Gabriel Maayan - FOCS Assignment 2

1 DMC 3.3

Liamsi has more RAM than Kilam = p: Pigs can fly = q

$$p = T, q = F$$

(a)
$$\neg p \rightarrow q = T$$

(b)
$$p \rightarrow q = F$$

(c)
$$\neg p \land q = F$$

(d)
$$\neg p \lor q = F$$

(e)
$$p \wedge q = F$$

(f)
$$p \vee q = T$$

2 DMC 3.21

(c)
$$\neg p \land q \land \neg r$$

3 DMC 4.7

(a) Prove "x is irrational $\to \sqrt{x}$ is irrational." Let \sqrt{x} be rational.

$$\sqrt{x} = a/b, a \in \mathbb{Z}, b \in \mathbb{N}$$

 $x = a^2/b^2$

 a^2/b^2 is rational. So x is rational.

 $\therefore x$ is irrational $\to \sqrt{x}$ is irrational, is True.

4 DMC 4.25 and 4.26

(b) $(A \cup B)'$ by DeMorgan's Thm $A' \cap B'$ $\therefore (A \cup B)' = A' \cap B'$

5 DMC 4.13

(1) Prove: If x, y are irrational, then y^x is irrational.

Let
$$x = \log_2(9)$$
 and $y = \sqrt{2}$

$$y^x = \sqrt{2}^{\log_2(9)}$$

$$2^{\log_2(3)}$$

$$= 3$$

- \therefore There can be an irrational x, y s.t. y^x is rational.
- (o) Prove $\exists x, y \in \mathbb{Z} : 2x^2 + 5y^2 = 14$ Let y = 0, for $x = 0, 1, 2, 3, \dots, 2x^2 = \{0, 2, 8, 18, \dots\}$ Let y = 1, for $x = 0, 1, 2, 3, \dots, 2x^2 + 5 = \{5, 7, 13, 23, \dots\}$ Let y = 2, for $x = 0, 1, 2, 3, \dots, 2x^2 + 20 = \{20, 22, 28, 38, \dots\}$ $\therefore \exists x, y \in \mathbb{Z} : 2x^2 + 5y^2 = 14$ is False.