Berechenbarkeit

Vorlesung 11: Polynomielle Entscheidbarkeit

3. Juli 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Prüfung	Vorlesung
1.7.	2.7.	3.7.
Übung 6		Klasse P
A-Woche		
8.7.	9.7.	10.7.
Abschlussübung (beide Wochen)		NP-Vollständigkeit
(Mo+Di FKH, Mi Hs.8)		
15.7.	16.7.	17.7.
	Prüfung ab 13:30 Uhr	
	in AudiMax & Hs. 9	

Raumänderung Übungen letzte Woche

1	Montag (7.7.)	Dienstag (8.7.)	Mittwoch (9.7.)
Felix-Klein-Hörsaal		Hörsaal 8	

Notizen

- Beweissystem = Formelmenge \mathcal{F} + Inferenzregeln \mathcal{R}
- Beweis = Folge $(F_1, ..., F_n)$ von Formeln aus \mathcal{F} ; für alle $1 \le i \le n$ Formel F_i vermittels Regel aus \mathcal{R} aus $\{F_1, ..., F_{i-1}\}$ herleitbar

Łukasiewicz-Logik

- Formelmenge $\mathcal{F} = \text{aussagenlogische Formeln \"{u}ber} \rightarrow \text{und} \neg$
- Inferenzregeln R

$$\vdash F \to (F' \to F)$$

$$\vdash (F \to (F' \to F'')) \to ((F \to F') \to (F' \to F''))$$

$$\vdash (\neg F \to \neg F') \to (F' \to F)$$

$$\{F, F \to F'\} \vdash F' \qquad \text{(modus ponens)}$$

Jan Łukasiewicz (* 1878; † 1956)

- Poln. Logiker & Philosoph
- Beiträge Aussagenlogik & mehrwertiger Logik
- Erfinder polnischer Notation

§11.1 Definition (abstraktes Beweissystem; abstract proof system)

Abstraktes Beweissystem über Γ^* ist Paar (\mathcal{B}, f) mit

- $\mathcal{B} \subseteq \Sigma^*$ entscheidbar (Menge gültiger Beweise)
- $f: \mathcal{B} \to \Gamma^*$ berechenbar und total (Zuordnung Beweis zu Aussage)

§11.1 Definition (abstraktes Beweissystem; abstract proof system)

Abstraktes Beweissystem über Γ^* ist Paar (\mathcal{B}, f) mit

- $\mathcal{B} \subseteq \Sigma^*$ entscheidbar (Menge gültiger Beweise)
- $f: \mathcal{B} \to \Gamma^*$ berechenbar und total (Zuordnung Beweis zu Aussage)

Łukasiewicz-Logik

- Beweise B offenbar entscheidbar
- Bewiesene Aussage = letztes Element des Beweises Damit f berechenbar

§11.2 Definition (korrekt, vollständig; sound, complete)

Abstraktes Beweissystem (\mathcal{B}, f) über Γ^* ist für Aussagen $\mathcal{T} \subseteq \Gamma^*$

• korrekt falls $f(B) \in \mathcal{T}$ für alle $B \in \mathcal{B}$ (jeder Beweis "beweist" Aussage aus \mathcal{T})

§11.2 Definition (korrekt, vollständig; sound, complete)

Abstraktes Beweissystem (\mathcal{B}, f) über Γ^* ist für Aussagen $\mathcal{T} \subseteq \Gamma^*$

- korrekt falls $f(B) \in \mathcal{T}$ für alle $B \in \mathcal{B}$ (jeder Beweis "beweist" Aussage aus \mathcal{T})
- vollständig falls $B \in \mathcal{B}$ mit f(B) = F für alle $F \in \mathcal{T}$ existiert (jede Aussage aus \mathcal{T} beweisbar)

§11.2 Definition (korrekt, vollständig; sound, complete)

Abstraktes Beweissystem (\mathcal{B}, f) über Γ^* ist für Aussagen $\mathcal{T} \subseteq \Gamma^*$

- korrekt falls $f(B) \in \mathcal{T}$ für alle $B \in \mathcal{B}$ (jeder Beweis "beweist" Aussage aus \mathcal{T})
- vollständig falls $B \in \mathcal{B}$ mit f(B) = F für alle $F \in \mathcal{T}$ existiert (jede Aussage aus \mathcal{T} beweisbar)

Notiz

- ullet Łukasiewicz-Logik für aussagenlog. Tautologien über o und o
 - Korrekt
 - Vollständig

nur Tautologien beweisbar jede Tautologie beweisbar

§11.3 Theorem (Unvollständigkeitssatz von Gödel)

Jedes abstrakte Beweissystem ist für WA inkorrekt oder unvollständig

§11.3 Theorem (Unvollständigkeitssatz von Gödel)

Jedes abstrakte Beweissystem ist für WA inkorrekt oder unvollständig

Beweis

Sei (\mathcal{B},f) korrektes und vollständiges abstraktes Beweissystem für WA. Da $\mathcal{B} \neq \emptyset$ und \mathcal{B} entscheidbar, ist \mathcal{B} rekursiv aufzählbar. Also existiert $g \colon \mathbb{N} \to \mathcal{B}$ surjektiv und berechenbar.

§11.3 Theorem (Unvollständigkeitssatz von Gödel)

Jedes abstrakte Beweissystem ist für WA inkorrekt oder unvollständig

Beweis

Sei (\mathcal{B},f) korrektes und vollständiges abstraktes Beweissystem für WA. Da $\mathcal{B} \neq \emptyset$ und \mathcal{B} entscheidbar, ist \mathcal{B} rekursiv aufzählbar. Also existiert $g \colon \mathbb{N} \to \mathcal{B}$ surjektiv und berechenbar. Dann $(g \,;\, f) \colon \mathbb{N} \to \Gamma^*$ berechenbar.

§11.3 Theorem (Unvollständigkeitssatz von Gödel)

Jedes abstrakte Beweissystem ist für WA inkorrekt oder unvollständig

Beweis

Sei (\mathcal{B},f) korrektes und vollständiges abstraktes Beweissystem für WA. Da $\mathcal{B} \neq \emptyset$ und \mathcal{B} entscheidbar, ist \mathcal{B} rekursiv aufzählbar. Also existiert $g\colon \mathbb{N} \to \mathcal{B}$ surjektiv und berechenbar. Dann $(g\,;\,f)\colon \mathbb{N} \to \Gamma^*$ berechenbar. Aus Korrektheit folgt $f\colon \mathcal{B} \to \mathsf{WA}$ und aus Vollständigkeit folgt Surjektivität von $f\colon \mathcal{B} \to \mathsf{WA}$. Also $(g\,;\,f)\colon \mathbb{N} \to \mathsf{WA}$ surjektiv.

§11.3 Theorem (Unvollständigkeitssatz von Gödel)

Jedes abstrakte Beweissystem ist für WA inkorrekt oder unvollständig

Beweis

Sei (\mathcal{B},f) korrektes und vollständiges abstraktes Beweissystem für WA. Da $\mathcal{B} \neq \emptyset$ und \mathcal{B} entscheidbar, ist \mathcal{B} rekursiv aufzählbar. Also existiert $g\colon \mathbb{N} \to \mathcal{B}$ surjektiv und berechenbar. Dann $(g\,;\,f)\colon \mathbb{N} \to \Gamma^*$ berechenbar. Aus Korrektheit folgt $f\colon \mathcal{B} \to \mathsf{WA}$ und aus Vollständigkeit folgt Surjektivität von $f\colon \mathcal{B} \to \mathsf{WA}$. Also $(g\,;\,f)\colon \mathbb{N} \to \mathsf{WA}$ surjektiv. Damit WA rekursiv aufzählbar im Widerspruch zu Theorem §10.15 $f\colon \mathbb{R}$

Konsequenzen

- Jedes vollständige Beweissystem für WA ist inkorrekt
- Jedes korrekte Beweissystem für WA ist unvollständig (nicht alle wahren Sätze von WA lassen sich beweisen)

Kurt Gödel (* 1906; † 1978)

- Öster.-amer. Logiker, Mathematiker & Philosoph
- Bedeutendster Logiker; Gödel-Nummern
- Widerlegte Hilbertsche Grundsatzprogramm (alle Sätze basierend auf Arithmetik ableitbar)

Entscheidbarkeit

- Grundlegende Problem-Lösbarkeit
- Keine Beschränkung der Ressourcen
- Entscheidbar ≠ praktisch lösbar

(Zeit, Speicher)

Entscheidbarkeit

- Grundlegende Problem-Lösbarkeit
- Keine Beschränkung der Ressourcen
- Entscheidbar ≠ praktisch lösbar

(Zeit, Speicher)

Komplexitätstheorie

- Obere & untere Schranken Ressourcen für jedwede Problemlösung
- Genauere Charakterisierung (Unterteilung) der Entscheidbarkeit (effizient, ineffizient lösbar, praktisch unlösbar, unentscheidbar)

Problem des Handelsreisenden

- Geg. *n* Orte, Distanzmatrix $D \in \mathbb{N}^{n \times n}$ für Orte & Länge $\ell \in \mathbb{N}$
- Existiert Permutation $\pi = (\pi_1, \dots, \pi_n)$ von $(1, \dots, n)$ mit $D(\pi) \leq \ell$

$$D(\pi) = \left(\sum_{i=1}^{n-1} D_{\pi_i, \pi_{i+1}}\right) + D_{\pi_n, \pi_1}$$
 (Summe Distanzen in Rundreise)

Problem des Handelsreisenden

- Geg. *n* Orte, Distanzmatrix $D \in \mathbb{N}^{n \times n}$ für Orte & Länge $\ell \in \mathbb{N}$
- Existiert Permutation $\pi = (\pi_1, \dots, \pi_n)$ von $(1, \dots, n)$ mit $D(\pi) \leq \ell$

$$D(\pi) = \left(\sum_{i=1}^{n-1} D_{\pi_i, \pi_{i+1}}\right) + D_{\pi_n, \pi_1}$$
 (Summe Distanzen in Rundreise)

• Entscheidbar per Berechnung $D(\pi)$ für alle n! Permutationen π

Problem des Handelsreisenden

- Geg. *n* Orte, Distanzmatrix $D \in \mathbb{N}^{n \times n}$ für Orte & Länge $\ell \in \mathbb{N}$
- Existiert Permutation $\pi = (\pi_1, \dots, \pi_n)$ von $(1, \dots, n)$ mit $D(\pi) \leq \ell$

$$D(\pi) = \left(\sum_{i=1}^{n-1} D_{\pi_i, \pi_{i+1}}\right) + D_{\pi_n, \pi_1}$$
 (Summe Distanzen in Rundreise)

- Entscheidbar per Berechnung $D(\pi)$ für alle n! Permutationen π
- Sei n=40 und berechne $D(\pi)$ für 10^{11} Permutationen π pro s
- Laufzeit ca. 2, $6 \cdot 10^{29}$ Jahre (Alter Universum ca. 1, $4 \cdot 10^{10}$ Jahre)

Optimale Rundreise durch 15 größte Städte Deutschlands

 $15! \approx 1, 3 \cdot 10^{12}$

Notizen

- Obere Schranke: Analyse "guter" Lösungsalgorithmus
- Untere Schranke: Problemanalyse & Reduktionen

Notizen

- Obere Schranke: Analyse "quter" Lösungsalgorithmus
- Untere Schranke: Problemanalyse & Reduktionen

Beobachtung

- Effizientere Algorithmen f
 ür Handelsreisenden-Problem bekannt
- Problem bleibt "schwierig"

Kürzester Weg

- Geg. Orte $s, z \in \{1, ..., n\}$, Distanzmatrix $D \in \mathbb{N}^{n \times n}$, Länge $\ell \in \mathbb{N}$
- Existiert Pfad π von s nach z mit Länge $D(\pi) \leq \ell$

Kürzester Weg

- Geg. Orte $s, z \in \{1, \dots, n\}$, Distanzmatrix $D \in \mathbb{N}^{n \times n}$, Länge $\ell \in \mathbb{N}$
- Existiert Pfad π von s nach z mit Länge $D(\pi) \leq \ell$
- Entscheidbar per Berechnung kürzester Pfad von s nach z
- Effizient und selbst für sehr große *n* lösbar

Kürzester Weg

- Geg. Orte $s, z \in \{1, \dots, n\}$, Distanzmatrix $D \in \mathbb{N}^{n \times n}$, Länge $\ell \in \mathbb{N}$
- Existiert Pfad π von s nach z mit Länge $D(\pi) \leq \ell$
- Entscheidbar per Berechnung kürzester Pfad von s nach z
- Effizient und selbst für sehr große *n* lösbar

Notizen

- Entscheidbarkeit unterscheidet beide Probleme nicht
- Unterscheidung effizient lösbar & schwierig (aber lösbar) gesucht

§11.4 Definition (Notation für obere Schranken; big-O notation)

Gegeben Funktion $f: \mathbb{N} \to \mathbb{N}$

$$\mathcal{O}(f) = \big\{g \colon \mathbb{N} \to \mathbb{N} \mid \exists x_0, a, b \in \mathbb{N}, \forall x \ge x_0 \colon g(x) \le a \cdot f(x) + b\big\}$$

§11.4 Definition (Notation für obere Schranken; big-O notation)

Gegeben Funktion $f: \mathbb{N} \to \mathbb{N}$

$$\mathcal{O}(f) = \big\{g \colon \mathbb{N} \to \mathbb{N} \mid \exists x_0, a, b \in \mathbb{N}, \forall x \ge x_0 \colon g(x) \le a \cdot f(x) + b\big\}$$

Notizen

- $4x^2 + 3x + 3 \in \mathcal{O}(x^2)$
- $x \cdot \log x \in \mathcal{O}(x^2)$
- $\sqrt{x} \in \mathcal{O}(x)$

§11.5 Definition (polyn. berechenbar; polynomially computable)

(Totale) Funktion $g \colon \Sigma^* \to \Gamma^*$ polynomiell berechenbar falls det. TM M und Polynom P existieren mit

- T(M) = g und
- M hält auf Eingabe $w \in \Sigma^*$ nach höchstens P(|w|) Schritten

§11.5 Definition (polyn. berechenbar; polynomially computable)

(Totale) Funktion $g \colon \Sigma^* \to \Gamma^*$ polynomiell berechenbar falls det. TM M und Polynom P existieren mit

- T(M) = g und
- M hält auf Eingabe $w \in \Sigma^*$ nach höchstens P(|w|) Schritten

Notizen

- Polynom sichert (weitreichende) Modellunabhängigkeit
- Polynom separiert exponentielles (und schlimmeres) Verhalten
- Polynomiell berechenbar impliziert berechenbar & total

§11.6 Definition (polyn. entscheidbar; polynomially decidable)

Problem $L \subseteq \Sigma^*$ polynomiell entscheidbar falls charakteristische Funktion χ_L polynomiell berechenbar

$$\chi_L \colon \Sigma^* \to \{0,1\}$$
 mit $\chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$

§11.6 Definition (polyn. entscheidbar; polynomially decidable)

Problem $L \subseteq \Sigma^*$ polynomiell entscheidbar falls charakteristische Funktion χ_L polynomiell berechenbar

$$\chi_L \colon \Sigma^* \to \{0,1\}$$
 mit $\chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$

Notizen

- Gleiche Begriffe für While-Programme, μ-Rekursion, etc. (polynomielle Transformationen)
- Berühmte Komplexitätsklasse P

$$P = \{L \mid L \text{ polynomiell entscheidbar}\}$$

Ausnahme

- Transformation TM in det. TM exponentiell
- Anderer Begriff polynomieller Entscheidbarkeit für nichtdet. TM
- Definition über Zertifikatverifikation (Alternative im Schöning-Buch)

§11.7 Definition (nondeterministically polynomially decidable)

Problem $L \subseteq \Sigma^*$ nichtdeterministisch polynomiell entscheidbar falls Alphabet Γ , Relation $R \subseteq \Sigma^* \times \Gamma^*$ und $k \in \mathbb{N}$ existieren mit

- $\{w\#z \mid (w,z) \in R\} \in P$ polynomiell entscheidbar und
- $w \in L$ gdw. $z \in \Gamma^*$ existiert mit $(w, z) \in R$ und $|z| \leq |w|^k$ für jedes $w \in \Sigma^*$

§11.7 Definition (nondeterministically polynomially decidable)

Problem $L \subseteq \Sigma^*$ nichtdeterministisch polynomiell entscheidbar falls Alphabet Γ , Relation $R \subseteq \Sigma^* \times \Gamma^*$ und $k \in \mathbb{N}$ existieren mit

- $\{w\#z \mid (w,z) \in R\} \in P$ polynomiell entscheidbar und
- $w \in L$ gdw. $z \in \Gamma^*$ existiert mit $(w, z) \in R$ und $|z| \le |w|^k$ für jedes $w \in \Sigma^*$

Notizen

- Polynomiell entscheidbare Zertifikatrelation R
- Zertifikate polynomieller Länge
- 2 berühmte Klassen

```
\mathbf{P} = \{L \mid L \text{ polynomiell entscheidbar}\}
\mathbf{NP} = \{L \mid L \text{ nichtdeterministisch polynomiell entscheidbar}\}
```

- Geg. $n_1, \ldots, n_k \in \mathbb{N}$ und $n \in \mathbb{N}$ in Binärkodierung (Gegenstandsgrößen & Rucksackgröße)
- Existiert $I \subseteq \{1, ..., k\}$ mit $\sum_{i \in I} n_i = n$? (Kann Rucksack vollständig gefüllt werden?)

- Geg. $n_1, \ldots, n_k \in \mathbb{N}$ und $n \in \mathbb{N}$ in Binärkodierung (Gegenstandsgrößen & Rucksackgröße)
- Existiert $I \subseteq \{1, ..., k\}$ mit $\sum_{i \in I} n_i = n$? (Kann Rucksack vollständig gefüllt werden?)
- Polynomielle Entscheidbarkeit

- Geg. $n_1, \ldots, n_k \in \mathbb{N}$ und $n \in \mathbb{N}$ in Binärkodierung (Gegenstandsgrößen & Rucksackgröße)
- Existiert I ⊆ {1,...,k} mit ∑_{i∈I} n_i = n?
 (Kann Rucksack vollständig gefüllt werden?)
- Polynomielle Entscheidbarkeit unklar
- Nichtdet. polynomielle Entscheidbarkeit

- Geg. n₁,..., n_k ∈ N und n ∈ N in Binärkodierung (Gegenstandsgrößen & Rucksackgröße)
- Existiert I ⊆ {1,...,k} mit ∑_{i∈I} n_i = n?
 (Kann Rucksack vollständig gefüllt werden?)
- Polynomielle Entscheidbarkeit unklar
- Nichtdet. polynomielle Entscheidbarkeit ja, in NP

- Geg. $n_1, \ldots, n_k \in \mathbb{N}$ und $n \in \mathbb{N}$ in Binärkodierung (Gegenstandsgrößen & Rucksackgröße)
- Existiert I ⊆ {1,...,k} mit ∑_{i∈I} n_i = n?
 (Kann Rucksack vollständig gefüllt werden?)
- Polynomielle Entscheidbarkeit unklar
- Nichtdet. polynomielle Entscheidbarkeit ja, in NP
 - Zertifikatrelation mit $\Gamma = \{0, 1\}$

$$R = \left\{ \left(\operatorname{bin}(n_1) \# \cdots \# \operatorname{bin}(n_k) \# \operatorname{bin}(n), i_1 \cdots i_k \right) \mid \sum_{\substack{\ell=1 \ i_\ell \neq 0}}^k n_\ell = n \right\}$$

- R polynomiell entscheidbar (While-Programm überprüft Summe)
- Instanz w lösbar gdw. $\exists z \in \Gamma^k$ mit $(w, z) \in R$

§11.8 Theorem

 $P \subseteq NP$

Beweis

Sei $L \in \mathbf{P}$. Wähle $\Gamma = \Sigma$, $R = \{(w, w) \mid w \in L\}$ und k = 1

§11.8 Theorem

 $P \subseteq NP$

Beweis

Sei
$$L \in \mathbf{P}$$
. Wähle $\Gamma = \Sigma$, $R = \{(w, w) \mid w \in L\}$ und $k = 1$

$$w \in L \iff (w, w) \in R$$

 $\iff \exists z : (w, z) \in R \text{ und } |z| \le |w|$

 $\{w\#w\mid w\in L\}$ polynomiell entscheidbar, da $L\in \mathbf{P}$

Notizen

- Nichtdet. TM rät & überprüft "kurzen" Lösungsnachweis (Zertifikat)
- Nichtdet. TM benötigt keine Suche
 Det. TM benötigt aktuell Suche nach solchen Zertifikaten

Notizen

- Nichtdet. TM rät & überprüft "kurzen" Lösungsnachweis (Zertifikat)
- Nichtdet. TM benötigt keine Suche Det. TM benötigt aktuell Suche nach solchen Zertifikaten

- ullet Polynomiell berechenbar pprox effizient berechenbar
- Nichtdeterminismus vermutlich nicht effizient simulierbar

 $P \subseteq NP$ gilt, aber

```
Beweis \mathbf{NP} \subseteq \mathbf{P} oder \mathbf{P} \subsetneq \mathbf{NP} 1 Million USD wert
```

- Wichtigstes Problem der theoretischen Informatik
- 1 der 7 Milleniumprobleme der Mathematik

Zusammenfassung

- Unvollständigkeitssatz von Gödel
- Polynomielle Entscheidbarkeit

• Nichtdet. polynomielle Entscheidbarkeit

(Klasse P)

(Klasse **NP**)

Sechste Übungsserie bereits im Moodle