Revisión de "Krein-Rutman Theorem"

Jorge Novoa C.

21 de Abril, 2025

1. Preliminares

Sea E un espacio de Banach real, y consideremos a K un **cono convexo cerrado** con interior no vacio, es decir:

- $x, y \in K \Rightarrow x + y \in K$
- $\forall \lambda \in \mathbb{R}^+, \forall x \in K : \lambda x \in K$

además, asumiremos que K también resulta ser **saliente**, es decir, que $K \cap (-K) = \{0\}.$

Diremos que el espacio E esta ordenado en K cuando dotamos a E de la siguiente relación:

$$x \ge y \implies x - y \in K$$

Bajo estas condiciones, para un operador lineal L de E en E, diremos que L es estrictamente positivo si:

$$L(K \setminus \{0\}) \subseteq int(K)$$

Además, daremos un pequeño recordatorio del Teorema de Rabinowitz y uno de sus corolarios que sera útil de recordar para la demostración del Teorema de Krein-Rutman:

Teorema 1.1 (Rabinowitz). Sea $T : \mathbb{R} \times E \to E$ un operador compacto tal que $T(0,u) = 0, \forall u \in E, y \text{ sea } \zeta \text{ la componente conexa del conjunto de soluciones de la ecuación:$

$$u = T(\lambda, u)$$

que pasa por (0,0). Entonces descomponiendo a $\zeta = \zeta^+ \cup \zeta^-$, donde ζ^+ (resp. ζ^-) esta incluido en $\mathbb{R}^+ \times E$, tenemos que ζ^\pm es no acotado.

Corolario 1.2. Sea K un cono cerrado en E, de vértice 0, y sea $T : \mathbb{R}^+ \times K \to K$ un operador compacto tal que $T(0, u) = 0, \forall u \in K$.

Sea entonces ζ la componente conexa de soluciones en $\mathbb{R}^+ \times K$ que contiene a (0,0), entonces ζ es no acotada.

2. Demostracion del Teorema

Teorema 2.1 (Krein-Rutman). Sea L un operador lineal compacto estrictamente positivo (con respecto a K) de un espacio E ordenado por un cono K; entonces L admite un único vector propio x_0 tal que $x_0 \in int(K)$, $||x_0|| = 1$, y que su valor propio característico $\mu_0 > 0$ es simple y estrictamente menor en modulo a cualquier valor característico de L, y a sea real o complejo.

Demostración. Primero mostraremos la existencia de tal vector propio x_0 a partir del Corolario 1.2.

Sea $u \in K \setminus \{0\}$ fijo, entonces podemos asegurar que existe algún M > 0 tal que:

$$Lu \ge \frac{u}{M}$$

ya que en caso contrario, se tiene que para todo M > 0 se cumple que:

$$Lu \ngeq \frac{u}{M}$$

es decir, por la relación de orden que nos estamos refiriendo, tendríamos que:

$$Lu - \frac{u}{M} \not\in K$$

Ahora bien, como es para todo M > 0, tomando $M \to +\infty$, tendríamos que:

$$Lu \not\in K$$

lo cual es una contradicción ya que al estar $u \in K \setminus \{0\}$, como L es estrictamente positivo en K, se tiene que $Lu \in int(K)$.

Sea ahora $\varepsilon > 0$, entones definamos el siguiente operador completamente continuo $T_{\varepsilon} : \mathbb{R} \times E \to E$ por:

$$T_{\varepsilon}(\lambda, x) := \lambda L(x + \varepsilon u)$$

Ahora bien, dado que se verifican las hipótesis del Corolario, podemos concluir que existe ζ_{ε} una componente conexa de soluciones de $x = T_{\varepsilon}(\lambda, x)$ en $\mathbb{R}^+ \times K$ que es no acotada y pasa por el (0,0).

Recordemos que queríamos que el vector propio cumpliera cierta propiedad sobre su norma ($||x_0||=1$), de forma que nos conviene mostrar de que la componente conexa ζ_{ε} tiene que ser acotada con respecto al parámetro λ , ya que de esta forma el no acotamiento sera a través del vector propio (a la primera no sera vector propio, pero usaremos el parámetro ε para que se transforme en un vector propio de L).

Sea entonces $(\lambda, x) \in \zeta_{\varepsilon}$, entonces, por la definición de L tenemos que:

$$x = \lambda L(x + \varepsilon u) = \lambda Lx + \lambda \varepsilon Lu$$

lo cual implica que:

(i) $x - \lambda Lx = \lambda \varepsilon Lu$, y como $Lu \in int(K)$ (ya que asumimos inicialmente que $u \in K \setminus \{0\}$), dado que $\lambda \varepsilon > 0$, se tendrá que $\lambda \varepsilon Lu \in K$, por lo que $x - \lambda Lx \in K$, de lo cual se deduce que $x \ge \lambda Lx$.

(ii) $x - \lambda \varepsilon Lu = \lambda Lx$, y como $x \in K$, tenemos que $Lx \in K$ (esto es importante señalarlo, ya que si x = 0 entonces $Lx = 0 \in K$, y si $x \neq 0$, entonces volvemos al caso de $K \setminus \{0\}$), con esto podemos concluir que, al ser $\lambda > 0$, que $\lambda Lx \in K$, y por lo tanto $x \geq \lambda \varepsilon Lu$.

Gracias a (ii) tenemos que, al usar que $Lu \ge \frac{u}{M}$, se verifica que:

$$x \ge \lambda \varepsilon L u \ge \frac{\lambda \varepsilon}{M} u$$

de forma que $x - \frac{\lambda \varepsilon}{M} u \in K$.

Ahora bien, esto implica que $L\left(x-\frac{\lambda\varepsilon}{M}\right)\in K,$ lo cual por la linealidad de L nos da que:

$$Lx - \frac{\lambda \varepsilon}{M} Lu \in K$$

lo que implica que $Lx \geq \frac{\lambda \varepsilon}{M} Lu \geq \frac{\lambda \varepsilon}{M} \frac{u}{M}.$

Con esto tenemos que:

$$\lambda Lx \ge \left(\frac{\lambda}{M}\right)^2 \varepsilon u$$

y por lo tanto, al usar (i) tenemos que:

$$x \ge \lambda L x \ge \left(\frac{\lambda}{M}\right)^2 \varepsilon u$$

De esta forma, podemos mostrar recursivamente que:

$$x \ge \left(\frac{\lambda}{M}\right)^n \varepsilon u, \quad \forall n \in \mathbb{N}$$

Ahora bien, recordemos que el objetivo ahora es demostrar que $\lambda \leq M$, supongamos que $\lambda > M$, esto implica que:

$$\frac{M}{\lambda} < 1$$

luego como:

$$x\left(\frac{M}{\lambda}\right)^n \ge \varepsilon u$$

lo que equivale a:

$$x\left(\frac{M}{\lambda}\right)^n - \varepsilon u \in K$$

con esto, tomando $n\to +\infty$ al ser $\frac{M}{\lambda}<1$, se concluye que $\left(\frac{M}{\lambda}\right)^n\to 0$ cuando $n\to +\infty$, por lo tanto, gracias a que K es cerrado, tendremos que:

$$-\varepsilon u = \lim_{n \to +\infty} x \left(\frac{M}{\lambda}\right)^n - \varepsilon u \in K$$

entonces multiplicando por $\frac{1}{\varepsilon} > 0$, se concluiría que $-u \in K$, lo cual es una contradicción ya que K es saliente $(K \cap (-K) = \{0\})$ y sabemos por hipótesis que $u \in K \setminus \{0\}$.

Con esto concluimos que para $(\lambda, x) \in \zeta_{\varepsilon}$, se tiene que tener que $\lambda \in (0, M]$, y por el argumento antes mencionado (sobre el no acotamiento de ζ_{ε}), tendremos que debe existir algún $x_{\varepsilon} \in K$ tal que:

$$||x_{\varepsilon}|| = 1 \quad \wedge \quad x_{\varepsilon} = \lambda_{\varepsilon} L(x_{\varepsilon} + \varepsilon u)$$

Ahora bien, como L es compacto y λ_{ε} es acotado, tenemos que existe un $\varepsilon_n \to 0$ tal que $x_{\varepsilon_n} \to x_0$ (este x_0 no es elegido, sino que sabemos que existe), $\lambda_{\varepsilon_n} \to 0$ tal que:

$$\mu_0 \in [0, \mu], \quad ||x_0|| = 1, \quad x_0 \in K, \quad x_0 = \mu_0 L x_0$$

de forma que $\mu_0 > 0$ (si $\mu_0 = 0$ entonces $x_0 = 0$ lo cual contradice que tiene norma igual a 1), y por lo tanto, como $x_0 \neq 0$, se tiene que $x_0 \in K \setminus \{0\}$, por lo que:

$$Lx_0 \in int(K)$$

lo que implica que:

$$x_0 = \mu_0 L x_0 \in int(K)$$

concluyendo así que x_0 es un elemento del interior de K con valor característico $\mu_0>0.$

Ahora para demostrar las demás propiedades nos apoyaremos del siguiente Lema:

Lema 2.2. Sea $y_0 \in int(K)$, entonces $\forall y \notin K$ existe $\delta_{y_0}(y) > 0$ tal que:

$$\begin{cases} \forall \lambda, 0 \leq \lambda < \delta(y), \quad y_0 + \lambda y \in int(K) \\ \\ y_0 + \delta(y)y \in K \\ \\ \forall \lambda > \delta(y), \quad y_0 + \lambda y \notin K \end{cases}$$

Además, la aplicación $y \mapsto \delta(y)$ que va desde $E \setminus K$ en \mathbb{R}^+ es continua.

Demostración. Como $y_0 \in int(K)$, tenemos que para un $\lambda > 0$ suficientemente pequeño se cumple que $y_0 + \lambda y \in int(K)$, y para $\lambda > 0$ muy grande se tiene que $y_0 + \lambda y \notin K$, ya que de lo contrario tendríamos que:

$$\forall \lambda > 0, \quad y_0 + \lambda y \in K \Longrightarrow \frac{1}{\lambda} (y_0 + \lambda y) \in K \Longrightarrow \frac{y_0}{\lambda} + y \in K$$

tomando $\lambda \to +\infty$ obtendríamos que $y \in K$, lo cual es una contradicción a la hipótesis de y.

Para mostrar la continuidad de $\delta(y)$ en $E \setminus K$, sea $y \in E \setminus K$, y sea $\varepsilon > 0$ arbitrario, entonces tenemos que existe un $\eta > 0$ tal que:

$$|z - y| < \eta \Longrightarrow \begin{cases} y_0 + (\delta(y) - \varepsilon)z \in int(K) \\ y_0 + (\delta(y) + \varepsilon)z \notin K \end{cases}$$

de esta forma tenemos que:

$$\delta(z) \in (\delta(y) - \varepsilon, \delta(y) + \varepsilon)$$

por lo que $|\delta(z) - \delta(y)| < \varepsilon$, concluyendo así la continuidad.

Ahora daremos demostración a todo lo que nos faltaba del enunciado del Teorema, para esto lo iremos separando según corresponda:

(a) Los únicos vectores propios de L en K son de la forma λx_0 , con $\lambda > 0$.

Sea $x \in K \setminus \{0\}$ otro vector propio de L en K con valor característico estrictamente positivo, es decir, $x = \mu Lx$ con $\mu > 0$, de esto es directo que $x \in int(K)$.

Sea entonces $\gamma_1 = \delta_{x_0}(-x)$, $\delta_x(-x_0)$ dados por el Lema recién presentado, entonces tenemos que:

1.

$$L(x_0 - \gamma_1 x) = \frac{1}{\mu_0} x - \gamma_1 \frac{x}{\mu} = \frac{1}{\mu_0} \left(x_0 - \gamma_1 \frac{\mu_0}{\mu} x \right)$$

2.

$$L(x - \gamma_2 x_0) = \frac{1}{\mu} x - \gamma_2 \frac{x_0}{\mu_0} = \frac{1}{\mu} \left(x - \gamma_2 \frac{\mu}{\mu_0} x_0 \right)$$

entonces supongamos que $x \neq \gamma_2 x_0$, esto implicaría que $x - \gamma_2 x_0 \neq 0$, por lo que:

$$L(x - \gamma_2 x_0) \in int(K)$$

esto ultimo ya que $\gamma_2 = \delta_x(-x_0)$, por lo que $x - \gamma_2 x_0 = x + \delta_x(-x_0) \cdot (-x_0) \in K$.

De esta forma tenemos por 2. que:

$$\frac{1}{\mu}\left(x - \gamma_2 \frac{\mu}{\mu_0} x_0\right) = L(x - \gamma_2 x_0) \in int(K) \subset K$$

de forma que al ser $\mu > 0$, por la propiedad de cono de K obtenemos que:

$$x - \gamma_2 \frac{\mu}{\mu_0} x_0 \in int(K)$$

luego, por la definición de $\delta_x(-x_0)$, tenemos que:

$$\gamma_2 \frac{\mu}{\mu_0} < \delta_x(-x_0) = \gamma_2 \implies \frac{\mu}{\mu_0} < 1$$

Por otro lado, como $L(x_0 - \gamma_1 x) \in K$ (ya que $x_0 - \gamma_1 x \in K$), tenemos que:

$$L(x_0 - \gamma_1 x) = \frac{1}{\mu_0} \left(x_0 - \gamma_1 \frac{\mu_0}{\mu} x \right) \in K$$

luego como $\mu_0 > 0$, se concluye que:

$$x_0 - \gamma_1 \frac{\mu_0}{\mu} x \in K$$

de forma que, por la definición de $\delta_{x_0}(-x) = \gamma_1$ tenemos que:

$$\gamma_1 \frac{\mu_0}{\mu} \le \gamma_1 \Longrightarrow \frac{\mu_0}{\mu} \le 1$$

lo cual contradice a lo antes mostrado, ya que se supone que $\mu < \mu_0$, concluyendo así que $x = \gamma_2 x_0$.

(b) Los vectores propios x de L tal que $x \notin K \cup (-K)$ tienen valores característicos estrictamente superiores a μ_0 en valor absoluto.

Sea x un vector propio de L, $x = \mu Lx$ con $\mu \in \mathbb{R} \neq 0$ y $x \notin K \cup -K$, entonces notamos que:

$$x_0 \pm \delta_{x_0}(\pm x)x \neq 0$$

ya que en el caso contrario tendríamos que:

$$x_0 = \mp \delta_{x_0}(\pm x)x$$

como $x_0 \neq 0$, podemos asegurar que $\delta_{x_0}(\pm x) \neq 0$, de lo cual podemos pasar dividiendo, y obteniendo así que:

$$\mp x = \frac{1}{\delta_{x_0}(\pm x)} x_0$$

lo que implicaría que $x \in K \cup -K$, lo cual es una contradicción.

De esta forma, tenemos que $x_0 \pm \delta_{x_0}(x)x \in K \setminus \{0\}$, por lo que:

$$L(x_0 \pm \delta_{x_0}(\pm x)x) \in int(K)$$

pero:

$$L(x_0 \pm \delta_{x_0}(\pm x)x) = \frac{1}{\mu_0} x_0 \pm \delta(\pm x) \frac{x}{\mu} = \frac{1}{\mu_0} \left[x_0 \pm \frac{\mu_0}{\mu} \delta_{x_0}(\pm x)x \right]$$

y como $\mu_0 > 0$, podemos multiplicar por su inverso (el cual sigue siendo positivo) y aprovechar la propiedad de cono de K para concluir que:

$$x_0 \pm \frac{\mu_0}{\mu} \delta_{x_0}(\pm x) x \in int(K)$$

entonces veamos por casos segun el signo de μ :

1. Si $\mu > 0$ esto implicaría que $\frac{\mu_0}{\mu} \delta_{x_0}(\pm x) > 0$ (ya que todos sus términos son estrictamente positivos), por lo tanto, por la definición de $\delta(\cdot)$:

$$\frac{\mu_0}{\mu} < 1$$

lo que equivale a que $\mu_0 < \mu$.

2. Si $\mu < 0$, dado que:

$$x_0 \pm \frac{\mu_0}{\mu} \delta_{x_0}(\pm x) x \in int(K)$$

tenemos que, en el caso +x se tiene que:

$$x_0 - \left(-\frac{\mu_0}{\mu}\delta_{x_0}(x)\right)x \in int(K)$$

donde $-\frac{\mu_0}{\mu}\delta_{x_0}(x) > 0$, luego por la definición de $\delta(\cdot)$ tendremos que:

$$-\frac{\mu_0}{\mu}\delta_{x_0}(x) < \delta_{x_0}(-x)$$

Por el otro lado, viendo el caso -x tenemos que:

$$x_0 + \left(-\frac{\mu_0}{\mu}\delta_{x_0}(-x)\right)x \in int(K)$$

con $-\frac{\mu_0}{\mu}\delta_{x_0}(-x) > 0$, de forma que:

$$-\frac{\mu_0}{\mu}\delta_{x_0}(-x) < \delta_{x_0}(x)$$

De esta forma, tenemos las siguientes desigualdades:

$$-\frac{\mu_0}{\mu} \delta_{x_0}(x) < \delta_{x_0}(-x)$$
$$-\frac{\mu_0}{\mu} \delta_{x_0}(-x) < \delta_{x_0}(x)$$

luego multiplicando la ultima por $-\frac{\mu_0}{\mu}$ obtenemos que:

$$\frac{\mu_0^2}{\mu^2} \delta_{x_0}(-x) < -\frac{\mu_0}{\mu} \delta_{x_0}(x) < \delta_{x_0}(x)$$

recordar que $\mu < 0$ en este caso, siendo esta la razón por la que la desigualdad no se cambia; de esto se concluye que:

$$\frac{\mu_0^2}{\mu^2} < 1$$

de lo cual obtenemos que $\mu_0 < |\mu|$ al aplicar la raíz.

Como en ambos casos se concluyo que $\mu_0 < |\mu|$, se dio con lo pedido.

(c) Los valores característicos no reales de L son estrictamente más grandes que μ_0 en modulo.

Sea $\lambda = |\lambda|e^{i\theta}$ un valor propio estrictamente imaginario, es decir, $\theta \not\equiv 0$ (mod π); Entonces sea $z \in E$ un vector propio asociado a λ , esto significa que existen $z_1, z_2 \in E$ tal que:

$$L(z_1 + iz_2) = \lambda(z_1 + iz_2)$$

o bien:

$$L(z_1) + iL(z_2) = \lambda(z_1 + iz_2)$$

Observación 2.3. Si bien $L: E \to E$ con E un espacio de Banach real, definimos a la extensión de L sobre $E^{\mathbb{C}}$ como:

$$L(iz) := iL(z)$$

para $z \in E$, de forma que si $w = z_1 + iz_2$ con $z_1, z_2 \in E$ (i.e. $w \in E^{\mathbb{C}}$), tenemos que:

$$L(z_1 + iz_2) = L(z_1) + iL(z_2)$$

dando así a la bien definición de este.

Los vectores z_1 y z_2 deben ser linealmente independientes, ya que suponemos por contradicción que son linealmente dependientes, es decir, que existe algún $\alpha \in \mathbb{R}$ tal que, por ejemplo, $z_2 = \alpha z_1$, tendríamos que:

$$z_1 + iz_2 = (1 + i\alpha)z_1$$

por lo que:

$$(1+i\alpha)L(z_1) = L(z_1+iz_2) = \lambda(z_1+iz_2) = \lambda(1+i\alpha)z_1$$

por lo que $L(z_1) = \lambda z_1$, pero esto es una contradicción ya que λ es un valor propio no real, digamos $\lambda = \lambda_1 + i\lambda_2$ con $\mu_1, \mu_2 \in \mathbb{R}$, y en particular $\lambda_2 \neq 0$, por lo que:

$$\lambda_1 z_1 + i\lambda_2 z_1 = L(z_1) \in E$$

luego la única manera de que esto se cumpla es que $z_1 = 0$ (ya que la suma debe estar puramente en E), lo cual seria una contradicción ya que implicaría que $z_1 + iz_2 = 0$, pero sabíamos que este era el vector propio asociado a λ .

Ahora bien, notar que:

$$L(z_1) + iL(z_2) = \lambda(z_1 + iz_2)$$

= $|\lambda|(\cos \theta + i \sin \theta)(z_1 + iz_2)$
= $|\lambda|[(\cos \theta z_1 - \sin \theta z_2) + i(\sin \theta z_1 + \cos \theta z_2)]$

por lo que:

$$L(z_1) = |\lambda|(\cos\theta z_1 - \sin\theta z_2)$$
 , $L(z_2) = |\lambda|(\sin\theta z_1 + \cos\theta z_2)$

o bien, para el valor característico $\mu = \frac{1}{\lambda}$ asociado a λ :

$$L(z_1) = \frac{1}{|\mu|} (\cos \theta z_1 - \sin \theta z_2)$$
 , $L(z_2) = \frac{1}{|\mu|} (\sin \theta z_1 + \cos \theta z_2)$

de esta forma, es claro que L restringido al plano $P=span\{z_1,z_2\}$ sera representado por:

$$L|_P = \frac{1}{|\mu|} R_\theta$$

donde notamos a:

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Ahora, la idea es usar a la función $\delta(\cdot)$ sobre L en este contexto, entonces debemos mostrar que $K \cap P = \{0\}$, ya que así no aseguramos que cualquier vector propio asociado a L en P no este contenido en K.

Supongamos que $K \cap P$ no es solo el singleton que contiene al 0, entonces, dado que K es un cono convexo saliente y P es un plano en E, tenemos que $K \cap P$ es un cono convexo saliente en P con interior no vacio; y además es claro que se verificaría que $L|_P$ es estrictamente positivo en $K \cap P$ (lo hereda de L con K).

Con esto, por lo mostrado en la parte (a) tenemos que el operador $L|_P$ posee un vector propio real en $K \cap P$, digamos $z = \alpha_1 z_1 + \alpha_2 z_2$ (con α_1, α_2 no simultáneamente nulos) tal que $L|_P z = \gamma z$ para $\gamma \in \mathbb{R}$, pero recordemos que:

$$L|_P = \frac{1}{|\mu|} R_\theta$$

de forma que, usando la representación en base $\{z_1, z_2\}$ para z, tenemos que:

$$L|_{P}(z) = \frac{1}{|\mu|} R_{\theta} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} = \gamma \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix}$$

por lo que:

$$(R_{\theta} - \gamma |\mu|) \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad (\star)$$

Ahora bien, es conocido que los valores propios de una matriz de rotación θ son de la forma:

$$\tilde{\lambda} = \cos\theta \pm i\sin\theta$$

y dado que $\theta \not\equiv 0 \pmod{\pi}$, tenemos que los valores propios de R_{θ} son no reales, pero en este caso tenemos que $\gamma |\mu| \in \mathbb{R}$, de forma que la única manera en la que se cumpla (\star) es que $\alpha_1 = \alpha_2 = 0$, lo cual es una contradicción, concluyendo así que $K \cap P = \{0\}$.

Sea entonces $z \in P \setminus \{0\}$ (de forma que, por lo mostrado previamente, sabemos que $z \notin K$), entonces tenemos que $\delta(z) := \delta_{x_0}(z)$ esta bien definido, ahora bien, notar que:

$$L(x_0 + \delta(z)z) = \frac{1}{\mu_0} x_0 + \delta(z) L(z)$$

$$= \frac{1}{\mu_0} x_0 + \delta(z) L|_P(z)$$

$$= \frac{1}{\mu_0} \left[x_0 + \frac{\mu_0}{|\mu|} \delta(z) R_\theta z \right]$$

de forma que, al estar $x_0 + \delta(z)z \in K \setminus \{0\}$ (si fuese igual a 0 tendríamos que z esta en -K, lo cual por la linealidad de L nos daría que su valor propio asociado es real, lo cual es una contradicción), tenemos que $L(x_0 + \delta(z)z) \in int(K)$, por lo que:

$$x_0 + \frac{\mu_0}{|\mu|} \delta(z) \ R_\theta z \in K$$

de forma que por la definición de $\delta(\cdot)$:

$$\frac{\mu_0}{|\mu|}\delta(z) < \delta(R_\theta z)$$

Sea ahora la elipse C contenida en P definida por:

$$C = \{\cos \phi \cdot z_1 + \sin \phi \cdot z_2 : \phi \in [0, 2\pi]\}\$$

la cual es invariante con respecto a R_{θ} , esto ultimo ya que si tomamos a $z \in C$, con $z = \cos \phi \cdot z_1 + \sin \phi \cdot z_2$ para cierto $\phi \in [0, 2\pi]$, tenemos que:

$$R_{\theta}z = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta \cos \phi - \sin \theta \sin \phi \\ \sin \theta \cos \phi + \cos \theta \sin \phi \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta + \phi) \\ \sin(\theta + \phi) \end{pmatrix}$$
$$= \cos(\theta + \phi) \cdot z_1 + \sin(\theta + \phi) \cdot z_2$$

luego como $\theta + \phi \in [0, 2\pi]$ en modulo 2π , tenemos que $R_{\theta}z \in C$, concluyendo así que R_{θ} es invariante bajo C.

Además, C es compacta, ya que es la imagen continua de compacto ($[0, 2\pi]$).

Con todo lo antes mencionado, tenemos que existe $z_0 \in C$ tal que $\delta(z_0) = \sup_{z \in C} \delta(z)$ (ya que recordemos que $\delta(\cdot)$ es continua y C compacta), pero para este z_0 tendremos que de la relación mostrada previamente:

$$\forall z \in P \setminus \{0\} : \frac{\mu_0}{|\mu|} \delta(z) < \delta(R_\theta z)$$

tendremos que:

$$\frac{\mu_0}{|\mu|}\delta(z_0) < \delta(R_\theta z_0)$$

y como $R_{\theta}z_0 \in C$, es claro que:

$$\delta(R_{\theta}z_0) \leq \delta(z_0)$$

concluyendo así que:

$$\frac{\mu_0}{|\mu|}\delta(z_0) < \delta(z_0)$$

lo cual equivale a que:

$$\mu_0 < |\mu|$$

dando así con la desigualdad en módulo que queríamos.

(d) μ_0 es simple.

En (a) mostramos que $Ker(I - \mu_0 L) = \mathbb{R}x_0$, por lo tanto, para verificar que μ_0 es simple nos bastara con ver que $Ker(I - \mu_0 L) = Ker(I - \mu_0 L)^2$. Sea $x \in Ker(I - \mu_0 L)^2$, esto significa que:

$$x - \mu_0 L x \in Ker(I - \mu_0 L) = \mathbb{R}x_0$$

por lo tanto $\exists \lambda \in \mathbb{R}$ tal que:

$$x - \mu_0 L x = \lambda x_0$$

entonces vamos viendo según los casos posibles.

Si $\lambda=0$, entonces $x-\mu_0Lx=\lambda x_0=0$, por lo que $x\in Ker(I-\mu_0L)$, concluyendo así lo pedido (ya que queremos mostrar que todo elemento de $Ker(I-\mu_0L)^2$ esta contenido en $Ker(I-\mu_0L)$, ya que la otra inclusión es obvia).

Si $\lambda \neq 0$, podemos suponer sin perdida de generalidad que $\lambda > 0$ (ya que de lo contrario hacemos el desarrollo con -x), entonces tendremos que:

$$x = \lambda x_0 + \mu_0 L x = \lambda \mu_0 L x_0 + \mu_0 L x = \mu_0 L (\lambda x_0 + x)$$

por lo que:

$$x + \lambda x_0 = 2\lambda x_0 + \mu_0 L x = \mu_0 L (2\lambda x_0 + x)$$

luego aplicando L y multiplicando por μ_0 obtenemos que:

$$\mu_0 L(x + \lambda x_0) = \mu_0 L(\mu_0 L(2\lambda x_0 + x)) = \mu_0^2 L^2(2\lambda x_0 + x)$$

de forma que:

$$x = \mu_0 L(x + \lambda x_0) = \mu_0^2 L^2 (2\lambda x_0 + x)$$

Esto nos da la idea de que hay una identidad que podríamos demostrar:

Lema 2.4.
$$x = \mu_0^n L^n(x + n\lambda x_0), \forall n \in \mathbb{N}$$

Demostración. Lo haremos mediante inducción, ya verificamos el caso base, por lo tanto usaremos de hipótesis inductiva que la relación se cumple hasta $n \in \mathbb{N}$, es decir:

$$x = \mu_0^n L^n (x + n\lambda x_0)$$

como x_0 era un vector propio, es claro que la relacion $x_0 = \mu_0^n L^n x_0$ es cierta $\forall n \in \mathbb{N}$, de forma que:

$$\begin{aligned} x + \lambda x_0 &= x + \lambda \mu_0^n L^n x_0 \\ &= x + \mu_0^n L^n (\lambda x) \\ &= \mu_0^n L^n (x + n\lambda x_0) + \mu_0^n L^n (\lambda x) \\ &= \mu_0^n L^n (x + (n+1)\lambda x_0) \end{aligned}$$

con esto tendremos que:

$$\mu_0 L(x + \lambda x_0) = \mu_0^{n+1} L^{n+1} (x + (n+1)\lambda x_0)$$

y dado que por nuestro caso base teníamos que $x=\mu_0L(x+\lambda x_0),$ tenemos que:

$$x = \mu_0^{n+1} L^{n+1} (x + (n+1)\lambda x_0)$$

concluyendo así inductivamente que la relación es cierta.

De esta relación es claro que:

$$\frac{x}{n} = \mu_0^n L^n \left(\frac{x}{n} + \lambda x_0 \right); \quad \forall n \in \mathbb{N}$$

Ahora bien, dado que $x_0 \in int(K)$, tenemos que $\lambda x_0 \in int(K)$ (ya que $\lambda > 0$), por lo tanto para un N suficientemente grande se verificara que:

$$\lambda x_0 + \frac{x}{N} \in K$$

de forma que $\mu_0^N L^N(\frac{x}{N} + \lambda x_0) \in K$, lo que equivale a que $\frac{x}{N} \in K$, por lo tanto, como N > 0 tenemos que $x = N \frac{x}{N} \in K$.

Notar que:

$$\frac{x}{n} = \mu_0^n L^n \left(\frac{x}{n} + \lambda x_0\right)$$

$$= \mu_0^n L^n \left(\frac{x}{n}\right) + \mu_0^n L^n (\lambda x_0)$$

$$= \mu_0^n L^n \left(\frac{x}{n}\right) + \lambda \left(\mu_0^n L^n (x_0)\right)$$

$$= \mu_0^n L^n \left(\frac{x}{n}\right) + \lambda x_0$$

de forma que:

$$\mu_0^n L^n\left(\frac{x}{n}\right) = \frac{x}{n} - \lambda x_0 \xrightarrow[n \to +\infty]{} -\lambda x_0$$

donde $-\lambda x_0 \notin K$ ya que $x_0 \in K \setminus \{0\}$ y $\lambda \neq 0$, pero esto resulta ser una contradicción ya que al estar $\frac{x}{n} \in K$ para todo $n \in \mathbb{N}$, entonces:

$$\mu_0^n L^n\left(\frac{x}{n}\right) \in K, \forall n \in \mathbb{N}$$

y como K es cerrado, en el limite debería seguir en K , lo cual acabamos de mostrar que no se cumple.

Con esto se concluye que $\lambda = 0$, y por lo tanto demostramos lo pedido.

3. Aplicaciones

Daremos una aplicacion del Teorema de Krein-Rutman a problemas lineales con condiciones Dirichlet.

Sea el L un operador elíptico de segundo orden:

$$Lu = \sum_{i,j=1}^{n} a_{ij} \partial_{ij}^{2} u + \sum_{i=1}^{n} b_{i} \partial_{i} u + cu$$

donde $a_{ij}, b_i, c \in \mathcal{C}(\overline{\Omega}), \ \Omega \subset \mathbb{R}^N$ un dominio abierto acotado con borde suave.

Asumamos las condiciones de elipticidad, i.e., existe un $\alpha > 0$ tal que:

$$\sum_{i,j} a_{ij}(x)\xi_i\xi_j \ge \alpha |\xi|^2, \quad \forall \xi \in \mathbb{R}^N, \forall x \in \overline{\Omega}; \quad c \le 0$$

Es conocido que para todo $f \in L^p, 1 , que la ecuación:$

$$\begin{cases} Lu = -f, \text{ en } \Omega \\ u = 0, \text{ en } \partial \Omega \end{cases}$$

tiene una única solución $u \in W^{2,p}(\Omega)$; y el operador $K = L^{-1} : f \mapsto u$ con u solución del problema resulta ser positivo y acotado en $L^p(\Omega)$ (y también en $\mathcal{C}_0(\overline{\Omega})$ el subconjunto de $\mathcal{C}(\overline{\Omega})$ que es nulo en el borde de Ω), podemos verificar que sera positivo con respecto al conjunto de las funciones $P = \{u \in \mathcal{C}_0^1(\overline{\Omega}) : u \geq 0 \text{ en } \Omega\}$ ya que si u = Kf, con $f \in P$, significaría que u es solución del problema:

$$\begin{cases} Lu = -f \le 0, \text{ en } \Omega \\ u = 0, \text{ en } \partial \Omega \end{cases}$$

Luego por el Principio del Máximo tendríamos que $u \ge 0$, por lo que $Kf \in P$, de forma que $K(P) \subset P$, i.e. K es positivo con respecto al cono P.

Ahora mostraremos un resultado un poco mas refinado:

Lema 3.1. $K = L^{-1}$ es un operador compacto estrictamente positivo.

Demostración. Ya sabemos que es compacto, por lo que solo mostraremos que es estrictamente positivo, i.e. $\forall f \in \mathcal{C}_0^1(\overline{\Omega})$, si $f \geq 0$ pero $f \neq 0$, entonces $u = Kf \in int(P)$.

Por el Principio del Máximo Fuerte, tenemos que u=Kf verifica que $u(x)>0, \forall x\in\Omega$. Ahora bien, dado que Ω tiene borde suave, satisface la propiedad de la bola interior, y como en todo el borde de Ω tenemos que u=0, entonces por el Lema de Hopf resulta que $\partial_n u|_{\partial\Omega}>0$ (con ∂_n la derivada normal interior).

Como $\partial\Omega$ es compacto, existe $\delta>0$ tal que:

$$\sup_{x \in \partial \Omega} \partial_n u(x) > \delta > 0.$$

Ahora bien, dado que u esta en $\mathcal{C}^1(\overline{\Omega})$, tenemos que $\partial_n u$ es continua, luego como $\partial_n u < -\delta$ en $\partial\Omega$, tenemos que existe N vecindad de $\partial\Omega$ tal que $\partial_{\nu} u \geq \delta/2$, donde ν corresponde a la dirección conectando $x \in N$ al punto mas cercano en $\partial\Omega$ **

Definiendo $\alpha = \inf\{u(x) : x \in \Omega \setminus N\}$ y $\beta = \min\{\alpha, \delta/2\}$, entonces la bola $B_{\beta}(u) \subset C_0^1(\overline{\Omega})$ esta contenida en int(P), concluyendo así que Ku esta en int(P), y por lo tanto K estrictamente positiva con respecto a P.

Con esto y el Teorema de Krein-Rutman, podemos demostrar el siguiente resultado:

Proposición 3.2. Sea L un operador lineal elíptico de segundo orden con las condiciones antes mencionadas, $\Omega \subset \mathbb{R}^N$ un dominio abierto acotado, con borde suave. Entonces el problema de valores propios:

$$\begin{cases} -Lu = \lambda u, \ en \ \Omega \\ u = 0, \ en \ \partial \Omega \end{cases}$$

REFERENCIAS REFERENCIAS

tiene una función propia positiva con un valor propio λ_1 positivo, simple tanto algebraicamente como geometricamente y que satisface:

$$\lambda_1 < |\lambda|, \quad \forall \lambda \in \sigma(L)$$

Demostración. Gracias al Lema 3.1. sabemos que $K=L^{-1}$ es compacto y estrictamente positivo en el espacio $P=\{u\in\mathcal{C}^1_0(\overline{\Omega}):u\geq 0\text{ en }\Omega\}$, entonces por el Teorema de Krein-Rutman, K admite un único vector propio $u_0\in int(P)$ con $||u_0||=1$ y que su valor característico λ_1 es menor en modulo que cualquier otro valor característico de K, entonces tenemos que:

$$\lambda_1 K u = u$$

lo cual equivale a que:

$$K(\lambda_1 u) = u$$

de forma que, como $u \in int(P)$, tenemos que u es positiva y resuelve:

$$\begin{cases}
-Lu = \lambda_1 u, \text{ en } \Omega \\
u = 0, \text{ en } \partial \Omega
\end{cases}$$

por lo tanto es una función propia positiva; además, como para cualquier otro valor característico de K, λ , se tiene que $\lambda_1 \leq |\lambda|$, es claro que equivale a que para cualquier valor propio del problema, este sera menor en módulo.

Por último, λ_1 resulta ser simple tanto algebraicamente como geometricamente ya que lo es para el problema abstracto $\lambda Ku = u$.

Referencias

[1] Paul H. Rabinowitz. Analyse numérique: Théorie du degré topologique et applications. Gauthier-Villars, 1970. Voir chapitre VIII.3.