

Taller de bioinformática básica y sus aplicaciones en la genómica de especies no modelos

Día 2

Verificación de calidad de genomas

MSc. Eduardo Pizarro G.

1 Uso del clúster Conexión

Ejecución y transferencia

Scripts
Transferencia datos

Conda

Instalación paquetes Gestión de ambientes

Verificación de Calidad

> FastQC MultiQC

1. Uso del clúster

A) Qué es un HPC

1. Uso del clúster

- A) Qué es un HPC
- B) Conexión a un HPC

Leftraru

- HPC Computación de alto rendimiento
- Múltiples computadores conectados entre si
- Organización por Schedulers

Conexión a clúster Leftraru

- Conexión se realiza al servidor (host) y a un usuario del servidor
- Usuarios disponibles: student88-99
- Comando para conexión:
 - \$ ssh usuario@host
- Dominio del host: leftraru.nlhpc.cl (podría ser IP)
 \$ ssh student88@leftraru.nlhpc.cl
- Contraseña de usuarios: k7sm4wBz

```
(base) eduardo@LAPTOP-IDJV37SH:~$ ssh student88@leftraru.nlhpc.cl
student88@leftraru.nlhpc.cl's password:
Last login: Mon Jul 31 20:27:53 2023 from 213.94.59.71
MMMMMMMMMMMMMMMMMMMd.``..`:-sssososss--
                       * ОМИМИМИМИМИМИМИМИМИМО *
                      `:odNMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMy+\ -/o-ss+ooos-/o/
              ..` .oso+/` ``` `
.omMMMMMMMMMMM
` `-/+so/+s/:.`/+/o:`
                          `snmmmmmmmmmm
MMMMMMMMMMMMMMMMMMMMNo.+`:` ``-//+:/:--...+ssos:`
                          . `dMMMMMMMMMM
MMMMMMMMMMMMMMMN:----.:d:.-/yss+o-:/o+ .::++//:::+MMMMMMMMMMMMMM
MMMMMMMMMMMMM+sosss/.--:: /:.s o. mMMMh:ossssodMMMMMMMMMM
M*KID*MMMMMMm+ssss/NMMNo---. `--:osos+::- ./++++/-.-...:MMMMMMMM
MMMMMMMMMMd+//://+MMMMMNh.` `/ Guacolda/ -:/++++:``...:MMMMMMM
MMMMMMMMMMMy/+oo/-sMMMMMMo`` -:/:/+//:/+s`
                      :::++++/`...:MMMMMMM
MMMd:yMMMMMMN mMMMd'mMMMMMNN. mMMMMM' mMMh:.'`.-:--..sMMMMMmo-'.' sMMM
MMM- /mMMMMh -MMMMs `NMMMMMMMMs -MMMMMd .MMMdh/ /MMMMMo /MMMd: :yNy``hMMM
MMd /y.`oNMMo sMMMM: +MMMMMMMMM + +MMMMMN``mMMdo..sNMMo -dMMMNdNMMMM
MM: dMNs'.hM: mMMMN' dMMMMMMMM .---. hMMMMy .+-'-odMMMMs -NMMMMMMMMNoy
Md -MMMMm: o`.MMMMy -MMMMMMMMm :dddmmm NMMMM+ .ohNMMMMMMN` hMMMMMMd+.+N
M+ oMMMMMM0 :MMMM: oNdys++/sM- sMMMMMN mMMMM+ /MMMMMMMMMN. yMMMmy+.-sNMM
M/ yMMMMMMdohMMMM- `.:/osssmM/.dMMMMMM/:mMMMMy -MMMMMMMMMd: `..-+ymMMMMM
Laboratorio Nacional de Computacion de Alto Rendimiento (NLHPC)
Centro de Modelamiento Matematico (CMM)
Universidad de Chile
IMPORTANTE: NO EJECUTAR PROCESOS EN ESTE NODO POR T > 30 min
PARA ESO DEBEN DE USARSE LAS COLAS DE EJECUCION
EN CASO DE TENER DUDAS CON SU SCRIPT, LO INVITAMOS A USAR NUESTRO GENERADOR
AUTOMÁTICO EN EL SIGUIENTE LINK: https://wiki.nlhpc.cl/Generador_Scripts
*****************************
ESTIMADO USUARIO, A CONTINUACIÓN SE LISTAN LOS NODOS LIBRES PARA SER UTILIZADOS:
PARTICION NODO ESTADO
debug 3
       idle
[student88@leftraru2 ~]$ .
```


- Gestor de paquetes y ambientes.
- Instalación por Miniconda
- Exploremos Conda!

➤ Activar conda: source ~/miniconda3/bin/activate conda list conda info --envs

- >Crear un ambiente:
- Crear un ambiente con fastQC: conda create –n secuenciasQC –c bioconda fastqc
- Activar ambiente: conda activate <nombre_ambiente>
- Veamos las opciones que tiene fastqc y comparemos con lo que colocamos en nuestro comando: fastqc --help

- Gestor de paquetes y ambientes.
- Instalación por Miniconda
- Exploremos Conda!

• ¿Cómo instalo MultiQC en el ambiente de Conda?

FastQC High Throughput Sequence QC Report

Version: 0.12.1

| www.bioinformatics.babraham.ac.uk/projects/
© Simon Andrews, Pierre Lindenbaum, Brian Howard, Phil Ewels 2011-22

HTSJDK BAM/SAM reader v2.24.1 from Samtools 2022

BZip decompression @ Matthew J. Francis, 2011 Base64 encoding @ Robert Harder, 2012 Java HDF5 reader @ ETH, CISD and SIS, 2007-14

- A) Ejecución de programas:
 - i. En el prompt

Ejecución de programas en el Prompt:

- A) Revisar donde se encuentran nuestros genomas
- \$ Is
- \$ Is ~/genomes
- B) Crear directorio para output de FastQC mkdir ~/genomes/QC_estudianteX
- C) Activar ambiente, escribir comando y ejecutar \$ conda activate secuenciasQC
- \$ fastqc -o ~/genomes/QC_estudianteX -t 1 -f fastq ~/genomes/m2267sub2_R1.fastq.gz

A) Ejecución de programas:

- i. En el prompt
- ii. Script: ¿qué son? ¿cómo elaborar uno?
 - a. Back-End
 - b. Front-End

Scripts para el Back-End

• Scheduler: sistema de gestión de tarea

SLURM

```
#!/bin/bash
#-----Script SBATCH - NLHPC -----
#SBATCH -J FastQC-tunombre
#SBATCH -p slims
#SBATCH --reservation=bioagosto
#SBATCH -n 1
#SBATCH -c 1
#SBATCH --mem-per-cpu=2300
#SBATCH --mail-user=email
#SBATCH --mail-type=ALL
#SBATCH -t 2:2:5
#SBATCH -o FastQC %j.out
#SBATCH -e FastQC %j.err
GEN=/home/courses/studentXX/genomes
OC=/home/courses/studentXX/OC
source $HOME/miniconda3/bin/activate
conda activate assembly
fastqc -o $QC/ --noextract -t 1 -f fastq $GEN/*.gz
```

PBS

```
⊟#!/bin/bash
      #PBS · - V
      #PBS -- N · fastqcp
      #PBS -- k - eo
      #PBS -- 1 · nodes=1:ppn=40
      #PBS -1 walltime=40:00:00
     source activate preSNPcalling
     RAW=/data6/testacc/Eduardo/PUDU/rawdata
     OC=/data6/testacc/Eduardo/PUDU/OC
     list=/data6/testacc/Eduardo/PUDU/rawdata/list
14
15
16
     cd . $RAW
     while read sample
19
      fastqc -o $RAW/fastqc-raw --noextract -t 4 -f fastq $RAW/$(sample).fq &
     done < $list
     wait
```

```
    Editor de texto (nano):
```

```
$ nano script1.sh
```

#!/bin/bash

mkdir Prueba

\$ chmod +x script1.sh

\$ bash script1.sh

OJO: las personas que estén en un mismo usuario, deben crear un directorio de scripts para cada uno, ingresar al directorio, y crear ahí sus scripts

Ej: mkdir Elisa mkdir Fabian mkdir Eduardo

 Ejercicio: Crear un script llamado fqc_m2267_R2.sh para ejecutar en Front-End y que permita ejecutar el comando de FastQC con la muestra m2267sub2_R2.fastq.gz

Pasos:

- 1. Indicar el intérprete de comando
- 2. Activar gestor de paquetes y ambientes
- 3. Activar ambiente
- 4. Ejecutar programa

#!/bin/bash

source ~/miniconda3/bin/activate conda activate secuenciasQC

fastqc -o ~/genomes/QC_estudianteX -t 1 -f fastq ~/genomes/m2267sub2_R2.fastq.gz

Guardar el script, convertir en ejecutable, y correr en segundo plano

```
$ chmod +x fqc_m2267_R2.sh
```

\$./fqc m2267 R2.sh &

Tercera forma:

Copiaremos el script anterior en uno nuevo para ejecutar FastQC con la muestra m2293:

\$ cp fqc_m2267_R2.sh fqc_m2293.sh

Luego modificar con nano para que quede de la siguiente forma:

#!/bin/bash

source ~/miniconda3/bin/activate conda activate secuenciasQC

fastqc –o ~/genomes/QC_estudianteX –t 1 –f fastq ~/genomes/m2293sub2_*.fastq.gz

Por último, ejecutar con nohup

```
$ nohup ./fqc_m2293.sh > fqc_m2293.out &
```

- Podemos monitorear con htop para ver que se está ejecutando
- Al finalizar los procesos, cambiar de ruta a ~/genomes/QC_estudianteX y ejecutar:

\$ multiqc.

¿Cómo revisamos nuestro output? Revisar directorio ~/genomes/QC_estudianteX

- A) Ejecución de programas:
 - i. En el prompt
 - ii. Script: ¿qué son? ¿cómo elaborar uno?
 - a. Back-End
 - b. Front-End
- B) Transferencia de archivos:
 - i. Comando rsync

Transferir datos del servidor

• Abrir una nueva terminal en la computadora local, y ejecutar:

rsync -azvrP -e ssh student88@leftraru.nlhpc.cl:/home/courses/student88/genomes/QC_estudianteX .

Abrir el html con navegador

FastQC

FastQC High Throughput Sequence QC Report

Version: 0.12.1

www.bioinformatics.babraham.ac.uk/projects/

© Simon Andrews, Pierre Lindenbaum, Brian Howard, Phil Ewels 2011-22,

HTSJDK BAM/SAM reader v2.24.1 from Samtools 2022

BZip decompression @ Matthew J. Francis, 2011 Base64 encoding @ Robert Harder, 2012

Java HDF5 reader @ ETH, CISD and SIS, 2007-14

FastQC webpage

Documentation

A copy of the FastQC documentation is available

Example Reports

- Good Illumina Data
- Bad Illumina Data
- Adapter dimer contaminated run
- · Small RNA with read-through adapter
- Reduced Representation BS-Seq
- PacBio
- 454

About | People | Services | Projects | Training | Publications

FastQC

Function	A quality control tool for high throughput sequence data.			
Language	Java			
Requirements	A <u>suitable Java Runtime Environment</u>			
Requirements	The Picard BAM/SAM Libraries (included in download)			
Code Maturity	Stable. Mature code, but feedback is appreciated.			
Code Released	Yes, under GPL v3 or later.			
Initial Contact	Simon Andrews			

Download Now

analyses across many samples into a single report

MultiQC searches a given directory for analysis logs and compiles a HTML report. It's a general use tool, perfect for summarising the output from numerous bioinformatics tools.

社 Get help on Slack Follow on Twitter Citation Quick install conda install multiqc # Install A multiqc . pip conda docker Need a little more help? See the full installation

instructions

MultiQC webpage

Preguntas a resolver con FastQC-MultiQC

- ¿Cuántos millones de reads tenemos?
- ¿Cuántas secuencias duplicadas?
- ¿Cuál es el tamaño promedio de los reads?
- ¿Poseen restos de adaptadores?
- ¿Qué significan los colores verdes, amarillos y rojos en cada análisis?
- ¿Cuál es la profundidad de secuenciación potencial que debiera obtener?

(Reads totales (R1 + R2) * largo de reads /1.000.000.000 (tamaño GigaBase))/2.4 (tamaño del genoma)

MultiQC

• multiqc_report.html <u>Link</u>

General Statistics

♣ Copy table	Ⅲ Configure Columns	■ Plot Sh	Showing 4/4 rows and 4/5 columns.					
Sample Name		% Dups		% GC		Length	M Seqs	
sample1-f		53.2%		44%		233 bp	0.0	
sample1-r		55.1%		44%		233 bp	0.0	
sample2-f		66.3%		44%		251 bp	0.1	
sample2-r		65.7%		44%		251 bp	0.1	

FastQC

FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

Sequence Quality Histograms

The mean quality value across each base position in the read. See the FastQC help.

Y-Limits: on

Phred quality score

LINK

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

Taller de bioinformática básica y sus aplicaciones en la genómica de especies no modelos

Día 2

Verificación de calidad de genomas

MSc. Eduardo Pizarro G.

