属性 原価 と 売価 上の大なり選択

25

選択演算

リレーションR(A₁,A₂,···,A_n)がもつタップルのうち、指定した条件を満たすタップルのみを残し、他のタップルを削除する単項演算

 $\sigma_{F}(R) = \{t \mid t \in R \land P_{F}(t)\}$

- ・ P_F(t)はタップルtが選択条件Fを満足するとき真となる述語である
- · 選択条件F
- (1) Ai θ C Aiは属性値, Cは定数, θ は比較演算子(=,≤,>,<,≥,≠)
- ・ (2) Ai θ Aj AiとAjのドメインは同一であること(比較できる)
- (3)(1),(2)の条件を論理和(V),論理積(人),否定(一)を用いて組み合わせたもの

26

射影演算・選択演算の例

従業員

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
002	2	下戸 彩	17
003	3	本村 拓哉	30
004	1	宇田 ヒカル	20

 π 氏名, 年齡(従業員)

氏名	年齢
尾下 真樹	27
下戸 彩	17
本村 拓哉	30
宇田 ヒカル	20

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
003	3	本村 拓哉	30

選択は必要なタプル(行)のみを取り出す

射影は必要な属性(列)のみを取り出す

射影演算と選択演算

R

A1	A2	АЗ
a	b	c
d	a	e
a	d	c

TI A1,A3 (R)

a c d e

[A1	A2	АЗ
Ī	a	b	c
	a	d	c

 $\sigma_{\rm E}(R)$

F: A3=c

結合演算

 $R(A_1, A_2, \dots, A_n)$ と $S(B_1, B_2, \dots, B_m)$ を2つのリレーション、 A_i と B_j を θ -比較可能とする. このときRとSの A_i と B_j 上の θ -結合、これを $R[A_i\theta B_j]$ Sと書く、は次のように定義される.

 $R[A_i \theta B_i]S = \{(t, u) \mid t \in R \land u \in S \land t[A_i] \theta u[B_i]\}$

社員,社員番号	社員.社員名	社員.給与	社員.所属	部門. 部門番号	部門. 部門名	部門. 部門長
0650	山田太郎	50	K55	K55	データベース	0650
1508	鈴木花子	40	K41	K41	ネットワーク	1508
0231	田中桃子	60	K41	K41	ネットワーク	1508
2034	佐藤一郎	40	K55	K55	データベース	0650

29

結合演算

結合条件FをリレーションRの属性A_iとリレーションSの属性B_iの比較演算子6による比較条件A_i8B_iとするとき,結合は以下のリレーションを導出する

 $R \bowtie_{\mathbf{F}} S = \{t \times u \mid t \in R \land u \in S \land P_{\mathbf{F}}(t,u)\}$

 $P_F(t,u)$ はtとuが条件Fを満足するとき真となる述語

R \bowtie S $=\sigma_{\mathsf{F}}(\mathsf{RXS})$ の結合、 θ が=のとき等結合

30

結合演算

₹

Α	В	
1	3	
2	5	
3	4	

属性B, Cは比較可能 (ドメインが同じ)

Α	В	С	D	Ε
2	5	4	5	3
2	5	4	4	6

等結合

 $R \bowtie_{B=0}^{S}$

Α	В	С	D	E
2	5	5	5	7
3	4	4	5	3
3	4	4	4	6

Θ結合

 $R \bowtie_{B>C} S$

のリレーションの 情報を組み合わ せるために、結 合が使われる

等結合の例

従業員

例のように複数

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
002	2	下戸 彩	17
004	1	宇田 ヒカル	20

部門

_	-1:1 3	
部門番号= 部門番号	部門番号	部門名
	1	開発
	2	営業

従業員. 従業員. 部門. 部門 従業員.氏名 部門番号 従業員番号 部門番号 部門名 開発 001 尾下 真樹 27 004 宇田 ヒカル 20 1 開発 下戸 彩 002 17 営業

結合は直積と選択の組合せで計算される(次スライド)

等結合の例(1.直積演算)

従業員

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
002	2	下戸 彩	17
004	1	宇田 ヒカル	20

X

部門番号	部門名
1	開発
2	営業

	従業員. 従業員番号	従業員. 部門番号	従業員.氏名	従業員. 年齢	部門. 部門番号	部門. 部門名
I	001	1	尾下 真樹	27	1	開発
I	002	2	下戸 彩	17	1	開発
I	004	1	宇田 ヒカル	20	1	開発
I	001	1	尾下 真樹	27	2	営業
I	002	2	下戸 彩	17	2	営業
	004	1	宇田 ヒカル	20	2	営業

自然結合

• 自然結合(natural join)

$$R * S = \pi_{A_1, \dots A_n, B_1, \dots B_m, C_1, \dots C_k} \left(\sigma_{R.B_1 = S.B_1 \wedge \dots \wedge R.B_m = S.B_m} (R \times S) \right)$$

$$R \left(A_1, \dots A_n, B_1, \dots B_m \right), S \left(B_1, \dots B_m, C_1, \dots C_k \right)$$

$$= R \bowtie S$$

- 実際の応用でよく使われる重要な演算子
- 2つのリレーションを同一の属性同士で等結合 し、結合結果から同一の属性を取り除いたもの
 - ・ 等結合の結果には、同一の属性値を持つ属性が重 複して存在することになり無駄

等結合の例(2.選択演算)

例のように複数 のリレーションの 情報を組み合わ せるために、結 合が使われる

従業員. 従業員番号	従業員. 部門番号	従業員.氏名	従業員. 年齢	部門. 部門番号	部門. 部門名
001	1	尾下 真樹	27	1	開発
002	2	下戸 彩	17	1	開発
004	1	宇田 ヒカル	20	1	開発
001	1	尾下 真樹	27	2	営業
002	2	下戸 彩	17	2	営業
004	1	宇田 ヒカル	20	2	営業

	従業員. 従業員番号	従業員. 部門番号	従業員.氏名	従業員. 年齢	部門. 部門番号	部門. 部門名
,	001	1	尾下 真樹	27	1	開発
	004	1	宇田 ヒカル	20	1	開発
	002	2	下戸 彩	17	2	営業。

自然結合の例

従業員番号	部門番号	氏名	年齢
001	1	尾下 真樹	27
002	2	下戸 彩	17
004	1	宇田 ヒカル	20

部門番号	部門名
1	開発
2	営業

部門番号の同じタプル同士の組合せになる

 従業員番号
 部門番号
 氏名
 年齢
 部門名

 001
 1
 尾下 真樹
 27
 開発

 002
 2
 下戸彩
 17
 営業

 004
 1
 宇田 ヒカル
 20
 開発

※ 各属性のもとのリレーション名は省略できる

商演算

 $R(A_1, A_2, \dots, A_{n-m}, B_1, B_2, \dots, B_m)$ をn次、 $S(B_1, B_2, \dots, B_m)$ をm次(m < n)のリレーションとする. RをSで割った商、これをR÷Sと書く、は次のように定義されるリレーションである.

 $R \div S = \{t \mid t \in R[A_1, A_2, \dots, A_{n-m}] \land (\forall u \in S)((t, u) \in R)\}$

37

商演算

全種類の部品を購入する顧客?

顧客

顧客名	購入部品 名
C1	В
C2	В
C2	N
C3	N
C4	N
C4	В

 部品
 商

 部品名
 顧客名

 N
 C2

 B
 C4

30

商演算

学生 田中

受講÷必須

「必須科目をすべて受講している学生は?」に対応

38

商演算

全種類の部品を購入する顧客?

顧客

ARK LI			
顧客名	購入部品 名		
C1	В		
C2	В		
C2	N		
C3	N		
C4	N		
C4	В		

部品名 N B 商 顧客名 C2 C4

8つの演算は独立ではない

• $t \in \mathcal{L}$ $t \in \mathcal{L}$

41

リレーショナル代数表現

- 8つのリレーショナル代数演算の結果はリレーションになる
- リレーショナル代数演算を施した結果に新た にリレーショナル代数演算を施すことができ る

43

リレーショナル代数表現

- 1. リレーショナルデータベースの実リレーションRは表現である.
- RとSを表現とするとき、RとSが和両立なら、RUS、R-S、ROSは表現である。
- 3. RとSを表現とするとき、R×Sは表現である.
- 4. Rを表現とするとき、R[X]は表現である. ここに、XはRの属性のなす集合である.
- 5. Rを表現とするとき、 $R[A_i \theta A_j]$ は表現である. ここに、 $A_i
 ewline A_j$ はRの属性で θ -比較可能とする.
- 6. RとSを表現とするとき、 $R[A_i \Theta B_i]$ Sは表現である. ここに、 $A_i と B_j$ はそれぞれRとSの属性で、 θ -比較可能とする.
- 7. RとSを表現とするとき、R÷Sは表現である.
- 8. 以上の定義によって得られた表現のみがリレーショナル代数表現である.

42

リレーショナル代数表現の演習

- ・ 4.3の演習は各自しつかり勉強すること
- ・ポイント
 - リレーショナル代数演算を理解し、それぞれどういう結果を得るものかを覚える
 - 問合せは、「すべての学生を求めよ」のように、自然言語で表現される。 それをリレーショナル代数 演算で表現できるようになる

空とその意味

- 記載する属性値がないとき, 空(null)を使う
- ・空の主な3種類
 - unk: unknown 未知の
 - 例)配偶者はいるけどそのデータが提供されてない
 - dne: nonexistent 存在しない
 - 例)配偶者がいない
 - ni: no-information 情報がない
 - 例)配偶者がいるかいないかわからない

15

まとめ:リレーショナル代数演算

- 集合演算
 - 和集合演算
 - 差集合演算
 - 共通集合演算
 - 直積演算

- リレーショナル代数固有の演算
 - 射影演算(Projection)
 - 選択演算(Selection)
 - 結合演算(Join)
 - 商演算

空とリレーショナル代数演算の拡張

46

リレーショナル代数演算子のまとめ

- 基本的な演算
 - 2項演算
 - 和, 差, 直積
 - 単項演算
 - 射影, 選択
- ・その他の演算
 - 2項演算
 - 結合, 自然結合, 共通部分, 商

リレーショナル代数演算子の主な用途

- 選択(S), 射影(P)
 - 必要なデータ(表の行)や属性(表の列)を取り出すため に使用
- 結合(J)
 - 複数のリレーションを組み合わせるために使用
- 和, 差, 共通部分
 - 複数の演算結果同士を組み合わせるときに使用
- 直積
 - 直接は使用しない(結合を定義する上で重要)
- 商(あまり使わない)